FUNDAMENTOS DE INFORMÁTICA PROGRAMACIÓN EN FORTRAN

Pilar Bernardos Llorente

Departamento de Matemática Aplicada y Ciencias de la Computación Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación

Universidad de Cantabria, 2008

PRÓLOGO

El propósito de este libro es recopilar los aspectos básicos del lenguaje de programación Fortran 90/95.

Está organizado en siete capítulos de nivel de complejidad creciente. Los capítulos no son independientes entre sí, de modo que su lectura no puede realizarse en cualquier orden, sino en el que se propone en este libro.

Cada capítulo contiene una primera parte teórica y otra parte práctica que consta a su vez de una serie de ejercicios resueltos y propuestos. Se pretende que, a la vista de la teoría y los programas que se presentan, el alumno sea capaz de construir programas de dificultad similar, tales como los que se plantean en los ejercicios propuestos.

Este libro está pensado para cualquier persona que quiera iniciarse en el lenguaje de programación Fortran. Lógicamente, es imprescindible que el aprendizaje se lleve a cabo con un computador.

Todos los programas presentados funcionan en los entornos de programación Compaq Visual Fortran versión 6.5 y Plato 3 versión 3.20 de la Salford Software, Ltd 2005. Este último entorno es de distribución gratuita en Internet para uso personal. Ambos permiten compilar el lenguaje de programación Fortran con formatos libre y fijo y Plato 3 a su vez también compila otros lenguajes como Java, C++, C#.

El libro sirve de guía básica a los alumnos de primer curso de Ingeniería Industrial y Química de la Universidad de Cantabria en la asignatura de Fundamentos de Informática para la parte de programación en el lenguaje Fortran. No obstante, en ningún caso, pretende sustituir a un manual de referencia del lenguaje.

TABLA DE CONTENIDOS

<u>0</u>	INTR	ODUCCIÓN	11
0.1	¿Qué e	s Fortran?	11
0.2	Самвіс	OS EN LOS DIFERENTES ESTÁNDARES FORTRAN	12
0.3	¿Por q	ué Fortran?	12
0.4	ELEME	NTOS DEL LENGUAJE	13
<u>1</u> CAL		S DE DATOS Y LOS PRIMEROS PASOS: LEER, R, ESCRIBIR	15
1.1		DE CARACTERES FORTRAN	
1.2	Estruc	CTURA DE UN PROGRAMA FORTRAN	15
1.3	PROGR	RAM	16
1.4	STOP		16
1.5	ЕЈЕМРЬ	O DE USO DE STOP	17
1.6	END P	ROGRAM	17
1.7	FORMA	to de las líneas en Fortran 90/95	17
1.8	TIPOS E	DE DATOS	18
1.9	CONSTA	ANTES EN FORTRAN	19
	1.9.1	CONSTANTES ENTERAS	20
	1.9.2	CONSTANTES REALES	20
	1.9.3	CONSTANTES LÓGICAS	20
	1.9.4	CONSTANTES COMPLEJAS	21
	1.9.5	CONSTANTES CARÁCTER	21
1.10	IDENTII	FICADORES	21
1.11	VARIAE	BLES	21
	1.11.1	DECLARACIÓN EXPLÍCITA	22
	1.11.2	DECLARACIÓN IMPLÍCITA	22
1.12	INICIAL	IZACIÓN DE VARIABLES	23
1.13	CONSTA	ANTES CON NOMBRE: PARAMETER	23
1.14	EXPRES	SIONES ARITMÉTICAS	24
	1.14.1	REGLAS DE PRECEDENCIA DE OPERADORES ARITMÉTICOS.	24
	1.14.2	EJEMPLO DE REGLAS DE PRECEDENCIA	25
1.15	ARITMÉ	ETICA CON TIPOS MEZCLADOS	25
1 16	ASIGNA	CIÓN ARITMÉTICA	27

1.17	FUNCIONES INTRÍNSECAS FORTRAN	27
EJE	RCICIOS RESUELTOS	29
	RCICIOS PROPUESTOS	
<u>2</u>	ESTRUCTURAS DE CONTROL CONDICIONALES	
2.1	Expresiones lógicas relacionales	35
2.2	EJEMPLOS DE EXPRESIONES LÓGICAS RELACIONALES	
2.3	EXPRESIONES LÓGICAS COMBINACIONALES	36
2.4	PRECEDENCIAS LÓGICAS-ARITMÉTICAS	
2.5	SENTENCIA DE ASIGNACIÓN LÓGICA	38
2.6	BLOQUE IF	39
2.7	BLOQUE IF CON NOMBRE	
2.8	EJEMPLOS DE BLOQUES IF	41
2.9	IF LÓGICO	41
2.10	BLOQUE SELECT CASE	42
2.11	EJEMPLOS DE BLOQUE SELECT CASE	42
EJE	RCICIOS RESUELTOS	<u>45</u>
EJE:	RCICIOS PROPUESTOS	53
<u>3</u>	ESTRUCTURAS DE CONTROL REPETITIVAS. BUCLES	55
3.1	ESTRUCTURAS DE REPETICIÓN	55
3.2	REPETICIÓN CONTROLADA POR CONTADOR O BUCLE DO ITERATIVO .	55
3.3	REPETICIÓN CONTROLADA POR EXPRESIÓN LÓGICA O BUCLE WHILE	57
3.4	BUCLE DO WHILE	59
3.5	SENTENCIAS EXIT Y CYCLE	61
3.6	BUCLES CON NOMBRE.	62
3.7	BUCLES ANIDADOS	63
3.8	BUCLES ANIDADOS DENTRO DE ESTRUCTURAS IF Y VICEVERSA	
EJE	RCICIOS RESUELTOS	<u>65</u>
EIF	RCICIOS PROPUESTOS	73

<u>4</u>	ARRAYS	75
4.1	Introducción	75
4.2	DECLARACIÓN DE ARRAYS	75
4.3	REFERENCIA A LOS ELEMENTOS DE UN ARRAY	76
4.4	INICIALIZACIÓN DE ARRAYS	77
	4.4.1 Inicialización de arrays en sentencias declaración de tipo	
	4.4.2 Inicialización de arrays en sentencias asignación	
	4.4.3 INICIALIZACIÓN DE ARRAYS EN SENTENCIAS DE LECTURA	4 79
4.5	OPERACIONES SOBRE ARRAYS COMPLETOS	81
4.6	OPERACIONES SOBRE SUBCONJUNTOS DE ARRAYS	82
	4.6.1 Tripletes de índices	82
	4.6.2 Vectores de índices	83
4.7	CONSTRUCCIÓN WHERE	83
4.8	SENTENCIA WHERE	85
4.9	CONSTRUCCIÓN FORALL	85
4.10	SENTENCIA FORALL	86
4.11	Arrays dinámicos	87
D. I.D.		0.0
EJE.	RCICIOS RESUELTOS	8 <u>9</u>
EJE	RCICIOS PROPUESTOS	105
<u>5</u>	PROCEDIMIENTOS	107
5.1	DISEÑO DESCENDENTE	107
5.2	FUNCIONES	108
5.3	Subrutinas	111
5.4	Transferencia de arrays a procedimientos	113
5.5	COMPARTIR DATOS CON MÓDULOS	114
5.6	PROCEDIMIENTOS MÓDULO	116
5.7	PROCEDIMIENTOS COMO ARGUMENTOS	117
5.8	ATRIBUTO Y SENTENCIA SAVE	118
5.9	PROCEDIMIENTOS INTERNOS	119
5.10	PROCEDIMIENTOS RECURSIVOS.	119

5.11	ARGUM	MENTOS OPCIONALES Y CAMBIOS DE ORDEN	120
<u>EJE</u>	RCICIO	OS RESUELTOS	123
<u>EJE</u>	RCICIO	OS PROPUESTOS	137
<u>6</u>	CARA	ACTERES Y CADENAS	139
6.1	CARAC	TERES Y CADENAS	139
6.2	EXPRE	SIÓN CARÁCTER	140
6.3	ASIGNA	ACIÓN CARÁCTER	140
6.4	FUNCIO	ONES INTRÍNSECAS CARÁCTER	141
<u>EJE</u>	RCICIO	OS RESUELTOS	145
<u>EJE</u>	RCICIO	OS PROPUESTOS	154
<u>7</u>	<u>FORN</u>	MATOS Y ARCHIVOS	155
7.1	Entra	da/salida en Fortran	155
7.2	SALIDA	A POR PANTALLA	155
7.3	Entra	DA POR TECLADO	156
7.4	DESCR	IPTORES DE FORMATO	157
	7.4.1	DESCRIPTOR I DE FORMATO ENTERO	158
	7.4.2	DESCRIPTOR F DE FORMATO REAL	158
	7.4.3	DESCRIPTOR E DE FORMATO EXPONENCIAL	159
	7.4.4	DESCRIPTOR ES DE FORMATO CIENTÍFICO	160
	7.4.5	Descriptor L de formato lógico	161
	7.4.6	DESCRIPTOR A DE FORMATO CARÁCTER	162
	7.4.7 POSICI	DESCRIPTORES X, T DE POSICIÓN HORIZONTAL Y /	
	7.4.8	REPETICIÓN DE GRUPOS DE DESCRIPTORES DE FORMATO .	164
7.5	PROCE	SAMIENTO DE ARCHIVOS	165
7.6	Posici	ÓN EN UN ARCHIVO	166
7.7	SALIDA	A POR ARCHIVO	167
7.8	Entra	DA POR ARCHIVO	168
EIF	RCICIO	OS RESUELTOS	171

EJERCICIOS PROPUESTOS	178
BIBLIOGRAFÍA	181

ÍNDICE DE TABLAS

Tabla 1.1: Ejemplo de uso de STOP	17
Tabla 1.2: Tipos de datos intrínsecos en Fortran	19
Tabla 1.3: Operadores aritméticos Fortran	24
Tabla 1.4: Reglas de precedencia de operadores aritméticos	25
Tabla 1.5: Ejemplo de reglas de precedencia de operadores aritméticos	25
Tabla 1.6: Orden de precedencia de los tipos Fortran	26
Tabla 1.7: Aritmética con tipos mezclados	26
Tabla 2.1: Operadores lógicos relacionales Fortran	35
Tabla 2.2: Ejemplos de expresiones lógicas relacionales	36
Tabla 2.3: Operadores lógicos combinacionales Fortran 90/95	37
Tabla 2.4: Tabla de verdad de los operadores lógicos combinacionales.	37
Tabla 2.5: Orden de precedencia de operadores lógicos combinacionales Fortran	
Tabla 2.6: Orden de precedencia de operadores Fortran	38
Tabla 7.1: Símbolos usados en los descriptores de formatos	157
Tabla 7.2: Formatos de escritura de enteros	158
Tabla 7.3: Formatos de lectura de enteros	158
Tabla 7.4: Formatos de escritura de reales	159
Tabla 7.5: Formatos de lectura de reales	159
Tabla 7.6: Formatos de escritura de reales en formato exponencial 1	160
Tabla 7.7: Formatos de lectura de reales en formato exponencial 1	160
Tabla 7.8: Formatos de escritura de reales en formato científico1	161
Tabla 7.9: Formatos de lectura de reales en formato científico1	161
Tabla 7.10: Formatos de escritura de datos lógicos	162
Tabla 7.11: Formatos de lectura de datos lógicos	l 62
Tabla 7.12: Formatos de escritura de caracteres	163
Tabla 7.13: Formatos de lectura de caracteres	163

0 INTRODUCCIÓN

0.1 ¿Qué es Fortran?

- Fortran es el primer lenguaje de programación de alto nivel creado en el año 1957 por obra de un equipo de científicos de IBM dirigido por John Backus.
- Por aquel entonces, sólo los científicos e ingenieros utilizaban los computadores para resolver problemas numéricos. Por tanto, la facilidad de aprendizaje del lenguaje equivalía a que la notación fuese un reflejo de la notación matemática. No en vano, Fortran deriva de las palabras inglesas FORmula TRANslation.
- Desde su creación en la década de los años 50 en IBM, ha sido y es ampliamente utilizado, habiendo pasado por un proceso de evolución que ha dado lugar a distintas versiones que, por convención, se identifican por los dos últimos dígitos del año en que se propuso el estándar correspondiente. Las distintas versiones son:
 - Fortran 66 publicada por ANSI¹ X3.9-1966.
 - Fortran 77 publicada por ANSI X3.9-1978 y ISO²/IEC 1539:1980.
 - Fortran 90 titulado *Programming Language "Fortran"* Extended (ANSI X3.198-1992 and ISO/IEC 1539:1991).
 - Fortran 95 titulado Information technology Programming languages Fortran Part 1: Base language (ISO/IEC 1539: 1997).
 - Fortran 2003 titulado Information technology Programming languages Fortran Part 1: Base language. (ISO/IEC 1539: 2004).
- Por supuesto, todas las versiones incluyen a las anteriores. Así, cualquier programa escrito en Fortran 66, Fortran 77 o Fortran 90, compila, sin problemas, en un compilador Fortran 95.
- Debemos remarcar, no obstante, que en general los compiladores de Fortran que proporcionan las distintas casas de hardware y/o

11

¹ ANSI (American National Standards Institute).

² ISO (International Standards Organization).

software son versiones ampliadas, que permiten la utilización de extensiones del lenguaje no normalizadas.

- La ventaja de la normalización del Fortran, supone que sea fácilmente transportable a cualquier entorno informático que disponga de un compilador compatible con el estándar.
- Si la transportabilidad es un requisito, hay que procurar evitar las extensiones no normalizadas que incorporan los distintos fabricantes

0.2 Cambios en los diferentes estándares Fortran

- Fortran 90 incluye todas las características de las versiones anteriores, de forma que las inversiones en software están protegidas. Pero añade un conjunto de características para hacerlo competitivo con lenguajes más modernos:
 - Las sentencias se pueden escribir en un formato libre.
 - Se permiten nombres más largos.
 - Se crean nuevas construcciones de control para ejecución selectiva y repetitiva.
 - Aparecen nuevos tipos de subprogramas para facilitar la programación modular.
 - Nuevos mecanismos de procesamiento de matrices.
 - Tipos de datos definidos por el usuario.
 - Punteros y estructuras de datos dinámicas.
- Fortran 95 es una revisión menor del estándar anterior, que añade características para programación paralela del dialecto *High Performance* Fortran, tales como funciones puras y elementales definidas por el usuario, y la construcción FORALL.
- Fortran 2003 presenta como características nuevas más importantes: soporte para el manejo de excepciones, programación orientada a objeto e interoperatividad mejorada con el lenguaje C.

0.3 ¿Por qué Fortran?

Hoy en día el aprendizaje del Fortran es interesante porque:

- Es el lenguaje predominante en aplicaciones matemáticas, científicas y de ingeniería.
- Es un lenguaje fácil de aprender y utilizar.
- Es el único lenguaje que perdura desde los años 50 hasta el momento actual.
- Existen miles de programas de cálculo, y librerías de uso absolutamente generalizado: IMSL (International Mathematics and Statistical Library), NAG (Numerical Algorithms Group), etc.

0.4 Elementos del lenguaje

- Un programa Fortran es simplemente una secuencia de líneas de texto o instrucciones.
- Como en cualquier lenguaje de programación, el texto que aparece en las distintas líneas del programa debe seguir una sintaxis determinada, de forma que dé lugar a un programa Fortran construido correctamente.
- Cuando aparece una instrucción Fortran nueva en el texto, se explica su sintaxis general, utilizando para ello los siguientes criterios:
 - La instrucción aparece resaltada en gris.
 - Las palabras reservadas del lenguaje se escriben en mayúsculas.
 - Si aparecen corchetes, éstos no forman parte de la sintaxis e indican que lo que está dentro es opcional.
 - Si aparecen puntos suspensivos, éstos tampoco forman parte de la sintaxis e indican listas de elementos como el inmediatamente anterior.
 - Si aparecen llaves en las que hay varias opciones separadas con barras verticales { Op1 | Op2 | Op3 }, se trata de elegir una de esas opciones (en este caso, Op1, Op2 o Op3). Tanto las llaves como las barras verticales no forman parte de la sintaxis.
- Los ejercicios resueltos que aparecen al final de cada capítulo están codificados usando el formato libre de líneas, específico de Fortran 90, para mayor comodidad del usuario. Las reglas para escribir en este formato se explican en el capítulo 1, sección 7.