EEL7030 - Microprocessadores

Prof. Raimes Moraes
GpqCom – EEL
UFSC

Estratégias para identificar a necessidade de executar tarefas demandadas por periféricos externos ou eventos esporádicos:

(Exemplos: Identificar se há caixa disponível para avisar os clientes na fila enquanto apresenta propaganda do estabelecimento. Disparar câmera de semáforo enquanto temporiza alternância de lâmpadas)

Pooling;

Interrupção;

Pooling

Processador testa sequencialmente todos os dispositivos/periféricos para tomar conhecimento se o mesmo demanda execução de tarefa.

 Desvantagem: Devido à necessidade do processador testar, frequentemente, se algum periférico requer atenção, seu desempenho na execução de outras tarefas decai;

Interrupção

Técnica para identificar ocorrência de eventos, tratar exceções e sincronizar transferência de dados entre microprocessador e periféricos. Exs:

- Detector de presença => Ligar celular;
- identificar divisão por zero; overflow e outros;
- Buffer de recepção serial cheio;

Interrupções alteram fluxo de execução do programa

Eventos Associados à Interrupção

Se ocorre interrupção habilitada, o processador:

- Finaliza leitura e execução da instrução sendo processada, atualizando o PC para apontar para a próxima instrução do programa principal;
- 2. Salva contexto (alguns processadores salvam *flags* e certos registradores) e endereço do atual valor do PC na pilha;
- 3. Carrega o endereço do tratador de interrupção no PC;
- 4. Executa o tratador de interrupção;
- 5. Recupera da pilha o endereço da instrução seguinte àquela sendo executada quando a interrupção foi solicitada, recupera contexto do programa principal (*flags* e registradores) e continua a execução do programa principal.

Fontes de interrupção e endereços do tratadores de interrupção do 8051

Fontes de Interrupção	Endereços dos Tratadores (Hexadecimal)
Externa 0	0003
Timer 0	000B
Externa 1	0013
Timer 1	001B
Serial	0023

Interrupções Mascaráveis

• Há certos momentos durante o programa em que o atendimento de interrupções pode atrapalhar a execução de outra tarefa em andamento.

• Assim, existem mecanismos para inibir o atendimento de todas as interrupções ou interrupções com diferente nível de prioridade.

Fontes e Habilitação de Interrupções

Fontes de Interrupção	Endereços dos Tratadores (Hexadecimal)
Externa 0	0003
Timer 0	000B
Externa 1	0013
Timer 1	001B
Serial	0023

IE - Interrupt Enable Register - Bit Addressable

Habilitação das Interrupções

IE - Interrupt Enable Register - Bit Addressable

MOV IE,#10000101B; habilita INT0 E INT1
ou
SETB EX0
SETB EX1
SETB EA

Descrição de Eventos Associados a INTO

- 1 Salva na pilha o conteúdo do PC (endereço da instrução seguinte àquela durante a qual a interrupção ocorreu).
- 2 Sobrescreve PC atual com 0003h
- 3 Inibe outras interrupções de mesmo nível de prioridade
- 4 Executa o tratador
- 5 RETI

PILHA	END.	DADO
SP	07H	
SP+1	08H	PC LSB
SP+1	09H	PC MSB

Características das Interrupções Externas

As interrupcões externas **INT0** e **INT1** podem ser ativadas por nível ou borda.

Depende dos bits IT0 e IT1 do registrador TCON.

Os flags que identificam ocorrência destas interrupcões externas são os flags **IE0** e **IE1** do registrador **TCON**.

Registrador Timer Control

TCON

MSBLSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88H

ITx - Interrupt control bit. 1 => borda de descida0 => nível lógico baixo

IEx - External Interrupt flag.
Setado pelo hardware quando interrupção é detectada.
Apagada pelo software qdo salta para o tratador de int.

Registrador *Timer Control*

TCON

MSBLSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88H

SETB ITO; INTO solicitada por borda de descida

SETB IT1; INT1 solicitada por borda de descida

Faça um programa que aceite int0 (acionada por borda). Qdo a int0 for solicitada, escrever na porta P1, caractere por caractere, a cadeia de 16 caracteres: 'Microcontrolador'.

Características a serem observadas no tratador de interrupção

- ❖Endereço do tratador;
- ❖Não alterar registradores;
- ❖Não alterar a pilha;
- ❖Código de rápida execução.

```
equ 00h
reset
         equ 03h; local tratador
ltint0
         equ 20h
state
                 ;PC=0 depois de reset
  org reset
  jmp inicio
  org ltint0
  jmp handler
inicio:
        ie,#1000001b
                         ; habilita int0
  mov
                          ; borda
  setb
        it0
         state,#0h ;inicialização
  mov
        r0,#state
  mov
        dptr,#tabela
  mov
        r1,#0
  mov
```

```
cjne
                 @r0,#1,volta
volta:
                 state,#0h
        mov
                 a,r1
        mov
                 a,@a+dptr
        movc
                 p1,a
        mov
                 r1
        inc
        cjne
                 r1,#16,volta
                 $
        jmp
```

handler: mov state,#1h reti

tabela: db 'Microcontrolador' end

Prioridade das Interrupções do 8051

Fonte de Interrupção	Trigger	Nível de Prioridade
Externa 0	IE0	Mais Alto
Timer 0	TF0	
Externa 1	IE1	
Timer 1	TF1	
Serial	TI e/ou RI	Mais Baixo

IP - Interrupt Priority Register - Bit Addressable

Alterando nível de prioridade das Interrupções do 8051

SETB PX1; prioridade INT1 superior às demais

A partir da execução desta instrução, a interrupção externa 1 passa ter maior prioridade entre todas, podendo interromper a execução dos tratadores das demals fontes de interrupção.

Alterando nível de prioridade das Interrupções do 8051

SETB PX1; prioridade INT1 superior às demais

A partir da execução desta instrução, a interrupção externa 1 passa ter maior prioridade entre todas, podendo interromper a execução dos tratadores das demals fontes de interrupção.

Fonte de Interrupção	Prioridade 0	Prioridade 1	Nível de Prioridade
Externa 0	IE0		Mais Alto
Timer 0	TF0		
Externa 1		IE1	
Timer 1	TF1		
Serial	TI e/ou RI		Mais Baixo

Organização Pinos da Porta P1

Escrevendo "1" em Pino P1.X

Escrevendo "0" em Pino P1.X

Lendo "1" em Pino P1.X

Lendo "0" em Pino P1.X

3. Read pin=1 Read latch=0 Write to latch=1

Lendo do Latch de Porta

Algumas instruções fazem a leitura do Pino (TB1) e outros da saída do Latch (TB2)

Instruções que leêm do latch ("lê-modifica-escreve"). Exemplos:

ANL	AND lógico	ex. ANL P1,A
ORL	OR lógico	ex. ORL P2,A
XRL	XOR lógico	ex. XRL P3,A
CPL	complementa bit	ex. CPL P3.0
INC	incrementa	ex. INC P2
DEC	decrementa	ex. DEC P2
DJNZ	decrementa e salta se não zero	ex. DJNZ P3,LABEL
	MOV PX.Y,C move bit de carry para b	oit Y da Port X
	CLR PX.Y limpa bit Y da P	ort X
	SETB PX.Y seta bit Y da Po	ort X