Arbitrages statistiques dans l'apprentissage automatique confidentiel.

Rapport de stage

ALEXI CANESSE

Sous la supervision d'Aurélien Garivier, Professeur, UMPA et École Normale Supérieure de Lyon

Stage de recherche effectué dans le cadre de la L3 informatique fondamental de l'ÉNS de Lyon

Département informatique École Normale Supérieur de Lyon France 22 juillet 2022

Table des matières

Ta	able des matières	1				
1	Introduction 1.1 Présentation du problème 1.1.1 De l'importance de respecter la confidentialité 1.1.2 Anonymiser les données n'est pas suffisant 1.1.3 L'appel à la differential privacy 1.1.4 Le cadre de ce stage 1.2 Background essentiel sur la differential privacy	2 2 2 2 2 2 3				
2	L'échec de la méthode naïve 2.1 Présentation du mécanisme de LAPLACE	3 3				
3	Méthode des histogrammes3.1AboveThreshold3.2Présentation de la méthode des histogrammes3.3Analyse de complexité3.4Analyse de précision - le cas de la distribution uniforme standard3.4.1Analyse de précision : borne exacte3.4.2Analyse de précision : borne asymptotique3.4.3Analyse de précision : résultats expérimentaux3.5Analyse de précision - le cas de la loi normale centrée réduite	3 4 6 8 8 8 11 14				
4	Le mécanisme de sensibilité inverse 4.1 Présentation du mécanisme 4.2 Précision du mécanisme de sensibilité inverse pour l'estimation de déciles 4.2.1 Le cas général	15 16 16 18				
5	Comparaison entre le mécanisme de sensibilité inverse et la méthode des histogrammes 5.1 Comparaison des bornes obtenues	19 19 19 19 20 20				
Ré	éférences	i				
A	Démonstration de théorèmes utiles A.1 Loi des statistiques d'ordre A.2 Inégalité d'HOEFFDING A.3 Bornes multiplicatives de sc Chernoff A.4 Déciles de la loi normale centrée réduite	i i i i i				
В	Le mécanisme de sensibilité inverse - probabilité de précision sur les déciles empiriques					
\mathbf{C}	HistogramMethod : Analyse de précision - le cas de la loi normale centrée réduite	iii				

1 Introduction

TODO un abstract

1.1 Présentation du problème

1.1.1 De l'importance de respecter la confidentialité

Le respect de la confidentialité est un problème majeur à l'air d'internet. Forbes écrivait en 2019 que la confidentialité des donnés sera la plus grande problématique de la prochaine décennie [Mee19]. Nous pouvons retrouver une peur au sein de la population concernant la gestion des donnés. En effet, selon Pew Research Center: "79% of adults assert they are very or somewhat concerned about how companies are using the data they collect about them, while 64% say they have the same level of concern about government data collection" et "a majority think the potential risks of data collection outweigh the benefits" [Aux+19].

1.1.2 Anonymiser les données n'est pas suffisant

Pour remédier à cela, certaines instances mettent en place des ensembles de lois avec pour objectif de protéger la confidentialité de leurs résidents. Nous retrouvons notamment les RGPD (General Data Protection Regulation) en Europe et le CCPA (California Consumer Privacy Act) en Californie. Néanmoins ces ensembles de lois ne sont pas suffisent. En effet, ils ne sont pas applicables au monde entier et surtout, ils ne préservent pas vraiment la confidentialité. Le récital 26 des GDPR autorise la conservation des données anonymisées si la condition très subjective suivante est respectée : les données ne permettent pas d'identifier la personne naturelle à l'aide de moyens raisonnables [PE16]. En pratique, cela reviens à accepter que l'anonymisation des données est suffisante pour respecter la loi : les grands réseaux sociaux refusent de supprimer définitivement les messages des utilisateurs qui quittent la plateforme alors que de tels messages permettent très facilement de remonter à l'auteur. Pour donner un autre exemple plus précis : des chercheurs du MIT et de l'Université catholique de Louvain, ont montré, après avoir étudier les données de 1.5 millions de portables pendant 15 mois, que quatre points spatiaux relativement peu précis suffisent à identifier 95% des utilisateurs [Mon+13].

Encore pire, Latanya Sweeney à montré [Swe00] qu'en 1990 le ZIP-code, le genre (l'étude étant assez ancienne, il n'est pas clair si l'autrice parlait de genre ou de sexe) et la date de naissance suffisait à identifier 87% de la population américaine. Le lieu de naissance, le genre et la date de naissance permettent déjà d'identifier la moitié de la population alors que ces données sont couramment inclues dans les données anonymes!

1.1.3 L'appel à la differential privacy

L'anonymisation ne suffisant pas à réaliser des études statistiques de manière confidentielle, la differential privacy a été introduite de manière à quantifier la perte de confidentialité engendrée par une étude. Cette quantification permet d'étudier de manière précise de mécanismes et de fournir des réelles garanties mathématiques de confidentialité. L'introduction d'aléatoire permet de donner des réponses statistiques précises tout en assurant qu'il n'est pas possible de déduire la présence ou l'absence d'un individue du jeu de donné à partir de la réponse.

1.1.4 Le cadre de ce stage

L'estimation de quantiles à de nombreux intérêts. Ils interviennent notamment en *machine* learning grâce à la régression de quantiles ou car ils permettent d'approximer des lois. Durant ce stage nous avons donc décider de nous concentrer sur l'approximation de quantiles et en particulier l'estimation de déciles.

Durant ce stage nous avons proposé une méthode que nous appelons **méthode des histo- grammes**. Cette méthode permet d'estimer les quantiles d'un jeu de donné de manière *differen- tially private* tout en assurant un niveau de précisions de qualité. Nous avons étudié la précision de

cet algorithme de manière théorique et expérimentale. Le meilleur algorithme connue à ce jour est le mécanisme de sensibilité inverse [AD20]. Nous avons donc aussi étudier en parti ce mécanisme et fournie des bornes qui n'était pas étudiées par les auteurs dans le cas précis de l'approximation de déciles. Enfin, nous avons comparé ces deux mécanismes d'un point de vue théorique et expérimental.

1.2 Background essential sur la differential privacy

La differential privacy [Dwo+06] quantifie la perte de confidentialité subit par un individue en étant dans une base de donné.

Définition 1.2.0.1 : Jeu de donnés voisins

On dit que deux jeux de donnés x et y sont voisins et on note $d_{\text{Ham}}(x,y) \leq 1$ si ils diffèrent sur au plus une entrée ie la distance de HAMMING qui les sépare et majorée par 1.

Définition 1.2.0.2: Differential privacy

On dit qu'un mécanisme aléatoire $\mathcal{M}: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ est (ε, δ) -differentially private si pour tout $\mathcal{S} \subset \mathcal{T}$ mesurable,

$$\forall x, y \in \mathcal{X}^{(\mathbb{N})} \quad d_{\operatorname{Ham}}(x, y) \leq 1 \quad \Rightarrow \quad \mathbb{P}(\mathcal{M}(x) \in \mathcal{S}) \leq \exp(\varepsilon) \mathbb{P}(\mathcal{M}(y) \in \mathcal{S}) + \delta$$

De plus, si $\delta = 0$, on dit que \mathcal{M} est ε -differentially private.

Nous pouvons déjà démontrer un premier théorème. Nous le faisons dès maintenant pour deux raisons : illustrer le concepts de base de ce rapport et donner un théorème fondamental que nous utiliserons à plusieurs reprises.

Théorème 1.2.0.1 : Théorème de composition (simple)

Soit \mathcal{X} un ensemble de base, $n \in \mathbb{N}$ un nombre de mécanismes, $(\mathcal{T}_i)_{i \leq n}$ des ensembles d'arrivé et $(\mathcal{M}_i : \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}_i)_{i \leq n}$ des mécanismes mutuellement indépendants respectivement ε_i -differentially private.

L'exécution des n mécanismes est $\left(\sum_{i=1}^n \varepsilon_i\right)$ -differentially private.

 $D\acute{e}monstration:$ Considérons $(S_i)_{i\leq n}\subset \prod_{i=1}^n \mathcal{T}_i$ et $x,x'\in\mathcal{X}^{(\mathbb{N})}$ tel que $\mathrm{d}_{\mathrm{Ham}(x,x')\leq 1}$.

$$\mathbb{P}\left(\mathcal{M}_{1}(x) \in \mathcal{S}_{1} \land \mathcal{M}_{2}(x) \in \mathcal{S}_{2} \land \ldots\right) \stackrel{\text{ind\'e.}}{=} \prod_{i=1}^{n} \mathbb{P}\left(\mathcal{M}_{i}(x) \in \mathcal{S}_{i}\right) \\
\stackrel{\text{DP}}{\leq} \prod_{i=1}^{n} e^{\varepsilon_{i}} \mathbb{P}\left(\mathcal{M}_{i}(x') \in \mathcal{S}_{i}\right) \\
\stackrel{\text{ind\'e.}}{=} \exp\left(\sum_{i=1}^{n} \varepsilon_{i}\right) \mathbb{P}\left(\mathcal{M}_{1}(x') \in \mathcal{S}_{1} \land \ldots\right)$$

2 L'échec de la méthode naïve

2.1 Présentation du mécanisme de Laplace

TODO

2.2 Précision du mécanisme de Laplace

TODO

3 Méthode des histogrammes

Au cours de cette section nous allons d'abord présenter un algorithme à la base de notre méthode. Ensuite nous allons présenter notre méthode ainsi que divers résultats théoriques et expérimentaux

de précisions d'icelle. Nous pourrons alors introduire le **mécanisme de sensibilité inverse** qui est, à notre connaissance, le meilleur algorithme d'estimation de quantiles connue à ce jour. Nous démontrerons alors un résultat de précision sur cet algorithme. Finalement, nous verrons qu'expérimentalement ces deux algorithmes atteignent des résultats de précision similaires.

3.1 AboveThreshold

Répondre à de nombreuses requête est coûteux en confidentialité. Utiliser à algorithme naïf tel que le mécanisme de Laplace [Dwo+06] ne permet pas de répondre à de nombreuses requêtes avec une bonne précision tout en préservant un bon niveau de confidentialité (ε doit être petit). Dans certains cas nous ne sommes néanmoins pas intéressé par les réponses numériques, mais uniquement intéressé par le fait qu'une réponse dépasse ou non un seuil définit. Nous allons voir que AboveThreshold [DR14] permet cela tout en ne payant que pour les requêtes qui dépassent le seuil. Donnons une définition nécessaire à la compréhension de l'algorithme puis présentons cette méthode.

Définition 3.1.0.1 : Sensibilitée d'une requête soit \mathcal{X} un ensemble, (\mathcal{T}, d) un espace mesuré et $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ une requête. On appel **sensibilité de** f la grandeur Δf que l'on définit de la manière suivante :

$$\Delta f = \sup_{x,y \in \mathcal{X}^{(\mathbb{N})}} \left\{ \operatorname{d}(f(x), f(y)) \mid \operatorname{d}_{\operatorname{Ham}}(x, y) = 1 \right\}$$

De manière informelle, la sensibilité d'une fonction exprime à quel point modifier une valeur du jeu de donné peu modifier la valeur de retour de la fonction.

```
AboveThreshold(database, queries, threshold, epsilon){
        Assert("les requêtes sont toutes de sensibilité 1");
        result = 0;
        noisyThreshold = threshold + Lap(2/epsilon);
        for(querie in queries){
            nu = Lap(4/epsilon);
            if(querie(D) + nu > noisyThreshold)
                 return result;
            else
                 ++result;
        }
11
        return -1;
12
    }
13
```

L'algorithme venant d'être décrit renvoie l'indice de la première requête à dépasser le seuil si une telle requête existe. C'est une version adaptée de l'algorithme initialement décrit par DWORK et ROTH dans [DR14, page 57]. Icelui a du sens d'un point de vue informatique mais rend le formalisme mathématiques compliqué (les auteurs eux-même tombent dans ce travers) et nous n'utiliseront pas les légers avantages de leur version.

Théorème 3.1.0.1:

Pour tout ensemble de requêtes $Q \in (\mathcal{X}^{(\mathbb{N})} \to \mathcal{T})^{\mathbb{N}}$ de sensibilité 1, tout seuil $T \in \mathbb{R}$, tout $\varepsilon > 0$, $M : x \in \mathcal{X}^{(\mathbb{N})} \mapsto \texttt{AboveThreshold(x, Q, T, epsilon)}$ est ε -differentially private.

Remarque: La démonstration est une réécriture de celle du livre de référence [DR14, page57]. Une réécriture était nécessaire car cette démonstration présente de nombreux points limites en terme de rigueur mathématiques et de detail pas suffisant sur certains points non triviaux.

$D\'{e}monstration:$

Soit $D, D' \in \mathcal{X}^{(\mathbb{N})}$ tels que $d_{\text{Ham}}(D, D') \leq 1$, $\{f_i\}_i = Q \in (\mathcal{X}^{(\mathbb{N})} \to \mathcal{T} \subset \mathbb{R})^{\mathbb{N}}$ un ensemble de requêtes de sensibilité 1, $T \in \mathbb{R}$ un seuil, et $\varepsilon > 0$. On pose alors A

la variable aléatoire AboveThreshold(D, Q, T, epsilon) et A' la variable aléatoire AboveThreshold(D † , Q, T, epsilon).

Soit alors $k \in \mathbb{N}$. Montrons que $\mathbb{P}(A = k) \leq \exp(\varepsilon)\mathbb{P}(A' = k)$. En reprenant les notations de l'algorithme [1], on fixe les éléments $(\nu_i)_{i < k}$ (qui suivent une loi de LAPLACE de paramètre $4/\varepsilon$).

On pose alors

$$g_k = \max_{i \le k} \{f_i(D) + \nu_i\}$$
 et $g'_k = \max_{i \le k} \{f_i(D') + \nu_i\}$

Ces grandeurs représente la valeur plus grande comparée au seuil bruité avant l'indice k dans le cas de l'execution sur D et de l'execution sur D'. Les probabilité qui suivent seront prisent sur les deux variables aléatoires non fixées ν_k et \hat{T} qui est la valeur du seuil bruitée. On pose enfin, pour tout $i \in \mathbb{N}$,

$$y_i = f_i(D)$$
 et $y_i' = f_i(D')$

On note alors que, en notant l_2 la densité de la loi de LAPLACE de paramètre $2/\varepsilon$ et l_4 celle de paramètre $4/\varepsilon$,

$$\begin{split} \mathbb{P}(A = k) &= \mathbb{P}(\hat{T} \in]g_k, y_k + \nu_k]) \\ &= \int_{\mathbb{R}} \mathbb{P}(\hat{T} \in]g_k, y_k + \nu]) l_4(\nu) \mathrm{d}\nu \\ &= \int_{\mathbb{R}} \int_{g_k - T}^{y_k + \nu - T} l_2(t) l_4(\nu) \mathrm{d}t \mathrm{d}\nu \end{split}$$

On pose alors $\hat{t} = t + g_k - g'_k$ afin d'obtenir

$$\mathbb{P}(A = k) = \int_{\mathbb{R}} \int_{g_k - T}^{y_k + \nu - T} l_2(\hat{t} - g_k + g_k') l_4(\nu) dt d\nu$$
$$= \int_{\mathbb{R}} \int_{g_k' - T}^{y_k + \nu - g_k + g_k' - T} l_2(\hat{t}) l_4(\nu) dt d\nu$$

Il est alors temps de poser $\hat{\nu} = \nu + g_k - g_k' + y_k' - y_k$. On note alors que

$$\begin{split} \mathbb{P}(A = k) &= \int_{\mathbb{R}} \int_{g'_k - T}^{y_k + \nu - g_k + g'_k - T} l_2(\hat{t}) l_4(\hat{\nu} - g_k + g'_k - y'_k + y_k) \mathrm{d}t \mathrm{d}\nu \\ &= \int_{\mathbb{R}} \int_{g'_k - T}^{y_k + \nu - g_k + g'_k + g_k - g'_k + y'_k - y_k - T} l_2(\hat{t}) l_4(\hat{\nu}) \mathrm{d}t \mathrm{d}\nu \\ &= \int_{\mathbb{R}} \int_{g'_k - T}^{y'_k + \nu - T} l_2(\hat{t}) l_4(\hat{\nu}) \mathrm{d}t \mathrm{d}\nu \end{split}$$

Par définition de l_2 et l_4 nous avons donc

$$\mathbb{P}(A=k) = \int_{\mathbb{R}} \int_{g'_k - T}^{y'_k + \nu - T} \exp\left(-\frac{|\hat{t}|\varepsilon}{2}\right) \exp\left(-\frac{|\hat{\nu}|\varepsilon}{4}\right) dt d\nu$$

L'inégalité triangulaire assure alors que

$$\mathbb{P}(A=k) \leq \int_{\mathbb{R}} \int_{q_k'-T}^{y_k'+\nu-T} \exp\left(\frac{|\hat{t}-t|\varepsilon}{2}\right) \exp\left(-\frac{|t|\varepsilon}{2}\right) \exp\left(\frac{|\hat{\nu}-\nu|\varepsilon}{4}\right) \exp\left(-\frac{|\nu|\varepsilon}{4}\right) dt d\nu$$

Les requêtes étant de sensibilité 1, nous avons

$$\begin{cases} 2 \ge |g_k - g'_k| + |y'_k - y_k| \ge |g_k - g'_k + y'_k - y_k| = |\hat{\nu} - \nu| \\ 1 = |g_k - g'_k| = |\hat{t} - t| \end{cases}$$

La croissance de l'intégrale assure finalement que

$$\begin{split} \mathbb{P}(A=k) & \leq \int_{\mathbb{R}} \int_{g_{k}'-T}^{y_{k}'+\nu-T} \exp\left(\frac{\varepsilon}{2}\right) \exp\left(-\frac{|t|\varepsilon}{2}\right) \exp\left(\frac{\varepsilon}{2}\right) \exp\left(-\frac{|\nu|\varepsilon}{4}\right) \mathrm{d}t \mathrm{d}\nu \\ & = \exp\left(\frac{2\varepsilon}{2}\right) \int_{\mathbb{R}} \int_{g_{k}'-T}^{y_{k}'+\nu-T} \exp\left(-\frac{|t|\varepsilon}{2}\right) \exp\left(-\frac{|\nu|\varepsilon}{4}\right) \mathrm{d}t \mathrm{d}\nu \\ & = \exp\left(\varepsilon\right) \int_{\mathbb{R}} \int_{g_{k}'-T}^{y_{k}'+\nu-T} l_{2}(t) l_{4}(\nu) \mathrm{d}t \mathrm{d}\nu \\ & = \exp\left(\varepsilon\right) \int_{\mathbb{R}} \mathbb{P}(\hat{T} \in]g_{k}', y_{k}' + \nu]) l_{4}(\nu) \mathrm{d}\nu \\ & = \exp\left(\varepsilon\right) \mathbb{P}(\hat{T} \in]g_{k}', y_{k}' + \nu_{k}]) \\ & = \exp\left(\varepsilon\right) \mathbb{P}(A' = k) \end{split}$$

3.2 Présentation de la méthode des histogrammes

La méthode des histogramme est une méthode que nous avons proposé durant ce stage. Il s'agit d'une instanciation particulière de AboveThreshold permettant de calculer l'ensemble des déciles (ou n'importe quel quantiles). Une transformation affine permet d'obtenir la réponse finale à partir de la réponse du mécanisme.

```
HistogramMethod(database, epsilon, a, b){
        steps = 1.5*n/log(n)
        /* composition theorem */
        epsilon /= 9;
        result = {};
        for(d in {1 ... 9}){ /* which decile */
            T = d*card(database)/10;
            for(i in {1 ... steps}){
                 fi = x -> card({element in x | element < i*(b-a)/steps});</pre>
11
                 queries.push_back(fi);
12
            }
            T = d*card(database)/10;
            result.push back(AboveThreshold(database, queries, T, epsilon)
15
                                  *(b-a)/steps});
16
        }
17
        return result;
18
19
```

Les entrée a et b donnent une minoration et une majoration de l'ensemble des valeurs d'entrées. L'algorithme découpe alors l'intervalle [a,b] en steps intervalles de même tailles. Pour chaque décile, l'entier renvoyé par Abovethreshold est l'indice de la première valeur à dépasser ce décile.

FIGURE 1 – Le découpage pour a = 0, b = 1, steps = 4

Théorème 3.2.0.1:

HistogramMethod est ε -differentially private.

 $D\acute{e}monstration$: Les requêtes envoyé par l'algorithme à AboveThreshold sont bien de sensibilité 1. Chacun des neuf appels à cette fonction est donc $\varepsilon/9$ -differentially private. Le théorème de composition assure alors que HistogramMethod est ε -differentially private.

Maintenant que nous avons vu que cet algorithme est bien differentially private, nous allons essayer d'évaluer sa précision. Cela ne sera pas évident car la précision de l'algorithme dépend beaucoup du jeu de donné en entré.

Lemme 3.2.0.1 : AboveThreshold est (α, β) – accurate

Pour tout $\beta \in]0,1[$, tout $x \in \mathcal{X}^{(\mathbb{N})}$, tout $\{f_i\}_i = Q \in (\mathcal{X}^{(\mathbb{N})} \to \mathcal{T})^{\mathbb{N}}$, tout $\varepsilon > 0$, tout $T \in \mathbb{R}$, en posant $\alpha = 8(\log(k) + \log(2/\beta))/\varepsilon$ et $k = \text{AboveThreshold}(\mathbf{x}, \mathbb{Q}, \mathbb{T}, \text{ epsilon})$, on a, en reprenant les notations de l'algorithme,

$$\mathbb{P}\left(\forall i < k \ f_i(x) + \nu_i < T + \alpha \land f_k(x) + \nu_k > T - \alpha\right) \ge 1 - \beta$$

Remarque : Ce lemme est due à [DR14, page 61]. Nous reprenons aussi la démonstration ici car la démonstration originale ne nous semble pas assez claire et trop bancale mathématiquement.

Démonstration : Reprenons les notations de l'énoncé. Montrons déjà qu'il suffit de démontrer que

$$\mathbb{P}\left(\max_{i \le k} |\nu_i| + |T - \hat{T}| < \alpha\right) \ge 1 - \beta \tag{1}$$

où \hat{T} est le seuil bruité défini à la ligne 4 de l'algorithme [1]. Or, nous avons, en posant pour tout $i \leq k, y_i = f_i(x)$

$$y_k + \nu_k \ge \hat{T} \stackrel{\text{IT}}{\ge} T - |T - \hat{T}|$$

Mutatis mutandis

$$\forall i < k \quad y_i < \hat{T} + |\nu_i| < T + |T - \hat{T}| + |\nu_i|$$

Ainsi,

$$\mathbb{P}\left(\forall i < k \ f_i(x) + \nu_i < T + \alpha \land f_k(x) + \nu_k > T - \alpha\right) \ge 1 - \beta$$

Démontrons enfin (1)! La variable aléatoire $T - \hat{T}$ suit une loi de LAPLACE de paramètre $2/\varepsilon$. Ainsi,

$$\mathbb{P}\left(|T-\hat{T}| \geq \frac{\alpha}{2} = \frac{\alpha\varepsilon}{4}\frac{2}{\varepsilon}\right) = \exp\left(-\frac{\varepsilon\alpha}{4}\right) = \exp\left(-2\left(\log k + \log\frac{2}{\beta}\right)\right) \leq \exp\left(-2\left(\log\frac{2}{\beta}\right)\right) \leq \frac{\beta}{2}$$

De même,

$$\mathbb{P}\left(\max_{i}|\nu_{i}| \geq \frac{\alpha}{2}\right) \leq \sum_{j=1}^{k} \mathbb{P}\left(|\nu_{j}| \geq \frac{\alpha}{2}\right) = k \exp\left(-\frac{-\alpha\varepsilon}{8}\right) = k \exp\left(-\log k - \log\frac{2}{\beta}\right) = \frac{k}{k}\frac{\beta}{2}$$

Enfin,

$$\begin{split} \mathbb{P}\left(\max_{i \leq k} |\nu_i| + |T - \hat{T}| < \alpha\right) &\geq \mathbb{P}\left(\max_{i \leq k} |\nu_i| < \frac{\alpha}{2} \ \land \ |T - \hat{T}| < \frac{\alpha}{2}\right) \\ &= 1 - \mathbb{P}\left(\max_{i \leq k} |\nu_i| \geq \frac{\alpha}{2} \ \cup \ |T - \hat{T}| \geq \frac{\alpha}{2}\right) \\ &\geq 1 - \mathbb{P}\left(\max_{i \leq k} |\nu_i| \geq \frac{\alpha}{2}\right) - \mathbb{P}\left(|T - \hat{T}| \geq \frac{\alpha}{2}\right) \\ &\geq 1 - \frac{\beta}{2} - \frac{\beta}{2} \end{split}$$

Finalement,

$$\mathbb{P}\left(\max_{i \le k} |\nu_i| + |T - \hat{T}| < \alpha\right) \ge 1 - \beta$$

Ce qui démontre bien (1) et donc le lemme.

3.3 Analyse de complexité

La complexité de AboveThreshold est de l'ordre de la somme des complexité des requêtes sur le jeu de données d'entré. En notant n la taille de la base de donnée, les requêtes envoyé à AboveThreshold par HistogramMethod sont toute de complexité linéaire en n. Il y a au plus $\mathcal{O}(n/\log n)$ requêtes envoyées. L'algorithme a alors une complexité en $\mathcal{O}(n^2/\log n)$.

3.4 Analyse de précision - le cas de la distribution uniforme standard

Nous allons évaluer la précision de l'algorithme à l'aide de l'erreur quadratique moyenne entre la valeur renvoyé par le programme et la valeur attendue. Il y a plusieurs manière de penser ce qu'est la valeur attendue : elle pourrait être la valeur des déciles de l'échantillons d'entré. Néanmoins, elle peut tout aussi bien être l'ensemble des déciles de la loi. En effet, nous cherchons à répondre à des questions de statistique, l'entré peut-être un simple échantillon "représentatif"; au quel cas nous sommes principalement intéressé par les réponses statistiques sur l'ensemble de la population et non juste sur notre échantillon.

Ces deux choix ont un réel sens. Nous avons d'abord essayé d'évaluer les performances de l'algorithme dans le premier cas. Les calculs était difficiles et menaient à des résultats difficilement exploitables. Nous avons donc choisi de réaliser les calculs sur la seconde option afin de pouvoir mener des calculs légèrement plus simples et ainsi avoir des résultats.

3.4.1 Analyse de précision : borne exacte

Nous allons commencer par démontrer quelques lemmes intermédiaires afin de démontrer les résultats de précision. Mais d'abord, donnons les définitions qui nous serrons utiles ici.

Définition 3.4.1.1 : Fonction Beta incomplète On appel fonction beta incomplète la fonction

$$B: \left\{ \begin{array}{ccc} [0,1] \times (\mathbb{R}_+^{\star})^2 & \to & \mathbb{R}_+ \\ (x,\alpha,\beta) & \mapsto & \int_0^x t^{\alpha-1} (1-t)^{\beta-1} \mathrm{d}t \end{array} \right.$$

Définition 3.4.1.2 : Fonction Beta incomplète régularisée

Pour tout $x \in [0,1]$, on appel fonction beta incomplète régularisée la fonction

$$I_x: \left\{ \begin{array}{ccc} (\mathbb{R}_+^{\star})^2 & \to & \mathbb{R}_+ \\ (\alpha, \beta) & \mapsto & \frac{B(x, \alpha, \beta)}{B(1, \alpha, \beta)} \end{array} \right.$$

Définition 3.4.1.3: Loi beta

On appel loi beta de paramètre $(\alpha, \beta) \in \mathbb{R}_+^*$ la loi de densité

$$f_{\alpha,\beta}: [0,1] \ni x \mapsto \frac{x^{\alpha-1}(1-x)^{\beta}-1}{B(1,\alpha,\beta)}$$

Remarque : On note directement que la fonction de répartition de la loi beta de paramètre (α, β) est la fonction $x \mapsto I_x(\alpha, \beta)$.

Définition 3.4.1.4 : Statistique d'ordre

Soit X un échantillon statistique de cardinal $n \in \mathbb{N}$. Pour tout $k \in [1, n]$ on note $X_{(i)}$ et on appel statistique d'ordre de rang k la k-ème plus petite valeur de l'échantillon.

Théorème 3.4.1.1 : Loi des statistiques d'ordre d'un échantillon issue de $\mathcal{U}(0,1)$. Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1] et $k \in [1,n]$. La k-ème statistique d'ordre de X, $X_{(k)}$ est distribuée suivant la loi beta de paramètre (k, n - k + 1).

Démonstration : disponible en annexe [A.1].

Lemme 3.4.1.1 : Estimation de l'écard entre certaines statistiques d'ordre et les déciles. Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur $[0,1], \gamma \in [0,d_i^l]$ et $\alpha \in [0,n/10]$. Notons $(d_i^l)_i$ les déciles de la loi. Pour tout $i \in [1,9]$

$$\begin{split} \mathbb{P}\left([X_{(in/10-\alpha)},X_{(in/10+\alpha)}] \subset [d_i^l - \gamma,d_i^l + \gamma]\right) \geq & I_{d_i^l + \gamma}(in/10 + \alpha,n - in/10 - \alpha + 1) \\ & - I_{d_i^l - \gamma}(in/10 - \alpha,n - in/10 + \alpha + 1) \end{split}$$

Démonstration : Notons que

$$\mathbb{P}\left([X_{(in/10-\alpha)}, X_{(in/10+\alpha)}] \subset [d_i^l - \gamma, d_i^l + \gamma]\right) = \mathbb{P}(X_{(in/10-\alpha)} \ge d_i^l - \gamma \land X_{(in/10+\alpha)} \le d_i^l + \gamma)$$

$$\ge \mathbb{P}(X_{(in/10-\alpha)} \ge d_i^l - \gamma) + \mathbb{P}(X_{(in/10+\alpha)} \le d_i^l + \gamma) - 1$$

Or, le théorème précédent assure que

$$\left\{ \begin{array}{ll} \mathbb{P}(X_{(in/10-\alpha)} \geq d_i^l - \gamma) & = & 1 - I_{d_i^l - \gamma}(in/10 - \alpha, n - in/10 + \alpha + 1) \\ \mathbb{P}(X_{(in/10+\alpha)} \leq d_i^l + \gamma) & = & I_{d_i^l + \gamma}(in/10 + \alpha, n - in/10 - \alpha + 1) \end{array} \right.$$

D'où

$$\begin{split} \mathbb{P}\left(\left[X_{(in/10-\alpha)}, X_{(in/10+\alpha)} \right] \subset \left[d_i^l - \gamma, d_i^l + \gamma \right] \right) \geq & I_{d_i^l + \gamma}(in/10 + \alpha, n - in/10 - \alpha + 1) \\ & - I_{d_i^l - \gamma}(in/10 - \alpha, n - in/10 + \alpha + 1) \end{split}$$

La combinaison des lemmes précédents permet d'obtenir un résultat de précision utile sur HistogramMethod.

Théorème 3.4.1.2: (α,β) -précision de HistogramMethod dans le cas uniforme standard Soit X un ensemble de n (tel que $0 \le 8\log(3n/(\beta\log n))/\varepsilon) \le n/10$) variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Soit $\gamma \in [0,d_i^l], i \in [1,9]$ et $\beta \in [0,1]$. Notons $(d_i^l)_i$ les déciles de la loi. Posons A la variable aléatoire HistogramMethod(X, epsilon, 0, 1), $\alpha = 8\log(3n/(\beta\log n))/\varepsilon$) et $k = 1.5n/\log n$.

$$\mathbb{P}\left(A_i \in \left[d_i^l - \gamma - \frac{1}{k}, d_i^l + \gamma + \frac{1}{k}\right]\right) \ge I_{d_i^l + \gamma}(in/10 + \alpha, n - in/10 - \alpha + 1) - I_{d_i^l - \gamma}(in/10 - \alpha, n - in/10 + \alpha + 1) - \beta$$

Démonstration : Notons E_{α} l'événement " $[X_{(in/10-\alpha)}, X_{(in/10+\alpha)}] \subset [d_i^l - \gamma, d_i^l + \gamma]$ " Et E_{A_i} l'événement "moins de α valeurs de X séparent d_i et une valeur de X dont la distance à A_i est majorée par 1/k". Nous avons alors

$$\mathbb{P}\left(A_{i} \in \left[d_{i}^{l} - \gamma - \frac{1}{k}, d_{i}^{l} + \gamma + \frac{1}{k}\right]\right) \geq \mathbb{P}\left(E_{A_{i}} \wedge E_{\alpha}\right) \geq \mathbb{P}\left(E_{A_{i}}\right) + \mathbb{P}\left(E_{\alpha}\right) - 1$$

Le lemme [1] assure que

$$\mathbb{P}(E_{A_i}) \ge 1 - \beta$$

En effet, ce lemme assure que si la réponse renvoyée ne dépassait pas le seuil, l'évaluation de la requête valait au moins $T-\alpha$ (en notant T le seuil) avec une probabilité minorée par $1-\beta$. De plus, avec cette même probabilité, on sait que l'évaluation de l'avant dernière requête était majorée par $T+\alpha$ (toujours en notant T le seuil). Ainsi, comme T=in/10, E_{A_i} est de probabilité au moins $1-\beta$.

Le lemme précédent assure alors que

$$\mathbb{P}\left(A_i \in \left[d_i^l - \gamma - \frac{1}{k}, d_i^l + \gamma + \frac{1}{k}\right]\right) \ge I_{d_i^l + \gamma}(in/10 + \alpha, n - in/10 - \alpha + 1) - I_{d_i^l - \gamma}(in/10 - \alpha, n - in/10 + \alpha + 1) - \beta$$

Ce résultat n'est pas optimal. Nous avons fait des approximations. Néanmoins, nous avons une bonne bonne. Nous allons maintenant utiliser ce théorème pour obtenir un résultat très important : une majoration de l'espérance de la distance entre la valeur renvoyée par le mécanisme et un décile de la loi. Ce résultat permet de savoir quelle est l'erreur à laquelle s'attendre en pratique.

Théorème 3.4.1.3: Précision moyenne de HistogramMethod Soit X un ensemble de n (tel que $0 \le 8\log(3n/(\beta\log n))/\varepsilon) \le n/10$) variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Soit $i \in [1,9]$, $k \in \mathbb{N}$ et $\beta \in [0,1]$. Notons $(d_i)_i$ les décile de la loi. Posons A la variable aléatoire HistogramMethod (X, epsilon, 0, 1) et $\alpha = 8\log(3n/(\beta\log n))/\varepsilon$)

$$\mathbb{E}\left(|A_i - d_i^l|\right) \le \frac{2\log n}{3n} + d_i^l \beta + \int_0^{d_i^l} \left(1 - I_{d_i^l + t}(in/10 + \alpha, n - in/10 - \alpha + 1)\right) dt + \int_0^{d_i^l} I_{d_i^l - t}(in/10 - \alpha, n - in/10 + \alpha + 1) dt + \left(1 - d_i^l - \frac{2\log n}{3n}\right) \left(1 + \beta - I_{2d_i^l}(in/10 + \alpha, n - in/10 - \alpha + 1)\right)$$

Démonstration : On pose

$$F: \left\{ \begin{array}{ccc} \mathbb{R}_+ & \to & [0,1] \\ t & \mapsto & \mathbb{P}(|A_i - d_i^l| \le t) \end{array} \right.$$

Le théorème précédent assure que

$$\begin{split} \forall t \in [0,2d_i^l] \quad F\left(t+\frac{1}{k}\right) &:= \mathbb{P}\left(|A_i-d_i^l| \leq t+\frac{1}{k}\right) \\ &\geq I_{d_i^l+t}(in/10+\alpha,n-in/10-\alpha+1) \\ &-I_{d_i^l-t}(in/10-\alpha,n-in/10+\alpha+1)-\beta \end{split}$$

Or, comme F(1) = 1,

$$\mathbb{E}\left(|A_i - d_i^l|\right) = \int_0^\infty (1 - F(t)) dt = \int_0^{1/k} (1 - F(t)) dt + \int_{1/k}^{d_i^l + 1/k} (1 - F(t)) dt + \int_{d_i^l + 1/k}^1 (1 - F(t)) dt$$

Notons que

$$\int_0^{1/k} (1 - F(t)) dt \le \int_0^{1/k} dt = \frac{1}{k}$$

Or, les propriétés usuelles sur les fonctions de répartition assurent que

$$\forall t \geq d_i^l \quad 1 - F(t) \leq 1 - F(d_i^l)$$

Ainsi,

$$\int_{d_i^l + 1/k}^1 (1 - F(t)) dt \le \left(1 - d_i^l - \frac{1}{k} \right) \left(1 + \beta - I_{2d_i^l} (in/10 + \alpha, n - in/10 - \alpha + 1) \right)$$

Finalement, nous avons démontré que

$$\mathbb{E}\left(|A_{i}-d_{i}^{l}|\right) \leq \frac{1}{k} + d_{i}^{l}\beta + \int_{0}^{d_{i}^{l}} \left(1 - I_{d_{i}^{l}+t}(in/10 + \alpha, n - in/10 - \alpha + 1)\right) dt + \int_{0}^{d_{i}^{l}} I_{d_{i}^{l}-t}(in/10 - \alpha, n - in/10 + \alpha + 1) dt + \left(1 - d_{i}^{l} - \frac{1}{k}\right) \left(1 + \beta - I_{2d_{i}^{l}}(in/10 + \alpha, n - in/10 - \alpha + 1)\right)$$

Ce résultat est vrai pour toutes valeurs de β . Nous pourrions donc majorer notre espérance par une borne inférieure. Néanmoins cela n'aurait aucun sens ici : assez d'approximations ont étés faites pour qu'une utiliser un résultat "exacte" soit futile; une borne inf est jolie sur le papier mais n'est en pratique que difficilement exploitable. Des calculs numériques montrent que le choix $\beta = 1/(\sqrt{n}\log n)$ n'est "pas trop" éloignée de cette borne inf. Nous disposons alors du corollaire suivant.

Corollaire 3.4.1.1: (im)Précision moyenne de HistogramMethod Soit X un ensemble de n (tel que $0 \le 8\log(3n\sqrt{n})/\varepsilon) \le n/10$) variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Soit $i \in [1,9]$ et $k \in \mathbb{N}$. Notons $(d_i)_i$ les décile de la loi. Posons A la variable aléatoire HistogramMethod(X, epsilon, 0, 1) et $\alpha = 8\log(3n\sqrt{n})/\varepsilon$).

$$\begin{split} \mathbb{E}\left(|A_i - d_i^l|\right) & \leq \frac{2\log n}{3n} + \frac{d_i^l}{\sqrt{n}\log n} + \int_0^{d_i^l} \left(1 - I_{d_i^l + t}(in/10 + \alpha, n - in/10 - \alpha + 1)\right) \mathrm{d}t \\ & + \int_0^{d_i^l} I_{d_i^l - t}(in/10 - \alpha, n - in/10 + \alpha + 1) \mathrm{d}t \\ & + \left(1 - d_i^l - \frac{2\log n}{3n}\right) \left(1 + \frac{1}{\sqrt{n}\log n} - I_{2d_i^l}(in/10 + \alpha, n - in/10 - \alpha + 1)\right) \end{split}$$

FIGURE 2 – Graphe de la borne du corollaire [1] en fonction de n avec $\varepsilon = 1$.

3.4.2 Analyse de précision : borne asymptotique

Le calcul d'une borne asymptotique sur l'espérance de la distance entre la sortie de l'algorithme et les déciles de la loi est obtenue à partir d'une majoration asymptotique du résultat du corollaire précédent [1]. Obtenir cette borne n'a pas été facile, il a fallut effectuer de nombreux essaies avant de trouver une solution convenable : beaucoup de méthodes ne permettent pas une bonne simplification et fait alors obtenir une borne qui tend vers $+\infty$, une borne inutile! Cette sous-sous-section présente le résultat que nous avons finalement réussis à obtenir.

Soit X un ensemble de n (tel que $0 \le 8\log(3n\sqrt{n})/\varepsilon) \le n/20$) variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Soit $i \in [1,9]$ et $k \in \mathbb{N}$. Notons $(d_i)_i$ les décile de la loi. Posons A la variable aléatoire HistogramMethod(X, epsilon, 0, 1) et $\alpha = 8\log(3n\sqrt{n})/\varepsilon$).

Nous allons commencer par majorer le terme suivant :

$$\int_{0}^{d_{i}^{l}} \left(1 - I_{d_{i}^{l} + t}(in/10 + \alpha, n - in/10 - \alpha + 1) \right) dt$$

Soit $t \in [0, d_i^l]$. Notons que

$$\begin{array}{lcl} 1 - I_{d_i^l + t}(in/10 + \alpha, n - in/10 - \alpha + 1) & = & I_{1 - (d_i^l + t)}(n - (in/10 + \alpha - 1), (in/10 + \alpha - 1) + 1) \\ & \stackrel{\text{def}}{:=} & I_{1 - p}(n - k, k + 1) \end{array}$$

Or, si X suit une loi binomial de paramètres $n, p, I_{1-p}(n-k, k+1) = \mathbb{P}(X \leq k)$. Nous souhaitons appliquer une application de l'inégalité d'HOEFFDING (démontré en annexe [A.2]). Pour cela il nous faut $k \leq np$. Il suffit pour cela que nous ayons $\alpha \leq nt$. Se restreindre aux $t \geq 12\log(3^{2/3}n)/(n\varepsilon)$ permet donc d'appliquer l'inégalité.

$$1 - I_{d_i^l + t}(in/10 + \alpha, n - in/10 - \alpha + 1) \le \exp\left(-2n\left(p - \frac{k}{n}\right)^2\right)$$
$$= \exp\left(-2\frac{k^2}{n}\right)\exp\left(-2np^2 + 4pk\right)$$

De plus,

$$\int_0^{d_i^l} \exp\left(-2np^2 + 4pk\right) dt = \int_{d_i^l}^{2d_i^l} \exp\left(-2nt^2 + 4tk\right) dt$$

$$\leq \int_{\mathbb{R}} \exp\left(-2nt^2 + 4tk\right) dt$$

$$= \int_{\mathbb{R}} \exp\left(-2n\left(t - \frac{k}{n}\right)^2 + 2\frac{k^2}{n}\right) dt$$

$$= \frac{1}{\sqrt{2n}} \exp\left(2\frac{k^2}{n}\right) \int_{\mathbb{R}} \exp\left(-t^2\right) dt$$

$$= \sqrt{\frac{\pi}{2n}} \exp\left(2\frac{k^2}{n}\right)$$

Nous avons donc montré que,

$$\int_{0}^{d_{i}^{l}} \left(1 - I_{d_{i}^{l} + t}(in/10 + \alpha, n - in/10 - \alpha + 1) \right) dt \le \frac{12}{n\varepsilon} \log(3^{2/3}n) + \sqrt{\frac{\pi}{2n}}$$
 (2)

Nous pouvons alors entamer la majoration du terme suivant

$$\int_{0}^{d_{i}^{l}} I_{d_{i}^{l}-t}(in/10 - \alpha, n - in/10 + \alpha + 1) dt$$

Soit $t \in [0, d_i^l]$. Notons que

$$I_{d_i^l-t}(in/10 - \alpha, n - in/10 + \alpha + 1) \stackrel{\text{déf}}{:=} I_p(k+1, n-k)$$
$$= \mathbb{P}(X > k)$$

Où X suit une loi binomiale de paramètre (n,p). Nous souhaitons une nouvelle fois appliquer l'inégalité d'Hoeffding (démontré en annexe [A.2]). Pour cela, il nous faut $k \geq np$. Il suffit alors d'avoir $nt \geq \alpha + 1$ donc d'avoir $t \geq 12\log(3^{2/3}n)/(\varepsilon n) + 1/n$. En se restreignant à ces valeurs de t nous avons donc

$$\mathbb{P}(X > k) \le \exp\left(-2np^2 \left(\frac{k}{np} - 1\right)^2\right)$$
$$= \exp\left(-2\frac{k^2}{n} + 4kp - 2np^2\right)$$

Ainsi,

$$\int_0^{d_i^l} I_p(k+1, n-k) dt = \int_0^{d_i^l} I_t(k+1, n-k) dt$$

$$\leq \exp\left(-2\frac{k^2}{n}\right) \int_{\mathbb{R}} \exp\left(-2np^2 + 4kp\right) dt$$

$$= \exp\left(-2\frac{k^2}{n}\right) \int_{\mathbb{R}} \exp\left(-2n\left(p - \frac{k}{n}\right)^2 + \frac{2k^2}{n}\right) dt$$

$$= \sqrt{\frac{\pi}{2n}}$$

Enfin, nous avons démontré que,

$$\int_0^{d_i^l} I_{d_i^l - t}(in/10 - \alpha, n - in/10 + \alpha + 1) dt \le \frac{12}{\varepsilon n} \log(3^{2/3}n) + \frac{1}{n} + \sqrt{\frac{\pi}{2n}}$$
 (3)

Il ne reste alors plus qu'à majorer le terme suivant

$$1 - I_{2d!}(in/10 + \alpha, n - in/10 - \alpha + 1)$$

Ainsi,

$$\begin{array}{lcl} 1 - I_{2d_i^l}(in/10 + \alpha, n - in/10 - \alpha + 1) & = & I_{1-2d_i^l}(n - (in/10 + \alpha - 1), (in/10 + \alpha - 1) + 1) \\ & \stackrel{\mathrm{def}}{:=} & I_{1-p}(n-k, k+1) \end{array}$$

La condition initiale sur n assure que l'on a $k \leq np$. Ainsi, l'inégalité d'HOEFFDING (démontré en annexe [A.2]) assure que

$$1 - I_{2d_i^l}(in/10 + \alpha, n - in/10 - \alpha + 1) \le \exp\left(-2n\left(p - \frac{k}{n}\right)^2\right)$$

Or, n est tel que $24\log(3^{2/3}n)/(\varepsilon n) \leq n/20n \ k/n < 3/2d_i^l$. Ainsi,

$$1 - I_{2d_i^l}(in/10 + \alpha, n - in/10 - \alpha + 1) \le \exp\left(-\frac{n(d_i^l)^2}{2}\right)$$
(4)

Théorème 3.4.2.1 : (im)Précision moyenne de HistogramMethod

Nous pouvons enfin réunir tous ces résultats intermédiaires et énoncer le théorème.

Soit X un ensemble de n (tel que $0 \le 8\log(3n\sqrt{n})/\varepsilon) \le n/20$) variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Soit $i \in [1,9]$ et $k \in \mathbb{N}$. Notons $(d_i)_i$ les décile de la loi. Posons A la variable aléatoire HistogramMethod(X, epsilon, 0, 1) et $\alpha = 8\log(3n\sqrt{n})/\varepsilon$).

$$\mathbb{E}\left(|A_i - d_i^l|\right) \le \frac{2\log n}{3n} + \frac{d_i^l}{\sqrt{n}\log n} + 2\sqrt{\frac{\pi}{2n}} + \left(1 - d_i^l - \frac{2\log n}{3n}\right) \left(\frac{1}{\sqrt{n}\log n} + \exp\left(-\frac{n(d_i^l)^2}{2}\right)\right) + \frac{24}{\varepsilon n}\log(3^{2/3}n) + \frac{1}{n}\log(3^{2/3}n) + \frac{1}{$$

Corollaire 3.4.2.1 : (im)Précision moyenne de HistogramMethod

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme standard. Soit $i \in [1, 9]$. Notons $(d_i)_i$ les décile de la loi. Posons A la variable aléatoire HistogramMethod(X, epsilon, 0, 1).

$$\mathbb{E}\left(|A_i - d_i^l|\right) = \mathcal{O}_n\left(\frac{1}{\sqrt{n}}\right)$$

3.4.3 Analyse de précision : résultats expérimentaux

3.5 Analyse de précision - le cas de la loi normale centrée réduite

Les lois normales est très utilisées en statistique notamment car elle permettent de modéliser les phénomènes issues de plusieurs événement aléatoires. Le théorème central limite viens jouer un rôle clé dans la prépondérance de l'utilisation de ces lois. Il semble alors crucial d'étudier la précision de notre algorithme dans le cas où les données d'entré suivent une loi normale.

Le théorème de précision est très analogue à celui obtenue dans le cas uniforme. Nous ne détaillons pas ici les lemmes intermédiaires et la démonstration car il s'agit formellement de la même chose. Il est néanmoins nécessaire d'introduire quelques objets usuels en plus car la loi normale est plus complexe que la loi uniforme.

Définition 3.5.0.1: Fonction d'erreur

On appel fonction d'erreur la fonction suivant :

erf:
$$\begin{cases} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) dt \end{cases}$$

Lemme 3.5.0.1 : Déciles de $\mathcal{N}(0,1)$.

Les déciles de $\mathcal{N}(0,1)$, notés $(d_i^l)_i$ sont

$$\forall i \in [1, 9] \quad d_i^l = \sqrt{2} \operatorname{erf}^{-1}(2 \times 0.1i - 1)$$

 $D\acute{e}monstration:$ Soit $i\in [\![1,9]\!].$ On note que

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_i^l} \exp\left(\frac{-t^2}{2}\right) dt = \frac{\sqrt{2}}{\sqrt{2\pi}} \int_{-\infty}^{\operatorname{erf}^{-1}(2 \times 0.1i - 1)} \exp\left(-t^2\right) dt
= \frac{1}{2} \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\operatorname{erf}^{-1}(2 \times 0.1i - 1)} \exp\left(-t^2\right) dt
= \frac{1}{2} \operatorname{erf}\left(\operatorname{erf}^{-1}(2 \times 0.1i - 1)\right) + \frac{1}{2} \frac{2}{\sqrt{\pi}} \int_{-\infty}^{0} \exp\left(-t^2\right) dt
= 0.1i - \frac{1}{2} + \frac{1}{2}
= 0.1i$$

La démonstration dans le cas d'une loi normale est analogue à celle du cas uniforme. Nous aurons donc des lemmes similaires. Les démonstrations seront néanmoins laissées en appendix [C].

Lemme 3.5.0.2 : Estimation de l'écard entre les déciles empiriques et ceux de la loi normale centrée réduite.

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi normale centrée réduite et soit $\gamma \in [0, d_i^l]$. Notons $(d_i)_i$ les déciles empiriques de X et $(d_i^l)_i$ les déciles de la loi normale centrée réduite. Pour tout $i \in [1, 9]$

$$\mathbb{P}(d_i \in [d_i^l - \gamma/2, d_i^l + \gamma/2]) \ge 1 - \eta$$

Avec

$$\eta = \exp\left(-\frac{n\gamma^2}{i^2}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\exp\left(-(d_i^l)^2\right)\right) + \exp\left(-\frac{5\gamma^2in}{16\pi\left(i + 5\gamma/\sqrt{2\pi}\right)^2}\exp\left(-(d_i^l)^2\right)\right)$$

Lemme 3.5.0.3:

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la normale centrée réduite. Soit $\gamma \in [0, d_i^l]$, $i \in [1, 9]$ et $k \in \mathbb{N}$. Il y a au moins α valeurs de X dans chacun des intervalles $[d_i^l - \gamma, d_i^l - \gamma/2]$ et $[d_i^l + \gamma/2, d_i^l + \gamma]$ avec une probabilité au moins $1 - \beta$ avec

$$\beta = 2 \exp \left(-\frac{n\gamma}{4\sqrt{2\pi}} \left(\exp\left(-\frac{(|d_i^l| + \gamma)^2}{2} \right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma} \right)^3 \right)$$

Théorème 3.5.0.1: (α, β) -précision de HistogramMethod dans le cas de la loi normale centrée réduite

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi normale centrée réduite. Soit $\gamma \in [0,d_i^l], \ i \in [1,9], \ k \in \mathbb{N}$ et $\beta \in [0,1]$. Notons $(d_i)_i$ les déciles empiriques de X et $(d_i^l)_i$ les déciles de la loi normale centrée réduite. Posons A la variable aléatoire HistogramMethod(X, epsilon, k, a, b).

$$\mathbb{P}\left(A_i \in [d_i^l - \gamma, d_i^l + \gamma]\right) \ge 1 - \beta - \eta - \mu$$

Avec

$$\begin{cases} \alpha &= \frac{8 \left(\log k + \log(2/\beta)\right)}{\varepsilon} \\ \mu &= 2 \exp\left(-\frac{n\gamma}{4\sqrt{2\pi}} \left(\exp\left(-\frac{\left(|d_i^l| + \gamma\right)^2}{2}\right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma}\right)^3\right) \\ \eta &= \exp\left(-\frac{n\gamma^2}{i^2} \left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right) \exp\left(-(d_i^l)^2\right)\right) + \exp\left(-\frac{5\gamma^2 in}{16\pi \left(i + 5\gamma/\sqrt{2\pi}\right)^2} \exp\left(-(d_i^l)^2\right)\right) \end{cases}$$

4 Le mécanisme de sensibilité inverse

4.1 Présentation du mécanisme

Le mécanisme de sensibilité inverse est introduit par HILAL ASI and JOHN C. DUCHI dans *Near Instance-Optimality in Differential Privacy* [AD20]. Le mécanisme considère l'inverse du nombre de valeurs à modifié dans un ensemble de donnée pour passer à un autre ensemble de donné sur lequel la requête a une autre valeur recherchée. Cela définit alors l'utilité d'une valeur pour instancier le mécanisme exponentiel [MT07].

Définition 4.1.0.1 : Lonqueur

Soit $x \in \mathcal{X}^{(\mathbb{N})}$, $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ et $t \in \mathcal{T}$. La longueur est le nombre minimum de valeurs à modifier dans x pour obtenir x' tel que f(x') = t.

$$\operatorname{len}_{f}(x,t) = \inf_{x' \in \mathcal{X}^{(\mathbb{N})}} \{ ||x - x'||_{1} \mid f(x') = t \}$$

Définition 4.1.0.2 : Mécanisme de sensibilité inverse

Soit $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ et $\varepsilon \in \mathbb{R}_+$. Pour une mesure μ sur \mathcal{T} , on définit le mécanisme aléatoire M(x) par sa fonction de densité

$$t \mapsto \frac{\exp(-\ln_f(x,t)\varepsilon/2)}{\int_{\mathcal{T}} \exp(-\ln_f(x,s)\varepsilon/2) \mathrm{d}\mu(s)}$$

Il n'y a qu'en f(x) que $len_f(x,)$ est nulle. Ainsi le dénominateur pourrait être petit est donné une grande probabilité à des valeurs distantes de f(x). On [MT07] introduit alors une version lisse du

mécanisme.

Définition 4.1.0.3 : Longueur lisse

Soit $x \in \mathcal{X}^{(\mathbb{N})}$, $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ et $\rho \in \mathbb{R}_+$. Si \mathcal{N} est une norme sur \mathcal{T} ,

$$\operatorname{len}_{f}^{\rho}: \left\{ \begin{array}{ccc} \mathcal{T} & \to & \mathbb{N} \\ & t & \mapsto & \inf_{s \in \mathcal{T}, \mathcal{N}(s,t) \leq \rho} \left\{ \operatorname{len}_{f}(x,s) \right\} \end{array} \right.$$

Définition 4.1.0.4 : Mécanisme de sensibilité inverse ρ -lisse

Soit $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$ et $\rho, \varepsilon \in \mathbb{R}_+$. Pour une mesure μ sur \mathcal{T} , on définit le mécanisme aléatoire $M_{\text{cont}}(x)$ par sa fonction de densité

$$t \mapsto \frac{\exp(-\ln_f^{\rho}(x,t)\varepsilon/2)}{\int_{\mathcal{T}} \exp(-\ln_f^{\rho}(x,s)\varepsilon/2) d\mu(s)}$$

Théorème 4.1.0.1:

Pour tout $\rho, \varepsilon \in \mathbb{R}_+$, le mécanisme de sensibilité inverse ρ -lisse est ε -differentially private.

Démonstration : Soit $f: \mathcal{X}^{(\mathbb{N})} \to \mathcal{T}$, $\rho, \varepsilon \in \mathbb{R}_+$, μ une mesure sur \mathcal{T} , $\mathcal{S} \subset \mathcal{T}$ mesurable et $x, x' \in \mathcal{X}^{(\mathbb{N})}$ voisines.

On note que

$$\mathbb{P}\left(M_{\text{cont}}(x) \in \mathcal{S}\right) = \int_{\mathcal{S}} \frac{\exp(-\operatorname{len}_{f}^{\rho}(x,t)\varepsilon/2)}{\int_{\mathcal{T}} \exp(-\operatorname{len}_{f}^{\rho}(x,s)\varepsilon/2) d\mu(s)} d\mu(t)
\leq \int_{\mathcal{S}} \frac{\exp(-(\operatorname{len}_{f}^{\rho}(x',t)-1)\varepsilon/2)}{\int_{\mathcal{T}} \exp(-(\operatorname{len}_{f}^{\rho}(x',s)+1)\varepsilon/2) d\mu(s)} d\mu(t)
= \frac{\exp(\varepsilon/2)}{\exp(-\varepsilon/2)} \int_{\mathcal{S}} \frac{\exp(-\operatorname{len}_{f}^{\rho}(x',t)\varepsilon/2)}{\int_{\mathcal{T}} \exp(-\operatorname{len}_{f}^{\rho}(x,s)\varepsilon/2) d\mu(s)} d\mu(t)
= \exp(\varepsilon)\mathbb{P}\left(M_{\text{cont}}(x') \in \mathcal{S}\right)$$

4.2 Précision du mécanisme de sensibilité inverse pour l'estimation de déciles

4.2.1 Le cas général

L'article présentant le mécanisme de sensibilité inverse [AD20] détail une borne de précision sur la médiane. Nous allons ici étendre cette démonstration au cas des déciles. Dans cette section nous nous plaçons dans le cas où les données sont identiquement distribuées à partir d'une loi ayant une distribution continue π_P au voisinage de ses déciles $(d_i^l)_i$.

Dans un premier temps, voici un théorème permettant d'estimer la probabilité que la réponse de l'algorithme soit au moins à une distance donnée des déciles *empiriques*. Ce théorème est démontré en annexe [B] car la démonstration est longue est n'est pas celle qui nous intéresse ici. Nous avons fait le parti prix de nous concentrer sur l'écart avec les déciles de la loi. C'est donc ce que nous ferons ici. Nous allons donc démontrer ici le second théorème, plus simple, qui est celui qui a le plus de sens ici.

Théorème 4.2.1.1 : Ecart avec les déciles empiriques

Soit $\gamma \in \mathbb{R}_+^*$, $u \in [0, \gamma/4]$, $\rho \in \mathbb{R}_+$ et $X \in [0, R]^n$ dont les éléments sont obtenues à partir d'une loi P de densité π_P continue au voisinage de ses déciles. On pose $p_{\min,i} = \inf_{t \in [d_i^l - 2\gamma, d_i^l + 2\gamma]} \pi_P(t)$. On note $(d_i)_i$ les déciles empirique de X et $(d_i^l)_i$ les déciles de la loi. Notons alors enfin M_{cont} le mécanisme de sensibilité inverse ρ -lisse.

$$\mathbb{P}\left(|M_{\mathrm{cont},i} - d_i| > 2u + \rho\right) \leq \frac{R}{2\rho} \exp\left(-\frac{np_{\min,i}u\varepsilon}{4}\right) + 4\exp\left(-\frac{n\gamma^2p_{\min,i}^2}{8}\right) + \frac{2\gamma}{u}\exp\left(-\frac{np_{\min,i}u}{8}\right)$$

Le théorème suivant une simplification tu théorème précédent que nous avons réalisé.

Théorème 4.2.1.2 : Ecart avec les déciles théoriques

Soit $\gamma \in \mathbb{R}_+^*$, $u \in [0, \gamma/4]$, $\rho \in \mathbb{R}_+$ et $X \in [0, R]^n$ dont les éléments sont obtenues à partir d'une loi P de densité π_P continue au voisinage de ses déciles. On pose $p_{\min,i} = \inf_{t \in [d_i^l - 2\gamma, d_i^l + 2\gamma]} \pi_P(t)$. On note $(d_i^l)_i$ les déciles de la loi. Notons alors enfin M_{cont} le mécanisme de sensibilité inverse ρ -lisse.

$$\mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho\right) \le \frac{R}{2\rho} \exp\left(-nup_{\min,i}\varepsilon/4\right) + \frac{2\gamma}{u} \exp\left(-\frac{1}{8}nup_{\min,i}\right)$$

 $D\acute{e}monstration$: Ce théorème donne une borne exponentielle sur la précision de l'algorithme. Le démonstration est longue.

Découpons l'intervalle $[d_i^l - \gamma, d_i^l + \gamma]$ en intervalles $(I_j)_j$ de taille u. Pour tout j, on pose $N_j = \#I_j$. On note alors A l'événement "pour tout j, $N_j \ge nup_{\min,i}/2$ ".

$$\begin{split} \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho\right) &= \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A\right) \mathbb{P}\left(A\right) \\ &+ \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid \overline{A}\right) \mathbb{P}\left(\overline{A}\right) \\ &\leq \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A\right) + \mathbb{P}\left(\overline{A}\right) \end{split}$$

Nous savons que si l'événement A survient, pour tout t tel que $|t-d_i^l| > 2u$, au moins $nup_{\min,i}/2$ éléments séparent d_i^l et t. Pour de tels t nous avons alors $len_f(x,t) \ge nup_{\min,i}/2$. Ainsi, pour tout s tel que $|s-d_i^l| > 2u + \rho$, $len_f^\rho(x,s) \ge nup_{\min,i}/2$. Enfin, pour tout t tel que $|t-d_i^l| > 2u + \rho$,

$$\pi_{P}(t \mid A) = \frac{\exp\left(-\operatorname{len}_{f}^{\rho}(x, t)\varepsilon/2\right)}{\int_{\mathcal{T}} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{\mathcal{T}} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{d_{i}^{l}-\rho}^{d_{i}^{l}+\rho} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$= \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{d_{i}^{l}-\rho}^{d_{i}^{l}+\rho} d\mu(s)}$$

$$= \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho}$$

Ainsi,

$$\mathbb{P}\left(|M_{\text{cont}} - d_i^l| > 2u + \rho \mid A\right) \leq \int_{\mathcal{T}} \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho} \mathbb{1}_{|t - d_i^l| > 2u + \rho} d\mu(t)
\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho} \mu(\mathcal{T})
= \frac{R}{2\rho} \exp\left(-nup_{\min,i}\varepsilon/4\right)$$

Finalement, il ne nous reste plus qu'à minorer $\mathbb{P}(A)$! Pour cela, pour tout $k \leq n-1$ on pose $Z_k = \mathbbm{1}_{x_k \in I_j}$ et on a $N_j = \sum_{k=0}^{n-1} Z_k$. On note que $\mathbb{P}(Z_j = 1) \geq up_{\min,i}$. Utiliser une borne de Chernoff (démontré en annexe [A.3]) assure enfin que

$$\mathbb{P}\left(N_j < nup_{\min,i}/2\right) = \mathbb{P}\left(N_j < nup_{\min,i}\left(1 - \frac{1}{2}\right)\right) < \exp\left(-\frac{1}{8}nup_{\min,i}\right)$$

Enfin,

$$\mathbb{P}\left(\overline{A}\right) = \mathbb{P}\left(\bigcup_{j=0}^{2\gamma/u} N_j < nup_{\min,i}/2\right) \le \sum_{j=0}^{2\gamma/u} \mathbb{P}\left(N_j < nup_{\min,i}/2\right) \le \frac{2\gamma}{u} \exp\left(-\frac{1}{8}nup_{\min,i}\right)$$

On obtient alors

$$\mathbb{P}(A) \geq 1 - \frac{2\gamma}{u} \exp\left(-\frac{1}{8} nup_{\min,i}\right)$$

Ce que nous permet alors d'obtenir le résultat recherché!

4.3 Analyse de précision - le cas de la loi uniforme standard

Toujours dans une optique de comparaison entre ce mécanisme est celui que nous avons présenté, nous allons maintenant particulariser notre étude au cas particulier de la loi normale standard. Nous allons réécrire le résultat précédent dans ce cas particulier et calculer une majoration de l'espérance de l'erreur sur le calcul d'un décile, comme nous l'avons fait pour notre mécanisme. Pour commencer, énonçons le théorème précédent [1] dans notre cas particulier.

Théorème 4.3.0.1 : Ecart avec les déciles théoriques

Soit $u \in [0, 1/2]$, $\rho \in \mathbb{R}_+$ et $X \in [0, 1]^n$ dont les éléments sont obtenues à partir de la loi uniforme standard. On note $(d_i^l)_i$ les déciles de la loi. Notons alors enfin $M_{\rm cont}$ le mécanisme de sensibilité inverse ρ -lisse.

$$\mathbb{P}\left(|M_{\operatorname{cont},i} - d_i^l| > 2u + \rho\right) \le \frac{1}{2\rho} \exp\left(-nu\varepsilon/4\right) + \frac{4}{u} \exp\left(-\frac{1}{8}nu\right)$$

Nous pouvons alors enfin essayer de majorer $\mathbb{E}(|M_{\text{cont},i} - d_i^l|)$ à l'aide de ce résultat. Voici directement le grand théorème de cette section.

Théorème 4.3.0.2:

Soit $\rho \in]0, 1-4/\sqrt{n}]$ et $X \in [0,1]^n$ dont les éléments sont obtenues à partir de la loi uniforme standard. On note $(d_i^l)_i$ les déciles de la loi. Notons alors enfin $M_{\rm cont}$ le mécanisme de sensibilité inverse ρ -lisse.

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) \le \rho + \frac{4}{\sqrt{n}} + \frac{4}{n\varepsilon\rho} \exp\left(-\frac{\sqrt{n}\varepsilon}{2}\right) + \frac{16}{\sqrt{n}} \exp\left(-\frac{\sqrt{n}}{4}\right)$$

Démonstration : On pose

$$F: \left\{ \begin{array}{ccc} \mathbb{R}_+ & \to & [0,1] \\ t & \mapsto & \mathbb{P}(|M_{\text{cont},i} - d_i^l| \ge t) \end{array} \right.$$

Rappelons directement que

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) = \int_0^{+\infty} F(t) dt = \int_0^1 F(t) dt$$

Nous pouvons alors découper notre intégrale de manière à diviser les calculs en fonction des termes prépondérants.

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) = \int_0^1 F(t) dt = \int_0^{\rho + 4/\sqrt{n}} F(t) dt + \int_{\rho + 4/\sqrt{n}}^1 F(t) dt$$

Ainsi

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) \le \rho + \frac{4}{\sqrt{n}} + \int_{\rho + 4/\sqrt{n}}^1 F(t) dt \le \rho + \frac{4}{\sqrt{n}} + \int_{2/\sqrt{n}}^{1/2 - \rho} F(2u + \rho) du$$

Nous avons donc montré que

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) \le \rho + \frac{4}{\sqrt{n}} + \int_{2/\sqrt{n}}^{1/2} \left(\frac{1}{2\rho} \exp\left(-nu\varepsilon/4\right) + \frac{4}{u} \exp\left(-\frac{1}{8}nu\right)\right) du$$

$$\le \rho + \frac{4}{\sqrt{n}} + \left(\frac{4}{n\varepsilon\rho} \exp\left(-\frac{\sqrt{n\varepsilon}}{2}\right) + \int_{2/\sqrt{n}}^{1/2} 2\sqrt{n} \exp\left(-\frac{1}{8}nu\right) du\right)$$

Enfin,

$$\mathbb{E}(|M_{\text{cont},i} - d_i^l|) \le \rho + \frac{4}{\sqrt{n}} + \frac{4}{n\varepsilon\rho} \exp\left(-\frac{\sqrt{n}\varepsilon}{2}\right) + \frac{16}{\sqrt{n}} \exp\left(-\frac{\sqrt{n}}{4}\right)$$

FIGURE 3 – Graphe de la borne obtenue [1] en fonction de n pour $\rho = 1/\sqrt{n}$.

5 Comparaison entre le mécanisme de sensibilité inverse et la méthode des histogrammes

Dans les sections précédentes nous avons présenté la méthode de sensibilité inverse ainsi que la méthode que nous avons introduite, la méthode des histogrammes. Nous avons étudié en détail notre méthode et nous avons reporté une partie de l'étude du mécanisme de sensibilité inverse et nous avons produit des résultats supplémentaires. Ces deux méthodes présentent de bonnes bornes de précisions tout en étant ε -differentially private.

Pour cette comparaison nous avons décidé de nous concentrer sur deux aspects principaux aspects : la précisions des algorithmes pour des lois usuelles et l'influence du choix de ε sur la précision avec des données réelles. Les lois usuelles étudiées sont la loi uniforme sur [0,1] et la loi normale centrée réduite. Nous avons choisis ces deux lois car elles modélisent de nombreux phénomènes courants et que les lois normales ont une importance particulière en statistique grâce au théorème central limite.

5.1 Comparaison des bornes obtenues

5.2 Résultats expérimentaux

5.2.1 Le cas de la loi uniforme standard

Nous avons calculé l'écart quadratique moyen en fonction de la taille de l'échantillon dans le cas de la loi uniforme standard. Pour cela, pour tout $n \in [100, 5000]$ nous avons lancé les deux algorithmes sur 50 ensembles de données indépendants et identiquement distribué suivant $\mathcal{U}(0, 1)$.

FIGURE 4 — Écart-quadratique moyen sur le calcul des déciles en fonction de n (la taille de l'échantillon). La méthode des histogrammes est en magenta et le mécanisme de sensibilité inverse est en bleu.

Le graphe $\log - \log$ montre que dans le cas $\varepsilon = 1$, l'écart quadratique semble être d'espérance $35n^{-1.015}$ pour la méthode des histogrammes et $21.5n^{-0.995}$ pour le mécanisme de sensibilité inverse. On observe alors que pour des valeurs de n courantes ($\leq 10^8$), le mécanisme de sensibilité inverse semble meilleur que la méthode que nous avons introduite et que notre méthode est asymptotiquement meilleure même si cela ne sera pas le cas en pratique.

Enfin, les deux mécanismes offrent vraiment des performances similaires. Le mécanisme de sensibilité inverse devrait être privilégié pour obtenir une meilleure précision. Néanmoins, la méthode des histogrammes est une alternative viable.

5.2.2 La loi normale centrée réduite

Nous avons suivi la même méthodologie que dans le cas de la loi uniforme standard. Les résultats obtenues sont similaires, les résultats suivent moins uniformément le modèle d'une puissance mais semble aussi y coller. Comme dans le cas uniforme, l'écart quadratique est moins bon avec la méthode des histogrammes. Néanmoins, cet écart semble asymptotiquement meilleur par rapport à celui obtenue avec le mécanisme de sensibilité inverse.

FIGURE 5 – Écart-quadratique moyen sur le calcul des déciles en fonction de n (la taille de l'échantillon). La méthode des histogrammes est en magenta et le mécanisme de sensibilité inverse est en bleu.

5.2.3 Des données réelles

Nous	avons	déc	décidé		compa-	
rer	les	résultats	des	deux	mé-	
thodes	sur	une	base	de	don-	
née	réelle	[NY21]	afin	de	voir	

les méthodes comment se comportent vraimentPour en pratique. cela nous avons utilisé les salaires annuels des du agents publique de l'état de New-(États-Unis). York Ces données ont directement été publiques une par agence gouvernementale, ce qui assure une certaine fiabilité. Nous travaillons alors sur un ensemble de près de 400 000 salaires annuels.

Les courbes sur le graphe 6 sont des SMA_{10} (simple moving average de paramètre 10). Cet indicateur permet de lisser les fluctuations locales afin de mettre en avant les tendances globales. Ainsi, le graphe 6 montre que la méthode de sensibilité inverse est globalement plus précise. Il n'y a toute fois pas d'ordre de grandeur de différence entre les erreurs de deux algorithmes. Leurs performances sont donc similaires.

De plus, ces deux algorithmes fournissent des résultats précis. En effet, les déciles du jeu de donné sont 34 902, 38 574, 41 848, 46 862, 56 844, 67 121, 75 254, 84 751 et 99 637. L'erreur quadratique observée, proche de 20 est donc négligeable au vu des ordres de grandeurs des données.

Références

- Asi, Hilal et John C. Duchi. "Near Instance-Optimality in Differential Privacy". In: ArXiv abs/2005.10630 (mai 2020). URL: https://arxiv.org/pdf/2005.10630.pdf.
- AUXIER, Brooke et al. Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over Their Personal Information. 15 nov. 2019. URL: https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2019/11/Pew-Research-Center_PI_2019.11. 15_Privacy_FINAL.pdf (visité le 20/07/2022).
- DWORK, Cynthia et Aaron ROTH. "The Algorithmic Foundations of Differential Privacy". In: Foundations and Trends in Theoretical Computer Science 9 (août 2014), p. 211-407. URL: https://www.microsoft.com/en-us/research/publication/algorithmic-foundations-differential-privacy/.
- DWORK, Cynthia et al. "Calibrating Noise to Sensitivity in Private Data Analysis". In: *Theory of Cryptography*. Sous la dir. de Shai Halevi et Tal Rabin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, p. 265-284. ISBN: 978-3-540-32732-5.
- McSherry, Frank et Kunal Talwar. "Mechanism Design via Differential Privacy". In: Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, oct. 2007. URL: https://www.microsoft.com/en-us/research/publication/mechanism-design-via-differential-privacy/.
- MEEHAN, Mary. Data Privacy Will Be The Most Important Issue In The Next Decade. 26 nov. 2019. URL: https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/?sh=430b3e591882 (visité le 20/07/2022).
- MONTJOYE, Yves-Alexandre de et al. "Unique in the Crowd: The privacy bounds of human mobility". In: Nature 3 (mars 2013). URL: https://doi.org/10.1038/srep01376.
- NY, Open Data. Salary Information for Local Authorities. Authorities Budget Office. 13 déc. 2021. URL: https://data.ny.gov/Transparency/Salary-Information-for-Local-Authorities/fx93-cifz (visité le 08/07/2022).
- PARLIAMENT, European et Council of the European Union. Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (Data Protection Directive). 14 avr. 2016. URL: https://gdpr-info.eu/recitals/no-26/ (visité le 20/07/2022).
- SWEENEY, Latanya. "Simple Demographics Often Identify People Uniquely". In: (jan. 2000). DOI: 10.1184/R1/6625769.v1. URL: https://dataprivacylab.org/projects/identifiability/paper1.pdf (visité le 20/07/2022).

A Démonstration de théorèmes utiles

A.1 Loi des statistiques d'ordre

TODO

A.2 Inégalité d'Hoeffding

TODO

A.3 Bornes multiplicatives de sc Chernoff

TODO

A.4 Déciles de la loi normale centrée réduite

TODO

B Le mécanisme de sensibilité inverse - probabilité de précision sur les déciles empiriques

Théorème B.0.0.1:

Soit $\gamma \in \mathbb{R}_+^*$, $u \in [0, \gamma/4]$, $\rho \in \mathbb{R}_+$ et $X \in [0, R]^n$ dont les éléments sont obtenues à partir d'une loi P de densité π_P continue au voisinage de ses déciles. On pose $p_{\min,i} = \inf_{t \in [d_i^l - 2\gamma, d_i^l + 2\gamma]} \pi_P(t)$. On note $(d_i)_i$ les déciles empirique de X et $(d_i^l)_i$ les déciles de la loi. Notons alors enfin M_{cont} le mécanisme de sensibilité inverse ρ -lisse.

$$\mathbb{P}\left(\left|M_{\text{cont},i} - d_i\right| > 2u + \rho\right) \le \frac{R}{2\rho} \exp\left(-\frac{np_{\min,i}u\varepsilon}{4}\right) + 4\exp\left(-\frac{n\gamma^2 p_{\min,i}^2}{8}\right) + \frac{2\gamma}{u} \exp\left(-\frac{np_{\min,i}u}{8}\right)$$

démonstration : Ce théorème donne une borne exponentielle sur la précision de l'algorithme. Le démonstration est longue.

Découpons l'intervalle $[d_i^l - \gamma, d_i^l + \gamma]$ en intervalles $(I_j)_j$ de taille u. Pour tout j, on pose $N_j = \#I_j$. On note alors A l'événement "pour tout j, $N_j \geq nup_{\min,i}/2$ " et B_i l'événement " $|d_i^l - d_i| \geq \gamma/2$ ".

$$\begin{split} \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho\right) &= \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) \mathbb{P}\left(A \wedge B_i\right) \\ &+ \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid \overline{A} \vee \overline{B}_i\right) \mathbb{P}\left(\overline{A} \vee \overline{B}_i\right) \\ &\leq \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) + \mathbb{P}\left(\overline{A} \vee \overline{B}_i\right) \\ &= \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) + \mathbb{P}\left((\overline{A} \wedge B_i) \vee \overline{B}_i\right) \\ &\leq \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) + \mathbb{P}\left(\overline{A} \wedge B_i\right) + \mathbb{P}\left(\overline{B}_i\right) \\ &= \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) + \mathbb{P}\left(\overline{A} \mid B_i\right) \mathbb{P}(B_i) + \mathbb{P}\left(\overline{B}_i\right) \\ &\leq \mathbb{P}\left(|M_{\text{cont},i} - d_i^l| > 2u + \rho \mid A \wedge B_i\right) + \mathbb{P}\left(\overline{A} \mid B_i\right) + \mathbb{P}\left(\overline{B}_i\right) \end{split}$$

Nous savons que si les événements A et B surviennent, pour tout t tel que $|t - d_i| > 2u$, au moins $nup_{\min,i}/2$ éléments séparent d_i et t. Pour de tels t nous avons alors $len_f(x,t) \ge nup_{\min,i}/2$. Ainsi, pour tout s tel que $|s - d_i| > 2u + \rho$, $len_f^{\rho}(x,s) \ge nup_{\min,i}/2$. Enfin, pour tout t tel que

 $|t - d_i| > 2u + \rho,$

$$\pi_{P}(t \mid A \land B) = \frac{\exp\left(-\operatorname{len}_{f}^{\rho}(x, t)\varepsilon/2\right)}{\int_{\mathcal{T}} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{\mathcal{T}} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{d_{i}-\rho}^{d_{i}+\rho} \exp\left(-\operatorname{len}_{f}^{\rho}(x, s)\varepsilon/2\right) d\mu(s)}$$

$$= \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{\int_{d_{i}-\rho}^{d_{i}+\rho} d\mu(s)}$$

$$= \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho}$$

Ainsi,

$$\mathbb{P}\left(\left|M_{\text{cont}} - d_{i}\right| > 2u + \rho \mid A \wedge B_{i}\right) \leq \int_{\mathcal{T}} \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho} \mathbb{1}_{\left|t - d_{i}\right| > 2u + \rho} d\mu(t)$$

$$\leq \frac{\exp\left(-nup_{\min,i}\varepsilon/4\right)}{2\rho} \mu(\mathcal{T})$$

$$= \frac{R}{2\rho} \exp\left(-nup_{\min,i}\varepsilon/4\right)$$

Nous allons maintenant calculer la probabilité de l'événement \overline{B}_i . Pour cela, on pose $\alpha=\gamma/2$, pour tout $j\in [\![0,n-1]\!]$ on pose $C^i_j=\mathbbm{1}_{x_i>d^l_i+\alpha}$ et $C^i=\sum_{j=0}^{n-1}C_j$. L'événement C^i dénote le nombre d'éléments de X plus grands que $d^l_i+\alpha$. Par définition de $p_{\min,i}$ assure que

$$\begin{split} \hat{p} & := & \mathbb{P}(C_j^i = 1) \\ & = & 1 - \int_0^{d_i^l} \pi_P(t) \mathrm{d}\mu(t) - \int_{d_i^l}^{d_i^l + \alpha} \pi_P(t) \mathrm{d}\mu(t) \\ \overset{\text{def de } d_i^l}{=} & 1 - \frac{i}{10} - \int_{d_i^l}^{d_i^l + \alpha} \pi_P(t) \mathrm{d}\mu(t) \\ & \leq & \frac{10 - i}{10} - p_{\min,i} \int_{d_i}^{d_i^l + \alpha} \mathrm{d}\mu(t) \\ & = & \frac{10 - i}{10} - \alpha p_{\min,i} \end{split}$$

Or, si $d_i > d_i^l$, $C^i \ge in/10$. Ainsi, en utilisant une borne de Chernoff (démontré en annexe [A.3])

 $(C^i \text{ est d'espérance } \hat{p}n \text{ et les } (C^i_j)_j \text{ sont indépendantes}),$

$$\mathbb{P}\left(d_{i} > d_{i}^{l} + \alpha\right) \leq \mathbb{P}\left(C^{i} \geq \frac{in}{10}\right)$$

$$= \mathbb{P}\left(\sum_{j=0}^{n-1} C_{j}^{i} \geq \hat{p}n\left(1 - \left(1 - \frac{i}{\hat{p}10}\right)\right)\right)$$

$$\leq \exp\left(-\left(1 - \frac{i}{\hat{p}10}\right)^{2} \frac{n\hat{p}}{2}\right)$$

$$= \exp\left(-\left(\hat{p} - \frac{i}{10}\right)^{2} \frac{n}{2\hat{p}}\right)$$

$$\leq \exp\left(-\left(\alpha p_{\min,i}\right)^{2} \frac{n}{2\hat{p}}\right)$$

$$\leq \exp\left(-\alpha^{2} p_{\min,i}^{2} \frac{n}{i/5 - 2\alpha p_{\min,i}}\right)$$

$$\leq \exp\left(-\frac{1}{2}\alpha^{2} p_{\min,i}^{2} n\right)$$

On montre alors de même que $\mathbb{P}\left(d_i < d_i^l - \alpha\right) < \exp\left(-\frac{1}{2}\alpha^2 p_{\min,i}^2 n\right)$. Nous avons donc montré que

$$\mathbb{P}(B_i) \ge 1 - 2\exp\left(-\frac{1}{8}n\gamma^2 p_{\min,i}^2\right)$$

Finalement, il ne nous reste plus qu'à minorer $\mathbb{P}(A \mid B_i)$! Pour cela, notons que

$$\mathbb{P}(A \mid B_i) \ge (A \mid B_i)\mathbb{P}(B_i) = \mathbb{P}(A) - \mathbb{P}\left(A \wedge \overline{B}_i\right) \ge \mathbb{P}(A) - \mathbb{P}(\overline{B}_i)$$

Pour tout $k \leq n-1$ on pose alors $Z_k = \mathbbm{1}_{x_k \in I_j}$ et on a $N_j = \sum_{k=0}^{n-1} Z_k$. On note que $\mathbb{P}(Z_j = 1) \geq up_{\min,i}$. Utiliser une nouvelle fois une borne de Chernoff (démontré en annexe [A.3]) assure enfin que

$$\mathbb{P}\left(N_j < nup_{\min,i}/2\right) = \mathbb{P}\left(N_j < nup_{\min,i}\left(1 - \frac{1}{2}\right)\right) < \exp\left(-\frac{1}{8}nup_{\min,i}\right)$$

Enfin,

$$\mathbb{P}\left(\overline{A}\right) = \mathbb{P}\left(\bigcup_{j=0}^{2\gamma/u} N_j < nup_{\min,i}/2\right) \le \sum_{j=0}^{2\gamma/u} \mathbb{P}\left(N_j < nup_{\min,i}/2\right) \le \frac{2\gamma}{u} \exp\left(-\frac{1}{8}nup_{\min,i}\right)$$

On obtient alors

$$\mathbb{P}(A \mid B_i) \ge 1 - \frac{2\gamma}{u} \exp\left(-\frac{1}{8}nup_{\min,i}\right) - 2\exp\left(-\frac{1}{8}n\gamma^2p_{\min,i}^2\right)$$

Ce que nous permet alors d'obtenir le résultat recherché!

C HistogramMethod : Analyse de précision - le cas de la loi normale centrée réduite

Lemme C.0.0.1 : Estimation de l'écard entre les déciles empiriques et ceux de la loi normale centrée réduite.

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi normale centrée réduite et soit $\gamma \in [0, d_i^l]$. Notons $(d_i)_i$ les déciles empiriques de X et $(d_i^l)_i$ les déciles de la loi normale centrée réduite. Pour tout $i \in [1, 9]$

$$\mathbb{P}(d_i \in [d_i^l - \gamma/2, d_i^l + \gamma/2]) \ge 1 - \eta$$

Avec

$$\eta = \exp\left(-\frac{n\gamma^2}{i^2}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\exp\left(-(d_i^l)^2\right)\right) + \exp\left(-\frac{5\gamma^2in}{16\pi\left(i + 5\gamma/\sqrt{2\pi}\right)^2}\exp\left(-(d_i^l)^2\right)\right)$$

Démonstration : Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi uniforme sur [0,1]. Notons $(d_i)_i$ les déciles empiriques de X et $(d_i^l)_i$ ceux de la loi. Soit $\gamma \in [0,d_i^l]$. On note que

$$\mathbb{P}(d_i \in [d_i^l - \gamma/2, d_i^l + \gamma + 2]) = 1 - \mathbb{P}(d_i \notin [d_i^l - \gamma/2, d_i^l + \gamma/2])$$

= 1 - \mathbb{P}(d_i \le d_i^l - \gamma/2 \forall d_i \ge d_i^l + \gamma/2)

On pose alors A= "il y a au moins in/10 valeurs plus petites que $d_i^l-\gamma/2$ " et B= "il y a au plus in/10 valeurs plus petites que $d_i^l+\gamma/2$ ". Pour tout $j\in [\![0,n-1]\!]$ on pose $A_j=\mathbbm{1}_{x_j\leq d_i^l+\gamma/2}$, $B_j=\mathbbm{1}_{x_j\leq d_i^l+\gamma/2},\, A_s=\sum_{j=0}^{n-1}A_j$ et $B_s=\sum_{j=0}^{n-1}B_j$. On a alors, $A=\{A_s\geq in/10\}$ et $B=\{B_s\leq in/10\}$. Une application d'une borne de Chernoff (démontré en annexe [A.3]) assure alors que

$$\begin{split} \mathbb{P}(A) &= \mathbb{P}(A_s \geq in/10) \\ &= \mathbb{P}\left(A_s \geq \frac{n}{\sqrt{2\pi}} \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(\frac{-t^2}{2}\right) \mathrm{d}t \left(1 + \frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t} - 1\right)\right) \\ &\stackrel{d_i^l \geq \gamma}{\leq} \exp\left(-\frac{n}{3\sqrt{2\pi}} \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(\frac{-t^2}{2}\right) \mathrm{d}t \left(\frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t} - 1\right)^2\right) \\ &= \exp\left(-\frac{n}{3} \left(\frac{i}{10} - \frac{1}{\sqrt{2\pi}} \int_{d_i^l - \gamma/2}^{d_i^l} \exp\left(\frac{-t^2}{2}\right) \mathrm{d}t\right) \left(\frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t} - 1\right)^2\right) \\ &\leq \exp\left(-\frac{n}{3} \left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right) \left(\frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t} - 1\right)^2\right) \end{split}$$

Or, la valeurs des déciles de la loi normale centrée réduite étant connues 1,

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_i^l - \gamma/2} \exp\left(\frac{-t^2}{2}\right) \mathrm{d}t &= \frac{1}{2} \frac{2}{\sqrt{\pi}} \int_{-\infty}^{(d_i^l - \gamma/2)/\sqrt{2}} \exp\left(-t^2\right) \mathrm{d}t \\ &= \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{d_i^l - \gamma/2}{\sqrt{2}}\right) \\ &= \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\operatorname{erf}^{-1}\left(2 \times 0.1i - 1\right) - \frac{\gamma}{2\sqrt{2}}\right) \\ &= \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\operatorname{erf}^{-1}\left(2 \times 0.1i - 1\right)\right) - \frac{1}{\sqrt{\pi}} \int_{\operatorname{erf}^{-1}(2 \times 0.1i - 1) - \gamma/2\sqrt{2}}^{\operatorname{erf}^{-1}(2 \times 0.1i - 1) - \gamma/2\sqrt{2}} \exp\left(-t^2\right) \mathrm{d}t \\ &= \frac{i}{10} - \frac{1}{\sqrt{\pi}} \int_{\operatorname{erf}^{-1}(2 \times 0.1i - 1) - \gamma/2\sqrt{2}}^{\operatorname{erf}^{-1}(2 \times 0.1i - 1) - \gamma/2\sqrt{2}} \exp\left(-t^2\right) \mathrm{d}t \\ &\leq \frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}} \exp\left(-\operatorname{erf}^{-1}\left(2 \times 0.1i - 1\right)^2\right) \end{split}$$

Enfin, comme $25/(6\pi) \ge 5$,

$$\begin{split} \mathbb{P}(A) &\leq \exp\left(-\frac{n}{3}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\left(\frac{i}{i - 5\gamma/\sqrt{2\pi}\exp\left(-\operatorname{erf}^{-1}\left(2 \times 0.1i - 1\right)^2\right)} - 1\right)^2\right) \\ &\leq \exp\left(-\frac{n\gamma^2}{i^2}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\exp\left(-2\operatorname{erf}^{-1}\left(2 \times 0.1i - 1\right)^2\right)\right) \\ &= \exp\left(-\frac{n\gamma^2}{i^2}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\exp\left(-(d_i^l)^2\right)\right) \end{split}$$

Finalement,

$$\begin{split} &\mathbb{P}(B) = \mathbb{P}\left(B_s \leq in/10\right) \\ &= \mathbb{P}\left(B_s \leq \frac{n}{\sqrt{2\pi}} \left(\int_{-\infty}^{d_i^l + \gamma/2} \exp\left(-\frac{t^2}{2} \mathrm{d}t\right)\right) \left(1 - \left(1 - \frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l + \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t}\right)\right)\right) \\ &\leq \exp\left(-\frac{n}{2\sqrt{2\pi}} \left(\int_{-\infty}^{d_i^l + \gamma/2} \exp\left(-\frac{t^2}{2} \mathrm{d}t\right)\right) \left(1 - \frac{i\sqrt{2\pi}}{10 \int_{-\infty}^{d_i^l + \gamma/2} \exp\left(-t^2/2\right) \mathrm{d}t}\right)^2\right) \\ &\leq \exp\left(-\frac{in}{20} \left(1 - \frac{i}{i + 5\gamma/\sqrt{2\pi}} \exp\left(-(\mathrm{erf}^{-1}\left(2 \times 0.1i - 1\right) + \gamma/2\right)^2\right)\right)^2\right) \\ &= \exp\left(-\frac{25\gamma^2 in}{40\pi} \left(\frac{\exp\left(-(\mathrm{erf}^{-1}\left(2 \times 0.1i - 1\right) + \gamma/2\right)^2\right)}{i + 5\gamma/\sqrt{2\pi}} \exp\left(-(d_i^l + \gamma/2)^2\right)\right)^2\right) \\ &\leq \exp\left(-\frac{5\gamma^2 in}{16\pi \left(i + 5\gamma/\sqrt{2\pi}\right)^2} \exp\left(-2(\mathrm{erf}^{-1}\left(2 \times 0.1i - 1\right) + \gamma/2\right)^2\right)\right) \\ &\leq \exp\left(-\frac{5\gamma^2 in}{16\pi \left(i + 5\gamma/\sqrt{2\pi}\right)^2} \exp\left(-(d_i^l)^2\right)\right) \end{split}$$

Lemme C.0.0.2:

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la normale centrée réduite. Soit $\gamma \in [0, d_i^l]$, $i \in [1, 9]$ et $k \in \mathbb{N}$. Il y a au moins α valeurs de X dans chacun des intervalles $[d_i^l - \gamma, d_i^l - \gamma/2]$ et $[d_i^l + \gamma/2, d_i^l + \gamma]$ avec une probabilité au moins $1 - \beta$ avec

$$\beta = 2 \exp \left(-\frac{n\gamma}{4\sqrt{2\pi}} \left(\exp\left(-\frac{(|d_i^l| + \gamma)^2}{2} \right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma} \right)^3 \right)$$

 $\begin{array}{l} \textit{D\'{e}monstration}: \text{Soit X un ensemble de n variables al\'{e}atoires $(X_i)_i$ ind\'{e}pendantes et suivant toutes la loi normale centr\'{e}e r\'{e}duite. Soit $\gamma \in [0, d_i^l]$, $i \in \llbracket 1, 9 \rrbracket$ et $\alpha \in \mathbb{N}$. On pose $A = "il y a au moins α valeurs dans l'intervalle $[d_i^l - \gamma, d_i^l - \gamma/2]"$ et $B = "il y a au moins α valeurs dans l'intervalle $[d_i^l + \gamma/2, d_i^l + \gamma]"$. Pour tout $j \in \llbracket 0, n - 1 \rrbracket$ on pose $A_j = \mathbbm{1}_{x_j \in [d_i^l - \gamma, d_i^l - \gamma/2]}$, $B_j = \mathbbm{1}_{x_j \in [d_i^l + \gamma/2, d_i^l + \gamma]}$, $A_s = \sum_{j=0}^{n-1} A_j$ et $B_s = \sum_{j=0}^{n-1} B_j$. On a alors, $A = \{A_s \geq \alpha\}$ et $B = \{B_s \geq \alpha\}$.$

$$\mathbb{P}(A \land B) = \mathbb{P}(A_s \ge \alpha \land B_s \ge \alpha)$$
$$\ge \mathbb{P}(A_s \ge \alpha) + \mathbb{P}(B_s \ge \alpha) - 1$$
$$= 1 - \mathbb{P}(A_s < \alpha) - \mathbb{P}(B_s < \alpha)$$

Une application d'une borne de Chernoff (démontré en annexe [A.3]) assure alors que

$$\begin{split} \mathbb{P}\left(A_{s} < \alpha\right) &= \mathbb{P}\left(A_{s} < \frac{n}{\sqrt{2\pi}} \int_{d_{i}^{l}-\gamma/2}^{d_{i}^{l}-\gamma/2} \exp\left(-\frac{t^{2}}{2}\right) \mathrm{d}t \left(1 - \left(1 - \frac{\alpha\sqrt{2\pi}}{n \int_{d_{i}^{l}-\gamma/2}^{d_{i}^{l}-\gamma/2} \exp\left(-t^{2}/2\right) \mathrm{d}t}\right)\right)\right) \\ &\leq \exp\left(-\frac{n}{2\sqrt{2\pi}} \int_{d_{i}^{l}-\gamma}^{d_{i}^{l}-\gamma/2} \exp\left(-\frac{t^{2}}{2}\right) \mathrm{d}t \left(1 - \frac{\alpha\sqrt{2\pi}}{n \int_{d_{i}^{l}-\gamma/2}^{d_{i}^{l}-\gamma/2} \exp\left(-t^{2}/2\right) \mathrm{d}t}\right)^{2}\right) \\ &\leq \exp\left(-\frac{n\gamma}{4\sqrt{2\pi}} \exp\left(-\frac{(|d_{i}^{l}|+\gamma)^{2}}{2}\right) \left(\frac{n \int_{d_{i}^{l}-\gamma}^{d_{i}^{l}-\gamma/2} \exp\left(-t^{2}/2\right) \mathrm{d}t - \alpha\sqrt{2\pi}}{n \int_{d_{i}^{l}-\gamma}^{d_{i}^{l}-\gamma/2} \exp\left(-t^{2}/2\right) \mathrm{d}t}\right)^{2}\right) \\ &\leq \exp\left(-\frac{1}{n\gamma\sqrt{2\pi}} \exp\left(-\frac{(|d_{i}^{l}|+\gamma)^{2}}{2}\right) \left(n \int_{d_{i}^{l}-\gamma}^{d_{i}^{l}-\gamma/2} \exp\left(-t^{2}/2\right) \mathrm{d}t - \alpha\sqrt{2\pi}\right)^{2}\right) \\ &\leq \exp\left(-\frac{n}{\gamma\sqrt{2\pi}} \exp\left(-\frac{(|d_{i}^{l}|+\gamma)^{2}}{2}\right) \left(\frac{\gamma}{2} \exp\left(-\frac{(|d_{i}^{l}|+\gamma)^{2}}{2}\right) - \frac{\alpha\sqrt{2\pi}}{n}\right)^{2}\right) \\ &\leq \exp\left(-\frac{n\gamma}{4\sqrt{2\pi}} \left(\exp\left(-\frac{(|d_{i}^{l}|+\gamma)^{2}}{2}\right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma}\right)^{3}\right) \end{split}$$

Nous pourrions alors montrer, exactement de la même manière que

$$\mathbb{P}(B_s < \alpha) \le \exp\left(-\frac{n\gamma}{4\sqrt{2\pi}} \left(\exp\left(-\frac{(|d_i^l| + \gamma)^2}{2}\right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma}\right)^3\right)$$

Finalement,

$$\mathbb{P}\left(A \ \wedge \ B\right) \geq 1 - 2\exp\left(-\frac{n\gamma}{4\sqrt{2\pi}}\left(\exp\left(-\frac{(|d_i^l| + \gamma)^2}{2}\right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma}\right)^3\right)$$

Théorème C.0.0.1: (α, β) -précision de HistogramMethod dans le cas de la loi normale centrée réduite

Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi normale centrée réduite. Soit $\gamma \in [0,d_i^l]$, $i \in [1,9]$, $k \in \mathbb{N}$ et $\beta \in [0,1]$. Notons $(d_i)_i$ les déciles empiriques de X et $(d_i^l)_i$ les déciles de la loi normale centrée réduite. Posons A la variable aléatoire HistogramMethod(X, epsilon, k, a, b).

$$\mathbb{P}\left(A_i \in [d_i^l - \gamma, d_i^l + \gamma]\right) \ge 1 - \beta - \eta - \mu$$

Avec

$$\left\{ \begin{array}{ll} \alpha &= \frac{8 \left(\log k + \log(2/\beta) \right)}{\varepsilon} \\ \mu &= 2 \exp \left(-\frac{n \gamma}{4 \sqrt{2 \pi}} \left(\exp \left(-\frac{\left(|d_i^l| + \gamma \right)^2}{2} \right) - \frac{2 \alpha \sqrt{2 \pi}}{n \gamma} \right)^3 \right) \\ \eta &= \exp \left(-\frac{n \gamma^2}{i^2} \left(\frac{i}{10} - \frac{\gamma}{2 \sqrt{2 \pi}} \right) \exp \left(-(d_i^l)^2 \right) \right) + \exp \left(-\frac{5 \gamma^2 i n}{16 \pi \left(i + 5 \gamma / \sqrt{2 \pi} \right)^2} \exp \left(-(d_i^l)^2 \right) \right) \end{array} \right.$$

Démonstration : Soit X un ensemble de n variables aléatoires $(X_i)_i$ indépendantes et suivant toutes la loi normale centrée réduite. Soit $\gamma \in [0, d_i^l]$, $i \in [1, 9]$, $k \in \mathbb{N}$ et $\beta \in [0, 1]$. Notons $(d_i)_i$ les

déciles empiriques de X et $(d_i^l)_i$ les déciles de la loi normale centrée réduite. Posons A la variable aléatoire HistogramMethod(X, epsilon, k, a, b).

On pose

$$\alpha = \frac{8\left(\log k + \log(2/\beta)\right)}{\varepsilon}$$

Notons alors E_{α} l'événement "Il y a au moins α valeurs de X dans chacun des intervalles $[d_i^l - \gamma, d_i^l - \gamma/2]$ et $[d_i^l + \gamma/2, d_i^l + \gamma]$ " Et E_{A_i} l'événement "moins de α valeurs de X séparent d_i et A_i ". Nous avons alors

$$\mathbb{P}\left(A_{i} \in \left[d_{i}^{l} - \gamma, d_{i}^{l} + \gamma\right]\right) \geq \mathbb{P}\left(E_{A_{i}} \wedge E_{\alpha} \wedge d_{i} \in \left[d_{i}^{l} - \gamma/2, d_{i}^{l} + \gamma/2\right]\right)$$

$$\geq \mathbb{P}\left(E_{A_{i}}\right) + \mathbb{P}\left(E_{\alpha}\right) + \mathbb{P}\left(d_{i} \in \left[d_{i}^{l} - \gamma/2, d_{i}^{l} + \gamma/2\right]\right) - 2$$

Les lemmes précédent assurent alors que

$$\mathbb{P}(A_i \in [0.1i - \gamma, 0.1i + \gamma]) \ge (1 - \beta) + (1 - \mu) + (1 - \eta) - 2$$

$$\ge 1 - \beta - \mu - \eta$$

Avec

$$\begin{cases} \alpha &= \frac{8\left(\log k + \log(2/\beta)\right)}{\varepsilon} \\ \mu &= 2\exp\left(-\frac{n\gamma}{4\sqrt{2\pi}}\left(\exp\left(-\frac{\left(|d_i^l| + \gamma\right)^2}{2}\right) - \frac{2\alpha\sqrt{2\pi}}{n\gamma}\right)^3\right) \\ \eta &= \exp\left(-\frac{n\gamma^2}{i^2}\left(\frac{i}{10} - \frac{\gamma}{2\sqrt{2\pi}}\right)\exp\left(-(d_i^l)^2\right)\right) + \exp\left(-\frac{5\gamma^2in}{16\pi\left(i + 5\gamma/\sqrt{2\pi}\right)^2}\exp\left(-(d_i^l)^2\right)\right) \end{cases}$$