Context Free Language Engineering

Context Free Grammar:

- A context-free grammar can be described by a four-element tuple (V,Σ,R,S) where
 - V(N) is a finite set of variables (which are non-terminal); represented by capital letters.
- Σ (T) is a finite set ((disjoint from V) of terminal symbols; represented by small letters or special symbols like , +, *, 0, 1, (,), etc.
- R(P) is a set of production rules where each production rule maps a variable to a string $s \in (V \cup \Sigma)^*$
 - S (which is in V) which is a start symbol

- Eg:

 $\mathsf{S} \to \mathsf{e}$

 $S \rightarrow 0S$

 $S \rightarrow 1S$

String: 001

Leftmost Derivation & Rightmost Derivation

Leftmost Derivation:

- The process of deriving a string by expanding the leftmost non-terminal at each step is called as **leftmost derivation**.

The geometrical representation of leftmost derivation is called as a **leftmost derivation tree**.

Rightmost Derivation:

Nepal Institute of

- The process of deriving a string by expanding the rightmost non-terminal at each step is called as **rightmost derivation**.
- The geometrical representation of rightmost derivation is called as a rightmost derivation tree.
- Eg: consider grammar:

 $S \rightarrow aB/bA$

 $S \rightarrow aS/bAA/a$

 $B \rightarrow bS / aBB / b$

Input string w = aaabbabbba

Leftmost Derivation	Rightmost Derivation
S → aB → aaBB → aaaBBB → aaabBB → aaabBB → aaabbB → aaabbaBB → aaabbabB → aaabbabB → aaabbabbS → aaabbabbbA → aaabbabbba (Using B → abB) (Using B → abB) (Using B → abB) (Using B → b) (Using A → a)	S → aB → aaBB (Using B → aBB) → aaBaBbS (Using B → bS) → aaBaBbbA (Using S → bA) → aaBaBbba (Using A → a) ← aaaBabbba (Using B → aBB) → aaaBbabbba (Using B → b) ← Using B → b) ← Using B → b)

Ambiguous Grammar:

- A grammar is said to be ambiguous if for any string generated by it, it produces more than one-
 - Parse tree
 - Or derivation tree
 - Or syntax tree
 - Or leftmost derivation

 - Nepal Institute of Or leftmost derivation
 Or rightmost derivation
- Consider the following grammar-

$$E \rightarrow E + E / E \times E / id$$

Let us consider a string w generated by the grammar-

•
$$w = id + id \times id$$

Now, let us draw the parse trees for this string w.

Since two parse trees exist for string w, therefore the grammar is ambiguous.

Chomsky Normal Form(CNF):

CNF form:

A-> BC
$$\{V->VV\}$$

A-> a $\{V->T\}$

- Simplifications:

- 1. Elimination of epsilon productions: A->e; if grammar has n nullable symbols then there is 2n possible combinations.
 - 2. Elimination of Unit productions: A->B
- 3. Elimination of useless symbols: non-generating symbols and non-reachable symbols. All terminals are generating symbols. If RHS has generating symbols then LHS also be generating symbols.

Eg: S->AB|a

A->b then generating symbols={a,b,S,A} and non generating symbols={B}

After removing non generating symbols the grammar is:

S->a

A->b

Non reachable: starts symbols of grammar is reachable symbol. LHS of production is reachable then RHS of the production is also reachable symbols.

Eg: S->a

A-> b then reachable symbols {S,a} and non reachable =(A,b}. After removing non

reachable from the grammar is

```
S->a;
Eg: S->aA |aBB
   A->aAA|e
   B->bB|bbC
```

C->B

Solution:

Ellimination of e-productions:

A->e after removing nullable symbols A is

S->aA|aBB|a

A->aAA|aA|a

B->bB|bbC

C->B

```
B->bB|bbC
          C->bB|bbC
  . Elimination of usless symbols:
          generating symbols={a,b,S,A}
          non generating symbols={B,C}
After removing non generting symbols
S->aA|a
A->aAA|aA|a
Reachable symbols={S,a,A}
iv. New variable for terminal
          P->a
          S->PA|a
```

v. CNF is:

S->PA|a

X->AA

A->PX|PA|a

P->a

ii. Elimination of unit productions:

S->aA|aBB|a

A->aAA|aA|a

A->PAA|PA|a

C->B, after removing unit production:

Greibach Normal Form GNF:

Form:

```
A->aBC (V->T.any no. of V)
```

A->b (V->T)

Nepal Institute of

- Eliminate left recursion in gnf.
 the given grammar is in CNF.

Pumping Lemma for CFG:

- To prove certain languages are not context-free.
- Let L be a CFL and n be a constant.
- Any string z in L, $|z| \ge n$.
- Split z= uvwxy such that:
 - |vwx|≤n
 - $Vx \neq e \text{ or } |vx| \geq 1$
 - For all $i \ge 0$, $uv^i wx^i y \in L$

```
Show that L=a^nb^nc^n|n>=1 is not CFL
Let z = a^n b^n c^n, |z| \ge n
Split z =uvwxyz
vwx=b^n, |vwx| \le n
vx = b^{n-m}, |vx| \ge 1, m < n
\lambda = c_{u}
uv^iwx^iy = uvv^{i-1}wxx^{i-1}y
            =uvwx(vx)^{i-1}y
            =a^{n}b^{n}(b^{n-m})^{i-1}c^{n}
            =a^nb^{n+n-m+m}c^n
            =a^nb^{ni-mi+m}c^n
Pick i=0, then
Uviwxiy=anbmcn∉L hence the given language is not CFL.=
```

Push Down Automata (PDA)

- Pushdown Automata is a finite automata with extra memory called stack which helps Pushdown automata to recognize Context Free Languages.
- Mathematically a Pushdown Automata (PDA) is defined with 7 tuple , $M=(Q, \Sigma, \Gamma, q0, Z, F, \delta)$ where,

Q is the set of states

 Σ is the set of input symbols

 Γ is the set of pushdown symbols (which can be pushed and popped from

stack)

q0 is the initial state

Z is the initial pushdown symbol (which is initially present in stack)

F is the set of final states

 δ is a transition function which maps Q x $\{\Sigma \cup E\}$ x Γ into Q x Γ^* . In a given state, PDA will read input symbol and stack symbol (top of the stack) and move to a new state and change the symbol of stack.

Instantaneous Description (ID):

- A ID is a triple (q, w, α), where:
 - 1. q is the current state.

 - 2. w is the remaining input. $3.\alpha$ is the stack contents, top at the left.

• Turnstile notation Engineering

⊢ sign is called a "turnstile notation" and represents one move.

⊢* sign represents a sequence of moves.

Eg- (p, b, T) \vdash (q, w, α)

Language of PDA:

1. Acceptance by final state:

Let P = $(Q, \Sigma, \Gamma, q0, Z, F, \delta)$ be a PDA then

 $L(P) = \{w \mid (q0,w,z0) \vdash^* (qF,e,j); where qF = final state and j = any \}$ 2. Acceptance by empty stack: Ineering

Let $P = (=(Q, \Sigma, \Gamma, q0, Z, F, \delta))$ be a PDA then

 $L(P) = \{w \mid (q0, w, z0) \vdash^* (qF, e, e);$

Problem: construct a PDA for L={0ⁿ1ⁿ|n≥1

Solution:

L ={01, 0011, 000111,00001111,...... } equal no. of 0 followed by equal no of

1.

Let us consider an input = 000111e

Transition:

 $\delta(q0,0,z0) = (q0,0z0)$ // push into stack $\delta(q0,0,0) = (q0,00)$ //push into stack $\delta(q0,1,0) = (q1,e)$ // pop from stack $\delta(q1,1,0) = (q1,e)$ // pop from stack $\delta(q1,e,z0) = (q2,z0)$

Equivalence of CFG and PDA

- CFG and PDA are equivalent in power.
- a CFG generates a context-free language and a PDA recognizes a context-free language.
- A language is context-free iff some pushdown automaton recognizes it.
- L(G) = L(P)

Algorithm to find PDA corresponding to a given CFG

- **Input** A CFG, G = (V, T, P, S)
- Output Equivalent PDA, $P = (Q, \sum, S, \delta, q_0, I, F)$
- Step 1 Convert the productions of the CFG into GNF.
- Step 2 The PDA will have only one state {q}.
- Step 3 The start symbol of CFG will be the start symbol in the PDA.
- Step 4 All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.
- Step 5 For each production in the form $A \rightarrow aX$ where a is terminal and A, X are combination of terminal and non-terminals, make a transition δ (q, a, A).

Problem

Construct a PDA from the following CFG.

$$G = ({S, X}, {a, b}, P, S)$$

- where the productions are –
- $S \rightarrow XS \mid \epsilon$, $X \rightarrow aXb \mid Ab \mid ab$ Solution:

Let the equivalent PDA,

- $P = (\{q\}, \{a, b\}, \{a, b, X, S\}, \delta, q, S)$
- where δ –
- $\delta(q, \epsilon, S) = \{(q, XS), (q, \epsilon)\}$
- $\delta(q, \epsilon, X) = \{(q, aXb), (q, Xb), (q, ab)\}$
- $\delta(q, a, a) = \{(q, \epsilon)\}$
- $\delta(q, b, b) = \{(q, \epsilon)\}$

Nepal Institute of Engineering

Properties of Context Free Languages

- **Union**: If L1 and L2 are two context free languages, their union L1 U L2 will also be context free.
- Concatenation: If L1 and If L2 are two context free languages, their concatenation L1.L2 will also be context free.
- Kleene Closure: If L1 is context free, its Kleene closure L1* will also be context free.
- Intersection and complementation: If L1 and If L2 are two context free languages, their intersection L1 ∩ L2 need not be context free