Karnaugh Map

Hand Drawn Gate Level Circuit

Console Output# run 1000ns

 $\{a,b,c,d\}=0000 \Rightarrow \{f3,f2,f1,f0\}=0000 -- TRUE$ $\{a,b,c,d\}=0001 \Rightarrow \{f3,f2,f1,f0\}=0000 -- TRUE$ $\{a,b,c,d\}=0010 \Rightarrow \{f3,f2,f1,f0\}=0000 -- TRUE$ $\{a,b,c,d\}=0011 \Rightarrow \{f3,f2,f1,f0\}=0000 -- TRUE$ $\{a,b,c,d\}=0100 \Rightarrow \{f3,f2,f1,f0\}=0000 -- TRUE$ $\{a,b,c,d\}=0101 \Rightarrow \{f3,f2,f1,f0\}=0001 -- TRUE$ $\{a,b,c,d\}=0110 \Rightarrow \{f3,f2,f1,f0\}=0010 -- TRUE$ $\{a,b,c,d\}=0111 \Rightarrow \{f3,f2,f1,f0\}=0011 -- TRUE$ $\{a,b,c,d\}=1000 \Rightarrow \{f3,f2,f1,f0\}=0010 -- TRUE$ $\{a,b,c,d\}=1001 \Rightarrow \{f3,f2,f1,f0\}=0100 -- TRUE$ $\{a,b,c,d\}=1011 \Rightarrow \{f3,f2,f1,f0\}=0100 -- TRUE$ $\{a,b,c,d\}=1011 \Rightarrow \{f3,f2,f1,f0\}=0110 -- TRUE$ $\{a,b,c,d\}=1011 \Rightarrow \{f3,f2,f1,f0\}=0110 -- TRUE$ $\{a,b,c,d\}=1100 \Rightarrow \{f3,f2,f1,f0\}=0110 -- TRUE$ ${a,b,c,d}=1101 => {f3,f2,f1,f0} = 0011 -- TRUE$

{a,b,c,d}=1110 => {f3,f2,f1,f0} = 0110 -- TRUE

{a,b,c,d}=1111 => {f3,f2,f1,f0} = 1001 -- TRUE

\$finish called at time: 800 ns: File

"C:/Users/omer/Desktop/Dersler/EHB436E/HW/03/Viv/project_3/project_3.srcs/sim_1/imports/Projectfiles/experiment3_tb.v" Line 52

RTL and Technology Schematics

No Timing and LOC Constraints

Technology Schematic

RTL Schematic

Combinational Delay Without Constraints

•	•					
	From Port	To Port	Max Delay 1	Max Process Corner	Min Delay	Min Process Corner
	a	√ f2	9.601	SLOW	2.992	FAST
	a	√ f1	9.524	SLOW	2.9 S	elect path
	d	√ f2	9.489	SLOW	2.910	FAST
	b	√ f1	9.402	SLOW	2.851	FAST
		√ f1	9.199	SLOW	2.728	FAST
	a	 € f3	9.111	SLOW	2.809	FAST
	D C	√ f2	Q NQQ	SLOW	2 720	FΔST

Utilization Summary Without Constraints

Summary

With Time Constraint, No LOC Constraint

Maximum Combinational Delay with Timing Constraint

Utilization Summary with Timing Constraint

Summary

LUT usage is increased and that made circuit faster, using closer LUTs to the relevant port can make circuit faster

With LOC constraint, No Timing Constraint

Combinational Delay with LOC constraint

With LOC and Time Constraints

It failed to make circuit delay with desired results because we fixed the locations of the LUTS so it could satisfy the conditions without changing LUTs locations

Difference between behavioural simulation and Post Implementation Timing Simulation

Because of the delays some unwanted results is occurring temporarily like when inputs are 0000 output must be 0000 but we see 1 at f0 for a short time period it is caused by different delay times between ports

Comparison

Each implementation has different delays, fastest one is the one that has only timing constraint because we did not fix any LUT to a certain point so it changed their locations freely to meet the conditions of constraint file.

2 With Decoder

fo = ab od+ abod+ abod+ abod fi = abcd + abcd+abcd+abcd + as Ed + dec d f2=a5cd+a5cd+a6cd fz = abcd

Wave form of behavioral simulation

RTL schematic

Technology Schematic

Combinational Delay

There is not different type of cell

Utilization

Comparison of Resource Usage Between Decoder and SSI Implementation

Design with decoder needs less process, in decoder part it just gives desired 1 to output, needs less process, that's why designing with decoder needs less resources.

Zoomed Device Layout

Combinational Delay With Timing Constraint

3 Designing With Mux

Wave form of Behavioral Simulation

RTL Schematic

Technology Schematic

Combinational Delay

There is no difference in used primitive types

Utilization

Comparison of three designs

Design with decoder is using least amount of resources because one decoder and 3 or is enough to implement the design, design with mux is in the middle because for every output we have to use one mux and some gates to their inputs, SSI is the worst case because we are using only gates that's why it is using more resources.

Combinational Delay with Time Constraint

4-)

It is 2-bit multiplier

Behavioral simulation is the simulation of our design.

Post Synthesis Functional Simulation is the simulation with synthesized netlists.

Post Implementation Functional Simulation is the simulation with using the elements on the board.

Post Implementation Timing Simulation is showing us that after implementing the design in to board, what happens with delays.

Design difficulty is MUX > Decoder >SSI

Coding difficulty SSI>MUX>Decoder

LUT usage SSI>MUX>Decoder
Path delays Decoder>SSI>MUX