SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS

Year 11 ASSESSMENT TASK 2

JULY 2012

General Instructions

- Working Time 65 minutes
- Approved calculators may be used.
- All <u>necessary working</u> should be shown for every question.
- Begin each question on a <u>new</u>
 <u>side of the answer booklet.</u>
- Marks may be <u>not</u> be awarded for <u>careless</u> work or <u>illegible</u> writing.
- For questions 1-5 write answers on the multiple choice answer sheet

lotal Marks	53	
Section I	5 marks	
Section II	48 marks	

NAME		
TEACHER		

SECTION I

Use the multiple choice answer sheet select the alternative A,B,C or D that best answers the question.

Question 1

(1 mark)

In which of the following could the value of k be a solution $2^x - x^3 = 0$?

(A)

(B)

(C)

(D)

Question 2

(1 mark)

If f is defined by

$$f(x) = \begin{cases} x + 1, & \text{if } x < 3 \\ x + 3, & \text{if } x \ge 3 \end{cases}$$

Find the value of f(4) - f(2)

- (A) 2
- (B) 3
- (C) 4
- (D) 5

(1 mark)

PQR represents a side view of a water skiing ramp. The length RQ in metres is given by

- (A)
- (B) 2 tan 17°
- (C) 2 cos 73°
- (D)

Question 4

(1 mark)

If tan y = 3 and cos y is negative, then

(A)
$$\sin y = \frac{3}{\sqrt{10}}$$
 (B) $\cos y = -\frac{1}{3}$ (C) $\tan^2 y = \sqrt{3}$

(B)
$$\cos y = -\frac{1}{3}$$

(C)
$$\tan^2 y = \sqrt{3}$$

(D)
$$\sin y = -\frac{3\sqrt{10}}{10}$$

Question 5

(1 mark)

not to scale

The value of a in terms of c is

(A)
$$\frac{c}{2}$$

(B)
$$c - 20$$

(C)
$$100 - c$$

(D)
$$80 - c$$

SECTION II

Attempt all questions, starting each question on a new page

Question 6

(6 marks)

a) Find the value of x(give full reasons)

F G

not to scale

b) Find the <u>exact</u> values of

1

3

ii. sec 330°

1

iii. tan 420°

1

(12 marks) (Start on a new page)

a)

The diagram shows the origin 0 and the points A(-3,6), B(5,2) and C(2,y).

The lines AB and BC are perpendicular

Copy this diagram onto your writing sheet.

i.	Show that <i>A</i> and <i>B</i> lie on the line $x + 2y = 9$	2
ii.	Show that the length of AB is $4\sqrt{5}$ units	1
iii.	Find the perpendicular distance from $ heta$ to $ heta B$	2
iv.	Find the area of triangle <i>AOB</i>	1
V.	The equation of line CB is $2x - y - 8 = 0$ Find the co-ordinates of point C	1
vi.	The point D is not shown on the diagram. The point D lies on the x axis and $ABCD$ is a rectangle. Find the coordinates of D .	1
vii.	On your diagram, shade the region satisfying the inequalities $x + 2y \ge 9$. and $x \ge 0$	2

b) The point M(3,5) is the mid-point of the interval AB where A is the point (-1,2). Find the co-ordinates of B

2

(6 marks)

(Start on a new page)

a) The diagram shows a regular pentagon ABCDE. Sides ED and BC produced

Copy or trace the diagram into your writing booklet.

i. Find the size of
$$\angle CDE$$

ii. Hence, show that
$$\triangle EPC$$
 is isosceles (reasons required) 2

b) i. Sketch
$$y = |x + 2|$$
 and $y = \frac{1}{3}x + 2$ on the same axes. 2 Indicate where they cross the x and y axes.

ii. Hence solve
$$|x+2| > \frac{1}{3}x + 2$$

Question 9 (6 marks) (Start on a new page)

a) Solve
$$\sin \theta = \frac{-1}{2}$$
 if $0 \le \theta \le 360^{\circ}$

b) Simplify
$$(\csc\theta - \cot\theta) (\csc\theta + \cot\theta)$$
 2

c) Find the length of the diagonal of a rectangle, if it makes and angle of 2 63° 30′ with the shorter side, which is 4.5cm in length.

(answer correct 1 dec. p1)

a) Write a pair of inequalities that describe the shaded region

b) i Find the vertical asymptote for the function $y = \frac{4}{x-2}$

1

ii Sketch the function (use a ruler). Show all important features Find and label any points where the curve cuts the x or y axes.

2

iii State the range of this function

1

(6 marks)

(Start on a new page)

2

Find the exact area of the triangle MXY a)

A helicopter flies 45km on a bearing of 025°. b)

It then flies 56km on a bearing of 130°.

- Show its distance from the starting point is 62km (to nearest km) i
- 2 What bearing needs to be taken to return to its starting point? ii 2 Give your answer correct to the nearest degree.

Question 12 (6 marks) (Start on a new page)

- a) Prove $\frac{1}{\sin \theta \cdot \cos \theta}$ $\tan \theta = \cot \theta$
- b) A sailing vessel sets a course alternating between N60°E and S60°W. E

 What is the distance between two points A and B, if the ship sails 4000m.

 (answer to nearest metre)

$$= 20. \sqrt{3}$$

$$\frac{\sin \theta}{45} = \frac{\sin 75}{62}$$

Question 12

$$= \frac{1 - \sin^2 \theta}{\sin \theta \cos \theta}$$

$$= \frac{\cos^2 \theta}{\sin \theta + \cos \theta} = \cot \theta$$

$$= RHS$$

