Nome		Número
		LEI MIEI
Exame Completo (Partes 1A e 2A)	Teste 1 (Partes 1A e 1B)	Teste 2 (Partes 2A e 2B)

Parte 1A

- 1. [4 val] Considere a função definida por $f(x,y)=\left\{\begin{array}{ll} \dfrac{2x^2y}{3x^2+y^2} & \text{se} \quad (x,y)\neq (0,0)\\ 0 & \text{se} \quad (x,y)=(0,0) \end{array}\right.$
 - (a) Estude a continuidade de f.
 - (b) Calcule $\frac{\partial f}{\partial v}(0,0)$, segundo qualquer vector $v \in \mathbb{R}^2 \setminus \{(0,0)\}$.
 - (c) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
 - (d) Estude a diferenciabilidade de f em todos os pontos $(x, y) \in \mathbb{R}^2$.
- 2. [2 val] Considere a função definida por $f(x,y)=2x^2-3y^2, \ (x,y)\in\mathbb{R}^2.$ Estude a existência de extremos locais de f, bem como a sua natureza.
- 3. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: **1** Resposta em branco: **0** Resposta errada: -**0,5**(a) Dados $f: \mathbb{R}^2 \to \mathbb{R}$, $\alpha, \beta \in \mathbb{R}$, se $\alpha \neq \beta$, a intersecção dos conjuntos de nível α e β é vazia.

(b) Dada $f: \mathbb{R}^2 \to \mathbb{R}$, se $\frac{\partial f}{\partial x}$ é descontínua em (a, b), então f não é diferenciável em (a, b).

4. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1 Resposta em branco: 0 Resposta errada: -0,25

(a) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\frac{\partial f}{\partial x}(0, y) = e^y$, $\frac{\partial f}{\partial y}(0, y) = 7y^2$ e seja $h: \mathbb{R} \to \mathbb{R}$ tal que $h(t) = f(t^2, e^{-t})$. Então h'(0) é igual a

O 7

(b) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função tal que $\lim_{(x,y)\to(0,1)} f(x,y) = 2$. Então:

 $\bigcap_{x\to 0} f(x,x) = 2 \qquad \qquad \bigcap_{x\to 0} f(x,3x+1) = 2$

 $\bigcap_{x \to 0} f(x, 2x) = 2 \qquad \qquad \bigcap_{(x,y) \to (0,1)} f(x^2, y^2) = 4$

Parte 2A

1. [2 val] Considere o integral $\mathcal{I} = \int_0^3 \int_{y^2}^9 y \cos(x^2) dx dy$.

Esboce o domínio de integração, e calcule $\mathcal I$ invertendo a ordem de integração.

2. [4 val] Considere o sólido $\mathcal S$ que é interior, simultaneamente, às superfícies esféricas

$$x^{2} + y^{2} + z^{2} = 1$$
 e $x^{2} + y^{2} + (z - 1)^{2} = 1$.

Faça um esboço de S, e estabeleça um integral, ou uma soma de integrais, que lhe permita calcular o volume de S, usando:

(a) coordenadas cilíndricas;

- (b) coordenadas esféricas.
- 3. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

- (a) As coordenadas polares do ponto de coordenadas cartesians $(\pi,0)$ são $(\pi,0)$.
- (b) Se $\mathscr C$ é o círculo de centro na origem e raio 1, então $\iint_{\mathscr C} x\,d(x,y)=0.$
- 4. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Sejam $\mathcal{B} = [0,2]^3$ e $\iiint_{\mathcal{B}} xy \ d(x,y,z) = k$. Então:

$$\bigcap k=2$$

$$\bigcap k = 8$$

$$k = 4$$

nenhum dos anteriores

(b) Sejam $f: [0,1] \to \mathbb{R}$ contínua e \mathcal{R} o domínio triangular de vértices (0,0), (1,0) e (0,1). Usando a mudança de variáveis $x+y=u, y=v, \,$ o integral $\iint_{\mathcal{R}} f(x+y) \, d(x,y) \,$ é dado por

$$\int_0^1 u f(u) \, du$$

$$\bigcap \frac{1}{2} \int_0^1 \int_0^u f(u) \, dv \, du$$

$$\bigcap \int_0^1 \int_0^u v f(u) \, dv \, du$$

$$\bigcirc 2 \int_0^1 \int_0^u f(u) \, dv \, du$$

Parte 1B

- 5. [4 val] Determine, se existirem, os seguintes limites
 - (a) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ (b) $\lim_{(x,y)\to(0,0)} \frac{x^4-y^4}{x^2+y^2}$
- 6. [1,5 val] Considere a função definida por $f(x,y)=2x^2-3y^2, \ (x,y)\in\mathbb{R}^2$. Estude a existência e a natureza de extremos da função f restrita ao conjunto $\mathscr{C} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 5\}.$
- 7. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

- (a) O conjunto $A = \left\{ (1, \frac{1}{n}) : n \in \mathbb{N} \right\}$ não é aberto nem limitado.
- (b) O conjunto dos pontos de continuidade da função $g(x,y) = \begin{cases} 4x + 2y & \text{se } y \ge 0 \\ x^3 y^2 & \text{se } y < 0 \end{cases}$ $\acute{\mathbf{e}} \ \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : y = 0\}.$
- 8. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma função cu
jas curvas de nível $k \geq 0$ são circunferências de centro na origem e raio k^2 . Então

$$f(x,y) = \sqrt{x^2 + y^2}$$

(b) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por f(x,y) = xy + y - x. O plano tangente ao gráfico de f no ponto (-1, -1, f(-1, -1))

 \bigcirc intersecta o eixo dos zz no ponto de cota 1;

 \bigcirc intersecta o eixo dos xx no ponto de abcissa -1/2;

 \bigcirc intersecta o eixo dos yy no ponto de ordenada 1/2;

contém a origem.

Para os alunos que fazem apenas a parte relativa ao Teste 1, a cotação das questões 1. e 2. da Parte 1A passa a ser

Parte 2B

5. [3,5 val] Considere o integral $\mathcal{J} = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{0} e^{-(x^2+y^2)} dx dy$.

Esboce a região de integração e calcule $\mathcal J$ usando coordenadas polares.

- 6. [1,5 val] Considere o sólido S da questão 2 da Parte 2A. Calcule o volume de S, usando coordenadas cilíndricas ou coordenadas esféricas.
- 7. Sem justificar, indique com as letras V ou F o valor lógico das seguintes proposições.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

(a) Se $f: \mathbb{R} \to \mathbb{R}$ é uma função integrável em qualquer intervalo limitado então

 $\int_{3}^{5} \int_{0}^{2} f(x) \, dx dy = 2 \int_{0}^{2} f(x) \, dx.$

- (b) A equação, em coordenadas cilíndricas, da superfície esférica de centro (0,0,0) e raio 1 \acute{e} $\rho = 1$.
- 8. Sem justificar, assinale a opção correcta em cada uma das alíneas seguintes.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Se $\mathcal{I} = \int_0^1 \int_0^x x^2 y \, dy dx$, então:

 $\mathcal{I} = \int_0^1 \int_0^y x^2 y \, dx dy$

 $\mathcal{I} = \int_0^1 \int_0^0 x^2 y \, dx dy$

 $\mathcal{I} = \int_0^1 \int_1^y x^2 y \, dx dy$

 $\mathcal{I} = \int_0^1 \int_0^1 x^2 y \, dx dy$

(b) Em coordenadas esféricas, a equação da superfície $x^2 + y^2 = x$ é dada por

 $\bigcap r^2 \operatorname{sen}^2 \phi = r \cos \theta \operatorname{sen} \phi$

 $\bigcap r = \cos\theta \sin\phi$

 $\bigcap r^2 = r \cos \phi$

 $\bigcap r \operatorname{sen} \phi = \cos \phi \operatorname{sen}^2 \phi$