Summer Semester 2023

Assignment 1

PHY 112. Section 4

Submission date: 20 June 2023

Use the following constants if necessary. Coulomb constant, $k=8.987\times10^9 N\cdot m^2/C^2$. Vacuum permittivity, $\epsilon_0 = 8.854\times10^{-12} F/m$. Magnetic Permeability of vacuum, $\mu_0 = 12.566370614356\times10^{-7} H/m$. Charge of one electron, $e=-1.60217662\times10^{-19} C$. Mass of one electron, $m_e=9.10938356\times10^{-31} kg$. Unless specified otherwise, each symbol carries its usual meaning. For example, μC means microcoulomb.

Figure 1

- In figure 1, two point charges q1= 6 μC and q2= 12 μC are located at points (6,4) and (-6,10). Find the x and y components of **r**_{1,2} and **F**_{1,2} (the Coulomb force on particle 2 due to particle 1). Also, find the x and y components of **r**_{2,1} and **F**_{2,1}. Also, find the electric field **E**₁₂ due to particle 1 at the location of the particle 2 and the electric field **E**₂₁ due to the particle 2 at the location of particle 1. From the electric fields find **F**₁₂ and **F**₂₁. Compare, the expressions for **F**₁₂ and **F**₂₁ obtained earlier applying Coulombs law directly. V/hat is the relation between **F**_{1,2} and **F**_{2,1} and what it implies? The symbols have their usual meanings.
- 2. (a) Find the relation between r_1 and r_2 when q_0 is in equilibrium in the following figure. The symbols have their usual meaning

$$Q_0 = -10 n C$$

 $Q_1 = Q_2 = 20 M C$

Figure: Test charge in the middle (can move). Other charges are fixed (cannot move).

(b) Find the relation between r, and r2 it wow $Q_1 = 10 \,\mu\text{C}$ and $Q_2 = 30 \,\mu\text{C}$