Gas Chromatograph Mass Spectrometer Standard Operating Procedures

Last modified on: July 12, 2018 by Mark Redd

- NOTICE: Lab policy requires that any person performing GCMS measurements must have done the following before performing any experimental work:
 - Complete pertinent laboratory safety training
 - Read this SOP in its entirety
 - Become familiar with all the experimental steps outlined in this SOP
 - Sign and Date the GCMS SOP Signatures Sheet

Contents

2.1

2.2

1	Start up Procedures	1
2	Tuning the GCMS	1
	2.1 Tune MSD should be done weekly	1
	2.2 Quick Tune should be done daily	1
3	Edit Method \Longrightarrow This is where you tell the GCMS how to run (flow rates, temperatural ramp rates, sample size, etc.)	$^{\mathrm{res,}}$
4	Single Runs	2
5	Multiple Runs (Sequence)	3
6	Analysis	3
1	Start up Procedures	
	\bullet Ensure that HiVac is not lower than $1.0*10^{-6}$ and not higher than $3.5*10^{-5}$	
2	Tuning the GCMS	

Tune MSD should be done weekly

Quick Tune should be done daily

- Creation Date is listed, just copy and paste it in File Name
 - * Ex: Tune20151103091307
 - * Save on the Desktop in Folder "MS Tune Reports"
 - \ast In pdf files, ensure Relative Abundance for Mass 502 is above 3% and roughly the same as the day before

3 Edit Method \Longrightarrow This is where you tell the GCMS how to run (flow rates, temperatures, ramp rates, sample size, etc.)

- This process is where the "art" of GCMS work comes in. Use p. 33-37 of black binder for MSD to determine how to change the method to get smoother/more resolved peaks.
- Click pencil icon underneath "method"
- Everything on the left hand side should read "Ready" except GC Ready State
- Oven Icon
 - Choose duration of temperature holding a ramp rate
- CFT Icon
 - Choose Control method (flow rate or pressure) and specify
- Inlets Icon
 - Use the Back Inlet Tab
 - Total Flow can **never** be above 1250 mL/min
 - Split ratio can be adjusted as long as Total Flow is not too large
- ALS Icon
 - Choose injection volume
 - * The large the molecule, the smaller injection volume
 - * Solvent Washes
 - · Always want at least one wash for Solvent A (Acetone) both Pre and Post Injection to keep the needle clean. If necessary, use Solvent B (Methanol).
 - * Click OK until you reach Save Method
 - * Save method as CompoundName.M in Compound Folder

4 Single Runs

- Start the Run
 - Click the big green arrow
 - Change the operator intiials
 - Ensure correct data path
 - File Name

- * If you have changed something in the method, include that in the file name
 - · Ex: NOV 2 HEXYLCYCLOHEXANE 5 190c, 25KMIN, SPLIT.D
- To Do the Next Run
 - Repeat Procedure 5
 - If you are changing the method in any way, you will also need to repeat Procedure 4
- Run Several **BLANK** runs between each sample run to flush out any residual sample (simply use an empty vial)
 - When running blanks, label the runs around the sample runs:
 - * [Date] Blank 1aa (the first "a" means "before the sample run", the second "a" means "the first blank done")
 - * [Date] Blank lab
 - * [Date] [Sample] 1
 - * [Date] Blank 1ba (the "b" means "after the sample run")
 - * [Date] Blank 1bb
 - * [Date] Acetone 1 (to clean everything out)
 - * [Date] Blank 2aa
 - * [Date] Blank 2ab
 - * [Date] [Sample] 2...

5 Multiple Runs (Sequence)

- Edit Sequence
 - Click the pencil icon underneath "Sequence"
 - Keep data path the same as the method path (same folder)
 - Choose Type (Sample or Blank), Vial position, and Sample Name
 - Method should be spelled the exact same as the .M file used (CompoundName)
- Running Sequences
 - Include the desired number of runs in the Edit Sequence step
 - To run, click the running man underneath "Sequence" instead of the big green arrow, then click "Run Sequence"

6 Analysis

- Purity
 - Tmplibrp.txt file includes acetone in purity, so use rteres.txt file to compute actual purity
 - * Add up the corrected peak areas excluding acetone and divide each peak area by the total
- Compound identification
 - Open AMDIS from the Desktop

- * Open the file you wish to analyze
- * Click Run near the top of the window
- * In the top graph, zoom in on a peak
- * Click on the top of the peak
- * Analyze \Longrightarrow Go to NIST MS Program
- * Right center graph compares MS data (red) to known compound MS (blue)
 - · Use tabs below to select different comparisons
- * Lower left list gives compounds that are similar to collected MS
 - · Prob. Column gives probability of a match
- * On the bar graph, the farther to the left the red bar is, the better the math
- * Bottom graph gives structure of selected compound