- #paper/to-read ~ 2013 CE ~ Object Detection, Semantic Segmentation
 - Rich feature hierarchies for accurate object detection and semantic segmentation
 - https://arxiv.org/abs/1311.2524
 - Sequel papers:
 - Fast R-CNN
 - Faster R-CNN
 - Mask R-CNN
 - Context R-CNN
 - Mentioned papers:
 - Regionlets
 - Objectness of Image Windows
 - Recognition Using Regions
 - Category Independent Object Proposals
 - DeCAF
 - Adaptive Deconvolutional Networks
 - Diagnosing Error in Object Detectors
 - Mentioned topics:
 - Deformable Part Models
 - Hard Negative Mining

Summary

- Architecture: input image → extracting region proposals (~2k) →
 feature-extraction CNN → class prediction or bounding box
 regression SVM (or both).
 - Intersection Over Union, IoU with ground truth labels should be greater than 0.5.
 - At test time, IoU is used to select the dominating prediction for a region.
 - With the enabled bounding box Regression, the model learns to predict shifts of the predicted bounding box relative to the coordinates of the proposed region.

- R-CNN can scale to thousands of classes without resorting to hierarchical tricks or Hashing.
- Training process consists of two parts.
 - Supervised pre-training happens on a big Classification dataset to make the CNN part learn without overfitting on (usually) small detection datasets.
 - Domain-specific fine-tuning is used to train SVM heads on region proposals.
 - Those proposals should fit 227×227 pixels so they are usually warped.
- Different CNN architectures yield different mAPs but also require different amount of Compute.
- For region proposals, Selective Search is used but other methods are appropriate too.
- For Semantic Segmentation, Constrained Parametric Min-Cuts, CPMC is used.