Questio	Answer		Mark
n			
Number			
19(a)			
	Use of moment = Fx	(1)	
	Anticlockwise moment = 25.2 (Nm)		
	and (maximum) clockwise moment = 24.2 (Nm)	(1)	
	As angle to the ground increases, clockwise moment from the weight		
	decreases		
	Or	(1)	
	If line of action of weight moves outside base cannot regain	(1)	4
	equilibrium.		
	25.2 > 24.2 ∴ blows over		
	Example of calculation		
	moment from wind = 14 N × 1.8 m = 25.2 N m		
	moment from weight = 110 N × 0.22 m = 24.2 N m		
	25.2 > 24.2 :. blows over		
19(b)			
	Horizontal component = T × sin 44°		
	Or		
	Distance to line of action of $T = 1.5 \times \sin 44^{\circ}$	(1)	
	Equates clockwise to anticlockwise moments about centre of base to determine <i>T</i>	(1)	
		(1)	5
	Use of trigonometry to calculate vertical component of tension	(1)	3
	Adds weight to vertical component	(4)	
	Force exerted on the ground = 141 N	(1)	
	Example of calculation	(1)	
	Horizontal component of tension = $T \times \sin 44^\circ$		
	$CWM = 1.5 \text{ m} \times T \times \sin 44^\circ = 1.04 \text{ m} \times T$		
	$ACWM = 25 \text{ N} \times 1.8 \text{ m} = 45.0 \text{ N} \text{ m}$		
	$1.04 \text{ m} \times T = 45.0 \text{ N m}$		
	T = 45.0 N m ÷ 1.04 m = 43.2 N		
	Vertical component of $T = 43.2 \text{ N} \times \cos 44^\circ = 31.1 \text{ N}$		
	Total downward force = 110 N + 31.1 N = 141.1 N		
	Total for question 19		9