Small Test Exact Solution Looped Minimizer

This is the example vignette for function: snw_vfi_main from the PrjOptiSNW Package. This function solves for policy function fully iteratively using matlab minimizer. Small Solution Analysis. This produces the same result as snw_vfi_main_bisec_vec, except slower. The purpose of this function is to confirm that the results from snw_vfi_main_bisec_vec is correct.

Test SNW_VFI_MAIN Defaults Small

Call the function with defaults parameters.

```
mp param = snw mp param('default small');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main(mp param);
SNW_VFI_MAIN: Finished Age Group:18 of 18
SNW VFI MAIN: Finished Age Group:17 of 18
SNW VFI MAIN: Finished Age Group:16 of 18
SNW_VFI_MAIN: Finished Age Group:15 of 18
SNW VFI MAIN: Finished Age Group:14 of 18
SNW_VFI_MAIN: Finished Age Group:13 of 18
SNW VFI MAIN: Finished Age Group:12 of 18
SNW_VFI_MAIN: Finished Age Group:11 of 18
SNW_VFI_MAIN: Finished Age Group:10 of 18
SNW VFI MAIN: Finished Age Group:9 of 18
SNW_VFI_MAIN: Finished Age Group:8 of 18
SNW VFI MAIN: Finished Age Group:7 of 18
SNW_VFI_MAIN: Finished Age Group:6 of 18
SNW_VFI_MAIN: Finished Age Group:5 of 18
SNW_VFI_MAIN: Finished Age Group:4 of 18
SNW_VFI_MAIN: Finished Age Group:3 of 18
SNW_VFI_MAIN: Finished Age Group:2 of 18
SNW_VFI_MAIN: Finished Age Group:1 of 18
Elapsed time is 307.635195 seconds.
Completed SNW_VFI_MAIN;SNW_MP_PARAM=default_small;SNW_MP_CONTROL=default_base
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wzedu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
```

```
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

17

18

19

20

21

22

23

24

25

40

47.979

56.953

66.982

78.125

90.439

103.98

118.82

135

3.1102

3.2059

3.2825

3.3443

3.3948

3.4364

3.4709

3.4998

3.5241

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
xxx MEAN(VAL(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
   group
             savings
                         mean_eta_1
                                                                  mean_eta_4
                                                                               mean_eta_5
                                      mean_eta_2
                                                    mean_eta_3
                           -17.393
                                        -9.1596
     1
                    0
                                                      -4.4164
                                                                    -1.5922
                                                                                -0.05106
                           -16.967
     2
            0.0097656
                                         -9.023
                                                      -4.3405
                                                                    -1.5316
                                                                               0.0054259
     3
             0.078125
                           -14.925
                                        -8.2554
                                                      -3.9177
                                                                    -1.2071
                                                                                  0.3028
     4
              0.26367
                          -11.699
                                        -6.8681
                                                                    -0.6913
                                                                                 0.75178
                                                      -3.1808
     5
                          -8.2751
                                         -5.167
                0.625
                                                      -2.2786
                                                                   -0.13883
                                                                                  1.1911
     6
               1.2207
                          -5.3024
                                        -3.4437
                                                      -1.3431
                                                                    0.38361
                                                                                  1.5638
     7
               2.1094
                          -2.9816
                                        -1.9066
                                                     -0.47798
                                                                    0.86412
                                                                                  1.8672
               3.3496
     8
                                       -0.64407
                          -1.2609
                                                      0.28611
                                                                    1.3001
                                                                                  2.1163
     9
                         -0.012545
                                        0.34403
                    5
                                                       0.9369
                                                                     1.6782
                                                                                  2.3266
               7.1191
                                          1.097
    10
                            0.8875
                                                       1.4725
                                                                     1.9981
                                                                                  2.5086
                                                       1.9037
               9.7656
                            1.5392
                                                                                  2.6684
    11
                                          1.665
                                                                     2.2701
    12
               12.998
                            2.0158
                                         2.0932
                                                       2.2465
                                                                     2.5004
                                                                                  2.8071
    13
               16.875
                            2.3684
                                         2.4172
                                                       2.5172
                                                                     2.6933
                                                                                  2.9263
    14
               21.455
                            2.6328
                                         2.6644
                                                       2.7307
                                                                     2.8535
                                                                                  3.0288
    15
               26.797
                            2.8339
                                         2.8549
                                                       2.8997
                                                                      2.986
                                                                                  3.1174
               32.959
                            2.989
    16
                                         3.0032
                                                        3.034
                                                                     3.0954
                                                                                  3.1939
```

```
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
```

3.1416

3.2282

3.2986

3.3562

3.4036

3.443

3.476

3.5037

3.5272

3.1857

3.2603

3.3222

3.3738

3.4169

3.4532

3.4838

3.5098

3.5319

3.2598

3.3164

3.3649

3.4064

3.4421

3.4728

3.4991

3.5219

3.5416

3.12

3.2128

3.2875

3.348

3.3975

3.4384

3.4724

3.501

3.5251

1	0	2.7521e-05	0.0021998	0.046507	0.23828	0.88717
2	0.0097656	0.00054716	0.0036592	0.049526	0.24213	0.89277
3	0.078125	0.021674	0.027305	0.079508	0.27478	0.93352
4	0.26367	0.13129	0.14249	0.19452	0.38205	1.0523
5	0.625	0.38716	0.40422	0.44789	0.63888	1.3005
6	1.2207	0.83381	0.85545	0.90674	1.0839	1.735
7	2.1094	1.5206	1.5442	1.6064	1.7452	2.3859
8	3.3496	2.477	2.5013	2.5629	2.6789	3.3301
9	5	3.7541	3.7788	3.8405	3.9859	4.5828
10	7.1191	5.416	5.4412	5.5038	5.6835	6.1821
11	9.7656	7.4668	7.4912	7.5553	7.7413	8.177
12	12.998	9.9008	9.9212	9.9832	10.174	10.619
13	16.875	12.918	12.94	12.995	13.186	13.709
14	21.455	16.519	16.538	16.594	16.772	17.365
15	26.797	20.59	20.608	20.657	20.825	21.451
16	32.959	25.295	25.313	25.358	25.513	26.139
17	40	30.657	30.68	30.732	30.877	31.477
18	47.979	36.752	36.772	36.831	36.99	37.553
19	56.953	43.764	43.786	43.839	44.003	44.551
20	66.982	51.595	51.618	51.678	51.84	52.393
21	78.125	59.943	59.966	60.026	60.198	60.756
22	90.439	69.256	69.28	69.342	69.517	70.086
23	103.98	79.744	79.765	79.824	79.998	80.576
24	118.82	91.106	91.13	91.192	91.358	91.933
25	135	103.46	103.48	103.54	103.71	104.28

% Consumption Choices tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

group	savings 	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_
1	0	0.3104	0.44	0.69882	1.2297	2.3502
2	0.0097656	0.3214	0.45001	0.70723	1.2373	2.356
3	0.078125	0.3809	0.50664	0.75721	1.2844	2.3949
4	0.26367	0.48992	0.60921	0.85919	1.3936	2.4924
5	0.625	0.65904	0.77109	1.0281	1.5583	2.6654
6	1.2207	0.91142	1.0172	1.2649	1.8076	2.9247
7	2.1094	1.2649	1.3671	1.6019	2.1815	3.3081
8	3.3496	1.7572	1.8573	2.0907	2.6915	3.8066
9	5	2.4045	2.503	2.7347	3.3043	4.4728
10	7.1191	3.2104	3.3074	3.537	4.0708	5.3364
11	9.7656	4.2385	4.3358	4.5627	5.0889	6.4164
12	12.998	5.5627	5.6635	5.8917	6.4121	7.7296
13	16.875	7.0504	7.1499	7.3847	7.904	9.1419
14	21.455	8.7708	8.8721	9.1059	9.6366	10.804
15	26.797	10.904	11.007	11.246	11.787	12.921
16	32.959	13.355	13.457	13.7	14.254	15.388
17	40	16.168	16.266	16.502	17.066	18.225
18	47.979	19.337	19.437	19.666	20.215	21.411
19	56.953	22.744	22.843	23.078	23.621	24.831
20	66.982	26.557	26.654	26.882	27.427	28.632
21	78.125	31.144	31.241	31.469	32.005	33.205
22	90.439	36.126	36.222	36.449	36.981	38.169
23	103.98	41.361	41.46	41.689	42.223	43.402
24	118.82	47.219	47.315	47.541	48.083	49.265
25	135	53.648	53.747	53.978	54.513	55.702