Package 'STDistance'

June 18, 2025

Title Spatial Transcriptomics Distance Calculation and Visualization

Version 0.6.4

Description Analysis of spatial relationships between cell types in spatial transcriptomics data. Spatial proximity is a critical factor in cell-cell communication. The package calculates nearest neighbor distances between specified cell types and provides visualization tools to explore spatial patterns. Applications include studying cell-cell interactions, immune microenvironment characterization, and spatial organization of tissues.

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 4.0.0)
Imports dplyr, ggplot2, Hmisc, scales, stats, RColorBrewer, tidyr,
Suggests testthat, knitr, rmarkdown
LazyData true
VignetteBuilder knitr
NeedsCompilation no
Author Zixiang Wang [aut, cre] (ORCID: https://orcid.org/0000-0001-5252-9764), Lei Yang [aut], Zhaojian Liu [aut]
Maintainer Zixiang Wang <wangzixiang@sdu.edu.cn></wangzixiang@sdu.edu.cn>
Repository CRAN
Date/Publication 2025-06-18 11:50:10 UTC

Contents

calculate_correlations	2
calculate_nearest_distances	3
distance_results	4
metadata	5
normalize spatial	6

2 calculate_correlations

```
      plot_distance_boxplot
      6

      plot_radial_distance
      7

      posi
      8

      tissue_posi
      9

      tissue_posi_normalized
      10

      visualize_spatial_gradient
      11

      visualize_spatial_multinetwork
      13

      visualize_spatial_network
      14

      Index
      16
```

calculate_correlations

Perform correlation analysis between spatial features and distance metrics with visualization

Description

Perform correlation analysis between spatial features and distance metrics with visualization

Usage

```
calculate_correlations(
   spatial_data,
   distance_results,
   spatial_feature,
   distance_metric,
   method = "pearson",
   plot = TRUE,
   plot_title = NULL
)
```

Arguments

```
spatial_data Spatial data containing feature columns and Newbarcode identifier

distance_results

Distance results containing distance metrics and Newbarcode identifier

spatial_feature

Column name from spatial_data to use for correlation (e.g., "gen2_SPLIz_numeric")

distance_metric

Column name from distance_results to use for correlation (e.g., "Epithelial_cells_A")

method

Correlation method ("pearson", "spearman", "kendall")

plot

Logical, whether to generate a scatter plot

plot_title

Title for the scatter plot (optional)
```

Value

A list containing correlation results and ggplot object (if plot=TRUE)

Examples

calculate_nearest_distances

Calculate nearest distances between cell types

Description

Calculate nearest distances between cell types

Usage

```
calculate_nearest_distances(
   spatial_data,
   reference_type,
   target_types,
   x_col = "pxl_row_in_fullres",
   y_col = "pxl_col_in_fullres",
   id_col = "barcode",
   type_col = "Epi_strom"
)
```

Arguments

spatial_data A data frame containing spatial coordinates and cell type info
reference_type The reference cell type to calculate distances from
target_types Vector of target cell types to calculate distances to
x_col Column name for x-coordinates
y_col Column name for y-coordinates
id_col Column name for cell identifiers
type_col Column name for cell type information

Value

A data frame with nearest distances for each reference cell

4 distance_results

Examples

distance_results

distance_results

Description

A data frame with nearest distances for each reference cell

Usage

```
data("distance_results")
```

Format

A data frame with 18 observations on the following 5 variables.

```
Newbarcode a character vector

Epithelial_cells_A a numeric vector

Epithelial_cells_B a numeric vector

Epithelial_cells_C a numeric vector

Epithelial_cells_D a numeric vector
```

Details

A data frame with nearest distances for each reference cell.

Source

This study.

References

Wang, Z., Yang, L., Yang, S., Li, G., Xu, M., Kong, B., Shao, C., & Liu, Z. (2025). Isoform switch of CD47 provokes macrophage-mediated pyroptosis in ovarian cancer. bioRxiv, 2025.2004.2017.649282. https://doi.org/10.1101/2025.04.17.649282

Examples

```
data(distance_results)
## maybe str(distance_results) ; plot(distance_results) ...
```

metadata 5

metadata

Metadata

Description

Metadata of a Seurat Object.

Usage

```
data("metadata")
```

Format

A data frame with 293 observations on the following 9 variables.

```
orig.ident a character vector
nCount_Spatial a numeric vector
nFeature_Spatial a numeric vector
nCount_SCT a numeric vector
nFeature_SCT a numeric vector
integrated_snn_res.0.8 a numeric vector
seurat_clusters a numeric vector
celltype_ABCDepi a character vector
gen2_SPLIz_numeric a numeric vector
```

Details

Metadata dataframe can be exported from Seurat Object as follows. The Seurat Object should be fully annotated and the metadata dataframe should included: orig.ident, celltype, the target gene expression, splicing index (SpliZ), etc.

Source

This study.

References

Wang, Z., Yang, L., Yang, S., Li, G., Xu, M., Kong, B., Shao, C., & Liu, Z. (2025). Isoform switch of CD47 provokes macrophage-mediated pyroptosis in ovarian cancer. bioRxiv, 2025.2004.2017.649282. https://doi.org/10.1101/2025.04.17.649282

Examples

```
data(metadata)
## maybe str(metadata); plot(metadata) ...
```

normalize_spatial

Normalize spatial coordinates

Description

Normalize spatial coordinates

Usage

```
normalize_spatial(
  data,
  sample_col = "Sample",
  x_col = "pxl_row_in_fullres",
  y_col = "pxl_col_in_fullres",
  min_value = 1,
  max_value = 10000
)
```

Arguments

data	A data frame containing spatial coordinates
sample_col	Column name specifying sample IDs
x_col	Column name for x-coordinates
y_col	Column name for y-coordinates
min_value	Minimum value for normalization range
max_value	Maximum value for normalization range

Value

A data frame with normalized coordinates

Examples

```
tissue_posi_normalized<-normalize_spatial(tissue_posi)</pre>
```

 $plot_distance_boxplot$ Visualize Nearest Neighbor Distances with Boxplot and Mean \pm SEM

Description

Creates a boxplot visualization of distance metrics with overlaid mean points and SEM error bars. Suitable for comparing multiple groups with potentially skewed distributions.

plot_radial_distance 7

Usage

```
plot_distance_boxplot(
   distance_result,
   id_col = "barcode",
   show_points = FALSE,
   y_scale = c("original", "log10"),
   palette = "Set2"
)
```

Arguments

distance_result

A data.frame generated by calculate_nearest_distances(), containing dis-

tance measurements with columns: id_col + target_types.

id_col Name of the column containing cell IDs (default: "barcode").

show_points Logical, whether to overlay individual data points (default: FALSE).

y_scale Method for y-axis scaling: "original" or "log10" (default: "original").

palette Color palette name from RColorBrewer (default: "Set2").

Value

A ggplot2 object. Additional customization can be done using ggplot2 functions.

Examples

```
plot_distance_boxplot(distance_results,id_col = "Newbarcode")
```

Description

Creates a radial plot with automatic label placement to prevent overlaps between nodes and text labels.

```
plot_radial_distance(
   distance_result,
   reference_type,
   id_col = "barcode",
   scale_radius = 1,
   show_labels = TRUE,
   palette = "Set2",
   label_padding = 0.15,
   center_label_expansion = 1.5
)
```

8 posi

Arguments

distance_result

Data.frame from calculate_nearest_distances()

reference_type Name of the reference cell type (center node)

id_col Name of ID column (default: "barcode")

scale_radius Scaling factor for layout (default: 1)

show_labels Whether to show distance labels (default: TRUE)

palette Color palette name (default: "Set2")

label_padding Radial padding for labels (default: 0.15)

center_label_expansion

Center expansion for labels (default: 1.5)

Value

A ggplot2 object

Examples

posi posi

Description

Merged spatial location and metadata information.

Usage

```
data("posi")
```

Format

A data frame with 293 observations on the following 18 variables.

Newbarcode a character vector
barcode a character vector
in_tissue a numeric vector
array_row a numeric vector
array_col a numeric vector
pxl_row_in_fullres a numeric vector
pxl_col_in_fullres a numeric vector

tissue_posi 9

```
Sample a character vector

Sampleid a numeric vector

orig.ident a character vector

nCount_Spatial a numeric vector

nFeature_Spatial a numeric vector

nCount_SCT a numeric vector

nFeature_SCT a numeric vector

integrated_snn_res.0.8 a numeric vector

seurat_clusters a numeric vector

celltype_ABCDepi a character vector

gen2_SPLIz_numeric a numeric vector
```

Details

Merged spatial location and metadata information.

Source

This study.

References

Wang, Z., Yang, L., Yang, S., Li, G., Xu, M., Kong, B., Shao, C., & Liu, Z. (2025). Isoform switch of CD47 provokes macrophage-mediated pyroptosis in ovarian cancer. bioRxiv, 2025.2004.2017.649282. https://doi.org/10.1101/2025.04.17.649282

Examples

```
data(posi)
## maybe str(posi) ; plot(posi) ...
```

tissue_posi

tissue_posi

Description

Position of the spots from spatial transcriptome data.

```
data("tissue_posi")
```

Format

A data frame with 9984 observations on the following 9 variables.

```
barcode a character vector
in_tissue a numeric vector
array_row a numeric vector
array_col a numeric vector
pxl_row_in_fullres a numeric vector
pxl_col_in_fullres a numeric vector
Sample a character vector
Sampleid a numeric vector
Newbarcode a character vector
```

Details

Please find the tissue_positions.csv from the spaceranger output files: ./out/spatial/tissue_positions.csv Multiple samples should be merged together, adding "samples" and "Newbarcode" columns.

Source

This study.

References

Wang, Z., Yang, L., Yang, S., Li, G., Xu, M., Kong, B., Shao, C., & Liu, Z. (2025). Isoform switch of CD47 provokes macrophage-mediated pyroptosis in ovarian cancer. bioRxiv, 2025.2004.2017.649282. https://doi.org/10.1101/2025.04.17.649282

Examples

Description

Normalized tissue spots position.

```
data("tissue_posi_normalized")
```

Format

A data frame with 9984 observations on the following 9 variables.

```
barcode a character vector
in_tissue a numeric vector
array_row a numeric vector
array_col a numeric vector
pxl_row_in_fullres a numeric vector
pxl_col_in_fullres a numeric vector
Sample a character vector
Sampleid a numeric vector
Newbarcode a character vector
```

Details

Normalized tissue spots position.

Source

This study.

References

Wang, Z., Yang, L., Yang, S., Li, G., Xu, M., Kong, B., Shao, C., & Liu, Z. (2025). Isoform switch of CD47 provokes macrophage-mediated pyroptosis in ovarian cancer. bioRxiv, 2025.2004.2017.649282. https://doi.org/10.1101/2025.04.17.649282

Examples

```
data(tissue_posi_normalized)
## maybe str(tissue_posi_normalized) ; plot(tissue_posi_normalized) ...
```

visualize_spatial_gradient

Visualize spatial network with expression gradient

Description

Visualize spatial network with expression gradient

Usage

```
visualize_spatial_gradient(
  spatial_data,
  sample,
  gradient_type,
  fixed_type,
  expression_col = "gen2_SPLIz_numeric",
  x_col = "pxl_row_in_fullres",
  y_col = "pxl_col_in_fullres",
  type_col = "Epi_strom",
  fixed_color = "#A9C6D9",
  line_color = "#666666",
  gradient_palette = "C",
  point_size = 1,
  point_alpha = 0.8,
  line_width = 0.3,
  line_alpha = 0.6,
  show_legend = TRUE,
  legend_title = "Expression",
  grid_major_color = "gray90",
  grid_minor_color = "gray95",
  border_color = "black",
  background_color = "white"
)
```

Arguments

spatial_data	Spatial coordinates data frame containing cell types and expression values		
sample	Sample name in the spatial transcriptome data		
<pre>gradient_type</pre>	Cell type to show with expression gradient coloring		
fixed_type	Cell type to show in fixed color (default gray)		
expression_col	Column name containing expression values (default "gen2_SPLIz_numeric")		
x_col	Column name for x-coordinates (default "pxl_row_in_fullres")		
y_col	Column name for y-coordinates (default "pxl_col_in_fullres")		
type_col	Column name for cell type information (default "Epi_strom")		
fixed_color	Color for the fixed cell type (default "#A9C6D9" - light gray-blue)		
line_color	Color for connection lines (default "#666666" - dark gray)		
<pre>gradient_palette</pre>			
	Color palette for expression gradient (default viridis option "C")		
point_size	Size of points (default 1)		
point_alpha	Transparency of points (default 0.8)		
line_width	Width of connection lines (default 0.3)		
line_alpha	Transparency of connection lines (default 0.6)		
show_legend	Logical whether to show legend (default TRUE)		

Value

A ggplot object showing the spatial relationships with expression gradient

Examples

visualize_spatial_multinetwork

Visualize spatial relationships between multiple cell types

Description

Visualize spatial relationships between multiple cell types

```
visualize_spatial_multinetwork(
   spatial_data,
   sample,
   reference_type,
   target_types,
   x_col = "pxl_row_in_fullres",
   y_col = "pxl_col_in_fullres",
   type_col = "Epi_strom",
   color_palette = NULL,
   point_alpha = 0.7,
   line_alpha = 0.5,
   point_size = 1.5,
   line_width = 0.3,
   show_legend = TRUE
)
```

Arguments

spatial_data Spatial coordinates data frame sample Sample name in the spatial transcriptome data reference_type Reference cell type (character vector of length 1) Target cell type(s) (character vector of 1 or more) target_types Column name for x-coordinates x_col Column name for y-coordinates y_col Column name for cell type information type_col color_palette Named vector of colors for cell types point_alpha Transparency level for points line_alpha Transparency level for connection lines point_size Size of points in plot line_width Width of connection lines Logical, whether to show legend show_legend

Value

A ggplot object showing the spatial relationships

Examples

visualize_spatial_network

Visualize spatial relationships between cell types

Description

Visualize spatial relationships between cell types

```
visualize_spatial_network(
   spatial_data,
   sample,
   reference_type,
   target_type,
   x_col = "pxl_row_in_fullres",
   y_col = "pxl_col_in_fullres",
   type_col = "Epi_strom",
   color_palette = c(Macrophage = "#90ee90", Epithelial_cells_A = "#377EB8"),
   alpha = 0.7
)
```

Arguments

sample Sample name in the spatial transcriptome data

reference_type Reference cell type target_type Target cell type

x_colColumn name for x-coordinatesy_colColumn name for y-coordinates

type_col Column name for cell type informationcolor_palette Named vector of colors for cell typesalpha Transparency level for points and lines

Value

A ggplot object showing the spatial relationships

Examples

Index

```
* datasets
    distance_results, 4
    metadata, 5
    posi, 8
    tissue_posi, 9
    {\tt tissue\_posi\_normalized,}\ 10
calculate_correlations, 2
calculate_nearest_distances, 3
distance_results, 4
metadata, 5
normalize_spatial, 6
\verb|plot_distance_boxplot|, 6
plot_radial_distance, 7
posi, 8
tissue\_posi, 9
{\tt tissue\_posi\_normalized, 10}
visualize_spatial_gradient, 11
visualize_spatial_multinetwork, 13
visualize\_spatial\_network, 14
```