Topology

Eduardo Freire

August 2021

2 Topological Spaces and Continuous Functions

2.1 Lecture 1

Definition 2.1.1. A topology \mathcal{T} on a set X is a collection of subsets of X satisfying the following conditions:

- 1. $\emptyset, X \in \mathcal{T}$,
- 2. If $U_{\lambda} \in \mathcal{T}$ for every $\lambda \in \Lambda$, then $(\bigcup_{\lambda \in \Lambda} U_{\lambda}) \in \mathcal{T}$ and
- 3. If $A, B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$.

A subset U of X is called open if and only if $U \in \mathcal{T}$.

Definition 2.1.2. Let $\mathcal{T}, \mathcal{T}'$ be topologies on X. We say that \mathcal{T}' is finer than \mathcal{T} if and only if $\mathcal{T} \subset \mathcal{T}'$. Similarly, \mathcal{T}' is coarser than \mathcal{T} if and only if $\mathcal{T}' \subset \mathcal{T}$.

Definition 2.1.3. A collection \mathcal{B} of subsets of X is called a basis for a topology on X if and only if it satisfies the following conditions:

- 1. $X = \bigcup_{B \in \mathcal{B}} B$ and
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_1 \cap B_2$.

Given a basis \mathcal{B} on a set X, let \mathcal{T} be the set such that $U \in \mathcal{T}$ if and only if for every $x \in U$ there is some $B_x \in \mathcal{B}$ such that $x \in B_x$ and $B_x \subset U$. We call \mathcal{T} the set generated by \mathcal{B} .

Proposition 2.1.1. Let X be a set and \mathcal{B} be a a basis for X. The set \mathcal{T} generated by \mathcal{B} is a topology on X.

Proof. It is easy to see that clauses 1 and 2 in Definition 2.1.1 hold using the first clause in the definition of a basis. For the last clause, assume that $A, B \in \mathcal{T}$ and let $x \in A \cap B$ be arbitrary. Since A and B are in \mathcal{T} , there are $B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \subset A$ and $x \in B_2 \subset B$. It follows that $x \in B_1 \cap B_2 \subset A \cap B$. By clause 2 in the definition of a basis, there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2 \subset A \cap B$, thus $A \cap B \in \mathcal{T}$.

Lemma 2.1.1. Let \mathcal{B} be the basis for a topology \mathcal{T} on X (so \mathcal{T} is the topology generated by \mathcal{B}). Then \mathcal{T} is the collection of all unions of elements of \mathcal{B} .

Proof. Let $U \in \mathcal{T}$ be arbitrary. We wish to show that there is some collection of elements in \mathcal{B} such that their union is U. By Definition 2.1.3, for each $x \in U$ we can choose some $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$. It is straightforward to see that $\bigcup_{x \in U} B_x = U$. Also, since the elements of \mathcal{B} are subsets of X, it is evident that their union is a subset of X, and the result follows.

Lemma 2.1.2. Let $\mathcal{B}, \mathcal{B}'$ be basis for the topologies $\mathcal{T}, \mathcal{T}'$ respectively on a set X. Then the following are equivalent:

- 1. \mathcal{T}' is finer than \mathcal{T} ,
- 2. For every $B \in \mathcal{B}$ and every $x \in B$, there is some $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Proof. For the forward direction assume (1), i.e that $\mathcal{T} \subset \mathcal{T}'$. Let $B \in \mathcal{B}$ and $x \in B$ be arbitrary. It is easy to see that every element of a basis for a topology is an open set in that topology, specifically $B \in \mathcal{T}$. Thus $B \in \mathcal{T}'$, and definition 2.1.3 guarantees that there is some $B'_x \in \mathcal{B}'$ such that $x \in B' \subset B$, as we wanted to show.

Now assume clause number (2) and let $U \in \mathcal{T}$ be arbitrary. We need to show that $U \in \mathcal{T}'$, so let $x \in U$ be arbitrary. We know, since \mathcal{T} is generated by \mathcal{B} , that there is some $B \in \mathcal{B}$ such that $x \in B \subset U$. By (2), there is also some $B' \in \mathcal{B}'$ such that $x \in B' \subset B \subset U$. Since \mathcal{T}' is generated by \mathcal{B}' , this means $U \in \mathcal{T}'$, as we wanted to show.

2.2 Lecture 2

Lemma 2.2.1. Let X be a set and \mathcal{T} be a topology on X. If \mathcal{C} is a collection of open sets of X such that for every $U \in \mathcal{T}$ and every $x \in U$ there is some $C \in \mathcal{C}$ such that $x \in C \subset U$, then \mathcal{C} is a basis on X. Furthermore, the topology generated by \mathcal{C} is \mathcal{T} .

Proof. Assume the hypothesis in the lemma. To show that \mathcal{C} meets clause (1) of definition 2.1.3, we need to show that for any given $x \in X$ there is some $C \in \mathcal{C}$ such that $x \in C$, so let x be arbitrary. We now that X is open, so the hypothesis of the lemma guarantees that there is some $c \in \mathcal{C}$ with $x \in C$.

Next, assume that $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$. Since C_1, C_2 are open, their intersection must also be open. By the lemma hypothesis, there is some $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$, so clause (2) of definition 2.1.3 is met and \mathcal{C} is a basis for \mathcal{T} .

Now let the collection of subsets \mathcal{T}' be such that $U' \in \mathcal{T}'$ if and only if for every $x \in U'$ there is some $C_x \in \mathcal{C}$ such that $x \in C_x \subset U'$. We need to show that $\mathcal{T} = \mathcal{T}'$. Assume first that $U \in \mathcal{T}$. The lemma hypothesis guarantees that for any $x \in U$ there is some $C \in \mathcal{C}$ such that $x \in C \subset U$, thus $U \in \mathcal{T}'$. By Lemma 2.1.1, \mathcal{T}' is the collection of all unions of elements of \mathcal{C} . So given some $U' \in \mathcal{T}'$,

 \mathcal{T}' is some arbitrary union of elements in \mathcal{C} , but every $C \in \mathcal{C}$ is open, so their union is also open. This means that $U' \in \mathcal{T}'$, thus $\mathcal{T} = \mathcal{T}'$.

Definition 2.2.1. A subbasis S for a topology on X is a collection of subsets of X such that for every $x \in X$ there is some $S \in S$ such that $x \in S$. The topology generated by S is collection of all the arbitrary unions of finite intersections of elements of S.

Remark 2.2.1. It might not be clear at first that the set generated by S is a topology on X. To see that it is, notice that the collection of all finite intersections of elements of S is a basis B. Then, the collection of all arbitrary unions of elements of B is the topology generated by B, according to Lemma 2.1.1.

Definition 2.2.2. Let X be a set with more than one element and < be a strict linear order on X. We define the set \mathcal{B} by

```
\mathcal{B} := \{(x, y) : x < y\} \cup \{[x_0, y) : x_0 < y, \text{ if } X \text{ has a least element } x_0.\} \cup \{(x, y_0] : x < y_0, \text{ if } X \text{ has a largest element } y_0.\}
```

We call \mathcal{B} the order basis on X with order <, and the topology it generates is called the order topology.

Proposition 2.2.1. Given any X with more than one element and some strict linear order < on X, the order basis \mathcal{B} is a basis for a topology on X.

Proof. Let $x \in X$ be arbitrary. We know that there is some $y \in X$ other than x. If x < y and x is the least element of x, then $x \in [x, y) \in \mathcal{B}$, otherwise there is some $z \in X$ such that z < x < y, thus $x \in (z, y) \in \mathcal{B}$. Similarly, we can show that when y < x there is some B such that $x \in B \in \mathcal{B}$.

Now let $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ be arbitrary. It is straightforward but tedious to check that there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Definition 2.2.3. The standard topology on **R** is the one generated by the basis $\mathcal{B} = \{(a,b) : a < b\}$.

The lower limit topology $\mathbf{R}_{\mathcal{L}}$ on \mathbf{R} is the topology generated by the basis $\mathcal{B}' = \{[a,b) : a < b\}.$

Lemma 2.2.2. The lower limit topology on the reals is strictly finer then the standard topology.

Proof. To show that $\mathbf{R}_{\mathcal{L}}$ is finer than the standard topology, it suffices to show that given any B in the standard basis \mathcal{B} and any $x \in \mathbf{R}$, there is some $B' \in \mathcal{B}'$ such that $x \in B' \subset B$, by Lemma 2.1.2. So let $B \in \mathcal{B}$ and $x \in \mathbf{R}$ be arbitrary. We know that B = (a, b) with a < b and a < x < b. Then $x \in [x, b) \in \mathcal{B}'$ and $[x, b) \subset B$, as we wanted to show.

Also, the interval [0,1) is open in the lower limit topology, but not in the standard. To see that, assume for contradiction that [0,1) is open in the standard topology. Then, there must be some $(a,b) \in \mathcal{B}$ such that $0 \in (a,b) \subset [0,1)$.

Since $0 \in (a, b)$, a < 0 < b. Then a < a/2 < 0 < b, so $a/2 \in (a, b)$, therefore $a/2 \in [0, b)$. Thus $a/2 \ge 0$, a contradiction. Thus, $\mathbf{R}_{\mathcal{L}}$ is strictly finer than the standard topology.

Definition 2.2.4. Let X and Y be topological spaces. The product topology $X \times Y$ is defined as the topology generated by the basis $\mathcal{B} = \{U \times V : U \text{ is open in } X \text{ and } V \text{ is open in } Y\}.$

Lemma 2.2.3. Let $\mathcal{B}_x, \mathcal{B}_y$ be basis for X and Y respectively. It follows that $\mathcal{B}_x \times \mathcal{B}_y$ generates the product topology $X \times Y$.

Proof. We apply Lemma 2.2.1 to the collection $\mathcal{B}_x \times \mathcal{B}_y$ of open sets. Let W be open in $X \times Y$ and $a \times b \in W$ be arbitrary. By the definition of the order topology, there is some $B \in \mathcal{B}$ such that $a \times b \in U \times V \subset W$, where \mathcal{B} is the basis for $X \times Y$. Since \mathcal{B}_x is a basis for X, there is some $B_x \in \mathcal{B}_x$ such that $a \in B_x \subset U$. Similarly, there is some $B_y \in \mathcal{B}_y$ such that $b \in B_y \subset V$. Then $a \times b \in B_x \times B_y \subset U \times V \subset W$, thus the conditions of the lemma just mentioned are met and $\mathcal{B}_x \times \mathcal{B}_y$ is a basis and generates the product topology. \square

2.3 Lecture 3

Definition 2.3.1. Let (X, \mathcal{T}_x) be a topological space. For any $Y \subset X$, we define the subspace topology as $\mathcal{T}_y = \{Y \cap U : U \in \mathcal{T}_x\}$.

Lemma 2.3.1. The set constructed in definition 2.3.1 is a topology on X.

Proof. By definition, $X \in \mathcal{T}_x$, so $Y \cap X = Y \in \mathcal{T}_y$, and similarly for the empty set. Now let $\{Y \cap U_\lambda : \lambda \in \Lambda\}$ be a collection of open sets in \mathcal{T}_y . Then

$$\bigcup_{\lambda \in \Lambda} Y \cap U_{\lambda} = \left(Y \cap \bigcup_{\lambda \in \Lambda} U_{\lambda} \right) \in \mathcal{T}_{y},$$

since arbitrary union of sets in \mathcal{T}_x are open. A similar argument shows that finite intersections of sets in \mathcal{T}_y are also in \mathcal{T}_y .

Lemma 2.3.2. Let X be a topological space and Y be the subspace topology on X generated by $Y \subset X$. If \mathcal{B}_x is a basis for X then $\mathcal{B}_y = \{Y \cap B_x : B_x \in \mathcal{B}_x\}$ is a basis for Y.

Proof. Let $U_y \in \mathcal{T}_y$ and $a \in U_y$ be arbitrary. Then $U_y = Y \cap U_x$ for some $U_x \in X$. Since \mathcal{B}_x is a basis for X, there is some $B_x \in \mathcal{B}_x$ such that $a \in B_x \subset U_x$. It follows that $x \in Y \cap B_x \subset Y \cap U_x = U_y$. Since $Y \cap B_x \in \mathcal{B}_y$, the result follows from Lemma 2.2.1.