Some Title...

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Semantics

FIRST PASS: ASSUME FIXED GODEL T NORM – WE CAN EXTEND TO OTHER TNORMS AND TO DISTRIBUTION SEMANTICS LATER. EVEN AFTER SIMPLIFYING, THERE ARE SEVERAL LAND MINES TO NAVIGATE.

TODO!!! UNFOUNDED SETS. AND CONTINUE WITH THE DEFINITION BELOW.

Preliminaries

An annotated atom is an atom A associated with an annotation n that is either a variable or $0 \le n \le 1$, denoted A:n. From an annotated atom A:n, an objective literal O is formed as either O=A:n, termed a positive objective literal with sign(O)=pos; or as $O=\neg A:n$, termed a negative objective literal with sign(O)=neg. In either case the annotation, n, is denoted as annotation(O), while the underlying atom, A, is atom(A). Two objective literals O_1 and O_2 with the same underlying atom are homologs if they have the same sign and conjugates otherwise. An objective literal A:n is ground if both A and n are ground. From an objective literal O a default literal is formed as either a positive default literal O or as a negative default literal O. A default literal is sometimes simply called a O

A rule has the form

$$r = O \leftarrow L_1, \dots, L_n$$

where O is an objective literal and L_0, \ldots, L_n are default literals.

A rule R is ground if all literals in R are ground; a program P is ground if all rules in P are ground.

Three-Valued Models for Annotated Atoms

Our attention is restricted to three-valued (partial) interpretations and models such as those extending the well-founded model. Each such interpretation $\mathcal I$ is represented as a pair of sets of ground objective literals: $\mathcal T$ and $\mathcal F$.

Definition 1

Let P be a ground objective literal O with annotation(O) = n, and $\mathcal I$ an interpretation. O is true in $\mathcal I$ if

- \mathcal{T} contains an O_T such that O_T is a homolog of O and $annotation(O_T) \geq n$; and
- \mathcal{T} does not contain a conjugate O_C of O with $annotation(O_C) \geq (1-n)$; and

¹ When convenient, an objective literal $A: 1 (\neg A: 1)$ is denoted simply as $A(\neg A)$.

• \mathcal{F} does not contain a homolog O_F of O with $annotation(O_F) > (1-n)$.

O is false in \mathcal{I} if

- \mathcal{T} does not contain a homolog O_T of O with $annotation(O_T) \geq (1-n)$; and either
 - \mathcal{F} contains a homolog O_F of O with $annotation(O_F) \geq n$; or
 - \mathcal{T} contains a conjugate O_C of O with $annotation(O_C) \geq n$.

O is \mathbf{u} in \mathcal{I} if it is neither true nor false in \mathcal{I} .

A positive literal O is true (false) in \mathcal{I} if O is true (false) in \mathcal{I} ; a negative literal nafO is true in \mathcal{I} if O is false in \mathcal{I} and is false in \mathcal{L} if O is true in \mathcal{I} . A literal is \mathbf{u} in \mathcal{I} if it is neither true nore false in \mathcal{I} .

Note that in the above definition the truth value \mathbf{u} captures both the traditional case where a literal is undefined, along with the case where a literal is overdefined.

Consider the interpretation \mathcal{I}_1 where

```
• \mathcal{T} = \{p: 0.7, q: 0.5, r: 0.6, \neg r: 0.5\}
• \mathcal{F} = \{p: 0.4, q: 0.5\}.
```

p:0.6 is true in \mathcal{I} and p:0.8 false, but p:0.7 is \mathbf{u} ; q:0.5 is \mathbf{u} in \mathcal{I} . r:0.4 is true in \mathcal{I} but r: 0.7 is false; r: n is **u** for $0.5 \le n \le 0.6$.

Given Definition 1, the definition of the reduction of a program is the same as for normal logic progams.

Definition 2 (Reduction of \mathcal{P} modulo \mathcal{I})

Let \mathcal{I} be an interpretation and \mathcal{P} a program, both over the same langage \mathcal{L} . By the *reduction of* Pmodulo \mathcal{I} we mean a new program $\frac{P}{\mathcal{I}}$ obtained from P by performing the following operations:

- 1. Remove from \mathcal{P} all rules that contain a literal that is false in \mathcal{I} .
- 2. Remove from all the remaining rules those literals that are true in \mathcal{I}

TES: not sure this def is necessary.

Definition 3 (Unfounded Sets)

Given a program \mathcal{P} , there is a dependency edge from an objective literal O_1 to an objective literal O_2 if there is a rule $R \in \mathcal{P}$ such that O_1 is the head of R and O_2 occurs in a literal L in the body of R. If O_2 occurs in a positive default literal the edge is positive; if O_2 occurs in a negative default literal the edge is negative.

There is a path between objective literals O_1 and O_2 in \mathcal{P} if there is an edge bwtween O_1 and O_2 in \mathcal{P} , or if there is a path between O_1 and an objective literal O_3 and there is an edge between O_3 and O_2 .

The direct dependencies of an objective literal \mathcal{O} are those literals to which \mathcal{O} has a dependency edge. from \mathcal{O} .

An objective literal O is involved in a negative loop if there is a path from O to itself that involves a negative edge.

An objective literal O is unfounded if O is involved in a negative loop and every direct dependency of O is involved in a negative loop; or if every rule with head O has a non-empty body, and every direct dependency of O is unfounded.

Given a program $\mathcal P$ and interpretation $\mathcal I$, the *unfounded set* $\mathcal U_{\mathcal I}$ consists of all unfounded objective literals in $\frac{\mathcal{P}}{\tau}$.

Some Title... 3

Unfounded sets will be used to separate the truth values of conjugates. If the semantics is equivalent to rewriting each rule r for p so that $naf\,conjugate(p)$ is in the body of r then a program like

```
p.
neg p :- not neg p.
```

will be able to derive neither p nor neg p.

Well-Founded Model

Motivation: consider the program

```
p:0.8:- not p:0.8.
p:0.5.
neg p:0.3.
```

We want a model with p:0.5 as true, p:0.7 as false and p:0.6 as u. However, if the rule p:0.8:not p:0.8. were removed, p:0.6 would be false.

Dynamic Stratification

One of the most important formulations of stratification is that of *dynamic* stratification. (?) shows that a program has a 2-valued well-founded model iff it is dynamically stratified, so that it is the weakest notion of stratification that is consistent with the well-founded semantics. As presented in (?), dynamic stratification computes strata via operators on interpretations of the form $\langle Tr; Fa \rangle$, where Tr and Fa are subsets of \mathcal{H}_P .

Given a set S of ground objective literals, a ground objective literal $A: m \in S$ if $A: n \in S$ with $n \geq m$.

??? are rules defined properly???

Definition 4

For a normal program P, sets Tr and Fa of ground atoms and a 3-valued interpretation $I = (\mathcal{T}, \mathcal{F})$ (sometimes called a pre-interpretation):

 $True_I^P(Tr) = \{A|A \text{ is not true in } I; \text{ and there is a clause } B \leftarrow L_1,...,L_n \text{ in } P, \text{ a grounding substitution } \theta \text{ such that } A = B\theta \text{ and for every } 1 \leq i \leq n \text{ either } L_i\theta \text{ is true in } I, \text{ or } L_i\theta \in Tr\};$ $False_I^P(Fa) = \{A|A \text{ is not false in } I; \text{ and for every clause } B \leftarrow L_1,...,L_n \text{ in } P \text{ and grounding substitution } \theta \text{ such that } A = B\theta \text{ there is some } i \ (1 \leq i \leq n) \text{ such that } L_i\theta \text{ is false in } I \text{ or } L_i\theta \in Fa\}.$

(?) shows that $True_I^P$ and $False_I^P$ are both monotonic, and defines \mathcal{TR}_I^P as the least fixed point of $True_I^P(\emptyset)$ and \mathcal{FA}_I^P as the greatest fixed point of $False_I^P(\mathcal{H}_P)$. In words, the operator \mathcal{TR}_I^P extends the interpretation I to add the new atomic facts that can be derived from P knowing I; \mathcal{FA}_I^P adds the new negations of atomic facts that can be shown false in P by knowing I (via the uncovering of unfounded sets). An iterated fixed point operator builds up dynamic strata by constructing successive partial interpretations as follows.

Definition 5 (Iterated Fixed Point and Dynamic Strata) For a normal program P let

```
\begin{array}{rcl} WFM_0 & = & \langle \emptyset; \emptyset \rangle; \\ WFM_{\alpha+1} & = & WFM_{\alpha} \cup \langle \mathcal{TR}^P_{WFM_{\alpha}}; \mathcal{FA}^P_{WFM_{\alpha}} \rangle; \\ WFM_{\alpha} & = & \bigcup_{\beta < \alpha} WFM_{\beta}, \text{ for limit ordinal } \alpha. \end{array}
```

WFM(P) denotes the fixed point interpretation WFM_{δ} , where δ is the smallest (countable) ordinal such that both sets $\mathcal{TR}^P_{WFM_{\delta}}$ and $\mathcal{FA}^P_{WFM_{\delta}}$ are empty. The *stratum* of atom A, is the least ordinal β such that $A \in WFM_{\beta}$.

(?) shows that WFM(P) is in fact the well-founded model and that any undefined atoms of the well-founded model do not belong to any stratum – i.e. they are not added to WFM_{δ} for any ordinal δ . Thus, a program is *dynamically stratified* if every atom belongs to a stratum.