Problem

If A is any language, let $\,A_{rac{1}{2}}\,$ be the set of all first halves of strings in A so that

$$A_{\frac{1}{2}-} = \{x | \text{ for some } y, \ |x| = |y| \text{ and } xy \in A\}.$$

Show that if A is regular, then so is $\,A_{rac{1}{2}-}$.

Step-by-step solution

Step 1 of 2

Consider the language A is regular. Let $\frac{A_1}{2}$ be the set of all first halves of strings in A.

$$A_{\frac{1}{2}} = \left\{ x \mid \text{ for some } y, \ \left| x \right| = \left| y \right| \text{ and } xy \in A \right\}$$

Since A is a regular language, the DFA M recognizes the language A.

$$M = (Q, \Sigma, \delta, q_0, F)$$

where, Q is the set of states

 $\boldsymbol{\Sigma}$ is the input alphabet

 δ is the transition function

 $q_{\scriptscriptstyle 0}$ is the start state

F is the final state

The language is said to be regular if there exists an FA for it. In this case, construct an NFA N that recognizes $\frac{A_1}{2}$. Let x be the first part and choose y such that |x| = |y|. Here, $x \in A_1$. To prove the language $\frac{A_1}{2}$ is regular, run two DFAs at the same time one forward and the other backward. Run the DFA M on input x in forward direction and run the DFA M on input y in backward direction parallelly. The input string is accepted if both simulations reach the same state.

Comments (1)

Step 2 of 2

Construction of NFA N to recognize $\frac{A_1}{2}$:

Let
$$N = (Q', \Sigma, \delta', q_0', F')$$
 where,

(i) $Q' = Q \times Q \cup \{q_0'\}$ set of states contains the following:

- ullet Special start state $\,q_0'\,$ and
- A cross product $q \times q \times q$ where
- \bullet The first part tracks the performance of \emph{M} on \emph{x}
- The second part does the same thing for y.

• The third part tests whether the guess on M is consistent or not.

- (ii) $\Sigma = \text{input alphabet}$
- (iii) q_0' is the start state
- (iv) $F' = \text{set of final states} = \left\{ \left\langle q_i, q_j, q_k \right\rangle | q_i, q_k, q_j \in Q \right\}$
- (v) $\delta' =$ Rules of transition are as follows:
- $\bullet \text{ There exists an } \ \varepsilon \text{ move from the start state to the all the states in } \ \{(q_0,q_f) \, | \, q_f \in F\}.$
- $\text{- Consider the states} \quad q_i,q_j,q_k,q_l \in Q \text{. There exists a move from} \quad (q_i,q_j) \text{ to} \quad \left(q_k,q_l\right) \text{ on input symbol} \quad a \in \Sigma \text{ if and only if} \quad \delta(q_i,a) = q_k \text{ and} \\ \delta(q_l,b) = q_j \text{.}$

The NFA N is constructed to recognize $\frac{A_1}{2}$. Thus, $\frac{A_1}{2}$ is regular.

Therefore, if A is regular then $\frac{A_1}{2}$ is also regular.

Comment