Robótica 3. Modelado dinámico de robots

F. Hugo Ramírez Leyva

Cubículo 3
Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx

Marzo 2012

Robot Manipulador

- Robot manipulador:
 - Bazo mecánico articulado
 - Formado de eslabones conectados a través de uniones o articulaciones
 - Permiten un movimiento relativo de los eslabones consecutivos.
- La posición y velocidad de las articulaciones se miden con sensores colocados en la articulación.
- En cada articulación del robot se tienen actuadores que generan la fuerza o par para moveral robot como un todo.

Diseño del Sistema de Control

- Familiarización con el sistema físico
 - Determinar las variables físicas que se quieren controlar (salidas).
 - Determinar las variables físicas que influyen en la evolución del movimiento (entradas)
 - Determinar si el robot interactúa con el medio ambiente
 - Si el robot no interactúa con el medio ambiente

Diseño del Sistema de Control

- Modelado dinámico
 - Determinar la regla matemática que vincula las variables de entrada y salida del sistema
 - Analítica
 - Experimental
- El modelo dinámico son ecuaciones diferenciales NO LINEALES (y no autónomas)
 - Los sistemas de control tradicionales no se pueden aplicar
- Esquemas de control
 - Control adaptable
 - Lógica difusa
 - Controles no lineales

Diseño del Sistema de Control

- Características deseables de sistema de control
 - Estabilidad (Lyapunov)
 - Regulación (control de posición)
 - Seguimiento de trayectoria (control de trayectoria)
 - Trayectoria punto a punto
 - Trayectoria continua (Curva paramétrica)
- Navegación de robots
 - Planeación de itinerarios
 Determinar la curva en el
 espacio de trabajo sin tocar
 ningún obstáculo
 - Generación de trayectoria
 - Diseño del controlador

Modelado Dinámico

- Los robots manipuladores son sistemas mecánicos articulados formados por eslabones y conectados entres sí por articulaciones.
- La unión *i* conecta los eslabones *i* e (*i-1*)
- Cada unión se conecta independientemente a través de un accionador que se coloca generalmente en dicha unión y el movimiento de las uniones produce el movimiento relativo de los eslabones.
- Zi es el eje de movimiento de la unión i.
- qi es el desplazamiento angular (rotacional) alrededor de zi.
- *qi* es el desplazamiento lineal (traslacional) alrededor de *zi*.

Modelado Dinámico

- Ecuaciones de movimiento de Newton
 - Permite determinar la futura posición del móvil en función de otras variables como la velocidad, aceleración, masa etc.
- Ecuación de Lagrange (1788)
 - La trayectoria de un objeto es obtenida encontrando la trayectoria que minimiza la integral de la energía cinética del objeto menos su energía potencial

 Se determinan las ecuaciones de movimiento a partir de la energía del sistema

Procedimiento de Lagrange

- 1. Obtener la cinemática directa, $x = f(q_1, q_2, ..., q_n)$
- 2. Modelo de energía
 - O Calculo de la energía cinética k
 - o Calculo de la energía potencial u
- 3. Calculo del Lagrangiano $\mathcal{L} = k u$
- 4. Desarrollo de las ecuaciones de Euler Lagrange

$$\circ \frac{d}{dt} \left(\frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \mathbf{q}} = \tau$$

Péndulo Simple

- I= Momento de inercia
- *l*= longitud
- m=masa
- fricción: Coulomb (fc) y Viscosa (b)
- 1. Cinemática Directa

$$\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} l\sin(q_1) \\ -l\cos(q_1) \end{bmatrix}$$

2. Modelo de energía

Péndulo Simple

• Energía Cinética

$$k = \frac{1}{2}mv^{2} + \frac{1}{2}I\dot{q}^{2}$$

$$\mathbf{v} = \frac{d\mathbf{X}}{dt} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{bmatrix} l\cos(q_{1})\dot{q}_{1} \\ l\sin(q_{1})\dot{q}_{1} \end{bmatrix}$$

$$v^{2} = \mathbf{v}^{T}\mathbf{v} = l^{2}\cos^{2}(q_{1})(\dot{q}_{1})^{2} + l^{2}\sin^{2}(q_{1})(\dot{q}_{1})^{2} = l^{2}(\dot{q}_{1})^{2}$$

$$k = \frac{1}{2}[ml^{2} + I]\dot{q}^{2}$$

Péndulo Simple

• Energía Potencial

$$U = mgh = -mgl_{c1}\cos(q_1)$$

3. Lagrangiano

$$\mathcal{L} = k - u = \frac{1}{2} \left[ml^2 + I \right] \dot{q}^2 + mgl\cos(q_1)$$

4. Desarrollo de las ecuaciones de Euler Lagrange

$$egin{aligned} &rac{\partial \mathcal{L}}{\partial \dot{q}_1} \!=\! \left[ml^2 \!+\! I
ight]\! \dot{q} \ &rac{d}{dt}\! \left(\! rac{\partial \mathcal{L}}{\partial \dot{q}_1}\!
ight) \!=\! \left[ml^2 \!+\! I
ight]\! \ddot{q} \end{aligned}$$

$$\frac{\partial \mathcal{L}}{\partial q_1} = -mgl\sin(q_1)$$

$$\tau = \left[ml^2 + I\right]\ddot{q} + mgl_{c1}\sin\left(q\right) + f$$

Simulación en Matlab/Simulink

- Código de Matlab para inicializar
- %Parámetros del Péndulo
- %14 de Marzo de 2012
- clear; close
- m=3.88
- g=9.81
- l=0.1
- B=0.175
- J=0.093
- fc=1.734
- tao=0 %Par de carga
- Ts=1e-3 %Tiempo de muestreo

11 18-18-3 *118000 OB MINESTEED Parametrushenddom x Pushenddom x			,			
Eslabón Masa del eslabon 24 kg Centro de masa 0.091 m Momento de 1.266 Kg m^2 Inercia Coeficiente de 7.17 Nm fricción viscosa Coeficiente de 7.17 Nm Sition C. CUCLINZOTORUTM TOCUTANOTORUTM T	Parámetro		Valor	Unidad		
Centro de masa O.091 Momento Inercia Coeficiente de 2.288 Nm-s fricción viscosa Coeficiente de fricción de coulomb Inercia 7.17 Nm Inercia Inerc	~	del	0.45			
Momento de 1.266 Kg m^2 Inercia Coeficiente de 2.288 Nm-s Coeficiente de 7.17 Nm fricción de coulomb	Masa del eslabon		24	kg		
Inercia Coeficiente de fricción viscosa Coeficiente de fricción de coulomb Servición de coulomb Servición	Centro de masa		0.091	m		
fricción viscosa Coeficiente de fricción de coulomb 7.17 Nm Peter les las de ol los Bebag Bestag Wordow lete No.		de	1.266	Kg m^2		
fricción de coulomb Inter-C. PCLITAZO 100 IRA SUCUrres V2017 Arro.		de	2.288	Nm-s		
## 60 Text & G. Cell Toto Debug Desitory Window Help			7.17	Nm		
script In 12 Col 1 OVR	streo		Re Cat Text & Cal Took Debug Destroy Window Help X X X X X X X X X			

Simulación en Simnon

Sistema Masa Resorte (Newton)

Resorte $F_r = ky$; k constante del resorte Piston $F_p = f \dot{y}$; f Coeficiente de fricción

viscosa Ecuaciones de Newton

$$ma = \sum \vec{F}$$

Aceleración=a= \ddot{y} ; Velocidad= v = \dot{y}

$$m\ddot{y} = u - F_r - F_p = u - f\frac{dy}{dt} - ky$$

Sistema Masa Resorte (E-L)

Energía Potencial: Del resorte

$$u = \frac{1}{2}ky^2$$

Energía cinética: De la masa

$$k = \frac{1}{2}mv^2 = \frac{1}{2}m\dot{y}^2$$

Fuerza disipativas del pistón:

$$F_p = f \frac{dy}{dt} = f\dot{y}$$

Sistema Masa Resorte

Lagrangiano

$$\mathcal{L} = k - u = \frac{1}{2}m\dot{y}^2 - \frac{1}{2}ky^2$$

Ecuaciones de Euler Lagrange

$$\frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y}$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{y}} \right) = m\ddot{y}$$

$$\frac{\partial \mathcal{L}}{\partial y} = -ky$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{y}} \right) - \frac{\partial \mathcal{L}}{\partial y} = u - F_p$$

$$m\ddot{y} = u - ky - f\dot{y}$$

Representación en Variables de Estado:

$$x_1 = y$$

$$x_2 = \dot{x}_1 = \dot{y}$$

$$\dot{x}_2 = \frac{1}{m} [u - fx_2 - kx_1]$$

$$\mathbf{X} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{m} & -\frac{f}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{u}{m}$$

Sistema Mecánico

$$\mathcal{L} = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2x_2^2 - \frac{1}{2}k_3(x_2 - x_1)^2$$

Péndulo Invertido

- M= Masa del Carro (0.5kg)
- M=masa del péndulo (0.5kg)
- b=Fricción del carro (0.1Nm/s)
- l=longitud del péndulo al centro de masa (0.3m)
- I = Inercia del péndulo (0.006kgm^2)
- F=Fuerza aplicada al carro
- *x*=posición del carro
- θ =Ángulo del péndulo

http://www.ib.cnea.gov.ar/~instyctl/Tutorial_Matlab_esp/invpen.html

Péndulo Invertido

 Energía Cinética y Potencial del carro

$$k_1 = \frac{1}{2}Mv^2 = \frac{1}{2}M\dot{x}^2$$

$$u_1 = Mgh = 0$$

• Energía Cinética y Potencial del péndulo

$$X_2 = \begin{bmatrix} x - l\sin(\theta) \\ l\cos(\theta) \end{bmatrix}$$

$$\dot{\mathbf{X}}_2 = \begin{bmatrix} \dot{x} - l\dot{\theta}\cos(\theta) \\ -l\dot{\theta}\sin(\theta) \end{bmatrix}$$

$$|v_2|^2 = \dot{X}_2^T \dot{X}_2 = \dot{x}^2 - 2l\dot{x}\dot{\theta}cos(\theta) + l^2\dot{\theta}^2$$
$$k_2 = \frac{1}{2}mv_2^2 + \frac{1}{2}I\dot{\theta}_2^2$$

$$u_2 = mglcos(\theta)$$

Péndulo Invertido (Carro)

• Lagrangiano

$$\mathcal{L} = \frac{1}{2}(M+m)\dot{x}^{2} - ml\dot{x}\dot{\theta}cos(\theta) + \frac{1}{2}ml^{2}\dot{\theta}^{2} - mglcos(\theta) + \frac{1}{2}I\dot{\theta}_{2}^{2}$$

• Ecuaciones de Euler Lagrange Carro

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = (M + m)\dot{x} - ml\dot{\theta}cos(\theta)$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = (M + m)\ddot{x} - ml\ddot{\theta}cos(\theta) + ml\dot{\theta}^{2}sin(\theta)$$

$$\frac{\partial \mathcal{L}}{\partial x} = 0$$

$$(M+m)\ddot{x} - ml\ddot{\theta}cos(\theta) + ml\dot{\theta}^{2}sin(\theta) = F - ff_{1}$$

Péndulo Invertido (Péndulo)

• Ecuaciones de Euler Lagrange Péndulo

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = -ml\dot{x}cos(\theta) + (ml^2 + I)\dot{\theta}$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = -ml\ddot{x}cos(\theta) + ml\dot{x}sin(\theta) + (ml^2 + I)\ddot{\theta}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = ml\dot{x}\dot{\theta} \, sin(\theta) + mglsin(\theta)$$

$$-ml\ddot{x}cos(\theta) + ml\dot{x}sin(\theta) + (ml^2 + I)\ddot{\theta} - mglsin(\theta) = -ff_2$$

Simulación del Péndulo Invertido

- M masa del carro 0.5 kg
- m masa del péndulo 0.5 kg
- b fricción del carro 0.1 N/m/seg
- 1 longitud al centro de masa del péndulo 0.3 m
- I inercia del péndulo 0.006 kg*m^2
- F fuerza aplicada al carro
- x coordenadas de posición del carro
- θ ángulo del péndulo respecto de la vertical

C:\PCUTM2010\UTM_10\Cursos\2012 Marzo-Julio\Robótica\Matlab\simulink\modelos\VigaBol

a

Viga Bola

- m = masa de la bola
- θ= ángulo de la viga
- L= Largo de la viga
- r=radio de la bola
- φ=ángulo de rotación de la bola
- x0 =distancia de el extremo de la viga a la bola
- ω= Velocidad angular de la bola por rotación
- φ = Velocidad angular por la posición sobre la viga
- Ib=Momento de inercia por rotación
- Ia=Momento de inercia por traslación

Viga Bola

- Se pone el sistema de referencia sobre la viga
- Energía cinética y potencial

$$k = \frac{1}{2}mv^2 + \frac{1}{2}I_a\dot{\theta}^2 + \frac{1}{2}I_b\omega^2$$

• Cinemática directa $I_b = \frac{2}{5}mr^2$

$$\mathbf{X} = \begin{bmatrix} x_0 cos(\theta) \\ x_0 sin(\theta) \end{bmatrix}$$

• Vector de Velocidad

$$\dot{\mathbf{X}} = \begin{bmatrix} \dot{x}_0 cos(\theta) - x_0 \dot{\theta} sin(\theta) \\ \dot{x}_0 sin(\theta) + x_0 \dot{\theta} cos(\theta) \end{bmatrix}$$

• Velocidad

$$|v|^2 = \dot{X}^T \dot{X} = \dot{x_0}^2 + {x_0}^2 \dot{\theta}^2$$

$$x_0 = r\varphi$$

$$\dot{x}_0 = r\dot{\varphi}$$

$$\dot{\varphi} = \frac{\dot{x}_0}{r}$$

$$\omega = \dot{\varphi} + \dot{\theta} = \frac{\dot{x}_0}{r} + \dot{\theta}$$

Viga Bola

• Energía cinética • Ecuaciones de Euler Lagrange
$$k = \frac{1}{2}m\dot{x}_0^2 + \frac{1}{2}mx_0^2\dot{\theta}^2 + \frac{1}{2}I_a\dot{\theta}^2 + \frac{1}{2}\left(\frac{\dot{x}_0}{r} + \dot{\theta}\right)^2I_b$$

• Energía potencial
$$\frac{\partial \mathcal{L}}{\partial \dot{x}_0} = m \dot{x}_0 + \left(\frac{\dot{x}_0}{r} + \dot{\theta}\right) I_b \frac{1}{r}$$
• Ecuación diferencial
$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_0}\right) = m \ddot{x}_0 + \left(\frac{\ddot{x}_0}{r} + \ddot{\theta}\right) I_b \frac{1}{r}$$

 $\frac{\partial \mathcal{L}}{\partial \dot{x}_0} = m\dot{x}_0 + \left(\frac{\dot{x}_0}{r} + \dot{\theta}\right)I_b \frac{1}{r}$

$$\frac{\partial \mathcal{L}}{\partial x} = mx_0 \dot{\theta}$$

 $m\ddot{x_0} + \left(\frac{\ddot{x_0}}{r} + \ddot{\theta}\right)I_b\frac{1}{r} - mx_0\dot{\theta}^2 = mgsin(\theta) - ff_1$ $\ddot{x_0}\left[m + \frac{I_b}{r^2}\right] + \ddot{\theta}\frac{I_b}{r} - mx_0\dot{\theta}^2 = mgsin(\theta) - ff_1$

$$\ddot{x_0}\left[m + \frac{I_b}{r^2}\right] + \ddot{\theta}\frac{I_b}{r} - mx_0\dot{\theta}^2 = mgsin(\theta) - ff_1$$

Viga Bola

• Ecuación de Euler lagrange

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mx_0^2 \dot{\theta} + I_a \dot{\theta} + \left(\frac{\dot{x}_0}{r} + \dot{\theta}\right) I_b$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right) = 2mx_0 \dot{\theta} \dot{x}_0 + mx_0^2 \ddot{\theta} + I_a \ddot{\theta} + \left(\frac{\ddot{x}_0}{r} + \ddot{\theta}\right) I_b$$

$$\partial \mathcal{L}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0$$

$$2mx_0\dot{\theta}\dot{x}_0 + mx_0^2\ddot{\theta} + I_a\ddot{\theta} + \left(\frac{\ddot{x}_0}{r} + \ddot{\theta}\right)I_b = \tau - ff_2$$

Simulación de Viga Bola

- M masa de la bola 0.11 kg
- R radio de la bola 0.015 m
- d offset de brazo de palanca 0.03 m
- g aceleración gravitacional $9.8~\mathrm{m/s^2}$
- L longitud de la barra 1.0 m
- J momento de inercia de la bola 9.99e-6 kgm^2
- r coordenada de posición de la bola
- α coordenada angular de la barra
- θ ángulo del servo engranaje

Robot de 2 grados de Libertad

1. Cinemática directa de 1 y 2

$$\mathbf{r_1} = \begin{bmatrix} l_{c1} \sin(q_1) \\ -l_{c1} \cos(q_1) \end{bmatrix}$$

$$\mathbf{r}_{2} = \begin{bmatrix} l_{1} \sin(q_{1}) + l_{c2} \sin(q_{1} + q_{2}) \\ -l_{1} \cos(q_{1}) - l_{c2} \cos(q_{1} + q_{2}) \end{bmatrix}$$

2. Energía Cinética y potencial del 1er eslabón

I /	Parámetro	Notación	Valor	Unidad)
	Longitud de eslabón 1	$\frac{l_1}{l_2}$	0.45	m	
	Longitud de eslabón 2		0.45	m	
	Masa del eslabón 1		23.902	Kg	
	Masa del eslabón 2	m_2	3.880	Kg	
	Centro de masa del eslabón l	lc_1	0.091	m	
	Centro de masa del eslabón 2	lc_2	0.048	m	
	Momento de Inercia 1	I_I	1.266	Kg m ²	
	Momento de Inercia 2	I_2	0.093	Kg m ²	
	Coeficiente de viscosidad 1	b_I	2.288	Nm-seg	
	Coeficiente de viscosidad 2	b_2	0.175	Nm-seg	
	Coeficiente de Coulomb 1	fc_1	$7.17 \text{ si } q_1 > 0 \text{ y}$	Nm	
			$8.049~{ m si}$. q_1 $^{<0}$		
	Coeficiente de Coulomb 2	fc_2	1.734	Nm	
	Aceleración de la gravedad	g	9.81	m/s^2	
	Torque de la articulación l	${\cal T}_{_1}$	150	Nm	
	Torque de la articulación 2	${\mathcal T}_{_2}^{^{^{1}}}$	15	Nm	

Robot de 2 grados de Libertad

$$v_1^2 = \mathbf{v}_1^T \mathbf{v}_1 = l_{c1}^2 \dot{q}_1^2$$

• Energía Cinética k1: • Energía Cinética y $v_1^2 = \mathbf{v}_1^T \mathbf{v_1} = l_{c1}^2 \dot{q}_1^2$ potencial del 2° est potencial del 2° eslabón

$$k_{1} = \frac{1}{2} m_{1} l_{c1}^{2} \dot{q}_{1}^{2} + \frac{1}{2} I_{1} \dot{q}_{1}^{2} \quad \mathbf{v}_{2} = \frac{d\mathbf{r}_{2}}{dt} =$$

$$= \frac{1}{2} \left(m_{1} l_{c1}^{2} + I_{1} \right) \dot{q}_{1}^{2} \quad \begin{bmatrix} l_{1} \cos(q_{1}) \dot{q}_{1} + l_{c2} \cos(q_{1} + q_{2}) (\dot{q}_{1} + \dot{q}_{2}) \\ l_{1} \sin(q_{1}) \dot{q}_{1} + l_{c2} \sin(q_{1} + q_{2}) (\dot{q}_{1} + \dot{q}_{2}) \end{bmatrix}$$

• Energía Potencial u1 $v_2^2 =$ $l_1^2 \dot{q}_1^2 + l_{c2}^2 |q_1^2 + \dot{q}_2^2|^2 + 2l_1 l_{c2} [\dot{q}_1^2 + \dot{q}_1 \dot{q}_2] \cos(q_2)$

$$u_1 = -m_1 l_{c1} g \cos(q_1)$$

Robot de 2 grados de Libertad

• Energía Cinética k2:

$$\begin{aligned} k_2 &= \frac{m_2}{2} l_1^2 \dot{q}_1^2 + \frac{m_2}{2} l_{c2}^2 \left[\dot{q}_1^2 + \dot{q}_2^2 \right]^2 \\ &+ m_2 l_1 l_{c2} \left[\dot{q}_1^2 + \dot{q}_1 \dot{q}_2 \right] \cos(q_2) + \frac{1}{2} I_2 \left[\dot{q}_1^2 + \dot{q}_2^2 \right]^2 \end{aligned}$$

• Energía Potencial:

$$u = u_1 + u_2 = -m_1 l_{c1} g \cos(q_1) - m_2 l_{c2} g \cos(q_1 + q_2) - m_2 l_1 g \cos(q_1)$$

Robot de 2 grados de Libertad

3. Lagrangiano

$$\begin{split} \mathcal{L} &= \frac{1}{2} \big[m_1 l_{c1}^2 + m_2 l_1^2 \big] \dot{q}_1^2 + \frac{1}{2} m_2 l_{c2}^2 \big[\dot{q}_1 + \dot{q}_2 \big]^2 + m_2 l_1 l_{c2} cos(q_2) \big[\dot{q}_1^2 + \dot{q}_1 \dot{q}_2 \big] \\ &+ \big[m_1 l_{c1} + m_2 l_1 \big] \, g \, cos(q_1) + m_2 g l_{c2} cos(q_1 + q_2) + \frac{1}{2} l_1 \dot{q}_1^2 + \frac{1}{2} l_2 \big[\dot{q}_1 \dot{+} q_2 \big]^2 \end{split}$$

Ecuaciones de Euler Lagrange

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})}{\partial \mathbf{q}} = \tau \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_2} \right) - \frac{\partial \mathcal{L}}{\partial q_2} = \tau_2$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_1} \right) - \frac{\partial \mathcal{L}}{\partial q_1} = \tau_1$$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_2} \right) - \frac{\partial \mathcal{L}}{\partial q_2} = \tau_2$$

Robot de 2 grados de Libertad

$$\begin{split} &\tau_{1} = \left(m_{1}l_{c1}^{2} + m_{2}l_{1}^{2} + m_{2}l_{c2}^{2} + 2m_{2}l_{1}l_{c2}\cos(q_{2}) + I_{1} + I_{2}\right)\ddot{q}_{1} + \left(m_{2}l_{c2}^{2} + m_{2}l_{1}l_{c2}\cos(q_{2}) + I_{2}\right)\ddot{q}_{2} \\ &- 2m_{2}l_{1}l_{c2}\sin(q_{2})\dot{q}_{1}\dot{q}_{2} - m_{2}l_{1}l_{c2}\sin(q_{2})\dot{q}_{2}^{2} + \left(m_{1}l_{c1} + m_{2}l_{1}\right)g\sin(q_{1}) + m_{2}gl_{c2}\sin(q_{1} + q_{2}) \\ &+ f_{1f}\left(\dot{q}_{1}\right) \end{split}$$

$$\begin{split} &\tau_{2} = \left(m_{2}l_{c2}^{2} + m_{2}l_{1}l_{c2}\cos\left(q_{2}\right) + I_{2}\right)\ddot{q}_{1} + \left(m_{2}l_{c2}^{2} + I_{2}\right)\ddot{q}_{2} + m_{2}l_{1}l_{c2}\sin\left(q_{2}\right)\dot{q}_{1}^{2} \\ &+ m_{2}gl_{c2}\sin\left(q_{1} + q_{2}\right) + f_{_{2f}}\left(\dot{q}_{2}\right) \end{split}$$

$$\begin{split} &\tau_{_{1}} = temp_{_{1}}\ddot{q}_{_{1}} + temp_{_{2}}\ddot{q}_{_{2}} - temp_{_{3}} - temp_{_{4}} + temp_{_{5}} + temp_{_{6}} + f_{_{1f}}\left(\dot{q}_{_{1}}\right) \\ &\tau_{_{2}} = temp_{_{7}}\ddot{q}_{_{1}} + temp_{_{8}}\ddot{q}_{_{2}} + temp_{_{9}} + temp_{_{10}} + f_{_{2f}}\left(\dot{q}_{_{2}}\right) \end{split}$$

Robot de 2 grados de Libertad

 $temp_{1} = m_{1}l_{c1}^{2} + m_{2}l_{1}^{2} + m_{2}l_{c2}^{2} + 2m_{2}l_{1}l_{c2}\cos(q_{2}) + I_{1} + I_{2}$ $temp_{2} = m_{2}l_{c2}^{2} + m_{2}l_{1}l_{c2}\cos(q_{2}) + I_{2}$ $temp_{3} = 2m_{2}l_{1}l_{c2}\sin(q_{2})q_{1}q_{2}$ $temp_{4} = m_{2}l_{1}l_{c2}\sin(q_{2})\dot{q}_{2}^{2}$ $temp_{5} = (m_{1}l_{c1}^{2} + m_{2}l_{1})g\sin(q_{1})$ $temp_{6} = m_{2}gl_{c2}\sin(q_{1} + q_{2})$ $temp_{7} = m_{2}l_{c2}^{2} + m_{2}l_{1}l_{c2}\cos(q_{2}) + I_{2}$

$$temp_8 = m_2 l_{c2}^2 + I_2$$

$$temp_9 = m_2 l_1 l_{c2} \sin(q_2) q_1^2$$

$$temp_{10} = m_2 g l_{c2} \sin(q_1 + q_2)$$

Controlador PI 2gdl

- %Inicia parámetros Péndulo sin entrada Modelo con EL
- %29 Mayo 2012

- lc1=0.091; lc2=0.048;
- I1=1.266; I2=0.093;
- b1=2.288; b2=0.175;
- qd1=45*pi/180; qd2=90*pi/180;
- kp1=150/qd1;
- kp2=15/qd2;
- $subplot(3,1,1), plot(Tiempo,q1qd1(:,1), Tiempo,\,q1qd1(:,2))$
- ylabel 'grados'
- xlabel 'seg'
- $\ \, grid \\ subplot(3,1,2), plot(Tiempo,q2qd2(:,1), Tiempo, q2qd2(:,2))$
- ylabel 'grados'
- xlabel 'seg'
- grid
 subplot(3,1,3),plot(Tiempo,par12(:,1),Tiempo, par12(:,2))
- xlabel 'seg'

Modelo de un Robot de n-grados

- Existe un modelo generalizado para un robot de n grados de Libertad
- Esta metodología normalmente es usada en lo libros de robótica
- Sea la energía cinética asociada con cada articulación $\mathcal{K}(q,\dot{q})$
- Esta puede ser expresada como

$$\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T M(\boldsymbol{q}) \dot{\boldsymbol{q}}$$

- Donde M(q) es la matriz de inercia de nxn, y es simétrica definida positiva
- $q \in \mathbb{R}^n$ es el vector de posiciones de las articulaciones
- ullet $\mathcal{U}(q)$ es la energía potencial
- El lagrangiano se define como

$$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T M(\boldsymbol{q}) \dot{\boldsymbol{q}} - \mathcal{U}(\boldsymbol{q})$$

Modelo de un Robot de n-grados

$$\begin{split} \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}} \left[\frac{1}{2} \dot{q}^T M(\boldsymbol{q}) \dot{q} \right] \right] - \frac{\partial}{\partial \boldsymbol{q}} \left[\frac{1}{2} \dot{q}^T M(\boldsymbol{q}) \dot{q} \right] + \frac{\partial \mathcal{U}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \tau \\ \frac{\partial}{\partial \dot{q}} \left[\frac{1}{2} \dot{q}^T M(\boldsymbol{q}) \dot{q} \right] = M(\boldsymbol{q}) \dot{q} \\ \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}} \left[\frac{1}{2} \dot{q}^T M(\boldsymbol{q}) \dot{q} \right] \right] = M(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \dot{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} \end{split}$$

Ecuación de movimiento

$$M(q)\ddot{q} + \dot{M}(q)\dot{q} - \frac{1}{2}\frac{\partial}{\partial q}\left[\dot{q}^{T}M(q)\dot{q}\right] + \frac{\partial \mathcal{U}(q)}{\partial q} = \tau$$

Modelo de un Robot de n-grados

• El modelo completo para un robot de n grados de libertad es

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + f(\dot{q}) = \tau$$

Donde

$$C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} = \dot{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{q}} \left[\dot{\boldsymbol{q}}^T M(\boldsymbol{q}) \dot{\boldsymbol{q}} \right]$$
$$g(\boldsymbol{q}) = \frac{\partial \mathcal{U}(\boldsymbol{q})}{\partial \boldsymbol{q}}$$

- $g(q) = \frac{\partial \mathcal{U}(q)}{\partial q}$ $C(q,\dot{q}) \in {\rm I\!R}^{n \times n}$ es la matriz de fuerza centrifuga y de Coriolis. No es único pero cuando se multiplica por la velocidad si
- ullet $au \in {\rm I\!R}^n$ es el vector de fuerzas externas
- ullet g(q) par gravitacional

Modelo de un Robot de n-grados

• Una forma de calcular la matriz de Coriolis es con los símbolos de Chistoffel

$$c_{ijk}(\mathbf{q}) = \frac{1}{2} \left[\frac{\partial M_{kj}(\mathbf{q})}{\partial q_i} + \frac{\partial M_{ki}(\mathbf{q})}{\partial q_j} - \frac{\partial M_{ij}(\mathbf{q})}{\partial q_k} \right]$$
$$C_{kj}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} c_{1jk}(\mathbf{q}) \\ c_{2jk}(\mathbf{q}) \\ \vdots \\ c_{njk}(\mathbf{q}) \end{bmatrix}^T \dot{\mathbf{q}}$$

 El modelo del robot puede ser considerado como de una entrada y 2 salidas

Modelo de un Robot de 2-grados

• Para un robot de 2 grado el modelo es

$$\underbrace{\begin{bmatrix} M_{11}(q) & M_{12}(q) \\ M_{21}(q) & M_{22}(q) \end{bmatrix}}_{M(q)} \ddot{q} + \underbrace{\begin{bmatrix} C_{11}(q, \dot{q}) & C_{12}(q, \dot{q}) \\ C_{21}(q, \dot{q}) & C_{22}(q, \dot{q}) \end{bmatrix}}_{C(q, \dot{q})} \dot{q} + \underbrace{\begin{bmatrix} g_{1}(q) \\ g_{2}(q) \end{bmatrix}}_{g(q)} = \tau$$

• Donde

$$M_{11}(\mathbf{q}) = m_1 l_{c1}^2 + m_2 \left[l_1^2 + l_{c2}^2 + 2l_1 l_{c2} \cos(q_2) \right] + I_1 + I_2$$

$$M_{12}(\mathbf{q}) = m_2 \left[l_{c2}^2 + l_1 l_{c2} \cos(q_2) \right] + I_2$$

$$M_{21}(\mathbf{q}) = m_2 \left[l_{c2}^2 + l_1 l_{c2} \cos(q_2) \right] + I_2$$

$$M_{22}(\mathbf{q}) = m_2 l_{c2}^2 + I_2$$

Modelo de un Robot de 2-grados

$$C_{11}(\mathbf{q}, \dot{\mathbf{q}}) = -m_2 l_1 l_{c2} \sin(q_2) \dot{q}_2$$

$$C_{12}(\mathbf{q}, \dot{\mathbf{q}}) = -m_2 l_1 l_{c2} \sin(q_2) \left[\dot{q}_1 + \dot{q}_2 \right]$$

$$C_{21}(\mathbf{q}, \dot{\mathbf{q}}) = m_2 l_1 l_{c2} \sin(q_2) \dot{q}_1$$

$$C_{22}(\mathbf{q}, \dot{\mathbf{q}}) = 0$$

$$g_1(\mathbf{q}) = \left[m_1 l_{c1} + m_2 l_1 \right] g \sin(q_1) + m_2 l_{c2} g \sin(q_1 + q_2)$$

$$g_2(\mathbf{q}) = m_2 l_{c2} g \sin(q_1 + q_2).$$

$$\frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ M(\boldsymbol{q})^{-1} \left[\boldsymbol{\tau}(t) - C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} - \boldsymbol{g}(\boldsymbol{q}) \right] - \boldsymbol{f}(\dot{\boldsymbol{q}}) \end{bmatrix}$$

Modelo de un Robot de 2-grados

• Modelo Completo

$$\begin{bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \end{bmatrix} = \frac{1}{M_{11}M_{22} - M_{21}M_{12}} \begin{pmatrix} M_{22} & -M_{12} \\ -M_{21} & M_{11} \end{pmatrix}$$
$$\begin{pmatrix} \begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix} - \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \end{bmatrix} - \begin{bmatrix} g_{1} \\ g_{2} \end{bmatrix} - \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} \end{pmatrix}$$

Simulación en Simnon

"INPUT qd1plk qd1pplk qd2plk qd2pplk vd1=(-M21*va1 + M11*vb1)/detM "OUTPUT qd1lk qd2lk
" States, derivates and tin STATE q1 q1d q2 q2d q2:0.78 $\label{eq:m12=m2*lc2*lc2+m2*l1*lc2*cos(q2)+l2} $$ M21=m2*lc2*lc2+m2*l1*lc2*cos(q2)+l2 $$ M21=m2*lc2*lc2+m2*l1*lc2*cos(q2)+l2 $$ M21=m2*lc2*lc2+m2*l1*lc2*lc3+l2*l$ M22=m2*lc2*lc2+l2 C11=-m2*11*lc2*sin(q2)*q2p C12=-m2*l1*k:2*sin(q2)*(q1p+q2p) C21=m2*l1*lc2*sin(q2)*q1p g1 = (m1*lc1+m2*l1)*g*sin(q1) + m2*g*lc2*sin(q1+q2)m2:3.88 "Par de fricción fric2=b2*q2p b1:2.288 detM=M11*M22-M21*M12 va1=tao1-C11*q1p-C12*q2p-g1-fric fc1=if q1p>0 then 7.17 else 8.049 vb1=tao2-C21*q1p-C22*q2p-g2-fric2 fc2-1 734

Simulación en Simnon

 $\bullet\,$ Respuesta de q1 con condición inicial de $90^{\rm o}$

Simulación en Simnon

 $\bullet\,$ Respuesta de q2 con condición inicial de 45°

Archivo de inicialización y modelo

Inicialización. Inicia.m

%Parametros el Robot de 2 grados de libertad

clear; close

l1=0.45; lc1=0.091;

12=0.45; lc2=0.048;

m1=23.902; m2=3.88;

I1=1.266; I2=0.093

b1=2.288; lc2=0.048;

fc1=7.17; fc2=1.734

g = 9.81

 $T_s=1e-3$

tao1=0

tao2=0

Modelo del robot en matlab

function [q1pp, q2pp] = fcn(q1p, q1, q2p, q2, tao1, tao2)

% This block supports an embeddable subset of the MATLAB language.

% See the help menu for details.

l1=0.45; lc1=0.091;

12=0.45; lc2=0.048;

m1=23.902; m2=3.88;

I1=1.266; I2=0.093;

b1=2.288; b2=0.175;

fc1=7.17; fc2=1.734;

g=9.81;

Archivo de modelo

Modelo del robot en matlab

Modelo del robot en matlab

%Matriz de inercia

 $\begin{array}{l} M11 = m1*lc1*lc1 + m2*l1*l1 + m2*lc2*lc2 \\ +2*m2*l1*lc2*cos(q2) + I1 + I2; \end{array}$

M12=m2*lc2*lc2+m2*l1*lc2*cos(q2)+I2;

M21=m2*lc2*lc2+m2*l1*lc2*cos(q2)+I2;

M22=m2*lc2*lc2+I2;

%Matriz de Coriolis

C11=-m2*l1*lc2*sin(q2)*q2p;

 $C12 {=} \text{-} m2 {*} l1 {*} lc2 {*} sin(q2) {*} (q1p {+} q2p);$ C21=m2*l1*lc2*sin(q2)*q1p;

C22=0;

%Par gravitacional

 $g1 \hspace{-0.05cm}=\hspace{-0.05cm} (m1*lc1+m2*l1)*g*sin(q1) + m2*g*lc2*sin(q1+q2);$

g2=m2*g*lc2*sin(q1+q2);

%Par de fricción

fric1 = fc1*sign(q1p) + b1*q1p;

fric2 = fc2*sign(q2p) + b2*q2p;

%Ecuaciones diferenciales lazo cerrado

detM=M11*M22-M21*M12; va1=tao1-C11*q1p-C12*q2p-g1-fric1;

vb1=tao2-C21*q1p-C22*q2p-g2-fric2;

vc1=(M22*va1 - M12*vb1)/detM;

vd1 = (-M21*va1 + M11*vb1)/detM;

q1pp=vc1;

 $_{q2pp=vd1;} \\$

Simulación de Sistema discreto y Continuos en Simnon

- El Simnon tiene la capacidad de simular sistemas continuos, discretos y una combinación de ambos.
- De tal manera que es posible simular el sistema en tiempo continuo y el controlador en tiempo discreto.
- Cada sistema se maneja en archivos diferentes de tiempo continuo, discreto y de interconexión .
- Ejemplo los archivos RCCK.T, RC2K.T y RCD.T

Simulación de Sistema discreto y Continuos en Simnon

Archivo Continuo RC2k.T

INPUT ukk OUTPUT ykk STATE x1 x2 x3 DER x1p x2p x3p TIME t x1p=x2 x2p=vin -k2*x1 - k1*x2 k1:2 k2:1 х3р=е xdd=x1p vd·4 e=xd-x1 kv=0.3*kp ki=2.4 prop=kp*e diff=-kv*x2 integ=ki*x3

"vin=prop+diff+integ "vin=kp*e - kv*x2 + ki*x3 vin=ukk

ykk=x1

CONTINUOUS SYSTEM RC2k

Archivo de Interconexión RCCK.T

"Version: 1.0

"Abstract:
"Description:
"Revision: 1.0
"Author: Hugo Ramírez Leyva
"Created: 21/05/2007

"Time, if needed:
TIME t

" Connections:

ukk[RC2K]=ukk[rcd]
ykk[rcd]=ykk[rc2k]

END

CONNECTING SYSTEM RCCK

Simulación de Sistema discreto y Continuos en Simnon

Archivo Discreto RCD.T

DISCRETE SYSTEM RCD "Inputs and outputs: INPUT yik OUTPUT ulk "States and time variables: STATE; yka; ye lik INEU TIME: TSAMP ik yk=yik ulk=uk tk=+h h=0.001

TSAMP ek
yk=ykk
ukk=uk
tk=t+h
h=0.001
deri=(yk-yka)/h
yd=1
ek=yd-yk
kp=20/yd
k=0.3*kp

ye1k=ek*h+ye1ka

uk=kp*ek - kv*deri + ye1k*ki

Archivo de Macro macdisk.T

MACRO macdisk
"Version: 1.0
"Abstract:
"Description:
"Revision: 1.0
"Author:

" Created: 21/05/2007 " Ente

syst rc2k rcd rcck

END

store x1 x2 x3 ek vin prop integ diff

simu 0 5 0.001 split 3 1 ashow x1 ek ashow prop integ diff vin ashow vin

Simulación de Sistema discreto y Continuos en Simnon