

Netzwerktechnik und IT-Netze Chapter 5: Link Layer

Vorlesung im WS 2016/2017

(3. Semester)

Bachelor Informatik

Prof. Dr. rer. nat. Andreas Berl

Fakultät für Elektrotechnik, Medientechnik und Informatik

Overview

- Introduction
- Computer Networks and the Internet
- Application Layer
 - WWW, Email, DNS, and more
 - Socket programming
 - Web service
- Transport Layer
- Network Layer
- Link Layer

Introduction

- A note on the use of these power point slides:
 - All material copyright 1996-2012© J.F Kurose and K.W. Ross, All Rights Reserved
 - Do not copy or distribute this slide set!

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Link layer, LANs: outline

- Introduction and services
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches

Link Layer: Introduction

Some terminology:

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes along communication path are links
 - Wired links
 - Wireless links
 - LANs
- Layer-2 packet is a frame, encapsulates datagram

Data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Link Layer Services (more)

Flow Control:

Pacing between adjacent sending and receiving nodes

Error Detection:

- Errors caused by signal attenuation, noise.
- Receiver detects presence of errors:
 - signals sender for retransmission or drops frame

Error Correction:

 Receiver identifies and corrects bit error(s) without resorting to retransmission

Half-duplex and full-duplex

 With half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- In each and every host
- Link layer implemented in "adaptor" (a.k.a network interface card NIC)
 - Ethernet card, PCMCI card, 802.11 card
 - Implements link, physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Adaptors Communicating

- Sending side:
 - Encapsulates datagram in a frame
 - Adds error checking bits, rdt, flow control, etc.

- receiving side
 - Looks for errors, rdt, flow control, etc.
 - Extracts datagram, passes to upper layer at receiving side

Link layer, LANs: outline

- Introduction and services
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches

Multiple Access Links, Protocols

Two types of "links":

- Point-to-Point
 - PPP for dial-up access
 - Point-to-Point link between Ethernet switch and host
- Broadcast (shared wire or medium)
 - Old-fashioned Ethernet

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple Access protocols

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - Collision if node receives two or more signals at the same time

Multiple access protocol

- Distributed algorithm that determines how nodes share channel, i.e., Determine when node can transmit
- Communication about channel sharing must use channel itself!
 - No out-of-band channel for coordination

An Ideal Multiple Access Protocol

- Given: Broadcast channel of rate R bps
- Desiderata:
 - 1. When one node wants to transmit, it can send at rate R.
 - 2. When M nodes want to transmit, each can send at average rate R/M
 - 3. Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots
 - 4. Simple

MAC Protocols: Taxonomy

- Three broad classes:
 - Channel Partitioning
 - Divide channel into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
 - Random access
 - Channel not divided, allow collisions
 - "Recover" from collisions
 - "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

Channel Partitioning MAC protocols: TDMA/FDMA

TDMA: frequency division multiple access

FDMA: frequency division multiple access

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R.
 - No a priori coordination among nodes
- Two or more transmitting nodes → "collision",
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

- Assumptions
 - All frames same size
 - Time is divided into equal size slots (time to transmit 1 frame)
 - Nodes start to transmit frames only beginning
 - Nodes are synchronized
 - If 2 or more nodes transmit in slot, all nodes detect collision

- Operation
 - When node obtains fresh frame, it transmits in next slot
 - If no collision, node can send new frame in next slot
 - If collision: node retransmits frame in each subsequent slot with probability p until success

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

node 2

node 3

Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

<u>Cons</u>

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

<u>Pros</u>

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Collisions, wasting slots

- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

- <u>Pros</u>
- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

- Collisions, wasting slots
- Idle slots are also wasted
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Slotted Aloha efficiency

Efficiency: Long-run fraction of successful slots (many nodes, each with many frames to send)

- Suppose N nodes with many frames to send, each transmits in slot with probability p
- Prob that node 1 has success in a slot = p(1-p)^{N-1}
- Prob that any node has a success = Np(1-p)^{N-1}

- For max efficiency with N nodes, find p* that maximizes
 Np(1-p)^{N-1}
- For many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives 1/e = 0.37

At best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- Unslotted Aloha: simpler, no synchronization
- When frame first arrives
 - Transmit immediately
- Collision probability increases:

■ Frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure Aloha efficiency

P(success by given node) = P(node transmits)

P(no other node transmits in $[t_0-1,t_0]$

P(no other node transmits in $[t_0-1,t_0]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$
$$= p \cdot (1-p)^{2}(N-1)$$

... Choosing optimum p and then letting n $\rightarrow \infty$

$$= 1/(2e) = 0.18$$

Even worse than slotted Aloha!

CSMA (Carrier Sense Multiple Access)

- CSMA: Listen before transmit:
 - If channel sensed idle: Transmit entire frame
 - If channel sensed busy: defer transmission
 - Human analogy: don't interrupt others!

CSMA Collisions

- Collisions can still occur
 - Propagation delay means two nodes may not hear each other's transmission

Collision

- Entire packet transmission time wasted
 - Distance & propagation delay play role in in determining collision probability

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing channel wastage
- Collision detection:
 - Easy in wired LANs: Measure signal strengths, compare transmitted, received signals
 - Difficult in wireless LANs: Received signal strength overwhelmed by local transmission strength
- Human analogy: The polite conversationalist

CSMA/CD collision detection

Ethernet CSMA/CD algorithm

- NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5) After aborting, NIC enters binary (exponential) backoff:
 - After mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K'512 bit times, returns to step 2
 - Longer backoff interval with more collisions

CSMA/CD efficiency

- t_{prop} = Max prop delay between 2 nodes in LAN
- t_{trans} = Time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency goes to 1
 - As t_{prop} goes to 0
 - As t_{trans} goes to infinity
- Better performance than ALOHA: and simple, cheap, decentralized!

"Taking Turns" MAC protocols

- Channel partitioning MAC protocols:
 - Share channel efficiently and fairly at high load
 - Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!
- Random access MAC protocols
 - Efficient at low load: single node can fully utilize channel
 - High load: collision overhead
- "taking turns" protocols
 - Look for best of both worlds!

"Taking Turns" MAC protocols

Polling:

- Master node "invites" slave nodes to transmit in turn
- Typically used with "dumb" slave devices
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)

slaves

"Taking Turns" MAC protocols

Token passing:

- Control token passed from one node to next sequentially.
- Token message
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)

Link layer, LANs: outline

- Introduction and services
- Error detection and correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches

MAC Addresses and ARP

- 32-bit IP address:
 - Network-layer address
 - Used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - Function: Used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

Hexadecimal (base 16) notation (each "number" represents 4 bits)

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

ARP: Address Resolution Protocol

Question: How to determine MAC address of B knowing B's IP address?

- Each IP node (Host, Router) on LAN has ARP table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address;
 TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: Same LAN

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - Dest MAC address = FF-FF-FF-FF-FF
 - All machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - Frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - Soft state: Information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - Nodes create their ARP tables without intervention from net administrator

Link layer, LANs: outline

- Introduction and services
- Error detection and correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches

Ethernet

- "Dominant" wired LAN technology:
 - Cheap \$20 for NIC
 - First widely used LAN technology
 - Simpler, cheaper than token LANs and ATM
 - Kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Star topology

- Bus topology popular through mid 90s
 - All nodes in same collision domain (can collide with each other)
- Today: star topology prevails
 - Active switch in center
 - Each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet Frame Structure

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

- preamble
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates

Ethernet Frame Structure (more)

- Addresses: 6 byte source, destination MAC adresses
 - If adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to net-layer protocol
 - Otherwise, adapter discards frame
- Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)
- CRC: Cyclic redundancy checked at receiver
 - Error is detected, the frame is dropped

Ethernet: Unreliable, connectionless

- Connectionless: No handshaking between sending and receiving NICs
- Unreliable: Receiving NIC doesn't send ACKs or NACKs to sending NIC
 - Data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

Chapter 5: Summary

- Principles behind data link layer services:
 - Error detection, correction
 - Sharing a broadcast channel: multiple access
 - Link layer addressing
- Instantiation and implementation of various link layer technologies
 - Ethernet