流程型生產排程問題 (Flowshop scheduling Problem)

Example

Flow Shop Scheduling Problem

- The processing order of the jobs on the resources is the same for each subsequent step of processing
- Proved to be NP-hard problem
- ➤ Objective is to minimize the MAKESPAN (總完工時間)
 - \checkmark O_{ii} = Operation of job i at machine j
 - \checkmark P_{ij} = Processing time of operation O_{ij}

Comparison of 2 solutions

解的編碼

- 解的編碼
 - > 工件的所有編號的排列
- 問題實例 (5個機台,11個job)
 - ▶ 解為11個 job 的排列: [7, 2, 4, 10, 8, 6, 0, 9, 5, 3, 1]

Python code for solution representation

- 解的編碼
 - > 工件的所有編號的排列
- 問題實例 (5個機台・11個job)
 - ▶ 解為11個 job 的排列: [7, 2, 4, 10, 8, 6, 0, 9, 5, 3, 1]

```
44 def initPop(): # 初始化群體

45    p = []

46

47    for i in range(NUM_CHROME) :

48    # 產生 0, 1, ..., NUM_BIT-1 的排列

    p.append(np.random.permutation(NUM_BIT))

50

51    return p
```

解的解碼

- 給定一個編碼 x₀, x₁, ..., x_{n-1}
 解的解碼演算法:
 S_{ij} 表示 job i 在 machine j 的開始時間表示 job i 在 machine j 的加工時間 表示 job i 在 machine j 的完成時間
 - 1. 初始化 $job x_0$ 的所有開始時間 S_{x_0i} 與結束時間 C_{x_0i}
 - 2. 考慮 jobs x₁, x₂, ..., x_{n-1}
 - 1. $S_{x_{ij}} = max\{ C_{(x_{i-1})j}, C_{x_{i(j-1)}} \}$
 - 2. $C_{x_{ij}} = S_{x_{ij}} + P_{x_{ij}}$
 - 3. 考慮 job x_{n-1}的完工時間即為 makespan

Exercise

- 在"GA10-flowshop-ex.py"寫上fitFunc函數的內容
 - ▶ S[i][j] 表示 job i 在 machine j 的**開始**時間
 - ▶ C[i][j] 表示 job i 在 machine j 的完成時間
 - ▶ pTime[i][j] 表示 job i 在 machine j 的加工時間

> 演算法

- ✓ (初始化) 計算第X[0]個 job 在各 machine 的開始時間 S[x[0]][j]
- ✓ (初始化) 計算上述的完成時間 C[x[0]][j]
- ✓ 依序考慮 x[1], x[2], ..., x[i], ...
 - ▶ 計算第X[i]個 job 在各 machine 的開始時間S[x[i]][j](公式在前一頁)
 - ▶ 計算上述的完成時間 C[x[i]][j] (公式在前一頁)
- ✓ C[X[NUM_JOB 1]][NUM_MACHINE 1]即為最大完工時間