Lecture 17. Cluster Analysis

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Content is based on slides provided by Jeffrey Chan

Copyright
University of
Melbourne

Cluster analysis (or clustering)

- The task of grouping a set of objects such that objects in the same group (cluster) are more similar than objects in different groups
- Similarity can be defined in many ways, hence there are many possible groupings of the same data

Major types of clustering

- Exclusive vs. overlapping
 - Exclusive: placing objects into disjoint subsets
 - Overlapping: allowing each object to be a member of more than one cluster
- Deterministic vs. probabilistic
 - * Deterministic: each object either belongs to a particular cluster or not
 - Probabilistic: each object belongs to each cluster with some probability
- Hierarchical clustering
 - Aims to build a hierarchy of clusters usually represented with a dendrogram (a tree-like diagram)

Exclusive vs. overlapping clustering

Exclusive

(hard clustering, partition of a set)

Overlapping

(fuzzy clustering, soft clustering)

Deterministic clustering is a combinatorial problem

Deterministic vs. probabilistic clustering

Overlapping deterministic

Object	Cluster membership		
1	2		
2	1, 3		
3	4		

Exclusive deterministic

Object	Cluster membership		
1	2		
2	1		
3	4		

Probabilistic

Object	Cluster			
	1	2	3	4
1	0.01	0.87	0.12	0.00
2	0.05	0.25	0.67	0.03
3	0.00	0.98	0.02	0.00
		•••		

Exclusive probabilistic: ?

Agglomerative hierarchical clustering: meta-algorithm

1. <u>Initialisation</u>: each point forms a separate cluster

2. <u>Update</u>:

- a) Choose *a pair of clusters*. E.g., two clusters with the smallest intergroup dissimilarity
- b) Merge the two clusters (the number of clusters decreases by one in each step)
- 3. <u>Termination</u>: stop when all points fall into a single cluster
- 4. Go to Step 2

Divisive hierarchical clustering: meta-algorithm

1. <u>Initialisation</u>: start with a single cluster

2. <u>Update</u>:

- a) Choose a cluster to split. E.g., so that it can produce two clusters with the largest between-group dissimilarity
- b) Split the cluster in two(the number of clusters increases by one in each step)
- 3. <u>Termination</u>: stop when each point fall into a separate cluster
- 4. Go to Step 2

K-means clustering (refresher)

- Input: N data points x_1, \dots, x_N , where each point is a p-dimensional vector $x_i = \left[x_1^{(i)}, \dots, x_p^{(i)}\right]$; and the number of clusters K
- Objective: produce exclusive deterministic clustering that minimizes "within cluster" variation while maximizing "between-cluster" variation
- Minimize cost function $W = \sum_{k=1}^K \sum_{i=1}^N r_{ik} (x_i \overline{x}_k)^2$
 - * $\overline{\boldsymbol{x}}_k$ is the *centroid* for cluster k, i.e., the mean of all points assigned to cluster k
 - * r_{ik} is the membership indicator: $r_{ik}=1$ if point i is assigned to cluster k, and $r_{ik}=0$ otherwise
 - * Constraints: $\sum_{k=1}^{K} r_{ik} = 1$ and $\sum_{i=1}^{N} r_{ik} \ge 1$ for each i and k
- Output: exclusive deterministic clustering

K-means clustering (refresher)

- Combinatorial problem
 - * Number of possible assignments grows exponentially with *N*
 - * For only 19 points and 4 clusters there are already about 10^{10} possible assignments
 - * NP-hard problem
- Old friend: iterative approach

K-means clustering is an iterative procedure

1. Initialisation: assign N points to K clusters randomly

2. <u>Update</u>:

- a) Compute centroid \overline{x}_k for each cluster
- b) Re-assign each point to the cluster with the nearest centroid

(cost function W will monotonically decrease at this step!)

- 3. <u>Termination</u>: stop if assignment does not change any more (convergence)
- 4. Go to Step 2

Reflections on K-means clustering

- Pros:
 - Simple and intuitive, intuition is supported by math
 - * It works! One of the most cited algorithms in data mining

Cons:

Problem	Solution	
Often converges to a local minimum	Restart with a different initialization	
Not able to find non-spherical clusters	Use kernelized PCA, MDS or Isomap first, then apply K-means	
Requires point coordinates $\mathbf{x}_i = \left[x_1^{(i)}, \dots, x_p^{(i)}\right]$		
Requires number of clusters K	Next slide	
Produces exclusive deterministic clustering	Slides after the next slide	

Choosing the number of clusters

- Sometimes it is not needed (e.g., for hierarchical clustering)
- Sometimes it is know from the problem context:
 - * E.g., clustering genetic sequences, and knowing from biology that there should be three types of cells in this dataset
- If it is not known, but needed:
 - * Can't we just choose K that minimizes the cost function (within-cluster point scatter W)?
 - Can't we just use cross-validation?

$$W = \sum_{k=1}^{K} \sum_{i=1}^{N} r_{ik} (x_i - \overline{x}_k)^2$$

Checkpoint

- Which of the following statements is true?
 - High-dimensional data can actually be represented with fewer dimensions because it lies on a manifold
 - Isomap algorithm aims to approximate and preserve inter-point distances along the manifold
 - Euclidean distance is an optimal way to combine features because it satisfies triangle inequality

art: OpenClipartVectors at pixabay.com (CC0)

Probabilistic clustering: mixture models

Clustering can be viewed as identification of components in a mixture probability density function

Identifying cluster centroids can be viewed as finding modes of symmetric distributions

Gaussian distribution (refresher)

Recall that a 1D Gaussian is

$$\mathcal{N}_{1D}(x|\mu,\sigma) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

And a p-dimensional Gaussian is

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) \stackrel{\text{def}}{=} (2\pi)^{-\frac{p}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right)$$

* Σ is positive definite, $|\Sigma|$ denotes determinant

Gaussian mixture model

Gaussian mixture distribution

$$f(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{k=1}^{K} w_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Here $w_k \ge 0$ and $\sum_{k=1}^K w_k = 1$
- That is, $w_1, ..., w_k$ is a distribution over components
- Parameters of the model are w_k , μ_k , Σ_k , k = 1, ..., K

Another old friend: MLE

We assume that data comes from a distribution defined by

$$f(\mathbf{x}|w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \stackrel{\text{def}}{=} \sum_{k=1}^K w_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Parameters of the model are

$$w_k$$
, μ_k , Σ_k for $k=1,\ldots,K$, where K is fixed

MLE: find parameter values that maximize log-likelihood

$$\ln L(w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{i=1}^N \ln f(\boldsymbol{x}_i | w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

MLE for Gaussian mixtures

Optimization problem is to maximize

$$\ln L\left(w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right) = \sum_{i=1}^N \ln \left(\sum_{k=1}^K w_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right)$$

- Difficult to optimize (no closed-form solution)
- Could use gradient descent, but there is a better way
- Yet another old friend: Expectation Maximization (EM) algorithm

Key idea: introduce latent variables

- Consider a dataset with N points
- Define a membership matrix $N \times K$ with an element $z_{ik} = 1$ if point x_i was drawn from component k, and $z_{ik} = 0$ otherwise
 - * Of course, we don't know true memberships, but we'll iteratively make better and better guesses for z_{ik}
- It turns out that math becomes easier, if we pretend that we know memberships

$$\ln L = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} (\ln w_k + \ln \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$$

EM algorithm is an iterative procedure

- 1. Initialisation: choose random values for w_k , μ_k , Σ_k
- 2. <u>Update</u>:
 - a) E-step updates an estimate for latent variables
 - b) M-step updates an estimate for parameters
- 3. <u>Termination</u>: stop if parameter estimates don't change anymore (convergence)
- 4. Go to Step 2

EM for Gaussian mixtures

E-step

$$\tau_{ik} \stackrel{\text{def}}{=} Pr(z_{ik} = 1 | w_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$\tau_{ik} = \frac{w_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{s=1}^K \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)}$$

M-step

$$N_k = \sum_{i=1}^{N} \tau_{ik}$$

$$w_k^{new} = \frac{N_k}{N}$$

$$\mu_k^{new} = \frac{1}{N_k} \sum_{i=1}^{N} \tau_{ik} x_i$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^{N} \tau_{ik} (x_i - \mu_k^{new}) (x_i - \mu_k^{new})^T$$

Example of fitting Gaussian Mixture model

K-means clustering is an iterative procedure

1. Initialisation: assign N points to K clusters randomly

Update:

- a) Compute centroid \overline{x}_k for each cluster (\approx M-step)
- b) Re-assign each point to the cluster with the nearest centroid (≈ E-step)

(cost function W will monotonically decrease at this step!)

- 3. <u>Termination</u>: stop if assignment does not change any more (convergence)
- 4. Go to Step 2

A limitation of the MLE

Number of components (clusters) *K* is enforced

- MLE is applied once K is given
 - * Note that given K the number of parameters is O(K)
- Can we use MLE to estimate K itself?

Choosing the number of components

- Suppose the data is generated by unknown distribution γ , and we have two guesses f_1 and f_2 of what that distribution might be
 - * E.g., γ is the true mixture with some true number of components (clusters);
 - * and f_1 , f_2 are two Gaussian mixtures with numbers of clusters set to K_1 and K_2 , respectively
- Each of f_1 and f_2 is a different approximation of γ , and there is a way of quantifying information loss incurred by approximation
 - Something called Kullback-Leiber divergence
 - A result from information theory
 - * We denote KL divergence as $D(true_model, approx_model)$
- One should select f_1 (that is a mixture with K_1 clusters) if $D(\gamma, f_1) < D(\gamma, f_2)$, and f_2 otherwise

Akaike Information Criterion (AIC)

- The problem: we cannot compute KL divergence, because we don't know γ (in particular, we don't know the true number of clusters)
- Akaike showed that relative divergence can be estimated using the following criterion

$$AIC = 2N_{par} - 2\ln L^*$$

- * Here N_{par} is the total number of parameters, and $\ln L^*$ is the maximized log-likelihood
- Given a set of models (e.g., Gaussian mixture with 2 components, Gaussian mixture with 3 components, etc.), one should choose the model with the *smallest* AIC

AIC: counting parameters

Akaike Information Criterion

$$AIC = 2N_{par} - 2\ln L^*$$

- * Here N_{par} is the total number of parameters, and $\ln L^*$ is the maximized log-likelihood
- Example: 1D Gaussian with 3 components.
 - * $N_{par}=2+3+3$, probability w_k for each component, mean and standard deviation for each component
- Example: 2D Gaussian with 3 components.
 - * $N_{par} = 2 + 3 \cdot 2 + 3 \cdot 3$, probability w_k for each component, mean vector and a 2×2 covariance matrix for each component
- In our mixture models K does not count as a parameter
 - * We only count free variables in MLE process

AIC: important notes

- For each candidate model, the log-likelihood should be maximized and evaluated on the same dataset
- Log-likelihood should be maximized for each model. That is,
 - For each model perform MLE
 - Use parameters found by MLE to compute log-likelihood
- AIC does not tell how good the model is, AIC tells that given a set of candidate models, the one with the smallest AIC is better than others

AIC in practice

- AIC is biased for finite sample sizes, thus a correction has been proposed
- AIC with a correction term

$$AICc = 2N_{par} + \ln L^* + \frac{2N_{par}(N_{par} + 1)}{N - N_{par} - 1}$$

In practice, it is recommended to use AICc

Summary

- Major types of clustering
 - exclusive and overlapping, deterministic and probabilistic
- K-means clustering
 - Iterative approach to optimization
 - Pros and cons
- Gaussian mixtures as probabilistic clustering
- Party of old friends:
 - Iterative optimization
 - Maximum likelihood estimation
 - * EM algorithm
- Estimating the number of clusters
 - * Challenges
 - Akaike Information Criterion