...The main goal is to introduce torchaudio and illustrate its contributions to the torch ecosystem. Here, we focus on a popular dataset, the audio loader and the spectrogram transformer. An interesting side product is the parallel between torch and tensorflow, showing sometimes the differences, sometimes the similarities between them.

```
library(torch)
library(torchaudio)
```

Downloading and Importing

torchaudio has the speechcommand_dataset built in. It filters out background_noise by default and lets us choose between versions v0.01 and v0.02.

```
# set an existing folder here to cache the dataset
DATASETS PATH <- "~/datasets/"
# 1.4GB download
df <- speechcommand dataset(</pre>
  root = DATASETS PATH,
  url = "speech commands v0.01",
  download = TRUE
# expect folder: background noise
df$EXCEPT FOLDER
# [1] " background noise "
# number of audio files
length(df)
# [1] 64721
# a sample
sample <- df[1]</pre>
sample$waveform[, 1:10]
torch tensor
0.0001 *
0.9155 \quad 0.3052 \quad 1.8311 \quad 1.8311 \quad -0.3052 \quad 0.3052 \quad 2.4414 \quad 0.9155 \quad -0.9155
-0.6104
[ CPUFloatType{1,10} ]
sample$sample rate
# 16000
sample$label
# bed
plot(sample$waveform[1], type = "1", col = "royalblue", main =
sample$label)
```


(#fig:unnamed-chunk-4)A sample waveform for a 'bed'.

Classes

```
df$classes
 [1] "bed"
              "bird"
                        "cat"
                                 "dog"
                                           "down"
                                                    "eight" "five"
 [8] "four"
              "go"
                        "happy"
                                           "left"
                                                    "marvin" "nine"
                                 "house"
[15] "no"
                        "on"
                                 "one"
                                                    "seven"
              "off"
                                           "right"
                                                              "sheila"
[22] "six"
              "stop"
                        "three"
                                 "tree"
                                           "two"
                                                    "up"
                                                              "wow"
[29] "yes"
              "zero"
```

Generator Dataloader

torch::dataloader has the same task as data_generator defined in the original article. It is responsible for preparing batches - including shuffling, padding, one-hot encoding, etc. - and for taking care of parallelism / device I/O orchestration.

In torch we do this by passing the train/test subset to torch::dataloader and encapsulating all the batch setup logic inside a collate fn() function.

```
set.seed(6)
id_train <- sample(length(df), size = 0.7*length(df))
id_test <- setdiff(seq_len(length(df)), id_train)
# subsets

train_subset <- torch::dataset_subset(df, id_train)
test_subset <- torch::dataset_subset(df, id_test)</pre>
```

At this point, $dataloader(train_subset)$ would not work because the samples are not padded. So we need to build our own $collate_fn()$ with the padding strategy.

I suggest using the following approach when implementing the collate fn():

- 1. begin with collate fn <- function(batch) browser().</pre>
- 2. instantiate dataloader with the collate fn()
- 3. create an environment by calling <code>enumerate(dataloader)</code> so you can ask to retrieve a batch from dataloader.
- 4. run environment[[1]][[1]]. Now you should be sent inside collate_fn() with access to batch input object.
- 5. build the logic.

```
collate_fn <- function(batch) {
  browser()</pre>
```

```
ds_train <- dataloader(
  train_subset,
  batch_size = 32,
  shuffle = TRUE,
  collate_fn = collate_fn
)
ds_train_env <- enumerate(ds_train)
ds_train_env[[1]][[1]]</pre>
```

The final collate_fn() pads the waveform to length 16001 and then stacks everything up together. At this point there are no spectrograms yet. We going to make spectrogram transformation a part of model architecture.

```
pad sequence <- function(batch) {</pre>
    # Make all tensors in a batch the same length by padding with zeros
    batch <- sapply(batch, function(x) (x$t()))</pre>
    batch <- torch::nn utils rnn pad sequence(batch, batch first =</pre>
TRUE, padding value = 0.)
   return(batch$permute(c(1, 3, 2)))
  }
# Final collate fn
collate fn <- function(batch) {</pre>
 # Input structure:
 # list of 32 lists: list(waveform, sample rate, label, speaker id,
utterance number)
 # Transpose it
batch <- purrr::transpose(batch)</pre>
 tensors <- batch$waveform
 targets <- batch$label index</pre>
 # Group the list of tensors into a batched tensor
 tensors <- pad sequence(tensors)</pre>
 # target encoding
 targets <- torch::torch stack(targets)</pre>
 list(tensors = tensors, targets = targets) # (64, 1, 16001)
```

Batch structure is:

- batch[[1]]: waveforms tensor with dimension (32, 1, 16001)
- batch[[2]]: targets tensor with dimension (32, 1)

Also, torchaudio comes with 3 loaders, av_loader, tuner_loader, and audiofile_loader- more to come. set_audio_backend() is used to set one of them as the audio loader. Their performances differ based on audio format (mp3 or wav). There is no perfect world yet: tuner_loader is best for mp3, audiofile_loader is best for wav, but neither of them has the option of partially loading a sample from an audio file without bringing all

the data into memory first.

For a given audio backend we need pass it to each worker through worker_init_fn() argument.

```
ds train <- dataloader(</pre>
 train subset,
  batch size = 128,
 shuffle = TRUE,
  collate fn = collate fn,
 num workers = 16,
 worker_init_fn = function(.) {torchaudio::set_audio_
backend("audiofile loader")},
  worker globals = c("pad sequence") # pad sequence is needed for
collect fn
ds test <- dataloader(</pre>
 test subset,
 batch size = 64,
  shuffle = FALSE,
  collate fn = collate fn,
 num workers = 8,
 worker globals = c("pad sequence") # pad sequence is needed for
collect fn
```

Model definition

Instead of keras::keras_model_sequential(), we are going to define a torch::nn_module(). As referenced by the original article, the model is based on this architecture for MNIST from this tutorial, and I'll call it 'DanielNN'.

```
dan_nn <- torch::nn_module(</pre>
  "DanielNN",
  initialize = function(
    window size ms = 30,
    window stride ms = 10
  ) {
    # spectrogram spec
    window size <- as.integer(16000*window size ms/1000)</pre>
    stride <- as.integer(16000*window_stride_ms/1000)</pre>
    fft size <- as.integer(2^trunc(log(window size, 2) + 1))</pre>
    n_chunks <- length(seq(0, 16000, stride))</pre>
    self$spectrogram <- torchaudio::transform spectrogram(</pre>
      n fft = fft size,
      win length = window size,
      hop length = stride,
      normalized = TRUE,
      power = 2
```

```
)
    # convs 2D
    self$conv1 <- torch::nn conv2d(in channels = 1, out channels = 32,</pre>
kernel size = c(3,3))
    self$conv2 <- torch::nn conv2d(in channels = 32, out channels = 64,
kernel size = c(3,3))
    self$conv3 <- torch::nn_conv2d(in_channels = 64, out_channels =</pre>
128, kernel size = c(3,3))
    self$conv4 <- torch::nn conv2d(in channels = 128, out channels =</pre>
256, kernel size = c(3,3))
    # denses
    self$dense1 <- torch::nn linear(in features = 14336, out features =</pre>
128)
    self$dense2 <- torch::nn_linear(in_features = 128, out_features =</pre>
30)
  },
  forward = function(x) {
    x %>% # (64, 1, 16001)
      self$spectrogram() %>% # (64, 1, 257, 101)
      torch::torch add(0.01) %>%
      torch::torch log() %>%
      self$conv1() %>%
      torch::nnf relu() %>%
      torch::nnf max pool2d(kernel size = c(2,2)) %>%
      self$conv2() %>%
      torch::nnf relu() %>%
      torch::nnf max pool2d(kernel size = c(2,2)) %>%
      self$conv3() %>%
      torch::nnf relu() %>%
      torch::nnf max pool2d(kernel size = c(2,2)) %>%
      self$conv4() %>%
      torch::nnf relu() %>%
      torch::nnf_max_pool2d(kernel_size = c(2,2)) %>%
      torch::nnf dropout(p = 0.25) %>%
      torch::torch flatten(start dim = 2) %>%
      self$dense1() %>%
      torch::nnf relu() %>%
      torch::nnf dropout(p = 0.5) %>%
      self$dense2()
  }
)
model <- dan nn()</pre>
```

Model fitting

Unlike in tensorflow, there is no model %>% compile(...) step in torch, so we are going to set loss criterion, optimizer strategy and evaluation metrics explicitly in the training loop.

```
loss_criterion <- torch::nn_cross_entropy_loss()
optimizer <- torch::optim_adadelta(model$parameters, rho = 0.95, eps =
1e-7)
metrics <- list(acc = yardstick::accuracy vec)</pre>
```

Training loop

```
library(glue)
library(progress)
pred to r <- function(x) {</pre>
  classes <- factor(df$classes)</pre>
  classes[as.numeric(x$to(device = "cpu"))]
}
set progress bar <- function(total) {</pre>
  progress bar$new(
    total = total, clear = FALSE, width = 70,
    format = ":current/:total [:bar] - :elapsed - loss: :loss - acc:
:acc"
  )
}
epochs <- 20
losses <- c()
accs <- c()
for(epoch in seq len(epochs)) {
  pb <- set_progress_bar(length(ds_train))</pre>
  pb$message(glue("Epoch {epoch}/{epochs}"))
```

```
coro::loop(for(batch in ds train) {
   optimizer$zero grad()
   predictions <- model(batch[[1]]$to(device = device))</pre>
   targets <- batch[[2]]$to(device = device)</pre>
   loss <- loss criterion(predictions, targets)</pre>
   loss$backward()
   optimizer$step()
   # eval reports
   prediction r \leftarrow pred to r(predictions\$argmax(dim = 2))
   targets r <- pred to r(targets)</pre>
   acc <- metrics$acc(targets_r, prediction_r)</pre>
   accs <- c(accs, acc)</pre>
   loss r <- as.numeric(loss$item())</pre>
   losses <- c(losses, loss r)</pre>
   pb$tick(tokens = list(loss = round(mean(losses), 4), acc =
round(mean(accs), 4)))
 })
}
# test
predictions r <- c()</pre>
targets r <- c()
coro::loop(for(batch_test in ds_test) {
 predictions <- model(batch test[[1]]$to(device = device))</pre>
 targets <- batch test[[2]]$to(device = device)</pre>
 predictions r <- c(predictions r, pred to r(predictions$argmax(dim =</pre>
2)))
 targets r <- c(targets r, pred to r(targets))</pre>
val acc <- metrics$acc(factor(targets r, levels = 1:30),</pre>
factor(predictions r, levels = 1:30))
cat(glue("val_acc: {val_acc}\n\n"))
Epoch 1/20
[W SpectralOps.cpp:590] Warning: The function torch.rfft is deprecated
and will be removed in a future PyTorch release. Use the new torch.fft
module functions, instead, by importing torch.fft and calling
torch.fft.fft or torch.fft.rfft. (function operator())
Epoch 2/20
Epoch 3/20
Epoch 5/20
```

```
Epoch 7/20
354/354 [============= ] - 1m - loss: 1.0199 - acc: 0.6961
Epoch 8/20
354/354 [============= ] - 1m - loss: 0.9444 - acc: 0.7181
Epoch 9/20
354/354 [============] - 1m - loss: 0.8816 - acc: 0.7365
Epoch 10/20
354/354 [============= ] - 1m - loss: 0.8278 - acc: 0.7524
Epoch 11/20
Epoch 12/20
354/354 [============= ] - 1m - loss: 0.7413 - acc: 0.7778
Epoch 13/20
354/354 [============] - 1m - loss: 0.7064 - acc: 0.7881
Epoch 14/20
354/354 [============== ] - 1m - loss: 0.6751 - acc: 0.7974
Epoch 15/20
Epoch 16/20
354/354 [============= - 1m - loss: 0.6216 - acc: 0.8133
Epoch 17/20
354/354 [============] - 1m - loss: 0.5985 - acc: 0.8202
Epoch 18/20
Epoch 19/20
Epoch 20/20
354/354 [============== ] - 1m - loss: 0.5403 - acc: 0.8374
val acc: 0.876705979296493
```

Making predictions

We already have all predictions calculated for test_subset, let's recreate the alluvial plot from the original article.

```
library(dplyr)
library(alluvial)

df_validation <- data.frame(
    pred_class = df$classes[predictions_r],
    class = df$classes[targets_r]
)

x <- df_validation %>%
    mutate(correct = pred_class == class) %>%
    count(pred_class, class, correct)

alluvial(
    x %>% select(class, pred_class),
    freq = x$n,
    col = ifelse(x$correct, "lightblue", "red"),
    border = ifelse(x$correct, "lightblue", "red"),
    alpha = 0.6,
    hide = x$n < 20</pre>
```

zero	zero
yes	yes
wow	WOW
up	up
two	two
tree	tree
three	three
stop	stop
six	six
sheila	sheila
seven	seven
right	right
one	one
on	on
off	off
no	no
nine	nine
marvin	marvir
left	left
house happy	
happy	house happy
go	go
four	four
five	five
eight	eight
down	down
dog	dog
cat	cat
	bird
bird bed	bed

predicted labels." width="336" />

(#fig:unnamed-chunk-15)Model performance: true labels <--> predicted labels.