FICHA 1. Álgebra Linear

1) Dadas as matrizes

$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$

calcule:

(a)
$$\mathbf{A} + \mathbf{B}$$
; \mathbf{R} : $\begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}$

(b)
$$3A$$
; **R**: $\begin{pmatrix} 6 & 12 \\ 3 & 6 \end{pmatrix}$

(c)
$$3\mathbf{A} + 2\mathbf{B} - 2\mathbf{C} + \mathbf{D}$$
; \mathbf{R} : $\begin{pmatrix} -1 & 13 \\ -6 & -13 \end{pmatrix}$
(d) $\mathbf{A}\mathbf{B}$; \mathbf{R} : $\begin{pmatrix} 0 & -2 \\ 0 & -1 \end{pmatrix}$

(d)
$$\mathbf{AB}$$
; \mathbf{R} : $\begin{pmatrix} 0 & -2 \\ 0 & -1 \end{pmatrix}$

M. J. Alves

(e)
$$\mathbf{C}(\mathbf{AB})$$
. \mathbf{R} : $\begin{pmatrix} 0 & -7 \\ 0 & -21 \end{pmatrix}$

2) Dadas as matrizes

$$\mathbf{A} = \begin{pmatrix} 13 & 4 & 3 \\ 8 & 3 & 2 \\ 5 & 1 & 1 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{pmatrix} -12 & 5 & 1 \\ 2 & 1 & 6 \\ 2 & -1 & 4 \end{pmatrix}$$

calcule:

(a)
$$\mathbf{A} + \mathbf{B}$$
; \mathbf{R} : $\begin{pmatrix} 1 & 9 & 4 \\ 10 & 4 & 8 \\ 7 & 0 & 5 \end{pmatrix}$

(b)
$$A'$$
, i.e. a matriz transposta de A ; R : $\begin{pmatrix} 13 & 8 & 5 \\ 4 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}$

(c)
$$\mathbf{A} \cdot \mathbf{B}$$
. \mathbf{R} : $\begin{pmatrix} -142 & 66 & 49 \\ -86 & 41 & 34 \\ -56 & 25 & 15 \end{pmatrix}$

3) Dada a função
$$f(x)=x^2-2x$$
, calcule $f(\mathbf{A})$, onde $\mathbf{A}=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. \mathbf{R} : $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

4) Dada a função
$$f(x) = x^2 - 2x$$
, calcule $f(\mathbf{A})$, onde $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. $\mathbf{R} : \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- 5) Seja $\bf A$ uma matriz de dimensão 3×5 e $\bf B$ uma matriz de dimensão 5×2 . Quais dos produtos estão definidos: $\bf AB$ ou $\bf BA$?
- 6) Seja **A** uma matriz quadrada de dimensão $n \times n$ tal, que $\mathbf{A}^2 = \mathbf{A} + \mathbf{I}_n$, onde \mathbf{I}_n é uma matriz unitária de dimensão n. Ache as constantes a e b de modo que $\mathbf{A}^3 = a\mathbf{A} + b\mathbf{I}_n$. \mathbf{R} : a = 2, b = 1
- 7) Dada a matriz

$$\mathbf{A} = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 10 & 5 & 0 \end{array} \right)$$

calcule $(\mathbf{I}_3 - \mathbf{A})(\mathbf{I}_3 + \mathbf{A} + \mathbf{A}^2)$, onde \mathbf{I}_3 é matriz unitária de ordem 3. \mathbf{R} : Matriz unidade \mathbf{I}_3

- 8) Calcule os seguintes determinantes: $\begin{vmatrix} 3 & 0 \\ 2 & 6 \end{vmatrix}$, $\begin{vmatrix} a & a \\ b & b \end{vmatrix}$, $\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix}$, $\begin{vmatrix} 3^t & 2^t \\ 3^{t-1} & 2^{t-1} \end{vmatrix}$. **R**: 18, 0, 4ab, 6^{t-1}
- 9) Seja $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ e $\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$. Mostre que $|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$.
- 10) Ache duas matrizes \mathbf{A} e \mathbf{B} de dimensão 2×2 tais que $|\mathbf{A} + \mathbf{B}| \neq |\mathbf{A}| + |\mathbf{B}|$.

- 12) Sejam $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix} e \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & -1 \end{pmatrix}$. Calcule \mathbf{AB} , $|\mathbf{A}|$, $|\mathbf{B}|$, $|\mathbf{A}| \cdot |\mathbf{B}|$ e $|\mathbf{AB}|$.
- 13) Mostre que $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc + ab + ac + bc.$
- 14) Dada a matriz $\mathbf{A}_t = \begin{pmatrix} 1 & t & 0 \\ -2 & -2 & -1 \\ 0 & 1 & t \end{pmatrix}$, calcule $|\mathbf{A}_t|$ e mostre que nunca é igual a 0. Mostre que para um certo valor de t tem-se $\mathbf{A}_t^3 = \mathbf{I}_3$.
- 15) Use a definição de determinante e calcule: $\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{vmatrix}, \quad \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d \end{vmatrix}, \quad \begin{vmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 2 & 3 & 4 & 11 \end{vmatrix}. \quad \mathbf{R}: \quad 24,$
- 16) Suponha que duas matrizes \mathbf{A} e \mathbf{B} de ordem $n \times n$ são ambas triangular superior. Mostre que $|\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}||$.
- 17) Sejam $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$. Calcule \mathbf{AB} , \mathbf{BA} , $\mathbf{A'B'}$ e $\mathbf{B'A'}$. Mostre que $|\mathbf{A}| = |\mathbf{A'}|$ e $|\mathbf{AB}| = |\mathbf{A}| \cdot |\mathbf{B}|$. É correcta a igualdade $|\mathbf{A'B'}| = |\mathbf{A'}| \cdot |\mathbf{B'}|$?
- 18) Seja $\mathbf{A} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 1 & 2 & 5 \end{pmatrix}$. Escreva \mathbf{A}' e depois mostre que $|\mathbf{A}| = |\mathbf{A}'|$.
- 19) Calcule os seguintes determinantes: $\begin{vmatrix} 3 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 0 & 5 \end{vmatrix}, \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & 4 \\ 0 & 0 & 3 & -1 \\ -3 & -6 & -9 & -12 \end{vmatrix}, \begin{vmatrix} a_1 x & a_2 & a_3 & a_4 \\ 0 & -x & 0 & 0 \\ 0 & 1 & -x & 0 \\ 0 & 0 & 1 & -x \end{vmatrix}.$ $\mathbf{R}: \ 0, \ 0, \ x^4 a_1 x^3$
- 20) Sejam \mathbf{A} e \mathbf{B} duas matrizes de ordem 3×3 cujos determinantes são $|\mathbf{A}| = 3$ e $|\mathbf{B}| = -4$. Onde for possível ache os valores de $|\mathbf{A}\mathbf{B}|$, $3|\mathbf{A}|$, $|-2\mathbf{B}|$, $|4\mathbf{A}|$, $|\mathbf{A}| + |\mathbf{B}|$ e $|\mathbf{A} + \mathbf{B}|$.
- 21) Se $\mathbf{A} = \begin{pmatrix} a & 1 & 4 \\ 2 & 1 & a^2 \\ 1 & 0 & -3 \end{pmatrix}$, calcule $\mathbf{A}^2 \in |\mathbf{A}|$.
- 22) Prove que cada um dos seguintes determinantes é igual a zero:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 8 \end{vmatrix}, \quad \begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix}, \quad \begin{vmatrix} x-y & x-y & x^2-y^2 \\ 1 & 1 & x+y \\ y & 1 & x \end{vmatrix}.$$

23) Seja
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Calcule $\mathbf{X}'\mathbf{X}$ e $|\mathbf{X}'\mathbf{X}|$.

M. J. Alves

24) Se
$$\mathbf{A}_a = \begin{pmatrix} a & 2 & 2 \\ 2 & a^2 + 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$
, calcule $|\mathbf{A}_a| \in |\mathbf{A}_1^6|$.

- 25) Mostre que o determinante duma matriz ortogonal ${\bf P}$ é igual a 1 ou -1.
- 26) Uma matriz quadrada **A** de ordem n chama-se **involutiva** se $\mathbf{A}^2 = \mathbf{I}_n$.
 - (a) Mostre que o determinante duma matriz involutiva é igual a 1 ou -1;
 - (b) Mostre que $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ e $\begin{pmatrix} a & 1-a^2 \\ 1 & -a \end{pmatrix}$ são involutivas (para todos a);
 - (c) Mostre que **A** é involutiva \iff $(\mathbf{I}_n \mathbf{A})(\mathbf{I}_n + \mathbf{A}) = \mathbf{0}$.
- 27) Prove que a matriz inversa de $\begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix}$ é $\begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix}$.
- 28) Prove que a matriz inversa de $\begin{pmatrix} 1 & 1 & -3 \\ 2 & 1 & -3 \\ 2 & 2 & 1 \end{pmatrix}$ é $\begin{pmatrix} -1 & 1 & 0 \\ 8/7 & -1 & 3/7 \\ -2/7 & 0 & 1/7 \end{pmatrix}$.
- 29) Ache os valores de a e b de modo que $\mathbf A$ seja a matriz inversa de $\mathbf B$ se

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \\ a & 1/4 & b \\ 1/8 & 1/8 & -1/8 \end{pmatrix} \qquad \mathbf{e} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 6 \\ 1 & 3 & 2 \end{pmatrix}.$$

R: a = -3/4, b = 3/4

- 30) Dada a matriz $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, calcule $|\mathbf{A}|$, \mathbf{A}^2 e \mathbf{A}^3 . Mostre que $\mathbf{A}^3 2\mathbf{A}^2 + \mathbf{A} \mathbf{I} = \mathbf{0}$, onde \mathbf{I} é a matriz unidade de ordem 3 e $\mathbf{0}$ é a matriz nula. Mostre que \mathbf{A} possui inversa e $\mathbf{A}^{-1} = (\mathbf{A} \mathbf{I})^2$.
- 31) Seja $\mathbf{A} = \begin{pmatrix} 2 & 1 & 4 \\ 0 & -1 & 3 \end{pmatrix}$. Calcule $\mathbf{A}\mathbf{A}'$, $|\mathbf{A}\mathbf{A}'| \in (\mathbf{A}\mathbf{A}')^{-1}$.
- 32) Suponha que \mathbf{A} , \mathbf{P} e \mathbf{D} são matrizes quadradas tais que $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. Mostre que $\mathbf{A}^2 = \mathbf{P}\mathbf{D}^2\mathbf{P}^{-1}$. Usando o método de indução mostre que $\mathbf{A}^m = \mathbf{P}\mathbf{D}^m\mathbf{P}^{-1}$ para qualquer inteiro m.
- 33) Dada a matriz $\mathbf{B} = \begin{pmatrix} -1/2 & 5\\ 1/4 & -1/2 \end{pmatrix}$, calcule $\mathbf{B}^2 + \mathbf{B}$, $\mathbf{B}^3 2\mathbf{B} + \mathbf{I}$ e, depois, ache \mathbf{B}^{-1} .
- 34) Suponha que \mathbf{X} é uma matriz de dimensão $m \times n$ tal que $|\mathbf{X}'\mathbf{X}| \neq \mathbf{0}$. Mostre que a matriz

$$\mathbf{A} = \mathbf{I}_m - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

é idempotente, isto é, $\mathbf{A}^2 = \mathbf{A}$.

- 35) Sejam $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ e $\mathbf{T} = \frac{1}{12} \begin{pmatrix} s & t & 3 \\ 7 & -8 & 3 \\ 1 & t & -3 \end{pmatrix}$, onde s e t são números reais. Prove que $\mathbf{T} = \mathbf{A}^{-1}$ para valores apropriados de s e t.
- 36) Seja **D** uma matriz de dimensão $n \times n$ tal que $\mathbf{D}^2 = 2\mathbf{D} + 3\mathbf{I}$. Prove que $\mathbf{D}^3 = a\mathbf{D} + b\mathbf{I}$ para valores apropriados de a e b. Ache uma expressão similar para \mathbf{D}^6 e \mathbf{D}^{-1} (isto é, expressa na forma $\alpha \mathbf{D} + \beta \mathbf{I}$).

- 37) Ache a matriz inversa, caso exista, para : $\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 \\ -3 & -2 & 1 \\ 4 & -16 & 8 \end{pmatrix}$.
- 38) Ache a matriz inversa de $\begin{pmatrix} -2 & 3 & 2 \\ 6 & 0 & 3 \\ 4 & 1 & -1 \end{pmatrix}$.
- 39) Seja

$$\mathbf{A} = \begin{pmatrix} 0.2 & 0.6 & 0.2 \\ 0 & 0.2 & 0.4 \\ 0.2 & 0.2 & 0 \end{pmatrix}.$$

Ache
$$(\mathbf{I} - \mathbf{A})^{-1}$$
. **R**: $\frac{5}{62} \begin{pmatrix} 18 & 16 & 10 \\ 2 & 19 & 8 \\ 4 & 7 & 16 \end{pmatrix}$.

40) Ache as inversas, caso existam, das matrizes: $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 3 & 2 & -1 \\ -1 & 5 & 8 \\ -9 & -6 & 3 \end{pmatrix}$.

R:
$$\mathbf{A}^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$
, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{pmatrix}$, **C** não tem inversa

41) Dada a matriz

$$A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ t & -2 & 2 \\ 2 & -1 & t \end{array}\right)$$

ache o(s) valor(es) de t de modo que exista a matriz inversa A^{-1} . R: $t \neq 1, t \neq 2$

- 42) Diga quais das seguintes equações com variáveis x, y, z e w são lineares e quais não são. (Na alínea (f), a e b são constantes não negativas.)
 - (a) 3x y z w = 50;
 - (b) $\sqrt{3}x + 8xy z + w = 0$;
 - (c) 3(x+y-z) = 4(x-2y+3z);
 - (d) $3.33x 4y + \frac{800}{3}z = 3;$
 - (e) $(x-y)^2 + 3z w = -3$;
 - (f) $2a^2x \sqrt{b}y + (2 + \sqrt{a})z = b^2$.
- 43) Sejam x_1, y_1, x_2 e y_2 valores constantes e consideremos as seguintes equações com incógnitas a, b, c e d.

$$ax_1^2 + bx_1y_1 + cy_1^2 + d = 0$$

$$ax_2^2 + bx_2y_2 + cy_2^2 + d = 0$$

Será este sistema linear em ordem a $a, b, c \in d$?

M. J. Alves

44) Dado o modelo linear

$$c = 0.712y + 95.05$$

$$s = 0.158(c + x) - 34.30$$

$$y = c + x - s$$

$$x = 93.53$$

escreva-o na forma canónica quando as variáveis aparecem na ordem x, y, s, c. R: $x\approx 93.53, y\approx 482.11, s\approx 49.73, c\approx 438.31$

45) Escreva o sistema

$$x_1 + 2x_2 + x_3 = 4$$

 $x_1 - x_2 + x_3 = 5$
 $2x_1 + 3x_2 - x_3 = 1$

na forma matricial.

- 46) Numa empresa trabalham 40 empregados (homens e mulheres). Cada homem ganha 50 contos por dia e cada mulher 30 contos. Os empregados recebem conjuntamente 1600 contos. Usando o método de substituição diga quantos homens e mulheres trabalham na empresa. **R**: (20, 20)
- 47) Use a regra de Cramer e resolva o seguinte sistema de equações

$$3x - y = 8$$
$$x - 2y = 5$$

em ordem a (e.o.a) $x \in y$. Verifique a resposta obtida por meio de substituição.

48) Use a regra de Cramer e resolva o seguinte sistema de equações

$$\begin{aligned}
x + 3y &= 1 \\
3x - 2y &= 14
\end{aligned}$$

em ordem a (e.o.a) $x \in y$. Verifique a resposta obtida por meio de substituição.

49) Use a regra de Cramer e resolva o seguinte sistema de equações

$$\begin{array}{rcl}
ax - by & = 1 \\
bx + ay & = 2
\end{array}$$

em ordem a (e.o.a) x e y. Verifique a resposta obtida por meio de substituição.

50) Use a regra de Cramer para achar Y e C se

$$Y = C + I_0 + G_0, \quad C = a + bY,$$

onde Y é o produto nacional e C é o consumo privado. Os símbolos I_0 (investimento privado), G_0 (consumo público e investimento), a e b representam constantes, com b < 1. (Realmente, isto é um caso típico para o qual $n\tilde{a}o$ se deveria usar a regra de Cramer, porque Y e C podem ser encontrados dum modo mais simples. Como?)

51) Considere os seguintes modelos macroeconómicos (ligados) de duas nações i=1,2, que comercializam somente entre si:

$$Y_1 = C_1 + A_1 + X_1 - M_1,$$
 $C_1 = c_1 Y_1,$ $M_1 = m_1 Y_1,$
 $Y_2 = C_2 + A_2 + X_2 - M_2,$ $C_2 = c_2 Y_2,$ $M_2 = m_2 Y_2.$

Aqui, para $i=1,2,\ Y_i$ é o rendimento, C_i é o consumo, A_i é a despesa autónoma (exógena), X_i denota as exportações e M_i denota as importações do país i. Interprete as duas equações $X_1=M_2$ e $X_2=M_1$. Calcule os correspondentes valores de equilíbrio de Y_1 e Y_2 como funções das variáveis exógenas. Como é que um aumento em A_1 afectará Y_2 ? Interprete a sua resposta. \mathbf{R} : $Y_1=\frac{1}{D}[A_2m_2+A_1(1-c_2+m_2)],$ $Y_2=\frac{1}{D}[A_1m_1+A_2(1-c_1+m_1)]$

52) Use a regra de Cramer e resolva o sistema de equações

$$\begin{array}{rcl}
x_1 - x_2 + x_3 & = & 2 \\
x_1 + x_2 - x_3 & = & 0 \\
-x_1 - x_2 - x_3 & = & -6
\end{array}$$

R:
$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$

53) Use a regra de Cramer e resolva o sistema de equações

$$x_1 - x_2 = 0$$

 $x_1 + 3x_2 + 2x_3 = 0$
 $x_1 + 2x_2 + x_3 = 0$

R:
$$x_1 = x_2 = x_3 = 0$$

54) Use a regra de Cramer e resolva o sistema de equações

$$x + 3y - 2z = 1$$

 $3x - 2y + 5z = 14$
 $2x - 5y + 3z = 1$

R:
$$x = 1, y = 2, z = 3$$

55) Considere o macro modelo descrito por três equações

$$Y = C + A_0,$$
 $C = a + b(Y - T),$ $T = d + tY,$

onde Y é a renda, C é o consumo, T é o imposto da receita, A_0 é a despesa autónoma (exógena) constante e a, b, d e t são todos parâmetros positivos. Ache os valores de equilíbrio das variáveis endógenas Y, C e T:

- (a) por meio de eliminações sucessivas ou substituição;
- (b) escrevendo as equações na forma matricial e aplicando as regras de Cramer.
- 56) Utilizando o método da matriz inversa resolva o sistema

$$2x - 3y = 3
3x - 4y = 5$$

57) Os preços de equilíbrio para três mercados são dados pelo sistema

Ache o preço de equilíbrio para cada mercado. \mathbf{R} : (4,7,6)

58) Use a regra de Cramer e resolva o sistema:

$$x + 2y - z = -5$$

 $2x - y + z = -6$
 $x - y - 3z = -3$

R:
$$x = 1, y = -2, z = 2$$

59) Use a regra de Cramer e resolva o sistema:

$$\begin{array}{cccc} x+y & = 3 \\ x & +z & = 2 \\ y+z+u & = 6 \\ y & +u & = 1 \end{array}$$

R:
$$x = -3$$
, $y = 6$, $z = 5$, $u = -5$

60) Use a regra de Cramer e prove que o sistema de equações

$$3x_1 + x_2 = b_1$$

 $x_1 - x_2 + 2x_3 = b_2$
 $2x_1 + 3x_2 - x_3 = b_3$

possui uma única solução para quaisquer valores de b_1 , b_2 e b_3 , depois ache a solução.

61) Prove que o sistema homogéneo de equações

$$ax + by + cz = 0$$
$$bx + cy + az = 0$$
$$cx + ay + bz = 0$$

possui uma solução não trivial se e somente se $a^3 + b^3 + c^3 - 3abc = 0$.

- 62) Forneça uma prova matemática para o facto de que se ζ é uma solução particular de um sistema linear não homogéneo e ζ_0 é a solução do respectivo sistema linear homogéneo associado, então $\zeta + \zeta_0$ é a solução geral do sistema não homogéneo.
- 63) Dado o sistema

determine o(s) valor(es) de t de modo que existam soluções diferentes de x=y=z=0. R: $t=1 \lor t=2$

64) Dado o sistema

$$5x + 8y + 6z = 7$$

$$3x + 5y + 4z = 5$$

$$7x + 9y + 4z = 1$$

$$2x + 3y + 2z = 2$$

verifique se ele é consistente e ache as soluções caso sua resposta seja afirmativa. \mathbf{R} : (-5+2t,4-2t,t)

65) Dado o sistema

verifique se ele é consistente e ache as soluções caso sua resposta seja afirmativa. R: Inconsistente

66) Dada a matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & 2 \end{array}\right)$$

(a) Calcule o seu determinante |A|; **R**: -2

(b) Verifique que

$$A^{-1} = \frac{1}{2} \begin{pmatrix} -3 & 1 & 1 \\ -2 & 2 & 0 \\ 7 & -3 & -1 \end{pmatrix};$$

(c) Use o resultado da alínea b) e resolva o sistema

67) Usando o método de eliminação de Gauss resolva o sistema

$$\begin{array}{rcl}
 x_1 + & x_2 & = 3 \\
 3x_1 + 5x_2 & = 5
 \end{array}$$

R:
$$x_1 = 5$$
, $x_2 = -2$

68) Usando o método de eliminação de Gauss resolva o sistema

$$2x_1 - 3x_2 + x_3 = 0
x_1 + x_2 - x_3 = 0$$

R: $x_1 = (2/5)t$, $x_2 = (3/5)t$, $x_3 = t$, onde t é um real arbitrário

69) Usando o método de eliminação de Gauss resolva o sistema

$$\begin{aligned}
 x_1 + 2x_2 + x_3 &= 4 \\
 x_1 - x_2 + x_3 &= 5 \\
 2x_1 + 3x_2 - x_3 &= 1
 \end{aligned}$$

R:
$$x_1 = 20/9$$
, $x_2 = -1/3$, $x_3 = 22/9$

70) Discuta as possíveis soluções do sistema

$$\begin{array}{lll} x + & y - & z & = 1 \\ x - & y + 2z & = 2 \\ x + 2y + az & = b \end{array}$$

para diferentes valores de a e b, usando a eliminação de Gauss.

71) Ache os valores de c para os quais o sistema

$$\begin{array}{lll} 2w + & x + 4y + 3z & = 1 \\ w + 3x + 2y - & z & = 3c \\ w + & x + 2y + & z & = c^2 \end{array}$$

possui solução e ache a solução para estes valores de c. \mathbf{R} : $Para \ c=1$ e $para \ c=-2/5$ a solução é: $x=2c^2-1+t,\ y=s,\ z=t,\ w=1-c^2-2s-2t,$ onde s e t são reais arbitrários

Ensinar é lembrar aos outros que eles sabem tanto quanto você...

Typeset by LATEX 2ε