Sommersemester 2005 Lösungen der Klausur 21. Mai 2005

Informatik IV

Aufgabe 1 (13 Punkte)

Gelten folgende Aussagen? (Machen Sie ein Kreuz im Feld 'J', wenn die Aussage wahr ist, ansonsten bei 'N'.)

Für falsche Antworten werden keine Punkte abgezogen.

rur falsche Antworten werden keine runkte abgezogen.	
Es gibt eine Sprache L , die zwar von einem nichtdeterministischen endlichen Automaten (NFA) akzeptiert wird, aber von keinem deterministischen endlichen Automaten (DFA).	J 😿
Die Menge der regulären Sprachen ist eine echte Teilmenge der kontextfreien Sprachen.	V N
Die Pumping-Lemmas (für reguläre und kontextfreie Sprachen) wurden 1957 von Edward J. Pumping am MIT formuliert.	J
Jeder endliche Automat mit ϵ -Übergängen kann in einen DFA ohne ϵ -Übergänge umgewandelt werden, so dass dieser die gleiche Sprache erkennt. Zu jedem nichtdeterministischen endlichen Automaten A gibt es eine kontext-	火 N
freie Grammatik G , so dass die von A akzeptierte Sprache $L(A)$ gleich der von G erzeugten Sprache $L(G)$ ist. Zu jeder kontextfreien Grammatik G gibt es einen nichtdeterministischen endlichen Automaten A , so dass die von G erzeugte Sprache $L(G)$ gleich der von	火 N
A akzeptierten Sprache ist. Es gibt keine Sprachen, die außerhalb der Chomsky-Hierarchie eingeordnet	J 😿
werden müssen.	J 🗸
Zu jedem regulären Ausdruck existiert eine reguläre Grammatik, die die gleiche Sprache erzeugt, und umgekehrt.	y N
Zu jedem deterministischen endlichen Automaten A gibt es einen bis auf Isomorphie eindeutigen äquivalenten DFA A_{\min} mit einer minimalen Anzahl von	70.37
Zuständen. Die regulären Sprachen sind abgeschlossen unter Vereinigung, Konkatenation,	V N
Schnittbildung, Homomorphismus und Linksquotient. Es gibt eine Sprache L , die von einem nichtdeterministischen 2-Wege- Automaten (2NFA) akzeptiert wird, aber von keinem deterministischen endli-	y N
chen Automaten. Das Pumping-Lemma für reguläre Sprachen sagt aus, dass es für jede reguläre Sprache L eine Zahl n_0 gibt, so dass aus $z \in L$ mit $ z \ge n_0$ gilt, dass für jede	Ј
Zerlegung $z = uvw$ mit $v \ge 1$, $ uv \le n_0$ gilt, dass $\forall k \in \mathbb{N}_0 : uv^k w \in L$	J 🗸
Es gibt eine nicht-reguläre Grammatik, die eine reguläre Sprache erzeugt. .	✓ N

Aufgabe 2 (6 Punkte)

Konstruieren Sie nach dem Verfahren aus der Vorlesung für den folgenden regulären Ausdruck

$$(ba) \mid ((a|bb)a^*b)$$

einen nichtdeterministischen endlichen Automaten (ϵ -Übergänge sind zugelassen). Geben Sie alle Ihre Zwischenschritte an.

Lösungsvorschlag

Wir konstruieren von innen nach außen. (Beachte, dass die nicht beschrifteten Übergänge in den Zeichnungen die ϵ -Übergänge sind). Für b haben wir:

Für a haben wir:

Für ba haben wir:

Für bb haben wir:

Für a|bb haben wir:

Für a^* haben wir:

Für $(a|bb)a^*$ haben wir:

Für $(a|bb)a^*b$ haben wir:

Für $(ba) \mid ((a|bb)a^*b)$ haben wir dann:

Führt man die Potenzmengenkonstruktion für den Automaten durch und minimiert das Ergebnis (war nicht verlangt), so erhält man:

Aufgabe 3 (7 Punkte)

Gegeben sei die kontextfreie Grammatik $G = (\{S, A, B\}, \Sigma, P, S)$ mit folgenden Produktionen P in EBNF:

$$\begin{array}{ccc} S & \to & bAB. \\ A & \to & Sba|aBb|a. \\ B & \to & AA|bBb|b. \end{array}$$

Geben Sie eine äquivalente Grammatik in Chomsky-Normalform an.

Lösungsvorschlag

Zuerst führen wir neue Nichtterminale für die Terminal A und B ein:

$$S \rightarrow CAB.$$

$$A \rightarrow SCD|DBC|D.$$

$$B \rightarrow AA|CBC|C.$$

$$C \rightarrow b.$$

$$D \rightarrow a.$$

Dann ersetzen wir Regeln mit mehr als zwei Nichtterminalen auf der rechten Seite:

$$\begin{split} S &\rightarrow CE. \\ A &\rightarrow SF|DG|D. \\ B &\rightarrow AA|CH|C. \\ C &\rightarrow b. \\ D &\rightarrow a. \\ E &\rightarrow AB. \\ F &\rightarrow CD. \\ G &\rightarrow BC. \\ H &\rightarrow BC. \end{split}$$

Anschließend eliminieren wir Regeln der Art $A \to D$. (Kreise sind hier nicht) durch "Rückeinsetzen":

$$S \rightarrow CE.$$

$$A \rightarrow SF|DG|a.$$

$$B \rightarrow AA|CH|b.$$

$$C \rightarrow b.$$

$$D \rightarrow a.$$

$$E \rightarrow AB.$$

$$F \rightarrow CD.$$

$$G \rightarrow BC.$$

$$H \rightarrow BC.$$

Als letztes können wir noch sehen, dass G und H das Gleiche tun und die Regeln entsprechend zusammenfassen:

$$\begin{split} S &\rightarrow CE. \\ A &\rightarrow SF|DG|a. \\ B &\rightarrow AA|CG|b. \\ C &\rightarrow b. \\ D &\rightarrow a. \\ E &\rightarrow AB. \\ F &\rightarrow CD. \\ G &\rightarrow BC. \end{split}$$

Aufgabe 4 (8 Punkte)

Geben Sie für den Automaten $M = (\{0, 1, 2, 3, 4, 5, 6\}, \{a, b\}, \delta, 0, \{6\})$ mit folgender Übergangstabelle

Zustand	\overline{q}	$\delta(q,a)$	$\delta(q,b)$
	0	1	0
	1	4	5
	2	2	2
	3	1	3
	4	6	3
	5	6	0
	6	6	2

einen äquivalenten DFA mit minimaler Anzahl von Zuständen an. Verwenden Sie das Verfahren aus der Vorlesung und geben Sie Ihre einzelnen Schritte an.

Lösungsvorschlag

Alle Zustände sind erreichbar. Wir markieren nun in einem ersten Schritt alle Paare von Zuständen, bei denen einer ein Endzustand und ein anderer kein Endzustand ist:

	0	1	2	3	4	5	6
0	_	_	_	_	_	_	_
1		_	_	_	_	_	_
1 2 3			_	_	_	_	_
3				_	_	_	_
4					_	_	_
4 5						_	_
6	×	×	×	×	×	×	_

Nun iterieren wir über alle Paare von Zustände (i, j) in lexikographischer Ordnung. Zuerst betrachten wir als i = 0:

$$(0,1) \xrightarrow{a} (1,4)$$
 Füge $(0,1)$ in die Liste von $(1,4)$ ein.

$$(0,1) \xrightarrow{b} (0,5)$$
 Füge $(0,1)$ in die Liste von $(0,5)$ ein.

$$(0,2) \xrightarrow{a} (1,2)$$
 | Füge $(0,2)$ in die Liste von $(1,2)$ ein.

$$(0,2) \xrightarrow{b} (0,2)$$
 -

$$(0,3) \xrightarrow{a} (1,1)$$

$$(0,3) \xrightarrow{b} (0,3)$$
 (Anmerkung: hier sieht man schon, dass 0 und 3 äquivalent sind)

$$(0,4) \xrightarrow{a} (1,6)$$
 Markiere $(0,4)$.

$$(0,4) \xrightarrow{b} (0,3)$$
 -

$$(0,5) \xrightarrow{a} (1,6)$$
 Markiere $(0,5)$. Markiere $(0,1)$ aus der Liste von $(0,5)$.

$$(0,5) \xrightarrow{b} (0,0)$$
 -

Daraus ergibt sich folgende Markierung:

	0	1	2	3	4 - - - - ×	5	6
0	_	_	_	_	_	_	_
1	×	_	_	_	_	_	_
2	×	X	_	_	_	_	_
3		×	X	_	_	_	_
4	×	×	×	×	_	_	_
5	×	X	X	X		_	_
6	×	×	×	×	×	×	_

Wir sehen, dass 0 und 3 sowie 4 und 5 zusammengefasst werden können. Der Minimalautomat hat die Zustände $\{03, 1, 2, 45, 6\}$, den Startzustand 03 und die Übergangstabelle

$\overline{\text{Zustand}q}$	$\delta(q,a)$	$\delta(q,b)$
03	1	03
1	45	45
2	2	2
45	6	03
6	6	2

Aufgabe 5 (6 Punkte)

Gegeben sei der folgende nichtdeterministische endliche Automat:

Geben Sie mittels der Potenzmengenkonstruktion einen dazu äquivalenten deterministischen endlichen Automat an:

- 1. Erstellen Sie die Übergangstabelle, und
- 2. Zeichnen Sie den Automaten.

Lösungsvorschlag

1. Wir konstruieren die neuen Zustände:

Zustandq	$\delta(q,0)$	$\delta(q,1)$
{0}	{1}	{2}
{1}	$\{1, 3\}$	{1}
{2}	{2}	$\{2, 3\}$
$\{1, 3\}$	$\{1, 3\}$	{1}
$\{2, 3\}$	{2}	$\{2, 3\}$

2. Der neue Automat ist:

Aufgabe 6 (7 Punkte)

Sei $\Sigma = \{0, 1, 2\}$. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache

 $L = \{w ; w \text{ als tern} \exists z \text{ all interpretient ist eine gerade Zahl}\}$

erkennt.

(Die ternäre Zahldarstellung ist die Darstellung zur Basis 3 ohne führende Nullen. Z.B. ist die Zahl $101_3 = 10_{10}$ gerade.)

Lösungsvorschlag

Wir lesen w von links nach rechts und merken uns den aktuellen Rest bei der Division durch 3. Sei der aktuelle Rest r. Falls r gerade ist, also r=2n, dann ergibt sich dass r+0=2n+0=2n und r+2=2n+2=2(n+1) gerade und r+1=2n+1=2n+1 ungerade sind. Falls r ungerade ist, also r=2n+1, dann ergibt sich dass r+0=2n+1+0=2n+1 und r+2=2n+1+2=2(n+1)+1 ungerade und r+1=2n+1+1=2n+2=2(n+1) gerade sind. Der Automat hat also die zwei Zustände G und U und folgenden Übergangsgraphen:

Berücksichtigt man die Tatsache, dass w nicht mit 0 anfangen soll, so erhält man:

Aufgabe 7 (8 Punkte)

Seien $\Sigma = \{a, b, c\}$ und

$$L = \{wc\widehat{w} \; ; \; w \in \{a, b\}^*\},\$$

wobei \widehat{w} das zu w gespiegelte Wort ist. Zeigen Sie, dass die Sprache L

- (a) nicht regulär,
- (b) kontextfrei

ist.

Lösungsvorschlag

- (a) Angenommen, L wäre regulär. Sei n die Konstante aus dem Pumping-Lemma. Das Wort $z=a^{2n}ca^{2n}$ ist sicher in L. Wäre L regulär, so müsste es eine Zerlegung uvw von z geben, so dass $|uv| \leq n$, $|v| \geq 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}_0$. Offensichtlich ist daher $u=a^k$, $v=a^l$ und $w=a^{2n-k-l}ca^2n$ für ein $l \geq 1$ und $k+l \leq n$. Das Wort $uw=a^{2n-l}ca^2n$ ist aber wegen 2n-l < 2n nicht in L, daher: Widerspruch.
- (b) Eine kontextfreie Grammatik für L ist $G = (V, \Sigma, P, S)$ mit V = S und Regelmenge $P = \{S \to c, S \to aSa, S \to bSb\}$. Dies läßt sich durch Induktion über die Wortlänge (die ungerade sein muss) leicht zeigen: Der Induktionsanfang mit $c \in L$ ist klar. Induktionsschritt: Sei $w \in L$. Dann muss w = ava oder w = bvb für ein $v = uc\widehat{u}$ sein. Da $uc\widehat{u} \in L$ läßt es sich aus S herleiten. Die Anwendung einer der Regeln $S \to aSa$ oder $S \to bSb$, zeigt, dass auch w aus S herleitbar ist.

Aufgabe 8 (5 Punkte)

Zeigen oder widerlegen Sie: Die Sprache

$$L = \{a^{(k^3)} \; ; \; k \in \mathbb{N}_0\}$$

ist kontextfrei.

Lösungsvorschlag

Angenommen, L wäre kontextfrei. Sei n die Konstante aus dem Pumping-Lemma. Wir wählen k=n, dann ist das Wort $z=a^{(k^3)}$ in L. Nun läßt sich z zerlegen in uvwxy mit $|vx| \geq 1$ und $|vwx| \leq n$, so dass $uv^iwx^iy \in L$ für alle $i \in \mathbb{N}_0$ ist. Sei l=|vx|. Insbesondere gilt aber $k^3+l=n^3+l\geq n^3+1$ und $k^3+l=n^3+l\leq n^3+n< n^3+3n^2+3n+1=(n+1)^3$, daher kann k^3+l keine Kubikzahl sein.