Linear Algebra Exercise 4

114.03.31

- 1. Determine whether the transformation $T(x, y, z) = (4x, \frac{y^2}{z^2})$ linear or not?
- 2. Find the standard matrix A for a linear transformation on \mathbb{R}^2 ; that is an reflection about the x-axis, followed by an clockwise rotation of 60° about the origin. Also, find the inverse matrix of A.
- 3. Determine a 2D transformation matrix (A) that is a concatenation of reflection to y-axis, followed by a rotation of 30 degree.

 Also determine A^{-1} .
- 4. There exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(5,13) = (31,-53,-2) and T(11,7) = (25,13,-26). Find T(2,-1).
- 5. Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that

$$T\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ T\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \ T\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$$

Find the standard matrix representation of T.

- 6. Find the coordinate vectors of u = (4,5) relative to the following basis B of \mathbb{R}^2 : $B = \{(2,1), (-1,1)\}$.
- 7. Find the coordinate vector of u relative to the given basis B in \mathbb{R}^3 , where u = (0,5,-3,-4) and $B = \{(1,2,3), (1,-1,0), (0,1,-2)\}.$
- 8. Let $v_1 = \begin{bmatrix} 4 \\ 6 \\ 7 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, and let $u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$. If $x = 2v_1 + 3v_2 4v_3$, determine the coordinates of x with respect tp $\{u_1, u_2, u_3\}$.
- 9. In the vector space \mathbb{R}^3 , there are two sets of basis $A = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \right\}$ and $B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Let vector

$$[x]_B = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
. Find

- a) coordinate transitions matrix from B to A.
- b) $[x]_A$.
- 10. Suppose B = ([2,3,1], [1,2,0], [2,0,3]) and B' = ([1,0,0], [0,1,0], [0,0,1]) are ordered bases for \mathbb{R}^3 . Find the change of coordinates from B to B'.

- 11. Consider the bases $B = \{p_1, p_2\}$ and $B' = \{q_1, q_2\}$ for P_1 , where $p_1 = 1 + 2x$, $p_2 = 3 3x$, $q_1 = x$, $q_2 = 4 + x$.
 - a) Find the transition matrix from B' to B.
 - b) Find the transition matrix from B to B'.
 - c) Compute the coordinate vector $[p]_B$, where p = 1 + x.
 - d) Use your answer to parts (b) and (c) to compute $[p]_{B'}$.
- 12. Let L be a transformation mapping P_2 into \mathbb{R}^2 defined by $L(p(x)) = \begin{bmatrix} \int_0^1 p(x) dx \\ p'(x) \end{bmatrix}$.
 - a) Is L a linear transformation?
 - b) Find a matrix A such that $L(\alpha_1 x + \alpha_2) = A \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$.
- 13. Let $D = \frac{d}{dx}$ be the operation of taking the derivative. Find the matrix of D with respect to the basis $\{x^2, x, 1\}$ of P_2 .
- 14. Let $T: P_2 \to \mathbb{R}^{2 \times 2}$ be a linear transformation such that $T(a + bx + cx^2) = \begin{bmatrix} a & b+c \\ a+b & c \end{bmatrix}$. Find the matrix representation of T with respect to the standard bases.
- 15. Define the transformation T from P_2 to P_1 by $T(v) = \frac{v(1) v(0)}{t}$. Let the ordered basis for P_2 be $B = \{1 + t, t + t^2, 1 + t^2\}$ and the ordered basis for P_1 be $C = \{1 + t, 1 t\}$. Find the matrix representation of T.
- 16. Let the ordered basis for P_3 be $B = \{x^3, x^2, x, 1\}$ and let $T: P_3 \to P_3$ be defined by $T(p(x)) = \frac{d}{dx}p(x)$
 - a) Find the matrix representation A of T.
 - b) Use A to find $T(4x^3 5x^2 + 10x 13)$.
- 17. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map given on the standard basis by $f(e_1) = 2e_2 + e_3$ and $f(e_2) = e_1 + 3e_2 + 5e_3$. Determine the 3×2 matrix of this map with respect to the bases $3e_1 e_2$, $2e_1 + 3e_2$ of \mathbb{R}^2 and e_1 , $e_1 + e_2$, $e_1 e_2 e_3$ of \mathbb{R}^3 .
- 18. Let $u_1 = (2,1)^T$ and $u_2 = (5,3)^T$ and let L be the linear operator that rotates vector in \mathbb{R}^2 by 45° in the counterclockwise direction. Find the matrix representation of L with respect to the ordered basis $[u_1, u_2]$.
- 19. Define $T: P_2 \to P_2$ by the equation T(p(x)) = p(x) + (1+x)p'(x).
 - a) Find the matrix A representing T relative to the standard basis $\{1, x, x^2\}$ for P_2 .
 - b) Find the matrix B representing T relative to the basis $\{1,1+x,1+x+x^2\}$.
 - c) Find a matrix C such that $B = C^{-1}AC$.
- 20. Let $T: P_2 \to P_2$ be defined by T(p(x)) = p(x-1). Consider the two ordered bases $B = \{x^2, x, 1\}$ and $B' = \{x, x + 1, x^2 1\}$. Find the matrix representation $[T]_B$ and $[T]_B$, of T and a matrix C such that $C^{-1}[T]_BC = [T]_B$.
- 21. $L(x) = \begin{bmatrix} x_1 x_2 \\ x_2 x_3 \end{bmatrix}$, $x \in \mathbb{R}^3$. Find ker (L).

- 22. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_1 + a_3 \\ a_1 + a_2 \\ a_2 a_3 \end{bmatrix}$.
 - a) Find a basis for the kernel space, $\ker(T)$.
 - b) Find a basis for the range space, R(T).
- 23. Let $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ be the linear operator defined by $T(X) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} X + X \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$.
 - a) Find the dimension of the range of T.
 - b) Find a basis for the null space of all matrices X.
- 24. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(a, b, c) = (a + 2b + c, -a b + 2c, 2a + 3b c). Determine the values of k such that (k, 3, -2) is in the range of T.
- 25. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by T(x, y, z) = (x y + 3z, 5x + 6y 4z, 7x + 4y + 2z). Find dim $(T(\mathbb{R}^3))$ and dim $(\ker(T))$.
- 26. Consider a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ with $T\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 2a_1 \\ a_1 + 2a_2 \\ a_2 + 2a_3 \\ a_3 + 2a_4 \end{bmatrix}$. Is T one-to-one? Does T map \mathbb{R}^3 onto \mathbb{R}^4 ?
- 27. Let $T: P_2 \to P_3$ be given by T(f(x)) = xf(x) + f'(x).
 - a) What is the null space N(T) of T?
 - b) What is the range R(T) of T?
 - c) Is T one-to-one? Is T onto?
- 28. Find a basis for the solution space $\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 = 0 \\ x_1 + 3x_2 + 5x_3 + 7x_4 = 0 \end{cases}$
- \blacksquare 29. Find the bases of the row space, column space and null space of the following matrix A, respectively.

$$A = \begin{bmatrix} 1 & 3 & 0 & -1 & 2 \\ 0 & -2 & 4 & -2 & 0 \\ 3 & 11 & -4 & -1 & 6 \\ 2 & 5 & 3 & -4 & 0 \end{bmatrix}.$$

■ 30. Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 having the following matrix representation with respect to the standard basis:

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}.$$

- a) Find $L^3(v)$, where $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$.
- b) Find the dimension of the kernel space, and find a basis of the range space of L.
- 31. Define $T: P_2 \to P_2$ by $T(a + bx + cx^2) = (a + 2c) + (a + b)x + (a + c)x^2$. Find T^{-1} , if it exists.
- 32. Let $T: P_2 \to P_2$ be defined by T(f(x)) = f''(x) 2f'(x) f(x).
 - a) Determine whether T is invertible.
 - b) Compute T^{-1} if it exists.

■ 33. Let $J: P_n \to P_{n+1}$ be the integration transformation defined by

$$J(P) = \int (a_0 + a_1 x + \dots + a_n x^n) dx = a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1}$$

where $P = a_0 + a_1 x + \dots + a_n x^n$. Find the matrix for J with respect to the standard bases for P_n and P_{n+1} .

■ 34. Assume $T: P_2 \to \mathbb{R}^2$ is a linear transformation with the matrix representation $[T]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix}$ with respect to the basis $\beta = \begin{bmatrix} \frac{1}{2} & \frac{1}{2}x, \frac{1}{2} + \frac{1}{2}x, x^2 \end{bmatrix}$ for P_2 , and the basis $\gamma = \{\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}\}$ for \mathbb{R}^2 . Find the function T.

- 35. Let $T: P_2 \to P_2$ be defined by $T(p(x)) = 2p(x) + 2p(1)x p''(1)x^2$. And let $B = \{1, x, x^2\}$.
 - a) Find $[T]_B$.
 - b) Find N(T).
- 36. Let V be the linear space of all functions in two variables of the form $q(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2$. Consider the linear transformation $T: V \to V$

$$T(f) = \frac{\partial f}{\partial x_1} x_2 - \frac{\partial f}{\partial x_2} x_1.$$

- a) Find the matrix of T with respect to the basis x_1^2 , x_1x_2 , x_2^2 .
- b) Find bases of kernel and image of T.
- 37. Let the linear transformation be $L: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ be defined by $L(A) = \frac{1}{2}(A + A^T)$ for all $A \in \mathbb{R}^{2\times 2}$.
 - a) Find the matrix representation of L with respect to the standard (ordered) basis

$$\left\{E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right\}.$$

- b) Determine the kernel and range of L. What are their dimensions?
- 38. Let A be an $n \times n$ matrix, and $v_1, ..., v_n$ be linearly independent vectors in \mathbb{R}^n .
 - a) What must be true about A for $Av_1 \dots, Av_n$ to be linearly independent?
 - b) Justify your answer for (a) using a formal proof that is based on the definition of linear independence for $v_1, ..., v_n$
- 39. Consider the system of linear equations:

$$x + (\lambda - 1)y + (\lambda - 2)z = 2$$
$$\lambda x + (2\lambda - 2)y + (\lambda - 2)z = \lambda + 1$$
$$(\lambda^2 - 2\lambda)x + \lambda z = -2\lambda$$

Find the real values of λ such that this system of equations satisfies the following condition.

- a) The system has no solution.
- b) The system has a unique solution.
- c) The set of the solutions of the equations is a line.
- d) The set of the solutions of the equations is a plane.

- 40. Let L be the operator on P_2 defined by L(p(x)) = xp'(x) p(x).
 - a) Find the matrix A representing L with respect to the standard basis $\{1, x, x^2\}$ of P_2 .
 - b) Find the matrix B representing L with respect to the basis $\{1,1+x,1+2x+x^2\}$.
 - c) Find the matrix S such that $B = S^{-1}AS$.
 - d) If $p(x) = a_0 + a_1(1+x) + a_2(1+2x+x^2)$, calculate L''(p(x)) with respect to the basis $\{1, 1+x, 1+2x+x^2\}$.
- 41. Show that the following mapping F are linear:
 - a) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (x + y, x).
 - b) $F: \mathbb{R}^3 \to \mathbb{R}$ defined by F(x, y, z) = 2x 3y + 4z.
- 42. Define the transformation $T: P_2 \to P_2$ by $T(a_2x^2 + a_1x + a_0) = (a_2 1)x^2$. Prove or disprove that T is linear.
- 43. Let B be an $n \times n$ invertible matrix. Define $\varphi(A) = B^{-1}AB$. Prove that φ is an isomorphism.
- 44. Let X = C[a, b] and $\phi: X \to X$ be defined by $(\phi(f))(t) = \int_a^t f(x) dx$.
 - a) Show that ϕ is a linear transformation.
 - b) Find ker (ϕ) .
- 45. Let V be an n-dimensional vector space over \mathbb{R} and let $T: V \to V$ be a linear transformation such that N(T) = R(T).
 - a) Prove that n must be even.
 - b) Give an example of such a linear transformation T for $V = \mathbb{R}^2$.
- 46. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Prove that if T(T(x)) = T(x) + T(x) + 3x for all $x \in \mathbb{R}^n$, then T is a one-to-one mapping of \mathbb{R}^n into \mathbb{R}^n .
- \blacksquare 47. Let V be the vector space of all polynomials of degree less or equal than 20.
 - a) Show that the map $T: V \to \mathbb{R}$ given by $T(p(t)) = \int_0^1 p(t) dt$ is a linear transformation.
 - b) Show that T is onto.
 - c) Find the dimension of the kernel of T.
- 48. If A and B are $n \times n$ matrices satisfying AB = 0, prove that $rank(A) + rank(B) \le n$.
- 49. Let $L: V \to W$ be a one-to-one and onto, hence invertible, linear transformation between vector space V and W. Let $\{z_1, ..., z_r\}$ be a basis for W. Show that $\{L^{-1}(z_1), ..., L^{-1}(z_r)\}$ is a basis for V.
- 50. Consider \mathbb{C} as a vector space over \mathbb{R} . Let A be a linear map of \mathbb{C} into itself given by $Az = az + b\bar{z}$, where $a, b \in \mathbb{C}$. Prove that this map is not invertible if and only if |a| = |b|. (4-222)