Flat Modules

Nutan Nepal

March 29, 2024

1 Introduction

In the study algebraic sets, we can consider a family of varieties as follows: using the coordinate ring R of an affine variety Y over an algebraically closed field k and a collection of polynomials $f_i(x_1, \ldots, x_n; b) \in R[x_1, \ldots, x_n]$, we consider the collection of zero sets

$$V(f_i(x;b)) = \{a \in \mathbb{A}_k^n | f_i(a,b) = 0\}, b \in Y$$

to be in a family parametrized by Y. The polynomials f_i were not over the field k and the zero sets need not be algebraic sets themselves. However, they have covering by affine varieties and can be considered as subschemes of \mathbb{A}^n_k . If I is the ideal generated by the polynomials f_i 's in the ring $R[x_1, \ldots, x_n]$, then we get the ring morphism $f: R \to R[x_1, \ldots, x_n]/I$. This ring morphism induces the morphism of the maximal spectrums

$$\operatorname{mSpec}(R[x_1,\ldots,x_n]/I) \to \operatorname{mSpec} R = Y$$

which describes the maps between the subschemes V(I) and Y. The fiber over each point $b \in Y$ is then given by

$$\operatorname{mSpec}(R[x_1,\ldots,x_n]/I\otimes R/m_b) = \operatorname{mSpec}(k[x_1,\ldots,x_n]/(f_i(x,b))).$$

The well-behavedness of the fibers over Y depends on the family of the subschemes i.e. on the morphisms of the subschemes.

Example 1. The projection

$$\{(x,y,t)\in\mathbb{A}^3_k\mid y-xt=0\}\to\mathbb{A}^2_k$$

defines a family of subvarieties of the V(y-xt). The morphism has fiber over (0,0) as one-dimensional variety (since any value of t satisfies the polynomial) and the fibers over other points are zero-dimensional.

Hence, a morphism of varieties $f: X \to Y$ itself defines a family of subvarieties of the source parametrized by the target. The families where the fibers vary "nicely" are called **flat families** and these families are characterized by **flat morphisms** between the subschemes. The notion of flatness was first introduced by Serre for algebraic reasons and Grothendieck later recognized the geometric significance of it.

Similar considerations with homogenous polynomials in $R[x_0, \ldots, x_n]$ defines a family of subschemes of \mathbb{P}_k^n . Here we will try to describe the notion of flat morphisms between two schemes.

2 Flat modules and flat maps

For any A-module M, every short exact sequence $0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$ of A-modules induces the exact sequence $N' \otimes M \longrightarrow N \otimes M \longrightarrow N'' \otimes M \longrightarrow 0$. An A-module M is flat if for every short exact sequence $S : 0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$, the induced sequence $S \otimes M$:

$$0 \longrightarrow N' \otimes M \longrightarrow N \otimes M \longrightarrow N'' \otimes M \longrightarrow 0$$

is also exact. M is called faithfully flat if we have: S exact $\iff S \otimes M$ exact. A ring homomorphism $f: R \to S$ is called flat (resp. faithfully flat) if S is flat (resp. faithfully flat) as an R-module.

Examples and facts:

- 1. Projective modules are flat. Injective modules need not be flat and flat modules need not be projective or injective.
- 2. \mathbb{Z} is a projective (and hence, flat) \mathbb{Z} -module. In general, $-\otimes_A A$ is the identity endofunctor the category of A-modules i.e. $\mathcal{S} \otimes_A A = \mathcal{S}$ and so, A is always a flat A-module.
- 3. The localization $S^{-1}N$ of an A-module N by the multiplicative set S of A is an exact functor . So $A \to S^{-1}A$ is a flat ring morphism.
- 4. \mathbb{Q} is a flat \mathbb{Z} -module. (\mathbb{Q} is also an injective \mathbb{Z} -module)
- 5. Flat modules are torsion-free. Hence, the \mathbb{Z} -modules $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Q}/\mathbb{Z} (which is injective) are not flat.
- 6. Finitely generated modules over principal ideal domains are flat if and only if they are torsion-free if and only if they are free.
- 7. The direct sum of flat modules are flat (since the tensor product commutes with arbitrary direct sums). In particular, the \mathbb{Z} -module $\mathbb{Q} \oplus \mathbb{Z}$ (which is neither projective nor injective) is flat.

- 8. The localization $S^{-1}N$ of an A-module N by the multiplicative set S of A is an exact functor. So $A \to S^{-1}A$ is a flat ring morphism.
- 9. Flatness is preserved by change of base ring: If M is a flat B-module and $B \to A$ is a ring morphism, then $M \otimes_B A$ is a flat A-module.
- 10. Flatness is preserved by composition: If A is a flat B-algebra and M is a flat A-module, then M is also B-flat.
- 11. Flatness is a local property: An A-module M is A-flat if and only if $M_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$ -flat for all prime ideals $\mathfrak{p} \subset A$.
- 12. An A-module M is A-flat if and only if for all ideals I of A, we have $I \otimes M \cong IM$.

3 Quasicoherent sheaves and flat morphisms

Given a ring R and an R-module M, we can form a sheaf of abelian groups \widetilde{M} on $X = \operatorname{Spec} R$ by taking $\widetilde{M}(D(f)) = M \otimes f^{-1}R = f^{-1}M$, which is the localization of M by the multiplicative set $\{1, f, f^2, \ldots\}$, and then extending to all the open sets. The sheaf \widetilde{M} has the structure of an \mathcal{O}_X -module.

- 1. A sheaf \mathcal{F} on X is called **quasicoherent** if for each affine open subset Spec A of X, the sheaf $\mathcal{F}|_{\operatorname{Spec} A}$ is isomorphic to \widetilde{M} for some A-module M. The category of quasicoherent sheaves over an affine scheme $\operatorname{Spec} A$ is equivalent to the category of A-modules: $\operatorname{QCoh}_{\operatorname{Spec} A} \stackrel{\sim}{\longleftarrow} \mathfrak{mod}_A$.
- 2. A quasicoherent sheaf \mathcal{F} on X is said to be flat at $p \in X$ if \mathcal{F}_p is a flat $\mathcal{O}_{X,p}$ —module. A quasicoherent sheaf \mathcal{F} on X is said to be flat over X if for every point $p \in X$, \mathcal{F}_p is a flat $\mathcal{O}_{X,p}$ —module.
- 3. A morphism $f: X \to Y$ of schemes is said to be **flat** at $p \in X$ if $\mathcal{O}_{X,p}$ is a flat $\mathcal{O}_{Y,f(p)}$ —module. A morphism $f: X \to Y$ of schemes is called a **flat morphism** if for every $p \in X$, $\mathcal{O}_{X,p}$ is a flat $\mathcal{O}_{Y,f(p)}$ —module. A morphism is called **faithfully flat** if it is both flat and surjective.

In particular, if $Y = \mathrm{mSpec}\,A$, a morphism (or family) of schemes $f: X \to Y$ is flat if $\mathcal{O}(U)$ is a flat A-module for every open set $U \subset X$.

Examples and facts

- 1. Given a ring map $B \to A$, A is faithfully flat over B if and only if $\operatorname{Spec} A \to \operatorname{Spec} B$ is a faithfully flat morphism.
- 2. Open embeddings are flat. $f: X \to Y$ is an **open embedding** if X is isomorphic to an open set of Y. For a morphism $f: D(y-x^2) \to \mathbb{A}^2_k$ which is clearly an open embedding we see that

- 3. A morphism of rings $A \to B$ is flat if and only if the corresponding morphism of schemes $\operatorname{Spec} B \to \operatorname{Spec} A$. More generally, if $B \to A$ is a ring homomorphism and M is an A-module, then M is B-flat if and only if \widetilde{M} is flat over $\operatorname{Spec} B$.
- 4. The fibers of a flat morphism of varieties $f: X \to Y$ all all have the same dimension dim $X-\dim Y$.
- 5. If $f:X\to Y$ is a surjective morphism of a variety to a non-singular curve, then it is flat.
- 6. The above two statements imply: The fibers of a surjective morphism of a variety to a non-singular curve have dimension equal to dim X-1.

References

- 1. Arapura, Donu. Algebraic Geometry over the complex numbers. Springer 2012
- 2. Vakil, Ravi. Foudations of Algebraic Geometry (2023 draft)
- 3. The Stacks Project. https://stacks.math.columbia.edu/tag/00H9
- 4. Matsumura, Hideyuki. Commutative Ring Theory. Cambridge University Press. 2006