Algoritmi in podatkovne strukture – 2 Prvi kolokvij (2012/13)

Kolokvij morate pisati posamič. Pri reševanju je literatura dovoljena. Pri odgovarjanju bodi natančni in: (i) odgovarjajte *na zastavljena* vprašanja; in (ii) odgovorite na *vsa* zastavljena vprašanja – če boste odgovarjali na vsa vprašanja, lahko dobite dodatne točke.

Čas pisanja izpita je 60 minut.

Veliko uspeha!

	NALOGA	TOČK	OD TOČK	NALOGA	TOČK	OD TOČK
	1			3		
ľ						
	2			4		

IME IN PRIIMEK:			
ŠTUDENTSKA ŠTEVILKA:			
DATUM:			
2 711 0 111.			
Podpis:			
I ODI IO.			

1. naloga: *Uvod in osnove*. Imamo naslednji program:

```
int foo (int x, y)

if x == 0 return y

y = 2 * y + x % 2

return foo (x \setminus 2, y)
```

VPRAŠANJA:

- 1. Sledite izvajanju funkcije za naslednje klice: foo (5, 0), foo (6, 0) in foo (7, 0).
- 2. Kakšna je časovna zahtevnost programa pri klicu foo (n, 0)? Utemeljite svoj odgovor.
- 3. Imamo funkciji $f_1(n) = 12n + 11 \lg n$ in $f_2(n) = 11/n + 12 \lg n$. Katerim izmed naslednjih družin pripada vsaka od funkcij: O(n), $\Omega(n)$, $\Theta(n)$, $O(\log n)$, $\Omega(\log n)$ in $\Theta(\log n)$. Utemeljite svoj odgovor.
- 2. naloga: Peter Zmeda in njegova prijateljica Špela se igrata naslednjo igrico:
 - 1. na začetku imamo n lučk, ki so označene od 1 do n;
 - 2. Peter k krat poveže po dve lučki;
 - 3. Špela se z žico dotakne ene od lučk in potem vse lučke, ki jih je Peter povezal z dotaknjeno lučko, zasvetijo.

VPRAŠANJA:

- 1. Naj bo n=10 in Peter nato poveže pare: (5,7), (1,8), (2,9), (3,8), (4,7) in (7,1). Špela se z žico dotakne lučke 4. Katere od naslednjih lučk svetijo: 2,5,8,9 in 10?
- 2. Pri velikih *n* postane igrica precej težko izvedljiva, zaradi česar sta se Špela in Peter odločila napisati računalniški program, ki bo simuliral igrico. Program in posledično podatkovna struktura mora nudite naslednje ukaze:
 - Povezi(x, y), ki poveže lučki x in y;
 - Prizgi (x), s katerim se dotaknemo lučke x in
 - Sveti (x), ki vrne DA ali NE odvisno od tega, ali lučka x sveti.

Opišite kako naj izgleda podatkovna struktura, ki podpira opisano igirco ter kako so implementirani posamezni ukazi.

NAMIG: Morda lahko uporabite kakšno znano podatkovno strukturo.

- 3. Opišite, kako bi shranili popolno k-tiško drevo kot implicitno podatkovno strukturo. Z drugimi besedami, kako bi shranili omenjeno drevo v polju. Pri tem morate opisati, kako od vozlišča shranjenega na indeksu v [i]:
 - pridemo do vozlišča, ki predstavlja njegovega j-tega naslednika $(1 \le j \le k)$; in
 - kako pridemo do njegovega starša.

NAMIG: Polje naj se prične na indeksu 1. Koren drevesa je v[1], prvi naslednik na v[2], drugi na v[3] in tako naprej. Pri kopici (*heap*) je uporabljena podobna preslikava, le da je tam k=2.

3. naloga: V tem vprašanju bomo obravnavali rdeče-črno drevo. Na sl. 1 je kon-

Slika 1: Rdeče-črno drevo po vstavljanju v poddrevesu B.

figuracija RČ drevesa po tem, ko smo v poddrevo B vstavili element ter sta vozlišči a in b rdeči ter vozlišče c črno. Poleg tega so koreni poddreves A, B, C in D črni ter tudi črne višine poddreves enake.¹

VPRAŠANJA:

- 1. Kako, če je potrebno, se naj spremeni oblika drevesa na sl. 1. Narišite in utemeljite odgovor.
- 2. Zapišite psevdokodo, ki opravi omenjeno preoblikovanje.

¹Črna višina poddrevesa je število črnih vozlišč od korena do poljubnega lista.

- 3. B drevo. Naš prijatelj Peter Zmeda je pregledoval kodo za brisanje iz B drevesa in zazdelo se mu je, da bi lahko bila učinkovitejša, če bi dovolil, da je v vsakem vozlišču namesto vsaj $\frac{b}{2}$ elementov $\frac{b}{3}$ elementov. Komentirajte njegovo idejo. Pri tem se osredotočite na zapletenost kode, velikost zasedenega pomnilnika in učinkovitost operacij.
- **4. naloga:** Imamo drevo, kot ga prikazuje sl. 2.

Slika 2: Primer dvojiškega drevesa.

VPRAŠANJA:

- 1. Izpišite zaporedje vozlišč, ki jih dobimo pri vmesnem obhodu (*inorder*) drevesa na sl. 2.
- 2. Drevo lahko rekonstruiramo, če imamo na voljo dva obhoda. Naj bo zaporedje vozlišč, ki jih dobimo pri vmesnem obhodu v[1 ... n] in zaporedje vozlišč, ki jih dobimo pri prvem (*preorder*) obhodu p[1 ... n]. Zapišite algoritem, ki iz v[...] in p[...] rekonsturira drevo. Psevdokoda bo povsem dovolj. Na primer:
 - Vozlišče p[1] je koren drevesa in vozlišča . . . so v levem ter . . . v desnem poddrevesu.
 - Potem je koren levega . . .
- 3. Utemeljite, zakaj zapis samo enega obhoda ni dovolj za rekonstrukcijo drevesa.