EDUCATION

jiazhichao6688@gmail.com +1-667-900-4624 Personal Website: https://zhichao-jia.github.io/

Johns Hopkins University, Baltimore, MD

Dec. 2022

Master of Science and Engineering in Applied Mathematics and Statistics; GPA: 4.0/4.0

Thesis: First-Order Methods for Nonsmooth Nonconvex Functional Constrained Optimization with or without Slater Points

Advisor: Benjamin Grimmer

Courses: Nonlinear Optimization, Stochastic Optimization, Large-Scale Optimization, Control Theory, Statistical Theory

Sun Yat-Sen University, Guangzhou, China

Jun. 2021

Bachelor of Science in Information and Computing Science; GPA: 3.7/4.0

Thesis: On an FFHE-Inspired Method for Effectively Solving Differential Riccati Equations

Advisor: Tao Wang

Courses: Real Analysis, Linear Algebra, Numerical Methods, Statistics, Optimization Methods, Machine Learning, Data Mining

RESEARCH EXPERIENCE

First-Order Methods for Nonconvex Nonsmooth Constrained Optimization

Oct. 2021 - present

Advisor: Assistant Professor Benjamin Grimmer

Johns Hopkins University, MD

• Algorithm Design and Theoretical Analysis: Present a modified inexactly proximally guided switching subgradient method solving nonconvex nonsmooth constrained optimization problems based on newly proposed Slater point-type assumptions and measurements of stationarity; provide theoretical results on its convergence rates, feasibility guarantee and compactness assumption; conduct numerical experiments on sparse phase retrieval problems.

The SPSA method for Constrained Stochastic Optimization

May 2022 - present

Advisor: Professor James Spall

Johns Hopkins University, MD

- SPSA-based Constrained Algorithms: Propose an SPSA-based switch updating method and an SPSA-based random-search projection method built on the simultaneous perturbation stochastic approximation (SPSA) solving constrained stochastic problems under specific assumptions; show convergence results and numerical performance of them.
- **Distributions of SPSA Sampling**: Generate computational and experimental results on the advantages of non-Bernoulli distributions compared to using Bernoulli distribution in SPSA sampling for specific constrained cases.

Stochastic Gradient Descent Methods with Stochastic Polyak Stepsizes

Jun. 2022 - present

Advisor: Assistant Professor Nicolas Loizou

Johns Hopkins University, MD

- SPS in Different Problem Settings: Apply two variants of stochastic Polyak stepsizes (SPS) to the stochastic gradient descent method to solve weakly convex and sharp stochastic optimization problems and present their convergence results.
- SPS in Constrained Algorithms: Apply one variant of SPS to the stochastic switching subgradient method to solve constrained stochastic optimization problems and present its convergence result.

The Augmented Lagrangian Method for Nonconvex Problems

May 2020 - Jul. 2020

Advisor: Assistant Professor Jovan Ilic

Carnegie Mellon University, PA (Online)

• Algorithm Realization and Experimental Analysis: Implemented the augmented Lagrangian method solving nonconvex optimization problems with equality constraints; compared its performance under different choices of related hyper-parameters and with other classic constrained methods.

"Implementation and Analyzing of Augmented Lagrangian Method" Abstract by **Z. Jia**, Z. Hu, J. Ma, accepted by *International Conference on Applied Physics and Mathematics 2021* (presentation only).

Applications of the FFHE Method in Time-Varying Control Systems

Jan. 2020 - May 2021

Advisor: Associate Professor Tao Wang

Sun Yat-Sen University, China

- Applied to CTECQP: Implemented a tailored novel fast and flexible holomorphic embedding (FFHE) method for solving continuous-time equality constrained quadratic programming (CTECQP) problems.
- Applied to MDRE: Extended the FFHE method to dealing with matrix differential Riccati equations (MDRE).
- **Promotion on FFHE**: Carried out certain strategies to optimize the series expansion, rational approximation, adaptive segmentation and automatic correction for the FFHE method and achieve better performance.

"On a Tailored Fast and Flexible Holomorphic Embedding Method for Time-Varying Control Systems" by Y. Ding, Z. Jia, Z. Fang, T. Wang, Y. Zhang, submitted to *IEEE Transactions on Automatic Control*.

AWARDS

- Third Prize in China Undergraduate Mathematical Contest in Modeling (top 40%) in Sept. 2019
- Ranked 6th in Datathon@LISH in Feb. 2022

SKILLS

• Programming Languages: C, C++, Python, Matlab, SQL, R