Propeller Thrust Model

The plot below shows some experimental measurements for the force (thrust) generated by a small propeller when spinning at various rotation speeds.

The thrust T at a given propeller rotation speed can be modeled as

$$T = k_t \omega^2$$

where k_t is a constant and ω is the rotation speed. Three variables are loaded for you from the file thrust_data; thrust and omega vectors with experimental thrust measurements and corresponding values of rotation speed, and the scalar kt determined by least squares optimization.

- 1. Create the thrust model vector T using the provided constant k_t and vector ω as thrust_model.
- 2. Find the vector of the absolute difference between the noisy measurements in thrust and our model thrust_model as err

Script @

Reference Solution

Save

C Reset

Assessment: All Tests Passed

Submit

► Run Script

MATLAB Documentation

- Is the thrust model prediction correct?
- Is the thrust model error correct?

Output

