武汉大学数学与统计学院

2009—2010 第一学期《高等数学 A1》期末考试试题

一、(42分) 试解下列各题:

- 1、计算 $\lim_{x\to\infty}[(2+x)e^{\frac{1}{x}}-x].$
- 2、求解微分方程 y'' 2y' + 3y = 0 的通解。

3、计算
$$\int_{-1}^{1} x^2 (1 + \sqrt{1 + x^2} \sin x) dx$$
.

$$4$$
、计算 $\int_0^{+\infty} e^{-\sqrt{x}} dx$.

5、求曲线
$$\begin{cases} x = \int_{1}^{t} \frac{\cos u}{u} du \\ y = \int_{1}^{t} \frac{\sin u}{u} du \end{cases}$$
 自 $t = 1$ 至 $t = \frac{\pi}{2}$ 一段弧的长度。

6、设
$$y = \frac{1}{x^2 + 3x + 2}$$
, 求 $y^{(n)}$.

二、(8分) 已知
$$u = g(e^{xy})$$
, 其中 $y = f(x)$ 由方程 $\int_0^y e^{t^2} dt = \int_0^{x^2} \cos t dt$ 确定,求 $\frac{du}{dx}$

三、(8分) 设
$$x_1=1, x_{n+1}=1+\frac{x_n}{1+x_n}$$
 $(n=1,2,\cdots)$,试证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n\to\infty}x_n$.

四、(15 分) 已知函数
$$y = \frac{x^3 + 4}{x^2}$$
, 求:

- 1、函数 f(x) 的单调增加、单调减少区间,极大、极小值;

六、(10 分) 设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 $f(0)=f(1)=0, f(\frac{1}{2})=1$,证明:

(1) 存在
$$\eta \in (\frac{1}{2}, 1)$$
, 使 $f(\eta) = \eta$;

(2) 对任意实数 λ , 必存在 $\xi \in (0,\eta)$, 使 $f'(\xi) - \lambda[f(\xi) - \xi] = 1$. 七、(5 分)设函数 f(x) 满足下列两个等式: $\lim_{x \to \infty} f(x) = 2$, $\lim_{x \to \infty} f''(x) = 0$, 求证: $\lim_{x \to \infty} f'(x) = 0$.

满绩小铺QQ: 1433397577, 搜集整理不易, 自用就好, 谢谢!

武汉大学数学与统计学院

2009—2010 第一学期《高等数学 A1》期末考试试题参考答案 -、(42分)试解下列各题:

1、解: 原极限=
$$\lim_{t\to\infty}x[(\frac{2}{x}+1)e^{\frac{1}{x}}-1]=\lim_{t\to\infty}\frac{[(\frac{2}{x}+1)e^{\frac{1}{x}}-1]}{\frac{1}{x}}$$
 = $\lim_{t\to0}\frac{(2t+1)e^{t}-1}{t}=\lim_{t\to0}(2t+3)e^{t}=3$

$$2$$
、解: 齐次方程 $y'' + 4y' + 28y = 0$ 的特征方程为 $x^2 + 4\lambda + 29 = 0$,它有复数根 $x = -2 \pm 5i$ 立 故原方程的通解为: $y = (C_1 \cos 5x + C_2 \sin 5x)e^{-2x}$ $y = C_1 e^{-2x}$ $y = C_1 e^{-2x}$

3、解: 原式=
$$2\int x^i dx = \frac{2}{3}$$

5.
$$\Re: s = \int_{1}^{\pi} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_{1}^{\pi/2} \sqrt{(\frac{\cos t}{t})^2 + (\frac{\sin t}{t})^2} dt = \int_{1}^{\pi/2} \frac{1}{t} dt = \ln \frac{\pi}{2}$$

6.
$$mathrew g = \frac{1}{x+1} - \frac{1}{x+2}$$
 $y^{(n)} = (-1)^n n! [(1+x)^{-(n+1)} - (2+x)^{-(n+1)}]$

二、(8分) 解:
$$\frac{du}{dx} = g'(e^{xy})e^{xy}(y + x\frac{dy}{dx})$$
 , 方程两边微分得: $e^{y^2}dy = 2x\cos x^2 dx$ $\frac{dy}{dx} = 2x\cos x^2 e^{-y^2}$ 故有 $\frac{du}{dx} = e^{xy}g'(e^{xy})(y + 2x^2\cos x^2 e^{-y^2})$

三、(8分)解:
$$x_n > 0$$
, $x_2 - x_1 = \frac{1}{2} > 0$, 因此 $x_2 > x_1$ 设 $x_n > x_{n-1}$, 则 $x_{n+1} - x_n = 1 + \frac{x_n}{1+x_n} - (1 + \frac{x_{n-1}}{1+x_{n-1}}) = \frac{x_n - x_{n-1}}{(1+x_n)(1+x_{n-1})} > 0$

$$\therefore x_n$$
 单调增加,且 $x_n = 1 + \frac{x_{n-1}}{1 + x_{n-1}} = 2 - \frac{1}{1 + x_{n-1}} < 2$,故 $\lim_{n \to \infty} x_n$ 存在

设
$$\lim_{n\to\infty} x_n = a$$
 , 则: $a = 1 + \frac{a}{1+a}$ 解得 $a = \frac{1\pm\sqrt{5}}{2}$. 因为 a 非负, $\lim_{n\to\infty} x_n = \frac{1+\sqrt{5}}{2}$

四、(15 分) 解: 定义域为
$$(-\infty,0)$$
 \cup $(0,+\infty)$ $y'=1-\frac{8}{x^3}$ 令 $y'=0$ ⇒ 驻点 $x=2$,不可导点 $x=0$
$$y''=\frac{24}{x^4}>0$$

1) 故单调增加区间为: $(-\infty,0),(2,+\infty)$,单调减少区间为: (0,2) 极小值为: f(2)=3 ,无极大值。

五、(12 分) 解: (1) 由观察法知曲线方程为: $y = x^2$

或解微分方程: 特征方程为 $r^2-r=0$ \Rightarrow $r_1=0,r_2=1$,故对应齐次方程的通解为 $\overline{y}=c_1+c_2c^r$,由于 $r_1=0$,所以微分方程的特解设为 $y^*=x(ax+b),y^{*''}=2a,y^{*'}=2ax+b$,从而有: 2a-(2ax+b)=2-2x \Rightarrow a=1,b=0,故 $y=c_1+c_2c^x+x^2$ 为微分方程的通解,又 $y'=c_2c^x+2x$,由题设知 y(0)=0,y'(0)=0 \Rightarrow $c_1=0,c_2=0$,所以微

分方程满足初值条件的解为 $y=x^2$, 即曲线方程为: $y=x^2$

(2)设切点 B 的坐标为 (a,a^2) ,则过点 B 的切线斜率为 $y'\big|_{x=a}=2a$,于是切线方程为 $y-a^2=2a(x-a)$,和 x 轴

交点为
$$(\frac{a}{2},0)$$
,由 $A = \int x^2 dx - \frac{\frac{a}{2} \cdot a^2}{2} = \frac{a^3}{12} = \frac{1}{12}$,得 $a=1$,因此切点坐标为(1,1)。 $tn \sqrt[3]{b}$ $y=2 \times -1$.

(3)
$$V = \pi \int_{0}^{1} y^{2} dx - \pi \int_{1/2}^{1} (2x - 1)^{2} dx = \pi \int_{0}^{1} x^{4} dx - \pi \int_{1/2}^{1} (2x - 1)^{2} dx = \frac{\pi}{30}$$

六、(10 分)证明: (1)令
$$F(x)=f(x)-x$$
 ,则 $F(x)\in C_{[0,1]}, F(1)=-1<0, F(1/2)=1/2>0$ 故 $\exists \eta\in (1/2,1)$,使得 $F(\eta)=f(\eta)-\eta=0$,即 $f(\eta)=\eta$

(2) 设
$$G(x) = e^{-\lambda x} F(x) = e^{-\lambda x} (f(x) - x)$$
,则 $G(x) \in C_{[0,\eta]}, G(x) \in D_{(0,\eta)}$, $G(0) = 0, G(\eta) = e^{-\lambda \eta} F(\eta) = 0$

由罗尔定理:
$$\exists \xi \in (0,\eta)$$
, 使 $G'(\xi) = 0$,即 $e^{-\lambda \xi} \{ f'(\xi) - \lambda [f(\xi) - \xi] - 1 \} = 0$ 即 $f'(\xi) - \lambda [f(\xi) - \xi] = 1$

七、(5份)证:应用泰勒公式,我们有:

$$f(x+1) = f(x) + f'(x) + \frac{1}{2}f''(x) + \frac{1}{6}f'''(x+\xi(x)) \quad 0 < \xi(x) < 1$$
 (1)

$$f(x-1) = f(x) - f'(x) + \frac{1}{2}f''(x) - \frac{1}{6}f'''(x - \eta(x)) \quad 0 < \eta(x) < 1$$
 (2)

(1) ± (2) 分别得:
$$f''(x) = f(x+1) - 2f(x) + f(x-1) - \frac{1}{6}f'''(x+\xi(x)) + \frac{1}{6}f'''(x\sqrt{\eta(x)})$$
 (3)

$$2f'(x) = f(x+1) - f(x-1) - \frac{1}{6}f'''(x+\xi(x)) - \frac{1}{6}f'''(x\sqrt{\eta(x)})$$
(4)

$$\lim_{x \to \infty} f'(x) = \frac{1}{2} (2 - 2 - \frac{1}{6} \cdot 0 - \frac{1}{6} \cdot 0) = 0 .$$