Théorie de l'Information

Contrôle Continu 1

Yann ROTELLA yann.rotella@uvsq.fr

13 mars 2022

Durée: 2h30

Toute erreur dans le sujet sera prise en compte dans la correction. Tout document papier autorisé. Tout support numérique est interdit. Toute tentative de triche donnera lieu à un 0.

1 Questions de cours

Pour chacune des questions suivantes, justifier votre réponse. Toute réponse non justifiée vaut 0. Chaque question vaut 1 point.

Question 1 Soit un code préfixe dont les K mots ont pour longueurs n_1, n_2, \ldots, n_K , l'égalité

$$\sum_{k=1}^{K} 2^{-n_k} = 1$$

- 1. est toujours vraie
- 2. est toujours fausse
- 3. est parfois vraie

Question 2 Parmi les codes suivant, le(s)quel(s) ne peuvent pas être des codes de Huffman?

- 1. $\{0, 10, 11\}$
- $2. \{01, 10, 11, 001\}$
- $3. \{01, 10\}$

Question 3 L'entropie d'une source est :

- 1. La quantité d'information maximale qu'elle produit
- 2. La quantité d'information moyenne qu'elle produit
- 3. La quantité d'information minimale qu'elle produit

Pour les question 4 à 8, dire si les affirmations suivantes sont vraies ou fausses. Justifiez votre réponse.

Question 4 Soit X une variable aléatoire dans $\mathbb{Z}/26\mathbb{Z}$. On a H(X) = H(5X).

Question 5 Soit X une variable aléatoire dans $\mathbb{Z}/26\mathbb{Z}$. On a $H(X) = H(X^2)$.

Question 6 Soit X une variable aléatoire dans \mathcal{X} , et Y une variable aléatoire réelle dans \mathcal{Y} , avec $|\mathcal{X}| = 8$ et $|\mathcal{Y}| = 16$. On a $H(X) \leq H(Y)$.

Question 7 En reprenant les définitions de la question 6, si Y suit une loi uniforme, on a H(Y) = 3.

Question 8 En reprenant les définitions de la question 6, si H(X) = 3, alors X suit une loi uniforme.

2 Information mutuelle

Soit X une variable aléatoire correspondant à la main d'un joueur de poker (une main consiste tout simplement en la possession de 2 cartes, qui valent 1 (As), 2, 3, 4, 5, 6, 7, 8, 9, 10, Valet, Dame, Roi et qui peuvent être Coeur, Trèfle, Carreau ou Pique), correspondant aux événements "le joueur a une mauvaise main" (0) et "le joueur a une bonne main" (1). Une bonne main consiste en la possession de :

- Une paire ou bien
- deux cartes de même couleur ou bien
- deux cartes parmi As, Roi ou Dame dans sa main.

Question 9 (1.5 points) Donner une expression de H(X) et montrer sans trop de calculs que 0.55 < H(X) < 0.8. On pourra utiliser les approximations $\log_2(7) = 2.8$ et que $\log_2(3) = 1.6$.

On suppose maintenant que le joueur peut ou bien "se coucher", ou bien "miser exactement la valeur demandée" ou bien "relancer". De plus on sait que : quand le joueur a une mauvaise main il se couche une fois sur 2, mise la valeur demandée une fois sur deux et ne relance jamais. Quand le joueur a une bonne main il ne se couche jamais, mise la valeur demandée une fois sur 2 et relance une fois sur 2.

Question 10 (2,5 points) Quelle proportion d'information sur X et sur l'ensemble des mains possibles apprenons nous en moyenne après que le joueur ait joué sa première mise?

Question 11 (1 point) Donner une stratégie qui minimise la quantité d'information transmise aux autres joueurs.

3 Codage de Source

Question 12 (3 points) Donner un code déchiffrable optimal (pour lequel la longueur moyenne du code est égale à l'entropie) pour une source d'alphabet $\{a, b, c, d, e, f, g, h\}$ dont la distribution de probabilité est p(a) = 0,125, p(b) = 0,0625, p(c) = 0,0625, p(d) = 0,0625, p(e) = 0,125, p(f) = 0,25, p(g) = 0,0625, p(h) = 0,25.

Question 13 (4 points) Donner l'encodage de la suite abcaacbbbeaccaacbbbeacc par l'algorithme de Lempel-Ziv vu en cours. Quel est le taux de compression? Donner le dictionnaire à la fin de l'algorithme.