Econ, Dynamic programming #2, Proof

OSM Lab instructor, John Stachurski OSM Lab student, CHEN Anhua Due Wednesday, July 5 at 8:00am

Arguments:

- 1. It's easy to show that Uw(y) is in \mathbb{R}_+ since u, β and w all belong to \mathbb{R}_+
- 2. Define $\rho(g, f) = \sup_{y \ge 0} |g(y) f(y)|$. It's easy to prove that (\mathbb{R}_+, ρ) is a complete space.
- 3. Now we will prove that U is a contraction map on (\mathcal{C}, ρ) . $|Uw(y) Uw'(y)| = |\beta \int w(f(y \sigma(y))z)\phi(dz) \beta \int w'(f(y \sigma(y))z)\phi(dz)|$ $= \beta |\int (w(y) w'(y))\phi(dz)|$ $\leq \beta \int |(w(y) w'(y))|\phi(dz)|$ $\leq \beta \int \sup_{y} |w(y) w'(y)|z\phi(dz)|$ $= \beta \sup_{y} |w(y) w'(y)|$ $= \beta \rho(w, w')$ Therefore, we find U is a contraction map on (\mathcal{C}, ρ) .