# Ride Replay Kit

**Ben Ebel** 

# Jayden Marcom

# **Utsav Singha**

# **Caleb Turney**

### **Objectives**

The Ride Replay Kit will provide users with an accurate recreation of a recorded bike trail and will have a work-map for each trail. A GUI along with an actively changing resistance will be implemented to control the playback and accurately reflect the work done during a recorded trail. The kit will also have audio, visual, and immersion systems to recreate the sounds, video, and wind speed of the trail on the exercise bike.

#### The Problems and Solutions

#### **Trail Data Recording:**

The main problem with trail recording is reading in the work done by a rider over a specific section of time. Another big issue that was identified was how to secure both a microphone and camera on a bike to allow for audio and video recordings.

The solution to the main issue of recording work done by a user was found in using a formula for potential energy based on weight, altitude change, and gravity (U = mgh). Using this formula, a sensor for atmospheric pressure, that checks when the wheel has made a full rotation, and an array to store the atmospheric values at specific distances a work map can be created. Using this work map, the work done by a rider can be accurately recorded. The camera and microphone mounting issue was fixed by creating a 3D printed mount for each device that clamped onto the bike handlebars securely.



Figure 2. Circuit for recreation of windspeed

#### Trail Recreation:

The first problem was replicating a recorded hill or change in elevation on the exercise bike. The next issue for trail recreation was to find a way to scale the video and audio replay with the user's speed. The issue with replaying the video through the exercise bike was that the video playback speed needed to scale with the speed of the user, while also maintaining smooth visuals while going slower than the initial recording. The issue with replaying the audio was the playback speed of the user may vary from the recorded speed thus causing the audio to be sped up and pitched differently than the original recording. The final problem was recreating the feeling of wind.

The solution for the problem of recreating elevation changes accurately is to take the input from a force sensor attached to the bike pedals. This would calculate the work being inputted by the user. The work values from the user's input are summed together in real time and compared to the work map mentioned in the previous section. The goal is to replicate the work done on the trail by changing an actuator that either increases or decrease the back wheel's resistance depending on the current value of the work map. The solution for the video playback was to use interpolated frames allowing the user to go slower without loss of visual smoothness. The solution for the audio playback was to loop the audio over a specific time until the user has progressed past that section. The final solution for recreating wind was to use a fan to simulate airflow for a realistic feeling immersive experience.



**Figure 1.** Camera and Microphone 3D

Model

Figure 3. Spectrogram of trail audio for analysis over time



Figure 4. Block Diagram of the Design

Caleb Rozenboom



## **Conceptual Analysis**

The most interesting result from the conceptual analysis is the result from the calculations of work recreation on the exercise bike. The equation that resulted was a relation between the work from the work map in joules and the actuators distance from the back wheel. The equations used are as follows:



Figure 5. Graph of the new formula for actuator distance **Experimental Results** 

Figure 6. Holder for force sensors on

pedal of exercise bike

 $x = (\frac{3\mu}{2\pi}M^2V^2\frac{d}{W})^{0.25}$ 

\*New Formula for actuator

distance based on work

The most important result from the experiments is the comparison of the generated work map to the actual work done during the same trail ride. To do this experiment a work map was generated for a specific trail and the total amount of joules was compared to the total amount of joules expended by two people riding the same trail multiple times. Work (Actual vs Measured)



Figure 7 Circuit holder for Work map creation



Figure 8. Graph of the new formula for actuator distance

## Software

**Python programming language -** Used in every aspect of the project to interpret the work data and react accordingly to replicate the recorded trail accurately.

**VLC player -** Used to vary video playback speeds, and for the playback and looping of particular audio files.

**Ableton Live 11 -** Used for audio processing and high/low-pass filters.

**Flow Frames**- Used to interpolate frames and remove duplicate frames

**Tkinter** - Used to create the User Interface

#### **Final BOM**

This is the final BOM for the project. However, this is not the full cost of the project since many of the devices used are from the previous two Mario Kart Teams.

| Product<br>Name         | Description                                                                     | Subsystem<br>Used | Part Number   | Manufacturer                 | Quant<br>ity |       |                  | Galvanized, 1.375 Universal Stainless Steel                                  | Audio         | N180-125            | Stanley Natio                 | 1 \$1  | 7.50  |
|-------------------------|---------------------------------------------------------------------------------|-------------------|---------------|------------------------------|--------------|-------|------------------|------------------------------------------------------------------------------|---------------|---------------------|-------------------------------|--------|-------|
|                         |                                                                                 | Resistance        |               |                              |              |       |                  | Vertical Pole Mount                                                          |               |                     |                               |        |       |
| OpAmp IC                | General Purpose Amplifier 4 Circuit Rail-to-Rail 14-PDIP                        | System            | MCP6004-I/P   | Microchip Technology         | 2            | \$1   | .18 Pole Mount   | Adapterwith 3 Loops                                                          | Audio         | B0BVT4J3FF          | Lighfast                      | 1 \$   | 9.99  |
|                         |                                                                                 |                   |               |                              |              |       |                  | 1/4-20 x 3/4" Button                                                         |               |                     |                               |        |       |
|                         | 100 kOhms 0.5W, 1/2W PC Pins Through Hole Trimmer Potentiometer Cermet 1.0      | Resistance        |               |                              |              |       |                  | Head Socket Cap Bolts                                                        |               |                     |                               |        |       |
| Potentiomete            | r Turn Top Adjustment                                                           | System            | 3386P-1-104LF | Bourns Inc                   | 2            | \$3   | .22              | Screws, 304 Stainless                                                        |               |                     |                               |        |       |
| BATT HOLDER             |                                                                                 | Resistance        |               |                              |              |       | Screws           | Steel 18-8                                                                   | Audio         | B0BVT4J3FF          | EastLo                        | 1 \$   | 7.99  |
| AA                      | Battery Holder (Open) AA 3 Cell Wire Leads - 6" (152.4mm)                       | System            | BC3AAW        | MPD                          | 2            | \$4   |                  | YOUSHARES Snowball                                                           |               |                     |                               |        |       |
|                         |                                                                                 | Resistance        |               | Cornell Dubilier Electronics |              |       |                  | Shock Mount,                                                                 |               |                     |                               |        |       |
| Capacitor               | 47 pF Mica Capacitor 500 V Radial                                               | System            | CD15ED470JO3  | (CDE)                        | 2            | \$3   | .56              | Shockmount Reduces                                                           |               |                     |                               |        |       |
|                         |                                                                                 |                   |               |                              |              |       |                  | Vibration Noise                                                              |               |                     |                               |        |       |
|                         | Breadboard, General Purpose Plated Through Hole (PTH) Pad Per Hole (Round) 0.1" | Resistance        |               |                              |              |       |                  | Matching Mic Boom Arm                                                        |               |                     |                               |        |       |
| Perfboard               | (2.54mm) Grid                                                                   | System            | ST-PERF-1-2   | SchmalzTech, LLC             | 2            | \$7   | .80 Shock Mount  | Stand, Compatible with                                                       |               |                     |                               |        |       |
|                         |                                                                                 | Resistance        |               |                              |              |       | for              | Blue Snowball iCE USB                                                        |               |                     |                               |        |       |
| Arduino Nano            | Arduino Nano 33 Bluetooth Low Energy Microcontroller                            | System            | ABX00030      | Arduino                      | 2            | \$55  | .18 Microphone   | Microphone                                                                   | Audio         | B08L4DB79P          | YOUSHARES                     | 1 \$1  | 6 88  |
|                         |                                                                                 |                   |               |                              |              |       | Hall Effect      | wiciopriorie                                                                 | Audio         | D00L4DD73F          | TOUSTIANES                    | 1 31   | 0.00  |
| Speaker                 | Logitech Z207 2.0 Multi Device Stereo Speaker                                   | Audio             | B074KJ6JQW    | Logitech                     | 1            | \$59  | .94 Sensor       | Hall Effect Sensor Single Axis TO-92-3                                       | Work          | DRV5056A2ELPGMQ1    | Texas Instruments             | 2 \$   | 4.02  |
| Mic Mount<br>Microphone | CAMVATE Super Clamp with Cold Shoe Mount for Camera Flash Light                 | Audio             | B07D9LTNG9    | CAMVATE                      | 1            | \$15  | .00              |                                                                              |               |                     |                               |        |       |
|                         | Logitech Blue Snowball                                                          |                   |               |                              |              |       |                  | Arduino Nano 33 BLE with Headers [ABX00034]                                  | Work          | TIFC00125           | Arduino                       | 2 \$5  | 9.98  |
|                         | USB Microphone for PC                                                           | Audio             | B000EOPQ7E    | Logitech                     | 1            | \$69  | .99 BATT HOLDER  |                                                                              |               |                     |                               |        |       |
|                         | Deadcat Windshield                                                              |                   |               |                              |              |       | AA               | Battery holder fo 3 AA batteries                                             | Work          | BC3AAW-ND           | MPD (Memory Protection Device | 1 \$   |       |
| Windshield fo           | r Wind Cover for Blue                                                           |                   |               |                              |              |       | Magnet           | Nickel-Plated N52 Magnet                                                     | Work          | B0CGDTQ64C          | Mixia                         | 2 \$2  | 6.99  |
| Microphone              | Snowball iCE                                                                    | Audio             | B07SF5C6BV    | YOUSHARES                    | 1            | \$9   | .99              |                                                                              |               |                     |                               |        |       |
|                         | 5/8"-27 Male Threaded                                                           |                   |               |                              |              |       |                  | DC 12 Volt 5 Amp Power Supply 60W 12Volt 5Amp AC Adapter 100-240V 50-60Hz AC |               |                     |                               |        |       |
| Microphone              | Cold Shoe Adapter for                                                           |                   |               |                              |              |       |                  | to DC 12V 5A Power Adapter Converter with 5.5mm x 2.5mm Tip & 1 Female       | •             |                     |                               |        |       |
| Mount Adapte            | er Microphone Mount                                                             | Audio             | B014XGA4DE    | CAMVATE                      | 1            | . \$5 | .99 Power Supply | Terminal for LED Strip Light CCTV Camera etc.                                | Immersion     | BOBJVVBBMJ          | Amazon                        | 1 \$1  | 0.97  |
|                         | Stanley National N180-                                                          |                   |               |                              |              |       | rower supply     | Terminal for LED Strip tight CCTV Camera etc.                                | IIIIIIEISIOII | DODIVIDONI          | Alliazoli                     | 1 31   | 0.07  |
|                         | 125 Stanley Slotted Flat                                                        |                   |               |                              |              |       |                  |                                                                              |               |                     |                               |        |       |
|                         | Bar, 1-3/8 in W X 36 in L                                                       |                   |               |                              |              |       |                  | F T-1                                                                        |               |                     |                               |        |       |
|                         | X 0.08 in T, Steel,                                                             |                   |               |                              |              |       | L                | Fan Tubeaxial 12VDC Square - 120mm L x 120mm H Ball 185.5 CFM (5.19m³/min) 4 |               | 0514 4005B5 450 507 | A D. 14                       | 0 4-   | . 70  |
| Mounting Bar            | Galvanized, 1.375                                                               | Audio             | N180-125      | Stanley Natio                | 1            | \$17  | .50 Fans         | Wire Leads                                                                   | Immersion     | CFM-A225BF-158-597  | -2 DigiKey<br>TOTAL COST:     | 2 \$71 |       |
|                         | Universal Stainless Steel                                                       |                   |               | •                            |              |       |                  |                                                                              |               |                     |                               | 24     | 71111 |
|                         | Vertical Pole Mount                                                             |                   |               |                              |              |       |                  |                                                                              |               |                     | TOTAL QUANTITY:               | 31     |       |

#### **Future Work**

There are many ways to continue this project. One way is to improve upon the process that the audio segments are split up. Another aspect that could be improved is the visual fidelity. The work system could use a complete redesign of the 3D prints to fit more bikes. The User Interface could be made more visually appealing. The back actuator could receive more precise inputs from the resistance calculation's.



Figure 9. User Interface displayed on monitor

**Acknowledgements** 

Figure 10. Exercise bike with all items

We would like to thank Professor Roberts and other faculty for giving us the opportunity to work on this project. We would also like to thank all the people that helped us during this project.