15/02/2005

Algebra lineare – Corso di laurea in Informatica

Nome:	Cognome:		Matr	icola:	
N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso.N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.					
Esercizio 1. (punteggio $\frac{1}{2}$ Il numero complesso $\frac{1}{2}$ (1 + Giustificazione:	$(\frac{2.5}{30})$ è una radice sesta d	i 1.	V	F	

Esercizio 2. (punteggio
$$\frac{2.5}{30}$$
)
$$(1+i)^{10} = 32i \qquad \mathbf{V} \qquad \mathbf{F}$$

Giustificazione:

Esercizio 3. (punteggio $\frac{2.5}{30}$) Siano z e w in $\mathbb C$ tali che zw=1. Se |z|=a allora $|w|=\frac{1}{a}$. V F Giustificazione:

Esercizio 4. (punteggio $\frac{2.5}{30}$)

Siano $v_1=(1,0,1)$ e $v_2=(2,1,-2)$ due vettori di \mathbb{R}^3 . Dopo aver verificato che v_1 è ortogonale a v_2 , costruire una base ortonormale e_1,e_2,e_3 di \mathbb{R}^3 tale che $e_1=\frac{v_1}{\|v_1\|}$ e $e_2=\frac{v_2}{\|v_2\|}$.

Risposta:

Esercizio 5. (punteggio $\frac{2.5}{30}$)

Siano u e v due vettori ortogonali di \mathbb{R}^n . Allora $||u+v||^2 = ||u||^2 + ||v||^2$. **V F** Giustificazione:

Esercizio 6. (punteggio $\frac{2.5}{30}$)

Siano $P_1 = (1, 1, 1), P_2 = (2, 1, 0), P_3 = (2, 2, 2)$ e $P_4 = (4, 2, 0)$ quattro punti di \mathbb{R}^3 . Trovare l'angolo tra i vettori $u = P_1 P_2$ e $v = P_3 P_4$.

Risposta:

Esercizio 7. (punteggio $\frac{2.5}{30}$)

Trovare l'inversa della matrice
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 4 & 0 \end{pmatrix}$$

Risposta:

Esercizio 8. (punteggio $\frac{2.5}{30}$)

Trovare i valori del parametro reale λ per i quali i vettori $v_1=(1,0,1),\ v_2=(0,1,-1)$ e $v_3=(0,-1,\lambda)$ di \mathbb{R}^3 sono linearmente indipendenti.

Risposta:

Esercizio 9. (punteggio $\frac{2.5}{30}$)

Trovare la dimensione del sottospazio di \mathbb{R}^4 generato dai vettori $v_1=(1,2,-1,1),\ v_2=(0,2,1,3)$ e $v_3=(2,2,-1,-1).$

Risposta:

Esercizio 10.	(punteggio	$\frac{2.5}{30}$)
---------------	------------	--------------------

Scrivere la matrice ch
 rappresenta la rotazione piana di angolo $\frac{\pi}{4}$ intorno all'origine.

Risposta:

Esercizio 11. (punteggio $\frac{2.5}{30}$) Sia r la retta di \mathbb{R}^2 passante per l'origine e che forma un angolo $\alpha = \frac{\pi}{12}$ con il semiasse positivo delle ascisse. Scrivere la matrice che rappresenta la simmetria piana rispetto alla retta r.

Risposta:

Esercizio 12. (punteggio
$$\frac{2.5}{30}$$
)

Discutere il seguente sistema al variare del parametro reale λ .

$$\begin{cases} x+z=0\\ y-z=0\\ y-\lambda z=0 \end{cases}$$

Risposta: