

Session 1.5

Module 1b

AC Signals an Introduction

Session 1.5: Focus

- AC Signals
 - Square Waves
 - Triangular Waves
 - Sinusoids
 - Why Sinusoidal Signals?
- Generation of Sinusoids
 - Attributes of Sinusoids
 - Angular frequency (ω)
 - Phase shift (φ)
- Parameters of AC Voltage Signals
 - Peak, Peak-to-peak and Average Voltages
 - Root-mean-square (RMS) Voltage

AC Signals

AC Signals and Systems

- So far we have seen circuits with constant voltage and current sources.
 - They are called DC (Direct Current) systems or DC circuits.
- We can't do much, only with DC circuits other than delivering DC power.
- Practical circuits that we need are the ones to sample the world, capture or play videos or music, manipulate and control information, etc.
- What we need is AC (Alternating Current) signals and circuits that work with AC signals.

Square Waves

Square Waves

- A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed **minimum** and **maximum** values.
- In an ideal square wave, the transitions between minimum and maximum are instantaneous.

- The **square wave** is a special case of a **pulse wave** which allows arbitrary durations at minimum and maximum.
- The ratio of the high period to the total period of a pulse wave is called the **duty cycle**.
 - A true square wave has a 50% duty cycle (equal high and low periods)
- Square waves are often encountered in electronics and signal processing, particularly digital electronics and digital signal processing.

Source: Wikipedia

Triangle Waves

Triangle Waves

- A **triangular** or **triangle wave** is a nonsinusoidal waveform named for its triangular shape.
- It is periodic and also piecewise linear.
- The individual segments of this signal is a linearly changing signal, either increasing or decreasing.

- Triangle waves have equal rise and fall times. v_{max}
- Waves with unequal rise and fall times are called **sawtooth waves**.
- Triangular waves are used in sampling circuits, tone generation circuits, frequency generator circuits, etc.

Source: Wikipedia

Sinusoidal Signals

Sinusoidal Signals

- Alternating voltages and currents are sinusoidal waves.
- Simple sine waves are normally referred to as sinusoids.
- A sinusoidal voltage (current) fluctuates -V_{max} periodically both in **polarity** and **direction**.

- In the signal here, the amplitude alternates between $+V_{max}$ and $-V_{max}$
- The time taken for this sinusoidal wave to complete one full cycle is called the **Period (T)** and it is measured in **seconds**.
- Frequency (f) of this signal is measured in Hertz (Hz).
 - **f** is given as $\frac{1}{T}$
- If the frequency of the signal is 50 Hz, then $T = \frac{1}{f} = \frac{1}{50} = 0.02 = 20$ msecs

Why Sinusoidal Signals?

- 1. AC generators produce sinusoidal voltages when rotors are made to rotate in the presence of magnetic field.
- 2. Any periodic waveforms can also be written in terms of sinusoidal functions using the Fourier theorem.
- 3. As you are aware, derivatives and integrals of sinusoids are also sinusoids.

- 4. Moreover, generation, transmission and consumption are also easier with sinusoidal signals.
- 5. Sinusoidal signals are also easy to analyze.

Sinusoids

Angular Frequency (ω)

- Sinusoidal signal with an angular frequency of ω is sin ωt
- Unit of ω is radians per seconds.
- Angular frequency: $\omega = 2\pi f$
 - Where **f** is frequency in **Hz**.
- $\sin \omega t = \sin 2\pi f t$ which is a function of time.

 2π radians = 360 degrees

Phase Shift (φ)

- Here, the red sinusoid is said to be lagging behind blue by $\frac{\pi}{2}$ radians.
- It can also be stated as blue sinusoid is leading the red by $\frac{\pi}{2}$ radians.
- The **phase** of a sine wave is an angular measurement that specifies the position of the wave relative to a reference wave.
- Any signal that does not pass through zero at t = 0 is said to be having a phase shift.
- Here, the blue sinusoid is the reference signal and the red sinusoid is said to be lagging behind the reference signal (blue) by $\frac{\pi}{2}$ radians or 90 degrees.

Peak and Peak-to-Peak Voltages

Peak and Peak-to-Peak Voltages

Quiz1: Find the frequency.

- As all of you are aware, in India the standard AC voltage has the **frequency** is **50 Hz**.
 - Period (T) of this signal = $\frac{1}{Frequency} = \frac{1}{50} = 0.02$ Seconds = 20 msecs
- Peak voltage of the AC voltage is shown as V_{peak}.
- Peak-to-Peak voltage is given as the total voltage between the positive and negative peaks of the AC voltage.

Average Voltage

- Since AC voltage is alternating between positive and negative voltages, the total **average value** (V_{avg}) over the full cycle will be equal to zero.
- For this reason, the average voltage is computed by considering only the positive half-cycle of AC signal.
- Thus, average value of positive half-cycle can be computed as:

•
$$\mathbf{V_{avg}} = \frac{1}{T/2} \int_0^{T/2} \mathbf{V_{peak}} \sin \omega t \, dt = \mathbf{0.637} \, \mathbf{V_{peak}} \, \mathbf{V}$$

Average and RMS Voltage

- Since AC voltage is alternating between positive and negative voltages, the total average value (V_{avg}) over the full cycle will be equal to zero.
 - So, the only average value of positive half-cycle is $0.637V_{peak}$ is considered to be average value of a sinusoidal voltage signals.
- The RMS (Root Mean Square) of AC signal is a measure of AC voltage, which is the heating value of an equivalent DC voltage would create, if it passes through a resistor.
- It is shown as V_{RMS}, which is a DC equivalent of an AC voltage.

RMS Voltage Derivation – Not part of the Syllabus

• **RMS** voltage can be derived as shown here.

$$\mathbf{V}_{\mathrm{RMS}} = \frac{V_{max}}{\sqrt{2}}$$

$$\mathbf{V}_{\mathrm{RMS}} = \mathbf{0.707} \ \mathbf{V}_{\mathrm{peak}}$$
 $\mathbf{V}_{\mathrm{avg}} = \mathbf{0.637} \ \mathbf{V}_{\mathrm{peak}}$

Standard AC Voltage in India

Quiz2: What are the values of V_{RMS} and V_{peak} ?

- The standard AC voltage in India has the frequency of 50 Hz and V_{RMS} voltage of 230 V.
- $V_{peak} = V_{RMS} / 0.707 = 230/0.707 = 325 V$

Session 1.5: Summary

- AC Signals
 - Square Waves
 - Triangular Waves
 - Sinusoids
 - Why Sinusoidal Signals?
- Generation of Sinusoids
 - Attributes of Sinusoids
 - Angular frequency (ω)
 - Phase shift (φ)
- Parameters of AC Voltage Signals
 - Peak, Peak-to-peak and Average Voltages
 - Root-mean-square (RMS) Voltage