Homework Assignment 8

Matthew Tiger

November 12, 2016

Problem 7.2.2. If $D:[0,1)\to [0,1)$ is the doubling map $D(x)=2x \mod 1$ and $f:S^1\to S^1$ is the angle doubling map, $f(z)=z^2$, show that f is a factor of D.

Solution. Recall that a dynamical system $f: S^1 \to S^1$ is a factor of the dynamical system $D: [0,1) \to [0,1)$ if there exists a continuous, onto function $h: [0,1) \to S^1$ such that $h \circ D = f \circ h$.

Define $h:[0,1)\to S^1$ by $h(x)=e^{2\pi ix}$. Then it is easy to see that h is continuous. To show that it is onto, let $z\in S^1$ be given. Then $z=e^{it}$ for some $t\in[0,2\pi)$. Choose $x\in[0,1)$ such that $t=2\pi x$. Then it is clear that $h(x)=e^{2\pi ix}=e^{it}=z$ and h is onto.

Now, we see that

$$f \circ h(x) = f(e^{2\pi ix}) = e^{2\pi ix}$$

and

$$h \circ D(x) = \begin{cases} h(2x) & \text{if } x \in [0, 1/2) \\ h(2x - 1) & \text{if } x \in [1/2, 1) \end{cases}$$
$$= \begin{cases} e^{4\pi i x} & \text{if } x \in [0, 1/2) \\ e^{4\pi i x - 2\pi i} & \text{if } x \in [1/2, 1) \end{cases}.$$

However, $e^{4\pi ix-2\pi i}=e^{-2\pi i}e^{4\pi ix}=e^{4\pi ix}$ so in either case $h\circ D(x)=e^{4\pi ix}=f\circ h(x)$ and f is a factor of D.

Problem 7.2.3.

Problem 7.2.4.

Problem 7.3.2.

Problem 7.3.4.

Problem 7.3.5.