GANNETT FLEMING CORDDRY AND CARPENTER INC HARRISBURG PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM. LAKE HENRY DAM (NOI ID NUMBER --ETC(U) JUL 80 F FUTCHKO AD-A091 446 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

This document has been approved for public takes to end sale; its distribution is uniforced.

DELAWARE RIVER BASIN

TRI	UTARY TO JONES CREEK, WAYNE COUNTY
4	PENNSYLVANIA
7.a.	Corne Luca De go l'a Transan.
	LAKE HENRY DAM
	NDI ID No. PA-001545 Dela Mine River English Rent English
210	ET L. RODGERS AND HEIZEN IN STONER
Triket	if to Jone Neck, Wayne willy
1	rescription of the second
	PHASE I INSPECTION REPORT
1	ATIONAL DAM INSPECTION PROGRAM
	- bull

GANNETT FLEMING CORDDRY AND CARPENTER, INC. Consulting Engineers P.O. Box 1963 Harrisburg, Pennsylvania 17105

For

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203

Original contains color Mate and Laid reproductons will to in black and 1200

this document has been approved for public release and sale; its Spiribution is unlimited.

NOV 1 0 1980

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

DELAWARE RIVER BASIN

TRIBUTARY TO JONES CREEK, WAYNE COUNTY

PENNSYLVANIA

LAKE HENRY DAM

NDI ID No. PA-00154 DER ID No. 64-34

JANET L. RODGERS AND HELEN W. STONER

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JULY 1980

CONTENTS

		<u>Description</u> <u>F</u>	age
SECTION	1	- Project Information	1
		- Engineering Data	6
SECTION	3	- Visual Inspection	8
			11
SECTION	5	- Hydrology and Hydraulics	12
SECTION	6	- Structural Stability	16
SECTION	7	- Assessment, Recommendations, and	
		Proposed Remedial Measures	19

APPENDICES

<u>Appendix</u>	<u>Title</u>	
A	Checklist - Engineering Data.	
В	Checklist - Visual Inspection. Photographs.	دم
С	Photographs.	5 –
Ď	Hydrology and Hydraulics.	
E	Plates.	
F	Geology.	

A

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam: Lake Henry Dam

NDI ID No. PA-00154 DER ID No. 64-34

Size: Intermediate (11 feet high; 2,389

acre-ft.)

Hazard

Classification: High

Owner: Janet L. Rodgers and Helen W. Stoner

c/o Rodgers-Olver-Polley, Inc.; Agent

Frank E. Rodgers, Jr., President

918 Church St.

Honesdale, PA 18431

State Located: Pennsylvania

County Located: Wayne

Stream: Tributary to Jones Creek

Date of Inspection: 6 June 1980

According to criteria established for these studies, Lake Henry Dam is classified as unsafe, nonemergency, because of the seriously inadequate spillway capacity, the significant seepage, and the whirlpools that have reportedly developed previously in the lake. The recommended Spillway Design Flood (SDF) for the size and hazard category of the dam is the Probable Maximum Flood (PMF). The existing spillways can pass about 19 percent of the PMF before overtopping of the dam occurs. It is judged that the dam would fail during the 1/2 PMF. Failure of the dam would increase the hazard to loss of life downstream. As a whole, the dam is judged to be in poor condition.

A potential hazard exists due to significant seepage at the toe of the dam. The whirlpools that have reportedly developed upstream of the embankment could recur and are considered a potential hazard because remedial measures performed by the Owner to prevent additional whirlpools from developing are inadequate. A thorough inspection of the dam was not possible because of brush and debris and also because of an earthfill that was being placed on the day of the inspection.

Maintenance at the dam is inadequate. There are no outlet works facilities at the dam.

The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

- (1) Clear brush, debris, and trees from on or near the dam.
- (2) Perform additional studies to more accurately ascertain the spillway capacity required for Lake Henry Dam as well as the nature and extent of mitigation measures required to provide adequate spillway capacity. Take appropriate action as necessary.
- (3) Perform additional studies to determine the structural stability of Lake Henry Dam. These studies should also address the effects of the seepage on the structural stability of the dam, the potential of the seepage to cause piping, and the nature and extent of measures necessary to control seepage and prevent a recurrence of whirlpools. Take appropriate action as necessary.
- (4) Design and construct an outlet works capable of drawing down the Lake. Any pipe placed through the dam should be provided with an upstream closure facility.
- (5) Provide means to prevent the floating islands in the lake from floating downstream and blocking the spillways.
- (6) Until investigations, studies, and remedial work are completed, the Owner should monitor the condition of the dam and appurtenant structures. Take appropriate action as required should any changes in conditions occur.

All investigations, studies, designs, and inspection of construction should be performed by a professional engineer experienced in the design and construction of dams. Tree removal on or near the dam should be under the guidance of a professional engineer.

In addition, the Owner should institute the following operational and maintenance procedures:

- (1) Develop a detailed emergency operation and warning system.
- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of the dam.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- (4) Initiate an inspection program at the dam. As presently required by the Commonwealth, the inspection program should include formal annual inspections by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.
- (5) Expand the existing maintenance program to properly maintain all features of the dam.

LAKE HENRY DAM

Submitted by:

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

FREDERICK FUTCHKO

Project Manager, Dam Section

Date: 8 August 1980

Approved by:

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, CORPS OF ENGINEERS

Colonel, Corps of Engineers District Engineer

Date: 2 Sep / 180

DELAWARE RIVER BASIN

TRIBUTARY TO JONES CREEK, WAYNE COUNTY

PENNSYLVANIA

LAKE HENRY DAM

NDI ID No. PA-00154 DER ID No. 64-34

JANET L. RODGERS AND HELEN W. STONER

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JULY 1980

SECTION 1

PROJECT INFORMATION

1.1 General.

- a. <u>Authority</u>. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Lake Henry Dam is a dry stone masonry structure with an upstream earthfill. It has a main spillway and an auxiliary spillway. The dam is about 163 feet long and 11 feet high. The main spillway is at the right abutment of the dam. It has a trapezoidal-shaped section with a 24-foot long concrete weir. At the left end of the weir there is a stoplog slot with a timber stoplog in place. The crest of the weir is 1.9 feet below the top of the dam. A natural

knoll separates the main spillway from the right end of the dam. However, a concrete wall that is apparently a cutoff wall extends along the top of the dam through the natural knoll to the main spillway.

The auxiliary spillway is a notch in the top of the dry stone masonry. Its crest is 35.2 feet long and 1.8 feet below the top of the dam. There are no outlet works facilities at the dam. The various features of the dam are shown on the Photographs in Appendix C and on the Plates in Appendix E. The geology of the site is described in Appendix F.

- b. Location. Lake Henry Dam is located on a tributary to Jones Creek in Lake Township, Wayne County, Pennsylvania, approximately 0.4 mile northeast of Maplewood. Lake Henry Dam is shown on USGS Quadrangle, Lake Ariel, Pennsylvania, at latitude N 41° 26' 10" and longitude W 75° 26' 35". A location map is shown on Plate E-1.
- c. <u>Size Classification</u>. Intermediate (11 feet high; 2,389 acre-feet of which about 260 acre-feet is contained in a natural lake).
- d. <u>Hazard Classification</u>. High Hazard. Down-stream conditions indicate that a high hazard classifica-tion is warranted for Lake Henry Dam (Paragraphs 3.1e and 5.1c (5)).
- e. Ownership. Janet L. Rodgers and Helen W. Stoner, c/o Rodgers-Olver-Polley, Inc., Agent, Frank E. Rodgers, Jr. President, 918 Church St., Honesdale, Pennsylvania 18431.
 - f. Purpose of Dam. Recreation.
- g. Design and Construction History. The Pennsylvania Water Supply Commission (PWSC) prepared a report on the dam in 1915. In that report, the PWSC researched the history of the structure. According to the PWSC, the dam was originally constructed in 1865 by farmers, apparently for recreation and ice harvesting. Other data indicates that the dam was constructed in 1878. The report indicates that the original outlet works was removed in 1913 by M. E. Keene. At that time, Mr. Keene constructed an outlet works consisting of a timber sluiceway and a timber gate. At that time, the embankment was a dry stone masonry gravity dam with timber sheeting along the upstream side. In July 1914, the dam was overtopped by 2 feet, with no reported

damage. The report prepared by the PWSC in 1915 recommended increasing the spillway capacity. By 1917, the owner had enlarged the spillway, which was at the right abutment, to the satisfaction of the PWSC. The PWSC inspected the dam several times between 1917 and 1934. Repairs were ordered at least once. A summary of the inspection history is in Appendix A. In July 1934, the dam overtopped "slightly" and the spillway weir collapsed. This caused a highway bridge downstream to wash out and severe erosion damage at a railroad bridge downstream. A new concrete weir was constructed by September 1934. As noted in Appendix A, further repairs were ordered after an inspection in 1935 by the PWSC.

The dam was modified in 1938. The timber sluiceway outlet works was removed, the timber sheeting on the upstream slope was reportedly removed, earthfill was added upstream of the dry stone masonry, and the auxiliary spillway was constructed.

In 1975, the Lake Henry Cottagers' Association, Inc. (LHCA) leased the dam from the present Owner. Their lease reportedly includes the responsibility for maintenance of the dam. The LHCA paved the auxiliary spillway with macadam and "faced the dam with concrete" in 1975. The concrete facing is apparently cosmetic, because around 1976 two whirlpools developed, at different times, in the lake adjacent to the dam. The LHCA reports that between 1976 and the present over 300 tons of crusher waste from a local quarry was placed on the upstream slope to eliminate the whirlpools and to provide a submerged access road across the dam. Construction in progress on the day of the inspection is described in Section 3.

h. Normal Operational Procedure. The pool is maintained at the main spillway crest level with excess inflow discharging over the spillways. There are no outlet works facilities. Spillway discharge flows downstream to Jones Creek.

1.3 Pertinent Data (Existing Conditions).

a. <u>Drainage Area</u>. (square miles) 5.9

b.	Discharge at Damsite. (cfs.) Maximum known flood at damsite	e	990
	Outlet works at maximum pool elevation		None.
	Spillway capacity at maximum pool elevation Main Auxiliary Total		340 230 570
c.	Elevation. (feet above msl.) Top of dam Maximum pool Normal pool (main spillway creat Auxiliary spillway crest Upstream invert outlet works Downstream invert outlet works Streambed at toe of dam		1481.9 1481.9 1480.0 1480.1 None. None.
d.	Reservoir Length. (miles) Normal pool Maximum pool		1.6 1.7
e.	Storage. (acre-feet) Natural lake Normal pool Maximum pool		262 1,766 2,389
f.	Reservoir Surface. (acres) Natural lake Normal pool Maximum pool		81 319 337
g.	Dam. Type		
	<u>Length</u> (feet-approximate)		163
	Height (feet)		11
	Topwidth (feet)	Varies,	8 minimum.
	Side Slopes Upstream (Record Data) Downstream		1V on 2H Vertical.

g. Dam (Cont'd.)

Zoning

Earthfill and dry stone masonry.

Cut-off

Unknown.

Grout Curtain

None.

h. <u>Diversion and Regulating</u>
Tunnel.

None.

i. Spillway. Type

Main

Approximate trapezoidal-shaped section with a broad-crested concrete weir.

Auxiliary

Broadcrested weir.

Length of Weir (feet)
Main
Auxiliary

24.0 35.2

Crest Elevation
Main
Auxiliary

1480.0 1480.1

Upstream Channel
Main
Auxiliary

Reservoir. Reservoir.

Downstream Channel
Main
Auxiliary

Concrete apron.
Natural stream,
(see Section 3).

j. Regulating Outlets.

None.

SECTION 2

ENGINEERING DATA

2.1 Design.

- a. Data Available. There are no data for the dam.
- b. Design Features. The project is described in Paragraph 1.2a. The various features of the dam are shown on the Photographs in Appendix C and on Plates E-2 and E-3 in Appendix E.
- c. <u>Design Considerations</u>. There are insufficient data to assess the design.

2.2 Construction.

- a. <u>Data Available</u>. No data are available for the construction of the original dam. The only construction data are very scant data for the 1938 modification.
- b. <u>Construction Considerations</u>. There are insufficient data to assess the construction.
- 2.3 Operation. There are no formal records of operation. The LHCA maintains some records of the post-1975 work performed at the dam. A record of operation does exist in the form of inspection reports prepared by the Commonwealth between 1917 and 1965. The findings of these inspections are in Appendix A.

2.4 Evaluation.

- a. Availability. Engineering data were provided by the Bureau of Dams and Waterway Management, Department of Environmental Resources, Commonwealth of Pennsylvania (PennDER). The Owners made available their agent for information during the visual inspection. The Lake Henry Cottagers' Association, Inc. made available their president, vice-president, and maintenance supervisor for information.
- b. Adequacy. The type and amount of available design data and other engineering data are very limited, and the assessment must be based on the combination of available data, visual inspection, performance history, hydrologic assumptions, and hydraulic assumptions.

c. <u>Validity</u>. There is no reason to question the validity of the available data. However, much of the data is in conflict. Significant conflicts are discussed in other sections of this Report.

SECTION 3

VISUAL INSPECTION

3.1 Findings.

a. General. The overall appearance of the dam is poor. Deficiencies were observed as noted below. A sketch of the dam with the locations of deficiencies is presented on Exhibit B-1 in Appendix B. Survey information acquired for this Report is summarized in Appendix B. Datum for the survey was assumed at main spillway crest, Elevation 1480.0, as shown on USGS mapping. On the day of the inspection, the pool was at the main spillway crest.

The inspection team was accompanied by a representative of PennDER. When the inspection team arrived, the LHCA was in the process of placing fill along the downstream side of the dam. It was reported that vandals had removed some large stones from the downstream face of the dam and that the purpose of the fill was to prevent future acts of vandalism. As part of the work, the LHCA had placed fill across the entire auxiliary spillway to allow access to the other side by construction equipment. The fill is an uncompacted, silty sand with some boulders (Photographs C and G).

The PennDER representative asked the LHCA if they had a permit to perform the work. When the LHCA replied that they had no permit, the PennDER representative informed them that they were in violation of the Pennsylvania Dam Safety and Encroachments Act. He advised them to cease work. Further discussions with LHCA revealed that the fill in the auxiliary spillway was intended as a temporary measure to protect the auxiliary spillway structures from damage by hauling equipment. The PennDER representative then advised that since obtaining a permit could be a relatively lengthy process, removing the fill from the auxiliary spillway would enable it to pass its discharge capacity. When the PennDER representative and the inspection team returned from lunch, the temporary fill in the auxiliary spillway had been completely removed and all work had ceased (Photograph H).

b. Dam. Very little could be seen of the dry stone masonry. Only the right end of the downstream face of the dam was visible. It appeared to be in good

condition, although a very small bulge that is obviously not of recent origin was observed adjacent to the recently-placed earthfill below the auxiliary spillway. Some fairly large (5-foot maximum dimension) boulders are randomly located on the earthfill. The total seepage at the toe of the earthfill was about 50 gpm. The locations of seepage points are shown on Exhibit B-1. To the left of the earthfill, a slope that appears to be a natural slope extends for about 50 feet. Mature trees are growing on the slope, which is covered with massive vegetal debris. Brush and trees are also growing at the abutments and at the toe of the dam.

The auxiliary spillway is located near the center of the dam. The auxiliary spillway was obscured by a thin layer of soil (Photograph H). Macadam was observed at two locations through the soil cover. To the right of the auxiliary spillway, a concrete wall extends to the main spillway, as shown on Plate E-2. Only the top of the wall is visible. It deflects at two locations. At the deflection point nearest the main spillway, the wall is cracked and offset vertically by 0.2 foot.

The upstream side of the dam has been recently filled with crusher waste. The LHCA reported that whirlpools developed in the lake near the dam in about 1976. One whirlpool was near the main spillway. The other was just to the right of the auxiliary spillway. The crusher waste was placed both to eliminate the whirlpools and to provide a submerged access road for construction equipment, as noted in Paragraph 1.2g. The crusher waste is not well compacted adjacent to the embankment.

The survey performed for this inspection was used to draw a plan of the dam that is shown on Plate E-2. The only available drawing for the dam shows cross sections and profiles for the spillways. This drawing is shown on Plate E-3. Using Plate E-3 as a guide, the embankment is 0.2 foot below its design elevation. A profile of the dam is shown in Appendix B.

c. Appurtenant Structures. The main spillway is at the right abutment of the dam. A stoplog that extends partially along the crest is mortared into the stoplog slot. The crusher waste placed along the upstream side of the dam is level with the top of the weir and stoplog. The right end of the weir is covered with crusher waste and the left end is covered with earthfill. The ends of the weir are therefore not distinct. The concrete apron

that is downstream of the weir is a thin paving that covers a stone and concrete-rubble fill. A hole about 2 inches in diameter that was eroded into the paving allows water to flow through. There is about a 1-foot drop between the end of the apron and the streambed. The end is unprotected and erosion has occurred at the end of the apron. Bedrock is visible in the main spillway channel.

The auxiliary spillway is described in Paragraph 3.1b. There is no outlet works at the dam. The left abutment of the dam is very flat and heavily wooded.

- Reservoir Area. The watershed is mostly rolling hills with minor rural development. The western edge of the watershed is mountainous and steep. are 3 dams within the watershed, as noted in Appendix D. The right shore of the reservoir has mild slopes; the left shore is fairly steep. The LHCA pointed out what appeared to be islands in the lake. They stated that these are floating islands, or masses of vegetal matter with trees growing thereon. One of these islands is just upstream of the left abutment of the dam. It was reported that it drifted into the cove to the right of the main spillway and was towed to its present location. At present, this island is secured by aerial cable to the shore. The other islands in the lake are not secured to the reservoir bottom or the shore.
- Downstream Channel. The main spillway channel joins the auxiliary spillway channel about 100 feet downstream from the dam. The banks of both channels are steep and wooded. Some evidence of minor erosion was observed at the banks. From the dam, the stream flows for about 0.4 mile where it crosses under two roads. stream then flows for another 0.4 mile to the remains of an old mill dam, which is breached. The stream is steep and narrow in the above reach. Just upstream of the remains of the mill dam is a bridge. One dwelling is at the right bank of the stream near the above bridge. The stream then flows for 0.1 mile into an extensive swamp. The stream is known as Jones Creek from this point downstream. Where the stream flows into the swamp, there is a low-lying dwelling adjacent to the stream. The swamp extends downstream for 2.2 miles. There are no low-lying dwellings near the swamp. At the downstream end of the swamp, the stream flows under PA Route 348 (PA-348). Near PA-348 are 3 additional dwellings that could be flooded by a failure of the dam. Downstream conditions are shown on Exhibit D-1.

SECTION 4

OPERATIONAL PROCEDURES

- 4.1 Procedure. The reservoir is maintained at the main spillway crest level with excess inflow discharging over the main and auxiliary spillways and into the downstream channel. There are no outlet works facilities.
- 4.2 Maintenance of Dam. The LHCA maintenance supervisor visits the dam daily, except during the winter. The dam is not visited during the winter. The maintenance work performed by the LHCA is described in Sections 1 and 3.
- 4.3 Maintenance of Operating Facilities. There are no operating facilities at the dam. The LHCA maintenance foreman stated that he would remove the stoplog with an axe if the lake rose to near the top of the dam.
- 4.4 <u>Warning Systems in Effect</u>. There is no emergency operation and warning system.
- 4.5 Evaluation of Operational Adequacy. The maintenance of the embankment and spillways is poor, as discussed in Sections 5 and 6. The method of removing the stoplog is unreliable because access to it would be difficult during high pool conditions. Inspections are necessary to detect hazardous conditions at the dam. An emergency operation and warning system is necessary to reduce the risk of dam failure should adverse conditions develop and to prevent loss of life should the dam fail.

SECTION 5

HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features.

- a. Design Data. There are no design data. The addition of the auxiliary spillway in 1938 was never analyzed by the Commonwealth. The work was performed without a permit, although the Commonwealth had no objections to the modifications as completed in 1938.
- b. Experience Data. The reported flood of record occurred in July 1914, when the dam overtopped by 2 feet. The Pennsylvania Water Supply Commission estimated the flow as 990 cfs. This is further discussed in Paragraph 5.1d (5). No data are available to estimate the flow for the flood of July 1934, when the spillway weir washed out.

c. Visual Observations.

- (1) General. The visual inspection of Lake Henry Dam, which is described in Section 3, resulted in a number of observations relevant to hydrology and hydraulics. These observations are evaluated herein for the various features.
- (2) Dam. There were no significant observations relevant to hydrology and hydraulics for the dry stone masonry section of the dam. Observations on the dry stone masonry pertain to structural stability and are evaluated in Section 6.
- (3) Appurtenant Structures. After the recently-placed earthfill had been removed from the auxiliary spillway, no deficiencies were observed at the auxiliary spillway. The main spillway weir is in good condition. The deterioration of the spillway apron is not a major hazard to the dam at present. However, if the eroded areas are not repaired, further erosion is likely. Structural details of the main spillway weir are not available. From descriptions in the records, it is implied that the main spillway weir relies upon the rubble downstream of the weir for support. Thus, further erosion of the rubble downstream of the weir is of concern. The ends of the main spillway weir are not distinct. As shown on the profile in Appendix B, the main spillway has been assumed to include the overbank at the right end and part

of the natural knoll at the left end. Although the brush and trees in this area would reduce the main spillway capacity, the effects of the brush and trees have not been included in the analysis described hereafter.

Since there are no outlet works facilities, there is no effective means of drawing down the lake in in case of emergency.

(4) Reservoir Area. The development in the watershed is minor. Pertinent data concerning Half Moon Lake Dam and Kizer Pond Dam are in Appendix D. A profile of each dam is in Appendix B. The spillway at Half Moon Lake Dam is completely blocked by debris (Photograph J). The pool is maintained below spillway crest by seepage through the dam. For the analysis described hereafter, the pool was assumed to be maintained at the water level existing on the day of the inspection. Since the spillway is blocked, only flow over top of the dam is The effects of Half Moon Lake have been considered. included in the analysis only because they may affect the runoff. A failure of Half Moon Lake Dam would not present a significant hazard to Lake Henry Dam.

The effects of Kizer Pond Dam have also been included in the analysis. A road extends parallel to and just downstream from the axis of the dam (Photograph I). For the purposes of this study, it is assumed that the higher of either the road or the top of the dam controls. This is shown on the profile in Appendix B. However, some flow over the top of the dam would be directed along the downstream toe. This condition was not modelled. Plate E-1 shows an outlet along the right shore of Kizer Pond Dam. This outlet was observed during the inspection and is judged not to provide significant discharge capacity. It is a natural low area that is covered with thick brush.

Spillway flow immediately downstream from Kizer Pond Dam flows into a culvert under the road and then into Kizer's Little Pond, which is impounded by a 10-foot high embankment. The effects of Kizer's Little Pond, which has negligible storage, have been ignored.

(5) <u>Downstream Conditions</u>. No conditions were observed downstream that would reduce the hydraulic capacity of the spillways. A failure of the dam would flood 2 dwellings within 1 mile of the dam. Although the swamp along Jones Creek would have significant mitigating effect on discharge resulting from dam failure, the bridge at the downstream end of the swamp would act as a

small dam. A failure of Lake Henry Dam would cause a large volume of water to flow downstream. This would probably cause the roadway and bridge at the downstream end of the swamp to overtop, with the resultant flooding of 3 additional dwellings. The downstream conditions indicate that a high hazard classification is warranted for Lake Henry Dam.

d. Overtopping Potential.

- (1) Spillway Design Flood. According to the criteria established by the Office of the Chief of Engineers (OCE), the Spillway Design Flood (SDF) for the size (Intermediate) and hazard potential (High) of Lake Henry Dam is the Probable Maximum Flood (PMF). The watershed was modeled with the HEC-1DB computer program. A description of the model is included in Appendix D. The assessment of the hydrology and hydraulics is based on existing conditions, and the effects of future development are not considered.
- (2) Summary of Results. Pertinent results are tabulated at the end of Appendix D. The analysis reveals that Lake Henry Dam can pass about 19 percent of the PMF before overtopping of the dam occurs. The dam is rated at its existing top elevation. Raising the top of the dam to its reported design elevation would make negligible difference in the spillway capacity. The analysis also reveals that Half Moon Lake Dam and Kizer Pond Dam can pass 9 percent and 20 percent, respectively, of their components of the PMF.
- (3) Spillway Adequacy. The criteria used to rate the spillway adequacy of a dam are described in Appendix D. During the 1/2 PMF, the dam will overtop by 2.2 feet for 19 hours. The flood of record at the dam occurred on 10 July 1914 when, according to the Pennsylvania Water Supply Commission, "as much as 2 feet of water passed over the sheeting during a cloudburst." No duration is noted. The reference to sheeting is to the timber sheeting that then extended along the upstream side of the dry stone masonry and protruded above the top of the masonry. Neither the source of the data concerning the overtopping nor the method of determining the depth of overtopping is noted. Although the dam could probably withstand shallow overtoppings, it is judged that the dam could not withstand the depth and duration of overtopping that would occur during the 1/2 PMF. Although the dry stone masonry at the top of the dam might withstand the velocities that would occur during the overtopping, the toe of the dam would be

subject to scour which could cause the dam to fail. noted in Section 6, foundation conditions at the dam are unknown. As shown on Plate E-3, a previous owner of the dam placed rubble and debris on the downstream side of the auxiliary spillway. It is believed that this indicates that scour had either occurred or was anticipated. It is therefore assumed that the dam would fail during an occurrence of the 1/2 PMF. Assumptions used to model the breach are listed in Appendix D. resulting flows were routed downstream. The results indicate that a failure of the dam would increase the water level near dwellings between 2.0 to 3.7 feet over the stream depth that would occur if the dam were not to There is an increased hazard to loss of life. bridges extending across the stream were not considered in the model. Their effects would increase the hazard. The spillway capacity of Lake Henry Dam is rated as seriously inadequate.

As part of this study, the effects of a failure of Kizer Pond Dam during the 1/4 and 1/2 PMF were determined. During either storm, a failure of Kizer Pond Dam would have negligible effect on Lake Henry Dam. It was assumed that Kizer Pond Dam would be breached down to the elevation of the low elevation of the top of the road that is just downstream and parallel to the axis of the dam.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual Observations.

- (1) General. The visual inspection of Lake Henry Dam, which is described in Section 3, resulted in a number of observations relevant to structural stability. These observations are evaluated herein for the various features.
- (2) Dam. The growth of trees on or near the dam is a hazard to the structure. Root systems can loosen material that make up the dam and create paths along which seepage and piping (internal erosion) might occur. Brush and debris are objectionable because they obscure the dam and hinder visual inspection.

The uncompacted earthfill that was being placed on the day of inspection does not structurally harm the dam. It was being placed on an unstripped foundation. The downstream slope was the angle of repose of the fill; the survey performed for this inspection reveals that the slope is about 1V on 1.25H. The LHCA maintenance supervisor stated that the LHCA eventually planned to place riprap on the slope, but no riprap was stockpiled at the site. In its present condition, the earthfill would erode rapidly during either heavy rain or periods of auxiliary spillway flow. The earthfill is very objectionable because it obscures most of the dam and the location of the seepage. Although it is not pertinent to the safety of the dam, the earthfill also presents environmental and personnel hazards.

A thorough inspection of the dam was not possible because most of the dam was obscured either by the recently placed earthfill or by brush and debris. This is further discussed in Paragraph 6.1b.

- (3) Appurtenant Structures. The minor maintenance deficiencies at the main spillway are evaluated in Section 5. No deficiencies were observed at the auxiliary spillway, as noted in Section 5.
- b. <u>Design and Construction Data</u>. A review of the photographs in the PennDER files reveals some data

pertinent to the dam. The photographs were mostly taken during the periodic inspections performed by the Commonwealth. A previous owner also submitted a set of photographs. Although undated, they are believed to have been taken in 1951, when a drawing (Plate E-3) was submitted to the Commonwealth.

Judging by photographs taken in 1915 and 1938, the dry stone masonry appears to extend about 10 to 20 feet beyond the point described by the maintenance supervisor. The 1951 photographs show an upstream concrete wall extending about 20 feet to the left of the auxiliary spillway. Plate E-2 shows a slope extending about 50 feet to the left of the auxiliary spillway. It is fairly certain that the dry stone masonry extends at least 20 feet beyond the left end of the auxiliary spillway; it may extend up to 50 feet. If it does not, then the natural slope acts as an embankment and there would be concern for its slopes and composition. downstream slope is covered by massive vegetal debris and large trees. The inspection team could not determine what portions of the area to the left of the auxiliary spillway were natural or manmade.

The foundation conditions at the embankment are unknown. Bedrock outcrops at the main spillway, but no bedrock was observed near other areas of the dam. As noted in Section 5, rubble and debris were placed at the toe of the dam, which is believed to indicate that scour was either anticipated or was previously a problem. The rubble and debris may be under the recently placed earthfill.

The PWSC Report of 1915 describes the dam as rockfill (dry stone masonry) with timber sheeting upstream. Photographs taken in 1930 and 1937 show earthfill and rockfill placed on the upstream side of the sheeting. Plate E-3 indicates that by 1938, a significant amount of fill had been placed upstream of the sheeting. This Plate also indicates that the sheeting had been removed in 1938. As the removal of the sheeting would have required excavation of the upstream earthfill, it is surmised that only the upper, exposed portion of the sheeting was removed and replaced by a concrete wall. The LHCA has since placed more crusher waste on the upstream side of the embankment.

The seepage at the dam is of concern because it is uncontrolled and the quantity has apparently increased significantly since the dam was last inspected. Previous inspection reports only note a minor amount of seepage.

Because of the recently-placed earthfill on the downstream side of the dam, the exact location of the seepage could not be determined on the day of the inspection. The LHCA maintenance foreman stated that when the lake falls during the summer, the seepage reduces to a trickle. The top of the sheeting is subject to fluctuating pool levels. It is therefore surmised that the timber sheeting is deteriorating with most of the deterioration having occurred at the top of the sheeting. This would explain the reported large variation of seepage with a relatively minor variation in pool elevation.

The deterioration of the sheeting could have caused the whirlpools, which appeared around 1976. The measures taken to prevent the recurrence of the whirlpools are, at best, temporary. It is believed that present conditions are still conducive to other whirlpools developing. Uncontrolled seepage could develop into piping, as indicated by whirlpools, and lead to rapid failure of the dam.

The theoretical structural stability of the dam cannot be determined without further information because both the extent of the dry masonry in the dam and the foundation conditions are unknown.

- c. Operating Records. There are no formal records of operation. The development of whirlpools and the significant increase in seepage, as assessed above, are of major concern. There are no records of any slope movement over the operational history of the dam.
- d. <u>Post-Construction Changes</u>. The various modifications to the dam are evaluated above.
- e. Seismic Stability. Lake Henry Dam is located in Seismic Zone 1. Normally it can be considered that if a dam in this zone has adequate factors of safety under static loading conditions, it can be assumed safe for any expected earthquake loading. However, since there are no static stability analyses, the theoretical seismic stability of Lake Henry Dam cannot be assessed.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

- (1) Based on available records, visual inspection, calculations, and past operational performance, Lake Henry Dam is judged to be in poor condition. The recommended SDF for the size and hazard category of the dam is the PMF. Based on existing conditions, the spillways will pass about 19 percent of the PMF before overtopping of the dam occurs. It is judged that the dam would fail during the 1/2 PMF. Failure of the dam would cause an increased hazard for loss of life downstream. The spillway capacity is rated as seriously inadequate.
- (2) There was no evidence of slope movement at the dam at the time of the visual inspection. A potential hazard exists due to the significant amount of uncontrolled seepage at the toe of the dam and due to the whirlpools that have reportedly developed upstream of the dam. Remedial measures performed by the Owner to prevent additional whirlpools from developing are inadequate.
- (3) According to criteria established for these studies, the dam is classified as unsafe, nonemergency, because of the seriously inadequate spillway capacity, the significant seepage, and the whirlpools that have reportedly developed previously in the lake.
 - (4) Maintenance at the dam is inadequate.
- (5) There are no outlet works facilities at the dam.
- (6) A summary of the features and observed deficiencies is listed below:

Feature and Location

Observed Deficiency

Embankment:

Brush and trees; seepage.

Main Spillway:

Eroded areas in apron and at downstream end of apron;

brush and trees.

Reservoir Area:

Floating islands with a potential to block

spillways.

b. Adequacy of Information. The information available is such that a preliminary assessment of the condition of the dam can be inferred from the combination of visual inspection, past performance, and computations performed prior to and as part of this study. However, brush, debris, and earthfill at the downstream toe of the dam obscured most of the dam; as a result, a thorough inspection of the dam was not possible.

- c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented immediately.
- d. <u>Necessity for Further Investigations</u>. In order to accomplish some of the remedial measures outlined in Paragraph 7.2, further investigations by the Owner will be required.

7.2 Recommendations and Remedial Measures.

- a. The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:
- (1) Clear brush, debris, and trees from on or near the dam.
- (2) Perform additional studies to more accurately ascertain the spillway capacity required for Lake Henry Dam as well as the nature and extent of mitigation measures required to provide adequate spillway capacity. Take appropriate action as necessary.
- (3) Perform additional studies to determine the structural stability of Lake Henry Dam. These studies should also address the effects of the seepage on the structural stability of the dam, the potential of the seepage to cause piping, and the nature and extent of measures necessary to control seepage and prevent a recurrence of whirlpools. Take appropriate action as necessary.

- (4) Design and construct an outlet works capable of drawing down the Lake. Any pipe placed through the dam should be provided with an upstream closure facility.
- (5) Provide means to prevent the floating islands in the lake from floating downstream and blocking the spillways.
- (6) Until investigations, studies, and remedial work are completed, the Owner should monitor the condition of the dam and appurtenant structures. Take appropriate action as required should any changes in conditions occur.

All investigations, studies, designs, and inspection of construction should be performed by a professional engineer experienced in the design and construction of dams. Tree removal on or near the dam should be under the guidance of a professional engineer.

- b. In addition, the Owner should institute the following operational and maintenance procedures:
- (1) Develop a detailed emergency operation and warning system.
- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of the dam.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- (4) Initiate an inspection program at the dam. As presently required by the Commonwealth, the inspection program should include formal annual inspections by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.
- (5) Expand the existing maintenance program to properly maintain all features of the dam.

APPENDIX A

CHECKLIST - ENGINEERING DATA

CHECKLIST

NAME OF DAM: LAKE HENRY DAM

ENGINEERING DATA

NDI 1D NO.: 34 - 00154 DER 1D NO.: 64-34

DESIGN, CONSTRUCTION, AND OPERATION PHASE I

Sheet 1 of 4

ITEM	REMARKS
AS-BUILT DRAWINGS	ONLY AVAILABLE DRAWING is PLATE E-3
REGIONAL VICINITY MAP	SEE PLATE E-1
CONSTRUCTION HISTORY	PROBABLY BUILT 1865 but other data indicates 1878 or 1916
TYPICAL SECTIONS OF DAM	SEE PLATE E-3
OUTLETS: Plan Details Constraints Discharge Ratings	NO OUTLET AT SITE

ENGINEERING DATA

Sheet 2 of 4

*

ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	None
DESIGN REPORTS	Nore
GEOLOGY REPORTS	Nove
DESIGN COMPUTATIONS: Hydrology and Hydraulics (H4H) Dam Stability Seepage Studies	None Except some Spirrung CAPACITY CALCULATIONS by PWSC.
MATERIALS INVESTIGATIONS: Boring Records Laboratory Field	None
POSTCONSTRUCTION SURVEYS OF DAM	See PLATES E-2 AND E-3

Sheet 3 of 4

ENGINEERING DATA

ITEM	REMARKS
BORROW SOURCES	UNKNOWN
MONITORING SYSTEMS	None
MODIFICATIONS	1913- OUTLET WORKS REPLACED 1938- OUTLET WORKS REMOVED, AUXILIARY SPILLWAY CONSTRUCTED, UPSTREAM EARTHFILL ADDED
HIGH POOL RECORDS	JULY 1914 - OVERTORPED by 2' DESC ESTIMATE 990CFS JULY 1984 - WATER OVERTORPED OLAM PAILED, SLICHTLY SPILLMAN WEIR PAILED, NO DISCHARGE ESTIMATE.
POSTCONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM: Description Reports	July 1934 - Spillwny weir FribED CIRCA 1976 - Whirtpools developed IN RESERVOIR. PUSC Report ON 1934 Spilluny Frilung.

ENGINEERING DATA

MILL	REMARKS
MAINTENANCE AND OPERATION RECORDS	LAKE HENRY COTTNERRS' ASSOCIATION KEEPS PECCROS OF MATERIAL USED AT AMM. Records of ATE FROM 1975.
SPILLWAY: Plan Sections Details	SEE PLATES E-2 AND E-3.
OPERATING EQUIPMENT: Plans Details	None
PREVIOUS INSPECTIONS Dates Deficiencies	1917 - No LEAKAGE RECOMMENDATIONS FROM 1915 DUSC Report ANVE. been Accomplished, spillumy clethe, 1919 - SLICHT LEAKAGE FROM LEFT END, UPSTREAM TIMBER SheetING UNDER REPAIR, SPILLUMY OBSTRUCTED. 1924 - LEAKAGE UNDER AND AROUND ENDS OF SPILLUMY. 1930 - TOP OF AMM 'S LOW IN MIDDLE AND UNEVEN, BRUSH 9 ROWING ON RIGHT END.
(continued)	The Upstream Filt Alone The Sheetine Cutore 15 Low. Top of downstream wall over Hanes Several inches. Some Settlement To the left of the spilling.

ENGINEERING DATA

H	1030 (CONTINUED): There is consideration
Previous Inspections	LEAKAGE AT LEFT END AND CONSIDERABLE THORISE THE WALL AT THE SLUICE CATES.
(continues)	1931 - Repairs Compress SarisFACTORILY. The only deficiency is a LOG 600m fol spittmmy.
	July 1934 - Recounts FAILURG OR Spillury
	Sept. 1934 - Spirluny Rophings smishneavy. 1935 - Top or dam is uncoled and Stones Are missing From The down stream FAFF. Considerable LEAKAGE IN "OLD CRIBBING!!
	FLASH BOARDS ON SPILLWAY CREST. Repaires ORDERED. 1937. Repaires NOT Accomplished, FLASH BOARD PINS FILLED WITH CONCRETE, STONES IN FACE OF Amm MISSING, TIMBER IN
	SLUICE GATE IN POOR CONDITION, 1938 - NOTES MODIFICATIONS -NO DEFICIENCIES 1939 - NO DEFICIENCIES 1948 - DEFAIS IN SPILLUMYS. 1951 - GOOD CONDITION EXCEPT SOME 1951 - GOOD CONDITION EXCEPT
	1965- "WASTEWAY CHANNEL" CLUTTERED WITH LARGE TREES, GLOCKING FLOW downstreinn.

'APPENDIX B
CHECKLIST - VISUAL INSPECTION

CHECKLIST

1

VISUAL INSPECTION

PHASE I

LAKE HENRY COUNTY:	State: Pennsylvania
NDI ID No.: PA - OO 154 DER ID No.:	64-34
Type of Dam: DRY Stone MASONAY W/UPSTREEM Hazard Category:	tegory: Hish
Date(s) Inspection: 6 June 1980 Weather: CLEAR	Temperature: 75%t
Soil Conditions, MOIST	
Pool Elevation at Time of Inspection: 1480.0 msl/Tallwater at Time of Inspection: 1471.4 msl	t Time of Inspection: $147/.4$ msl
Inspection Personnel:	
P. RODGERS (Rep of OWNER) I. Resse (PRES-LHCA)	A) J. Chernesky (Penn DER)
J. HARTLAND (MAINT. SUPPRVISER-LHCA)	D. Wilson (GFCC)
R. SAMERS (N.P. LHCA) & OTHER Members LHCA	D. Ebesself (GFCC)

Recorder

A. WHITMAN (GFCC)

CONCRETE/MASONRY DAMS DRY STONE MASONRY

with upstream emetheill.

.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	SEE AUXILIARY SPILLWAY	
JUNCTION OF STRUCTURE WITH: Abutment Embankment Other Features	RICHT ABUTMENT - NO DEFICIENCIES LEFT ABUTMENT - Obscured by VELETAL debris	Brush and dam. Brush and trees Adsacent to toe.
DRAINS	NONE AT SITE	
Water passages	NONE AT SITE	
POUNDATION	No bedrack observed	

CONCRETE/MASONRY DAMS

Sheet 2 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SURFACES: Surface Cracks Spalling	Not Applicable	
STRUCTURAL CRACKING	None Observed	
ALIGNMENT: Vertical Horizontal	VERTICAL - SEE PLATE E-2 AND PROFILE FOLLOWING INSPECTION FORMS	HORIZONTAL: CONCRETE WALL EXTENDS FROM AUX. SPILLWAY TO MAIN SPILLWAY. WALL DEFLECTS SLIGHTLY AT TWO LOCATIONS
Monolith joints	WALL NOTED IN 'ALIENMENT' About is CRACLED THROUGH AND OFFEET AT DEFLECTION POINT NEWSELT MAIN SDILLMAY.	
CONSTRUCTION JOINTS	Nor Applicable	
STAFF GAGE OR RECORDER	Nowe AT SITE	

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS REMARKS OR RECOMMENDATIONS	MENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Nove AT Site	
INTAKE STRUCTURE		
OUTLET STRUCTURE		
OUTLET CHANNEL		
EMERGENCY GATE	None AF SITE	

UNGATED SPILLWAY (MAIN)
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	GOOD CONDITION	Wooden Stoploc Secured by concrete Alone LEFTMOST PART OF WOIR.
APPROACH CHANNEL	Reseavoir Upstream EAKTHFILL 13 ALMOST FLAT AND EXINDS UP TO WEIR CREFEL,	
DISCHARGE CHANNEL	Stave AND Rubble COUCRETE, SEE SKETCH, HOLES IN CONCRETE PAVING ALLOW WATER TO FLOW BENEATH.	CONCRETE, UNEVEND "Z. CONCRETE, UNEVENDED MINISTER CONCRETE STONE AND UNPROTECTED RUBBLE
BRIDGE AND PIERS	Nove	
VEGETANION	BRUSH AT BOTH LEFT AND RIGHT ENDS OF SPILLWAY	This would Reduce The discHARGE CAPACITY.

UNGATED SPILLWAY (AUXILIARY)

Sheet 1 of 1 The AUXILIARY Spirluny is

Sheet 1 of 1 A NOTCH IN The olay masonay

	dtm.	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Paved with macadam Reportedly concrete SLAB ABOVE DRY MASONAY.	Upon ARRIVAL AT THE SITE, ENRIHEIU COMPLETERY BLOCKED THE AUXILIARY Spillung AND WAS
APPROACH CHANNEL	Resurvoir. Neary Fut eartheill Extends Upstream From Crest.	being purces Alond The downstream side or the day musoway. By the end of the
DISCHARGE CHANNEL	AT PRESENT, UN COMPACTED	inspection, the Auricinay Spilluny And been classed. See Section 3. There was total seephel
BRIDGE AND PIERS	Nowe AT SITE	of ABOUT SOBPUT FLOWING FROM The TOE OF THE FILL AS Shown ON Exhibit B-1.
GATES AND OPERATION EQUIPMENT	NONE AT SITE.	

INSTRUMENTATION
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	Nowe AT Site	
OBSERVATION WELLS		
WEIRS		
PIEZOMETERS	·	
OTHER	V None at Site	

DOWNSTREAM CHANNEL
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION: Obstructions Debris Other	Nove AT dansite	
SLOPES	Steep FOR O.B mile clownstrethm, Then very Furf For About 2 miles	
APPROXIMATE NUMBER OF HOMES AND POPULATION	S dwellings, AS SHOWN ON EXHIBIT B-1	
·		

RESERVOIR AND WATERSHED

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	ROLLING HILLS, EXCEPT WESTERN EDGE is STEEP. SOME SWAMPS IN VALLEYS.	Recarively mico Scopes At LAKE.
SEDIMENTATION	No observed probuems.	
WATERSHED DESCRIPTION	Minor Rural development For dams in untersheed, see Appendix D.	
Isan 0 S	There Are MANY, "FLOATING ISLANDS IN The LAKE,	The Floating islams" NEAREST The alam is secured with wire to The short The
		NOT SECUREDI.

÷

17

4

APPENDIX C
PHOTOGRAPHS

A. Upstream Slope

B. Downstream Slope

C. Downstream Slope at Auxiliary Spillway

D. Toe of Downstream Slope

E. Main Spillway

F. Main Spillway Apron

G. Auxiliary Spillway at Start of Inspection

H. Auxiliary Spillway at End of Inspection

I. Kizer Pond Dam - Upstream of Lake Henry

J. Half Moon Lake Dam - Upstream of Lake Henry

APPENDIX D HYDROLOGY AND HYDRAULICS

APPENDIX D

HYDROLOGY AND HYDRAULICS

Spillway Capacity Rating:

In the recommended Guidelines for Safety Inspection of Dams, the Department of the Army, Office of the Chief of Engineers (OCE), established criteria for rating the capacity of spillways. The recommended Spillway Design Flood (SDF) for the size (small, intermediate, or large) and hazard potential (low, significant, or high) classification of a dam is selected in accordance with the criteria. The SDF for those dams in the high hazard category varies between one-half of the Probable Maximum Flood (PMF) and the PMF. If the dam and spillway are not capable of passing the SDF without overtopping failure, the spillway capacity is rated as inadequate. If the dam and spillway are capable of passing one-half of the PMF without overtopping failure, or if the dam is not in the high hazard category, the spillway capacity is not rated as seriously inadequate. A spillway capacity is rated as seriously inadequate if all of the following conditions exist:

- (a) There is a high hazard to loss of life from large flows downstream of the dam.
- (b) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure.
- (c) The dam and spillway are not capable of passing one-half of the PMF without overtopping failure.

Description of Model:

If the Owner has not developed a PMF for the dam, the watershed is modeled with the HEC-1DB computer program, which was developed by the U.S. Army Corps of Engineers. The HEC-1DB computer program calculates a PMF runoff hydrograph (and percentages thereof) and routes the flows through both reservoirs and stream sections. In addition, it has the capability to simulate an overtopping dam failure. By modifying the rainfall criteria, it is also possible to model the 100-year flood with the program.

APPENDIX D

DE Latitude: A Cop of Dam E Streambed El	levation:	1481.	ongitude: W 9 (Fristing) Height of Dam:	il ft
Size Categor	'y: <u>Int</u>	ERMEDI	Elevation: 2,	
lazard Categ Spillway Des		HIGH	(8 F	ee Section 5)
Name	Distance from Dam (miles)	Height (ft)	Storage at top of Dam Elevation (acre-ft)	Remarks No DER ID
LF MOON LAKE	0.8		102	1
ZER POND	1.9	_6_	350	DER ID 35-45
ZER'S LITTLE L	ake 2.0	/o±	/0±	DER ID 35-86, IGNORED IN ANA 34-45 FLOWS INT 35-86
	Do	OWNSTREAM	DAMS	C DER ID 64-116
ABAR DAM	0.7	151	BREACHED	ANALYSIS

DELAWARE River Basin									
Name of Stream: TRIBUTARY TO JONES CREEK									
	Name	of Da	m :	LAKE	HENRY	DAM			
	DETERM	INATIO	N OF	PMF RA	INFALL	& UNIT	HYDROGE	APH	
			UNI	r Hydro	GRAPH D	ATA:			
	Drainage	1						•	
Sub-	Area	Ср	Ct	L	Lça	L'	Tp	Map	Plate
area	(square		(0)	miles	miles	miles	hours	Area	(0)
	miles)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
K-1	2.13	0.45	1.23	2.61	1.16	NIA	1.7/	1	A
M-1	0.30	0.45			0.34	NIA	.87	1	A
H-1	3.42	0.45	1.23	4.26	1.67	NIA	2.22	1	Α
		ļ							
Total			/C	Cleate	07 650	- B ()	L		L
тотац	(1) & (2)	i 			on She				lied by
		nore D	der detr	ict Co	rps of	Fnoinee	re on t	sane a	od by
	plates	refe	renc	ed in (7) & (8) TuBruce	.13 011 11	iaps a	.10
	The follow	vine a	re m	easured	from t	he outl	et of t	he sul	oarea:
	(3): Lens	th of	mai	n water	course	extende	d to di	vide	
	(4): Leng	th of	mai	n water	course	to the	centroi	.d	
	The follow	ving i	s me	asured	from th	e upstr	eam end	l of the	ne
	reservoir	at no	rmal	pool:		•			
	(5): Leng (6): Tp=0	th of	mai	n water	çourse	extende	d to di	vide	
	(6): Tp=0	Ct x (L x	L _{ca}) '''	³ , exce	pt wher	e the c	entro	id of
	the subare Tp=C _t x (I	ea is	loca	ted in	the res	ervoir.	Then		
Toded	1p=0 _t x (1		mod .	a+ 1 5	ofo/oo	mila			
	al flow is ter Data:						•••		
Compu	ter Data:)R = 1		3% OL p	eak IIO	w)		
				FALL DA	та.				
PMF R	ainfall Ir				., 24 h	r. 200	sa. mi	le	
• • • • • • • • • • • • • • • • • • • •				Hydrom	et. 40	Hy	dromet.	33	
			(Su	squehan	na Basi	n) (Ot	her Bas		
Zone:			•	N/		,	1	•	
Geogr	aphic Adju	ıstmen	t		١.				
_	Factor:		_	N	A		1.0		
	ed Index				1.6				
Rai	nfall:			N	A ON (per	. —	22.	<u> </u>	
	RA.	NFALL	DIS	TRIBUTI	ON (per	cent)			
			Time		Percen	<u>.c</u>			
		4	6 ho		111	_			
			2 no		133	_			
					142	_			
48 hours <u>/42</u> 72 hours <u></u>									
	96 hours								
70 HOULS									

Data for Dam at Outlet of Subarea K-1 (See sketch on Sheet D-4)							
Name of Dam: Kiz	ER POND						
STORAGE DATA:							
Elevation	Area (acres)	Stora million gals	acre-ft	Remarks STREAM BED			
1542.9 =ELEVO* 1546.9 =ELEV1 1547.0 = ELEV1	0 _/0/_=A1 _/06	0	0 _/36=S1 _/45	SPILLWAY CASET WATER SURFACE			
1548.8	120		350	TOP OF DAM			
1560.0 **	226						
* ELEVO - ELEVI - $(35/A_1)$ $5_1 = A_1 (ELEVI - ELEVO)/3$ ** Planimetered contour at least 10 feet above top of dam							
Reservoir Area watershed.	at Normal Poo	l is 8	_percent of	subarea			
BREACH DATA:							
See Appendix B	for sections	and existi	ng profile o	f the dam.			
Soil Type from Visu	al Inspection	: Silt	Y SAND				
Maximum Permissible (from Q = CLH ³ /2 =	Velocity (Pl V·A and depth	ate 28, EM = (2/3) x	1110-2-1601 H) & A = L*) <u>3</u> fps depth			
$HMAX = (4/9 V^2/C)$	$^{2}) = 0.4$	_ft., C =	3.1 Top of D	am El.= <u>1549</u> .6			
HMAX + Top of Da (Above is elevation		SSO.O lure would	= FAILEL start)				
Dam Breach Data:							
BRWID = 60 ft (width of bottom of breach) Z = 4 (side slopes of breach) ELBM = 1547.8							
ar Ivenix	· = 2**	- 1 , - 4		→ = = ▼ ▼			

Data for Dam at Outlet of Subarea	K-1	
Name of Dam: Kizer Pond		
SPILLWAY DATA:	Existing	Design
OIIDDWAI DAIA.	Conditions	Conditions
-	00110110110	001141101115
Top of Dam Elevation	SEE	NIA
Spillway Crest Elevation	FOLLOWING	
Spillway Head Available (ft)	SHEETS	
Type Spillway		
"C" Value - Spillway		
Crest Length - Spillway (ft)		
<u>Spillway</u> Peak Discharge (cfs)		
Auxiliary Spillway Crest Elev.		
Auxiliary Spill. Head Avail. (ft)		
Type Auxiliary Spillway		
"C" Value - Auxiliary Spill. (ft)		
Crest Length - Auxil. Spill. (ft)		
Auxiliary Spillway	·	
Peak Discharge (cfs)		
Combined Spillway Discharge (cfs)		
-p	FOLLOWING SI	FETS
	xiliary	
	lway (cfs) Comb	ined (cfs)
1546.9	N/A	0
<u> 1547.3</u>		3
1547.9		60
1540.7		174
1549.3		267
1550.0		<u>403</u>
1551.4		724
<u> 1552.7</u>		,067
1554.1		,49/
		·
	N/A	
OUTLET WORKS RATING: Outlet 1	Outlet 2	Outlet 3
Invert of Outlet NOT DE	m: N5.15 TO	
Invert of Inlet THIS R	MINENT TO	
Type	eport	
Diameter (ft) = D		
Length (ft) = L		
Area (sq. ft) = A		
N		. <u></u>
K Entrance		
K Exit		
K Friction=29.1 _N ² L/R ⁴ /3		
Sum of K		
$(1/K)^{0.5} = C$,	
Maximum <u>Head (ft)</u> = HM		
$Q = CA \sqrt{2g(HM)(cfs)}$		<u></u>
Q Combined (cfs)		

AND CARPENTER. INC. HARRISBURG. PA. KIZER POND DAW	0MEST NO070M
HARRIEBURG, PA.	
Kizer POND DAM	
Kizer Pond Dam	**************************************
0-42	
ROAD	
Come	Limber
MACH	LAKE
20	
7.4	
27 Spillway	
Kizer P	and da
Spillway:	
•	
•	
	CREST
1547.2	1
" 1546.9	
$Q = \frac{2.7}{3.1} \sqrt{\frac{A^3q}{T}} \qquad (ADJUSTE$	to critical depth
Q= FLOW IN CFS A = FLOW	AREA (FT2)
To remove (er) Ave (<u>ን</u>
T= ropwioth (FT) hy=	42
	<i>y</i> ~ -
7	
7	enterior de la companya del companya de la companya del companya de la companya d
Pool = depth + hv + invert	• 1
7	
7	•:
7	• :
7	
7	
7	
7	
7	

ANNETT FLEMING CORDER	· · · · · · · · · · · · · · · · · · ·				ET #0070
AND CARPENTER, INC. HARRISBURG, PA.	POR				
	COMPUTED BY	- 94TE		· •	- 0A7E
i i i i i i i i i i i i i i i i i i i			<u> </u>		
<u> </u>					
depth	AREA	Tepviorh	Q	hv	PeoL
	C -		·		1546.9
			0		
0.3	2.4	16	4.6		1547.3
0.8	15.9	27	60	• 3	_1547.9_
1.3	29.4	27	174		1548.7
1.8	42.9	27	267	6	1549.3
2.3	56.4	27	403	<u>.</u> 8	1550.0
2.3	83.4	27	724	1.2	1551.4
4.3	108.0	27	1,067	1.5	1552.7
5.3	135.0	27	1,491	1.9	1554.1
· · · · · · · · · · · · · · · · · · ·		,	-4 241		
	CONDUIT	.•	A CONTRACTOR	!	
	All children a page particular a co				CONTROL
•		•		ietiil ka	e Kiszer
	7				
_				. دنگ	_8.5 ' = b
)		•	14'20	• <u> </u>
	EL 154	2.7	A:	: 11-0	6 . 93.5
		prophogosale canno tipo tibro tibilitario, nel mai discorri			4+ 1 La.
			P=Cin	cum = /	4 + 11 - 100
		• • •			<u> </u>
			_		38,3
	· · · · · · · · · · · · · · · · · · ·		R:	AP =	2.44
	PRESURE	FLOW		P	
	KFRICTION	= 29.11	n=L	441	cmp) Ks=+
	AMICHIAN	RY	<u> </u>	•.027	ביי נקויים
	K	2417 B	0.5+ /	0 = 1	می
	IK= /.	_ ,,			Commission of the control of the con
	· · · · · · · · · · · · · · · · · · ·			IEADWA	
	Q =A.	28 M			i
	,	₹K	7	TAILWA	ter
				: 	
	Assumi	TAILM	i		
			- 15.	ICHU!	9
	ic. TA	il water	- 156	/ <i>3</i> 7.7.	•
	je. TA	IL WATER		/3 77.	
		D-8	- 46	/3 4 7.	

NNETT FLEMING CORDDRY				
AND CARPENTER. INC. HARRISOURS, PA.	POR	8478		
HEADWATER		-		
1549.0	1,102	7	· ·	
1550.0	1,228	1 6	esults in	DICATE
1551.0	1344		THAT CON	
1552.0	1,450		DOES NO	
1553.0	1,549	1	-	berow
1554.0	1,642			0
OVER TH ALSO E WELL A TAILWATE	nter th	DF T LGo! Eppeci	he dan vouit. Th	COVLD

D-9

6011

Data for Dam at Ou	tlet of Subar	ea <u>M-1</u> (S	ee sketch on	Sheet D-4)
Name of Dam: He	LE MOON	LAKE		
STORAGE DATA:				
Elevation /525.0 =ELEVO*	Area (acres)	Stor million gals	acre-ft 0	Remarks STREAMbed AT TOE
/535.6 = ELEV1			73 =S1	Topordam
1540.0 1560.0 **	27 45			
* ELEVO - ELEVI ** Planimetered c		•	(FLEV1 - E	· ·
Reservoir Area watershed. BREACH DATA: Not		ol is	percent of	subarea
See Appendix B	for sections	and exist	ing profile o	of the dam.
Soil Type from Vis	ual Inspectio	n:		
Maximum Permissibl (from $Q = CLH^{3/2} =$	e Velocity (P V•A and dept	late 28, E h = (2/3)	M 1110-2-160 x H) & A = L	fps depth
$HMAX = (4/9 V^2/$	C^2) =	ft., C =	Top of I	Dam E1.=
HMAX + Top of D (Above is elevatio		ilure woul	= FAILEL d start)	
Dam Breach Data:				
BRWID = Z = ELBM =	(side (bottom zero	slopes of m of breac storage el	h elevation, evation)	minimum of
WSEL =		l pool ele		reach to

Data for Dam at Outlet of Subarea	<u>M-1</u>	
Name of Dam: HALF MOON	AKE	
SPILLWAY DATA:	Existing Conditions	Design Conditions
Top of Dam Elevation Spillway Crest Elevation Spillway Head Available (ft)	SEF Appendix B	N/A
Type Spillway "C" Value - Spillway	COMPLETELY BLOCKED	
Crest Length - Spillway (ft) Spillway Peak Discharge (cfs) Auxiliary Spillway Crest Elev.		
Auxiliary Spill. Head Avail. (ft) Type Auxiliary Spillway "C" Value - Auxiliary Spill. (ft)		
Crest Length - Auxil. Spill. (ft) Auxiliary Spillway		
Peak Discharge (cfs) Combined Spillway Discharge (cfs)		
	uxillary	
Elevation Q Spillway (cfs) Spi	11way (crs) Combi	ned (crs)
OUTLET WORKS RATING: Outlet 1 Invert of Outlet Not R	Outlet 2 OERTINENT TO	Outlet 3 THIS
Invert of Inlet Type Report		
Diameter (ft) = D Length (ft) = L Area (sq. ft) = A		
N		
K Frietion=29.1 $_{\text{N}}^{2}\text{L/R}^{4/3}$ Sum of K (1/K) 0.5 = C		
$(1/K)^{0.5} = C$ Maximum Head (ft) = HM $Q = CA \sqrt{2g(HM)(cfs)}$		
Q Combined (cfs)		

Data for Dam at Out	let of Subare	a <u>H-1</u> (Se	e sketch on	Sheet D-4)			
Name of Dam: LA	CE HENRY	Dam	 				
STORAGE DATA:	•						
		Stora	ge				
	Area	million					
Elevation	(acres)	gals	acre-ft	Remarks			
1461.7 =ELEVO*	0	0	0				
1479.0 =ELEV1+	256 =A1	482	<u> 1479</u> =S1	RECORD DATA			
1480.0	319		1,766	USGS LAKE AREA			
1481.9	337		2,389				
							
1500 **	535						
							
* ELEVO = ELEV1 - ** Planimetered co † Approx. in nex Reservoir Area watershed.	t stoplog	_					
BREACH DATA:							
See Appendix B	for sections	and existi	ng profile o	f the dam.			
Soil Type from Visu	al Inspection	: Day	STONE MA	SONRY			
Maximum Permissible (from Q = CLH3/2 = 1	Velocity (Pl V·A and depth	29 ate 26, EM = (2/3) x	11110-2-1601 H) & A = L.)6.5 fps depth			
$HMAX = (4/9 V^2/C)$	2) = 2.0	_ft., C =	3.1 Top of D	am El.= <u>/48</u> /.9			
HMAX + Top of Dam (Above is elevation		/483.9. lure would	= FAILEL start)				
Dam Breach Data:							
BRWID = 50 Z = 0 ELBM = 1471. 4 WSEL = 1480.6 T FAIL= 6	(side s) (bottom zero s) (normal	lopes of b of breach torage ele pool elev	elevation, vation)				
	D=12						

Data for Dam at Outlet of Subar	ea H-1	
Name of Dam: LAKE HENRY	Dam	
SPILLWAY DATA:	Existing Conditions	Design Conditions
Top of Dam Elevation Spillway Crest Elevation Spillway Head Available (ft) Type Spillway "C" Value - Spillway Crest Length - Spillway (ft)	See Below	THEOFFICIENT DATA TO CALCULATE
Spillway Peak Discharge (cfs) Auxiliary Spillway Crest Elev. Auxiliary Spill. Head Avail. (f Type Auxiliary Spillway "C" Value - Auxiliary Spill. (f Crest Length - Auxil. Spill. (f	t)	
Auxiliary Spillway Peak Discharge (cfs) Combined Spillway Discharge (cf		
	Auxiliary pillway (cfs) Com O HH 125 230 332 704	bined (cfs) 93 287 572 855 1899 1485
OUTLET WORKS RATING: Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1N ² L/R ^{4/3} Sum of K (1/K) 0.5 = C Maximum Head (ft) = HM Q = CA / 2g(HM)(cfs) Q Combined (cfs)	Outlet 2 E AT SITE	Outlet 3

Harrissuns, Pa.	COMPUTED BY AATE		-
,	SELECTED COMPU	TER OUTPUT	
	Tupex		
· · · · · · · · · · · · · · · · · · ·	ITEM	DAGE	1 -
M			
in opta-K	ATIO ANALYSIS:		1
	T	D-16 70	20-/
<u> </u>	MARY DE PERK FLOWS	D-16	<i>~</i>
الالعـــ	ZER POND DAM	D-19	? ?
	LE MOON LAKE DAM	D-20	
		D-2	
LA	KE HENRY DAM	<i>D</i> **	1
			1
2	0.4(0)		
DREACK	ANALYSIS:(1)	D-20	7) - '
	INPUT	D-22 TO	
J.umi	MARY OF PEAK FLOWS	D-25 To	' _
	ER POND DAM	D-27 TO	
	F MOON LAKE DAM	D-2	
	LE HENRY DAM	_D-3	
Dov	UNSTREAM ROUTING	D-30 To) <i>L</i>
	5 1 · 1		
	PLAN 1 - NO DAM I PLAN 2 - ONLY LAKE PLAN 3 - BOTH LAKE KIZER POND	Honay Dam FA E Honay Dam An Dam Fail.	الح اه
	Plan 1 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	ایک ای
	Plan 1 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	الك
	Plan 1 - No dam I Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	ils 10
	Plan 2 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Honay Dam FA E Honay Dam An Dam Fail.	اد
	Plan 2 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	ام
	Plan 2 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	اما
	Plan 2 - No dam i Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	اما
	Plan 2 - Only Lake Plan 3 - Both Lake Kizer Pond	Henry Dam FA E Henry Dam An Dam Fail.	اما
	PLAN 1- NO DAM I PLAN 2 - ONLY LAKE PLAN 3 - BOTH LAKE KIZER POND D-15	Honay Dam FA E Henry Dam An Dam Fail.	اما

.

				2 1		ASM I HO	ECTION P				
	~			-	PART DELT .	MENGY PA	JONES CRIEK				
	-	100	6	*	0	0	6	0	0	7	0
	.	N.	,	•							
	-, :	- •	.	- 4	•	;	•	•	•	ł	
-	5 =	- 0	-	:	2	9	•	-	•	6	
	=	, =	PUNDEF IN	INTO KIZER	POND (SUBAPFA K-1)	BAPFA K	-	•			
_	*	-	-	2.13		5.85				-	
•	• •		22	11	1 2	133	142	•	;		;
	- 3		34.0					-	ě		Ş
	• *	-	9	2.0							
2	×	-	•					-			
91	Ē	Ē	DUTE THR	POUTE THROUGH KIZER POND	ER POND (DAM.					
	➤ }	•			-			:	,		
.	-	- (4:10		-1546.9	- 1		
	181	74 1540 .9	1547 63	1547.0	1548.07	1569.3	1550.0	1557 06	1552.7	1554 . 1	
2:	£ ;	9 6	•	9	7.7	792	403	124	1991	1691	
5;				9 4 4							
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		101616		15 60							
2 %		101549.6									
. .	=	0	2	140	178	230	280				
92	\$ 1	8V 1549.6	1540.7	1550.0	1550.8	1552.5	1554 +3				
	= 1	- '	= :		1			-			
	Ξ,	×	KOUTE 10	LAME WENT							
. 9	- \$	-			•			7			
	9	60	•0·	8	14.89.6	1520	3750	•0053			
•	47	0	1580	059	1520	9	1500	1000	1490.6	1010	16 90 06
_	47	1110	14.00	1300	1520	1050	1560				
75	₩.	o '						-			
	Ξ,	٠,	RUMOFF IN	INTO MALF	MOON LAKE	C SUBARF	FA H-13			•	
	L 0	-	- (•	191	C C C C	• • • • • • • • • • • • • • • • • • • •			-	
			3	•			•	0-1	50.		.1.
: :	>	. R.	57.								•
	×	-1.5	-0.03	2•0							
=	¥	-	~	!		,		-			
~	:	•	OUTE THE	ROUTE THROUGH HALF	F NOON LAKE	T.					
. -	- 1	•			-						
•	: :	- (;	÷	•			-1333			
	ī :	2	77	775	•						
		15.35									
3	5	\$01536.2									
;	ร	110	310	\$07	577	4.85	900	9			
_	**	EVICAL.2	16.4	15 76 . 7	15.16.18	1537.0	1537.1	1540			

D-16

::::::

UNCONTROLLED RUNDEF INTO LAKE HEMPYCSUBAREA H-1)

122 111 123 153 142 1-0 -05

123 -0-05

124 -0-05

125 -0-05

127 -0-05

128 -0-05

128 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

129 -0-05

4

<u>)</u> [0.

PEAR PLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAW-RATIO ECONOMIC COMPUTATIONS FLOW AND STORAGE (END) APPA IN SOUARE MILES (SOUARE MILES)

	8PER1 1708	917 11 94	1461	PLAN	RATIO 1	RA 716 2		MATIOS APPLIED TO FLOWS RATIO 3 RATIO 4 RATIO 5		4 01 14 4 02 4 02 0 0 2 0 0 0 0 0 0 0 0 0 0 0	FATED 7	8 47 10 8 .10	RATIC
	HYBROGRAPH AT	-~	2.13	•~	4589.				1147.	918.	688. 10.401	454.	22 4. 6.50)
	MOUTED TO	-~	2.13	Ę	3962. 112.2036				16.000.10	332. 9.40)(231. 6.5536	3.95).	1041)
	NOVIED TO	£ ~	2.13 5.52)	- 4	3943. 111.663C	3648. 46.6630	1178. 33.3530	20.2330	15.84)(331. 9.3620	230.	139. 3.93)(*07*
	HYBROCRAPH AF	ر د	.30	- ~	929.				232.	186. 5.2630	139.	43.	\$\$. (\$\$.
	ADVIED TO	~~	.30		25.68)(213.	157.	97°- 2075 X	31.	÷ 6
	STORBORAPH AT	N 4	3.42	-*	6381. 180.69)C				1595.	1276. 36.147(27.10)(638. 15:07)(916.
Σ	3 COMPINED	m~	\$•85 15•15)	-~	10635. 301-1520				1098.	7584. 14.8570	1158.	701.	33%
)-1 2	10071 £0 10	"	5.85	-~	8182. 231.68)(°25° 26.19)(636.	11.87)(223.	2.073

, c,

Ç

: · ·

SUMMARY OF DAM SAFETY INALYSIT

	TIMP OF FASCURE HOURS	
1549.60 1549.60 447 375.	TIME OF MAX OUTFLOW HOURS	42.75 43.75 45.50 45.50 45.50 45.50 65.50 65.00 65.00
	DURATION OVER TOP HOUPS	14.25 11.00 11.00 9.00 2.00 0.00 0.00
SPILLWAY CREST 1546.00 135.	MAXIMUM OUTFLOW CFS	3662 1665 1762 770 770 832 139 50
VALUF OO OO	HAKIBUR STORAGE AC-FT	894. 688. 525. 535. 545. 541. 841.
1846-90 1546-90 175-	MAMINUM DEPTH OVER DAM	3,20 1,46 1,46 1,45 1,45 1,45 1,45 1,45 1,45 1,45 1,45
ELEVATION STORAGE OUTFLOW	na XI mum re se rvo ir x • s • elev	1552-80 1551-80 1550-95 1550-13 1550-13 1549-07 1549-07
	2 A 110	00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 0
*LA#		

_	TIME	43.00	00.11	54.75	00.91	46.25	00° K	
STATION 1A	HARINGH STAGE FT	1496.2	1403.6	1493.0	1691.9	1491.6	1491.3	
PLAN 1 S	HAXTHUM	3943.	1178	714.	484	230	139	
1	RAT 10	1.00	040	• 30	\$28	15	P .	

SUMMEN OF DAM SAFETY ANALYSIS
HALF MOON LAKE DAN

15 15 00
MARREUM Depte Over obs
•
•
•
•
.2
.12
0.0

		36 8	AKE H	ENRY DA	1, vsi s 3		
•	ELEVATON STORAGE OUTFLOW:	1480 1480 17	VALUE 53.	INITIAL VALUE SPILLUAY CREST 1480-00 1763- 1763- 10-	-	1481-00 1481-00 2786- 472-	
8 A 7 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10	HANIMUM Reservotr Wosoelev	MAXIMUM DEPTH OVER DAM	STANDER OF POPPER	NAXINUN OUTFLOV CFS	DUPATION OVER TOP MOUPS	TIME OF MAX OUTFLOW HOURS	TIME OF FATLURE HOURS
9.0	1486.35	6.45	3985	8182.	10-00	66.25	000
29	1483.46	95.5	2924	2200	17.50	65.75 46.75	000
25	14.92.63	S.	2625	025.	12.25	47.50	000
it.	1481.58	0000	2278.	223	000	69.08 50.25 52.25	00.00
60	10.01	000			•	;)

NATIONARY TO JUNES CREEK NATIONARY TO JUNES CREEK	1	「一日の一日の一日の一日の一日の一日の一日の日日の日日の日日日日日日日日日日日			:								
10	## 900	- ~ *	444	- 6. 7		2 ►	ATIONAL Pinitary Lake	TO LONE	FCTJON P S CRFEK AM	FOGRAM			
### ### ##############################	### FUNDER INTO KTZER POND (SUBAREA K-1) ### FUNDER INTO KTZER POND (SUBAREA K-1) ### FUNDER INTO KTZER POND CRUBAREA K-1) #### FUNDER INTO KTZER POND CRUBAREA K-1) ###################################		•			æ			•	0	6	7	0
### 1			ē ¬	· ·	^	-							
## 1	## 1		5			•				•			
## 1-71 0-45 ## 1-71 ## 1-	## 15.7 0.05 ## 15.7 0.05 ## 15.7 0.05 ## 15.7 0.05 ## 15.8 0.05 ##		¥ .	c _			27	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•	-			
1-71 0-45 1-1 1-2 1-2 1-2 1-0 -05 1-2 1-	## 1-71		. 2						<u>:</u>			-	
Nouver 1900	1		•	•	22	111	123	14.2				•	
# 1071	# 1071 # 1015 #	~	-							1.0	ė		Õ
## ROUTE THROWGH KIZER POND DAM ## ROUTE TO LAKE HENRY ## ROUTE TO LAKE HOON LAKE (SUBARE H-1) ## ROUTE THROWGH HALF HOON LAKE ## ROUTE THROWGH HALF HOO	## 1955	.	> '	7.7		,							
### ### ##############################	## # ## ### ### ######################		× 1	· ·		0.				•			
14.15.46.9 15.47.2 15.49.3 15.50.0 15.51.4 16.7 14.91 14.15.46.9 15.47.2 15.40.9 15.47.2 15.40.9 15.47.2 16.7 16.91 16.9	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. =	_	POINTE THE	OFFICH KTZ	0200	***		-			
14-156.0 156.2 156.0 156.0 155	14-156-0 1567-3 1567-0 1568-7 1550-1 1551-4 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1 1557-7 1554-1	. ~	-				-	-					
##15&6.9 1547-3 1547-9 1548-7 1559-8 1551-4 1552-7 1554-1 ## 10	## 1566-9 1567-3 1567-9 1567-0 1551-4 1552-7 1554-1 ## 1	•	>				•	•			7		
## 0 10 5 60 176 267 403 724 1067 1491 ## 156.09 ## 156.09 ## 156.00 ## 1	## 0 16 26 176 267 403 724 1067 1491 ### 1		7	11546.9		1547.9	1548.7	1549.3	1550.0		1552.7	1554.1	
## 1542 9 1547 1560 ## 1540 9 1547 1560 9 1576.9 1556.9 1560.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1550.0 1 1540.0 1540.0 1550.0 1 1540.0 154	## 1560		-	_		99	174	267	403		1067	1691	
## 1	## 1546-0	- (5 7			922							
### 1	## 50156966 ## 10		,	445.4		1500							
ST	SET 0 24 140 178 2*0 280 28 38 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7		1540.6									
## 1 156.0 1550.0 1550.0 1550.0 1560.0 1 1560.0	## 1540-0 1540-7 1540-0 1550-5 1554-3 ## 60		=			140	£	240	280				
## 60 1 1547.8 .1 1546.0 1560.0 ## 1 14 1547.8 .1 1546.0 1560.0 ## 1 14 1547.8 .1 1546.0 1560.0 ## 1 14 1547.8 .1 1546.0 1560.0 ## 1 1546.0 ## 1 1546.0 ##	## 60 1 1547-8 1 1546-0 1560-0 ## 1	. •	-	1549		\$540.0	1550.9	1552.5	1556 • 3				
\$8 60 1 1540.0 1560.0 1 1540.0 1560.0 1 1540.0 1560.0 1 1540.0 1560.0 15	## 60 1 9547.8	~	<u>.</u>			1567.8	•	1546.9	1560.0				
## 1 1 15.67.8 .1 15.65.0 15.60.0 1 KK1 POUTE TO LAKE WENRY	## 60 1 \$547.8 .1 \$56.0 1550.0 1 ## 1 1 14 14 14 15 ## 1 10 156 150 150 150 150 150 150 150 150 150 150		Ā		-	1547.9	•	1546.9	1560.0				
K 1 POUTE TO LAKE MENRY 1 1 -1 Y 1 POUTE TO LAKE MENRY 1 1 1 -1 Y 2 0 1580 450 1480-6 1520 5750 -0053 Y 7 1180 1500 1300 1520 1560 1500 1500 1500 1500 1500 1500 150	K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,			1547.8	•	1546.0	1550.0				
T T TOUTE 10 LAKE WENKY 1 1 1 -1 Y1 19	T	۵.	~ i	Ξ,						-			
TO 09 007 009 1480-6 1520 3750 -0053 TO 1580 450 1520 3750 -0053 TY 1180 1580 450 1520 1560 1500 1500 1500 1500 1500 1500 150	TO 1580 407 609 1480-6 1520 3750 60053 TO 1580 450 1520 1750 1700 1700 1480-6 TO 1580 450 1520 1950 1700 1700 1480-6 TO 1580 450 1520 1950 1700 1480-6 TO 1580 450 1520 1950 1700 1480-6 TO 1580 450 1520 1950 1700 1480-6 TO 1580 450 1580 1580 1580 1580 1580 1580 1580 15	- 6	e >	-				•					
Y6 -09 -07 -09 1480-6 1520 3750 -0053 Y7 0 1580 450 1500 1900 1900 1480-6 1010 1010	Y6 -09 -07 -09 1480-6 1520 3750 -0053 Y7 10 1580 450 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010 1480-6 1010		- `-	_	_		-	•		7			
TY D 1580 450 1520 6F0 1500 1000 14P0-6 1010 14F K D 2	Y7	•	• •				14.80.6	1520	3750				
TY 1180 1500 1300 1500 1500 15	TY 1180 1500 1500 1500 1560 1560 1560 1560 156	•	>				1520	6 R O	1500		14.00.6	1010	14.09.6
K 0 2 27 45 -1535 1535 1535 1535 1535 1535 1535 15	K 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	-				1520	1050	1560	•			
MT MUNDEF INTO MALE GROBANES H-13 M	MT MUNDEF INTO MALE GOODERED M-13 M	_	*							-			
F	F		* :	_ `		֓֞֜֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֓֓֡֓֡֓֓֡֓֡֓	MOON LAK					•	
T	T -15 -0.05 2.0 TK -1.5 -0.05 15.0 TK -1.5 -0.05 15.0 TK -1.5 -0.05 15.0 TK -1.5 -0.05 15.0 TK -1.5 -0.05 -0	• 6	•		- 66	200	121	7007				-	
W 687 -645 2-0 K 1 -0-05 2-0 K 1 ROUTF THROUGH HALF MOON LAKE T 1 -1535 8A 0 22 27 45 8E 1525 1540 1560	W 687 645 X -165 -0.05 2.0 K 1 2 2 20 45 Y 1 1 22 27 45 84 0 22 27 45 95 1535 1540 1560 95 1535 0.0 0.01 1.65	•	•		3	=	Č.			1.0	,0°		-
X -1.5 -0.05 2.0 K 1 2 2.0 K 1 1 2 2 2 4 4 5 45 45 45 60	X -1.5 -0.05 2.0 K 1 2 2 27 45 Y 1 1 22 27 45 \$4 0 22 27 45 \$4 1 53 1540 1540 \$4 1535 .01 .01 1.5	~	-	.8.							1		
K 1 CUTF THROUGH MALF MOON LAKE V 1 T 0 22 27 45 9E 1975 1935 1940 1960	K 1 ROUTE THROUGH MALF MOON LAKE Y 1 1 22 27 &5 85 8E 15,25 15,40 15,60 68 15,35 0.11 16,5	E	*	-	7	2.0				•			
K1 MOUTE THROUGH HALF MOON LAKE Y1 1 22 27 45 8A 0 22 27 45 9E 1525 1535 1540 1560	# # # # # # # # # # # # # # # # # # #		* :	-	~			•		-			
91 1 22 27 65 8A 0 22 27 65 9E 1525 1535 1540 1560	84 1 22 27 45 84 0 22 27 45 86 1525 1535 1540 1560 88 1535 60 165	•	¥ P	-	#001F TH	PUCH HAL		,					
84 0 22 27 45 9E 1525 1535 1540 1560	8A 0 22 27 65 9E 1525 1535 1540 1560 98 1535 601 601 165		. >	-			•	•		-1535			
1575 1535 1540	8E 4525 4535 4540 601		•			12	\$						
	10° 10° 525 8a	•	.			1540	1560						

D-22

.

			•	•	•	6			
180	5.45	6 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44.4	4447.0	1447	200			
3945614	-	0000	2	: :					
	•	1525 00	•	1535	1560.0				
09	-	1524.0	•	1535	1560.0				
9	-	1525 00	٠.	1535	1560.0				
0	n								
_	UNCONTPOLLED	LLED RUNOF	FF 1NTO	LAKE HEN	HENGY (SUBAPE	EA H-1)			
•	-	7.		5.85				-	
	22		123	133					
						-	ę		
27.2	4. 6	•							
-		•				•			
`_	LOWB THE 1	RISMOFF TH	TWTD LAKE	HENRY		•			
	-					-			
· _	POUTE THE	THROWGH LAKE	F MENRY	DAN		•			
			-	•					
-						-1480	•		
74 14 70 00	1640-1	7.08.71	1681.5	1641	1682 04	4000	1436.4	4,076	
			100		193	•			
	96.5		4 000						
	•	2	36						
01681.0	•	•		:		:	,,,		
- 1					05.0		9		
1661	1656	10.56	7076	165665	1672.05	0	ייטיר		
	5 (·	16.50	1500				
				16.50	1683.9				
5H. 5U		***	•	14.50	16 45 69	•			
•	SECTION	NEAR PREACHED	CHED DAM	-		•			
				-					
_			•	•		•			
0	100	•0•	1390	16.20	4000	*0			
	1500	007	1420	200	14.00	ÚÝS	1390	5.70	1390
17 600		004	14 20	000	1440				
-	\$					-			
5	SECTION	AT UPSTREAM		Am 2 2 40					
_ :			-	-		7			
	40,	è	1356	14.00	0007	• 100			
	-	150	1480	009	1160	650	1356	750	1356
77 780		1610	1140	1000	14 00				
					,	-			
_	SFCT10W A	AT OPWINSTREAM	REAN PND	OF SWAMP					
•			-	•		,			
						1			
40°	900	6	1341	1380	0026				
			1580	210	1360	DKS	1771	290	176.1

PFRIND) SUMMARY FOR MULTIPLE PLAN-PATES FEGNOMIC COMPUTATIONS

######################################
--

* = * * * *

311. 22.9736 22.9736 94.9. 26.8436 73.91)(846. 23.91)(1001. 28.35)(842. 23.84)(842. 23.84)(997. 844. 23.00)(844. 23.90)(1001. 28.34)(55.7330 20610 635845 64060 7536085 75667 75957 75957 75957 2 245. 2 86.873(2 85.96)(3 87.210 2066. 83.86)(7492. 209.97 209.95. 2803. 79.36)0 6290. 178.12)0 6401. 141.6130 5.45 5.85 15.15.3 5.85 \$085 15.15) MOUTED TO NEUTED 10 NOUTED 10 MOUTED 10 D-26

\$ 1 1 °

<u>_</u>	5
>	Š
3	DAM .
=	_
_	P
ĭ	DNO
Š	Č
-	-
<u>د</u>	KIZER
č	Ü
>	#1
Ŧ	H
=	_
•	

			KIZER	POND DAM	¥.		
Plan 1	FLTVATION STOFAGE OUTFLOW	18 18 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18		1624-00 1624-00 145-		1560-60 1540-60 457-	
# A 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAXIMUM RESERVOTR K-S-FLEV	BAKTHUM DEPTH DVER DAN	RANIMUR Stopace AC-FT	MARTHUM OUTFLOW CFS	DURATION Over top Hours	TIME OF TAX OUTFLOW	TIME OF FAILURE HOUPS
920	1551.32 1550.03	1.72	676. 502.	1605.	11.20	15.50	0000
Plan 2	FLEVATION < TORAGE OUTFLOW	attini 454	t value 6.90 135.	SPILLWAY CREST 1546-90 134. 0.		10P OF DAM 1549-65 647- 375-	
70 OF PH P	HANJINUM RESERVOIR Reserve	MAXIMUM DEPTH OVER DAM	BAY 14UR S TORAGE AC - ET	MAXINUM OUTFLOV CES	DURATION OVER TOP HOURS	TIME OF MAK CUTFLOW HOURS	TIME OF FABLURE MOURS
.50	1551.32	1.72	676. 502.	1409.	11.20	19.50 21.20	00.0
blan 's	FLEVATION STOPAGE OUTFLOW	14171AL VALUE 1546-00 145- 90-	L VALUE 6.90 145.	SPILLWAY CPFST 1446.00 145.		70P OF DAM 1549-60 547- 325-	
0 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RESERVOIR Vesellev	MAXIMUS. DFPTM DVER CAN	NAMINUM Storage ac-f t	MAKINUM OUTFLOW CFS	DURATION Over top Houp S	TIPE OF HAY OUTFLOW HOURS	TIME OF FAILUME WOURS
0\$0 \$5.	1550.79 1550.00	1.0	603 498	1804. 1030.	7.20 3.00	10.10	17-10
		•	PLAN 1	STATION	=		
		44110	MANTHUM FLOWACFS	HONINGH I	T I'ME FOURS		
		.50	1590	1404.3	10.RO 21.60		
		_	PLAN 2	STATION	=		

FLOURCES STACESET 1590.

.50

*

MOON LAKE DAM SPILLVAY CREST TOP OF DAM 1575.00 1556.20 7.00 100.	19UN DURATION TIME OF TIME OF FALURE FS. HOURS HOURS HOURS HOURS CA69. 15.70 16.70 0.00 0.00 0.00	SPILLWAY CREST TOP OF DAM 15%5.00 15%6.20 7% 100. 0. 0.	FLOW DURATION TIME OF TIMP OF FLOW DUFF TOP HAX OUTFLOW FAILURE HOURS HOURS HOURS HOURS CASO 15.70 0.00	SPILLWAY CRFST TOP OF DAM 1435-00 1536-20 73- 1900-	FLOW DURATION TIME OF TIME OF FLOW FAILURE FS HOURS MOUNS MOUNS MOUNS MOUNS
SUMMARY OF DAM SAFE HALF MOON 1535.00 1575.00 0.00	MAXIMUM MAXIMUM STORAGE OUTFLOW AC-FT CFS 114. 649.		MAXIMUM MAXIMUM STOPAGE OUTFLOW AC-FT CFS 114. 649.		HABINUM BAKINUM STORAGE OUTFLOW AC-FT CFS
14378 151	H HAXIMUM IR DEPTH EV OVED DAW B CS	1 N ST S A L S S S S S S S S S S S S S S S S S	TR DEPTH DEPTH EV OVER DAM SS SS	15-20 T T T T T T T T T T T T T T T T T T T	MANIMUM M ONTR DAR
ELEVATION STORAGE OUTFLON	F RESERVOIR W.S.ELGV 1536.78	ELEVATION STORAGE DUTFLOW	IO MAXIMUM RESERVOIR W.S.ELEV D 1536.78	ELEVA POOR STORAGE OUTFLOW	PESERVORN Veselfe 1536.78
	0110 01 04 050 050 050	2.	04710 04710 047 050 050	,	70 07 09.

				8 08	SUMMAPY OF D.	TENETY ANALYS	ANALYSIS DAM		(
į			ELEVATION C TORAGE OUTFLOW	1MITIAL VALUE 1480:00 1763:		202		70P OF DAM 14.81.00 2.86. 572.	* Beense North Di Muri-Rario The Auri-1	The Beening of Fouries interest Used, There would be the Municipal Control Con
		RATIO OF PHF	MAXTMUM RESERVOIR M+S+ELEV	MAXIMUM DEPTH OVER DAN	MANIMUM Storage AC-FT	MANIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS	nae mass an
		•\$0 •\$5	1483.95	2.05#	3099• 2533•	2962. P&&.	12.70# 9.00	21.50	0.00	
1	7	•	ELEVATION STORAGE OUTFLON	INITIAL VALUE 1460-00 1763-	AL VALUE 60.00 1763. 0.	SPILLMAY CREST 1480.00 1763.		TOP OF DAM 1481-90 2386- 572-		
	ú.	2 2 2	RESERVOIR U.S.ELEV	MAKINUM DEPTH OVER DAM	MANINUM STORAGE AC-FT	MAYIMUM OUTFLOW CFS	DURATION OVER TOP HOHRS	TIME OF PAX OUTFLOW HOURS	FAILURE HOURS	
	V-	•\$0	1483.91	2.01	30RS. 2533.	8686. * 444	5•40 9•90	20.90 23.60	20 • 00. 0 • 00.	
*	R	•••••	ELEVATON STORAGE DUTFLOR	1 M 2 TE AL WALUE 1 A 8 D = 0	AL VALUE 80-08 1763-	SPILLMAY CREST 1480-00 1763-		10P 0F DAM 1481-90 23R6- 572-		
		AAT 10 PET	RANINGS FESERVOIS Vos Febr	SAKTRON DEPTE BVER DAR	MANTHUM STORAGE AC-FT	MAKIMUM OUTFLOW CFS	DURATION OVER TOP HOUPB	TIME OF MAX OUTFLOW	TIME OF FAILURE MOURS	
		•\$0	1483.93	2.03 .60	3091. 2592.	4721• 1001•	10.10	27.70	20°50 0°00	
				ī	PLAN 1	STATION	•			
				RATTO	MAKIPUM FLOWACFS	S STAFFFT	TIME MOURS			
				•\$0 •25	2961. 866.	1306.8	21.60			
				ī	PLAN 2	STATION	•			

71ME 40URS 21-10

NAKINUM STAGEPT 1400-5

FLOU,CFS FLOU,CFS 8409.

.50

22.80

1348.4

.

1 1MF

PLAN 3 STATION MANINUM MAXIMUM

04.57	•	TIME	21.90	~	TIME	21.90 24.10	•	711F	21.70 24.10	•	TIME HOURS	21.10	•	TONE	24.00	•	TIME
1324.0	4 TA TTON	STACEST	1400.5	STATION	HAYTHUM Stagesft	1361.8 1350.0	STATION	STACEST	1365.1	STATION	STACEST	1365.1	STATION	STAGEST	1346.4	STATION	STAFESFT
• > > > •	PL 48 1	MAKTHUM	9467. 1001.	PL 44 1	FLOUACFS	2946. 862.	PLAN 2	FLOUICES	7392. 842.	PLAN 3	MAKIPUM FLOVICES	7495.	PLAN 1	HANTRUR FLOWACFS	203. 811.	PLAN 2	MAKTHUM FLOW,CFS
**	ď	OATIO	55	ť	RATIO	.50 .25	ĭ	RA T 10	.20	2	8 T T T	.50	1	RATIO	.50 .25	2	RA 7 10

RATIO FLONACFY STAGESFT 400495 -50 64010 1344-5 22-30 -25 948- 1344-6 25-70

D-32

_KIZER'S LITTLE POND DAM

KIZER POND DAM

NOTES:

- I. LIMITS OF DOWNSTREAM FLOODING ARE ESTIMATES BASED ON VISUAL OBSERVATIONS.
- 2. CIRCLED NUMBERS INDICATE STATIONS USED IN COMPUTER ANALYSIS.
- 3. THIS MAP SHOULD NOT BE USED IN CONNECTION WITH THE EMERGENCY OPERATION AND WARNING PLAN.

2000 0 2000 SCALE: I IN.=2000 FT.

APPENDIX E
PLATES

2000 0 2000 SCALE: I IN. = 2000 FT.

PA. ROUTE 348-JONES CREEK PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM LAKE HENRY DAM JANET RODGERS AND HELEN STONER LOCATION MAP PLATE E-1 JULY 1980

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

approx Scale 1/1's 35 4 Large Spillway - 3 % 4 medal Cweter Level Sen so 1951 " A gest level ford to Greatest Am off and favore was during 1962 Thous Water Machas Top of Spilling . 24 & 25 mch 28 - 66 4 when 3' water goes over Small 54 begins to Trickle over Large Shur 18th No domaga -Cross Section at & LONG Spillway Street Street MAYA & ROCK 8'-6" # Sep 22 1941 . . 750 TONS 3 Built about 1878

original Phinked on Colled Line To 1932 since idet approx 750 ton g sort & fact for in full lengts of form. Inde By spring. Are correct and correct property With the Spillway but a trou ft. data was Small spillway Takes Grarage F-S Comment Soneret L ----. . . Small Senterry 14'-0" 25'-0" AND THE PROPERTY OF THE PARTY O Crock bed THIS PAGE IS BEST QUALITY PRACTICAL PROM COPY FORMISHED TO BEG PHASE I INSPECTION REPORT States of Spillings all Jons NATIONAL DAM INSPECTION PROGRAM of land Henry, Haple wood ways LAKE HENRY DAM Apples So Sep. 27. 1951 JANET RODGERS AND HELEN STONER E. TAN PROFILES AND SECTIONS Lititi Little JULY 1980 PLATE E-3

APPENDIX F

LAKE HENRY DAM

APPENDIX F

GEOLOGY

Lake Henry Dam is located in Wayne County within the Appalachian Plateau Physiographic Province. The most pronounced topographic feature in the area is Camelback Mountain, which is part of the Pocono Plateau Escarpment. The escarpment has a well-defined, southwestward trend from Camelback Mountain, but it is irregular between Camelback Mountain and Mt. Pocono, which lies to the north. Streams east of the escarpment drain directly to the Delaware River, while those to the west drain to the Lehigh River.

The Pocono Plateau Section lies to the west of the escarpment. This area is relatively flat, with local relief seldom exceeding 100 feet. The topography has been greatly influenced by continental glaciation. Many features were created by deposition of glacial materials. The entire plateau lacks well-developed drainage.

East of the escarpment is the Glaciated Low Plateaus Section of the province. This area is characterized by pre-glacial erosional topography with locally-thick glacial deposits. Local relief is generally 100 to 300 feet.

Bedrock units of the sections described above are the lithified sediments of offshore marine, marginal marine, deltaic environments, and fluvial environments associated with the Devonian Period. These units include siltstones of the Mahantango Formation, siltstones and shales of the Trimmers Rock Formation, and seven mapped members of the Catskill Formation. These members include sandstones, siltstones, and shales of the Towamensing member; sandstone, siltstone and shale of the Walcksville Member; sandstones, siltstones and shale of the Beaverdam Run Member; sandstone and shale in the Long Run Member; sandstones and conglomerates in the Packerton Member; sandstones and some conglomerates in the Poplar Gap Member; and sandstones and conglomerates in the Duncannon Member.

Lake Henry Dam is underlain by the Poplar Gap Member of the Catskill Formation. The Poplar Gap Member is

predominantly a gray sandstone and conglomeratic sandstone with interbedded siltstones and shales. Sandstones present are thick-bedded, fine-to coarse-grained and exhibit very low primary porosity due to a clay and silica matrix. Effective porosity results from fractures and parting planes.

Conglomeratic sandstone occurs primarily as concentrates of sub-round to round quartz pebbles. The siltstones and shales at the site are thin-bedded and also have low porosity.

The rocks are well-indurated and generally are not susceptible to slope failure; however, the presence of well-developed bedding and joint planes will result in some rockfall from vertical and high-angle cut slopes.

Bedrock is entirely overlain by glacial till of Late Wisconsin Age. This till is an unsorted mixture of clay, silt, sand, and gravel. It is moderately cohesive and is generally derived locally from the sandstones of the Catskill Formation. Thickness of the till varies from 5 to 75 feet.

Bedrock is visible at the main spillway channel. No bedrock is visible near the embankment; foundation conditions at the embankment are unknown.

PHASE I INSPECTION REPORT LAKE HENRY DAM JANET RODGERS AND HELEN STONER GEOLOGIC MAP SCALE: IIN. = 4 MILES JULY 1980 EXHIBIT F-I