- α) Είναι $d(A, \varepsilon) = \frac{|8+1-1|}{\sqrt{1^2+1^2}} = \frac{8}{\sqrt{2}}$ και $d(B, \varepsilon) = \frac{|-7+4-1|}{\sqrt{1^2+1^2}} = \frac{4}{\sqrt{2}}$ οπότε η πόλη B είναι πλησιέστερα στη γραμμή του τραίνου.
- β) Το πλησιέστερο σημείο Π της πόλης B στην ευθεία (ε) , είναι η προβολή του σημείου B στην ευθεία (ε) . Η ευθεία (ε) έχει συντελεστή διεύθυνσης $\lambda_{\varepsilon}=-1$, οπότε η κάθετή της ευθεία η θα έχει $\lambda_{\eta}=1$. Η ευθεία (η) θα έχει εξίσωση $y-y_{\rm B}=\lambda_{\eta}(x-x_{\rm B}) \Leftrightarrow y-4=1\cdot(x+7) \Leftrightarrow y=x+11.$

Οι συντεταγμένες του σημείου Π είναι η λύση του συστήματος $\begin{cases} x+y=1 \\ y=x+11 \end{cases}.$

Με αντικατάσταση της 2ης εξίσωσης στην 1η έχουμε:

 $x+x+11=1 \Leftrightarrow 2x=-10 \Leftrightarrow x=-5$ και στη συνέχεια βρίσκουμε y=6. Συνεπώς το σημείο Π έχει συντεταγμένες $\Pi(-5,6)$.

y)

i. ο σταθμός Σ θα ισαπέχει από τις πόλεις A , B αν και μόνο αν ανήκει στη μεσοκάθετο του τμήματος AB. Η ευθεία AB έχει $\lambda_{AB} = \frac{4-1}{-7-8} = \frac{3}{-15} = -\frac{1}{5}$ οπότε η μεσοκάθετος (ζ) του AB έχει συντελεστή διεύθυνσης λ_{ζ} για τον οποίο ισχύει $\lambda_{\zeta} \cdot \lambda_{AB} = -1 \Leftrightarrow \lambda_{\zeta} \cdot (-\frac{1}{5}) = -1 \Leftrightarrow \lambda_{\zeta} = 5 \ .$

Το μέσο Ε του τμήματος ΑΒ έχει συντεταγμένες $\mathrm{E}(\frac{-7+8}{2},\frac{4+1}{2})$, δηλαδή $\mathrm{E}(\frac{1}{2},\frac{5}{2})$.

Η ευθεία (ζ) θα έχει εξίσωση $y-y_{\rm E}=\lambda_{\zeta}(x-x_{\rm E})\Leftrightarrow y-\frac{5}{2}=5\cdot(x-\frac{1}{2})\Leftrightarrow y=5x$. Οι συντεταγμένες του σημείου Σ είναι η λύση του συστήματος $\begin{cases} x+y=1\\ y=5x \end{cases}$. Με αντικατάσταση της 2ης εξίσωσης στην 1η έχουμε $x+5x=1\Leftrightarrow 6x=1\Leftrightarrow x=\frac{1}{6}$ και κατόπιν $y=\frac{5}{6}$. Συνεπώς το σημείο Σ έχει συντεταγμένες $\Sigma(\frac{1}{6},\frac{5}{6})$ (το Σ_2 στο σχήμα).

ii. Το οδικό δίκτυο που θα συνδέει το σταθμό Σ με τις πόλεις A, B θα έχει το μικρότερο δυνατό μήκος αν και μόνο αν το Σ ανήκει στην ευθεία AB. Η ευθεία AB έχει $\lambda_{AB} = \frac{4-1}{-7-8} = \frac{3}{-15} = -\frac{1}{5}$ και εξίσωση

$$y - y_A = \lambda_{AB}(x - x_A) \Leftrightarrow y - 1 = -\frac{1}{5} \cdot (x - 8) \Leftrightarrow 5y - 5 = -x + 8 \Leftrightarrow 5y + x = 13$$
.

Οι συντεταγμένες του σημείου Σ είναι η λύση του συστήματος $\begin{cases} x+y=1\\ 5y+x=13 \end{cases}.$ Με αντικατάσταση της 2ης εξίσωσης στην 1η έχουμε $13-5y+y=1 \Leftrightarrow -4y=-12 \Leftrightarrow y=3 \text{ και στη συνέχεια } x=-2. \text{ Συνεπώς το σημείο Σ έχει συντεταγμένες } \Sigma(-2,3) \text{ (το } \Sigma_1 \text{ στο σχήμα)}.$

