

Meta-Learned Metrics over Multi-Evolution Temporal Graphs

Dongqi Fu* (UIUC)

Liri Fang* (UIUC)

Ross Maciejewski (ASU)

Vetle I. Torvik (UIUC)

Jingrui He (UIUC)

Presenter: Dongqi Fu

Email: dongqif2@illinois.edu

Roadmap

- Motivation
- Proposed Temp-GFSM Framework
- Experiments
- Conclusion

Graph Metric Learning

- Graph metric learning aims to learn a proper distance metric among graphs from the input space, which reflects their underlying relationship
- Good graph metrics could contribute to many real-world applications
 - Protein and drug discovery [1]
 - Molecular property prediction [2]
 - Epidemic infectious pattern analysis [3]
 - and many more
- Currently, the dynamics of graphs are largely overlooked in the graph metric learning process

X: Graphs O: Classes

^[2] Gilmer et al., Neural message passing for quantum chemistry. ICML 2017

Problem Definition

- Learning metrics over temporal graphs
 - Input: a set of n temporal graphs $D = \{G_1, \ldots, G_n\}$
 - Output: the metric space \mathbb{M} parameterized by θ , where similar (e.g., same class) temporal graphs are closer and dissimilar (e.g., different class) graphs are farther apart

Temporal Graph G_i

- Preliminary
 - Learning a metric over a bunch of data items ≈ the problem of extracting their hidden representation vectors [4,5,6,7]
 - Our objective is learning a metric $\mathbb M$ (i.e., mapping or transformation function f_θ) controlled by parameters θ

^[5] Salakhutdinov et al., Learning a nonlinear embedding by preserving class neighbourhood structure. AISTATS 2007

^[6] Snell et al., Prototypical networks for few-shot learning. NeurIPS 2017.

Temporal Information Brings Complexities

- Suppose you are writing an excellent article
 - When you select a word, you may want to make its nearby context words share the similar meaning
 - After you compose a sentence, you may want the current sentence support (or reject) previous (or following) sentences
 - Then you **finish paragraphs**, and you may want to make the whole article catchy and fluent
- When the similar logic applies to graphs physical evolutions
 - We need the multi-dynamics to model temporal graphs
 - Could contribute to identifying dissemination processes like rumors and diseases [8]

Multi-Dynamics of Temporal Graphs

- What are evolving in temporal graphs?
 - Streaming [9] (or continuous-time [10])
 - An initial state G with a set of timestamped events O, each event can be node/edge addition/deletion
 - Rapid node/edge-level evolution, i.e., microscopic evolution [11] such as protein interactions in a cell [13]
 - Snapshot [9] (or discrete-time [10])
 - A sequence of time-respecting snapshots $G^{(1)}$, $G^{(2)}$,
 - Episodic and slowly-changing evolution patterns, i.e., macroscopic evolution [12] such as periodical metabolic cycles in a cell [13]

^[10] Kazemi et al., Representation learning for dynamic graphs: A survey. JMLR 2020

^[11] Leskovec et al., Microscopic evolution of social networks. KDD 2008

Challenges

- From multi-dynamic evolution patterns
 - C.1 How to <u>integrate</u> streaming and snapshot patterns?
 - C.2 How to find **dominating** evolution patterns for the similarity (e.g., class labels) of input temporal graphs?

- From the label scarcity of temporal graphs
 - C.3 How to ensure the <u>accuracy</u> of M when the learning process could not leverage large amount of labeled data?
 - C.4 How to <u>adapt</u> the learned M to a new subspace for newly arrived classes while maintaining the existing classes?

Roadmap

- Motivation
- Proposed Temp-GFSM Framework
- Experiments
- Conclusion

- An end-to-end trainable framework
 - Multi-Time Evolution
 - Multi-Time Attention
 - Temporal Graph Few-Shot Metric Learning

- An end-to-end trainable framework
 - Multi-Time Evolution (Carrying Multiple Dynamics)
 - Multi-Time Attention
 - Temporal Graph Few-Shot Metric Learning

- An end-to-end trainable framework
 - Multi-Time Evolution (Carrying Multiple Dynamics)
 - Multi-Time Attention (Weighting Multiple Dynamics)
 - Temporal Graph Few-Shot Metric Learning

- An end-to-end trainable framework
 - Multi-Time Evolution (Carrying Multiple Dynamics)
 - Multi-Time Attention (Weighting Multiple Dynamics)
 - Temporal Graph Few-Shot Metric Learning (New Class Adaption)

Multi-Time Evolution <

3. Temporal Graph Few-Shot Metric Learning

 A fundamental container model carrying multi-dynamic evolution patterns for the next learning process

edge timestamp snapshot timestamp (continuous [10]) (discrete [10])

- An edge is marked as (v_i, v_i, t_e, t_s) , where
 - (v_i, v_j, t_e) means the connection between v_i and v_j exists at time t_e
 - (v_i, v_j, t_e, t_s) means the event (v_i, v_j, t_e) happens in the window of snapshot $S^{(t_s)}$

- To assign different weights to different evolution patterns, such that the learned metric could reflect different class properties
- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention
 - Intra-Snapshot Attention
 - Inter-Snapshot Attention

- To assign different weights to different evolution patterns, such that the learned metric could reflect different class properties
- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention (Select Meaningful Words)
- - Intra-Snapshot Attention (Compose Supportive Sentences)
 - Inter-Snapshot Attention (Finish a Fluent Article with Paragraphs)

- To assign different weights to different evolution patterns, such that the learned metric could reflect different class properties
- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention (Streaming Evolution)
 - Intra-Snapshot Attention
 - Inter-Snapshot Attention

- To assign different weights to different evolution patterns, such that the learned metric could reflect different class properties
- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention (Streaming Evolution)
 - Intra-Snapshot Attention (Streaming in Episodic Evolution)
 - Inter-Snapshot Attention

- To assign different weights to different evolution patterns, such that the learned metric could reflect different class properties
- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention (Streaming Evolution)
 - Intra-Snapshot Attention (Streaming in Episodic Evolution)
 - Inter-Snapshot Attention (Episodic Encoding)

Node-Level Lifelong Attention

- Capturing node streaming behaviors
- Time-aware 1-hop neighbor sampling
 - A star subgraph of ever connected nodes

Node feature concatenates time kernel

Self-attention layer node embedding $t_e=1$ $t_e=3$

 Stacking cross-attention layers for attending multi-hop neighbors

Intra-Snapshot Attention

- Adding episodic constraints on node streaming behaviors
 - Snapshot reconstruction loss

topology of node streaming embedding matrix **reformatted from**
$$t_e$$
 to t_s snapshot $S^{(t_s)}$ according to our Multi-Time Evolution model
$$\mathcal{L}_{rec}(\mathbf{A}^{(t_s)}, \mathbf{U}^{(t_s)}) = \|\mathbf{A}^{(t_s)} - \hat{\mathbf{A}}^{(t_s)}\|_F \longrightarrow \text{Frobenius norm}$$
 reconstructed topology $\hat{\mathbf{A}}^{(t_s)} = \sigma(\mathbf{H}^{(t_s)}\mathbf{H}^{(t_s)\top})$ $\mathbf{H}^{(t_s)} = \text{GNN}_{enc}(\mathbf{A}^{(t_s)}, \mathbf{U}^{(t_s)})$

Snapshot representation

$$\mathbf{h}^{(t_s)} = \text{Readout}(\mathbf{H}^{(t_s)}(v,:) \mid v \in \{1, \dots, |V^{(t_s)}|\})$$

Inter-Snapshot Attention

- Discovering class-distinctive episodes
 - If a snapshot is shared by different class temporal graphs, then decrease its weight for graph-level representation

$$\alpha^{(t_s)} = \operatorname{softmax}(\mathbf{w}^{(t_s)\top}\mathbf{h}^{(t_s)})$$
attention pooling weight snapshot representation

Temporal graph representation

$$\mathbf{z} = \sum_{t_s=1}^{T_s} (\alpha^{(t_s)} \mathbf{h}^{(t_s)})$$

Temporal Graph Few-Shot Learning

1. Multi-Time Evolution

2. Multi-Time Attention

Graph
Representation
Vector z,
Temporal Graph G,

Wetric Adaptation
Metric after Meta-Training

Metric after Meta-Testing

Metric after Meta-Training

Representation
Vector z, of g,
Graph
Representation
Re

- Meta-training process procedure
 - Split $D = \{(G_1, y_1), \dots, (G_n, y_n)\}$ into D^{train} for meta-training and D^{test} for meta-testing
 - Shuffle D^{train} into graph metric learning tasks \mathcal{T}_i (N-way K-shot temporal graph classification task).
 - In each \mathcal{T}_i , train θ_i on $D_{support}^{train}$ to classify among D_{query}^{train}
 - Tailor each θ_i to combine the meta-learner Θ
- Meta-training loss function: $\mathcal{L}_{cls} + \gamma \mathcal{L}_{rec}$ reconstruction loss

$$\mathcal{L}_{cls} = -\sum_{j}^{C_{k}} \log \frac{\exp(-dist(\mathbf{z}_{j}, \mathbf{p}_{k}))}{\sum_{\bar{k}} \exp(-dist(\mathbf{z}_{j}, \mathbf{p}_{\bar{k}}))} \overset{\text{class ification loss}}{\operatorname{class prototype constructed in } \mathcal{D}_{support}^{train}} \\ \mathcal{G}_{j} \in \mathcal{D}_{query}^{train} \text{ and } y_{j} = k$$

Temporal Graph Few-Shot Learning

- Meta-training process procedure
 - Split $D = \{(G_1, y_1), \dots, (G_n, y_n)\}$ into D^{train} for meta-training and D^{test} for meta-testing
 - Shuffle D^{train} into graph metric learning tasks \mathcal{T}_i (N-way K-shot temporal graph classification task).
 - In each \mathcal{T}_i , train θ_i on $D_{support}^{train}$ to classify among D_{query}^{train}
 - Tailor each θ_i to combine the meta-learner Θ
- Meta-testing process procedure
 - Similar with meta-training, but just fine-tune Θ on $D_{support}^{test}$, then directly report performance on D_{query}^{test}

Roadmap

- Motivation
- Proposed Temp-GFSM Framework
- Experiments
- Conclusion

Effectiveness: Temporal Graph Classification

Dataset #1: Dynamic protein-interaction network [13]

- 12 different classes from 132 graphs
- Task: use majority classes (e.g., 8) to accurately classify new arrival classes (e.g., 4)

Performance

Method \ Few-shot Setting		3 way - 5 shot	3 way - 3 shot	3 way - 2 shot	3 way - 1 shot
Graph Kernel	Weisfeiler-Lehman Opt + kNN	0.6833 ± 0.1486	0.5722 ± 0.1554	0.4958 ± 0.1843	0.3417 ± 0.1371
	Neighborhood Hash + kNN	0.6833 ± 0.1858	0.5972 ± 0.1222	0.5833 ± 0.2050	0.5500 ± 0.2082
	Shortest Path + kNN	0.5433 ± 0.1988	0.5306 ± 0.0728	0.5292 ± 0.0946	0.2333 ± 0.1217
Graph Metric Learning	GL2Vec + kNN	0.0717 ± 0.0900	0.0917 ± 0.0793	0.0333 ± 0.0471	0.0333 ± 0.0667
	Graph2Vec + kNN ²	-	-	-	-
	TGAT + kNN	0.1200 ± 0.0960	0.1250 ± 0.0793	0.1208 ± 0.0865	0.0917 ± 0.0319
	CAW + kNN	0.0400 ± 0.0362	0.0435 ± 0.0441	0.0569 ± 0.0370	0.0528 ± 0.0210
	tdGraphEmbed + kNN	0.2167 ± 0.1736	0.1056 ± 0.0814	0.1500 ± 0.1800	0.0750 ± 0.0877
	GL2Vec + Protonet	0.7100 ± 0.0361	0.6625 ± 0.0407	0.6075 ± 0.0496	0.5750 ± 0.0537
	Graph2Vec + ProtoNet	0.3792 ± 0.0459	0.3958 ± 0.0731	0.3958 ± 0.0241	0.3958 ± 0.0798
	TGAT + ProtoNet	0.2417 ± 0.0500	0.3083 ± 0.0739	0.2917 ± 0.1167	0.2417 ± 0.0319
	CAW + ProtoNet	0.1496 ± 0.0104	0.2113 ± 0.0110	0.2404 ± 0.0117	0.2842 ± 0.0044
	tdGraphEmbed + ProtoNet	0.6562 ± 0.1882	0.6791 ± 0.1141	0.6271 ± 0.1159	0.4229 ± 0.0463
	Temp-GFSM (Ours)	0.7292 ± 0.0682	0.7917 ± 0.1278	0.7062 ± 0.0762	0.6833 ± 0.0589

Effectiveness: Temporal Graph Classification

- Dataset #2: Human-contact network
 - 12 different classes (6 online, 6 offline) from 2600 graphs (2123 online, 477 offline)
 - Task: investigate whether online networks could provide knowledge to classify offline networks
- Performance

Method \ Few-shot Setting		3 way - 5 shot	3 way - 3 shot	3 way - 2 shot	3 way - 1 shot
Graph Kernel	Weisfeiler-Lehman Opt + kNN	0.3631 ± 0.0298	0.2941 ± 0.1023	0.2700 ± 0.1105	0.2133 ± 0.0388
	Neighborhood Hash + kNN	0.3938 ± 0.0371	0.3185 ± 0.1030	0.2178 ± 0.1500	0.3022 ± 0.1137
	Shortest Path + kNN	0.3996 ± 0.0317	0.3296 ± 0.1413	0.3556 ± 0.1139	0.3844 ± 0.0420
Graph Metric Learning	GL2Vec + kNN	0.2716 ± 0.0839	0.2637 ± 0.0482	0.1711 ± 0.0700	0.0000 ± 0.0000
	Graph2Vec + kNN	0.3360 ± 0.0352	0.3756 ± 0.0241	0.2400 ± 0.0149	0.1933 ± 0.0723
	TGAT + kNN	0.0289 ± 0.0096	0.0407 ± 0.0123	0.0333 ± 0.0068	0.0200 ± 0.0199
	CAW + kNN	0.0284 ± 0.0106	0.0378 ± 0.0178	0.0322 ± 0.0099	0.0333 ± 0.0192
	tdGraphEmbed + kNN	0.3600 ± 0.0208	0.3000 ± 0.1310	0.2767 ± 0.1185	0.2267 ± 0.0268
	GL2Vec + Protonet	0.3400 ± 0.0306	0.3822 ± 0.0290	0.2633 ± 0.0606	0.1933 ± 0.0723
	Graph2Vec + Protonet	0.3573 ± 0.0203	0.3711 ± 0.0279	0.2467 ± 0.0380	0.1933 ± 0.0723
	TGAT + ProtoNet	0.3227 ± 0.0171	0.3293 ± 0.0156	0.3243 ± 0.0110	0.3363 ± 0.0010
	CAW + ProtoNet	0.3340 ± 0.0113	0.3333 ± 0.0229	0.3380 ± 0.0155	0.3270 ± 0.0189
	tdGraphEmbed + ProtoNet	0.5083 ± 0.0121	0.4523 ± 0.0353	0.4670 ± 0.0199	0.3973 ± 0.0164
	Temp-GFSM (Ours)	0.6161 ± 0.0139	0.5931 ± 0.0148	0.6074 ± 0.0164	0.5605 ± 0.0201

Efficiency and Robustness

Convergence Speed

- With the bi-level optimization, our Temp-GFSM could achieve fast adaption (e.g., 3-4 update iterations)
- Interestingly, our Temp-GFSM could perform in the zero-shot setting due to the prototype construction during the meta-training

Roadmap

- Motivation
- Proposed Temp-GFSM Framework
- Experiments
- Conclusion

Conclusion

- ****
- Problem: Metric Learning over Temporal Graphs
- Algorithm: Temp-GFSM
 - Multi-Time Evolution
 - Multi-Time Attention
 - Node-level lifelong attention
 - Intra-snapshot attention
 - Inter-snapshot attention

- 3. Temporal Graph Few-Shot Metric Learning
- Temporal graph few-shot learning via bi-level optimization
- Evaluation: Temporal Graph Classification
 - Effectiveness
 - Efficiency and Robustness
 - Ablation Studies
 - Parameter Sensitivity

Thanks!

Dongqi Fu* (UIUC)

Liri Fang* (UIUC)

Ross Maciejewski (ASU)

Vetle I. Torvik (UIUC)

Jingrui He (UIUC)

Please refer to our paper and code at

https://github.com/DongqiFu/Temp-GFSM

