The **dot product** of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ is

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n.$$

We use the dot product to define:

- two vectors are **orthogonal** if $\mathbf{v} \cdot \mathbf{w} = 0$;
- the **length** of a vector is $\sqrt{\mathbf{v} \cdot \mathbf{v}}$. We write $||\mathbf{v}||$ for the length of \mathbf{v} .

Idea: orthogonal vectors are perpendicular/form a right angle

A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_t\}$ is

- an **orthogonal set** if each pair of vectors $\mathbf{u_i}$, $\mathbf{u_i}$, $i \neq j$ is orthogonal;
- an **orthonormal set** if each pair of vectors $\mathbf{u_i}$, $\mathbf{u_j}$, $i \neq j$ is orthogonal and each vector $\mathbf{u_i}$ has length one.

Every orthonormal set is an orthogonal set.

THEOREM: Every orthogonal set is a linearly independent set.

A. Sets of vectors in \mathbb{R}^2 . For each of the following, either draw a picture of a set of vectors in \mathbb{R}^2 that fits the description, or explain why no such set exists.

- (1) A set of two vectors that is an orthonormal set.
- (2) A set of two vectors that is an orthogonal set, but not orthonormal.
- (3) A set of two vectors that is linearly dependent.
- (4) A set of two vectors that is linearly independent, but not an orthogonal set.
- (5) A set of three vectors that is an orthogonal set.

B. A SET OF VECTORS IN \mathbb{R}^3 . Consider the vectors $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} -4 \\ 0 \\ 3 \end{bmatrix}$.

- (1) Compute the dot products $\mathbf{u} \cdot \mathbf{u}$, $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \cdot \mathbf{w}$, $\mathbf{v} \cdot \mathbf{v}$, $\mathbf{v} \cdot \mathbf{w}$, $\mathbf{w} \cdot \mathbf{w}$.
- (2) Compute $||\mathbf{u}||$, $||\mathbf{v}||$, and $||\mathbf{w}||$.
- (3) Is $\{u,v,w\}$ an orthogonal set?
- (4) Is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ an orthonormal set?
- (5) Find a scalar c such that $c\mathbf{u}$ is a *unit vector*—a vector of length one.
- (6) Let $U = [\mathbf{u} \ \mathbf{v} \ \mathbf{w}]$. Compute $U^T U$, and compare it to part (1).

FACT: If $U = [\mathbf{u_1} \ \mathbf{u_2} \ \cdots \ \mathbf{u_n}]$, then the (i, j)-entry of $U^T U$ is the dot product $\mathbf{u_i} \cdot \mathbf{u_j}$. This means that $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}\}$ is an orthonormal set if and only if $U^T U = I_n$.

A set of vectors $\{\mathbf{u_1}, \dots, \mathbf{u_t}\}$ in a subspace W of \mathbb{R}^n is

- ullet an **orthogonal basis** if it is an orthogonal set that is a basis for W
- an **orthonormal basis** if it is an orthonormal set that is a basis for W.

One reason orthonormal bases are useful is because it is easy to find the weights/coordinates in such a basis: if $\mathcal{U} = \{\mathbf{u_1}, \dots, \mathbf{u_t}\}$ is an *orthonormal* basis¹ for W, and $\mathbf{w} = c_1\mathbf{u_1} + \dots + c_t\mathbf{u_t} \in W$, then $c_i = \mathbf{u_i} \cdot \mathbf{w}$. Put another way,

$$[\mathbf{w}]_{\mathcal{U}} = \begin{bmatrix} \mathbf{u_1} \cdot \mathbf{w} \\ \mathbf{u_2} \cdot \mathbf{w} \\ \vdots \\ \mathbf{u_t} \cdot \mathbf{w} \end{bmatrix}$$
 for $\mathbf{w} \in W$.

C. Consider the plane H in \mathbb{R}^3 consisting of points that satisfy the equation 4x + y + z = 0.

- (1) Is H a subspace of \mathbb{R}^3 ?
- (2) Find a basis² for H. Is it an orthonormal basis?
- (3) Consider the vectors $\mathbf{u} = [\frac{-1}{3}, \frac{2}{3}, \frac{2}{3}]^T$, $\mathbf{v} = [0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}]^T$. Are $\mathbf{u}, \mathbf{v} \in H$?
- (4) Is $\{u, v\}$ an orthonormal set?
- (5) Explain why $\mathcal{U} = \{\mathbf{u}, \mathbf{v}\}$ is an orthonormal basis for H.
- (6) Find the \mathcal{U} -coordinates of the point $[-1, 1, 3]^T$.

DEFINITION: The **orthogonal complement** of a subspace $W \subseteq \mathbb{R}^n$ is the set of vectors that are orthogonal to *every* vector in W. We write W^{\perp} for the orthogonal complement of W. It is also a subspace of \mathbb{R}^n .

THEOREM: If W is a subspace of \mathbb{R}^n , then any vector $\mathbf{v} \in \mathbb{R}^n$ can be written as $\mathbf{v} = \hat{\mathbf{v}} + \mathbf{z}$ with $\hat{\mathbf{v}} \in W$ and $\mathbf{z} \in W^{\perp}$ in exactly one way. The vector $\hat{\mathbf{v}}$ is called the **projection of v onto** W, written as $\operatorname{proj}_W(\mathbf{v})$. $\operatorname{proj}_W(\mathbf{v})$ is the closest point to \mathbf{v} on W.

FORMULA (IF YOU HAVE AN ORTHONORMAL BASIS): If $\mathcal{U} = \{\mathbf{u_1}, \dots, \mathbf{u_t}\}$ is an *orthonormal* basis³ for W, then

$$\operatorname{proj}_{W}(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{u_1})\mathbf{u_1} + \dots + (\mathbf{v} \cdot \mathbf{u_t})\mathbf{u_t}.$$

In terms of matrices, if $U = [\mathbf{u_1} \ \mathbf{u_2} \ \cdots \ \mathbf{u_n}]$, then $\operatorname{proj}_W(\mathbf{v}) = UU^T\mathbf{v}$.

D. PROJECTION ONTO A LINE. Let W be the line through the origin and the point $[1,3]^T$ in \mathbb{R}^2 .

- (1) Draw W and W^{\perp} .
- (2) Find⁴ a basis for W.
- (3) A set with one element is automatically orthogonal; there's no condition. Find an orthonormal basis for W.
- (4) Find the projection of the point $[0,2]^T$ onto W. Do the same for $[-5,-5]^T$.
- (5) Find a basis for W^{\perp} .

¹Warning: This is ONLY true for an ORTHONORMAL basis. That's why we like them so much.

²Hint: H is the null space of a 1×3 matrix.

³Warning: This formula ONLY works for an ORTHONORMAL basis!

⁴Hint: Don't compute anything!

⁵Start by finding a vector in W^{\perp} .

- E. PROJECTIONS. Suppose that W is a subspace of \mathbb{R}^n .
 - (1) Using the fact that $\operatorname{proj}_W(\mathbf{v})$ is the closest point to \mathbf{v} on W, explain why $\operatorname{proj}_W(\mathbf{w}) = \mathbf{w}$ for any point $\mathbf{w} \in W$.
 - (2) Now, suppose that $\mathcal{U} = \{\mathbf{u_1}, \dots, \mathbf{u_t}\}$ is an orthonormal basis for W. Use the formula above to show⁶ that $\operatorname{proj}_W(\mathbf{w}) = \mathbf{w}$ for any point $\mathbf{w} \in W$.
 - (3) Explain why $\operatorname{proj}_W : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation. If $\mathcal{U} = \{\mathbf{u_1}, \dots, \mathbf{u_t}\}$ is an orthonormal basis for W, what is the standard matrix of proj_W ? What is its range?
- F*. PROJECTIONS AND ORTHOGONAL COMPLEMENTS. Let W be a subspace of \mathbb{R}^n . For this problem, think about projection in terms of its definition.
 - (1) What is the kernel of the linear transformation $\operatorname{proj}_W : \mathbb{R}^n \to \mathbb{R}^n$?
 - (2) Explain why $\mathbf{v} = \text{proj}_W(\mathbf{v}) + \text{proj}_{W^{\perp}}(\mathbf{v})$ for every $\mathbf{v} \in \mathbb{R}^n$.
- G*. Projection as closest point.
 - (1) Explain why if a and b are orthogonal, then $||a+b|| \ge ||a||$, and if $b \ne 0$, then ||a+b|| > ||a||.
 - (2) Explain why⁷ if $\mathbf{v} = \hat{\mathbf{v}} + \mathbf{z}$ with $\hat{\mathbf{v}} \in W$ and $\mathbf{z} \in W^{\perp}$, then $\hat{\mathbf{v}}$ is the closest point in W to \mathbf{v} .

If $T:V\to W$ is a linear transformation, then the following form of the rank-nullity theorem holds:

$$\dim(\operatorname{Range}(T)) + \dim(\operatorname{Kernel}(T)) = \dim(V).$$

To turn T into a matrix, we need a basis for V (to turn V into stacks of numbers) and a basis for W (to turn W into stack of numbers). If $\mathcal{B} = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ and $\mathcal{C} = \{\mathbf{c_1}, \dots, \mathbf{c_m}\}$, then the matrix of T with respect to these bases is the matrix M such that $M \cdot [\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{C}}$. It is given by the formula

$$M = [[T(\mathbf{b_1})]_{\mathcal{C}} \cdots [T(\mathbf{b_n})]_{\mathcal{C}}].$$

- H. Let P_n be the vector space of polynomials of degree at most n. Let a_0, a_1, \ldots, a_n be n+1 distinct real numbers.
 - (1) Explain why the map $E: P_n \to \mathbb{R}^{n+1}$ given by $E(p(t)) = \begin{bmatrix} p(a_0) & p(a_1) & \cdots & p(a_n) \end{bmatrix}^T$ is a linear transformation.
 - (2) What is the kernel of E?
 - (3) What is dimension of the range of E?
 - (4) What is the range of E?
 - (5) Explain why, if (a_0, b_0) , (a_1, b_1) , ..., (a_n, b_n) are any n + 1 points with different x-coordinates, there is a polynomial of degree at most n whose graph passes through these points.
 - (6) Find the matrix of E with respect to the bases $\mathcal{B} = \{1, t, t^2, \dots, t^n\}$ and $\mathcal{E} = \{\mathbf{e_1}, \dots, \mathbf{e_{n+1}}\}$.
 - (7) Explain why the matrix from the previous part is invertible.
 - (8) In the context of part (5), how many polynomials of degree at most n pass through these points?
 - (9) If (a_0, b_0) , (a_1, b_1) , ..., (a_n, b_n) are any n + 1 points with different x-coordinates, and m > n, is there is a polynomial of degree at most m whose graph passes through these points? How many?
 - (10) If (a_0, b_0) , (a_1, b_1) , ..., (a_n, b_n) are any n + 1 points with different x-coordinates, and m < n, is there is a polynomial of degree at most m whose graph passes through these points? How many?

⁶Hint: You can write $\mathbf{w} = c_1 \mathbf{u_1} + \cdots + c_t \mathbf{u_t}$ for some numbers $c_1, \dots, c_t \in \mathbb{R}$

⁷Hint: We can write any point in W as $\hat{\mathbf{v}} - \mathbf{w}$ for some other point $\mathbf{w} \in W$. Take $\mathbf{a} = \mathbf{z}$ and $\mathbf{b} = \mathbf{w}$ in the previous part.