1. Define the complexity class BPP.

Solution: The class BPP is defined on page 37 of the textbook. Fix $\varepsilon \in [0, 1/2)$. A predicate L is in BPP if there exists a polynomial p and a probabilistic Turing machine \mathcal{M} such that

- L(x) = 0 implies that $\mathcal{M}(x)$ answers "no" with probability $\geq 1 \varepsilon$ and
- L(x) = 1 implies that $\mathcal{M}(x)$ answers "yes" with probability $\geq 1 \varepsilon$.

Note that the definition given in the textbook incorrectly states the first item as

" L(x) = 0 implies that $\mathcal{M}(x)$ answers "no" with probability $\leq \varepsilon$.

Either "no" should be replaced with "yes" or " $\leq \varepsilon$ " should be replaced with $\geq 1 - \varepsilon$.