This exam contains 2 pages (including this cover page) and 5 questions.

Instructions

- 1. Read every question very carefully.
- 2. You should be able to finish this exam in an hour.
- 3. For descriptive questions, please complete the answer in 5-10 sentences.
- 4. Please try to submit soft copies. If you are planning to submit scanned copies of hand-written answers, please make sure they are very clear.
- 5. Please join all the scanned copies or images to one PDF file and upload that final file to D2L.
- 6. Total points for the exam is 100.
- 7. Late submissions minus 10 points.

Grade Table (for teacher use only)

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- 1. (20 points) Explain the skeleton of a simple GPU program (assume the program is a simple vector addtion).
- 2. (20 points) Explain the following:
 - (a) (10 points) ACID properties
 - (b) (10 points) CAP theorem
- 3. (20 points) Explain the following terms in the context of Internet
 - (a) (5 points) IP address
 - (b) (5 points) Application protocol
 - (c) (5 points) Transmission Control Protocol (TCP)
 - (d) (5 points) Internet Protocol (IP)
- 4. (20 points) From the Table 1, Which computer (System A or System B) will you buy (assume they have the same price) and give reasons for your decision.

Program	Execution frequency	Execution time (A)	Execution time (B)
Vector addition	50%	50	50
Matrix multiplication	30%	250	300
Matrix transpose	20%	100	80

Table 1: Benchmark program execution time comparison of System A and System B

5. (20 points) Name and explain the four different approaches of CPU scheduling.