ПРОЕКТ

Классификация таймфреймов аудио по типу музыкального инструмента

Введение

- Задача распознавания музыкальных инструментов востребована при обработке сложных музыкальных сигналов.
- Данная задача относится к классу задач Music Information Retrieval (MIR).
- Результаты работы могут быть использованы для аннотирования медиаконтента, сегментации аудиосигналов и решения других задач обработки звука.

University of Iowa Electronic Music Studios

Musical Instrument Samples

The University of Iowa Musical Instrument Samples (MIS) are created by Lawrence Fritts, Director of the Electronic Music Studios and Professor of Composition at the University of Iowa. Since 1997, these recordings have been freely available on this website and may be downloaded and used for any projects, without restrictions. These are used by musicians, application developers, teachers, students, and researchers. These have been used in over 270 published research articles and books. Please let me know if these have been helpful in your research and music projects.

Until 2011, the recordings were made with single Neumann KM 84 cardioid condenser microphone at 16/44.1. They were edited into chromatic scales played note-by-note at pp, mf, and ff dynamic levels throughout the range of the instrument. Because the recordings represent the complete dynamic structure of the instrument, input volume levels were not changed during the recording session. Some instruments were played with more than one technique, including arco, pizzicato, vibrato, and non-vibrato.

Выбор датасета

- Использована база данных музыкальных инструментов Университета Айовы http://theremin.music.uiowa.edu
- База данных образцов включает струнные инструменты, духовые инструменты, медные духовые инструменты, фортепиано
- Полный диапазон звучания
- Инструменты записаны в безэховой камере

Предобработка звуковых файлов

Битовая глубина сэмпла: 8 бит,

Частота дискретизации: 22050 Гц,

Каналов:1 (моно)

```
#вырезать тишину
chunks = split on silence (sound,
# Specify that a silent chunk must be at least 2 seconds or 2000 ms long.
min silence len = 200,
# Consider a chunk silent if it's quieter than -16 dBFS.
silence thresh = -37,
# keep 200 ms of leading/trailing silence
keep silence = 0)
if chunks != []:
   arr of chunks = chunks[0]
   for chunk in chunks[1:]:
        arr of chunks = arr of chunks + chunk
    sound = arr of chunks
sound = sound.set channels(1)
sound = sound.set sample width(1)
sound = sound.set frame rate(sr)
filepath wav = os.path.join(new root, Path(file).stem + '.wav')
sound.export(filepath wav, format="wav")
return
```


СПЕКТРАЛЬНЫЙ ЦЕНТРОИД

Фортепиано

Гитара

Скрипка

СПЕКТРАЛЬНЫЙ СПАД

Фортепиано

Гитара

Скрипка

Фортепиано

Гитара

СПЕКТРАЛЬНАЯ ШИРИНА

ЦВЕТНОСТЬ

Фортепиано

Гитара

Скрипка

Фортепиано

Гитара

МЕЛ-КЕПСТРАЛЬНЫЕ **КОЭФФИЦИЕНТЫ**

Скрипка

Мел-кепстральные коэффициенты. Мел-шкала

Мел-кепстральные коэффициенты.

Преобразование Габора Окрипка

Гитара

Мел-кепстральные коэффициенты.

Окна на мел-шкале

Результат преобразований:

Результат для последовательности

таймфреймов:

librosa.feature.mfcc

Визуализация признаков методом главных компонент

Визуализация признаков методом T-SNE

Модели классификации

- 1. Случайный лес
- Использует модель бэггинга
- n_estimators = 100
- max_depth = 10
- Критерий разбиения gini или entropy

- 2. Градиентный бустинг
- n estimators = 100
- max_depth = 10
- learning_rate = 0.1

Результаты классификации методом RandomForest

Критерий разбиения – индекс Джини

```
Анализ датасета 22050 .csv gini
Обучающий набор score cross val = 0.99
Tестовый набор score = 0.99
         piano guitar violin trumpet
accuracy 0.99 1.00 0.96
                                1.0
precision 0.98 0.97 1.00
recall 0.99 1.00 0.96
                                1.0
                                1.0
f measure 0.98 0.99 0.98
                                1.0
       piano quitar violin trumpet
       79.0 0.0
                       2.0
                               0.0
piano
guitar 1.0 73.0
                      1.0
                             0.0
violin 0.0 0.0 67.0
       0.0 0.0 0.0
                              64.0
trumpet
```

$$\mathrm{Gini}(Q) = 1 - \sum\limits_{i=1}^n p_i^2,$$
рі – вероятность і-го класса

Критерий разбиения — энтропия

$$H = -\sum\limits_{i=1}^{n}rac{N_{i}}{N}\,\log\left(rac{N_{i}}{N}
ight)$$

Результаты классификации методом GradientBoosting

Также проводилось обучение модели с обрезкой дерева по глубине.

Подробности на https://github.com/aleks1212v/data_mining

Выбор второго датасета - синтезированные инструменты

- Я выбрал для исследования синтезатор Casio с новейшим мощным музыкальным процессором AiX.
- Его сигнальный процессор позволяет синтезировать 600 музыкальных инструментов.
- Я выбрал 4 категории инструментов для исследования.

Исследуемые инструменты

PIANO

_		
	001	STAGE PIANO
	002	GRAND PIANO
	003	BRIGHT PIANO
	004	MELLOW PIANO
	005	POP PIANO
	006	ROCK PIANO
	007	DANCE PIANO
	800	LA PIANO
	009	TACK PIANO
	010	MONO PIANO
-		

STRINGS

Î	192	PIZZICATO STRINGS	
	193	CHAMBER	
	194	OCTAVE STRINGS	
	195	ORCHESTRA HIT	
	196	SOLO VIOLIN	
	197	VIOLIN	
	198	SLOW VIOLIN	
	199	VIOLA	
	200	CELLO	
	201	CONTRABASS	

GUITAR

088	NYLON GUITAR VELO.SLIDE
089	STEEL GUITAR VELO.SLIDE
090	NYLON STR.GUITAR 1
091	NYLON STR.GUITAR 2
092	NYLON STR.GUITAR 3
093	STEEL STR.GUITAR 1
094	STEEL STR.GUITAR 2
095	STEEL STR.GUITAR 3
096	STEEL STR.GUITAR 4
097	12 STR.GUITAR

BRASS

	205	STEREO BRASS	
	206	SOLO TRUMPET	
ð	207	SYNTH-BRASS 1	
	208	BRASS	
	209	BRASS SECTION 1	
	210	BRASS SECTION 2	
١	211	BIG BAND BRASS	
	212	HARD BRASS	
	213	BRASS SFZ	
	214	BRASS VELO.FALL	
	100	COM COM AND	

PIANO

GUITAR

STRINGS

BRASS

Визуализация РСА (principal component analysis)

Визуализация t-SNE

perplexity = 30, learning_rate = 10, n_iter = 1000

Pезультаты классификации RandomForest GradientBoosting

Критерий - индекс Джини

Анализ да	атасета	22050	.csv gin:	i
Обучающий	и набор	score c	ross val	= 0.92
Тестовый	набор з	core = (0.93	
	piano	guita	r violi:	n trumpet
accuracy	0.97	0.93	0.93	0.91
precision	0.90	0.94	0.92	0.97
recall	0.97	0.93	0.93	0.91
f_measure	0.93	0.94	4 0.93	0.94
	piano (guitar	violin	trumpet
piano	420.0	18.0	17.0	12.0
guitar	6.0	376.0	17.0	1.0
violin	4.0	7.0	404.0	26.0
trumpet	4.0	2.0	7.0	382.0

Критерий – энтропия

Анализ датасета _22050csv entropy Обучающий набор score cross val = 0.94						
Тестовый	_		_			
	piano	guita	r violi	n trumpet		
accuracy	0.98	0.9	4 0.9	4 0.93		
precision	n 0.92	0.9	7 0.9	3 0.98		
recall	0.98	0.9	4 0.9	4 0.93		
f measure	0.95	0.9	5 0.9	4 0.95		
_	piano	guitar	violin	trumpet		
piano	419.0	21.0	12.0	5.0		
guitar	5.0	398.0	9.0	0.0		
violin	2.0	5.0	412.0	25.0		
trumpet	3.0	1.0	3.0	383.0		

Анализ датасет Обучающий набо	_		81
Тестовый набор	score = 0.8	2	
pia	ano guitar	violin tr	umpet
accuracy 0.	.94 0.80	0.81	0.74
precision 0.	.94 0.74	0.79	0.82
recall 0.	.94 0.80	0.81	0.74
f_measure 0.	.94 0.77	0.80	0.78
piano	o guitar vi	olin trum	pet
piano 194.0	11.0	0.0	2.0
guitar 6.0	165.0	23.0 2	9.0
violin 2.0	13.0 1	67.0 3	0.0
trumpet 5.0	18.0	15.0 17	2.0

Тестирование моделей на первом датасете (из Университета Айовы)

RandomForest

Критерий - индекс Джини

1967	- F100-			
Проверочн	ный набор	score =	0.26	
	piano	guitar	violin	trumpet
accuracy	0.21	0.08	0.03	0.73
precision	0.21	0.86	0.05	0.32
recall	0.21	0.08	0.03	0.73
f_measure	0.21	0.15	0.04	0.44
	piano g	guitar v	iolin	trumpet
piano	74.0	170.0	30.0	79.0
guitar	1.0	30.0	1.0	3.0
violin	41.0	156.0	11.0	16.0
trumpet	242.0	2.0	316.0	260.0
_				

Критерий – энтропия

Проверочн	ный набо	p score	= 0.26	
	piano	guitar	r violi	n trumpet
accuracy	0.13	0.00	6 0.0	3 0.82
precision	0.17	0.62	2 0.0	4 0.33
recall	0.13	0.00	6 0.0	3 0.82
f measure	0.15	0.12	2 0.0	3 0.48
_	piano	guitar	violin	trumpet
piano	46.0	157.0	23.0	47.0
guitar	3.0	23.0	0.0	11.0
violin	54.0	176.0	10.0	7.0
trumpet	255.0	2.0	325.0	293.0

GradientBoosting

Проверочн	ный набо	op score	= 0.2	
	piano	o guita	r violi	n trumpet
accuracy	0.0	3 0.0	1 0.0	5 0.71
precision	0.6	2 0.0	1 0.0	8 0.29
recall	0.0	3 0.0	1 0.0	5 0.71
f_measure	0.0	5 0.0	1 0.0	6 0.41
	piano	guitar	violin	trumpet
piano	10.0	0.0	5.0	1.0
guitar	23.0	2.0	213.0	57.0
violin	33.0	142.0	18.0	45.0
trumpet	292.0	214.0	122.0	255.0
_				

Визуализация признаков после выделения особенностей путем вейвлет-преобразования исходного сигнала (вейвлет Добеши 2-го порядка)

Результаты классификации после выделения особенностей сигнала Модель RandomForest

Критерий - индекс Джини

Анализ да Обучающи				
Тестовый				
				n trumpet
accuracy	0.96	0.91	0.87	7 0.77
precision	n 0.97	0.77	0.90	0.90
recall	0.96	0.91	0.87	7 0.77
f_measur	e 0.97	0.83	0.88	0.83
	piano	guitar	violin	trumpet
piano	210.0	5.0	1.0	1.0
guitar	8.0	196.0	18.0	32.0
violin	0.0	7.0	186.0	14.0
trumpet	0.0	8.0	9.0	157.0
Провероч	ный набо	p score	= 0.49	
	piano	guitar	violin	n trumpet
accuracy	0.0	0.91	0.06	0.99
precision	n 0.0	0.95	0.09	0.41
recall	0.0	0.91	0.06	0.99
f_measure	e 0.0	0.93	0.07	7 0.59
	piano	guitar	violin	trumpet
piano	0.0	1.0	10.0	0.0
guitar	0.0	162.0	8.0	0.0
violin	94.0	1.0	10.0	1.0
trumpet	85.0	15.0	151.0	178.0

Критерий – энтропия

Анализ да	атасета	_22050_d	lb2_cD.cs	v entropy
Обучающий	й набор	score cr	coss_val :	= 0.88
Тестовый	набор з	core = 0	.88	
				trumpet
accuracy	0.99	0.94	0.86	0.75
precision	n 0.98	0.79	0.86	0.92
recall	0.99	0.94	0.86	0.75
f_measure	0.98	0.85	0.86	0.82
	piano	guitar	violin	trumpet
			1.0	
guitar	2.0	187.0	22.0	27.0
violin	1.0	6.0	204.0	27.0
trumpet	0.0	3.0	11.0	159.0
Провероч	ный набо	p score	= 0.46	
	_	_		trumpet
accuracy	0.0	0.83	0.02	1.00
precision	n 0.0	0.93	0.02	0.48
recall	0.0	0.83	0.02	1.00
f_measure	0.0	0.88	0.02	0.65
	piano	guitar	violin	trumpet
piano	0.0	4.0	1.0	0.0
guitar	2.0	148.0	9.0	0.0
violin	168.0	4.0	4.0	0.0
trumpet	9.0	23.0	165.0	179.0

БИБЛИОГРАФИЯ

- 1. Станкевич Ф.В., Спицын В.Г. НЕЙРОСЕТЕВОЕ РАСПОЗНАВАНИЕ МУЗЫКАЛЬНЫХ ИНСТРУМЕНТОВ С ИСПОЛЬЗОВАНИЕМ МЕЛ-ЧАСТОТНЫХ КЕПСТРАЛЬНЫХ КОЭФФИЦИЕНТОВ. ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», Томск
- 2. Орельен Жерон. Прикладное машинное обучение с помощью Scikit-Learnu TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем. / Орельен Жерон. –Москва: Вильямс, 2018. –688 с.
- 3. Захарова, Т.В. Вейвлет-анализ и его приложения. Учебное пособие / Т.В. Захарова, О.В. Шестаков. Второе издание, переработанное и дополненное. Москва: ИНФРА-М, 2019. –159 с.[Высшее образование].