B. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

1. (Currently Amended) Polyhydroxyalkanoate comprised of A polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (1) within the its molecule:

$$\begin{array}{c}
R \\
N-H \\
C=O \\
(CH_2)m \\
O \\
(CH_2)n
\end{array}$$
(1),

wherein R represents $-A_1$ -SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are if more than one unit of the chemical formula (1) is present, each of R, R₁, R_{1a}, A₁, m, and n have the aforementioned meanings is independently selected for each unit.

2. (Withdrawn-Currently Amended) Polyhydroxyalkanoate The polyhydroxyalkanoate according to claim 1, comprised of, as the unit represented by the

chemical formula (1), at least a unit represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or (4B), within the molecule:

$$\begin{array}{c} SO_2R_2 \\ A_2 \\ N-H \\ C=O \\ (CH_2)m \\ O \end{array}$$

$$(CH_2)m \\ (CH_2)n \\ (2)_2$$

wherein R₂ represents OH, a halogen atom, ONa, OK or OR_{2a}; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group, A₂ represents a linear or branched alkylene group with 1 to 8 carbon atoms; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units areif more than one unit of the chemical formula (2) is present, each of A₂, R₂, R_{2a}, m, and n have the aforementioned meanings is independently selected for each unit;

wherein each of R_{3a} , R_{3b} , R_{3c} , R_{3d} and R_{3e} each-independently represents SO_2R_{3f} (R_{3f} representing OH, a halogen atom, ONa, OK or OR_{3fL} (R_{3fL} representing a linear

or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{3f}; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are if more than one unit of the chemical formula (3) is present, each of R_{3a}, R_{3b}, R_{3c}, R_{3d}, R_{3e}, R_{3f}, R_{3f1}, R_{3g}, m, and n have the aforementioned meanings is independently selected for each unit.

where R_{3f} is OH, a halogen atom, ONa, OK, or OR_{3f1};

 R_{3f1} is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group;

R_{3g} is H, Na, or K; and

Ph is a phenyl group;

$$\begin{array}{c|c} R_{4e} \\ R_{4g} \\ R_{4a} \\ R_{4b} \\ R_{4b} \\ R_{4b} \\ R_{4b} \\ R_{4b} \\ C=O \\ (CH_2)m \\ O \\ (CH_2)m \\ O \\ (CH_2)m \\ O \\ (4A). \end{array}$$

wherein each of R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f} and R_{4g} each-independently represents SO₂R_{4o} (R_{4e} representing OH, a halogen atom, ONa, OK or OR_{4e1} (R_{4e1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4o}; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units areif more than one unit of the chemical formula (4A) is present, each of R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4o}, R_{4o1}, R_{4p}, m₂ and n have the aforementioned meanings is independently selected for each unit,

where R₄₀ is OH, a halogen atom, ONa, OK, or OR₄₀₁

 R_{401} is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group;

 R_{4p} is H, Na, or K; and

Ph is a phenyl group;

wherein each of R_{4h}, R_{4i}, R_{4i}, R_{4i}, R_{4k}, R_{4m} and R_{4n} each-independently represents SO₂R_{4o}-(R_{4o}-representing OH, a halogen atom, ONa, OK or OR_{4o1}-(R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p}-(R_{4p}-representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group₂ or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4o}; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units areif more than unit of the chemical formula (4B) is present, each of R_{4h}, R_{4i}, R_{4i}, R_{4k}, R_{4n}, R_{4n}, R_{4o}, R_{4o}, R_{4o1}, R_{4p}, m₂ and n have the aforementioned meanings in independently selected for each unit,

where R₄₀ is OH, a halogen atom, ONa, OK, or OR₄₀₁;

 R_{401} is a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group;

R_{4p} is H, Na, or K; and

Ph is a phenyl group.

3. (Withdrawn) Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (5) within the molecule:

$$(CH_2)m$$

$$(CH_2)m$$

$$(CH_2)n$$

$$(5)$$

wherein R_5 represents hydrogen, a group capable of forming a salt or R_{5a} ; R_{5a} represents a linear or branched alkyl group with 1 - 12 carbon atoms, an aralkyl group or a substituent having a sugar; n represents an integer selected from 0, 2, 3, 4; m represents an integer selected from 2 - 8 in case n is 0, wherein R_5 represents R_{5a} only in case m is 2, and m represents an integer selected from 0 - 8 in case n is an integer selected from 2 - 4; and in case plural units are present, R_5 , R_{5a} , m and n have the aforementioned meanings independently for each unit.

4. (Withdrawn) Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (6) within the molecule:

$$(CH_2)m$$
 $(CH_2)n$
 $(CH_2)n$
 $(CH_2)n$

wherein n represents an integer selected from 0, 2, 3, 4; m represents an integer selected from 2 - 8 in case n is 0, m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 0 and 2 - 8 in case n is 4; and in case plural units are present, m and n have the aforementioned meanings independently for each unit.

5. (Currently Amended) Polyhydroxyalkanoate The polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by a chemical formula (7) within the molecule:

$$+$$
0 $-$ R $_{7}$ $)$ 0 (7).

wherein R₇ represents a linear or branched alkylene with 1 - 11 carbon atoms, an alkyleneoxyalkylene group (each, where each alkylene group being independently with has 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms, or an alkylidene group with 1 - 5 carbon atoms, which is unsubstituted or substituted with an aryl group; and in case plural units are if more that one unit of the chemical formula (7) is present, R₇ has the aforementioned meanings is independently selected for each unit.

6. (Withdrawn) A method for producing polyhydroxyalkanoate

represented by a chemical formula (9), comprised of a step of polymerizing a compound represented by a chemical formula (8) in the presence of a catalyst:

$$\bigcap_{\mathsf{H}_{8}} \bigcap_{\mathsf{C}} (\mathsf{CH}_{2}) \mathsf{m} = 0$$

$$(8)$$

wherein R_8 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; and m represents an integer selected from 2 - 8;

$$+O^{\mathsf{R}_9} + O^{\mathsf{O}} + O^{\mathsf{O$$

wherein R₉ represents a linear or branched alkylene or alkyleneoxyalkylene group with 1 - 11 carbon atoms (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; m represents an integer selected from 2 - 8; and in case plural units are present, R₉ and m have the aforementioned meanings independently for each unit.

7. (Withdrawn) A method for producing polyhydroxyalkanoate represented by a chemical formula (13), comprised of a step of polymerizing a compound represented by a chemical formula (12) in the presence of a catalyst:

$$(CH2)n (CH2)m$$

$$(12)$$

wherein n represents an integer selected from 2 to 4; m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 0 and 2 - 8 in case n is 4:

$$(CH_2)m$$
 $(CH_2)n$
 (13)

wherein n represents an integer selected from 2 to 4; m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 0 and 2 - 8 in case n is 4, and in case plural units are present, m and n have the aforementioned meanings independently for each unit.

8. (Withdrawn) A method for producing polyhydroxyalkanoate represented by a chemical formula (15), comprised of a step of polymerizing a compound

represented by a chemical formula (14) in the presence of a catalyst:

$$O \xrightarrow{(CH_2)n} OR_{14b}$$

$$OR_{14a}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

$$OR_{14b}$$

wherein R_{14a} represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; R_{14b} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0 and an integer selected from 0 - 8 in case n is selected from 2 - 4;

$$(CH_2)m$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(15)$$

wherein R_{15a} represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl

group; R_{15b} represents a linear or branched alkyl with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0 and an integer selected from 0 - 8 in case n is selected from 2 - 4; and in case plural units are present, R_{15a} , R_{15b} , m and n have the aforementioned meanings independently for each unit.

9. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (17), comprised of a step of oxidizing a double bond portion of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (16):

$$(CH_2)m$$
 $(CH_2)n$
 (16)

wherein m represents an integer selected from 0 - 8; n represents 0, 2, 3 or 4; and, in case plural units are present, m and n have the aforementioned meanings independently for each unit:

$$(CH_2)m$$

$$(CH_2)m$$

$$(CH_2)n$$

$$(17)$$

wherein m represents an integer selected from 0 - 8; R₁₇ represents

hydrogen, or a group capable of forming a salt; n represents 0, 2, 3 or 4; and, in case plural units are present, m, n and R_{17} have the aforementioned meanings independently for each unit.

10. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (19), comprised of a step of executing hydrolysis of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (18) in the presence of an acid or an alkali, or a step of executing hydrogenolysis comprising a catalytic reduction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (18):

$$(CH_2)m$$

$$(CH_2)m$$

$$(CH_2)n$$

$$(18)$$

wherein R_{18} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0, or an integer selected from 0 - 8 in case n is 2, 3 or 4; and in case plural units are present, R_{18} , m and n have the aforementioned meanings independently for each unit;

$$(CH_2)m$$

$$(CH_2)m$$

$$(CH_2)n$$

$$(19)$$

wherein R_{19} represents hydrogen, or a group capable of forming a salt; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0, or an integer selected from 0 - 8 in case n is 2, 3 or 4; and, in case plural units are present, R_{19} , m and n have the aforementioned meanings independently for each unit.

11. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (1), comprised of a step of executing a condensation reaction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (20) and an amine compound represented by a chemical formula (21):

$$\begin{array}{c}
COOR_{20} \\
(CH_2)m \\
O \\
(CH_2)n
\end{array}$$
(20)

wherein R_{20} represents hydrogen, or a group capable of forming a salt; n represents an integer selected from 0 - 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, or m is 0 in case n is 1; and, in case plural units are present, m and n and R_{20} have the aforementioned meanings independently for each unit;

$$H_2N - A_3 - SO_2R_{21}$$
 (21)

wherein R_{21} represents OH, a halogen atom, ONa, OK or OR_{21a} ; R_{21a} and A_3 each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and, in case plural units are present, R_{21} , R_{21a} and A_3 have the aforementioned meanings independently for each unit;

$$\begin{array}{c}
R\\
N-H\\
C=O\\
(CH2)m
\end{array}$$

$$\begin{array}{c}
(CH2)m
\end{array}$$

wherein R represents $-A_1$ -SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R, R₁, R_{1a}, A₁, m and n have the aforementioned meanings independently for each unit.

12. (Withdrawn) A compound represented by a chemical formula (8):

$$(CH_2)m$$

$$R_8$$

$$(8)$$

wherein R_8 represents a linear or branched alkylene 1 - 11 carbon atoms, or alkyleneoxyalkylene group with (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; and m represents an integer selected from 2 - 8.

13. (Withdrawn) A compound represented by a chemical formula (14):

$$O \xrightarrow{(CH_2)n} (CH_2)m \xrightarrow{O} OR_{14b}$$

$$R \xrightarrow{14a} O \qquad (14)$$

wherein R_{14a} represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; R_{14b} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer

selected from 2 - 8 in case n is 0 and an integer selected from 0 - 8 in case n is selected from 2 - 4.

14. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (170), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (168) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (169):

$$+$$
 0
 (168)

$$X(CH_2)mCOOR_{169}$$
 (169)

wherein m represents an integer selected from 0 - 8; X represents a halogen atom; and R_{169} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group:

$$(CH_2)m$$

$$+ 0$$

$$(170)$$

wherein m represents an integer selected from 0 - 8; R₁₇₀ represents a linear

or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; and in case plural units are present, R_{170} and m have the aforementioned meanings independently for each unit.

15. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (172), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (168) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (171):

$$+$$
 0
 (168)

wherein R_{171} represents $-A_{171}$ - SO_2R_{171a} ; R_{171a} represents OH, a halogen atom, ONa, OK or OR_{171b} ; R_{171b} and A_{171} each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{171} , R_{171a} , R_{171b} , and A_{171} have the

aforementioned meanings independently for each unit;

$$\begin{array}{c}
R \text{ 172} \\
N-H \\
O = \\
(CH_2)_2 \\
O
\end{array}$$
(172)

wherein R_{172} represents $-A_{172}$ - SO_2R_{172a} ; R_{172a} represents OH, a halogen atom, ONa, OK or OR_{172b} ; R_{172b} and A_{172} each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{172} , R_{172a} , R_{172b} , and A_{172} have the aforementioned meanings independently for each unit.