1

Rectas, planos y separación

Notación

■ Los puntos se representan con letras mayúsculas A, B, C, etc.

■ Las rectas los denotamos por: \mathcal{L} ó \overline{AB} .

■ Los planos se representará con letras cursivas: P.

POSTULADO .1 (Postulado de la distancia) A cada par de puntos diferentes le corresponde un número real positivo único.

Definición 1.1 La distancia entre dos puntos es el número obtenido mediante el postulado de la distancia. Si los puntos P y Q, entonces indicamos la distancia por PQ.

POSTULADO .2 (Postulado de la regla) Podemos establecer una correspondencia entre los puntos de una recta y los números reales de manera que:

- a) A cada punto de la recta corresponde exactamente un número real,
- b) a cada número real corresponde exactamente un punto de la recta y
- c) la distancia entre dos puntos cualesquiera es el valor absoluto de la diferencia de los números correspondientes.

Definición 1.2 Una correspondencia como la descrita en el postulado de la regla se llama un sistema de coordenadas. El número correspondencia a un punto dado se llama coordenada del punto.

POSTULADO .3 (Postulado de la colocación de la regla) Dados dos puntos P y Q de una recta, se puede escoger el sistema de coordenadas de manera que la coordenada de P sea cero y la coordenada de Q sea positiva.

Definición 1.3 B está entre A y B si,

- i) A, B y C son puntos distintos de una misma recta, y
- ii) AB + BC = AC

POSTULADO .4 (Postulado de la recta) Dados dos puntos distintos cualesquiera hay exactamente una recta que los contiene.

AB se llama longitud del segmento \overline{AB}

Correspondencia biunivoca .- correspondencia uno a uno

Definición 1.4 Para dos puntos cualesquiera A y B, el segmento \overline{AB} es el conjunto de los puntos A y B, y de todos los puntos que están entre A y B. Los puntos A y B se llaman los extremos de \overline{AB} .

Definición 1.5 El número AB se llama longitud del segmento \overline{AB}

Definición 1.6 Sean A y B puntos de una recta \mathcal{L} . El rayo \overrightarrow{AB} es el conjunto de puntos que es la reunión de,

- I. el segmento \overline{AB} y
- II. el conjunto de todos los puntos C para los cuales es cierto que B está entre A y C. El punto A se llama el extremo de \overrightarrow{AB} .

Definición 1.7 Si A está entre B y C, entonces \overrightarrow{AB} y \overrightarrow{AC} se llaman rayos opuestos.

TEOREMA 1.1 (Teorema de la localización de puntos) Sea \overrightarrow{AB} un rayo y sea xun número positivo. Entonces existe exactamente un punto P de \overrightarrow{AB} tal que AP = x

Demostración.- Dada la recta \overrightarrow{AB} ; por el postulado de la colocación de la regla podemos elegir un sistema de coordenadas donde A sea cero y la coordenada de B sea un número positivo r

Sea P el punto cuyo coordenada es x; como $x \in \mathbb{R}^+$ entonces $x \in \overrightarrow{AB}$ y AP = |x - 0| = x. La unicidad de P se da por el postulado de la regla.

Definición 1.8 Un punto B se llama punto medio de un segmento $\overline{AC},$ si B está entre A y C tal que AB = BC

Decimos que el punto medio de un segmento biseca al segmento.

TEOREMA 1.2 Todo segmento tiene exactamente un punto medio.

Demostración.- Si B es el punto medio de \overline{AC} entonces debe cumplirse:

$$\left. \begin{array}{rcl} AB + BC & = & AC \\ AB & = & BC \end{array} \right\} \Rightarrow AB = \frac{AC}{2}$$

Luego por teorema, el rayo \overrightarrow{AC} con $x = \frac{AC}{2} \in \mathbb{R}^+$ hay exactamente un punto B tal que $AB = \frac{AC}{2}$. Así \overline{AC} tiene exactamente un punto medio.

Definición 1.9 Decimos que el punto medio de un segmento biseca al segmento.

Definición 1.10 El conjunto de todos los puntos se llama espacio.

Definición 1.11 Los puntos de un conjunto están alineados o son colineales, si hay una recta que los contiene a todos.

Definición 1.12 Los puntos de un conjunto son coplanarios si hay un plano que los contiene a todos.

1.1. Repaso del capítulo 2

- 1. Sea A el conjunto de todos los meses del año cuyos nombres empiezan con la letra J. Sea B el conjunto de todos los meses del año que tienen exactamente 30 días. Sea C el conjunto de todos los meses del año cuyos nombres empiezan con la letra F.
 - (a) ¿Cuál es la intersección de A y C?
 - (b) ¿Cuál es la reunión de A y C?
 - (c) ¿Cuál es la intersección de B y C?
 - (d) ¿Es C un subconjunto del conjunto A? ¿Del conjunto B? ¿Y del conjunto C?

2.

POSTULADO .5 (Postulado de la Existencia de puntos).

- a) Todo plano contiene al menos tres puntos no colineales.
- b) El espacio existe y contiene por lo menos, cuatro puntos no son coplanares.
- c) Una recta contiene, por lo menos dos puntos.

TEOREMA 1.3 Si dos rectas diferentes se intersecan, su intersección contiene un punto solamente.

Demostración.- (contradicción). El teo. expreso:

Si las rectas \mathcal{L}_1 y \mathcal{L}_2 se intersecan entonces existe exactamente un punto P tal que $\mathcal{L}_1 \cap \mathcal{L}_2 = \{P\}$ empleando el método de la contradicción; afirmamos \mathcal{L}_1 y \mathcal{L}_2 , $\mathcal{L}_1 \neq \mathcal{L}_2$ se intersecan y su intersección contiene dos puntos P y Q Un gráfico de la afirmación (absurda) es:

Si \mathcal{L}_1 y \mathcal{L}_2 se intersecan en los puntos P y Q entonces por los puntos P y Q pasan las rectas \mathcal{L}_1 y \mathcal{L}_2 ; lo que es una contradicción al postulado de la recta.

∴ La afirmación del teorema es verdad.

POSTULADO .6 (Postulado de los dos Puntos de la Recta y el Plano) Si dos puntos están en un plano, entonces la recta que los contiene esta en el mismo plano.

TEOREMA 1.4 Si una recta interseca a un plano que no la contiene, entonces la intersección contiene un solo punto.

Demostración.- (Contradicción) Suponemos $\mathcal{L} \not\subset \mathcal{P}$ y $\mathcal{L} \cap \mathcal{P} = \{P,Q\}$ Si $P,Q \in \mathcal{P}$ y $P,Q \in \mathcal{L}$ entonces por postulado 6 $\mathcal{L} \subset \mathcal{P} \ (\Rightarrow \Leftarrow)$

POSTULADO .7 (Postulado del Plano) Tres puntos cualesquiera están al menos en un plano, y tres puntos cualesquiera no alineados están exactamente en un plano.

TEOREMA 1.5 Dada una recta y un punto fuera de ella, hay exactamente un plano que contiene a ambos.

Demostración.- El teorema afirma:

$$Si\ P \not\subset \mathcal{L} \Rightarrow \exists ! \mathscr{P}/P \in \mathscr{P}\ y\ \mathcal{L} \subset \mathscr{P}$$

Por el postulado 5 inciso c) \mathscr{L} contiene al menos dos puntos R y S; luego P, R y S son no alineados y por el postulado 7 P, R y S están exactamente en un plano \mathscr{P} ; además como $R, S \in \mathscr{L}$ entonces por el postulado 6 $\mathscr{L} \subset \mathscr{P}$

TEOREMA 1.6 Dados dos rectas que se intersecan, hay exactamente un plano que las contiene.

Demostración.-

 \mathcal{L}_1 y \mathcal{L}_2 son dos rectas y se intersecan en el punto P, entonces $\exists ! \ P \ / \ \mathcal{L}_1 \subset E \ y \ \mathcal{L}_2 \subset E$

5

Por el postulado de la recta consideramos los puntos $Q, P \in \mathcal{L}_1$ y $S, P \in \mathcal{L}_2$, así por hipótesis y teorema 3 podemos decir que P interseca a las dos rectas. Luego si $Q \in \mathcal{L}_1$ y $S \in \mathcal{L}_2$ entonces los puntos P, Q, S son no coloniales, y en consecuencia por el postulado 7 hay exactamente un plano \mathcal{E} que los contiene, por lo tanto por el postulado 6 tenemos que $\mathcal{L}_1 \subset \mathcal{E}$ y $\mathcal{L}_2 \subset \mathcal{E}$.

POSTULADO .8 (Postulado de la Intersección de Planos) Si dos planos se intersecan, se intersecan exactamente en una recta.

Definición 1.13 Un conjunto A se llama convexo, si para cada dos puntos P y Q cualesquiera del conjunto, todo el segmento \overline{PQ} esta en A

POSTULADO .9 (Postulado de separación del Plano) Sea $\mathscr P$ un plano y $\mathscr L$ una recta entonces:

Los puntos del plano que no están en ${\mathscr L}$ forman dos semiplanos de manera que:

- a) Cada semiplano es un conjunto convexo, y
- b) si P está en un semiplano y Q en el otro, entonces \overline{PQ} interseca.

La recta \mathcal{L} se llama arista o borde de cada semiplano.

POSTULADO .10 (Postulado de la Separación del Espacio) Sea $\mathscr P$ un plano en el espacio, los puntos del espacio que no están en $\mathscr P$ forman dos semiespacios de manera que:

- a) Cada semiespacio es un conjunto convexto.
- b) Si un punto P está en un semiespacio y Q está en el otro, \overline{AB} interseca a \mathscr{P}

El plano ${\mathscr P}$ se lla
a cara de cada uno de los semiespacios.

EJEMPLO 1.1 ¿Cuáles de las regiones marcadas con letras mayúsculas son conjuntos convexos?

Respuesta.- Regiones convexos: B y C

NOTAS

Método Indirecto (Método de la contradicción)

$$P \Rightarrow Q \equiv \left\{ \begin{array}{l} V \\ F \end{array} \right.$$

$$p \Rightarrow q \equiv F \quad \equiv \quad \sim (p \Rightarrow q) \quad \equiv \quad F \\ \equiv \quad p \land \sim q \quad \equiv \quad V$$