1

CONTENTS

I	Nomer	nclature	3
II	Introd	troduction	
	II-A	Vehicle dynamics	4
	II-B	State and actuator limits	2
	II-C	Safety constraints	
		II-C1 Oncoming vehicles	Ć
	II-D	Full problem	
III	Contin	nuous modelling in the spatial domain	7
	III-A	Change of reference frame	7
	III-B	Change of independent variable	
	III-C	Spatial formulation	
		III-C1 Objective function	ç
	III-D	Inverse speed as a state	10
		III-D1 Full problem	11
IV	Object	Objective functions	
V	Transl	ation	13

SOCP formulation for autonomous overtaking sampling in the spatial domain

Johan Karlsson, Nikolce Murgovski and Jonas Sjöberg

I. TRANSLATION

If we disregard the constraint on the lateral velocity (because it is not necessary and is not used in the code) and refrain from using any convexity schemes we have from Nikolces paper the problem:

$$\min_{\hat{\mathbf{u}}_{\rm E}(\tilde{x})} \tilde{J}(\hat{\mathbf{x}}_{\rm E}(\tilde{x}), \hat{\mathbf{u}}_{\rm E}(\tilde{x}), \hat{\mathbf{u}}_{\rm E}'(\tilde{x})) \tag{1a}$$

subject to

$$\hat{\mathbf{x}}_{\mathrm{E}}'(\tilde{x}) = \left[a_{\mathrm{E}x}(\tilde{x}), v_{\mathrm{E}y}(\tilde{x}), \frac{1}{\tilde{v}_{\mathrm{E}x}(\tilde{x})} \right]^{T} \tag{1b}$$

$$\hat{\mathbf{x}}_{E}(\tilde{x}) \in [\hat{\mathbf{x}}_{min}(\tilde{x}), \hat{\mathbf{x}}_{max}(\tilde{x})] \tag{1c}$$

$$\tilde{a}_{\text{Ex}}(\tilde{x}) \in [a_{\text{xmin}}(\tilde{x}), a_{\text{xmax}}(\tilde{x})]/\tilde{v}_{\text{Ex}}(\tilde{x})$$
 (1d)

$$v_{\mathrm{E}y}(\tilde{x}) \in [s_{\mathrm{min}}, s_{\mathrm{max}}] \left(1 + \frac{v_{\mathrm{L}}(\tilde{x})}{\tilde{v}_{\mathrm{E}x}(\tilde{x})} \right)$$
 (1e)

$$\frac{\tilde{x} - x_{A0}(\tilde{x}) - (v_A - v_L)\tilde{t}_E(\tilde{x})}{l_{Af}} - \frac{y_E(\tilde{x}) - y_A}{\omega_l} \ge 1 \quad \forall i \in \mathcal{A}_{FCC}.$$
 (1f)

$$\mathbf{\hat{x}}_{E}(0) = \mathbf{\hat{x}}_{E0} \tag{1g}$$

where

$$\mathbf{\hat{x}}_{E}(\tilde{x}) = [\tilde{v}_{Ex}(\tilde{x}), y_{E}(\tilde{x}), \tilde{t}_{E}(\tilde{x})],$$

$$\mathbf{\hat{u}}_{E}(\tilde{x}) = [\tilde{a}_{Ex}(\tilde{x}), v_{Ey}(\tilde{x})],$$

Studying this problem we can see that the constraints (12b), (12d) and (12e) are all non-constant due to the fact that we divide by the velocity. To get rid of this we introduce the variable change:

$$\begin{split} z_{\mathrm{E}}(\tilde{x}) &= \frac{1}{\tilde{v}_{\mathrm{E}x}(\tilde{x})}, \\ z_{\mathrm{E}}'(\tilde{x}) &= (\frac{1}{\tilde{v}_{\mathrm{E}x}(\tilde{x})})' = -\frac{a_{\mathrm{E}x}(\tilde{x})}{\tilde{v}_{\mathrm{E}x}(\tilde{x})^2} = -a_{\mathrm{E}x}(\tilde{x})z_{\mathrm{E}}^2(\tilde{x}) = -\frac{F_{\mathrm{E}}(\tilde{x})}{m}z_{\mathrm{E}}^3(\tilde{x}) = -u(\tilde{x}). \end{split}$$

If we introduce the new state and control vectors

$$\mathbf{\hat{x}}_{E}(\tilde{x}) = [z_{E}(\tilde{x}), y_{E}(\tilde{x}), \tilde{t}_{E}(\tilde{x})]^{T},$$

$$\mathbf{\hat{u}}_{E}(\tilde{x}) = [u(\tilde{x}), v_{Ey}(\tilde{x})]^{T},$$

This work was partially supported by the Wallenberg Autonomous Systems Program (WASP) and partially by the European Commission Seventh Framework Program under the project AdaptIVe, grant agreement number 610428.

the full problem formulation reads

$$\min_{\hat{\mathbf{u}}_{\rm E}(\tilde{x})} \tilde{J}(\hat{\mathbf{x}}_{\rm E}(\tilde{x}), \hat{\mathbf{u}}_{\rm E}(\tilde{x}), \hat{\mathbf{u}}_{\rm E}'(\tilde{x})) \tag{2a}$$

subject to

$$\hat{\mathbf{x}}_{\mathsf{E}}'(\tilde{x}) = [-u(\tilde{x}), v_{\mathsf{E}y}(\tilde{x}), z_{\mathsf{E}}(\tilde{x})]^T \tag{2b}$$

$$\mathbf{\hat{x}}_{E}(\tilde{x}) \in [\mathbf{\hat{x}}_{min}(\tilde{x}), \mathbf{\hat{x}}_{max}(\tilde{x})]$$
(2c)

$$u(\tilde{x}) \in [a_{\min}(\tilde{x}), a_{\max}(\tilde{x})] z_{\mathsf{E}}^{3}(\tilde{x}) \tag{2d}$$

$$v_{\mathrm{E}y}(\tilde{x}) \in [s_{\mathrm{min}}, s_{\mathrm{max}}] \left(1 + v_{\mathrm{L}}(\tilde{x}) z_{\mathrm{E}}(\tilde{x})\right) \tag{2e}$$

$$\frac{\tilde{x} - x_{A0}(\tilde{x}) - (v_A - v_L)\tilde{t}_E(\tilde{x})}{l_{Af}} - \frac{y_E(\tilde{x}) - y_A}{\omega_l} \ge 1 \quad \forall i \in \mathcal{A}_{FCC}$$
 (2f)

$$\mathbf{\hat{x}}_{E}(0) = \mathbf{\hat{x}}_{E0} \tag{2g}$$