

Enunciados de Problemas de Química Física II **2007/2008**

Superficies

1) A adsorção de um corante com massa molar de 92 g mol⁻¹ num efluente de uma fábrica de curtumes é feita sobre carvão activado granular, a 0 °C. Os resultados mostram os seguintes valores:

[corante] / nM	20	50	100	200	300
Massa adsorvida (mg)	3.0	3.8	4.5	4.7	4.8
por grama de carvão					

- a) Verificar se a isotérmica de adsorção de Langmuir é aplicável. Calcular a fracção de superfície de carvão coberta para [corante]=100 nM. (nM = 10⁻⁹ M)
- b) Se a área ocupada por cada molécula for de 25 Ų, qual a área disponível no carvão para adsorção de moléculas deste tipo e tamanho?

R: a) 0,87; b) 7,15 m²g⁻¹

2) A marca italiana D & D, de renome internacional na área de mobiliário doméstico, testou um material novo para ser utilizado como hidro-repelente para sofás em tecido. O dito material, que iria substituir os actuais pulverizadores à base de Teflon, foi previamente chamado de SA (*stains away*), e foi testado no Laboratório de Química Física da FCT. Para o efeito, um tubo capilar foi revestido com SA de modo a se obter um diâmetro interno do capilar revestido de 0.87 mm. Observou-se uma ascensão capilar de 34 mm com água destilada a 25 °C e mediu-se uma tensão superficial da água de 78.7 mN m⁻¹, à mesma temperatura. Sabendo que a energia superficial do Teflon é de 19 mJ m⁻² e que o preço de produção do SA é comparável ao do Teflon, diga se será aconselhável a aplicação de SA em vez de Teflon nos sofás da D & D.

3) O trabalho de adesão para a interface água-acetato de celulose é de 115,9 mJ/m². Sabendo que a água molha um filme de acetato de celulose com um ângulo de 53.7°, calcule a energia superficial do acetato de celulose. Considere uma boa aproximação para a tensão interfacial água-acetato de celulose: $\gamma_{LS} = \gamma_S + \gamma_L - 2 (\gamma_S \gamma_L)^{1/2}$

R:
$$\gamma_{SV} = 0.046 \text{ Nm}^{-1}$$

4) Calcule a pressão de vapor de uma gota de água de raio 10nm a 298K. Dados: γ_{H2O} (298K)=72.8 mN.m⁻¹, P^{*} = 3.167x10³ Nm⁻² V_m(H₂O)=18.0x10⁻⁶ m³.mol⁻¹.

R:
$$p = 3,52x10^3 \text{ Nm}^{-2}$$

5) A tensão superficial de soluções aquosas de butanol a 293K é dada na tabela:

C/mol.dm ⁻³	0.0264	0.0536	0.1050	0.2110	0.4330
γ/mN.m ⁻¹	68.00	63.14	56.31	48.08	38.87

Calcule a área superficial ocupada por uma molécula de butanol.

R: Entre 56,7 Ų e 30,3 Ų. Na monocamada ~30 Ų/ molécula

6) A tabela seguinte dá o volume de azoto (a 0°C e 1 atm) adsorvido por grama de carvão activado a diferentes pressões:

P/torr	3.93	12.98	22.94	34.01	56.23
V/cm ³ .g ⁻¹	0.987	3.04	5.08	7.04	10.31

Construa um gráfico de forma a verificar a aplicabilidade da isotérmica de Langmuir e determine o valor de K e do volume necessário pra preencher a monocamada.

R:
$$V_m = 35,97 \text{ cm}^3\text{g}^{-1}$$
, $K = 7,15\text{x}10^{-3}$

7) 3 polímeros A, B e C apresentam-se como candidatos para revestimento de monumentos de pedra como hidro-repelentes. Tendo em conta a tensão superficial da água à temperatura ambiente, γ_{LV} =0.070 Nm⁻¹, que W_{SL}= γ_{SV} + γ_{LV} - γ_{SL} e a tensão

Departamento de Química

interfacial sólido-vapor de cada polímero dada na tabela seguinte, diga, justificando, qual será o polímero melhor hidro-repelente.

Polímero	γ _{sv} ^{20 °C} (mNm ⁻¹)		
A	5		
В	10		
С	19		

R: Menor γ_{SV}, polímero A

8) Observe a figura correspondente à variação da tensão superficial de uma solução aquosa de uma substância anfipática ou anfifílica (molécula com duas regiões de polaridades diferentes) que forma soluções micelares para concentrações superiores a uma concentração crítica. Calcule a área superficial ocupada por molécula a 25 °C, admitindo que há uma disposição em filme monomolecular à superfície.

R:
$$A = 37.2 \text{ Å}^2 / \text{molécula}$$

9) Compare os valores dados na tabela seguinte para ângulos de contacto de vários líquidos sobre vários substractos sólidos. Explique as semelhanças e as diferenças que encontrar.

Plot of γ versus log₁₀ c for the dodecyl ether of hexaethylene oxide 1) 15°C, (2) 25°C, and (3) 35°C. [J. M. Corkill, J. F. Goodman, and R. H. ewill, *Trans. Faraday Soc.*, 57:1927 (1961).]

Líquido / γ ^{25°C} (Jm ⁻²)	Sólido	θ (°)
Água / 0.072	Teflon	112
	Pele	90
	Humana	
	Vidro	<20
	Ouro	0
Mercúrio / 0.484	Teflon	150
	Vidro	130
Benzeno / 0.028	Teflon	46
	Grafite	0

10) Assumindo que a água molha completamente um tubo capilar, diga a que altura ascende a água a 298K num tubo de diâmetro a)2mm b)0.2mm.

Dados:
$$\gamma_{H2O}$$
 (298K)=72.8 mN.m⁻¹ ρ_{H2O} (298K)=0.998 g.cm⁻³

11) A tensão superficial do mercúrio é de 470 dine.cm⁻¹ a 273K. Calcule a depressão capilar num tubo de 1 mm de diâmetro se o ângulo de contacto fôr de 140°.

Dados:
$$\rho_{Ho}(273K)=13.6 \text{ g.cm}^{-3}$$

$$R: h = -10,85 \text{ mm}$$

12) A tensão superficial, γ, de soluções aquosas diluídas de ácidos alifáticos a cerca de 18 °C pode ser expressa pela equação:

$$\frac{\gamma}{\gamma_0} = 1 - b \log(\frac{c}{a} + 1)$$

onde γ_0 é a tensão superficial da água (72.86 mNm⁻¹), b=0.411 para todos os ácidos estudados, c a concentração e a uma constante característica do ácido em questão. Para o ácido valérico, a=1.7x10⁻⁴ M.

- a) Calcule a isotérmica de adsorção (Γ (c)) para um ácido alifático que obedeça a esta equação.
- b) Qual a área coberta por uma molécula de ácido valérico adsorvido numa monocamada saturada, àquela temperatura?

R: a)
$$\Gamma_{2,1} = 5,37x10^{-6} \frac{c}{1,7x10^{-4}+c}$$
 ; b) 31 Ų/ molécula

13) Calcule através da isotérmica de Gibbs a 25°C a área ocupada por uma molécula na interface de uma solução aquosa 0,03 m de C₆H₅(CH₂)₂COOH, usando os seguintes resultados de tensão superficial:

10 ³ m/mol.kg ⁻¹	3.35	6.40	9.99	15.66	19.99	27.40	40.80
γ/mN.m ⁻¹	69.0	66.5	63.6	59.2	56.1	52.5	47.2

R: 23 Å²/ molécula

14) A tensão superficial de uma solução aquosa obedece a 298 K para baixas concentrações de soluto c à equação

$$\gamma x 10^3 / Nm^{-1} = 72 - 350(c/M)$$

Calcule a área ocupada por uma molécula de soluto à superfície para as concentrações de 10⁻⁴ M e 10⁻² M. Compare o tipo de ocupação à superfície para as duas concentrações.

R: Para 10^{-4} M, A=1,17x 10^{4} Å²/ molécula, Para 10^{-2} M, A=117 Å²/ molécula

15) A tensão superficial de soluções de ácido hidrocinâmico (ácido β –fenilpropiónico) foi medida a 21.5°C para várias concentrações de ácido.

[ácido β–fenilpropiónico]	
(g/kg H ₂ O)	γ/mN.m ⁻¹
0,5026	69,00
0,9617	66,49
1,5007	63,63
1,7506	61,32
2,3515	59,25
3,0024	56,14
4,1146	52,46
6,1291	47,24

Calcule o excesso superficial e a área ocupada na interface para uma solução de ácido β–fenilpropiónico a 1,5 g kg⁻¹.

R: $\Gamma_{2,1} = 2.37 \times 10^{-6} \text{ mol m}^{-2}$, A = 70 Å²/ molécula