Control System Design for Automated Vehicles

Lecture 9

State Flow Toolbox

Reference : Stateflow® User's Guide from Mathworks

Finite State Machine

- What is a finite state machine?
 - Sequential decision logic based on state machines
 - Representation of an event-driven system
 - Transition from one state to another state happens if a certain condition is satisfied.

• Bulb : On & Off

Finite State Machine

Finite State Machine Applications

• Secure Login Process

Robot Workflow description

- In the command window, type
 - Open_system('old_sf_car')

What is Stateflow?

- State flow chart
 - A state machine design tool integrated within Simulink
 - Contains
- A set of "Graphical Objects"
- A set of "Nongraphical Textbased Objects".
- Defined "Relationships between those Objects".

What is Stateflow?

- State flow produces Simulink blocks, fed with Simulink inputs and producing Simulink outputs.
- A Stateflow block can "execute" Simulink blocks as actions.

- Power Switch Simulink Model
 - Simulink model of a power switch that toggles on and off at zero crossing of a sine input
 - · At each switch, a counter is incremented

- Inside the state chart
 - Two states of the power switch : on and off
 - Transitions between the states happen whenever the event "Switch" occurs.
 - When a transition occurs, the variable "counter" is incremented
 - By default, the initial state is off

- Add Statechart to Simulink Model
 - Drag StateChart to the Simulink model
 - Change name from "Chart" to "On_Off"

Adding States to a State Chart

- Open Statechart "On_Off" by double-clicking
- Drag two states from the menu at the left.
- Name states "Power_On" and "Power_Off".

Creating Transitions between States

- Hold the mouse pointer over the border of the states
- Drag the mouse to the terminal state

Add Default Transition

Specify the initial state by adding a default transition

The Model Explorer

Add an "Event" that is "Input from Simulink" by right click on the StateChart. (Name it "Switch").

Counting Transitions

- Add "Data" that is "Output to Simulink" by right clock on the StateChart
- A window will open allowing you to name the data (Name it "counter").

Increment the Counter

- Increment the counter every time the event "Switch" occurs by placing
 - "{counter = counter + 1}" next to Switch.
- Set initial value to the counter by adding
 - "{counter = 0}" on the default transition arrow.

Adding the Sine Input

- Return to the top-level Simulink diagram
- The Statechart "On-off" now has an arrow entering it.
- Add a sine wave input and add a scope to the output data

Counting the Transitions

Add a display block from the Sink Library

Toggle a Bit

- Add a new data output "light": initial value 0.
- Set "light = 0;" in the Power_off state
- Set "light = 1;" in the Power_on state

Change Port Values

- ▶ The output "light" is assigned port 2 by default
- Open "Model Explorer" by clicking button below.
- To make model more readable, change port value for "light" from 2 to 1.

Running the Simulation

- Connect the output "light" to the scope using a "Mux" block.
- Set the simulation time to 100 and run simulation.
- Running the simulation shows a square wave that toggles between 0 and 1.

Stateflow Chart Objects

Graphical Objects

Type of Graphical Object	Toolbar Icon
State	
Transition	Not applicable
History junction	H
Default transition	×
Connective junction	NOK NOK
Truth table function	TE
Graphical function	f _x
MATLAB® function	♠
Box	
Simulink based state	(Fig. 1)

Stateflow Chart Objects

- Nongraphical Objects
 - Data Objects
 - Event Objects
 - Message Objects

States

- What is a State?
 - Operating Mode of a Reactive System
 - Can be either active or inactive.
 - Activity or inactivity can change depending on events and conditions.
- State Hierarchy
 - Multi-level of subcomponents can be represented using State Hierarchy.

State Hierarchy Example

- Car_done is the parent state of the Car_made and Car_shipped states.
- Parts_assembled and Painted are children of the Car_made state.

State Decomposition

- State decomposition can be <u>exclusive</u> (OR) or <u>parallel</u> (AND).
- Exclusive (OR) State Decomposition
 - Either A or B can be active.
 - If state A is active, either A1 or A2 can be active at a given time.

State Decomposition

- Parallel (AND) State Decomposition
 - Substate with dashed borders indicate parallel (AND) decomposition.
 - When a state has parallel (AND) decomposition, all substates are active at the same time.

In the following example, when state A is active, A1 and A2 are both active.

State Decomposition

Example

 Decomposition can be selected by right click on the parent state, and select "decomposition" to choose

option.

