Cardinality |S| = number of elements in S

$$\bullet \ |\{\spadesuit,\heartsuit,\diamondsuit,\clubsuit\}|=4$$

•
$$|\{1, 2, 1, 3, 1, 2, 1\}| = 3$$

$$\bullet \ |\varnothing| = 0$$

$$\bullet |\{\varnothing\}| = 1$$

$$\bullet |\{\varnothing, \{\varnothing\}\}| = 2$$

•
$$|\mathbb{Z}| = \infty$$

Caveat! Hic sunt dracones!

Inclusion-Exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$
 for all finite sets A and B.

Each element in $A \cup B$ is counted once on both sides.

$$|A \cup B| + |A \cap B| = |A| + |B|$$
 for all finite sets A and B.

Each element in $A \oplus B$ is counted once on both sides. Each element in $A \cup B$ is counted twice on both sides.

For all finite sets
$$A, B, C$$
:
$$|A \cup B \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$$

$$= |A \cup B| + |C| - |(A \cap C) \cup (B \cap C)|$$

$$= (|A| + |B| - |A \cap B|) + |C|$$

$$- (|A \cap C| + |B \cap C| - |(A \cap B) \cap (B \cap C)|)$$

$$= |A| + |B| + |C|$$

$$- |A \cap B| - |A \cap C| - |B \cap C|$$

$$+ |A \cap B \cap C|$$

For all finite sets A, B, C, D:

$$\begin{split} |A \cup B \cup C \cup D| &= \\ |A| + |B| + |C| + |D| \\ - |A \cap B| - |A \cap C| - |B \cap C| - |A \cap D| - |B \cap D| - |C \cap D| \\ + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| \\ - |A \cap B \cap C \cap D| \end{split}$$

Power set 2^S = $\{A \mid A \subseteq S\}$ = the set of all subsets of S

- $2^{\{\bigstar\}} =$
- $2^{\{T,F\}} =$
- $2^{\{r,g,b\}} =$
- $2^{\varnothing} =$
- \bullet $2^{2^{\varnothing}} =$
- $\bullet \ 2^{2^{2^\varnothing}} =$

Theorem: For any finite set A, we have $|2^A| = 2^{|A|}$.

Proof: Let *A* be an arbitrary finite set.

Assume that for any proper subset $Z \subset A$, we have $|2^Z| = 2^{|Z|}$.

There are two cases to consider: Either A is empty or not.

- If $A=\varnothing$, then $|2^A|=|\{\varnothing\}|=1$ and $2^{|A|}=2^0=1$.
- Suppose $A \neq \emptyset$.

Let x be an arbitrary element of A, and let $Z = A \setminus \{x\}$.

The inductive hypothesis implies that $|2^Z| = 2^{|Z|}$.

For each subset $Y \subseteq Z$, both Y and $Y \cup \{a\}$ are subsets of A.

Thus, A has $2^{|Z|}$ distinct subsets that do *not* contain x.

For all subsets $U, V \subseteq Z$, if $U \neq V$, then $U \cup \{x\} \neq V \cup \{x\}$.

Thus, A also has $2^{|Z|}$ distinct subsets that do contain x.

Finally, |Z| = |A| - 1.

So overall, A has $2^{|Z|} + 2^{|Z|} = 2^{|Z|+1} = 2^{|A|}$ subsets.

4

Cartesian Product $\mathbf{A} \times \mathbf{B} = \{(a, b) \mid a \in A \land b \in B\}$

Each element $(a, b) \in A \times B$ is called an *ordered pair*.

- $\{1,2\} \times \{a,b,c\} = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$
- Standard deck of 52 cards:

$$\{A,2,3,4,5,6,7,8,9,10, J, Q, K\} \times \{\spadesuit, \heartsuit, \diamondsuit, \clubsuit\}$$

•
$$\{1,2\} \times \{1,2\} = \{(1,1),\ (1,2),\ (2,1),\ (2,2)\}$$

$$(1,2) \neq \{1,2\}$$

$$\{1,2\} = \{2,1\}, \ \text{but}\ (1,2) \neq (2,1)$$

$$\{1,1\} = \{1\}, \ \text{but}\ (1,1) \neq \{1\} \neq 1.$$

 $\bullet \varnothing \times X =$

$$A^2 = A imes A$$

• $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} =$ the standard Euclidean plane.

Identities

These you can prove by grinding definitions (hint, hint, hint):

$$\bullet \ (A \cap B) \times C = (A \times C) \cap (B \times C)$$

•
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

$$\bullet \ (A \setminus B) \times C = (A \times C) \setminus (B \times C)$$

•
$$A \times B = B \times A \iff A = B$$

Note that set difference is sometimes denoted as \ in place of -.

This you can prove by induction (hint, hint, hint):

• $|A \times B| = |A| \cdot |B|$ if A and B are finite.