

Basic Electrical Technology

[ELE 1051]

Three Phase AC Circuits

L21 – Generation & Representation of three phase supply

Topics Covered

- **→**Generation of Three Phase Supply
- **→**Representation of Three Phase Excitation
- **→**Relationship between Phase and Line Voltages

Generation of Three Phase

Courtesy: www.ece.umn.edu

3 Phase Excitation (Phase Voltages)

Phase Voltages,

$$\hat{V}_{RN} = V_m \, Sin(\omega t)$$

$$\hat{V}_{YN} = V_m Sin(\omega t - 120^\circ)$$

$$\hat{V}_{BN} = V_m Sin(\omega t - 240^\circ)$$

Three Phase Source

Summing up the phase voltages,

$$\hat{V}_{RN} + \hat{V}_{YN} + \hat{V}_{RN} = 0$$

3 Phase Excitation (Phase Voltages)..

3 Phase Excitation (Line Voltages)

Three Phase Source

Line Voltages,

$$\begin{split} \hat{V}_{RY} &= \hat{V}_{RN} - \hat{V}_{YN} \\ &= V_m \, Sin(\omega t) - V_m \, Sin(\omega t - 120^\circ) \\ &= \sqrt{3} \times V_m \, Sin(\omega t + 30) \end{split}$$

3 Phase Excitation (Line Voltages)...

Similarly,

$$\hat{V}_{YB} = \hat{V}_{YN} - \hat{V}_{BN}$$

$$= V_m Sin(\omega t - 120) - V_m Sin(\omega t - 240^\circ)$$

$$= \sqrt{3} \times V_m Sin(\omega t - 90)$$

$$= V_{RY} Sin(\omega t - 120)$$

$$\begin{split} \hat{V}_{BR} &= \hat{V}_{BN} - \hat{V}_{RN} \\ &= V_{RY} \, Sin(\omega t + 120) \end{split}$$

Summing up the Line voltages,

$$\hat{V}_{RY} + \hat{V}_{YB} + \hat{V}_{BR} = 0$$

In a Three Phase balanced Supply, the summation of Phase voltages and summation of Line Voltages is zero.

Relation b/w Phase & Line Voltages

Phase Voltages

$$\hat{V}_{RN} = V_m \, Sin(\omega t)$$

$$\hat{V}_{YN} = V_m Sin(\omega t - 120^\circ)$$

$$\hat{V}_{BN} = V_m Sin(\omega t - 240^\circ)$$

Line Voltages

$$\hat{V}_{RY} = \sqrt{3} \times V_m \, Sin(\omega t + 30)$$

$$\hat{V}_{YB} = \sqrt{3} \times V_m \, Sin(\omega t - 90)$$

$$\hat{V}_{BR} = \sqrt{3} \times V_m \, Sin(\omega t + 150)$$

$$|V_{Line}| = \sqrt{3} |V_{Phase}|$$

Phase Sequence

I. RYB

2. RBY

Exercise-I

Given the phase voltage V_{RN} of a 3 phase balanced RYB system as 240V, express the phase and line voltages mathematically. Also sketch the phasor diagram.

Solution:

Phase Voltages:

$$\hat{V}_{RN} = 240 \times \sqrt{2} \times Sin(\omega t)$$

$$\hat{V}_{YN} = 240 \times \sqrt{2} \times Sin(\omega t - 120^{\circ})$$

$$\hat{V}_{BN} = 240 \times \sqrt{2} \times Sin(\omega t - 240^{\circ})$$

Line Voltages:

$$\hat{V}_{RY} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t + 30^{\circ})$$

$$\hat{V}_{YB} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t - 90^{\circ})$$

$$\hat{V}_{BR} = \sqrt{3} \times 240 \times \sqrt{2} \times Sin(\omega t + 150^{\circ})$$

3 Phase 3 Wire & 4 Wire Supply

3 Phase 3 Wire Supply

3 Phase 4 Wire Supply

Summary

In a three phase balanced supply,

- ✓ Summation of phase voltages = zero
- √ Summation of Line voltages = zero
- ✓ Line voltage is $\sqrt{3}$ x Phase Voltage
- ✓ In an RYB sequence, V_{RY} leads V_{RN} by 30 °
- ✓ Power transmission is generally through 3 phase 3 wire network and distribution is through 3 phase 4 wire network.