Homework 9

Let

i=1,...,n denote the types of costumes $j=1,...,n_i$ denote the people wearing costume i y_{ij} be the number of pieces of candy person ij acquires t_{ij} be the time in minutes spent by person ij trick-or-treating

Hierarchical model

 $y_{ij} \sim Poisson(t_{ij}\beta_i\lambda)$ $\beta_i \sim Gamma(\phi, \phi)$ $\lambda \sim Gamma(a, b)$ $\phi \sim Gamma(c, d)$

Simulation

To simulate data, I generated varying numbers of people (from 1 to 20) for 10 costume groups. For each person, I generated a random amount of time (from 1 to 120) they spent trick-or-treating. I then generated values for λ and ϕ and used the value of ϕ to generate 10 β_i 's (from $Gamma(\phi, \phi)$). Finally I generated y_{ij} 's from $Poisson(t_{ij}\beta_i\lambda)$.

Bayes inference

[Full conditional derivations attached in the Appendix]

The full conditionals of the β_i 's and λ are known distributions, so Gibbs sampling can be performed on them. However, the full conditional of ϕ is not a known distribution, so Metropolis sampling must be used on it.

Thus, setting the prior parameters a, b, c, d as 0.001 and using an initial value of 1 for β_i 's and λ and ϕ , I performed 10,000 iterations where I updated the β_i 's and λ using Gibbs and ϕ using Metropolis with a normal proposal distribution. For the purpose of numerical stability, I took the logarithm of the function proportional to the posterior distribution, but I transformed back when calculating the acceptance probability. After experimenting with different variances for the proposal distribution, I settled on a variance of 0.1 that resulted in an acceptance rate of 49.40%. Below are trace plots for each of the parameters

Trace plot for beta1

[Trace plots for β_2 , ..., β_{10} omitted due to their similarity to the trace plot of β_1] The Gibbs sampler for β_1 appears to have high autocorrelation, as it does not appear to efficiently move through the space.

Trace plot for lambda

The Gibbs sampler for λ also appears to have high autocorrelation, as it does not appear to efficiently move through the space.

Trace plot for phi

The Metropolis sampler for ϕ appears to explore the space reasonably well.

After removing 20 burn-ins for each sampler, the below estimates of the posterior distributions were obtained.

Table: Comparison of true values and estimated marginal posterior distributions of parameters

	True value	Estimate (mean)	95% CI
eta_1	0.2793	0.2223	[0.0459, 0.6926]
eta_2	1.5753	1.3017	[0.2773, 4.1116]
eta_3	0.0830	0.0584	[0.0118, 0.1784]
eta_4	4.8815	3.7966	[0.8161, 11.8252]
eta_5	0.2468	0.1829	[0.0383, 0.5597]
eta_6	0.5715	0.5163	[0.1095, 1.5810]
eta_7	0.1551	0.1401	[0.0257, 0.4390]
eta_8	0.0289	0.0193	[0.0036, 0.0575]
eta_9	0.0421	0.0345	[0.0046, 0.1105]
eta_{10}	0.3537	0.3716	[0.0759, 1.1293]
λ	0.7234	1.3114	[0.2708, 4.0258]
ϕ	0.4853	0.4674	[0.1893, 0.9233]

The estimate of ϕ is rather close to the true value. Many of the β_i estimates were somewhat close to the true values with the exception of a few. However, the estimate of λ is pretty off the true value. As mentioned earlier, the trace plots suggest at a degree of autocorrelation for the β_i 's and λ . Perhaps the spaces of these parameters were not explored well, and thus more iterations are needed to obtain better estimates.

```
y_{ij} \sim P_{oisson}(t_{ij} P_{i} \lambda)

P_{i} \sim G_{anna}(\phi, \phi)

\lambda \sim G_{anna}(\alpha, b)

\phi \sim G_{anna}(\alpha, b)

The joint posterior is

x(P_{i}, \lambda, \phi, \psi, t) \propto L(y|P_{i}, \lambda, t) \times (P_{i} \phi) \times (\lambda) \times (\phi)

\propto \prod_{i=1}^{n} \prod_{j=1}^{n} \left[ (t_{ij} P_{i}, \lambda)^{j/n} e^{-t_{ij} P_{i} \lambda} \right] \prod_{i=1}^{n} \left[ P_{i}^{p-1} e^{-\phi P_{i}} \right] \lambda^{a-1} e^{-b\lambda} \phi^{c-1} e^{-b\beta}

The full conditionals are

x(P_{i} \mid P_{(i)}, \lambda, \beta, \gamma, t) \propto P_{i}^{\frac{2n}{p-1} p_{i}} \exp\left[-P_{i} \lambda \sum_{j=1}^{n} P_{ij}^{p-1} \exp\left[-P_{i} \phi\right]

\propto P_{i}^{p+\frac{2n}{p-1} p_{i}} \exp\left[-P_{i} \lambda \sum_{j=1}^{n} P_{i}^{p-1} \exp\left[-P_{i} \phi\right]

\propto P_{i}^{p+\frac{2n}{p-1} p_{i}} \exp\left[-P_{i} \lambda \sum_{j=1}^{n} P_{i}^{p-1} \exp\left[-P_{i} \phi\right]
```

$$\varphi = \frac{1}{2} \left[\frac{1}{$$

$$\pi(\lambda | \mathbf{1}, \phi, y, t) \propto \lambda^{\frac{2}{2}} \frac{2}{3} \sin^{2} \exp[-\lambda \frac{2}{3} \frac{2}{3} t_{0}^{2} \mathbf{R}] \lambda^{-1} \exp[-b\lambda]$$

$$\propto \lambda^{4+\frac{2}{2}} \frac{2}{3} \sin^{2} t_{0}^{2} \cos^{2} t_{0}^{2} \mathbf{R} + \sum_{i=1}^{2} t_{i}^{2} \sin^{2} t_{i}^{2} \mathbf{R} + \sum_{i=1}^{2} t_{i$$

$$T(\phi|B,\lambda,y,t) \propto \prod_{i=1}^{T} [\beta_{i}^{\phi}] \exp[-\phi \hat{\Sigma}_{i}^{\phi}] \phi^{c-1} \exp[-\phi \delta]$$

$$\propto \prod_{i=1}^{T} [\beta_{i}^{\phi}] \phi^{c-1} \exp[-\phi(\delta + \hat{\Sigma}_{i}^{\phi})]$$