Hadron and Quark Physics

Hand-in problems 4

1. Time-like and space-like four-vectors:

5 points

- (a) Given a four-vector p with $p^2 > 0$, i.e. $(p^0)^2 \vec{p}^2 > 0$. Such a four-vector is called time-like. Show that one can find a Lorentz transformation (boost operation) $p \to p'$ such that the three-momentum \vec{p}' vanishes in the new frame. Hint: Use of rotations is allowed. Feel free to choose your coordinate system such that \vec{p} points along one of the axes of your coordinate system.
- (b) Show that it is not possible for $p^2 < 0$ (space-like four-vector) to find a Lorentz transformation such that the three-momentum vanishes in the new frame. Show that instead one can find a Lorentz transformation such that the energy vanishes in the new frame.
- (c) Given two four-vectors p_1 and p_2 of massive particles with masses $m_1, m_2 \neq 0$, i.e. $p_i^0 = \sqrt{m_i^2 + \vec{p}_i^2}$, i = 1, 2. Show that $p := p_1 + p_2$ satisfies $p^2 > 0$. Do not use that one might choose a frame $\vec{p}_1 + \vec{p}_2 = 0$, because this would require $p^2 > 0$.

Hint: Make use of result (a), i.e. for any four-vector k where you know that $k^2 > 0$ holds you can choose a frame with $\vec{k} = 0$.

- (d) Given two four-vectors q_1 and q_2 of massive particles with the same mass $m \neq 0$. Show that $q := q_1 - q_2$ satisfies $q^2 \leq 0$.
- (e) Show that for a scattering reaction of two particles to two particles the Mandelstam variable s satisfies $s \ge 0$ and that for elastic scattering, i.e. $m_1 = m_3$ and $m_2 = m_4$, the Mandelstam variable t satisfies $t \le 0$.

2. Lie algebras:

5 points

Solve task 1 from section 4.6 of the Lecture Notes

3. A downgraded version of the weak theory:

10 points

Solve task 1 from section 5.4 of the Lecture Notes

To be handed in at 7.12.2015 at the latest.