Введение в теорию сложности вычислений

Эдуард Алексеевич Гирш

http://logic.pdmi.ras.ru/~hirsch

СП6ГУ и ПОМИ РАН

лекция 5 ноября 2020 г.

Напоминание: что мы решаем (1)

010,100

Работаем в алфавите $\{0,1\}$.

Множество слов длины n в нём: $\{0,1\}^n$.

Множество всех (конечных) слов: $\{0,1\}^*$.

Длина слова x: |x|.

Язык (задача распознавания, decision problem): $L \subseteq \{0,1\}^*$.

Индивидуальная задача — пара (условие, решение) $\in \{0,1\}^* \times \{0,1\}^*$.

Массовая задача — некоторое множество индивидуальных задач, т.е. бинарное отношение на $\{0,1\}^*$.

Наиболее интересные массовые задачи — бесконечные, с возможностью проверить корректность решения.

Напоминание: что мы решаем (2)

Пример (полагаем $\mathbb{N} \subset \{0,1\}^*$):

$$\widetilde{\mathrm{FACTOR}} = \{ (n, d) \mid n : d, \ 1 < d < n \}.$$

Алгоритм решает задачу поиска для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Напоминание: что мы решаем (2)

Пример (полагаем $\mathbb{N} \subset \{0,1\}^*$):

$$\widetilde{\text{FACTOR}} = \{(n, d) \mid n \mid d, \ 1 < d < n\}.$$

Алгоритм решает задачу поиска для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Массовой задаче, заданной отношением R, соответствует язык

$$L(R) = \{x \mid \exists w \ (x, w) \in R\}.$$

Например,

L(FACTOR) =множество всех составных чисел.

Напоминание: чем мы решаем (ДМТ — определение)

Детерминированная машина Тьюринга (ДМТ):

- ▶ конечный алфавит (с началом ленты и пробелом): $\Sigma = \{0, 1, \triangleright, _\}$;
- несколько лент, т.е. массивов, бесконечных в одну сторону;
- читающие/пишущие головки, по одной для каждой ленты, каждая видит в один момент одну позицию;
- ightharpoonup конечное множество состояний, в т.ч. начальное q_S , принимающее q_Y и отвергающее q_N ;
- **управляющее устройство (программу)**, содержащее для каждых q, c_1, \ldots, c_k одну инструкцию вида $(q, c_1, \ldots) \mapsto (q', c'_1, \ldots, d_1, \ldots)$, где $q, q' \in Q$; $c_i, c'_i \in \Sigma$ символы, обозреваемые головками; $d_i \in \{\leftarrow, \rightarrow, \cdot\}$ направление движения.

Напоминание: чем мы решаем (ДМТ — вычисление)

Вычисление на ДМТ:

- начало работы:
 - ightharpoonup состояние q_S ;
 - на первой ленте вход (входное слово) и пробелы, остальные ленты заполнены пробелами;
 - головки в крайней левой позиции;
- шаг за шагом выполняются инструкции программы;
- ightharpoonup конец работы: когда машина попадает в состояние q_Y либо q_N .

ДМТ принимает входное слово, если она заканчивает свою работу в q_Y . ДМТ отвергает q_N .

ДМТ M распознаёт язык A, если принимает все $x \in A$, отвергает все $x \notin A$. Пишем A = L(M).

ДМТ может также вычислять функцию (решать задачу поиска). Значением этой функции на данном входе будем считать содержимое выходной ленты после достижения q_Y .

Напоминание: чем мы решаем (ДМТ — сложность)

Время работы машины M на входе x — количество шагов (применений инструкций) до достижения q_Y или q_N .

Используемая память — суммарное крайнее правое положение всех головок на рабочих лентах.

При сублинейных ограничениях на память будет важно, что

- входная лента read-only,
- выходная лента write-only
- и положения головки на них не считаются.

Двух лент достаточно

Теорема

Для любого $k \in \mathbb{N}$, работу ДМТ M с k рабочими лентами, работающую t шагов, можно промоделировать на ДМТ с двумя рабочими лентами за время $O(t \log t)$.

(Константа в O(...) зависит только от размера записи машины M!)

Замечание

Можно промоделировать и на одноленточной машине из начала семестра, но замедление будет квадратичным.

▶ Много лент можно складывать на одной: через символ.

▶ Много лент можно складывать на одной: через символ.

Головки можно совместить, и двигать ленты. Двусторонняя лента моделируется на односторонней.

- ▶ Много лент можно складывать на одной: через символ.
- Головки можно совместить, и двигать ленты.
 Двусторонняя лента моделируется на односторонней.
- Чтоб не двигать всю ленту, разделим на блоки по 2ⁱ элементов, блок может быть:
 - заполнен полностью,
 - наполовину (резервные места!),
 - Р пустой. L_2 L_1 головка R_1 R_2 \ldots R_i

- ▶ Много лент можно складывать на одной: через символ.
- Головки можно совместить, и двигать ленты.
 Двусторонняя лента моделируется на односторонней.

Чтоб не двигать всю ленту, разделим на блоки по 2ⁱ элементов, блок может быть:

- заполнен полностью,
- наполовину (резервные места!),
- пустой.

ightharpoonup Инвариант: в L_i и R_i суммарно 2^i непустых $\frac{\text{пробелы не пустые!}}{\text{пробель не пустые!}}$ эл-тов.

- Много лент можно складывать на одной: через символ.
- Головки можно совместить, и двигать ленты. Двусторонняя лента моделируется на односторонней.
- ightharpoonup Чтоб не двигать всю ленту, разделим на блоки по 2^i элементов, блок может быть:
 - заполнен полностью,
 - наполовину (резервные места!),
 - пустой.

- Время работы:
 - если двигаем с блока i, то $C \cdot 2^i$ операций,
 - блок i трогаем не чаще, чем раз в 2^{i-1} шагов,
 - ▶ итого $\sum_{i} C2^{i} \cdot \frac{t(f)}{2^{i-1}} = O(t(f)) \log t(f)$.

Универсальная машина Тьюринга

Теорема $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ $\mathbb{Z}^{\mathcal{M}}$ выдающая на входе (M,x) тот же самый результат, что дала бы машина M на входе x, за время $O(t \log t)$, где t — время работы M на x.

$$(9, a, b) \rightarrow (9', \dots)$$

Классы DTime и P

 $t \colon \mathbb{N} \to \mathbb{N}$ называется конструируемой по времени, если

- $ightharpoonup t(n) \geq n$,
- ightharpoonup двоичную запись t(|x|) можно найти по входу x на ДМТ за t(|x|) шагов.

Язык $L \in \mathbf{DTime}[t(n)]$, если есть ДМТ M, принимающая L за время O(t(n)).

(Константа может зависеть от языка, но не от длины входа.)

$$\mathbf{P} = \bigcup_{c} \mathbf{DTime}[n^{c}]$$

Классы \widetilde{P} и \widetilde{NP}

Массовая задача R полиномиально ограничена, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x(\exists u(x,u) \in R \Rightarrow \exists w((x,w) \in R \land |w| \leq p(|x|)).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничивающий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \in R$ за время q(|(x, w)|).

NP — класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.

Классы \widetilde{P} и \widetilde{NP}

Массовая задача R полиномиально ограничена, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x(\exists u(x,u) \in R \Rightarrow \exists w((x,w) \in R \land |w| \leq p(|x|)).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничивающий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \in R$ за время q(|(x, w)|).

NP — класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.

 $\widetilde{\mathbf{P}}$ — класс задач поиска из $\widetilde{\mathbf{NP}}$, разрешимых за полиномиальное время, т.е. задаваемых отношениями R, такими, что $\forall x \in \{0,1\}^*$ за полиномиальное время можно найти w, для которого $(x, w) \in R$.

Классы Р и **N**P

NP — класс языков (задач распознавания), задаваемых $(M, W) \in \mathbb{R}$ полиномиально ограниченными полиномиально проверяемыми массовыми задачами, т.е. $NP = \{L(R) \mid R \in NP\}$.

Иначе говоря, $L \in \mathbf{NP}$, если имеется п.о. п.п. R, такая, что

$$\forall x \in \{0,1\}^* \quad x \in L \iff \exists w \ (x,w) \in R.$$

 ${f P}$ — класс языков (задач распознавания), распознаваемых за полиномиальное время; ясно, что ${f P}=\{L(R)\,|\,R\in\widetilde{f P}\}.$

Очевидно, $P \subseteq NP$.

Ключевой вопрос теории сложности: $P \neq NP$.