

Big Data Analytics com R e Microsoft Azure Machine Learning

Big Data Analytics com R e Microsoft Azure Machine Learning

Machine Learning

Business Analytics

Marketing Analytics
RH Analytics
Financial Analytics

Fraud Analytics
Social Network Analytics
Text Analytics

Data Science Academy

Por que Cientistas de Dados usam R?

R possui diversas funções para:

- Extração de Dados
- Limpeza de Dados
- Carregamento e Transformação de Dados
- Análise Estatística
- Modelagem Preditiva
- Machine Learning
- Visualização de Dados

Vantagens

- Grande variedade de pacotes disponíveis
- Flexibilidade e Rapidez
- Machine Learning

Desvantagens

- Não há interface gráfica. Tudo é feito por linha de comando
- Limitações no uso de memória, principalmente com datasets muito grandes

Versatilidade

- sqldf pacote que permite realizar queries SQL em dataframes no R
- forecast modelar séries temporais
- plyr dividir uma estrutura de dados em grupos e aplicar funções a cada grupo
- stringr manipulação de strings
- Database drivers RMongo, RODBC, RMySQL
- ggplot2 visualização de dados
- qcc controle de qualidade estatístico
- randomForest pacote para Machine Learning

Tudo na Nuvem

Machine Learning Studio

KNIME

Módulos prontos para análises com R, Python e SQL

Machine Learning traz um novo paradigma

Qual a importância do Big Data Analytics?

O que é Big Data Analytics?

O objetivo é simples: melhorar seus processos de trabalho e adquirir insights valiosos acerca das tendências de mercado, comportamento dos consumidores e suas expectativas

O que é Big Data Analytics?

Big Data Analytics é o trabalho analítico e inteligente em grandes volumes de dados, estruturados ou não-estruturados, que são coletados, armazenados e interpretados por softwares de altíssimo desempenho

Vantagens e Benefícios

- Direcionamento das Vendas
- Aperfeiçoamento do Processo de Logística
- Atendimento mais eficiente
- Melhoria na Gestão de Recursos Humanos
- Identificação de Padrões
- Análise da Concorrência

5 Perguntas que Precisam ser respondidas antes de pensar em Big Data Analytics

- 1- Qual seu objetivo?
- 2- Qual a origem dos dados?
- 3- Que solução escolher?
- 4- Este será um trabalho em equipe?
- 5- Qual o impacto que o Big Data Analytics terá no negócio?

Como o Big Data pode me ajudar a aumentar o Market Share da empresa?

Coletar Dados

Faturamento

Marketing

Clientes

Custos

Efetividade das Campanhas de Marketing

Concorrentes

Redes Sociais

Trabalhar Sobre os Dados

Carga

Limpeza

Transformação

Compreensão

Técnicas de Análise

Aplicar modelos estatísticos e compreender o relacionamento entre os dados

Definir variáveis de observação e explanatórias

Buscar correlação e causalidade

Machine Learning

Juntar tudo e criar um modelo de machine learning, prevendo como estas variáveis afetam umas às outras quando alteradas

Automatizar o processo

Usando o Github

Data Science Academy

Sistemas de Controle de Versão

- Concurrent Versions System (CVS)
- Subversion (SVN)
- Visual SourceSafe (VSS)
- Rational ClearCase
- Git

- Não depender de um servidor central
- Dar ênfase à velocidade
- Integridade dos dados
- Potencializar o trabalho paralelo

Principais Conceitos do Git

Branch

Ramificação do projeto, cada *branch* representa uma versão do seu projeto e podemos seguir uma linha de desenvolvimento a partir de cada *branch*

Clone

Cópia local de todos os arquivos de um repositorio git

Commit

Coleção de alterações realizadas, é uma espécie de *checkpoint*, sempre que necessário você pode retroceder até algum *commit* existente

Fork

Uma bifurcação do projeto, uma cópia do projeto existente para seguir uma nova direção

Master

Branch padrão de um repositório Git

Merge

É a capacidade de incorporar alterações do git, quando acontece uma junção de diferentes *branches*

Pull

Puxa as alterações do repositório remoto

Push

Empurra as suas alterações para o repositório remoto

Repositório

Local onde ficam todos os arquivos do projeto, inclusive o histórico e versões

Preparação de Documentos com R e LaTeX

A ideia central do LaTeX é distanciar o autor o máximo possível da apresentação visual da informação, pois a constante preocupação com a formatação desvia o pensamento do conteúdo escrito

Tamanho e Complexidade do Documento

Data Science Academy

www.datascienceacademy.com.br

Arquivos com extensão .Rnw

R e LaTeX

Sweave() knit()

Reproducible Research

knitr()

```
-0
Usando-Knir.Rtex ×
     D B ABC 9
 1 \documentclass{article}
    \usepackage[utf8]{inputenc}
    \usepackage[english]{babel}
    \begin{document}
     Você pode digitar seu código R dentro de \LaTeX{} and o código será executado e a saída impressa no documento
      # Cria sequência de números
 9
 10
       X = 2:10
 11
    # Mostra medidas estatítiscas básicas
12
     summary(X)
13
14
 15
      \end{document}
16
```


Sweave()

```
Usando-Knir.Rtex = Usando-Sweave.Rnw =
Run - =
 1 \documentclass[a4paper]{article}
 2 \usepackage{Sweave}
    \title{Sweave Example 1}
    \author{Friedrich Leisch}
     \begin{document}
     \maketitle
 10
    In this example we embed parts of the examples from the
12 \texttt{kruskal.test} help page into a \LaTeX{} document:
13
14 - <<>>=
15 data(airquality)
   library(ctest)
 17
    kruskal.test(Ozone ~ Month, data = airquality)
18
19 which shows that the location parameter of the Ozone
   distribution varies significantly from month to month. Finally we
 21 include a boxplot of the data:
22
 23 \begin{center}
 24 - <<fig=TRUE,echo=FALSE>>=
 25 boxplot(Ozone - Month, data = airquality)
26
27 \end{center}
28
29
    \end{document}
```

Data Science Academy