Never Start from Scratch: Expediting On-Device LLM Personalization via Explainable Model Selection

<u>Haoming Wang</u>, Boyuan Yang, Xiangyu Yin, and Wei Gao University of Pittsburgh

LLM personalization on Mobile Devices

Existing Solutions

Upload user data to the cloud

Fine-tune LLM at the local device

How to address such on-device challenges?

On-device personalization challenges

- Efficient fine-tuning method
 - LoRA [1] (Low-Rank Adaptation)
 - Prompt tuning [2]
 - ..

- Not efficient enough
 - ~1 second per training steps on a flagship smartphone (Qwen2-0.5B on Google Pixel 9 Pro)

Accumulating enough data

Take very long time

Continual learning [3]

Too expensive for mobile devices

- [1] J Lin, et al. Lora: Low-rank adaptation of large language models. ICLR 2022
- [2] B Lester, et al. The Power of Scale for Parameter-Efficient Prompt Tuning. Arxiv 2021
- [3] A Razdaibiedina, et al. Progressive prompts: Continual learning for language models. ICLR 2023

Our Solution: Never Start from Scratch!

Initialize personalization from the existing personalized LLMs

Server end:

- (1) Personalized LLM pre-cached on the cloud server
- (2) Pre-compute the explanations for pLLMs

On device:

- (3) Select the pLLM that best resembles the personal data based on the explanations of pLLMs
- (4) Locally fine-tune the selected pLLM with personal data

Our Solution: Never Start from Scratch!

Requirements for pLLM explanations:

- **Explainable**: in natural language to ensure users' trust
- Quantitative: facilitate model selection
- **Format of explanations:**

eXplainable Personalized Tuning (XPerT)

XPerT: (1) Mapping differences to Embedding space

XPerT: (1) Mapping Differences to Embedding Space

XPerT: (2) Decomposing the Embedding

XPerT: 2 Decomposing the Embedding

Steps of decomposition:

1 Propose candidate natural language explanations:

2 Compute embeddings for each candidate:

3 Repeat until decomposition error is small enough

XPerT: 2 Decomposing the Embedding

Steps of decomposition:

1 Propose candidate natural language explanations:

2 Compute embeddings for each candidate:

3 Repeat until decomposition error is small enough

XPerT: (2) Decomposing the Embedding

Steps of decomposition:

1 Propose candidate natural language explanations:

2 Compute embeddings for each candidate:

3 Repeat until decomposition error is small enough

XPerT: (3) On-device Model Selection

XPerT: (3) On-device Model Selection

XPerT: (3) On-device selection

Implementation

Implement LLM Fine-tuning on smartphones:

Offline Phase:

Convert Model and Data format

Online Phase:

Model training as background Android service

Experiment Settings

Datasets

Synthetic: QA data with diverse language styles generated by ChatGPT

Expertise	elementary / expert		
Informativeness	concise / informative		
Style	friendly/ unfriendly/ sassy/ sarcastic / persuasive / neutral / poetic		

Real-world: Combination of 3 text datasets with multiple language styles

CDS[1]	poetry, lyrics, tweets, Shakespeare	
Gutenberg3[2]	fantasy, romance, and sci-fi	
ScientificPapers[3]	academic	

pLLMs and smartphone models

- Llama-3.2-1B on One Plus 12R
- Owen2-0.5B on Pixel 9 Pro
- SmolLM-360M on Pixel 7

Baseline Selection Method

- **Exhaustive Search**: evaluates each pLLM's output with the personal data and selects the best one.
- **Bayesian Optimization**: Frames pLLM selection as a hyperparameter optimized via Bayesian optimization
- **HyperBand**: Leverages the bandit principle to find optimal hyperparameters
- [1] K Krishna, et al, Reformulating Unsupervised Style Transfer as Paraphrase Generation. EMNLP2020
- [2] R Csaky, et al. The Gutenberg dialogue dataset. Arxiv 2020

Experiment Results

Comparing with fine-tuning from scratch

	Llama-3.2-1B on One Plus 12R			
Synthetic	Acc	FT-time	Energy	Data
From scratch	-	97.8min	15.7kJ	0%
30% similarity	25.0%	92.4min	14.9kJ	4.6%
50% similarity	53.6%	81.8min	13.3kJ	16.7%
70% similarity	85.7%	56.7min	9.0kJ	17.1%
80% similarity	96.4%	32.9min	5.3kJ	24.7%
90% similarity	96.4%	17.9min	2.8kJ	35.7%

	Llama-3.2 1B on One Plus 12R				
Synthetic	BLEU	ROUGE-1	ROUGE-L		
From scratch	0.13	0.32	0.23		
30% similarity	0.13	0.33	0.21		
70% similarity	0.12	0.33	0.21		
90% similarity	0.15	0.33	0.22		

Cost of model fine-tuning

Performance of fine-tuned model

- reduce computation cost (up to 83%) and improve data efficiency (up to 51%)
- without decreasing model performance

Experiment Results

Comparing with baseline selection methods:

- The selection cost of
 - Baselines: linearly increase with the number of pLLLMs
 - XPerT: retain a constantly low level

Experiment Results

Validating the Explainable Latent Space

Styl	le	Level 1	Level 2	Level 3	Level 4
Elemer	ntary	Elementary school students	Middle school students	Undergraduates	PhD students in the field
Forma	ılity	Slang, casual expressions	Everyday language, for friendly chat	Professional but with a more conversational tone	Professional language, used in corporate settings

Synthesize language style with different levels

On-Device Model Merging

1 0.34 0.76 1
2 0.47 0.72
3 0.28

Measure the distance of coefficeints by L1 norm

personal data as combinations of language styles

Summary

Efficient on-device LLM personalization

- XPerT: fine-tune the proper pLLM cached at the cloud server with on-device personal data
- Explainability for trustworthy model selection
- reduce computation cost (up to 83%) and improve data efficiency (up to 51%)

QR code for more information

Lab Website

https://pittisl.github.io/

Github repo

https://github.com/pittisl/ ExplainablePersonalization

Thank you!