

第11讲-紧性定理

- 紧性定理是符号逻辑的一个极其重要的定理;
- 本讲主要给出命题逻辑和一阶逻辑的紧性定理;
- 我们将用语义方法证明此定理。

紧致性(Compactness)定理

定理1.27(G'的compactness).设 Γ 为命题的集合,若 Γ 的任何有穷子集可满足,则 Γ 可满足。

定义1.28 称 Δ 为有穷可满足指 Δ 的任何有穷子集可满足。

引理1.29 所有命题可被排列为 $A_0, A_1, \ldots, A_n, \ldots$ $(n \in \mathbb{N})$ 。

引理1.30 设 Δ 为有穷可满足,A 为命题。若 $\Delta \cup \{A\}$ 不为有穷可满足,则 $\Delta \cup \{\neg A\}$ 为有穷可满足。

证明: 设 $\Delta \cup \{A\}$ 不为有穷可满足,反设 $\Delta \cup \{\neg A\}$ 也不为有穷可满足, 从而 存在 $\Delta_1, \Delta_2 \subseteq \Delta$ 使 Δ_1, Δ_2 皆有穷且 $\Delta_1 \cup \{A\}$ 与 $\Delta_2 \cup \{\neg A\}$ 皆不可满足。 由于 $\Delta_1 \cup \Delta_2$ 为 Δ 的有穷子集,故有 v 使 $v \models \Delta_1 \cup \Delta_2$,然

- (1) 当 $v \models A$ 时, $v \models \Delta_1 \cup \{A\}$,从而矛盾。
- (2) 当 $v \nvDash A$ 时, $v \vDash \Delta_2 \cup \{\neg A\}$,从而矛盾。

故 Δ ∪ $\{\neg A\}$ 有穷可满足。

紧致性定理的证明

证明:令

$$\Gamma_0 = \Gamma$$

先对 n 归纳证明 Γ_n 有穷可满足.....(*)。

Basis n=0 时,易见 (*) 成立。

I.H. 设 Γ_n 有穷可满足。

Ind. Step 若 $\Gamma_n \cup \{A_n\}$ 有穷可满足,则 Γ_{n+1} 有穷可满足,否则由引理 1.30 知 $\Gamma_n \cup \{\neg A_n\}$ 有穷可满足,即 Γ_{n+1} 有穷可满足。归纳完成。

 $\Diamond \Delta = \bigcup \{\Gamma_n | n \in \mathbb{N}\},$ 我们有 Δ 为有穷可满足。

设 Φ 为 Δ 的有穷子集, 从而有 k 使 $\Phi \subseteq \{A_0, A_1, \ldots, A_k\}$, 故 $\Phi \subseteq \Gamma_{k+1}$, 因此 Δ 有穷可满足。

对任何命题变元 p_i , $p_i \in \Delta$ 或 $\neg p_i \in \Delta$ 且恰具其一。

设 p_i 为 A_l 。若 $p_i \notin \Delta$,则 $A_l \notin \Delta$,从而 $\Gamma_l \cup \{A_l\}$ 不为有穷可满足,因此 $\neg A_l \in \Gamma_{l+1}$,故 $\neg p_i \in \Delta$ 。

又反设 $p_i, \neg p_i \in \Delta$,从而 Δ 的子集 $\{p_i, \neg p_i\}$ 不可满足,故 Δ 不为有穷可满足。

令
$$v(p_i) = \begin{cases} T & , \stackrel{\text{H}}{=} p_i \in \Delta \\ F & , \stackrel{\text{H}}{=} \neg p_i \in \Delta \end{cases}$$

以下对 A 的结构归纳证明: 若 $A \in \Delta$ 则 $v \models A$,否则 $v \not\models A$ ……(*)。

情形 1. A 为命题变元 p_i , 由上知 (*) 成立。

情形 2. A 为 $\neg B$ 。

- 1. 当 $A \in \Delta$ 时, Δ 为有穷可满足,所以 $B \notin \Delta$,从而由 I.H.知 $v \nvDash B$,从而 $v \models \neg B$ 。
- 2. 当 $A \notin \Delta$ 时,即 $\neg B \notin \Delta$,设 B 为 A_l ,从而 $\Gamma_l \cup \{B\}$ 有穷可满足(若不然,有 $\neg B \in \Gamma_{l+1}$,与 $\neg B \notin \Delta$ 矛盾)。故 $B \in \Delta$,由 I.H. 知 $v \models B$,从而 $v \not\models A$ 。

情形 3. $A 为 B \land C$ 。

- 1. 当 $A \in \Delta$ 时,有 $B \in \Delta$ 。 反设 $B \notin \Delta$,从而 $\neg B \in \Delta$,但 $\{A, \neg B\}$ 不可满足,矛盾。 因此 $B \in \Delta$,同理 $C \in \Delta$ 。 由 I.H.知 $v \models B, v \models C$,从而 $v \models B \land C$,即 $v \models A$ 。
- 2. 当 $A \notin \Delta$ 时,有 $B \notin \Delta$ 或 $C \notin \Delta$ 。 反设 $B \in \Delta$ 且 $C \in \Delta$,从而由 $A \notin \Delta$ 知 $\neg A \in \Delta$, 然 $\{\neg A, B, C\}$ 不可满足,故矛盾。 因此 $B \notin \Delta$ 或 $C \notin \Delta$ 。 不妨设 $B \notin \Delta$,从而 $v \not\models B$,因此 $v \not\models A$ 。

其他情形同理可证(*)成立。

因此我们有 $v \models \Delta$, 故 Δ 可满足, 从而 Γ 可满足。

定义11.1 设 E 为非空集, $F \subseteq \mathcal{P}(E)$

- (1) F 为 E 上滤指
 - (a) $E \in F$
 - (b) $A, B \in F \Rightarrow A \cap B \in F$
 - (c) $B \supseteq A \in F \Rightarrow B \in F$
 - (d) $\emptyset \notin F$

- (2) F 为 E 上超滤指
 - (a) F为E上滤
 - (b) *D为E*上滤且

$$F \subseteq D \Rightarrow F = D$$

(3) 设 $\emptyset \neq C \subseteq \mathcal{P}(E)$,C有有穷交性质(f.i.p.) 指 $\forall A_1, ..., A_n \in C, A_1 \cap A_2 ... \cap A_n \neq \emptyset$

- 命题11.2 令 $C^+ = \{A \subseteq E \mid \exists A_1 \exists A_2 ... \exists A_n \in C.A_1 \cap A_2 ... \cap A_n \subseteq A\},$ 则
 - (1) $C \subseteq C^+$;
 - (2) C+为E上滤⇔ C有 f.i.p.;
 - (3) 若 $C \subseteq D$ 且D为E上滤,则 $C^+ \subseteq D$;
 - (4) 若C+为滤,则C+=∩{ $F | C ⊆ F 且 F 为 E 上滤}, 称<math>C$ +为由C生成的滤;
- 证明: (1) $C \subseteq C^+$ 易见;
 - $(2) :: C^+$ 满足滤定义中的 $(a) \sim (c)$
 - $:: C^+$ 为 E 上滤
 - $\Leftrightarrow \varnothing \notin C^+ \Leftrightarrow \forall A_1 \forall A_2 ... \forall A_n \in C, A_1 \cap A_2 \cap ... \cap A_n \neq \varnothing$
 - $\Leftrightarrow C \not\equiv f.i.p.$

(3) 设 $C \subseteq D$ 且 D 为滤,

 $\therefore C^+ \subseteq D.$

(4) 由 (3) 知 $C^+ \subseteq \bigcap \{F \mid C \subseteq F \perp E F \rangle E \perp E \}$

·: C+ 为滤,

因此等式成立.

- **命题11.3** 设 $\emptyset \neq U \subseteq \mathcal{P}(E)$ 且 U 有 f.i.p. ,我们有 U 为 E 上超滤 $\Leftrightarrow \forall \mathbb{X} \subseteq E, \mathbb{X} \in U \Leftrightarrow (E \mathbb{X}) \notin U$. 证明:" \Rightarrow ":设 U 为 E 上超滤,
 - (1) 设 $\mathbb{X} \in U$, 欲证 $E \mathbb{X} \notin U$, 反设 $E \mathbb{X} \in U$, 从而 $\emptyset = \mathbb{X} \cap (E \mathbb{X}) \in U$ 矛盾!
 - (2) 设 E X ∉ U , 欲证 X ∈ U , 令 C = U ∪ {X}, 从而 C 有 f.i.p.,
 这是因为对于 Y ∈ U, 若 Y ∩ X = Ø, 则 Y ⊆ E X, 从而 E X ∈ U 矛盾。因此 C+为 E 上滤,且 C+ ⊇ U, 从而 C+ = U (U 为超滤).故 X ∈ U.

- "←"设 $\mathbb{X} \in U \leftrightarrow (E \mathbb{X}) \notin U$ 对任何 $\mathbb{X} \subseteq E$ 成立。 欲证 U 为超滤。
 - (1) :: U 有 f.i.p. $\therefore \emptyset \notin U$.
 - (2) :: $E \in U \leftrightarrow E E \notin U \leftrightarrow \emptyset \notin U$:: $E \in U$.
 - (3) 设 \mathbb{X} , $\mathbb{Y} \in U$,

$$:: \mathbb{X} \cap \mathbb{Y} \cap [(E - \mathbb{X}) \cup (E - \mathbb{Y})] = \emptyset$$

$$\therefore (E - \mathbb{X}) \cup (E - \mathbb{Y}) \notin U,$$

从而 $E - (\mathbb{X} \cap \mathbb{Y}) \notin U$, 故 $\mathbb{X} \cap \mathbb{Y} \in U$.

- (4) 设 $\mathbb{X} \in U$ 且 $\mathbb{Y} \supseteq \mathbb{X}$, $:: \mathbb{X} \cap (E - \mathbb{Y}) = \emptyset, \therefore E - \mathbb{Y} \notin U, \text{ 故 } \mathbb{Y} \in U.$ 从 (1) - (4) 知 U 为滤。
- (5) 对于 $U \subseteq D$ 且 D 为 E 上滤, 欲证 U = D,只需证若 $\mathbb{X} \in D$ 则 $\mathbb{X} \in U$, $\therefore (E - \mathbb{X}) \cap \mathbb{X} = \emptyset, \therefore E - \mathbb{X} \notin D$. 反设 $\mathbb{X} \notin U$ 则 $E - \mathbb{X} \in U$,从而 $E - \mathbb{X} \in D$ 矛盾! 因此 $\mathbb{X} \in U$.

在以下命题中我们需要用到Zorn引理,亦即用到AC,它们两者是等价的 (参见文献[7])。

Zorn引理:

设 S 为偏序集, 若 S 中的每个链皆有界,则 S 有极大元。

命题11.4. 设 E 为非空集且 $\emptyset \neq C \subseteq \mathcal{P}(E)$, 若 C 有 f.i.p.,则存在一个包含 C 的超滤 U。

证明:令 $S = \{F \mid C \subseteq F \mid \exists F \rangle E \}$ 上滤 $\}$,从而 $C^+ \in S$,故 $S \neq \emptyset$ 。 设 $D_1 \subseteq D_2 \subseteq D_3 \subseteq ... \subseteq D_n \subseteq ... \rightarrow S$ 中的任何链,以下证 $\{D_n \mid n \in \mathbb{N}\}$ 有界。

$\Leftrightarrow D = \bigcup_{n \in \mathbb{N}} D_n$,欲证 D 为 $\{D_n \mid n \in \mathbb{N}\}$ 的上界:

- (1) C ⊆ D 易见;
- (2) *E* ∈ *D* 易见;
- $(3) X, Y \in D \Rightarrow f m 使 X, Y \in D_m$ $\Rightarrow f m 使 X \cap Y \in D_m \Rightarrow X \cap Y \in D;$
- $(4) \ \mathbb{X} \in D \ \mathbb{A} \ \mathbb{X} \subseteq \mathbb{Y} \Rightarrow \hat{\pi} \ m \ \hat{\psi} \ \mathbb{X} \in D_m \ \mathbb{A} \ \mathbb{X} \subseteq \mathbb{Y}$ $\Rightarrow \mathbb{Y} \in D_m \Rightarrow \mathbb{Y} \in D;$
- $(5) \varnothing \notin D_n (n = 1, 2...) \Rightarrow \varnothing \notin \bigcup_{n \in N} D_n$ 。 因此 $D \in S$ 且 $D_n \subseteq D$ 故 D 为 $\{D_n \mid n \in \mathbb{N}\}$ 的上界。由 Zorn 引理指知存在极大元 $U \in S$,

从而有 E 上超滤 U 使 $U \supseteq C$.

定义11.5. 设 I 为非空集, $V = \{v_i \mid i \in I\}$ 为赋值集。

令 U 为 I 上滤, 定义赋值 v 如下:

对于任何 $P \in PS$, $v(P) = T \Leftrightarrow \{i \mid v_i(P) = T\} \in U$.

命题11.6. 若 U 为超滤,则

- (1) $v(P) = F \Leftrightarrow \{i \mid v_i(P) = F\} \in U$;
- (2) 对于命题 A, $v \models A \Leftrightarrow \{i \mid v_i \models A\} \in U$.

证明:(1) 易见;

- (2) 对 A 的结构作归纳证明 $v \models A \Leftrightarrow \{i \mid v_i \models A\} \in U$:
 - (i) $A \equiv P$ $v \models A \Leftrightarrow v(P) = T \Leftrightarrow \{i \mid v_i \models P\} \in U;$

(ii)
$$A \equiv \neg B$$

$$v \vDash \neg B \Leftrightarrow v(B) = F$$

$$\Leftrightarrow \{i \mid v_i \vDash B\} \notin U$$

$$\Leftrightarrow I - \{i \mid v_i \models B\} \in U$$

$$\Leftrightarrow \{i \mid \sharp v_i \models B\} \in U$$

$$\Leftrightarrow \{i \mid v_i \vDash \neg B\} \in U$$
;

(iii)
$$A \equiv B \wedge C$$

$$v \models B \land C \Leftrightarrow v(B) = v(C) = T$$

$$\Leftrightarrow$$
 $\{i \mid v_i \models B\} \in U \ and \ \{i \mid v_i \models C\} \in U$

$$\Leftrightarrow$$
 $\{i \mid v_i \models B\} \cap \{i \mid v_i \models C\} \in U$

$$\Leftrightarrow \{i \mid v_i \vDash B \land C\} \in U.$$

当
$$A \equiv B \lor C$$
 或 $A \equiv B \to C$ 时,同理可证。

定义11.7. 设 Γ 为命题集且任何 Γ 的有穷子集 Δ 可满足,令

$$I = {\Delta \mid \Delta \text{ 有穷且 } \Delta \subseteq \Gamma}$$

对于 $i \in I$, v_i 为满足 i 的赋值,即 $v_i \models i(i \in I)$ 。 令 $A^* = \{i \in I \mid A \in i\}$, $C = \{A^* \mid A \in \Gamma\}$ 。

命题11.8. *C* 有 *f.i.p.*.。

证明: $: \{A_1, ..., A_n\} \in A_i^* \cap A_2^* \cap ... \cap A_n^*$ ∴ C 有 f.i.p. \circ

从而我们有超滤 $U \supseteq C$,对于 $A^* \in U$

$$:: i \in A^* \Leftrightarrow A \in i \Rightarrow v_i \vDash A$$

$$\therefore A \in \Gamma \Rightarrow A^* \subseteq \{i \in I \mid v_i \models A\}.$$

命题11.9. 若 $A \in \Gamma$,则 $\{i \in I \mid v_i \models A\} \in U$

证明:
$$A \in \Gamma \Rightarrow A^* \in U \ \mathbb{Z} \ A^* \subseteq \{i \in I \mid v_i \models A\}$$

$$\therefore \{i \in I \mid v_i \models A\} \in U.$$

定理11.10. 对于以上的超滤 U 和 I,定义赋值 v 如下:

$$v(P) = T \Leftrightarrow \{i \in I \mid v_i(P) = T\} \in U$$

我们有 $v \models \Gamma$.

证明:对于任何命题 A ,我们有:

- $(1) v \vDash A \Leftrightarrow \{i \in I \mid v_i \vDash A\} \in U;$
- (2) 对于 $A \models \Gamma$, $\{i \in I \mid v_i \models A\} \in U$ 。 故 $v \models A$,从而 $v \models \Gamma$ 。v为 Γ 的模型。

下面我们将给出一阶逻辑的紧性定理。

定义11.12. 设 $I \neq \emptyset$, D 为 I 上的滤, $(A_i)_{i \in I}$ 为一簇非空集,令

- (1) $C = \prod_{i \in I} A_i = \{f : I \to \bigcup_{i \in I} A_i \mid (\forall i \in I)(f(i) \in A_i)\},$ 有时记 f 为 $\langle f(i) \mid i \in I \rangle$;
- (2) C 上二元关系 =_D 被定义为: $\forall f, g \in C, f =_D g \Leftrightarrow \{i \in I \mid f(i) = g(i)\} \in D$ 。

命题11.13. $=_D$ 为 C 上的等价关系。

证明:(1) 自反性
$$f =_D f$$
 (因为 $I \in D$);

(2) 对称性
$$f =_D g \Rightarrow g =_D f$$
 易见;

(3) 传递性
$$f =_D g \& g =_D h \Rightarrow f =_D h$$
。

$$\therefore f =_D g \& g =_D h$$

$$\Rightarrow A = \{i \in I \mid f(i) = g(i)\} \in D \&$$

$$B = \{i \in I \mid g(i) = h(i)\} \in D$$

$$\Rightarrow \{i \in I \mid f(i) = h(i)\} \supseteq A \cap B \in D$$

$$\Rightarrow f =_D h.$$

:: 传递性为真。

- 定义11.14. 设 \mathcal{L} 为一阶语言,对于 $i \in I$, \mathcal{A}_i 为 \mathcal{L} -结构, $\{\mathcal{A}_i \mid i \in I\}$ 关于模D的积 \mathcal{B} 为一个 \mathcal{L} 结构。其定义如下:
 - (1) \mathcal{B} 的论域 $B = \{ [f]_D | f \in \prod_{i \in I} A_i \}$, 这里 $[f]_D$ 为f关于 $=_D$ 的等价类, 有时简记为 $[f]_D$ 。事实上, $B = (\prod_{i \in I} A_i) / =_D$,有时记 B 为 $\prod_{D} (A_i)_{i \in I}$;
 - (2) 对于常元 C, $C_B = [\langle C_{A_i} \mid i \in I \rangle]_D$;
 - (3) 对于 n 元函数 f 且 n > 0,任给 $[g_j](j \le n) \in B$ $f_B([g_1],...,[g_n]) = [\langle f_{A_i}(g_1(i),...,g_n(i)) | i \in I \rangle]_D$
 - (4) 对于n元谓词 p,任给 $[g_j](j \le n) \in B$ $p_B([g_1],...,[g_n]) = T \Leftrightarrow \{i \mid p_{A_i}(g_1(i),...,g_n(i)) = T\} \in D$ 当 D 为超积时,称 $\prod_{D} (A_i)_{i \in I}$ 为 $\{\mathscr{A}_i \mid i \in I\}$ 的超积。

下面命题说明 3 的定义是合法的。

命题11.15. $=_D$ 为同余关系。

证明: (1) 设 f 为一元函数 (对于多元函数同理可证), 设 $g =_D h$, 欲证 $f_B([g]) = f_B([h])$.

$$\therefore f_B([g]) = f_B([h])
\Leftarrow \langle f_{A_i}(g(i)) | i \in I \rangle =_D \langle f_{A_i}(h(i)) | i \in I \rangle
\Leftarrow \{ i \in I | f_{A_i}(g(i)) = f_{A_i}(h(i)) \} \in D
\Leftarrow \{ i \in I | g(i) = h(i) \} \in D
\Leftarrow g =_D h$$

: 命题得证

(2) 设 p 为一元谓词,设 $g =_D h$,

欲证
$$p_B([g]) = T \Leftrightarrow p_B([h]) = T$$
,

只需证
$$\{i \mid p_{A_i}(g(i)) = T\} \in D \Leftrightarrow \{i \mid p_{A_i}(h(i)) = T\} \in D$$
,

只需证
$$\{i \mid p_{A_i}(g(i)) = T\} \in D \Rightarrow \{i \mid p_{A_i}(h(i)) = T\} \in D$$
。

故若
$$\{i \mid p_{A_i}(g(i)) = T\} \in D$$
,则

$$\{i \mid p_{A_i}(h(i)) = T\} \supseteq \{i \mid p_{A_i}(g(i)) = T\} \cap A \in D,$$

从而
$$\{i \mid p_{A_i}(h(i)) = T\} \in D$$
。

约定: 为了以下叙述方便,我们采用一些简记方式。设 t 为项,A 为公式且 FV(t), $FV(A) \subseteq \{y_1, \dots, y_n\}$, 令赋值为 σ , $\sigma(y_i) = a_i \ (i = 1, 2, \dots, n)$, $\mathscr B$ 为结构.

- (1) $t_{B[\sigma]}$ 简记为 $t_{B}[a_1, \dots, a_n]$;
- (2) $A_{B[\sigma]}$ 简记为 $A_{B}[a_1, \dots, a_n]$;
- (3) $\mathscr{B} \models_{\sigma} A$ 简记为 $\mathscr{B} \models A[a_1, \dots, a_n].$

命题11.16. 设 t 为项且 $FV(t) \subseteq \{y_1, ..., y_n\}$,

对于任何
$$[g_j] \in B \ (j = 1, 2, ..., n)$$
,有

$$t_B[[g_1], ..., [g_n]] = [\langle t_{A_i}[g_1(i), ..., g_n(i)] | i \in I \rangle]_D \qquad(*)$$

证明:对t的结构归纳证明(*).

情况1. t 为常元 C, 易见(*)成立;

情况2. t 为 y_1 , $LHS \equiv [g_1]$, $RHS \equiv [\langle g_1(i) | i \in I \rangle]_D = [g_1]$;

情况3. t为 f(s),且 $FV(s) \subseteq \{y_1, ..., y_n\}$

$$LHS \equiv (f(s))_{B}[[g_{1}],...,[g_{n}]]$$

$$= f_{B}(s_{B}[[g_{1}],...,[g_{n}]])$$

$$= f_{B}([\langle s_{A_{i}}[g_{1}(i),...,g_{n}(i)] | i \in I \rangle]_{D}) \quad (这里用 I.H.)$$

$$= [\langle f_{A_{i}}(s_{A_{i}}[g_{1}(i),...,g_{n}(i)] | i \in I \rangle]_{D}$$

$$= [\langle t_{A_{i}}[g_{1}(i),...,g_{n}(i)] | i \in I \rangle]_{D}$$

命题11.17. 设 A 为公式且 $FV(A) = \{y_1, \dots, y_n\}$,

对于任何 $[g_j](j=1,2,\dots,n) \in B$,有

$$\mathscr{B} \vDash A[[g_1], \dots, [g_n]] \Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash A[g_1(i), \dots, g_n(i)]\} \in D \dots(*)$$

证明:对 A 的结构作归纳证明(*)

情况1. A 为 $t \doteq s$

$$\mathscr{B} \vDash (t \doteq s)[[\vec{g_j}]]$$

$$= t_B[[\vec{g_j}]] = s_B[[\vec{g_j}]]$$

$$\Leftrightarrow [\langle t_{A_i}[g_1(i), ..., g_n(i)] | i \in I \rangle]_D = [\langle s_{A_i}[g_1(i), ..., g_n(i)] | i \in I \rangle]_D$$

$$\Leftrightarrow \{i \in I \mid t_{A_i}[\overline{g}(i)] = s_{A_i}[\overline{g}(i)]\} \in D$$

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash (t \doteq s)[g_1(i), ..., g_n(i)]\} \in D$$

(n 元情况同理可证).

NANCY HG UNIVERSITY

情况2. A为 p(t)

$$\mathscr{B} \vDash p(t)[[\vec{g}]]$$

$$\Leftrightarrow p_B(t_B[[\vec{g}]]) = T$$

$$\Leftrightarrow p_B([\langle t_{A_i}[g_1(i),...,g_n(i)] \mid i \in I \rangle]_D) = T$$

$$\Leftrightarrow \{i \mid p_{A_i}(t_{A_i}[g_1(i), ..., g_n(i)]) = T\} \in D$$

$$\Leftrightarrow \{i \mid \mathscr{A}_i \vDash A[g_1(i), ..., g_n(i)]\} \in D$$

情况3. A 为 ¬H

$$\mathscr{B} \vDash \neg H[[\vec{g}]] \Leftrightarrow \mathscr{B} \not\vDash H[[\vec{g}]]$$

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash H[g_1(i), ..., g_n(i)]\} \notin D$$

$$\Leftrightarrow I - \{i \in I \mid \mathscr{A}_i \vDash H[g_1(i), ..., g_n(i)]\} \in D$$
 (因为D为超滤)

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash \neg H[g_1(i), ..., g_n(i)]\} \in D$$

情况4. A 为 E ^ H

$$\mathscr{B} \vDash A[[\vec{g}]] \Leftrightarrow \mathscr{B} \vDash E[[\vec{g}]] \mathrel{\cancel{\text{L}}} \mathscr{B} \vDash H[[\vec{g}]]$$

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash E[g_1(i), ..., g_n(i)]\} \in D \text{ } \mathbb{H}$$
$$\{i \in I \mid \mathscr{A}_i \vDash H[g_1(i), ..., g_n(i)]\} \in D \text{ } (I.H.)$$

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash E[\overrightarrow{g}(i)]\} \cap \{i \in I \mid \mathscr{A}_i \vDash H[\overrightarrow{g}(i)]\} \in D$$

$$\Leftrightarrow \{i \in I \mid \mathscr{A}_i \vDash A[\overrightarrow{g}(i)]\} \in D$$

情况5. A 为 $E \vee H$, $E \rightarrow H$, 与上同理可证。

情况6. A 为 ∃x.E

因为
$$\mathcal{B} \models \exists x. E[[g_1], ..., [g_n]]$$

$$\Leftrightarrow$$
 存在 $g \in B$ 使 $\mathscr{B} \models E[[g],[g_1],...,[g_n]]$

 \Leftrightarrow 存在 $g \in B$ 使 $\mathcal{B} \models E[[g],[g_1],...,[g_n]]$

 \Leftrightarrow 存在 $g \in B$ 使 $\mathbb{X} = \{i \in I \mid \mathscr{A}_i \vDash [g(i), g_1(i), ..., g_n(i)]\} \in D$ 以及 $\{i \in I \mid \mathscr{A}_i \vDash A[g_1(i), ..., g_n(i)]\} \in D$

 $\mathbb{Y} = \{i \in I \mid \text{ 存在 } a_i \in A_i \text{ 使 } \mathscr{A}_i \models E[a_i, g_1(i), ..., g_n(i)] \in D \}$ 故余下只需证存在 $[g] \in B$ 使 $\mathbb{X} \in D \Leftrightarrow \mathbb{Y} \in D$

"⇒"部分: 设存在 $[g] \in B$ 使 $\mathbb{X} \in D$,

"⇐"部分: 设 Y ∈ D,

令 $G = \{\langle i, x \rangle \mid i \in I \perp x \in A_i \perp x \in A_i \perp x \in E[x, g(i)]\}$ 由 AC知,存在 $[g] \in B$ 使 $\langle i, g(i) \rangle \in G$ 对任何 $i \in I$ 成立。 故 $X \in D$ 。 因此得证。

情况7. A 为 $\forall x.E$,与上同理可证。

- 推论11.18. 设 A 为句子, $\mathscr{B} \models A \Leftrightarrow \{i \in I \mid \mathscr{A}_i \models A\} \in D$ 。 这里 D 为超滤。
- 定理11.19. (一阶逻辑的紧性定理)设 Γ 为句子集,若 Γ 的任何有穷子集可满足,则 Γ 可满足。
- 证明:令 $I = \{ \Delta \subseteq \Gamma \mid \Delta \text{ 有穷 } \}$,且对于 $i \in I$ 令 \mathscr{A}_i 为满足 i 的结构,即 $\mathscr{A}_i \vDash i$. 对于 $A \in \Gamma$,令 $A^* = \{ i \in I \mid A \in i \}$,令 $C = \{ A^* \mid A \in \Gamma \}$,从而 C 有 f.i.p.,这是因为对于任何 $A_1^*,...,A_n^* \in C$, $A_1^* \cap A_2^*... \cap A_n^* = \bigcap_{k=1}^n \{ i \in I \mid A_k \in i \} = \{ i \in I \mid A_1,...,A_n \in i \}$ 从而 $\{ A_i,...,A_n \} \in A_1^* \cap ... \cap A_n^*$ 。

由 Zorn 引理知,存在超滤 $U \supseteq C$,

从而对于任何 $A \in \Gamma$,有 $A^* \in U$ 。

$$:: i \in A^* \Rightarrow A \in i \Rightarrow \mathscr{A}_i \models A$$

∴ 对于每个
$$A \in \Gamma$$
, $A^* \subseteq \{i \in I \mid \mathscr{A}_i \models A\}$

:: U 为滤

$$\therefore \{i \in I \mid \mathscr{A}_i \vDash A\} \in U$$

又因为对于每个 $A \in \Gamma$ 有 $\{i \in I \mid \mathscr{A}_i \models A\} \in U$,

因此 $\mathcal{B} \models A$ 对于每个 $A \in \Gamma$ 成立。

故 \mathscr{B} ⊨ Γ , 即 Γ 可满足。

定理11.20.设 Γ 为公式集,

若 Γ 的每个有穷子集皆可满足,则 Γ 可满足。

证明: 设 Γ 为 \mathcal{L} -公式集且 $FV(\Gamma) = \{y_i \mid j \in J\}$ 。 令 $\{c_i | \in J\}$ 为新常元符, $\mathcal{L}' = \mathcal{L} + \{c_i | j \in J\}$ 。 若 $A \in \Gamma$,则令 $A' \equiv A\left[\frac{c_j}{u_i}\right]$, $\Gamma' = \{A' \mid A \in \Gamma\}$ 。 若 Γ 的每个有穷子集皆可满足,则 Γ' 亦然。 这是因为设 $\Delta' \subseteq \Gamma'$ 且 Δ' 有穷,从而 $\Delta \subseteq \Gamma$ 有穷, 故有 \mathcal{L} - 模型 M 和赋值 σ 使 M $\models_{\sigma} \Delta$, 在 \mathcal{L}' 中, 令 $(c_i)_M = \sigma(y_i)$, \mathbb{M}' 为 \mathbb{M} 的扩展, 从而 $M' \models \Delta'$ 即 Δ' 可满足, 由上定理知 Γ' 可满足, 即有 \mathcal{L} - 模型 M' 使 $M' \models \Gamma'$, 令 $M = M' \upharpoonright \mathcal{L}$ 且令 $\sigma(y_i) = (c_i)_{M'}$,从而 $\mathbb{M} \models_{\sigma} \Gamma$ 即 Γ 可满足。

以上我们给出紧性定理的语义证明,在此用到 AC。 事实上,绝大多数教科书中紧性定理的证明是利用 到 Gödel 的完备性定理给出的。

证明: 设 Γ 为公式集,我们有 $con(\Gamma) \Leftrightarrow \Gamma$ 可满足; 若 Γ 的每个有穷子集可满足,则 Γ 的每个有穷子集协调; 反设 Γ 不可满足,从而 Γ 不协调,因此 $\Gamma \vdash \bot$, 这样存在有穷 $\Delta \subseteq \Gamma$ 使 $\Delta \vdash \bot$,与 $con(\Delta)$ 矛盾。

The End of Lecture 11