* Information Theory

$$-I(p) \ge 0$$
 , $I(1) = 0$, $I(q_1, p_1) = I(p_1) + I(p_2)$

- Entropy
$$H(x) = E(f(x)) = -\sum_{x=1}^{n} p(x_x) \cdot \log_b p(x_x)$$

- Relative Entropy
$$P(G||Q) = E_p\left[\log_p\frac{f(x)}{g(x)}\right] = \sum_{x} p(x) \cdot \log_p\frac{p(x)}{g(x)}$$

* Central Print thenen

 \overline{X} follows approximately normal distribution with $(M, \frac{6}{5m})$ from X, even if X does not follow normal distribution, if n > 30

* Point Estimation

- Case 1:
$$\bar{X}$$
, 0 is given, $\bar{X} + Z_{0/2} \frac{\delta}{m}$

With given
$$\bar{\chi}$$
 without δ . Upper bound: $\bar{\chi} \pm \frac{2\delta_{12}}{\sqrt{5\pi}}$

- Case 3:
$$\overline{X}$$
 is given with anknown 6 (distribution) $\overline{X} \pm \frac{2}{3} \frac{S}{\sqrt{n}}$

* Hypothesis Testing

Two samples T-test
$$\oint_{\overline{X}_1 - \overline{X}_2} = \int_{\overline{n}_1}^{\underline{n}_1^2} + \underbrace{\int_{\underline{n}_1}^{\underline{n}_2^2}}_{\overline{n}_1} \frac{\delta_{\underline{n}_2}^2}{n}$$

$$T_{n_1+n_2-2} = \frac{\sqrt{n_1 \cdot n_2}}{\delta_{\overline{x}_1-\overline{x}_2}}$$