ECE170A Project 1

Start date: **10/22/19**

Due Date: 10/31/19

Use the Matlab LiveScript tool for writing and turning in your code. Codes should be in .mlx format. See this youtube video for a tutorial on LiveScript

https://www.mathworks.com/videos/introducing-the-matlab-live-editor-119100.html

- 1. Sellmeier equation for refractive index: Given Sellmeier coefficients of diamond and SiO2 in lecture slide (or in the book), plot the refractive index vs. wavelength, n(λ) from 0.4 μ m to 2 μ m for both material, using MATLAB. Plot both in the same figure.
- 2. Fabry-Perot cavity: Consider two optical cavities, one with diamond and the other with SiO2, inside. Mirror separation is 500 μ m and the mirror reflectivity are R=95%. Use the refractive indices calculated in problem 1,
 - (a) plot the intensity spectrum of Fabry-Perot cavity from 1500 nm to 1530 nm
 - (b) Repeat for R=80%. Explain what changed and why.

For the mode nearest to 1510 nm, calculate:

- (c) the mode wavelength
- (d) the cavity Finesse
- (e) the Free-spectral range
- (f) and spectral width
- 3. Diffraction pattern:
 - (a) Plot the intensity diffraction patterns, $I(\theta)$ for a single slit with widths of 20 μ m, 40 μ m, 80 μ m and 160 μ m. Assume a light wavelength of 532nm (green light).

(b) Repeat for blue light (402nm) and red light (670nm). (c) Plot the intensity diffraction pattern for a 4 slit grating with a=d = $10\mu m$. (See figure below)

