Laptop Price Analysis Report

Introduction

This report presents a comprehensive analysis of the dataset containing specifications and prices of laptops. The aim is to identify key trends and factors influencing pricing.

Dataset Overview

The dataset includes attributes such as brand, processor type, RAM, storage, GPU, operating system, weight, and touchscreen capability, among others.

Key Observations

- 1. Brand Impact:
- Premium brands like Apple and Dell tend to have higher average prices.
- Budget brands such as Acer and Lenovo offer more affordable options.
- 2. Processor Type:
- Laptops with Intel Core i7 and AMD Ryzen 7 are significantly more expensive than those with Core i3 or Ryzen 3.
- 3. RAM and Storage:
- Price increases with higher RAM and SSD capacity.
- HDD-based laptops are generally cheaper.
- 4. GPU:
- Devices with dedicated GPUs (e.g., Nvidia GTX/RTX) command higher prices.
- 5. Other Factors:
- Laptops with touchscreen features and lighter weight tend to be priced higher.

Conclusion

The price of a laptop is primarily influenced by brand, processor, RAM, storage type, and GPU.

Understanding these factors can guide buyers toward cost-effective choices based on their needs.

```
In [5]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        df = pd.read_csv("laptop_prices.csv",encoding="ISO-8859-1")
        df.head()
Out[5]:
            Company Product TypeName Inches Ram
                                                          OS Weight Price_euros
                                                                                    Screen ScreenW ... RetinaDisplay CPU_compar
                     MacBook
               Apple
                                Ultrabook
                                            13.3
                                                    8 macOS
                                                                          1339.69 Standard
                                                                                               2560 ...
         0
                                                                  1.37
                                                                                                                  Yes
                                                                                                                                Int
                      Macbook
                                Ultrabook
         1
                                            13.3
                                                    8 macOS
                                                                           898.94 Standard
               Apple
                                                                 1.34
                                                                                               1440 ...
                                                                                                                                Int
                                                                                                                   No
         2
                 ΗP
                                            15.6
                                                                                               1920 ...
                       250 G6
                                Notebook
                                                    8 No OS
                                                                 1.86
                                                                           575.00
                                                                                    Full HD
                                                                                                                   No
                                                                                                                                Int
                      MacBook
                                Ultrabook
         3
               Apple
                                                                          2537.45 Standard
                                            15.4
                                                    16 macOS
                                                                 1.83
                                                                                               2880 ...
                                                                                                                  Yes
                                                                                                                                Int
                      MacBook
         4
                                Ultrabook
                                            13.3
                                                    8 macOS
                                                                  1.37
                                                                          1803.60 Standard
                                                                                               2560 ...
                                                                                                                  Yes
               Apple
                                                                                                                                Int
                          Pro
        5 rows × 23 columns
In [7]: df.shape
Out[7]: (1275, 23)
In [9]: df.isnull().sum()
```

```
Out[9]: Company
                                  0
          Product
                                  0
         TypeName
                                  0
         Inches
                                  0
          Ram
                                  0
          0S
                                  0
         Weight
          Price euros
                                  0
          Screen
          ScreenW
                                  0
          ScreenH
          Touchscreen
          IPSpanel
          RetinaDisplay
          CPU_company
          CPU_freq
          CPU model
          PrimaryStorage
          SecondaryStorage
                                  0
          PrimaryStorageType
          SecondaryStorageType
          GPU_company
          GPU_model
                                  0
          dtype: int64
In [11]: from sklearn.preprocessing import LabelEncoder
         # Separate features and target
         X = df.drop('Price_euros', axis=1)
         y = df['Price_euros']
         # Label encode categorical columns
         categorical_columns = [
             'Company', 'Product', 'TypeName', 'OS', 'Screen',
             'Touchscreen', 'IPSpanel', 'RetinaDisplay', 'CPU_company',
             'CPU_model', 'PrimaryStorageType', 'SecondaryStorageType',
             'GPU_company', 'GPU_model'
         label_encoders = {}
```

```
for col in categorical columns:
    le = LabelEncoder()
   X[col] = le.fit_transform(X[col])
    label_encoders[col] = le # Store encoder for potential inverse transform
```

In [13]: X.head()

Out[13]:

:		Company	Product	TypeName	Inches	Ram	os	Weight	Screen	ScreenW	ScreenH	•••	RetinaDisplay	CPU_company	CPU_
	0	1	300	4	13.3	8	8	1.37	3	2560	1600		1	1	
	1	1	301	4	13.3	8	8	1.34	3	1440	900		0	1	
	2	7	50	3	15.6	8	4	1.86	1	1920	1080		0	1	
	3	1	300	4	15.4	16	8	1.83	3	2880	1800		1	1	
	4	1	300	4	13.3	8	8	1.37	3	2560	1600		1	1	

5 rows × 22 columns

```
In [15]: y
```

```
Out[15]: 0
                  1339.69
          1
                   898.94
                   575.00
          3
                  2537.45
                  1803.60
                   . . .
          1270
                   638.00
          1271
                  1499.00
          1272
                   229.00
          1273
                   764.00
                   369.00
          1274
```

Name: Price_euros, Length: 1275, dtype: float64

```
In [17]: from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
         X_train.shape,X_test.shape,y_train.shape,y_test.shape
```

```
Out[17]: ((1020, 22), (255, 22), (1020,), (255,))
In [19]: from sklearn.linear model import LinearRegression
         le=LinearRegression()
         le.fit(X train, y train)
Out[19]:
            LinearRegression
         LinearRegression()
In [21]: y pred=le.predict(X test)
In [23]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
         mae=mean absolute error(v pred, v test)
         mse=mean_squared_error(y_pred,y_test)
         r2 score=r2 score(v pred, v test)
         print('The mean absolute error is:',mae)
         print('The mean squared error is:',mse)
         print('The r2 score is:',r2 score)
        The mean absolute error is: 281.79787366099055
        The mean squared error is: 147774.93208603014
        The r2 score is: 0.5704532857865052
In [25]: import matplotlib.pyplot as plt
         import numpy as np
         plt.figure(figsize=(10, 6))
         # Scatter plot of actual vs predicted prices
         plt.scatter(y_test, y_pred, color='dodgerblue', alpha=0.6, edgecolors='black', label='Predicted Points')
         # Reference line for perfect prediction
         min_val = min(min(y_test), min(y_pred))
         max_val = max(max(y_test), max(y_pred))
         plt.plot([min_val, max_val], [min_val, max_val], color='red', linestyle='--', linewidth=2, label='Perfect Prediction
         # Add grid, labels, and title
         plt.grid(True, linestyle='--', alpha=0.7)
```

```
plt.xlabel("Actual Prices (€)", fontsize=12)
plt.ylabel("Predicted Prices (€)", fontsize=12)
plt.title("Actual vs Predicted Laptop Prices", fontsize=14)
plt.legend()
plt.tight_layout()
plt.show()
```



```
In [27]: from sklearn.ensemble import RandomForestRegressor
         rfr=RandomForestRegressor()
In [29]: rfr.fit(X_train,y_train)
Out[29]:
             RandomForestRegressor
         RandomForestRegressor()
In [31]: y_pred1=rfr.predict(X_test)
In [33]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
         mae1=mean absolute error(y pred1,y test)
         mse1=mean squared error(y pred1,y test)
         r2_score1=r2_score(y_pred1,y_test)
         print('The mean absolute error is:',mae1)
         print('The mean squared error is:',mse1)
         print('The r2 score is:',r2_score1)
        The mean absolute error is: 178.10724626143792
        The mean squared error is: 80139.10304219375
        The r2 score is: 0.7991965927408159
In [35]: import matplotlib.pyplot as plt
         import numpy as np
         plt.figure(figsize=(10, 6))
         # Scatter plot of actual vs predicted prices
         plt.scatter(y_test, y_pred1, color='dodgerblue', alpha=0.6, edgecolors='black', label='Predicted Points')
         # Reference line for perfect prediction
         min val = min(min(y_test), min(y_pred1))
         max_val = max(max(y_test), max(y_pred1))
         plt.plot([min val, max_val], [min_val, max_val], color='red', linestyle='--', linewidth=2, label='Perfect Prediction
         # Add grid, labels, and title
         plt.grid(True, linestyle='--', alpha=0.7)
```

```
plt.xlabel("Actual Prices (€)", fontsize=12)
plt.ylabel("Predicted Prices (€)", fontsize=12)
plt.title("Actual vs Predicted Laptop Prices", fontsize=14)
plt.legend()
plt.tight_layout()
plt.show()
```



```
In [37]: #Distribution of Laptop Prices
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 5))
plt.hist(df['Price_euros'], bins=30, color='skyblue', edgecolor='black')
plt.title('Distribution of Laptop Prices')
plt.xlabel('Price (€)')
plt.ylabel('Number of Laptops')
plt.grid(True, linestyle='--', alpha=0.5)
plt.tight_layout()
plt.show()
```



```
In [39]: #Average Price of Laptop by company
import seaborn as sns

plt.figure(figsize=(12, 6))
avg_price_by_company = df.groupby('Company')['Price_euros'].mean().sort_values(ascending=False)
sns.barplot(x=avg_price_by_company.index, y=avg_price_by_company.values, palette='viridis')
plt.xticks(rotation=45)
plt.title('Average Laptop Price by Company')
plt.ylabel('Average Price (€)')
plt.xlabel('Company')
plt.tight_layout()
plt.show()

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_6688/629283051.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.
```

sns.barplot(x=avg_price_by_company.index, y=avg_price_by_company.values, palette='viridis')


```
In [37]: #Laptop price Vs Price Distribution
   plt.figure(figsize=(12, 6))
   sns.boxplot(x='TypeName', y='Price_euros', data=df, palette='Set2')
   plt.xticks(rotation=45)
   plt.title('Laptop Type vs Price Distribution')
   plt.xlabel('Laptop Type')
   plt.ylabel('Price (€)')
   plt.tight_layout()
   plt.show()
```

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_6036/859585806.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to hue` and set `legend=False` for the same effect.

sns.boxplot(x='TypeName', y='Price_euros', data=df, palette='Set2')


```
In [41]: #RAM Vs Price
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Ram', y='Price_euros', data=df, hue='Company', palette='tab10', alpha=0.7)
plt.title('RAM vs Laptop Price')
plt.xlabel('RAM (GB)')
plt.ylabel('Price (€)')
```

```
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```



```
In [77]: #Storage type vs Price
plt.figure(figsize=(12, 6))
sns.boxplot(x='PrimaryStorageType', y='Price_euros', data=df, palette='coolwarm')
plt.title('Primary Storage Type vs Price Distribution')
```

```
plt.xlabel('Primary Storage Type')
plt.ylabel('Price (€)')
plt.grid(True, linestyle='--', alpha=0.5)
plt.tight_layout()
plt.show()
```

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_1258/609379220.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to hue` and set `legend=False` for the same effect.

sns.boxplot(x='PrimaryStorageType', y='Price_euros', data=df, palette='coolwarm')


```
In [43]: plt.figure(figsize=(8, 5))
    ips_avg_price = df.groupby('IPSpanel')['Price_euros'].mean()
    sns.barplot(x=ips_avg_price.index, y=ips_avg_price.values, palette='coolwarm')
    plt.xticks([0, 1], ['No IPS', 'IPS'])
    plt.title('Average Price: IPS Panel vs Non-IPS Laptops')
    plt.ylabel('Average Price (€)')
    plt.xlabel('IPS Panel Availability')
    plt.grid(axis='y', linestyle='--', alpha=0.5)
    plt.tight_layout()
    plt.show()

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_6688/1794520785.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=ips_avg_price.index, y=ips_avg_price.values, palette='coolwarm')
```

Average Price: IPS Panel vs Non-IPS Laptops


```
In [83]: plt.figure(figsize=(8, 5))
    retina_avg_price = df.groupby('RetinaDisplay')['Price_euros'].mean()
    sns.barplot(x=retina_avg_price.index, y=retina_avg_price.values, palette='magma')
    plt.xticks([0, 1], ['No Retina', 'Retina'])
    plt.title('Average Price: Retina vs Non-Retina Laptops')
    plt.ylabel('Average Price (€)')
    plt.xlabel('Retina Display Availability')
    plt.grid(axis='y', linestyle='--', alpha=0.5)
    plt.tight_layout()
    plt.show()
```

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_1258/3488182014.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to hue` and set `legend=False` for the same effect.

sns.barplot(x=retina avg price.index, y=retina avg price.values, palette='magma')


```
In [45]: plt.figure(figsize=(10, 6))
    sns.violinplot(x='RetinaDisplay', y='Price_euros', data=df, palette='magma', inner="quartile")
    plt.xticks([0, 1], ['No Retina', 'Retina'])
    plt.title('Price Distribution: Retina vs Non-Retina Laptops')
```

```
plt.xlabel('Retina Display Availability')
plt.ylabel('Price (€)')
plt.tight_layout()
plt.show()

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_6688/1621181651.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.violinplot(x='RetinaDisplay', y='Price_euros', data=df, palette='magma', inner="quartile")
```

Price Distribution: Retina vs Non-Retina Laptops


```
In [87]: #Touchscreen vs Price
   plt.figure(figsize=(8, 5))
   touchscreen_counts = df.groupby('Touchscreen')['Price_euros'].mean()
   sns.barplot(x=touchscreen_counts.index, y=touchscreen_counts.values, palette='pastel')
   plt.xticks([0, 1], ['No Touchscreen', 'Touchscreen'])
   plt.title('Average Price: Touchscreen vs Non-Touchscreen Laptops')
   plt.ylabel('Average Price (€)')
```

```
plt.xlabel('Touchscreen Availability')
plt.tight_layout()
plt.show()
```

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_1258/3123336635.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=touchscreen_counts.index, y=touchscreen_counts.values, palette='pastel')


```
In [47]: #Price vs CPU Frequency (Regression Line)
    plt.figure(figsize=(10, 6))
    sns.regplot(x='CPU_freq', y='Price_euros', data=df, scatter_kws={'alpha':0.5}, line_kws={'color':'red'})
    plt.title('Laptop Price vs CPU Frequency')
    plt.xlabel('CPU Frequency (GHz)')
    plt.ylabel('Price (€)')
    plt.tight_layout()
    plt.show()
```

Laptop Price vs CPU Frequency

In [49]: #Heatmap of Categorical Features vs Price

plt.figure(figsize=(12, 6))
pivot_table = df.pivot_table(values='Price_euros', index='Company', columns='PrimaryStorageType', aggfunc='mean')
sns.heatmap(pivot_table, cmap='coolwarm', annot=True, fmt='.0f', linewidths=0.5)
plt.title('Average Laptop Price by Company & Storage Type')
plt.xlabel('Primary Storage Type')

```
plt.ylabel('Company')
plt.tight_layout()
plt.show()
```



```
In [51]: plt.figure(figsize=(10, 6))
    plt.hexbin(df['Weight'], df['Price_euros'], gridsize=30, cmap='coolwarm', mincnt=1)
    plt.colorbar(label='Number of Laptops')
    plt.xlabel('Laptop Weight (kg)')
    plt.ylabel('Price (€)')
    plt.title('Hexbin Plot of Laptop Weight vs Price')
```

```
plt.tight_layout()
plt.show()
```


In [53]: sns.pairplot(df[['Price_euros', 'CPU_freq', 'Ram', 'Weight']], diag_kind='kde', markers='o', corner=True)
plt.show()

In [55]: import plotly.express as px

fig = px.sunburst(df, path=['Company', 'TypeName', 'OS'], values='Price_euros', color='Price_euros', color_continuo fig.update_layout(title='Sunburst Chart: Brand, Type & OS Market Share')
fig.show()

Sunburst Chart: Brand, Type & OS Market Share


```
In [57]: from pandas.plotting import parallel_coordinates

plt.figure(figsize=(8, 6))
parallel_coordinates(df[['Company', 'Ram', 'CPU_freq', 'Price_euros']], 'Company', colormap=plt.cm.get_cmap('tab10' plt.xticks(rotation=45)
plt.title('Parallel Coordinates Plot: Multivariate Laptop Comparison')
plt.show()
```

/var/folders/pm/cnlmdnjj5g1ct4r7rrx83vnr0000gn/T/ipykernel_6688/3621600638.py:4: MatplotlibDeprecationWarning:

The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.


```
In [59]: from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10, 7))
    ax = fig.add_subplot(111, projection='3d')

ax.scatter(df['Ram'], df['CPU_freq'], df['Price_euros'], c=df['Price_euros'], cmap='coolwarm', alpha=0.7)

ax.set_xlabel('RAM (GB)')
    ax.set_ylabel('CPU Frequency (GHz)')
    ax.set_zlabel('Price (€)')
    ax.set_zlabel('Price (€)')
    ax.set_title('3D Scatter: RAM vs CPU Frequency vs Price')

plt.show()
```

3D Scatter: RAM vs CPU Frequency vs Price

In []: