

Page 1 of 26

Name	นายวัสภณ	สุวสมบุรณ์	Student ID	6201011631188	Section : <u>. 7 .</u>
Table		Period	Mon:09.00-12	.oo Semester	2/2563
Lecturer	KDS		·	·	

วัตถุประสงค์:

เพื่อให้ผู้เรียนมีความรู้ และเข้าใจในเรื่องดังต่อไปนี้

- **1.** ความสัมพันธ์ระหว่างกระแสคอลเลคเตอร์ (I_c) กระแสเบส (I_b) และแรงดันคอลเลคเตอร์-อิมิเตอร์ (ν_{ce}) ของ ทรานซิสเตอร์ **BJT**
- **2.** การคำนวณอัตราขยายกระแสดีซี ($oldsymbol{eta}_{ ext{dc}}$)
- 3. การเขียนกราฟคุณสมบัติของทรานซิสเตอร์ BJT
- 4. การใช้เครื่อง Curve Tracer วัดค่าพารามิเตอร์ของทรานซิสเตอร์ BJT
- **5.** การจัดวงจรขยายสัญญาณด้วยทรานซิสเตอร์ **BJT**

อุปกรณ์การทดลอง :

1. เครื่องคอมพิวเตอร์พร้อมโปรแกรม LTspice IV	1 ଫ୍ର
2. ทรานซิสเตอร์ เบอร์ 2N3904	1 ตัว
$oldsymbol{3}$. ตัวต้านทาน $oldsymbol{1}$ k $oldsymbol{\Omega}$, $oldsymbol{330}$ k $oldsymbol{\Omega}$ ค่าละ	1 ตัว
4. แหล่งจ่ายไฟกระแสตรงแบบ Dual DC Power Supply	1 เครื่อง
5. มัลติมิเตอร์	2 เครื่อง
6. แผงวงจร (Prototype Board)	1 แผง

3.1 Bipolar Junction Transistor (BJT) Characteristic

ทฤษฎี

ทรานซิสเตอร์เป็นอุปกรณ์อิเล็กทรอนิกส์อยู่ในประเภท **Active Device** (ในขณะที่ $R,\,L,\,C$ จัดเป็นอุปกรณ์ประเภท

Passive Device หรือ Lump Element) ซึ่งอุปกรณ์ประเภทนี้หาก นำไปใช้งานจำเป็นจะต้องมีการนำแหล่งจ่ายกำลังไฟตรงมาจัดวงจรให้ อยู่ในสภาพที่ตื่นตัว (Active) ก่อน จึงจะสามารถทำงานได้ตาม วัตถุประสงค์ ดังนั้นผู้ที่ออกแบบจำเป็นต้องรู้คุณสมบัติ รวมทั้งวิธีการที่ จะทำให้ทรานซิสเตอร์ตื่นตัวด้วยการจัดวงจรไบอัส (DC Bias หรือการ กำหนดจุดทำงาน Operating Point) ให้ถูกต้องเหมาะสมกับลักษณะ ของงานด้วย

คุณสมบัติทางไฟกระแสตรงของ **BJT**

พื้นฐานการจัดวงจรไบอัสทรานซิสเตอร์จะแสดงได้ดังรูปที่ $m{1}$ ซึ่ง เป้าหมายของการจัดวงจรเช่นนี้คือ ทำให้มีกระแสเบส I_b ไหลอยู่ ตลอดเวลาค่าหนึ่ง (ขึ้นอยู่กับเราว่าจะกำหนดเท่าใด) ส่งผล ทำให้มี กระแสคอลเลคเตอร์ I_c ไหลด้วยเช่นกัน จากวงจรนี้สามารถหาค่า

อัตราขยายกระแสดีซี $eta_{
m dc}$ ได้โดยคำนวณจากผลหารระหว่างกระแส I_c กับ กระแส I_b ได้เป็น $eta_{
m dc} = rac{I_c}{I_b}$

คุณสมบัติทางไฟกระแสสลับของ BJT

การหาค่าอัตราขยายกระแสเอซี (eta_{ac})

ค่าอัตราขยายกระแสจะคำนวณจากกราฟคุณสมบัติเอาต์พุตโดยจะคำนวณโดยเริ่มจากการจัดวงจรเพื่อให้ค่าของแรงดันไบอัส V_{ce} เปลี่ยนได้หลาย ๆ ค่า แล้วทำการวัดค่าการเปลี่ยนแปลงของกระแสคอลเลคเตอร์ (ΔI_c) เทียบกับการเปลี่ยนแปลงของ กระแสเบส (ΔI_b) โดยที่แรงดัน V_{CE} มีค่าคงที่ นั่นคือ

$$\beta_{ac} = \frac{\Delta I_c}{\Delta I_b} \Big|_{V_{CE} \text{ constant}} = \frac{I_{c2} - I_{c1}}{I_{b2} - I_{b1}}$$

แต่ในทางปฏิบัติพบว่าปริมาณของกระแสคอลเลคเตอร์ส่งผลต่อค่าของ $oldsymbol{eta}_{
m ac}$ หรืออัตราขยายกระแสด้วย วิธีการทดลอง $oldsymbol{I}$ การพล็อตกราฟคุณสมบัติของ $oldsymbol{BJT}$

- 1. เขียนวงจรตามรูปที่ 4 เพื่อจำลองการทำงานด้วย LTspice IV ในโหมด DC Sweep
- 1.1 วิธีการกำหนดเบอร์ของทรานซิสเตอร์ **Q1**
 - โดยคลิกปุ่มขวาของเม้าส์บนตัวทรานซิสเตอร์กดปุ่ม **Pick New Transistor** ดังรูปที่ **5** และเลือกเป็นเบอร์ **2N3904**

1.2 วิธีการจำลอง กำหนดในเมนู Simulate > Edit Simulation Cmd ในโหมด DC Sweep และ

- กำหนดค่า 1^{รt} **Source** เป็น **V1** และกำหนดค่าดังรูปที่ **6**
- กำหนดค่า 2nd **Source** เป็น **I1** และกำหนดค่าดังรูปที่ **7**

lst Source	2nd Source	3rd Sourc	:e	
Name	of 1st Source	to Sweep:	V1	
	Туре	of Sweep:	Linear	~
	St	art Value:	0	
	St	op Value:	15	
	1	ncrement:	10m	

Page 4 of 26

วิธีการวัดค่าเพื่อพล็อตรูปกราฟคุณสมบัติของ BJT

- เมื่อกดปุ่ม **Run** แล้วให้เลื่อนเม้าส์ไปที่ขา **C** ของทรานซิสเตอร์จน **CURSOR**

2

 $V_{CE}(V)$

цаполіти Сиптепт Probe іма́ээ́пляєща Іс ца́эрайліў 8
 15 (мА)
 16 (μА)
 15 (мА)
 16 (μА)
 17 (мА)
 18 (мА)
 19 (мА)
 10 (мА)

4 รูปที่ 9

6

- 2. บันทึกรูปกราฟที่ได้ในรูปที่ 9
- 3. ให้เลือกตัวต้านทานจากกล่องอุปกรณ์ ค่าตามที่ได้แสดงไว้ในวงจรรูปที่ 1 $m{0}$ มาวัดค่าจริงด้วยโอห์มมิเตอร์

 - ตัวต้านทาน R_{B} 330 $\mathrm{k}\Omega$ (แถบสี ส้ม ส้ม เหลือง ทอง) วัดค่าด้วยโอห์มมิเตอร์ =

4. ต่อวงจรตามรูปที่ 1**0** ลงบนโปรโตบอร์ด

(น.ศ.ควรตรวจสอบขาทรานซิสเตอร์ก่อนต่อวงจรเนื่องจากตำแหน่งขาของทรานซิสเตอร์ของแต่ละผู้ผลิตอาจแตกต่างกัน)

- 5. ป้อนแรงดันไฟเลี้ยง V_{bb} ให้กับวงจร โดยตั้งค่าไว้ประมาณ 3 โวลต์
- 6. ใช้โวลต์มิเตอร์วัดแรงดัน V_{R_B} ซึ่งตกคร่อม R_B จากนั้นปรับ V_{bb} จนกระทั่งแรงดัน V_{R_B} มีค่าประมาณ 3.3 V (ปรับให้ได้ค่ากระแสเบสประมาณ $I_B = V_{R_B} \ / \ R_B = 10 \ \mu A$ โดยคำนึงถึงค่าตัวต้านทานที่วัดได้ในข้อ 3 ด้วย)
- 7. ป้อนแหล่งจ่าย V_{CC} ให้วงจร และใช้โวลต์มิเตอร์วัดแรงดัน V_{CE} ระหว่างขา $m{C}$ และ $m{E}$ ทำการปรับ V_{CC} จนทำให้ V_{CE} ของทรานซิสเตอร์มีค่าเป็น 2 V
- **8.** ใช้โวลต์มิเตอร์ทำการวัดแรงดันตกคร่อม R_{C} ($V_{R_{C}}$) และบันทึกค่าที่ได้ในตารางที่ 1
- 9. ทำการทดลองในข้อ 6 8 ตามค่าที่กำหนดไว้ในตารางที่ 1

ตารางที่ **1**

V _{RB} (V) วัดค่า	I _B (μ A) คำนวณ	V _{CE} (V) วัดค่า	V _{RC} (V) วัดค่า	I _C (mA) คำนวณ	$oldsymbol{eta}$ คำนวณ
3.3	10	2			
3.3	10	4			
3.3	10	6			
3.3	10	8			
3.3	10	10			
3.3	10	12			
3.3	10	14			
3.3	10	16			
6.6	20	2			
6.6	20	4			
6.6	20	6			
6.6	20	8			
6.6	20	10			
6.6	20	12			
6.6	20	14			
9.9	30	2			
9.9	30	4			
9.9	30	6			
9.9	30	8			
9.9	30	10			
13.2	40	2			
13.2	40	4			
13.2	40	6			
13.2	40	8			
16.5	50	2			
16.5	50	4			
16.5	50	6			

Page 7 of 26

บันทึกผลการจำลอง (การพล็อตกราฟในแต่ละแกนขอให้ น.ศ. ระมัดระวังเรื่อง<u>หน่วย</u>ของค่าที่วัดได้)

รูปที่ **11**

วิเคราะห์ผลการทดลอง จากกราฟในรูปที่ 11 (ให้อธิบายจุดทำงานของไดโอด เช่น UN, Cutoff, ส่วนใดของกราฟที่บ่
บอกความเป็น r_{ac},R_{dc} โดยให้ น.ศ.เลือกจุดบนกราฟมา $oldsymbol{1}$ จุดเพื่อแสดงวิธีการหาค่าดังกล่าว)
(แนะนำให้เปรียบเทียบ $ extstyle{VI-Curve}$ ระหว่างตัว R กับ $ extstyle{Diode}$ จะเห็นความแตกต่างอย่างชัดเจน)

- **10.** คำนวณค่ากระแสคอลเลคเตอร์ (I_C) จากสูตร $I_C = rac{V_{R_C}}{R_C}$ โดยใช้ค่าของ R_C ที่วัดได้จากข้อ $m{3}$
- 11. นำค่า ${
 m I_C}$, ${
 m V_{CE}}$ และ ${
 m I_B}$ ที่ได้จากตารางที่ 1 ไปวาดกราฟของคุณสมบัติของทรานซิสเตอร์ในรูปที่ 12 โดย
 - ให้ค่ากระแสคอลเลคเตอร์ $m I_{C}$ เป็นแกนตั้ง
 - ให้แรงดันคอลเลคเตอร์-อิมิเตอร์ V_{CE} เป็นแกนนอน
 - เส้นกราฟแต่ละเส้นแสดงค่าของกระแส ${
 m I}_{
 m B}$ ซึ่งจะมีค่าต่างกัน จำนวน ${
 m f 5}$ เส้น
 - พล็อตกราฟความสัมพันธ์ระหว่าง ${
 m I_C}$ และ ${
 m V_{CE}}$ ที่ค่ากระแสเบส ${
 m I_B}$ ต่าง ๆ บนระนาบ ${
 m f X}$ ${
 m f Y}$

(น.ศ. ดูแนวทางการเขียนกราฟได้จากผลการจำลองในรูปที่ 9)

.....ลายเซ็นอาจารย์ผู้ควบคุม

หมายเหตุ ให้ น.ศ.กำหนดค่าสเกลของแต่ละแกนกราฟตามความเหมาะสมที่จะทำให้สามารถอ่านค่าจากกราฟได้อย่างเหมาะสม

Page 9 of 26

3.2 วงจรขยายสัญญาณไฟฟ้ากระแสสลับ

วัตถุประสงค์ เพื่อให้ผู้เรียนมีความรู้ความเข้าใจในเรื่องดังต่อไปนี้

- 1. พื้นฐานการจัดวงจรเพื่อกำหนดจุดทำงาน (Operating Point) ให้กับทรานซิสเตอร์
- 2. การจัดวงจรขยายแบบอิมิเตอร์ร่วม (Common Emitter Amplifier)
- 3. การจัดวงจรขยายแบบคอลเลคเตอร์ร่วม (Common Collector Amplifier)
- 4. การจัดวงจรขยายแบบเบสร่วม (Common Base Amplifier)

เครื่องมือและอุปกรณ์

1. เครื่องคอมพิวเตอร์พร้อมโปรแกรม LTspice IV		1 ชุด
2. ทรานซิสเตอร์ เบอร์ 2N3904		1 ตัว
3. ตัวต้านทาน 12 Ω , 20 Ω , 30 Ω , 39 Ω , 56 Ω , 10 $k\Omega$, 11 $k\Omega$, 18 $k\Omega$, 27 $k\Omega$	ค่าละ	1 ตัว
4. ตัวต้านทาน 1.2 $\mathrm{k}\Omega$	ค่าละ	2 ตัว
5. ตัวเก็บประจุ 220 μ ${ m F}$		2 ตัว
6. ตัวเก็บประจุ 47 μ F (หรือใช้ค่ามากกว่านี้ก็ได้)	ค่าละ	1 ตัว
7. แหล่งจ่ายไฟกระแสตรงแบบปรับค่าได้		1 เครื่อง
8. มัลติมิเตอร์		2 เครื่อง
9. ออสซิลโลสโคป		1 เครื่อง
10. เครื่องกำเนิดสัญญาณ (Signal Generator)		1 เครื่อง
11. แผงวงจร (Prototype Board)		1 แผง

ทฤษฎี

การจัดวงจรให้ทรานซิสเตอร์แบบ BJT ซึ่งทำหน้าที่เป็นวงจรขยายสัญญาณไฟกระแสสลับสามารถจัดวงจรได้ 3 รูปแบบ คือ วงจรขยายแบบอิมิเตอร์ร่วม (Common Emitter Amplifier) วงจรขยายแบบคอลเลคเตอร์ร่วม (Common Collector Amplifier) และวงจรขยายแบบเบสร่วม (Common Base Amplifier) ดังรูปที่ 13

วงจรขยายแบบอิมิเตอร์ร่วม (Common Emitter Amplifier)

ข้อเด่นของวงจรขยายแบบอิมิเตอร์ร่วม คือ มีอัตราการขยายแรงดัน (Av) ที่สูง แต่การที่มีอัตราการขยายแรงดันที่สูงนี้ กลับส่งผลกระทบต่อความเสถียร (Stability) จึงได้มีการออกแบบวงจรขยายแบบอิมิเตอร์ร่วมที่มีหลากหลายเทคนิคเพื่อให้ได้ ทั้งอัตราการขยายแรงดันขยายที่สูงและความเสถียรที่สามารถยอมรับได้ในเวลาเดียวกัน ส่วนการจัดวงจรที่นิยมมีอยู่หลาย แนวทาง ดังแสดงในรูปที่ 14 ซึ่งแต่ละวงจรก็จะมีจุดเด่น จุดด้อยที่แตกต่างกัน

Page 11 of 26

พื้นฐานการออกแบบวงจรขยายแบบ Common Emitter Amplifier with Voltage Divider Bias ข้อกำหนดพื้นฐานของการออกแบบวงจรคือ

- **a)** แรงดัน V_{BE} = 0.6 0.7~V สำหรับทรานซิสเตอร์แบบซิลิกอน
- b) เมื่อทรานซิสเตอร์ทำงานในแบบ **Current Amplification** จะมีค่า $m{eta}$ สูง **(โดยทั่วไป** pprox 100 300)
- \mathbf{C}) เนื่องจาก $\mathbf{I}_{\mathrm{C}}>>\mathbf{I}_{\mathrm{B}}$ ดังนั้นอาจจะประมาณค่า $\mathbf{I}_{\mathrm{C}}=\mathbf{I}_{\mathrm{E}}$ ได้

การออกแบบวงจรขยายสัญญาณมีได้หลายแนวทาง แต่ส่วนใหญ่แล้วมักจะใช้ลำดับขั้นตอนคล้าย ๆ กันดังนี้

- $oldsymbol{1}$. กำหนดหรือเลือกค่าแรงดันแหล่งจ่าย $oldsymbol{V_{CC}}$ ที่เราต้องการ
- 2. เลือกเบอร์ ชนิดทรานซิสเตอร์ และ ค่าของ $oldsymbol{eta}$ จาก $oldsymbol{\mathsf{Data}}$ Sheet ของผู้ผลิต
- 3. จากข้อมูลใน Data Sheet ให้เลือกค่ากระแส $I_{C(SAT)} \leq I_{C(MAX)}$ (โดยปกติใน Data Sheet ค่าของ $I_{C(MAX)}$ จะเกิดขึ้นเมื่อ $V_{CE} \approx 0.2V$ ขณะทำงานในช่วงอิ่มตัว)
- **4.** กำหนดค่า I_{CQ} (กระแส I_{C} ที่จุด **Q point**) โดยให้ $I_{CQ} \leq 0.5 \; I_{C(SAT)}$
- **5.** กำหนดค่าของ V_{CE} โดยให้มีค่าอยู่ในช่วง $0.33V_{CC} \le V_{CE} \le 0.5~V_{CC}$ (สำหรับ **Class A**)
- $m{6}$. กำหนดแรงดัน $m{V}_E$ (แรงดันตกคร่อม $m{R}_E$) ให้มีค่าเป็น $m{V}_E=0.1m{V}_{CC}$ (หรือ $0.1m{V}_{CC}\!\leq\! V_E\!\leq\! 0.2m{V}_{CC}$)
- $oldsymbol{7}$. คำนวณหา $oldsymbol{R}_E$ จากค่า $oldsymbol{V}_E$ และ $oldsymbol{I}_E$
- $f R_C$ จากค่า $f V_{RC}$ และ $f I_C$ โดยที่ $f V_{RC}=f V_{CC}-f V_{CE}-f V_{EC}$
- **9.** คำนวณหา R_2 โดย $R_2=0.1 \beta R_E$ (หรือให้อยู่ในช่วง $0.1 \beta R_E \leq R_2 \leq 0.2 \beta R_E$)
- ${f 10}$. คำนวณหา ${f V}_{
 m B}$ โดย ${f V}_{
 m B}={f V}_{
 m BE}+{f V}_{
 m E}$
- **11.** คำนวณหา \mathbf{R}_1 โดย

$$R_1 = R_2 \left(\frac{V_{CC} - V_B}{V_B} \right)$$

คำนวณหาค่าอื่น ๆ ตามต้องการ (หากจำเป็นหรืออยากรู้รายละเอียด) เช่น $I_{
m B}$, $I_{
m E}$, $I_{
m R1}$ และ $I_{
m R2}$ เป็นต้น

 V_{cc}

 V_{cc}

 I_C

 I_E

 R_{C}

 $V_{\rm C}$

 V_{E}

 $R_{\rm E1}$

 $R_{\rm E2}$

 R_{C}

 $V_{\rm C}$

 R_1

ตัวอย่างการออกแบบวงจรขยายแบบ **Common Emitter Amplifier with Voltage Divider Bias** การวิเคราะห์ไฟตรงสำหรับกำหนดจุดทำงานให้ทรานซิสเตอร์

ตัวอย่างนี้เป็นหนึ่งในหลาย ๆ แนวทางที่นิยมใช้ในการออกแบบวงจรแบบอิมิเตอร์ร่วม อาจจะไม่เหมาะต่อ วงจรขยายชนิดอื่น ๆ

์ขั้นตอนที่ 1 : เลือกทรานซิสเตอร์เบอร์ **2N3904 ซึ่**งข้อมูลจาก **Data sheet** พบว่า

- h_{fe} (β) มีค่าในช่วง 100 300 (เมื่อกระแส I_C ประมาณ 10 mA) เราจะกำหนดค่าไว้เป็น β = 200 (เลือกออกแบบที่ค่ากึ่งกลาง)
- $V_{\rm CEO}$ (Maximum) 40V เพื่อความปลอดภัยต้องมีค่า $V_{\rm CC} \leq 0.5 V_{\rm CEO}$ เราจึงกำหนดไว้เป็น 15V (ถ้าจะใช้กับแบตเตอรี่ก็เลือกเป็น 12 V)
- $V_{CE(sat)}\,0.2V$ (เมื่อกระแส I_C ประมาณ $10\,$ mA) เราเลือกให้ $V_{CE(sat)}\!=0.2V$ ตาม **Data Sheet**
- $V_{BE(sat)}$ 0.65 0.85 V (เมื่อกระแส I_C ประมาณ 10 mA) เราจะกำหนดค่าไว้เป็น 0.70 V

***** นักศึกษาควรเปิดเอกสาร **Data Sheet** อ่านประกอบไปด้วยจะช่วยฝึกการอ่าน **Data Sheet** ให้ชำนาญขึ้น *****

ขั้นตอนที่ **2:** หาค่า I_B $I_B = I_C/\beta = 4 \text{ mA}/200 = 20 \text{ }\mu\text{A}$

ขั้นตอนที่ f 3: กำหนดค่าของ V_{CE} ในที่นี้เราเลือกให้ค่า V_{CE} มีค่าเป็น f 1 ใน f 3 ของแหล่งจ่าย นั่นคือ

$$rac{
m V_{CC}}{3}$$
 $<$ $m V_{CE}$ $<$ $rac{
m V_{CC}}{2}$ เราจึงเลือกให้ค่า $m V_{CE}$ $=$ $5
m V$

ในตัวอย่างนี้เป็นกรณีที่เลือกให้แรงดัน $m V_{RE} =
m V_{RC}$ ทำให้ได้ $m R_{C} =
m R_{E1} +
m R_{E2}$ ด้วย

ดังนั้น
$$I_{C}(R_{C}+R_{E1}+R_{E2})+V_{CE}=V_{CC}$$

หรือ
$$R_C = \left(\frac{V_{CC} - V_{CE}}{2I_C}\right)$$
 $R_C = \left(\frac{15 - 5}{2*0.004}\right) = 1250 \ \Omega$

เราจึงเลือกใช้ $m R_C =
m R_{E1} +
m R_{E2} = 1.2 ~k\Omega$

ดังนั้นแรงดันตกคร่อม $R_{\rm E1}$ + $R_{\rm E2}$ และ $R_{\rm C}$ จึงมีค่าเป็น

$$\frac{(V_{CC} - V_{CE})}{2} = \left(\frac{15 - 5}{2}\right) = 5 \text{ V}$$

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปรับปรุง กันยายน **2563 ECE 010113021 Electronics Laboratory**

 R_{E1}

 R_{E2}

 V_{cc}

ขั้นตอนที่ $\mathbf{5}$: หาค่า \mathbf{R}_1 และ \mathbf{R}_2

- ก) R_1 และ R_2 เป็นวงจรแบ่งแรงดัน เพื่อป้อนให้กับขา B ของทรานซิสเตอร์ทำงานในโหมด **Active** ต้องมีค่า V_{BE} เป็น 0.7~V (ค่าจาก **Data Sheet**)
- ข) การทำงานของวงจรแบ่งแรงดันนี้ต้องเสถียร (กระแสที่ไหลผ่านวงจรแบ่งแรงดันไม่เปลี่ยนแปลงอย่างมีนัยสำคัญหาก กระแส ${
 m I}_{
 m C}$ เกิดการเปลี่ยนแปลง)

ดังนั้น ค่าของตัวต้านทาน R_1 และ R_2 ในวงจรแบ่งแรงดันนี้จะต้องสูงกว่าค่าของ $R_C,\,R_{E1}$ และ R_{E2}

เพื่อให้แน่ใจว่าวงจรแบ่งแรงดันจะมีความเสถียร จึงเลือกให้ค่าของ ${
m I}_2 >> {
m I}_{
m B}$

ในที่นี้เลือกให้ ${
m I}_2$ = $25{
m I}_{
m B}$ และ ${
m I}_1$ = $0.52~{
m mA}\cong 0.5~{
m mA}$

ดังนั้น
$$I_2 = 25 \times 20 \ \mu A = 0.5 \ mA$$

จึงได้ค่า $R_1 = \frac{9.3 \text{V}}{0.5 \text{ mA}} = 18.6 \text{ k}\Omega$

ในที่นี้เราเลือกค่า R (ที่มีในห้องแลป) เป็น $18~k\Omega$

$$R_2 = \frac{5.7V}{0.5 \text{ mA}} = 11.4 \text{ k}\Omega$$

ในที่นี้เราเลือกค่า R (ที่มีในห้องแลป) เป็น $11~k\Omega$

รูปที่ **17**

 R_2

รูปที่ 18

 V_{cc}

 C_{out}

 $\nu_{\rm o}$

 C_{E}

 R_{C}

 $1.2 \text{ k}\Omega$

 V_{C}

 V_E

 R_{E1}

 R_{E2}

การวิเคราะห์ไฟสลับสำหรับกำหนดอัตราการขยายสัญญาณไฟกระแสสลับ (Gain)

จากวงจรในรูปที่ **18** จะถูกนำมาดัดแปลงเพิ่มเติมอุปกรณ์ เข้าไปอีก **4** ตัวเพื่อให้สามารถใช้งานกับสัญญาณกระแสสลับแสดง ดังรูปที่ **19**

 ${
m V}_{
m in}$ เข้ามาในวงจรได้

- Cout ทำหน้าที่เป็นคัปปลิ้งคาปาซิเตอร์ (Coupling Capacitor)
 ด้านเอาต์พุตที่จะยอมให้เฉพาะส่วนของไฟกระแสสลับ
เท่านั้น

ผ่านออกจากวงจรไปยังด้าน $m V_{out}$ ได้ รูปที่ m 19

- CE ทำหน้าที่เป็นบายพาสคาปาซิเตอร์ (Bypass Capacitor)

ที่ขาอิมิเตอร์มันจะเป็นเส้นทางลัดให้เฉพาะส่วนของไฟ กระแสสลับไหลลงกราวด์ได้โดยไม่ต้องผ่าน $\,R_{
m F2}$

- R_{E1} ทำหน้าที่ตัวกำหนดอัตราการขยายแรงดันไฟสลับ (AC Voltage Gain) ของวงจร

ขั้นตอนที่ f 1: การเลือกค่า $f R_{E1}$

ก) พิจารณากระแส $i_{\rm in}$ และแรงดัน $v_{\rm in}$ เนื่องจาก $V_{\rm in}$ ถูกป้อนให้วงจรใน สภาวะที่ทรานซิสเตอร์ทำงานอยู่แล้ว ในโหมด Active จึงทำให้ไม่มีแรงดัน $V_{\rm in}$ ที่จะตกคร่อม p-n junction ขา B และ E ดังนั้นในลูปของกระแสอินพุตจึงเขียนได้เป็น

ดังนั้น
$$v_{\rm in}=i_{\rm in}{
m R}_{\rm in}=i_{\rm b}{
m r}_{\pi}+(i_{\rm b}+\!eta i_{\rm b}){
m R}_{{
m E}1}$$
 โดยที่ ${
m R}_{\rm in}={
m R}_1\|{
m R}_2\|{
m R}_{{
m i}{
m b}}$ เมื่อ ${
m R}_{{
m i}{
m b}}={
m r}_{\pi}+(1+\!eta){
m R}_{{
m E}1}$ ${
m r}_{\pi}=rac{{
m V}_{{
m T}}eta}{{
m I}_{
m c}}=rac{0.026\times200}{4}=1.3~{
m k}\Omega$

 V_{in} B C V_{o} V_{in} V_{π} E V_{π} $V_{$

 R_1

 $18 \text{ k}\Omega$

 R_2

11 kΩ

 C_{in}

 $v_{\rm in}$

 R_{in} R_{ib} รูปที่ ${f 20}$

ขight)พิจารณาแรงดัน $v_{ m out}$

เมื่อพิจารณาเฉพาะในส่วนของไฟกระแสสลับซึ่งตัวแบตเตอรี่ V_{CC} จะมี สภาวะเสมือนลัดวงจรลงกราวด์ ดังนั้นจะพบว่า $v_{
m out} = -(eta i_{
m b}) R_{
m C}$

เมื่อ $(1+\beta)R_{\rm E1}>>r_\pi$ และแทนค่า i_b จากข้อ ก) แล้วจะสามารถจัดรูปสมการใหม่ได้เป็น

$$\frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{C}}}{R_{\text{E1}}} = AC \text{ Voltage Gain}$$

ในการทดลองนี้เราจะลองกำหนดให้วงจรขยายมีค่าเป็น 30 เท่านั้นคือ

$$\frac{v_{\text{out}}}{v_{\text{in}}} = 30$$

จึงหาค่า R_{E1} ได้เป็น $R_{E1}=\frac{R_C}{gain}=\frac{1200}{30}=40~\Omega$ ในที่นี้เราเลือกค่า R_{E1} (ที่มีในห้องแลป) เป็นค่า $\mathbf{39}~\Omega$ จากค่า $R_{E1}+R_{E2}$ ที่ได้จากขั้นตอนที่ $\mathbf{4}$ ของการวิเคราะห์ไฟตรงจะได้ว่า

$$1200=40+R_{E2}$$
 $R_{E2}=1.16~k\Omega$ รูปที่ ${f 21}$ ดังนั้นจึงได้ว่า $R_{ib}=9.139~k\Omega$ C_{in}

ขั้นตอนที่ f 2: การเลือกค่า $f C_{in}$ และ $f C_{out}$

การเลือกค่าของ C_{in} ทำได้โดยพิจารณาจากวงจรด้านอินพุตดังรูปที่ **21** ตัวต้านทาน R_{in} และ C_{in} ต่อวงจรร่วมกันเป็นวงจรแบ่งแรงดัน ทำให้สามารถหาแรงดันตกคร่อม C_{in} ได้เป็น

$$|v_{C_{in}}| = |v_{in}| \frac{\frac{1}{\omega C_{in}}}{\sqrt{R_{in}^2 + \frac{1}{\omega^2 C_{in}^2}}}$$

โดย $\omega = 2\pi f$

และค่าความต้านทานต่อไฟฟ้ากระแสสลับของ C_{in} หาได้จาก $x_c = \frac{1}{2\pi f C_{in}}$ การเลือกค่า C_{in} จึงขึ้นอยู่กับค่าความถี่ของสัญญาณไฟฟ้ากระแสสลับที่เราต้องการให้ผ่านเข้าสู่วงจรขยาย ในที่นี้เราจะ พิจารณาที่ความถี่ $20~{
m Hz}$ (สมมติให้วงจรนี้ใช้ขยายสัญญาณความถี่เสียง)

 R_{in}

Page 16 of 26

สัญญาณอินพุตความถี่ **20** Hz จะต้องทำให้เกิดแรงดันตกคร่อมที่ $C_{\rm in}$ ไม่เกิน **1%** ของ $V_{\rm in}$ นั่นคือ ดังนั้น $v_{\rm C_{\rm in}}$ = $0.01v_{\rm in}$

$$0.01 = \frac{v_{\text{C}_{\text{in}}}}{v_{\text{in}}} = \frac{\frac{1}{\omega_{\text{C}_{\text{in}}}}}{\sqrt{R_{\text{in}}^2 + \frac{1}{\omega^2 C_{\text{in}}^2}}} = \frac{\frac{1}{(2\pi x 20)C_{\text{in}}}}{\sqrt{3900^2 + \frac{1}{(2\pi x 20)^2 C^2}}}$$

เมื่อแก้สมการจะทำให้ได้ C_{in} ประมาณ $204~\mu F$ ในที่นี้เราสามารถใช้ค่า C_{in} ที่มีในห้องแลป ที่ค่ามากกว่านี้ได้ ในการทดลองนี้ให้ใช้ค่า $220~\mu F$

ส่วนค่า C_{out} ใช้หลักการหาเช่นเดียวกันกับ C_{in} ในที่นี้เราเลือกใช้เป็นค่าเดียวกันกับ C_{in} คือ $220~\mu F$

ขั้นตอนที่ $oldsymbol{3}$: การเลือกค่า \mathbf{C}_{E}

เนื่องจากเราต้องการให้ตัวเก็บประจุที่ขาอิมิเตอร์ (C_E) ทำหน้าที่ลัดวงจร R_{E2} ในส่วนของสัญญาณไฟฟ้ากระแสสลับ ดังนั้นค่าความต้านทานไฟฟ้ากระแสสลับของตัวเก็บประจุนี้จะต้องมีค่าต่ำ ๆ เมื่อเทียบกับ R_{E2} โดยค่าของ C_E หาได้จาก สมการ

โดยที่
$$C_{\rm E}=rac{ au}{R_{\rm E2}}$$
 $f=20{
m Hz}$, $au=rac{1}{f}$ และ $R_{\rm E2}pprox 1200~\Omega$ $C_{\rm E}=rac{0.05}{1200}=41.67~\mu{
m F}$

ในที่นี้เราเลือกใช้ C_E ให้มีค่า 47 μF หรือสูงกว่า (ปัจจัยที่นำมาพิจารณาคือราคาของตัวเก็บประจุ) เมื่อได้ค่าอุปกรณ์ทุกตัวครบแล้ว จึงทำการทดลองต่อวงจรเพื่อทดสอบการทำงานของวงจรต่อไป

วิธีการทดลอง I จำลองการทำงานของวงจรด้วย LTspice IV

vc) เฉอง **1.** เขียนวงจรตามรูปที่ **22** ด้วยโปรแกรม **LTspice IV** โดยใช้ค่าของอุปกรณ์ $R_1,\,R_2,\,R_C,\,R_{E1},\,R_{E2},\,C$

C_E ที่ได้จากการออกแบบวงจร (หน้าที่ 11 - 16)

2. จำลองการทำงานในโหมด DC op pnt (DC Operating Point) บันทึกค่า

แรงดันไบอัสของวงจร

$$R_{E1} = 39 \Omega$$

$$R_{C} = 1.2 \times \Omega$$

$$R_{E1} = 39 \times \Omega$$

$$R_{E2} = 1.16 \times \Omega$$

รูปที่ 22

$$R_1 = \frac{18.6 \text{ k}\Omega}{R_1} = \frac{10.4 \text{ k}\Omega}{R_2} = \frac{10.4 \text{ k}\Omega}{R_2} = \frac{220 \text{ } \mu\text{F}}{R_1}$$

$$C_{in} = \boxed{920} \mu F$$

 $C_{out} = \frac{110}{100} \mu F$ $C_e = \frac{110}{100} \mu F$

$$V = \frac{491}{491} V$$

$$V_c = 10.09 \text{ V}$$
 $V_e = 4.91 \text{ V}$ $V_b = 5.607 \text{ V}$

$$I_{RC} = 4.08 \text{ mA}$$

$$I_{RE2} = 4.09 \text{ mA}$$

$$I_{RC} = \frac{4.08}{1.08} mA$$
 $I_{RE2} = \frac{4.09}{1.08} mA$ $I_b = \frac{8.0}{1.08} mA$

$$I_{R1} = 0.5 \text{ mA}$$
 $I_{R2} = 0.49 \text{ mA}$ $\beta_{0-point} = 200$

$$I_{R2} = 0.49 \text{ mA}$$

$$\beta_{\text{Q-point}} = \frac{200}{100}$$

3. จำลองการทำงานในโหมด **Transient** โดยให้ V_1 = **0.1** V_P **1** kHz บันทึกรูปคลื่นสัญญาณ $V_{\rm in},\,V_{\rm out},\,V_b,\,V_c$ และ V_{e}

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

ปรับปรุง กันยายน 2563 ECE Vmax = 5.0012 010113021 Electronics Laboratory

1. 5

1.8

4. ทดลองเปลี่ยนค่า R_{E1} ในรูปที่ **23** จำลองการทำงานในโหมด **Transient** และบันทึกรูปสัญญาณ V_c เพื่อเปรียบเทียบกัน ในกรณีดังต่อไปนี้ **(ขอให้เขียนกราฟด้วยสเกลเดียวกันทุกกรณี)**

n) R_{E1} = 50 Ω

อัตราการขยายแรงดันของวงจร $(V_{out}/V_{in}) = 21.3$ เท่า

ข) R_{E1} = **39** Ω (ผลการทดลองในข้อ**3**)

อัตราการขยายแรงดันของวงจร $\left(\mathbf{V}_{\mathrm{out}}/\mathbf{V}_{\mathrm{in}} \right)$ =**ฏ5.8** เท่า

P) $R_{E1} = 20 \Omega$

อัตราการขยายแรงดันของวงจร $(V_{
m out}/V_{
m in})$ = $extcolor{m{\mathcal{H}}}$ เท่า

 $R_{E1} = 12 \Omega$

อัตราการขยายแรงดันของวงจร $(V_{out}/V_{in}) = 46.2$ เท่า

เปลี่ยนค่า \mathbf{R}_{E1} กลับคืนค่าเดิม แล้วจำลองการทำงานในโหมด AC Analysis ดังรูปที่ 23 โดยให้ $V_{\rm in}$ = $0.1~V_{\rm p}$ ความถี่ $10~{
m Hz}$ - $100~{
m MHz}$ บันทึกรูปกราฟที่ \mathbf{V}_{out} เพื่อดูการตอบสนองเชิงความถี่ (Frequency Response) ของวงจรว่าขยายสัญญาณได้ดีในช่วงความถี่ที่ออกแบบหรือไม่

.....ลายเซ็นอาจารย์ผู้ควบคุม

- **5.** ทดลองเปลี่ยนจุดทำงาน (Operating Point) ด้วยการเปลี่ยนค่า \mathbf{R}_1 ให้ เป็นตัวต้านทานปรับค่าได้ ขั้นตอนดังนี้
- ก) เปลี่ยนค่าของ \mathbf{R}_1 ให้มีค่าเป็น $\{\mathbf{R}\mathbf{x}\}$ ดังรูปที่ $\mathbf{24}$
- ข) คลิกที่เมนู Spice Directive ดังรูปที่ 25

จากนั้นเขียนคำสั่ง .command เพื่อกำหนดค่า $\mathbf{R}\mathbf{x}$ ดังรูปที่ $\mathbf{26}$

รูปที่ 26

รูปที่ 24 step param Rx 10k 26k 8k คำอธิบายคำสั่ง : ให้ก่า Rx เปลี่ยนก่าได้ตั้งแต่ 10 kΩ ไป จนถึง 26 κΩ โดยเปลี่ยนสเต็ปละ 8 κΩ

6) จำลองการทำงานในโหมด **Transient** โดยให้ V_1 = 0.1 V_P 1 kHz บันทึกรูปคลื่นสัญญาณ V_{in} , V_b และ V_c (ให้ แยกกราฟและเขียนรูป 1- 2 Cycle เพื่อให้เห็นรายละเอียดครบถ้วนและขนาดูที่เหมาะสม)

ให้อธิบายผลการทดลองอันเนื่องจากการเปลี่ยนค่า R_1 **35** ก) ให้อธิบายสิ่งที่เกิดขึ้นกับสัญญาณ V_b และบอกสาเหตุ क्रिका र, त्रुश्मी तंश्यकी प्राप्ता Vb क्रिका เนียงา ๆ ฮิวต์านาทน ปรับดำ ใฉัพฤหภน -75 กับคัก เก็น Re เลือใช้ Voltage divider Vb= Ve(R, // Re) ทำกับ เมื่อ R สุงาีน คา Vb ๆ เ ผิด คง นินโอง V(V) VMAX= 7.981 V ə .0 ข) ให้อธิบายสิ่งที่เกิดขึ้นกับสัญญาณ Vc และบอกสาเหตุ ค่า Vc สุงขึ้น man Ry ที่เพิ่ม เพื่องๆ ภ Vc = Va - Ic Rc โดยที่ Ic หาใส์ๆ ก 5.5 5.0 Vmax= 4.586V 4.5 4.0 (Y(V) 6.3 1. 2 V_{c} 13 ค) อัตราการขยายแรงดันของวงจร (V_{out}/V_{in}) = 11 ทั้ง 3 กรณีเท่ากันหรือไม่ /เพราะเหตใด ไม่เทาสิน เพื่องกล Vo และ Vo ที่เกลกล R, แผล: ฝา ามหา สัน แล:จาก ความลับพันธิชอ สระเฉ Ic=BIB $V(n) P_1 = 18KΩ$ | Vont |
| Vont |
| V(n) P_1 = 24.02 cm |
| The V(n) P_1 = 24.02 cm |
| V(n) P_1 = 26kΩ

Page 21 of 26

วิธีการทดลอง 🛘 ต่อวงจรทดลองจริงบนโปรโตบอร์ด

1. วัดค่าตัวต้านทานด้วยโอห์มมิเตอร์บันทึกลงในตารางที่ **2** แล้วต่อวงจรในรูปที่ **27** ลงบนโปรโตบอร์ด **(Prototype Board)** โดยใช้อุปกรณ์ตามที่ได้ออกแบบไว้แล้วในตอนจำลองด้วย **LTspice IV**

รูปที่ **27**

2. ยังไม่ต้องป้อน V_{in} ให้ทำการวัดแรงดันไบอัส (DC) ที่จุดต่าง ๆ บันทึกผลการทดลองลงในตารางที่ $m{2}$ และ $m{3}$ ตารางที่ $m{2}$ ค่าของความต้านทานที่วัดได้จากโอห์มมิเตอร์และค่า $m{eta}$ จากตารางที่ $m{1}$

$R_1 =$	Ω	$R_2 =$	Ω
$R_{\rm C} =$	Ω	$R_{E1} =$	Ω
$R_{E2} =$	Ω	β (Ic = 4 mA) =	

ตารางที่ 3 จุดทำงาน Q-Point ของวงจร

(คำแนะนำ การวัดกระแสที่ไหลผ่านตัวต้านทาน ให้ใช้วิธี วัดแรงดันตกคร่อมแล้วหารด้วยค่าของตัวต้านทานที่ได้ในตารางที่**1**)

W.	ารามิเตอร์ในวงจร	ค่าที่ได้จากการจำลอง	ค่าที่ได้จากการวัด	% ความแตกต่าง
V_{B}	(วัดที่ขา B เทียบกราวด์)			
$V_{\rm C}$	(วัดที่ขา 🕻 เทียบกราวด์)			
$V_{\rm E}$	(วัดที่ขา E เทียบกราวด์)			
Ic	$(V_{CC} - V_C)/R_C$			
$I_{\rm E}$	$V_e/(R_{E1}+R_{E2})$			
I_{R1}	$(V_{CC} - V_B)/R_1$			
I_{R2}	V_B/R_2			

ให้ใช้ค่าที่วัดได้มาคำนวณหาค่าความต้านทานอินพุต ($R_{
m in}$) ค่าความต้านทานเอาต์พุตอิ ($R_{
m out}$) ของวงจร

$$R_{in} = R_1 ||R_2||R_{ib}$$
, $R_{ib} = r_{\pi} + (1 + \beta)R_{E1}$, $r_{\pi} = \frac{V_T \beta}{I_C}$, $R_{out} = R_C$

 $f{3}$. ป้อนแรงดัน $f{V}_{in}$ รูปไซน์ขนาด $f{100}\ mf{V}_p$ $f{1}kHz$ ให้กับวงจร แล้วใช้ออสซิลโลสโคปวัดรูปคลื่นของสัญญาณ $f{V}_{in}$, $f{V}_{b}$,

 V_c และ V_e และบันทึกผลการทดลอง V_{in} ผลการทดลอง V_{in} ก) V_{in} (ปรับอินพุตออสซิลโลสโคปเป็น AC Coupling) V_{in} (AC) = V_p - Frequency = V_p - Phase = V_p (เทียบกับ V_{in}) V_{in} CH.1 = V_p Timebase =

ค) V_{C} (ปรับอินพุตออสซิลโลสโคปเป็น $extbf{DC}$ Coupling)

 V_{C} มีระดับ DC = V ปรับอินพุตออสซิลโลสโคปเป็น AC Coupling

 $m V_{C}$ มีระดับ m AC = $m V_{p}$

- Frequency = Hz

- Phase = (เทียบกับ V_{in})

CH.1 = V/Div CH.2 = V/Div Timebase =

Page 23 of 26

ง) $V_{\rm E}$ (ปรับอินพุตออสซิลโลสโคปเป็น t DC Coupling)

$$V_E$$
 มีระดับ **DC** = V

ปรับอินพุตออสซิลโลสโคปเป็น AC Coupling

$$V_{\rm E}$$
 มีระดับ $f AC$ = $V_{
m p}$

- Frequency
$$=$$
 Hz

- Phase = (เทียบกับ
$$V_{in}$$
)

จ) อัตราการขยายแรงดันไฟกระแสสลับ =เท่า หาได้จาก (อธิบายวิธีการหา).....

4. ให้เปลี่ยนจุดทำงาน **(Q-Point)** ของวงจรด้วยการเปลี่ยนค่า R_1 ตามตาราง แล้วใช้ออสซิลโลสโคปวัดรูปคลื่นสัญญาณ และบันทึกผลการทดลองลงในกราฟเดียวกัน (ให้ใช้สีต่างกัน)

รูปคลื่นของ $\mathbf{V_B}$ ทั้ง $oldsymbol{3}$ กรณีของค่า $\mathbf{R_1}$

ก) ค่าของ \mathbf{V}_{b} (ปรับอินพุตออสซิลโลสโคปเป็น DC Coupling)

$R_1 = 10 \text{ k}\Omega$		$R_1 = 18 \text{ k}\Omega^*$	**	$R_1 = 27 \text{ k}\Omega$	
มีระดับ DC =	V	มีระดับ DC =	V	มีระดับ DC =	V
มีระดับ AC =	V_p	มีระดับ AC =	V_p	มีระดับ AC =	V _p

หมายเหตุ *** ให้ใช้ค่าจากการทดลองในข้อ 3 ไม่ต้องทดลองซ้ำ

$CH.1 = \dots V/Div$ $CH.2 = \dots V/Div$ $Timebase = \dots$

ข) ค่าของ V_c (ปรับอินพุตออสซิลโลสโคปเป็น $extbf{DC}$ Coupling)

$R_1 = 10 \text{ k}\Omega$		$R_1 = 18 \text{ k}\Omega^*$	**	$R_1 = 27 \text{ k}\Omega$	
มีระดับ DC =	V	มีระดับ DC =	V	มีระดับ DC =	V
มีระดับ AC =	V_p	มีระดับ AC =	V_p	มีระดับ AC =	Vp

หมายเหต *** ให้ใช้ค่าจากการทดลองในข้อ 3 ไม่ต้องทดลองซ้ำ

รูปคลื่นของ V_{C} ทั้ง 3 กรณีของค่า R_{I}

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปรับปรุง กันยายน **2563 ECE 010113021 Electronics Laboratory**

รูปคลื่นของ V_{E} ทั้ง $oldsymbol{3}$ กรณีของค่า R_{1}

ค) ค่าของ V_e (ปรับอินพุตออสซิลโลสโคปเป็น $extbf{DC}$ Coupling)

$R_1 =$	10 kΩ	2	$R_1 =$	18 kΩ	***	$R_1 =$	27 kΩ	2
มีระดับ 🕻)C =	V	มีระดับ	DC =	V	มีระดับ	DC =	V
มีระดับ ค	/C =	V _p	มีระดับ	AC =	V _p	มีระดับ	AC =	V _p

หมายเหตุ *** ให้ใช้ค่าจากการทดลองในข้อ 3 ไม่ต้องทดลองซ้ำ

=เท่า (เมื่อ $R_1 = 18 \; \mathrm{k}\Omega$) ***

=เท่า (เมื่อ R_1 = ${f 27}~{
m k}\Omega$)

จ) เกิดอะไรขึ้นกับสัญญาณที่ V_c เพราะเหตุใด

5. เปลี่ยนค่า R_1 กลับไปเป็นค่า **18** $k\Omega$ ดังเดิม ให้เปลี่ยนค่า R_{E1} ตามที่กำหนดด้านล่าง แล้วใช้ออสซิลโลสโคปวัดรูป

คลื่นสัญญาณและบันทึกผลการทดลอง

ผลการทดลอง

ก) ค่าแรงดันอินพุต $\mathbf{V}_{ ext{in}}$ (ปรับอินพุตออสซิลโลสโคปเป็น f AC Coupling)

 $Vin = \dots V_p$

Frequency = \dots Hz

Phase = (เทียบกับ V_{in})

CH.1= V/Div CH.2 = V/Div Timebase =

Page 25 of 26

ข $) เมื่อ m R_{E1} = 50 \Omega วัดค่าแรงดันเอาต์$	์พุตทั้งส่วนที่เป็นไฟตรงและไฟสลับ
$ m V_{out}$, $ m DC$ (ปรับอินพุตออสซิลโลส	สโคปเป็น DC Coupling)
มีระดับ DC	= V
$ m V_{out}$, $ m AC$ (ปรับอินพุตออสซิลโลล	สโคปเป็น AC Coupling)
มีระดับ AC	= V _p
Frequency	= Hz
Phase	= (เทียบกับ $V_{ m in}$)
อัตราการขยายแรง	าดัน =เท่า
CH.1= V/Div CH.2 = V/D	Div Timebase =

ค) เมื่อ $R_{E1}=20~\Omega$ วัดค่าแรงดันเอาต์พุตทั้งส่วนที่เป็นไฟตรงและไฟสลับ V_{out} , DC (ปรับอินพุตออสซิลโลสโคปเป็น DC Coupling) มีระดับ DC = V V_{out} , AC (ปรับอินพุตออสซิลโลสโคปเป็น AC Coupling) มีระดับ AC = V_p Frequency = V_p V_p

ง) เมื่อ $R_{E1}=$ 12 Ω วัดค่าแรงดันเอาต์พุตทั้งส่วนที่เป็นไฟตรงและไฟสลับ V_{out} , DC (ปรับอินพุตออสซิลโลสโคปเป็น DC Coupling) มีระดับ DC = V_{out} , AC (ปรับอินพุตออสซิลโลสโคปเป็น AC Coupling) มีระดับ AC = V_p Frequency = V_p Hz Phase = V_p (เทียบกับ V_{in}) อัตราการขยายแรงดัน = V_p

CH.1= V/Div CH.2 = V/Div Timebase =

คำถามท้ายการทดลอง

- 1. จากตารางที่ 1 ค่าของ eta ต่ำสุด และ สูงสุดที่ได้จากการวัดอยู่ที่จุดใดของกราฟ (ระบุค่าของ I_B , I_C , V_{CE}) และให้ อธิบายถึงสาเหตุที่ทำให้ได้ค่าเช่นนั้น
- **2.** จากตารางที่ **1** ค่าของ $m{eta}$ ที่จุดใดของกราฟ (ระบุค่าของ I_B , I_C , V_{CE}) ที่เหมาะสมต่อการใช้งานมากที่สุด เพราะเหตุใด
- 3. จากกราฟดังรูป

- **a**) อธิบายความสัมพันธ์ระหว่าง I_B , I_C และ V_{CE}
- b) ระบุพื้นที่ของ สภาวะการทำงานแบบอิ่มตัว (**Saturate Area**) สภาวะการทำงานแบบปกติ (**Active Area**) และ สภาวะหยุดการทำงาน (**Cutoff Area**) ของรูปกราฟในข้อ **3** พร้อมอธิบาย
- 4. ให้อธิบายความหมายของคำว่า ค่าความต้านทานอินพุต (R_{in}) ค่าความต้านทานเอาต์พุตอิ (R_{out}) ของวงจร (แนะนำให้ใช้แนวคิด แบบ Two Port Network มาอธิบาย)
- 5. ในการต่อวงจรขยายแบบอิมิเตอร์ร่วมในรูปที่ 27
- **5.1** ถ้าไม่มี \mathbf{R}_{E1} จะเกิดอะไรขึ้นกับคุณสมบัติของวงจรขยายนี้ เพราะเหตใด
- **5.2** จากผลการทดลองเปลี่ยนค่า **(** R_1 || R_2 **),** R_{E1} ในวงจร น.ศ. สามารถสรุปความสำคัญของตัวต้านทาน ทั้งสองได้ว่าอย่างไร และปัจจัยใดที่ น.ศ. คิดว่าสำคัญที่สุดในการเลือกค่าตัวต้านทานนี้พร้อมบอกเหตุผล
- ${f 5.3}$ ถ้าไม่มี ${f C_e}$ จะเกิดอะไรขึ้นกับคุณสมบัติของวงจรขยายนี้ พร้อมบอกเหตุผล
- **6.** ให้เขียนรายงาน**แสดงวิธีการออกแบบ**และผลจำลองการทำงานวงจรที่ได้ออกแบบด้วย **LTspice IV** ของวงจรขยาย แบบเบสร่วมและวงจรขยายแบบคอลเลคเตอร์ร่วม (ไม่ต้องต่อวงจรจริงบนโปรโตบอร์ด)