Data Mining Redes Neurais Artificiais

Prof. Dr. Joaquim Assunção

DEPARTAMENTO DE COMPUTAÇÃO APLICADA CENTRO DE TECNOLOGIA UFSM 2024

Fair user agreement

Este material foi criado para a disciplina de Mineração de Dados - Centro de Tecnologia da UFSM.

Você pode usar este material livremente*; porém, caso seja usado em outra instituição, **me envie um e-mail** avisando o nome da instituição e a disciplina.

*A maior parte deste material foi retirado do livro: "Joaquim V. C. Assunção. Uma Breve Introdução à Mineração de Dados: Bases Para a Ciência de Dados, com Exemplos em R. 192 páginas. Novatec. 2021. ISBN-10: 6586057507."

Prof. Dr. Joaquim Assunção. joaquim@inf.ufsm.br

https://en.wikipedia.org/wiki/Human_brain#/media/File:Sobo_1909_624.png

Cérebro e Neurônios

- Estima-se que o cérebro humano tenha cerca de ~86 bilhões neurônios cada um conectado em média a ~7.000 outros neurônios.
- Cada neurônio recebe sinais através de sinapses que controlam os efeitos do sinal no neurônio. Acredita-se que essas conexões sinápticas desempenham um papel fundamental no comportamento do cérebro.

Neurônio (en. neuron)

^{*}https://simple.wikipedia.org/wiki/File:Neuron.svg

Perceptron

Perceptron

- Cada entrada é associada a um peso (w) que é agregada por uma função de soma (soma 1).
- w_0 é o viés associado.

$$s = w_0 \sum_{i=1}^n w_i, x_i$$

Somatório Viés

• O viés associado pode ser visto como um peso 1 para uma entrada 0. Logo, podemos simplificar a equação a seguir.

$$s = w_0 \sum_{i=1}^{n} w_i, x_i$$
 $s = \sum_{i=0}^{n} w_i, x_i$

Função de ativação

• Uma função de ativação g(também chamada de função de esmagamento) que mapeia *s* para g(v) o valor de saída do neurônio.

Exemplo

- · Considere o conjunto de dados abaixo.
- Usaremos um *perceptron* para classificar a variável "classe" de acordo com as variáveis "var1" e "var2".

```
> foo
  var1 var2 classe
1     1     1     1
2     1     0     0
3     0     1     0
4     0     0
```

Exemplo

- Use a biblioteca "neuralnet".
- · Os parâmetros são:
- 1. Classe a ser predita "~"
- 2. Variáveis que serão usadas como entrada, separadas por um sinal de "+"
- 3. O número de camadas ocultas da rede. Vamos usar zero para criar um perceptron.

Exemplo

• Podemos usar a função plot nativa do R para gerar uma representação visual do perceptron (ou NN, ou DNN).

plot(NN)

Internamente...

Ao imprimir a variável, uma série de informações são expostas.

- covariate e response são as variáveis de entrada e a variável a ser predita, respectivamente.
- \$err.fct mostra a função de erro que pode ser a soma do erro quadrático (SSE) ou a entropia cruzada.
- Internamente, SSE é dado por: $\frac{1}{2}*(y-x)^2$

Internamente...

• • •

- A função de ativação (\$act.fct) que pode ser logística ou hiperbólica.
- Pesos iniciais, pesos finais, erro final, quantidade de passos para a convergência etc.

Usando a Rede Neural

• Use a função compute para obter a saída de uma rede neural com base no que foi aprendido pela mesma.

```
previsao <- compute(NN, dadosDeEntrada)</pre>
```

Note que dados De Entrada são exatamente as mesmas variáveis para as quais a rede foi treinada, na mesma ordem de entrada.

Rede Neural ADALINE

- A primeira rede neural, derivada diretamente do Perceptron.
- Adaline (*ADAptative LINear Element*) foi proposta por Widrow e Hoff.
- Essa rede é formada por apenas uma camada oculta e possui uma estrutura quase idêntica à do perceptron, exceto pela função de ativação que é linear e é dada pela minimização do erro quadrático médio (Squared Mean Error, SME).

Hands On!

1. Crie um dataframe com as operações lógicas com quatro variáveis binárias (v1, v2, v3, v4) contendo todas as combinações possíveis, adicione como classe a operação lógica: v1 E v2 OU v3 E V4. Crie uma rede neural Adaline para testar sua operação lógica usando 12 amostras. Teste as demais entradas.

Rede Neural de múltiplas camadas

- O poder de uma rede neural está diretamente relacionado a quantidade de camadas ocultas que ela guarda (embora outros fatores tenham influência).
- Em R, usando neuralnet, podemos fazer isso simplesmente alterando o parâmetro hidden.

Rede Neural de múltiplas camadas

• Para isso, passamos um vetor de inteiros, onde o tamanho do vetor é a quantidade de camadas ocultas e os valores correspondem a quantidade de neurônios na rede. Ex: c (5, 7) vai gerar uma rede com duas camadas ocultas, a primeira com 5 neurônios e a segunda com 7.

Hands On!

1. Use o *dataframe* criado (com quatro variáveis binárias) e repita o exercício anterior com uma rede de duas e três camadas. Analise o resultado.

Notas

- A biblioteca *neuralnet* não trabalha com classes nominais. Use múltiplas classes numéricas para isso (como o formato de uma matriz para o APRIORI).
- Valores de diferentes escalas podem ser problemáticos, normalize os dados primeiramente. Depois reverta o processo para obter os dados originais.