Exercise 3. We want to do inference for a non-linear forward operator in a Bayesian inverse problem. We assume that the <u>prior</u> is given as $X \sim \mathcal{N}(2,2)$. The forward operator is

$$h(x) = x^2$$

and we observe $Y = h(X) + \Xi$ with $\Xi \sim \mathcal{N}(0,1)$. Assume we observe $y_{\text{obs}} = 2$.

(i) Write down the density $\pi(x|y_{\text{obs}}=2)$. You do not need to calculate the normalizing constant explicitly.

normalizing constant explicitly.

We know that

$$T(x|yul_{s}=2) \propto f_{y}(yu_{s}=2|x) f_{x}(x) = f_{z}(yu_{s}-h(x)) f_{x}(x)$$
 $= f_{z}(2-x^{2}) \cdot f_{x}(x)$

Both $= f_{x}(x) = f_{y}(x) + f_{y}(x) + f_{y}(x) = f_{y}(x) + f_{y}(x) = f_{y}(x) + f_{y}(x) +$

g(x)