Application No. 10/527,635 Reply to Office Action of January 27, 2006

AMENDMENTS TO THE CLAIMS

(Original) A process for preparing dialdehydes and/or ethylenically unsaturated
monoaldehydes by reacting at least one compound having at least two ethylenically
unsaturated double bonds with carbon monoxide and hydrogen in the presence of a
hydroformylation catalyst comprising at least one complex of a metal of transition group
VIII with at least one ligand selected from among chelating pnicogen compounds of the
formula I,

$$R^{1} \xrightarrow{\operatorname{Pn}} (0)_{a} \xrightarrow{\operatorname{Q}} (0)_{b} \xrightarrow{\operatorname{Pn}} R^{3}$$

$$R^{2} \qquad \qquad R^{4}$$

where

Q is a bridging group of the formula

$$R^{II} \xrightarrow{R^{III}} A^{I} \xrightarrow{R^{IV}} RV$$

$$R^{I} \xrightarrow{V} A^{I} \xrightarrow{R^{IV}} RV$$

where

A¹ and A² are each, independently of one another, O, S, SiR³R^b, NR^c or CR^dR^c, where

R^a,R^b and R^c are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

Docket No.: 13111-00007-US

- R^d and R^e are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl or the group R^d together with a further group R^d or the group R^e together with a further group R^e form an intramolecular bridging group D,
- D is a divalent bridging group selected from among the groups

where

- R⁹ and R¹⁰ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano or are joined to one another to form a C₃-C₄-alkylene bridge,
- R¹¹, R¹², R¹³ and R¹⁴ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, SO₃H, sulfonate, NE¹E², alkylene-NE¹E²E³⁺X⁻, acyl or nitro,
- c 0 or 1.
- Y is a chemical bond.
- R¹, R^{II}, R^{IV}, R^{IV} and R^{VI} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, COOR^f, COO^TM⁺, SO₃R^f, SO⁻³M⁺,

443379_1

Docket No.: 13111-00007-US

 $NE^{1}E^{2}$, $NE^{1}E^{2}E^{3+}X^{-}$, alkylene- $NE^{1}E^{2}E^{3+}X^{-}$, OR^{f} , SR^{f} , $(CHR^{g}CH_{2}O)_{x}R^{f}$, $(CH_{2}N(E^{1}))_{x}R^{f}$, $(CH_{2}CH_{2}N(E^{1}))_{x}R^{f}$, halogen, trifluoromethyl, nitro, acyl or cyano,

where

Rf, E1, E2 and E3 are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R^g is hydrogen, methyl or ethyl,

M⁺ is a cation,

X is an anion, and

x is an integer from 1 to 120,

or

two adjacent radicals selected from among R^{I} , R^{II} , R^{II} , R^{IV} , R^{V} and R^{VI} together with two adjacent carbon atoms of the benzene ring to which they are bound for a fused ring system having 1, 2 or 3 further rings,

a and b are each, independently of one another, 0 or 1,

Pn is a pnicogen atom selected from among the elements phosphorus, arsenic and antimony,

and

443379_1

Application No. 10/527,635 Reply to Office Action of January 27, 2006

R¹, R², R³, R⁴ are each, independently of one another, hetaryl, hetaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or an NE¹E² group, with the proviso that R¹ and R³ are pyrrole groups bound via the

nitrogen atom to the pnicogen atom Pn

or R¹ together with R² and/or R³ together with R⁴ form a divalent group E of the formula

Py-I-W

where

- Py is a pyrrole group which is bound via the pyrrole nitrogen atom to the pnicogen atom Pn,
- I is a chemical bond or O, S, SiR^aR^b, NR^c, substituted or unsubstituted C₁-C₁₀-alkylene or CR^hRⁱ,
- W is cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy,

and

Rh and Ri are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

or \mathbb{R}^1 together with \mathbb{R}^2 and/or \mathbb{R}^3 together with \mathbb{R}^4 form a bispyrrole group of the formula

Py-I-Py

443379_I

Docket No.: 13111-00007-US

bound via the nitrogen atoms to the pnicogen atom Pn.

2. (Original) A process as claimed in claim 1, wherein at least one ligand of the formula I, in which the radicals R¹, R², R³ and R⁴ are selected independently from among groups of the formulae I.a to I.k

Application No. 10/527,635 Reply to Office Action of January 27, 2006

(I.e) (I.f)

R° Alk

(I.g)

$$R^{p}$$
 $C (=0) \text{ Alk}$
 R^{p}
 R^{p}

where

Alk is a C1-C4-alkyl group and

R°, R°, Rq and Rr are each, independently of one another, hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, acyl, halogen, trifluoromethyl, C₁-C₄-alkoxycarbonyl or carboxyl, is used.

Docket No.: 13111-00007-US

- (Currently amended) A process as claimed in claim 2, wherein at least one ligand of the formula I, in which the radicals R¹, R², R³ and R⁴ are each, independently of one another, a 3-alkylindolyl group, preferably a 3-methylindolyl group, is used.
- (Previously presented) A process as claimed in claim 1, wherein the chelating pnicogen compound of the formula I is selected from among chelating pnicogen compounds of the formula II,

$$R^{19} - (O)_a$$
 PD
 $R^{19} - (O)_b - Q - (O)_a$
 PD
 $R^{19} - (O)_b - R^{20}$
 $R^{19} - (O)_b - R^{20}$

where

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, W'COOR^k, W'COO'M[†], W'(SO₃)R^k, W'(SO₃)'M[†], W'PO₃(R^k)(R^l), W'(PO₃)²⁻(M[†])₂, W'NE⁴E⁵, W'(NE⁴E⁵E⁶)[†]X⁻, W'OR^k, W'SR^k, (CHR¹CH₂O)_yR^k, (CH₂NE⁴)_yR^k, (CH₂CH₂NE⁴)_yR^k, halogen, trifluoromethyl, nitro, acyl or cyano,

where

W' is a single bond, a heteroatom or a divalent bridging group having from 1 to 20 bridge atoms,

Application No. 10/527,635 Reply to Office Action of January 27, 2006

R^k, E⁴, E⁵, E⁶ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R¹ is hydrogen, methyl or ethyl,

M⁺ is a cation equivalent.

X is an anion equivalent and

y is an integer from 1 to 240,

where two adjacent radicals R¹⁵, R¹⁶, R¹⁷ and R¹⁸ together with the carbon atoms of the pyrrole ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings,

with the proviso that at least one of the radicals R¹⁵, R¹⁶, R¹⁷ and R¹⁸ is not hydrogen and R¹⁹ and R²⁰ are not joined to one another,

R¹⁹ and R²⁰ are each, independently of one another, cycloalkyl, heterocycloalkyl, aryl or hetaryl, or R¹⁹ together with R¹⁵ or R¹⁶ and/or R¹⁹ together with R¹⁷ or R¹⁸ form a divalent group

-I-W-

where

I is a chemical bond or O, S, SiR^aR^b, NR^c or substituted or unsubstituted C₁-C₁₀-alkylene, preferably CR^hRi, where R^a, R^b, R^c, R^h and Rⁱ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl and

Docket No.: 13111-00007-US

- W is cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy.
- 5. (Currently amended) A process as claimed in claim 1, wherein the chelating pnicogen compound of the formula I is a chelating pnicogen compound of the formulae II.1 to II.3,

Application No. 10/527,635 Reply to Office Action of January 27, 2006

R¹⁹-(O)_a P(O)_b-Q-(O)_a P(O)_b-R²⁰

N

R¹⁶ R¹⁷

(II.3)

where

R¹⁵, R¹⁶, R¹², R¹⁸, Q, a and b are as defined in claim 4, Q, a and b are as defined in claim 1,

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, W'COOR^k, W'COOM⁺, W'(SO₃)R^k, W'(SO₃)M⁺, W'PO₃(R^k)(R^l), W'(PO₃)²-(M⁺)₂, W'NE⁴E⁵, W'(NE⁴E⁵E⁶)+X', W'OR^k, W'SR^k, (CH₂CH₂NE⁴)_yR^k, (CH₂CH₂NE⁴)_yR^k, halogen, trifluoromethyl, nitro, acyl or cyano,

wherein

- W' is a single bond, a heteroatom or a divalent bridging group having from 1 to 20 bridge atoms,
- R^k, E⁴, E⁵, E⁶ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

443379_1

Docket No.: 13111-00007-US

R¹ is hydrogen, methyl or ethyl,

M+ is a cation equivalent,

X is an anion equivalent and

y is an integer from 1 to 240,

where two adjacent radicals R¹⁵, R¹⁶, R¹⁷ and R¹⁸ together with the carbon atoms of the pyrrole ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings.

where at least one of the radicals R¹⁶ and R¹⁷ in the formula II.3 is not hydrogen,

R¹⁹ and R²⁰ are each, independently of one another, cycloalkyl, heterocycloalkyl, aryl or hetaryl.

6. (Previously presented) A process as claimed in claim 1, wherein the bridging group Q is a triptycenedial group of the formula

$$R^{11}$$

$$R^{12}$$

$$R^{12}$$

$$R^{12}$$

$$R^{12}$$

$$R^{12}$$

$$R^{12}$$

$$R^{12}$$

Docket No.: 13111-00007-US

or the formula

where R^{I} , R^{II} , R^{III} , R^{IV} , R^{V} and R^{VI} , R^{9} , R^{10} , R^{11} and R^{12} are as defined in claim 1.

7. (Previously presented) A process as claimed in claim 1, wherein the bridging group Q is a xanthenediyl group of the formula

$$R^{II} \xrightarrow{R^{III}} R^{d} \xrightarrow{R^{d}} R^{IV} \xrightarrow{R^{V}} R^{V}$$

where R^{I} , R^{II} , R^{II} , R^{IV} , RV and R^{VI} and Y are as defined in claim 1 and R^{d} and R^{e} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocyloalkyl, aryl or hetaryl.

8. (Previously presented) A process as claimed in claim 1, wherein a molar ratio of ligand to metal of transition group VIII of from 1:1 to 1000:1 is set in the reaction mixture.

Docket No.: 13111-00007-US

- 9. (Previously presented) A process as claimed in claim 1, wherein the reaction is carried out at from 40 to 80°C.
- 10. (Previously presented) A process as claimed in claim 1, wherein the compound having at least two ethylenically unsaturated double bonds which is used is a a,w-diolefin.
- 11. (Previously presented) A process as claimed in claim 1, wherein
 - (i) a compound having a least two ethylenically unsaturated double bonds is subjected to the hydroformylation reaction in a reaction zone,
 - (ii) an output is taken from the reaction zone and is fractionated to give a fraction enriched in unsaturated monoaldehydes and a fraction depleted in unsaturated monoaldehydes, and
 - (iii) the fraction depleted in unsaturated monoaldehydes is recirculated, optionally after work up, to the reaction zone.
 - 12. (New) A process as claimed in claim 2, wherein at least one ligand of the formula I, in which the radicals R¹, R², R³ and R⁴ are each, independently of one another, a 3-methylindolyl group.