EE2302 Foundations of Information Engineering

Assignment 5 (Solution)

1.

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- a) No, because in the row corresponding to "3", there is no "1" in all entries. (By number theory, this is so because gcd $(3,6) \neq 1$.)
- b) Yes. The multiplicative inverse of 5 is 5, since $5 \times 5 \equiv 1 \pmod{6}$ as can be observed from the table.

2.

a)

121	107		
1	0	121	а
0	1	107	b
1	-1	14	c = a - b
-7	8	9	d = b - 7c
8	-9	5	e = c - d
-15	17	4	f = d - e
23	-26	1	g = e - f

Hence, gcd(105,121) = 1 = 107 x + 121 y where x = -26 and y = 23.

$$x = \left(-26 + \frac{121}{1}t\right) = -26 + 121t.$$

$$y = \left(23 - \frac{107}{1}t\right) = 23 - 107 t.$$

b)

575	345		
1	0	575	а
0	1	345	b
1	-1	230	c = a - b
-1	2	115	d = b - c

Hence, gcd(575, 345) = 115 = 575 x + 345 y where x = -1 and y = 2. $x = -1 + \frac{345}{115}t = -1 + 3t$. $y = 2 - \frac{575}{115}t = 2 - 5t$.

3. Note that
$$13^{26} = 13^{16} \times 13^8 \times 13^2$$

$$13 \mod 40 = 13$$

$$13^2 \mod 40 = 9$$

$$13^4 \mod 40 = 1$$

$$13^8 \mod 40 = 1$$

$$13^{16} \mod 40 = 1$$

Hence,
$$13^{16} \times 13^{16} \times 13^2 \mod 40 = 1 \times 1 \times 9 \mod 40 = 9$$

4.

Note that 73 is prime and 73 does not divide 9.

Then, by Fermat's Little Theorem $9^{73-1} \equiv 1 \mod 73$. Since 794=72*11+2, we have $9^{794} \equiv (9^{72})^{11} 9^2 \mod 73$.

Hence,
$$9^{794} \equiv 9^2 \mod{73}$$

 \equiv 8 mod 73.