# Задача 2.1.6. Эффект Джоуля-Томсона

Лось Денис (группа 611) 20 марта 2017

**Цель работы:** определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры, вычисление по результатам опыта коэффициентов Ван-дер-Вальса a и b.

В работе используются: трубка с пористой перегородкой, труба Дьюара, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

### Теоритическая часть

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля-Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка хорошо теплоизолирована. Газ из области повышенного давления проходит через множество узких и длинных каналов пористой перегородки в область с атмосферным давлением. Перепад давлений из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля-Томсона определяется по разности температуры газа до и после перегородки.

Тогда если температура трубки установится и газ станет уносить всё выделенное им в пробке тепло и если макроскопическая скорость газа с обеих сторон трубки достаточно мала, то энтальпия газа не будет меняться и можно получить формулу:

$$\mu_{\mathrm{M-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n}.$$

### Экспериментальная установка



Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

## Ход работы

1. Снимем показания вольтметра и манометра при различных температурах термостата. По полученным точкам построив график  $\Delta T (\Delta P)$ , определим коэффициент Джоуля - Томсона для выбранных нами температур.

| T, °C | U(0), MB | $\Delta T$ , K | U, мВ  | $\Delta P$ , atm |
|-------|----------|----------------|--------|------------------|
| 25.0  | 0.016    | 2.67           | 0.109  | 4                |
|       |          | 2.26           | 0.092  | 3.5              |
|       |          | 1.77           | 0.072  | 2.94             |
|       |          | 1.35           | 0.055  | 2.41             |
|       |          | 0.88           | 0.036  | 1.95             |
| 35.1  | 0.067    | 1.47           | 0.061  | 4                |
|       |          | 0.99           | 0.041  | 3.45             |
|       |          | 0.58           | 0.024  | 2.89             |
|       |          | 0.29           | 0.012  | 2.58             |
|       |          | - 0.14         | -0.006 | 2.00             |
| 45.0  | 0.098    | 0.64           | 0.027  | 4                |
|       |          | 0.33           | 0.014  | 3.57             |
|       |          | 0.02           | 0.001  | 3.15             |
|       |          | -0.28          | -0.012 | 2.70             |
|       |          | -0.71          | -0.030 | 2.03             |

Таблица 1: Зависимость  $\Delta T$  от  $\Delta P$ 

Для температуры  $T=25.0~^{\circ}\mathrm{C}$  :



Рис. 2: График зависимости  $\Delta T$  от  $\Delta P$ 

Для температуры  $T=35.1~^{\circ}\mathrm{C}$  :



Рис. 3: График зависимости  $\Delta T$  от  $\Delta P$ 

Для температуры  $T=45.0~^{\circ}\mathrm{C}$  :



Рис. 4: График зависимости  $\Delta T$  от  $\Delta P$ 

| T, °C | $\mu_{\text{д-T}}$ , $\frac{K}{\text{atm}}$ | $\sigma_{\mu}$ , $\frac{K}{	ext{atm}}$ |
|-------|---------------------------------------------|----------------------------------------|
| 25.0  | 0.86                                        | 0.05                                   |
| 35.1  | 0.80                                        | 0.04                                   |
| 45.0  | 0.67                                        | 0.04                                   |

Таблица 2: Коэффициент Джоуля-Томсона в зависимости от выбранной температуры

2. Используя экспериментальные данные и формулу  $\mu_{\text{д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}$  определим постоянные a и b для углекислого газа по двум парам температур: T = 25.0, T = 35.1 и T = 35.1, T = 45.0.

| N     | $a, H \cdot \text{м}^4/\text{моль}^2$ | $\sigma_a$ , $H \cdot {\rm M}^4/{ m MOJ}{ m b}^2$ | $b \cdot 10^{-4}$ , м <sup>3</sup> /моль | $\sigma_b \cdot 10^{-4} \; , \; \mathrm{m}^3/\mathrm{моль}$ |
|-------|---------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| 1 - 2 | 0.744                                 | 0.06                                              | 3.186                                    | 0.2                                                         |
| 2 - 3 | 1.755                                 | 0.11                                              | 11.081                                   | 0.6                                                         |

Таблица 3: Постоянные a и b для углекислого газа по двум различным парам температур

3. По определённым постоянным a и b найдём температуру инверсии углекислого газа при помощи формулы:

$$T_{\text{инв}} = \frac{2a}{Rb}$$

| N     | $T_{\text{инв}}$ , K | $\sigma_T$ , K |  |
|-------|----------------------|----------------|--|
| 1 - 2 | 562                  | 57             |  |
| 2 - 3 | 381                  | 32             |  |

Таблица 4: Температура инверсии для углекислого газа

### Ответы на ряд контрольных вопросов

- 1. Основное отличие идеального газа от реального в том, что в идеальном газе можно пренебречь потенциальной энергией взаимодействия молекул.
- 2. Температура инверсии температура, при которой эффект Джоуля-Томсона меняет знак: ниже температуры инверсии эффект положителен, а выше отрицателен. Критическая температура температура, находясь выше которой газ невозможно сконденсировать ни при каком давлении.

#### Заключение

В ходе эксперимента мы определили изменение температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры. Также по результатам опытов мы вычислили коэффициенты Ван-дер-Вальса a и b.