Convolutional kernel

Paolo Burgio

paolo.burgio@unimore.it

Matrix Convolution

- > Local operator (as opposite to «punctual» operator)
 - Gets a subset of input matrix image A to produce a pixel
- > Kernel of size *KxK* is shifted over image.
 - (Typically, smaller, e.g., 5x5, 21x21)
 - For every pixel (x, y) of input image A
 - Multiply-accumulate KxK neighborhood

Matrix Convolution

Four nested loops

- > x, y to iterate over input/output matrices/images
- > kx, ky to iterate over kernel K
- > Mind the borders!!!

Matrix Convolution

Widely used in computer vision

> ker typically smaller (es: 3x3, 7x7, 21x21....)

Operation performed, varies with ker

- > <u>Blur</u>, feature detection, edge detection...
- > Convolutional neural networks for Artificial Intelligence

Image blur with gaussian kernel

Kernel shape is controlled by the σ (Sigma) value

Algorithm knobs

- Xernel dimension
- \rightarrow Value of σ

Kernels contain float

 Typically, use normalized kernels (we will see this in a while)

Quiz time!

> Q1: what is the invariant kernel of convolution?

> Q2: what do these two kernels do?

0	0	0
0	2	0
0	0	0

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

> Q3: how do size of gaussian influence output?

Exercise

Implement a Gaussian filter, then parallelize it!

Starting from the code in Lena/ folder

- imgutils lib loads and stores a bmp image to/from an array of uchar
- > Atm, only Grayscale images
- > template.c as starting point

Who is Lena?

- > Image historically used by CV engineers
- > Both in Color and B/W, full of contrasts, details, ...
- > ...and she's hot

References

- "Calcolo parallelo" website
 - http://hipert.unimore.it/people/paolob/pub/Calcolo_Parallelo/
- > My contacts
 - paolo.burgio@unimore.it
 - <u>http://hipert.mat.unimore.it/people/paolob/</u>
- > Useful links
 - https://en.wikipedia.org/wiki/Lena_S%C3%B6derberg
 - http://www.google.com