Introduction to Analysis: Limits and Continuity

Limit of a Real-Valued Function at a Point

Definition

Assume that a function

$$f:D\to\mathbb{R}$$

is defined in a deleted neighborhood $c \in \mathbb{R}$, i.e.

$$\exists h > 0 : N^*(c,h) \subseteq D.$$

The **limit** as x approaches c of the function f is the value $L \in \mathbb{R}$, denoted

$$\lim_{x\to c} f(x) = L,$$

if, the "closer x gets to c", the "closer f(x) gets to L."

 $^{^{1}}c$ is an accumulation point of D, but $c \in D$ is not necessary here.

Limit of a Real-Valued Function at a Point

Formally: if

$$\forall \varepsilon > 0 \ \exists \delta = \delta(c, \varepsilon) > 0 : \ 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon,$$

then we say

$$\lim_{x\to c} f(x) = L.$$

In neighborhood notation,

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x \in N^*(c, \delta) \implies f(x) \in N(L, \varepsilon).$$

Limits Bound Maps of Neighborhoods

Restating the limit definition in neighborhood terms proves

Theorem

Suppose $f: D \to \mathbb{R}$ and let c be an accumulation point of D.

Then

$$\lim_{x\to c} f(x) = L$$

if and only if, for each $\varepsilon > 0$ and neighborhood $V = N(L, \varepsilon)$,

 $\exists \delta > 0$ and $U = N^*(c, \delta)$ such that the image

$$f(U \cap D) \subseteq V$$
.

Limits Bound Maps of Neighborhoods

Using $\varepsilon = \frac{|L|}{2}$ in the definition of the limit proves

Corollary

(sign preservation near a nonzero limit)

Suppose $f:D\to\mathbb{R}$ and let c be an accumulation point of D. Suppose $\exists L>0$ such that

$$\lim_{x\to c} f(x) = L.$$

Then $\exists \delta > 0$ such that $0 < |x - c| < \delta \implies f(x) > 0$.

Here we relate limits of functions with convergence of sequences.

Theorem

Suppose $f: D \to \mathbb{R}$ and let c be an accumulation point of D.

Then

$$\lim_{x\to c} f(x) = L$$

iff for any sequence (x_n) in $D \setminus \{c\}$,

$$\lim_{n\to\infty} x_n = c \implies \lim_{n\to\infty} f(x_n) = L.$$

Proof (\Longrightarrow) Assuming

$$\lim_{x\to c} f(x) = L,$$

we need to show that, for any sequence (x_n) ,

if
$$x_n \to c$$
, then $f(x_n) \to L$.

We know that for each $\varepsilon > 0$,

$$\exists \delta > 0: \ 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon.$$

If
$$x_n \to c$$
,

$$\exists N \in \mathbb{N} : \forall n > N, |x_n - c| < \delta.$$

Then

$$|x_n-c|<\delta \implies |f(x_n)-L|<\varepsilon,$$

which is precisely the criterion for $f(x_n) \to L$: for each $\varepsilon > 0$,

$$\exists N \in \mathbb{N} : \forall n > N, |f(x_n) - L| < \varepsilon.$$

 (\Leftarrow) For this direction, a direct proof would be difficult. Here, we use the contrapositive. To do so, we need to show

$$\lim_{x\to c} f(x) \neq L \implies (\exists (x_n) : \lim_{n\to\infty} x_n = c \text{ and } \lim_{n\to\infty} f(x_n) \neq L).$$

Assume

$$\lim_{x\to c} f(x) \neq L.$$

Then $\exists \varepsilon > 0$ such that

$$\forall \delta > 0, \ \exists x \in D: \ 0 < |x - c| < \delta \ \text{and} \ |f(x) - L| \ge \varepsilon.$$

In particular, for each $n \in \mathbb{N}$,

$$\exists x_n \in D: |x_n - c| < \delta \text{ and } |f(x_n) - L| \ge \varepsilon.$$

This gives us a sequence (x_n) such that

$$\lim_{n\to\infty} x_n = c$$
 and $\lim_{n\to\infty} f(x_n) \neq L$.

Limits, if they exist, are unique

Corollary

If $f: D \to \mathbb{R}$, and c is an accumulation point of D, then if f has a limit at c, the limit is unique.

Theorem

Suppose $f: D \to \mathbb{R}$, and c is an accumulation point of D. Then f does not have a limit at c iff \exists a sequence (x_n) in $D \setminus \{c\}$ such that $x_n \to c$ but $(f(x_n))$ does not converge in \mathbb{R} .

Limits, if they exist, are unique

Example

 $f(x) = \sin(\frac{1}{x})$ defined on $D = (0, \infty)$ has no limit at x = 0: consider the sequence $(x_n) = (\frac{2}{n\pi})$.

Limits, if they exist, are unique

Example

The Dirichlet function

$$f(x) = 1_{\mathbb{Q}}(x) = \left\{ egin{array}{ll} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right.$$

has no limit at any $x \in \mathbb{R}$: for $c \in \mathbb{R}$, with decimal expansion $c = c_0.c_1c_2c_3...$, consider the sequence (x_n) defined by

$$x_n = \begin{cases} c_0.c_1...c_n \in \mathbb{Q} & n \text{ even} \\ x_{n-1} + \frac{\sqrt{2}}{10^{n+1}} \in \mathbb{R} \setminus \mathbb{Q} & n \text{ odd.} \end{cases}$$

Then $x_n \to c$ but $f(x_n) \not\to 0$ or 1.

Squeeze (Sandwich) Theorem

Theorem

(Squeeze Theorem) Let f, g, h be functions defined on a neighborhood $N(a, \varepsilon)$ of a.

If

$$\forall x \in N^*(a, \varepsilon), \ f(x) \le g(x) \le h(x)$$

and

$$\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L.$$

Then

$$\lim_{x\to a}g(x)=L.$$

One-Sided Limits

Note that the definition of a limit goes in "both directions": positive and negative.

Definition

Assume that $f:D\to\mathbb{R}$ is a function, and $N^*(c,h)\subseteq D$ for some h>0. The **one-sided limits** are defined as:

left-hand limit :
$$\lim_{x \to c^{-}} f(x) = L \iff$$
 $\forall \varepsilon > 0, \exists \delta_{-} > 0 : -\delta_{-} < x - c < 0 \implies |f(x) - L| < \varepsilon.$

right-hand limit :
$$\lim_{x \to c+} f(x) = L \iff$$
 $\forall \varepsilon > 0, \exists \delta_+ > 0 : 0 < x - c < \delta_+ \implies |f(x) - L| < \varepsilon.$

One-Sided Limits

The limit

$$\lim_{x\to c}f(x)=L,$$

only exists if

$$\lim_{x\to c-} f(x) = L = \lim_{x\to c+} f(x).$$

There are several ways the limit may fail to exist:

- ▶ Both one-sided limits exist, but do not match (jump)
- One or both of the one-sided limits does not exist (vertical asymptote or oscillation).

In either case we often use the notation DNE ("does not exist"):

$$\lim_{x\to c} f(x) \ DNE.$$

Limits are Linear Maps

Let $f, g: D \to \mathbb{R}$ be functions defined on a neighborhood of c, such that

$$\lim_{x\to c} f(x) = L, \ \lim_{x\to c} g(x) = M.$$

The limit is a **linear map**: for any $a, b \in \mathbb{R}$,

$$\lim_{x\to c} (af(x) + bg(x)) = a \lim_{x\to c} f(x) + b \lim_{x\to c} g(x) = aL + bM.$$

Limits are Linear Maps

Proof We use an $\frac{\varepsilon}{2}$ -type argument.

Since f and g have limits at c, then for any $\varepsilon_f, \varepsilon_g > 0$, $\exists \delta_f, \delta_g > 0$:

$$|x-c| < \delta = \min(\delta_f, \delta_g) \implies |f(x)-L| < \varepsilon_f, |g(x)-M| < \varepsilon_g.$$

Limits are Linear Maps

Let $\varepsilon > 0$ and choose ε_f , $\varepsilon_g > 0$ such that $\varepsilon = |a|\varepsilon_f + |b|\varepsilon_g$.

Then $\exists \delta = \min(\delta_f, \delta_g)$ (same as before) such that

$$|x - c| < \delta \implies |(af(x) + bg(x)) - (aL + bM)|$$

$$\leq |af(x) - aL| + |bg(x) - bM|$$

$$= |a| \cdot |f(x) - L| + |b| \cdot |g(x) - M|$$

$$< |a|\varepsilon_f + |b|\varepsilon_g = \varepsilon. \quad \blacksquare$$

Limits of Products, Quotients

Products and quotients are also preserved by limits:

$$\lim_{x\to c} f(x)g(x) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to c} g(x)\right) = LM,$$

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}=\frac{L}{M} \text{ (if } M\neq 0).$$

Examples of Limits: Powers, Polynomials

It should be clear from the linearity and product rules of limits that powers of x have limits:

$$c \neq 0, \ n > 0 \implies \lim_{x \to c} x^n = c^n$$

From here it is easy to see that polynomials (with degree $n \in \mathbb{N}$) with real coefficients $a_i \in \mathbb{R}$, i.e.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0,$$

have limits for all $x \in \mathbb{R}$:

$$\lim_{x \to c} p(x) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0.$$

Examples of Limits

Example

$$f(x) = \frac{x^2 + 2x - 5}{x^2 + 3x - 5} \implies \lim_{x \to 2} f(x) = \frac{3}{5}.$$

Example

$$g(x) = \begin{cases} 3x^4 - x^2 + 3, & x > 1 \\ 26, & x = 1 \\ 5x, & x < 1 \end{cases} \implies \lim_{x \to 1} g(x) = 5.$$

Continuity at a Point

Definition

A function $f:D\to\mathbb{R}$ defined at $c\in D$ is called **continuous at** c if for any $\varepsilon>0$,

$$\exists \delta = \delta(c, \varepsilon) > 0: \ |x - c| < \delta, \ x \in D \implies |f(x) - f(c)| < \varepsilon.$$

This should look strikingly familiar to the definition of the limit of f(x) as x approaches c.

If this property is not met, c is a **point of discontinuity** of f.

If f is continuous $\forall c \in S \subseteq D$, we call f continuous on S, and if f is continuous $\forall c \in D$, we call f a continuous function.

Limits and Continuity

Continuity at an Isolated Point is Automatic

Note that, if c is an isolated point of D (not an accumulation point), then f is trivially continuous at c since $\exists \delta > 0$ such that D contains no other points near c, i.e.

$$c$$
 isolated in $D \implies \exists \delta > 0$: $0 < |x - c| < \delta \implies x \notin D$.

Example

Let
$$D = (1,6) \cup \{8,24.5,-3\}$$
. Then $f: D \to \mathbb{R}$ defined by

$$f(x) = 5x - 4$$

is a continuous function on D.

Sequential, Neighborhood Criteria of Continuity

Theorem

Let $f: D \to \mathbb{R}$ and $c \in D$. Then the following are equivalent:

- (a) f is continuous at c.
- (b) If (x_n) is a sequence in D such that $\lim_{n\to\infty} x_n = c$, then

$$\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(c).$$

(c) For any $\varepsilon > 0$,

$$\exists \delta > 0: x \in N(c, \delta) \implies f(x) \in N(f(c), \varepsilon).$$

Furthermore, if c is an accumulation point of D, then (a)-(c) are all equivalent to

$$\lim_{x \to c} f(x) = f\left(\lim_{x \to c} x\right) = f(c).$$

Examples of Continuity: Powers, Polynomials

It should be clear from the linearity and product rules of limits that powers of x are continuous functions:

$$c \neq 0, \ n > 0 \implies \lim_{x \to c} x^n = c^n$$

From here it is easy to see that polynomials (with degree $n \in \mathbb{N}$) with real coefficients $a_i \in \mathbb{R}$, i.e.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0,$$

are continuous for all $x \in \mathbb{R}$:

$$\lim_{x \to c} p(x) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 = p(c).$$

Examples of Continuity / Discontinuity

Example

$$f(x) = \frac{x^2 + 2x - 5}{x^2 + 3x - 5} \implies \lim_{x \to 2} f(x) = \frac{3}{5} = f(2).$$

Hence, f is continuous at x = 2.

Example

$$g(x) = \begin{cases} 3x^4 - x^2 + 3, & x > 1 \\ 26, & x = 1 \\ 5x, & x < 1 \end{cases} \implies \lim_{x \to 1} g(x) = 5 \neq g(1).$$

Hence, g is not continuous at x = 1.

Examples of Continuity / Discontinuity

Example

Define $f(x) = x \sin(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0. Then, for all $x \neq 0$, f is continuous, and

$$|f(x)-f(0)|=\left|x\sin\left(\frac{1}{x}\right)\right|=|x|\left|\sin\left(\frac{1}{x}\right)\right|\leq |x|=|x-0|.$$

Hence, for any $\varepsilon > 0$, the choice of $\delta = \varepsilon$ satisfies

$$0<|x-0|<\delta\implies |f(x)-f(0)|<\varepsilon,$$

which proves that f is continuous at x = 0.

Example

The Dirichlet function $1_{\mathbb{Q}}(x)$ has no limits for any $x \in \mathbb{R}$. Hence, it is discontinuous for every $x \in \mathbb{R}$.

Different Types of Discontinuity

There are many ways a function can be discontinuous at a point:

▶ removable jump discontinuity: the limit value $L \in \mathbb{R}$, and

$$\lim_{x\to c} f(x) = L, \text{ but } f(c) \neq L.$$

The function f can be redefined at this point to make a continuous function: if f has a removable jump at c, then

$$g(x) = \begin{cases} f(x) & x \neq c \\ L & x = c \end{cases}$$

is continuous at c.

▶ nonremovable jump discontinuity: $\exists K, L \in \mathbb{R}$ such that

$$\lim_{x \to c+} f(x) = K \neq L = \lim_{x \to c-} f(x).$$

Different Types of Discontinuity

- f is defined at c (i.e. f(c) exists), but $\lim_{x\to c} f(x)$ does not exist, due to **oscillations** of f near c (see, for example, $f(x) = \sin(\frac{1}{x})$ if $x \neq 0$, f(0) = 0).
- f has a **vertical asymptote** at x = c:

$$\lim_{x\to c+} f(x) = \infty \text{ or } -\infty, \text{ or } \lim_{x\to c-} f(x) = \infty \text{ or } -\infty.$$

- ▶ If *f* is undefined at *c*, then clearly *f* cannot be continuous at *c*, even if the limit exists.
 - However, as with a removable jump discontinuity, if the limit exists, we can redefine the function at c to be continuous.

Sequential Criterion of Discontinuity

Theorem

Let $f: D \to \mathbb{R}$ and $c \in D$.

Then f is discontinuous at c iff \exists a sequence (x_n) in D that converges to c but $(f(x_n))$ does not converge to f(c).

Sequential Criterion of Discontinuity

Example

We modify the Dirichlet function to get a function that is continuous only at irrational values. Let

$$f(x) = \begin{cases} \frac{1}{n} & x \in \mathbb{Q}, x = \frac{m}{n} \text{ in lowest terms} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

If $c \in \mathbb{Q}$, a sequence (x_n) of irrationals converging to c (like, say, $x_n = \frac{\sqrt{2}}{n} + c$) all satisfy $f(x_n) = 0$, but f(c) > 0.

Hence, f is discontinuous at c.

However, if $c \notin \mathbb{Q}$, then any sequence (x_n) converging to c has $f(x_n) \to f(c) = 0$. Hence, f is continuous at irrational c.

Linear Combos, Products, Quotients of Cont. Functions

Let $f, g: D \to \mathbb{R}$ be continuous at c. Then:

- Any linear combination of f and g is continuous at c, i.e. for any $a, b \in \mathbb{R}$, af + bg is continuous at c.
- Products and quotients of continuous functions are also continuous:

$$\lim_{x\to c} f(x)g(x) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to c} g(x)\right) = f(c)g(c),$$

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)} = \frac{f(c)}{g(c)} \text{ (if } g(c)\neq 0\text{)}.$$

Max, Min, Compositions of Cont. Functions

Let $f, g: D \to \mathbb{R}$ be continuous at c. Then:

- ► The maximum function $f \lor g(x) = \max(f, g)(x) = \max(f(x), g(x))$ and
- ▶ the minimum function $f \wedge g(x) = \min(f,g)(x) = \min(f(x),g(x))$ are both continuous.
- ▶ If g is continuous on D and f is continuous on g(D), then the composition $f \circ g(x) = f(g(x))$ is continuous on D.

Open Sets Determine Continuity

The following theorem holds in the much more general setting of *topological spaces*, not just in the special case of the real numbers.

Theorem

 $f:D\to\mathbb{R}$ is continuous on $D\iff$ for every open set G in \mathbb{R} there exists an open set H in \mathbb{R} such that $H\cap D=f^{-1}(G)$.

Corollary

 $f: \mathbb{R} \to \mathbb{R}$ is continuous $\iff f^{-1}(G)$ is open if G is open.

Bounded Functions

Definition

 $f: D \to \mathbb{R}$ is called a **bounded function** if $\exists M > 0$ such that

$$\forall x \in D, |f(x)| \leq M,$$

i.e. the range $f(D) \subseteq \mathbb{R}$ is a bounded set.

Note

D bounded does not imply f(D) bounded.

Try $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$.

Theorem

 $f:D\to\mathbb{R}$ is continuous, and D is compact $\implies f(D)$ is compact.

Continuous image of a compact set is compact

Theorem

 $f:D\to\mathbb{R}$ is continuous, and D is compact $\implies f(D)$ is compact.

Proof Let $\mathcal{G} = \{G_{\alpha}\}$ be an open cover of f(D).

We will show that \mathcal{G} has a finite subcover.

By the previous theorem, since f is continuous on D, we have that

for each
$$G_{\alpha} \in \mathcal{G}, \exists H_{\alpha} \subseteq \mathbb{R}$$
 open such that $H_{\alpha} \cap D = f^{-1}(G_{\alpha})$.

Continuous image of a compact set is compact

Since $f(D) \subseteq \bigcup_{\alpha} G_{\alpha}$, it follows that

$$D\subseteq\bigcup_{lpha}f^{-1}(G_{lpha})\subseteq\bigcup_{lpha}H_{lpha}.$$

Thus, the collection $\{H_{\alpha}\}$ is an open cover of D.

D is compact, so there is a finite subcover

$$\{H_{\alpha_1},H_{\alpha_2},...,H_{\alpha_n}\}$$

such that

$$D\subseteq\bigcup_{i=1}^n H_{\alpha_i}.$$

Continuous image of a compact set is compact

Note that

$$D\subseteq \bigcup_{i=1}^n H_{\alpha_i} \implies D\subseteq \bigcup_{i=1}^n (H_{\alpha_i}\cap D) \implies f(D)\subseteq \bigcup_{i=1}^n G_{\alpha_i}.$$

Hence, $\{G_{\alpha_i}\}_{i=1}^n$ is a finite subcover of \mathcal{G} for f(D).

$$f(D)$$
 is compact.

The Attainment of Extreme Values

As a corollary we get the well-known

Corollary

Extreme Value Theorem (EVT) Let f be continuous on [a, b].

Then f attains its minimum (greatest lower bound, infimum) and maximum (least upper bound, supremum) on [a, b].

Proof f is continuous on [a, b], and [a, b] is compact, so the image f([a, b]) is compact. Thus, f([a, b]) contains its min and max:

$$\exists x_m, x_M \in [a,b] \text{ and } m,M \in f([a,b]) \text{ such that}$$

$$\forall x \in [a, b], \ f(x_m) = m \le f(x) \le M = f(x_M). \blacksquare$$

Sign Preservation

Theorem

(Sign Preservation) Let $f:[a,b]\to\mathbb{R}$ be continuous, $c\in(a,b)$.

Then, if $f(c) \neq 0$, \exists a neighborhood $N = N(c, \varepsilon)$ of c such that $\forall x \in N(c, \varepsilon)$, f(x) and f(c) have the same sign.

Sign Preservation

Proof WLOG assume f(c) > 0.

Since f is continuous at c, and $f(c) = y_0 > 0$, then for any $\varepsilon > 0$,

$$\exists \delta > 0: \ 0 < |x - c| < \delta \implies |f(x) - y_0| < \varepsilon.$$

Choosing $\varepsilon = \frac{y_0}{2} > 0$, we get some $\delta > 0$ such that

$$x \in (c-\delta,c+\delta) \implies f(x) \in \left(\frac{y_0}{2},\frac{3y_0}{2}\right). \therefore f(x) > 0.$$

If
$$f(c) < 0$$
, consider $g(x) = -f(x)$.

The Intermediate Value Theorem (version 0)

Lemma

Intermediate Value Theorem (IVT) (through 0)

Suppose f is continuous on [a, b], and that f(a) < 0 < f(b).

Then $\exists c \in (a, b)$ such that f(c) = 0.

Proof Let²

$$S = \{x \in [a, b] : f(x) \le 0\}.$$

Let $c = \sup S$. We claim that f(c) = 0.

²In pre-image terms, $S = [a, b] \cap f^{-1}((-\infty, 0])$.

The Intermediate Value Theorem (version 0)

For a contradiction, suppose that f(c) < 0.

Then, by sign preservation, \exists a neighborhood U of c such that

$$\forall x \in U \cap [a,b], f(x) < 0.$$

Since f(c) < 0 < f(b), $\exists p \in U$ such that c .

But f(p) < 0 since $p \in U$.

Thus, $p \in S$, which contradicts $c = \sup S$. $\rightarrow \leftarrow$ $\therefore f(c) \ge 0$.

The Intermediate Value Theorem (version 0)

Likewise, suppose for another contradiction that f(c) > 0.

Then, again by sign preservation, $\exists V = V(c, \varepsilon)$ for some $\varepsilon > 0$:

$$\forall x \in V \cap [a,b], f(x) > 0.$$

Then, since f(a) < 0 < f(c), $\exists q \in V$ such that a < q < c.

Hence, f(q) > 0, and so q is an upper bound for S with q < c, contradicting $c = \sup S$. $\rightarrow \leftarrow$ $\therefore f(c) \le 0$.

Therefore,
$$f(c) = 0$$
, and $c \neq a$ and $c \neq b \implies c \in (a, b)$.

The Intermediate Value Theorem

Theorem

Intermediate Value Theorem (IVT)

Suppose f is continuous on [a, b], and that $f(a) \neq f(b)$.

Then, as x varies from a to b, f(x) takes on every value k between f(a) and f(b).

Intuition If f is continuous on [a, b], you don't need to lift your pencil when drawing the graph of f.

In addition, every horizontal line y = k for k between f(a) and f(b) crosses the graph at least once.

The Intermediate Value Theorem

Proof WLOG, assume f(a) < f(b). We show

$$\forall k \in (f(a), f(b)), \exists x_k \in (a, b) : f(x_k) = k.$$

Apply the previous lemma to the continuous function

$$g(x) = f(x) - k,$$

since

$$g(a) = f(a) - k < 0$$
 and $g(b) = f(b) - k > 0$.

Thus $\exists c \in (a, b)$ such that

$$g(c) = f(c) - k = 0 \implies f(c) = k$$
.

The f(a) > f(b) case repeats the argument on h(x) = -g(x).

Cont. image of a compact interval is a compact interval

We now refine the theorem from the beginning of the section:

Theorem

Suppose f is continuous on [a, b]. Then f is bounded on [a, b].

can be focused to the more immediately-applicable

Theorem

Suppose $f: D \to \mathbb{R}$ is continuous, and D is a compact interval. Then f(D) is a compact interval.

Cont. image of a compact interval is a compact interval

Proof Since D is compact and f is continuous, by the EVT f(D) attains its min m and max M.

Thus, $f(D) \subseteq [m, M]$, and

$$\exists x_m, x_M \in D: f(x_m) = m, f(x_M) = M.$$

If m = M, then f is a constant function and we are done.

Else, m < M. Clearly, $m, M \in f(D)$.

Let $k \in (m, M)$. By the IVT, $\exists x_k \in D : f(x_k) = k$.

Since k is arbitrarily chosen, this implies $(m, M) \subseteq f(D)$.

Thus,
$$[m, M] \subseteq f(D) \subseteq [m, M] \implies f(D) = [m, M]$$
.

Uniform continuity

Recall the definition of continuity at a point:

 $f:D\to\mathbb{R}$ is **continuous** at $c\in D$ if, for any $\varepsilon>0$,

$$\exists \delta = \delta(c, \varepsilon) : \forall x \in D, \ |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon,$$

and f is continuous on D if f is continuous for each $c \in D$.

Note that each δ here could (but does not necessarily) depend on the choice of c. (Also, I've added the $\forall x \in D$ for emphasis.)

Uniform continuity

Uniform continuity on a set does not depend on a point c, only on the set D.

Definition

 $f: D \to \mathbb{R}$ is **uniformly continuous** on D if, for any $\varepsilon > 0$,

$$\exists \delta = \delta(D, \varepsilon) : \forall x, c \in D, \ |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon.$$

Clearly, f uniformly continuous on $D \implies f$ continuous on D.

Uniform continuity: Examples

Example

Define $f:(1,\infty)\to\mathbb{R}$ by $f(x)=4\sqrt{x}+2$.

Then f is uniformly continuous on $(1, \infty)$: let $\varepsilon > 0$.

Choosing $\delta = \frac{\varepsilon}{2}$, we get

$$|x - c| < \delta \implies |f(x) - f(c)| = |4\sqrt{x} + 2 - 4\sqrt{c} - 2|$$

$$= 4|\sqrt{x} - \sqrt{c}|$$

$$for x > 1, c > 1, \sqrt{x} + \sqrt{c} > 2$$

$$= 4\frac{|x - c|}{|\sqrt{x} + \sqrt{c}|}$$

$$< 2|x - c| < 2\delta = \varepsilon.$$

Not uniformly continuous?

Let $f: D \to \mathbb{R}$. Then f is *not* uniformly continuous on D if the negation of the definition of uniform continuity is true, i.e.

f is not uniformly continuous on D $\iff \neg | \text{for any } \varepsilon > 0, \exists \delta = \delta(D, \varepsilon) :$ $\forall x, c \in D, |x-c| < \delta \implies |f(x) - f(c)| < \varepsilon$ $\iff \exists \varepsilon > 0 : \neg [\exists \delta = \delta(D, \varepsilon) :$ $\forall x, c \in D, |x-c| < \delta \implies |f(x)-f(c)| < \varepsilon$ $\iff \exists \varepsilon > 0 : \text{ for any } \delta > 0.$ $\neg [\forall x, c \in D, |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon]$ $\iff \exists \varepsilon > 0$: for any $\delta > 0$. $\exists x, c \in D: |x-c| < \delta \text{ and } |f(x)-f(c)| > \varepsilon.$

Not uniformly continuous?

Example

Define $g:(0,\infty)\to\mathbb{R}$ by $g(x)=4x^2+2$. Then g is continuous (since g is a polynomial), but not uniformly continuous, on $(0,\infty)$.

To prove g is *not* uniformly continuous on $(0,\infty)$, we can show that $\exists \varepsilon > 0$ such that, for any $\delta > 0$,

$$\exists x, c \in (0, \infty): |x - c| < \delta \text{ and } |g(x) - g(c)| \ge \varepsilon.$$

Let $\varepsilon=1$ (although any $\varepsilon>0$ will do); we want $|x-c|<\delta$ and

$$|g(x) - g(c)| = 4|x^2 - c^2| = 4|x + c| \cdot |x - c| \ge \varepsilon = 1.$$

Not uniformly continuous?

The |x + c| term requires we select one of the inputs specifically, and set the other a certain distance away.

Pick any $\delta>0$, and set $x=\frac{1}{\delta}$ and $c=x+\frac{\delta}{2}$ so that $|x-c|=\frac{\delta}{2}$, and $|x+c|=\frac{2}{\delta}+\frac{\delta}{2}$. Then

$$\begin{aligned} |x-c| &< \delta \text{ and} \\ |g(x)-g(c)| &= 4|x+c|\cdot|x-c| \\ &= 4\cdot\left(\frac{2}{\delta}+\frac{\delta}{2}\right)\cdot\frac{\delta}{2} \\ &\geq 4\cdot\left(\frac{2}{\delta}\right)\cdot\frac{\delta}{2} = 4 > 1 = \varepsilon. \end{aligned}$$

Thus, g is not uniformly continuous³ on $(0, \infty)$.

³Note that $(0, \infty)$ is not compact.

Uniform continuity properties

What extra properties give us uniform continuity from continuity?

Theorem

 $f: D \to \mathbb{R}$ continuous, D compact $\implies f$ unif continuous on D.

Theorem

 $f: D \to \mathbb{R}$ uniformly continuous, (x_n) is a Cauchy sequence in $D \implies (f(x_n))$ is a Cauchy sequence in f(D).

Note

This theorem does not hold for continuity on D alone: check $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\frac{1}{x}$, with the sequence $(x_n)=(\frac{1}{n})$.

Uniform continuity preserves Cauchy sequence-ness

Theorem

 $f: D \to \mathbb{R}$ uniformly continuous, (x_n) is a Cauchy sequence in $D \implies (f(x_n))$ is a Cauchy sequence in f(D).

Proof Pick $\varepsilon > 0$. Then $\exists \delta = \delta((a,b),\varepsilon) > 0$ such that

$$\forall x, y \in (a, b), |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Since (x_n) is Cauchy, $\exists N \in \mathbb{N}$ such that

$$\forall m, n > N, |x_m - x_n| < \delta.$$

Thus, $(f(x_n))$ is Cauchy:

$$\forall m, n > N, |f(x_m) - f(x_n)| < \varepsilon. \blacksquare$$

Definition

A function $\tilde{f}: E \to \mathbb{R}$ is called an **extension** of the function $f: D \to \mathbb{R}$ if $D \subseteq E$ and $\forall x \in D$, $f(x) = \tilde{f}(x)$.

Theorem

 $f:(a,b) \to \mathbb{R}$ uniformly continuous on (a,b) $\iff f$ can be extended to $\tilde{f}:[a,b] \to \mathbb{R}$ continuous on [a,b].

Proof (\longleftarrow) Suppose $\tilde{f}:[a,b]\to\mathbb{R}$ is continuous on [a,b].

[a,b] is compact $\implies \tilde{f}$ is uniformly continuous on [a,b]

 $\implies \tilde{f}$ is uniformly continuous on (a, b).

But, for
$$x \in (a, b)$$
, $\tilde{f}(x) = f(x)$.

 \therefore f is uniformly continuous on (a, b).

Proof (\Longrightarrow) Suppose $f:(a,b)\to\mathbb{R}$ is unif continuous on (a,b).

We need to show that

$$\lim_{x\to a+} f(x) = p \text{ and } \lim_{x\to b-} f(x) = q$$

exist. After this, we define $ilde{f}:[a,b] o\mathbb{R}$ by

$$\tilde{f}(x) = \begin{cases} p & x = a \\ f(x) & a < x < b \\ q & x = b \end{cases}$$

and we are done.

WLOG we will only show that $\lim_{x\to a+} f(x) = p$, and claim that a similar argument works for $\lim_{x\to b-} f(x) = q$.

Since sequence convergence \iff Cauchy-ness, if (s_n) is a sequence of points in (a,b) that converges to a, then (s_n) is Cauchy.

Thus, by the previous theorem, since f is uniformly continuous on (a, b), we have that the sequence $(f(s_n))$ is also Cauchy.

Since Cauchy sequences converge,

$$\lim_{n\to\infty}f(s_n)=p$$

for some $p \in \mathbb{R}$.

By the sequential criterion for limits (since a is an accumulation point of (a, b)), this is the $p \in \mathbb{R}$ we seek, as

$$\lim_{n\to\infty} s_n = a \implies \lim_{n\to\infty} f(s_n) = \lim_{x\to a} f(x). \blacksquare$$