CS1010 Tutorial 8

Slides by *Ryan Tan Yu*

Agenda for Today

- Problem Set 20
- Problem Set 21
- Problem Set 22
- Assignment 5 Comments
- Assignment 6 Help

Problem Set 20

Ternary Expression ?

- Denoted by the ? operator
- BOOLEAN_EXPRESSION ? VALUE_IF_TRUE : VALUE_IF_FALSE
- Examples

```
\circ long i = x < 10 ? x : -1 -- assign x if x < 10, otherwise assign -1
```

- return ptr == NULL ? '\0' : ptr[0]
 - return nul-terminating char if ptr == NULL, otherwise return ptr[0]
- A common way to write ternary expressions to closely follow if...else statements:

Consider the macro below

```
#define MIN(a,b) a < b ? a : b

long i = MIN(10, 20);
long j = MIN(10, 20) + 1;</pre>
```

What are the values of i and j after executing the above?

```
#define MIN(a,b) a < b ? a : b
long i = MIN(10, 20);
long j = MIN(10, 20) + 1; // expected to be 11</pre>
```

expands to

```
long i = 10 < 20 ? 10 : 20;  // 10
long j = 10 < 20 ? 10 : 20 + 1;  // 10</pre>
```

- j is wrongly 10 despite the pre-expanded code looking "correct"
- Preprocessor macros are just textual replacements

Pre- and Post-increment Operator

- For integer types, increment a variable using i++ or ++i
- Post-increment i++
 - Current value of i is used for the current statement
 - o i is incremented after
- Pre-increment ++i
 - o i is incremented then the value is used in the current statement

```
long x = 10;
long y = x++;
// {x == 11 && y == 10}

long x = 10;
long y = ++x;
// {x == 11 && y == 11}
```

Consider the following code:

```
#define MIN(a,b) a < b ? a : b

long i = 10;
long j = 20;
long k = MIN(j, i++);</pre>
```

What are the values of i and k after executing the above?

```
#define MIN(a,b) a < b ? a : b

long i = 10;
long j = 20;
long k = MIN(j, i++);</pre>
```

• What is the expected behaviour?

```
long i = 10;
long j = 20;
long k = MIN(j, i++); // {k == min(i,j) == i == 10}
// {i == 11}
```

```
#define MIN(a,b) a < b ? a : b

long i = 10;
long j = 20;
long k = MIN(j, i++);</pre>
```

What is the actual behaviour?

```
long i = 10;
long j = 20;
long k = j < i++ ? j : i++; // {k == i + 1 == 11}
// {i == 12}</pre>
```

```
long i = 10;
long j = 20;
long k = j < i++ ? j : i++; // {k == i + 1 == 11}
// {i == 12}</pre>
```

- i++ returns the value of i for use in the expression, then increments i
- The program checks for j < i++
 - 10 is returned for use in j < i++
 - o i is incremented to 11
- j < i++ checks for 20 < 10
- The "false" branch of the ternary expression is taken
 - i++ is evaluated again, 11 is returned and assigned to k
 - o i is incremented to 12
- Therefore, {i == 12} and {k == 11}

Problem Set 20.2

```
#define SWAP(T, x, y) T temp = x;\
x = y;\
y = temp;
```

What could go wrong if we write an if...else block without braces, along with the above macro?

Problem Set 20.2

```
#define SWAP(T, x, y) T temp = x;\
    x = y;\
    y = temp;

long large = 1;
long small = 100;
if (large < small)
    SWAP(long, large, small)</pre>
```

expands to

```
long large = 1;
long small = 100;
if (large < small)
    long temp = large;
larger = small;
small = temp; // error, temp not declared</pre>
```

Problem Set 20.2

- Avoid using if...else, while, etc blocks without braces
- Avoid using block macro-functions unless you know what you're doing
- A common idiom for multi-line macros is to wrap it in a do { ... } while(0)
- **Optional** Read up on why do...while(0) is a common macro idiom and *not* just wrapping the statements in braces {...}

```
#define FREE_2D(ptr, n)
    do {
        for (long __i = 0; __i < n; __i += 1) {
            free(ptr[__i]);
        }
        free(ptr);
    } while (0)</pre>
```

Problem Set 21

Problem 21.1

```
void foo(long x) {
    if (x % 2 == 0) {
        // do something
    } else {
        assert(x % 2 == 1);
    }
}
```

- Will the assertion ever fail?
 - i.e will the expression in the assert statement ever be false?

Problem 21.1

```
void foo(long x) {
    if (x % 2 == 0) {
        // do something
    } else {
        assert(x % 2 == 1);
    }
}
```

- Looks pretty clear cut
 - A number is either even or odd (parity), and the expression n % 2 == ???
 checks for parity
 - \circ If x % 2 == 0 is false, then x % 2 == 1 must be true
 - ...Right?

Problem 21.1

```
void foo(long x) {
    if (x % 2 == 0) {
        // do something
    } else {
        assert(x % 2 == 1);
    }
}
```

- What if x is negative?
- x % 2 == 1 always returns 0 for all negative x
- Therefore, the assertion will fail
- Even though the assertion may look obviously true, it's not always the case

Problem Set 22

Problem 22.1

Order the following functions in increasing order of rate of growth

The functions are:

$$n!$$
 2^n $\log_{10} n$ $\ln n$ n^4 $n \ln n$ n n^2 e^n \sqrt{n}

Problem 22.1

- We can convert any instance of specialised logarithms (i.e to a certain base) using a multiplicative constant
- ullet $\log_{10} n$ and $\ln n$ are the same denote either as $\log n$
- Rank the rest via the three classes sub-polynomial, polynomial, exponential
 - $\circ \log n \quad \sqrt{n}$
 - $\circ n^4 \quad n \log n \quad n \quad n^2$
 - \circ n! 2^n e^n

Problem 22.1 - Sub-polynomial

$$\log n \qquad \sqrt{n}$$

- ullet An easy way to guess is to try some large value of n
- ullet For logarithms, using either base 2, e or 10 is reasonable

$$\circ \log_{10}(1 \times 10^6) = 6$$

$$\circ \sqrt{1 imes 10^6} = 1000$$

- Both functions are always increasing (monotonically increasing)
- ullet Conclusion: \sqrt{n} grows faster than $\log n$, therefore $\log n < \sqrt{n}$

Problem 22.1 - Polynomial

 $n^4 \qquad n \log n \qquad n \qquad n^2$

- ullet Obviously, $n < n^2 < n^4$
- Where does $n \log n$ fit in?
 - $\circ \log n < n$
 - \circ Therefore $n < n \log n < n^2$
- ullet Conclusion: $n < n \log n < n^2 < n^4$

Problem 22.1 - Exponential

$$2^n$$
 e^n $n!$

- $2 < e \implies 2^n < e^n$
- ullet Intuitively, $n!>e^n$ for some $n>k_0$ where $k\in\mathbb{N}$
- ullet Therefore, $2^n < e^n < n!$

Problem 22.1

Solution:

$$\log n < \sqrt{n} < n < n \log n < n^2 < n^4 < 2^n < e^n < n!$$

Problem 22.2

- ullet Given a code snippet, state its Big-O running time in terms of n
- Note
 - \circ Printing a number is O(1)
 - \circ Any arithmetic is O(1)

Problem 22.2(a)

```
for (long i = 0; i < n; i += 1) {
   for (long j = 0; j < n; j += 2) {
      cs1010_println_long(i + j);
   }
}</pre>
```

- Printing a number is O(1)
- Any arithmetic is O(1)

Problem 22.2(a)

```
for (long i = 0; i < n; i += 1) {
    for (long j = 0; j < n; j += 2) {
        cs1010_println_long(i + j);
    }
}</pre>
```

- The outer loop runs n times
- The inner loop runs $\frac{n}{2}$ times

$$f(n)=rac{n}{2}\cdot n=rac{n^2}{2}\in O(n^2)$$

Problem 22.2(b)

```
for (long i = 1; i < n; i *= 2) {
    for (long j = 1; j < n; j *= 2) {
        cs1010_println_long(i + j);
    }
}</pre>
```

- ullet Printing a number is an O(1) operation
- Arithmetic is O(1)

Problem 22.2(b)

```
for (long i = 1; i < n; i *= 2) {
    for (long j = 1; j < n; j *= 2) {
        cs1010_println_long(i + j);
    }
}</pre>
```

- ullet The outer loop runs $\log n$ times
- The inner loop runs in $\log n$ times

$$f(n) = \log n \cdot \log n = \log^2 n \in O(\log^2 n)$$

Problem 22.2(c)

```
long k = 1;
for (long j = 0; j < n; j += 1) {
    k *= 2;
    for (long i = 0; i < k; i += 1) {
        cs1010_println_long(i + j);
    }
}</pre>
```

- ullet Printing a number is an O(1) operation
- Arithmetic is O(1)

Problem 22.2(c)

```
long k = 1;
for (long j = 0; j < n; j += 1) {
    k *= 2;
    for (long i = 0; i < k; i += 1) {
        cs1010_println_long(i + j);
    }
}</pre>
```

- The outer loop runs n times
- How many times does the inner loop run?
 - It seems to depend on the number of times the outer loop has run
 - $^{\circ}$ At any point in the program, the number of iterations of the inner loop is given by 2^{j+1}

Problem 22.2(c)

```
long k = 1;
for (long j = 0; j < n; j += 1) {
    k *= 2;
    for (long i = 0; i < k; i += 1) {
        cs1010_println_long(i + j);
    }
}</pre>
```

• The total number of iterations is then given by

$$f(n)=\sum_{i=1}^n 2^ipprox 2^n\in O(2^n)$$

Food for Thought

Primality Testing

- To date, there is only one known *polynomial time* algorithm for primality testing
 - \circ AKS Primality Test that runs in $O(\log^6 n)$ time
- ullet The <code>is_prime</code> algorithm discussed in class seems to run in $O(\sqrt{n})$ time
 - \circ Each iteration runs in O(1) assuming division is O(1)
 - \circ Even if division is not O(1), it's still polynomial in the length of the input given the long division algorithm, therefore the overall algorithm will still be polynomial
- Why is it not considered a polynomial time algorithm?

Food for Tought (cont.)

- What does Big-O represent?
- What is the "length" of an input of a number?

Assignment 5 Comments

Contact, Social

- Do try to practice better code style
 - Avoid using short, non-descriptive variable names e.g (m , flag or count1 and count2)
 - Avoid very long functions
 - Avoid deep nesting of for loops (more than 2 nested loops calls for a new function)
- Try to break down the problem into more sub-problems

Common Mistakes (Contact, Social)

- The algorithm was generally understood
- More abstraction could have been done

```
is_friend(char** network, long i, long j)
set_friend(char** network, long i, long j)
copy_network(char **dest, char **src, long n)
init_network(long n)
...
```

Common Mistakes (Contact, Social)

- Modifying the network *in-place* introduces bugs
- You should always leave the current degree matrix in-tact, and assign to a newly allocated matrix
 - Repeat for each computed degree

Common Mistakes (Life)

- Updating the world in-place leads to errors
- For example
 - world[2][2] depends on the state of world[1][1], but if world[1][1]
 changes, world[2][2] will be incorrect
- Should make a new world and then populate it using the old world
- Then just swap the old and new world

Miscellaneous

- The CS1010 I/O library has a function char** cs1010_read_word_array(long)
 - Can be used to read the 2-D jagged matrix

Memory Issues

 NULL returns from calloc, malloc, read_*_array(long), etc should be checked immediately after each call

```
long n = cs1010_read_long();
char *s = cs1010_read_word();
if (s == NULL) { // check IMMEDIATELY after
    cs1010_println_string("NULL return from read_word(), exiting...");
    exit(1);
}
```

Memory Issues

• Assigning to a pointer that points to memory allocated malloc or calloc without a free causes a memory leak

```
long n = cs1010_read_long();
char *s = malloc(n + 1);

// no call to free()

s = malloc(1); // memory leak!
```

• Any CS1010 I/O library function that returns a pointer uses malloc and calloc internally and the memory must be freed!

Memory Issues

• Memory must be *completely* freed

```
long n = cs1010_read_long();
char **arr = cs1010_read_word_array(n);

// ...

for (long i = 0; i < n; i++) {
    free(arr[i]); // free each row
}
free(arr); // free the array of pointers</pre>
```

Memory Issues (cont.)

• Here's a helpful macro to free a 2-D array

```
#define FREE_2D(arr, len)
    do {
        for (long __i = 0; __i < len; __i += 1) {
            free(arr[__i]);
        }
        free(arr);
    } while (0)</pre>
```

Assignment 6 Hints

Some Encouragement

- This assignment is not as difficult as Assignment 5
- Don't feel discouraged by AS5
 - It's actually quite tough
- Try to do all the questions in this one

Add

- You have to code out the addition algorithm you learnt in Primary School
- The hard part is managing the size of the array and indexing
- If you want to make indexing easier
 - Implement a function void reverse(char* s) that reverses a given string
- Always take note of the carry-over from the previous addition

9 3 4 3 2 9 1 6 9 0 2 6 0 1

Frequency

- ullet O(n) time means you can only make a constant number of passes of each string
- For this question, you only need to make a *single* pass through both strings
- Hint: it's very similar to Counting Sort

Permutation

- ullet If you can't figure out the O(n+k) algorithm, just implement the fastest algorithm you can think of
- ullet The $O(nk^2)$ algorithm
 - \circ Let h be the "haystack", and s be the "needle"
 - \circ For each substring, h_i of length |s| in h
 - lacktriangle Use a double for -loop to check if h_i is a permutation of s
 - \circ Outer loop runs n times, the inner loop runs in $O(k^2) \implies O(nk^2)$
- The hint given is to use the code written in the previous question for optimisation
- Hint for O(n+k) sliding window