1 Forelesning 6

1.1 Divide & Conquer

- En nyttig strategi når man skal finne ffektive algoritmer.
- Divide
 - Del opp input og løs hver del for seg
- Conquer
 - Finn en måte å slå sammen de to delene til løsning for hele input

1.2 Mergesort

- Divide
 - Lag to lister som hver har halvparten av elementene
 - Sorter de to små listene
- Conquer
 - Gitt to små sorterte lister, slå disse sammen til en stor sortert liste.
- La oss implementere mergesort.

1.3 Nedre grense på kjøretid

- Vi kan se å sortering som å velge den rette ordningen blant alle mulige ordninger av en liste.
- Hvor mange måter er det å ordne n elementer? (n!)
- Tenk deg en liste av alle mulige ordninger
- Gjør en sammenligning av 2 elementer a og b.
- Blant alle ordninger i listen kan vi
 - $-\,$ Enten Krysse ut de dera < b
 - Eller krysse ut de der b < a
- \bullet Hvor mange ganger må vi dele på 2 før n! blir 1?
- $\log(n!)$

1.4 Sorter *n* heltall

- $\bullet\,$ Hvor for kan vi sortere n heltall der alle tallene er
 - Mellom 0 og 1000
 - Mellom 0 og n
 - Mellom $0 \text{ og } n^2$

1.5 Bucket Sort

- Ikke egentlig en sorteringsalgoritme
- Deler opp i grupper (buckets/bins)
 - For alle par a,bhar vi
: $a \leq b \leftrightarrow \mathrm{bucket}(a) \leq \mathrm{bucket}(b)$
- Trenger funksjon for bucket nummer
 - Eksempel: String, 26 buckets, \boldsymbol{a} i første, \boldsymbol{b} i andre.
- Radix sort ligner på bucket sort
 - Deler igjen opp hver bucket basert på 2. bokstav.