Text Generation from Knowledge Graphs with Graph Transformers

NAACL19

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi

University of Washington
University of Edinburgh
Allen Institute for Artificial Intelligence

https://www.youtube.com/watch?v=BiRyvB2NmCM

Reporter: Xiachong Feng

Outline

- Author
- Motivation
- Task
- Dataset
- Model
- Experiments
- Conclusion

Author

- Rik Koncel-Kedziorski
- Lives on a sailboat
- University of Washington Ph.D. Winter 2019

Selected Publications

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. **Text Generation from Knowledge Graphs**. Under Review

Sachin Metha, Rik Koncel-Kedziorski, Mohammad Rastegari, and Hannaneh Hajishirzi. Pyramidal Recurrent Units for Language Modeling. EMNLP 2018

Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer, and Hannaneh Hajishirzi. **A Theme-Rewriting Approach for Generating Math Word Problems**. EMNLP 2016

Aaron Jaech, Rik Koncel-Kedziorski, and Mari Ostendorf. **Phonological Pun-derstanding**. NAACL 2016

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.

MAWPS: A Math Word Problem Repository. NAACL 2016

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang. **Parsing Algebraic Word Problems into Equations**. TACL 2015.

R. Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali Farhadi. 2014.

Multi-Resolution Language Grounding with weak supervision. EMNLP 2014.

Cited by

All	Since 2014
84	83
5	5
2	2
	84 5

13

Knowledge

World Events

Science

Knowledge

Multi-media

Task

- Input
 - Title of a scientific article;
 - Knowledge graph constructed by an automatic information extraction system;
- Output
 - Abstract (text);

<u>Abstract</u>

We present a CRF model for Event Detection tasks. Our model utilizes such and such features and can outperform standard HMM models by 110% on SemEval Task 11 Dataset. ...

Title: Event Detection with Conditional Random Fields

Dataset

- Abstract GENeration DAtaset (AGENDA) Dataset
- 12 top Al conferences
- **ScilE** system: a state-of-the-art science domain information extraction system.
 - NER、Co-Reference、Relations

	Title	Abstract	KG
Vocab	29K	77K	54K
Tokens	413K	5.8M	1.2 M
Entities	-	-	518K
Avg Length	9.9	141.2	-
Avg #Vertices	-	-	12.42
Avg #Edges	-	-	4.43

Dataset

Title: Event Detection with Conditional Random Fields

Model-GraphWriter

Graph Preparation

disconnected labeled graph

connected unlabeled graph

Embedding Vertices, Encoding Title

- Relation: forward- and backward-looking, two embeddings per relation
- **Entities** correspond to scientific terms which are often multi-word expressions.
- Bidirectional RNN run over embeddings of each word

 The title input is also a short string, and so we encode it with another BiRNN

Graph Transformer

GAT

Graph attention networks ICLR 2018 GAT

[Figure from Veličković et al. (ICLR 2018)]

Graph Attention

$$\hat{\mathbf{v}}_{i} = \mathbf{v}_{i} + \prod_{n=1}^{N} \sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{n} \mathbf{W}_{V}^{n} \mathbf{v}_{j}$$

$$\alpha_{ij}^{n} = a^{n}(\mathbf{v}_{i}, \mathbf{v}_{j})$$

$$a(\mathbf{q}_{i}, \mathbf{k}_{j}) = \frac{\exp((\mathbf{W}_{K} \mathbf{k}_{j})^{\top} \mathbf{W}_{Q} \mathbf{q}_{i})}{\sum_{z \in \mathcal{N}_{i}} \exp((\mathbf{W}_{K} \mathbf{k}_{z})^{\top} \mathbf{W}_{Q} \mathbf{q}_{i})}$$

Block networks

global contextualization

$$\mathbf{\tilde{v}}_i = \text{LayerNorm}(\mathbf{v}'_i + \text{LayerNorm}(\mathbf{\hat{v}}_i))$$

$$\mathbf{v}'_i = \text{FFN}(\text{LayerNorm}(\mathbf{\hat{v}}_i))$$

Decoder

 At each decoding timestep t we use decoder hidden state ht to compute context vectors cg and cs for the graph and title sequence

Copy

Experiments

- Evaluation Metrics
- Human evaluation
 - Grammar
 - Fluency
 - Coherence
 - Informativeness
- Automatic metrics
 - BLEU
 - METEOR

Baselines

- **GAT**: PReLU activations stacked between 6 self-attention layers.
- EntityWriter: uses only entities and title (no graph)
- Rewriter: uses only the document title

	BLEU	METEOR
GraphWriter	14.3 ± 1.01	18.8 ± 0.28
GAT	12.2 ± 0.44	17.2 ± 0.63
EntityWriter	10.38	16.53
Rewriter	1.05	8.38

Does Knowledge Help?

	Best	Worst
Rewriter (No knowledge)	12%	64%
GraphWriter (Knowledge)	24%	36%
Human Authored	64%	0%

Table 3: Does knowledge improve generation? Human evaluations of best and worst abstract.

	Win	Lose	Tie
Structure	63%	17%	20%
Informativeness	43%	23%	33%
Grammar	63%	23%	13%
Overall	63%	17%	20%

Table 4: Human Judgments of GraphWriter and EntityWriter models.

Conclusion

- Propose a new graph transformer encoder that applies the successful sequence transformer to graph structured inputs.
- Provide a large dataset of knowledge graphs paired with scientific texts for further study.

Thanks!