PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03250583 A

(43) Date of publication of application: 08.11.91

(51) Int. CI

H05B 33/22

(21) Application number: 02045717

(22) Date of filing: 28.02.90

(71) Applicant:

IDEMITSU KOSAN CO LTD .

(72) Inventor:

HOSOKAWA CHISHIO KUSUMOTO TADASHI

(54) ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURE

(57) Abstract:

PURPOSE: To offer an EL element having uniform light emitting surface and excellent pattern accuracy by providing a non-light emission element part equipped with an inter-layer insulating film formed through pattern processing between a lower electrode and its mating electrode.

CONSTITUTION: A lower electrode 2 is formed on a base board 1 by means of evaporation process, and thereover an inter-layer insulating film 3 is formed which has undergone patterning so that the EL element formation part becomes an opening 9. To secure a lower electrode takeout position 11, an evaporation mask 6 is put on the lower electrode except the opening and its surrounding, and an organic multi-layer part 4 incl. a light emission layer is formed by means of evaporation. While the evaporation mask 6 is left in place, a mating electrode 5 is evaporated fast on this organic multi-layer part 4 incl. light emission layer. Thereby an EL element is accomplished, which is equipped with a light emission

element part 10 having good pattern accuracy.

COPYRIGHT: (C)1991,JPO&Japio

(19) []木国特許庁(JP)

報(B2) 公 (12) 特 許

`(11)特許番号

第2734464号

(45)発行日 平成10年(1998) 3月30日

(24) 登録日 平成10年(1998) 1月9日

(45) 3611	D -4/1/210-1-4	(1000) 0 / 1					44年4二年前
(51) Int.Cl. ⁴ H 0 5 B		酸別記号	广内整理番 号	F I H O 5 B	33/22 33/10	·.	技術表示箇所

請求項の数6(全 9 頁)

(21) 山願番号	特願平2-45717	(73)特許権者	999999999 川光興産株式会社 東京都千代田区丸の内3丁目1番1号			
(22) 川顧日	平成2年(1990)2月28日 特開平3-250583	(72)発明者	細川 地湖 千葉県君津郡袖ケ浦町上泉1280番地 出			
(65)公開番号 (43)公開日	平成3年(1991)11月8日	(72)発明者	光興産株式会社内 楠本 正 千葉県君津郡袖ケ浦町上泉1280番地 出			
		(74)代理人	光與産株式会社内			
		審査官	山岸 利治			
		(56) 参考文献	状 特開 平2-195683 (JP, A) 特公 平1-35350 (JP, B2)			
		1				

エレクトロルミネッセンス素子及びその製造方法 (54) 【発明の名称】

1

(57)【特許請求の範囲】

【請求項1】基板に設けられた下部電極、発光層を含む 有機多層部及び対向電極からなる素子を発光素子部分と して含むエレクトロルミネッセンス素子において、下部 電極と対向電極との間に、パターン加工された層間絶縁 膜を存在させた非発光素子部分を保有し、且つ該層間絶 緑膜の閉口部には発光層を含む有機多層部と対向電極が 設けられているとともに、実質的に正孔または電子の注 入ができるように有機多層部と対向電極が接合され配置 されていることを特徴とするエレクトロルミネッセンス 索子。

【請求項2】層間絶縁膜の開口部が複数あり、基板に設 けられた下部電極、発光層を含む有機多層部と対向電極 からなる発光素子部分の構成が、各々電気的に独立した 構成からなる請求項 1 記載のエレクトロルミネッセンス 素子。

【請求項3】 基板に設けられた下部電極上に層間絶縁膜 をパターン加工にて膜付けした後、形成された層間絶縁 膜の開口部に発光層を含む有機多層部および対向電極を 形成する工程を行うことを特徴とするエレクトロルミネ ッセンス素子の製造方法。

【請求項4】発光層を含む有機多層部を、蒸着法により 形成する請求項3の製造方法。

【請求項 5 】対向電極を、蒸着法あるいはスパッタリン グ法により形成する請求項3の製造方法。 10

【請求項6】層間絶縁膜としてSiO2層のエッチング加工 によるパターン加工の際、反応性イオンエッチング方法 を用いることを特徴とする請求項3の製造方法。

【発明の詳細な説明】 [産業上の利用分野]

2

10

40

本発明はエレクトロルミネッセンス素子及びその製造 方法に関し、詳しくは層間に絶縁膜を存在させてなるパ ターン精度が良好で発光面の均一性が高いエレクトロル ミネッセンス素子、及びそれを簡易な工程で効率良く製 造する方法に関する。

[從来の技術及び発明が解決しようとする課題]

エレクトロルミネッセンス素子(以下EL素子という) は、自己発光のため視認性が高く、また完全固体素子で あるため耐衝撃性に優れるという特徴を有しており、各 種の表示装置における発光素子等の利用が試みられてい る。特に有機匹素子は陰極/発光層/正孔注入屬/陽 極,陰極/電子注入層/発光層/陽極,陰極/電子注入 層/発光層/正孔注入層/陽極, 陽極/発光層/電子注 **入層/陰極/等の構成のものが開発されている。これら** は、(1)低電圧の印加するだけで発光する、(2)高 輝度高効率の発光が得られる、(3) 多色表示が可能で あるなどの優れた特性を有しており、発光材料、電荷注 **入層,電極材料等の研究が盛んに行われている(「アプ** ライド・フィズィクス・レターズ」第51巻,913頁(1987 年);「アプライド・フィズィクス・レターズ」第65 卷,1489頁(1989年);「ジャーナル・オブ・アプライ ド・フィズィクス」第65巻,3610頁(1989年))。

従来、有機旺素子を作製するにあたっては、素子の対 向電極はマスクを基板上にかけ発光素子形成部分に電極 を蒸着する方法により製造されているが、蒸着の廻り込 みにより対向電極のパターン精度が悪くなるという問題 があった。また、有機層を形成する際のマスクと、対向 電極を形成する際のマスクが異なるため、マスク交換機 構を持たない通常の蒸着装置においては、対向電極形成 前に一度真空を破り、真空槽を開けマスク交換を行った り、マスクを設置する必要があり、工程が複雑である。 この場合、有機層と対向電極の界面が汚染され、均一性 等の良好な癿素子を得ることが困難であった。

さらに、有機EL素子において、陰極にマグネシウムと 第二金属系の合金または混合物の電極を二元蒸着法によ り形成し使用することが多いが、これらを対向電極に使 用した場合電極を蒸着させる際、廻り込みによるダレ部 分を生じる。そのため、マグネシウムと第二金属系の廻 り込みの程度が異なることから、この部分の組成が対向 電極面内とずれるため、発光の均一性が損なわれるとい う問題があった。

[課題を解決するための手段]

そこで、本発明者らは、上記の従来の技術の問題点を 解決し、パターン精度の優れた発光面の均一な癿素子 を、マスク交換等の操作を最小限度でしか必要としない 工程で製造する方法を開発すべく鋭意研究を重ねた。そ の結果、層間絶縁膜を設けた旺素子が、上記目的が達成 できることを見出した。本発明はかかる知見に基いて完 成したものである。

すなわち本発明は、基板に設けられた下部電極、発光

層を含む有機多層部及び対向電極からなる発光素子部分 を含む肌素子において、下部電極と対向電極との間に、 パターン加工された層間絶縁膜を存在させた非発光素子 部分を保有し、且つ該層間絶縁膜の閉口部には発光層を 含む有機多層部と対向電極が設けられているとともに、 実質的に正孔または電子の让入ができるように有機多層 部と対向電極が接合され配置されていることを特徴とす る比索子を提供するものである。また本発明は、基板に 設けられた下部電極上に層間絶縁膜をパターン加工にて 膜付けした後、形成された層間絶縁膜の開口部に発光層 を含む有機多層部および対向鼠極を形成する工程を行う ことを特徴とする旺素子の製造方法をも提供するもので ある。

4

本発明の印素子は、素子の基板上に形成される下部電 極(陽極あるいは陰極)、発光層を含む有機多層部及び その上に形成される対向電極(下部電極が陽極である場 合は陰極であり、陰極である場合は陽極である。) から なる構成を発光素子部分に持ち、非発光素子部分には、 下部電極と対向電極の間にパターン加工された層間絶縁 膜を設けたことを特徴である。ここで、パターン加工さ 20 れた層間絶縁膜とは、発光素子を形成する部分(発光素 子部分)を開口部として発光素子を形成しない部分(非 発光素子部分) に施される下部亀極と対向亀極の間にあ る絶縁膜である。この膜の上にさらに発光材料層及び対 向電極を形成すると、パターン加工された開口部のみに 通電可能となり、その部分にのみパターン精度の良い発 光が得られる。尚、層間絶縁膜は下部電極と対向電極の 間に発光層を含む有機多層部が存在しない場合にも、こ れら下部電極と対向電極の短絡を防ぎ電気的に絶縁を防 ぐ層である場合もある。

この層間絶縁膜としては、絶縁体である材料からなる 膜であれば、特に制限はなく種々のものが使用できる。 具体的には無機物としては、SiO₂, Si₃N₄, AlO₂等の酸化 物、窒化物などが挙げられ、有機物としてはポリイミド 等の高分子が挙げられる。これらの材料を用いて製膜す るには、通常無機物の場合、蒸着法,スパッタリング 法,プラズマCVD法などの方法で行われ、また有機物の 場合、スピンコート法, キャスト法,LB法などの方法で 行われる。

さらに本発明において、この層間絶縁膜は開口部すな わち発光素子形成部分を設けるパターン加工を施された ものである。ここで、パターン加工は種々の方法で行う ことができ、特に制限はないが、フォトレジストを用い たエッチング法(ウエットエッチングまたはドライエッ チング) が好適である。エッチングにあたっては、膜の 材料、厚さ、工程等より適宜ウエットエッチング剤ある いはドライエッチングガス(例えばSiO₂のエッチングの ときにはCHF3)を選択すればよい。このエッチングにお いて、感光性ポリイミドコーテング剤を用いるとフォト 50 レジスト剤を使用する必要がなく工程が簡便で好まし

10

いっ

また、本発明において層間絶縁膜は、少なくとも1MV/cmの電界強度に耐えうるものであることが好ましい。1MV/cmより耐圧の低い材料を用いた場合、リーク電流により素子の配線が破断するなどの問題を生じることがある。通常、スパッタリング法又はCVD法により形成されるSiO2層,Y2O3層、スピンコート法で形成されたポリイミド層などは充分な電界強度を有しており、好適に利用できる。

また、膜の厚さは特に制限はないが、通常は1000 Λ ~5 μ mである。1000 Λ 未満であると、通常有機比素子に使用される駆動電圧 3 ~20Vで下部電極と対向電極間の絶縁破壊,リーク電流等の好ましくない事態が生じる。膜の厚さが 5 μ mを越えると絶縁膜開口部端の断差部分で対向電極の断線が生じ好ましくない。膜厚を厚くする場合、断線を防ぐためには、断差部分を斜めにする、いわゆるテーパー加工を行うと良い。

本発明のL素子において、層間絶縁膜として黒色のものまたは濃色のものを使用すると、より発光素子のコントラストが上昇して好ましい。このような例には黒色色素 (カーボンブラック等)を混入したポリイミド等がある。

ちなみに、この層間絶縁膜は、従来から、対向電極上 に素子を封止するために形成される封止膜とは、根本的 に機能の異なるものであるとを付言しておく。

本発明の比素子の構成は、また、ZnS:Mnなどの無機蛍光材を発光層として用いた電極/絶縁膜/発光層/絶縁膜/電極等の無機比素子に用いられる絶縁膜とも異なるものである。つまり本発明の層間絶縁膜は、非発光素子部分を形成するためのものであるからである。発光素子部分においては、下部電極/発光層を含む有機多層部/対向電極の構成であり、非発光素子部分においては、下部電極/層間絶縁膜/発光層を含む有機多層部/対向電極、または下部電極/層間絶縁膜/対向電極、または下部電極/層間絶縁膜/対向電極、または下部電極/層間絶縁膜の構成になっている。

本発明においてEL素子の基板としては、透明性を有するものが好ましく、一般にガラス、透明プラスチック、石英等が充当される。厚さについては素子の使用目的などにより適宜選定される。また、電極(陽極,陰極)としては、金、アルミニウム、インジウム、マグネシウム、銅、銀などの金属、これらの合金、混合物、特別昭63-295695号公報に開示されている合金または混合物電極、インジウムチンオキサイド(酸化インジウムと酸化錫の混合酸化物;ITO),SnO2,ZnO等の透明電極等が挙げられる。これらの中で素子の駆動電圧を低くできるため、特別昭63-295695号公報に開示されている合金または混合物電極、ITO,SnO2,ZnO等の透明電極が好ましい。なお陽極には、仕事関数の大きい金属または電気伝導性化合物が好適である。これらの電

極は、少なくとも一方が透明あるいは半透明であると、 発光を透過し取り出す効率が良いため好ましい。電極の

厚さは通常、EL素子において行われる範囲で適宜決定されるが、一般に10m~1μm、特に200m以下が発光の

6

透過率を高める場合は好ましい。

なお、下部電極及び対向電極はいずれが陽極であって も陰極であってもよい。また、下部電極は通常スパッタ リング法, 蒸着法, スクリーン印刷法などにより、対向 電極はスパッタリング法, 蒸着法等により形成される。 また、下部電極がパターンニングされたものであっても よい。

さらに発光層を含む有機多層部とは、EL 落子の発光に 必要な有機層であって、具体的には発光層,発光層/正 孔注入層, 電子注入層/発光層, 電子注入層/発光層/ 正孔注入層等の構成のものが挙げられる。ここで発光層 は、以下の三つの機能を併せ持つものである。即ち、

注入機能

電界印加時に、陽極又は正孔注入輸送層より正孔を注 入することができ、陰極又は電子注入輸送層より電子を 注入することができる機能

輸送機能

注入した電荷(電子と正孔)を電界の力で移動させる 機能

発光機能

50

電子と正孔の再結合の場を提供し、これを発光につな げる機能

但し、正孔の注入されやすさと電子の注入されやすさ に違いがあってもよく、また正孔と電子の移動度で表わ される輸送能に大小があってもよいが、どちらか一方の 電荷を移動することが好ましい。

このような条件を満たす材料であって、所望の発光が得られるものを適宜使用することができる。その膜厚は、特に制限はなく適宜状況に応じて選定すればよいが、通常は $5\,\mathrm{nm}\sim5\,\mu$ m程度とすればよい。また、各種のフィルター層を素子発光面に面して設けることもできる。

また、多色のEL素子の場合は発光層の発光材料は一種類には限定されず、発光素子形成部分に各々異なる所望の発光色を発光する発光材料を使用することができる。ここで、発光材料としては公知の様々なものを充当できるが、例えばペリレン、アントラセン、ナフタレン、フェナンスレン、ピレン、骨格を含む縮合環発光材料、特開昭59-194393号公報に記載のオキサジアゾール、オキサチアゾール系蛍光増白剤、特開昭63-295695号公報記載の金属キレート化オキサノイド化合物、特願平1-009995号明細書にあるクマリン系化合物等の蛍光材料、特願昭63-313932号明細書、特願平1-029681号明細書、同1-064957号明細書、同1-067448号明細書、同1-075035号明細書にあるスチルベン系発光材料、アプライドフ

10

ィズィクスレターズ第55巻1487頁 (1989年) 等に記載の あるスチリルアミン系化合物、テトラフィニルブクジェ ン, テトラフェニルシクロペンクジエン, テトラフェニ ルエチレン及びポルフィリン等々である。

また、本発明のEL素子では、発光層を含む有機多層に 正孔注入層や電子注入層は必ずしも必要ではないが、これらの層があると、発光性能が一段と向上する。ここ で、正孔注入層は、正孔伝達化合物(正孔注入材料)よ りなり、陽極より注入された正孔を、発光層に伝達する 機能を持つ。この層をEL素子の陽極と発光層間に挟むこ とにより低電圧でより多くの正孔が発光層に注入され、 素子の輝度は向上する。

ここで川いられる正孔注入層の正孔伝達化合物は、電場を与えられた二個の電極間に配置されて陽極から正孔が注入された場合、正孔を適切に発光層へ伝達することができる化合物である。正孔注入輸送層を陽極と発光層との間に挟むことにより、より低い電界で多くの正孔が発光層に注入される。さらに、陰極や電子注入層から発光層に注入された電子は、発光層と正孔層の界面に存在する電子の障壁により、この発光層内の界面付近に蓄積され発光効率が向上する。ここで好ましい正孔伝達化合物は、10⁴~10⁶ボルト/cmの電場を与えられた電極間に層が配置された場合、少なくとも10⁻⁶cm²/ボルト・秒の正孔移動度をもつ。従って好ましい例としては、光導電材料において正孔の電荷輸送材として用いられている各種化合物があげられる。

このような電荷輸送材として以下のような例があげられる。

米国特許第3112197号明細書等に記載されているトリアソール誘導体、

米国特許第3189447号明細書等に記載されているオキ サジアゾール誘導体、

特公昭37-16096号公報等に記載されているイミダゾ ール誘導体、

米国特許第3615402号, 同3820989号, 同3542544号明 細書や特公昭45-555号, 同51-10983号公報さらには特 開昭51-93224号, 同55-17105号, 同56-4148号, 同55 -108667号, 同55-156953号, 同56-36656号公報等に 記載されているポリアールアルカン誘導体、

米国特許第3180729号,同4278746号明細書や特開昭55 -88064号,同55-88065号,同49-105537号,同55-51 086号,同56-80051号,同56-88141号,同57-45545 号,同54-112637号,同57-7546号公報等に記載されているピラゾリン誘導体およびピラゾロン誘導体、

米国特許第3615404号明細書や特公昭51-10105号,同 46-3712号,同47-25336号公報さらには特開昭54-534 35号,同54-110536号,同54-119925号公報等に記載さ れているフェニレンジアミン誘導体、

米国特許第3567450号,同3180703号,同3240597号,

同3658520号, 同4232103号, 同4175961号, 同4012376号 明細哲や特公昭49-35702号, 同39-27577号公報さらに は特開昭55-144250号, 同56-119132号, 同56-22437 号公報、西独特許第1110518号明細書等に記載されてい るアリールアミン誘導体、

Я

米国特許第3257203号明細書等に記載されているオキ_。 サゾール誘導体、

特別昭56-46234号公報等に記載されているスチリル アントラセン誘導体、

特開昭54-110837号公報等に記載されている

特開昭54-110837号公報等に記載されているフルオレ ノン誘導体、

米国特許第3717462号明細書や特開昭54-59143号,同 55-52063号,同55-52064号,同55-46760号,同55-8 5495号,同57-11350号,同57-148749号公報等に記載 されているヒドラゾン誘導体、

特開昭61-210363号,同61-228451号,同61-14642号,同61-72255号,同62-47646号,同62-36674号,同62-10652号,同62-30255号,同60-93445号,同60-94462号,同60-174749号,同60-175052号公報等に記載されているスチルベン誘導体などを列挙することができる。

さらに特に好ましい例としては、特開昭63-295695号 公報に開示されているホール輸送層としての化合物(芳 香族三級アミン)や正孔注入帯としての化合物(ポリフィリン化合物)をあげることができる。

さらに特に正孔伝達化合物として好ましい例は、特開 30 昭53-27033号公報,同54-58445号公報,同54-149634 号公報,同54-64299号公報,同55-79450号公報,同55 -144250号公報,同56-119132号公報,同61-295558号 公報,同61-98353号公報及び米国特許第4127412号明細 書等に開示されているものがある。それらの例を示せば 次の如くである。

これらの正孔伝達化合物から正孔注入層を形成する 上記一層と別種の化合物を用いた正孔注入層を積層して もよい。

などのニトロ置換フルオレノン誘導体、

特開昭57-149259号,同58-55450号,同63-104061 号公報等に記載されているアントラキノジメタン誘導

Polymer Prerpints, Japan Vol. 37, No. 3 (1988), p. 68 1等に記載されている

などのジフェニルキノン誘導体、

一方、電子注入層は電子を伝達する化合物よりなる。 が、この正孔注入層は一層からなってもよく、あるいは 10 電子注入層を形成する電子伝達化合物 (電子注入材料) の好ましい例としては、

などのチオピランジオキシド誘導体、 J. J. APP1. Phys., 27, L 269(1988)等に記載されてい

20

で表わされる化合物、

特開昭60-69657号,同61-143764号,同61-148159 号公報等に記載されているフレオレニリデンメタン誘導 体、

特開昭61-225151号,同61-233750号公報等に記載さ

で表わされる化合物及び類似のオキサジアゾール誘導体 などをあげることができる。

れているアントラキノジメタン誘導体及びアントロン誘

アプライド フィズィクスレターズ第55巻1489頁(19) 89年) で開示されている

一般式

本発明の��素子の発光層を含む有機多層部は上述の如 50 き層からなるものであり、その機能から正孔注入層は陽 極と発光層の間に、電子让入層は陰極と発光層の間に設 けるものである。

以上の構成よりなる本発明の印素子は直流を加える場 合、陽極を+,陰極を-の極性として、電圧3~40Vを 印加すれば絶縁膜が形成されていない部分のみが精度良 く発光する。逆の極性で電圧を印加しても電流は流れず 発光しない。また、交流や任意のパルス電圧を印加する こともでき、この場合陽極に+、陰極に-のパイアスの 状態のときのみ発光する。

本発明におけるEL素子は、次の如き方法にて効率良く 似浩される。

まず、基板上に下部電極を通常行われている方法によ り形成し、その上に上記の如き層間絶縁膜を形成する。 下部電極はスパッタリング法,蒸着法,スクリーン印刷 法などで行われ、また、下部電極をパターンニングして おいてもよい。絶縁膜形成はその材料等により種々の方 法を選択できるが、蒸着法,スパッタリング法,スピン コート法などが挙げれる。この場合、膜形成時に発光素 子を形成する部分すなわち開口部を有するパターンの膜 を形成してもよいが、膜形成後にエッチングなどの方法 により開口部を形成する方法がパターン精度が向上し好 生しい。

次いで、本発明の方法では、上記の如き下部電極上に パターン加工をした層間絶縁膜を形成したものにさらに 発光層を含む有機多層部を形成する。ここで発光層を含 む有機多層部は、蒸着法により通常形成されるが、下部 電極の取り出し位置を確保するため蒸着マスクなどのマ スクを用い、下部電極上にかけて蒸着を行う。 したがっ て、上記開口部の上に有機多層部が形成される。有機多 層部中に正孔注入層,電子注入層を形成する場合、下部 電極が陽極の場合には正孔注入層/発光層,正孔注入層 /発光層/電子注入層の構成とし、下部電極が陰極の場 合には電子注入層/発光層,電子注入層/発光層/正孔 注入層の構成とすべきである。なお、蒸着にあたっての 条件は、使用する発光層の有機化合物の種類,膜厚等に より異なるが、一般にボート加熱温度50~400℃、真空 度10⁻⁵~10⁻³Pa, 蒸着速度0.01~50nm/秒、基板温度-50 ~300℃、膜厚5nmないし5µmの範囲で適宜選択するこ とが好ましい。

次いで、本発明においてこの発光層を含む有機多層部 を形成した上に対向電極を形成し、印素子が得られる。 通常対向電極の形成は蒸着法で行われ、発光層含む有機 多層部を形成した際の真空度で、また同様の蒸着マスク を使用して行うことができる。従来法においては、発光 材料層の形成に使用される蒸着マスクと対向電極の形成 に使用される蒸着マスクは異なるため、この工程でマス クの交換が必要で作成面の汚染が問題であったが、本発 明の方法ではこのような問題がなく、良質の素子を製造 することができる。

明する。第1図(a)は基板1の上に下部電極2を蒸着 により形成し、さらにその上に発光素子形成部分が関ロ 部9となるようパターンニングした層間絶縁膜3を形成 したものの断面図である。このように形成されたもの に、下部電極取り出し位置(第1図(b)の11)を確保 するため、蒸着マスク6を開口部分及びその周辺を除い た下部電極上にかけて、発光層を含む有機多層部4を蒸 着により形成する。このとき第1図ではマスク6と絶縁 膜3が離れているが、これは理解を助けるための便宜的 10 なものであり、実際には密着させる方がより好ましい。 得られたものの断面図を第1図 (b) に示す。続いて、 同一の蒸着マスク6を設置したまよ発光層を含む有機多

14

のEL素子が製造される。このEL素子の断面図を第1図 (c) に示す。本発明の��紫子は、第1図(a) におけ る開口部9に、第1図 (c) における発光素子部分10が パターン精度が良く形成される。

層部4の上に対向電極5を蒸着することにより、本発明

なお、多色癿素子を製造する場合は、層間絶縁膜にお いて形成される各開口部に、所望する発光色を発光可能 な材料を使用した発光層を各々形成すればよい。具体的 には、第2図に従って説明する。まず、基板1の上に下 部電極2を蒸着により形成する。ここで、多色旺素子形 成のため下部電極2は電気的に独立して形成する。この 上に発光素子形成部を開口部としたパターンニングした 層間絶縁膜3を、蒸着により開口部9a及び開口部9bを形 成する。このようにして形成されたものの断面図を第2 図 (a) に示す。次いで、蒸着マスク 7 を開口部9a及び その周辺を除いた部分にかけて発光層を含む有機多層部 4を蒸着にて形成し、さらに続いて対向電極5を蒸着に て形成する。このようにして形成されたものの断面図を 第2図(b)に示す。さらに、蒸着マスク8を開口部9b を除いた部分にかけて発光層を含む有機多層部4と異な る発光材料を用いた発光層を含む有機多層部4′を蒸着 にて形成し、さらに続いて対向電極5′を蒸着にて形成 する。このようにして形成されたものの断面図を第2図 (c) に示す。このようにして得られたEL素子は開口部 9a及び開口部9bに各々異なる発光材料を使用した発光層 が形成されているため、異なる発光色を発光できる素子 となる。なお、同様の方法でさらに三色以上の発光色の 40 発光が得られるEL素子を製造することができる。

このような方法により前述の如き高性能の旺素子が製 造できる。但しこの場合、マスク交換が必要であるがマ スクの枚数は従来方法よりも少なくすることができる。 (実施例)

次に本発明を実施例よりさらに詳しく説明する。 実施例1

(1) 層間絶緑膜の形成

75mm×25mm×1mmのガラス基板上にITOを蒸着法にて10 00Aの厚さで製膜したものを下部電極を有する基板とし 次に、本発明のEL素子の製造方法を第1図に従って説 50 た (HOYA (株) 製)。この下部電極上に感光性ポリイミ

ドコーテイング剂 (TORAY社製, UR3140) をスピンコートにて、スピンナー回転数4000rpmで30秒間かけて塗布した。次いで、オープンにて80℃, 60分間の乾燥(プリベーク)を行い、発光パターンのフォトマスクを通して超 所圧水銀灯 (10mV/cm²) にて8秒間、フォトマスクとプリベークしたポリイミドコーテイング面を密着させてコンタクト露光を行った。この後現像液 (TORAY社製, DV-140) にて35~40秒間浸け、さらにイソプロパノール液に浸けてから15秒間超音波処理を行った。露光された部分のポリイミドコーテイング剤は基板よりとれて、層間 絶縁膜であるポリイミドのパターニングが得られた。

続いて、窒素ガス雰囲気下のオーブン中で180℃にて3 0分、さらに300℃にて30分キュアして、ガラス基板/IT0 /層間絶縁膜を形成した。層間絶縁膜の膜厚を触針膜厚 計にて測定したところ、1.2μmであった。

(2) 有機肌素子の製造

上記(1)で得られたガラス基板/ITO/層間絶縁膜を、イソプロパノールにて10分間超音波洗浄を行い、その後窒素ガスにて吹きつけ乾燥を行った。さらにUVオゾン洗浄装置(サムコインターナショナル社製,UV-300)にて、120秒間クリーニングを行った。さらにこれを真空蒸着装置(日本真空技術社製)の基板ホルダーに装着した。このときの基板ホルダーは第1図(b)の6のマスクの役割もする。真空蒸着装置の抵抗加熱ボートAに

TPD (下記に構造式を示す)を入れ、さらに別の抵抗加熱ボートBにDTVX (下記に構造式を示す)を入れた。まず、ボートAに通電し、これを加熱しTPD層を600 A 蒸着して正孔往入層を形成した。次にボートBに通電し、DT VXを600 A 蒸着して発光層を形成した。さらに、予め用意したマグネシウムを入れておいた抵抗加熱ボートCとインジウムを入れておいた抵抗加熱ボートDに通電して、マグネシウムーインジウムの混合物電極を形成した。この際の蒸着レート比は9:1であった。

16

このようにして、ガラス基板/ITO/層間絶縁膜/正孔 注入層/発光層/マグネシウムーインジウムの混合物電 極からなる有機EL素子を得た。

得られた有機比素子にマグネシウムーインジウムの混合物電極を陰極、ITOを陽極として直流5Vを印加し、発光させた。このときの発光パターンはフォトマスクと同一のパターンであった。パターン精度を調べるため、光学顕微鏡上で素子の発光のオン、オフを行ったところ、層間絶縁膜の機能が確認されるとともにパターン精度が10 μ mと良好であることが判明した。また、このパターンに従う発光面は端部、面中央部の区別なく均一であった。以上の実施例は、有機多層部に使用する材料及び電極材料の種類によらず、良好なパターン精度、発光面の均一製を保証する。

$$C H = C H - C H = C H$$

$$C H 3$$

比較例1

実施例1において、ガラス基板/ITOに層間絶縁膜を形成することなく、下部電極取り出し口を確保するためマスクをかけTPD層,DTVX層を同様にして蒸着、積層した。さらにここで真空槽をあけ、パターンニングされた別の蒸着用マスクをガラス基板/ITO/TPD層/DTVX層の上に設置し、これを基板ホルダーに取りつけた。次いで、実施例1と同様にしてマグネシウムーインジウムの混合物電極を形成した。このようにしてガラス基板/ITO/正孔注

入層/発光層/マグネシウム-インジウムの混合物電極 からなる有機LL素子を得た。

得られた有機EL素子を実施例1 (2) と同様に方法にて、パターン精度を測定したところ、最高 $50\,\mu\,\mathrm{m}$ 、場所により $100\sim200\,\mu\,\mathrm{m}$ 程度であった。また、発光面端部が著しく発光面中央部と強度が異なる箇所が存在し、不均一であった。

実施例2

50 (1) SiO₂ 膜による層間絶縁膜の形成

スパッタリング法により前述のITO付ガラス基板上にSiO2を5000 A 膜付けした。このときの基板温度は200℃であった。さらにマスクを前述の基板/ITO/SiO2にかけ、サムコインターナショナル社製リアクティブイオンエッチング装置RIE — IONにて、CIF3をエッチングガスとして毎分1000 A/minの速度でエッチングした。このときのガス容量は155CCM, 圧力0.04Torr, 高周波出力300Wであった。上述のマスクの関口部のSiO2は、エッチングされ、ITO面が露出した。以上によりSiO2層のパターン加工が完了した。

(2) EL素子の作製

実施例1 (2) と同様に有機EL素子を作製し同様な試験を行ったところ、パターン精度は $20\,\mu$ mと良好であることが判明した。また、やはり発光面は均一であり良好であった。

[発明の効果]

以上の如く、本発明のLL素子は、パターン加工された 層間絶縁膜を設けたことにより、パターン精度が極めて 良好なものとなり、さらに従来法にて問題となった蒸着 だれは生じないので発光面の均一性が高い。また、本発 明の方法で、吐素子を製造する場合、従来必要であった 発光層の蒸着マスクと対向電極の蒸着マスクの交換を必

18

発光層の蒸着マスクと対向電極の蒸着マスクの交換を必要とせず、この際に問題となった形成面の汚染がなく良品質の素子が製造できる。

従って、木発明のEL素子は、各種表示装置の発光素子、デスプレイ素子等に幅広く利用することができる。 【図面の簡単な説明】

10 第1図(a), (b), (c)は、本発明の単色のL表子の製造過程の各段階における断面図を示し、第2図(a), (b), (c)は、本発明の二色のL表子の製造過程の各段階における断面図を示す。

1 ······基板, 2······下部電極, 3······層間絶縁膜, 4及び4′ ······発光層を含む有機多層部,

5及び5' ……対向電極,6,7,8……蒸着マスク,9,9a,9b ……開口部,

10……発光素子部分,11……下部電極取り出し位置

【第1図】

【第2図】

