

Joekychen
Allen Wang
Lun Gi

FCC PART 22 AND PART 24 TEST REPORT

FCC Part 22 Subpart H / Part 24 Subpart E

Report Reference No.: CTL1603090615-WF

Compiled by: Jacky Chen (position+printed name+signature) (File administrators)

Tested by: Allen Wang (position+printed name+signature) (Test Engineer)

Approved by: Tracy Qi (position+printed name+signature) (Manager)

Product Name..... Smart phone

Model/Type reference..... KPAU02

Trade Mark..... KISA

FCC ID...... 2AHS8-KPAU02

Applicant's name...... MOBINTEL PTY LTD

AUSTRALIA

Test Firm..... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm...... Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....:

FCC CFR Title 47 Part 2, Part 22H and Part 24E

Standard...... EIA/TIA 603-D: 2010

KDB 971168 D01

TRF Originator...... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF...... Dated 2011-01

Date of Receipt..... Mar. 09, 2016

Date of Test Date...... Mar. 09, 2016–Mar. 24, 2016

Data of Issue...... Mar. 24, 2016

Result..... Positive

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1603090615-WF	Mar. 24, 2016
	C1L1003090013-WF	Date of issue

Equipment under Test : Smart phone

Model /Type : KPAU02

Applicant : MOBINTEL PTY LTD

Address : PO BOX 2323, MOORABBIN, MELBOURNE.

VICTORIA, 3189, AUSTRALIA

Manufacturer : SHENZHEN GOLD EAST ELETRONIC CO., LTD

Address : 6F, Bldg #11, Yusheng Industry Area, #467 Gushu,

Xixiang, Bao'an District, Shenzhen, China 518000

Test result	Pass *
100t 100dit	WWW CIVE ALL GOOD

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Z Testing Techno

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2016-03-24	CTL1603090615-WF	Tracy Qi

Contents

1 SU	UMMARY	5
1.1	TEST STANDARDS	5
1.2	Test Description	5
1.3	Test Facility	6
1.4	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2 GI	ENERAL INFORMATION	7
2.1	Environmental conditions	7
2.2	GENERAL DESCRIPTION OF EUT	7
2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
2.4	EQUIPMENTS USED DURING THE TEST	
2.5	RELATED SUBMITTAL(S) / GRANT (S)	g
2.6	MODIFICATIONS	
3 TE	EST CONDITIONS AND RESULTS	10
3.1	OUTPUT POWER	10
3.2	Occupied Bandwidth	14
3.3	BAND EDGE COMPLIANCE	17
3.4	Spurious Emission	20
3 5	FREQUENCY STABILITY LINDER TEMPERATURE & VOITAGE VARIATIONS	30

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB 971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.10-2013 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 (c)	Pass
Peak-to-Average Ratio	Part 24.232 (d)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass

V1.0 Page 6 of 32 Report No.: CTL1603090615-WF

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

Product Name:	Smart phone
Model/Type reference:	KPAU02
Power supply:	DC 4.2V from battery
Adapter information:	Model: SK12G-0500100Z Input:AC100-240V 50/60Hz 0.2A Max Output:5V===1A
Hardware version:	Q100-MB-V1.1
Software version:	Q100_HR01_SV_1.00_20151229.
2G	
Operation Band:	GSM850, GSM900, DCS1800, PCS1900
Supported type:	GSM
Power Class:	GSM850, GSM900: Power Class 4 DCS1800, PCS1900: Power Class 1
Modulation Type:	GMSK for GSM
GSM Release Version	R99
Antenna gain:	1.69 dBi for GSM850, 1.88 dBi for DCS1900
WCDMA	
Operation Band:	WCDMA Band I , WCDMA Band II, WCDMA Band V
Power Class:	Power Class 3
Modulation Type:	QPSK for WCDMA
WCDMA Release Version: R8	
Antenna gain: 1.69dBi for WCDMA Band V, 1.88dBi for WCDMA Band	
GPS	
Operation Frequency:	1.575GHz
Modulation Type:	BPSK
Note: For more details, refer to	

Note: For more details, refer to the user's manual of the EUT.

Remark: The GSM frequency band includes GSM850, GSM900, DCS1800 and PCS1900, but only GSM850 and PCS1900 bands test data included in this report. The WCDMA frequency band support Band I, WCDMA Band II and WCDMA Band V but only Band II and Band V bands test data included in this report.

V1.0 Page 8 of 32 Report No.: CTL1603090615-WF

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

GSM 850		PCS1900		
Channel Frequency (MHz)		Channel	Frequency (MHz)	
128 824.20		512	1850.20	
190 836.60		661	1880.00	
251 848.80		810	1909.80	

WCDMA Band II		WCDMA Band V		
Channel Frequency (MHz)		Channel	Frequency (MHz)	
9262	1852.4	4132	826.40	
9400	1880.0	4182	836.60	
9538	9538 1907.6		846.60	

Test Modes:

The test mode(s) are selected according to relevant radio technology specifications.

The test mede (e) are colosied describing to relevant radio testinology openiodienoi			
Test Mode	Test Modes Description		
Mode 1	GSM system, GSM, GMSK modulation		
Mode 2	WCDMA system, QPSK modulation		

Testing Technology

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
Radio Communication Tester	R&S	CMU200	115419	2015/05/22	2016/05/21
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2015/05/20	2016/05/19
RF Cable	HUBER+SUHN ER	RG214	N/A	2015/05/20	2016/05/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2015/05/20	2016/05/19
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2015/05/20	2016/05/19
Directional Coupler	Agilent	87300B	3116A03638	2015/05/20	2016/05/19

2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AHS8-KPAU02 filing to comply with of the FCC Part 22 and Part 24 Rules.

2.6 Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 10 of 32 Report No.: CTL1603090615-WF

3 TEST CONDITIONS AND RESULTS

3.1 Output Power

LIMIT

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

TEST RESULTS

Conducted Measurement:

EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Peak-to-Average Ratio (dB)	Limit (dBm)	Result
GSM 850	128	824.20	32.66	/		
(GMSK)	190	836.60	32.83	/	38.45	Pass
(GIVIOIT)	251	848.80	32.70	/		
PCS1900	512	1850.20	29.41	0.43		
(GMSK)	661	1880.00	29.79	0.50	33.01	Pass
(GIVIOIT)	810	1909.80	29.66	0.45		
WCDMA Band II	9262	1852.40	22.75	3.35		
(QPSK)	9400	1880.00	22.79	3.27	33.01	Pass
(QT OIT)	9538	1907.60	22.74	3.38		
WCDMA Band V (QPSK)	4132	826.40	22.81	/		
	4183	836.60	22.86	/	38.45	Pass
(&1 011)	4233	846.60	22.81	/		

Note: 1.Peak-to-Average Ratio= maximum PK burst power-maximum Avg. burst power.

Radiated Measurement:

Note: 1. The field strength of radiation emission was measured in the following position: EUT stand-up position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported.

Note: 2 We test the H direction and V direction and V direction is worse.

GSM850

	Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Ī	128	-10.25	2.42	8.45	2.15	36.82	30.45	38.45	8.00	V
	190	-9.84	2.46	8.45	2.15	36.82	30.82	38.45	7.63	V
ſ	251	-9.73	2.53	8.36	2.15	36.82	30.77	38.45	7.68	V

GSM1900

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
512	-11.52	3.41	10.24	33.6	28.91	33.01	4.10	V
661	-11.92	3.49	10.24	33.6	28.43	33.01	4.58	V
810	-11.72	3.55	10.23	33.6	28.56	33.01	4.45	V

WCDMA BAND II

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
9262	-18.00	3.42	10.24	33.6	22.43	33.01	10.58	V
9400	-18.44	3.49	10.24	33.6	21.91	33.01	11.10	V
9538	-18.54	3.54	10.23	33.6	21.74	33.01	11.27	V

WCDMA BAND V

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4132	-19.87	2.43	8.45	2.15	36.82	20.83	38.45	17.62	V
4183	-20.08	2.46	8.45	2.15	36.82	20.58	38.45	17.87	V
4233	-19.79	2.52	8.36	2.15	36.82	20.71	38.45	17.74	V

Remark:

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

V1.0 Page 14 of 32 Report No.: CTL1603090615-WF

3.2 Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
00110-0	128	824.20	252.53	321.6
GSM 850 (GMSK)	190	836.60	250.29	316.9
(GWIGH)	251	848.80	252.97	317.4
	512	1850.20	243.85	313.0
PCS1900 (GMSK)	661	1880.00	246.64	312.5
(OMOR)	810	1909.80	244.96	308.7
WCDMA Band II	9262	1852.4	4176.3	4715
(QPSK)	9400	1880.0	4165.7	4686
(Q1 011)	9538	1907.6	4172.7	4703
	4132	826.4	4158.2	4657
WCDMA Band V (QPSK)	4183	836.6	4162.1	4664
(4: 5:1)	4233	846.6	4122.7	4636

Test plots as follow:

3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

TEST RESULTS

		GSN	1850	200		
Channel	Frequency	Max Measure		Limit		
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict	
128	824.20	823.9968	-22.982	-13.00	Pass	
251	848.80	849.0188	-22.832	-13.00	Pass	
Agilent Spectrum Analyzer - Swept SA RF 50 @ AC Marker 1 823.996800000 MF F F F F F F F F F	SENSE:INT Avg Tr PNO: Wide Trig: Free Run Avg Ho FGain:Low Atten: 20 dB	ALIGNAUTO 10:09:08 AM May 22, 2016 Peak Se 12 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PNO: Wi	Avg Type:		ak Search
Ref Offset 11 dB 10 dB/div Ref 20.00 dBm		Mkr1 823.996 8 MHz -22.982 dBm	Ref Offset 11 dB 10 dB/div Ref 20.00 dBm		Mkr1 849.018 8 MHz -22.832 dBm	NextP
10.0		Next Pi	R 100		Ne	ext Pk Ri
-10.0		13.00 db	'K -10.0		-13.00 dBr	lext Pk
-20.0		Marke	-200 1 -300 300		M	larker D
-40.0		M M	r- 40.0			Mkr-
60.0	والمرازع والمرازع فرواطه أرغز أوجاء والمتعارب والمرازع وا	Mkr→	Ref -60 0	Margarian and subsequently and figure to describe a standard and a	M	lkr→Re
Hall And Society of the State of March	Market and Samuel and Assessment Assessment Street					N 1
Start 823.0000 MHz #Res BW 3.0 kHz	#VBW 30 kHz*	Stop 824.0000 MHz Sweep 132.7 ms (5001 pts)	#Res BW 3.0 kHz #	VBW 30 kHz* S	Stop 850.0000 MHz weep 132.7 ms (5001 pts)	

Mark

Stop 1.9110000 GH: Sweep 1.333 ms (5001 pts

RBW compensate factor (30 kHz to 50 kHz): $10*\log(50/30) = 2.22 dB$

Stop 1.8500000 GHz Sweep 1.333 ms (5001 pts)

Start 1.9100000 GHz #Res BW 30 kHz

#VBW 100 kHz

Start 1.8490000 GHz Res BW 30 kHz

#VBW 100 kHz

WCDMA Band V									
Channal	Frequency (MHz)	Measuremen	t Results	Results (dBm)	Limit				
Channel Number		Frequency (MHz)	Values (dBm)		(dBm)	Verdict			
4132	826.4	823.8578	-23.962	-21.742	-13.00	Pass			
4233	846.6	849.0006	-28.637	-26.417	-13.00	Pass			

RBW compensate factor (30 kHz to 50 kHz): 10*log(50/30) = 2.22 dB

V1.0

