Estimation

Experimental Research

Last week

- Average treatment effect
- Directed acyclic graphs (DAGs)
 - Confounds
 - Mediators
 - Colliders
- DAG assignment

This week

- How do we estimate these quantities in practice?
 - Population
 - Expectation
 - Sample mean
 - Estimating ATE as a difference in sample means
 - Estimating uncertainty
 - Standard deviations
 - Standard errors

Populations vs. Samples

- Populations are the targets of our inferences
 - American public
 - Students
 - Companies
- To understand populations, we derive representative samples
- Much of applied statistics is geared toward understanding when samplederived estimates match population estimates

Expectation

- Suppose we have a random variable X
- $E(X) = \mu = \sum xP(x)$
- Example:
 - Fair die (x ranges from 1-6; P(x) for each face is 1/6)
 - $1 \times 1/6 + 2 \times 1/6 + 3 \times 1/6 + 4 \times 1/6 + 5 \times 1/6 + 6 \times 1/6$
 - E(X) = 3.5
- With a finite population, E(X) equals the arithmetic mean
 - Try it out with the example above

Expected value

- Interpretations
 - Long-run average
 - E(X) captures the average over an infinite number of trials
 - Center of mass
 - Each random variable has a probability density function
 - E(X) is the center of mass

Deriving estimates from samples

- We rarely have population-level data, and even when we have a population, there exist other ways in which units may have been assigned to the treatment
- How do generate estimates from samples that approximate the estimates we would hypothetically want at the population level?
- How do we guarantee better vs. worse estimates?

Metrics

- What does it mean for an estimate to be better or worse?
 - Bias
 - The degree to which sample estimates match population estimates on average
 - $\mathbb{E}[\theta \hat{\theta}]$
 - If estimating the mean, this is the difference between the population mean and the sample mean. An unbiased estimator would be an estimator that exactly matches the population mean on average.
 - Consistency
 - Whether an estimator produces an estimate that converges in probability to the true estimate
 - As sample size increases, we should obtain a better population estimate
 - $P(|\theta \hat{\theta}| > \epsilon) \to 0 \text{ as } n \to \infty$
 - Efficiency
 - A good estimator minimizes variability in estimates across multiple trials

Unbiasedness

Biased but efficient

The sample mean is an unbiased estimator of the population mean

• What is an unbiased estimator of the population mean?

$$\bar{X} = 1/n \sum_{i}^{n} X_{i}$$

• We want to show that $E(\bar{X}) = E(X)$

• Step 1: Substitute
$$\bar{X}$$
 with equation above $-\mathbb{E}\bigg(1/n\sum_{i}^{n}X_{i}\bigg)$

- Step 2: Extract non-random numbers out of the expectation $1/n \sum E(X_i)$
- Step 3: Substitute $E(X_i)$ with $\mu 1/n \sum \mu$
- Step 4: The expected value of \bar{X} is μ

Estimating the Average Treatment Effect

•
$$ATE = \mathbb{E}(Y_i(1) - Y_i(0))$$

•
$$E(Y_i(1)) - E(Y_i(0))$$

•
$$E[Y_i | T_i = 1] - E[Y_i | T_i = 0]$$

$$\widehat{ATE} = \frac{1}{n} \sum_{i \in T_i = 1} Y_i - \frac{1}{n} \sum_{i \in T_i = 0} Y_i$$

 In plain language, difference in mean outcomes between those in the treatment and those in the control

	Yi	Ti
1	1	1
2	3	0
3	0	1
4	1	0

j	Yi	Ti
1	1	1
2	3	0
3	0	1
4	1	0

Treated mean: .5

İ	Yi	Ti
1	1	1
2	3	0
3	0	1
4	1	0

Treated mean: .5

Untreated mean: 2

j	Yi	Ti
1	1	1
2	3	0
3	0	1
4	1	0

Treated mean: .5

Untreated mean: 2

ATE = -1.5