Visualizing Dynamic Programming On Tree Decompositions

Martin Röbke

International Center for Computational Logic Technische Universität Dresden Germany

- ▶ WHAT was the motivation
- ▶ WHAT could be used previously?
- ► WHO benefits from visualization?
- CHALLENGES and solutions
- ► WHAT could be developed next?

About me

Martin Röbke Johannes Fichte Stefan Gumhold

Motivation

Creating Visualization for:

Improving

- examples for students
- debugging and improving interaction of complex data-structures
- hotspots

Existing Visualization

Figure: Handcrafted #SAT example-run from Markus Zisser¹

^{1&}quot;Solving #SAT on the GPU with Dynamic Programming and OpenCL", Diploma Markus Zisser 2018 Technische Universiti; ½t Wien, p.33

Existing Visualization

Figure: Handcrafted #SAT example-run from dpdb²

²"Exploiting Database Management Systems and Treewidth for Counting", Fichte. Hecher. Thier. Woltran

Background

(Weighted) Model-Counting

Graphs for Boolean Formulas

► Example set of CNF-clauses:

$$\{c1 = \{v1, v3, \neg v4\}, c2 = \{\neg v1, v6\}, c3 = \{\neg v2, \neg v3, \neg v4\}, c4 = \{\neg v2, v6\}, c5 = \{\neg v3, \neg v4\}, c6 = \{\neg v3, v5\}, c7 = \{\neg v5, \neg v6\}, c8 = \{v5, v7\}\}$$

Figure: The primal (left), incidence (middle) and dual (right) graph

Tree Decompositions

Parameterized Complexity and its Applications in Practice
From Foundations to Implementations
Johannes K. Fichte
TU Dresden, Germany
Jakarta, Indonesia
Summer 2019 (May 6th - May 16th) pages 162-174

Backup: VC tree vs graph - example p69, 128

Example: Vertex-Cover problem

Courcelle's theorem

For all $k \in \mathbb{N}$ and MSO-sentences F is the decision problem for a given graph G, whether $G \models F$ is true, in time $2^{p(tw(G))} \cdot |G|$ with a polynom p decidable.

- ▶ drawback: still expensive $(2^{p(twG)}, 2^{2^{(\#Q)}}, large constants)$
- usage:

Figure: Implementation of the theorem

Existing Visualization

Figure: Handcrafted #SAT example-run from Markus Zisser³

³"Solving #SAT on the GPU with Dynamic Programming and OpenCL", Diploma Markus Zisser 2018 Technische Universiti; ½t Wien, p.33

Existing Visualization

Figure: Handcrafted #SAT example-run from dpdb4

⁴"Exploiting Database Management Systems and Treewidth for Counting", Fichte. Hecher. Thier, Woltran

gpuSAT2 - Improving Upon Previous Ideas

Figure 1. Architecture of our DP-based solver for parallel execution. Vellow colored boxes indicate tasks that are required as initial step for the DP-run or to finally read the model count from the computed results. The parts framed by a dashed box illustrate the DP-part. Boxes colored in red indicate computations that run on the CPU. Gaves colored in blue indicate computations that are executed on the GPU (with waiting CPU).

- only primal graph (simpler solving DP)
- customized tree decompositions
- adapted memory-management
- improved precision handling

dpdb

Using databases for intermediate results

- ► SAT
- #SAT
- Vertex cover

```
 \begin{array}{lll} -\# \in \mathsf{Tab}\# \colon & \mathsf{SELECT} \ 1 \ \mathsf{AS} \ \mathsf{cnt} \\ \# \mathsf{int}\mathsf{Tab}\# \colon & \mathsf{SELECT} \ 1 \ \mathsf{AS} \ \mathsf{union} \ \mathsf{All} \ \mathsf{0} \\ -\# \mathsf{localPobFilter}\# \colon (l_{1,1} \ \mathsf{0R} \ \ldots \ \mathsf{OR} \ l_{1,k_1}) \ \mathsf{AND} \ \ldots \ \mathsf{AND} \ (l_{n,1} \ \mathsf{OR} \ \ldots \ \mathsf{OR} \ l_{n,k_n}) \\ -\# \mathsf{aggrExp}\# \colon & \mathsf{SUM}(\mathsf{cnt}) \ \mathsf{AS} \ \mathsf{cnt} \\ -\# \mathsf{extPois} \colon & \tau_1, \mathsf{cnt} \ \mathsf{*} \ \ldots \ \mathsf{*} \ \tau_r, \mathsf{cnt} \ \mathsf{AS} \ \mathsf{cnt} \end{array}
```

(a) Problem #SAT

```
 \begin{array}{lll} -\# \in \mathsf{Tab}\# : & \mathsf{SELECT} & 1 \ \mathsf{AS} & \mathsf{cnt} \\ \# \mathsf{intTab}\# : & \mathsf{SELECT} & 1 \ \mathsf{AS} & \mathsf{val} & \mathsf{UNION} \ \mathsf{ALL} \ \ldots & \mathsf{UNION} \ \mathsf{ALL} \ o \\ \# \mathsf{oda}\mathsf{Pob}\mathsf{Filter}\# : \mathsf{NOT} & ([u_1] = [v_1]) \ \mathsf{AND} \ \ldots & \mathsf{AND} \ \mathsf{NOT} & ([u_u] = [v_u]) \\ \# \mathsf{ogg}\mathsf{CSp\#} : & \mathsf{SUM(cnt)} \ \mathsf{AS} & \mathsf{cnt} \\ \# \mathsf{oda}\mathsf{CSp}\mathsf{CSp\#} : & \mathsf{SUM(cnt)} \ \mathsf{AS} & \mathsf{cnt} \\ \end{array}
```

(b) Problem #o-Col

(c) Problem MinVC

github: https://github.com/hmarkus/dp_on_dbs

Challenge1

Challenge2

Challenge3

Outlook

Benchmark

Performance of all three programs on #SAT instances:

Bibliography