Review 4-1

2023065350 7576

1. Show that the solution of $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is $O(n \lg n)$ by the substitution method. (Show the inductive step only.)

Inductive Step

$$NESUMPTION T(M) = D(MORM)$$
 $T(M) = CMORM$
 $T(N) = 2T(L_{2}^{2}J) + N = 2T(\frac{C}{2}) + N$
 $= 2 \cdot (C_{2} 108_{2}) + N$
 $= CN(09_{1}^{2} + N)$
 $= CN(09_{1}^{2} - N(C_{1}^{2}))$
 $\leq CN(09_{1}^{2} - N(C_{1}^{2}))$
when $C \ge 1$
 $\leq CN(09_{1}^{2} - N(C_{1}^{2}))$

Boundary conditions

If
$$h=1$$
 $T(1)=1 \rightarrow C/09 = 0$

If $h=2$
 $T(2)=2T(1)+2=4$
 $T(2)=2T(1)+2=4$

inductive step

 $T(2) \leq 2C$
 $T(3)=2T(1)+3=5$
 $T(3) \leq 6 \log 3$

2. Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2)$.

Assumption
$$T(n) = \theta(n^2) = T(n) = Cn^2$$

Max level = /og,n+1

Number of nodes at level i = 3ⁿ

Number of each steps computation at LONEL is $= \left(\frac{3}{16}\right)^{2} n^{2}$ $T(n) < \sum_{k=0}^{100} C\left(\frac{3}{16}\right)^{2} n^{2} + \left(\frac{1000}{4}\right)^{3}$ $\leq \sum_{k=0}^{\infty} C\left(\frac{3}{16}\right)^{2} n^{2} + \left(\frac{1000}{4}\right)^{3}$ $= \frac{1}{1 - \frac{3}{16}} \left(n^{2} + \frac{1000}{4}\right)^{3}$ $= \frac{1}{1 - \frac{3}{16}} \left(n^{2} + \frac{1000}{4}\right)^{3}$ $= \frac{1}{1 - \frac{3}{16}} \left(n^{2} + \frac{1000}{4}\right)^{3} = \frac{1000}{1000} \left(n^{2}\right)$

berned aucss: T(n) = 0 (n2)