Index

C_p , 78, 205, 206, 210–213	backfitting, 284, 300
R^2 , 68–71, 79–80, 103, 212	backward stepwise selection, 79,
ℓ_2 norm, 216	208-209, 247
ℓ_1 norm, 219	bagging, 12, 26, 303, 316–319,
	328-330
additive, 12, 86–90, 104	baseline, 86
additivity, 282, 283	basis function, 270, 273
adjusted R^2 , 78, 205, 206,	Bayes
210-213	classifier, 37–40, 139
Advertising data set, 15, 16,	decision boundary, 140
20, 59, 61-63, 68, 69,	error, 37–40
71-76, 79, 81, 82, 87,	Bayes' theorem, 138, 139, 226
88, 102–104	Bayesian, 226–227
agglomerative clustering, 390	Bayesian information criterion,
Akaike information criterion, 78,	78, 205, 206, 210-213
205, 206, 210-213	best subset selection, 205, 221,
alternative hypothesis, 67	244-247
analysis of variance, 290	bias, 33–36, 65, 82
area under the curve, 147	bias-variance
argument, 42	decomposition, 34
AUC, 147	trade-off, 33-37, 42, 105,
Auto data set, 14, 48, 49, 56,	149, 217, 230, 239, 243,
90-93, 121, 122, 171,	278, 307, 347, 357
176-178, 180, 182, 191,	binary, 28, 130
193-195, 299, 371	biplot, 377, 378

G. James et al., An Introduction to Statistical Learning: with Applications in R, 419 Springer Texts in Statistics 103, DOI 10.1007/978-1-4614-7138-7, © Springer Science+Business Media New York 2013

Boolean, 159	cross-validation, $12, 33, 36,$
boosting, 12, 25, 26, 303, 316,	175-186, 205, 227,
321-324, 330-331	248-251
bootstrap, 12, 175, 187–190, 316	k-fold, 181–184
Boston data set, 14, 56, 110,	leave-one-out, 178–181
113, 126, 173, 201, 264,	curse of dimensionality, 108, 168
299, 327, 328, 330, 333	242-243
bottom-up clustering, 390	
boxplot, 50	data frame, 48
branch, 305	Data sets
,	
Caravan data set, 14, 164, 335 Carseats data set, 14, 117, 123,	Advertising, 15, 16, 20, 59 61-63, 68, 69, 71-76, 79, 81, 82, 87, 88, 102-104
324, 333	Auto, 14, 48, 49, 56, 90-93,
categorical, 3, 28	121, 122, 171, 176–178,
classification, 3, 12, 28–29,	180, 182, 191, 193–195,
37–42, 127–173,	299, 371
337–353	Boston, 14, 56, 110, 113,
error rate, 311	126, 173, 201, 264, 299,
tree, 311–314, 324–327	327, 328, 330, 333
classifier, 127	Caravan, 14, 164, 335
cluster analysis, 26–28	Carseats, 14, 117, 123, 324
clustering, 4, 26–28, 385–401	333
K-means, 12, 386–389	College, 14, 54, 263, 300
agglomerative, 390	Credit, 83, 84, 86, 89, 90,
bottom-up, 390	99–102
hierarchical, 386, 390–401	Default, 14, 128-137,
coefficient, 61	144–148, 198, 199
College data set, 14, 54, 263, 300	${\tt Heart},312,313,317320,$
collinearity, 99–103	354, 355
conditional probability, 37	Hitters, 14, 244, 251, 255,
confidence interval, 66–67, 81,	256, 304, 305, 310, 311,
82, 103, 268	334
confounding, 136	Income, 16–18, 22–24
confusion matrix, 145, 158	Khan, 14, 366
continuous, 3	NCI60, 4, 5, 14, 407,
contour plot, 46	409–412
	OJ, 14, 334, 371
contrast, 86	Portfolio, 14, 194
correlation, 70, 74, 396	Smarket, 3, 14, 154, 161,
Credit data set, 83, 84, 86, 89,	162, 171
90, 99–102	USArrests, 14, 377, 378,
cross-entropy, 311–312, 332	381 – 383

Wage, $1, 2, 9, 10, 14, 267,$	false positive, 147
269, 271, 272, 274-277,	false positive rate, 147, 149, 354
280, 281, 283, 284, 286,	feature, 15
287, 299	feature selection, 204
Weekly, 14, 171, 200	Fisher's linear discriminant, 141
decision tree, 12, 303–316	fit, 21
Default data set, 14, 128-137,	fitted value, 93
144–148, 198, 199	flexible, 22
degrees of freedom, 32, 241, 271,	for loop, 193
272, 278	forward stepwise selection, 78,
dendrogram, 386, 390–396	207-208, 247
density function, 138	function, 42
dependent variable, 15	,
derivative, 272, 278	Gaussian (normal) distribution,
deviance, 206	138, 139, 142–143
dimension reduction, 204,	generalized additive model, 6,
228-238	26, 265, 266, 282–287,
discriminant function, 141	294
dissimilarity, 396–398	generalized linear model, 6, 156,
distance	192
correlation-based, 396–398,	Gini index, 311–312, 319, 332
416	, , , ,
Euclidean, 379, 387, 388,	Heart data set, 312, 313,
394, 396–398	317 - 320, 354, 355
double-exponential distribution,	heatmap, 47
227	heteroscedasticity, 95–96
dummy variable, 82–86, 130,	hierarchical clustering, 390–396
134, 269	dendrogram, 390–394
101, 200	inversion, 395
effective degrees of freedom, 278	linkage, 394–396
elbow, 409	hierarchical principle, 89
error	high-dimensional, 78, 208, 239
irreducible, 18, 32	hinge loss, 357
rate, 37	histogram, 50
reducible, 18	Hitters data set, 14, 244, 251,
term, 16	255, 256, 304, 305, 310
Euclidean distance, 379, 387,	311, 334
388, 394, 396–398, 416	hold-out set, 176
expected value, 19	hyperplane, 338–343
exploratory data analysis, 374	hypothesis test, 67–68, 75, 95
- ,	, , , , , , , , , , , , , , , , , , , ,
F-statistic, 75	Income data set, 16-18, 22-24
factor, 84	independent variable, 15
false discovery proportion, 147	indicator function, 268
false negative, 147	inference, 17, 19

inner product, 351	linkage, 394–396, 410
input variable, 15	average, $394-396$
integral, 278	centroid, 394–396
interaction, 60, 81, 87–90, 104,	complete, 391, 394–396
286	single, 394–396
intercept, 61, 63	local regression, 266, 294
interpretability, 203	logistic
inversion, 395	function, 132
irreducible error, 18, 39, 82, 103	logistic regression, 6, 12, 26, 127 131–137, 286–287, 349,
K-means clustering, 12, 386–389	356–357
K-nearest neighbors	multiple, 135–137
classifier, 12, 38–40, 127	logit, 132, 286, 291
regression, 104–109	loss function, 277, 357
kernel, 350–353, 356, 367	low-dimensional, 238
linear, 352	iow difficusional, 200
non-linear, 349–353	main effects, 88, 89
polynomial, 352, 354	majority vote, 317
radial, 352–354, 363	Mallow's C_p , 78, 205, 206,
kernel trick, 351	210-213
Khan data set, 14, 366	margin, 341, 357
knot, 266, 271, 273–275	matrix multiplication, 12
KHOU, 200, 211, 215–215	maximal margin
Laplace distribution, 227	classifier, 337–343
lasso, 12, 25, 219–227, 241–242,	hyperplane, 341
309, 357	maximum likelihood, 132–133,
leaf, 305, 391	135
least squares, 6, 21, 61–63, 133,	mean squared error, 29
203	misclassification error, 37
line, 63	missing data, 49
weighted, 96	mixed selection, 79
level, 84	model assessment, 175
leverage, 97–99	model selection, 175
likelihood function, 133	multicollinearity, 243
linear, 2, 86	multivariate Gaussian, 142–143
linear combination, 121, 204,	multivariate normal, 142–143
229, 375	
linear discriminant analysis, 6,	natural spline, 274, 278, 293
12, 127, 130, 138–147,	NCI60 data set, 4, 5, 14, 407, 409-412
348, 354	negative predictive value, 147,
linear model 20, 21, 50	149 node
linear model, 20, 21, 59	
linear regression, 6, 12	internal, 305
multiple, 71–82	purity, 311–312
simple, $61-71$	terminal, 305

noise, 22, 228	posterior
non-linear, 2, 12, 265–301	distribution, 226
decision boundary, 349–353	mode, 226
kernel, 349–353	probability, 139
non-parametric, 21, 23–24,	power, 101, 147
104–109, 168	precision, 147
normal (Gaussian) distribution,	prediction, 17
138, 139, 142–143	interval, 82, 103
null, 145	predictor, 15
hypothesis, 67	principal components, 375
model, 78, 205, 220	analysis, 12, 230–236, 374–385
odds, 132, 170	loading vector, 375, 376
OJ data set, 14, 334, 371	proportion of variance
one-standard-error rule, 214	explained, 382–384, 408
one-versus-all, 356	regression, 12, 230–236,
one-versus-one, 355	256-257, 374-375, 385
optimal separating hyperplane,	score vector, 376
341	scree plot, 383–384
optimism of training error, 32	prior
ordered categorical variable, 292	distribution, 226
orthogonal, 233, 377	probability, 138
basis, 288	projection, 204
out-of-bag, 317–318	pruning, 307–309
outlier, 96–97	cost complexity, 307–309
output variable, 15	weakest link, 307–309
overfitting, 22, 24, 26, 32, 80,	quadratic, 91
144, 207, 341	quadratic discriminant analysis,
	4, 149–150
p-value, 67–68, 73	qualitative, 3, 28, 127, 176
parameter, 61	variable, 82–86
parametric, 21–23, 104–109	quantitative, 3, 28, 127, 176
partial least squares, 12, 230,	qualities (0, 5, 20, 121, 110
237–238, 258, 259	R functions
path algorithm, 224	$x^2, 125$
perpendicular, 233	abline(), 112, 122, 301,
polynomial	412
kernel, 352, 354	anova(), 116, 290, 291
regression, 90–92, 265–268,	apply(), 250, 401
271	as.dist(), 407
population regression line, 63	as.factor(), 50
Portfolio data set, 14, 194	$\mathtt{attach()}, 50$
positive predictive value, 147,	biplot(), 403
149	boot(), 194-196, 199

bs(), 293, 300 c(), 43 cbind(), 164, 289 coef(), 111, 157, 247, 251 confint(), 111 contour(), 46 contrasts(), 118, 157 cor(), 44, 122, 155, 416 cumsum(), 404 cut(), 292 cutree(), 406 cv.glm(), 192, 193, 199 cv.glmnet(), 254 cv.tree(), 326, 328, 334	<pre>lm(), 110, 112, 113, 115,</pre>
data.frame(), 171, 201,	ns(), 293
262, 324	pairs(), 50, 55
dev.off(), 46	par(), 112, 289
dim(), 48, 49	pcr(), 256, 258
dist(), 406, 416	pdf(), 46
fix(), 48, 54	persp(), 47
for(), 193	plot(), 45, 46, 49, 55, 112,
gam(), 284, 294, 296	122, 246, 295, 325, 360,
gbm(), 330	371, 406, 408
glm(), 156, 161, 192, 199,	${\tt plot.gam()}, 295$
291	plot.svm(), 360
${\tt glmnet()},251,253 – 255$	${ t plsr()}, 258$
hatvalues(), 113	points(), 246
hclust(), 406, 407	poly(), 116, 191, 288-290,
hist(), 50, 55	299
I(), 115, 289, 291, 296	prcomp(), 402, 403, 416
identify(), 50	predict(), 111, 157, 160,
ifelse(), 324	162, 163, 191, 249, 250,
image(), 46	252, 253, 289, 291, 292,
importance(), 330, 333, 334	296, 325, 327, 361, 364, 365
is.na(), 244	print(), 172
jitter(), 292	prune.misclass(), 327
jpeg(), 46	$\mathtt{prune.tree()}, 328$
kmeans(), 404, 405	q(), 51
knn(), 163, 164	qda(), 162
lda(), 161, 162	quantile(), 201
legend(), 125	rainbow(), 408
length(), 43	${\tt randomForest()}, 329$
library(), 109, 110	range(), 56
lines(), 112	read.csv(), 49, 54, 418

read.table(), 48, 49	reducible error, 18, 81
regsubsets(), 244-249, 262	regression, 3, 12, 28–29
residuals(), 112	local, 265, 266, 280–282
return(), 172	piecewise polynomial, 271
rm(), 43	polynomial, 265–268,
rnorm(), 44, 45, 124, 262,	276–277
417	spline, 266, 270, 293
rstudent(), 112	tree, 304–311, 327–328
runif(), 417	regularization, 204, 215
s(), 294	replacement, 189
sample(), 191, 194, 414	resampling, 175–190
savehistory(), 51	residual, 62, 72
scale(), 165, 406, 417	plot, 92
sd(), 45	standard error, 66, 68–69,
seq(), 46	79–80, 102
set.seed(), 45, 191, 405	studentized, 97
smooth.spline(), 293, 294	sum of squares, 62, 70, 72
sqrt(), 44, 45	residuals, 239, 322
sum(), 244	response, 15
summary(), 51, 55, 113, 121,	ridge regression, 12, 215–219,
122, 157, 196, 199, 244,	357
245, 256, 257, 295, 324,	robust, 345, 348, 400
325, 328, 330, 334, 360,	ROC curve, 147, 354–355
361, 363, 372, 408	rug plot, 292
svm(), 359-363, 365, 366	rug prot, 252
table(), 158, 417	scale invariant, 217
text(), 325	scatterplot, 49
title(), 289	scatterplot matrix, 50
tree(), 304, 324	scree plot, 383–384, 409
tune(), 361, 364, 372	elbow, 384
update(), 114	seed, 191
var(), 45	semi-supervised learning, 28
varImpPlot(), 330	sensitivity, 145, 147
vif(), 114	separating hyperplane, 338–343
which.max(), 113, 246	shrinkage, 204, 215
which.max(), 113, 246 which.min(), 246	penalty, 215
write.table(), 48	signal, 228
radial kernel, 352–354, 363	slack variable, 346
random forest, 12, 303, 316,	slope, 61, 63
320–321, 328–330	Smarket data set, 3, 14, 154,
recall, 147	161, 162, 171
receiver operating characteristic	
(ROC), 147, 354–355	smoother, 286 smoothing spline, 266, 277–280,
	293
recursive binary splitting, 306,	soft margin classifier, 343–345
309, 311	son margin classifier, 545–549

and througholding 225	trac 202 216
soft-thresholding, 225	tree, 303–316
sparse, 219, 228	tree-based method, 303
sparsity, 219	true negative, 147
specificity, 145, 147, 148	true positive, 147
spline, 265, 271–280	true positive rate, 147, 149, 354
cubic, 273	truncated power basis, 273
linear, 273	tuning parameter, 215
natural, 274, 278	Type I error, 147
regression, 266, 271–277	Type II error, 147
smoothing, 31, 266, 277–280	: 11 : 20 20
thin-plate, 23	unsupervised learning, 26–28,
standard error, 65, 93	230, 237, 373–413
standardize, 165	USArrests data set, 14, 377,
statistical model, 1	378,381–383
step function, 105, 265, 268–270	1:
stepwise model selection, 12,	validation set, 176
205, 207	approach, 176–178 variable, 15
stump, 323	dependent, 15
subset selection, 204–214	dummy, 82–86, 89–90
subtree, 308	importance, 319, 330
supervised learning, 26–28, 237	independent, 15
support vector, 342, 347, 357	indicator, 37
classifier, 337, 343–349	•
machine, 12, 26, 349–359	input, 15
regression, 358	output, 15
synergy, 60, 81, 87–90, 104	qualitative, 82–86, 89–90
systematic, 16	selection, 78, 204, 219
t distribution 67 152	variance, 19, 33–36
t-distribution, 67, 153	inflation factor, 101–103,
t-statistic, 67	114
test	varying coefficient model, 282
error, 37, 40, 158 MSE, 29–34	vector, 43
•	Wage data set, 1, 2, 9, 10, 14,
observations, 30	267, 269, 271, 272,
set, 32 time series, 94	274–277, 280, 281, 283,
total sum of squares, 70	284, 286, 287, 299
tracking, 94	weakest link pruning, 308
train, 21	Weekly data set, 14, 171, 200
training	weighted least squares, 96, 282
data, 21	within class covariance, 143
	workspace, 51
error, 37, 40, 158 MSE, 29–33	workspace, 31 wrapper, 289
101512, 29-33	wrapper, 200