
Forms of learning

- Supervised learning
 - agent observes input-output pairs and learns a function that maps from input to output
- Unsupervised learning
 - agent learns patterns in the input without any explicit feedback
- Reinforcement learning
 - agent learns from a series of rewards and punishments

..........

- Why reinforcement learning is different from supervised/unsupervised learning?
 - no supervision, just a reward signal

- time matters (data is sequential and not independent)
 - feedback is delayed, not instantaneous
 - actions affect the subsequent states

Agent

Environment

Knowledge Check 1

Why is reinforcement learning considered different than supervised learning?

A

Unlike supervised learning, reinforcement learning does not need any kind of feedback.

B

While supervised learning requires the correct answer for training, reinforcement learning uses a mix of correct and incorrect answers.

C

Unlike supervised learning, reinforcement learning does not need to know the answer during training, but requires some feedback in the form of a reward for its decisions instead.

When can we use reinforcement learning?

..........

• Whenever we can describe our goal in terms of a reward function

- Fly a helicopter
 - positive reward for reaching target location
 - negative reward for crashing
- Play chess
 - positive/negative reward for winning/losing a game
- Manage an investment portfolio
 - positive reward is the money in bank
- Make a humanoid robot walk
 - positive reward for forward motion

- negative reward for falling over
- Play many different Atari games better than humans
 - positive/negative reward for increasing/decreasing score

2017: OpenAI Five Beats Top Professional Dota 2 Players

- A Markov process is a random process in which the future is independent of the past, given the present.
 - Mathematical formulation of the RL problem
 - Current state completely characterizes the state of the world
- Defined by:
- set of possible states (S)
- set of possible actions (A)
- distribution of reward given (state, action) pair (R)

- transition probability (P) distribution over next state given (state, action) pair
- discount factor (γ)

- At time step t=0, environment samples initial state s_0 ~ p(s_0)
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(.|s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(.|s_t, a_t)$
 - Agent receives reward rt and next state s_{t+1}
- A policy π is a function from S to A that specifies what action to take in each state
- Objective: find policy π^* that maximizes cumulative discounted reward
 - $\sum_{t\geq 0} \gamma^t r_t$

- Goal: reach the stars in the least amount of actions
 - Reward function: negative reward for each transition

- Goal: reach the stars in the least amount of actions
 - Reward function: negative reward for each transition

Q-Learning

- Agent use the environment's rewards to learn the best action to take in each state
- A Q-value for a state-action pair represents the "quality" of an action taken from that state
 - $Q^{\pi}(s, a) = \mathbb{E} \left[\sum_{t \ge 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$
 - High Q-values imply greater rewards
- Q-values are initialized to an arbitrary value and are updated with the outcome of environment simulations
 - $Q(s, a) = (1-\alpha)Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a')]$

- s' is the state reached from s after taking action a
- α is the learning rate
- Q(s, a) is a large table
 - For huge tables, we can approximate this table with a neural network!

You have reached the end of the lecture.