实 验 报 告 平分:

少年班 系<u>06</u>级 学号_<u>PB06000680</u> 姓名 张力 日期_2007-6-12

实验题目:直流电表和直流测量电路

实验目的:了解模拟式电表的原理和应用条件;通过测量固定电阻、可变电阻及二极管非线性电阻,学习

掌握直流电路及应用

实验原理:1、直流电压表和电流表

实验室的电表大多为为磁电式电表,利用的是通电导线在磁场中受安培力的作用,导线框偏转带动指针偏转显示读数的原理,但是这样的电表满偏电流很小。将磁电式电表表头并联一小阻值电阻可扩大电流表量程,串联一大阻值电阻可改装成电压表。

2、直流电阻的测量

如下图,直流电阻的测量一般采用伏安法,主要有外接和内接电流表两种方式。电流表内接法适用于较大阻值电阻的测量,反之,电流表外接法适用于较小阻值电阻的测量。

图 3.4.1-4 测量电路的接法

3、制流电路和分压电路

如下图,制流电路中当 C 滑至 A 端时电流最大,滑至 B 电流最小;分压电路中 C 滑至 A 时电压最大(输出电压),滑至 B 时电压最小。

实验内容:

1. 测量钨丝小灯泡的电阻

按图 3.4.1-9 接线,移动可变端 C,使电压在 $0\sim6V$ 中变化,测量对应的电流(多于 6 个测量值)。求出对应各点的 R π (小灯泡电阻)。用双对数坐标纸做出 R π 的伏安特性曲线。与公式 $V=KI^n$ 比较,求出

实 验 报 告 平分:

少年班 系 06 级 学号 <u>PB06000680</u> 姓名 张力 日期 <u>2007-6-12</u>

K和n。

2. 测量二极管的伏安特性曲线

按图 3.4.1-8 接线,将 R_x 改为二极管并反向连接。电流电压为 $0\sim20V$,每隔 2V 测一个电流值,求出二极管反向伏安特性。

按图 3.4.1-9 接线,将小灯泡改用二极管正向接法(注意电路中加一个几十欧姆的保护电阻)。从 0.2V 开始,每隔 0.05V 测一次,至电流较大(10mA 左右)为止,画出二极管正向伏安特性曲线。

实验数据:

实验中进行了三次测量,分别是测量钨丝小灯泡电阻、测量二极管正向伏安特性曲线、测量二极管反向安特性曲线,得到的原始数据如下:

1、测小灯泡电阻

电流 (mA)	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0
电压(V)	0.31	0.64	0.99	1.39	1.82	2.28	2.83	3.30

表一: 小灯泡伏安值

2、二极管正向伏安特性曲线

电压(V)	0.804	0.791	0.778	0.765	0.752	0.739	0.726
电流(mA)	20.00	10.70	6.20	3.44	2.20	1.22	0.78
电压(V)	0.713	0.700	0.687	0.674			
电流(mA)	0.48	0.34	0.20	0.16			

表二:二极管正向伏安值

3、二极管反向伏安特性曲线

电压(V)	3.80	3.60	3.40	3.20	3.00	2.80	2.60
电流(µ A)	100.0	64.0	40.1	23.1	13.0	6.7	3.0
电压(V)	2.40	2.20	2.00	1.80	1.60		此后电流
电流(µ A)	1.2	0.6	0.2	0.1	0		全为 0

表三:二极管负向伏安值

数据处理和分析:

1、测量小灯泡电阻

根据公式 $V=KI^n$,两边取对数,有 $\ln V= \ln I+\ln K$,故将电压和电流值取对数后,应用线性拟合,可以得到 K 和 n。取对数后列表如下:

ln (电流 (mA))	3.4012	3.68888	3.91202	4.09434	4.2485	4.38203	4.49981	4.60517
ln(电压(V))	-1.17118	-0.44629	-0.01005	0.3293	0.59884	0.82418	1.04028	1.19392

表四:电流电压取对数值表

根据这个表作图并用直线拟合,得下图:

少年班 系____06__级 学号 PB06000680

姓名___张力___

日期 2007-6-12

图一:电压电流对数值的直线拟合图

根据图得到斜率为 1.93 , 截距为-7.62 , 那么 n=1.93 , lnK=-7.62 , K=4.9 × $10^{\text{-4}}\text{V/mA}^{1.93}$ 。

2、二极管的正向伏安特性曲线

根据数据,绘出各个点并用线连接:

图二:二极管正向伏安特性曲线

3、二极管的反向伏安特性曲线 根据数据作图如下:

少年班 系<u>06</u>级

学号 PB06000680

姓名 张力

日期 2007-6-12

图三:二极管反向伏安特性曲线

实验小结:1、实验中应该注意电流表的外接和内接、制流和分压的区别,根据情况正确选择接线方式;

- 2、实验操作中最重要的是注意接线的正确性,以免造成短路和断路,同时特别注意电表和二极管的正极和负极;
- 3、数据处理时合理利用取对数的方法,将指数函数化为线性函数,便于处理。