Ćwiczenia z algorytmów wyliczania reguł decyzyjnych

March 2, 2025

Ćwiczenie 1 (1pkt)

Algorytmy wyliczania reguł decyzyjnych

Zadanie do wykonania

- 1. Czytamy teorię, analizujemy przykłady, w razie problemu ze zrozumieniem wyliczamy reguły na kartce.
- 2. Wczutyjemy plik SystemDecyzyjny.txt . Ostatni atrybut (kolumna) określa klasę próbki
- 3. Implementujemy algorytm w Python, wyliczając następujące reguły:
 - reguly pokrywające obiekty (covering) (1pkt),

Teoria do ćwiczeń z przykładami

 $Sposoby\ zapisu\ deskryptora:$

$$(a = a(v))$$
$$(a = v)$$
$$(a, a(v))$$

(a, v)

Znaczenie: (a = a(v)), atrybut a ma wartość v

System Informacyjny: (U, A)

U - zbiór obiektów;

 ${\cal A}$ - zbiór atrybutów warunkowych;

Przykład: (U, A), U = ob1, ob2, ob3, A = a1, a2, a3

	a_1	a_2	a_3
ob_1	1	2	3
ob_2	3	2	5
ob_3	10	2	17

System Decyzyjny: (U, A, d)U - zbiór obiektów;

A - zbiór atrybutów warunkowych;

d - atrybut decyzyjny

 $d \notin A$

Przykład System decyzyjny zapisujemy jako (U,A,d), przyjmijmy,

U = ob1, ob2, ob3

A = a1, a2, a3

 $d \in D = 1, 2$

Przykładowy system decyzyjny zgodny z opisem powyżej, może wygladać następująco,

	a_1	a_2	a_3	d
ob_1	7	2	3	1
ob_2	3	3	5	2
ob_3	10	45	4	1

Zdefiniujmy reguły decyzyjne wzajemnie niesprzeczne

$$(a_1 = 1) \implies (d = 1)$$

$$(a_1=2) \wedge (a_2=7) \implies (d=1)$$

$$(pogoda = słoneczna) \land (żona = w \ pracy) \land (czas = wolny) \implies (decyzja = park)$$

$$(pogoda = słoneczna) \land (żona = w domu) \land (czas = wolny) \implies (decyzja = dom)$$

Reguły decyzyjne wzajemnie sprzeczne

$$(a_1 = 1) \implies (d = 1)$$

$$(a_1 = 1) \implies (d = 2)$$

$$(pogoda = sloneczna) \land (żona = w pracy) \land (czas = wolny) \implies (decyzja = park)$$

$$(pogoda = słoneczna) \land (żona = w \ pracy) \land (czas = wolny) \implies (decyzja = dom)$$

Reguła z alternatywną decyzją

$$(pogoda = sloneczna) \land (żona = w pracy) \land (czas = wolny) \implies (decyzja = park) \lor (decyzja = dom)$$

1 Algorytm z rodziny sekwencyjnie pokrywających

(sequential covering) (1pkt)

Idea algorytmu pokrywającego obiekty

Szukamy w obiektach systemu decyzyjnego, począwszy od pierwszego, a skończywszy na ostatnim reguł długości jeden, które są niesprzeczne. Po znalezieniu reguły niesprzecznej, dany obiekt wyrzucamy z rozważań, pamiętając o tym, że dalej bierze udział w sprawdzaniu sprzeczności i może wspierać inne reguły. Jeżeli po przeszukaniu wszystkich obiektów, pozostają obiekty niewyrzucone z rozważań, szukamy w nich kombinacji niesprzecznej długości dwa i postępujemy analogicznie jak w przypadku reguł pierwszego rzędu. Wyszukiwanie reguł niesprzecznych jest kontynuowane do momentu wyeliminowania wszystkich obiektów niesprzecznych. Jeżeli w systemie pojawią się obiekty, które są sprzeczne na wszystkich deskryptorach, nie kreujemy z nich reguł.

Przykładowe wyliczanie reguł pokrywających obiekty:

Dany mamy system decyzyjny (U, A, d), gdzieU = o1, o2, ..., o7, o8, A = a1, a2, ..., a6

d – atrybut decyzyjny

	a_1	a_2	a_3	a_4	a_5	a_6	d
o_1	1	1	1	1	3	1	1
o_2	1	1	1	1	3	2	1
o_3	1	1	1	3	2	1	0
o_4	1	1	1	3	3	2	1
o_5	1	1	2	1	2	1	0
o_6	1	1	2	1	2	2	1
07	1	1	2	2	3	1	0
08	1	1	2	2	4	1	1

Rzad I:

- z o_1 brak
- z o_2 $(a_6=2) \implies (d=1)[3]$, wyrzucamy z rozważań obiekty o_2, o_4, o_6 .
- z o_3 brak
- z o_5 brak
- z o_7 brak
- z o_8 $(a_5=4) \implies (d=1)$, wyrzucamy z rozważań obiekt o_8 .

Rząd II:

- z o_1 $(a_3=1) \wedge (a_4=1) \implies (d=1)[2]$, wyrzucamy z rozważań obiekt o_1 .
- z o_3 $(a_3=1) \wedge (a_5=2) \implies (d=0)$, wyrzucamy z rozważań obiekt o_3 .
- z o_5 $(a_5 = 2) \land (a_6 = 1) \implies (d = 0)[2]$, wyrzucamy z rozważań obiekt o_5 .
- z o_7 $(a_3 = 2) \land (a_5 = 3) \implies (d = 0)$, wyrzucamy z rozważań obiekt o_7 .