Лекция 6

Тема: Съдържание: Метод на потенциалите за решаване на класическата транспортна задача. Задача за назначенията.

Основни понятия и формули

Критерий за оптималност на опорния план на транспортната задача при метода на потенциалите. Целевата функция F от (5.1) достига \min стойност, тогава и само тогава, когато всички $\Delta_{ii} \leq 0$, където Δ_{ii} са

(6.1)
$$\Delta_{ii} = u_i + v_j - c_{ii}, (i = 1, ..., m, j = 1, ..., n).$$

Забележка: Когато на F в (5.1) се търси \max , тогава трябва да е изпълнено условието $\Delta_{ii} \geq 0$.

Числата $u_1,...,u_n,v_1,...,v_j,...,v_n$, в (6.1), се наричат потенциали и се определят от условието, че във всички запълнени клетки (базисни неизвестни) е изпълнено Δ_{ij} = 0. Така тези потенциали, които са (m+n)- броя, са решение на системата

$$(6.2) u_i + v_j - c_{ii} = 0,$$

която има (m+n-1) – броя уравнения.

Решението на система (6.2) зависи от един параметър и тъй като се търси само едно решение, тогава за един от потенциалите се приема произволна стойност (например $u_1 = 0$) и след това еднозначно се определят останалите.

Критерий за влизане в опорния план: Съществува свободна клетка (свободна променлива), за която е изпълнено условието

$$\Delta_{lk} > 0.$$

Това означава, че целевата функция може да намали стойността си, ако променливата x_{lk} е базисна. На клетка $\langle l,k \rangle$ се намира обходната линия.

Обходна линия в разпределителната таблица, с начален опорен план на транспортната задача, се нарича затворена, начупена линия от хоризонтални и вертикални участъци, на която ъглите лежат само в запълнени клетки.

Свойство 1. Запълнена клетка няма обходна линия.

Свойство 2. Всяка свободна клетка има единствена обходна линия.

Свойство 3. Обходната линия се характеризира само от ъгловите си клетки, които са четен брой. Първата (свободна) клетка на обходната линия се означава със знак (+) и след това алтернативно се присвояват знаците (-) и (+) на останалите ъглови клетки, които за запълнени.

Критерий за излизане от опорния план: От (-) клетки на обходната линия на $\langle l,k \rangle$ излиза от опорния план тази, която има минимален товар.

Стойността на променливата x_{lk} е количеството товар, определено от

(6.4)
$$\theta = \min \left\{ moвари \ в \left(- \right) \kappa лет \kappa u \right\}.$$

Стойностите на променливите от новия опорен план се определят, като θ се прибавя към товара в (-) клетки на обходната линия и θ се изважда от товара в (+) клетки.

На всяка итерация в опорния план влиза само една и излиза също само една променлива, ето защо трябва да се забележи:

- 1. Ако условие (6.3) е изпълнено за няколко клетки, то се избира произволно една от тях.
- 2. Ако θ от (6.4) има една и съща минимална стойност в повече от една (-) клетки, то само една от тези клетки е свободна (излиза от базиса), а в останалите клетки, товарът е равен на нула това са «базисни нули».

Правила за решаване на задачи

- Решава се система (6.2) за запълнените клетки (m+n-1) броят, отговарящи на опорния план.
- Проверява се критерия за оптималност (6.1). Ако е изпълнен, то е получено оптималното решение.
- Ако (6.1) не е изпълнено, то се намера обходната линия на свободната клетка с положителна стойност от (6.1).
- Определят се (+) и (-) клетките на обходната линия, както и θ от (6.4). За новия опорен план се решава отново система (6.2).

Задачи и въпроси

6.1. Да се реши транспортната задача, зададена с разпределителна таблица *(6.1)* по метода на потенциалите. Началното базисно решение да се намери по метода на двупосочното предпочитане.

							Табл	тица	6.1.
A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		6		5		2		1	20
A_2		3		5		4		2	15
A_3		5		3		6		3	25
b_{j}	13		17		19		11		

Решение: Проверяваме дали е в сила балансиращото условие (5.7).

$$\sum_{i=1}^{3} a_i = 20 + 15 + 25 = 60,$$

$$\sum_{j=1}^{4} b_j = 13 + 17 + 19 + 11 = 60.$$

По правилата на метода на двупосочното предпочитане получаваме m+n-1=4+3-1=6 пълни клетки, които са нанесени в *табл.6.2.*

							Табл	ица	6.2.
A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		6		5	* 9	2	* * 11	1	20
A_2	* 13	3		5	2	4	*	2	15
A_3		5	* * 17	3	8	6	*	3	25
b_{j}	13		17		19		11		60

Началният опорен план е матрицата $X_0 = \begin{vmatrix} 0 & 0 & 9 & 11 \\ 13 & 0 & 2 & 0 \\ 0 & 17 & 8 & 0 \end{vmatrix}$. Стойността на целевата

функция при този план е $F(X_0) = 175$. За да определим дали това решение е оптимално трябва да се провери в сила ли е критерият за оптималност *(6.3)*. Въвеждаме потенциалите u_i , i = 1,...,3 и v_j , j = 1,...,4. За клетките с положителен товар по *(6.2)* определяме системата:

$$\begin{vmatrix} u_1 = 0 \\ \Delta_{ij} = 0 \end{vmatrix}$$

откъдето получаваме:

$$\begin{aligned} u_1 &= 0 \\ \Delta_{13} &= u_1 + v_3 - c_{13} = 0 + v_3 - 2 = 0 \implies v_3 = 2 \\ \Delta_{14} &= u_1 + v_4 - c_{14} = 0 + v_4 - 1 = 0 \implies v_4 = 1 \\ \Delta_{21} &= u_2 + v_1 - c_{21} = 2 + v_1 - 3 = 0 \implies v_1 = 1 \\ \Delta_{23} &= u_2 + v_3 - c_{23} = u_2 + v_3 - 4 = 0 \implies u_2 = 2 \\ \Delta_{32} &= u_3 + v_2 - c_{32} = 4 + v_2 - 3 = 0 \implies v_2 = -1 \\ \Delta_{33} &= u_3 + v_3 - c_{33} = u_3 + 2 - 6 = 0 \implies u_3 = 4 \end{aligned}$$

Нанасяме резултатите в табл. 6.3.

	$v_1 = 1$		$v_2 = -1$		$v_3 = 2$	2	$v_4 = 1$	l	a	
/	B_1		B_2		B_3		B_4		a_{i}	
		6		5	*	2	* *	1	20	
					9		11		20	
	*	3		5		1	*	2		

19

Таблица 6.3.

 \boldsymbol{B}_{i}

13

С помощта на намерените потенциали пресмятаме числата Δ_{ij} за празните клетки:

17

$$\begin{split} & \Delta_{11} = u_1 + v_1 - c_{11} = 0 + 1 - 6 = -5 < 0 \\ & \Delta_{12} = u_1 + v_2 - c_{12} = 0 - 1 - 5 = -6 < 0 \\ & \Delta_{22} = u_2 + v_2 - c_{22} = 2 - 1 - 5 = -4 < 0 \\ & \Delta_{24} = u_2 + v_4 - c_{24} = 2 + 1 - 2 = 1 > 0 \\ & \Delta_{31} = u_3 + v_1 - c_{31} = 4 + 1 - 5 = 0 \\ & \Delta_{34} = u_3 + v_4 - c_{34} = 4 + 1 - 3 = 2 > 0 \end{split}$$

Критерият за оптималност е нарушен от клетки $\langle 2,4 \rangle$ и $\langle 3,4 \rangle$, следователно намереното решение X_0 не е оптимално и трябва да подобрим базиса. Клетката, която най-силно нарушава критерия за оптималност е $\langle 3,4 \rangle$. Тя дава начало на обходна линия от вида:

$$\langle 3,4 \rangle \rightarrow \langle 1,4 \rangle \rightarrow \langle 1,3 \rangle \rightarrow \langle 3,3 \rangle \rightarrow \langle 3,4 \rangle$$

Таблица 6.4.

								raom	<i></i> 070.	•••••	
B_{j}		$v_1 = 1$		$v_2 = -1$		$v_3 = 2$		$v_4 = 1$		a	
A_{i}		B_1		B_2		B_3		B_4		a_i	
$u_1 = 0$	$A_{\rm l}$		6		5	(+) 9	2	(-) 1	1	20	
2	4		3		5	9	4		2	4.5	
$u_2 = 2$	A_2	13				2				15	
$u_3 = 4$	A_3		5		3	(-)	6	(+)	3	25	
	3			17		8					
b_i		13		17		19		11		60	
J		.)								60	

Върховете на обходната линия са:

- Клетки с (+) (3,4) и (2,3);
- Клетки с (-) (2,4) и (3,3).

Сега по (6.4) определяме $\theta = \min\left\{\langle 1,4\rangle;\langle 3,3\rangle\right\} = \min\left\{8;11\right\} = 8$. Количеството товар $\theta = 8$ се изважда от клетките с (-) и се прибавя към клетките с (+). Получаваме ново разпределение на товарите, представено в *табл. 6.5*. Новият опорен план е

матрицата
$$X_1 = \begin{vmatrix} 0 & 0 & 9+8 & 11-8 \\ 13 & 0 & 2 & 0 \\ 0 & 17 & 8-8 & 0+8 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 17 & 3 \\ 13 & 0 & 2 & 0 \\ 0 & 17 & 0 & 8 \end{vmatrix}$$
. Стойността на целевата

функция, пресметната за това решение е $F(X_1) = 159$. Наистина $F(X_1) < F(X_0)$, следователно сме подобрили стойността на F. Трябва да пресметнем потенциалите за новото разпределение, а след това и числата Δ_{ij} .

								Табл	ица	6.5.	
B_{j}		$v_1 = 1$		$v_{2} =$	$v_2 = 1$		$v_3 = 2$		1	a	
A_i		B_1		B_2		B_3		B_4		a_i	
$u_1 = 0$	$A_{\scriptscriptstyle 1}$		6		5	(+)	2	(-)	1	20	
$u_1 - \sigma$	² •1					17		3		20	
$u_2 = 2$	A_2		3		5	(-)	4	(+)	2	15	
$u_2 - z$	11 2	13				2)	10	
$u_3 = 2$	A_3		5		3		6		3	25	
$u_3 - 2$	11 3			17				8		20	
b_{i}		13		17		19		11		60	
j		כ		17		13		1 1		60	

За пълните клетки:

$$\begin{vmatrix} u_1 = 0 \\ \Delta_{13} = u_1 + v_3 - c_{13} = 0 + v_3 - 2 = 0 \implies v_3 = 2 \\ \Delta_{14} = u_1 + v_4 - c_{14} = 0 + v_4 - 1 = 0 \implies v_4 = 1 \\ \Delta_{21} = u_2 + v_1 - c_{21} = 2 + v_1 - 3 = 0 \implies v_1 = 1 \\ \Delta_{23} = u_2 + v_3 - c_{23} = u_2 + v_3 - 4 = 0 \implies u_2 = 2 \\ \Delta_{32} = u_3 + v_2 - c_{32} = 2 + v_2 - 3 = 0 \implies v_2 = 1 \\ \Delta_{34} = u_3 + v_4 - c_{34} = u_3 + 1 - 3 = 0 \implies u_3 = 2 \end{vmatrix}$$

За празните клетки:

$$\begin{split} \Delta_{11} &= u_1 + v_1 - c_{11} = 0 + 1 - 6 = -5 < 0 \\ \Delta_{12} &= u_1 + v_2 - c_{12} = 0 + 1 - 5 = -4 < 0 \\ \Delta_{22} &= u_2 + v_2 - c_{22} = 2 + 1 - 5 = -2 < 0 \\ \Delta_{24} &= u_2 + v_4 - c_{24} = 2 + 1 - 2 = 1 > 0 \\ \Delta_{31} &= u_3 + v_1 - c_{31} = 2 + 1 - 5 = -2 < 0 \\ \Delta_{33} &= u_3 + v_3 - c_{33} = 2 + 2 - 6 = -2 < 0 \end{split}$$

Тъй като $\Delta_{24} > 0$, то критерият за оптималност е нарушен и решението X_1 не е оптимално. Построяваме обходната линия на клетка $\langle 2,4 \rangle$:

$$\langle 2,4 \rangle \longrightarrow \langle 1,4 \rangle \longrightarrow \langle 1,3 \rangle \longrightarrow \langle 2,3 \rangle \longrightarrow \langle 2,4 \rangle$$

Върховете на обходната линия са:

- Клетки с (+) (1,3) и (2,4);
- Клетки с (-) $\langle 1,4 \rangle$ и $\langle 2,3 \rangle$.

По (6.4) определяме $\theta = \min\left\{\left\langle 1,4\right\rangle;\left\langle 2,3\right\rangle\right\} = \min\left\{3;2\right\} = 2$. Преразпределяме товарите като $\theta = 2$ се изважда от клетките с (-) и се прибавя към клетките с (+). Получаваме нов опорен план - матрицата $X_2 = \begin{vmatrix} 0 & 0 & 17+2 & 3-2 \\ 13 & 0 & 2-2 & 0+2 \\ 0 & 17 & 0 & 8 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 19 & 1 \\ 13 & 0 & 0 & 2 \\ 0 & 17 & 0 & 8 \end{vmatrix}$. Стойността на целевата функция,

пресметната за това решение е $F(X_2) = 157$. В *табл. 6.6* е нанесено новото разпределение на товарите, както и потенциалите, пресметнати за него.

								таолі	лца	6.6.	
B_{j}		$v_1 = 2$		$v_{2} =$	$v_2 = 1$		$v_3 = 2$		1	a	
A_i		B_1		B_2		B_3		B_4		a_i	
$u_1 = 0$	$A_{\rm l}$		6		5	19	2	1	1	20	
$u_2 = 1$	A_2	13	3		5		4	2	2	15	
$u_3 = 2$	A_3		5	17	3		6	8	3	25	
b_{j}		13		17		19		11		60	

За пълните клетки:

$$\begin{aligned} u_1 &= 0 \\ \Delta_{13} &= u_1 + v_3 - c_{13} = 0 + v_3 - 2 = 0 \implies v_3 = 2 \\ \Delta_{14} &= u_1 + v_4 - c_{14} = 0 + v_4 - 1 = 0 \implies v_4 = 1 \\ \Delta_{21} &= u_2 + v_1 - c_{21} = 1 + v_1 - 3 = 0 \implies v_1 = 2 \\ \Delta_{24} &= u_2 + v_4 - c_{24} = u_2 + 1 - 2 = 0 \implies u_2 = 1 \\ \Delta_{32} &= u_3 + v_2 - c_{32} = 2 + v_2 - 3 = 0 \implies v_2 = 1 \\ \Delta_{34} &= u_3 + v_4 - c_{34} = u_3 + 1 - 3 = 0 \implies u_3 = 2 \end{aligned}$$

За празните клетки:

$$\begin{split} & \Delta_{11} = u_1 + v_1 - c_{11} = 0 + 2 - 6 = -4 < 0 \\ & \Delta_{12} = u_1 + v_2 - c_{12} = 0 + 1 - 5 = -4 < 0 \\ & \Delta_{22} = u_2 + v_2 - c_{22} = 1 + 1 - 5 = -3 < 0 \\ & \Delta_{23} = u_2 + v_3 - c_{23} = 1 + 2 - 4 = -1 < 0 \\ & \Delta_{31} = u_3 + v_1 - c_{31} = 2 + 2 - 5 = -1 < 0 \\ & \Delta_{33} = u_3 + v_3 - c_{33} = 2 + 2 - 6 = -2 < 0 \end{split}$$

Тъй като всички числа $\Delta_{ij} \leq 0$, то критерият за оптималност е в сила и оптималното решение е намерно. Окончателно $F_{\min} = F\left(X_2\right) = 157$ и целевата

функция достига минимума си в
$$X_{\it opt} = X_2 = \begin{bmatrix} 0 & 0 & 19 & 1 \\ 13 & 0 & 0 & 2 \\ 0 & 17 & 0 & 8 \end{bmatrix}$$
 .

6.2. Да се реши транспортната задача, зададена с разпределителна таблица 6.7 по метода на потенциалите при условие, че връзката между склад A_2 и потребител B_3 е блокирана и потребител B_4 напълно задоволи потребностите си. Началното базисно решение да се намери по метода на двупосочното предпочитане.

							табл	тица	6.7.
A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		8		7		4		7	70
A_2		3		5		6		4	40
A_3		9		2		5		3	20
b_{j}	80		30		50		40		

Решение: Проверяваме дали е в сила балансиращото условие (5.7).

$$\sum_{i=1}^{3} a_i = 70 + 40 + 20 = 130,$$

$$\sum_{i=1}^{4} b_i = 80 + 30 + 50 + 40 = 200.$$

За да балансираме транспортната задача трябва да въведем фиктивен склад A_4 с 70 единици продукция. Трябва да се блокира връзката $\left(A_2;B_3\right)$ и да се осигури напълно задоволяване на потребностите на потребител B_4 . Това става като приемем, че транспортните разходи в съответните клетки са значително поголеми в сравнение с останалите. Въвеждаме в клетки $\langle 2,3\rangle$ и $\langle 4,4\rangle$ транспортни

разходи равни на M, където M>>0. В получената разпределителна таблица 6.8 по метода на двупосочното предпочитане намираме начален опорен план. Броят на пълните клетки е m+n-1=4+4-1=7. Началният опорен план е матрицата

$$X_0 = \begin{vmatrix} 0 & 10 & 50 & 10 \\ 10 & 0 & 0 & 30 \\ 0 & 20 & 0 & 0 \\ 70 & 0 & 0 & 0 \end{vmatrix}.$$

Стойността на целевата функция, пресметната за този план е $F(X_0) = 10.7 + 50.4 + 10.7 + 10.3 + 30.4 + 20.2 + 70.0 = 530$.

								l ab	лица	6.8.	
	$oldsymbol{B}_{j}$	$v_1 = 6$		$v_2 = 7$		$v_3 = 0$	4	$v_4 = 7$			
A_i		B_1		B_2		B_3		B_4		a_i	
$u_1 = 0$	$A_{\scriptscriptstyle 1}$		8		7	*	4		7	70	
$u_1 - 0$	n_{l}			10		50		10		70	
$u_2 = -3$	A_{2}	*	3		5		М		4	40	
$u_2 = -3$	71 ₂	10						30		40	
$u_3 = -5$	A_3		9	*	2		5	*	3	20	
$u_3 - 3$	7 1 3			20						20	
$u_3 = -6$	A_4	* *	0	* *	0	* *	0		М	70	
$u_3 - 0$	71 ₄	70								70	
b_{i}		80		30		50		40		200	
J_j		00		50		50		+0		200	

За да проверим в сила дали е в сила критерият за оптималност (6.3), въвеждаме потенциалите u_i , i=1,...,3 и v_i , j=1,...,4. Пресмятаме:

За пълните клетки:

$$\begin{vmatrix} u_1 = 0 \\ \Delta_{12} = u_1 + v_2 - c_{12} = 0 + v_2 - 7 = 0 \implies v_2 = 7 \\ \Delta_{13} = u_1 + v_3 - c_{13} = 0 + v_3 - 4 = 0 \implies v_3 = 4 \\ \Delta_{14} = u_1 + v_4 - c_{14} = 0 + v_4 - 7 = 0 \implies v_4 = 7 \\ \Delta_{24} = u_2 + v_4 - c_{24} = u_2 + 7 - 4 = 0 \implies u_2 = -3 \\ \Delta_{21} = u_2 + v_1 - c_{21} = -3 + v_1 - 3 = 0 \implies v_1 = 6 \\ \Delta_{32} = u_3 + v_2 - c_{32} = u_3 + 7 - 2 = 0 \implies u_3 = -5 \\ \Delta_{41} = u_4 + v_1 - c_{41} = u_4 + 6 - 0 = 0 \implies u_4 = -6 \end{aligned}$$

За празните клетки:

$$\begin{split} & \Delta_{11} = u_1 + v_1 - c_{11} = 0 + 6 - 8 = -2 < 0 \\ & \Delta_{22} = u_2 + v_2 - c_{22} = -3 + 7 - 5 = -1 < 0 \\ & \Delta_{23} = u_2 + v_3 - c_{23} = -3 + 4 - M = 1 - M < 0 \\ & \Delta_{31} = u_3 + v_1 - c_{31} = -5 + 6 - 9 = -8 < 0 \\ & \Delta_{33} = u_3 + v_3 - c_{33} = -5 + 4 - 5 = -6 < 0 \\ & \Delta_{34} = u_3 + v_4 - c_{34} = -5 + 7 - 3 = -1 < 0 \\ & \Delta_{42} = u_4 + v_2 - c_{42} = -6 + 6 - 0 = 0 \\ & \Delta_{43} = u_4 + v_3 - c_{43} = -6 + 4 - 0 = -2 < 0 \\ & \Delta_{44} = u_4 + v_4 - c_{44} = -6 + 7 - M = 1 - M < 0 \end{split}$$

Тъй като всички числа $\Delta_{ij} \leq 0$, то критерият за оптималност е в сила и оптималното решение е намерно. Окончателно $F_{\min} = F\left(X_0\right) = 530$ и целевата функция достига минимума си в $X_{opt} = X_0$.

6.3. Да се реши транспортната задача, зададена с разпределителна таблица 6.9 по метода на потенциалите при условие, че връзката между склад $A_{\rm l}$ и потребител $B_{\rm s}$ е блокирана и склад $A_{\rm s}$ напълно се освободи от продукцията си. Началното базисно решение да се намери по метода на двупосочното предпочитане.

Таблица 6.9. $B_{\scriptscriptstyle 1}$ B_{γ} B_3 a_{i} 6 4 5 30 8 3 2 50 A_2 7 5 6 40 A_3 2 5 2 20 A_{4} b_{i} 40 20 30

Решение: Проверяваме дали е в сила балансиращото условие (5.7).

$$\sum_{i=1}^{4} a_i = 30 + 50 + 40 + 20 = 140,$$

$$\sum_{i=1}^{3} b_i = 40 + 30 + 20 = 90.$$

За да балансираме транспортната задача трябва да въведем фиктивен потребител B_4 с 50 единици потребности. Трябва да се блокира връзката $\left(A_1; B_3\right)$ и да се осигури условието склад A_3 напълно да се освободи от продукцията си.

Въвеждаме в клетки $\langle 1,3 \rangle$ и $\langle 3,4 \rangle$ транспортни разходи равни на M, където M>>0. В получената разпределителна таблица 6.10 по метода на двупосочното предпочитане намираме начален опорен план. Броят на пълните клетки е

$$m+n-1=4+4-1=7$$
 . Началният опорен план е матрицата $X_0=\begin{bmatrix} 0 & 0 & 0 & 30 \\ 10 & 0 & 20 & 20 \\ 30 & 10 & 0 & 0 \\ 0 & 20 & 0 & 0 \end{bmatrix}$.

Стойността на целевата функция, пресметната за този план е $F(X_0) = 30.0 + 10.8 + 20.2 + 20.0 + 30.7 + 10.5 + 20.2 = 420$.

Въвеждаме потенциалите u_i , i=1,...,4 и v_j , j=1,...,4.

								Табл	ица	6.10.
	\boldsymbol{B}_{j}	$v_1 = 8$		$v_2 =$	$v_2 = 6$		$v_3 = 2$		0	a
A_{i}		B_1		B_2		B_3		B_4		a_i
$u_1 = 0$	$A_{\scriptscriptstyle 1}$		6		4		М	* *	0	30
<i>u</i> ₁ 0	1 1							30		30
$u_2 = 0$	A_2	(-)	8	(+)	3	*	2	* *	0	50
$u_2 - \sigma$	112	10				20		20		30
		(+)	7	(-)	5		6		М	
$u_3 = -1$	A_3	(+)	' '	*	5				IVI	40
		30 °		10)					
u1	A_4		5	*	2	*	2	* *	0	20
$u_3 = -4$	¹ 4			20						20
b_{i}	·	40		30		20		50		140
J_j		40		30		20		30		140

Получаваме:

За пълните клетки:

$$\begin{aligned} & u_1 = 0 \\ & \Delta_{14} = u_1 + v_4 - c_{14} = 0 + v_4 - 0 = 0 \implies v_4 = 0 \\ & \Delta_{24} = u_2 + v_4 - c_{14} = u_2 + v_4 - 0 = 0 \implies u_2 = 0 \\ & \Delta_{21} = u_2 + v_1 - c_{21} = 0 + v_1 - 8 = 0 \implies v_1 = 8 \\ & \Delta_{23} = u_2 + v_3 - c_{23} = 0 + v_3 - 2 = 0 \implies v_3 = 2 \\ & \Delta_{31} = u_3 + v_1 - c_{31} = u_3 + 8 - 7 = 0 \implies u_3 = -1 \\ & \Delta_{32} = u_3 + v_2 - c_{32} = -1 + v_2 - 5 = 0 \implies v_2 = 6 \\ & \Delta_{42} = u_4 + v_2 - c_{42} = u_4 + 6 - 2 = 0 \implies u_4 = -4 \end{aligned}$$

За празните клетки:

$$\begin{split} & \begin{vmatrix} \Delta_{11} = u_1 + v_1 - c_{11} = 0 + 8 - 6 = 2 > 0 \\ \Delta_{12} = u_1 + v_2 - c_{12} = 0 + 6 - 4 = 0 > 0 \\ \Delta_{13} = u_1 + v_3 - c_{13} = 0 + 2 - M = 2 - M < 0 \\ \Delta_{22} = u_2 + v_2 - c_{22} = 0 + 6 - 3 = 3 > 0 \\ \Delta_{33} = u_3 + v_3 - c_{33} = -1 + 2 - 6 = -5 < 0 \\ \Delta_{34} = u_3 + v_4 - c_{34} = -1 + 0 - M = -1 - M < 0 \\ & \begin{vmatrix} \Delta_{41} = u_4 + v_1 - c_{41} = -4 + 8 - 5 = -1 < 0 \\ \Delta_{43} = u_4 + v_3 - c_{43} = -4 + 2 - 2 = -4 < 0 \\ \Delta_{44} = u_4 + v_4 - c_{44} = -4 + 0 - 0 = -4 < 0 \\ \end{split}$$

Трябва да намерим по-добро решение, защото критерият за оптималност не е изпълнен. Клетката, която най-силно го нарушава е клетка $\langle 2,2 \rangle$. За нея построяваме обходна линия:

$$\left\langle \stackrel{(+)}{2,2} \right\rangle \rightarrow \left\langle \stackrel{(-)}{3,2} \right\rangle \rightarrow \left\langle \stackrel{(+)}{3,1} \right\rangle \rightarrow \left\langle \stackrel{(-)}{2,1} \right\rangle \rightarrow \left\langle \stackrel{(+)}{2,2} \right\rangle$$

Върховете на обходната линия са:

- Клетки с (+) (2,2) и (3,1);
- Клетки с (-) (2,1) и (3,2).

По (6.4) определяме $\theta = \min\left\{\left\langle 2,1\right\rangle;\left\langle 3,2\right\rangle\right\} = \min\left\{10;10\right\} = 10$. Преразпределяме товарите като $\theta = 10$ се изважда от клетките с $\left(-\right)$ и се прибавя към клетките с $\left(+\right)$

. Получаваме нов опорен план - матрицата
$$X_1 = \begin{pmatrix} 0 & 0 & 0 & 30 \\ 10-10 & 0+10 & 20 & 20 \\ 30+10 & 10-10 & 0 & 0 \\ 0 & 20 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 30 \\ 0 & 10 & 20 & 20 \\ 40 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \end{pmatrix}.$$
 Стойността на целевата функция, пресметната за това решение е $F(X_1) = 390$. При това разпределение на товарите,

пресметната за това решение е $F(X_1)=390$. При това разпределение на товарите, обаче, броят на пълните клетки е 6, което е по-малко от m+n-1=7. Затова избираме една от празните клетки, която натоварваме с нулев товар (базисна нула) и я считаме за пълна. Нека това е клетка $\langle 1,1 \rangle$.

В *табл. 6.11* е нанесено новото разпределение на товарите, както и потенциалите, пресметнати за него.

Таблица 6.11.

									0,0,0	
	$oldsymbol{B}_{j}$	$v_1 = 8$		$v_2 =$	$v_2 = 6$		$v_3 = 2$		0	a
A_i		B_1		B_2		B_3		B_4		a_i
$u_1 = 0$	$A_{_{1}}$	0	6		4		M	30	0	30
$u_2 = 0$	A_2		8	10	3	20	2	20	0	50
$u_3 = -1$	A_3	40	7		5		6		М	40
$u_4 = -4$	A_4		5	20	2		2		0	20
b_{j}		40		30		20		50		140 140

За новият опорен план пресмятаме:

За пълните клетки:

$$\begin{vmatrix} u_1 = 0 \\ \Delta_{11} = u_1 + v_1 - c_{11} = 0 + v_1 - 6 = 0 \implies v_1 = 6 \\ \Delta_{14} = u_1 + v_4 - c_{14} = 0 + v_4 - 0 = 0 \implies v_4 = 0 \\ \Delta_{24} = u_2 + v_4 - c_{24} = u_2 + 0 - 0 = 0 \implies u_2 = 0 \\ \Delta_{22} = u_2 + v_2 - c_{22} = 0 + v_2 - 3 = 0 \implies v_2 = 3 \\ \Delta_{23} = u_2 + v_3 - c_{23} = 0 + v_3 - 2 = 0 \implies v_3 = 2 \\ \Delta_{31} = u_3 + v_1 - c_{31} = u_3 + 6 - 7 = 0 \implies u_3 = 1 \\ \Delta_{42} = u_4 + v_2 - c_{42} = u_4 + 3 - 2 = 0 \implies u_4 = -1 \end{aligned}$$

За празните клетки:

$$\begin{split} & \Delta_{12} = u_1 + v_2 - c_{12} = 0 + 3 - 4 = -1 < 0 \\ & \Delta_{13} = u_1 + v_3 - c_{13} = 0 + 2 - M = 2 - M < 0 \\ & \Delta_{21} = u_2 + v_1 - c_{21} = 0 + 6 - 8 = -2 < 0 \\ & \Delta_{32} = u_3 + v_2 - c_{32} = 1 + 3 - 5 = -1 < 0 \\ & \Delta_{33} = u_3 + v_3 - c_{33} = 1 + 2 - 6 = -3 < 0 \\ & \Delta_{34} = u_3 + v_4 - c_{34} = 1 + 0 - M = 1 - M < 0 \\ & \Delta_{41} = u_4 + v_1 - c_{41} = -1 + 6 - 5 = 0 \\ & \Delta_{43} = u_4 + v_3 - c_{43} = -1 + 2 - 2 = -1 < 0 \\ & \Delta_{44} = u_4 + v_4 - c_{44} = -1 + 0 - 0 = -1 < 0 \end{split}$$

Всички клетки имат числа $\Delta_{ij} \leq 0$, i=1,...,4, j=1,...,4, следователно критерият за оптималност е в сила и оптималното решение е намерено. Тое матрицата

$$X_{\mathit{opt}} = X_1 = egin{bmatrix} 0 & 0 & 0 & 30 \\ 0 & 10 & 20 & 20 \\ 40 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \end{pmatrix}$$
, а минималната стойност на целевата функция е $F_{\min} = F\left(X_1\right) = 390$.

6.4. В складове A_1 и A_2 има съответно 150т и 90 т гориво. Градовете B_1 , B_3 и B_3 имат съответно потребности 60т, 70т и 110т. Стойността на превоза за 1т гориво от склад A_1 до градовете B_1 , B_3 и B_3 е съответно 60лв, 100лв и 40 лв, а от склад A_2 до градовете B_1 , B_3 и B_3 - съответно 120лв, 20лв и 80лв. Да се намери оптимален план на разпределение, който осигурява минимални сумарни транспортни разходи.

Отг.:
$$F_{\min} = 10200 \pi$$
в, $X_{opt} = \begin{vmatrix} 60 & 0 & 90 \\ 0 & 70 & 20 \end{vmatrix}$

6.5. Да се реши транспортната задача, зададена с разпределителна таблица *6.12* по метода на потенциалите. Началното базисно решение да се намери по метода на двупосочното предпочитане.

Таблица 6.12. B_{i} $B_{\scriptscriptstyle 1}$ B_{γ} B_3 a_{i} 4 5 3 100 2 7 400 A_2 2 3 A_3 700 b_{i} 300 300 600

OTT.:
$$F_{\min} = 4100$$
, $X_{opt} = \begin{bmatrix} 0 & 0 & 100 \\ 0 & 0 & 400 \\ 300 & 300 & 100 \end{bmatrix}$

6.6. Да се реши транспортната задача, зададена с разпределителна таблица *6.13* по метода на потенциалите. Началното базисно решение да се намери по метода на северозападния ъгъл.

Таблица 6.13.

							Tauj	ица	0.13.
A_i	B_1		B_2		B_3		B_4		a_{i}
$A_{\rm l}$		1		2		2		3	11
A_2		4		5		6		11	11
A_3		5		7		9		12	11
A_4		10		8		12		13	11
b_{j}	17		9		10		8		

OTT.:
$$F_{\min} = 235$$
, $X_{opt} = \begin{bmatrix} 0 & 0 & 5 & 6 \\ 6 & 0 & 5 & 0 \\ 11 & 0 & 0 & 0 \\ 0 & 9 & 0 & 2 \end{bmatrix}$

6.7. Да се реши транспортната задача, зададена с разпределителна таблица *6.14* по метода на потенциалите. Началното базисно решение да се намери по метода на двупосочното предпочитане.

Таблица 6 14

					i aoi	іица	<i>6.14.</i>
A_i	B_1		B_2		B_3		a_i
A_1		3		4		5	20
A_2		4		6		6	20
A_3		5		7		3	31
A_4		7		8		5	20
b_{j}	25		26		30		

OTT.:
$$F_{\min} = 332$$
, $X_{opt} = \begin{bmatrix} 5 & 15 & 0 \\ 20 & 0 & 0 \\ 0 & 1 & 30 \\ 0 & 10 & 0 \end{bmatrix}$

6.8. Да се реши транспортната задача, зададена с разпределителна таблица *6.15* по метода на потенциалите. Началното базисно решение да се намери по метода на северозападния ъгъл.

							Табл	ица 6	<i>5.15.</i>
A_i	B_{1}		B_2		B_3		B_4		a_i
$A_{\rm l}$		4		6		12		9	60
A_2		3		3		4		5	80
A_3		1		10		1		2	100
A_4		5		11		8		6	150
b_{j}	50		70		90		140		

OTT.:
$$F_{\min} = 1290$$
, $X_{opt} = \begin{vmatrix} 40 & 0 & 0 & 0 \\ 10 & 70 & 0 & 0 \\ 0 & 0 & 90 & 10 \\ 0 & 0 & 0 & 130 \end{vmatrix}$

6.9. Да се реши транспортната задача, зададена с разпределителна таблица 6.15 по метода на потенциалите при условие, че складове $A_{\rm i}$ и $A_{\rm 4}$ напълно се освободят от продукцията си.

OTT.:
$$F_{\min} = 1410$$
, $X_{opt} = \begin{vmatrix} 30 & 30 & 0 & 0 \\ 0 & 40 & 0 & 0 \\ 0 & 0 & 90 & 10 \\ 20 & 0 & 0 & 130 \end{vmatrix}$

6.10. Да се реши транспортната задача, зададена с разпределителна таблица 6.15 по метода на потенциалите при условие, че склад $A_{\!_{4}}$ напълно се освободи от продукцията си и връзките между склад $A_{\!_{2}}$ и потребител $B_{\!_{1}}$ и между склад $A_{\!_{3}}$ и потребител $B_{\!_{3}}$ са блокирани.

OTT.:
$$F_{\min} = 1560$$
, $X_{opt} = \begin{vmatrix} 20 & 0 & 0 & 0 \\ 0 & 70 & 10 & 0 \\ 30 & 0 & 0 & 70 \\ 0 & 0 & 80 & 70 \end{vmatrix}$

6.11. Да се реши транспортната задача, зададена с разпределителна таблица *6.16* по метода на потенциалите.

Таблица 6.16.

					Taon	ица	J. 1 O.
A_i	B_1		B_2		B_3		a_i
$A_{\rm l}$		2		6		5	7
A_2		4		8		7	6
b_{j}	8		9		4		

ОТГ.:
$$F_{\min} = 74$$
, $X_{opt} = \begin{bmatrix} 4 & 3 & 0 \\ 0 & 6 & 0 \end{bmatrix}$

6.12. Да се реши транспортната задача, зададена с разпределителна таблица *6.17* по метода на потенциалите.

Таблица 6.17.

							7 4071	<i>5,</i> 0, 0, 1	
A_i	B_1		B_2		B_3		B_4		a_{i}
$A_{\rm l}$		4		7		9		3	150
A_2		15		6		8		7	100
A_3		3		11		2		5	50
b_{j}	100		50		200		50		

OTT.:
$$F_{\min} = 1350$$
, $X_{opt} = \begin{bmatrix} 100 & 0 & 0 & 50 \\ 0 & 50 & 50 & 0 \\ 0 & 0 & 50 & 0 \end{bmatrix}$

6.13. Да се реши транспортната задача, зададена с разпределителна таблица 6.17 по метода на потенциалите, при условие, че потребител B_3 изцяло задоволи потребностите си.

OTT.:
$$F_{\min} = 1700$$
, $X_{opt} = \begin{bmatrix} 50 & 0 & 50 & 50 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 50 & 0 \end{bmatrix}$

6.14. Да се реши транспортната задача, зададена с разпределителна таблица 6.17 по метода на потенциалите, при условие, че потребител B_1 изцяло задоволи потребностите си и връзката между склад A_1 и потребител B_1 е блокирана.

OTT.:
$$F_{\min} = 2250$$
, $X_{opt} = \begin{bmatrix} 0 & 0 & 100 & 50 \\ 50 & 50 & 0 & 0 \\ 50 & 0 & 0 & 0 \end{bmatrix}$

6.15. Да се реши транспортната задача, зададена с разпределителна таблица *6.18* по метода на потенциалите.

			Таблица 6.18.				
A_i	B_1	B_2	B_3	B_4	a_i		
$A_{\rm l}$	3	6	5	1	10		
A_2	1	4	3	2	60		
A_3	4	3	1	2	40		
b_{j}	30	45	15	20			

OTT.:
$$F_{\min} = 210$$
, $X_{opt} = \begin{vmatrix} 0 & 0 & 0 & 10 \\ 30 & 20 & 0 & 0 \\ 0 & 25 & 15 & 0 \end{vmatrix}$

6.16. Да се реши транспортната задача, зададена с разпределителна таблица *6.19* по метода на потенциалите.

Таблица 6.19.

$$A_i$$
 B_j
 B_1
 B_2
 B_3
 a_i
 A_1
 A_2
 A_3
 A_4
 A_5
 A_6
 A_6
 A_7
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_9
 A_9

OTT.:
$$F_{\min} = 860$$
, $X_{opt} = \begin{bmatrix} 0 & 5 & 15 \\ 0 & 0 & 15 \\ 0 & 15 & 0 \end{bmatrix}$