第一周提纲。

学习内容: 同学们结合慕课视频(P1--P2)和电子版教材(第四版)学习本PPT中的内容,并注意以下问题。

- 1. 什么是数学模型和数学建模?
- 2. 什么是初等模型?
- 3.如何计算信道总长度?

作业。

- 一、自行完成分组,作业按组提交。
- 二、自行安装Matlab和Latex软件,并试运行。

第一章 建立数学模型

- 1.1 从现实对象到数学模型
- 1.2 数学建模的重要意义
- 1.3 数学建模示例
- 1.4 数学建模的方法和步骤
- 1.5 数学模型的特点和分类
- 1.6 怎样学习数学建模

1.1 从现实对象到数学模型

我们常见的模型

玩具、照片、飞机、火箭模型...~实物模型

水箱中的舰艇、风洞中的飞机...

~物理模型

地图、电路图、分子结构图...

~符号模型

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物.

模型集中反映了原型中人们需要的那一部分特征.

你碰到过的数学模型——"航行问题"

甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h, 问船的速度是多少?

用 x 表示船速, y 表示水速, 列出方程:

$$(x + y) \times 30 = 750$$
 $\implies x=20$
 $(x - y) \times 50 = 750$ $\implies x = 20$

答:船速为20km/h.

航行问题建立数学模型的基本步骤

- •作出简化假设(船速、水速为常数);
- •用符号表示有关量(x, y表示船速和水速);
- 用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);
- 求解得到数学解答 (x=20, y=5);
- ·回答原问题(船速为20km/h).

数学模型 (Mathematical Model) 和 数学建模 (Mathematical Modeling)

数学模型

对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学表述.

数学 建模

建立数学模型的全过程(包括表述、求解、解释、检验等)

1.2 数学建模的重要意义

- 电子计算机的出现及飞速发展;
- 数学以空前的广度和深度向一切领域渗透.

数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视.

- 在一般工程技术领域, 数学建模仍然大有用武之地;
- 在高新技术领域, 数学建模几乎是必不可少的工具;
- 数学进入一些新领域,为数学建模开辟了许多处女地.

数学建模的重要意义

"数学是一种关键的、普遍的、可以应用的技术".

数学"由研究到工业领域的技术转化,对加强 经济竞争力具有重要意义".

"计算和建模重新成为中心课题,它们是数学科学技术转化的主要途径".

数学建模的具体应用

·分析与设计

·预报与决策

• 控制与优化

·规划与管理

数学建模

如虎添翼

计算机技术

知识经济

数学建模示例

椅子能在不平的地面上放稳吗 1.3.1

问题分析

放稳~四只脚着地 通常~三只脚着地

- 四条腿一样长,椅脚与地面点接触, 四脚 连线呈正方形;
- 地面高度连续变化,可视为数学上的连续 曲面;
- 地面相对平坦,使椅子在任意位置至少三 只脚同时着地.

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来.

• 椅子位置 利用正方形(椅脚连线)的对称性.

用 θ (对角线与x轴的夹角)表示椅子位置.

• 四只脚着地 椅脚与地面距离为零

距离是的的函数.

四个距离(四只脚)

正方形 对称性

两个距离

B,D 两脚与地面距离之和 $\sim g(\theta)$

正方形ABCD 绕O点旋转

模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来.

地面为连续曲面

 \Box $f(\theta), g(\theta)$ 是连续函数

椅子在任意位置 至少三只脚着地 \neg 对任意 $\theta, f(\theta), g(\theta)$ 至少一个为0

数学问题

已知: $f(\theta)$, $g(\theta)$ 是连续函数;

对任意 θ , $f(\theta) \cdot g(\theta) = 0$;

且 g(0)=0, f(0)>0.

证明:存在 θ_0 ,使 $f(\theta_0) = g(\theta_0) = 0$.

模型求解。给出一种简单、粗糙的证明方法

- 1)将椅子旋转90°,对角线AC和BD互换.
- 由 g(0)=0, f(0)>0, 知 $f(\pi/2)=0$, $g(\pi/2)>0$.
- 2) 令 $h(\theta) = f(\theta) g(\theta)$, 则 h(0) > 0 和 $h(\pi/2) < 0$.
- 3) 由 f, g 的连续性知 h为连续函数,据连续函数的基本性质,必存在 θ_0 ($0 < \theta_0 < \pi/2$),使 $h(\theta_0) = 0$,即 $f(\theta_0) = g(\theta_0)$.
- 4) 因为 $f(\theta) \cdot g(\theta) = 0$, 所以 $f(\theta_0) = g(\theta_0) = 0$.

评注和思考

建模的关键: 用 θ 表示椅子的位置

用 $f(\theta)$, $g(\theta)$ 表示椅脚与地面的距离

假设条件中哪些是本质的,哪些是非本质的?

考察四脚连线呈长方形的椅子(习题4).

证明过程的粗糙之处:

椅子的旋转轴在哪里,它在旋转过程中怎样变化?

1.4 数学建模的方法和步骤

数学建模的基本方法

•机理分析

根据对客观事物特性的认识,

找出反映内部机理的数量规律.

•测试分析

将对象看作"黑箱",通过对量测数据的统计分析,找出与数据拟合最好的模型.

•二者结合

用机理分析建立模型结构, 用测试分析确定模型参数.

机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析.

数学建模的一般步骤

模型准备

了解实际背景 明确建模目的

搜集有关信息 掌握对象特征

形成一个 比较清晰 的"问题"

模型假设

数学建模的一般步骤

针对问题特点和建模目的

作出合理的、简化的假设

在合理与简化之间作出折中

模型构成

用数学的语言、符号描述问题

发挥想像力

使用类比法

尽量采用简单的数学工具

数学建模的一般步骤

模型 求解

各种数学方法、软件和计算机技术.

模型 分析 如结果的误差分析、统计分析、模型对数据的稳定性分析.

模型 检验

与实际现象、数据比较, 检验模型的合理性、适用性.

模型应用

数学建模的全过程

现实世界

表述 根据建模目的和信息将实际问题"翻译"成数学问求解 選择适当的数学方法求得数学模型的解答.

实践 □ 理论□ 实践

1.5 数学模型的特点和分类

数学模型的特点

模型的逼真性和可行性

模型的非预制性

模型的渐进性

模型的条理性

模型的强健性

模型的技艺性

模型的可转移性

模型的局限性

数学模型的分类

应用领域 人口、交通、经济、生态、...

数学方法 初等数学、微分方程、规划、统计、...

表现特性 确定和随机 静态和动态

离散和连续 线性和非线性

建模目的 描述、优化、预报、决策、...

了解程度 白箱 灰箱 黑箱

1.6 怎样学习数学建模

数学建模与其说是一门技术,不如说是一门艺术

技术大致有章可循 艺术无法归纳成普遍适用的准则

想像力

洞察力

判断力

- 学习、分析、评价、改进别人作过的模型.
 - 亲自动手,认真作几个实际题目.

第二章 初等模型

光盘的数据容量(视频P1--P2)

初等模型

- 研究对象的机理比较简单
- 用静态、线性、确定性模型即可达到建模目的

可以利用初等数学方法来构造和求解模型

如果用初等和高等的方法建立的模型,其应用效果 差不多,那么初等模型更高明,也更受欢迎.

尽量采用简单的数学工具来建模

2.1 光盘的数据容量

背景和问题

- · 20世纪80年代出现激光唱片(CD)与激光视盘(LD), 统称光盘, 用于储存数字声频、视频信号和计算机数据等.
- · 20世纪90年代出现数字视频光盘(DVD).
- 21世纪初光盘集计算机、光学记录和影视技术为一体,带动了出版、广播、通信、互联网等行业的发展.

CD的数据容量: 单层650MB(兆字节) DVD的数据容量: 单层4.7GB(千兆字节)

从数学建模的角度研究:光盘的数据容量是 怎么确定的,在一定条件下怎样使其最大化.

调查和分析

经过编码的数字信息,以 一定深度和宽度、不同长 度的凹坑的形式,用烧蚀 技术存储在光盘表面呈螺 旋线形状的信道上.

当盘片上环形区域面积一定时,数据容量的大小取决于信道的总长度与信道上存储数据的线密度.

决定信道长度和线密度大小的主要因素是所用激光的波长,和驱动光盘的机械形式.

调查和分析

数据容量

- 信道长度
- 线密度

- 激光波长
- 驱动形式

激光波长

- 当光盘运转时激光束要能识别出信道上的凹坑所携带的信息,必须锐利地聚焦.
- 光的衍射使激光束在光盘上形成圆状的光斑.
- 为了提高存储数据的线密度,应该使光斑尽量小,而光斑的大小与激光波长成正比.

激光器	激光波长	光斑直径	信道间距	数据线密度
	(µm)	(µm)	(µm)	(字节/mm)
红外(CD)	0.78	2	1.6	121
红色(DVD)	0.64	0.925	0.74	387
蓝色(DVD)	0.41	0.4	0.32	800

调查和分析

驱动光盘的机械形式

恒定角速度(CAV)

每一圈螺旋线上存储同等数量的数据信息

容量取决于最内圈的长度、线密度以及总圈数

恒定线速度(CLV)

各圈螺旋线上数据 的线密度不变 容量取决于固定的线 密度和螺旋线总长度

从光盘的容量比较,CLV优于CAV.

数据读取时间: CLV每圈转速不同,当读出磁头在内外圈移动时,需要等待光盘加速或减速,而CAV不需要.

对音乐、影像、计算机文件等按顺序播放的信息,多用CLV; 对词典、数据库、人机交互等常要随机查找的信息,多用CAV.

模型建立

CLV(恒定线速度)光盘

数据容量 $C_{CLV} = \rho L_{CLV} \rho$ ~线密度, L_{CLV} ~信道总长度

 R_1 ~光盘环形区域内圆半径, R_2 ~外圆半径, d~信道间距

$$L_{CLV} \approx \sum_{k=0}^{n-1} 2\pi (R_1 + kd) = \frac{\pi (R_2 - R_1)(R_2 + R_1 - d)}{d} \quad (n \sim \text{ id} \, \text{ and})$$

其他方法建模

环形区域面积/信道间距

$$L_{CLV} \approx \frac{\pi (R_2^2 - R_1^2)}{d}$$

同心圆平均周长*总圈数

$$L_{CLV} \approx 2\pi \frac{R_2 + R_1}{2} \frac{R_2 - R_1}{d}$$

模型建立

CAV(恒定角速度)光盘

数据容量 $C_{CAV} = \rho L_{CAV}$ ρ ~线密度, L_{CLV} ~信道总长度

螺旋线最内圈的长度近似为 $2\pi R_1$,

总圈数可视为
$$\frac{R_2-R_1}{d}$$

$$L_{CAV} = 2\pi R_1 \frac{R_2 - R_1}{d}$$

当线密度 ρ 、信道间距d和外径 R_2 给定后,可选择环形区域的内圆半径 R_1 ,使数据容量最大.

模型求解

CLV(恒定线速度)光盘

$$L_{CLV} \approx \frac{\pi (R_2^2 - R_1^2)}{d}$$

$$R_2 = 58 \text{ mm}$$
, $R_1 = 22.5 \text{ mm}$

激光器	激光波长 (μm)	信道长度 (mm)	信息容量 _, (MB)	影像时间 (min)
红外(CD)	0.78	5,611,179	679	18
红色(DVD)	0.64	12,132,279	4,695	126
蓝色(DVD)	0.41	28,055,895	22,445	603

CD信道长度在5km以上,容量约680 MB; DVD容量在GB量级.

影像时间按照每秒钟占用0.62 MB计算.

模型求解

CAV(恒定角速度)光盘

$$L_{CAV} = 2\pi R_1 \frac{R_2 - R_1}{d} = \frac{\pi R_2^2}{2d}$$

$$C_{CAV} = \rho L_{CAV}$$

$$R_1=R_2/2$$
时 L_{CAV} 最大

激光器	激光波长	信道长度	信息容量	影像时间
	(µm)	(mm)	(MB)	(min)
红外(CD)	0.78	3,302,599	400	11
红色(DVD)	0.64	7,140,755	2,764	74
蓝色(DVD)	0.41	16,512,996	13,210	355

即使在内圆半径的最佳选择下,CAV光盘的信息容量也小于CLV光盘.