2020 年-2021 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

,	课程名称:	:运筹:	学(一)	课程	是类别	□公共课 ■专业课	考试开	形式 □	<u>开卷</u> 闭卷
J	所在院系	: <u>人工智</u> 育	尼与自动化	上学院_专	业及班级	:_物流 20	019_考试	日期: <u>202</u>	<u>0. 12. 5</u>
4	学 号:			姓名:		任	课教师:	<u>张钧</u>	
	题号	_	11	111	四	五.	六	总分	
	分数								

得分	评卷人

一、(25分)试求解如下线性规划问题:

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ 2x_1 + x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解答:

(1) 标准化

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t.\begin{cases} \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 - x_4 &= \frac{1}{2} \\ 2x_1 &+ x_3 &+ x_5 &= 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(4分)

(2) 构建初始单纯形表并用单纯形法求解

	$c_j \rightarrow$		3	-1	1	0	0	θ
C_B	X_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	
-1	x_2	1/2	1/2	1	1/2	-1	0	1
0	<i>x</i> ₅	1	(2)	0	1	0	1	1/2
	$c_i - z_i$		(7/2)	0	3/2	-1	0	
-1	x_2	1/4	0	1	1/4	-1	-1/4	
3	x_1	1/2	1	0	1/2	0	1/2	
	$c_j - z_j$	ı	0	0	-1/4	-1	-7/4	

初始单纯形表。。。(10分)

调整。。。(8分)

(3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=1/2$, $x_2=1/4$, $x_3=0$ 。最优值为 max Z=5/4。

。。。(3分)

大M方法解答

(1) 标准化

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 - x_4 &= 1\\ 2x_1 &+ x_3 &+ x_5 &= 1\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(2分)

用大M方法化为

$$\max z = 3x_1 - x_2 + x_3 + 0x_4 + 0x_5 - Mx_6$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 - x_4 & + x_6 = 1 \\ 2x_1 & + x_3 & + x_5 = 1 \\ x_1, x_2, ..., x_6 \ge 0 \end{cases}$$

。。。(1分)

(2) 构建初始单纯形表并用单纯形法求解

	$c_j \rightarrow$		3	-1	1	0	0	-м	θ
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
-M	<i>x</i> ₆	1	1	(2)	1	-1	0	1	
0	<i>x</i> ₅	1	2	0	1	0	1	0	
	$c_i - z$	i	3+M	(-1+2M)	1+M	-м	0	0	
-1	x_2	1/2	1/2	1	1/2	-1/2	0	1/2	1
0	<i>x</i> ₅	1	(2)	0	1	0	1	0	1/2
	$c_i - z$	i	(7/2)	0	3/2	-1/2	0	1/2-M	
-1	x_2	1/4	0	1	1/4	-1/2	-1/4	1/2	1
3	x_1	1/2	1	0	1/2	0	1/2	0	1/2
	$c_j - z$	I	0	0	·			1/2-M	

初始单纯形表。。。(10分) 调整。。。(9分)

(3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=1/2$, $x_2=1/4$, $x_3=0$ 。最优值为 max Z=5/4。

。 。。。(3 分)

得分	评卷人

二、 $(20 \, f)$ 若题一中再添加 x_1 , x_2 , x_3 均为整数的约束,请用割平面法进行求解。

解答:

(1) 构建割平面

由题一中的最后一个单纯形表的第2行构建割平面。

$$1/2 = x_1 + x_3/2 + x_5/2$$

$$1/2 - x_3/2 - x_5/2 \le 0$$

$$- x_3 - x_5 \le -1$$

。。。(10分)

(2) 用对偶单纯形法求解

将- x_3 - $x_5 \le -1$ 化为等式并添加到最后一个单纯表中。

	14 23	<i>n</i> ₅ –	1 14/3	1 13 2471	コーシャー	久/H I	4 >04C	, ,
	$c_j o$			-1	1	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆
-1	x_2	1/4	0	1	1/4	-1	-1/4	0
3	x_1	1/2	1	0	1/2	0	1/2	0
0	x_6	(-1)	0	0	(-1)	0	-1	1
	$c_j - z_j$			0	-1/4	-1	-7/4	0
	θ				1/4	_	7/4	
-1	x_2	0	0	1	0	-1	-1/2	1/4
3	x_1	0	1	0	0	0	0	1/2
1	<i>x</i> ₃	1	0	0	1	0	1	-1
	$c_j - z_j$			0	0	-1	-3/2	-1/4

....(8分)

所有变量取值均为整数,所有检验数均非正。得原整数规划最优解, $x_1=0$, $x_2=0$, $x_3=1$ 。最优值为 max Z = 1。

....(2分)

得分 评卷人

三、(20分) 若问题:

$$\min z = -x_1 + x_2$$

$$s.t.\begin{cases}
-x_1 + 2x_2 \ge 3 \\
2x_1 \le 1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

的最优解为 x_1 =0.5, x_2 =1.75。试进行如下分析:

- (1) 请利用互补松弛性求其对偶问题的最优解。
- (2) 假设问题描述了一个生产计划,问题的第 2 个约束为某设备的加工台时约束。若可以在市场上以每单位台时 2 个利润单位的价格出租该设备,则是否应该出租,为什么?

解答:

(1) 原问题标准化

$$\min z = -x_1 + x_2$$

$$s.t.\begin{cases}
-x_1 + 2x_2 \ge 3 \\
-2x_1 \ge -1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

原问题的对偶问题为

$$\max \omega = 3y_1 - y_2 + y_3$$

$$s.t. \begin{cases} -y_1 - 2y_2 - y_3 \le -1 \\ 2y_1 + y_3 \le 1 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

。。。(5分)

(2) 互补松弛性

由原问题的最优解 x_1 =0.5, x_2 =1.75以及对偶问题的互补松弛性知,对偶问题在最优解处,2个约束均为等式约束。

将 x_1 =0.5, x_2 =1.75 带入标准化后的原问题知,原问题在最优解处使得第 1 和第 2 个约束均为等式约束,第 3 个约束为不等式约束。因此,原问题在最优解处只有第 3 个松弛变量非零。由对偶问题的互补松弛性知,对偶问题的最优解的第 3 个变量为 0,也即 y_3 =0.于是,有,

$$\begin{cases} -y_1 - 2y_2 = -1 \\ 2y_1 = 1 \\ y_3 = 0 \end{cases}$$

解得,对偶问题的最优解为 $y_1 = \frac{1}{2}$, $y_2 = \frac{1}{4}$, $y_3 = 0$ 。 对偶问题的最优值为 $\max \omega = 5/4$ 。

。。。(10分)

(3) 影子价格

对偶问题的最优解中, $y_2 = \frac{1}{4}$ 为原问题第 2 个约束所对应的影子价

格。 $y_2 = \frac{1}{4}$ < 2, 因此, 应该以 2 个利润单位的价格出租设备台时。

。。。(5分)

得分	评卷人

四、(25 分)某公司的甲、乙两个产地,分别向 A、B、C 三个销地提供产品,请给出总运费最小的运输方案。 其中,产量、销量及产地到销地的单位运价如下表所示:

销地产地	A	В	С	产量
甲	6	4	5	7
Z	1	9	2	4
销量	2	5	4	

解答:

是产销平衡的运输问题。

。。。(3分)

(1) 伏格尔法求出初始解

	(1)	(4)			
	A	B	С	行	差
	6	(4)	(5) (4)	1	
	(1)	-9	(2) (2)	- 1	7
列差	(5)	(5)	(3)		

	6		4		5	
		5		2		7
	1		9		2	
2				2		4
2		5		4		

得初始解: $x_{12}=5, x_{13}=2, x_{21}=2, x_{23}=2, x_{11}=0, x_{22}=0$ 。

。。。(9分)

(2) 用位势法求检验数

		6		4		5	ui
	(+2)		5		2		0
		1		9		2	-3
	2		(+8)		2		
vi		4		4		5	

。。。(10分)

因所有检验数均已非负,因此由伏格尔法得到的初始解即为最优解。

最优解为: $x_{12} = 5$, $x_{13} = 2$, $x_{21} = 2$, $x_{23} = 2$, $x_{11} = 0$, $x_{22} = 0$ 。最小运费为: $5 \times 4 + 2 \times 5 + 2 \times 1 + 2 \times 2 = 36$ (运价单位)。

最优运输方案为,分别由甲地给B,C三个销地运送5,2个单位的产品;由乙地给销地A,C运送2,2个单位的产品。。。。(3分)

得分	评卷人

五(10分). 某厂生产 A,B 两种产品。产品 A,B 的每件 工时消耗分别为 4 小时和 5 小时。每天的总工时为 20 小

时。每件产品 A, B 的利润分别为 70 元和 80 元。该厂经营目标如下:

P₁: 每天的利润不低于3000元;

 P_2 : 充分利用生产工时,但不加班。

试建立该厂经营的目标规划模型(只建模不求解)。

解答:

设 x_1 , x_2 分别为产品 A, B 的每天的产量, d_1^+ , d_1^- , d_2^+ , d_2^- 分别为目标 P_1 和 P_2 的 正负偏差量。该问题的目标规划模型为,

$$\min P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-} + d_{2}^{+})$$

$$\begin{cases} 70x_{1} + 80x_{2} + d_{1}^{-} - d_{1}^{+} = 3000 \\ 4x_{1} + 5x_{2} + d_{2}^{-} - d_{2}^{+} = 20 \\ x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{2}^{+} \ge 0 \end{cases}$$

$$\circ \circ \circ (10 \%)$$

第8页共8页