Сверхпроводящие квантовые интерференционные датчики (сквиды) и их применение.

Миклуш Ярослав 215 Научный руководитель: профессор Корнев Виктор Константинович

Актуальность

Вопрос об изучении и применении сквидов остаётся актуальным на сегодняшний день благодаря тому, что они обладают исключительной чувствительностью к магнитным полям и могут быть использованы для решения многочисленных задач в таких областях как: медицина, геофизика, промышленность и многие др.

Что из себя представляет сквид?

В простейшем случае сквид — это кольцо из сверхпроводящего материала, в котором присутствуют один или несколько Джозефсоновских контактов.

Джозефсоновский переход SNS типа (сверхпр. – металл – сверхпр.)

- 1 Диэлектрическая подложка
- 2,5 слои сверхпроводников
- 3 слой диэлектрика
- 4 слой нормального металла

Для понимания того, как работает сквид необходимо иметь представление о нескольких интересных эффектах:

- 1. Сверхпроводимость
- 2. Квантование магнитного потока
- 3. Эффект Мейсснера
- 4. Эффект Джозефсона
- 5. Эффект макроскопической квантовой интерференции

Сверхпроводимость — фазовое состояние вещества, находясь в котором оно обладает строго нулевым сопротивлением R для постоянного тока, при этом $B_{in}=0$.

Теория БКШ – объясняет возникновение куперовских пар

Все Куперовские пары описываются единой волновой функцией – они когерентны.

Куперовская пара

Квантование магнитного потока.

Магнитный поток, пронизывающий сверхпроводящее кольцо принимает значения кратные элементарному кванту потока:

$$\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} \text{ B}6.$$

$$\Phi = m\Phi_0$$
; m = 0,1,2,...

Эффект Мейсснера

Эффект Мейсснера — при охлаждении в постоянном и не очень сильном магнитном поле, при $T < T_c$ магнитное поле выталкивается из толщи сверхпроводника. В итоге $B_{in} = 0$.

Эффект Джосефсона.

Эффект Джозефсона описывается системой из двух уравнений:

1)
$$I_S = I_C * \sin(\varphi)$$

2)
$$V = \left(\frac{\hbar}{2e}\right) \frac{d\varphi}{dt}$$

Где φ — разность фаз волновых функций Куперовских пар по обе стороны от перехода, I_c — критический ток для контакта , V — напряжение на переходе.

Стационарный эффект Джозефсона состоит в том, что постоянный сверхпроводящий ток $I < I_c$ может протекать через Джозефсоновсккий переход без приложения напряжения.

При пропускании тока $I > I_c$ через переход и при наличии постоянного магнитного потока имеет место нестационарный эффект Джозефсона :

 $I=I_S+I_n$. Протекание нормальной компоненты тока обуславливает появление напряжения : $V=I_n*R_n$. I_S и I_n осциллируют в противофазе с частотой, пропорциональной постоянной составляющей падения напряжения на переходе (частота осцилляций: $\Omega=\frac{2e}{h}\bar{V}$); это приводит к осцилляции напряжения $V(t)=I_n(t)*R_n$ — так называемая Джозефсоновская генерация. Такое состояние Джозефсоновского перехода называется резистивным.

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА 1 ДЖОЗЕФСОНСКОГО ПЕРЕХОДА

ВАХ перехода с малой ёмкостью

Ток нормирован на I_c , напряжение – на V_c

Эффект квантовой макроскопической интерференции

В сквиде, например, с двумя Джозефсоновскими переходами возникает интерференция волновых функций Куперовских пар, разность фаз волновых функций определяется магнитным потоком Ф, пронизывающим сквид.

$$\Delta \varphi = \varphi_2 - \varphi_1 = \frac{2\pi}{\Phi_0} \Phi_{CKB}$$
 (1)

$$I = I_c * \sin(\varphi_1) + I_c * \sin(\varphi_2)$$
 (2)

$$I = I_c * \sin(\varphi_1) + I_c * \sin(\varphi_2)$$
 (2)

$$\Phi_{\text{CKB}} = \Phi_{\text{внеш}} - LI \tag{3}$$

 φ_1 и φ_2 — скачки фаз волновых функций на 1 и 2 переходах, I_{c} для простоты рассмотрения одинаковы.

Изменение Φ — внешнего потока приводит к периодическому изменению полного тока I через сквид, с периодом Φ_0 .

В данном случае I обращается в 0, когда $\Phi = \left(m + \frac{1}{2}\right)\Phi_0$, m = 0,1,2, ...

Рис. 6. ВАХ двухконтактного интерферометра для значений внешнего магнитного потока $\varphi_e=0$ и $\varphi_e=\pi$, а также соответствующая сигнальная характеристика $\overline{V}(t)$ при линейном нарастании внешнего потока φ_e .

MEG – магнитоэнцефалография

Применение сквидов.

Аэромагниторазведка

Сквид – микроскопия

Спасибо за внимание.