Please check the examination details below before ente	ering your candidate information
Candidate surname Annotated by Tam.	Other names
Centre Number Candidate Number	Hastings Math-co
Pearson Edexcel Internation	al Advanced Level
Time 1 hour 30 minutes Paper reference	WMA12/01
Mathematics	•
International Advanced Subsidiary Pure Mathematics P2 June 2022	y/Advanced Level
You must have: Mathematical Formulae and Statistical Tables (Ye	llow), calculator

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. Find the first four terms, in ascending powers of x, of the binomial expansion of

$$\left(2+\frac{3}{8}x\right)^{10}$$
 r is position - 1

Give each coefficient as an integer.

$$n_{c_r} \times (a)^{r-r} \times (b)^r$$
 (4)

$$(\frac{3}{4}) (0) (\frac{3}{3}) \times (\frac{2}{3})^{(0-3)} \times (\frac{3}{8})^3 = |20 \times 2^7 \times \frac{27}{5|2} \times \frac{27}{5|2}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 1

Figure 1 shows the graph of

$$y = 1 - \log_{10}(\sin x)$$
 $0 < x < \pi$

where x is in radians.

The table below shows some values of x and y for this graph, with values of y given to 3 decimal places.

x	0.5	1	1.5	2	2.5	3
У	1.319	1.075	1.001	1.041	1.223	1.850

- (a) Complete the table above, giving values of y to 3 decimal places.
- (b) Use the trapezium rule with all the y values in the completed table to find, to 2 decimal places, an estimate for

$$\int_{0.5}^{3} (1 - \log_{10}(\sin x)) dx$$

(3)

(2)

(c) Use your answer to part (b) to find an estimate for

$$\int_{0.5}^{3} (3 + \log_{10}(\sin x)) \mathrm{d}x$$

(3)

trapezium rule: $\int_{9}^{5} y \, dx \approx \frac{1}{2} h \left[y_{0} + 2 \left(y_{1} + y_{2} + ... + y_{n-1} \right) + y_{n} \right]$ L = distance btw x-values

HIK	Mathematics by Habibulian Sir +8801854238322, +8801716	26429
	Question 2 continued	Leave blank
_	(radian mode)	
(9)	Where x = 1	
-	$y = 1 - \log_{10} (\sin 1)$	
-	= 1 - log(sinz)	
-	- 1 (0) (3(12)	
-	= 1.074960855	
-		
-	7 1.075 (3 duc.pl.)	
-	where $x = 2$	
-	$y = 1 - \log(\sinh 2)$	
-	9 = 1 (05 (31710)	
-	= 1.041294038	
-	≈ 1.041 (3 dec pl)	
b	h = 0.5 distance between $x - values$	
-	$A = \frac{1}{2} \times 0.5 \left(1.319 + 2 \left(1.075 + 1.001 + 1.041 + 1.223 \right) + 1.85 \right)$	(d)
-	= 2.9622S	
-	≈ 2.96 (2 dec pl)	
(C)	$\int_{0.5}^{3} (1 - \log_{10}(\sin x)) dx$ rearrange and	solve
-	$= \int_{0.5}^{3} \left(4 - \left(3 + \log_{10}\left(\sin z\right)\right)\right) dz$	
-	$= \int_{0.5}^{3} (4) - \int_{0.5}^{3} (3+\log_{10}(\sin 2)) dz$	

Question 2 continued

$$2.9622S = \int_{0.5}^{3} (4) - \int_{0.5}^{3} (3 + \log_{10}(Sin x)) dx$$

$$2.96225 = \left[4x'\right]_{0.5}^{3} - \left(3 + \log_{10}\left(\sin \lambda\right)\right) d\lambda$$

$$\int_{0.5}^{3} (3 + \log_{10}(\sin x)) d = (4(3) - 4(0.5)) - 2.96225$$

$$= 7.03775$$

Question 2 continued		Le: bla
	(Total 8 marks)) 2

(i) Show that the following statement is **false**:

"
$$(n+1)^3 - n^3$$
 is prime for all $n \in \mathbb{N}$ "

(2)

(ii) Given that the points A(1,0), B(3,-10) and C(7,-6) lie on a circle, prove that AB is a diameter of this circle.

YRIM6

$$h = 2 (2+1)^3 - (2)^3 = 27 - 8 = 19$$

PRIME

$$n=3$$
 $(3+1)^3-(3)^3=64-27=37$

PRIMO

$$h = 4 \quad (u+1)^3 - (4)^3 = 125 - 64 = 61$$

PRIMO

$$n = S (SH)^3 - (S)^3 = 216 - 12S = 91$$

$$h = 6 \left(6+1\right)^3 - \left(6\right)^3 = 343 - 216 = 127$$

PRIME

$$n = 7 (7+1)^3 - (7)^3 = 512 - 343 = 169$$

Lo not prime

:. false

(11) RTP: AB is diam.

A (1;0)

B (3;-10)

On with a 2 continued	blank	
Question 3 continued		

	Leave blank
Question 3 continued	

Question 3 continued		blan
		Q3
	(Total 7 marks)	

(6)

4. In this question you must show all stages of your working.

Give your answers in fully simplified surd form.

Given that a and b are positive constants, solve the simultaneous equations

$$a - b = 8$$
$$\log_4 a + \log_4 b = 3$$

1094 ab = 3 .. (2)

$$\log_4(b+8)b = 3$$

$$4^3 = 6^2 + 86$$

$$b^2 + 8b - 64 = 0$$

$$= \frac{-8^{+}\sqrt{8^{2}-4(1)(-64)}}{}$$

$$b = -4+4\sqrt{5}$$
 or $b = -4-4\sqrt{5}$

Question 4 continued		blank
Question 4 continued		
		Q4
	(Total 6 marks)	
		$oldsymbol{ol}}}}}}}}}}}}}}}}}$

5. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Solve, for $-180^{\circ} < \theta \leqslant 180^{\circ}$, the equation

$$3\tan(\theta + 43^\circ) = 2\cos(\theta + 43^\circ)$$

Identifier to use

$$3\tan\left(\theta+43^{\circ}\right)=2\cos\left(\theta+43^{\circ}\right)$$

$$\tan\left(\frac{\theta+43^{\circ}}{\cos\theta}\right)$$

$$\tan\left(\frac{\theta+43^{\circ}}{\cos\theta}\right)$$

$$\frac{3 \sin(9+43)}{\cos(9+43)} = 2 \cos(9+43)$$

$$\sin^{2} 9 + \cos^{4} 9 = 1$$

$$3 \sin(9+43) = 2 \cos^2(9+43)$$

$$2\sin^2(\Theta+43) + 3\sin(\Theta+43) - 2 = 0$$

$$\sin(9+43) = \frac{1}{2}$$
 or $\sin(9+43) = -2$

$$0+43=\sin^{-1}\left(\frac{1}{2}\right)$$

107

$$7 = -13 + n360 nE2$$

$$9 = (180 - 30) - 43 + n360 n \in \mathbb{Z}$$

restrictions

cheek

$$\theta = -13^{\circ}$$
 or 107° only.

04

Question 5 continued	b.
	Qs
	(Total 6 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- In a geometric sequence u_1, u_2, u_3, \dots
 - the common ratio is r
 - $u_2 + u_3 = 6$ $u_4 = 8$

 - (a) Show that r satisfies

$$3r^2 - 4r - 4 = 0$$

(3)

Given that the geometric sequence has a sum to infinity,

(b) find u_1

(3)

(2)

(c) find S_{∞}

 $U_4 = 8$ $etp: 3r^2 - 4r - 4$

 $ar^3 = 8$

 $V_2 + V_3 = 6$

$$Q = \frac{8}{100} \dots 0$$

$$ar + ar^2 = 6$$
 ...(2)

Sub 1) into 2

$$\frac{8}{6}(r) + \frac{8}{6}(r^2) = 6$$

$$\frac{8}{r^2} + \frac{8}{r} = \frac{6}{1}$$

$$8 + 8r = 6r^2$$

$$6r^2 - 8r - 8 = 0$$

$$31^2 - 41 - 4 = 0$$

Question 6 continued

$$3r^2 - 4x - 4 = 0$$

$$(3r+2)(r-2)-0$$

$$r = -\frac{2}{3} \quad \text{oe} \quad r = 2$$

$$a = 8 = N_1$$

$$(-\frac{2}{3})^3$$

$$S_{\infty} = 9$$

$$\frac{-2}{1-(-\frac{2}{3})}$$

Question 6 continued	blank

Question 6 continued	bl
	Qe

(7)

7. $f(x) = Ax^3 + 6x^2 - 4x + B$

where A and B are constants.

Given that

- (x+2) is a factor of f(x)

find the value of A and the value of B.

$$f(x) = \alpha x^3 + 6x^2 - 4x + b$$

f(-2): $9(-2)^3 + 6(-2)^2 - 4(-2) + 6$

$$-80 + 24 + 8 + 6 = 0$$

$$b = 8a - 32 \dots (\tilde{l})$$

$$\left[\frac{9}{4}x^{4} + 2x^{2} - 2x^{2} + bz \right]_{3}^{5} = 176$$

$$\left(\frac{9}{4}(5)^{4}+2(5)^{3}-2(5)^{2}+b(5)\right)-\left(\frac{9}{4}(3)^{4}+2(3)^{3}-2(3)^{2}+3b\right)=$$

$$\frac{625}{4}a + 250 - 50 + 5b - \frac{81}{4}a - 54 + 18 - 3b = 176$$

Question 7 continued SUB D into 2	
36a + 2(8a-32) = 12	
136a + 16a - 64 - 12 = 0	
152a = 76	
$q = \frac{76}{152} = \frac{1}{2}$	
$5.6 = 8(\frac{1}{2}) - 32 = -28$	
	Q7

(3)

(5)

8. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

A curve has equation

$$y = 256x^{4} - 304x - 35 + \frac{27}{x^{2}} \qquad x \neq 0$$
(a) Find $\frac{dy}{dx}$

(b) Hence find the coordinates of the stationary points of the curve.

$$= 1024x^3 - 304 - \frac{54}{x^3}$$

$$1024x^{3} - 304 - 54x^{-3} = 0$$
 Sp dy $\sqrt{3}x^{-3}$

$$\frac{1024x^{6} - 304x^{3} - 54}{x^{3}} = 0$$

$$1024x^6 - 304x^3 - 54 = 0$$

$$\chi^3 = -(-304)^{\frac{1}{2}}\sqrt{(-304)^2-4(1024)(-54)}$$

$$\chi^{2} = \frac{27}{64} \quad oe \quad -\frac{1}{8}$$

$$\therefore \chi = \sqrt[3]{\frac{27}{64}} \quad \text{or} \quad \chi = \sqrt[3]{-\frac{1}{8}}$$

$$x = \frac{3}{4}$$
 or $x = -\frac{1}{2}$

$$y = 256\left(\frac{3}{4}\right)^{4} - 304\left(\frac{3}{4}\right) - 35 + \frac{27}{\left(\frac{3}{4}\right)^{2}} = -134$$

Question 8 continued		Leave blank
or $y = 256(-\frac{1}{2})^4 - 304(-\frac{1}{2}) - 35 + (-\frac{1}{2})^2$	= 24	
:. SP'S (3; -134) & (-2; 241)		
		Q8
	(Total 8 marks)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

A scientist is using carbon-14 dating to determine the age of some wooden items.

The equation for carbon-14 dating an item is given by

$$N = k\lambda^t$$

where

- N grams is the amount of carbon-14 **currently** present in the item
- k grams was the **initial** amount of carbon-14 present in the item
- t is the number of years since the item was made
- λ is a constant, with $0 < \lambda < 1$
- (a) Sketch the graph of N against t for k = 1

(2)

Given that it takes 5700 years for the amount of carbon-14 to reduce to half its initial value,

(b) show that the value of the constant λ is 0.999878 to 6 decimal places.

Given that Item A

- is known to have had 15 grams of carbon-14 present initially is thought to be 3250 years old
- (c) calculate, to 3 significant figures, how much carbon-14 the equation predicts is currently in Item A. **(2)**

Item B is known to have initially had 25 grams of carbon-14 present, but only 18 grams now remain.

(d) Use algebra to calculate the age of Item B to the nearest 100 years.

(3)

(0.1)

Leave blank

Question 9 continued

DO NOT WRITE IN THIS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

$$k\left(\frac{1}{2}\right) = k_{1}5700$$

$$\left(\frac{1}{2}\right)^{\frac{1}{5700}} = 7$$

$$0 k = 15 t = 3250$$

$$N = 15.(0.99878...)$$

$$N = 18$$

Leave blank

Question 9 continued
= 2701.402774
2701.4 years
:. 2700 yrs (to nearest 100)

Question 9 continued		blank
		Q9
	(Total 9 marks)	

(3)

10. The circle C has centre X(3, 5) and radius r

The line *l* has equation y = 2x + k, where *k* is a constant.

(a) Show that l and C intersect when

$$5x^2 + (4k - 26)x + k^2 - 10k + 34 - r^2 = 0$$
(3)

Given that l is a tangent to C,

(b) show that $5r^2 = (k + p)^2$, where p is a constant to be found.

Figure 2

The line *l*

- cuts the y-axis at the point (A)
- touches the circle C at the point B

as shown in Figure 2.

Given that AB = 2r

(c) find the value of k

Question 10 continued

$$x^{2}-6x+9+4x^{2}+4x(k-s)+(k-s)^{2}=r^{2}$$

$$5x^2 - 6x + 4(k-s) t + k^2 - 10k + 34 - 1^2 = 0$$

$$5x^2 - 6x + 4kx - 20x + k^2 - 10k + 34 - 1^2 = 0$$

$$5x^2 + (4k-26)x + k^2 - 10k + 34 - r^2 = 0$$

b) R+P:
$$5r^2 = (k+p)^2$$

$$b^2 - 4ac = 0 \qquad \qquad be cause$$

$$\frac{b^{2}-4ac}{b^{2}-4ac} = 0 \qquad \text{be cause} \qquad \frac{b^{2}-4ac}{b^{2}-4ac} = 0$$

$$\frac{(4k-26)^{2}-4(5)(k^{2}-10k+34-r^{2})-0}{(5a)(k^{2}-10k+34-r^{2})-0} \qquad \frac{a^{2}}{(5a)(k^{2}-10k+34-r^{2})} = 0$$

$$16k^2 - 208k + 676 - 20k^2 + 200k - 680 + 20l^2 = 0$$

$$-4k^2 - 8k - 4 = -20r^2$$

$$\overline{-4}$$

$$k^2 + 2k + 1 = 5r^2$$

$$(k+1)^2 = Sv^2$$

Question 10 continued

$$(k+1)^2 = Sv^2$$

$$\left(\frac{k+1}{2}\right)^{2} = r^{2}$$

$$\left(2r\right)^{2} + \frac{\left(k+1\right)^{2}}{5} = \left(AX\right)^{2}$$

$$dAX = \sqrt{(3-0)^2 + (5-k)^2}$$

$$dAX = \sqrt{3^2 + (S - K)^2}$$

$$\sqrt{A\chi^2} = 9 + (S - k)^2$$

$$(7)^2 + (k+1)^2 = 9+(5-k)^2$$

$$4r^2 + k^2 + 2x + 1 = 9 + 2S - 10k + k^2$$

$$:: S_1^2 = 9 + 2S - 10k + k^2$$

from B

Question	10	continue	ed
----------	----	----------	----

 $2 = 9+2S - 10k + k^2$ $1 = 9+2S - 10k + k^2$

$$-33 = -12k$$

$$k = \frac{33}{12} = \frac{11}{4}$$

Question 10 continued	Leave blank	
	Q10	
(Total 12 marks)		
END TOTAL FOR PAPER IS 75 MARKS		