N	X<=0	F(X) X>=0	x_min	x_max	Количество участков
	2	3	4	5	аппроксимации
	-2^x	-2^x	-1	+1	12

1.Строим график заданной функции

Xmax = 1

Xmin = -1

X<=0 функция не существует

2. Находим значения X и Y=F(X)

X	Y
-1	-0.5
-0.7	-0.61557
-0.5	-0.707106
-0.3	-0.8122523
-0.1	-0.93303299
0	-1

0.1	-1.071773
0.3	-1.23114
0.5	-1.41421356
0.7	-1.6245047
0.9	-1.866065
1	-2

(при мат. Моделировании. Количество значений взять равным 8

3. Находим
$$M_X = \frac{\left|X\right|_{\max}}{U_{\max}}$$
, $M_Y = \frac{\left|Y\right|_{\max}}{U_{\max}}$,где U_{\max} =значение максимального

входного напряжения.

В нашем случае мы будем использовать источник входного синусоидального

напряжения $U_{max} = 10 B =>$

$$M_X = \frac{|X|_{\text{max}}}{U_{\text{max}}} = \frac{1}{10} = 0.1, M_Y = \frac{|Y|_{\text{max}}}{U_{\text{max}}} = \frac{2}{10} = 0.5$$

4. Находим значения $X_m = X/M_x$ и $Y_m = Y/M_y$

	вие началу	Хмх	Y _{My}		
и концу у	частка DE				
	DE1	-10	-2.5		
DE2	DE1	-9.0	-2.679433		
DE2	DE2	-7.0	-3.0778610		
DE4	DE3	-5.0	-3.535533		
DE4	DE5	-3.0	-4.061261		
		-1.0	-4.66516		
		0	-5		
	DEC	1.0	-5.3588673		
DE7	DE6	3.0	-6.155722		
DE7	DE0	5.0	-7.07106781		
DEO	DE8	7.0	-3.535533 -4.061261 -4.66516 -5 -5.3588673 -6.155722 -7.07106781 -8.12252396 -9.3303299		
DE9	\ DE10	9.0	-9.3303299		
	` DE10	10	-10		

5. Строим график машинной функции по точкам { X_m ; Y_m }

(машинное моделирование . Количество значений точек взять равным 10.Использовать программы для математического моделирования.)

В нашем случае, для программы Mathematica 5.2 выражение для построения графика для примера выглядет так:

6.1 Заполнение Карты настройки.

F(X)	F(0)	Kx	DE1	DE2	DE3	DE4	DE5	DE7	DE8	DE9	DE10	DE11
F(0) Знак, KX Знак, DE квадрат	-	<<->>	3	3	3	3	3	4	4	4	4	4
E _{lim} , U_F0	-5	-	-9	-7	-5	-3	-1	1	3	5	7	9
Ki	-	- 0.35 8867	- 0.179 4336 563	0.199 2136	0.228 83643 62	- 0.262 86403 79	- 0.301 95148	0.398 42737	- 0.457 67287	- 0.525 72807	- 0.603 902	- 0.669 670

Е_{lim} – значение напряжения ограничения для диодного элемента.

Кх- значение коэффициента наклона начальной прямой. Вычисляется по формуле:

Кх=(Кү2-Кү1)/(Кх2-Кх1), где (Кх1;Кү1)- координаты начала прямой,

а $(K_{X1};K_{Y1})$ – координаты конца прямой, которая проходит через точку(0,F(0)).

Kx)= -0.358867

Кі – значение коэффициента наклона прямой для каждого диодного элемента.

6. 2 Расчет значений коэффициентов наклона Кі прямой для каждого DE.

$$K_i = \frac{Y_{\text{My(i+1)}} - Y_{\text{Myi}}}{X_{\text{Mx(i+1)}} - X_{\text{Mx(i+1)}}}$$

DE1: K₁= -0.1794336563

DE2: K₂= -0.1992136

DE3: K₃= -0.2288364362

DE4: K₄= -0.2628640379

DE5: K₅= -0.301951487

DE7: K₇= -0.39842737

DE8: K₈= -0.45767287

DE9: K₉= -0.52572807

DE10: $K_{10} = -0.603902$

DE11: $K_{11} = -0.669670$

7. Рассчитаем значения резисторов для цепей DE:

$$E_{lim} = -(R_{1i} / R_{2i})*E_0$$

 $R_{2i} = -(R_{1i} / E_{lim})*E_0$

$$E_0\!\!=\!\!U_{\text{max}}$$

$$R_{oc}=1MOm$$

$$R_{1i} = \frac{1}{K_{(i+1)} - K_i} *R_{oc}$$

В соответствии со схемой электрической:

Расчет резистора для элемента F(0):

$$R_{19}=2MOm, E_0=U_{max}=10B$$

Расчет резистора для элемента Кх:

$$R_{17} = \frac{1}{K_r} * R_{18} = 1 / -0.527733 = 2.7865452345825932008e6Om$$

Расчет резисторов для диодных элементов:

DE1:
$$R_2 = \frac{1}{K_1 - Kx} * R_{18} = 5.05560350662298714582e7$$

$$R_1 = 5.05560350662298714582e8$$

DE2:
$$R_4 = \frac{1}{K_2 - K_1} * R_{18} = 3.375784068426956124852e7$$

DE3:
$$R_6 = \frac{1}{K_3 - K_2} * R_{18} = 2.938790722335168330054e7$$

$$R_5 = 4.198272460478811900077e8$$

DE4: R₈=
$$\frac{1}{K_4 - K_3}$$
 * R₁₈ = 2.558365918738304338063e7

DE5:
$$R_{10} = \frac{1}{K_5 - Kx} * R_{18} = 1.756980602043831524582e7$$

$$R_9 = 5.856602006812771748607e7$$

DE7:
$$R_{12} = \frac{1}{K_7 - K_x} * R_{18} = 2.52780175331149356333e7$$

$$R_{11} = 2.52780175331149356333e8$$

DE8:
$$R_{14} = \frac{1}{K_8 - K_7} * R_{18} = 1.68789203421347806385e7$$

$$R_{13} = 5.62630678071159354617e7$$

DE9:
$$R_{16} = \frac{1}{K_9 - K_8} * R_{18} = 1.46939536116758416611e7$$

$$R_{15} = 2.93879072233516833222e7$$

DE10: R₁₈=
$$\frac{1}{K_{10} - K_9}$$
 * R₁₈ = 1.2791829593691521658e7
R₁₇= 1.8274042276702173797e7

DE11:R₁₂₀=
$$\frac{1}{K_{11} - K_{10}}$$
* R₁₈ = 1.5205168956409374396e7
R₁₉= 1.6894632173788193773e7

8. Схема электрическая для ДФП

Результаты моделирования:

Вывод: В ходе выполнения данной лабораторной работы были разобраны принцип моделирования нелинейных зависимостей с помощью функционального преобразователя, способы настройки диодных элементов. Исследована правильность и точность моделирования нелинейной функции Y=F(X)

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

Лабораторна робота №11
3 курсу:
"Гібридні комп'ютерні системи"
на тему:
«Набір нелінійних залежностей на ДФП»

Виконав: Студент III- курсу групи IO-83 ФІОТ Пивоваров Т.