A2020

Gegeben sind die Funktionen f und h mit $f(x) = (x+4)^2$ und $h(x) = \frac{1}{5}(x^2-4)$ für $x \in \mathbb{R}$. a) Berechnen Sie die Nullstellen von f und h und die Schnittpunke der Graphen von f und h.

- b) Skizzieren Sie die Graphen y = f(x) und y = h(x), ihre Schnittpunkte und die Nullstellen von f und h in einem geeigneten Koordinatensystem.
- c) Bestimmend Sie die Lösungsmenge der Ungleichung $\frac{1}{5}(x^2-4) \leq (x+4)^2$.
- d) Bestimmen Sie die Lösungsmenge der Ungleichung $\sqrt{\frac{1}{5}(x^2-4)} \leq x+4$.

a) Nullsteller
$$f: x = -4$$
 $g: x - +2, x = -2$

Schnittpukke: $(x+4)^2 = \frac{1}{5}(x^2-4)$
 $x^2 + 2x + 16 = \frac{1}{5}x^2 - \frac{4}{5}$
 $\frac{4}{5}x^2 + 8x + \frac{21}{5} = 0$
 $1 \cdot 5$
 $4x^2 + 40x + 84 = 0$
 $1 \cdot 4x^2 + 40x + 21 = 0$
 $1 \cdot 4x^2 + 10x + 21 = 0$
 $1 \cdot 4x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^2 + 10x + 21 = 0$
 $1 \cdot 5x^$

Die Terme von d) sind die Wurzeln der Terme aus c). Das Ungleichheitszeichen bleibt erhalten, wenn beide Terme nicht negativ sind. Für negative Terme ist die Wurzel nicht definiert. Daher: