Università di Parma — Ingegneria Gestionale

Analisi Matematica 2 - Scheda n. 2

0) TRIGONOMETRIA:

Dopo aver disegnato l'angolo corrispondente sul cerchio trigonometrico, calcolate

$$\cos\left(\frac{5}{4}\pi\right) = \dots$$
 $\operatorname{sen}\left(\frac{5}{2}\pi\right) = \dots$ $\operatorname{cos}\left(-\frac{4}{3}\pi\right) = \dots$ $\operatorname{sen}\left(-\frac{1}{6}\pi\right) = \dots$

$$\cos(-3\pi) = \dots$$
 $\cos(-\frac{11}{4}\pi) = \dots$ $\sin(\frac{2}{3}\pi) = \dots$ $\sin(\frac{5}{6}\pi) = \dots$

1) Dopo aver studiato le seguenti curve (di che cosa si tratta, equazione, verso, disegno), stabilite se le due curve hanno lo stesso sostegno, motivando accuratamente la risposta:

$$\gamma_1(t) = (\frac{3}{2} + \frac{3}{2}\cos t, -2 + 5\sin t) \text{ per } t \in [\pi, \frac{5}{2}\pi]$$

$$\gamma_2(t) = (\frac{3}{2} + \frac{3}{2}\cos t, -2 - 5\sin t) \text{ per } t \in [-\frac{\pi}{2}, \pi].$$

Rispondete alla stessa domanda nel caso in cui γ_2 sia definita per $t \in [\pi, \frac{5}{2}\pi]$.

2) Sia $\gamma:[-\frac{\pi}{2},\frac{5}{2}\pi]\to\mathbb{R}^2$ la curva $\gamma(t)=(x(t),y(t))$ definita da

$$\begin{cases} x(t) = 3 + 6 \cos t \\ y(t) = -2 - 12 \sin t \end{cases} t \in \left[-\frac{\pi}{2}, \frac{5}{2}\pi \right].$$

Disegnate con cura sul foglio a quadretti il sostegno di γ , specificando di che curva si tratta, il verso di percorrenza e l'equazione (cartesiana o implicita).

Il disegno deve far risultare in modo chiaro il percorso effettuato dal punto.

Il vettore tangente o vettore velocità nel punto P_0 corrispondente al tempo $t_0 = \frac{2}{3}\pi$ è:

Disegnate sul foglio a quadretti il punto P_0 e il vettore tangente.

Il vettore tangente o vettore velocità in $P_1 = (-3, -2)$ è:

Disegnate sul foglio a quadretti il punto P_1 e il vettore tangente.

I due vettori normali in P_1 sono:

Disegnate sul foglio a quadretti entrambi i vettori normali.

L'equazione cartesiana della retta tangente nel punto P_1 è:

Le equazioni parametriche della retta tangente nel punto P_1 sono:

L'equazione cartesiana della retta normale nel punto P_1 è:

3) Sia $\gamma:[-3\,,\,1] \to \mathbb{R}^2$ la curva $\gamma(t)=(x(t),y(t))$ definita da

$$\begin{cases} x(t) = -4 - 2t \\ y(t) = -\frac{1}{2} (2t + 1)^2 + \frac{9}{2} \end{cases} t \in [-3, 1].$$

Disegnate con cura sul foglio a quadretti il sostegno di γ , specificando di che curva si tratta, il verso di percorrenza e l'equazione (cartesiana o implicita).

Il vettore tangente o vettore velocità in $P_0=(-4,4)$ è:

La velocità scalare in P_0 è:

Il versore tangente in P_0 è:

Disegnate sul foglio a quadretti il punto P_0 , il vettore e il versore tangente.

L'equazione cartesiana della retta tangente in P_0 è:

Le equazioni parametriche della retta tangente nel punto P_0 sono:

L'equazione cartesiana della retta normale in P_0 è:

I due vettori normali alla curva nel punto P_1 corrispondente a $t_1 = -\frac{5}{2}$ sono:

Disegnate sul foglio a quadretti il punto P_1 ed entrambi i vettori normali in P_1 .

4) Sia $\gamma: [\frac{\pi}{2}, 4\pi] \to \mathbb{R}^2$ la curva $\gamma(t) = (x(t), y(t))$ definita da

$$\begin{cases} x(t) = 3 + \frac{9}{2} \cos t \\ y(t) = -2 + \frac{9}{2} \sin t \end{cases} t \in \left[\frac{\pi}{2}, 4\pi\right].$$

Disegnate con cura sul foglio a quadretti il sostegno di γ , specificando di che curva si tratta, il verso di percorrenza e l'equazione (cartesiana o implicita).

Il disegno deve far risultare in modo chiaro il percorso effettuato dal punto.

Il vettore tangente o vettore velocità in $P_0 = (3 + \frac{9}{4}\sqrt{2}, -2 + \frac{9}{4}\sqrt{2})$ è:

La velocità scalare in P_0 è:

Il versore tangente in P_0 è:

Disegnate sul foglio a quadretti il punto P_0 , il vettore e il versore tangente.

L'equazione cartesiana della retta tangente in P_0 è:

Le equazioni parametriche della retta tangente nel punto P_0 sono:

L'equazione cartesiana della retta normale in P_0 è:

I due vettori normali in P_0 sono:

I due versori normali in P_0 sono:

Disegnate sul foglio a quadretti sia i vettori che i versori normali.

Al valore del parametro $t_1 = \frac{10}{3}\pi$ corrisponde il punto $P_1 = (\dots, \dots)$

Disegnate sul foglio a quadretti il punto P_1 .

5) Sia $\gamma:[-1,\frac{3}{2}]\to\mathbb{R}^2$ la curva $\gamma(t)=(x(t),y(t))$ definita da

$$\begin{cases} x(t) = 4t^2 - 4 \\ y(t) = 4t \end{cases} t \in [-1, \frac{3}{2}].$$

Disegnate con cura sul foglio a quadretti il sostegno di γ , specificando di che curva si tratta, il verso di percorrenza e l'equazione (cartesiana o implicita).

Il vettore tangente o vettore velocità nel punto P_0 corrispondente al tempo $t_0=1$ è:

Disegnate sul foglio a quadretti il punto P_0 e il vettore tangente.

I due vettori normali in P_0 sono:

I due versori normali in P_0 sono:

Disegnate sul foglio a quadretti sia i vettori che i versori normali.

L'equazione cartesiana della retta tangente nel punto P_0 è:

Le equazioni parametriche della retta tangente nel punto P_0 sono:

L'equazione cartesiana della retta normale nel punto P_0 è:

Il vettore tangente o vettore velocità in $P_1 = (-4, 0)$ è:

Disegnate sul foglio a quadretti il punto P_1 e il vettore tangente.

I due vettori normali in P_1 sono:

Disegnate sul foglio a quadretti entrambi i vettori normali.

L'equazione cartesiana della retta tangente nel punto P_1 è:

Le equazioni parametriche della retta tangente nel punto P_1 sono:

L'equazione cartesiana della retta normale nel punto P_1 è:

6) Sia $\gamma:[-4,6] \to \mathbb{R}^2$ la curva $\gamma(t)=(x(t),y(t))$ definita da

$$\begin{cases} x(t) = -2(2t - 1) \\ y(t) = \sqrt{-4t} \end{cases} \quad t \in [-4, 0] \qquad \begin{cases} x(t) = 2 + 3t \\ y(t) = \frac{2}{17}(3t - \frac{17}{2})^2 - \frac{17}{2} \end{cases} \quad t \in [0, 6]$$

Disegnate con cura sul foglio a quadretti il sostegno di γ , specificando per ogni tratto il tipo di curva, il verso di percorrenza e l'equazione (cartesiana o implicita).

Il disegno deve far risultare in modo chiaro il percorso effettuato dal punto.

Il vettore tangente o vettore velocità in $P_0 = (6, 2)$ è:

La velocità scalare in P_0 è:

Il versore tangente in P_0 è:

Disegnate sul foglio a quadretti il punto P_0 , il vettore e il versore tangente.

I due vettori normali in P_0 sono:

Disegnate sul foglio a quadretti entrambi i vettori normali.

L'equazione cartesiana della retta tangente in P_0 è:

Le equazioni parametriche della retta tangente nel punto P_0 sono:

L'equazione cartesiana della retta normale in P_0 è:

La velocità scalare nel punto più a destra di intersezione della curva con l'asse $\mathbf x$ è: