#1 Soit une v.a. X d'univers $S_X = \{1, 2, 3, ..., n\}$ pour un certain $n \in \mathbb{N}$. On suppose que X est une v.a. uniforme sur S_X . Donner son espérance et sa variance.

[on pourra utiliser que
$$\sum_{k=1}^{n} k = n(n+1)/2$$
 et $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$.]

- #2 On considère un ensemble dénombrable $S_X \subset \mathbb{R}$ et une v.a. X dont l'univers est S_X et ayant une certaine fonction de masse p_X . Soit $\phi : \mathbb{R} \to \mathbb{R}$. On définit la v.a. Y par $Y = \phi(X)$.
 - (a) Donner l'univers de S_Y en fonction de ϕ et S_X .
 - (b) Montrer que, à part pour un choix particulier de ϕ , les v.a. X et Y sont dépendantes, i.e. X et Y ne sont pas indépendantes.

[aide : pour le cas particulier, réfléchir à la possibilité que ϕ annihile/anéantisse l'aléatoire de X...]

- #3 Soit X et Y deux v.a. telles que X est uniforme sur $S_X = \{1, 2, 3, 4, 5\}$ et Y vérifie :
 - conditionnellement à $\{X \text{ est pair}\}, Y = 0 \text{ avec probabilité } 1$,
 - conditionnellement à $\{X \text{ est impair}\} \cap \{X = x\}, Y = -x^2 \text{ avec probabilité } 1/x \text{ et } Y = 1/x \text{ avec probabilité } 1-1/x.$
 - (a) Donner l'univers de Y, noté S_Y .
 - (b) Donner la fonction de masse de Y, conditionnellement à X = x, notée $p_{Y|X=x}$.
 - (c) En déduire la fonction de masse de Y marginale, notée p_Y .
 - (d) Calculer var(X + Y).
- #4 Soit deux v.a. X et W indépendantes. On donne que $W \sim \text{Bernoulli}(1/2)$ et que $\mathbb{E}(X) = 0$ et var(X) = 1. On définit une autre v.a. Y par

$$Y = \alpha X + \beta \left(W - \frac{1}{2} \right)$$

où α et β sont deux réels. Montrer que $cov(X, Y) = \alpha$.

#5 Toute v.a. X est caractérisée par sa fonction caractéristique définie par

$$\phi_X: \mathbb{R} \to \mathbb{C}, \qquad \phi_X(t) = \mathbb{E}(e^{itX}) = \sum_{x \in S_X} e^{itx} p_X(x).$$

- (a) Montrer que deux v.a. *X* et *Y* qui ont la même fonction de masse ont la même fonction caractéristique. Il se trouve que la réciproque est aussi vraie (nous l'admettons).
- (b) Soit X et Y deux v.a. de Poisson indépendantes, $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$ avec $\lambda > 0$, $\mu > 0$. Montrer que

$$X + Y \sim \text{Poisson}(\mu + \lambda)$$
.

[on utilisera que si
$$X \sim \text{Poisson}(\lambda)$$
 alors $\phi_X(t) = \exp\left[\lambda\left(e^{it} - 1\right)\right]$.]

- (c) Dans une certaine compétition de Soccer, le nombre de buts inscrits au cours d'un match (un match dure 90 minutes + arrêts de jeu) peut être modélisé par une v.a. de loi de Poisson. En particulier :
 - du début du match jusquà la 80-ème minute, le nombre de buts inscrits par tranche de 10 minutes est $X \sim \text{Poisson}(1/3)$
 - à partir de la 80-ème minute jusqu'à la fin du match, le nombre de buts inscrits est $X \sim \text{Poisson}(1)$.

Donner la probabilité que dans un certain match de cette compétition, 6 buts ou plus soient inscrits et donner le nombre moyen de but(s) inscrit(s) dans un match de cette compétition.