INVESTMENT PROJECT ANALYSIS

Relevance

- Long-term decisions
 - definition of new strategic orientations (products, services, markets)
 - loss of flexibility
- Investment
 - too much unnecessary expenses
 - less or not timely loss of competitiveness due to lack of quality; loss of customers due to lack of capacity

Project types

- Expansion
 - growth in existing products or markets
 - growth for new products or markets
- Replacement
 - business maintenance
 - cost savings
- Investigation and development
- Safety and environment

Fundamental factors

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

1. Investment

- R&D activities, project
 - R&D or project facilities and equipment
 - People
 - Studies, regulation
- Facilities and equipment
 - Types, Costs, Quantity, Dates

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

2. Project operation earnings

Income

- Competition (number of competitors, differentiation)
- Demand structure (diversity of needs met, number of customers, growth rate, purchase frequency)
- Adoption (need for training, degree of change in usage patterns, need for complementary products / services, commitment to previous technologies, perceived risk, beneficiary / payer alignment)
- Price (value created for the customer, easier to make explicit and value in intercompany business)
- □ ...

2. Project operation earnings

- ☐ HR costs
 - Roles and number of people at each moment (production, R&D, sales, administrative, general)
 - Wages/salaries (including health, social security, etc.)
- Production costs
 - Leased facilities
 - Costs of materials consumed
 - Contrast with industry averages
 - Sales percentages for materials consumed, R&D, sales and marketing, general and administrative costs

2. Project operation earnings

Operacional earnings

- □Income
 - ■Sales: Goods, Products
 - ■Services rendered
- □Costs
 - Costs of goods sold and materials consumed
 - ■Supplies and external services
 - □HR
 - Depreciation and provisions

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

3. Working capital investment

- Working capital part of the investment that directly finances the day-to-day operation.
 - Stocks
 - Customer Credits
 - Mitigated by credits with suppliers
 - Activity fluctuations
 - Other short term commitments
- Expressed as a percentage of sales.
- It depends on activity level and is typical by industry

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

4. Project residual value

- Residual value
 - Cash flow from sale of assets
 - Impact on sales profit / loss taxes
- Alternative
 - Last year's cash flow perpetuity, with growth rate

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

5. Cash-flow reconstitution

- Cash-flows (CF) vs Net earnings
 - \blacksquare Sales and costs part may be on credit \rightarrow (-) Inv. W. C.
 - \square Depreciation does not match outflows \rightarrow (+)
 - \blacksquare Acquisition of fixed assets not considered \rightarrow (-) Inv.
- Relevant CF Incremental
 - difference between the CF with the project and without the project
 - externalities (effects on other projects) consider
 - opportunity costs consider net market values
 - sunk costs do not consider

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

6. Financial Math

- 1. Cost Determination
- 2. Estimated expected cash flows
- 3. Estimated risk of estimated cash flows
- 4. Determination of appropriate cost of capital
 - The cost of capital is higher for higher risk projects it should reflect the cost of capital for a minimal risk investment, a risk premium, and inflation.
 - It should reflect the diversity and weight of the forms of financing: own (equity) or borrowed (debt)
 - http://pages.stern.nyu.edu/~adamodar/New_Home_Page/ datafile/wacc.htm
- 5. Positive cash flow update
- 6. Comparison with cost: if higher, accept proeject

Analysis components

- 1. Investment analysis [Balance sheet]
- Project operation earnings analysis [P&L Statement]
- 3. Working capital investment analysis [Balance sheet]
- 4. Project residual value analysis [Balance sheet+ P&L Statement]
- 5. Cash-flow reconstitution [P&L Statement]
- 6. Discounted cash-flow analysis [Financial Math]

NPV (Net Present Value)

Project S

Project L

Sum of discounted CF

€ 79

€ 50

NPV (Net Present Value)

$$\square \text{ NPV} = \mathbf{0} \quad \text{NPV} = \sum_{t=0}^{n} CF_{t} \left(\frac{1}{1 + IRR} \right)^{t} = 0$$

- Generated CF are exactly enough to pay for the capital invested and the required return
- \square NPV > 0
 - CF generate more than the required return

IRR (Internal Return Rate)

$$\square IRR = k \qquad NPV = \sum_{t=0}^{n} CF_{t} \left(\frac{1}{1 + IRR} \right)^{t} = 0$$

- Generated CF are exactly enough to pay for the capital invested and the required return
- \square IRR > k
 - CF generate more than the required return

NPV vs IRR

NPV vs IRR

- Independent Projects
 - NPV and IRR lead to the same decision
- Mutually exclusive projects
 - □ k> crossover rate same decision
 - k < crossover rate contrary decisions</p>
- Conflicts
 - Scale differences (different costs)
 - Timing differences

NPV vs IRR

- Key question what is the appropriate reinvestment rate?
 - with scale differences, for CFs that were not invested
 - with timing differences, for the CFs that are being generated
- Most correct assumption
 - reinvestment at cost of capital

mIRR

- mIRR (Modified IRR)
 - CIF Future Value Cash In-Flows Return (Positive)
 - Current value of COF Cash Out Flows Investment (negative)
 - mIIR expresses the annual rate of return that relates the present value of COF to the future value of CIF.

$$\sum_{t=0}^{n} \text{CIF}_{t} \left(1+k\right)^{n-t} = \sum_{t=0}^{n} \text{COF}_{t} \left(\frac{1}{1+k}\right)^{t} \left(1+\text{mIRR}\right)^{n} \Leftrightarrow \text{mIRR} = \left(\frac{\sum_{t=0}^{n} \text{CIF}_{t} \left(1+k\right)^{n-t}}{\sum_{t=0}^{n} \text{COF}_{t} \left(\frac{1}{1+k}\right)^{t}}\right)^{\frac{1}{n}} - 1$$

 NPV Superiority: Indicates how much each project contributes to the company value

Decision rules mIRR (k=5%)

Project S

Project L

CV of COF (CV_COF) and FV of CIF (FV_CIF)

$$mIRR = (1435/1000)^{1/4} - 1 = 9.45\%$$

$$mIRR = (1435/1000)^{1/4} - 1 = 9.45\%$$
 $mIRR = (1467/1000)^{1/4} - 1 = 10.05\%$

Decision rules mIRR (k=10%)

Project S

0 1 2 3 4 - 1000 500 400 300 100

Project L

CV of COF (CV_COF) and FV of CIF (FV_CIF)

 $mIRR = (1579,5/1000)^{(1/4)-1} = 12.11\%$ $mIRR = (1536.1/1000)^{(1/4)-1} = 11.33\%$

 $IRR_S = 14.5\%$

 $IRR_L = 11.8\%$

Payback period

Project S

Project L

With accumulated CF

2.33 years

3.33 years

Payback period

Project S

Projecto L

With accumulated CF

2.95 years

3.88 years

Projects with different lifetimes

- Comparison at least common multiple of life spans
 - Assumes repetition of investments
- Equivalent annual income
 - income from a series of annual incomes of the same present value, lifetime and refresh rate as each project

Bibliography

- Brigham, E. F. e Capenski, L. C. Financial Management, Theory and Practice, 8th Edition – The Dryden Press, 1997
- □ das Neves, João C. Análise Financeira, 15^a edição –
 Texto Editora, 2004