Definiciones y convenciones notacionales

Combo 1

Defina:

- 1. Cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo (no hace falta que defina "función Σ -recursiva")
- 2. $\langle s_1, s_2, ... \rangle$
- 3. "f es una función Σ -mixta"
- 4. "familia Σ -indexada de funciones"
- 5. $R(f,\mathcal{G})$

Resolución

- 1. Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -recursivo si su función característica $\chi_S^{\omega^n\times\Sigma^{*m}}$ es Σ -recursiva.
- 2. Dada una infinitupla $(s_1,s_2,...) \in \omega^{[N]}$, se usa $\langle s_1,s_2,... \rangle$ para denotar al número $x=\prod_{i=1}^{\infty} pr(i)^{s_i}$
- 3. Sea Σ un alfabeto finito y sea f una función, diremos que es Σ -mixta si $\exists n, m \geq 0 : D_f \subseteq \omega^n \times \Sigma^{*m}$ e $I_f \subseteq O$ donde $O \in \{\omega, \Sigma^*\}$
- 4. Dado un alfabeto Σ , una familia Σ -indexada de funciones es una función \mathcal{G} tal que $D_{\mathcal{G}} = \Sigma$ y $\forall a \in D_{\mathcal{G}}$, $\mathcal{G}(a)$ es una función.
- 5. La recursión primitiva para el caso de *variable alfabética* se define de forma distinta para los casos de *valores numéricos* o *alfabéticos*. Por ello, veamos cada uno:
 - Valores numéricos: Sea Σ un alfabeto finito, y sean f una función y \mathcal{G} una familia Σ -indexada de funciones tales que:

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$$

$$\mathcal{G}_a: \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$$

para cada $a \in \Sigma$, y con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\varepsilon) = f(\vec{x},\vec{\alpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$$

y decimos que $R(f, \mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G} .

• Valores alfabéticos: Sea Σ un alfabeto finito, y sean f una función

y $\mathcal G$ una familia Σ -indexada de funciones tales que:

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \Sigma^*$$

$$\mathcal{G}_a: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*$$

para cada $a \in \Sigma$, y con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \Sigma^*$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\varepsilon) = f(\vec{x},\vec{\alpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(\vec{x},\vec{\alpha},\alpha,R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha))$$

y decimos que $R(f,\mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G} .

Combo 2

Defina:

- 1. $d \vdash^n d'$ (no hace falta que defina \vdash)
- 2. L(M)
- 3. H(M)
- 4. "f es una función de tipo (n, m, s)"
- 5. (x)
- 6. $(x)_i$

- 1. Para $d, d' \in Des, n \geq 0$, escribiremos $d \stackrel{n}{\vdash} d'$ si $\exists d_1, ..., d_{n+1}$ tales que $d = d_1, d' = d_{n+1}$ y $d_i \vdash d_{i+1} \forall i = 1, ..., n$.
 - Notar que $d \stackrel{\circ}{\vdash} d' \Leftrightarrow d = d'$
- 2. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por alcance de estado final cuando $\lfloor q_0 B \alpha \rfloor \stackrel{*}{\vdash} d$, con $d: St(d) \in F$. Luego, el lenguaje aceptado por M por alcance de estado final se define como $L(M) = \{\alpha \in \Sigma^* : \alpha \text{ es aceptada por } M \text{ por alcance de estado final} \}$
- 3. Diremos que una palabra $\alpha \in \Sigma^*$ es aceptada por M por detención cuando M se detiene partiendo de $\lfloor q_0 B \alpha \rfloor$. Luego, el lenguaje aceptado por <math>M por detención se define como $H(M) = \{\alpha \in \Sigma^* : \alpha \text{ es aceptada por } M \text{ por detención}\}$
- 4. Si f es una función Σ -mixta y $n, m \in \omega : D_f \subseteq \omega^n \times \Sigma^{*m}$,
 - Si $I_f \subseteq \omega$, decimos que f es de tipo (n, m, #)
 - Si $I_f \subseteq \Sigma^*$, decimos que f es de tipo (n, m, *)

- 5. Dado $x \in N$, usaremos (x) para denotar a la única infinitupla $(s_1, s_2, ...) \in \omega^{[N]}$ tal que $x = \langle s_1, s_2, ... \rangle = \prod_{i=1}^{\infty} pr(i)^{s_i}$
- 6. Para cada $i \in N$, usaremos $(x)_i$ para denotar a s_i de la anterior infinitupla. Es decir, $(x)_i$ es el exponente de pr(i) en la única factorización prima de x

Defina:

- 1. Cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable (no hace falta que defina "función Σ -recursiva")
- $2. s^{\leq}$
- 3. ∗≤
- 4. #≤

Resolución

1. Diremos que un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -recursivamente enumerable cuando sea vacío o haya una función $F: \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -recursiva $\forall i \in \{1, ..., n+m\}$

Los siguientes puntos se definen en base a Σ alfabeto no vacío y \leq orden total sobre Σ , siendo $\Sigma = \{a_1, ..., a_n\}$ con $a_1 < a_2 < ... < a_n$. Luego:

2. La función siguiente se define como

$$s^{\leq}: \Sigma^* \to \Sigma^*$$

$$s^{\leq}((a_n)^m) = (a_1)^{m+1} \ \forall m \geq 0$$

$$s \le (\alpha a_i(a_n)^m) = \alpha a_{i+1}(a_1)^m \ \forall \alpha \in \Sigma^*, \ i \in \{1, ..., n-1\}, \ m \ge 0$$

3. Función que asigna a cada $n \in \omega$ la n + 1-ésima palabra de la lista:

$$* \le : \omega \to \Sigma^*$$

$$* \le (0) = \varepsilon$$

$$* \le (n+1) = s \le (* \le (n))$$

4. Inversa de la anterior:

$$\#^{\leq}: \Sigma^* \to \omega$$

$$\#^{\leq}(\varepsilon) = 0$$

$$\#^{\leq}(a_{i_k}...a_{i_0}) = \sum_{j=0}^k i_j n^j$$

Combo 4

Defina cuándo una función $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es llamada Σ -efectivamente computable y defina "el procedimiento $\mathbb P$ computa a la función f".

Resolución

Una función Σ -mixta $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ (para $O \in \{\omega, \Sigma^*\}$) es Σ -efectivamente computable si hay un procedimiento \mathbb{P} tal que:

- El conjunto de datos de entrada de \mathbb{P} es $\omega^n \times \Sigma^{*m}$
- $\bullet\,$ El conjunto de datos de salida está contenido en O
- Si $(\vec{x}, \vec{\alpha}) \in D_f$, entonces \mathbb{P} se detiene partiendo de $(\vec{x}, \vec{\alpha})$ y da como salida $f(\vec{x}, \vec{\alpha})$
- Si $(\vec{x}, \vec{\alpha}) \notin D_f$, entonces \mathbb{P} no se detiene partiendo de $(\vec{x}, \vec{\alpha})$

En estos casos, diremos que este \mathbb{P} computa a la función f.

Combo 5

Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina "el procedimiento efectivo $\mathbb P$ decide la pertenencia a S".

Resolución

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -efectivamente computable.

Es decir, S es Σ -efectivamente computable si existe un procedimiento \mathbb{P} tal que:

- El conjunto de datos de entrada de \mathbb{P} es $\omega^n \times \Sigma^{*m}$, siempre termina y da como dato de salida un elemento de $\{0,1\}$
- Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, \mathbb{P} se detiene partiendo de $(\vec{x}, \vec{\alpha})$ y da como salida 1 si $(\vec{x}, \vec{\alpha}) \in S$ y 0 en caso contrario.

En este caso, decimos que el procedimiento efectivo $\mathbb P$ decide la pertenencia a S.

Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable y defina "el procedimiento efectivo \mathbb{P} enumera a S".

Resolución

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente enumerable si es vacío o $\exists F : \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ es Σ -efectivamente computable $\forall i \in \{1, ..., n+m\}$.

Es decir, $S \neq \emptyset$ es Σ -efectivamente enumerable si existe un procedimiento efectivo $\mathbb P$ tal que:

- El conjunto de datos de entrada de \mathbb{P} es ω
- \mathbb{P} se detiene para cada $x \in \omega$
- El conjunto de datos de salida de \mathbb{P} es igual a S

En este caso, decimos que el procedimiento efectivo \mathbb{P} enumera a S.

Combo 7

Defina cuándo una función $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es llamada Σ -Turing computable y defina "la máquina de Turing M computa a la función f".

Resolución

Diremos que $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es Σ -Turing computable si existe una máquina de Turing con *unit* $M = (Q, \Sigma, \Gamma, \delta, q_0, B, I, F)$ tal que:

- Si $(\vec{x}, \vec{\alpha}) \in D_f$, entonces $\exists p \in Q : \lfloor q_0 B \mid^{x_1} B ... B \mid^{x_n} B \alpha_1 B ... B \alpha_m \rfloor \vdash \lfloor p B \mid^{f(\vec{x}, \vec{\alpha})} \mid y \mid p B \mid^{f(\vec{x}, \vec{\alpha})} \mid \forall d \forall d \in Des$
- Si $(\vec{x}, \vec{\alpha}) \in (\omega^n \times \Sigma^{*m}) D_f$, entonces M no se detiene partiendo de $\lfloor q_0 B \rfloor^{x_1} B ... B \rfloor^{x_n} B \alpha_1 B ... B \alpha_m \rfloor$

En este caso, diremos que la máquina de Turing M computa a la función f.

Combo 8

Defina:

- 1. M(P)
- 2. *Lt*
- 3. Conjunto rectangular
- 4. "S es un conjunto de tipo (n, m)"

Resolución

1. Este caso se trata de **minimización de variable numérica**. Sea Σ un alfabeto finito y sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado, dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega: P(t, \vec{x}, \vec{\alpha}) = 1$,

usaremos $\min_t P(t, \vec{x}, \vec{\alpha})$ para denotar al menor de tales t's. Con ello, definimos

$$M(P) = \lambda \vec{x} \vec{\alpha} \left[\min_{t} P(t, \vec{x}, \vec{\alpha}) \right]$$

El cual cumple que:

$$D_{M(P)} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : (\exists t \in \omega) P(t, \vec{x}, \vec{\alpha}) \}$$

$$M(P)(\vec{x}, \vec{\alpha}) = \min_{t} P(t, \vec{x}, \vec{\alpha}), \ \forall (\vec{x}, \vec{\alpha}) \in D_{M(P)}$$

Y diremos que M(P) se obtiene por minimización de variable numérica a partir de P.

2. Definimos la función del mayor factor primo como

$$Lt: N \to \omega$$

$$Lt(x) = \begin{cases} \max\{i \in N : (x)_i \neq 0\} & \text{si } x \neq 1\\ 0 & \text{si } x = 1 \end{cases}$$

- 3. Sea Σ un alfabeto finito, un conjunto Σ -mixto S es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con $S_i \subseteq \omega$ y $L_j \subseteq \Sigma^*$
- 4. Dado un conjunto Σ -mixto S y $n,m\in\omega:S\subseteq\omega^n\times\Sigma^{*m},$ entonces S es de tipo (n,m)

Combo 9

Defina:

- 1. "I es una instrucción de S^{Σ} "
- 2. " $\mathcal P$ es un programa de S^Σ "
- 3. $I_i^{\mathcal{P}}$
- 4. $\vec{n}(\mathcal{P})$
- 5. Bas

- 1. Una instrucción de \mathcal{S}^{Σ} es ya sea una instrucción básica de \mathcal{S}^{Σ} , o una palabra de la forma αI , donde $\alpha \in \{L\bar{n} : n \in N\}$ e I es una instrucción básica de \mathcal{S}^{Σ} .
 - Cuando Ies de la forma $L\bar{n}J$ con Juna instrucción básica, diremos que $L\bar{n}$ es la label~de~I
 - Una instrucción básica de S^{Σ} es una palabra $(\Sigma \cup \Sigma_P)^*$ la cual es de alguna de las siguientes formas (donde $a \in \Sigma$; $k, n \in N$):
 - $-N\bar{k} \leftarrow N\bar{k} + 1$
 - $-N\bar{k} \leftarrow N\bar{k}\dot{-}1$
 - $-\ N\bar{k} \leftarrow N\bar{n}$

$$\begin{array}{l} -N\bar{k}\leftarrow 0\\ -P\bar{k}\leftarrow P\bar{k}.a\\ -P\bar{k}\leftarrow P\bar{k}.a\\ -P\bar{k}\leftarrow P\bar{k}\\ -P\bar{k}\leftarrow P\bar{n}\\ -P\bar{k}\leftarrow \varepsilon\\ -\text{IF }N\bar{k}\neq 0\text{ GOTO }L\bar{n}\\ -\text{IF }P\bar{k}\text{ BEGINS }a\text{ GOTO }L\bar{n}\\ -\text{ GOTO }L\bar{n}\\ -\text{ SKIP} \end{array}$$

- 2. Un programa de \mathcal{S}^{Σ} es una palabra de la forma $I_1I_2..I_n$ donde $n \geq 1, I_1, ..., I_n \in Ins^{\Sigma}$ y además se cumple la ley de los GOTO: $\forall i \in \{1, ..., n\}$, si $GOTOL\bar{m}$ es un tramo final de I_i , entonces $\exists j \in \{1, ..., n\}$ tal que I_j tiene label $L\bar{m}$
- 3. Definimos $I_i^{\mathcal{P}}$ como la *i*-ésima instrucción de \mathcal{P} y, además, $I_i^{\mathcal{P}}=\varepsilon$ cuando i=0 o $i>n(\mathcal{P})$
- 4. Definimos $n(\mathcal{P})$ como la cantidad de instrucciones de \mathcal{P}
- 5. Definimos $Bas: Ins^{\Sigma} \to (\Sigma \cup \Sigma_p)^*$ dada por

$$Bas(I) = \begin{cases} J & \text{si } I \text{ es de la forma } L\bar{k}J \text{ con } J \in Ins^{\Sigma} \\ I & \text{en otro caso} \end{cases}$$

Defina, relativo al lenguaje S^{Σ} :

- 1. "Estado"
- 2. "Descripción instantánea"
- 3. $S_{\mathcal{P}}$
- 4. "Estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ "
- 5. " \mathcal{P} se detiene (luego de t pasos), partiendo del estado $(\vec{s}, \vec{\sigma})$ "

- 1. Un estado es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, ...), (\sigma_1, \sigma_2, ...)) \in \omega^{[N]} \times \Sigma^{*[N]} \underline{y}$, si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\overline{i}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\overline{i}$ en el estado $(\vec{s}, \vec{\sigma})$
- Una descripción instantánea es una terna (i, s, σ) tal que (s, σ) es un estado e i ∈ ω. Intuitivamente, (i, s, σ) nos dice que las variables están en el estado (s, σ) y que la instrucción que debemos realizar es I_i^P
 Dado un programa P, definimos S_P: ω × ω^[N] × Σ*^[N] → ω × ω^[N] × Σ*^[N]
- 3. Dado un programa \mathcal{P} , definimos $S_{\mathcal{P}}: \omega \times \omega^{[N]} \times \Sigma^{*[N]} \to \omega \times \omega^{[N]} \times \Sigma^{*[N]}$ como la función que asignará a una descripción instantánea $(i, \vec{s}, \vec{\sigma})$ la descripción instantánea sucesora de $(i, \vec{s}, \vec{\sigma})$ con respecto a \mathcal{P} . Es decir, hay varios casos posibles:
 - Si $i \notin \{1, ..., n(\mathcal{P})\}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i, \vec{s}, \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{k}-1$, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,(s_1,..,s_{k-1},s_k-1,s_{k+1},..),\vec{\sigma})$

- Si $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{k} + 1$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, (s_1, ..., s_{k-1}, s_k + 1, s_{k+1}, ...), \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{n}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, s_n, s_{k+1}, ...), \vec{\sigma})$
- Si $Bas(\vec{I_i^{\mathcal{P}}}) = N\bar{k} \leftarrow 0$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, 0, s_{k+1}, ...), \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = IF \ N\bar{k} \neq 0$ GOTO $L\bar{m}$, entonces hay dos posibilidades:
 - Si el valor contenido en $N\bar{k}$ es 0, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i+1,\vec{s},\vec{\sigma})$
 - Si el valor contenido en $N\bar{k}$ es no nulo, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
- Si $Bas(\tilde{I}_{i}^{\mathcal{P}}) = P\bar{k} \leftarrow {}^{\hat{\sim}}P\bar{k}$, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma}) = (i + 1, \vec{s}, (\sigma_{1}, ..., \sigma_{k-1}, {}^{\hat{\sim}}\sigma_{k}, \sigma_{k+1}, ..))$
- Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow P\bar{k}.a$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \sigma_k a, \sigma_{k+1}, ..))$
- Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow P\bar{n}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \sigma_n, \sigma_{k+1}, ..))$
- Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow \varepsilon$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \varepsilon, \sigma_{k+1}, ...))$
- Si $Bas(I_i^{\mathcal{P}}) = \text{IF } P\bar{k} \text{ BEGINS } a \text{ GOTO } L\bar{m}, \text{ entonces hay dos posibilidades:}$
 - Si la palabra contenida en $P\bar{k}$ comienza con a, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
 - Si la palabra contenida en $P\bar{k}$ no comienza con a, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = \text{GOTO } L\bar{m}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = SKIP$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$
- 4. Diremos que $S_{\mathcal{P}}(S_{\mathcal{P}}(...(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}))...)) = (j, \vec{u}, \vec{\eta})$ con $S_{\mathcal{P}}$ aplicado t veces, es la descripción instantánea obtenida luego de t pasos partiendo del estado $(\vec{s}, \vec{\sigma})$, y $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t pasos partiendo del estado $(\vec{s}, \vec{\sigma})$
- 5. Cuando la primer coordenada de $S_{\mathcal{P}}(S_{\mathcal{P}}(...(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}))...))$ (con $S_{\mathcal{P}}$ aplicado t veces) es $n(\mathcal{P}) + 1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\vec{s}, \vec{\sigma})$

Defina:

- 1. $\Psi_{\mathcal{D}}^{n,m,\#}$
- 2. " \hat{f} es Σ -computable"
- 3. " \mathcal{P} computa a f"
- 4. $M^{\leq}(P)$

Resolución

1. Dado $\mathcal{P} \in Pro^{\Sigma}$, definimos $\Psi_{\mathcal{P}}^{n,m,\#}$ como:

$$D_{\Psi^{n,m,\#}_{\mathcal{D}}} = \{(\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina partiendo de } ||\vec{x},\vec{\alpha}||\}$$

 $\Psi^{n,m,\#}_{\mathcal{D}}(\vec{x},\vec{\alpha})=$ valor de N1 cuando \mathcal{P} termina partiendo de $||\vec{x},\vec{\alpha}||$

- 2. Una función Σ -mixta $f:S\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es Σ -computable si existe un programa $\mathcal{P}\in\mathcal{S}^\Sigma$ tal que $f=\Psi^{n,m,\#}_{\mathcal{P}}$
 - Se define de forma análoga para funciones Σ -mixtas $f:S\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ con $f=\Psi^{n,m,*}_{\mathcal{D}}$
- 3. En el caso anterior, decimos que f es computada por \mathcal{P}
- 4. Sea $\Sigma \neq \emptyset$ un alfabeto con \leq un orden total sobre este, y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado, dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $\alpha \in \Sigma^*$ tal que $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor de tales α 's. Con ello, definimos:

$$M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} [min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha)]$$

El cual cumple que:

$$D_{M^{\leq}(P)} = \{ (\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} : (\exists \alpha \in \Sigma^*) P(\vec{x}, \vec{\alpha}, \alpha) = 1 \}$$

$$M^{\leq}(P)(\vec{x},\vec{\alpha}) = min_{\alpha}^{\leq}P(\vec{x},\vec{\alpha},\alpha), \forall (\vec{x},\vec{\alpha}) \in D_{M^{\leq}(P)}$$

Y diremos que $M^{\leq}(P)$ se obtiene por minimización de variable alfabética a partir de P.

Combo 12

Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -computable, cuándo es llamado Σ -enumerable y defina "el programa \mathcal{P} enumera a S".

Resolución

- Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -computable si $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -computable. Es decir, es Σ -computable si y solo si hay un programa $\mathcal{P} \in Pro^{\Sigma}$ que computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$:
 - Si $(\vec{x}, \vec{\alpha}) \in S$, entonces \mathcal{P} se detiene partiendo de $||x_1, ..., x_n, \alpha_1, ..., \alpha_m||$ y la variable N1 queda con contenido igual a 1
 - Si $(\vec{x}, \vec{\alpha}) \notin S$, entonces \mathcal{P} se detiene partiendo de $||x_1, ..., x_n, \alpha_1, ..., \alpha_m||$ y la variable N1 queda con contenido igual a 0

Decimos que \mathcal{P} decide la pertenencia a S respecto al conjunto $\omega^n \times \Sigma^{*m}$

• Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -enumerable si es vacío o existe una función $F: \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea una función Σ -computable para todo $i \in 1, ..., n+m$

- Por propiedad, sabemos que: Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío, entonces son equivalentes:
 - -S es Σ -enumerable
 - Hay un programa $\mathcal{P} \in Pro^{\Sigma}$ tal que
 - * $\forall x \in \omega$, \mathcal{P} se detiene partiendo de ||x|| y llega a un estado de la forma $((x_1,..,x_n,y_1,...),(\alpha_1,..,\alpha_m,\beta_1,..))$ con $(x_1,..,x_n,\alpha_1,..,\alpha_m) \in S$
 - * $\forall (x_1,..,x_n,\alpha_1,..,\alpha_m) \in S$, $\exists x \in \omega$ tal que \mathcal{P} se detiene partiendo de ||x|| y llega a un estado de la forma $((x_1,..,x_n,y_1,...),(\alpha_1,..,\alpha_m,\beta_1,..))$

Decimos que \mathcal{P} enumera a S

Combo 13

Defina:

- 1. $i^{n,m}$

- 1. t^{r} 2. $E_{\#}^{n,m}$ 3. $E_{*}^{n,m}$ 4. $E_{\#j}^{n,m}$ 5. $E_{*j}^{n,m}$ 6. $Halt^{n,m}$
- 7. $T^{n,m}$
- 8. $AutoHalt^{\Sigma}$
- 9. Los conjuntos A y N

Resolución

• Sean $n, m \in \omega$, definimos las siguientes funciones:

$$\begin{split} i^{n,m} : \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma} &\to \omega \\ E^{n,m}_{\#} : \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma} &\to \omega^{[N]} \\ E^{n,m}_{*} : \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma} &\to \Sigma^{[N]} \end{split}$$

de modo que $(i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P}))$ es la descripción instantánea que se obtiene luego de correr \mathcal{P} una cantidad t de pasos partiendo del estado $||x_1,...,x_n,\alpha_1,...,\alpha_m||$. Si las definimos formalmente, podemos hacerlo de forma recursiva:

$$(i^{n,m}(0,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(0,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(0,\vec{x},\vec{\alpha},\mathcal{P})) = \\ (1,(x_{1},...,x_{n},0,...),(\alpha_{1},...,\alpha_{m},\varepsilon,...))$$

$$(i^{n,m}(t+1,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(t+1,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(t+1,\vec{x},\vec{\alpha},\mathcal{P})) = \\ S_{\mathcal{P}}(i^{n,m}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{\#}(t,\vec{x},\vec{\alpha},\mathcal{P}),E^{n,m}_{*}(t,\vec{x},\vec{\alpha},\mathcal{P}))$$

• Definimos también las funciones

$$\begin{split} E^{n,m}_{\#j} : \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma} &\to \omega \\ E^{n,m}_{*j} : \omega \times \omega^n \times \Sigma^{*m} \times Pro^{\Sigma} &\to \Sigma^* \end{split}$$

que marcan el valor de la $j\text{-}\acute{\text{e}}\text{sima}$ componente de $E_\#^{n,m}$ y $E_*^{n,m},$ respectivamente. Es decir:

$$E_{\#j}^{n,m} = p_j^{n,m} \circ E_{\#}^{n,m}$$

$$E_{*j}^{n,m} = p_j^{n,m} \circ E_*^{n,m}$$

- Dados $n, m \in \omega$, definimos $Halt^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P}[i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}) = n(\mathcal{P}) + 1]$
 - Básicamente, $Halt^{n,m}$ es un predicado que dice si \mathcal{P} se detiene luego de t pasos partiendo del estado $||x_1,...,x_n,\alpha_1,...,\alpha_m||$.
- Definimos $T^{n,m} = M(Halt^{n,m})$
 - $-D_{T^{n,m}} = \{(\vec{x}, \vec{\alpha}, \mathcal{P}) : \mathcal{P} \text{ se detiene partiendo de } ||x_1, ..., x_n, \alpha_1, ..., \alpha_m||\}$
 - Para $(\vec{x}, \vec{\alpha}, \mathcal{P}) \in D_{T^{n,m}}, T^{n,m}(\vec{x}, \vec{\alpha}, \mathcal{P})$ indica la cantidad de pasos necesarios para que \mathcal{P} se detenga partiendo de $||x_1, ..., x_n, \alpha_1, ..., \alpha_m||$.
- Cuando $\Sigma \supseteq \Sigma_p$, podemos definir $AutoHalt^{\Sigma} = \lambda \mathcal{P}[(\exists t \in \omega) Halt^{0,1}(t, \mathcal{P}, \mathcal{P})]$
 - Notar que $D_{AutoHalt^{\Sigma}} = Pro^{\Sigma}$ y que $\forall \mathcal{P} \in Pro^{\Sigma}$, $AutoHalt^{\Sigma}(\mathcal{P}) = 1$ sii \mathcal{P} se detiene partiendo del estado $||\mathcal{P}||$.
- Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $A = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \}$ y $N = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 0 \}.$

Combo 14

Explique en forma detallada la notación lambda.

- Una expresión es lamb dificable con respecto a Σ si cumple las siguientes caracter ísticas:
 - Involucra variables numéricas (que se valuaran en números de ω), y variables alfabéticas (que se valuaran en palabras del alfabeto previamente fijado)
 - * En cuanto a notación, las numéricas son con letras latinas minúsculas (x, y, z) y las alfabéticas con letras griegas minúsculas (α, β, γ)
 - Para ciertas valuaciones de sus variables la expresión puede no estar definida (por ejemplo, $Pred(|\alpha|)$ para $\alpha = \varepsilon$)
 - Sea E la expresión, los valores que asuma cuando hayan sido asignados los valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas, deberán ser siempre elementos de $O \in \{\omega, \Sigma^*\}$ (es decir, no puede tomar valores mixtos)
 - La expresión puede involucrar lenguaje coloquial castellano (i.e., no únicamente operaciones matemáticas). Por ejemplo, "el menor número primo que es mayor que x"

- A las expresiones booleanas (como x=0), se les considerará que asumen valores de $\{0,1\}\subseteq\omega$
- Definición: sea Σ un alfabeto finito fijo, E una expresión lambdificable respecto a Σ y $x_1, ..., x_n, \alpha_1, ..., \alpha_m$ variables distintas tales que las numéricas que ocurren en E están en $\{x_1, ..., x_n\}$ y las alfabéticas en $\{\alpha_1, ..., \alpha_m\}$, entonces $\lambda x_1...x_n\alpha_1...\alpha_m[E]$ denota la función definida por:
 - $-D_{\lambda x_1..x_n\alpha_1..\alpha_m[E]} = \{(k_1,..,k_n,\beta_1,..,\beta_m) \in \omega^n \times \Sigma^{*m} : E \text{ está definida}$ cuando asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i }
 - $-\lambda x_1...x_n\alpha_1..\alpha_m[E](k_1,...,k_n,\beta_1,...,\beta_m)$ = valor que asume o representa E cuando asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i

Dada una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro:

$$[V2 \leftarrow f(V1, W1)]$$

Resolución

Dada la función $f: D_f \subseteq \omega \times \Sigma^* \to \omega$, el macro $[V2 \leftarrow f(V1, W1)]$ es un objeto de tipo **PALABRA**.

Para que el macro $[V2 \leftarrow f(V1, W1)]$ sea válido (i.e., exista en el lenguaje S^{Σ}), debe cumplir las siguientes propiedades:

- Las variables oficiales de M son V1, V2, W1
- \bullet M no tiene labels oficiales
- Si reemplazamos:
 - las variables oficiales de M por variables concretas $N\overline{k_1}, N\overline{k_2}, P\overline{j_1},$
 - las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1}, N\overline{k_2}, P\overline{j_1}\},$
 - los labels auxiliares de M por labels concretos distintos de a dos, entonces la palabra obtenida es un programa de \mathcal{S}^{Σ} que denotaremos con $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ y tiene la siguiente propiedad:
 - Si corremos $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ partiendo de un estado e que asigne a $N\overline{k_1}, P\overline{j_1}$ los valores x_1, α_1 respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - * Si $(x_1, \alpha_1) \notin D_f$, entonces $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ no se detiene partiendo de e
 - * Si $(x_1, \alpha_1) \in D_f$, entonces $[N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})]$ se detiene partiendo de e y llega a un estado e' que cumple que:
 - e' le asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$
 - · e' solo puede diferir de e en los valores que le asigna a $N\overline{k_2}$ o a las variables que fueron a reemplazar a las variables auxiliares de M

Dado un predicado $P: D_P \subseteq \omega^n \times \Sigma^{*m} \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro:

[IF
$$P(V1, W1)$$
 GOTO $A1$]

Resolución

Dado el predicado $P: D_P \subseteq \omega \times \Sigma^* \to \omega$, el macro [IF P(V1, W1) GOTO A1] es un objeto de tipo **PALABRA**.

Para que el macro [IF P(V1, W1) GOTO A1] sea válido (i.e., exista en el lenguaje S^{Σ}), debe cumplir las siguientes propiedades:

- Las variables oficiales de M son V1, W1
- A1 es el único label oficial de M
- Si reemplazamos:
 - las variables oficiales de M por variables concretas $N\overline{k_1}, P\overline{j_1},$
 - el label oficial A1 por el label concreto $L\bar{k}$,
 - las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1}, P\overline{j_1}\}$,
 - los labels auxiliares de M por labels concretos distintos de a dos y ninguno de ellos igual a $L\bar{k}$, entonces la palabra obtenida es un programa de \mathcal{S}^{Σ} que denotaremos con [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\bar{k}$] y tiene la siguiente propiedad:
 - Si corremos $[IF\ P(N\overline{k_1},P\overline{j_1})\ GOTO\ L\overline{k}]$ partiendo de un estado e que asigne a $N\overline{k_1},P\overline{j_1}$ los valores x_1,α_1 respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - * Si $(x_1, \alpha_1) \notin D_P$, entonces [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] no se detiene partiendo de e
 - * Si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 1$, entonces, luego de una cantidad finita de pasos, [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] direcciona al label $L\overline{k}$ quedando en un estado e' que solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M
 - * Si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 0$, entonces, luego de una cantidad finita de pasos, [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] se detiene partiendo de e quedando en un estado e' que solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M