Digraph immersions

Shoham Letzter UCL

Joint work with António Girão

Clique subdivisions

Bollobas-Thomason / Komlós-Szemerédi '96: Ec>o s.t. if G has average deg > ct² then G has a subdivision of Kt.

Tight (up to a constant factor):
$$G = R_{k,k}$$

$$= C^{2}_{k,k}$$

Best known bounds on least c:
$$\frac{3}{64}$$
 (Zuczak) $\leq \frac{10}{23}$ (Kühn-Osthus '06)

What about digraphs?

Rt complete digraph on t vertices.

1 Is there f(t) s.t.: if G has min in a out-deg $\geqslant f(t)$ then G contains a subdivision of R_t ?

- Yes for
$$t=2$$
. $f(2)=1$ subdivision K_2 .

- No for tr3

(Mader '85 using construction of Thomassen 85' DeVos-McDonald-Mohar-Scheide '12).

The transitive tournament on t vertices.

2 Is there f(t) s.t.: if G has min in a out deg > f(t) then G contains a subdivision of 11t?

This is (almost) a conjecture of Mader '96.

Immersions

Gimmerses H if Jinjection $f: V(H) \rightarrow V(G)$ and edge-disjoint paths Puv, for $uv \in E(H)$, s.t. Puv starts at f(u) and ends at f(v).

DeVos - Dvořák - Fox - McDonald - Mohar - Scheide 14:

If G has average deg > 200 t then G immerses Kt. Ken does not immerse Kt

Dvořák-Yepremyan '17: min deg > 11t+7 ⇒ immersion of K_t.

Hong-Wang-Yang '20: average deg > (1+2)t & H-free for H bipartite

immersion of Kt.

Conjecture (Lescure-Meyniel 189): Gimmerses Kx(G).

Immersion in digraphs

3 Is there f(t) s.t.: if G has min in * out-deg > f(t) then G immerses Rt?

No for t>3 (DMMS 12).

Lochet '19: If then it immerses 1/4.

Consoivable that can take f(t) = ct.

G is <u>Eulerian</u> if $d^+(u) = d^-(u)$ for every vertex u.

DeVos-McDonald - Mohar-Scheide '12: If G is Eulerian with min out-deg > t2 then it immerses Rt.

Thm (Girão-L. 22+). Icro s.t. if G is Eulerian with min out-deg at least ct then G immerses Rt.

Overview of the proof.

<u>Lemma</u>. D Eulerian with min out-deg \geq ct \Rightarrow D immerses a digraph G with $\Theta(t)$ vertices and $\mathcal{R}(t^2)$ edges.

We use 'sparse expanders'.

- * Introduced by Romlós-Szemerédi '96.
- * Can be found in graphs with average deg at least a large constant. G d(G) 2100

- * many recent applications:
 - odd cycle problem (Lin-Montgomery 20+)
 - clique subdivisions in Cy-free graphs (Liu-Montgomery 17)
 - Romlós conjecture on Hamiltonian sets (Rim-Liu-Sharifzadeh-Staden 117)

Our proof is a rare use of expanders in digraphs (Eulerian + immersion help).

II) Observation: If D is Eulerian and immerses G then it immerses an Eulerian multidigraph $G' \supseteq G$ with V(G') = V(G).

Lemma. If G' is an Eulerian multidigraph on n vertices whose underlying graph (obtained by removing directions and multiplicities) has min deg $> \alpha n$, then it immerses R_s , where $s = c'\alpha^{-4}n$.

$$I) + II) + III) \Rightarrow \text{theorem}.$$

D Eulerian, St 3 ct.

I) Dans G', G'Enlerian, multidigraph G'2G, V(G')=V(G)
III) G'~>Kt. => Dans Kt.

More about III

We will find a collection & of $\mathcal{N}(n^2)$ eagle-disjoint dicycles in 6' each containing an edge which is simple in UC.

Let H be the undirected graph formed by the purple (simple) edges.

Then H has average deg D(n).

Thus, by DDFMMS '14: H immerses K_t , where $t = \mathcal{N}(n)$.

Each P_{uv} corresponds to paths $u \rightarrow v$ and $v \rightarrow u$ in G'that are edge-disjoint.

 \Rightarrow G'immerses \vec{K}_t .

Open problems

- 1) What is min f(t) s.t. if $\delta^{+}(G) \gg f(t)$ then G immerses 1/(t)?

 **Zochet '19: $f(t) = O(t^3)$.

 Maybe f(t) = o(t)?
- 2 Mader '96: Is there get) s.t. if $\delta^+(G) \ge g(t)$ then G contains a subdivision of 1/t?

3 Conjecture (Lescure-Meyniel '89): Gimmerses K2(G).

Finding C

<u>Lemma 1.</u> D multigraph on n vertices with min out-deg $\gg \propto n$. Then \exists dicycle with $\leq \frac{4}{5}$ simple edges.

Apply Lemma 1 repeatedly to find a.

preprocessing of G' that ensures that we don't have a diporth of wordth 2 with two multiple edges.

immersion.

G immerses H iff H can be obtained from G by:
* delete edge /Vx

* or replace a path uver by uw.

Proof of Lemma 1

5 (w) > 2n

Lemma a. D digraph,
$$\omega:V(D)\to\mathbb{R}^+$$
. If $\omega(N^+(\omega))\geqslant \omega\cdot\omega(V(D))$

then
$$\exists$$
 dicycle of length $\leq \frac{4}{\alpha}$.

E(D') = { xy : xy is a multiple edge in D f. $D' \subseteq D$ simple suboligraph,

$$D' \subseteq D$$
 simple subdigraph, $E(D') = \{xy : xy \text{ is a multiple edge in } D\}$.
 $X = \{x \in V(D') : d_D^+(x) = 0\}$. $= \{xy \in X\}$ $= \{xy \in$

If $\exists edge \times \xrightarrow{D} U(x)$, then $\exists dicycle in D with <math>\leq 1$ simple edge. Suppose $\exists no such edges$.

Do digraph on X with $x \rightarrow y$ iff $\exists edge x \xrightarrow{D} U(y)$. Can check: $w(N_{D_0}^+(x)) \ge ww(X) \quad \forall x \in X$, where w(x) = |U(x)|.

By Lemma 2: Idicycle of length $\leq \frac{4}{4}$ in Do.

⇒ Jolicycle in D with ≤ \frac{4}{\pi} simple edges.

8+3 ct cit & dt(u) & qt Nt(x) X N(x)