Routing: OSPF

Dr. G. Omprakash

Assistant Professor, ECE, KLEF

Routing

Goal of the network layer: Deliver a datagram from its source to one or more destinations

- Unicast routing: Datagram is destined for only one destination
- Multicast routing: Datagram is destined for several destinations
- Intradomain routing: Study of routing within an organization/university (internal routing)
 - An intradomain routing protocol is also called an Interior Gateway Protocol (IGP)
- Interdomain routing: Study of routing between independently operated networks
 - All networks must use the same interdomain routing protocol or exterior gateway protocol
 - The protocol that is used in the Internet is BGP (Border Gateway Protocol)

Open Shortest Path First: OSPF

- OSPF: Unicast and Intradomain routing protocol
- OSPF is more widely used in company networks
- Requirements for OSPF:
 - ullet OSPF is an *open* protocol \Longrightarrow the specification is a public document.
 - Protocol had to support a variety of distance metrics, including physical distance, delay...
 - It has to be a dynamic algorithm (adapted to changes in the topology)
 - It has to support routing based on type of service
 - Route real-time traffic one way and other traffic a different way
 - OSPF had to do load balancing
 - Splitting the load over multiple lines.
 - Support for hierarchical systems is needed
 - Security was required to prevent spoofing of routers

OSPF is implemented as a program in the network layer

- An IP datagram that carries a message from OSPF sets the value of the protocol field to 89
- The OSPF messages are encapsulated inside datagrams.

0		8	16	31	
	Version	Type	Message length		
	Source router IP address				
Area Identification					
	Checksum		Authentication type		
	Authentication				

Figure: OSPF Common Header

- **Authentication**: The OSPF common header has the provision for authentication of the message sender.
 - This prevents a malicious entity from sending OSPF messages to a router

OSPF

5/7

OSPF represents the actual network (a) as a graph (b) and then use the link state method to have every router compute the shortest path from itself to all other nodes

Figure: a) An autonomous system. (b) A graph representation of (a)

OSPF Messages

Five different types of messages

- Type 1: The hello message
 - It is used by a router to introduce itself to the neighbors and announces all neighbors that it already knows
- Type 2: The database description message
 - It is normally sent in response to the hello message to allow a newly joined router to acquire the full LSDB¹
- Type 3: The link-state request message
 - It is sent by a router that needs information about a specific LS.
- Type 4: The link-state update message
 - It is the main OSPF message used for building the LSDB.
- **Type 5**: The *link-state acknowledgment* message
 - It is used to create reliability in OSPF; each router that receives a link-state update message needs to acknowledge it.

¹The collection of states for all links is called the link-state database (LS⊕B) ≥ ✓

7/7

Acknowledge various sources for the images. Thankyou