		1101	o C
Name Vorname	1 2	I	II
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
Fakultät für Mathematik	6		
Klausur Mathematik für Physiker 3	7		
(Analysis 2)	8		
Prof. Dr. M. Wolf	$\sum_{i=1}^{n}$		
7. August 2012, 11:00 – 12:30 Uhr			
Hörsaal: Reihe: Platz:	I	Erstkorre	ktur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben Bearbeitungszeit: 90 min	II	Zweitkorr	ektur
Erlaubte Hilfsmittel: keine			
Erreichbare Gesamtpunktzahl: 84 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	_		

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

1. Topologie Sei X ein nichtleerer topologischer Raum. Eine Funktion $f: X \to \mathbb{R}$, heißt $loke$ jedem $x \in X$ eine Umgebung von x gibt, auf der f konstant ist. Zeigen Sie:	[10 Punkte] al konstant, wenn es zu
(a) Ist X zusammenhängend, so ist jede lokal konstante Funktion konstant.	
(b) Es gibt lokal konstante Funktionen, die nicht beschränkt sind.	

2. Differenzierbarkeit Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch	[10 Punkte]
$f(x,y) = \begin{cases} y \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$	
(a) Wie lauten die partiellen Ableitungen im Ursprung?	
$\partial_x f(0,0) = \qquad \qquad \partial_y f(0,0) =$	
(b) Wie lautet die Richtungsableitung in Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ im Ursprung?	
$\partial_v f(0,0) =$	
(c) Ist f differenzierbar im Ursprung?	
\Box Ja \Box Nein	
(d) Zeigen Sie, dass f eine stetige Funktion ist.	

3. Ableitung einer Matrixfunktion

Ableitung einer Matrixfunktion [10 Punkte] Zeigen Sie, dass die Ableitung der Funktion $f(A) = (A^{T}A)^{-1}$ an der Stelle $A \in \mathbb{R}^{n \times n}$, A invertierbar, gegeben ist durch

$$f'(A)(B) = -A^{-1}((BA^{-1})^{\mathrm{T}} + BA^{-1})(A^{\mathrm{T}})^{-1}.$$

HINWEIS: Für $g(A) = A^{-1}$ ist $g'(A)(B) = -A^{-1}BA^{-1}$, Produktregel, Kettenregel.

4	Torr	loren	+:	പപ	1100
4	IAV		1. W 1	CKII	HIP

[10 Punkte]

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei viermal stetig differenzierbar und der Punkt $x^* = (1,0)$ sei ein stationärer Punkt von f mit $f(x^*) = 3$. Weiter sei

$$\partial_1^2 f(x^*) = \partial_1 \partial_2 f(x^*) = 1, \ \partial_2^2 f(x^*) = 2 \text{ und } \partial_1 \partial_2^2 f(x^*) = \partial_2^3 f(x^*) = -1,$$

alle anderen dritten partiellen Ableitungen verschwinden in x^* .

(a) Der Punkt x^* ist ein

 \square lokales Minimum

 \square lokales Maximum

□ Sattelpunkt

von f.

(b) Wie lautet explizit die Taylorentwicklung von f im Entwicklungspunkt x^* bis zur dritten Ordnung?

f(x,y) = $+R_3(x,y)$

(c) Welche Eigenschaften folgen daraus für das Restglied $R_3(x,y)$?

 $\Box \lim_{(x,y)\to(0,0)} R_3(x,y) = 0 \qquad \qquad \Box \lim_{(x,y)\to(1,0)} R_3(x,y) = 0$ $\Box \lim_{(x,y)\to(1,0)} \frac{R_3(x,y)}{\|(x-1,y)\|^3} = 0 \qquad \qquad \Box \lim_{(x,y)\to(1,0)} \frac{R_3(x,y)}{\|(x-1,y)\|^4} = 0$

5. Implizite Funktionen

[12 Punkte]

Gegeben ist die Funktion $f=(f_1,f_2):\mathbb{R}^3\to\mathbb{R}^2,\, f_1(x,y,z)=x^3-y^3+z^3-z,\, f_2(x,y,z)=x^2+y^2-2z^2.$ Im Punkt P=(1,1,-1) gilt f(P)=(0,0). Die Gleichung $f(x,y,z)=\binom{0}{0}$ soll in einer Umgebung von P nach y und z aufgelöst werden um die Funktionen $\tilde{y}(x)$ und $\tilde{z}(x)$ zu erhalten.

(a) Wie lautet die Jacobimatrix von f im Punkt P?

f'(P) =

(b) Die Invertierbarkeit welcher Matrix M muss überprüft werden, um den Satz über implizite Funktionen im Punkt P anwenden zu können?

M =

(c) Berechnen Sie die zum Punkt P gehörenden ersten Ableitungen von \tilde{y} und \tilde{z} .

 $\tilde{y}'($)= $\tilde{z}'($)=

(d) Geben Sie die Taylorentwicklungen der Funktionen $\tilde{y}(x)$ und $\tilde{z}(x)$ im Punkt x=1 bis zur ersten Ordnung an.

 $ilde{y}(x) = ilde{z}(x) =$

6. Extrema mit Nebenbedingungen Zeigen Sie, dass die Funktion $f(x,y)=2xy+\frac{3}{2}x^2$ eingeschränkt $\mathbb{R}^2 x^2+y^2=5\}$ ihr Maximum im Punkt $(2,1)$ annimmt.	$\begin{array}{ccc} & [{\bf 14} \ {\bf Punkte}] \\ {\rm auf \ die \ Menge} \ K \ = \ \{ (x,y) \ \in \ \end{array}$

7. Vektorfelder

[8 Punkte]

(a) Zeigen Sie für $f \in C^1(\mathbb{R}^3, \mathbb{R}), F \in C^1(\mathbb{R}^3, \mathbb{R}^3),$ dass

$$\nabla \times (fF) = \nabla f \times F + f \nabla \times F.$$

(b) Berechnen Sie $\nabla \times G(x)$ für $x \neq 0$ mit $G(x_1, x_2, x_3) = ||x||^2 \begin{pmatrix} 1 \\ x_3 \\ x_2 \end{pmatrix}$.

8.	Separierbare	Differentialgleichungen
\circ .	ocparior bare	2 mer emulaigieremanigen

[10 Punkte]

Gegeben ist die Differentialgleichung $\dot{x} = f(t, x)$ mit $f(t, x) = te^{t+x}$.

(a) Geben Sie ein erstes Integral (Konstante der Bewegung) für die Differentialgleichung an.

F(x,t) =

(b) Geben Sie eine maximale Lösung $x:I\to\mathbb{R}$ der Differentialgleichung mit dem Anfangswert x(0) = 0 an.

I =

x(t) =

(c) Welche Eigenschaften besitzt die Funktion $f:\mathbb{R}^2\to\mathbb{R}$, die hinreichend sind für die lokale Existenz und Eindeutigkeit von Lösungen obiger Differentialgleichung?

> f ist stetig

f ist erstes Integral

f ist stetig differenzierbar

f ist lipschitzstetig

f ist lokal lipschitzstetig

(d) Ist die maximale Lösung des AWP $\dot{x} = f(t, x), x(0) = 0$ eindeutig bestimmt?

 \square Ja

□ Nein