Devoir Libre en Statistique Inférentielle à rendre sur papier A4 le 14 février 2022

Exercice 1

On considère une suite de variables aléatoires réelles X_n définies par $X_n : \Omega \to \{0, 1, 2, \dots, 2k\}$ où k est un entier donné. La loi de ces variables est définie par récurrence sur n:

- la loi de la variable X_0 est donnée;
- la loi conditionnelle de la variable X_n sachant $X_{n-1} = j$ est la loi binomiale de paramètre 2k et $\frac{j}{2k}$, c'est à dire $\mathcal{B}\left(2k, \frac{j}{2k}\right)$.

On désigne par M_n la matrice colonne dont les coefficients sont les paramètres :

$$P([X_n = i])$$
 pour $i = 0, 1, \dots, 2k$.

- 1. Montrer qu'il existe une matrice B telle que $M_n = B M_{n-1}$.
- 2. (a) Quelle est la valeur de QM_n ? et que représente pour la loi de X_n le nombre RM_n si Q et R sont les matrices lignes

$$Q = (1 \ 1 \ \dots 1)$$
 $R = (0 \ 1 \ 2 \ \dots 2k)$

- (b) Vérifier que : QB = Q et RB = R.
- (c) Que peut-on en déduire pour la loi de X_n ?
- 3. (a) Montrer que, si S est la matrice ligne;

$$S = (014 \dots 4k^2)$$

alors le produit SB peut être exprimé en fonction de S, R et k.

- (b) Étudier la suite de terme général $\lambda_n = S M_n$.
- 4. (a) Vérifier que si X est une variable aléatoire réelle prenant les valeurs $0,\,1,\ldots,2\,k,$ alors

$$\mathbb{E}(X^2) \le 2 k \, \mathbb{E}(X)$$

Vérifier que l'égalité impliquant que les seules valeurs ayant une probabilité non nulle sont 0 et 2k.

(b) Que peut-on en déduire pour la suite des variables aléatoires X_n ?

Exercice 2

On considère une suite de variables aléatoires réelles X_n définies par $X_n : \Omega \to \{0, 1, 2, \dots, 2k\}$ où k est un entier donné. La loi de ces variables est définie par récurrence sur n:

- la loi de la variable X_0 est donnée;
- la loi conditionnelle de la variable X_n sachant $X_{n-1} = j$ est la loi binomiale de paramètre 2k et $\frac{j}{2k}$, c'est à dire $\mathcal{B}\left(2k, \frac{j}{2k}\right)$.

On désigne par ${\cal M}_n$ la matrice colonne dont les coefficients sont les paramètres :

$$P([X_n = i])$$
 pour $i = 0, 1, \dots, 2k$.

On rappelle que la suite X_n satisfait à la relation de récurrence $X_n = B X_{n-1}$ où B est la matrice dont le terme de la $i^{\text{ième}}$ ligne et la $j^{\text{ième}}$ colonne est

$$B_{ij} = \mathcal{B}\left(i; 2k, \frac{j}{2k}\right) = C_{2k}^i \left(\frac{j}{2k}\right)^i \left(1 - \frac{j}{2k}\right)^{2k-i}.$$

1. Montrer que la matrice B peut s'écrire

$$B = \begin{pmatrix} 1 & U & 0 \\ 0 & A & 0 \\ 0 & V & 1 \end{pmatrix}$$

Vérifier que tous les coefficients des matrices U, A et V sont différents de 0 et indiquer la valeur de la somme des coefficients d'une colonne de B.

- 2. Montrer que les valeurs propres de B ont, à l'exception de la valeur 1, un module strictement inférieur à 1.
- 3. Montrer que la suite des matrice B^n a une limite; que peut-on dire de la suite des matrices colonnes M_n ?

Exercice 3

Soit X une variable aléatoire réelle ayant une densité $f: \mathbb{R} \to \mathbb{R}$. On appelle fonction caractéristique de X, notée ϕ_X , la fonction définie de \mathbb{R} à valeurs dans \mathbb{C} par

$$\phi_X(t) = \int_{-\infty}^{+\infty} e^{\mathrm{i}tx} f(x) dx.$$

Pour $n \in \mathbb{N}$, on définit la fonction définie ϕ_n par : $\phi_n(t) = \int_{-n}^n e^{\mathrm{i}tx} f(x) dx$, pour tout $t \in \mathbb{R}$.

- 1. Montrer que la fonction ϕ_X est bien définie et que : $\phi_X(0) = 1$ et $|\phi_X(t)| \le 1$ pour tout $t \in \mathbb{R}$.
- 2. Montrer que la suite de fonctions $(\phi_n)_{n\geq 0}$ converge uniformément vers la fonction ϕ_X sur \mathbb{R} .
- 3. Montrer que la fonction ϕ_X est uniformément continue dans \mathbb{R} .
- 4. Déterminer la fonction caractéristique ψ de la variable aléatoire $Y = \alpha X + \beta$ en fonction de ϕ_X , α et β .
- 5. Déterminer la fonction caractéristique d'une loi normale de moyenne μ et de variance γ^2 .
- 6. Montrer que si la variable aléatoire X a une espérance, alors la fonction ϕ_X est dérivable et que

$$\phi_X'(0) = i\mathbb{E}(X)$$
 et $|\phi_X'(t)| \le \mathbb{E}(|X|)$.