15.094J: Robust Modeling, Optimization, Computation

Lecture 10: Affinely Adaptive Optimization

Outline

- Motivation
- Preliminaries
- Optimality of affine policies
- Suboptimality of affine policies
- 5 Affine policies in inventory theory
- 6 Polynomial polices in multi-echelon systems
- Conclusions

Motivation

- Affine policies have strong empirical performance.
- Under what circumstances are affine policies optimal?
- How suboptimal are they?
- How can we improve them?

Witnesses of robustness

AO:

$$\begin{aligned} z_{Adapt}(\mathcal{U}) &= \min \ c^T x + \max_{b \in \mathcal{U}} d^T y(b) \\ Ax + By(b) &\geq b, \ \forall b \in \mathcal{U} \\ x, y(b) &\geq 0, \end{aligned}$$

• Suppose $x^*, y^*(b)$ for all $b \in \mathcal{U}$ is an optimal solution of AO, where the uncertainty set \mathcal{U} is a polytope. Let b^1, \ldots, b^K be the extreme points of \mathcal{U} . Then, the worst case cost is achieved at some extreme point, i.e.,

$$\max_{b \in \mathcal{U}} d^T y^*(b) = \max_{j=1,...,K} d^T y^*(b^j).$$

Lecture 10

15.094J-RO

Proof

• $\{b^1,\ldots,b^K\}\subseteq\mathcal{U}$:

$$\max_{b \in \mathcal{U}} d^T y^*(b) \ge \max_{j=1,\dots,K} d^T y^*(b^j).$$

• For the sake of contradiction, suppose

$$\max_{b \in \mathcal{U}} d^T y^*(b) > \max_{j=1,\ldots,K} d^T y^*(b^j).$$

Let $\hat{b} = \operatorname{argmax} \{ d^T y^*(b) \mid b \in \mathcal{U} \}$, such that $\hat{b} \notin \{ b^1, \dots, b^K \}$.

• Therefore,

$$d^{T}y^{*}(\hat{b}) > \max_{j=1,...,K} d^{T}y^{*}(b^{j}).$$

• Since $\hat{b} \in \mathcal{U}$, $\hat{b} = \sum_{j=1}^{K} \alpha_j \cdot b^j$, where $\alpha_j \geq 0$ for all j = 1, ..., K and $\alpha_1 + ... + \alpha_K = 1$.

5 / 25

Proof, continued

- Consider the solution: $\hat{y}(\hat{b}) = \sum_{j=1}^{K} \alpha_j \cdot y^*(b^j)$.
- $\hat{y}(\hat{b})$ is feasible for \hat{b} as,

$$Ax^* + B\hat{y}(\hat{b}) = A\left(\sum_{j=1}^K \alpha_j\right)x^* + B\left(\sum_{j=1}^K \alpha_j \cdot y^*(b^j)\right) =$$

$$\sum_{j=1}^K \alpha_j \cdot Ax^* + \sum_{j=1}^K \alpha_j \cdot By^*(b^j) = \sum_{j=1}^K \alpha_j \cdot (Ax^* + By^*(b^j)) \ge \sum_{j=1}^K \alpha_j \cdot b^j = \hat{b},$$

Objective function value:

$$d^{T}\hat{y}(\hat{b}) = d^{T}\left(\sum_{j=1}^{K} \alpha_{j} \cdot y^{*}(b^{j})\right) = \sum_{j=1}^{K} \alpha_{j} \cdot d^{T}y^{*}(b^{j})$$

$$\leq \sum_{j=1}^{K} \alpha_{j} \cdot \max\{d^{T}y^{*}(b^{k}) \mid k = 1, \dots, K\}$$

$$= \max\{d^{T}y^{*}(b^{k}) \mid k = 1, \dots, K\}$$

$$< d^{T}y^{*}(\hat{b}).$$

• This implies that $y^*(\hat{b})$ is not an optimal solution for \hat{b} ; a contradiction.

Optimality of affine policies over the simplex

For AO with

$$\mathcal{U} = \mathsf{conv}(b^1, \dots, b^{m+1}),$$

- $m{b}^j \in \mathbb{R}^m_+$ for all $j=1,\ldots,m$ such that b^1,\ldots,b^{m+1} are affinely independent.
- Then, there is an optimal two-stage solution $\hat{x}, \hat{y}(b)$ for all $b \in \mathcal{U}$ such that $\hat{y}(b)$ is an affine function of b, i.e., for all $b \in \mathcal{U}$,

$$\hat{y}(b) = Pb + q,$$

Proof

• $x^*, y^*(b)$ optimal for AO.

$$Q = [(b^1 - b^{m+1}), \ldots, (b^m - b^{m+1})]$$

$$Y = [(y^*(b^1) - y^*(b^{m+1})), ..., (y^*(b^m) - y^*(b^{m+1}))]$$

- Since b^1, \ldots, b^{m+1} are affinely independent, $(b^1 b^{m+1}), \ldots, (b^m b^{m+1})$ are linearly independent.
- Q is a full-rank matrix and thus, invertible. For any $b \in \mathcal{U}$:

$$\hat{y}(b) = YQ^{-1}(b - b^{m+1}) + y^*(b^{m+1}).$$

• Since $b \in \mathcal{U}$, $b = \sum_{j=1}^{m+1} \alpha_j b^j$, where $\alpha_j \geq 0$ for all $j = 1, \ldots, m+1$ and $\alpha_1 + \ldots + \alpha_{m+1} = 1$.

Lecture 10

Proof, continued

We have

$$b = \sum_{j=1}^{m} \alpha_{j} b^{j} + \left(1 - \sum_{j=1}^{m} \alpha_{j}\right) b^{m+1} = \sum_{j=1}^{m} \alpha_{j} \left(b^{j} - b^{m+1}\right) + b^{m+1}$$
$$= Q \cdot \alpha + b^{m+1}, \ \alpha = (\alpha_{1}, \dots, \alpha_{m})^{T}$$

• Since Q is invertible, $Q^{-1}(b-b^{m+1})=\alpha$, and thus

$$\hat{y}(b) = Y \cdot \alpha + y^*(b^{m+1})
= \sum_{j=1}^{m} \alpha_j (y^*(b^j) - y^*(b^{m+1})) + y^*(b^{m+1})
= \sum_{j=1}^{m} \alpha_j y^*(b^j) + \left(1 - \sum_{j=1}^{m} \alpha_j\right) y^*(b^{m+1})
= \sum_{j=1}^{m+1} \alpha_j y^*(b^j)$$

9 / 25

Proof, continued

- As before, $\hat{y}(b)$ is a feasible solution for all $b \in \mathcal{U}$.
- ullet Since the worst case occurs at one of the extreme points of \mathcal{U} ,

$$z_{Adapt}(\mathcal{U}) = \max_{b \in \mathcal{U}} \left(c^T x^* + d^T y^*(b) \right) = \max_{j=1,\dots,m+1} \left(c^T x^* + d^T y^*(b^j) \right).$$

• Note that $\hat{y}(b^j) = y^*(b^j)$ for all j = 1, ..., m + 1. Therefore,

$$\max_{b \in \mathcal{U}} (c^T x^* + d^T \hat{y}(b)) = \max_{j=1,\dots,m+1} (c^T x^* + d^T \hat{y}(b^j))$$
$$= \max_{j=1,\dots,m+1} (c^T x^* + d^T y^*(b^j))$$
$$= z_{Adapt}(\mathcal{U}).$$

Suboptimality of Affine Policies for Uncertainty Sets with (m+2) Extreme Points

• Data c = 0, d = (1, ..., 1)', A = 0, and for all <math>j = 1, ..., m

$$B_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i = j, \ rac{1}{\sqrt{m}} & ext{otherwise} \end{array}
ight.$$

• $\mathcal{U} = \text{conv}(\{b^0, b^1, \dots, b^{m+2}\}), b^0 = 0, b^j = e_j, \forall j = 1, \dots, m$

$$b^{m+1} = \left(\underbrace{\frac{1}{\sqrt{m}}, \dots, \frac{1}{\sqrt{m}}, \underbrace{0, \dots, 0}_{m/2}}\right), \ b^{m+2} = \left(\underbrace{0, \dots, 0}_{m/2}, \underbrace{\frac{1}{\sqrt{m}}, \dots, \frac{1}{\sqrt{m}}}_{m/2}\right)$$

• Given any $\delta > 0$, consider AO with data and uncertainty set $\mathcal U$ as above. Then,

$$z_{Aff}(\mathcal{U}) > (2 - \delta) \cdot z_{Adapt}(\mathcal{U}).$$

Lecture 10

A Large Gap Example for Affine Policies

• Data $n_1 = n_2 = m$, $m^{\delta} > 200$, c = 0, $d = (1, ..., 1)^T$, A = 0,

$$B_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i=j, \ heta_0 & ext{otherwise} \end{array}
ight.$$

• $\mathcal{U}=\operatorname{conv}\left(\left\{b^0,b^1,\ldots,b^N\right\}\right),\ \theta_0=\frac{1}{m^{(1-\delta)/2}},\ r=\lceil m^{1-\delta}\rceil,\ N=\binom{m}{r}+m+2$ and $b^0=0$ $b^j=e_j,\ \forall j=1,\ldots,m$ $b^{m+1}=\frac{1}{\sqrt{m}}\cdot e$

A Large Gap Example for Affine Policies, continued

- Exactly r coordinates are non-zero, each equal to θ_0 .
- Extreme points b^j , $j \ge m+3$ are permutations of the non-zero coordinates of b^{m+2} .
- \mathcal{U} has exactly $\binom{m}{r}$ extreme points of the form of b^{m+2} .
- ullet All the non-zero extreme points of ${\cal U}$ are roughly on the boundary of the unit hypersphere centered at zero.
- ullet Theorem: For the instance above with uncertainty set \mathcal{U} ,

$$z_{Aff}(\mathcal{U}) = \Omega\left(m^{1/2-\delta}\right) \cdot z_{Adapt}(\mathcal{U}),$$

for any given $\delta > 0$.

Performance Guarantee for Affine Policies

- Consider AAO with $\mathcal{U} \subseteq \mathbb{R}^m_+$ convex, compact and full-dimensional and $A \geq 0$.
- Then

$$z_{Aff}(\mathcal{U}) \leq 3\sqrt{m} \cdot z_{Adapt}(\mathcal{U}),$$

- Worst case cost of an optimal affine policy is at most $3\sqrt{m}$ times the worst case cost of an optimal fully adaptable solution.
- In general,

$$z_{Aff}(\mathcal{U}) \leq 4\sqrt{m} \cdot z_{Adapt}(\mathcal{U}),$$

- Full characterization of AAO performance: $z_{Aff}(\mathcal{U}) = \Theta(\sqrt{m}) \cdot z_{Adapt}(\mathcal{U}),$
- Contrast with $z_{Rob}(\mathcal{U}) = \Theta(m) \cdot z_{Adapt}(\mathcal{U})$,

Single Echelon Case

- $x_{k+1} = x_k + u_k w_k$
- x_k : inventory at period k
- w_k : unknown, bounded demands from customers, $w_k \in [\underline{w}_k, \overline{w}_k]$
- ullet u_k : replenishment orders; no lead-time, but capacities, $u_k \in [L_k,U_k]$
- Linear ordering costs + any convex inventory cost $h_k(x_k)$

$$C_k(u_k,x_k)=c_k u_k+h_k(x_k)$$

Single Echelon Case

- $x_{k+1} = x_k + u_k w_k$
- x_k : inventory at period k
- w_k : unknown, bounded demands from customers, $w_k \in [\underline{w}_k, \overline{w}_k]$
- u_k : replenishment orders; no lead-time, but capacities, $u_k \in [L_k, U_k]$
- Linear ordering costs + any convex inventory cost $h_k(x_k)$

$$C_k(u_k, x_k) = c_k u_k + h_k(x_k)$$

• Typical inventory example: holding and backlogging costs

$$h_k(x_k) = H_k \cdot \max(x_k, 0) + B_k \cdot \max(-x_k, 0)$$

15 / 25

Optimal Policies by Dynamic Programming

- (Modified) Base-stock policies optimal
 - Kasugai Kasegai (1960, 1961)

Lecture 10

Optimality of Affine Policies in the Demands.

Theorem (Bertsimas, Iancu, Parrilo 2009a)

Ordering policies that are affine in the history of demands are optimal. In fact, for every time step k = 1, ..., T, the following quantities exist:

Lecture 10 15.094J-RO 17 / 25

Optimality of Affine Policies in the Demands.

Theorem (Bertsimas, Iancu, Parrilo 2009a)

Ordering policies that are affine in the history of demands are optimal. In fact, for every time step k = 1, ..., T, the following quantities exist:

- an affine ordering policy, $u_k(\mathbf{w}_{[k]}) \stackrel{\mathsf{def}}{=} u_{k,0} + \sum_{t=1}^{k-1} u_{k,t} w_t$,
- an affine inventory cost, $z_{k+1}(\boldsymbol{w}_{[k+1]}) \stackrel{\text{def}}{=} z_{k+1,0} + \sum_{t=1}^k z_{k+1,t} w_t$,

such that the following conditions are obeyed:

Lecture 10 15.0

Optimality of Affine Policies in the Demands.

Theorem (Bertsimas, Iancu, Parrilo 2009a)

Ordering policies that are affine in the history of demands are optimal. In fact, for every time step k = 1, ..., T, the following quantities exist:

- an affine ordering policy, $u_k(\mathbf{w}_{[k]}) \stackrel{\text{def}}{=} u_{k,0} + \sum_{t=1}^{k-1} u_{k,t} w_t$,
- an affine inventory cost, $z_{k+1}(\boldsymbol{w}_{[k+1]}) \stackrel{\text{def}}{=} z_{k+1,0} + \sum_{t=1}^k z_{k+1,t} w_t$,

such that the following conditions are obeyed:

- $u_k(\mathbf{w}_{[k]}) \in [L_k, U_k], \forall \mathbf{w}_{[k]}$
- $z_{k+1}(\mathbf{w}_{[k+1]}) \ge h_{k+1}(x_1 + \sum_{t=1}^k (u_t(\mathbf{w}_{[t]}) w_t)), \quad \forall \mathbf{w}_{[k+1]}$
- $J_1^{\star}(x_1) = \max_{w_1, \dots, w_k} \left[\sum_{t=1}^k \left(c_t \cdot u_t(\mathbf{w}_{[t]}) + z_t(\mathbf{w}_{[t+1]}) \right) + J_{k+1}^{\star} \left(x_1 + \sum_{t=1}^k \left(u_t(\mathbf{w}_{[t]}) w_t \right) \right) \right]$

4□ > 4□ > 4 = > 4 = > = 90

Proof Outline. DP, Induction, Geometry.

- Forward induction on k
- Assume true $1, \ldots, k$. The problem for uncertainties at k is

$$J_{mM} = \max_{(\theta_1, \theta_2) \in \Theta} \left[\theta_1 + J_{k+1}^{\star}(\theta_2) \right]$$

18 / 25

Proof Outline. DP, Induction, Geometry.

- Forward induction on k
- Assume true $1, \ldots, k$. The problem for uncertainties at k is

$$J_{mM} = \max_{(\theta_1, \theta_2) \in \Theta} \left[\theta_1 + J_{k+1}^{\star}(\theta_2) \right]$$

◆ロト ◆団ト ◆差ト ◆差ト 差 めなべ

Lecture 10

Why Is This Relevant?

• Computational result
For piecewise affine costs (with m_k pieces), must solve a single LP with $O\left(T^2 \cdot \max_k\{m_k\}\right)$ variables and constraints

Insight
 Decomposition of demand satisfaction by means of future orders

Tight existential result E.g., such policies not optimal for $\sum_{t=1}^k u_t \in [\hat{L}_k, \hat{U}_k]$

19 / 25

Extensions: Supply Contracts, Service Level Constraints

- Supply contracts
 - Order bounds L_k , U_k not fixed, but part of contract
 - Retailer pays supplier $f(U) \ge 0$, and receives $g(L) \ge 0$ from supplier
 - Retailer decides L, U beforehand (time k = 0), and ordering policies u_k

Lecture 10 15.094J-RO 20 / 25

Extensions: Supply Contracts, Service Level Constraints

- Supply contracts
 - Order bounds L_k , U_k not fixed, but part of contract
 - Retailer pays supplier $f(U) \ge 0$, and receives $g(L) \ge 0$ from supplier
 - Retailer decides L, U beforehand (time k=0), and ordering policies u_k Theorem

If f convex and g concave \Rightarrow solve optimally by sub-gradient methods If f, g also piecewise affine \Rightarrow solve a single LP

Lecture 10 15.094J-RO 20 / 25

Extensions: Supply Contracts, Service Level Constraints

- Supply contracts
 - Order bounds L_k , U_k not fixed, but part of contract
 - Retailer pays supplier $f(U) \ge 0$, and receives $g(L) \ge 0$ from supplier
 - Retailer decides L, U beforehand (time k = 0), and ordering policies u_k Theorem

If f convex and g concave \Rightarrow solve optimally by sub-gradient methods If f, g also piecewise affine \Rightarrow solve a single LP

- Can easily accommodate service-level constraints
 - Satisfy 90% of demand upon arrival
 - Never backlog more than P periods

General Multi-Echelon Problem

$$\min_{\boldsymbol{u_1}} \left[C_1(\boldsymbol{x}_1, \boldsymbol{u}_1) + \max_{\boldsymbol{w_1}} \min_{\boldsymbol{u_2}} \left[C_2(\boldsymbol{x}_2, \boldsymbol{u}_2) + \dots + \max_{\boldsymbol{w}_T} C_{T+1}(\boldsymbol{x}_{T+1}) \right] \dots \right] \right],$$

$$\boldsymbol{x}_{k+1} = A_k \, \boldsymbol{x}_k + B_k \, \boldsymbol{u}_k - \boldsymbol{w}_k,$$

$$\boldsymbol{f}_k \geq D_k \, \boldsymbol{x}_k + E_k \, \boldsymbol{u}_k, \qquad k \in \{1, \dots, T\}.$$

Affine policies not optimal

21 / 25

General Multi-Echelon Problem

$$\min_{\boldsymbol{u_1}} \left[C_1(\boldsymbol{x}_1, \boldsymbol{u}_1) + \max_{\boldsymbol{w_1}} \min_{\boldsymbol{u_2}} \left[C_2(\boldsymbol{x}_2, \boldsymbol{u}_2) + \dots + \max_{\boldsymbol{w}_T} C_{T+1}(\boldsymbol{x}_{T+1}) \right] \dots \right] \right],$$

$$\boldsymbol{x}_{k+1} = A_k \, \boldsymbol{x}_k + B_k \, \boldsymbol{u}_k - \boldsymbol{w}_k,$$

$$\boldsymbol{f}_k \geq D_k \, \boldsymbol{x}_k + E_k \, \boldsymbol{u}_k, \qquad k \in \{1, \dots, T\}.$$

- Affine policies not optimal
- Consider polynomial policies in $\mathbf{w}_{[k]} \stackrel{\mathsf{def}}{=} [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{k-1}]$

Lecture 10

General Multi-Echelon Problem

$$\min_{\boldsymbol{u_1}} \left[C_1(\boldsymbol{x}_1, \boldsymbol{u}_1) + \max_{\boldsymbol{w_1}} \min_{\boldsymbol{u_2}} \left[C_2(\boldsymbol{x}_2, \boldsymbol{u}_2) + \dots + \max_{\boldsymbol{w}_T} C_{T+1}(\boldsymbol{x}_{T+1}) \right] \dots \right] \right],$$

$$\boldsymbol{x}_{k+1} = A_k \, \boldsymbol{x}_k + B_k \, \boldsymbol{u}_k - \boldsymbol{w}_k,$$

$$\boldsymbol{f}_k \geq D_k \, \boldsymbol{x}_k + E_k \, \boldsymbol{u}_k, \qquad k \in \{1, \dots, T\}.$$

- Affine policies not optimal
- ullet Consider polynomial policies in $m{w}_{[k]} \stackrel{\mathsf{def}}{=} [m{w}_1, m{w}_2, \dots, m{w}_{k-1}]$
 - Example: degree d = 2, $\mathbf{w}_{[3]} = (w_1, w_2)$

$$u_3(\mathbf{w}_{[3]}) = \ell_0 + \ell_1 w_1 + \ell_2 w_2 + \ell_{1,1} w_1^2 + \ell_{1,2} w_1 w_2 + \ell_{2,2} w_2^2$$

Lecture 10

Why Polynomials? [Bertsimas, Iancu, Parrilo 2009b]

- Natural extension of affine case
- Good approximation when optimal policies are continuous
- Little burden on modeller : only choice of polynomial degree d
- Or Can provide semidefinite programming relaxation
 - $T\left(\max_{k} r_{k} + \max_{k} m_{k}\right)$ SDP constraints, each of size $\binom{n_{w}}{d}^{T+d}$
 - Solvable by interior-point methods
- Degree d controls accuracy vs. computation trade-off

Relative optimality gaps (in %) for polynomial policies

		De	gree a	d = 1			Deg	gree d	= 2		Degree d = 3					
T	avg	std	mdn	min	max	avg	std	mdn	min	max	avg	std	mdn	min	max	
4	2.84	2.41	2.18	0.02	9.76	0.75	0.85	0.47	0.00	3.79	0.03	0.12	0.00	0.00	0.91	
5	2.82	2.29	2.52	0.04	11.22	0.62	0.71	0.39	0.00	3.92	0.02	0.09	0.00	0.00	0.56	
6	3.09	2.63	2.36	0.01	9.82	0.69	0.89	0.25	0.00	3.47	0.03	0.10	0.00	0.00	0.59	
7	3.25	2.95	2.58	0.13	15.00	0.83	0.99	0.43	0.00	4.79	0.06	0.17	0.00	0.00	0.93	
8	3.66	3.29	2.69	0.03	18.36	1.06	1.17	0.74	0.00	5.81	0.10	0.17	0.00	0.00	0.99	
9					11.56											
10	3.44	3.60	2.09	0.00	18.20	0.76	1.16	0.26	0.00	5.76	0.05	0.12	0.00	0.00	0.74	

Polynomial policies for T=6

Relative optimality gaps (in %) for polynomial policies

				De	gree d	= 2		Degree d = 3							
T	avg	std	mdn	min	max	avg	std	mdn	min	max	avg	std	mdn	min	max
4	2.84	2.41	2.18	0.02	9.76	0.75	0.85	0.47	0.00	3.79	0.03	0.12	0.00	0.00	0.91
5	2.82	2.29	2.52	0.04	11.22	0.62	0.71	0.39	0.00	3.92	0.02	0.09	0.00	0.00	0.56
6	3.09	2.63	2.36	0.01	9.82	0.69	0.89	0.25	0.00	3.47	0.03	0.10	0.00	0.00	0.59
7	3.25	2.95	2.58	0.13	15.00	0.83	0.99	0.43	0.00	4.79	0.06	0.17	0.00	0.00	0.93
8	3.66	3.29	2.69	0.03	18.36	1.06	1.17	0.74	0.00	5.81	0.10	0.17	0.00	0.00	0.99
9	2.93	2.78	2.12	0.05	11.56	0.80	0.86	0.55	0.00	3.39	0.07	0.13	0.00	0.00	0.61
10	3.44	3.60	2.09	0.00	18.20	0.76	1.16	0.26	0.00	5.76	0.05	0.12	0.00	0.00	0.74

Performance of quadratic policies

Lecture 10 15.094J-RO 23 / 25

Relative optimality gaps (in %) for polynomial policies

				De	gree d	= 2		Degree d = 3							
T	avg	std	mdn	min	max	avg	std	mdn	min	max	avg	std	mdn	min	max
4	2.84	2.41	2.18	0.02	9.76	0.75	0.85	0.47	0.00	3.79	0.03	0.12	0.00	0.00	0.91
5	2.82	2.29	2.52	0.04	11.22	0.62	0.71	0.39	0.00	3.92	0.02	0.09	0.00	0.00	0.56
6	3.09	2.63	2.36	0.01	9.82	0.69	0.89	0.25	0.00	3.47	0.03	0.10	0.00	0.00	0.59
7	3.25	2.95	2.58	0.13	15.00	0.83	0.99	0.43	0.00	4.79	0.06	0.17	0.00	0.00	0.93
8	3.66	3.29	2.69	0.03	18.36	1.06	1.17	0.74	0.00	5.81	0.10	0.17	0.00	0.00	0.99
9	2.93	2.78	2.12	0.05	11.56	0.80	0.86	0.55	0.00	3.39	0.07	0.13	0.00	0.00	0.61
10	3.44	3.60	2.09	0.00	18.20	0.76	1.16	0.26	0.00	5.76	0.05	0.12	0.00	0.00	0.74

Solver times for quadratic policies

- (□) (□) (重) (重) (重) (重) のQC

Serial Supply Chain

Serial supply chain

Serial Supply Chain

Relative gaps (in %) for the serial supply chain example

		De	gree a	/ = 1			Degree d = 3								
J	avg		mdn							max			mdn		max
2	1.87	1.48	1.47	0.00	8.27	1.38	1.16	1.11	0.00	6.48	0.06	0.14	0.01	0.00	0.96
3	1.47	0.89	1.27	0.16	4.46	1.08	0.68	0.93	0.14	3.33	0.04	0.06	0.00	0.00	0.32
4	1.14	2.46	0.70	0.05	24.63	0.67	0.53	0.53	0.01	2.10	0.04	0.07	0.00	0.00	0.38
5	0.35	0.37	0.21	0.03	1.85	0.27	0.32	0.15	0.00	1.59	0.02	0.03	0.00	0.00	0.15

Polynomial policies for J = 3 echelons.

Conclusions

• Demand-feedback policies for multi-period, multi-echelon problems

Conclusions

- Demand-feedback policies for multi-period, multi-echelon problems
- Single-echelon case:
 - Affine policies are optimal
 - Newsvendor costs ⇒ a single LP
 - Supply contracts capacity pre-commitment problem

Conclusions

- Demand-feedback policies for multi-period, multi-echelon problems
- Single-echelon case:
 - Affine policies are optimal
 - Newsvendor costs ⇒ a single LP
 - Supply contracts capacity pre-commitment problem
- Multi-echelon case:
 - Framework to compute polynomial policies solve a single SDP
 - Polynomial degree d controls performance-computation trade-off
 - Perform well in several inventory examples

