CLAIMS

What is claimed is:

1		1.	An open coil convection system for convection ovens		
2	comprising:				
3		(a)	a motor for rotating a shaft;		
4		(b)	a fan coupled to the shaft and configured to produce a radial		
5	airflow direct	ed outw	ard from the fan; and		
6		(c)	an open coil heating element positioned around the fan such		
7	that the radial	airflow	passes through the open coil heating element thereby		
8	transferring h	eat from	the open coil heating element to the radial airflow.		
1		2.	The open coil convection system of claim 1 wherein the open		
2	coil heating e	lement o	comprises a helically wound resistance wire having a plurality of		
3	supporting ins	sulators	along its length.		
1		3.	The open coil convection system of Claim 1 further		
2	comprising:				
3	1 - 5	(a)	a temperature sensor for measuring an actual oven air		
4	temperature;	()			
5	-	(b)	a temperature selector permitting a user to input a desired oven		
6	air temperatur	e; and			
7		(c)	a controller operatively coupled to receive the actual oven air		
8	temperature from the temperature sensor and operatively coupled to receive the				
9	desired oven air temperature from the temperature selector, wherein the controller is				
0	adapted to supply power to the open coil heating element when the difference				
1	between the actual oven air temperature and the desired oven air temperature exceeds				
12	a specified the	reshold.			
1		4.	The open coil convection system of Claim 3 wherein the		
2	controller is fo	urther a	dapted to supply power to the fan, and wherein power is supplied		
3	to the fan at least when power is supplied to the open coil heating element.				

1		5.	The open coil convection system of Claim 3 wherein the		
2	temperature sensor is located above the open coil heating element whereby the				
3	temperature s	sensor i	s adapted to detect an over-temperature condition in the open coil		
4	heating eleme	ent.			
		_			
1		6.	The open coil convection system of Claim 5 wherein power is		
2	not supplied to the open coil heating element when the temperature sensor indicates				
3	an over-temp	erature	condition in the open coil heating element.		
1		7.	The open coil convection system of Claim 1 further		
2	comprising:				
3		(a)	a current sensor for measuring a current through the motor; and		
4		(b)	a controller operatively coupled to the current sensor and		
5	adapted to su	pply po	ower to the open coil heating element, wherein the controller		
6	removes pow	er to th	e open coil heating element when the current sensor indicates the		
7	current through	gh the 1	motor exceeds a selected maximum threshold.		
1		8.	The open coil convection system of Claim 7 further comprising		
2	a temperature	sensoi	located above the open coil heating element, wherein the		
3	controller is o	perativ	vely coupled to the temperature sensor, and wherein the controller		
4	does not supp	oly pow	ver to the open coil heating element when the temperature sensor		
5	indicates an o	ver-ter	nperature condition in the open coil heating element.		
1		9.	The open coil convection system of Claim 1 further		
2	comprising:				
3		(a)	a current sensor for measuring a current through the motor; and		
4		(b)	a controller operatively coupled to the current sensor and		
5	adapted to su	pply po	ower to the open coil heating element, wherein the controller		
6	removes power to the open coil heating element when the current sensor indicates the				
7	current through the motor is below a selected minimum threshold.				
1		10.	The open coil convection system of Claim 9 further comprising		
2	a temperature	sensor	located above the open coil heating element, wherein the		
3	controller is operatively coupled to the temperature sensor, and wherein the controller				

4 does not supply power to the open coil heating element when the temperature sensor 5 indicates an over-temperature condition in the open coil heating element. 1 11. A method of operating an open coil element convection system 2 in a convection oven comprising: 3 applying power to a motor, wherein the motor rotates a shaft 4 that is coupled to a fan, and wherein the fan is configured for producing a radial 5 airflow directed outward; and 6 (b) simultaneously applying electric power to an open coil heating 7 element formed around the fan wherein the open coil heating element converts at least 8 a portion of the applied electric power to heat and wherein at least half of the radial 9 airflow passes through the open coil heating element, thereby transferring heat from 10 the open coil heating element to at least a portion of the radial airflow. 1 12. The method of Claim 11, further comprising: 2 (a) measuring an actual air temperature of air within a convection 3 oven; 4 (b) monitoring a temperature selection input wherein a user selects 5 a desired temperature by manipulating the temperature selection input; and 6 applying power to the motor and the open coil heating element (c) 7 when the difference between the actual air temperature and the desired temperature 8 exceeds a selected threshold, and removing power to the motor and the open coil 9 hearing element when the difference between the actual air temperature and the 10 desired temperature is less than the selected threshold. 1 13. The method of Claim 12, wherein the step of measuring an 2 actual air temperature includes positioning a temperature sensor above the open coil 3 heating element. 14. The method of Claim 13, further comprising the step of 1 2 removing power to the open coil heating element when the actual air temperature 3 exceeds a selected maximum limit.

The method of Claim 10, further comprising:

1

15.

2	(a)	monitoring the magnitude of a current in the motor;			
3	(b)	comparing the magnitude of the current in the motor to a			
4	selected maximum limit; and				
5	(c)	removing power from the open coil heating element when the			
6	magnitude of the cur	rent in the motor exceeds the selected maximum limit.			
1	16.	The method of Claim 10, further comprising:			
2	(a)	monitoring the magnitude of a current in the motor;			
3	(b)	comparing the magnitude of the current in the motor to a			
4	selected minimum limit; and				
5	(c)	removing power from the open coil heating element when the			
6	magnitude of the current in the motor is less than the selected minimum limit.				
1	17.	A convection oven comprising:			
2	(a)	oven walls and an oven door defining an oven cavity;			
3	(b)	a motor adapted to receive power and to rotate a shaft			
4	extending into the ov	ven cavity;			
5	(c)	a fan located inside the oven cavity and coupled to the shaft,			
6	wherein the fan is co	onfigured for producing a radial airflow directed outward from the			
7	fan; and				
8	(d)	an open coil heating element adapted to receive power and to			
9	convert the power into heat, wherein the open coil heating element is formed around				
10	the fan whereby at least a portion of the radial airflow passes through the open coil				
11	heating element.				
1	18.	The convection oven of Claim 17 wherein the open coil			
2	element comprises a helically wound resistance wire having a plurality of supporting				
3	insulators along its le	ength.			
1	19.	The convection oven of Claim 17 further comprising:			
2	(a)	a temperature sensor for measuring an actual temperature;			
3	(b)	a temperature selector permitting a user to input a desired			
4	temperature; and				

5	(c) a controller operatively coupled to the temperature sensor a	ınd			
6	to the temperature selector, wherein the controller is further adapted to supply por	ver			
7	to the open coil heating element to minimize the difference between the actual				
8	temperature and the desired temperature.				
1	20. The convection oven of Claim 17 wherein power is supplie	d to			
2	the motor at least when power is supplied to the open coil heating element.				
1	21. The convection oven of Claim 17 wherein power is only				
2	supplied to the motor when power is supplied to the open coil heating element.				
1	22. The convection oven of Claim 17 further comprising:				
2	(a) a current sensor for measuring a current in the motor; and,				
3	(b) a controller operatively coupled to the current sensor, wher	ein			
4	the controller removes power from the open coil heating element when the current in				
5	the motor exceeds a threshold value.				
1	23. The convection oven of Claim 17 further comprising:				
2	(a) a current sensor for measuring a current in the motor; and,				
3	(b) a controller operatively coupled to the current sensor, wher	ein			
4	the controller removes power from the open coil heating element when the curren	t in			

5

the motor is less than a minimum value.