Impact of isovector pairing fluctuation on $0\nu\beta\beta$ decay in MR-CDFT

Chenrong Ding

School of Physics and Astronomy Sun Yat-Sen University

CRD, X.Zhang, J.M.Yao, P.Ring, J.Meng. (2023), arXiv:2305.00742.

第二届"粤港澳"核物理论坛

Guangzhou June 17-20,2023

Double beta $(\beta\beta)$ decay

* Two types of $\beta\beta$ decay:

$$\checkmark~2\nu\beta\beta~{\rm decay}$$

$$(A, Z) \to (A, Z + 2) + 2e^{-} + 2\bar{\nu}_{e}$$

 $\checkmark \ 0\nu\beta\beta$ decay

$$(A, Z) \to (A, Z + 2) + 2e^{-}$$

- * $\beta\beta$ decay occurs only when β decay is forbidden.
- * $2\nu\beta\beta$ decay has been experimentally observed in a dozen of isotopes (40 Ca, 76 Ge, 82 Se, 100 Mo, 128 Te, 130 Te...).

V.I.Tretyak, et al, At. Data Nucl. Data Tables 80(2002)83.

0 uetaeta decay and NMEs

Why search for $0\nu\beta\beta$ decay?

- 1. Lepton-number violation processes
- 2. Dirac or Majorana neutrinos
- 3. The absolute masses of neutrinos
- 4. The ordering of neutrinos masses

* Effective mass of neutrinos:

$$|\langle extit{ extit{m}}_{etaeta}
angle|=|\sum_{j=1}^{3} extit{ extit{U}}_{ extit{e}_{j}}^{2} extit{ extit{m}}_{j}$$

$$= \left[\frac{m_e^2}{g_A^4 G_{0\nu} T_{1/2}^{0\nu} |M^{0\nu}|^2} \right]^{1/2}$$

- √ Significant uncertainty in nuclear matrix elements (NMEs).
- √ How to reduce the discrepancy in NMEs among different models?

Pairing correlation

Nuclear pairing correlation

Isoscalar pairing

 \checkmark Properly addressing pairing correlation is important in NMEs calculation.

enrong Ding Sun Yat-Sen University June 19,2023 4/19

MR-CDFT and pairing fluctuation

MR-CDFT:

J.M.Yao et al.PRC81:044311(2010).

✓ Applies to nuclei of all mass regions, and transition to low-lying excitation states and the excitation energies can be calculated.

```
J.M.Yao et al.PRC79:044312(2009). J.M.Yao et al.PRC81:044311(2010).
```

 \checkmark Applies in the calculations of the NMEs of $0\nu\beta\beta$ decay for both the exchange of light neutrinos and heavy neutrinos mechanisms, with shape fluctuations.

```
L.S.Song et al.PRC90:054309(2014). L.S.Song et al.PRC95:024305(2017).
```

Extended MR-CDFT in our work:

Including fluctuations in both quadrupole shapes and isovector pairing amplitudes.

6/19

The mean-field wave functions $|\Phi(\mathbf{q})\rangle$ are generated from the (RMF+BCS) theory with constraints on both the mass quadrupole moment and pairing amplitude,

$$\begin{split} \langle \Phi | \hat{H} | \Phi \rangle = & \langle \Phi | \hat{H}_0 - \sum_{\tau = n, p} \lambda_{\tau} \hat{N} | \Phi \rangle - \frac{1}{2} \lambda_{Q} \left(\langle \Phi | \hat{Q}_{20} | \Phi \rangle - q_{20} \right)^2 \\ & - \xi_{p} \left(\langle \Phi | \hat{P}_{T=1} | \Phi \rangle - P_1 \right). \end{split}$$

Here $\langle \Phi | \hat{H}_0 | \Phi \rangle$ is given in the CDFT based on the *PC-PK*1 force.

Zero-range point-coupling

$$\begin{split} \mathcal{L}_{\textit{point}} &= \overline{\varphi} (i \gamma_{\mu} \partial^{\mu} - \textit{m}) \varphi - \textit{e} \overline{\varphi} \gamma^{\mu} \frac{1 - \tau_{3}}{2} \varphi \textit{A}_{\mu} - \frac{1}{4} \textit{F}^{\mu \nu} \textit{F}_{\mu \nu} \\ &- \frac{1}{2} \alpha_{\textit{S}} (\overline{\varphi} \varphi) (\overline{\varphi} \varphi) - \frac{1}{2} \alpha_{\textit{V}} (\overline{\varphi} \gamma_{\mu} \varphi) (\overline{\varphi} \gamma^{\mu} \varphi) \\ &- \frac{1}{2} \alpha_{\textit{TV}} (\overline{\varphi} \overrightarrow{\tau} \gamma_{\mu} \varphi) (\overline{\varphi} \overrightarrow{\tau} \gamma^{\mu} \varphi) - \frac{1}{2} \delta_{\textit{S}} \partial_{\nu} (\overline{\varphi} \varphi) \partial^{\nu} (\overline{\varphi} \varphi) \\ &- \frac{1}{2} \delta_{\textit{V}} \partial_{\nu} (\overline{\varphi} \gamma_{\mu} \varphi) \partial^{\nu} (\overline{\varphi} \gamma^{\mu} \varphi) - \frac{1}{2} \delta_{\textit{TV}} \partial_{\nu} (\overline{\varphi} \overrightarrow{\tau} \gamma_{\mu} \varphi) \partial^{\nu} (\overline{\varphi} \overrightarrow{\tau} \gamma^{\mu} \varphi) \\ &- \frac{1}{3} \beta_{\textit{S}} (\overline{\varphi} \varphi)^{3} - \frac{1}{4} \gamma_{\textit{S}} (\overline{\varphi} \varphi)^{4} - \frac{1}{4} \gamma_{\textit{V}} [(\overline{\varphi} \gamma_{\mu} \varphi) (\overline{\varphi} \gamma^{\mu} \varphi)]^{2}. \end{split}$$

Sun Yat-Sen University

 \bigcirc The mean-field wave functions $|\Phi(\mathbf{q})\rangle$ are generated from the (RMF+BCS) theory with constraints on both the mass quadrupole moment and pairing amplitude,

$$\begin{split} \langle \Phi | \hat{H} | \Phi \rangle = & \langle \Phi | \hat{H}_0 - \sum_{\tau = n, p} \lambda_{\tau} \hat{N} | \Phi \rangle - \frac{1}{2} \lambda_{Q} \left(\langle \Phi | \hat{Q}_{20} | \Phi \rangle - q_{20} \right)^2 \\ & - \xi_{p} \left(\langle \Phi | \hat{P}_{T=1} | \Phi \rangle - P_1 \right). \end{split}$$

The second term generates mean-field states with different quadrupole deformations.

Chenrong Ding

Sun Yat-Sen University

June 19,2023

 \bigcirc The mean-field wave functions $|\Phi(\mathbf{q})\rangle$ are generated from the (RMF+BCS) theory with constraints on both the mass quadrupole moment and pairing amplitude,

$$\begin{split} \langle \Phi | \hat{H} | \Phi \rangle = & \langle \Phi | \hat{H}_0 - \sum_{\tau = n, p} \lambda_{\tau} \hat{N} | \Phi \rangle - \frac{1}{2} \lambda_{Q} \left(\langle \Phi | \hat{Q}_{20} | \Phi \rangle - q_{20} \right)^2 \\ & - \xi_{p} \left(\langle \Phi | \hat{P}_{T=1} | \Phi \rangle - P_1 \right). \end{split}$$

The last constraint term generates mean-field states with different isovector pairing amplitudes by introducing the operator K.Sieja et al.Eur.Phys, J.A 20,413,2004.

$$\hat{P}_{T=1} = rac{1}{2} \sum_{k>0} (c_k^\dagger c_{\bar{k}}^\dagger + c_{\bar{k}} c_k).$$

And with this constraints, the BCS equation

$$2(\epsilon_k - \lambda_F)v_k u_k + (f_k \Delta_k + \xi_p)(v_k^2 - u_k^2) = 0.$$

And the pairing gap $f_k \Delta_k$ is replaced by $f_k \Delta_k + \xi_p$.

 \bigcirc The mean-field wave functions $|\Phi(\mathbf{q})\rangle$ are generated from the (RMF+BCS) theory with constraints on both the mass quadrupole moment and pairing amplitude,

$$\begin{split} \langle \Phi | \hat{H} | \Phi \rangle = & \langle \Phi | \hat{H}_0 - \sum_{\tau = n, p} \lambda_{\tau} \hat{N} | \Phi \rangle - \frac{1}{2} \lambda_{Q} \left(\langle \Phi | \hat{Q}_{20} | \Phi \rangle - q_{20} \right)^2 \\ & - \xi_{P} \left(\langle \Phi | \hat{P}_{T=1} | \Phi \rangle - P_1 \right). \end{split}$$

Chenrong Ding

Sun Yat-Sen University

GCM and nuclear low-lying states

O The angular momentum projected and particle number projected basis function is constructed as

$$|JMNZ, \mathbf{q}\rangle = \hat{P}_{M0}^J \hat{P}^N \hat{P}^Z |\Phi(\mathbf{q})\rangle.$$

GCM and nuclear low-lying states

 The angular momentum projected and particle number projected basis function is constructed as

$$|JMNZ,\mathbf{q}\rangle = \hat{P}_{M0}^J \hat{P}^N \hat{P}^Z |\Phi(\mathbf{q})\rangle.$$

○ The collective wave functions of nuclear low-lying states within the GCM

$$|\Psi^{\mathit{JMNZ}}_{\sigma}\rangle = \sum_{\mathbf{q}} \mathit{f}^{\mathit{J}}_{\sigma}(\mathbf{q}) |\mathit{JMNZ}, \mathbf{q}\rangle.$$

Through solving the HWG equation

P.Ring et al. The nuclear many-body problem, 1980.

$$\sum_{\mathbf{q}} \left[\mathcal{H}_{00}^{J}(\mathbf{q}, \mathbf{q}') - E_{\sigma}^{J} \mathcal{N}_{00}^{J}(\mathbf{q}, \mathbf{q}') \right] f_{\sigma}^{J}(\mathbf{q}') = 0, \quad \begin{cases} \mathcal{N}_{00}^{J}(\mathbf{q}, \mathbf{q}') = \langle \Phi(\mathbf{q}) | \hat{P}_{M0}^{J} \hat{P}^{N} \hat{P}^{Z} | \Phi(\mathbf{q}') \rangle \\ \mathcal{H}_{00}^{J}(\mathbf{q}, \mathbf{q}') = \langle \Phi(\mathbf{q}) | \hat{H} \hat{P}_{M0}^{J} \hat{P}^{N} \hat{P}^{Z} | \Phi(\mathbf{q}') \rangle \end{cases}$$

the weight functions $f^J_\sigma(\mathbf{q})$ and the energies of low-lying states E^J_σ are obtained.

GCM and nuclear low-lying states

12 / 19

O The angular momentum projected and particle number projected basis function is constructed as

$$|JMNZ, \mathbf{q}\rangle = \hat{P}_{M0}^J \hat{P}^N \hat{P}^Z |\Phi(\mathbf{q})\rangle.$$

○ The collective wave functions of nuclear low-lying states within the GCM

$$|\Psi_{\sigma}^{\mathit{JMNZ}}\rangle = \sum_{\mathbf{q}} \mathit{f}_{\sigma}^{\mathit{J}}(\mathbf{q}) |\mathit{JMNZ}, \mathbf{q}\rangle.$$

ong Ding Sun Yat-Sen University June 19,2023

Transition operator and NMEs

- * The half-life of $0\nu\beta\beta$ decay: $[T_{1/2}^{0\nu}]^{-1}=G_{0\nu}g_A^4\eta_\alpha^2|M_\alpha^{0\nu}|^2, \quad M_\alpha^{0\nu}=\langle\Psi_F|\hat{O}_\alpha^{0\nu}|\Psi_I\rangle.$
- * In mechanism of exchanging either light ($\alpha = \nu$) or heavy ($\alpha = N$) Majorana neutrinos, the $0\nu\beta\beta$ decay operator L.S.Song et al.PRC95:024305(2017).

$$\hat{\mathcal{O}}_{lpha}^{0
u}=rac{4\pi R}{g_{A}^{2}}\int\int d^{3}x_{1}d^{3}x_{2}\intrac{d^{3}q}{(2\pi)^{3}}h_{lpha}(q)\mathcal{J}_{\mu}^{\dagger}\hat{(\mathbf{x}_{1})}\mathcal{J}^{\mu\dagger}\hat{(\mathbf{x}_{2})}e^{i\mathbf{q}\cdot(\mathbf{x}_{1}-\mathbf{x}_{2})}.$$

$$\checkmark \eta_N = \left| \sum_{N_j=1}^3 \frac{U_{eN_j}^2 m_p}{M_{N_j}} \right|$$

Transition operator and NMEs

14 / 19

* The half-life of $0\nu\beta\beta$ decay: $[T_{1/2}^{0\nu}]^{-1}=G_{0\nu}g_A^4\eta_\alpha^2|M_\alpha^{0\nu}|^2, \quad M_\alpha^{0\nu}=\langle\Psi_F|\hat{O}_\alpha^{0\nu}|\Psi_I\rangle.$

N.L.Vaquero et al.PRL.,2013,111:142501.

* According to the latest experimental measurement, the upper limit of effective mass of neutrinos:

S.Abe et al.(KamLAND-Zen Collaboration) PRL.,2023,130:051801.

$$|\langle m_{etaeta}
angle| = \left[rac{m_e^2}{g_A^4 G_{0
u} \, T_{1/2}^{0
u} |M_
u^{0
u}|^2}
ight]^{1/2} < 22.5 \; ext{(meV)}$$

nenrong Ding Sun Yat-Sen University June 19,2023

Correlation between NMEs and low-lying states

Correlation between pairing factor χ and the excitation energies

Correlation between nuclear matrix elements $M_{\nu/N}^{0\nu}$ of $0\nu\beta\beta$ decay and the excitation energies

Through the linear correlation, the pairing strength can be readjusted by the the excitation energies of 2_1^+ and 4_1^+ states, where the effect of the cranking states is estimated.

M.Borrajo et al.PLB.,2015,746.341.

Comparison of nuclear matrix elements

 \checkmark Multiplied by the scaling factor χ , the pseudo data of NMEs $M_{\nu}^{0\nu}=4.16(0.39)$ and $M_{N}^{0\nu}=226(19)$ are obtained.

√ The pseudo NMEs are about 54% and 50% smaller than that without the factor.

Summary and outlook

- ✓ We have extended the MR-CDFT for nuclear low-lying states and the NMEs of $0\nu\beta\beta$ decay by including the isovector pairing fluctuations.
- \checkmark The inclusion of isovector pairing fluctuation stretches the low-lying energy spectra and enhances the NMEs by about 40%-80%.
- ✓ Using the linear correlation between the excitation energies of low-lying states and the NMEs, when evaluating the effect of cranking states, the NMEs can be significantly reduced.
- A strict calculation considering the cranking states?
- Including the effects of isoscalar pairing in MR-CDFT?
- The effect of fluctuations in higher-order deformations? (triaxial deformation...)

THANK YOU FOR YOUR ATTENTION!

NME distribution of $0\nu\beta\beta$ decay

* With the nuclear wave functions constructed by GCM, the NME can be written as

$$\begin{split} \boldsymbol{\mathit{M}}_{\alpha}^{0\nu} &= \sum_{\mathbf{q}_{\mathit{I}},\mathbf{q}_{\mathit{F}}} f_{\mathit{F}}^{0^{+}_{\mathit{F}}}(\mathbf{q}_{\mathit{F}}) f_{\mathit{I}}^{0^{+}_{\mathit{I}}}(\mathbf{q}_{\mathit{I}}) \sqrt{\mathcal{N}_{00}^{\mathit{J=0}}(\mathbf{q}_{\mathit{I}},\mathbf{q}_{\mathit{I}}) \mathcal{N}_{00}^{\mathit{J=0}}(\mathbf{q}_{\mathit{F}},\mathbf{q}_{\mathit{F}})} \\ &\times \tilde{\boldsymbol{\mathit{M}}}_{\alpha}^{0\nu}(\mathbf{q}_{\mathit{F}},\mathbf{q}_{\mathit{I}}), \end{split}$$

and the normalized NME defined as

$$\tilde{M}_{\alpha}^{0\nu}(\mathbf{q}_{\textrm{F}},\mathbf{q}_{\textrm{I}}) = \frac{\langle \Phi_{\textrm{F}}(\mathbf{q}_{\textrm{F}}) | \hat{O}_{\alpha}^{0\nu} \, \hat{P}^{J=0} \, \hat{P}^{\textrm{N}} \hat{P}^{\textrm{Z}} | \Phi_{\textrm{I}}(\mathbf{q}_{\textrm{I}}) \rangle}{\sqrt{\mathcal{N}_{0}^{J=0}(\mathbf{q}_{\textrm{I}},\mathbf{q}_{\textrm{I}}) \mathcal{N}_{00}^{J=0}(\mathbf{q}_{\textrm{F}},\mathbf{q}_{\textrm{F}})}},$$

which gives the distribution of NME for different collective parameters $\boldsymbol{q}.$

(b) Heavy neutrino exchange NMEs

Numerical Details

- a. The Dirac equation is solved by expanding the wave functions in the three-dimensional harmonic oscillator basis with 10 major shells. The point-coupling type of relativistic effective force PC-PK1 is adopted.
- b. Pairing correlations between nucleons are treated with the BCS approximation using a density independent δ force. The pairing strength parameter V_{τ}^{pp} is -314.550 MeV fm³ and -346.500 MeV fm³ for neutrons and protons, respectively.
- c. The generator coordinates are chosen in the interval of $\beta_2 \in [-0.3, 0.3]$ with a step size $\Delta\beta_2 = 0.1$ for 76 Ge, 82 Se and $\Delta\beta_2 = 0.05$ for 100 Mo, 130 Te, 136 Xe. The pairing parameters are chosen in the interval of $\delta \in [-0.2, 0.4]$ with a step size $\Delta\delta = 0.2$.
- d. The CD Bonn is used as the parametrization for the Jastrow SRC function. The NMEs for both light neutrino exchange and heavy neutrino exchange are calculated.