Antenna and Radio Propagation

Theory Class Instructor: Prof. Qingsha S. Cheng Lab Instructor: Dr. Rusan Kumar Barik Office: 1110, A7, Nanshan iPark

Experiment: 7 Design & Analysis of Broadband Circularly Polarized Microstrip Antenna

Southern University of Science and Technology, Shenzhen, P.R. China

1 (a) Design & Analysis of Broadband Circularly Polarized Microstrip Antenna

This guide leads you step-by-step through creating, solving, and analysing the results of a microstrip patch antenna.

By following the steps in this guide, you will learn how to perform the following tasks in HFSS:

- **.** Draw a geometric model.
- ❖ Modify a model's design parameters.
- ❖ Assign variables to a model's design parameters.
- Specify solution settings for a design.
- ❖ Validate a design's setup.
- * Run an HFSS simulation.
- ❖ Create a 2D x-y plot of S-parameter results.
- ❖ Create a 2D x-y plot of gain, efficiency results.
- ❖ Create a 2D Polar/Rectangular plot of radiation pattern.
- Create a 3D plot of radiation pattern.
- Create a field overlay plot of results.

1 (b) Project overview

Fig.1: Broadband circular polarized microstrip antenna. (a) Top view. (b) Bottom View.

Dimensions of the patch antenna. Units are in mm.

Name	Value	Unit	Evaluated	Tvpe
hs	1	mm	1mm	Desian
hc	0.035	mm	0.035mm	Desian
WD	18.8	mm	18.8mm	Desian
al	18.8	mm	18.8mm	Desian
W	1.2	mm	1.2mm	Desian
wt	3.6	mm	3.6mm	Desian
lt	14	mm	14mm	Desian
w0	1.4	mm	1.4mm	Desian
h1	3.373	mm	3.373mm	Desian
v1	7.6	mm	7.6mm	Desian
d1	4.6	mm	4.6mm	Desian
h2	5.335	mm	5.335mm	Desian
v2	7.955	mm	7.955mm	Desian
a	1.4	mm	1.4mm	Design

Substrate properties:

Material name: FR4 Epoxy

Dielectric constant: 4.4

Substrate thickness: 1.0 mm

Copper thickness: **0.035 mm**

Loss tangent: 0.02

Microstrip antenna design in HFSS

Substrate:

Draw a box with starting position as -wp/2-10mm,-lp/2-lt,0mm

XSize: wp+20mm

YSize: lt+lp+10mm

ZSize: hs

Name	Value	Unit Evaluated Description
Command	CreateBox	
Coordina	Global	
Position	-wp/2-10mmlp/2-lt .0mm	-19.4mm
XSize	wp+20mm	38.8mm
YSize	lt+lp+10mm	42.8mm
ZSize	hs	1mm

GND:

Draw a rectangle with starting position as -wp/2-10mm,-lp/2-lt,0mm

XSize: wp+20mm

YSize: **lt-g**

ZSize: Z

Name	Value	Unit	Evaluated	Description
Command	CreateRectangle			
Coordina	Global			
Position	-wp/2-10.6mmlp/2-lt .0mm		-20mm	
Axis	Z			
XSize	wp+21.2mm		40mm	
YSize	lt-a		12.6mm	

Airbox:

Draw a box with starting position as -wp/2-20mm,-lp/2-lt-10mm,-10mm

XSize: wp+40mm

YSize: lt+lp+30mm

ZSize: 20mm

Name	Value	Unit	Evaluated	Description
Command	CreateBox			
Coordina	Global			
Position	-wp/2-20mmlp/2-lt-10mm10mm		-29.4mm	
XSize	wp+40mm		58.8mm	
YSize	It+Ip+30mm		62.8mm	
ZSize	20	mm	20mm	

Patch:

Draw a rectangle with starting position as -wp/2,-lp/2,hs

XSize: wp

YSize: lp

ZSize: Z

Name	Value	Unit Evalu	uated Description
Command	CreateRectangle .		
Coordina	Global		
Position	-wb/2lb/2 .hs	-9.4n	nm
Axis	Ζ		
1	WD	18.8	mm
YSize	lo .	18.8	mm

Feedline:

Draw a line:

Create line-1

Point-1: -w/2,-lp/2,hs

Point-2: w/2,-lp/2,hs

Create line-2

Point-1: w/2,-lp/2,hs

Point-2: wt/2,-lp/2-lt,hs

Create line-3

Point-1: wt/2,-lp/2-lt,hs

Point-2: -wt/2 ,-lp/2-lt ,hs

Create line-4

Point-1: -wt/2 ,-lp/2-lt ,hs

Point-2: -w/2,-lp/2,hs

TL1:

Draw a rectangle with starting position as -wp/2,lp/2,hs

XSize: -h1

YSize: -w0

ZSize: **Z**

Name	Value	Unit	Evaluated	Description	\prod
Command	CreateRectangle				
Coordina	Global				
Position	-wp/2 .lp/2 .hs		-9.4mm		
Axis	Z				
XSize	-h1		-3.173mm		
YSize	-w0		-1.3mm		

TL2:

Draw a rectangle with starting position as -wp/2-h1,lp/2-w0,hs

XSize: w0

YSize: -v1

ZSize: **Z**

Name	Value	Unit	Evaluated	Description
Command	CreateRectangle			
Coordina	Global			
Position	-wp/2-h1 .lp/2-w0 .hs		-12.573m	
Axis	Z			
XSize	w0		1.3mm	
YSize	-v1		-8.6mm	

TL3:

Draw a rectangle with starting position as -wp/2,-lp/2+d1,hs

XSize: -h2

YSize: -w0

ZSize: **Z**

Name	Value	Unit Evaluated Description
Command	CreateRectangle	
Coordina	Global	
Position	-wb/2lb/2+d1 .hs	-9.4mm
Axis	Z	
XSize	-h2	-4.85mm
YSize	-w0	-1.3mm

TL4:

Draw a rectangle with starting position as -wp/2-h2,-lp/2+d1,hs

XSize: w0

YSize: v2

ZSize: **Z**

Name	Value	Unit Evaluated Description
Command	CreateRectangle	
Coordina	Global	
Position	-wp/2-h2lp/2+d1 .hs	-14.25mm
Axis	Z	
XSize	w0	1.3mm
YSize	v2	8.6mm

Lumped port:

Draw a rectangular in **ZX axis**,0mm

with starting position as -wt/2,-lp/2-lt

Axis: Y

YSize: wt

ZSize: hs

Assign Excitation:

Select lumped port \longrightarrow right click on lumped port \longrightarrow go to new line \longrightarrow choose X: 0 Y: -23.4, Z: 0 \longrightarrow enter \longrightarrow put dX: 0, dY: 0, dZ: 1

Unite ALL:

Assign Boundary:

Select airbox → right click on airbox → go to assign boundary → choose radiation → enter

Analysis setup:

Result Analysis:

Radiation Pattern

