Quickies

 $\overline{Q.1:}$ nein, nein, nein. $|Q| \in \mathbb{N}$ eindeutig. $\infty \neq |Q| \neq 0$

Q.2a: nein. Ein DEA kann auch unendliche Sprachen erkennen.

Q.2b: nein. siehe 2a.

Q.2c: nein. Die Dyck-Sprache ist nicht regulär, sondern kontext-frei.

Q.2d: ja. Für jede reguläre Sprache gibt es einen DEA.

Q.2e: ja. Sogar regulär.

Q.2f: nein. Der DEA bearbeitet ein Wort der Länge n in genau n Schritten.

Aufgabe 1

Table	Table-Filling-Matrix						
q_1	2						
\mathbf{q}_2	1	1					
\mathbf{q}_3	F	F	F				
q ₄	3	2	1	F			
\mathbf{q}_5	1	1	1	F	1		
q_6	F	F	F	+	F	F	
\mathbf{q}_7	3	2	1	F	+	1	F
	\mathbf{q}_0	\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_3	\mathbf{q}_4	\mathbf{q}_5	\mathbf{q}_6

Tran	Transitions (0 oben, 1 unten)						
q_1	(1, 5) (0, 2)						
\mathbf{q}_2	(1, 3) (0, 2)	(5, 3) (2, 2)					
\mathbf{q}_3							
q_4	(1, 4) (0, 4)	(5, 4) (2, 4)	(3, 4) (2, 4)				
\mathbf{q}_5	(1, 6) (0, 6)	(5, 6) (2, 6)	(3, 6) (2, 6)		(4, 6) (4, 6)		
q_6				(4, 7) (3, 6)			
\mathbf{q}_7	(1, 7) (0, 7)	(5, 7) (2, 7)	(3, 7) (2, 7)		(4, 7) (4, 7)	(6, 7) (6, 7)	
	\mathbf{q}_0	\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_3	q_4	\mathbf{q}_5	\mathbf{q}_6

Aufgabe 2

 $\overline{2.1}$ (NEA)(Q, Σ , δ , $\{q_0\}$, $\{q_2\}$) mit $Q := \{q_0, q_1, q_2\}$ und $\Sigma := \{a, b\}$ und

$\delta \colon Q \times \Sigma \to \wp(Q)$	a	b
q_0	$\{q_1\}$	Ø
q_1	$\{q_1\}$	$\{q_1, q_2\}$
q_2	Ø	Ø

Der Automat ist nicht-deterministisch, weil $|\delta(q_{\rm l},b)|=2>1$ Außerdem hat der Knoten ${\rm q_2}$ gar keine Pfeile.

Aufgabe 3 identisch mit Übungsblatt 8 Aufgabe 4.