Leynepour JAHINEL 2305399

PHYS 455 FINAL

Question 1

Teleportation Protocol

1) Alice does a Measurement on CA in Bell-Basis

Before the moasnemat, state of CAB:

$$|\Psi_{0}\rangle = \frac{a}{\sqrt{2}} \left(\frac{1\sqrt{3}+3+1\sqrt{2}-3}{\sqrt{2}}\right)_{CA} \otimes 10^{3}_{C} + \frac{b}{\sqrt{2}} \left(\frac{1\sqrt{4}-1\sqrt{4}-3}{\sqrt{2}}\right) \otimes 10^{3} + \frac{b}{\sqrt{2}}$$

$$\frac{\partial}{\partial z} \left(\frac{|\Psi_{+}\rangle + |\Psi_{-}\rangle}{\sqrt{z}} \right) \otimes |1\rangle + \frac{\partial}{\partial z} \left(\frac{|\Phi_{+}\rangle - |\Phi_{-}\rangle}{\sqrt{z}} \right) \otimes |1\rangle$$

$$|\Psi_0\rangle = \frac{1}{2} \left(|\overline{\Psi}_+\rangle \otimes \left(|\overline{\Omega}_+\rangle \otimes \left(|\overline{\Omega}_-\rangle + |\overline{\Omega}_-\rangle \otimes \left(|\overline{\Omega}_-\rangle - |\overline{\Omega}_-\rangle \right) \right) + |\overline{\Omega}_-\rangle \otimes \left(|\overline{\Omega}_+\rangle \otimes |\overline{\Omega}_-\rangle \otimes |\overline{\Omega}$$

After Neasurement, Alrea could achieve 4 different states with of prob-

3) Bos does a special unitery transformation on his particle B

	state of B		onould apply	B after Bos's unitary
7)	4 t 1 d 1 d		$SZ = \begin{bmatrix} A & o \\ o & -i \end{bmatrix}$	a10>+511> =14>
2)	a10> - i611>	,	8= [0 0 7	910>+511>=14>
3)	<10> + ia14>	7.	SZ4= [0 -i]	alo5+ >14>=14>
4)	70117 - 510>		Sy = [0 -i]	010>+ >11> =14>

Here S gate (phase gate) represents a go'degree rotation around the z-axis

For the first case:
1)
$$S2 = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$
 $S2 \cdot 10 > = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1$

S2 (a10> +i511>) = a S210> + ib S211> = a10>+ib(-i)11> = a10>+511>

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0$$

3)
$$877 = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} 0 & -i \\ 0 & i \end{bmatrix} = \begin{bmatrix} 0 & -i \\ 1 & 0 \end{bmatrix} = \begin{bmatrix}$$

4)
$$SV = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$SV(S) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -i \\ 0 \end{bmatrix} = -105$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -i \\ 0 \end{bmatrix} = -105$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$SV(I) = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = -117$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -1 & 0 \end{bmatrix}$$

According to given information over the telefone (whether 00,01,10,11)
Bob should apply a proper unitary which is shown in the above table.

where n=2

$$|\Psi_{\alpha 4}\rangle = \frac{1}{2^{n/2}} \cup \sum_{\mathbf{x}} |\mathbf{x}\rangle_{\mathbf{x}} \otimes |-\rangle_{\mathbf{R}} = \left(\frac{1}{2^{n/2}} \sum_{\mathbf{x}} (-)^{\mathbf{f}(\mathbf{x})} |\mathbf{x}\rangle\right) \otimes |-\rangle_{\mathbf{R}}$$

as; amplitude of 2

Part a)

where 2 is the output state (x1,x2)

Table 1

1 to 1 12 and a service of the servi								
x, x21	P(=121 1f1)	?(x/x2 fg)	P(x1x21f2)	P(x/2 1/2)	P(x/x/183)	P(x) x2 1 f3	P(x1x21f4)	P(x, x2 1f4
00	1	1	0	0	J	O	٥	٥
01	0	O	0	0	4	1	0	٥
10	0	0	1	4	0	o	ა	o
11	0	0	0	o	o	0	1	1

$$a.3) \ \ \chi_{1}^{1} \chi_{2}^{1} = 00 \ \ \, , \ \ \, \chi_{1}^{2} \chi_{1}^{2} \chi_{2}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{2}^{2} \chi_{2}^{2}$$

Similar to x1x2=01 case, x1x2=10 and x1x1=11 are calculated.

And for these possible cases:

$$P(10 | f_2) = P(10 | \bar{f}_2) = 1$$
, others =0
 $P(11 | f_4) = P(11 | \bar{f}_4) = 1$, others =0

For each possible outcome xixz', list all possible functions:

x1'x2'	Possible functions uight be computed
00	P1, F1
0.1	fs, Fs
10	f ₂ , \bar{f}_2
11	fu, fu

$$aoolg = \frac{1}{4} \left(\frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+0}}{-1} + \frac{(-1)^{0+0}}{-1} \right) = -\frac{1}{2} \longrightarrow P = |aool} = \frac{1}{4}$$

$$aoolg = \frac{1}{4} \left(\frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+1}}{-1} + \frac{(-1)^{0+1}}{-1} + \frac{(-1)^{0+1}}{-1} \right) = -\frac{1}{2} \longrightarrow P = |aool} = \frac{1}{4}$$

$$alolg = \frac{1}{4} \left(\frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+1}}{-1} + \frac{(-1)^{0+1}}{-1} \right) = -\frac{1}{2} \longrightarrow P = |aool} = \frac{1}{4}$$

$$alolg = \frac{1}{4} \left(\frac{(-1)^{1+0}}{-1} + \frac{(-1)^{1+1}}{-1} + \frac{(-1)^{1+1}}{-1} + \frac{(-1)^{0+2}}{-1} \right) = \frac{1}{2} \longrightarrow P = |aool} = \frac{1}{4}$$

Adding gh, we can not distinguish between finctions based on the measurement overcome.

Since gh is possible for all measurements, one can not understand just once unexter function gh of for (123,4)

Question 3

5=0

$$\frac{1}{2} (1+5in\theta)^{2} = \left| \frac{1}{\sqrt{2}} \left(\cos \frac{\theta}{2} \langle 0|0 \rangle + 5in\theta \langle 1|1 \rangle \right) \right|^{2} = \frac{1}{2} \left(1+5in\theta \right)$$

$$\frac{1}{2} (1+5in\theta) = \frac{1}{2} \left(1+\cos \phi \right) = \frac{1}{2} \left(1+2in\theta \right) = \cos^{2} \frac{\phi}{2}$$

$$\cdot |\langle \phi_{11}| \omega_{1} \rangle|^{2} = \left| \frac{1}{\sqrt{2}} \left(-5in\theta \langle 0|0 \rangle - \cos^{2} \frac{\phi}{2} \langle 1|1 \rangle \right) \right|^{2} = \frac{1}{2} \left(1+5in\theta \right) = \cos^{2} \frac{\phi}{2}$$

$$|\langle \phi_{50}| \omega_{1} \rangle|^{2} = \left| \langle \phi_{51}| \omega_{0} \rangle \right|^{2}$$

$$\frac{b=0}{|\langle \phi_{0} | \phi_{0} \rangle|^{2}} = \left| -\sin \frac{\theta}{2} \langle 0|0 \rangle \right|^{2} = \sin^{2} \frac{\theta}{2}$$

$$\cdot \left| \langle \phi_{0} | \phi_{0} \rangle \right|^{2} = \left| \sin \frac{\theta}{2} \langle 1|1 \rangle \right|^{2} = \sin^{2} \frac{\theta}{2}$$

$$\frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2} = \left| \frac{1}{12} \left(-\frac{1}{12} \left(-\frac{1}{12} \right) + \frac{1}{12} \left(\frac{1}{12} \right) \right|^{2} = \frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)$$

$$\frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2} = \frac{1}{2} \left(\frac{1}{1 - 6in\theta} \right)^{2} = \frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2}$$

$$= \frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2} = \frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2}$$

$$= \frac{1}{2} \left(\frac{1}{1 - 5in\theta} \right)^{2}$$

2)
$$A=0$$
 $\varepsilon=0$ $B=4$

$$\frac{1}{2} |\langle \phi_{\infty}|\phi_{0}\rangle|^{2} |\langle \phi_{01}|\phi_{0}\rangle|^{2}$$

$$P(A=0, E=0, B=1) = \frac{1}{2} \cos^2 \frac{9}{2} \sin^2 \frac{9}{2}$$

3)
$$A=0$$
 $E=1$ $B=0$

$$\frac{1}{2} |\langle \phi co| \alpha_L \rangle|^2 |\langle \phi co| \alpha_L \rangle|^2$$

$$P(\Omega\Omega) = \frac{1}{2} \sin^4\left(\frac{\theta}{2}\right)_{\mu}$$

4)
$$A = 0$$
 $\overline{\epsilon} = 1$ $B = 1$

$$\frac{1}{2} |\langle \phi_{00}| \alpha_{1} \rangle|^{2} |\langle \phi_{01}| \alpha_{1} \rangle|^{2}$$

$$P(011) = \frac{1}{2} \sin^2\left(\frac{\theta}{2}\right) \cos^2\left(\frac{\theta}{2}\right) /$$

$$5) A=1 \qquad E=0 \qquad B=0$$

$$\frac{1}{2} \qquad \left| \langle \phi_{01} | \kappa_{0} \rangle \right|^{2} \qquad \left| \langle \phi_{00} | \kappa_{0} \rangle \right|^{2}$$

6)
$$A=1$$
 $E=0$ $B=1$

$$\frac{1}{2} |\langle \phi_{01}| \times \phi_{01}|^{2} |\langle \phi_{01}| \times \phi_{01}|^{2}$$

$$P(101) = \frac{1}{2} \sin^{2}\theta \sin^{2}\theta = \frac{1}{2} \sin^{4}\theta$$

7)
$$A=1$$
 $E=1$ $B=0$

$$\frac{1}{2} | \langle \phi_{01} | \lambda_{1} \rangle |^{2} | \langle \phi_{00} | \lambda_{1} \rangle |^{2}$$

$$P(110) = \frac{1}{2} \cos^{2}\theta \sin^{2}\theta$$

$$\frac{1}{2} | \langle \phi_{01} | \lambda_{1} \rangle |^{2}$$

8)
$$A=1$$
 $C=1$ $B=1$

$$\frac{1}{2} |\langle \phi_{01} | w_{1} \rangle|^{2} |\langle \phi_{01} | \alpha_{1} \rangle|^{2}$$

$$P(111) = \frac{1}{2} \cos^{2} \theta \cos^{2} \theta = \frac{1}{2} \cos^{4} \theta$$

Table 2

•	14016 2						
1	For	b=0		For 5=1			
					1		
	A	ε	ß	7,06 (4=0)	P105 (4=1)		
	0	0	0	$\frac{1}{2}\cos^{4}\left(\frac{\theta}{2}\right)$	$\frac{1}{2}\cos^4\left(\frac{\phi}{2}\right)$		
	0	0	1	$\frac{1}{2}\sin^2\theta \cos^2\theta = \frac{\sin^2\theta}{2}$	$\frac{1}{8} \sin^2 \phi$		
	0	1	o	$\frac{1}{2} \sin^{4}\left(\frac{\theta}{2}\right)$	$\frac{4}{2} \sin 4 \left(\frac{\phi}{2} \right)$		
	О	1	1	1 sin2 d cos2 2	Print 8		
	7	0	0	1 sinta rosta	1 21/2 d		
	1	٥	1	1 sinu ()	1 2 5104 (1)		
	1	1	٥	1 sin18 costa	$\frac{1}{8}$ sin ² ϕ		
	7	1	1	$\frac{1}{2}\cos^{4}\left(\frac{6}{2}\right)$	$\frac{1}{2}\cos^{4}\left(\frac{\phi}{2}\right)$		

Parte)

$$D_0 \stackrel{A \in}{=} 2 \times \frac{1}{2} \sin^4 \left(\frac{\theta}{2} \right) + \frac{1}{2} \times \left(\sin^2 \frac{\theta}{2} \cos^2 \frac{\theta}{2} \right)$$

$$= \sin^2 \left(\frac{\theta}{2} \right) \left[\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} \right] = \sin^2 \frac{\theta}{2} / 1$$

$$D_0 = 4 \times \sin^2 \frac{\theta}{8} = \frac{\sin^2 \theta}{2}$$

Postd)

$$D_{1}^{AE} = 2 \left(\frac{1}{2} \sin^{4} \left(\frac{d}{2} \right) + 2 \times \frac{1}{8} \sin^{2} d \right)$$

$$\frac{1}{4} \cos^{2} \theta + \frac{1}{4} \left(1 - \sin \theta \right)^{2} = \frac{1}{4} \left(\cos^{1} \theta + 1 - 2 \sin \theta + \sin^{2} \theta \right)$$

$$= \frac{1}{4} 2 \left(1 - \sin \theta \right) = \frac{1}{2} \left(1 - \sin \theta \right) = \sin^{2} \frac{d}{2}$$

$$D_{1}^{AB} = 1 \cos^{2} \theta = \cos^{2} \theta = \frac{\sin^{2} \theta}{2} = \frac{\sin^{2} \theta}{2}$$

$$2\sqrt{\frac{\sin^2\theta}{2}} + 2\sqrt{\frac{\cos^2\theta}{2}} = 1$$

$$\sqrt{2 \times \frac{\sin^2 \theta}{x}} + 2 \times \frac{1}{2} \left(1 - \sin \theta\right)$$

Part g)

	Φ= ^π Λ θ= 0	$ \phi = 0 $ $ \theta = \frac{1}{2} $
$D_{\alpha} = \left(\frac{2}{2} \right)^{2}$	0	7
$D_0 = \frac{1}{2} \sin^2 \theta$	0	1/2
$D_1^{AE} = sin^2 \frac{1}{2}$	10	0
$D_1 = \frac{\sin^2 b}{2}$	12	0