

Statistik

Vorlesung 12 Zusatz - Stochastische Prozesse

Prof. Dr. Sandra Eisenreich

Hochschule Landshut

Beispiel: Warteschlangen

Man kann Warteschlangen (beim Arzt, im Callcenter, Bedienwünsche an einem Server...) mit Hilfe von Markov-Ketten beschreiben.

Kunden treffen im Warteraum ein, werden an einer Bedienstation bedient, dann verlässt der Kunde das System.

Häufiger Typ: Ankunft und Bedienung werden durch Poisson-Prozesse beschrieben, es gibt eine Bedienstation.

- Ankunftsrate der Kunden: λ ,
- Bedienrate: μ,
- $\rho = \frac{\lambda}{\mu}$ wird Auslastung des Systems genannt.
- ullet Maximale Anzahl der Kunden im System sei n (1 wird bedient, n-1 im Warteraum)

Wie entwickelt sich die Warteschlange?

Warteschlange als Markov-Kette

 $(X_t)_{t\in\mathbb{N}_0}$ sei der Prozess, der die Anzahl der Kunden im System zum Zeitpunkt t beschreibt

- $W = \{0, 1, 2, ..., n\}$, weil höchstens n Personen im System sein können.
- wir nehmen an, der Abstand T zwischen zwei Beobachtungszeiträumen ist so klein, dass in diesem Zeitraum höchstens ein Kunde kommt oder geht
- die Wahrscheinlichkeit dass in gleichen Zeiträumen ein Kunde kommt oder geht ist gleich.

⇒ homogene Markov-Kette

Konkrete Zahlen

Wartezimmer beim Arzt, 10 Plätze, 1 Behandlungszimmer \Rightarrow 12 Zustände, $\mathcal{W}=\{0,1,2,\ldots,11\}$ (0 = leer, 1 = wird behandelt, 11 insgesamt). Ankunftsrate = $\frac{9}{h}=\lambda$. Bedienrate = $\frac{10}{h}=\mu\Rightarrow\rho=\frac{\lambda}{\mu}=\frac{9}{10}$. T=1 min.

 $\Rightarrow \lambda_T = \frac{9}{60}/min, \mu_T = \frac{10}{60}/min$. Berechne die p_{ij} : Sei K die Zufallsvariable "Anzahl der Kunden, die im Intervall I kommen."

Der Erwartungswert von *K* ist die Ankunftsrate:

$$\lambda_T = E(K) = 0 \cdot P(K = 0) + 1 \cdot P(K = 1) + 2 \cdot P(K = 2) + ... + nP(K = n)$$

= $P(K = 1) = P(1 \text{ Kunde kommt in } T)$

weil höchstens ein Kunde kommen kann. Genauso zeigt man:

$$\mu_T = P(1 \text{ Kunde geht in } T)$$

3

Zusammenfassend:

- $P(1 \text{ Kunde kommt}) = \lambda_T$
- $P(0 \text{ Kunden kommen}) = 1 \lambda_T$
- $P(1 \text{ Kunde geht}) = \mu_T$
- $P(0 \text{ Kunden gehen}) = 1 \mu_T$

Die Einträge von P sind also (falls bereits Kunden anwesend sind, aber noch nicht 11)

- $p_{i,i+1} = P(1 \text{ kommt, } 0 \text{ geht}) = \lambda_T \cdot (1 \mu_T) = \lambda_T \lambda_T \mu_T \simeq \lambda_T$
- $p_{i+1,j}P(0 \text{ kommt}, 1 \text{ geht}) = (1 \lambda_T) \cdot \mu_T = \mu_T \lambda_T \mu_T \simeq \mu_T$
- $p_{ii} := P(0 \text{ kommt, } 0 \text{ geht} \cup 1 \text{ kommt, } 1 \text{ geht}) = 1 \lambda_T \mu_T \text{ (die Summe aller Wahrscheinlichkeiten ausgehenden Pfeile muss 1 sein)}$

Die Warteschlange als Markov-Kette

Am Anfang (noch kein Kunde anwesend) kann keiner gehen, also ist $p_{00}=1-\lambda_T$, und am Ende der Schlange kann keiner kommen, also $p_{nn}=1-\mu_T$

Wir bekommen also als Übergangsmatrix

$$P = \begin{pmatrix} 1 - \lambda_T & \lambda_T & 0 & 0 & \dots & 0 \\ \mu_T & 1 - \lambda_T - \mu_T & \lambda_T & 0 & \dots & 0 \\ 0 & \mu_T & 1 - \lambda_T - \mu_T & \lambda_T & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mu_T & 1 - \lambda_T - \mu_T & \lambda_T \\ 0 & 0 & \dots & 0 & \mu_T & 1 - \mu_T \end{pmatrix}$$

Die Potenzen von P ergeben irgendwann eine Matrix in der keine 0 mehr steht, d.h. die Grenzverteilung kann als Lösung des LGS $p \cdot P = p$ gesehen werden, also Lösung des LGS $p \cdot (P - \mathbb{I}) = 0$.

Diese hat die stationäre Verteilung:

$$p = p_0 \cdot \left(1, \frac{\lambda_T}{\mu_T}, \left(\frac{\lambda_T}{\mu_T}\right)^2, \left(\frac{\lambda_T}{\mu_T}\right)^3, \dots, \left(\frac{\lambda_T}{\mu_T}\right)^n\right) = p_0 \cdot (1, \rho, \rho^2, \rho^3, \dots, \rho^n)$$

Dabei ist p_0 so, dass die Summe der Elemente 1 ergibt. Wegen der geometrischen Reihe gilt:

$$1 + \rho + \rho^2 + \ldots + p^n = \frac{1 - \rho^{n+1}}{1 - \rho}$$

Also erhalten wir:

$$p = \frac{1 - \rho}{1 - \rho^{n+1}} (1, \rho, \rho^2, \rho^3, \dots, \rho^n)$$

Aufenthaltsdauer

Wie ist die mittlere Aufenthaltsdauer im System?

Wir nehmen an, die Wartezeit bis zum Eintreten des nächsten Ereignisses ist exponentialverteilt mit Erwartungswert $\frac{1}{\mu_T}$, d.h. mittlere Behandlungsdauer ist $\frac{1}{10}h$. (Das nennt man einen Poissonprozess, einen kontinuierlichen stochastischen Prozess, siehe nächstes Kapitel.) Sind i Personen im System und ein Kunde kommt, so muss er im Mittel $\frac{i}{10}h$ (im Allgemeinen: $\frac{i}{\mu_T}$) warten bis er dran kommt und bis zum Verlassen: $\frac{i+1}{\mu_T}$.

Ist X die Zufallsvariable, welche die Anzahl der Personen im System zählt, dann ist $E(X) = \sum_{k=0}^{n} k \cdot p(X=k)$, im konkreten Beispiel: E(X) = 4.28.

Mittlere Wartezeit bis zur Bedienung ist also $\frac{E(X)}{\mu_T}$, bis zum Verlassen $\frac{E(X)+1}{\mu_T}$.

7

Unendlich großer Warteraum

Häufige Annahme: Warteraum ist unendlich groß. Dann wird die Matrix "unendlich "" groß und die Grenzverteilung ist (weil $\rho=\frac{\lambda}{\mu}<1$)

$$\frac{1-\rho}{1-\rho^{\infty}}\cdot(1,\rho,\rho^2,\ldots)=(1-\rho)\cdot(1,\rho,\rho^2,\ldots),$$

das heißt $P(X = i) = (1 - \rho)\rho^i$. Ähnlich wie vorher können wir die mittlere Aufenthaltsdauer etc ausrechnen.

Die Ergebnisse sind auf der nächsten Folie zusammengefasst.

Unendlich großer Warteraum

Theorem

Verlaufen in einer Warteschlange die Ankunft und die Bedienung der Kunden nach Poisson-Prozessen mit Ankunftsrate λ und Bedienrate μ , ist die Länge der Warteschlange unbegrenzt und gilt $\lambda < \mu$, so beschreibt die Zufallsvariable X mit

$$P(X = k) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^k, k \in \mathbb{N}_0$$

die Anzahl der Kunden im System im stationären Zustand. Weiter ist

- ullet $\frac{\lambda}{\mu-\lambda}$ der Erwartungswert für die Anzahl der Kunden im System,
- $\frac{\lambda}{\mu \lambda} \frac{\lambda}{\mu}$ der Erwartungswert für die Länge der Warteschlange,
- $\frac{1}{\mu \lambda}$ die mittlere Aufenthaltsdauer im System,
- $\frac{1}{\mu \lambda} \frac{1}{\mu}$ die mittlere Wartezeit in der Schlange.