Intelligence Artificielle – TD 3

ALGORITHMES ET RECHERCHES HEURISTIQUES

Exercice 1 - Appliquez l'algorithme A* au problème du voyage en Roumanie en appliquant l'heuristique de la distance à vol d'oiseau. Vous supposerez que vous voulez voyager de Lugoj à Bucharest.

Pour chaque nœud, vous donnerez les valeurs de f, g et h. Si un même état apparaît dans deux nœuds différents, avec deux valeurs de f différentes, on conserve seulement celui avec la meilleure (la plus petite) valeur de f.

Ligne droite jusqu'à Bucharest							
Arad	366 Mehadia		241				
Bucharest	0	Neamt	234				
Craiova	160	Oradea	380				
Dobreta	242	Pitesti	100				
Eforie	161	Rimnicu Vilcea	193				
Fagaras	176	Sibiu	253				
Giurgiu	77	Timisoara	329				
Hirsova	151	Urziceni	80				
Lasi	226	Vaslui	199				
Lugoj	244	Zerind	374				

Exercice 2 - Considérez la carte suivante. L'objectif est de trouver le chemin le plus court de A vers I. On donne également trois heuristiques, h_1 , h_2 et h_3 .

Nœud	A	В	С	D	Е	F	G	Н	I
h_1	10	5	5	10	10	3	3	3	0
h_2	10	2	8	11	6	2	1	5	0
h_3	10	2	6	11	9	6	3	4	0

- 1. Est-ce que h_1 , h_2 et h_3 sont admissibles ? Justifier.
- 2. Quelles relations de dominance existent entre ces trois heuristiques?
- 3. Est-ce que $h_4 = max(h_1, h_3)$ est admissible ? Justifier.
- 4. Appliquer la recherche gloutonne en utilisant h_3 . Donner la suite des nœuds développés.
- 5. Appliquer la recherche A^* en utilisant h_1 . Donner la suite des nœuds développés.
- 6. Appliquer la recherche A^* en utilisant h_3 . Donner la suite des nœuds développés.
- 7. Appliquer la recherche A^* en utilisant h_4 . Donner la suite des nœuds développés.
- 8. Si vous avez le choix entre trois heuristiques admissibles h_1 , h_2 et $h_3 = max(h_1, h_2)$ laquelle choisissez vous? Justifier.

Exercice 3 - Considérez l'espace de recherche suivant (D est l'état initial, F est l'état final) :

Pour chaque nœud est indiquée la valeur de l'heuristique h. On veut récupérer le coût de chaque arc entre deux nœuds. Pour cela nous disposons d'une trace de l'algorithme A^* . Pour chaque pas de l'algorithme est indiquée la liste des nœuds encore à traiter avec la valeur f = g + h. Si un nœud peut apparaître deux fois avec deux valeurs de f différentes, on conserve seulement celui avec la meilleure (la plus petite) valeur de f.

```
[(D, f = 1)]

[(B, f = 7), (A, f = 8)]

[(A, f = 8), (C, f = 10)]

[(C, f = 10)]

[(E, f = 12), (F, f = 15)]

[(F, f = 14)]
```

- 1. Utiliser cette trace et votre connaissance du fonctionnement de A* pour calculer les coûts de tous les arcs. Détaillez votre démarche.
- 2. Est-ce que *h* est admissible ?