LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

Substitution

Definition

Given a variable x, a term t, and a formula φ the substitution ($\varphi[t/x]$) of x in φ by t is defined by replacing each free occurrence of x in φ by t.

Substitution

Definition

Given a variable x, a term t, and a formula φ the substitution ($\varphi[t/x]$) of x in φ by t is defined by replacing each free occurrence of x in φ by t.

 \bigcirc if *x* has not a free occurrence in φ : $\varphi[x/t] = \varphi$

$$\varphi = (\forall x \, x \wedge y) \vee (\exists y \, x \wedge z)$$

$$\bigcirc \varphi[f(z,u)/x] \rightsquigarrow$$

$$(\forall x \, x \wedge y) \vee (\exists y \, f(z, u) \wedge z)$$

$$\varphi = (\forall x \, x \wedge y) \vee (\exists y \, x \wedge z)$$

$$\bigcirc \varphi[f(z,u)/x] \rightsquigarrow$$

$$(\forall x \, x \wedge y) \vee (\exists y \, f(z, u) \wedge z)$$

$$\bigcirc \varphi[g(x)/y] \rightsquigarrow$$

$$(\forall x \ x \land g(x)) \lor (\exists y \ x \land z)$$

$$\varphi = (\forall x \, x \wedge y) \vee (\exists y \, x \wedge z)$$

$$\bigcirc \varphi[f(z,u)/x] \rightsquigarrow$$

$$(\forall x \, x \wedge y) \vee (\exists y \, f(z, u) \wedge z)$$

$$\bigcirc \varphi[g(x)/y] \rightsquigarrow$$

$$(\forall x \ x \land g(x)) \lor (\exists y \ x \land z)$$

$$\varphi = (\forall x \ x \land y) \lor (\exists y \ x \land z)$$

$$\bigcirc \varphi[f(z, u)/x] \leadsto$$

$$(\forall x \ x \land y) \lor (\exists y \ f(z, u) \land z)$$

$$\bigcirc \varphi[g(x)/y] \leadsto$$

$$(\forall x \ x \land g(x)) \lor (\exists y \ x \land z)$$

We have to avoid that free occurrences are substituted by bounded!

Free Terms in Formulae and Renaming of Variables

Definition

Given a variable x, and a formula φ , the term t is free for x in φ if no free x leaf in φ occurs in the scopes of $\forall y$ and $\exists y$ for all variables y in t.

Free Terms in Formulae and Renaming of Variables

Definition

Given a variable x, and a formula φ , the term t is free for x in φ if no free x leaf in φ occurs in the scopes of $\forall y$ and $\exists y$ for all variables y in t.

Substituting x by t in φ and t is not free for x in φ

- 1. for all variables y_i violating t's freedom for x in φ choose a fresh variable z_i (not occurring in neither t nor φ
- 2. perform $t' = t[z_i/y_i]$ (t' is free for x in φ
- 3. apply the substitution $\varphi[t'/x]$

 $\, \bigcirc \,$ syntactically propositional logic is a part of predicate logic

- o syntactically propositional logic is a part of predicate logic
- $\, \bigcirc \,$ we keep all rules for propositional logic in predicate logic

- o syntactically propositional logic is a part of predicate logic
- $\, \bigcirc \,$ we keep all rules for propositional logic in predicate logic
- predicate logic is defined inductively

- o syntactically propositional logic is a part of predicate logic
- $\, \bigcirc \,$ we keep all rules for propositional logic in predicate logic
- predicate logic is defined inductively
- we will define new rules according to this structure

- o syntactically propositional logic is a part of predicate logic
- \bigcirc we keep all rules for propositional logic in predicate logic
- predicate logic is defined inductively
- we will define new rules according to this structure

Convention: $\varphi[t/x]$ implies implicitely that t is free for x in φ !

Rule for Equality

 \bigcirc for all terms t

$$\overline{t=t}^{(=i)}$$

 \bigcirc for all terms t_1 , t_2 and all formula φ

$$\frac{t_1=t_2 \quad \varphi[t_1/x]}{\varphi[t_2/x]} \ (=e)$$

Proof of Commutativity of the Equality of Terms

$$\frac{t_1 = t_2 \text{ (Premise)} \quad \overline{(t_1 = t_1) \hat{=} (x = t_1) [t_1/x]}^{\text{(= i)}}}{(t_2 = t_1) \hat{=} (x) t_1) [t_2/x]}^{\text{(= i)}}$$

Proof of Transitivity of the Equality of Terms

$$\frac{t_1 = t_2 \qquad (t_1 = x)[t_1/x]}{(t_1 = x)[t_2/x]}_{(= e)}$$

$$(t_1 = x)[t_3/x]$$

Proof of Transitivity of the Equality of Terms

$$\frac{t_1 = t_2 \qquad (t_1 = x)[t_1/x]}{(t_1 = x)[t_2/x]}_{(= e)} (t_1 = x)[t_3/x]$$

With (= i) we proved that = is an equivalence relation.

Rules for Universal Quantification

elimination of \forall (scheme of rules: for all free terms t one rule)

$$\frac{\forall x \varphi}{\varphi[t/x]} (\forall xe)$$

 \bigcirc introduction of \forall

$$\begin{array}{c|c}
x_0 \\
\vdots \\
\varphi[x_0/x]
\end{array}$$

$$\forall x \varphi \qquad (\forall x i)$$

where x_0 is a variable that does not occur outside the box

Eliminiation:

- Eliminiation:
 - $\forall x \varphi$ is true

- Eliminiation:
 - $\forall x \varphi$ is true
 - \sim whatever value for x we choose, φ is true

○ Eliminiation:

- $\forall x \varphi$ is true
- \sim whatever value for x we choose, φ is true
- since t is free for x in φ , t is just a (maybe complicated) description for the x

- Eliminiation:
 - $\forall x \varphi$ is true
 - \sim whatever value for x we choose, φ is true
 - since t is free for x in φ , t is just a (maybe complicated) description for the x
- O Introduction:

- O Eliminiation:
 - $\forall x \varphi$ is true
 - \sim whatever value for x we choose, φ is true
 - since t is free for x in φ , t is just a (maybe complicated) description for the x
- O Introduction:
 - if *x* does not occur in φ , $\forall x \varphi$ is true

○ Eliminiation:

- $\forall x \varphi$ is true
- \sim whatever value for x we choose, φ is true
- since t is free for x in φ, t is just a (maybe complicated)
 description for the x

O Introduction:

- if *x* does not occur in φ , $\forall x \varphi$ is true
- assume x to occur in φ

O Eliminiation:

- $\forall x \varphi$ is true
- \sim whatever value for x we choose, φ is true
- since t is free for x in φ, t is just a (maybe complicated) description for the x

O Introduction:

- if *x* does not occur in φ , $\forall x \varphi$ is true
- assume x to occur in φ
- the box *says* that we are able to prove φ if we substitute x be a fresh variable x_0

○ Eliminiation:

- $\forall x \varphi$ is true
- \sim whatever value for x we choose, φ is true
- since t is free for x in φ, t is just a (maybe complicated) description for the x

O Introduction:

- if *x* does not occur in φ , $\forall x \varphi$ is true
- assume x to occur in φ
- the box *says* that we are able to prove φ if we substitute x be a fresh variable x_0
- x_0 is arbitrary (not special, constraint-free) $\leadsto \varphi$ holds for all x

Claim:
$$(\forall x (P(x) \rightarrow Q(x))), (\forall x P(x)) \vdash (\forall x Q(x))$$

Claim:
$$(\forall x (P(x) \rightarrow Q(x))), (\forall x P(x)) \vdash (\forall x Q(x))$$
 Proof:

Premise
$$\forall x \ P(x) \rightarrow Q(x)$$

Premise $\forall x \ P(x)$
 $\forall xe \ \text{with} \ t = x_0$
 $P(x_0) \rightarrow Q(x_0)$

fresh variable x_0
 $\forall xe \ \text{with} \ t = x_0$
 $P(x_0)$
 $P(x_0)$
 $P(x_0)$
 $P(x_0)$
 $P(x_0)$
 $P(x_0)$

- o conjunction is true iff all conjuncts are true
- universally quantified formula is true if scope is true for all values the bounded variable may take

- conjunction is true iff all conjuncts are true
- universally quantified formula is true if scope is true for all values the bounded variable may take
- if a conjunction is true, we know that each single conjunct is true
- if universally quantified formula is true, we know that the scope for each substitution is true

- conjunction is true iff all conjuncts are true
- universally quantified formula is true if scope is true for all values the bounded variable may take
- if a conjunction is true, we know that each single conjunct is true
- if universally quantified formula is true, we know that the scope for each substitution is true
- if formulae are true, then also there conjunction
- if a formula is true for all substitutions for a variable, then the universally quantified formula is true as well

Rules for Existential Quantification

exists introduction (scheme of rules: for all free terms *t* one rule)

$$\frac{\varphi[t/x]}{\exists x \varphi} (\exists x i)$$

exists elimination

$$\exists x \varphi \qquad \begin{bmatrix} x_0 & \varphi[x_0/x] \\ & \vdots \\ & \chi \end{bmatrix}$$

\exists and \lor

\exists and \bigvee

- disjunction is true iff one disjunct is true
- existentially quantified formula is true if scope is true for one value the bounded variable may take

\exists and \bigvee

- O disjunction is true iff one disjunct is true
- existentially quantified formula is true if scope is true for one value the bounded variable may take
- if one disjunct is true, the disjunction is true
- if the sope for one value is true, the existentially quantified formula is true

\exists and \bigvee

- disjunction is true iff one disjunct is true
- existentially quantified formula is true if scope is true for one value the bounded variable may take
- if one disjunct is true, the disjunction is true
- if the sope for one value is true, the existentially quantified formula is true
- \bigcirc if for one arbitrary value χ follows by $\varphi[x_0/x]$ and φ is true for one x, then χ holds always

Example

Claim: $\forall x \varphi \vdash \exists x \varphi$

Example

Claim: $\forall x \varphi \vdash \exists x \varphi$

Proof:

$$\frac{\forall x \varphi}{\varphi[x/x]} \forall x e$$

$$\exists x \varphi$$

Example II

Some doctors are rich. All fools are rich. \sim Some doctors are rich.

Example II

Some doctors are rich. All fools are rich. \sim Some doctors are rich.

- \bigcirc F(x) x is a fool
- \bigcirc R(x) x is rich
- $\bigcirc D(x)$ x is a doctor

Example II

Some doctors are rich. All fools are rich. \sim Some doctors are rich.

- \bigcirc F(x) x is a fool
- \bigcirc R(x) x is rich
- $\bigcirc D(x)$ x is a doctor

$$\exists x (D(x) \land F(x)), \forall x (F(x) \to R(x)) \vdash \exists x (D(x) \land R(x))$$

Example Cont.

Claim: $\exists x (D(x) \land F(x)), \forall x (F(x) \rightarrow R(x)) \vdash \exists x (D(x) \land R(x))$ **Proof:**

1	premise		$\forall x (F(x) \to R(x))$
2	premise		$\exists x (D(x) \land F(x)$
3	assumption	x_0	$D(x_0) \wedge F(x_0)$
4	$(\forall xe)$ 1		$F(x_0) \to R(x_0)$
5	$(\wedge e_2)$ 3		$Q(x_0)$
6	$(\wedge e_1)$ 3		$D(x_0)$
7	(mp) 4		$R(x_0)$
8	(∧ <i>i</i>) 6,7		$D(x_0) \wedge R(x_0)$
9	$(\exists i)$ 8		$\exists x (D(x) \land R(x))$
10	$(\exists e)$ 1, box		$\exists x (D(x) \land R(x))$

○ Proof Theory:

- O Proof Theory:
 - good for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is valid (proof)

- O Proof Theory:
 - good for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is valid (proof)
 - harder for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is not valid

- O Proof Theory:
 - good for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is valid (proof)
 - harder for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is not valid
- O Semantics:

- O Proof Theory:
 - good for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is valid (proof)
 - harder for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is not valid
- Semantics:
 - good for showing that φ is not a consequence of $\varphi_1, \ldots, \varphi_n$ (find model in which all φ_i are true and φ not)

- O Proof Theory:
 - good for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is valid (proof)
 - harder for showing $\varphi_1, \ldots, \varphi_n \vdash \psi$ is not valid
- Semantics:
 - good for showing that φ is not a consequence of $\varphi_1, \ldots, \varphi_n$ (find model in which all φ_i are true and φ not)
 - harder for showing that φ is a consequence of $\varphi_1, \ldots, \varphi_n$ (claim about all models)

