Mathematical foundation of information theory

Martina Tscheckl June 15, 2016

Please send feedback to martina@tscheckl.eu.

Contents

1	Introduction: Probability Theory	3
	1.1 Definitions and Axioms	3

Introduction: Probability Theory

01.03.2016

Definitions and Axioms

Definition (Probability space). A probability space is a triple $(\Omega, \mathcal{A}, \mathbb{P})$ where

- 1. $\Omega \neq \emptyset$ is a set,
- 2. A is a σ -algebra of subsets of Ω ,
- 3. \mathbb{P} is a probability measure on A.

Remarks. (a) The set Ω is called the "sample space" and contains "all possible aspects/cases related to an experiment".

- (b) By definition, $A \subset \mathcal{P}(\Omega)$ where $\mathcal{P}(\Omega)$ is the collection of all subsets of Ω . The set $\mathcal{P}(\Omega)$ is called the power set of Ω .
- (c) The elements $A \in \mathcal{A}$ are called "events". Events are observable (distinguishable) outcomes of an experiment.

Examples. (a) one coin toss: $\Omega = \{0, 1\}$

- (b) 500 coin tosses: $\Omega = \{0, 1\}^{500}$
- (c) one coin toss + final position of coin (+ number of spins):

$$\Omega = \{0, 1\} \times \mathbb{R}^2 (\times \mathbb{N}_0)$$

Definition (Axioms). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with $\mathbb{P} : \mathcal{A} \to [0, 1]$. Then we define the following axioms:

- 1. $\emptyset \in \mathcal{A}$
- 2. $A \in \mathcal{A} \implies A^C \in \mathcal{A}$
- 3. If $(A_n)_{n\in\mathbb{N}}$ is a sequence in \mathcal{A} , then

$$\bigcup_{i=1}^{\infty} A_n \in \mathcal{A}.$$

- 4. $\mathbb{P}(\Omega) = 1$
- 5. σ -additivity: If (A_n) is a sequence in \mathcal{A} such that $A_k \cap A_l = \emptyset \ \forall k \neq l$ then

$$\mathbb{P}(\biguplus_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Examples. Let's consider the examples (b) and (c) from above.

(b) 500 coin tosses:

$$A = [even number of 1s]$$

= $\{\omega = (\omega_1, \dots, \omega_{500}) \in \Omega : \omega_1 + \dots + \omega_{500} \text{ is even}\}.$

(c) one coin toss + final position of coin + number of spins:

$$A = [coin\ toss:\ 1,\ positon\ from\ origin:\ distance\ < 2m,\ spins:\ 13]$$

= $\{1\} \times \mathcal{B}((0,0),2) \times \{13\}$

where
$$\mathcal{B}((0,0),2) = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 2\}.$$

Remark.

fix this remark

- 1. If Ω is at most countable: usually $\mathcal{A} = \mathcal{P}(\Omega)$
- 2. If Ω is uncountable, it is not good.

Example. Let $\Omega = \mathbb{R}$. Then $\mathcal{A} = \mathcal{B}_{\mathbb{R}}$, where $\mathcal{B}_{\mathbb{R}}$ is the collection of all Borel sets on \mathbb{R} . So \mathcal{A} is the smallest σ -algebra over \mathbb{R} which contains all intervals.

Proposition (Consequences of the axioms). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with $\mathbb{P} : \mathcal{A} \rightarrow [0,1]$. Then we can deduce from the axioms the following statements:

(a) If $A_1, \ldots, A_N \in \mathcal{A}$, then $\bigcup_{n=1}^N A_n \in \mathcal{A}$ and since $\mathbb{P}(\emptyset) = 0$,

$$\mathbb{P}(\biguplus_{n=1}^{N} A_n) = \sum_{n=1}^{N} \mathbb{P}(A_n).$$

(b) If $(A_n)_{n\in\mathbb{N}}$ is a finite or countable sequence in A, then

$$\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$$

(c) Let $A, B \in \mathcal{A}$. Then

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

(d) Let $A, B \in A$. If $A \subset B$, then

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$
.

(e) "Continuity": If $(A_n)_{n\in\mathbb{N}}$ is a sequence in \mathcal{A} such that $\forall n \ A_n \subset A_{n+1}$, then

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

(c) Use $A \cup B = A \uplus (B \cap A^C)$.

Proof.

fix/complete proof

add pic

$$A_{N} = A_{1} \cup (A_{2} \setminus A_{1}) \cup \cdots \cup (A_{N} \setminus A_{N-1})$$

$$= A_{1} \cup \bigcup_{n=2}^{N} (A_{n} \setminus A_{n-1})$$

$$A = A_{1} \uplus \biguplus_{n=2}^{\infty} \underbrace{(A_{n} \setminus A_{n-1})}_{\in \mathcal{A}}$$

$$\mathbb{P}(A) = \mathbb{P}(A_1) + \sum_{n=2}^{\infty} \mathbb{P}(A_n \setminus A_{n-1})$$

$$= \lim_{N \to \infty} (\mathbb{P}(A_1) + \sum_{n=2}^{N} \mathbb{P}(A_n \setminus \mathbb{P}(A_{n-1}))$$

$$= \lim_{N \to \infty} \mathbb{P}(A_N)$$

02.03.2016