医療の現場では放射線が使われる。 ディスポ製品の消毒には γ 線、診断にはX線(法律用語はx は x を x が x

し、斜めの金属に衝突させて急減速するときに発生する電磁波のこと。 金属の冷却が重要。 原子核崩壊由来の放射線は α線、β線、γ線、中性子線などあり。 ①α線は核のα崩壊に伴って発生し実体はヘリウムの原子

核(陽子 2 と中性子 2)。 陽子は無限の寿命(10^{33} 年以上)を持つ素粒子で水素が電子を失った水素の原子核、(水溶液中のpHの) パルラスポーク 2 ペーク 2

(proton)。 空気中では数センチで減衰、紙一枚で遮断可能。 2β 線は β 崩壊に伴って発生する電子線のこと(X線管では真空中で加速した β 線を金属に衝突させる)、アルミ 1mm で遮断可能。 3γ 線は上記のごとく電磁波。 透過力が

Light Wave

\(\begin{align*}
\lambda & \times &

衝突でき、これを同位元素に変える(中性子捕獲)。 生体では通常の 23 Na が中性子捕獲によって同位体 24 Na に変化すると、半減期約 15 時間の γ 線を放射するようになるので、中性子線による急性被曝の検査に使われる(中性子爆弾などの確認)。 原子炉では 235 U に中性子を当てると 236 U はだめ)。 連鎖反応には中性子が速すぎ核燃料を透過、周囲を水(軽水、重水)や炭素(黒鉛)で覆って減速、反射で遅い中性子線(熱中性子線という)を得る。 液体金属(Na)は良い減速材だが取り扱い困難(もんじゅ)。 1999 年東海村臨界事故では 20 0 時間中性子線が観測され、バケツの 25 U が、周囲の冷却水を減速材として連鎖反応を起こし臨界に達していた(簡易原子炉*)。 放射活性は単位時間当たりの核分裂回数(単位ベクレル: \mathbf{s}^{-1})で表す。 一方,被爆量は 16 1 に 16 2 の生体が吸収したエネルギー(単位は熱量と同じジュール: 16 3 で表される(単位は 16 4 に 16 5 な線 16 5 の線 16 6 の 16 7 に 16 8 の 16 9 で表される(単位は 16 1 に 16 1 に 16 2 に 16 3 に 16 3 に 16 4 に 16 5 に 16 7 に 16 7 に 16 8 に 16 9 に 16

放射線基礎医学で「7S で即死」と教える。CT では7-20 mSv, 成田—サンフランシスコ間(9 時間)で $40\,\mu$ Sv (放医研データ)、自宅で $0.1-0.15\,\mu$ Sv/hour(γ 線測定からの推定値)。 通常年間被爆(宇宙線、地中のラドン)は2.4 mSv/year。 *大学の臨界炉は東大(弥生)京大(熊取)近大(0.1w)など。