

Centralna Komisja Egzaminacyjna w Warszawie

EGZAMIN MATURALNY 2011

MATEMATYKA POZIOM ROZSZERZONY

Kryteria oceniania odpowiedzi

Zadanie 1. (0–4)

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Wykorzystanie cech podzielności liczb całkowitych

Rozwiązanie

Przekształcamy wyrażenie $k^6 - 2k^4 + k^2$ do postaci iloczynowej:

$$k^{2}(k^{4}-2k^{2}+1)=k^{2}(k^{2}-1)^{2}=\left[(k-1)k(k+1)\right]^{2}$$
.

Wykazujemy, że dla każdej liczby całkowitej k liczba (k-1)k(k+1) jest podzielna przez 6.

Aby wykazać podzielność liczby rozpatrujemy jeden z trzech sposobów:

sposób I

Wśród trzech kolejnych liczb całkowitych jest co najmniej jedna liczba parzysta i dokładnie jedna liczba podzielna przez 3. Kwadrat iloczynu tych liczb jest podzielny przez 36.

Zatem liczba postaci $k^6 - 2k^4 + k^2$, gdzie k jest liczbą całkowitą, dzieli się przez 36.

• sposób II

Pokazujemy podzielność przez 2 i przez 3:

1) podzielność przez 2

dla k – parzystego czyli k = 2m, gdzie m jest liczbą całkowitą, otrzymujemy (k-1)k(k+1) = (2m-1)2m(2m+1) = 2(2m-1)m(2m+1)

dla k – nieparzystego czyli k = 2m+1, gdzie m jest liczbą całkowitą, mamy (k-1)k(k+1) = 2m(2m+1)(2m+2),

zatem w każdym przypadku liczba (k-1)k(k+1) jest podzielna przez 2,

2) podzielność przez 3

dla k = 3m, gdzie m jest liczbą całkowitą, mamy

$$(k-1)k(k+1) = (3m-1)3m(3m+1) = 3(3m-1)m(3m+1)$$

dla k = 3m + 1, gdzie m jest liczba całkowita, mamy

$$(k-1)k(k+1) = 3m(3m+1)(3m+2)$$

dla k = 3m + 2, gdzie m jest liczbą całkowitą, mamy

$$(k-1)k(k+1) = (3m+1)(3m+2)(3m+3) = 3(3m+1)(3m+2)(m+1)$$

zatem w każdym przypadku liczba (k-1)k(k+1) jest podzielna przez 3.

Ponieważ liczba jest podzielna przez 2 i przez 3, a liczby 2 i 3 są względnie pierwsze, więc liczba (k-1)k(k+1) jest podzielna przez 6.

Kwadrat tej liczby jest podzielny przez 36.

Zatem liczba $k^6 - 2k^4 + k^2$, gdzie k jest liczbą całkowitą, dzieli się przez 36.

sposób III

Pokazujemy podzielność przez 6 na podstawie przypadków:

dla
$$k = 6m$$
, gdzie m jest liczbą całkowitą, mamy

$$(k-1)k(k+1) = (6m-1)6m(6m+1) = 6(6m-1)m(6m+1)$$

dla k = 6m + 1, gdzie m jest liczbą całkowitą, mamy

$$(k-1)k(k+1) = 6m(6m+1)(6m+2)$$

dla k = 6m + 2, gdzie m jest liczbą całkowitą, mamy (k-1)k(k+1) = (6m+1)(6m+2)(6m+3) = 6(6m+1)(3m+1)(2m+1)dla k = 6m + 3, gdzie m jest liczbą całkowitą, mamy (k-1)k(k+1) = (6m+2)(6m+3)(6m+4) = 6(3m+1)(2m+1)(6m+4)dla k = 6m + 4, gdzie m jest liczbą całkowitą, mamy (k-1)k(k+1) = (6m+3)(6m+4)(6m+5) = 6(2m+1)(3m+2)(6m+5)dla k = 6m + 5, gdzie m jest liczba całkowita, mamy (k-1)k(k+1) = (6m+4)(6m+5)(6m+6) = 6(6m+4)(6m+5)(m+1)zatem w każdym przypadku liczba (k-1)k(k+1) jest podzielna przez 6. Kwadrat tej liczby jest podzielny przez 36. Zatem liczba $k^6 - 2k^4 + k^2$, gdzie k jest liczba całkowitą, dzieli się przez 36.

Schemat oceniania

Rozwiązanie, w którym jest postęp 1 pkt Zapisanie liczby $n^2 = k^6 - 2k^4 + k^2$ w jednej z następujących postaci iloczynowych: $k^{2}(k^{2}-1)^{2} \text{ lub } \left[k(k^{2}-1)\right]^{2} \text{ lub } \left[k(k-1)(k+1)\right]^{2} \text{ lub } k^{2} \left[(k-1)(k+1)\right]^{2} \text{ lub } \left(k^{3}-k\right)^{2}$. Wykazanie podzielności liczby *n* przez 2 albo przez 3. Wykazanie podzielności liczby n przez 2 i przez 3 albo stwierdzenie, że iloczyn trzech kolejnych liczb całkowitych jest podzielny przez 6. Uwaga

Zdający może zauważyć, że $(k+1)k(k-1) = 6 \cdot {k+1 \choose 3}$. Przyznajemy wtedy **3 punkty** i nie

wymagamy wyjaśnienia, że został tu użyty uogólniony współczynnik dwumianowy.

Wyciągnięcie wniosku o podzielności liczby n^2 przez 36.

Zadanie 2. (0-4)

Rozumowanie i argumentacja	Przekształcenie równoważne wyrażenia wymiernego
----------------------------	---

I sposób rozwiazania

Przekształcamy tezę w sposób równoważny.

Mnożymy obie strony równości $\frac{a}{a-c} + \frac{b}{b-c} = 2$ przez (a-c)(b-c), otrzymując:

$$a(b-c)+b(a-c)=2(a-c)(b-c)$$
, czyli $ab-ac+ab-bc=2ab-2ac-2bc+2c^2$.

Stad otrzymujemy $2c^2 - ac - bc = 0$, czyli c(2c - a - b) = 0.

Ta ostatnia równość jest prawdziwa, bo z założenia 2c-a-b=0. Zatem teza też jest prawdziwa.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp2 pkt

Przekształcenie równości $\frac{a}{a-c} + \frac{b}{b-c} = 2$ do postaci

$$a(b-c)+b(a-c)=2(a-c)(b-c)$$
.

Pokonanie zasadniczych trudności zadania......3 pkt

Wykonanie działań i doprowadzenie równości do postaci np.: $2c^2 - ac - bc = 0$. **Rozwiązanie pełne......4 pkt**

Uzasadnienie, że c(2c-a-b)=0 i wnioskowanie o prawdziwości równości

$$\frac{a}{a-c} + \frac{b}{b-c} = 2.$$

II sposób rozwiązania

Z równania a + b = 2c wyznaczamy b = 2c - a i wstawiamy do wyrażenia:

$$\frac{a}{a-c} + \frac{b}{b-c} = \frac{a}{a-c} + \frac{2c-a}{2c-a-c} = \frac{a}{a-c} + \frac{2c-a}{c-a} = \frac{a-(2c-a)}{a-c} = \frac{2(a-c)}{a-c} = 2.$$

Uwaga

 $\overline{Z \text{ równ}}$ ania a + b = 2c można także wyznaczyć zmienną a lub c.

Schemat oceniania II sposobu rozwiązania

Wyznaczenie z założenia a+b=2c, np. b i doprowadzenie wyrażenia do postaci

$$\frac{a}{a-c} + \frac{b}{b-c} = \frac{a}{a-c} + \frac{2c-a}{2c-a-c} = \frac{a}{a-c} + \frac{2c-a}{c-a} .$$

Pokonanie zasadniczych trudności zadania.....3 pkt

Wykonanie działań i doprowadzenie wyrażenia do postaci np.: $\frac{a - (2c - a)}{a - c}$.

Rozwiązanie pełne......4 pkt

Przekształcenie wyrażenia do postaci $\frac{a}{a-c} + \frac{b}{b-c} = \frac{2(a-c)}{a-c} = 2$.

III sposób rozwiązania

Z równania a+b=2c otrzymujemy a-c=c-b, więc ciąg a,c,b jest ciągiem arytmetycznym.

$$c = a + r$$
 $b = a + 2r$

Wstawiamy do wyrażenia

$$\frac{a}{a-c} + \frac{b}{b-c} = \frac{a}{a-(a+r)} + \frac{a+2r}{a+2r-(a+r)} = \frac{a}{-r} + \frac{a+2r}{r} = \frac{-a+a+2r}{r} = \frac{2r}{r} = 2$$

Uwaga

Zdający może zauważyć, że a-c=c-b i przekształcić wyrażenie bez wprowadzania r, np. $\frac{a}{a-c}+\frac{b}{b-c}=\frac{a}{c-b}+\frac{b}{b-c}=\frac{a-b}{c-b}=\frac{2c-b-b}{c-b}=\frac{2c-2b}{c-b}=2$.

Schemat oceniania III sposobu rozwiązania

Zadanie 3. (0-6)

Użycie i tworzenie strategii	Rozwiązanie równania kwadratowego z parametrem z zastosowaniem wzorów Viète'a, przeprowadzenie dyskusji i wyciągnięcie wniosków
------------------------------	---

I sposób rozwiazania

Zapisujemy warunki jakie muszą być spełnione, aby równanie

$$x^2 - 4mx - m^3 + 6m^2 + m - 2 = 0$$

posiadało dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $(x_1 - x_2)^2 < 8(m+1)$:

$$\begin{cases} \Delta > 0 \\ (x_1 - x_2)^2 < 8(m+1) \end{cases}$$

Rozwiązujemy nierówność $\Delta > 0$.

$$16m^2 - 4(-m^3 + 6m^2 + m - 2) > 0$$

$$m^3 - 2m^2 - m + 2 > 0$$

$$(m+1)(m-1)(m-2) > 0$$
.

Zatem
$$m \in (-1,1) \cup (2,+\infty)$$
.

Rozwiązujemy nierówność $(x_1 - x_2)^2 < 8(m+1)$, korzystając ze wzorów Viète'a.

$$x_1^2 - 2x_1x_2 + x_2^2 < 8m + 8$$

$$x_1^2 + x_2^2 - 2x_1x_2 < 8m + 8$$

$$x_1^2 + 2x_1x_2 + x_2^2 - 4x_1x_2 < 8m + 8$$

$$(x_1 + x_2)^2 - 4x_1x_2 < 8m + 8$$
. Ponieważ $x_1 + x_2 = 4m$ oraz $x_1 \cdot x_2 = -m^3 + 6m^2 + m - 2$, więc $(4m)^2 - 4(-m^3 + 6m^2 + m - 2) < 8m + 8$.

Przekształcamy tę nierówność do postaci $4m^3 - 8m^2 - 12m < 0$

stad 4m(m-3)(m+1) < 0.

Rozwiazaniem nierówności jest

$$m \in (-\infty, -1) \cup (0,3)$$
.

Wyznaczamy część wspólną otrzymanych zbiorów rozwiązań nierówności:

$$\Delta > 0 \text{ i } (x_1 - x_2)^2 < 8(m+1).$$

Stad
$$m \in (0,1) \cup (2,3)$$
.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów. Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$: $m \in (-1,1) \cup (2,+\infty)$. Za poprawne rozwiązanie tego etapu zdający otrzymuje **1 punkt**.

Uwaga

Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

Drugi etap polega na rozwiązaniu nierówności $(x_1 - x_2)^2 < 8(m+1)$. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

Trzeci etap polega na wyznaczeniu części wspólnej rozwiązań nierówności z etapu pierwszego i drugiego. Za poprawne rozwiązanie trzeciego etapu zdający otrzymuje 1 punkt.

Podział punktów za drugi etap rozwiązania:

1 punkt zdający otrzymuje za

• zapisanie wyrażenia
$$(x_1 - x_2)^2$$
 w postaci $(x_1 + x_2)^2 - 4x_1x_2$ lub $\frac{\Delta}{a^2}$.

3 punkty zdający otrzymuje za

• zapisanie nierówności $(x_1 - x_2)^2 < 8(m+1)$ w postaci nierówności trzeciego stopnia z jedną niewiadomą m, np. $4m^3 - 8m^2 - 12m < 0$.

4 punkty zdający otrzymuje za

• rozwiązanie nierówności trzeciego stopnia: $m \in (-\infty, -1) \cup (0, 3)$.

Uwaσa

Przyznajemy 1 punkt za wyznaczenie części wspólnej zbiorów rozwiązań nierówności z etapu I i etapu II, gdy co najmniej jedna nierówność (albo z etapu I, albo z etapu II) jest rozwiązana poprawnie.

II sposób rozwiązania

Równanie $x^2 - 4mx - m^3 + 6m^2 + m - 2 = 0$ ma dwa różne pierwiastki rzeczywiste x_1 i x_2 , gdy $\Delta > 0$.

Obliczamy
$$\Delta = 16m^2 - 4(-m^3 + 6m^2 + m - 2) = 4(m^3 - 2m^2 - m + 2)$$
.

Rozwiązujemy nierówność $\Delta > 0$.

$$m^3 - 2m^2 - m + 2 > 0$$

 $(m+1)(m-1)(m-2) > 0$.

Zatem $m \in (-1,1) \cup (2,+\infty)$.

Następnie wyznaczamy pierwiastki x_1, x_2 :

$$x_1 = \frac{4m - \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}, \ x_2 = \frac{4m + \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}.$$

Wówczas

$$x_{1} - x_{2} = \frac{4m - 2\sqrt{m^{3} - 2m^{2} - m + 2}}{2} - \frac{4m + 2\sqrt{m^{3} - 2m^{2} - m + 2}}{2}$$

$$x_{1} - x_{2} = \frac{4m - 2\sqrt{m^{3} - 2m^{2} - m + 2} - 4m - 2\sqrt{m^{3} - 2m^{2} - m + 2}}{2}$$

$$x_{1} - x_{2} = \frac{-4\sqrt{m^{3} - 2m^{2} - m + 2}}{2} = -2\sqrt{m^{3} - 2m^{2} - m + 2}$$

i stad

$$(x_1 - x_2)^2 = (-2\sqrt{m^3 - 2m^2 - m + 2})^2 = 4(m^3 - 2m^2 - m + 2).$$

Z warunku $(x_1 - x_2)^2 < 8(m+1)$ otrzymujemy nierówność $4(m^3 - 2m^2 - m + 2) < 8(m+1)$.

Stąd
$$m^3 - 2m^2 - 3m < 0$$
, czyli $m(m^2 - 2m - 3) < 0$, $m(m+1)(m-3) < 0$.

Zatem $m \in (-\infty, -1) \cup (0,3)$.

Wyznaczamy część wspólną otrzymanych rozwiązań nierówności

$$\Delta > 0$$
 i $(x_1 - x_2)^2 < 8(m+1)$: $m \in (0,1) \cup (2,3)$.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$: $m \in (-1,1) \cup (2,+\infty)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwaga

Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

Drugi etap polega na rozwiązaniu nierówności $(x_1 - x_2)^2 < 8(m+1)$. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

Trzeci etap polega na wyznaczeniu części wspólnej zbiorów rozwiązań nierówności z etapu pierwszego i drugiego. Za poprawne rozwiązanie trzeciego etapu zdający otrzymuje 1 punkt.

Podział punktów za drugi etap rozwiazania:

1 punkt zdający otrzymuje za

• wyznaczenie
$$x_1$$
 i x_2 : $x_1 = \frac{4m - \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}$, $x_2 = \frac{4m + \sqrt{4(m^3 - 2m^2 - m + 2)}}{2}$.

2 punkty zdający otrzymuje za

• zapisanie $x_1 - x_2 = -2\sqrt{m^3 - 2m^2 - m + 2}$.

3 punkty zdający otrzymuje za

• obliczenie $(x_1 - x_2)^2 = 4(m^3 - 2m^2 - m + 2)$ i zapisanie nierówności $4(m^3 - 2m^2 - m + 2) < 8(m+1)$.

4 punkty zdający otrzymuje za

• rozwiązanie nierówności trzeciego stopnia: $m \in (-\infty, -1) \cup (0, 3)$.

Rozwiązanie pełne (trzeci etap)......6 pkt

Wyznaczenie części wspólnej rozwiązań nierówności i podanie odpowiedzi: $m \in (0,1) \cup (2,3)$.

<u>Uwagi</u>

- 1. Przyznajemy **1 punkt** za wyznaczenie części wspólnej zbiorów rozwiązań nierówności z etapu I i etapu II, gdy co najmniej jedna nierówność (albo z etapu I, albo z etapu II) jest rozwiązana poprawnie.
- 2. Jeżeli zdający popełni jeden błąd rachunkowy i konsekwentnie do tego błędu poda rozwiązanie, to otrzymuje **5 punktów**.

Zadanie 4. (0–4)

Użycie i tworzenie strategii	Rozwiązanie równania trygonometrycznego
------------------------------	---

I sposób rozwiązania

Wyłączamy przed nawias $2\sin^2 x$: $2\sin^2 x(1-\cos x)=1-\cos x$ i zapisujemy równanie w postaci iloczynowej: $2\sin^2 x(1-\cos x)-(1-\cos x)=0$, $(2\sin^2 x-1)(1-\cos x)=0$. Zatem $2\sin^2 x-1=0$ lub $1-\cos x=0$.

Stad otrzymujemy:

$$\sin x = -\frac{\sqrt{2}}{2}$$

$$\sin x = \frac{\sqrt{2}}{2}$$

$$\cos x = 1$$

$$x = \frac{5}{4}\pi \text{ lub } x = \frac{7}{4}\pi$$

$$\text{lub } x = \frac{1}{4}\pi \text{ lub } x = \frac{3}{4}\pi$$

$$\text{lub } x = 0 \text{ lub } x = 2\pi$$

$$\text{albo}$$

$$x = 225^{\circ} \text{ lub } x = 315^{\circ}$$

$$x = 45^{\circ} \text{ lub } x = 135^{\circ}$$

$$x = 0^{\circ} \text{ lub } x = 360^{\circ}$$

Zatem rozwiązaniami równania $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ są:

$$x = 0$$
 lub $x = \frac{1}{4}\pi$ lub $x = \frac{3}{4}\pi$ lub $x = \frac{5}{4}\pi$ lub $x = \frac{7}{4}\pi$ lub $x = 2\pi$

albo

 $x = 0^{\circ}$ lub $x = 45^{\circ}$ lub $x = 135^{\circ}$ lub $x = 225^{\circ}$ lub $x = 315^{\circ}$ lub $x = 360^{\circ}$.

Schemat oceniania I sposobu rozwiązania

Zapisanie równania w postaci, np.

$$2\sin^2 x(1-\cos x) = 1-\cos x \text{ lub } 2\sin^2 x(1-\cos x) - (1-\cos x) = 0,$$

lub
$$(2\sin^2 x - 1) - \cos x (2\sin^2 x - 1) = 0$$
.

- $\bullet \quad \sin^2 x = \frac{1}{2} \text{ lub } \cos x = 1$
- $\sin x = -\frac{\sqrt{2}}{2}$ lub $\sin x = \frac{\sqrt{2}}{2}$, lub $\cos x = 1$
- $\cos 2x = 0$ lub $\cos x = 1$

$$x = 0$$
, $x = \frac{1}{4}\pi$, $x = \frac{3}{4}\pi$, $x = \frac{5}{4}\pi$, $x = \frac{7}{4}\pi$, $x = 2\pi$

albo

$$x = 0^{\circ}$$
, $x = 45^{\circ}$, $x = 135^{\circ}$, $x = 225^{\circ}$, $x = 315^{\circ}$, $x = 360^{\circ}$.

Uwagi

- 1. Jeżeli zdający podaje ogólne rozwiązania równania $2\sin^2 x 2\sin^2 x \cos x = 1 \cos x$ bez uwzględnienia przedziału $\langle 0, 2\pi \rangle$, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający zapisze równanie w postaci $2\sin^2 x(1-\cos x) = 1-\cos x$, a następnie podzieli obie strony równania przez $\cos x 1$ bez odpowiedniego założenia i rozwiąże tylko równanie $2\sin^2 x 1 = 0$, to za całe zadanie otrzymuje **1 punkt**.
- 3. Jeżeli zdający zapisze równanie w postaci $2\sin^2 x(1-\cos x) = 1-\cos x$, a następnie podzieli obie strony równania przez $\cos x 1$ zakładając, że $\cos x \neq 1$, rozwiąże tylko równanie $2\sin^2 x 1 = 0$ i nie rozpatrzy równania $\cos x = 1$, to za całe zadanie otrzymuje **2 punkty**.

II sposób rozwiązania

Zapisujemy równanie za pomocą jednej funkcji trygonometrycznej $2(1-\cos^2 x)-2(1-\cos^2 x)\cos x=1-\cos x$ i przekształcamy do postaci

$$2 - 2\cos^2 x - 2\cos x + 2\cos^3 x - 1 + \cos x = 0$$

$$2\cos^3 x - 2\cos^2 x - \cos x + 1 = 0$$
.

Następnie zapisujemy to równanie w postaci iloczynowej

$$(2\cos^2 x - 1)(\cos x - 1) = 0$$
.

Zatem

$$2\cos^2 x - 1 = 0$$
 lub $\cos x - 1 = 0$.

Stad otrzymujemy:

$$\cos x = -\frac{\sqrt{2}}{2}$$

$$\cos x = \frac{\sqrt{2}}{2}$$

$$\cos x = 1$$

$$x = \frac{3}{4}\pi \text{ lub } x = \frac{5}{4}\pi$$

$$\text{lub } x = \frac{1}{4}\pi \text{ lub } x = \frac{7}{4}\pi, \quad \text{lub } x = 0 \text{ lub } x = 2\pi$$

$$\text{albo}$$

$$x = 135^{\circ} \text{ lub } x = 225^{\circ}$$

$$x = 45^{\circ} \text{ lub } x = 315^{\circ}$$

$$x = 0^{\circ} \text{ lub } x = 360^{\circ}$$

Zatem rozwiązaniami równania $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ sa:

$$x = 0$$
 lub $x = \frac{1}{4}\pi$ lub $x = \frac{3}{4}\pi$ lub $x = \frac{5}{4}\pi$ lub $x = \frac{7}{4}\pi$ lub $x = 2\pi$

albo

$$x = 0^{\circ}$$
 lub $x = 45^{\circ}$ lub $x = 135^{\circ}$ lub $x = 225^{\circ}$ lub $x = 315^{\circ}$ lub $x = 360^{\circ}$.

Schemat oceniania II sposobu rozwiązania

$$(2\cos^2 x - 1)(\cos x - 1) = 0$$
 lub $(\sqrt{2}\cos x - 1)(\sqrt{2}\cos x + 1)(\cos x - 1) = 0$.

Rozwiązanie, w którym jest istotny postęp......2 pkt Zapisanie równania w postaci alternatywy:

$$\bullet \quad \cos^2 x = \frac{1}{2} \text{ lub } \cos x = 1$$

•
$$\cos x = -\frac{\sqrt{2}}{2}$$
 lub $\cos x = \frac{\sqrt{2}}{2}$, lub $\cos x = 1$.

Zapisanie wszystkich rozwiązań równania $2\sin^2 x - 2\sin^2 x \cos x = 1 - \cos x$ w podanym przedziale:

$$x = 0$$
, $x = \frac{1}{4}\pi$, $x = \frac{3}{4}\pi$, $x = \frac{5}{4}\pi$, $x = \frac{7}{4}\pi$, $x = 2\pi$

albo

$$x = 0^{\circ}$$
, $x = 45^{\circ}$, $x = 135^{\circ}$, $x = 225^{\circ}$, $x = 315^{\circ}$, $x = 360^{\circ}$.

Uwagi

- 1. Jeżeli zdający podaje ogólne rozwiązania równania $2\sin^2 x 2\sin^2 x \cos x = 1 \cos x$ bez uwzględnienia przedziału $\langle 0, 2\pi \rangle$, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający zapisze równanie w postaci $2\cos^2 x(\cos x 1) = \cos x 1$, a następnie podzieli obie strony równania przez $\cos x 1$ bez odpowiedniego założenia i rozwiąże tylko równanie $2\cos^2 x 1 = 0$, to za całe zadanie otrzymuje **1 punkt**.
- 3. Jeżeli zdający zapisze równanie w postaci $2\cos^2 x(\cos x 1) = \cos x 1$, a następnie podzieli obie strony równania przez $\cos x 1$ <u>zakładając, że</u> $\cos x \neq 1$, rozwiąże tylko równanie $2\cos^2 x 1 = 0$ i nie rozpatrzy równania $\cos x = 1$, to za całe zadanie otrzymuje **2 punkty**.

Zadanie 5. (0–4)

Użycie i tworzenie strategii	Zastosowanie własności ciągu geometrycznego, wzorów na <i>n</i> -ty wyraz tego ciągu i na sumę <i>n</i> wyrazów ciągu arytmetycznego
------------------------------	--

I sposób rozwiązania

Z własności ciągu geometrycznego zapisujemy równość: $q = \frac{a_{n+1}}{a_n} = \frac{3^{x_{n+1}}}{3^{x_n}} = 3^{x_{n+1}-x_n}$.

Zatem $27 = 3^{x_{n+1}-x_n}$. Stad $x_{n+1} - x_n = 3$ dla $n \ge 1$.

Zauważamy, że jeśli dla dowolnej liczby naturalnej n: $x_{n+1} - x_n = 3$, to ciąg (x_n) jest arytmetyczny o różnicy r = 3.

Z własności ciągu arytmetycznego zapisujemy układ równań

$$\begin{cases} x_1 + (x_1 + r) + \dots + (x_1 + 9r) = 145 \\ r = 3 \end{cases}$$

Doprowadzamy układ do postaci: $\begin{cases} 10x_1 + 45r = 145 \\ r = 3 \end{cases}$ i podstawiamy r = 3 do pierwszego

równania. Otrzymujemy równanie z jedną niewiadomą: $10x_1 + 135 = 145$. Stąd $x_1 = 1$.

Schemat oceniania I sposobu rozwiązania

$$\begin{cases} x_1 + (x_1 + r) + \dots + (x_1 + 9r) = 145 \\ r = 3 \end{cases} \text{ lub } \begin{cases} \frac{2x_1 + 9r}{2} \cdot 10 = 145 \\ r = 3 \end{cases}, \text{ lub } \begin{cases} 10x_1 + 45r = 145 \\ r = 3 \end{cases},$$

lub równania $x_1 + (x_1 + 3) + ... + (x_1 + 27) = 145$ i przekształcenie do równania w postaci, np.: $10x_1 + 135 = 145$.

Uwaga

Jeżeli zdający pomyli własności ciągu arytmetycznego i geometrycznego, to za całe rozwiązanie otrzymuje **0 punktów**.

II sposób rozwiązania

Z warunków zadania zapisujemy równość: $3^{x_1+x_2+...+x_n} = 3^{145}$.

Zatem

$$3^{x_1} \cdot 3^{x_2} \cdot \dots \cdot 3^{x_n} = 3^{145}$$

Korzystając z tego, że ciąg (a_n) jest geometryczny o ilorazie q = 27 otrzymujemy

$$3^{x_1} \cdot 3^{x_1} \cdot 27 \dots \cdot 3^{x_1} \cdot 27^9 = 3^{145}$$

Stad

$$3^{10x_1} \cdot 27^{1+2+\dots+9} = 3^{145}$$

$$3^{10x_1} \cdot 3^{3.45} = 3^{145}$$

$$3^{10x_1+135} = 3^{145}$$

$$10x_1 + 135 = 145$$

$$10x_1 = 10$$

$$x_1 = 1$$

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania. 1 pkt Wykorzystanie warunków zadania i zapisanie równości: $3^{x_1+x_2+...+x_n}=3^{145}$ Rozwiązanie, w którym jest istotny postęp. 2 pkt Wykorzystanie własności ciągu geometrycznego i zapisanie równania: $3^{x_1} \cdot 3^{x_1} \cdot 27 \cdot ... \cdot 3^{x_1} \cdot 27^9 = 3^{145}$. Pokonanie zasadniczych trudności zadania 3 pkt Przekształcenie równania do postaci: $10x_1 + 135 = 145$. Rozwiązanie pełne 4 pkt

Obliczenie x_1 : $x_1 = 1$.

Zadanie 6. (0-4)

ا ع	Znalezienie związków miarowych w figurach płaskich z zastosowaniem trygonometrii
	1 38

I sposób rozwiązania

Z treści zadania wynika, że $|BD| = \frac{1}{2}|BC|$ i $| \angle ABC | = 30^{\circ}$ oraz |BE| = 4.

Z trójkąta prostokątnego *BEC* otrzymujemy: $\cos 30^{\circ} = \frac{|BE|}{|BC|}$.

Zatem
$$\frac{4}{|BC|} = \frac{\sqrt{3}}{2}$$
. Stad $|BC| = \frac{8}{\sqrt{3}}$ i $|BD| = \frac{4}{\sqrt{3}}$.

Obliczamy |AD|, stosując twierdzenie cosinusów dla trójkąta ABD.

$$|AD|^2 = |AB|^2 + |BD|^2 - 2|AB| \cdot |BD| \cdot \cos \ll ABD,$$

$$|AD|^2 = 8^2 + \left(\frac{4}{\sqrt{3}}\right)^2 - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2},$$

$$|AD|^2 = 64 + \frac{16}{3} - 32 = \frac{16 \cdot 7}{3}$$
.

Stad
$$|AD| = 4\sqrt{\frac{7}{3}} = \frac{4}{3}\sqrt{21}$$
.

Schemat oceniania I sposobu rozwiązania

$$|BC| = \frac{8}{\sqrt{3}}$$
 lub $|CE| = \frac{4}{\sqrt{3}}$.

$$|AD|^2 = 8^2 + \left(\frac{4}{\sqrt{3}}\right)^2 - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \cos 30^\circ$$

Rozwiązanie pełne4 pkt

Wyznaczenie długości środkowej AD: $|AD| = \frac{4\sqrt{21}}{3}$.

Uwaga

Jeśli zdający błędnie wyznaczy wartość cos 30° i konsekwentnie doprowadzi rozwiązanie do końca, to otrzymuje **3 punkty**.

II sposób rozwiązania

Wprowadzamy oznaczenia: x – długość ramienia trójkąta ABC,

y – długość środkowej AD tego trójkąta.

Zapisujemy twierdzenie cosinusów dla trójkąta ABC, gdzie $| < ACB | = 120^{\circ}$:

 $8^2 = x^2 + x^2 - 2x^2 \cos 120^\circ$. Przekształcamy równanie do postaci $64 = 2x^2 + x^2$.

Stąd otrzymujemy: $x = \frac{8}{\sqrt{3}}$. Ponieważ $|CD| = \frac{1}{2}x$, stąd $|CD| = \frac{4}{\sqrt{3}}$.

Obliczamy |AD|, stosując twierdzenie cosinusów dla trójkąta ADC:

$$y^{2} = \left(\frac{8}{\sqrt{3}}\right)^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \cos 120^{\circ} = \left(\frac{8}{\sqrt{3}}\right)^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \left(-\frac{1}{2}\right),$$

$$y^{2} = \frac{64}{3} + \frac{16}{3} + \frac{32}{3} = \frac{112}{3}. \text{ Stąd otrzymujemy } y = \frac{4\sqrt{7}}{\sqrt{3}} = \frac{4\sqrt{21}}{3}.$$

Schemat oceniania II sposobu rozwiązania

$$y^2 = \left(\frac{8}{\sqrt{3}}\right)^2 + \left(\frac{4}{\sqrt{3}}\right)^2 - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \cos 120^\circ$$

albo

$$y^{2} = \left(\frac{8}{\sqrt{3}}\right)^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot \frac{8}{\sqrt{3}} \cdot \frac{4}{\sqrt{3}} \cdot \left(-\frac{1}{2}\right) = \frac{64}{3} + \frac{16}{3} + \frac{32}{3} = \frac{112}{3}.$$

Rozwiązanie pełne4 pkt

Wyznaczenie długości środkowej AD: $y = \frac{4\sqrt{21}}{3}$.

Uwaga

Jeśli zdający błędnie wyznaczy wartość cos120° (np. zapomina o znaku) i konsekwentnie doprowadzi rozwiązanie do końca, to otrzymuje **3 punkty**.

III sposób rozwiązania

Wprowadzamy oznaczenia: x – długość ramienia trójkąta ABC, y – długość środkowej AD tego trójkąta.

Zapisujemy twierdzenie cosinusów dla trójkata ABC, gdzie $| \angle ABC | = 30^{\circ}$

$$x^2 = 8^2 + x^2 - 2 \cdot 8 \cdot x \cdot \cos 30^\circ$$

Przekształcamy równanie do postaci: $64 = 2 \cdot 8 \cdot x \cdot \frac{\sqrt{3}}{2}$.

Stąd otrzymujemy:
$$x = \frac{8}{\sqrt{3}}$$
. Ponieważ $|BD| = \frac{1}{2}x$, stąd $|BD| = \frac{4}{\sqrt{3}}$.

Obliczamy |AD| stosując twierdzenie cosinusów dla trójkąta ABD:

$$y^{2} = 8^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \cos 30^{\circ}, \ y^{2} = 8^{2} + \left(\frac{4}{\sqrt{3}}\right)^{2} - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 64 + \frac{16}{3} - 32 = \frac{112}{3}.$$

Stąd otrzymujemy $y = \frac{4\sqrt{21}}{3}$.

Schemat oceniania III sposobu rozwiązania

np.
$$x^2 = 8^2 + x^2 - 2 \cdot 8 \cdot x \cdot \cos 30^\circ$$
.

Obliczenie x lub x^2 : $x = \frac{8}{\sqrt{3}}$, $x^2 = \frac{64}{3}$.

$$y^2 = 8^2 + \left(\frac{4}{\sqrt{3}}\right)^2 - 2 \cdot 8 \cdot \frac{4}{\sqrt{3}} \cdot \cos 30^\circ$$
.

Rozwiązanie pełne4 pkt

Wyznaczenie długości środkowej y: $y = \frac{4\sqrt{21}}{3}$.

Uwaga

Jeśli zdający błędnie wyznaczy wartość cos 30° i konsekwentnie doprowadzi rozwiązanie do końca, to otrzymuje **3 punkty**.

IV sposób rozwiązania

Z treści zadania wynika, że |AE| = |EB| = 4. Ponieważ $DF \parallel CE$ i D jest środkiem odcinka BC, to F jest środkiem odcinka EB. Stąd |FB| = 2.

Trójkąt *BDF* jest "połową" trójkąta równobocznego o wysokości *FB*, więc $|FB| = \frac{2|DF|\sqrt{3}}{2}$.

Stad
$$|DF| = \frac{|FB|}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$
.

Z twierdzenia Pitagorasa dla trójkąta ADF obliczamy długość środkowej AD:

$$|AD| = \sqrt{|AF|^2 + |DF|^2} = \sqrt{6^2 + \left(\frac{2}{\sqrt{3}}\right)^2} = \sqrt{36 + \frac{4}{3}} = \sqrt{\frac{112}{3}} = 4\sqrt{\frac{7}{3}} = \frac{4\sqrt{21}}{3}.$$

Schemat oceniania IV sposobu rozwiązania

<u>Uwaga</u>

Rozwiązanie analityczne jest zastosowaniem IV sposobu rozwiązania.

V sposób rozwiązania

Z treści zadania wynika, że |AE| = |EB| = 4. Trójkąt CEB jest "połową" trójkąta równobocznego o wysokości FB, więc $|EB| = \frac{2|CE|\sqrt{3}}{2}$. Stąd $|CE| = \frac{|EB|}{\sqrt{3}} = \frac{4}{\sqrt{3}}$.

Z twierdzenia o środku ciężkości trójkąta wynika, że $|AS| = \frac{2}{3}|AD|$ i $|SE| = \frac{1}{3}|CE| = \frac{1}{3} \cdot \frac{4}{\sqrt{3}} = \frac{4}{3\sqrt{3}}$.

Z twierdzenia Pitagorasa dla trójkąta ASE mamy:

$$|AS|^2 = |AE|^2 + |SE|^2 \text{ czyli } \left(\frac{2}{3}|AD|\right)^2 = 4^2 + \left(\frac{4}{3\sqrt{3}}\right)^2.$$

Stąd

$$\frac{4}{9}|AD|^2 = 16 + \frac{16}{27}$$

$$\frac{4}{9}|AD|^2 = \frac{448}{27}$$

$$|AD| = \sqrt{\frac{112}{3}} = 4\sqrt{\frac{7}{3}} = \frac{4\sqrt{21}}{3}.$$

Schemat oceniania V sposobu rozwiązania

Zadanie 7. (0–4)

•	Rozwiązanie zadania dotyczącego wzajemnego położenia prostej i okręgu
	prostej i okręgu

I sposób rozwiązania (parametryczny)

Stwierdzamy, że prosta o równaniu x = 2 nie jest styczna do okręgu $x^2 + y^2 + 2x - 2y - 3 = 0$ (odległość środka okręgu od tej prostej jest większa od promienia). Zapisujemy równanie kierunkowe prostej przechodzącej przez punkt A = (2,0):

y = a(x-2) lub y = ax-2a w zależności od parametru a (gdzie a jest współczynnikiem kierunkowym prostej stycznej).

Zapisujemy układ równań $\begin{cases} x^2 + y^2 + 2x - 2y - 3 = 0 \\ y = ax - 2a \end{cases}$ i doprowadzamy do równania

kwadratowego z niewiadomą x, np. $x^2 + (ax - 2a)^2 + 2x - 2(ax - 2a) - 3 = 0$ Prosta y = ax - 2a jest styczna do okręgu wtedy, gdy układ ten ma dokładnie jedno rozwiązanie, czyli gdy równanie kwadratowe $x^2 + (ax - 2a)^2 + 2x - 2(ax - 2a) - 3 = 0$ ma dokładnie jedno rozwiązanie. Przekształcamy równanie

$$x^{2} + a^{2}x^{2} - 4a^{2}x + 4a^{2} + 2x - 2ax + 4a - 3 = 0,$$

$$x^{2}(1+a^{2}) + x(-4a^{2} - 2a + 2) + 4a^{2} + 4a - 3 = 0.$$

Zapisujemy warunek na to, aby równanie $x^2(1+a^2)+x(-4a^2-2a+2)+4a^2+4a-3=0$ miało jedno rozwiązanie: $\Delta=0$.

Zatem
$$(-4a^2 - 2a + 2)^2 - 4 \cdot (1 + a^2) \cdot (4a^2 + 4a - 3) = 0$$
.
 $4(2a^2 + a - 1)^2 - 4 \cdot (1 + a^2) \cdot (4a^2 + 4a - 3) = 0$
Stad $2a^2 + 3a - 2 = 0$.

rozwiązujemy równanie $2a^2 + 3a - 2 = 0$:

$$\Delta = 25$$

$$a_1 = -2$$
 lub $a_2 = \frac{1}{2}$.

Z tego, że a_1 , a_2 oznaczają współczynniki kierunkowe prostych stycznych i $a_1 \cdot a_2 = -1$ wynika, że styczne sa do siebie prostopadłe.

Stad miara kata między stycznymi jest równa 90°. albo

korzystamy ze wzorów Viète'a i zapisujemy $a_1 \cdot a_2 = \frac{-2}{2} = -1$, gdzie a_1 i a_2 są pierwiastkami równania $2a^2 + 3a - 2 = 0$.

Z tego, że a_1 , a_2 oznaczają współczynniki kierunkowe prostych stycznych i $a_1 \cdot a_2 = -1$ wynika, że styczne są do siebie prostopadłe.

Stad miara kata między stycznymi jest równa 90°.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp1 pkt Zapisanie równania kierunkowego prostej przechodzącej przez punkt A = (2,0) w postaci,

$$y = a(x-2)$$
 lub $y = ax - 2a$, lub $ax - y - 2a = 0$.

Pokonanie zasadniczych trudności zadania2 pkt

Zapisanie układu równań $\begin{cases} x^2 + y^2 + 2x - 2y - 3 = 0 \\ y = ax - 2a \end{cases}$ i doprowadzenie do równania

kwadratowego z niewiadomą x, gdzie a jest parametrem, np.

$$x^{2}(1+a^{2})+x(-4a^{2}-2a+2)+4a^{2}+4a-3=0$$
.

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe) 3 pkt Rozwiązanie pełne4 pkt

- Obliczenie wartości parametru a, dla których równanie ma jedno rozwiązanie i zapisanie, że dla tych wartości a proste styczne są prostopadłe albo
- Wykorzystanie wzorów Viète'a do zapisania $a_1 \cdot a_2 = -1$ i stwierdzenie, że proste styczne sa prostopadłe.

II sposób rozwiązania (odległość punktu od prostej)

Przekształcamy równanie okręgu $x^2 + y^2 + 2x - 2y - 3 = 0$ do postaci $(x+1)^2 + (y-1)^2 = 5$.

Wyznaczamy współrzędne środka S i promień r tego okręgu: S = (-1,1), $r = \sqrt{5}$.

x = 2Stwierdzamy, że prosta o równaniu nie jest styczna do $x^2 + y^2 + 2x - 2y - 3 = 0$.

Zapisujemy równanie kierunkowe prostej przechodzącej przez punkt A = (2,0) i stycznej do okręgu:

y = a(x-2) lub y = ax - 2alub ax - y - 2a = 0 w zależności od parametru a (gdzie a oznacza współczynnik kierunkowy prostej stycznej).

Wyznaczamy odległość środka S okręgu od prostej o równaniu ax - y - 2a = 0:

$$d = \frac{\left| -a - 1 - 2a \right|}{\sqrt{a^2 + 1}}.$$

Ponieważ promień okręgu jest równy odległości środka okręgu S od stycznej, więc otrzymujemy równanie

$$\sqrt{5} = \frac{\left| -a - 1 - 2a \right|}{\sqrt{a^2 + 1}}$$

Przekształcamy to równanie

$$\sqrt{5a^2 + 5} = |-3a - 1|$$
$$5a^2 + 5 = 9a^2 + 6a + 1$$

$$3u + 3 - 9u + 0u +$$

$$4a^2 + 6a - 4 = 0$$

stąd

$$2a^2 + 3a - 2 = 0$$
.

Dalej postępujemy jak w sposobie I.

Schemat oceniania II sposobu rozwiązania

$$r = \sqrt{5}$$
.

III sposób rozwiązania (punkty styczności)

Przekształcamy równanie okręgu $x^2 + y^2 + 2x - 2y - 3 = 0$ do postaci $(x+1)^2 + (y-1)^2 = 5$.

Wyznaczamy współrzędne środka S i promień r tego okręgu: S = (-1,1), $r = \sqrt{5}$.

Wykonujemy rysunek, na którym zaznaczamy okrąg o środku S = (-1,1) i promieniu $r = \sqrt{5}$ oraz punkt A = (2,0).

Niech punkty B i C będą punktami styczności prostych poprowadzonych z punktu A = (2,0) do okręgu o równaniu $(x+1)^2 + (y-1)^2 = 5$.

Wówczas $| \angle SBA | = | \angle SCA | = 90^{\circ}$ i |SA| jest przeciwprostokątną w trójkątach ACS i ABS.

Obliczamy lub odczytujemy długość odcinka |SA|:

$$|SA| = \sqrt{(2+1)^2 + (0-1)^2} = \sqrt{9+1} = \sqrt{10}$$
.

Ponieważ
$$|SB|^2 + |AB|^2 = |SA|^2$$
 i $|SC|^2 + |CA|^2 = |SA|^2$, to $|AB| = \sqrt{5}$ i $|AC| = \sqrt{5}$.

Stad
$$|SB| = |AB| = |AC| = |SC|$$
.

Zapisujemy równanie okręgu o środku w punkcie A = (2,0) i promieniu $|AB| = \sqrt{5}$:

$$(x-2)^2 + y^2 = 5.$$

Punkty przecięcia okręgów o równaniach $(x+1)^2 + (y-1)^2 = 5$ i $(x-2)^2 + y^2 = 5$, które są jednocześnie punktami styczności prostych stycznych do okręgu $(x+1)^2 + (y-1)^2 = 5$, poprowadzonych przez punkt A = (2,0), to punkty B i C. Wyznaczamy ich współrzędne rozwiązując układ równań

$$\begin{cases} (x+1)^2 + (y-1)^2 = 5 \\ (x-2)^2 + y^2 = 5 \end{cases}$$

lub odczytujemy z wykresu: B = (1,2) i C = (0,-1).

Przekształcamy układ równań do równania i wyznaczamy y w zależności od x:

$$(x+1)^{2} + (y-1)^{2} = (x-2)^{2} + y^{2}$$

$$x^{2} + 2x + 1 + y^{2} - 2y + 1 = x^{2} - 4x + 4 + y^{2}$$

$$-4x + 4 - 2x + 2y - 2 = 0$$

$$-6x + 2y + 2 = 0$$

$$2y = 6x - 2$$

$$y = 3x - 1$$

Podstawiamy y = 3x - 1 do równania $(x-2)^2 + y^2 = 5$.

Przekształcamy to równanie

$$(x-2)^{2} + (3x-1)^{2} = 5$$

$$10x^{2} - 10x = 0$$

$$10x(x-1) = 0$$
Stad $x = 0$ lub $x - 1 = 0$.
Zatem $x = 0$ lub $x = 1$.

Zatem y = -1 lub y = 2.

Punkty styczności mają współrzędne B = (1,2) i C = (0,-1).

Zapisujemy równania stycznych AB i AC do okręgu $(x+1)^2 + (y-1)^2 = 5$:

$$y=-2x+4$$
 i $y=\frac{1}{2}x-1$ lub tylko ich współczynniki kierunkowe: $a_1=-2$, $a_2=\frac{1}{2}$.
Ponieważ $-2\cdot\frac{1}{2}=-1$, to proste *AB* i *AC* są prostopadłe.

Schemat oceniania III sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp1 pkt Zauważenie, że trójkąty ACS i ABS są prostokątne i obliczenie długości przeciwprostokątnej, np. $|SA| = \sqrt{10}$.

Pokonanie zasadniczych trudności zadania2 pkt

Zapisanie i rozwiązanie układu równań $\begin{cases} (x+1)^2 + (y-1)^2 = 5 \\ (x-2)^2 + y^2 = 5 \end{cases} : \begin{cases} x=1 \\ y=2 \end{cases} \text{ lub } \begin{cases} x=0 \\ y=-1 \end{cases}$

albo

Odczytanie z wykresu współrzędnych punktów styczności: B = (1,2), C = (0,-1).

Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)3 pkt

Wyznaczenie równań stycznych do okregu lub tylko ich współczynników kierunkowych i zapisanie, że proste styczne są prostopadłe.

IV sposób rozwiązania

Wyznaczamy współrzędne środka S i promień r tego okręgu: S = (-1,1), $r = \sqrt{5}$.

Wykonujemy rysunek, na którym zaznaczamy okrąg o środku S = (-1,1) i promieniu $r = \sqrt{5}$ oraz punkt A = (2,0).

$$|SB| = \sqrt{5}$$

$$|SA| = \sqrt{(-1-2)^2 + (1-0)^2} = \sqrt{10}$$

$$\sin | \ll SAB| = \frac{\sqrt{5}}{\sqrt{10}} = \frac{\sqrt{2}}{2}$$
Stad $| \ll SAB| = 45^\circ$ czyli $| \ll BAC| = 90^\circ$.

Schemat oceniania IV sposobu rozwiązania

Zadanie 8. (0–4)

Znalezienie związków miarowych w graniastosłupie, wyznaczenie największej wartości funkcji

Rozwiązanie

Wprowadzamy oznaczenia: a – długość krawędzi podstawy graniastosłupa,

h − długość krawędzi bocznej graniastosłupa.

Z tego, że suma długości wszystkich krawędzi graniastosłupa prawidłowego sześciokątnego jest równa 24, mamy 12a + 6h = 24.

Wyznaczamy jedną ze zmiennych: h = 4 - 2a lub $a = 2 - \frac{h}{2}$.

Pole P powierzchni bocznej jest równe P = 6ah dla $a \in (0,2)$ oraz $h \in (0,4)$.

Aby wyznaczyć długość krawędzi podstawy graniastosłupa, którego pole powierzchni bocznej jest największe,

• zapisujemy funkcję P w zależności od zmiennej a $P(a) = 6a(4-2a), P(a) = -12a^2 + 24a.$ Pole P ma największą wartość, gdy a = 1.

albo

• zapisujemy funkcję P w zależności od zmiennej h

$$P(h) = 6h\left(2 - \frac{h}{2}\right), P(h) = -3h^2 + 12h.$$

Pole P ma największą wartość, gdy h = 2. Zatem a = 1.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp......2 pkt

Zapisanie pola P powierzchni bocznej graniastosłupa oraz wyznaczenie a lub h w zależności od jednej zmiennej, np.:

$$P = 6ah \text{ oraz } a = 2 - \frac{h}{2} \text{ lub } h = 4 - 2a.$$

Pokonanie zasadniczych trudności zadania 3 pkt

Zapisanie pola powierzchni bocznej w zależności od jednej zmiennej:

$$P(a) = 6a(4-2a)$$
 lub $P(h) = 6h\left(2-\frac{h}{2}\right)$.

Rozwiązanie pełne4 pkt

Obliczenie długość krawędzi podstawy graniastosłupa, którego pole powierzchni bocznej jest największe: a = 1.

Uwaga

Jeżeli zdający wyznaczy tylko wartość h=2, dla której pole powierzchni bocznej jest największe, to otrzymuje **3 punkty**.

Zadanie 9. (0-4)

Wykorzystanie wzorów na liczbę permutacji, kombinacji i wariacji do zliczania obiektów w sytuacjach kombinatorycznych
Kombinatorycznych

Rozwiązanie

Wybieramy miejsce dla dwójek. Jest $\binom{8}{2}$ = 28 takich miejsc.

Wybieramy miejsce dla trójek. Jest $\binom{6}{3}$ = 20 takich miejsc.

Na pozostałych trzech miejscach mogą wystąpić cyfry: 1, 4, 5, 6, 7, 8, 9. Jest 7³ ciągów trójelementowych ze zbioru siedmioelementowego.

Zatem jest $28 \cdot 20 \cdot 7^3 = 4^2 \cdot 5 \cdot 7^4 = 192080$ liczb spełniających warunki zadania.

Schemat oceniania

Uwagi

1. Zdający może obliczać liczby miejsc dla dwójek i trójek w sposób następujący:

$$\binom{8}{5}\binom{5}{3}$$
 albo $\binom{8}{5}\binom{5}{2}$, albo najpierw miejsca dla cyfr różnych od 2 i od 3 i potem miejsca dla dwójek (lub trójek): $\binom{8}{3}\binom{5}{2}$ ($\binom{8}{3}\binom{5}{3}$).

- 2. Jeżeli zdający rozwiąże zadanie przy założeniu, że pozostałe trzy liczby "są różne", otrzymując $\binom{8}{2}\binom{6}{3} \cdot 7 \cdot 6 \cdot 5$, to otrzymuje **3 punkty**.
- 3. Za rozwiązanie $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 7^3$ zdający otrzymuje **0 punktów**.
- 4. Jeżeli zdający poprawnie rozwiąże zadanie: ile jest liczb ośmiocyfrowych w zapisie których nie występuje zero, natomiast występują co najmniej dwie dwójki i występują co najmniej trzy trójki, to otrzymuje 4 punkty (poprawny wynik: 247240).
- 5. Odpowiedź $\binom{8}{2}\binom{6}{3} \cdot 9^3$ jest błędna (błąd merytoryczny). W takim przypadku zdający otrzymuje **0 punktów**.

Zadanie 10. (0-3)

Rozumowanie i argumentacja Znalezienie związków miarowych w figurach płaskich

Rozwiązanie

Ponieważ punkty N i P są środkami boków DC i AC trójkąta ADC, więc $NP \parallel AD$. Punkty M i Q są środkami boków AB i DB trójkąta ABD, więc $MQ \parallel AD$. Zatem $NP \parallel MQ$.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego
rozwiązania1 pkt
Zapisanie, że: $NP \parallel AD$ lub $MQ \parallel AD$.
Pokonanie zasadniczych trudności zadania2 pkt
Zapisanie i uzasadnienie, że $NP \parallel AD$ oraz $MQ \parallel AD$.
Rozwiązanie pełne3 pkt
Zapisanie wniosku, że $NP \parallel MQ$.

Zadanie 11. (0-6)

Użycie i tworzenie strategii	Znalezienie związków miarowych w ostrosłupie
------------------------------	--

I sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = | \not\prec HMS |$, |AC| = 6x, |AS| = 5x. Ponieważ $|AH| = \frac{1}{2} |AC|$ stąd |AH| = 3x.

Z twierdzenia Pitagorasa dla trójkąta *CHS* otrzymujemy:
$$|SH| = \sqrt{|CS|^2 - |HC|^2} = \sqrt{(5x)^2 - (3x)^2} = \sqrt{25x^2 - 9x^2} = 4x .$$

Ponieważ
$$|BC| = \frac{|AC|}{\sqrt{2}}$$
, stąd $|BC| = \frac{6x}{\sqrt{2}}$.

Zatem
$$|CM| = \frac{1}{2}|BC| = \frac{1}{2} \cdot \frac{6x}{\sqrt{2}} = \frac{3x}{\sqrt{2}}$$
.

Z twierdzenia Pitagorasa dla trójkąta MCS otrzymujemy $\left|SM\right|^2 = \left|CS\right|^2 - \left|CM\right|^2$.

Stad
$$|SM| = \sqrt{25x^2 - \frac{9}{2}x^2} = \sqrt{\frac{50 - 9}{2}x^2} = \sqrt{\frac{41}{2}x^2}$$
, $|SM| = \frac{\sqrt{41}}{\sqrt{2}} \cdot x$.

Zatem
$$\sin \alpha = \frac{|SH|}{|SM|} = \frac{4x}{\frac{\sqrt{41}}{\sqrt{2}} \cdot x} = \frac{4\sqrt{2}}{\sqrt{41}} = \frac{4\sqrt{82}}{41}.$$

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego

Schemat oceniania I sposobu rozwiązania

rozwiązania zadania pkt
Wyznaczenie $ AH = 3x$ i $ SH = 4x$ przy przyjętych oznaczeniach, np.: $\alpha = \not\prec HMS $,
AC = 6x, AS = CS = 5x.
Rozwiązanie, w którym jest istotny postęp3 pkt
Wyznaczenie długości BC : $ BC = \frac{ AC }{\sqrt{2}} = \frac{6x}{\sqrt{2}}$ lub $ BC = 3x\sqrt{2}$ i wyznaczenie długości CM :
$3x\sqrt{2}$

$$|CM| = \frac{3x\sqrt{2}}{2}$$
 lub $|CM| = \frac{3x}{\sqrt{2}}$.

Uwagi

- 1. Jeśli zdający wyznaczy jedną z wielkości |BC| lub |BM| i na tym poprzestanie lub dalej popełni błędy, to za rozwiązanie otrzymuje **2 punkty**.
- 2. Jeżeli zdający obliczy $tg\alpha$ lub $\cos\alpha$, a nie obliczy $\sin\alpha$ lub obliczy go z błędem, to otrzymuje **5 punktów**.

II sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = | \not\prec HMS |$, a = |AB| = |BC| = |CD| = |AD|, stąd $|AC| = a\sqrt{2}$ i $|AH| = \frac{1}{2}a\sqrt{2}$.

Zapisujemy równość wynikającą z treści zadania:

$$\frac{|AC|}{|AS|} = \frac{6}{5} \text{ czyli } \frac{a\sqrt{2}}{|AS|} = \frac{6}{5}, \text{ stąd } |AS| = \frac{5a\sqrt{2}}{6}.$$

Z twierdzenia Pitagorasa dla trójkąta prostokątnego ASH otrzymujemy:

$$|SH| = \sqrt{|AS|^2 - |AH|^2}$$
, stad $|SH| = \sqrt{\left(\frac{5a\sqrt{2}}{6}\right)^2 - \left(\frac{a\sqrt{2}}{2}\right)^2} = \sqrt{\frac{25a^2 \cdot 2}{36} - \frac{a^2}{2}} = \sqrt{\frac{16a^2}{18}} = \frac{4a}{3\sqrt{2}}$.

Z twierdzenia Pitagorasa dla trójkąta prostokątnego SHM otrzymujemy:

$$|SM| = \sqrt{|SH|^2 + |HM|^2}$$
 (gdzie $|HM| = \frac{1}{2}a$.

Stad
$$|SM| = \sqrt{\left(\frac{4a}{3\sqrt{2}}\right)^2 + \left(\frac{a}{2}\right)^2} = \sqrt{\frac{16a^2}{18} + \frac{a^2}{4}} = \sqrt{\frac{32a^2 + 9a^2}{36}} = \sqrt{\frac{41a^2}{36}} = \frac{\sqrt{41}}{6} \cdot a$$
.

Zatem
$$\sin \alpha = \frac{|SH|}{|SM|} = \frac{\frac{4a}{3\sqrt{2}}}{\frac{\sqrt{41}a}{6}} = \frac{4a}{3\sqrt{2}} \cdot \frac{6}{\sqrt{41}a} = \frac{4\sqrt{82}}{41}.$$

Schemat oceniania II sposobu rozwiązania

Wprowadzenie oznaczeń: $\alpha = | \angle HMS |$, $|AC| = a\sqrt{2}$, gdzie a = |AB| = |BC| = |CD| = |AD|

$$\frac{|AC|}{|AS|} = \frac{6}{5}$$
 oraz wyznaczenie $|AS| = \frac{5a\sqrt{2}}{6}$.

$$|SH| = \sqrt{\left(\frac{5a\sqrt{2}}{6}\right)^2 - \left(\frac{a\sqrt{2}}{2}\right)^2}$$
 i wyznaczenie: $|SH| = \frac{4a}{3\sqrt{2}}$ lub $|SH| = \frac{2a\sqrt{2}}{3}$.

$$|SM| = \sqrt{\left(\frac{4a}{3\sqrt{2}}\right)^2 + \left(\frac{a}{2}\right)^2}$$
 lub $|SM| = \sqrt{\left(\frac{2a\sqrt{2}}{3}\right)^2 + \left(\frac{a}{2}\right)^2}$ i wyznaczenie $|SM|$: $|SM| = \frac{\sqrt{41}a}{6}$.

Wyznaczenie sinusa kąta nachylenia ściany bocznej do płaszczyzny podstawy: $\sin \alpha = \frac{4\sqrt{82}}{41}$.

Uwagi

- 1. Jeśli zdający wyznaczy jedną z wielkości |BC| lub |BM| i na tym poprzestanie lub dalej popełni błędy, to za rozwiązanie otrzymuje **2 punkty**.
- 2. Jeżeli zdający obliczy $tg\alpha$ lub $\cos\alpha$, a nie obliczy $\sin\alpha$ lub obliczy go z błędem, to otrzymuje **5 punktów**.

III sposób rozwiązania

Wprowadzamy oznaczenia: $\alpha = | \not\prec HMS |$, |AC| = 6x, |HC| = 3x, |SC| = 5x. Ponieważ $|AH| = \frac{1}{2} |AC|$ stąd |AH| = 3x.

Wtedy
$$|BC|\sqrt{2} = 6x$$
, stad $|BC| = \frac{6x}{\sqrt{2}}$.

Zatem
$$|BM| = \frac{3x}{\sqrt{2}}$$
, $|HM| = \frac{3x}{\sqrt{2}}$.

Z twierdzenia Pitagorasa dla trójkąta BMS otrzymujemy $|SM|^2 = |BS|^2 - |BM|^2$.

Stad
$$|SM| = \sqrt{25x^2 - \frac{9}{2}x^2} = \sqrt{\frac{41}{2}x^2} = \frac{\sqrt{41}}{\sqrt{2}}x$$
.

Zatem
$$\cos \alpha = \frac{|HM|}{|SM|} = \frac{3x}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{41 \cdot x}} = \frac{3}{\sqrt{41}}.$$

Stad
$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{9}{41}} = \sqrt{\frac{32}{41}} = \frac{4\sqrt{2} \cdot \sqrt{41}}{41} = \frac{4\sqrt{82}}{41}$$
.

Schemat oceniania III sposobu rozwiązania

Obliczenie $\cos \alpha$, a następnie $\sin \alpha$: $\cos \alpha = \frac{3}{\sqrt{41}}$, $\sin \alpha = \frac{4\sqrt{82}}{41}$.

Uwaga

Jeżeli zdający obliczy jedynie $\cos \alpha$, to otrzymuje **5 punktów**.

Zadanie 12. (0-3)

Użycia i tworzenia strategii	Wykorzystanie własności prawdopodobieństwa do obliczania prawdopodobieństwa zdarzeń

I sposób rozwiazania.

Wiemy, że $A \cup B = (A \cap B') \cup B$ i $(A \cap B') \cap B = \emptyset$ oraz $P(A \cup B) \le 1$.

Mamy wiec: $1 \ge P(A \cup B) = P(A \cap B') + P(B)$, stad $P(A \cap B') \le 0.3$.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania.

Wiemy, że $1 \ge P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Stąd $P(A \cap B) \ge 0.6$.

Mamy wiec: $P(A \cap B') = P(A) - P(A \cap B) \le 0.9 - 0.6 = 0.3$.

Schemat oceniania II sposobu rozwiązania

III sposób rozwiązania.

Z faktu, że $A \cap B' \subset B'$ wynika, że $P(A \cap B') \leq P(B')$.

Ponieważ P(B) = 0.7, więc P(B') = 0.3. Stąd wynika, że $P(A \cap B') \le P(B') = 0.3$.

Schemat oceniania III sposobu rozwiązania

Zapisanie wniosku: $P(A \cap B') \le 0.3$.