

Visionary Course - Energy Al Lecture 08

Hyuk Lim

Make Your JetRacer Ready for Driving

Configure Power Mode

- For your safety, it is important to ensure that Jetson Nano doesn't draw more current than the battery pack can supply.
- Place the Jetson Nano in 5W mode by calling the following command

Tou need to ladiner a new terminar and enter following commands to select 500 power mode
sudo nvpmodel -m1
Check if mode is correct
sudo nvpmodel -q

You need to launch a new Terminal and enter following commands to select 5W power mode

Steering – Analog Servo (E6001)

ECHOBBY E6001 Analog Servo 6kg for RC Model Buggy Car Off-Road Truck

Visit the ECHOBBY Store

★★★★ ∨ 2 ratings

Price: \$10.80

Material Plastic

Brand ECHOBBY

Theme RC HOBBY

About this item

- Plastic Gear, Splashproof
- Weight: 42.4g
- 0.13sec /60 degree (4.8V)
- 5.2kg*cm (4.8V)
- Rotation Angle: +/- 60 degree

IP address:8888/lab/tree/jetracer/notebooks/basic_motion.ipynb

Steering – Analog Servo (E6001)

```
from jetracer.nvidia_racecar import NvidiaRacecar
car = NvidiaRacecar()
```

 $y = car.steering_gain \times x + car.steering_offset$

where

x : car.steering

y: the value written to the motor driver

<u>Calibration needed</u> for car.steering_gain and car.steering_offset

Make the car move forward with x = 0, fully right with x = 1, and fully left with x = -1

Throttle – Carbon Brushed Motor

Carbon Brushed Motor

High speed high power carbon brushed motor, longer working life, stable performance

Throttle – Carbon Brushed Motor

$$y = car.throttle_gain \times x$$

 $y = car.throttle_gain \times x$

where

x : *car.throttle*

y: the value written to the speed controller

<u>Calibration needed</u> for car.throttle_gain

- When the car is stopped and a negative throttle is set, it will reverse.
- If the car is moving forward and a negative throttle is set, it will brake.

Make the car run forward at a maximum speed with x = 1, backward at a maximum speed with x = -1

Calibrate Your JetRacer

Lift you car and find the calibration parameters (through trial and error)

IP address:8888/lab/tree/jetracer/notebooks/basic_motion.ipynb

- car.steering_gain
- car.steering_offset
- car.throttle_gain

Project 1 - Drive Your JetRacer with Gamepad

Drive Your Car using Gamepad Controller

IP address:8888/lab/tree/jetracer/notebooks/teleoperation.ipynb

- 1. Plug the dongle into your laptop's USB port.
- 2. Execute the Python code below.

```
import ipywidgets.widgets as widgets
controller = widgets.Controller(index=0) # replace with index of your controller
display(controller)

Press any button to find the index for your gamepad!
```

Drive Your Car using Gamepad Controller

```
import ipywidgets.widgets as widgets
controller = widgets.Controller(index=0) # replace with index of your controller
display(controller)
```

This script creates interactive HTML widgets

Remember the indexes for the mapping!

How to Change the Control Values?

Example)

car.steering = 1 car.throttle = 0.5 left_link = traitlets.dlink((controller.axe<mark>s[0], '</mark>value'), (car, 'steering'), transform=lambda x: -x)

right_link = traitlets.dlink((controller.axes[1], 'value'), (car, 'throttle'), transform=lambda x: -x)

Conversion using lambda function if needed

Drive Your JetRacer

What is your lap time?

Project 1 Report

Drive Your JetRacer with Gamepad

Due date: Oct. 23

Please, take a video of your driving with the gamepad.

The video should include the stopwatch to measure the lap time. Hand in the video capture through the LMS.

Project 1 - Fun with JetRacer

Mission 1

Go straight and stop!

Write a Python code that achieves the minimum error.

What is your error?

import time
...
car.throttle=1
time.sleep(10)
car.throttle=0

Mission 2

Stop by your destination!

Write a Python code that achieves the minimum error.

What is your error?

Mission 3

Get to your destination ASAP!

Error =
$$\triangle T$$
 + $\triangle d$ / (Ant's speed x 2)
= (t_1-t_0) + $\triangle d$ / 0.2

Write a Python code that achieves the minimum error.

What is your error?

```
import time
t0=time.time()
...
...
t1=time.time()
print(t1-t0)
```

Project 1 Report

Fun with JetRacer

Due date: Oct. 23

Please, hand in your report and video through the LMS.

- 2-page experiment report (in pdf filetype only)
- Video capture for mission 3.

Any Question?

hlim@kentech.ac.kr

https://hlim.kentech.ac.kr