Problem 1. In the form of formal logic,

- (1) $K \vee R \vee Y \vee Z$ (at least one of them are criminals)
- (2) $\neg K$, $\neg R$, $\neg Z$ (K, R, Z are eliminated)
- (3) $\therefore Y$

Problem 2. YES

- (1) If neither the first nor the second logician doesn't want beer, they should say "NO".
- (2) If the third logician doesn't want beer, the bartender should served two pints of beer.

Problem 3.a. NOT VALID

- (0) Let A = you, B = the criminal, C = walks with a slight limp
- $(1) (A \rightarrow C) \land (B \rightarrow C) \vdash A \rightarrow B$

Problem 3.b. VALID

- (0) Let A = able to have class, B = Shin brought his labtop
- (0) Let C = there is a computer in the lecture room
- (1) $A \rightarrow (B \lor C), \neg B, \neg C \vdash \neg A$

Problem 4.a. Prove $P \leftrightarrow \neg Q \vdash \neg P \leftrightarrow Q$

- (1) $P \leftrightarrow \neg Q$ (promise)
- (2) $(\neg Q \rightarrow P) \land (P \rightarrow \neg Q)$ (biconditional elimination)
- (3) $(\neg P \rightarrow Q) \land (Q \rightarrow \neg P)$ (contraposition)
- (4) $\neg P \leftrightarrow Q$ (biconditional introduction)

Problem 4.b. Prove $R \to \neg P, Q, Q \to (P \vee \neg S) \vdash S \to \neg R$

- $(1) S \rightarrow P$
 - $(1.1) Q \rightarrow (P \vee \neg S)$ (promise)
 - (1.2) Q (promise)
 - (1.3) $P \vee \neg S$ (conditional elimination)
 - (1.4) $S \to P$ (material implication)
- (2) $P \rightarrow \neg R$
 - (2.1) $R \rightarrow \neg P$ (promise)
 - (2.2) $P \rightarrow \neg R$ (contraposition)
- (3) $S \to \neg R$ (from 2, 3, hypothetical syllogism)