Appendix

This appendix includes detailed descriptions of all model equations and input assumptions.

Annual automation budget on a per mile basis

```
annual\_automation\_budget = (fare\_per\_mile \times utilization\_rate) \\ - (financing + licensing + insurance + maintenance + fuel + labor) \quad (1)
```

Net Present Value of Automation Budget

Variable Name	Value	Source
av_tech_lifespan	5	Assumption
vehicle_lifespan	5	Nunes and Hernandez (2020); New York City Taxi & Limousine Commission (2014a)
discount rate (i)	5%	Compostella et al. (2020)
mileage_annual	65,000	UITP (2020); New York City Taxi & Limousine Commission (2014b)
fare_per_mile	\$5.00	City of Chicago (n.d.); New York City Taxi & Limousine Commission (n.d.b)
utilization_rate	50%	Cramer and Krueger (2016); Nunes and Hernandez (2020)

Year 0: Initial investment = net_present_automation_budget

Year 1 to Vehicle Lifespan: Annual automation budget

Year > Vehicle Lifespan: Annual automation budget without vehicle financing

$$net_present_automation_budget = \sum_{k=1}^{n} \frac{annual_automation_budget \times mileage_annual}{(1+i)^k} \tag{2}$$

Financing

Variable Name	Value	Source
vehicle_price	\$28,000	Compostella et al. (2020)
annual_interest_rate	7%	Nunes and Hernandez (2020)
vehicle_financing_lifespan	3 years	Nunes and Hernandez (2020)
vehicle_lifespan	5	Nunes and Hernandez (2020)
payment_periods_per_year	12	Assuming monthly payments
mileage_annual	65,000	New York City Taxi & Limousine Commission (n.d.b); UITP (2020); City of Chicago (n.d.)

Equations:

$$monthly_loan_payment = \frac{vehicle_price}{([(1+i)^n - 1] \div [i(1+i)^n]}$$
 (3)

$$n = payment_periods_per_year \times vehicle_financing_lifespan \tag{4}$$

$$i = \frac{annual_interest_rate}{months_per_year} \tag{5}$$

 $total_loan_payment = monthly_loan_payment \times months_per_year \times vehicle_financing_duration \quad (6)$

$$financing = \frac{total_loan_payment}{miles_per_year \times vehicle_lifespan}$$
 (7)

Licensing

It is currently unclear whether robotaxis will be regulated under taxi or Transportation Network Company guidelines, which have differing licensing costs. See below for the calculation of taxi and TNC licensing fees.

Taxi Licensing - Chicago

The following costs are on a per vehicle basis

Variable Name	Value	Source
taxi_licensing_taxi_medallion_license	\$500 per 2 years	BACP (2020)
taxi_licensing_ground_transportation_tax	\$98/month	BACP (2020)
taxi_licensing_accessibility_fund	\$22/month	BACP (2020)
taxi_licensing_advertising_fee	\$100/year	BACP (2020)

Equations:

 $annual_licensing_taxi = taxi_licensing_taxi_medallion_license \\ + (taxi_licensing_ground_transportation_tax + taxi_licensing_accessibility_fund) \times months_per_year \\ + taxi_licensing_advertising_fee \quad (8)$

$$licensing = \frac{annual_licensing_taxi}{miles_per_year}$$
 (9)

TNC Licensing - Chicago

The City of Chicago identified 148,351 unique TNC drivers in a recent study BACP (2023b). Only a fraction of these drivers, however, were categorized as full-time drivers. We assume robotaxis would operate on a full-time basis and thus use the mean number of full-time TNC drivers (1,313) as the fleet size for TNC licensing calculations.

Variable Name	Value	Source	
tnc_licensing_admin_fee_per_year	\$10,000/year per company	BACP (2020)	
tnc_licensing_admin_fee_per_trip	\$0.02/trip	BACP (2020)	
tnc_licensing_ground_transport	\$1/trip	BACP (2020)	
tnc_licensing_access_fund	\$0.10/trip	BACP (2020)	
tnc_licensing_advertising_fee	\$100/year per vehicle	BACP (2020)	
fleet_size	1,313 vehicles	BACP (2023b)	
miles_per_trip	3.09 miles	City of Chicago (n.d.)	

$$licensing_tnc = \frac{tnc_licensing_admin_fee_tnc_per_year}{miles_per_year \times fleet_size} \\ + \frac{tnc_licensing_admin_fee_tnc_per_trip + tnc_licensing_ground_transport_tnc + access_fund_tnc}{miles_per_trip} \\ + \frac{tnc_licensing_advertising_fee}{miles_per_year} \quad (10)$$

Taxi Licensing - New York City

In New York City, taxi licensing occurs through the purchase of a taxi medallion. A down payment of 20% is applied with 25% of the down payment paid upfront and the remainder of the down payment financed over 5 years. The remaining balance is financed over 7 years.

Variable Name	Value	Source
taxi_medallion_price	\$255,000	New York City Taxi & Limousine Commission (n.d.a)
downpayment_percent	20%	Nunes and Hernandez (2020)
downpayment_upfront_percent	25%	Nunes and Hernandez (2020)
financing_period_downpayment	7 years	Nunes and Hernandez (2020)
financing_period_remainder	5 years	Nunes and Hernandez (2020)
medallion_interest_rate	5.4%	Nunes and Hernandez (2020)
payment_periods_per_year	12	Nunes and Hernandez (2020)
medallion_lifespan	20	Nunes and Hernandez (2020)

Equations:

$$n_d = payment_periods_per_year \times financing_period_downpayment$$
 (11)

$$n_r = payment_periods_per_year \times financing_period_remainder$$
 (12)

$$i = \frac{medallion_interest_rate}{months_per_year}$$
 (13)

$$downpayment_total = downpayment_percent \times taxi_licensing_taxi_medallion_price$$
 (14)

$$downpayment_upfront = downpayment_upfront_percent \times downpayment_total$$
 (15)

$$downpayment_remainder = downpayment_total - downpayment_upfront$$
 (16)

$$downpayment_monthly_loan_payment = \frac{downpayment_remainder}{([(1+i)_d^n - 1] \div [i(1+i)_d^n]}$$
(17)

$$loan_remainder = taxi_licensing_taxi_medallion_price - downpayment_total$$
 (18)

$$remainder_monthly_loan_payment = \frac{loan_remainder}{([(1+i)_r^n - 1] \div [i(1+i)_r^n]}$$
(19)

$$total_medallion_payment = downpayment_upfront + (downpayment_monthly_loan_payment \times n_d) + (remainder_monthly_loan_payment \times n_r)$$

$$(20)$$

$$licensing = \frac{total_medallion_payment}{miles_per_year \times medallion_lifespan} \tag{21}$$

Insurance

For the base model, the $av_{operations}$ factor is 1. The listed $av_{operations}$ factor is used in the Advanced AV Tech scenario.

Variable Name	Value	Source
vehicle_operations_insurance	\$682/month	Bodine and Walker (2023); "Taxi
		Insurance" (2023)
av_operations_factor_insurance	0.5	Fagnant and Kockelman (2016)

Equation:

$$insurance = \frac{vehicle_operations_insurance \times months_per_year}{miles_per_year} \times av_operations_factor_insurance \eqno(22)$$

Maintenance

We assume maintenance costs are 0.06/mi. For the base model, the av_operations_maintenance factor is 1. The listed av_operations_maintenance factor is used in the Advanced AV Tech scenario.

Variable Name	Value	Source
vehicle_operations_maintenance	\$0.06/mi	Parrott and Reich (2018); Reich and Parrott (2020)
av_operations_factor_maintenance	0.9	Fagnant and Kockelman (2016)

Equation:

 $maintenance = vehicle_operations_maintenance \times av_operations_factor_maintenance$ (23)

Fuel

For the base model, the av_operations_fuel factor is 1. The listed av_operations_fuel factor is used in the Advanced AV Tech scenario.

Variable Name	Value	Source
fuel_cost_per_gal fuel_efficiency	\$3.829/gallon 45 miles per gallon	AAA (2023) EPA (2021)
av_operations_factor_fuel	0.8	Stephens et al. (2016); Bösch et al. (2018)

Equations:

$$annual_fuel_cost = \frac{miles_per_year}{fuel_efficiency} \times fuel_cost_per_gal$$
 (24)

$$fuel = \frac{annual_fuel_cost}{miles_per_year} \times av_operations_factor_fuel$$
 (25)

Labor

Overall equation:

$$labor = cleaning + customer support + field support + monitor$$
 (26)

Cleaning We assume the vehicles receive a basic cleaning daily, and a deep cleaning 3 times per week. We assume that one cleaner can perform a basic cleaning for 50 vehicles in one hour, and that one cleaner can perform a deep cleaning for 10 vehicles in 3 hours. In the City of Chicago, minimum wage is \$15.80 per hour.

Variable Name	Value	Source
shift_days_per_year_cleaner_basic shift_days_per_year_cleaner_deep shift_length_cleaner_basic shift_length_cleaner_deep vehicles_per_cluster_cleaner_basic vehicles_per_cluster_cleaner_deep	365 days/year 156 days/year 1 hour 3 hours 12	Assumption Assumption Assumption Assumption Assumption
wage_cleaner	\$15.80	BACP (2023a)

Equations:

$$cluster_cost_cleaner_basic = shift_length_cleaner_basic \times shift_days_per_year_cleaner_basic \\ \times workers_per_shift_cleaner_basic \times wage_cleaner$$
 (27)

$$cluster_cost_cleaner_deep = shift_length_cleaner_deep \times shift_days_per_year_cleaner_deep \\ \times workers_per_shift_cleaner_deep \times wage_cleaner$$
 (28)

$$cost_per_cluster_cleaner = cluster_cost_cleaner_basic + cluster_cost_cleaner_deep$$
 (29)

$$cleaning = \frac{cost_per_cluster_cleaner}{vehicles_per_cluster \times miles_per_year}$$
(30)

Field Support

Variable Name	Value	Source
shift_days_per_year_fieldsupport	365 days/year	Kaplan, Szajnfarber, and Helveston (2023)
shift_length_fieldsupport	8 hours	Kaplan, Szajnfarber, and Helveston (2023)
wage_fieldsupport	\$23/hr	Adecco (2023)
workers_per_shift_fieldsupport	1 per shift per cluster	Assumption
vehicles_per_cluster	20	Assumption
overhead_rate	1.59	Nunes and
		Hernandez (2020)

Equations:

$$field support_per_day = workers_per_shift_field support \times \frac{hours_per_day}{shift_length_field support} \tag{31}$$

$$cluster_cost_fieldsupport = (shift_days_per_year_fieldsupport \times shift_length_fieldsupport \\ \times wage_fieldsupport \times overhead_rate \times 1) \\ + (shift_days_per_year_fieldsupport \times shift_length_fieldsupport \times wage_fieldsupport \\ \times (fieldsupport_per_day - 1)) \end{aligned}$$

$$(32)$$

$$miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$$
 (33)

$$field support = \frac{cluster_cost_field support}{miles_per_cluster}$$
 (34)

Remote Monitor

Variable Name	Value	Source
shift_days_per_year_monitor	365 days/year	Kaplan, Szajnfarber, and Helveston (2023)
shift_length_monitor	8 hours	Pawlowski (2011)
wage_monitor	\$21/hr	ICONMA (2023)
workers_per_shift_monitor	1 per shift per cluster	Assumption
vehicles_per_cluster	10	Assumption
overhead_rate	1.59	Nunes and Hernandez (2020)

Equations:

$$monitor_per_day = workers_per_shift_monitor \times \frac{hours_per_day}{shift_length_monitor}$$
 (35)

$$cluster_cost_monitor = (shift_days_per_year_monitor \times shift_length_monitor \\ \times wage_monitor \times overhead_rate \times 1) \\ + (shift_days_per_year_monitor \times shift_length_monitor \times wage_monitor \\ \times (monitor_per_day - 1))$$

$$(36)$$

$$miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$$
 (37)

$$monitor = \frac{cluster_cost_monitor}{miles_per_cluster}$$
(38)

Customer Support

Variable Name	Value	Source
shift_days_per_year_customersupport	365 days/year	Kaplan, Szajnfarber, and Helveston (2023)
shift_length_customersupport wage_customersupport	8 hours \$21/hr	Pawlowski (2011) Indeed (2023); ICONMA (2023)
workers_per_shift_customersupport vehicles_per_cluster overhead_rate	1 per shift per cluster 50 1.59	Assumption Assumption Nunes and Hernandez (2020)

Equations:

$$customersupport_per_day = workers_per_shift_customersupport \times \frac{hours_per_day}{shift_length_customersupport} \hspace{0.2cm} (39)$$

 $cluster_cost_customersupport = (shift_days_per_year_customersupport \times shift_length_customersupport \\ \times wage_customersupport * overhead_rate * 1) \\ + (shift_days_per_year_customersupport \times shift_length_customersupport \\ \times wage_customersupport \times (customersupport_per_day - 1)) \\ \times wage_customersupport \times (customersupport_per_day - 1)) \\ (40)$

$$miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$$
 (41)

$$customer support = \frac{cluster_cost_customer support}{miles_per_cluster} \tag{42}$$

Description of Monte Carlo simulation inputs

Please see the inputs_monte_carlo.xlsx file.

References

- AAA. 2023. "National Average Gas Prices." https://gasprices.aaa.com/.
- Adecco. 2023. "Adecco @ Cruise: Driverless Support Specialist."
- BACP. 2020. "Chicago's Guide to Licensing Public Passenger Vehicles." Chicago, IL. https://www.chicago.gov/content/dam/city/depts/bacp/publicvehicleinfo/medallionowners/publicvehiclelicensingguide20200127.pdf.
- ——. 2023a. "Minimum Wage." https://www.chicago.gov/content/city/en/depts/bacp/supp_info/minimumwageinformation.
- ——. 2023b. "Public Passenger Vehicle (PPV) Study: Chauffeur Conditions and Effects on License Holders." https://www.chicago.gov/content/dam/city/depts/bacp/publicvehicleinfo/publicpassengervehiclestudyreports.pdf.
- Bodine, Rachel, and Daniel Walker. 2023. "Auto Insurance for Taxi Cabs (2023)." https://www.autoinsurance.org/auto-insurance-for-taxi-cabs/.
- Bösch, Patrick M., Felix Becker, Henrik Becker, and Kay W. Axhausen. 2018. "Cost-Based Analysis of Autonomous Mobility Services." *Transport Policy* 64 (May): 76–91. https://doi.org/10.1016/j.tranpol.2017.09.005.
- City of Chicago. n.d. "Taxi Trips | City of Chicago | Data Portal." https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew.
- Compostella, Junia, Lewis M. Fulton, Robert De Kleine, Hyung Chul Kim, and Timothy J. Wallington. 2020. "Near-(2020) and Long-Term (2030–2035) Costs of Automated, Electrified, and Shared Mobility in the United States." *Transport Policy* 85 (January): 54–66. https://doi.org/10.1016/j.tranpol.2019.10.001.
- Cramer, Judd, and Alan B. Krueger. 2016. "Disruptive Change in the Taxi Business: The Case of Uber." *American Economic Review* 106 (5): 177–82. https://doi.org/10.1257/aer.p20161002.
- EPA. 2021. "The 2020 EPA Automotive Trends Report." https://www.epa.gov/sites/default/files/2021-01/documents/420r21003.pdf.
- Fagnant, Daniel J., and Kara M. Kockelman. 2016. "Dynamic Ride-Sharing and Fleet Sizing for a System of Shared Autonomous Vehicles in Austin, Texas." *Transportation* 45 (1): 143–58. https://doi.org/10.1007/s11116-016-9729-z.
- ICONMA. 2023. "ICONMA @ Cruise: Assistance Advisor." https://www2.jobdiva.com/portal/?a=9bjdnw2mlhip8doaz2t0q9w4wphk960418ms6mtfp5oxvgnr76bfafpnr8c62y27&compid=0#/jobs/18844530.
- Indeed. 2023. "Beep Inc Jobs and Careers."
- Kaplan, Leah, Zoe Szajnfarber, and John Paul Helveston. 2023. "IISE Annual Conference & Expo." In. New Orleans, LA: Institute of Industrial; Systems Engineers.
- New York City Taxi & Limousine Commission. 2014b. "Taxicab Fact Book." https://www.nyc.gov/assets/tlc/downloads/pdf/2014_tlc_factbook.pdf.
- ——. 2014a. "Taxicab Fact Book." https://www.nyc.gov/assets/tlc/downloads/pdf/2014_tlc_factbook.pdf.

- Nunes, Ashley, and Kristen D. Hernandez. 2020. "Autonomous Taxis & Public Health: High Cost or High Opportunity Cost?" *Transportation Research Part A: Policy and Practice* 138 (August): 28–36. https://doi.org/10.1016/j.tra. 2020.05.011.
- Parrott, James A., and Michael Reich. 2018. "An Earnings Standard for New York City's App-Based Drivers." New York, NY. https://static1.squarespace.com/static/53ee4f0be4b015b9c3690d84/t/5b3a3aaa0e2e72ca74079142/1530542764109/Parrott-Reich+NYC+App+Drivers+TLC+Jul+2018jul1.pdf.
- Pawlowski, A. 2011. "What It's Like to Be an Air Traffic Controller." http://www.cnn.com/2011/TRAVEL/04/15/air. traffic.controller.job/index.html.
- Reich, Michael, and James A. Parrott. 2020. "A Minimum Compensation Standard for Seattle TNC Drivers." New York, NY. https://escholarship.org/uc/item/1fw4q65g.
- Stephens, T. S., Jeff Gonder, Yuche Chen, Z. Lin, C. Liu, and D. Gohlke. 2016. "Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles." https://doi.org/10.2172/1334242. "Taxi Insurance." 2023. https://www.insurancenavy.com/services/commercial-auto-insurance/taxi-insurance/.
- UITP. 2020. "Global Taxi Benchmarking Study 2019." https://cms.uitp.org/wp/wp-content/uploads/2020/11/Statistics-Brief-TAxi-Benchmarking_NOV2020-web.pdf.