Honors General Chemistry (Chem H2B) Winter 2022 Second Midterm Exam

Instructions

- Answer the questions below in the spaces provided. For full credit, results must be *inside* the answer boxes, rounded exactly to the requested precision, and in the correct units.
- If you need additional space for your work, use separate sheets of paper (provided to you during the exam), and submit them together with the exam. Do not write on the back of any sheet.
- This exam is administered in person and closed book. You may use a calculator, but no other electronic devices, notes, or books are allowed.
- This exam comprises 5 problems on 7 pages (excluding the cover).
- Please use only the molar masses provided in each problem and the exact values of the constants provided in the Appendix. Do not take atomic weights from the periodic table.
- Constants, unit conversions, and useful identities are provided in the appendix.
- Do not round intermediate results.
- Exam time is 50 minutes.

By submitting this exam, you certify under the penalty of an academic integrity violation that all results are your own and were obtained according to the rules above. You consent to be forthcoming to any subsequent questions about your results and how exactly they were obtained, and understand that you may not receive credit if you cannot give a satisfactory answer.

Problems

1. Entropy (4 credit	ts	credi	(4	Entropy	1.
----------------------	----	-------	----	---------	----

Does the entropy of the system/reaction mixture increase, decrease, or stay the same in the following processes? Briefly explain your answer in each case.

a) Haber-Bosch synthesis of ammonia	
	Answer:
h)	Isomerization of neopentane $(2,2-dimethyl propane)$ to n -pentane
0)	isomerization of heopenitalic (2,2 dimeony) propane) to 77 pentane
	Answer:
c)	Isothermal compression of an ideal gas
	Answer:
d)	Mixing of two ideal gases at constant temperature, total pressure, and total volume
	Answer:

2.	Essav	Question:	Gibbs Free	Energy	(4	credits
	Libbay	& acenton.	GIDDS IICC	111C1 5.y	(T	CICCII

Explain in a few sentences why the Gibbs free energy is a central quantity in chemical thermodynamics. What type(s) of information can be obtained from the Gibbs free energy change of a process? Name at least two methods for determining the Gibbs free energy of a chemical reaction experimentally, computationally, or using tabulated data.

nswer:	

3. Equilibrium Constants (4 credits)

Determine the equilibrium constant K_c at 25°C for the reaction

$$N_2(g) + O_2(g) + Cl_2(g) \rightleftharpoons 2 \text{ NOCl}(g)$$

given the following data at 25°C:

$$N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$$
 $K_p = 1.0 \times 10^{-18}$ units?!
 $2 NOCl(g) + O_2(g) \rightleftharpoons 2 NO_2Cl(g)$ $K_p = 1.21 \times 10^4$ units?!
 $2 NO_2(g) + Cl_2(g) \rightleftharpoons 2 NO_2Cl(g)$ $K_p = 9.0 \times 10^{-2}$ units?!

Answer (2 significant figures):

4. Van't Hoff Equation (5 credits)

Answer:

In the gas phase, nitrosyl chloride NOCl is in chemical equilibrium with its dissociation products, nitrogen monoxide and chlorine gas.

	ΔH_f° (kJ/mol)	S° (J/(mol K))
NO	90.29	210.76
ClNO	51.71	261.68
Cl_2		223.08

Table 1: Thermochemical data at standard conditions.

a) Formulate the balanced chemical equation including states.		
	Answer:	
b)	Using the thermochemical data from Table , estimate the temperature T_c at which the equilibrium constant K equals 1.	

Answer (3 significant figures):

c) Qualitatively plot $\ln K$ as a function of 1/T based on your results from (b).

	nol of ethyne (a.k.a. acetylene, C_2H_2) gas are kept in a 1 L steel cylinder. Assume behavor.
a)	Determine the total enthalpy of the sample at 300 K.
	Answer (3 significant figures):
b)	The pressure of the sample is doubled by reducing the volume to $0.5~\rm L.$ The temperature is kept constant. Determine the total enthalpy.
	Answer (3 significant figures):
c)	Estimate the rms velocity of the ethyne molecules in m/s at 300 K.
	Answer (3 significant figures):
d)	Determine the entropy change when the original gas sample is heated from 300 K to 800 K.
	Answer (3 significant figures):
e)	Ethyne has a standard free energy of formation of 209.9 kJ/mol. Why is it not smart to heat a pressurized steel cylinder containing ethyne?
	Answer:

 $\textbf{5. Statistical Thermodynamics} \ (6 \ \mathrm{credits})$

Appendix A: Constants and Unit Conversions

Constant	Symbol	Value
Ideal gas constant	R	8.3145 J/(mol K)
Avogadro's constant	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Standard temperature (STP)	T_s	273.15 K
Standard pressure (STP)	P_s	$101325~\mathrm{Pa} = 1~\mathrm{atm}$
Molar volume of an ideal gas at STP	v_s	22.414 L/mol

Table 2: Physical constants

Quantity	Conversion
Volume	1 gal = 3.7854 L
Temperature	$\theta_C/^{\circ}C = (\theta_F/F - 32) \times \frac{5}{9}$
Pressure	1 atm = 101325 Pa = 760 torr

Table 3: Unit conversions

Appendix B: Identities

Equilibrium constants:

$$K_p = \left(\frac{1}{P^{\circ}}\right)^{\Delta\nu} K, \quad K_c = \left(\frac{P^{\circ}}{c^{\circ}RT}\right)^{\Delta\nu} K$$

Entropy change of an ideal gas at constant volume:

$$\Delta S = C_v \ln \frac{T_f}{T_i}$$

Van't Hoff Equation:

$$\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

Appendix C: Periodic Table of the Elements

*Lanthanide series **Actinide series	hydrogen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
series ries	**************************************
lanthanum 57 La 138.91 actinium 89 AC 12271	Seandlum
Ce 140.12 thorium 90	Do I Ultanium 22 Zi Zi Zironium 72 Zironiu
praseodymium 59 Pr 140.91 protactinium 91 Pa 231.04	NOT us to an to an 105 92 906 landsium 105 906 906 906 906 906 906 906 906 906 906
neodymium 60 Nd 144.24 uranium 92 238.03	se the answer chronium 24 Cr 61.996 molybdenum 42 Mo 198.94 No 198
Pm 145 neplunium 93 Np [237]	Ic Table of the Ele
Sm 150.36 plutonium 94 Pu	weigh pluestion 126 Fe 55.845 rubentum 76 OS 199.23 hassium 198.23 hassium 198.23 hassium 198.23 hassium 198.25 pegg
europium 63 Eu 151.96 americium 95	cohalt 277 Ling 1199
gadolinium 64 Gd 157.25 curium 96 Cm	nickel 28 Pd 196.42 platfram 78 Pd 196.42 platfram 78 Pd 196.08 ununrillium 1100 pd 100 pd 10
terbium 65 To 158.93 berkelium 97 BK	oopper 29 Cu 63.546 silver 47 Ag 100 silver 196.917 funumulum 1111
dysprosium 66 Dy 162.50 californium 98 Cf [251]	nents nents nents nents zinc zi
holmium 67 Ho 164.93 einsteinium 99 ES	boron 5 5 5 6 7 28 982
erblum 68 68 167.26 167.26 1600 100 1257	carbon 6 6 C 12 011 silloon 14 Silloon 14 Silloon 14 Silloon 14 Silloon 14 Silloon 14 Silloon 15 Si
Tm 16.93 mendelevium 101 Vdd	nitrogen 7 N N N N N N N N N N N N N N N N N N
ytterbium 70 Yb 173.04 nobelium 102 No 1259	Oxygen 8 16.999 suffur 16.999 suffur Sebenium 34 Sebenium 34 Sebenium 34 Sebenium 38 177.89 belorum 84 Po
	125.00 astalline 85
	1886 Radion Radi