

MEDIOS DE TRANSMISIÓN

ALCATEL UNIVERSITY MÉXICO

Objetivo

En esta sección, el participante reconocerá las principales características de:

Par trenzado

Medios de Transmisión

Los medios de transmisión pueden ser:

Medios Físicos

Este tipo de medio, es el camino físico entre un transmisor y un receptor.

La transmisión por medio físico es también conocido como medio guiado o alámbrico.

Medios Físicos Ejemplo de Aplicaciones

Medios Físicos

Los medios físicos son:

- Par trenzado
- Cable coaxial
- 🔻 Fibra Optica

Cableado estructurado

Entrada de Construcción
Sala de Equipo
Cableado Central
Cuarto de Telecomunicaciones
Cableado Horizontal
Área de trabajo

Medio de Transmisión	Razón de Datos	Ancho de Banda	Separación de Repetidores
Par trenzado	4 Mbps	3 Mhz	2 a 10 Km
Cable coaxial	500 Mbps	350 Mhz	1 a 10 Km
Fibra Optica	2 Gbps	2 Ghz	10 a 100 Km

🔻 Las variantes:

UTP (Unshielded Twisted Pair) Par trenzado no blindado

STP (shielde Twisted Pair) Par trenzado Blindado

FTP (Folied Twisted Pair) Par trenzado forrado

Par Trenzado

Migration to UTP

<u>System</u>	Native Media	<u>Bit Rate</u>	UTP?
Phone	UTP	Analogue (3.2 KHz)	Yes
EIA-232	25 cond.	~ 19.2 Kb/s	Yes
IBM 3270	Coax	2.36 Mb/s	Yes
Baseband Video	Coax	Analogue (8MHz)	Yes
Ethernet	Coax	10 Mb/s	Yes
Token Ring	STP	16 Mb/s	Yes
FDDI	Fibre	100 Mb/s	Yes
ATM	UTP, Fibre	155 Mb/s	Yes

Medios Físicos Características del TP

Parámetros del Cableado de Cobre

- **▼ UTP/STP/FTP**
- Attenuation
- Crosstalk
- **▼** ACR

- Impedance
- Return Loss
- Matched Components
- Propagation Delay and Delay Skew
- Categories/Classes
- Megabits/Megahertz

Par Trenzado Atenuación

ATTENUATION (a)

Par Trenzado NEXT

NEXT (Near end CrossTalk loss)

Measure of Signal Coupling from one pair to another pair (dB)

Transmitter

NEXT

Receiver

CAT 5: NEXT > 32 dB

at 100 MHz / 100 meters

Par Trenzado ACR

ACR- Attenuation to Crosstalk ratio

- ▼ ACR = NEXT- Atenuación a frecuencia x
- ▼ Entre más grande la diferencia (in dB), mejor

Par Trenzado ACR

CAT 5: ACR > 4 dB (Link) ACS: > 16 dB (WORST CASE)

at a frequency of 100 MHz at a distance of 100 meters

Par Trenzado En aplicaciones de alta velocidad

Regla: Para aplicaciones de alta velocidad, el ACR de un enlace debe ser mejor que 13 dB a 100 MHz

ISO 11801: 4 dB at 100 MHz

Par Trenzado

En aplicaciones de alta velocidad

- ▼ ¿1000 Mbps en Full Duplex sobre 4 pares ?
 - **▼250** Mbps sobre cada par en ambas direcciones

Par Trenzado

En aplicaciones de alta velocidad

▼1000 BASE-TX

Ruido ambiental

Par Trenzado PSNEXT

Powersum NEXT (PSNEXT)

- Acoplamiento de NEXT desde 3 pares adyacentes transmitiendo simultáneamente
- Calculado de las mediciones de NEXT individuales de par-a-par en una frecuencia dada.
- El cancelador de NEXT mide y substrae el ruido del NEXT

P1=
$$\Sigma$$
 P2, P3, P4
P2= Σ P1, P3, P4
P3= Σ P1, P2, P4
P4= Σ P1, P2, P3

Par Trenzado PSNEXT

▼Powersum NEXT

ELFEXT (Equal Level Far End Crosstalk)

- ▼ELFEXT es un acoplamiento de señal desde 3 pares adyacentes hacia el par que lo recibe
- **▼ELFEXT** representa relación entre:
 - ▼La intensidad del ruido debido a la paradiafonía de la señal y a la fuerza de la señal del dato recibido

Par Trenzado ELFEXT

VELFEXT

▼Pérdida de retorno

- ▼Es una medida de la fuerza del eco de la señal reflejada
- ▼Causado por las diferencias de impedancia a lo largo de un cable
- ▼El eco de una señal es una fuente de ruido adicional
- ▼Las fuentes de ruido interfieren con la recuperación de una señal de datos de 1000BASE TX

Par Trenzado RL

Return Loss

Transmitter

Receiver

Par Trenzado Efecto de Retardo

Par Trenzado Efecto de Retardo

▼Efecto de retardo

- **▼Cada par tiene una diferente longitud de trenzado**
- **▼Un bit puede "viajar" más rápido que** otros bits
- ▼Un canal con un efecto de retardo de más de 50 nsec, no puede soportar exitosamente Gigabit Ethernet

Par Trenzado RL

Par Trenzado EMI

EMI (Electro-Magnetic Interference) Influencia incontrolable desde el exterior

Par Trenzado Solución del EMI

Solución: Cerrar la ventana, use una Pantalla!!!

- **▼EMI:** El problema
- **VELECTROMAGNETIC INTERFERENCE**
- Definición : interacción no deseada entre equipos
- **▼Aplica para EMISIONES y SUSCEPTIBILITY**

- **▼EMC:** La solución
- ELECTROMAGNETIC COMPATIBILITY
- Definición: Equipos operando apropiadamente dentro de un ambiente electromagnético
- Un mejor EMC MEJORA la calidad de la transmisión y reduce el BER (bit error rate)

Twisted Pair = Protección EMI
hasta ± 30 MHz
+ no perfect balance possible

Eficiencia contra EMI sobre el rango de frecuencias

SCREENED CABLING TECHNOLOGY

- Alcatel inventó y desarrolló el FTP, combinando las ventajas del UTP y STP
- Alcatel Cabling Systems es el líder mundial en sistemas de cableado protegido
- Rango completo de cables protegidos y conectividad, ofreciendo sistemas completos de EMC

EFFICIENCY OF THE FOIL

- ▼Ruido ambiental (No-cancelable)
 - ▼El ruido de fondo es como el ruido generado por líneas de energía, voltajes telefónicos, aire acondicionado o máquinas.
 - Debido a su naturaleza aleatoria, el ruido ambiental no puede ser cancelado en el NIC y este contribuirá en el BER de un sistema

▼Se aceptan máximo 12 dB de SNR debido a la codificación!

Par Trenzado Conclusiones

Conclusión:

- •El ruido ambiental aminorará significativamente una red 1000BASE-TX
- El ancho de banda de la señal transmitida es de 125 MHz

•Algunos enlaces existentes de UTP Clase- D de bajo desempeño quizas no soporten Gigabit Ethernet

Par Trenzado Estructura

Estructura Cable UTP

Superficie coloreada
POLIETILENO COLOREADO

No se maneja por unidades sino por pares y grupos de pares

Aislación o Recubrimiento POLIETILENO (evita la corrosión del cable)

Conductor
ALAMBRE ELECTROLÍTICO RECOCIDO

Par Trenzado Categorías

🔻 Categorías y divisiones de los cables UTP

EIA (Electronic Industries Standar) EIA 568 Comercial Building Telecomunications Cabling Standard

- UTP categoria 1: Especialmente diseñado para teléfonos.
- ✓ UTP categoría 2: Transmisión de voz y datos para frecuencias de hasta 4 Mbps.
- ✓ UTP categoría 3: Transmisión de voz y datos para frecuencias de hasta 16 Mbps.
- ✓ UTP categoría 4: Transmisión de voz y datos para frecuencias de hasta 20 Mbps.
- ✓ UTP categoría 5: Transmisión de voz y datos para frecuencias de hasta 100 Mbps.

Par Trenzado Formación de los pares

$\overline{\mathbf{v}}$

Forma de trenzar y agrupar un cable UTP

Estandarización de colores				
No. de Par	Color conductor 1	Color conductor 2		
1	Blanco	Azul		
2	Blanco	Anaranjado		
3	Blanco	Verde		
4	Blanco	Marrón		
5	Blanco	Gris oscuro		
6	Rojo	Azul		

Los pares se agrupan en subgrupos,, los subgrupos se agrupan en grupos, los grupos en superunidades y las superunidades se conocen como cable.

Los cables se arman de: 4, 6, 10, 18, 20, 30, 50, 80, 100, 150, 200, 300, 400, 600, 900, 1200, 1500, 1800 o 2200 pares.

Características del conector RJ-45

Tiene un mecanismo de enganche

El orden de los colores esta estandarizado

Se debe asegurar de que todos los elementos del cableado pueden soportar las mismas velocidades de transmisión, resistencia eléctrica, etc.