

# Human Parechovirus A conventional nested genotyping RT-PCR ["Harvala assay"; 2008-2015] Version 3

## Ian Mackay

#### **Abstract**

I and my team used this assay between 2008-2015; we dubbed it the "Harvala assay". It produces an amplicon that includes the 3' end of VP3 and the 5' end of VP1, spanning the junction.

*In silico* sequence alignments indicated the highly degenerate olignucleotides could theoretically detect af least HPeV 1-7, 17 and 18.

Citation: lan Mackay Human Parechovirus A conventional nested genotyping RT-PCR ["Harvala assay"; 2008-2015].

protocols.io

dx.doi.org/10.17504/protocols.io.krxcv7n

Published: 12 Nov 2017

## **Guidelines**

- This protocol assumes the user is familiar with working in a laboratory, with PCR, the thermocycler and software used to run it
- This protocol should be re-evaluated if being used with different reagents, if the oligonucleotide sequences are changed or if the cycling conditions are altered

## **Protocol**

## Oligonucleotides...

## Step 1.

| Round              | Name           | 5'-3' oligonucleotide sequence |
|--------------------|----------------|--------------------------------|
| Round 1.<br>RT-PCR | HPeV_VP3/1_OS  | GAYAATGCYATMTAYCAWATYTGTGA     |
| Round 1.<br>RT-PCR | HPeV_VP3/1_OAS | S ACWGTRAARATRTCHACATTSATDG    |
| Round 2.<br>nPCR   | HPeV_VP3/1_IS  | TTYTCMACHTGGATGMGGAARAC        |
| Round 2.<br>nPCR   | HPeV_VP3/1_IAS | DGGYCCATCATCYTGWGCTGA          |

OS-outer sense; OAS-outer antisense; IS-inner sense; IAS-inner antisense

## Reagents...

## Step 2.



# **REAGENTS**

SensiFAST Probe no ROX one-step kit BIO-76005 by <u>Bioline</u>
MyTaq HS DNA Polymerase BIO-21113 by <u>Bioline</u>

## Reaction setup...

## Step 3.

Below is the reaction setup for a single RT-PCR reaction.

Ideally, this work is conducted in a laboratory separate to any space used to *perform* PCR, molecular cloning or the analysis or high concentration DNA.

This volume has been used in 0.2ml tubes.

Multiply this according to the number of reactions you will need, remembering to include a positive control and at least two non-template controls (NTCs).

You may also need to allow some extra volume, depending on the method used to pipette mix into tubes for the run. For example, some robot-loaded tubes can require two reaction 'dead volumes'.

#### Round 1: RT-PCR

| Reagent (stock concentration)         | Vol (μL) / reaction | Final concentration |
|---------------------------------------|---------------------|---------------------|
| Nuclease free water                   | 7.28                |                     |
| AN345_panHPeV/LV (200pmol/ul [200uM]) | 0.06                | 600nM               |
| AN344_panHPeV/LV (200pmol/ul [200uM]) | 0.06                | 600nM               |
| SensiFast OneStep Mix(2x)             | 10                  | 1X                  |
| RNase inhibitor                       | 0.4                 |                     |
| RT/Taq (6U/mL)                        | 0.2                 | 1X                  |
| Template extract RNA                  | 2                   |                     |
| Final volume                          | 20μΙ                |                     |

## Round 2: nPCR

| Reagent (stock concentration)         | Vol (μL) / reaction | Final concentration |
|---------------------------------------|---------------------|---------------------|
| Nuclease free water                   | 12.424              |                     |
| AN345_panHPeV/LV (200pmol/ul [200uM]) | 0.038               | 380nM               |
| AN344_panHPeV/LV (200pmol/ul [200uM]) | 0.038               | 380nM               |
| MyTaq Reaction Buffer (5X)            | 4                   | 1X                  |
| MgCl2 (25mM)                          | 1.4                 |                     |
| MyTaq HS DNA Polymerase (5U/uL)       | 0.1                 | 1X                  |
| Round 1 amplicon                      | 2                   |                     |
| Final volume                          | 20μΙ                |                     |

# Cycling conditions...

# Step 4.

This assay has been optimized and for use with a conventional block thermal cycler.

The cycling conditions for the one-step RT-PCR and the nested PCR (nPCR) are as follow:

| Round 1: RT-PCR |      |                   |     |  |
|-----------------|------|-------------------|-----|--|
|                 | 45°C | 20min             |     |  |
|                 | 94°C | 2min              |     |  |
| 95°\<br>60°C    | 72°C | 105s<br>7min<br>∞ | 40X |  |

| Round 2: nPCR |                     |  |  |  |
|---------------|---------------------|--|--|--|
| 94°C          | 1min                |  |  |  |
|               | 40X<br>105s<br>7min |  |  |  |

# Result calling...

# Step 5.

A positive result is determined by a suitably sized band on an agarose gel after electrophoresis.

Run both reactions on a 1.5% agarose gel after Round 2 is complete. Only the second round amplicon needs to be sequenced, but if the viral load is high enough, there may be a useful, larger band from Round 1 which can be sequenced instead.