

Day 7

As shown in the figure below, AB//CD, AB=6, CD=14. Find the value of AO:OC, BO:OD, and $S_{\triangle ABO}:S_{\triangle CDO}$, respectively.

Answer 3:7;3:7;9:49

Solution $AB//CD \Rightarrow \triangle ABO \sim \triangle CDO$

 $AO:OC=BO:OD=AB:CD=6:14=3:7,\ S_{\triangle AOB}=S_{\triangle CDO}=AB^2:CD^2=9:49.$

2 As shown in the figure below, $AB \perp BD$, $CD \perp BD$, BO = 2, and AB = 3, OD = 6, what is the area of $S_{\triangle COD}$?

Answer 2'

Solution<mark>∵ *AB*⊥*BD* , *CD*⊥*BD*;</mark>

- $\therefore AB//CD;$
- $\therefore \triangle ABO \sim \triangle CDO;$
- $\therefore AB : CD = BO : OD = 2 : 6 = 1 : 3;$
- $\therefore CD = 9$, $S_{\triangle CDO} = 6 \times 9 \div 2 = 27$.

As shown in the figure below, in $\triangle ABC$, AD = DF = FH = HB,

AE = EG = GI = IC. What fraction of the area of $\triangle ABC$ is the area of $\triangle ADE$?

Answer $\frac{1}{16}$

Solution
$$AE=rac{1}{4}AC$$
, $AD=rac{1}{4}AB$; $rac{S_{\triangle ADE}}{S_{\triangle ABC}}=rac{1}{4} imesrac{1}{4}=rac{1}{16}.$

4 As shown in the figure below, in $\triangle ABC$, AB=3BE, AC=3CD, G is the midpoint of AD and F is the midpoint of ED. Given that the area of quadrilateral BCDE is 20 cm² larger than that of $\triangle DGF$, what is the area of $\triangle ABC$?

Answer 45 cm²

Solution: $AE = \frac{2}{3}AB$, $AD = \frac{2}{3}AC$;

 $\therefore \triangle ABC \sim \triangle AED;$

$$\therefore rac{S_{BCDE}}{S_{ riangle ABC}} = 1 - rac{2}{3} imes rac{2}{3} = rac{5}{9}.$$

 \therefore G, F are the midpoints of AD and ED, respectively;

 $\therefore \triangle DGF \sim \triangle DAE;$

$$egin{aligned} \therefore rac{S_{ riangle GFD}}{S_{ riangle AED}} &= rac{1}{2} imes rac{1}{2} = rac{1}{4}; \ \therefore rac{S_{ riangle GFD}}{S_{ riangle ABC}} &= rac{1}{4} imes rac{4}{9} = rac{1}{9}; \end{aligned}$$

$$\therefore \frac{S_{\triangle GFD}}{S_{\triangle ABC}} = \frac{1}{4} \times \frac{4}{9} = \frac{1}{9};$$

$$\therefore S_{\triangle ABC} = 20 \div (\frac{5}{9} - \frac{1}{9}) = 45 \text{ cm}^2.$$