Multiple Linear Regression & Other Considerations Sections 3.2 & 6.1

Cathy Poliak, Ph.D. cpoliak@central.uh.edu

Department of Mathematics University of Houston

Outline

Multiple Linear Regression

Best Subset Selection

Prediction and Confidence Intervals

Recall The Example

The goal is to predict the *stock_index_price* (the dependent variable) of a fictitious economy based on three independent/input variables:

- Interest Rate
- Unemployment_Rate
- Year

The data is in the *stock_price.csv* data set in BlackBoard. This is from https://datatofish.com/multiple-linear-regression-in-r/

We have looked at using interest rate as a predictor for the stock index price, what if we also add unemployment rate and year as predictors?

Can We Do Separate Simple Linear Regression Models?

Suppose now we also want to also include <u>unemployement_rate</u> as an input (predictor). Should we have two separate simple linear regression models?

- The approach of fitting a separate simple linear regression model for each predictor is not entirely satisfactory.
- It is unclear how to make a single prediction based on several models.
- Each of the separate models ignores the other predictors in forming estimates for the regression coefficients.
- Instead we extend the simple linear regression model so that it can directly accommodate multiple predictors.
- We give each predictor a separate slope coefficient in a single model.

General Form for Multiple Linear Regression

 Suppose we have p distinct predictors, the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

- X_i represents the jth predictor
- β_j quantifies the association between the *j*th predictor and the response.
- We interpret β_j as the **average** effect on Y of a one unit increase in X_j , **holding all other predictors fixed**.
- In our example of stock index price we have a model:

 $stock_index_price = \beta_0 + \beta_1 \times Interest_Rate + \beta_2 \times Unemployment_Rate + \beta_3 \times Year + \epsilon_3 \times Year + \epsilon_4 \times Year + \epsilon_5 \times Y$

Estimating the Regression Coefficients

 We now have p explanatory variables, we use the least-squares idea to find a linear function

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

• We use a subscript *i* to distinguish different cases. for the *i*th case the predicted response is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_p x_{ip}$$

• Using the *least squares method* we want $\hat{\beta}_j$ for j = 1, ..., p that minimize

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$$

Linear Model of The Stock Index Price

```
stock3.lm <- lm(Stock_Index_Price~Interest_Rate+Unemployment Rate+Year,</pre>
               data = stock price)
summary(stock3.lm)
Call:
lm(formula = Stock Index Price ~ Interest Rate + Unemployment Rate +
Year, data = stock_price)
Residuals:
Min
          10
              Median
                                   Max
                                                                If p-value < a
-156.593 -41.552
                 -5.815 50.254 118.555
Coefficients.
                   Estimate Std. Error t value Pr(>|t|)
                            134080.46 -0.422
                  -56523.71
                                                 0.678
(Intercept)
Interest Rate
                   7324.59
                               123.37
                                        2.631
                                                 0.016 *
Unemployment Rat
                    -231.48
                               127.72
                                       -1.812
                                                 0.085 .
Year
                     28.89
                                 66.42
                                        0.435
                                                 0.668
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 71.96 on 20 degrees of freedom
Multiple R-squared: 10.8986, Adjusted R-squared: 0.8834
F-statistic: 59.07 on 3 and 20 DF, p-value: 4.054e-10
```

 $\textit{stock_index_price} = -56523.71 + 324.59 \times \textit{Interest_Rate} - 231.48 \times \textit{Unemployement_Rate} + 28.89 \times \textit{Year}$

7/39

Interpretation of the Parameters

We interpret β_j as the average effect of Y (the predictor) of a one unit increase in X_j , **holding all other predictors fixed**.

- $\hat{\beta}_1 = 324.59$ This means that for 1% increase in interest rate, the stock index price will increase on average by \$324.48 for a fixed value of the unemployment rate and the year.
- $\hat{\beta}_2 = -231.48$, So for one 1% increase in unemployment rate, the stock index price will decrease on average by \$231.48 for a fixed value of the interest rate and the year.
- Give the interpretation of $\hat{\beta}_3$. = 28. \$

For one year increase, the stock price will increase by \$28.89 for fixed interestrate and unemployment rate.

Correlation Matrix

```
> cor(stock_price[,-2])
                        Year Interest Rate Unemployment Rate Stock Index Price
                   1.0000000
                                 0.8828507
                                                   -0.8769997
                                                                      0.8632321
Year
Interest Rate
                   0.8828507
                                1.0000000
                                                  -0.9258137
                                                                      0.9357932
Unemployment Rate -0.8769997
                                                  1.0000000
                                                                     -0.9223376
                                -0.9258137
Stock Index Price
                   0.8632321
                                0.9357932
                                                  -0.9223376
                                                                     1.0000000
```

(or (Year, Interest rate) = 0.9829 (or (Year, unemployment rate) = -0.877

Be careful of multicolinarity.

- The occurance of Nigh intercorrelations among two or more independent variables.

Variance Inflation factor: VIF

Some Important Questions

For the **multivariate regression** we are interested in answering a few important questions.

- 1. Is at least one of the predictors X_1, X_2, \dots, X_p useful in predicting the response?
- 2. Do all of the predictors help to explain *Y*, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how acculturate is our prediction?

1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response? **Answer**: F - test, if p-value $\leq \alpha$ then at least one of the predictors are useful in predicting the response.

Hoib, =
$$\beta_2 = \beta_3 = \cdots = \beta_p = 0$$
 $\beta_1 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 +$

n = 4 of observations

produce P (Test Stat > Fp, n-p-1)
Reject to it produce is small

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response? **Answer**: F test, if p-value $\leq \alpha$ then at least one of the predictors are useful in predicting the response.
- 2. Do all of the predictors help to explain Y, or is only a subset of the predictors useful? **Answer**: T-test for each predictor, if p-value is $> \alpha$ then that predictor is not needed in the in model with the presence of the the other predictors.

- 1. Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response? **Answer**: F test, if p-value $\leq \alpha$ then at least one of the predictors are useful in predicting the response.
- 2. Do all of the predictors help to explain Y, or is only a subset of the predictors useful? **Answer**: T-test for each predictor, if p-value is $> \alpha$ then that predictor is not needed in the in model with the presence of the the other predictors.
- 3. How well does the model fit the data? Answer: What is the RSE for different models, what is R² for different models? Do the plots (residuals, Normal QQ, Standardize Residuals, and Extreme Values) appear to follow the assumptions?

- 1. Is at least one of the predictors X_1, X_2, \dots, X_p useful in predicting the response? **Answer**: F test, if p-value $\leq \alpha$ then at least one of the predictors are useful in predicting the response.
- 2. Do all of the predictors help to explain Y, or is only a subset of the predictors useful? **Answer**: T-test for each predictor, if p-value is $> \alpha$ then that predictor is not needed in the in model with the presence of the the other predictors.
- 3. How well does the model fit the data? Answer: What is the RSE for different models, what is R² for different models? Do the plots (residuals, Normal QQ, Standardize Residuals, and Extreme Values) appear to follow the assumptions?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction? **Answer**: Prediction Interval and Confidence Interval.

Answering Question 1

F-Test: $H_0: \beta_1 = \beta_2 = \cdots = \beta_p$ against $H_a:$ at least one $\beta_j \neq 0$, for $j = 1, 2, \dots p$. That is at least one predictor could be used in the model.

- 1. Test statistic: $F = \frac{(SST SSE)/p}{SSE/(n-p-1)}$
- **2.** P-value: $P(f_{p,n-p-1} \ge F) \le \alpha$ we reject the null hypothesis.
- Output from R last line of summary F-statistic: 59.07 on 3 and 20 DF, p-value: 4.054e-10 RHo .. At least > anova(stock3.lm) one Bi Analysis of Variance Table Response: Stock Index Price Df Sum Sc. Mean Sq F value Mode Pr(>F) 1 894463 894463 172.7117 2.684e-11 *** Interest Rate Unemployment Rate 1 22394 22394 4.3241 0.05065 . Year 980 0.1892 0.66823 Residuals 20 103579 5179 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 55R = 894463+ 22394 +980 = 917837 $F = \frac{917837/3}{103579/(84-3-1)} = 59.0$ SSE= 103579

Answering Question 2

T-test: $H_0: \beta_j = 0$ against $H_a: beta_j \neq 0$ for j = 1, 2, ..., p, given the other variables are in the model.

- 1. Test statistic: $t_j = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}$
- **2**. P-value: $P(t_{n-p-1} \ge |t_j|) \le \alpha$, we reject the null hypothesis for β_j .
- 3. Output from R:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -56523.71 134080.46 -0.422 0.678

Interest_Rate 324.59 123.37 2.631 0.016 *

Unemployment_Rate -231.48 127.72 -1.812 0.085 .

Year 28.89 66.42 0.435 0.668

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

I arge, year is not significant in predicting stock price.

Model Without Year

```
stock2.lm <- lm(Stock_Index_Price~Interest_Rate+Unemployment_Rate,</pre>
              data = stock price)
summary (stock2.lm)
Call:
lm(formula = Stock_Index_Price ~ Interest_Rate + Unemployment_Rate,
data = stock price)
Residuals:
    Min 10 Median 30 Max
-158.205 -41.667 -6.248 57.741 118.810
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 1798.4 899.2 2.000 0.05861.
Interest Rate 345.5 111.4 3.103 0.00539 **
Unemployment_Rate -250.1 117.9 -2.121 0.04601 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 70.56 on 21 degrees of freedom
Multiple R-squared: 0.8976, Adjusted R-squared: 0.8879
F-statistic: 92.07 on 2 and 21 DF, p-value: 4.043e-11
```