# Edge Detection & Image Sharpening

김성영교수 금오공과대학교 컴퓨터공학과

# 학습 내용

- Edge 정의
- Edge detection 개요 및 방법
- Image sharpening 방법

# Edge 정의

# A large change in image brightness over a short spatial distance



# Edge detection 개요

# Most are based on discrete approximations to differential operators

Implemented with convolution masks

Return orientation or existence of an edge information

Used as a first step in the line detection or object outlines process





# Edge detection 방법



### 1<sup>st</sup>-order derivative

Tender derivative 
$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \qquad G_x \cong f[x+1,y] - f[x,y], \quad G_y \cong f[x,y+1] - f[x,y]$$

$$G = \sqrt{G_x^2 + G_y^2} \approx |G_x| + |G_y| \approx \max(|G_x|, |G_y|)$$

$$G_x \cong f[x+1,y] - f[x,y], G_y \cong f[x,y+1] - f[x,y]$$

$$G = \sqrt{G_x^2 + G_y^2} \approx |G_x| + |G_y| \approx \max(|G_x|, |G_y|)$$

$$G_y$$
  $G$ 

$$\alpha(x, y) = \tan^{-1} \left( \frac{G_y}{G_x} \right)$$



### **Prewitt**

$$G_x \cong f[x+1, y] - f[x, y], \quad G_y \cong f[x, y+1] - f[x, y]$$

$$G_x = h_x(x, y) * f(x, y), \quad G_y = h_y(x, y) * f(x, y)$$

Simple box filter

### Sobel

$$G_x \cong f[x+1, y] - f[x, y], \quad G_y \cong f[x, y+1] - f[x, y]$$

$$G_x = h_x(x, y) * f(x, y), \quad G_y = h_y(x, y) * f(x, y)$$

$$h_{x}(x,y) = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad h_{y}(x,y) = \begin{bmatrix} -1-2-1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \text{Finite diff filter}$$

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Simple Gaussian filter

### Roberts

$$G_x \cong f[x+1, y] - f[x, y], \quad G_y \cong f[x, y+1] - f[x, y]$$

$$G_x = h_x(x, y) * f(x, y), \quad G_y = h_y(x, y) * f(x, y)$$

$$h_{x}(x,y) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \qquad h_{y}(x,y) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

No the orientation information



(a) 원영상



(b) Prewitt



(c) Sobel



(d) Roberts

### Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial G_x}{\partial x} = \frac{\partial (f[x+1,y] - f[x,y])}{\partial x} = \frac{\partial f[x+1,y]}{\partial x} - \frac{\partial f[x,y]}{\partial x}$$
$$= (f[x+1,y] - f[x,y]) - (f[x,y] - f[x-1,y]) = f[x+1,y] - 2f[x,y] + f[x-1,y]$$

$$\frac{\partial^2 f}{\partial y^2} = f[x, y+1] - 2f[x, y] + f[x, y-1]$$

$$\nabla^2 f = [f(x, y+1) + f(x-1, y) + f(x+1, y) + f(x, y-1)] - 4f(x, y)$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

common spatial convolution masks

### First vs. Second-order derivative



#### FIGURE 3.38

(a) A simple image. (b) 1-D horizontal graylevel profile along the center of the image and including the isolated noise point. (c) Simplified profile (the points are joined by dashed lines to simplify interpretation).







- First-order derivatives generally produce thicker edges
- Second-order derivatives have a stronger response to fine detail, such as thin lines and isolated points
- First-order derivatives generally have a stronger response to a gray-level step
- Second-order derivatives produce a double response at step changes in gray level
- → In most applications, the second-order derivative is better suited than the first derivative for image enhancement

# Laplacian of Gaussian filtering

$$g(x,y) = \left[\nabla^2 h(x,y)\right] * f(x,y)$$

$$\nabla^{2}h(x,y) = -\left(\frac{x^{2} + y^{2} - \sigma^{2}}{\sigma^{4}}\right)e^{-\frac{(x^{2} + y^{2})}{2\sigma^{2}}}$$



| 0  | 0  | -1 | 0  | 0  |
|----|----|----|----|----|
| 0  | -1 | -2 | -1 | 0  |
| -1 | -2 | 16 | -2 | -1 |
| 0  | -1 | -2 | -1 | 0  |
| 0  | 0  | -1 | 0  | 0  |

LoG mask





# Image Sharpening

# enhancing detail information in an image

typically contained in the high spatial frequency components of the image

done by various types of high boost filters and Laplacian-type filters

# High-pass filtering

$$f_H(x, y) = f(x, y) - f_L(x, y)$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{9} \times \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$





| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
|----|----|----|----|----|----|----|----|
| 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 |
| 10 | 20 | 30 | 20 | 10 | 10 | 10 | 10 |
| 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |



High-pass filtering

| -10 | -20 | -10 | -20 | -10 | 0 | 0 | 0 |
|-----|-----|-----|-----|-----|---|---|---|
| -20 | 40  | 20  | 40  | -20 | 0 | 0 | 0 |
| -30 | 20  | 80  | 20  | -30 | 0 | 0 | 0 |
| -20 | 40  | 20  | 40  | -20 | 0 | 0 | 0 |
| -10 | -20 | -30 | -20 | -10 | 0 | 0 | 0 |
| 0   | 0   | О   | 0   | 0   | 0 | 0 | 0 |
| 0   | 0   | О   | 0   | 0   | 0 | 0 | 0 |
| 0   | 0   | 0   | 0   | 0   | 0 | 0 | 0 |

※ 이전 슬라이드의 마스크에서9로 나누는 것을 제외하고 계산※ 경계외부는 경계 값으로 채움

# High boost filtering

$$g(x, y) = Af(x, y) - f_L(x, y)$$

$$= \{(A-1)f(x, y)\}$$

$$+ \{f(x, y) - f_L(x, y)\}$$

$$= (A-1)f(x, y) + f_H(x, y)$$

$$f_L = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$A \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9A - 1 & -1 \\ -1 & -1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & -1 & -1 \\ -1 & \alpha & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

 $\therefore \alpha = 9A - 1(A \ge 1)$ 

High boost





결과영상(α=9)



Histogram equalization

# Laplacian-type filtering

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$



Original image



Contrast-enhanced

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

# Unsharp masking



$$E(r,c) = I(r,c) + \lambda H(r,c)$$

$$= I(r,c) + \lambda \{I(r,c) - L(r,c)\}$$

$$= (1+\lambda)I(r,c) - \lambda L(r,c)$$

$$I(r,c)$$

$$I(r,c) - L(r,c)$$

Original Image





Unsharp masking lower limit=0, upper=100, 2% low and high clipping

Unsharp masking lower limit=0, upper=150, 2% low and high clipping





Unsharp masking lower limit=0, upper=200, 2% low and high clipping

# 요약

- Edge
  - □ 짧은 공간적인 거리상에서 영상의 밝기 혹은 색상이 급격하게 변하는 지점
- Edge detection 개요
  - □ 주로 차분 연산을 이산적으로 근사화하여 사용 (마스크 사용 처리)
  - □ Edge의 세기와 방향을 제공
- Edge detection 방법
  - □ 1차 미분: Prewitt, Sobel, Roberts 등
  - □ 2차 미분: Laplacian (Laplacian of Gaussian)

## Image Sharpening

- □ 영상의 상세 정보를 강화
- ☐ High-pass filtering, High boost filtering, Laplacian-type filtering, Unsharp masking

### Reference

- R. Gonzalez, R. Woods, Digital Image Processing (2nd Edition), Prentice Hall, 2002
- Scott E Umbaugh, Computer Imaging, CRC Press, 2005