项目报告:动物图片识别及分类

By: 陈永焱 韩雨璇

项目介绍

- 本次项目主要对一下两种模型进行了实验:
 - 二分类模型: 判断图片里是否有某种动物,这次项目里对是否有猫和是否有狗分别进行了两组实验
 - 多组分类模型: 判断图片里动物的种类,这次项目主要对猫的种类进行了实验

数据集

猫图: 16235, 有较大的噪声, 粗略估计噪声能达到40%-30%

其他图片: 15676

1. 二分类: 判断图片是否有狗

1.1 实验数据

 二分类实验
 有
 无
 数据总数
 训练验证比例

 判断是否有狗
 3321
 3199
 6520
 0.2

1.2 模型

图片大小: 112 * 112

优化器: Adam (默认参数 Ir=0.001)

基础模型:

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	224, 224, 16)	448
max_pooling2d (MaxPooling2D)	(None,	112, 112, 16)	0
conv2d_1 (Conv2D)	(None,	112, 112, 32)	4640
max_pooling2d_1 (MaxPooling2	(None,	56, 56, 32)	0
conv2d_2 (Conv2D)	(None,	56, 56, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	28, 28, 64)	0
flatten (Flatten)	(None,	50176)	0
dense (Dense)	(None,	512)	25690624
dense_1 (Dense)	(None,	1)	513

Total params: 25,714,721 Trainable params: 25,714,721

Non-trainable params: 0

1.3 实验结果

模型	正确率	损失	最优步 数	备注
基础模型	0.8641 / 0.8133	0.3359 / 0.4312	4	过拟合,在epoch17时训练集正确率可达100%
两层 Dropout(0.8)	0.9147 / 0.8977	0.2052 / 0.2878	26	Dropout概率有点高
FC层节点数减 半	0.9078 / 0.8672	0.2314 / 0.3005	28	拟合度与不减半相似,但验证集准确率下降 3% ,可以在算力不够时 使用
BN	0.9025 / 0.8898	0.2464 / 0.2897	52	由于算力不够batch size由128缩减为80,导致模型准确率和损失波动较大

基础模型:

两层Dropout(0.8):

BN:

BN调整学习率:

2. 多组分类: 判断图片里猫的品种

2.1 实验数据

子集

	数据总数	训练集数量	验证集数量	训练验证比例
多组分类实验	3507	2811	696	0.2

全集

	数据总数	训练集数量	验证集数量	训练验证比例
多组分类实验	16235	12994	3241	0.2

2.2 模型以及实验结果

结果总结:

- 训练集准确率 > 45%, 损失 < 1.7
- 验证集准确率 > 40%, 损失 ≈ 1.9

模型以及代码:

```
Conv2D(32, 3, padding='same', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
Activation('relu'),
Conv2D(32, 3),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
Dropout(0.25),
Conv2D(64, 5, padding='same'),
Activation('relu'),
Conv2D(64, 5),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2), strides=(2, 2)),
Dropout(0.25),
Flatten(),
Dense(512),
Activation('relu'),
Dropout(0.5),
Dense(classNum),
Activation('softmax')
```

子集

全集

3. 总结与计划/问题与改进

- 还未尝完全的数据集
- 未加入正则化等限制和优化
 - 实际上加入之后准确率下降?可能是为调参
- 完整的数据集噪声很大,会影响结果
- 完整的数据集算的太慢了
- 网络本身不够完善
- 原计划使用ResNet34或者VGG19等其他网络结构
 - 潜在问题: 训练花费太大,没有足够计算资源