المادة: الفيزياء – لغة فرنسية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدة: ساعتان

لهيئة الأكاديميّة المشتركة قسم: العلوم

Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé.

Exercice 1 (6 points) Oscillateur mécanique horizontal

Le but de cet exercice est de déterminer la raideur k du ressort (R) d'un oscillateur mécanique horizontal. Cet oscillateur est formé d'une particule (S_1) de masse M=400 g et du ressort (R) de masse négligeable et de raideur k.

Le centre de gravité G de (S₁) peut se déplacer sur un axe rectiligne horizontal x'Ox; O est à la position d'équilibre de G, le ressort étant non étiré, comme l'indique (Doc 1). Négliger toute force de frottement.

1) La mise en mouvement de l'oscillateur

- (S_1) est initialement au repos et G est en O. Pour mettre (S_1) en mouvement, une particule (S_2) , de masse $m=\frac{M}{2}$, est lancée vers (S_1) le long de l'axe x'Ox. Juste avant la collision, (S_2) se déplaçait avec la vitesse $\overrightarrow{V_2}=V_2\overrightarrow{1}$ $(V_2=0.75 \text{ m/s})$. Juste après la collision, (S_1) et (S_2) se collent ensemble pour former un système (S_2) de masse M_S et de centre de masse G. (S_2) acquiert ainsi la vitesse $\overrightarrow{V_0}=V_0\overrightarrow{1}$.
- 1-1) Préciser la grandeur physique qui reste conservée pendant cette collision.
- 1-2) Écrire l'équation qui exprime la conservation précédente.
- **1-3**) Montrer que $V_0 = 0.25$ m/s.

2) Étude énergétique de l'oscillateur non amorti

(S) est mis en mouvement, juste après la collision, avec la vitesse $\overrightarrow{V_0} = V_0 \vec{1}$ à l'instant $t_0 = 0$. À un instant t, la position de G est définie par son abscisse $x = \overline{OG}$ et la valeur algébrique de sa vitesse est $v = x' = \frac{dx}{dt}$.

Le plan horizontal passant par G est pris comme niveau de référence de l'énergie potentielle de pesanteur.

- **2-1**) Écrire, à un instant t, l'expression de l'énergie mécanique E_m du système [(S), (R), Terre].
- **2-2**) Établir l'équation différentielle qui décrit le mouvement de G en fonction du temps.
- 2-3) Nous supposons que l'équation horaire du mouvement de G s'écrit sous la forme : $x = X_m \sin(\omega_0 t)$ (x en m ; t en s), où X_m est une constante positive.
- **2.3.1**) Déterminer l'expression de ω_0 .
- **2.3.2**) Pendant le mouvement de (S), G oscille entre deux positions extrêmes A et B distantes de 20 cm. Déterminer la valeur de k.
- **2.3.3**) G passe par le point C d'abscisse $x_1 = -5.0$ cm pour la deuxième fois à l'instant t_1 . Déterminer t_1 .

Exercice 2 (7 points)

Détermination des caractéristiques de dipôles électriques

Le but de cet exercice est de déterminer les caractéristiques R, L et C, respectivement, d'un conducteur ohmique, d'une bobine de résistance négligeable et d'un condensateur. Pour cela, nous effectuons deux expériences. Prendre : $\pi^2 = 10$.

1) 1^{re} expérience

Considérons un circuit série (Doc 2) constitué d'un GBF qui délivre à ses bornes une tension alternative sinusoïdale de valeur efficace U et de fréquence f réglable, un conducteur ohmique de résistance R, une bobine d'inductance L et de résistance négligeable, un condensateur de capacité C et un ampèremètre.

Un voltmètre, branché aux bornes du GBF, affiche une valeur constante U = 21 V.

On donne à f différentes valeurs et on enregistre, pour chacune, l'intensité efficace I du courant traversant le circuit. Nous obtenons le graphe de (Doc 3) donnant les variations de I en fonction de f.

- **1-1**) Préciser le nom du phénomène physique qui prend naissance pour f = 200 Hz.
- **1-2**) Indiquer alors la fréquence propre f₀ de ce circuit.
- 1-3) Déduire la valeur de R.
- **1-4)** Montrer que la première relation entre L et C est : $LC = 0.625 \times 10^{-6} \text{ SI}.$

2) 2^e expérience

Considérons le circuit série RLC où R = 150 Ω ; il est alimenté par un GBF qui présente à ses bornes une tension d'expression $u_{AM} = U_m \sin(2\pi ft)$ (Doc 4).

Le circuit est ainsi parcouru un courant alternatif sinusoïdal i.

L'oscilloscope est branché pour visualiser la tension u_{AM} aux bornes du GBF et la tension u_{DM} aux bornes du conducteur ohmique. (Doc 5) montre les oscillogrammes (1) et (2) correspondant respectivement aux tensions u_{AM} et u_{DM} , la fréquence de u_{AM} étant réglée à f=50 Hz.

La sensibilité verticale sur les deux voies est de 5 V/division.

- **2-1**) Calculer, en se référant au (Doc 5), la tension maximale U_m aux bornes du GBF.
- 2-2) Déterminer, en se référant au (Doc 5), l'expression de la tension u_{DM}.
- **2-3**) Déduire l'expression de i.
- **2-4**) Déterminer l'expression de la tension u_{AB} aux bornes du condensateur.
- **2-5**) Déterminer l'expression de la tension u_{BD} aux bornes de la bobine.
- 2-6) En utilisant la relation $u_{AM} = u_{AB} + u_{BD} + u_{DM}$, à tout instant t, et en donnant à t la valeur zéro (t = 0), montrer que la deuxième relation entre L et C est : $10^4 \pi^2 LC + 15000 \pi C \sqrt{3} = 1$.

Déterminer les valeurs de L et C à partir des deux relations ci-dessus entre L et C.

Exercice 3 (7 points)

Aspect de la lumière

1) Dans un montage de Young, placés dans l'air, les deux fentes S_1 et S_2 , droites et parallèles, ont leurs centres séparés par une distance $a = S_1S_2 = 1$ mm. Elles sont éclairées par une source S émettant une lumière monochromatique de longueur d'onde, dans l'air, $\lambda = 625$ nm, S étant à égale distance de S_1 et S_2 .

L'écran d'observation (P), parallèle au plan de (S_1S_2) , est à une distance D=1 m de I, le milieu de $[S_1S_2]$. Sur (P), on considère un point M dans la zone d'interférences dont la position est définie par son abscisse x par rapport au point O, projection orthogonale de I sur (P), comme l'indique (Doc 6).

- 1-1) Décrire les franges observées sur l'écran E.
- 1-2) Interpréter l'existence des franges.
- **1-3**) Préciser la nature de la frange dont le centre est en O.
- **1-4**) Donner, en fonction de D, a et x, la différence de marche optique au point M.
- 1-5) Établir l'expression de l'abscisse x des centres des franges sombres en fonction de D, λ et a.
- **1-6**) Déduire la valeur de l'interfrange en fonction de λ , D et a.
- 1-7) Déterminer le type et l'ordre de la frange dont le centre est à une distance de 3,75 mm de O.
- 1-8) Une lame à faces parallèles, d'épaisseur e et d'indice de réfraction n=1,5, est placée devant S_1 . La différence de marche optique en un point M devient : $\delta = (S_2M S_1M) = \frac{ax}{D} e(n-1)$. Le centre de la frange centrale brillante occupe maintenant la position précédemment occupée par le centre de la 2^e frange sombre. Déterminer e.
- 2) Maintenant, on recouvre la fente S_1 . La source S, émettant le rayonnement monochromatique, est placée en face de la fente S_2 dont la largeur est de 0,10 mm, comme l'indique (Doc 7).
- **2-1**) Nommer le phénomène que la lumière subit à travers la fente.
- **2-2**) Calculer la largeur L de la frange centrale obtenue sur l'écran.
- 3) Les deux phénomènes optiques précédents mettent en évidence un aspect particulier de la lumière. Indiquer cet aspect.

المادة: الفيزياء – لغة فرنسية الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: العلوم

أسس التصحيح

Exercice 1 (6 points) Oscillateur mécanique horizontal

Question	Réponse	Note
1-1	La quantité de mouvement du système $[(S_1), (S_2)]$ est conservée puisque les forces appliquées sont les poids \overrightarrow{Mg} et \overrightarrow{mg} et les réactions normales du support $\overrightarrow{N_1}$ et $\overrightarrow{N_2}$ dont la somme est nulle.	1/2
1-2	$M_S \overrightarrow{V_0} = m\overrightarrow{V_2}$; sur l'axe des abscisses, on peut écrire : $mV_2 = M_S V_0$	1/2
1-3	$V_0 = mV_2/M_S = 0.200 \times 0.75 / 0.600 = 0.25 \text{ m/s}$	1/2
2-1	$Em = Ec + Ep = \frac{1}{2} M_S v^2 + \frac{1}{2} kx^2$ $(E_{pp} = 0)$	1/2
2-2	L'énergie mécanique du système [(S), (R), Terre] est conservée du fait de l'absence de toute perte d'énergie (la seule force extérieure appliquée, dont le point d'application se déplace, est la réaction normale dont le travail est nul). $Em = \frac{1}{2} M_S v^2 + \frac{1}{2} k x^2 = \text{constante } \forall t$ $La dérivée par rapport au temps donne : \frac{dEm}{dt} = M_S v \frac{dv}{dt} + k x \frac{dx}{dt} = 0 \forall t ; \text{on a} :$ $M_S v \left(\frac{d^2x}{dt^2} + \frac{k}{M_S}x\right) = 0 \forall t ; \text{Mais } v \text{n'est pas toujours nulle. On obtient} : x'' + \frac{k}{M_S}x = 0$	1
2-3-1	$ \begin{array}{l} x = X_m sin(\omega_0 t) \; ; \; v = x' = \omega_0 X_m cos(\omega_0 t) \; ; \; x'' = -\omega_0^{\; 2} X_m \; sin \; (\omega_0 t) = -\omega_0^{\; 2} \; x \; ; \; On \; obtient \; ; \\ x'' + \omega_0^{\; 2} \; x \; = \; 0. \; En \; identifiant \; avec \; l'équation \; précédente, \; on \; obtient \; ; \; \omega_0^{\; 2} \; = \; \frac{k}{M_S} \Rightarrow \omega_0 = \sqrt{\frac{k}{M_S}} $	1
2-3-2	Puisque Em = constante, alors, Em(t_0 = 0) = Em(t) = ½ $M_SV_0^2$ = 0,5 × 0,6 × (0,25) 2 = 0,01875 J L'amplitude est : X_m = AB/2 = 10 cm = 0,10 m ; pour x = X_m , v = 0 ; Em = Ep _e = ½ kX_m^2 0,01875 = ½ k × (0,10) 2 ; k = 3,75 N/m	1
2-3-3	Pour $t = t_1$, $v_1 > 0$ puisque G se déplace dans le sens positif et $x_1 = -5,0$ cm. Donc : $(\omega_0 = \sqrt{\frac{3,75}{0,600}} = 2,5 \text{ rad/s et } T_0 = 2\pi/2,5 \approx 2,51 \text{ s}).$ $x_1 = 0,10\sin(2,5t_1) = -0,050 \text{ m et } v_1 = 0,25\cos(2,5t_1) > 0$ $\Rightarrow \sin(2,5t_1) = -0,50 \text{ et } \cos(2,5t_1) > 0 \Rightarrow 2,5t_1 = -\pi/6 \text{ ou } 2,5t_1 = 2\pi - \pi/6 = 11\pi/6$ La valeur négative de t_1 est rejetée, d'où : $t_1 \approx 2,3$ s	1

Exercice 2 (7 points) Détermination des caractéristiques de dipôles électriques

Exercice 2	(7 points) Détermination des caractéristiques de dipôles électriques	
Question	Réponse	Note
1-1-	Le circuit est ainsi le siège du phénomène de résonance d'intensité puisque l'intensité efficace	1/4
	du courant prend une valeur maximale I_0 pour $f = 200$ Hz.	74
1-2-	La fréquence propre est alors $f_0 = 200 \text{ Hz}$.	1/4
1-3-	La valeur maximale de l'intensité efficace du courant est : $I_0 = 140 \text{ mA}$.	
	Donc: $R = \frac{U}{I_0} = \frac{21}{0,140} = 150 \Omega$.	1/2
	Dans ce cas : $f_0 = \frac{1}{2\pi\sqrt{LC}} = 200$; $LC = \frac{1}{4\times\pi^2\times4\times10^4}$	1/2
1-4-	$\frac{2\pi\sqrt{LC}}{2\pi\sqrt{LC}} = \frac{200}{4\times\pi^2\times4\times10^4}$	
	$LC = 0.625 \times 10^{-6} \text{ SI} (1)$	
2-1	$U_m = S_v.Y = 4 \times 5 = 20 \text{ V}$	1/2
	$u_{AM} = 20\sin(100\pi t)$	72
	L'oscillogramme (2), (u_{DM}), est en avance de phase de $ \phi $ sur l'oscillogramme (1), (u_{AM}), car	
	u _{DM} prend une valeur maximale avant u _{AM} , les deux tensions évoluant dans le même sens.	
	Une période (2π) s'étend sur 6 div et la différence de phase $ \phi $ est relative à 1 div.	11/
2-2	Donc: $ \varphi = \frac{2\pi \times 1}{6} = \frac{\pi}{3}$ rad et $\omega = 2\pi f = 100\pi$ rad/s	1½
	$U_{m2} = S_{v.}Y = 2 \times 5 = 10^{3} V$ et	
	$u_{DM} = 10 \sin(100\pi t + \pi/3) (u_{DM} \text{ en V, t en s})$ La loi d'Ohm donne : $i = \frac{u_{DM}}{R} = \frac{10}{150} \sin(100\pi t + \frac{\pi}{3})$; On obtient :	
2-3		1/2
	$i = \frac{1}{15} \sin\left(100\pi t + \frac{\pi}{3}\right) = 0,067 \sin\left(100\pi t + \frac{\pi}{3}\right)$; (i en A, t en s).	
	$i = \frac{dq}{dt} = C \frac{du_{AB}}{dt}$	1/2
2-4	La tension any hornes du condensateur s'écrit : $y = \frac{1}{1} \int_{0}^{1} dt = \frac{1}{1 + \frac{1}{1 $	
Z-4	La tension aux bornes du condensateur s'écrit : $u_{AB} = \frac{1}{C} \int i dt = -\frac{1}{1500 \pi C} \cos(100\pi t + \frac{\pi}{3})$,	
	la constante d'intégration étant nulle car u _{AB} est une tension alternative sinusoïdale.	
2-5	$u_{BD} = L \frac{di}{dt} = \frac{100}{15} \pi L \cos(100\pi t + \frac{\pi}{3})$	1/2
2-3	dt = 15	/2
	$u_{AM} = u_{AB} + u_{BD} + u_{DM} \forall t$	
	$20 \sin (100 - t) = (100 - t) = 1$	
	$20\sin(100\pi t) = \left(\frac{100}{15}\pi L - \frac{1}{1500\pi C}\right)\cos(100\pi t + \frac{\pi}{3}) + 10\sin(100\pi t + \frac{\pi}{3})$	1
2-6	Pour $t = 0$	
	0 , 100 , 1 , π , π	
	$0 = \left(\frac{100}{15}\pi L - \frac{1}{1500\pi C}\right)\cos\left(\frac{\pi}{3}\right) + 10\sin\left(\frac{\pi}{3}\right)$	
	$10^4 \pi^2 \text{LC} + 15000 \pi \text{C} \sqrt{3} = 1$ (2)	
	$\int C=1,15\times 10^{-5}F=0,115 \ \mu F$	
3	Les équations (1) et (2) donnent : $ \begin{cases} C = 1,13 \times 10^{-1} = 0,113 \text{ m} \\ L = 0,0543 \text{ H} = 54,3 \text{ mH} \end{cases} $	1
	(L=0,03 1311 = 37,3 mm	

Exercice 3 (7 points) Aspect de la lumière

Exercice 3	(7 points) Aspect de la lumière	
Question	Réponse	Note
1-1	On observe sur l'écran des franges rectilignes, alternativement brillantes et sombres, parallèles entre elles et aux fentes et de mêmes dimensions.	1/2
1-2	Nous avons la superposition des deux faisceaux lumineux émis par S ₁ et S ₂ . Lorsque ces faisceaux lumineux atteignent un certain point en phase, nous avons une interférence constructive et ce point est le centre d'une frange brillante ; lorsqu'ils atteignent un autre point en opposition de phase, nous avons une interférence destructive et ce point est le centre d'une frange sombre.	1/2
1-3	La différence de marche optique en O s'écrit : $\delta = S_2O - S_1O = 0 \Rightarrow \delta = 0$. Donc, O est le centre d'une frange brillante puisque les ondes reçues en O sont en phase.	3/4
1-4	La différence de marche optique s'écrit : $\delta = S_2M - S_1M = \frac{ax}{D}$	1/4
1-5	Pour les centres des franges sombres, on $a: \delta = \left(k + \frac{1}{2}\right)\lambda$ et $\delta = \frac{ax}{D}$ où $k \in \mathbb{Z}$. Ainsi : $x = \left(k + \frac{1}{2}\right)\frac{\lambda D}{a}$	1/2
1-6	L'interfrange est la distance entre les centres de deux franges consécutives de même nature. $i = x_{k+1} - x_k = \left(k+1+\frac{1}{2}\right)\frac{\lambda D}{a} - \left(k+\frac{1}{2}\right)\frac{\lambda D}{a} = \frac{\lambda D}{a}$	1
1-7	$x = 3.75 \text{ mm} = 3.75 \times 10^{-3} \text{m}$ M est le centre d'une frange brillante si $\delta = k \lambda$, et M est le centre d'une frange sombre si $\delta = \left(k + \frac{1}{2}\right)\lambda$, k étant un nombre entier. Donc : $\frac{\delta}{\lambda} = \frac{ax}{\lambda D} = 10^{-3} \times 3.75 \times 10^{-3} / (625 \times 10^{-9} \times 1) = 6$ Donc, M est le centre de la 6 ^e frange brillante.	1
1-8	Pour le centre de la frange centrale brillante, on a : $\delta=0$; Donc $\frac{ax}{D}=e$ (n-1) et $i=\lambda D/a$, soit : $i=625\times 10^{-9}\times 1/10^{-3}=0,625\times 10^{-3}$ m = 0,625 mm. Mais l'abscisse x du centre de la deuxième frange sombre s'écrit : : $x=3i/2=9,375\times 10^{-4}$ m, On obtient : $e=\frac{ax}{D(n-1)}=\frac{9,375\times 10^{-4}\times 10^{-3}}{1\times (1,5-1)}=1,875\times 10^{-6}$ m	1
2-1	La largeur de la fente est : $b = 0.10 \text{ mm} = 1.0 \times 10^{-4} \text{ m}$; elle est très petite. La lumière subit alors le phénomène de diffraction.	1/2
2-2	L= $\frac{2\lambda D}{b}$; ainsi : L= $\frac{2\lambda D}{b}$ = $\frac{2\times625\times10^{-9}\times1}{10^{-4}}$ = 1250×10 ⁻⁵ m = 12,5 mm	1/2
3	Le premier phénomène est le phénomène d'interférences de la lumière et le second est le phénomène de diffraction de la lumière. Donc, c'est l'aspect ondulatoire de la lumière.	1/2