¿Cuántos árboles tiene una red?

Jeremy L. Martin
Department of Mathematics
University of Kansas

Coloquio de Matemáticas Pontificia Universidad Católica de Chile 8 Septiembre 2023

Part 1: Graphs and Spanning Trees

Graphs

Definition A graph G = (V, E) consists of vertices V connected by edges E.

Graphs

Definition A graph G = (V, E) consists of vertices V connected by edges E.

Graphs

Definition A graph G = (V, E) consists of vertices V connected by edges E.

Definition A **tree** is a graph that is connected and acyclic.

Definition A spanning tree T of a graph G is a tree with V(T) = V(G) and $E(T) \subseteq E(G)$.

$$\mathscr{T}(G) = \{ \text{spanning trees of } G \}$$

 $\tau(G) = |\mathscr{T}(G)|$

Counting Spanning Trees

The number $\tau(G)$ measures the **complexity** and **resilience** of G.

Counting Spanning Trees

The number $\tau(G)$ measures the **complexity** and **resilience** of G.

Spanning Trees and Linear Algebra

Orient the edges of G by assigning each one a head and a tail.

Definition The signed incidence matrix $\partial = \partial(G)$ has rows and columns corresponding to vertices and edges of G, with entries

$$\partial_{v,e} = \begin{cases} +1 & \text{if } v = \text{head}(e) \\ -1 & \text{if } v = \text{tail}(e) \\ 0 & \text{if } v \notin e \text{ or } e \text{ is a loop} \end{cases}$$

Fact A spanning tree of G is precisely a set of edges corresponding to a column basis of ∂ .

The Laplacian Matrix

Definition Let G be a connected graph with n vertices.

The **Laplacian** of G is the $n \times n$ matrix $L = \partial \partial^T$, with rows/columns labeled by vertices and entries

$$\ell_{ij} = \begin{cases} \deg_G(i) & \text{if } i = j, \\ -(\text{number of edges between } i \text{ and } j) & \text{if } i \neq j. \end{cases}$$

- L is symmetric and positive semi-definite
- ightharpoonup rank L = n 1
- ker L is spanned by the all-1's vector

The Matrix-Tree Theorem

Matrix-Tree Theorem [Kirchhoff 1847]

(1) Let $0, \lambda_1, \lambda_2, \dots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n} .$$

(2) Let $1 \le i \le n$. Form the **reduced Laplacian** L_i by deleting the i^{th} row and i^{th} column of L. Then

$$\tau(G) = \det L_i$$
.

Complete and Complete Bipartite Graphs

The **complete graph** K_n has n vertices, with every pair connected by one edge.

- ► Laplacian spectrum: $0^1 n^{n-1}$
- ▶ $\tau(K_n) = n^{n-2}$ (Cayley's formula)

The **complete bipartite graph** $K_{p,q}$ has p red vertices and q blue vertices, with every red/blue pair connected by one edge.

- ► Laplacian spectrum: $0^1(p+q)^1p^{q-1}q^{p-1}$
- $au(K_{p,q}) = p^{q-1}q^{p-1}$

Both these formulas can also be obtained bijectively.

Hypercubes

The **hypercube graph** Q_n has 2^n vertices, labeled by strings of n bits (0's and 1's), with two vertices adjacent if they agree in all but one bit.

Theorem The eigenvalues of the Laplacian of Q_n are $0, 2, 4, \ldots, 2n$, with 2k having multiplicity $\binom{n}{k}$. Therefore,

$$\tau(Q_n) = 2^{2^n - n - 1} \prod_{k=2}^n k^{\binom{n}{k}}.$$

Combinatorial proof: [Bernardi '12]

A graph G with vertex set $\{1, 2, ..., n\}$ is a **threshold graph** if, whenever ab is an edge, so is a'b' for all $a' \le a$ and $b' \le b$.

Corollary
$$\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$$
.

Corollary
$$\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$$
.

Vertex degrees: 4, 4, 3, 3, 2

Corollary
$$\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$$
.

Laplacian eigenvalues: 5, 5, 4, 2, 0

Corollary
$$\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$$
.

 $\tau = 5 \times 4 \times 2 = 40$

Laplacian eigenvalues: 5, 5, 4, 2, 0

Weighted Counting

Let $\{x_e : e \in E\}$ be commuting indeterminates.

Weighted Laplacian $\hat{L} = [\hat{\ell}_{ij}]_{i,j \in V}$:

$$\hat{\ell}_{ij} = \begin{cases} \sum_{e \ni i} x_e & \text{if } i = j, \\ -\sum_{e = ij} x_e & \text{if } i \neq j. \end{cases}$$

Reduced Laplacian \hat{L}_i : delete i^{th} row and i^{th} column of \hat{L}

Weighted Matrix-Tree Theorem

$$\det L_i = \sum_{T \in \mathscr{T}(G)} \prod_{e \in T} x_e.$$

Weighted Counting

Combinatorial information about $\mathcal{T}(G)$ can be obtained by specializing edge weights x_e . Often, tree enumerators factor nicely.

▶ Complete graphs: $x_{ij} = x_i x_j$ gives Cayley-Prüfer formula

$$\sum_{T \in \mathscr{T}(K_n)} x_1^{\deg_T(1)} \cdots x_n^{\deg_T(n)} = x_1 \cdots x_n (x_1 + \cdots + x_n)^{n-2}$$

- Generalization to extended [Prüfer] graphs [Kelmans '92]
- ► Threshold graphs [Remmel–Williamson '02, JLM–Reiner '03]: factorization for bidegree generating function:

$$\sum_{T \in \mathscr{T}(G)} \prod_{e=i < j \in T} x_i y_j = x_1 y_n \prod_{r=2}^{n-1} \left(\sum_{i=1}^{\lambda_r'} x_{\min(i,r)} y_{\max(i,r)} \right)$$

► Hypercubes: different weighting factors [JLM–Reiner '03]

Part 2: Higher Dimension

Simplicial Complexes

A **d**-simplex is the convex hull of d+1 general points in \mathbb{R}^{d+1} .

A simplicial complex is a space built (properly) from simplices.

Simplicial Complexes

A **d**-simplex is the convex hull of d+1 general points in \mathbb{R}^{d+1} .

A simplicial complex is a space built (properly) from simplices.

Simplicial Complexes

Combinatorially, a simplicial complex is a set family $\Delta \subseteq 2^{\{1,2,\dots,n\}}$ such that if $\sigma \in \Delta$ and $\sigma' \subseteq \sigma$, then $\sigma' \in \Delta$.

$$\Delta_1 = \langle 12, 14, 24, 24, 25, 35 \rangle$$

$$\Delta_2 = \langle 124, 245, 35 \rangle$$

- **faces** or **simplices**: elements of Δ
- **dimension:** dim $\sigma = |\sigma| 1$
- facet: a maximal face
- **pure** complex: all facets have equal dimension
- ▶ *k*-skeleton $\Delta_{(k)} = \{ \sigma \in \Delta : \dim \sigma \leq k \}$

Simplicial Boundary Maps and Homology

Let Δ be a simplicial complex on vertices [n]. Write Δ_k for the set of k-dimensional faces.

The k^{th} simplicial boundary matrix of Δ is

$$\partial_k = \partial_k(\Delta) = [d_{\rho,\sigma}]_{\rho \in \Delta_{k-1}, \, \sigma \in \Delta_k}$$

where

$$d_{\rho,\sigma} = \begin{cases} (-1)^j & \text{if } \sigma = \{v_0 < v_1 < \dots < v_k\} \text{ and } \rho = \sigma \setminus v_j \\ 0 & \text{if } \rho \not\subseteq \sigma \end{cases}$$

Note: ∂_1 is the signed incidence matrix of the 1-skeleton of Δ .

Fact: $\ker \partial_k \supseteq \operatorname{im} \partial_{k+1}$ for all k.

Simplicial Boundary Maps and Homology

$$\cdots \to R\Delta_{k+1} \xrightarrow{\partial_{k+1}} R\Delta_k \xrightarrow{\partial_k} R\Delta_{k-1} \to \cdots \qquad \partial_k \partial_{k+1} = 0 \quad \forall k$$

Definition Homology groups of Δ over R (default: $R = \mathbb{Z}$):

$$\tilde{H}_k(\Delta; R) = \ker(\partial_k; R) / \operatorname{im}(\partial_{k+1}; R).$$

Homology groups are topological invariants that "count holes".

- $ightharpoonup \tilde{H}_0(\Delta;R)=0 \iff \Delta \text{ is connected}$
- $ightharpoonup ilde{H}_1(\Delta;R)=0 \iff \Delta ext{ is simply connected}$
- $ightharpoonup \Delta$ is contractible $\implies \tilde{H}_k(\Delta; R) = 0$ for all k, R

Simplicial Spanning Trees

Definition Let Δ^d be a pure simplicial complex of dimension d. A **spanning tree** (ST) is a complex Υ such that $\Delta_{(d-1)} \subseteq \Upsilon \subseteq \Delta$ and either of the following equivalent conditions hold:

- 1. The columns of $\partial_d(\Delta)$ corresponding to faces of Υ form a basis for its column space over $\mathbb Q$
- 2. $\tilde{H}_d(\Upsilon; \mathbb{Q}) = 0$ and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = 0$.
- 3. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is finite.

$$\mathscr{T}(\Delta) = \mathsf{set} \ \mathsf{of} \ \mathsf{spanning} \ \mathsf{trees} \ \mathsf{of} \ \Delta$$

Note that we are **not** defining $\tau(\Delta)$ to be the cardinality of $\mathcal{T}(\Delta)$!

- lacktriangle dim $\Delta=1$: $\mathscr{T}(\Delta)=$ usual graph-theoretic spanning trees
- ▶ dim $\Delta = 0$: $\mathscr{T}(\Delta) = \text{vertices of } \Delta$
- ▶ If Δ is contractible: it has only one ST, namely itself.
 - ▶ Contractible complexes \approx acyclic graphs
 - lacktriangle Some noncontractible complexes also qualify, notably \mathbb{RP}^2
- ▶ If Δ is a simplicial sphere: STs are $\Delta \setminus \{\sigma\}$, where $\sigma \in \Delta$ is any facet (maximal face)
 - Simplicial spheres are analogous to cycle graphs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?

- Either remove triangle 123 and any other triangle (6 STs)...
- ...or one each "northern" and "southern" triangle (9 STs).

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?

- Either remove triangle 123 and any other triangle (6 STs)...
- ... or one each "northern" and "southern" triangle (9 STs).

Torsion

If Δ is a graph, then every spanning tree $\Upsilon \in \mathscr{T}(\Delta)$ is contractible, hence $\tilde{H}_0(\Upsilon; \mathbb{Z}) = 0$.

On the other hand, if dim $\Delta = d \ge 2$ then $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ can be finite and nontrivial.

Example $\Delta =$ complete 2-dimensional complex on 6 vertices; $\Upsilon =$ triangulation of \mathbb{RP}^2 . Then

$$\tilde{H}_1(\Upsilon;\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}.$$

Geometrically: torsion suggests non-orientability.

Combinatorially: torsion affects the count of spanning trees.

Simplicial Laplacians

Definition Updown Laplacian matrix of Δ in dimension k-1:

$$L_{k-1}^{\mathrm{ud}}(\Delta) = \partial_k \partial_k^T.$$

- ▶ $L_0^{ud}(\Delta)$ is the usual graph Laplacian (rows/columns indexed by vertices).
- ▶ $L_{k-1}^{\mathrm{ud}}(\Delta)$ is a symmetric square matrix with rows/columns indexed by $\rho, \pi \in \Delta_{k-1}$:

$$\ell_{\rho,\,\pi} = \begin{cases} \#\{\sigma \in \Delta_k \mid \sigma \supseteq \rho\} & \text{ if } \rho = \pi, \\ \pm 1 & \text{ if } \rho, \pi \text{ lie in a common k-face,} \\ 0 & \text{ otherwise} \end{cases}$$

Reduced Laplacian $L_T(\Delta)$: pick a (k-1)-tree T and delete all rows/columns corresponding to its facets

The Simplicial Matrix-Tree Theorem

Simplicial Matrix-Tree Theorem

(Bolker, Kalai, Adin, Duval-Klivans-JLM, ...)

The "number" of spanning trees of Δ^d is

$$au_d(\Delta) \stackrel{\mathsf{def}}{=} \sum_{\Upsilon \in \mathscr{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon)|^2 = c \det \hat{L}_{\mathcal{T}} = \frac{c' \operatorname{pdet} L}{\tau_{d-1}(\Delta)}.$$

- ▶ If d = 1 (graphs) then all summands are 1
- pdet M = product of nonzero eigenvalues (pseudodeterminant)
- ightharpoonup Correction factors c, c' involve torsion homology; often trivial
- \blacktriangleright When do L and/or L_T have integer eigenvalues?

Kalai's Theorem

Complete d-dimensional complex on n vertices:

$$K_{n,d} = \{F \subseteq \{1,\ldots,n\} \mid \dim F \leq d\}$$

(In particular $K_{n,1} = K_n$.)

Theorem [Kalai '83]

$$\tau(K_{n,d}) = n^{\binom{n-2}{d}}.$$

Better yet,

$$\sum_{\Upsilon \in \mathscr{T}(K)} |\tilde{H}_{d-1}(\Upsilon)|^2 \prod_{i=1}^n x_i^{\deg_{\Upsilon}(i)} = (x_1 \cdots x_n)^{\binom{n-2}{d-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{d}}.$$

Kalai's Theorem

- ▶ Kalai's theorem reduces to $\tau(K_n) = n^{n-2}$ when d = 1, and the weighted version reduces to Cayley-Prüfer.
- ▶ Bolker (1976): Observed that $n^{\binom{n-2}{d}}$ is an exact count of trees for small n, d, but fails for n = 6, d = 2.
 - \blacktriangleright The problem is torsion \mathbb{RP}^2 requires six vertices to triangulate
- Adin (1992): Analogous formula for **complete colorful complexes**, generalizing $\tau(K_{n,m}) = n^{m-1}m^{n-1}$
- Duval–Klivans–JLM (2009): Enumeration for shifted complexes (I might get to this later)

Part 3: Trees, Simplicial Trees, and... Electrical Networks??

Resistor Networks

A [resistor] network $N = (V, E, \mathbf{r})$ is a connected graph (V, E) together with positive resistances $\mathbf{r} = (r_e)_{e \in E}$.

currents
$$\mathbf{i} = (i_{\vec{e}})_{e \in E}$$

voltages $\mathbf{v} = (v_{\vec{e}})_{e \in E}$

Ohm's law

$$i_e r_e = v_e \quad (\forall e \in E)$$

Kirchhoff's current law

Net current into a vertex = net current out

Kirchhoff's voltage law

Net voltage gain around a cycle is 0

Kirchhoff's Laws and the Incidence Matrix

KCL:
$$\mathbf{i} \in \ker \partial = \operatorname{nullspace}(\partial)$$

Currents are flows

KVL:
$$\mathbf{v} \in (\ker \partial)^{\perp} = \text{rowspace}(\partial)$$

Voltages are cuts

Effective Resistance

Idea: Attach a **current generator**: edge $\mathbf{e} = \overrightarrow{xy}$ with current $i_{\mathbf{e}}$, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique minimizer of "total energy" $\sum_{e} v_e i_e$ subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the system is equivalent to a single edge **e** with a certain resistance (its **effective resistance**).

Fact If a voltage/current pair (\mathbf{v}, \mathbf{i}) on N + e obeys OL+KCL+KPL and minimizes energy, then

$$R_{\rm e}^{\rm eff} = v_{\rm e}/i_{\rm e}.$$

Effective Resistance and Tree Counting

Theorem [Thomassen 1990]

Let $N = (V, E, \mathbf{r})$ be a network and $e = xy \in E$.

• If $\mathbf{r} \equiv 1$, then

$$R_{xy}^{\text{eff}} = \frac{\tau(G/xy)}{\tau(G)} = \Pr[\text{random spanning tree contains } xy]$$

• Generalization for arbitrary resistances:

$$R_{xy}^{\text{eff}} = \frac{\hat{\tau}(G/xy)}{\hat{\tau}(G)} = \frac{\sum_{T \in \mathscr{T}(G/xy)} \prod_{e \in T} r_e^{-1}}{\sum_{T \in \mathscr{T}(G)} \prod_{e \in T} r_e^{-1}}.$$

Combinatorial application: weighted tree enumeration!

Application: Ferrers Graphs

The Ferrers graph G_{λ} of a partition λ has vertices corresponding to the rows and columns of λ , and edges corresponding to squares.

Here $\lambda=(4,4,2)$, $\lambda'=(3,3,2,2)$, $n=3=\ell(\lambda)$, $m=4=\ell(\lambda')$. Define a degree-weighted tree enumerator

$$\hat{\tau}(G) = \sum_{T \in \mathscr{T}(G_{\lambda})} \prod_{i=1}^{m} x_i^{\deg_{T}(u_i)} \prod_{j=1}^{n} y_j^{\deg_{T}(v_j)}$$

Application: Ferrers Graphs

Theorem (Ehrenborg and van Willigenburg, 2004):

$$\hat{\tau}(G_{\lambda}) = x_1 \cdots x_m y_1 \cdots y_n \prod_{i=2}^n (y_1 + \cdots + y_{\lambda_i}) \prod_{j=2}^n (x_1 + \cdots + x_{\lambda'_j})$$

(Proof sketch: Find effective resistance of a corner of λ ; induct.) In the example above,

$$\hat{\tau}(G_{\lambda}) = x_1 x_2 x_3 x_4 y_1 y_2 y_3 \times (y_1 + y_2 + y_3) (y_1 + y_2)^2 (x_1 + x_2 + x_3 + x_4) (x_1 + x_2)$$

and in particular $\tau(G_{\lambda}) = 3 \cdot 2^2 \cdot 4 \cdot 2$.

Simplicial Networks

Simplicial network: pure complex Δ^d with resistances $(r_{\varphi})_{\varphi \in \Phi}$ $(\Phi = \text{facets of } \Delta)$

$$d = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 =$$

Currents
$$\mathbf{i}=(\mathit{i}_{\varphi})_{\varphi\in\Phi}$$
 Voltages $\mathbf{v}=(\mathit{v}_{\varphi})_{\varphi\in\Phi}$

Ohm's law $i_{\varphi}r_{\varphi} = v_{\varphi}$ for all $\varphi \in \Phi$ Kirchhoff's current law $\mathbf{i} \in \ker(\partial_d)$ Kirchhoff's voltage law $\mathbf{v} \in \ker(\partial_d)^{\perp}$

▶ Dirichlet, Rayleigh, R^{eff} have natural simplicial analogues.

Counting Simplicial Trees via Effective Resistance

Theorem [Kook-Lee 2018]

Let (Δ, \mathbf{r}) be a simplicial network and σ a current generator. Then:

$$R_{\sigma}^{\mathsf{eff}} \; = \; \frac{\hat{\tau}(\Delta/\sigma)}{\hat{\tau}(\Delta)} \; = \; \frac{\displaystyle\sum_{T \in \mathscr{T}(\Delta/\sigma)} \; |\tilde{H}_{d-1}(T,\mathbb{Z})|^2 \prod_{\varphi \in T} r_{\varphi}^{-1}}{\displaystyle\sum_{T \in \mathscr{T}(\Delta)} \; |\tilde{H}_{d-1}(T,\mathbb{Z})|^2 \prod_{\varphi \in T} r_{\varphi}^{-1}}.$$

- Generalizes Thomassen's theorem for R^{eff} in graphs
- $ightharpoonup \Delta/\sigma = \text{quotient complex (not simplicial, but close enough)}$
- Application: count trees by induction on facets (a la Ehrenborg-van Willigenburg)

Shifted Complexes

A (pure) simplicial complex Δ on vertices $\{1, \ldots, n\}$ is **shifted** if replacing any vertex of a face with a smaller vertex produces another face.

Shifted complexes are **nice**: shellable, good h-vectors, arise in algebra (Borel-fixed ideals), generalize threshold graphs

Shifted Complexes

Duval–Reiner '02: Let $\lambda_i =$ number of max-dim faces containing vertex i. Then eigenvalues of $L(\Delta) =$ column lengths of λ .

(Generalizes Merris's Theorem — one-dimensional shifted complexes are just threshold graphs.)

Duval–Klivans–JLM '09: recursion for $\hat{\tau}(\Delta)$ via the shifted complexes $\langle \varphi \in \Delta \mid 1 \in \varphi \rangle$ and $\langle \varphi \in \Delta \mid 1 \notin \varphi \rangle$. Here $\hat{\tau}(\Delta)$ is the finely weighted degree enumerator

$$\hat{\tau}(\Delta) = \sum_{\Upsilon \in \mathscr{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{\substack{\mathsf{facets} \\ \{v_0 < \dots < v_d\}}} x_{0, v_0} \cdots x_{d, v_d}$$

Punchline: Critical pairs P correspond to factors f_P of $\hat{\tau}(\Delta)$.

Shifted Complexes

$$R^{ ext{eff}}(\sigma) = rac{\hat{ au}(\Delta/\sigma)}{\hat{ au}(\Delta)} = rac{\prod\limits_{ ext{yellow }P}f_P}{\prod\limits_{ ext{green }P}f_P}$$

Color-Shifted Complexes

A simplicial complex Δ^d is **color-shifted** [Babson–Novik '06] if:

- lacksquare $V(\Delta)=V_1\cup\cdots\cup V_{d+1}$, where $V_q=\{v_{q,1},\ldots,v_{q,\ell_q}\}$
- ► Each facet contains exactly one vertex of each color
- Replacing any vertex of a face with a smaller vertex of the same color produces another face.
- ▶ A 1-dimensional color-shifted complex is just a Ferrers graph.

Color-Shifted Complexes

Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

$$\begin{split} \hat{\tau}(\Delta) &= \sum_{\Upsilon \in \mathscr{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{\varphi \in \Upsilon} \prod_{v_{q,j} \in \varphi} x_{q,j} \\ &= \sum_{\Upsilon \in \mathscr{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{q,j} x_{q,j}^{\deg_{\Upsilon}(v_{q,j})} \end{split}$$

Proposition [Duval–Kook–Lee–JLM 2021⁺]

Let Δ^d be color-shifted and $\sigma = v_{1,k_1} \dots v_{d+1,k_{d+1}}$ a minimal nonfacet. Then

$$R^{\mathrm{eff}}(\sigma) = \frac{\hat{\tau}(\Delta + \sigma)}{\tau(\Delta)} = \prod_{q=1}^{d+1} \frac{x_{q,1} + \dots + x_{q,k_q}}{x_{q,1} + \dots + x_{q,k_q-1}}.$$

Trees in Color-Shifted Complexes

Theorem [Duval–Kook–Lee–JLM 2022⁺]

$$\hat{\tau}(\Delta) = \prod_{q,i} x_{q,i}^{e(q,i)} \prod_{\substack{\rho \in \Delta \\ \dim \rho = d-1}} (x_{m(\rho),1} + \dots + x_{m(\rho),k(\rho)})$$

where

$$\begin{split} e(q,i) &= \# \{ \sigma \in \Delta_d \mid v_{q,i} \in \sigma \text{ and } v_{q',1} \in \sigma \text{ for some } q' \neq q \} \\ m(\rho) &= \text{unique color missing from } \rho \\ k(\rho) &= \max \{ j \mid \rho \cup v_{m(\rho),j} \in \Delta \} \end{split}$$

- ▶ Special case d = 1 is Ehrenborg–van Willigenburg
- Previously conjectured by Aalipour and Duval [unpublished]
- Result seems inaccessible without effective resistance

¡Muchas gracias!

Selected Bibliography

How it all got started:

- E. Bolker, Simplicial geometry and transportation polytopes, Trans. Amer. Math. Soc. 217 (1976) 121–142
- G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel J. Math. 45 (1983) 336–351
- R. Adin, Counting colorful multi-dimensional trees, Combinatorica 12 (1992) 247–260

Some notable works:

- W. Kook, V. Reiner, and D. Stanton, Combinatorial Laplacians of matroid complexes, J. Amer. Math. Soc. 13 (2000) 129–148
- A.M. Duval and V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc. 354 (2002) 4313–4344
- R. Lyons, Random complexes and ℓ_2 -Betti numbers, J. Topol. Anal. 1 (2009) 153–175
- M.J. Catanzaro, V.Y. Chernyak and J.R. Klein, Kirchhoff's theorems in higher dimensions and Reidemeister torsion, Homol. Homot. Appl. 17 (2015) 165–189
- W. Kook and K.-J. Lee, Simplicial networks and effective resistance, Adv. Appl. Math. 100 (2018) 71–86

Recent survey:

 A.M. Duval, C.J. Klivans, and J.L. Martin, Simplicial and cellular trees, Recent Trends in Combinatorics, 713–752, IMA Pubs. (Springer) 2016

Image Acknowledgements

Slide 3:

- Permutahedron: Own work (produced using Sage)
- ▶ Molecule: Wikimedia Commons
- Social network: ccPixs.com

Slide 4:

Santiago Metro: Wikimedia Commons

All other images are original.