Semana 5 (07/10/2020)

Problemas (Tema 2)

2. Una sonda interplanetaria emplea un motor cohete que funciona con hidrógeno (M=2 g/mol, γ =1.35, $\Gamma(\gamma)$ =0.6761, c^* =5500 m/s, R_u =8.314 J/mol·K) y una tobera cónica con un área de garganta de 1.2 cm².

Se han realizado unos ensayos en banco en condiciones de tobera adaptada donde se ha observado que se han consumido 1.7 kg de combustible en un tiempo de 5 segundos de funcionamiento y se ha obtenido una velocidad a la salida de la tobera de 9075 m/s.

Para analizar este motor se pide responder a los siguientes apartados:

- a. Calcular el gasto másico, \dot{m} , suponiendo que este se mantendrá constante.
- b. Estimar el valor de la temperatura de la cámara (T_c) y la presión de cámara (P_c) .
- c. Indicar cuál será el impulso específico en las condiciones del ensayo.
- d. Calcular el coeficiente de empuje en las condiciones de ensayo.
- e. Calcular la relación entre presión de salida y presión de cámara (P_s/P_c) .
- f. Calcular la relación de áreas de la tobera (ε) .
- g. Calcular el coeficiente de empuje en las condiciones de la misión.
- h. Calcular el impulso específico en las condiciones de la misión.
- i. Sabiendo que las necesidades propulsivas de la misión suponen un ΔV total de 6 km/s, calcular la relación entre la masa inicial y la masa final de la sonda (M_i/M_f) .
- j. Se define M_s como toda la masa seca del satélite menos la carga de pago $(M_i = M_s + M_{cp} + M_p)$. Sabiendo que $M_s = 700 \text{ kg}$, calcular la masa de propulsante necesaria (M_p) si se quiere transportar una carga de pago de 200 kg (M_{cp}) .