4.3 Asymptotischer Vergleich

Link zur Formelsammlung: FS_4.3 Asymptotischer Vergleich

```
Landau-Symbole a_n = \frac{\mathbf{O}(b_n)}{\mathbf{O}(b_n)} Bedeutet: "a_n ist ein groß O von b_n, falls es eine Konstante C > 0 gibt, so dass gilt: \left|\frac{a_n}{b_n}\right| \leq C \text{ für } fast \text{ alle } n \in \mathbb{N} a_n = \frac{\mathbf{o}(b_n)}{\mathbf{b}(b_n)} Bedeutet: "a_n ist ein klein O von b_n, falls gilt: \lim_{n \to \infty} \frac{a_n}{b_n} = 0 a_n \sim b_n Bedeutet: "a_n ist asymptotisch gleich b_n, falls gilt: \lim_{n \to \infty} \frac{a_n}{b_n} = 1
```

"Obere, untere Schranke und asymptotisch gleich"

Stichpunkte zur Performance-Analyse von Algorithmen

Mathematik für Informatik, p.173

- Folgen: Anwendung in Performance-Analyse von Algorithmen (z.B. Laufzeit).
- Algorithmen & Datenstrukturen: Operieren auf Größe n (Beispiel: Sortieren von n Zahlen).
- a_n: Bezeichnet benötigte Laufzeit.
- Laufzeit in Sekunden: Nicht zweckmäßig (abhängig von Hardware/Implementierung).
- Sinnvolles Maß (Komplexität): Anzahl benötigter Operationen (elementare Schritte).
- Analyse-Unterscheidung:
 - Average-Case: a_n = mittlere Anzahl Operationen für Datensatzgröße n.
 - Worst-Case: a_n = maximale Anzahl Operationen für Datensatzgröße n.

Objective Definition 4.62 (Landau-Symbole)

Mathematik für Informatik, p.174

Seien $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$ Folgen. Dann schreibt man

(i) $a_n=O(b_n)$ für $n\to\infty$ (gesprochen: " a_n ist ein groß O von b_n "), falls es eine Konstante C>0 gibt, so dass

$$\left|rac{a_n}{b_n}
ight| \leq C ext{ f\"{u}r alle } n \in \mathbb{N}$$

gilt,

(ii) $a_n = o(b_n)$ für $n \to \infty$ (gesprochen: ", a_n ist ein klein O von b_n^*), falls

$$\lim_{n o\infty}rac{a_n}{b_n}=0$$

gilt.

(iii) $a_n \sim b_n$ (gesprochen: , a_n ist asymptotisch gleich

$$\lim_{n o\infty}rac{a_n}{b_n}=1$$

gilt.

(iv) $a_n=\Omega(b_n)$ für $n\to\infty$ (gesprochen: " a_n ist Omega von b_n "), falls es eine Konstante C>0 gibt, so dass

$$\left| rac{b_n}{a_n}
ight| \leq C \quad ext{für fast alle } n \in \mathbb{N}$$

gilt. Weiter gilt: $a_n = \Omega(b_n)$ genau dann, wenn $b_n = O(a_n)$.

(v) $a_n=\Theta(b_n)$ für $n\to\infty$ (gesprochen: " a_n ist Theta von b_n "), falls es positive Konstanten C_1 und C_2 gibt, so dass

$$|C_1|b_n| \leq |a_n| \leq C_2|b_n| \quad ext{für fast alle } n \in \mathbb{N}$$

gilt, d.h. $a_n = \Theta(b_n)$ genau dann, wenn sowohl $a_n = O(b_n)$ als auch $a_n = \Omega(b_n)$ zutrifft.

Tafelbild1 Tafelbild2

Quellen:

- Mathematik für Informatik;
- 4. Folgen Reihen und Funktionen