Конспекты к экзамену по математической статистике

June 2, 2016

Contents

0.3 Выборочные характеристики. Выборочные моменты Π vcti, $X = (X_1, \dots, X_n)$ — выборка из $\mathcal{L}(\mathcal{E})$, F и F, — соответственно теоритическая и эмпирическая функции распреде.

Всякой характиристике \hat{g} случайной величины ξ $\tilde{g} = \int_{-}^{} g(t)dF(t)$

можно поставить в соответствие статистический авалог — случайную величину G:

$$G = \int_{\mathcal{X}} g(x)dF_n(x) = \frac{1}{n} \sum_{j=1}^{n} g \circ X_j$$

$$G(\omega) = \int_{\mathcal{X}} g(x)d\left((F_n(x))(\omega)\right) = \frac{1}{n}\sum_{j=1}^n g(x_j)$$

Выборочным моментом k-го порядка называется статистический аналог характеристики $\alpha_k = \mathbb{E} \xi^k = \int_{\mathbb{R}} t^k \mathrm{d} F(t)$:

$$A_k = \frac{1}{n} \sum_{j=1}^{n} X_j^t$$

 $\bar{X}=A_1$ называют выброчным средины. Выболочным центральным моментом k-го порядка висывают случайную величину M_k — статистический авалог характерая Выборочным центральным моме $\mu_k = \mathbb{E}(\xi - \mathbb{E}\xi)^k = \int_{\mathbb{R}} (t - \alpha_1)^k dF(t)$

$$M_k = \frac{1}{n} \sum_{j=1}^{n} (X_j - \bar{X})$$

 M_2 называют выборочной дисперсией

NB 1. Выборочное среднее является несмещённой оценкой математического ожидания

$$\mathbb{E}\bar{X} = \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}X_{i} = \frac{n\alpha_{1}}{n} = \alpha_{1}$$

0.0 Список вопросов к экзамену по математической статистике

- 1. 1. Случайная выборка и генеральная совокупность
- 2. Функция распределения выборки
- 2. 1. Эмпирическая функция распределения
- 2. Гистограмма
- 3. Выборочные характеристики. Выборочные моменты
- 4. Точечные оценки и их свойства
- 5. Функция правдоподобия. Неравенство Крамера-Рао
- 6. Метод максимального правдоподобия, свойства оценок максимального правдоподобия
- 7. Метол моментов тля точечных опенок
- 8. Достаточные статистики
- 9. Интервальные опенки. Поверительные интервалы
- Доверительные интервал для дисперсии вормальной генеральной совокупности
- 11. Асимптотические свойства оценки максимального правдоподобия.
- Асимитотический доверительный интервал
- 12. Проверка статистических гипотез.
- Критерий Неймана-Пирсона проверки простых гипотез
- 13. Наяболее мощный критерий. Теорема Неймана-Пирсона 14. Проверка статистических гипотез о параметрах нормального распределения
- 15. Критерии для сложных гипотез
- 16. Функция мощности при альтернатив
- 17. Критерий согласия χ^2 -Пирсона
- 18. Краттерий согласия Колмогорова
- 19. Критерий однородности Колмогорова-Смирнова 20. Критерий однородности χ^2

0.4 Точечные оценки

Пусть некоторый процесс описывается вероятностной моделью (Ω, A, \mathbb{P}) , где Ω — пространство элементарных событий, $A \subset 2^{\Omega}$ — σ -алгебра событий, $\mathbb{P}: A \to [0,1]$ — вероятностная мера, а проводимый эксперимент соответствует случайной величине $\xi \in \mathcal{L}^0$, с фициара водения — — — по то проведения в — проведе

$$F \in \mathcal{F} = \{F_{\theta}; \theta \in \Theta\}$$

rде Θ — множество значений некоторого параметра θ . То есть известно, что распределение определяется некоторым неизвестным начением θ , и задача сводится к его оценке. Пусть $X = (X_1, \dots, X_n)$ — выборка из $\mathcal{L}(\xi)$. Говорят, что пара $(\mathcal{X}, \mathcal{F})$ задаёт "статистическую моделы".

 ${f Def.}$ 9. Статистика Статистикой называется случайная величина — композиция $g\circ X$ некоторой (вообще говоря борелевской) функции g и выборки X

$(g \circ X)(\omega) = g(x)$

 $\textbf{Def.} \quad \textbf{10.} \ \, \text{To seemas onesika параметра} \ \, \theta \ \, \text{ость статистика} \ \, T = \tau \circ X : \Omega \to \Theta, \ \, \text{реализацию} \ \, T(\omega) \ \, = \ \, \tau(x) \, \, \text{которой принимают за}$

0.4.1 Характеристики оценок

 $\mathbf{Def.}$ 11. Несмещённость (unbiasedness) Несмещённой визывают такую оценку T, что её математическим ожиданием является всюмый параметр θ :

$${f Def.}$$
 12. Состоятельность (consistency) Оценка T насывыется состоятельной, если она сходится по вероятности к оцениваемому параметру:

$$\lim_{n\to\infty} \mathbb{P}\{\omega\in\Omega; |T(\omega)-\theta|<\varepsilon\} = \lim_{n\to\infty} \mathbb{P}\{|\tau(x)-\theta|<\varepsilon\} = 1$$

Def. 13. Оптимальность (effectiveness) Оприка T_0 называется *оптимальной а* классе песьмещённых оценок \mathcal{T} , если среди всех оценок класса \mathcal{T} , оценка T_0 намет минивывльную дисперсию, то есть для любого $T \in \mathcal{T}$

Опечка пасывается оптименьной ости она оптименты в классе всех посменейших опечок

 ${f Thm.}~~{f 1.}~~ {\it Единственность оптимальной оценки Если дос несмещённые оценки <math>T_1,T_2$ параметра heta оптимальны, то они равиы почти-везоду $T_1 \stackrel{\mathbb{P}}{=} T_2$: $P\{T_1 \neq T_2\} = 0$

0.1 Случайная выборка, генеральная совокупность, функция распределения выборки Def. 1. Выборка (sample) Пусть эксперемент состоит в проведении n испытаний, результат j-го из которых является случайной

Libration $X_1: Y_1 \to X_2$ and the second control of $X_1: X_2 \to X_3$ inclinates control in adoption, a $x \in X_3$ inclinates control in adoption, a $x \in X_3$ inclinates $x \in X_$

Def. 2. Выборочное пространство (sample space) Выборочным пространством изъявается измеряваее пространство (\mathcal{X},\mathcal{A}), где $\mathcal{X}=\{X(\omega);\omega\in\Omega\}$ есть множество возвожных значений выборки, а $\mathcal{F}-\sigma$ -алтебра в \mathcal{X}

Особенно выжен случай, когда случайные величины X_j являются независимыми и имеют распределение одной случайной величины ξ . Этот случай соответствует повторонию n рыз одного эксперемента, описываемого случайной величиной ξ Def. 3. Генеральная совокупность (population) Генеральной совокупностью называют распределение $\mathcal{L}(\xi)$ случайной величины ξ

Оно может быть задано, например, множеством возможных значений г.v. ξ и её функцией распределения При этом X называют выборкой из (генеральной совокупности) $\mathcal{L}(\xi)$

Def. 4. Функция распределения выборки $X \in \mathcal{L}(\xi)$

$$F_X(x) = \mathbb{P}\{X \leq x\} = \prod \mathbb{P}\{X_j \leq x_j\} = \prod F_{X_j}(x_j)$$

0.2 Эмпирическая функция распределения, гистограмма

Πνέτι, A ∈ Ω, событие, происходящее в холе испытания с вероятностью PA = p, и пусть экспериваент состоит в проведении в таких

$$\Omega = \prod_{j=1}^{n}$$

$$X_j = I_{\{\omega; \omega_j \in A\}} = \begin{cases} 1; & \omega_j \in A \\ 0; & \omega_j \notin A \end{cases}$$

является индиватором того, что в ходе j-то испытавина случалось событие A Пуст. т. $k = \sum_{j \ge 1} X_j$ — часло проявлений A в ходе эксперимента. Вворём т. ν , $\frac{1}{2} = \sum_{j \ge 1} X_j$ — Османдло Е $p_k^a = p_k$. Османдло Е $p_k^a = p_k$. Кроме того, и 35 Ч в форме Бернулли следует

$$\lim_{n\to\infty} \mathbb{P}\{|p_n^*-p|<\varepsilon\}=1 \quad \forall \varepsilon>0$$

Таким образом, значение случайной величины p_n^* можно считить приближённой оценкой величины p. Пусть тепера $X=(X_1,\ldots,X_n)$ — наборка объдав n из генеральной совокупности $\mathcal{L}(\xi), x=(x_1,\ldots,x_n)$ — реализация.

Def. 5. Порадковые статистики Къздъф роализации x можно сопоставить в соответствие от верестномор $x_{(i)} = x_{(i)}$ β порадковой статистикой изланется случайныя всигинна $X_{(i)}$, при кождъф роализации $X(\omega) = x$, принимет значение $X_{(j)}(\omega) = x_{(j)}$

Def. 6. Вариационный ряд Случайный вектор $(X_{(1)},\dots,X_{(n)})$ иззывается вариационным рядом

Def. 7. Эмпирическая функция распределення Для каждого $t \in \mathbb{R}$ зададим случайную величину $\mu_n(x)$, равную количеству элементов выборки X, значения которых не превосходят t:

$$\mu_n(x) = \sum I_{\{X_j \le t\}}$$

Эмпирической функцией распределения, построенной по выборке X, называют случайную функцию $F_n: t \mapsto \mathcal{L}^0(\Omega)$

$$\mu_n(x) = \frac{1}{n}\mu_n(t)$$

 $ext{E6}$ значению в точке t является случайной величиной, еходящейся по вероятности к значению F(t) теоретической функции распределени EDF можно перезаписать c помощью функции Xennealiga (Heaviside):

$$H(t) = \begin{cases} 0; & t < 0 \\ 1; & t \ge 0 \end{cases}$$

$$F_n(t) = \frac{1}{n} \sum_{i=1}^{n} H(t - X_{(k)})$$

 $\mathbf{Def.}$ 8. Гистогравныя Разобьём область значений г.у. ξ на равные интерналы Δ_i , и для каждого Δ_i подсчитаем число n_i элементов x_j вектора x_i полавших в Δ_i , $n = \sum n_i$. Построим график ступенчатой функции

$$t \mapsto \frac{n_i}{nh_i}$$
, $t \in \Delta_i, h_i = |\Delta_i|$

Получивый грефия (при възвия», сван отображений) пазывателя Енгетрацияй, построинняй полимай разактация наборан Соеднини осредным своемам стореном гото грефия. Получивная довниния назывателят оказатом часто С уменьяемных $\max\{h_i\}$, гистогравная и политом частот нед более точно прибликают вероитности попадания в каждый из интервалов разбольных разактивности.