# Vascular Model Repository Specifications Document



0064\_0001

| Species   | Human                           |
|-----------|---------------------------------|
| Anatomy   | Pulmonary                       |
|           | Congenital Heart Disease        |
| Disease   | Single Ventricle Defect         |
|           | Hypoplastic Left Heart Syndrome |
| Procedure | Fontan                          |

# Clinical Significance and Background

### Pulmonary

The pulmonary arteries are blood vessels that carry systemic venous blood returning to the right side of the heart through to the microcirculation of the lungs. Unlike in other organs where arteries supply oxygenated blood, the blood carried by the pulmonary arteries is deoxygenated, as it is venous blood returning to the heart. The main pulmonary arteries emerge from the right side of the heart, and then split into smaller arteries that progressively divide and become arterioles, eventually narrowing into the capillary microcirculation of the lungs where gas exchange occurs.

#### **Congenital Heart Disease**

Congenital heart disease is one or more problems with the heart's structure that exist since birth. Congenital means that you're born with the condition. Congenital heart disease in adults and children can change the way blood flows through the heart. Some types of congenital heart disease may be mild. But complex defects may cause life-threatening complications. However, advances in diagnosis and treatment continue to improve survival for those with congenital heart disease. People with congenital heart disease need lifelong medical care. Treatment may include regular checkups (watchful waiting), medications or surgery.

## Single Ventricle Defect

A single ventricle defect (SVD) is a type of heart defect that a child is born with. It occurs when one of the two pumping chambers in the heart, called ventricles, isn't large enough or strong enough to work correctly. In some cases, the chamber might be missing a valve. Single ventricle defects are rare, affecting only about five out of 100,000 newborns. They are also one of the most complex heart problems, usually requiring at least one surgery. There are several types of single ventricle defects which include but are not limited to: tricuspid atresia, hypoplastic left heart syndrome (HLHS), mitral valve atresia (usually associated with HLHS), single left ventricle, double inlet left ventricle (DILV), double outlet right ventricle (DORV), pulmonary atresia with intact ventricular septum (PA/IVS), Ebstein's anomaly, and atrioventricular canal defect (AV Canal).

## Hypoplastic Left Heart Syndrome

In hypoplastic left heart syndrome, the left side of the heart can't properly supply blood

to the body because the lower left chamber (left ventricle) is too small or in some cases doesn't exist. In addition, the valves on the left side of the heart (aortic valve and mitral valve) don't work properly, and the main artery leaving the heart (aorta) is smaller than normal.

For the first days of life, the right side of the heart can pump blood both to the lungs and to the rest of the body through a blood vessel that connects the pulmonary artery directly to the aorta (ductus arteriosus). The oxygen-rich blood returns to the right side of the heart through a natural opening (foramen ovale) between the right chambers of the heart (atria). When the foramen ovale and the ductus arteriosus are open, they are referred to as being "patent."

If the ductus arteriosus and the foramen ovale close - which they normally do after the first day or two of life - the right side of the heart has no way to pump blood out to the body. In babies with hypoplastic left heart syndrome, medication is necessary to keep these connections open and keep blood flowing to the body until heart surgery is performed.

#### Fontan

The Fontan procedure is a type of open-heart surgery. Children who need this surgery usually have it when they're 18 - 36 months old. The Fontan procedure is done for children who are born with heart problems like hypoplastic left heart syndrome (HLHS), tricuspid atresia, and double outlet right ventricle, and depending on the heart problem, children may need the Norwood procedure and Glenn procedure before the Fontan surgery.

After the Fontan procedure, the blood from the lower body goes directly to the lungs. The blood with high oxygen goes into the heart. This way the single ventricle only pumps blood to the body and only pumps blood with high oxygen to the body. There is no more mixing of oxygen-rich blood and oxygen-poor blood.

During the Fontan procedure, the surgeon first disconnects the inferior vena cava (IVC) from the heart and connects it to the pulmonary artery using a conduit (tube). Then, the surgeon makes a small hole between the conduit and the right atrium. This hole (or fenestration) lets some blood still flow back to the heart. It prevents too much blood from flowing to the lungs right away so they have time to adjust. Doctors can close the

fenestration later by doing a cardiac catheterization procedure.

# Clinical Data

#### **General Patient Data**

| Age (yrs) | 6      |
|-----------|--------|
| Sex       | Female |

## Specific Patient Data

| BSA (m^2)       | 0.71 |
|-----------------|------|
| CI (L/min/m^2)  | 2.7  |
| P IVC MP cath   | 9    |
| P SVC MP cath   | 6    |
| P LPA MP cath   | 6    |
| P aorta SP cath | 95   |
| P aorta DP cath | 63   |
| P aorta MP cath | 78   |

# **Notes**

See below for information on the image data and boundary conditions associated with the model.

Image Modality: MR

Image Type: DICOM

Image Source: TLAB

Image Manufacturer: GE MEDICAL SYSTEMS

**Boundary Conditions:** Refer to boundary conditions in the SimVascular file.

# **Publications**

See the following publications which include the featured model for more details:

Marsden, A. L., Reddy, V. M., Shadden, S. C., Chan, F. P., Taylor, C. A., & Feinstein, J. A. (2010). A new multiparameter approach to computational simulation for Fontan

assessment and redesign. Congenital Heart Disease, 5(2), 104-117. http://www.doi.org/10.1111/j.1747-0803.2010.00383.x

# License

Copyright (c) Stanford University, the Regents of the University of California, Open Source Medical Software Corporation, and other parties.

All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this data to use the data for research and development purposes subject to the following conditions:

The above copyright notice and the README-COPYRIGHT file shall be included in all copies of any portion of this data. Whenever reasonable and possible in publications and presentations when this data is used in whole or part, please include an acknowledgement similar to the following:

"The data used herein was provided in whole or in part with Federal funds from the National Library of Medicine under Grant No. R01LM013120, and the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN268201100035C"

#### AND/OR

N.M. Wilson, A.K. Ortiz, and A.B. Johnson, "The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results," J. Med. Devices 7(4), 040923 (Dec 05, 2013) doi:10.1115/1.4025983.

#### AND/OR

Reference the official website for this data: www.vascularmodel.com

THE DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DATA OR THE USE OR OTHER DEALINGS IN THE DATA.