Exposé 39 : Produit vectoriel dans l'espace euclidien orienté de dimension 3.Point de vue geometrique, point de vue analytique

Pre requis:

- repere et base du plan et de l'espace (notamment base orthonormé)
- homothetie, projection otrhtogonale et rotations
- vecteurs (colinearité...)
- prduit vectoriel

cadre : on pose l'espace affine euclidien orienté ε et on utilise la regle du petit bonhomme d'Ampere.

 $\vec{\varepsilon}$ l'espace vectoriel associé

1) Produit vectoriel

a) Definition et construction geometrique

Definition : Soient \vec{u} et \vec{v} deux vecteurs de $\vec{\varepsilon}$. On appelle produit vectoriel de \vec{u} et \vec{v} le vecteur noté $\vec{u} \wedge \vec{v}$ tel que :

- $\sin \vec{u}$ ou \vec{v} est nul, $\vec{u} \wedge \vec{v} = \vec{0}$
- sinon:
 - o $\vec{u} \wedge \vec{v}$ est orthogonal à \vec{u} et à \vec{v}
 - o $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ est une base directe

Remarque : à l'oral, $|\sin(\vec{u}, \vec{v})|$ ne depend pas de l'orientation. Sans valeur absolue, on a besoin d'un plan orienté.

Theoreme : Soit $\vec{u} \in \vec{\varepsilon}$ non nul. Pour tout vecteur $\vec{v} \in \vec{\varepsilon}$, $\vec{u} \wedge \vec{v}$ se deduit de \vec{v} par la composée de 3 applications lineaires de $\varepsilon \to \varepsilon$:

- 1) p la projection orthogonale sur le plan orthogonale à \vec{u} passant par O
- 2) R la rotation d'axe (\vec{Oi}) orienté par \vec{u} et d'angle $\frac{\pi}{2}$
- 3) H l'homothetie de rapport $\|\vec{u}\|$

b) Proprietes geometriques

i. Colinearité

Proposition : Soient \vec{u} et \vec{v} deux vecteurs de $\vec{\varepsilon}$.

- \vec{u} et \vec{v} colineaires $\iff \vec{u} \land \vec{v} = \vec{0} \iff |\vec{u}.\vec{v}| = ||\vec{u}||.||\vec{v}||$
- \vec{u} et \vec{v} orthogonaux \Leftrightarrow $||\vec{u} \wedge \vec{v}|| = ||\vec{u}|| . ||\vec{v}|| \Leftrightarrow |\vec{u}.\vec{v}| = 0$

Preuve : imediate $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \cdot |\sin(\vec{u}, \vec{v})|$

ii. Antisymetrie

Proposition: $\forall (\vec{u}, \vec{v}) \in \vec{\varepsilon}^2, \vec{u} \land \vec{v} = -\vec{v} \land \vec{u}$

iii. Bilinearité

Proposition : Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de $\vec{\varepsilon}$ et $\alpha \in \mathbb{R}$

 $-(\alpha \vec{u}) \wedge \vec{v} = \alpha(\vec{u} \wedge \vec{v})$

 $-\vec{u} \wedge (\vec{v} + \vec{w}) = (\vec{u} \wedge \vec{v}) + (\vec{u} \wedge \vec{v})$

Preuve: par les appilcations.

iv. Base orthonormale

Proposition : Dans l'espace orienté ε , soient \vec{i} , \vec{j} , \vec{k} des vecteurs unitaires tels que $B = (\vec{i}, \vec{j}, \vec{k})$ soit une base et $\vec{i} \perp \vec{j}$.

B est directe si et seulement si $\vec{i} \wedge \vec{j} = \vec{k} \Leftrightarrow \vec{j} \wedge \vec{k} = \vec{i} \Leftrightarrow \vec{k} \wedge \vec{i} = \vec{j}$

Preuve:

Unitaire par la formule $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \cdot |\sin(\vec{u}, \vec{v})|$

Puis par $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ est une base directe

c) Proprietes analytiques

1) Coordonnées d'un produit vectoriel

Proposition: soit $(O, \vec{i}, \vec{j}, \vec{k})$ un repère orthonormal direct de ε . Alors pour tout vecteur $\vec{u}(x, y, z), \vec{v}(x', y', z')$ on a $(\vec{u} \wedge \vec{v}) = (yz' - zy', x'z - z'x, xy' - yx')$

Preuve:

$$\overrightarrow{AB} \wedge \overrightarrow{AB} = (x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}) \wedge (x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k})$$

Puis on developpe sachant que $\vec{i} \wedge \vec{j} = \vec{k}, \vec{j} \wedge \vec{k} = \vec{i}, \vec{k} \wedge \vec{i} = \vec{j}$

2) Double produit

Proposition : Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de $\vec{\varepsilon}$, on a $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u}.\vec{w})\vec{v} - (\vec{u}.\vec{v})\vec{w}$.

Preuve : posez une base telle que \vec{v} colineaire au premier vecteur de la base et \vec{w} orthogonal au premier vecteur de la base.

2) Applications

a) Calcul d'aire

Proposition : l'aire d'un triangle ABC est egale à $\frac{1}{2} \| \overrightarrow{AB} \wedge \overrightarrow{AC} \|$ Celle d'un parallelogramme ABCD est $\| \overrightarrow{AB} \wedge \overrightarrow{AC} \|$ (2 triangles)

Preuve: reprendre la definition

b) Calcul de distance

Proposition : la distance d'un point M à une droite $D(A, \vec{u})$ est égale à $d(M, D) = \frac{\|\overrightarrow{MA} \wedge \vec{u}\|}{\|\vec{u}\|}$

Preuve: faire un dessin

Tetraede : $V_{ABCD} = \frac{1}{6} \left| (\overrightarrow{AB} \wedge \overrightarrow{AC}) . \overrightarrow{AD} \right|$ Pavé $V_{ABCD} = \left| (\overrightarrow{AB} \wedge \overrightarrow{AC}) . \overrightarrow{AD} \right|$

d) Equation d'un plan affine

Proposition : Soit $P(A, \vec{u}, \vec{v})$, alors $\vec{\eta} = \vec{u} \wedge \vec{v}$ normal à P et $M \in P \Leftrightarrow \overrightarrow{AM} \cdot (\vec{u} \wedge \vec{v}) = 0$ Cela donne l'equation du plan.

Autre application : cf exposé 40