Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ŞI DE NOTARE

Testul 10

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{3} : \left(\frac{1}{2} \cdot \frac{1}{5}\right) - \frac{1}{3} : \frac{1}{2} \cdot \frac{1}{5} - \frac{1}{5} = \frac{10}{3} - \frac{2}{15} - \frac{1}{5} =$	3p
	$=\frac{50-2-3}{15}=3$	2p
2.	f(1) = -1	2p
	$3-4x \le -5 \Leftrightarrow 4x \ge 8$, de unde obţinem $x \in [2,+\infty)$	3p
3.	$2^{3(2x-1)} = 2^{5x} \Leftrightarrow 3(2x-1) = 5x$	3 p
	6x-3=5x, de unde obţinem $x=3$	2p
4.	$5 \cdot \frac{25}{100} \cdot x + x = 27$, unde x este prețul blocului de desen	3p
	x = 12 lei	2p
5.	$m_{OA} = \frac{1}{a}$, $m_{OB} = \frac{a}{4}$, unde a este număr real, $a > 0$	2p
	$\frac{1}{a} = \frac{a}{4} \Leftrightarrow a^2 - 4 = 0$ şi, cum $a > 0$, obţinem $a = 2$	3p
6.	Cum $AC = BC - 1$, obținem $BC^2 = (BC - 1)^2 + 25$, de unde rezultă $BC = 13$ și $AC = 12$	3 p
	$P_{\Delta ABC} = AB + BC + CA = 5 + 13 + 12 = 30$	2p

SUBIECTUL al II-lea (30 de puncte)

	·	
1.	$(-1) * 2 = (-1)^2 + 2^2 - (-1) \cdot 2 - 2 \cdot (-1) - 2 \cdot 2 =$	3p
	=1+4+2+2-4=5	2p
2.	$x * y = x^{2} + y^{2} - xy - 2x - 2y = y^{2} + x^{2} - yx - 2y - 2x =$	3p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	2p
3.	$(-x) * x = (-x)^2 + x^2 - (-x)x - 2(-x) - 2x =$	3p
	$=x^2+x^2+x^2+2x-2x=3x^2$, pentru orice număr real x	2p
4.	$x*1 = x^2 + 1 - x - 2x - 2 = x^2 - 3x - 1$, pentru orice număr real x	2p
	$x^2 - 3x - 1 = 3 \Leftrightarrow x^2 - 3x - 4 = 0$, de unde obţinem $x = -1$ sau $x = 4$	3p
5.	$m*m = m^2 - 4m$, pentru orice număr natural m	2p
	$m^2 - 4m = n^2 - 4n \Leftrightarrow (m-n)(m+n-4) = 0$ şi, cum m şi n sunt numere naturale cu $m < n$,	2
	obținem perechile (0,4) sau (1,3)	3 p
6.	$\lg x * \lg \frac{1}{x} = \lg x * (-\lg x) = 3\lg^2 x$, pentru orice număr real $x, x > 0$	2p
	$3\lg^2 x = 9\lg x$, de unde obținem $x = 1$ sau $x = 1000$, care convin	3p

SUBIECTUL al III-lea (30 de puncte)

	(50 de puncte)		
1.	$\det A = \begin{vmatrix} 2 & -6 \\ 1 & -1 \end{vmatrix} = 2 \cdot (-1) - (-6) \cdot 1 =$	3p	
	=-2+6=4	2p	
2.	$B = \begin{pmatrix} 0 & -12 \\ 2 & -6 \end{pmatrix} \Rightarrow 2A - B = 2 \begin{pmatrix} 2 & -6 \\ 1 & -1 \end{pmatrix} - \begin{pmatrix} 0 & -12 \\ 2 & -6 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} =$	3p	
	$=4\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 4I_2$	2p	
3.	$A \cdot A = \begin{pmatrix} -2 & -6 \\ 1 & -5 \end{pmatrix}, xA + yI_2 = \begin{pmatrix} 2x + y & -6x \\ x & -x + y \end{pmatrix}, \text{ pentru orice numere reale } x \text{ si } y$	3 p	
	$\begin{pmatrix} -2 & -6 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 2x + y & -6x \\ x & -x + y \end{pmatrix}, \text{ de unde obținem } x = 1 \text{ și } y = -4$	2p	
4.	$B \cdot A = \begin{pmatrix} 2a & -2a \\ 4+a & -12-a \end{pmatrix}, \text{ pentru orice număr real } a$	3 p	
	$2a + (-2a) + (4+a) + (-12-a) = -8$, pentru orice număr real a , deci suma elementelor matricei $B \cdot A$ nu depinde de a	2p	
5.	$A + B = \begin{pmatrix} 2 & -6 + 2a \\ 3 & -1 + a \end{pmatrix} \Rightarrow \det(A + B) = \begin{vmatrix} 2 & -6 + 2a \\ 3 & -1 + a \end{vmatrix} = 16 - 4a, \text{ pentru orice număr natural } a$	2p	
	$\det(A+B)=2^2(4-a)$ este pătratul unui număr natural, de unde rezultă că $4-a$ este pătratul	3р	
	unui număr natural și, cum a este număr natural, obținem $a=0$ sau $a=3$ sau $a=4$	3h	
6.	$(B+aI_2)(B-aI_2) = aB \Leftrightarrow B \cdot B - a^2I_2 = aB \Leftrightarrow \begin{pmatrix} 4a-a^2 & 2a^2 \\ 2a & 4a \end{pmatrix} = \begin{pmatrix} 0 & 2a^2 \\ 2a & a^2 \end{pmatrix}, \text{ pentru orice}$	3p	
	număr real a		
	$a^2 - 4a = 0$, de unde obținem $a = 0$ sau $a = 4$	2p	