CAS Datenanalyse HS16 - DeskStat

Lineare Regression

Lineare Regression

 Das einfache lineare Regressionsmodell beschreibt eine abhängige Variable als lineare Funktion einer unabhängigen Variablen.

$$y = \beta_1 \cdot x + \beta_2 + \epsilon$$

Lineare Regression

 Das einfache lineare Regressionsmodell beschreibt eine abhängige Variable als lineare Funktion einer unabhängigen Variablen.

$$y = \beta_1 \cdot x + \beta_2 + \epsilon$$

• Die beiden Parameter β_1 und β_2 sind unbekannt und sollen durch b_1 und b_2 geschätzt werden.

Lineare Regression

 Das einfache lineare Regressionsmodell beschreibt eine abhängige Variable als lineare Funktion einer unabhängigen Variablen.

$$y = \beta_1 \cdot x + \beta_2 + \epsilon$$

- Die beiden Parameter β_1 und β_2 sind unbekannt und sollen durch b_1 und b_2 geschätzt werden.
- Zum Beispiel:

eruptions =
$$\beta_1$$
 ·waiting + β_2 + ϵ

 Die einzelnen Fehler pro Datenpunkt (Fehlerterm, Residuum) sind unabhängig.

- Die einzelnen Fehler pro Datenpunkt (Fehlerterm, Residuum) sind unabhängig.
- Der Erwartungswert der Residuen ist 0.

- Die einzelnen Fehler pro Datenpunkt (Fehlerterm, Residuum) sind unabhängig.
- Der Erwartungswert der Residuen ist 0.
- Die Streuung der Residuen bleibt konstant.

- Die einzelnen Fehler pro Datenpunkt (Fehlerterm, Residuum) sind unabhängig.
- Der Erwartungswert der Residuen ist 0.
- Die Streuung der Residuen bleibt konstant.
- Die Residuen sind normalverteilt.

Lineare Regression: Schätzen eines y-Wertes

Problem: Wir modelieren den Zusammenhang zwischen den Eruptionsdauern und den Wartezeiten aus faithful mit einem lineare Modell. Wie lange dauert die nächste Eruptions im Schnitt, wenn die Wartezeit 80 Minuten beträgt?

Lineare Regression: Schätzen eines y-Wertes

Antwort:

```
eruption.lm <- lm(eruptions ~ waiting, data=faithful)
coeffs <- coefficients(eruption.lm)</pre>
coeffs
## (Intercept) waiting
## -1.87401599 0.07562795
waiting <- 80
duration <- coeffs[1] + coeffs[2] *waiting
duration
## (Intercept)
  4.17622
```

Lineare Regression: Schätzen eines y-Wertes

Erweiterte Antwort:

```
newdata <- data.frame(waiting=80)
predict(eruption.lm, newdata)

## 1
## 4.17622</pre>
```

Wir erwarten eine Eruptionsdauer von ungefähr 4 Minuten.

 Das Bestimmtheitsmass r² gibt an, welcher Anteil der Streuung, die in den Daten eruptions steckt, durch das Model erklärt werden kann.

$$r^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$$

 Das Bestimmtheitsmass r² gibt an, welcher Anteil der Streuung, die in den Daten eruptions steckt, durch das Model erklärt werden kann.

$$r^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$$

 Bei der linearen Regression entspricht das Bestimmtheitsmass dem Quadrat des Korrelationskoeffizienten.

Problem: Bestimmen Sie das Bestimmtheitsmass r^2 des linearen Modells zu faithful.

Antwort:

```
eruption.lm <- lm(eruptions ~ waiting, data=faithful)
summary(eruption.lm)$r.squared
## [1] 0.8114608</pre>
```

Lineare Regression: Signifikanztests

 Ist der Zusammenhang zwischen der abhängigen Variablen und der unabhängigen Variablen überhaupt signifikant oder kommt der Wert von b₁ bloss durch Zufall zustande?

Lineare Regression: Signifikanztests

- Ist der Zusammenhang zwischen der abhängigen Variablen und der unabhängigen Variablen überhaupt signifikant oder kommt der Wert von b₁ bloss durch Zufall zustande?
- Wir testen die Hypothesen

$$H_0: \beta_1 = 0 \text{ und } H_1: \beta_1 \neq 0$$

Lineare Regression: Signifikanztests

- Ist der Zusammenhang zwischen der abhängigen Variablen und der unabhängigen Variablen überhaupt signifikant oder kommt der Wert von b₁ bloss durch Zufall zustande?
- Wir testen die Hypothesen

$$H_0: \beta_1 = 0 \text{ und } H_1: \beta_1 \neq 0$$

• Ist $\beta_1=0$, dann ist auch der Korrelationskoeffizient $\rho=0$. In diesem Fall besteht kein linearer Zusammenhang zwischen den beiden Grössen x und y.

Lineare Regression: Signifikanztest für β_1

Problem: Untersuchen Sie, ob zwischen den Grössen eruptions und waiting aus faithful ein signifikanter Zusammenhang besteht.

Lineare Regression: Signifikanztest für β_1

```
eruption.lm <- 1m (eruptions ~ waiting, data=faithful)
summary (eruption.lm)
##
## Call:
## lm(formula = eruptions ~ waiting, data = faithful)
##
## Residuals:
       Min 10 Median 30
                                         Max
## -1.29917 -0.37689 0.03508 0.34909 1.19329
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.874016   0.160143   -11.70   <2e-16 ***
## waiting 0.075628 0.002219 34.09 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4965 on 270 degrees of freedom
## Multiple R-squared: 0.8115, Adjusted R-squared: 0.8108
## F-statistic: 1162 on 1 and 270 DF, p-value: < 2.2e-16
```

Lineare Regression: Signifikanztest für β_1

Antwort: Der p-Wert ist nahezu gleich 0. Die Nullhypothese $\beta_1 = 0$ wird verworfen. Offenbar besteht ein signifikanter Zusammenhang zwischen der Wartezeit und den Eruptiondauer.

Gemäss dem errechneten Modell führt eine Wartezeit von

x = 80 Minuten zu einer durchschnittlichen Eruptionsdauer von

y = 4 Minuten.

- Gemäss dem errechneten Modell führt eine Wartezeit von
 x = 80 Minuten zu einer durchschnittlichen Eruptionsdauer von
 y = 4 Minuten.
- Dieser Wert wurde aufgrund einer Stichprobe ermittelt. Der wahre Durchschnittswert wird von diesem Wert abweichen.

- Gemäss dem errechneten Modell führt eine Wartezeit von
 x = 80 Minuten zu einer durchschnittlichen Eruptionsdauer von
 y = 4 Minuten.
- Dieser Wert wurde aufgrund einer Stichprobe ermittelt. Der wahre Durchschnittswert wird von diesem Wert abweichen.
- Wir schätzen den wahren Wert mit einem Konfidenzintvervall ab.

Problem: Bestimmen Sie ein 95%-Konfidenzintervall für die durchschnittliche Eruptionsdauer bei einer Wartezeit von 80 Minuten.

Antwort:

```
eruption.lm <- lm(eruptions ~ waiting, data=faithful)
newdata <- data.frame(waiting=80)
predict(eruption.lm, newdata, interval="confidence")

## fit lwr upr
## 1 4.17622 4.104848 4.247592</pre>
```

Die durchschnittliche Eruptionszeit beträgt bei einer Wartezeit von 80 Minuten zwischen 4.10 und 4.24 Minuten, bei einem Signifikanzniveau von 95%.

 Das Prognoseintervall liefert einen Wertebereich für die zu erwartenden Lage eines einzelnen vorhergesagten Wertes der abhängigen Variablen.

- Das Prognoseintervall liefert einen Wertebereich für die zu erwartenden Lage eines einzelnen vorhergesagten Wertes der abhängigen Variablen.
- Dieser Wertebereich ist wiederum abhängig von einem Konfidenzniveau α .

- Das Prognoseintervall liefert einen Wertebereich für die zu erwartenden Lage eines einzelnen vorhergesagten Wertes der abhängigen Variablen.
- Dieser Wertebereich ist wiederum abhängig von einem Konfidenzniveau α.
- Das Prognoseintervall ist wird einen grösseren Wertebereich als das Konfidenzintervall liefern.

Problem: Bestimmen Sie ein 95%-Prognoseintervall für die Eruptionsdauer bei einer Wartezeit von 80 Minuten.

Antwort:

```
eruption.lm <- lm(eruptions ~ waiting, data=faithful)
newdata <- data.frame(waiting=80)
predict(eruption.lm, newdata, interval="predict")

## fit lwr upr
## 1 4.17622 3.196089 5.156351</pre>
```

Die Eruptionszeit beträgt bei einer Wartezeit von 80 Minuten zwischen 3.20 und 5.16 Minuten, bei einem Signifikanzniveau von 95%.

Residuum_i =
$$y_i - \bar{y}$$

 Die Abweichung eines Datenpunktes von seinem Modellwert nennen wir Residuum.

Residuum_i =
$$y_i - \bar{y}$$

 Voraussetzungen des lineare Regressionsmodells an die Residuen:

Residuum_i =
$$y_i - \bar{y}$$

- Voraussetzungen des lineare Regressionsmodells an die Residuen:
 - Der Erwartungswert der Residuen ist 0.

Residuum_i =
$$y_i - \bar{y}$$

- Voraussetzungen des lineare Regressionsmodells an die Residuen:
 - Der Erwartungswert der Residuen ist 0.
 - Die Residuen haben eine gleichbleibende Streuung.

Residuum_i =
$$y_i - \bar{y}$$

- Voraussetzungen des lineare Regressionsmodells an die Residuen:
 - Der Erwartungswert der Residuen ist 0.
 - Die Residuen haben eine gleichbleibende Streuung.
 - Die Residuen sind normalverteilt und unabhängig.

Problem: Stellen Sie die Residuen des linearen Modells zwischen der Eruptionsdauer und der Wartezeit aus faithful grafisch dar.

Antwort:

```
eruption.lm <- lm(eruptions ~ waiting, data=faithful)
eruption.res <- resid(eruption.lm)</pre>
```

Antwort:

```
plot(faithful$waiting, eruption.res, ylab="Residuen",
    xlab="Wartezeit", main="Eruptionen von Old Faithful")
abline(0,0)
```


 Mit dem Normal-Wahrscheinlichkeits-Diagramm (auch Quantile-Quantile-Plot) der Residuen vergleichen wir die Residuen mit der Normalverteilung.

Problem: Erstellen Sie das Normal-Wahrscheinlichkeits-Diagramm der Residuen aus dem Datensatz faithful.

Antwort:

```
plot (eruption.lm, which=2)
```

