

Algebra de Boole

Objetivos:

- Aplicar los axiomas y teoremas para simplificar ecuaciones booleanas.
- Aplicar algebra de Boole a variables binarias
- Comprender la dualidad en axiomas y teoremas.

Axiomas del algebra de Boole

	Axioma	Dual	Nombre
A1	B = 0 si B ≠ 1	B = 1 si B ≠ 0	Campo binario
A2	$\overline{0} = 1$	$\overline{1} = 0$	NOT
А3	$0 \cdot 0 = 0$	1 + 1 = 1	AND/OR
A4	$1 \cdot 1 = 1$	0 + 0 = 0	AND/OR
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	1+0=0+1=1	AND/OR

Dual: reemplazar: · con +

0 con 1

Teoremas de una variable

Teoremas de una sola variable

	Axioma	Dual	Nombre
T1	$B \cdot 1 = B$	B+0=B	Identidad
T2	$B \cdot 0 = 0$	B + 1 = 1	Elemento nulo
T3	$B \cdot B = B$	B + B = B	Idempotencia
T4	$\bar{\bar{B}}=B$		Involución
T5	$B \cdot \bar{B} = 0$	$B + \overline{B} = 1$	Complemento

Dual: reemplazar: · con +

0 con 1

	Axioma	Dual	Nombre
Т6	$B \cdot C = C \cdot B$	B + C = C + B	Conmutativa
T7	$(B \cdot C) \cdot D = B \cdot (C \cdot D)$	(B+C)+D=B+(C+D)	Asociativa
T8	$B \cdot (C + D) = (B \cdot C) + (B \cdot D)$	$B + (C \cdot D) = (B + C)(B + D)$	Distributiva
T9	$B \cdot (B + C) = B$	$B + (B \cdot C) = B$	Cobertura
T10	$B \cdot \overline{B} = 0$	$B + \overline{B} = 1$	Combinación
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $(B \cdot C) + (\overline{B} \cdot D)$	$(B+C) \cdot (\overline{B}+D) \cdot (C+D)$ = $(B+C) \cdot (\overline{B}+D)$	Consenso

T9 $B \cdot (B + C) = B$ $B + (B \cdot C) = B$ Cobertura

Prueba: inducción perfecta

В	c	(B+C)	B(B+C)
0	0		
0	1		
1	0		
1	1		

T9	$B \cdot (B + C) = B$	$B + (B \cdot C) = B$	Cobertura

Prueba: con teoremas y axiomas

$$B \bullet (B+C)$$
 = $B \bullet B + B \bullet C$ Distributiva
= $B + B \bullet C$ Idempotencia
= $B \bullet 1 + B \bullet C$ Elemento nulo
= $B \bullet (1 + C)$ Distributiva
= $B \bullet (1)$ Elemento nulo
= $B \bullet (1)$ Identidad

Teorema de Morgan

T12
$$\overline{B \cdot C \cdot D \dots} = \overline{B} + \overline{C} + \overline{D} \dots$$
 $\overline{B} + C + D \dots = \overline{B} \cdot \overline{C} \cdot \overline{D} \dots$

El complemento del producto es la suma de los complementos

Dual: el complemento de la suma es el producto de los complementos

Simplificando ecuaciones

Simplificar ecuaciones booleanas

 Simplificar en el sentido de mínima suma de productos con el menor número posible de implicantes y menor número posible de literales.

Implicantes: producto de literales $A\bar{B}C$, $A\bar{C}$, $B\bar{C}$

Literales: variables o su complemento $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Simplificar también podría significar menor número posible de compuertas, menor consumo de energía.

Simplificar ecuaciones booleanas

Ejemplo:

$$Y = \overline{AB} + AB$$

$$Y = B$$

Combinativa

or

$$Y = B(A + \overline{A})$$

$$=B(1)$$

$$= B$$

Distributiva Complemento Identidad

Gracias