Transport Layer, TCP and Floods

About Me

- Linux and Network Deep Diver
- Github: github.com/AliGhaffarian

Table of contents

- Transport Layer in TCP/IP Stack
- TCP
- The Three Way Handshake
- Syn Floods

Transport Layer in TCP/IP Stack

TCP

TCP's Fields

- Source Port (From Which Application)
- Destination Port (To Which Application)
- Sequence Number
- Acknowledgement Number
- Flags
- ...

Multiplexing / Demultiplexing

TCP Flags

```
000. .... = Reserved
...0 .... = Accurate ECN
.... 0... = Congestion Window Reduced
.... = ECN-Echo
.... = Urgent
\dots = Ack
.... 0... = Push
.... .0.. = Reset
.... .... ..0. = Syn
\dots 0 = Fin
```

The Tree Way Handshake

Host 1

Host 2

Sequence And Acknowledgement Number

State Machine of a TCP Server

SYN Floods

SYN Flooding is Cheap

Always Waiting on Non-Existing Clients

Solution

Break the Protocol?

Syn Cookies

- Handle the Handshake Statelessly
- No More Request Queue (Backlog)
- Reconstructing the Connection

How is it Done?

Forget the Connection But Not Really

Information to Recover

- Server's IP Address
- Client's IP Address
- Server's Sequence Number
- Client's Sequence Number
- Server's Port
- Client's Port
- TCP Options (Optional but Important)

Why Encoding Stuff?

- Preventing Against Connection Spoofing
- Being Flooded with Acks

Benefits and Drawbacks of Syn Cookies

- Higher Cost of Syn floods
- Lower Memory Usage
- No Direct Support For TCP Options
- Higher CPU Usage
- Complexity

Learn More

- linux/net/ipv4/syncookies.c
- lwn.net/Articles/277146

Questions

Presentation Files: github.com/AliGhaffarian/university_thingies