

of said compound:

TC320X

wherein:

R_1 = H; C_1-C_{12} straight-chain or branched alkyl; C_1-C_{12} straight-chain or branched acyl; C_3-C_8 cycloalkyl; or a cationic salt moiety;

R_2 , R_3 = H, or C_1-C_5 straight-chain or branched alkyl; or R_2 and R_3 taken together may represent O;

X = O, S, or CH_2 ;

— represents any combination of a single bond, or a *cis* or *trans* double bond for the alpha (upper) chain; and a single bond or *trans* double bond for the omega (lower) chain;

R_9 = H, C_1-C_{10} straight-chain or branched alkyl, or C_1-C_{10} straight-chain or branched acyl;

R_{11} = H, C_1-C_{10} straight-chain or branched alkyl, or C_1-C_{10} straight-chain or branched acyl;

Y = O; or H and OR_{15} in either configuration wherein R_{15} = H, C_1-C_{10} straight-chain or branched alkyl, or C_1-C_{10} straight-chain or branched acyl; and

Z = Cl or CF_3 ;

with the proviso that when R_2 and R_3 taken together represent O, then $R_1 \neq C_1-C_{12}$ straight-chain or branched acyl; and when $R_2 = R_3 = H$, then $R_1 \neq$ a cationic salt moiety; and

with the further proviso that the following compound be excluded:

3
32

cyclopentane heptenol-5-cis-2-(3- α -hydroxy-4-m-chlorophenoxy-1-trans-butenyl)-3,5 dihydroxy, [1 α , 2 β , 3 α , 5 α].

25. The method of claim 24, wherein for the compound (IV):
R₂, R₃ taken together represent O;
X = CH₂;
— represents a *cis* double bond for the alpha (upper) chain and a *trans* double bond for the omega (lower) chain;
R₉ and R₁₁ = H; and
Y = OH in the alpha configuration and H in the beta configuration.

26. The method of claim 25, wherein for the compound (IV): Z = CF₃.

27. The method of claim 24, wherein: R₂ = R₃ = H, or R₂ and R₃ taken together represent O; X = O or CH₂; R₉ = R₁₁ = H; Y = H and OR₁₅; and R₁₅ = H.

cont 28. The method of claim 27, wherein: R₁ = H, C₁-C₁₂ straight chain or branched alkyl or cationic salt moiety; and R₂ and R₃ taken together represent O.

29. The method of claim 28, wherein the compound of formula (IV) is selected from the group consisting of 3-oxacloprostenol, 13,14-dihydrofluprostenol, and their pharmaceutically acceptable esters and salts.

30. The method of claim 27, wherein: R₁ = H or C₁-C₁₂ straight chain or branched acyl; and R₂ = R₃ = H.

31. The method of claim 30, wherein the compound formula (IV) is 13,14-dihydrocloprostenol pivaloate.

¹
32. The method of claim ²⁴, wherein between about 0.01 and about 1000 µg/eye of the compound is administered.

¹⁰
⁹
33. The method of claim ³², wherein between about 0.1 and about 100 µg/eye of the compound is administered.

¹¹
⁶
34. The method of claim ³³, wherein between about 0.1 and about 10 µg/eye of the compound is administered.

¹²
35. A topical ophthalmic composition for the treatment of glaucoma and ocular hypertension comprising an ophthalmically acceptable carrier and a therapeutically effective amount of a compound having the absolute stereochemical structure of the following formula (IV), and being substantially free of the enantiomer of said compound:

wherein:

R_1 = H; C₁-C₁₂ straight-chain or branched alkyl; C₁-C₁₂ straight-chain or branched acyl; C₃-C₈ cycloalkyl; or a cationic salt moiety;

R_2 , R_3 = H, or C₁-C₅ straight-chain or branched alkyl; or R_2 and R_3 taken together may represent O;

X = O, S, or CH₂;

— represents any combination of a single bond, or a *cis* or *trans* double bond for the alpha (upper) chain; and a single bond or *trans* double bond for the omega (lower) chain;

5
BH

R_9 = H, C₁-C₁₀ straight-chain or branched alkyl, or C₁-C₁₀ straight-chain or branched acyl;

R_{11} = H, C₁-C₁₀ straight-chain or branched alkyl, or C₁-C₁₀ straight-chain or branched acyl;

Y = O; or H and OR₁₅ in either configuration wherein R₁₅ = H, C₁-C₁₀ straight-chain or branched alkyl, or C₁-C₁₀ straight-chain or branched acyl; and

Z = Cl or CF₃;

with the proviso that when R₂ and R₃ taken together represent O, then R₁ ≠ C₁-C₁₂ straight-chain or branched acyl; and when R₂ = R₃ = H, then R₁ ≠ a cationic salt moiety; and

with the further proviso that the following compound be excluded:

cyclopentane heptenol-5-cis-2-(3- α hydroxy-4-m-chlorophenoxy-1-trans-butenyl)-3,5 dihydroxy, [1_α, 2_β, 3_α, 5_α].

13

36. The composition of claim *35*, wherein for the compound (IV):

R₂, R₃ taken together represent O;

X = CH₂;

— represents a *cis* double bond for the alpha (upper) chain and a *trans* double bond for the omega (lower) chain;

R₉ and R₁₁ = H; and

Y = OH in the alpha configuration and H in the beta configuration.

11

37. The composition of claim *36*, wherein for the compound (IV): Z = CF₃.

13

38. The composition of claim *36*, wherein: R₂ = R₃ = H, or R₂ and R₃ taken together represent O; X = O or CH₂; R₉ = R₁₁ = H; Y = H and OR₁₅; and R₁₅ = H.