B.Tech 2020-24 CSE- Project Phase 1

Proposal

I. Group No: B2

Project Title: A STUDY OF GENOME VARIATIONS OF HUMAN PATHOGENS USING

PANGENOME GRAPH

Team members:

AM.EN.U4CSE20131 GUTTAPATI RUSHIKESH REDDY

AM.EN.U4CSE20137 K.V.K SATHVIK

AM.EN.U4CSE20140 KOLLIPARA CHARAN SUNEEL

AM.EN.U4CSE20173 GUNTURU VENKATA SAI KOUSIK

II. Abstract:

The project aims to study genome variations of human pathogens, such as bacteria or viruses, using a pangenome graph approach. This involves combining multiple genomes of a species into a single graph structure to capture genetic diversity within a population. Understanding pathogen genome variations is crucial for comprehending their evolutionary patterns, disease transmission, virulence, and drug resistance. By analyzing these variations, researchers can gain insights into adaptive strategies, improve diagnostics, and develop targeted interventions for disease control and prevention. The motivation arises from the importance of uncovering critical insights into pathogen behavior and developing effective strategies to combat infectious diseases. However, persisting challenges include identifying structural variations in the DNA and pinpointing specific locations where mutations are more prevalent.

III. Background Study

Title &year	Problem	Contributions	Limitations	Open problems/Future work
1) Alam, Intikhab, et al. "Functional pangenome analysis provides insights into the origin, function and pathways to therapy of SARS-CoV-2 coronavirus." bioRxiv (2020): 2020-02.	This approach can help identify the core genome of Betacoronavirus es and extract accessory genomic features shared by a subset of these viruses or unique to SARS-CoV-2.	1) Functional pangenome analysis of SARS-CoV-2 can reveal gene cluster origins and functions related to pathogenicity. 2) Structural analysis predicts host cell locations uncharacterized accessory gene clusters. 3)Phylogenetic tree comparisons withBetacoronavi ruses identify dissimilar regions. Utilizing 4)DeepGOPlus, uncharacterized gene clusters are explored further to gain insights.	Analysis may focus primarily on viral genes and pathways but might not fully account for the complex interactions between the virus and the host's immune system, which can significantly influence the disease outcome and potential therapeutic approaches.	Comparing this virus with similar ones can provide more insights. Analyzing how the virus affects our cells and testing existing drugs for treating COVID-19 are essential. Understanding how the virus changes over time can help us find better ways to control it and develop effective treatments

2) 01	Tr. C" 1.1		7	C. 1
2) Chen, Hongxin, et al. "Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen." BMC biology 21.1 (2023): 24.	To find the genes that are responsible for the rapid evolution in plant fungi like Zymoseptoria tritici.	1) The integration of pangenomics and transcriptomics is a potent approach to study Z. tritici's genetic diversity and gene expression patterns. 2) It sheds light on population structure, evolution, and interactions with wheat. Genetic sequence analysis and transcriptomics identify infection and virulence-related genes. 3) This knowledge informs crop protection and advances biological and medical research	Z. tritici's expansive accessory genome facilitates swift adaptation to various conditions, yet comprehending its functional significance and pathogenicity involvement remains challenging. Pangenomics and transcriptomics provide insights, demanding advanced bioinformatics for data analysis.	Studying Z. tritici's rapid evolution is vital for predicting its adaptation to different environments and hosts. Analyzing transposable elements, recombination, and selection pressures can yield valuable insights. Understanding interactions with wheat aids disease management and informs breeding for resistant varieties.
3) Haseeb, Muhammad, Afreenish Amir, and Hamza Irshad. "Pangenome analysis of SARS-CoV2 strains to Identify Potential vaccine targets by	The paper addresses urgent vaccine design needs against SARS-CoV2, using computational immunoinformat ics to predict antigenic epitopes and create a multiepitope	1) The study's computational predictions need experimental validation. The vaccine's efficacy and safety require in vivo and in vitro testing. 2) Considering structural variations in mutations is	The paper stresses the importance of considering structural variations in mutations for vaccine design against emerging viruses.	Future work involves validating the multiepitope subunit vaccine's efficacy while accounting for these variations. Advanced immunoinformat ics tools will be explored to improve design

Reverse	subunit vaccine	important, but	and prediction
Vaccinology."	while	further research is	accuracy amid
bioRxiv (2022):	considering	needed to fully	evolving virus
2022-07.	emerging virus		variants
2022 07.	variants and	on vaccine	
	structural	effectiveness.	
	variations due to		
	mutations.		
	1) The paper		
	proposes a		
	multiepitope		
	subunit vaccine		
	for SARS-CoV2		
	using		
	computational		
	immunoinformat		
	ics.		
	2) It : double on D		
	2) It identifies B		
	and T cell		
	epitopes, considers		
	structural		
	variations in		
	mutations, and		
	designs a non-		
	allergenic,		
	antigenic, and		
	non-toxic		
	vaccine with		
	significant HLA		
	binding alleles,		
	providing global		
	population		
	coverage of		
	84.38%.		

4) Eizenga,	The paper	1) The paper	1) Limited	1) Future
Jordan M., et al.	addresses	introduces	evaluation of	research can
"Pangenome	limitations of	pangenomic	the practical	explore
graphs." Annual	single linear	models	applicability of	standardized
review of	reference	representing the	graphical	pangenomic
genomics and	genomes in	complete genomic	pangenomic	reference models
-	genomics due to	elements in a	methods in real-	and their
human genetics	increasing	species, providing	world genomic	harmonious
21 (2020): 139-	genomic	an alternative to	analyses.	relationship with
162.	variation data. It	linear reference		linear genomic
	introduces	genomes.	2) Lack of in-	models.
	bioinformatic		depth	
	methods using	2) It emphasizes	comparison	2)
	graphical	graphical .	with existing	Advancements
	pangenomic	pangenomic	linear reference	in graphical
	reference	models,	genome-based	pangenomic
	systems to	explaining their	methods to	methods will be
	consider genetic	construction from	demonstrate the	vital in a future
	diversity at every	sequencing data	advantages of	where genomes
	analysis stage.	or assembled genomes. The	using	are easily
		genomes. The paper also surveys	pangenomic reference	sequenced and assembled. The
		index data	systems.	
		structures	systems.	paper encourages the
		facilitating	3) The need for	development of
		efficient	further	bioinformatic
		interactions with	validation and	methods to
		pangenomes,	benchmarking	effectively
		enabling novel	of the proposed	construct, query,
		bioinformatic	bioinformatic	and operate on
		tasks like read	methods on	pangenomic
		alignment and	diverse datasets	reference
		visualization.	to assess their	systems
			accuracy and	
			performance.	
5) Mathur,	The paper	The paper	The study	The paper's
Garima, Anjana	addresses the	introduces a	acknowledges	findings open
Pandey, and	need for earlier	comprehensive	limitations due	avenues for
Sachin Goyal.	disease	tool for disease	to the scarcity	disease
"A	identification,	prediction using a	of disease	prediction and
comprehensive	especially during	DNA sequence	patterns,	DNA sequence
tool for rapid and	pandemics like	classifier. It	potentially	classification
accurate	COVID-19, to	proposes a novel	affecting	research.
prediction of	prevent	approach with a	classifier	Accuracy can
disease using	outbreaks and	machine learning-	performance.	improve by
ability ability	aid drug design.	based classifier	The reliance on	incorporating

DNA sequence	Shortage of	and a hot vector	training data	diverse diseases
classifier."	disease patterns	matrix for feature	quality and	and viruses in the
Journal of	makes	extraction. The	availability is	dataset.
Ambient	identification	method achieves	another	Advanced
Intelligence and	challenging. The	•	concern.	feature
Humanized	study proposes	•	Further	extraction and
Computing	DNA sequence	outperforming	validation with	machine learning
(2022): 1-17.	classification to	other classifiers.	real-world	methods can
(2022): 1 17:	identify diseases		experiments	expedite and
	using NCBI		and larger	enhance disease
	GenBank		datasets is	identification.
	samples.		required.	Integrating
				structural
				variations and
				more genomic
				data may boost
				predictive
				capabilities.

IV. Challenges

- 1. Practical Implementation: The practical integration of graphical pangenomic methods into existing genomic analyses and workflows may pose challenges due to the need for specialized expertise in graph-theoretic concepts.
- 2. Comparison and Validation: Thorough comparison and validation of graphical pangenomic methods against linear reference genome-based methods are essential to demonstrate their superiority in real-world applications.
- 3. Data Complexity: Dealing with large-scale pangenomic data and representing genetic diversity in a concise yet informative manner remains a challenge.
- 4. Computational Efficiency: Ensuring computational efficiency for indexing, querying, and analyzing pangenomes is crucial to handle the increasing volume of genomic data.
- 5. Standardization: Establishing standardized pangenomic reference models and formats to enable seamless integration with existing genomic databases and tools requires careful consideration and community efforts.
- 6. Interoperability: Achieving interoperability between different pangenomic models and linear reference genomes is essential for cross-referencing and data comparison.
- 7. Generalization: Extending graphical pangenomic methods to handle diverse species and datasets, beyond well-studied organisms, presents generalization challenges.
- 8. Biological Interpretability: Integrating pangenomic information with biological knowledge and interpreting complex variations to extract meaningful insights is an ongoing challenge.

V. Deliverables of Phase I

- 1. Pangenome Graphs: Complete pangenome graphs representing the full set of genomic elements for the selected species or clade, incorporating large-scale genomic variations and genetic diversity.
- 2. Dataset Collection: A well-curated and comprehensive dataset comprising whole genome assemblies from multiple organisms, enabling the construction of accurate pangenome graphs.
- 3. Pangenome Analysis Pipeline: A robust and efficient bioinformatic pipeline for constructing pangenome graphs, indexing pangenomes, and performing various analyses on the graphs.
- 4. Visualization Tools: User-friendly visualization tools to explore and interpret the pangenome graphs, enabling researchers to gain insights into the genetic variations and relationships among genomes.
- 5. Analysis Results: Detailed analysis results, including functional genomics, association studies, variant calling, and genotype information, obtained by leveraging the additional information provided by the pangenome graphs.
- 6. Documentation: Comprehensive documentation of the methods, algorithms, and tools developed during the project to facilitate reproducibility and future research.

VI. Assumptions/Declarations:

Assumptions:

- 1. Data Quality and Completeness: One assumption is that the dataset collected from NCBI or other sources is of high quality, reliable, and comprehensive. Any limitations or errors in the dataset may impact the accuracy and validity of the pangenome graph construction and subsequent analysis.
- Computational Constraints: The project assumes that the available computational resources are sufficient for handling the large-scale genomic data and executing computationally intensive tasks. Any limitations in computational power may lead to challenges in processing and analyzing the data efficiently.
- 3. Applicability of Pangenome Graphs: An assumption is that pangenome graphs are a suitable representation of genetic diversity in the given dataset. Potential biases or inaccuracies in the pangenome graph model may affect downstream analyses and interpretations.

Declarations:

- 1. Utilization of NCBI Dataset: The project declares the use of the dataset collected from NCBI as the primary data source. However, the quality and integrity of the dataset will be continuously assessed, and any necessary data cleaning or preprocessing steps will be implemented.
- 2. Focus on Pangenome Graph Analysis: The project emphasizes a focus on constructing pangenome graphs and conducting in-depth analysis using these graphs. It aims to explore and evaluate the impact of pangenome graphs on various bioinformatic tasks.

VII. Tools to be used

Software/Hardware Tools	Specifications
Minigraph	Pan-Genome Graph Construction
GFA format or fasta format	Pangenome Data Representation
Using Bandage	Pangenome Data Visualization
Vg or GraphAligner	Structural variations in pangenome graphs

VIII. High Level Design

Students' Name and Signature:

RUSHIKESH REDDY

SATHVIK KESAVA

D.

K.V.V. Sathvilly

CHARAN SUNEEL

KOUSIK

G.V.S Kousia)

Guide's Signature:

