Deep Learning

Vazgen Mikayelyan

YSU, Krisp

November 5, 2020

Outline

Data Augmentation

What is Convolutional Neural Network?

Famous CNNs

• Images:

- Images:
 - horizontal flips,

- Images:
 - horizontal flips,
 - crops,

- Images:
 - horizontal flips,
 - crops,
 - change contrast of colours,

- Images:
 - horizontal flips,
 - crops,
 - change contrast of colours,
 - add noise.
- Audios:

- Images:
 - horizontal flips,
 - crops,
 - · change contrast of colours,
 - add noise.
- Audios:
 - change speed,

- Images:
 - horizontal flips,
 - crops,
 - change contrast of colours,
 - add noise.
- Audios:
 - change speed,
 - change pitch,

- Images:
 - horizontal flips,
 - crops,
 - · change contrast of colours,
 - add noise.
- Audios:
 - change speed,
 - change pitch,
 - add noise.

Outline

Data Augmentation

What is Convolutional Neural Network?

Famous CNNs

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x) dx.$$

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x)dx.$$

It easy to see that f * g = g * f.

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x)dx.$$

It easy to see that f * g = g * f.

Definition 2

Convolution of the sequences of real numbers $\{f_n\}_{n=-\infty}^{+\infty}$, $\{g_n\}_{n=-\infty}^{+\infty}$ is the following sequence:

$$z_n =: \sum_{k=-\infty}^{+\infty} f_k g_{n-k}.$$

Definition 3

Convolution of the functions $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

Definition 3

Convolution of the functions $f,g:\mathbb{R}^2\to\mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

It easy to see that f * g = g * f.

Definition 3

Convolution of the functions $f,g:\mathbb{R}^2\to\mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

It easy to see that f * g = g * f.

Definition 4

Let f(x, y) is an image and w(s, t) is a kernel where $s \in [-a, a], t \in [-b, b], x, y, s, t, a, b, c, d \in \mathbb{Z}$. The convolution between kernel w and image f is the following function

$$(w*f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

• How many dimensions has convolution kernel in general?

- How many dimensions has convolution kernel in general?
- What does 1×1 convolution do?

Valid and Same Convolution

• Padding = Same: means the input image ought to have zero padding so that the output in convolution doesn't differ in size as input.

Valid and Same Convolution

- Padding = Same: means the input image ought to have zero padding so that the output in convolution doesn't differ in size as input.
- Padding = Valid: means we don't add the zero pixel padding around the input matrix, and its like saying, we are ready to loose some information.

Strided Convolution

7 x 7 Input Volume

5 x 5 Output Volume

Strided Convolution

7 x 7 Input Volume

3 x 3 Output Volume

One Layer of CNN

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	1	112	37
112	100	25	12			

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	,	112	37
112	100	25	12	'		

• Number of channels is the same after pooling layer.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

- Number of channels is the same after pooling layer.
- There are not trainable parameters in this layer.

12	20	30	0
8	12	2	0
35	70	37	6
99	80	25	12

Outline

Data Augmentation

What is Convolutional Neural Network?

Famous CNNs

LeNet-5 (1998)

LeNet-5 (1998)

• Activation functions are sigmoids and hyperbolic tangents.

LeNet-5 (1998)

- Activation functions are sigmoids and hyperbolic tangents.
- LeNet-5 has approximately 60k parameters.