Problemas de espalhamento

Ricardo Mendes Ribeiro 30 de Abril de 2019

1 Secção eficaz de colisão

1. Uma pizza de 15 cm de diâmetro contem 6 azeitonas, cada uma com um centímetro de diâmetro. Calcule a secção eficaz σ de uma azeitona e a densidade de alvos n_{tar} (número por unidade de área) na pizza. Qual é a probabilidade de um palito, espetado à sorte na pizza, acertar numa azeitona?

 \mathbf{R} : 1

- 2. Um determinado núcleo atómico tem um raio de 5 fm (1 fm = 10^{-15} m).
 - (a) Determine a secção eficaz σ em barns (1 barn = 10^{-28} m²).
 - (b) Faça o mesmo para um átomo de 0.1 nm de raio $(1 \text{ nm} = 10^{-9} \text{ m})$.
- 3. Um feixe de partículas é dirigido a um tanque com hidrogénio líquido. Se o comprimento do tanque fôr 50 cm e a densidade do líquido for 0.07 g/cm³, qual é a densidade do alvo (número por área) dos átomos de hidrogénio vista pelas partículas incidentes?

R: 2

- 4. A secção eficaz para o espalhamento de uma determinada partícula nuclear por um núcleo de cobre é de 2.0 barns. Se 10^9 dessas partículas forem disparadas através de uma folha de cobre com uma espessura de $10~\mu m$, quantas partículas são espalhadas? (A densidade do cobre é $8.9~{\rm g/cm^3}$ e a sua massa atómica é 63.5.)
- 5. A secção eficaz de espalhamento de uma determinada partícula nuclear por um núcleo de azoto é de 0.5 barns. Se 10¹¹ dessas partículas forem disparadas através de uma câmara de 10 cm de comprimento contendo azoto às condições normais de pressão e temperatura, quantas dessas partículas são espalhadas? (Usar a lei dos gases ideais e lembrar que uma molécula de azoto tem 2 átomos)

 \mathbf{R} : ³

2 Secção eficaz diferencial

6. Calcule o ângulo sólido subentendido pela lua e pelo sol, ambos vistos da terra. $(R_l=1.74\times 10^6~\mathrm{m};~R_\odot=6.96\times 10^8~\mathrm{m};~d_l=3.84\times 10^8~\mathrm{m};~d_\odot=1.50\times 10^{11}~\mathrm{m})$ R: 4

- 7. Na famosa experiência de Rutherford, os seus assistentes usaram um ecrã que produzia um pequeno flash de luz quando uma partícula α lhe acertava. Supondo que o ecrã tinha um mm² de área e se situava a um cm de distância do alvo, qual seria o ângulo sólido que cobria?
- 8. A secção eficaz diferencial para o espalhamento de partículas alfa de 6.5 MeV de energia a 120° de um núcleo de prata é cerca de 0.5 barns/sr. Se um total de 10^{10} partículas alfa incidem numa folha de prata de 1 μ m de espessura, e se detectarmos as partículas alfa com um detector com uma área de 0.1 mm² e colocado a 120° e 1 cm de distância do alvo, quantas partículas alfa esperamos detectar? (A prata tem uma gravidade específica de 10.5 e uma massa atómica de 108.)

 \mathbf{R} : 5

Soluções

Notes

```
\label{eq:sigma_sigma} \begin{split} ^{1}\sigma &= 0.79~\text{cm}^{2};~n_{tar} = 0.034~\text{cm}^{-2};~prob = 0.027\\ ^{2}n_{tar} &= 2.1\times10^{28}~\text{átomos/m}^{2}\\ ^{3}N &= 2.7\times10^{7}\\ ^{4}\Delta\Omega_{l} &= 6.45\times10^{-5}~\text{sr};~\Delta\Omega_{\odot} = 6.76\times10^{-5}~\text{sr}\\ ^{5}N &\approx 29 \end{split}
```