Want more revision exercises? Get MathsFit - New from projectmaths.

11	9d	(i) Rationalise the denominator in the expression $\frac{1}{\sqrt{n} + \sqrt{n+1}}$,	L
		where n is an integer and $n \ge 1$. Using your result from part (i), or otherwise, find the value of the sum $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + + \frac{1}{\sqrt{99}+\sqrt{100}}.$	2
(i)	$\frac{1}{\sqrt{n}}$	$\frac{1}{n+\sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} $ (ii) From (i), $\frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1}-\sqrt{n}$	
	•	$= \frac{\sqrt{n} - \sqrt{n+1}}{n - (n+1)}$ $\therefore \text{ As } n = 1, \frac{1}{\sqrt{1} + \sqrt{2}} = \sqrt{2} - \sqrt{1}$ State Mean 0.75/1 0.30/2	
		$= \frac{\sqrt{n} - \sqrt{n+1}}{-1} \qquad n = 2, \frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} - \sqrt{2}$	
		$= \sqrt{n+1} - \sqrt{n}$ $n = 3, \frac{1}{\sqrt{3} + \sqrt{4}} = \sqrt{4} - \sqrt{3}$	
		\therefore series is $(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})$	
		$+ (\sqrt{4} - \sqrt{3}) + + (\sqrt{100} - \sqrt{99})$	
		$= -\sqrt{1} + \sqrt{100}$	
		= -1 + 10	
		= 9	

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

(i) This part was generally done well. A majority of candidates realised the need to

Board of Studies: Notes from the Marking Centre

- multiply top and bottom by $\sqrt{n} \sqrt{n+1}$. However, many then had difficulty with the algebra involved in simplifying the denominator. Most recognised a difference of two squares, but commonly wrote $(\sqrt{n} + \sqrt{n+1})(\sqrt{n} \sqrt{n+1}) = n-n+1$. Common features were the omission of the initial working line for rationalising the denominator, illegible writing, poor use of the surd sign such as $\sqrt{n+1}$ for $\sqrt{n+1}$, and not putting brackets around the terms in the denominator when squaring them.
- (ii) Many candidates did not connect parts (i) and (ii). Those who did easily completed the solution. A common error was to suppose the series to be either arithmetic or geometric and to spend time trying to test the series to find either a common difference or common ratio. A significant number of candidates who substituted the values for n into the correct expression from part (i) did not recognise the collapsing sum.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/