

Inhalt

- Motivation
- Literatur
- Klassische Theorien
- PSI-Theorie
 - Grundlagen
 - Gedächtnisschemata
 - Verhaltensprogramme
 - Komplexe Algorithmen
- Feedback? Angefixt?

Motivation

- Eine neuronale Rechentheorie, sowie Vor- und Nachteile dieser, erforschen.
- Hoffnung: Neurale Netze können intuitiv zusammengesetzt werden und Ergebnisse können erklärt werden

Literatur

- Diese Theorie wurde erstmals von Dietrich Dörner formalisiert.
- Unter PSI-Theorie betitelt, ist sie in folgenden Büchern erörtert.

Klassische Rechnerarchitektur

Speicher

- Der typische Rechenzyklus eines Prozessors:
 - · Lese Befehl aus Speicher
 - Dekodiere Befehl
 - Führe Befehl aus
 - Schreibe Ergebnis in den Speicher

Neuronale Netze

- Neuronen können Signale über ihr Axon feuern
- Dieses verteilt sich über seine Synapsen an andere Neuronen
- Ist die Summe der Eingangssignale größer als ein Schwellwert wird das Signal überhaupt gefeuert
- Synapsen gewichten das Signal und hängen sich an Dendriten der Nachbarneuronen

Künstliche neuronale Netze

- Die Eingaben x_i für 1 ≤ i ≤ n werden mit dem Gewicht w_{ij} der i-ten Eingangssynapse von Neuron j multipliziert.
- Die Produkte werden addiert.
- Liegt die entstandene Summe über dem Schwellwert vom Neuron, wird das Neuron aktiv und feuert
- Sonst nicht

Künstliche neuronale Netze

Geometrische Interpretation

- zwei Eingaben X, Y; eine Ausgabe R
- entspricht der **Spaltung eines** 2-dim. **Raumes in zwei Halbräume**
- K Eingänge = K Dimensionen!

Logische Schaltungen

^{*} Natürlich unter der Annahme, dass Ein- und Ausgaben nur 0 oder 1 sind.

Klassische Anwendung

Mustererkennung

Typisches Vorgehen

- künstliche neuronale Netze werden zuerst trainiert und dann benutzt
- Beim Training werden Eingaben durch das Netz propagiert (Netz wird angewendet).
- Wenn die Ausgabe nicht passt, wird der Fehler zurückpropagiert (Synapsengewichte werden dabei geändert).

PSI-Theorie

- modelliert psychische Prozesse mithilfe von Neuronen
 - Und nur mit Neuronen!

Der Baustein

Aktivierend und hemmend

```
A := ∑(a<sub>i</sub> ⋅ g<sub>i</sub>)
if A > Schwelle then
begin
   A := (A-Schwelle) ⋅ V-Faktor
   if A > Maximum then A := Maximum
end
else
   A := 0
```


Eingaben hemmender Neuronen werden von der Summe abgezogen. Das Gewicht wird also negativ interpretiert!

Der Baustein

Verknüpfend und Entknüpfend

Hier werden nur Gewichte anliegender (aktivierender und hemmender) Neuronen geändert.

$$A_{k} := \sum (a_{ki} \cdot g_{ki})$$
if $A_{k} > 0$ then
$$g_{x} := (\sqrt{g_{x}} + a_{x} \cdot A_{k} \cdot A_{z} \cdot L)^{2}$$
else if $A_{k} < 0$ then
$$g_{x} := \sqrt{(g_{x}^{2} + A_{k} \cdot A_{z} \cdot D)}$$
else if $g_{x} < T$ then
$$g_{y} := \sqrt{(g_{y}^{2} - K)}$$

Nach Dörner haben Standardneuronen ein maximales Gewicht von 1.

Always remember: $A = \sum (a_i \cdot g_i)$

Grundlegende Operationen

Mengenoperationen

Beispiel: Differenzbildung

- benötigt nur einen Simulationsschritt
- das R steht für Registerneuron

Grundlegende Operationen

Weiche

Level-up

Das Quad

- Quads strukturieren das Gedächtnis
- die vier Richtungen stehen für
 - sur aufwärts
 - sub abwärts
 - ret rückwärts
 - por vorwärts
- Diese Achsen dienen der Verkettung z.B. in Teil-Ganzes- oder Abstraktion-Spezialisierungs-Relationen, sowie als Aufzählung von ähnlichen Teilen

