Introducción a la programación Práctica 2: Especificación de problemas

Escribir semiformalmente los siguientes predicados.

Escribir semiformalmente los siguientes predicados.

```
\label{eq:pred_esminimo} \begin{split} & \operatorname{pred_esminimo}(s:seq\langle\mathbb{Z}\rangle,elem:\mathbb{Z}) \; \{ \\ & \quad \text{elem pertenece a s, y no hay ningún elemento de s que sea} \\ & \quad \text{estrictamente menor a elem} \; \} \end{split}
```

Escribir semiformalmente los siguientes predicados.

```
\begin{array}{ll} \operatorname{pred} \ \operatorname{esMinimo}(s:seq\langle\mathbb{Z}\rangle,elem:\mathbb{Z}) \ \{ \\ & \text{elem pertenece a s, y no hay ningún elemento de s que sea} \\ & \text{estrictamente menor a elem} \\ \} \\ \operatorname{Un poco más formal...} \end{array}
```

Escribir semiformalmente los siguientes predicados.

```
\begin{array}{l} \operatorname{pred} \ \operatorname{esMinimo}(s:seq\langle\mathbb{Z}\rangle,elem:\mathbb{Z}) \ \{\\ \qquad \qquad \operatorname{elem} \ \operatorname{pertenece} \ \operatorname{a} \ \operatorname{s}, \ \operatorname{y} \ \operatorname{no} \ \operatorname{hay} \ \operatorname{ningún} \ \operatorname{elemento} \ \operatorname{de} \ \operatorname{s} \ \operatorname{que} \ \operatorname{sea} \\ \qquad \qquad \operatorname{estrictamente} \ \operatorname{menor} \ \operatorname{a} \ \operatorname{elem} \ \} \\ \text{Un poco más formal}... \\ \operatorname{pred} \ \operatorname{esMinimo} \ (\operatorname{s}: seq\langle\mathbb{Z}\rangle, \ \operatorname{elem}: \ \mathbb{Z}) \ \{\\ \qquad \qquad \operatorname{elem} \ \in \ \operatorname{s} \wedge (\forall x: \mathbb{Z})(x \in s \to x \geq elem) \\ \} \end{array}
```

e) buscarMinimo: que dado una secuencia de enteros devuelva la posición donde se encuentra el mínimo.

e) buscarMinimo: que dado una secuencia de enteros devuelva la posición donde se encuentra el mínimo.

```
problema buscarMinimo (I: seq\langle \mathbb{Z}\rangle) : \mathbb{Z} { requiere: \{l \text{ tiene al menos un elemento}\} asegura: \{0 \leq res < |s|\} asegura: \{\text{esMinimo(s, I[res])}\}
```

h) elMasRepetido: que dada una secuencia de enteros devuelva el valor que más apariciones tiene.

 h) elMasRepetido: que dada una secuencia de enteros devuelva el valor que más apariciones tiene.

```
problema elMasRepetido (s: seq\langle \mathbb{Z}\rangle) : \mathbb{Z} { requiere: \{s \text{ tiene al menos un elemento}\} asegura: \{res \in s\} asegura: \{\#\text{apariciones}(res,s) \geq \#\text{apariciones}(x,s) \text{ para todos los } x \text{ pertenecientes a } s\} }
```

Para los siguientes problemas, dar todas las soluciones posibles a las entradas dadas:

```
b) problema indiceDelMaximo (l: seq\langle \mathbb{R} \rangle): \mathbb{Z} { requiere: \{|l|>0\} asegura: \{0 \leq res < |l| \land ((\forall i: \mathbb{Z})(0 \leq i < |l| \rightarrow l[i] \leq l[res])\} }  
I) l = \langle 1, 2, 3, 4 \rangle II) l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle III) l = \langle 0, 0, 0, 0, 0, 0 \rangle
```

Para los siguientes problemas, dar todas las soluciones posibles a las entradas dadas:

```
b) problema indiceDelMaximo (I: seq\langle\mathbb{R}\rangle): \mathbb{Z} { requiere: \{|l|>0\} asegura: \{0\leq res<|l|\wedge((\forall i:\mathbb{Z})(0\leq i<|l|\rightarrow l[i]\leq l[res])\} } 
 I) l=\langle 1,2,3,4\rangle II) l=\langle 15.5,-18,4.215,15.5,-1\rangle III) l=\langle 0,0,0,0,0,0,0\rangle
```

I) 3

Para los siguientes problemas, dar todas las soluciones posibles a las entradas dadas:

```
b) problema indiceDelMaximo (I: seq\langle \mathbb{R} \rangle): \mathbb{Z} { requiere: \{|l|>0\} asegura: \{0 \leq res < |l| \land ((\forall i: \mathbb{Z})(0 \leq i < |l| \rightarrow l[i] \leq l[res])\} } 
 I) l = \langle 1, 2, 3, 4 \rangle II) l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle III) l = \langle 0, 0, 0, 0, 0, 0, 0 \rangle
```

- I) 3
- II) 0 y 3

Para los siguientes problemas, dar todas las soluciones posibles a las entradas dadas:

```
b) problema indiceDelMaximo (I: seq\langle \mathbb{R} \rangle): \mathbb{Z} { requiere: \{|l|>0\} asegura: \{0 \leq res < |l| \land ((\forall i: \mathbb{Z})(0 \leq i < |l| \rightarrow l[i] \leq l[res])\} } 
 I) l = \langle 1, 2, 3, 4 \rangle II) l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle III) l = \langle 0, 0, 0, 0, 0, 0, 0 \rangle
```

- 1) 3
- II) 0 y 3
- III) cualquier índice válido: 0, 1, 2, 3, 4 y 5

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
a) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: {True} asegura: { (a < 0 \land res = 2*b) \land (a \geq 0 \land res = b-1) }
```

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

¿Cuáles de las siguientes especificaciones son correctas para el problema de calcular f(a,b)? Para las que no lo son, indicar por qué.

```
a) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: {True} asegura: { (a < 0 \land res = 2*b) \land (a \geq 0 \land res = b-1) }
```

a no puede cumplir al mismo tiempo a < 0 y $a \ge 0$

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
b) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \land res=2*b) \lor (a>0 \land res=b-1)\} }
```

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
b) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \land res=2*b) \lor (a>0 \land res=b-1)\} }
```

$$\xi Y \text{ si a} = 0?$$

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
c) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \land res=2*b) \lor (a\geq 0 \land res=b-1)\} }
```

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

¿Cuáles de las siguientes especificaciones son correctas para el problema de calcular f(a,b)? Para las que no lo son, indicar por qué.

```
c) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \land res=2*b) \lor (a\geq 0 \land res=b-1)\} }
```

Especificación correcta

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
d) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \rightarrow res=2*b) \land (a\geq 0 \rightarrow res=b-1)\} }
```

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

¿Cuáles de las siguientes especificaciones son correctas para el problema de calcular f(a,b)? Para las que no lo son, indicar por qué.

```
d) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \rightarrow res=2*b) \land (a\geq 0 \rightarrow res=b-1)\} }
```

Especificación correcta

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
e) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \rightarrow res=2*b) \lor (a\geq 0 \rightarrow res=b-1)\} }
```

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0\\ b - 1 & \text{en otro caso} \end{cases}$$

```
e) problema f (a, b: \mathbb{R}) : \mathbb{R} { requiere: \{True\} asegura: \{(a<0 \rightarrow res=2*b) \lor (a\geq 0 \rightarrow res=b-1)\} }
```

¿Y si
$$a = 0$$
 y $res = b$?

Considerar la siguiente especificación, junto con un algoritmo que dado x devuelve x^2 .

```
\begin{array}{ll} {\rm problema\ unoMasGrande\ (x:\ \mathbb{R}):\mathbb{R}\ \ \{}\\ {\rm requiere:\ }\{True\}\\ {\rm asegura:\ }\{res>x\}\\ \end{array}
```

- a) ¿Qué devuelve el algoritmo si recibe x=3? ¿El resultado hace verdadera la postcondición de unoMasGrande?
- b) ¿Qué sucede para las entradas x=0.5, x=1, x=-0.2 y x=-7?
- c) Teniendo en cuenta lo respondido en los puntos anteriores, escribir una **precondición** para unoMasGrande, de manera tal que el algoritmo cumpla con la especificación.

Considerar las siguientes dos especificaciones, junto con un algoritmo a que satisface la especificación de p2.

```
\begin{array}{l} \operatorname{problema} \ \operatorname{p1} \ (\operatorname{x:} \ \mathbb{R}, \ \operatorname{n:} \ \mathbb{Z}) : \mathbb{Z} \quad \{ \\ \quad \operatorname{requiere:} \quad \{x \neq 0\} \\ \quad \operatorname{asegura:} \quad \{x^n - 1 < resultado \leq x^n\} \\ \} \\ \\ \operatorname{problema} \ \operatorname{p2} \ (\operatorname{x:} \ \mathbb{R}, \ \operatorname{n:} \ \mathbb{Z}) : \mathbb{Z} \quad \{ \\ \quad \operatorname{requiere:} \quad \{n \leq 0 \rightarrow x \neq 0\} \\ \quad \operatorname{asegura:} \quad \{resultado = \lfloor x^n \rfloor \} \\ \} \end{array}
```

- a) Dados valores de x y n que hacen verdadera la precondición de p1, demostrar que hacen también verdadera la precondición de p2.
- b) Ahora, dados estos valores de x y n, supongamos que se ejecuta a: llegamos a un valor de res que hace verdadera la postcondición de p2. ¿Será también verdadera la postcondición de p1 con este valor de res?
- c) ¿Podemos concluir que a satisface la especificación de p1?

a) \bigstar Dado un entero positivo, obtener su descomposición en factores primos. Devolver una secuencia de tuplas (p,e), donde p es un factor primo y e es su exponente, ordenada en forma creciente con respecto a p.

a) \bigstar Dado un entero positivo, obtener su descomposición en factores primos. Devolver una secuencia de tuplas (p,e), donde p es un factor primo y e es su exponente, ordenada en forma creciente con respecto a p.

```
\begin{array}{l} \operatorname{problema\ descomposicionEnPrimos\ (n:\ \mathbb{Z}): } seq\langle\mathbb{Z}\times\mathbb{Z}\rangle \ \ \{ \ \ \operatorname{requiere:\ } \{n\geq 2\} \\ \operatorname{asegura:\ } \{esDescomposicion(res,n)\} \\ \operatorname{asegura:\ } \{primosEnRes(res)\} \\ \operatorname{asegura:\ } \{ordenadaPorP(res)\} \\ \} \end{array}
```

```
\begin{array}{l} \operatorname{problema\ descomposicionEnPrimos\ (n:\ \mathbb{Z}): } seq\langle \mathbb{Z} \times \mathbb{Z} \rangle \ \ \{ \ \ \operatorname{requiere:\ } \{n \geq 2\} \\ \operatorname{asegura:\ } \{ esDescomposicion(res,n) \} \\ \operatorname{asegura:\ } \{ primosEnRes(res) \} \\ \operatorname{asegura:\ } \{ ordenadaPorP(res) \} \\ \} \end{array}
```

```
problema descomposicionEnPrimos (n: \mathbb{Z}) : seq\langle\mathbb{Z}\times\mathbb{Z}\rangle { requiere: \{n\geq 2\} asegura: \{esDescomposicion(res,n)\} asegura: \{primosEnRes(res)\} asegura: \{ordenadaPorP(res)\} } pred esDescomposicion (res: seq\langle\mathbb{Z}\times\mathbb{Z}\rangle, n:\mathbb{Z}) { n=\prod_{i=0}^{|res|-1}res_0^{res_1} }
```

```
problema descomposicionEnPrimos (n: \mathbb{Z}): seg\langle \mathbb{Z} \times \mathbb{Z} \rangle {
   requiere: \{n > 2\}
   asegura: \{esDescomposition(res, n)\}
   asegura: \{primosEnRes(res)\}
   asegura: \{ordenadaPorP(res)\}
pred esDescomposicion (res: seq(\mathbb{Z} \times \mathbb{Z}), n : \mathbb{Z}) {
      n = \prod_{i=0}^{|res|-1} res_0^{res_1}
pred primosEnRes (res: seq\langle \mathbb{Z} \times \mathbb{Z} \rangle) {
      (\forall i : \mathbb{Z})(0 \le i < |res| \to esPrimo(res[i]_0))
```

```
problema descomposicionEnPrimos (n: \mathbb{Z}): seg\langle \mathbb{Z} \times \mathbb{Z} \rangle {
   requiere: \{n > 2\}
   asegura: \{esDescomposition(res, n)\}
   asegura: \{primosEnRes(res)\}
   asegura: \{ordenadaPorP(res)\}
pred esDescomposicion (res: seq(\mathbb{Z} \times \mathbb{Z}), n : \mathbb{Z}) {
      n = \prod_{i=0}^{|res|-1} res_0^{res_1}
pred primosEnRes (res: seq\langle \mathbb{Z} \times \mathbb{Z} \rangle) {
      (\forall i : \mathbb{Z})(0 \le i < |res| \to esPrimo(res[i]_0))
pred ordenadaPorP (res: seq\langle \mathbb{Z} \times \mathbb{Z} \rangle) {
      (\forall i : \mathbb{Z})(0 \le i < |res| - 1 \to res[i]_0 < res[i + 1]_0)
```

Especificar semiformalmente los siguientes problemas sobre secuencias:

d) Dado una secuencia I y un entero n, devolver la secuencia resultante de multiplicar solamente los valores pares por n.

Especificar semiformalmente los siguientes problemas sobre secuencias:

d) Dado una secuencia I y un entero n, devolver la secuencia resultante de multiplicar solamente los valores pares por n.

```
problema multiplicarPares (s: seq\langle\mathbb{Z}\rangle) : seq\langle\mathbb{Z}\rangle { asegura: {la cantidad de elementos de res es igual a la de s} asegura: {para toda posición válida i, si s[i] es par entonces res[i] = n*s[i]} asegura: {para toda posición válida i, si s[i] no es par entonces res[i] = s[i]}
```

Bonus track

Especificar el problema que recibe dos secuencias de secuencias de enteros que son interpretadas como matrices, y que devuelve otra secuencia de secuencias conteniendo el resultado de la multiplicación entre los parámetros.

Bonus track

Especificar el problema que recibe dos secuencias de secuencias de enteros que son interpretadas como matrices, y que devuelve otra secuencia de secuencias conteniendo el resultado de la multiplicación entre los parámetros.

```
problema multiplicarMatrices (m1, m2: seq\langle seq\langle \mathbb{Z}\rangle\rangle): seq\langle seq\langle \mathbb{Z}\rangle\rangle
  requiere: {esMatriz(m1)}
  requiere: {esMatriz(m2)}
  requiere: {la cantidad de columnas de m1 es igual a la cantidad de
           filas de m2}
  asegura: {Si la dimensión de m1 es a \times b y la de m2 es b \times c, la
           dimensión de res será n \times p}
  asegura: {para toda posición válida i, si s[i] es par entonces
           res[i] = n * s[i]
  asegura: {para toda posición válida i, si s[i] no es par entonces
           res[i] = s[i]
pred esMatriz (m: seq\langle seq\langle \mathbb{Z}\rangle\rangle) {
     m \ge 0, y todos los elementos de m tienen la misma longitud
                                                         4□ > 4Ē > 4Ē > 4Ē > Ē 900
```