Project Development Phase Model Performance Test

Date	12 November 2022
Team ID	PNT2022TMID26267
Project Name	Project – Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	In [52]: **acomputing the classification report of the model print(metrics.classification.report(y.text, y.test_mbc)) **precision recall fi-score support -1 8.99 8.96 0.99 976 1.97 8.99 8.98 2335 **scorney 8.99 8.90 2335 2335 **scorney 9.89 9.97 9.79 2211 **metry ang 8.90 8.90 9.97 9.77 2211 **metry ang 8.90 9.97 9.97 9.77 2211		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilcoton signed-rank test In [19] #FFFD and cross void faction rank from sign, retail input silicens from sign, retail input silicens from signed input size input languist from signed input size(in) from silicens from size(in) # size of the size(in) # size of the size(in) # size of the size(in) # in the size(in) #		

1. METRICS:

CLASSIFICATION REPORT:

[52]:	#computing the classification report of the model				
	<pre>print(metrics.classification_report(y_test, y_test_gbc))</pre>				
		precision	recall	f1-score	support
	-1	0.99	0.96	0.97	976
	1	0.97	0.99	0.98	1235
	accuracy			0.97	2211
	macro avg	0.98	0.97	0.97	2211
	weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83];		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0,454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model selection import cross val score, KFold
         # Load the dataset
         X = load_iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results model1, results model2, zero method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined_ftest_5x2cv
         from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from mlxtend.data import iris_data
         # Prepare data and clfs
         X, y = iris_data()
         clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                   estimator2=clf2,
                                   X=X, y=y,
                                   random_seed=1)
         print('f-value:', f)
         print('p-value:', p)
         f-value: 1.727272727272733
         p-value: 0.2840135734291782
```