Ullman et al.: Database System Principles

Notes 6: Query Processing

Query Processing

Q → Query Plan

Focus: Relational System

Others?

Example

Select B,D From R,S Where R.A = "c" $^{\prime}$ S.E = 2 $^{\prime}$ R.C=S.C

R	A	В	С	S	С	D	E	
•	a	1	10		10	X	2	
	b	1	20		20	y	2	
	С	2	10		30	Z	2	
	d	2	35		40	X	1	•
	e	3	45		50	$\mid \mathbf{y} \mid$	3	

How do we execute query?

One idea

- Do Cartesian product
- Select tuples
- Do projection

\mathbf{D}	Y	C
T	Z X	. U

R.A	R.B	R.C	S.C	S.D	S.E	
a	1	10	10	X	2	
a	1	10	20	y	2	
•						
•						
C	2	10	10	X	2	
•						
•						

RXS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	y	2
	•					
Bingo! Got one	· · · /	2	10	10	X	2

Relational Algebra - can be used to describe plans... Ex: Plan I

 $\Pi_{B,D}$ $\sigma_{R.A=\text{"c"}^{s}} \text{ S.E=2 s R.C=S.C}$ $R \qquad S$

Relational Algebra - can be used to describe plans... Ex: Plan I

$$\Pi_{B,D}$$

$$\sigma_{R.A=\text{"c"}^{\land} S.E=2^{\land} R.C=S.C}$$

$$\Pi_{B,D} X$$

$$R$$

$$S$$

$$OR: \Pi_{B,D} [\sigma_{R.A=\text{"c"}^{\land} S.E=2^{\land} R.C=S.C} (RXS)]$$

Another idea:

Plan II

Plan III

Use R.A and S.C Indexes

- (1) Use R.A index to select R tuples with R.A = "c"
- (2) For each R.C value found, use S.C index to find matching tuples
- (3) Eliminate S tuples S.E \neq 2
- (4) Join matching R,S tuples, project B,D attributes and place in result

Overview of Query Optimization

Example: SQL query

```
SELECT title
FROM StarsIn
WHERE starName IN (
      SELECT name
      FROM MovieStar
      WHERE birthdate LIKE '%1960'
(Find the movies with stars born in 1960)
```

Example: Parse Tree

Example: Generating Relational Algebra

Fig. 7.15: An expression using a two-argument σ , midway between a parse tree and relational algebra

Example: Logical Query Plan

Fig. 7.18: Applying the rule for IN conditions

Example: Improved Logical Query Plan

Fig. 7.20: An improvement on fig. 7.18.

Example: Estimate Result Sizes

Example: One Physical Plan

Example: Estimate costs

Pick best!

Query Optimization

- Relational algebra level
- Detailed query plan level
 - Estimate Costs
 - without indexes
 - with indexes
 - Generate and compare plans

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?

Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R U S = S U R$$

 $R U (S U T) = (R U S) U T$

Rules: Selects

$$\mathbf{O}_{p1^{\prime}p2}(R) = \mathbf{O}_{p1} [\mathbf{O}_{p2}(R)]$$

$$\mathbf{O}_{p1vp2}(R) = [\mathbf{O}_{p1}(R)] \cup [\mathbf{O}_{p2}(R)]$$

Rules: Project

```
Let: X = set of attributes Y = set of attributes XY = X \cup Y \pi_{xy}(R) = \pi_{x}[\pi_{xy}(R)]
```

Rules: σ +></br>

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

$$O_p(R > S) = [O_p(R)] > S$$

$$O_q(R > S) = R > [O_q(S)]$$

Rules:
$$\sigma$$
 + combined (continued)

Some Rules can be Derived:

$$\mathfrak{O}_{p^{q}}(R > S) = (\mathfrak{O}_{p} R) \otimes \mathfrak{O}_{q} S)$$

$$O_p^{m}(R > S) = O_m[(O_p R) (O_q S)]$$

Opvq (R
$$S$$
) = [(σ_p R) S] U [R (σ_q S)]

Rules: π,σ combined

Let x = subset of R attributes
z = attributes in predicate P
(subset of R attributes)

$$\pi_{x}[\sigma_{p(R)}] = \pi_{x} \{\sigma_{p[\pi_{x}(R)]}\}$$

Rules: π , \bowtie combined

Let x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes

$$\pi_{xy}$$
 (R $> S$) =

$$\pi_{xy}\{[\pi_{xz}(R)] > [\pi_{yz}(S)]\}$$

<u>Rules</u> for σ , π combined with X_

similar...

e.g.,
$$\sigma_p(RXS) = ?$$

Rules σ , U combined:

$$\sigma_{p}(R \cup S) = \sigma_{p}(R) \cup \sigma_{p}(S)$$

$$\sigma_{p}(R - S) = \sigma_{p}(R) - S = \sigma_{p}(R) - \sigma_{p}(S)$$

Which are "good" transformations?

- \square \mathbf{O} p1^p2 (R) \rightarrow \mathbf{O} p1 [\mathbf{O} p2 (R)]
- \square $\mathbf{O}_{\mathsf{P}}(\mathsf{R}\bowtie\mathsf{S})\rightarrow[\mathbf{O}_{\mathsf{P}}(\mathsf{R})]$
- \square R \bowtie S \rightarrow S \bowtie
- \square $\pi_x[\sigma_p(R)] \rightarrow \pi_x\{\sigma_p[\pi_{xz}(R)]\}$

Conventional wisdom: do projects early

$$\pi_{X} \{ \sigma_{P}(R) \}$$
 vs. $\pi_{E} \{ \sigma_{P} \{ \pi_{ABE}(R) \} \}$

Usually good: early selections

But What if we have A, B indexes?

Intersect pointers to get pointers to matching tuples

Outline - Query Processing

- Relational algebra level
 - transformations
 - good transformations
- Detailed query plan level
 - estimate costs
 - generate and compare plans

- Estimating cost of query plan
- (1) Estimating <u>size</u> of results
- (2) Estimating # of IOs

Estimating result size

Keep statistics for relation R

- T(R): # tuples in R
- L(R): # of bytes in each R tuple
- B(R): # of blocks to hold all R tuples
- V(R, A): # distinct values in R for attribute A
- b: block size
- bf(R) (blocking factor): # of tuples in a blockbf(R) = b/L(R)

Example

	R
L	1

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

$$T(R) = 5$$
 $L(R) = 37$

$$V(R,A) = 3$$
 $V(R,C) = 5$

$$V(R,B) = 1$$
 $V(R,D) = 4$

Size estimates for $W = R \times S$

$$T(W) = T(R) \times T(S)$$

 $L(W) = L(R) + L(S)$
 $bf(W) = b/(L(R)+L(S))$
 $B(W) = T(R)*T(S)/bf(W) =$
 $= T(R)*T(S)*L(S)/b + T(S)*T(R)*L(R)/b =$
 $= T(R)*T(S)/bf(S) + T(S)*T(R)/bf(R) =$
 $= T(R)*B(S) + T(S)*B(R)$

Size estimate for $W = \mathcal{O}_{A=a}$ (R)

$$L(W) = L(R)$$

$$T(W) = ?$$

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \mathfrak{O}_{z=val}(R) \quad T(W) = \frac{T(R)}{V(R,Z)}$$

Selection cardinality

```
SC(R,A) = average # records that satisfy
equality condition on R.A
SC(R,A) = T(R) / V(R,A)
```

What about
$$W = O_{z \ge val}(R)$$
?

$$T(W) = ?$$

• Solution # 1: T(W) = T(R)/2

• Solution # 2: T(W) = T(R)/3 Solution # 3: Estimate values in range

Example R

$$f = 20-15+1 = 6$$
 (fraction of range)
20-1+1 20

$$T(W) = f \times T(R)$$

Equivalently:

$$f \times V(R,Z) = fraction of distinct values$$

 $T(W) = [f \times V(Z,R)] \times \underline{T(R)} = f \times T(R)$
 $V(Z,R)$

Size estimate for W = R1 \bowtie R2

Let x = attributes of R1 y = attributes of R2

Case 1

$$X \cap Y = \emptyset$$

Same as R1 x R2

Assumption:

 $V(R1,A) \le V(R2,A) \Rightarrow Every A value in R1 is in R2$ $V(R2,A) \le V(R1,A) \Rightarrow Every A value in R2 is in R1$

"containment of value sets"

Computing T(W) when $V(R1,A) \leq V(R2,A)$

1 tuple matches with
$$T(R2)$$
 tuples... $V(R2,A)$

so T(W) =
$$\frac{T(R2) \times T(R1)}{V(R2, A)}$$

•
$$V(R1,A) \le V(R2,A) T(W) = T(R2) T(R1)$$

 $V(R2,A)$

•
$$V(R2,A) \le V(R1,A) T(W) = T(R2) T(R1)$$

 $V(R1,A)$

[A is common attribute]

In general $W = R1 \bowtie R2$

$$T(W) = T(R2) T(R1)$$

max{ V(R1,A), V(R2,A) }

Size Estimation Summary (1/2)

$$\sigma_{A=\nu}(R)$$
 SC(R,A) (--> SC(R,A) = T(R) / V(R,A))

$$\sigma_{A \leq v}(R)$$
 $T(R)^* \frac{v - \min(A, R)}{\max(A, R) - \min(A, R)}$

 $\sigma_{\theta_1 \hat{\theta}_2 \hat{\dots} \theta_n}(R)$ multiplying probabilities

$$T(R)*[(sc_1/T(R))*(sc_2/T(R))*...(sc_n/T(R))]$$

 $\sigma_{\theta_1^{\vee}\theta_2\nu\dots^{\vee}\theta_n}(R)$ probability that a record satisfy none of θ :

$$[(1-sc_1/T(R))*(1-sc_2/T(R))*...*(1-sc_n/T(R))]$$

$$T(R)*(1-[(1-sc_1/T(R))*(1-sc_2/T(R))*...*(1-sc_n/T(R))])$$

Size Estimation Summary(2/2)

- R x S
 T(RxS) = T(R)*T(S)
- R ⋈S
 - $-R \cap S = \emptyset$: T(R) * T(S)
 - $-R \cap S$ key for R: maximum output size is T(S)
 - $-R \cap S$ foreign key for R: T(S)
 - $-R \cap S = \{A\}$, neither key of R nor S
 - T(R) * T(S) / V(S,A)
 - T(R) * T(S) / V(R,A)

A Note on Histograms

$$\mathbf{O}_{\mathsf{A}=\mathsf{val}}(\mathsf{R}) = ?$$

<u>Summary</u>

Estimating size of results is an "art"

Don't forget:
 Statistics must be kept up to date...
 (cost?)