

1. Linear algebra models

1.1 Vector basics

Vector basics: A vector x can thus be defined as a collection of elements x1, x2,..., xn, arranged in a column or in a row.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 magnitude direction

use the notation $x = (x_1, \dots, x_n)$ to denote a vector, $x \in \mathbb{R}^n$.

Signal or time series

elements of n-vector are values of some quantity at n different times

hourly temperature over period of n hours

- ullet daily return of a stock for period of n trading days
- cash flow: payments to an entity over n periods (e.g., quarters)

Images, video

Monochrome (black and white) image

grayscale values of $M \times N$ pixels stored as MN-vector (e.g., row-wise)

Color image: 3MN-vectors with R, G, B values of the MN pixels

Video: vector of size KMN represents K monochrome images of $M \times N$ pixels

The operations of sum, difference, and scalar multiplication

$$a + b = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix}, \qquad a - b = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_n - b_n \end{bmatrix}$$

Scalar-vector multiplication: for scalar β and n-vector a,

$$\beta \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \beta a_1 \\ \beta a_2 \\ \vdots \\ \beta a_n \end{bmatrix}$$

Linear combination

a *linear combination* of vectors a_1, \ldots, a_m is a sum of scalar-vector products

$$\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_m a_m$$

the scalars β_1, \ldots, β_m are the *coefficients* of the linear combination

Independence, bases, and dimensions.

A set $\{\phi_i\}_{i=1}^n$ is called a basis for \mathbb{R}^n if the vectors in the set span \mathbb{R}^n and are linearly independent. This implies that each vector in the space has a unique representation as a linear combination of these basis vectors. Specifically, for any $x \in \mathbb{R}^n$, there exist (unique) coefficients $\{c_i\}_{i=1}^n$ such that

$$x = \sum_{i=1}^{n} c_i \phi_i.$$

$$x = \Phi c$$
.

An important special case of a basis is an orthonormal basis, defined as a set of vectors $\{\phi_i\}_{i=1}^n$ satisfying

$$\langle \phi_i, \phi_j \rangle = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$

An orthonormal basis has the advantage that the coefficients c can be easily calculated as

$$c_i = \langle x, \phi_i \rangle,$$

or

$$c = \Phi^T x$$

Vector spaces: a vector space, X, is obtained by equipping vectors with the operations of addition and multiplication by a scalar.

$$x,y\in\mathcal{V}\Rightarrow\alpha x+\beta y\in\mathcal{V}.$$

Special vectors

Zero vector and ones vector

$$0 = (0, 0, \dots, 0), \quad \mathbf{1} = (1, 1, \dots, 1)$$

size follows from context (if not, we add a subscript and write 0_n , 1_n)

Unit vectors

- there are n unit vectors of size n, written e_1, e_2, \ldots, e_n
- *i*th unit vector is zero except its *i*th element which is 1; for n = 3,

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• size of e_i follows from context (or should be specified explicitly)

Affine sets.

$$\mathcal{A} = \{x \in \mathcal{X} : x = v + x^{(0)}, v \in \mathcal{V}\},\$$

example:

几何解释?

1.2 Norms and inner products

Inner product

Inner product

Definition 2.2 An inner product on a (real) vector space \mathcal{X} is a real-valued function which maps any pair of elements $x, y \in \mathcal{X}$ into a scalar denoted by $\langle x, y \rangle$. The inner product satisfies the following axioms: for any $x, y, z \in \mathcal{X}$ and scalar α

$$\langle x, x \rangle \ge 0;$$

 $\langle x, x \rangle = 0$ if and only if $x = 0;$
 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle;$
 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle;$
 $\langle x, y \rangle = \langle y, x \rangle.$

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i,$$

1.2 Norms and inner products

Definition 2.1 A function from \mathcal{X} to R is a norm, if

$$||x|| \ge 0 \ \forall x \in \mathcal{X}$$
, and $||x|| = 0$ if and only if $x = 0$;
 $||x + y|| \le ||x|| + ||y||$, for any $x, y \in \mathcal{X}$ (triangle inequality);
 $||\alpha x|| = |\alpha|||x||$, for any scalar α and any $x \in \mathcal{X}$.

Well-known examples of vector norm are as follows:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|, \quad (l_{\infty}\text{-norm})$$

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad (l_1\text{-norm})$$

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, \quad (l_2\text{-norm}).$$

The above examples are particular cases of l_p -norm which is defined

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \ (l_p\text{-norm}).$$

$$\|x + y\|^2 = \|x\|^2 + 2x^*y + \|y\|^2$$

 $\leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2$
 $= (\|x\| + \|y\|)^2.$

$$ig|\|x\|-\|y\|ig| \ \le \ \|x-y\|$$

$$\|\boldsymbol{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2} = \sqrt{\operatorname{tr}(\boldsymbol{A}\boldsymbol{A}^*)} = \sqrt{\operatorname{tr}(\boldsymbol{A}^*\boldsymbol{A})},$$

$$\left\| \int_a^b f(x) \, dx \right\| \leq \int_a^b \|f(x)\| \, dx$$

Norm balls. The set of all vectors with ℓ_p norm less than or equal to one,

$$\mathcal{B}_p = \{ x \in \mathbb{R}^n : ||x||_p \le 1 \},$$

Angle between vectors

the angle between nonzero real vectors a, b is defined as

$$\arccos\left(\frac{a^Tb}{\|a\| \|b\|}\right)$$

ullet this is the unique value of $\theta \in [0,\pi]$ that satisfies $a^Tb = \|a\| \|b\| \cos \theta$

Cauchy-Schwarz inequality guarantees that

$$-1 \le \frac{a^T b}{\|a\| \|b\|} \le 1$$

Terminology

$$egin{aligned} \theta &= 0 & a^T b = \|a\| \|b\| \ 0 &\leq \theta < \pi/2 & a^T b > 0 \ \theta &= \pi/2 & a^T b = 0 \ \pi/2 &< \theta &\leq \pi & a^T b &< 0 \ \theta &= \pi & a^T b &= -\|a\| \|b\| \end{aligned}$$

Orthonormal

Orthonormal vectors

$$\langle x^{(i)}, x^{(j)} \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$

Orthogonal complement

2.2.3.3 *Orthogonal complement*. A vector $x \in \mathcal{X}$ is orthogonal to a subset \mathcal{S} of an inner product space \mathcal{X} if $x \perp s$ for all $s \in \mathcal{S}$. The set of vectors in \mathcal{X} that are orthogonal to \mathcal{S} is called the *orthogonal complement* of \mathcal{S} , and it is denoted by \mathcal{S}^{\perp} ; see Figure 2.13.

Orthogonal decomposition

 $\mathcal{X} = \mathcal{S} \oplus \mathcal{S}^{\perp}$ for any subspace $\mathcal{S} \subseteq \mathcal{X}$.

1.3 Projections

The idea of projection is central in optimization, and it corresponds to the problem of finding a point on a given set that is closest (in norm) to a given point. Formally, given a vector x in an inner product space \mathcal{X}

(say, e.g., $\mathcal{X} = \mathbb{R}^n$) and a closed set $\mathcal{S} \subseteq \mathcal{X}$, the projection of x onto \mathcal{S} , denoted by $\Pi_{\mathcal{S}}(x)$, is defined as the point in \mathcal{S} at minimal distance from x:

$$\Pi_{\mathcal{S}}(x) = \arg\min_{y \in \mathcal{S}} \|y - x\|,$$

$$||y - x||^2 = ||(y - x_v) - (x - x_v)||^2 = ||y - x_v||^2 + ||x - x_v||^2.$$

$$(x - x_0) \perp v \iff \langle x - x_0, v \rangle = 0.$$

$$x^* \in \mathcal{S}, (x - x^*) \perp \mathcal{S}.$$

Proof Let \mathcal{S}^{\perp} be the orthogonal subspace of \mathcal{S} , then, by virtue of Theorem 2.1, any vector $x \in \mathcal{X}$ can be written in a unique way as

$$x = u + z, u \in \mathcal{S}, z \in \mathcal{S}^{\perp}.$$

Hence, for any vector *y*,

$$||y-x||^2 = ||(y-u)-z||^2 = ||y-u||^2 + ||z||^2 - 2\langle y-u,z\rangle.$$

Hyperplanes and half-spaces

2.4.4.1 *Hyperplanes*. As defined in Section 2.3.2.2, a hyperplane is a set described by a single scalar product equality. Precisely, a hyperplane in \mathbb{R}^n is a set of the form

$$H = \{ x \in \mathbb{R}^n : a^{\mathsf{T}} x = b \}, \tag{2.10}$$

where $a \in \mathbb{R}^n$, $a \neq 0$, and $b \in \mathbb{R}$ are given. Equivalently, we can think of hyperplanes as the level sets of linear functions, see Figure 2.23.

Half-spaces. A hyperplane H separates the whole space into two regions:

$$H_{-} \doteq \{x : a^{\top} \ x \leq b\}, H_{++} \doteq \{x : a^{\top} \ x > b\}.$$

2. Matrix Theory

Matrix

a rectangular array of numbers, for example

$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- numbers in array are the elements (entries, coefficients, components)
- A_{ij} is the i, j element of A; i is its row index, j the column index
- size (dimensions) of the matrix is specified as (#rows) \times (#columns) for example, A is a 3×4 matrix
- set of $m \times n$ matrices with real elements is written $\mathbf{R}^{m \times n}$
- set of $m \times n$ matrices with complex elements is written $\mathbb{C}^{m \times n}$

Symmetric and Hermitian matrices

Symmetric matrix: square with $A_{ij} = A_{ji}$

$$\begin{bmatrix} 4 & 3 & -2 \\ 3 & -1 & 5 \\ -2 & 5 & 0 \end{bmatrix}, \begin{bmatrix} 4+3j & 3-2j & 0 \\ 3-2j & -j & -2j \\ 0 & -2j & 3 \end{bmatrix}$$

Hermitian matrix: square with $A_{ij} = \bar{A}_{ji}$ (complex conjugate of A_{ij})

$$\begin{bmatrix} 4 & 3-2j & -1+j \\ 3+2j & -1 & 2j \\ -1-j & -2j & 3 \end{bmatrix}$$

note: diagonal elements are real (since $A_{ii}=\bar{A}_{ii}$)

Structured matrices

matrices with special patterns or structure arise in many applications

• diagonal matrix: square with $A_{ij} = 0$ for $i \neq j$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -5 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

ullet lower triangular matrix: square with $A_{ij} = 0$ for i < j

$$\begin{bmatrix} 4 & 0 & 0 \\ 3 & -1 & 0 \\ -1 & 5 & -2 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 0 & -2 \end{bmatrix}$$

• upper triangular matrix: square with $A_{ij} = 0$ for i > j

Scalar-matrix multiplication and addition

Scalar-matrix multiplication:

scalar-matrix product of $m \times n$ matrix A with scalar β

$$\beta A = \begin{bmatrix} \beta A_{11} & \beta A_{12} & \cdots & \beta A_{1n} \\ \beta A_{21} & \beta A_{22} & \cdots & \beta A_{2n} \\ \vdots & \vdots & & \vdots \\ \beta A_{m1} & \beta A_{m2} & \cdots & \beta A_{mn} \end{bmatrix}$$

A and β can be real or complex

Addition: sum of two $m \times n$ matrices A and B (real or complex)

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\ \vdots & \vdots & & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + B_{mn} \end{bmatrix}$$

Transpose

the *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix

$$A^{T} = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{bmatrix}$$

- $\bullet \ (A^T)^T = A$
- ullet a symmetric matrix satisfies $A=A^T$
- A may be complex, but transpose of complex matrices is rarely needed
- transpose of matrix-scalar product and matrix sum

$$(\beta A)^T = \beta A^T, \qquad (A+B)^T = A^T + B^T$$

Matrix-vector product

product of $m \times n$ matrix A with n-vector (or $n \times 1$ matrix) x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix}$$

- ullet dimensions must be compatible: number of columns of A equals the size of x
- Ax is a linear combination of the columns of A:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

each a_i is an m-vector (ith column of A)

Left and right inverse

 $AB \neq BA$ in general, so we have to distinguish two types of inverses

Left inverse: X is a *left inverse* of A if

$$XA = I$$

A is *left-invertible* if it has at least one left inverse

Right inverse: X is a *right inverse* of A if

$$AX = I$$

A is *right-invertible* if it has at least one right inverse

Pseudo-inverse

- ullet suppose $A \in \mathbf{R}^{m imes n}$ has linearly independent columns
- this implies that A is tall or square $(m \ge n)$; see page 4-13

the pseudo-inverse of A is defined as

$$A^{\dagger} = (A^T A)^{-1} A^T$$

- ullet this matrix exists, because the Gram matrix A^TA is nonsingular
- A^{\dagger} is a left inverse of A:

$$A^{\dagger}A = (A^T A)^{-1}(A^T A) = I$$

(for complex A with linearly independent columns, $A^{\dagger}=(A^{H}A)^{-1}A^{H}$)

Matrix with orthonormal columns

 $A \in \mathbf{R}^{m \times n}$ has orthonormal columns if its Gram matrix is the identity matrix:

$$A^{T}A = \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix}^{T} \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrix-vector product

if $A \in \mathbf{R}^{m \times n}$ has orthonormal columns, then the linear function f(x) = Ax

preserves inner products:

$$(Ax)^T(Ay) = x^T A^T A y = x^T y$$

• preserves norms:

$$||Ax|| = ((Ax)^T (Ax))^{1/2} = (x^T x)^{1/2} = ||x||$$

- preserves distances: ||Ax Ay|| = ||x y||
- preserves angles:

$$\angle(Ax, Ay) = \arccos\left(\frac{(Ax)^T (Ay)}{\|Ax\| \|Ay\|}\right) = \arccos\left(\frac{x^T y}{\|x\| \|y\|}\right) = \angle(x, y)$$

2. Matrix Theory

2.1Basic

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{-1} = ...\mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$

$$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$$

$$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{T} = ...\mathbf{C}^{T}\mathbf{B}^{T}\mathbf{A}^{T}$$

$$(\mathbf{A}^{H})^{-1} = (\mathbf{A}^{-1})^{H}$$

$$(\mathbf{A} + \mathbf{B})^{H} = \mathbf{A}^{H} + \mathbf{B}^{H}$$

$$(\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}...)^{H} = ...\mathbf{C}^{H}\mathbf{B}^{H}\mathbf{A}^{H}$$

$$(\mathbf{B}\mathbf{C}...)^{H} = ...\mathbf{C}^{H}\mathbf{B}^{H}\mathbf{A}^{H}$$

$$(\mathbf{B}\mathbf{C}...)^{H}\mathbf{C}\mathbf{C}...$$

2.2 Trace

$$Tr(\mathbf{A}) = \sum_{i} A_{ii} \tag{11}$$

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i} \lambda_{i}, \qquad \lambda_{i} = \operatorname{eig}(\mathbf{A})$$
 (12)

$$\operatorname{Tr}(\mathbf{A}) = \operatorname{Tr}(\mathbf{A}^T)$$
 (13)

$$Tr(\mathbf{AB}) = Tr(\mathbf{BA})$$
 (14)

$$\operatorname{Tr}(\mathbf{A} + \mathbf{B}) = \operatorname{Tr}(\mathbf{A}) + \operatorname{Tr}(\mathbf{B})$$
 (15)

2.3 Derivatives

vector forms

$$\left[\frac{\partial \mathbf{x}}{\partial y}\right]_i = \frac{\partial x_i}{\partial y} \qquad \left[\frac{\partial x}{\partial \mathbf{y}}\right]_i = \frac{\partial x}{\partial y_i} \qquad \left[\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right]_{ij} = \frac{\partial x_i}{\partial y_j}$$

The following rules are general and very useful

$$\begin{array}{rcl}
\partial \mathbf{A} &=& 0 & (\mathbf{A} \text{ is a constant}) & (29) \\
\partial (\alpha \mathbf{X}) &=& \alpha \partial \mathbf{X} & (30) \\
\partial (\mathbf{X} + \mathbf{Y}) &=& \partial \mathbf{X} + \partial \mathbf{Y} & (31) \\
\partial (\mathrm{Tr}(\mathbf{X})) &=& \mathrm{Tr}(\partial \mathbf{X}) & (32) \\
\partial (\mathbf{X} \mathbf{Y}) &=& (\partial \mathbf{X}) \mathbf{Y} + \mathbf{X}(\partial \mathbf{Y}) & (33) \\
\partial (\mathbf{X} \circ \mathbf{Y}) &=& (\partial \mathbf{X}) \circ \mathbf{Y} + \mathbf{X} \circ (\partial \mathbf{Y}) & (34) \\
\partial (\mathbf{X} \otimes \mathbf{Y}) &=& (\partial \mathbf{X}) \otimes \mathbf{Y} + \mathbf{X} \otimes (\partial \mathbf{Y}) & (35) \\
\partial (\mathbf{X}^{-1}) &=& -\mathbf{X}^{-1}(\partial \mathbf{X}) \mathbf{X}^{-1} & (36) \\
\partial (\det(\mathbf{X})) &=& \det(\mathbf{X}) \mathrm{Tr}(\mathbf{X}^{-1} \partial \mathbf{X}) & (37) \\
\partial (\ln(\det(\mathbf{X}))) &=& \mathrm{Tr}(\mathbf{X}^{-1} \partial \mathbf{X}) & (38) \\
\partial \mathbf{X}^{T} &=& (\partial \mathbf{X})^{T} & (39) \\
\partial \mathbf{X}^{H} &=& (\partial \mathbf{X})^{H} & (40)
\end{array}$$

Derivatives of an Inverse

$$\frac{\partial \mathbf{Y}^{-1}}{\partial x} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \tag{53}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T}$$
(55)

Derivatives of Matrices, Vectors and Scalar Forms

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{61}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{62}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T \tag{63}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (64)

$$\frac{\partial \mathbf{X}}{\partial X_{ij}} = \mathbf{J}^{ij} \tag{65}$$

Assume W is symmetric, then

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{A}^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
 (76)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (77)

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
 (78)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
 (79)

$$\frac{\partial}{\partial \mathbf{A}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})\mathbf{s}^T$$
(80)

2.4 Singular Value Decomposition

Any $n \times m$ matrix **A** can be written as

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$
,

where

$$\begin{array}{lll} \mathbf{U} & = & \mathrm{eigenvectors} \ \mathrm{of} \ \mathbf{A} \mathbf{A}^T & n \times n \\ \mathbf{D} & = & \sqrt{\mathrm{diag}(\mathrm{eig}(\mathbf{A} \mathbf{A}^T))} & n \times m \\ \mathbf{V} & = & \mathrm{eigenvectors} \ \mathrm{of} \ \mathbf{A}^T \mathbf{A} & m \times m \end{array}$$

2.5 Symmetric Square decomposed into squares

Assume A to be $n \times n$ and symmetric. Then

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}^T \end{bmatrix}, \tag{271}$$

where \mathbf{D} is diagonal with the eigenvalues of \mathbf{A} , and \mathbf{V} is orthogonal and the eigenvectors of \mathbf{A} .

2.6 Square decomposed into squares

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{U}^T \end{bmatrix}, \tag{272}$$

where **D** is diagonal with the square root of the eigenvalues of $\mathbf{A}\mathbf{A}^T$, **V** is the eigenvectors of $\mathbf{A}\mathbf{A}^T$ and \mathbf{U}^T is the eigenvectors of $\mathbf{A}^T\mathbf{A}$.

2.7 Cholesky-decomposition

Assume **A** is a symmetric positive definite square matrix, then

$$\mathbf{A} = \mathbf{U}^T \mathbf{U} = \mathbf{L} \mathbf{L}^T, \tag{278}$$

where U is a unique upper triangular matrix and L is a unique lower triangular matrix.

2.8 Positive Definite and Semi-definite Matrices

A matrix **A** is positive definite if and only if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > \mathbf{0}, \quad \forall \mathbf{x} \neq \mathbf{0}$$

A matrix **A** is positive semi-definite if and only if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge \mathbf{0}, \quad \forall \mathbf{x}$$

Note that if **A** is positive definite, then **A** is also positive semi-definite.

Eigenvalues

The following holds with respect to the eigenvalues:

A pos. def.
$$\Leftrightarrow \operatorname{eig}(\frac{\mathbf{A} + \mathbf{A}^H}{2}) > 0$$

A pos. semi-def. $\Leftrightarrow \operatorname{eig}(\frac{\mathbf{A} + \mathbf{A}^H}{2}) \geq 0$

Trace

The following holds with respect to the trace:

$$\mathbf{A}$$
 pos. def. \Rightarrow $\mathrm{Tr}(\mathbf{A}) > 0$ \mathbf{A} pos. semi-def. \Rightarrow $\mathrm{Tr}(\mathbf{A}) \geq 0$

Inverse

If **A** is positive definite, then **A** is invertible and \mathbf{A}^{-1} is also positive definite.

Diagonal

If **A** is positive definite, then $A_{ii} > 0, \forall i$

Decomposition I

The matrix **A** is positive semi-definite of rank $r \Leftrightarrow$ there exists a matrix **B** of rank r such that $\mathbf{A} = \mathbf{B}\mathbf{B}^T$

The matrix **A** is positive definite \Leftrightarrow there exists an invertible matrix **B** such that $\mathbf{A} = \mathbf{B}\mathbf{B}^T$