



- 01 项目背景
- 02 理解数据
- 03 数据清洗
- **04** RFM模型
- **05** K-Means聚类
- 06 总结



01项目背景

### 项目背景

通过真实电商订单数据,采用 RFM模型与K-Means聚类算法对电商用户按照 其价值进行分层。分析用户交易数据的用户行为特征,锁定最有价值的用户, 从而实现个性化服务和运营。



## 02

## 理解数据

- 1. 数据来源
- 2. 数据简介
- 3. 字段含义

#### 理解数据

#### 数据来源

https://archive.ics.uci.edu/ml/datasets/online+retail#

#### 数据简介

这是一个交易数据集,里面包含了在2010年12月1日至2011年12月9日之间所有网络交易订单信息。数据集一共包含541909条数据,8个字段。

#### 字段含义

| Columns     | 含义                                    | 数据类型     |
|-------------|---------------------------------------|----------|
| InvoiceNo   | 订单编号,由六位数字组成,对于每一笔交易唯一性,退货订单编号开头有字母'C | string   |
| StockCode   | 产品编号,由五位数字组成,对于不同类别的产品是唯一的            | string   |
| Description | 产品描述                                  | string   |
| Quantity    | 产品数量,负数表示退货                           | integer  |
| InvoiceDate | 订单日期与时间                               | datetime |
| UnitPrice   | 单价 (英镑)                               | float    |
| CustomerID  | 客户编号,由5位数字组成,对于每一个客户是唯一的              | string   |
| Country     | 国家,每个客户居住的国家/地区的名称                    | string   |



03

数据清洗

### 数据清洗

- 重复值处理 共删除5225条重复值
- 异常值处理

```
: # Quantity是购买的产品数量,存在负数表示退货订单,这里分析不考虑退货订单信息,直接删除,UnitPrice是单价,不可能存在负值,直接删除异常值 sale = dataUni.loc[(dataUni['Quantity']>0) & (dataUni['UnitPrice']>0)]
```

辅助列

```
: # 辅助列
sale['CustomerID'] = sale['CustomerID'].astype(int)
# 添加总价列,表示购买某一种商品的总额
sale['TotalSum'] = sale['UnitPrice']*sale['Quantity']
# 对时间属性做转换,保留年月日
sale['InvoiceDate'] = pd. to_datetime(sale. InvoiceDate)
sale['Date'] = sale['InvoiceDate'].dt. date
# 添加年,月,日,日期列
sale['Year'] = sale['InvoiceDate'].dt. year
sale['Month'] = sale['InvoiceDate'].dt. month
sale['Day'] = sale['InvoiceDate'].dt. day
sale.head()
```



# **04** RFM模型

- 1.指标计算
- 2.RFM模型搭建(方法一)
- 3.RFM模型搭建(方法二)
- 4.分析

### 指标计算

#### 关于R,F,M值:

对于最近1次消费时间间隔R,上一次消费离的越近,也就是R值越小,用户价值越高。对于消费频率F,购买的频率越高,也就是F的值越大,用户价值越高。对于消费金额M,消费金额越高,也就是M的值越大,用户价值越高

#### 计算R,F,M值:

根据定义进行运算出值后,进行分箱并评分。

|   | CustomerID | Recency | Frequency | MonetaryValue | Recency_Q | Frequency_Q | Moneytary_Q |
|---|------------|---------|-----------|---------------|-----------|-------------|-------------|
| 0 | 12346      | 326     | 1         | 77183.60      | 1         | 1           | 5           |
| 1 | 12347      | 3       | 7         | 4310.00       | 5         | 4           | 5           |
| 2 | 12348      | 76      | 4         | 1797.24       | 2         | 3           | 4           |
| 3 | 12349      | 19      | 1         | 1757.55       | 4         | 1           | 4           |
| 4 | 12350      | 311     | 1         | 334.40        | 1         | 1           | 2           |

### RFM模型搭建(方法一)

分别计算R值,F值,M值的中位数,每个指标与中位数进行比较,为每一个用户的R,F,M值进行高低维度的划分。

高用'H'表示,低用'L'表示,高与低值针对用户的价值而言的。

R值若小于中位数,则为高,否则为低。

F值若大于中位数,则为高,否则为低。

M值若大于中位数,则为高,否则为低。

#### 一共会得到8组分类

|   | CustomerID | Recency | Frequency | MonetaryValue | Recency_Q | Frequency_Q | Moneytary_Q | RFM_Score | R_label | F_label | M_label | RFM_label | CustmerLevel |
|---|------------|---------|-----------|---------------|-----------|-------------|-------------|-----------|---------|---------|---------|-----------|--------------|
| 0 | 12346      | 326     | 1         | 77183.60      | 1.0       | 1.0         | 5.0         | 7         | L       | L       | Н       | LLH       | 重要挽留客户       |
| 1 | 12347      | 3       | 7         | 4310.00       | 5.0       | 4.0         | 5.0         | 14        | Н       | Н       | Н       | ННН       | 重要价值客户       |
| 2 | 12348      | 76      | 4         | 1797.24       | 2.0       | 3.0         | 4.0         | 9         | L       | Н       | Н       | LHH       | 重要保持客户       |
| 3 | 12349      | 19      | 1         | 1757.55       | 4.0       | 1.0         | 4.0         | 9         | Н       | L       | Н       | HLH       | 重要发展客户       |
| 4 | 12350      | 311     | 1         | 334.40        | 1.0       | 1.0         | 2.0         | 4         | L       | L       | L       | LLL       | 一般挽留客户       |

### RFM模型搭建(方法二)

分别计算出R值打分,F值打分,M值打分的平均值,将每个指标与平均值进行比较,为每一

个用户的R,F,M值进行高低维度的打分

高用'H'表示, 低用 'L' 表示。

一共会得到8组分类。

|   | CustomerID | Recency | Frequency | MonetaryValue | Recency_Q | Frequency_Q | Moneytary_Q | RFM_Score | R_label | F_label | M_label | RFM_label | CustmerLevel |
|---|------------|---------|-----------|---------------|-----------|-------------|-------------|-----------|---------|---------|---------|-----------|--------------|
| 0 | 12346      | 326     | 1         | 77183.60      | 1.0       | 1.0         | 5.0         | 7         | L       | L       | Н       | LLH       | 重要挽留客户       |
| 1 | 12347      | 3       | 7         | 4310.00       | 5.0       | 4.0         | 5.0         | 14        | Н       | Н       | Н       | ННН       | 重要价值客户       |
| 2 | 12348      | 76      | 4         | 1797.24       | 2.0       | 3.0         | 4.0         | 9         | L       | L       | Н       | LLH       | 重要挽留客户       |
| 3 | 12349      | 19      | 1         | 1757.55       | 4.0       | 1.0         | 4.0         | 9         | Н       | L       | Н       | HLH       | 重要发展客户       |
| 4 | 12350      | 311     | 1         | 334.40        | 1.0       | 1.0         | 2.0         | 4         | L       | L       | L       | LLL       | 一般挽留客户       |

### 分析

根据R,F,M高低区分的8类客户,可以根据其特点,给出针对性的营销策略

结合图表,总结如下:

| 用户分<br>类   | 行为特征                                              | 精细化运营                                        |
|------------|---------------------------------------------------|----------------------------------------------|
| 重要价值客户     | 近期购买过,购买频率高,客单价较高,消费金额高,为主要消费客户                   | 升级为VIP客户,提供个性化服务,倾斜<br>较多的资源                 |
| 重要发<br>展客户 | 近期购买过,购买频率低,客单价高,消费金额较高,可能是新的批发商或企业采购者,想办法提高消费频率。 | 提供会员积分服务,给与一定程度的优惠来提高留存率                     |
| 重要保 持客户    | 近期没有购买过,购买频率较高,客单价较高,消费金额较高,可能是一段时间没来的忠实客户。       | 通过短信邮件等方式主动和客户保持联系,介绍最新产品/功能,提高复购率           |
| 重要挽<br>留客户 | 近期没有购买,购买频率低,客单价高,消费金额较高,这种用户即将流失                 | 通过电话短信等方式主动联系用户,调<br>查清楚哪里出现问题,避免流失          |
| 一般价<br>值客户 | 近期购买过,购买频率较高,客单价低,消费较低                            | 潜力股, 提供社群服务, 介绍新产品/<br>功能促进消费                |
| 一般发<br>展客户 | 近期购买过,购买频率低,客单价较低,消费较低,可<br>能是新用户                 | 提供社群服务,介绍新产品/功能,提供<br>折扣等提高留存率               |
| 一般保<br>持客户 | 近期没有购买过,购买频率较高,,客单价低,消费低                          | 介绍新产品/功能等方式唤起此部分用户                           |
| 一般挽留客户     | 近期没有购买过,购买频率低,客单价较低,消费低,已流失                       | 通过促销折扣等方式唤起此部分用户,<br>当资源分配不足时可以暂时放弃此部分<br>用户 |



# 05 K-Means聚类

- 1. 数据预处理
- 2. K-Means建模

### 数据预处理

- 对数变换
- 标准化处理

```
# 数据预处理
# 将等于0的值替换成1,否则log变换后会出现无穷大的情况
RFM. Recency [RFM['Recency']==0]=0.01
RFM. Frequency [RFM['Frequency']==0]=0.01
RFM. MonetaryValue [RFM['MonetaryValue']==0]=0.01
RFM_log = RFM[['Recency', 'Frequency', 'MonetaryValue']]. apply(np.log, axis=1).round(3)
RFM. head()
```

```
from sklearn.preprocessing import StandardScaler # 标准化
scaler = StandardScaler()
scaler.fit(RFM_log)
RFM_normalization = scaler.transform(RFM_log)
```

|   | R         | F         | M         |
|---|-----------|-----------|-----------|
| 0 | 1.435500  | -1.048593 | 3.700239  |
| 1 | -1.953082 | 1.111983  | 1.413494  |
| 2 | 0.383073  | 0.490234  | 0.719941  |
| 3 | -0.619479 | -1.048593 | 0.702503  |
| 4 | 1.401527  | -1.048593 | -0.613267 |

### K-Means建模

• K值的选取

绘制每个k值对应的inertia\_,使用轮廓系数评估聚类效果—轮廓系数的区间为: [-1, 1] 结合calinski-harabaz Index,结果说明了分类2类效果好,其次是3类,但是不符合业务诉求,分3类效果次之,验证k=3。

```
# 模型计算一分为3类
kc = KMeans(n_clusters=3, random_state=1)
kc.fit(rfm_data)
# 每个样本对应的类簇标签,顺序与样本原始顺序一致
cluster_label = kc.labels_
RFM['K-means_label'] = cluster_label
RFM.head()
```

|   | CustomerID | Recency | Frequency | MonetaryValue | K-means_label |
|---|------------|---------|-----------|---------------|---------------|
| 0 | 12346      | 326     | 1         | 77183.60      | 1             |
| 1 | 12347      | 3       | 7         | 4310.00       | 2             |
| 2 | 12348      | 76      | 4         | 1797.24       | 1             |
| 3 | 12349      | 19      | 1         | 1757.55       | 1             |
| 4 | 12350      | 311     | 1         | 334.40        | 0             |
|   |            |         |           |               |               |

### K-Means建模

#### 分析

|      |        | ä         | 当费金额  |        | 购买商     | 商品总量  |      | ĩ     | J单总量  | 2    | 8户等级  | 最近消费天数 | 消费次数 | 客单价   |
|------|--------|-----------|-------|--------|---------|-------|------|-------|-------|------|-------|--------|------|-------|
|      | 均值     | 总量        | 占比    | 均值     | 总量      | 占比    | 均值   | 总量    | 占比    | 总量   | 占比    | 均值     | 均值   | 均值    |
| 客户等级 |        |           |       |        |         |       |      |       |       |      |       |        |      |       |
| 2    | 7304.5 | 6201531.9 | 69.8% | 4103.5 | 3483843 | 67.6% | 12.5 | 10589 | 57.1% | 849  | 19.6% | 15.4   | 12.5 | 585.7 |
| 1    | 1242.3 | 2074694.3 | 23.3% | 775.9  | 1295835 | 25.2% | 3.4  | 5644  | 30.5% | 1670 | 38.5% | 54.8   | 3.4  | 367.6 |
| 0    | 335.9  | 610982.7  | 6.9%  | 204.7  | 372324  | 7.2%  | 1.3  | 2299  | 12.4% | 1819 | 41.9% | 164.4  | 1.3  | 265.8 |

#### 观察可知:

2类客户数量占比19.5%,占 比最少,但是创造了近70%的 消费金额,57.1%的订单总量, 是主要的消费客户。

1类客户数量占比38.5%,消费金额占比23.3%,订单总量占比30.5%,对平台具有一定的价值。

0类客户数量占比41.9%,总人数最多,仅创造6.9%的消费金额,12.4%的订单总量,最近消费天数均值已经超过5个月了,消费频率低,已基本流失。



06总结

### 总结

本次分析主要使用Python语言对某份英国电子零售企业的交易数据进行数据挖掘,使用RFM模型和K-Means聚类算法对用户进行分层,寻找有价值的用户

无论是进行传统的RFM模型搭建还是使用聚类算法,都能将用户进行分层,在进行传统的RFM模型搭建的时候,使用两种方法来对用户进行分层,两个方法得出的结果有所差距,需要结合具体的业务来衡量所搭建模型的好坏。使用K-Means聚类算法也能在一定程度上将用户分层。但这两大类方法都有使用场景,也都有局限性。

- •RFM模型得到的不同层级的客户,可以采取针对性措施进行营销,但销售场景受限
- •聚类算法可以较好的区分出各层用户,对于业务来说解释性还不够,数据更新前后的两次聚类结果会不同。

