Social Network Analysis

2/04/2019

Name	
Student ID	

Note: Whenever an exercise requires the application of a known formula both the formula and its solution must be reported and discussed.

Exercise 1: Graph Modelling [4 points]

Given the matrix \mathcal{G}

$$\mathcal{G} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- Draw \mathcal{G} ;
- Synthetically characterize the graph $\mathcal G$ describes (directedness, number of nodes/edges, density, components, max/min/avg degrees...).

Exercise 2: Projections[4 Points]

Given the bipartite graph \mathcal{B} in Fig. 1(left) compute:

- The adjacency matrixes of its projections (over the two node classes) and of the bipartite graph;
- The node having the lowest Closeness Centrality in both projections;
- The node having the highest Betweeness Centrality in both projections.

Exercise 3: Synthetic graphs [4 points]

Let \mathcal{E} be an Erdos-Renyi graph having 3521 nodes and 16320 edges:

- What is the value of p that allows to generate \mathcal{E} ?
- What will be the average degree of \mathcal{E} nodes? and the graph density?
- Describe the regime of \mathcal{E} .

Figure 1: (left) the Bipartite graph. (rigth) The Franklin graph: named after Philip Franklin, who disproved the Heawood conjecture on the number of colors needed when a two-dimensional surface is partitioned into cells by a graph embedding.

Exercise 4: Paths [7 points]

Given the Franklin graph \mathcal{G} shown in Fig. 1(right):

- Compute its diameter;
- List all the shortest paths among the pairs [F,L], [B,E], [C,H], [B,L];
- Compute the edge betweenness of (G,L), (A,F) and (I,N);
- Is it possible to identify an Hamiltonian cycle on G? If not specify the minimum set of edges to needed to build it.

Exercise 5: Indicators [7 points]

Given Franklin graph \mathcal{G} shown in Fig. 1(right) compute:

- Degree Centrality of all nodes;
- Closeness Centrality of A, G;
- Betweenness Centrality of I, E;
- Local Clustering Coefficient of F, L.

Exercise 6: Graph Construction [6 points]

Given 10 nodes and, at most, 20 edges build a graph such that all the following conditions hold:

- The graph is composed by a single components;
- There exists a path of length 5 between nodes 1 and 2;
- Node 2 has a clustering coefficient of $\frac{1}{3}$;
- The shortest path among 5 and 1 is equal to 2;
- Node 6 has the highest Degree Centrality;
- Node 7 has the lowest Closeness Centrality.