1

Assignment-5

Satya Sangram Mishra

Download all python codes from

https://github.com/satyasm45/Summer-Internship/ tree/main/Assignment-5/Codes

and latex-tikz codes from

https://github.com/satyasm45/Summer-Internship/ tree/main/Assignment-5

1 Question No. 2.37

Find the equation of the ellipse, with major axis along the x-axis and passing through the points $\binom{4}{3}$ and $\binom{-1}{4}$

2 Explanation

Let

$$\mathbf{p} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \mathbf{q} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} \tag{2.0.1}$$

Let there be a standard ellipse that satisfies the constraints given by:

$$\mathbf{x}^T \mathbf{D} \mathbf{x} = 1, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \lambda_1, \lambda_2 > 0 \quad (2.0.2)$$

 \therefore **p**, **q** satisfy (2.0.2),

$$\mathbf{p}^T \mathbf{D} \mathbf{p} = 1, \tag{2.0.3}$$

$$\mathbf{q}^T \mathbf{D} \mathbf{q} = 1 \tag{2.0.4}$$

which then can be expressed as:

$$\mathbf{p}^{T}\mathbf{Pd} = 1,$$

$$\mathbf{q}^{T}\mathbf{Qd} = 1$$
 (2.0.5)

where:

$$\mathbf{d} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}. \tag{2.0.6}$$

Fig. 2.1: Standard Ellipse

(2.0.5) can then be expressed as:

$$\begin{pmatrix} \mathbf{p}^T \mathbf{P} \\ \mathbf{q}^T \mathbf{Q} \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2.0.7)

$$\begin{pmatrix} 16 & 9 \\ 1 & 16 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.0.8}$$

Forming the augmented matrix and performing row reduction,

$$\begin{pmatrix}
16 & 9 & 1 \\
1 & 16 & 1
\end{pmatrix}
\xrightarrow{R_2 \leftrightarrow R_1}
\xrightarrow{R_2 \leftarrow R_2 - 16R_1, R_2 \leftarrow -R_2}
\begin{pmatrix}
1 & 16 & 1 \\
0 & 247 & 15
\end{pmatrix}$$
(2.0.9)
$$\xrightarrow{R_1 \leftarrow 247R_1 - 16R_2}
\begin{pmatrix}
247 & 0 & 7 \\
0 & 247 & 15
\end{pmatrix}$$
(2.0.10)
$$\Rightarrow \mathbf{d} = \frac{1}{R_1} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \text{ or } \mathbf{D} = \frac{1}{R_1} \begin{pmatrix} 7 \\ 0 \end{pmatrix}$$

$$\implies$$
 d = $\frac{1}{247} \begin{pmatrix} 7 \\ 15 \end{pmatrix}$, or, **D** = $\frac{1}{247} \begin{pmatrix} 7 & 0 \\ 0 & 15 \end{pmatrix}$ (2.0.11)

So, equation of ellipse is given by:

$$\mathbf{x}^T \begin{pmatrix} 7 & 0 \\ 0 & 15 \end{pmatrix} \mathbf{x} = 247 \tag{2.0.12}$$

The ellipse parameters center and axes are ob-

tained from conics table in manual as

$$\mathbf{c} = \mathbf{0}; \frac{1}{\sqrt{\lambda_1}} = \sqrt{\frac{247}{7}}, \frac{1}{\sqrt{\lambda_2}} = \sqrt{\frac{247}{15}}.$$
 (2.0.13)

Clearly the (2.0.12) satisfies all the constraints. So, it is one of the possible answers. If standard ellipse is not considered then center $\mathbf{c} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}$ can be taken anywhere on X axis in principle. The equation is given by:

$$(\mathbf{x} - \mathbf{c})^T \mathbf{M} (\mathbf{x} - \mathbf{c}) = 1 \tag{2.0.14}$$

where **M** is a diagonal matrix.

$$\mathbf{M} = \begin{pmatrix} l_1 & 0 \\ 0 & l_2 \end{pmatrix} \tag{2.0.15}$$

Comparing (2.0.14) with the general equation of ellipse:

$$\mathbf{V} = \mathbf{M} \tag{2.0.16}$$

$$\mathbf{u} = -\mathbf{Mc} \tag{2.0.17}$$

$$f = \mathbf{c}^T \mathbf{M} \mathbf{c} - 1 \tag{2.0.18}$$

Ellipse parameters for major axis and minor axis lengths:

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{l_1}} = \frac{1}{\sqrt{l_1}}$$
 (2.0.19)

$$\sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{l_2}} = \frac{1}{\sqrt{l_2}}$$
 (2.0.20)

 \therefore **p**, **q** satisfy (2.0.14),

$$(\mathbf{p} - \mathbf{c})^T \mathbf{M} (\mathbf{p} - \mathbf{c}) = 1, \qquad (2.0.21)$$

$$(\mathbf{q} - \mathbf{c})^T \mathbf{M} (\mathbf{q} - \mathbf{c}) = 1, \qquad (2.0.22)$$

which can then be written as:

$$2 \times (\mathbf{p}^T \mathbf{M} - \mathbf{q}^T \mathbf{M}) \mathbf{c} = \mathbf{p}^T \mathbf{M} \mathbf{p} - \mathbf{q}^T \mathbf{M} \mathbf{q} \qquad (2.0.23)$$

Now we have:

$$(\mathbf{p}^{T} - \mathbf{q}^{T})\mathbf{M}(\mathbf{p} + \mathbf{q}) = \mathbf{p}^{T}\mathbf{M}\mathbf{p} - \mathbf{q}^{T}\mathbf{M}\mathbf{q} + \mathbf{p}^{T}\mathbf{M}\mathbf{q} - \mathbf{q}^{T}\mathbf{M}\mathbf{p}$$
(2.0.24)

$$= \mathbf{p}^T \mathbf{M} \mathbf{p} - \mathbf{q}^T \mathbf{M} \mathbf{q} \qquad (2.0.25)$$

Let **m** satisfy $(\mathbf{p}^T - \mathbf{q}^T)\mathbf{m} = 0.$ So,

$$(\mathbf{p}^T - \mathbf{q}^T)\mathbf{M}\mathbf{M}^{-1}\mathbf{m} = 0 (2.0.26)$$

Now **c** can be expressed as:

$$2c = (p + q) + KM^{-1}m$$
 (2.0.27)

where K is an arbitrary constant Using values **c**,**p**,**q** and **M**:

$$\begin{pmatrix} 2\beta \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix} + \frac{K}{l_1 \times l_2} \begin{pmatrix} l_2 & 0 \\ 0 & l_1 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 (2.0.28)

Now,X axis is major axis so $\frac{l_2}{l_1} > 1$

$$\frac{2\beta - 3}{\frac{-7}{5}} > 1\tag{2.0.29}$$

$$\beta < 0.8$$
 (2.0.30)

Fig. 2.2: Ellipses passing through the two points with X axis as major axis