TABLE 5.4.2 NEWMARK'S METHOD: LINEAR SYSTEMS[†]

- (1) Constant average acceleration method ($\gamma = \frac{1}{2}$, $\beta = \frac{1}{4}$) (2) Linear acceleration method ($\gamma = \frac{1}{2}$, $\beta = \frac{1}{6}$)
- 1.0 Initial calculations

1.1
$$\ddot{u}_0 = \frac{p_0 - c\dot{u}_0 - ku_0}{m}$$
.

1.1
$$\ddot{u}_0 = \frac{p_0 - c\dot{u}_0 - ku_0}{m}$$
.
1.2 Select Δt .
1.3 $a_1 = \frac{1}{\beta(\Delta t)^2}m + \frac{\gamma}{\beta\Delta t}c$; $a_2 = \frac{1}{\beta\Delta t}m + \left(\frac{\gamma}{\beta} - 1\right)c$; and

$$a_3 = \left(\frac{1}{2\beta} - 1\right)m + \Delta t \left(\frac{\gamma}{2\beta} - 1\right)c.$$

- 1.4 $\hat{k} = k + a_1$.
- 2.0 Calculations for each time step, i = 0, 1, 2, ...

2.1
$$\hat{p}_{i+1} = p_{i+1} + a_1 u_i + a_2 \dot{u}_i + a_3 \ddot{u}_i$$
.

$$2.2 \quad u_{i+1} = \frac{\hat{p}_{i+1}}{\hat{k}}.$$

$$2.3 \quad \dot{u}_{i+1} = \frac{\gamma}{\beta \Delta t} (u_{i+1} - u_i) + \left(1 - \frac{\gamma}{\beta}\right) \dot{u}_i + \Delta t \left(1 - \frac{\gamma}{2\beta}\right) \ddot{u}_i.$$

$$2.4 \quad \ddot{u}_{i+1} = \frac{1}{\beta(\Delta t)^2} (u_{i+1} - u_i) - \frac{1}{\beta \Delta t} \dot{u}_i - \left(\frac{1}{2\beta} - 1\right) \ddot{u}_i.$$

3.0 Repetition for the next time step. Replace i by i + 1 and implement steps 2.1 to 2.4 for the next time step.

Newmark's method is stable if

$$\frac{\Delta t}{T_n} \le \frac{1}{\pi\sqrt{2}} \frac{1}{\sqrt{\gamma - 2\beta}} \tag{5.4.15}$$

For $\gamma = \frac{1}{2}$ and $\beta = \frac{1}{4}$ this condition becomes

$$\frac{\Delta t}{T_n} < \infty \tag{5.4.16a}$$

This implies that the constant average acceleration method is stable for any Δt , no matter how large; however, it is accurate only if Δt is small enough, as discussed at the end of

[†]If the excitation is ground acceleration $\ddot{u}_g(t)$, according to Eq. (1.7.6), replace p_i by $-m\ddot{u}_{gi}$ in Table 5.4.2. The computed u_i , \dot{u}_i , and \ddot{u}_i give response values relative to the ground. If needed, the total velocity and acceleration can be computed readily: $\dot{u}_i^t = \dot{u}_i + \dot{u}_{gi}$ and $\ddot{u}_i^t = \ddot{u}_i + \ddot{u}_{gi}$.