Университет ИТМО

Факультет Программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА № 2 ПО ДИСЦИПЛИНЕ «ТЕСТИРОВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ» ВАРИАНТ 4545

Выполнил студент группы Р3411 Смирнова Анастасия Александровна

Преподаватель Грудина Анна Михайловна

Санкт-Петербург 2020

Оглавление

Задание	3
Область допустимых значений	
UML-диаграмма классов разработанного приложения	5
Порядок тестирования:	5
Описание тестового покрытия	8
Графики, построенные .csv выгрузками (в сравнении с эталоном)	9
Sin(x), cos(x)	9
Ctg(x)	9
Sec(x), cos(x)	10
Sin(x), csc(x)	
Ln(x), log10(x), log2(x)	12
Графики функций f(x), x <= 0 и g(x) x > 0	
График функции у(х) - итоговый	14
Код приложения и тестов	14
Вывод	14

Задание

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций:

$$egin{dcases} \left\{ \left(\left(rac{\left(\left(rac{\sec(x)}{\sec(x)}
ight) \cdot \sec(x)
ight) - \sec(x)}{\cot(x) + \sin(x)}
ight) + \left(\left(\csc(x) + \cos(x)
ight)^2
ight)
ight) & ext{if} \quad x \leq 0 \ \left(\left(\left(rac{\left(\log_{10}(x)^2
ight)^2}{\log_{10}(x) - \log_2(x)}
ight) + \left(\log_2(x) - \left(\log_{10}(x) - \ln(x)
ight)
ight)
ight)^3
ight) & ext{if} \quad x > 0 \end{cases}$$

График 1 График функции у(х) – общий вид

График 2 Общий вид графика функции g(x) - положительный x

График 3 Приближение графика функции f(x), x <= 0

Область допустимых значений

1) Рассмотрим первую функцию в системе – f(x) при x<= 0.

$$\begin{cases} x! = \frac{\pi}{2} + \pi k, & k \in \mathbb{Z} \\ x! = \pi k, & k \in \mathbb{Z} \\ \sec(x)! = 0 \end{cases}$$

Обратим внимание на третье условие

$$\sec(x) \neq 0 \Longrightarrow \frac{1}{\sin(x)} \neq 0 \Longrightarrow$$
 всегда верно

2) Рассмотрим вторую функцию в системе g(x) – положительный x

$$\begin{cases} x > 0 \\ x \neq 1 \\ log 10(x) - log 2(x) \neq 0 \end{cases}$$

Первые 2 условия обусловлены областью допустимых значений произвольной логарифмической функции. Подробнее рассмотрим третье условие:

$$\log 10(\mathbf{x}) - log 2(\mathbf{x}) \neq 0 = > \frac{\ln(\mathbf{x})}{\ln(10)} - \frac{\ln(\mathbf{x})}{\ln(2)} \neq 0 = > \frac{\ln(\mathbf{x})}{\ln(10)} \neq \frac{\ln(\mathbf{x})}{\ln(2)}$$
 – всегда верно

Таким образом, область допустимых значений представляет собой объединение следующих систем:

$$\begin{cases} x! = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} \\ x! = \pi k, \ k \in \mathbb{Z} \\ x \le 0 \\ \{x > 0 \\ x \ne 1 \end{cases}$$

UML-диаграмма классов разработанного приложения

Диаграмма 1 UML-диаграмма классов разработанного приложения

Порядок тестирования:

Шаг 5

cos LOG10 LOG2 CTG SEC SECOND LEVEL TESTS LEFT - SEC TRIGONOM_FUNCTION LOGARITHMIC_FUNCTION SECOND LEVEL TESTS RIGHT LOG 2 MAIN_FUCTION

Шаг 4

Шаг 6

Шаг 8

Шаг 11

Описание тестового покрытия

Определяем классы эквивалентности и граничные значения: для каждого класса эквивалентности вычисляем три равноудаленные друг от друга и от концов точки, граничные значения проверяем следующим образом:

- 1. Непосредственно точка граница класса
- 2. Две точки, удаленные от граничной на малую величину

Графики, построенные .csv выгрузками (в сравнении с эталоном)

Sin(x), cos(x)

График 4 Эталон

График 5 Графики функций sin(x) и cos(x) из csv

График 7 Эталон

Sec(x), cos(x)

График 8 Эталон

График 9 Из csv

График 10 Эталон

График 11 Из csv

График 12 Эталон

График 13 Из csv

Графики функций f(x), x <= 0 и g(x) x > 0

График функции у(х) - итоговый

Код приложения и тестов

https://github.com/AnastasiyaSmirnova/TPO_lab2

Вывод

В ходе выполнения лабораторной работы были получены базовые навыки использования фреймворка Mockito – работы с заглушками, проведения интеграционного тестирования методом сверху-вниз.