General SPI Design

For BK2535 FLASH

Approvals

Name	Date	Signature

Beken Corporation Suite 303-304, No. 10, 198 Zhangheng Rd, Shanghai 201204, China PHONE: (86)21 5080 7801 FAX: (86)21 6160 9679

This document contains information that may be proprietary to, and/or secrets of, Beken Corporation. The contents of this document should not be disclosed outside the companies without specific written permission.

Disclaimer: Descriptions of specific implementations are for illustrative purpose only, actual hardware implementation may differ.

Revision History

Rev.	Date (YY/MM/DD)	Author(s)	Remark
0.1		caokang	Used for FLASH of grace

BK2535

Content

1.	Introduction	4
2.	PIN	4
3.	Diagram	4
4.	Interface timing	4
5.	Command description	5
6.	Register	5
7.	Note	6
8.	SPI timing	6
9.	Time parameter	8
10	FLASH space	8

1. Introduction

The SPI interface is used to download program into FLASH space. It act as SPI slave, so you need develop SPI master on another MCU chip to communicate with BK2535 SPI interface.

2. PIN

There are four pin shared with GPIO. They are SPI_clk, SPI_cs, SPI_mosi, SPI_miso.

P0.4= SPI_mosi

P0.5= SPI_miso

 $P0.6 = SPI_clk$

P0.7= SPI_cs

3. Diagram

4. Interface timing

Read timing

Command (8bits)	Address(8 or 16 bits)	Read back data (8 bits)
Write timing		
Command (8bits)	Address(8 or 16 bits)	write data (8 bits)
Pure command		
Command (8bits)		

5. Command description

command	operation	description	note
8'h00			Only command
8'h01			Only command
8'h11			
8'h12			
8'h14	flash crc check		Only command
8'h15	Memory_bist		Only command
8'h21	Write FLASH		Command+16bits address+data[7:0]
8'h22	Read FLASH		Command+16bits address+wait to read spi_miso
8'h23	erase FLASH page		Command+16 bits address page(address /512)
8'h25	erase whole FLASH		Only command
8'h31	Write reg		Only command
8'h32	Read reg		Only command

6. Register

8'h00	Mbist_pass	7	0	R	Mbist pass
/status register	Mbist_fail	6	0	R	Mbist fail
(BK2535 ROM/FLASH)	FLASH_crc _result	5:4	0	R	10:FLASH CRC check done and pass 01: FLASH CRC check done and fail
		3	0	R	NA
		2	0	R	NA
		1	0	R	NA
		0	0	R	NA
8'h01		7:6	00	RW	NA
/control register	Operate object select	5:4	00	RW	00:MAIN SPACE 01:NVR SPACE

	Soft_Prog_ mode	1	0		Must clear 0
	(BK2535)				
	Reset_MCU	0	0	RW	1, reset mcu now; 0: don't reset mcu
8'h02	Wp_reg1	7: 0	0	RW	It must be A5, when write/erase information page
8'h03	Wp_reg2	7: 0	0	RW	It must be C3, when write/erase information page
8'h04		7: 1	0	RW	NA
	Write_miso_ oe_reg	0	0	RW	It must be 1 if you want to receive data from spi_miso pin. Otherwise,keep 0 is OK.

7. Note

- This module can work only at program=1.
- 16M stable clock should be work normally in program mode. (when program=1)
- This module can be reset by the control register, also it can be reset by POR and reset pin.
- SPI clock <=4Mhz

8. SPI timing

Write_flash,只需等待 25us(大于 20us),直接写入 data 即可,不需要再写地址信息。同样 read_flash,只要时刻检测 MISO 信号,读出完整数据即可。

9. Time parameter

Variables	Time (MAX)	Time (MIN)	Definition	Note
Td1	-	1us		
Td2	-	20us		20us/1byte
Td3	-	4us		
Td4	-	2ms		
Td5	-	10ms		

10. FLASH space

MAIN area:

Total 32k bytes

Address width 16bits, data width 8 bits

Every address contain 1 bytes data

Flash has 64 pages

 $\overline{\text{One page} = 512 \text{ bytes}}$

PAGE ADDRESS TABLES

IFREN	Page(Dec)	Page Size(Byte)	Address[16:0]	Flash Type
1	INFO	256	00000 – 000FF	Information
1	INFO	256	00100 - 001FF	Information
0	0	512	00000 - 001FF	
0	1	512	00200 – 003FF	
0	2	512	00400 - 005FF	
0	3	512	00600 – 007FF	
0	:	:	:	Main Flash Memory
0	:	:	:	
0	:	:	:	
0	:	:	:	
0	;	:	:	

Table 2. Memory address map

11. Operate Flash

Flash has information place and main flash memory. If you want to operate the information memory, you have set $wp_reg1=0xA5(wp_reg1 \text{ address} \text{ is 8'h02})$ and $wp_reg0=0xC3(wp_reg1 \text{ address} \text{ is 8'h03})$,and we have also set $control_reg[5:4]=01$ ($control_reg \text{ address} \text{ is 8'h00}$). otherwise,don't do that. you have to set $write_miso_oe_reg[0]=0x01$ to enable that it can receive data from $spi_miso_op_i$.

we can control The address 0x7ff8 's byte in flash memory. it may be has some meaning. The byte maybe 0xff,0x5a,0x35.

0Xff	Write enable \ read enable \ erase enable
0x5a	Write disable\ read enable\ erase disable
0x35	Write disable\ read disable\ erase disable
Other	Write enable\ read disable\ erase enable

Q: How to set 0x7ff8's value?

A: 1. Get code.bin

2.change code.bin's 0x7ff8 value (default is 0xff)

3.do crc_change ,get code_crc.bin, the crc value is the last four bytes in code_crc.bin

Membist check: send command 0x15, wait for 10ms. Read status register (address is 0x00).

If reg00[7] is 1,means pass.IF reg00[6] is 1,means fail.

CRC_check; send command 0x14, wait for 200us. Read status register(address is 0x00).

If it is 1.means pass. Otherwise fail.