Mechanistic networks for cancer genomics Cancer, copy number alterations, and age

Chay Paterson

University of Manchester

18 October 2022

Warning

There will be very few equations in this talk!

This network...

corresponds to this stochastic process:...

$$\emptyset \to X, \quad \text{rate } \alpha$$
 $X \to X + Y, \quad \text{rate } \mu X$
 $Y \to Y + Y, \quad \text{rate } \beta Y$
 $Y \to \emptyset, \quad \text{rate } \delta Y$

and approximately this linear system...

$$\frac{d}{dt} \begin{pmatrix} E[X] \\ E[Y] \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ \mu & \beta - \delta \end{bmatrix} \cdot \begin{pmatrix} E[X] \\ E[Y] \end{pmatrix} + \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

Most of our models are linear, high-dimensional and sparse¹

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Age and cancer

P. Armitage and R. Doll¹²

Risk of cancer increases with age:

¹P. Armitage and R. Doll, British Journal of Cancer 1954; 8: 1–12

²P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

Multi-stage clonal expansion models

2-3 rate limiting steps¹²³

Problem: how to compute P(cancer, t) for a given model?

Different methods: Fast:

- ► Mean-field approximation¹
- ► Numerical quadrature²

Slow:

- Gillespie algorithm + sampling ³
- ► tau leaping + sampling ³

¹P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

²S. Moolgavkar and G. Luebeck, JNCI 1992; 84(8): 610-618

³C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688 (supp. material)

Network models

- Study specific genes and mechanisms of interest (SNVs, LOH, CNA, etc.)
- 2. Fix parameters from sequences and experiments
- 3. Distinguish different orders of events

This gets us the incidence of specific karyotypes

- ► APC-p53-kRAS combo accounts for about 15% of incidence
- ► 5-year survival about 60% (any stage)

¹Fearon et al. TODO

¹M. S. Lawrence et al., Nature 2014; 505: 495-501

²Office for National Statistics, England 2019

each end node is a different copy number profile

e.g.
$$(-17p, -5q)$$
, etc

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688 (supp. material)

$$P(t) \sim te^{s_2 t}$$

- ▶ The 4 most likely paths account for 50% of the risk
- ► Consistent with classic model²

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

²Kinzler and Vogelstein 1990

Successful ab initio model

- Can constrain APC/KRAS epistasis ($s_2 < 0.31/yr$)
- ► Timing of *p53* inactivation: must be *late*
- ► Compatible with 3-hit models, similar curve: p53 not rate limiting

but:

- Mean-field breaks down at old ages / large probabilities
- Stochastic simulations are extremely slow

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

²(relative to the others)

Why study vestibular schwannoma?

Sometimes rare events make more interesting science possible

- 1. genomic subtypes better characterised: NF2/Merlin altered in 85-100% of cases^{1,2}, TP53 in $\approx 0\%$
- 2. usually benign = **easier to study timing!** (of drivers, malignant transformation...)
- 3. only 3 hits, weak selection (almost neutral)
- 4. probabilities low: approximations v. accurate **because it's** rare

¹ML Carlson et al., Otology & Neurotology: 2018;39(9):860 – 871

²AL Håvik et al., Journal of Neurosurgery JNS. 2017;128(3):911 – 922.

Vestibular schwannoma

3-event model

- Fitness suspiciously low, $s \approx 0.005/\text{yr}^{-1}$
- Suggests nearly-neutral 3-hit model ³

■ NF2 ■ sporadic male ■ sporadic female

Gareth Evans 2005²

¹R. Woods *et al.* Genetic Epidemiology (2003)24: 265–272

²DGR. Evans et al. Otology & Neurotology (2005)26:93–97

³C Paterson, I Bozic, MJ Smith, X Hoad, DGR Evans, https://doi.org/10.1101/2021.10.03.457528

Our model for sporadic VS

- ► Include *NF2*, *SMARCB1* and (simplified) linkage
- ► Add hypothetical oncogene *GFX*

Risk of each subtype looks like

$$P(\square) \propto \frac{t^3}{31}$$

$$P(\blacksquare) \approx N_{WT} \mu_{GFX} r_{LOH} \frac{1}{2} \mu_{NF2} \frac{t^3}{3!} \times 6$$

 $^{^{1}\}text{C Paterson, I Bozic, MJ Smith, X Hoad, DGR Evans, } \\ \text{https://doi.org/} \\ 10.1101/2021.10.03.457528$

Our model for sporadic VS

- ▶ Don't use ab initio point estimates for u, r_{LOH}, n_{GFX} this time...
- ► Instead use

$$P(t) = \square + \square + \square$$
,
 $f_{LOH} = \square + \square$, and
 $f_{SMARCB1} = \square$ to fix
the parameters!

Our model for sporadic VS

 $^{^{1}\}mathsf{C}\ \mathsf{Paterson}, \mathsf{I}\ \mathsf{Bozic}, \ \mathsf{MJ}\ \mathsf{Smith}, \ \mathsf{X}\ \mathsf{Hoad}, \ \mathsf{DGR}\ \mathsf{Evans}, \ \mathsf{https:}//\mathsf{doi.org}/10.1101/2021.10.03.457528$

New parameter estimates

0 1.2 1e-9

0.0 0.5 1.0

1e-7

 $p_{LOH}(22q)$

0.00

0.0

0.2 0.4 0.6

и

Main outputs

- 1. Better estimates of event rates in Schwann cells
- 2. Can constrain timing of "TSX" (resp. for malignancy)
- 3. Can constrain size of GFX and TSX

To do list

Experiments:

- ▶ Sporadic VS to constrain $f_{SMARCB1}$: n > 300
- ► Empirical CNA/NGS in MPNST (rare!)?: *n* > 30

Theory:

- Convert n_{GFX} and n_{TSX} to estimates for multiple genes using integer partitions
- Implement new efficient algorithm in parameter inference with max. likelihood

Acknowledgements

The University of Washington

In order of appearance...

- Ivana Božić
- Hans Clevers
- Gareth Evans
- Xanthe Hoad
- Miriam Smith
- David Wedge