

Práctica Laboratorio 01

Eduardo G. Ruiz Mamani¹

¹ Escuela de Ciencias de la Computacion, Facultad de Producción y Servicios, Universidad Nacional de San Agustín, Arequipa.

Arequipa, Perú

Resumen— En el presente trabajo se muestran el resultado de los ejercicios pertenecientes al laboratorio propuesto, su análisis y conclusiones sobre su razón en sistemas grandes.

Palabras clave—fisica, movimiento, computación

Abstract— This work shows the result of the proposed laboratory exercises, their analysis and conclusions about their reason in large systems.

Keywords—physics, movement, computing

ACTIVIDADES

El código implementado se encuentra en el siguiente repositorio: https://github.com/EGRM23/fisica_computacional-2024/tree/main/lab01

En el siguiente laboratorio se nos pidió que implementemos 3 programas en python para calcular: la distancia recorrida en un objeto de velocidad constante, la distancia recorrida en un objeto de velocidad variable (aceleración) y la velocidad final de un objeto con aceleración al final de un tiempo establecido.

RESULTADOS

```
PS D:\UNSA\CIENCIAS DE LA COMPUTACION\avo semestre\FISICA COMPUTACIONAL\labbi> py ejer_01.p
DISTANCIA RECORRIDA CON VELOCIDAD CONSTANTE
Ingresa al velocidad (m/s): 3
Ingresa el tiempo (s): 2
La distancia recorrida es 6 m
```

Fig. 1: Resultados de la ejecución del primer ejercicio

```
PS D:\UBSA\CIENCIAS DE LA COMPUTACION\Boo semestre\FISICA COMPUTACIONAL\label> py ejer_02.py DISTANCIA RECORRIDA CON ACELERACION
Ingresa la velocidad inicial (m/s): 2
Ingresa la aceleracion (m/s>2): 3
Ingresa el tiempo (s): 3
La distancia recorrida es 19.5 m
```

Fig. 2: Resultados de la ejecución del segundo ejercicio

Fig. 3: Resultados de la ejecución del tercer ejercicio

ANÁLISIS

La estrategia que se usó para realizar el trabajo, es aquella en la que el usuario puede decidir que variables ingresar a los programas, es dinámico y las operaciones se realizarán independientemente del valor ingresado (siempre que sea flotante).

En el primer ejercicio se ingresa la velocidad y el tiempo; en el segundo se ingresa la velocidad, aceleración y tiempo; por último, en el tercero se ingresa la velocidad, la acelaración el tiempo.

Las operaciones realizadas en los programas son simples y los resultados están de acuerdo a lo que se pidió, no hay mucha complejidad y usuarios inexpertos pueden usarlo con facilidad.

CONCLUSIONES

Este trabajo nos ayuda a darnos cuento que las operaciones pueden ser implementadas mediante software con un poco de razonamiento, y aunque los ejemplos son básicos, esta es la base para simular grandes sistemas físicos y reales en el área de computación.

1