## MyScript<sub>®</sub>







# The character dimension for the representation of acted voices

Seminar in Nantes Machine Learning Meetup





#### Voice Dubbing

Replace the original voice by an other one in a different language/culture

#### Scene





"I am your father"



Dialogue

Voice record



#### **Voice Casting**

Select the voice that will replace the original one

#### Voice Casting





STEP OF DUBBING

CHOICE MADE BY ARTISTIC DIRECTOR (AD)

## Artistic Director often choose the same performer



Performers become more expensive



Performers become less available



Difficult to find new talents

#### Create automatic tools can help DA













#### ANR Project The Voice



Voice casting tools



Voice recommandation system

#### Voice Casting – Based on history







#### **Character History**









#### Voice Casting – Based on character play





The way he plays the original character



#### Voice choosing



**Artistic Director** 

Does the vocal french performer match the original character?



Original Character



# Operator's choice doesn't simply involve applying an acoustic similarity

#### What factors are involved?



#### Focus on **character dimension**



What characterizes the character in the signal?

## Summary of my experiments



# Are acoustic signs of the character dimension present in the acted voice?

1

**Signal Level** 



## To confirm the dimension is present in the signal

#### Voice Similarity for character dimension



## Voice Similarity Artchitecture: Siamese Neural Network



#### Voice Similarity: Training



#### Voice Similarity: Training



#### Energy formula and contrastive loss



$$E_w(I_1, I_2) = (\|G_w(I_1) - G_w(I_2)\|)^2$$

Contrastive Loss

$$L(I_1, I_2, T) = (1 - T) \times E_W(I_1, I_2) + T \times max\{0, m - E_W(I_1, I_2)\}\$$

T = {0, 1} m is the margin

## Voice Similarity

- Records of character 1
- Records of character 2

## Voice Similarity



- Records of character 1
- Records of character 2

#### Voice Similarity



- Records of character 1
- Records of character 2

#### I-vectors





#### Data

2880 records
Total duration 161 min
16 characters
Cross validation, sets A, B, C and D

| train        | val          | test          |
|--------------|--------------|---------------|
| 1728         | 432          | 720           |
| 12 chars     | 12 chars     | 4 chars       |
| 98 min       | 23 min       | 39 min        |
| 8 min / char | 2 min / char | 10 min / char |

SIMILARITY METRIC BASED ON SIAMESE NEURAL NETWORKS FOR VOICE CASTING A Gresse, M Quillot, R Dufour, V Labatut, J-F Bonastre



#### 16 characters



SIMILARITY METRIC BASED ON SIAMESE NEURAL NETWORKS FOR VOICE CASTING A Gresse, M Quillot, R Dufour, V Labatut, J-F Bonastre



#### Results

|          | 2 in-conc<br>acc | 2 in-merge acc | Siamese-net acc |
|----------|------------------|----------------|-----------------|
| A (test) | 0.49             | 0.52           | 0.55            |
| B (test) | 0.49             | 0.50           | 0.59            |
| C (test) | 0.51             | 0.53           | 0.62            |
| D (test) | 0.53             | 0.52           | 0.50            |
| A (dev)  | 0.94             | 0.93           | 0.72            |
| B (dev)  | 0.96             | 0.94           | 0.71            |
| C (dev)  | 0.93             | 0.93           | 0.70            |
| D (dev)  | 0.96             | 0.96           | 0.71            |

Presence of acoustic signs of the character dimension confirmed

SIMILARITY METRIC BASED ON SIAMESE NEURAL NETWORKS FOR VOICE CASTING A Gresse, M Quillot, R Dufour, V Labatut, J-F Bonastre

# How to represent the character dimension of the acted voice?

2

**Abstract level** 



#### Dimension representation



#### Neural Network - Embedding



#### Neural Network - P-Vector



#### Evaluation





This evaluation does not ensure that p-vectors model precisely the character dimension

#### Result: with TSNE



# How to go deeper in the representation without meta data?

#### Data refining



Remove data



Redefine labels



Add neutral label

#### Data refining: redefine labels

#### Initial corpus

| i-vector                 | character |
|--------------------------|-----------|
| {0.2, 0.3, 0.2, 0.3 0.4} | 1         |
| {0.5, 0.3, 0.3, 0.2 0.9} | 3         |
| {0.7, 0.4, 0.3, 0.9 0.3} | 4         |
| {0.6, 0.5, 0.3, 0.2 0.6} | 1         |



| i-vector                 | Associated cluster |
|--------------------------|--------------------|
| {0.2, 0.3, 0.2, 0.3 0.4} | 25                 |
| {0.5, 0.3, 0.3, 0.2 0.9} | 15                 |
| {0.7, 0.4, 0.3, 0.9 0.3} | 13                 |
| {0.6, 0.5, 0.3, 0.2 0.6} | 19                 |

### How to choose k?

#### Results

|          | A    | В    | С    | D    |
|----------|------|------|------|------|
| Baseline | 0.63 | 0.55 | 0.55 | 0.55 |
|          |      |      |      |      |

Baseline learned with teacher/student method

|                | 6    | 12   | 24   | 48   | 64   |
|----------------|------|------|------|------|------|
| Siamese val A  | 0.80 | 0.90 | 0.88 | 0.87 | 0.87 |
| Siamese val B  | 0.78 | 0.92 | 0.90 | 0.87 | 0.88 |
| Siamese val C  | 0.81 | 0.92 | 0.89 | 0.87 | 0.85 |
| Siamese val D  | 0.74 | 0.90 | 0.88 | 0.87 | 0.85 |
| Siamese test A | 0.54 | 0.51 | 0.54 | 0.55 | 0.57 |
| Siamese test B | 0.55 | 0.56 | 0.53 | 0.48 | 0.55 |
| Siamese test C | 0.55 | 0.54 | 0.55 | 0.56 | 0.56 |
| Siamese test D | 0.57 | 0.52 | 0.54 | 0.51 | 0.53 |

We still keep character information in this refined representation

## Next step: How to compare with humans?

3

**Human level** 



Compare with human experts

#### Triangular plan



This work will be done with the help of the sociologists of the department of culture and communication of Avignon

#### Triangular plan



#### Triangular plan

| Record | User | Character 1 | Character 2 | Character 3 |
|--------|------|-------------|-------------|-------------|
| 1      | 1    | 0,9         | 0,2         | 0,1         |
| 2      | 1    | 0,1         | 0,4         | 0,7         |
|        |      |             |             |             |
| 4      | 2    | 0,1         | 0,7         | 0,2         |

Comparable with our p-vectors?

Can feed machine learning systems to make new representation

## How to explain decisions from neural networks?

4

**Explainability** 

#### Why explainability?



#### Different kind of explainability

#### **Sensitivity Analysis (SA)**

$$R_i = \left| \left| \frac{\partial}{\partial x_i} f(\mathbf{x}) \right| \right|.$$

#### **Layer-wise Relevance Propagation (LRP)**

$$R_j = \sum_{k} \frac{x_j w_{jk}}{\sum_{j} x_j w_{jk} + \epsilon} R_k$$

#### Image classification



EXPLAINABLE ARTIFICIAL INTELLIGENCE: UNDERSTANDING, VISUALIZING AND INTERPRETING DEEP LEARNING MODELS (2017) W Samek, T Wiegand, KR Müller

#### Text document classification

SA

It is the body's reaction to a strange environment. It appears to be induced partly to physical discomfort and part to mental distress. Some people are more prone to it than others, like some people are more prone to get sick on a roller coaster ride than others. The mental part is usually induced by a lack of clear indication of which way is up or down, ie: the Shuttle is normally oriented with its cargo bay pointed towards Earth, so the Earth (or ground) is "above" the head of the astronauts. About 50% of the astronauts experience some form of motion sickness, and NASA has done numerous tests in space to try to see how to keep the number of occurances down.

LRP

It is the body's reaction to a strange environment. It appears to be induced partly to physical discomfort and part to mental distress. Some people are more prone to it than others, like some people are more prone to get sick on a roller coaster ride than others. The mental part is usually induced by a lack of clear indication of which way is up or down, ie: the Shuttle is normally oriented with its cargo bay pointed towards Earth, so the Earth (or ground) is "above" the head of the astronauts. About 50% of the astronauts experience some form of motion sickness, and NASA has done numerous tests in space to try to see how to keep the number of occurances down.

EXPLAINABLE ARTIFICIAL INTELLIGENCE: UNDERSTANDING, VISUALIZING AND INTERPRETING DEEP LEARNING MODELS (2017) W Samek, T Wiegand, KR Müller

### And for sound task?

#### Work with spectrogram



### Conclusion



#### Work difficulties and future

Difficult to generalize the task

**Build new corpus for cinema** 

Improve validation set

Subjective experiments and explainability



## Thank you for your attention

mathias.quillot@univ-avignon.fr



Claude Chantal



### Christophe Le Moine