FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO		Jméno Matyáš Peroutík			Kód 256371	
		Ročník	1	Obor	Skupina	Lab. skup.
		1 AMT Měřeno dne Odevzdá		Odevzdáno o	no dne	
	Štěpán Pavlica		1	0.04.2024	C	7.04.2024
Příprava	Opravy	Učitel			Hodnocení	
Měrný náboj elektronu						Č. úlohy 25

Úkol měření

Stanovte měrný náboj elektronu $\frac{e}{m}$ a výsledek porovnejte s tabulkovou hodnotou.

Teoretický rozbor

Magnetron je vakuová dioda s katodou a anodou ve tvaru souosých válců, která je umístěna v homogenním magnetickém poli. Magnetické pole způsobí zakřivení dráhy elektronů. To se projeví snížením proudu diodou. Mezi elektrodami je napětí U_a . Velikost homogenního magnetického pole vypočteme podle vztahu:

$$B = \mu_0 \frac{N}{L} I_c \tag{1}$$

I_c	Magnetizační proud procházející cívkou
_	Počet závitů cívky
	Absolutní permeabilita vakua $(4\pi 10^{-7})$

Pokud zanedbáme deformaci mag. pole na koncích cívky a deformaci elektrického pole na konci koaxiálního uspořádání elektrod, můžeme pro elektrickou a magnetickou sílu působící na elektron použít následující vztahy:

$$F_e = eE (2)$$

$$F_m = eBv (3)$$

Jelikož je elektron záporně nabitá částice, tak síla $\vec{F_e}$ má radiální směr od katody k anodě. Směr působení magnetického pole, který je dán následujícím vztahem, je v každém okamžiku kolmý na rychlost \vec{v} , což má za důsledek zakřivení dráhy.

$$\vec{F_m} = e\vec{v} \times \vec{B} \tag{4}$$

Pokud budeme uvažovat, že elektrony mají při výstupu z katody nulovou počáteční rychlost, že válcové plochy jsou nekonečně dlouhé, a označíme li poloměr anody R_a , její potenciál U_a a obdobné označení pro katodu, budou síly, kterými na ně pole působí, ležet v rovině kolmé k ose válcových elektrod.

Dráhu elektronu v magnetickém a elektrickém poli popisuje následující pohybová rovnice:

$$m\vec{a} = \sum \vec{F} = \vec{F_e} + \vec{F_m} \tag{5}$$

Po dosazení za veličiny dostaneme následující vztah:

$$m\frac{d^2\vec{r}(t)}{dt^2} = e\vec{E} + e(\vec{v} \times \vec{B})$$
(6)

Pokud chceme zjistit kritickou velikost magnetické indukce, při které dochází změně řešení pohybové rovnice (6) z cykloidy na krmužnici, budeme předpokládat, že se takto bude většina elektronů pohybovat. Pro pohyb částice v uzavřené soustavě po kruhové dráze poté platí, že její moment hybnosti b je konstantní. V tomto uspořádání se dá vypočítat následovně:

$$b = mr^2 \frac{d\varphi}{dt} + \frac{1}{2}er^2 B = konst. \tag{7}$$

 $\frac{d\varphi}{dt} = \omega$Úhlová rychlost elektronu r.....Poloměr dráhy elektronu

Pro dva velmi blízké kruhové dráty dostaneme pro úhlovou rychlost následující vztah:

$$\frac{d\varphi}{dt} = \frac{1}{2} \frac{e}{m} B \tag{8}$$

Energetickou bilanci pro elektron, který vyletěl z katody velice malou počáteční rychlostí do elektrického pole, které mu přídává kinetickou energii určenou napětím U_a můžeme vyjádřit následující rovnicí

$$\frac{1}{2}m(R_a^2 - R_k^2)^2 \left(\frac{d\varphi}{dt}\right)^2 = eU_a \tag{9}$$

Po dosazení (8) do (9) dostaneme nasledující vztah:

$$\frac{1}{2}m(R_a^2 - R_k^2)^2 \left(\frac{1}{2}\frac{eB_0}{m}\right)^2 = eU_a \tag{10}$$

Z této rovnice můžeme vyjádřit vztah pro měrný náboj elektronu

$$\frac{e}{m} = \frac{8U_A R_a^2}{\left(R_a^2 - R_k^2\right)^2 B_0^2} \tag{11}$$

Schéma zapojení

Obrázek 1: Schéma zapojení úlohy

Zpracování naměřených hodnot

Ua = 8V		Ua =	10V	Ua = 12V		
Ic	Ia	Ic	Ia	Ic	Ia	
(mA)	(uA)	(mA)	(uA)	(mA)	(uA)	
0	35	0	40	0	46	
30	36	30	40	30	46	
60	36	60	40	60	46	
90	36	90	40	90	45	
120	36	120	39	120	43	
150	35	150	38	150	42	
180	34	180	37	180	42	
210	33	210	36	210	41	
240	32	240	34	240	40	
270	31	270	31	270	39	
300	30	300	30	300	38	
330	30	330	28	330	36	
360	28	360	25	360	33	
390	26	390	20	390	32	
420	23	420	16	420	29	
450	20	450	13	450	26	
480	16	480	10	480	22	
510	15	510	7	510	20	
540	12	540	-	540	16	
570	9	570	-	570	13	
600	7	600	-	600	12	
630	6	630	-	630	10	
660	5	660	-	660	8	

Tabulka 1: Naměřené hodnoty

Parametry cívky			Parametry elektronky		
délka / mm	325		poloměr katody / mm	3	
počet závitů	5580		poloměr anody / mm	5	
průměr vodiče / mm	0.6		žhavící napětí / V	6.04	
počet vrstev	9				

Tabulka 2: Parametry měřených prvků

Hodnoty z této tabulky poté převedeme do grafů. Pokud grafy proložíme přímkou, kterou vytvoříme pomocí metody nejmenších čtverců z lineární části měření, dostaneme v průsečíku s maximem hodnotu kritického proudu.

Grafy

Závislost proudu anodou na proudu cívkou při napětí na anodě $\mathrm{U}_A=12\mathrm{V}$

Přehled průběhů závislostí proudu anodou na proudu cívkou při všech použitých napětí

Z těchto gráfů jsme extrapolací zjistili kritické proudy. Z těchto proudů lze pomocí vztahu (1) spočítat kritickou magnetickou indukci B_0 . Zde je výpočet pro $U_A = 8V$:

$$B_0 = \mu_0 \cdot \frac{5580}{0.325} \cdot 0.24026 = 5.184mT$$

Z této hodnoty, a z hodnot obsažené v tabulce (2) jsme schopni spočítat podle vztahu (11) spočítat velikost měrného náboje.

$$\frac{e}{m} = \frac{8 \cdot 8 \cdot 0.005^2}{(0.005^2 - 0.003^2)^2 \cdot 0.005184^2} = 2.3259 \cdot 10^{11} Ckg^{-1}$$

Obdobně spočteme velikosti měrných nábojů pro všechny použité napětí. Výsledky jsou uvedeny v následující tabulce:

Napětí	Kritický proud cívkou	Kritická mag. indukce	Měrný náboj elektronu	Chyba od tabulkové hodnoty
\mathbf{U}_A	\mathbf{I}_C	\mathbf{B}_0	$\frac{e}{m}$	$\frac{e}{m_{tab}} = 1.7588 \text{Ckg}^{-1}$
(V)	(mA)	(mT)	(Ckg^{-1})	(%)
8	240.26	5.184	2.3259	32.24
10	196.56	4.241	4.3439	146.9
12	216.48	4.671	4.2976	144.2

Tabulka 3: Tabulka vypočtených hodnot

Použité přístroje

Název	Výrobce	Тур	Identifikace	Další údaje
Laboratorní zdroj	UNI-T	UTP3313TFL	81900468	
Měřidlo I_C			24026501	900mA
Měřidlo U_A			24026602	20 V
Měřidlo I_A			24026402	$240\mu A$
Připravek na stano	vení měrné	Magnetron č. 3		

Tabulka 4: Použité měřící přístroje

Závěr

V tomto měření jsme se pomocí magnetronu tvořeným diodou z dvou souosých válců pokusili změřit měrný náboj elektronu. Měření jsme prováděli pro 3 různá napětí na anodě (8V, 10V, 12V). Ve grafech sestrojených z naměřených hodnot jsem následně z rovnice proložení zjisti hodnoty proudu, při kterém je magnetická indukce kritická. Při těchto proudech jsem následně spočetl hodnoty měrného náboje elektronu. Nejpřesněji vyšla hodnota pro napětí 8V, při kterém byl změřen měrný náboj elektronu e/m = 2.3259Ckg-1. Chyba této hodnoty vůči teoretické tabulkové hodnotě (1.7588Ckg-1) byla 33.24%. U zbylých měření chyba přesahovala 100%.

Chyby měření mohly být způsobeny zejméná opotřebením měřícího přístroje. Jelikož jsou přístroje využívány pravděpodobně déle než 3 roky, mohla se na katodě vytvořit vrstva oxidu, což by změnilo počáteční rychlost elektronu. Dále je pravděpodobné, že mohly být špatně změřeny průměry katody a anody. Možné jsou také chyby měřících přístrojú napětí a proudů. Chyba mohla také vzniknout při prokládání grafu přímkou kvůli špatnému výběru bodů.