Изучение процесса управления потоками первичных требований в тандеме систем обслуживания с циклическим алгоритмом с продлением

Кочеганов Виктор Михайлович¹, Зорин Андрей Владимирович²

- ¹ Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, e-mail: kocheganov@gmail.com
- ² Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, e-mail: andrei.zorine@itmm.unn.ru

Постановка задачи

В данной работе рассматривается сеть (тандем) из двух систем массового обслуживания. В первой из них обслуживаются конфликтные потоки по циклическому алгоритму, а во второй — по алгоритму с проедлением. Данная тандемная сеть подробно описана в работе [1]. Развиваемый там подход позволил представить тандем систем как единую систему массового обслуживания. Напомним существенные моменты из описания системы. На вход обслуживающему устройству поступают четыре входных потока требований: Π_1 , Π_2 , Π_3 и Π_4 . Требования входного потока Π_i поступают в очередь O_j с неограниченной вместимостью, $j \in \{1, 2, 3, 4\}$. Требования из очереди O_i обслуживаются в порядке поступления. Требования входных потоков Π_1 и Π_3 формируются внешней средой, имеющей всего одно состояние. Каждый из этих потоков является неординарным пуассоновским потоком. Обозначим λ_1 и λ_3 интенсивности потоков групп требований потоков Π_1 и Π_3 соответственно. Производящая функция количества требований в группе по потоку Π_j имеет вид $f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, j \in \{1,3\}.$ Предполагается, что $f_i(z)$ сходится для любого $z \in \mathbb{C}$ такого, что |z| < $<(1+arepsilon),\,arepsilon>0.$ После обслуживания, требования из очереди O_1 поступают обратно в систему как требования потока Π_4 . Требования потока Π_4 , в свою очередь, после обслуживания поступают в систему в качестве требований потока Π_2 . Потоки Π_2 и Π_3 конфликтные в том смысле, что их требования не могут быть обслужены одновременно.

Зафиксируем положительные целые числа d, n_0 , n_1 , ..., n_d . Тогда множетсво состояний обслуживающего устройства будет выглядить следующим образом: $\Gamma = \{\Gamma^{(k,r)}: k=0,1,\ldots,d; r=1,2,\ldots n_k\}$. В состоянии $\Gamma^{(k,r)}$ сервер находится в течение неслучайного времени $T^{(k,r)}$. Алгоритм смены состояний учитывает предыдущее состояние прибора, так и длину очереди O_3 в момент принятия решения и формально описан в работе [1].

Для задания процесса обслуживания используются потоки насыщения $\Pi_1^{\rm sat},\ \Pi_2^{\rm sat},\ \Pi_3^{\rm sat},\ \Pi_4^{\rm sat}.$ Число требований в потоке насыщения $\Pi_j^{\rm sat}$ за время

 $T^{(k,r)}$ неслучайно и равно $\ell(k,r,j)$, если обслуживающее устройство находится в состоянии $\Gamma^{(k,r)} \in \Gamma$.

Представленная система массового обслуживания может рассматриваться как кибернетическая управляющая система. Схема управляющей системы представлена на Рис. 1. На схеме присутствуют следующие блоки: внешняя среда с одним состоянием, входные полюса (входные потоки Π_1 , Π_2 , Π_3 , Π_4 и потоки насыщения $\Pi_1^{\rm sat}$, $\Pi_2^{\rm sat}$, $\Pi_3^{\rm sat}$, $\Pi_4^{\rm sat}$), внешняя память (очереди O_1 , O_2 , O_3 , O_4), устройство по переработке внешней памяти (устройства поддержания дисциплин очередей δ_1 , δ_2 , δ , δ_4), внутренняя память (обслуживающее устройство, ОУ), устройство по переработке внутренней памяти (граф переходов из одного состояния ОУ в другое), выходные полюса (выходные потоки $\Pi_1^{\rm out}$, $\Pi_2^{\rm out}$, $\Pi_3^{\rm out}$, $\Pi_4^{\rm out}$).

Рис. 1: Схема СМО как управляющей кибернетической системы

В работе [2] были выделены информация, координаты и функция данной системы. Это позволило конструктивно задать последовательности случайных величин и случайных элементов, описывающих диксретную временную шкалу наблюдения и состояния всех блоков схемы. В частности, в качестве дискретной временной шкалы выбрана последовательность $\tau_0 = 0, \tau_1, \tau_2, \ldots$ моментов смены состояния обслуживающего устройства. Обозначим $\Gamma_i \in \Gamma$, $i = 1, 2, \ldots$ состояние обслуживающего устройства в течение времени $(\tau_{i-1}; \tau_i]$ и $\Gamma_0 \in \Gamma$ его состояние в момент времени τ_0 и пусть $\varkappa_{j,i} \in \mathbb{Z}_+$ — количество требований в очереди O_j в момент времени τ_i , $i \geq 0$. Было доказано, что стохастическая последовательность $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i}); i = 0, 1, \ldots\}$ является однородной цепью Маркова. Свойства последовательности $\{(\Gamma_i, \varkappa_{3,i}); i \geq 0\}$ изучены в работах [1,3].

Основной результат

В данной работе мы рассматриваем последовательность

$$\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\}. \tag{1}$$

Теорема 1. Стохастическая последовательность (1) при заданном распределении элемента $(\Gamma_0, \varkappa_{1,0}, \varkappa_{2,0}, \varkappa_{3,0}, \varkappa_{4,0})$ является однородной цепью Маркова.

Теорема 2. Для того, чтобы марковская цепь (1) имела стационарное распределение, достаточно выполнения неравенства

$$\min_{\substack{k=1,d\\j=1,3}} \frac{\sum_{r=1}^{n_k} \ell(k,r,j)}{\lambda_j f_j'(1) \sum_{r=1}^{n_k} T^{(k,r)}} > 1.$$

Список литературы

- [1] Kocheganov V. M., Zorine A. V. Low-Priority Queue and Server's Steady-State Existence in a Tandem Under Prolongable Cyclic Service // Distributed Computer and Communication Networks. DCCN 2016. Communications in Computer and Information Science (Vishnevskiy V., Samouylov K., Kozyrev D. (eds)). Springer, Cham.— V. 678. 2016. pp. 210–221.
- [2] Кочеганов В. М., Зорин А. В. Вероятностная модель тандема систем массового обслуживания с циклическим управлением с продлением // Теория вероятностей, случайные процессы, математическая статистика и приложения: материалы Междунар. науч. конф., посвящ. 80-летию проф., д-ра физ.-мат. наук Г. А. Медведева, Минск 23–26 февр. 2015. С. 94–99.
- [3] Kocheganov V. M., Zorine A. V. Low-priority queue fluctuations in tandem of queueing systems under cyclic control with prolongations // Распределенные компьютерные и телекоммуникационнные сети: управление, вычисление, связь (DCCN-2015): материалы Восемнадцатой междунар. науч. конфер., 19—22 окт. 2015 г., Москва: / Ин-т проблем упр. им. В.А. Трапезникова Рос. акад. наук; под общ. ред. В.М. Вишневского. —М.: ИПУ РАН 2015. С. 517—524.