Kernel-Based Learning & Multivariate Modeling

MIRI Master - DMKM Master

Lluís A. Belanche

belanche@cs.upc.edu

Soft Computing Research Group

Universitat Politècnica de Catalunya

2016-2017

Kernel-Based Learning & Multivariate Modeling

Contents by lecture

- Sep 14 Introduction to Kernel-Based Learning
- Sep 21 The SVM for classification, regression & novelty detection (I)
- Sep 28 The SVM for classification, regression & novelty detection (II)
- Oct 05 Kernel design (I): theoretical issues
- Oct 19 Kernel design (II): practical issues
- Oct 26 Kernelizing ML & stats algorithms
- Nov 02 Advanced topics

Preliminaries

• Criterion for building a two-class classifier:

Maximize the width of the margin between the classes

 margin = empty area around the decision boundary, defined by the distance to the nearest training examples

These examples will be called the **support vectors**

• Goal: find the linear decision boundary that maximizes this margin

Preliminaries

Which solution is more likely to lead to better **generalization**?

Preliminaries

Working Hypotheses:

- 1. The data are linearly separable ("linsep") —very unlikely, but see later
- 2. The larger the margin, the better the generalization (an intuition)

Goal: find the separating hyperplane with the largest margin

Preliminaries

For a two-class classifier, the **VC dimension** is the maximum number ϑ of points that can be separated in all possible 2^{ϑ} ways (**shattered**) by using functions representable by the classifier.

- Note it is *sufficient* that one set of ϑ points exists that can be shattered for the VC dimension to be at least ϑ
- If the VC dimension of a class is ϑ , this means there is at least one set of ϑ points that can be shattered by members of the class. It does not mean that every set of ϑ points can be shattered
- If no set of $\vartheta+1$ points can be shattered by members of the class, then the VC dimension of the class is at most ϑ

An example

- ullet In \mathbb{R}^2 we can shatter these three points (VC dim is ≥ 3)
- \bullet No set of four or more points can be shattered (VC dim is < 4)

Why is the VC dimension relevant?

Theorem (Vapnik and Chervonenkis, 1974). Let D be an i.i.d data sample of size N and $\mathcal Y$ a class of parametric binary classifiers. Let ϑ denote the VC dimension of $\mathcal Y$. Take $y \in \mathcal Y$ with empirical error $R_N(y)$ on D. For all $\eta > 0$ it holds true that, with probability at least $1 - \eta$, the true error of y is bounded by:

$$R(y) \le R_N(y) + H(N, \vartheta, \eta)$$

where

$$H(N, \vartheta, \eta) = \sqrt{\frac{\vartheta(\ln(2N/\vartheta) + 1) - \ln(\eta/4)}{N}}$$

Formalisation

We have a data set $D = \{(x_1, t_1), \dots, (x_N, t_N)\}$, with $x_n \in \mathbb{R}^d$ and $t_n \in \{-1, +1\}$, describing a two-class problem.

We wish to find a linear function y which best models D:

- Set up an **affine function** $g(x) = \langle w, x \rangle + b$
- Obtain a linear discriminant as y(x) = sgn(g(x))
- ullet We would like to find $oldsymbol{w},b$ such that:

$$\langle w,x_n
angle+b>0$$
 , when $t_n=+1$
$$\langle w,x_n
angle+b<0$$
 , when $t_n=-1$ that is $t_n(\langle w,x_n
angle+b)>0$ or simply $t_n\,g(x_n)>0$ $(1\leq n\leq N)$

Formalisation

- The quantity $t_n g(x_n)$ is called the **functional margin** of x_n (there will be an "error" whenever $t_n g(x_n) < 0$)
- ullet Define the loss $L(t_n,\langle oldsymbol{w},oldsymbol{x}_n
 angle)=\max(1-t_n\,g(oldsymbol{x}_n),1)$
- Given the plane $\pi:g(x)=0$ $(\langle w,x\rangle+b=0)$, the distance $d(x,\pi)=\frac{|g(x)|}{||w||}$ is called the **geometrical margin** of x.
- The **optimal separating hyperplane** (OSH) is the one that maximizes the geometrical margin for linsep data:

$$\max_{\boldsymbol{w},b} \left\{ \min_{1 \leq n \leq N} d(\boldsymbol{x}_n,\pi) \right\} \qquad \text{subject to } t_n \left(\langle \boldsymbol{w},\boldsymbol{x}_n \rangle + b \right) > 0 \ \left(1 \leq n \leq N \right)$$

Formalisation

- Rescaling w, b such that $|\langle w, x \rangle + b| = 1$ for the points closest to the hyperplane (the SVs), we obtain $|\langle w, x \rangle + b| \ge 1$. The **support** vectors (SVs) are those $\{x_n \mid |\langle w, x_n \rangle + b| = 1\}$.
- The new loss is $\max(1 t_n g(x_n), 0) =: (1 t_n g(x_n))_+$ (hinge loss)
- The **margin** is twice the distance of any SV to the plane π :

$$m = 2 d(x_{SV}, \pi) = 2/||w||$$
, since $|g(x_{SV})| = 1$

Therefore we find the canonical OSH by solving

$$\max_{\boldsymbol{w},b} \left\{ \frac{2}{\|\boldsymbol{w}\|} / t_n \left(\langle \boldsymbol{w}, \boldsymbol{x}_n \rangle + b \right) \geq 1, \qquad 1 \leq n \leq N \right\}$$

Geometrical view of the OSH

A look on what's to come

- 1. The solution for w can be expressed as $w = \sum_{n=1}^{N} t_n \alpha_n x_n, \alpha_n \ge 0$.
 - This is the **dual** form (consequence of the **representer theorem**)
- 2. A fraction of the training data vectors will have $\alpha_n = 0$ (**sparsity**, as a consequence of the error function chosen)
- 3. The x_n for which $\alpha_n > 0$ will coincide with the support vectors
- 4. The discriminant function is written

$$y_{\text{SVM}}(x) = \text{sgn}(\langle w, x \rangle + b) = \text{sgn}\left(\sum_{n=1}^{N} t_n \alpha_n \langle x, x_n \rangle + b\right)$$

More than an intuition

- ullet Separating hyperplanes in \mathbb{R}^d have VC dimension d+1
- When we use a feature map into a very high dimension $D \in (\mathbb{N} \cup \{\infty\})$, VC dimension will grow accordingly
- If we bound the margin of the hyperplanes, we limit VC dimension (therefore, an explicit control on complexity)

More than an intuition

Theorem. Consider canonical hyperplanes $y(x) = \operatorname{sgn}(\langle w, x \rangle + b)$ and a data set $D = \{(x_1, t_1), \dots, (x_N, t_N)\}$, with $x_n \in \mathbb{R}^d$ and $t_n \in \{-1, +1\}$. The **subclass** of linear classifiers with margin $m \geq m_0$ has VC dimension ϑ bounded by

$$\vartheta \leq \min\left(\left\lceil \frac{R^2}{m_0^2} \right\rceil, d\right) + 1$$

where R is the radius of the smallest sphere centered at the origin containing the \boldsymbol{x}_n .

More than an intuition

- Left: hyperplanes with a large margin have reduced chances to separate the data (the VC dimension is small)
- Right: smaller margins allow more separating hyperplanes (the VC dimension is large)

Formulation

minimize
$$(w,b)$$

$$\frac{1}{2}||w||^2$$

subject to
$$t_n(\langle \boldsymbol{w}, \boldsymbol{x}_n \rangle + b) \geq 1, \qquad 1 \leq n \leq N$$

This is solved (numerically) by QP techniques:

- Quadratic (therefore convex) function subject to linear constraints
- Unique solution (or set of equivalent ones)
- Therefore, NO LOCAL MINIMA

Formulation

For the set of constraints to be satisfied, the data set must be linsep; this is a very unrealistic requirement in practice

- We could aim at minimizing the **number of** violated constraints $|\{n \mid t_n(\langle w, x_n \rangle + b) < 1\}|$, but this turns out to be NP-hard ...
- ullet Instead, we can minimize a convex function of w:

minimize
$$(w,b)$$

$$\frac{1}{2}||w||^2 + C\sum_{n=1}^{N} (1 - t_n g(x_n))_+$$

Yes, the total hinge loss!

Margin violations

• This problem can be rewritten as another QP, which allows for small margin violations ε_n called **slack** variables, for each x_n :

minimize
$$(w, b, \{\varepsilon_n\})$$

$$\frac{1}{2}||w||^2 + C\sum_{n=1}^N \varepsilon_n$$

subject to
$$t_n(\langle \boldsymbol{w}, \boldsymbol{x}_n \rangle + b) \geq 1 - \varepsilon_n$$
 and $\varepsilon_n \geq 0$ $(1 \leq n \leq N)$

- ullet This is a **soft** margin $(arepsilon_n>0$ implying a functional margin $t_ng(oldsymbol{x}_n)<1)$
- ullet The optimal slacks satisfy $arepsilon_n = (1 t_n \, g(oldsymbol{x}_n))_+$
- ullet For an error to occur, $arepsilon_n>1$ $(t_ng(x_n)<0)$, and so $\sum_{n=1}^N arepsilon_n$ is an upper bound on the number of training errors

Excursion: Lagrange multipliers

The famous method of Lagrange multipliers allows the optimization of smooth functions subject to **equality constraints**.

The Karush, Kuhn and Tucker (KKT) method extends Lagrange's to include **inequality constraints**.

Consider the problem of minimizing f(x) in a convex $\Omega \subset \mathbb{R}^d$, subject to:

•
$$g_j(x) \le 0, 1 \le j \le k$$

•
$$h_j(x) = 0, 1 \le j \le l$$

Excursion: Lagrange multipliers

Define the **Lagrangian** as:

$$\mathcal{L}(x,\alpha,\beta) = f(x) + \sum_{j=1}^{k} \alpha_j g_j(x) + \sum_{j=1}^{l} \beta_j h_j(x)$$

where f, g_j, h_j are continuously differentiable functions.

Excursion: Lagrange multipliers

Theorem. Necessary and sufficient conditions for a point x^* to be an optimum are the existence of α^*, β^* such that:

1.
$$\frac{\partial \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{x}} = 0$$

2.
$$\frac{\partial \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = 0$$

3.
$$\alpha_j^* g_j(x^*) = 0, 1 \leq j \leq k$$
 (KKT complementarity conditions)

4.
$$g_j(x^*) \le 0, 1 \le j \le k$$

5.
$$\alpha_j^* \ge 0, 1 \le j \le k$$

SVM Lagrangian (primal)

We construct the **Lagrangian**:

$$\mathcal{L} = \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{n=1}^{N} \alpha_n \left\{ t_n \left(\langle \boldsymbol{w}, \boldsymbol{x}_n \rangle + b \right) - 1 + \varepsilon_n \right\} + C \sum_{n=1}^{N} \varepsilon_n - \sum_{n=1}^{N} \mu_n \varepsilon_n$$

- The $\alpha_n, \mu_n \geq 0$ are the **Lagrange multipliers**; the μ_n ensure that $\varepsilon_n \geq 0$
- The solution is a **saddle point** of \mathcal{L} : minimum w.r.t. w,b and the ε_n and maximum w.r.t. the α_n and μ_n

Lagrangian form

The gradient of \mathcal{L} with respect to \boldsymbol{w},b and ε_n must vanish:

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{n=1}^{N} \alpha_n t_n = 0, \qquad \frac{\partial \mathcal{L}}{\partial w} = w - \sum_{n=1}^{N} \alpha_n t_n \, x_n = 0, \qquad \frac{\partial \mathcal{L}}{\partial \varepsilon_n} = C - \alpha_n - \mu_n = 0$$

In addition, the KKT complementarity conditions must hold:

$$\alpha_n \Big(t_n \left(\langle \boldsymbol{w}, \boldsymbol{x}_n \rangle + b \right) - 1 + \varepsilon_n \Big) = 0$$

Dual formulation

The Lagrangian \mathcal{L} is convex; its optimization is equivalent to the maximization of its concave **dual problem** \mathcal{L}_D :

maximize ({
$$\alpha_n$$
})
$$\mathcal{L}_D = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m t_n t_m \langle \boldsymbol{x}_n, \boldsymbol{x}_m \rangle$$

subject to
$$0 \le \alpha_n \le C$$
 $(1 \le n \le N)$, and $\sum_{n=1}^N \alpha_n t_n = 0$

- Neither $\mu_n, \varepsilon_n, \boldsymbol{w}, b$ appear in the dual form; maximization is only wrt the α_n
- This optimization problem is expressed only in terms of inner products of the data points: the dual lends itself to kernelisation
- ullet How many free parameters? N (independent of data dimension)

Dual formulation

A closer look at the KKT complementarity conditions:

- ullet $\alpha_n=0$ implies $t_n\,g(x_n)>1$ and $arepsilon_n=0$ $(x_n$ is **not** a **SV**)
- $\alpha_n \in (0,C)$ implies $t_n g(x_n) = 1$ and $\varepsilon_n = 0$ $(x_n \text{ is a non-bound SV})$
- $\alpha_n = C$ implies $t_n \ g(x_n) < 1$ and $\varepsilon_n > 0$ $(x_n \text{ is a bound SV})$ (in particular, $\varepsilon_n > 1$ implies x_n is a training error)

The SVM goes non-linear

Recall the idea of mapping input data into some Hilbert space (called the **feature space**) via a non-linear mapping $\phi: \mathcal{X} \to \mathcal{H}$

The associated kernel function is $k(u, v) = \langle \phi(u), \phi(v) \rangle_{\mathcal{H}}, \ u, v \in \mathcal{X}$

SVM kernelization

- ullet We now substitute x_n by $\phi(x_n)$, then build the OSH in ${\cal H}$
- The dual of the new QP problem is formulated exactly as before, replacing $\langle x_n, x_m \rangle$ with $\langle \phi(x_n), \phi(x_m) \rangle_{\mathcal{H}} = k(x_n, x_m)$
- The discriminant function becomes:

$$y_{\text{SVM}}(x) = \operatorname{sgn}\left(\sum_{n=1}^{N} \alpha_n t_n k(x, x_n) + b\right)$$

LOOCV bounds (I)

A rough but simple bound on LOOCV (leave-one-out CV) error can be computed as:

$$LOOCV(N) \leq \frac{1}{N}\mathbb{E}(N_{SV})$$

 N_{SV} is the number of SVs for a given sample of size N The $\mathbb{E}()$ is taken over all such samples

LOO bounds (II)

Theorem. The LOOCV error of a stable SVM^(*) on a set of training patterns X is bounded by $|\{n \mid 2\alpha_n R^2 + \varepsilon_n \geq 1\}|$, where R is an upper bound on $k(x_n, x_n)$.

- This quantity can be extracted easily from the solution
- This LOOCV error is an unbiased estimate of true error

 $^{^{(*)}}$ A SVM is stable if there is at least one non-bound SV (see T. Joachims; In ICML, 2000)

Final remarks (I)

- The fact that the OSH is determined only by the support vectors is most remarkable, since usually this number will be small
- The **support vectors** (SVs) are:
 - 1. the only training examples that define the solution
 - 2. the most difficult examples to classify
- This means all the **relevant information** in the data set is summarized by the SVs: we would have obtained the same result by using *only* the SVs from the outset

Final remarks (II)

- ullet The SVM is specially well suited for "large d, low N" problems, because:
 - 1. complexity grows with N (non-parametric model)
 - 2. space requirements (the kernel matrix) also grows with N
 - 3. generalization error does not depend on d
- The "architecture" is determined automatically by the method (not by experimentation, as in neural networks)

Hot topics

- Choice of best kernel is an open issue; kernel design is an active area of research
- More efficient algorithms for solving big QP problems are being developed
- Sometimes the **fraction of SVs** is very high (indicating a poor fit); it is possible to control this fraction directly (ν -SVMs)
- Performance usually depends on a careful choice of the external parameters: C and those of the kernel function; we need principled ways for **hyper-parameter** selection

Where to look for more ...

- An Introduction to Kernel-based Learning Algorithms. K.-R. Mueller, S. Mika, G. Raetsch, K. Tsuda, and B. Schoelkopf, IEEE Neural Networks, 12(2):181-201, 2001.
- A Tutorial on Support Vector Machines for Pattern Recognition. Christopher Burges.
 - https://research.microsoft.com/en-us/um/people/cburges/papers/svmtutorial.pdf
- Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Bernhard Schoelkopf and Alexander J. Smola, MIT Press, 2001.
- An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Nello Cristianini and John Shawe-Taylor, Cambridge University Press, 2000.
- Kernel Methods for Pattern Analysis. John Shawe-Taylor and Nello Cristianini, Cambridge University Press, 2004.
- The Nature of Statistical Learning Theory. V. Vapnik, Springer, 2nd ed., 1999