ML Handbook

s.pol

Оглавление

1	Maı	гематика
	1.1	Случайная величина
	1.2	Распределение случайной величины
	1.3	Выборка
	1.4	Закон больших чисел
	1.5	Центральная предельная теорема
	1.6	Статистики
	1.7	Bootstrap
	1.8	Классический и байесовский подход
	1.9	Метод максимального правдоподобия
	1.10	Доверительный интервал
	1.11	Байесовский доверительный интервал
	1.12	Основные дискретные распределения
	1.13	Основные непрерывные распределения
	1.14	Матричные разложения
	1.15	К-Л дивергенция
		Энтропия
		Квантили
	1.18	Точечные оценки
	1.19	Интервальные оценки
	1.20	Проверка гипотез
	1.21	Множественная проверка гипотез
		Параметрические и непараметрические критерии, бутстреп
	1.23	Ошибки I и II рода
	1.24	Достигаемый уровень значимости
		Мощность статистического критерия
	1.26	Основные задачи статистики
	1.27	Проверка основных гипотез
	1.28	Корреляция Пирсона
	1.29	Корреляция Спирмена
		Корреляция Метьюса
	1.31	Корреляция Крамера
		Z-тест Фишера

Оглавление 2

	1.33	Т-тест Стьюдента	10
		Критерий Пирсона χ^2	10
		Точный тест Фишера	10
2	Ана	лиз данных	11
	2.1	Типы данных	11
	2.2	Предобработка данных	11
	2.3	Понижение размерности	11
3	Оби	цие вопросы	12
	3.1	Машинное обучение	12
	3.2	Основные классы задач	12
	3.3	Обнаружение аномалий	12
	3.4	Контроль качества	12
	3.5	Недообучение	13
	3.6	Переобучение	13
	3.7	Регуляризация	13
	3.8	Отбор признаков	13
	3.9	Параметры алгоритма	13
	3.10	Подбора метапараметров	13
	3.11	Основные типы алгоритмов	13
		Многоклассовая классификация	13
		Дисбаланс классов	13
		Ансамбли алгоритмов	13
		Метрики классификации	13
		3.15.1 Accuracy	14
		3.15.2 Precision	14
		3.15.3 Полнота (recall)	14
		3.15.4 F1-мера	14
		3.15.5 F-мера	14
		3.15.6 ROC кривая	15
		3.15.7 ROC-AUC	15
		3.15.8 PR-AUC	16
	3.16	Метрики многоклассовой классификации	17
		ROC-AUC метрика	17
		Индекс Джини	17
		Метрики регрессии	17
		Метрики кластеризации	17
		Разложение ошибки алгоритма	17
		Кривые валидации	17
		Кривые обучения	17
		Метрические методы	17
		Метод ближайших соседей	17
	0.20	11210H 311111MIIII 0000H0II	

Оглавление	3

4	Нейросети	19
	3.34 Байесовские методы	18
	3.33 Градиентный бустинг	18
	3.32 Случайный лес	17
	3.31 Решающие деревья	17
	3.30 Ядра и спрямляющие пространства	17
	3.29 SVM	17
	3.28 Логистическая регрессия	17
	3.27 Линейная регрессия	17
	3.26 Линейные методы	17

Предисловие

В данной книге описаны основные понятия, методы и подходы, широко используемые в современном DS и ML. Обычно, свободное владение этими понятиями необходимо для правильного понимания как основных, так и продвинутых методов ML и по умолчанию предполагается от DS специалиста.

Здесь собраны разные определения, встречавшиеся автору в научных статьях по ML и на собеседованиях. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

Освещение вопросов ни в коем случае не претендует на полноту и в некоторых случаях на строгость. Основная цель книги - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

Обозначения

DS - наука о данных ML - машинное обучение RV - случайная величина

CDF - функция распределения случайной величины PDF - плотность распределения случайной величины

СLТ - центральная предельная теорема EX - среднее случайной величины X - дисперсия случайной величины X

 $X \sim Y$ - случайные величины X и Y одинаково распределены

Математика

В этой главе описаны основные математические понятия, необходимые для правильного понимания как основных, так и продвинутых методов ML. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

1.1 Случайная величина

Случайной величиной (RV) называется числовая функция X, определенная на некотором множестве элементарных исходов Ω (обычно подмножество \mathbb{R} или \mathbb{R}^n),

$$X:\Omega\to\mathbb{R}$$
.

С прикладной точки зрения на RV часто смотрят как на генераторы случайных чисел с заданным распределением.

Примеры:

- Рост людей, взятых из некоторой группы.
- Цвет фиксированного пикселя изображения, взятого из некоторого множества изображений.
- Некоторый признак из датасета ML задачи.

1.2 Распределение случайной величины

Если RV принимает дискретное множество значений $x_1, x_2, ...,$ то она полностью определяется значениями их вероятностей: $p_k = \mathbb{P}(X = x_k)$.

Если множество значений RV не дискретно, то RV может быть описана своей функцией распределения (CDF, Cumulative distribution function): $F(x) = \mathbb{P}(X < x)$.

Глава 1. Математика 7

В большинстве прикладных случаев CDF оказывается дифференцируемой функцией. Производная от CDF называется плотностью распределения случайной величины (PDF, Probability density function): f(x) = F'(x). Таким образом, по определению

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f(x)dx.$$

1.3 Выборка

Выборкой объема n из генеральной совокупности X называется последовательность независимых и распределенных как X случайных величин:

$$X_1, X_2, ..., X_n, X_k \sim X$$

На практике под выборкой понимают конкретные реализации величин X_k , то есть последовательность чисел $x_1, x_2, ..., x_n$.

1.4 Закон больших чисел

Закон больших чисел утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее среднее с ростом n стабилизируется к среднему значению X:

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx EX, \quad n \to \infty.$$

1.5 Центральная предельная теорема

Центральная предельная теорема (CLT) является в некотором смысле уточнением закона больших чисел. В упрощенном варианте она утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее распределение ее среднего при больших n очень близко к нормальному,

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx N(\mu, \sigma^2/n), \quad \mu = EX, \sigma^2 = DX, \quad n \to \infty.$$

Заметим, что если совокупность распределена нормально, $X \sim N(\mu, \sigma^2)$, то предыдущая формула обращается в точное равенство при любых n.

1.6 Статистики

Пусть $X_1, X_2, ..., X_n$ - выборка объема n. Статистикой называется произвольная RV, являющаяся функцией выборки:

$$T = T(X_1, X_2, ..., X_n).$$

Часто статистикой называют конкретное значение $T(x_1, x_2, ..., x_n)$, полученное на данной реализации $x_1, x_2, ..., x_n$ выборки.

Примеры:

- $\bar{X} = (X_1 + X_2 + ... + X_n)/n$ выборочное среднее.
- ullet $X_{(n)} = \max(X_1, X_2, ..., X_n)$ максимальное значение в выборке.
- медиана, перцентили.

1.7 Bootstrap

- 1.8 Классический и байесовский подход
- 1.9 Метод максимального правдоподобия
- 1.10 Доверительный интервал
- 1.11 Байесовский доверительный интервал
- 1.12 Основные дискретные распределения

https://medium.com/@srowen/common-probability-distributions-347e6b945ce4

1.13 Основные непрерывные распределения

1.14 Матричные разложения

...может разделить главу на части...

Глава 1. Математика

- 1.15 К-Л дивергенция
- 1.16 Энтропия
- 1.17 Квантили
- 1.18 Точечные оценки
- 1.19 Интервальные оценки
- 1.20 Проверка гипотез
- 1.21 Множественная проверка гипотез
- 1.22 Параметрические и непараметрические критерии, бутстреп
- 1.23 Ошибки I и II рода
- 1.24 Достигаемый уровень значимости
- 1.25 Мощность статистического критерия
- 1.26 Основные задачи статистики

...из лекций новосиба курсера...

- 1.27 Проверка основных гипотез
- 1.28 Корреляция Пирсона
- 1.29 Корреляция Спирмена
- 1.30 Корреляция Метьюса
- 1.31 Корреляция Крамера
- 1.32 Z-тест Фишера
- 1.33 Т-тест Стьюдента
- 1.34 Критерий Пирсона χ^2
- 1.35 Точный тест Фишера

Анализ данных

Анализ и предобработка данных - первая задача, успешное решение которой зачастую определяет успех в решении любых задач ML. В этой главе описываются основные подходы....

- 2.1 Типы данных
- 2.2 Предобработка данных
- 2.3 Понижение размерности

Общие вопросы

В этой главе приводятся основные понятия ML и DS.

3.1 Машинное обучение

Машинное обучение (ML) - область искусственного интеллекта, изучающая самообучающиеся модели, то есть решающие поставленную задачу не по заранее запрограммированному алгоритму, а предварительно настраивая свое поведение согласно имеющимся данным.

Обычно методы ML содержат свободные параметры, подбор которых наилучшим (в смысле имеющихся данных) образом и составляет процесс обучения алгоритма.

- 3.2 Основные классы задач
- 3.3 Обнаружение аномалий
- 3.4 Контроль качества

...оценка обобщающей способности...

- 3.5 Недообучение
- 3.6 Переобучение
- 3.7 Регуляризация
- 3.8 Отбор признаков
- 3.9 Параметры алгоритма
- 3.10 Подбора метапараметров
- 3.11 Основные типы алгоритмов
- 3.12 Многоклассовая классификация
- 3.13 Дисбаланс классов

...чем плохо... как бороться (over/undersampling/SMOTE)...

3.14 Ансамбли алгоритмов

3.15 Метрики классификации

Пусть некоторый алгоритм a решает задачу бинарной классификации с классами 0 (негативный) и 1 (позитивный). Тестирование алгоритма a проводится на n объектах, ответы y на которых известны. Пусть TP и TN - числа правильно классифицированных позитивных и негативных объектов соответственно. Аналогично, FP и FN - числа неправильно классифицированных позитивных и негативных объектов соответственно.

О качестве алгоритма a можно судить по матрице ошибок:

$$y=1$$
 $y=0$
 $a=1$ TP FP
 $a=0$ FN TN

Для оценки качества работы алгоритмов бинарной классификации обычно используются описанные далее основные метрики.

3.15.1 Accuracy

Точность (accuracy) - отношение числа правильных ответов к общему количеству,

$$accuracy = \frac{TP + TN}{n}.$$

Проста в использовании и интерпретации, но плоха для несбалансированных выборок, и потому довольно редко используемая напрямую.

3.15.2 Precision

Точность (precision) - отношение числа правильно классифицированных позитивных объектов к общему количеству позитивно классифицированных,

$$precision = \frac{TP}{TP + FP}.$$

Чем ближе значение к 1, тем меньше ложных срабатываний (FP).

3.15.3 Полнота (recall)

Полнота (recall) - вычисляется как отношение

$$recall = \frac{TP}{TP + FN}.$$

Чем ближе значение к 1, тем меньше ложных пропусков (FN).

3.15.4 F1-мера

F1-мера - среднее гармоническое точности и полноты,

$$F = \frac{2PR}{P + R}.$$

F1-мера усредняет точность и полноту, является неплохом компромиссом между обеими метриками.

3.15.5 Г-мера

Обобщенная F-мера вычисляется как

$$F = (1 + \beta^2) \frac{PR}{\beta^2 P + R}.$$

F-мера усредняет точность и полноту, является неплохом компромиссом между обеими метриками, имеет настраиваемый параметр β .

3.15.6 ROC кривая

ROC кривая - характеристика качества алгоритмов бинарной классификации, дающих вероятностноподобный вывод, $a \in [0, 1]$. ROC кривая строится в координатах

$$FPR = \frac{FP}{FP + TN}, \quad TPR = \frac{TP}{TP + FN}.$$

Каждая точка кривой - значение (FPR, TPR), полученное для некоторого порога дискретизации алгоритма (см. 3.15.8).

Более простой способ построения ROC кривой состоит в следующем:

- 1. отрезки [0,1] по осям TPR и FPR разбиваются на #[y=0] и #[y=1] частей соответственно.
- 2. пары реальных ответов y_i упорядочиваются по убыванию соответствующих ответов алгоритма a_i .
- 3. проходя по получившемуся после сортировки массиву значений y_i , строим ROC кривую, начиная от начала координат и делая шаг вправо, если $y_i = 0$ и вверх, если $y_i = 1$. Важный момент: если рядом по порядку оказались несколько a_i с одинаковыми значениями, то соответствующий им участок ROC кривой будет не ступенчатым, а прямолинейным (см. пример ниже).

ROC кривая идеального алгорима проходит через точки (0,0), (0,1), (1,1); для случайного гадания - проходит вблизи прямой FPR = TPR. Наилучшим значением порога дискретизации алгоритма может считаться порог, соответствующий точке на ROC кривой, ближайшей к (0,1).

Пример: для алгоритма, дающего вывод как в таблице ниже, график ROC кривой выглядит следующим образом

	1						
a	1.0	0.9	0.9	0.9	0.8	0.3	0.2

../out/pdf-images/roc-auc-eps-converted-to.pd

3.15.7 ROC-AUC

ROC-AUC - площадь под ROC кривой. Применяется к алгоритмам бинарной классификации, дающим вероятностноподобный вывод, $a \in [0,1]$, позволяя оценить алгоритм "в целом без привязки к конкретному значению порога дискретизации алгоритма.

Принимает значения от 0 до 1. Значения близкие к 0.5 интерпретируются как самые худшие (случайное гадание), близкие к 1 - как хорошие. ROC-AUC более устойчива к дисбалансу классов, чем Ассигасу, но не так хорошо, как PR-AUC. ROC-AUC также не учитывает уверенность алгоритма в своих предсказаниях (насколько близко распределены предсказания к 0 и 1).

ROC-AUC для примера 3.15.6 равна 2/3.

3.15.8 PR-AUC

PR-AUC - площадь под PR кривой. Принимает значения от 0 до 1. Значения близкие к 1 интерпретируются как хорошие, близкие к P/(P+N) - как самые худшие (случайные гадания). PR-AUC более устойчива к дисбалансу классов, чем ROC-AUC. PR-AUC также не учитывает уверенность алгоритма в своих предсказаниях (насколько близко распределены предсказания к 0 и 1).

Как и ROC-AUC, PR-AUC применяется к алгоритмам бинарной классификации, дающим вероятностноподобный вывод, $a \in [0,1]$ и позволяет оценить алгоритм "в целом без привязки к конкретному значению порога дискретизации.

Сама PR кривая строится в координатах recall = TP/(TP + FN), precision = TP/(TP + FP) следующим образом:

- 1. вычисляются пороги h всевозможные значения ответов алгоритма a.
- 2. ответы a_i дискретизируются для каждого значения порога и вычисляются значения recall и precidion.
- 3. по полученным точкам строится график PR кривой.

Аналогичным образом (в своих координатах) может быть построена и ROC кривая.

- 3.16 Метрики многоклассовой классификации
- 3.17 ROC-AUC метрика
- 3.18 Индекс Джини
- 3.19 Метрики регрессии
- 3.20 Метрики кластеризации
- 3.21 Разложение ошибки алгоритма
- 3.22 Кривые валидации
- 3.23 Кривые обучения
- 3.24 Метрические методы
- 3.25 Метод ближайших соседей
- 3.26 Линейные методы
- 3.27 Линейная регрессия
- 3.28 Логистическая регрессия

...отличие от линейной...

- 3.29 SVM
- 3.30 Ядра и спрямляющие пространства
- 3.31 Решаюшие деревья
- 3.32 Случайный лес

...отличие от беггинга над решающими деревьями...

- 3.33 Градиентный бустинг
- 3.34 Байесовские методы

Нейросети

В данной главе приводится обзор основных понятий и методов, связанных с ней-росетями.