

WH-GN100 说明书

文件版本: V1.0.4

WH-GN100 功能特点

- 支持 BDS/GPS/GLONASS/GALILEO/QZSS/SBAS 多系统联合定位和单系统独立定位,
- D-GNSS 差分定位, A-GNSS 辅助定位, 星历预测, DR 组合导航应用, 最快数据更新率 10Hz
- 32 位应用处理器, 最高频率 133MHz, 支持频率动态调整
- 支持 PPS 输出(出厂固件不支持,可刷固件支持)
- 内置复位控制器
- 支持 UART
- 超低功耗: 捕获 30mA, 追踪 20mA
- 输出格式: 支持 NMEA0183 V4.1 及以前版本,最大固定更新频率可达 10Hz
- 高灵敏度: 捕获 冷启动-149dBm, 热启动 -162dBm, 追踪 -166dBm

Wireless High-reliabilit

目录

V	/H-GN1	100 说明书	
目表	录		
1.	快速)	入门	2
	1.1	产品简介	2
	1.2	快速入门测试	3
	1.3	基本参数	6
	1.4	模块管脚定义	7
	1.5	硬件设计注意事项	9
	1.6	应用场景	9
2.	工作權		
	2.1	功耗模式	10
	2.2	其他 GCK 命令	11
3.	NME	A0183 协议	15
	3.1	\$GPGGA (全球定位数据)	16
	3.2	\$GPGSA (卫星 PRN 数据)	17
	3.3	\$GPGSV(卫星状态信息)	18
	3.4	\$GPRMC(运输定位数据)	19
	3.5	\$GPVTG(地面速度信息)	19
	3.6	\$GPGLL(大地坐标信息)	20
4.	AGPS	S 使用说明	20
	4.1	GPD 介绍	20
	4.2	如何获取 GPD 文件	20
	4.3	如何使用 GPD 文件	21
	4.4	如何删除芯片内 GPD 数据	21
	4.5	使用 GPD 后的效果	22
	4.6	的通信传输	22
5.	联系力	方式	24
6.	免责声	^当 明	25
7.	更新足	万史	26

1. 快速入门

1.1 产品简介

WH_GN100 是一款高性能、高集成度、低功耗、低成本的多模卫星定位导航芯片,体积小、功耗低,可用于车载导航、智能穿戴、无人机等 GNSS 定位的应用中。而且提供了和其他模块厂商兼容的软、硬件接口,大幅减少了用户的开发周期支持 BDS/GPS/GLONASS/GALILEO /QZSS/SBAS。

该芯片采用了射频基带一体化设计,集成了 DC/DC、LDO、射频前端、低功耗应用处理器、RAM、Flash 存储、可通过纽扣电池或法拉电容给 RTC、备份 RAM 供电,以减少首次定位时间。

GN100 资料下载连接: http://www.mokuai.cn/products/76.html

1.2 快速入门测试

本章节是基于 WH-GN100EVK 板进行测试的,如果没有测试板可参考硬件规格书接线测试。

- (1) 接好 GPS 天线后,同时通过 USB 线连接电脑,板子的天线对侧有 USB 口,再按开关按钮开机。
- (2) 注意 RF POWER 这两个插针需要用跳冒短接。
- (3) 可以打开串口助手查看串口上报的数据,也可以使用我们的 naviTrack 来查看。

WH-GN100 说明书

波特率设置为9600关闭串口后会有数据一直上报,常见输出格式如下:

GGA: 时间、位置、卫星数量

GSA: GPS 接收机操作模式,定位使用的卫星,DOP 值,定位状态

GSV: 可见 GPS 卫星信息、仰角、方位角、信噪比

RMC: 时间、日期、位置、速度

VTG: 地面速度信息

详细含义可参照第三节 NMEA0183 协议

为了使用便捷我们可以使用专属工具 TaviTrack 来进行调试,详细使用方法见《naviTrack 用户手册》。

- (1) 以管理员权限运行 naviTrack.,运行如上页面。
- (2) 选择对应 com 口,点击 connect,连接成功后可以在 NMEA 窗口看到上报数据。 详细含义可参照第三节 NMEA0183 协议中的描述。
- (3) 定位成功后可以在串口上报的\$GPRMC 字段中得到经纬度信息。

1.3 基本参数

类别	指标项	典型值	单位
	冷启动	27.5	s
定位时间	热启动	<1	s
[测试条件 1]	重新捕获	<1	s
	A-GNSS	<10	s
灵敏度	冷启动	-148	dBm
[测试条件 2]	热启动	-162	dBm
	重新捕获	-164	dBm
	跟踪	-166	dBm
精度	水平定位精度	2.5	m
[测试条件 3]	[测试条件 3] 高度定位精度		m
	速度精度	0.1	m/s
	授时精度	30	ns
功耗	捕获电流	30	mA
[测试条件 4]	跟 踪 电 流	20	mA
工作温度		-35℃- 85℃	
储存温度		-55℃- 100℃	
湿度		5% - 95%	

注:以上结果为 GPS/北斗双模工作模式

[测试条件 1]:接收卫星个数大于 6,所有卫星信号强度为-130dBm,测试 10 次取平均值,定位误差于 10 米。 [测试条件 2]:外接 LNA 噪声系数 0.8,接收卫星个数大于 6,五分钟之内锁定或者不失锁条件下的接收信号强度值。

[测试条件 3]: 开阔没有遮挡环境,连续 24 小时开机测试,50%CEP。

[测试条件 4]:接收卫星个数大于 6,所有卫星信号强度为-130dBm。

1.4 模块管脚定义

Top view

D: 叶n/è 口.	Pin 脚定义	 Pin 脚描述
Pin 脚编号		1 111 New 1 III V.C.
1	NC	预留
2	NC	预留
3	1PPS	定位指示灯,定位成功会输出方波
4	NC	预留
5	FORCE_ON	休眠唤醒引脚,模块进入超低功耗时拉高
		该引脚退出超低功耗模式(此引脚电平电
		压为 1.1V,若控制脚电平不是 1.1V,需要
		分压处理)
6	GPIO15	GPIO15
7	GPIO14	GPIO14
8	RSTN	复位脚,默认拉高,拉低复位。
9	VCCRF	RF 电源输出,给有源天线供电使用(此 RF
		输出电源电压等于 VCC)
10	GND	地
11	RF_IN	RF 输入
12	GND	地

Wireless High-reliabilit

13	GND	地
14	NC	预留
15	NC	预留
16	NC	预留
17	NC	预留
18	TX1	UART1 输出(预留, 2.8V 电平)
19	RX1	UART1 输入(预留, 2.8V 电平)
20	TXD	UART 输出(AT 口,2.8V 电平)
21	RXD	UART 输入(AT 口,2.8V 电平)
22	VBKP	RTC 电源输入,RTC 电源必须供电,模块
		才能正常工作(2V-4.2V)
23	VCC	模块电源(2.8V-4.2V)
24	GND	地

模块尺寸图:

1.5 硬件设计注意事项

- 1. 模块所有 GND 需接地, 电压纹波峰值不要超过 50mV。
- 2. 连接 RF IN 信号至天线,线路保持 50 欧姆阻抗匹配,尽量短,避免锐角。
- 3. 串口 TXD,RXD 是 TTL 电平, 若和 PC 连接, 需要通过 RS232 电平转换。用户可用此串口接收定位信息数据和软件升级。
- 4. 本模块是温度敏感设备,温度剧烈变化会导致其性能降低,使用中尽量远离高温气流与大功率发热器件。

1.6 应用场景

- 车载定位与导航设备
- 可穿戴设备,如 GPS 跟踪器等
- 便携式设备,如手机,PAD,PND等
- 对定位或导航有需求的行业设备

2. 工作模式

2.1 功耗模式

WH_GN100 的工作模式根据功耗的不同共有三种,一种为正常运行模式,一种为低功耗模式,还有一种是超低功耗模式,而这些模式是靠 GCK 命令来设置的。

- (1) 正常运行模式: 模块默认的模式,芯片正常工作 \$PGKC105,0
- (2) 低功耗运行模式: 命令在正常运行时发送, 进入后芯片可以继续工作, 功耗较正常模式低。 \$PGKC105, 8
- (3) 超低功耗运行命令:命令在正常运行时发送,进入超低功耗命令后芯片会完全睡眠.
 - 1) 周期低功耗模式:

\$PGKC105, 1, 5000, 5000

红色字体为工作时间,蓝色字体为睡眠时间,单位是 ms。

2) 直接低功耗模式

\$PGKC105, 4

在 naviTrack 上运行命令格式如下图所示

naviTrack - navi CMD

2.2 其他 GCK 命令

GN100的命令均需在命令的末尾加上整个命令的异或校验方能执行:

\$PGKC Command Arguments * CheckSum CR LF

Command: 表示发送的命令号,具体的值参考下文。

Arguments: 表示发送命令需要的参数,参数可以是多个,不同的命令对应不同的数据,具体值参考下文。

*: 数据结束的标志

CheckSum: 异或校验的结果, (从\$到*之间的数据的异或, 不包括\$和*)

CR, LF: 包结束标志

样例数据: \$PGKC030, 3, 1*2E <CR><LF>

如果是调试的话,建议使用 GN100 的专属工具 NaviTrace 来调试,此工具自动加校验。 NaviTrack - navi CMD

navi CMD

Send

PGKC105,1,5000,5000

Receive

[Receive] 001

DisConnect

DisConnect

Simplify

DisConnect

Cold Start

2.2.1 \$PGKC001 回应对方发送的消息处理结果

参数:

Argl: 该消息所应答消息的 command。

Arg2: "1", 不支持接收到的消息

"2",有效消息,但执行不正确

"3",有效消息,并且执行正确

示例:

\$PGKC001, 101, 3*2D<CR><LF>

2.2.2 \$PGKC030 系统重启命令

参数:

Arg1: "1", 热启动

"2",温启动

"3", 冷启动

Arg2: "1", 软件重启

示例:

\$PGKC030, 1, 1*2C<CR><LF>

2.2.3 \$PGKC101 配置输出 NMEA 消息的间隔 (ms 单位)

参数:

Arg1: 1000-10000

示例:

\$PGKC101, 1000*02<CR><LF>

2.2.4 \$PGKC105 进入低功耗模式

参数:

Arg1: "0",正常运行模式

"4",直接低功耗模式

"8",低功耗模式,可以通过串口唤醒

"9", 超低功耗跟踪模式

示例:

\$PGKC105, 8*3F<CR><LF>

2.2.5 \$PGKC115 设置搜星模式

参数:

Arg1: "1" , GPS on

"0" , GPS off

Arg2: "1" , Glonass on

"0" , Glonass off

Arg3: "1" , Beidou on

"0" , Beidou off

Arg4: "1" , Galieo on

"0" , Galieo off

示例:

\$PGKC115, 1, 0, 0, 0*2B<CR><LF>

2.2.6 \$PGKC147 设置 NMEA 输出波特率

参数:

Arg1: 9600, 19200, 38400, 57600, 115200 ······ 921600.

示例:

\$PGKC147, 115200*06<CR><LF>

2.2.7 \$PGKC149 设置 NMEA 串口参数

参数:

Arg1: "1" ,Binary 数据

"0", NMEA 数据

Arg2: 设置波特率 9600, 19200, 38400, 57600, 115200 921600.

示例: \$PGKC149, 0, 38400*2C<CR><LF>

2.2.8 \$PGKC278 设置 RTC 时间

参数:

Arg1: 年

Arg2: 月,1~12

Arg3: 日, 1~31

Arg4: 时, 0~23

Arg5: 分, 0~59

Arg6: 秒,0~59

示例: \$PGKC278, 2017, 3, 15, 12, 0, 0*12<CR><LF>

2.2.9 \$PGKC279 查询 RTC 时间

参数:无

示例: \$PGKC279*23<CR><LF>

2.2.10 \$PGKC284 设置速度门限

当速度低于门限速度时,输出速度为0

参数:

Arg1: 门限值

示例: \$PGKC284, 0.5*26<CR><LF>

2.2.11 \$PGKC462 查询当前软件的版本号

参数:无

示例: \$PGKC462*2F<CR><LF>

2.2.12 \$PGKC463 应答消息, Command 462 返回的版本信息

参数:无

2.2.13 \$PGKC635 设置大概的位置信息和时间信息,以加快定位速度

参数:

Arg1: 纬度, 例如: 28.166450

Arg2: 经度, 例如: 120.389700

Arg3: 高度, 例如: 0

Arg4: 年

Arg5: 月

Arg6: 日

Arg7: 时,时间是 UTC 时间

Arg8: 分

Arg9: 秒

示例: \$PGKC639, 28. 166450, 120. 389700, 0, 2017, 3, 15, 12, 0, 0*33<CR><LF>

2.2.14 \$PGKC786 设置定位模式

参数:

Arg1:

"0",正常模式

"1",健身模式,适用于步行和慢跑

"2", 航空模式, 适用于高速运动模式

"3",气球模式,适用于高程模式

示例: \$PGKC786, 1*3B<CR><LF>

3. NMEA0183 协议

WH_GN100 支持 NMEA0183 V4.1 协议,关于 NMEA0183 V4.1 的详细信息可以参照 NMEA 0183 V4.1 官方文档。

常见输出格式如下:

GGA: 时间、位置、卫星数量

GSA: GPS 接收机操作模式,定位使用的卫星,DOP 值,定位状态

GSV: 可见 GPS 卫星信息、仰角、方位角、信噪比

RMC: 时间、日期、位置、速度

VTG: 地面速度信息

语句标识符:

标识符	含义		
BD	BDS,北斗二代卫星系统		
GP	GPS		
GL	GLONASS		
GA	Galileo		
GN	GNSS,全球导航卫星系统		

NMEA 协议是为了在不同的 GPS(全球定位系统)导航设备中建立统一的 BTCM(海事无线电技术委员会)标准,由美国国家海洋电子协会(NMEA-The National Marine Electronics Associa-tion)制定的一套通讯协议。GPS 接收机根据 NMEA-0183 协议的标准规范,将位置、速度等信息通过串口传送到 PC 机、PDA 等设备。

注:前面的标示符号只是代表卫星系统的不同,以下是以 GPS 系统为例的,其他卫星系统的字段含义是相同的,比如 GPGGA 和 GNGGA 字段的含义是一样的,只是卫星系统不一样而已。

3.1 \$GPGGA (全球定位数据)

例: \$GPGGA, 092204. 999, 4250. 5589, S, 14718. 5084, E, 1, 04, 24. 4, 19. 7, M, , , , 0000*1F

字段 0: \$GPGGA, 语句 ID, 表明该语句为 Global Positioning System Fix Data (GGA) GPS 定位信息

字段 1: UTC 时间, hhmmss.sss, 时分秒格式

字段 2: 纬度 ddmm. mmmm, 度分格式(前导位数不足则补 0)

字段 3: 纬度 N(北纬)或 S(南纬)

字段 4: 经度 dddmm. mmmm, 度分格式(前导位数不足则补 0)

字段 5: 经度 E (东经) 或 W (西经)

字段 6: GPS 状态, 0=未定位, 1=非差分定位, 2=差分定位, 3=无效 PPS, 6=正在估算

字段 7: 正在使用的卫星数量(00-12)(前导位数不足则补0)

字段 8: HDOP 水平精度因子 (0.5 - 99.9)

字段 9: 海拔高度 (-9999.9 - 99999.9)

字段 10: 地球椭球面相对大地水准面的高度

字段 11: 差分时间(从最近一次接收到差分信号开始的秒数,如果不是差分定位将为空)

字段 12: 差分站 ID 号 0000 - 1023 (前导位数不足则补 0,如果不是差分定位将为空)

字段 13: 校验值

3.2 \$GPGSA (卫星 PRN 数据)

例: \$GPGSA, A, 3, 01, 20, 19, 13, , , , , , , , 40. 4, 24. 4, 32. 2*0A

字段 0: \$GPGSA, 语句 ID, 表明该语句为 GPS DOP and Active Satellites (GSA) 当前卫星信息

字段 1: 定位模式, A=自动手动 2D/3D, M=手动 2D/3D

字段 2: 定位类型, 1=未定位, 2=2D 定位, 3=3D 定位

字段 3: PRN 码(伪随机噪声码),第1信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补0)

字段 4: PRN 码(伪随机噪声码),第 2 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 5: PRN 码(伪随机噪声码),第 3 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 6: PRN 码(伪随机噪声码),第 4 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 7: PRN 码(伪随机噪声码),第 5 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 8: PRN 码(伪随机噪声码),第 6 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 9: PRN 码 (伪随机噪声码), 第 7 信道正在使用的卫星 PRN 码编号 (00) (前导位数不足则补 0)

字段 10: PRN 码(伪随机噪声码),第 8 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 11: PRN 码(伪随机噪声码),第 9 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 12: PRN 码(伪随机噪声码),第 10 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 13: PRN 码(伪随机噪声码), 第 11 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 14: PRN 码(伪随机噪声码), 第 12 信道正在使用的卫星 PRN 码编号(00)(前导位数不足则补 0)

字段 15: PDOP 综合位置精度因子 (0.5 - 99.9)

字段 16: HDOP 水平精度因子 (0.5 - 99.9)

字段 17: VDOP 垂直精度因子 (0.5 - 99.9)

字段 18: 校验值

3.3 \$GPGSV (卫星状态信息)

例: \$GPGSV, 3, 1, 10, 20, 78, 331, 45, 01, 59, 235, 47, 22, 41, 069, 13, 32, 252, 45*70

字段 0: \$GPGSV, 语句 ID, 表明该语句为 GPS Satellites in View (GSV) 可见卫星信息

字段 1: 本次 GSV 语句的总数目 (1 - 3)

字段 2: 本条 GSV 语句是本次 GSV 语句的第几条 (1 - 3)

字段 3: 当前可见卫星总数 (00 - 12) (前导位数不足则补 0)

字段 4: PRN 码 (伪随机噪声码) (01 - 32) (前导位数不足则补 0)

字段 5: 卫星仰角(00 - 90)度(前导位数不足则补 0)

字段 6: 卫星方位角 (00 - 359) 度 (前导位数不足则补 0)

字段 7: 信噪比 (00-99) dbHz

字段 8: PRN 码(伪随机噪声码)(01-32)(前导位数不足则补0)

字段 9: 卫星仰角 (00 - 90) 度 (前导位数不足则补 0)

字段 10: 卫星方位角 (00 - 359) 度 (前导位数不足则补 0)

字段 11: 信噪比(00-99) dbHz

字段 12: PRN 码(伪随机噪声码)(01 - 32)(前导位数不足则补 0)

字段 13: 卫星仰角 (00 - 90) 度 (前导位数不足则补 0)

字段 14: 卫星方位角 (00 - 359) 度 (前导位数不足则补 0)

字段 15: 信噪比(00-99) dbHz

字段 16: 校验值

3.4 \$GPRMC (运输定位数据)

例: \$GPRMC, 024813. 640, A, 3158. 4608, N, 11848. 3737, E, 10. 05, 324. 27, 150706, , , A*50

字段 0: \$GPRMC, 语句 ID, 表明该语句为 Recommended Minimum Specific GPS/TRANSIT Data (RMC) 推荐最小定位信息

字段 1: UTC 时间, hhmmss. sss 格式

字段 2: 状态, A=定位, V=未定位

字段 3: 纬度 ddmm. mmmm, 度分格式(前导位数不足则补 0)

字段 4: 纬度 N(北纬)或 S(南纬)

字段 5: 经度 dddmm. mmmm, 度分格式(前导位数不足则补 0)

字段 6: 经度 E (东经) 或 W (西经)

字段 7: 速度, 节, Knots

字段 8: 方位角, 度

字段 9: UTC 日期, DDMMYY 格式

字段 10: 磁偏角, (000 - 180) 度 (前导位数不足则补 0)

字段 11: 磁偏角方向, E=东 W=西

字段 16: 校验值

3.5 \$GPVTG (地面速度信息)

例: \$GPVTG, 89. 68, T, , M, O. 00, N, O. 0, K*5F

字段 O: \$GPVTG, 语句 ID, 表明该语句为 Track Made Good and Ground Speed (VTG) 地面速度信息

字段 1: 运动角度,000 - 359, (前导位数不足则补 0)

字段 2: T=真北参照系

字段 3: 运动角度,000 - 359, (前导位数不足则补 0)

字段 4: M=磁北参照系

字段 5: 水平运动速度(0.00)(前导位数不足则补0)

字段 6: N=节, Knots

字段 7: 水平运动速度(0.00)(前导位数不足则补0)

字段 8: K=公里/时, km/h

字段 9: 校验值

3.6 \$GPGLL (大地坐标信息)

例: \$GPGLL, 4250. 5589, S, 14718. 5084, E, 092204. 999, A*2D

字段 0: \$GPGLL, 语句 ID, 表明该语句为 Geographic Position (GLL) 地理定位信息

字段 1: 纬度 ddmm. mmmm, 度分格式(前导位数不足则补0)

字段 2: 纬度 N(北纬)或 S(南纬)

字段 3: 经度 dddmm. mmmm, 度分格式(前导位数不足则补 0)

字段 4: 经度 E (东经) 或 W (西经)

字段 5: UTC 时间, hhmmss. sss 格式

4. AGPS 使用说明

4.1 GPD 介绍

GPD 是稳恒所定义的为实现 AGPS 辅助定位的一种实现方式。主要采用从 IGS 网站获取当前的导航数据 Rinex 文件,然后经过转换成当前星历,通过串口传送到芯片,由此实现加速 GPS 芯片的定位。

4.2 如何获取 GPD 文件

通过访问 国科的 GPD 服务器网站,下载对应当前时间的 GPD 文件

(http://www.goke-agps.com:7777/brdcGPD.dat)。由于 IGS 网站公布的实时星历是 2 小时更新

一次, 所以相对的 GPD 文件也会每 2 小时更新。

4.3 如何使用 GPD 文件

通过 稳恒 提供的 naviTrack 工具由串口上传到芯片。

- 1. 芯片上电后,点击上方 GPD 图标旁的"open"按钮,选择网上下载的 GPD 文件。工具下方会显示所选择的文件信息。
- 2. 成功选择文件后,点击"send"按钮,工具开始上传。
- 3. 等待片刻后, 出现完成提示框, 说明上传成功, 否则失败, 重新上传。

4.4 如何删除芯片内 GPD 数据

由于 GPD 数据只有 6 小时有效期,如果超过时限,那么存在芯片内的 GPD 数据将不起效果。用户可以通过发送串口命令,来清除芯片内的 GPD 数据。当然在每次上传新的 GPD 数据时,也会先清除原来旧的 GPD 数据。删除 GPD 数据命令:在 naviTrack 导航工具的命令输入框中输入"PGKC047"。

4.5 使用 GPD 后的效果

由于已经获取了当前可见卫星的星历数据,可以有效减少定位时间。使用 GPD 后,大概可以提高 10~15 秒的冷启动定位时间。特别是在信号较弱的情况下,可能提高更多的定位速度。

4.6 的通信传输

主要通过串口通信来分块传送 GPD 数据到芯片。主要流程如下:

a) 切换 NMEA 接收为 BINARY 接收模式(关于命令格式详见 GKCCommand User Manual)

发送: 消息类型+切换模式+波特率+ CheckSum

数据: \$PGKC149,1,115200*2C

(GPD 传输的消息类型为 149)

接收:包头(2B)+包长度(2B)+ACK 类型(2B)+消息类型(2B)+有

效标志(1B) + CheckSum(1B) +包尾(2B)

数据: 0xaa,0xf0,0x0c,0x00,0x01,0x00,0x95,0x00,0x03,0Xc1,0x0d,0x0a

(checksum 为前面字节的逐个异或)

b) 发送 GPD 第一数据块,等待 ACK 应答

发送:包头(2B)+包长度(2B)+传输类型(2B)+GPD包序号(2B)

+数据 payload (512B) + CheckSum (1B) +包尾 (2B)

数据: 0xaa,0xf0,0x0b,0x02,0x066,0x02,0x00,0x00,.....,0x21,0x0d,0a

接收:包头(2B)+包长度(2B)+ACK 类型(2B)+GPD 包序号(2B)

+有效标志(1B) + CheckSum(1B) +包尾(2B)

数据: 0xaa,0xf0,0x0c,0x00,0x03,0x00,0x00,0x00,0x01,0x54,0x0d,0x0a

c) 依次发送剩余数据块,并等待 ACK 应答

发送:包头(2B)+包长度(2B)+传输类型(2B)+GPD包序号(2B)

+数据 payload (512B) + CheckSum (1B) +包尾 (2B)

数据: 0xaa,0xf0,0x0b,0x02,0x066,0x02,0x01,0x00,......,0x3c,0x0d,0a

(GPD 文件被切分成 512 字节的数据块传输,最后一块不足 512 字节用 0

填充)

接收:包头(2B)+包长度(2B)+ACK 类型(2B)+GPD 包序号(2B)

+有效标志(1B) + CheckSum(1B) +包尾(2B)

数据: 0xaa,0xf0,0x0c,0x00,0x03,0x00,0x01,0x00,0x01,0x55,0x0d,0x0a

d) 发送 GPD 传送结束语句,等待应答

发送: 包头(2B)+包长度(2B)+传输类型(2B)+GPD 结束符(2B)

+CheckSum (1B) +包尾 (2B)

数据: 0xaa,0xf0,0x0b,0x00,0x066,0x02,0xff,0xff,0x35,0x0d,0a

5. 联系方式

公 司: 上海稳恒电子科技有限公司

地 址: 上海市闵行区秀文路 898 号西子国际五号楼 611 室

网 址: www.mokuai.cn

邮 箱: sales@mokuai.cn

电 话: 021-52960996 或者 021-52960879

使命: 做芯片到产品的桥梁

愿景: 全球有影响力的模块公司

价值观: 信任 专注 创新

产品观:稳定的基础上追求高性价比

6. 免责声明

本文档提供有关 WH-GN100 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

7. 更新历史

固件版本	更新内容	更新时间
V1.0.0	初版	2018-01-28
V1.0.1	更新部分信息	2018-11-20
V1.0.2	增加部分 GCK 命令	2019-10-31
V1.0.3	优化部分说明	2021-01-22
V1.0.4	优化部分说明	2021-02-23