Chapter 4: The Structure of $U(\mathbb{Z}/n\mathbb{Z})$

Exercise 4.11.

Theorem 1. $U(\mathbb{Z}/p\mathbb{Z})$ is a cyclic group.

Proof: Let $p-1=q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=\prod_q q^e$ be the prime decomposition of p-1. Consider the congruences

- $(1) \ x^{q^{e-1}} \equiv 1(p)$
- $(2) \ x^{q^e} \equiv 1(p)$

Therefore,

- (1) Every solution to $x^{q^{e-1}} \equiv 1(p)$ is a solution of $x^{q^e} \equiv 1(p)$.
- (2) $x^{q^e} \equiv 1(p)$ has more solutions than $x^{q^{e-1}} \equiv 1(p)$. In fact, $x^{q^{e-1}} \equiv 1(p)$ has q^{e-1} solutions and $x^{q^e} \equiv 1(p)$ has q^e solutions by Proposition 4.1.2.

Therefore, there exists $g_i \in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_i^{e_i}$ for all i=1,...,t. Pick $g=g_1g_2\cdots g_t\in \mathbb{Z}/p\mathbb{Z}$ generating a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order $q_1^{e_1}q_2^{e_2}\cdots q_t^{e^t}=p-1$. That is, $\langle g \rangle = U(\mathbb{Z}/p\mathbb{Z})$. \square