Sensors of temperature (contact-less)

AE3B38SME - Sensors and Measurement

Just a little bit of Physics

Planck law

spectral density of radiation intensity [W/m²]

$$M_{0\lambda} = \frac{c_1}{\lambda^5 \left(e^{\frac{c_2}{\lambda T}} - 1\right)}$$
 wavelength

$$c_1 = 3.74 \, 10^{-16} \, Wm^2$$

$$c_2 = 1.44 \, 10^{-2} \, \text{m K}$$

Stefan-Boltzman law: integrating the spectral density of radiation we obtain the totale radiation emitted

$$M_0 = \int_0^\infty M_{0\lambda} d\lambda = \sigma T^4$$

 σ =5,67.1010⁻⁸Wm²K⁻⁴

 $10^3 \lambda [\mu m]$

The maximum shifts for different temperature

Wien shift law

$$\lambda_m = \frac{b}{T}$$

Note: curves do never intersect!

Two different approaches: I- total radiation

500K

10¹

300K

10²

10⁴

10²

10°

10⁻²

10-4

10⁻¹

10°

OS530L \$ 500,- (as of 2013)

accuracy: ±1% of reading,

range: -18 to 538°C, optical sys.

laser point target finding (focusing)

Two different approaches: 2- narrow band (ideally, single wavelength)

Radiation vs. angle for black body and various real materials:

ideally measurement should be done perpendicular

Transmissivity of the medium between target and measurement device

Transmissivity of the materials used in the optics used to concentrate radiation

Emissivity

$$M_0 = \sigma T^4 = \sigma \epsilon \tau_p T_S^4 \implies T_S = T_o \sqrt[4]{\frac{1}{\epsilon \tau_p}}$$

$$\frac{dT_S}{T_S} = -0.25 \frac{d\varepsilon}{\varepsilon}$$

LARGE!

Narrow band pyrometer

How to choose the emissivity?

- knowledge of the material
- calibration
- attaching a patch with known emissivity and let it warm up at the same temperature of the body to be measured

How to measure radiation?

I - thermopile

Set of thermocouple in series witch common cold end.

Hot end typically in vacuum.

Either made of thin metallic ribbons or in Si technology

How to measure radiation?

2- Bolometers

Based on resistive sensors of temperature Thin layers of oxides (e.g. MnO, MgO, NiO,...) deposited on non-conductive substrate

sensitive element suspended in free space

- no heat transfer to substrate
- fast response

How to measure radiation?

3. Pyroelectric detectors

Same principle as piezoelectric sensors, but the polarization P_s after changes because of temperature instead of mechanical stress

materials: TGS, PZT, LiTaO3, PVDF

Problem: as piezoelectric sensor does only measure variation of temperature rather than constant temperature

Problem: it is affected also by mechanical stress.

Solution: Compensated pyroelectric sensor

this is not exposed to temperature but to the same mechanical stress

Quantum (photoelectric) detectors

Basically as photodiodes.

Detectivity of quantum IR radiation detectors:

Comparison of sensitivity

Disappearing filament pyrometer

(optical narowband pyrometer)

$$\frac{1}{T_S} = \frac{1}{T_0} + \frac{\lambda}{c_2} \ln(\varepsilon_{\lambda} \tau_{\lambda})$$

 τ_{λ} =spectral transparency

 T_s =true temperature[K] T_0 =temp. measured by pyrometer[K] λ = wavelength[µm] constant c_2 =1.44 10^{-2} [m.K] ϵ_{λ} =emissivity

Disappearing filament pyrometer

(optical narowband pyrometer)

working principle

you change the current in the filament will is becomes of the same color as the background. If so, it means the color is the same, thus also the temperature. From the setting of the current we derive the temperature of the filament.