**GROUP-22** 

**TABULARIS** 

### **Tabularis**

Developing a Vision-Language Model (VLM) architecture that can efficiently detect efficiently detect and extract structured tables from documents and also answers answers queries based on them

**CREDITS** 

TABULARIS Meet the team

Akshit Bhola Kaustubh Srivastava Saurabh Singh

Mohit Kumar Bharat Agrawal Vivek Kumar

#### TABULARIS Use case

Finance teams receive thousands of invoices in varying formats — PDF scans, digital forms, and images — each with different table layouts for line items, taxes, and totals. Manual data entry is time-consuming, error-prone, and expensive.

- Reduction in manual data entry time
- Improved accuracy over rule-based OCR tools
- Scalable across vendors and document formats
- Natural Language Querying across tables

### Our Goals

**TABULARIS** 

- 1. Accurately detect and localize tables in diverse document formats
- Extract the layout and content of tables, including rows, columns, and cells
- 3. Combine visual layout and textual content to build a structured representation (CSV/HTML)
- 4. Understand and answer natural language queries based on table data

# Our Journey

# Image to HTML Architecture



# **Query-Processing Architecture**



# Fine-Tuning Pix2Struct





**METRICS** 

TABULARIS

### Validation metrics

| MODEL             | PRECISION | RECALL | GRITS  |
|-------------------|-----------|--------|--------|
| TABLE TRANSFORMER | 0.902     | 0.9305 | 0.9849 |

### Technologies Used

#### TABULARIS

- Python
- Wandb.ai (Fine Tuning)
- Detection Transformer
- PyTorch
- NextJS
- Flask
- Tailwind