CS 341: Algorithms

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

Wintxter, 2015

D.R. Stinson (SCS) CS 341 Wintxter, 2015 1 / 127

1	Course	Informa	tion
---	--------	---------	------

- 2 Introduction
- **3** Divide-and-Conquer Algorithms
- **4** Greedy Algorithms
- **5** Dynamic Programming Algorithms

D.R. Stinson (SCS) CS 341 Wintxter, 2015 2 / 127

Table of Contents

- **5** Dynamic Programming Algorithms
 - Fibonacci Numbers
 - Design Strategy
 - 0-1 Knapsack
 - Coin Changing
 - Longest Common Subsequence
 - Minimum Length Triangulation

D.R. Stinson (SCS) CS 341 Wintxter, 2015 111 / 127

Computing Fibonacci Numbers Inefficiently

Algorithm:
$$BadFib(n)$$
if $n=0$ then $f\leftarrow 0$
else if $n=1$ then $f\leftarrow 1$

$$\begin{cases} f_1 \leftarrow BadFib(n-1) \\ f_2 \leftarrow BadFib(n-2) \\ f \leftarrow f_1 + f_2 \end{cases}$$
return (f) ;

D.R. Stinson (SCS) CS 341 Wintxter, 2015 112 / 127

Computing Fibonacci Numbers More Efficiently

```
Algorithm: BetterFib(n)
f[0] \leftarrow 0
f[1] \leftarrow 1
for i \leftarrow 2 to n
do f[i] \leftarrow f[i-1] + f[i-2]
return (f[n])
```

D.R. Stinson (SCS) CS 341 Wintxter, 2015 113 / 127

Designing Dynamic Programming Algorithms for Optimization Problems

Optimal Structure

Examine the structure of an optimal solution to a problem instance I, and determine if an optimal solution for I can be expressed in terms of optimal solutions to certain subproblems of I.

Define Subproblems

Define a set of subproblems S(I) of the instance I, the solution of which enables the optimal solution of I to be computed. I will be the last or largest instance in the set S(I).

D.R. Stinson (SCS) CS 341 Wintxter, 2015 114 / 127

Designing Dynamic Programming Algorithms (cont.)

Recurrence Relation

Derive a **recurrence relation** on the optimal solutions to the instances in S(I). This recurrence relation should be completely specified in terms of optimal solutions to (smaller) instances in S(I) and/or base cases.

Compute Optimal Solutions

Compute the optimal solutions to all the instances in S(I). Compute these solutions using the recurrence relation in a **bottom-up** fashion, filling in a table of values containing these optimal solutions. Whenever a particular table entry is filled in using the recurrence relation, the optimal solutions of relevant subproblems can be looked up in the table (they have been computed already). The final table entry is the solution to I.

D.R. Stinson (SCS) CS 341 Wintxter, 2015 115 / 127

0-1 Knapsack

Problem

0-1 Knapsack

Instance: Profits $P = [p_1, \dots, p_n]$; weights $W = [w_1, \dots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \dots, x_n]$, where $x_i \in \{0, 1\}$ for $1 \le i \le n$, and $\sum_{i=1}^n w_i x_i \le M$.

Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_i x_i$.

Let P[i, m] denote the optimal solution to the subproblem consisting of the first i objects (having profits p_1, \ldots, p_i and weights w_1, \ldots, w_i , respectively) and capacity m.

A Dynamic Programming Algorithm for 0-1 Knapsack

$$\begin{split} & \textbf{Algorithm: } \textit{0-1Knapsack}(p_1, \dots, p_n, w_1, \dots, w_n, M) \\ & \textbf{for } m \leftarrow 0 \textbf{ to } M \\ & \textbf{do} & \begin{cases} \textbf{if } m \geq w_1 \\ \textbf{then } P[1, m] \leftarrow p_1 \\ \textbf{else } P[1, m] \leftarrow 0 \end{cases} \\ & \textbf{for } i \leftarrow 2 \textbf{ to } n \\ & \textbf{do} & \begin{cases} \textbf{for } m \leftarrow 0 \textbf{ to } M \\ \textbf{then } P[i, m] \leftarrow P[i-1, m] \\ \textbf{else } P[i, m] \leftarrow \max\{P[i-1, m-w_i] + p_i, P[i-1, m]\} \end{cases} \\ & \textbf{return } (P[n, M]); \end{split}$$

D.R. Stinson (SCS) CS 341 Wintxter, 2015 117 / 127

Computing the Optimal Knapsack X

```
 \begin{aligned} & \textbf{Algorithm: } \textit{0-1Knapsack}(p_1, \dots, p_n, w_1, \dots, w_n, M, P) \\ & m \leftarrow M \\ & p \leftarrow P[n, M] \\ & \textbf{for } i \leftarrow n \textbf{ downto } 2 \\ & \begin{cases} & \textbf{if } p = P[i-1, m] \\ & \textbf{then } x_i \leftarrow 0 \\ & \textbf{else } \end{cases} \\ & \begin{cases} x_i \leftarrow 1 \\ & p \leftarrow p - p_i \\ & m \leftarrow m - w_i \end{cases} \\ & \textbf{if } p = 0 \\ & \textbf{then } x_1 \leftarrow 0 \\ & \textbf{else } x_1 \leftarrow 1 \\ & \textbf{return } (X); \end{aligned}
```

D.R. Stinson (SCS) CS 341 Wintxter, 2015 118 / 127

Coin Changing

Problem

Coin Changing

Instance: A list of coin denominations, $1 = d_1, d_2, \dots, d_n$, and a positive integer T, which is called the **target sum**.

Find: An n-tuple of non-negative integers, say $A = [a_1, \ldots, a_n]$, such

that $T = \sum_{i=1}^{n} a_i d_i$ and such that $N = \sum_{i=1}^{n} a_i$ is minimized.

Let N[i,t] denote the optimal solution to the subproblem consisting of the first i coin denominations p_1, \ldots, p_i and target sum t. Let A[i,t] denote the number of coins of denomination d_i used in the optimal solution to this subproblem.

D.R. Stinson (SCS) CS 341 Wintxter, 2015 119 / 127

A Dynamic Programming Algorithm for Coin Changing

```
 \begin{split} & \textbf{Algorithm: } \textit{Coin Changing}(d_1, \dots, d_n, T) \\ & \textbf{comment: } d_1 = 1 \\ & \textbf{for } t \leftarrow 0 \textbf{ to } T \\ & \textbf{do } \begin{cases} N[1,t] \leftarrow t \\ A[1,t] \leftarrow t \end{cases} \\ & \textbf{for } i \leftarrow 2 \textbf{ to } n \end{cases} \\ & \textbf{for } i \leftarrow 2 \textbf{ to } n \\ & \textbf{do } \begin{cases} N[i,t] \leftarrow N[i-1,t] \\ A[i,t] \leftarrow 0 \\ \textbf{for } j \leftarrow 1 \textbf{ to } \lfloor (t/d_i) \rfloor \\ & \textbf{do } \begin{cases} \textbf{if } j + N[i-1,t-jd_i] < N[i,t] \\ A[i,t] \leftarrow j \end{cases} \\ & \textbf{then } \begin{cases} N[i,t] \leftarrow j + N[i-1,t-jd_i] \\ A[i,t] \leftarrow j \end{cases} \\ & \textbf{return } (N[n,T]); \end{aligned}
```

D.R. Stinson (SCS) CS 341 Wintxter, 2015 120 / 127

Longest Common Subsequence

Problem

Longest Common Subsequence

Instance: Two sequences $X=(x_1,\ldots,x_m)$ and $Y=(y_1,\ldots,y_n)$ over some finite alphabet Γ .

Find: A maximum length sequence Z that is a subsequence of both X and Y.

 $Z = (z_1, \ldots, z_k)$ is a subsequence of X if there exist indices $1 \le i_1 < \cdots < i_\ell \le m$ such that $z_j = x_{i_j}$, $1 \le j \le \ell$.

Similarly, Z is a subsequence of Y if there exist (possibly different) indices $1 \le h_1 < \cdots < h_\ell \le n$ such that $z_j = y_{h_j}$, $1 \le j \le \ell$.

D.R. Stinson (SCS) CS 341 Wintxter, 2015 121 / 127

Computing the Length of the LCS of X and Y

$$\begin{split} \textbf{Algorithm: } & LCS1(X=(x_1,\ldots,x_m),Y=(y_1,\ldots,y_n)) \\ \textbf{for } & i \leftarrow 0 \textbf{ to } m \\ \textbf{do } & c[i,0] \leftarrow 0 \\ \textbf{for } & j \leftarrow 0 \textbf{ to } n \\ \textbf{do } & c[0,j] \leftarrow 0 \\ \textbf{for } & i \leftarrow 1 \textbf{ to } m \\ \textbf{do } & \begin{cases} \textbf{for } & j \leftarrow 1 \textbf{ to } n \\ \textbf{then } & c[i,j] \leftarrow c[i-1,j-1]+1 \\ \textbf{else } & c[i,j] \leftarrow \max\{c[i,j-1],c[i-1,j]\} \end{cases} \\ \textbf{return } & (c[m,n]); \end{split}$$

Finding the LCS of X and Y

$$\begin{aligned} & \textbf{Algorithm: } LCS2(X=(x_1,\ldots,x_m),Y=(y_1,\ldots,y_n)) \\ & \textbf{for } i \leftarrow 0 \textbf{ to } m \textbf{ do } c[i,0] \leftarrow 0 \\ & \textbf{for } j \leftarrow 0 \textbf{ to } n \textbf{ do } c[0,j] \leftarrow 0 \\ & \textbf{for } i \leftarrow 1 \textbf{ to } m \\ & \begin{cases} \textbf{for } j \leftarrow 1 \textbf{ to } n \\ & \begin{cases} \textbf{if } x_i = y_j \\ & \textbf{then } \begin{cases} c[i,j] \leftarrow c[i-1,j-1] + 1 \\ \pi[i,j] \leftarrow \textbf{UL} \end{cases} \\ & \textbf{else if } c[i,j-1] > c[i-1,j] \\ & \textbf{then } \begin{cases} c[i,j] \leftarrow c[i,j-1] \\ \pi[i,j] \leftarrow \textbf{L} \\ & \textbf{else } \begin{cases} c[i,j] \leftarrow c[i-1,j] \\ \pi[i,j] \leftarrow \textbf{U} \end{cases} \end{aligned} \end{aligned}$$

Finding the LCS

```
 \begin{array}{l} \textbf{Algorithm: } \textit{FindLCS}(c,\pi,v) \\ \textit{seq} \leftarrow () \\ \textit{i} \leftarrow m \\ \textit{j} \leftarrow n \\ \textbf{while } \min\{i,j\} > 0 \\ \textbf{do} \begin{cases} \textbf{if } \pi[i,j] = \textbf{UL} \\ seq \leftarrow x_i \parallel seq \\ \textit{i} \leftarrow i-1 \\ \textit{j} \leftarrow j-1 \\ \textbf{else } \textit{if } \pi[i,j] = \textbf{L} \quad \textbf{then } \textit{j} \leftarrow \textit{j}-1 \\ \textbf{else } \textit{i} \leftarrow i-1 \end{cases} \\ \textbf{return } (\textit{seq}) \\ \end{array}
```

Minimum Length Triangulation

Problem

Minimum Length Triangulation v1

Instance: n points q_1, \ldots, q_n in the Euclidean plane that form a convex n-gon P.

Find: A triangulation of P such that the sum S_c of the lengths of the n-2 chords is minimized.

Problem

Minimum Length Triangulation v2

Instance: n points q_1, \ldots, q_n in the Euclidean plane that form a convex n-gon P.

Find: A triangulation of P such that the sum S_p of the perimeters of the n-3 triangles is minimized.

Let L denote the perimeter of P. Then we have that $S_p = L + 2S_c$. Hence the two versions have the same optimal solutions.

D.R. Stinson (SCS) CS 341 Wintxter, 2015 125 / 127

Problem Decomposition

We consider version 2 of the problem.

The edge q_nq_1 is in a triangle with a third vertex q_k , where $k\in\{2,\ldots,n-1\}.$

For a given k, we have:

- the triangle $q_1q_kq_n$,
- 2 the polygon with vertices q_1, \ldots, q_k ,
- **3** the polygon with vertices q_k, \ldots, q_n .

The optimal solution will consist of optimal solutions to the two subproblems in 2 and 3, along with the triangle in 1.

Recurrence Relation

For $1 \le i < j \le n$, let S[i,j] denote the optimal solution to the subproblem consisting of the polygon having vertices q_i, \ldots, q_j .

Let $\Delta(q_i, q_k, q_j)$ denote the perimeter of the triangle having vertices q_i, q_k, q_j .

The we have the recurrence relation

$$S[i,j] = \min\{\Delta(q_i, q_k, q_j) + S[i,k] + S[k,j] : i < k < j\}.$$

The base cases are given by

$$S[i, i+1] = 0$$

for all i.

We compute all S[i,j] with j-i=c, for $c=2,3,\ldots,n-1$.