

Exercise 18B

Q1.

Answer:

Area of quadrilateral ABCD = (Area of
$$\triangle$$
 ADC) + (Area of \triangle ACB)
= $\left(\frac{1}{2} \times AC \times DM\right) + \left(\frac{1}{2} \times AC \times BL\right)$
= $\left[\left(\frac{1}{2} \times 24 \times 7\right) + \left(\frac{1}{2} \times 24 \times 8\right)\right] \text{ cm}^2$
= $(84 + 96) \text{ cm}^2$
= 180 cm^2

Hence, the area of the quadrilateral is 180 cm².

Q2.

Answer:

Area of quadrilateral ABCD = (Area of
$$\triangle$$
 ABD) + (Area of \triangle BCD)
= $\left(\frac{1}{2} \times BD \times AL\right) + \left(\frac{1}{2} \times BD \times CM\right)$
= $\left[\left(\frac{1}{2} \times 36 \times 19\right) + \left(\frac{1}{2} \times 36 \times 11\right)\right] m^2$
= $(342 + 198) m^2$
= $540 m^2$

Hence, the area of the field is 540 m².

Q3.

Answer:

 $= 171 \text{ cm}^2$

$$\begin{split} &+\left(\text{Area of } \Delta \, \text{DMC}\right) + \left(\text{Area of } \Delta \, \text{ACB}\right) \\ &= \left(\frac{1}{2} \times \text{AN} \times \text{EN}\right) + \left(\frac{1}{2} \times \left(\text{EN} + \text{DM}\right) \times \text{NM}\right) + \left(\frac{1}{2} \times \text{MC} \times \text{DM}\right) + \left(\frac{1}{2} \times \text{AC} \times \text{BL}\right) \\ &= \left(\frac{1}{2} \times \text{AN} \times \text{EN}\right) + \left(\frac{1}{2} \times \left(\text{EN} + \text{DM}\right) \times \left(\text{AM} - \text{AN}\right)\right) + \left(\frac{1}{2} \times \left(\text{AC} - \text{AM}\right) \times \text{DM}\right) \\ &+ \left(\frac{1}{2} \times \text{AC} \times \text{BL}\right) \\ &= \left[\left(\frac{1}{2} \times 6 \times 9\right) + \left(\frac{1}{2} \times \left(9 + 12\right) \times \left(14 - 6\right)\right) + \left(\frac{1}{2} \times \left(18 - 14\right) \times 12\right) + \left(\frac{1}{2} \times 18 \times 4\right)\right] \\ &\text{cm}^2 \\ &= \left(27 + 84 + 24 + 36\right) \text{ cm}^2 \end{split}$$

Area of pentagon $ABCDE = (Area of \Delta AEN) + (Area of trapezium EDMN)$

Hence, the area of the given pentagon is 171 cm².

Answer:

Area of hexagon ABCDEF = (Area of Δ AFP) + (Area of trapezium FENP) + (Area of Δ ALB) = $\left(\frac{1}{2} \times AP \times FP\right) + \left(\frac{1}{2} \times (FP + EN) \times PN\right) + \left(\frac{1}{2} \times ND \times EN\right) + \left(\frac{1}{2} \times MD \times CM\right) + \left(\frac{1}{2} \times (CM + BL) \times LM\right) + \left(\frac{1}{2} \times AL \times BL\right)$ = $\left(\frac{1}{2} \times AP \times FP\right) + \left(\frac{1}{2} \times (FP + EN) \times (PL + LN)\right) + \left(\frac{1}{2} \times (NM + MD) \times CM\right) + \left(\frac{1}{2} \times MD \times CM\right) + \left(\frac{1}{2} \times (CM + BL) \times (LN + NM)\right) + \left(\frac{1}{2} \times (AP + PL) \times BL\right)$ = $\left[\left(\frac{1}{2} \times 6 \times 8\right) + \left(\frac{1}{2} \times (8 + 12) \times (2 + 8)\right) + \left(\frac{1}{2} \times (2 + 3) \times 12\right) + \left(\frac{1}{2} \times 3 \times 6\right) + \left(\frac{1}{2} \times (6 + 8) \times (8 + 2)\right) + \left(\frac{1}{2} \times (6 + 2) \times 8\right)\right] \text{ cm}^2$ = $(24 + 100 + 30 + 9 + 70 + 32) \text{ cm}^2$ = 265 cm^2

Hence, the area of the hexagon is 265 cm².

Q5.

Answer:

Area of pentagon ABCDE = (Area of \triangle ABC) + (Area of \triangle ACD) + (Area of \triangle ADE) $= \left(\frac{1}{2} \times AC \times BL\right) + \left(\frac{1}{2} \times AD \times CM\right) + \left(\frac{1}{2} \times AD \times EM\right)$ $= \left[\left(\frac{1}{2} \times 10 \times 3\right) + \left(\frac{1}{2} \times 12 \times 7\right) + \left(\frac{1}{2} \times 12 \times 5\right)\right] \text{ cm}^2$ $= (15 + 42 + 30) \text{ cm}^2$ $= 87 \text{ cm}^2$

Hence, the area of the pentagon is 87 cm².

Q6.

Answer:

Area enclosed by the given figure = (Area of trapezium FEDC) + (Area of square ABCF)

$$= \left[\left\{ \frac{1}{2} \times (6+20) \times 8 \right\} + (20 \times 20) \right] \text{cm}^2$$

$$= (104 + 400) \text{cm}^2$$

$$= 504 \text{ cm}^2$$

Hence, the area enclosed by the figure is 504 cm².

Q7.

Answer:

We will find the length of AC.

From the right triangles ABC and HGF, we have:

$$AC^2 = HF^2 = \{(5)^2 - (4)^2\} \text{ cm}$$

= $(25 - 16)cm$
= $9 cm$

$$AC = HF = \sqrt{9} cm$$

Area of the given figure ABCDEFGH = (Area of rectangle ADEH)

$$\begin{split} + & \left(\text{Area of } \Delta \, \text{ABC} \right) + \left(\text{Area of } \Delta \, \text{HGF} \right) \\ &= \left(\text{Area of rectangle ADEH} \right) + 2 \left(\text{Area of } \Delta \, \text{ABC} \right) \\ &= \left(\text{AD} \times \text{DE} \right) + 2 \left(\text{Area of } \Delta \, \text{ABC} \right) \\ &= \left\{ \left(\text{AC} + \text{CD} \right) \times \text{DE} \right\} + 2 \left(\frac{1}{2} \times \text{BC} \times \text{AC} \right) \end{split}$$

=
$$\{(3+4) \times 8\} + 2\left(\frac{1}{2} \times 4 \times 3\right) \text{ cm}^2$$

= $(56+12) \text{ cm}$

 $=68 \text{ cm}^2$

Hence, the area of the given figure is 68 cm²

Answer:

Let
$$AL = DM = x$$
 cm
 $LM = BC = 13$ cm
 $\therefore x + 13 + x = 23$
 $\Rightarrow 2x + 13 = 23$
 $\Rightarrow 2x = (23 - 13)$
 $\Rightarrow 2x = 10$
 $\Rightarrow x = 5$
 $\therefore AL = 5$ cm

From the right \triangle AFL, we have:

$$FL^{2} = AF^{2} - AL^{2}$$

$$\Rightarrow FL^{2} = \left\{ \left(13^{2} \right) - (5)^{2} \right\}$$

$$\Rightarrow FL^{2} = \left(169 - 25 \right)$$

$$\Rightarrow FL^{2} = 144$$

$$\Rightarrow FL = \sqrt{144}$$

$$\Rightarrow FL = 12 \text{ cm}$$

$$\therefore \text{ FL} = \text{BL} = 12 \text{ cm}$$

Area of a regular hexagon = (Area of the trapezium ADEF)

Area of a regular hexagon = (A rea of the trapezium ADEF) + (A rea of the trapezium ABCD)

$$= 2(Area \ of \ trapezium \ ADEF)$$
 $= 2\Big\{\frac{1}{2} \times (AD + EF) \times FL\Big\}$
 $= 2\Big\{\frac{1}{2} \times (23 + 13) \times 12\Big\}cm^2$
 $= 2\Big(\frac{1}{2} \times 36 \times 12\Big)cm^2$
 $= 432 \ cm^2$

Hence, the area of the given regular hexagon is 432 cm².

********* END ********