```
CS 241 Lecture Handout #8
January 29, 2016
```

REMINDER: QUIZ 1 "C" IS AT DCL THIS WEEK. SCHEDULE YOUR 50 MIN SLOT

#1 Review:

Why put the heap so far away from the stack?

What will you find below the end of the stack and above the top of the heap?

#2 What value will be printed?

```
01    int a = 10;
02    int* ptr = &a;
03    pid_t child = fork();
04    if(child == 0) { * ptr = 20; ptr = NULL;}
05    else {
06        waitpid(child, NULL,0);
07        printf("%d", * ptr );
08    }
```

```
void * memset(void *b, int c, size_t len);
void * mycalloc(size_t count, size_t size) {
```

#6 Implement your own calloc using memset and malloc:

void * calloc(size t count, size t size);

#5 How do I use calloc?

#3 What does sbrk do?
"sbrk increases the process's data segment by n bytes"
... but what does this mean?

#4 A very simple heap memory allocator

```
void* malloc(unsigned int numbytes) {
02
         printf("Top of heap was %p\n", sbrk(0) );
03
04
         void* ptr = sbrk(numbytes);
         if(ptr == (void*) -1) return NULL; // no mem for you!
05
06
07
         printf("Now you have some mem at %p\n",ptr );
08
09
         return ptr;
10
11
      void free(void*mem) { }
12
```

What are the limitations of the above allocator?

How can we improve it?

```
#7 How does I use realloc?
    void * realloc(void *oldptr, size_t size);
```

Placement Strategies - Best Fit. Worst Fit. First Fit Allocation

Suppose the heap is managed with a linked list. Each node in the list is either allocated or free. The list is sorted by address. When malloc() is called, the list is searched for a free segment that is big enough (depending on the allocation algorithm), that segment is divided into an allocated segment (at the beginning) and a free segment. When free() is called, the corresponding segment should merge with its neighboring segments, if they are also free. A process has a heap of 13KB, which is initially unallocated. During its execution, the process issues the following memory allocate/de-allocate calls (pA...pE are void* pointers). In all cases, break ties by choosing the earliest segment. Also, assume all algorithms allocate memory from the beginning of the free segment they choose.

```
pA = malloc(3KB)
pB = malloc(4KB)
pC = malloc(3KB)
free(pB)
pD = malloc(3KB)
free(pA)
pE = malloc(1KB)
```

For simplicity, assume the memory begins at address 0, and ignore the memory used by the linked list itself. Show the heap allocation after the above calls, using best-fit, worst-fit and first-fit algorithms respectively.

Best	Fit:
Best	Fit.

	1					7K	8K	9K	10K	11K	12K	
1	1	•	•		1	9	Starting address of pD= K and pE = K					
Worst Fit:												
1K	2K	3K	4K	5K	6K	7K	8K	9K	10K	11K	12K	
	Starting address of pD = K and pE = K											
:												
1K	2K	3K	4K	5K	6K	7K	8K	9K	10K	11K	12K	
	1K	1K 2K	1K 2K 3K	1K 2K 3K 4K	1K 2K 3K 4K 5K	1K 2K 3K 4K 5K 6K	it: 1K 2K 3K 4K 5K 6K 7K	it: 1K 2K 3K 4K 5K 6K 7K 8K Starting ad	it: 1K 2K 3K 4K 5K 6K 7K 8K 9K Starting address of p	it: 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K Starting address of pD = Starting address of pD =	it: 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K Starting address of pD = K and pE =	

Starting address of pD = $___$ K and pE = $___$ K

What is Fragmentation? What happens if heap memory is severely fragmented?

Best Fit outcome?

Worst Fit outcome?

First Fit outcome?