CSCI316: Week 2 - Data Pre-processing Comprehensive Exam Notes

Overview

Data Pre-processing is a vital step in the data mining and machine learning pipeline. It transforms raw data into a clean and structured format suitable for analysis.

Why Pre-process?

- Raw Big Data is often messy: noisy, inconsistent, incomplete.
- Mining algorithms require well-structured, high-quality data.
- Improves accuracy, reliability, and efficiency of models.

What is Data?

- Data object: Also called instance, sample, entity, etc.
- Attributes: Properties describing objects.
- Dimension: Number of attributes in a data object.

Attribute Types:

- Numeric: Discrete, Continuous, Fractional
- Symbolic: Categorical, Textual
- · Single/Multi-valued, Compound

XAttribute Conversion

Convert complex attributes into simpler, structured forms (e.g., one-hot encoding symbolic values).

Sparsity & Curse of Dimensionality

- Sparse data: Most values are zero or null.
- High dimensionality leads to inefficiency and poor model performance.

Domain Understanding

- Understand data context: how it was collected, what it represents.
- · Source reliability, attribute meaning.

Data Exploration

Helps select preprocessing tools and mining algorithms. - Look for: Imbalance, skew, noise, outliers, correlations. - Use **visual tools**: Histograms, Box plots, Scatter plots

Poata Quality Problems

Issue	Description	Fix
Missing	Absent data points	Estimate, Predict, or Drop
Outliers	Values far from the mean	Remove, Retain, or Transform
Noise	Corrupted/inconsistent values	Filtering, Cleaning

Imbalanced Data

Class Imbalance: Unequal target class sizes
Feature Imbalance: Skew in input features

Remedies: - Oversampling (e.g., SMOTE) - Undersampling - Cost-sensitive learning

Statistics to Measure Imbalance

• Discrete: Mode, Frequency

• Continuous: Mean, Median, Std Dev, Range, Skewness

Correlation

- · Measures how two attributes vary together
- Corr pprox 1: Strong positive, Corr pprox -1: Strong negative

Data Integration

Combining multiple datasets into a unified view - Challenges: Schema mismatch, noise introduction, format inconsistency - Approaches: Schema matching, metadata analysis, domain knowledge

Data Aggregation

- Combines records or attributes to reduce data size and variability.
- Risk: May lose useful information

Instance Selection & Generation

- Selection: Keep only useful instances (e.g., Grid Method)
- Generation: Create artificial data (e.g., k-means prototypes)

♦Data/Feature Transformation

- Modify attributes for better analysis
- Examples: Encoding, Normalization, Scaling, Binning

One-Hot Encoding

- · Encodes categories as binary vectors
- Maintains equidistance in Euclidean space

Discretization / Binning

• Convert continuous to categorical by splitting into intervals

Normalization & Scaling

Min-Max: [0,1] rangeZ-score: Mean=0, Std=1

• Log-transform: Reduce skew

Filtering

- Remove unwanted instances/attributes/values
- Types: Instance filters, Attribute filters, Value filters

Sampling

- Why: Efficient when data is too large
- Types:
- Simple Random
- With/Without Replacement
- Stratified (preserves class ratio)

Feature Generation

- Create new features to represent data more effectively
- From raw data (e.g., image edges)

• Combine existing features (e.g., density = mass/volume)

Feature Selection

- Remove redundant/irrelevant attributes
- Goal: Reduce overfitting, improve efficiency
- Techniques: Correlation, Info Gain (later lecture)

⊗Summary

- Pre-processing **improves data quality**, makes mining more effective.
- Must be tailored to the data, problem, and mining algorithm.
- Often the most time-consuming part of the pipeline.

Would you like practice questions, diagrams, or a cheatsheet next?