ABE 580

Chapter 8
Enzyme Kinetics

Enzyme Kinetics

Similar derivation to all chemical kinetics

Enzyme kinetics has some special considerations

Enzyme Kinetics

Aqueous environment

Catalyst reactions

Multiple substrates in single reaction common

Mechanistic Reaction Models

Focus on mechanism of reaction

Interaction of substrate(s) and catalyst(s)

Interactions of product(s) and catalyst(s)

Use of Mechanistic Models

 Accurately captures interactions between enzymes and substrates

 Elucidates dynamics of enzyme binding and dissociation

Kinetic Theory Collision Theory Of Reaction Rates

$$A+B \xrightarrow{k} C$$

$$k = (Z_{AB})(F)$$

where

k = kinetic constant

 Z_{AB} = frequency of collisions

F = Boltzman factor (fraction of collisions giving rise to reactions)

Kinetic Theory

Developed for dilute (low pressure) gases

 Reactions in liquid (or aqueous!) phase incoherent based upon first principles estimations for gases

 However, still widely used for developing mathematical expressions of biochemical reactions

Michaelis Menten Kinetics

$$\frac{dP}{dt} = \nu = \frac{V_{max}[S]}{[S] + K_M}$$

Maud Menten

Leonor Michaelis

Michaelis Menten Kinetics

Mechanistic Model

Based upon Law of Mass Action

- Key Assumptions
 - Homogeneous reaction
 - Substrate in excess [S] >>> [E]
 - (pseudo) steady-state or equilibrium

Enzymatic Reaction Rates Michaelis-Menten

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Assume
$$k_1$$
 and $k_{-1} >> k_2$

$$\frac{dES}{dt} = 0$$

Steady - State

Enzymatic Reaction Rates Michaelis-Menten

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$\frac{dP}{dt} = k_2[ES] = k_2[E_T] \frac{[S]}{[S] + K_M}$$

$$K_M = \frac{k_{-1} + k_2}{k_1}$$

Michaelis Menten Kinetics

$$\frac{dP}{dt} = k_2[E_T] \frac{[S]}{[S] + K_M}$$

$$\frac{dP}{dt} = v$$

$$V_{max} = k_2[E_T]$$

$$v = \frac{V_{max}[S]}{[S] + K_M}$$

Modulators (activators or inhibitors) can be factored in

Inhibitors

- Classically, describes mechanism of interaction between
 - Enzyme
 - Substrate
 - Non-substrate small molecules
- Models impact of interaction of nonsubstrate small molecules on catalytic rate(s)

Classic Inhibition: Competitive

Classic Inhibition: Competitive

Classic Inhibition: Non-Competitive

$$v = \frac{V_{\text{max}}[S]}{K_s \left(1 + \frac{[I]}{K_I}\right) + \left(1 + \frac{[I]}{K_I}\right)[S]} = \frac{V_{\text{max}}[S]}{\left(K_s + [S]\right)\left(1 + \frac{[I]}{K_I}\right)}$$

$$=\frac{\frac{1}{1+\frac{[I]}{K_I}}[S]}{K_s+[S]}$$

$$K_I = \frac{\kappa_{-3}}{k_3}$$

Determining Enzyme Kinetic Constants

 Linearizing kinetic expression and using linear regression

Non-linear optimization

Linearizing Michaelis-Menten Kinetics

- Lineweaver-Burke
 - Double Reciprocal
- Eadie-Hofstee
 - Single Reciprocal
- Hanes-Woolf
 - Single Reciprocal

Lineweaver-Burke

$$v = \frac{V_{\text{max}} \cdot [S]}{[S] + K_{\text{M}}} \longrightarrow \frac{1}{v} = \frac{K_{m}}{V_{\text{max}}} \left(\frac{1}{[S]}\right) + \frac{1}{V_{\text{max}}}$$

Lineweaver-Burke: Problems

Small measurement errors = large parameter estimation errors

Classic Inhibition: Competitive

Classic Inhibition: Non-Competitive

Eadie-Hofstee

$$v = \frac{V_{\text{max}} \cdot [S]}{[S] + K_{\text{M}}} \longrightarrow v = -K_{m} \left(\frac{v}{[S]}\right) + V_{\text{max}}$$

$$V \longrightarrow V_{\text{max}}$$

$$V_{\text{max}} / K_{\text{m}}$$

$$V/[S]$$

Eadie-Hofstee: Problems

X-axis is not independent

Hanes-Woolf

$$v = \frac{V_{\text{max}} \cdot [S]}{[S] + K_{\text{M}}} \longrightarrow \frac{[S]}{v} = \frac{1}{V_{\text{max}}}[S] + \frac{K_{m}}{V_{\text{max}}}$$

Hanes-Woolf: Problems

Non-Linear Regression

Couples statistics (least squares)
 with modeling (computer simulation)

Ordinary Least Squares

Weighted Least Squares

Elements of Non-Linear Regression

A model

Initial "guesses" for parameters

Experimental data

A "fitness function": min{SSE}

Model

$$v = k_2[E_T] \frac{[S]}{[S] + K_M}$$

$$v = \frac{\frac{V_{\text{max,f}}}{K_{\text{m.s}}}[S] - \frac{V_{\text{max,r}}}{K_{\text{m,p}}}[P]}{1 + \frac{[S]}{K_{\text{m,s}}} + \frac{[P]}{K_{\text{m,p}}}}$$

$$v = \frac{V_{\text{max}}[S]}{K_{\text{m}}\left(1 + \frac{I}{K_{\text{I}}}\right) + [S]}$$

Initial Guesses

$$V_{\text{max}} = 0.22s^{-1}$$

$$K_m = 50mM$$

$$K_I = 150mM$$

Experimental Data

S	V
mM	S ⁻¹
20	0.030
40	0.048
60	0.073
80	0.075
100	0.085
120	0.093
140	0.121
160	0.109
180	0.111
200	0.149
220	0.156
240	0.130
260	0.144
280	0.155
300	0.159
400	0.168
500	0.196

Fitness Function

 Function describing state of model with respect to experimental data

 Least Squares => sum of squares of errors (residuals)

Similar to Linear Regression

GRG Non-Linear Solver in Excel

 Generalized Reduced Gradient Algorithm

Good at finding <u>local</u> minimum, not <u>global</u> minimum

 Converts non-linear system to reduced linear system, follows the downward slope, then iterates

2-D Example

Classical Inhibition: Assumptions

Irreversible reaction

- Simplified effect of inhibitor
 - Competitive: blocks substrate binding
 - Non-competitive: blocks catalysis without affecting substrate binding

Where Assumptions Break Down

 Inhibitor affects binding kinetics/equilibrium without blocking binding or inhibiting catalysis

 Inhibitor affects catalysis kinetics without affecting binding of substrate

 Inhibitor affects <u>both</u> substrate binding and catalytic rate

Classic Inhibition: Non-Competitive

$$K_{M1} \ll K_{M2}$$

What About Multiple Substrates?

$$A + B \rightarrow C$$

- Must both substrates be bound for reaction to occur?
- Does binding of A affect binding of B (and vice-versa)?
- Does reaction proceed via intermediate step?

Bi Mechanism

Et = E + EA + EAB

A Question of Mechanism

- Bi
 - Two Substrates- One Product

- Bi-Bi
 - Two Substrates Two Products

- Ping-Pong
 - Retaining mechanism

Ping-Pong Mechanism

$$Et = E + EA + E^* + E^*B$$

King-Altman Method

 Method for deriving Michaelis-Menten-type rate expressions

Application of Euler circuits

Leonhard Euler

Natural logarithm (e – Euler's number)

1707-1783

Graph Theory and Topology

Euler's method of integration

Euler Graph (Map): A graph with a closed trail (a walk with no repeated edges) that contains all edges of the graph.

Euler Circuit (Trail): A closed walk with no repeated edges that starts and stops at the same vertex.

Application to Enzyme Kinetics: Competitive Inhibition

Rules:

Vertices = forms of enzyme Edges/paths = valid enzyme reactions/interactions

"Circuits"

Rule:

A continuous walk connecting all vertices, not necessarily a <u>closed</u> Euler circuit

Kinetic Expressions

Rules:

Matrix filled by <u>products</u> of edges (paths) for the given circuit (column) to a given vertex/destination (row).

Why Does This Work?

This is an application of Cramer's Rule for solving systems of linear equations

Ordered, Sequential Bi-Bi Reaction (Revesible)

$$E + A \leftrightarrow EA + B \leftrightarrow EAB \leftrightarrow EQ + P \leftrightarrow E + Q$$

Ordered, Sequential Bi-Bi Reaction (Revesible)

$$\frac{E}{E_{T}} = \frac{k_{4}k_{-2}k_{-1} + k_{-1}k_{3}k_{4} + k_{2}k_{3}k_{4}[B] + k_{-1}k_{-2}k_{-3}[P]}{E + EA + [EAB - EPQ] + EQ}$$

$$\frac{EA}{E_{T}} = \frac{k_{1}k_{-2}k_{4}[A] + k_{1}k_{3}k_{4}[A] + k_{-2}k_{-3}k_{-4}[PQ] + k_{1}k_{-2}k_{-3}[A][P]}{E + EA + \left[EAB - EPQ\right] + EQ}$$

$$v = \frac{V_{\max,f}V_{\max,r}[A][B] - \frac{V_{\max,f}V_{\max,r}}{K_{eq}}[P][Q]}{K_{eq}}$$

$$+ \frac{K_{Q}V_{\max,f} + K_{B}V_{\max,r}[A] + K_{A}V_{\max,r}[B] + V_{\max,r}[A][B]}{K_{eq}}$$

$$+ \frac{K_{Q}V_{\max,f}}{K_{eq}}[P] + \frac{K_{P}V_{\max,f}}{K_{eq}}[Q] + \frac{V_{\max,f}}{K_{eq}}[P][Q]$$

$$+ \frac{K_{Q}V_{\max,f}}{K_{i,A}K_{eq}}[A][P] + \frac{K_{A}V_{\max,r}}{K_{i,Q}}[B][Q]$$

$$+ \frac{V_{\max,r}}{K_{i,P}}[A][B][P] + \frac{V_{\max,f}}{K_{i,P}K_{eq}}[B][P][Q]$$

$$\begin{split} V_{\text{max},f} &= k_3 k_4 \, / \, (k_3 + k_4) E_t \\ V_{\text{max},r} &= k_{-1} k_{-2} \, / \, (k_{-1} + k_{-2}) E_t \\ K_{i,A} &= k_{-1} \, / \, k_1 \\ K_{i,B} &= (k_{-1} + k_{-2}) \, / \, k_3 \\ K_{i,P} &= (k_3 + k_4) \, / \, k_{-3} \\ K_{i,Q} &= k_4 \, / \, k_{-4} \\ K_A &= k_3 k_4 \, / \, (k_1 (k_3 + k_4)) \\ K_B &= k_4 (k_{-1} + k_3) \, / \, (k_2 (k_3 + k_4)) \\ K_P &= k_{-1} (k_{-2} + k_3) \, / \, (k_{-3} (k_{-1} + k_{-2})) \\ K_Q &= k_{-1} k_{-2} \, / \, (k_{-4} (k_{-1} + k_{-2})) \\ K_{eq} &= k_1 k_2 k_3 k_4 \, / \, k_{-1} k_{-2} k_{-3} k_{-4} \end{split}$$

Reversible Enzyme Expression

$$E + S \xrightarrow{k1} ES \xrightarrow{k2} E + P$$

$$v = V_f - V_r$$

$$= k_2 ES - k_{-1} ES$$

E	K-1	K2
ES	k1S	K-2P

$$E_{t} = E + ES$$

$$= (k_{-1} + k_{2}) + (k_{1}S + k_{-2}P)$$

$$v = k_2 ES - k_{-1} ES$$

$$\begin{split} & \frac{v}{E_{t}} = \frac{k_{2}ES - k_{-1}ES}{E_{t}} \\ & = \frac{k_{2}\left(k_{1}S + k_{-2}P\right) - k_{-1}\left(k_{1}S + k_{-2}P\right)}{\left(k_{-1} + k_{2}\right) + \left(k_{1}S + k_{-2}P\right)} \end{split}$$

$$v = \frac{dP}{dt} = \frac{\frac{V_{\text{max,f}}}{K_{\text{m.s}}}[S] - \frac{V_{\text{max,r}}}{K_{\text{m,p}}}[P]}{1 + \frac{[S]}{K_{\text{m,s}}} + \frac{[P]}{K_{\text{m,p}}}}$$

$$K_{m,S} = \frac{k_{-1} + k_2}{k_1}$$

$$K_{m,P} = \frac{k_{-1} + k_2}{k_{-2}}$$

$$V_{\text{max},f} = k_2 E_t$$
$$V_{\text{max},r} = k_{-1} E_t$$

$$V_{\max,r} = k_{-1} E_t$$