Inference 2, 2023, lecture 8

Rolf Larsson

November 23, 2023

1/12

Today

Chap. 4. Estimation (continued):

- The multidimensional case
- The univariate MLE revisited
- Rao-Blackwell
- Lehmann-Scheffé

The multidimensional case

- Suppose that the parameter space is k dimensional: $\theta \in \Theta \subseteq \mathbb{R}^k$.
- The parameter of interest, $\gamma = g(\theta) = \{g_1(\theta), ..., g_m(\theta)\}'$ is m dimensional: $g: \Theta \to \Gamma \subseteq \mathcal{R}^m$.
- ullet An estimator $T(\mathbf{X}) = \{T_1(\mathbf{X}),...,T_m(\mathbf{X})\}'$ is called unbiased for γ if

$$\mathrm{E}_{\theta}\{T_{j}(\mathbf{X})\}=g_{j}(\theta)$$

for all $\theta \in \Theta$ and all j = 1, ..., m.

The multidimensional case

Definition (4.10)

Let T and T^* be two unbiased estimators for γ . We say that T^* has smaller covariance matrix than T at $\theta \in \Theta$, if the covariance matrices of T and T^* satisfy

$$u^{\mathrm{T}}\{\mathrm{Cov}_{\theta}(T^{*})-\mathrm{Cov}_{\theta}(T)\}u\leq 0$$

for all $u \in \mathbb{R}^m$. We write $Cov_{\theta}(T^*) \leq Cov_{\theta}(T)$.

- We may also write $Cov_{\theta}(T) \succeq Cov_{\theta}(T^*)$.
- $Cov_{\theta}(T^*) \prec Cov_{\theta}(T)$ if.f. $Var(u^T T^*) \leq Var(u^T T)$ for all u, because $Var(u^T T) = u^T Cov(T)u$.
- If $Cov_{\theta}(T^*) \leq Cov_{\theta}(T)$ and $Cov_{\theta}(T^*)$ and $Cov_{\theta}(T)$ are diagonal, then all elements of $Cov_{\theta}(T^*)$ are less than or equal to the corresponding elements of $Cov_{\theta}(T)$.

4 / 12

The multidimensional case

• Let $(D_{\theta}g)(\theta)$ be the $m \times k$ matrix of partial derivatives

$$\frac{\partial g_j(\theta)}{\partial \theta_I}$$
, $j = 1, ..., m$, $l = 1, ..., k$.

• Let $V(\theta; \mathbf{X})$ be the k-dimensional vector of partial derivatives

$$\frac{\partial}{\partial \theta_I} \log\{L(\theta; \mathbf{X})\}, \ I = 1, ..., k.$$

Let the Fisher information matrix be

$$I_{\mathbf{X}}(\theta) = \operatorname{Cov}_{\theta} \{ V(\theta; \mathbf{X}) \}.$$

• Assume that $I_{\mathbf{X}}(\theta)$ is non singular. Under regularity conditions 1, 2' and 4', the Cramér-Rao inequality generalizes to

$$\operatorname{Cov}_{\theta}(T) \succeq (D_{\theta}g)(\theta) I_{\mathbf{X}}(\theta)^{-1} (D_{\theta}g)(\theta)^{\mathrm{T}}$$
 for all $\theta \in \Theta$.

The univariate MLE revisited

Theorem (4.4)

Under regularity conditions 1 and 2'-4', a maximum likelihood estimator (MLE) has the following properties:

- The MLE depends on the data only via the sufficient statistic.
- ② If there exists an efficient unbiased estimator $\tilde{\theta}$, then $\tilde{\theta} = \hat{\theta}_{MLE}$ with probability one.

Rao-Blackwell

How can we improve on a given unbiased estimator?

Theorem (4.5)

The Rao-Blackwell theorem.

Let T be a sufficient statistic for the statistical model \mathcal{P} , and let $\tilde{\gamma}$ be an unbiased estimator for the parameter $\gamma = g(\theta) \in \mathbb{R}^k$.

Define
$$\hat{\gamma}(T) = \mathrm{E}_{\theta}(\tilde{\gamma}|T)$$
.

- The conditional expectation $\hat{\gamma}$ is independent on θ .
- **2** Furthermore, for all $\theta \in \Theta$, $E_{\theta}(\hat{\gamma}) = \gamma, \quad Cov_{\theta}(\hat{\gamma}) \prec Cov_{\theta}(\hat{\gamma})$
- **3** If $\operatorname{trace}\{\operatorname{Cov}_{\theta}(\tilde{\gamma})\} < \infty$, then $\operatorname{Cov}_{\theta}(\hat{\gamma}) = \operatorname{Cov}_{\theta}(\tilde{\gamma})$ if.f. $P_{\theta}(\hat{\gamma} = \tilde{\gamma}) = 1.$

Consequence: To find an optimal statistic, only search among those that are functions of a sufficient statistic.

Rao-Blackwell

Example 1:

Suppose that $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent $Po(\lambda)$.

- **1** Show that an unbiased estimator of λ is given by X_1 .
- ② Show that a sufficient statistic is given by $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$.
- **1** Use the Rao-Blackwell theorem to find an unbiased estimator for λ with smaller variance than X_1 .

Lehmann-Sheffé

Is there any criterion under which the Rao-Blackwell theorem results in the *minimum* variance statistic (BUE)?

Definition (4.11)

A statistical model $\{P_{\theta} : \theta \in \Theta\}$ is called **complete** if for any function $h : \mathcal{X} \to \mathcal{R}$,

$$E_{\theta}\{h(\mathbf{X})\} = 0$$
 for all $\theta \in \Theta$

implies

$$P_{\theta}\{h(\mathbf{X})=0\}=1 \quad \text{for all } \theta \in \Theta.$$

A statistic $T \sim P_{\theta}^{T}$ is called complete if the statistical model $\{P_{\theta}^{T}: \theta \in \Theta\}$ is complete.

Example 2:

Show that the Binomial model with parameters n = 2 and p is complete.

| □ ▶ ◀御 ▶ ∢差 ▶ ∢差 ▶ | 差 | 釣 Q で

Lehmann-Sheffé

Corollary (4.1)

Assume that P_{θ} belongs to a strictly k-parameter exponential family. Then the statistic $T(\mathbf{X})$ is sufficient and complete.

Theorem (4.7)

(Lehmann-Scheffé)

Let T be a sufficient and complete statistic for the statistical model \mathcal{P} , and let $\tilde{\gamma}_1$ be an unbiased estimator for the parameter $\gamma = g(\theta) \in \mathcal{R}^k$. Then the estimator

$$\hat{\gamma}(T) = \mathrm{E}_{\theta}(\tilde{\gamma}_1|T)$$

has the smallest covariance matrix among all unbiased estimators for γ . That is, for all estimators $\tilde{\gamma}$ with $E_{\theta}(\tilde{\gamma}) = \gamma$ we have

$$Cov_{\theta}(\hat{\gamma}) \leq Cov_{\theta}(\tilde{\gamma}), \text{ for all } \theta \in \Theta.$$

Lehmann-Sheffé

Example 3:

- Suppose that we observe $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent with the same distribution as X.
- Show that the following statistics are BUE.
- **1** \bar{X} where X is Bernoulli with parameter p.
- ② (\bar{X}, S^2) where $X \sim N(\mu, \sigma^2)$ (and note that S^2 does not attain the Cramér-Rao lower bound!).

News of today

- The multidimensional case
 - Unbiased estimator
 - Smaller covariance matrix
 - Score vector
 - Fisher information matrix
 - Cramér-Rao
- If there is an efficient unbiased estimator, it is the MLE.
- Rao-Blackwell: conditioning on a sufficient statistic improves an unbiased estimator.
- Completeness (always holds for members of the exponential family)
- Lehmann-Sheffé: under completeness, Rao-Blackwell gives the BUE.