3.4 Periodic-functions, trigonometry (Paper 1, without calculator)

1a. The following diagram shows the graph of $f(x) = a\cos(bx)$, for $0 \leq x \leq 4$.

There is a minimum point at P(2, -3) and a maximum point at Q(4, 3).

(i) Write down the value of *a*.

(ii) Find the value of *b*.

[3 marks]

1b. Write down the gradient of the curve at P.

[1 mark]

1c. Write down the equation of the normal to the curve at P.

[2 marks]

2a. The diagram below shows part of the graph of $f(x) = a\cos(b(x-c)) - 1$, where a>0 .

The point $P\left(\frac{\pi}{4},2\right)$ is a maximum point and the point $Q\left(\frac{3\pi}{4},-4\right)$ is a minimum point.

Find the value of *a*. [2 marks]

BECA / Huson / 12.1 IB Math SL

Name:

3.4 Spiral Review Periodic Function Trig (No Calculator, Paper 1)

2b. (i) Show that the period of f is π .

(ii) Hence, find the value of *b*.

[4 marks]

 ${f 2c.}$ Given that $0 < c < \pi$, write down the value of c.

[1 mark]

3a. Consider $g(x)=3\sin 2x$.

Write down the period of g.

[1 mark]

3b. On the diagram below, sketch the curve of g, for $0 \leq x \leq 2\pi$.

[3 marks]

3c. Write down the number of solutions to the equation g(x)=2 , for $0\leq x\leq 2\pi$.

[2 marks]