Stručné shrnutí semináře 1

Výsledky fyzikálních měření jsou vždy zatíženy chybou (nejistotou).

Podle toho, co je způsobilo, nejistoty dělíme na: statistické (nejistoty typu A), systematické (nejistoty typu B).

Hrubá chyba je fatální zásah do měření, který způsobí, že naměřená hodnota je nepoužitelná.

Výsledek fyzikálního měření veličiny x zapisujeme ve tvaru $x = \tilde{\mu}_x(\sigma_{C,x})[x]$ (doporučeno normou)

 $x = (\tilde{\mu}_x \pm \sigma_{C,x})[x]$ (starší forma zápisu)

 $\tilde{\mu}_x$ je nejlepší odhad naměřené hodnoty (obvykle aritmetický průměr naměřených hodnot) zaokrouhlený na řád poslední platné číslice chyby,

 $u_{C,x}$ je celková chyba výsledku zaokrouhlená na jednu nebo maximálně dvě platné čislice.

Pozn. 1: Platné číslice jsou všechny číslice s výjimkou nul před první nenulovou číslicí.

Pozn. 2: Pro jednoznačnější identifikaci toho, co je ještě platná číslice, zapisujeme výsledek zpravidla ve formátu s jedinou platnou číslicí před desetinnou čárkou.

Příklady:

 $x = 1.13(5) \text{ m} \dots \text{správně}$

 $x = 1,13(5) \text{ m} \dots \text{správně}$

 $x = (1.13 \pm 0.05) \,\mathrm{m} \, ... \,\mathrm{správně}$

 $x = (1.1314290 \pm 0.049529) \,\mathrm{m}$... špatně, chyba ani výsledek nejsou zaokrouhlené

 $x = (1.1314290 \pm 0.05) \,\mathrm{m}$... špatně, výsledek není zaokrouhlen na řád poslední platné číslice chyby

 $x = (1130 \pm 50) \, \text{mm}$... špatně. Je to zapsáno, jako kdyby byla chyba určena na dvě platné číslice, ačkoliv je to způsobeno jen (zde nevhodným) převodem jednotek na mm

Celková chyba je složená ze dvou typů příspěvků: $u_C^2 = u_A^2 + u_B^2$

 u_A A je statistická chyba (neurčitost typu A),

 u_B je systematická chyba (neurčitost typu B).

Nejčastějším zdrojem systematické chyby je nesprávná kalibrace měřících přístrojů. Další zdroje systematické chyby mohou být např. v samotném způsobu měření.