Compressão Consciente de Modelos de Redes Neurais Profundas Baseada em Poda Seguida de Quantização

Mateus Arnaud Santos de Sousa Goldbarg ¹ Prof. Dr. Marcelo Augusto Costa Fernandes ² Prof. Dr. Sérgio Natan Silva ³

 $^1 \langle \mathsf{mateus.goldbarg@dca.ufrn.br} \rangle$

1,2,3 Programa de Pós-graduação em Engenharia Elétrica e de Computação (PPGgEEC)

Universidade Federal do Rio Grande do Norte

20 de Fevereiro de 2024

Sumário

- 1 Introdução
- 2 Fundamentação Teórica
- 3 Classificação de Modulações
- 4 Compressão para Microserviços
- 5 Conclusões
- 6 Referencias

Contextualização e Motivação

- A Inteligência Artificial (IA), já está presente em uma gama de atividades como publicidade, finanças, jogos eletrônicos, visão computacional e diagnósticos médicos;
- Técnicas de aprendizado profundo (deep learning) têm sido usados com sucesso na solução de muitos problemas:
- A grande quantidade de operações numéricas realizadas em algorítmos de aprendizado profundo podem ser um gargalo quando se é necessário o processamento de um conjunto de dados em um pequeno intervalo de tempo ou quando os recursos de processamento são limitados;
- Devido a complexidade das redes neurais profundas, é necessário um elevado espaço em memória para armazena-las.

Contextualização e Motivação

- A compressão das Redes Neurais Profundas é uma estratégia viável para a redução da complexidade e aceleração desses algoritmos;
- As abordagens mais convencionais de compressão de DNNs são as de poda e de quantização. O desafio é reduzir os modelos de forma a afetar minimamente a acurácia dos modelos.

Objetivos

- Desenvolver ténicas de compressão consciente de DNNs utilizando as estratégias de poda, quantização e poda seguida de quantização.
- Validar a compressão do modelo de DNNs através das métricas de esparsidade e do tamanho do modelo comprimido em relação ao não comprimido.
- Validar a estratégia de compressão consciente de modelos de DNNs aplicando-os à ambientes de microserviços e avaliar seu consumo de memória, processamento, tempo de inferência e sua escalabilidade.

Estratégias de Compressão

- Compressão pós treino: A compressão é realizada apenas após o treinamento do modelo.
 - Poda pós treino (Post-training pruning PTP);
 - Quantizatição pós treino (Post-Training Quantization PTQ).
- Compressão consciente: A compressão é realizada durante o loop de treinamento.
 - Poda consciente (Aware Prune);
 - Quantização consciente (Aware Quantization);
 - Poda seguida de quantização (Prune Followed by Quantization).

Os algoritmos mais convencionais de compressão consciente realizam a compressão apenas uma vez por época, enquanto o algorítmo proposto realiza a compressão a cada mini-batch de cada época do treinamento.

Uma das abordagens convencionais de compressão das redes neurais é a poda (pruning), que remove parâmetros sistematicamente de um modelo já existente. O desafio é remover uma grande quantidade de parâmetros de forma que afete minimamente a acurácia do modelo.

Conclusões Referencias

Figura 1: Diagrama do loop de aprendizado utilizando poda com controle de época

As estratégias mais convencionais de poda realizam a remoção apenas uma vez por época. Geralmente no último mini-batch de cada época.

Figura 2: Diagrama do loop de aprendizado utilizando poda consciente a cada mini-batch

A estratégia utilizada para escolher quais pesos devem ser removidos é dada por

$$C_k(n) = P(W_k(n), \beta_k) = \begin{cases} w_k(n) & \text{if } |w_k(n)| \ge \beta_k \\ 0 & \text{if } |w_k(n)| < \beta_k \end{cases}, \quad (1)$$

onde β_k é a janela de corte da k-ésima camada definida por

$$\beta_{\mathbf{k}} = \alpha \times \sigma_{\mathbf{k}},\tag{2}$$

sendo σ_k o desvio padrão da k-ésima camada e α o valor da agressividade da poda.

(a) Pesos não comprimidos

(b) Poda consciente

Figura 3: Histograma do valores dos pesos associado a um exemplo de compressão de pesos por poda consciente com $\alpha = 0, 5$ ($\beta_k = 0, 5 \times \sigma_k$) aplicada à uma camada de uma rede CNN.

A quantização de DNNs é uma estratégia que visa reduzir o consumo de recursos computacionais nas operações matemáticas reduzindo a precisão dos parâmetros da rede diminuindo a representação, em bits, dos seus valores.

Conclusões Referencias

A estratégia utilizada para quantização de pesos é definida por

$$C_k(n) = Q(W_k(n), q_k) = \left\lceil \frac{W_k(n)}{q_k} \right\rceil \times q_k,$$
 (3)

sendo q_k definido como o fator de quantização, ou de escala, da k-ésima camada

$$q_k = \frac{\max\{|W_k(n)|\}}{2^{b-1}-1}.$$
 (4)

onde b é o parâmetro que define a quantidade de bits para quantização.

Figura 4: Diagrama do loop de aprendizado com quantização

(a) Pesos não comprimidos

(b) Quantização consciente

Figura 5: Histograma do valores dos pesos associado a um exemplo de compressão de pesos por quantização consciente com b=5 (M=31) aplicada à uma camada de uma rede CNN.

Na compressão por poda seguida quantização, ambas as estratégias são utilizadas durante o treinamento, resultando na remoção de pesos insignificantes e quantização dos pesos remanescentes.

A estratégia utilizada para poda seguida de quantização de pesos é definida por

$$C_k(n) = Q\left(P\left(W_k(n), \beta_k\right), q_k'\right), \tag{5}$$

onde

$$q'_k = \frac{\max\{|W_k(n)|\} - \beta_k}{2^{b-1} - 1}.$$

(6)

Figura 6: Diagrama do loop de aprendizado com poda seguida de quantização

(b) Poda seguida de Quantização

Figura 7: Histograma do valores dos pesos associado a um exemplo de compressão consciente dos pesos por poda seguida de quantização a cada iteração com $\alpha=0,5$ e 5 bits aplicada à uma camada de uma rede CNN

Geração de modelos comprimidos

Após utilização da técnica, o arquivo do modelo gerado precisa ser comprimido. A Para lidar com os modelos que sofreram a compressão por poda, é possível escolher duas estratégias:

- Gerar modelo no formato esparso:
 - Modelo gerado salvo no formado esparso CSR ou CSC;
 - Necessidade de hardwares específicos para operações esparsas;
 - Modelos com baixa esparsidade podem aumentar o consumo de memória, tempo de inferência e processamento.
- Manter formato denso e comprimir a partir de Deflate:
 - O arquivo do modelo gerado é comprimido e menor que o original:
 - Combina as técnicas de Huffman e Lempel-Ziv-Storer-Szymanski para compressão do modelo;
 - A infererência é feita com o modelo no formato denso (pesos supostamente removidos).

Para a estratégia de quantização, os parâmetros do modelos são transformados para uma representação em bits, sendo calibrados a partir do fator de quantização q_k .

Classificação Automática de modulações

- A Modulação, nas transmissões de dados, refere-se ao processo de modificar uma ou mais características de um sinal chamado de portadora para representar informações ou dados.
- A modulação é necessária para transmitir dados por meio de um meio de comunicação, como cabos de cobre, fibras ópticas ou ondas de rádio.
- A classificação automática de modulação (automatic modulation classification - AMC) é um problema clássico nas comunicações sem fio modernas. Um dos objetivos da AMC é entender e rotular o espectro de rádio em cenários de comunicação não cooperativos, o que facilita a detecção de falhas, monitoramento de interferência de espectro e acesso dinâmico ao espectro.

Dataset

O dataset inclue efeitos de canal simulados sintéticamente e gravações pelo ar de 24 tipos de modulação digital e analógica com as seguintes características:

- 26 níveis de relação sinal ruído (SNR) (-20dB a 30dB com passo de 2dB);
- 2 milhões de sinais;
- 4096 realizações (frames) para cada par de modulação e SNR (2.555.904 frames no total);
- cada frame com 1024 amostras In Phase e Quadrature (I/Q) (2×1024) .

Foram utilizados apenas 7 tipos de modulações com SNR fixada em - 20dB.

Treinamento da DNN

Para o treinamento do modelo foram definidas as seguintes características:

- Tamanho de cada batch de 64:
- Otimizador de Descida de Gradiente Estocástico (SGD);
- 70% das amostras para treinamento e 30% para validação;
- Taxa de aprendizagem de 0,05 e momento de 0,9;
- Critério de loss como entropia cruzada de categoria.

Arquitetura do modelo

O modelo foi criado com a seguinte arquitetura:

- Entrada (1024×2) ;
- Bloco repetido 6 vezes:
 - \blacksquare Conv1D (40 \times 4);
 - BatchNorm:
 - ReLU:
 - MaxPool (2);
- Flatten:
- Dense(128);
- BatchNorm:
- ReLU:

- Dense(128);
- BatchNorm;
- ReLU:
- Dense(7);
- Softmax:

Tabela 1: Acurácias obtidas a partir do modelo comprimido para vários valores de tamanho de bits e α .

α bits	32 bits	16 bits	8 bits	4 bits	3 bits
0,00	97,06%	96,93%	97,00%	84,18%	83,89%
0,25	96,13%	96,68%	95,77%	92,03%	84,00%
0,50	96,70%	96,41%	96,43%	84,31%	83,41%
0,75	94,46%	95,20%	95,18%	90,55%	83,36%

Tabela 2: Valores de esparsidade obtidos a partir do modelo comprimido para vários valores de tamanho de bits e α .

α bits	32 bits	16 bits	8 bits	4 bits	3 bits
0,25	42,17%	47,31%	48,11%	45,85%	38,50%
0,50	66,26%	60,82%	61,28%	60,61%	41,60%
0,75	74,78%	69,75%	76,11%	68,41%	62,44%

Tabela 3: Tamanho do modelo comprimido para vários valores de tamanho de bits e α .

$\begin{array}{c} \text{bits} \\ \alpha \end{array}$	32 bits	16 bits	8 bits	4 bits	3 bits
0,00	3,18Mb	1,59Mb	0,80Mb	0,40Mb	0,30Mb
0,25	1,84Mb	0,84Mb	0,41Mb	0,26Mb	0,18Mb
0,50	1,08Mb	0,62Mb	0,31Mb	0,16Mb	0,17Mb
0,75	0,80Mb	0,48Mb	0,19Mb	0,13Mb	0,11Mb

io Fundamentação Teórica Classificação de Modulações Compressão para Microserviços Conclusões Referencias

Figura 8: Acurácias obtidas para diversas configuração de α e número de bits

io Fundamentação Teórica **Classificação de Modulações** Compressão para Microserviços Conclusões Referencias

Figura 9: Esparsidades obtidas para diversas configuração de α e número de bits

Figura 10: Tamanhos dos modelos obtidos para diversas configuração de α e número de bits

(a) Modelo não comprimido

(b) 8 bits e $\alpha = 0,50$

Figura 11: Matrizes de confusão de alguns modelos obtidos apos o treinamento

(a) 8 bits e $\alpha = 0.75$

(b) 3 bits e $\alpha = 0,75$

Figura 12: Matrizes de confusão de alguns modelos obtidos apos o treinamento

- Microserviços são um estilo arquitetural que tem ganhado crescente popularidade nos últimos anos devido à sua abordagem ágil e escalável para o desenvolvimento de aplicações;
- Em ambientes de microserviços, o uso de recursos é uma preocupação importante;
- Modelos de DNNs, especialmente os mais complexos, podem requisitar um grande consumo de memória, processamento e tempo de inferência. O que pode ser problemático para esses ambientes.
- O uso de estratégias de compressão de modelos de DNN pode afetar positivamente o desempenho e uso eficiente dos recursos computacionais de microserviços;

Compressão de modelos para microserviços

- A compressão de modelos também pode tornar a implementação e a escalabilidade dos microserviços mais ágeis;
- Modelos menores são mais rápidos de transferir e carregar em diferentes ambientes, tornando o processo de implantação mais eficiente.

Dataset

Figura 13: Amostra do dataset cifar10

Treinamento da DNN

Para o treinamento do modelo, foram escolhidos os seguintes parâmetros:

- Tamanho de cada lote de 64;
- Otimizador de Descida de Gradiente Estocástico (SGD);
- 60 mil amostras para treino e 10 mil para validação;
- Taxa de aprendizagem de 0,05 e momento do 0,9;
- Critétio de loss como entropia cruzada de categoria.

Conclusões Referencias

Arquitetura do modelo

O modelo foi definido com a arquitetura VGG16 com duas camadas densas:

- Entrada($32 \times 32 \times 3$);
- Conv2D(64 \times 3 \times 3) e ReLU;
- Conv2D(64 × 3 × 3) e ReLU;
- MaxPool(2 × 2);
- Conv2D(128 \times 3 \times 3) e ReLU;
- Conv2D(128 \times 3 \times 3) e ReLU;
- $MaxPool(2 \times 2)$;
- Conv2D(256 \times 3 \times 3) e ReLU;
- Conv2D(256 \times 3 \times 3) e ReLU;
- Conv2D(256 \times 3 \times 3) e ReLU;
- MaxPool(2 × 2);

- Conv2D(512 × 3 × 3) e ReLU;
- Conv2D(512 \times 3 \times 3) e ReLU;
- Conv2D(512 \times 3 \times 3) e ReLU;
- MaxPool(2 × 2);
- Conv2D(512 × 3 × 3) e ReLU;
- Conv2D(512 × 3 × 3) e ReLU;
- Conv2D(512 \times 3 \times 3) e ReLU;
- MaxPool(2 × 2);
- Dense(4096) e ReLU;
- Dense(4096) e ReLU;
- Dense(10) e Softmax.

Tabela 4: Acurácias obtidas na classificação de imagens a partir do modelo comprimido para vários valores de quantidade de bits e α .

bits α	0,00	0,50	1,50	1,25
32 bits	81,58%	79,39%	79,53%	74,64%
8 bits	79,76%	80,77%	79,31%	74,42%

Tabela 5: Esparsidades obtidas na classificação de imagens a partir do modelo comprimido para vários valores de tamanho de bits e α .

α bits	0,50	1,50	1,25
32 bits	37,92%	62,76%	74,76%
8 bits	36,94%	60,68%	74,49%

(a) Acurácia dos modelos

(b) Esparsidade dos modelos

Figura 14: Acurácias e esparsidades obtidas na classificação de imagens a partir do modelo comprimido para vários valores de tamanho de bits e α .

(a) Modelo não comprimido

(b) 8 bits e $\alpha = 1,25$

Figura 15: Matrizes de confusão do modelo sem compressão e do mais comprimido

Tabela 6: Tamanho do modelo comprimido para vários valores de quantidade de bits e α em MegaBytes após compressão por Deflate

α bits	0,00	0,50	1,50	1,25
32 bits	123,51MB	87,11MB	55,80MB	39,39MB
8 bits	32,50MB	32,12MB	22,09MB	16,20MB

Figura 16: Tamanho do modelo comprimido para vários valores de quantidade de bits e α em MegaBytes após compressão por Deflate

Infraestrutura

Figura 17: Infraestrutura geral desenvolvida

Configurações dos pods

Cada pod foi construído com as seguintes características:

- Máximo de processamento em 100miliCPU;
- Nova réplica com 20% do máximo de processamento;
- Máximo de 10 réplicas.

Perfil de estresse

Foram criados perfis de estresse utilizando o *Open Model Thread Group* da ferramenta Apache JMeter, para variar a quantidade de requisições do sistema com o passar do tempo.

Figura 18: Perfil de estresse com n variando em 75, 125 e 250

Tabela 7: Latência de resposta das requisições, Consumo de memória e processamento de cada microseriviço do primeiro perfil de estresse $N_1 = 75$.

bits	α	Latência	Memória	CPU
32	0,00	$16,23$ ms $\pm 2,988$	701MiB	135miliCPU
32	0,50	$15,97$ ms $\pm 3,467$	707MiB	136miliCPU
32	1,00	$16,02$ ms $\pm 2,659$	701MiB	143miliCPU
32	1,25	$15,44 ms \pm 2,597$	703MiB	132miliCPU
8	0,00	$9,39ms \pm 2,026$	412MiB	95miliCPU
8	0,50	$9,27$ ms $\pm 3,011$	414MiB	94miliCPU
8	1,00	$9,57$ ms $\pm 2,144$	411MiB	96miliCPU
8	1,25	$9,44ms \pm 1,729$	411MiB	94miliCPU

Figura 19: Latência de resposta em milissegundos, consumo de memória e uso de CPU de cada microserviço para o primeiro perfil de estresse $N_1 = 75$.

Tabela 8: Latência de resposta das requisições, Consumo de memória e processamento de cada microseriviço do segundo perfil de estresse $N_2 = 125$.

bits	α	Latência	Memória	CPU
32	0,00	$16,01$ ms $\pm 2,755$	701MiB	136miliCPU
32	0,50	$16,44$ ms $\pm 3,134$	704MiB	137miliCPU
32	1,00	$15,51 \textit{ms} \pm 2,299$	703MiB	139miliCPU
32	1,25	$15,23\textit{ms}\pm3,101$	703MiB	136miliCPU
8	0,00	$9,22$ ms $\pm 2,577$	411MiB	94miliCPU
8	0,50	$8,68 ms \pm 3,822$	412MiB	94miliCPU
8	1,00	$8,67$ ms $\pm 3,715$	411MiB	95miliCPU
8	1,25	$9,58$ ms \pm $3,122$	411MiB	94miliCPU

Figura 20: Latência de resposta em milissegundos, consumo de memória e uso de CPU de cada microserviço para o segundo perfil de estresse $N_2 = 125$.

Tabela 9: Latência de resposta das requisições, Consumo de memória e processamento de cada microseriviço do terceiro perfil de estresse $N_3 = 250$.

bits	α	Latência	Memória	CPU
32	0,00	$16,23$ ms $\pm 3,122$	702MiB	135miliCPU
32	0,50	$16,78$ ms $\pm 3,214$	706MiB	136miliCPU
32	1,00	$16,24$ ms $\pm 3,333$	704MiB	139miliCPU
32	1,25	$15,34$ ms $\pm 2,767$	701MiB	134miliCPU
8	0,00	$9,30$ ms $\pm 2,666$	412MiB	94miliCPU
8	0,50	$9,25$ ms $\pm 2,714$	414MiB	95miliCPU
8	1,00	$9,25$ ms $\pm 2,555$	410MiB	96miliCPU
8	1,25	$8,71 ms \pm 2,991$	411MiB	94miliCPU

Figura 21: Latência de resposta em milissegundos, consumo de memória e uso de CPU de cada microserviço para o terceiro perfil de estresse $N_3 = 250$.

Tabela 10: Tempo médio para criação de uma nova réplica.

α bits	0,00	0,50	1,50	1,25
32 bits	$2,71s \pm 0,0220$	$2,72s\pm 0,0267$	$2,57s\pm 0,0306$	$2,41s\pm 0,0294$
8 bits	$2,30s \pm 0,0199$	$2,25s \pm 0,0444$	$2,22s\pm 0,0212$	$2,14s\pm 0,0409$

Figura 22: Tempo médio para criação de uma nova réplica.

Figura 23: Comportamento da criação de novas réplicas com o passar do tempo do modelo não comprimido e quantizado em 8 bits o primeiro perfil de estresse $N_1 = 75$.

Figura 24: Comportamento da criação de novas réplicas com o passar do tempo do modelo não comprimido e quantizado em 8 bits o segundo perfil de estresse $N_2 = 125$.

Figura 25: Comportamento da criação de novas réplicas com o passar do tempo do modelo não comprimido e quantizado em 8 bits o terceiro perfil de estresse $N_3 = 250$.

Conclusões

- A adoção das técnicas de compressão deste trabalho diminuem o tamanho do modelo sem comprometer substancialmente sua acurácia;
- As estratégias de compressão utilizadas são viáveis para diferentes domínios;
- A utilização da compressão consciente se mostrou eficaz na redução do uso de memória, processamento e latência de resposta dos modelos;
- A compressão de modelos se mostra benéfica para sua utilização em ambientes distribuídos (microserviços);
- A escalabilidade horizontal é beneficiada pela compressão dos modelos.

Trabalhos futuros

- Utilizar outra estratégia para geração de modelo e comparar com a compressão de Deflate, como o formato esparso;
- Aplicar a compressão de modelos em outros domínios, como sistemas embarcados;
- Inclusão de novas métricas, como consumo de energia para outros domínios.

Referências

FERNANDES, M. A. C.; KUNG, H. T. A novel training strategy for deep learning model compression applied to viral classifications. In: IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN). [S.I.], 2021.

NVIDIA. GPU-Based Deep Learning Inference: A Performance and Power Analysis. 2015. Acesso em: 10 jul. 2021. Disponível em: \(\lambda\text{https://www.nyidia.com/content/tegra/embedded-systems/pdf/}\) jetson_tx1_whitepaper.pdf >.

RAKIN, A. S. et al. Defend deep neural networks against adversarial examples via fixed and dynamic quantized activation functions. arXiv preprint arXiv:1807.06714, 2018.

TUNG, F.; MORI, G. Deep neural network compression by in-parallel pruning-quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 42, n. 3, p. 568-579, 2020.

WANG, K. et al. Haq: Hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. [S.I.: s.n.], 2019. p. 8612-8620.

Zhe. W. et al. Optimizing the bit allocation for compression of weights and activations of deep neural networks. In: 2019 IEEE International Conference on Image Processing (ICIP). [S.I.: s.n.], 2019. p. 3826-3830.

