CONTENTS 1

Dimension Reduction Methods in Linear Regression

Yifei Sun

Contents

Principal components regression (PCR)	2
Partial least squares (PLS)	4
PCR and PLS using caret	-

```
library(ISLR)
library(pls)
library(caret)
```

Predict a baseball player's salary on the basis of various statistics associated with performance in the previous year. Use ?Hitters for more details.

Principal components regression (PCR)

We fit the PCR model using the function pcr().

```
## Data:
            X dimension: 200 19
## Y dimension: 200 1
## Fit method: svdpc
## Number of components considered: 19
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
##
                         360.1
## CV
                  449
                                  361.1
                                           357.8
                                                    355.5
                                                              359.8
                                                                       353.7
                  449
                         359.6
                                  360.5
## adjCV
                                           357.1
                                                    354.8
                                                              359.0
                                                                       352.6
##
          7 comps 8 comps 9 comps
                                    10 comps 11 comps 12 comps
                                                                   13 comps
## CV
            354.8
                     357.2
                              358.5
                                        364.8
                                                  369.3
                                                             369.6
                                                                       373.2
## adjCV
            353.6
                     355.9
                              357.1
                                        363.0
                                                  367.2
                                                             367.7
                                                                       370.9
##
          14 comps 15 comps
                              16 comps 17 comps 18 comps 19 comps
## CV
             369.6
                       370.9
                                 361.9
                                           369.1
                                                     364.5
                                                                367.0
## adjCV
             366.9
                       368.1
                                 359.1
                                           365.9
                                                     361.2
                                                                363.6
```

```
##
## TRAINING: % variance explained
           1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
##
             40.20
                      60.14
                               71.10
                                        78.94
                                                 84.21
                                                          88.82
                                                                   92.35
                                                                             95.07
## X
## Salary
             38.68
                      38.77
                               40.67
                                        41.56
                                                 41.72
                                                          44.49
                                                                   44.53
                                                                             44.55
##
           9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
## X
             96.38
                       97.34
                                 98.05
                                           98.65
                                                     99.16
                                                                99.49
                                                                          99.76
             44.86
                       45.21
                                 45.34
                                                     46.04
                                                               48.71
                                                                          49.01
                                           45.37
## Salary
##
           16 comps 17 comps 18 comps 19 comps
                        99.97
                                  99.99
## X
              99.91
                                           100.00
## Salary
              51.87
                        51.87
                                  53.35
                                            53.46
validationplot(pcr.mod, val.type="MSEP", legendpos = "topright")
```

Salary

[1] 103756.1

Partial least squares (PLS)

We fit the PLS model using the function plsr().

```
set.seed(2)
pls.mod <- plsr(Salary~.,</pre>
                data = Hitters[trRows,],
                scale = TRUE,
                validation = "CV")
summary(pls.mod)
## Data:
            X dimension: 200 19
## Y dimension: 200 1
## Fit method: kernelpls
## Number of components considered: 19
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
##
                                                                    6 comps
## CV
                  449
                         356.9
                                  356.2
                                            357.7
                                                     367.4
                                                               372.1
                                                                        373.9
                  449
                         356.3
                                   355.0
                                                     365.6
                                                              369.2
                                                                        370.1
## adjCV
                                            356.4
##
          7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
## CV
            371.2
                     366.4
                              367.2
                                         361.3
                                                   361.0
                                                             364.4
                                                                        365.5
## adiCV
            367.4
                     363.2
                              364.0
                                         358.5
                                                   358.4
                                                             361.4
                                                                        362.4
                                                   18 comps
          14 comps
                    15 comps
                              16 comps 17 comps
                                                             19 comps
##
                                                                 367.0
## CV
             366.8
                       368.2
                                  367.4
                                            366.8
                                                      364.9
                       364.5
## adjCV
             363.4
                                  363.9
                                            363.4
                                                      361.6
                                                                 363.6
## TRAINING: % variance explained
##
           1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
                                                                            8 comps
## X
             40.01
                      49.51
                               60.95
                                         74.65
                                                  79.13
                                                           84.14
                                                                     86.16
                                                                              89.76
## Salary
             40.75
                      44.71
                               45.91
                                         46.68
                                                  49.00
                                                           50.39
                                                                     51.39
                                                                              51.76
##
           9 comps 10 comps
                              11 comps
                                        12 comps
                                                   13 comps 14 comps
                                                                       15 comps
## X
             92.77
                       94.43
                                 96.71
                                            97.78
                                                      98.31
                                                                98.64
                                                                           99.06
             51.99
                       52.31
                                  52.46
                                            52.65
                                                      52.86
                                                                53.24
                                                                           53.41
## Salary
##
           16 comps 17 comps 18 comps 19 comps
## X
              99.43
                        99.93
                                   99.95
                                            100.00
## Salary
              53.42
                        53.42
                                   53.45
                                             53.46
```

```
validationplot(pls.mod, val.type="MSEP", legendpos = "topright")
```

Salary

PCR and PLS using caret

PCR

[1] 104418.8

```
## model parameter
                            label forReg forClass probModel
## 1 pcr
               ncomp #Components
                                    TRUE
                                            FALSE
                                                       FALSE
modelLookup("pls")
                            label forReg forClass probModel
     model parameter
                                             TRUE
## 1
       pls
              ncomp #Components
                                    TRUE
# Two ways for standardizing predictors
# train(..., preProc = c("center", "scale"))
set.seed(2)
pcr.fit <- train(x, y,</pre>
                 method = "pcr",
                 tuneGrid = data.frame(ncomp = 1:19),
                 trControl = ctrl1,
                 preProcess = c("center", "scale"))
predy2.pcr2 <- predict(pcr.fit, newdata = x2)</pre>
mean((y2 - predy2.pcr2)^2)
## [1] 103756.1
# pcr(..., scale = TRUE)
set.seed(2)
pcr.fit2 <- train(x, y,</pre>
                  method = "pcr",
                  tuneGrid = data.frame(ncomp = 1:19),
                  trControl = ctrl1,
                  scale = TRUE)
predy2.pcr3 <- predict(pcr.fit, newdata = x2)</pre>
mean((y2 - predy2.pcr3)^2)
## [1] 103756.1
ggplot(pcr.fit, highlight = TRUE) + theme_bw()
```


PLS

```
## [1] 107400.5
```

```
ggplot(pls.fit, highlight = TRUE)
```


Here are some old codes on ridge, lasso and ordinary least squares.

Comparing the models based on resampling results.

```
pls = pls.fit))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: lasso, ridge, pcr, pls
## Number of resamples: 10
##
## MAE
##
             Min. 1st Qu.
                             Median
                                        Mean 3rd Qu.
## lasso 167.5977 208.5325 254.8819 241.2160 274.4900 299.1552
## ridge 175.1284 207.5289 230.4954 235.8461 255.7910 300.1394
       172.5466 200.4329 220.4705 230.5195 262.9214 297.0131
## pcr
                                                                  0
         177.6785 207.5252 219.5236 232.5475 261.8803 301.0774
## pls
##
## RMSE
##
             Min. 1st Qu.
                             Median
                                        Mean 3rd Qu.
                                                          Max. NA's
## lasso 241.9932 267.6539 362.7664 346.0944 389.3080 540.4914
## ridge 258.8813 278.3543 314.6673 344.7360 387.0793 522.3878
## pcr
         256.4354 280.3404 306.7773 341.6713 388.7912 537.0166
                                                                   0
         235.8924 281.6246 315.0572 344.2670 400.4012 535.7458
## pls
##
## Rsquared
                                 Median
                                                    3rd Qu.
               Min.
                      1st Qu.
                                             Mean
                                                                 Max. NA's
## lasso 0.04942920 0.2492379 0.4905530 0.4514729 0.6339149 0.7392623
## ridge 0.03183006 0.3390105 0.4625176 0.4518270 0.6157224 0.7482311
## pcr
         0.03822160\ 0.3153999\ 0.4606597\ 0.4538285\ 0.6161780\ 0.7650883
                                                                          0
## pls
        0.02315483\ 0.4227511\ 0.5119100\ 0.4562174\ 0.5966268\ 0.6990407
```

bwplot(resamp, metric = "RMSE")

