MATH 7241: Probability and Statistics

Tamanna Urmi | Nov 22, '22 Instructor: Prof. Christopher King

The city of Baltimore collects and publicly shares the victim-based data for crime in the city updated monthly (source: <u>link</u>). For this project, I will be using this data from 2011-2016 to examine if the crime types that take place over time follow a Markov chain.

Data preparation

The raw data had 285,807 rows and 14 rows.

There were 9 types of crimes with different number of subtypes for each category. The subtypes were merged and pooled to the broader crime type converting this to a 9 state (crime types) timeseries.

Crime Type	Crime code	Aggregated n ew Crime Cod
		е
AGG. ASSAULT	4A, 4B, 4D, 4C	AA
COMMON ASSAULT	4E	CA
HOMICIDE	1K, 1O	HC
ROBBERY - STREET	3AF, 3AK, 3NF, 3AO, 3NK, 3NO	RS
SHOOTING	9S	ST
RAPE	2A	RP
ROBBERY -	3CK, 3CF, 3GF, 3EK, 3EF, 3GK,	RC
COMMERCIAL	3CO, 3LF, 3LO, 3GO, 3EO, 3LK	
ROBBERY - RESIDENCE	3JF, 3JO, 3JK	RR
ROBBERY -	3AJF, 3AJO	RCa
CARJACKING		

However, the dataset had a lot of null values for different columns which were dropped. Approximately 188k rows were dropped producing a final dataset with 96, 941 rows. The timestamps are mapped to step numbers and the new crime code and neighborhood of crime are converted to integer representation of categorical values.

steps	CrimeDate	CrimeTime	CrimeCode	CrimeCode_new	Neighborhood	CrimeCode_cat	Neighborhood_cat
0	01/01/2011	00:05:00	4B	AA	Frankford	3	7
1	01/01/2011	00:15:00	4D	AA	Inner Harbor	3	40
2	01/01/2011	00:20:00	4C	AA	Windsor Hills	3	49
3	01/01/2011	00:30:00	4E	CA	Inner Harbor	2	40
4	01/01/2011	00:39:00	4E	CA	Remington	2	21

Time series of crime type

Entire duration:

1000 timesteps:

Analysis

Crime type state frequency:

The jumps from state to state is then converted to edges on a graph/transition to calculate the frequency of each jump. The transition count is then divided by the total number of outward transitions from that state to find the transition probability:

The probability distribution of going to each of the destination from a particular source is as follows:

The stationary distribution of the transition matrix obtained by comparing T^{10} , T^{100} and T^{1000} is:

[0.031 0.491 0.288 0.107 0.01 0.028 0.015 0.015 0.015]

Simulation:

From visual inspection the simulated and the observed time series looks like they have almost the same probability distribution function.

Model evaluation

In order to evaluate the model, the observed jump frequencies from a 2-step transition will be compared to the expected jump frequency from a 2-step transition matrix.

```
Observed = N_{i \to * \to i}
```

Pseudo-code:

```
Two_step_jump_tuple = [] # empty list
for element in (length of timeseries - 2):
    jump = (timeseries[i], timeseries[i+2]) # find state i and j of jump
    Two_step_jump_tuple.append(jump) # append to the jump list

Count frequency of each tuple
```

Expected =
$$(T^2)_{ij} \sum N_i$$

Pseudo-code:

```
edge_frequency_matrix = empty matrix

for row in edge_frequency_dataframe:
    edge_frequency_matrix [source-state][destination-state] = frequency # the states determine position in matrix

expected_frequency = empty list
for row in row_length_of_transition_matrix:
    deg = sum(row) # number of jumps that exit the state corresponding to row number
    expected_frequency.append(T<sup>2</sup>[row]*deg)
```

Observed and expected frequencies (snapshot):

		jump	freq_obs	freq_exp
	0	(3, 3)	8499	8178.090523
	1	(3, 2)	13405	13623.243634
	2	(2, 2)	24818	23746.194505
	3	(2, 7)	708	703.989391
	4	(7, 3)	423	431.200623
	76	(7, 9)	23	20.750251
	77	(7, 7)	28	28.735277
	78	(6, 7)	39	59.470073
	79	(7, 5)	14	14.974349
	80	(1, 5)	40	31.828450

The following image is visually representing the two frequencies of comparison.

Goodness of fit =
$$\frac{\sum (Obs_{ij} - Exp_{ij})^2}{Exp_{ij}} = 861.76$$

Degrees of freedom = # parameters to estimate - # constraints
=
$$81-9$$

= 72

Decision rule: If goodness of fit > $\chi_{1-0.05, 72}$, H_0 will be rejected.

Decision:

From the Chi-squared distribution table, it's obtained that $\chi_{1-0.05,~72}=53.462$. Since the goodness of fit value is larger than the Chi-squared value, the hypothesis is rejected. Markov chain is not a good model for this timeseries of crimes in City of Baltimore because the observed and expected frequency of the two-step transition doesn't match well enough to pass the goodness of fit test.