

DỰ ÁN MÔN HỌC CẢM BIẾN

THIẾT KẾ VÀ THI CÔNG HỆ THỐNG CẢM BIẾN GIÁM SÁT CHẤT LƯỢNG KHÔNG KHÍ TRONG NHÀ

GVHD: TS. Lê Quốc Huy

Nhóm 3 : Trần Kế Hưng Nguyễn Gia Huy Nguyễn Tiến Minh

ĐẶT VẤN ĐỀ

Tình hình môi trường hiện nay trên thế giới nói chung và nước ta nói riêng?

Một số hệ lụy khi chất thải ra môi trường đạt các ngưỡng đáng báo động.

Nguồn: Internet, từ khóa: "Ô nhiễm không khí"

CÁC THUỘC TÍNH CƠ BẢN

TÁC HẠI CỦA VIỆC Ô NHIỄM KHÔNG KHÍ NHÀ Ở

Ý TƯỞNG THIẾT KẾ

CÁC ĐẠI LƯỢNG CẦN ĐO

	NHIỆT ĐỘ	ĐỘ ẨM	MẬT ĐỘ BỤI MỊN	NỒNG ĐỘ CO
DÅI ĐO	0 – 50°C	10-90%	0-500 μg/m3	0-200 ppm
CHU KỲ LẤY MẪU	5p/lần	5p/lần	15p/lần	15p/lần
SAI SỐ CHẤP NHẬN	±0.5°	±2-5%	10 μg/m3	2 ppm
TỐC ĐỘ ĐÁP ỨNG	1-2s	1-2s	1-2s	1-2s

DHT22

Tín hiệu ra : Digital

Dải đo độ ẩm : 0 - 100% ± 2%-5%

Độ phân giải : 0.1%

Dải đo nhiệt độ : -40 - 80 °C ± 0.5 °C

Độ phân giải : 0.1 °C

Chu kỳ lấy mẫu : 2s

Cảm biến độ ẩm

Nhiệt điện trở và đồ thị đặc tính

Giao thức truyền thông : 1-Wire (Single Bus)

DATA = 8 bit phần nguyên của độ ẩm + 8 bit thập phân độ ẩm + 8bit số nguyên nhiệt độ + 8 bit thập phân nhiệt độ + 8 bit kiểm tra tổng

Sử dụng thư AM232X của Rob Tillaart để lập trình cho cảm biến DHT22

```
#include <DHT.h>
#include <DHT_U.h>
#define DHTPIN 12
#define DHTTYPE DHT22
```

```
void setup()
{
   dht.begin();
}

void loop()
{
   int     h = dht.readHumidity();
   float    t = dht.readTemperature();
}
```


Cảm biến PMS7003

Giao thức truyền thông

Dải đo bụi PM2.5

Sai số

Độ phân giải

Chu kỳ lấy mẫu

: UART

 $: 0 - 500 \, \mu g/m^3$

: $\pm 10\% \sim 100-500 \,\mu g/m^3$

 $\pm 10 \ \mu g/m^3 \sim 0-100 \ \mu g/m^3$

: 1 µg/m³

: 2s

Phương pháp đo :Tán xạ laser (Laser Scattering)

Ưu điểm : Có thể phát hiện được nhiều loại hạt với kích thước khác nhau

Nhước điểm : Nồng độ bụi được tính toán bằng vi xử lý nên sẽ ảnh hưởng đến độ chính xác của phép đo

0	Byte bắt đầu 1	0x42	
1	Byte bắt đầu 2	0x4d	
2	Kích thước khung truyền high 8 bits	2x13 + 2 (data + check bytes)	
3	Kích thước khung truyền low 8 bits		
4	Data 1 cao 8 bits	PM1.0 đơn vị : ug/m³ (CF=1)	
5	Data 1 thấp 8 bits		
6	Data 2 cao 8 bits	PM2.5 đơn vị: ug/m³ (CF=1)	
7	Data 2 thấp 8 bits		
8	Data 3 cao 8 bits	PM1.0 đơn vị: ug/m³ (CF=1)	
9	Data 3 thấp 8 bits		
10	Data 4 cao 8 bits	PM1.0 đơn vị: ug/m³ (under	
11	Data 4 thấp 8 bits	atmospheric environment)	
12	Data 5 cao cao 8 bits	PM2.5 đơn vị: ug/m³ (under	
13	Data 5 thấp 8 bits	atmospheric environment)	
14	Data 6 cao 8 bits	PM10 đơn vị: ug/m³ (under	
15	Data 6 thấp 8 bits	atmospheric environment)	
16	Data 7 cao 8 bits	Số lượng của hạt có kích thước	
17	Data 7 thấp 8 bits	ngoài 0.3um trong 0.1 L không khí	

18	Data 8 cao 8 bits	Số lượng của hạt có kích thước ngoài
19	Data 8 thấp 8 bits	1.0um trong 0.1 L không khí
20	Data 9 cao 8 bits	Số lượng của hạt có kích thước ngoài
21	Data 9 thấp 8 bits	1.0um trong 0.1 L không khí
22	Data 10 cao 8 bits	Số lượng của hạt có kích thước ngoài
23	Data 10 thấp 8 bits	2.5um trong 0.1 L không khí
24	Data 11 cao 8 bits	Số lượng của hạt có kích thước ngoài
25	Data 11 thấp 8 bits	5.0um trong 0.1 L không khí
26	Data 12 cao 8 bits	Số lượng của hạt có kích thước ngoài
27	Data 12 thấp 8 bits	10um trong 0.1 L không khí
28	Data 13 cao cao 8 bits	
29	Data 13 thấp 8 bits	
30	Data and Check high 8 bits	Check code = Start character
31	Data and Check thấp 8 bits	1+2+data+data13 thấp 8bits

Cài đặt giao thức truyền thông UART:

```
#include <SoftwareSerial.h>
SoftwareSerial PMS(6, 7); // RX/TX
#define LENG 31 //0x42 + 31 bytes = 32 bytes
```

```
void getPM2 5(){
  PMS.listen();
  int chksum=0, res=0;
  unsigned char pms[LENG];
  if (PMS.find (0x42))
      PMS.readBytes (pms, LENG);
      for (int i=0; i<29; i++)
       chksum+=pms[i];
      if(pms[0]!=0x4d)
          Serial.println("ERROR");
          return res;
    String sPM2 5 = String(pms[11]) + String(pms[12]);
    PM2 5 = sPM2 5.toInt();
    return PM2 5;
```

CẢM BIẾN NÔNG ĐỘ CO

Cảm biến MQ7

Tín hiệu đầu ra : Analog và Digital

Dải đo : 20 – 2000 ppm

Độ phân giải : $1 \mu g/m^3$

Chu kỳ lấy mẫu : 150s

CẢM BIẾN NỒNG ĐỘ CO

Vc : Nguồn nuôi

Vh : Điện áp làm nóng

V_{RL} : Điện áp điện trở RL

CẢM BIẾN NỒNG ĐỘ CO

Đường cong đặc tính

Nguồn : Datasheet

 $ppm = -\frac{(R_S / R_L) - 0.2556}{0.0006}$

Xấp xỉ đường đặc tính

CẢM BIẾN NỒNG ĐỘ CO

Mạch chuyển đổi giá trị R2(RL) từ giá trị điện trở thành giá trị điện áp (V_{RL})

Nguồn: https://www.teachmemicro.com/use-mq-7-carbon-monoxide-sensor/

$$R_L(R_2)$$
 = 2000Ω Công thức tính giá trị R_s/R_L :
$$\frac{R_S}{R_I} = \frac{V_C - V_{RL}}{V_{RI}}$$

$$V_{RL} = \frac{A_{OUT}}{1024} \times 5$$

$$R_S = \frac{V_C - V_{RL}}{V_{RL}} R_L$$

Thiết kế phần cứng

BẢN VỀ

THINGER 10

DATABASE

Date	со	DUST	Humidity	Temperature
2021-08-22T23:03:14.792Z	21	44	69	31
2021-08-22T23:01:20.610Z	20	42	70	30
2021-08-22T22:59:50.912Z	21	33	70	31
2021-08-22T22:53:40.315Z	20	33	73	30
2021-08-22T22:47:22.174Z	20	40	72	31
2021-08-22T22:44:32.519Z	20	31	69	30
2021-08-22T22:41:10.673Z	20	38	65	29
2021-08-22T22:40:10.661Z	20	29	75	30
2021-08-22T22:39:10.823Z	20	29	69	31
2021-08-22T22:38:10.714Z	21	49	70	29
2021-08-22T22:37:10.395Z	20	39	68	30
2021-08-22T22:36:10.376Z	20	32	69	29
2021-08-22T22:35:10.289Z	20	35	67	30
2021-08-22T22:34:10.239Z	20	40	70	29
2021-08-22T22:33:10.459Z	21	49	74	29
2021-00-22722-22-10 1007	20	Л	75	20

BLYNK

CẢM ƠN ĐÃ LẮNG NGHE

DỰ ÁN THIẾT BỊ ĐÁNH GIÁ CHẤT LƯỢNG KHÔNG KHÍ