Text Function $4: \{(24, 2a)\}$	$= (2(1) + 22(2) - 7)^{2} + (22(1) + 2(2) +$	2)-5) 2 +(K) time visite g(K) grad & f(x) at x (K)
Steepest Descent Convey	Staling Point: [2,2] gence Guterron: Ilg(W) < 0.01 -> 5 Heration #:2	STOP Helcher Reeves Heration #: 2
Xfmal = [0.99, 3.00]	Xforial = [0.99, 3.00]	Xfnal = [0.99, 3.00]
Fefral = 0.0001	fixfunal = 0.0001	fxfired = 0.0001
	Cong. Gutonon: f(K)-f(K+1	1 < 10-6
Heration # 5	Iteratum #: 4	Iteration#:
	Xfrd = [1.00, 2,99]	Xfnal = [0.99, 3.00]
Xfinal - [1,00,2-99]'		fxfind = 0.0001
fxfinal = 0.000	fxfinal = 0.0000	
N. Paris	The same	

Clarat Points: (5,0),	(5, 10), (5,5), (10,0) (10,10) (10,5) (0,0) BPGS	Fletcher Reserves
	Starting Point (2,2)	general model that the party of
Convegence Outeron:	f(k) - f(k+) < 10-6 → 510P	
Hoston#: 2	$f(k) - f(k+1) < 10^{-6} \rightarrow 570P$ Horaton #: 1	Iteration # : 5
Xfred = [9.10, 9.10]	Xe 1 = [9.10 9.10]	Xfind = [9.99, 9.99]
fxfmal = 133.34	fxfind = 133.34	fxfind = 0.0000
77	11 g w) 11 < 0.01 → STOP	(1 Knean) an about
Hestor #	Iferation # . 31	(Herahon#: 1 700 Al miles 1)
	The second secon	
X .	And force (1941)	Fxfinal = 133.34
fine = [7 74, 9, 44]	f - 0 - 0 mm	TX final = 133.34

MINIMUM : (& 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,) [St part : [2,2,2,2,2,2,2,2,2]] 8FG9	Flekhar - Reeves
Starting point: $[1,2,2,2,2,2,2,2,2]$ Convergence Criterion- 1 : $ g(k) \gg 0.01 \rightarrow STOP$		Convg. Outerion - I g(x) < 0.0 -> 5TDP
X finel = [100, 100, 100, 100, 100, 100, 101, 104, 106, 117] f(X finel) = 0.0090	f(xford) = 0.0003 PLENSIDER CETTERION I as (properly - 1)	
Criteria-I: $f(k+1) > f(k) r > 570P$ $f(k) - f(k+1) < 10^{-6}$ [teration #: 1864]	Crotena-I: $f(k)-f(k+1) < 10^{-6}$ Hereton #: 48 Xfund:	Criteria-I: $f(k)-f(k+1) < 10^{-6}$ Heration # : 4 Xfinal:
×foral = [100,100,100,100,100,100,100,101,102,105]	[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]	
f(xfmd) = 0.0008	f(x find) = 0.0000	f(Xfrd) = 14.897

Steepest Descent	BFGS	Flekher - Rieses
1 = -0.00 0.00,000,-0.00,-0.00,+0.00,+0.00,	Herahan # 10 Xfinal = [0-00,0-00, -000, -000, -000, 000,000,000	Iteration #: 1025 Xfinicl =
	wg. God-I: (f(k))-f(k+1) < 10-6	-> stap
wn # : 25 Washed	Iteration#: 15	Heration # 7 X final = [0.99,0.34,-0.03;0.22,-0.27,-0.24,-0.18,
)) = 0.0000	f(xfriel) = 0.0000	f(xfrel) = 3-1186