Mathematics for Political Science

Lesson 3: Calculus Solutions

(b)
$$-5$$

3. (a)
$$x^{-\frac{2}{3}}$$

(c)
$$3y^2 + 6y$$

(d)
$$5x^4 + 3x^2 - 2x$$

(e)
$$1 + 3y^2 + \frac{14}{y^3}$$

(f)
$$2y + y^{-2} - 3y^{-4}$$

(g)
$$\frac{12x^2-8x+16}{x^4-8x^3+16x^2}$$

(g)
$$\frac{12x^2-8x+16}{x^4-8x^3+16x^2}$$

(h) $e^{y^2-3y+2}(2y-3)$

(i)
$$\frac{2}{x}$$

4.
$$4(8(x^4+2)-1)*8*4x^3$$

5.

$$f(x) = 3x^2 - 7x + 2$$

$$g(x) = 8x^3 - 46x^2 + 73x - 35$$

•
$$f(x)$$
: minimum at $x = \frac{7}{6}$

• g(x): maximum at
$$x = \frac{23 - \sqrt{91}}{12}$$
, minimum at $x = \frac{23 + \sqrt{91}}{12}$

6. (a)
$$0 = \frac{2}{x} + 1 - \frac{2}{2x+1}$$

(b) $-2x^2 + x + 2 = 0$

(b)
$$-2x^2 + x + 2 = 0$$

(c) Zeroes at approximately -.78 and 1.28.

7. •
$$\frac{\partial(.)}{\partial e} = h(eR(\frac{f}{f+g}))^{h-1}R\frac{f}{f+g}$$

•
$$\frac{\partial(.)}{\partial f} = h(eR(\frac{f}{f+g}))^{h-1}eR\frac{g}{(f+g)^2}$$

8. (a)
$$y^4 + C$$

(b)
$$\frac{1}{3}x^3 - 2x^{\frac{1}{2}} + C$$

(c)
$$\frac{360}{7}t^7 + C$$

(b)
$$\frac{531440}{3}$$

(d)
$$28\frac{2}{3}$$

(e)
$$e^4 - e^2$$

(f)
$$\frac{16}{3} - \frac{4}{3}\sqrt{2}$$

10.
$$2306\frac{2}{3}$$