Komprimierung

Ingo Blechschmidt, Michael Hartmann

6. Dezember 2006

Inhalt

- Lauflängenkodierung
- 2 Arithmetische Kodierung
- 3 Shannon–Fano-Kodierung
 - Grundideen
 - Algorithmus
 - Beispiel
- 4 Huffman-Kodierung
 - Algorithmus
 - Beispiel
 - Verwendung
- 5 Grenzen der Komprimierbarkeit

Lauflängenkodierung (RLE)

- Idee: Ersetzung von sich direkt wiederholenden Zeichen durch eine Anweisung
- Beispiel: aaabbcccccde → 3 a, bb, 6 c, de
- Sehr leicht umsetzbar
- Effizient nur in Spezialfällen, beispspielsweise großen einfarbigen Bereichen in Bildern

Arithmetische Kodierung

- Unterteilung eines Einheitsintervalls entsprechend den relativen Häufigkeiten der Zeichen des Texts
- Weitere Unterteilung bis alle Zeichen genutzt
- Kodierung einer beliebigen Zahl des schärfsten Intervalls

Shannon-Fano-Kodierung

Shannon-Fano-Kodierung

Entropiekodierung ("Kompressionsverfahren")

- Darstellung häufiger Zeichen durch kurze Bitfolgen; Darstellung seltener Zeichen durch lange Bitfolgen
- Eindeutigkeit der Bitfolgen ("Präfixfreiheit")

Problembeispiel: $A \mapsto 10 \quad B \mapsto 01 \quad C \mapsto 0$

$$\left. \begin{array}{l} \textit{ABC} \mapsto 10010 \\ \textit{ACA} \mapsto 10010 \end{array} \right\}$$
 nicht eindeutig

Algorithmus

- Sortierung der Zeichen nach rel. Häufigkeit
- 2 Einteilung der Zeichen in zwei Gruppen, sodass Summen der Häufigkeiten etwa gleich
- 3 So lange fortfahren, bis Entsprechung jedes Zeichens durch einen Pfad im Baum

Beispiel

Text (39 Zeichen): ABADDCCAABABEDAECBDDDAAAABAAAABBCAECECE

Zeichen A B C D E Abs. Häufigkeit 15 7 6 6 5

11101001110000100001000

Beispiel

Zeichen	A	В	\mathbf{C}	D	E
Abs. Häufigkeit	15	7	6	6	5
Benötigte Bits	3	3	3	3	3

Bit	0	1
Abs. Häufigkeit	87	30

$A\mapsto 000$	
$B \mapsto 001$	
$C \mapsto 010$	
$D\mapsto 011$	
$E \mapsto 100$	

Zeichen	Α	В	C	D	E
Abs. Häufigkeit	15	7	6	6	5
Benötigte Bits	2	2	2	3	3

Bit	0	1	
Abs. Häufigkeit	40	49	-

$$A \mapsto 11$$

$$B \mapsto 10$$

$$C \mapsto 01$$

$$D \mapsto 001$$

$$E \mapsto 000$$

Huffman-Kodierung: Algorithmus

- Wald erstellen mit allen vorkommenden Zeichen
- Neuen Baum erstellen; die beiden Bäume mit geringster Häufigkeit als Blätter nutzen
- 3 So lange fortfahren, bis nur noch ein Baum vorhanden

Beispiel

Text (39 Zeichen): ABADDCCAABABEDAECBDDDAAAABAAAABBCAECECE

Zeichen A B C D E Abs. Häufigkeit 15 7 6 6 5

Beispiel

Zeichen	A	В	\mathbf{C}	D	E
Abs. Häufigkeit	15	7	6	6	5
Benötigte Bits	3	3	3	3	3

Bit	0	1
Abs. Häufigkeit	87	30

$A \mapsto 000$	
$B \mapsto 001$	
$C\mapsto 010$	
$D \mapsto 011$	
$E\mapsto 100$	

Zeichen	Α	В	C	D	E
Abs. Häufigkeit	15	7	6	6	5
Benötigte Bits	1	3	3	3	3

Bit	0	1
Abs. Häufigkeit	41	46

$$A \mapsto 0$$

$$B \mapsto 100$$

$$C \mapsto 101$$

$$D \mapsto 110$$

$$E \mapsto 111$$

Verwendung

Verwendung von Deflate (LZ77 kombiniert mit **Huffman-Kodierung):**

- zip
- gzip
- png
- tiff
- pdf
- cab

Grenzen der Komprimierbarkeit

- Entropie als untere Schranke der Komprimierbarkeit
- Beweis der Nichtexistenz eines Perfekten VerfahrensTM:
 - Annahme: Existenz eines Verfahrens, dass jeden beliebigen Text um ein Bit verkürzt
 - *Dann:* Rekursive Anwendung denkbar
 - Schluss: Komprimierung jedes beliebigen Texts auf ein Bit
 - *Aber*: $256 < \infty!$

Fragen?

Bildquellen

- http: //upload.wikimedia.org/wikipedia/de/d/db/ShannonCodeAlg.png
- http: //upload.wikimedia.org/wikipedia/de/d/d8/HuffmanCodeAlg.png
- http://upload.wikimedia.org/wikipedia/de/5/56/ ArithmetischesCodierenBeispiel.png