CSE 191: Discrete Structures Logical Reasoning and Proof Methods

Nasrin Akhter

- Logical Reasoning
 - Logical Reasoning Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: What is it?

Suppose the following are true statements:

You will buy your friend lunch if they drive you to work. They drove you to work.

- What can you conclude?
 - You will buy your friend lunch.
- Differs from logical equivalence
 - Statements derived are not always equivalent.
 - Can be new knowledge
 - Multiple facts can be used to derive a new statement.
- Also known as deductive reasoning.

Logical Reasoning: Arguments

- Arguments are:
 - a list of propositions, called hypotheses (also called premises), and
 - A final proposition, called the conclusion.

Hypotheses — $p_1 \land p_2 \land \dots \land p_n$ (i.e., premises) $p_1 \land p_2 \land \dots \land p_n$ Conclusion — \vdots C

Definition

An argument is valid if:

 $(p_1 \land p_2 \land \dots \land p_n) \rightarrow c$ is a tautology

- An argument is invalid if it is not valid.
- Fallacies are incorrect reasonings which lead to invalid arguments.

Logical Reasoning: What is it?

P 72

You will buy your friend lunch if they drive you to work. They drove you to work.

You will buy your friend lunch.

Logical Reasoning: Simplest Example

Example:

PAP

Prove that the following is a valid argument: -

Proving this argument is valid is same as proving that $p \rightarrow p$ is a tautology.

Logical reasoning proof:

1. p Hypothesis

 $\begin{array}{c|cccc} p & p \rightarrow p \\ \hline & F & T \\ \hline & T & T \end{array}$

Since we have arrived at our conclusion, our proof is complete.

• Therefore, we have shown that $\frac{p}{:p}$ is a valid argument.

Recall Logical Equivalence Rules

Equivalence	Name
$p \wedge T \equiv p, \qquad p \vee F \equiv p$	Identity laws
$p \lor T \equiv T, p \land F \equiv F$	Domination laws
$p \lor p \equiv p, p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p, p \land q \equiv q \land p$	Commutative laws
$(p \ Vq) \ Vr \equiv p \ V(q \ Vr), (p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \ V(q \land r) \equiv (p \ Vq) \land (p \ Vr), \ p \land (q \ Vr) \equiv (p \land q) \ V(p \land r)$	Distributive laws
$\neg (p \lor q) \equiv \neg p \land \neg q, \qquad \neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p, p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv T, \qquad p \land \neg p \equiv F$	Negation laws

Recall Logical Equivalence Rules

Logical Equivalences Involving Conditional Statements

$p \to q \equiv \neg p \ V q$
$p \to q \equiv \neg q \to \neg p$
$p \lor q \equiv \neg p \to q$
$p \wedge q \equiv \neg (p \rightarrow \neg q)$
$\neg(p \to q) \equiv p \land \neg q$
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \ V(p \to r) \equiv p \to (q \ V r)$
$(p \to r) \ V(q \to r) \equiv (p \land q) \to r$

Logical Equivalences Involving Biconditional Statements

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv q \leftrightarrow p$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Logical Reasoning: Another Simple Example

Example: Consider the contrapositive as a logical argument.

$$\frac{\neg q \rightarrow \neg p}{ \therefore p \rightarrow q}$$

Proof of validity:

1.	$p \rightarrow$	q	Hypothesis	S
	1		<i>y</i> .	

2.
$$\neg p \lor q$$
 Conditional law

3.
$$q \lor \neg p$$
 Commutative law

4.
$$\neg \neg q \lor \neg p$$
 Double negation

3.
$$\underline{q} \lor \neg p$$
 Commutative law
4. $\neg \neg q \lor \neg p$ Double negation
5. $\neg q \to \neg p$ Conditional identity

Proof of validity:

1.
$$\neg q \rightarrow \neg p$$
 Hypothesis

2.
$$\neg \neg q \lor \neg p$$
 Conditional identity

3.
$$q \lor \neg p$$
 Double negation

5.
$$p \rightarrow q$$
 Conditional identity

Note: this is the logical equivalence proof we performed.

Logical Reasoning: Another Simple Example

Proof of validity:

1.
$$p \rightarrow q$$
 Hypothesis

2.
$$\neg p \lor q$$
 Conditional identity, 1

3.
$$q \lor \neg p$$
 Cumulative law, 2

4.
$$\neg \neg q \lor \neg p$$
 Double negation, 3

5.
$$\neg q \rightarrow \neg p$$
 Conditional identity, 4

Proof of validity:

1.
$$\neg q \rightarrow \neg p$$
 Hypothesis

2.
$$\neg \neg q \lor \neg p$$
 Conditional identity, 1

3.
$$q \lor \neg p$$
 Double negation, 2

5.
$$p \rightarrow q$$
 Conditional identity, 4

- Note: this is the logical equivalence proof we performed.
 - Add line numbers for logical argument proofs.

- Logical Reasoning
 - Logical Reasoning Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Proof Definition

Definition

A **logical proof** of an argument is a sequence of steps, each of which consists of a proposition and a justification.

- Each line should contain:
 - a hypothesis (assumption).
 - a proposition that is equivalent to a previous statement
 - a proposition that is derived by applying an argument to previous statements.
- Justifications should state
 - hypothesis.
 - the equivalence law used (and the line it was applied to).
 - the argument used (and the line(s) it was applied to).
- The last line should be the conclusion.

- Logical Reasoning
 - Logical Reasoning Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Invalid Argument

• To prove an argument is invalid, we need a counterexample.

Example:

Consider the converse as an argument:

Proof of validity:

Suppose p: FALSE and q: TRUE. Then $p \to q$ is TRUE, but $q \to p$ is FALSE. Thus, the argument is invalid.

• Counterexample: a situation where all hypotheses are TRUE and the conclusion is FALSE.

- Logical Reasoning
 - Logical Reasoning Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$ \begin{array}{c} \mathbf{p} T \\ \mathbf{p} \Rightarrow T \\ \mathbf{q} \\ \vdots \\ \mathbf{q} \end{array} $	Modus ponens
$\frac{\neg q}{p \rightarrow q} \qquad \frac{12}{12 \rightarrow 17}$ $\therefore \neg p$	Modus tollens
$ \begin{array}{cccc} p & \rightarrow & q \\ \hline q & \rightarrow & r \\ \hline \vdots & p & \rightarrow & r \end{array} $	Hypothetical syllogism

Logical Reasoning: Rules of Inference

Rule of Inference	Name
p V q T ¬p T ∴ q	Disjunctive syllogism
$\frac{P}{\therefore p \ V \ q}$	Addition
	Simplification

Logical Reasoning: Rules of Inference

Rule of Inference	Name
p	Conjunction
p V q T <u>¬pV r T</u> ∴ qV r T	Resolution

- Logical Reasoning
 - Logical Reasoning Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning Proofs

Example:

Using Modus ponens:

P (

-, prove Modus tollens:-

 $\frac{\mathbf{p} \rightarrow \mathbf{q}}{\mathbf{r} \cdot \mathbf{q}}$

Proof:

1. ¬*q*

 $2. p \rightarrow q$

3. $\neg q \rightarrow \neg p$

√5. ¬p

Hypothesis

Hypothesis

Contrapositive, 2

Modus ponens, 3,1

Logical Reasoning: Proofs

Example: Prove the validity of the following argument.

If you send me an e-mail message, then I will finish writing the program. If you do not send me an e-mail message, then I will go to sleep early. If I go to sleep early, then I will wake up feeling refreshed.

... If I do not finish writing the program, then I will wake up feeling refreshed.

q: I will finish writing the program.

r: I will go to sleep early.

s: I will wake up feeling refreshed.

Proof:

$$1. p \rightarrow q$$

2.
$$\neg g \rightarrow \neg p$$

3.
$$\neg p \rightarrow r$$

$$4. \neg q \rightarrow \underline{\epsilon}$$

$$5.r \rightarrow s$$

6.
$$\neg q \rightarrow s$$

Hypothesis

Hypothetical syllogism, 2, 3

Hypothesis

Hypothetical syllogism, 4, 5

Logical Reasoning: Another Example

Example:

$$7(PN) = 7PV12 \qquad (\neg f V \neg r) \rightarrow (h \land t) \qquad T$$
regument is valid:

Prove that the following argument is valid:

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Mathematical Proofs

- A mathematical proof is usually "informal".
- More formal than everyday language, less formal than logical proofs.
 - More than one rule may be used in a step.
 - (Some) steps may be skipped.
 - Axioms may be assumed.
 - Rules for inference need not be explicitly stated.
- Proofs must be a self-contained line of reasoning.
 - Statements used must be
 - facts (axioms),
 - theorems, lemmas, corollaries (previously proved statements), or
 - statements that can be derived from the above.
 - You cannot use something as fact within a proof if you are not certain it is.

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Some Terminology

- Theorem: statement that can be shown true.
 - Proposition: less important theorem.
 - Lemma: less important theorem used to prove other theorems.
 - Corollary: theorem that trivially follows another theorem.
- Conjecture: statement that is proposed to be true, but has not been proved.
- Axiom: statement assumed to be true (i.e., true statement that does not need a proof).
- Most axioms, theorems, etc., are properties concerning all elements over some domain.
 - E.g., All perfect squares are non-negative.
- The domain should be clear from context or explicitly stated.

Hidden Universal Quantifier

Example:

875, 8-570

8.575.57

Theorem: If a > b, then a - b > 0.

- [For all real numbers a and b], if a > b, then a b > 0.
- Defined by the predicates:
 - P(a,b): a > b
 - Q(a, b) : a b > 0
 - Theorem: $\forall a, b, (P(a, b) \rightarrow Q(a, b)).$
- We can assume a general domain: \mathbb{R} (the real numbers).
 - The context doesn't state otherwise.

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Proof Method: Proof by Exhaustion

Definition

A proof by exhaustion for $p \rightarrow q$ starts by considering each element of the domain of discourse and showing that the predicate is true.

- A special type of proof by case.
- Only a useful method when dealing with a small domain.
 - Small is relative, but must be finite.
 - Example: {2, 4, 6} is a small domain.

Proof by Exhaustion Example

Example:

Prove if n is in the domain $\{2, 4, 6\}$, then $3n \le 18$.

<u>Proof idea</u>: We need to show this is true for n = 2, n = 4, and n = 6.

Proof:

- Take n = 2: 3n = 3(2) = 6. We know $6 \le 18$.
- Take n = 4: 3n = 3(4) = 12. We know $12 \le 18$.
- Take n = 6: 3n = 3(6) = 18. We know $18 \le 18$.

So for all possible values of n, $3n \le 18$ is true.

Proof by Exhaustion (non-)Example

Example:

Prove that if *n* has the form x^2 for some integer *x*, then n > 0.

• "n has the form x^2 " is the same as " $n = x^2$."

Proof:

- Take n = 4: Let x = 2, so $x^2 = (2)^2 = 4$.
 - Then $n = x^2$ and we know 4 > 0.
- Take n = 625: Let x = 25, so $x^2 = (25)^2 = 625$.
 - Then $n = x^2$ and we know 625 > 0.
- Take n = 900: Let x = -30, so $x^2 = (-30)^2 = 900$.
 - Then $n = x^2$ and we know 900 > 0.
- : If $n = x^2$ for some integer x, then n > 0.

- Is this true for every *n*?
 - A proof should handle every possible scenario.

Proof by Exhaustion (non-)Example

Example:

Prove that if *n* has the form x^2 for some integer *x*, then n > 0.

• "n has the form x^2 " is the same as " $n = x^2$."

Proof:

- Take n = 4: Let x = 2, so $x^2 = (2)^2 = 4$.
 - Then $n = x^2$ and we know 4 > 0.
- Take n = 625: Let x = 25, so $x^2 = (25)^2 = 625$.
 - Then $n = x^2$ and we know 625 > 0.
- Take n = 900: Let x = -30, so $x^2 = (-30)^2 = 900$.
 - Then $n = x^2$ and we know 900 > 0.
- : If $n = x^2$ for some integer x, then n > 0.

- Is this true for every *n*?
 - A proof should handle every possible scenario.

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Disproof by Counterexample

- How can we prove a statement is false?
- The theorems we try to prove are generally universally quantified implications.
 - Prove $\forall x(P(x) \rightarrow Q(x))$ is false by finding a counterexample.
 - One such x where P(x) is TRUE and Q(x) is FALSE (T \rightarrow F \equiv F).
 - Recall negation of quantifiers: $\neg \forall x, (...) \equiv \exists x, \neg (...)$.

Disproof by Counterexample

Example:

Find a counter-example for each of the statements below:

- Every month of the year has 30 or 31 days.
- If n is an integer and n^2 is divisible by 4, then n is divisible by 4. \mathcal{L}
- For every positive integer x, $x^3 < 2x$
- Every positive integer can be expressed as the sum of the squares of two integers.
- The multiplicative inverse of a real number x is a real number y such that xy = 1. Every real number has a multiplicative inverse.

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Direct Proofs

Definition

A direct proof for $P(x) \to Q(x)$ starts by assuming P(x) (for x) as fact and finishes by establishing Q(x).

- Make use of axioms, previously proven theorems, inference rules, etc.
- Same approach was used to prove that a logical argument is true.
 - P(x) is the hypothesis.
 - Q(x) is the conclusion.

Direct Proofs

Definition

A direct proof for $P(x) \to Q(x)$ starts by assuming P(x) (for x) as fact and finishes by establishing Q(x).

Proof Layout

Proof:

Assume P(x), for some x.

: Perform your derivations (using theorems, axioms, etc.)

 $\therefore Q(x)$.

Direct Proof Example

Prove that if n is an odd integer, then n^2 is also odd.

- Decomposition of statement to $P(x) \rightarrow Q(x)$:
 - The domain of *x* is all integers.
 - P(x): x is an odd integer.
 - $Q(x): x^2$ is an odd integer.

Proof:

Assume *n* is an odd integer.

Then there exists an integer k such that n = 2k + 1. Hence:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2 \cdot (2k^2 + 2k) + 1.$$

Since k is an integer, $2k^2 + 2k$ is also an integer (call it j).

So n^2 has the form 2j + 1.

Therefore, n^2 is an odd integer.

Direct Proof Example

If n is an odd integer then $\frac{n+3}{2}$ is an integer.

- Decomposition of statement to $P(x) \rightarrow Q(x)$:
 - The domain of *x* is all integers.
 - P(x): x is an odd integer.
 - $Q(x): \frac{x+3}{2}$ is an integer.

Proof:

Assume *n* is an odd integer.

Then there exists an integer k such that n = 2k + 1. Hence:

$$n+3=(2k+1)+3=2k+4=2 \cdot (k+2)$$
.

Then $\frac{n+3}{2} = \frac{2(k+2)}{2} = k+2$, which is an integer.

Therefore, $\frac{n+3}{2}$ is an integer.

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Exhaustion

Proof by Contraposition

Recall that $p \to q$ is logically equivalent to its contrapositive, $\neg q \to \neg p$.

Definition

A proof by contraposition for $P(x) \rightarrow Q(x)$ is proof $P(x) \rightarrow Q(x)$ where:

- write a direct proof for $\neg Q(x) \rightarrow \neg P(x)$, and
- conclude that the contrapositive of $\neg Q(x) \rightarrow \neg P(x)$ is also true.
- Proof Layout

Proof:

Assume $\neg Q(x)$, for some x.

: Perform your derivations (using theorems, axioms, etc.)

 $\therefore \neg P(x)$.

Since $\neg Q(x) \rightarrow \neg P(x)$ is true, we may conclude that our original statement $P(x) \rightarrow Q(x)$ is also true.

Proof by Contraposition Example

Prove that if n is an integer and 3n + 2 is odd, then n is an odd.

- Decomposition of statement to $P(x) \rightarrow Q(x)$:
 - The domain of *x* is all integers.
 - P(x): 3x+2 is an odd integer.
 - Q(x): x is an odd integer.

Proof by contraposition:

Assume *n* is not an odd integer. So *n* is even.

Then there exists an integer k such that n = 2k. Hence:

$$3n + 2 = 3(2k) + 2 = 6k + 2 = 2 \cdot (3k + 1)$$

Since k is an integer, 3k + 1 is also an integer (call it j). So 3n + 2 has the form 2j.

Therefore, 3n + 2 is an even integer, so 3n + 2 is not an odd integer.

Thus, $\neg Q(n) \rightarrow \neg P(n)$.

Then, $P(n) \rightarrow Q(n)$ is also true.

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Contradiction
 - Proof Examples

Proof by Contradiction

Note that p is logically equivalent to $\neg p \rightarrow (r \land \neg r)$ (for any proposition r).

Definition

A proof by contradiction for P is actually a proof for $\neg P \rightarrow (r \land \neg r)$ where:

- write a proof starting with the assumption $\neg P$ and
- find some proposition r where you can derive both r and $\neg r$ to both be TRUE (a contradiction).

Proof Layout

Proof by Contradiction:

Assume $\neg P$.

:Find something that breaks.

:: Contradiction.

Therefore, *P* is true.

Proof by Contradiction Example

Prove that $\sqrt{2}$ is not a rational number.

- Decomposition of statement to *P*:
 - The domain of x is all rational numbers.
 - $P: \forall x, x \neq \sqrt{2}$.

Proof by contradiction ($\sqrt{2}$ is not a rational number.):

Assume that $r = \sqrt{2}$ is a rational number.

- Then there exist integers a and b such that r = a/b.
 - WLOG, we assume that a and b have no common divisors.
 - (if they had common divisors, reduce the fraction and use that.)
- Then, $2 = r^2 = (a/b)^2 = a^2/b^2$.
- Transforming $2 = a^2/b^2$ gives: $a^2 = 2 \cdot b^2$,
 - so a^2 is an even number, giving that a is even.
 - Thus, there exists integer i such that a = 2i.
- Plug into $a^2 = 2b^2$: $(2i)^2 = 2b^2$, so $4i^2 = 2b^2$ or $b^2 = 2i^2$,
 - so b^2 is an even number, giving that b is also even.
 - Thus, there exists integer j such that b = 2j.
- Since a and b are both even, they share a common divisor 2.
- A contradiction: a and b share the divisor 2 but share no common divisors.

Therefore, our original assumption is false, so no rational number equals $\sqrt{2}$.

WLOG: Without Loss of Generality

- In this example, when we say WLOG without loss of generality:
 - We are saying we can consider a reduced terms "without loss of generality."
- We can say this when considering a case would be redundant:
 - Suppose we considered an arbitrary fraction a/b.
 - Then we could have our first step reduce a/b to lowest terms and proceed.

Proof by Contradiction Example

Definition

A prime number is a positive integer larger than 1 whose only divisors are 1 and itself.

- The first few prime numbers: 2, 3, 5, 7, 11, 13, 17 ...
- At the beginning, the prime numbers are dense.
 - (i.e., there are many of them).
 - E.g., there are 168 prime numbers between 1 and 1000. (\sim 17%)
- When the number gets bigger, the prime numbers are sparse.
 - (i.e. there are few of them).
 - E.g., there are 78,498 primes between 1 and 1,000,000. (~8%)
- How many prime numbers are there? Finite? or infinite?

Theorem

There are infinitely many prime numbers.

<u>Proof by contradiction (There are infinitely many prime numbers) (Euclid 325-265 BC):</u>

Assume that there are only finitely many primes: p_1, p_2, \ldots, p_n .

- Consider the number $Q = p_1 \cdot p_2 \cdot ... \cdot p_n + 1$.
- We ask: Is Q a prime number?
 - For each i, $1 \le i \le n$, $Q > p_i$,
 - p_1, \ldots, p_n are ALL prime numbers (by assumption).
 - So Q IS NOT prime.
- If Q is not a prime, it must have a prime factor.
 - So one of p_i $(1 \le i \le n)$ must be a factor of Q.
 - But Q divided by each p_i has remainder 1.
 - So none of p_i ($1 \le i \le n$) is a divisor of Q.
 - Q IS a prime.
- A contradiction: Q is and is not prime.

Therefore, our original assumption is false, so there must exist infinitely many primes.

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
 - Terminology
 - Proof by Exhaustion
 - Disproof by Counterexample
 - Direct proofs
 - Proof by Contraposition
 - Proof by Contradiction
 - Proof Examples

Proof by Contraposition Example

Prove that for any integers x and y, if both x + y and xy are even, then both x and y are even.

• The contrapositive:

If x and y are not both even, then x + y and xy are not both even.

Proof by contraposition:

Assume that x and y are not both even: Either x is odd, or y is odd (or both). WLOG, we assume x is odd.

• Case 1: *y* is even.

x + y = odd + even = odd.

Thus, x + y is odd.

So x + y and xy are not both even.

• Case 2: *y* is odd.

xy = odd . odd = odd.

Thus, xy is odd.

So x + y and xy are not both even.

In both cases, we get that x + y and xy are not both even.

Proof by Exhaustion Example

Prove that if n is an integer, then $n^2 \ge n$.

Proof:

Let *n* be an integer.

- Case 1: Assume n = 0. Then, $n^2 = 0 = n$.
 - So $n^2 \ge n$.
- Case 2: Assume $n \ge 1$. Then, n > 0.
 - Multiply both sides of inequality by $n: n^2 \ge n$.
- Case 3: Assume $n \le -1$. Hence, $n^2 \ge 0 > -1 \ge n$.
 - So $n^2 \ge n$.
- In all cases, we get that $n^2 \ge n$.

Proof by Cases

Proof by Exhaustion

- For a proof by exhaustion to work, cases must exhaust, or consider, the entire domain.
- Overlap is OK, but may introduce redundant work.
 - For the domain of integers,
 - $n \ge 0$, n = 0, and $n \le 0$ are exhaustive cases, but have overlap.
 - Better: $n \ge 0$ and n < 0 or n > 0 and $n \le 0$
- Non-exhaustive cases leave the possibility for error:
 - For the domain of integers,
 - n is positive and n is negative are non-exhaustive cases.
 - Missing n = 0.