2. Brojevni sustavi i kodovi (2)

Sadržaj predavanja

- binarno kodiranje znamenki i simbola
 - dekadski kodovi
 - Grayev kod
 - znakovni kodovi
- kodovi za zaštitu podataka

Binarno kodiranje znamenki i simbola

- princip kodiranja binarnim riječima:
 - izražavanje simbola/znakova u *binarnom* obliku, radi dalje obrade digitalnim sklopom
 binarno *kodiranje*
 - kôd: grupa simbola kojoj se dogovorno daje značenje
 - kodna riječ: niz bitova kojem se pridaje neko značenje
 - abeceda: skup svih simbola prikazanih kodnim riječima
 - znakovi : elementi abecede

Binarno kodiranje znamenki i simbola

- princip kodiranja binarnim riječima:
 - broj simbola = broj različitih prikaza
 - → broj bitova kodnih riječi

K simbola:
$$n \ge Id K [bit]$$
, $Id x = log_2 x$
 $2^n > K$

n bitova: N = 2ⁿ mogućih kombinacija

pridruživanje kodne riječi prvom simbolu	N načina
pridruživanje kodne riječi drugom simbolu	N-1 način
pridruživanje kodne riječi trećem simbolu	N-2 načina
pridruživanje kodne riječi K-tom simbolu	N-(K-1)

$$N \cdot (N-1) \cdot (N-2) \cdot \dots \cdot (N-(K-1)) = \frac{N!}{(N-K)!} = V_N^{(K)}$$

Binarno kodiranje znamenki i simbola

- dekadski kodovi
 - ~ binarni prikaz dekadskih znamenki
 - $n \ge 4$ bita; $2^3 < 10 < 2^4$
 - n = 4 bita~ 16 kombinacija
 - broj 4-bitnih kodova ~ mogući broj kodiranja: $V_{16}^{(10)} = \frac{16!}{6!} = 29,059 \cdot 10^9$
 - odabrati kodove s povoljnim svojstvima!

- svojstva dekadskih kodova:
 - aditivnost
 - ~ veza između kodne riječi i prikazane dekadske znamenke
 - samokomplementarnost
 (engl. self-complementing)
 - ~ veza kodnih riječi po parovima

težinski kod:

zbroj težina = vrijednost prikazane znamenke

$$N = \sum_{i=0}^{n-1} a_i \cdot w_i + D$$

N: dekadski ekvivalent

w_i: i-ta težina

a_i: koeficijent za i-tu težinu

D: konstanta pomaka

17 težinskih kodova s pozitivnim težinama,
 71 s jednom ili dvije negativne težine

- samokomplementirajući kod:
 - ~ 9-komplement dekadskog broja zamjenom 0 i 1 u kodnoj riječi
 - korisno kod binarno-dekadske aritmetike
 - težinski je kod samokomplementirajući ako:

$$\sum_{i} w_i = 9$$

- kod 8421,
 BCD (engl. Binary Coded Decimal) -
 - prvih 10 binarnih brojeva
 - težine: 8, 4, 2, 1
 - neupotrijebljene kombinacije: 1001÷1111

	2 ³	2 ²	2 ¹	2 ⁰
	8	2 ² 4 0 0 0 1 1 1 0 0	2 ¹ 2 0 0 1 1 0 0 1	2º 1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
0 1 2 3 4 5 6 7 8 9	0	1	1	1
8	1	0	0	0
9	0 0 0 0 0 0 0	0	0	0 1 0 1 0 1 0 1 0 1 0
	1		1	0
	1	0	1	1
	1	1	0	0
	1	1	0	1
	1 1 1 1	0 0 1 1 1	1 0 0 1	0
	1	1	1	1

- kod 2421 (Aikenov kod)
 - težinski kod~ težine: 2, 4, 2, 1
 - samokomplementirajući kod: 0-9, 1-8, 2-7, 3-6, 4-5
 - prvih i zadnjih pet 4-bitnih brojeva
 - neupotrijebljene kombinacije: 0101÷1010

	2	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
1 2 3 4	0 0 0	0	1 0	1 0 1 0
4	0	1	0	0
		1	0	1
	0	1	1	1 0
	0		1	1
	1	1 0	0	0
	1	0	0	1 0 1 0
	0 0 0 1 1	0	1	0
5	1	0	1 0	1 0
5 6	1	0 1	0	
7 8 9	1 1 1 1	1 1	0	1 0
8	1	1	1	0
9	1	1	1	1

- kod 8421,
 s "prekoračenjem" (ekscesom) od 3
- uz D = 3~ težinski kod
- ne postoji 0000: detekcije prekida kod prijenosa
- neupotrijebljene kombinacije: 0000÷0010, 1101÷1111
- simetrična tablica koda
 ~ samokomplementirajući kod!

		2 ³	2 ²	2 ¹	2 ⁰
		2 ³ 8	2 ² 4	2	2º 1
•			0	0	0 1 0
_		0	0	0	1
3		0 0 0	0	1	0
•	0	0	0	1	1
	1	0 0 0	1	0	0
	2	0	1	0	1
	3	0	1 1 1 0 0	0 1 1 0	0
	4	0	1	1	1
	5	1	0		0
	0 1 2 3 4 5 6 7 8 9	1	0	0	1
	7	1	0	1	0
	8	1	0	1	1
	9	0 1 1 1 1	1	0 1 1 0	1 0 1 0 1 0 1
•		1 1	1 1	0	1 0
		1	1	1	0
			_	_	_

- bikvinarni kod
 - težinski 7-bitni kod (2+5=7)
 - kodne riječi s dvije 1:
 - otkrivanje pogrešaka
 - ne ako je pogreška samokompenzirajuća
 - velika zalihost:
 - ~ 10 od 128 mogućih kombinacija

	5	0	4	3	2	1	0
0	0	1	0	0	0	0	1
1	0	1	0	0	0	1	0
2	0	1	0	0	1	0	0
3	0	1	0	1	0	0	0
4	0	1	1	0	0	0	0
5	1	0	0	0	0	0	1
6	1	0	0	0	0	1	0
7	1	0	0	0	1	0	0
8	1	0	0	1	0	0	0
9	1	0	1	0	0	0	0

Grayev kod

- kod s *minimalnom* promjenom
 - susjedne kodne riječi
 razlika u samo 1 bitu
 - ograničavanje pogreški pri slijednoj promjeni npr. direktno očitavanje položaja

Grayev kod

- svojstva Grayevog koda:
 - susjedne kodne riječi
 razlika u samo jednom bitu
 ("jedinična distanca")
 - izgradnja koda:
 zrcaljenje u jednom bitovnom mjestu:
 reflektirani kod
 - netežinski kod
 - binarni, ali i "dekadski"~ XS-3 Grayev kod

Grayev kod

- izgradnja koda:
 - ~ *zrcaljenje* u jednom bitovnom mjestu: *reflektirani* kod

Znakovni kodovi

- prikaz skupa znakova:
 - prikaz slova i znamenki:
 - "grafički"
 ~ "alfa-numerički" znakovi, interpunkcije, simboli, ...
 - upravljački znakovi
- standardizirani znakovni kodovi: npr. 7-bitni (128 kombinacija) ASCII: ISO IS 646, ITU-T/CCITT No. 5

Znakovni kodovi

 kod ASCII (engl. American Standard Code for Information Interchange):

$$A' - Z' : 41-5A_H$$

$$a' - z' : 61-7A_{H}$$

npr.

$$A = 100\ 0001 = 41_{H}$$

$$a = 110\ 0001 = 61_{H}$$

$$* = 010\ 1010 = 2A_{H}$$

Sadržaj predavanja

- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka
 - princip otkrivanja i ispravljanja pogrešaka, distanca i zalihost
 - paritet, jednostruko i višestruko ispitivanje pariteta
 - Hammingovi kodovi

- prijenos podataka
 - ~ utjecaj smetnji: moguća pojava pogreške
 - pogreška
 - ~ neželjena promjena jednog/više bitova u kodnoj riječi
 - jednostruka pogreška
 - ~ promjena vrijednosti jednog bita $(0 \rightarrow 1 \text{ ili } 1 \rightarrow 0)$
 - višestruka pogreška ~ više bitova
 - rezultat
 - ~ neispravna, ali i *ispravna* kodna riječ!
 - dobivena kodna riječ ispravna
 - ~ otkriti da je došlo do pogreške!!!

- princip otkrivanja (i ispravljanja) pogrešaka
 ~ razlika kodnih riječi u ≥ 1 bita
- distanca kodnih riječi (R. W. Hamming)
 "udaljenost" dviju kodnih riječi:
 - najmanji broj bitova u kojima se dvije kodne riječi razlikuju
 - broj bitova koje treba promijeniti da se jedna kodna riječ pretvori u drugu ~ pogreška ostaje neotkrivena !!!

- računanje distance kodnih riječi
 - broj različitih bitovnih mjesta dviju kodnih riječi:

$$c = a \oplus b$$
 po bitovima

d = aritmetička suma "1" u c

• formalno:

$$c = a \oplus b = (a_{n-1} \oplus b_{n-1}, a_{n-2} \oplus b_{n-2}, ..., a_0 \oplus b_0)$$

 $d = |c| = |a \oplus b|$

|x|: težina kodne riječi (engl. weight), broj jedinica u kodnoj riječi

- minimalna distanca koda d_{min}
 ~ najmanji razmak između dvije kodne riječi
 - npr. kod 8421: $d_{min} = 1$
 - bikvinarni kod: d_{min} = 2
 - Grayev kod: $d_{min} = d = 1$
- kod pruža zaštitu od t pogrešaka

$$t=d_{min}-1$$
 $d_{min} \ge (t+1)$

Primjer:
$$d_{min} = 2$$
 ~ otkrivanje *jednostruke* pogreške

 kodovi s d_{min} > 1 ~ postoji zalihost (redundancija), R: snaga zaštite, višak informacije

n: duljina kodne riječi k < n: broj informacijskih bitova

$$R = \frac{r}{n}$$

$$R = \frac{r}{n}$$
 $R = 1 - \frac{ldN_p}{ldN}$ $(ldX = \log_2 X)$

r=n-k: broj zaštitnih bitova

$$N_p = 2^k < 2^n = N$$

ukupan broj mogućih kombinacija od n bitova

- veći broj bitova od minimalno potrebnih za prikaz informacije; npr. bikvinarni kod
- kodna riječ = bitovi + zaštitni bitovi
- sistematski kodovi ~ zaštitni bitovi nakon informacijskih

- dvije skupine zaštitnih kodova:
 - s mogućnošću otkrivanja pogrešaka
 ~ EDC (engl. Error Detecting Codes):
 d_{min} ≥ t + 1 za otkrivanje t pogrešaka
 - s mogućnošću ispravljanja pogrešaka
 ~ ECC (engl. Error Correcting Codes):
 d_{min} ≥ 2·t + 1 za ispravljanje t pogrešaka

- geometrijski prikaz kodnih riječi/koda
 ~ kubusi u n-dimenzijskom prostoru
 - 0-kubus ~ točka
 - 1-kubus ~ dužina
 - 2-kubus ~ kvadrat
 - 3-kubus ~ kocka
 - n-kubus ~ "hiperkocka"

geometrijski prikaz kodnih riječi/koda

Primjer: n-kubus \rightarrow 3-kubus

1. za 2^n uzoraka: $d_{min} = 1$

2. za {100, 011}: $d_{min} = 3$

otkriva 2 pogreške:

010, 111, 001

110, 101, 000

ispravlja 1 pogrešku:

110, 101, 000

001, 111, 010

Paritet, jednostruko i višestruko ispitivanje

- paritet ~ najjednostavniji način zaštite
 - dodati paritetni bit
 tipično osmi bit riječi iz ASCII koda:

$$p b_6 b_5 b_4 b_3 b_2 b_1 b_0$$

nova kodna riječ mora imati paran/neparan broj jedinica
 paran/neparan paritet

	ZNAK	PARITET					
	ZNAN	PARNI	NEPARNI				
Α	100 0001	0 100 0001	1 100 0001				
a	110 0001	1 11 0 0001	0 110 0001				
*	010 1010	1 010 1010	0 010 1010				

 "vertikalna" (poprečna) paritetna zaštita (engl. Vertical Redundancy Check, VRC)
 otkrivanje neparnih pogrešaka

Paritet, jednostruko i višestruko ispitivanje

- višestruko ispitivanje pariteta :
 - zahtjev: povećati moć zaštite!
 - veći broj paritetnih ispitivanja
 ~ "nezavisna" (ortogonalna)
 - veći broj zaštitnih bitova
 veća zalihost
 - više mogućnosti:
 - dvodimenzijski kod
 - Hammingov kod

Paritet, jednostruko i višestruko ispitivanje

- dvodimenzijski kod
 ~ 2D matrica informacijskih bitova ("pravokutni" kod)
- uzdužna i poprečna paritetna zaštita:
 - kodna riječ ← paritetni bit
 - cijelom bloku kodnih riječi ←
 paritetna riječ, BCC (engl. Block Check Character)
 ~ "horizontalna" (uzdužna) paritetna zaštita
 (engl. Longitudinal Redundancy Check, LRC)
 - ispravljanje jednostruke pogreške

- sustavni mehanizam za izgradnju niza kodova za ispravljanje pogrešaka
 R.W. Hamming, 1950.
- princip:
 ~ višestruko (nezavisno) paritetno ispitivanje
- bolja efikasnost kodiranja
 ~ manja zalihost (usp. dvodimenzijski kod)
- naročito popularni Hammingov kod za ispravljanje jednostruke pogreške ~ tipična primjena: memorijski sklopovi

- nezavisna paritetna ispitivanja
 ne mogu se dobiti kombinacijom preostalih
- princip izgradnje kodne riječi:
 - "nezavisna" (ortogonalna) ispitivanja
 - "nezavisni" (ortogonalni) smještaj zaštitnih bitova
- "nezavisna" (ortogonalna) ispitivanja:
 - svaki zaštitni bit "pokriva" (= štiti) drugi podskup bitova podatka
 - svaki bit podatka zaštićen s više zaštitnih bitova

odnos zaštitnih i informacijskih bitova:

$$2^r \ge k + r + 1$$
, $n = k + r$

r: broj zaštitnih bitova

k: broj informacijskih bitova

n: duljina kodne riječi

oznaka koda: (n, k)

- obrazloženje:
 - jednostruka pogreška na jednom od *n* mjesta
 - bez pogrešaka

• odnos zaštitnih i informacijskih bitova : $2^r \ge k + r + 1$, n = k + r

BROJ INFORMACIJSKIH BITOVA (≤)	BROJ ZAŠTITNIH BITOVA	DULJINA KODNE RIJEČI
1	2	3
4	3	7
11	4	15
26	5	31
57	6	63
120	7	127

- višestruka ispitivanja:
 - zaštitni bitovi na mjesta koja se ne mogu dobiti kombinacijama drugih zaštitnih bitova: 2ⁱ
 - zaštitni bitovi "pokrivaju" svoju poziciju
 ~ sve pozicije čiji redni broj sadrži 2ⁱ

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
Co	0	1	0	1	0	1	0	1
		Co	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

zaštitni bitovi: C₂ C₁ C₀

Primjer: kod (11,7)

- ukupno 11 bitova, od čega 7 nose podatke
 korisno za zaštitu ASCII-znakova
- smještaj zaštitnih bitova

1	2	3	4	5	6	7	8	9	10	11
C1	C2	k1	C3	k2	k3	k4	C4	k5	k6	k7

raspored "odgovornosti" bitova

	1	2	3	4	5	6	7	8	9	10	11
P1:	P1	P2		Р3				P4			
P2:	P1	P2		Р3				P4			
P3:	P1	P2		P3				P4			
P4:	P1	P2		Р3				P4			

• izračunavanje zaštitnih bitova za *parni* paritet

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
Co	0	1	0	1	0	1	0	1
		Co	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

$$C_0 \oplus k_1 \oplus k_2 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_0 = k_1 \oplus k_2 \oplus k_4$$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_1 = k_1 \oplus k_3 \oplus k_4$$

$$C_2 \oplus k_2 \oplus k_3 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_2 = k_2 \oplus k_3 \oplus k_4$$

• izračunavanje zaštitnih bitova za *neparni* paritet

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
C ₀	0	1	0	1	0	1	0	1
		Co	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

$$C_0 \oplus k_1 \oplus k_2 \oplus k_4 \oplus 1 = 0$$

$$\rightarrow$$
 $C_0=k_1\oplus k_2\oplus k_4\oplus 1$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 \oplus 1 = 0$$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 \oplus 1 = 0$$
 \longrightarrow $C_1 = k_1 \oplus k_3 \oplus k_4 \oplus 1$

$$C_2 \oplus k_2 \oplus k_3 \oplus k_4 \oplus 1 = 0$$

$$\rightarrow$$
 $C_2=k_2\oplus k_3\oplus k_4\oplus 1$

Primjer: zaštita ASCII znaka A (41_H)

$$n = 11, k = n - r = 7 \Rightarrow r = 4$$

$$C_0 = k_1 \oplus k_2 \oplus k_4 \oplus k_5 \oplus k_7 \Rightarrow C_0 = 0$$

$$C_1 = k_1 \oplus k_3 \oplus k_4 \oplus k_6 \oplus k_7 \Rightarrow C_1 = 0$$

$$C_2 = k_2 \oplus k_3 \oplus k_4 \qquad \qquad \bullet \qquad C_2 = 0$$

$$\rightarrow$$
 $C_2 = 0$

$$C_3 = k_5 \oplus k_6 \oplus k_7 \qquad \qquad \bullet \qquad C_3 = 1$$

$$\rightarrow$$
 $C_3 = 1$

$$\Rightarrow 001 0000 1001$$

$$X = C_3 C_2 C_1 C_0 = 1 0 1 0$$

 $Y = C_3' C_2' C_1' C_0' = 1 0 0 0$

mjesto pogreške:

$$X \oplus Y = 0010_2 = 2_{10}$$

- Hammingov kod za ispravljanje jednostruke pogreške:
 - distanca d = 3
 - kod za ispravljanje "nezavisnih pogrešaka"
 rezultat djelovanja "bijelog šuma"
 - efikasan kod, jer je R mali

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 2: Digitalni podaci: tipovi, operacije, algoritmi
- binarno kodiranje znamenki i simbola: str. 57-64
- kodovi za zaštitu podataka: str. 64-75