Number Theory 16

04 March 2024 17:03

Show that
$$(a+b)^{i} \equiv a^{p^{i}} + b^{k} \pmod{p}$$
 if p is a prime and i is out non-negative indeger.

And $(a+b)^{p^{i}} \Rightarrow T_{ab} \text{ for } i = 1$

Let it be true for $i = N$, i.e., $(a+b)^{p^{i}} = (a^{p^{i}} + b^{p^{i}}) \pmod{p}$

$$= (a+b)^{p^{i}} = (a+b)^{p^{i}} = (a+b)^{p^{i}}$$

$$= (a+b)^{p^{i}} = (a+b)^{p^{i}} - \cdots + (a+b)^{p^{i}} = (a+b)^{p^{i}} \pmod{p}$$

$$= (a^{p^{i}} + b^{p^{i}}) \pmod{p} \pmod{p}$$

$$= (a^{p^{i}} + b^{p^{i}}) \pmod{p}$$

$$a \equiv b \pmod{\frac{\alpha}{\gcd(\alpha d)}}$$

Aw:-
$$qcd(n,d) = g$$
 $\Rightarrow n = gq_1$, $d = gq_2$ $\frac{N}{gcd(n,d)} = q_1$
 $\Rightarrow (a-b)d = nk_1$
 $\Rightarrow nk_1$
 $\Rightarrow qq_1k_1$
 $\Rightarrow qq_1k_1$
 $\Rightarrow qq_1k_1$

$$\Rightarrow a-b = \frac{n k_1}{d}$$

$$\Rightarrow a = b + \frac{n k_1}{d}$$

B> 3 Brides > 5x4-5x3 How many different heights can you build up using them?

Ans: 5x+45y+3= N when x+j+2=3

3) 5 digit number is floppy if $(a_1 a_2 a_3 a_4 a_5) = N \Rightarrow a_4 x a_5 = 32$ $x = n_0 - of floppy numbers$ $n_0 - of floppy numbers divisible by 36$

Then find x

Aw: $-(\alpha_{4}, \alpha_{5}) \in \{(4,8),(8,4)\}$ $\geq \alpha_{i} = 36 \Rightarrow \alpha_{i} + \alpha_{2} + \alpha_{3} = 24$ $\Rightarrow (\alpha_{i}\alpha_{2}\alpha_{4} \times 100) + (\alpha_{4}\alpha_{5})$ $\Rightarrow \alpha_{3}\alpha_{4} \times 100) + (\alpha_{4}\alpha_{5})$ $\Rightarrow \alpha_{5}\alpha_{4}\alpha_{5} = 48 \text{ as } 84$ $\Rightarrow \alpha_{6}(N) \Rightarrow \alpha_{6}(N) \Rightarrow \alpha_{7}(N) = 136$

Homework Show that for any fixed integer n>1, the sequence,

 $2, 2, 2, 2, \dots$ (mod N)

is eventually constant

HomeWork

34! = 295232799039004140847618609643560000000Then find a and b