Temporal Correlation

이진영

Temporal Correlation

- Similarity of neighboring frames
- Low correlation in fast motions, but high correlation in slow motions

Correlation Direction

- Sometimes, spatially or temporally high correlation depending on characteristics of frames (images)
- Selection of the best prediction direction, based on the correlation analysis

Temporal Prediction

Prediction of a current frame from a previously reconstructed frame

Various Predictions

- Selection of the best prediction method among various prediction candidates
- However, more bit, according to the number of prediction candidates
- For example, 0 or temporal prediction, 10 for horizontally spatial prediction, 11 for vertically spatial prediction (Depending on correlation analysis)

Example of Vertical Prediction (1st Frame)

Example of Temporal Prediction (2nd Frame)

0	0	0
0	0	0
155	155	0
	0	0 0

Reconstruction (1st Frame)

Original (2nd Frame) Prediction Error

Ouantization $(e \div 5)$

Encoder

Inverse Quantization Reconstruction $(e \times 5)$

Decoder

Original (3rd Frame)

- Horizontally and vertically spatial prediction
- Temporal prediction from ① and ② frames

Example of Temporal Prediction (3rd Frame)

(3)		
100	90	80
99	255	255
98	88	80
<u> </u>		

-3	-3	-3
-4	162	172
0	0	-3

0	0	0
0	32	34
0	0	0

0	0	0
0	160	170
0	0	0

103	93	83
103	253	253
98	88	83

103	93	83
103	93	83
253	243	83

9		
100	90	80
99	255	255
98	88	80

-3	-3	-3
-4	162	172
-155	-155	-3

0	0	0
0	32	34
-31	-31	0

0	0	0
0	160	170
-155	-155	0

103	93	83
103	253	253
98	88	83

Reconstruction (1st and 2nd Frame)

Original (3rd Frame) Prediction Error

Quantization $(e \div 5)$

Inverse Quantization Reconstruction $(e \times 5)$

Encoder

Decoder

Compression Result

Please choose the best reference for the temporal prediction

100	90	80	
99	255	255	
98	88	80	

\sim	•	•	
<i>(</i>)	ric	NIF	nal
()	111	111	171
\sim		111	·
	_	,	

Quantization $(e \div 5)$

Reconstruction (39.89dB)

Temporal Prediction from ①

0	0	0	
0	32	34	
-31	-31	0	

0	32	34	103	253	253
-31	-31	0	98	88	83
_			_	•	

Quantization $(e \div 5)$

Reconstruction (39.89dB)

93

103

83

Temporal Prediction from ②

Experiment

- Video compression using spatial and temporal predictions for first.bmp and second.bmp
- Quantization $(e \div \alpha)$, and then binarization for quantized prediction error
- Binarization for prediction direction, for example, 0 for horizontally spatial prediction and 1 for vertically spatial prediction in first.bmp, and then 0 for temporal prediction using the reconstructed image of first.bmp, 10 for horizontally spatial prediction, and 11 for vertically spatial prediction in second.bmp, respectively

Motion Vector (MV)

- Temporal prediction with motion vectors, which indicate motions between two frames (images)
- Generally, high MV correlation between neighboring pixels

Block Matching

- Determination of displacements of each block between two consecutive frames
- Motion estimation that finds the optimum MV and reference block

Temporal Resolution

...

■ 30fps

■ 60fps

■ 120fps

• ..

60 frames(images)

Frame Rate Up Conversion (FRUC)

- Generation of higher frame-rate videos from low frame-rate videos through frame interpolation
- Smooth continuity of motions across frames

