Isogeometric Methods: Homework #2

Problem 1:

For a given Bézier element $\hat{\Omega}^e = [\xi_l, \xi_{l+1})$, determine an explicit analytical expression for the univariate element extraction operator \mathbf{C}^e in terms of the knots $\xi_{l-p}, \dots, \xi_{l+p+1}$ for polynomial degrees p = 1, 2, 3. **Hint:** The element extraction operator may not depend on all of the knots.

Problem 2:

Write a MATLAB function which constructs the element extraction operators \mathbf{C}^e and the corresponding IEN array for a two-dimensional B-spline basis. Your function should take the form:

```
function [n_el,C_operators,IEN] = Extract_Basis(p_1,p_2,n_1,n_2,Xi_1,Xi_2)
```

where n_el is the number of Bézier elements n_{el} , C_operators is an array storing the element extraction operators $\{\mathbf{C}^e\}_{e=1}^{n_{el}}$, IEN is an array mapping local basis function/element numbers to global basis function numbers, p_1 and p_2 are the polynomial degrees in directions ξ_1 and ξ_2 respectively, n_1 and n_2 are the number of basis functions in directions ξ_1 and ξ_2 , and Xi_1 and Xi_2 are the univariate knot vectors.

Problem 3:

Write a MATLAB function which computes the Bézier control points $\mathbf{P}^{b,e}$ and weights $\mathbf{w}^{b,e}$ corresponding to a NURBS surface given the control points \mathbf{P} and weights \mathbf{w} , the element extraction operators \mathbf{C}^e , and the corresponding IEN array. Your function should take the form:

```
function [P_b,w_b] = Extract_Geometry(d,p_1,p_2,n_el,C_operators,IEN,P,w)
```

where P_b is an array storing the Bézier control points for the NURBS surface, w_b is an array storing the Bézier weights for the NURBS surface, d is the spatial dimension of physical space, p_1 and p_2 are the polynomial degrees, n_el is the number of Bézier elements, C_operators is an array storing the element extraction operators, IEN is an array mapping local basis function/element numbers to global basis function numbers, P is an array storing the control points for the NURBS surface, and w is an array storing the weights for the NURBS surface.

Problem 3:

Part 1: Use the MATLAB function NURBS_Pipe_Elbow to compute the NURBS parametrization of a pipe with an elbow bend with h = 4, w = 3, r = 0.5, and R = 3.

Part 2: Use the MATLAB function NURBS_Surface_Refine to perform (uniform) knot insertion for the NURBS surface obtained in Part 1.

Part 3: Use the MATLAB functions Extract_Basis and Extract_Geometry to compute the Bézier control points $\mathbf{P}^{b,e}$ and weights $\mathbf{w}^{b,e}$ for the refined NURBS surface obtained in Part 2. Plot the refined NURBS surface and the corresponding Bézier control net, and print the element extraction operators $\{\mathbf{C}^e\}_{e=1}^{n_{el}}$ and corresponding IEN array.

Figure 1: Pipe with an elbow bend.