Úloha 1. (3 body) Zkoumali jsme magnetický Ba hexaferit pomocí výpočtů elektronové struktury. Pro dvanáct možných magnetických konfigurací atomových magnetických momentů této látky jsme spočítali celkové energie a z nich určili hodnoty výměnného integrálu *J* (uvedeny v tabulce a také v souboru t2b_u1.txt). Přesnost určení *J* byla pro použitou výpočetní metodu odhadnuta na 0.02 meV (uvažujte ji jako standardní chybu).

Zpracujte spočítané hodnoty J.

Výsledek vyjádřete se standardní odchylkou (" σ ", $P \sim 68$ %).

Úloha 2. (4 body) Dále jsme pro tuto látku chtěli z výpočtů vyjádřit celkovou magnetizaci, tedy celkový magnetický moment připadající na jednotku

výpočet č.	J (meV)
1	6.374
2	6.708
3	6.329
4	6.021
5	6.524
6	6.058
7	6.922
8	6.658
9	6.857
10	6.673
11	6.546
12	6.831

objemu. K tomu jsme spočítali magnetický moment m v jedné elementární buňce a mřížové parametry látky (rozměry elementární buňky) a, b, c. Látka má hexagonální strukturu, takže elementární buňka má tvar hranolu s podstavou kosočtverce (hrany a, b jsou stejné a svírají úhel 120°, viz obrázek) a výškou c.

Získané číselné hodnoty jsou:

 $m = (40,005 \pm 0,007) \mu_B$, $a = b = (5,989 \pm 0,001) \text{ Å}$. $c = (23,477 \pm 0,002) \text{ Å}$.

 $(1 \text{ Å} = 1 \text{ ångström} = 10^{-10} \text{ m})$

 $(\mu_B = Bohrův magneton)$

Udané nejistoty jsou standardní odchylky.

Vyjádřete (objemovou) magnetizaci M (např. v jednotkách μ_B/m^3).

Úloha 3. (8 bodů) Při určování mřížových parametrů v předchozí úloze jsme hledali rovnovážný objem elementární buňky, tj. objem V_0 , pro který vyjde nejnižší spočítaná celková energie E. Ze sady výpočtů pro různé objemy jsme získali energie v tabulce (a také v souboru t2b_u3.txt). Závislost energie na objemu V lze v širokém rozsahu tlaků popsat polynomem třetího stupně. Nicméně v blízkosti rovnovážného objemu lze (v harmonické aproximaci) uvažovat závislost E(V) přibližně jako kvadratickou.

Nafitujte (v nějakém programu dle vlastního výběru) závislost E(V), tj. určete parametry příslušné paraboly a získanou závislost nakreslete. (Individuální nejistoty jednotlivých E nebo V zde neuvažujeme.)

Určete rovnovážný objem V_0 a jeho nejistotu.

V (Å ³)	<i>E</i> (Ry)
708.02094	-99368.89882
709.43627	-99368.90213
710.85269	-99368.90523
712.26796	-99368.90804
713.68447	-99368.91054
715.10093	-99368.91294
716.51606	-99368.91490
717.93258	-99368.91685
719.34886	-99368.91873
720.76396	-99368.92008
722.18027	-99368.92135
723.59649	-99368.92242
725.01279	-99368.92332
726.42883	-99368.92365
727.84493	-99368.92406
729.26093	-99368.92431
730.67681	-99368.92414
732.09273	-99368.92390
733.50853	-99368.92314