Thompson Sampling for Bandit Convex Optimisation

Alireza Bakhtiari¹ Tor Lattimore² Csaba Szepesvári^{1,2}

University of Alberta¹ & Google DeepMind²

COLT 2025

Paper in One Slide

- Goal: Understand how Thompson Sampling (TS) behaves in bandit convex optimization (BCO).
- Positive:
 - BReg_n = $\widetilde{O}(\sqrt{n})$ in 1-D convex bandits.
 - BReg_n = $\widetilde{O}(d^{2.5}\sqrt{n})$ for *d-D monotone convex ridge* losses.
- Negative:
 - TS can suffer $\Omega(\exp(d))$ regret for general d-D convex losses.
 - Classical info-ratio tricks \Rightarrow no better than $\widetilde{O}(d^{1.5}\sqrt{n})$ for general adversarial BCO.

Problem Setup

- Convex action set $\mathcal{K} \subset \mathbb{R}^d$.
- ullet ${\mathcal F}$ be a set of convex functions from ${\mathcal K}$ to [0,1].
- ξ is a known prior on \mathcal{F} .
- At round t:
 - **1** Learner plays $X_t \in \mathcal{K}$.
 - ② Observes scalar loss $Y_t \in \{0,1\}^1$.
- $\mathbb{E}[Y_t|X_1, Y_1, \cdots, X_t, f] = f(X_t).$
- ullet ${\cal A}$ is a possibly random mapping from histories & prior to ${\cal K}.$
- Bayesian Regret

$$\mathsf{BReg}_n(\mathcal{A},\xi) = \mathbb{E}\left[\sup_{x \in \mathcal{K}} \sum_{t=1}^n (f(X_t) - f(x))\right],$$

where $f \sim \xi$.

Thompson Sampling for BCO

Algorithm 1 Thompson Sampling

- 1: Prior ξ over convex losses.
- 2: **for** t = 1, ..., n **do**
- 3: Sample $f_t \sim \mathbb{P}(f = | X_1, Y_1, \dots, X_{t-1}, Y_{t-1})$
- 4: Play $x_t \in \operatorname{arg\,min}_{x \in \mathcal{K}} f_t(x)$ and observe Y_t
- 5: end for
 - Our analysis studies how

$$\mathsf{BReg}^{\mathrm{TS}}(\mathcal{F}) = \sup_{\xi \in \mathcal{P}(\mathcal{F})} \mathsf{BReg}_n(\mathrm{TS}, \xi),$$

behaves for various natural classes of convex functions \mathcal{F} .

Upper bounds - main results

• Let \mathcal{F}_{bl} be the space of all 1-Lipschitz bounded convex functions $f:\mathcal{K} \to [0,1].$

Theorem 1 – 1-D convex functions

TS achieves

$$\mathsf{BReg}^{\mathrm{TS}}(\mathcal{F}_{\mathtt{bl}}) = \widetilde{O}(\sqrt{n}).$$

• Let $\mathcal{F}_{\text{blrm}}$ be the space of all 1-Lipschitz bounded convex functions $f: \mathcal{K} \to [0,1]$, such that there exists a monotone convex function $\ell: \mathbb{R} \to \mathbb{R}$ and $\theta \in \mathbb{R}^d$ such that $f(x) = \ell(\langle x, \theta \rangle)$.

Theorem 2 – d-D convex ridge functions

TS achieves

$$\mathsf{BReg}^{\scriptscriptstyle{\mathrm{TS}}}(\mathcal{F}_{\scriptscriptstyle{\mathtt{blrm}}}) \ = \ \widetilde{\mathit{O}}(\mathit{d}^{2.5}\sqrt{\mathit{n}}) \ .$$

Upper bounds – Analysis

(Generalized) Information Ratio (IR)

- Let (X, f) have law $\pi \otimes \xi$.
- Let $\bar{f} = \mathbb{E}[f]$, and $f_{\star} = \min_{x \in \mathcal{K}} f(x)$.
- Define

$$\Delta(\pi,\xi) = \mathbb{E}[\bar{f}(X) - f_{\star}] \quad \text{and} \quad \mathcal{I}(\pi,\xi) = \mathbb{E}[(f(X) - \bar{f}(X))^2].$$

Generalized IR

Define generalized information ratio associated with ${\operatorname{TS}}$ as

$$\operatorname{IR}(\mathcal{F}) = \left\{ (\alpha, \beta) \in \mathbb{R}_+^2 : \Delta(\pi_{\mathrm{TS}}, \xi) \leq \alpha + \sqrt{\beta \mathcal{I}(\pi_{\mathrm{TS}}, \xi)} , \forall \xi \in \mathcal{P}(\mathcal{F}) \right\}.$$

• Note that $(0,\beta) \in IR(\mathcal{F})$ is equivalent to $\Delta(\pi_{TS},\xi)^2/\mathcal{I}(\pi_{TS},\xi) \leq \beta$, for all $\xi \in \mathcal{P}(\mathcal{F})$.

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ⊙

Upper bounds – Regret & IR

Proposition 3 – IR regret bound

Suppose that $\mathcal{F} \in \{\mathcal{F}_{\mathtt{bl}}, \mathcal{F}_{\mathtt{blrm}}\}$ and $(\alpha, \beta) \in \mathrm{IR}(\mathcal{F})$. Then, the regret of TS is at most

$$\mathsf{BReg}_n(\mathsf{TS},\xi) \leq n\alpha + O\left(\sqrt{\beta nd\log(n\operatorname{diam}(\mathcal{K}))}\right)$$
.

- Theorems 1,2 follow from Proposition 3 and bounding IR.
- Proposition 3 is somewhat subtle to prove though:
 - ① The space of all convex function is not parametric; therefore, some form of a cover on \mathcal{F} is needed to bound the entropy CITE.
 - ② Notably, usual techniques rely on $\mathcal F$ being closed under convex combination. The space of convex ridge functions are not closed under convex combination as noticed by CITE.

Upper bounds – Convex Cover

Convex cover (informal)

Let $\tilde{x}_f \approx \operatorname{argmin}_{x \in \mathcal{K}}$. Define $N(\mathcal{F}, \epsilon)$ to be the smallest number N such that there exists $\{\mathcal{F}_1, \dots, \mathcal{F}_N\}$ such that for all $k \in [N]$:

- Closure: \mathcal{F}_k is a subset of \mathcal{F} and $conv(\mathcal{F}_k) \subset \mathcal{F}$.
- Common near-minimiser: There exists an $x_k \in \mathcal{K}$ such that $\|\tilde{x}_f x_k\| \le \epsilon$ for all $f \in \mathcal{F}_k$.
- Approximation: For all $f \in \mathcal{F}$ there exists a $k \in [N]$ and $g \in \mathcal{F}_k$ such that $||f g||_{\infty} \le \epsilon$ and $||\tilde{x}_f x_k|| \le \epsilon$.

Upper bounds - Convex Cover

Convex cover (informal)

Let $\tilde{x}_f \approx \operatorname{argmin}_{x \in \mathcal{K}}$. Define $N(\mathcal{F}, \epsilon)$ to be the smallest number N such that there exists $\{\mathcal{F}_1, \dots, \mathcal{F}_N\}$ such that for all $k \in [N]$:

- Closure: \mathcal{F}_k is a subset of \mathcal{F} and $conv(\mathcal{F}_k) \subset \mathcal{F}$.
- Common near-minimiser: There exists an $x_k \in \mathcal{K}$ such that $\|\tilde{x}_f x_k\| \le \epsilon$ for all $f \in \mathcal{F}_k$.
- Approximation: For all $f \in \mathcal{F}$ there exists a $k \in [N]$ and $g \in \mathcal{F}_k$ such that $\|f g\|_{\infty} \le \epsilon$ and $\|\tilde{x}_f x_k\| \le \epsilon$.

Proposition 4 - Convex covering number

We have

$$\{\mathit{N}(\mathcal{F}_{\mathtt{blrm}}, \epsilon) \;,\; \mathit{N}(\mathcal{F}_{\mathtt{bl}}, \epsilon)\} \subset \mathit{O}\left(d\log\left(\dfrac{\mathsf{diam}(\mathcal{K})}{\epsilon}\right)
ight) \,.$$

Upper bounds – Decomposition Lemma

We introduce the following lemma to bound the IR of TS. $(x_f = \operatorname{argmin}_{x \in \mathcal{K}} f(x))$

Proposition 5 – TS-IR Decomposition

Suppose there exist natural numbers k and m such that for all $\bar{f} \in \text{conv}(\mathcal{F})$ there exists a disjoint union $\mathcal{F} = \bigcup_{i=1}^{m} \mathcal{F}_i$ of measurable sets for which

$$\sup_{f\in\mathcal{F}_i}(\bar{f}(x_f)-f(x_f))\leq \alpha+\sqrt{\beta}\inf_{f_1,\ldots,f_k\in\mathcal{F}_i}\sum_{j,l\in PAIR(k)}(f_j(x_{f_l})-\bar{f}(x_{f_l}))^2,$$

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

• The supremum term is the worst case average regret within \mathcal{F}_i .

Upper bounds – Decomposition Lemma

We introduce the following lemma to bound the IR of TS. $(x_f = \operatorname{argmin}_{x \in \mathcal{K}} f(x))$

Proposition 5 – TS-IR Decomposition

Suppose there exist natural numbers k and m such that for all $\bar{f} \in \text{conv}(\mathcal{F})$ there exists a disjoint union $\mathcal{F} = \bigcup_{i=1}^m \mathcal{F}_i$ of measurable sets for which

$$\sup_{f\in\mathcal{F}_i}(\bar{f}(x_f)-f(x_f))\leq \alpha+\sqrt{\beta}\inf_{f_1,\ldots,f_k\in\mathcal{F}_i}\sum_{j,l\in PAIR(k)}(f_j(x_{f_l})-\bar{f}(x_{f_l}))^2,$$

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

- The supremum term is the worst case average regret within \mathcal{F}_i .
- The infimum term is a kind of bound on the minimum amount of information obtained by TS.

Upper bounds – Decomposition Lemma

We introduce the following lemma to bound the IR of TS. $(x_f = \operatorname{argmin}_{x \in \mathcal{K}} f(x))$

Proposition 5 – TS-IR Decomposition

Suppose there exist natural numbers k and m such that for all $\bar{f} \in \text{conv}(\mathcal{F})$ there exists a disjoint union $\mathcal{F} = \bigcup_{i=1}^{m} \mathcal{F}_i$ of measurable sets for which

$$\sup_{f\in\mathcal{F}_i}(\bar{f}(x_f)-f(x_f))\leq \alpha+\sqrt{\beta}\inf_{f_1,\ldots,f_k\in\mathcal{F}_i}\sum_{j,l\in \text{PAIR}(k)}(f_j(x_{f_i})-\bar{f}(x_{f_i}))^2,$$

for all i, then $(\alpha, k(k-1)m\beta) \in IR(\mathcal{F})$.

- The supremum term is the worst case average regret within \mathcal{F}_i .
- The infimum term is a kind of bound on the minimum amount of information obtained by TS.
- The price of *m* comes from the same Cauchy-Schwarz(CS) that is somehow the 'same' CS in the multi-armed setting.

Theorem 6 - IR bound for 1-D

Suppose that d=1 and $\alpha \in (0,1)$. Then $(\alpha, 10^4 \lceil \log(1/\alpha) \rceil) \in IR(\mathcal{F}_{b1})$.

Proof. We use our decomposition lemma with

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

and the proof is done through Prop 5 if we show

$$\sup_{f \in \mathcal{F}_i} \left(\overline{f}(x_f) - f_\star \right) \leq \epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j,l \in PAIR(4)} (f_j(x_{f_i}) - \overline{f}(x_{f_i}))^2},$$

for all *i* show that with $\epsilon_i = \alpha 2^{|i|}$.

Theorem 6 - IR bound for 1-D

Suppose that d=1 and $\alpha \in (0,1)$. Then $(\alpha, 10^4 \lceil \log(1/\alpha) \rceil) \in IR(\mathcal{F}_{b1})$.

Proof. We use our decomposition lemma with

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

and the proof is done through Prop 5 if we show

$$\sup_{f \in \mathcal{F}_i} \left(\bar{f}(x_f) - f_\star \right) \underbrace{\leq}_{immediate} \epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j, l \in \text{PAIR}(4)} (f_j(x_{f_i}) - \bar{f}(x_{f_i}))^2} \,,$$

for all *i* show that with $\epsilon_i = \alpha 2^{|i|}$.

| □ ▶ ∢御 ▶ ∢ 重 ▶ ∢ 重 ▶ の Q ල

Theorem 6 - IR bound for 1-D

Suppose that d=1 and $\alpha \in (0,1)$. Then $(\alpha,10^4 \lceil \log(1/\alpha) \rceil) \in \operatorname{IR}(\mathcal{F}_{b1})$.

Proof. We use our decomposition lemma with

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

and the proof is done through Prop 5 if we show

$$\epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j, l \in PAIR(4)} (f_j(x_{f_i}) - \overline{f}(x_{f_i}))^2}$$

for all i show that with $\epsilon_i = \alpha 2^{|i|}$.

$$\mathcal{F}_i = \begin{cases} \{f : \bar{f}(x_f) - f(x_f) \le \alpha\} & \text{if } i = 0 \end{cases}$$

$$\mathcal{F}_i = \begin{cases} \{f : \bar{f}(x_f) - f(x_f) \le \alpha\} & \text{if } i = 0 \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

Back to the proof

$$\mathcal{F}_i = \begin{cases} \{f : \bar{f}(x_f) - f(x_f) \le \alpha\} & \text{if } i = 0 \end{cases}$$

... and the proof is done through Prop 5 if we show

$$\epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j,l \in PAIR(4)} (f_j(x_{f_i}) - \bar{f}(x_{f_i}))^2},$$

for all *i* show that with $\epsilon_i = \alpha 2^{|i|}$.

Back to the proof

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0 \end{cases}$$

... and the proof is done through Prop 5 if we show

$$\epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j,l \in PAIR(4)} (f_j(x_{f_l}) - \bar{f}(x_{f_l}))^2},$$

for all *i* show that with $\epsilon_i = \alpha 2^{|i|}$.

Which trivially holds for i = 0 since $\epsilon_0 = \alpha$.

Back to the proof

$$\mathcal{F}_{i} = \begin{cases} \{f : \overline{f}(x_{f}) - f(x_{f}) \leq \alpha\} & \text{if } i = 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} \geq x_{\overline{f}}\} & \text{if } i > 0\\ \{f : \overline{f}(x_{f}) - f(x_{f}) \in (\alpha 2^{|i|-1}, \alpha 2^{|i|}], x_{f} < x_{\overline{f}}\} & \text{if } i < 0, \end{cases}$$

... and the proof is done through Prop 5 if we show

$$\epsilon_i \leq \alpha + \sqrt{230 \inf_{f_1, f_2, f_3, f_4 \in \mathcal{F}_i} \sum_{j,l \in PAIR(4)} (f_j(x_{f_i}) - \bar{f}(x_{f_i}))^2},$$

for all *i* show that with $\epsilon_i = \alpha 2^{|i|}$.

For $i \neq 0$ we can use the monotonicity of \bar{f} .

Back to the proof for $i \neq 0$ (\Rightarrow monotone \bar{f})

- Only 4 functions are enough to get non-negligible disparity.
- The proof follows by contradiction. Suppose that $x_1 \le x_2 \le x_3 \le x_4$ and

$$\sum_{j,l \in \text{PAIR}(4)} (f_j(x_{f_l}) - \bar{f}(x_{f_l}))^2 < c^2 \epsilon^2 \quad \text{for some } c \,,$$

which means that all f_1, f_2, f_3, f_4 are ϵ close to \bar{f} at all the points x_1, x_2, x_3, x_4 .

- This has to happen while $\bar{f}(x_j) f_j(x_j) \le \epsilon_i$ for all $j \in [4]$.
- The convexity of f_1 , f_2 , f_3 , f_4 and the convexity+monotonicity of \bar{f} in $[x_1, x_4]$ gives the contradiction.

Theorem 7 – IR bound in d-D

 $(\alpha, \beta \lceil \log(1/\alpha) \rceil) \in \mathrm{IR}(\mathcal{F}_{\mathtt{blrm}})$ whenever $\alpha \in (0,1)$ and

$$\beta = \Omega \left(d^4 \log \left(\frac{d \operatorname{diam}(K)}{\alpha} \right)^2 \right) .$$

with the Big-O hiding only a universal constant.

When TS Fails (High-D General Convex)

Lower Bound 1

There is a prior on bounded Lipschitz convex functions such that

$$\mathsf{BReg}_{\mathcal{T}}(\mathsf{TS}) \, \geq \, \frac{1}{2} \min \{ \mathcal{T}, \, e^{\Omega(d)} \}.$$

- Construction: hide a sharp "valley" in a random direction.
- \bullet TS keeps sampling valleys it hasn't discovered \to linear regret until exponential time.

Information-Ratio Barrier

Lower Bound 2

For general convex losses the classical info-ratio machinery cannot give regret better than $\widetilde{O}(d^{1.5}\sqrt{T})$.

- Matches best known algorithmic upper bound.
- Suggests new ideas needed for $\widetilde{O}(d\sqrt{T})$ in adversarial BCO.

Conclusion

- Thompson sampling Bayesian upper bound for 1-D convex bandits.
- Structured high-D (monotone ridge) $\Rightarrow \tilde{O}(d^{2.5}\sqrt{n})$ regret.
- TS suffers exponential in d for general convex losses in \mathbb{R}^d .
- Classic IR analysis can't be used to beat the $O(d^{1.5}\sqrt{n})$ upper bound for adversarial BCO.

Thanks!

