Swerve Drivetrain

737-A

What is a Swerve Drivetrain?

- Able to strafe in all directions
- Able to rotate wheels in the direction of movement

Design Ideas

Differential Swerve

► Transmission Swerve

Direct Drive

Considerations When Choosing a Design

- -Financial cost per design
- -Reusing parts from old robots
- -Attachment for use in further projects

Completing the Design

Many smaller decisions needed to be made

- Gear supports
- Power transmission

Needed a plan to acquire VEX-legal parts

Only able to use radial bearings

Preliminary Design Calculations

- Key system of the design were the custom-built gears
 - ▶ They are the base that everything builds off
- Calculations are all connected
 - Everything starts by picking an inner diameter and a gear ratio
 - Everything else, including teeth angles, pinion gear size, and tooth depth is calculated using set equations

Key Design Parameters

- Needed to fit the 4-inch wheels inside the gears
- Targeting a 4:1 gear ratio from our research

Designing

- Gears were then designed in SolidWorks and modelled using an assembly to ensure proper alignment
- Mounting plates and motor mounts were also assembled separately using the spacing determined by the calculations

Challenges

- Incompatible parts
 - ► CAD files required to be completed before the parts list was created
- 4" omnidirectional wheel does not have a 4" diameter
- QVEX team could only provide Vex high-strength chains

Solutions

Swapped omnidirectional wheel for a standard Vex wheel

Chains were replaced with gears

CAD file for compatible gears was found and 3D printed

Mounting plate was altered to accommodate for the loss of chains

Building

- Began by machining the mounting plates with the altered hole placements
- Sharp edges were sanded and covered in electrical tape
- Mounting plates are thin and warped under the force of machining
- ► The gear teeth interfere with the bearing shafts

Testing

- Testing was done through various simulations in SolidWorks
- Diagrams represent the load distribution of a 270N weight (weight of a robot)

Testing: Motion Study

Using the gear ratio of 18:64, the model achieved a constant velocity of 3.59 $\frac{m}{s}$

Driving

Rotating

Analysis of Results

Goals

- 1. Velocity of 5 m/s
- 2. Improved strength
- 3. Decrease in size

Recommendations

- 1. Use chains to allow flexibility within gear ratios
- 2. Properly machine mounting plates from thicker metal to provide a stronger base
- 3. Position motors closer together

Implementation

- Using a larger metal sheet, template will be cut four times in each corner
- Metal pieces will be welded together
- Smaller bearing axles
- Bolts used to attach mounting plate to main chassis

Questions?