All Rooks Problem

Place N rooks on a N*N board so that no rook can take (check) another. Find all solutions.

A rook can attack along a row or a column. Let (x,y) denote the position of a rook. A solution to the placing N non-attacking rooks on board can be expressed as; Find the set of pairs

```
R = \{ (x,y) \mid 1 \le x \le n \& 1 \le y \le n \}
```

such that no 2 pairs attack each. Two rooks are non-attacking if the lie on different rows and columns. i.e.

Non_Attack:
$$(i,j) \in R \& (k,l) \in R \Rightarrow i \neq k \& j \neq l$$

A solution to the rook problem is such that only one rook lies in each row and only one rook lies in each column. Under these conditions we can represent a solution by an array R such that

if R@i = j then rook j is in row i,

i.e. a rook is in row i and column j, e.g. $R = \langle 2,1,3,5,4 \rangle$ We can justify this mathematically.

Relation

In Maths, a Relation R on a set A is a set of ordered pairs, $R = \{(x,y) \mid x \in A \& y \in A \& x \text{ is related to } y \text{ by a property} \}$ i.e. R is a subset of AxA (Cartesian Product)

Note: (Ordered Pair Property)

$$(x,y) = (u,v)$$
 iff $x=u \& y=v$

Function

A Relation F is a <u>function</u> iff each argument has at most one value.

i.e.
$$(x,y) \in F \& (u,v) \in F \& y \neq v \rightarrow x \neq u$$

The solution R to the rooks problem is a function

```
i.e. Assume (i,j) \varepsilon R \& (k,l) \varepsilon R \& j \neq l, Show i \neq k
```

Pf:

(i,j)
$$\varepsilon$$
 R & (k,l) ε R & $j\neq l$
{ A & B \rightarrow A -- Boolean Algebra }
(i,j) ε R & (k,l) ε R
{ Non_Attack property }
 $i \neq k \& j \neq l$
{ Bool. Alg. }
 $i \neq k$

End Pf:

Notation: Since R is function we can write

$$(i,j) \in R \text{ as } R(i) = j$$

or in Eiffel, R.item(i) = j.

<u>Defn.</u> Injective function; 1-1 function F is injective iff $x \neq y \rightarrow F(x) \neq F(y)$

Show R is an Injective function.

Pf:

```
Assume R(i) = j & R(k) = l & i \neq k

Show j \neq l

R(i) = j & R(k) = l & i \neq k

{ Bool. Alg. }

R(i) = j & R(k) = l

{ Non-Attack Property }

i \neq k & j \neq l

{ Bool. Alg. }

j \neq l
```

End Pf:

In Conclusion

A solution to the rooks problem is an injective function onto the set $\{1..N\}$ where the domain of R is also $\{1..N\}$ and so R is a Bijective function, since #Dom(R) = #Ran(R) tf. R is permutation on $\{1..N\}$

To find All solutions of the Rooks Problem we need a program that will generate all permutations of {1..N}

```
class Gen_Perm
creation make
feature
                    ARRAY[INTEGER]
     p
     used
                    ARRAY[BOOLEAN]
     All_Perms(k:INTEGER) is
          local
               j: INTEGER
          do
               if k > p.size then
                    Print Perm
               else
                    from
                         i := 1
                    until
                         j > p.size
                    loop
                         if not used.item(j) then
                              p.put(j,k)
                              used.put(True,j)
                              All Perms(k+1)
                              used.put(False,j)
                         end
                         j := j+1
                    end -- loop
               end
          end -- All_Perms
```

```
make is
          do
               io.put_string("%N Enter size of Perm. ")
               io.read_integer
               !!p.make(1,io.last_integer)
               !!used.make(1, io.last_integer)
               io.put_string("%N The Permutations are: %N")
               All_Perms(1)
          end -- make
     Print_Perm is
          local
               k: INTEGER
          do
               from
                    k := 1
               until
                    k > p.size
               loop
                    io.put_integer(p.item(k))
                    io.putchar(' ')
                    k := k+1
               end
               io.new_line
          end -- Print_Perm
end -- Gen_Perm
```

Derangements

A person writes n letters and addresses n envelopes. How many different ways are there of putting all the letters into the wrong envelopes.

The problem describes a permutation p s.t.

$$p(i) = j$$
 = letter i is put into envelope j

How many permutations are there of 1..n s.t. $p(i) \neq i$.

- i.e. How many perms have no fixed point.
- i.e. How many perms have no 1-cycle

Defⁿ Derangement

A Derangement of 1..n is a perm p s.t. $p(i) \neq i$. i.e. p has no 1-cycle.

e.g.
$$n=3$$
; $|perms(3)| = 6$ Note: $|perms(n)| = n!$

The perm 1,3,2 describes the range of the function perm, i.e. p(1) = 1, p(2) = 3 and p(3) = 2

p	<u>oerms</u>	cycle Not ⁿ	
1	,2,3	(1)(2)(3)	- Id
1	,3,2	(1)(2 3)	
2	,1,3	(1 2)(3)	
2	,3,1	(1 2 3)	
3	,1,2	(1 3 2)	
	,2,1 ge(3) = { (1 2 3), (1 3 2) } c	(1 3)(2) cycle not ⁿ	

Let D(n) = |Derange(n)| -- number of derangements

$$D(1) = 0$$
; $D(2) = 1$; $D(3) = 2$

Defining a function for D(n)

Consider the set of derangements of 1..n. A perm p is written as p(1),p(2) ... p(n). The set of derangements can be partitioned in n-1 subsets according to which of 2,3,...,n is in first position i.e. which of 2,3,...,n equals p(1). Each of these subsets contain the same number of elements.

e.g.
$$n=4$$
, $D(4) = 9$

Derange(4) =
$$\{2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321\}$$

tf. (therefore) D(n) = (n-1)d(n)

where

d(n) = # derangements with, say, 2 as the first element.

Such a derangement has the form

2,
$$p(2)$$
, $p(3)$, ..., $p(n)$ -- $p(i) \neq i$

e.g. n = 4,

These d(n) derangements can be further partitioned into 2 subsets according as p(2) = 1 or $p(2) \neq 1$.

Let d'(n) = # derangements of the form

2, 1, p(3), p(4), ..., p(n)
$$-p(i) \neq i$$

e.g. n=4

2143

and d"(n) = # derangements of the form

2, p(2), p(3),..., p(n) where p(2)
$$\neq$$
 1 and p(i) \neq i

e.g. n=4

2341, 2413

Since
$$d(n) = d'(n) + d''(n)$$

$$D(n) = (n-1)(d'(n) + d''(n))$$

We have d'(n) = #derangements

s.t.
$$p(1)=2$$
 and $p(2)=1$ and $p(i) \neq i$ for $i>2$

tf.
$$d'(n) = D(n-2)$$

We have d''(n) = #derangements, p, s.t.

$$p(1) = 2$$
, $p(2) \ne 1$ and $p(i) \ne i$

tf.
$$d''(n) = D(n-1)$$

tf.
$$D(n) = (n-1)(D(n-2) + D(n-1)), \text{ for } n>2$$

$$D(1) = 0$$
,

$$D(2) = 1.$$

Another Recursive Algorithm for D(n)

For n>2,
$$D(n) = (n-1)(D(n-2) + D(n-1))$$

 $= (n-1)D(n-2) + (n-1)D(n-1)$
 $= n D(n-1) - D(n-1) + (n-1)D(n-2)$
tf. $D(n) - n D(n-1) = -[D(n-1) - (n-1)D(n-2)]$
 $= (-1)^2 [D(n-2) - (n-2)D(n-3)]$
...
by induction $= (-1)^k [D(n-k) - (n-k)D(n-(k+1))]$
for k=n-2 and so k+1=n-1 and n-k = 2
 $= (-1)^{n-2} [D(2) - 2 D(1)]$
 $= (-1)^{n-2} since D(2) = 1$ and $D(1) = 0$

tf. $D(n) = n D(n-1) + (-1)^{n-2}$, for n>2 but this is also true for n=2 as

$$D(2) = 1$$

$$= 2 D(1) + 1$$

tf

$$D(n) \ = \ n \ D(n\text{-}1) + \left(\text{-}1\right)^n, \quad \text{ for } n\text{>}1 \ \text{--} \left(\text{-}1\right)^{n\text{-}2} = \left(\text{-}1\right)^n$$
 and
$$D(1) = 0$$

A Non-Recursive Algorithm

Again for n>1,

$$\begin{split} D(n) &= n \ D(n\text{-}1) + (\text{-}1)^n \\ &= n [D(n\text{-}1) + \frac{(-1)^n}{n}] \\ &= n [(n\text{-}1)D(n\text{-}2) + (\text{-}1)^{n\text{-}1} + \frac{(-1)^n}{n}] \\ &= n (n\text{-}1)[D(n\text{-}2) + \dots + \frac{(-1)^n}{n(n-1)}] \end{split}$$

by induction:

=
$$n(n-1)..(n-k)[D(n-(k+1)) + ... + \frac{(-1)^n}{n(n-1)..(n-k)}]$$

for k=n-2 and so 2=n-k

=
$$n(n-1)..2[D(1)) + ... + \frac{(-1)^n}{n(n-1)..2}]$$

tf.
$$D(n) = n!(1 - \frac{1}{1!} + \frac{1}{2!} - ... + \frac{(-1)^n}{n!})$$

Note 1.
$$1 - \frac{1}{1!} = 0$$
 -- D(1) = 0

Note 2.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} - \dots + \frac{x^{n}}{n!} + \dots$$

tf.

$$\frac{1}{e} = e^{-1}$$

$$= 1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^n}{n!} + \dots$$

End.

Since
$$\sum_{n=0}^{\infty} x_n = \lim_{n \to \infty} \sum_{n=0}^{n} x_n$$

$$\frac{1}{e} = \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{k!}$$

$$= \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\left(-1\right)^k}{k!}$$

$$= \lim_{n \to \infty} \sum_{n=0}^{\infty} \frac{\left(-1\right)^k}{n!}$$

From above

$$\frac{n!}{e} = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^n}{n!} + \frac{(-1)^{n+1}}{(n+1)!} + \dots\right)$$

$$= D(n) + n! \left(\frac{(-1)^{n+1}}{(n+1)!} + \dots\right)$$
tf.
$$D(n) = \frac{n!}{e} - \frac{(-1)^{n+1}}{(n+1)}$$

i.e.
$$D(n) = \left\lceil \frac{n!}{e} \right\rceil$$
 -- the nearest integer, n>1

e.g. n = 7
$$D(7) = \left[\frac{7!}{e}\right]$$

$$= \left[\frac{5040}{2.718}\right]$$

$$= 1854$$

Note:
$$\frac{1}{e} = \frac{D(7)}{7!} + \frac{(-1)^8}{8!}$$

$$= \frac{1854}{5040} + 0.0000248 + \dots$$

$$= 0.36785 + 0.0000248 + \dots$$

$$\approx 0.367944 \quad (= \frac{1}{e} \text{ to 6 decimal places})$$

approximates $\frac{1}{a}$ correct to 4 decimal places.

Mis-Addressed Letter

There are n! ways of putting the n letters into n envelopes of which D(n) are completely

mis-addressed. The probability of getting at least one letter into the correct envelope is

$$1 - \frac{D(n)}{n!} \qquad \text{but} \qquad \frac{D(n)}{n!} \qquad \approx \quad \frac{1}{e}$$

tf. Prob. of getting at least one letter getting into correct envelpe is

$$1 - \frac{1}{2} \approx 0.63$$

i.e. there is a 63% (i.e. 2 out of 3) chance of getting at least one right.

Table of values for #Derangements

n	Der(n)	n!
1	0	1
2	1	2
3	2	6
4	9	24
5	44	120
6	265	720
7	1,854	5,040
8	14,833	40,320
9	133,496	362,880
10	1,334,961	3,628,800

$$\begin{array}{lll} e & \approx & \frac{87}{32} & \approx & \frac{878}{323} \approx & 2.71828182845 \\ \\ \frac{1}{e} & \approx & \frac{32}{87} & \approx & \frac{323}{878} \approx & 0.36787944 \\ \\ D(n) = \left[\frac{n!}{e}\right] & - \text{the nearest integer, "Rounding"} \\ e.g. & D(4) = & \left[\frac{24}{e}\right] \end{array}$$

e.g.
$$D(4) = \left[\frac{24}{e}\right]$$

$$= \left[\frac{24*32}{87}\right] = \left[\frac{768}{87}\right]$$

$$= [8.8]$$

$$= 9$$

Iterative Eiffel functions for D(n).

Given the Specification of D(n) as

```
D(1) = 0 D(2) = 1

D(n) = (n-1)(D(n-1) + D(n-2)), n>2
```

We can write the following iterative Eiffel function:

```
Der (n:INTEGER): INTEGER is
      require
          Pos: n>0
      local
           prev, pres, next, k: INTEGER
      do
          prev := 0
          pres := 1
          from
               k := 2
           invariant
               pres = D(k)
               prev = D(k-1) and k > 1
          until
               k = n
          loop
               next := k^*(pres + prev)
               prev := pres
               pres := next
               k := k+1
          end
               result := pres
          ensure
               Post: result = D(n)
     end—Der
```

From the recursive definition of D(n) as

```
D(1) = 0
D(n) = n * D(n-1) + (-1)^n
```

we can write this in Eiffel as the function

```
der(n:INTEGER):INTEGER is
     require
          Pre_der: n > 0
     do
          if n = 1 then
               result := 0
          else
               if even(n) then
                     result := n * der(n-1) + 1
               else
                     result := n * der(n-1) - 1
               end
          end
     end—der
even(n:INTEGER): BOOLEAN is
     do
          result := n \setminus 2 = 0
     end -- even
```

```
der_iter(n:INTEGER):INTEGER is
          require
               Pre_der_iter: n > 0
          local
               r,k,i: INTEGER
          do
               if n = 1 then
                     result := 0
               else—n > 1
                     from
                          r := 1
                          k := 2
                          i := 1
                     invariant
                          inv: r = der(k) and i = (-1)^k
                     until
                          k = n
                    loop
                          k := k+1
                          i := -i
                          r := k^*r + i
                     end
                     result := r
               end
     end—der_iter
```

Generate All Derangements of 1..N

Defⁿ. **Derangement**

```
A Derangement of 1..n is a permutation p
           s.t. p(i) \neq i.
Let us write the perm. p in terms of its range,
i.e. if p(1) = 3, p(2) = 1 and p(3) = 2 then we can write this as p = (3,1,2)
i.e. p = (p(1), p(2), p(3))
A derangement d of 1..N is permutation
      (d(1), d(2), d(3), ... d(N)) where
d(1) \neq 1, d(2) \neq 2, d(3) \neq 3, ..., d(N) \neq N
Perms:
                     1,2,3
                                1,3,2
                                            2,1,3
                                                        2,3,1
                                                                   3,1,2
                                                                               3,2,1
Derangements
                                                        2,3,1
                                                                   3,1,2
```

The set of derangements of $1..3 = \{ (2,3,1), (3,1,2) \}$

The #derangements of 1..N $= \left[\frac{N!}{e}\right]$ -- nearest integer

To generate all the derangement we adapt the procedure for All_Perms.

```
All_Ders(k:INTEGER) is
     local
          j: INTEGER
     do
          if k > p.size then
                Print Perm
          else
                from
                     j := 1
                until
                     j > p.size
                loop
                     if not used.item(j) and j /= k then
                           p.put(j,k)
                           used.put(True,j)
                           All_Ders(k+1)
                           used.put(False,j)
                     end
                     j := j+1
                end
          end
     end -- All_Ders
```

The Class for Generating Derangements

We can take advantage of the class GEN_PERM to construct a class for GEN_DER. To do this we make a simple use of inheritance. Let the class GEN_DER inherit all the attributes and features of GEN_PERM except that we will redefine the critical procedure All_Perms.

This use of inheritance saves us rewriting common routines and is more like 'including' the file for GEN_PERM. rather than true inheritance

Note:

It is not possible to redefine and rename at the same time.

Combinations: Choose k items from N items

Generate all combinations of 3 items from 5 items.

The number of way of choosing k from N is given by $\binom{N}{k}$ "N choose k "

Consider
$$\binom{N}{k}$$

In choosing, we have

but choosing say 1,2,3 is the same as choosing 2,1,3. There are 3! ways of arranging 1,2,3 i.e. there are k! ways of arranging or permuting k things.

In the above we have choosen k! times too many and so
$$\binom{N}{k} = \frac{N*(N-1)..N-(k-1)}{k!}$$

$$= \frac{N!}{k!*(N-k)!}$$

Note:

$$\begin{pmatrix} N \\ N - k \end{pmatrix} = \begin{pmatrix} N \\ k \end{pmatrix}$$

In generating combinations we generate those perms of size k that are ordered or sorted, e.g. in the above, we have 1, 3, 5 and never 1, 5, 3.

We can regard 1, 3, 5 as a representative of all the arrangements or perms of 1, 3, 5

```
All_Combs(i,N,k,Start:INTEGER) is
     local
          j: INTEGER
     do
          if i > k then
               Print_Comb(k)
          else
               from
                    j := Start
               until
                    j > N
               loop
                    comb.put(j,i)
                    All_Combs(i+1,N,k,j+1)
                    j := j+1
               end
          end
     end -- All_Combs
```

Methods for Generating Permutations

We are viewing a permutation as an ARRAY[INTEGER], where the indexing is from 1..N and the values are 1..N and the array has the property of being bi-jective.

Backtracking

This is the method used above in All_Perms. The permutation are generated in 'Lexicographical' order i.e. in 'increasing size'.

```
From 1, 2, 3, ..., N ....
To N, N-1, ..., 2, 1
```

Recursion (Horowitz & Sahni)

```
make is
     local
          p : ARRAY[INTEGER]
          i: INTEGER
     do
          io.put_string("%N Enter size of Perm. ")
          io.get_int
          !!p.make(1,io.last_int)
          from
               i := 1
          until
               i > p.count
          loop
               p.put(i,i)
               i := i+1
          end
          All_Perms_HS(P,1)
     end -- make
```

```
All_Perms_HS(A0:ARRAY[INTEGER], k:INTEGER) is
    local
         A: ARRAY[INTEGER]
         j, it: INTEGER
     do
         if k = A0.count then
              Print_Perm(A0)
         else
              !!A.make(1, A0.count)
              A.copy(A0)
              from
                   j := k
              until
                   j > A.count
              loop
                   it := A.item(j)
                   A.put(A.item(k), j)
                   A.put(it,k)
                   All_Perms_HS(A, k+1)
                   j := j+1
               end
         end
     end -- All_Perms_HS
```

```
class Gen Perm HS
creation
     make
feature
make is
     local
          p: ARRAY[INTEGER]
          i,n: INTEGER
     do
          io.put_string(
               "%NSize of Perm?")
          io.read_integer
          n := io.last integer
          !!p.make(1,n)
          from
               i := 1
          until
               i > p.count
          loop
               p.put(i,i)
               i := i+1
          end
          io.put_string(
                    "%N Perms =%N")
          All_Perms_HS(P,1)
     end -- make
Print_Perm1(p :ARRAY[INTEGER]) is
     local
          k: INTEGER
     do
          from
               k := 1
          until
               k > p.size
          loop
               io.putint(p.item(k))
               io.putchar(' ')
               k := k+1
          end
          io.new line
     end -- Print_Perm1
```

```
class Gen Perm
creation
     make
feature
p: ARRAY[INTEGER]
used:ARRAY[BOOLEAN]
make is
     local
          n: INTEGER
     do
          io.put_string(
                  "%NSize of Perm?")
          io.read_integer
          n := io.last_integer
          !!p.make(1,n)
          !!used.make(1,n)
          io.put_string(
          "%N Perms = %N")
          All Perms(1)
end -- make
Print_Perm0 is
    local
          k: INTEGER
     do
          from
               k := 1
          until
               k > p.size
          loop
               io.putint(p.item(k))
               io.putchar(' ')
               k := k+1
          end
          io.new_line
     end -- Print_Perm0
```

```
All_Perms_HS(
     A0:ARRAY[INTEGER],
     k: INTEGER) is
 local
     A: ARRAY[INTEGER]
     j, it: INTEGER
 do
     if k = A0.count then
          Print_Perm1(A0)
     else
          !!A.make(1,A0.count)
          A.copy(A0)
          from
               j := k
          until
               j > A.count
          loop
               it := A.item(j)
               A.put(A.item(k), j)
               A.put(it,k)
               All_Perms_HS(A,k+1)
               j := j+1
          end
     end
 end -- All_Perms_HS
end -- Gen_Perm_HS
```

```
All_Perms(k:INTEGER) is
 local
    j: INTEGER
 do
     if k > p.size then
          Print_Perm0
     else
      from
          j := 1
      until
          j > p.size
      loop
          if not used.item(j) then
               p.put(j,k)
               used.put(True,j)
               All_Perms(k+1)
               used.put(False,j)
          end
          j := j+1
      end
 end
end -- All_Perms
end -- Gen_Perm
```