

Date:
tree is cless than the vertex
edges= (vertex)=1
Hence prove that this is spaning tree that having
Show that nº is not
use the proof by contaction. : Assume that
$n^2=o(n)$ in which $\forall n\geq 1$ then the: Constant $c \in \mathbb{R}^n$
Such Hat
$n^2 \leq c(g(n))$ $n^2 \leq c \eta$

"	Date:	
Ind	to by n h/s	
U	Jan 9 4 9 winned	_
	ME CA CA CA CANA	
	2 30 Vilavina 20	
	nec	
	Since the inequality should hold	-
	fox all n and it does not	
	hold n=c+1; then there is	
	hoxel hact, they in the	}
,	a contractic ton in the	
	initial assumption	
	Therefore n2 to(n)	
	Be cause in which	
	nec	
	30 faid this condition	
	$\forall n \geq 1$	
	BEST CONTROL OF SECURITION	
	Hence Cka	
	But n is cless than	
	occure in this condition	
	Hence nº \$0(n)	
	Heller H. Folly	

	Date:
Date:	So
	1.Somo
function R to R with	
	-
Is invertible f	This
Now first we check this function is	Bel
check this function	
and they cheek	
opto function	Th
one-to-one	260
P(91) - f(912)	
Taking square of b/s	S
1915 - + 192	205
942 + 902	
21-9/2 21-9/2	
so this is not one to	
one function because	
21 7 9/2	
Gample Let	
f(ni) = 22 put 1	
$f(t) = tt^2 - 1$	

Date:	
91-59 put real number	
no= -8	a
91 - [-3	
In square root a negative	
vaxiable are not the real	
It is a complex number	
that not the realist	
91 - 53 1	
So x & R this is resion	
so this function is not	
onto function.	
Investible	
If the function is not	
one-to-one and onto so	
it is not in the inmetal	00
function:	
of is impossible to take	
the inverse of this function.	

