实验报告

课	程	计算机组成与系统结构	姓	名	王磊	学	号	202231060435
指导	教师	徐媛媛	专业	班级	计科 2202	成	绩	

实验三 存储器实验

一、实验目的

- 1. 掌握存储器的组成结构和工作原理。
- 2. 掌握静态随机存储器 RAM 工作特性及数据的读写方法。
- 3. 掌握存储器扩展的基本原理和方法。

二、实验设备

PC 机一台, Logisim 实验系统一套。

三、实验原理及内容

计算机在处理汉字输出的时候,需用到汉字的字形码。字形码是用点阵表示的汉字字型代码,是汉字的输出形式。汉字字库用于输出汉字字形码,字形码点阵信息量大,占用存储空间大,1616 点阵需 256 位才能显示一个汉字,如图 3-1 所示。

图 3-1 1616 字形码点阵

国标 GB2312 将汉字以行列矩阵形式排列,分为 94 行,94 列,分别用 7 位区号表示行号,7 位位号表示列号, 就构成了汉字的区位码,图 3-2 为部分汉字区位码。

区位码	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
16区	啊	阿	埃	挨	哎	唉	哀	皑	癌	蔼	矮	艾	碍	爱	隘	鞍	氨	安	俺	按
17区	薄	雹	保	堡	饱	寉	抱	报	暴	豹	鲍	爆	杯	碑	悲	卑	北	辈	祀	贝
18区	病	并	玻	菠	播	拨	钵	波	博	勃	搏	铂	箔	伯	帛	舶	脖	膊	渤	泊
19区	场	尝	常	长	偿	肠	广	敞	畅	唱	倡	超	抄	钞	朝	嘲	潮	巢	眇	炒
20区	础	储	矗	搐	触	处	揣	川	穿	椽	传	船	喘	串	疮	窗	幢	床	闯	创

图 3-2 汉字区位码

汉字字库通过区号、位号进行检索,输出汉字的字形码。地址输入为:区号(7位)、位号(7位),逻辑地址为:(区号-1)94+位号-1,区号、位号从1开始。数据输出为:256位点阵信息。

现有8片16K32位ROM,用于在Logisim平台构建GB2312汉字编码的16K256点阵汉字字库,电路输入为汉字

区号和位号, 电路输出为 8×32 位(1616=256 位点阵信息), 如图 3-3 所示。

图中有一块空白的 16K32 位电路,需要用 4 片 4K32 位 ROM 替换。请设计该空白电路的电路连接图。

1. 设计思想

1.1 先陈述本题目是考查位扩展还是字扩展还是 both?再计算几组以及每组几片、共多少片。

答:本题目考查的是字扩展和位扩展。需要用 4 片 4 K 32 位 ROM 替换空白电路。字扩展是指通过增加存储芯片的数量来扩展存储容量,而位扩展是指通过增加每个存储芯片的位宽来扩展存储容量。在这个实验中,我们需要将 16K 32 位的存储空间拆分成 4 个 4K 32 位的存储空间,因此这是一个字扩展的过程。按数据位宽(字扩展)分组需要 $256\div32=8$ 片 ROM 来实现数据位宽。按地址容量(位扩展)分组需要 $16K\div4K=4$ 组来实现位扩展,所以总片数为: 4 组 × 8 片 = 32 片。

1.2 根据冯的思想,一共有地址、数据以及控制三种总线

1.2.1 地址总线

整个电路包含多少位地址线,分别描述高位地址线、低位地址线如何连接?

答: 高位地址线决定使用哪片 ROM 芯片。 低位地址线用于访问每片 ROM 中的具体地址。 总计需要 14 根地址线(2¹⁴=16 K)。

1.2.2 数据总线

根据是否需要字扩展来回答。

答: 需要字扩展,因为是 32 位,数据总线将直接接入到每片 ROM 的 32 位输出端,具体是通过每 组 8 片 ROM 并联实现 **256 位** 的数据宽度扩展

1.2.3 控制总线

片选、读写如何连接

片选信号(CS): 由地址总线的高位产生。

读写信号(OE):接入全局的读信号控制。

2. 电路连接图

图 3-4 存储器扩展电路图

3. 拆分字库文件到 4 片 4K32 位 ROM

完成空白电路设计后,在 8 片 16K32 位 ROM 中载入字库文件(空白电路的字库文件 $HZK16_1$ 需拆分成 4 个字库文件,载入 4 片 4K32 位 ROM 中)。

如何拆分?

- 第1 部分(地址0x0000至0x0FFF)的数据存入第1片4K×32位ROM。
- 第2 部分(地址0x1000至0x1FFF)的数据存入第2片4K×32位ROM。
- 第3 部分(地址0x2000至0x2FFF)的数据存入第3片4K×32位ROM。
- 第4 部分(地址0x3000至0x3FFF)的数据存入第4片4K×32位ROM。

4. 实验结果分析

打开 logisim 中的字库测试电路,设置时钟频率为 8Hz,按 Ctrl+k 进行电路仿真,将仿真结果与参考字库输出结果进行对比。

图 3-5 字库测试电路

写出在 logisim 运行的实验结果你遇到的问题,分析原因,如何解决的?截图并配文字说明。尽量按照上课讲的写作技巧来编排。

图 3-6 问题

在进行仿真结果测试时,我发现 ROM 的输出数据与预期的字库显示结果不一致。经过排查,问题出在字库文件的拆分环节。我重新核对了 16K 字节的字库文件,将其准确地划分为 4 个 4K 字节的部分,并分别载入到 4 片 4K×32 位 ROM 中,最终成功显示正确结果。

四、思考题

某计算机的主存地址空间中,0x0000 到 0x3FFF 为 ROM 存储区域,0x4000 到 0x5FFF 为保留地址区域,0x6000 到 0x7FFF 为 RAM 地址区域。ROM 的控制信号为 CS 和 OE,RAM 的控制信号为 CS、OE 和 WE,CPU 地址线 $A15^{\sim}A0$,数据线 $D7^{\sim}D0$,读控制线为 RD,写控制线为 WR。若 ROM 采用 $8K\times8$ 的芯片,RAM 芯片采用 $4K\times4$ 的芯片,试分析每个芯片的地址范围,画出与总线的连接图。带的信号表示低电平有效。

20M 0x0000 - DR3FFF 8KX8 RAM 0x6000 - OXTFFF 4KX4 cpv地址代和s-A 数据的P-D

ROM: DOSFFFH-B00004+1=40004=214 石機 =165=2

RAM: DXTFFH Dbno4+120004=2/3

地址结己

A15 | Ang A12 | And A10 - A0 0 | 0 | 0 | 0 | 0 - 0 | ROM(1) 00004 ~ IFFFH 0 | 0 | 0 | 0 | 0 - 0 | ROM(2) 20004 ~ STFFH 0 | 1 | 0 | 0 - - 0 | RAM(1)(1) 60004 ~ 5FFFH 0 | 1 | 0 | 1 | - - | | RAM(3)(4) 70004 ~ JFFFH

施罗维

A13, A14, A1545774L513 8年38年前衛入衛 20. 21. 13为此365 20. 21. 13为ROM(1)(2)的基連信号C50年C51 A126001, ROM(1)(3), 将75年012相或下介的推信3552 A126101, RAM(3)(4), 将73和 102相或下介的提信3C53

