Abstract Algebra Assignments © BinaryPhi

N_i	ame:	Assignment: Number 2		
Score:		Last Edit: May 26, 2022 PDT		
Prob	lem 1: Definitions			
(a)	Let "o" be the binary of	operation in the non-empty set S , and satisfies the following	owing:	
		$(a \circ b) \circ c = a \circ (b \circ c), \forall a, b, c \in S.$		
	Then, the algebraic sy for short)	estem $\{S; \circ\}$ is called a (S is a		
(b)	If two elements e_1 and	e_2 in the semigroup satisfy:		
		$e_1 \circ a = a,$		
		$a \circ e_2 = a, \forall a \in S$		
	e_1 is called the	of S , and e_2 is called the	of S .	
	If an element e in the	semigroup satisfies:		
		$e \circ a = a \circ e = a, \forall a \in S,$		
	e is called the	of S.		
		as is called a		
(c)	Assuming a monoid {S	$S; \circ \}$ has the identity element e and an element $a \in S$,	if:	
		$a_1 \circ a = e,$		
		$a \circ a_2 = e, \forall a_1, a_2 \in S$		
	a_1 is called the	of a , and a_2 is called the	of a .	
	If:			
		$a_3 \circ a = a \circ a_3 = e, \forall a_3 \in S,$		
	a_3 is called the	of a , and denoted by $a_3 = a^{-1}$.		
(4)	If every element in mo	noid $\{S, \alpha\}$ is invertible then S is called a		

(e)	A group is a set S	with an operation "o" that satisfies the following:
	Closure:	;
	Associativity:	;
	Identity:	;
	Invertibility:	;
(f)	Unilateral definition if it satisfies the following the following the satisfies the following the satisfies the following the satisfies the following the satisfies the satisfies the following the satisfies the sa	n of the previous definition. Prove that a semigroup S is a group lowing:
	• $\forall a \in S, \exists$	$\exists b \in S, \text{ so } b \circ a = e;$
	• $\forall a \in S, \exists$	$\exists e \in S, \text{ so } e \circ a = a;$
(g)	Interesting Questiona left inverse and a	n: Does the previous conclusions still hold if the semigroup has right identity:
	• $\forall a \in S, \exists$	$a^{-1} \in S$, so $a^{-1} \circ a = e$;
	$\bullet \ \forall a \in S, \ \exists$	$\exists e \in S, \text{ so } a \circ e = a.$

(h)	Let the operation " \circ " in an algebraic system be commutative, the group $\{S; \circ\}$ is called the or
(i)	Prove that the operation " \circ " in group $\mathbb G$ is left(right) Cancellative :
	$\forall a, b, c \in \mathbb{G}, \ a \circ b = a \circ c \implies b = c$ $b \circ a = c \circ a \implies b = c.$
(j)	The number of elements in group $\mathbb G$ is called the of $\mathbb G$, denoted by $ \mathbb G $.
(J)	If $ \mathbb{G} $ is finite, we call \mathbb{G} a If $ \mathbb{G} $ has infinite order, we call \mathbb{G} a
(k)	Assuming the group $\mathbb G$ has an operation (multiplication or addition) and a is an element of $\mathbb G$, if $\forall k \in \mathbb N$, $a^k \neq 1 (\neq e)$ or $ka \neq 0 (\neq e)$, we call the order of element a is If $\exists k \in \mathbb N$, $a^k = e$ or $ka = 0$, the order of element a is

Problem 2: Prove:

- 1) There is only one inverse element of any element a in group \mathbb{G} .
- 2) For a group \mathbb{G} , $\forall a, b \in \mathbb{G}$, equations $a \circ x = b$ and $x \circ a = b$ have one and only one solution.
- 3) If $\forall a, b \in S$ for which S is a semigroup, S is a group if $a \circ x = b$, $x \circ a = b$ both have solutions.

2)	2) In \mathbb{Z} , $a \circ b = a + b + ab$;		
3)	3) In \mathbb{Z} , $a \circ b = a + b - ab$;		

Problem 3: Check if the following options are semigroups, monoids, or groups?

1) In \mathbb{Z} , $a \circ b = a - b$;

Problem 5: Prove:
$\mathbb G$ is an Abelian Group if the order of every non-identity element is 2.
Problem 6: Assuming M is a monoid, $m \in M$. Define another multiplication rule " $\circ a \circ b = amb$.
Prove that M is a semigroup with respect to " \circ ".
When is M a monoid with respect to " \circ "?

element a of M is invertible if there exists an element a^{-1} that satisfies $a^{-1}a = aa^{-1} = e$.		
Prove the following statements:		
1) If $a, b, c \in M$ and $ab = ca = e$, then a is invertible and $a^{-1} = b = c$.		
2) If $a \in M$ is invertible, then $b = a^{-1}$ when and only when $aba = a$, $ab^2a = e$.		
3) The sufficient prerequisite of G , the subset of M , being a group is that every element in G is invertible and for all $g_1, g_2 \in G$, we have $g_1^{-1}g_2 \in G$.		
4) All invertible elements in M is a group.		

Problem 7: Assuming M is a monoid with an identity element e. It is said that the