

Directors

Master Thesis

Prof. Dr.-Ing. Dr. h. c. J. Becker Prof. Dr.-Ing. E. Sax Prof. Dr. rer. nat. W. Stork Supervising Tutors Benedikt Haas

Evaluation of Image-Based Approaches Extracting a Mandrel's Borders Using Machine Vision

cand. el. Dinggen Dai

Structure

- 1 Motivation and Objective
- 2 Concept
- 3 Methods
- 4 Result and Evaluation
- 5 Conclusion and Outlook

1 Motivation and Objective

Karlsruhe Institute of Technology

- Cardiovascular diseases caused 338,000 deaths [1]
 - 22.3% due to narrowing of heart disease vessels
- Treatable by stent implementation [2]
- Stent quality control in manufacturing is essential
 - manual inspection VS. automatic inspection

Causes of death in Germany 2020

■ Cancers

- Cardiovascular diseases
- Respiratory system diseases
- Mental and behavioral disorders

■ Others

Stent implementation process [2]

Motivation: Stent4Tomorrow

visual inspection related parts of the system [3]

focus on the stent

28.10.2022

Objective: Borders extraction

- Issue 1: the pitch size
 - how to "enlarge"?
- Issue 2: the background useless
 - how to remove?
- **Solution**: borders extraction!
- **Extra**: the diameter of the mandrel already known (in **mm**)
 - calculate the distance of the borders
 - build mapping relations between image (in **pixel**) and human perception (in **mm**)

2 Concept

Assumption:

- the border lines are vertical to the x-axis of image
- Input: RGB image
- Output: two border lines
- Metrics:
 - 1. RSE (root square error): $\sqrt{d1^2 + d2^2}$
 - 2. Execution time

Concept: diagram

3 Methods: Dataset

- Original Image (RGB):
 - size: 2064*3088*3 (> 5 MB)
- The labels:
 - **two border lines** vertical to the x-axis
 - format: [x_left_border, x_right_border]

	Training	Validation	Test
Total	5529	1224	1694
Usable ¹	4881	1085	1508

Method: classic image process

- Step 1. edge detector
 - Bottom-up approachs:
 - LSD (2010): still typical today [4]
 - EDLines (2011): 10 times faster than LSD [5]
 - CannyPF (2015): parameter free [6]
 - Top-down approachs: based on hough transformation
 - MCMLSD (CVPR 2017) [7]
- Step 2. valid edge extractor
 - filter: moving window
- Step 3. border line generator
 - least square method

Method: deep learning

Karlsruhe Institute of Technology

- HT-LCNN (ECCV 2020) [8]
 - based on LCNN (ICCV 2019)
 - add a trainable Hough transfrom block into a deep network

An overview of LCNN architecture

F-Clip [9]

- SOTA of line detectors (2021)
- one stage: much more faster
- the representation of a line

An overview of F-Clip architecture

4 Result & Evaluation

Classic image process: LSD

LSD: 2 kinds of bad cases

Case 1: no edge detected around the borders

Case 2: noise (stent wire) around the left border

Deep learning: HT-LCNN

HT-LCNN: the predicted left border line in the left side of the labeled

Evaluation: execution time

5 Conclusion and outlook

Conclusion:

- Implemented / reproduced 6 approches to detect the border lines
 - 4 in classic image process: LSD, EDLines, CannyPF, MCMLSD
 - 2 in deep learning: HT-LCNN, F-Clip
- Metric RSE:
 - **DL models** show better performance: more **robust** to the noise
 - Lowest of all: HT-LCNN 19.77 pixels
 - Lowest of classic methods: LSD 28.8 pixels
- Metric execution time: F-Clip is the fastest with 32 (ms / image)

Outlook:

- Classic image process: based on LSD, deal with the two bad cases (robust to noise)
- Deep learning: try to use two junctions to represent a border line instead of the vertical line
 - compared to the top point of the left border (obstruction from the background), easy to percept for human being

Thank you for your attention!

Appendix - Reference

[1]