Otmização I: problemas irrestritos/ - gradiente: xx=x-tx 7f(xx) Menton: $\chi^{k+1} = \chi^{k} - (\nabla^{2} f(\chi^{k}))^{-1} \nabla f(\chi^{k})$ (caro computacionalmente) · Quar-Newton; xx+1= xx - Bx 77f(xx) (Bx i Garata) · gradiente expectral (?) · gradientes conjugades (minimizaçõe de gnadrolicas) $f(x) = \frac{1}{2} x^{T} A x - b^{T} \chi$ A simétrica e définida positiva \rightarrow $d^{T}Ad > 0$, $\forall d \neq 0$. A simpthica e def. position \Rightarrow f (estrutamente) funçois convexas; $f(x_t) \leq t f(a) + (1-t) f(b)$ a xt b t e [0,1]

Luncous comercas (definição) f:R"->R é eouvera se $f(ta+(1-t)b) \leq t f(a) + (1-t) f(b),$ tabelle e te [0,1]. f é estritamente converez se a designaldade TEO: f convexa. $\nabla f(x^*) = 0 \implies x^*$ é minimiza-don de f. me e resolver min f(x)? 1) Sdeal: encontrar um minimizador (global), isto i, x* tal que $f(x^*) \leq f(x), \forall x$ 2) min mi vador local: $\exists V(x^*)$ vizinhança $\forall x^* \forall x^* x^* \forall x^$

Il e min local, mas 2* é min- global 3x^K seguencia grada pelo metodo lun x^K = n* 11 7/(xx) 1 6 E Expectation na pratica: encentrar x^* tal que $Xf(x^*) = 0$ condição (necesaria) de otimalidade de 1

Vrollenas rutitos min f(x) sujeito a h(x) = 0) m restrições $g(x) \le 0$) p restrições $f: \mathbb{R}^m \rightarrow \mathbb{R}$, $h: \mathbb{R}^m \rightarrow \mathbb{R}^m$, $g: \mathbb{R}^m \rightarrow \mathbb{R}^p$ Pf(x*)=0) (não serre mais, pois não Comidera as restrições!) YXXT (Karush-Kuhn-Tucker)