CSE-233: Week 1 Summer 2020

Introduction to Finite Automata

Reference:

Book1 Chapter 1.5, Book2 Chapter 1.1 Md. Saidul Hoque Anik anik@cse.uiu.ac.bd

Key Concepts

- 1. Alphabet Σ
- 2. String, w
- 3. Language, L

Alphabet

```
Alphabet of English Language \Sigma_{Eng}=\{a,\,b,\,c,...\}
Alphabet of Bengali Language \Sigma_{Beng}=\{\overline{\mbox{v}},\,\overline{\mbox{v}},\,\overline{\mbox{v}},...\}
Alphabet of Arabic Language \Sigma_{Arabic}=\{\overline{\mbox{v}},\,\overline{\mbox{v}},...\}
```

Strings

```
Alphabet of English Language \Sigma_{Eng}=\{a,\,b,\,c,...\} Strings = \{\epsilon,\,a,\,bd,\,cat,\,pq,\,...\} Alphabet of Bengali Language \Sigma_{Beng}=\{অ, আ, ক,...\} Strings = \{\epsilon,\,কখ, আ, গাড়ি,...\}
```

Empty String is &

Do you remember what is Σ^* ?

What is Σ_{eng}^* ? What is Σ_{Beng}^* ?

Language

Are all strings meaningful?

```
Alphabet of English Language \Sigma_{Eng} = \{a, b, c, ...\}

Strings = \{a, bd, cat, pq, ...\}

Language = set of strings from \Sigma^* that are meaningful = \{cat, dog, car, ...\}
```

Mapping Problems as Language

Languages can be used to describe problems with "yes/no" answers, for example:

```
L_1 = The set of all strings over S_1 that contain the substring "food"

L_2 = The set of all strings over S_2 that are divisible by 7 = \{7, 14, 21, ...\}

L_3 = The set of all strings of the form w#w where w is any string over \{a, b, ..., z\}

L_4 = The set of all strings over S_4 where every ( can be matched with a subsequent )
```

More Examples of Language

1. The language of all strings consisting of n 0s followed by n 1s ($n \ge 0$):

$$\{\epsilon, 01, 0011, 000111, \ldots\}$$

2. The set of strings of 0s and 1s with an equal number of each:

$$\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

- 3. Σ^* is a language for any alphabet Σ
- 4. \emptyset , the empty language, is a language over any alphabet
- 5. $\{\epsilon\}$, the language consisting of only the empty string, is also a language over any alphabet

NOTE: $\emptyset \neq \{\epsilon\}$ since \emptyset has no strings and $\{\epsilon\}$ has one

- 6. $\{w \mid w \text{ consists of an equal number of } 0 \text{ and } 1\}$
- 7. $\{0^n 1^n \mid n \ge 1\}$
- 8. $\{0^i 1^j \mid 0 \le i \le j\}$

Finite Automata

Small program that can recognize language (Meaningful Inputs)

bulb is on if and only if there was an odd number of flips

Deterministic Finite Automata

Small program that can recognize language (Meaningful Inputs) and takes one step at a time

Example: Shopping Mall Glass Door

Transition Function

Shopping Mall Glass Door

input signal

		NEITHER	FRONT	REAR	BOTH
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

Another Example

FIGURE 1.4

A finite automaton called M_1 that has three states

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Accept State = ?

Language of DFA

All inputs that are accepted by the FDA

• Language of M is $\{f, fff, fffff, \ldots\} = \{f^n: n \text{ is odd}\}$

Formal Definition of DFA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the set of accept states.²

More Examples

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Final State = ?
- 6. Language = ?

More Examples

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Final State = ?
- 6. Language = ?

More Examples

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Final State = ?
- 6. Language = ?