```
In [8]:
%reload_ext watermark
%watermark

2019-05-30T21:35:03+02:00

CPython 3.6.5
IPython 6.4.0

compiler : GCC 7.2.0
system : Linux
release : 5.1.5-arch1-2-ARCH
machine : x86_64
processor :
CPU cores : 4
interpreter: 64bit
```

Procesado de DataSet

Con lo visto en el apartado anterior de procesado de variables vamos a transformar un dataset en otro que pueda ser utilizado para entrenar modelos de predicción.

Ingesta de datos

Cargamos las librerías que vamos a utilizar y el dataset original

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn import feature_extraction
```

```
In [2]:
```

```
datos = pd.read_csv("../../RESOURCES/datos_procesamiento.csv")
datos.head()
```

```
Out[2]:
```

col_inexistente	1 col2	col3	col_outliers	col_outliers2	col_categorica	col_ordinal	col_texto
59.0	52.0	2.232832	-50	0.771666	ratón	muy bien	Tenía en su casa una ama que pasaba de los cua
31.0	74.0	0.906147	-5	1.068558	elefante	regular	El resto della concluían sayo de velarte, calz
81.0	28.0	0.626750	-32	0.846396	ratón	muy mal	El resto della concluían sayo de velarte, calz
34.0	16.0	0.816738	-84	0.637381	gato	mal	Una olla de algo más vaca que carnero, salpicó
32.0	28.0	0.571131	65	4.540614	gato	bien	Tenía en su casa una ama que pasaba de los cua

Transformación del DataSet

Separación de variables

```
In [3]:
col_numericas = ['col_inexistentel', 'col2', 'col3', 'col_outliers', 'col_outliers2']
col_categorica = ['col_categorica']
col_texto = ['col_texto']
```

Variables numéricas

```
In [4]:
```

Variables Categóricas

```
In [5]:
```

```
label_codificador_categorico = preprocessing.LabelEncoder()
categorias codificadas = label codificador_categorico.fit_transform(datos[col_categorica])
oh codificador = preprocessing.OneHotEncoder(sparse=False)
categorias_oh_codificadas = oh_codificador.fit_transform(categorias_codificadas.reshape(1000,1))
df categorico procesado = pd.DataFrame(categorias oh codificadas,
                                                                                                   columns=label codificador categorico.classes )
/opt/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/label.py:235:
DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change th
e shape of y to (n samples, ), for example using ravel().
   y = column_or_1d(y, warn=True)
/opt/anaconda 3/lib/python 3.6/site-packages/sklearn/preprocessing/\_encoders.py: 371: Future Warning: 1.00 for the control of the control o
The handling of integer data will change in version 0.22. Currently, the categories are determined
based on the range [0, \max(\text{values})], while in the future they will be determined based on the
unique values.
If you want the future behaviour and silence this warning, you can specify "categories='auto'".
In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, t
hen you can now use the OneHotEncoder directly.
   warnings.warn(msg, FutureWarning)
```

Variables de Texto

```
In [6]:
```

```
vectorizador_tfidf = feature_extraction.text.TfidfVectorizer()
texto_vectorizado = vectorizador_tfidf.fit_transform(datos.col_texto)
df_texto_procesado = pd.DataFrame(texto_vectorizado.toarray(),
columns=vectorizador_tfidf.get_feature_names())
```

Exportación y muestra final

```
In [7]:
```

```
datos_procesados = pd.concat([
    df_numerico_procesado,
    df_categorico_procesado,
    df_texto_procesado
], axis=1)

label_codificador_ordinal = preprocessing.LabelEncoder()
datos_procesados['col_ordinal'] = label_codificador_ordinal.fit_transform(datos.col_ordinal)
datos_procesados.head()
```

Out[7]:

	col_inexistente1	col2	col3	col_outliers	col_outliers2	elefante	gato	perro	ratón	acordarme	 vaca	
0	0.399217	0.082807	0.442819	-0.694600	-0.038365	0.0	0.0	0.0	1.0	0.0	 0.000000	0.2
1	-0.653605	0.861333	- 0.323390	-0.118466	-0.038278	1.0	0.0	0.0	0.0	0.0	 0.000000	0.0

2	¢ <u>প্র2</u> পুঝ্জুstente1	- col2 0.766494	- col3	cool <u>4</u> couttliers	<u> </u>	⊕l⊕fante	gato	₽ <u>@</u> rro	rjatjón	@cordarme	 0.000000	0.0
3	-0.540803	1.191145	- 0.375028	-1.129901	-0.038405	0.0	1.0	0.0	0.0	0.0	 0.194272	0.0
4	-0.616004	- 0.766494	- 0.516874	0.777743	-0.037257	0.0	1.0	0.0	0.0	0.0	 0.000000	0.2

5 rows × 144 columns

In [17]:

datos_procesados.to_csv("../../RESOURCES/dataset_procesado.csv")