IT 503 Strategic Planning and Management

Nangosha Elisha May21/PGDIT/577U

- In this test, you will design models to predict the number of deaths due to covid-19 Pandemic in Africas region.
- . Use python 3.7 or higher for implementation.
- Take the screen shots of your codes and upload in the university platform and also share your uploaded codes/output in your Github account with the Instructor
- . Use the following methodology with respective performance evaluation metrics such as correlations, p-value, and F-1Scores:
- 1. Pearson Correlations (5 marks)
- 2. Decision Trees Classifier. (15 marks)

Data set obtained from URL: https://github.com/mkumakech/Covid-19 Pandemic/blob/master/Africa Covid.csv As at: July 11th 2021 at 6.00 PM

```
In [1]: #importing Libraries for analysis
            pip install seaborn
          import pandas as pd
          import matplotlib.pyplot as plt
          import numpy as np
import seaborn as sns
          from sklearn.pipeline import Pipeline
          from sklearn.preprocessing import StandardScaler,PolynomialFeatures
          %matplotlib inline
          Requirement already satisfied: seaborn in /srv/conda/envs/notebook/lib/python3.6/site-packages (0.11.1)
          Requirement already satisfied: numpy>=1.15 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.19.5) Requirement already satisfied: pandas>=0.23 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.1.5)
          Requirement already satisfied: scipy>=1.0 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (1.5.3)
Requirement already satisfied: matplotlib>=2.2 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from seaborn) (3.3.4)
          Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)
          Requirement already satisfied: python-dateutil>=2.1 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>= 2.2->seaborn) (2.8.1)
          Requirement already satisfied: pillow>=6.2.0 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2->sea
          born) (8.2.0)
          Requirement already satisfied: cycler>=0.10 in /srv/conda/envs/notebook/lib/python3.6/site-packages/cycler-0.10.0-py3.6.egg (from matplotlib>=2.2->seaborn) (0.10.0)
          Requirement already satisfied: kiwisolver>=1.0.1 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from matplotlib>=2.2-
          >seaborn) (1.3.1)
          Requirement already satisfied: six in /srv/conda/envs/notebook/lib/python3.6/site-packages (from cycler>=0.10->matplotlib>=2.2-
          >seaborn) (1.15.0)
          Requirement already satisfied: pytz>=2017.2 in /srv/conda/envs/notebook/lib/python3.6/site-packages (from pandas>=0.23->seabor
          n) (2021.1)
In [2]: #Load file. This has global regions
         Data=pd.read_csv("WHO COVID-19 global table data June 27th 2021 at 6.00 PM.csv",sep=",") #view first five rows
          Data.head()
```

Out[2]:		Name	WHO Region	Cases - cumulative total	Cases - cumulative total per 100000 population	Cases - newly reported in last 7 days	Cases - newly reported in last 7 days per 100000 population	Cases - newly reported in last 24 hours	Deaths - cumulative total	Deaths - cumulative total per 100000 population	Deaths - newly reported in last 7 days	Deaths - newly reported in last 7 days per 100000 population	Deaths - newly reported in last 24 hours	Transmission Classification
	0	Global	NaN	179686071	2305.281168	2565745	32.917207	437764	3899172	50.024399	57897	0.742789	9218	NaN
	1	United States of America	Americas	33257768	10047.580000	82369	24.880000	14239	597727	180.580000	2136	0.650000	355	Community transmission
	2	India	South- East Asia	30134445	2183.650000	371652	26.930000	51887	393310	28.500000	9820	0.710000	1329	Clusters of cases
	3	Brazil	Americas	18169881	8548.140000	541293	254.650000	115228	507109	238.570000	13416	6.310000	2392	Community transmission
	4	France	Europe	5655376	8695.310000	11620	17.870000	1796	110001	169.130000	258	0.400000	44	Community transmission

Cleaning of imported Data

In [3]: #Extracting only for Africa region
 new file = Data.loc[(Data['WHO Region'] == 'Africa')]
 #preview first five rows of new data set
 new_file.head()

Out[3]:

:		Name	WHO Region	Cases - cumulative total	Cases - cumulative total per 100000 population	Cases - newly reported in last 7 days	Cases - newly reported in last 7 days per 100000 population	Cases - newly reported in last 24 hours	Deaths - cumulative total	Deaths - cumulative total per 100000 population	Deaths - newly reported in last 7 days	Deaths - newly reported in last 7 days per 100000 population	Deaths - newly reported in last 24 hours	Transmission Classification
	19	South Africa	Africa	1877143	3165.04	91064	153.54	16078	59408	100.16	1083	1.83	148	Community transmission
	67	Ethiopia	Africa	275801	239.73	826	0.72	99	4298	3.74	34	0.03	4	Community transmission
	81	Kenya	Africa	181239	337.08	3957	7.38	741	3538	6.58	104	0.19	24	Community transmission
	83	Nigeria	Africa	167401	81.21	259	0.13	70	2118	1.03	1	0.00	0	Community transmission
	87	Zambia	Africa	140620	784.91	18376	99.96	3594	1855	10.09	330	1.80	61	Community transmission

/srv/conda/envs/notebook/lib/python3.6/site-packages/pandas/core/frame.py:4308: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors-errors.

In [5]: #First five raws new_file.head()

. . .

Out[5]:

	Country	WHO Region	Cases(Cum.Total)	Cases(Cum.Total)per 100000 population	Cases(last 7 days)	Cases(last 7 days)per 100000 population	Cases(last 24 hours)	Deaths(Cum.Total)	Deaths(Cum.Total) per 100000 population	Deaths - newly reported in last 7 days	Deaths(last 7 days)per 100000 population	Dŧ
19	South Africa	Africa	1877143	3165.04	91064	153.54	16078	59406	100.16	1083	1.83	
67	Ethiopia	Africa	275601	239.73	826	0.72	99	4296	3.74	34	0.03	
81	Kenya	Africa	181239	337.08	3957	7.38	741	3538	6.58	104	0.19	
83	Nigeria	Africa	187401	81.21	259	0.13	70	2118	1.03	1	0.00	
87	Zambia	Africa	140620	784.91	18376	99.96	3594	1855	10.09	330	1.80	
4											1	•

```
In [6]: #Data set Summary
new_file.info()
               <class 'pandas.core.frame.DataFrame'>
               Int64Index: 50 entries, 19 to 233
Data columns (total 13 columns):
                 # Column
                                                                                                    Non-Null Count Dtype
                        Country
                                                                                                                                 object
object
                                                                                                    50 non-null
                 0
                        WHO Region
                                                                                                     50 non-null
                       WHO Region
Cases(Cum.Total)
Cases(Cum.Total)per 100000 population
Cases(last 7 days)
Cases(last 7 days)per 100000 population
Cases(last 24 hours)
                                                                                                    50 non-null
50 non-null
                                                                                                                                 int64
float64
                                                                                                    50 non-null
                                                                                                                                  int64
                                                                                                                                 float64
                                                                                                    50 non-null
                                                                                                    50 non-null
                                                                                                                                 int64
                        Deaths(Cum.Total)
                                                                                                    50 non-null
                                                                                                                                 int64
               7 Deaths(Cum.Total) per 100000 population 50 non-null 9 Deaths - newly reported in last 7 days 10 Deaths(last 7 days)per 100000 population 11 Deaths(last 24 hours) 50 non-null 12 Transmission Classification 50 non-null dtypes: float64(4), int64(6), object(3) memory usage: 5.5+ KB
                                                                                                                                  float64
                                                                                                                                  int64
                                                                                                                                 float64
                                                                                                                                 int64
                                                                                                                                 object
In [7]: #Countrie in Americas region as per dataset
new_file['WHO Region'].value_counts().to_frame()
Out[7]:
                           WHO Region
               Africa
                             50
```

We have 50 countries in Africa region

In [8]: #Data Set Description
new_file.describe()

Out[8]:

	Cases(Cum.Total)	Cases(Cum.Total)per 100000 population	Cases(last 7 days)	Cases(last 7 days)per 100000 population	Cases(last 24 hours)	Deaths(Cum.Total)	Deaths(Cum.Total) per 100000 population	Deaths - newly reported in last 7 days	Deaths(last 7 days)per 100000 population	Deaths 24 hc
count	5.000000e+01	50.000000	50.000000	50.000000	50.000000	50.0000	50.000000	50.000000	50.000000	50.00
mean	7.822606e+04	1060.529800	3215.780000	45.727200	610.260000	1870.3800	12.735800	49.460000	0.533800	8.38
std	2.853822e+05	2523.380276	13082.584441	155.897475	2387.182193	8358.0771	21.314941	163.081701	1.534344	25.24
min	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.0000	0.000000	0.000000	0.000000	0.00
25%	6.333500e+03	101.417500	38.750000	0.837500	0.250000	116.2500	1.197500	0.000000	0.000000	0.00
50%	1.995850e+04	230.955000	243.000000	2.670000	14.000000	255.5000	3.170000	3.000000	0.035000	0.00
75%	4.712000e+04	505.582500	947.500000	10.495000	102.000000	902.7500	10.315000	18.000000	0.150000	1.00
max	1.877143e+08	15364.980000	91064.000000	1004.610000	16078.000000	59408.0000	100.160000	1083.000000	7.790000	148.00
4										- k

In [9]: new_file.shape

Out[9]: (50, 13)

Type $\mathit{Markdown}$ and LaTeX : α^2

In [10]: Data.corr()

Out[10]:

	Cases - cumulative total	Cases - cumulative total per 100000 population	Cases - newly reported in last 7 days	Cases - newly reported in last 7 days per 100000 population	Cases - newly reported in last 24 hours	Deaths - cumulative total	Deaths - cumulative total per 100000 population	Deaths - newly reported in last 7 days	Deaths - newly reported in last 7 days per 100000 population	Deaths - newly reported in last 24 hours
Cases - cumulative total	1.000000	0.027569	0.978863	0.010259	0.971479	0.995058	0.054887	0.976867	0.035097	0.972573
Cases - cumulative total per 100000 population	0.027569	1.000000	0.010991	0.357719	0.015825	0.026548	0.718680	0.011532	0.231071	0.013831
Cases - newly reported in last 7 days	0.978863	0.010991	1.000000	0.055810	0.998240	0.983080	0.047521	0.998197	0.092341	0.997081
Cases - newly reported in last 7 days per 100000 population	0.010259	0.357719	0.055610	1.000000	0.062694	0.015148	0.146441	0.053239	0.676276	0.057219
Cases - newly reported in last 24 hours	0.971479	0.015825	0.998240	0.062694	1.000000	0.978802	0.054995	0.996831	0.103809	0.997981
Deaths - cumulative total	0.995058	0.026548	0.983080	0.015148	0.978802	1.000000	0.082230	0.981125	0.049299	0.979488
Deaths - cumulative total per 100000 population	0.054887	0.718880	0.047521	0.148441	0.054995	0.082230	1.000000	0.058554	0.311722	0.060981
Deaths - newly reported in last 7 days	0.976867	0.011532	0.998197	0.053239	0.996831	0.981125	0.058554	1.000000	0.106937	0.999032
Deaths - newly reported in last 7 days per 100000 population	0.035097	0.231071	0.092341	0.878278	0.103809	0.049299	0.311722	0.108937	1.000000	0.112537
Deaths - newly reported in last 24 hours	0.972573	0.013631	0.997081	0.057219	0.997981	0.979466	0.060981	0.999032	0.112537	1.000000

Hypothesis

- 1. null: Death reported in the last 24 hours are not from cases reported in the last 7 days
- 2. Alternative: Death reported in the last 24 hours are from cases reported in the last 7 days

Hypothesis

- 1. null: Death reported in the last 24 hours are not from cases reported in the last 7 days
- 2. Alternative: Death reported in the last 24 hours are from cases reported in the last 7 days

In [11]: new_file [['Cases(last 7 days)','Deaths - newly reported in last 7 days']].corr()

Out[11]:

Cases(last 7 days) Deaths - newly reported in last 7 days

Cases(last 7 days)	1.000000	0.981895
Deaths - newly reported in last 7 days	0.981895	1.000000

```
In [12]: # generate related variables
#data1=cases.newLy reported in the Last 7 days, std 130, mean 4279
#data2=Death-newLy reported in the Last 24 hours

# generate related variables
#data1=cases in Last 7days, std=13082.564441, mean=3215.760000
#data2=deaths in Last 24 hours, std=25.245642, mean =8.380000

from numpy import mean
from numpy.random import randn
from numpy.random import seed
from matplotlib import pyplot
# seed random number generator
seed(1)
# prepare data
data1 = 13082.564441 * randn(50) + 3215.760000
data2 = data1 + (25.245642 * randn(50) + 8.380000)
# summarize
print('data1: mean=%.3f stdv=%.3f' % (mean(data1), std(data1)))
print('data2: mean=%.3f stdv=%.3f' % (mean(data2), std(data2)))
# plot
pyplot.scatter(data1, data2)
pyplot.show()
```

data1: mean=2881.960 stdv=12684.714 data2: mean=2894.043 stdv=12684.284

Covariance ¶

The calculation of the sample covariance is as follows: cov(X, Y) = (sum (x - mean(X)) * (y - mean(Y))) * 1/(n-1)

```
In [13]: np. cov(data1, data2)
In [14]: # calculate the covariance between two variables from numpy.random import randn from numpy.random import seed
               from numpy import cov
# seed random number generator
                seed(1)
                # prepare data
               # prepare data
data1 = 13082.564441 * randn(50) + 3215.760000
data2 = data1 + (25.245642 * randn(50) + 8.380000)
# calculate covariance matrix
Covariance = cov(data1, data2)
               print(covariance)
               [[1.64185690e+08 1.64179925e+08]
                 [1.64179925e+08 1.64174557e+08]]
In [15]: # calculate the covariance between two variables from numpy random import randn
               from numpy.random import seed
from numpy import cov
                # seed random number generator
                seed(1)
               # prepare data
data1 = 13082.564441 * randn(50) + 3215.760000
data2 = data1 + (25.245642 * randn(50) + 8.380000)
# calculate covariance matrix
Covariance = cov(data1, data2)
               print(covariance)
                [[1.64185690e+08 1.64179925e+08]
                 [1.64179925e+08 1.64174557e+08]]
In [16]: # calculate the Pearson's correlation between two variables from numpy.random import randn
                from numpy.random import seed
from scipy.stats import pearsonr
                # seed random number generator
                seed(1)
               secu(1)

# prepare data

data1 = 13082.564441 * randn(50) + 3215.760000

data2 = data1 + (25.245642 * randn(50) + 8.380000)

# calculate Pearson's correlation
               corr, _ = pearsonr(data1, data2)
print('Pearsons correlation: %.3f' % corr)
```

Pearsons correlation: 1.000

```
In [17]: import scipy.stats
r,p=scipy.stats.pearsonr(data1, data2)
r
```

Out[17]: 0.9999987883025226

Decision Tree Classifier Building in Scikit-learn

Importing Required Libraries Let's first load the required libraries

```
In [18]: # Load Libraries
import pandas as pd
from sklearn.model_selection import train_test_split # Import Decision Tree Classifier
from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
In [19]: #split dataset in features and target variable
feature_cols = ['Deaths(Cum.Total)', 'Deaths(Cum.Total) per 100000 population', 'Deaths - newly reported in last 7 days', 'Deaths'
X = new_file[feature_cols] # Features
y = new_file # Target variable
```

Splitting Data To understand model performance, dividing the dataset into a training set and a test set is a good strategy.

Let's split the dataset by using function train_test_split(). You need to pass 3 parameters features, target, and test_set size.

```
In [20]: # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
```

Splitting Data To understand model performance, dividing the dataset into a training set and a test set is a good strategy.

Let's split the dataset by using function train_test_split(). You need to pass 3 parameters features, target, and test_set size.

Building Decision Tree Model Decision Tree Model using Scikit-learn.

```
In [21]: # Create Decision Tree classifer object
                    clf = DecisionTreeClassifier()
                    # Train Decision Tree Classifer
                    clf = clf.fit(X_train,y_train)
                    #Predict the response for test dataset
                    y_pred = clf.predict(X_test)
                    TypeError
                                                                                                              Traceback (most recent call last)
                    <ipython-input-21-effc1cc2cd4f> in <module>
                                4 # Train Decision Tree Classifer
                    ----> 5 clf = clf.fit(X_train,y_train)
                                7 #Predict the response for test dataset
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/sklearn/tree/_classes.py in fit(self, X, y, sample_weight, check_input, X_
                    idx_sorted)
900
                                                               sample_weight=sample_weight,
                             901
                                                               check_input=check_input,
                                                                             sorted=X_idx_sorted)
                    --> 902
                                                    return self
                             903
                            904
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/sklearn/tree/_classes.py in fit(self, X, y, sample_weight, check_input, X_
                    idx_sorted)
                            199
                                                      if is_classification:
                            189
                     --> 190
                                                               check_classification_targets(y)
                            191
                                                               y = np.copy(y)
                            192
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/sklearn/utils/multiclass.py in check_classification_targets(y)
                             178
                                            y : array-like
                            179
                                             --> 180
                            181
                            182
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/sklearn/utils/multiclass.py in type_of_target(y) 259 raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'")
                            260
                                             if is_multilabel(y):
    return 'multilabel-indicator'
                    --> 261
                            262
                            263
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/sklearn/utils/multiclass.py in is_multilabel(y)

161 _is_integral_float(np.unique(y.data))))
                             162
                    --> 163
                                                      labels = np.unique(y)
                            164
                            165
                                                      return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint
                    <__array_function__ internals> in unique(*args, **kwargs)
                    /srv/conda/envs/notebook/lib/python3.6/site-packages/numpy/lib/arraysetops.py in unique(ar, return_index, return_inverse, retu
                    n_counts, axis)
259 ar = np.asanyarray(ar)
                                           if axis is None:
```

The End

Analysis by Elisha Nangosha Email: nangoshaelisha@gmail.com Contact: 0777514549