Clustering algorithms

2IMM20 - Foundations of data mining TU Eindhoven, Quartile 3, 2017-2018

Anne Driemel

Overview of this lecture

- Clustering
- Facility Location
- Gonzales' algorithm
- Lloyd's algorithm (k-means)
- k-means++ algorithm
- Clustering in graphs

What is Clustering?

Clustering is the task of grouping similar objects into clusters

What is Clustering?

Clustering is the task of grouping similar objects into clusters

What is Clustering?

Clustering is the task of grouping similar objects into clusters

Facility Location

You may build two hospitals in two different villages serving the surrounding villages. Where do you place them to minimize the maximal distance from any village to its serving hospital?

Facility Location

You may build two hospitals in two different villages serving the surrounding villages. Where do you place them to minimize the maximal distance from any village to its serving hospital?

Facility Location

You may build two hospitals in two different villages serving the surrounding villages. Where do you place them to minimize the maximal distance from any village to its serving hospital?

k-center clustering

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k

Output: set of centers $C = \{c_1, \ldots, c_k\} \subseteq P$

Problem:

• each $p_i \in P$ is "served by" its closest center

$$\underset{c_{i} \in C}{\operatorname{argmin}} \| p_{i} - c_{j} \|$$

- ullet all points served by a center c_j together form a "cluster"
- we want to choose $\{c_1, \ldots, c_k\}$ to minimize the cost function

$$\phi(P, C) = \max_{p_i \in P} \left\| p_i - \underset{c_j \in C}{\operatorname{argmin}} \| p_i - c_j \| \right\|$$

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k **Output:** set of centers $C = \{c_1, \dots, c_k\} \subseteq P$

Algorithm:

- choose an arbitrary point $p_i \in P$ and set $c_1 = p_i$
- for $t = 2, \dots, k$ set

$$c_t = \underset{p_i \in P}{\operatorname{argmax}} \left\| p_i - \underset{c_j \in \{c_1, \dots, c_{t-1}\}}{\operatorname{argmin}} \| p_i - c_j \| \right\|$$

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k **Output:** set of centers $C = \{c_1, \dots, c_k\} \subseteq P$

Algorithm:

- choose an arbitrary point $p_i \in P$ and set $c_1 = p_i$
- for $t = 2, \dots, k$ set

$$c_t = \underset{p_i \in P}{\operatorname{argmax}} \left\| p_i - \underset{c_j \in \{c_1, \dots, c_{t-1}\}}{\operatorname{argmin}} \| p_i - c_j \| \right\|$$

 $\phi(P,\{c_1,\ldots,c_t\})$ corresponds to the smallest radius such that all points are covered

 $\phi(P,\{c_1,\ldots,c_t\})$ corresponds to the smallest radius such that all points are covered

 $c_1 = p_9$

 $\phi(P,\{c_1,\ldots,c_t\})$ corresponds to the smallest radius such that all points are covered

$$c_1 = p_9$$
$$c_2 = p_3$$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

 $c_1 = p_9$

 $c_2 = p_3$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

 $c_1 = p_9$

 $c_2 = p_3$

 $c_3 = p_5$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

$$c_2 = p_3$$

$$c_3 = p_5$$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

$$c_2 = p_3$$

$$c_3 = p_5$$

$$c_4 = p_6$$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

 $\phi(P,\{c_1,\ldots,c_t\})$ corresponds to the smallest radius such that all points are covered

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

$$c_1 = p_9$$

$$c_2 = p_3$$

$$c_3 = p_5$$

$$c_4 = p_6$$

$$c_5 = p_{12}$$

$$c_6 = p_{11}$$

 $\phi(P, \{c_1, \dots, c_t\})$ corresponds to the smallest radius such that all points are covered

 $c_1 = p_9$

 $c_2 = p_3$

Claim: $r_k \le 2\phi(P, C^*)$ (where C^* is an optimal solution)

Proof:

•

•

•

Claim: $r_k \leq 2\phi(P, C^*)$

(where C^* is an optimal solution)

Proof:

Claim: $r_k \leq 2\phi(P, C^*)$ (where C^* is an optimal solution)

Proof:

$$(k = 1)$$

$$c_1$$

$$p_i$$

(Triangle inequality)

$$\forall p_i \in P: \|p_i - c_1\| \le \|p_i - c_1^*\| + \|c_1^* - c_1\|$$

Claim: $r_k \le 2\phi(P, C^*)$ (where C^* is an optimal solution)

Proof:

$$(k = 1)$$

$$c_1$$

$$p_i$$

(Triangle inequality)
$$\forall p_i \in P: \qquad \|p_i - c_1\| \leq \|p_i - c_1^*\| + \|c_1^* - c_1\| \leq \phi(P, C^*) \leq \phi(P, C^*)$$

Claim: $r_k \leq 2\phi(P, C^*)$ (where C^* is an optimal solution)

Proof:

$$(k = 1)$$

$$c_1$$

$$p_i$$

$$\forall p_i \in P: \qquad ||p_i - c_1|| \le ||p_i - c_1^*|| + ||c_1^* - c_1|| \le 2\phi(P, C^*)$$

$$\le \phi(P, C^*)$$

Claim: $r_k \leq 2\phi(P, C^*)$ (where C^* is an optimal solution)

Proof:

$$(k = 1)$$

$$c_1^*$$

$$p_i$$

(Triangle inequality)

$$\forall p_i \in P: \qquad ||p_i - c_1|| \le ||p_i - c_1^*|| + ||c_1^* - c_1|| \le 2\phi(P, C^*)$$

$$\Rightarrow r_1 \le 2\phi(P, C^*)$$

Claim: $r_k \leq 2\phi(P,$ (where C* is an optimal solution) **Proof:** C_5 $(k \geq 1)$ C_4 c_6 For $c_1, \ldots, c_{k+1} : \forall c_i, c_j : r_k \le ||c_i - c_j|| \text{ (for } i \ne j)$

- \Rightarrow by the pidgeon hole principle: $\exists \ c_i, c_j$ served by the same c_s^*
- \Rightarrow by the triangle inequality for c_i, c_j, c_s^* :

$$||c_i - c_j|| \le ||c_i - c_s^*|| + ||c_s^* - c_j|| \le 2\phi(P, C^*)$$

- \Rightarrow by the pidgeon hole principle: $\exists \ c_i, c_j$ served by the same c_s^*
- \Rightarrow by the triangle inequality for c_i, c_j, c_s^* :

$$||c_i - c_j|| \le ||c_i - c_s^*|| + ||c_s^* - c_j|| \le 2\phi(P, C^*)$$

So we have $r_k \leq 2\phi(P, C^*)$

Facility Location (Variant)

You may build two hospitals in two different villages serving the surrounding villages. Where do you place them to minimize the maximal distance from any village to its serving hospital?

Variant: • minimize the (squared) average distance

Facility Location (Variant)

You may build two hospitals in two different villages serving the surrounding villages. Where do you place them to minimize the maximal distance from any village to its serving hospital?

Variant:

- minimize the (squared) average distance
- hospitals may be built "in the middle of nowhere"

k-means clustering

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k

Output: set of centers $C = \{c_1, \ldots, c_k\} \subseteq \mathbb{R}^d$

Problem:

centers may be in the middle of nowhere

ullet each $p_i \in P$ is associated with its closest center

$$\underset{c_j \in C}{\operatorname{argmin}} \| p_i - c_j \|$$

ullet points associated with a center c_i together form a "cluster".

ullet we want to choose $\{c_1,\ldots,c_k\}$ to minimize the cost function

$$\phi(P,C) = \sum_{p_i \in P} \left\| p_i - \operatorname*{argmin}_{c_j \in C} \| p_i - c_j \| \right\|^2 \text{ (squared distance)}$$

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k **Output:** set of centers $C = \{c_1, \dots, c_k\} \subseteq \mathbb{R}^d$

Algorithm:

- ullet choose initial centers arbitrarily $\{c_1,\ldots,c_k\}$ from P
- until $\{c_1, \ldots, c_k\}$ does not change anymore:
 - (1) assign each $p_i \in P$ to its closest center
 - (2) update center for each cluster Θ_j :

$$c_j := \frac{1}{m} \sum_{p_i \in \Theta_j} p_i$$

Claim:

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let
$$\overline{p} := \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$\sum_{i=1}^{n} ||p_i - c||^2 = \sum_{i=1}^{n} ||p_i - \overline{p} + \overline{p} - c||^2$$

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let
$$\overline{p} := \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$\sum_{i=1}^{n} ||p_i - c||^2 = \sum_{i=1}^{n} ||p_i - \overline{p} + \overline{p} - c||^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (p_{ij} - \overline{p}_j + \overline{p}_j - c_j)^2$$

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let
$$\overline{p} := \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$\sum_{i=1}^{n} \|p_i - c\|^2 = \sum_{i=1}^{n} \|p_i - \overline{p} + \overline{p} - c\|^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (p_{ij} - \overline{p}_j + \overline{p}_j - c_j)^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} ((p_{ij} - \overline{p}_j)^2 + 2(p_{ij} - \overline{p}_j)(\overline{p}_j - c_j) + (\overline{p}_j - c_j)^2)$$

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let
$$\overline{p} := \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$\sum_{i=1}^{n} \|p_{i} - c\|^{2} = \sum_{i=1}^{n} \|p_{i} - \overline{p} + \overline{p} - c\|^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (p_{ij} - \overline{p}_{j} + \overline{p}_{j} - c_{j})^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} ((p_{ij} - \overline{p}_{j})^{2} + 2(p_{ij} - \overline{p}_{j})(\overline{p}_{j} - c_{j}) + (\overline{p}_{j} - c_{j})^{2})$$

$$= \sum_{i=1}^{n} \|p_{i} - \overline{p}\|^{2} + 2\sum_{i=1}^{n} \langle p_{i} - \overline{p}, \overline{p} - c \rangle + n \cdot \|\overline{p} - c\|^{2}$$

Claim:

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let
$$\overline{p} := \frac{1}{n} \sum_{i=1}^{n} p_i$$

$$\sum_{i=1}^{n} \|p_{i} - c\|^{2} = \sum_{i=1}^{n} \|p_{i} - \overline{p} + \overline{p} - c\|^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (p_{ij} - \overline{p}_{j} + \overline{p}_{j} - c_{j})^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} ((p_{ij} - \overline{p}_{j})^{2} + 2(p_{ij} - \overline{p}_{j})(\overline{p}_{j} - c_{j}) + (\overline{p}_{j} - c_{j})^{2})$$

$$= \sum_{i=1}^{n} \|p_{i} - \overline{p}\|^{2} + 2 \sum_{i=1}^{n} \langle p_{i} - \overline{p}, \overline{p} - c \rangle + n \cdot \|\overline{p} - c\|^{2}$$

$$= \sum_{i=1}^{n} \|p_{i} - \overline{p}\|^{2} + 2 \left\langle \sum_{i=1}^{n} p_{i} - n \cdot \overline{p}, \overline{p} - c \right\rangle + n \cdot \|\overline{p} - c\|^{2}$$

Claim:

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: Let

Let
$$\overline{p}:=rac{1}{n}\sum_{i=1}^n p_i$$

$$\sum_{i=1}^{n} \|p_{i} - c\|^{2} = \sum_{i=1}^{n} \|p_{i} - \overline{p} + \overline{p} - c\|^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} (p_{ij} - \overline{p}_{j} + \overline{p}_{j} - c_{j})^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} ((p_{ij} - \overline{p}_{j})^{2} + 2(p_{ij} - \overline{p}_{j})(\overline{p}_{j} - c_{j}) + (\overline{p}_{j} - c_{j})^{2})$$

$$= \sum_{i=1}^{n} \|p_{i} - \overline{p}\|^{2} + 2\sum_{i=1}^{n} \langle p_{i} - \overline{p}, \overline{p} - c \rangle + n \cdot \|\overline{p} - c\|^{2}$$

$$= \sum_{i=1}^{n} \|p_{i} - \overline{p}\|^{2} + 2\left\langle \sum_{j=1}^{n} p_{j} - n \cdot \overline{p}, \overline{p} - c \right\rangle + n \cdot \|\overline{p} - c\|^{2}$$

Claim:

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: (continued)

$$\sum_{i=1}^{n} ||p_i - c||^2 = \sum_{i=1}^{n} ||p_i - \overline{p}||^2 + n \cdot ||\overline{p} - c||^2$$

Claim:

$$\underset{c \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{p_i \in P} ||p_i - c||^2 = \frac{1}{n} \sum_{i=1}^n p_i$$

Proof: (continued)

$$\sum_{i=1}^{n} \|p_i - c\|^2 = \sum_{i=1}^{n} \|p_i - \overline{p}\|^2 + n \cdot \|\overline{p} - c\|^2$$

right hand side is minimized for $c=\overline{p}$

Does the algorithm always terminate?

Does the algorithm always terminate?

Yes, because:

- ullet each step decreases the cost $\phi(P,C)$
- there exists only a finite number of cluster assignments

Does the algorithm always terminate?

Yes, because:

- ullet each step decreases the cost $\phi(P,C)$
- there exists only a finite number of cluster assignments

Does it always converge to an optimal solution?

Does the algorithm always terminate?

Yes, because:

- ullet each step decreases the cost $\phi(P,C)$
- there exists only a finite number of cluster assignments

Does it always converge to an optimal solution?

No, can get stuck in local minima.

 p_1

 p_2 \bullet ullet p_4

Does the algorithm always terminate?

Yes, because:

- ullet each step decreases the cost $\phi(P,C)$
- there exists only a finite number of cluster assignments

Does it always converge to an optimal solution?

No, can get stuck in local minima.

$$p_1 {\circ}^{c_1}$$
 $p_2 {\circ} c_2$
 p_3

Does the algorithm always terminate?

Yes, because:

- ullet each step decreases the cost $\phi(P,C)$
- there exists only a finite number of cluster assignments

Does it always converge to an optimal solution?

No, can get stuck in local minima.

$$p_1$$
 \bullet c_1 \bullet p_3 p_2 \bullet p_4

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k

Output: set of centers $C = \{c_1, \ldots, c_k\} \subset \mathbb{R}^2$

Algorithm:

• choose c_1 uniformly at random from P

• for $t=2,\ldots,k$: choose $c_t=p_i$ with probability α_i

$$\alpha_i := \frac{\left\| p_i - \operatorname{argmin}_{c_j \in \{c_1, \dots, c_{t-1}\}} \| p_i - c_j \| \right\|^2}{\phi(P, \{c_1, \dots, c_{t-1}\})}$$

Input: set of points $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$, value of k

Output: set of centers $C = \{c_1, \ldots, c_k\} \subseteq \mathbb{R}^2$

Algorithm:

• choose c_1 uniformly at random from P

• for $t=2,\ldots,k$: choose $c_t=p_i$ with probability α_i

$$\alpha_i := \frac{\left\| p_i - \operatorname{argmin}_{c_j \in \{c_1, \dots, c_{t-1}\}} \| p_i - c_j \| \right\|^2}{\phi(P, \{c_1, \dots, c_{t-1}\})}$$

• until $\{c_1, \ldots, c_k\}$ does not change anymore:

- (1) assign each $p_i \in P$ to its closest center
- (2) update center for each cluster Θ_i :

$$c_j := \frac{1}{m} \sum_{p_i \in \Theta_j} p_i$$

new

as before

random sample

random sample

For general k, the solution obtained by k-means++ will, in expectation, be at most a factor $O(\log k)$ worse than the optimal solution.

For general k, the solution obtained by k-means++ will, in expectation, be at most a factor $O(\log k)$ worse than the optimal solution.

Gonzales' algorithm and k-means++:

- **Gonzales**: choose the next center from P as the point that maximizes the current cost
- **k-means++**: choose the next center from *P* with probability relative to the contribution to the current cost

Clustering in Graphs

- Vertices of the graph represent the objects to be clustered
- Distance is measured by shortest path

Summary

- Clustering
- Facility Location
- Gonzales' algorithm
- Lloyd's algorithm (k-means)
- k-means++ algorithm
- Clustering in graphs

References

- Avrim Blum, John Hopcroft, Ravindran Khannan: Foundations of Data Science
- Sariel Har-Peled: Geometric Approximation Algorithms
- Arthur, D. and Vassilvitskii, S. (2007). "k-means++: the advantages of careful seeding" (PDF). Proc. 18th ACM-SIAM Symposium on Discrete Algorithms. pp. 1027-1035.