

Business Intelligence/ Analytics

Mike DeWitt Institutional Research August 2018

Am I significant???

https://xkcd.com/539/

Are these two things different?

Differences in means (e.g. GPA 3.2 vs 3.34)

Are these two things different?

Differences in means (e.g. GPA 3.2 vs 3.34)

Difference in proportions (e.g. 50% vs 72%)

Are these two things different?

Differences in means (e.g. GPA 3.2 vs 3.34)

Difference in proportions (e.g. 50% vs 72%)

Differences in distributions (e.g. counts of each race per group)

There's a test for that

Statistics provides us with several tools

But the first question is what kind of data do we have?

Use your data as your guide

First Question-What is the "treatment"

First Question-What is the "treatment"

Categorical

Numeric

Second Question-What is the "response"

Continuous

Ratios

Counts

Now we can choose a test...

Treatment	Number of Groups	Response	Test
Categorical	2	Continuous	T-test
Categorical	>2	Continuous	ANOVA
Categorical	2	Ratio	Proportion Test
Categorical	>2	Counts	Chi-Square
Continuous	>=2	Continuous	Regression

Now we can choose a test...

Treatment	Number of Groups	Response	Test
Categorical	2	Continuous	T-test
Categorical	>2	Continuous	ANOVA
Categorical	2	Ratio	Proportion Test
Categorical	>2	Counts	Chi-Square
Continuous	>=2	Continuous	Regression

Now we can choose a test...

Treatment Number of Test Resnance ALWAYS EXCEPT... Cat Cat Most of these tests assume Cat • Errors are independent and identically distributed Cat Cor

The birth of the t-test

William Sealy Gosset

The birth of the t-test

The birth of the t-test

Needed to compare means of Two Treatments with a Continuous Response

E.g. Alcohol content between two batches

Comparing two (unpaired) means

Comparing Two Independent Groups

Typically what we are interested in...

E.g. Grades between people who took class A vs Class B

Comparing two (paired) means

Comparing The Same Group Twice

Same people see both treatments

E.g. Comparing quotes from a mechanic on the same set of cars

What does the test tell us...

Question: Are the means of these two groups the same?

Confidence Intervals

P-Value

Confidence Intervals

Repeating this experiment many times, 95%* of the confidence intervals calculated will contain the true population mean

Confidence Intervals

$$Avg_1 - Avg_2 \pm 1.96 * s_p * \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Avg₁ = Average of Group 1 Avg₂ = Average of Group 2 s_p = Pooled standard deviation n_1 = Number of Samples in Group 1 n_2 = Number of Samples in Group 2

If **Zero is included** in the interval then there is not evidence of a difference

P-Values

A **P-Value** is the probability of observing a result **as or more extreme** than the one I found if the experiment is **repeated many times**

P-Value Thresholds

P-Value thresholds are arbitrary

By convention p < 0.05 or p < 0.10 is acceptable

Be sure to state what level you use!

Let's Practice!

https://www.youtube.com/watch?v=-yZ97arTPGU

P-Value Thresholds

"The value for which P=0.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation ought to be considered significant or not. " - RA Fischer

P-Value Thresholds

One Tail P Value (Higher or Lower)

$$\mu_1 > \mu_2$$
 or $\mu_1 < \mu_2$

Two Tail P Value (Mean Values are Different)

$$\mu_1 \neq \mu_2$$