Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Интревальный анализ»

Выполнил студент: Куксенко Кирилл Сергеевич группа: 5030102/80201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Перербург 2021 г.

Содержание

1	Постановка задачи			
	1.1	Линейный случай		
	1.2	Нелинейный случай		
2	Teo	рия		
	2.1	Линейный метод Кравчика		
		Общий метод Кравчика		
3	Pea	лизация		
4		ультаты		
	4.1	Линейный случай		
	4.2	Нелинейный случай		
5	Обо	уждение		

1 Постановка задачи

1.1 Линейный случай

Выбрать ИСЛАУ 2 × 2 вида:

$$\begin{cases} a \cdot x_1 + b \cdot x_2 = c \\ 1 \cdot x_1 - k \cdot x_2 = 0 \end{cases} \tag{1}$$

где a,b - положительные числа, c,k - положительные интервалы. Оценить внешнее множество решений этой системы методом Кравчика.

- Определить спектральный радиус матрицы
- Провести оценку начального бруса решений

Провести вычисления и привести иллюстрации:

- Положения брусов при итерациях
- Графики радиусов рабочих брусов
- Сходимость алгоритма

1.2 Нелинейный случай

Выбрать систему вида:

$$\begin{cases} a \cdot x_1 + b \cdot x_2 = c \\ \frac{x_1}{x_2} = k \end{cases} \tag{2}$$

где a,b - положительные числа, c,k - положительные интервалы. Оценить внешнее множество решений этой системы методом Кравчика. Провести вычисления и привести иллюстрации:

- Положения брусов при итерациях
- Графики радиусов рабочих брусов
- Сходимость алгоритма

2 Теория

Линейный метод Кравчика 2.1

Рассматриваем ИСЛУА $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Выбираем начальное приближение $\mathbf{x}^{(0)}$ так, чтобы $\Xi_{uni} \subseteq \mathbf{x}^{(0)}$ и затем итерируем:

$$\mathbf{x}^{(k+1)} = (\Lambda \mathbf{b} + (I - \Lambda \mathbf{A}) \mathbf{x}^{(k)}) \cap \mathbf{x}^{(k)}, k = 0, 1, \dots$$
 (3)

где Λ - некоторая фиксированная точечная матрица, которая явдяется предобуславливающей матрицей для исходной ИСЛАУ.

Обычно Λ берут следующим образом.

$$\Lambda = (\operatorname{mid} \mathbf{A})^{-1} \tag{4}$$

Если $\eta = ||I - \Lambda \mathbf{A}||_{\infty} \le 1$, тогда в качестве начального приближения можно выбрать брус:

$$\mathbf{x}^{(0)} = ([-\theta, \theta], ..., [-\theta, \theta])^T \tag{5}$$

где $\theta = \frac{||\Lambda \mathbf{b}||_{\infty}}{1-\eta}.$ Предложение. Итерационный процесс

$$x^{(k+1)} = C(x^{(k)}) + d, k = 0, 1, \dots$$
(6)

сходитится, когда $\rho(|C|) < 1$, где |C| - матрица составленная из модулей элементов C.

2.2Общий метод Кравчика

Пусть на брусе $\mathbf{X} \in IR$ задана система n линейных уравнений с n неизвестными:

$$F(x) = 0 (7)$$

где $F(x) = \{F_1(x), ..., F_n(x_n)\}, x = (x_1, ..., x_n)$. Оператором Кравчика относсительно точки \overline{x} называется отображение $K:ID\times R\to IR^n$:

$$K(\mathbf{X}, \overline{x}) = \overline{x} - \Lambda \cdot F(\overline{x}) - (I - \Lambda \cdot \mathbf{L}) \cdot (\mathbf{X} - \overline{x})$$
(8)

где ${\bf L}$ - интервальная матрица Липшица отображения F на брусе ${\bf X}, \Lambda$ некоторая точечная матрица, выполняющая роль предобуславливателя. Тогда итерационный процесс:

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} \cap K(\mathbf{X}^{(k)}, \overline{x}^{(k)}) \tag{9}$$

где k=0,1,2,..., и $\overline{x}^{(k)}\in\mathbf{X}^{(k)},$ сходитсья для некоторого начального бруса $\mathbf{X}^{(0)}$.

В качестве интервальной матрицы L можно взять Якобиан J(X), а в матрицу $\Lambda = (\text{mid}J(\mathbf{X}))^{-1}$

3 Реализация

Язык программирования: Python. Среда разработки Visual Studio Code. Ссылка на GitHub

4 Результаты

4.1 Линейный случай

Рассмотрим систему:

$$\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 = [4, 5] \\ 1 \cdot x_1 - [1, 2] \cdot x_2 = 0 \end{cases}$$
 (10)

Матрица $I - \Lambda A$ имеем вид:

$$\begin{pmatrix}
[0,0] & [-0.25, 0.25] \\
[0,0] & [-0.167, 0.167]
\end{pmatrix}$$
(11)

Тогда $\rho(|I-\Lambda A|)\approx 0.1667$, значит итерационный процесс 3 сходиться. Дадим оценку начального бруса:

 $\eta = ||I - \Lambda A||_{\infty} = 0.25 < 1,$ тогда справедлива оценка 5. Вычисляя коэффициент $\theta,$ получим $\theta \approx 1.667.$

Критерий останова: малость изменения бруса, $\varepsilon < 10^{-16}$.

Процесс остановился после 22 итераций в точке : $\mathbf{x} = ([0.750, 1.50], [0.50, 1.00])^T$.

Приведём соответствующие иллюстрации:

Рис. 1: Положения брусов при итерациях

Рис. 2: График радиусов рабочих брусов

Рис. 3: Сходимость алгоритма

4.2 Нелинейный случай

Рассмотрим систему с теми же коэффициентами a,b и интервалами c,k, что и в 10:

$$\begin{cases} 2 \cdot x_1 + 3 \cdot x_2 = [4, 5] \\ \frac{x_1}{x_2} = [1, 2] \end{cases}$$
 (12)

В качестве начального возьмём брус $X^{(0)} = ([0.25, 4], [0.25, 4])^T$.

Критерий останова: малость изменения бруса, $\varepsilon < 10^{-16}$.

Процесс остановился на 174 итерации в точке: $\mathbf{x} = ([0.250, 2.111], [0.250, 1.412])^T$.

Приведём соответствующие иллюстрации:

Рис. 4: Положения брусов при итерациях

Рис. 5: График радиусов рабочих брусов

Рис. 6: Сходимость алгоритма

5 Обсуждение

Сначала отметим, что системы 10 и 12 имеют одинаковое объединённое множество решений, что также видно на рисунках 1, 4. На рисунках 1 и 4 видно, как с каждой итерацией уменьшается брус, только для линейного случая наблюдается куда более быстрая сходимость. Через три итерации радиус бруса почти перестаёт изменяться, а центр бруса почти не перемещается, что также подтверждают рисунки 2, 3. В свою очередь для нелинейного случая наблюдается куда более медленная сходимость: для достижения той же точности требуется на порядок больше итераций, также на каждой итерации заметно уменьшее радиуса бруса и смещение его центра, рисунки 5, 6. При этом в линейном случае брус значительно лучше приближает множество решений системы и со всех сторон почти "касается"множества решений. Также стоит отметить, что на рисунке 4 видно, как брус приближается только с двух сторон, и никак не улучшает нижнюю оценку по каждой их координат.