

Amir H Gandomi; PhD Assistant Professor Stevens Institute of Technology a.h.gandomi@stevens.edu

#### **Multivariate Data Analysis – BIA 652**

Class 9 – Principal Component Analysis & Singular Value Decomposition



#### Overview of Class 9



- Overview of Classification/Clustering.
- Principal Component Analysis Chapter 14
- Singular Value Decomposition
- Review of some Matrix Analysis
- HW: PCA analysis of a dataset
- Important Dates:
  - Due date to submit Poster draft: April 10, 2019
  - Late term exam (in class for BIA-652-A): April 15, 2019
  - Submitting the final version of your poster: April 20, 2019
  - In class and oral presentation: April 22 and 29, 2019
  - Poster Event (Corporate Networking Event): April 30, 2019
  - Deadline to submit your complete project report: May 6, 2019

#### Where we are:



- If there is a continuous outcome variable:
  - Perform Multiple Linear Regression
- If there is an outcome variable:
  - Perform a Classification, e.g. logistic regression or discriminant analysis or kNN or Gaussian Naïve Bayes
- To group observations:
  - Perform Cluster Analysis: e.g. hierarchical, k-means, density
- (Now) To restructure a group of variables to reduce the number of dimensions (and for many other applications):
  - Perform PCA, SVD or Factor Analysis

#### A List of Classification Algorithms



(From Wikipedia, but not bad)

- <u>Linear classifiers</u>
  - Fisher's linear discriminant
  - Logistic regression
  - Naive Bayes classifier
  - Perceptron
- Support vector machines
  - Least squares support vector machines
- Quadratic classifiers
- Kernel estimation
  - k-nearest neighbor
- Boosting (meta-algorithm)
- Decision trees
  - Random forests
- Neural networks

# Some Additional Classification Sources (A bit ML oriented, and by no means complete)



- 1. Wainer, J. (2016). Comparison of 14 different families of classification algorithms on 115 binary datasets. arXiv preprint arXiv:1606.00930. <a href="https://arxiv.org/pdf/1606.00930.pdf">https://arxiv.org/pdf/1606.00930.pdf</a>
- 2. Lim, T. S., Loh, W. Y., & Shih, Y. S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. *Machine learning*, 40(3), 203-228. <a href="https://doi.org/10.1023/A:100760822">https://doi.org/10.1023/A:100760822</a>
- 3. <u>SURVEY PAPER Top 10 algorithms in data mining</u> <u>http://www.cs.umd.edu/~samir/498/10Algorithms-08.pdf</u>
- 4. Essentials of Machine Learing Algorithms (with Python and R code) http://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/
- 5. A Simple Guide to Logistic Regression in R. http://www.analyticsvidhya.com/blog/2015/11/beginners-guide-on-logistic-regression-in-r/?utm\_content=buffer47fd7&utm\_medium=social&utm\_source=linkedin.com&utm\_campaign=buffer

#### Comparison on 115 binary datasets



Source # 1

| $\operatorname{alg}$       | mean rank | count |
|----------------------------|-----------|-------|
| rf                         | 3.04      | 36    |
| svmRadial                  | 3.36      | 24    |
| ${ m gbm}$                 | 3.41      | 25    |
| $\operatorname{nnet}$      | 4.88      | 13    |
| $\operatorname{rknn}$      | 5.04      | 10    |
| svmPoly                    | 5.14      | 11    |
| knn                        | 5.32      | 11    |
| $\operatorname{symLinear}$ | 6.15      | 13    |
| $\operatorname{glmnet}$    | 6.16      | 15    |
| $\operatorname{elm}$       | 6.55      | 5     |
| lvq                        | 6.96      | 8     |
| $\operatorname{sda}$       | 7.05      | 5     |
| nb                         | 8.23      | 7     |
| bst                        | 9.08      | 4     |





- bst Boosting of linear classifiers.
- elm Extreme learning machines
- gbm Gradient boosting machines.
- glmnet Elastic net logistic regression classifier.
- knn k-nearest neighbors classifier.
- Ivq Learning vector quantization.
- nb Naive Bayes classifier
- nnet A 1-hidden layer neural network with sigmoid transfer function.
- rf Random forest.
- rknn A bagging of knn classifiers on a random subset of the original features.
- sda A L1 regularized linear discriminant classifier.
- svmLinear A SVM with linear kernel.
- svmPoly A SVM with polynomial kernel.
- svmRadial A SVM with RBF kernel.



# Comparison of Classification Technique from Source #2

#### (a) All thirty-three methods



# Comparison of Classification Techniques from zoom on Previous Slide

(b) Less than 10min., accuracy not sig. different from POL





# **Principal Component Analysis**

#### Goals



- Restructure interrelated variables
- Simplify description
- Reduce Dimensionality
- Avoid multi-collinearity problems in regression

#### **Basic Idea**



•  $X_1$ ,  $X_2$  – correlated

Transform them into:

C<sub>1</sub>, C<sub>2</sub> – uncorrelated

#### Geometric Concept (p 359)





Scatter Diagram of NORM1 versus NORM2





Illustration of Two Principal Components  $C_1$  and  $C_2$ 









#### Creating new variables



- Each new variable (principal component) is a linear combination of the x variables
- For 2D case:

$$C_1 = a_{11}x_1 + a_{12}x_2$$

$$C_2 = a_{21}x_1 + a_{22}x_2$$

New variables properties:



mean 
$$C_1$$
 = mean  $C_2 = 0$   
Var  $C_1$  =  $a_{11}^2 S_1^2 + a_{12}^2 S_2^2 + 2a_{11}a_{12}rS_1S_2$   
Var  $C_2$  =  $a_{21}^2 S_1^2 + a_{22}^2 S_2^2 + 2a_{21}a_{22}rS_1S_2$ 

#### Coefficients of $C_1$ , $C_2$ (p 360)



- The **coefficients**  $(a_{11}, a_{12}, a_{21}, a_{22})$  are chosen to satisfy three requirements:
  - 1.  $Var C_1$  is as large as possible.
  - 2. The N values of  $C_1$  and  $C_2$  are uncorrelated.

3. 
$$a_{11}^2 + a_{12}^2 = a_{21}^2 + a_{22}^2 = 1$$

# Equations for Principal Components: C<sub>1</sub>, C

• 
$$C_1 = 0.85X_1 + 0.53X_2$$

• 
$$C_2 = -0.53X_1 + 0.85X_2$$

- Var  $C_1 = 135.0$
- Var  $C_2 = 22.5$

- Note: Dot Product of Cs: C<sub>1</sub> C<sub>2</sub> = 0
  - Hence they are orthogonal, therefore uncorrelated, and Var C<sub>1</sub> > Var C<sub>2</sub>



### **Principal Component Model**

#### Principal Components: C<sub>1</sub>, ..., C<sub>p</sub>



From P original variables: X<sub>1</sub>,..., X<sub>p</sub> derive P
 principal components C<sub>1</sub>,..., C<sub>p</sub>

Each C<sub>i</sub> is a linear combination of the X<sub>i</sub> 's

• 
$$C_j = a_{j1} X_1 + a_{j2} X_2 + .... + a_{jp} X_p$$

#### **Matrix Equation**



where 
$$\sum_{i} a_{ij}^{2} = 1$$

#### **Properties of Principal Components:**



Coefficients are chosen to satisfy:

$$Var C_1 \ge Var C_2 \ge ... \ge Var C_p$$

- Variance is a measure of information:
  - For Example, In Prostate Cancer:
    - Gender has 0 variance, no information
    - Size of tumor has variance > 0, useful information
- Any two principal components are orthogonal, hence uncorrelated

### Calculation of Principal Components



 Let S be the Covariance Matrix of the X variables.

$$S = \begin{bmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & & & \vdots \\ s_{p1} & s_{p2} & \dots & s_{pp} \end{bmatrix}$$

 Then a<sub>ij</sub> 's are the solution to the equation:

$$(S - \lambda I)a = 0$$

The mathematical solution for the coefficients was originally derived by <a href="Hotelling">Hotelling (1933)</a>

#### Recall Some Terminology



- Solutions to  $(S \lambda I)a = 0$  are:
  - λ a scalar known as the eigenvalue
  - a a vector known as the eigenvector
- **a** is not unique. There are an infinite number of possibilities, so:
  - Choose a such that the sum of the squares of coefficients for each eigenvector is = 1.
  - This yields: P unique eigenvalues and P corresponding eigenvectors.

#### **Then**



- Principal Components are the eigenvectors,
- and their variances are the eigenvalues
- of the covariance matrix S of the X's

• Variances of the  $\mathbf{C}_{\mathbf{j}}$  's add to the sum of the variances of the original variables (total variances)

#### **Example Revisited (p 361)**



- Var  $X_1 = 104.0$  Var  $X_2 = 53.5$  sum = 157.5
- Var  $C_1 = 135.0$  Var  $C_2 = 22.5$  sum = 157.5

Total Variance is Preserved





 The coefficient a<sub>ij</sub> can be transformed into a correlation between x<sub>i</sub> and C<sub>i</sub>

$$r_{ij} = \frac{a_{ij} (\text{Var } C_i)^{1/2}}{(\text{Var } x_j)^{1/2}}$$

- The first principal component:  $C_1 = 0.851x_1 + 0.525x_2$
- correlation between  $C_1$  and  $x_1$ :  $r_{11} = \frac{0.85(135.04)^{1/2}}{(103.98)^{1/2}} = 0.969$
- correlation between  $C_1$  and  $X_2$ :  $r_{12} = \frac{0.525(135.04)^{1/2}}{(53.51)^{1/2}} = 0.834$





| Data Matrix |     |  |
|-------------|-----|--|
| 72          | 176 |  |
| 60          | 115 |  |
| 65          | 180 |  |
| 74          | 160 |  |
| 67          | 150 |  |



#### Correlation

Corr X1:X2 0.629165



**Correlation Matrix** 

1 0.629165 0.629165 1

Sample Variance





Total variance

708.5

$$(S - \lambda I)a = 0$$





| Eigenvectors | 1        | 2        |
|--------------|----------|----------|
| a1           | 0.707107 | 0.707107 |
| a <b>2</b>   | 0.707107 | -0.70711 |

#### Work thru PCA by hand-2





| Data×Eigenvectors |          |  |
|-------------------|----------|--|
| 175.3625          | -73.5391 |  |
| 123.7437          | -38.8909 |  |
| 173.2412          | -81.3173 |  |
| 165.463           | -60.8112 |  |
| 153.4422          | -58.6899 |  |



Sample Variance

Var(C1) Var(C2) 445.85 262.65



Total variance 708.5

#### Checks:

#### Orthogonal?

 $a_{21} \times a_{22} + a_{11} \times a_{12} = 1.11 \times 10^{-16}$ 

| check on eigenvalue                                                          |                                       |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| s <sub>11</sub> ×a <sub>11</sub> +s <sub>12</sub> ×a <sub>21</sub> =1.15199  | 1.15199/a <sub>11</sub> =1.629165=1+R |  |  |  |
| s <sub>21</sub> ×a <sub>12</sub> +s <sub>22</sub> ×a <sub>22</sub> =-0.26222 | 1.15199/a <sub>12</sub> =-0.37083=1-R |  |  |  |

#### Using standardized variables



- Usually standardize:
  - Transform  $X \longrightarrow Z = X/SD(X)$
- Easier interpretation:
  - $Var(Z_i) = 1$
  - Total variance = P
  - Covar  $(Z_i, Z_j) = r_{ij}$
  - Proportion explained by C<sub>i</sub> = eigenvalue<sub>i</sub> / P
  - Correlation between  $C_i$  and  $Z_i$ :  $r_{ij} = a_{ij} (\text{Var } C_i)^{1/2}$
  - $a_{ij}$ : relative degree of dependence of  $C_i$  and  $Z_j$

#### P 366



Principal
Components for
Two Standardized
Variables

$$C_1 = 0.707 \frac{\text{NORM1}}{S_1} + 0.707 \frac{\text{NORM2}}{S_2}$$

$$C_2 = 0.707 \frac{\text{NORM1}}{S_1} - 0.707 \frac{\text{NORM2}}{S_2}$$



#### **Analyzing Correlation Matrix**



- Covariance matrix (S) => correlation matrix (R)
- Covariance:  $cov(X,Y) = E[X-E(X)] \times [Y-E(Y)]$
- Correlation (assuming variances are positive):

$$cor(X,Y) = [cov(X,Y)]/[sd(X) \times sd(Y)]$$
$$cor(X,Y) = cov \{[X-E(X)]/sd(X), [Y-EY]/sd(Y)\}$$

- Correlation is a scaled version of covariance
- Correlation is dimensionless
- S and R give different Principal Components

#### **Example Revisited**



| Eigenvalue  | Covariance Matrix<br>S | Correlation Matrix<br>R |
|-------------|------------------------|-------------------------|
| $\lambda_1$ | 135.0 (85.7%)          | 1.68 (83.8%)            |
| $\lambda_2$ | 22.5 (14.3%)           | 0.32 (16.2%)            |
| Total       | 157.5 (100%)           | 2 (100%)                |

NOTE: Different % variance explained by Principal Components

### Meaning of aij (Standardized Variables)



- Analyzing S:
  - Covariance  $(C_i, X_j) = a_{ij} * \lambda_i * / SD(X_j)$
- Analyzing R:
  - Correlation ( $C_i$ ,  $X_j$ ) =  $a_{ij} * \lambda_i *^{1/2}$

 Correlations are a guide to interpreting Principal Components

#### **Dimension Reduction**



- Retain the first m principal components as representatives of the original P variables
  - Example: keep C<sub>1</sub> as summary of X1, X2
  - m = 1

 Choose m large enough to explain a "large" percentage of the original total variance

#### Choosing m



- Rely on existing theory and need to explain a given %
- Kaiser's Rule:
  - S: choose  $\lambda_i > \text{sum of variance of X's/P}$
  - R: choose  $\lambda_i > 1$

- Elbow Rule:
  - scree plot





## 1870

## Elbow Rule for Choosing m

- Start with the scree plot
- Choose a cutoff point where:
  - Lines joining consecutive points are "steep" left of the cutoff point, and
  - "flat" right of the cutoff point
- The point where the two slopes meet is the cutoff point

# Cumulative Percentages of Total Variance for Depression Data (p 368)

Cumulative Percentages of Total Variance for Depression Data



## Eigenvalues for Depression Data – Scree Plot (p 368)



Eigenvalues for Depression Data



A plot, in descending order of magnitude, of the eigenvalues of a correlation matrix

## Depression, CESD, Example



- Using R (Correlation, Not Language):
  - Choose Eigenvalues > 1

Hence choose 5 Principal Components

|                                  | Principal component     |         |                          |                           |         |
|----------------------------------|-------------------------|---------|--------------------------|---------------------------|---------|
| Item                             | 1                       | 2       | 3                        | 4                         | 5       |
| Negative affect                  |                         | 0.000   | ACTOR.                   | 200                       |         |
| I felt that I could not shake    |                         |         |                          |                           | ı       |
| off the blues even with the      |                         |         |                          |                           |         |
| help of my family or friends.    | 0.2774                  | 0.1450  | 0.0577                   | -0.0027                   | 0.0883  |
| I felt depressed.                | 0.3132                  | -0.0271 | 0.0316                   | 0.2478                    | 0.0244  |
| I felt lonely.                   | 0.2678                  | 0.1547  | 0.0346                   | 0.2472                    | -0.2183 |
| I had crying spells.             | 0.2436                  | 0.3194  | 0.1769                   | -0.0716                   | -0.1729 |
| I felt sad.                      | 0.2868                  | 0.0497  | 0.1384                   | 0.2794                    | -0.0411 |
| I felt fearful.                  | 0.2206                  | -0.0534 | 0.2242                   | 0.1823                    | -0.3399 |
| I thought my life had been a     | 30                      |         |                          |                           |         |
| failure.                         | 0.2844                  | 0.1644  | -0.0190                  | -0.0761                   | -0.0870 |
| Positive affect                  |                         |         |                          |                           |         |
| I felt that I was as good as     |                         |         |                          |                           |         |
| other people.                    | 0.1081                  | 0.3045  | 0.1103                   | -0.5567                   | -0.0976 |
| I felt hopeful about the future. | 0.1758                  | 0.1690  | -0.3962                  | $\frac{-0.0307}{-0.0146}$ | 0.5355  |
| I was happy.                     | 0.2766                  | 0.0454  | -0.0835                  | 0.0084                    | 0.3651  |
| I enjoyed life.                  | $\frac{0.2760}{0.2433}$ | 0.1048  | -0.0033                  | 0.0414                    | 0.2419  |
|                                  | 2.2.00                  | 2.2010  |                          |                           |         |
| Somatic, retarded activity       |                         |         |                          |                           |         |
| I was bothered by things that    |                         |         |                          |                           |         |
| usually don't bother me.         | 0.1790                  | -0.2300 | 0.1634                   | 0.1451                    | 0.0368  |
| I did not feel like eating; my   |                         |         |                          |                           |         |
| appetite was poor.               | 0.1259                  | -0.2126 | 0.2645                   | -0.5400                   | 0.0953  |
| I felt that everything was an    |                         |         |                          |                           |         |
| effort.                          | 0.1803                  | -0.4015 | -0.1014                  | -0.2461                   | -0.0847 |
| My sleep was restless.           | 0.2004                  | -0.2098 | 0.2703                   | 0.0312                    | 0.0834  |
| I could not "get going."         | 0.1924                  | -0.4174 | -0.1850                  | -0.0467                   | -0.0399 |
| I had trouble keeping my         | -                       |         |                          |                           |         |
| mind on what I was doing.        | 0.2097                  | -0.3905 | -0.0860                  | -0.0684                   | -0.0499 |
| I talked less than usual.        | 0.1717                  | -0.0153 | 0.2019                   | -0.0629                   | 0.2752  |
| Interpersonal                    |                         |         |                          |                           |         |
| People were unfriendly.          | 0.1315                  | -0.0569 | -0.6326                  | -0.0232                   | -0.3349 |
| I felt that people disliked me.  | 0.2357                  | 0.2283  | $\frac{0.0320}{-0.1932}$ | -0.2404                   | -0.2909 |
| Eigenvalues or $Var C_i$         | 7.055                   | 1.486   | 1.231                    | 1.066                     | 1.013   |
| Cumulative proportion            | 0.353                   | 0.427   | 0.489                    | 0.542                     | 0.593   |
| $0.5/(\text{VAR }C_i)^{1/2}$     | 0.188                   | 0.410   | 0.451                    | 0.484                     | 0.497   |

| Principal         |
|-------------------|
| Components        |
| for               |
| standardized      |
| <b>CESD</b> scale |
| items (p 369)     |
|                   |

## Reading the Output



Here: X<sub>1</sub> = "I felt that I could not shake ..."
 X<sub>2</sub> = "I felt depressed, ..."

The Principal Component are:

$$C_1 = 0.2774X_1 + 0.3132X_2 + ...$$
 $C_2 = 0.1450X_1 + 0.0271X_2 + ...$ 
etc.

### **Coefficients as Correlations**



- Recall: Correlation (C<sub>i</sub>, X<sub>j</sub>) = a<sub>ij</sub> \* λ<sub>i</sub> ½
- Choose X's where Correlation > 0.5
  - Example:
  - For  $C_1$ ,  $\lambda_1 = 7.055$ ;  $\lambda_1^{1/2} = 2.656$
  - Correlation >  $0.5 => a_{1j} > 0.5/2.656 = 0.188$
- Similarly for other Principal Components





- Loadings with r > 0.5 are underlined
- C<sub>1</sub>: a weighted average of most items.
  - High C<sub>1</sub> => respondent had many symptoms of depression. Note sign of loadings.
- C<sub>2</sub>: lethargy (high => energetic)
- C<sub>3</sub>: friendliness of others
- C<sub>4</sub>: self-worth / appetite
- C<sub>5</sub>: hopefulness

## **Use in Multiple Regression**



- Discard the last few Principal Components, and perform regression of the remaining. This leads to more stable regression estimates.
- Alternative to variable selection
  - For example: several measures of behavior
  - Use PC<sub>1</sub> or PC<sub>1</sub> and PC<sub>2</sub> as summary measures of all.

## **Multicollinearity**



- The size of the variance of the last few Principal
   Components is useful as an indicator of multicollinearity
   among the original variables.
- For standardized data, the mean of  $C_P$  is zero and its variance is close to zero. So approximately:

$$0 = a_{P1}x_1 + a_{P2}x_2 + \cdots + a_{PP}x_P$$

- For example:
  - If  $PC_{10} = .5X .2Y .25Z$ , or  $\lambda_i = 0.01 \approx 0$  then
  - $X \approx .4Y + .5Z$
  - Therefore discard X

## **Summary of Computer Output**



|                                       | S-PLUS/R  | SAS      | SPSS   | Stata             | STATISTICA |
|---------------------------------------|-----------|----------|--------|-------------------|------------|
| Covariance matrix                     | var       | PRINCOMP | FACTOR | correlate         | PCCA       |
| Correlation matrix                    | cor       | PRINCOMP | FACTOR | correlate         | PCCA       |
| Coefficients from raw data            | princomp  | PRINCOMP | FACTOR | рса               | PCCA       |
| Coefficients from standardized data   | princomp  | PRINCOMP | FACTOR | pca               | PCCA       |
| Correlation between xs and Cs         | factanal  | FACTOR   | FACTOR | predict;correlate | PCCA       |
| Eigenvalues                           | princomp  | PRINCOMP | FACTOR | pca               | PCCA       |
| Cum. proportion of variance explained | princomp  | PRINCOMP | FACTOR | pca               | PCCA       |
| Principal component scores saved      | princomp  | PRINCOMP | FACTOR | predict           | PCCA       |
| Plot of principal components          | biplot    | GPLOT    | FACTOR | loadingplot       | PCCA       |
| Scree plots                           | screeplot | FACTOR   | FACTOR | screeplot         | PCCA       |

### **Caveats**



- Principal Components derived from standardized variables differ from those derived from original variables.
- Interpretation is easier if data arise from, or are transformed to have, a symmetric distribution
- It is important that measurements are accurate, especially for detection for collinearity





https://stats.stackexchange.com/questions/2691/making-sense-of-

## **Projections for Different Lines**





https://stats.stackexchange.com/questions/2691/making-sense-of-





https://stats.stackexchange.com/questions/2691/making-sense-of-



## Singular Value Decomposition

### Singular Value Decomposition (SVD)



- SVD is a factorization of a matrix:  $M = U \Sigma V^T$
- M is the "ratings" matrix
- U and V are the eigenvectors of M M<sup>T</sup> and M<sup>T</sup> M respectively.
- Σ is a diagonal matrix of singular values (think of them as weighting factors for U and V).
- The singular values are the square roots of the eigenvalues of M M<sup>T</sup> corresponding to the eigenvectors in U and V.
- $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p$

## Singular Value Decomposition (SVD)







$$M_{[m\times n]} = U_{[m\times r]} \Sigma_{[r\times r]} V^{T}_{[r\times n]}$$

- U, Σ, V: unique
- U, V: column orthogonal
- Σ: diagonal

## Singular Value Decomposition (SVD)



Min sum squares of projection errors

 $(U\Sigma)^T$ : Projection Axis

## Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)



- Recall PCA creates coordinates with greatest influence on the analysis.
- It does this by calculating the eigenvalues and eigenvectors of the covariance (or correlation) matrix.
- One can calculate SVD using PCA in a variety of ways, for example:
  - Translate each data column to have mean=0
  - Then diagonalizing X<sup>T</sup> X provides the principal components.
- At least as likely to calculate PCA using SVD at scale. For example:
  - Subtract the column means from the data matrix.
  - Take SVD
  - The Columns of  $V_{\kappa}$  are principal components.
  - Values of the  $w_1$ , i.e. diagonal elements of  $\Sigma$  give "importance" of each element.

## SVD Recommender Example - 1 X = User/Item



#### Input matrix:

```
5.000 5.000 1.400 2.400
2.400 2.000 1.400 2.400
4.000 1.000 3.000 2.000
3.000 3.000 3.000 3.000
2.400 3.200 1.000 4.000
```

Matrix Algebra using: http://www.bluebit.gr/matrix-calculator/multiply.aspx

DGB 5/2013

## SVD Recommender Example - 2 SVD of X



#### Singular Value Decomposition:

#### U:

```
-0.581 -0.395 -0.710 0.014
-0.329 0.014 0.189 -0.189
-0.391 0.791 -0.111 -0.404
-0.466 0.206 0.287 0.809
-0.430 -0.420 0.604 -0.383
```

#### S:

```
12.631 0.000 0.000 0.000
0.000 2.922 0.000 0.000
0.000 0.000 2.275 0.000
0.000 0.000 0.000 0.968
```

#### νT

```
-0.609 -0.532 -0.338 -0.481
0.284 -0.645 0.697 -0.136
-0.540 -0.214 0.177 0.794
-0.507 0.505 0.607 -0.344
```

## SVD Recommender Example - 3



#### Input matrix A:

#### -0.581 -0.395 -0.710 -0.329 0.014 0.189 -0.391 0.791 -0.111 -0.466 0.206 0.287 -0.430 -0.420 0.604

#### Input matrix A:

#### -7.339 -1.154 -1.615 -4.156 0.041 0.430 -4.939 2.311 -0.253 -5.886 0.602 0.653 -5.431 -1.227 1.374

#### Input matrix B:

| 12.631 | 0.000 | 0.000 |
|--------|-------|-------|
| 0.000  | 2.922 | 0.000 |
| 0.000  | 0.000 | 2.275 |

## V

#### Input matrix B:

```
-0.609 -0.532 -0.338 -0.481
0.284 -0.645 0.697 -0.136
-0.540 -0.214 0.177 0.794
```

#### Matrix product A\*B

## **UxS**

```
-7.339 -1.154 -1.615
-4.156 0.041 0.430
-4.939 2.311 -0.253
-5.886 0.602 0.653
-5.431 -1.227 1.374
```

## UxS xV<sup>T</sup>

#### Matrix product A\*B

| 5.014 | 4.994 | 1.390 | 2.405 |
|-------|-------|-------|-------|
| 2.310 | 2.093 | 1.509 | 2.335 |
| 3.801 | 1.191 | 3.235 | 1.860 |
| 3.403 | 2.603 | 2.525 | 3.268 |
| 2.217 | 3.387 | 1.224 | 3.870 |



# Dimension Reduction (aka Matrix Factorization Techniques) PCA and SVD

PCA: Principle Components Analysis.

SVD: Singular Value Decomposition.

SVD and PCA are closely related.

Why we use SVD and PCA?

- A powerful tool for analyzing data and finding patterns.
- Used for compression. So you can reduce the number of dimensions without much loss of information.

## 1870

### PCA and SVD

#### **Summary for PCA and SVD**

Objective: find the principal components P of a data matrix A(n,m).

- 1. First zero mean the columns of A (translate the origin to the center of gravity).
- 2. Apply PCA or SVD to find the principle components (P) of A.

#### PCA:

- I. Calculate the covariance matrix  $C = \frac{AA^T}{n}$
- II. p =the eigenvectors of C.
- III. The variances in each new dimension is given by the eigenvalues.

#### SVD:

- I. Calculate the SVD of A.
- II. P = V: the right singular vectors.
- III. The variances are given by the squaring the singular values.
- 3. Project the data onto the feature space.  $F = P \times A$
- 4. Optional: Reconstruct A from Y where A'is the compressed version of A.

## Comparison between PCA and SVD



- They both are eigenvalue/eigenvector methods
- PCA is faster than SVD when:
   the number of observations > the number of variables
- PCA uses SVD in its calculation
- Geometrically PCA corresponds to "centering the dataset", and then rotating it to align the axis of highest variance with the principle axis.

Ref.: https://www.quora.com/What-is-the-difference-between-PCA-and-SVD

### A Bit of Review



- Preparation of Data: Outliers, Null Values, etc.
- Regression Simple and Multiple
- Discriminant Analysis
- Logistic Regression
- Cluster Analysis Hierarchical, K-Means, Density
- Dimension Reduction
  - Principal Component Analysis
  - Singular Value Decomposition
  - Factor Analysis

## **Project Presentation**



- The project will be presented in the order scheduled.
- Please find the template for your presentation <u>here</u>
- You may use your laptop to make a presentation.
- The paper presentations will last 15 minutes and then there will be 5 minutes for questions.
- Presentations will be strictly timed, just as if being done at a professional conference.
- You are advised to practice your presentation before giving it, with the overhead materials you will actually use, to make sure it does not take too long. Don't try to memorize the presentation -- use the overheads as clues about what you should be talking about, but also (very important) don't just READ the overheads.
- All group members should participate in the presentation. For example, if you are in a group of three, each of you should present about five minutes.

## Term Project



- Report (both PDF and Word files)
- Presentation (PPT file)
- Code

#### You need to submit them up to Dec 4, 2018

The presentation and code only need to be submitted! and your project credit comes from how you present the project and how is the final written report. Report needs to be complete and you should not mention "it is mentioned/presented in the code or presentation". All points should be explained and discussed in the report and do not leave any figure or table without explanations or discussion. Also, you can expand/modify the report and address the points that you missed in your presentation.





#### The report needs detail the following:

- Title
- Names
- Abstract
- Introduction
- Problem description
- Evaluation of database (no. variables, instances, etc.)
- Data processing and preparation
- Methods used (regression, classification, and clustering) and why, perhaps you tried many which should also be reported
- Dimension reduction method(s)
- Results (plots and tables), Comparisons, and Discussions
- Conclusion
- Future research
- References

Write this as if you were trying to publish results in a professional conference/journal. Your evaluation will be based on this viewpoint!



## stevens.edu

Amir H Gandomi; PhD
Assistant Professor of Information Systems
a.h.gandomi@stevens.edu