Insurance analytics

A walk in the forest - tree-based machine learning methods

Katrien Antonio LRisk - KU Leuven and ASE - University of Amsterdam

May 26, 2019

Acknowledgement

- Some of the figures in this presentation are taken from *An Introduction* to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
- ➤ Some of the figures in this presentation are from *Boosting insights in insurance tariff plans with tree-based machine learning* (available on arxiv, April 2019), written by Roel Henckaerts, Marie-Pier Côté, Katrien Antonio and Roel Verbelen.

Today's mission

- ► Today's mission is twofold:
 - a general discussion of decision trees, bagging, random forests, gradient boosting machines
 - a discussion of specific considerations to keep in mind when using these predictive modeling techniques with frequency/severity data.

Intro

- ➤ CART: Classification And Regression Trees, introduced by Breiman et al. (1984).
- Consider the Hitters data to predict a player's Salary based on Years and Hits.

Intro

► The region partition for the Hitters data:

Intro

- ► The process of building a regression tree:
 - R_1, R_2, \ldots, R_J
 - recall: the predictor space is the set of possible values for X_1, X_2, \dots, X_p (= the covariates).
 - 2. for every observation in region R_j we make the same prediction:

1. divide the predictor space into J distinct, non-overlapping regions

- the mean of the response values for the training observations in R_j .
- ▶ The prediction obtained with a regression tree:

$$f(X_1,...,X_p) = \bar{y}_1 I_{\{X \in R_1\}} + ... + \bar{y}_J I_{\{X \in R_J\}},$$

where $\bar{y}_i = \text{ave}(y_i | \boldsymbol{X}_i \in R_i)$.

Intro

► We consider now step 1:

how to construct the regions R_1, \ldots, R_J ?

- We divide the predictor space into high-dimensional rectangles, or boxes.
- ► Find boxes R₁,..., R_J that minimize the Residual Sum of Squares (RSS) (actuarial reflections?)

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \bar{y}_{R_j})^2,$$

with \bar{y}_{R_j} the mean response for the training observations within the jth box.

K. Antonio, KU Leuven & UvA Regression trees 7 / 46

Intro

► Computationally infeasible to consider every possible partition of the feature space into *J* boxes.

▶ Therefore:

use a top-down, greedy approach, known as recursive binary splitting.

- Motivation:
 - top-down because it begins at top of the tree
 - greedy because at each step the best split is made at that particular step, rather than looking ahead.

Intro

- ► To perform recursive binary splitting:
 - select the predictor X_i and cutpoint s such that

$$\{X|X_j < s\}$$
 and $\{X|X_j \ge s\}$,

leads to greatest possible reduction in RSS

• thus, for any j and s we define the pair of half-planes

$$R_1(j,s) = \{X | X_j < s\} \text{ and } R_2(j,s) = \{X | X_j \ge s\},$$

we seek j and s minimizing

$$\sum_{i: \ x_i \in R_1(j,s)} (y_i - \bar{y}_{R_1})^2 + \sum_{i: \ x_i \in R_2(j,s)} (y_i - \bar{y}_{R_2})^2.$$

Intro

► Next, we repeat the process:

we look for the best predictor and best cutpoint to split data further, within each of the resulting regions.

- ► The process continues until a stopping criterion is reached, e.g. no region has > 5 observations.
- ▶ Given regions $R_1, ..., R_J$ we predict as follows: (step 2)
 - take a test observation
 - belongs to which region?
 - use the mean of the training observations in that region.

Loss functions

- ▶ What about alternatives for the Residual Sum of Squares (RSS)?
- ▶ Use a loss function $L(y_i, f(x_i))$ and split the predictor space into $R_1(j, s)$ and $R_2(j, s)$ such that

$$\sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) = \sum_{i: \mathbf{x}_i \in R_1(j,s)} L(y_i, \bar{y}_{R_1}) + \sum_{i: \mathbf{x}_i \in R_2(j,s)} L(y_i, \bar{y}_{R_2})$$

is minimized.

▶ Hereby \bar{y}_{R_j} the 'mean' response for the training observations within the jth box.

K. Antonio, KU Leuven & UvA Regression trees 11/46

Loss functions inspired by GLMs

▶ Recall the notion of the (scaled) deviance:

$$D(\mathbf{y}, \hat{f}(\mathbf{x})) = -2 \cdot \ln \left(\frac{\mathcal{L}(\hat{f}(\mathbf{x}))}{\mathcal{L}(\mathbf{y})} \right),$$

where \mathbf{y} is the vector of responses (or: targets) and $\hat{f}(\mathbf{x})$ is the vector of fitted values, $\mathcal{L}(\mathbf{y})$ is the likelihood of the saturated model and $\mathcal{L}(f(\mathbf{x}))$ the model likelihood.

Now, use a loss function $L(y_i, f(x_i))$ such that

$$D(\mathbf{y},\hat{f}(\mathbf{x})) = \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)).$$

12 / 46

K. Antonio, KU Leuven & UvA Regression trees

Loss functions inspired by GLMs

► For example, loss function inspired by Poisson deviance

$$D(\mathbf{y}, \hat{f}(\mathbf{x})) = 2 \cdot \ln \prod_{i=1}^{n} \exp(-y_i) \frac{y_i^{y_i}}{y_i!}$$

$$-2 \cdot \ln \prod_{i=1}^{n} \exp(-\hat{f}(\mathbf{x}_i)) \frac{\hat{f}(\mathbf{x}_i)^{y_i}}{y_i!}$$

$$= 2 \sum_{i=1}^{n} \left(y_i \cdot \ln \frac{y_i}{\hat{f}(\mathbf{x}_i)} - (y_i - \hat{f}(\mathbf{x}_i)) \right).$$

The corresponding (weighted) loss function $L(y_i, f(x_i))$ is then

$$L(y_i, f(\mathbf{x}_i)) = 2 \cdot \mathbf{w}_i \cdot (y_i \cdot \ln y_i - y_i \cdot \ln \hat{f}(\mathbf{x}_i) - y_i + \hat{f}(\mathbf{x}_i)).$$

When using an exposure measure d_i , $f(x_i)$ is replaced by $d_i \cdot f(x_i)$.

K. Antonio, KU Leuven & UvA Regression trees 13 /

Loss functions inspired by GLMs

► For example, loss function inspired by normal deviance

$$D(\mathbf{y}, \hat{f}(\mathbf{x})) = 2 \cdot \ln \prod_{i=1}^{n} \exp \left(-\frac{1}{2\sigma^2} (y_i - y_i)^2 \right)$$
$$-2 \cdot \ln \prod_{i=1}^{n} \exp \left(-\frac{1}{2\sigma^2} (y_i - \hat{f}(\mathbf{x}_i))^2 \right)$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \hat{f}(\mathbf{x}_i))^2.$$

The corresponding (weighted) loss function $L(y_i, f(x_i))$ is then

$$L(y_i, f(\mathbf{x}_i)) = \mathbf{w}_i \cdot (y_i - \hat{f}(\mathbf{x}_i))^2,$$

which is simply the squared error loss.

K. Antonio, KU Leuven & UvA Regression trees 14 / 46

Finding optimal splits

- Finding the optimal split:
 - is straightforward for continuous predictors which can be ordered in a natural way
 - is easy for binary predictors
 - is way more complicated for categorical predictors with (e.g.) q levels, since $2^{q-1}-1$ possible partitions in two groups.
- ► Actuarial reflections? Postal code, multi-level factors?

Tree pruning

- ▶ Process as described above is likely to overfit the data.
- ► An alternative:

build the tree so long as the decrease in the RSS due to each split exceeds some (high) threshold.

► Better strategy:

grow a very large tree T_0 and prune it back to obtain a subtree.

► This is called cost complexity pruning.

Tree pruning

- ▶ The strategy:
 - consider a sequence of trees indexed by a nonnegative tuning parameter α
 - for each value of α there is a subtree $T \subset T_0$ such that

$$\sum_{j=1}^{|T|} \sum_{i: \ x_i \in R_j} (y_i - \bar{y}_{R_j})^2 + \alpha |T|$$

is as small as possible.

- ► Hereby:
 - |T| is the number of terminal nodes of the tree
 - \bar{y}_{R_j} is the predicted response associated with R_j , the rectangle corresponding to the *j*th terminal node.

Tree pruning

- Tuning parameter α controls a trade-off between the subtree's complexity and its fit to training data.
- ▶ With $\alpha = 0$ the subtree T is equal to T_0 .
- When α increases, there is a price to pay for having a tree with many terminal nodes.
- We can select a value of α using a validation set or using cross-validation.
- ightharpoonup We return to the full data and obtain the subtree corresponding to α .

Tree pruning

Return to the Hitters data set: unpruned tree.

Tree pruning

- ▶ Return to the Hitters data set: unpruned tree.
- ► Strategy:
 - randomly divide the data in half, yields 132 observations in the training set and 131 in the test set
 - ullet build a large tree on the training data and vary lpha to create subtrees
 - perform 6-fold cross validation and estimate cross-validated MSE of the trees as function of α .

Tree pruning

Return to the Hitters data set: training, cross-validation and test error.

CV error is minimal for the three-node tree (see earlier).

Tree pruning

▶ Return to the Hitters data set: pruned tree.

Tree in R with rpart

▶ Optimize performance of the tree by minimizing the following quantity:

$$\sum_{j=1}^{J} \sum_{i: \mathbf{x}_i \in R_j} L(y_i, \hat{y}_{R_j}) + J \cdot cp \cdot \sum_{i: \mathbf{x}_i \in R} L(y_i, \hat{y}_R)$$

- complexity parameter cp will determine the size of the tree
- cp = 0 gives biggest possible tree
- cp = 1 gives root tree without splits
- cp is an important tuning parameter.
- ► We employ a tuning strategy and search grid to find the optimal value for *cp*, e.g. via cross-validation.

Example of a frequency tree with rpart.plot

Advantages and disadvantages of trees

- + Trees are very easy to explain.
- + Decision trees closely mirror human decision-making.
- + Trees can be displayed graphically, easily interpreted by non-expert.
- + Trees can easily handle qualitative predictors.
- Trees generally do not have same level of predictive accuracy as some other predictive modeling techniques discussed today.

Advantages and disadvantages of trees

- ▶ By aggregating many decision trees into ensembles of trees, the predictive performance can be substantially improved.
- ► These techniques are known as bagging, random forests and boosting (see further).

Bagging

- A natural way to reduce the variance and increase the prediction accuracy of a statistical learning method:
 - take many training sets from the population
 - build a separate prediction model using each training set
 - average the resulting predictions.
- ► Thus, calculate $\hat{f}^1(x)$, $\hat{f}^2(x)$,..., $\hat{f}^T(x)$ using B separate training sets and average them

$$\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x).$$

However, usually we do not have access to multiple training sets.

K. Antonio, KU Leuven & UvA Bagging 27 / 46

Bagging

- ► Instead, we can bootstrap and take repeated samples from the (single) training data set.
- ▶ Thus, we generate *B* different bootstrapped training data sets.
- We train our method on the *b*th bootstrapped training set and get $\hat{f}^{*b}(x)$. Finally, we average all the predictions

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{\star b}(x).$$

This is called bagging and goes back to Breiman (1996). It mainly reduces the estimation variance.

Bagging refers to Bootstrap Aggregating.

K. Antonio, KU Leuven & UvA Bagging 28

Bagging

- ► Bagging with regression trees:
 - construct B regression trees using B bootstrapped training sets
 - these trees are grown deep, and are not pruned
 - · we then average the resulting predictions.
- Bagging with classification trees:
 - for a given test observation, we record the class predicted by each of the B trees and take a majority vote.

K. Antonio, KU Leuven & UvA

Random forests

▶ Random forests (Breiman, 2001) provide an improvement over bagged trees by way of a small tweak that decorrelates the trees.

► Random forests:

- we build a number of decision trees on bootstrapped training samples
- each time a split in a tree is considered, a random sample of m
 predictors is chosen as split candidates (from the full set of p predictors)
- typically, $m \approx \sqrt{p}$.

Random forests

► Rationale:

- suppose there is a very strong predictor in the data set
- in the collection of bagged trees, most or all of the trees will use this
 predictor as top split
- all bagged trees will look quite similar to each other
- predictions are highly correlated; no substantial reduction in variance over a single tree.
- ► Random forests overcome this problem.

Random forests

Details

- ▶ The inventors of random forests recommend:
 - for classification, default value for m is $\lfloor \sqrt{p} \rfloor$ and the minimum node size is one
 - for regression, default value for m is $\lfloor p/3 \rfloor$ and the minimum node size is five.
- Instead of using defaults, better practice to use a tuning strategy and search grid.
- Possible tuning parameters in a random forest:
 - number of trees B
 - number of sample variables m
 - minimum node size n_{min}

- Boosting is:
 - an iterative method that combines many weak learners into one powerful prediction, thus: boost your weak learner!
 - one of the most powerful shallow machine learning techniques.
- ▶ We focus on boosting with decision trees.
- ► Trees are grown <u>sequentially</u>; each tree is grown using information from previously grown trees.

A bit of history

- ▶ In the early 1990s boosting algos appeared combining (or: boosting) a number of weak classifiers into an ensemble classifier with superior misclassification error rate.
- ► AdaBoost (1999) algorithm brought an effective implementation.
- ► Friedman et al. (2000):
 - connected AdaBoost to the statistical concepts of loss functions, additive modelling, and logistic regression
 - interpreted AdaBoost as forward stagewise additive model minimizing exponential loss.

A bit of history

- This fundamental understanding led to a new view of boosting, enabling several extensions.
- ► Friedman's (2001) gradient boosting machines (GBMs):
 - · for classification as well as regression
 - trees make an excellent weak or base learner for boosting
 - remedy greediness by employing shrinkage or regularization
 - inspired by bagging, update GBM with a random sampling scheme to become stochastic gradient boosting.

Forward stagewise additive modeling

- We mentioned the connection between boosting and forward stagewise additive modeling.
- Forward stepwise linear regression of a response y with predictors x_1, \ldots, x_p :
 - 1. choose x_j giving the smallest RSS $\sum_i (y_i \hat{\beta}_j x_{ij})^2$, where $\hat{\beta}_j$ is from regressing y on x_j
 - 2. choose x_k giving the smallest additional RSS $\sum_i (r_i \hat{\beta}_k x_{ik})^2$, where $\hat{\beta}_k$ is from regressing $r_i = y_i \hat{\beta}_j x_{ij}$ on x_k
 - 3. repeat the last step.

Fitting an additive model

Fit an additive expansion in a set of 'basis' functions:

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

with the $b(x; \gamma_m)$ simple functions of x, with parameters γ .

▶ We fit these by minimizing a loss function over training data

$$\min_{\{\beta_m, \gamma_m\}_1^M} \sum_{i=1}^n \mathcal{L}\left(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m)\right).$$

► To make this computationally feasible, fit just a single basis function:

$$\min_{\beta, \gamma} \sum_{i=1}^{n} \mathcal{L}(y_i, \beta b(\mathbf{x}_i; \gamma)).$$

K. Antonio, KU Leuven & UvA Boosting 37

Fitting an additive model

- ▶ The forward stagewise additive model works like this:
 - squared-error loss $\mathcal{L}(y, f(x)) = (y f(x))^2$
 - stagewise additive model

$$L(y_i, f_{m-1}(\mathbf{x}_i) + \beta b(\mathbf{x}_i; \gamma)) = (y_i - f_{m-1}(\mathbf{x}_i) - \beta b(\mathbf{x}_i; \gamma))^2$$

= $(r_{im} - \beta b(\mathbf{x}_i; \gamma))^2$,

where $r_{im} = y_i - f_{m-1}(\mathbf{x}_i)$ is the residual of the current model on observation i.

► Forward stepwise linear regression is a simple example of this general approach.

Other loss functions

► AdaBoost is equivalent to forward stagewise additive modelling with

$$\mathcal{L}(y, f(x)) = \exp(-yf(x)),$$

the exponential loss function.

- Squared-error loss (regression) and exponential loss (classification) lead to very intuitive boosting algorithms:
 - fit base learner to residuals from current model
 - do a weighted fit of base learner to output y_i with weights $w_i = \exp(-v_i f_{m-1}(x_i))$.
- Other loss functions do not give rise to such simple boosting algorithms!

K. Antonio, KU Leuven & UvA Boosting 39 / 46

Boosting trees

▶ Predictive rule in a decision tree (see College 6)

$$\mathbf{x} \in R_j \Rightarrow f(\mathbf{x}) = \gamma_j$$

where γ_j is typically \bar{y}_{R_j} , the mean response of the training observations in R_j .

► The boosted tree is then a sum of trees

$$f_T(\mathbf{x}) = \sum_{t=1}^T f_{\mathsf{tree}}(\mathbf{x}, \Theta_t),$$

induced in a forward stagewise procedure. Here, $\Theta_t = \{R_{jt}, \gamma_{jt}\}_1^{J_t}$, the regions and fitted values of the tree.

Boosting trees

Fitting trees in a forward stagewise procedure, solve:

$$\hat{\Theta}_t = \arg\min_{\Theta_t} \sum_{i=1}^n \mathcal{L}(y_i, f_{t-1}(\boldsymbol{x}_i) + f_{\text{tree}}(\boldsymbol{x}; \Theta_t)),$$

where $\Theta_t = \{R_{jt}, \gamma_{jt}\}_1^{J_t}$, the regions and fitted values of the tree.

41 / 46

► With squared-error loss:

fit a regression tree to the current residuals $y_i - f_{t-1}(\mathbf{x}_i)$.

With other loss functions, no simple fast boosting algorithms.

Gradient boosting machines

▶ To generalize the boosted tree strategy to any differentiable loss function \mathcal{L} , consider

$$\mathcal{L}(f) = \sum_{i=1}^{n} \mathcal{L}(y_i, f(\mathbf{x}_i)).$$

- ► The goal is to minimize the loss wrt f (where f is constrained to be a sum of trees).
- ▶ We rely on the analogy with numerical optimization

$$\hat{\boldsymbol{f}} = \arg\min_{\boldsymbol{f}} \mathcal{L}(\boldsymbol{f}).$$

Gradient boosting machines

Use gradient descent to solve

$$\hat{m{f}} = rg \min_{m{f}} \mathcal{L}(m{f}).$$

Move in the local direction for which $\mathcal{L}(\mathbf{f})$ is most rapidly decreasing at $\mathbf{f} = \mathbf{f}_{t-1}$. Then,

$$\boldsymbol{f}_t = \boldsymbol{f}_{t-1} - \rho_t \boldsymbol{g}_t,$$

with ρ_t a step length and \boldsymbol{g}_t the gradient vector

$$g_{it} = \left[\frac{\partial \mathcal{L}(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{f(\mathbf{x}_i) = f_{t-1}(\mathbf{x}_i)}.$$

Gradient boosting machines

- ► The gradient tree-boosting algorithm:
 - initializes to the optimal constant model, which is just a single terminal node tree
 - fits a small tree of depth d to the pseudo-residuals $\rho_{it} = -\frac{\partial \mathcal{L}(y_i, f(x_i))}{\partial f(x_i)}$ evaluated at current model fit f_{t-1}
 - a shrinkage parameter λ controls the learning speed by shrinking updates $f_{\text{new}}(\mathbf{x}) = f_{\text{old}}(\mathbf{x}) + \lambda \text{update}$.
- ➤ Stochastic gradient boosting injects randomness in the training process by subsampling the data at random without replacement in each iteration.

Gradient boosting machines

```
initialize fit to the optimal constant model: f_0(x) = \arg\min_b \sum_{i=1}^n \mathcal{L}(y_i, b);
for t = 1, \dots, T do
     randomly subsample data of size \delta \cdot n without replacement from data \mathcal{D};
     for i = 1, \ldots, \delta \cdot n do
        \rho_{i,t} = -\left[\frac{\partial \mathcal{L}\{y_i, f(x_i)\}}{\partial f(x_i)}\right]_{f=f_{t-1}}
     end
     fit a tree of depth d to the pseudo-residuals \rho_{i,t} resulting in regions R_{i,t} with
      j=1,\ldots,J_t:
     for i = 1, \ldots, J_t do
        \hat{b}_{j,t} = \arg\min_{b} \sum_{i: x_i \in R_{i,t}} \mathcal{L}\{y_i, f_{t-1}(x_i) + b\}
     end
     update f_t(x) = f_{t-1}(x) + \lambda \sum_{j=1}^{J_t} \hat{b}_{j,t} \mathbb{1}(x \in R_{j,t});
end
f_{\text{gbm}}(x) = f_T(x);
```

Algorithm 2: Procedure to build a (stochastic) gradient boosting machine.

Gradient boosting machines

- Tuning parameters are:
 - 1. the number of trees; boosting can overfit if this number is too large.
 - 2. the number d of splits in each tree, which controls the complexity of the boosted ensemble. d=1 uses stumps (a single split) and often works well. d is the interaction depth.
- ► Hyper-parameters are:
 - 1. the shrinkage parameter λ , which controls the rate at which boosting learns.
 - 2. the fraction δ such that at each step a randomly selected subsample of size $\delta \cdot n$ is used.