CS261 Data Structures

Assignment 5

Winter 2022

MinHeap Implementation

Contents

General Instructions										
Min Heap Implementation										
Summary and Specific Instructions 4										
is_empty()5										
add() 6										
get_min()										
remove_min() 7										
build_heap() 8										
size() 9										
clear() 9										
heapsort()10										

Page 2 of 10

General Instructions

- 1. The program in this assignment must be written in Python v3 and submitted to Gradescope before the due date specified in the syllabus. You may resubmit your code as many times as necessary. Gradescope allows you to choose which submission will be graded.
- 2. In Gradescope, your code will run through several tests. Any failed tests will provide a brief explanation of testing conditions to help you with troubleshooting. Your goal is to pass all tests.
- 3. We encourage you to create your own test programs and cases even though this work won't have to be submitted and won't be graded. Gradescope tests are limited in scope and may not cover all edge cases. Your submission must work on all valid inputs. We reserve the right to test your submission with more tests than Gradescope.
- 4. Your code must have an appropriate level of comments. At a minimum, each method should have a descriptive docstring. Additionally, put comments throughout the code to make it easy to follow and understand.
- 5. You will be provided with a starter "skeleton" code, on which you will build your implementation. Methods defined in skeleton code must retain their names and input / output parameters. Variables defined in skeleton code must also retain their names. We will only test your solution by making calls to methods defined in the skeleton code and by checking values of variables defined in the skeleton code.

You can add more helper methods and variables, as needed. You also are allowed to add optional default parameters to method definitions.

However, certains classes and methods cannot be changed in any way. Please see comments in the skeleton code for guidance. In particular, content of any methods pre-written for you as part of the skeleton code must not be changed.

- 6. Both the skeleton code and code examples provided in this document are part of assignment requirements. They have been carefully selected to demonstrate requirements for each method. Refer to them for the detailed description of expected method behavior, input / output parameters, and handling of edge cases. Code examples may include assignment requirements not explicitly stated elsewhere.
- 7. All methods must be implemented iteratively.

8.	We will to	est your	implem	entation	with di	fferent	types	of objects,	not just into	egers.
	We guara	antee th	at all su	ch object	ts will h	nave co	rrect i	mplementa	tion of meth	ods
	eq,	lt,	gt,	ge,	le_	and _	_str			

Page 3 of 10

Summary and Specific Instructions

1. Implement the MinHeap class by completing the provided skeleton code in the file min_heap.py. Once completed, your implementation will include the following methods:

```
is_empty()
add()
get_min()
remove_min()
build_heap()
size()
clear()
heapsort()
```

- 2. The MinHeap must be implemented with a DynamicArray per the skeleton code. You are to use your existing DynamicArray for the implementation.
- 3. You may wish to augment your existing DynamicArray to assist you in this assignment. For instance, a method similar to pop() in Python's list that removes the last item in your DynamicArray can be helpful. You may also implement this functionality inline in your heap implementation if you prefer.
- 4. The number of objects stored in the MinHeap will be between 0 and 1,000,000 inclusive.
- 5. RESTRICTIONS: You are NOT allowed to use ANY built-in Python data structures and/or their methods.
 - You are NOT allowed to directly access any variables of the DynamicArray class. All work must be done only by using class methods.
- 6. Variables in the MinHeap class are not private. You ARE allowed to access and change their values directly. You do not need to write any getter or setter methods for the MinHeap class.
- 7. Be sure to review your methods to make sure that they meet the runtime complexity requirements.
- 8. You may not use any imports beyond the ones included in the assignment source code provided.

Page 4 of 10

is_empty(self) -> bool:

This method returns True if the heap is empty; otherwise return False. It must be implemented with O(1) runtime complexity.

Example #1:

```
h = MinHeap()
h.heap = DynamicArray([2, 4, 12, 56, 8, 34, 67])
print(h.is empty())
```

Output:

False

Example #2:

```
h = MinHeap()
print(h.is empty())
```

Output:

True

add(self, node: object) -> None:

This method adds a new object to the MinHeap while maintaining heap property.

Runtime complexity of this implementation must be O(log N).

```
Example #1:
```

```
h = MinHeap()
print(h, h.is_empty())
for value in range(300, 200, -15):
    h.add(value)
    print(h)
```

Output:

```
HEAP [] True

HEAP [300]

HEAP [285, 300]

HEAP [270, 300, 285]

HEAP [255, 270, 285, 300]

HEAP [240, 255, 285, 300, 270]

HEAP [225, 255, 240, 300, 270, 285]

HEAP [210, 255, 225, 300, 270, 285, 240]
```

Example #2:

```
h = MinHeap(['fish', 'bird'])
print(h)
for value in ['monkey', 'zebra', 'elephant', 'horse', 'bear']:
    h.add(value)
    print(h)
```

Output:

```
HEAP ['bird', 'fish']
HEAP ['bird', 'fish', 'monkey']
HEAP ['bird', 'fish', 'monkey', 'zebra']
HEAP ['bird', 'elephant', 'monkey', 'zebra', 'fish']
HEAP ['bird', 'elephant', 'horse', 'zebra', 'fish', 'monkey']
HEAP ['bear', 'elephant', 'bird', 'zebra', 'fish', 'monkey', 'horse']
```

get_min(self) -> object:

This method returns an object with the minimum key without removing it from the heap. If the heap is empty, the method raises a MinHeapException.

Runtime complexity of this implementation must be O(1).

Example #1:

```
h = MinHeap(['fish', 'bird'])
print(h)
print(h.get_min(), h.get_min())

Output:
HEAP ['bird', 'fish']
bird bird
```

remove_min(self) -> object:

This method returns an object with the minimum key and removes it from the heap. If the heap is empty, the method raises a MinHeapException.

For the downward percolation of the replacement node, if both children of the node have the same value (and are both smaller than the node), swap with the left child.

Runtime complexity of this implementation must be O(log N).

Example #1:

```
h = MinHeap([1, 10, 2, 9, 3, 8, 4, 7, 5, 6])
while not h.is_empty() and h.is_empty() is not None:
    print(h, end=' ')
    print(h.remove_min())
```

Output:

```
HEAP [1, 3, 2, 5, 6, 8, 4, 10, 7, 9] 1
HEAP [2, 3, 4, 5, 6, 8, 9, 10, 7] 2
HEAP [3, 5, 4, 7, 6, 8, 9, 10] 3
HEAP [4, 5, 8, 7, 6, 10, 9] 4
HEAP [5, 6, 8, 7, 9, 10] 5
HEAP [6, 7, 8, 10, 9] 6
HEAP [7, 9, 8, 10] 7
HEAP [8, 9, 10] 8
HEAP [9, 10] 9
HEAP [10] 10
```

build_heap(self, da: DynamicArray) -> None:

This method receives a dynamic array with objects in any order and builds a proper MinHeap from them. The current content of the MinHeap is overwritten.

The runtime complexity of this implementation must be O(N). If the runtime complexity is $O(N \log N)$, you will not receive any points for this portion of the assignment, even if you pass Gradescope.

Example #1:

```
da = DynamicArray([100, 20, 6, 200, 90, 150, 300])
h = MinHeap(['zebra', 'apple'])
print(h)
h.build_heap(da)
print(h)
da[0] = 500
print(da)
print(h)
```

Output:

```
HEAP ['apple', 'zebra']
HEAP [6, 20, 100, 200, 90, 150, 300]
DYN_ARR Size/Cap: 7/8 [500, 20, 6, 200, 90, 150, 300]
HEAP [6, 20, 100, 200, 90, 150, 300]
```

size(self) -> int:

This method returns the number of items currently stored in the heap.

Runtime complexity of this implementation must be O(1).

```
Example #1:
```

```
h = MinHeap([100, 20, 6, 200, 90, 150, 300])
print(h.size())
```

Output:

7

Example #2:

```
h = MinHeap([])
print(h.size())
```

Output:

0

clear(self) -> None:

This method clears the contents of the heap.

Runtime complexity of this implementation must be O(1).

Example #1:

```
h = MinHeap(['monkey', 'zebra', 'elephant', 'horse', 'bear'])
print(h)
print(h.clear())
print(h)
```

Output:

```
HEAP ['bear', 'elephant', 'monkey', 'zebra', 'horse']
None
HEAP []
```

Page 9 of 10

heapsort(arr: DynamicArray) -> None:

Write a function that receives a DynamicArray and sorts its content in non-ascending order using the Heapsort algorithm. You must sort the array in place without creating a new array. This method does not return anything.

You may assume that the input array will contain at least one element, and that values stored in the array are all of the same type (either all numbers, or strings, or custom objects, but never a mix of these). You do not need to write checks for these conditions.

The runtime complexity of this implementation must be O(N log N). If the sort uses an algorithm other than Heapsort you will not receive any points for this portion of the assignment, even if you pass Gradescope.

Example #1:

```
da = DynamicArray([100, 20, 6, 200, 90, 150, 300])
print(f"Before: {da}")
heapsort(da)
print(f"After: {da}")
```

Output:

```
Before: DYN_ARR Size/Cap: 7/8 [100, 20, 6, 200, 90, 150, 300] After: DYN_ARR Size/Cap: 7/8 [300, 200, 150, 100, 90, 20, 6]
```

Example #2:

```
da = DynamicArray(['monkey', 'zebra', 'elephant', 'horse', 'bear'])
print(f"Before: {da}")
heapsort(da)
print(f"After: {da}")
```

Output:

```
Before: DYN_ARR Size/Cap: 5/8 [monkey, zebra, elephant, horse, bear] After: DYN ARR Size/Cap: 5/8 [zebra, monkey, horse, elephant, bear]
```

Page 10 of 10