IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Question Sheet 7

MATH40003 Linear Algebra and Groups

Term 2, 2020/21

Problem sheet released on Friday of week 8. All questions can be attempted before the tutorials in Week 9. Solutions will be released on Friday of week 9 after the tutorials.

Question 1 Let \mathbb{F}_p denote the field of integers modulo p, for p a prime number. Find an element of order p in $GL_2(\mathbb{F}_p)$. Can you also find an element of order 2p?

Question 2 Suppose that G is a finite group which contains elements of each of the orders 1, 2, ..., 10. What is the smallest possible value of |G|? Find a group of this size which does have elements of each of these orders.

Question 3 Suppose $n \in \mathbb{N}$ and recall from the Introductory module that \mathbb{Z}_n is the notation for the set $\{[r]_n : r \in \mathbb{Z}\}$ of residue classes modulo n. If n is clear from the context, we write [r] instead of $[r]_n$. We denote by \mathbb{Z}_n^{\times} the subset consisting of elements with a multiplicative inverse.

- (i) Show that $(\mathbb{Z}_n, +)$ is a cyclic group of order n.
- (ii) Show that $(\mathbb{Z}_n^{\times}, .)$ is an abelian group of order $\phi(n)$, where ϕ is the Euler totient function. Find the smallest value of n for which this group is not cyclic.
 - (iii) Show that if p is an odd prime, then \mathbb{Z}_p^{\times} has exactly one element of order 2.
- (iv) Show that if p is a prime number with $p \equiv 4 \mod 5$, then the inverse of [5] in \mathbb{Z}_p^{\times} is $\left\lceil \frac{p+1}{5} \right\rceil$.

Question 4 (i) Suppose (G, .) is a finite abelian group and for every $k \in \mathbb{N}$ we have

$$|\{g \in G : g^k = e\}| \le k.$$

By using Euler's totient function, or otherwise, prove that G is cyclic.

- (ii) Suppose F is a field and G is a finite subgroup of the multiplicative group $(F^{\times}, .)$. Using (i), prove that G is cyclic.
- (iii) Prove that if p is a prime number and $p \equiv 1 \pmod{4}$, then there is $k \in \mathbb{N}$ with $k^2 \equiv -1 \pmod{p}$.

Question 5 Suppose (G, .) is a group. Invent a test which allows you to check whether a subset $X \subseteq G$ is a left coset (of some subgroup of G). Prove that your test works.

Question 6 Suppose that (G, .) is a group and H is a subgroup of G of index 2.

- (a) Prove that the two left cosets of H in G are H and $G \setminus H$.
- (b) Show that for every $g \in G$ we have gH = Hg.

Question 7 Let G be a finite group of order n, and H a subgroup of G of order m.

- (a) For $x, y \in G$, show that $xH = yH \iff x^{-1}y \in H$.
- (b) Suppose that r = n/m. Let $x \in G$. Show that there is an integer k in the range $1 \le k \le r$, such that $x^k \in H$.

Question 8 Let X be any non-empty set and $G \leq \operatorname{Sym}(X)$. Let $a \in X$ and $H = \{g \in G : ga = a\}$ and $Y = \{g(a) : g \in G\}$.

(a) Prove that $H \leq G$ and for $g_1, g_2 \in G$ we have

$$g_1H = g_2H \Leftrightarrow g_1(a) = g_2(a).$$

(b) Deduce that there is a bijection between the set of left cosets of H in G and the set Y. In particular, if G is finite, then |G|/|H| = |Y|.

Question 9 Prove that the following are homomorphisms:

- (i) G is any group, $h \in G$ and $\phi : G \to G$ is given by $\phi(g) = hgh^{-1}$.
- (ii) $G = \operatorname{GL}_n(\mathbb{R})$ and $\phi : G \to G$ is given by $\phi(g) = (g^{-1})^T$. (Here $\operatorname{GL}_n(\mathbb{R})$ is the group of invertible $n \times n$ -matrices over \mathbb{R} and the T denotes transpose.)
 - (iii) G is any abelian group and $\phi: G \to G$ is given by $\phi(g) = g^{-1}$.
 - (iv) $\phi: (\mathbb{R}, +) \to (\mathbb{C}^{\times}, \cdot)$ given by $\phi(x) = \cos(x) + i\sin(x)$.

In each case say what is the kernel and the image of ϕ . In which cases is ϕ an isomorphism?