

# 2015 Flight Delays and Cancellations

Beatriz Loureiro (a68876)

Hugo Rodrigues (a73476)

João Fontes (a71184)

Pedro Lino (a66823)

## Índice



- Questões Colocadas
- Descrição dos Dados
- Preparação dos Dados
- Modelação e Implementação
- Resultados

#### **Questões Colocadas**



- ✓ Descobrir a altura do ano mais propícia a haver menos atrasos nos voos
- ✓ Descobrir que companhias conseguem atingir maior velocidade no tratamento de um voo
- ✓ Criar um modelo que possa prever o atraso de um qualquer voo
- ✓ Agrupar os aeroportos mediante os atrasos presentes nos voos que servem
- ✓ Procurar padrões nas relações entre aeroportos e companhias aéreas



- ✓ AIRLINE código IATA da companhia aérea que efetuou o voo;
- ✓ **DESTINATION\_AIRPORT**; **ORIGIN\_AIRPORT** códigos IATA dos aeroportos de destino e origem;
- ✓ YEAR ano em que se realizou o voo (sempre 2015);
- ✓ MONTH mês em que se realizou o voo (1 a 12);
- ✓ DAY dia em que e realizou o voo (1 a 28/30/31);
- ✓ DAY\_OF\_WEEK dia da semana em que se realizou o voo (1 Domingo, ..., 7 Sábado);



- ✓ FLIGHT\_NUMBER identificador numérico que identifica cada voo;
- ✓ TAIL\_NUMBER identificador numérico que identifica a cauda do voo;
- ✓ SCHEDULED\_DEPARTURE; DEPARTURE\_TIME;
  DEPARTURE\_DELAY hora espectável e real de partida
  do voo e respetivo atraso (todas as horas são
  representadas por HHMM (representa a hora
  HH:MM), todos os atrasos são representados em
  minutos);



- ✓ TAXI\_OUT; TAXI\_IN tempos em minutos entre o começo do embarque e a saída das rodas do avião do aeroporto de origem e a chegada das rodas do avião ao aeroporto de destino e o final do desembarque;
- ✓ WHEELS\_OFF; WHEELS\_ON horas em que as rodas do avião saem do avião de origem e chegam ao aeroporto de destino;
- ✓ SCHEDULED\_TIME; ELAPSED\_TIME; AIR\_TIME tempos espectáveis, reais e de voo, em minutos, do avião;
- ✓ **DISTANCE** distância percorrida, em kilómetros;



- ✓ SCHEDULED\_ARRIVAL; ARRIVAL\_TIME; ARRIVAL\_DELAY hora espectável e real de chegada do voo e respetivo atraso
- ✓ **DIVERTED; CANCELLED, CANCELLATION\_REASON** valores booleanos que indicam se o voo foi desviado, cancelado e, caso cancelado, a razão para o seu cancelamento;
- ✓ AIR\_SYSTEM\_DELAY; SECURITY\_DELAY; AIRLINE\_DELAY; LATE\_AIRCRAFT\_DELAY; WEATHER\_DELAY tempos de atraso nos diversos estágios do voo, desde tempos de atraso no check-in, na segurança, atrasos da companhia aérea, na chegada atrasada do avião ou por causa das condições climatéricas.



- ✓ AIRPORT.{x,y} nomes dos aeroportos de origem e destino;
- ✓ CITY.{x,y}; STATE.{x,y}; COUNTRY.{x,y} localização dos aeroportos de origem e destino (cidade, estado e país (sempre EUA));
- ✓ LATITUDE.{x,y}; LONGITUDE.{x,y} coordenadas geográficas dos aeroportos de origem e destino;
- ✓ AIRLINE\_NAME nome da companhia aérea que efetuou o voo.









### Preparação dos Dados



- Códigos de Aeroportos errados (kernel Kaggle)
  - ✓ flights\$ORIGIN\_AIRPORT <id.to.iata(flights\$ORIGIN\_AIRPORT)
  - √ flights\$DESTINATION\_AIRPORT <id.to.iata(flights\$DESTINATION\_AIRPORT)
    </p>
- Valores Nulos
  - ✓flights[is.na(flights)] <- 0</pre>
- Cálculos dos Atributos DELAY e DELAYED
  - ✓ flights[, "DELAY"] <- rowSums(flights[, delay.att])
  - ✓ flights[, "DELAYED"] <- ifelse(flights\$DELAY > 0, 0, 1)



- Melhor altura do ano para viajar
  - Usar capacidades de Visualização de Dados do R
  - Dados
    - atrasos médios por cada mês do ano civil
  - Implementação
    - Gráfico de barras → comando **barplot**





- · Melhor companhia aérea onde se viajar
  - Usar capacidades de <u>Visualização de Dados</u> do R
  - Dados
    - tempos médios de tratamento de um voo (atrasos mais tempo de voo) para cada companhia aérea
    - valores de atraso médios por cada companhia aérea
  - Implementação
    - Gráfico de barras → comando <u>barplot</u>





- Prever se um voo vai ser atrasado
  - Usar **Classificação**
  - Dados
    - Amostra de 20% do dataset original
    - Atributos: AIRLINE, DESTINATION\_AIRPORT, ORIGIN\_AIRPORT, MONTH, DAY, DAY\_OF\_WEEK, SCHEDULED\_DEPARTURE, SCHEDULED\_TIME, SCHEDULED\_ARRIVAL, DELAYED
  - Implementação
    - Regressão Linear → comando <u>Im</u>
    - Árvores de Decisão → comando <u>rpart</u>
    - Naïve Bayes → comando naiveBayes



- Prever o atraso de um voo
  - Usar **Regressão**
  - Dados
    - Amostra de 20% do dataset original
    - Atributos: AIRLINE, DESTINATION\_AIRPORT, ORIGIN\_AIRPORT, MONTH, DAY, DAY\_OF\_WEEK, SCHEDULED\_DEPARTURE, SCHEDULED TIME, SCHEDULED ARRIVAL, DELAY
  - Implementação
    - Regressão Linear → comando <u>Im</u>





- Agrupar aeroportos de acordo com os atrasos
  - Usar <u>Clustering</u>
  - Agrupamento por aeroportos de origem e destino
  - Dados
    - Tempos médios de atrasos por aeroporto
  - Implementação
    - Clustering Hierárquico → comando hclust
    - Clustering K-Means → comando kmeans



- Procurar padrões entre aeroportos e companhias aéreas
  - Usar Regras de Associação
  - Dados
    - Atributos: AIRLINE, DESTINATION\_AIRPORT, ORIGIN\_AIRPORT, DELAY
    - Atrasos discretizados em 5 intervalos de igual frequência
    - Dataset transformado em transações
  - Implementação
    - Algoritmo Apriori → comando apriori



• Melhor altura do ano para viajar







Melhor altura do ano para viajar







• Melhor companhia aérea onde se viajar







- Prever se um voo vai ser atrasado
  - Regressão Linear

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 20890 17542

1 122371 227135

Accuracy : 0.6393



- Prever se um voo vai ser atrasado
  - Árvores de Decisão

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 108161 150578

1 35100 94099

Accuracy : 0.5214



- Prever se um voo vai ser atrasado
  - Naïve Bayes

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 43999 44514

1 99262 200163

Accuracy : 0.6294



- Prever o atraso de um voo
  - Regressão Linear

SSE RMSE MAE

4.479021e+09 1.074510e+02 5.316675e+01



Agrupar aeroportos de acordo com os atrasos







• Agrupar aeroportos de acordo com os atrasos





• Procurar padrões entre aeroportos e companhias aéreas Graph for 10 rules





# 2015 Flight Delays and Cancellations

Beatriz Loureiro (a68876)

Hugo Rodrigues (a73476)

João Fontes (a71184)

Pedro Lino (a66823)