Lista 9 - Sistemas de coordenadas

Professora Marielle Ap. Silva

Coordenadas Polares

Exercício 1. Transforme os pontos, dados em coordenadas cartesianas, para coordenadas polares, representando-os graficamente.

a)
$$A(1,1)$$

c)
$$C(\sqrt{3},1)$$

e)
$$E(0, -3)$$

b)
$$B(2,-2)$$

d)
$$D(4,0)$$

f)
$$F(-1,-1)$$

Exercício 2. Usar

(i)
$$r > 0 \text{ e } 0 \le \theta < 2\pi$$

(iii)
$$r > 0 \text{ e } -2\pi < \theta \le 0$$

(ii)
$$r < 0 \text{ e } 0 < \theta < 2\pi$$

(iv)
$$r < 0 \text{ e } -2\pi < \theta \le 0$$

para descrever os pontos $P_1(\sqrt{3},-1)$ e $P_2(-\sqrt{2},-\sqrt{2})$ em coordenadas polares.

Exercício 3. Transforme os pontos, dados em coordenadas polares, para coordenadas cartesianas.

a)
$$A\left(1,\frac{\pi}{2}\right)$$

c)
$$C\left(3, \frac{-5\pi}{3}\right)$$

e)
$$E(7,\pi)$$

b)
$$B\left(-2, \frac{49\pi}{6}\right)$$

d)
$$D\left(0,\frac{\pi}{9}\right)$$

f)
$$F(-1, -30\pi)$$

Exercício 4. Determine as equações polares das curvas abaixo, dadas em coordenadas cartesianas.

a)
$$x^2 + y^2 = 4$$

d)
$$y = 2$$

b)
$$x + 2y = 4$$

e)
$$y + x = 0$$

c)
$$x^2 + (y+1)^2 = 3$$

f)
$$x^2 + y^2 - 2x = 0$$

Exercício 5. Determine as equações cartesianas das curvas abaixo, dadas em coordenadas polares, e represente-as geometricamente.

a)
$$r\cos\theta = 3$$

d)
$$r = 2\cos\theta$$

b)
$$r = 2$$

e)
$$\sin \theta = \cos \theta$$

c)
$$r = \frac{1}{2} + \cos \theta$$

f)
$$r = \frac{2}{3 \sin \theta - 5 \cos \theta}$$

Exercício 6. Identifique as curvas abaixo, desenhe a região R do plano simultaneamente interior às curvas e determine os pontos de interseção.

a)
$$r = 4\sqrt{3}\cos\theta \ e \ r = 4\sin\theta$$

c)
$$r = 3 e r = 3 \cos(2\theta)$$

b)
$$r = 4 e r = 4 \cos \theta$$

d)
$$r = 2 + 2 \sin \theta \, e \, r = 2$$

e)
$$r = \cos(3\theta)$$
 e $r = \sin(3\theta)$

g)
$$r = \sqrt{\cos(2\theta)} e r = \sqrt{\sin(2\theta)}$$

f)
$$r = 3\cos\theta \ e \ r = 1 + \cos\theta$$

h)
$$r = 2(1 + \sin \theta)$$
 e $r = 2(1 + \cos \theta)$

Exercício 7. Descreva as regiões hachuradas abaixo em coordenadas polares:

b)

y=x 2 x

Coordenadas cilíndricas e esféricas

Exercício 8. Determinar as coordenadas cilíndricas dos seguintes pontos, dados em coordenadas cartesianas:

a)
$$A(0,1,1)$$

c)
$$C(1, -2, 2)$$

e)
$$E(8, -4, 1)$$

b)
$$B(0,-2,-2)$$

d)
$$D(6,3,2)$$

Exercício 9. Determinar as coordenadas esféricas do problema anterior.

Exercício 10. Transforme os pontos, dados em coordenadas cilíndricas, para coordenadas cartesianas.

a)
$$A\left(6, \frac{2\pi}{3}, -2\right)$$

c)
$$C(4, \frac{\pi}{4}, 2)$$

b)
$$B\left(1, \frac{11\pi}{6}, -2\right)$$

$$d) D\left(8, \frac{2\pi}{3}, 3\right)$$

e)
$$E\left(6, \frac{\pi}{6}, -3\right)$$

Exercício 11. Transforme os pontos, dados em coordenadas esféricas, para coordenadas cartesianas.

a)
$$A\left(4, \frac{7\pi}{6}, \frac{\pi}{6}\right)$$

c)
$$C\left(6, \frac{11\pi}{6}, \frac{\pi}{3}\right)$$

e)
$$E\left(2,\pi,\frac{\pi}{2}\right)$$

b)
$$B\left(3, \frac{2\pi}{3}, \frac{2\pi}{3}\right)$$

d)
$$D\left(5, \frac{5\pi}{6}, \frac{5\pi}{6}\right)$$

Exercício 12. Escreva as seguintes superfícies, dadas em coordenadas cartesianas, em coordenadas cilíndricas e esféricas.

a)
$$5x + 4y = 0$$

c)
$$x^2 + y^2 - z^2 = 0$$

e)
$$z = 4$$

b)
$$-x^2 - y^2 + z^2 = 4$$

d)
$$x^2 + y^2 = 9$$

f)
$$x^2 + y^2 + z^2 = 25$$

Exercício 13. As superfícies a seguir estão expressas em coordenadas cilíndricas. Referi-las ao sistema cartesiano ortogonal e identificá-las.

a)
$$r^2 + 3z^2 = 36$$

c)
$$r^2 + z^2 = 16$$

e)
$$\theta = \frac{\pi}{4}$$

b)
$$r = a \operatorname{sen} \theta, a \in \mathbb{R}$$

d)
$$r^2 - z^2 = 1$$

Exercício 14. As superfícies a seguir estão expressas em coordenadas esféricas. Transformá-las em coordenadas retangulares e identificá-las.

a)
$$\rho = 5a\cos\phi, a \in \mathbb{R}$$

c)
$$\rho \operatorname{sen} \phi = a, a \in \mathbb{R}$$

b)
$$\theta = \frac{\pi}{3}$$

d)
$$\rho = 4$$

Gabarito:

1. a)
$$\left(\sqrt{2}, \frac{\pi}{4}\right)$$
 b) $\left(2\sqrt{2}, \frac{7\pi}{4}\right)$

c)
$$\left(2, \frac{\pi}{6}\right)$$

d) $(4, 0)$

e)
$$\left(3, \frac{3\pi}{2}\right)$$

f) $\left(\sqrt{2}, \frac{5\pi}{4}\right)$

2. a)
$$P_1\left(2, \frac{11\pi}{6}\right)$$
; $P_2\left(2, \frac{5\pi}{4}\right)$
b) $P_1\left(-2, \frac{5\pi}{6}\right)$; $P_2\left(-2, \frac{\pi}{4}\right)$

c)
$$P_1\left(2, \frac{-\pi}{6}\right)$$
; $P_2\left(2, \frac{-3\pi}{4}\right)$
d) $P_1\left(-2, \frac{-7\pi}{6}\right)$; $P_2\left(-2, \frac{-7\pi}{4}\right)$

3. a)
$$(0,1)$$

b) $(-\sqrt{3},-1)$

c)
$$\left(\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$$

d)
$$(0,0)$$

e) $(-7,0)$
f) $(-1,0)$

4. a)
$$r = \pm 2$$

b) $r(\cos \theta + 2 \sin \theta) = 4$
c) $r^2 + 2r \sin \theta - 2 = 0$

d)
$$r \operatorname{sen} \theta = 2$$

e) $\theta = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z}$
f) $r = 2 \cos \theta$

5.

a)
$$x = 3$$

a)
$$x = 3$$

b) $x^2 + y^2 = 4$

b)
$$x^2 + y^2 = 4$$

c) $x^2 + y^2 = \frac{\sqrt{x^2 + y^2}}{2} + x$

d)
$$(x-1)^2 + y^2 = 1$$

e) $y = x$
f) $3y - 5x = 2$

$$\dot{y} = x$$

$$f) 3y - 5x = 2$$

6. a) Duas circunferências; (0,0) e $\left(2\sqrt{3},\frac{\pi}{3}\right)$

b) Duas circunferências; (4,0)

c) Uma circunferência e uma rosácea de 4 pétalas; (3,0), $\left(3,\frac{\pi}{2}\right)$, $(3,\pi)$ e $\left(3,\frac{3\pi}{2}\right)$

d) Um cardioide e uma circunferência; (2,0) e (2, π)

e) Duas rosáceas de 3 pétalas; $\left(\frac{\sqrt{2}}{2}, \frac{\pi}{12}\right)$, $\left(-\frac{\sqrt{2}}{2}, \frac{5\pi}{12}\right)$ e $\left(\frac{\sqrt{2}}{2}, \frac{3\pi}{4}\right)$

f) Uma circunferência e um cardioide; $\left(\frac{1}{2}, \frac{\pi}{3}\right)$ e $\left(\frac{1}{2}, \frac{5\pi}{3}\right)$

g) Duas lemniscatas; $\left(\frac{\sqrt{2}}{2}, \frac{\pi}{8}\right) e\left(\frac{\sqrt{2}}{2}, \frac{9\pi}{8}\right)$

h) Dois cardioides; $\left(2+\sqrt{2},\frac{\pi}{4}\right) \in \left(2-\sqrt{2},\frac{5\pi}{4}\right)$

7. a)
$$0 \le r \le 2 e^{-\frac{\pi}{2}} \le \theta \le \frac{\pi}{2}$$

b)
$$0 \le r \le 2 \text{ e } 0 \le \theta \le \pi$$

c)
$$0 \le r \le 2 e -\pi \le \theta \le \frac{\pi}{4}$$

d)
$$0 \le a \le 2 \ e \ 0 \le \theta \le \frac{\pi}{2}$$

8. Considerando $\theta \in [0, 2\pi)$:

a)
$$A\left(1, \frac{\pi}{2}, 1\right)$$
 ou $A\left(-1, \frac{3\pi}{2}, 1\right)$

b)
$$B\left(2, \frac{3\pi}{2}, -2\right)$$
 ou $B\left(-2, \frac{\pi}{2}, -2\right)$

c)
$$C(\sqrt{5}, \theta_1, 2)$$
 ou $C(-\sqrt{5}, \theta_2, 2)$; $\theta = \arctan(-2)$; $\theta_1 \in 4^{\circ}$ quadrante e $\theta_2 \in 2^{\circ}$ quadrante.

d)
$$D\left(3\sqrt{5}, \theta_1, 2\right)$$
 ou $D\left(-3\sqrt{5}, \theta_2, 2\right)$; $\theta = \arctan\left(\frac{1}{2}\right)$; $\theta_1 \in 1^{\circ}$ quadrante e $\theta_2 \in 3^{\circ}$ quadrante.

e)
$$E\left(4\sqrt{5}, \theta_1, 1\right)$$
 ou $E\left(-4\sqrt{5}, \theta_2, 1\right)$; $\theta = \arctan\left(-\frac{1}{2}\right)$; $\theta_1 \in 4^{\circ}$ quadrante e $\theta_2 \in 2^{\circ}$ quadrante.

9. Considerando $\rho \geq 0; \ \theta \in [0, 2\pi) \ e \ \phi \in [0, \pi]$: a) $A\left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)$

a)
$$A\left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)$$

b)
$$B\left(2\sqrt{2}, \frac{3\pi}{2}, \frac{3\pi}{4}\right)$$

c)
$$C\left(3, \theta, \arccos\left(\frac{2}{3}\right)\right)$$
; $\theta = \arctan\left(-2\right)$; $\theta \in 4^{\circ}$ quadrante.

c)
$$C\left(3, \theta, \arccos\left(\frac{2}{3}\right)\right)$$
; $\theta = \arctan\left(-2\right)$; $\theta \in 4^{\circ}$ quadrante.
d) $D\left(7, \theta, \arccos\left(\frac{2}{7}\right)\right)$; $\theta = \arctan\left(\frac{1}{2}\right)$; $\theta \in 1^{\circ}$ quadrante.

e)
$$E\left(9, \theta, \arccos\left(\frac{1}{9}\right)\right)$$
; $\theta = \arctan\left(-\frac{1}{2}\right)$; $\theta \in 4^{\circ}$ quadrante.

10. a)
$$A(-3, 3\sqrt{3}, -2)$$

c)
$$C(2\sqrt{2}, 2\sqrt{2}, 2)$$

e)
$$E(3\sqrt{3}, 3, -3)$$

10. a)
$$A(-3, 3\sqrt{3}, -2)$$
 c) $C(2\sqrt{2}, 2\sqrt{2}, 2)$ b) $B(\frac{\sqrt{3}}{2}, -\frac{1}{2}, -2)$

d)
$$D(-4, 4\sqrt{3}, 3)$$

11. a)
$$A\left(-\sqrt{3}, -1, 2\sqrt{3}\right)$$

b) $B\left(-\frac{3\sqrt{3}}{4}, \frac{9}{4}, -\frac{3}{2}\right)$

c)
$$C\left(-\frac{9}{2}, -\frac{3\sqrt{3}}{2}, 3\right)$$
 e) $E(-2, 0, 0)$

d)
$$D\left(-\frac{5\sqrt{3}}{4}, \frac{5}{4}, -\frac{5\sqrt{3}}{2}\right)$$

12. A primeira expressão está em coordenadas cilíndricas e a segunda em coordenadas esféricas.

a)
$$\tan \theta = -\frac{5}{4}$$
; $\tan \theta = -\frac{5}{4}$

d)
$$r = 3$$
; $\rho \operatorname{sen} \phi = 3$

a)
$$\tan \theta = -\frac{5}{4}$$
; $\tan \theta = -\frac{5}{4}$
b) $-r^2 + z^2 = 4$; $\rho^2 \left(-\sin^2 \phi + \cos^2 \phi \right) = 4$
c) $r = z$; $\phi = \frac{\pi}{4}$
d) $r = 3$; $\rho \sin \phi = 3$
e) $z = 4$; $\rho \cos \phi = 4$
f) $r^2 + z^2 = 25$; $\rho = 5$

f)
$$z = 4$$
; $\rho \cos \phi = 4$

c)
$$r = z; \, \phi = \frac{\pi}{4}$$

13. a)
$$x^2 + y^2 + 3z^2 = 36$$
; elipsoide de revolução

a)
$$x^2+y^2+3z^2=36$$
; elipsoide de revolução
b) $x^2+y^2=ay$; cilindro circular reto se $a\neq 0$ ou reta se $a=0$
c) $x^2+y^2+z^2=16$; esfera
d) $x^2+y^2-z^2=1$; hiperboloide de uma folha

c)
$$x^2 + y^2 + z^2 = 16$$
; esfera

d)
$$x^2 + y^2 - z^2 = 1$$
; hiperboloide de uma folha

e)
$$y = x$$
; plano

14. a) $x^2+y^2+z^2=5az$; esfera se $a\neq 0$ ou ponto se a=0 b) $y=\sqrt{3}x$; plano c) $x^2+y^2=a^2$; cilindro circular reto d) $x^2+y^2+z^2=16$; esfera