Оглавление

			Стр.
Введен	ние		2
Литературный обзор			3
Глава	1. Teo	ретический базис	4
Глава	2. Me	тоды моделирования синхротронного	
	изл	учения от пучка с конечным эмиттансом в	
	ОНД	цуляторе	5
2.1	Оста	тистических свойствах синхротронного излучения	5
2.2	Численное моделирование ондуляторного излучения		6
	2.2.1	Влияние размера электронного пучка на	
		расходимость излучения	8
	2.2.2	Различие расходимости излучения для случая	
		продольно полностью когерентного и некогерентного	
		пучка	8
2.3	Метод ограничения пространственных гармоник		
	огибающими: SERVAL		8
	2.3.1	Алгоритм получения поля	
	2.3.2	Выбор подходящих огибающих	11
2.4	Сравнение метода Монте-Карло, SRW и SERVAL		12
	2.4.1	Дифракция на апертуре	12
	2.4.2	Фокусировка	12
Глава	3. Koj	рреляционный анализ модовой структуры	13
Списо	K HIMDO	DD2TVDLI	15

Введение

Представленная работа посвящена разработке методов моделирования процесса генерации синхротронного излучения (СИ) от электронного пучка с конечным эмиттансом и прохождения этого излучения через оптическую систему. Развитие магнитных схем циклических ускорителей дало возможность снизить эмиттанс электронного пучка и приблизить источники СИ к дифракционному пределу для широкого диапазона длин волн, вплоть до жёсткого рентгена. Под дифракционным пределом мы понимаем, что эмиттанс электронного пучка $\epsilon_{x,y}$ много больше или, по крайней мерее, сравним с "эмиттансом"
излучения – $\lambda/4\pi$, то есть $\epsilon_{x,y} \ll \lambda/4\pi$. Такое излучение характиризуется заметной степенью поперечной когерентностью. Случай с частичной когерентностью представляет наибольший интерес, так как именно он реализуется в большинстве практических случаях. В работе предложен оригинальный метод генерации частично когерентного синхротронного излучения и рассмотрены практические примеры распространения частично когерентного волнового фронта через оптическую систему источников СИ.

[...]

Литературный обзор

В этой главе будут разобраны публикации и источники, на которых основывается представленная работа. В абзацах будут даны ссылки на работы, которые дают общее представление о источниках синхротронного излучения и их применение, и далее, более конкретно, ссылки на статьи касательно теории и методов моделирования частично когерентного СИ. [...]

Общее введение в теорию источников синхротронного излечения и их применение может быть найдено в ряде книг: [1], [2], [3]. В [1] и [2] даются общие представления о источниках синхротронного излучения, и основных компонентах на рабочих станциях, разбирается теоретическая основа и практическое применение основных методик реализуемых с помощью синхротронного излучения (в частности, в рентгеновском диапазоне длин волн). В книге [3] даётся введение в динамику электронного пучка в накопительных кольцах, устройство вставных устройств: поворотных магнитов, вигглеров и ондуляторов. Более глубокие разъяснения касательно ускорительной техники могут быть найдены в [4].

Общих подход при моделировании распространения волнового фронта через оптическую линию рабочей станции основывается на подходах Фурье-оптики [5]

[Надо написать кем и когда было предсказано синхротронное излучение, когда было впервые наблюдено. Указать по датам развитие синхротронных источников излучения от 1 до 3 поколения. Показать новый milestone — источники 4 поколения, появление дифракционно ограниченных источников. Показать развитие кодов для моделирования синхротронного излучения: от программ для ray-tracing до wavefront propagation от Чубаря. Указать, как происходит моделирование. Показать основыне методы моделирования частично когерентного излучения. Разложение по Гаусс-Шелл модам...написать, что не так с этим подходом (ссылка на статью Джанлуки). Рассказать, что излучение следует гауссовой статистике.

Глава 1. Теоретический базис

Распространение функции взаимной когерентности излучения через свободное пространство от некогерентных источников излучения описывается теоремой Ван Циттера - Цирнике. [написать положение теоремы и её практические следствия, описать при каких предположениях выполняется теорема]

[дать введение и основные заключения из работы Джанлуки, рассказать про ондуляторный источник излучения]

[сделать обзор литературы по тому какие подходы в основном реализуются сейчас: Гаусс-Шелл модель, указать на несоответствие того, что ондуляторное излучение имеет форму синк-функции]

Глава 2. Методы моделирования синхротронного излучения от пучка с конечным эмиттансом в ондуляторе

[Интро] [написать, что мы работает только с ондуляторным излучением]

2.1 О статистических свойствах синхротронного излучения

Поле излучения от электронного пучка с конечным эмитансом может быть записано в общем виде следующим образом:

$$\bar{E}_b(z, \vec{r}, \omega) = \sum_{k=1}^{N_e} \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \exp(i\omega t_k), \qquad (2.1)$$

где $\vec{\eta}_k$ и \vec{l}_k – распределение по углам и координатам N_e электронов в пучке относительно проектной траектории, t_k – время прибытия каждого электрона, скажем, в центр ондулятора. Две случайных величины $\vec{\eta}_k$ и \vec{l}_k задают распределение поперечного фазового пространства электронного пучка: $f(\vec{\eta}_k, \vec{l}_k)$, таким образом полное фазовое пространство электронного пучка можно записать как: $F(\vec{\eta}_k, \vec{l}_k, t_k) = f(\vec{\eta}_k, \vec{l}_k) \cdot \tau(t_k)$, где временная часть и поперечная пространственная факторизованы – время прибытия электронного пучка не зависит от его проложения поперечно. Так же необходимо заместить, что случайные величины t_k так же статистически независимы друг от друга. Результирующее поле \bar{E}_b является суммой вкладов от каждого электрона в пучке и по своей структуре в правой части уравнения 2.1 записан некоторый фазор. [написать, что по ЦПТ \bar{E}_b комплексный гауссов шум]

В зависимости от длительности электронного пучка результирующее поле \bar{E}_b будет вести себя по-разному. В случае короткого электронного пучка: $\omega \sigma_T \ll 1$, где σ_T – длительность электронного сгустка, излучение будет продольно когерентным, в иностранной литературе этот

эффект называется Coherent Synchrotron Radiation (CSR). Методы моделирования такого излучения рассмотрены в работах [cite]. Приближение короткого электронного пучка справедливо для низких энергий [каких?]. Случай длинного электронного пучка, а именно $\omega \sigma_T \gg 1$ соответствует случаю продольно некогерентного излучения, а для уравнения 2.1 это означает, что показатель экспоненты $\omega \sigma_T$ равномерно распределён в интервале от 0 до 2π .

2.2 Численное моделирование ондуляторного излучения

Формула 2.1 может быть напрямую использована при моделирования ондуляторного излучения, как продольно когерентного так и некогерентного. Общий вид поля от одного электрона с некоторыми $\vec{\eta}_k$ и \vec{l}_k может быть записан как [6] [спросить Джанлуку про это формулу]:

$$\widetilde{E}_{\perp}(z_0, \omega, \vec{\eta}, \vec{l}, \vec{\theta}) = -\frac{\omega e A_{JJ} L_s}{2c^2 z_0} \frac{K}{\gamma} \exp\left[i \frac{\omega z_0}{2c} \left| \vec{\theta} - \vec{l}/z_0 \right|^2\right] \\
\times \operatorname{sinc}\left[\left(k_w \frac{\Delta \omega}{\omega} + \frac{\omega |\vec{\theta} - (\vec{l}/z_0) - \vec{\eta}|^2}{2c}\right) \frac{L_s}{2}\right]. \quad (2.2)$$

или в более общей форме

$$\widetilde{E}_{\perp}(z_{0},\omega,\vec{\eta},\vec{l},\vec{r}_{\perp}) = \frac{eA_{JJ}\omega}{2c^{2}}\frac{K}{\gamma}\exp\left[i\frac{\omega}{2z_{0}c}(|\vec{r}_{\perp}-\vec{l}|^{2}-|\vec{r}_{\perp}-\vec{l}-z_{0}\vec{\eta}|^{2})\right]
\times \left\{\operatorname{Ei}\left[\frac{i\omega(\vec{r}_{\perp}-\vec{l}-z_{0}\vec{\eta})^{2}}{2z_{0}c-L_{w}c}\right] - \operatorname{Ei}\left[\frac{i\omega(\vec{r}_{\perp}-\vec{l}-z_{0}\vec{\eta})^{2}}{2z_{0}c+L_{w}c}\right]\right\}$$
(2.3)

Для случая продольно полностью некогерентного излучения показатель в экспоненте уравнения 2.1 должен иметь равномерное распределение от 0 до 2π , в случае полностью когерентного излучения этот фазовый фактор равен константе.

После расчёта суммарного поля с N_e электронами получившиеся монохроматическое поле есть одна реализации поля. Это поле обладает поперечной модовой структурой 1 , изображённой на Рис.. После усреднения по N_b реализациям

$$I_{\omega} = \left\langle \left| \sum_{k=1}^{N_e} \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \exp(i\omega t_k) \right|^2 \right\rangle, \tag{2.4}$$

результирующая наблюдаемая интенсивность будет сходиться к некоторой огибающей, в грубом приближении являющиеся свёрткой распределения расходимости излучения и распределения расходимости электронного пучка. Данный подход является наиболее прямым подходом к задаче моделирования частично когерентного излучения, однко время расчёта в таком подходе может быть оценено как время затрачиваемое на расчёт одной одного поля N_e раз по формуле 2.2 или 2.3, в последней необходимо дважды численно взять интеграл $\mathrm{Ei}(\cdot)$ и потом усреднить N_e суммарный полей по N_b реализациям. Итого, если за τ_{calc} взять время расчёта одного поля, то расчёт одного поля в сумме займёт $T_{calc} = \tau_{calc} \cdot N_e \cdot N_b$

Однако в случае полностью некогерентного излучения время расчёта можно сократить за счёт фазового фактора, который эффективно приводит к тому, что отдельный электрон в электронном пучке коррелирует только с самим собой. Таким образом формула 2.4 упрощается до

$$I_{\omega} = \sum_{k=1}^{N_e} \left| \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \right|^2,$$
 (2.5)

а время расчёта уменьшается до $T_{calc} = \tau_{calc} \cdot N_e$. Недостатком такого подхода можно считать потерю фазовой информации о излучение и, следовательно, невозможность расчёта поперечной автокрелляционной функции первого порядка [разве нельзя через второй порядок найти первый, т.е. по интенсивностям по формуле моментов?]. Несмотря на это, подход основанный на формуле 2.5 даёт мощный метод расчёта станций, где ис-

 $^{^1}$ в продольном направлении поле уже монохроматично, т.е. монохроматором разрешена одна продольная мода спайковой структуры в ωt -пространстве

точник излучен ия частично когерентен. Именно этот подход реализован в широко распространённом коде SRW [cite].

2.2.1 Влияние размера электронного пучка на расходимость излучения

2.2.2 Различие расходимости излучения для случая продольно полностью когерентного и некогерентного пучка

2.3 Метод ограничения пространственных гармоник огибающими: SERVAL

В работе предлагается эффективный метод для моделирования частично когерентного излучения, основанный на ограничении пространственного шума огибающими поля. Метод заключается в имитации дробового шума в электронном пучке комплексным Гауссовым шумом и последующим его ограничением пространственных мод этого шума эффективным размером и расходимостью электромагнитного поля в источнике. Эффетивный размер и расходимость поля оценивается как соответствующая свёртка распределения электронного пучка с распределением поля от электронного пучка с бесконечно малым поперечным эмиттансом в источнике излучения — центре ондулятора. Выбор позиции в центре ондулятор объясняется тем, что ондуляторное излучение имеет плоский волновой фронт именно в центре ондулятора, этим оно схоже лазерными Гауссовыми пучками.

2.3.1 Алгоритм получения поля

Для начала алгоритм будет представлен в общем виде, без уточнения чем определяются распределение размера и расходимости излучения и, в целом, без относительно характера источника излучение – в нашёл случае ондулятора.

1. Создание комлексного гауссового шума Z = X + i Y в $r \omega$ -пространстве, где величины X и Y подчиняются нормальному распределению.

Рисунок 2.1 — Интенсивность комплексного гауссового шума

2. Ограничение шума эффективным размером электромагнитного излучения в перетяжке.

100 75 50 25 25 -50 -75 -100 -100 -75 -50 -25 0 25 50 75 100
x, [мкрад]

Рисунок 2.2 — Размер электромагнитного излучения в перетяжке наложенный на шум

Рисунок 2.3- Получившиеся моды в $k\omega$ -пространстве от размера электронного пучка

3. Ограничение пространственных мод эффективной расходимостью излучения

400 - 300 - 200 - 100 0 100 200 300 400 x, [MKM]

Рисунок 2.4— Расходимость излучения

Рисунок 2.5 — Размер излучения в источнике

4. Распространение излучения через оптическую систему

2.3.2 Выбор подходящих огибающих

При выполнение второго шага выполняется операция умножения шума, на распределение размера излучения. Размер излучения в случае электронного пучка с бесконечно малым поперечным эмиттансом может быть получено, как обратная пропагация излучения в дальней зоне 2.2 обратно в центр ондулятора посредствам пропагатора в свободном пространстве. Выражение для распределения поля в центре ондулятора даётся выражением:

$$\widetilde{E}_{\perp}(0, \vec{\eta}, \vec{l}, \vec{r}_{\perp}) = i \frac{eA_{JJ}\omega}{2c^2} \frac{K}{\gamma} \exp\left[i \frac{\omega}{c} (\vec{r}_{\perp} - \vec{l})\right] \times \left[\pi - 2\operatorname{Si}\left(\frac{i\omega|\vec{r}_{\perp} - \vec{l}|^2}{L_w c}\right)\right]$$
(2.6)

Для того, чтобы получить распределение амплитуды (интенсивности) излучение в случае электронного пучка с конечным эмиттансом следует произвести свёртку распределение размера электронного пучка $f(\vec{r})$ с распределением излучения амплитуды (интенсивности) от пучка с бесконечно малым эмиттансом.

$$\bar{A}_b(0, \vec{r}) = (\tilde{A}_{\perp}(0, 0, 0, \vec{r}_{\perp}) * f(\vec{r}_{\perp})),$$
 (2.7)

тоже для шага 3. для расходимости.

$$\hat{\bar{A}}_b(0,\vec{\theta},\omega) = (\hat{\tilde{A}}_\perp(0,0,0,\vec{\theta}_\perp) * \hat{f}(\vec{\theta}_\perp)), \tag{2.8}$$

именно $\bar{A}_b(0,\vec{r})$ и $\hat{A}_b(0,\vec{\theta},\omega)$ используются при ограничении пространственных гармоник огибающими. Однако, точный вид огибающих пока не затрагивался, а именно следует ли использовать в качестве свёртываемых функций амплитудные распределения, распределения интенсивности или же третий вариант квадратный корень из квадратов амплитуд.

I.
$$\bar{A}_b(0, \vec{r}) = (\tilde{E}_{\perp}(0, 0, 0, \vec{r}_{\perp}) * f(\vec{r}_{\perp}))$$

 $\hat{A}_b(0, \vec{\theta}) = (\hat{\tilde{E}}_{\perp}(0, 0, 0, \vec{\theta}_{\perp}) * \hat{f}(\vec{\theta}_{\perp}))$

II.
$$\bar{A}_b(0, \vec{r}) = \sqrt{\left(\tilde{E}_{\perp}^2(0, 0, 0, \vec{r}_{\perp}) * f^2(\vec{r}_{\perp})\right)}$$

$$\hat{\bar{A}}_b(0, \vec{\theta}) = \sqrt{\left(\hat{\tilde{E}}_{\perp}^2(0, 0, 0, \vec{\theta}_{\perp}) * \hat{f}^2(\vec{\theta}_{\perp})\right)}$$

III.
$$\bar{A}_b(0, \vec{r}) = (|\tilde{E}_{\perp}(0, 0, 0, \vec{r}_{\perp})| * f(\vec{r}_{\perp}))$$

 $\hat{A}_b(0, \vec{\theta}) = (|\hat{\tilde{E}}_{\perp}(0, 0, 0, \vec{\theta}_{\perp})| * \hat{f}(\vec{\theta}_{\perp}))$

Чтобы выбрать для каждого из случаев наиболее подходящую огибающую проще всего проверить поведение поля в обычной фокусирующей системе, каким образом поле выглядит в дальней зоне и после фокусировки в фокальной плоскости. Сравнив поля, рассчитываемые методом SERVAL с наиболее реалистичным методом, основанным на подходе Монте-Карло будет сделан вывод о применимости огибающих I., II. и III.

| картинки различных распределений в случае почти когерентного источника в одном направлении и некогерентного источника в другом

2.4 Сравнение метода Монте-Карло, SRW и SERVAL

2.4.1 Дифракция на апертуре

2.4.2 Фокусировка

Глава 3. Корреляционный анализ модовой структуры

Заключение

Основные результаты работы заключаются в следующем.

Список литературы

- 1. Willmott P. An introduction to synchrotron radiation: techniques and applications. Second edition. Hoboken, New Jersey: Wiley, 2019. 1 p. ISBN 978-1-119-28037-8 978-1-119-28038-5.
- 2. Als-Nielsen J., McMorrow D. Elements of Modern X-ray Physics. 1st ed. Wiley, 03/18/2011. ISBN 978-0-470-97395-0 978-1-119-99836-5. DOI: 10.1002/9781119998365. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119998365 (visited on 03/29/2021).
- 3. *Ōnuki H.*, *Elleaume P.* Undulators, wigglers, and their applications. London: Taylor & Francis, 2003. ISBN 978-0-203-21823-5 978-0-203-27377-7. URL: http://www.crcnetbase.com/isbn/9780203218235 (visited on 03/29/2021); OCLC: 941215200.
- 4. Wiedemann H. Particle Accelerator Physics. Cham: Springer International Publishing, 2015. (Graduate Texts in Physics). ISBN 978-3-319-18316-9 978-3-319-18317-6. DOI: 10.1007/978-3-319-18317-6. URL: http://link.springer.com/10.1007/978-3-319-18317-6 (visited on 03/29/2021).
- 5. Goodman J. Introduction to Fourier Optics. W. H. Freeman, 2005. (McGraw-Hill physical and quantum electronics series). ISBN 978-0-9747077-2-3. URL: https://books.google.ru/books?id=ow5xs_Rtt9AC.
- 6. Fourier treatment of near-field synchrotron radiation theory / G. Geloni [et al.] // Optics Communications. 2007. Aug. 1. Vol. 276, no. 1. P. 167–179. DOI: 10.1016/j.optcom.2007.03. 051. URL: https://www.sciencedirect.com/science/article/pii/S0030401807003367 (visited on 02/26/2021).