Testing and Descriptive Statistics

Covariance and Correlation and more

Week 04

The Covariance

Year	Stock Market Growth (Y)	Economic Growth (X)
Random Year 1	3	1
Random Year 2	-2	-1
Random Year 3	4	2
Random Year 4	6	3
Random Year 5	9	5
Mean	4	2

$$\operatorname{cov}(X, Y) = \sum_{i=1}^{N} \frac{(x_i - \overline{x})(y_i - \overline{y})}{N}.$$

$$\underline{(1-2)*(3-4)+(-1-2)*(-2-4)+(2-2)*(4-4)+(3-2)*(6-4)+(5-2)*(9-4)}$$

```
# Covariance
# Input variables
Stock.Market.Growth < c(3, -2, 4, 6, 9)
Economic.Growth <- c(1, -1, 2, 3, 5)
# Convert to Data Frame
df <- data.frame(Stock.Market.Growth, Economic.Growth)</pre>
# Covariance
\# cov(x, y)
COV.P <- cov (Stock.Market.Growth, Economic.Growth)
```

The Correlation

Year	Stock Market Growth (Y)	Economic Growth (X)
Random Year 1	3	1
Random Year 2	-2	-1
Random Year 3	4	2
Random Year 4	6	3
Random Year 5	9	5
Mean	4	2

$$\rho_{r_x,r_y} = \frac{cov(r_x, r_y)}{\sigma_{rx}\sigma_{ry}}$$
 (1-1)

where

 $cov(r_x, r_y)$: the covariance of ranked data r_x and r_y . σ_{rx} and σ_{ry} are the standard deviations of r_x and r_y .

$$R = \frac{Covariance}{Standard\ Diviation\ of\ X\ *Standard\ Diviation\ of\ Y}$$

The Correlation

Correlation	Evaluation	
-1~-0.7	Strong Negative Correlation	
-0.7 ~ -0.4	Significantly Negative Correlation	
-0.4 ~ -0.2	Slightly Negative Correlation	
-0.2~0.2	No Correlation	
0.2~0.4	Slightly Positive Correlation	
0.4~0.7	0.4~0.7 Significantly Positive Correlation	
0.7~1	Strong Positive Correlation	

```
# Covariance
# Input variables
Stock.Market.Growth < c(3, -2, 4, 6, 9)
Economic.Growth <- c(1, -1, 2, 3, 5)
# Convert to Data Frame
df <- data.frame(Stock.Market.Growth, Economic.Growth)
# Covariance
\# cov(x, y)
COV.P <- cov (Stock.Market.Growth, Economic.Growth)
COR.P <- cor (Stock.Market.Growth, Economic.Growth, method = "pearson")
```

The Correlation matrix

```
install.packages("Hmisc")
# Hmisc displays Correlation matrix with significance levels (p-value)
Corruption <-c(3, 2, 4, 6, 8)
df1 <- data.frame(Stock.Market.Growth, Economic.Growth, Corruption)
# Default Correlation matrix
cor(df1, method = "pearson")
# Load Sample data... you can use for practice
data("mtcars") #default sample
head(mtcars)
```

The Correlation matrix

```
install.packages("Hmisc")
library("Hmisc")

res2 <- rcorr(as.matrix(my_data))
res2</pre>
```

Plot the Correlation Matrix

Descriptive Statistics

Table 21.1. Datasets descriptive statistics

	Mean	Standard deviation	Median	Q ₁	Q ₃	Skew				
Panel A: Descriptive statistics of news database										
CSS_{τ}	49.93	5.04	50	50	52	-1.2187				
ESS_{T}	52.90	30.16	50	50	89	-0.0937				
Panel B: Descriptive statistics of variables										
r_{t}	0.0016	0.8938	0.0000	-0.3140	0.3200	-4.0284				
$ r_t $	0.5169	0.7291	0.3170	0.1354	0.6473	19.3614				
$NN_{f,t}$	0.7900	4.2480	0.0000	0.0000	0.0000	25.2494				
$NP_{f,t}$	1.1596	5.5857	0.0000	0.0000	1.0000	15.9065				
$NN_{m,t}$	0.1529	0.7607	0.0000	0.0000	0.0000	7.9527				
$NP_{m,t}$	0.1865	0.7503	0.0000	0.0000	0.0000	6.2613				

Note: This table presents the summary descriptive statistics of all the variables employed in this study. The summary statistics include mean value (Mean), median value (Median), 25 percentile (Q₃), 75 percentile (Q₃), and Skewness (Skew) for each variable. CSS_{τ} and ESS_{τ} are the CSS and ESS of each news story, respectively. r_t is the return in percentage at hour t. $|r_t|$ is the absolute percentage return. $NN_{f,t}$ and $NP_{f,t}$ are the number of negative and positive firm-specific news stories, respectively. $NN_{m,t}$ and $NP_{m,t}$ are the number of negative and positive macroeconomic news stories, respectively. The sample period is from January 1, 2001 to December 31, 2013.

Descriptive Statistics

```
install.packages("psych")
# very simple library for descriptive statistics
# use describe() for the descriptive statistics
library(psych)
describe(res)
```

Measurement

Not everything that can be counted counts, and not everything that counts can be counted.

— William Bruce Cameron, Informal Sociology

Next Week

Please bring your laptop.

Week 5: The Basics and Practice (Measurement)

Examples of data mining that can be used in the social sciences in Africa and Middle Eastern fields is

- Handling Missing Data
- Visualization
- Correlation
- Exercises