PL 05 - Discrete Probability Distributions

and the property of the series

Videod: Random Variables

3

3

1

- · A random variable is a variable that takes on numerical values as a result of a random experiment or measurement.
- · Random variables must have numerical values.
- · Discrete Random Variable
 - has a finite no. of values or an infinite sequence of values (0,1,2...) and the differences between the outcomes are meaningful.
- · Continuous Random Variable
 - has nearly infinite no of outcomes that cannot be easily counted and the differences between the outcomes are not meaningful.

Video 3: D'ocrete Random Variable Provabilities

- (1) 0 \le P(x) \le 1 ! No probabilies less than 0 or grater teran 1
- (27 EP(x) = 1 : Sum of all RV probabilités P(x)

 must be equal to 1.

Video 4: Expected Nalue

Discrete Protectiff Distributions

Weighted duerages

Assignment-	Grade 1.	Weight	Grade × Weight	Subscore
Homework	891.	-30	794. ★ .3	26.7.1.
Omizzas	791.	.20	791. 宋 . 2	15.8 -1.
Hidton	841.	`25	841. # .25	21.0.1
Final term	92%	. 25	321.8 .25	23.0./.
Final Grade	art h	an [].	101 sular b	86.5%

6

E

E

· EXPECTED VALUE

- The expected value is simply the mean of a grandom variable; the average expected outcome.
- It does not have to be a value the discrete random variable can assume.

E(x) - is the expected value or mean of the outcomes x

el - is the mean

En P(x) - is the sum of each random variable value x multiplied by its own probability P(x).

e.g: what is the overall datesfaction level of this class ?

-	x (Satisfaction level)	Court Cro Astudenti	PCX	xf(x)
	SALES TO DESK	Li Landuskis	MILENOV I	mbrony is
	1 (very dissatisfied)	5. 10 0000 1000	3/08 = . 046	1 × 0.046 = .046
	2	10	108 = .093	2 1 .093 = .186
	3	11	1/108 = . 102	3 x .102 = .306
	4 de met de de	44	44/108 = .407	9 1.407 = 1.628
	5 (very satisfied)	38	38/08 = . 351	5 × .351 = 1.755
		108	1 1	3.70

Probability Distribution

1

3

Video 5: Discrete Random Variable Variance

- Though the Expected value tells us the mean of a random variable, oftentimes we need to know the variability, or how spread out the random variable is from its moon.
- · We can use the variance and standard deviation of a random variable to learn how dispersed its is relative to its mean.
 - · This information can be used to calculate other statistics, compare data cells and inform other conclusions about our data.
 - · Variance of a Discrete Random Variable

$$Var(x) = 6^2 = \Sigma (x-u)^2 P(x)$$

- Calculat Expected value of X; the mean el
- Do subtraction & then square
- Multiply the squared difference by the probability of the random variable P(x)

(In this step we are weighting the deviations using the probabilities)

· Storndard Deviation of a Discrete Random Variable

$$\sqrt{\operatorname{var}(x)} = \sigma = \sqrt{\sum (x-\mu)^2 p(x)}$$

e. y Class statisfaction Survey

- Expected value, of is calculated in vide 4.

-			A STATE OF THE PARTY OF THE PAR		-
x	P(X)	ч	(n-u)2	h-u)2P(n)	
-		ot otrest	at marked	on A course state and a co	
1	0.046	3.7	7.29	0.046 x 7.29 = 0.335	
2	0.093	3.7	2.89	0.093 x 2.99 = 269	
3	0.102	3.7	0.49	0.102 x 0.49 = .05	
4	0.407	5.7	0.09	0.407 X 0.09 = .037	
5	0.351	3.7	1.69	0.351 x 1.69 = .488	
JANE B	A towns	sons do	es awaise	as a real of the co	
			62	1.18	
	Joint Join	+ poer	6	1.09	
No. of the Land					

									16
Vid	106: Th	e Bi	nomia	d Dù	tri bution	n	li-dayab me	HL W	E
							ing charact	teritiks.	E
1.	The pro	cess c	onsul	3	r seque	ence	of n trial	4	2
2.	Only to	to ex	clusin	e ou	tromes o	the po	nsible		E
	and off	us o	" fo	ilua "	rome is	called	la "suc	less"	6
3.	The pro	balil	ity of	asi	icen o	lenote	d by p,	U	E
	does not	t con	ange	from.	tial t	o this	1	- F.	E
1	The prol	raleili	ty of	+ gail	use Is	1-p.	1		E
4,		u a	se in	depen	dent	11	(3x)51	N	E
	The out	rome	9 1	revio	us trial	s to	not		E
1	rinfluen	e fr	cture	tr'al		4. 8	1 9400	1	E
ي- ي	Trial	10 7 1	51.09		3 0	A P	5 101.0	8	E
0	Outrom				<u> </u>	562	S 468.0		E
1 8	Shreet F	E 3 1	25.0		S 1000	£1.5	100 0	9	-
->	1 fail	use A	4	Succes	inc	m. ext	periment of	5 trial	1
-	0 .		M-1 m	1 4	(3)	0	8		-
7	But the	Faile	use ca	n app	eas 9n	any	trial.		8
	Trial	1	0	1	A STATE OF		modest 1874		E S
	Dutome	F	5	3	4	5	°0 No. 10		_
	Dutcome	3	F	5	3	5	for 1 Fa		20
	Outcome	5	5	F	3	2	= 5	,1)	23
	Outcome	5	S	S	F	5		4	17

S

Outcome

Problem: A manufacturer is making a productwith a 20% defect rate. If we select 5 randomly chosen items at the end of the assembly line, what is the probability of having I defective item in our sample?

Solution Space:

3

13

13

3

13

7

3

3

7 7

3 3 3

The answer is NOT 20% of . 2 of 1/5.

B'cos the Probability of a defective product—
on picking up ONE product is 20%.

In other words, it is 20% chance that the if
a product is picked up would turn out to be defective

But the catch here is that we need to figure out the probability of or chance of Getting 1 defective product, when we pick up 5 products,

So here, picking up 5 products, is No. of Trials So with every trial, the probability of defective product is 20%

And there can be $5 \frac{\text{ways}}{\text{combinations}}$ to pick a defective product. C(5,1) = 5

	-
	6
	-12
· Mere: A success is a Defective Product.	
P= 0-2 T	· E
mal 1 2 3 4 3 trovaluly	E
(10 Outrome (.2) -8 .8 .8 0.08192	
(51) & Outrome . 8 (2) . 8 . 8 . 8 U-08192	ě
= 5 /3. Outrome .8 .8 (.2) .8 .8 0.08192	
4. Outcome ·8 ·8 ·8 ·2 ·8 0.08192	
n=5 / Soutrame .8 .8 .8 (2) 0.08192	2
A THE PARTY OF THE STEEL OF THE PARTY AND AND	
$C(m, x) p^{n} (1-p)^{n-n}$	
on picking up Out product is so of	
$= (6(5,1)\times \cdot 2^{1} \times \cdot 8^{4})$	ě
a product is obtained up whealt trust and to be deputied	
= 5 x 0.08192	
= Probability of 1 success or	
1 defective product is	1
10,7036 05 41 /	1
· FORMULA:	
101 201 200-2	
C(n, z)pn(1-p)n-x	-
a like to the first the first of the first of the first of	- 5
n = no. of trials	8
n = no. of successes	1
p = probability of success in any trials (constant)	1
E = (1, 2)) I double to enthant	1
	1
	1

· Now, moving a level up.

3

1

	n	# of successes	#failures	calculation	probability	# of defectives
	3	b	5	C(5,0) x . 2 x . 83	.32768	0
	5	0,43	4	C(5,1) x.21 x.84	-4096	0.10 0
	5	12	3	c(5,2) x·22 x·83	- 2048	2
	5	3	2	(5,3)x-23x.82	. 0512	. 3
	5	4	and.	c(5,4)x.24x.81	-0064	4 *
	5	5	0	c(5,5) x. 25 x.80	.00032	5
1						

· BINOMIAL Dutibution for this

of defective

3 · Sum of all these Probabilettes le 1.

Lerson The probability of any given outcome is a combination of both the no of trials and the success rate.

Video 11: Poisson Distributions: Introduction · Queing theory Problem/ Woulting line · Poisson Distribution - focuss on the no. of discrete events or occurrences over a specified interval or continuum (time, length, distance) 1 - # of occurrences specified internal Hen, E(x) = expected value = 4 = 2 eg Checkout line & = 10 customers = 10 per 15 minutes (We have so customers per 15 mins) POISSON CHARACTERISTICS Discrete outcomes (2=0,1,2,3...) - The na of occurrences in each interval can range from zero to infinity (theoritically): 0<250 Describes the distribution of infrequent (rate) events. - Each event is independent of the other events Describes discrete events over an internal (time distance, de - Expected no. of occarrences E(x) are assummed to be constant throughout the experiment,

7

7

7

7

7

o To summarize.
The trobalisity that exactly 7 automors enter your
line between 4:30 2 4:45 2 0.09
The Probability that more than to perople arrive?
1- poissoncdf (10,10) = 0.417
· Seenorio changed:
How many customers do you expect to arrive
between 4:30 L 4:40 ?
Expected Expected - 6.67
15 minutes = 10 minutes = 10 minutes = 6.67
[PS: Simple Unitary calculations]
Nu so . D: D: D
Video 12: Poisson Distribution: Problems
· On Average, 1.6 webmers wall up to ATM during any 10 min
internal blus 3 pm l midnight.
-> What is & for this problem ? 106
-> Brobability of exactly 3 customer using ATH in any 10 min?
P(3) = 1.6 3 x e-1.6 = 0.139 or 14%
> Probability of 3 or fewer people? possion cof (1.6,3)=0.92