# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА СУПЕРКОМПЬЮТЕРОВ И КВАНТОВОЙ ИНФОРМАТИКИ



## КАФЕДРАЛЬНЫЙ ПРАКТИКУМ

### ЗАДАНИЕ 3: ПАРАЛЛЕЛЬНАЯ ПРОГРАММА НА МРІ, РЕАЛИЗУЮЩАЯ ОДНОКУБИТНОЕ КВАНТОВОЕ ПРЕОБРАЗОВАНИЕ С ШУМАМИ

Выполнил: Алёшин Н.А. группа 323

#### Постановка задачи.

Реализовать параллельную программу на C++ с использованием MPI, которая выполняет однокубитное квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины  $2^n$ , где n- количество кубитов.

Протестировать программу на системе Blue Gene. Точность e=0.01. Заполнить таблицу времени работы программы.

Построить график распределения потерь точности 1-F при фиксированной точности e=0.01 для количества кубитов 24, 25, 26, 27, 28. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом.

Заполнить таблицу и построить график среднего значения потерь точности.

Построить график распределения потерь точности 1-F при фиксированном количестве кубитов и различных значениях точности : e=0.1, e=0.01, e=0.001. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом. Заполнить таблицу среднего значения потерь точности.

#### Результаты выполнения.

Исходный код программы: <a href="https://github.com/gtorvald/prac/blob/master/main.cpp">https://github.com/gtorvald/prac/blob/master/main.cpp</a>

1) Таблица времени работы программы.

| Количество кубитов | Количество           | Время работы программы, с |
|--------------------|----------------------|---------------------------|
|                    | вычислительных узлов |                           |
| 28                 | 8                    | 94,0937                   |
|                    | 16                   | 48,4153                   |
|                    | 32                   | 24,5358                   |
|                    | 64                   | 12,6099                   |
|                    | 128                  | 6,56582                   |

2) Графики распределения потерь точности при фиксированной точности e = 0.01.



Распределение 1 - F, 25 кубитов, 64 вычислительных узла, 60 запусков
20 - 15 - 10 - 5 - 0 .004662 0.004664 0.004666 0.004668 0.004670







3) Таблица и график среднего значения потерь точности при фиксированной точности.

| Количество кубитов | Среднее значение потерь точности |
|--------------------|----------------------------------|
| 24                 | 0.0044759                        |
| 25                 | 0.0046625545                     |
| 26                 | 0.004848487                      |
| 27                 | 0.00503441                       |
| 28                 | 0.0052206                        |



4) Графики распределения потерь точности при фиксированном количестве кубитов.







3) Таблица среднего значения потерь точности при фиксированном количестве кубитов.

0.00004866

0.00004868

0.00004870

| е     | Среднее значение потерь точности |
|-------|----------------------------------|
| 0.1   | 0.3854                           |
| 0.01  | 0.004848487                      |
| 0.001 | 0.0000486                        |

0.00004864

0.00004860

0.00004862

#### Вывод.

При увеличении числа используемых вычислительных узлов время работы программы уменьшается. Потери точности представляют собой нормальное распределение за исключением выбросов в сторону большей потери точности. При увеличении числа кубитов потери точности так же увеличиваются в связи с ростом количества операций. При уменьшении значения e средние значения потерь точности уменьшаются пропорционально квадрату e.