MATH1064 Cheatsheet

Abyan Majid

August 30, 2023

1 Logic, inference, and proof

1.1 Truth tables

		NOT p	p AND q	p OR q	p XOR q	IF p THEN q	q IF AND ONLY IF p
p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$	$p \to q$	$p \iff q$
Т	Т	F	Т	Т	F	T	Т
$\mid T \mid$	F	F	F	${ m T}$	T	F	F
F	$\mid T \mid$	T	F	Т	T	${ m T}$	F
F	F	T	F	F	F	${ m T}$	m T

1.2 Logical equivalences

1.2.1 Logical laws

Logical equivalence	Name of law
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p\vee q)\equiv \neg p\wedge \neg q$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
$p \wedge q \equiv q \wedge p$	Commutative laws
$p \vee q \equiv q \vee p$	
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative laws
$(p \vee q) \vee r \equiv p \vee (q \vee r)$	
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \lor \mathbf{F} \equiv p$	
$pee\mathbf{T}\equiv\mathbf{T}$	Universal bound laws
$p\wedge \mathbf{F}\equiv \mathbf{F}$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \wedge \neg p \equiv \mathbf{F}$	
$\neg(\neg p) \equiv p$	Double negation law
$p \wedge p \equiv p$	Idempotent laws
$p\vee p\equiv p$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	

1.2.2 Equivalences for conditionals and biconditionals

Logical equivalence	Description		
$p \to q \equiv \neg p \lor q$	Expressing $p \to as \neg p \lor$		
$p \iff q \equiv (p \to q) \land (q \to p)$	Expressing \iff as a conjunction of conditionals		

1.2.3 Equivalences for quantifiers

Logical equivalence	Description
$\forall x \in D, P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$	Expressing \forall as a conjunction of predicates
$\exists x \in D : P(x) \equiv P(x_1) \lor P(x_2) \lor \dots \lor P(x_n)$	Expressing \exists as a disjunction of predicates

1.3 Contrapositive, converse, and inverse of conditional statements

Given a conditional statement $p \rightarrow q$			
Contrapositive	$\neg q \rightarrow \neg p$		
Converse	$q \rightarrow p$		
Inverse	$\neg p \rightarrow \neg q$		

1.4 Negation of quantifiers

Given	Negation
$\forall x \in D, P(x)$	$\exists x \in D : \neg P(x)$
$\exists x \in D : P(x)$	$\forall x \in D, \neg P(x)$

1.5 Rules of inference

Rule of inference	Name
p	Modus ponens
$\underbrace{p \to q}_{\therefore q}$	
$\neg q$	Modus tollens
$\underbrace{p \to q}_{\therefore \neg p}$	
$p \rightarrow q$	Hypothetical syllogism
$\frac{q \to r}{\therefore p \to r}$	
$p \lor q$	Disjunctive syllogism
$\frac{\neg p}{\therefore q}$	
$ \begin{array}{c} \frac{\neg p}{\therefore q} \\ \frac{p}{\therefore p \lor q} \end{array} $	Addition/generalization
$\frac{p \wedge q}{\therefore p}$	Simplification/specialisation
$\frac{p}{q} \\ \vdots p \wedge q$	Conjunction
$p \lor q$	Resolution
$\neg p \lor r$	

1.6 Rules of inference for quantified statements

Rule of inference	Name
$\frac{\forall x P(x)}{\therefore P(c)}$	Universal instantiation
$\frac{P(c) \text{ for arbitrary } c}{\therefore \forall x P(x)}$	Universal generalisation
$\frac{\exists x P(x)}{\therefore P(c) \text{ for some } c}$	Existential instantiation
$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$	Existential generalisation

1.7 Proof methods

Name of proof	Step-by-step procedure	Effective use case
Direct proof	To prove $p \to q$:	When given a
	1. assume p is true	statement in the
	2. show that q must also be true	form $p \to q$
	otherwise $p \to q$ is false since $\mathbf{T} \to \mathbf{F} \equiv \mathbf{F}$	
Proof by contraposition	Since $p \to q \equiv \neg q \to \neg p$, to prove $p \to q$:	When given a
	1. assume $\neg q$ is true	statement in the
	2. show that $\neg p$ must also be true	form $p \to q$, and
	otherwise $\neg q \rightarrow \neg p$ is false since $\mathbf{T} \rightarrow \mathbf{F} \equiv \mathbf{F}$,	direct proof failed.
	and therefore $p \to q$ is false.	
Proof by contradiction	To prove p ,	When given a
	1. assume $\neg p$ is true	statement in the
	2. show that $\neg p$ leads to a contradiction,	form p
	i.e. $\neg p \to (r \land \neg r)$. Otherwise, p is true.	
Disproof by counterexample	To disprove $\forall x \in D, P(x)$,	When given state-
	find one example for which $P(x)$ is false.	-ments with universal
		quantifiers.
Proof by cases	To prove $\forall x \in D, P(x)$,	When it appears
	1. identify all cases for which the	that you can prove
	truthness/falsity of P(x) may vary.	one example and
	2. make assumptions WLOG where necessary	and every other
	3. show that all cases prove $P(x)$ true/false.	example will follow.

1.7.1 Without loss of generality (WLOG)

Without loss of generality (WLOG) is the act of making a simplifying assumption along the lines of: "if this simple case is true, then trivially every other cases must be true".

2 Sets, functions, sequences, sums

2.1 Set theory

2.1.1 Union, intersection, difference, complement, subset

Name	Set operation	Description	
Union $A \cup B$		All elements that are in A or B or both	
Intersection $A \cap B$ All elements that a		All elements that are both in A and B	
Difference	$A \setminus B$	All elements that are in A but not in B	
Complement \overline{A}		All elements in the universal set that are not in A	
Subset	$A \subseteq B$	A is a subset of B ; every element in A is also in A	
Proper subset	$A \subsetneq B$	A is a subset of B and $A \neq B$.	

2.1.2 Set identities and their logic counterparts

Set	Logic
\cap (intersection)	\wedge (and)
∪ (union)	∨ (or)
\overline{A} (complement)	¬ (not)
U (universal set)	T (tautology)
Ø (empty set)	F (contradiction)

2.1.3 Cardinality, power set, and cartesian product of sets

Name	Operation	Description	Given $A = \{p, q\}, B = \{r, s\}$
Cardinality	A	Number of elements in A	A = 2
Power set	$\mathcal{P}(A)$	Set of all subsets of A	$\mathcal{P}(A) = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}$
(Size of set $= 2^n$)		including the empty set	
Cartesian product	$A \times B$	Set of all ordered <i>n</i> -tuples	$A \times B = \{(p, r), (p, s), (q, r), (q, s)\}$
(Size of set = $ A \cdot B $)		from A and B	

2.1.4 Proof methods for set equivalences

To prove $A = B$, show that $A \subseteq B$ and $B \subseteq A$		
Method	Step-by-step procedure	
Element method	To prove $A \subseteq B$,	
	1. let $x \in A$	
	2. construct worded proof with set operations to arrive at $x \in B$	
Logical equivalences	To prove $A \subseteq B$,	
	1. let $x \in A$	
	2. rewrite set operators with their logical counterparts	
	3. derive $x \in B$ from $x \in A$ using logical equivalences	

2.2 Functions

2.2.1 Domain, codomain, preimage, image, range of functions

Given $f: X \to Y$		Given $f(x) = y$	
Terminology	Description	Terminology Description	
Domain (X)	All possible inputs for f	Preimage (x)	$x \in X$ that is mapped to some $y \in Y$ by f
Codomain (Y)	All possible outputs for f	Image (y)	$y \in Y$ to which some $x \in X$ is mapped by f

2.2.2 Injective, surjective, bijective, and composite functions

Function type	Definition
Injective (one-to-one)	A function $f: X \to Y$ where $\forall x \in X, x$ is
	assigned a different $y \in Y$, and $ X \leq Y $.
Surjective (onto)	A function $f: X \to Y$ where all $\forall y \in Y, y$ is
	an image of some $x \in X$, and $ X \ge Y $.
Bijective (one-to-one correspondence)	A function that is both injective and surjective,
	where $ X = Y $
Composite	A function $(f \circ g)(a) = f(g(a))$ where
	a function f takes another function g as input.

2.2.3 Proving injection, surjection, and non-existent functions

What to prove	How to prove	
$f: X \to Y$ is injective	1) If a graph of f is given or derivable, commit horizontal line test	
	2) Alternatively, show that if $f(x_1) = f(x_2)$ for arbitrary $x_1, x_2 \in X$	
	with $x_1 \neq x_2$, then $x_1 = x_2$.	
$f: X \to Y$ is NOT injective	Show that $\exists x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$	
$f: X \to Y$ is surjective	Show that $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ such that } f(x) = y$	
$f: X \to Y$ is NOT surjective	Show that $\exists y \in Y$ such that $\forall x \in X, f(x) \neq y$	
$f: X \to Y$ is not a function	1) If a graph of f is given or derivable, commit vertical line test	
	if there exists a vertical line that intersects the graph more than once,	
	then f is not a function.	
	2) If the expression for f is given, make y the subject and prove	
	algebraically that there are more than one value for y .	

2.3 Sequences and sums

2.3.1 Arithmetic and geometric sequences, and recurrence

Name of sequence	Definition	n-th Term	Series
Arithmetic sequence	${a, a + d, a + 2d,, a + nd}$, where	$a_n = a_1 + (n-1)d$	$S_n = n(\frac{a_1 + a_n}{2}))$
	a is the initial term and d is difference		
Geometric sequence	${a, ar, ar^2,, ar^n}$, where	$a_n = ar^{n-1}$	$S_n = a_1(\frac{1-r^n}{1-r})$
	a is the initial term and r is common ratio		

2.3.2 Reccurrence relation

Recurrence relation		
Notation Definition		
$a_n = \{a_0, a_1, a_2,, a_{n-1}\}$	equation that expresses every term in some sequence $\{a\}$	
	in terms of one or more of the previous terms in the sequence	

2.3.3 Fibonacci and factorials sequences

Name of sequence	Definition
Fibonacci sequence	a sequence $\{f_0, f_1, f_2\}$ defined by initial conditions $f_0 = 0, f_1 = 1$
	and the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4,$
Factorials sequence	$(n!)_{n\geq 0} = \{1, 1, 2, 6, 24, 120,\},$ or defined
	recursively as $0! = 1$, $n! = (n-1)! \times n$ for $n \ge 1$

2.3.4 Summation notation

To represent the sum of some sequence
$$a_m + a_{m+1} + ... + a_n$$
, we write:
$$\sum_{i=-m}^{n} a_i$$

2.3.5 Summation definitions

Property	Definition
Addition/subtraction over the same range	$\sum_{i=m}^{n} a_i \pm \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i \pm b_i)$
Taking out a common factor	$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$
Combining consecutive indices	$\sum_{i=p}^{q} a_i + \sum_{i=q+1}^{r} a_i = \sum_{i=p}^{r} a \text{ if } p \le q \le r$
Index shift	$\sum_{i=m}^{n} a_i = \sum_{i=m+p}^{n+p} a_{i-p} = \sum_{i=m-q}^{n-q} a_{i+q}$
Telescoping sums	$\sum_{i=m}^{n} (a_i - a_{i+1}) = a_m - a_{n+1} \text{ if } m \le n$

3 Number theory

3.1 Divisibility and modular arithmetic

3.1.1 Addition, multiplication, and transitivity theorems of divisibility

Theorem	Definition
Addition	If $a b$ and $a c$, then $a (b+c)$
Multiplication	If $a b$, then $a bc$ for all $c \in \mathbb{Z}$
Transitivity	If $a b$ and $b c$, then $a c$

3.1.2 Quotient-Remainder theorem

Quotient-Remainder Theorem
Given integer $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$, then there exists
Two unique integers q and r , with $0 \le r < d$, such that $a = dq + r$

3.1.3 Expressions for quotient and remainder

Expressions for quotient (q) and remainder (r)
$$q = a \text{ div } d = \lfloor \frac{a}{d} \rfloor$$

$$r = a \text{ mod } d = a - (d \times \lfloor \frac{a}{d} \rfloor)$$

3.1.4 Lemma: bounds for divisors

Bounds for divisors	
Let $n, d \in \mathbb{Z}$. If $ n \ge 1$ and $d n$, then $0 < d \le n $	

3.1.5 Congruence definition

Congruence
$$a \equiv b \pmod{m}$$
 denotes that a is congruent to $b \pmod{m}$ if and only if $m|(a-b)$

3.1.6 Congruence theorems

Theorem 1
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then a and b are congruent
modulo m if and only if $\exists k \in \mathbb{Z}$ such that $a = b + km$
Theorem 2
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$,
if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
$a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

4 Primes, GCD, and LCM

4.1 Definitions and theorems for primes

Name	Definition
Prime number	Given $p \in \mathbb{Z}$ with $p > 1$, p is prime if the only positive
	factors of p are 1 and p .
Fundamental theorem of arithmetic	$\forall x \in \mathbb{Z}$ where $x > 1$, x can be written uniquely as a prime,
	or as a product of 2 or more primes where the prime
	factors are written in order of nondecreasing size.
Composite integer	$k \in \mathbb{Z}^+$ is a composite integer if $\exists a, b \in \mathbb{Z}^+$
	where $a < k$ and $b < k$, such that $k = ab$.
Relatively prime	Let $a, b \in \mathbb{Z}$, a and b are realtively prime if $gcd(a, b) = 1$
Pairwise relatively prime	$a_1, a_2,, a_n \in \mathbb{Z}$ are pairwise relatively prime if
	$gcd(a_i, a_j) = 1$ whenever $1 \le i \le j \le n$

4.2 GCD and LCM definitions

Name	Definition
Greatest Common Divisor	Let $a, b \in \mathbb{Z}$ where $a \neq 0$ and $b \neq 0$. The GCD of a and b ,
	denoted $gcd(a, b)$ is d such that $d a$ and $d b$
Least Common Multiple	The LCM of a and b , denoted $lcm(a, b)$, is the smallest
	$l \in \mathbb{Z}^+$ such that $a k$ abd $b k$
Relationship between GCD and LCM of $a,b\in\mathbb{Z}$	$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

4.3 Finding GCD and LCM via prime factorization

Suppose the prime factorization of $a, b \in \mathbb{Z}$ are:		
$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_n^{a_n}$		
$b = p_1^{\overline{b}_1} \cdot p_2^{\overline{b}_2} \cdot \dots \cdot p_n^{b_n}$		
What to find	How	
GCD	$\gcd(a,b) = (P_1^{\min(a_1,b_1)})(P_2^{\min(a_2,b_2)})(P_n^{\min(a_n,b_n)})$	
LCM	$lcm(a,b) = (P_1^{\max(a_1,b_1)})(P_2^{\max(a_2,b_2)})(P_n^{\max(a_n,b_n)})$	

4.4 Verifying prime using trial division

Trial divison	
Given $a \in \mathbb{Z}$, a is prime, if for all primes $k \leq \sqrt{a}$, $k a$.	