# Prediction of the movie revenue

## 1 PROBLEM DEFINITION

#### 1.1 INTRODUCTION

- Big data to improve greenlighting, budgeting and marketing

#### 1.2 Areas of usage or business use-cases

- Make educated guesses (ticket sales, profit margins, reviews, social chatter, franchise options, awards ...)



# 2 DATASET DESCRIPTION

### 2.1 Source

- https://www.kaggle.com/rounakbanik/the-movies-dataset

#### 2.2 FILES AND STRUCTURE

- 45 000 movies metadata from the Full MovieLens Dataset up to July 2017
- 26 million ratings from 270 000 users from the GroupLens website

#### DATA STRUCTURE:



## 3 APPROACH

The Movies Dataset gives us an opportunity to train on data preprocessing, perform statistical analyse and discover new machine learning methods. Its structure is somehow complicated and doesn't always follow logical direction. On another hand, these challenges helped us improve our skills.

Here are the features of the dataset that we will be using:

|   | id     | title                      | budget  | revenue    | production_countries                             | release_date | popularity | vote_average | vote_count | genres                                                     | production_companies                                 | belongs_to_collection | cast                                                       | keywords                                                     | year | year_month |
|---|--------|----------------------------|---------|------------|--------------------------------------------------|--------------|------------|--------------|------------|------------------------------------------------------------|------------------------------------------------------|-----------------------|------------------------------------------------------------|--------------------------------------------------------------|------|------------|
| 3 | 121173 | Voracious                  | 11178   | 34659.000  | [{'iso_3166_1': 'PH',<br>'name': 'Philippines'}] | 2012-09-05   | 0.079      | 8.000        | 1.000      | [{'id': 35,<br>'name':<br>'Comedy'},<br>{'id': 18,<br>'nam | [('name': 'APT<br>Entertainment', 'id':<br>8355], {' | 0                     | [{'cast_id':<br>16,<br>'character':<br>'Rene',<br>'credit  | [{'id':<br>4694,<br>'name':<br>'staged<br>death'},<br>{'id': | 2012 | 2012-09    |
| 5 | 110428 | Camille<br>Claudel<br>1915 | 3512454 | 115860.000 | [{'iso_3166_1': 'FR',<br>'name': 'France'}]      | 2013-03-13   | 0.110      | 7.000        | 20.000     | [{'id': 18,<br>'name':<br>'Drama'}]                        | [{'name': 'Canal+', 'id': 5358}, {'name': 'Art       | 0                     | [{'cast_id':<br>3,<br>'character':<br>'Camille<br>Claudel' | [{'id': 254,<br>'name':<br>'france'},<br>{'id': 745,<br>'n   | 2013 | 2013-03    |
| 6 | 110428 | Camille<br>Claudel<br>1915 | 3512454 | 115860.000 | [{'iso_3166_1': 'FR',<br>'name': 'France'}]      | 2013-03-13   | 0.110      | 7.000        | 20.000     | [{'id': 18,<br>'name':<br>'Drama'}]                        | [{name': 'Canal+', 'id': 5358}, {name': 'Art         | 0                     | [{'cast_id':<br>3,<br>'character':<br>'Camille<br>Claudel' | [{'id': 254,<br>'name':<br>'france'},<br>{'id': 745,<br>'n   | 2013 | 2013-03    |
|   |        |                            |         |            |                                                  |              |            |              |            |                                                            |                                                      |                       | rosset tells                                               |                                                              |      |            |

Example of *cast* feature for one movie (one cell of the database):

[('cast\_id': 1, 'character': 'Felix the Cat (Voice)', 'credit\_id': '52fe45f09251416c91043a2f', 'gender': 0, 'id': 115502, 'name': 'Chris Phillips', order': 0, 'profile\_path': '/67G2MHc1Qs2ox2PDyQFxEhVSgYp.jpg'}, {'cast\_id': 2, 'character': 'Princess Oriana (Voice)', 'credit\_id': '52fe45f09251416c91043a33', 'gender': 0, 'id': 115503, 'name': "Maureen O'Connell' order': 1, 'profile\_path': None}, {'cast\_id': 3, 'character': 'The Duke of Zill / Wack Lizardi (voice) (as Peter Neuman)', 'credit\_id': '52fe45f09251416c91043a37', 'gender': 0, 'id': 115504, 'name': 'Peter Newman', 'order': 2, 'profile\_path': None}, {'cast\_id': 5, 'character': '(Voice)', 'credit\_id': '52fe45f09251416c91043a3b', 'gender': 0, 'id': 115506, 'name': 'Susan Montanaro', 'order': 4, 'profile\_path': None}, {'cast\_id': 6, 'character': '(Voice)', 'credit\_id': '52fe45f09251416c91043a3f', 'gender': 0, 'id': 115507, 'name': 'Don Oriolo', 'order': 5, 'profile\_path': None}, {'cast\_id': 7, 'character': '(Voice)', 'credit\_id': '52fe45f09251416c91043a43', 'gender': 0, 'id': 48402, 'name': 'Christian Schneider', 'order': 6, 'profile\_path': None}, {'cast\_id': 8, 'character': '(Voice)', 'credit\_id': '52fe45f09251416c91043a47', 'gender': 0, 'id': 115508, 'name': 'David Kolin', 'order': 7, 'profile\_path': None}, {'cast\_id': 9, 'character': '(Voice)', 'credit\_id': '52fe45f09251416c91043a4b', 'gender': 0, 'id': 115509, 'name': 'Michael Fremer', 'order': 8, 'profile\_path': None}, {'cast\_id': 10, 'character': 'Madam Pearl (voice) (as Alice Playton)', 'credit\_id': '52fe45f09251416c91043a4f', 'gender': 1, 'id': 80165, 'name': 'Alice Playten', 'order': 9, 'profile\_path': '/oRaMq0i9Pl64VKPVivVe0xCPDKB.jpg'}]

As you can see extracting information from columns is time consuming.

#### 3.1 DATA CLEANING

#### What we did:

- Removed NANs
- Removed 0 and small revenues and budget
- Replaced outliers (checked numbers on IMDB)
- Kept only released movies (removed rumored, post-production)
- Removed movies without specified production companies
- Merged the data

#### What we discovered:

- Issue with currency (budget is in different currencies). Removed all the movies were USA wasn't in production countries
- Overestimation of popularity: this feature fluctuates with time. So we cannot rely on it for predictions.

### 3.2 FEATURE ENGINEERING

Here are some main points in our process of feature engineering:

- Budget, year (numeric)
- Dummies (genres, production companies, actors, belongs\_to\_collection)
- Applied log to the *budget*
- Created new numeric features:
  - Collection votes
  - o Genres average vote, average vote count and average revenue
  - o Production companies average vote, average vote count and average revenue
  - o Actors average vote, average vote count and average revenue

Here is the pattern that we used:

## Original dataset

| Movies  | Genres     | Revenue | Average vote | Vote count |  |
|---------|------------|---------|--------------|------------|--|
| Movie-1 | G1, G3, G4 | 100     | 6.7          | 1000       |  |
| Movie-2 | G1, G2     | 200     | 7.3          | 800        |  |
| Movie-2 | G3, G4     | 300     | 7.5          | 2000       |  |

## Genres data

Export for application model input

| Genre_name | Average Revenue   | Average Ave_vote | Average Vote_count |  |  |
|------------|-------------------|------------------|--------------------|--|--|
| G1         | (100+200)/2 = 150 | (6.7+7.3)/2 = 7  | (1000+800)/2 = 900 |  |  |
| G2         | 200               | 7.3              | 800                |  |  |
| G3         | 200               | 7.1              | 1500               |  |  |
| G4         | 200               | 7.1              | 1500               |  |  |

## Features we can use for prediction

|         | G1 | G2 | G3 | G4 | Average Revenue       | Average Ave_vote   | Average Vote_count     |
|---------|----|----|----|----|-----------------------|--------------------|------------------------|
| Movie-1 | 1  | 0  | 1  | 1  | (150+200+200)/3=183.3 | (7+7.1+7.1)/3=7.07 | (900+1500+1500)/3=1300 |
| Movie-2 | 1  | 1  | 0  | 0  | 125                   | 7.15               | 850                    |
| Movie-3 | 0  | 0  | 1  | 1  | 200                   | 14.2               | 1500                   |

Instead of having only one valuable numeric value we have now 10. It improved our results drastically.

# 4 PREDICTION AND RESULTS

Finally we have a model with 254 features. For prediction we used RandomForests regressor with n\_estimators=500.

## 4.1 FINAL RESULTS

CVS

```
scores = cross_val_score(RandomForestRegressor(500), X, y, cv=10)
print('cross_val_score', np.mean(scores))
cross_val_score 0.7775488513694426
```

#### **Boxplots of CVS:**

```
MODEL RandomForestRegressor10
MODEL RandomForestRegressor300
MODEL RandomForestRegressor300
MODEL RandomForestRegressor500
```



#### **RMSE**



## Scatter plot of real values VS predicted at different stages of feature engineering:



Budget and dummies

Budget, dummies and numeric values except actors

All plus actors

#### 4.2 REAL MOVIES TESTING USING APPLICATION

**Predicted Revenue** 

**Predicted Revenue** 

**COMPANY: Warner Bros.** 

**COLLECTION: Ocean's Collection** 

YEAR: 2018

BUDGET: 77,000,000.0

**GENRES: Action, Adventure, Thriller** 

**ACTORS: Cate Blanchett, Anne Hathaway** 

COMPANY:

**COLLECTION:** Hotel Transylvania Collection

YEAR: 2018

BUDGET: 80,000,000.0

**GENRES:** Animation, Adventure, Comedy

**ACTORS: Adam Sandler, Steve Buscemi** 

369,336,550.3

Ocean's Eight Real Revenue: \$297,718,711

518,974,493.8

about 538,000,000 Revenue

#### 4.3 Possible improvements

New feature possibility

Ratings, drawback: many NANsKeywords, drawback: many NANs

External data: cast credits