

Welcome!

Julia Silge
Data Scientist at Stack Overflow

In this course, you will...

- learn how to implement sentiment analysis using tidy data principles
- explore sentiment lexicons
- apply these skills to real-world case studies

Case studies

- Geocoded Twitter data
- six of Shakespeare's plays
- text spoken on TV news programs
- lyrics from pop songs over the last 50 years

Sentiment Lexicons

```
> library(tidytext)
> get_sentiments("bing")
# A tibble: 6,788 x 2
      word sentiment
     <chr> <chr>
    2-faced negative
23
    2-faces negative
       a+ positive
    abnormal negative
    abolish negative
  abominable negative
   abominably negative
   abominate negative
9 abomination negative
      abort negative
10
# ... with 6,778 more rows
```


Sentiment Lexicons

```
> get_sentiments("afinn")
# A tibble: 2,476 x 2
     word score
    <chr> <int>
   abandon -2
  abandoned -2
   abandons -2
   abducted -2
5 abduction -2
6 abductions -2
     abhor -3
   abhorred -3
  abhorrent -3
10
    abhors -3
# ... with 2,466 more rows
```


Sentiment Lexicons

```
> get_sentiments("nrc")
# A tibble: 13,901 x 2
     word sentiment
     <chr> <chr>
             trust
    abacus
    abandon
               fear
    abandon negative
    abandon sadness
   abandoned
               anger
   abandoned
              fear
   abandoned negative
   abandoned sadness
9 abandonment
                 anger
10 abandonment
                fear
# ... with 13,891 more rows
```


Let's get started!

Sentiment analysis using an inner join

Julia Silge
Data Scientist at Stack Overflow

Geocoded Tweets

The geocoded tweets dataset contains three columns:

- state, a state in the United States
- word, a word used in tweets posted on Twitter
- freq, the average frequency of that word in that state (per billion words)

Inner Join

Inner Join

```
> text

# A tibble: 7 x 1
    word
    <chr>
1    wow
2    what
3    an
4    amazing
5 beautiful
6 wonderful
7    day
```

```
> lexicon

# A tibble: 4 x 1
    word
    <chr>
1 amazing
2 wonderful
3 sad
4 terrible
```


Inner Join

```
> library(dplyr)
> text %>%
   inner_join(lexicon)
Joining, by = "word"

# A tibble: 2 x 1
   word
   <chr>
1 amazing
2 wonderful
```


Let's practice!

Analyzing sentiment analysis results

Julia Silge Data Scientist at Stack Overflow

Want to find only certain kinds of results? Use filter!

```
tweets_nrc %>%
filter(sentiment == "positive")
```


Want to find only certain kinds of results? Use filter!

```
tweets_nrc %>%
filter(sentiment == "positive")
```

Need to do something for groups defined by your variables? Use group_by!

```
tweets_nrc %>%
filter(sentiment == "positive") %>%
group_by(word)
```


Need to calculate something for defined groups? Use summarize!

```
tweets_nrc %>%
filter(sentiment == "sadness") %>%
group_by(word) %>%
summarize(freq = mean(freq))
```


Need to calculate something for defined groups? Use summarize!

```
tweets_nrc %>%
filter(sentiment == "sadness") %>%
group_by(word) %>%
summarize(freq = mean(freq))
```

Want to arrange your results in some order? Use arrange!

```
tweets_nrc %>%
filter(sentiment == "sadness") %>%
group_by(word) %>%
summarize(freq = mean(freq)) %>%
arrange(desc(freq))
```


Common patterns

```
your_df %>%
  group_by(your_variable) %>%
  {DO_SOMETHING_HERE} %>%
  ungroup
```


Let's practice!

Differences by state

Julia Silge
Data Scientist at Stack Overflow

Exploring states

Examing one state

Exploring states

Examing one state

```
tweets_nrc %>%
filter(state == "texas",
sentiment == "positive")
```

Calculating a quantity for all states

```
tweets_nrc %>%
group_by(state)
```


spread() converts long data

spread() converts long data to wide data

id	group A value	group B value	group C value
1	5.5	6.6	8.8
2	2.2	7.7	3.3
3	9.9	1.1	4.4

Using spread()

```
tweets_bing %>%
  group_by(state, sentiment) %>%
  summarize(freq = mean(freq)) %>%
  spread(sentiment, freq) %>%
  ungroup()
```


Let's go!