W

Ryerson University Department of Electrical and Computer Engineering ELE202: Electric Circuits Analysis Mid-Term Examination, February 2014 Duration: 1.5 hours

Student's Name:	or contract the second second second	*************************
Student's Number		Section:

NOTES:

- 1. This is a Closed Book examination. No aids other than the approved calculators are allowed.
- 2. There are four questions. Answer all four questions.
- 3. No questions are to be asked in the examination hall. If doubt exists as to the interpretation of any question, the student is urged to submit with the answer paper, a clear statement of any assumptions made.

	Question No.	Mark of each question	Mark obtained
	Q1	25	23 A.Y.
	Q2	25	24 JS
	Q3	25	25 N.H
	Q4	25	20-15 D.W Ph
	Total	(Out of 100):	92+5=97.
-			- ph

Question 1(i) (10 marks):

Find v_x , i_x , and R_x in the following circuit:

$$|2|_{1} + 2 - |4| = 0$$

$$V_{x} = RI_{1}$$

$$= 12 \cdot I$$

$$V_{x} = 12 \cdot J$$

$$|x = |1 - |2$$
 $|x = |1 - |3|$
 $|x = |1 - |3|$

$$2 = R_{x} I_{x}$$

 $2 = R_{x} (0.25)$
 $R_{x} = 8a$

$$v_{x} = 12 \quad \sqrt{6}$$

$$i_{x} = 0.25 \quad A \qquad 6$$

$$R_{x} = 8 \quad 0 \qquad (47)$$

Question 1(ii) (15 marks):

The current flowing through an element is as shown in the figure below. Determine the total charge that passed through the element at:

(a)
$$t=1 \text{ s}$$

(b)
$$t=2 s$$

(c)
$$t=3 s$$

(d)
$$t = 5 s$$

(e)
$$t = 7 s$$

$$Q_{ls} = \frac{1}{2} bh$$

= $\frac{1}{2} (1)(4)$
= $\frac{1}{2} mC$

$$=25 + 2(2)$$

(a)
$$Q_{1s} = 2 \text{ mC}$$
(b) $Q_{2s} = 8 \text{ mC}$
(c) $Q_{3s} = 18 \text{ mC}$
(d) $Q_{5s} = 25 \text{ mC}$
(e) $Q_{7s} = 29 \text{ mC}$
(+3)

Blank page

Question 2 (25 marks):

Find i_x and v_x using the superposition principle.

$$(5m)$$
 $(612-61, +11213+8=0)$ $(-61+612+1213=-8)$

$$-6(0.612) + 6(4913 + 32) + 1213 = -8$$

$$-3.612 + 29413 = 192 + 1213 = -8$$

$$-3.6(4913 + 32) + 29413 + 1213 = -200$$

$$-176.413 - 115.2 + 29413 + 1213 = -200$$

$$||x| = ||-||2||$$
 $|V_{\lambda}| = ||2|| + 8||$
 $||4V_{\lambda}| = ||2| - ||3||$

$$4(121_3 + 8) = 1_2 - 1_3$$

$$481_3 + 32 = 1_2 - 1_3$$

$$491_3 + 32 = 1_2$$

	<u> </u>
$i_x =$	0.024691 + 0.01851
	F 0.04321 A
$v_x =$	0.111 + 0.148
	0,250 V

$$|_{2} = -0.061728 \text{ A}$$

$$|_{1} = -0.037037 \text{ A}$$

$$|_{3} = -0.654320907 \text{ A}$$

Question 3 (25 marks):

Apply nodal analysis to find the node voltages v_1 , v_2 , v_3 and the current i_0 in the circuit shown below

$$| V_1 - 4|_0 - V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$| V_1 = V_2 + 4|_0$$

$$| V_2 = 0$$

$$\frac{5N}{4} - \frac{(V_1 - V_2)}{4} + 1.5 - \frac{V_1}{6} - \frac{(V_2 - 12)}{6} - \frac{(V_2 - 12)}{2} = 6$$

$$-\frac{V_1}{4} + \frac{V_2}{4} + 1.5 - \frac{V_1}{6} - \frac{V_2}{6} + 2 - \frac{V_2}{2} + \frac{V_3}{2} = 6$$

$$-\frac{5V_1}{16} - \frac{2V_2}{3} + \frac{3V_3}{4} = -3.5$$

$$\begin{vmatrix} -\frac{5}{16} & -\frac{2}{3} & \frac{3}{4} \\ -\frac{2}{3} & \frac{3}{4} \end{vmatrix} -3.5 \begin{vmatrix} \sqrt{1} & 8 \\ \sqrt{2} & 6 \end{vmatrix}$$

$$\begin{vmatrix} \frac{1}{4} & \frac{1}{2} & -\frac{5}{4} \\ \frac{3}{4} & -1 \end{vmatrix} 0 \begin{vmatrix} \sqrt{1} & 4 \\ \sqrt{2} & 4 \end{vmatrix}$$
8

$$V_{1} - V_{2} - \frac{4V_{1}}{16} = 0$$

$$V_{1} - V_{2} - \frac{V_{1}}{4} = 0$$

$$\frac{3V_{1}}{4} - V_{2} = 0$$

$$v_{1} = 8 \text{ V}$$
 $v_{2} = 6 \text{ V}$
 $v_{3} = 4 \text{ V}$
 $i_{0} = 0.5 \text{ A}$

Blank page

Question 4 (25 marks):

Find the Thevenin equivalent between terminals a-b of the following circuit:

12 = 0.435185185 12 = 0.391975300 13 = -0.645061728

