Skin Cancer

GABRIEL ARAUJO
STEVEN CABALLERO

¿Qué queremos lograr con este análisis?

APLICAR Y COMPARAR

Clasificar correctamente los datos, evaluando su rendimiento con métricas como accuracy, precision, recall y F1-score.

EXPLORAR ESTRUCTURAS

Mediante modelos No Supervisados y Supervisados evaluando la calidad de los grupos con métricas internas.

VISUALIZACIÓN DE DATOS

Graficar y analizar visualmente los datos utilizando distintos tipos de representaciones con diagramas para facilitar su interpretación.

CLASES DE LESIONES

Abreviatura	Nombre Completo	Descripción
bkl	Benign Keratosis-like Lesions	Lesiones benignas parecidas a la queratosis, como la queratosis seborreica.
nv	Melanocytic Nevi	Nevos melanocíticos o lunares, generalmente benignos.
df	Dermatofibroma	Tumor benigno de la piel, generalmente inofensivo.
vasc	Vascular Lesions	Lesiones vasculares como hemangiomas o angioqueratomas.
mel	Melanoma	Tipo de cáncer de piel maligno y agresivo.
bcc	Basal Cell Carcinoma	Carcinoma basocelular, un tipo de cáncer de piel común pero de crecimiento lento.
akiec	Actinic keratoses and intraepithelial carcinoma	Una lesión precancerosa de la piel que puede convertirse en carcinoma de células escamosas

Información del Dataset

COLUMNAS CLAVE

- lesion_id
- image_id
- dx
- dx_type
- path
- label "b or m"
- image ←

CLASES DE LESIONES

libreria cv2

```
def load_image_cv2(path):
    img = cv2.imread(path)
    img = cv2.resize(img, (64, 48))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img
              df_balanced['image'][0]
           ndarray (48, 64, 3) show data
```

Preprocessing


```
#separacion
malignos = ['mel', 'bcc', 'akiec']
df['label'] = df['dx'].apply(lambda x: 'maligno' if x in malignos else 'benigno')
from sklearn.utils import resample
benigno df = df[df['label'] == 'benigno']
maligno_df = df[df['label'] == 'maligno']
min size = min(len(benigno df), len(maligno df))
benigno_df = resample(benigno_df, replace=False, n_samples=min_size, random_state=42)
maligno_df = resample(maligno_df, replace=False, n_samples=min_size, random_state=42)
df balanced = pd.concat([benigno df, maligno df]).reset index(drop=True)
                                                                                df_balanced['label'].value_counts()
                                                                                #guardado de imagenes
                                                                                           count
imageid_path = {os.path.splitext(os.path.basename(x))[0]: x
                                                                                      label
                     for x in glob(os.path.join(base_dir, '*', '*.jpg'))}
                                                                                            1952
                                                                                    benigno
df balanced['path'] = df balanced['image id'].map(imageid path.get)
                                                                                            1952
                                                                                    maligno
df balanced['image'] = df balanced['path'].map(load image cv2)
                                                                                    dtype: int64
#caracteristicas
X = np.stack(df_balanced['image'].values) / 255.0 #normalizacion
y = df balanced['label'].map({'benigno': 0, 'maligno': 1}).values
```

Modeling


```
x_train, x_test, y_train_o, y_test_o = train_test_split(X, y, test_size=0.20,random_state=999, stratify=y)
#stratify=y ayuda a la partición a separar entre clases de forma controlada

#one hot codification
y_train = to_categorical(y_train_o, num_classes = 2)
y_test = to_categorical(y_test_o, num_classes = 2)

x_train, x_validate, y_train, y_validate = train_test_split(x_train, y_train, test_size = 0.1, random_state = 999, stratify=y_train)
x_train = x_train.reshape(x_train.shape[0], *(48, 64, 3))
x_test = x_test.reshape(x_test.shape[0], *(48, 64, 3))
x_validate = x_validate.reshape(x_validate.shape[0], *(48, 64, 3))
```

Modelos S

MODEL RELU

```
#@title model ANN relu
model_ann_relu = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(48, 64, 3)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(2, activation='softmax')
])
model_ann_relu.summary()
model_ann_relu.compile(
    optimizer=tf.keras.optimizers.SGD(),
    loss='categorical_crossentropy',
    metrics=['accuracy']
history=model_ann_relu.fit(
    x_train, y_train,
    validation data=(x validate, y validate),
    epochs=10,
    batch_size=32
test_loss_ann_relu, test_acc_ann_relu = model_ann_relu.evaluate(x_test, y_test)
print('Test accuracy:', test_acc_ann_relu)
plot_model_history(history)
```


Modelos S

MODEL ANN DIFFERENT

```
#@title model ANN different
model_ann_different = tf.keras.Sequential([
    tf.keras.layers.Flatten(input shape=(48, 64, 3)),
   tf.keras.layers.Dense(2048, activation='selu'),
    tf.keras.layers.AlphaDropout(0.3),
    tf.keras.layers.Dense(512, activation='selu'),
   tf.keras.layers.AlphaDropout(0.3),
   tf.keras.layers.Dense(128, activation='selu'),
   tf.keras.layers.Dense(64, activation='selu'),
    tf.keras.layers.Dense(2, activation='softmax')
model_ann_different.compile(
    optimizer=tf.keras.optimizers.Nadam(),
   loss='categorical_crossentropy',
    metrics=['accuracy']
history=model_ann_different.fit(
   x train, y_train,
   validation_data=(x_validate, y_validate),
    epochs=10,
    batch size=32
test loss ann different, test acc ann different = model ann different.evaluate(x test, y test)
print('Test accuracy (ANN differente):', test_acc_ann_different)
plot_model_history(history)
```


Modelos S

MODEL CNN

```
#@title model CONV2D
model_cnn = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 64, 3)),
    tf.keras.layers.MaxPooling2D((2, 2)),
    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D((2, 2)),
    tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D((2, 2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(2, activation='softmax')
])
model cnn.compile(
   optimizer=tf.keras.optimizers.Adam(),
   loss='categorical_crossentropy',
    metrics=['accuracy']
history=model_cnn.fit(
    x_train, y_train,
   validation data=(x validate, y validate),
    epochs=35,
    batch_size=32
test_loss_cnn, test_acc_cnn = model_cnn.evaluate(x_test, y_test)
print('Test accuracy (CNN):', test_acc_cnn)
plot_model_history(history)
```


Modelos NS

PCA

```
15
    10
PCA Component 2
   -10
   -15
   -20
                        -20
                                       -10
                                                                       10
                                                                                      20
                                             PCA Component 1
```

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_flat)

x_train, x_test, y_train, y_test = train_test_split(X_pca, y, stratify=y, test_size=0.2)

svm_model = SVC(kernel='rbf', C=1, gamma='scale')
svm_model.fit(x_train, y_train)
y_pred_svm = svm_model.predict(x_test)

print(classification_report(y_test, y_pred_svm))
```

	precision	recall	f1-score	support
0	0.68	0.59	0.63	390
1	0.64	0.72	0.68	391
accuracy			0.66	781
macro avg	0.66	0.66	0.66	781
weighted avg	0.66	0.66	0.66	781

Modelos NS

KMEANS

```
kmeans = KMeans(n_clusters=2, random_state=42)
clusters_kmeans = kmeans.fit_predict(X_flat)
print(classification_report(y, clusters_kmeans))
```

	precision	recall	f1-score	support
0 1	0.48 0.48	0.49 0.48	0.48 0.48	1952 1952
accuracy macro avg weighted avg	0.48 0.48	0.48 0.48	0.48 0.48 0.48	3904 3904 3904

KMeans Clusters (PCA Projection)

Modelos NS

PCA 3D

REDES NEURONALES CONVOLUCIONALES (CNN)

El Mejor Modelo es:

Modelo CNN
Accuracy 0.78105
Precision 0.78173
Recall 0.78105
F1-Score 0.780927
Combined_Score 0.781149
Name: 2, dtype: object

- Especializadas en Imágenes: Detectan automáticamente patrones espaciales (bordes, texturas) usando "filtros".
- Eficientes: Reutilizan filtros en toda la imagen, reduciendo complejidad.
- Robustas: Manejan variaciones en la posición u orientación de los objetos.

Conclusiones

- La CNN fue el modelo supervisado más eficaz, destacando en la clasificación de imágenes de cáncer de piel gracias a su arquitectura.
- En el análisis no supervisado, PCA con SVC ofreció mejores resultados que KMEANS.
- DBSCAN mostró dificultades para formar clústeres claros, requiriendo un ajuste muy preciso de sus parámetros de densidad.

