LAPORAN PEMROGRAMAN PYTHON

Disusun oleh:

Azriel Aziz Fiilliyatinnuriz Alhasan 03411940000026

Departemen Teknik Geofisika

Fakultas Teknik Sipil, Perencanaan, dan Kebumian

Institut Teknologi Sepuluh Nopermber

2020

I. Data Asli

Pada tugas kali ini, saya menggunakan data pengujian kerajinan dan tekstil pada laboratorium tekstil di daerah Jakarta.

jenis_kegiatan 🔺	detail_jenis_kegiatan	standar_yang_digun	tarif_rp
Benang	Nomor Benang	SNI ISO 17202:2010	50000
Benang	Anithan / Gitiran	SNI ISO 17202:2010	50000
Benang	Gintiran dan Antihan	SNI ISO 17202:2010	50000
Benang	Kekuatan Benang : Per helai, Metode CRE	SNI 08-0269-1989	40000
Benang	Kekuatan Benang : Per lea, Metode CRE	SNI 08-0269-1989	40000
Benang	Ketidakrataan (USTER)	SNI ISO 16549:2010	50000
Benang	Kenampakan Benang (Grade)	SNI 08-0271-1989	40000
Benang	Panjang benang sampai dengan 2500 meter	SNI 08-0318-1999	50000
Benang	Keseimbangan Antihan	SNI 08-0318-1999	50000
Benang	Percobaan Jahit	SNI 08-0318-1999	50000
Benang	filamen		40000
Benang	Kadar lembab (cara pengeringan)	SNI 08-0263-1989	40000
Benang	benang skala laboratorium	Standar Lab	60000

Sumber:jakarta.go.id

Gambar 1. Data Pengujian Kerajinan dan Tekstil Pada Laboratorium Tekstil

II. Pengolahan Data Python

- > import pandas as pd
- iris = pd.read_csv('http://data.jakarta.go.id/dataset/8d88fb11-d703-4d0c-ac53-38d8e9f39674/resource/f8b7531d-c2f8-4d95-9f87-c2e418c67758/download/290320180604431pengujian-unit-industri-fix.csv')
- iris.head()

Out[14]:

	jenis_kegiatan	detail_jenis_kegiatan	standar_yang_digunakan	tarif_rp
0	Kain	Lebar Kain	SNI ISO 22198:2010	50000
1	Kain	Tebal kain	SNI ISO 5084:2010	40000
2	Kain	Berat kain per meter persegi	SNI ISO 3801:2010	50000
3	Kain	Berat Kain per meter linier	SNI ISO 3801:2010	50000
4	Kain	Tetal lusi dan pakan	SNI ISO 7211-2:2010	50000

> iris.tail()

Out[15]:

	jenis_kegiatan	detail_jenis_kegiatan	standar_yang_digunakan	tarif_rp
86	Benang	Identifikasi serat secara kuantitatif : Dua je	SNI ISO 1833:2011	85000
87	Benang	Identifikasi serat secara kuantitatif : Dua je	SNI ISO 1833:2011	85000
88	Benang	Penambahan per jenis serat : Cara peralutan	SNI ISO 1833:2011	50000
89	Benang	Penambahan per jenis serat : Cara mekanika	SNI ISO 1833:2011	50000
90	Benang	Penambahan per jenis serat : Cara mikroskopis	SNI ISO 1833:2011	50000

iris.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 91 entries, 0 to 90
Data columns (total 4 columns):
jenis_kegiatan 91 non-null object
detail_jenis_kegiatan 91 non-null object
standar_yang_digunakan 85 non-null object
tarif_rp 91 non-null int64
dtypes: int64(1), object(3)
memory usage: 3.0+ KB
```

➤ iris.describe()

Out[17]:

	tarif_rp
count	91.000000
mean	61538.461538
std	22872.743455
min	30000.000000
25%	50000.000000
50%	50000.000000
75%	75000.000000
max	180000.000000

- import numpy as np
- > import matplotlib.pyplot as plt
- plt.figure(figsize=(5,5))
 plt.plot(iris ['tarif_rp'], label='Tarif')
 plt.xlabel('Jumlah Data')
 plt.ylabel('Tarif(Rp)')
 plt.title('Data Pengujian Kerajinan dan Tekstil di Laboratorium Tekstil')
 plt.legend()
 plt.show()

V

III. Penjelasan Fungsi di Script

- 1. import pandas as pd berfungsi untuk melakukan tugas penting seperti menyelaraskan data untuk perbandingan dan penggabungan set data, penanganan data yang hilang, dan lain lain. Untuk penggunaan as sendiri untuk memgganti fungsi import pandas dengan prefix pd
- 2. iris = pd.read_csv('http://data.jakarta.go.id/dataset/8d88fb11-d703-4d0c-ac53-38d8e9f39674/resource/f8b7531d-c2f8-4d95-9f87-c2e418c67758/download/290320180604431pengujian-unit-industri-fix.csv') berfungsi untuk membuat variabel bernama 'iris' sebagai nama file yang akan digunakan, untuk fungsi pd.read(link) berfungsi untuk membaca data dari file yang ada pada link tersebut, pembacaan data menggunakan format csv.
- 3. iris.head() berfungsi untuk menampilkan data secara default untuk 5 data teratas.
- 4. iris.tail() berfungsi untuk menampilkan data secara default untuk 5 data terbawah.
- 5. iris.info() berfungsi untuk menampilkan informasi yang berkaitan dengan data yang ada.
- 6. iris.describe() berfungsi untuk mengetahui statistika data untuk data numeric seperti count, mean, standard deviation, maximum, minimum, dan quartile.
- 7. import numpy as np berfungsi untuk memanggil numpy (membentuk objek dimensional array, mirip dengan list pada Phyton).
- 8. import matplotlib.pyplot as plt penggunaan as berfungsi untuk memanggil atau mengaktifkan fungsi, matplotlib berfungsi untuk membuat grafik dari data tabel yang tersedia.
- 9. plt.figure(figsize=(5,5)) berfungsi untuk membuat grafik dengan ukuran yang sudah ditentukan, dalam grafik di atas menggunakan ukuran (5,5).
- 10. plt.plot(iris ['tarif_rp'], label='Tarif') berfungsi memasukkan data pada grafik yang akan dibuat dan berfungsi untuk memberi label pada data tersebut. Di sini digunakan data 'tarif_rp' untuk diinput pada grafik, kemudian diberi label 'tarif'
- 11. plt.xlabel('Jumlah Data') berfungsi untuk memberikan label pada sumbu x berupa 'Jumlah Data'.
- 12. plt.ylabel('Tarif (Rp)') berfungsi untuk memberikan label pada sumbu y berupa 'Tarif (Rp)'.
- 13. plt.title('Data Pengujian Kerajinan dan Tekstil di Laboratorium Tekstil') berfungsi untuk memberikan judu berupa 'Data Pengujian Kerajinan dan Tekstil di Laboratorium Tekstil'.
- 14. plt.legend() berfungsi untuk menampilkan legenda dari grafik yang dibuat, meliputi judul, label, warna, dan keterangan lainnya.
- 15. plt.show() berfungsi untuk menampilkan grafik pada hasil script Phyton (Window).

IV. Penjelasan Grafik

Sumbu-x merupakan penjelasan tentang jumlah data yang ditampilkan pada grafik berupa jumlah pengujian kerajinan dan tekstil di laboratorium tekstil. Sumbu-y merupakan penjelasan tentang tarif(rp) pada pengujian yang dilakukan.

V. Alasan Memilih Data

Saya memilih data ini dikarenakan jumlah datanya yang banyak dan mengandung satu tipe data sehingga tidak membingungkan saat dijelaskan.