Estatística Básica e Introdução ao R

Profa. Dra. Natalia Giordani

- Medidas resumo
 - Medidas de posição (ou localização central)
 - Medidas de dispersão (ou escala ou variabilidade)
 - Medidas de forma
 - Distribuição dos dados

Medidas de posição

- 1. Média (média aritmética) = soma de todos os valores / número de observações
 - Ex.: idade, em anos completos, de 10 estudantes da turma

Estudante	Idade
1	17
2	22
3	22
4	25
5	25
6	26
7	27
8	28
9	28
10	60

$$M\acute{e}dia = \bar{x} = \frac{17 + 22 + 22 + 25 + 25 + 26 + 27 + 28 + 28 + 60}{10} = \frac{280}{10}$$
 = 28,0 anos

- 2. Mediana = estatística de ordem, valor que ocupa a posição central dos dados
 - Número par de observações:

Estudante 1 2 3 4 5 6 7 8 9 10
$$Mediana = \frac{25+26}{2} = \frac{51}{2} = 25,5$$
 anos

■ Número ímpar de observações:

	_		_		_		_		
Estudante	1	2	3	4	5	6	7	8	9
Idade	17	22	22	25	25	26	27	28	28

Mediana = 25,0 anos

- Média ou Mediana?
 - Média é bastante afetada por valores extremos
 - Mediana é mais robusta
 - Nosso exemplo (idades):
 - Média = 28,0 anos
 - Mediana = 25,5 anos

3. Quantis (Q)

- Útil para indicar posições não centrais dos dados
- Quantil de ordem p (0 < p < 1) corresponde ao valor da variável que deixa 100*p% das observações à sua esquerda

$$50\% = Q2 = mediana = 25 anos$$

3. Quantis (Q)

- Útil para indicar posições não centrais dos dados
- Quantil de ordem p (0 < p < 1) corresponde ao valor da variável que deixa 100*p% das observações à sua esquerda

$$25\% = Q1 = (22 + 22)/2 = 22$$
 $75\% = Q3 = (27 + 28)/2 = 27,5$

Medidas de dispersão

1. Variância amostral: valor baseado nas diferenças (desvios) entre a média (medida de localização) e o dado observado.

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Note que a unidade de medida da variância é o quadrado da unidade de medida da variável observada!

2. Desvio padrão:

$$s = \sqrt{s^2}$$

3. Distância interquartis (ou amplitude interquartis ou intervalo interquartílico):

$$d_Q = Q_3 - Q_1$$

4. Amplitude:

$$amplitude = max(x_1, ..., x_n) - min(x_1, ..., x_n)$$

- Medidas de forma
 - 1. Assimetria
 - Histograma

Assimetria nula None of the second of the s

1. Assimetria

1. Assimetria

1. Assimetria

1. Assimetria

1. Assimetria

Explorando um pouco mais...

Distribuição dos dados

1. Boxplot

- Vamos praticar?
 - Análise exploratória para cada tipo de variável no R

- Análise descritiva da relação entre duas variáveis
 - Duas variáveis qualitativas
 - Duas variáveis quantitativas
 - Uma variável qualitativas e uma variável quantitativa

1. Tabelas de contingência ou dupla entrada

Linhas: categorias de uma variável

Colunas: categorias da outra variável

Exemplo: distribuição conjunta das variáveis gênero e clique na funcionalidade

Cânara	Clicou na nova	Total		
Gênero	Sim	Não	Total	
Masculino	1200	426	1626	
Feminino	158	2005	2163	
Outro	100	41	141	
Total	1458	2472	3930	

Exemplo: porcentagem em relação ao total geral

Gênero	Clicou na nova	Total	
Genero	Sim	Não	Total
Masculino	30,5%	10,8%	41,4%
Feminino	4,0%	51,0%	55,0%
Outro	2,5%	1,0%	3,6%
Total	37,1%	62,9%	100,0%

- 37% dos usuários clicaram; 63% não
- 31% dos usuários clicaram e se identificam com o gênero masculino;
 11% dos usuários não clicaram e se identificam com o gênero masculino

Exemplo: porcentagem em relação aos totais nas colunas

Gênero Clicou na nova f		funcionalidade	Total	
Genero	Sim	Não	iotai	
Masculino	82,3%	17,2%	41,4%	
Feminino	10,8%	81,1%	55,0%	
Outro	6,9%	1,7%	3,6%	
Total	100,0%	100,0%	100,0%	

 Dentre os usuários que clicaram, 82% se identificam com o gênero Masculino; 11% com o Feminino; e 7% com Outro.

2. Avaliação de testes diagnósticos

Origem: Medicina

Vandadaina status	Resultado	Total	
Verdadeiro status	Positivo (T+)	Negativo (T-)	Total
Doente (D)	n ₁₁	n ₁₂	n ₁₊
Não doente (ND)	n ₂₁	n ₂₂	n ₂₊
Total	n ₊₁	n ₊₂	n

 n_{ij} = quantidade de indivíduos com o i-ésimo status da doença (i = 1 para doente; i = 2 para não doente) e j-ésimo status do teste (j = 1 para positivo; j = 2 para negativo)

$$n_{i+} = n_{i1} + n_{i2}$$

$$n_{+j} = n_{1j} + n_{2j}$$

2. Avaliação de testes diagnósticos

- Sensibilidade: probabilidade de resultado + em D
 - $s = n_{11}/n_{+1}$
 - Capacidade do teste detectar a doença
- **Especificidade:** probabilidade de resultado em ND
 - $e = n_{22}/n_{2+}$
 - Capacidade de identificar os que não tem a doença

Vaudadaina atatus	Resultado	Total	
Verdadeiro status	Positivo (T+)	Negativo (T-)	Total
Doente (D)	n ₁₁	n ₁₂	n ₁₊
Não doente (ND)	n ₂₁	n ₂₂	n ₂₊
Total	n ₊₁	n ₊₂	n

2. Avaliação de testes diagnósticos

■ Falso positivo: probabilidade de resultado + em ND

•
$$fp = n_{21}/n_{2+}$$

■ Falso negativo: probabilidade de resultado - em D

•
$$fn = n_{12}/n_{1+}$$

Acurácia: probabilidade de resultado correto

$$ac = (n_{11} + n_{22})/n$$

Vardadaira status	Resultado	Total	
Verdadeiro status	Positivo (T+)	Negativo (T-)	Total
Doente (D)	n ₁₁	n ₁₂	n ₁₊
Não doente (ND)	n ₂₁	n ₂₂	n ₂₊
Total	n ₊₁	n ₊₂	n

2. Avaliação de testes diagnósticos

Exemplo

Voudo doivo etatue	Resultad	Total	
Verdadeiro status	Positivo (T+)	Negativo (T-)	Total
Doente (D)	40	20	60
Não doente (ND)	66	74	140
Total	106	94	200

Sensibilidade = Capacidade do teste detectar a doença = 40/60 = 67%

Especificidade = Capacidade de identificar os que não tem a doença = 74/140 = 53%

Falso positivo = Resultado + em ND = 66/140 = 47%

Falso negativo = Resultado - em D = 20/60 = 33%

1. Gráficos de dispersão

- Eixo das abcissas (x) representa uma variável; eixo das ordenadas (y) outra; cada ponto do gráfico corresponde a uma observação
- Exemplo: número de anos de serviço e número de clientes de agentes de

uma companhia de seguro

agente	anos_serviço	n_clientes
Α	2	48
В	3	50
С	4	56
: :	:	: :
J	10	72

1. Gráficos de dispersão

■ Exemplo: número de anos de serviço por número de clientes de agentes de uma companhia de seguro

agente	anos_servico	n_clientes
А	2	48
В	3	50
С	4	56
· ·		: : :
J	10	72

2. Coeficiente de correlação (linear)

- Métrica para medir o nível em que as variáveis numéricas estão relacionadas umas às outras
- Varia de -1 a 1
 - Valores próximos de -1 ou de +1: variáveis fortemente associadas ou (linearmente)
 correlacionadas
 - Valores próximos de 0: variáveis não são correlacionadas
- Quanto mais próximos de uma reta estiverem os pontos: maior a intensidade

2. Coeficiente de correlação (linear)

- Coeficiente de correlação de Pearson (r_p)
 - Multiplicamos os desvios da média de x pelos desvios da média de y e dividimos pelo produto do desvio padrão
 - Método não robusto a outliers
- Coeficiente de correlação de Spearman (r_s)
 - São avaliados os desvios em relação aos postos (índice que corresponde à sua ordem)
 - Método robusto a outliers

2. Coeficiente de correlação (linear)

■ Exemplo: número de anos de serviço por número de clientes de agentes de uma companhia de seguro

Exemplo - Gráfico de dispersão

r	A correlação é dita
0	Nula
0 – 0,3	Fraca
0,3 -0,6	Regular
0,6 -0,9	Forte
0,9 -1	Muito forte
1	Perfeita

Fonte: Callegari-Jacques, SM. Bioestatística: princípios e aplicações. Porto Alegre: Artmed, 2003.

- 2. Coeficiente de correlação (linear)
 - Explorando um pouco mais...
 - Correlações espúrias...
 - Atenção: Correlação não implica em causalidade

- 1. Comparação das distribuições por nível da variável qualitativa
 - Exemplo: voltando ao exemplo dos diamantes, vamos avaliar se existe associação entre a nota de corte do diamante e seu preço.
 - Comparação das medidas resumo

Corte	Média	DP	Mín	Q1	Q2	Q3	Máx
Razoável	\$ 4.359,0	\$ 3560,4	\$ 337,0	\$ 2.050,0	\$ 3.282,0	\$ 5.206,0	\$ 18.574,0
Bom	\$ 3.929,0	\$ 3681,6	\$ 327,0	\$ 1.145,0	\$ 3.050,0	\$ 5.028,0	\$ 18.788,0
Muito bom	\$ 3.982,0	\$ 3935,9	\$ 336,0	\$ 912,0	\$ 2.648,0	\$ 5.373,0	\$ 18.818,0
Premium	\$ 4.584,0	\$ 4349,2	\$ 326,0	\$ 1.046,0	\$ 3.185,0	\$ 6.296,0	\$ 18.823,0
Perfeita	\$ 3.458,0	\$ 3808,4	\$ 326,0	\$ 878,0	\$ 1.810,0	\$ 4.678,0	\$ 18.806,0

- 1. Comparação das distribuições por nível da variável qualitativa
 - Boxplot

Boxplot preço dos diamantes por tipo de corte

Boxplot preço dos diamantes por tipo de corte

- 1. Comparação das distribuições por nível da variável qualitativa
 - **Exemplo:** verificar como o % de atrasos de voos varia entre companhias.
 - Comparação das medidas resumo (%)

Companhia	Média	DP	Mín	Q1	Q2	Q3	Máx
Alaska	3,52	2,48	0,00	1,93	3,23	4,69	22,29
American	9,04	4,14	0,00	6,34	8,43	10,99	50,00
Delta	6,33	4,70	0,00	3,81	5,55	7,82	100,00
Jet Blue	8,08	3,80	0,00	5,34	7,66	10,28	28,00
Southwest	7,52	3,35	0,00	5,07	6,96	9,35	24,80
United	7,40	5,37	0,00	4,04	6,45	9,63	100,00

1. Comparação das distribuições por nível da variável qualitativa

Boxplot

- Alaska se destaca por menos atrasos
- American tem a maior mediana
 - Q1 American > Q3 Alaska

1. Gráficos

- Gráfico do desenhista (Draftsman's display)
 - Matriz cujos elementos são painéis com gráficos de dispersão para cada par de variáveis
 - Exemplo: amostra de 30 veículos onde, para cada um, foram observados preço,
 comprimento, potência do motor e procedência.

Gráfico do desenhista (Draftsman's display)

- Maiores potências de motor associadas a maiores preços e maiores comprimentos
- Relação não tão forte entre preço e comprimento

1. Gráficos

- Gráfico de dispersão simbólico ou estético (aesthetic)
 - Gráficos de dispersão para mais de duas variáveis, que se distinguem por diferentes símbolos, cores ou forma dos pontos

Gráfico de dispersão simbólico ou estético (aesthetic)

Dispersão entre comprimento e preço do veículo de acordo com sua procedência

Maiores preços: carros importados

1. Gráficos

- Partição e janelamento
 - Dividir as observações em subconjuntos (facetas) de acordo com valores de uma das variáveis e criar gráficos de dispersão para cada subconjunto
 - Exemplo: motor e comprimento do veículo de acordo com sua procedência

Partição e janelamento

- Janelamento para as variáveis motor e comprimento, categorizado pela variável procedência do veículo
- Indicativo de associação linear positiva entre potência do motor e seu comprimento, independente da procedência

2. Tabelas

Tabelas com medidas resumo

Procedência	Característica	Q1	Q2	Q3
Nacional	Motor (cv)	60,3	92,0	109,0
	Comprimento (m)	3,8	4,3	4,4
Importada	Motor (cv)	70,8	99,5	115,0
	Comprimento (m)	3,9	4,1	4,2

2. Tabelas

Matriz de correlação

	Preço (R\$)	Comprimento (m)	Motor (cv)
Preço (R\$)	1,00	0,39	0,62
Comprimento (m)	0,39	1,00	0,82
Motor (cv)	0,62	0,82	1,00

2. Tabelas

- Tabelas de contingência de múltiplas entradas
 - Análise de três ou mais variáveis qualitativas (ou quantitativas categorizadas) pode ser realizada usando as mesmas abordagens vistas para análise de duas variáveis quali: tabelas de frequências absoluta e relativa
 - Exemplo: avaliação conjunta da qualidade do corte, cor e claridade do diamante

■ Tabelas de contingência de múltiplas entradas

Frequências absolutas

		D	Ē	F	G	Н	Í	Ĵ
Fair	I 1	4	9	35	53	52	34	23
	SI2	56	78	89	80	91	45	27
	SI1	58	65	83	69	75	30	28
	V52	25	42	53	45	41	32	23
	V51	5	14	33	45	32	25	16
	VV52	9	13	10	17	11	8	1
	W51	3	3	5	3	1	1	1
	IF	3	0	4	2	0	0	0
Good	I1	8	23	19	19	14	9	4
	SI2	223	202	201	163	158	81	53
	SI1	237	355	273	207	235	165	88
	V52	104	160	184	192	138	110	90
	V51	43	89	132	152	77	103	52
	VV52	25	52	50	75	45	26	13
	VVS1	13	43	35	41	31	22	1

Frequências relativas

		D	E	F	G	Н	I	J
Fair	I1	1.90	4.29	16.67	25.24	24.76	16.19	10.95
	SI2	12.02	16.74	19.10	17.17	19.53	9.66	5.79
	SI1	14.22	15.93	20.34	16.91	18.38	7.35	6.86
	V52	9.58	16.09	20.31	17.24	15.71	12.26	8.81
	VS1	2.94	8.24	19.41	26.47	18.82	14.71	9.41
	VV52	13.04	18.84	14.49	24.64	15.94	11.59	1.45
	VV51	17.65	17.65	29.41	17.65	5.88	5.88	5.88
	IF	33.33	0.00	44.44	22.22	0.00	0.00	0.00
Good	I1	8.33	23.96	19.79	19.79	14.58	9.38	4.17
	SI2	20.63	18.69	18.59	15.08	14.62	7.49	4.90
	SI1	15.19	22.76	17.50	13.27	15.06	10.58	5.64
	V52	10.63	16.36	18.81	19.63	14.11	11.25	9.20
	V51	6.64	13.73	20.37	23.46	11.88	15.90	8.02
	VVS2	8.74	18.18	17.48	26.22	15.73	9.09	4.55
	VV51	6.99	23.12	18.82	22.04	16.67	11.83	0.54

- Vamos praticar?
 - Análise exploratória para duas ou mais variáveis

Leitura complementar sugerida

- Livro "Estatística: o que é, para que serve, como funciona"
 - 3 primeiros capítulos

- Livro "Storytelling com dados: um guia sobre visualização de dados para profissionais de negócios"
 - Capítulo 2

