Shoma Endo, <u>Masataro Asai</u>, Alex Fukunaga University of Tokyo

Presentation available on

https://guicho271828.github.io/2016-6-13-hsdip/

1 Satisficing Planning + Online Cost Refinements

Typical Characteristics of Anytime Algorithms

2 Satisficing Planning + Algorithm Switch

Typical Characteristics of Anytime Algorithms

3 Main Topic of the paper: Plan Postprocessing

4 Various Postprocessing Systems

- Aras (Nakhost and Muller 2010)
 - Action Elimination(AE) remove trivially redundant actions
 - Plan Neighborhood Graph Search(PNGS) replan on neighborhood graph
- Action Dependency (**AD**) (Chrpa, McCluskey and Osborne 2012)
 - Remove actions of inverse effects etc.
- Block Deordering (BDPO2) (Siddiqui and Haslum 2013;2015)
 - convert the input to partial order blocks, replan each block
- Anytime Iterative Refinement of Solution (AIRS) (Estrem and Krebsbach 2012)

5 Two groups of Optimization Algorithms

Polytime Optimizer	Search-based Optimizer			
Based on the direct	External solver refines			
analysis of a given plan	a partial segment in a plan			

5.1 Polytime Optimizers

5.2 Polytime Optimizers

5.3 Two groups of Optimization Algorithms

Polytime Optimizer	Search-based Optimizer
Based on the direct	External solver refines
analysis of a given plan	a partial segment in a plan
$AE: O(n^2)$	
$AD: O(n^2)$	
n: plan length	

5.4 Search-based Optimizers

5.5 Search-based Optimizers

5.6 Two groups of Optimization Algorithms

Polytime Optimizer	Search-based Optimizer
Based on the direct	External solver refines
analysis of a given plan	a partial segment in a plan
$AE: O(n^2)$	PNGS
$AD: O(n^2)$	AIRS
n: plan length	BDPO2

5.7 Search-based Optimizers Taxonomy

Subproblems are solved with Subproblems are based on Subproblems are based on Subproblems are s **PNGS** neighborhood graph **PNGS** neighborhood graph Blind unit-cost A (search space around the plan) (search space around the plan) or Backward Brea **AIRS** windows (ordered by $\Delta \cot \Delta h$) **AIRS** windows (ordered by $\Delta \cot/\Delta h$) Blind Bidirectiona BDPO2 windows (block decomposition) BDPO2 windows (block decomposition) Admissible A* or PNGS (layered

5.8 Window-based optimization

6 Open Questions

What is the baseline of various search-based optimizers?

Search-based Optimizers Taxonomy

i.e. Are these *complex* algorithms necessary?

How to combine Polytime and Search-based Optimizers?

Also, how effective is it to combine them?

7 Various Minor Differences in Search-based 9 Evaluate them in an "Equal Condition" Optimizers

				Subproblems are based on	Subproblems are solved with
	Subproblems are based on	Subproblems are solved w	PNGS	neighborhood graph	Admissible A* + LMcut
DNIGG			1011	(search space around the plan)	
PNGS	neighborhood graph	Blind unit-cost A*	AIRS	windows (ordered by $\triangle \cot/\triangle h$)	Admissible A* + LMcut
	(search space around the plan)	or Backward Breadths F	lirst	` '	
AIRS	windows (ordered by \triangle cost/ \triangle h)	Blind Bidirectional	BDPO2	windows (block deordering)	Admissible A* + LMcut
BDPO2	windows (block deordering)	Admissible A*			
	_	or PNGS (layered approa	R-WIN ch)	windows (random)	Admissible A* + LMcut

\rightarrow The amount of observation from the experiments are limited $\boxed{10}$

8 Simplest baseline of search-based optimizers 3

: R-WIN

Subproblems are based on Subproblems are solved PNGS neighborhood graph Blind unit-cost A^* (search space around the plan) or Backward Breadths I AIRS windows (ordered by $\Delta \cot \Delta h$) Blind Bidirectional BDPO2 windows (block deordering) Admissible A^* or PNGS (layered approximately approximat	t
PNGS neighborhood graph Blind unit-cost A* (search space around the plan) or Backward Breadths I windows (ordered by $\Delta \cot \Delta h$) Blind Bidirectional	ich)
PNGS neighborhood graph Blind unit-cost A* (search space around the plan) or Backward Breadths I	
PNGS neighborhood graph Blind unit-cost A*	
Subproblems are based on Subproblems are solved	
	l with
]

10 Evaluation

	Algorithm	Harmonic Means
39 IPC domains		of Ratios
Optimize the 15 min, 2GB re-	LAMA(15min)	100%
sults of LAMA	LAMA(30min)	%
Resource 15 min, 2GB	AE	%
Participants AD, AE, AIRS,	AD	%
PNGS, R-WIN	AIRS	%
(BDPO2 is not tested)	PNGS	%
	R-WIN	%

1	2
J	J

	Algorithm	Harmonic Means
39 IPC domains		of Ratios
Optimize the 15 min, 2GB re-	LAMA(15min)	100%
sults of LAMA	LAMA(30min)	99.3%
Resource 15 min, 2GB	AE	98.4%
Participants AD, AE, AIRS,	AD	97.4%
PNGS, R-WIN	AIRS	97.9%
(BDPO2 is not tested)	PNGS	96.0%
	R-WIN	95.9%

Complex tweaks did not outperform the simplest variant

12

Sadly "Improvements" did not outperform the simplest baseline

Now let's reliably improve upon the baseline

14 Improve AIRS to outperform R-WIN: CH-WIN

Why we chose AIRS?

→ Easy to implement, minimum diff from R-WIN

Problem in AIRS:

Original AIRS is tested only on

small-scale 15-puzzle/grid-pathfinding < 0.1 sec replanning time

15 Window Priority Scheme in AIRS

Window priority: $\triangle cost(i,j) / \triangle h(i,j)$

from (Estrem, Krebsbach 2012)

16 AIRS Pitfall 1 : windows too long

16.1 AIRS Pitfall 1: windows too long

 Too difficult to solve for admissible A* (not revealed in 15puzzle/grid pathfinding)

Dynamic Adjustment of \boldsymbol{l} in CH-WIN:

Adjust *l* by a binary search (helper variable: *L*)

Initial length: l=n/4, L=nReplanning success: $l \leftarrow (l+L)/2$ Replanning fail: $L \leftarrow l, l \leftarrow l/2$ 17 AIRS Pitfall 2 : Penalty could inhibit solving promising windoes

18 AIRS pitfall 3 : Keep it simple

```
\label{eq:while x length (Sol) - 2 do} \begin{tabular}{lll} & y \leftarrow x + 2; \\ & while y < \text{Length (Sol)} & do \\ \hline & Ratio \leftarrow \frac{h_2 \left(\text{Sol}_x, \, \text{Sol}_y\right)}{g \left(\text{Sol}_y\right) - g \left(\text{Sol}_x\right) - p} \\ & h_2 \left(\text{Sol}_x, \, \text{Sol}_y\right) \\ \hline & \left(g \left(\text{Sol}_y\right) - g \left(\text{Sol}_x\right) - p\right) - \text{MaxOverlap} \left(x + 1, y - 1, \text{Sol,FS}\right) \\ \hline & \textbf{if Ratio} < \textbf{Br then} \\ \hline & Br \leftarrow \textbf{Ratio}; \\ & (Bx, By) \leftarrow \left(x, y\right); \\ \hline & (Bx, By) \leftarrow \left(x, y\right); \\ \hline & \textbf{No explanation to} \\ \hline \end{tabular}
```

why these complications are necessary

→ Remove it

19 Result

CH-WIN achieved the **best performance**

Algorithm	Harmonic Means		
	of Ratios		
LAMA(15min)	100%		
LAMA(30min)	99.3%		
AE	98.4%		
AD	97.4%		
AIRS	97.9%		
PNGS	96.0%		
R-WIN	95.9%		
CH-WIN (proposed)	93.3%		

20 Open Questions

What is the baseline of various search-based optimizers?

i.e. Are these *complex* algorithms necessary? → Simple algorithms perform better

How to combine Polytime and Search-based Optimizers?

Also, how effective is it to combine them?

In this paper, we answer the following two open questions.

the first one is, ...

the second one is...

21 Multiple Optimizers

21.1 Multiple Optimizers

21.2 Polytime + Search-based Optimizers

21.3 Iterating Polytime Optimizer

	AD	AD	AD	AD	AE	AE	AE	ΑE
		ΑE	ΑE	ΑE		AD	AD	AD
			AD	AD			AE	AE
domain				AE				AD
mean(harmonic)	98.4	97.4	97.4	97.4	97.4	97.4	97.4	97.4

Table 4: Result of applying poly-time optimizers iteratively to plans obtained by 15-minute runs of LAMA. The harmonic means of the ratios over all instances are shown.

- Iterating AE and AD is not effective
- we can safely assume that we apply them at most once

now lets start discussing the first one.

22 Polytime + Search-based Result

Algorithm		
x	x only	AE+AD+x
LAMA(15min)	100%	-
LAMA(30min)	99.3%	-
AE	97.4%	
AD	98.4%	
AIRS	97.9%	95.6%
PNGS	96.0%	94.4%
R-WIN	95.9%	94.0%
CH-WIN (proposed)	93.3%	91.8%

23 Lessons Learned

- Avoid unnecessary complexity
- R-WIN, baseline, outperformed AIRS, PNGS etc.
- Use the simplest variant as a baseline, improve upon it
- CH-WIN, an improved AIRS variant, outperformed previous algorithms
- Reconfirmed poly+search effectiveness

Thank you for Listening!

Presentation available on

https://guicho271828.github.io/ 2016-6-13-hsdip/