

Funções Inversas e Logaritmos

Texto baseado no livro:

Cálculo - vol 1 - James Stewart (Editora Cengage Learning)

A tabela fornece os dados de uma experiência na qual uma cultura começou com 100 bactérias em um meio limitado em nutrientes.

t	N = f(t)
(horas)	= população no instante t
0	100
1	168
2	259
3	358
4	445
5	509
6	550
7	573
8	586

- O tamanho da população foi registrado em intervalos de uma hora.
- O número N de bactérias é uma função do tempo t: N = f(t).

Suponha, todavia, que o biólogo mude seu ponto de vista e passe a se interessar pelo tempo necessário para a população alcançar vários níveis.

Em outras palavras, ele está pensando em t como uma função de N. Essa função, chamada função inversa de f, é denotada por f^{-1} , e deve ser lida assim: "inversa de f".

Logo, $t = f^{-1}(N)$ é o tempo necessário para o nível da população atingir N. Os valores de f^{-1} podem ser encontrados olhando a tabela da esquerda ao contrário ou consultando a segunda tabela.

• Por exemplo, $f^{-1}(550) = 6$, pois f(6) = 550.

t	N = f(t)
(horas)	= população no instante t
0	100
1	168
2	259
3	358
4	445
5	509
6	550
7	573
8	586

N	$t = f^{-1}(N)$ = tempo para atingir <i>N</i> bactérias
100	0
168	1
259	2
358	3
445	4
509	5
550	6
573	7
586	8

Nem todas as funções possuem inversas.

Vamos comparar as funções f e g cujo diagrama de flechas está na figura.

Observe que f nunca assume duas vezes o mesmo valor (duas entradas quaisquer em A têm saídas diferentes), enquanto g assume o mesmo valor duas vezes (2 e 3 têm a mesma saída, 4).

Em símbolos,

$$g(2) = g(3) \text{ mas } f(x_1) \neq f(x_2) \text{ sempre que } x_1 \neq x_2$$

Funções que têm essa última propriedade são chamadas funções injetoras.

DEFINIÇÃO

Uma função *f* é chamada **função injetora** se ela nunca assume o mesmo valor duas vezes; isto é,

 $f(x_1) \neq f(x_2)$ sempre que $x_1 \neq x_2$

 $f(\mathbf{X}_1) = f(\mathbf{X}_2) .$

Se uma reta horizontal intercepta o gráfico de f em mais de um ponto, então vemos da figura que existem números x_1 e x_2 tais que

Isso significa que f não é uma função injetora.

Portanto, temos o seguinte método geométrico para determinar se a função é injetora.

Teste da Reta Horizontal: Uma função é injetora se nenhuma reta horizontal intercepta seu gráfico em mais de um ponto.

EXEMPLO 1

A função
$$f(x) = x^3$$
 é injetora?

Solução 1: Se x₁ ≠ x₂, então x₁³ ≠ x₂³ (dois números diferentes não podem ter o mesmo cubo). Portanto, pela Definição 1, f(x) = x³ é injetora.

Solução 2: Da figura vemos que nenhuma reta horizontal intercepta o gráfico de f(x) = x³ em mais de um ponto. Logo, pelo Teste da Reta Horizontal, f é injetora.

EXEMPLO 2

A função $g(x) = x^2$ é injetora?

Solução 1: A função não é injetora, pois, por exemplo, g(1) = 1 = g(-1) e, portanto, 1 e -1 têm a mesma saída.

Solução 2: Da figura vemos que existem retas horizontais que interceptam o gráfico de g mais de uma vez. Assim, pelo Teste da Reta Horizontal, g não é injetora.

As funções injetoras são importantes, pois são precisamente as que possuem funções inversas, de acordo com a seguinte definição:

 Seja f uma função injetora com domínio A e imagem B. Então sua função inversa f⁻¹ tem domínio B e imagem A, sendo definida por

$$f(x) = y \iff f^{-1}(y) = x$$

para todo y em B.

Essa definição afirma que se f transforma x em y, então f^{-1} transforma y de volta em x.

Se f não fosse injetora, então f^{-1} não seria definida de forma única.

O diagrama de flechas da figura mostra que f^{-1} reverte o efeito de f.

Observe que:

domínio de f^{-1} = imagem de f imagem de f^{-1} = domínio de f

Por exemplo, a função inversa de $f(x) = x^3$ é $f^{-1}(x) = x^{\frac{1}{3}}$ porque se $y = x^{\frac{1}{3}}$, então

$$f^{-1}(y) = f^{-1}(x^3) = (x^3)^{\frac{1}{3}} = x$$

Não confunda -1 de f^{-1} com um expoente.

Assim
$$f^{-1}(x)$$
 é diferente de $\frac{1}{f(x)}$

A recíproca $\frac{1}{f(x)}$ pode, todavia, ser escrito como [f(x)]-1.

EXEMPLO 3

Se
$$f(1) = 5$$
, $f(3) = 7$ e $f(8) = -10$, encontre $f^{-1}(7)$, $f^{-1}(5)$ e $f^{-1}(-10)$.

Da definição de f⁻¹ temos

$$f^{-1}(7) = 3$$
 porque $f(3) = 7$
 $f^{-1}(5) = 1$ porque $f(1) = 5$
 $f^{-1}(-10) = 8$ porque $f(8) = -10$

EXEMPLO 3

O diagrama torna claro que f⁻¹ reverte o efeito de f nesses casos.

DEFINIÇÃO 3

A letra x é usada tradicionalmente como a variável independente; logo, quando nos concentramos em f^{-1} em vez de f, geralmente reverteremos os papéis de x e y na Definição 2 e escreveremos

$$f^{-1}(x) = y \iff f(y) = x$$

EQUAÇÕES DE CANCELAMENTO

DEFINIÇÃO 4

Substituindo y na Definição 2 e x na (3), obtemos as seguintes **equações de** cancelamento:

$$f^{-1}(f(x)) = x$$
 para todo $x \text{ em } A$
 $f(f^{-1}(x)) = x$ para todo $x \text{ em } B$

EQUAÇÕES DE CANCELAMENTO

A primeira lei do cancelamento diz que se começarmos em x, aplicarmos f e, em seguida, f^{-1} , obteremos de volta x, de onde começamos (veja o diagrama de máquina).

- Assim, f^{-1} desfaz o que f faz.
- A segunda equação diz que f desfaz o que f⁻¹ faz.

$$x \longrightarrow f(x) \longrightarrow f^{-1} \longrightarrow x$$

Vamos ver agora como calcular as funções inversas.

- Se tivermos uma função y = f(x) e formos capazes de isolar x nessa equação escrevendo-o em termos de y, então, de acordo com a Definição 2, devemos ter $x = f^{-1}(y)$.
- Se quisermos chamar a variável independente de x, trocamos x por y e chegamos à equação $y = f^{-1}(x)$.

DEFINIÇÃO 5

Como achar a função inversa de uma função f injetora?

- **1.** Escreva y = f(x).
- 2. Isole x nessa equação, escrevendo-o em termos de y (se possível).
- 3. Para expressar f^{-1} como uma função de x, troque x por y.

A equação resultante é $y = f^{-1}(x)$.

EXEMPLO 4

Encontre a função inversa de $f(x) = x^3 + 2$.

- De acordo com (5) escrevemos $y = x^3 + 2$.
- Então, isolamos x nessa equação: $x^3 = y 2$ $x = \sqrt[3]{y 2}$

- Finalmente, trocando x por y: $y = \sqrt[3]{x-2}$
- Portanto, a função inversa é $f^{-1}(x) = \sqrt[3]{x-2}$

O princípio de trocar x por y para encontrar a função inversa também nos dá um método de obter o gráfico f^{-1} a partir de f.

Uma vez que f(a) = b se e somente se $f^{-1}(b) = a$, o ponto (a, b) está no gráfico de f se e somente se o ponto (b, a) estiver sobre o gráfico de f^{-1} .

Mas obtemos o ponto (b, a) de (a, b) refletindo-o em torno da reta y = x.

Portanto, o gráfico de f^{-1} é obtido refletindose o gráfico de f em torno da reta y = x

Se a > 0 e $a \ne 1$, a função exponencial $f(x) = a^x$ é crescente ou decrescente, e, portanto, injetora pelo Teste da Reta Horizontal.

Assim, existe uma função inversa f^{-1} , chamada **função logarítmica com base** a denotada por $log_a x$

DEFINIÇÃO

Se usarmos a formulação de função inversa dada anteriormente

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$

teremos

$$\log_a x = y \iff a^y = x$$

a para se obter x.

Dessa forma, se x > 0, então $log_a x$ é o expoente ao qual deve se elevar a base

Por exemplo, $\log_{10} 0,001 = -3$ porque $10^{-3} = 0,001$.

DEFINIÇÃO 7

As equações de cancelamento, quando aplicadas a $f(x) = a^x$ e $f^{-1}(x) = log_a x$, ficam assim:

$$\log_a(a^x) = x$$
 para todo $x \in \mathbb{R}$ $a^{\log_a x} = x$ para todo $x > 0$

A função logarítmica $log_a x$ tem o domínio $(0,\infty)$ e a imagem \mathbb{R} . Seu gráfico é a reflexão do gráfico de $y=a^x$ em torno da reta y=x.

A próxima figura mostra o caso em que a > 1. (As funções logarítmicas mais importantes têm base a > 1.)

O fato de que $y = a^x$ é uma função que cresce muito rapidamente para x > 0 está refletido no fato de que $y = log_a x$ é uma

função de crescimento muito lento para x > 1.

Esta figura mostra os gráficos de $y = log_a x$ com vários valores da base a > 1.

Uma vez que $log_a 1 = 0$, os gráficos de todas as funções logarítmicas passam pelo ponto (1, 0).

As seguintes propriedades das funções logarítmicas resultam das propriedades correspondentes das funções exponenciais dadas na Seção anterior.

PROPRIEDADES DOS LOGARÍTMOS

Se x e y forem números positivos, então

1.
$$\log_a(xy) = \log_a(x) + \log_a(y)$$

2.
$$\log_a \left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

3. $\log_a(x^r) = r \log_a x$ (onde r é qualquer número real.)

PROPRIEDADES DOS LOGARÍTMOS EXEMPLO

Use as propriedades dos logaritmos para calcular $\log_2 80 - \log_2 5$.

Usando a Propriedade 2, temos

$$\log_2 80 - \log_2 5$$

$$= \log_2\left(\frac{80}{5}\right)$$

$$= \log_2 16 = 4$$

porque
$$2^{4} = 16$$

De todas as possíveis bases a para os logaritmos, veremos que a escolha mais conveniente para uma base é e, definido anteriormente.

O logaritmo na base *e* é chamado **logaritmo natural** e tem uma notação especial:

$$\log_e x = \ln x$$

DEFINIÇÕES

Se fizermos a = e e substituirmos $log_e x$ por "lnx", então as propriedades que definem a função logaritmo natural ficam

$$\ln x = y \iff e^y = x$$

$$\ln(e^x) = x$$
, $onde \ x \in \mathbb{R}$
 $e^{lnx} = x$, $onde \ x > 0$

Em particular, se fizermos x = 1, obteremos: $\ln e = 1$

EXEMPLO

Encontre x se $\ln x = 5$.

Solução 1: Vemos que

In
$$x = 5$$
 significa $e^5 = x$

Portanto, $x = e^5 \approx 148,41$

EXEMPLO

Solução 2: Comece com a equação

$$\ln x = 5$$

e então aplique a função exponencial a ambos os lados da equação:

$$e^{\ln x} = e^5$$

Mas a segunda equação do cancelamento afirma que $e^{\ln x} = x$. Portanto, $x = e^5$

EXEMPLO

Resolva a equação $e^{5-3x} = 10$.

 Tomando-se o logaritmo natural de ambos os lados da equação e usando (9):

$$\ln(e^{5-3x}) = \ln 10$$

$$5 - 3x = \ln 10$$

$$3x = 5 - \ln 10$$

$$x = \frac{1}{3}(5 - \ln 10)$$

Uma vez que o logaritmo natural é encontrado em calculadoras científicas, podemos aproximar a solução: até três casas decimais, *x* ≈ 0,899.

Assim como todas as outras funções logarítmicas com base maior que 1, o logaritmo natural é uma função crescente definida em $(0, \infty)$ e com o eixo *y* como assíntota vertical.

Ou seja, os valores de *lnx* se tornam números negativos muito grandes quando *x* tende a 0.

O gráfico da função y = lnx.

Embora $\ln x$ seja uma função crescente, seu crescimento é muito lento quando x > 1.

FUNÇÕES TRIGONOMÉTRICAS INVERSAS

Quando tentamos encontrar as funções trigonométricas inversas, temos uma pequena dificuldade. Como elas não são funções injetoras, elas não têm funções inversas.

A dificuldade é superada restringindo-se os domínios dessas funções de forma a tornálas injetoras.

FUNÇÕES TRIGONOMÉTRICAS INVERSAS

Você pode ver na figura que a função y = sen x não é injetora (use o Teste da Reta Horizontal).

FUNÇÃO INVERSA DE SENO / FUNÇÃO ARCO-SENO

Mas a função $f(x) = \operatorname{sen} x$, $-\pi/2 \le x \le \pi/2$ é injetora.

A função inversa dessa função seno restrita existe e é denotada por sen-1 x ou arcsen x. Ela é chamada inversa da função seno, ou função arco-seno.

Uma vez que a definição de uma função inversa diz que $f^{-1}(x) = y \iff f(y) = x$ temos:

$$sen^{-1} y = x \iff sen x = y e -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Assim, se -1 ≤ x ≤ 1, sen⁻¹x é o número entre - π /2 e π /2 cujo seno é x.

Calcule:

a.
$$sen\left(sen^{-1}\left(\frac{1}{2}\right)\right)$$

b.
$$sen^{-1}\left(sen\left(\frac{\pi}{3}\right)\right)$$

c.
$$\operatorname{tg}\left(\operatorname{arcsen}\left(\frac{1}{3}\right)\right)$$

EXEMPLO

EXEMPLO

Resolução:

a.
$$sen\left(sen^{-1}\left(\frac{1}{2}\right)\right) = \frac{1}{2}$$

b.
$$sen^{-1}\left(sen\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}$$

EXEMPLO

c. Seja θ = arcsen 1/3, logo sen θ = 1/3.

 Podemos desenhar um triângulo retângulo com o ângulo θ, como na figura e deduzir do Teorema de Pitágoras que o terceiro lado tem comprimento

$$x^2 + 1^2 = 3^2 \Rightarrow x = \sqrt{9 - 1} = \sqrt{8} = 2\sqrt{2}$$

Isso nos possibilita interpretar a partir do triângulo que

tg (arcsen 1/3) = tg
$$\theta = \frac{1}{2\sqrt{2}}$$

As equações de cancelamento para as funções inversas tornam-se, nesse caso,

sen-1(sen x) = x para
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

sen(sen-1 x) = x para $-1 \le x \le 1$

A função inversa do seno, sen-1, tem domínio [-1, 1] e imagem [- π /2, π /2], e seu gráfico, à direita, é obtido daquela restrição da função seno por reflexão em torno da reta y = x. (figura à esquerda)

FUNÇÃO INVERSA DO COSSENO

A função inversa do cosseno é tratada de modo similar. A função cosseno restrita $f(x) = \cos x$, $0 \le x \le \pi$, é injetora (veja a figura); logo, ela tem uma função inversa denotada por $\cos^{-1} x$ ou arccos x.

$$\cos^{-1} x = y \Leftrightarrow \cos y = x e 0 \le y \le \pi$$

FUNÇÃO INVERSA DO COSSENO

As equações de cancelamento são

$$\cos^{-1}(\cos x) = x \text{ para } 0 \le x \le \pi$$

 $\cos(\cos^{-1} x) = x \text{ para } -1 \le x \le 1$

FUNÇÃO INVERSA DO COSSENO

A função inversa do cosseno, cos⁻¹ x, tem domínio [-1, 1] e imagem [0, π].

Veja o gráfico.

A função tangente se torna injetora quando restrita ao intervalo (- π /2, π /2).

- Assim, a função inversa da tangente é definida como a inversa da função f(x) = tg x,
 π /2 < x < π /2 (veja a figura).
- Ela é denotada por tg⁻¹ x, ou arctg x.

$$tg^{-1}x = y \iff tg \ y = x \ e -\frac{\pi}{2} < y < \frac{\pi}{2}$$

FUNÇÃO INVERSA DA TANGENTE EXEMPLO Simplifique a expressão cos(tg⁻¹x).

Solução: fazendo $y = tg^{-1}x$, então tg y = x, e podemos concluir da Figura (que ilustra o caso y > 0) que

$$\cos (tg^{-1}x) = \cos y = \frac{1}{\sqrt{1+x^2}}$$

A função inversa da tangente, tg-1 x, tem domínio \mathbb{R} e imagem (- π /2, π /2). Veja o gráfico.

Sabemos que as retas $x = \pm \pi/2$ são assíntotas verticais do gráfico da tangente.

 Uma vez que o gráfico da tg⁻¹ x é obtido refletindo-se o gráfico da função tangente restrita em torno da reta

y = x, segue que as retas $y = \pi/2$ e $y = -\pi/2$ são assíntotas horizontais do gráfico de tg⁻¹ x.

DEFINIÇÃO

As funções inversas trigonométricas restantes não são usadas com tanta frequência e estão resumidas aqui.

$$y = \operatorname{cossec^{-1}x} (|x| \ge 1) \Leftrightarrow \operatorname{cossec} y = x \text{ e } y \in (0, \pi/2) \cup (\pi, 3\pi/2)$$
$$y = \operatorname{sec^{-1}x} (|x| \ge 1) \Leftrightarrow \operatorname{sec} y = x \text{ e } y \in (0, \pi/2) \cup (\pi, 3\pi/2)$$
$$y = \operatorname{cotg^{-1}x} (x \in \mathbb{R}) \Leftrightarrow \operatorname{cot} y = x \text{ e } y \in (0, \pi)$$

FUNÇÕES INVERSAS

A escolha dos intervalos para y nas definições de cossec⁻¹ x e sec⁻¹ x não são de aceitação universal.

Por exemplo, alguns autores usam $y \in [(0, \pi/2) \cup (\pi/2, \pi)]$ na definição de sec⁻¹ x

FUNÇÕES INVERSAS

Você pode ver no gráfico da função secante da figura que ambas as escolhas são válidas.

