Integrais Triplas em Coordenadas Esféricas

Esdras R. Carmo - 170656

26 de Outubro de 2016

1 Mudança de Coordenadas

Dado um ponto P com coordenadas (x, y, z) no sistema cartesiano, ele pode ser representado da seguinte forma em coordenadas esféricas (ρ, θ, ϕ) :

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \arctan \frac{y}{x}$$

$$z = \rho \cos \phi$$

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

Onde $\rho \geq 0$ e $0 \leq \phi \leq \pi$.

1.1 Exemplo de Sólidos

1.1.1 Cunha Esférica

Uma cunha esférica é dada por:

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \alpha \le \pi, c \le \phi \le d \}$$

em que $0 \le a, \beta - \alpha \le 2\pi, 0 \le c$ e $d \le \pi$.

Olhando esse sólido em um sistema de coordenadas esféricas daria uma caixa, e no sistema cartesiano justamente uma cunha esférica.

1.2 Integral

Para a mudança de variável na integral temos que multiplicar o integrando por $\rho^2 \sin \phi$.

2 Exemplos

Exemplo 2.1. Calcule

$$I = \iiint_{R} e^{(x^2 + y^2 + z^2)^{3/2}} dV$$

em que B é a bola unitária

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

Em coordenadas esféricas temos

$$B = \{ (\rho, \theta, \phi) \mid 0 \le \rho \le 1, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi \}$$
$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 e^{\rho^3} \rho^2 \sin \phi d\rho d\theta d\phi$$

Tomando $u = \rho^3$, temos $du = 3\rho^2 d\rho$. Logo,

$$I = \int_0^{\pi} \int_0^{2\pi} \int_0^1 \frac{1}{3} e^u \sin \phi du d\theta d\phi$$

$$I = \frac{1}{3} \int_0^{\pi} \int_0^{2\pi} (e - 1) \sin \phi d\theta d\phi$$

$$I = \frac{e - 1}{3} \int_0^{\pi} \sin \phi d\phi$$

$$I = \frac{4}{3} \pi (e - 1)$$

Exemplo 2.2. Utilize coordenadas esféricas para determinar o volume do sólido delimitado abaixo pelo cone $z = \sqrt{x^2 + y^2}$ e acima pela esfera $x^2 + y^2 + z^2 = z$. Note que, temos a seguinte esfera:

$$x^{2} + y^{2} + z^{2} - z + \frac{1}{4} = \frac{1}{4}$$
$$x^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}$$

Ou seja, uma esfera de raio $\frac{1}{2}$ centrada no ponto $\left(0,0,\frac{1}{2}\right)$.

Note que o cone possui exatamente o raio da esfera para $z=\frac{1}{2}$ que é quando os dois sólidos se encontram.

Vamos descrever a esfera:

$$x^2+y^2+z^2=z$$

$$\rho^2=\rho\cos\phi\ ,\ consider and o\ \rho\geq 0$$

$$\rho=\cos\phi$$

Descrevendo o cone:

$$z = \sqrt{x^2 + y^2}$$

$$\rho \cos \phi = \rho \sin \phi$$

$$\cos \phi = \sin \phi \Rightarrow \phi = \frac{\pi}{4}$$

Portanto a região que temos é:

$$E = \left\{ (\rho, \theta, \phi) \mid 0 \le \rho \le \cos \phi, 0 \le \phi \le \frac{\pi}{4}, 0 \le \theta \le 2\pi \right\}$$

Então podemos calcular a integral:

$$\begin{split} V &= \iiint_E dV \\ V &= \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta \\ V &= \frac{1}{3} \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \cos^3\phi \sin\phi d\phi d\theta \end{split}$$

Tomando $u = \cos \phi$, temos $du = -\sin \phi d\phi$. Logo,

$$V = -\frac{1}{3} \int_0^{2\pi} \int_0^{\frac{\sqrt{2}}{2}} u^3 du d\theta$$

$$V = -\frac{1}{12} \int_0^{2\pi} \left(\frac{1}{4} - 1\right) d\theta$$

$$V = \frac{\pi}{8}$$