SP03 Clase 04 Autoevaluación

1) La Exactitud (Accuracy) se mide como:

a.

$$Accuracy = rac{ ext{Cantidad de Observaciones}}{ ext{Total de Cantidad de Aciertos}}$$

b.

$$Accuracy = \frac{\text{Cantidad de Desaciertos}}{\text{Total de Observaciones}}$$

C.

$$Accuracy = \frac{\text{Cantidad de Aciertos}}{\text{Total de Observaciones}}$$

Rta:

2) Con respecto a la exactitud (Accuracy) AC:

a.
$$0 \leq AC \leq 1$$

b.
$$-1 \leq AC \leq 1$$

c.
$$AC > 0$$

$$\mathrm{d.}\ 0 < AC < 1$$

Rta:

2) Con respecto al valor de F1:

a.
$$0 \leq F1 \leq 1$$

b.
$$-1 \leq F1 \leq 1$$

c.
$$F1 \geq 0$$

$$\mathsf{d.}\ 0 < F1 < 1$$

Rta:

Dada la siguiente Matriz de Confusión (Confussion Matrix) obtenida al aplicar algún modelo de ML a un Test Set:

		Pred		
		Α	В	
Actual	Α	80	20	100
	В	40	90	130
		120	110	230

- a. 120
- b. 110
- c. 230
- d. 100
- e. 120

Rta:

4) Cuántas observaciones clasificó el modelo como A	4) Cuántas	observaciones	clasificó el	modelo	como A
---	------------	---------------	--------------	--------	--------

- a. 80
- b. 20
- c. 100
- d. 40
- e. 120

Rta:

5	Cuántas	observaciones	tanían raa	lmanta :	valor A2
U	i Guarilas	ODSELVACIONES	teman rea	шеше	valui A !

- a. 80
- b. 20
- c. 100
- d. 40
- e. 120

Rta:

6) Cuántas observaciones que el modelo clasificó como A, eran realmente A?

- a. 80
- b. 20
- c. 100
- d. 120

Rta:

7) Cuántas observaciones que eran realmente A el modelo clasificó como B?
a. 80 b. 20 c. 40 d. 90 e. 100
Rta:
7) Cuántas observaciones que el modelo clasificó como A en realidad eran B? a. 80 b. 20 c. 40 d. 90 e. 100
Rta:
8) Cuántas observaciones clasificó el modelo como A?
a. 80 b. 20 c. 40 d. 120 e. 100
Rta:
9) Cuántas observaciones clasificó bien el modelo?
a. 120 b. 110 c. 230 d. 80 e. 170 f. 90
Rta:
10) Cuántas observaciones clasificó mal el modelo?
a. 100 b. 130 c. 230 d. 80 e. 40 f. 60
Rta:

- 11) Cuál es la exactitud del modelo?
- a. $Accuracy = rac{60}{230}$
- b. $Accuracy = \frac{80}{100}$
- c. \$ Accuracy=\frac{80}{100} + \frac{90}{130}\$
- d. $Accuracy = \frac{170}{230}$
- e. Accuracy = 1
- f. Accuracy = 0

Rta:

- 12) Si entrena un modelo de Árbol de Decisión sin límite de profundidad en el Train Set y se lo evalúa en el Train Set, el valor de AC:
- a. Será 0
- b. Será 1
- c. Será -1
- d. Tenderá a infinito

Rta:

In []: