Why is the universal quantifier $\forall x \in A : P(x)$ defined as $\forall x (x \in A \implies P(x))$ using an implication?

And the same goes for the existential quantifier: $\exists x \in A : P(x) \Leftrightarrow \exists x(x \in A \land P(x))$. Why couldn't it be: $\exists x \in A : P(x) \Leftrightarrow \exists x(x \in A \implies P(x))$ and $\forall x \in A : P(x) \iff \forall x (x \in A \land P(x))$?

(logic) (definition) (quantifiers)

edited Dec 17 '13 at 2:45

Because we would prefer the statement $\exists x \in A : P(x)$ to actually mean that there is some element x in Athat satisfies P. If A is empty then your alternative version of it would always be true regardless of P. – Tobias Kildetoft May 21 '13 at 18:58

3 Answers

I thought to combine into one post all the answers and comments. One helpful source is pp 68-69 of How to Prove It by Daniel Velleman; see its chapter "Equivalences involving Quantifiers."

For the domain of discourse D, the formal definitions (in green) and the inoperational alternatives (in Fire Brick Red) are:

$$\exists x \in D : P(x) = \exists x \in D \ (x \in A \land P(x))$$
 (E = Existential)

$$\forall x \in D : P(x) = \forall x \in D \ (x \in A \Longrightarrow P(x))$$
 (U = Universal)

$$\exists x \in D : P(x) = \exists x \in D \ (x \in A \Longrightarrow P(x))$$
 (E*)

$$\forall x \in D : P(x) = \forall x \in D \ (x \in A \land P(x))$$
 (U*)

As per Tobias Kildetoft's commentary, (E*) is nonoperational, because (E) says: there is an actual element in x which, due to the \wedge , must satisfy P(x).

In the extreme case that $A = \emptyset$, $x \in A$ is false; so the antecedent of (E^*) is a false statement. False statements imply anything, so (E*) doesn't help.

Now, we analyse (U*). Case 1 of $2: A \subseteq D$

Then there exists at least one point $\in D$ but $\notin A$. Thus ... $\forall x \in D \ (x \in A...)$ fails.

Case 2 of 2:A=D

Then the RHS of (U*) becomes: $\forall x \in D \ (x \in D \land P(x))$, but this just reduces to $\forall x \in D P(x)$.

So Case 2 is not a problem, but Case 1 is. So we circumvent Case 1 with (U).

edited Mar 29 '15 at 14:58

answered Aug 27 '13 at 8:56 Canada - Area 51 Proposal

2,669 0 2 **■** 57 **△** 91

(U*)

Beautiful use of text color! - Lenar Hoyt Dec 17 '13 at 2:35

Consider the expression $\forall x \in A : P(x) \Leftrightarrow \forall x (x \in A \land P(x))$. Assuming A to be a proper subset of the domain of discourse, the expression will always be false, because by definition there are x values in the domain of discourse which are not in A.

> answered May 21 '13 at 19:06 Ataraxia **4,634 ○** 2 **■** 14 **△** 44

What if A equals the domain? - Lenar Hoyt May 21 '13 at 19:17

@mcb If A equals the domain, then none of this applies. That's why I said a proper subset. If A equals the domain then the expressions will simply be $(\forall x)P(x)$ and $(\exists x)P(x)$. – Ataraxia May 21 '13 at 19:22

I can't answer your first question. It's just the definition of the notation.

For your second question, by definition of \rightarrow , we have

 $\exists x (x \in A \to P(x)) \leftrightarrow \exists x \neg (x \in A \land \neg P(x))$

I think you will agree that this is quite different from

 $\exists x (x \in A \land P(x))$

answered May 27 '13 at 3:10

