CS290: Introduction to Algorithmic Game Theory

Week 5.2, Matching II (Dengji ZHAO)

SIST, ShanghaiTech University, China

Recap: Matching

Matching (Mechanism Design without Money)

- Agents in two sides.
- A matching: each agent is assigned to at most one agent on the other side.

Two-sided matching

 Agent in one set has strict preferences over agents in other set, e.g. students to schools

One-sided matching

 Only one side has strict preference on the other side, e.g. house allocation

Recap: One-sided Matching: House Allocation

- Without initial allocation
 - Serial dictatorship mechanism: pareto optimal
- With initial allocation
 - Top-trading-cycle (TTC) mechanism: pareto optimal, truthful

Two-sided Matching

Definition

A stable matching is a matching with no blocking pair, a blocking pair is two agents who prefer to match with each other.

Stable Matchings:

- Boy-Proposing Deferred Acceptance: stable
- Girl-Proposing Deferred Acceptance: stable

Question

Is Deferred Acceptance truthful?

Truthful Stable Matching

Theorem

The direct mechanism associated with the male propose algorithm is truthful for the males.

Question

Is there a mechanism that is both stable and truthful for both the males and females?

\succ_{m_1}	\succ_{m_2}	\succ_{m_3}	\succ_{w_1}	\succ_{w_2}	\succ_{w_3}
w_2	w_1	w_1	m_1	m_3	m_1
w_1	w_3	w_2	m_3	m_1	m_3
w_3	w_2	w_3	m_2	m_2	m_2

No Truthful and Stable Matching Mechanism

Theorem

There exists no mechanism that is both stable and truthful (in two-sided matching).

Proof.

- Consider two boys and two girls with the following preference profile:
 - $b_1: g_1 \succ_{b_1} g_2 \succ_{b_1} b_1; b_2: g_2 \succ_{b_2} g_1 \succ_{b_2} b_2$
 - $g_1: b_2 \succ_{g_1} b_1 \succ_{g_1} g_1; g_2: b_1 \succ_{g_2} b_2 \succ_{g_2} g_2$
- Only two stable matchings: $(b_1, g_1), (b_2, g_2)$ and $(b_1, g_2), (b_2, g_1)$, if the mechanism chooses the first matching, then g_1 will misreport $b_2 \succ_{g_1} g_1 \succ_{g_1} b_1$ to force the mechanism to choose the other matching.

Kidney Disease

- Kidney failure: a serious medical problem
- Preferred treatment: kidney transplant
 - Cadaver kidneys
 - Donation from live healthy people/relatives
 - Must be blood- and tissue-type compatible

Kidney Disease

http://optn.transplant.hrsa.gov

118,241

people need a lifesaving organ transplant (total waiting list candidates). Of those, 75,814 people are active waiting list candidates. Totals as of today 9:58am 5,367

organ transplants performed so far in 2017
Total Transplants January - February 2017
as of 03/19/2017

2,553

donors
Total Donors January - February 2017
as of 03/19/2017

Organ donation and transplantation can save lives

Every ten minutes, someone is added to the national transplant waiting list.

On average, 22 people die each day while waiting for a transplant.

One organ donor can save eight lives. <u>Sign</u> <u>up to be a donor</u> in your state.

Kidney Donation and Kidney Exchange: One-sided Matching

- Incompatible pairs
 - a patient and a donor (they are incompatible)
- Kidney exchanges
 - incompatible pairs participate in swaps

2-cycle Swap

• Can we apply Top Trading Cycle for kidney exchange?

- Can we apply Top Trading Cycle for kidney exchange?
 - 0/1 preferences, not strict
 - practical limitations (cannot have many operations at the same time)

- Can we apply Top Trading Cycle for kidney exchange?
 - 0/1 preferences, not strict
 - practical limitations (cannot have many operations at the same time)
- Solution?

- Can we apply Top Trading Cycle for kidney exchange?
 - 0/1 preferences, not strict
 - practical limitations (cannot have many operations at the same time)
- Solution?
 - Limit cycle lengths to ≤ k
 - Find vertex-disjoint cycles of length ≤ k that cover as many vertices as possible

- Can we apply Top Trading Cycle for kidney exchange?
 - 0/1 preferences, not strict
 - practical limitations (cannot have many operations at the same time)
- Solution?
 - Limit cycle lengths to ≤ k
 - Find vertex-disjoint cycles of length ≤ k that cover as many vertices as possible
- What will happen if there is one extra donor without patient?

Many-to-One Matching: College Admissions

Many-to-One Matching: College Admissions

Many-to-One Matching: College Admissions

- A set of colleges C, each $c \in C$ has a capacity q_c .
- A set of students I, each $i \in I$ has a preference \succeq_i over C.
- Each college $c \in C$ has a preference \succeq_c over 2^l .

Matching in College Admissions

Definition

A matching for college admissions is $\mu: C \cup I \Rightarrow 2^{C \cup I}$ such that:

- $\mu(c) \subseteq I$ such that $|\mu(c)| \le q_c$ for all $c \in C$,
- $\mu(i) \subseteq C$ such that $|\mu(i)| \le 1$ for all $i \in I$, and
- $i \in \mu(c)$ if and only if $\mu(i) = \{c\}$ for all $c \in C$ and $i \in I$.

Matching in College Admissions

Definition

A matching for college admissions is $\mu: C \cup I \Rightarrow 2^{C \cup I}$ such that:

- $\mu(c) \subseteq I$ such that $|\mu(c)| \le q_c$ for all $c \in C$,
- $\mu(i) \subseteq C$ such that $|\mu(i)| \le 1$ for all $i \in I$, and
- $i \in \mu(c)$ if and only if $\mu(i) = \{c\}$ for all $c \in C$ and $i \in I$.

A matching μ is

- blocked by a college $c \in C$ if there exists $i \in \mu(c)$ such that $\emptyset \succ_c \{i\}$.
- blocked by a student $i \in I$ if $\emptyset \succ_i \mu(i)$.
- individually rational if it is not blocked by any college or student.

Stable Matching

A matching μ is **blocked by a pair** $(c, i) \in C \times I$ if

- either there exists $j \in \mu(c)$ such that $\{i\} \succ_c \{j\}$, or $|\mu(c)| < q_c$ and $\{i\} \succ_c \emptyset$.

Definition

A matching is stable if it is not blocked by any student, college or pair.

College-Proposing Deferred Acceptance Algorithm

- **1** Each college c proposes to its top q_c acceptable students.
- Each student rejects any unacceptable proposals and, if more than one acceptable proposal is received, she "holds" the most-preferred and rejects the rest.
- Repeat until no more rejections. Each student is matched with the college she has been holding in the last step.

College-Proposing Deferred Acceptance Algorithm

- Each college c proposes to its top q_c acceptable students.
- Each student rejects any unacceptable proposals and, if more than one acceptable proposal is received, she "holds" the most-preferred and rejects the rest.
- Repeat until no more rejections. Each student is matched with the college she has been holding in the last step.

Quiz

Does the college-proposing deferred acceptance algorithm give a stable matching? Yes

Stable and Truthful

Theorem

There exists no mechanism that is stable and truthful.

Theorem

Truth-telling is a weakly dominant strategy for all students under the Student-Proposing Deferred Acceptance mechanism.

Theorem

There exists no stable mechanism where truth-telling is a weakly dominant strategy for all colleges.

Not Truthful for Colleges

There are 2 colleges c_1 , c_2 with $q_{c_1} = 2$, $q_{c_2} = 1$, and 2 students i_1 , i_2 . The preferences are as follows:

- \succeq_{i_1} : $\{c_1\} \succeq_{i_1} \{c_2\} \succeq_{i_1} \emptyset$;
- \succeq_{i_2} : $\{c_2\} \succeq_{i_2} \{c_1\} \succeq_{i_2} \emptyset$;
- \succeq_{c_1} : $\{i_1, i_2\} \succeq_{c_1} \{i_2\} \succeq_{c_1} \{i_1\} \succeq_{c_1} \emptyset$;
- $\bullet \succeq_{c_2} : \{i_1\} \succeq_{c_2} \{i_2\} \succeq_{c_2} \emptyset$

The only stable matching is $(c_1, i_1), (c_2, i_2)$.

Not Truthful for Colleges

There are 2 colleges c_1 , c_2 with $q_{c_1} = 2$, $q_{c_2} = 1$, and 2 students i_1 , i_2 . The preferences are as follows:

- \succeq_{i_1} : $\{c_1\} \succeq_{i_1} \{c_2\} \succeq_{i_1} \emptyset$;
- \succeq_{i_2} : $\{c_2\} \succeq_{i_2} \{c_1\} \succeq_{i_2} \emptyset$;
- $\bullet \succeq_{c_1} : \{i_1, i_2\} \succeq_{c_1} \{i_2\} \succeq_{c_1} \{i_1\} \succeq_{c_1} \emptyset;$
- $\bullet \succeq_{c_2} : \{i_1\} \succeq_{c_2} \{i_2\} \succeq_{c_2} \emptyset$

The only stable matching is $(c_1, i_1), (c_2, i_2)$.

Question

Is there any way for college c_1 to manipulate to receive a better matching?

• Yes, e.g. \succeq'_{c_1} : $\{i_2\}\succeq'_{c_1}\emptyset\succeq'_{c_1}\{i_1,i_2\}\succeq'_{c_1}\{i_1\}$

Advanced Reading

 Matching Markets: Theory and Practice by Atila Abdulkadirog and Tayfun Sonmez