

Computação Quântica: Algoritmo de Shor

Bruna Shinohara - Doutoranda em Física - USP Arthur Faria- Doutorando em Física - UNICAMP/ U. of Stuttgart

- O que é um protocolo de criptografia?
- Problemas NP
- Algoritmo de Shor passos
- Versão quântica
 - transformada de Fourier quântica
 - estimativa de fase quântica
- o Implementação em Qiskit

O QUE É UM PROTOCOLO DE CRIPTOGRAFIA?

O QUE É UM PROTOCOLO DE CRIPTOGRAFIA?

É alguma função na qual se transforma uma mensagem em alguma outra mensagem, de forma em que a comunicação seja privada.

- Trocar letras por outras letras, ou um conjunto de letras, seguindo um padrão
- Dificultar a visualização da mensagem (estenografia)

Entre outros.

Fonte: https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/

11111111

00000000

Least Significant Bit Steganography

C a t 01 10 00 11 01 10 00 01 01 11 01 00

COMO FAZER UM PROTOCOLO?

Em geral, busca-se um problema matemático que seja considerado "difícil", até para uma máquina, de forma em que a quebra da criptografia demore um tempo impraticável.

Na prática, problemas tipo "NP" (fácil de testar uma resposta que já se saiba, difícil de de achar solução em tempo hábil).

SIMÉTRICA VERSUS ASSIMÉTRICA

Na simétrica, utiliza-se a mesma chave para criptografar e decifrar. Na assimétrica, chaves diferentes.

A Assimétrica é mais segura, mas a simétrica funciona melhor para grandes fluxos de informação (ex: AES)

DOIS PROBLEMAS NP IMPORTANTES

- Logaritmo discreto de curva elíptica (ECDLP)
- Fatoração em primos

São problemas diferentes, mas ambos envolvem aritmética modular.

RELEMBRANDO: ARITMÉTICA MODULAR

 $x = y \pmod{N}$

 $15 = 3 \mod(N)$

(15 horas = 3horas, nossos relógios seguem aritmética mod 12)

Relacionado a operação de módulo (%), que retorna o resto de uma divisão inteira.

Exemplo: 15 % 4 = 3

ALGORITMO DE SHOR

ALGORITMO DE SHOR

O algoritmo de Shor resolve mais rapidamente o problema de fatoração de primos.

O problema consiste na decomposição de um número em multiplicação de números que sejam primos, e não há forma rápida de fazer isso.

Essa é a base pra criptografia RSA, uma das mais importantes criptografias assimétricas atuais.

PASSOS DO ALGORITMO DE SHOR

Passos do algoritmo de Shor

Dado um número N que queremos fatorar, os passos do algoritmo são

1. Escolher um número a < N que seja coprimo de N:

$$MDC(N, a) = 1.$$

2. Encontrar a ordem r. A ordem é definida como o menor número natural que satisfaça:

$$a^r = 1 \bmod N$$

3. Se r for ímpar ou

$$a^{r/2} = -1 \operatorname{mod} N$$
,

escolhe-se outro número.

4. Se r for par, temos que

$$\{MDC(a^{r/2}+1), MDC(a^{r/2}-1)\}$$

São dois divisores não-triviais de N.

N = 15

- 1. Escolher um número a < N que seja coprimo de N: vamos escolher a=13.
- 2. Encontrar a ordem r, tal que

Vamos testar diferentes valores de r:

$$13^{1} = 13 \mod 15$$

 $13^{2} = 4 \mod 15$
 $13^{3} = 7 \mod 15$
 $13^{4} = 1 \mod 15$
 $13^{5} = 13 \mod 15$
 $13^{6} = 4 \mod 15$

 $13' = 1 \mod 15$

Vemos que r = 4 satisfaz a condição.

3. Temos que

$${MDC(13^{4/2} + 1), MDC(13^{4/2} - 1)}$$

= ${5, 3}$

São dois divisores não-triviais de 15.

- Quantum Phase Estimation (QPE)
- Quantum Fourier Transform (QFT)

Obrigada!

Perguntas?