Resolução da <u>Lista 5</u> da disciplina de Matemática Discreta

Feita por Guilherme de Abreu Barreto¹

1. Álgebras booleanas

1.

$$\mathbf{a}.(a'+b')c;$$

b. bc + ca = c(a+b). Forma dual: c' + a'b';

c.
$$a + b' + c'$$
;

d.
$$ab(b+c') = abb + abc' = (ab) + (ab)c' = ab$$
. Forma dual: $a' + b'$;

e.
$$(a' + b')(b' + c')(c' + a')$$
;

2.

A algebra booleana está definida nos seguintes termos:

- ullet Existe um conjunto (no caso, B) contendo pelo menos dois elementos ditos **especiais**:
 - \circ o elemento nulo aditivo (no caso, 0);
 - \circ o elemento nulo multiplicativo (no caso, 1);
- Existem duas operações binárias (que relacionam dois elementos):
 - ∘ Adição (no caso, +) e
 - Multiplicação (no caso, *).
- ullet Existe uma operação unária que associa cada elemento $x\in B$ a um elemento $x'\in B$ denominado seu complemento.
 - \circ No caso, a operação é denotada pelo sinal ' e os elementos complementares entre si são a com f, b com e, c com d, 0 com 1.

Fica demonstrada a relação de ${\mathscr B}$ com a álgebra booleana.

a. Para qualquer $a \in D_N$ tem-se:

- a+1 = mmc(a,1) = a;
- ullet a*N=mdc(a,N), como $a\leq N$, $N\mid a$ então mdc(a,N)=a.

b,c e d. Uma sêxtupla de elementos constitui uma álgebra booleana se cinco propriedades são satisfeitas, demonstradas à seguir, $\forall a, b, c \in \mathbb{N} - \{1, 0\}$:

P1. Comutatividade

- a + b = mmc(a, b) = mmc(b, a) = b + a;
- a * b = mdc(a, b) = mdc(b, a) = b * a;

P2. Associatividade

- \bullet (a + b) + c = mmc(mmc(a, b), c) = mmc(a, mmc(b, c)) = a + (b + c);
- (a * b) * c = mdc(mdc(a, b), c) = mdc(a, mdc(b, c)) = (a * b) * c

P3. Distributividade

- $\bullet \ a + (b*c) = mmc(a, mdc(b, c)) = mdc(mmc(a, b), mmc(a, c)) = (a+b)*(a+c);$
- ullet a*(b+c)=mdc(a,mmc(b,c))=mmc(mdc(a,b),mdc(a,c))=(a*b)+(a*c);

Prova

Quaisquer números $a,b\in\mathbb{N}$ tais que a,b>1 podem ser escritos como produtos de potências dos mesmos n números primos p, ainda que por diferentes expoentes $(k \in l)^2$:

$$a=\prod_{i=1}^n p_i^{k_i} \qquad b=\prod_{i=1}^n p_i^{l_i}$$

Assim, as expressões mmc(a,b) e mdc(a,b) podem ser descritas enquanto uma decomposição de números primos 3 da seguinte maneira:

$$mmc(a,b) = p_1^{\max(k_1,l_1)} p_2^{\max(k_2,l_2)} \dots p_n^{\max(k_n,l_n)} = \prod_{i=1}^n p_i^{\max(k_i,l_i)} \ mdc(a,b) = p_1^{\min(k_1,l_1)} p_2^{\min(k_2,l_2)} \dots p_n^{\min(k_n,l_n)} = \prod_{i=1}^n p_i^{\min(k_i,l_i)}$$

Onde max(a,b) e min(a,b) tratam-se das funções $\mathbb{N}^2 \to \mathbb{N}$ que escolhem o maior e o menor valor entre aqueles fornecidos, respectivamente.

Lema: As operações de máximo e mínimo são distributivas entre si.

Procederemos por exaustão. Temos 6 casos a considerar:

•
$$a \leq b \leq c$$

$$\circ \max(a, \min(b, c)) = \max(a, b) = b$$

$$\min(\max(a, b), \max(a, c)) = \min(b, c) = b$$

$$\circ \min(a, \max(b, c)) = \min(a, c) = a$$
$$\max(\min(a, b), \min(a, c)) = \max(a, a) = a$$

•
$$a < c < b$$

$$\circ \ \max(a, \min(b, c)) = \max(a, c) = c$$

$$\min(\max(a, b), \max(a, c)) = \min(b, c) = c$$

$$\circ \min(a, \max(b, c)) = \min(a, b) = a$$

$$\max(\min(a, b), \min(a, c)) = \max(a, a) = a$$

•
$$b \le a \le c$$

$$\circ \max(a, \min(b, c)) = \max(a, b) = a$$

$$\min(\max(a, b), \max(a, c)) = \min(a, c) = a$$

$$\circ \min(a, \max(b, c)) = \min(a, c) = a$$
$$\max(\min(a, b), \min(a, c)) = \max(b, a) = a$$

•
$$b \le c \le a$$

$$\circ \ \max(a, \min(b, c)) = \max(a, c) = a$$

$$\min(\max(a, b), \max(a, c)) = \min(a, a) = a$$

$$\circ \min(a, \max(b, c)) = \min(a, c) = c$$

 $\max(\min(a, b), \min(a, c)) = \max(b, c) = c$

•
$$c \le a \le b$$

$$\circ \max(a, \min(b, c)) = \max(a, c) = a$$
$$\min(\max(a, b), \max(a, c)) = \min(b, a) = a$$

$$\circ \min(a, \max(b, c)) = \min(a, b) = a$$

$$\max(\min(a, b), \min(a, c)) = \max(a, c) = a$$

•
$$c \le b \le a$$

$$\circ \max(a, \min(b, c)) = \max(a, c) = a$$

$$\min(\max(a, b), \max(a, c)) = \min(a, a) = a$$

$$\circ \max(a, \min(b, c)) = \max(a, c) = a$$
$$\min(\max(a, b), \max(a, c)) = \min(a, a) = a$$

Corolário: As operações de mmc e mdc são distributivas entre si.

$$egin{aligned} mmc(a, mdc(b, c)) &= \prod_{i=1}^n p_i^{\max(k_i, \min(l_i, m_i))} = \prod_{i=1}^n p_i^{\min(\max(k_i, l_i), \max(k_i, m_i))} \ &= mdc(mmc(a, b), mmc(a, c)) \end{aligned}$$

$$egin{aligned} mdc(a, mmc(b, c)) &= \prod_{i=1}^n p_i^{\min(k_i, \max(l_i, m_i))} = \prod_{i=1}^n p_i^{\max(\min(k_i, l_i), \min(k_i, m_i))} \ &= mmc(mdc(a, b), mdc(a, c)) \end{aligned}$$

P4. Identidade

•
$$a+1 = mmc(a,1) = a$$

•
$$a * N = mdc(a, N) = a$$

P5. Complementariedade

$$ullet \ a+a'=mmc(a,N/a)=N$$
 , se $N/a
mid a$

•
$$a*a'=mdc(a,N/a)=1$$
, se $N/a \nmid a$

Assim, a $\mathscr{B}=\langle D_N,+,*,',1,N\rangle$ tal qual definida pelo enunciado **pode** constituir uma álgebra booleana, a depender do valor $N\in\mathbb{N}$. Analisemos os casos apresentados: D_{70},D_{15} e D_18 . Nestes três as propriedades **P1** à **P4** se sustentam, mas a propriedade **P5** apresenta divergência:

 $D_{15}:$

a	a'	mmc(a,a')	mdc(a,a')
1	15	15	1
3	5	15	1
5	3	15	1
15	1	15	1

$D_{70}:$

a	a'	mmc(a,a')	mdc(a,a')
1	70	70	1
2	35	70	1
5	14	70	1
7	10	70	1
10	7	70	1
14	5	70	1
35	2	70	1
70	1	70	1

 $D_{18}:$

a	a'	mmc(a,a')	mdc(a,a')
1	18	18	1
2	9	18	1
3	6	6	3
6	3	6	3
9	2	18	1
18	1	18	1

Destes três conjuntos, apenas os dois primeiros conjuntos satisfazem a definição de álgebra booleana.

e. Prosseguiremos em nossa demonstração por contradição. Por hipótese, D_N constitui uma algebra booleana e possui a propriedade de complementariedade p*p'=mdc(p,N/p)=1, onde 1< p< N. Também, $N\mid p$ e $N\mid p^2$. Assim,

$$egin{cases} N = p \cdot p' \ N = p^2 \cdot (p^2)' \ \therefore p' = (p^2)' \cdot p \end{cases}$$

E portanto, $p*p'=mdc(p,p')=mdc(p,(p^2)'\cdot p)=p$, chegamos à uma contradição. Logo, não é possível D_N constituir uma álgebra booleana se esta contêm tanto a p e p^2 .

4.

a. Usando as definições das operações *,+ e ' obtemos os seguintes resultados quando os valores de a,b e c são 0 ou 1:

Para ab + c = (a+c)(b+c):

a	b	c	ab	ab+c
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

a	b	c	(a+c)	(b+c)	(a+c)(b+c)
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Para (a+b)c = ac + bc:

a	b	c	(a+b)	(a+b)c
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

a	b	c	ac	bc	ac + bc
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	1

b.

a	b	a+b	ab	a'b'	(a+b)'
0	0	0	0	1	1
0	1	1	0	0	0
1	0	1	0	0	0
1	1	1	1	0	0

a	b	ab	(ab)'	a'+b'
0	0	0	1	1
0	1	0	1	1
1	0	0	1	1
1	1	1	0	0

5.

a.
$$a + a'b = (a + a')(a + b) = 1(a + b) = a + b$$

b.
$$a + ab + b = (a + ab) + b = a + b$$

c.
$$a + b(a + c) = a + ba + bc = (a + ba) + bc = a + bc = (a + b)(a + c)$$

d.
$$a + b + a'b'c = a + (b + a')(b + b')(b + c) = a + b + a'c = b + (a + a')(a + c) = a + b + c$$

^{1.} nUSP: 12543033; Turma 04

^{2.} **Expression for Integers as Powers of Same Primes**. Disponível em: https://proofwiki.org/wiki/Expression for Integers as Powers of Same Primes. Acesso em: 28 nov. 2021.

^{3.} **GCD and LCM from Prime Decomposition**. Disponível em: https://proofwiki.org/wiki/GCD and LCM from Prime Decomposition. Acesso em: 28 nov. 2021.

^{4.} **Boolean algebra**. Disponível em: https://en.wikipedia.org/wiki/Boolean algebra#Duality_principle. Acesso em: 28 nov. 2021.