Calculs d'intégrales, Espaces \mathcal{L}^p & Convolution

2022-2023: TD 2

1 Intégrales à paramètre

Exercice 1 – Étude de fonction. Soit $\varphi: [0,1] \to \mathbb{R}$ une fonction Lebesgue-intégrable, et soit $F: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie pour tout $t \ge 0$ par $F(t) := \int_{[0,1]} \sqrt{\varphi(x)^2 + t} \, dx$.

- 1. Montrer que F est continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* .
- 2. Donner une condition nécéssaire et suffisante pour que *F* soit dérivable en 0.

Exercice 2 – *Une limite d'intégrales* [1]. Soient (X, \mathcal{T}, μ) un espace mesuré, $f: X \to [0, +\infty]$ telle que $\int_X f \, d\mu = 1$, et $\alpha > 0$. Déterminer la limite

$$\lim_{n\to+\infty}\int_X n\log\left(1+\frac{f^\alpha}{n^\alpha}\right)\mathrm{d}\mu.$$

Exercice 3 – Autour de la fonction Γ [2, 3].

- 1. Montrer que $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt$ est bien définie pour tout s > 0.
- 2. Montrer que la fonction $\Gamma: \mathbb{R}_+^* \to \mathbb{R}_+^*$ est de classe C^{∞} et donner une expression de ses dérivées.
- 3. En utilisant la suite de fonctions $(f_n: t \in \mathbb{R}^*_+ \longmapsto \mathbb{1}_{]0,n[}(t)(1-\frac{t}{n})^n t^{s-1})_{n \geq 1}$, montrer la formule de Gauss :

$$\forall s > 0$$
, $\Gamma(s) = \lim_{n \to +\infty} \frac{n! n^s}{s(s+1)\cdots(s+n)}$.

Exercice 4 − ▶ DEV ◀ *Intégrale de Dirichlet [4]*. L'objectif de cet exercice est de justifier l'existence et de calculer l'intégrale

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x.$$

1. Montrer que, effectivement, $\int_0^A \frac{\sin x}{x} dx$ admet une limite finie lorsque A tend vers $+\infty$.

Dans la suite de l'exercice on introduit la fonction $F: t \in \mathbb{R}_+ \longmapsto \int_0^{+\infty} e^{-tx} \frac{\sin x}{x} \ \mathrm{d}x$.

- 2. Montrer que F est continue et dérivable sur \mathbb{R}_+^* et calculer sa dérivée.
- 3. En déterminant la limite de F en $+\infty$, obtenir une expression simple de F sur \mathbb{R}^*_{+} .
- 4. Conclure en démontrant que *F* est continue en 0.

Exercice 5 – Transformée de Fourier d'une gaussienne. On pose $f_\alpha: x \in \mathbb{R} \longmapsto e^{-\alpha x^2}$ pour $\alpha > 0$.

- 1. Calculer l'intégrale de Gauss $\int_{\mathbb{R}_+} f_1(x) dx$. Indication : introduire les fonctions $g: x \mapsto (\int_0^x e^{-t^2} dt)^2 et h: x \mapsto \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ et exprimer g+h.
- 2. Calculer la transformée de Fourier de f_{α} :

$$\mathcal{F}(f_{\alpha}): \zeta \longmapsto \int_{\mathbb{R}} f_{\alpha}(x)e^{i\zeta x} dx.$$

1

Indication : déterminer une équation différentielle vérifiée par $\mathcal{F}(f_{\alpha})$.

2 Théorèmes de Fubini

Exercice 6 – *Interversion de sommes* [5]. Soit $(a_{m,n})_{m,n\geq 0}$ une suite de réels positifs. Montrer que

$$\sum_{n\geq 0} \sum_{m\geq 0} a_{m,n} = \sum_{m\geq 0} \sum_{n\geq 0} a_{m,n}.$$

Exercice 7 – *Contre-exemple au théorème de Fubini-Tonelli*?. Donner un exemple de fonction φ positive, continue sur] – 1, 1[2, d'intégrale finie, mais telle que $\int_{l-1,1} \varphi(x,y) dy$ soit infinie pour certains $x \in]-1,1[$.

Exercice 8 – Les hypothèses des théorèmes de Fubini. Soient X = Y = [0,1] munis (sauf contre-indication) de la mesure de Lebesgue.

1. Soit $(\delta_n)_{n\in\mathbb{N}^*}\in[0,1]^{\mathbb{N}^*}$ une suite strictement croissante d'éléments convergeant vers 1 et telle que $\delta_1=0$. Soit, pour $n \in \mathbb{N}^*$, φ_n une fonction continue positive d'intégrale 1 et à support dans $]\delta_n, \delta_{n+1}[$, puis :

$$f:(x,y)\in X\times Y\longmapsto \sum_{n\geq 1}\Big(\varphi_n(x)-\varphi_{n+1}(x)\Big)\varphi_n(y).$$

Calculer

$$\int_X \left(\int_Y f(x, y) \, dy \right) dx \qquad \text{et} \qquad \int_Y \left(\int_X f(x, y) \, dx \right) dy.$$

- 2. On admet (cela découle de l'hypothèse du continu) qu'il existe une partie $Q \subset X \times Y$ telle que :
 - (★) $Q \cap (X \times \{y\})$ est dénombrable pour tout $y \in Y$,
 - (★★) $Q \cap (\{x\} \times Y)$ est de complémentaire dénombrable pour tout $x \in X$.

Calculer les mêmes intégrales qu'à la question 1. avec $f = \mathbb{1}_{\mathbb{Q}}$.

3. On suppose désormais que Y est muni de la mesure dénombrement μ . Pour $f:(x,y)\mapsto \mathbb{1}_{x=y}$, calculer

$$\int_{X} \left(\int_{Y} f(x, y) \, d\mu(y) \right) dx \qquad \text{et} \qquad \int_{Y} \left(\int_{X} f(x, y) \, dx \right) d\mu(y).$$

Dans chaque cas, que conclure vis-à-vis des théorèmes de Fubini?

Exercice 9 – *Calculs d'intégrales*. 1. Calculer $\int_0^{+\infty} \frac{\ln x}{x^2 - 1} dx$ en considérant $f(x, y) = \frac{1}{(1 + y)(1 + x^2 y)} \operatorname{sur} (\mathbb{R}_+)^2$. 2. Calculer $\int_0^{+\infty} \frac{\sin x}{x} e^{-tx} dx$ où t > 0 en remarquant que $\frac{\sin x}{x} = \int_0^1 \cos(xy) dy$.

Espaces \mathcal{L}^p et Convolution

Exercice 10 – . Soit $(f_n)_{n\geq 0}$ une suite de $\mathcal{L}^p(E,\mathcal{A},\mu)\cap\mathcal{L}^q(E,\mathcal{A},\mu)$ avec $p,q\in]1,+\infty[$. On suppose que $f_n\xrightarrow[n\to+\infty]{\mathcal{L}^p}0$ et que $(f_n)_{n\geq 0}$ est une suite de Cauchy de \mathcal{L}^q . Montrer que $f_n \xrightarrow[n \to +\infty]{} 0$.

Le résultat persiste-t-il si l'on ne suppose plus que $(f_n)_{n\geq 0}$ est une suite de Cauchy de \mathcal{L}^q ?

Exercice 11 – *Super Hölder*. Soit (X, \mathcal{A}, μ) un espace mesuré. Soient $p, q, r \in [1, +\infty]$ tels que $\frac{1}{v} + \frac{1}{q} = \frac{1}{r}$. Montrer que si $f \in \mathcal{L}^p$ et $g \in \mathcal{L}^q$, on a $fg \in \mathcal{L}^r$ et $||fg||_r \le ||f||_p ||g||_q$.

Exercice 12 – *Quelques généralités*. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit f une fonction mesurable sur X, non presque partout nulle. On note *E* l'ensemble des $p \in [1, +\infty[$ tels que $f \in \mathcal{L}^p(\mu)$ et on note $\varphi(p) = \int_X |f|^p d\mu$.

- 1. Montrer que *E* est un intervalle.
- 2. Montrer que E peut être n'importe quel intervalle (on prendra bien compte de distinguer les bornes ouvertes et fermées!).
- 3. Montrer que $ln(\varphi)$ est convexe sur E.
- 4. Montrer que φ est continue sur E.
- 5. Supposons *E* non vide. Montrer que $||f||_p \underset{p \to +\infty}{\longrightarrow} ||f||_{\infty}$.

Exercice 13 – $L^{\infty}(\mathbb{R}^d, \lambda_d)$ *n'est pas séparable [6].* 1. Soit *E* un ensemble. On suppose qu'il existe une famille $(O_i)_{i \in I}$ de sous-ensembles de E tels que :

(a) pour tout $i \in I$, O_i est un ouvert non vide de E,

- (b) $O_i \cap O_j = \emptyset \text{ si } i \neq j$,
- (c) I n'est pas dénombrable.

Montrer que *E* n'est pas séparable.

2. Pour tout $x \in \mathbb{R}^d$, on pose $f_x = \mathbb{1}_{\mathcal{B}(x,1)}$ où $\mathcal{B}(x,1) \subset \mathbb{R}^d$ est la boule fermée de centre x et de rayon 1. En utilisant la famille d'ouverts $(O_x)_{x \in \mathbb{R}^d}$ avec

$$O_x = \left\{ f \in L^{\infty}(\mathbb{R}^d, \lambda_d), \, \|f - f_x\|_{\infty} < \frac{1}{2} \right\},\,$$

montrer que $L^{\infty}(\mathbb{R}^d, \lambda_d)$ n'est pas séparable.

Exercice 14 – . Soient I =]0, 1[, et $p \in [1, +\infty[$. Soit $f \in \mathcal{L}^p(\mathbb{R})$ nulle en dehors de I. Pour h > 0, on définit f_h par

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt.$$

- 1. Montrer que f_h est bien définie.
- 2. Montrer que f_h est continue.
- 3. Montrer que $||f_h||_p \le ||f||_p$.
- 4. Montrer que $\lim_{h \to 0^+} ||f_h f||_p = 0$.

Exercice 15 – Continuité de l'opérateur de translation sur $\mathcal{L}^p(\mathbb{R}^d)$ [5]. Pour $h \in \mathbb{R}^d$ et $f \in \mathcal{L}^p(\mathbb{R}^d)$, on pose $\tau_h f : x \mapsto f(x-h)$ et on note $|h| = ||h||_{\infty}$.

- 1. Montrer que $\tau_h : f \mapsto \tau_h f$ est une isométrie de $\mathcal{L}^p(\mathbb{R}^d)$ pour tout $h \in \mathbb{R}^d$.
- 2. On suppose que $p < +\infty$. Montrer que pour $f \in \mathcal{L}^p(\mathbb{R}^d)$ on a

$$\lim_{h \to 0} ||\tau_h f - f||_p = 0 \qquad \text{et} \qquad \lim_{|h| \to +\infty} ||\tau_h f - f||_p = 2^{\frac{1}{p}} ||f||_p.$$

Les résultats persistent-t-ils lorsque $p = +\infty$?

- 3. Soit $(\alpha_n)_{n\in\mathbb{N}}$ une approximation de l'unité, et soit $f\in\mathcal{L}^p(\mathbb{R}^d)$. On suppose d'abord que $p<+\infty$.
 - (a) Pour tout $n \in \mathbb{N}$, montrer que $\alpha_n * f \in \mathcal{L}^p(\mathbb{R}^d)$.
 - (b) Pour tout $n \in \mathbb{N}$, montrer que $\|\alpha_n * f f\|_p^p \le \int_{\mathbb{R}^d} \|\tau_y f f\|_p^p \alpha_n(y) dy$.
 - (c) En déduire que $\alpha_n * f \xrightarrow[n \to +\infty]{\mathcal{L}^p} f$.
 - (d) Le résultat persiste-t-il si $p = +\infty$?
- 4. Soit Ω un ouvert de \mathbb{R}^d . Montrer que $C_c^{\infty}(\Omega)$ est dense dans $\mathcal{L}^p(\Omega)$ pour $p < +\infty$.
- 5. Soit $f \in \mathcal{L}^2(\mathbb{R}) \cap C^1(\mathbb{R})$ et telle que $f' \in \mathcal{L}^2(\mathbb{R})$. Montrer qu'il existe une suite $(f_n)_{n \geq 0}$ de fonctions $C^{\infty}(\mathbb{R})$, convergeant vers f dans $\mathcal{L}^2(\mathbb{R})$ et dont les dérivées convergent vers f' dans $\mathcal{L}^2(\mathbb{R})$.
- 6. (Lemme de Riemann-Lebesgue) Si $f \in \mathcal{L}^1(\mathbb{R})$, montrer que

$$\mathcal{F}(f)(\zeta) = \int_{\mathbb{R}} f(x)e^{-i\zeta x} dx \xrightarrow[|\zeta| \to +\infty]{} 0.$$

Indication : on pourra remarquer que $\mathcal{F}(f)(\zeta) = -\int_{\mathbb{R}} f(x)e^{-i\zeta(x+\frac{\pi}{\zeta})} dx$ pour $\zeta \neq 0$.

Références

- [1] W. Rudin, Analyse réelle et complexe. Dunod, 2ème ed., 1998.
- [2] X. Gourdon, Les maths en tête Analyse. Ellipses, 2ème ed., 2008.
- [3] H. Queffélec and C. Zuily, Analyse pour l'agrégation. Dunod, 4ème ed., 2013.
- [4] O. Garet and A. Kurtzmann, De l'intégration aux probabilités. Ellipses, 2011.
- [5] M. Briane and G. Pagès, Théorie de l'intégration. Vuibert, 6ème ed., 2015.
- [6] H. Brezis, Analyse fonctionnelle: théorie et applications. Dunod, 1999.