STAT 500

Estimability

Identifiability and Estimability

Definition: For a linear model $E(\mathbf{Y}) = X\beta$, the parameter vector $\boldsymbol{\beta}$ is identifiable if $X\beta_1 = X\beta_2$ implies $\beta_1 = \beta_2$

- Only identifiable parameters can be estimated
- Linear functions of identifiable parameters are called *estimable*
- Unbiased estimators can be found for estimable functions of model parameters

One-Way ANOVA Cell Means Model

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{14} \\ Y_{21} \\ Y_{22} \\ Y_{23} \\ Y_{24} \\ Y_{31} \\ Y_{32} \\ Y_{33} \\ Y_{34} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{14} \\ \epsilon_{21} \\ \epsilon_{22} \\ \epsilon_{23} \\ \epsilon_{24} \\ \epsilon_{31} \\ \epsilon_{32} \\ \epsilon_{33} \\ \epsilon_{34} \end{bmatrix}$$

Let
$$\beta_1 = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$

$$\begin{bmatrix} E(Y_{11}) \\ E(Y_{12}) \\ E(Y_{13}) \\ E(Y_{14}) \\ E(Y_{21}) \\ E(Y_{22}) \\ E(Y_{23}) \\ E(Y_{24}) \\ E(Y_{31}) \\ E(Y_{32}) \\ E(Y_{32}) \\ E(Y_{33}) \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_1 \\ \beta_2 \\ \beta_2 \\ \beta_2 \\ \beta_2 \\ \beta_3 \\ \beta_3 \\ \beta_3 \\ \beta_3 \\ \beta_3 \end{bmatrix}$$

Let
$$\beta_2 = \begin{pmatrix} \beta_1^* \\ \beta_2^* \\ \beta_3^* \end{pmatrix}$$

$$\begin{bmatrix} E(Y_{11}) \\ E(Y_{12}) \\ E(Y_{13}) \\ E(Y_{14}) \\ E(Y_{21}) \\ E(Y_{22}) \\ E(Y_{23}) \\ E(Y_{24}) \\ E(Y_{31}) \\ E(Y_{32}) \\ E(Y_{33}) \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \beta_1^* \\ \beta_2^* \\ \beta_2^* \\ \beta_3^* \\ \beta_3^* \\ \beta_3^* \\ \beta_3^* \\ \beta_3^* \\ \beta_3^* \end{bmatrix}$$

One-Way ANOVA Cell Means Model

- For $X\beta_1 = X\beta_2$, we must have $\beta_1 = \beta_2$
- ullet For this model, eta is identifiable.
- The vector of response means uniquely determines the values of the parameter vector β .

One-Way ANOVA Effects Model

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{14} \\ Y_{21} \\ Y_{22} \\ Y_{23} \\ Y_{24} \\ Y_{31} \\ Y_{32} \\ Y_{34} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{21} \\ \epsilon_{21} \\ \epsilon_{22} \\ \epsilon_{23} \\ \epsilon_{24} \\ \epsilon_{31} \\ \epsilon_{32} \\ \epsilon_{33} \\ \epsilon_{34} \end{bmatrix}$$

Let
$$m{eta}_1 = \left(egin{array}{c} \mu_3 \\ \mu_1 - \mu_3 \\ \mu_2 - \mu_3 \\ 0 \end{array} \right)$$

$$\begin{bmatrix} E(Y_{11}) \\ E(Y_{12}) \\ E(Y_{13}) \\ E(Y_{14}) \\ E(Y_{21}) \\ E(Y_{22}) \\ E(Y_{23}) \\ E(Y_{24}) \\ E(Y_{31}) \\ E(Y_{32}) \\ E(Y_{33}) \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ \mu_3 \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Let
$$eta_2 = \begin{pmatrix} 0 \\ \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}$$

$$\begin{bmatrix} E(Y_{11}) \\ E(Y_{12}) \\ E(Y_{13}) \\ E(Y_{14}) \\ E(Y_{21}) \\ E(Y_{22}) \\ E(Y_{23}) \\ E(Y_{24}) \\ E(Y_{31}) \\ E(Y_{32}) \\ E(Y_{33}) \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_1 \\ \mu_1 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_2 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

One-Way ANOVA Effects Model

- $X\beta_1 = X\beta_2$ but $\beta_1 \neq \beta_2$, so β is not identifiable.
- ullet The vector of response means does not uniquely determine the values of the parameter vector $oldsymbol{eta}$.

Estimable Functions

An estimable function is a linear function of identifiable parameters

- Estimable functions are reasonable things to estimate
- Estimable functions have the same interpretation regardless of the constraints placed on the parameters to get a solution to the normal equations
- Least squares estimates of estimable functions are not affected by the choice of constraints placed on the parameters to get a solution to the normal equations

Estimable Functions

Definition: For a linear model $Y = X\beta + \epsilon$, we say that a linear function of β , $C\beta$, is estimable if

$$C\beta = AX\beta = AE(Y)$$

for some matrix A.

Note that:

ullet C is a $m \times k$ matrix of constants that defines m estimable linear functions of the parameters, and C = AX for some A

One Way ANOVA Effects model

$$\begin{bmatrix} E(Y_{11}) \\ E(Y_{12}) \\ E(Y_{13}) \\ E(Y_{14}) \\ E(Y_{21}) \\ E(Y_{22}) \\ E(Y_{23}) \\ E(Y_{24}) \\ E(Y_{31}) \\ E(Y_{32}) \\ E(Y_{33}) \\ E(Y_{34}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \mu + \alpha_1 \\ \mu + \alpha_1 \\ \mu + \alpha_1 \\ \mu + \alpha_1 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_3 \end{bmatrix}$$

Show that $\mu + \alpha_1 = [1 \ 1 \ 0 \ 0]\beta$ is estimable.

Let
$$A = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$AX\beta = AE(\mathbf{Y}) = \frac{1}{4}E(Y_{11}) + \frac{1}{4}E(Y_{12}) + \frac{1}{4}E(Y_{13}) + \frac{1}{4}E(Y_{14})$$
$$= \frac{1}{4}(\mu + \alpha_1) + \frac{1}{4}(\mu + \alpha_1) + \frac{1}{4}(\mu + \alpha_1) + \frac{1}{4}(\mu + \alpha_1)$$
$$= \mu + \alpha_1$$

Alternatively, let $A = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$

$$AX\beta = AE(\mathbf{Y}) = E(Y_{11}) = \mu + \alpha_1$$

Show that
$$\begin{bmatrix} \mu + \alpha_2 \\ \mu + \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \beta$$
 is estimable.

$$AX\beta = AE(\mathbf{Y}) = \begin{bmatrix} E(Y_{21}) \\ E(Y_{31}) \end{bmatrix} = \begin{bmatrix} \mu + \alpha_2 \\ \mu + \alpha_3 \end{bmatrix}$$

Show that $\alpha_1 - \alpha_2 = [0 \ 1 \ -1 \ 0]\beta$ is estimable $\alpha_1 - \alpha_2 = (\mu + \alpha_1) - (\mu + \alpha_2)$ $= E(Y_{11}) - E(Y_{21})$ $= [1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0]E(\mathbf{Y})$ $= AE(\mathbf{Y})$

Show that
$$\begin{bmatrix} \alpha_2 - \alpha_3 \\ 2\mu + 3\alpha_1 - \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & -1 \\ 2 & 3 & -1 & 0 \end{bmatrix} \beta \text{ is estimable}$$

$$\begin{bmatrix} \alpha_2 - \alpha_3 \\ 2\mu + 3\alpha_1 - \alpha_2 \end{bmatrix} = \begin{bmatrix} (\mu + \alpha_2) - (\mu + \alpha_3) \\ 3(\mu + \alpha_1) - (\mu + \alpha_2) \end{bmatrix}$$

$$= \begin{bmatrix} E(Y_{21}) - E(Y_{31}) \\ 3E(Y_{11}) - E(Y_{21}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mu + \alpha_1 \\ \mu + \alpha_1 \\ \mu + \alpha_1 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_2 \\ \mu + \alpha_3 \end{bmatrix}$$

$$= AE(\mathbf{Y})$$

Functions that are Not Estimable

$$\mu$$
, α_1 , α_2 , α_3 , $3\alpha_1$, $\alpha_1 + \alpha_2$

To show that

$$c^{T}\beta = c_{1}\mu + c_{2}\alpha_{1} + c_{3}\alpha_{2} + c_{4}\alpha_{3}$$

is $\underline{\mathsf{not}}$ estimable, one must show that there is no non-random matrix A for which

$$c^{T}\beta = c_{1}\mu + c_{2}\alpha_{1} + c_{3}\alpha_{2} + c_{4}\alpha_{3} = AX\beta = AE(Y)$$

Show $\alpha_1 = [0 \ 1 \ 0 \ 0]\beta$ is not estimable.

For α_1 to be estimable, we would need to find a matrix A such that

$$\alpha_{1} = AE(Y)$$

$$= a_{1}E(Y_{11}) + a_{2}E(Y_{12}) + a_{3}E(Y_{13}) + a_{4}E(Y_{14})$$

$$+ a_{5}E(Y_{21}) + a_{6}E(Y_{22}) + a_{7}E(Y_{23}) + a_{8}E(Y_{24})$$

$$+ a_{9}E(Y_{31}) + a_{10}E(Y_{32}) + a_{11}E(Y_{33}) + a_{12}E(Y_{34})$$

$$= (a_{1} + a_{2} + a_{3} + a_{4})(\mu + \alpha_{1})$$

$$+ (a_{5} + a_{6} + a_{7} + a_{8})(\mu + \alpha_{2})$$

$$+ (a_{9} + a_{10} + a_{11} + a_{12})(\mu + \alpha_{3})$$

This implies that

$$0 = (a_5 + a_6 + a_7 + a_8) = (a_9 + a_{10} + a_{11} + a_{12})$$

and

$$\alpha_1 = (a_1 + a_2 + a_3 + a_4)(\mu + \alpha_1)$$

= $(a_1 + a_2 + a_3 + a_4)\mu + (a_1 + a_2 + a_3 + a_4)\alpha_1$

This is not possible, so α_1 is not estimable.

Rules for Estimable Functions

For a linear model $Y = X\beta + \epsilon$

- The expectation of any observation is estimable.
- A linear combination of estimable functions is estimable.
- Each element of β is estimable if and only if $\operatorname{rank}(X) = k =$ number of columns in X.
- Every $\mathbf{c}^T \boldsymbol{\beta}$ is estimable if and only if $\mathrm{rank}(X) = k = \mathrm{number}$ of columns in X.
- Let X_j be the j-th column of X. β_j is not estimable if and only if $X_j = \sum_{j \neq l} c_l X_l$ for some set of scalars $\{c_i : j \neq l\}$.

- Multiple Linear Regression show β_j is estimable for all j For a multiple linear regression model, the design matrix X is typically full rank (no perfect correlation among predictors). So every element of β is estimable.
- Multiple Linear Regression show $\mu_{Y|x_1,x_2,...,x_k}$ is estimable Since every element of $\pmb{\beta}$ is estimable, a linear combination of $\pmb{\beta}$ is also estimable.

$$\mu_{Y|x_1,x_2,...,x_k} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

ullet One-Way ANOVA Effects Model - show μ is not estimable.

Let X_j be the jth column in the design matrix X.

 $\mu = \beta_1$ is not estimable since we can write

$$X_1 = X_2 + X_3 + X_4 = 1 * X_2 + 1 * X_3 + 1 * X_4$$

Estimable Functions

For a linear model

$$Y = X\beta + \epsilon$$

- Definitions of estimable functions of the elements of the parameter vector $\boldsymbol{\beta}$ depend on the linear model for the expected responses $E(\mathbf{Y}) = X\boldsymbol{\beta}$.
- No assumption is made about Var(Y) or $Var(\epsilon)$ or the shape of the distribution of Y or ϵ .

Least Squares Estimator for Estimable Functions

Let $\mathbf{b} = (X^T X)^- X^T \mathbf{Y}$ be a solution to the normal equations. For any estimable function $C\beta$, the least squares estimator for this estimable function is $C\mathbf{b}$ and is unique.

This means that Cb has the same value regardless of

- constraints placed on parameters
- the choice of the generalized inverse matrix

The Gauss-Markov Theorem

Theorem For the Gauss-Markov model, $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, with

$$E(\mathbf{Y}) = X\boldsymbol{\beta}$$
 and $Var(\mathbf{Y}) = \sigma^2 I$,

the OLS estimator $C\mathbf{b}$ of an estimable function $C\boldsymbol{\beta}$ is the unique best linear unbiased estimator (BLUE) of this estimable function.

'Best' means out of all possible linear unbiased estimators, the one with the smallest variance.