Single-Source Shortest Path Problem

The problem of finding shortest paths from a source vertex v to all other vertices in the graph.

Dijkstra's algorithm

a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph $G=\{E,V\}$ and source vertex $v\in V$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Dijkstra's algorithm - Pseudocode

```
(distance to source vertex is zero)
dist[s] \leftarrow 0
for all v \in V - \{s\}
     do dist[v]\leftarrow \infty
                                     (set all other distances to infinity)
                                     (S, the set of visited vertices is initially empty)
S←Ø
                                     (Q, the queue initially contains all vertices)
Q←V
while Q ≠Ø
                                     (while the queue is not empty)
do u \leftarrow mindistance(Q, dist)
                                     (select the element of Q with the min. distance)
                                     (add u to list of visited vertices)
    S \leftarrow S \cup \{u\}
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                        (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v)
                                                        (set new value of shortest path)
                   (if desired, add traceback code)
```

return dist

S: { A, C }

Implementations and Running Times

The simplest implementation is to store vertices in an array or linked list. This will produce a running time of

$$O(|V|^2 + |E|)$$

For sparse graphs, or graphs with very few edges and many nodes, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of

$$O((|E|+|V|)\log |V|)$$

•DIJKSTRA'S ALGORITHM - WHY USE IT?

- As mentioned, Dijkstra's algorithm calculates the shortest path to every vertex.
- However, it is about as computationally expensive to calculate the shortest path from vertex *u* to every vertex using Dijkstra's as it is to calculate the shortest path to some particular vertex *v*.
- Therefore, anytime we want to know the optimal path to some other vertex from a determined origin, we can use Dijkstra's algorithm.

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Encyclopedia

© 1998 The Computer Language Co. Inc.

A Minimum Spanning Tree (MST)

- a subgraph of an <u>undirected graph</u> such that
 - the subgraph spans (includes) all nodes,
 - is connected,
 - is acyclic,
 - and has minimum total edge weight

Minimum Spanning Trees

Prim's Algorithm

• Similar to Dijkstra's Algorithm

Kruskal's Algorithm

• Focuses on edges, rather than nodes

Algorithm Characteristics

- Both Prim's and Kruskal's Algorithms work with undirected graphs
- Both work with <u>weighted</u> and <u>unweighted</u> graphs but are more interesting when edges are weighted
- Both are <u>greedy</u> algorithms that produce optimal solutions

Prim's Algorithm

• Similar to Dijkstra's Algorithm except that d_v records edge weights, not path lengths

Walk-Through

Initialize array

	K	d_v	p_{v}
A	F	8	_
В	F	8	_
С	F	8	_
D	F	8	_
E	F	8	_
F	F	8	_
G	F	∞	_
Н	F	8	_

 d_v records edge weights

P_v: Parant node

K: visited

Start with any node, say D

	K	d_v	p_{v}
A			
В			
С			
D	T	0	
E			
F			
G			
Н			

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	l
E		25	D
F		18	D
G		2	D
Н			

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
С		3	D
D	Т	0	l
E		25	D
F		18	D
G	T	2	D
Н			

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	l
E		7	G
F		18	D
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
С	T	3	D
D	Т	0	_
E		7	G
F		18	D
G	Т	2	D
H		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В		4	C
С	Т	3	D
D	T	0	
E		7	G
F		3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В		4	C
С	Т	3	D
D	Т	0	_
E		7	G
F	T	3	C
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		10	F
В		4	С
C	Т	3	D
D	Т	0	_
E		2	F
F	Т	3	С
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	С
C	T	3	D
D	Т	0	_
E	T	2	F
F	Т	3	С
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		10	F
В		4	С
C	Т	3	D
D	Т	0	_
E	Т	2	F
F	Т	3	C
G	Т	2	D
Н		3	G

Table entries unchanged

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	C
C	Т	3	D
D	Т	0	
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	T	3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		4	Н
В		4	C
C	Т	3	D
D	T	0	1
E	T	2	F
F	T	3	С
G	Т	2	D
Н	Т	3	G

Select node with minimum distance

	K	d_v	p_{v}
A	T	4	Н
В		4	С
C	T	3	D
D	Т	0	_
E	T	2	F
\mathbf{F}	Т	3	С
G	Т	2	D
Н	Т	3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A	T	4	Н
В		4	С
C	Т	3	D
D	Т	0	_
E	T	2	F
F	T	3	С
G	Т	2	D
Н	T	3	G

Table entries unchanged

Select node with minimum distance

	K	d_v	p_{v}
A	T	4	Н
В	T	4	C
C	Т	3	D
D	Т	0	l
E	T	2	F
\mathbf{F}	Т	3	С
G	Т	2	D
Н	Т	3	G

Cost of Minimum Spanning Tree = $\sum d_v = 21$

	K	d_v	p_{v}
A	T	4	Н
В	Т	4	C
С	Т	3	D
D	Т	0	
E	T	2	F
F	Т	3	C
G	Т	2	D
Н	Т	3	G

Done

Prim's algorithm

```
T = \phi;
  U = \{ 1 \};
  while (U \neq V) {
           let (u, v) be the lowest cost edge
           such that u \in U and v \in V - U;
           T = T \cup \{(u, v)\}
           U = U \cup \{v\}
```

From http://lcm.csa.iisc.ernet.in/dsa/node183.html

Kruskal's Algorithm

- Work with edges, rather than nodes
- Two steps:
 - Sort edges by increasing edge weight
 - Select the first |V| 1 edges that do not generate a cycle

Walk-Through

Consider an undirected, weight graph

Sort the edges by increasing edge weight

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

d_v	
4	
4	
4	
5	
6	
8	
10	
	4 4 4 5 6 8

edge	d_v	
(D,E)	1	V
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

-	-	
edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	1
(D,G)	2	1
(E,G)	3	х
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	х
(C,D)	3	V
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	V
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	V
(D,G)	2	1
(E,G)	3	X
(C,D)	3	1
(G,H)	3	V
(C,F)	3	1
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	√
(D,G)	2	1
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	1
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	X
(C,D)	3	1
(G,H)	3	V
(C,F)	3	V
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	V
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	·

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	V
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	1
(D,G)	2	V
(E,G)	3	х
(C,D)	3	V
(G,H)	3	1
(C,F)	3	V
(B,C)	4	1

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	1
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	х
(C,D)	3	√
(G,H)	3	√
(C,F)	3	√
(B,C)	4	V

edge	d_v		
(B,E)	4	X	
(B,F)	4	X	
(B,H)	4	X	
(A,H)	5	1	
(D,F)	6		
(A,B)	8		not considered
(A,F)	10		J

Done

Total Cost =
$$\sum d_v = 21$$

Kruskal's Algorithm

```
Let G = (V, E) be the given graph, with |V| = n
        Start with a graph T = (V, \phi)
        consisting of only the vertices of G and no edges;
        /* This can be viewed as n connected components,
            each vertex being one connected component */
        Arrange E in the order of increasing costs;
         for (i = 1, I \le n - 1, i + +) {
                Select the next smallest cost edge;
                if (the edge connects two different connected components)
                      add the edge to T;
```

from http://lcm.csa.iisc.ernet.in/dsa/node184.html