Summary

Configuration files	2
.vimrc	2
Template	2
Graph	3
Tarjan	3
Articulation	3
Bridge	4
Edmonds-Karp	4
Hopcroft-Karp	5
Bellman-Ford	5
Lowest Common Ancestor	6
Min-Cost Max-Flow	6
String	7
KMP	7
Aho-Corasick	8
Suffix Array and Longest Common Prefix	9
Manacher's Algorithm	10
Z Algorithm	10
Dynamic Programming	10
Optimal Array Multiplication Sequence	10
Optimal Binary Search Tree	11
Longest Increasing Subsequence	11
Longest Common Increasing Subsequence	12
Weighted Activity Selection	12
Data Structure	13
Segment Tree with Lazy Propagation	13
Geometry	13
Template	13
Monotone Chain Convex Hull	15
Smallest Enclosing Circle	15
Closest Pair of Points	15
Math	16

Sieve, primality, factorization, phi	16
Chinese Remainder Algorithm	17
Shanks Baby-Step Giant-Step Algorithm	17
FFT	18
Polynomial	18
Bignum	20
Jseful facts	24

Configuration files

```
.vimrc
set nocp
set mouse=a

filetype plugin indent on

syntax on
set smd ls=2 nu sm is nohls bg=dark
set et sw=4 sts=4 ts=8 sta ai ci
set nowb nobk noswf

" compilation shortcuts
noremap <f9> <esc>:w<cr>:!g++ -Wall -g % && ./a.out<cr>
noremap! <f9> <esc>:w<cr>:!g++ -Wall -g % && ./a.out<cr>
noremap <f10> <esc>:w<cr>:!g++ -Wall -g % && ./a.out<cr>
noremap <f10> <esc>:w<cr>:!g++ -Wall -g % && ./a.out<cr>
noremap <f10> <esc>:w<cr>:!g++ -Wall -g % && ./a.out<</p>
```

noremap! <f10> <esc>:w<cr>:!g++ -Wall -g % && ./a.out < %<.in<cr>

Template

```
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <utility>
#include <functional>
#include <algorithm>
#include <string>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
using namespace std;
#define INF 0x3f3f3f3f
#define PI M PI
#define mp make_pair
typedef long long ll;
typedef unsigned long long ull;
const double inf = 1.0/0.0;
int cmp_double(double a, double b, double eps = 1e-9) {
    return a + eps > b ? b + eps > a ? 0 : 1 : -1;
int main() {
```

Graph

```
Tarjan
Complexity: O(V+E)
int n, m;
vector<int> g[MAXN];
int lbl[MAXN], low[MAXN], idx, cnt_scc;
stack<int> st;
bool inSt[MAXN];
void dfs(int v) {
    lbl[v] = low[v] = idx++;
    st.push(v);
    inSt[v] = 1;
    for (vector<int>::iterator it = q[v].begin(); it != q[v].end(); it++) {
        if (lbl[*it] == -1) {
            dfs(*it);
            if (low[*it] < low[v]) {
                low[v] = low[*it];
        } else if (inSt[*it] && lbl[*it] < low[v]) {
            low[v] = lbl[*it];
        }
    if (low[v] == lbl[v]) {
        printf("%d -> ", ++cnt_scc);
        int u;
        do {
            u = st.top();
            st.pop();
            inSt[u] = 0;
            printf("%d; '", u);
        } while (u != v);
        putchar('\n');
}
void tarjan() {
    for (int i = 1; i \le n; i++) {
        lbl[i] = -1;
        inSt[i] = 0;
    idx = cnt\_scc = 0;
    for (int i = 1; i <= n; i++)
        if (lbl\lceil i \rceil == -1)
            dfs(i);
}
```

```
Complexity: O(V+E)
int n, m;
vector<int> g[MAXN];
int lbl[MAXN], low[MAXN], parent[MAXN], idx;
bool art[MAXN], has_art;
void dfs(int v) {
    int count = 0;
    lbl[v] = low[v] = idx++;
    for (vector<int>::iterator it = g[v].begin(); it != g[v].end(); it++) {
        if (lbl[*it] == -1) {
            parent[*it] = v;
            dfs(*it);
            if (low[*it] < low[v]) {
                low[v] = low[*it];
            } else if (low[*it] >= lbl[v]) {
                count++;
        } else if (*it != parent[v] && lbl[*it] < low[v]) {</pre>
            low[v] = lbl[*it];
        }
    }
    if (count > 1 || (lbl[v] != 0 \&\& count > 0)) {
        art[v] = 1;
        has_art = 1;
}
void articulation() {
    for (int i = 1; i <= n; i++) {
        lbl\lceil i \rceil = -1;
        art[i] = 0;
    for (int i = 1; i <= n; i++) {
        if (lbl\lceil i \rceil == -1) {
            idx = 0;
            parent[i] = i;
            dfs(i);
        }
}
```

Articulation

Bridge

```
Complexity: O(V+E)
int n, m;
vector<int> g[MAXN];
int lbl[MAXN], low[MAXN], parent[MAXN], idx;
bool has_bridge;
void dfs(int v) {
    lbl[v] = low[v] = idx++;
    bool parent_found = 0;
    for (vector<int>::iterator it = g[v].begin(); it != g[v].end(); it++) {
        if (lbl[*it] == -1) {
            parent[*it] = v;
            dfs(*it);
            if (low[*it] < low[v]) {
                low[v] = low[*it];
            } else if (low[*it] == lbl[*it]) {
                printf("%d -> %d\n", v, *it);
                has_bridge = 1;
        } else if (!parent_found && *it == parent[v]) {
            parent_found = 1;
        } else if (lbl[*it] < low[v]) {</pre>
            low[v] = lbl[*it];
   }
}
void bridge() {
    for (int i = 1; i \le n; i++) {
        lbl[i] = -1;
    for (int i = 1; i \le n; i++) {
        if (lbl\lceil i \rceil == -1) {
            idx = 0;
            parent[i] = i;
            dfs(i);
        }
   }
}
```

```
Edmonds-Karp
Complexity: O(V E^2)
int n, m, g[MAXN][MAXN];
int parent[MAXN];
bool visited[MAXN];
bool bfs(int s, int t) {
    queue<int> q;
    for (int i = 0; i < n; i++)
        visited[i] = 0;
    visited[s] = 1;
    q.push(s);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int v = 0; v < n; v++) {
            if (a[u][v] && !visited[v]) {
                parent[v] = u;
                if (v == t)
                    return 1;
                q.push(v);
        }
    return 0;
int maxflow(int s, int t) {
    int flow = 0;
    while (bfs(s, t)) {
        int f = INF;
        for (int v = t, u = parent[v]; v != s; v = u, u = parent[v])
            f = min(f, g[u][v]);
        for (int v = t, u = parent[v]; v != s; v = u, u = parent[v]) {
            g[u][v] -= f;
            g[v][u] += f;
        flow += f;
    return flow;
```

```
Hopcroft-Karp
Complexity: O(E sqrt(V))
int n, m;
vector<int> g1[MAXN];
int pair_g1[MAXN], pair_g2[MAXM], dist[MAXN];
bool bfs() {
    queue<int> q;
    for (int v = 1; v <= n; v++) {
        if (pair_g1[v] == 0) {
            dist[v] = 0;
            q.push(v);
        } else {
            dist[v] = INF;
   }
    dist[0] = INF;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        vector<int>::iterator it;
        for (it = q1[v].begin(); it != q1[v].end(); it++) {
            if (dist[pair_g2[*it]] == INF) {
                dist[pair_g2[*it]] = dist[v]+1;
                q.push(pair_g2[*it]);
        }
    return dist[0] != INF;
}
bool dfs(int v) {
   if (v != 0) {
        vector<int>::iterator it;
        for (it = q1[v].beqin(); it != q1[v].end(); it++) {
            if (dist[pair_g2[*it]] == dist[v]+1 \&\& dfs(pair_g2[*it])) {
                pair_g2[*it] = v;
                pair_q1[v] = *it;
                return 1;
            }
        dist[v] = INF;
        return 0;
    return 1;
}
```

```
int hk() {
    for (int v = 1; v <= n; v++)
        pair_g1[v] = 0;
    for (int v = 1; v <= m; v++)
        pair_a2[v] = 0;
    int matching = 0;
    while (bfs())
        for (int v = 1; v <= n; v ++)
            if (pair_g1[v] == 0 \&\& dfs(v))
                matchina++:
    return matching;
Bellman-Ford
Complexity: O(VE)
struct Edge {
    int u, v, w;
    Edge () {}
    Edge (int u, int v, int w) : u(u), v(v), w(w) {}
};
int n, m;
Edge e[MAXM];
int dist[MAXN], parent[MAXN];
// return 1 if there is negative cycle
int bellman_ford(int s) {
    for (int i = 1; i <= n; i++)
        dist[i] = INF;
    dist[s] = 0;
    parent[s] = s;
    int flaa = 1:
    for (int i = 0; flag && i < n; i++) {
        flaq = 0;
        for (int j = 0; j < m; j++)
            if (dist[e[j].u] + e[j].w < dist[e[j].v]) {
                dist[e[j].v] = dist[e[j].u] + e[j].w;
                parent[e[j].v] = e[j].u;
                flag = 1;
            }
    return flag;
```

```
Lowest Common Ancestor
Complexity: < O(N logN), O(logN) >
#define MAXN 50000
#define LOGMAXN 16
int n, m, u, v, w;
int ancestor[MAXN][LOGMAXN], parent[MAXN], level[MAXN], dist[MAXN];
vector<pair<int, int> > g[MAXN];
void dfs(int v) {
    vector<pair<int, int> >::iterator it;
    for (it = q[v].begin(); it != q[v].end(); it++) {
        if (it->first != parent[v]) {
            parent[it->first] = v;
            level[it->first] = level[v] + 1;
            dist[it->first] = dist[v] + it->second;
            dfs(it->first);
        }
}
void pre() {
    parent[0] = level[0] = dist[0] = 0;
    dfs(0);
    for (int i = 0; i < n; i++)
        ancestor[i][0] = parent[i];
    for (int j = 1; 1 << j < n; j++)
        for (int i = 0; i < n; i++)
            ancestor[i][j] = ancestor[ancestor[i][j-1]][j-1];
}
int lca(int u, int v) {
    if (level[u] < level[v])</pre>
        swap(u, v);
    int log;
    for (log = 1; 1 <  log <= level[u]; log++);
   log--:
    for (int i = log; i >= 0; i--)
        if (level[u] - (1<<i) >= level[v])
            u = ancestor[u][i];
    if (u == v)
        return u;
    for (int i = log; i >= 0; i--)
        if (ancestor[u][i] != ancestor[v][i])
            u = ancestor[u][i], v = ancestor[v][i];
    return parent[u];
}
```

```
Min-Cost Max-Flow
#include <cstdio>
#include <aueue>
#include <vector>
using namespace std;
#define MAXC 210
#define MAXG 200
int tc, C1, C2, C, c1, c2, q;
bool net[MAXC][MAXC], visited[MAXC];
int cost[MAXC][MAXC], pi[MAXC], sigma[MAXC];
int p[MAXC];
vector<int> V[MAXC]:
const int INF = 1 << 20;
bool dijkstra(int s, int t) {
    sigma[t] = INF;
    visited[s] = visited[t] = 0;
    for (int i = 1; i <= C; i++) {
        sigma[i] = INF;
        visited\lceil i \rceil = 0;
    priority_queue<pair<int, int> > PQ;
    PQ.push(make_pair(0, s));
    while (!PO.empty()) {
        int v = P0.top().second, w = -P0.top().first;
        PQ.pop();
        if (!visited[v]) {
            visited[v] = 1;
            vector<int>::iterator it;
            for (it = V[v].begin(); it != V[v].end(); it++) {
                if (net[v][*it] && !visited[*it]) {
                    int ww;
                    if (v < *it)
                        ww = w + (MAXG - cost[v][*it]) + pi[v] - pi[*it];
                    else
                        ww = w + (cost[*it][v] - MAXG) + pi[v] - pi[*it];
                    if (ww < sigma[*it]) {
                        sigma[*it] = ww;
                        PO.push(make_pair(-ww, *it));
                        p[*it] = v;
               }
          }
       }
```

```
if (sigma[t] == INF)
        return 0;
    pi[t] += sigma[t];
    for (int i = 1; i <= C; i++)
        pi[i] += sigma[i];
    return 1;
}
int main() {
    scanf("%d", &tc);
    while (tc--) {
        scanf("%d %d", &C1, &C2);
        C = C1 + C2;
        int s = 0, t = C+1;
        pi[s] = pi[t] = 0;
        for (int i = 1; i <= C; i++) {
             pi[i] = 0;
             for (int j = 1; j <= C; j++) {
                 net[i][j] = 0;
        }
        V[s].clear(), V[t].clear();
        for (int i = 1; i \leftarrow C1; i++) {
             net[s][i] = 1;
             cost[s][i] = 0;
            V[i].clear();
            V[s].push_back(i);
        for (int i = C1+1; i <= C; i++) {
            net[i][t] = 1;
             cost[i][t] = 0;
            V[i].clear();
             V[i].push_back(t);
        }
        while (scanf("%d %d %d", &c1, &c2, &g), c1 || c2 || g) {
            net \lceil c1 \rceil \lceil C1 + c2 \rceil = 1;
             cost[c1][C1+c2] = g;
             cost[C1+c2][c1] = -g;
            V[c1].push_back(C1+c2);
            V[C1+c2].push_back(c1);
        }
        int val = 0, best = 0;
        p[0] = 0;
        while (dijkstra(s, t)) {
            c2 = t, c1 = p\lceil c2 \rceil;
            while (c1 != c2) {
                 val += cost[c1][c2];
```

```
net[c1][c2] = 0;
                net[c2][c1] = 1;
                c2 = c1, c1 = p[c2];
            best = val > best ? val : best;
        }
        printf("%d\n", best);
String
KMP
Complexity: O(N)
int t[MAXS];
void kmp_table(char s[MAXS]) {
    t[0] = -1, t[1] = 0;
    if (!s[1])
        return;
    for (int pos = 2, cnd = 0; s[pos]; ) {
        if (s[pos-1] == s[cnd])
            t[pos++] = ++cnd;
        else if (cnd > 0)
            cnd = t[cnd];
        else
            t[pos++] = 0;
int kmp_search(char s1[MAXS], char s2[MAXS]) {
    kmp_table(s2);
    for (int i = 0, j = 0; s1[i+j]; ) {
        if (s2[j] == s1[i+j]) {
            if (!s2[j+1])
                return i;
            j++;
        } else {
            i += j-t[j];
            if (t\lceil i \rceil != -1)
                j = t[j];
            else
                j = 0;
        }
    return -1;
```

```
Aho-Corasick
Complexity: < O(|S|), O(sum(|Si|)), O(|S|) >
struct Node {
    map<char, Node*> next;
    Node *fail;
    set<int> wordIds;
    Node () : fail(NULL) {}
    Node* getChild(const char& c) {
        map<char, Node*>::iterator it;
        it = next.find(c);
        if (it != next.end())
            return it->second;
        return NULL;
};
Node *trie:
vector<string> words;
void addWord(const char* word) {
    Node *node = trie, *aux = NULL;
    for (int i = 0; word[i]; i++) {
        aux = node->getChild(word[i]);
        if (aux == NULL) {
            aux = new Node();
            node->next[word[i]] = aux;
        node = aux;
    node->wordIds.insert(words.size());
    words.push_back(word);
}
void init() {
    queue<Node*> q:
    map<char, Node*>::iterator it;
    trie->fail = trie;
    q.push(trie);
    while (!q.empty()) {
       Node *node = q.front();
        q.pop();
        for (it = node->next.begin(); it != node->next.end(); it++) {
            Node *child = it->second;
            char c = it->first;
            q.push(child);
```

```
Node *fail = node->fail;
            while (fail->getChild(c) == NULL && fail != trie)
                fail = fail->fail;
            child->fail = fail->getChild(c);
            if (child->fail == NULL || child->fail == child)
                child->fail = trie;
            child->wordIds.insert(
                child->fail->wordIds.begin(), child->fail->wordIds.end()
           );
       }
}
void search(const char* text) {
    Node *node = trie;
    for (int i = 0; text[i]; i++) {
        while (node->getChild(text[i]) == NULL && node != trie)
            node = node->fail;
        node = node->qetChild(text[i]);
        if (node == NULL)
            node = trie;
        set<int>::iterator it;
        for (it = node->wordIds.begin(); it != node->wordIds.end(); it++) {
            // do something with matches
            printf("%s\n", words[*it].c_str());
        }
}
```

Suffix Array and Longest Common Prefix Complexity: < O(N logN), O(N) >

```
//Output:
// pos = The suffix array. Contains the n suffixes of str sorted in
          lexicographical order. Each suffix is represented as a
//
          single integer (the position of str where it starts).
// rank = The inverse of the suffix array.
          rank[i] = the index of the suffix <math>str[i..n) in the pos array.
//
          (In other words, pos[i] = k \ll rank[k] = i)
//
          With this array, you can compare two suffixes in O(1):
//
          Suffix str[i..n) is smaller than str[j..n) iff rank[i] < rank[j]
int n; // length of the string
char str[MAXN];
int rank[MAXN], pos[MAXN], cnt[MAXN], next[MAXN];
bool bh[MAXN], b2h[MAXN];
bool cmp(int a, int b) {
    return str[a] < str[b];</pre>
void suffix_array() {
    for (int i = 0; i < n; i++)
        pos[i] = i;
    sort(pos, pos+n, cmp);
    for (int i = 0; i < n; i++) {
        bh[i] = (i == 0 \mid | str[pos[i]] != str[pos[i-1]]);
        b2h\Gamma i = 0;
   }
    for (int h = 1; h < n; h <<= 1) {
        int buckets = 0;
        for (int i = 0, j; i < n; i = j) {
            j = i + 1;
            while (j < n \&\& !bh[j])
                j++;
            next[i] = j;
            buckets++:
        if (buckets == n)
            break:
        for (int i = 0; i < n; i = next[i]) {
            cnt[i] = 0;
            for (int j = i; j < next[i]; j++)
                rank[pos[j]] = i;
        }
```

```
cnt[rank[n-h]]++;
        b2h[rank[n-h]] = 1;
        for (int i = 0; i < n; i = next[i]) {
            for (int j = i; j < next[i]; j++) {
                int s = pos[j] - h;
                if (s >= 0) {
                     int head = rank[s];
                     rank[s] = head + cnt[head]++;
                     b2h\lceil rank\lceil s\rceil\rceil = 1;
                }
            for (int j = i; j < next[i]; j++) {
                int s = pos[j] - h;
                if (s \ge 0 \&\& b2h[rank[s]]) {
                     for (int k = rank[s] + 1; !bh[k] && b2h[k]; k++)
                         b2h[k] = 0;
            }
        for (int i = 0; i < n; i++) {
            pos[rank[i]] = i;
            bh[i] = b2h[i];
        }
    for (int i = 0; i < n; i++)
        rank[pos[i]] = i;
int height[MAXN];
void getHeight() {
    height[0] = 0;
    for (int i = 0, h = 0; i < n; i++) {
        if (rank[i] > 0) {
            int j = pos[rank[i] - 1];
            while (i + h < n \&\& j + h < n \&\& str[i+h] == str[j+h])
                h++:
            height[rank[i]] = h;
            if (h > 0)
                h--;
       }
```

Manacher's Algorithm

}

}

```
Complexity: O(N)
char s[MAXN];
int p[2*MAXN]; // length of the palindrome centered at position (i-1)/2;
void manacher() {
    int m = 0;
    char t[2*MAXN];
    for (int i = 0; s[i]; i++) {
        t[m++] = '#';
        t[m++] = s[i];
        p[i] = 0;
    t[m++] = '#';
    int c = 0, r = 0;
    for (int i = 0; i < m; i++) {
        int i_{-} = 2 * c - i;
        p[i] = r > i ? min(r-i, p[i]) : i & 1;
        while (0 \le i-p[i]-1 \& i+p[i]+1 \le m \& t[i-p[i]-1] == t[i+p[i]+1])
            p[i] += 2;
        if (i + p[i] > r) {
            c = i;
            r = i + p[i];
```

Z Algorithm

```
Complexity: O(N)
// Input: string s
// Output: z[i], longest common prefix of s with his suffix starting at i
void z_algorithm(char *s, int *z) {
    int l = 0, r = 0;
    for (int i = 0; s[i]; i++) {
        if (i > r) {
           l = r = i;
            for (; s[r] == s[r-1]; r++);
           z[i] = r-- - 1;
        else if (z[i-l] < r-i+1) {
            z[i] = z[i-l];
        else {
           l = i;
            for (r++; s[r] == s[r-l]; r++);
           z[i] = r-- - l;
       }
```

Dynamic Programming

```
Optimal Array Multiplication Sequence
```

```
Complexity: O(N^3)
int n, m[MAXN], c[MAXN][MAXN];
```

Optimal Binary Search Tree Complexity: O(N^3) int n, p[MAXN]; int c[MAXN][MAXN], f[MAXN][MAXN], r[MAXN][MAXN]; void obst() { for (int i = 1; i <= n; i++) c[i][i-1] = 0; $c\lceil n+1\rceil\lceil n\rceil = 0;$ for (int i = 1; $i \le n$; i++) { c[i][i] = p[i]; f[i][i] = p[i]; r[i][i] = i;} for (int d = 1; d < n; d++) { for (int i = 1; $i \le n-d$; i++) { int j = i+d; c[i][j] = INF;f[i][j] = f[i][j-1] + p[j];int rmin = r[i][j-1], rmax = r[i+1][j]; for (int $k = rmin; k \le rmax; k++)$ { int t = c[i][k-1] + c[k+1][j];if (t < c[i][j]) { c[i][j] = t; r[i][j] = k;c[i][j] += f[i][j];

}

}

```
Longest Increasing Subsequence
Complexity: O(N logN)
int n, m, a[MAXN], b[MAXN], p[MAXN];
void lis() {
    int u, v;
    b\lceil m++\rceil = 0;
    for (int i = 1; i < n; i++) {
        if (a[b[m-1]] < a[i]) {
           p[i] = b[m-1];
           b[m++] = i;
            continue;
       for (u = 0, v = m-1; u < v;)
           int c = (u + v)/2;
           if (a[b[c]] < a[i])
               u = c + 1;
           else
               V = C;
       if (a[i] < a[b[u]]) {
           if (u > 0)
               p[i] = b[u-1];
           b[u] = i;
       }
    for (u = m, v = b[m-1]; u--; v = p[v]) {
       b[u] = v;
}
```

Longest Common Increasing Subsequence

Complexity: O(N^2)

```
int n, m, a[MAXN], b[MAXN];
int c[MAXN], prev[MAXN], seq[MAXN];
void lcis() {
    for (int j = 0; j < m; j++)
        c[i] = 0;
    for (int i = 0; i < n; i++) {
        int actual = 0, last = -1;
        for (int j = 0; j < m; j++) {
            if (a[i] == b[j] \&\& actual+1 > c[j]) {
                c[i] = actual+1;
                prev[j] = last;
            } else if (a[i] > b[j] && actual < c[j]) {</pre>
                actual = c[j];
                last = j;
        }
    int length = 0, index = -1;
    for (int j = 0; j < m; j++) {
        if (c\lceil j\rceil > length) {
            length = c[j];
            index = j;
        }
    int len = length;
    while (index != -1) {
        sea[--len] = b[index];
        index = prev[index];
    printf("length: %d\n", length);
    for (int i = 0; i < length; i++)
        printf("%d'", seq[i]);
    printf("\n");
}
```

Weighted Activity Selection Complexity: O(N logN) #include <cstdio> #include <algorithm>

```
#include <algorithm>
using namespace std;
#define MAXN 10005
struct Event {
    int b, e, w;
    Event () {}
    Event (int b, int e, int w) : b(b), e(e), w(w) {}
    bool operator< (const Event& o) const {</pre>
        if (e != o.e)
            return e < o.e;
        return b < o.b;
};
int n;
Event e[MAXN];
int dp[MAXN];
int main() {
    scanf("%d", &n);
    e[0] = Event(0, 0, 0);
    for (int i = 1; i <= n; i++)
        scanf("%d %d %d", &e[i].b, &e[i].e, &e[i].w);
    sort(e+1, e+n+1);
    dp[0] = 0;
    for (int i = 1; i <= n; i++) {
        int lo = 0, hi = i-1;
        while (lo < hi) {</pre>
            int mid = (lo + hi + 1) >> 1;
            if (e[mid].e > e[i].b)
                hi = mid - 1;
            else
                lo = mid;
        dp[i] = max(dp[i-1], e[i].w + dp[lo]);
    printf("Max weight: %d\n", dp[n]);
```

Data Structure

```
Segment Tree with Lazy Propagation
Complexity: < O(N), O(logN) >
#define LEFT(x) (x \ll 1)
#define RIGHT(x) ((x << 1) + 1)
11 segtree[4*MAXN], lazy[4*MAXN];
void propagate(int node, int lo, int hi) {
    segtree[node] += lazy[node] * (hi-lo+1);
   if (lo != hi) {
        lazy[LEFT(node)] += lazy[node];
        lazy[RIGHT(node)] += lazy[node];
    lazy[node] = 0;
}
void update(int node, int lo, int hi, int i, int j, int val) {
   if (j < lo || hi < i)
        return;
   if (i <= lo && hi <= j) {
        lazy[node] += val;
        return;
   }
    int mid = (lo + hi)/2;
    update(LEFT(node), lo, mid, i, j, val);
    update(RIGHT(node), mid+1, hi, i, j, val);
    propagate(LEFT(node), lo, mid);
    propagate(RIGHT(node), mid+1, hi);
    segtree[node] = segtree[LEFT(node)] + segtree[RIGHT(node)];
}
ll query(int node, int lo, int hi, int i, int j) {
   if (j < lo || hi < i)
        return 0;
    propagate(node, lo, hi);
    if (i <= lo && hi <= j)
        return seatree[node];
    int mid = (lo + hi)/2;
    return query(LEFT(node), lo, mid, i, j) +
           query(RIGHT(node), mid+1, hi, i, j);
}
```

Geometry

```
Template
struct Point {
    double x, y;
    Point() {}
    Point(double x, double y) : x(x), y(y) {}
    Point operator+ (const Point &o) const { return Point(x + o.x, y + o.y); }
    Point operator- (const Point &o) const { return Point(x - o.x, y - o.y); }
    Point operator* (const double &o) const { return Point(x * o, y * o); }
    Point operator/ (const double &o) const { return Point(x / o, y / o); }
    double operator* (const Point &o) const { return x * o.x + y * o.y; }
    double operator% (const Point &o) const { return x * o.y - o.x * y; }
    bool operator== (const Point &o) const {
        return cmp_double(x, o.x) == 0 \& cmp_double(y, o.y) == 0;
    bool operator< (const Point &o) const {</pre>
        return x != o.x ? x < o.x : y < o.y;
};
typedef Point Vector;
double abs(Point p) {
    return sqrt(p * p);
Vector norm(Vector v) {
    return v / abs(v);
double ccw(Point p, Point q, Point r) {
    return (q - p) \% (r - p);
struct Seament {
    Point p, q;
    Seament() {}
    Segment(Point p, Point q) : p(p), q(q) {}
};
```

```
bool in_segment(Point p, Segment s) {
    double t;
    Vector v = s.q - s.p;
    if (cmp\_double(v.x, 0) != 0)
        t = (p.x - s.p.x) / v.x;
    else
        t = (p.y - s.p.y) / v.y;
    return cmp_double(t, \emptyset) >= \emptyset && cmp_double(t, 1) <= \emptyset && s.p + v * t == p;
}
struct Line {
    Vector v:
    Point p;
    int a, b, c;
    void init() {
        a = -v.y;
        b = v.x;
        c = a * p.x + b * p.v:
        int d = abs(\_gcd(a, \_gcd(b, c)));
        if (d != 1)
            a /= d, b /= d, c /= d;
        if (a < 0)
            a = -a, b = -b, c = -c:
        else if (a == 0 \&\& b < 0)
            b = -b, c = -c;
    }
    Line() {}
    Line(Point p, Point q) : v(q-p), p(p) {
        init();
    Line(Segment s) : v(s.q-s.p), p(p) {
        init();
    }
    Point operator() (double t) const { return p + v * t; }
    Vector normal() {
        return Vector(-v.y, v.x);
};
pair<double, double> line_intersection(Line a, Line b) {
    double den = a.v \% b.v;
    if (den == 0)
        return make_pair(inf, inf);
    double t = -(b.v \% (b.p - a.p)) / den;
    double s = -(a.v \% (b.p - a.p)) / den;
    return make_pair(t, s);
}
```

```
Point segment_intersection(Segment a, Segment b) {
    Line la = Line(a), lb = Line(b);
    pair<double, double> pdd = line_intersection(la, lb);
    double t = pdd.first, s = pdd.second;
    if (t == inf) {
        if (in_segment(b.p, a))
            return b.p:
        if (in_segment(b.q, a))
            return b.q;
        if (in_segment(a.p, b))
            return a.p:
        if (in_segment(a.q, b))
            return a.a;
        return Point(inf. inf):
    if (cmp\_double(t, 0) < 0 \mid | cmp\_double(t, 1) > 0)
        return Point(inf, inf);
    if (cmp\_double(s, 0) < 0 \mid | cmp\_double(s, 1) > 0)
        return Point(inf, inf);
    return la(t);
double distPointToLine(Point p. Line 1) {
    Vector n = l.normal();
    return (l.p - p) * n / abs(n);
}
struct Circle {
    Point center:
    double radius;
    Circle () {}
    Circle (Point center, double radius): center(center), radius(radius) {}
};
Point circumcenter(Point p, Point q, Point r) {
    Point a = p - r, b = q - r, c = Point(a*(p+r)/2, b*(q+r)/2);
    return Point(c % Point(a.y, b.y), Point(a.x, b.x) % c)/(a % b);
Point incenter(Point p, Point q, Point r) {
    double a = abs(r - q), b = abs(r - p), c = abs(q - p);
    return (p * a + a * b + r * c) / (a + b + c);
}
```

```
Monotone Chain Convex Hull
Complexity: O(N logN)
int n, k;
Point p[MAXN], h[MAXN];
void convex_hull() {
    sort(p, p+n);
    k = 0;
    h[k++] = p[0];
    for (int i = 1; i < n; i++) {
        if (i != n-1 && ccw(p[0], p[n-1], p[i]) >= 0) continue;
        while (k > 1 \& ccw(h\lceil k-2\rceil, h\lceil k-1\rceil, p\lceil i\rceil) \le 0) k--;
        h\lceil k++ \rceil = p\lceil i \rceil;
    for (int i = n-2, \lim = k; i >= 0; i--) {
        if (i != 0 && ccw(p[n-1], p[0], p[i]) >= 0) continue;
        while (k > \lim \&\& ccw(h[k-2], h[k-1], p[i]) \le 0) k--;
        h[k++] = p[i];
}
Smallest Enclosina Circle
Complexity: O(N^2)
bool in_circle(const Circle &c, const Point &p) {
    return cmp_double(abs(c.p - p), c.r) <= 0;
}
int n;
Point p[MAXN];
Circle spanning_circle() {
    random_shuffle(p, p+n);
    Circle c(Point(), -1);
    for (int i = 0; i < n; i++) if (!in_circle(c, p[i])) {
        c = Circle(p[i], 0);
        for (int j = 0; j < i; j++) if (!in_circle(c, p[j])) {
            c = Circle((p[i] + p[j])/2, abs(p[i] - p[j])/2);
            for (int k = 0; k < j; k++) if (!in_circle(c, p[k])) {
                Point o = circumcenter(p[i], p[j], p[k]);
                c = Circle(o, abs(o - p[k]));
        }
    return c;
}
```

```
Closest Pair of Points
Complexity: O(N logN)
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <set>
using namespace std;
struct Point {
    int x, y;
    Point(int x = 0, int y = 0) : x(x), y(y) {}
    Point operator- (const Point &o) const { return Point(x - o.x, y - o.y); }
    int operator* (const Point &o) const { return x * o.x + y * o.y; }
    bool operator< (const Point &o) const {</pre>
        return y != o.y ? y < o.y : x < o.x;
bool cmpx(const Point &p, const Point &q) {
    return p.x != q.x ? p.x < q.x : p.y < q.y;
double abs(const Point &p) {
    return sqrt(p * p);
int main() {
    int n;
    Point pnts[MAXN];
    set<Point> box;
    set<Point>::iterator it;
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
        scanf("%d %d", &pnts[i].x, &pnts[i].y);
    sort(pnts. pnts+n. cmpx):
    double best = inf;
    box.insert(pnts[0]);
    for (int i = 1, j = 0; i < n; i++) {
        while (j < i && pnts[i].x - pnts[j].x > best)
            box.erase(pnts[j++]);
        for (it = box.lower_bound(Point(pnts[i].x-best, pnts[i].y-best));
             it != box.end() && it->y <= pnts[i].y + best; it++) {
            best = min(best, abs(pnts[i] - *it));
        box.insert(pnts[i]);
    printf("%.2lf\n", best);
```

Math

```
Sieve, primality, factorization, phi
int np, p[MAXP], nf, f[MAXP], e[MAXP];
bool prime[MAXN];
void sieve(int n) {
    memset(prime, 0, sizeof(prime));
    prime[2] = 1;
    for (int i = 3; i <= n; i += 2)
        prime[i] = 1;
    for (int i = 3, \lim = \operatorname{sqrt}(n); i \le \lim; i += 2)
        if (prime[i])
            for (int j = i*i; j <= n; j += i)
                 prime[j] = 0;
    np = 0;
    p\lceil np++\rceil = 2;
    for (int i = 3; i <= n; i += 2)
        if (prime[i])
            p[np++] = i;
}
void factor(int n) {
    nf = 0;
    for (int i = 0, \lim = sqrt(n); n != 1 && p[i] <= \lim; i++) {
        if (n \% p[i] == 0) {
            f[nf] = p[i];
            e[nf] = 1;
            n \neq p[i];
            while (n \% p[i] == 0) {
                 e[nf]++;
                 n \neq p[i];
            }
            nf++;
            lim = sqrt(n);
    if (n != 1) {
        f[nf] = n;
        e[nf] = 1;
        nf++;
}
```

```
int _phi(int n) {
    int ret = 1;
    for (int i = 0, \lim = sqrt(n); n != 1 && p[i] <= \lim; i++) {
        if (n \% p[i] == 0) {
            int pk = p[i];
            n \neq p[i];
            while (n \% p[i] == 0) {
                pk *= p[i];
                n \neq p[i];
            ret *= pk - pk/p[i];
            lim = sqrt(n);
        }
    if (n != 1)
        ret *= n-1;
    return ret;
int phi[MAXN];
void build_phi(int n) {
    for (int i = 0; i <= n; i++)
        phi[i] = i;
    for (int i = 2; i <= n; i++) if (phi[i] == i)
        for (int j = i; j <= n; j += i)
            phi[j] = phi[j] / i * (i-1);
}
```

Chinese Remainder Algorithm

```
#include <cstdio>
#include <alaorithm>
using namespace std;
const int MAXN = 100010;
typedef pair<int, int> tpii;
struct teq {
   int r, n; // x = r \pmod{n}
};
int qnt;
teq eqs[MAXN];
tpii egcd(int a, int b) {
    int x = 0, last x = 1, auxx;
   int y = 1, lasty = 0, auxy;
   while (b) {
        int q = a / b, r = a \% b;
        a = b, b = r;
        auxx = x;
        x = lastx - q*x, lastx = auxx;
        auxy = y;
        y = lasty - q*y, lasty = auxy;
    return make_pair(lastx, lasty);
}
int chinese_remainder_algorithm() {
    int beta, sum = 0, n = 1;
    for (int i = 0; i < qnt; i++)
        n *= eqs[i].n;
    for (int i = 0; i < qnt; i++) {
        beta = egcd(eqs[i].n, n/eqs[i].n).second;
        while (beta < 0)
            beta += eqs[i].n;
        sum += (eqs[i].r * beta * n/eqs[i].n) % n;
   }
    return sum;
}
int main() {
    scanf("%d", &qnt);
    for (int i = 0; i < qnt; i++)
        scanf("%d %d", &eqs[i].r, &eqs[i].n);
    printf("%d\n", chinese_remainder_algorithm());
}
```

Shanks Baby-Step Giant-Step Algorithm

```
#define MAXN 100010
int modinv(int a. int n) {
   int b = n, x = 0, lastx = 1, aux;
    while (b) {
       int q = a / b, r = a \% b;
       a = b; b = r;
       aux = x;
        x = lastx - q * x, lastx = aux;
   while (lastx < 0)
       lastx += n;
    return lastx;
int modpow(int x, int e, int n) {
   int ret = 1;
   while (e) {
       if (e & 1)
           ret = (ret * x) % n;
       x = (x * x) % n;
       e >>= 1;
    return ret;
// @param a generator of group Z_n
// @param n group Z_n
// @return x such that a^x = b \pmod{n} or -1
int shanks_algorithm(int a, int b, int n) {
    int m = ceil(sqrt(n));
    int table[MAXN];
    for (int i = 0; i < n; i++)
        table[i] = -1;
    int aux = 1;
    for (int j = 0; j < m; j++) {
       table[aux] = j;
        aux = (aux * a) % n;
    aux = modpow(modinv(a, n), m, n);
    for (int i = 0; i < m; i++) {
       if (table[b] != -1)
           return i*m + table[b];
        b = (b * aux) % n;
    return -1;
```

FFT

```
typedef complex<long double> pt;
pt tmp[1<<20];
void fft(pt *in, int sz, bool inv) {
   if (sz == 1)
        return;
   for (int i = 0, j = 0, h = sz >> 1; i < sz; i += 2, j++) {
        in[j] = in[i];
        tmp[h+j] = in[i+1];
    for (int i = sz >> 1; i < sz; i++)
        in[i] = tmp[i];
    sz >>= 1;
    pt *even = in, *odd = in + sz;
    fft(even, sz, inv);
    fft(odd, sz, inv);
    long double p = (inv ? -1 : 1) * M_PI / sz;
    pt w = pt(cosl(p), sinl(p)), w_i = 1;
    for (int i = 0; i < sz; i++) {
        pt conv = w_i * odd[i];
        odd[i] = even[i] - conv;
        even[i] += conv;
        w_i *= w;
}
```

Polynomial

```
struct Poly {
    int n;
    double a[MAXN];
    Poly(int n = 0): n(n) { memset(a, 0, sizeof(a)); }
    Poly(const Poly &o): n(o.n) { memcpy(a, o.a, sizeof(a)); }
    const double& operator[] (int i) const { return a[i]; }
    double& operator[] (int i) { return a[i]; }
    double operator() (double x) const {
        double ret = 0:
        for (int i = n; i >= 0; i--)
            ret = ret * x + a[i];
        return ret;
    Poly operator+ (const Poly &o) const {
        Poly ret = 0;
        for (int i = 0; i \ll n; i++)
            ret[i] += a[i];
        ret.n = max(n, o.n);
        return ret;
    Poly operator- (const Poly &o) const {
        Poly ret = o;
        for (int i = 0; i <= n; i++)
            ret[i] -= a[i];
        ret.n = max(n, o.n);
        return ret;
    Poly operator* (const Poly &o) const {
        Poly ret(n + o.n);
        for (int i = 0; i <= n; i++)
            for (int j = 0; j \le o.n; j++)
                ret[i+j] += a[i] * o[j];
        return ret;
};
```

```
Poly fastMult(const Poly &p, const Poly &q) {
    int sz = 1 \ll (32 - \_builtin\_clz(p.n + q.n + 1));
    pt pin[sz], qin[sz];
    for (int i = 0; i < sz; i++) {
        if (i \ll p.n)
            pin[i] = p[i];
        else
            pin[i] = 0;
        if (i \ll q.n)
            qin[i] = q[i];
        else
            qin[i] = 0;
    fft(pin, sz, 0);
    fft(ain. sz. 0):
    for (int i = 0; i < sz; i++)
        pin[i] *= qin[i];
    fft(pin, sz, 1);
    Polv ret(p.n + a.n):
    for (int i = 0; i \leftarrow ret.n; i++)
        ret[i] = pin[i].real() / sz;
    while (ret.n > 0 && cmp(ret[ret.n], 0) == 0)
        ret.n--;
    return ret:
}
Poly diff(const Poly &p) {
    Poly ret(p.n-1);
    for (int i = 1; i \le p.n; i++)
        ret[i-1] = i * p[i];
    return ret;
}
pair<Poly, double> ruffini(const Poly &p, double x) {
    if (p.n == 0)
        return make_pair(Poly(), 0);
    Poly ret(p.n-1);
    for (int i = p.n; i > 0; i--)
        ret[i-1] = ret[i] * x + p[i];
    return make_pair(ret, ret[0] * x + p[0]);
}
```

```
* Find a root in range [lo, hi] assuming that exists only one root in [lo,
 * pair::second is true if exists a root in the given range or false otherwise
 * pair::first is the root if pair::second is true or 0 if false
pair<double, int> findRoot(const Poly &p, double lo, double hi) {
    if (cmp(p(lo), 0) == 0)
        return make_pair(lo, 1);
    if (cmp(p(hi), 0) == 0)
        return make pair(hi. 1):
    if (cmp(p(lo), 0) == cmp(p(hi), 0))
        return make_pair(0, 0);
    if (cmp(p(lo), p(hi)) > 0)
        swap(lo, hi):
    while (cmp(lo, hi) != 0) {
        double mid = (lo + hi) / 2;
        double val = p(mid);
        if (cmp(val. 0) == 0)
            lo = hi = mid;
        else if (cmp(val, 0) < 0)
            lo = mid:
        else
            hi = mid:
    return make_pair(lo, 1);
}
/**
* Return a vector of all real roots with their multiplicity in ascending
order
*/
vector<double> roots(const Poly &p) {
    vector<double> ret:
    if (p.n == 1) {
        ret.push_back(-p[0] / p[1]);
   else {
        vector<double> r = roots(diff(p));
        r.push_back(-MAXX);
        r.push_back(MAXX);
        sort(r.begin(), r.end());
        for (int i = 0, j = 1; j < (int) r.size(); i++, j++) {
            pair<double, int> pr = findRoot(p, r[i], r[i]);
            if (pr.second)
                ret.push_back(pr.first);
       }
    return ret;
```

Bignum

```
#include <cstring>
#include <algorithm>
#include <limits>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int MAXD = 1005, DIG = 9, BASE = 10000000000;
const ull BOUND = numeric_limits <ull> :: max() - (ull) BASE * BASE;
struct bianum
{
    int D, digits[MAXD / DIG + 2];
   int sign;
   inline void trim () {
        while (D > 1 \&\& digits[D - 1] == 0)
            D--;
   }
   inline void init (ll x) {
        memset(digits, 0, sizeof(digits));
        D = 0;
        if (x < 0) {
            sign = -1;
            X = -X;
        else {
            sign = 1;
        }
        do {
            digits\lceil D++ \rceil = x \% BASE;
            x /= BASE;
        } while (x > 0);
   }
    inline bignum (ll x) {
        init(x);
    inline bignum (int x = 0) {
        init(x);
   }
```

```
inline bignum (char *s) {
   memset(digits, 0, sizeof(digits));
   if (s[0] == '-') {
       sign = -1;
        S++;
   }
   else {
       sign = 1;
   int len = strlen(s), first = (len + DIG - 1) % DIG + 1;
   D = (len + DIG - 1) / DIG;
   for (int i = 0; i < first; i++)
        digits[D - 1] = digits[D - 1] * 10 + s[i] - '0';
   for (int i = first, d = D - 2; i < len; i += DIG, d--)
        for (int j = i; j < i + DIG; j++)
            digits[d] = digits[d] * 10 + s[j] - '0';
   trim();
inline char *str () {
   trim();
   char *buf = new char[DIG * D + 2];
   int pos = 0, d = digits[D - 1];
   if (sign == -1)
       buf[pos++] = '-';
   do {
       buf[pos++] = d \% 10 + '0';
       d /= 10;
   } while (d > 0);
   reverse(buf + (sign == -1 ? 1 : 0), buf + pos);
   for (int i = D - 2; i >= 0; i--, pos += DIG)
        for (int j = DIG - 1, t = digits[i]; <math>j >= 0; j--) {
            buf[pos + j] = t \% 10 + '0';
            t /= 10;
       }
   buf[pos] = '\0';
   return buf;
```

```
inline bool operator < (const bignum &o) const {</pre>
    if (sign != o.sign)
        return sign < o.sign;</pre>
    if (D != o.D)
        return sign * D < o.sign * o.D;
    for (int i = D - 1; i >= 0; i--)
        if (digits[i] != o.digits[i])
            return sign * digits[i] < o.sign * o.digits[i];</pre>
    return false;
inline bool operator > (const bignum &o ) const {
    if (sign != o.sign)
        return sign > o.sign;
    if (D != o.D)
        return sign * D > o.sign * o.D;
    for (int i = D - 1; i >= 0; i--)
        if (digits[i] != o.digits[i])
            return sign * digits[i] > o.sign * o.digits[i];
    return false;
}
inline bool operator == (const bignum &o) const {
    if (sign != o.sign)
        return false;
    if (D != o.D)
        return false;
    for (int i = 0; i < D; i++)
        if (digits[i] != o.digits[i])
            return false:
    return true;
}
```

```
inline bignum operator << (int p) const {</pre>
   bignum temp;
   temp.D = D + p;
   for (int i = 0; i < D; i++)
        temp.digits[i + p] = digits[i];
   for (int i = 0; i < p; i++)
       temp.digits[i] = 0;
   return temp;
inline bignum operator >> (int p) const {
   bignum temp;
   temp.D = D - p;
   for (int i = 0; i < D - p; i++)
        temp.digits[i] = digits[i + p];
   for (int i = D - p; i < D; i++)
       temp.digits[i] = 0;
   return temp:
inline bignum range (int a, int b) const {
   bignum temp = 0;
   temp.D = b - a;
   for (int i = 0; i < temp.D; i++)
        temp.digits[i] = digits[i + a];
   return temp;
inline bignum abs () const {
   bignum temp = *this;
   temp.sign = 1;
   return temp;
```

```
inline bignum operator + (const bignum &o) const {
    if (sign != o.sign) {
        if (sign == 1)
            return *this - o.abs();
            return o - this->abs();
    }
    bianum sum = o:
    int carry = 0;
    for (sum.D = 0; sum.D < D | | carry > 0; sum.D++) {
        sum.digits[sum.D] += (sum.D < D ? digits[sum.D] : 0) + carry;</pre>
        if (sum.digits[sum.D] >= BASE) {
            sum.digits[sum.D] -= BASE;
            carry = 1;
        }
    }
    sum.D = max(sum.D, o.D);
    sum.trim():
    return sum:
}
inline bignum operator - (const bignum &o) const {
    if (sign != o.sign) {
        if (sign == 1)
            return *this + o.abs();
            return -(this->abs() + o);
    else if (sign == -1) {
        return o.abs() - this->abs();
    bignum diff, temp;
    if (o > *this) {
        diff = o;
        diff.sign = -1;
        temp = *this;
    }
    else {
        diff = *this:
        temp = o;
    for (int i = 0, carry = 0; i < temp.D \mid | carry > 0; i++) {
        diff.digits[i] -= (i < temp.D ? temp.digits[i] : 0) + carry;</pre>
```

```
carry = 0;
        if (diff.digits[i] < 0) {</pre>
            diff.digits[i] += BASE;
            carry = 1;
       }
    }
    diff.trim():
    return diff;
inline bignum operator - () const {
    bignum temp = *this;
    temp.sign = -temp.sign;
    return temp;
inline bianum operator * (const bianum &o) const {
    bignum prod = 0;
    ull sum = 0, carry = 0;
    for (prod.D = 0; prod.D < D + o.D - 1 || carry > 0; prod.D++) {
        sum = carrv % BASE:
        carry /= BASE;
        for (int j = max(prod.D-o.D+1, 0); j \leftarrow min(D-1, prod.D); j++) {
            sum += (ull) digits[j] * o.digits[prod.D - j];
            if (sum >= BOUND) {
                carry += sum / BASE;
                sum %= BASE;
            }
       }
        carry += sum / BASE;
        prod.digits[prod.D] = sum % BASE;
    }
    prod.sign = sign * o.sign;
    prod.trim();
    return prod:
```

```
inline double_div (const bignum &o) const {
    double val = 0, oval = 0;
    int num = 0, onum = 0;
    for (int i = D - 1; i >= max(D - 3, 0); i --, num++)
        val = val * BASE + digits[i];
    for (int i = o.D - 1; i >= max(o.D - 3, 0); i--, onum++)
        oval = oval * BASE + o.digits[i];
    return sign * o.sign * val / oval * (D - num > o.D - onum ? BASE : 1):
}
inline pair<br/>bignum, bignum> divmod (const bignum &o) const {
    if (sian != o.sian) {
        pair<bignum, bignum> p = (this->abs()).divmod(o.abs());
        p.first.sign = -1;
        p.second.sign = sign;
        return p;
    else if (sign == -1) {
        pair<bignum, bignum> p = (this->abs()).divmod(o.abs());
        p.second.sign = sign;
        return p;
    }
    bignum quot = 0, rem = *this, temp;
    for (int i = D - o.D; i >= 0; i--) {
        temp = rem.range(i, rem.D);
        int div = (int) temp.double_div(o);
        bignum mult = o * div;
        while (div > 0 && temp < mult) {
            mult = mult - o;
            div--;
        }
        while (div + 1 < BASE \&\& !(temp < mult + o)) {
            mult = mult + o;
            div++;
        }
        rem = rem - (o * div << i);
        if (div > 0) {
            quot.digits[i] = div;
            quot.D = max(quot.D, i + 1);
    }
```

```
quot.trim();
        rem.trim();
        return make_pair(quot, rem);
    inline bignum operator / (const bignum &o) const {
        return divmod(o).first;
    inline bignum operator % (const bignum &o) const {
        return divmod(o).second:
    inline bignum power (int exp) const {
        bianum p = 1, temp = *this:
        while (exp > 0) {
            if (exp \& 1) p = p * temp;
            if (exp > 1) temp = temp * temp;
            exp >>= 1;
        }
        return p;
    }
};
inline bignum qcd (bignum a, bignum b) {
    bignum t;
    while (!(b == 0)) {
        t = a \% b;
        a = b;
        b = t;
    return a;
}
```

Useful facts

Erdös-Gallai theorem: A sequence of non-negative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + \cdots + d_n$ is even and $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$ holds for $1 \leq k \leq n$.

Split graph property: A split graph can be recognized solely from their degree sequence. Let the degree sequence of a graph G be $d_1 \geq \cdots \geq d_n$ and m is the largest value of i such that $d_i \geq i-1$. Then G if a split graph if and only if $\sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$.

Stirling's approximation: $(n \ge 100)$

$$\ln n! \approx n \ln n - n + \frac{1}{2} \ln(2\pi n)$$

2-SAT: Algorithm for solving Boolean expression in 2-CNF form (example: $(A \lor B) \land (B \lor \sim C) \land (A \lor C) \land (B \lor D)$).

- 1) Transform each term of conjunctions $(A \lor B)$ into $(\sim A \to B) \land (\sim B \to A)$
- 2) Construct graph G = (V, E) such that each literal is a vertex and each implication is an edge
- 3) Run SCC algorithm. If there is a SCC such that A and $\sim A$ are in it, so the expression cannot be evaluated TRUE. Otherwise, it is possible.

Pick's Theorem: $A = i + \frac{b}{2} - 1$