Problem Set 03: Solutions

BME253L - Fall 2025

2025-09-21

⚠ Warning

These solutions have been adapted from previous years, but I haven't had the chance to 100% guarentee their accuracy. If anything seems off, please don't hesitate to ask questions on Ed!

(A)
$$2A = \frac{V_c - V_A}{0.5} + \frac{V_B - V_A}{1} = -3V_A + V_B + 2V_c = 2A$$

(B)
$$\frac{V_B - V_A}{I} + \frac{V_B}{0.25} = 3A = 5V_B - V_A$$

(c)
$$3A + 2\left(\frac{Vc - VA}{0.5}\right) = 3\left(\frac{-Vc}{0.33}\right)$$

=7 $3A = 2VA - 5Vc$

$$V_{B} = \begin{bmatrix} -3 & 2 & 2 \\ -1 & 3 & 0 \\ 2 & 3 & -5 \end{bmatrix} = \frac{17}{50} = \begin{bmatrix} 0.34 & 1 \\ -1 & 5 & 0 \\ 2 & 0 & -5 \end{bmatrix}$$

(A)
$$2A = \frac{V_C - V_A}{0.5} + \frac{V_B - V_A}{0.5} \Rightarrow 2V_C + 2V_B - 4V_A = 2A$$
(B) $\frac{V_B - V_A}{0.5} + i + \frac{V_B}{0.25} = 0 \Rightarrow 6V_B - 2V_A + i = 0$
(C) $V_C - V_A$

(c)
$$\frac{V_L - V_A}{0.5} - i = \frac{-V_L}{0.33} \Rightarrow 2V_A - 5V_C + i = 0$$

3 unknowns:

$$\frac{1}{1} = \begin{vmatrix} -4 & 4 & -4 \\ -2 & 4 & 6 \\ 2 & -5 & 15 \end{vmatrix} = \frac{-232}{-28} = \boxed{8.28A}$$

$$\begin{vmatrix} -4 & 4 & 0 \\ -1 & 6 & 1 \\ 2 & -5 & 1 \end{vmatrix}$$

$$R_{1} = 3\Omega$$

$$R_{2} = 1\Omega$$

$$R_{3} = 1\Omega$$

$$R_{3} = 1\Omega$$

$$R_{3} = 1\Omega$$

(B)
$$\frac{V_A - V_B}{I} = \frac{V_B}{6} + 2 \Rightarrow 6V_A - 7V_B = 12$$

Solve for
$$V_A$$
: $(0 V_A - 7(\frac{4}{3} V_A - 1) = 12 \Rightarrow (\frac{18}{3} - \frac{28}{3}) V_A = 5$
 $V_A = -\frac{3}{2} V$

$$i_1 = \frac{VA}{R_1} = \frac{-\frac{3}{2}V}{3R} = [-0.5A]$$

$$i_2 = \frac{V_B}{R_3} = \frac{-3V}{6\pi} = \frac{-0.5 \, \text{A}}{1.00 \, \text{A}}$$

For Merinaum Power Franker,
$$R_{L}=R_{T}$$
 $R_{L}=8JL$
 $V_{L}=6V$
 $R_{L}=\frac{6^{2}}{8}=[4.5W]$
 $R_{L}=\frac{6^{2}}{8}=[4.5W]$
 $R_{L}=\frac{R_{L}}{8}\times100\% = \frac{4.5W}{0.754\cdot12V}=[50\%]$

