II) Show that
$$4+9+14+\cdots+(5n-1)=\frac{n}{2}(3+5n)$$
, for all positive integers n.

let
$$P(n)$$
: $4+9+14+--+(5n-1)=\frac{n}{2}(3+5n), n>1$

2) inductive step: Y => [P(k) -> p(k+1)]

Suppose PCK) is true and show that p(x+1) is true.

$$P(k)$$
: $4+9+14+--+(5k-1)=\frac{k}{2}(3+5k)$

$$=\frac{k}{2}(3+5k)+(5(k+1)-1)$$

$$= \frac{\kappa}{2}(3+5\kappa)+(5\kappa+5-1)$$

$$=$$
 $\left[\frac{5}{2}k^2 + \frac{13}{2}k + 4\right]$

$$= \frac{k+1}{2}(3+5k+5) = \frac{k+1}{2}(5k+8) = \frac{5}{2}k^2 + \frac{5}{2}k + \frac{8}{2}k + \frac{8}{2}$$
$$= \frac{k+1}{2}(5k+8).$$
$$= \frac{5}{2}k^2 + \frac{13}{2}k + 4$$

P(n) is true 4n>1

Question III:

Use mathematical induction to prove that $n! \ge 2^{n-1}$, for all $n = 1, 2, 3, \dots$

by using principal of mathematical induction

let p(n):" n! ≥ 2" n≥1"

1) Basis step: show that p(1) is true.

L.H.S = 1!, = 1 R.H.S = 2¹⁻¹=2⁰=1 1>11 2 P(1) is true.

2) Inductive step: YK>1 [P(K) => P(K+1)]

p(k); k! > 2k-1 show that p(k+1) is true.

P(K+1); (K+1)1 > 2 ??

sine p(x) is true.

 $k!, \geqslant 2^{k-1}$ $(k+1) k!, \geqslant (k+1).2^{k-1} \geqslant 2.2^{k-1}$ $\Rightarrow (k+1) k!, \geqslant 2.2^{k-1}$ $\Rightarrow (k+1) k!, \geqslant 2.2^{k-1}$ $\Rightarrow (k+1)!, \geqslant 2^{k}$ $\Rightarrow (k+1)!, \geqslant 2^{k}$ $\Rightarrow (k+1)!, \geqslant 2^{k}$

3) Conclusion: p(n) is true that

Question II:

Let $\{a_n\}$ be a sequence defined inductively as

$$a_0 = 0$$
, $a_1 = 2$, $a_{n+1} = 4a_n - 3a_{n-1}$, $\forall n \ge 1$.

Using Strong Induction prove that

$$a_n = 3^n - 1$$
, $\forall n \ge 0$.

$$a_{n+1} = 4a_n - 3a_{n-1}$$

By strong induction.

() Basic step show that
$$p(0)$$
, $p(1)$ true.

 $p(0)$: $a_0 = 3^{\circ} - 1$
 $0 = 1 - 1$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$

3 Conclusion: p(n) is true 4 n>0

Let $\{a_n\}$ be a sequence of integers defined inductively as:

$$a_0 = 2, a_1 = 4$$

$$a_n = 4a_{n-1} - 3a_{n-2}$$
 for $n \ge 2$

Prove, using strong induction, that $a_n = 1 + 3^n$ for all integers $n \ge 0$.

by strong induction.

1 basis step show that p(0) is true.

in P(0) is true.

(2) Inductive step. Y x >0 [p(0) x p(1) x - - xp(x)] -> p(x+)]

suppose that p(k), p(k-1) are true

show that p(k+1) is true.

LH.S = ax+1 = 40x-30x-1

$$=1+3^{k}(4-1)$$

=1+3^k.3 = 1+3^{k+1} = R. H. S

3 Conclusion: P(N) is true 4 n >0.

II) A) Prove (by cases) that, for any integer n, the product n(n+1) is even. we have two cases case 1) if niseven then nintil is even suppose niveven and show that n(n+1) is even n weven -> N= 2K KEZ -> n(n+1) = zk(2k+1) = 4k2+2k = 2(2k2+ k) = 2t t= 2k2+k (ase 2 if n's odd then n(n+1) is even suppose nisodd -> N= 2K+1 N(N+1) = (2k+1)(2k+2) = 4k2+4k+2k+2 =4k2+6k+2 = 2(2k2+3k+1) B) A sequence $(a_n)_{n\geq 1}$ is defined by $a_1=3$ and $a_n=7a_{n-1}$ for $n\geq 2$. Prove that $a_n = 3 \cdot 7^{n-1}$, for all $n \ge 1$. prove that p(n): an = 3,7 n>1 91=3 an = 7an-1 n22 n= k+1 9x+1= 7ak by principal of mathematical induction. let p(n): an = 3.7" n>1 1) basis step show that p(1) is true. 3=3 ~ ip(1) is true. 2) inductive. step Yuzi [P(k) => P(k+1)] suppose that pue btrue. P(K); ax = 3.7 k-1 show that pleti) is true. P(x+1) . ax+1=3.7 >) L.H.S= ax+1= 7ax= 7 (3.7 1)= 3.7= R.H.S ~ P(x+1) is true. 3) in bin) is three ANII

C) Use the first principle of mathematical induction to show that 2 is a divisor of $n^2 + n$, for every integer $n \ge 1$.

by principle of methematical induction

1) basis step showthof (1) is true.

L.H.S=
$$1^2+1=2=2.1$$
 $= 1$ $= 1$ $\Rightarrow 1 = 1$ $\Rightarrow 1 = 1$ $\Rightarrow 1 = 1$

2) inductive step Auxi [p(k) = p(k+1)] suppose P(K) is tome.

show that p(k+1) is true,

1. H.S =
$$(k+1)^2 + k+1$$

= $k^2 + 2k + 1 + k + 1$
= $k^2 + k + 2k + 2$
= $2 + k + 2k + 2$

i p(k+1) is true.

3) Conclusion.

¥n>1 P(n) is true.

Use Mathematical Induction to prove that

$$\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + - - - + \frac{1}{(n-1)(n)} = \frac{n-1}{n}, \quad n \ge 2.$$

Proof: by using principle of mathematical induction.

Let
$$P(n): \frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \cdots + \frac{1}{(n-1)(n)} = \frac{n-1}{n}$$
 $n \ge 2$

L.H.S =
$$\frac{1}{(1)(2)} = \frac{1}{2}$$
 R.H.S = $\frac{2^{-1}}{2} = \frac{1}{2}$

$$R.H.s = \frac{2^{-1}}{2} = \frac{1}{2}$$

i p(2) is true.

Suppose that A(k) is true.

$$P(\kappa): \frac{1}{(1)(2)} + \frac{1}{(2)(3)} + - - - + \frac{1}{(\kappa-1)(\kappa)} = \frac{\kappa-1}{\kappa}$$
 $\kappa \geq 2$

show that P(x+1) is true.

$$b(\kappa+1): \frac{(1)(5)}{1} + \frac{(5)(3)}{1} + \cdots + \frac{(\kappa-1)(\kappa)}{1} + \frac{\kappa(\kappa+1)}{1} = \frac{\kappa+1}{1}$$

L.H.S =
$$\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \cdots + \frac{1}{(k-1)(k)} + \frac{1}{k(k+1)}$$

$$= \frac{k}{k-1} + \frac{k(k+1)}{1} = \frac{k(k+1)}{(k-1)(k+1)+1} = \frac{k(k+1)}{k^2+k-k-1+1}$$

$$= \frac{\kappa_{x}}{\kappa_{x}} = \frac{\kappa_{x+1}}{\kappa_{x}} = R \cdot H \cdot S$$

~ p(x+1) is true.

Question IV

(1) Let $\{a_n\}$ be a sequence of integers defined inductively as:

 $a_0 = 0$, $a_1 = 4$, and $a_{n+1} = -2a_n + 3a_{n-1}$. Use strong induction to prove that $a_n = 1 - (-3)^n$ for all $n \ge 2$.

a1 = 4

an+1=-2an+3an-1 n>1

az=-291+300

ak+1 = -2ak+3ak-1

by strong induction.

1) Basis step show that p(2) is true.

2) inductive step: \\k\z\2 [p(2)\lambda...\np(k) \rightarrow p(k+1)]

suppose that p(k), p(k-1) are true showthat p(k+1) is true

P(K): 9K=1-(-3)K

L. H.S = ax+1 = -2 ax +3 ax-1

$$= -2(1-(-3)^{k})+3(1-(-3)^{k-1})$$

$$= -2+2(-3)^{k}+3-3(-3)^{k-1}$$

$$= -2 + 2(-3)^{k} + 3 - 3(-3)^{k-1}$$

$$= -\frac{2}{2} + \frac{2(-3)^{k} + \frac{3}{2} - \frac{3(-3)^{k-1}}{2}$$

$$= \frac{1}{2} - \frac{(-3)^{k-1}(-2(-3) + 3)}{(-2(-3) + 3)} = \frac{1}{2} - \frac{(-3)^{k-1}(-3)^{2}}{(-3)^{2}}$$

$$= \frac{1}{2} - \frac{(-3)^{k-1}(-2(-3) + 3)}{(-3)^{2}} = \frac{1}{2} - \frac{(-3)^{k-1}(-3)^{2}}{(-3)^{2}}$$

$$= \frac{1}{2} - \frac{(-3)^{k-1}(-3)^{2}}{(-3)^{2}} = \frac{(-3)^{k-1$$

3) conclusion bons is time A N > 5

(2) Show that $\forall m, n \in \mathbb{N}$. mn > m + n is false