Introduction to Time Series Analysis

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- ▶ Define a time series
- ► Get familiar with 'astsa' package

Definition

► Time series is a data set collected through time.

Correlation

Sampling adjacent points in time introduce a correlation.

Areas

- ▶ Economics and financial time series
- ▶ Physical time series
- Marketing time series
- ▶ Demographic time series
- ▶ Population time series
- ▶ Etc.

"astsa" package

- ▶ Package by Robert H. Shumway and David S. Stoffer
- Contains data sets and scripts to accompany "Time Series Analysis and Its Applications: With R Examples"
- https://cran.rproject.org/web/packages/astsa/astsa.pdf

What We've Learned

- Definition of a time series (we will re-define it in a slightly different way)
- ▶ The package titled 'astsa'

Some Time Plots

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- ▶ See some examples of time series.
- ▶ Produce meaningful time plots.

Some time series from 'astsa'

- **▶** jj
- ▶ fl∪
- ▶ globtemp
- ▶ globtempl
- ▶ star

Johnson and Johnson Quarterly Earnings (jj)

- ▶ US company Johnson and Johnson
- Quarterly earnings
- ▶84 quarters
- ▶ 1st quarter of 1960 to 4th quarter of 1980

Pneumonia and influenza deaths in the U.S. (flu)

- Monthly pneumonia and influenza deaths per 10,000 people
- ▶ 11 years
- ▶ From 1968 to 1978

Land-ocean temperature deviations (globtemp)

- Global mean land-ocean temperature deviations
- ▶ Deviations from base period 1951-1980 average
- Measured in degrees centigrade
- ▶ For the years 1880-2015.
- http://data.giss.nasa.gov/gistemp/graphs/

Land (only) temperature deviations (globtempl)

- Global mean [land only] temperature deviations
- Deviations from base period 1951-1980 average
- Measured in degrees centigrade
- ▶ For the years 1880-2015.
- http://data.giss.nasa.gov/gistemp/graphs/

Variable Star (star)

- ▶ The magnitude of a star taken at midnight
- ► For 600 consecutive days
- The data are from "The Calculus of Observations, a Treatise on Numerical Mathematics", by E.T. Whittaker and G. Robinson

What We've Learned

- ▶ Time series exist in variety of areas
- ▶ How to produce meaningful time plots

Stationarity

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

Get some intuition for (weak) stationary time series No systematic change in mean

i.e., No trend

No systematic change in variation

No periodic fluctuations

The properties of one section of a data are much like the properties of the other sections of the data

For an non-stationary time series, we will do some transformations to get stationary time series

What We've Learned

- In a (weak) stationary time series, there is no
- systematic change in mean (no trend)
- systematic change in variance
- periodic variations

Autocovariance function

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- recall random variables and covariance of two random variables
- characterize time series as a realization of a stochastic process
- define autocovariance function

Random variables

Random variable is defined

$$X:S \to \mathbb{R}$$

where S is the sample space of the experiment.

From data to a model

Discrete vs. Continuous r.v.

- ▶ 20 is a realization of r.v. X
- ▶ 30.29 is a realization of a r.v. Y

Covariance

- X, Y are two random variables.
- ► Measures the <u>linear</u> dependence between two random variables

$$CoV(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = Cov(Y,X)$$

Stochastic Processes

Collection of a random variables

$$X_1, X_2, X_3, \dots$$

 $X_t \sim distribution (\mu, \sigma^2)$

Time series as a realization of a stochastic process

$$X_1, X_2, X_3, \dots$$

30, 29, 57, ...

Autocovariance function

$$\gamma(s,t) = Cov(X_s, X_t) = E[(X_s - \mu_s)(X_t - \mu_t)]$$

$$\gamma(t,t) = E[(X_t - \mu_t)^2] = Var(X_t) = \sigma_t^2$$

Autocovariance function cont.

$$\gamma_k = \gamma(t, t+k) \approx c_k$$

What We've Learned

- the definition of a stochastic processes
- how to characterize time series as realization of a stochastic process
- how to define autocovariance function of a time series

Autocovariance coefficients

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- Recall the covariance coefficient for a bivariate data set
- Define autocovariance coefficients for a time series
- Estimate autocovariance coefficients of a time series at different lags

Covariance

- \triangleright X, Y are two random variables.
- Measures the <u>linear</u> dependence between two random variables

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

Estimation of the covariance

▶ We have a paired dataset

$$(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$$

► Estimation of covariance (cov() in R)

$$s_{xy} = \frac{\sum_{t=1}^{N} (x_t - \bar{x})(y_t - \bar{y})}{N - 1}$$

Autocovariance coefficients

- ► Autocovariance coefficients at different lags $\gamma_k = Cov(X_t, X_{t+k})$
- $ightharpoonup c_k$ is an estimation of γ_k .
- ▶ We assume (weak) stationarity

Estimation

$$c_k = \frac{\sum_{t=1}^{N-k} (x_t - \bar{x})(x_{t+k} - \bar{x})}{N}$$

where

$$\bar{x} = \frac{\sum_{t=1}^{N} x_t}{N}$$

Routine in R

- acf() routine (next video lecture)
- ▶ acf(time_series, type='covariance')

Purely random process

- ▶ Time series with no special pattern
- ► We use rnorm() routine

What We've Learned

- Definition of autocovariance coefficients at different lags
- Estimate autocovariance coefficients of a time series using acf() routine

The autocorrelation function

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- ▶ Define the autocorrelation function
- ▶ Obtain corellograms using acf() routine
- Estimate autocorrelation coefficients at different lags using acf() routine

The autocorrelation function (ACF)

- ▶ We assume weak stationarity
- The autocorrelation coefficient between X_t and X_{t+k} is defined to be

$$-1 \le \rho_k = \frac{\gamma_k}{\gamma_0} \le 1$$

Estimation of autocorrelation coefficient at lag k

$$r_k = \frac{c_k}{c_0}$$

Another way to write r_k

$$r_k = \frac{\sum_{t=1}^{N-k} (x_t - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}$$

acf() routine

- ➤ We have already used it for autocovariance coefficients
- ► It plots autocorrelation coefficients at different lags: Correlogram
- It always starts at 1 since $r_0 = \frac{c_0}{c_0} = 1$

What We've Learned

- Definition of the autocorrelation function (ACF)
- How to produce correlograms using acf() routine
- ► How to estimate the autocorrelation coefficients at different lags using acf() routine.

Random Walk

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- Get familiar with the random walk model
- Simulate a random walk in R
- Obtain the correlogram of a random walk
- ▶ See the difference operator in action

Model

Location at previous step (or price of the stock yesterday)

Location at time t (or a price of a stock today)

$$X_t = X_{t-1} + Z_t$$

 $Z_t \sim Normal(\mu, \sigma^2)$

White noise (residual)

$$X_0 = 0$$

$$X_1 = Z_1$$

$X_0 = 0$ $X_1 = Z_1$ $X_2 = Z_1 + Z_2$

$$E[X_t] = E\left|\sum_{i=1}^t Z_i\right| = \sum_{i=1}^t E[Z_i] = \mu t$$

$$Var[X_t] = Var \left| \sum_{i=1}^t Z_i \right| = \sum_{i=1}^t Var[Z_i] = \sigma^2 t$$

Simulation

- $X_1 = 0$
- $ightharpoonup Z_t \sim Normal(0,1)$
- $X_t = X_{t-1} + Z_t$ for t = 2,3,...,1000
- ▶ Plot and ACF

Removing the tend

Difference operator

- diff() to remove the trend
- ► Plot and ACF differenced time series

What We've Learned

- ▶ Random Walk model
- ▶ How to simulate a random walk in R
- ► How to get stationary time series from a random walk using diff() operator

Introduction to Moving Average processes

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

► Identify Moving average processes

Intuition

 X_t is a stock price of a company

Each daily announcement of the company is modeled as a noise

Effect of the daily announcements (noises Z_t) on the stock price (X_t) might last few days (say 2 days)

Stock price is linear combination of the noises that affects it

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$$

Moving average model of order 2 MA(2)

$$X_{t} = Z_{t} + \theta_{1} Z_{t-1} + \theta_{2} Z_{t-2} + \dots + \theta_{q} Z_{t-q}$$

 Z_i are i.id. & $Z_i \sim Normal(\mu, \sigma^2)$

What We've Learned

► How to identify Moving average processes MA(q)

Simulating MA(2) process

PRACTICAL TIME SERIES ANALYSIS
THISTLETON AND SADIGOV

Objectives

- ▶ Simulate a moving average process
- Interpret correlogram of a Moving average process

MA(2) process

$$X_{t} = Z_{t} + \theta_{1} Z_{t-1} + \theta_{2} Z_{t-2}$$

Simulation - MA(2) model

$$X_t = Z_t + 0.7 Z_{t-1} + 0.2 Z_{t-2}$$

 $Z_t \sim Normal(0,1)$

What We've Learned

- ► How to simulate MA processes in R
- ▶ That ACF of MA(q) cuts off at lag q