INTRODUCTION TO MACHINE LEARNING

SUPPORT VECTOR MACHINES

Elisa Ricci

margin

non mi interessa imparare un linear model qualsiasi voglio imparare uno specifico linear model che massimizza il margine

SUPPORT VECTOR MACHINES

LARGE MARGIN CLASSIFIERS

The margin of a classifier is the distance to the closest points of either class Large margin classifiers attempt to maximize this

SUPPORT VECTORS

For any separating hyperplane, there exist some set of "closest points"

These are called the **support vectors**

For n dimensions, there will be at least n+1 support vectors

LARGE MARGIN CLASSIFIERS

Maximizing the margin is good since it implies that only support vectors matter, other training examples are ignorable.

riduce notevolmente il training time

MEASURING THE MARGIN

The margin is the distance to the support vectors, i.e. the "closest points", on either side of the hyperplane

MEASURING THE MARGIN

https://nlp.stanford.edu//R-book/html/htmledition/support-vector-machines-the-linearly-separable-case-1.html#:~:text=The%20SVM%20in%20particular%20defines.the%20margin%20of%20the%20classifier.

Select the hyperplane with the largest margin where the points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

what does this mean?

questo costrain ci assicura che tutti i punti sono fuori dal margine

Select the hyperplane with the largest margin where the points are classified correctly and outside the margin!

Setup as a constrained optimization problem:

$$\max_{w,b} \quad \frac{1}{\|w\|}$$

subject to:

$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

$$\min_{w,b} \|w\|$$

subject to:
$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

Maximizing the margin is equivalent to minimize the norm of the weights (subject to separating constraints).

The minimization criterion wants w to be as small as possible

$$\min_{w,b} \|w\|$$

subject to:
$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

The constraints make sure that the data is separable

SUPPORT VECTOR MACHINE PROBLEM

$$\min_{w,b} \ \|w\|^2$$
 prendiamo la norma al quadrato per ricondurci a subject to: $y_i(w\cdot x_i+b)\!\geq\! 1 \ \ \forall i$

This is a version of a quadratic optimization problem

problema noto per cui esistono già solver ottimizzati

Maximize/minimize a quadratic function subject to a set of linear constraints

SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

$$\min_{w,b} \|w\|^2$$

subject to:
$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

We would like to learn something like this, but our constraints do not allow it...

SLACK VARIABLES

$$\min_{w,b} \|w\|^2$$

subject to:

$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_i$$

subject to:

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$

$$\varsigma_i \ge 0$$

slack variables

(one for each example)

What effect do they have?

SLACK VARIABLES

slack penalties

SLACK VARIABLES

Still a quadratic optizimization problem

SOFT MARGIN SVM

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_{i}$$
subject to:
$$y_{i}(w \cdot x_{i} + b) \ge 1 - \varsigma_{i} \quad \forall i$$

$$\varsigma_{i} \ge 0$$

Parameter C can be viewed as a way to control **overfitting**: it "trades off" the relative importance of maximizing the margin and fitting the training data.

SOFT MARGIN SVM

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_{i}$$
subject to:
$$y_{i}(w \cdot x_{i} + b) \ge 1 - \varsigma_{i} \quad \forall i$$

$$\varsigma_{i} \ge 0$$

C is a regularization parameter:

- ullet small C allows constraints to be easily ignored o large margin
- ullet large C makes constraints hard to ignore o narrow margin
- $C = \infty$ enforces all constraints: hard margin

C = Infinity hard margin

C = 10 soft margin

slack values for points >= margin and correctly classified is equal to:

0! The slack variables have to be greater than or equal to zero and if they are on or beyond the margin then $y_i(wx_i+b) \ge 1$ already

Difference from the point to the margin, i.e.

$$\varsigma_i = 1 - y_i(w \cdot x_i + b)$$

slack values for points incorrectly classified

"distance" to the hyperplane plus the "distance" to the margin

$$\varsigma_i = 1 (y_i(w \cdot x_i + b))$$

$$\min_{w,b} \ \left\|w\right\|^2 + C \sum_i \zeta_i$$
 subject to:
$$y_i(w \cdot x_i + b) \ge 1 - \zeta_i \ \forall i$$

$$\zeta_i \ge 0$$

$$\varsigma_{i} = \begin{cases} 0 & \text{if } y_{i}(w \cdot x_{i} + b) \ge 1\\ 1 - y_{i}(w \cdot x_{i} + b) & \text{otherwise} \end{cases}$$

tutti i punti classificati correttamente

tutti i punti classificati erroneamente

$$\varsigma_{i} = \begin{cases}
0 & if \ y_{i}(w \cdot x_{i} + b) \ge 1 \\
1 - y_{i}(w \cdot x_{i} + b) & otherwise
\end{cases}$$

$$\varsigma_{i} = \max(0, 1 - y_{i}(w \cdot x_{i} + b))$$

$$= \max(0, 1 - yy')$$
hinge loss

HINGE LOSS

Hinge:
$$l(y,y') = \max(0,1-yy')$$

Squared loss: $l(y,y') = (y-y')^2$

0/1 loss:

 $l(y,y') = 1 [yy' \le 0]$

$$\min_{w,b} \ \left\| w \right\|^2 + C \sum_i \zeta_i$$
 subject to:
$$y_i(w \cdot x_i + b) \ge 1 - \zeta_i \ \forall i$$

$$\zeta_i \ge 0$$

$$\varsigma_i = \max(0, 1 - y_i(w \cdot x_i + b))$$

$$\min_{w,b} \|w\|^2 + C \sum_{i} \max(0, 1 - y_i(w \cdot x_i + b))$$

Unconstrained problem!

$$\min_{w,b} \|w\|^2 + C \sum_{i} loss_{hinge}(y_i, y_i')$$

Does this look like something we have seen before?

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy') + \lambda \ regularizer(w,b)$$

NON LINEARLY SEPARABLE DATA

SUPPORT VECTOR MACHINE PROBLEM

$$\min_{w,b} \|w\|^2$$
subject to:
$$y_i(w \cdot x_i + b) \ge 1 \quad \forall i$$

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function subject to a set of linear constraints

This is typically referred as primal problem

RECAP: CLASSES OF OPTIMIZATION PROBLEMS

Linear programming (LP): linear problem, linear constraints

Quadratic programming (QP): quadratic objective and linear constraints, it is convex if Q is positive semidefinite

Nonlinear programming problem (NLP): in general non-convex

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$
 objective function s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \geq 0$ constrain

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \quad \mathbf{C} \mathbf{x} \ge \mathbf{d}$

$$\min_{\mathbf{x}} \quad f(\mathbf{x})$$
s.t. $g(\mathbf{x}) = 0, \quad h(\mathbf{x}) \ge 0$

DUAL PROBLEM

- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- One possible solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every inequality constraint in the primal (original) problem:

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$
s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \geq 0, \forall i$$

la matematica ci aiuta e ci permette di risolvere un problema equivalente

THE SOLUTION

Given a solution $\alpha_1...\alpha_n$ to the dual problem, the solution to the primal is:

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \sum_i \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_k$$

Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector. Then the classifying function is (note that we don't need \mathbf{w} explicitly):

$$f(\mathbf{x}) = \sum_{i} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

THE SOLUTION

$$f(\mathbf{x}) = \sum_{i} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- Two important observations
 - The solution relies on an inner product between the test point X and the support vectors X;.
 - Solving the optimization problem involves computing the inner products between all training points.

DUAL PROBLEM WITH SOFT MARGIN

 Dual problem is similar in the non separable case but notice the constraints.

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$
s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad 0 \leq \alpha_{i} \leq C, \forall i$$

• Again, \mathbf{X}_i with non-zero $\mathbf{\alpha}_i$ will be support vectors.

LINEAR SVM SUMMARY

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points are support vectors with non-zero Lagrangian multipliers α_{i} .

In inference phase soli i suppor vector points vengono considerati

LINEAR SVM SUMMARY

 Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

$$\max_{\boldsymbol{\alpha}} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} \mathbf{y}_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

$$\text{s.t.} \quad \sum_{i} \alpha_{i} y_{i} = 0, \quad 0 \leq \alpha_{i} \leq C, \forall i$$

NON LINEAR SVM

passando ad uno spazio a più dimensioni possiamo trovare un piano che separi dei punti che nello spazio attuale non sono linearmente separabili

Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space?

NON LINEAR SVM: FEATURE SPACES

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

KERNEL TRICK

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every datapoint is mapped into high-dimensional space via some, transformation $\Phi\colon \mathbf{x} \to \varphi(\mathbf{x})$, the inner product becomes: ϕ rimane sembra implicita

noi lavoriamo con il kernel dato dalla definizione
$$K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$$

 A kernel function is a function that is equivalent to an inner product in some feature space.

Noi scegliamo solo la kernel function

KERNEL TRICK

Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^2$

Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$: $K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{T}\mathbf{x}_{j})^{2} = 1 + x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} = 1 + x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} = 1 + x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} = 1 + x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} = 1 + x_{il}^{2}x_{jl}^{2} + 2x_{il}^{2}x_{jl}^{2} + 2x_{i$ $= \begin{bmatrix} 1 & x_{i1}^{2} & \sqrt{2} & x_{i1}^{2} & x_{i2}^{2} & \sqrt{2} x_{i1}^{2} & \sqrt{2} x_{i2} \end{bmatrix}^{T} \begin{bmatrix} 1 & x_{j1}^{2} & \sqrt{2} & x_{j1}^{2} & x_{j2}^{2} & \sqrt{2} x_{j1}^{2} & \sqrt{2} x_{j2} \end{bmatrix} =$ $= \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x}_{i}), \text{ where } \varphi(\mathbf{x}) = \begin{bmatrix} 1 & x_{i}^{2} & \sqrt{2} & x_{i}^{2} & x_{i2}^{2} & \sqrt{2} x_{i1}^{2} & \sqrt{2} x_{j2} \end{bmatrix} =$

A kernel function implicitly maps data to a high-dimensional space (without the need to compute each $\varphi(\mathbf{x})$ explicitly).

KERNEIS

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:
 - Every positive semidefinite symmetric function is a kernel
 - A positive semidefinite symmetric functions correspond to a positive semidefinite symmetric Gram matrix:

$K(\mathbf{x}_1, \mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1, \mathbf{x}_3)$	***	$K(\mathbf{x}_1,\mathbf{x}_n)$
$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$

$K(\mathbf{x}_n, \mathbf{x}_1)$	$K(\mathbf{x}_{n},\mathbf{x}_{2})$	$K(\mathbf{x}_n, \mathbf{x}_3)$		$K(\mathbf{x}_n, \mathbf{x}_n)$

 Recap: A symmetric matrix is positive semidefinite if and only if all eigenvalues are non-negative

KERNELS

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}}$
 - Mapping Φ : $\mathbf{x} \to \varphi(\mathbf{x})$, where $\varphi(\mathbf{x})$ is infinite-dimensional

NON LINEAR SVM PROBLEM

Dual problem formulation:

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \geq 0, \forall i$$

• The solution is:

$$f(\mathbf{x}) = \sum_{i} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

ullet Optimization techniques for finding $oldsymbol{lpha}_i$'s remain the same!

SVM REMARKS

- Most popular optimization algorithms for SVMs use decomposition to hill-climb over a subset of αi's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner (grid search)

SVM è diventato così tanto prevalente perchè:

- ha garanzie teoriche molto potenti di generalizzazione
- è super flessibile e può essere usato per tanti scopi (anche oltre la classification)

SVM APPLICATIONS

Pedestrian detection in Computer Vision

Objective: detect (localize) standing humans in an image

- reduces object detection to binary classification
- does an image window contain a person or not?

QUESTIONS?

