where A_{11} , A_{12} are 2×2 , 2×1 ; A_{21} , A_{22} are 1×2 , 1×1 ; and A_{31} , A_{32} are 3×2 , 3×1 , and [B] be the 2×3 block matrix

$$[B] = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} \end{pmatrix},$$

where B_{11}, B_{12}, B_{13} are 2×1 , 2×2 , 2×3 ; and B_{21}, B_{22}, B_{23} are 1×1 , 1×2 , 1×3 . Then [C] = [A][B] is the 3×3 block matrix

$$[C] = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} & \begin{bmatrix} \\ \\ \end{bmatrix} & \begin{bmatrix} \\ \end{bmatrix} &$$

where C_{11} , C_{12} , C_{13} are 2×1 , 2×2 , 2×3 ; C_{21} , C_{22} , C_{23} are 1×1 , 1×2 , 1×3 ; and C_{31} , C_{32} , C_{33} are 3×1 , 3×2 , 3×3 . For example,

$$C_{32} = A_{31}B_{12} + A_{32}B_{22}.$$

Example 6.5. This example illustrates some of the subtleties having to do with the partitioning of the index sets. Consider the 1×3 matrix

$$A = (a_{11} \ a_{12} \ a_{13})$$

and the 3×2 matrix

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}.$$

Consider the partition of the index set $R = \{1\}$ given by $R_1 = \{1\}$; of the index set $S = \{1, 2, 3\}$ given by $S_1 = \{1, 3\}$, $S_2 = \{2\}$; and of the index set $T = \{1, 2\}$ given by $T_1 = \{2\}$, $T_2 = \{1\}$. The corresponding block matrices are the 1×2 block matrix

$$[A] = (A_{\{1\},\{1,3\}} \ A_{\{1\},\{2\}}) = ([a_{11} \ a_{13}] \ [a_{12}]),$$

and the 2×2 block matrix

$$[B] = \begin{pmatrix} B_{\{1,3\},\{2\}} & B_{\{1,3\},\{1\}} \\ B_{\{2\},\{2\}} & B_{\{2\},\{1\}} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} b_{12} \\ b_{32} \end{bmatrix} & \begin{bmatrix} b_{11} \\ b_{31} \end{bmatrix} \\ \begin{bmatrix} b_{22} \end{bmatrix} & \begin{bmatrix} b_{21} \end{bmatrix} \end{pmatrix}.$$