Problem 1.47. Let $\Sigma = \{1, \#\}$ and let

$$Y = \{ w \mid w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ each } x_i \in 1^*, \text{and } x_i \ne x_j \text{ for } i \ne j \}.$$

Prove that Y is not regular.

Proof Idea. For k = 1 and k = 2, some of the members of Y are:

$$Y = \{\epsilon, 1, 11, 111, \cdots 1\#, \#1, 11\#, \#11, 1\#11, 11\#1 \cdots \}.$$

The idea is to choose a string s, for which k=2, and show that x_1 and x_2 can be equal.

Proof. The proof is by contradiction. Assume Y is a ragular language. Let p be the pumping lenght given by the pumping lemma. Choose s to be the string:

$$s = 1^p \# 1^{p+p!}$$

The string s is a member of Y, and $|s| \ge p$. Therefore, the pumping lemma guarantees that the string s can be split into three parts, s = xyz, and for $i \ge 0$, $xy^iz \in Y$. According to the condition $3 (|xy| \le p)$ of the pumping lemma, y can only be 1s.

Let m + n = p, $x = 1^m$ and $y = 1^n$. Then

$$1^m \left[1^n \right]^i \# 1^{p+p!} \in Y.$$

But for $i = 1 + \frac{p!}{n}$, the number of 1s on both sides of the # are the same, which is a contradiction. \Box