Rank-73798 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1498768734

General information

Number of lines	3
Number of points	25
Number of singular points	1
Number of Eckardt points	1
Number of double points	0
Number of single points	12
Number of points off lines	12
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$3, 1^{12}, 0^{12}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & \omega^2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \mathbf{Pl}(0, 3, 1, 0, 0, 0)_{8}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \mathbf{Pl}(0, 2, 1, 0, 0, 0)_{7}$$

Rank of lines: (356, 268, 184)

Rank of points on Klein quadric: (1, 8, 7)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 12 single points: The single points on the surface are:

 $\begin{array}{l} 0: P_3 = (0,0,0,1) \text{ lies on line } \ell_0 \\ 1: P_{24} = (2,0,0,1) \text{ lies on line } \ell_1 \\ 2: P_{25} = (3,0,0,1) \text{ lies on line } \ell_2 \\ 3: P_{38} = (0,0,1,1) \text{ lies on line } \ell_0 \\ 4: P_{40} = (2,0,1,1) \text{ lies on line } \ell_1 \\ 5: P_{41} = (3,0,1,1) \text{ lies on line } \ell_2 \\ 6: P_{53} = (0,0,2,1) \text{ lies on line } \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 12 points not on any line: The points on the surface but not on lines are:

 $0: P_5 = (1, 1, 0, 0)$ $1: P_6 = (2, 1, 0, 0)$ $2: P_7 = (3, 1, 0, 0)$ $3: P_{27} = (1, 1, 0, 1)$ $4: P_{31} = (1, 2, 0, 1)$ $5: P_{35} = (1, 3, 0, 1)$ $6: P_{48} = (3, 2, 1, 1)$

7: $P_{55} = (2, 0, 2, 1)$ lies on line ℓ_1 8: $P_{56} = (3, 0, 2, 1)$ lies on line ℓ_2 9: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_0 10: $P_{71} = (2, 0, 3, 1)$ lies on line ℓ_1 11: $P_{72} = (3, 0, 3, 1)$ lies on line ℓ_2

7: $P_{51} = (2, 3, 1, 1)$ 8: $P_{60} = (3, 1, 2, 1)$

9: $P_{63} = (2, 2, 2, 1)$

10: $P_{75} = (2, 1, 3, 1)$

11: $P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_2	P_2

The surface has 25 points:

The points on the surface are:

$0: P_2 = (0, 0, 1, 0)$	9: $P_{35} = (1, 3, 0, 1)$	18: $P_{60} = (3, 1, 2, 1)$
$1: P_3 = (0,0,0,1)$	$10: P_{38} = (0,0,1,1)$	19: $P_{63} = (2, 2, 2, 1)$
$2: P_5 = (1, 1, 0, 0)$	$11: P_{40} = (2,0,1,1)$	$20: P_{69} = (0, 0, 3, 1)$
$3: P_6 = (2, 1, 0, 0)$	$12: P_{41} = (3,0,1,1)$	$21: P_{71} = (2,0,3,1)$
$4: P_7 = (3, 1, 0, 0)$	$13: P_{48} = (3, 2, 1, 1)$	$22: P_{72} = (3, 0, 3, 1)$
$5: P_{24} = (2,0,0,1)$	$14: P_{51} = (2, 3, 1, 1)$	$23: P_{75} = (2, 1, 3, 1)$
$6: P_{25} = (3,0,0,1)$	15: $P_{53} = (0,0,2,1)$	$24: P_{84} = (3, 3, 3, 1)$
$7: P_{27} = (1, 1, 0, 1)$	16: $P_{55} = (2,0,2,1)$	
$8: P_{31} = (1, 2, 0, 1)$	17: $P_{56} = (3,0,2,1)$	