Modeling the graph of French Law

Antonin PERONNET

Machine Learning for Law

QA = retrieval + reasonning

LegalBench Benchmark

	Model ≎	Cost In / Out 🌣	Accuracy ~	Latency (s) ≎
1	⑤ o1 Preview ❖	\$15.00 / \$60.00	81.7 %	10.33 s
2	⑤ GPT 4o (2024-11-20)	\$2.50 / \$10.00	79.8 %	0.35 s
3	Qwen 2.5 Instruct Turbo (72B)	\$1.20 / \$1.20	79.2 %	0.62 s
4	∧ Llama 3.1 Instruct Turbo (405B)	\$3.50 / \$3.50	79.0 %	0.81 s
5	⑤ GPT 4o (2024-08-06)	\$2.50 / \$10.00	79.0 %	0.39 s
6	A\ Claude 3.5 Sonnet Latest	\$3.00 / \$15.00	78.8 %	0.83 s
7	⑤ o1 Mini	\$3.00 / \$12.00	78.7 %	3.81 s
8		\$0.88 / \$0.88	78.2 %	3.01 s
9		\$0.88 / \$0.88	78.0 %	0.56 s

Limitations

- hallucinations²
- not up to date

1

¹LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models (Guha et Al, 2024)

²Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models (Dahl M et Al, 2024)

The problem with the law

- Law evolves
- No standard
- Hard to retrieve

Representing the law: Ontology

³Legal Judgment Prediction via Heterogeneous Graphs and Knowledge of Law Articles (Qian Dong and Shuzi Niu, 2021)

Problem statement

• unsupervised • granular

Ontology: Chosing the right one⁴

#entities / document

Every word

Every term

Legal terms

Statutes

Topics

References to other articles

- For retrieval?
- For Extraction ?
- For Manipulation ?

⁴Taking stock of legal ontologies: a feature-based comparative analysis (Leone V., Di Caro L., Villata S., 2020)

Locks

fundamental

- choice of the ontology
- normative texts

practical

- specialized LLMs
- annotated data

evaluation

- intrinsic
- extrinsic

Added material

Une vision complète dès la première requête

Ne multipliez plus les bases de données juridiques. Obtenez une vue complète de l'environnement juridique de votre client dès la première recherche et accédez à l'ensemble des articles de loi et décisions relatifs à votre cas d'espèce. Trouvez également des liens vers les commentaires doctrinaux accessibles en ligne les plus pertinents pour votre dossier. Mais vous n'avez pas le temps de lire 10 000 décisions pour trouver la bonne. Affinez vos recherches avec les filtres par mots clés, publication, dispositif ou thème et allez plus loin en identifiant les tendances jurisprudentielles par juridiction. Précisez les résultats par date, chambre et spécialité de droit pour ne plus avoir de doutes sur la construction de votre argumentaire.

Figure 1: An illustration of the "retrieve-then-read" pipeline for interpretable long-form legal question answering.

Representing the law: Code

Formal language

 $(\exists p \in \operatorname{parents}(x); \operatorname{Fran}\mathfrak{sais}(p)) \Rightarrow \operatorname{Fran}\mathfrak{sais}(x)$

Programming language⁵

```
declaration scope Child:
   input age content integer
   output is_eligible_article_3 condition
scope Child:
```

⁵Catala: a programming language for the law (Merigoux D., Chataing N., Protzenko J, 2021)

rule is_eligible_article_3 under condition age < 18 consequence fulfilled

