

Tratamento de resíduos agroindustriais (glicerol e melaço de soja) em reator anaeróbio de leito fixo e pós tratamento aeróbio

Felipe Kreft, Lucas Melo da Silva, Brenda Clara Rodrigues, Bruna Sampaio de Mello, Arnaldo Sarti, Araraquara, Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista UNESP, Araraquara - SP

Palavras Chaves: Co-digestão; digestão anaeróbia; pós tratamento aeróbio.

Introdução

Devido ao aumento da produção de biodiesel no Brasil (5.305.036 m³ em 2018), a glicerina, principal subproduto da sua produção, não possui destinação adequada, o que acarreta problemas como seu _ armazenamento e descarte inadequado.

O melaço de soja é um subproduto do processamento da soja, o qual também não possui um processo consolidado de disposição, sendo direcionado a queima em caldeira para obtenção de energia.

Uma possibilidade para sustentável destinação destes subprodutos seria a co-digestão anaeróbia, seguido de pós tratamento aeróbio, que possibilita a – produção de biogás e permite a adequação ao ambiente um efluente com características permitidas pela legislação vigente..

Objetivo

Co-digestão dos subprodutos melaço de soja e glicerol em Reator Anaeróbio Horizontal de Leito Fixo (RAHLF) seguido pós-tratamento aeróbio em escala de bancada.

Material e Métodos

Monitoramento Físico-químico (afluente, efluente e pontos intermediários).

- pH
- Demanda Química de Oxigênio (DQO) bruta e filtrada (APHA, 2005)
- Sólidos Suspensos Totais (SST) e Voláteis (SSV) (APHA,2005).
- · AB Alcalinidade à Bicarbonato (RIPLEY et al., 1986)
- AVT Ácidos Voláteis Totais (DILLALO & ALBERTSON, 1961)

Resultados e Discussão

Tabela 1. Médias e desvio padrão dos dados obtidos para afluente de 3000 mgO₂/L.

Ponto de amostragem	Afluente	Efluente Anaeróbio	Efluente Aeróbio
DQO _{bruta} (mgO ₂ /L)	3045±246	742±282	216±83
DQO _{filtrada} (mgO ₂ /L)	2448±218	491±154	83±69
Eficiência de Remoção (%)	-	84	97
рН	7,15±0,67	6,63±0,24	8,13±0,2
AVT(mgHAc/L)	209±123	388±294	84±69
AB(mgCaCO ₃ /L)	64±113	68±25	195±53
SST(mg/L)	53±15	42±10	-
SSV(mg/L)	51±2	67±7	-

Tabela 2. Médias e desvio padrão dos dados obtidos para afluente de $4000mgO_2/L$

Ponto de amostragem	Afluente	Efluente Anaeróbio	Efluente Aeróbio
DQO _{bruta} (mgO ₂ /L) DQO _{total} (mgO ₂ /L)	4033±179 3141±314	1516±604 876±234	505±516 487±576
Eficiência de Remoção (%)	-	78	88
рН	6,35±0,43	6,41±0,69	8,09±0,11
AVT(mgHAc/L)	409±100	643±215	105±114
AB(mgCaCO ₃ /L) SST(mg/L) SSV(mg/L)	144±61 205±59 197±43	209±129 81±17 71±22	183±83 13±3 10±7

Conclusões

Foram observadas elevadas eficiências de remoção da carga orgânica dos substratos. Para a alimentação de 3000 mgO₂/L, constatou-se a remoção global média de 97% em termos de carga orgânica, e para 4000 mgO₂/L, a remoção global média foi de 88%

Agradecimentos

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP–Brazil) (Processo 2015/15880-1).

AGÊNCIA NACIONAL DO PETRÓLEO. Produção de Biodiesel em m³. 2019. APHA; AWWA; WPCF. Standard Methods for the Examination of Water and DILLALO, R. & ALBERTSON, O.E.Volatile Acids by Direct Tritation. Journal WPCF, v. 33, p. 356-365, 1961.

RIPLEY, L.E.; BOYLE, W.C.; CONVERSE, J.C. Improved AlkalimetricMonitoring for Anaerobic Digestion of High-Strength Wastes. Journal WPCF, v. 58, p. 406-411, 1986