

Before going in...

- Today's seminar is based on chapter 5 in Nielsen & Chuang.
- We are now looking some specific algorithms and their applications today.
- As in the last seminar, there are exercises. The incorporation method is the same as before.

Before Going in...

- There are some prerequisites:
- 1. You must at least understand what FFT does.
- 2. Small knowledge in Number Theory will be useful.
- Don't worry! It's not that hard..

Discrete Fourier Transforms

•
$$y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} x_j$$

- I will not prove how this formula is justified. (Out of Scope!)
- For Quantum Computers:

$$|j\rangle \to \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i jk/N} |k\rangle$$

The coefficients are called 'Amplitudes'. (Obviously.)

Product Representation

- Fourier Transform will be unitary....
- We can construct the circuit using basic gates... but how?
- Take $N = 2^n$. The basis ket goes from $|0\rangle ... |2^n 1\rangle$
- Let's represent j in binary: $j = j_1 j_2 j_3 ... j_n$
- Binary Fraction: $0.j_1j_2...j_m$

Product Representation

Little algebra gives

$$|j_1,\ldots,j_n\rangle o rac{\left(|0
angle + e^{2\pi i 0.j_n}|1
angle \right) \left(|0
angle + e^{2\pi i 0.j_{n-1}j_n}|1
angle \right) \cdots \left(|0
angle + e^{2\pi i 0.j_1j_2\cdots j_n}|1
angle }{2^{n/2}}$$

- Proof
- (Yeah.. I'm not doing that!)

$$\begin{split} |j\rangle &\to \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} e^{2\pi i j k/2^n} |k\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_1=0}^1 \dots \sum_{k_n=0}^1 e^{2\pi i j \left(\sum_{l=1}^n k_l 2^{-l}\right)} |k_1 \dots k_n\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_1=0}^1 \dots \sum_{k_n=0}^1 \bigotimes_{l=1}^n e^{2\pi i j k_l 2^{-l}} |k_l\rangle \\ &= \frac{1}{2^{n/2}} \bigotimes_{l=1}^n \left[\sum_{k_l=0}^1 e^{2\pi i j k_l 2^{-l}} |k_l\rangle \right] \\ &= \frac{1}{2^{n/2}} \bigotimes_{l=1}^n \left[|0\rangle + e^{2\pi i j 2^{-l}} |1\rangle \right] \\ &= \frac{\left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle\right) \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle\right) \dots \left(|0\rangle + e^{2\pi i 0.j_1j_2 \dots j_n} |1\rangle\right)}{2^{n/2}}. \end{split}$$

The R_k Gate

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{bmatrix}$$

- Since this is unitary, we can of course construct controlled- R_k with CNOT and basic single qubit gates.
- Will you give it a go? (MIT homework question!)

Quantum Fourier Algorithm

$$|j_1,\ldots,j_n
angle
ightarrow rac{\left(|0
angle+e^{2\pi i0.j_n}|1
angle
ight)\left(|0
angle+e^{2\pi i0.j_{n-1}j_n}|1
angle
ight)\cdots\left(|0
angle+e^{2\pi i0.j_1j_2\cdots j_n}|1
angle
ight)}{2^{n/2}}\,.$$

- How do we make each terms?
- 1. Apply the Hadamard gate to produce $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- 2. Apply the controlled- R_k gate n-1 times for $|j_1\rangle$. (Control: j_2 to j_n , obviously)
- 3. Repeat for $|j_k\rangle$. For $|j_k\rangle$, apply the gate for n-k times.

Visualisation

Note! The Hadamard gate MUST be applied at all basis kets!

Question.

- 1. Construct the 3-qubit QFT (Not Quantum Field Theory!) using H, S, and T gates.
- 2. Compare the efficiency of the classical FFT algorithm and the QFT algorithm. How many operations (approximately) should each algorithms do when they operate on n bases?

Phase Estimation

- A unitary operator can have some complex phases as the eigenvalue, with the phase value unknown.
- Of course, the overall process is close to an approximation, as we all know that the phase itself is an 'exponential' term.
- Our Goal: Shor's Algorithm

The Oracle

- Sometimes called as a 'black box'
- capable of preparing the state $|u\rangle$ and performing the controlled- U^{2j} operation
- The usage of oracles are NOT algorithms; they are more close to subroutines or modules.
- They are normally combined with other procedures to perform some useful tasks. (e.g. Search Algorithms – Next Seminar!)

First Stage

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of $1/\sqrt{2}$ have been omitted, on the right.

First Stage

Obviously, the overall state after the first state is given as

$$\begin{split} \frac{1}{2^{t/2}} \left(|0\rangle + e^{2\pi i 2^{t-1}\varphi} |1\rangle \right) \left(|0\rangle + e^{2\pi i 2^{t-2}\varphi} |1\rangle \right) \dots \left(|0\rangle + e^{2\pi i 2^{0}\varphi} |1\rangle \right) \\ &= \frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2\pi i \varphi k} |k\rangle \,. \end{split}$$

The last part is the product representation.

Second Stage

Remember

$$|j_1,\ldots,j_n
angle
ightarrow rac{\left(|0
angle+e^{2\pi i 0.j_n}|1
angle
ight)\left(|0
angle+e^{2\pi i 0.j_{n-1}j_n}|1
angle
ight)\cdots\left(|0
angle+e^{2\pi i 0.j_1j_2\cdots j_n}|1
angle
ight)}{2^{n/2}}$$

• When we mark $\varphi = \varphi_1 \varphi_2 \dots \varphi_t$, the formula we saw in the last slide changes to]

$$\frac{1}{2^{t/2}} \left(|0\rangle + e^{2\pi i 0.\varphi_t} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.\varphi_{t-1}\varphi_t} |1\rangle \right) \ldots \left(|0\rangle + e^{2\pi i 0.\varphi_1 \varphi_2 \cdots \varphi_t} |1\rangle \right)$$

Okay! Let's apply the inverse Quantum Fourier Transform and we are done!

Schematic Diagram

- Note. As you can easily deduce, this is an ESTIMATION of the phase until the nth order in binary.
- Of course, the more qubits you have in the first register, the more precise the measurement gets.*

^{*} To acquire the phase accurately to n bits with success rate $1 - \epsilon$ requires $t = n + \log(2 + \frac{1}{2\epsilon})$ registers.

RSA Encryption

- Easy explanation: The conventional algorithm for secure data transmission using number theory (i.e. Primes)
- It's hard to factorise composites rather than to multiply primes!
- How much efficient?: The FASTEST classical factorisation algorithm operates at sub-exponential time scale.

Order-Finding

- Order (Number Theory): The order of x modulo N is defined as the smallest integer such that $x^r \equiv 1 \pmod{N}$
- Question: Prove that for n < r, $x^n s$ have different modulos.
- Think of a unitary operator such tat $U |y\rangle \equiv |xy(mod N)\rangle$
- IF y is larger than N, by convention, U is identity for y larger than
 N.

Order-Finding

- Think $|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^k \mod N\rangle$.
- $U|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^{k+1} \bmod N\rangle = e^{2\pi i s/r} |u_s\rangle$
- Okay! Now we have to approximate the eigenvalues!
- I know you will have questions regarding this formalism. Let me explain.

Computing the Modular Exponentiation Algorithm

- Question. Can we implement controlled- U^{2j} operations with reasonable (i.e. not exponential) amount of gates?
- It is. If you are curious, look at Box 5.2 at Nielsen & Chuang or http://qudev.phys.ethz.ch/content/courses/QSIT11/presentations/gSIT-ShorTheory.pdf (ETH Zurich lecture PPT)
- Result: The overall performance can be made using $O(L^3)$ gates.

Preparing $|u_s\rangle$

- Wait..does preparing $|u_s\rangle$ require having knowledge on s?
- We can avoid this problem using $\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$.
- Apply the Phase Estimation Algorithm: for each s in the range 0 through r − 1, we will obtain an estimate of the phase φ ≈ s/r

Continued Fraction Algorithm

- Let's reduce the order-finding algorithm to phase estimation.
- Continued Fraction: $[a_0, a_1, ..., a_m] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_m}}}}$.
- Theorem. Suppose s/r is a rational number such that $\left|\frac{s}{r} \varphi\right| < \frac{1}{2r^2}$. Then s/r is a convergent of the continued fraction for φ , and thus can be computed in $O(L^3)$ operations using the continued fractions algorithm.
- Using this, s/r can be quickly approximated, thus giving r with a reasonable accuracy.

Summary

Algorithm: Quantum order-finding

Inputs: (1) A black box $U_{x,N}$ which performs the transformation $|j\rangle|k\rangle \rightarrow |j\rangle|x^jk \mod N\rangle$, for x co-prime to the L-bit number N, (2) $t=2L+1+\left[\log\left(2+\frac{1}{2\epsilon}\right)\right]$ qubits initialized to $|0\rangle$, and (3) L qubits initialized to the state $|1\rangle$.

Outputs: The least integer r > 0 such that $x^r = 1 \pmod{N}$.

Runtime: $O(L^3)$ operations. Succeeds with probability O(1).

Procedure:

1.
$$|0\rangle|1\rangle$$
 initial state

2.
$$\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle|1\rangle$$
 create superposition

2.
$$\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle|1\rangle$$
 create super

3. $\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle|x^j \mod N\rangle$ apply $U_{x,N}$

$$pprox rac{1}{\sqrt{r2^t}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^t-1} e^{2\pi i s j/r} |j
angle |u_s
angle$$

4.
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\widehat{s/r}\rangle |u_s\rangle$$
 apply inverse Fourier transform to first register

.
$$ightarrow s/r$$
 measure first register

$$ightarrow r$$
 apply continued fractions algorithm

Factoring

- You all know what factoring is.
- Our task: Reduce the factoring problem to an order-finding problem.
- Step 1. Show that we can compute a factor of N if we can find a non-trivial solution x ≠ ± 1(mod N) to the equation x² = 1(mod N).
- Step 2. Show that randomly chosen y co-prime to N is quite likely to have an EVEN order, and $y^{r/2} \neq \pm 1 \pmod{N}$

Two Important Theorems

- Theorem 1. Suppose N is an L bit composite number, and x is a non-trivial solution to the equation x² = 1(mod N) in the range 1 ≤ x ≤ N. Then at least one of gcd(x-1,N) and gcd(x+1,N) is a non-trivial factor of N that can be computed using O(L³) operations.
- Theorem 2. Suppose $N = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, which is the prime factorisation of odd N. Let x be an integer chosen uniformly at random, subject to the requirements that $1 \le x \le N 1$ and x is coprime to N . Let r be the order of x modulo N. Then

$$p\left(r \ even \ and \ x^{\frac{r}{2}} \neq -1 \ (\text{mod } N)\right) \geq 1 - \frac{1}{2^m}.$$

Shor's Algorithm

- 1. If N is even, return the factor 2.
- 2. Determine whether $N = a^b$. If so, return a. (This can be done using classical computers.)
- 3. Randomly choose x in the range 1 to N −1. If gcd(x, N) > 1 then return the factor gcd(x, N).
- 4. Use the order-finding subroutine to find the order r of x modulo N.
- 5. If r is even and $x^{r/2} \neq -1 \pmod{N}$, then compute $\gcd\left(x^{\frac{r}{2}}-1,N\right), \gcd\left(x^{\frac{r}{2}}+1,N\right)$ and test whether these have some non-trivial factors.

Validity of Shor's Algorithm

- Step 1 & 2 either returns a factor, or provide that $N = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$.
- Step 3 and 4 generates the random number and computes the order r.
- For Step 5, the second theorem first guarantees that r is even and $x^{r/2} \neq -1 \pmod{N}$ with at least 1/2 chance.
- Then, the first theorem shows that either $\gcd\left(x^{\frac{r}{2}}-1,N\right),\gcd\left(x^{\frac{r}{2}}+1,N\right)$ will have a non-trivial factor.

Questions

- 1. Factoring 91: Suppose we wish to factor N = 91. Confirm that steps 1 and 2 are passed. For step 3, suppose we choose x = 4, which is co-prime to 91. Compute the order r of x with respect to N, and show that x^{r/2}mod 91 = 64/= -1(mod 91), so the algorithm succeeds, giving gcd(64 1, 19) = 7.
- 2. Using the contents you have learnt, factorise 15 quantum mechanically. This process was physically implemented using NMR.

More information on Shor's Algorithm

- http://www-bcf.usc.edu/~tbrun/Course/lecture15.pdf
- https://courses.cs.washington.edu/courses/cse599d/06wi/lecture notes11.pdf
- https://www.cl.cam.ac.uk/teaching/2006/QuantComp/lecture7.pd
 f
- See these three notes to understand the algorithms better.
- See https://www.uwyo.edu/moorhouse/slides/talk2.pdf on how to factorise large numbers.

Period Finding

- For a function f(x+r)=f(r), can we find a period for this function using quantum algorithms?
- Yes, and we can do it using Phase Estimation.
- The Phase can be estimated using the continued fractions method, just as before.

Period Finding

Algorithm: Period-finding

Inputs: (1) A black box which performs the operation $U|x\rangle|y\rangle = |x\rangle|y\oplus f(x)\rangle$, (2) a state to store the function evaluation, initialized to $|0\rangle$, and (3) $t = O(L + \log(1/\epsilon))$ qubits initialized to $|0\rangle$.

Outputs: The least integer r > 0 such that f(x + r) = f(x).

Runtime: One use of U, and $O(L^2)$ operations. Succeeds with probability O(1).

Procedure:

1.
$$|0\rangle|0\rangle$$
 initial state

1.
$$|0\rangle|0\rangle$$
 initial state 2. $o \frac{1}{\sqrt{2^t}}\sum_{x=0}^{2^t-1}|x\rangle|0\rangle$ create superposition

4.
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} |\widehat{\ell/r}\rangle |\widehat{f}(\ell)\rangle$$
 apply inverse Fourier transform to first register

5.
$$\rightarrow \ell/r$$
 measure first register

.
$$ightarrow r$$
 apply continued fractions algorithm

Discrete Logarithms

- Little more complex version of the Period Finding Algo.
- Think $f(x_1, x_2) = a^{sx_1 + x_2}$.
- This is definitely periodic in 2D (Period (I, -ls))
- Also, this poses the question If $b = a^s$ while a, b are given, what is s? (Discrete Logarithm Problem)
- Quite expectedly, this is basically the 2D version of Period finding.

Discrete Logarithms

Algorithm: Discrete logarithm

Inputs: (1) A black box which performs the operation $U|x_1\rangle|y_2\rangle|y\rangle=|x_1\rangle|x_2\rangle|y\oplus f(x_1,x_2)\rangle$, for $f(x_1,x_2)=b^{x_1}a^{x_2}$, (2) a state to store the function evaluation, initialized to $|0\rangle$, and (3) two $t=O(\lceil\log r\rceil+\log(1/\epsilon))$ qubit registers initialized to $|0\rangle$.

Outputs: The least positive integer s such that $a^s = b$.

Runtime: One use of U, and $O(\lceil \log r \rceil^2)$ operations. Succeeds with probability O(1).

Procedure:

1. $|0\rangle|0\rangle|0\rangle$

initial state

3.
$$o rac{1}{2^t} \sum_{x_1=0} \sum_{x_2=0} |x_1
angle |x_2
angle |f(x_1,x_2)
angle \qquad ext{apply } U$$

$$pprox rac{1}{2^t\sqrt{r}} \sum_{\ell_2=0}^{r-1} \sum_{x_1=0}^{2^t-1} \sum_{x_2=0}^{2^{t}-1} e^{2\pi i (s\ell_2 x_1 + \ell_2 x_2)/r} |x_1
angle |x_2
angle |\hat{f}(s\ell_2,\ell_2)
angle$$

$$=\frac{1}{2^t\sqrt{r}}\sum_{\ell_2=0}^{r-1}\left[\sum_{x_1=0}^{2^t-1}e^{2\pi i(s\ell_2x_1)/r}|x_1\rangle\right]\left[\sum_{x_2=0}^{2^t-1}e^{2\pi i(\ell_2x_2)/r}|x_2\rangle\right]|\hat{f}(s\ell_2,\ell_2)\rangle$$

4.
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{\ell_2=0}^{r-1} |\widehat{s\ell_2}/r\rangle |\widehat{\ell_2}/r\rangle |\widehat{f}(s\ell_2,\ell_2)\rangle$$
 apply inverse Fourier transform to first two registers

5.
$$ightarrow \left(\widehat{s\ell_2}/r,\ \widehat{\ell_2}/r
ight)$$
 measure first two registers

$$ightarrow s$$
 apply generalized continued fractions algorithm

The Hidden Subgroup Problem

- The generalisation for all the work we have done.
- In Group Theory Language: Let f be a function from a finitely generated group G to a finite set X such that f is constant on the cosets of a subgroup K, and distinct on each coset.
- Given a quantum black box for performing the unitary transform
 U|g⟩|h⟩ = |g⟩|h⊕f(g)⟩, for g ∈ G, h ∈ X, and ⊕ an appropriately chosen binary operation on X, find a generating set for K.

The Hidden Subgroup Problem

- For finite or finitely generated Abelian groups, log G gates can effectively solve this problem.
- The Hidden Subgroup problems are usually extremely hard to solve.
- For example, what if there is a group where the continued fraction expansion does not work?