Exercise 7. Let \mathscr{S} be a collection of subsets of the set X. Show that for each A in $\sigma(\mathscr{S})$, there is a countable subfamily \mathscr{C}_0 of \mathscr{S} such that $A \in \sigma(\mathscr{C}_0)$. (Hint: let \mathscr{A} be the union of the σ -algebras $\sigma(\mathscr{C})$, where \mathscr{C} ranges over the countable subfamilies of \mathscr{S} , and show that \mathscr{A} is a σ -algebra that satisfies $\mathscr{S} \subseteq \mathscr{A} \subseteq \sigma(\mathscr{S})$ and hence is equal to $\sigma(\mathscr{S})$.)

Proof. Using the notations defined above, for all $\sigma(\mathscr{C})$, we have $\varnothing \in \sigma(\mathscr{C})$, so $\varnothing \in \mathscr{A}$. Let $A \in \mathscr{A}$, there exists a countable subset \mathscr{C} of \mathscr{S} such that $A \in \sigma(\mathscr{C})$. Since $\sigma(\mathscr{C})$ is stable by complementation, $A^c \in \sigma(\mathscr{C})$ and therefore $A^c \in \mathscr{A}$ (with $A^c = X - A$).

Let now $\{A_n\}_{n\in\mathbb{N}}$ be a family of subsets of \mathscr{A} . For all n, there exists a countable family \mathscr{C}_n of subsets of \mathscr{S} , such that $A_n \in \sigma(\mathscr{C}_n)$. The set $A = \bigcup_{n\in\mathbb{N}} A_n$ is an element of $\mathscr{T} = \bigcup_{n\in\mathbb{N}} \sigma(\mathscr{C}_n)$, and for all $n\in\mathbb{N}$, $\mathscr{C}_n\subseteq \bigcup_{n\in\mathbb{N}}\mathscr{C}_n=\mathscr{C}$, so $\sigma(\mathscr{C}_n)\subseteq\sigma(\mathscr{C})$ and finally $\mathscr{T}\subset\sigma(\mathscr{C})$. Since \mathscr{C}_n is countable for all n, we deduce that \mathscr{C} is countable, and therefore that $A\in\mathscr{A}$.

From the above, we conclude that \mathscr{A} is a σ -algebra on X.

For all $A \in \mathscr{A}$, we have $A \in \sigma(\mathscr{C})$ for some $\mathscr{C} \subseteq \mathscr{S}$. From this we deduce that $\sigma(\mathscr{C}) \subseteq \sigma(\mathscr{S})$, so that $\mathscr{A} \subseteq \sigma(\mathscr{S})$. For all $A \in \mathscr{S}$, the σ -algebra $\sigma(A)$ is generated by the countable family $\{A\}$, so $\sigma(A) \subseteq \mathscr{A}$. From this we deduce that $\mathscr{S} \subseteq \mathscr{A}$.

From $\mathscr{S} \subseteq \mathscr{A} \subseteq \sigma(\mathscr{S})$, we deduce that \mathscr{A} is included in the smallest σ -algebra that contains \mathscr{S} , and is therefore equal to $\sigma(\mathscr{S})$.