

Laporan Tugas Kelompok Analisis Data Kategori B Regresi Logistik Multinomial

Disusun Oleh:

 Bunga Tata Arinda
 06211840000044

 Haiva Qurrota A'yun
 06211840000045

 Lidya Cahya Aurellia
 06211840000054

Dosen Pengampu:

Dr. Purhadi, M.Sc.

Program Studi Sarjana Departemen Statistika Fakultas Sains Dan Analitika Data Institut Teknologi Sepuluh Nopember Surabaya 2021

Daftar Isi

Halaman Judul	i
Daftar Isi	ii
Daftar Tabel	iii
A. Sumber Data	1
B. Variabel yang Digunakan	1
C. Langkah Analisis	2
D. Analisis dan Pembahasan	2
1. Uji Independensi	2
Uji Multikolinearitas	3
3. Uji Signifikansi Parameter Secara Serentak	4
4. Uji Signifikansi Parameter Secara Parsial	5
5. Uji Signifikansi Parameter Model Terbaik Secara Serentak	6
6. Uji Signifikansi Parameter Model Terbaik Secara Parsial	7
7. Estimasi Parameter Regresi Logistik Multinomial	7
8. Uji Kesesuaian Model	9
9. Analisis Ketepatan Klasifikasi Model Regresi Logistik Multinomial	9
E. Kesimpulan	10
Lampiran	11
Lampiran 1 Uji Independensi	11
Lampiran 2 Uji Multikolinieritas	12
Lampiran 3 Uji Signifikansi Parameter Secara Serentak	13
Lampiran 4 Uji Signifikansi Parameter Secara Parsial	13
Lampiran 5 Uji Signifikansi Parameter Model Terbaik Secara Serentak	13
Lampiran 6 Uji Signifikansi Parameter Secara Parsial Model Terbaik dan Estimasi	
Parameter	
Lampiran 7 Uji Kesesuaian Model	14
Lampiran 8 Analisis Ketenatan Model	14

Daftar Tabel

Tabel 2 Uji Independensi	Tabel 1 Variabel Penelitian.	1
Tabel 4 Uji Multikolinearitas	Tabel 2 Uji Independensi	2
Tabel 5 Keputusan Uji Multikolinearitas 4 Tabel 6 Uji Serentak 5 Tabel 7 Keputusan Uji Serentak 5 Tabel 8 Uji Parsial 5 Tabel 9 Keputusan Uji Parsial 5 Tabel 10 Uji Serentak 6 Tabel 11 Keputusan Uji Serentak 7 Tabel 12 Uji Parsial 7 Tabel 13 Keputusan Uji Parsial 7 Tabel 14 Odds Ratio 7 Tabel 15 Uji Kesesuaian Model 7 Tabel 16 Keputusan Uji Kesesuaian Model 7 Tabel 16 Keputusan Uji Kesesuaian Model 7	Tabel 3 Keputusan Uji Independensi	3
Tabel 6 Uji Serentak	Tabel 4 Uji Multikolinearitas	3
Tabel 7 Keputusan Uji Serentak 5 Tabel 8 Uji Parsial 5 Tabel 9 Keputusan Uji Parsial 6 Tabel 10 Uji Serentak 6 Tabel 11 Keputusan Uji Serentak 7 Tabel 12 Uji Parsial 7 Tabel 13 Keputusan Uji Parsial 7 Tabel 14 Odds Ratio 7 Tabel 15 Uji Kesesuaian Model 7 Tabel 16 Keputusan Uji Kesesuaian Model 7 Tabel 16 Keputusan Uji Kesesuaian Model 7 Tabel 16 Keputusan Uji Kesesuaian Model 7 Tabel 17	Tabel 5 Keputusan Uji Multikolinearitas	4
Tabel 8 Uji Parsial5Tabel 9 Keputusan Uji Parsial5Tabel 10 Uji Serentak6Tabel 11 Keputusan Uji Serentak6Tabel 12 Uji Parsial7Tabel 13 Keputusan Uji Parsial7Tabel 14 Odds Ratio8Tabel 15 Uji Kesesuaian Model9Tabel 16 Keputusan Uji Kesesuaian Model9	Tabel 6 Uji Serentak	4
Tabel 9 Keputusan Uji Parsial5Tabel 10 Uji Serentak6Tabel 11 Keputusan Uji Serentak6Tabel 12 Uji Parsial7Tabel 13 Keputusan Uji Parsial7Tabel 14 Odds Ratio8Tabel 15 Uji Kesesuaian Model9Tabel 16 Keputusan Uji Kesesuaian Model9	Tabel 7 Keputusan Uji Serentak	5
Tabel 10 Uji Serentak	Tabel 8 Uji Parsial	5
Tabel 11 Keputusan Uji Serentak.6Tabel 12 Uji Parsial.7Tabel 13 Keputusan Uji Parsial.8Tabel 14 Odds Ratio.8Tabel 15 Uji Kesesuaian Model.9Tabel 16 Keputusan Uji Kesesuaian Model9	Tabel 9 Keputusan Uji Parsial	5
Tabel 12 Uji Parsial7Tabel 13 Keputusan Uji Parsial8Tabel 14 Odds Ratio8Tabel 15 Uji Kesesuaian Model9Tabel 16 Keputusan Uji Kesesuaian Model9	Tabel 10 Uji Serentak	6
Tabel 13 Keputusan Uji Parsial.3Tabel 14 Odds Ratio8Tabel 15 Uji Kesesuaian Model9Tabel 16 Keputusan Uji Kesesuaian Model9	Tabel 11 Keputusan Uji Serentak	6
Tabel 14 Odds Ratio 8 Tabel 15 Uji Kesesuaian Model 9 Tabel 16 Keputusan Uji Kesesuaian Model 9	Tabel 12 Uji Parsial	7
Tabel 15 Uji Kesesuaian Model 9 Tabel 16 Keputusan Uji Kesesuaian Model 9	Tabel 13 Keputusan Uji Parsial	7
Tabel 16 Keputusan Uji Kesesuaian Model	Tabel 14 Odds Ratio	8
	Tabel 15 Uji Kesesuaian Model	9
Tabel 17 Ketepatan Klasifikasi	Tabel 16 Keputusan Uji Kesesuaian Model	9
	Tabel 17 Ketepatan Klasifikasi	9

A. Sumber Data

Data yang digunakan dalam tugas ini adalah data sekunder yang diperoleh dari tugas akhir yang berjudul "Analisis Regresi Logistik Multinomial Pada Kasus Tindak Pidana Korupsi Berdasarkan Jenis Perkara di Komisi Pemberantasa Korupsi" dari mahasiswa Departemen Statistika, Institut Teknologi Sepuluh Nopember (ITS) Surabaya tahun 2016.

B. Variabel yang Digunakan

Terdapat 4 variabel yang digunakan dalam tugas ini dimana variabel jenis perkara korupsi sebagai variabel respon dan 3 variabel lainnya sebagai variabel prediktor yang ditunjukkan dalam tabel sebagai berikut.

Variabel	Keterangan	Skala Data	Kategori
	Jenis Perkara Tindak		[0] Penyuapan
Y	Pidana Koruspi	Nominal	[1] Penyalahgunaan anggaran
	i idalia Koruspi		[2] Pengadaan barang dan jasa
X_1	Jenis Kelamin	Nominal	[0] Laki-laki
Λ_1	Jenis Keiamin	Nommai	[1] Perempuan
			[0] Pimpinan Utama/Walikota/Bupati
V	Profesi	Nominal	[1] Manager/Wakil Kepala
\mathbf{X}_2			[2] Kepala Bagian
			[3] Anggota/Staf/Karyawan
			[0] DPR RI
			[1] Kementrian/Lembaga
X_3	Institusi	Nominal	[2] BUMN/BUMD
Λ_3	HISHIUSI	Nommai	[3] Pemerintah Provinsi
			[4] Pemerintah Kabupaten/Kota
			[5] Swasta

Tabel 1 Variabel Penelitian

Definisi dari variabel-variabel yang digunakan dalam penelitian ini adalah sebagai berikut.

- 1. Jenis Perkara Tindak Pidana Korupsi (Y)
 - **Penyuapan** atau suap yaitu tindakan memberikan sejumlah uang atau barang atau perjanjian khusus kepada seseorang yang mempunyai otoritas tertentu
 - **Penyalahgunaan anggaran** yaitu penyelewengan fungsi anggaran pemerintahan maupun korporasi yang digunakan tidak semestinya
 - **Pengadaan barang dan jasa** yaitu tindak pidana korupsi yang merupakan penyimpangan pada tahapan dalam pengadaan barang dan jasa yang terjadi pada pemerintahan maupun korporasi
- 2. Jenis kelamin (X₁) digunakan untuk melihat dari faktor demografi
 - Laki-laki
 - Perempuan
- 3. Profesi (X₂)
 - **Pimpinan Utama / Walikota / Bupati / Direktur** yaitu profesi yang tertinggi dalam suatu organisasi atau kelembagaan
 - Manager / Wakil Kepala yaitu profesi yang langsung berada di bawah pimpinan utama

- **Kepala Bidang** yaitu pimpinan dalam suatu bagian meliputi Kepala Dinas, Kepala Divisi, Kepala Sub Bagian
- **Staf / Karyawan** yaitu profesi yang tidak dapat secara langsung memberikan persetujuan atau keputusan meliputi anggota DPR, Jaksa

4. Institusi (X₃)

- **DPR RI** yaitu semua termasuk DPR Pusat maupun DPRD.
- **Kementrian / Lembaga** meliputi kementrian dan departemen, lembaga hukum, dan lembaga lain yang sejenis
- **BUMN / BUMD** yaitu perusahaan yang merupakan milik negara (PLN,PGN, dan lain lain)
- Pemerintah Provinsi yaitu yang berhubungan dengan suatu provinsi
- **Pemerintah Kabupaten / Kota** yaitu yang berhubungan dengan suatu Kabupaten / Kota
- Swasta yaitu perusahaan swasta yang bukan merupakan milik negara

C. Langkah Analisis

Langkah analisis yang dilakukan dalam penelitian ini adalah sebagai berikut.

- 1. Mengumpulkan data
- 2. Menguji asumsi independensi dan multikolinearitas
- 3. Menaksir parameter model regresi logistik multinomial
- 4. Menguji signifikansi parameter secara serentak
- 5. Menguji signifikansi parameter secara parsial
- 6. Mendapatkan model regresi logistik multinomial
- 7. Menguji kesesuaian model regresi logistik multinomial
- 8. Menganalisis ketepatan klasifikasi
- 9. Menarik kesimpulan

D. Analisis dan Pembahasan

1. Uji Independensi

Uji independensi dilakukan untuk mengetahui hubungan antara variabel respon (Y) yaitu jenis perkara korupsi dengan variabel prediktor yaitu jenis kelamin (X_1) , profesi (X_2) , dan institusi (X_3) .

Hipotesis

H₀: Tidak terdapat hubungan antara variabel Y dengan variabel X

H₁: Terdapat hubungan antara variabel Y dengan variabel X

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$X_{hitung}^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Dimana E_{ii} dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i \cdot} \times n_{\cdot j}}{n}$$

Tabel 2 Uji Independensi

Variabel	X_{hit}^2
Jenis Kelamin [X ₁]	6,275
Profesi [X ₂]	49,377
Institusi [X ₃]	56,353

Daerah Kritis: Tolak H_0 jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 3 Keputusan Uji Independensi

Variabel	X_{hit}^2	df	$X^{2}_{(df;lpha)}$	Keputusan
Jenis Kelamin [X ₁]	6,275	2	5,991	Tolak H ₀
Profesi [X ₂]	49,377	6	12,592	Tolak H ₀
Institusi [X ₃]	56,353	10	18,307	Tolak H ₀

Kesimpulan yang dapat diambil yaitu variabel prediktor yang memiliki hubungan dengan variabel respon yaitu jenis kelamin (X_1) , profesi (X_2) , dan institusi (X_3) .

2. Uji Multikolinearitas

Uji multikolinearitas dilakukan untuk mengetahui hubungan antar variabel prediktor yang berupa data kategorik.

Hipotesis

H₀: Tidak terdapat multikolinearitas antar variabel prediktor

H₁: Terdapat multikolinearitas antar variabel prediktor

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$X_{hitung}^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

Dimana E_{ii} dihitung dengan rumus sebagai berikut.

$$E_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$$

Tabel 4 Uji Multikolinearitas

Variabel	Keterangan	Profesi [X2]	Institusi [X ₃]
	X_{hit}^2	3,746	19,194
Jenis Kelamin [X ₁]	df	3,000	5,000
	$X^{2}_{(df;lpha)}$	7,815	11,070
	X_{hit}^2		142,351
Profesi [X ₂]	df		15,000
	$X_{(df;lpha)}^{2}$		24,996

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 5 Keputusan Uji Multikolinearitas

Variabel	Keterangan	Profesi [X ₂]	Institusi [X ₃]
	X_{hit}^{2}	3,746	19,194
T	df	3,000	5,000
Jenis Kelamin [X ₁]	$X_{(d\!f;lpha)}^{2}$	7,815	11,070
	Keputusan	Gagal Tolak H ₀	Tolak H ₀
	X_{hit}^{2}		142,351
D 6 15V 1	df		15,000
Profesi [X ₂]	$X^{2}_{(d\!f;lpha)}$		24,996
	Keputusan		Tolak H ₀

Kesimpulan yang dapat diambil adalah terdapat multikolinearitas antar variabel prediktor. Kasus multikolinearitas dapat diatasi dengan melakukan eliminasi pada variabel yang menyebabkan adanya multikolinearitas yaitu variabel Institusi (X_3) .

3. Uji Signifikansi Parameter Secara Serentak

Uji signifikansi parameter secara serentak bertujuan untuk mengetahui secara bersamasama apakah variabel prediktor berpengaruh terhadap model.

Hipotesis

$$H_0: \beta_1 = \beta_2 = 0$$

 H_1 : Minimal terdapat satu $\beta_j \neq 0$; j = 1, 2

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$G = -2 \ln \frac{\left(\frac{n_1}{n}\right)^{n_i} \left(\frac{n_0}{n}\right)^{n_0}}{\sum_{i=1}^{n} \pi_i^{y_i} \left(1 - \pi_i\right)^{(1 - y_i)}}$$

dimana nilai G mengikuti distribusi Chi-Squared.

Tabel 6 Uji Serentak

Model	X_{hit}^{2}	df	P-Value	
Final	58,927	8	0,000	

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 7 Keputusan Uji Serentak

Model	X_{hit}^2	df	$X^{2}_{(df;lpha)}$	P-Value
Final	58,927	8	15,507	0,000

Keputusan yang dapat diambil adalah tolak H_0 karena $X_{hit}^2 > X_{(df;\alpha)}^2$ yaitu 58,927 > 15,507 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon secara bersama-sama (serentak).

4. Uji Signifikansi Parameter Secara Parsial

Uji signifikansi parameter secara parsial bertujuan untuk mengetahui variabel prediktor yang berpengaruh terhadap model.

Hipotesis

$$\mathbf{H}_0: \boldsymbol{\beta}_j = 0$$

$$H_1: \beta_i \neq 0 ; j = 1, 2$$

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$W^2 = \frac{\beta_j^2}{SE(\beta_j)^2}$$

Tabel 8 Uji Parsial

	_ ***	· · · · · · · · · · · · · · · · · · ·			
	Variabel	Kategori	Wald	df	P-value
	Jenis Kelamin [X ₁]	Laki-laki	3,644	1	0,056
Penyalahgunaan		Pemimpin Utama	15,774	1	0,000
Anggaran	Profesi [X ₂]	Manager/Wakil Kepala	6,668	1	0,010
		Kepala Bagian	18,750	1	0,000
	Jenis Kelamin [X ₁]	Laki-laki	1,070	1	0,301
Pengadaan Barang		Pemimpin Utama	21,409	1	0,000
dan Jasa	Profesi [X ₂]	Manager/Wakil Kepala	8,070	1	0,004
		Kepala Bagian	14,785	1	0,000

Daerah Kritis: Tolak H_0 jika $W_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 9 Keputusan Uji Parsial

	Variabel	Kategori	Wald	df	$X^{2}_{(df;lpha)}$	P- value	Keputusan
	Jenis Kelamin [X	X ₁] Laki-laki	3,644	1	3,841	0,056	Gagal Tolak H ₀
Anggaran	Profesi [X ₂]	Pemimpin Utama	15,774	1	3,841	0,000	Tolak H ₀

		Manager/Wakil Kepala	6,668	1	3,841	0,010	Tolak H ₀
		Kepala Bagian	18,750	1	3,841	0,000	Tolak H ₀
	Jenis Kelamin [X ₁] Laki-laki	1,070	1	3,841	0,301	Gagal Tolak H ₀
Pengadaan		Pemimpin Utama	21,409	1	3,841	0,000	Tolak H ₀
Barang dan Jasa	Profesi [X ₂]	Manager/Wakil Kepala	8,070	1	3,841	0,004	Tolak H ₀
		Kepala Bagian	14,785	1	3,841	0,000	Tolak H ₀

Kesimpulan yang dapat diambil adalah variabel prediktor yang berpengaruh signifikan terhadap kedua kategori variabel respon adalah variabel profesi (X_2) . Variabel jenis kelamin (X_1) tidak signifikan terhadap kedua kategori sehingga dilakukan pemodelan kembali dengan hanya memasukkan variabel yang signifikan dari pemodelan sebelumnya agar memproleh model regresi logistik multinomial dengan seluruh variabel prediktor yang berpengaruh signifikan terhadap variabel respon.

5. Uji Signifikansi Parameter Model Terbaik Secara Serentak Hipotesis

 $\mathbf{H}_0: \boldsymbol{\beta}_2 = 0$

 $\mathbf{H}_{\scriptscriptstyle 1}$: Minimal terdapat satu $\boldsymbol{\beta}_{\scriptscriptstyle j} \neq \mathbf{0}$; j=2

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$G = -2 \ln \frac{\left(\frac{n_1}{n}\right)^{n_i} \left(\frac{n_0}{n}\right)^{n_0}}{\sum_{i=1}^{n} \pi_i^{y_i} \left(1 - \pi_i\right)^{(1 - y_i)}}$$

dimana nilai G mengikuti distribusi Chi-Squared.

Tabel 10 Uji Serentak				
Model	df	P-Value		
Final	52,261	6	0,000	

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 11 Keputusan Uji Serentak

Model	X_{hit}^{2}	df	$X_{(d\!f;lpha)}^{2}$	P-Value
Final	52,261	6	12,592	0,000

Keputusan yang dapat diambil adalah tolak H_0 karena $X_{hit}^2 > X_{(df;\alpha)}^2$ yaitu 52,261 > 12,592 sehingga kesimpulannya adalah variabel prediktor berpengaruh signifikan terhadap variabel respon.

6. Uji Signifikansi Parameter Model Terbaik Secara Parsial

Hipotesis

$$H_0: \beta_i = 0$$

$$H_1: \beta_i \neq 0 ; j = 2$$

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$W^2 = \frac{\beta_j^2}{SE(\beta_j)^2}$$

Tabel 12 Uji Parsial

		<u> </u>			
	Variabel	Kategori	Wald	df	P-value
D 11		Pemimpin Utama	15,626	1	0,000
Penyalahgunaan	Profesi [X ₂]	Manager/Wakil Kepala	6,139	1	0,013
Anggaran		Kepala Bagian	20,470	1	0,000
Dangadaan Danana		Pemimpin Utama	21,287	1	0,000
Pengadaan Barang dan Jasa	-	Manager/Wakil Kepala	7,777	1	0,005
uan Jasa		Kepala Bagian	15,531	1	0,000

Daerah Kritis: Tolak H₀ jika $W_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 13 Keputusan Uji Parsial

		zaser ze rreputusum ej	1 1 41 0141				
	Variabel	Kategori	Wald	df	$X^{2}_{(d\!f;lpha)}$	P-value	Keputusan
D1-1		Pemimpin Utama	15,626	1	3,841	0,000	Tolak H ₀
Penyalahgunaan Anggaran	Profesi [X ₂]	Manager/Wakil Kepala	6,139	1	3,841	0,013	Tolak H ₀
Anggaran		Kepala Bagian	20,470	1	3,841	0,000	Tolak H ₀
Danaadaan		Pemimpin Utama	21,287	1	3,841	0,000	Tolak H ₀
Pengadaan Barang dan Jasa	Profesi [X ₂]	Manager/Wakil Kepala	7,777	1	3,841	0,005	Tolak H ₀
Darang dan Jasa		Kepala Bagian	15,531	1	3,841	0,000	Tolak H ₀

Kesimpulan yang dapat diambil adalah variabel profesi (X₂) berpengaruh signifikan terhadap kedua kategori variabel respon.

7. Estimasi Parameter Regresi Logistik Multinomial

Berdasarkan hasil pengujian asumsi independensi dan multikolinearitas, variabel yang digunakan pada analisis regresi logistik multinomial adalah variabel respon (jenis perkara korupsi) dengan variabel prediktor yaitu profesi (X_2) . Fungsi logit yang didapatkan adalah sebagai berikut.

$$g_1(x) = -2,438+1,643X_{2(0)}+1,388X_{2(1)}+2,661X_{2(2)}$$

 $g_2(x) = -2,689+2,058X_{2(0)}+1,639X_{2(1)}+2,555X_{2(2)}$

Interpretasi koefisien parameter pada fungsi logit multinomial menggunakan *odds ratio*. Variabel yang diinterpretasikan adalah variabel prediktor yang signifikan dari hasil uji parsial.

Tabe	1 14	10dd	le P	atic
1 and	:14	· CAUC	12 1	anc

1400111 0 000 11000				
	Variabel	Kategori	Odds Ratio	
Danivalah asun aan	_	Pemimpin Utama	5,168	
Penyalahgunaan	Profesi [X ₂]	Manager/Wakil Kepala	4,006	
Anggaran		Kepala Bagian	14,306	
D 1		Pemimpin Utama	7,832	
Pengadaan Barang dan Jasa	Profesi [X ₂]	Manager/Wakil Kepala	5,150	
Darang dan Jasa		Kepala Bagian	12,875	

Interpretasi dari nilai odds ratio adalah sebagai berikut.

- 1. Jika dibandingkan dengan jenis perkara korupsi penyuapan, pelaku tindak pidana korupsi yang memiliki profesi sebagai pemimpin utama cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran 5,168 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan, sedangkan pelaku tindak pidana dengan profesi sebagai manager dan kepala bagian cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran 4,006 kali dan 14,306 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan.
- 2. Jika dibandingkan dengan jenis perkara korupsi pengadaan barang dan jasa, pelaku tindak pidana korupsi yang memiliki profesi sebagai pemimpinan utama cenderung melakukan tindak pidana korupsi pengadaan barang dan jasa 7,832 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan, sedangkan pelaku tindak pidana korupsi dengan profesi sebagai manager dan kepala bagian cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran 5,150 kali dan 12,875 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan.

Model regresi logistik multinomial adalah sebagai berikut.

$$\pi_{0}(x) = \frac{1}{1 + \exp(g_{1}(x)) + \exp(g_{2}(x))}$$

$$= \frac{1}{1 + \exp(-2,438 + 1,643X_{2(0)} + 1,388X_{2(1)} + 2,661X_{2(2)}) + \exp(-2,689 + 2,058X_{2(0)} + 1,639X_{2(1)} + 2,555X_{2(2)})}$$

$$\pi_{1}(x) = \frac{\exp(g_{1}(x))}{1 + \exp(g_{1}(x)) + \exp(g_{2}(x))}$$

$$= \frac{\exp(-2,438 + 1,643X_{2(0)} + 1,388X_{2(1)} + 2,661X_{2(2)})}{1 + \exp(-2,438 + 1,643X_{2(0)} + 1,388X_{2(1)} + 2,661X_{2(2)})}$$

$$\begin{split} \pi_2(x) &= \frac{\exp(g_2(x))}{1 + \exp(g_1(x)) + \exp(g_2(x))} \\ &= \frac{\exp(-2,689 + 2,058X_{2(0)} + 1,639X_{2(1)} + 2,555X_{2(2)})}{1 + \exp(-2,438 + 1,643X_{2(0)} + 1,388X_{2(1)} + 2,661X_{2(2)}) + \exp(-2,689 + 2,058X_{2(0)} + 1,639X_{2(1)} + 2,555X_{2(2)})} \end{split}$$

8. Uji Kesesuaian Model

Uji kesesuaian model digunakan untuk mengetahui apakah model yang dihasilkan berdasarkan regresi logistik multivariat atau serentak sudah layak.

Hipotesis

H₀: Model sesuai (tidak terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)

H₁: Model tidak sesuai (terdapat perbedaan yang signifikan antara hasil pengamatan dengan kemungkinan hasil prediksi model)

Taraf Signifikansi

$$\alpha = 5\% = 0.05$$

Statistik Uji

$$C = \sum_{k=1}^{g} \frac{\left(o_k - n_k \overline{\pi}_k\right)^2}{n_k \overline{\pi}_k \left(1 - \overline{\pi}_k\right)}$$

dimana nilai C mengikuti distribusi Chi-Squared.

Tabel 15 Uji Kesesuaian Model

X_{hit}^{2}	df	P-value
0,000	0	

Daerah Kritis: Tolak H₀ jika $X_{hit}^2 > X_{(df;\alpha)}^2$

Keputusan dan Kesimpulan

Tabel 16 Keputusan Uji Kesesuaian Model

$X_{\it hit}^{2}$	df	$X_{(d\!f;lpha)}^{2}$	P-value
0,000	0		

Kesimpulan yang diambil adalah model menghasilkan estimasi yang bersifat unik (tunggal) karena model bersifat *just-identified* (memiliki derajat bebas sama dengan nol).

9. Analisis Ketepatan Klasifikasi Model Regresi Logistik Multinomial

Analisis ketepatan klasifikasi bertujuan untuk mengetahui proporsi kasus yang tepat diklasifikasikan melalui model regresi logistik multinomial.

Tabel 17 Ketepatan Klasifikasi

		Prediksi		
Observasi	Penyalahgunaan	Pengadaan Barang	Donyuanan	Total
	Anggaran	dan Jasa	Penyuapan	
Penyuapan	1	0 () 44	54

Penyalahgunaan Anggaran	7	0	47	54
Pengadaan Barang dan Jasa	8	0	185	193
Total	25	0	276	301

Total Akurasi =
$$\frac{185 + 510}{301} x100\%$$

= 64,78%

Hasil perhitungan diatas menunjukkan bahwa data penelitian yang tepat diklasifikasikan oleh model regresi logistik multinomial sebesar 64,78%.

E. Kesimpulan

Dari hasil penelitian kasus tindak pidana korupsi berdasarkan jenis perkara di komisi pemberantasan korupsi didapatkan bahwa variabel jenis kelamin (X_1) , profesi (X_2) , dan institusi (X_3) merupakan faktor yang memengaruhi jenis perkara tindak pidana korupsi dengan ketepatan klasifikasi sebesar 64,78%. Model regresi logistik multinomial yang terbentuk yaitu:

$$g_1(x) = -2,438 + 1,643X_{2(0)} + 1,388X_{2(1)} + 2,661X_{2(2)}$$

$$g_2(x) = -2,689 + 2,058X_{2(0)} + 1,639X_{2(1)} + 2,555X_{2(2)}$$

Model bersifat *just-identified* atau unik karena memiliki derajat bebas sama dengan nol. Berdasarkan jenis perkara korupsi penyuapan, pelaku tindak pidana korupsi yang memiliki profesi sebagai pemimpin utama cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran dengan probabilitas 5,168 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan, sedangkan pelaku tindak pidana dengan profesi sebagai manager dan kepala bagian cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran dengan probabilitas 4,006 kali dan 14,306 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan. Apabila dibandingkan dengan jenis perkara korupsi pengadaan barang dan jasa, pelaku tindak pidana korupsi yang memiliki profesi sebagai pemimpinan utama cenderung melakukan tindak pidana korupsi pengadaan barang dan jasa dengan probabilitas 7,832 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan, sedangkan pelaku tindak pidana korupsi dengan profesi sebagai manager dan kepala bagian cenderung melakukan tindak pidana korupsi penyalahgunaan anggaran dengan probabilitas 5,150 kali dan 12,875 kali lebih banyak dibandingkan dengan pelaku yang berprofesi sebagai staf atau karyawan.

Lampiran

Lampiran 1 Uji Independensi

1. Jenis Perkara Tindak Korupsi dan Jenis Kelamin

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	6.275 ^a	2	.043
Likelihood Ratio	7.980	2	.018
Linear-by-Linear Association	3.103	1	.078
N of Valid Cases	301		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.38.

2. Jenis Perkara Tindak Korupsi dan Institusi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	49.377 ^a	6	.000
Likelihood Ratio	52.261	6	.000
Linear-by-Linear Association	28.982	1	.000
N of Valid Cases	301		

a. 2 cells (16.7%) have expected count less than 5. The minimum expected count is 4.49.

3. Jenis Perkara Tindak Korupsi dan Profesi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	56.353 ^a	10	.000
Likelihood Ratio	61.828	10	.000
Linear-by-Linear Association	2.999	1	.083
N of Valid Cases	301		

a. 4 cells (22.2%) have expected count less than 5. The minimum expected count is 1.79.

Lampiran 2 Uji Multikolinieritas

1. Jenis Kelamin dan Profesi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	3.746 ^a	3	.290
Likelihood Ratio	6.128	3	.106
Linear-by-Linear Association	.000	1	.995
N of Valid Cases	301		

a. 2 cells (25.0%) have expected count less than 5. The minimum expected count is 2.49.

2. Jenis Kelamin dan Institusi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	19.194ª	5	.002
Likelihood Ratio	17.905	5	.003
Linear-by-Linear Association	8.378	1	.004
N of Valid Cases	301		

a. 3 cells (25.0%) have expected count less than 5. The minimum expected count is 1.00.

3. Profesi dan Institusi

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	142.351 ^a	15	.000
Likelihood Ratio	146.721	15	.000
Linear-by-Linear Association	76.462	1	.000
N of Valid Cases	301		

a. 7 cells (29.2%) have expected count less than 5. The minimum expected count is .83.

Lampiran 3 Uji Signifikansi Parameter Secara Serentak

Model Fitting Information

	Model Fitting Criteria	Likelihood	d Ratio Te	sts
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	101.153			
Final	42.226	58.927	8	.000

Lampiran 4 Uji Signifikansi Parameter Secara Parsial

Parameter Estimates

								95% Confidence	
Jenis Perkara Tindak Koru	psi ^a	В	Std. Error	Wald	df	Sig.	Exp(B)	Lower Bound	Upper Bound
Penyalahgunaan	Intercept	-4.322	1.081	15.974	1	.000			
Anggaran	[Jenis Kelamin=0]	1.993	1.044	3.644	1	.056	7.340	.948	56.828
	[Jenis Kelamin=1]	О _Р			0				
	[Profesi=0]	1.662	.419	15.774	1	.000	5.272	2.321	11.975
	[Profesi=1]	1.465	.567	6.668	1	.010	4.329	1.423	13.163
	[Profesi=2]	2.551	.589	18.750	1	.000	12.824	4.041	40.695
	[Profesi=3]	0 _p			0				
Pengadaan Barang dan	Intercept	-3.241	.672	23.266	1	.000			
Jasa	[Jenis Kelamin=0]	.609	.589	1.070	1	.301	1.838	.580	5.826
	[Jenis Kelamin=1]	Ор			0				
	[Profesi=0]	2.068	.447	21.409	1	.000	7.910	3.294	18.994
	[Profesi=1]	1.677	.590	8.070	1	.004	5.350	1.682	17.016
	[Profesi=2]	2.499	.650	14.785	1	.000	12.171	3.405	43.505
	[Profesi=3]	Ор			0				

a. The reference category is: Penyuapan.

Lampiran 5 Uji Signifikansi Parameter Model Terbaik Secara Serentak Model Fitting Information

	Model Fitting Criteria	Likelihood	l Ratio Te	ests
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	83.737			
Final	31.476	52.261	6	.000

b. This parameter is set to zero because it is redundant.

Lampiran 6 Uji Signifikansi Parameter Secara Parsial Model Terbaik dan Estimasi Parameter

Parameter Estimates

								95% Confidence	
Jenis Perkara Tindak Koru	psi ^a	В	Std. Error	Wald	df	Sig.	Exp(B)	Lower Bound	Upper Bound
Penyalahgunaan	Intercept	-2.438	.348	49.176	1	.000			
Anggaran	[Profesi=0]	1.643	.416	15.626	1	.000	5.168	2.289	11.670
	[Profesi=1]	1.388	.560	6.139	1	.013	4.006	1.336	12.006
[Profesi	[Profesi=2]	2.661	.588	20.470	1	.000	14.306	4.518	45.297
	[Profesi=3]	Ор			0				
Pengadaan Barang dan	Intercept	-2.689	.391	47.388	1	.000			
Jasa	[Profesi=0]	2.058	.446	21.287	1	.000	7.832	3.267	18.775
	[Profesi=1]	1.639	.588	7.777	1	.005	5.150	1.628	16.296
	[Profesi=2]	2.555	.648	15.531	1	.000	12.875	3.613	45.885
	[Profesi=3]	Ор			0				

a. The reference category is: Penyuapan.

Lampiran 7 Uji Kesesuaian Model

Goodness-of-Fit

	Chi-Square	df	Sig.
Pearson	.000	0	
Deviance	.000	0	

Lampiran 8 Analisis Ketepatan Model

Classification

Predicted

Observed	Penyalahgun aan Anggaran	Pengadaan Barang dan Jasa	Penyuapan	Percent Correct
Penyalahgunaan Anggaran	10	0	44	18.5%
Pengadaan Barang dan Jasa	7	0	47	0.0%
Penyuapan	8	0	185	95.9%
Overall Percentage	8.3%	0.0%	91.7%	64.8%

b. This parameter is set to zero because it is redundant.