CMSC351: Prerequisite

Johning To

5/23/2023

1	Symbols		2	
2	Proofs			
	2.1	Weak Induction	3	
	2.2	Strong Induction	3	
	2.3	Constructive Induction	4	
	2.4	Structural Induction	5	

1 Symbols

- 1. For all (\forall)
- 2. There exists (\exists)

2 Proofs

2.1 Weak Induction

First, we need to prove $\forall n \geq n_0 \ P(n)$ we first prove $P(n_0)$ (which is the base case) and then we prove $\forall k \geq n_0 \ P(k) \to P(k+1)$ (which is the inductive step) (you can also prove P(k-1)). The assumption of P(k) in the inductive step is the inductive hypothesis.

Ultimately, for the inductive step we are trying to find that for any $k \ge n_0$ if P(k) is true, then P(k+1) is also true.

Example: Suppose we have a set of nested Russian dolls (Matryoshka dolls). Each doll is contained with another doll, each doll is labeled 1, 2, 3 and so on.

In this hypothetical, there are two things that are true. Let's say M(n) is true iff (if and only if) doll n has another doll contained.

- (a) The first doll has another doll contained. That is, M(n) is true.
- (b) For every doll k, if doll k has another doll inside then doll k+1 has another doll inside.

$$\forall k \geq 1, M(k) \rightarrow M(k+1)$$

We can now conclude that $\forall n \geq 1, M(n)$.

2.2 Strong Induction

The goal of strong induction is we need to find some property, we can say P(n) and we need to find some n greater than equal to a $(n \ge a)$.

How can we accomplish this?

Step 1 (Basis step): We are going to prove for P(a) (we would just prove P(a) for weak induction), P(a+1), ..., for some finite number say P(b).

 $(P(a), P(a+b), ..., P(b)) \leftarrow$ we prove each of these.

Step 2 (Induction): We can now assume P(i) where $a \le i \le k$. (Assume P(i)). Then, we prove P(k+1).

Example: Fibonacci Sequence

Proof. Claim: The Fibonacci Sequence is defined as the following: F(0) = 0, F(1) = 1 and for $n \ge 2, F(n) = F(n-1) + F(n-2)$. We want to prove that for all $n \ge 0, F(n) \le 2^n$

Base cases:

For
$$n = 0$$
: $F(0) = 0 \le 2^0 = 1$

For
$$n = 1 : F(1) = 1 \le 2^1 = 1$$

For both these base case, they hold true.

Inductive Step: Assume that for all $i, 0 \le i \le k$, we have $F(k) \le 2^k$.

(This could also be known as the inductive hypothesis)

We now need to prove $F(k+1) \leq 2^{k+1}$.

By the inductive hypothesis, we have $F(n) \leq 2^n$ and $F(n-1) \leq 2^{n-1}$.

We can prove by which:

$$\begin{split} F(k+1) &= F(k) + F(k-1) \\ &\leq 2^{k-1} + 2^{k-2} \\ &\leq 2^{k-1} + 2^{k-1} \\ &= 2^k \end{split} \tag{IH}$$

2.3 Constructive Induction

When we are solving recurrences and we have guessed the general form, and we do not know the constants, we usepackage constructive induction.

Example: We know that $\sum_{i=1}^n i = \frac{1}{2}n^2 - \frac{1}{2}n$. But how do we determine $\sum_{i=1}^n i^2$? Since we know the solution for the first sum is a quadratic, we can guess that for the second sum that is cubic $(an^3 + bn^2 + cn + d)$. We start with assumptions. $\sum_{i=1}^{n-1} i = a(n-1)^3 + b(n-1)^2 + c(n-1) + d$ and n > 0 We need to prove that $\sum_{i=1}^{n-1} i^2 = an^3 + bn^2 + cn + d$ So, we need:

$$\sum_{i=1}^{n} i = an^3 + bn^2 + cn + d$$

$$\sum_{i=1}^{n-1} i + n^2 = an^3 + bn^2 + cn + d$$

$$a(n-1)^3 + b(n-1)^2 + c(n-1) + d + n^2 = an^3 + bn^2 + cn + d$$

$$a(n^3 - 3n^2 + 3n - 1) + b(n^2 - 2n + 1) + c(n-1) + d = an^3 + bn^2 + cn + d$$

$$an^3 + (b - 3a)n^2 + (3a - 2b + c)n + (d - a + b - c) = an^3 + bn^2 + cn + d$$

$$an^3 + (b - 3a + 1)n^2 + (3a - 2b + c)n + (d - a + b - c) = an^3 + bn^2 + cn + d$$

We arrive at a systems of equations

$$b-3a+1=b$$
$$3a-2b+c=c$$
$$d-a+b-d=d$$

Thus,
$$a=\frac{1}{3}$$
 , $b=\frac{1}{2}$, $c=\frac{1}{6}$ and $d=0$

Therefore,

$$\sum_{i=1}^{n} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n = \frac{n(n+1)(2n+1)}{6}$$

2.4 Structural Induction