

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14050027503

FCC REPORT (WIFI)

Applicant: SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD

Address of Applicant:

Room 1907, Block A, Electronic Technology Building,
No. 2070, Change (M) Page 4, Futing Picture Change and Ch

No.2070, Shenan (M) Road, Futian District, Shenzhen. China

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: V5C

Trade mark: iNew

FCC ID: 2ACI4-V5C

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 May 2014

Date of Test: 06 May to 30 Jun., 2014

Date of report issued: 30 Jun., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	30 Jun., 2014	Original

Prepared by: Date: 30 Jun., 2014

Report Clerk

Reviewed by: Date: 30 Jun., 2014

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
		T SUMMARY	
4			
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2 6.7	2 Radiated Emission Method Spurious Emission	
	6.7.		
	6.7.2		
7	_	T SETUP PHOTO	
8	EUI	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD
Address of Applicant:	Room 1907,Block A, Electronic Technology Building, No.2070,Shenan(M)Road, Futian District, Shenzhen.China
Manufacturer :	SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD
Address of Manufacturer:	Room 1907,Block A, Electronic Technology Building, No.2070,Shenan(M)Road, Futian District, Shenzhen. China
Factory:	Hongjiada Electronics Co., Limited
Address of Factory:	4th Floor, C16 Building, Jiuwei Fuyuan Industrial Zone, Xi Xiang, Bao'an District, Shenzhen China 518000

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	V5C
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.5 dBi
AC adapter:	Input: AC 100-240V 50/60Hz 0.2A Output: DC 5V, 1000mA
Power supply:	Rechargeable Li-ion Battery DC3.8V-2270mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	July 09 2013	July 08 2014	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	July., 25 2013	July., 24 2014	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	July., 25 2013	July., 24 2014	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	July 09 2013	July 08 2014	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	July., 25 2013	July., 24 2014	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	July., 25 2013	July., 24 2014	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	July., 25 2013	July., 24 2014	

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	July 09 2013	July 08 2014
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	July., 25 2013	July., 24 2014
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.5 dBi.

6.2 Conducted Emission

	-					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguerou rongo (MIII-)	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithn	60	50			
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograp Both sides of A.C. line are interference. In order to fi positions of equipment are changed according to AN measurement. 	ation network (L.I.S.N.) pedance for the measure also connected to the ides a 50ohm/50uH co (Please refer to the blocks). The checked for maximum ind the maximum emised all of the interface contents.	y, which provides a curing equipment. The main power cupling impedance cock diagram of the conducted sion, the relative ables must be			
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details	i				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Passed					

Measurement Data

Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 275RF Condition

Job. no : Smart Phone : V5C EUT

Test Mode : wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: A-bomb
Remark :

:								
Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	dBu₹	dB		dBu₹	dBu₹	dB		-
0.195	36.50	0.25	10.76	47.51	63.80	-16.29	QP	
0.195	23.87	0.25	10.76	34.88	53.80	-18.92	Average	
0.240	35.89	0.25	10.75	46.89	62.08	-15.19	QP	
0.240	23.88	0.25	10.75	34.88	52.08	-17.20	Average	
0.300	35.24	0.26	10.74	46.24	60.24	-14.00	QP	
0.389	24.21	0.25	10.72	35.18	48.08	-12.90	Average	
0.535	34.41	0.27	10.76	45.44	56.00	-10.56	QP	
0.541	22.93	0.26	10.76	33.95	46.00	-12.05	Average	
0.904	19.61	0.21	10.84	30.66	46.00	-15.34	Average	
1.908	26.31	0.29	10.95	37.55	56.00	-18.45	QP	
23.636	27.90	0.45	10.88	39.23	60.00	-20.77	QP	
26.558	16.12	0.64	10.87	27.63	50.00	-22.37	Average	
	MHz 0. 195 0. 195 0. 240 0. 240 0. 300 0. 389 0. 535 0. 541 0. 904 1. 908 23. 636	Freq Level MHz dBuV 0.195 36.50 0.195 23.87 0.240 35.89 0.240 23.88 0.300 35.24 0.389 24.21 0.535 34.41 0.541 22.93 0.904 19.61 1.908 26.31 23.636 27.90	MHz dBuV dB 0.195 36.50 0.25 0.195 23.87 0.25 0.240 35.89 0.25 0.240 23.88 0.25 0.300 35.24 0.26 0.389 24.21 0.25 0.535 34.41 0.27 0.541 22.93 0.26 0.904 19.61 0.21 1.908 26.31 0.29 23.636 27.90 0.45	MHz dBuV dB dB 0.195 36.50 0.25 10.76 0.195 23.87 0.25 10.76 0.240 35.89 0.25 10.75 0.240 23.88 0.25 10.75 0.300 35.24 0.26 10.74 0.389 24.21 0.25 10.72 0.535 34.41 0.27 10.76 0.541 22.93 0.26 10.76 0.904 19.61 0.21 10.84 1.908 26.31 0.29 10.95 23.636 27.90 0.45 10.88	MHz dBuV dB dB dBuV 0.195 36.50 0.25 10.76 47.51 0.195 23.87 0.25 10.76 34.88 0.240 35.89 0.25 10.75 46.89 0.240 23.88 0.25 10.75 34.88 0.300 35.24 0.26 10.74 46.24 0.389 24.21 0.25 10.72 35.18 0.535 34.41 0.27 10.76 45.44 0.541 22.93 0.26 10.76 33.95 0.904 19.61 0.21 10.84 30.66 1.908 26.31 0.29 10.95 37.55 23.636 27.90 0.45 10.88 39.23	MHz dBuV dB dB dBuV dBuV 0.195 36.50 0.25 10.76 47.51 63.80 0.195 23.87 0.25 10.76 34.88 53.80 0.240 35.89 0.25 10.75 46.89 62.08 0.240 23.88 0.25 10.75 34.88 52.08 0.300 35.24 0.26 10.74 46.24 60.24 0.389 24.21 0.25 10.72 35.18 48.08 0.535 34.41 0.27 10.76 45.44 56.00 0.541 22.93 0.26 10.76 33.95 46.00 0.904 19.61 0.21 10.84 30.66 46.00 1.908 26.31 0.29 10.95 37.55 56.00 23.636 27.90 0.45 10.88 39.23 60.00	MHz dBuV dB dB dBuV dBuV dB 0.195 36.50 0.25 10.76 47.51 63.80 -16.29 0.195 23.87 0.25 10.76 34.88 53.80 -18.92 0.240 35.89 0.25 10.75 46.89 62.08 -15.19 0.240 23.88 0.25 10.75 34.88 52.08 -17.20 0.300 35.24 0.26 10.74 46.24 60.24 -14.00 0.389 24.21 0.25 10.72 35.18 48.08 -12.90 0.535 34.41 0.27 10.76 45.44 56.00 -10.56 0.541 22.93 0.26 10.76 33.95 46.00 -12.05 0.904 19.61 0.21 10.84 30.66 46.00 -15.34 1.908 26.31 0.29 10.95 37.55 56.00 -18.45 23.636 27.90 0.45 10.88 39.23 60.00 -20.77	MHz dBuV dB dB dBuV dBuV dB 0.195 36.50 0.25 10.76 47.51 63.80 -16.29 QP 0.195 23.87 0.25 10.76 34.88 53.80 -18.92 Average 0.240 35.89 0.25 10.75 46.89 62.08 -15.19 QP 0.240 23.88 0.25 10.75 34.88 52.08 -17.20 Average 0.300 35.24 0.26 10.74 46.24 60.24 -14.00 QP 0.389 24.21 0.25 10.72 35.18 48.08 -12.90 Average 0.535 34.41 0.27 10.76 45.44 56.00 -10.56 QP 0.541 22.93 0.26 10.76 33.95 46.00 -12.05 Average 0.904 19.61 0.21 10.84 30.66 46.00 -15.34 Average 1.908 26.31 0.29 10.95 37.55 56.00 -18.45 QP 23

Line:

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN LINE Job. no : 275RF

Job. no : 275RF EUT : Smart Phone Model : V5C Test Mode : wifi mode

Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: A-bomb

Remark

Kemark		023 52	3252-012	2002024		200 988	32	
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	₫B	dBu∇	dBu∜	<u>dB</u>	
1	0.150	36.33	0.27	10.78	47.38	66.00	-18.62	QP
1 2 3	0.150	18.10	0.27	10.78	29.15	56.00	-26.85	Average
3	0.190	34.72	0.28	10.76	45.76	64.02	-18.26	QP
4	0.195	22.33	0.28	10.76	33.37	53.80	-20.43	Average
4 5 6 7 8 9	0.296	33.33	0.26	10.74	44.33	60.37	-16.04	QP
6	0.296	19.88	0.26	10.74	30.88	50.37	-19.49	Average
7	0.484	31.41	0.29	10.75	42.45	56.27	-13.82	QP
8	0.535	19.32	0.28	10.76	30.36	46.00	-15.64	Average
9	0.771	16.90	0.23	10.80	27.93	46.00	-18.07	Average
10	1.129	29.55	0.25	10.89	40.69	56.00	-15.31	QP
11	23.636	33.23	0.47	10.88	44.58	60.00	-15.42	QP
12	26.558	19.33	0.63	10.87	30.83	50.00	-19.17	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.			

Measurement Data

T O	Max	ximum Conduct	1 ' '' ID \	-		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.25	14.70	14.95	13.35		
Middle	16.24	14.58	14.79	13.03	30.00	Pass
Highest	15.73	13.90	14.32	11.93		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		6dB Emission		_		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	16.11	17.39	36.07		
Middle	10.18	16.03	17.23	35.91	>500	Pass
Highest	10.18	16.27	17.39	35.91		

T . O		99% Occupy	1	5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	13.07	16.43	17.56	35.91		
Middle	13.07	16.43	17.64	35.91	N/A	N/A
Highest	13.47	16.43	17.56	35.75		

Test plot as follows:

Highest channel

Center 2.462 GHz

9.JUN.2014 14:36:36

Highest channel

Center 2.462 GHz

9.JUN.2014 15:54:31

Highest channel

Center 2.462 GHz

9.JUN.2014 16:04:26

Highest channel

Center 2.452 GHz

7.JUL.2014 13:51:24

Highest channel

Center 2.462 GHz

9.JUN.2014 16:22:27

Highest channel

Center 2.462 GHz

9.JUN.2014 16:29:53

Highest channel

Center 2.462 GHz

9.JUN.2014 16:32:26

Highest channel

Center 2.452 GHz

7.JUL.2014 13:47:38

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	7.26	2.07	2.06	-3.56		
Middle	7.50	3.13	3.14	-1.54	8.00	Pass
Highest	7.43	2.35	2.27	-5.22		

Test plot as follows:

Report No: CCIS14050027503

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
	Weasurement Distance. Sin				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above 10112	Peak	1MHz	10Hz	Average Value
Limit:	Frequency Limit (dBuV/m @3m) Remark				
	Above 1GHz		54.00		Average Value
			74.00		Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Trace: 98

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

275RF Pro

EUT Smart Phone

Model V5C

: WIFI mode B-L Test mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

 Freq		Antenna Factor					
MHz	dBu∜	dB/m	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	
2390.000 2390.000							

Vertical:

Trace: 112

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro EUT : 275RF

Smart Phone : V5C Model Test mode : WIFI mode B-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

Freq			Cable Preamp Loss Factor					Remark
MHz	—dBu∜	—dB/m	<u>ав</u>		dBuV/m	dBuV/m	<u>ab</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 128

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro EUT

: 275RF : Smart Phone : V5C Model Test mode : WIFI mode B-H Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb REMARK :

1 2

Freq						Limit Line		Remark	
MHz	dBu∀	_dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	dB		-
2483.500 2483.500									

Vertical:

Trace: 114

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 275RF Condition Pro

: Smart Phone : V5C EUT

Model

Test mode : WIFI mode B-H Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

REMARK

	Freq			Cable Preamp Loss Factor				Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	
1 2	2483.500 2483.500							

802.11g

Test channel: Lowest

Horizontal:

Trace: 100

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro

: 275RF : Smart Phone EUT : V5C Model : WIFI mode G-L Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

REMARK

1 2

Freq		Intenna Factor		-				Remark	
 MHz	dBu∀	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>		
 		27.58 27.58						Peak Average	

Vertical:

Trace: 110

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 275RF Condition

Pro

EUT Smart Phone

: V5C Model

Test mode : WIFI mode G-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

الصاد			Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	 -
_	2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 126

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 275RF Condition

Pro

EUT : Smart Phone Model : V5C Test mode : WIFI mode G-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

	Freq			Cable Preamp Loss Factor					
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2									

Vertical:

Frequency (MHz) Trace: 116

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 275RF

EUT Smart Phone

: V5C Model

Test mode : WIFI mode G-H Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb REMARK :

1 2

 -		ReadAntenna Level Factor						Remark	Remark	
MHz	dBu₹	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB			
2483.500 2483.500										

802.11n (H20) Test channel: Lowest Horizontal:

Trace: 102

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 275RF

Pro EUT : Smart Phone : V5C

Model

: WIFI mode N20-L Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

Freq	ReadAntenna Level Factor							Remark
MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
2390.000 2390.000								

Vertical:

Trace: 108

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 275RF Condition

Pro

EUT : Smart Phone

Model : V5C
Test mode : WIFI mode N20-L
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

1 2

mur	Freq				Preamp Factor			Over Limit		
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m			
			27.58 27.58			63.56 44.65			Peak Average	

Test channel: Highest

Horizontal:

Trace: 124

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 275RF : Smart Phone Condition

Pro EUT

Model : V5C
Test mode : WIFI mode N20-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

1 2

			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500 2483.500									
-				0	0.00	10.00	01.00		*** O T G P O	

Vertical:

Frequency (MHz) Trace: 118

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 275RF

EUT Smart Phone

: V5C Model

Test mode : WIFI mode N20-H Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

11.39

Test Engineer: A-bomb

2483.500

REMARK

ReadAntenna Cable Preamp Over Limit Freq Level Factor Loss Factor Level Line Limit Remark MHz dBu∀ dB/m ďΒ dB dBuV/m dBuV/m ₫B 2483.500 27.52 27.52 0.00 74.00 -10.93 Peak 54.00 -9.39 Average 29.85 63.07 5.70

0.00

5.70

44.61

802.11n (H40) Test channel: Lowest Horizontal:

Trace: 104

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 275RF Condition

Pro

EUT Smart Phone Model V5C

Test mode : WIFI mode N40-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

1 2

ReadAntenna Freq Level Factor							Remark
MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	
2390.000 2390.000							

Vertical:

Trace: 106

Site

: 3m chamber : FCC_PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 275RF

Smart Phone V5C EUT Model

Test mode : WIFI mode N40-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

REMARK

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 122

Frequency (MHz)

Site 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro EUT : 275RF : Smart Phone

: V5C Model

Test mode : WIFI mode N40-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

	Freq					Level			Remark
	MHz	dBu∀	— <u>dB</u> /m	<u>dB</u>	<u>ав</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500								

Vertical:

Trace: 120

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 275RF

: Smart Phone : V5C EUT

Model Test mode : WIFI mode N40-H

Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

REMARK

					Antenna Factor		Freq
 <u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	<u>dB</u>	dB/m	dBu∀	MHz
 							2483.500 2483.500

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.4:2003 and KDB558074								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T								
	Non-Conducted Table								
	Ground Reference Plane								
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Test mode: 802.11b

Date: 9.JUN.2014 21:11:12

30MHz~25GHz

Date: 9.JUN.2014 21:11:53

30MHz~25GHz

Date: 9.JUN.2014 21:13:04

30MHz~25GHz

Date: 9.JUN.2014 21:16:14

30MHz~25GHz

Date: 9.JUN.2014 21:15:02

30MHz~25GHz

Date: 9.JUN.2014 21:17:04

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 9.JUN.2014 21:18:06

30MHz~25GHz

Date: 9.JUN.2014 21:18:52

30MHz~25GHz

Date: 9.JUN.2014 21:19:31

30MHz~25GHz

Date: 9.JUN.2014 21:20:32

30MHz~25GHz

Date: 9.JUN.2014 21:21:18

30MHz~25GHz

Date: 6.JUN.2014 12:54:03

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205											
Test Method:	ANSI C63.4:200)3										
Test Frequency Range:	9KHz to 25GHz											
Test site:	Measurement D	istance: 3m										
Receiver setup:												
·	Frequency	Detector	RBW	VBW	Remark							
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak V											
	1MHz 1MHz	3MHz 10Hz	Peak Value									
	Average Value											
Limit:	_											
	Frequency Limit (dBuV/m @3m) Remark											
	30MHz-88MHz 40.0 Quasi-peak Value											
	88MHz-216MHz 43.5 Quasi-peak Value											
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value											
	960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value											
	Above 1GHz 54.0 Average value 74.0 Peak Value											
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the rospecified Euthorises the limit spoof the EUT have 10dB	at a 3 meter of the position was set 3 meter was mountained to determine the antennation of the position of th	the top of a reamber. The famber. The famber. The famber is away from the don the total famber is away from the maximum is all polarizations in the EU is awas turned famber in peasiting. Was set to Polarize in peasiting could borted. Otherwood is a many in the famber is a many in the famber in	ctating table table was rest radiation. the interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. It was arranged to the entire of the entire of the entire of the entire of the entire one by one	e 0.8 meters above obtated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to higher to 4 ees to 360 degrees							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 275RF Pro

EUT Smart Phone

Model V5C

Test mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb REMARK :

MHz dBuV dB/m dB dBuV/m dBuV/m dBuV/m dB 1 104.536 39.71 12.73 1.00 29.50 23.94 43.50 -19.56 QP 2 163.182 49.08 8.77 1.34 29.11 30.08 43.50 -13.42 QP 3 234.991 45.34 11.83 1.55 28.62 30.10 46.00 -15.90 QP		Remark
2 163.182 49.08 8.77 1.34 29.11 30.08 43.50 -13.42 QP		
4 313.276 43.71 13.24 1.82 28.48 30.29 46.00 -15.71 QP 5 389.355 40.62 14.83 2.08 28.73 28.80 46.00 -17.20 QP 6 446.414 37.35 15.57 2.24 28.86 26.30 46.00 -19.70 QP	2 3 4 5	QP QP QP QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro : 275RF

EUT Smart Phone

: V5C Model

Test mode : VSC Test mode : WIFI mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

MHz dBuV dB/m dB dBuV/m dBuV/m dBuV/m dB 1 67.913 47.68 9.47 0.77 29.74 28.18 40.00 -11.82 QP 2 163.182 49.39 8.77 1.34 29.11 30.39 43.50 -13.11 QP 3 235.816 44.43 11.88 1.56 28.62 29.25 46.00 -16.75 QP 4 269.428 43.23 12.34 1.68 28.50 28.75 46.00 -17.25 QP 5 306.754 41.81 13.15 1.79 28.47 28.28 46.00 -17.72 QP 6 400.432 39.63 15.10 2.12 28.78 28.07 46.00 -17.79 QP	-			Antenna Factor						Remark
2 163.182 49.39 8.77 1.34 29.11 30.39 43.50 -13.11 QP 3 235.816 44.43 11.88 1.56 28.62 29.25 46.00 -16.75 QP 4 269.428 43.23 12.34 1.68 28.50 28.75 46.00 -17.25 QP 5 306.754 41.81 13.15 1.79 28.47 28.28 46.00 -17.72 QP	-									
	2 3 4 5	163.182 235.816 269.428	49.39 44.43 43.23	8.77 11.88 12.34	1.34 1.56 1.68	29.11 28.62 28.50	30.39 29.25 28.75	43.50 46.00 46.00	-13.11 -16.75 -17.25	QP QP QP

Above 1GHz

Test mod	de:	802.11b		Test channel:		Lowest		Remark:		Peak	
Frequency (MHz)		ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac		Level (dBuV/m)	Limit Lin (dBuV/m		r Limit dB)	Pol.
4824.00	46.	.48	31.53	8.90	40.	24	46.67	74.00	-27	7.33	Vertical
4824.00	324.00 45.87 31.53 8.90		40.	24	46.06	74.00	-27	7.94	Horizontal		

Test mod	de:	802.11b		Test channel:		Lowest		Remark:		:	Average	
(MHz)		ad vel uV)	Antenna Factor (dB/m)	(dB) Fa		amp ctor B)	Level (dBuV/m)	Limit Li (dBuV/ı		Over (dE		Pol.
4824.00	36.	.14	31.53	8.90	40.	24	36.33	54.00)	-17.	67	Vertical
4824.00	34.	.75	31.53	8.90	40.	24	34.94	54.00)	-19.	06	Horizontal

Test mod	de:	802.11b		Test channel:		Middle		Remark:		Peak	
Frequency L		ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m		r Limit dB)	Pol.
4874.00	874.00 44.92 31.58 8.98		40	.15	45.33	74.00	-28	3.67	Vertical		
4874.00	4874.00 45.09 31.58 8.98		8.98	40	.15	45.50	74.00	-28	3.50	Horizontal	

Test mod	de:	3	302.11b	Test channel:		Middle		Remark:		Average	
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	34	.53	31.58	8.98	40	.15	34.94	54.00	-19	9.06	Vertical
4874.00	35	.04	31.58	8.98	40	.15	35.45	54.00	-18	3.55	Horizontal

Test mod	de:	802.11b		Test channel:		Highest		Remark:		Peak	
Frequency (MHz)	Read I (dBu		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Factor	I		Limit Line (dBuV/m		r Limit dB)	Pol.
4924.00	46.8	83	31.69	9.08	40.	03	47.57	74.00	-26	5.43	Vertical
4924.00	45.1	18	31.69	9.08	40.	03	45.92	74.00	-28	3.08	Horizontal

Test mod	de:	8	02.11b	Test chan	nel:	ŀ	Highest	Rema	rk:	P	Average
Frequency (MHz)	Read L (dBu		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Factor		Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4924.00	36.5	50	31.69	9.08	40.0	03	37.24	54.00	-16	6.76	Vertical
4924.00	34.7	79	31.69	9.08	40.0	03	35.53	54.00	-18	3.47	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	8	302.11g	Test chan	nel:		Lowest	Rei	mark:		Peak
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d		Level (dBuV/m)	Limit Li (dBuV/		er Limit (dB)	Pol.
4824.00	45.	.78	31.53	8.90	40.	24	45.97	74.00) -2	28.03	Vertical
4824.00	45.	.86	31.53	8.90	40.	24	46.05	74.00) -2	7.95	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Lowest	Rei	mark	:	P	Average
Frequency (MHz)	Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Li (dBuV/		Over (dl		Pol.
4824.00	34.	.78	31.53	8.90	40.	24	34.97	54.00	0	-19.	.03	Vertical
4824.00	34.	.47	31.53	8.90	40.	24	34.66	54.00	0	-19.	.34	Horizontal

Test mod	Test mode:		302.11g	Test chan	nel:		Middle	Rei	mark:			Peak
Frequency (MHz)	Rea Lev (dBa	/el	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Li (dBuV/		Over (d	Limit B)	Pol.
4874.00	45.	15	31.58	8.98	40	.15	45.56	74.00)	-28	.44	Vertical
4874.00	44.	50	31.58	8.98	40	.15	44.91	74.00)	-29	.09	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Middle	Ren	nark:	l A	Average
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Lir (dBuV/r		er Limit (dB)	Pol.
4874.00	34	.22	31.58	8.98	40	.15	34.63	54.00	-	19.37	Vertical
4874.00	33	.68	31.58	8.98	40	.15	34.09	54.00	-	19.91	Horizontal

Test mod	de:	8	02.11g	Test chan	nel:	-	Highest	Rem	nark			Peak
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit Lin (dBuV/n			Limit B)	Pol.
4924.00	45.	87	31.69	9.08	40.	.03	46.61	74.00		-27	.39	Vertical
4924.00	45.	61	31.69	9.08	40.	.03	46.35	74.00		-27	.65	Horizontal

	Test mod	de:	8	02.11g	Test chan	nel:	ŀ	Highest	Re	mark	(:	A	verage
	Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit L (dBuV			Limit B)	Pol.
ĺ	4924.00	35.	.16	31.69	9.08	40	.03	35.90	54.0	0	-18	3.10	Vertical
	4924.00	35.	.47	31.69	9.08	40	.03	36.21	54.0	00	-17	'.79	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2."*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod			2.11(n20)	Test chan	nel:		Lowest	Rer	nark:		Peak
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Li (dBuV/		ver Limit (dB)	Pol.
4824.00	45	.39	31.53	8.90	40.	24	45.58	74.00) -	28.42	Vertical
4824.00	46	.12	31.53	8.90	40.	24	46.31	74.00) -	27.69	Horizontal

Test mod	le:	80	2.11(n20)	Test chan	nel:		Lowest	Remarl	K :	F	Average
Frequency (MHz)	Le	ead vel BuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Line (dBuV/m)	Over (dl		Pol.
4824.00	35	.32	31.53	8.90	40.	24	35.51	54.00	-18	.49	Vertical
4824.00	35	.31	31.53	8.90	40.	24	35.50	54.00	-18	.50	Horizontal

Test mod	Test mode: 80		Test chan	nel:		Middle	Remark	< :		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit IB)	Pol.
4874.00	44.12	31.58	8.98	40.	15	44.53	74.00	-29).47	Vertical
4874.00	44.73	31.58	8.98	40.	15	45.14	74.00	-28	3.86	Horizontal

Test mo	Test mode:		2.11(n20)	Test chan	nel:		Middle	Remar	k:	A	verage
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4874.00	33	.96	31.58	8.98	40	.15	34.37	54.00	-19	.63	Vertical
4874.00	33	.65	31.58	8.98	40	.15	34.06	54.00	-19	.94	Horizontal

Test mod	de:	802	2.11(n20)	Test chan	nel:	ŀ	Highest	Rem	ark:		Peak
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Lin (dBuV/m	- -	Over Limit (dB)	Pol.
4924.00	45.	36	31.69	9.08	40.	.03	46.10	74.00		-27.90	Vertical
4924.00	45.	78	31.69	9.08	40.	.03	46.52	74.00		-27.48	Horizontal

	Test mod	Test mode:		802.11(n20)		Test channel:		Highest		Remark:		Average	
	. 1		Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit Line Over Limit (dBuV/m) (dB)		Pol.		
ĺ	4924.00	34.	19	31.69	9.08	40	.03	34.93	54.0	0	-19	.07	Vertical
	4924.00	34.	17	31.69	9.08	3 40.		34.91	54.0	00	-19	.09	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	le:	802.11(n40)		Test chan	nel:		Lowest	Ren	nark:	Peak	
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Lir (dBuV/r		r Limit dB)	Pol.
4844.00	45	.03	31.53	8.90	40.	24	45.22	74.00	-2	8.78	Vertical
4844.00	45	.72	31.53	8.90	40.	24	45.91	74.00	-2	8.09	Horizontal

Test mod	Test mode:		2.11(n40)	Test chan	nannel: Lowest		Ren	nark:	l l	Average	
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)		Limit Line (dBuV/m) (dB)		Pol.
4844.00	34	.24	31.53	8.90	40.	24	34.43	54.00		-19.57	Vertical
4844.00	35	.45	31.53	8.90	40.	24	35.64	54.00		-18.36	Horizontal

Test mo	de:	802.11(n40)	Test channel:		Middle	Remark	C:	Peak	
Frequency (MHz)	Read Level (dBuV)	Factor	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)			
4874.00	46.10	31.58	8.98	40.15	46.51	74.00	-27.49	Vertical	
4874.00	0 45.76 31.58 8.98		40.15	46.17	74.00	-27.83	Horizontal		

Test mod	de:	802	2.11(n40)	Test channel:			Middle	Remark:		Average	
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	35	.83	31.58	8.98	40	.15	36.24	54.00	-17	7.76	Vertical
4874.00	35	.37	31.58 8.98		40	.15	35.78	54.00	-18	3.22	Horizontal

Т	Test mode:		802.11(n40)		Test channel:		-	Highest	Remark:			Peak	
	' '		Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)		Pol.
49	904.00	45.	39	31.69	9.08	40	.03	46.13	74.0	0	-27	'.87	Vertical
49	904.00	45.	36	31.69	9.08	9.08 40.0		46.10	74.0	0	-27	'.90	Horizontal

Test mod	Test mode:		2.11(n40)	Test channel:		Highest		Remark:		Average		
Frequency (MHz)	Read (dBı		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit Line Over Limit (dBuV/m) (dB)			Pol.	
4904.00	35.	95	31.69	9.08	40	.03	36.69	54.0	0	-17	'.31	Vertical
4904.00	34.	18	31.69	9.08	40	.03	34.92	54.0	0	-19	80.0	Horizontal

Remark

^{1.}Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

^{3.} The emission levels of other frequencies are very lower than the limit and not show in test report.