EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING

PREDICTIONS

Date	09 November 2022
Team ID	PNT2022TMID13306
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rot ati on_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

```
x_train=train_datagen.flow_from_directory(r'/content/drive/MyDriv e/Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')
Found 436 images belonging to 2 classes.
```

Applying ImageDataGenerator functionality to testset

```
x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive / Dataset/test_set',target_size=(128,128),batch_size=32, class mode='binary')
```

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from keras.models import Sequential

#To add layers import Dense from keras.layers import Dense

#To create Convolution kernel import Convolution2D from keras.layers import Convolution2D

#import Maxpooling layer from keras.layers import MaxPooling2D

#import flatten layer from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

```
Initializing the model
```

```
model=Sequential()
```

Add CNN Layer

```
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
```

#add maxpooling layer

```
model.add(MaxPooling2D(pool size=(2,2)))
```

#add flatten layer

model.add(Flatten())

Add Hidden Layer

```
#add hidden layer
```

```
model.add(Dense(150,activation='relu'))
```

#add output layer

model.add(Dense(1,activation='sigmoid'))

Configure the learning process

```
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=[
"ac curacy"])
```

Train the model

```
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation _ da ta=x_test,validation_steps=4)
```

```
Epoch 1/10
```

```
14/14 [======] - 97s 7s/step - loss:
```

1.3060 - accuracy: 0.7775 - val loss: 0.5513 -

```
val accuracy: 0.8512
Epoch 2/10
14/14 [======] - 26s 2s/step - loss:
0.3178 - accuracy: 0.8807 - val loss: 0.1299 -
val accuracy: 0.9421
Epoch 3/10
14/14 [======] - 26s 2s/step - loss:
0.2226 - accuracy: 0.9106 - val loss: 0.1311 -
val accuracy: 0.9421
Epoch 4/10
 14/14 [======] - 31s 2s/step - loss:
0.1836 - accuracy: 0.9174 - val loss: 0.1129 -
val accuracy: 0.9339
Epoch 5/10
14/14 [======] - 30s 2s/step - loss:
0.1675 - accuracy: 0.9243 - val loss: 0.0925 -
val accuracy: 0.9669
Epoch 6/10
14/14 [======] - 26s 2s/step - loss:
0.1884 - accuracy: 0.9289 - val loss: 0.1287 -
val accuracy: 0.9339
Epoch 7/10
14/14 [======] - 28s 2s/step - loss:
0.1724 - accuracy: 0.9335 - val loss: 0.0926 -
val accuracy: 0.9752
Epoch 8/10
14/14 [======] - 26s 2s/step - loss:
0.1510 - accuracy: 0.9404 - val loss: 0.0757 -
val accuracy: 0.9752 Epoch 9/10
14/14 [=======
                                     ≔] - 26s
                                                    0.173 -
2s/step - loss:
accuracy: 0.9174 - val loss: 0.0537 -
val accuracy: 0.9835
```

```
Epoch 10/10
              14/14 [========
                                             =====] - 26s
     0.154 -
2s/step - loss:
                                                             6
accuracy: 0.9312 - val loss: 0.0573 -
val accuracy: 0.9835
 <keras.callbacks.History at 0x7f05d66a9c90>
 Save The Model
 model.save("forest1.h5")
 Predictions
  #import load model from keras.model
  from keras.models import load model
  #import image class from keras
  from tensorflow.keras.preprocessing import image
  #import numpy
  import numpy as np
  #import cv2
  import cv2
 #load the saved model
 model = load model("forest1.h5")
 img=image.load img(r'/content/drive/MyDrive/Dataset/test set/forest/
 0.48007200 1530881924 final forest.jpg') x=image.img to array(img)
```