Microscopic understanding of material properties

- temperature dependence of structure
- electric and thermal conductivity
- optical properties
- magnetization ...

Description of electrons and nuclei in solids, their motion, and their response to external fields

- 10²³ atoms / cm³
- but: few chemical elements & periodicity

Electrons in solids

Introduction

kinetic energy: $E_{kin} = 0.5 \text{ eV}$

velocity v = 1000.000 km / h = 3 Å / fs

Motion on atomic scales:

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ fs} = 10^{-15} \text{ s}$$

h = 4,13 eV fs (Plancksche Konstante)

Pauli principle and Hund's rules

H¹																								He²
18		Atoms in Their Ground States															ls²							
Li ³	Be⁴									ectron							Bs	C ₆		N ⁷	O*		F9	Ne¹º
2s	$2s^2$	The mome	lette entu	ers s, m 0.	, p,	d, .	 . i	signif n uni	y ele ts ħ:	of intectron the n	s ha uml:	ving er to	orb o the	ital e le:	angu ft of	llar the	2s ² 2	2s2	$2p^2$	2s²2p	2s 2	$2p^4$	$2s^{2}2p^{5}$	2s ² 2p
Na¹¹	Mg ¹²	letter denotes the principal quantum number of one orbit, and the superscript to the right denotes the number of electrons in the orbit.															Si	•	P15	S16		CI ¹⁷	Aris	
3s	3s ²	· · · · · · · ·														3s ² 3p								
K19	Ca ²⁰	Sc ²¹	Ti ²² V ²³ C			Cr	Cr ²⁴ Mn ²⁵		Fe	Fe ²⁶ Co		7 Ni ²⁸		Cu²	Cu ²⁹ Zn		Ga ³¹ Ge		32	As ³³ S		Se ³⁴ Br ³⁵		Kr ³⁶
4 s	4s2	3d 4s ²	3¢		$\frac{3d^n}{4s^2}$	3d 4s	5	3d ⁵ 4s ²	3d 4s		3d7 4s2			3d 10 4s		d 10 8 ²	4s ² 4	4s ² 4p 4s ²		4s²4 ₁	o ³ 4s ²	4p4	4s ² 4p ⁵	$4s^{2}4p$
Rb ³⁷	Sr™	A 23	Zr	40	Nb"	М) 12	TC ⁴³	R	j" F	th ⁴⁸	Pd	146	Agʻ	7	ď™	In ⁴⁹	Sn	5.0	SP21	Te	5.2	153	Xe⁵⁴
5s	5s²	4 <i>d</i> 5s ²	4 <i>c</i> 5s		4d4 5s	4 <i>d</i> 58	5	4d ⁶ 5s			d* s	4d 10		4d ¹ 5s			5s25p 5s		5p²	5s²5 ₁	o³ 5s²	5p⁴	5s²5p5	5s²5p
Csss	Be ⁵⁶	La ⁵⁷	H1				14	Re ⁷⁵	0	8 ⁷⁶ Ir ⁷⁷		Pt ⁷⁸		Au ⁷⁹ H		lg ⁸⁰	TISI	Pb	Pb ⁸² Bi ⁸		83 Po84		At ⁸⁵	Rn ⁸⁶
6s	6s²	5d 6s²	50 68	¹²	5d3 6s2		d ⁴ 5d s ² 6s ²		5 <i>a</i> 6 <i>s</i>				5d° 6s			$d^{_{10}}$ $s^{_{2}}$	6s²6	p 6s2	6p²	6s²6 ₁	p ³ 6s ³	² 6p⁴	6s²6p5	6s²6p
Fr ⁸⁷	Ra**	Ac*9		Ce ⁵¹	Ce ⁵⁸ Pr ⁵⁹ 4f ² 4f ³				Pm ⁶¹	Sm ⁶²		u ⁶³	Gd ⁶⁴		Tb ⁶⁵ 4f ⁸			Ho ⁶⁷	Er 4f		Tm ⁶⁹ 4f ¹³	Yb 4f		u ⁷¹
78	$7s^2$	7s2	U			68	682		6s2	6	2	5d 6s2	١	$\frac{5d}{6s^2}$	6	s ²	6s²	6s	,	6s²	6s2	2 6		
				Th*) P	a^{9†} f ² d	U ³ 5f 6a	·3 ;	Np ⁹³	Pu ⁹⁴ 5f ⁶	A 5;	m ⁹⁵	Cm 5f7 6d	96	Bk ⁹⁷	С	f ⁹⁸	Es ⁹⁹		-	Md ¹⁰¹	No	,102 L	г ¹⁰³
				$7s^2$	7	8 ²	7 <i>s</i>	2	s ²	$7s^2$	7.	y ²	$7s^2$	_			\perp		L			L	\perp	┙

Concept: ion core (nucleus + inner electrons) & valence electrons

Bonding

bonding (attraction) due to <u>valence</u> electrons Pauli repulsion between neighbouring atoms

\$\times\$ equilibrium distance r₀ (related to lattice parameter)

Table 1 Cohesive energies

Li 158. 1.63 37.7	Be 320. 3.32 76.5	Energy required to form separated neutral atoms in their ground electronic state from the solid at 0 K at 1 atm. The data were supplied by Prof. Leo Brewer in units keal per mole, revised to May 4, 1977, after LBL Report 3720 Rev.													71 7.3 17	1. 7	N 474. 4.92 113.4	251 2.60 60.0	0.		Ne 1.92 0.020 0.46
Na 107. 1.113 25.67	Mg 145. 1.51 34.7	Al Si P													S 275 2.86 65.7	5 1.		Ar 7.74 0.080 1.85			
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	Ti 468. 4.85 111.8	468. 512. 4.85 5.31		Mn 282 2.9: 67.	2 43	3. 42 28 4.:	4. 39	Ni 428. 4.44 102.4	3.4	Cu Zr 336. 13 3.49 1 80.4 31		Ga 271. 2.81 64.8	37 3.8 88	2.	As 285.3 2.96 68.2	Se 237 2.46 56.7	3 1.		Kr 11.2 0.116 2.68
Rb 82.2 0.852 19.64	Sr 166. 1.72 39.7	Y 422. 4.37 100.8	Zr 603. 6.25 144.2	Nb 730. 7.57 174.5	Mo 658 6.82 157.2	Tc 661 6.8 2 158	5 6.1	0. 55	4. 75	Pd 376. 3.89 89.8	28- 28- 2.9 68	4. 1 5 1	12. .16 6.73	In 243. 2.52 58.1	30 3.1 72	3. 14	Sb 265. 2.75 63.4	Te 211 2.19 50.0			Xe 15.9 0.16 3.80
Cs 77.6 0.804 18.54	Ba 183. 1.90 43.7	La 431. 4.47 103.1	Hf 621. 6.44 148.4	Ta 782. 8.10 186.9	W 859. 8.90 205.2	Re 775 8.0 185	3 8.	8. 67 17 6.	0. 94	Pt 564. 5.84 134.7	368 3.8 87	B. 6	lg 5. . 67 5.5	182. 1.88 43.4		6. 03	Bi 210. 2.18 50.2	Po 144 1.50 34.5	0		Rn 19.5 0.202 4.66
Fr	Ra 160. 1.66 38.2	Ac 410. 4.25 98.	C 41 4. 99	7. 3: 32 3	57. 3 . 70 3	Nd 328. 3.40 78.5	Pm	Sm 206. 2.14 49.3	Eu 179 1.8 42.	9. 40 36 4.	d 00. 14 5.5	Tb 391. 4.05 93.4	Dy 29 3.4 70	4. 3	10 302. 3.14 72.3	Er 317 3.2 75.	7. 2: 9 2	m 33. .42 5.8	Yb 154. 1.60 37.1	Lu 428 4.4 102	3
						J 536. 5.55 128.	Np 456 4 73 109.	Pu 347. 3.60 83.0	An 26- 2.7 63	4. 38 73 3.	m 35 99 2.1	Bk	CI	1	Ξs	Fm	M	ld	No	Lr	

metals: ~1 - 2 eV/atom covalent: ~3 - 9 eV/atom ionic: ~6-10 eV/atom

van der Waals: 20-200 meV/atom

hydrogen: ~100 meV/bond

Crystal structure

Introduction

Wave-particle dualism

[Crommie, Lutz, Eigler] http://www.almaden.ibm.com/vis/stm/gallery.html

Electron waves

Introduction

Louis de Broglie (1924): Wave character of matter

$$p = \frac{h}{\lambda}$$

elektron: $E_{kin} = 0.5 \text{ eV}$

 $\lambda = 17.3 \text{ Å}$

Introduction

Radial part of the wave function of Ni 3s and 3d₇₂

Valence bands

Introduction

15

Vibration of atoms in solids - phonons

Atoms vibrate around their equilibrium position r₀ in potential U(r)

- nearly harmonic oscillations
- influence on neighboring atoms leads to collective vibrations
- quantized normal modes: phonons

- longitudinal (L) and transversal (T) modes
- acoustic (A) and optical (O) phonons

Inhalt

- Einführung
- **Chemische Bindung und Kristallstruktur**
- Beugung an periodischen Strukturen
- Gitterschwingungen
- Elektronen in Festkörpern
- **Magnetismus**
- Dielektrische Eigenschaften
- 7. Halbleiter
- Supraleitung