

Vidyalankar Institute of Technology Viscosit column Department of Computer Engineering Exp. No. 7

Semester	T.E. Semester V – Computer Engineering	
Subject	Data Warehousing and Mining	
Subject Professor In-charge	Prof. Kavita Shirsat	
Assisting Teachers	Prof. Kavita Shirsat	
Laboratory	Lab 312 A	

Student Name	Deep Salunkhe
Roll Number	21102A0014
Grade and Subject Teacher's Signature	

Experiment Number	07		
Experiment Title	Implementation of Apriori algorithm.		
Resources / Apparatus	Hardware: Computer system	Software: Python	
Required Description	The Apriori algorithm is a widely used algorithm in data mining and association rule learning. It is used to discover frequent itemsets in a transaction database and generate association rules based on these frequent itemsets. Here's a theoretical overview of the Apriori algorithm: • Introduction: The Apriori algorithm is designed to find associations or relationships between items in a transactional database. • Objective: Its primary goal is to identify frequent itemsets, which are sets		
	 Support: The algorithm uses a user-defined threshold called "support" determine the minimum frequency required for an itemset to be considered frequent. Apriori Principle: The algorithm is based on the Apriori principle, which states that if an itemset is frequent, then all of its subsets must also be frequent. 		
	 Algorithm Steps: Start with individual items as 1-itemsets. Count the support of each 1-itemset by scanning the database. Prune infrequent 1-itemsets. Generate 2-itemsets from the remaining 1-itemsets. 		

Department of Computer Engineering Exp. No. 7

- 5. Count the support of each 2-itemset.
- 6. Prune infrequent 2-itemsets.

Continue this process, incrementally generating larger itemsets and pruning until no more frequent itemsets can be found.

- **Termination:** The algorithm terminates when no more frequent itemsets can be generated.
- Association Rule Generation: After identifying frequent itemsets, the Apriori algorithm can generate association rules. These rules express relationships between items, e.g., "If A and B are bought, then C is also bought."

Program

Department of Computer Engineering Exp. No. 7

```
min_support = int(input("Enter minimum no of support count:"))
    1st = []
    for i in df["items"]:
      k = list(map(int,i.split(",")))
      lst.append(k)
        st.add(j)
    c1={}
for i in st:
     c1[i]=sum(i in item for item in lst)
    print("\nC1\n1-Itemsets\tsupport count")
    for i in c1:
      print(i, "\t\t", c1[i])
    c2={}
    for i in c1:
     for j in c1:
  if(j>i):
         c2[str(i)+","+str(j)]=None
    for i in c2:
     current = list(map(int,i.split(",")))
     c2[i]=sum(current[0] in item and current[1] in item for item in 1st)
    print("\nC2\n2-Itemsets\tsupport count")
    for i in c2:
      print(i,"\t\t",c2[i])
    l=[]
for i in c2:
      if(c2[i]<min_support):</pre>
       1.append(i)
    for i in 1:
      c2.pop(i)
    print("\nL2\n2-Itemsets\tsupport count")
```

```
for i in c2:
 print(i,"\t\t",c2[i])
for i in c2:
 for j in list(map(int,i.split(","))):
   st.add(j)
c3={"1,2,3":None,"1,2,5":None,"1,3,5":None,"2,3,5":None}
for i in c3:
 current = list(map(int,i.split(",")))
 c3[i]=sum(current[0] in item and current[1] in item and current[2] in item for item in lst)
1=[]
 if(c3[i]<min_support):</pre>
   1.append(i)
print("\nC3|n3-Itemsets\tsupport count")
for i in c3:
 print(i,"\t\t",c3[i])
for i in 1:
c3.pop(i)
print("\nL3\n3-Itemsets\tsupport count")
  print(i,"\t\t",c3[i])
```


Department of Computer Engineering Exp. No. 7

