ASSIGNMENT 3 REPORT

Ripple Carry Adder (8, 16, 32 and 64 bit)

Jatin Gupta (20CS10087)

Rushil Venkateswar (20CS30045)

Group 69 Computer Organisation Laboratory

HALF ADDER

(Module File: half_addr.v, Test: half_addr_TestBench.v)

Circuit Diagram:

 $S=A^B$

C = A.B

Truth Table:

Input 1 (A)	Input 2 (B)	Sum (S = A^B)	Carry (C = A . B)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

FULL ADDER

(Module File: full_addr.v, Test: full_addr_TestBench.v)

Circuit Diagram:

S=A^B^Cin

Cout = A.B + B.Cin + Cin.A

Truth Table:

INPUT 1 (A)	INPUT 2 (B)	Cin	SUM (S=A^B^Cin)	Carry (Cout)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

RIPPLE CARRY ADDERS

Here, we used 8 full adders to design an 8-bit ripple carry adder. Then we used two 8-bit ripple carry adders to design a 16-bit ripple carry adder. Further, we used two 16-bit ripple carry adders to design a 32-bit ripple carry adder. Finally, we used two 32-bit ripple carry adders to design a 64-bit ripple carry adder.

Circuit Diagrams:

1. 8-bit ripple carry adder (Module File: RCA_8.v, Test: RCA_8_TestBench.v):

2. 16-bit ripple carry adder (Module File: RCA_16.v, Test: RCA_16_TestBench.v):

3. 32-bit ripple carry adder (Module file: RCA_32.v, Test: RCA_32_TestBench.v):

4. 64-bit ripple carry adder (Module File: RCA_64.v, Test: RCA_64_TestBench.v):

SYNTHESIS SUMMARY

Circuit	Total delay (ns)	Logic delay (ns)	Route delay (ns)	Number of Slice LUTs
Half adder	1.066	0.125	0.941	2
Full adder	1.246	0.125	1.121	2
8-bit adder	3.471	0.497	2.974	12
16-bit adder	6.167	0.993	5.174	24
32-bit adder	11.559	1.985	9.574	48
64-bit adder	22.343	3.969	18.374	96

Q. How can you use the above circuit, to compute the difference between two n-bit numbers?

Let us assume that the 2 inputs are A and B. Both are signed 64-bit numbers, so the range of both numbers is from $[-2^32 \text{ to } 2^32 - 1]$.

The **RCA_sub** module defined in our code computes A – B. The resultant difference is stored in 'diff'.

To achieve this, the 64-bit RCA Adder module is utilised.

A - B

=> A + (-B)

The 2's complement notation of $-\mathbf{B}$ is $\mathbf{1} + \mathbf{B}$

$$=> A + (1 + ~B)$$

We **compute the NOT of B** and then pass **A**, ~**B** and **1** as the inputs to the 64-bit RCA Adder.

(Module File: RCA_subtraction.v, Test Bench: RCA_subtraction_TestBench.v)