2016-2017 第二学期高数期中试题答案

3.
$$\sqrt{6}$$

-. 1. 1; 2.1; 3.
$$\sqrt{6}$$
; 4. $\frac{x-3}{0} = \frac{y}{1} = \frac{z}{-1}$;

5.
$$(-1,1,2)$$
; 6. -5; 7. $f(2)$; 8. $\frac{\sqrt{2}}{2}\pi - 1$; 9. $9\sqrt{6}$;

7.
$$f(2)$$
;

8.
$$\frac{\sqrt{2}}{2}\pi - 1$$

9.
$$9\sqrt{6}$$

10. $\int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{a} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^{2}\sin\varphi dr.$

$$\equiv$$
. $\Rightarrow P = \frac{1+y^2f(xy)}{y}$, $Q = \frac{x}{y^2}[y^2f(xy)-1]$

则 $\frac{\partial P}{\partial x} = f(xy) - \frac{1}{y^2} + xyf'(xy) = \frac{\partial Q}{\partial x}$,故在单连通区域内曲线积分与路径无关 ----2 分

方法一: 选取积分路径: 从 $A(3,\frac{2}{3})$ 到 $B(1,\frac{2}{3})$,再从 B 到 B(1,2) 的折线段,于是

$$I = \int_{AB} + \int_{BB} = \int_{3}^{1} \frac{1 + \frac{4}{9} f(\frac{2}{3} x)}{\frac{2}{3}} dx + \int_{\frac{2}{3}}^{2} \frac{1}{y^{2}} [y^{2} f(y) - 1] dy \quad ----7 \quad \text{f}$$

$$= \frac{3}{2}(1-3) + \int_{2}^{\frac{2}{3}} f(y)dy + \int_{\frac{2}{3}}^{2} f(y)dy + \frac{1}{2} - \frac{3}{2}$$

-----10 分

方法二: 可取曲线 L: xy=2, 从 A到 B则 ------3分

$$I = \int_{2}^{1} \frac{1 + y^{2} f(2)}{y} dx + \frac{x(y^{2} f(2) - 1)}{y^{2}} \cdot \left(-\frac{2}{x^{2}}\right) dx \qquad ----- 6$$

$$= \int_{3}^{1} \left(\frac{1}{y} + \frac{2}{xy^{2}} \right) dx \qquad ------ 8 \, \mathcal{D}$$

$$= \int_{\mathbf{R}}^{1} x dx = -4 \qquad \qquad ----- 10 \$$

四. 设切点为 (x_0, y_0, z_0) , 该点的法矢为: $\mathbf{n} = (\frac{2x_0}{a^2}, \frac{2y_0}{b^2}, \frac{2z_0}{c^2})$

所以切平面为:
$$\frac{x_0}{a^2}(x-x_0) + \frac{y_0}{b^2}(y-y_0) + \frac{z_0}{c^2}(z-z_0) = 0$$

$$\mathbb{P} \qquad \frac{x_0}{a^2} x + \frac{y_0}{b^2} y + \frac{z_0}{c^2} z = 1 \qquad -----2$$

切平面在三个坐标轴上的截距为 $\frac{a^2}{x_0}$, $\frac{b^2}{y_0}$ 和 $\frac{c^2}{z_0}$

引入辅助函数:
$$F(x_0, y_0, z_0, \lambda) = x_0 y_0 z_0 + \lambda (\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} - 1)$$
 ------ 5分

$$\Re \begin{cases}
\frac{\partial F}{\partial x_0} = y_0 z_0 + \frac{2x_0}{a^2} \lambda = 0 \\
\frac{\partial F}{\partial y_0} = x_0 z_0 + \frac{2y_0}{b^2} \lambda = 0 \\
\frac{\partial F}{\partial z_0} = x_0 y_0 + \frac{2z_0}{c^2} \lambda = 0 \\
\frac{\partial F}{\partial \lambda} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} - 1 = 0
\end{cases} (3)$$

$$\frac{\partial F}{\partial \lambda} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} - 1 = 0 \tag{4}$$

得:
$$x_0 = \frac{a}{b} y_0$$
, $z_0 = \frac{c}{b} y_0$, 且 $x_0 > 0$, $y_0 > 0$, $z_0 > 0$

代入(4)得:
$$x_0 = \frac{a}{\sqrt{3}}$$
, $y_0 = \frac{b}{\sqrt{3}}$, $z_0 = \frac{c}{\sqrt{3}}$ ------ 9分

因为驻点唯一,且根据实际情况,最值一定在区域的内部取得,所以点 $(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}})$ 就是 所求的切点。