

The BUSINESS ANALYTICS BATTLE

Introduction

Lealand Morin, Joushua Eubanks

Department of Economics College of Business Administration University of Central Florida

March 30, 2023

An Exercise in Predicting Continuous Variables

Definition (Continuous Variables): A variable with an uncountable set of outcomes (That is, the set of outcomes is typically limited only by the precision of measurement)

- Outcomes measured in dollars
 - Sales (and returns), reported income
- Outcomes measured as rates
 - Conversion rates, click-through rates
- Outcomes with a large number of outcomes
 - FICO scores, number of drivers, houses or building permits

The Statapult

Collect data by conducting an experiment

The Statapult: Settings

Choose a starting point to set spring tension

The Statapult: Settings

Choose a stopping point to set launch angle

The Statapult: Settings

Choose a cup position to set lever length

Data Collection

- Set the catapult on one end of the black sheet
- Align the measuring tape with the end of the catapult
- For each launch, record the distance the ball traveled:
 - Roll the ball in baby powder
 - Launch it with the catapult
 - Record the distance shown by the white spot on the black cloth
- Repeat for all 18 combinations of catapult settings:
 - 3 starting points
 - 3 stopping points
 - 2 cup positions

Analyze the Data

Build a model for the distance thrown with the catapult

```
Call:
lm(formula = house_price ~ prediction + in_cali + earthquake.
    data = housing_data[1:num_obs_estn, ])
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Inter
                                             .315
pred:
                                             e-05
       10...
                                             .818
in ca.
                                    346
                                             a-16
earti
       tak
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Residual standard error: 0.1004 on 96 degrees of freedom
Multiple R-squared: 0.7129, Adjusted R-squared: 0.704
F-statistic: 79.48 on 3 and 96 DF, p-value: < 2.2e-16
```


The Statapult

Test your model by conducting another experiment

Testing Your Model

- Set the catapult on one end of the black sheet
- Align the measuring tape with the end of the catapult
- Specify the goal: the target distance to hit with the ball
- Take turns and record the distance the ball traveled:
 - Roll the ball in baby powder
 - Launch it with the catapult
 - Record the distance shown by the white spot on the black cloth
- Finally, compare the outcome to the goal
- ► The closest to the target, without going over, wins!

Case Study: Response Rates

Zillionz

- Zillionz is a popular search engine
- Their business is based on selling advertisements
- The value for their customers depends on response rates
- They observe the customer's catapult settings
- They choose whether or not to fire the catapult
- The payoff is as follows:
 - ▶ Gain \$10 if roll d > 60 inches
 - Lose \$1 otherwise

Case Study: Response Rates

How does this relate to firing the catapult?

Data Input: Customer's settings S

Prediction: $P\{d|S\}$

Decision: Launch catapult (or not)

Outcome: +\$10 if d > 60 else -\$1

See the Results

- Set up the catapult as for the previous experiments, according to the settings specified by the customer
- Before each launch, decide whether to accept the launch
- Record the distance thrown in a separate column, depending on whether it was accepted or rejected
- Repeat for all 10 catapult settings on the worksheet
- Finally, calculate your total score

Case Study: Forecasting Sales

- Fairway is an online retailer
- Their sales fluctuate throughout the year
- To manage their inventory, they need to forecast sales
- They observe the catapult settings
- ightharpoonup They choose an inventory level \hat{d}
- They observe the distance thrown d
- The payoff is as follows:
 - If they underestimate distance: $\hat{d} < d$, lose \$10 for each inch under
 - If they overestimate distance: $\hat{d} > d$, lose \$5 for each inch over

Case Study: Forecasting Sales

How does this relate to firing the catapult?

Data Input: Catapult settings S

Prediction: $P\{d|S\}$

Decision: Purchase inventory \hat{d}

Outcome:
-\$10 if too high
else: -\$5 if too low

See the Results

- Set up the catapult as for the previous experiments
- Observe the catapult settings
- Before each launch, predict the distance thrown
- Launch with the prescribed settings
- Repeat for all 10 catapult settings on the worksheet
- Finally, calculate your total score

Case Study: Pricing Policy

- Homefix is a retailer of home improvement products
- They sell a wide variety of products
- Their goal is to choose prices to maximize profits
- ► They observe two of the three catapult settings
- They choose the remaining setting
- The payoff is as follows:
 - ► Gain \$10 if the ball lands between 54 and 60 inches
 - Lose \$1 for every inch out of range

Case Study: Pricing Policy

How does this relate to firing the catapult?

Data Input: Catapult settings S₁

Prediction: $P\{d|S_1, S_2\}$ for each S_2

Decision:Set remaining setting S_2

Gain \$10 if close
Lose \$1 for distance
out of range

See the Results

- Set up the catapult as for the previous experiments
- Observe the first two catapult settings
- Before each launch, predict the distance thrown with each remaining option
- Choose an optimal setting for the remaining option
- Launch with the chosen and prescribed settings
- Repeat for all 10 catapult settings on the worksheet
- Finally, calculate your total score

Any questions?

