Álgebra II. Doble grado Informática-Matemáticas.

Curso 2019-2020. Control 2.

Ejercicio 1 (10 puntos). .

(a) [2 puntos] Sea $\{f_i: G_i \to H_i\}_{i=1,2,...n}$ un conjunto de n homomorfismos de grupos $(n \ge 2)$. Demostrad que existe un homomorfismo de grupos

$$f: \prod_{i=1}^n G_i \longrightarrow \prod_{i=1}^n H_i$$

único tal que, para todo i = 1, ... n, el cuadrado siguiente es conmutativo

$$\prod_{i=1}^{n} G_{i} \xrightarrow{f} \prod_{i=1}^{n} H_{i}$$

$$\downarrow q_{i}$$

$$G_{i} \xrightarrow{f_{i}} H_{i}.$$

esto es, $q_i \circ f = f_i \circ p_i$, siendo p_i, q_i las correspondientes proyecciones canónicas

Demostrad que si f_i es un monomorfismo (respectivamente, epimorfismo, isomorfismo) para todo $i=1,\ldots n$, entonces f es un monomorfismo (respectivamente, epimorfismo, isomorfismo).

(b) [2 puntos] Sea $\{G_i\}_{i=1}^n$ una familia de n grupos ($n \ge 2$). Demostrad que existe un homomorfismo de grupos

$$\Psi: \prod_{i=1}^n Aut(G_i) \longrightarrow Aut(\prod_{i=1}^n G_i),$$

que es un monomorfismo.

- (c) [4.5 puntos] Sea $\{G_i\}_{i=1}^n$ una familia de n grupos finitos ($n \ge 2$) con m. c. d.($|G_i|, |G_j|$) = 1, para todo $i \ne j$. Demostrad que el homomorfismo Ψ del apartado anterior es un isomorfismo.
- (d) [1.5 puntos] Describid el grupo $Aut(K \times C_5)$, donde K denota el grupo de Klein y C_5 el grupo cíclico de orden 5. ¿Cúal es su orden?

Ejercicio 2 (10 puntos). .

(a) [4.5 puntos] Sea G un grupo abeliano finito con $|G|=n, n \ge 2$. Sea $n=p_i^{t_1}\dots p_k^{t_k}$ la factorización de n en números primos, demostrad que

$$l(G) = t_1 + \dots + t_k,$$

y

$$fact(G) = \{C_{p_1} \overset{(t_1)}{\dots}, C_{p_1}, C_{p_2} \overset{(t_2)}{\dots}, C_{p_2}, \dots, C_{p_k} \overset{(t_k)}{\dots}, C_{p_k}\},\$$

donde C_{p_i} denota el grupo cíclico de orden p_i .

(b) [1.5 puntos] Sea $n \ge 3$ y consideremos el grupo diédrico D_n . Demostrad que si $n = p_i^{t_1} \dots p_k^{t_k}$ es la factorización de n en números primos, entonces

$$l(D_n) = t_1 + \dots + t_k + 1,$$

y

$$fact(D_n) = \{C_{p_1} \overset{(t_1)}{\dots}, C_{p_1}, C_{p_2} \overset{(t_2)}{\dots}, C_{p_2}, \dots, C_{p_k} \overset{(t_k)}{\dots}, C_{p_k}, C_2\}.$$

(c) [4 puntos] Encontrar todas las series de composición del grupo diédrico D_6

Ejercicio 3 (10 puntos). .

Sea G un grupo finito y consideremos la acción de G sobre sí mismo por traslación

$$G \times G \rightarrow G$$
, $(g, x) \mapsto {}^g x := gx$.

Sea

$$\phi:G\to S(G)$$

la representación asociada.

- (a) [5 puntos] Demostrad que si $g \in G$ es un elemento de orden n y |G| = mn, entonces $\phi(g)$ es un producto de ciclos disjuntos de longitud n. Deducid que $\phi(g)$ es una permutación impar si, y sólamente si, el orden de g es par y el cociente del orden de G y el de g es impar.
- (b) [3 puntos] Demostrad que si $Img(\phi)$ contiene una permutación impar, entonces G tiene un subgrupo de índice 2.
- (c) [2 puntos] Demostrad que si |G| = 2k, con k impar, entonces G tiene un subgrupo de índice 2.

Ejercicio 4 (10 puntos). .

- (a) [3.5 puntos] Sea G un grupo finito y p un número primo divisor del orden de G. Sea $\mathfrak P$ un p-subgrupo de Sylow de G y N un subgrupo normal de G. Demostrad que $N \cap \mathfrak P$ es un p-subgrupo de Sylow de N y $N\mathfrak P/N$ es un p-subgrupo de Sylow de G/N.
- (b) [3 puntos] Sea G un grupo simple de orden 168 y $\mathfrak P$ un 7-subgrupo de Sylow de G. Calculad el orden de $N_G(\mathfrak P)$ (el normalizador de $\mathfrak P$ en G) y razonad entonces que G no tiene subgrupos de orden 14. ¿Cuántos elementos de orden 7 tiene G?
- (c) [3.5 puntos] Sea G un grupo con $|G| = 2^n 3$, $n \ge 0$. Demostrad que G es resoluble.