Echidna Clustering

Salas Ticona

Echidna Clustering

Frank Roger Salas Ticona

9 de noviembre de 2022

Clustering Mixed Data

Echidna Clustering

Frank Rogei Salas Ticona

Existen diversos algoritmos, para agrupar/clusterizar datos uniformes. Y es por ello que existe la necesidad de un algoritmo que nos permita clusterizar datos mixtos o no uniformes. Un ejemplo de datos mixtos, es el *Tráfico en redes*.

Tenemos tipos de datos tales como: *SrcIP, DstIP, Protocol, SrcPort, DstPort, bytes*. Podemos observar, que existen tipos de datos jerárquicos como *SrcIP, DstIP, bytes* es cuantitativo y *Protocol, SrcPort, DstPort* son de tipo nominal y categóricos.

Distance Functions

Echidna Clustering

Frank Roger Salas Ticona

- Atributos cuantitativos: Son representados mediante escalares. Sus centroides en el cluster son dados por el promedio de N puntos. Calculamos la distancia entre clusteres usando la distancia Euclidiana.
- Atributos categóricos o cualitativos: Un cluster con N puntos es representado por un histograma de frecuencias, de los atributos. De esta manera calculamos la distancia entre clusteres usando la distancia Euclidiana entre la frecuencia de cada atributo.
- Atributos jerárquicos: Representado por un árbol. Cada nodo que no es una hoja es la generalización de nodos hoja en el subárbol en dicho nodo.

Distance Functions

Echidna Clustering

Frank Roger Salas Ticona

En un cluster C cuyo atributo jerárquico corresponde a la dirección IP, es representado por un prefijo $I\bar{P}/p$. Calculamos la distancia enter dos clusteres con centroides, $I\bar{P}_1/p$ y $I\bar{P}_2/p$.

$$d_h(C_1, C_2) = 32 - p$$

Si p > 8 o 24 si $p \le 8$, $p = CommonPrefix(I\bar{P}_1/p/I\bar{P}_2/p)$.

Radius Calculation

Echidna Clustering

Frank Roger Salas Ticona

Para controlar la varianza de los datos en un cluster, necesitamos alguna medidad del *radio* del cluster. Podemos calcularlo para los atributos cuantitativos y cualitativos, con las desviación de los atributos en el cluster.

Para el caso de datos jerárquicos como los IPs, obtenemos MinIP y MaxIP. Obtenemos un rango tal que C[i].range = (minIP, maxIP), medimos este radio con la altura del sub árbol más pequeño en la generalización jerárquica.

$$R_h = (32 - CommonPrefix(minIP, maxIP)/32)$$

Cluster formation

Echidna Clustering

Frank Roger Salas Ticona

Echidna, es formado por un Árbol CF o CF-Tree [1]. Cada cluster como en BIRCH es representado por un vector que contiene estadísticas suficientes para calcular el *centroide* y *radio*. Cada dato X, comienza desde la raíz siguiendo el camino P hasta un nodo hoja. Se inserta al cluster más cercano y se actualiza en radio. En caso el número de entradas haya alcanzado el tope máximo entonces, el nodo se divide, y hacer el proceso recursivo en hasta llegar al nodo raíz.

Complexity

Echidna Clustering

Frank Roger Salas Ticona

En un árbol balanceado por su altura, con un factor de branching B y m nodos, se harán $log_B m$ comparaciones que on requeridas al momento de realizar una insercion.

$$O(N * B(1 + log_B m))$$

Bibliografía

Echidna Clustering

Frank Roger Salas Ticona

[1] Abdun Naser Mahmood, Christopher Leckie y Parampalli Udaya. "ECHIDNA: Efficient clustering of hierarchical data for network traffic analysis". En: *International Conference on Research in Networking*. Springer. 2006, págs. 1092-1098.