第七章 常微分方程

1. 基本概念:通解,特解,初始条件

2. 可分离变量的微分方程

3. 齐次方程(简单类型)

4. 一阶线性方程:公式法(掌握交换自变量与因变量类型)

5. 二阶常系数齐次线性微分方程:特征方程法求通解

6. 二阶常系数非齐次线性微分方程(非齐次特解与齐次通解关系, 正确的设出特解)

第八章 向量与解析几何

EX.	在 又 与 区 异 时 7 时 7 亿				
 	│	$\mathbf{a} = a_x i + a_y j + a_z k = (a_x, a_y, a_z)$			
		$a_x = prj_x a, a_y = prj_y a, a_z = prj_z a$			
模	向量 a 的模记作 a	$ \mathbf{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$			
和差	c = a + b $c = a - b$	$\mathbf{c} = \mathbf{a} + \mathbf{b} = \{ a_x \pm b_x, a_y \pm b_y, a_z \pm b_z \}$			
単位向量	$\mathbf{a} \neq 0$,则 $\mathbf{e}_{\mathbf{a}} = \frac{\mathbf{a}}{ \mathbf{a} }$	$\mathbf{e}_{a} = \frac{(a_{x}, a_{y}, a_{z})}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}}$			
方向余弦	设 a 与 x, y, z 轴的夹角分别为 α, β, γ, 则方向余弦分别为 cosα, cosβ, cos γ	$\cos\alpha = \frac{a_x}{ a }, \cos\beta = \frac{a_y}{ a }, \cos\gamma = \frac{a_z}{ a }$ $\mathbf{e_a} = (\cos\alpha, \cos\beta, \cos\gamma)$ $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$			
点乘(数量积)	a ·b = a b cosθ , θ 为向量 a 与 b 的夹角	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_{x} \mathbf{b}_{x} + \mathbf{a}_{y} \mathbf{b}_{y} + \mathbf{a}_{z} \mathbf{b}_{z}$			
叉乘(向量积) c = a × b	c = a b sin	$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\ \mathbf{b}_{x} & \mathbf{b}_{y} & \mathbf{b}_{z} \end{vmatrix}$			
	定理与公式				
垂直	a ⊥ b ⇔ a ⋅b = 0	$a \perp b \Leftrightarrow a_x b_x + a_y b_y + a_z b_z = 0$			
平行	a // b⇔ a×b = 0	$a // b \Leftrightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$			
交角余弦	两向量夹角余弦 $\cos^{\theta} = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$	$\cos^{\theta} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$			

	向量 a 在非零向量 b 上的投影	$a_x b_x + a_y b_y + a_z b_z$
投影	$prj_b a = a cos(a^b) = \frac{a \cdot b}{ b }$	$prj_{b}a = \frac{a_{x}b_{x} + b_{y}^{2} + b_{z}^{2}}{\sqrt{b_{x}^{2} + b_{y}^{2} + b_{z}^{2}}}$

平面			直线			
法向量 $\mathbf{n} = \{ \mathbf{A}, \mathbf{B}, \mathbf{C} \}$ 点 $\mathbf{M}_0(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$			方向向量 $T = \{ \mathbf{m}, \mathbf{n}, \mathbf{p} \}$ 点 $M_0(x_0, y_0, z_0)$			
方程名称	方程形式及特征	征	方程名称		方程形式及特征	
一般式	Ax +By +Cz +	D = 0	一般式	-	$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$	
点法式	$A(x-x_0) + B(y-y_0) +$	$C(z-z_0)=0$	点向式		$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$	
三点式	$\begin{vmatrix} \mathbf{x} - \mathbf{x}_1 & \mathbf{y} - \mathbf{y}_1 \\ \mathbf{x}_2 - \mathbf{x}_1 & \mathbf{y}_2 - \mathbf{y}_1 \\ \mathbf{x}_3 - \mathbf{x}_1 & \mathbf{y}_3 - \mathbf{y}_1 \end{vmatrix}$	$\mathbf{z}_2 - \mathbf{z}_1 = 0$	参数式		$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$	
 截距式	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c}$	=1	两点式	$\frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{x}_1 - \mathbf{x}_0} = \frac{\mathbf{y} - \mathbf{y}_0}{\mathbf{y}_1 - \mathbf{y}_0} = \frac{\mathbf{z} - \mathbf{z}_0}{\mathbf{z}_1 - \mathbf{z}_0}$		
面面垂直	$A_1 A_2 + B_1 B_2 + C$	$C_1C_2 = 0$	线线垂直		$m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$	
面面平行	$\frac{A_1}{A_2} = \frac{B_1}{B_2} =$	$\frac{C_1}{C_2}$	线线平行	$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$		
线面垂直	$\frac{A}{m} = \frac{B}{n} = 0$	о р	线面平行		Am + Bn + Cp = 0	
	点面距离					
$M_o(x_o,$	y_0 , z_0) Ax +By +C	z + D = 0	$Ax + By + Cz + D_1 = 0$ $Ax + By + Cz + D_2 = 0$			
$d = \frac{ Ax_0 + By_0 + Cz_0 + D }{\sqrt{A^2 + B^2 + C^2}}$			$d = \frac{ D_1 - D_2 }{\sqrt{A^2 + B^2 + C^2}}$			
面面夹角			线夹角		线面夹角	
$\vec{n_1} = \{ A_1, B_1, C_1 \} \vec{n_2} = \{ A_2, B_2, C_2 \}$ $\vec{s_1} = \{ m_1, n_1, m_2 \}$			o_1 $\mathbf{s}_2 = \{ m_2, n_2 \}$	₂ , p ₂ }	$s = \{ m, n, p \}$ $n = \{ A, B, C \}$	
$\cos\theta = \frac{ A A_2 + B_1 B_2 + C_1 C_2 }{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \cos\phi = \frac{ m }{\sqrt{m_1^2 + m_2^2}}$			$\frac{1}{1}m_2 + n_1 n_2 + p_1 p_2$ $\frac{1}{1}n_2 + p_1^2 \cdot \sqrt{m_2^2 + n_2^2}$	$\frac{1}{1+p_2^2}$	$\sin^{\Phi} = \frac{ Am + Bn + Cp }{\sqrt{A^2 + B^2 + C^2} \sqrt{m^2 + n^2 + p^2}}$	

	$\begin{cases} x = ^{\mathbf{\phi}}(t), \\ y = ^{\mathbf{\psi}}(t), \end{cases}$	切向量	切"线"方程: $\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$
		$T = (\Phi'(t_0), \Psi'(t_0), \omega'(t_0))$	法平"面"方程:
线 F:	$V = \Phi(x)$	切向量	切"线"方程: $\frac{x-x_0}{1} = \frac{y-y_0}{\Phi'(x_0)} = \frac{z-z_0}{\Psi'(x_0)}$
	$z = \Psi(x)$	切向量 T = (1, ^φ '(x), ^ψ '(x))	法平"面"方程: $(x-x_0)^{+\phi'}(x_0)(y-y_0)^{+\psi'}(x_0)(z-z_0)=0$

期末总复习 高等数学(一)教案

空间曲	F(x, y, z) = 0	法向量 $\vec{n} = (F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0),$	切平"面"方程: $F_{x}(x_{0},y_{0},z_{0})(x-x_{0})+F_{x}(x_{0},y_{0},z_{0})(y-y_{0})$ $+F_{x}(x_{0},y_{0},z_{0})(z-z_{0})=0$ 法"线"方程: $\frac{x-x_{0}}{F_{x}(x_{0},y_{0},z_{0})}=\frac{y-y_{0}}{F_{y}(x_{0},y_{0},z_{0})}=\frac{z-z_{0}}{F_{z}(x_{0},y_{0},z_{0})}$
面 <u>下</u> :	z = f(x, y)	$ \vec{n} = (-f_x(x_0, y_0), \\ -f_y(x_0, y_0), 1) $ $ \vec{n} = (f_x(x_0, y_0), \\ f_y(x_0, y_0), -1) $	切平"面"方程: $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$ 法"线"方程: $\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = \frac{z - z_0}{-1}$

多元函数微分法及其应用

基本概念

- 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
- 多元函数: Z = f(x, y),图形: 2、

3、 极限:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

4、 连续:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

5、 偏导数:

$$f_{x}(x_{0}, y_{0}) = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x}$$
$$f_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

6、 全微分:设 Z = f(x,y),则 dZ =
$$\frac{\partial Z}{\partial x}$$
dx + $\frac{\partial Z}{\partial y}$ dy

(\Box) 性质

1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

2、 闭区域上连续函数的性质(有界性定理,最大最小值定理,介值定理)

- 3、 微分法
- 1) 定义:
- 2) 复合函数求导:链式法则

若 Z = f (u,v), u = u(x,y), v = v(x,y), 则
$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x} - \frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

- 3) 隐函数求导:两边求偏导,然后解方程(组)
- (三) 应用
- 1、 极值
- 1) 无条件极值:求函数 Z = f(X, y)的极值

$$f_x = 0$$
解方程组
$$f_y = 0$$
求出所有驻点,对于每一个驻点
$$(x_0, y_0), \Rightarrow$$

若
$$AC - B^2 < 0$$
,函数没有极值;

若
$$AC - B^2 = 0$$
, 不定。

2) 条件极值: 求函数 Z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的极值

- 2、 几何应用
- 1) 曲线的切线与法平面

$$\mathbf{r} : \{ \mathbf{y} = \mathbf{y}(t) \}$$
 由线 $\mathbf{r} : \{ \mathbf{y} = \mathbf{y}(t) \}$,则 \mathbf{r}_{\perp} 上一点 $\mathbf{M}(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$ (对应参数为 \mathbf{t}_0)处的 $\mathbf{z} = \mathbf{z}(t)$

切线方程为:
$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

法平面方程为:
$$x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = 0$$

2) 曲面的切平面与法线

曲面 Σ : F(x,y,z) = 0 ,则 Σ 上一点 $M(x_0,y_0,z_0)$ 处的切平面方程为:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

法线方程为:
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

第十章 重积分

重积分				
积分类型	计算方法	典型例题		
二重积分	〇 1) 利用直角坐标系 $X—型 \qquad \iint\limits_{D} f(x,y) dxdy = \int_{a}^{b} dx \int_{\varphi(x)}^{Q(x)} f(x,y) dy$ $Y—型 \qquad \iint\limits_{D} f(x,y) dxdy = \int_{c}^{d} dy \int_{\varphi(y)}^{Q(y)} f(x,y) dx$	课上的例题及课后 作业		
$I = \iint_{D} f(x, y) d\sigma$	(2)利用极坐标系 使用原则			
 平面薄片的质 量	(1) 积分区域的边界曲线易于用极坐标方程表示 (含圆弧,直线段); (2) 被积函数用极坐标变量表示较简单 (含 $(x^2 + y^2)^{\alpha}$, α 为实数)			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\iint_{D} f(P\cos\theta, P\sin\theta)PdPd\theta$ $= \int_{\alpha}^{\beta} d\theta \int_{\varphi(\theta)}^{\varphi(\theta)} f(P\cos\theta, P\sin\theta)PdP$			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	(3)利用积分区域的对称性与被积函数的奇偶性 当 D 关于 y 轴对称时,(关于 x 轴对称时,有类似结论)			
	0 f (x, y)对于 x是奇函数 , 即 f (-x, y) = - f (x, y)	 应用该性质更方便		
	I = {2∬ f (x, y) dxdy f (x, y) 对于 x是偶函数 , 即 f (-x, y) = f(x, y)			
	D₁是 D的右半部分			
	计算步骤及注意事项			
	1. 画出积分区域			
	2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数			

高等数学(一)教案 期末总复习

	关于坐标变量易分离
;	3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙
	4. 确定积分限 方法:图示法 先积一条线,后扫积分域
	. 计算要简便 注意:充分利用对称性,奇偶性
	(1) 利用直角坐标 截面法
	投影 $\iint_{\Omega} f(x, y, z) dV = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz$
	$x = r \cos \theta$ (2) 利用柱面坐标 $y = r \sin \theta$
 三重积分 I _	
$\iiint f(x, y, z) dv$	 适用范围:
Ω	1 积分区域 表面用柱面坐标表示时 方程简单; 如 旋转体
	² 被积函数 用柱面坐标表示时 变量易分离 . 如 f (x ² + y ²) f (x ² + z ²)
 空间立体物的	$\iiint_{\Omega} f(x, y, z) dV = \int_{a}^{b} dz \int_{\alpha}^{\beta} d\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(P\cos\theta, P\sin\theta, z) PdP$
质量	$x = P\cos\theta = r\sin\varphi\cos\theta$
	$y = P \sin \theta = r \sin \frac{\varphi}{\theta}$
 质 量 = 密 度 [×]	$z = r \cos \Phi$
面积 	$dv = r^2 \sin \frac{\varphi}{\theta} dr d\frac{\varphi}{\theta}$
	 适用范围:
	 1 积分域 表面用球面坐标表示时 方程简单;如,球体,锥体 .
	$\frac{1}{2}$ 被积函数 用球面坐标表示时 变量易分离 . 如 , $f(x^2 + y^2 + z^2)$
	$I = \int_{\alpha}^{\alpha} d^{\varphi} \int_{\beta}^{\beta} d^{\theta} \int_{\rho(\theta)}^{\rho(\theta)} f(\rho \sin^{\varphi} \cos^{\theta}, \rho \sin^{\varphi} \sin^{\theta}, \rho \cos^{\varphi}) \rho^{2} \sin^{\varphi} d^{\varphi}$
	(4)利用积分区域的对称性与被积函数的奇偶性

高等数学(一)教案 期末总复习

第十一章曲线积分与曲面积分

曲线积分与曲面积分				
积分类型	计算方法	典型例题		
第一类曲线积分 I = [f(x,y)ds 曲形构件的质量 质 量 = 线密 度 × 弧长	参数法 (转化为定积分) $ (1) \ L: y = \Phi(x) \qquad I = \int_{\alpha}^{\beta} f\left(\Phi(t), \Phi(t)\right) \sqrt{\Phi'^{2}(t) + \Psi'^{2}(t)} dt $ $ (2) \ L: \begin{cases} x = \Phi(t) \\ y = \Phi(t) \end{cases} \qquad (\alpha \le t \le \beta) I = \int_{a}^{b} f\left(x, y(x)\right) \sqrt{1 + y'^{2}(x)} dx $ $ (3) \ r = r(\theta) \qquad (\alpha \le \theta \le \beta) \ L: \begin{cases} x = r(\theta) \cos \theta \\ y = r(\theta) \sin \theta \end{cases} $ $ I = \int_{\alpha}^{\beta} f\left(r(\theta) \cos \theta, r(\theta) \sin \theta\right) \sqrt{r^{2}(\theta) + r^{2}(\theta)} d\theta $			
平面第二类曲线 积分 I = [Pdx+Qdy	(1) 参数法 (转化为定积分) L: \			
变力沿曲线所做 的功	(3)利用路径无关定理 (特殊路径法) 等价条件:			
空间第二类曲线 积分 I = [Pdx+Qdy+Rd 变力沿曲线所做 的功	(1)参数法 (转化为定积分) $ \int_{\mathbf{r}} P dx + Q dy + R dz = \int_{\mathbf{r}} P[\Phi(t), \Psi(t), \omega(t)] \Phi'(t) + Q[\Phi(t), \Psi(t), \omega(t)] \Psi'(t) \\ + R[\Phi(t), \Psi(t), \omega(t)] \omega'(t) \} dt $ $ \int_{\mathbf{r}} (2) \text{利用斯托克斯公式} (转化第二类曲面积分) $ 条件: L 封闭,分段光滑,有向 $ P, Q, R 具有一阶连续偏导数 $ $ \int_{\mathbf{r}} P dx + Q dy + R dz $ 结论: $ = \iint_{\mathbf{r}} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) dy dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) dz dx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy $			

	满足条件直接应用	
	应用:	
第二米曲面和公		
第一类曲面积分 	投影法 -	
$I = \iint f(x, y, z)dv$	$\Sigma : z = z(x, y)$ 投影到 XOY 面	
曲面薄片的质量	$I = \iint_{D_{xy}} f(x, y, z) dv = \iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dxdy$	
质 量 = 面密 度 × 面积	类似的还有投影到 yoz 面和 zox 面的公式	
	(1)投影法	
	1 $\iint_{\Sigma} Pdydz = \pm \iint_{D_{yz}} p(x(y, z), y, z)dydz$	
	Σ : $z=z(x,y)$, γ 为 Σ 的法向量与 x 轴的夹角 前侧取 " + ",cos γ > 0 ;后侧取 " — ",cos γ < 0	
第二类曲面积分	2	
	Σ : $y = y(x, z)$, β 为 Σ 的法向量与 y 轴的夹角 右侧取 " + " , $\cos \beta > 0$; 左侧取 " $-$ " , $\cos \beta < 0$	
I = ∭Pdydz+Qdzd	x^{+R} 3 $\iint Qdxdy = \pm \iint Q(x, y, z(x, y))dxdy$	
Σ	$\sum D_{yz}$	
 流体流向曲面一	Σ : x = x(y, z) , α 为 Σ 的法向量与 x 轴的夹角	
侧的流量	上侧取" +", $\cos \alpha > 0$;下侧取" –", $\cos \alpha < 0$	
	(2)高斯公式 右手法则取定 \(\sum_{\text{off}}\) 的侧	
	条件: Σ 封闭,分片光滑,是所围空间闭区域 Ω 的外侧 Ω	
	P,Q,R具有一阶连续偏导数	
	结论:	
	満足条件直接应用 ^{应用:}	
	不是封闭曲面,添加辅助面	
	(3) 两类曲面积分之间的联系	
	$\iint Pdydz^{+}Qdzdx^{+}Rdxdy = \iint (Pcos^{\alpha} + Qcos^{\beta} + Rcos^{\beta})dS$ \sum	
	转换投影法: $dydz = (-\frac{\partial z}{\partial x})dxdy$ $dzdx = (-\frac{\partial z}{\partial y})dxdy$	

所有类型的积分:

1 定义:四步法——分割、代替、求和、取极限;

2 性质:对积分的范围具有可加性,具有线性性;

3 对坐标的积分,积分区域对称与被积函数的奇偶性。

第十二章 级数

