```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount('/content/drive')
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from pandas.api import types
from sklearn.preprocessing import MinMaxScaler, normalize
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, KFold
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, ConfusionMatrixDisplay, accuracy_score
from sklearn.tree import DecisionTreeClassifier
import seaborn as sns
import sklearn.tree as tree
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
# Load employee data
Gdata = pd.read_csv('/content/drive/My Drive/data/general_data.csv')
employee_survey_data = pd.read_csv('/content/drive/My Drive/data/employee_survey_data.csv')
manager_survey_data = pd.read_csv('/content/drive/My Drive/data/manager_survey_data.csv')
display(Gdata.head() , employee_survey_data.head() , manager_survey_data.head())
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call dr

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educat
0	51	No	Travel_Rarely	Sales	6	2	Lif
1	31	Yes	Travel_Frequently	Research & Development	10	1	Lif
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Lif
4	32	No	Travel_Rarely	Research & Development	10	1	

5 rows × 24 columns

	EmployeeID	EnvironmentSati	sfaction	JobSatisfactio	n WorkLifeB	Balance
0	1		3.0	4	.0	2.0
1	2		3.0	2	.0	4.0
2	3		2.0	2	.0	1.0
3	4		4.0	4	.0	3.0
4	5		4.0	1	.0	3.0
	EmployeeID	JobInvolvement	Performa	nceRating III		
0	EmployeeID 1	JobInvolvement 3	Performa	nceRating 3		
0			Performa			
	1	3	Performa	3		
1	1 2	3	Performa	3 4		

```
# Merging all three data frames
data = pd.merge(Gdata, employee_survey_data, on='EmployeeID')
data = pd.merge(data, manager_survey_data, on='EmployeeID')
# Drop rows with missing values
data.dropna(inplace=True)
data.isnull().sum()
```

0 0 Age Attrition BusinessTravel 0 0 Department DistanceFromHome 0 Education 0 EducationField 0 EmployeeCount 0 EmployeeID 0 Gender 0 JobLevel 0 JobRole 0 MaritalStatus 0 MonthlyIncome 0 NumCompaniesWorked 0 0ver18 0 PercentSalaryHike 0 ${\tt Standard Hours}$ 0 StockOptionLevel 0 ${\tt TotalWorkingYears}$ 0 TrainingTimesLastYear 0 YearsAtCompany 0 YearsSinceLastPromotion 0 YearsWithCurrManager 0 EnvironmentSatisfaction 0 JobSatisfaction 0 WorkLifeBalance 0 JobInvolvement 0 PerformanceRating 0 dtype: int64

Exploratory data analysis (EDA)
data.describe()

	Age	DistanceFromHome	Education	EmployeeCount	EmployeeID	JobLe
count	4300.000000	4300.000000	4300.000000	4300.0	4300.000000	4300.000
mean	36.926977	9.197907	2.913256	1.0	2211.695116	2.066
std	9.146517	8.097059	1.024774	0.0	1272.117692	1.106
min	18.000000	1.000000	1.000000	1.0	1.000000	1.000
25%	30.000000	2.000000	2.000000	1.0	1110.750000	1.000
50%	36.000000	7.000000	3.000000	1.0	2215.500000	2.000
75%	43.000000	14.000000	4.000000	1.0	3314.250000	3.000
max	60.000000	29.000000	5.000000	1.0	4409.000000	5.000

8 rows × 21 columns

#Understanding the balancing of the Gender column visually
data['Gender'].value_counts().plot(kind='bar',color=['salmon','lightblue'],title="Count of different gender")

<Axes: title={'center': 'Count of different gender'}, xlabel='Gender'>

Now, let's figure out that how gender could be the reason for employees to leave the company or to stay in.

#Create a plot for crosstab

```
pd.crosstab(data['Gender'],data['Attrition']).plot(kind="bar",figsize=(10,6))
plt.title("Attrition vs Gender")
plt.xlabel("Attrition")
plt.ylabel("No of people who left based on gender")
plt.legend(["No","Yes"])
plt.xticks(rotation=0)
```


#PercentSalaryHike
promoted_dict = data["PercentSalaryHike"].value_counts()
promoted_dict

Name: count, dtype: int64

data["PercentSalaryHike"].value_counts().plot(kind='bar',color=['purple'],title= "Salary Hike")

convert the non-numeric columns to numeric
for column in data.columns:
 if not types.is_numeric_dtype(data[column]):
 data[column] = pd.Categorical(data[column])
 data[column] = data[column].cat.codes
data.head()

	Age	Attrition	${\tt BusinessTravel}$	Department	DistanceFromHome	Education	Educat
0	51	0	2	2	6	2	
1	31	1	1	1	10	1	
2	32	0	1	1	17	4	
3	38	0	0	1	2	5	
4	32	0	2	1	10	1	

5 rows × 29 columns

```
# Create a Min/ Max Scaler object
matrix_data = data.copy()
scaler = MinMaxScaler()
# Select the columns to normalize except 'Attrition'
columns_to_normalize = data.columns[data.columns != 'Attrition']
# Normalize the selected columns
matrix_data[columns_to_normalize] = scaler.fit_transform(data[columns_to_normalize])
matrix_data.head()
```

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Ed
0	0.785714	0	1.0	1.0	0.178571	0.25	
1	0.309524	1	0.5	0.5	0.321429	0.00	
2	0.333333	0	0.5	0.5	0.571429	0.75	
3	0.476190	0	0.0	0.5	0.035714	1.00	
4	0.333333	0	1.0	0.5	0.321429	0.00	

5 rows × 29 columns

```
corr_matrix = matrix_data.drop(columns=['EmployeeID']).corr()
plt.figure(figsize=(20, 10))
# Plot correlation matrix
```

sns.heatmap(corr_matrix, annot=True, cmap='viridis', fmt='.2f', annot_kws={'size': 9})

plt.subplots_adjust(hspace=0.5)
plt.show()


```
# Feature Selection and Engineering
```

```
drop_columns = ['EmployeeID', 'EmployeeCount', 'StandardHours', 'Age', 'Over18', 'YearsAtCompany', 'YearsWithCurrManager']
trainin_data = data.drop(columns=drop_columns)
trainin_data.head()
```

	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationF:
0	0	2	2	6	2	
1	1	1	1	10	1	
2	0	1	1	17	4	
3	0	0	1	2	5	
4	0	2	1	10	1	

5 rows x 22 columns

```
y = trainin_data["Attrition"]
X = trainin_data.drop("Attrition",axis=1)
#Splitting data - Train test split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=3)
X_train.head()
```

	BusinessTravel	Department	DistanceFromHome	Education	EducationField	Ger
1333	0	2	7	3	1	
2881	2	0	25	1	0	
3540	2	1	6	4	1	
206	2	1	8	1	1	
1052	1	1	10	4	5	

5 rows × 21 columns

```
# Initialize the models:
lr=LogisticRegression(C = 0.1, random_state = 42, solver = 'liblinear')
dt=DecisionTreeClassifier()
rm=RandomForestClassifier()
gnb=GaussianNB()
knn = KNeighborsClassifier(n_neighbors=3)
svm = svm.SVC(kernel='linear')
#from one block of code, we will check the accuracy of all the model
for a,b in zip([lr,dt,knn,svm,rm,gnb],["Logistic Regression","Decision Tree","KNN","SVM","Random Forest","Naive Bayes"]):
    a.fit(X_train,y_train)
    prediction=a.predict(X_train)
    y_pred=a.predict(X_test)
    score1=accuracy_score(y_train,prediction)
    score=accuracy_score(y_test,y_pred)
    msg1="[%s] training data accuracy is : %f" % (b,score1)
    msg2="[%s] test data accuracy is : %f" % (b,score)
    print(msg1)
    print(msg2)
     [Logistic Regression] training data accuracy is: 0.838663
     [Logistic Regression] test data accuracy is: 0.837209
     [Decision Tree] training data accuracy is : 1.000000
     [Decision Tree] test data accuracy is: 0.984884
     [KNN] training data accuracy is : 0.989535
     [KNN] test data accuracy is: 0.906977
     [SVM] training data accuracy is: 0.833140
     [SVM] test data accuracy is: 0.834884
     [Random Forest] training data accuracy is : 1.000000
     [Random Forest] test data accuracy is: 0.988372
     [Naive Bayes] training data accuracy is: 0.838663
     [Naive Bayes] test data accuracy is: 0.837209
```

```
#model score
model_scores={'Logistic Regression':lr.score(X_test,y_test),
              'KNN classifier':knn.score(X_test,y_test),
              'Support Vector Machine':svm.score(X_test,y_test),
              'Random forest':rm.score(X_test,y_test),
              'Decision tree':dt.score(X_test,y_test),
               'Naive Bayes':gnb.score(X_test,y_test)
model_scores
    {'Logistic Regression': 0.8372093023255814,
      'KNN classifier': 0.9069767441860465,
      'Support Vector Machine': 0.8348837209302326,
      'Random forest': 0.9883720930232558, 'Decision tree': 0.9848837209302326,
      'Naive Bayes': 0.8372093023255814}
#Classification Report of Random forest
from sklearn.metrics import classification_report
rm_y_preds = rm.predict(X_test)
print(classification_report(y_test,rm_y_preds))
                   precision
                                 recall f1-score
                                                     support
                0
                         0.98
                                   1.00
                                              0.99
                                                         715
                1
                         1.00
                                   0.92
                                              0.96
                                                         145
                                              0.99
                                                         860
        accuracy
                        0.99
                                   0.96
        macro avg
                                              0.97
                                                         860
                         0.99
                                   0.99
                                              0.99
                                                         860
    weighted avg
#Classification Report of Logistic Regression
from sklearn.metrics import classification_report
lr_y_preds = lr.predict(X_test)
print(classification_report(y_test,lr_y_preds))
                   precision
                                 recall f1-score
                                                     support
                0
                         0.83
                                   1.00
                                              0.91
                                                         715
                1
                        0.00
                                   0.00
                                              0.00
                                                         145
                                              0.83
                                                         860
        accuracy
                        0.42
                                   0.50
                                              0.45
                                                         860
       macro avo
    weighted avg
                        0.69
                                   0.83
                                              0.75
                                                         860
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-sc
       _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-sc
       _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-sc
       _warn_prf(average, modifier, msg_start, len(result))
#Model Comparison Based on the accuracy
model_compare=pd.DataFrame(model_scores,index=['accuracy'])
model_compare
                                               Support
                                      KNN
                                                                                 Naive
                   Logistic
                                                          Random
                                                                    Decision
                                                Vector
                 Regression
                              classifier
                                                          forest
                                                                        tree
                                                                                 Bayes
                                               Machine
#Visualize the accuracy of each model
```

model_compare.T.plot(kind='bar') # (T is here for transpose)

We can see that Random Forest has the best accuracy

data.info()

<class 'pandas.core.frame.DataFrame'>
Index: 4300 entries, 0 to 4408
Data columns (total 29 columns):

Data #	columns (total 29 columns	Dtype	
		Non-Null Count	Dtype
0	Age	4300 non-null	int64
1	Attrition	4300 non-null	int8
2	BusinessTravel	4300 non-null	int8
3	Department	4300 non-null	int8
4	DistanceFromHome	4300 non-null	int64
5	Education	4300 non-null	int64
6	EducationField	4300 non-null	int8
7	EmployeeCount	4300 non-null	int64
8	EmployeeID	4300 non-null	int64
9	Gender	4300 non-null	int8
10	JobLevel	4300 non-null	int64
11	JobRole	4300 non-null	int8
12	MaritalStatus	4300 non-null	int8
13	MonthlyIncome	4300 non-null	int64
14	NumCompaniesWorked	4300 non-null	float64
15	0ver18	4300 non-null	int8
16	PercentSalaryHike	4300 non-null	int64
17	StandardHours	4300 non-null	int64
18	StockOptionLevel	4300 non-null	int64
19	TotalWorkingYears	4300 non-null	float64
20	TrainingTimesLastYear	4300 non-null	int64
21	YearsAtCompany	4300 non-null	int64
22	YearsSinceLastPromotion	4300 non-null	int64
23	YearsWithCurrManager	4300 non-null	int64
24	EnvironmentSatisfaction	4300 non-null	float64
25	JobSatisfaction	4300 non-null	float64
	WorkLifeBalance	4300 non-null	float64
	JobInvolvement	4300 non-null	int64
28	PerformanceRating	4300 non-null	int64
d+vn4	ac: float64(5) int64(16)	in+Q(Q)	

dtypes: float64(5), int64(16), int8(8) memory usage: 772.7 KB

plt.show()

Retrieve the feature importance from the model
feature_importance = rf_model.feature_importances_

Plot the feature importance
features = X.columns
plt.figure(figsize=(10, 6))
plt.bar(features, feature_importance)
plt.xlabel('Features')
plt.ylabel('Importance')
plt.title('Feature Importance in Random Forest')
plt.xticks(rotation=45, ha='right')


```
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt

# Predict on the test set
y_pred = rf_model.predict(x_test)

# Calculate the confusion matrix
cm = confusion matrix(x_test = x_pred)
```

Plot the confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=rf_model.classes_)
disp.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()