

Course:

ELEC ENG 3110 Electric Power Systems ELEC ENG 7074 Power Systems PG (Semester 2, 2021)

Powerflow Analysis (Part 2)

Lecturer and Co-ordinator: David Vowles

david.vowles@adelaide.edu.au

Nodal power and reactive power injections (1)

6/09/2021

Nodal power and reactive power injections (2)

Nodal current injections unknown.

Non-linearly related to P, Q, V, O at each node

$$P_{i+j}Q_{i} = \hat{V}_{i}\hat{I}_{i}^{*} = \hat{V}_{i}\left[\sum_{k=1}^{n} (q_{ik}-jB_{ik})V_{k}e^{-j\Theta_{k}}\right]$$

$$P_{i} + jQ_{i} = V_{i}e^{j\Theta_{i}}\sum_{K=1}^{n} (G_{iK} - jB_{iK})V_{K}e^{-j\Theta_{K}}$$

One University of Adelaide

Nodal power and reactive power injections (3)

$$V_{i}e^{j\theta_{i}} \cdot V_{k}e^{-j\theta_{k}} = V_{i} V_{k}e^{j(\theta_{i}-\theta_{k})}$$

$$= V_{i} V_{k}e^{j\theta_{i}k} , \theta_{i}k = \theta_{i}-\theta_{k}$$

$$= V_{i} V_{k}(\cos\theta_{i}k + j\sin\theta_{i}k)$$

$$(q_{i}k - j\theta_{i}k) V_{i}V_{k}e^{j\theta_{i}k} = V_{i} V_{k}(q_{i}k - j\theta_{i}k)(\cos\theta_{i}k + j\sin\theta_{i}k)$$

$$= V_{i} V_{k}([q_{i}k\cos\theta_{i}k + \theta_{i}k\sin\theta_{i}k])$$

$$+ j[-\theta_{i}k\cos\theta_{i}k + q_{i}k\sin\theta_{i}k]$$

$$P_i = V_i \sum_{k=1}^{n} (Gik V_k cos \theta ik + Bik V_k sin \theta ik)$$
 $Q_i = V_i \sum_{k=1}^{n} (Gik V_k sin \theta ik - Bik V_k cos \theta ik)$

Nodal power and reactive power

injection equations

Nodal power and reactive power constraints (1)

For each node i for which P is specified we can write:

NOTE: A load PL + jQL specified in accordance with the load convention must be negated to become a power injection. That is, Pis = -PL and Qis = -QL.

Nodal power injection equation for node i (function of all nodal vo Hage magnitudes and angles)

$$\mathcal{V} = [V_1, V_2, ... V_n]^T$$
 $\theta = [\theta_1, \theta_2, ... \theta_n]^T$

Nodal power and reactive power constraints (2)

Similarly for each node i for which Q is specified (i.e. PQ nodes)—

Ordering of network nodes for computational convenience (1)

For computational convenience we order the network nodes as follows:

1 VA bus
$$-1$$
 Voltages known n PV buses $-2 \rightarrow n+1$ Voltages known m PQ buses $-n+2 \rightarrow n+1+m$ 3 unknown.

The voltage vector is partitioned as

$$X = \begin{bmatrix} X_s \\ X_u \end{bmatrix}$$
 Where $X_s = X(1:n+i)$ is the vector of specified voltages
$$V_u = X(n+2:n+1+m)$$
 is the vector of unknown voltages.

Ordering of network nodes for computational convenience (2)

We assemble the power equations as follows

$$\begin{array}{l}
 P_{2s} - P_{2}(y_{s}, y_{u}, \theta_{s}, \theta_{u}) = 0 \\
 P_{3s} - P_{3}(y_{s}, y_{u}, \theta_{s}, \theta_{u}) = 0 \\
 \vdots \\
 P_{rs} - P_{r}(y_{s}, y_{u}, \theta_{s}, \theta_{u}) = 0
\end{array}$$

No power equation for VA (slack) bus y

,
$$r = n + l + m$$

n PV nodes m Pa nodes

And the reactive power equations

$$\begin{array}{ll}
m & \left\{\begin{array}{ll}
Q_{NS} - Q_{W}\left(\frac{V_{S}}{V_{S}}, \frac{V_{U}}{V_{S}}, \frac{Q_{S}}{Q_{U}}\right) = 0 \\
Q_{(W+1)S} - Q_{(W+1)}\left(\frac{V_{S}}{V_{S}}, \frac{V_{U}}{V_{S}}, \frac{Q_{S}}{Q_{U}}\right) = 0 \\
\vdots \\
Q_{rS} - Q_{r}\left(\frac{V_{S}}{V_{S}}, \frac{V_{U}}{V_{S}}, \frac{Q_{S}}{Q_{U}}\right) = 0
\end{array}\right.$$

$$\begin{array}{ll}
N_{O} \\
Q_{U} \\
Q_{U} \\
Q_{U}
\end{array}$$

$$W = N + 2$$

No reactive power equations for VA or PV buses

Equation / Variable audit power equations n+mreactive power equations M equations. n+2m unknown vo Hages m unknown angles 1+W unknown variables N+2m

Equal number of equations and unknown variables

Vectorized formulation of the power-flow equations

$$P_s - P(\chi_s, \chi_u, \varrho_s, \varrho_u) = 0$$

 $Q_s - Q(\chi_s, \chi_u, \varrho_s, \varrho_u) = 0$

NOTE: The power and reactive power output (P, Q) of the slack bus and the reactive power outputs (Q) of the PV buses are computed once the above power-flow equations are solved using the equations for P & Q on slide 11.

Overview of the power-flow solution

- Wide range of solution methods.
- Two complementary methods are:
 - Gauss-Seidel Method.
 - Converges slowly especially for large systems
 - Tolerant of poor initial guesses
 - Useful in obtaining an initial estimate near actual solution for other fast converging algorithms
 - Newton-Raphson (NR) based methods
 - Quadratic convergence rate providing initial estimate is close to actual solution
 - Variants of the NR method based on properties of transmission networks
 - Such as decoupling between voltage and angle (Fast-Decoupled)
 - Avoid updating the Jacobian matrix at each iteration
- We will review the basic NR method
- Sophisticated power-flow tools provide an extensive range of facilities:
 - Automatic area interchange controls
 - Automatic transformer tap-change controls
 - Optimal power flow solver (economic dispatch, loss minimization)
 - PV and QV analysis
 - Automated contingency analysis
 - Sophisticated data base facilities and graphical displays

Power flow equations of simple example (1)

	(1) - ³	(2)	(3)	(4)
(1)	Y ₁₁ ○ -j8·0	Y ₁₂ 0 + j 7.61q	0	0
(2)	Y ₂₁ O+j7.619	Y ₂₂ 1.54 - j 18.916	-1.54 + j12.31	0
(3)	No connection	-1.54+j12.31	+1.54 - j20.73	0 +jq·524
(4)	0	0	O + jq·524	0-j10.0

$$P_{i} = V_{i} \sum_{k=1}^{n} (GikV_{k} cos \theta i_{k} + BikV_{k} sin \theta i_{k})$$

$$Q_{i} = V_{i} \sum_{k=1}^{n} (GikV_{k} sin \theta i_{k} - BikV_{k} cos \theta i_{k})$$

Nodal power and reactive power injection equations,

Power flow equations of simple example (2)

Write power equations for PV and PQ buses only. Omit power equation for slack bus. Thus, three power equations.

Node $\begin{array}{lll}
 & P_{q4} = V_4 \left(q_{43} \ V_3 \cos(\Theta_{43}) + B_{43} V_3 \sin(\Theta_{43}) \right) + V_4^2 \ q_{44} \\
 & P_{12} = V_2 \left(q_{21} \ V_1 \cos(\Theta_{21}) + B_{21} \ V_1 \sin(\Theta_{21}) \right) + V_2^2 \ q_{22} + \dots \\
 & V_2 \left(q_{23} V_3 \cos(\Theta_{23}) + B_{23} \ V_3 \sin(\Theta_{23}) \right) \\
 & 0 = V_2 \left(q_{31} V_2 \cos(\Theta_{32}) + B_{32} \ V_2 \sin(\Theta_{32}) \right) + V_3^2 \ q_{33} + \dots \\
 & V_3 \left(q_{34} V_4 \cos(\Theta_{34}) + B_{34} \ V_4 \sin(\Theta_{34}) \right)
\end{array}$

Write reactive power equations for PQ buses only. Thus, two reactive power equations.

Highly non-linear equations

Power flow equations of simple example (3)

Substitute numerical values for conductance (Gik) and susceptance (Bik) terms from the network admittance matrix.

Node

3

Introduction to Newton-Raphson Method – Single Variable (1)

Solve
$$f(x) = y$$
 for x
Let x^o be initial estimate, Δx^* be correction so $x = x^o + \Delta x^*$ is the exact solvtion.
 $f(x) = f(x^o + \Delta x^*) = y$
Taylors series expansion $y = f(x^o + \Delta x^*) = f(x^o) + \left(\frac{\partial f}{\partial x}\right)_{x_o}^{x_o} + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x^2}\right)_{x_o}^{x_o} \left(\Delta x^*\right)^2 + \dots$

Introduction to Newton-Raphson Method – Single Variable (2)

$$\nabla X_{1,-} = \left(\frac{9x}{92}\right)_{-1}^{X_0} \left(\lambda - 2(x_0)\right) = \left(\frac{9x}{92}\right)_{-1}^{X_0} \nabla Z_{0,-1}^{(3)}$$

$$\lambda = 2(x_0) + \nabla Z_{0,-1}^{(3)} = 2(x_0) + \left(\frac{9x}{92}\right)^{X_0} \nabla Z_{0,-1}^{(3)}$$

$$\nabla X_{x} = \nabla Z_{0,-1}^{(3)} = 2(x_0) + \left(\frac{9x}{92}\right)^{X_0} \nabla Z_{0,-1}^{(3)}$$

Update estimated solution:

$$A = f(x_1 + Px_2) = f(x_1) + (\frac{2x}{5t})^{x_0} Px_{(5)}$$

 $x_0 = x^0 + Px_{(1)}$

Introduction to Newton-Raphson Method – Single Variable (3)

Iterative solution procedure i=0, x(0) initial estimate $\nabla \hat{\tau}_{(i)} = \lambda - \hat{\tau}(x_{(i)})$ IF 18f(i) | < E - exit x(i) is solution $\nabla^{X}(i+i) = \left(\frac{9X}{9}\right)^{X(i)} \nabla^{2}_{(i)}$ $\chi(i+1) = \chi(i) + D\chi(i+1)$ i = i+1 (if i > maxiter -> exit no solution) Goto 2

Introduction to Newton-Raphson Method – Single Variable (4)

		Example		*	
	ક	$(x) = x^2 = 5 ,$	$\frac{\partial f}{\partial x} = 2x$, x ⁽⁰⁾ =	2
	વં	$\Delta f^{(i)} = 5 - (x^{(i)})^2$	(as) xi)	DX(1+1)	X((+1)
•	0	5-4=1	$\frac{1}{2 \times 2} = 0.25$	1x0.25	2+0.25
•	1	5-2-25 ² = -0.0625	1 = 0.2222 2×2.25	-0.0139	2.25 - 0.0139
-	2.	5-2.23612 = -1.929 x 10-4	2×2·2361	-4-3133×10 ⁵	2.236068
6/09/	3 2021	5-1.2360682 =-1.86 × 10-9 -	© The University of Ad	delaide	x= \(\overline{5} = 2.236068\) PS2021: 19

Summary of the Newton-Raphson Method – Multi Variable (1)

Consider a system on *n* nonlinear equations in *n* unknowns

$$f_{1}(x_{1}, x_{2}, ... x_{i}, ... x_{n}) = y_{1}$$
 $f_{2}(x_{1}, x_{2}, ... x_{i}, ... x_{n}) = y_{2}$
 \vdots
 $f_{i}(x_{1}, x_{2}, ... x_{i}, ... x_{n}) = y_{i}$
 \vdots
 $f_{n}(x_{1}, x_{2}, ... x_{i}, ... x_{n}) = y_{n}$

$$x = (x_1, x_2, \dots x_i, \dots x_n)^T \quad [unknown \ variables]$$

$$y = (y_1, y_2, \dots y_i, \dots y_n)^T$$

Summary of the Newton-Raphson Method – Multi Variable (2)

Let $x_i^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots x_i^{(0)}, \dots x_n^{(0)})^T$ be the initial estimate of the n unknown variables.

Let $\Delta x = (\Delta x_1, \Delta x_2, ... \Delta x_i, ... \Delta x_n)^T$ be the corrections required to be added to the initial estimates so that the equations are satisfied exactly

$$f_{1}(x_{1}^{(0)} + Dx_{1}, ... x_{i}^{(0)} + Dx_{i}, ... x_{n}^{(0)} + Dx_{n}) = y_{1}$$

$$\vdots$$

$$f_{i}(x_{1}^{(0)} + Dx_{1}, ... x_{i}^{(0)} + Dx_{i}, ... x_{n}^{(0)} + Dx_{n}) = y_{i}$$

$$\vdots$$

$$f_{n}(x_{1}^{(0)} + Dx_{1}, ... x_{i}^{(0)} + Dx_{i}, ... x_{n}^{(0)} + Dx_{n}) = y_{n}$$

Summary of the Newton-Raphson Method – Multi Variable (3)

$$f_i(x_i^0 + \Delta x_1, x_2^0 + \Delta x_2, \dots x_i^{(0)} + \Delta x_i, \dots x_n^{(0)} + \Delta x_n) = y_i$$

Expand using Taylors Theorem:

$$f_i(x_1^0, x_2^0, ..., x_i^{(0)}, ..., x_n^{(0)}) +$$

$$\left(\frac{\partial f_i}{\partial x_1}\right)_0 \Delta x_1 + \left(\frac{\partial f_i}{\partial x_2}\right)_0 \Delta x_2 + \dots + \left(\frac{\partial f_i}{\partial x_i}\right)_0 \Delta x_1 + \dots + \left(\frac{\partial f_i}{\partial x_n}\right)_0 \Delta x_n + h.o.t.$$

Summary of the Newton-Raphson Method – Multi Variable (4)

Express in vectorized form:

$$y_{i} = f_{i}(x^{(0)}) + \left[\left(\frac{\partial f_{i}}{\partial x_{i}} \right)_{0} \left(\frac{\partial f_{i}}{\partial x_{2}} \right)_{0} \dots \left(\frac{\partial f_{i}}{\partial x_{i}} \right)_{0} \dots \left(\frac{\partial f_{i}}{\partial x_{n}} \right)_{0} \right] \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \\ \vdots \\ \Delta x_{n} \end{bmatrix} + \text{h.o.t.}$$

$$(y_i - f_i(x^{(0)})) = (\frac{\partial f_i}{\partial x})_0 \Delta x + h.o.t.$$

Summary of the Newton-Raphson Method – Multi Variable (5)

6/09/2021 © The University of Adelaide PS2021: 24

Newton-Raphson Algorithm (General)

- (1) Set j = 0 and choose intial estimate $x^{(j)}$
- (2) Calculate $D_{\chi}^{(j)} = y f(\chi^{(j)})$
- (3) If $\|\Delta f^{(j)}\| < \varepsilon$ solution $x = x^{(j)} Exi + OK$
- (4) If j > max-iter Exit Fail
- (5) Calculate Jacobian Matrix [J](j)
- (6) Solve $\Delta f^{(j)} = [J]^{(j)} \Delta x^{(j)}$ for the correction $\Delta x^{(j)}$
- (7) Update solution estimate $\chi^{(j+1)} = \chi^{(j)} + \Delta \chi^{(j)}$
- (8) Increment iteration counter j=j+1
- (9) Goto (2)