期末复习

王文中安徽大学计算机学院

课程内容

- Lecture 01 Introduction.pptx
- Lecture 02 ImageRecognition-1-Classifiers and Features.pptx
- Lecture 03 ImageRecognition-2-Unsupervised Feature Learning.pptx
- Lecture 04 ImageRecognition-3-End to End Learning and CNN.pptx
- Lecture 05 PyTorch Tutorial.pptx
- Lecture 06 ImageRecognition-4-Modern CNN & Face.pptx
- Lecture 07 ImageRecognition-5-From Theory To Practice.pptx
- Lecture 08 ObjectDetection.pptx
- Lecture 09 Segmentation.pptx
- Lecture 10 Tracking.pptx
- Lecture 11-Frontiers.pptx

第一讲: 导论

- 1. 什么是计算机视觉
 - Y=F(X),通过图像理解世界
 - 计算机视觉与图像处理的关系
- 2. 对于简单的计算机视觉问题,给出输入和输出的表示形式
- 3. 了解计算机视觉的难点: 逆问题
- 4. 理解计算机视觉问题的解决方法:
 - 基于模型的方法(自顶向下)
 - 自底向上的方法(数据驱动、手工设计)
 - 对于简单的视觉问题,可以根据这两类方法分别设计解决方案

第二讲: 图像识别-分类器与特征

- 图像识别问题的定义
 - $Y = F(X), Y \in \{1, 2, ..., K\}$
 - 自底向上方法的一般流程: 特征提取与特征分类
- 了解KNN方法
 - 基本原理
 - 使用像素值表示图像特征的问题
- 图像分类的线性方法
 - 打分函数,Softmax Regression,Logistic Regression
 - 损失函数(交叉熵损失)
 - 梯度下降法(会计算梯度)
 - 权值的直观解释(模板匹配)
- 手工设计的图像特征
 - 前人设计图像特征的经验
 - 梯度特征,图像金字塔

第三讲: 无监督特征学习

- 词袋模型
 - 什么是视觉单词?
 - 视觉词袋模型如何表示图像?
 - 如何获取视觉词典?
 - 词袋模型的特点。
- 卷积运算
 - 卷积运算及其性质
 - 卷积运算的相关概念: 跨度(stride), 填充(Padding), 卷积核尺寸
 - 理解卷积参数、图像大小与特征图尺寸的关系
 - 理解卷积与特征提取的关系
- 卷积特征
 - 图像卷积特征的一般形式(Encoding+Pooling)
 - Encoding:如何表示一个图像块? (Kmeans,AutoEncoder,...)
 - Deep AutoEncoder

第四讲:端到端学习与卷积神经网络

- 1.神经元模型
 - 线性聚合, 非线性变换
- 2.前馈神经网络
 - 多层感知器的结构
 - 多层次非线性变换,特征学习,深度学习
- 3.BP算法
 - BP算法原理
 - 对于小规模神经网络,可以手工推导梯度
- 4. 卷积神经网络
 - 卷积网络相对于MLP的优势
 - 卷积网络的工作原理(多层特征检测与复合)
 - 如何设计一个卷积网络

第五讲: PyTorch

- 1.计算图的概念
 - 算子,数据(张量)
- 2.核心数据结构: Tensor
 - 创建、运算......
 - 自动求导机制
- 3. 编写神经网络模型
 - torch.nn.Sequential, torch.nn.Module
- 4. 训练网络模型
 - 数据加载器,损失函数,优化器

第六讲:现代深层CNN,人脸识别

- 1. 几种典型的DCNN的结构及其设计思想
 - VGG, GoogLeNet, ResNet
- 2. DCNN的训练
 - BatchNormalization, DropOut, Data Augmentation, Transfer Learning
- 3. 人脸识别
 - 一般流程
 - Siamese网络
 - 人脸比对: 人脸特征编码, 特征比对
 - TripleLoss, Contrastive Loss, Pair Classification

第七讲: 从理论到实践

- 1. 机器学习的基本概念
 - 数据、算法、假设空间
 - 过拟合、欠拟合
- 2. 图像分类实践
 - 开发、诊断和调试图像分类模型

第八讲:目标检测

- 1. 目标检测问题的定义
 - 目标定位,目标检测
- 2. 滑动窗方法及其问题
- 3. Viola-Jones人脸检测算法
 - Harr小波特征
 - AdaBoost分类器
- 4. 目标包围盒重叠程度评价IOU
- 5. 非极大值抑制NMS

第八讲:目标检测

- 6. 性能评价
 - FP, TP, FN, TPR, FPR, AP
 - AP与nms阈值以及得分阈值的关系
- 7. 二阶段目标检测模型
 - Anchor
 - RPN
 - Box Regression
- 8. 一阶段目标检测模型
 - YOLO
 - SSD

第九讲:图像分割

- 1. 问题定义
- 2. 传统分割方法
 - 阈值分割(像素分类)
 - 像素聚类
 - 条件随机场模型(单点势函数与成对势函数的含义)
- 3. DCNN图像分割
 - 如何解决分辨率的问题?
 - Encoer-Decoder框架
 - UnPooling, Transposed Conv, Astrous Conv
 - 实例分割: Region Proposal + FCN

第十讲:目标跟踪

- 1.问题定义
 - 目标描述模型(表观模型)
 - 目标运动模型
 - 预测+矫正
- 2. 贝叶斯滤波
 - Kalman Filter, Particle Filter
- 3. MeanShift Tracking
- 4. 相关滤波跟踪
- 5. DCNN Tracking
 - Siamese, Tracktor...

第十一讲: 前沿

- Generative Adersarial Network
 - 一般原理及其训练算法
 - GAN的各种应用
- Image Captioning
 - RNN
- Self-Supervised Learning
 - 一般原理
 - Learning from Image Transformation
 - Contrastive Learning
- Attention
 - Recurrent Attention Model
 - Soft Attention
 - Self-Attention, Transformer