

Evaluating Explainability of Graph Neural Networks for Network Intrusion Detection with Structural Attacks

<u>Dimitri Galli</u>, Andrea Venturi, Isabella Marasco, Mirco Marchetti

dimitri.galli@unimore.it, andrea.venturi@unimore.it, isabella.marasco4@unibo.it, mirco.marchetti@unimore.it

ITASEC25

February 3-8, 2025 - Bologna, Italy

ML-based NIDS

ML can enhance the detection capabilities of modern cyber threat detectors

Traditional ML-based NIDS analyze features of individual flows

Limitations:

- ML algorithms fail to capture interdependencies in multi-flow attacks
- ML classifiers are vulnerable to adversarial manipulations of netflow features

GNN-based NIDS

GNN can improve performance by learning flow features and structural similarities

GNN-based NIDS analyze network topology represented as graphs

Limitations:

- GNN are opaque, acting as black boxes and lacking transparency
- GNN are vulnerable to adversarial perturbations of graph topology

XAI

XAI helps security practitioners understand GNN predictions

- Explainability methods define **masks** that contain relevance scores
- Explainers identify **subgraphs** that contribute most to intrusion detections

Approaches to evaluate explanations:

- Supervised approaches compare explanations with ground truth
- Unsupervised approaches evaluate how Isolating subgraphs leads to breaking explanations impact predictions

Challenges in evaluating explanations:

- Generating ground truth labels expensive
- the network topology

Contributions

We develop an **evaluation framework** with key properties:

- Agnostic, i.e., independent of explainability methods
- Flexible, i.e., usable without ground truths
- Practical, i.e., useful in realistic scenarios

We present an innovative methodology to evaluate XAI methods in GNN-based NIDS

- Explainers identify important components within the graph
- Influential netflow records change the graph structure
- Perturbed network graphs fool the cyber detector

We propose a **case study** to validate our approach

- Two popular real-world datasets
- Thirteen SOTA attack-specific detectors
- Five different post-hoc explainers

Methodology

We compare **XAI methods** based on:

- Accuracy in identifying key components within the graph structure
- Effectiveness in evading GNN detectors through adversarial attacks

Explaining phase

 Explanations are extracted to identify structural vulnerabilities, offering insights into the GNN model

Evaluation phase

 Explanations are injected into the graph, modifying the resultant network topology

Explaining

We apply explainers to the graph to extract key components

Each explainer generates an **explanation mask**

Explanatory subgraph whose elements have relevance values

Flows are ranked to identify the most important **legitimate records**

Network communications that contribute most to detector predictions

Evaluation

We assess explanations by measuring how well they evade detection

Attackers alter graph patterns carrying out **structural attacks**

• Important legitimate communications are injected into the graph

Manipulated graph is fed to the detector leading to misclassifications

Most effective explanations are those that enable most successful attacks

Case Study

We consider two real-world traffic datasets:

- CTU-13: enterprise network traces that contain botnet traffic
- ToN-IoT: IoT network traces that include attack traffic

We evaluate thirteen attack-specific **cyber detectors**:

• *GraphSAGE:* inductive GNN model designed for large-scale graphs

We test five post-hoc **explainability methods**:

- Dummy Explainer: assigns random scores to graph components
- Integrated Gradients: calculates explanations by integrating gradients
- Saliency: computes importances by measuring gradients
- GNNExplainer: defines subgraphs by estimating the mutual information
- GraphMask: generates subgraphs by iteratively removing edges

Detectors Performance

We evaluate GNN detectors on clean network graphs

Graphs are built from test sets and fed to GraphSAGE instances

CTU-13					
Botnet	F1-score				
Neris	0.846				
Rbot	0.989				
Virut	0.943				
Menti	0.953				
Murlo	0.946				
Average	0.935				

ToN-loT				
Attack	F1-score			
Bkdr	0.999			
DDoS	0.995			
DoS	0.994			
Inj	0.991			
Pswd	0.998			
Rans	0.995			
Scan	0.994			
XSS	0.995			
Average	0.995			

Explainers Performance (1)

We evaluate GNN explainers on manipulated network graphs

Graphs are perturbed with relevant nodes and submitted to GraphSAGE instances

Dataset	Threat	DE	IG	SA	GE	GM
CTU-13	Neris	0.071	0.104	0.058	0.058	0.056
	Virut	0.101	0.143	0.103	0.059	0.103
	Menti	0.457	0.728	0.538	0.402	0.529
	Murlo	0.668	0.900	0.798	0.675	0.478
ToN-loT	Bkdr	0.151	0.203	0.035	0.135	0.164
	Inj	0.145	0.226	0.075	0.123	0.208
	Pswd	0.104	0.223	0.026	0.103	0.173
	Rans	0.183	0.247	0.233	0.186	0.167
	Scan	0.114	0.184	0.097	0.112	0.101
	XSS	0.190	0.274	0.187	0.177	0.222

IG allows more effective attacks than those exploiting random samples

Explainers Performance (2)

We evaluate GNN explainers on manipulated network graphs

Graphs are perturbed with relevant nodes and submitted to GraphSAGE instances

Dataset	Threat	DE	IG	SA	GE	GM
CTU-13	Rbot	0.181	0.233	0.237	0.169	0.194

Explainers Performance (3)

We evaluate GNN explainers on manipulated network graphs

• Graphs are perturbed with relevant nodes and submitted to GraphSAGE instances

Dataset	Threat	DE	IG	SA	GE	GM
ToN-loT	DDoS	0.108	0.187	0.189	0.102	0.273
	DoS	0.012	0.018	0.011	0.012	0.023

GM exposes structural vulnerabilities when dealing with highly structured attacks

Conclusions

Lack of standardized evaluation approaches for XAI in GNN-based NIDS

We propose an evaluation framework tailored to real-world scenarios

- Explainability method defines an explanatory graph highlighting relevant flows
- Explainer performance depends on the severity of explanation-guided attacks

We test our methodology through a case study involving different explainers

- IG consistently generates explanations leading to targeted attacks
- Other explanations are not representative of topological vulnerabilities

Future research should validate our results across different settings and strategies