Order statistics, quantiles & resampling (Module 9)

Statistics (MAST20005) & Elements of Statistics (MAST90058)

School of Mathematics and Statistics University of Melbourne

Semester 2, 2020

Outline

Order statistics
Introduction
Sampling distribution

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantiles

Resampling methods

Aims of this module

- Go back to order statistics and sample quantiles
- More detailed definitions
- Derive sampling distributions and construct confidence intervals
- See examples of CIs that are **not** of the form $\hat{\theta} \pm \operatorname{se}(\hat{\theta})$
- Learn some more distribution-free methods
- See how to use computation to avoid mathematical derivations

Unifying theme

- Use the data 'directly' rather than via assumed distributions
- Use the **sample cdf** and related summaries (such as order statistics)

Outline

Order statistics
Introduction
Sampling distribution

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantile

Resampling methods

Definition (recap)

- Sample: X_1, \ldots, X_n
- Arrange them in increasing order:

$$X_{(1)} = {\sf Smallest} \ {\sf of the} \ X_i$$
 $X_{(2)} = {\sf 2nd} \ {\sf smallest} \ {\sf of the} \ X_i$ \vdots $X_{(n)} = {\sf Largest} \ {\sf of the} \ X_i$

These are called the order statistics

$$X_{(1)} \leqslant X_{(2)} \leqslant \dots \leqslant X_{(n)}$$

- $X_{(k)}$ is called the kth order statistic of the sample
- $X_{(1)}$ is the minimum or sample minimum
- ullet $X_{(n)}$ is the maximum or sample maximum

Motivating example

- Take iid samples $X \sim N(0,1)$ of size n=9
- What can we say about the order statistics, $X_{(k)}$?
- Simulated values:

```
each column
ts a single sample
of size of
                     [,1] [,2] [,3] [,4] [,5] > 5 realisations of sample minimum
[1,] -0.76 -1.94 -1.32 -0.85 -1.96 <-- Minimum
                     [2,] -0.32 -0.17 -0.53 -0.30 -0.98
                      [3,] -0.23 0.06 -0.44 0.14 -0.83
                           0.05 0.18 -0.10 0.25 -0.63
                           0.08 0.76 0.17 0.35 -0.47 <-- Median
                           0.18 0.96 0.26 0.68 0.05
                            0.27 1.07 0.60 0.69 0.34
                           0.73 1.42 0.66 1.13
                      [9,] 0.91 1.77 1.93 1.98 1.26 <-- Maximum
```

7 of 50

Standard normal distribution, n = 9

Example (triangular distribution)

- Random sample: X_1, \ldots, X_5 with pdf f(x) = 2x, 0 < x < 1
- Calculate $Pr(X_{(4)} \leq 0.5)$
- Occurs if at least four of the X_i are less than 0.5,

• This is a binomial with 5 trials and probability of success given by

single observation
$$\leq 0.5$$

$$\Pr(X_i \leqslant 0.5) = \int_0^{0.5} 2x \, dx = \left[x^2\right]_0^{0.5} = 0.5^2 = 0.25$$

So we have,

$$\Pr(X_{(4)}\leqslant 0.5) = \underbrace{\binom{5}{4}0.25^4\,0.75}_{\text{exactly 4}} + \underbrace{0.25^5}_{\text{exactly 5}} = 0.0156$$

More generally we have,

$$F(x) = \Pr(X_i \le x) = \int_0^x 2t \, dt = \left[t^2\right]_0^x = x^2$$
$$G(x) = \Pr(X_{(4)} \le x) = {5 \choose 4} (x^2)^4 (1 - x^2) + (x^2)^5$$

· Taking derivatives gives the pdf,

$$g(x) = G'(x) = {5 \choose 4} 4(x^2)^3 (1 - x^2)(2x)$$
$$= 4 {5 \choose 4} F(x)^3 (1 - F(x)) f(x)$$

since we know that $F(x) = x^2$.

Triangular distribution, n = 5

Distribution of $X_{(k)}$

- Sample from a continuous distribution with cdf F(x) and pdf f(x) = F'(x).
- ullet The cdf of $X_{(k)}$ is,

• Thus the pdf of $X_{(k)}$ is,

$$\begin{split} \boxed{g_k(x) = G_k'(x)} &= \sum_{i=k}^n i \binom{n}{i} F(x)^{i-1} \left(1 - F(x)\right)^{n-i} f(x) \\ &+ \sum_{i=k}^{n-1} (n-i) \binom{n}{i} F(x)^i \left(1 - F(x)\right)^{n-i-1} \left(-f(x)\right) \\ &= k \binom{n}{k} F(x)^{k-1} \left(1 - F(x)\right)^{n-k} f(x) \quad \Rightarrow \text{ first term} \\ &+ \sum_{i=k+1}^n i \binom{n}{i} F(x)^{i-1} \left(1 - F(x)\right)^{n-i} f(x) \quad \Rightarrow \text{ rest} \\ &- \sum_{i=k}^{n-1} (n-i) \binom{n}{i} F(x)^i \left(1 - F(x)\right)^{n-i-1} f(x) \end{split}$$

• But

 $\sum_{i=k+1}^{n} n \binom{n-i}{i-1} F_{(k)}^{i-1} (1-F_{(k)})^{n-i} f(x)$ $- \sum_{i=k+1}^{n-1} n \binom{n-i}{i} F_{(k)}^{i} (1-F_{(k)})^{n-i-1} f_{(k)}$

$$i\binom{n}{i} = \frac{n!}{(i-1)!(n-i)!} = n\binom{n-1}{i-1}$$

and similarly

$$(n-i)\binom{n}{i} = \frac{n!}{i!(n-i-1)!} = n\binom{n-1}{i}$$

which allows some cancelling of terms.

• For example, the first term of the first summation is,

$$(\text{k+1})\binom{n}{k!} \ge \frac{n!}{(\text{k+1})! (n-k-1)} \text{ (k+1)} \qquad (k+1)\binom{n}{k+1} F(x)^k (1-F(x))^{n-k-1} f(x)$$

$$= n\binom{n-1}{k} F(x)^k (1-F(x))^{n-k-1} f(x)$$

 $= n \cdot \binom{n-1}{k}$ • The first term of the second summation is,

$$(n-k)\binom{n}{k}F(x)^{k} (1-F(x))^{n-k-1} f(x)$$
$$= n\binom{n-1}{k}F(x)^{k} (1-F(x))^{n-k-1} f(x)$$

• These cancel, and similarly the other terms do as well.

• Hence, the pdf simplifies to,

$$g_k(x) = k \binom{n}{k} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$

• Special cases: minimum and maximum,

$$g_1(x) = n (1 - F(x))^{n-1} f(x)$$

 $g_n(x) = n F(x)^{n-1} f(x)$

• Also:

$$\Pr(X_{(1)} > x) = (1 - F(x))^n$$

 $\Pr(X_{(n)} \le x) = F(x)^n$

Alternative derivation of the pdf of $X_{(k)}$

Heuristically, pen order statistic is in some interval around x

leuristically,
$$\Pr(X_{(k)} \approx x) = \Pr(x - \frac{1}{2}dy < X_{(k)} \leqslant x + \frac{1}{2}dy) \approx g_k(x) \, dy \quad \text{winth of interval}$$
 leed to observe X_i such that:
$$k-1 \text{ are in } \left(-\infty, \, x - \frac{1}{2}dy\right] \quad \text{density function}$$

- Need to observe X_i such that:
 - $\circ k-1$ are in $\left(-\infty, x-\frac{1}{2}dy\right]$
 - \circ One is in $\left(x-\frac{1}{2}dy, x+\frac{1}{2}dy\right]$
 - \circ n-k are in $\left(x+\frac{1}{2}dy,\infty\right)$
- Trinomial distribution (3 outcomes), event probabilities:

$$\Pr(X_i \leqslant x - \frac{1}{2}dy) \approx F(x)$$

$$\Pr(x - \frac{1}{2}dy < X_i \leqslant x + \frac{1}{2}dy) \approx f(x) dy$$

$$\Pr(X_i > x + \frac{1}{2}dy) \approx 1 - F(x)$$

pitp=1p3=1
$$[n_1, n_2, n_3].$$
sum up to n

Putting these together,

$$g_k(x) \, dy \approx \frac{n!}{(k-1)! \, 1! \, (n-k)!} F(x)^{k-1} \, (1-F(x))^{n-k} \, f(x) \, dy$$

ullet Dividing both sides by dy gives the pdf of $X_{(k)}$

$$\Rightarrow g_{k}(x) = h\left(\frac{n-1}{k-1}\right) F(x)^{k-1} \left(1 - F(x)\right)^{n-k} f(x)$$

Example (boundary estimate)

- $X_1, \ldots, X_4 \sim \text{Unif}(0, \theta)$
- Likelihood is

$$L(\theta) = \begin{cases} \left(\frac{1}{\theta}\right)^4 & 0 \leqslant x_i \leqslant \theta, \quad i = 1, \dots, 4 \\ 0 & \text{otherwise (i.e. if } \theta < x_i \text{ for some } i) \end{cases}$$

- Maximised when heta is as small as possible, so $\hat{ heta} = \max(X_i) = X_{(4)}$
- Now.

$$g_4(x)=4\left(\frac{x}{\theta}\right)^3\left(\frac{1}{\theta}\right)=\frac{4x^3}{\theta^4},\quad 0\leqslant x\leqslant \theta$$
 pdf of xiy)

• Then,

$$\mathbb{E}(X_{(4)}) = \int_0^\theta x \frac{4x^3}{\theta^4} \, dx = \left[\frac{4x^5}{5\theta^4} \right]_0^\theta = \frac{4}{5}\theta$$

- So the MLE $X_{(4)}$ is biased
- (But $\frac{5}{4}X_{(4)}$ is unbiased)

Uniform distribution, n = 4

Probability density

• Deriving a one-sided CI for
$$\theta$$
 based on $X_{(4)}$:

1. For a given
$$0 < c < 1$$
, show that,

$$1 - c^4 = \Pr(c\theta < X_{(4)} < \theta) = \Pr(X_{(4)} < \theta < X_{(4)}/c)$$

- 2. Thus, a $100 \cdot (1-c^4)\%$ confidence interval for θ is $\left(x_{(4)}, \, x_{(4)}/c\right)$
- 3. Letting $c=\sqrt[4]{0.05}=0.47,$ we have a 95% confidence interval from $x_{(4)}$ to $2.11x_{(4)}$

$$J_{\mu(x)} = V(\frac{x}{0})^{2}(\frac{1}{0}) = \frac{4x^{3}}{04} \qquad F_{4}(x) = \frac{x^{\alpha}}{04}$$

$$Pr(co = x_{1}(4) = 0) = F_{4}(0) - F_{4}(c0) = 1 - c^{4}$$

$$= Pr(x_{4}(4) + e^{-x_{1}(4)})$$

2016 exam (MAST20005), question 2

Let X_1, \ldots, X_n be a random sample from a uniform distribution on $[0, \theta]$ with pdf,

$$f(x \mid \theta) = \frac{1}{\theta}, \quad 0 \leqslant x \leqslant \theta,$$

and 0 otherwise.

Recall that the maximum likelihood estimator for θ is $Y = X_{(n)}$ and it can be shown that Y has pdf $g(y) = ny^{n-1}/\theta^n$ if $0 \le y \le \theta$ and 0 therwise.

- (a) Derive an unbiased estimator of θ using the maximum likelihood estimator Y.
- (b) Verify that $\Pr(\alpha^{1/n} \leq Y/\theta \leq 1) = 1 \alpha$ and use this probability statement to find a $100 \cdot (1 \alpha)\%$ confidence interval for θ .
- (c) Suppose your lecturer's waiting time for the morning tram is uniformly distributed on $[0,\theta]$ and observed weighting times (in minutes) are

Find a 95% confidence interval for θ .

(a)
$$E(Y) = \int_{0}^{\theta} y g(y) dy = \int_{0}^{\theta} ny^{h} / 0^{h} dy = \frac{n}{\theta^{h}} \int_{0}^{\theta} y^{h} dy = \frac{n}{h^{h}} \cdot \frac{1}{\theta^{n}} \left[y^{h^{+}} \right]_{0}^{\theta}$$

$$= \frac{n}{h^{+}} \cdot \frac{1}{\theta^{n}} \left[y^{h^{+}} \right]_{0}^{\theta}$$

$$= \frac{n}{h^{+}} \cdot \frac{1}{\theta^{n}} \left[y^{h^{+}} \right]_{0}^{\theta}$$

$$= \frac{n\theta}{h^{+}}$$

so unbiased estimator for ω is $\frac{n+1}{n} Y$.

(b)
$$F(y) = \int_0^y h \cdot \frac{y^{n+1}}{\sigma^n} dy = \left[\frac{y^n}{\sigma^n}\right]_0^y = \frac{y^n}{\sigma^n}$$

$$\Pr\left(a^{\frac{1}{h}} \leq \frac{Y}{\theta} \leq 1\right) = \Pr\left(\theta \cdot a^{\frac{1}{h}} \leq Y \leq \theta\right)$$

$$= F(\theta) - F(\theta \cdot a^{\frac{1}{h}})$$

$$= 1 - \frac{a^{h} \cdot a}{\theta^{h}} \geq 1 - a.$$

$$Pr(a^{\frac{1}{n}} \leq \frac{Y}{0} \leq 1) = Pr(Y \leq 0 \leq \frac{Y}{a^{\frac{1}{n}}}) = 1-a.$$
So $100 \cdot (1-a)$ % CI for 0 is $(Y, \frac{Y}{d^{\frac{1}{n}}})$.

(0).
$$\lambda = 0.05$$
. Let $Y = X(1) = X(1) = Y = X(1) = X(5) = 9.4$

50 95% CI for 0 is $(3.1, 12)$ $(9.4, \frac{9.4}{0.05\$})$

Outline

Order statistics Introduction Sampling distribution

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantiles

Resampling methods

Population quantiles

- Informally, a quantile is a number that divides the range of a random variable based on the probabilities on either side.
- The *p*-quantile, π_p , of a continuous probability distribution with cdf F has the property:

$$p = F(\pi_p) = \Pr(X \leqslant \pi_p)$$

So, we can define it by the inverse cdf:

$$\pi_p = F^{-1}(p)$$

- More general definition (also works for discrete variables): the p-quantile is the smallest value π_p such that $p \leqslant F(\pi_p)$
- The most commonly used quantile is the median, $\pi_{0.5}$, often referred to simply as m
- Also the first and third quartiles, $\pi_{0.25}$ and $\pi_{0.75}$

Sample quantiles

- Want a statistic which estimates π_p
- There are many ways to do this
- R implements 9 different definitions!
- See help(quantile)
- Previously mentioned two of these...

'Type 6' quantiles

• Definition:

$$\hat{\pi}_p = x_{(k)}, \quad \text{where } p = \frac{k}{n+1}$$

- Linear interpolation otherwise
- Motivated by the following relationship (see later):

$$\mathbb{E}(F(X_{(k)})) = \frac{k}{n+1}$$

• We used this previously for QQ plots

'Type 7' quantiles

• Definition:

$$\hat{\pi}_p = x_{(k)}, \quad \text{where } p = \frac{k-1}{n-1}$$

- Linear interpolation otherwise
- Motivated by the following relationship (see later):

$$\mathsf{mode}(F(X_{(k)})) = rac{k-1}{n-1}$$

• This is the default in R (quantile function)

'Type 1' quantiles

• Can also apply the general quantile definition to the sample cdf:

$$\hat{\pi}_p = x_{(\lceil np \rceil)}$$

- The ceiling function, [b] is the smallest integer not less than b
- In other words.

$$\hat{\pi}_p = x_{(k)}, \quad \text{if } \frac{k-1}{n}$$

• Reminder: the sample cdf is

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \leqslant x)$$

Differences in definitions

- Different definitions imply different estimators for the cdf
- For large sample sizes, differences are negligible

Distribution on the cdf scale

- Reminder: for a continuous distribution, $F(X) \sim \text{Unif}(0,1)$
- Proof: for $0 \le w \le 1$,

$$G(w) = \Pr(F(X) \le w) = \Pr(X \le F^{-1}(w)) = F(F^{-1}(w)) = w$$

so the density is

$$q(w) = G'(w) = 1, \quad 0 \le w \le 1$$

so $F(X) \sim \text{Unif}(0,1)$.

ullet Since F is non-decreasing, we have

$$F(X_{(1)}) < F(X_{(2)}) < \cdots < F(X_{(n)})$$

- So $W_i = F(X_{(i)})$ are order statistics from a Unif(0,1) distribution
- The cdf is G(w) = w, for 0 < w < 1
- So the pdf of kth order statistic $W_k = F(X_{(k)})$ is

$$g_k(w) = k \binom{n}{k} w^{k-1} (1-w)^{n-k}$$

• This is a beta distribution,

$$F(X_k) \sim \operatorname{Beta}(k, n-k+1)$$

We can derive that:

$$\mathbb{E}(W_k) = rac{k}{n+1}$$
 $rac{m{mode}(W_k)}{\uparrow} = rac{k-1}{n-1}$ maximum value of pdf (most likely value)

Uniform distribution, n = 5

Defining the estimators

- How does this relate to the definitions of the estimators?
- Consider:

$$\Pr(X\leqslant X_{(k)})=F(X_{(k)}) \qquad \text{tandom}$$

$$\Pr(X\leqslant \pi_p)=F(\pi_p)=p \qquad \text{definition of quantile}$$

$$\text{Have } F(X_{(k)}) \text{ probability to the left of } X_{(k)}, \qquad \text{fixed}$$

$$\text{need } p \text{ probability to the left } \pi_p \qquad \qquad \text{the parameter}$$

$$\text{out of the possibility to the left } X_{(k)} \qquad \text{the parameter}$$

$$\text{out of the possibility to the left } X_{(k)} \qquad \text{the parameter}$$

$$\text{the p$$

- $F(X_{(k)})$ is the (random!) area to the left $X_{(k)}$
- We know its distribution, so can summarise it -> eq. summarise by the mean
- For example, $\mathbb{E}(F(X_{(k)})) = k/(n+1)$
- This suggests $X_{(k)}$ can be an estimator of π_p where p = k/(n+1)
- So, define $\hat{\pi}_p = X_{(k)}$ where p = k/(n+1)
- For other values of p, linearly interpolate 36 of 50

Sample median

• The sample median is

$$\hat{m} = \begin{cases} X_{((n+1)/2)} & \text{when } n \text{ is odd} \\ \frac{1}{2} \left(X_{(n/2)} + X_{((n/2)+1)} \right) & \text{when } n \text{ is even} \end{cases}$$

Consistent with most definitions of the sample quantiles (not type 1!)

Asymptotic distribution

• For large sample sizes, it can be shown that actual quantile

$$\hat{\pi}_p pprox \mathrm{N}\left(rac{\mathbf{f}}{\pi_p}, rac{p(1-p)}{nf(\pi_p)^2}
ight)$$

where f is the pdf of the population distribution

• The median, $\hat{M} = \hat{\pi}_{0.5}$, is convenient special case,

$$\hat{M} \approx N\left(m, \frac{1}{4nf(m)^2}\right)$$

Example (normal distribution)

- Random sample: $X \sim N(\mu, \sigma^2)$ of size n
- \bullet Compare \bar{X} and \hat{M} as estimators of μ
- Already know,

$$\bar{X} \sim \mathrm{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Now we also know,

$$\hat{M} \approx N\left(m, \frac{1}{4nf(m)^2}\right)$$

• Note that $m = \mu$ and,

$$f(m) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$$

$$f(x) = \sqrt{2\pi\sigma^2} exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

$$f(\mu) = \sqrt{\frac{1}{2\pi\sigma^2}} = \frac{1}{\sigma\sqrt{2\pi}}$$

$$var(\hat{M}) = \frac{2\pi\sigma^2}{4n} = \frac{\pi\sigma^2}{2n}$$

$$\hat{M} \approx N(\mu_1, \frac{\pi\sigma^2}{2n})$$

• This gives,

$$\hat{M} \approx N\left(\mu, \frac{\pi}{2} \frac{\sigma^2}{n}\right)$$

- Does the $\pi/2$ look familiar?
- ... problem 3, week 2!
- The sample mean, \bar{X} , is a more efficient estimator of μ than the sample median, \hat{M}
- In other scenarios, it can be the other way around

Confidence intervals for quantiles

- Can we construct **distribution-free** Cls for quantiles?
- Can do so based on order statistics
- Procedure is the 'inverse' of the sign test

Example (CI for median)

• Take iid samples X_1, \ldots, X_5

42 of 50

- $X_{(3)}$ is an estimator of the median $m=\pi_{0.5}$
- ullet For the median to be between $X_{(1)}$ and $X_{(5)}$ must have at least $\text{one } \Lambda_i < m \text{ but not five } X_i < m$ If the distribution is continuous, $\Pr(X < m) = 0.5$ Were can median on

Let W be the number of $X_i < m$, then $W \sim \text{Bi}(5, 0.5)$ and

W: how many values less than median $\Pr(X_{(1)} < m < X_{(5)}) = \Pr(1 \leqslant W \leqslant 4)$

$$= \sum_{k=1}^{4} {5 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{5-k}$$
$$= 1 - 0.5^5 - 0.5^5 = \frac{15}{16} \approx 0.94$$

• So $(x_{(1)}, x_{(5)})$ is a 94% confidence interval for m

Confidence intervals for the median

ullet In general, want i and j so that, to the closest possible extent,

$$\Pr(X_{(i)} < m < X_{(j)}) = \Pr(i \leqslant W \leqslant j-1)$$

$$= \sum_{k=i}^{j-1} \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} \approx 1-\alpha \quad \Rightarrow \text{ for discretl ,}$$
 cast yet exactly 1-2, probabilities (e.g. R) to determine

- Need to use computed binomial probabilities (e.g. R) to determine i and j
- Or use the normal approximation to the binomial
- Note that these confidence intervals do not arise from pivots and cannot achieve 95% confidence exactly

Example (lengths of fish)

- Lengths of 9 fish (in cm), in ascending order:
 15.5, 19.0, 21.2, 21.7, 22.8, 27.6, 29.3, 30.1, 32.5
- Now,

$$\Pr(X_{(2)} < m < X_{(8)}) = \sum_{k=2}^{7} {9 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{9-k} = 0.9610$$

- In R:
 - > pbinom(7, size = 9, prob = 0.5) + pbinom(1, size = 9, prob = 0.5)
 [1] 0.9609375
- So a 96.1% confidence interval for m is (19.0, 30.1)

Confidence intervals for arbitrary quantiles

- Argument can be extended to any quantile and any order statistics,
- For example, the ith and jth,

$$\begin{array}{l} 1-\alpha=\Pr(X_{(i)}<\pi_p< X_{(j)})\\ =\Pr(i\leqslant W\leqslant j-1)\\ =\sum\limits_{k=i}^{j-1}\binom{n}{k}p^k(1-p)^{n-k}\\ \uparrow\\ \text{ pth quantile} \end{array}$$

Example (income distribution)

- Incomes (in \$100's) for a sample of 27 people, in ascending order: 161, 169, 171, 174, 179, 180, 183, 184, 186, 187, 192, 193, 196, 200, 204, 205, 213, 221, 222, 229, 241, 243, 256, 264, 291, 317, 376
- Want to estimate the first quartile, $\pi_{0.25}$
- W is the number of the X's below $\pi_{0.25}$

•
$$W\sim {
m Bi}(27,0.25)pprox N(\mu=27/4=6.75,\,\sigma^2=81/16)$$
 normal approximation

This gives

$$\begin{split} \Pr(X_{(4)} < \pi_{0.25} < X_{(10)}) \\ &= \Pr(4 \leqslant W \leqslant 9) \\ &= \Pr(3.5 < W < 9.5) \end{aligned} \text{ (continuity correction)} \\ &= \Phi\left(\frac{9.5 - 6.75}{9/4}\right) - \Phi\left(\frac{3.5 - 6.75}{9/4}\right) \\ &= 0.815 \end{split}$$

• So (\$17400, \$18700) is an 81.5% CI for the first quartile

PMW=4)

Outline

Order statistics Introduction Sampling distributior

Quantiles
Definitions
Asymptotic distribution
Confidence intervals for quantile

Resampling methods

Resampling

- What if maths is too hard?
- Try a resampling method
- Replaces mathematical derivation with brute force computation
- Used for approximating sampling distributions, standard errors, bias, etc.
- Sometimes work brilliantly, sometimes not at all

Bootstrap

- Most popular resampling method: the bootstrap
- Basic idea:
- Use the sample cdf as an approximation to the true cdf
 - Simulate new data from the sample cdf
 - Equivalent to sampling with replacement from the actual data

sampling from sample

- Use these bootstrap samples to infer sampling distributions of statistics of interest
- This is an advanced topic
- Only a 'taster' is presented...
- ...in the lab (week 10)