Question	Answer	Marks
2(a)	Extension of a spring is (directly) proportional to load / force / weight OR $F = ke$ where e is extension	В1
2(b)(i)	Straight line drawn from origin to (64 mm, 120 N)	B1
2(b)(ii)	F = ke in any form OR 120 / 64 OR 120 / 6.4 OR 120 / 0.064	C1
	c.a.o. 1.9 N / mm OR 19 N / cm OR 1900 N / m	A1
2(c)	Above 120 N / at 140 N, the spring does not obey Hooke's law OR the extension is not proportional to the load / weight / force	В1
	The elastic limit / limit of proportionality of the spring has been exceeded	B1

Question	Answer	Marks
1(a)(i)	$(x =)\frac{1}{2} v_f t$ or $\frac{1}{2} \times 12 \times 30$ or $(x =)\frac{1}{2} at^2$ or $\frac{1}{2} \times 0.40 \times 30^2$	C1
	180 m	A1
1(a)(ii)	$(a =)\Delta v/t$ or 12/30	C1
	0.40 (m/s ²) or 12/30	C1
	$(F =)ma \text{ or } 2.0 \times 10^4 \times 0.40 \text{ or } 2.0 \times 10^4 \times 0.40 \times 12/30$	C1
	8000 N	A1
1(b)	drag/friction/air resistance mentioned	C1
	drag/friction/air resistance increases (as speed increases)	A1

Question	Answer	Marks
1(a)(i)	Distance = area under graph OR $0.5 \times 20 \times 13$	C1
	130 m	A1
1(a)(ii)	(a =) (v – u) / t OR (a =) v / t OR 13 / 20	C1
	$0.65\mathrm{m}/\mathrm{s}^2$	A1
1(a)(iii)	(F =) ma OR 1200 × 0.65	C1
	= 780 N	A1
1(b)	Acceleration decreases OR rate of increase of speed decreases OR speed increases at a lower rate	В1

Question	Answer	Marks
2(a)	$P \times 1.5$	В1
2(b)(i)	$(W \times 1.0 \text{ OR } 210 \times 1.0 =) 210 \text{ N m}$	В1
2(b)(ii)	$P \times 1.5 = 210 \text{ OR } P = 210 / 1.5$	C1
	140 N	A1
2(b)(iii)	$P + Q = 210 \text{ OR } 140 + Q = 210 \text{ OR } Q \times 1.5 = 210 \times 0.5 \text{ OR } Q = 210 \times 0.5 / 1.5 \text{ OR } P \times 0.5 = Q$	C1
	Q = 70 N	A1

Question	Answer	Marks
3(a)	(Measure of) quantity / amount of matter OR (property) that resists change in motion / speed / momentum OR measure of a body's inertia	B1
3(b)(i)	d = m/V OR in words OR 0.44/0.080 ³ OR 0.44/5.12 × 10 ⁻⁴ OR 440/8 ³ OR 440/512 OR 0.44/8 ³ OR 0.44/512	C1
	$0.86 \mathrm{g} / \mathrm{cm}^3 \mathrm{OR} 860 \mathrm{kg} / \mathrm{m}^3 \mathrm{OR} 8.6 imes 10^{-4} \mathrm{kg} / \mathrm{cm}^3$	A1
3(b)(ii)	Sinks OR does not float AND (cube) denser (than oil)	B1
3(c)(i)	W = mg OR (g =) W/m OR 0.70/0.44	C1
	1.6 N / kg	A1
3(c)(ii)	$(P =) hdg \text{ OR } 0.030 \times 850 \times 1.6$	C1
	41 Pa	A1