Exos Bac: Vecteurs, droites et plans de l'espace

Exercice 1

Ter.spe

La figure ci-contre représente un cube ABCDEFGH. Les trois points I, J, K sont définis par les conditions suivantes:

- I est le milieu du segment [AD];
- J est tel que $\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AE}$; K est le milieu du segment [FG].

- 1. Sur la figure donnée en annexe ci-dessous, construire sans justifier le point d'intersection P du plan (IJK) et de la droite (EH). On laissera les traits de construction sur la figure.
- 2. En déduire, en justifiant, l'intersection du plan (IJK) et du plan (EFG).
- 3. On se place désormais dans le repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.
 - (a) Donner sans justification les coordonnées des points I, J et K.
 - (b) Donner une représentation paramétrique de la droite (CG).

Annexe

Un artiste souhaite réaliser une sculpture composée d'un tétraèdre posé sur un cube de 6 mètres d'arête. Ces deux solides sont représentés par le cube ABCDEFGH et par le tétraèdre SELM ci-dessous.

On munit l'espace du repère orthonormé $\left(A\;;\;\overrightarrow{AI},\overrightarrow{AJ},\overrightarrow{AK}\right)$ tel que : $I\in[AB],\;J\in[AD],\;K\in[AE]$ et AI = AJ = AK = 1, l'unité graphique représentant 1 mètre.

Les points L, M et S sont définis de la façon suivante :

- $\begin{array}{ll} & L \text{ est le point tel que } \overrightarrow{FL} = \frac{2}{3}\overrightarrow{FE} \; ; \\ & M \text{ est le point d'intersection du plan } (BDL) \text{ et de la droite } (EH) \; ; \end{array}$
- S est le point d'intersection des droites (BL) et (AK).
- 1. Démontrer, sans calcul de coordonnées, que les droites (LM) et (BD) sont parallèles.
- 2. Démontrer que les coordonnées du point L sont (2; 0; 6).
- 3. (a) Donner une représentation paramétrique de la droite (BL).
 - (b) Vérifier que les coordonnées du point S sont (0; 0; 9).

L'espace est rapporté au repère orthonormé $\left(O\;;\;\overrightarrow{i},\overrightarrow{j'},\overrightarrow{k'}\right)$. On désigne par $\mathbb R$ l'ensemble des nombres réels.

Soient le point
$$A_1$$
 de coordonnées $(0; 2; -1)$ et le vecteur $\overrightarrow{u_1}$ de coordonnées $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

On appelle D_1 la droite passant par A_1 et de vecteur directeur $\overrightarrow{u_1}$.

On appelle D_2 la droite qui admet pour représentation paramétrique

$$\begin{cases} x = 1+k \\ y = -2k & (k \in \mathbb{R}). \\ z = 2 \end{cases}$$

- 1. (a) Donner une représentation paramétrique de D_1 .
 - (b) Donner un vecteur directeur de D_2 (on le notera $\overrightarrow{u_2}$).
 - (c) Le point $A_2(-1; 4; 2)$ appartient-il à D_2 ?
- 2. Démontrer que les droites D_1 et D_2 sont non coplanaires.

Exercice 4

L'objectif de cet exercice est d'étudier les trajectoires de deux sous-marins en phase de plongée.

On considère que ces sous-marins se déplacent en ligne droite, chacun à vitesse constante.

À chaque instant t, exprimé en minutes, le premier sous-marin est repéré par le point $S_1(t)$ et le second sous-marin est repéré par le point $S_2(t)$ dans un repère orthonormé $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$. dont l'unité est le mètre.

Le plan défini par $(O; \overrightarrow{i}, \overrightarrow{j})$ représente la surface de la mer. La cote z est nulle au niveau de la mer, négative sous l'eau.

1. On admet que, pour tout réel $t \ge 0$, le point $S_1(t)$ a pour coordonnées :

$$\begin{cases} x(t) = 140 - 60t \\ y(t) = 105 - 90t \\ z(t) = -170 - 30t \end{cases}$$

- a) Donner les coordonnées du sous-marin au début de l'observation.
- b) Déterminer les coordonnées du vecteur vitesse de ce sous-marin?
- c) Combien de temps a-t-il fallu au sous-marin pour se rendre de la surface au point $S_1(0)$.
- 2. Au début de l'observation, le second sous-marin est situé au point $S_2(0)$ de coordonnées (68 ; 135 ; -68) et atteint au bout de trois minutes le point $S_2(3)$ de coordonnées (-202 ; -405 ; -248) avec une vitesse constante.

Déterminer les coordonnées du point $S_2(t)$ en fonction du paramètre t.

- 3. a) À quel instant t, exprimé en minutes, les deux sous-marins sont-ils à la même profondeur?
 - b) Les deux sous-marins suivent-ils des trajectoires parallèles, sécantes ou non coplanaires? Justifier.