Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Лабораторна робота №2 з курсу: «Апаратні прискорювачі обчислень на мікросхемах програмованої логіки»

Виконав: Гарькавий Д.В.

студент III-го курсу ФЕЛ

гр. ДК- 02

Дата виконання: 12.01.2022

Лабораторна робота №2

Виконав: Гарькавий Даниїл ДК-02, 17 варіант

Мета

В Simulink реалізувати підсистему, що розраховує модуль і аргумент комплексного числа для вхідних даних у форматах з фіксованою комою і плаваючою комою

Завдання:

- 1. В Simulink побудувати блок схеми обчислювачів модуля і аргументу комплексного числа для вхідного аргументу з фіксованої комою і плаваючою комою. Обчислювачі для вхідних даних з фіксованою комою і плаваючою комою будувати в окремих моделях Simulink.
- 2. Для моделі обчислювача з вхідними даними у фіксованій комі та для моделі обчислювача з вхідними даними у плаваючій комі в логічному аналізаторі Simulink переглянути залежність від часу даних на вході обчислювача, а також даних на виході кожного обчислювача (розраховані значення модуля і аргументу комплексного числа) і еталонних значень результату (значення модуля і аргументу розраховані у блоці "Complex to Magnitude-Angle"). Переконатися, що еталонні значення результату або дорівнюють розрахованим значенням, або відрізняються на незначне значення похибки.

Типовий приклад результату:

- 3. Створити звіт, в якому відобразити створені в Simulink блок схеми (з відображенням типів даних та з відображенням вмісту підсистем) і результати моделювання для перших десяти комбінацій на входах. Приклади подання наведені вище.
- 4. Якщо додати у звіт згенерований код на Verilog та результат синтезу згенерованого коду в Quartus для створеної підсистеми (звіт по апаратним витратам, результат виклику RTL Viewer), можна отримати +2 додаткових бали.

- 5. Якщо створити тестбенч в Matlab для створеної підсистеми і додати в звіт результат симуляції тестбенча в Modelsim/Questasim, можна отримати +2 додаткових бали.
- 6. Завантажити звіт і файли (файли моделі та у випадку наявності файли згенерованого HDL коду, файли проекту Quartus та тестбенчу) в репозиторій студента на github. Датою завершення виконання роботи вважається дата завантаження файлів в репозиторій.

Додатки

Варіант №17

Бойко Яна	1		
Войцехов Іван	2	Вакуленко Максим	16
Ганах Ілля	3	Гарькавий Даниїл	17
Добродій Роман	4	Герасименко Максим	18
Заїченко Володимир	5	Данилюк Андрій	19
Карягін Гліб	6	Дубовик Вадим	20
Ковальчук Данило	7	Івлєв Антон	21
Махиборода Антон	8	Мачковський Дмитро	22
Німко Дмитро	9	Овдієнко Павло	23
Овейчик Володимир	10	Ремез Михайло	24
Сак Юрій	11	Садко Вячеслав	25
Сауцька Поліна	12	Сільчук Михей	26
Суханов Данііл	13	Хацьор Михайло	27
Фабрикатор Микита	14	Чіжмодій Іван	28
Юрченко Сергій	15	Швець Орест	29
		1	

Налаштування для генерації HDL обчислювача з плаваючою комою:

Хід роботи

Схема для чисел із фіксованою точкою:

lab2 first part

Sybsystem_FixPoint (підсистема):

lab2_first_part ▶ 🔁 Sybsystem_FixPoint

Налаштування блоку Uniform Random Number

Ціла частина знакового числа fixed point буде знаковою і приймає значення з діапазону $-2^{(n-1)}$... $-2^{(n-1)}$.

В другому Uniform Random Number seed = 18 (17+1).

Задання вихідного формату:

Блок конвертації:

Конвертація fixed point:

Отриманий результат:

Можемо побачити, що похибка майже відсутня і склала дуже невелике значення.

Друга частина роботи (float):

Схема для другого завдання:

Sybsystem_FloatPoint (підсистема):

Конвертація fixed point:

Задання вихідного формату:

Блок на виході atan2:

Результат:

Можемо побачити, що похибка майже відсутня і склала дуже невелике значення.