Technická zpráva projektu z předmětu INC – 2021

Jméno: Ladislav

Příjmení: Vašina

Login: xvasin11

Architektura navrženého obvodu UART RX na úrovni RTL

Přijímací část obvodu (UART_RX) při každé náběžné hraně kontroluje, zda je signál COUNTER_ENABLE nastaven na hodnotu '1'. Pokud tomu tak je, tak začne s každým tiknutím hodin inkrementovat CNT1 (čítač hodinových cyklů). Pokud je hodnota signálu COUNTER_ENABLE rovna '0' CNT1 se vynuluje. Dále se kontroluje, zda jsou signály RECEIVE_ENABLE a COUNTER_ENABLE nastaveny na hodnotu '1'. V moment kladného vyhodnocení této podmínky je kontrolován poslední stav a to stav CNT1. U CNT1, vyžadujeme hodnotu 16₁₀. Tuto hodnotu vyžadujeme, protože potřebujeme zajistit, aby byla hodnota DIN snímána ve středu jejího průběhu. Nakonec jen podle CNT2 (čítač přenesených bitů), zapisujeme na daný bit DOUT.

Graf přechodu konečného automatu

Stavy automatu:

- WAIT_START_BIT
- WAIT_FIRST_BIT
- RECEIVE_DATA
- WAIT_STOP_BIT
- DATA_VALID

Vstupní signály:

- **DIN** Vstupní data
- CNT1 Čítač hodinových signálů
- CNT2 Čítač přenesených bitů

Moorovy výstupy:

- 1. R Receive enable
- 2. C Counter enable
- 3. D Data valid

Stavový automat má 5 stavů. V prvním stavu WAIT_START_BIT automat čeká na Start bit (DIN = '0'). Po příchodu '0' na DIN se automat přepne do stavu WAIT_FIRST_BIT. V tomto stavu se kontroluje CNT1. Pokud je CNT1 na hodnotě 22₁₀ stavový automat se přepne do stavu RECEIVE_DATA. Tento stav trvá, dokud na CNT2 není roven hodnotě 8₁₀. Následujícím stavem je WAIT_STOP_BIT. V tomto stavu setrváme, dokud není na CNT1 hodnota 16₁₀. Po přepnutí do dalšího stavu se nacházíme ve stavu DATA_VALID. Zde je po dobu jednoho tiknutí hodin nastaven signál DATA VALID jako platný.

Ukázka časových průběhů simulací zachycujících přenos jednoho datového slova

