《人工智能引论》课后练习-5

内容: <u>仿真与多智能体</u> 提交时间: <u>2024-06-10</u> 姓名: _____ 学号: ___

一、(40分)

一个迷宫如下所示,其中 $s_0 \sim s_{15}$ 为智能体可以移动的位置。智能体每次只能移动一格,并获取大小等于该移动所跨越的整数坐标值的奖励,例如: $R(s_4 \to s_5) = -1, R(s_5 \to s_9) = 0, R(s_6 \to s_2) = 1$ 。问题的折扣因子为 $\gamma = 0.9$ 。假设智能体使用随机移动策略,即在任意状态下,所有可能移动方式的概率相同(注意不同状态可能移动方式数量不同)。假设在策略估值某次迭代结束后,各状态的价值如下图右侧表格所示,请写出下一次策略估值更新后 s_2, s_3, s_4, s_5 四个状态的价值。 $V(s_2) = b + \frac{1}{3} \left(0 + \gamma(s_1) + \frac{1}{3} \left(1 + \gamma + \gamma + \frac{1}{3} \right) + \frac{1}{3} \left(1 + \gamma + \gamma + \frac{1}{3} \right) + \frac{1}{3} \left(1 + \gamma + \gamma + \frac{1}{3} \right) + \frac{1}{3} \left(1 + \gamma + \gamma + \frac{1}{3} \right)$

>	136	3	× o - 7	+ 3
	-3	-2	6	8
	-2	1	2	5
	-6	-2	1	-1
	-9	-4	-2	-5

V(s3)= 8 + 1 (1+64+1+54)
$\geq \frac{279}{20}$
$V(S_4) = -2 + \frac{1}{3}(1-3)^2 - 1+y^2 - 6y)$ = $-\frac{24}{5}$
$V(S_5) = 1 + \frac{1}{4} (1-2\gamma + 2\gamma - 2\gamma - 1-2\gamma)$

二、(40分)

(1) 给出非合作博弈问题的收益矩阵如下:

	B: x	B: y	B: z
A: u	A=0, B=4	A = 5, B = 6	A = 8, B = 7
A: v	A=2, B=9	A=6, B=5	A = 9, B = 1

是否有纯策略纳什均衡?如有,写出所有的纳什均衡点。 有, (A:V,B:x)

(2) 给出非合作博弈问题的收益矩阵如下:

		9,	1-9
		B: x	B: y
P	A: u	A=2, B=-2	A = -6, B = 6
1-p	A: v	A = -3, B = 3	A = 3, B = -3

是否有纯策略纳什均衡?如有,写出所有的纳什均衡点。**没有**混合策略纳什均衡是什么,A的收益是多少?

 $\frac{3}{2}$

对于B. 使A收益最小的巡锋为 augmin (2p-3(1-p),-6p +3(1-p))

故 $p = \frac{2}{3}$ 对于A,使 B 收益最小的运转为 ang min (-29 + 6119), 39 - 3(19)故 $9 = \frac{2}{14}$,约什均(分为 $p = \frac{2}{3}$, $9 - \frac{9}{14}$

(1) 计算透视投影下屏幕上三维坐标为(0,1,0)、(0,0.25,0)、(0,-0.1,0) 的像素的亮度。

(2) 计算在正交投影下,上述三个个像素的亮度。

I=kala +kalacos8

(*) C× 5省分体 无交上, I× = 0

@14: 17 = 0

CZ与约律相于(0,一等,引)

先线与汪侯夫南日>9·,无爱反射

12 = kala = 0.3 xo.2 = 006

(2) $I_x = kala + kdl_1 cos\theta = 0.2 \times 0.3 + 0.8 \times 0.8 \times \frac{52}{2} = \frac{3}{50} + \frac{16}{50} J_2 = 0.51$ $I_y = I_x = 0.51$ $I_z = kala = 0.3 \times 0.2 = 0.06$