RECAP

- We looked at n-length random vectors X which are essentially multivariate random variables.
- Its CDF/pdf is simply joint CDF/pdf of components
- $ightharpoonup E[\mathbf{X}] = [E[X_1], \dots E[X_n]].$ $C_{\mathbf{X}}$ is the covariance matrix.

Let $\mathbf{Y} = G(\mathbf{X})$ where $G : \mathbb{R}^n \to \mathbb{R}^n$, continuous invertible with continuous partial derivatives. Let H denote its inverse. Then $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(H(\mathbf{y}))|J|$ where J is the determinant of the Jacobian matrix.

► If $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, then $C_{\mathbf{Y}} = AC_{\mathbf{X}}A^{T}$ and

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|det(A)|} f_{\mathbf{X}}(A^{-1}(\mathbf{y} - \mathbf{b}))$$

Standard Normal Vector

- An n length random vector \mathbf{Z} is called as a standard normal vector if its components Z_i are independent and standard normal.
- ▶ What is $E[\mathbf{Z}]$ and $C_{\mathbf{Z}}$?
- Show that the pdf is given by

$$f_{\mathbf{Z}}(\mathbf{z}) = \frac{1}{(2\pi)^{n/2}} e^{\left\{-\frac{1}{2}\mathbf{z}^{T}\mathbf{z}\right\}}$$

Standard Normal Vector

- Now suppose $\mathbf{X} = A\mathbf{Z} + \boldsymbol{\mu}$. What is $E[\mathbf{X}]$ and $C_{\mathbf{X}}$?
- $ightharpoonup E[X] = \mu$ and $C_X = AA^T$.
- Note that A can have dimension $n \times I$ in which case \mathbf{Z} is an I length standard normal.
- \triangleright What is $f_X(x)$?

Multivariate Gaussian Vector

 \triangleright What is $f_{\mathbf{X}}(\mathbf{x})$?

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{|\det(A)|} f_{\mathbf{Z}}(A^{-1}(\mathbf{x} - \boldsymbol{\mu}))$$

$$= \frac{1}{(2\pi)^{n/2} \sqrt{\det(C_{\mathbf{X}})}} e^{\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T} C_{X}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}}$$

 \triangleright Henceforth we will use the notation Σ to represent $C_{\mathbf{X}}$.

Definition 1: **X** is multivariate Gaussian with mean vector μ and covariance matrix Σ (denoted by $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$) if for some A and μ , it can be written as $\mathbf{X} = A\mathbf{Z} + \mu$ where \mathbf{Z} is a standard normal vector and $\Sigma = AA^T$.

Equivalent definitions of a Gaussian vector

The following are equivalent definitions (without proof)

 $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ if for some A and $oldsymbol{\mu}$, it can be written as $\mathbf{X} = A\mathbf{Z} + oldsymbol{\mu}$

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$$
 if it has the pdf

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} e^{\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right\}}$$

 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ iff for all vectors $\mathbf{a} \in \mathbb{R}^n$, it turns out that $\mathbf{a}^\mathsf{T} \mathbf{X}$ is univariate Gaussian $\mathcal{N}(\mathbf{a}^\mathsf{T} \boldsymbol{\mu}, \mathbf{a}^\mathsf{T} \boldsymbol{\Sigma} \mathbf{a})$.

For equivalent definitions see https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Affine transformations preserve Gaussianity

- Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then what can we say about $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$? Is it a Gaussian vector?
- ► Easy to see that $E[\mathbf{Y}] = AE[\mathbf{X}] + b$ and $C_{\mathbf{Y}} = A\Sigma A^T$.
- Like in the univariate case, we can use MGF (for multivariate MGF see Bertsekas) to show the following

Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Now consider $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$. Then we have $\mathbf{Y} \sim \mathcal{N}(AE[\mathbf{X}] + b, A\boldsymbol{\Sigma}A^T)$.