17.1 - Logic gates

17.2 - Universal gates

17.3 - Standard forms

- Terminology - SOP and POS

17.4 - Minterms & maxterms

- Sum of minterms

- Product of maxterms

NAND/NOR Gates

Α	В	(A · B)'			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Α	В	(A + B)'			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

[L17 - AY2021S1]

XOR/XNOR Gates

Α	В	A ⊕ B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

XNOR gate

Α	В	(A ⊕ B)'
0	0	1
0	1	0
1	0	0
1	1	1

XNOR can be represented by ⊙ (Example: A ⊙ B) L

- Fan-in: the number of inputs of a gate
- Gates may have fan-in more than 2
 - Example: a 3-input AND gate

Universal Gates

- { NOT, AND, OR } gates are sufficient for building <u>any</u> Boolean function
 - Also known as set of universal gates
- There are other sets of universal gate:
 - { NAND } (i.e. 1 gate is suffice)
 - { NOR }

{ NAND } is a Universal Gate

Proof:

Implement NOT / AND / OR using only NAND gates

idea: duality: NOR and NAND gate are dual forms of each other!? todo: do this direct mirror image of the NAND gate

EX: NOR Gate

Show that {NOR} is a universal gate

Standard Forms

- Types of Boolean expressions that lead to simple circuit translation
- Terminology:

Literals

- A Boolean variable on its own or in its complemented form
- Examples: x, x', y, y'

Product term

- A single literal or a logical product (AND) of several literals
- Examples: x, x·y·z', A'·B, A·B, d·g'·v·w

Sum term

- A single literal or a logical sum (OR) of several literals
- Examples: x, x+y+z', A'+B, A+B, c+d+h'+j

[L17 - AY2021S1]

SOP and **POS** Standard Forms

Sum-of-Products (SOP)

- A product term or a logical sum (OR) of several product terms
- Examples: x, x + y·z', x·y' + x'·y·z, A·B + A'·B', A + B'·C + A·C' + C·D

Productof-Sums (POS)

- A sum term or a logical product (AND) of several sum terms
- Examples: x, x·(y+z'), (A+B)·(A'+B'), (A+B+C)·D'·(B'+D+E')
- All Boolean expression can be expressed in SOP or POS

[L17 - AY2021S1]

SOP → 2-Level AND-OR Circuit

- An SOP expression can be easily implemented using
 - 1. 2-level AND-OR circuit
 - 2. 2-level NAND circuit

| st level : construct each product term | 2nd level : pluck all into | or gate

POS → 2-Level OR-AND Circuit

- A POS expression can be easily implemented using
- Mirror
 inage 1. 2-level OR-AND circuit

of SOP

2. 2-level NOR circuit

| 1st level: construct each sum term
| 2nd level: pluck all into AND gate

Canonical Forms

 Canonical / normal form: a unique form of representation

- Sum-of-minterms = Canonical sum-of-products
- Product-of-maxterms = Canonical product-of-sums

Minterm & Maxterm: Definition

Minterm

- A minterm of n variables is a product term that contains n literals from all the variables.
- Example: On 2 variables x and y, the minterms are: x'·y', x'·y, x·y' and x·y

Maxterm

- A maxterm of n variables is a <u>sum term</u> that contains n literals from all the variables.
- Example: On 2 variables x and y, the maxterms are: x'+y', x'+y, x+y' and x+y
- In general, with n variables we have 2ⁿ minterms and 2ⁿ maxterms

Minterm & Maxterm: Terminology

		Minterms		Maxterms		
X	У	Term	Notation	Term	Notation	
0	0	x'·y'	m0	х+у	MO	
0	1	x'·y	m1	x+y'	M1	
1	0	х•у'	m2	x'+y	M2	
1	1	х•у	m3	x'+y'	М3	

Each minterm is the complement of the corresponding maxterm

$$E.g.: m2 = x \cdot y' m2' = (x \cdot y')' = x' + (y')' = x' + y = M2$$

F2

z

[L17 - AY2021S1]

Conversion

F2 =
$$\Sigma$$
m(1, 4, 5, 6, 7)
= Π M(0, 2, 3)
(Why? How?)

$$-$$
 F2' = m0 + m2 + m3

	1	0	1
	1	1	0
	1	1	1
(DeMorgan			i's)
(mx' = Mx)			
	•	•	, -

__ [L17 - AY2021S1]