Data-Driven Approach in Isolating Vocals and Instruments from Music

Department of Electronics and Computer Engineering
Institute of Engineering, Thapathali Campus
06/03/2022

Prepared by: ☐ Anish Dahal (THA074BEX004) ☐ Prajwol Pakka (THA074BEX022)

□ Sujal Subedi (THA074BEX043)

Supervised by: Er. Dinesh Baniya Kshatri Lecturer

Presentation Outline

Motivation

Results

Introduction

Analysis and Discussion

Project Objectives

Future Enhancement

Scope of Project

Conclusion

Project Applications

References

Methodology

Motivation

Introduction

- Two approaches are used: 2DFT approach and Machine learning approach
- Only vocal and instrumental are separated by 2DFT approach
- Vocal, Instrumental, Drum and Bass stems can be separated with Machine Learning Approach

Project Objectives

- To separate vocals and instrumentals from a song
- To isolate drum and bass stems from the instrumentals

Scope of Project

Project Capabilities:

- Vocals and instrumentals can be extracted from a song
- Instrumentals can be broken down into drums and bass stems

Project Limitations:

- Not all instruments can be isolated due to limited datasets
- Might not provide satisfactory results for every songs

Project Applications

- Karaoke
 - Singing along prerecorded background instrumentals
- Audio Mixing
 - Extracted stems can be used to produce new audio mixtures
- Lyrics Extraction
 - Unraveling the vocals to obtain the lyrics of a song
- Singer Identification
 - Recognizing the vocalists of a song for copywrite issues

Methodology (2DFT Processing Approach)

- Spectrograms of songs are obtained using STFT
- 2DFT of the spectrograms are taken to create scale rate graphs
- Masks generated in scale rate domain to separate the stems
- Scale rate graphs of stems are changed to spectrograms via I2DFT
- Another mask for extracted spectrograms are generated
- Masks are then applied to get spectrograms of instrumentals and vocal
- ISTFT is applied to masked spectrograms to get separated waveforms

Methodology (Machine Learning Approach)

- Datasets of songs are available in .wav format
- Songs are changed to frequency domain with STFT
- U-Net CNN model is trained using spectrograms
- Spectrograms of Vocal, Instrumental, Bass and Drum are isolated
- Isolated stems are converted back to .wav format

Methodology (ML Block Diagram)

Methodology (Dataset Splitting)

MUSDB dataset is used which consists of 150 songs

Training set contains 100 songs and test set contains 50 songs

Training dataset undergo 5 fold cross validation (4:1)

Methodology (U-Net Architecture)

 U-Net architecture consists of a contracting path and an expansive path

 On the contracting path, downconvolution takes place

 Up-convolution occurs on the expansive path

Results (Spectrogram of Selected Song)

- The song "Run Run Run by Arise" is selected
- The spectrogram of the selected song is generated using STFT
- The window function used is the Hanning Window

ison)-[1 omba C (Wavefor

Ground-truth
Instrumental
Waveform of
Run Run
Run Song

2DFT
Instrumental
Waveform
of Run Run
Run Song

ison)-[omba Waveform

Ground-truth Instrumental Waveform of Run Run Run Song

ML Instrumental Waveform of Run Run Run Song

ison)-[3] (Wavefor

Ground-truth Vocal Waveform of Run Run Run Song

2DFT Vocal Waveform of Run Run Run Song

ison)-[4] (Wavefor

Ground-truth Vocal Waveform of Run Run Run Song

ML Vocal Waveform of Run Run Run Song

[2]-(uosi Wavefor

Ground-truth Drum of Run Run Song

0.2 - 0.1 - 0.0 - -0.1 - -0.2 - 0.00 0.50 1:40 2:30 3:20 Time

Ground-truth Bass of Run Run Song

ML Bass of Run Run Song

Results (Evaluation Metrics of Vocal)

Genre	2DFT Approach		Machine learning Approach			
	SNR (dB)	SAR (dB)	SDR (dB)	SNR (dB)	SAR (dB)	SDR (dB)
Pop/Rock	2.1018	-0.6405	0.8527	6.3181	7.7059	6.3181
Country	0.9763	-0.9569	0.2435	5.1654	4.8321	5.1654
Rap	-2.4698	-4.7934	-3.211	3.3399	2.4673	3.3399
Jazz	-0.1313	-2.2790	-0.6493	4.1843	3.0958	4.1843
Reggae	2.4286	-0.8136	1.1246	5.3954	4.8879	5.3954
Electronic	-9.3916	-11.6256	-10.0340	4.4968	3.5516	4.4968
Heavy Metal	-0.7201	-4.0395	-1.4521	7.6181	7.8850	7.6181

Results (Evaluation Metrics of Instrumental)

	2DFT Approach			Machine learning Approach		
Genre	SNR (dB)	SAR (dB)	SDR (dB)	SNR (dB)	SAR (dB)	SDR (dB)
Pop/Rock	6.8457	5.2404	6.1578	9.1852	9.1473	9.1852
Country	5.5380	3.5657	4.5305	8.6397	9.3898	8.6397
Rap	4.6192	2.1449	3.8704	9.7534	9.9783	9.7534
Jazz	4.4232	1.4462	3.4528	8.6592	8.5258	8.6592
Reggae	10.3305	9.1015	9.4276	8.6700	9.7357	8.6700
Electronic	3.6487	0.8474	3.0422	9.2185	9.2330	9.2185
Heavy Metal	7.4202	6.1805	6.6965	7.3812	7.1152	7.3812

Results (Cosine Similarity of Instrumental and Vocal)

Genre	2DFT A	oproach	Machine learning Approach		
	Instrumental	Vocal	Instrumental	Vocal	
Pop/Rock	0.8728	0.6786	0.9420	0.8843	
Country	0.8062	0.6629	0.9299	0.8572	
Rap	0.7743	0.4968	0.9459	0.7581	
Jazz	0.7416	0.6023	0.9358	0.7885	
Reggae	0.9440	0.6544	0.9303	0.8651	
Electronic	0.7237	0.2512	0.9432	0.8032	
Heavy Metal	0.8900	0.5293	0.9046	0.9096	

Results (Evaluation Metrics of Drum and Bass)

Genre	SNR (dB)		SAR (dB)		SDR (dB)	
	Drum	Bass	Drum	Bass	Drum	Bass
Pop/Rock	4.2249	-3.2061	2.7190	-5.8124	4.2249	-3.2061
Country	3.0561	2.0732	2.2697	0.0581	3.0561	2.0731
Rap	2.3053	3.9658	0.8206	2.7393	2.3053	3.9658
Reggae	-2.5902	1.2126	-3.5596	-1.6525	-2.5902	1.2126
Electronic	2.1252	4.0147	1.7054	2.3588	2.1252	4.0147
Heavy Metal	0.4338	2.7370	-5.5563	1.8676	0.4338	2.7370
Jazz	6.0837	3.5682	6.8360	2.3651	6.0837	3.5682

Results (Cosine Similarity of Drum and Bass)

Genre	Drum	Bass	
Pop/Rock	0.7929	0.4160	
Country	0.7801	0.6976	
Rap	0.7198	0.7878	
Reggae	0.5439	0.6268	
Electronic	0.7150	0.7914	
Heavy Metal	0.4495	0.7338	
Jazz	0.8926	0.7667	

Analysis and Discussion (Comparison with Other Related Projects)-[1]

Model	SDR of Vocal (dB)	SDR of Instrumental (dB)	Overall SDR (dB)
This Project	5.28	11.43	8.355
Dedicated U-Nets (x2)	5.09	12.95	9.02
C-U-Net	4.42	12.21	8.31
UW	5.06	12.98	9.02
DWA	5.20	12.96	9.08

Analysis and Discussion (Comparison with Other Related Projects)-[2]

Model	SDR of Drum (dB)	SDR of Bass (dB)	Overall SDR (dB)
This Project	4.03	3.21	3.56
Wave-U-Net	4.22	3.21	3.56
Open-Unmix	5.73	5.23	5.43
Meta-Tasnet	5.91	5.58	5.96
D3Net	7.01	5.25	6.50

Future Enhancement

 For more stem separation, a dataset with more instruments can be used

Constant Q-Transform can be used for domain transformation

Other machine learning model can be explored

Conclusion

 From the 2DFT approach, only vocal and instrumental were separated

 A U-Net model was trained by using the spectrograms of the songs

 U-net model was able to separate vocal, instrumental, drum, and bass stems with better performance

28

All of the project objectives were successfully completed

References – [1]

- A. J. Simpson, G. Roma and M. D. Plumbley, "Deep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network," in 12th International Conference on Latent Variable Analysis and Signal Separation, Liberec, Czech Republic, 2015.
- "The DSD100 Dataset," SiSEC MUS, [Online]. Available: https://www.sisec17.audiolabs-erlangen.de/#/dataset. [Accessed 06 06 2021].
- P. Seetharaman, F. Pishdadian and B. Pardo, "Music/Voice separation using the 2D fourier transform," in 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 2017.

References – [2]

- K. M. M. Prabhu, "Review of Window Functions," in *Window Functions and Their Applications in Signal Processing*, New York, USA, CRC Press, Taylor & Francis Group, 2014, pp. 87-126.
- A. Koretzky, "Towards Data Science," Audio AI: isolating vocals from stereo music using Convolutional Neural Networks, 04 02 2019. [Online]. Available: https://towardsdatascience.com/audio-ai-isolating-vocals-from-stereo-music-using-convolutional-neural-networks-210532383785. [Accessed 06 06 2021].
- Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis, D. FitzGerald and B. Pardo, "An Overview of Lead and Accompaniment Separation in Music," *IEEE/ACM Transactions on Audio, Speech and Language Processing*, vol. 26, no. 8, pp. 1307-1335, 2018.