Detecção de URLs Maliciosas

Julio Cesar da Silva Rodrigues

Universidade Federal de São João del-rei Curso de Ciência da Computação

Trabalho Prático 1 - Mineração de Dados 18 de Abril de 2023

Introdução

Feature Engineering

Análise

Resultados

Introdução

Feature Engineering

Análise

Resultados

Tecnologias Utilizadas

- Python 3;
- Machine Learning e Manipulação de Dados:
 - scikit-learn;
 - 2 xgboost;
 - pandas.
- Visualização dos Dados:
 - Matplotlib;
 - seaborn.

Base de Dados

- URLs Maliciosas:
 - Um atributo:
 - Uma classe com quatro valores distintos;
 - Mais de 650 mil instâncias;
 - Oisponível em: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset.
- Objetivos Principais:
 - Criação de Atributos;
 - 2 Observar como cada novo atributo criado impacta na classificação.

Base de Dados

Introdução

Feature Engineering

Análise

Resultados

Análise Léxica

- Grande potencial para influenciar na classificação;
- Protocolos das URLs presentes na base são distribuídos em:
 - HTTPS:
 - 2 HTTP:
 - Não Especificado.
- Somente 2,4% das URLs utilizam HTTPS (explícito);
- 85,7% das URLs HTTPS são maliciosas (phishing e malware);
- Todas as URLs de defacement utilizam HTTP.

Protocolo de Comunicação

- Apresentaram ligeiras disparidades entre as classes;
- URLs de defacement são, em média, 50% maiores que URLs seguras;
- URLs de phishing são, em média, 25% menores que URLs seguras;
- URLs HTTPS e HTTP são, em média, de 63% a 72% maiores que as de protocolo não explícito.

Comprimento das URLs

Equal-Frequency Binning

 Tamanho do primeiro diretório de URLs de malware é, em média, o dobro de URLs seguras:

Tamanho do Primeiro Diretório e Quantidade de Dígitos

- Tamanho do primeiro diretório de URLs de phishing é, em média, 25% menores que de URLs seguras;
- URLs de malware possuem, em média, mais que o dobro de dígitos de URLs seguras;
- URLs de phishing possuem, em média, 35% menos dígitos que URLs seguras.

Palavras Suspeitas

- Foco em destacar URLs de phishing;
- Impacto muito abaixo do esperado.

```
def odd words(url):
# Search for suspicious words related to phishing in each url
pattern = re.search('free|account|signin|bonus\
                    |lucky|extra|payment|details', url)
if pattern:
    return 1
else:
    return 0
```

Introdução

Feature Engineering

Análise

Resultados

Ganho de Informação

Ganho de Informação

Testes Incrementais

XGBoost				
Class	Precision	Recall	F1-Score	Support
Benign	0.90	0.98	0.94	85621
Defacement	0.91	0.95	0.92	19292
Phishing	0.94	0.84	0.89	6504
Malware	0.85	0.51	0.64	18822
Accuracy			0.90	130239
Macro Avg	0.90	0.82	0.85	130239
Weighted Avg	0.90	0.90	0.89	130239

Matriz de Confusão

Introdução

Feature Engineering

Análise

Resultados

Modelos de Machine Learning

- Regressão Logística;
- XGBoost:
- Validação Cruzada (k-fold):
 - 10 partes;
 - Amostragem estratificada;
 - Métrica Macro F1.

Comparativo de Modelos

Macro F1				
Modelo	Média	Desvio Padrão		
Regressão Logística	0.4343240025832924	0.0014418608790156475		
XGBoost	0.8218246353658317	0.001907892449405127		

- Calculada para cada uma das classes;
- Não leva em conta possível desbalanceamento presente na base de dados:
- XGBoost exige mais processamento, mas entregou resultados melhores;
- Ainda há grande margem para melhorias.

Introdução

Feature Engineering

Análise

Resultados

- Construção de novos atributos;
- Expandir análises:
 - Atributos relacionados à conteúdo;
 - Atributos relacionados à rede.

- Construção de novos atributos;
- Expandir análises:
 - Atributos relacionados à conteúdo;
 - Atributos relacionados à rede.

• União de classes pode favorecer os modelos;

Extração de Classes

{Defacement, Phishing, Malware} \rightarrow {Malicious}

- Balanceamento da base de dados:
 - Oversampling;
 - Instance Selection.
- Ajuste fino dos hiperparâmetros dos modelos.

• União de classes pode favorecer os modelos;

Extração de Classes

{Defacement, Phishing, Malware} \rightarrow {Malicious}

- Balanceamento da base de dados:
 - Oversampling;
 - Instance Selection.
- Ajuste fino dos hiperparâmetros dos modelos.

• União de classes pode favorecer os modelos;

Extração de Classes

{Defacement, Phishing, Malware} \rightarrow {Malicious}

- Balanceamento da base de dados:
 - Oversampling;
 - Instance Selection.
- Ajuste fino dos hiperparâmetros dos modelos.