

Features:

- Fast Switching
- ullet Low Gate Charge and $R_{DS(ON)}$
- Low Reverse transfer capacitances

Applications:

- DC-DC converter
- Portable Equipment
- Power management

General Description:

The XRS75N10F uses super trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. The package form is PDFN5060-8L, which accords with the ROHS standard and Halogen Free standard.

100% DVDS Tested 100% Avalanche Tested

Product Summary

BVDSS	RDSON	ID
100V	$6.2 m\Omega$	75A

PDFN5060-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	75	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	51	Α
I _{DM}	Pulsed Drain Current ²	320	Α
EAS	Single Pulse Avalanche Energy ³	150	mJ
las	Avalanche Current		Α
P _D @T _C =25°C	Total Power Dissipation ⁴	108	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		1.15	°C/W
Rejc	Thermal Resistance Junction-Case ¹		60	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10 V, I _D =20A		6.2	7.75	mΩ
50(011)		V _{GS} =4.5V , I _D =10A		7.6	8.36	
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	1.3	1.8	2.3	V
$ extstyle extstyle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	100 100, 10 200				mV/°C
lana	Drain-Source Leakage Current	V_{DS} =100V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	uA
I _{DSS}	Dialii-Source Leakage Current	V_{DS} =100V, V_{GS} =0V , T_J =100 $^{\circ}$ C				uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =15A				S
R_g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		0.65		Ω
Qg	Total Gate Charge	V 50V V 40V L 00A		32.1		
Q _{gs}	Gate-Source Charge	V_{DS} =50V , V_{GS} =10V , I_{D} =20A		9.7		nC
Q_{gd}	Gate-Drain Charge			8.6		
T _{d(on)}	Turn-On Delay Time			15		
Tr	Rise Time	V _{DD} = 50V,ID=20A,		23		ns
T _{d(off)}	Turn-Off Delay Time	$R_G = 4\Omega$, $V_{GS}=10V$		45		
T _f	Fall Time			35		
C _{iss}	Input Capacitance			1916		
C _{oss}	Output Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		602		pF
C _{rss}	Reverse Transfer Capacitance			17		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4} V _G =V _D =0V , Force Current				75	A
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =20A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time IF=20A ,di/dt=100A			60		nS
Qrr	Reverse Recovery Charge / µs , T _J = 2 5 C			110		nC

 $^{^{}a1}$: Repetitive rating; pulse width limited by maximum junction temperature a2 : VDD=50V, L=0.3mH, Rg=25 Ω , Starting TJ=25 $^{\circ}C$

Characteristics Curve:

Typ. output characteristics $I_D = f(V_{DS})$

Typ. drain-source on resistance

Typ. transfer characteristics $I_D = f(V_{GS})$

Drain-source on-state resistance

 $\begin{array}{l} \textbf{Gate Threshold Voltage} \\ V_{TH} = f(T_j); \ I_D = 250 uA \end{array}$

Drain-source breakdown voltage $V_{BR(DSS)}=f(T_j)$; $I_D=250uA$

Typ. gate charge V_{GS} =f(Q_g) ; I_D =20A

Typ. capacitances $C = f(V_{DS}); V_{GS} = 0V; f = 1MHz$

Body Diode Forward Voltage Variation

Max. transient thermal impedance

Test Circuit and Waveform:

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Package Mechanical Data-PDFN5060-8L-Single

Symbol	Common	Common					
	mm		Inch				
	Mim	Max	Min	Max			
Α	1.03	1.17	0.0406	0.0461			
b	0.34	0.48	0.0134	0.0189			
С	0.824	0.0970	0.0324	0.082			
D	4.80	5.40	0.1890	0.2126			
D1	4.11	4.31	0.1618	0.1697			
D2	4.80	5.00	0.1890	0.1969			
E	5.95	6.15	0.2343	0.2421			
E1	5.65	5.85	0.2224	0.2303			
E2	1.60	/	0.0630	/			
е	1.27 BSC		0.05 BSC				
L	0.05	0.25	0.0020	0.0098			
L1	0.38	0.50	0.0150	0.0197			
L2	0.38	0.50	0.0150	0.0197			
Н	3.30	3.50	0.1299	0.1378			
1	/	0.18	/	0.0070			