Intégration

Pr. L. EZZAKI

Ecole Supérieure de l'Education et de Formation Université Ibn Zohr - Agadir

16 mars 2020

Chapitre III : Equations différentielles

Défintion 1

Soit $n \in \mathbb{N}^*$, on appelle équation différentielle d'ordre n et d'inconnue y toute relation de la forme

$$y^{(n)}(x) = f(x; y(x); y'(x); ...; y(n-1)(x))$$
 (1)

avec les conditions initiales

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots y^{(n-1)}(x_0) = y_{n-1}$$
 (2)

où f est une fonction définie sur une partie de \mathbb{R}^{n+1} , $(x_0; y_0; ...; y_{n-1})$ est vecteur fixé dans \mathbb{R}^{n+1} et l'inconnue est une fonction y de classe C^n définie sur un intervalle ouvert de \mathbb{R} contenant x_0 .

Pr. EZZAKI Intégration

Défintion 2

On appelle solution d'une équation différentielle toute fonction y de classe C^n définie sur un intervalle ouvert contenant x_0 et vérifiant l'équation (1) ainsi que les conditions initiales (2).

La solution est dite maximale si l'intervalle ouvert est maximal.

Example 1:

y' = y + x avec y(0) = 0 est une équation différentielle du premier ordre. Ici, nous avons bien entendu

$$f(x;y(x))=y(x)+x$$

On peut vérifier que toute fonction de la forme $y(x) = Ke^x - x - 1$, avec K constante arbitraire, est une solution de l'équation et que $y(x) = e^x - x - 1$ est une solution qui vérifie la condition initiale y(0) = 0. Il s'agit de la solution maximale qui vérifie la condition initiale donnée car elle est définie sur \mathbb{R} .

Equations à variables séparables

Définition 4

Une équation différentielle du premier ordre

$$y'(x) = f(x; y(x)) \tag{3}$$

est dite à variables séparables si elle peut être ramenée à la forme suivante

$$g(y(x))y'(x) = h(x)$$
(4)

où g et h sont deux fonctions définies sur un intervalle ouvert et continues.

Exemple 2:

L'équation $y'(x) = x^2y(x) + x^2$ avec y(0) = 1 est à variables séparables. En effet, on peut la ramener à la forme

$$\frac{y'(x)}{y(x)+1} = x^2$$

par suite, en passant aux primitives, on a

$$\ln|y+1| = \frac{1}{3}x^3 + K$$

ce qui conduit à

$$y(x) = K_1 e^{\frac{1}{3}x^3} - 1$$

K étant une constante arbitraire non nulle. La condition initiale y(0) = 1 entraine $K_1 = 2$.

Exemple 3:

L'équation $\left(x^2+1\right)y'(x)=y^2-1$ est à variables séparables. On a $\frac{y'}{y^2-1}=\frac{1}{x^2+1}$ $\frac{y}{2(y-1)}-\frac{y}{2(y+1)}=\frac{1}{x+1}$

En intégrant, les deux membres, et après simplification, on trouve

$$\ln \left| \frac{y-1}{y+1} \right| = 2 \operatorname{Arctan}(x) + K$$

et il sera possible d'exprimer y en fonction de x.

Equations différentielles linéaires du premier ordre

Définition 5

On appelle équation différentielle linéaire du premier ordre toute équation différentielle de la forme

$$y'(x) = a(x)y(x) + b(x)$$
 (5)

où a et b sont deux fonctions supposées définies et continues sur un intervalle ouvert donné de \mathbb{R} . L'équation y'(x) = a(x)y(x) est dite équation homogène associée ou équation sans second membre. Elle sera souvent notée "ssm".

Théorème 6

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Preuve:

On a d'une part, y_0 vérifie

$$y_0'(x) = a(x)y_0(x) + b(x)$$

d'autre part, si y est une solution quelconque de l'équation avec second membre, y vérifie

$$y'(x) = a(x)y(x) + b(x)$$

ceci équivaut en soustrayant membre à membre les deux équations à

$$(y - y_0)(x) = a(x)[(y - y_0)(x)]$$

Ce qui prouve le théorème.

Equations différentielles du premier ordre

Remarque : En pratique, pour résoudre l'équation avec second membre, il suffit d'ajouter une solution particulière de l'équation avec second membre à la solution générale de l'équation sans second membre.