CSE 3521: Introduction to Artificial Intelligence

What makes an Al agent

• **Agent** – an entity that <u>perceives</u> its environment through <u>sensors</u>, and acts on it with <u>effectors</u> (<u>actuators</u>).

- <u>Percepts</u> are constrained by Sensors + Environment
- Actions are constrained by Actuators + Environment

What makes an Al agent

• **Agent** – an entity that <u>perceives</u> its environment through <u>sensors</u>, and acts on it with <u>effectors</u> (<u>actuators</u>).

Actions are constrained by Actuators + Environment

Agent Function (policy) – how does it choose the action?

What is a rational AI agent?

 A rational agent always acts to maximize its expected performance measure, given current percept/state

- Rationality ≠ omniscience
 - O There is "uncertainty" in the environment.
 - O That is why we emphasize "expected".

Our Sample Agent

Pacman

- Percepts squares around Pacman
- Actions move U/D/L/R
- Environment map with walls, dots, and ghosts

Spam Detector

- <u>Percepts</u> sender, subject line, body of current email
- Actions mark Spam/Not Spam
- Environment your email inbox

Al – Agents and Environments

- Much (though not all!) of AI is concerned with agents operating in environments.
- Agent an entity that perceives its environment through sensors and acts upon that environment through effectors (actuators)
- Environment the problem setting

Kinds of Environments

- Six common properties to distinguish environments (not exhaustive)
 - Fully observable vs Partially observable
 - Single agent vs Multiagent
 - O Deterministic vs Stochastic
 - Episodic vs Sequential
 - Static vs Dynamic
 - Discrete vs Continuous

Fully Observable vs Partially Observable

- Fully observable
 - Agent is able to sense everything in the environment

ACROSS

- 1 See 24-Across
- 6 They radiate outward from an earthquake's
- 11 The "F" of "T.G.I.F.!": Abbr.
- 45 ___ fire under (urged to take action): 2 wds.
- 47 Daniel Defoe's "Robinson
- by earthquakes 52 Low in fat

- Partially observable
 - o noisy, inaccurate, or incomplete sensors

Single Agent vs Multiagent

- Single Agent
 - Self-explanatory

- Multiagent
 - o Task involves more than one agent
 - o Each with its own performance measure
 - o May be competitive (measures are opposed) or cooperative (measures are aligned)

Deterministic vs Stochastic

- Deterministic
 - o Next state of the world is fully determined by current state + agent action

- Stochastic
 - o it's not deterministic

	76936					
ı	2		1024	256		
ı	4096	256	64	32		
١	4	8	32			
ı	2	4	8	2		

https://2048game.com/

Episodic vs Sequential

- Episodic
 - o Each step's state/decision is independent of the previous ones

- Sequential
 - o Each step's state/decision affects later ones

Static vs Dynamic

- Static
 - o world doesn't change while agent is choosing an action

- Dynamic
 - o decision time matters!

Discreet vs Continuous

- Discrete
 - o Possible states/actions are distinct; world changes discretely

- Continuous
 - o states/actions take on continuous values

These help to find how to approach a problem

- Static: focus on getting really high accuracy/utility
- Dynamic: trade some utility for higher efficiency (speed!)
- Episodic: reflex agent with a great model
- Sequential: need a goal oriented agent
- Stochastic: need robustness to uncertainty/failure (robots!)
- **Deterministic:** can focus on efficiency and exactness (Internet crawler)

Examples

	Crossword puzzle	Taxi Driving
Observability		
Deterministic vs Stochastic		
Episodic vs Sequential		
Static vs Dynamic		
Discrete vs Continuous		
Single vs Multi Agent		

Examples

	Crossword puzzle	Taxi Driving
Observability	Fully	
Deterministic vs Stochastic	Deterministic	
Episodic vs Sequential	Sequential	
Static vs Dynamic	Static	
Discrete vs Continuous	Discrete	
Single vs Multi Agent	Single	

Examples

	Crossword puzzle	Taxi Driving
Observability	Fully	Partially
Deterministic vs Stochastic	Deterministic	Stochastic
Episodic vs Sequential	Sequential	Sequential
Static vs Dynamic	Static	Dynamic
Discrete vs Continuous	Discrete	Continuous
Single vs Multi Agent	Single	Multi

Search

Search Types

- Types
 - Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
 - Informed Search Methods
 - Greedy Search
 - A* Search
 - o Graph searches

Agents that Plan Ahead

- Planning agents:
 - o Ask "what if"
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal (test)
 - Consider how the world WOULD BE
- Optimal vs. complete planning

Agents that Plan Ahead

 Before taking real actions in the real environment, formulate an off-line problem in a simulated/imaginary environment (model).

- The off-line problem:
 - Has a goal (test)/desired state(s): not necessary the same as the real problem
 - To find a sequence of actions that can achieve the goal, better with optimal cost/performance measure/utility
- Execute the action sequence in the real environment
- Execute the first action in the sequence, see how to state changes, and may re-plan!

Search Problems

- A systematic way to looking for the (optimal) action sequence to reach goal
- Not the only way

Search Problems

- A search problem consists of:
 - A state space
 - A successor function (with actions, costs)
 - \circ A start state and a goal test

Search Problems

- A search problem consists of:
 - A state space
 - A successor function (with actions, costs)
 - A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

- State space:
 - Cities

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - o Arad

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - o Is state == Bucharest?

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - o Is state == Bucharest?
- Solution?
 - If there exists one, it is a sequence of cities from Arad to Bucharest