作業資訊: EE3450 計算機結構 Final Project

學生資訊: 郭柏辰 107012045

作業內容:

- \ Use Euclid's Algorithm to solve GCD via recursive method

# 1. Approach

先描述本小題會使用到基於 Euclid's Algorithm 的 2 個事實如下,題目假定 a、b 為 兩正整數。

(E1) If 
$$a \neq b$$
, say,  $a > b$ , then  $gcd(a,b) = gcd(a-b,b)$ .  
(E2) If  $a = b$ , then  $gcd(a,b) = a$ .

根據上述兩條件,我們若用 recursive 方法完成的話,我們先判斷是否 E2 條件成立,因為 E2 即為此演算法的中止條件,若成立則直接 return 數值 a 。若 E2 不成立,則必為 E1 條件,比較 a 、b 大小,若 a > b 則 return gcd(a-b,b)的數值,即遞迴呼叫另一個 function。

另外,使用 assembly code 完成的部分,其邏輯與 c code 相同。先比較傳入的 argument a, b 的值是否相同,相同則回傳 a,不同則進行比較 a, b 的值,使用'slt' 指令來完成,而由於要遞迴呼叫 function,因此要先將 return address 存入 stack 中再 進行呼叫。

#### 2. Results and Discussion

若我們先分析此演算法會進行的步驟,以 State diagram 表示,如下圖一。



圖一、algorithm state diagram。

因此我們在此分析不同 path 的結果我們分成 3 種基本的情況來討論。分別為只有經過一次 E2 path 的情況、需要經過一次 E1(a>b)的情況以及需要經過一次 E1(a<b)的情況。我們分別以(a,b)輸入為(1,1)、(2,1)、(1,2)為例子丟入分析。所得到 Instruction分布如下表一。

|                                                                                                               | 74 W.C. E 21 - 7 C - 1 | ) I - /4 |        |        |        |        |        |
|---------------------------------------------------------------------------------------------------------------|------------------------|----------|--------|--------|--------|--------|--------|
| situation                                                                                                     | Instruction            | R-type   | I-type | J-type | R-type | I-type | J-type |
|                                                                                                               | (#)                    | (#)      | (#)    | (#)    | (%)    | (%)    | (%)    |
| Only one E2                                                                                                   | 26                     | 14       | 11     | 1      | 0.538  | 0.423  | 0.038  |
| One E2, one                                                                                                   | 39                     | 19       | 17     | 2      | 0.497  | 0.426  | 0.077  |
| E1(a>b)                                                                                                       | 39                     | 19       | 17 3   | 3      | 0.487  | 0.436  | 0.077  |
| One E2, one                                                                                                   | 27                     | 17       | 17     | 3      | 0.450  | 0.450  | 0.001  |
| E1(a <b)< th=""><th>37</th><th>1 /</th><th>1 /</th><th>3</th><th>0.459</th><th>0.459</th><th>0.081</th></b)<> | 37                     | 1 /      | 1 /    | 3      | 0.459  | 0.459  | 0.081  |

表一、Problem 1 模擬結果與 type 分布。

另外若是我們分析多個不同的 E1 個數,可以發現每經過多個 E1 path 的 instruction 數量是固定的,因此如下圖二顯示各種類分布的 instruction 是直線上升。



圖二、E1(a>b)個數對 instructions 比較。

因此經過分析我們知道每經過一次 E1(a>b) path, instruction 數量多 13 個,其中 R-type 多 5 個,I-type 多 6 個,J-type 多 2 個。另外同理,每經過一次 E1(a<b) path, instruction 數量多 11 個,其中 R-type 多 3 個,I-type 多 6 個,J-type 多 2 個。

在這裡我們需要討論說為何 R-type 在這兩個類似的路徑中會相差 2 個,由於為了節省 code size,我們在 E1(a>b)路徑中預加了 b 的值讓後面扣回來,來節省後面需要用的 jump instruction 數量和 code size。因此我們犧牲了此路徑的速度來換取 code size 的優化。

圖三、解釋上述 trade off 的部份。

再來我們分析三種基本的 instruction 所使用到的各種類分布如下表二。

| •                                                                          | - " |      |        |        |       |
|----------------------------------------------------------------------------|-----|------|--------|--------|-------|
| situation                                                                  | ALU | Jump | Branch | Memory | Other |
|                                                                            | (#) | (#)  | (#)    | (#)    | (#)   |
| Only one E2                                                                | 10  | 2    | 1      | 0      | 13    |
| One E2, one                                                                | 15  | 5    | 2      | 2      | 1.4   |
| E1(a>b)                                                                    | 15  | 5    | 3      | 2      | 14    |
| One E2, one                                                                | 12  | 5    | 2      | 2      | 1.4   |
| E1(a <b)< th=""><th>13</th><th>3</th><th>3</th><th>2</th><th>14</th></b)<> | 13  | 3    | 3      | 2      | 14    |

表二、Problem 1 各種類分布。

另外,若我們以同樣方法分析 El path 的數量,我們可以計算出每增加一級 El path 所需要增加的各種類個數,如下表三。

| situation   | ALU | Jump | Branch | Memory | Other |
|-------------|-----|------|--------|--------|-------|
|             | (#) | (#)  | (#)    | (#)    | (#)   |
| +E1(a>b)    | +5  | +3   | +2     | +2     | +1    |
| + E1(a < b) | +3  | +3   | +2     | +2     | +1    |

表三、Problem 1 增加級數的各種類分布。

在此就更清楚表明了我在 code 中做的取捨,也就是剛好會多 2 次的 ALU。

最後我們檢視我們的 code size, compile 之後總共使用了 33 個 word 的位置來儲存 instructions。

# 3. Additional Discussion

證明此演算法的正確性以及其有限次數性。

定理:  $a = bq + r \rightarrow \gcd(a, b) = \gcd(b, r)$ 

證明:假定兩數  $g \cdot h$  分別代表 $gcd(a,b) \cdot gcd(b,r)$ 的值,即

$$g = \gcd(a, b)$$
$$h = \gcd(b, r)$$

- (2)  $h|b \not\perp h|r$ ,  $a = bq + r \rightarrow h|m : g \ge h$

根據上(1)、(2)關係式,可知 g = h,即gcd(a,b) = gcd(n,r)

那在此我們 implement 演算法的方法為令 q 為 $\pm 1$ ,根據  $a \times b$  誰大來改變 q 值。那根據我們每一次的運算都會使得下一級的  $a \times b$  小於上一級,也就是 if a > b,

$$gcd_n(a_n,b_n)=gcd_{n+1}(a_{n+1}=a_n-b_n,b_{n+1}=b_n)$$
,其中因為 $a_n,b_n\in positive\ interger$   $\therefore a_{n+1}\in positive\ interger$ 

且 $0 < a_{n+1} < a_n$ 。而已知 $a_n$ 是有限正整數,因此可以推論有限步驟後, $a_{n+1}$ 可以得到 gcd 的值,其最小值為 1。

# = \ Use Euclid's Algorithm to solve GCD via iterative method

#### 1. Approach

先描述本小題會使用到基於 Euclid's Algorithm 的 2 個事實如下,題目假定 a、b 為 兩正整數。

(E1) If 
$$a \neq b$$
, say,  $a > b$ , then  $gcd(a,b) = gcd(a-b,b)$ .  
(E2) If  $a = b$ , then  $gcd(a,b) = a$ .

根據上述兩條件,我們若用 iterative 方法完成的話,我們同樣先在迴圈判斷是否 E2條件成立,因為 E2 即為此演算法的中止條件,若成立則跳出迴圈,直接將數值 a 顯示出來。若 E2 不成立,則必為 E1 條件,比較 a、b 大小,若 a>b 則以下一級  $a_{n+1}=a-b$ , $a_{n+1}=b$ 的數值繼續進行迴圈,以上皆在同一個 function 中完成。 另外,使用 assembly code 完成的部分,其邏輯與 c code 相同。先比較在 register 的 a,b 的值是否相同,相同則回傳 a,不同則進行比較 a,b 的值,我們以'slt'來完成,並直接進行邏輯減法運算即可。

### 2. Results and Discussion

同樣的我們先分析此演算法會進行的步驟,其 State diagram 與第一題相同,因此我們在此分析不同 path 的結果我們分成 3 種基本的情況來討論。分別為只有經過一次 E2 path 的情況、需要經過一次 E1(a>b)的情況以及需要經過一次 E1(a<b)的情況。我們分別以(a,b)輸入為(1,1)、(2,1)、(1,2)為例子丟入分析。所得到 Instruction 分布如下表四。

| 表四、P | roblem 2 | 模擬結 | 果與 | type | 分布 | 0 |
|------|----------|-----|----|------|----|---|
|------|----------|-----|----|------|----|---|

| situation                                                                                                   | Instruction | R-type | I-type | J-type | R-type | I-type | J-type |
|-------------------------------------------------------------------------------------------------------------|-------------|--------|--------|--------|--------|--------|--------|
|                                                                                                             | (#)         | (#)    | (#)    | (#)    | (%)    | (%)    | (%)    |
| Only one E2                                                                                                 | 20          | 9      | 11     | 0      | 0.450  | 0.550  | 0.000  |
| One E2, one                                                                                                 | 26          | 12     | 12     | 0      | 0.500  | 0.500  | 0.000  |
| E1(a>b)                                                                                                     | 26          | 13     | 13 0   | 0.500  | 0.500  | 0.000  |        |
| One E2, one                                                                                                 | 24          | 11     | 13     | 0      | 0.458  | 0.542  | 0.000  |
| E1(a <b)< th=""><th>24</th><th>11</th><th>13</th><th>0</th><th>0.438</th><th>0.342</th><th>0.000</th></b)<> | 24          | 11     | 13     | 0      | 0.438  | 0.342  | 0.000  |

另外若是我們分析多個不同的 El 個數,可以發現每經過多個 El path 的 instruction數量是固定的,因此我們可以計算出每增加一級 El path 所需要增加的各種類個數,如下表五。

表五、Problem 2 增加級數的各種 type 增加量。

| situation  | Instruction | R-type | I-type | J-type |
|------------|-------------|--------|--------|--------|
|            | (#)         | (#)    | (#)    | (#)    |
| +E1(a>b)   | +7          | +4     | +3     | +0     |
| +E1(a < b) | +5          | +2     | +3     | +0     |

在這裡我們需要討論說為何 R-type 在這兩個類似的路徑中會相差 2 個,由於為了節省 code size,我們在 E1(a>b)路徑中預加了 b 的值讓後面扣回,可以讓我們不需要使用 j-type instruction。

再來我們分析三種基本的 instruction 所使用到的各種類分布如下表六。

表六、Problem 2 各種類分布。

| situation                                                                  | ALU | Jump | Branch | Memory | Other |  |
|----------------------------------------------------------------------------|-----|------|--------|--------|-------|--|
|                                                                            | (#) | (#)  | (#)    | (#)    | (#)   |  |
| Only one E2                                                                | 10  | 0    | 1      | 0      | 9     |  |
| One E2, one                                                                | 12  | 0    | 2      | 2      | 10    |  |
| E1(a>b)                                                                    | 13  | U    | 3      | 3      | 10    |  |
| One E2, one                                                                | 11  | 0    | 2      | 0      | 10    |  |
| E1(a <b)< th=""><th>11</th><th>U</th><th>3</th><th>U</th><th>10</th></b)<> | 11  | U    | 3      | U      | 10    |  |

另外,若我們以同樣方法分析 El path 的數量,我們可以計算出每增加一級 El path 所需要增加的各種類個數,如下表七。

| <b>7</b> - | н /- |      | 12//// | 1 2-   |       |
|------------|------|------|--------|--------|-------|
| situation  | ALU  | Jump | Branch | Memory | Other |
|            | (#)  | (#)  | (#)    | (#)    | (#)   |
| +E1(a>b)   | +3   | +0   | +3     | +0     | +1    |
| +E1(a < b) | +1   | +0   | +3     | +0     | +1    |

表七、Problem 2 增加級數的各種類分布表

在此就更清楚表明了我在 code 中做的取捨,也就是剛好會多 2 次的 ALU。

最後我們檢視我們的 code size, compile 之後總共使用了 22 個 word 的位置來儲存 instructions。

# 三、Use Binary GCD Algorithm to solve GCD via recursive method

# 1. Approach

先描述本小題會使用到基於 Euclid's Algorithm 的 2 個事實如下,題目假定 a、b 為 兩正整數。

(E1)If 
$$a \neq b$$
, say,  $a > b$ , then  $gcd(a,b) = gcd(a-b,b)$ .  
(E2) If  $a = b$ , then  $gcd(a,b) = a$ .

另外還有

(BG1)If 
$$a \neq b$$
, both a and b is even, then  $gcd(a,b) = 2 * gcd(\frac{a}{2}, \frac{b}{2})$ .

(BG2)If  $a \neq b$ , one of a and b is odd, say b is odd, then  $gcd(a,b) = gcd(\frac{a}{2},b)$ . 根據上述四個條件,我們若用 recursive 方法完成的話,我們先判斷是否 E2 條件成立,因為 E2 即為此演算法的中止條件,若成立則直接 return 數值 a。若 E2 不成立,則我們先判斷 a, b 的奇偶性,若其中一個為偶數的話,則進行 BG2 條件運算,遞迴呼叫 $gcd(\frac{a}{2},b)$ ,這邊除 2 的方法,我們使用 'srl'來完成。若兩個都是偶數則進

行 BG1,遞迴呼叫  $gcd(\frac{a}{2},\frac{b}{2})$ ,在做 BG1 時要記得把 return 回來的值乘 2,這邊使用 'sll'來完成。若兩者都是奇數,則必為 E1 條件,比較 a、b 大小,若 a > b 則 return gcd(a-b,b)的數值,即遞迴呼叫另一個 function。另外,由於要遞迴呼叫 function,因此要先將 return address 存入 stack 中再進行呼叫。

### 2. Results and Discussion

若我們先分析此演算法會進行的步驟,以 State diagram 表示,如下圖四。



圖四、algorithm state diagram。

因此我們在此分析不同 path 的結果我們分成 7 種基本的情況來討論。分別為只有經過一次 E2 path 的情況、需要經過一次 BG2(a > b)的情況、需要經過一次 BG2 (a < b)的情況、需要經過一次 BG2 和 E1(a > b)的情況、需要經過一次 BG2 和 E1(a < b)的情況、需要經過一次 BG2 和 BG1(a > b)的情況以及需要經過一次 BG2 和 BG1(a < b)的情況。我們分別以(a, b)輸入為(1, 1)、(2, 1)、(1, 2)、(3, 1)、(1, 3)、(4, 2)、(2, 4)為例子丟入分析。所得到 Instruction 分布如下表八。

表八、Problem 3 模擬結果與 type 分布。

| situation                                   | Instruction (#) | R-type (#) | I-type (#) | J-type (#) | R-type (%) | I-type (%) | J-type (%) |
|---------------------------------------------|-----------------|------------|------------|------------|------------|------------|------------|
| Only one E2 (1, 1)                          | 26              | 14         | 11         | 1          | 0.538      | 0.423      | 0.038      |
| One E2, one<br>BG2(a > b)<br>(2, 1)         | 40              | 16         | 20         | 4          | 0.400      | 0.500      | 0.100      |
| One E2, one<br>BG2(a < b)<br>(1, 2)         | 40              | 16         | 20         | 4          | 0.400      | 0.500      | 0.100      |
| One E2, one BG2<br>and E1(a > b)<br>(3, 1)  | 58              | 21         | 30         | 7          | 0.362      | 0.517      | 0.121      |
| One E2, one BG2<br>and E1(a < b)<br>(1, 3)  | 56              | 19         | 30         | 7          | 0.339      | 0.536      | 0.125      |
| One E2, one BG2<br>and BG1(a > b)<br>(4, 2) | 55              | 20         | 29         | 6          | 0.364      | 0.527      | 0.109      |

| One E2, one BG2  |    |    |    |   |       |       |       |
|------------------|----|----|----|---|-------|-------|-------|
| and $BG1(a < b)$ | 55 | 20 | 29 | 6 | 0.364 | 0.527 | 0.109 |
| (2, 4)           |    |    |    |   |       |       |       |

由於經過前兩題的分析,我們知道 loop 走不同 path 的 instruction 數量具有加成性,因此在此題中我們也可以分析不同路徑所需要增加的 instruction 數量,如下表九。

表九、Problem 3 增加級數的各種 type 增加量。

| situation   | Instruction | R-type | I-type | J-type |
|-------------|-------------|--------|--------|--------|
|             | (#)         | (#)    | (#)    | (#)    |
| + BG2       | +14         | +2     | +9     | +3     |
| +E1(a>b)    | +18         | +5     | +10    | +3     |
| + E1(a < b) | +16         | +3     | +10    | +3     |
| +BG1        | +15         | +4     | +9     | +2     |

在這裡我們需要討論說為何 R-type 在這兩個類似的路徑中會相差 2 個,由於為了節省 code size,我們在 E1(a>b)路徑中預加了 b 的值讓後面扣回來,來節省後面需要用的 jump instruction 數量和 code size。因此我們犧牲了此路徑的速度來換取 code size 的優化。

再來我們分析七種基本的 instruction 所使用到的各種類分布如下表十。

表十、Problem 2 各種類分布。

| situation                             | ALU | Jump | Branch | Memory | Other |
|---------------------------------------|-----|------|--------|--------|-------|
|                                       | (#) | (#)  | (#)    | (#)    | (#)   |
| Only one E2<br>(1, 1)                 | 10  | 2    | 1      | 0      | 13    |
| One E2, one BG2(a > b) (2, 1)         | 15  | 6    | 4      | 2      | 13    |
| One E2, one BG2(a < b) (1, 2)         | 10  | 6    | 4      | 2      | 13    |
| One E2, one BG2 and E1(a > b) (3, 1)  | 22  | 10   | 8      | 4      | 14    |
| One E2, one BG2 and E1(a < b) (1, 3)  | 20  | 10   | 8      | 4      | 14    |
| One E2, one BG2 and BG1(a > b) (4, 2) | 22  | 9    | 7      | 4      | 13    |
| One E2, one BG2 and BG1(a < b) (2, 4) | 22  | 9    | 7      | 4      | 13    |

另外,若我們以同樣方法分析 El path 的數量,我們可以計算出每增加一級 El path 所需要增加的各種類個數,如下表十一。

| 表十一 | • Problem 3 | 增加級數的各種類 | 分布表。 |
|-----|-------------|----------|------|
|-----|-------------|----------|------|

| situation   | ALU | Jump | Branch | Memory | Other |
|-------------|-----|------|--------|--------|-------|
|             | (#) | (#)  | (#)    | (#)    | (#)   |
| +BG2        | +5  | +4   | +3     | +2     | +0    |
| +E1(a>b)    | +7  | +4   | +4     | +2     | +1    |
| + E1(a < b) | +5  | +4   | +4     | +2     | +1    |
| +BG1        | +7  | +3   | +3     | +2     | +0    |

在此就更清楚表明了我在 code 中做的取捨,也就是剛好會多 2 次的 ALU。

最後我們檢視我們的 code size, compile 之後總共使用了 49 個 word 的位置來儲存 instructions。

#### 3. Additional Discussion

現有 code 的速度優化方法,由於為了減省 code size,在此沒有將此方法實作出來,但在此作一些優化的討論。由於我們可以從 state diagram 中觀察到 BG1 只會做有限次數之後若是跳到其他 state 就永遠不會在做了,因此一個可能的優化方法就是,我們在判斷完 E2 條件,先一直判斷是否是 BG1 條件並且做運算,若不是的話之後我們就多了一個假定條件,就是 a 與 b 不會同時是偶數,因此就可以省略在去走判斷BG1 條件的情況了,可以在每一次的 loop 中減少判斷一次 a、b 的奇偶性。

# 四、Comparison

# 1. Overview

#### (1) Instruction

首先我們先比較 3 種不同方式的各種 path 的 instruction,如下表十二。

| situation   | Instruction | R-type | I-type | J-type |
|-------------|-------------|--------|--------|--------|
|             | (#)         | (#)    | (#)    | (#)    |
| Only one E2 | 26          | 14     | 11     | 1      |
| +E1(a>b)    | +13         | +5     | +6     | +2     |
| +E1(a < b)  | +11         | +3     | +6     | +2     |
| Only one E2 | 20          | 9      | 11     | 0      |
| +E1(a>b)    | +7          | +4     | +3     | +0     |
| + E1(a < b) | +5          | +2     | +3     | +0     |
| Only one E2 | 26          | 14     | 11     | 1      |
| + BG2       | +14         | +2     | +9     | +3     |
| +E1(a>b)    | +18         | +5     | +10    | +3     |
| + E1(a < b) | +16         | +3     | +10    | +3     |
| +BG1        | +15         | +4     | +9     | +2     |

根據上表十二觀察,首先先看基本量(E2),由於方法 A 與方法 C 皆是採用 recursive method,因此我們可以看到相較於方法 B,他們最基本都還需要進行 call function 以及 return 的動作,因此基本 instructions 比 B 還多。而同時,由於 B 不需要 call function,因此在此可以以省下不需要使用的 J-type instruction,因此 B 方法沒有 J-type。

再來我們看到每增加 1 級的 instruction 增加數量。我們可以看到明顯的比較, C>A>B。用 iterative 所增加的 instruction 量自然最少,而使用 recursive 的會較多,由於方法 C 的判斷條件多,因此 C 的 instruction 增加量最多。

# (2) Code size

Code size 以方法 B 為最小(22 words),方法 A 為其次(33 words),以方法 C 為最大(49 words),在撰寫程式時,有稍微針對重複性的指令進行合併,在一些速度上與 size 做取捨。

# (3) Complexity

Code 複雜度以方法 B 最為簡單,方法 A 其次,方法 C 最為複雜。而以數字收斂程度來說方法 C 是收斂最快的,而以方法 B 和方法 A 是差不多的收斂速度,奇收斂速度定義是我們所需要運算的級數。

#### 2. Compare Part. A and Part. B

我們先根據上表十二不同方法的各 state path 的 instruction 數量來做 A 和 B 的比較差異, A 與 B 唯一不同的地方在於是呼叫 function 來做運算或是直接相減。我們可以

看到方法 A 在每一級需要多做的事情為'j'、'lw'、'sw'、'addi'、'addu'(move)。以上所需因此如下表,我們也可以看到 ALU、jump 數量以及 branch 都會多,而 memory剛好一個 load、一個 save,會多 2 個 memory,如下表十三。

| situation   | ALU | Jump | Branch | Memory | Other |
|-------------|-----|------|--------|--------|-------|
|             | (#) | (#)  | (#)    | (#)    | (#)   |
| +E1(a>b)    | +5  | +3   | +2     | +2     | +1    |
| + E1(a < b) | +3  | +3   | +2     | +2     | +1    |
| +E1(a>b)    | +3  | +0   | +3     | +0     | +1    |
| + E1(a < b) | +1  | +0   | +3     | +0     | +1    |

因此這邊可以推論方法 A 比方法 B 還沒有效率,無論是在時間上或是速度上都沒優勢。

# 3. Compare Part. A and Part. C

我們比較同樣為 recursive method 的方法 A 和方法 C,可以看見儘管方法 C 在每一級的運算消耗都比方法 A 還要大,如上表三種不同方法的各 state path 的 instruction數量。由由於方法 C 演算法的關係,方法 C 在每一次進行 BG1 或者 BG2 所使數字收斂的速度遠大於方法 A,我們以一極端案例為例若我們要尋找 $gcd(2^n,1)$ 。

 $method\ A:\ \gcd(2^n,1)=\gcd(2^n-1,1)=\gcd(2^n-2,1)=\cdots=\gcd(1,1)=1$  若以方法 A 需要收斂到答案需要做 $2^n$ 次才會得到答案。

 $method\ C$ :  $gcd(2^n,1) = gcd(2^{n-1},1) = gcd(2^{n-2},1) = \cdots = gcd(1,1) = 1$ 若以方法 C 需要收斂到答案需要做n+1次才會得到答案。

如此在運算級數上就有極大的差異,如下圖五。



圖五、比較 2<sup>n</sup> 與 n+1 級數之差異,數值以對數軸表示。

因此若我們考量每一級的 instruction 增加量,比較方法 A 和方法 C,如下圖六。



圖六、計算 gcd(2<sup>n</sup>,1)使用方法 A 與方法 C 的 Instructions 數量比較

根據上圖六比較我們就可以看見方法 C 在數字較大(約為  $2^5$  以上)之後就會展現優勢。

# 五、Conclusion

- 1. 在相同演算法下,方法B比方法A快。
- 2. 在不同演算法下,比較 GCD 數字差距小(即有差異的 2 個位元間隔數量)時通常方法 B 會比方法 C 還有方法 A 還快。
- 3. 在不同演算法下,比較 GCD 數字差距大時(即有差異的 2 個位元間隔數量),方法 C 會比方法 A 和方法 B 還要快。
- 4. 在不同演算法下,比較 GCD 數字的大小,與各種方法的速度無絕對正相關,例如丢入(178956970,89478485)與丟入(2,1)對於演算速度上是一樣的。
- 5. 對於方法 A 與方法 C 來說,在級數少時 R-type 的分布較多,其次為 I-type,最少為 J-type。而在級數多時, I-type 的分布會較多, R-type 為其次,最少為 J-type。
- 6. 對於方法 B 來說,大致上的 I-type 分布會比 R-type 多,沒有 J-type。