COMP 285
Analysis of Algorithms

Welcome to COMP 285

Lecture 25: Approximation Algorithms

Lecturer: Chris Lucas (cflucas@ncat.edu)

HW8!

Due 12/01 @ 11:59PM ET

HW8!

Latest due date 12/04 @ 11:59PM ET

Final Exam

12/06 from 2:00pm-4:00pm

Final Exam Prep

Practice Final on course website/Blackboard

Final Exam Prep

11/29 and 12/01 Review Lectures

How would you recommend a student should 11/2 prepare for the final exam? ctures

How to prepare for the final exam?

- Reviewing written+coding homeworks
 - You will be asked to write code!
- Reviewing lectures slides/recordings, "more resources" on course website.
- Reviewing each quiz/walkthrough video
- Reviewing the practice midterm/real midterm
- Final week of lectures!
- Practice final!

Quiz!

www.comp285-fall22.ml or Blackboard

Recall where we ended last lecture...

Motivation

- P vs NP may be the most famous unsolved question in Computer Science \$\$\$
- It gives us a way to reason about whether a problem is tractable or not.
 - Classifies problems based on how difficult they are to solve
 - If you're working on a new problem, don't waste your time trying to come up with a clever polynomial time solution if it's not possible!
- Similar to Big-Oh in that it's a theoretical framework, a tool for reasoning about algorithms, comparing algorithms, etc. P vs. NP is also a theoretical framework, a tool for reasoning about problems, comparing problems, etc.

Polynomial Time (P) versus Exponential Time (EXP)

- P: set of decision problems that can be solved in polynomial time
 - \circ O(n^k), e.g. n log(n), n², n²⁰
- EXP: set of decision problems that can be solved in exponential time
 - \circ O(2ⁿ), O(10ⁿ), O(2^{n^c})
- We work with **decision problems** (i.e. the answer to these problems is yes or no) but the implications are still often applicable to optimization problems.
- P ⊆ EXP: "P is a subset of EXP"
- There are lots of problems in EXP, because it is very slow, and includes problems where the only solution we know is "try everything".

Nondeterministic Polynomial (NP)

- NP: set of all decision problems that can be **verified** in polynomial time.
- P is in NP, as you could just solve the problem in polynomial time and see if the answers are equal to verify.
- Examples
 - o Is this array sorted?
 - Is string X a substring of string Y?
 - o ... all problems in P
 - Is there a subset of elements in this array that add up to k?
 - Given a graph, is there a path of at most length L that visits each node exactly once and returns where you started? ("Traveling Salesman Problem")

P vs NP

- We know that $P \subseteq NP$
- But, does P = NP? a \$1 million-dollar question (actually)
 - o Most likely $P \neq NP$, it's just hasn't been proven yet.
- "Creating a nondeterministic computer is impossible"
- "Generating solutions can be harder than checking them"

What if P = NP though?

- Some implications:
 - We could cure a lot more diseases with efficient protein folding simulations.
 - But all passwords / encryption could be cracked.
- Scott Aaronson's philosophical argument: If P=NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative leaps," no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss.

Big Questions!

 What is NP complete, NP hard and what are reductions?

What are approximation algorithms?

Big Questions!

 What is NP complete, NP hard and what are reductions?

 What are approximation algorithms?

NP-Complete and NP-Hard

- **NP-Hard**: problems at least as hard as the hardest problems in NP.
- **NP-Complete**: problems that are NP-hard, but still in NP, i.e. "the hardest problems in NP".
- Why do we care about NP-Complete? Because if we find a way to solve one NP-Complete problem, we will solve them all.
- Why do we care about NP-Hard? Because if we can show a problem is both NP-Hard and NP (reducible), we know it is NP-Complete.

NP-Complete Problems

- Traveling Salesman Problem
- Generalized Sudoku
- Vertex cover: "Given a graph G, can you find a vertex cover of n nodes?"

 Boolean satisfiability: "Given a boolean expression like the following (a or !b) and (c or d) or e are there possible values for a, b, c, d, e that will make the statement true?"

Reductions

- Reductions are converting a problem into another problem.
- We do this all the time to solve problems, e.g. with graphs, we would transform them to be able to use an algorithm we know (like network flow).
- To prove a problem X is NP-Complete, you can:
 - Show it is NP-Hard (usually then reduce to a known NP-Complete problem to it)
 - Show it is NP (e.g. by showing its solution is verifiable in polynomial time)

Reduction Example

- Number Scrabble!
 - Imagine we are playing a game where the numbers are lined up 1 through 9 and we take turns selecting numbers. One of us wins when the numbers sum to 15.

1 2 3 4 5 6 7 8 9

Reduction Example

- Number Scrabble!
 - Imagine we are playing a game where the numbers are lined up 1 through 9 and we take turns selecting numbers. One of us wins when the numbers sum to 15.

• Can we rearrange?

What can we do if our problem isn't in P?

- Pack up and go home. This is not worth pursuing...
- Accept it and move on! Our solution is going to be slow...
- We could constrain our problem further to make it P, to make it work in polynomial time...
- We could accept an *approximate but more time efficient* solution (must be within a reasonable margin)
 - Valuable in the real world!

Big Questions!

 What is NP complete, NP hard and what are reductions?

What are approximation algorithms?

Approximation Algorithms

- Approximation Algorithms solve NP-complete optimization problems in polynomial time by producing answers that are sometimes not optimal.
- How "good" an approximation algorithm is measured by how far the approximate solution (which we call C) will be to the optimal solution (which we call C*). The factor is max(C/C*, C*/C). For example:
 - If working on a minimization problem and C* = 2, but the approximation will give no worse than C = 3, that means our approximation is a max(3/2, 2/3) = 3/2 = 1.5-approximation
 - o If working on a maximization problem and $C^* = 2$, but the approximation will give no worse than C = 1, that means our approximation is a max(1/2,2/1) = 2-approximation
- Approximation Algorithms are often accompanied by a proof on the bound.

Vertex Cover

- Given a graph G = (V, E), a vertex cover is a set of nodes in G that touches every single edge in G at at least one end.
- A Minimum Vertex Cover of a graph is the smallest set of nodes possible to provide a vertex cover for a graph.
- Solving this optimally requires exponential time. The best we can do is try every possible vertex subset with exhaustive search. Can we approximate it?
- https://visualgo.net/en/mvc

Vertex Cover Approximation Pseudocode

algorithm generateApproximateVertexCover
 input: a graph G
 output: a vertex cover of G
initialize C to an empty set
while there are still edges in G
 pick uncovered edge (u, v) arbitrarily
 add u and v to vertex cover C
 delete all edges incident on u and v
return C

Runtime?

How does this runtime compare to what is required to calculate the exact vertex cover?

Vertex Cover Bound

- Notice that the N edges selected from our algorithm share no vertices.
- So 2N vertices are included in our approximate solution. C = 2N
- The optimal minimum vertex cover, by definition, has to cover at least those N vertex-disjoint edges with at least one vertex per edge, which means $C^* >= N$.
- Combining the two underlined relations, we see that C <= 2C*
- So we have shown that this is a 2-approximate algorithm

- Given a graph with cities as vertices and edges as roads with weights, find the best path that visits every city exactly once and winds up where we started (i.e. a "tour").
- The best algorithm we know how to find the best tour is currently exponential
- Motivation Reminder: Delivery or any round-trip routing problem.

What is the cost of the optimal tour?

Approximation Design: what other ways to do we know to connect all nodes?

В

What is the cost of the optimal tour?

Approximation Design: what other ways to do we know to connect all nodes? Minimum Spanning Trees!

What is the cost of the optimal tour?

Approximation Design: what other ways to do we know to connect all nodes? Minimum Spanning Trees!

MST cost here is 7.

Cost of A-B-E-B-A-D-A-C-A?

14

Tour is not allowed repeat visits:

A-B-E-D-C-A

Cost is now 12

Traveling Salesman Problem Approximation Analysis

- Let's analyze the approximation algorithm
 - Find minimum spanning tree
 - Cut through repeated vertices
 - Return path as your cycle
- Consider taking one edge off the optimal tour to get a spanning tree (not necessarily the minimum)
 - C* >= MST
 - C <= 2 * MST (previous slide)
 - So C <= 2C*
- This is a 2-approximation algorithm⁽

D

Takeaways (pt. 1)

- We want to avoid slow algorithms, so knowing if a problem is not in P is useful.
- P: decision problems that have polynomial time algorithms
- NP: decision problems that can be verified in polynomial time
- \bullet P \subseteq NP \subseteq EXP
- NP-Complete problems are both NP-Hard and NP, and lots of interesting problems are NP-Complete. They can often be "reduced" to each other.
- P?= NP asks whether the above two complexity classes are the same. It is likely not true, but has not been proven.

Takeaways (pt. 2)

- The smallest change in a problem statement can make it P or NP, and it is not immediately obvious: MST versus Traveling Salesman versus Minimum Vertex Cover
- When we realize a problem will likely only have an exponential solution, we can come up with an algorithm that will give us an answer that is "good enough"
- Minimum Vertex Cover and Traveling Salesman are NP-Complete, but we can give out a 2-approximation to both those problems.
- For decades, the best we could do for TSP was exactly 1.5x the optimal tour.
 - After 44 years, we finally found an approximation that is something like 1.5 minus 0.2 billionth of a trillionth of a trillionth of a percent:
 https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/

COMP 285
Analysis of Algorithms

Welcome to COMP 285

Lecture 25: Approximation Algorithms

Lecturer: Chris Lucas (cflucas@ncat.edu)