Nome e cognome: ______ Classe: _____ Data: _____ Griglia

Risposte (variante 7)

1	2	3	4	5	6	7	8	9	10
				1				1	
11	10	10	4.4	1 - 1 -	1.0	1 =	10	10	20
11	12	13	14	15	16	17	18	19	20

- 1. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (b) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (c) Che il principio di indeterminazione non è valido.
 - (d) Che la luce è composta da particelle (fotoni).
- 2. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (c) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (b) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- 3. Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
 - (b) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (c) Gli urti tra atomi eccitati producono lo spettro.
 - (d) Il nucleo atomico vibra emettendo fotoni.
- 4. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (b) Perché a basse frequenze la luce si comporta solo come un'onda.
 - (c) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (d) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
- 5. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio (⁴₂He)?
 - (a) Decadimento Beta più (β^+)

(c) Emissione Gamma (γ)

(b) Decadimento Beta meno (β^{-})

- (d) Decadimento Alfa (α)
- 6. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Lo stato "gatto vivo".
 - (b) Uno stato indeterminato che non è né vivo né morto.
 - (c) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (d) Lo stato "gatto morto".
- 7. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (b) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
 - (c) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).

	(c)	Degli errori sperimentali	inevi	tabili negli strumenti di n	nisura.						
	(d)	Della natura ondulatoria quantistico.	della	materia (dualismo onda-co	orpusc	olo) e dei limiti intrinseci	i alla misurazione nel mondo				
9.	Cosa pos	osa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?									
	(a)	Un atomo emette radiaz permessa di energia infe		(un fotone) solo quando u	un elet	trone salta da un'orbita	a permessa a un'altra orbita				
	(b)	Un atomo emette radiaz	ione s	olo se si trova in uno stat	o eccit	ato stazionario.					
	(c)	Un atomo emette radiaz	ione c	ontinuamente mentre l'ele	ettrone	e orbita attorno al nucleo	eo.				
	(d)	Un atomo emette radiaz	ione s	olo quando viene ionizzat	o.						
10.	Come si	i calcola l'energia di legar	ne(E)	3) di un nucleo, noto il di	ifetto d	li massa Δm ?					
	(a)	$E_B = m_{nucleo}c^2.$	(b)	$E_B = (\Delta m)c^2.$	(c)	$E_B = (\Delta m)/c^2.$	(d) $E_B = (\sum m_{costituenti})c^2$.				
11.		tare la seguente reazione dere β^+ : ${}_{9}^{18}F \rightarrow ? + e^+ +$		adimento beta più (β^+)	o cattu	ıra elettronica (EC), sap	pendo che il Fluoro-18 (${}_{9}^{18}$ F)				
	(a)	$_{9}^{19}{ m F}$	(b)	$_{9}^{17}\mathrm{F}$	(c)	¹⁸ O	(d) $^{18}_{10}$ Ne				
12.	Identific	care il prodotto mancante	nel d	ecadimento alfa dell'Uran	nio-238:	$\begin{array}{c} ^{238}_{92}\mathrm{U} \to X + \alpha \end{array}$					
	(a)	$X = ^{238}_{90}$ Th (Torio-238)	(b)	$X = ^{234}_{90}$ Th (Torio-234)	(c)	$X=^{234}_{92}$ U (Uranio-234)	(d) $X = {}^{234}_{88}$ Ra (Radio-234)				
13.	La legge	e del decadimento radioat	tivo I	$N(t) = N_0 e^{-\lambda t}$ descrive:							
	(a)	Il tempo di dimezzamen	to del	campione.							
	(b)	(b) Il numero di nuclei decaduti al tempo t . (c) Il numero $N(t)$ di nuclei radioattivi non ancora decaduti presenti al tempo t , partendo da N_0 nuclei al tempo $t = 0$.									
	(c)										
	(d)	L'attività del campione	al tem	po t .							
14.		opo radioattivo ha un ten illigrammi rimarranno do			5 giorn	i. Se inizialmente abbia	amo 16 mg di questo isotopo				
	(a)	$8\mathrm{mg}$	(b)	$4\mathrm{mg}$	(c)	$2\mathrm{mg}$	(d) 1 mg				
15.	$h\approx 6.63$	diazione di frequenza $f = \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 1.6 \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 4.14$ rima hf in eV, $hf \approx 4.14$	10^{-19}	$ imes 10^{15}\mathrm{Hz}$ colpisce un me I, qual è circa l'energia cin	etallo c etica m	on lavoro di estrazione nassima K_{max} degli elett	$W=2.0\mathrm{eV}$. Sapendo che croni emessi? (Suggerimento				
	(a)	$K_{max} \approx 6.14 \text{eV}$	(b)	$K_{max} \approx 4.14 \text{eV}$	(c)	$K_{max} \approx 2.0 \text{eV}$	(d) $K_{max} \approx 2.14 \text{eV}$				
16.				diagnostica (es. $30 - 150$ à rilevante per la formazione			otoni X e tessuti biologici (a				
	(a)	Produzione di coppie (e	$^{+}/e^{-})$		(c)	Effetto fotoelettrico.					
	(b)	Scattering di Rayleigh (coeren	te).	(d)	Effetto Compton.					
17.	La "cata	astrofe ultravioletta" è un j	proble	ma sorto nello studio della	a radiaz	zione di corpo nero perch	né la fisica classica prevedeva:				
	(a)	Un'intensità energetica	nulla p	oer lunghezze d'onda molt	to picc	ole.					

(d) La variazione è indipendente dall'angolo $\theta.$

(a) Della teoria della relatività di Einstein.

(b) Del modello atomico di Bohr.

8. Il principio di indeterminazione è una conseguenza fondamentale:

	(b) (c) (d)	Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze). Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura. Che l'energia emessa fosse quantizzata fin dall'inizio.							
18.	Nell'effe	Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?							
	(a)	Passa attraverso l'elettrone sen	za interagire.						
	(b)								
	(c)	Viene diffuso con una frequenz	a maggiore (lunghezza d'o	nda minore).					
	(d)	Viene assorbito completamente	e dall'elettrone.						
19.	9. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a u stato definito (vivo o morto)?								
	(a)	La volontà del gatto.							
	(b)	(b) L'atto di osservazione o misurazione (apertura della scatola).							
	(c) Il tempo trascorso dall'inizio dell'esperimento.								
(d) Il decadimento dell'atomo radioattivo all'interno della scatola.									
20.	Comple	tare la seguente reazione di deca	adimento beta meno (β^-) :	$_{6}^{14}\mathrm{C}\rightarrow ?+e^{-}+\bar{\nu}_{e}$					
	(a)	$^{14}_{7}N$ (b)	$^{13}_{6}\mathrm{C}$	(c) $^{14}_{6}$ C	(d) ${}_{5}^{14}B$				