目录

1	矩阵基本概念	4
	1.1 行列式	4
	1.2 矩阵类型	4
	1.3 矩阵行列式	
	1.4 逆矩阵	
	1.5 矩阵的秩	5
	1.6 矩阵的迹	5
	1.7 特征值和特征向量	6
	1.8 相似矩阵	7
2	欧式空间和酉空间	7
	2.1 共轭转置	7
	2.2 欧式空间与酉空间	8
	2.3 內积	
	2.3.1 內积运算	
	2.3.2 內积性质	
	2.4 模(范数)	
	2.5 正交	
	2.6 酉(U)阵	12
	2.6.1 U 阵定义	12
	2.6.2 U 阵性质	12
	2.7 Jordan 标准形	13
	2.7.1 概念	13
	2.7.2 基本求法	
_	2.7.3 幂零性质	
3	矩阵分解	
	3.1 QR 分解	
	3.1.1 定理	
	3.1.2 Q、R 的求法	
	3.2.1 定义	
	3.2.3 扩展性质	

	3.2.4 应用	17
	3.3 秩一/满秩分解	18
	3.3.1 秩一分解	18
	3.3.2 秩一方阵公式	
	3.3.3 满秩分解	19
	3.3.4 满秩分解的求法	19
	3.4 正规矩阵及 Schur 分解	20
	3.4.1 Schur 引理	20
	3.4.2 正规矩阵	20
	3.4.3 定理与推论	22
	3.5 厄米特(Hermite)分解	23
	3.5.1 定理	23
	3.5.2 应用	24
	3.5.3 正定矩阵(Hermite 阵的一种)	25
	3.5.4 Hermite 阵的性质	25
	3.5.5 常见的 Hermite 阵	26
	3.5.6 斜 Hermite 分解	26
	3.6 特征值/酉阵 Q 的求解技巧	26
	3.6.1 平移法则(求特征根)	26
	3.6.2 特殊矩阵分解酉阵 Q 的求解方法	27
	3.6.3 换位公式(求特征根)	29
	3.7 奇异值分解	31
	3.7.1 一些定理	31
	3.7.2 正奇异值	32
	3.7.3 简奇异值分解与奇异值分解	33
	3.7.4 简奇异值分解方法	33
	3.7.5 推论	36
	3.8 谱分解	39
	3.8.1 单纯阵	39
	3.8.2 零化式	39
	3.8.3 谱分解	41
	3.8.4 谱分解的求法	43
	3.8.5 谱分解的应用	45
4	广义逆矩阵	49
	4.1 广义逆矩阵的定义	49
	4.2 性质	50
	4.3 广义逆求解方式	51
	4.4 正规方程	52
	T-T 上/九/J/ /工	32

	4.5 最二乘小解	53
	4.6 补充公式	55
	4.7 A-定义与性质	56
	4.7.1 A-定义	56
	4.7.2 A-相关公式	57
	4.7.3 更多广逆	58
5	矩阵分析	59
	5.1 向量范数	59
	5.1.1 向量范数	59
	5.1.2 常见向量范数	59
	5.2 矩阵范数	60
	5.2.1 定义	60
	5.2.2 常见的矩阵范数	61
	5.2.3 谱半径	62
	5.2.4 算子范数	63
	5.2.5 小范数定理	66
	5.3 矩阵级数	67
	5.4 特征根估计	70
	5.4.1 估计方法	70
	5.4.2 盖尔(Ger)圆盘	70
	5.5 矩阵函数	72
	5.5.1 收敛定理	72
	5.5.2 常见解析函数	73
	5.5.3 幂等公式	74
	5.5.4 分块公式	74
	5.5.5 根遗传公式 (不要求是单纯阵)	76
	5.5.6 Euler 公式	76
	5.5.7 幂 0 公式	77
	5.5.8 矩阵函数求法总结	78
	5.6 矩阵函数应用	79
	5.6.1 基本定义与公式	79
	5.6.2 应用	79
	5.6.3 求解齐次线性微分方程组	80
6	矩阵直积	82
	6.1 定义与性质	82
	6.1.1 定义	82
	6.1.2 基本性质	82
	6.1.3 扩展性质	83

1 矩阵基本概念

1.1 行列式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{(p_1 p_2 \dots p_n)} (-1)^{\tau(p_1 p_2 \dots p_n)} a_{1p_1} a_{2p_2} \dots a_{np_n}$$

其中 $p_1p_2 \dots p_n$ 指的是自然数 1,2,...,n 的一个排列, $\tau(p_1p_2 \dots p_n)$ 为排列 $p_1p_2 \dots p_n$ 的逆序数。

逆序数:一个自然数排列中,前面数大于后面数的组合叫做一个逆序, 逆序的总和叫做逆序数。

1.2 矩阵类型

实数矩阵、复数矩阵、方阵、行/列矩阵(行/列向量)

系数矩阵: 方程组的系数组成的矩阵

单位矩阵: 主对角线为1, 其他全为0的方阵

对角矩阵:除主对角线以外全是0的矩阵,常写为 $diag(a_1,a_2,...,a_n)$

奇异矩阵: det(A)=0

1.3 矩阵行列式

N 阶矩阵 A 的行列式记作 det(A), 行列式的相关定理:

i. $det(A) = det(A^T)$

ii. det(AB) = det(A) * det(B)

- iii. 若 A 为一个 n 阶三角矩阵,则 det(A)等于矩阵 A 对角元素的乘积, 也就是矩阵 A 特征值的乘积
- iv. A为n阶矩阵,若A的某行或某列全为0,或者A有两行或两列相等,则 $\det(A)=0$

1.4 逆矩阵

设 A 为 n 阶矩阵,在相同数域上存在 n 阶矩阵 B,是得 AB = I(单位矩阵),则 A、B 互为逆矩阵,非奇异矩阵。

A 的逆矩阵记作 A^{-1} :

- i. 矩阵 A 可逆 \leftrightarrow det(A) ≠ 0 \leftrightarrow 矩阵A满秩
- ii. 矩阵 A 可逆,则 Ax=b 有唯一解(两边同乘以 A^{-1} , $x=A^{-1}b$)
- iii. 逆矩阵具有唯一性
- iv. 伴随矩阵 $A^* = |A| * A^{-1}$

1.5 矩阵的秩

矩阵中线性无关的纵列的最大个数叫做列秩,线性无关的行列的最大个 数叫做行秩。

方阵的行秩和列秩相等,简称为矩阵的秩,记为 rank(A)或 r(A)或 rk(A)。 对于矩阵 A 而言,其解空间为矩阵 X,即 AX=0。则 r(A)=n-dimN(X)。即 A 的秩等于 A 的行数(或列数,选较小的)-解空间的维度。

1.6 矩阵的迹

N 阶矩阵主对角线元素的和叫做矩阵的迹,记作 tr(A)。

- i. 迹是 n 阶矩阵所有特征值的和
- ii. tr(mA + nB) = m * tr(A) + n * tr(B)
- iii. tr(AB) = tr(BA)

1.7 特征值和特征向量

设 A 是 n 阶方阵,如果数 λ 和 n 维非零列向量 x 使关系式 $Ax=\lambda x$ 成立,那么这样的数 λ 称为矩阵 A 特征值,非零向量 x 称为 A 的对应于特征值 λ 的特征向量。

式 $Ax=\lambda x$ 也可写成($A-\lambda E$)X=0。这是 n 个未知数 n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 $|A-\lambda E|=0$.

矩阵 A 的特征多项式: $P_A(\lambda) = |\lambda E - A| = \det(\lambda E - A)$

Hamilton-Cayley 定理:

矩阵 A 的特征多项式也是它的零化多项式,即对于矩阵 A 的特征多项

式:
$$P_A(\lambda) = \det(\lambda I - A) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda^1 + a_0$$

有: $P_A(A) = \det(AI - A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A^1 + a_0 = 0$

- i. 三角/对角矩阵对角元即为它的特征值
- ii. N 阶矩阵的迹等于其特征值之和
- iii. 相似矩阵特征值相同
- iv. $\lambda(AB) = \lambda(BA)$ (AB 为方阵)
- v. $\lambda(kA) = k * \lambda(A)$
- vi. $\lambda(A^k) = [\lambda(A)]^k$

证明:

设矩阵 A 的特征根为 λ ,则AX = $\lambda X \to A^2 X = A\lambda X = \lambda AX = \lambda^2 X$,所以 λ^2 为矩阵 A^2 的特征根,同理可证 $\lambda(A^k) = \lambda^k$

1.8 相似矩阵

设 A,B 为 n 阶矩阵,如果有 n 阶可逆矩阵 P 存在,使得: $P^{-1}AP = B$,则称矩阵 A 和矩阵 B 相似,记作A~B。

运算 $P^{-1}AP$ 称为相似变换,P 称为相似变换矩阵。 性质:

- i. A~A
- ii. 若A~B,则B~A
- iii. 若A~B, B~C, 则A~C
- iv. 若A~B,则 A,B 秩相同、行列式相同、迹相同,**特征值和特征多项** 式相同
- v. 若A~B,则A、B具有相同的可逆性

若矩阵相似于某个对角矩阵,则该矩阵可对角化。

2 欧式空间和酉空间

2.1 共轭转置

数的共轭转置:

实数 x 的共轭仍然是实数本身,复数z = a + bi的共轭 $\overline{z} = a - bi$ 。

数 x 的共轭转置 $x^H = \bar{x}(复数) = x(实数)$

向量的共轭转置:

向量
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
的共轭转置 $X^H = (\bar{x}_1 \quad \overline{\dots} \quad \bar{x}_n)$

$$X^{H}Y = \overline{x_1}y_1 + \cdots + \overline{x_n}y_n$$

$$Y^{H}X = \overline{y_1}x_1 + \dots + \overline{y_n}x_n = \overline{x_1}y_1 + \dots + \overline{x_n}y_n = \overline{X^{H}Y}$$

矩阵的共轭转置:

矩阵 $A = (X_1 \dots X_n)$, 其中 X_i 是列向量, 矩阵 A 的共轭转置

$$A^{H} = \begin{pmatrix} X^{H}_{1} \\ \dots \\ X^{H}_{n} \end{pmatrix}$$

共轭与转置的性质:

i.
$$\overline{AB} = \overline{A}\overline{B}$$

ii.
$$(AB)^T = B^T A^T$$

iii.
$$A^H = A^T$$
(实数矩阵)

共轭转置的一些性质:

i.
$$(A^{H})^{H} = A$$

ii.
$$(kA)^H = \bar{k}A^H$$

iii.
$$(A + B)^H = A^H + B^H$$
 $(A - B)^H = A^H - B^H$

iv.
$$(AB)^H = B^H A^H$$

v.
$$\lambda(A) = \overline{\lambda(A^H)}$$

2.2 欧式空间与酉空间

欧式空间:有限维的实数内积空间

$$R^n = \{$$
全体实向量 $X = (x_1, x_2, ... x_n)^T \mid x_i \in R \land 1 \le i \le n \}$ 酉空间:有限维的复数内积空间

$$C^n = \{$$
全体复向量 $Z = (z_1, z_2, \dots z_n)^T \mid z_i = a_i + ib \in C \land 1 \le C$

2.3 內积

 $i \leq n$

在实数 R(复数 C)的有限维线性空间 V 内,若V X, $Y \in V$,有一种规则(X,Y) 使之对应一个实数(复数),则称该实数(复数)为 X,Y 的内积,该规则满足以下条件:

i. 对称性:
$$(X,Y) = (Y,X)$$
实数 = $\overline{(Y,X)}$ 复数

ii. 可加性:
$$(X + Y, Z) = (X, Z) + (Y, Z)$$

iii. 齐次性:
$$(kX,Y) = k(X,Y)$$

iv. 非负性: $(X,X) \ge 0$,当且仅当 $X = \theta$ 时,(X,X) = 0称 V 为实(复)内积空间。

2.3.1 內积运算

令
$$X = (x_1, x_2, ... x_n)^T, \qquad Y = (y_1, y_2, ... y_n)^T$$

若 $X, Y \in \mathbb{R}^n,$

$$(X,Y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = Y^H X$$

若X,Y \in C^n ,

$$(X,Y) = x_1\overline{y_1} + x_2\overline{y_2} + \cdots + x_n\overline{y_n} = Y^HX$$

所以
$$(X,Y) = Y^H X = \overline{X^H Y} = \overline{(Y,X)}$$

2.3.2 內积性质

上述四条:对称、可加、齐次、非负

i.
$$(X,Y) = (Y,X)$$
实数 = $\overline{(Y,X)}$ 复数

ii.
$$(kX, Y) = Y^H(kX) = k(Y^HX) = k(Y, X)$$

 $(X, kY) = (kY)^H X = \bar{k}Y^H X = \bar{k}(X, Y)$

2.4 模(范数)

定义: 非负实数 $\sqrt{(X,X)}$ 称为X的长度(模或范数),记为||X||

定理: 设 V 是欧氏空间,则:

i.
$$||kX|| = |k| * ||X||$$

ii.
$$||X + Y||^2 + ||X - Y||^2 = 2(||X||^2 + ||Y||^2)$$

iii.
$$|(X,Y)| \le ||X|| * ||Y||$$

iv.
$$||X + Y|| \le ||X|| + ||Y||$$

复数向量的模:

复数的模:
$$|a + bi| = \sqrt{a^2 + b^2}$$

复向量的模:
$$|(a_1+b_1i,\cdots,a_n+b_ni)|=\sqrt{\sum({a_j}^2+{b_j}^2)}$$

2.5 正交

定义: 欧氏空间中, 若向量X, Y满足(X, Y) = 0, 则称X与 Y正交, 记作 $X \perp Y$ 。 定理:

i. $X \perp Y \leftrightarrow ||X + Y||^2 = ||X||^2 + ||Y||^2$ 推广,若 $X_1, X_2, ... X_n$ 两两正交,则

$$\left\| \sum_{i=1}^{n} X_i \right\|^2 = \sum_{i=1}^{n} \|X_i\|^2$$

- ii. 设 $X_1, X_2, ... X_n$ 为 V 中非零向量的两两正交向量组,则 $X_1, X_2, ... X_n$ 必线性无关。
- iii. 对于 n 维欧氏空间的任一基 $X_1, X_2, ... X_n$,均可找到一组标准正交基。

标准正交基的求法:

设正交基为 $Y_1, Y_2, ..., Y_n$.

取 $Y_1 = X_1$,令 $Y_2 = X_2 + kY_1$,由于 Y_1, Y_2 正交,所以(Y_1, Y_2) = 0

由 $(Y_1,Y_2)=(Y_2,Y_1)=(X_2+kY_1,Y_1)=(X_2,Y_1)+k(Y_1,Y_1)=0$ 可得:

$$k = -\frac{(X_2, Y_1)}{(Y_1, Y_1)}$$

令 $Y_3 = X_3 + k_1Y_1 + k_2Y_2$,由 $(Y_1, Y_3) = (Y_2, Y_3) = 0$ 可得:

$$k_2 = -\frac{(X_3, Y_2)}{(Y_2, Y_2)}$$
, $k_1 = -\frac{(X_3, Y_1)}{(Y_1, Y_1)}$

因此, $Y_{m+1} = X_{m+1} + \sum_{i=1}^{m} k_i Y_i$,其中:

$$k_i = -\frac{(X_{m+1}, Y_i)}{(Y_i, Y_i)}$$

此时得到了一组正交基 $Y_1,Y_2,...,Y_n$,将其单位化即可得到标准正交基 $Z_1,Z_2,...,Z_n$.

$$Z_i = \frac{1}{\|Y_i\|} Y_i$$

2.6 酉(U)阵

2.6.1 U 阵定义

1. 若 $A = A_{n*p} = (\alpha_1, \dots, \alpha_p)$,各列正交, $\alpha_1 \perp \dots \perp \alpha_p$,则 $A^H A$ 为对角矩阵,称 A 为预备半 U 阵。

$$A^{H}A = \begin{pmatrix} \alpha_{1}^{H} \\ \vdots \\ \alpha_{p}^{H} \end{pmatrix} (\alpha_{1} \cdots \alpha_{p}) = \begin{pmatrix} \alpha_{1}^{H}\alpha_{1} & \alpha_{1}^{H}\alpha_{2} & \cdots \\ \alpha_{2}^{H}\alpha_{1} & \alpha_{2}^{H}\alpha_{2} & \cdots \\ \vdots & \vdots & \cdots \end{pmatrix}$$

$$= \begin{pmatrix} \overline{(\alpha_{1}, \alpha_{1})} & \overline{(\alpha_{1}, \alpha_{2})} & \cdots \\ \overline{(\alpha_{2}, \alpha_{1})} & \overline{(\alpha_{2}, \alpha_{2})} & \cdots \\ \vdots & \vdots & \cdots \end{pmatrix}$$

$$= \begin{pmatrix} |\alpha_{1}|^{2} & 0 & 0 \\ 0 & |\alpha_{2}|^{2} & \cdots \\ 0 & 0 & |\alpha_{p}|^{2} \end{pmatrix}$$

- 2. 若上述 A 中的 α_1 , …, α_p 都是单位长,则 $A^HA = I_p$,称 A 为半 U 阵。
- 3. 若上述 A 为方阵,则称 A 为 U 阵。

2.6.2 U 阵性质

1.
$$A^H A = A A^H = I$$
, $A^H = A^{-1}$

2.
$$(AX, AY) = (X, Y)$$

 $(AX, AY) = (AY)^{H}(AX) = Y^{H}A^{H}AX = Y^{H}IX = Y^{H}X = (X, Y)$

3.
$$||AX||^2 = (AX, AX) = (X, X) = ||X||^2$$

4.
$$X_1 \perp \cdots \perp X_n \rightarrow AX_1 \perp \cdots \perp AX_n$$

5. 酉阵特征根的模为 1 证明:对于任意酉阵 U, $UX = \lambda X$

两边同时取模的平方: $|UX|^2 = |\lambda X|^2$

即:

$$(UX, UX) = (\lambda X, \lambda X) \to X^H U^H UX = X^H \lambda^H \lambda X \to X^H X = |\lambda|^2 X^H X$$
$$\to |\lambda| = 1$$

2.7 Jordan 标准形

2.7.1 概念

定义:

每个n阶的复数矩阵(单纯阵)都相似于一个Jordan标准形矩阵,该矩阵如果不考虑若当块的次序,则Jordan标准形是唯一的。

若当块:

$$J_t(\lambda) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}_{t * t}$$

特殊的

$$J_1(\lambda) = (\lambda)$$

$$J_t = J_t(0) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}_{t \times t}$$

若当标准形:

$$J = \begin{pmatrix} J_{t_1}(\lambda_1) & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & J_{t_k}(\lambda_k) \end{pmatrix}_{n * n} (t_1 + \dots + t_k = n)$$

2.7.2 基本求法

对于 n 阶矩阵 A, 其 Jordan 标准求法如下:

- 1. 对 $\lambda I A$ 进行初等行变换,转换成一个对角阵,对角元为 1 或者a(t),其中 $a(t) = (\lambda \lambda_1)^{t_1} ... (\lambda \lambda_j)^{t_j}$
- 2. 记所有a(t)中的元素为 $(\lambda \lambda_1)^{t_1}$, ..., $(\lambda \lambda_k)^{t_k}$, 其中 $(t_1 + \cdots + t_k = n)$

3. 则
$$J = \begin{pmatrix} J_{t_1}(\lambda_1) & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & J_{t_k}(\lambda_k) \end{pmatrix}_{n*n}$$

2.7.3 幂零性质

若 n 阶矩阵 A 满足: $A^t = 0$, 则

- 1. 所有 Jordan 块的对角元都为 0
- 2. Jordan 块的最大阶数为t,且 $J_t(0)$ 是其中的一个 Jordan 块
- 3. Jordan 块的个数等于矩阵 A 的零度(解空间维度= n r(A))
- 4. 所有 Jordan 块的阶数和为 n

若矩阵 A 的最小零化式为: $(A - \lambda)^t = 0$,则

1. $J_t(\lambda)$ 是其中的一个 Jordan 块

若矩阵 A 的特征多项式 $|\lambda I - A| = (\lambda - \lambda_1)^{t_1}, ..., (\lambda - \lambda_j)^{t_j}, (\lambda_i \neq \lambda_j),$ 则:

- 1. Jordan 块的对角元分别为 $\lambda_1, ..., \lambda_i$
- 2. Jordan 块分别为 $J_{t_1}(\lambda_1), ..., J_{t_j}(\lambda_j)$

例题:

1. 矩阵A =
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

解: $A^2 = 0$,所以 $J_2(0)$ 是其最大阶数的 Jordan 块

因为r(A) = 2,所以零度为 2,所以共有两 Jordan 块

所以
$$J = \begin{pmatrix} J_2(0) & 0 \\ 0 & J_2(0) \end{pmatrix}$$

2. 矩阵A =
$$\begin{pmatrix} 0 & -4 & 0 \\ 1 & -4 & 0 \\ 1 & -2 & -2 \end{pmatrix}$$

解:
$$\lambda(A) = \{-2, -2, -2\} |\lambda I - A| = (\lambda + 2)^3$$

所以 Jordan 的对角元都是-2

又因为最小式 $m(x) = (x + 2)^2$,所以一个 Jordan 块为 $J_2(-2)$

所以
$$J = \begin{pmatrix} J_2(-2) & 0 \\ 0 & J_1(-2) \end{pmatrix}$$

3 矩阵分解

3.1 QR 分解

3.1.1 定理

设满秩矩阵 $A \in R^{n*n}$,则存在正交矩阵Q及正线上三角阵R,满足A = QR,且分解是唯一。

正交矩阵: $QQ^H = I$, Q为 U 阵

正线上三角阵: 主对角线上元为正

由A = QR 可得, $Q^H A = Q^H QR = R$

3.1.2 Q、R 的求法

记 $A = (X_1, \cdots, X_p)$,由 3.5 节正交基的求法可以求得一组标准正交基 $\left(Z_1, \cdots, Z_p \right) = Q$

$$\begin{split} Z_k &= \frac{_1}{\|Y_k\|} Y_k \\ Y_k &= X_k - \sum_{i=1}^{k-1} \frac{(X_k, Y_i)}{(Y_i, Y_i)} Y_i \end{split}$$

$$R = Q^H A$$

3.2 镜面阵

3.2.1 定义

矩阵 $A = I - \frac{2XX^H}{\|X\|^2}$, $X \in C^n$ 被称为镜面阵,可以把矩阵 A 理解为一个平面,向量 X 为这个平面的法向量。

3.2.2 性质

1.
$$A = A^{H} = A^{-1}$$
 $A^{2} = I$
$$A^{H} = I - \frac{2}{\|X\|^{2}} (XX^{H})^{H} = A$$

$$A^{2} = I^{2} - \frac{4}{\|X\|^{2}} XX^{H} + \frac{4}{\|X\|^{4}} (XX^{H})^{2}$$
 因为 $(XX^{H})^{2} = XX^{H}XX^{H} = X(X,X)X^{H} = X\|X\|^{2}X^{H}$ 所以 $A^{2} = I$ 因为 $AA^{-1} = I = A^{2}$,所以 $A = A^{-1}$

- 2. A为U阵,各列正交+单位长+方阵
- 3. AX = -X

X 是镜面 A 的法向量, 所以AX即为 X 关于镜面 A 的投影-X。

4. 若 $X \perp Y$,则AY = Y

因为 $X \perp Y$,所以 Y 在镜面 A 上,所以 AY 即为镜面 A 上的向量 Y 关于镜面的投影,仍是 Y。

性质3和4都可以带入向量推导出来。

3.2.3 扩展性质

对于
$$A = I - \frac{2XX^H}{\|X\|^2}$$
, $X \in C^n$,若 $X = \alpha - \beta$,则有以下性质:

1.
$$A\alpha = \beta$$

3.2.4 应用

利用镜面阵对矩阵 A 进行 QR 分解。

设矩阵
$$\mathbf{A} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}$$
,

记矩阵
$$A_i = \begin{pmatrix} a_{i,i} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots \\ a_{n,i} & \cdots & a_{n,n} \end{pmatrix}$$
,即 A_i 为矩阵A去掉前 i-1 行和前 i-1 列

之后的矩阵。

$$P_1 A = P_1 A_1 = \begin{pmatrix} |\alpha_1| & \cdots \\ 0 & A_2 \end{pmatrix}$$

对 A_2 也求出一个 P_2 , 此时

$$P'_{2}P_{1}A = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & P_{2} \end{pmatrix} P_{1}A = \begin{pmatrix} |\alpha_{1}| & \cdots & \cdots \\ 0 & |\alpha'_{2}| & \cdots \\ \vdots & 0 & A_{3} \end{pmatrix}$$

$$P'_{2} \cdots P'_{2}P_{1}A = \begin{pmatrix} |\alpha_{1}| & \cdots & \cdots \\ 0 & \cdots & -R_{2} & \text{fix} | \mathcal{I} P'_{2} \cdots P'_{2}P_{1} = R_{2} \end{pmatrix}$$

这样
$$P'_n \cdots P'_2 P_1 A = \begin{pmatrix} |\alpha_1| & \dots & \dots \\ 0 & \dots & \dots \\ \vdots & 0 & |\alpha'_n| \end{pmatrix} = R$$
,所以 $P'_n \cdots P'_2 P_1 = Q^H$

3.3 秩一/满秩分解

3.3.1 秩一分解

设 $A = A_{m*n}$,秩 r(A) = rank(A) = 1,即各列成倍数关系

则A =
$$\alpha\beta = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} (k_1 \quad \cdots \quad k_n)$$

3.3.2 秩一方阵公式

$$A = A_{n*n}$$
,秩 $r(A)=rank(A)=1$

1. 秩一分解:
$$A = \alpha\beta = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} (b_1 \cdots b_n)$$

- 2. $\lambda(A) = \{tr(A), 0, \cdots 0\}$ 。 A的唯一非零特征根就是A的迹(对角元素之和),并且相应的特征向量为 α ,即A $\alpha = \lambda_1 \alpha$ 。
- 3. 对于 $b_1x_1 + \cdots + b_nx_n = 0$,即 $\beta X = 0$,恰有 n-1 个无关解 $\{Y_1, \cdots Y_{n-1}\}$,是矩阵 A 的 0 根特征向量: $AY_1 = 0Y_1, \cdots, AY_{n-1} = 0Y_{n-1}$.

证明:
$$AY_i = 0Y_i = 0 = (\alpha\beta)Y_i = \alpha(\beta Y_i)$$

 $\beta Y_i = 0$

3.3.3 满秩分解

定理: 任一矩阵可分解为一个列满秩(高阵)和行满秩(低阵)矩阵的乘积。记号 $A \in C_r^{m*n}$,表示 r(A)=r,且 $A \in C^{m*n}$

满秩分解定理可表示为: 设 $A \in C_r^{m*n}(r>0)$,则存在 $B \in C_r^{m*r}$, $C \in C_r^{r*n}$,使A = BC。

3.3.4 满秩分解的求法

对于矩阵
$$A_{m*n}=(\alpha_1,\alpha_2,...,\alpha_n)=\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}$$
,对其进行初等**行**

变换之后可以得到矩阵 A 的标准形 \hat{A}_r , \hat{A}_r 只有前 r 行包含非零元, 其他行全为 0.

$$\hat{A}_r = \begin{pmatrix} & 1 & & 0 & \\ \dots & 0 & \dots & 1 & \dots \\ & \vdots & & \vdots & & \\ & 0 & & 0 & & \\ & & \mathbf{0} & & & \end{pmatrix}$$

并且 \hat{A}_r 的前 r 行的若干列可以组成一个单位阵I,即这些列只有一个非零元 1,记这些列的列号为 $\{\beta_1,\cdots,\beta_r\}$.

此时, \hat{A}_r 的前 r 行构成的新矩阵即为 C_{r*n} ,原矩阵A中 $\{\beta_1,\cdots,\beta_r\}$ 列构成的新矩阵就是 B_{m*r} 。

例题:
$$A = \begin{pmatrix} 0 & 2i & i & 0 & 4+2i & 1 \\ 0 & 0 & 0 & -3 & -6 & -3-3i \\ 0 & 2 & 1 & 1 & 4-4i & 1 \end{pmatrix}$$
 对其进行初等变换之后 $\hat{A}_r = \begin{pmatrix} 0 & \mathbf{1} & 0.5 & \mathbf{0} & 1-2i & -0.5i \\ 0 & \mathbf{0} & 0 & \mathbf{1} & 2 & 1+i \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

此时
$$C_{r*n} = \begin{pmatrix} 0 & 1 & 0.5 & 0 & 1-2i & -0.5i \\ 0 & 0 & 0 & & 1 & 2 & 1+i \end{pmatrix}$$

$$B_{m*r} = \begin{pmatrix} 2i & 0 \\ 0 & -3 \\ 2 & 1 \end{pmatrix}$$

3.4 正规矩阵及 Schur 分解

3.4.1 Schur 引理

已知任意矩阵 $A \in C^{m*n}$ 都相似与一上三角矩阵,即存在矩阵 P 使得 $P^{-1}AP$ 为上三角矩阵。

由此可得定理:对任意矩阵 $A \in C^{m*n}$,存在U阵U,使得:

$$U^{H}AU = \begin{pmatrix} \lambda_{1} & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix}$$

即任意复方阵 A 酉相似与一上三角阵,且主对角元为 A 的特征值。

3.4.2 正规矩阵

设 $A \in C^{m*n}$,若 A 满足 $A^H A = AA^H$,则称 A(方阵)为正规矩阵(规范阵)。 若A正规,则 A^H 也正规。

正规矩阵包括:

1) 厄米特阵: $A^H = A$, 实对称矩阵: $A^T = A$

2) 斜厄米特阵:
$$A^H = -A$$
 , 实反对称矩阵: $A^T = -A$

3) 酉阵:
$$A^{-1} = A^H$$
 实正交阵: $A^T = A^{-1}$

4) 复对角矩阵:
$$\begin{pmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{pmatrix}$$

引理(平移法): A正规 \leftrightarrow kA \pm cI正规

证明:
$$\diamondsuit B = kA - cI$$

$$B^{H}B = (kA - cI)^{H}(kA - cI) = (kA^{H} - \bar{c}I)(kA - cI) = k^{2}A^{H}A - kcA^{H} - \bar{c}kA + c\bar{c}I = k^{2}AA^{H} - kcA^{H} - \bar{c}kA + c\bar{c}I = (kA - cI)kA^{H} - (kA - cI)\bar{c} = BB^{H}$$

Eg1:
$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 正规?
$$\text{解: } A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + b \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = b \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + aI$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 为实反对称阵,正规,所以 A 正规

引理(酉相似): A正规 $\leftrightarrow Q^H AQ$ 正规, Q为任意酉阵

A 非正规 ↔ Q^H AQ 非正规, Q 为任意酉阵

引理(分块上三角): 若 $\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{pmatrix}$ 正规 \leftrightarrow C为0阵,且B、D都正规(条件: B、D为方阵)

证明: 迹公式:
$$\operatorname{tr}(A^H A) = \operatorname{tr}(AA^H) = \sum \left|a_{ij}\right|^2$$
 $\operatorname{tr}(A^H A) = 0 \to A \to 0$ 阵

$$AA^{H} = \begin{pmatrix} BB^{H} + CC^{H} & CD^{H} \\ DC^{H} & DD^{H} \end{pmatrix} = A^{H}A = \begin{pmatrix} B^{H}B & B^{H}C \\ C^{H}B & C^{H}C + D^{H}D \end{pmatrix}$$
 $BB^{H} + CC^{H} = B^{H}B$
 $DD^{H} = C^{H}C + D^{H}D$
因为: $tr(BB^{H}) + tr(CC^{H}) = tr(B^{H}B)$ $tr(BB^{H}) = tr(B^{H}B)$
所以: $tr(CC^{H}) = 0$, C 为 0 阵, $CC^{H}和C^{H}C$ 也为 0 阵

因此,可以得到以下推论:

- 1) 若上三角矩阵 A 正规,则 A 为对角阵。
- 2) 若 A 为严格上三角(不是对角阵),则 A 非正规。

证明:

记
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & & A_1 \end{pmatrix}$$
,由引理可知, $a_{12} = \cdots = a_{1n} = 0$, A_1 正规。 对 A_i 进行递归,可得 $a_{i,i+1} = \cdots = a_{i,n} = 0$,所以 A 为对角阵。

3.4.3 定理与推论

定理: 设 $A \in C^{m*n}$, 则 A 是正规矩阵当且仅当 A 酉相似于一个对角阵,即: $A^HA = AA^H \leftrightarrow U^HAU = diag\{\lambda_1, \cdots, \lambda_n\}$

利用上节引理证明:

A 正规
$$\rightarrow U^H A U = D$$
正规

D 正规,且 D 为上三角 → D 为对角阵

直接证明:

充分性:

由 Schur 引理可知, $U^HAU=K$, $A=UKU^H$,K 为上三角阵 $A^HA=UK^HU^HUKU^H=UK^HKU^H$ $AA^H=UKU^HUK^HU^H=UKK^HU^H$ 因为 $A^HA=AA^H$,所以 $K^HK=KK^H$ 记 $K=\left(r_{ij}\right)_{n*n}, r_{ij}=0 (i>j)$,由 $K^HK=KK^H$ 可得 $r_{ij}=0 (i< j)$,所

必要性:

以K为对角阵

$$U^HAU = diag\{\lambda_1, \cdots, \lambda_n\}, \quad U^HA^HU = diag\{\overline{\lambda_1}, \cdots, \overline{\lambda_n}\}$$
 $(U^HAU)(U^HA^HU) = diag\{|\lambda_1|^2, \cdots, |\lambda_n|^2\} = U^HAA^HU$ $(U^HA^HU)(U^HAU) = diag\{|\lambda_1|^2, \cdots, |\lambda_n|^2\} = U^HA^HAU$ 所以 $A^HA = AA^H$

推论 1: A 为正规阵,当且仅当 A 有 n 个特征向量构成 C^{m*n} 的一组标准正交基,且 A 不同特征值得特征向量正交。

3.5 厄米特(Hermite)分解

3.5.1 定理

1. 若 $A \in C^{n*n}$, A为厄米特阵 $(A = A^H)$, 则存在酉阵Q, 使得:

$$Q^{-1}AQ = Q^{H}AQ = \begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix} (\text{对角阵})$$

且 $\lambda_1 \cdots \lambda_n$ 都为实数。

证明:

由许尔(Schur)分解可知:
$$Q^H A Q = D = \begin{pmatrix} \lambda_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
 $(Q^H A Q)^H = Q^H A^H Q = Q^H A Q \to D^H = D$ 所以*= 0 , $\lambda_i = \overline{\lambda}_l$, λ_i 为实数。

特征向量,且线性无关。

证明:
$$A = PDP^{-1} \to AP = PD \to (AX_1, \cdots, AX_n) = (\lambda_1 X_1, \cdots, \lambda_n X_n)$$
 所以P的各列都是 A 的不同特征根的特征向量,所以他们线性 无关

3. 若 $A \in C^{n*n}$,A为厄米特阵($A = A^H$),则 A 恰有 n 个相互正交的特征 向量。(有定理 2 可得)

3.5.2 应用

- 1. 若 $A = A^H$, $X \in C^n$,则 $f(X) = X^H A X$ 的值都为实数。 $f^H = (X^H A X)^H = X^H A^H X = X^H A X = f$ 因为 f 为一个数,所以 f 为实数。
- 2. 若 $A = A^H$,任取 $\lambda_i \in \lambda(A)$, $\lambda(A)$ 为 A 的特征值集合,则 $\lambda_i = \frac{X_i^H A X_i}{|X_i|^2} (X_i 为 \lambda_i 对应的非零特征向量)$ 证明:

$$AX_i = \lambda_i X_i \rightarrow X_i^H AX_i = \lambda_i X_i^H X_i = \lambda_i |X_i|^2$$

3. 由上述两点可得: Hermite 阵的特征值都为实数。

3.5.3 正定矩阵(Hermite 阵的一种)

定义:对于一个 **Hermite 阵 A**,若对任意 $X \in C^n$, $f(X) = X^H AX \ge 0$,则称 A 为半正定阵,记 $A \ge 0$ 。对任意非零 $X \in C^n$, $f(X) = X^H AX > 0$,则称 A 为正定阵,记A > 0。

结合
$$\lambda_i = \frac{X_i^H A X_i}{|X_i|^2}$$
可得:

$$A \ge 0$$
, $A = A^H \leftrightarrow \lambda_i \ge 0$

$$A > 0$$
, $A = A^H \leftrightarrow \lambda_i > 0$

3.5.4 Hermite 阵的性质

1.
$$A = A^H \rightarrow \lambda(A)$$
 全为实数 (由 3.5.2(1)可证)

2.
$$A = A^H \rightarrow f(X) = X^H A X$$
的值全为实数

3.
$$A = A^H$$
, $A \ge 0 \leftrightarrow \lambda_i \ge 0$

4.
$$A = A^H$$
, $A > 0 \leftrightarrow \lambda_i > 0$

5. 若
$$A \ge 0$$
, $A = A^H$,则存在 $B \ge 0$ 使得, $B^2 = A$,B叫做 A 的平方根,记 $B = \sqrt{A}$,可以写为 $A = (\sqrt{A})^2$

证明:
$$Q^H A Q = D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

$$\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

$$\mathfrak{P}B = Q\sqrt{D}Q^H$$

$$B^{2} = (Q\sqrt{D}Q^{H})(Q\sqrt{D}Q^{H}) = QDQ^{H} = A$$

6. 对于任意矩阵 $A \in C^{m*n}$, $A^H A 和 A A^H$ 是半正定的厄米特阵

3.5.5 常见的 Hermite 阵

- 1. 实对称矩阵: $A^H = A^T = A$
- 2. 任一方阵 A, $A + A^H$ 为 Hermite 阵

3.5.6 斜 Hermite 分解

$$Q^{-1}AQ = Q^{H}AQ = \begin{pmatrix} b_{1}i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_{n}i \end{pmatrix} (対角阵)$$

 $\lambda(A) = \{b_1i, \dots, b_ni\}$ 为纯虚数。

证明:

$$A^{H} = -A \rightarrow \frac{A}{i}$$
为 Hermite 阵

所以: $Q^{H}\left(\frac{A}{i}\right)Q = D = \begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix}$
 $Q^{H}AQ = iD = \begin{pmatrix} \lambda_{1}i & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}i \end{pmatrix}$

3.6 特征值/酉阵 Q 的求解技巧

3.6.1 平移法则(求特征根)

思路:

将一个复杂矩阵转换成秩一矩阵 $A = \alpha \beta$,再利用秩一矩阵 $\lambda(A) = \{tr(A), 0, \dots, 0\}$ 特征向量= α ,求复杂矩阵的特征值。

平移法则:

矩阵 $kA \pm cI$ 与矩阵A具有相同的特征向量 $\{X_i\}$,并且:

$$\lambda (kA \pm cI) = \{k\lambda_1 \pm c, \dots, k\lambda_n \pm c\}, \quad \not\equiv \uparrow h \lambda (A) = \{\lambda_1, \dots, \lambda_n\}$$

例题:

$$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{pmatrix}$$
,求 λ (A)并给出一个特征向量。

解:

所以
$$\lambda$$
 (A - I) = {-4,0,0,0},特征向量 $\alpha = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$

所以
$$\lambda$$
 (A) = λ (A - I) + 1 = {-3,1,1,1}

$$A\alpha = -3\alpha$$

3.6.2 特殊矩阵分解酉阵 Q 的求解方法

适用范围: 正规矩阵的 Schur 分解、Hermite 分解

$$Q^{H}AQ = \begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix} (\text{对角阵})$$

求法:

- 1. 求 A 的特征根
- 2. 求 A 的特征向量
- 3. 求 A 特征向量的标准正交基
- 4. 以这些标准正交基为列向量的矩阵即为0

例题:

设A =
$$\begin{pmatrix} -1 & -3 & 3 & -3 \\ -3 & -1 & -3 & 3 \\ 3 & -3 & -1 & -3 \\ -3 & 3 & -3 & -1 \end{pmatrix}$$
,求正交阵 Q ,使得 $Q^H A Q$ 为对角阵。

解:

$$(A + 4I) = \begin{pmatrix} 3 & -3 & 3 & -3 \\ -3 & 3 & -3 & 3 \\ 3 & -3 & 3 & -3 \end{pmatrix} (R + 4I)$$

$$\lambda (A + 4I) = \{12,0,0,0\} \rightarrow \lambda (A) = \{8,-4,-4,-4\}$$

$$\lambda = 8 \text{ BH}, \quad \alpha_1 = (-1 \quad 1 \quad -1 \quad 1)^T$$

$$\lambda = -4 \text{ BH}, \quad \alpha_2 = (1 \quad 1 \quad 0 \quad 0)^T, \quad \alpha_3 = (1 \quad 0 \quad -1 \quad 0)^T,$$

$$\alpha_4 = (1 \quad 0 \quad 0 \quad 1)^T,$$

利用正交化法则:

$$Y_{m+1} = X_{m+1} + \sum_{i=1}^{m} k_i Y_i, \quad \sharp \div : \quad k_i = -\frac{(X_{m+1}, Y_i)}{(Y_i, Y_i)}$$

$$Y_1 = (-1, 1, -1, 1)$$

$$Y_2 = X_2 - \frac{(X_2, Y_1)}{(Y_1, Y_1)} Y_1 = (1, 1, 0, 0)$$

$$Y_3 = X_3 - \frac{(X_3, Y_1)}{(Y_1, Y_1)} Y_1 - \frac{(X_3, Y_2)}{(Y_2, Y_2)} Y_2 = (\frac{1}{2}, -\frac{1}{2}, -1, 0)$$

$$Y_4 = X_4 - \frac{(X_4, Y_1)}{(Y_1, Y_1)} Y_1 - \frac{(X_4, Y_2)}{(Y_2, Y_2)} Y_2 - \frac{(X_4, Y_3)}{(Y_3, Y_3)} Y_3 = (\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 1)$$

$$Z_{1} = \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \quad Z_{2} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)$$

$$Z_{3} = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, 0\right), \quad Z_{4} = \left(\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{3}{2\sqrt{3}}\right)$$

$$Q = \{Z_{1}, Z_{2}, Z_{3}, Z_{4}\}$$

3.6.3 换位公式(求特征根)

换位公式:

 $A \in C^{n*p}$, $B \in C^{p*n}$, $AB \in C^{n*n}$ $(n \ge p)$,则:

1)
$$|\lambda I_n - AB| = \lambda^{n-p} |\lambda I_p - BA|$$

2) AB与BA的特征根只差n-p个 0 根

即:
$$\lambda$$
 (BA) = $\{\lambda_1, \dots, \lambda_p\}$
 λ (AB) = $\{\lambda_1, \dots, \lambda_p, 0, \dots, 0\}$
 所以 $AA^H = A^HA$ 特征根只差若干个 0 根

3)
$$tr(AB) = tr(BA) = \lambda_1 + \dots + \lambda_n$$

证明:

构造矩阵
$$M = \begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix}, N = \begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}, P = \begin{pmatrix} I & A \\ 0 & I \end{pmatrix}$$

$$MP = \begin{pmatrix} AB & ABA \\ B & BA \end{pmatrix} = PN \rightarrow P^{-1}MP = N \rightarrow M \sim N(相似)$$

$$\rightarrow |\lambda I - M| = |\lambda I - N|$$

$$\rightarrow \begin{pmatrix} \lambda I - AB & 0 \\ -B & \lambda I_p \end{pmatrix} = \begin{pmatrix} \lambda I_n & 0 \\ -B & \lambda I - BA \end{pmatrix}$$

$$\rightarrow |\lambda I - AB|\lambda^p = \lambda^n |(\lambda I - BA)|$$

$$\rightarrow |\lambda I_n - AB| = \lambda^{n-p} |\lambda I_p - BA|$$

例题:

解:

$$A - 1 = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix} = BC = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$CB = \begin{pmatrix} 1 & 3 \\ 0 & 3 \end{pmatrix}$$

$$\lambda (CB) = \{1,3\} \rightarrow \lambda (BC) = \{1,3,0\} \rightarrow \lambda (A) = \{2,4,1\}$$

$$|\lambda I - A| = (\lambda - 2)(\lambda - 4)(\lambda - 1)$$

解:

$$A + 1 = \begin{pmatrix} 0 & i & 0 \\ -i & 1 & -i \\ 0 & i & 0 \end{pmatrix} = BC = \begin{pmatrix} 0 & i \\ -i & 1 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$CB + 1 = \begin{pmatrix} 1 & 2i \\ -i & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -i \end{pmatrix} (1 & 2i)(R) + (CB) + (CB) = \{2, -1\} \rightarrow \lambda (BC) = \{2, -1, 0\}$$

$$\lambda (CB + 1) = \{3, 0\} \rightarrow \lambda (CB) = \{2, -1\} \rightarrow \lambda (BC) = \{2, -1, 0\}$$

$$\lambda (A) = \{1, -2, -1\}$$

Eg3 用平移法求
$$A = I - \frac{2XX^H}{\|X\|^2}$$
的 λ (A),其中 $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

解:

$$XX^H = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} (\overline{x_1} \quad \cdots \quad \overline{x_n}) ($$
#\tag{\text{\$\pi\$}}\tag{\text{\$\pi\$}})

$$A - I = -\frac{2}{\|X\|^2} (XX^H) (秩 -)$$

$$\lambda (XX^H) = \{ \sum x_i^2, 0, \dots, 0 \} = \{ \|X\|^2, 0, \dots, 0 \}$$

$$\lambda \left(-\frac{2}{\|X\|^2} (XX^H) \right) = -\frac{2}{\|X\|^2} \lambda (XX^H) = \{ -2, 0, \dots, 0 \}$$

$$\lambda (A - I) = \{ -2, 0, \dots, 0 \}$$

$$\lambda (A) = \{ -1, 1, \dots, 1 \}$$

3.7 奇异值分解

3.7.1 一些定理

对于矩阵 $A \in C^{m*n}$

- 1) $A^H A \pi A A^H$ 是半正定的厄米特阵,且具有相同的非零特征值 $X^H A^H A X = (AX, AX) \ge 0$,所以 $A^H A$ 为半正定阵。
- 2) $rank(A^{H}A) = rank(AA^{H}) = rank(A)$ 记 $A^{H}A$ 的解空间为X,

$$A^{H}AX = 0 \rightarrow X^{H}A^{H}AX = X^{H}0 = 0 \rightarrow (AX)^{H}AX = (AX, AX) = 0$$
$$\rightarrow AX = 0$$

所以 A^HA 和A的解空间相等,所以 $rank(A^HA) = rank(AA^H) = rank(A)$

高阵有左侧逆

设B $\in C^{m*p}$ 为高阵, $\mathbf{r}(B) = \mathbf{p}$,则存在 $B_L B = I$, $B_L = (B^H B)^{-1} B^H$ 证明:

$$r(B) = p \rightarrow r(B^H B) = p, B^H B \in C^{p*p} \rightarrow B^H B$$
满秩 $\rightarrow (B^H B)^{-1}$ 存在,所以存在 $B_L = (B^H B)^{-1} B^H$,使得 $B_L B = (B^H B)^{-1} (B^H B) = I$

低阵有右侧逆

设 $C \in C^{p*m}$ 为低阵,r(C) = p,则存在 $CC_R = I$, $C_R = C^H(CC^H)^{-1}$

用法:

1. 若BCX = 0, B为高阵,则CX = 0

i. BCX =
$$0 \rightarrow B_L(BCX) = 0 \rightarrow CX = 0$$

2. 若BX = BY, B为高阵,则X = Y

$$i \mathbb{E}$$
: BX = BY $\rightarrow B_L(BX) = B_L(BY) \rightarrow IX = IY$

3.7.2 正奇异值

设 $A = A_{m*n}$, r(A) = r > 0, 则 $A^H A \pi A A^H$ 恰有 r 个正根 $\lambda_1, \dots, \lambda_r > 0$ 。 $\lambda_1, \dots, \lambda_r$ 可重复

$$\lambda (AA^{H}) = \{\lambda_{1}, \cdots, \lambda_{r}, 0, \cdots, 0\}$$

$$\boldsymbol{\lambda}\left(A^{H}A\right)=\left\{ \boldsymbol{\lambda}_{1},\cdots,\boldsymbol{\lambda}_{r},0,\cdots,0\right\}$$

记 A 的正奇异值为: $S^+(A) = \{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_r}\}$

A 的全体奇异值为:
$$S(A) = \{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_r}, 0, \cdots, 0\}$$

记
$$S(A) = \{s_1, ..., s_n\}, \lambda(A) = \{\lambda_1, ..., \lambda_n\},$$
证明 $s_i = |\lambda_i|$

证明:
$$\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$$
 $AX_i = \lambda_i X_i$

$$\lambda (A^H) = \{\overline{\lambda_1}, \cdots, \overline{\lambda_n}\} AX_i = \overline{\lambda_1}X_i$$
对于 A^HA 而言 $A^HAX_i = A^H\lambda_iX_i = \lambda_i\overline{\lambda_1}X_i = |\lambda_i|^2X_i$
所以 $\lambda (A^HA) = \{|\lambda_1|^2, \dots, |\lambda_n|^2\}$
所以 $s_i = \sqrt{|\lambda_i|^2} =$

3.7.3 简奇异值分解与奇异值分解

对于矩阵 $A \in C^{m*n}$, r(A)=r, 则存在半酉阵 $P \in C^{m*r}$ 和半酉阵 $Q \in C^{n*r}(PP^H=I,QQ^H=I)$, 使得:

$$A = PS_rQ^H$$
,其中 $S_r = diag\{\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r}\}$

3.7.4 简奇异值分解方法

解法一:

- 1. 求 A^HA 的特征根 $\lambda_1, \cdots, \lambda_r > 0$ 与特征向量 X_1, \cdots, X_r (相互正交) $S_r = diag\{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_r}\}$
- 2. \Rightarrow P = $\left(\frac{AX_1}{|AX_1|}, \dots, \frac{AX_r}{|AX_r|}\right)$, Q = $\left(\frac{X_1}{|X_1|}, \dots, \frac{X_r}{|X_r|}\right)$
- 3. 可得A = PS_rQ^H
- 4. 在简奇异值分解($A = PS_rQ^H$)的基础之上将 P和 Q扩展为酉阵,其中 $W = (P P_2)$, $V = (Q Q_2)$,即可得奇异值分解

$$A = W \begin{pmatrix} S_r & 0 \\ 0 & 0 \end{pmatrix} V^H \, .$$

解法二:

$$A = PS_rQ^H$$
, $A^H = (PS_rQ^H)^H = QS_r^HP^H = QS_rP^H(S_r$ 为对角阵)

所以如果已知某个矩阵A的奇值分解,就可以求得矩阵 A^H 的奇值分解。

Eg1:
$$A = \begin{pmatrix} 1 & 2i \\ i & 1 \\ i & 1 \end{pmatrix}$$
,求正奇异值和简(正)SVD

解:

1.
$$A^{H}A = \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}$$
 (对角) $\rightarrow \lambda_{1} = 3, \lambda_{2} = 6, X_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, X_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 正奇值为 $\{\sqrt{3}, \sqrt{6}\}, S_{r} = diag\{\sqrt{3}, \sqrt{6}\}$

2.
$$AX_1 = \begin{pmatrix} 1 \\ i \\ i \end{pmatrix}, AX_2 = \begin{pmatrix} 2i \\ 1 \\ 1 \end{pmatrix} \quad |AX_1| = \sqrt{3}, |AX_2| = \sqrt{6},$$

$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{2i}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}, Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.
$$A = PS_rQ^H$$

4.
$$W = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{2i}{\sqrt{6}} & 0\\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}\\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, \ A = P \begin{pmatrix} \sqrt{3} & 0\\ 0 & \sqrt{6}\\ 0 & 0 \end{pmatrix} Q^{H}$$

Eg2:
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}$$
,求正奇异值和简(正)SVD

解:

1.
$$A^{H}A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
 (秩 1) \rightarrow 正根 $\lambda_{1} = 4, X_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 正奇值为 $\{2\}$, $S_{r} = diag\{2\}$

2.
$$AX_1 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \quad |AX_1| = 2\sqrt{2}$$
$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, Q = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\sqrt{\frac{1}{\sqrt{2}}}$$
3. $A = PS_rQ^H$

4.
$$W = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{pmatrix}, \ \ Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \ \ A = P \begin{pmatrix} 2 & 0\\ 0 & 0\\ 0 & 0 \end{pmatrix} Q^H$$

Eg3: B =
$$\begin{pmatrix} 1 & -i & -i \\ -2i & 1 & 1 \end{pmatrix}$$
,求正奇异值和简(正)SVD解:

$$A = B^{H} = \begin{pmatrix} 1 & 2i \\ i & 1 \\ i & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{2i}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{6} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{H}$$

$$\mathbf{B} = \begin{pmatrix} 1 & -i & -i \\ -2i & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{6} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{2i}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}^{H}$$

3.7.5 推论

Eg1: 若 正 规 矩 阵 A 的 特 征 根 $\lambda(A) = \{\lambda_1, ..., \lambda_n\}$, 则 A 的 奇 异 值 S(A) = $\{|\lambda_1|, ..., |\lambda_n|\}$ 。 若A为正定阵,则S(A) = $\{\lambda_1, ..., \lambda_n\}$ 。

证明: 已知 $\lambda(A) = \overline{\lambda(A^H)}$

所以对任意
$$AX_i = \lambda_i X_i \to A^H X_i = \overline{\lambda_i} X_i \to A^H A X_i = A^H \lambda_i X_i = |\lambda_i|^2 X_i$$

所以 $\lambda(AA^H) = \{|\lambda_1|^2, ..., |\lambda_n|^2\}$,所以 $S(A) = \{|\lambda_1|, ..., |\lambda_n|\}$

若A正定,则A是 Hermit 阵,所以A的特征根都是实数,A^H的特征根也是实数,所以S(A) = $\{\lambda_1, ..., \lambda_n\}$ 。

Eg2:对于方阵A,奇异值的乘积等于特征根的乘积的绝对值

$$\lambda (A) = \{\lambda_1, \dots, \lambda_n\}$$
(包含 0 根)
$$\det(A) = \lambda_1 * \dots * \lambda_n$$

$$\lambda (A^H A) = \{t_1, \dots, t_n\}$$

$$S(A) = \{s_1, \dots, s_n\} = \{\sqrt{t_1}, \dots, \sqrt{t_n}\}$$

$$\det(A^{H}) = \det(\bar{A})^{T} = \det(\bar{A}) = \overline{\det(A)}$$

$$\to \det(A^{H}A) = \det(A^{H}) \det(A) = \overline{\det(A)} \det(A) = |\det(A)|^{2}$$

$$\to t_{1} * \cdots * t_{n} = (s_{1} * \cdots * s_{n})^{2} = (\lambda_{1} * \cdots * \lambda_{n})^{2}$$

$$\to s_{1} * \cdots * s_{n} = |\lambda_{1} * \cdots * \lambda_{n}|$$

Eg3: 已知矩阵 A 的正奇异值分解为 $A = P\Delta Q^H$,可以得到矩阵 $B = {A \choose A}$

和矩阵 C = (A, A)的正奇异值分解。

解:

$$B^{H}B = (A^{H}, A^{H}) \binom{A}{A} = 2A^{H}A$$

$$\lambda (B^{H}B) = 2 \lambda (A^{H}A)$$

$$S^{+}(B) = \sqrt{2}S^{+}(A)$$

$$B = \binom{A}{A} = \binom{P\Delta Q^{H}}{P\Delta Q^{H}} = \binom{P}{P} \Delta Q^{H} = \frac{1}{\sqrt{2}} \binom{P}{P} (\sqrt{2}\Delta) Q^{H}$$

$$\stackrel{?}{\Rightarrow} \bar{P} = \frac{1}{\sqrt{2}} \binom{P}{P}, \bar{\Delta} = \sqrt{2}\Delta, \bar{Q} = Q$$

$$\stackrel{?}{\Rightarrow} \bar{P}^{H}\bar{P} = \frac{1}{2} (P^{H}, P^{H}) \binom{P}{P} = P^{H}P = I, \bar{P}$$

$$B = \bar{P}\bar{\Delta}\bar{Q}^{H}$$

$$\bar{P}^{H}B = (A, A) \binom{A^{H}}{A^{H}} = 2AA^{H}$$

$$\lambda (CC^{H}) = 2 \lambda (AA^{H}) = 2 \lambda (A^{H}A)$$

$$S^{+}(C) = \sqrt{2}S^{+}(A)$$

$$C = (A, A) = (P\Delta Q^{H}, P\Delta Q^{H}) = P\Delta (Q^{H}, Q^{H}) = P(\sqrt{2}\Delta) \frac{1}{\sqrt{2}} \binom{Q}{Q}^{H}$$

$$\stackrel{?}{\Rightarrow} \bar{P} = P, \bar{\Delta} = \sqrt{2}\Delta, \bar{Q} = \frac{1}{\sqrt{2}} \binom{Q}{Q}$$

Eg4: 矩阵的极分解

 $C = \bar{P}\bar{\Delta}\bar{O}^H$

对于任一方阵
$$A = A_{n*n}$$
,有

$$A = WDV^{H} = W \begin{pmatrix} s_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_{n} \end{pmatrix} V^{H}, \quad A^{H} = VDW^{H}$$

$$AA^{H} = WD^{2}W^{H} = (WDW^{H})^{2}$$

因为 WDW^{H} 为半正定矩阵,所以 $\sqrt{AA^{H}} = WDW^{H}$
 $A = WDV^{H} = A = WDW^{H}WV^{H} = \sqrt{AA^{H}}U$
其中 $U = WV^{H}$ 为酉阵
 $A = \sqrt{AA^{H}}U = U\sqrt{A^{H}A}$ 叫做 A 的极分解
特别: $A = (z)(复数)$
 $z = \sqrt{zz^{H}}e^{i\theta}$

Eg5:
$$A = A_{m*n} = (a_{ij})_{m*n}$$
, $S^+(A) = \{s_1, \dots, s_r\}$ 证明: $\operatorname{tr}(AA^H) = \operatorname{tr}(A^HA) = \sum |a_{i*j}|^2 = s_1^2 + \dots + s_r^2$ 解:

$$AA^H$$
为 Hermite 阵,所以 $\operatorname{tr}(AA^H) = \operatorname{tr}(A^H A)$
记: $\lambda (AA^H) = \{\lambda_1, \cdots, \lambda_r\} \ \lambda_i = s_i^2$
 $\operatorname{tr}(AA^H) = \operatorname{tr}(A^H A) = \lambda_1 + \cdots + \lambda_r = s_1^2 + \cdots + s_r^2$

矩阵 AA^H 的第 k 行对角元:

$$x_k = (a_{1k} \cdots a_{mk}) \begin{pmatrix} a_{1k}^H \\ \vdots \\ a_{mk}^H \end{pmatrix} = \sum_{i=1}^m |a_{i*k}|^2$$
所以tr(AA^H) = $x_1 + \cdots + x_m = \sum |a_{i*j}|^2$

3.8 谱分解

3.8.1 单纯阵

定义:

$$A = A_{n*n}$$
叫做单纯阵 \leftrightarrow $A \sim D = \operatorname{diag}(\lambda_1, \cdots, \lambda_n) \leftrightarrow P^{-1}AP = D$
注: $P^{-1}AP = D = \operatorname{diag}(\lambda_1, \cdots, \lambda_n) \leftrightarrow P = (X_1, \cdots, X_n)$ 各列都是矩阵 A
的特征向量且线性无关,即 $AX_i = \lambda_i X_i, 1 \leq i \leq n$

定理:

- 1. 方阵A为单纯阵↔ A有 n 个线性无关的特征向量。
- 2. 方阵A为单纯阵↔ A的每个 k 重根恰有 k 个线性无关的特征向量。
- 3. 若方阵A恰有 n 个互异的特征根,则A为单纯阵。

判定:

- 1. 若方阵A恰有 n 个互异的特征根,则A为单纯阵。
- 2. 对于方阵A的任一 k(k>1)重根 $\lambda_i \in \lambda(A)$, 若 $rank(A \lambda_i I) = n k$,则A为单纯阵,否则为非单。
- 3. 设方阵A有 k 个互异的特征根 $\lambda_1, \dots, \lambda_k (k \le n)$, 若 $(A \lambda_1)(A \lambda_2) \dots (A \lambda_k) = 0$,则A为单纯阵,否则为非单。

3.8.2 零化式

定义:

若存在方阵A和多项式 $f(x) = c_p x^p + \cdots + c_1 x^1 + c_0$,

使得: $f(A) = c_n A^p + \dots + c_1 A^1 + c_0 I = 0$.

称f(x)是A的一个"0 化式", A叫做f(x)的一个矩阵根。

注: 若f(x)是A的一个零化式,则对任意 $g(x) \rightarrow f(A)g(A) = 0 \rightarrow f(x)g(x)$ 也是A的一个零化式。

推理:

对于任一固定的方阵A,可求出次数最低的零化式,记为 $m_A(x)$ 。

Caylay 定理:

方阵 A 的特征多项式:

$$T(x) = |xI - A| = x^{n} + a_{n-1}x^{n-1} + \dots + a_0$$

$$T(A) = A^{n} + a_{n-1}A^{n-1} + \dots + a_{0}I = 0$$

Eg1:
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 3 & 4 \\ 1 & 1 & 3 \end{pmatrix}$$
,求 A 得极小式m(x) =?

解:

$$\lambda (A - I) = \{5,0,0\} \rightarrow \lambda (A) = \{6,1,1\}$$

特征多项式:
$$T(x) = (x-6)(x-1)^2$$

零化式(Caylay):
$$T(A) = (A-6)(A-1)^2 = 0$$

因为:
$$(A-6)(A-1)=0$$

所以极小式:
$$m(x) = (A-6)(A-1)$$

应用: 若f(x)无重根且f(A) = 0,则A为单纯阵。

Eg2: 已知 $A^2 - 3A + 2I = 0$,则A为单。

解:

$$f(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$$
 无重根且 $f(A) = 0$ 所以A为单纯阵

Eg3: 单纯阵判定:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

解:

$$\lambda (A - I) = \{1,0,0\} \rightarrow \lambda (A) = \{2,1,1\}$$
 $(A - 2)(A - 1) = 0(第三条判定规则)$
所以A是单纯阵

3.8.3 谱分解

单纯矩阵:
$$P^{-1}AP = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

$$D = \lambda_1 \operatorname{diag}(1,0,0,\dots) + \lambda_2 \operatorname{diag}(0,1,0,\dots) + \dots + \lambda_n \operatorname{diag}(0,\dots 0,1)$$

$$D = \lambda_1 E_1 + \lambda_2 E_2 + \dots + \lambda_n E_n$$

有以下特点:

1)
$$E_1 + E_2 + \dots + E_n = I$$

$$2) \ E_i E_j = 0 (i \neq j)$$

3)
$$E_i E_i = E_i$$
 (幂等阵)

4)
$$E_i^H = E_i$$
(Hermit 阵)

$$P^{-1}AP = D \rightarrow A = PDP^{-1}$$

$$A = P(\lambda_1 E_1 + \dots + \lambda_n E_n) P^{-1} = \lambda_1 P E_1 P^{-1} + \dots + \lambda_n P E_n P^{-1}$$
$$= \lambda_1 F_1 + \dots + \lambda_n F_n (F_i = P E_i P^{-1})$$

 $A = \lambda_1 F_1 + \cdots + \lambda_n F_n$ 叫做A的谱分解

 F_i 有以下特点:

1)
$$F_1 + F_2 + \dots + F_n = I$$

$$2) \quad F_i F_j = 0 (i \neq j)$$

- 3) $F_iF_i = F_i$ (幂等阵)
- 4) 若P为 Hermit 阵,则 $F_i^H = F_i$,否则 F_i^H 不一定等于 F_i 。证明:

1)
$$F_1 + F_2 + \dots + F_n = P(E_1 + \dots + E_n)P^{-1} = PIP^{-1} = I$$

2)
$$F_i F_j = P E_i P^{-1} P E_j P^{-1} = P E_i E_j P^{-1} = P 0 P^{-1} = 0$$

3)
$$F_i F_i = P E_i E_i P^{-1} = P E_i P^{-1} = F_i$$

单阵谱分解公式:

若A =
$$A_{n*n}$$
为单阵,全体不同根为 t_1, t_2, \dots, t_k ,

则有:
$$A = t_1G_1 + t_2G_2 + \cdots + t_kG_k (k \le n)$$

其中:
$$G_1 + \cdots + G_k = I$$
, $G_iG_j = 0$ $(i \neq j)$, $G_iG_i = G_i$ (幂等阵) G_1 , \cdots , G_k 叫谱阵。

证明:

$$A = \lambda_1 F_1 + \dots + \lambda_n F_n,$$

对于重根
$$\lambda_i = \dots = \lambda_j$$
, $\lambda_i F_i + \dots + \lambda_j F_j = \operatorname{t}(F_i + \dots + F_j) = \operatorname{tG}$
所以A = $t_1 G_1 + t_2 G_2 + \dots + t_k G_k$

同样:

1)
$$G_1 + G_2 + \cdots + G_k = F_1 + F_2 + \cdots + F_n = I$$

2)
$$G_iG_j = (F_i + \dots + F_j)(F_{i2} + \dots + F_{j2}) = F_iF_{i2} + \dots = 0$$

3)
$$G_iG_i = (F_i + \dots + F_j)(F_i + \dots + F_j) = F_i^2 + \dots + F_j^2 + F_iF_{i+1} + \dots + F_jF_{j-1} = F_i^2 + \dots + F_j^2 = F_i + \dots + F_j = G_i$$

3.8.4 谱分解的求法

谱分解:
$$A = t_1G_1 + t_2G_2 + \cdots + t_kG_k$$

由上节性质可知: $G_i^p = G_i(p \in N^+)$

$$A^{p} = (t_{1}G_{1} + t_{2}G_{2} + \dots + t_{k}G_{k})^{p}$$

$$= t_{1}^{p}G_{1}^{p} + \dots + t_{k}^{p}G_{k}^{p} + (-$$

$$= t_{1}^{p}G_{1} + \dots + t_{k}^{p}G_{k}$$

$$A^0 = I = G_1 + \dots + G_k$$

根据 $A^p = t_1^p G_1 + \cdots + t_k^p G_k$ 可得:

1. 对于任一多项式: $f(x) = c_0 + c_1 x + \dots + c_p x^p$, 有 $f(A) = f(t_1)G_1 + \dots + f(t_k)G_k$

证 明:
$$f(A) = c_0 A^0 + c_1 A + \dots + c_p A^p = (c_0 + c_1 t_1 + c_2 t_1^2 + \dots + c_p t_1^p)G_1 + \dots + (c_0 + c_1 t_k + c_2 t_k^2 + \dots + c_p t_k^p)G_k = f(t_1)G_1 + \dots + f(t_k)G_k$$

2. 由1可知,取 $f(x) = (x - t_1) \cdots (x - t_k)$

$$f(A) = f(t_1)G_1 + \dots + f(t_k)G_k = 0G_1 + \dots + 0G_k = 0$$

由上述已知推论,可取 $f(x) = (x - t_1) \cdots (x - t_k) = (x - t_2) \cdots (x - t_k)$

$$f(A) = \frac{(A - t_1)}{(A - t_k)} \cdots (A - t_k) = (A - t_2) \cdots (A - t_k)$$

$$f(A) = f(t_1)G_1 + \dots + f(t_k)G_k = f(t_1)G_1 + 0 + \dots + 0$$

$$G_1 = \frac{f(A)}{f(t_1)} = \frac{(A - t_1) \cdots (A - t_k)}{(t_1 - t_1) \cdots (t_1 - t_k)}$$

$$G_2 = \frac{(A - t_1)(A - t_2) \cdots (A - t_k)}{(t_2 - t_1)(t_2 - t_2) \cdots (t_2 - t_k)}$$

$$G_i = \frac{(A - t_1) \cdots (A - t_i) \cdots (A - t_k)}{(t_i - t_1) \cdots (t_i - t_i) \cdots (t_i - t_k)}$$

特殊,若单阵A只有两个不同特征根 $t_1 \neq t_2$ (可以是 0 根)

$$A = t_1 G_1 + t_2 G_2$$

$$G_1 = \frac{(A - t_{\pm})(A - t_2)}{(t_{\pm} - t_{\pm})(t_1 - t_2)} = \frac{(A - t_2)}{(t_1 - t_2)}$$

$$G_2 = \frac{(A - t_1)(A - t_2)}{(t_2 - t_1)(t_2 - t_2)} = \frac{(A - t_1)}{(t_2 - t_1)}$$

$$G_1 + G_2 = I$$

Eg1:
$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$
, $\Re A^{100}$

解:
$$\lambda(A) = \{4,1\}$$
 $\lambda_1 = 4, \lambda_2 = 1$ A 为单阵

所以A =
$$\lambda_1 G_1 + \lambda_2 G_2 \rightarrow A^{100} = \lambda_1^{100} G_1 + \lambda_2^{100} G_2$$

$$G_1 = \frac{(A - \lambda_2)}{(\lambda_1 - \lambda_2)} = \frac{A - 1}{4 - 1} = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

$$G_2 = \frac{(A - \lambda_1)}{(\lambda_2 - \lambda_1)} = \frac{A - 4}{1 - 4} = \frac{1}{3} \begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$$

所以A¹⁰⁰ = 4¹⁰⁰G₁ + 1¹⁰⁰G₂

Eg2:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
, $求A^{100}$
解: $\lambda(A) = \{2,1,1\} \to \lambda_1 = 2, \lambda_2 = 1 \to (A - \lambda_1)(A - \lambda_2) = 0 \to A$ 为单阵
所以 $A^{100} = \lambda_1^{100} G_1 + \lambda_2^{100} G_2$

$$G_1 = \frac{(A - \lambda_2)}{(\lambda_1 - \lambda_2)} = \frac{A - 1}{2 - 1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$G_2 = \frac{(A - \lambda_1)}{(\lambda_2 - \lambda_1)} = \frac{A - 2}{1 - 2} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$A^{100} = 2^{100} G_1 + 1^{100} G_2$$

3.8.5 谱分解的应用

平方谱公式:

若A ≥ 0 (半正定),且有谱公式: $A = \lambda_1 G_1 + \lambda_2 G_2 + \dots + \lambda_k G_k$,则有平方根公式: $\sqrt{A} = A^{\frac{1}{2}} = \sqrt{\lambda_1} G_1 + \dots + \sqrt{\lambda_k} G_k$ $\left(\sqrt{A}\right)^2 = \left(\sqrt{\lambda_1} G_1 + \dots + \sqrt{\lambda_k} G_k\right)^2 = \sqrt{\lambda_1}^2 G_1^2 + \dots + \sqrt{\lambda_k}^2 G_k^2 + 0 = A$

Eg1:
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} (A \ge 0) \quad \lambda (A) = \{3,1\}, \quad \Re \sqrt{A}$$

$$\text{M: } A = 3G_1 + 1G_2 \to \sqrt{A} = \sqrt{3}G_1 + \sqrt{1}G_2$$

$$G_1 = \frac{(A - \lambda_2)}{(\lambda_1 - \lambda_2)} = \frac{A - 1}{3 - 1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$G_2 = \frac{(A - \lambda_1)}{(\lambda_2 - \lambda_1)} = \frac{A - 3}{1 - 3} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

逆谱公式:

若 A 为单阵,全体不同特征根为 $\lambda_1, \dots, \lambda_k$ (非 0),

有谱公式:
$$A = \lambda_1 G_1 + \dots + \lambda_k G_k$$

$$A^{-1} = \frac{1}{\lambda_1} G_1 + \dots + \frac{1}{\lambda_k} G_k$$

引理: $AG_i = \lambda_i G_i (1 \le i \le k)$

$$\lambda_k G_k G_i = 0 + \lambda_i G_i + 0 = \lambda_i G_i$$

$$AA^{-1} = A\left(\frac{1}{\lambda_1}G_1 + \dots + \frac{1}{\lambda_k}G_k\right) = \frac{1}{\lambda_1}(AG_1) + \dots + \frac{1}{\lambda_k}(AG_k)$$
$$= \frac{1}{\lambda_1}(\lambda_1G_1) + \dots + \frac{1}{\lambda_k}(\lambda_kG_k) = G_1 + \dots + G_k = I$$

特征向量相关推论:

- 1) 若AP = tP,则P = (X_1, \dots, X_n) 的各列都是 A 关于特征值 t 的特征向量。 原因: AP = tP \rightarrow A $X_i = tX_i$
- 2) 若(A-t)P=0,则P的各列都是 A 关于特征值 t 得特征向量。

 - b) 若 $(A \lambda_1)(A \lambda_2) = 0$, $(A \lambda_1)$ 是关于 λ_2 的特向量, $(A \lambda_2)$ 是关

于λ₁的特向量。

- 3) 谱公式: $A = \lambda_1 G_1 + \cdots + \lambda_k G_k$ 中, G_1, \cdots, G_k 的各列都是 A 的特向量。
- 4) 谱阵 G_1, \dots, G_k 中,恰有 n 个无关的特向量。

证明: 只要证 $\operatorname{rank}(G_1, \dots, G_k) = n$

$$(G_1, \dots, G_k)$$
 $\begin{pmatrix} I \\ \vdots \\ I \end{pmatrix} = G_1 + \dots + G_k = I$

根据秩的相关定理:

$$rank(AB) \le rank(A)$$
 $rank(AB) \le rank(B)$

$$rank(A_{m*n}) \le m$$
 $rank(A_{m*n}) \le n$

$$n = \operatorname{rank}(I) \le \operatorname{rank}(G_1, \cdots, G_k)_{n * nk} \le n$$

$$\operatorname{rank}(G_1,\cdots,G_k)=\operatorname{n}$$

A与f(A)的"遗传公式":

令 $A = A_{n*n}$,全体根 λ (A) = $\{\lambda_1, \dots, \lambda_n\}$ 则:

- 1) 对任一多项式 $f(x) = c_0 + c_1 x^1 + \dots + c_p x^p$ 的f(A),全体根 $\lambda(f(A)) = \{f(\lambda_1), \dots, f(\lambda_n)\}$
- 2) 若A有特征向量 X_1, \dots, X_n ,则f(A)也有特向量 X_1, \dots, X_n

a)
$$\mathbb{P} f(A)X_i = f(\lambda_i)X_i$$

证明:
$$AX = tX \rightarrow A^2X = A(tX) = tAX = t^2X \rightarrow A^pX = t^pX$$

所以 $(c_0I + c_1A + \dots + c_pA^p)X = (c_0 + c_1t + \dots + c_pt^p)X$
因为 $AX_i = \lambda_iX_i$
所以 $f(A)X_i = f(\lambda_i)X_i$

$$(P^{-1}AP)^k = P^{-1}A^kP$$

$$\mathbf{f}(P^{-1}AP) = c_0 + c_1(P^{-1}AP) + \dots + c_p(P^{-1}AP)^p = P^{-1}f(A)P$$

$$记 P^{-1}AP = B = \begin{pmatrix} \lambda_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} (上 三 角)$$

$$f(P^{-1}AP) = P^{-1}f(A)P = f(B) = \begin{pmatrix} f(\lambda_1) & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f(\lambda_n) \end{pmatrix} (上三角)$$

4 广义逆矩阵

4.1 广义逆矩阵的定义

 A^+ 定义:设 $A = A_{m*n}$,若有 $X = X_{n*m}$,满足 4 个条件:

- 1) AXA = A
- 2) XAX = X
- 3) $(AX)^{H} = AX$
- 4) $(XA)^{H} = XA$

称X为A的一个加号逆,记 $X = A^+$ 。

常见的 A^+ :

- 1) $(0_{m*n})^+ = 0_{n*m}$ $\mathfrak{H}: (0_n)^+ = 0_n \quad 0^+ = 0$
- 2) 可逆方阵A有 $A^+ = A^-$
- 3) 复数 a 可作为 1 阶阵: $a^+ = \begin{cases} \frac{1}{a}, a \neq 0 \\ 0, a = 0 \end{cases}$

 A^+ 的唯一性:

假设X,Y都适合 A^+ 条件:

$$Y = YAY = Y(AXA)Y = Y(AX)^{H}(AY)^{H} = Y((AY)(AX))^{H} = Y((AYA)X)^{H}$$
$$= Y(AX)^{H} = YAX = YA(XAX) = (YA)^{H}(XA)^{H}X$$
$$= ((XA)(YA))^{H}X = (X(AYA))^{H}X = XAX = X$$

4.2 性质

 A^+ 高阵公式:

设B = B_{m*r} 为高阵, $\operatorname{rank}(B) = r$,则: $B^+ = B_L = (B^H B)^{-1} B^H$,且 $B^+ B = I$ 低阵公式:

设
$$C = C_{r*m}$$
为低阵, $\operatorname{rank}(C) = r$,则: $C^+ = C_R = C^H (CC^H)^{-1}$,且 $CC^+ = I$

- 1. 若A可逆,则 $(A^{-1})^H = (A^H)^{-1}$
- 2. 若 $A^H = A$ 且可逆: $(A^{-1})^H = (A^H)^{-1} = A^{-1}$

3. 若B =
$$(A 0)$$
,则 $B^+ = {A^+ \choose 0}$,若B = ${A \choose 0}$,则 $B^+ = (A^+ 0)$

4. 若A =
$$\begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$$
,则 $A^+ = \begin{pmatrix} B^+ & 0 \\ 0 & D^+ \end{pmatrix}$

$$BB^{+}B = B$$
 $B^{+}BB^{+} = B^{+}$ $(BB^{+})^{H} = BB^{+}$

高低分解公式:

若 $A = A_{m*n} = BC$ 为高低分解,则有 $A^+ = C^+B^+$,且 $B^+B = I = CC^+$, $B^+ = (B^HB)^{-1}B^H$, $C^+ = C^H(CC^H)^{-1}$

可以证 C^+B^+ 满足正号逆的公式。

例题:

1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(高阵)

解:
$$A^+ = (A^H A)^{-1} A^H = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

2)
$$A = \begin{pmatrix} 1 & i & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
(低阵)

解:
$$A^+ = A^H (AA^H)^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{-i}{3} \\ \frac{-i}{2} & \frac{1}{3} \\ 0 & \frac{1}{3} \end{pmatrix}$$

3)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

解:
$$A = (B \quad 0) B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A^{+} = {B^{+} \choose 0} = {\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}}$$

4.3 广义逆求解方式

1. A+第一公式(高低分解):

若A = BC为高低分解,则 $A^+ = C^+B^+$,其中 $B^+ = (B^HB)^{-1}B^H$, $C^+ = C^H(CC^H)^{-1}$ 。

2. A+第二公式(奇异值分解):

若A = PS_rQ^H 为正 SVD 分解,其中 $S_r = diag\{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_r}\} > 0$,P、Q为 半酉阵,则 $A^+ = QS_r^{-1}P^H$ 。

3. A+秩一第二公式:

若A =
$$(a_{ij})_{m*n} \in C^{m*n}$$
,且rank(A) = 1,则 $A^+ = \frac{1}{\sum |a_{ij}|^2} A^H$ 。

证明:
$$\diamondsuit A = PS_rQ^H$$
, 则 $A^+ = QS_r^{-1}P^H$, $A^H = QS_rP^H$

因为
$$rank(A) = rank(A^H A) = 1$$

所以
$$\lambda$$
 (A^HA) = { $tr(A^HA), 0, 0, ...$ }

$$\lambda_1 = tr(A^H A) = \sum |a_{ij}|^2 S_r = (\sqrt{\lambda_1})$$

所以 $A^+ = Q(\sqrt{\lambda_1})^{-1} P^H = \frac{1}{\lambda_1} Q(\sqrt{\lambda_1}) P^H = \frac{1}{\lambda_1} A^H$

4. A+第三公式(QR 分解):

若A = QR, R 为上三角, Q 为酉阵,则 $A^+ = R^{-1}Q^H$ 。

5. A+谱公式:

若A为正规,且有谱公式:
$$A=\lambda_1G_1+\cdots+\lambda_kG_k$$
,则
$$A^+={\lambda_1}^+G_1+\cdots+{\lambda_k}^+G_k$$

4.4 正规方程

定义:

任一方程AX = b,可产生方程 $A^HAX = A^Hb$,叫做正规方程。 任一矩阵 $A = A_{m*n} \in C^{m*n}$ 可产生两个子空间:

- 1. \diamondsuit N(A) = {X|AX = 0, X ∈ C^n }, 叫作A的核空间(解空间)。
- 2. \diamondsuit R(A) = {AX| X ∈ C^n } ∈ C^m , 叫作A的值域或像空间(A的列空间)。

引理:

- 1. 正规方程 $A^{H}AX = A^{H}b$ 一定有解(相容),且有特解 $X_{0} = A^{+}b$ 。 证明: $A^{H}AX_{0} = A^{H}AA^{+}b = A^{H}(AA^{+})^{H}b = [(AA^{+})A]^{H}b = A^{H}b$
- 2. $A^H AX = A^H b$ 有以下通解公式:

$$X = X_0 + (k_1 Y_1 + \dots + k_{n-r} Y_{n-r}),$$

其中 $X_0 = A^+b$, $Y = k_1 Y_1 + \dots + k_{n-r} Y_{n-r}$, $Y_i \in N(A)$, $Y \in N(A)$

3. 若AX = b有解,则必有特解 $X_0 = A^+b$,有通解 $X = X_0 + (k_1Y_1 + \cdots + k_2Y_1 + \cdots + k_3Y_2 + \cdots + k_3Y_3 + \cdots + k_3Y_3$

 $k_{n-r}Y_{n-r}$), Y_i 是 AX = 0 的基本解。 证明:可设 X_1 为AX = b的任一解: $AX_1 = b$ 将 $X_0 = A^+b$ 代入公式: 左边= $AA^+b = AA^+AX_1 = AX_1 = b = 右边$ 所以 X_0 是AX = b的解

正交引理:

1. 若 $A = A_{m*n} \in C^{m*n}$, $b \in C^m$, $X_0 = A^+b \in C^n$, 则 $X_0 \perp N(A)$ (核空间),即 $X_0 \perp X$, $X \in N(A) = \{X | AX = 0\}$ 证明: 任取 $X \in N(A)$,有AX = 0

$$(X,X_0) = X_0^H X = (A^+b)^H X = (A^+AA^+b)^H X = (A^+b)^H (A^+A)^H X$$
$$= (A^+b)^H A^+ A X = (A^+b)^H A^+ (AX) = 0$$

2. 若 $A = A_{m*n} \in C^{m*n}$, $b \in C^m$, $X_0 = A^+b \in C^n$, 则 $(AX_0 - b) \perp R(A)$ (像空间),即 $(AX_0 - b) \perp AX$, $X \in C^n$ 证明:

4.5 最二乘小解

最小二乘解:

若AX = b 无解,称AX = b不相容(矛盾方程), $|AX-b|^2 > 0$,则最小值 $\min\{|AX-b|^2\} = |AX_0-b|^2, \ X_0 = A^+b,$

此时 X_0 是 AX = b的一个最小二乘解,其他最小二乘解也满足 $AX = AX_0 \leftrightarrow A(X - X_0) = 0$ 。

全体的最小二乘解为 $X = X_0 + (k_1Y_1 + \dots + k_{n-r}Y_{n-r})$, Y_i 是 AX = 0 的基本解。

证明:

$$AX - b = (AX - AX_0) + (AX_0 - b) = A(X - X_0) + (AX_0 - b)$$

因为 $AX \in R(A)$, $AX_0 \in R(A)$, 所以 $A(X - X_0) \in R(A)$,

所以A(X -
$$X_0$$
) \perp (A X_0 - b)

$$|AX - b|^2 = |A(X - X_0)|^2 + |AX_0 - b|^2 + 0 \ge |AX_0 - b|^2(X = X_0)$$

求解:
$$AY = 0$$
, $(Y = X - X_0)$,

通解 $Y = t_1Y_1 + t_2Y_2 + \cdots + t_{n-r}Y_{n-r}$,r = rank(A),Y为AY = 0的基本解,即 $Y_i \in N(A)$.

所以最小二乘解
$$X - X_0 = t_1 Y_1 + t_2 Y_2 + \dots + t_{n-r} Y_{n-r}$$

$$X = X_0 + t_1 Y_1 + t_2 Y_2 + \dots + t_{n-r} Y_{n-r}$$

例题: 求
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 得最小二乘解。

解:
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 (秩 1), $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$X_0 = A^+ b = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{3}{4} \end{pmatrix}$$

设
$$Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
, $AY = 0 \rightarrow y_1 = -y_2$, 所以 $Y = t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

所以所有最小二乘解:
$$X = \begin{pmatrix} \frac{3}{4} \\ \frac{3}{4} \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

极小范数解:

若AX = b有解,则必有特解 $X_0 = A^+b$,通解: $X = X_0 + (k_1Y_1 + \cdots + k_{n-r}Y_{n-r})$, $X_0 \perp Y_i$ 。 X_0 是全体解中最小长度(范数)解,称为极小范数解,也叫最佳小二解。

证明:
$$|X|^2 = |X_0|^2 + |Y|^2 \ge |X_0|^2$$

推论:

- 1. 若AX = b有解,则AX = b和 A^H AX = A^H b同解,N(A) = N(A^H A),rank(A) = rank(A^H A)
- 2. 若AX = b无解, A^H AX = A^H b的通解恰为AX = b的全体最小二乘解。

4.6 补充公式

公式:

1.
$$A^+ = (A^H A)^+ A^H$$

2.
$$A^+ = A^H (AA^H)^+$$

证明:

令A =
$$PS_rQ^H$$
, $A^H = QS_rP^H$, $A^+ = QS_r^{-1}P^H$
 $A^HA = (QS_rP^H)(PS_rQ^H) = QS_r^2Q^H$ (正好是 A^HA 的正 SVD 分解)
 $(A^HA)^+ = Q(S_r^2)^{-1}Q^H$

$$(A^{H}A)^{+}A^{H} = (Q(S_{r}^{2})^{-1}Q^{H})(QS_{r}P^{H}) = QS_{r}^{-1}P^{H} = A^{+}$$

用法:

矩阵A不一定是正规矩阵,所以不一定可以进行谱分解,但 A^HA 一定可以。

$$A^{H}A = \lambda_{1}G_{1} + \dots + \lambda_{k}G_{k}$$
$$(A^{H}A)^{+} = \lambda_{1}^{+}G_{1} + \dots + \lambda_{k}^{+}G_{k}$$

其他结论: 矩阵方程AXB = D

1) 若AXB = D有解(相容)则必有特解 $X_0 = A^+DB^+$ 与 $Y_0 = A^-DB^-$ 证: 设任一解为 X_1

$$AY_0B = AA^-DB^-B = AA^-(AX_1B)B^-B = (AA^-A)X_1(BB^-B) = AX_1B$$

- 2) 若AXB = D有解,则 $X_0 = A^+ DB^+$ 是最小范数解: $\|X\|^2 \ge \|X_0\|^2$
- 3) 若AXB = D 不相容,则 $X_0 = A^+DB^+$ 是最佳小二解

4.7 A-定义与性质

4.7.1 A⁻定义

若 $A = A_{m*n}$ 与 $X = X_{n*m}$,适合条件AXA = A,则称X是A的一个减号逆,记作 $X = A^-$ 或 $X = A^{(1)}$,可写: $AA^-A = A$ 。

 $A^- \in A^{(1)} = \{X | AXA = A\}$ $(A^{(1)}$ 代表只符合广义逆四条性质中的第一条)

特别: $A^+ \in A^{(1)}$

注: A-不唯一

Eg:
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A^- = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\overrightarrow{\otimes} A^- = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $a^- = \begin{cases} \cancel{2} \not\sim \cancel{3} x, & a = 0 \\ \frac{1}{a}, & a \neq 0 \end{cases}$ $(a, x \in C)$

若A = A_{n*n} (方阵)可逆,则 $A^{-1} = A^{-1}$

性质:

- 1) 若AX = b有解,则必有特解 $X_0 = A^+b$ 与 $Y_0 = A^-b$
- 2) 若AXB = D有解(相容)则必有特解 $X_0 = A^+DB^+$ 与 $Y_0 = A^-DB^-$

4.7.2 A-相关公式

公式一:

若A = $\begin{pmatrix} l_r & 0 \\ 0 & 0 \end{pmatrix}_{m*n}$ (标准形),则全体 $A^- = \begin{pmatrix} l_r & C \\ D & F \end{pmatrix}_{n*m}$,其中子块 CDF 元素任意取值。

Pf:
$$AA^{-}A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_r & C \\ D & F \end{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

其他标准形: $A = (I_m \quad 0)_{m*n} \quad A^{-} = \begin{pmatrix} I_m \\ C \end{pmatrix}_{n*m}$
$$A = \begin{pmatrix} I_n \\ 0 \end{pmatrix}_{m*n} \quad A^{-} = (I_n \quad C)_{n*m}$$

公式二:

若 $A = A_{m*n}$ 与标准形 $B = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}_{m*n}$ 等价,即存在PAQ = B,PQ 可逆,则全体 $A^- = Q\begin{pmatrix} I_r & C \\ D & F \end{pmatrix}_{n*m} P$.

Pf: PAQ = B
$$\to$$
 A = $P^{-1}BQ^{-1}$

$$AA^{-}A = (P^{-1}BQ^{-1})Q\begin{pmatrix} I_r & C \\ D & F \end{pmatrix}_{n*m}P(P^{-1}BQ^{-1}) = \\ P^{-1}\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} I_r & C \\ D & F \end{pmatrix}\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}Q^{-1} = P^{-1}\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}Q^{-1} = A$$

4.7.3 更多广逆

 $A^{(1,3)}$ 定义: 若 $A = A_{m*n}$ 与 $X = X_{n*m}$, 适合条件:

1)
$$AXA = A$$

$$(AX)^H = AX$$

记
$$X = A^{(1,3)}$$
 (不唯一)

 $A^{(1,4)}$ 定义: 若 $A = A_{m*n}$ 与 $X = X_{n*m}$, 适合条件:

1)
$$AXA = A$$

2)
$$(XA)^{H} = XA$$

记
$$X = A^{(1,4)}$$
 (不唯一)

5 矩阵分析

5.1 向量范数

5.1.1 向量范数

任
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in C^n$$
,规定长度(范数)为:
$$\|X\| = \sqrt{|x_1|^2 + \cdots + |x_n|^2}$$

记为|*X*|。

性质:

- 1) 正性: $\|X\| > 0(X \neq \vec{0})$, $\mathbb{L}\|X\| = 0 \leftrightarrow X = \vec{0}$
- 2) 齐性: ||kX|| = |k|||X||, k \in C
- 3) 三角性: $||X + Y|| \le ||X|| + ||Y||$ $||X - Y|| \ge |||X|| - ||Y|||$

范数定义

V 是线性空间(在复数域), φ是 V 上一个实值函数: φ(X) = ||X||叫范数, 如果适合正性、齐性、三角性。

5.1.2 常见向量范数

空间 $V \in C^n$ 上常见范数 $\phi(X)$

- 1. 取 $\varphi(X) = \|X\|_2 = \sqrt{(X,X)} = \sqrt{|x_1|^2 + \dots + |x_n|^2}$ 叫 2 范数,又叫 F 范数(长度),有公式: $\|X\| = \sqrt{tr(X^H X)} = \sqrt{tr(XX^H)}$
- 2. 取 $\varphi(X) = \|X\|_{\infty} = \max\{|x_1|, \cdots, |x_n|\}$,叫最大值范数,又叫"∞范数"
- 3. 取 $\varphi(X) = ||X||_1 = |x_1| + \dots + |x_n|$,叫和范数

4. 取
$$\phi(X) = \|X\|_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$
, 叫 p 范数, p ≥ 1 . 取极限: $\lim_{p \to \infty} (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}} = \max\{|x_1|, \dots, |x_n|\} = \|X\|_{\infty}$

等价定理:

 C^n 上任 2 种范数 $\|X\|_a$ 与 $\|X\|_b$,适合: $k_1 \le \frac{\|X\|_a}{\|X\|_b} \le k_2$, $\forall X \in C^n$,其中 $0 < k_1 < k_2$ 为固定正数,称 $\|X\|_a$ 与 $\|X\|_b$ 等价,记 $\|X\|_a \approx \|X\|_b$

5.2 矩阵范数

5.2.1 定义

方阵空间 C^{n*n} 上一函数 $\varphi(A) = ||A||$ 叫一个方阵范数,当且仅当满足以下性质:

- 1) 正性: $\varphi(A) = ||A|| > 0, A \neq 0$ 。 且 $\varphi(0) = ||0|| = 0$
- 2) 齐性: $\varphi(kA) = |k|\varphi(A)$
- 3) 三角性 $\varphi(A + B) \le \varphi(A) + \varphi(B)$ 推论: $|||A|| - ||B||| \le ||A - B||$
- 4) 次乘性(相容性): $\varphi(AB) \le \varphi(A)\varphi(B)$ 只满足(1)~(3)的函数 $\varphi(A) = ||A||$ 叫向量式范数

性质 4 的推广: $||A^k|| \le ||A||^k$

対 $||AB|| \le ||A|| ||B||$ 迭代 k 次: $||A_1A_2...A_k|| \le ||A_1||...||A_k||$ 令 $A_1 = A_2 = \cdots = A_k$, $||A^k|| \le ||A||^k$

5.2.2 常见的矩阵范数

 C^{n*n} 上常见范数: $A = (a_{ij})_{n*n}$

1.
$$\varphi(A) = ||A||_1 = \max\{L_1, ..., L_n\}$$
叫列范数, $L_j = |a_{1j}| + \cdots + |a_{nj}|$

2.
$$\varphi(A) = \|A\|_{\infty} = \max\{R_1, \dots, R_n\}$$
叫行范数, $R_j = \left|a_{j1}\right| + \dots + \left|a_{jn}\right|$

3.
$$\varphi(A) = ||A||_F = \sqrt{\sum |a_{ij}|^2} = \sqrt{tr(A^H A)}$$
叫 F 范数

4.
$$\varphi(A) = ||A||_2 = 最大奇值 $\sqrt{\lambda_1}$
$$\lambda (A^H A) = \{\lambda_1, ..., \lambda_n\} \text{ 并且 } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$$$

5.
$$\varphi(A) = ||A||_M = \sum |a_{ij}|$$
叫总和范数

6.
$$\varphi(A) = ||A||_G = n * \max\{|a_{ij}|\}$$

等价定理:

任 2 个方阵范数
$$||A||_a$$
, $||A||_b$, $0 < k_1 \le \frac{||A||_a}{||A||_b} \le k_2$

常见向量范数之间的等价关系 $X = (x_1, ..., x_n)^T$:

1)
$$1 \le \frac{\|X\|_1}{\|X\|_{\infty}} \le n$$

2)
$$1 \le \frac{\|X\|_1}{\|X\|_2} \le \sqrt{n}$$

Pf: (1)
$$||X||_1 = |x_1| + \dots + |x_n| \le n * \max\{x_1, \dots, x_n\} = n||X||_{\infty}$$

 $||X||_1 = |x_1| + \dots + |x_n| \ge \max\{x_1, \dots, x_n\} = ||X||_{\infty}$

(2) 由柯西不等式可得:

$$||X||_{1} = |x_{1}| + \dots + |x_{n}| \le \sqrt{1^{2} + \dots + 1^{2}} \sqrt{|x_{1}|^{2} + \dots + |x_{n}|^{2}} = \sqrt{n} ||X||_{2}$$

$$||X||_{1}^{2} = (|x_{1}| + \dots + |x_{n}|)^{2} \ge |x_{1}|^{2} + \dots + |x_{n}|^{2} = ||X||_{2}^{2}$$

$$||X||_1 \ge ||X||_2$$

5.2.3 谱半径

注意: 谱半径是特征根模长的最大值

谱半径 $\rho(A) = \max\{|\lambda_1|, ..., |\lambda_n|\}, A = A_{n*n}, \lambda(A) = \{\lambda_1, ..., \lambda_n\}$ 性质:

- 1) $\rho(A) \ge 0$
- 2) 齐性: $\rho(kA) = |k|\rho(A)$ $\lambda(kA) = \{k\lambda_1, ..., k\lambda_n\}$
- 3) $\rho(A^p) = \rho(A)^p$ $\lambda(A^p) = \{\lambda_1^p, ..., \lambda_n^p\}$

对于非负矩阵, $r \le \rho(A) \le R$, 其中r为最小行和, R为最大行和

谱范不等式: ρ(A) ≤ ||A||, 对一切方阵成立证明:

$$\diamondsuit |\lambda_1| \ge \cdots \ge |\lambda_n|, \ \rho(A) = |\lambda_1|$$

取特征向量X: $AX = \lambda_1 X$

$$\diamondsuit B = (X, ..., X)$$

$$AB = (AX, ..., AX) = (\lambda_1 X, ..., \lambda_1 X) = \lambda_1 B$$

 $\|AB\|=\|\lambda_1B\|=|\lambda_1|\|B\|$

由方阵范数条件4可知:

 $|\lambda_1| ||B|| = ||AB|| \le ||A|| ||B||$

 $|\lambda_1| \le ||A||$

5.2.4 算子范数

定义:已知 $\|X\|_V$ 为 C^n 上给定的向量范数,固定一个方阵A, $\|AX\|_V$ 在 C^n 上连续,令 $\varphi(A)=\max\{\|AX\|_V\}$ (前提条件: $\|X\|_V=1$)。

即当 $\|X\|_V = 1$ 时,存在 X_0 , $\|X_0\|_V = 1$,且 $\varphi(A) = \|AX_0\|_V$ 有以下性质:

 $||AX||_V \le \varphi(A)||X||_V$ (此时 $||X||_V$ 不一定为 1)

且满足矩阵范数的4个性质。

这时 $\varphi(A)$ 是方阵范数,记为 $\varphi(A) = ||A||_V$,称为 $||X||_V$ 导出的"算子范数"。

性质证明:

先证: $||AX||_V \le φ(A)||X||_V$

$$\text{\'EY} = \frac{X}{\|X\|} \to \|Y\| = 1$$

 $||AY|| \le \max\{||AX||\} = \varphi(A)$

$$\left\|A\frac{x}{\|x\|}\right\| = \frac{\|AX\|}{\|X\|} \le \varphi(A)$$

 $||AX|| \le \varphi(A)||X||$

证性质 3: $\varphi(A + B) = \max\{\|(A + B)X\|\} = \|(A + B)X_0\| = \|AX_0 + BX_0\| \le \|AX_0\| + \|BX_0\| \le \varphi(A) + \varphi(B) \quad X_0 \Rightarrow \|AX_0\| + \|BX_0\| \le \varphi(A) + \varphi(B) \quad X_0 \Rightarrow \|AX_0\| = \|AX_0 + BX_0\| \le \varphi(A) + \varphi(B)$ 证性质 4:

$$\varphi(AB) = \max\{\|(AB)X\|\} = \|(AB)X_0\| = \|A(BX_0)\|$$

$$= \|A\frac{1}{\|BX_0\|}(BX_0)\| * \|BX_0\| \le \varphi(A) * \|BX_0\| \le \varphi(A)\varphi(B)$$

常见的算子范数:

- 1. $\|X\|_1$ 导出 $\varphi(A) = \|A\|_1$ (列)
- 2. $\|X\|_{\infty}$ 导出 $\varphi(A) = \|A\|_{\infty}$ (行)
- 3. $\|X\|_2$ 导出 $\varphi(A) = \max\{\|AX\|_2\} = \|A\|_2$ (最大奇值)

注: $||AX||_1 \leq ||A||_1 ||X||_1$

 $||AX||_{\infty} \leq ||A||_{\infty} ||X||_{\infty}$

 $||AX||_2 \le ||A||_2 ||X||_2$

一般 $||AX||_v = ||A||_v ||X||_v$

证明: $\varphi(A) = \max\{\|AX\|_2\} = (最大奇值)\sqrt{\lambda_1} (\|X\|_2 = 1)$,记为 $\|A\|_2$ 令长度 $\|X\| = \|X\|_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2}$

即证 $|AX|^2$ (最大值) = λ_1 ,条件: $|X|^2 = 1$

$$|AX|^2 = (AX)^H(AX) = X^H(A^HA)X(二次形)$$

 $A^H A \ge 0$ (半正定, Hermite 阵)

由 Hermite 分解可知,存在酉阵 Q:

$$Q^{H}(A^{H}A)Q = D = \begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix}$$

全体奇值S(A) =
$$\{\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\}$$

由酉阵保长性质可知: $|QX|^2 = |X|^2$

$$X^H(A^HA)X = Y^HQ^H(A^HA)QY = Y^HDY$$
 (X = QY)

$$Y^{H}$$
DY = $(\overline{y_{1}} \dots \overline{y_{n}})$ $\begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix}$ $\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$ $X^{H}(A^{H}A)X = \lambda_{1}|y_{1}|^{2} + \cdots + \lambda_{n}|y_{n}|^{2} \leq \lambda_{1}|y_{1}|^{2} + \cdots + \lambda_{1}|y_{n}|^{2} = \lambda_{1}|Y|^{2}$ $|Y|^{2} = 1$ 时, $X^{H}(A^{H}A)X$ 取最大值 λ_{1} 所以 $|X| = ||X||_{2}$ 时, $||A||_{2} = \sqrt{\lambda_{1}}$

单位阵范数性质:

- 1. 对任一算子范数 $\|A\|$, 必有 $\|I_n\| = 1$ 由定义 $\varphi(I_n) = \max\{\|I_nX\|\} = 1(\|X\| = 1)$ 推论: 若 $\|I_n\| > 1$, 则为非算子范数
- 2. 对于其它方阵范数,必有 $||I_n|| \ge 1$ 谱范不等式: $1 = \rho(I_n) \le ||I_n||$

例题:证明: $\frac{1}{\|A^{-1}\|_1} < |\lambda(A)|_{min}$

证明: 互逆矩阵特征根互逆

♦B =
$$A^{-1}$$

所以上式等价于: $\frac{1}{\|B\|_1} < \frac{1}{|\lambda(B)|_{max}} \leftrightarrow 1 < \frac{\|B\|_1}{\rho(B)} \leftrightarrow 1 < \frac{\|B\|_1}{\|B\|_2}$

矩阵的奇值等于特征根的模长,所以 $\rho(B) = \|B\|_2$

由算子范数的定义可知(记 $\varphi(B)$ 为矩阵范数,||X||为向量范数):

$$\varphi_1(B) = \max\{\|BX\|_1\} = \|BX_1\|_1(X_1)$$
为取最大值时的情况)

$$\varphi_2(B) = \max\{\|BX\|_2\} = \|BX_2\|_2(X_2)$$
为取最大值时的情况)

由向量范数的定义可知 $\|X\|_1 = \sum |x_i| \ge \sqrt{\sum |x_i|^2} = \|X\|_2$

所以
$$\varphi_2(B) = \|BX_2\|_2 \le \|BX_2\|_1 \le \|BX_1\|_1 = \varphi_1(B)$$

所以 $1 < \frac{\|B\|_1}{\|B\|_2}$

5.2.5 小范数定理

引理: 岩 $\|A\|$ 为 C^{n*n} 上已知的方阵范数, P 为可逆阵,

令
$$\varphi(A) = \|P^{-1}AP\|(\vec{g}\varphi(A) = \|PAP^{-1}\|)$$

则 $\varphi(A)$ 为 C^{n*n} 上一个新范数,满足条件 1~4

证明条件 3: $\varphi(A+B) \leq \varphi(A) + \varphi(B)$

$$\phi(A+B) = \|P^{-1}(A+B)P\| = \|P^{-1}AP + P^{-1}BP\| \le \|P^{-1}AP\| + \|P^{-1}BP\| = \phi(A) + \phi(B)$$

证明条件 4: $\varphi(AB) \leq \varphi(A)\varphi(B)$

$$\varphi(AB) = \|P^{-1}(AB)P\| = \|(P^{-1}AP)(P^{-1}BP)\| \le \|P^{-1}AP\|\|P^{-1}BP\| =$$
$$\varphi(A)\varphi(B)$$

小范数定理:

固定一个方阵A与小正数 $\varepsilon > 0$,则存在一个方阵范数 $||A||_{\varepsilon}$,使得:

$$||A||_{\varepsilon} \le \rho(A) + \varepsilon$$

证明:

由 Jordan 形可知:
$$P^{-1}AP = B = \begin{pmatrix} \lambda_1 & * & 0 & 0 \\ \vdots & \lambda_2 & * & \vdots \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
 (双线上三角,*

为1或0)

$$D^{-1}BD = \begin{pmatrix} \lambda_1 & * \varepsilon & 0 & 0 \\ \vdots & \lambda_2 & * \varepsilon & \vdots \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

 $\|\mathbf{D}^{-1}BD\|_{\infty} \leq |\lambda_1| + \varepsilon$

令W = PD(可逆)

$$\|A\|_{\varepsilon} = \|W^{-1}AW\|_{\infty} = \|\mathbf{D}^{-1}BD\|_{\infty} \leq |\lambda_1| + \varepsilon = \rho(A) + \varepsilon$$

推论: 若 $\rho(A) < 1$,则存在小范数,使 $||A||_{\epsilon} < 1$ 。

证明: 令 $\varepsilon = \frac{1-\rho(A)}{2}$

则存在
$$||A||_{\varepsilon} \le \rho(A) + \varepsilon = \frac{1+\rho(A)}{2} < 1$$

条件数定义: $C(A) = ||A|| ||A^{-1}|| (A 可逆)$

$$C(A) = ||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| \ge 1$$

5.3 矩阵级数

设方阵序列
$$A_1, A_2, ... \in C^{n*n}$$
,记 $A_k = (a_{ij}^k)_{n*n}$,

$$S_p = A_1 + \dots + A_P = \left(\sum_{k=1}^p a_{ij}^k\right)_{n*n}$$

若矩阵级数: $\sum_{k=1}^{\infty} A_k = A_1 + \dots + A_k + \dots \stackrel{\psi \otimes}{\Longrightarrow} S$

则部分和: $S_p = A_1 + \dots + A_p$ $\lim_{P \to \infty} S_p = S = (s_{ij})_{n*n}$

若每个级数 $\sum_{k=1}^{\infty} a_{ij}^{k} \stackrel{\psi \otimes}{\Longrightarrow} s_{ij}$,则 $\sum_{k=1}^{\infty} A_{k} \stackrel{\psi \otimes}{\Longrightarrow} S$

注: 若 $\sum_{i=1}^{\infty} |a_i| < \infty$,则 $\sum_{i=1}^{\infty} a_i$ 收敛

引理: 若 $\sum_{k=1}^{\infty} ||A_k|| = ||A_1|| + \cdots + ||A_k|| + \cdots$ 收敛,则 $\sum_{k=1}^{\infty} A_k$ 收敛即"绝对收敛,必收敛"

证明: 只要证 $n^2 \cap \sum_{k=1}^{\infty} a_{ij}^k$ 都绝对收敛

取 M 范数 $||A||_M = \sum |a_{ij}|$

等价性: $0 < k_1 < \frac{\|A\|_M}{\|A\|} < k_2$

$$\to \sum_{k=1}^{\infty} ||A_k||_M < k_2 \sum_{k=1}^{\infty} ||A_k|| (收敛)$$

$$\rightarrow \|A_1\|_M + \dots + \|A_k\|_M + \dots$$
 收敛

$$\rightarrow \sum (\sum_{k=1}^{\infty} |a_{ij}^{k}|)$$
收敛

$$\rightarrow$$
 每个级数 $\sum_{k=1}^{\infty} |a_{ij}^{k}|$ 收敛

$$\rightarrow \sum_{k=1}^{\infty} a_{ij}^{k}$$
收敛

$$\rightarrow \sum (\sum_{k=1}^{\infty} a_{ij}^{k})$$
收敛

$$\rightarrow \sum_{k=1}^{\infty} A_k$$
收敛

牛曼公式:

1)
$$\rho(A) < 1$$
 时, $\sum_{k=0}^{\infty} A^k = I + A + \dots + A^n + \dots = (I - A)^{-1}$ (收敛)

2) 某个
$$\|A\| < 1$$
时, $\sum_{k=0}^{\infty} A^k = (I - A)^{-1}$

3) 若
$$\rho(A) \ge 1$$
,则 $\sum_{k=0}^{\infty} A^k$ 发散

证明: 若
$$\rho(A) < 1$$
,则 $\sum_{k=1}^{\infty} A^k$ 收敛
$$\rho(A) < 1$$
,则存在小范数 $\|A\|_{\varepsilon} = b < 1$
$$\|A^k\|_{\varepsilon} \le \|A\|_{\varepsilon}^k = b^k$$

$$\to \sum_{k=1}^{\infty} \|A^k\|_{\varepsilon} \le \sum_{k=1}^{\infty} b^k (0 < b < 1)$$
收敛 则 $\sum_{k=1}^{\infty} A^k$ 收敛(绝对收敛引理)
$$\diamondsuit \sum_{k=0}^{\infty} A^k = S$$
 S $(I - A) = S - SA$
$$= (I + A + \dots + A^n + \dots) - (I + A + \dots + A^n + \dots)A = I$$
 所以S = $(I - A)^{-1}$

注: 若 $\sum_{k=1}^{\infty} A^k$ 收敛,则 $A^k \stackrel{\psi \Rightarrow}{\Longrightarrow} 0$

证明: $\rho(A) \geq 1$, $\sum_{k=1}^{\infty} A^k$ 不收敛

反证法: 若
$$\sum_{k=1}^{\infty} A^k$$
收敛,则 $A^k \overset{\psi \otimes}{\Longrightarrow} 0$

$$\to \|A^k\|_M \overset{\psi \otimes}{\Longrightarrow} 0$$

$$\to \rho(A^k) \le \|A^k\|_M$$

$$\to \rho(A)^k \overset{\psi \otimes}{\Longrightarrow} 0$$

$$\to \rho(A) < 1(矛盾)$$

5.4 特征根估计

5.4.1 估计方法

谱范不等式 $\rho(A)$ ≤ ||A||:

- 1) $\rho(A) = \max\{|\lambda_1|, \dots, |\lambda_n|\} \le ||A||_{\infty}$
- 2) $\rho(A) \le ||A||_1$
- 3) $\rho(A) \le ||A||_G$

许尔估计:

 $|\lambda_1|^2 + \dots + |\lambda_n|^2 \le \sum |a_{ij}|^2$,当且仅当 A 正规时**等号**成立

5.4.2 盖尔(Ger)圆盘

盖尔圆盘:以 a_{ii} 为圆心, R_i 为半径的圆

定义: 方阵 $A = (a_{ij})_{n*n}$ 恰有 n 个盖尔圆盘 $G_1 \sim G_n$, 其中:

$$G_1: |z - a_{11}| \le R_1 \dots G_n: |z - a_{nn}| \le R_n$$

半径: $R_i = (\sum_{j=1}^n \left| a_{ij} \right|) - \left| a_{ii} \right|$ 即每行除对角元之外元素绝对值之和

盖尔定理:

1. 全体特征根A(A)被所有盖尔圆盘所覆盖,即:

$$\{\lambda_1, \dots, \lambda_n\} \subset G_1 \cup \dots \cup G_n$$

2. 若 p 个圆盘相交(或相切)形成一个连通分支 D_p ,且与其余 n-p 个圆盘分离,则 D_p 中恰有 p 个根(含重复)。

特别,一个独立圆 D_1 中恰有1个根。

应用:若矩阵 A 的盖尔盘比较难求,可以求 $B = P^{-1}AP$ 的盖尔盘。因为相似矩阵特征根相同。

实方阵性质:

- 1. n 个中心 a_{11} ,..., a_{nn} 都在实轴上,不在实轴上的根都是虚根。
- 2. 实方阵的虚根成双出现(共轭虚根)

例如: $\lambda_1 = a + bi$, $\lambda_2 = a - bi$

例题: 若一4阶实方阵的盖尔圆盘中一个孤立,另外3个相交,则该矩阵至少有2个实根。

证明:

- 1. 首先,孤立的盖尔圆盘内必是一实根,因为虚根成对出现,若是虚根,必须得两个盖尔圆盘相交。
- 2. 其次, 3个相交的盘内也必有一实根, 否则应该是 4个虚根

对角占优阵

若对角占优阵 A 适合条件:

行对角占优: $|a_{ii}| > R_i$

列对角占优: $|a_{ii}| > R'_{i}$ (非对角元列元素之和)

推论:

若 A 对角占优,则 $\forall G_i$, $\mathbf{0} \notin G_i$, 即 $\mathbf{0} \notin \lambda(A) = \{\lambda_1, ..., \lambda_n\}$, $|A| = \lambda_1 * ... *$

 $\lambda_n \neq 0$,A 为可逆阵。

A与转置 A^T :

- 1. 具有相同特征根: $\lambda(A) = \lambda(A^T)$
- 2. 特征式相同: $|\lambda I A| = |\lambda I A^T|$
- 3. A^T的(Ger)行半径恰是 A 的(Ger)列半径

5.5 矩阵函数

5.5.1 收敛定理

令解析函数 $f(x) = \sum_{k=0}^{\infty} c_k x^k = c_0 + c_1 x + \cdots$ 收敛半径为r,或者

$$f(x) = \sum_{k=0}^{\infty} a_k(x - c) = a_0 + a_1(x - c) + \dots$$

将 x=A 代入,
$$f(x) = \sum_{k=0}^{\infty} c_k A^k$$
或 $f(x) = \sum_{k=0}^{\infty} a_k (A-c)$

收敛定理: $f(x) = \sum_{k=0}^{\infty} c_k x^k$ 收敛半径为 r,且A $\in C^{n*n}$

- 1. $\rho(A) < r$ 时,f(A)收敛
- 2. $\rho(A) > r$ 时, f(A)发散
- 3. $\rho(A) = r$ 时,待定

收敛半径求法: 记 $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = p$

1)
$$p \neq 0, r = \frac{1}{p}$$

2)
$$p = 0, r = +\infty$$

3)
$$p = +\infty, r = 0$$

例:
$$f(x) = \sum_{k=0}^{\infty} x^k$$
, $p=1$,收敛半径 $r=1$. $\rho(A) < 1$ 时, $f(A)$ 收敛

5.5.2 常见解析函数

3 个解析函数 $f(x) = e^x$, $f(x) = \sin x$, $f(x) = \cos x$, 收敛半径都是+∞

$$f(x) = e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$f(x) = \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots + (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$f(x) = \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots + (-1)^{k} \frac{x^{2k}}{(2k)!}$$

任方阵 A 代入解析函数:

$$f(A) = e^{A} = I + A + \frac{A^{2}}{2!} + \cdots$$

$$f(A) = \sin A = A - \frac{A^{3}}{3!} + \frac{A^{5}}{5!} - \cdots + (-1)^{k} \frac{A^{2k+1}}{(2k+1)!}$$

$$f(A) = \cos A = I - \frac{A^{2}}{2!} + \frac{A^{4}}{4!} - \cdots + (-1)^{k} \frac{A^{2k}}{(2k)!}$$

$$\sin(-A) = -\sin A$$

$$\cos(-A) = \cos A$$

若 A 为单阵,则对任一解析函数 $f(x) = \sum_{k=0}^{\infty} c_k x^k$,必有 $\mathbf{f}(A) = \mathbf{f}(\lambda_1)\mathbf{G}_1 + \dots + \mathbf{f}(\lambda_n)\mathbf{G}_n$

引入参数 t(实数或复数)

$$e^{tA} = I + tA + \frac{(tA)^2}{2!} + \cdots$$

$$\sin(tA) = tA - \frac{(tA)^3}{3!} + \frac{(tA)^5}{5!} - \dots + (-1)^k \frac{(tA)^{2k+1}}{(2k+1)!}$$
$$\cos(tA) = I - \frac{(tA)^2}{2!} + \frac{(tA)^4}{4!} - \dots + (-1)^k \frac{(tA)^{2k}}{(2k)!}$$

$$\frac{de^{tA}}{dt} = 0 + A + \frac{2A^2t}{2!} + \dots = A\left(I + tA + \frac{(tA)^2}{2!} + \dots\right) = Ae^{tA}$$

$$\frac{d\sin(tA)}{dt} = A\cos(tA)$$

$$\frac{d\cos(tA)}{dt} = -A\sin(tA)$$

5.5.3 幂等公式

公式: $若A^2 = A(可知A^k = A)$,则 $e^{tA} = I + (e^t - 1)A$ 证明:

$$e^{tA} = I + tA + \frac{(tA)^2}{2!} + \frac{(tA)^3}{3!} + \dots = I + tA + \frac{t^2A}{2!} + \frac{t^3A}{3!} + \dots$$
$$= I + A\left(t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots\right) = I + (e^t - 1)A$$

Eg:
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $\Re e^{tA}$

$$A^2 = A$$

$$e^{tA} = I + (e^t - 1)A = \begin{pmatrix} e^t & e^t - 1 \\ 0 & 1 \end{pmatrix}$$

5.5.4 分块公式

公式: 若
$$A = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$$
, 则 $A^k = \begin{pmatrix} B^k & 0 \\ 0 & D^k \end{pmatrix}$, $f(x)$ 为解析函数

$$f(A) = \begin{pmatrix} f(B) & 0 \\ 0 & f(D) \end{pmatrix}$$
同样: $A = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{pmatrix} \rightarrow f(A) = \begin{pmatrix} f(A_1) & 0 & 0 \\ 0 & f(A_2) & 0 \\ 0 & 0 & f(A_3) \end{pmatrix}$
特别: $A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \rightarrow f(A) = \begin{pmatrix} f(\lambda_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f(\lambda_n) \end{pmatrix}$

$$f(x) = e^x \rightarrow e^A = \begin{pmatrix} e^{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n} \end{pmatrix}$$
Eg: $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $x \in A^{+B}$

$$A^2 = A, B^2 = B$$

$$e^A = \begin{pmatrix} e & e - 1 \\ 0 & 1 \end{pmatrix} e^B = \begin{pmatrix} e & e - 2 \\ 0 & 1 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$
 (对角阵)
$$e^{A+B} = \begin{pmatrix} e^2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$e^{A+B} \neq e^A e^B$$

定理:若AB = BA(可交换),则
$$e^A e^B = e^{A+B} = e^{B+A} = e^B e^A$$

注:若AB = BA, $(A+B)^2 = A^2 + 2AB + B^2$
 $(A+B)^p = A^p + pA^{p-1}B + \dots + pAB^{p-1} + B^p$ (二项公式)

由上述定理可知:

$$(-A)A = A(-A) \rightarrow e^A e^{-A} = e^{A+A} = e^0 = I$$

同理 $e^{tA}e^{-tA} = I$

可逆公式: e^A 必有逆, 且 $(e^A)^{-1} = e^{-A}$. $(e^{tA})^{-1} = e^{-tA}$

Eg:
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, 用定义求 e^{tA} , e^{tB}

$$A^{1} = A, A^{2} = -I, A^{3} = -A, A^{4} = I, A^{5} = A$$

$$e^{tA} = I + tA + \frac{t^{2}(-I)}{2!} + \frac{t^{3}(-A)}{3!} + \frac{t^{4}(I)}{4!} + \frac{t^{5}(A)}{5!} + \cdots = \left(t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} \dots\right) A + \left(1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} \dots\right) I = (\sin t)A + (\cos t)I = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

$$e^{tB} = e^{-tA} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

5.5.5 根遗传公式(不要求是单纯阵)

公式: 若 $\lambda(A) = \{\lambda_1, ..., \lambda_n\}$, 则 $f(A) = \sum c_k A_k$ 的 全 体 根 $\lambda(f(A)) = \{f(\lambda_1), ..., f(\lambda_n)\}$

行列式:
$$|f(A)| = \det[f(A)] = f(\lambda_1) * ... * f(\lambda_n)$$

Eg :
$$f(x) = e^x$$
, $\lambda(e^A) = \{e^{\lambda_1}, ..., e^{\lambda_n}\}$
 $|e^A| = e^{\lambda_1} * ... * e^{\lambda_n} = e^{\lambda_1 + ... + \lambda_n} = e^{a_{11} + ... + a_{nn}}$

5.5.6 Euler 公式

- $1) e^{iA} = \cos A + i \sin A$
- 2) $e^{-iA} = \cos A i \sin A$ (将(1)中 A 换为-A)
- 3) $\cos A = \frac{1}{2}(e^{iA} + e^{-iA})$
- 4) $\sin A = \frac{1}{2i} (e^{iA} e^{-iA})$

A 为常数(t)也成立

Eg1: A =
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\Re e^{tA}$, $(e^{tA})^{-1}$, $|e^{tA}|$

解:

$$|e^{tA}| = e^{tr(tA)} = e^{t+2t+t} = e^{4t}$$
 $\lambda(A) = \{2,1,1\}($ 平移法 $)$

$$(A-1)(A-2)=0 \rightarrow A$$
为单阵 $\rightarrow f(A)=f(\lambda_1)G_1+f(\lambda_2)G_2$

$$G_1 = \frac{A - \lambda_2}{\lambda_1 - \lambda_2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, G_2 = I - G_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$e^{tA} = e^{2t}G_1 + e^tG_2$$

$$(e^{tA})^{-1} = e^{-tA} = e^{-2t}G_1 + e^{-t}G_2$$

5.5.7 幂 0 公式

幂 0 阵:
$$A^k = 0 (k \ge 2)$$
且 $A^{k-1} \ne 0$

幂 0 公式: 若
$$(A-a)^k = 0$$
,则 $f(A) = f(a)I + f'(a)(A-a) + \frac{f''(a)}{2!}(A-a)^2 + \cdots + \frac{f^{k-1}(a)}{(k-1)!}(A-a)^{k-1}$

Eg:
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix}$$
, $\Re e^{tA}$, $(e^{tA})^{-1}$
 $(A-2)^2 = 0$
 $f(A) = f(2)I + f'(2)(A-2)$
 $e^{tA} = e^{2t}I + te^{2t}(A-2)$
 $(e^{tA})^{-1} = e^{-tA}$

5.5.8 矩阵函数求法总结

1. 幂等阵: $e^{tA} = I + (e^t - 1)A$

2. 分块阵:
$$A = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix} \rightarrow f(A) = \begin{pmatrix} f(B) & 0 \\ 0 & f(D) \end{pmatrix}$$

$$A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \rightarrow f(A) = \begin{pmatrix} f(\lambda_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f(\lambda_n) \end{pmatrix}$$

3. 单纯阵: $(A - \lambda_1) * ... * (A - \lambda_k) = 0$

$$f(A) = f(\lambda_1)G_1 + \dots + f(\lambda_k)G_k$$

4. 幂 0 阵 : $f(A) = f(a)I + f'(a)(A-a) + \frac{f''(a)}{2!}(A-a)^2 + \dots + \frac{f^{k-1}(a)}{(k-1)!}(A-a)^{k-1}$

Eg: 已知矩阵 A 的最小式为 $(x-2)^2(x-1)$,则可知 A 的广谱公式为: $f(A) = f(1)P_1 + f(2)P_2 + f'(2)P$,通过构造法求 P_1 、 P_2 、P,并计算 $\cos(2\pi A)$ 。解:

令
$$f(x) = (x - 2)^2$$
, $f(1) = 1$, $f(2) = 0$, $f'(2) = 0$
所以 $P_1 = (A - 2I)^2$
令 $f(x) = 常数k$, $f(1) = f(2) = k$, $f'(2) = 0$, $k = kP_1 + kP_2$
所以 $I = P_1 + P_2$, $P_2 = -(A - I)(A - 3I)$
令 $f(x) = (x - 1)(x - 2)$, $f(1) = f(2) = 0$, $f'(2) = 1$

$$\cos(2\pi A) = \cos(2\pi) P_1 + \cos(4\pi) P_2 - 2\pi \sin(4\pi) P = P_1 + P_2 = I$$

5.6 矩阵函数应用

5.6.1 基本定义与公式

定义:

令A(t) =
$$\left(a_{ij}(t)\right)_{m*n}$$
, 其中 $a_{ij}(t)$ 是关于 t 的函数。
求导: $\frac{dA(t)}{dt} = A'(t) = \frac{da_{ij}(t)}{dt} = a_{ij}'(t)$
积分: $\int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right)$
常数矩阵导数(A)' = 0

公式:

$$[A(t)B(t)]' = A'(t)B(t) + A(t)B'(t)$$

$$\frac{de^{tA}}{dt} = Ae^{tA}, \quad \frac{de^{-tA}}{dt} = -Ae^{-tA}$$

$$[e^{-tA}B(t)]' = -Ae^{-tA}B(t) + e^{-tA}B'(t) = e^{-tA}[B'(t) - AB(t)]$$

$$\int_{a}^{b} A(t)dt = A(b) - A(a)$$

$$\int_{a}^{b} (A(t) + B(t))dt = \int_{a}^{b} A(t)dt + \int_{a}^{b} B(t)dt$$

$$\int_{a}^{b} kA(t)dt = k \int_{a}^{b} A(t)dt$$

5.6.2 应用

Eg1:已知
$$e^{tA} = \frac{1}{3} \begin{pmatrix} e^{5t} + 2e^{2t} & 2e^{5t} - 2e^{2t} \\ e^{5t} - e^{2t} & 2e^{5t} + e^{2t} \end{pmatrix}$$
,用导数求矩阵 A解:左边开导=A e^{tA} 右边开导= $\frac{1}{3} \begin{pmatrix} 5e^{5t} + 4e^{2t} & 10e^{5t} - 4e^{2t} \\ 5e^{5t} - 2e^{2t} & 10e^{5t} + 2e^{2t} \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} e^{tA}$ 所以A = $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$

Eg2: 已知
$$sin(At) = B(t)$$
, 表示出矩阵 A

开导:
$$A\sin(At) = B'(t)$$

5.6.3 求解齐次线性微分方程组

$$\frac{dX(t)}{dt} = AX(t)$$
有通解公式: $X(t) = e^{tA} * C$, C 为常数矩阵。

Pf:

原式
$$\leftrightarrow e^{-tA} * \frac{dX(t)}{dt} = e^{-tA} * AX(t)$$

$$\leftrightarrow e^{-tA} \frac{dX(t)}{dt} - Ae^{-tA}X(t) = 0$$
 为什么可以调换???

$$\leftrightarrow [e^{-tA}X(t)]' = 0$$

$$\leftrightarrow e^{-tA}X(t) = C(常数阵)$$

$$\leftrightarrow X(t) = e^{tA} * C$$

定理:
$$\begin{cases} \frac{dX(t)}{dt} = AX(t) \\ X(0) = C_0 \end{cases}$$
 有唯一解X(t) = $e^{tA} * C_0$

Eg: 求解
$$\begin{cases} x'_1(t) + x_2(t) = 0 \\ x'_2(t) - x_1(t) = 0 \end{cases}$$
, 且X(0) = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

解:
$$\diamondsuit A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $X = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$

$$\frac{dX(t)}{dt} = \begin{pmatrix} x'_1(t) \\ x'_2(t) \end{pmatrix}, AX(t) = \begin{pmatrix} -x_2(t) \\ x_1(t) \end{pmatrix}$$

所以原式可写为:
$$\frac{dX(t)}{dt} = AX(t)$$

所以唯一解为 $X(t) = e^{tA} * X(0) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$ e^{tA} 的值在之前的例题中求得

6 矩阵直积

6.1 定义与性质

6.1.1 定义

 $\diamondsuit A = (a_{ij})_{m*n}, B = (b_{ij})_{p*q},$ 矩阵的张量积(直积) $A \otimes B$ 定义如下:

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \cdots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix} = (a_{ij}B)$$

6.1.2 基本性质

基本性质:

- 1) $A \otimes B \neq B \otimes A$
- 2) $A \otimes (B + C) = A \otimes B + A \otimes C$
- 3) $(A+B)\otimes C = A\otimes C + B\otimes C$
- 4) $I_n \otimes I_p = I_{np} = I_p \otimes I_n$

分块公式(右进法则):

1)
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \otimes F = \begin{pmatrix} A \otimes F & B \otimes F \\ C \otimes F & D \otimes F \end{pmatrix}$$

2)
$$\binom{A}{B} \otimes F = \binom{A \otimes F}{B \otimes F}$$

3)
$$(A \ B \ C) \otimes F = (A \otimes F \ B \otimes F \ C \otimes F)$$

但
$$F\otimes (A \quad B) \neq (F\otimes A \quad F\otimes B)$$

转置公式:

$$(A \otimes B)^T = A^T \otimes B^T$$
,比较 $(AB)^T = B^T A^T$

$$\overline{A \otimes B} = \overline{A} \otimes \overline{B} \qquad (A \otimes B)^H = A^H \otimes B^H$$

吸收公式:

$$(A \otimes B)(C \otimes D) = (AC \otimes BD)$$

条件: AC、BD有定义

推广:
$$(A_1 \otimes B_1) \cdots (A_k \otimes B_k) = (A_1 \cdots A_k \otimes B_1 \cdots B_k)$$

特别: $(A \otimes B)^k = A^k \otimes B^k$

逆公式:

若 A、B 都可逆,则 $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

证明:
$$(A \otimes B) * (A^{-1} \otimes B^{-1}) = (AA^{-1} \otimes BB^{-1}) = I$$

推广: $(A \otimes B)^+ = A^+ \otimes B^+$

Eg:

- 1) 若 A、B 都是 Hermite 阵,则A⊗B为 Hermite 阵
- 2) 若 A、B 都是幂等阵,则 $A \otimes B$ 为幂等阵
- 3) 若 A、B 都是酉阵,则A⊗B为酉阵

解: 若A =
$$A^H$$
, $B = B^H$, 则 $(A \otimes B)^H = A^H \otimes B^H = A \otimes B$
若 $A^k = A$, $B^k = B$, 则 $(A \otimes B)^k = A^k \otimes B^k = A \otimes B$
若 $A^H = A^{-1}$, $B^H = B^{-1}$, 则 $(A \otimes B)^H = A^H \otimes B^H = A^{-1} \otimes B^{-1} = (A \otimes B)^{-1}$

6.1.3 扩展性质

上三角性质:

若 D_1 、 D_2 都是上三角阵,则 $D_1\otimes D_2$ 是上三角阵

 D_1 对角元为 $\{a_1, \dots, a_n\}$, D_2 对角元为 $\{b_1, \dots, b_n\}$, 则 $D_1 \otimes D_2$ 对角元为

$$\{a_1b_1, \cdots, a_1b_n, \cdots, a_nb_1, \cdots, a_nb_n\}$$

相似性质:

若A~
$$D_1$$
, B~ D_2 ,则 $A\otimes B\sim D_1\otimes D_2$
证明: $P^{-1}AP=D_1$ $Q^{-1}BQ=D_2$
$$(P\otimes Q)^{-1}(A\otimes B)(P\otimes Q)=(P^{-1}\otimes Q^{-1})(A\otimes B)(P\otimes Q)=(P^{-1}AP)\otimes (Q^{-1}BQ)=D_1\otimes D_2$$

特征根定理:

$$\lambda(A) = \{\lambda_1, \dots, \lambda_n\}, \lambda(B) = \{t_1, \dots, t_n\}, \quad 则\lambda(A \otimes B) = \{$$
全体 $\lambda_i t_j \}$

Eg:证明:
$$(A 0)^+ = {A^+ \choose 0}$$

 $(A 0) = (1 0) \otimes A$
 $(A 0)^+ = ((1 0) \otimes A)^+ = (1 0)^+ \otimes A^+ = {A^+ \choose 0}$

同样:
$$(A \quad A \quad A)^{+} = \frac{1}{3} \begin{pmatrix} A^{+} \\ A^{+} \\ A^{+} \end{pmatrix}$$
$$\begin{pmatrix} A \\ A \end{pmatrix}^{+} = \frac{1}{3} (A^{+} \quad A^{+} \quad A^{+})$$

Eg:
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & -1 \end{pmatrix}$$
, $\mathcal{R}A^+$

$$\begin{split} A &= \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ A^+ &= \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}^+ \otimes \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^+ = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \end{split}$$