AnanseScanpy_Jupyter_PBMC_vignette-1.0.0

January 12, 2023

1 AnanseScanpy vignette for multiomics PBMC dataset

PBMC multiomics datasets scanpy objects (annual) generated from Seurat objects with Seurat-Disk. This vignette includes the optional functions for Maelstrom (GimmeMotifs) analysis.

```
[1]: import scanpy as sc
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import anansescanpy as asc
sc.set_figure_params(figsize=(4, 4))
```

/home/julian/.local/lib/python3.8/site-packages/pandas/core/computation/expressions.py:20: UserWarning: Pandas requires version '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installed). from pandas.core.computation.check import NUMEXPR_INSTALLED

```
[2]: sc.logging.print_versions()
```

```
anndata
            0.8.0
scanpy
            1.9.1
----
PIL
                    7.0.0
                    1.0.0
anansescanpy
apport_python_hook NA
backcall
                    0.1.0
cffi
                    1.15.1
colorama
                    0.4.3
cycler
                    0.10.0
cython_runtime
                    NΑ
dateutil
                    2.8.2
                    4.4.2
decorator
entrypoints
                    0.3
h5py
                    3.7.0
ipykernel
                    5.2.0
ipython_genutils
                    0.2.0
```

ipywidgets	8.0.4
jedi	0.15.2
joblib	0.14.0
kiwisolver	1.0.1
llvmlite	0.39.1
logilab	NA
lz4	3.0.2+dfsg
matplotlib	3.6.3
more_itertools	NA
mpl_toolkits	NA
natsort	8.2.0
netifaces	0.10.4
numba	0.56.4
numexpr	2.7.1
numpy	1.23.5
packaging	21.3
pandas	1.5.2
parso	0.5.2
pexpect	4.6.0
pickleshare	0.7.5
pkg_resources	NA
prompt_toolkit	2.0.10
psutil	5.5.1
ptyprocess	0.7.0
pygments	2.3.1
pyparsing	2.4.6
pytz	2022.7
scipy	1.10.0
seaborn	0.12.2
session_info	1.0.0
simplejson	3.16.0
sitecustomize	NA
six	1.14.0
sklearn	0.22.2.post1
statsmodels	0.13.5
storemagic	NA
tornado	6.2
traitlets	4.3.3
wcwidth	NA
yaml	5.3.1
zipp	NA
zmq	18.1.1
zope	NA
IPython	7.13.0
jupyter_client	7.4.8
jupyter_core	4.6.3
notebook	6.5.2

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0] Linux-5.15.0-56-generic-x86_64-with-glibc2.29 ----Session information updated at 2023-01-12 11:45

```
[4]: # Run the functions in python:
     outputdir="AnanseScanpy_outs/"
     contrasts=["B-naive_B-memory","B-memory_B-naive"]
     minimal=25
     asc.export_CPM_scANANSE(anndata=rna_PBMC,min_cells=minimal,outputdir=outputdir,
                             cluster id="predicted.id"
     )
     asc.
     -export_ATAC_scANANSE(anndata=atac_PBMC,min_cells=minimal,outputdir=outputdir,
                              cluster id="predicted.id"
     )
     asc.config_scANANSE(anndata=rna_PBMC,min_cells=minimal,outputdir=outputdir,
                         cluster_id="predicted.id",additional_contrasts=contrasts
     )
     asc.DEGS_scANANSE(anndata=rna_PBMC,min_cells=minimal,outputdir=outputdir,
                       cluster_id="predicted.id",additional_contrasts=contrasts
     )
```

/home/julian/.local/lib/python3.8/site-packages/anndata/_core/raw.py:139: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.

```
return anndata.AnnData(
```

gather data from CD4-Naive with 1414 cells gather data from CD4-TCM with 1592 cells gather data from CD8-Naive with 1496 cells gather data from CD16-Mono with 527 cells

```
gather data from NK with 492 cells
gather data from Treg with 160 cells
gather data from CD14-Mono with 3095 cells
gather data from CD8-TCM with 73 cells
gather data from B-intermediate with 351 cells
gather data from cDC2 with 168 cells
gather data from B-memory with 159 cells
gather data from CD4-TEM with 172 cells
gather data from MAIT with 121 cells
gather data from CD8-TEM with 664 cells
gather data from B-naive with 424 cells
gather data from gdT with 164 cells
gather data from pDC with 110 cells
gather data from HSPC with 26 cells
gather data from CD4-Naive with 1414 cells
gather data from CD4-TCM with 1592 cells
gather data from CD8-Naive with 1496 cells
gather data from CD16-Mono with 527 cells
gather data from NK with 492 cells
gather data from Treg with 160 cells
gather data from CD14-Mono with 3095 cells
gather data from CD8-TCM with 73 cells
gather data from B-intermediate with 351 cells
gather data from cDC2 with 168 cells
gather data from B-memory with 159 cells
gather data from CD4-TEM with 172 cells
gather data from MAIT with 121 cells
gather data from CD8-TEM with 664 cells
gather data from B-naive with 424 cells
gather data from gdT with 164 cells
gather data from pDC with 110 cells
gather data from HSPC with 26 cells
adding additional contrasts
anansesnake_CD4-Naive_average
anansesnake CD4-TCM average
anansesnake CD8-Naive average
anansesnake CD16-Mono average
anansesnake_NK_average
anansesnake_Treg_average
anansesnake_CD14-Mono_average
anansesnake_CD8-TCM_average
anansesnake_B-intermediate_average
anansesnake_cDC2_average
anansesnake_B-memory_average
anansesnake_CD4-TEM_average
anansesnake_MAIT_average
anansesnake_CD8-TEM_average
anansesnake_B-naive_average
```

```
anansesnake_gdT_average
anansesnake_pDC_average
anansesnake_HSPC_average
anansesnake_B-naive_B-memory
anansesnake B-memory B-naive
adding additional contrasts
calculating DEGS for contrast anansesnake CD4-Naive average
calculating DEGS for contrast anansesnake CD4-TCM average
calculating DEGS for contrast anansesnake_CD8-Naive_average
calculating DEGS for contrast anansesnake_CD16-Mono_average
calculating DEGS for contrast anansesnake_NK_average
calculating DEGS for contrast anansesnake_Treg_average
calculating DEGS for contrast anansesnake_CD14-Mono_average
calculating DEGS for contrast anansesnake_CD8-TCM_average
calculating DEGS for contrast anansesnake_B-intermediate_average
calculating DEGS for contrast anansesnake_cDC2_average
calculating DEGS for contrast anansesnake_B-memory_average
calculating DEGS for contrast anansesnake_CD4-TEM_average
calculating DEGS for contrast anansesnake_MAIT_average
calculating DEGS for contrast anansesnake_CD8-TEM_average
calculating DEGS for contrast anansesnake B-naive average
calculating DEGS for contrast anansesnake gdT average
calculating DEGS for contrast anansesnake_pDC_average
calculating DEGS for contrast anansesnake_HSPC_average
calculating DEGS for contrast anansesnake_B-naive_B-memory
calculating DEGS for contrast anansesnake_B-memory_B-naive
```

After running ANANSNAKE you can import back the results to the scanpy object and visualize a

heatmap of the top factors with seaborn

```
[5]: # Generate a UMAP if not performed already during pre-processing
     adata=rna_PBMC
     adata.raw = adata
     sc.pp.normalize_total(adata, target_sum=1e4)
     sc.pp.log1p(adata)
     sc.pp.pca(adata)
     sc.pp.neighbors(adata, n_neighbors=10, n_pcs=30)
     sc.tl.umap(adata)
    WARNING: adata.X seems to be already log-transformed.
[6]: # Import the Ananse results to the scanpy object and a separate dataframe as
     \rightarrowwell
     df_influence=asc.import_scanpy_scANANSE(anndata=rna_PBMC,cluster_id="predicted.
      ⇒id",
                            anansnake_inf_dir="AnanseScanpy_outs/influence/")
    /home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798:
    UserWarning:
    AnnData expects .obs.index to contain strings, but got values like:
        [0, 1, 2, 3, 4]
        Inferred to be: integer
      value_idx = self._prep_dim_index(value.index, attr)
[7]: # Show the top 5 transcription factors for each population
     top=5
     df_t = df_influence.transpose()
     factors_topn = []
     for i in df_t:
         df_sub=df_t[i]
         test = df_sub.sort_values(ascending=False)
         print(i,": ",list(test[0:top].index))
         factors_topn.append(list(test[0:top].index))
     factors_topn=[j for i in factors_topn for j in i]
     factors_topn=set(factors_topn)
     selected_df = df_influence[list(factors_topn)]
    cDC2 : ['SPI1', 'RBPJ', 'NR4A3', 'ETS2', 'RUNX2']
    CD8-Naive: ['LEF1', 'TCF7', 'BACH2', 'RUNX2', 'NR3C2']
    B-memory: ['EBF1', 'MEF2C', 'SPIB', 'BCL11A', 'NFKB2']
    B-naive : ['EBF1', 'REL', 'BACH2', 'PAX5', 'E2F5']
```

Treg : ['LEF1', 'GATA3', 'FOXP3', 'HIVEP2', 'PRDM1']
gdT : ['STAT4', 'RORA', 'MYBL1', 'EOMES', 'TBX21']
CD8-TCM : ['STAT4', 'NR3C2', 'HIVEP2', 'ZNF76', 'GATA3']
CD16-Mono : ['SPI1', 'MAFB', 'RXRA', 'REL', 'NR4A1']
CD8-TEM : ['STAT4', 'RUNX3', 'MYBL1', 'EOMES', 'TBX21']
NK : ['TBX21', 'XBP1', 'STAT4', 'RUNX3', 'EOMES']
CD4-TCM : ['STAT5B', 'GATA3', 'HIVEP2', 'TCF7', 'MAF']
MAIT : ['STAT4', 'EOMES', 'RUNX2', 'XBP1', 'RORA']
CD4-TEM : ['STAT4', 'RORA', 'MAF', 'TCF7', 'NFATC2']
pDC : ['SPIB', 'IRF4', 'CUX2', 'TCF4', 'CUX1']
B-intermediate : ['EBF1', 'SPIB', 'REL', 'TCF4', 'BACH2']
CD14-Mono : ['BACH1', 'CEBPD', 'SPI1', 'FOXO3', 'RBPJ']
CD4-Naive : ['LEF1', 'TCF7', 'BACH2', 'HIVEP2', 'NR3C2']

[8]: # Plot the heatmap of the top 5 sns.clustermap(selected_df, annot=False, figsize=(15, 10),cmap="Oranges")

[8]: <seaborn.matrix.ClusterGrid at 0x154d8ec854f0>


```
[9]: # Plot three TFs of interest upon the UMAP with expression and influence scores
for i in ["STAT4","LEF1","MEF2C"]:
    fig, axs = plt.subplots(1,3, figsize=(20,5))
    sc.pl.umap(adata, color=[i], cmap="Blues",
        show = False,
```

/home/julian/.local/lib/python3.8/site-

packages/scanpy/plotting/_tools/scatterplots.py:392: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored cax = scatter(

/home/julian/.local/lib/python3.8/site-

packages/scanpy/plotting/_tools/scatterplots.py:392: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored

cax = scatter(

/home/julian/.local/lib/python3.8/site-

packages/scanpy/plotting/_tools/scatterplots.py:392: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored

cax = scatter(


```
[10]: # Plot the direct cluster-to-cluster comparison
     sc.set_figure_params(figsize=(10, 5))
     MemoryInfluence = pd.read csv('AnanseScanpy outs/influence/
      →anansesnake_B-memory_B-naive.tsv',sep="\t",header=0)
     NaiveInfluence = pd.read_csv('AnanseScanpy_outs/influence/
      →anansesnake_B-naive_B-memory.tsv',sep="\t",header=0)
     NaiveInfluence["factor_fc"] = NaiveInfluence["factor_fc"]* -1
     NaiveInfluence
     B_comparison = pd.concat([NaiveInfluence,MemoryInfluence])
     B_comparison=B_comparison.reset_index()
     B_comparison
     plt.style.use("ggplot")
     plt.
      scatter(B_comparison["factor_fc"],B_comparison["influence_score"],s=B_comparison["direct_ta
      →1,c=B_comparison["influence_score"], cmap='Blues_r')
     # Naming and adding range to x-axis
     plt.xlabel('Expression Log2FC \n Naive B-cells / Memory B-cells')
     plt.ylabel('Influence score')
     plt.xlim([-2, 2])
     plt.colorbar()
     # Add annotations
     # Select factors with "factor_fc" > 0.26 and "factor_fc" < -0.5
     selected_list= [i for i, x in enumerate(list(B_comparison["factor_fc"] > 0.26))_u
      →if x]+[i for i, x in enumerate(list(B_comparison["factor_fc"] < -0.5)) if x]</pre>
     for i in selected_list:
         plt.annotate(B_comparison["factor"][int(i)],__
      plt.figure()
```

[10]: <Figure size 800x400 with 0 Axes>

<Figure size 800x400 with 0 Axes>

Optional: after running ANANSNAKE you can import back the maelstrom results to the scanpy object

/home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798: UserWarning:

AnnData expects .obs.index to contain strings, but got values like: [0, 1, 2, 3, 4]

Inferred to be: integer

value_idx = self._prep_dim_index(value.index, attr)

```
[12]: # Make a dataframe with the values per cluster from the scanpy object, like_□

→ df_mael above:

df_maelstrom = asc.per_cluster_df(anndata=adata,assay="maelstrom",cluster_id = □

→ "predicted.id")

df_maelstrom.head()
```

```
[12]:
                 GM.5.0.GATA.0029_maelstrom GM.5.0.T-box.0010_maelstrom \
      CD4-Naive
                                   -3.158720
                                                                   0.987206
      CD4-TCM
                                   -2.779715
                                                                   1.403722
      CD8-Naive
                                   -3.666792
                                                                   0.658251
      CD16-Mono
                                    4.178187
                                                                  -1.309968
      NK
                                   -2.281777
                                                                   2.757341
                 GM.5.0.RFX.0007_maelstrom GM.5.0.GATA.0018_maelstrom \
                                  -2.277142
                                                                -2.157599
      CD4-Naive
      CD4-TCM
                                  -1.754961
                                                                -0.619564
      CD8-Naive
                                  -0.741593
                                                                -0.943449
      CD16-Mono
                                   0.798259
                                                                 0.898081
      NK
                                                                -0.268780
                                  -0.058953
                 GM.5.0.Homeodomain.0112_maelstrom GM.5.0.C2H2_ZF.0240_maelstrom \
      CD4-Naive
                                            0.899880
                                                                           -1.159911
      CD4-TCM
                                            0.363578
                                                                           -1.250483
      CD8-Naive
                                            0.527284
                                                                           -0.329431
      CD16-Mono
                                           -0.401259
                                                                           -1.429248
      NK
                                           -0.263754
                                                                             3.122363
                 GM.5.0.C2H2_ZF.0081_maelstrom GM.5.0.C2H2_ZF.0209_maelstrom \
      CD4-Naive
                                      -1.746293
                                                                       -0.719396
      CD4-TCM
                                                                        0.403295
                                      -1.536671
      CD8-Naive
                                      -0.719806
                                                                       -0.093785
      CD16-Mono
                                        0.410906
                                                                        0.241499
      NK
                                        2.424381
                                                                       -1.519505
                 GM.5.0.Unknown.0070 maelstrom GM.5.0.C2H2 ZF.0003 maelstrom ... \
      CD4-Naive
                                        0.212972
                                                                        0.890589
                                                                        0.760212 ...
      CD4-TCM
                                       1.653069
      CD8-Naive
                                       0.230939
                                                                       -0.407383 ...
      CD16-Mono
                                      -0.418713
                                                                       -0.746905 ...
                                                                       -0.230792 ...
      NK
                                      -0.159066
                 GM.5.0.Homeodomain.0178_maelstrom GM.5.0.C2H2_ZF.0024_maelstrom \
                                            1.479400
                                                                             4.803352
      CD4-Naive
      CD4-TCM
                                            0.604511
                                                                             5.277779
      CD8-Naive
                                            1.216132
                                                                             4.953860
      CD16-Mono
                                           -0.080583
                                                                           -4.045632
      NK
                                            0.173359
                                                                           -1.550070
                 {\tt GM.5.0.C2H2\_ZF.0149\_maelstrom \quad GM.5.0.GATA.0004\_maelstrom \quad \backslash }
                                      -0.168118
                                                                     2.045893
      CD4-Naive
      CD4-TCM
                                      -0.296064
                                                                     2.900595
      CD8-Naive
                                      -0.612817
                                                                     1.811724
      CD16-Mono
                                       1.540182
                                                                    -2.799684
```

NK 0.102610 1.737805

```
GM.5.0.Homeodomain.0119_maelstrom \
                                       0.757803
CD4-Naive
CD4-TCM
                                       0.326848
CD8-Naive
                                       2.425492
CD16-Mono
                                     -0.703423
NK
                                     -1.272585
           {\tt GM.5.0.Homeodomain.0142\_maelstrom \quad GM.5.0.C2H2\_ZF.0259\_maelstrom \quad \backslash }
CD4-Naive
                                      0.819696
                                                                        0.075058
CD4-TCM
                                       1.297546
                                                                        0.713357
CD8-Naive
                                      1.613827
                                                                        1.050873
CD16-Mono
                                      0.506031
                                                                       -0.637716
NK
                                     -0.620623
                                                                       -0.124345
           GM.5.0.Unknown.0191_maelstrom GM.5.0.Mixed.0080_maelstrom \
                                 -2.712276
                                                                  1.193752
CD4-Naive
CD4-TCM
                                 -0.849734
                                                                  0.984331
CD8-Naive
                                 -2.125865
                                                                  0.258764
CD16-Mono
                                                                -0.247124
                                  1.222093
NK
                                 -0.011337
                                                                  0.930425
           GM.5.0.Unknown.0124 maelstrom
CD4-Naive
                                 -0.678583
CD4-TCM
                                 -2.323999
CD8-Naive
                                 -0.404407
CD16-Mono
                                 1.905879
NK
                                 -0.624942
[5 rows x 245 columns]
```

```
[13]: # Link motifs to transcription factors specified with "combine_motifs"

→ parameter.

# Here, the maximum correlation of all motifs will be used (other options

→ include: max_var and max_cor; see help)

adata=asc.Maelstrom_Motif2TF(anndata=adata,cluster_id = 'predicted.id',

maelstrom_dir= "AnanseScanpy_outs/maelstrom/",

combine_motifs="max_cor",save_output= True

)
```

loading maelstrom values from maelstrom assay using the cluster identifier predicted.id

/home/julian/.local/lib/python3.8/site-packages/anndata/_core/raw.py:139: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly

```
to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future
behavour.
 return anndata.AnnData(
Seurat NormalizeData with default settings will be run on all the genes
Only keep motif-TF combinations with an R > 0.3
total length m2f_df_unique 625
Selecting correlating TFs
total m2f: 343
Motif best (absolute)correlated to expression is selected per TF
/home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798:
UserWarning:
AnnData expects .obs.index to contain strings, but got values like:
    [0, 1, 2, 3, 4]
    Inferred to be: integer
  value_idx = self._prep_dim_index(value.index, attr)
/home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798:
UserWarning:
AnnData expects .obs.index to contain strings, but got values like:
    [0, 1, 2, 3, 4]
    Inferred to be: integer
 value_idx = self._prep_dim_index(value.index, attr)
Selecting anticorrelating TFs
total m2f: 282
Motif best (absolute) correlated to expression is selected per TF
/home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798:
UserWarning:
AnnData expects .obs.index to contain strings, but got values like:
    [0, 1, 2, 3, 4]
    Inferred to be: integer
  value_idx = self._prep_dim_index(value.index, attr)
/home/julian/.local/lib/python3.8/site-packages/anndata/_core/anndata.py:798:
UserWarning:
AnnData expects .obs.index to contain strings, but got values like:
    [0, 1, 2, 3, 4]
    Inferred to be: integer
  value_idx = self._prep_dim_index(value.index, attr)
```

```
[14]: # Plotting the motif score heatmaps and the relative expression of top negative
       \rightarrow correlating motifs
      df_anticor = asc.

-per_cluster_df(anndata=adata,assay="TFanticor_score",cluster_id = "predicted.")

       ر"bi⊲
      # Take a number of factors of interest or otherwise a top n factors:
      factors_topn = ["PAX5","STAT6","LMO2","SP1"]
      factors_topn2=pd.Series(str(s) + '_TFanticor_score' for s in factors_topn)
      selected_df=df_anticor[factors_topn2]
      factors_topn2= factors_topn2.str.removesuffix('_TFanticor_score')
      selected_df.columns = factors_topn2
      df_{expression} = asc.
       →per_cluster_df (anndata=adata,assay="TFanticor_expression_score",cluster_id =

¬"predicted.id")
      factors_topn3=[str(s) + '_TFanticor_expression_score' for s in factors_topn]
      selected_df2 = df_expression[factors_topn3]
      # Remove assay suffixes from scanpy objects
      factors_topn3=pd.Series(factors_topn3)
      factors_topn3= factors_topn3.str.removesuffix('_TFanticor_expression_score')
      selected df2.columns = factors topn3
      # Plot the relative motif score map
      res=sns.clustermap(selected_df, annot=False, figsize=(20, 10),cmap="PuOr_r")
      # reorder heatmaps according to the other one above
      selected_df2=selected_df2[list(selected_df.columns[res.dendrogram_col.
      →reordered_ind])]
      selected df2=selected df2.reindex(list(selected df.index[res.dendrogram row.
      →reordered ind]))
      # Plot the relative expression score map
      sns.clustermap(selected_df2, annot=False, figsize=(20,__
      →10),col_cluster=False,row_cluster=False,cmap="RdBu_r")
      # Note: the ETS1 motif shows high repression score for CD8 like cell types,
      → like on the UMAP above
      # Note: PAX5 is an important repressive factor in B-cells, also indiciated in
      →our heatmap
      # Source: Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M.
```

Gene repression by Pax5 in B cells is essential for blood cell homeostasis_□

→ and is reversed in plasma cells.

Immunity. 2006 Mar;24(3):269-81. doi: 10.1016/j.immuni.2006.01.012. PMID:□

→ 16546096

[14]: <seaborn.matrix.ClusterGrid at 0x154da80c27f0>

[15]: # Plotting the motif score heatmaps and the relative expression of top positive → correlating motifs

```
df_cor = asc.per_cluster_df(anndata=adata,assay="TFcor_score",cluster_id =__
# Take a number of factors of interest or otherwise a top n factors:
factors_topn = ["MEF2C","ETS1","RXRA","FOSL2"]
factors topn2=pd.Series(str(s) + ' TFcor score' for s in factors topn)
selected df=df cor[factors topn2]
factors_topn2= factors_topn2.str.removesuffix('_TFcor_score')
selected_df.columns = factors_topn2
df_{expression} = asc.
→per_cluster_df(anndata=adata,assay="TFcor_expression_score",cluster_id =
→"predicted.id")
factors_topn3=[str(s) + '_TFcor_expression_score' for s in factors_topn]
selected_df2 = df_expression[factors_topn3]
# Remove assay suffixes from scanpy objects
factors_topn3=pd.Series(factors_topn3)
factors_topn3= factors_topn3.str.removesuffix('_TFcor_expression_score')
selected_df2.columns = factors_topn3
# Plot the relative motif score map
res=sns.clustermap(selected_df, annot=False, figsize=(20, 10),cmap="PuOr r")
# reorder heatmaps according to the other one above
selected_df2=selected_df2[list(selected_df.columns[res.dendrogram_col.
→reordered_ind])]
selected_df2=selected_df2.reindex(list(selected_df.index[res.dendrogram_row.
→reordered_ind]))
# Plot the relative expression score map
sns.clustermap(selected_df2, annot=False, figsize=(20,__
→10),col cluster=False,row cluster=False,cmap="RdBu r")
```

[15]: <seaborn.matrix.ClusterGrid at 0x154da80d0ac0>


```
[16]: # Showing the negative correlating factors of interest with "max_cor" as the default "combine_motifs" parameter

TF_list = ["STAT6", "PAX5"]
asc.Factor_Motif_Plot(adata,factor_list=TF_list,logo_dir='AnanseScanpy_outs/
→maelstrom/logos/',assay_maelstrom = 'TFanticor')
```


