Project

Varun Jain

14 Feb 2019

1.Introduction

For an Auto Insurance company, predict the customer lifetime value (CLV). CLV is the total revenue the client will derive from their entire relationship with a customer. Because we don't know how long each customer relationship will be, we make a good estimate and state CLV as a periodic value

```
#Import data from Excel
library(readx1)
setwd("D:/Project/Insurance value")
df = read excel("Insurance Marketing-Customer-Value-Analysis.xlsx")
head(df)
## # A tibble: 6 x 24
##
    Customer State `Customer Lifet~ Response Coverage Education
                               <dbl> <chr>
##
    <chr>
             <chr>
                                              <chr>
                                                       <chr>>
## 1 BU79786 Wash~
                               2764. No
                                              Basic
                                                       Bachelor
## 2 QZ44356 Ariz~
                               6980. No
                                              Extended Bachelor
## 3 AI49188 Neva~
                             12887. No
                                              Premium Bachelor
## 4 WW63253 Cali~
                               7646. No
                                              Basic
                                                       Bachelor
## 5 HB64268 Wash~
                               2814. No
                                              Basic
                                                       Bachelor
## 6 OC83172 Oreg~
                               8256. Yes
                                              Basic
                                                       Bachelor
## # ... with 18 more variables: `Effective To Date` <dttm>,
      EmploymentStatus <chr>, Gender <chr>, Income <dbl>, `Location
      Code` <chr>, `Marital Status` <chr>, `Monthly Premium Auto` <dbl>,
## #
      `Months Since Last Claim` <dbl>, `Months Since Policy
      Inception` <dbl>, `Number of Open Complaints` <dbl>, `Number of
## #
      Policies` <dbl>, `Policy Type` <chr>, Policy <chr>, `Renew Offer
## #
      Type` <chr>, `Sales Channel` <chr>, `Total Claim Amount` <dbl>,
## #
      `Vehicle Class` <chr>, `Vehicle Size` <chr>
```

2. Visualisation Data

```
dim(df)
## [1] 9134    24
#Data contain 9134 rows and 24 columns
```

```
# Check missing values
colSums(is.na(df))
##
                        Customer
                                                          State
##
##
         Customer Lifetime Value
                                                       Response
##
                                                      Education
##
                        Coverage
##
               Effective To Date
                                               EmploymentStatus
##
##
##
                          Gender
                                                         Income
##
                                                              0
##
                   Location Code
                                                 Marital Status
##
                                        Months Since Last Claim
##
            Monthly Premium Auto
##
                                     Number of Open Complaints
## Months Since Policy Inception
              Number of Policies
##
                                                    Policy Type
##
##
                          Policy
                                               Renew Offer Type
##
                   Sales Channel
                                             Total Claim Amount
##
##
                                                              0
##
                   Vehicle Class
                                                   Vehicle Size
##
str(df)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                9134 obs. of 24 variables:
## $ Customer
                                           "BU79786" "QZ44356" "AI49188"
                                    : chr
"WW63253" ...
                                           "Washington" "Arizona" "Nevada"
## $ State
                                    : chr
"California" ...
## $ Customer Lifetime Value
                                    : num
                                           2764 6980 12887 7646 2814 ...
                                           "No" "No" "No" "No" ...
## $ Response
                                    : chr
                                           "Basic" "Extended" "Premium"
## $ Coverage
                                    : chr
"Basic" ...
                                           "Bachelor" "Bachelor" "Bachelor"
## $ Education
                                    : chr
"Bachelor" ...
## $ Effective To Date
                                   : POSIXct, format: "2011-02-24" "2011-01-
31"
## $ EmploymentStatus
                                           "Employed" "Unemployed" "Employed"
                                    : chr
"Unemployed" ...
## $ Gender
                                           "F" "F" "F" "M" ...
                                    : chr
## $ Income
                                           56274 0 48767 0 43836 ...
                                    : num
## $ Location Code
                                           "Suburban" "Suburban" "Suburban"
                                    : chr
"Suburban" ...
## $ Marital Status
                                           "Married" "Single" "Married"
                                    : chr
```

```
"Married" ...
                               : num 69 94 108 106 73 69 67 101 71 93
## $ Monthly Premium Auto
## $ Months Since Last Claim : num
                                        32 13 18 18 12 14 0 0 13 17 ...
## $ Months Since Policy Inception: num
                                        5 42 38 65 44 94 13 68 3 7 ...
## $ Number of Open Complaints
                                 : num
                                        0000000000...
## $ Number of Policies
                                 : num
                                        1827129428 ...
## $ Policy Type
                                 : chr
                                        "Corporate Auto" "Personal Auto"
"Personal Auto" "Corporate Auto" ...
                                        "Corporate L3" "Personal L3"
## $ Policy
                                 : chr
"Personal L3" "Corporate L2" ...
                                        "Offer1" "Offer3" "Offer1" "Offer1"
## $ Renew Offer Type
                                 : chr
. . .
## $ Sales Channel
                                 : chr
                                        "Agent" "Agent" "Call
Center" ...
## $ Total Claim Amount
                                 : num
                                        385 1131 566 530 138 ...
## $ Vehicle Class
                                        "Two-Door Car" "Four-Door Car"
                                 : chr
"Two-Door Car" "SUV" ...
## $ Vehicle Size
                                 : chr
                                        "Medsize" "Medsize" "Medsize"
"Medsize" ...
summary(df)
                                        Customer Lifetime Value
##
     Customer
                        State
## Length:9134
                      Length:9134
                                        Min. : 1898
## Class :character
                     Class :character
                                        1st Qu.: 3994
## Mode :character
                     Mode :character
                                        Median: 5780
##
                                        Mean : 8005
##
                                        3rd Qu.: 8962
##
                                        Max.
                                              :83325
##
     Response
                       Coverage
                                         Education
##
   Length:9134
                      Length:9134
                                        Length:9134
## Class :character
                      Class :character
                                        Class :character
                                        Mode :character
                      Mode :character
##
   Mode :character
##
##
##
## Effective To Date
                                EmploymentStatus
                                                     Gender
          :2011-01-01 00:00:00
                                Length:9134
                                                  Length:9134
                                Class :character
   1st Ou.:2011-01-15 00:00:00
                                                  Class :character
## Median :2011-01-29 00:00:00
                                Mode :character
                                                  Mode :character
## Mean
          :2011-01-29 20:06:21
## 3rd Qu.:2011-02-13 00:00:00
## Max.
          :2011-02-28 00:00:00
##
                                     Marital Status
       Income
                   Location Code
## Min. :
                   Length:9134
                                     Length:9134
               0
   1st Qu.:
##
               0
                   Class :character
                                     Class :character
## Median :33890
                 Mode :character
                                     Mode :character
## Mean
         :37657
## 3rd Qu.:62320
```

```
## Max. :99981
## Monthly Premium Auto Months Since Last Claim
         : 61.00
                               : 0.0
## Min.
                        Min.
## 1st Qu.: 68.00
                        1st Qu.: 6.0
## Median : 83.00
                        Median:14.0
##
          : 93.22
   Mean
                        Mean
                               :15.1
   3rd Ou.:109.00
                        3rd Ou.:23.0
## Max.
          :298.00
                        Max.
                               :35.0
## Months Since Policy Inception Number of Open Complaints
## Min.
          : 0.00
                                 Min.
                                        :0.0000
## 1st Qu.:24.00
                                 1st Qu.:0.0000
## Median :48.00
                                 Median :0.0000
## Mean
          :48.06
                                 Mean
                                        :0.3844
##
   3rd Qu.:71.00
                                 3rd Ou.:0.0000
##
   Max.
           :99.00
                                 Max.
                                        :5.0000
## Number of Policies Policy Type
                                            Policy
## Min.
          :1.000
                      Length:9134
                                         Length:9134
## 1st Qu.:1.000
                      Class :character
                                         Class :character
                                         Mode :character
## Median :2.000
                      Mode :character
## Mean
          :2.966
## 3rd Qu.:4.000
## Max.
          :9.000
   Renew Offer Type
                      Sales Channel
                                         Total Claim Amount
##
   Length:9134
                      Length:9134
                                         Min.
                                               :
                                                    0.099
## Class :character
                      Class :character
                                         1st Ou.: 272.258
                                         Median: 383.945
## Mode :character
                      Mode :character
##
                                         Mean
                                              : 434.089
##
                                         3rd Qu.: 547.515
##
                                         Max. :2893.240
## Vehicle Class
                      Vehicle Size
## Length:9134
                      Length:9134
## Class :character
                      Class :character
## Mode :character
                      Mode :character
##
##
##
```

2.1 Data manipulation

```
#state
unique(df$State)
## [1] "Washington" "Arizona"
                                  "Nevada"
                                               "California" "Oregon"
table(df$State)
##
##
      Arizona California
                             Nevada
                                         Oregon Washington
##
         1703
                    3150
                                 882
                                           2601
                                                       798
df$State = as.factor(df$State)
```

```
#Customer Lifetime value
summary(df$`Customer Lifetime Value`)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1898 3994 5780 8005 8962 83325
boxplot(df$`Customer Lifetime Value`)
```



```
df$`Customer Lifetime Value` = ifelse(df$`Customer Lifetime Value` >
15457,8005,
                                      df$`Customer Lifetime Value`)
summary(df$`Customer Lifetime Value`)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
##
      1898
              3994
                      5780
                              6351
                                      8005
                                             15446
df$`Customer Lifetime Value` = ifelse(df$`Customer Lifetime Value` >
12367,6351,
                                      df$`Customer Lifetime Value`)
boxplot(df$`Customer Lifetime Value`)
```



```
#Response
unique(df$Response)
## [1] "No" "Yes"
df$Response = ifelse(df$Response == "Yes",1,0)
#Coverage
unique(df$Coverage)
## [1] "Basic" "Extended" "Premium"
df$Coverage = as.factor(df$Coverage)
#Education
unique(df$Education)
## [1] "Bachelor"
                                                      "Master"
                              "College"
## [4] "High School or Below" "Doctor"
df$Education = factor(df$Education,
                      levels = c("High School or
Below", "Bachelor", "College", "Master", "Doctor"),
                      labels = c(0,1,1,1,2))
df$Education = as.numeric(df$Education)
For Schooling 0,
For Collage 1,
For Doctor 2
```

```
#Effective TO Date
months = strftime(df$`Effective To Date`,"%m")
df$month = as.numeric(months)
days = strftime(df$`Effective To Date`,"%d")
df$day = as.numeric(days)
df$`Effective To Date` = NULL
```

Extrect months and days from date column

```
#EmploymentStatus
unique(df$EmploymentStatus)
## [1] "Employed"
                       "Unemployed"
                                       "Medical Leave" "Disabled"
## [5] "Retired"
df$EmploymentStatus = ifelse(df$EmploymentStatus == "Unemployed",0,1)
#Gender
unique(df$Gender)
## [1] "F" "M"
df$Gender = ifelse(df$Gender == "M",1,0)
#INcome
summary(df$Income)
     Min. 1st Qu. Median
##
                             Mean 3rd Qu.
                                             Max.
##
                     33890
                             37657 62320
                                             99981
boxplot(df$Income)
```



```
#Location code
unique(df$`Location Code`)
## [1] "Suburban" "Rural"
                           "Urban"
#Marital Status
df$`Marital Status` = ifelse(df$`Marital Status` == "Married",1,0)
#Monthly Premium
summary(df$`Monthly Premium Auto`)
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                            Max.
##
    61.00 68.00
                  83.00
                            93.22 109.00 298.00
boxplot(df$`Monthly Premium Auto`)
```



```
df$`Monthly Premium Auto` = ifelse(df$`Monthly Premium Auto` >
154,93,df$`Monthly Premium Auto`)
boxplot(df$`Monthly Premium Auto`)
```



```
#months since last claim
summary(df$`Months Since Last Claim`)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 6.0 14.0 15.1 23.0 35.0

boxplot(df$`Months Since Last Claim`)
```



```
#months since policy inception
summary(df$`Months Since Policy Inception`)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 24.00 48.00 48.06 71.00 99.00
boxplot(df$`Months Since Policy Inception`)
```



```
#number of open complaints
summary(df$`Number of Open Complaints`)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.3844 0.0000 5.0000
boxplot(df$`Number of Open Complaints`)
```



```
table(df$`Number of Open Complaints`)
##
## 0 1 2 3 4 5
## 7252 1011 374 292 149 56

df$`Number of Open Complaints` = NULL
```

This Variable is invariant

```
#number of policies
summary(df$`Number of Policies`)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 2.000 2.966 4.000 9.000
boxplot(df$`Number of Policies`)
```



```
df$`Number of Policies` = ifelse(df$`Number of Policies` > 7.5,7,df$`Number
of Policies`)
boxplot(df$`Number of Policies`)
```



```
#Policy Type
table(df$`Policy Type`)
##
## Corporate Auto Personal Auto
                                   Special Auto
             1968
                            6788
                                            378
library(stringr)
#Policy
table(df$Policy)
##
## Corporate L1 Corporate L2 Corporate L3 Personal L1 Personal L2
                                                               2122
##
            359
                         595
                                     1014
                                                  1240
                  Special L1
                               Special L2
                                            Special L3
## Personal L3
##
           3426
                          66
                                      164
                                                   148
df$Policy = str_sub(df$Policy,-1,-1)
#Renew offer type
table(df$`Renew Offer Type`)
##
## Offer1 Offer2 Offer3 Offer4
    3752
           2926
                   1432
                          1024
df$`Renew Offer Type` = str_sub(df$`Renew Offer Type`,-1)
#Sales channel
table(df$`Sales Channel`)
##
##
         Agent
                    Branch Call Center
                                               Web
##
         3477
                      2567
                                  1765
                                              1325
#Total claim amount
summary(df$`Total Claim Amount`)
##
      Min.
            1st Qu. Median
                                  Mean 3rd Qu.
                                                    Max.
##
      0.099 272.258 383.945 434.089 547.515 2893.240
boxplot(df$`Total Claim Amount`)
```



```
length(which(df$`Total Claim Amount` > 434 + (547.51-272.258)*1.5))
## [1] 693

df$`Total Claim Amount` = ifelse(df$`Total Claim Amount` > 847,434,df$`Total Claim Amount`)
boxplot(df$`Total Claim Amount`)
```



```
#Vehicle Class
table(df$`Vehicle Class`)
##
## Four-Door Car
                    Luxury Car
                                  Luxury SUV
                                                 Sports Car
                                                                      SUV
##
            4621
                           163
                                          184
                                                        484
                                                                     1796
## Two-Door Car
##
            1886
df$`Vehicle Class` = factor(df$`Vehicle Class`,
                            levels = c("Luxury Car", "Luxury SUV", "Sports
Car", "Four-Door Car", "SUV", "Two-Door Car"),
                            labels = c(3,3,3,2,2,1))
df$`Vehicle Class` = as.numeric(df$`Vehicle Class`)
#Vehicle size
table(df$`Vehicle Size`)
##
##
                     Small
     Large Medsize
##
       946
              6424
                      1764
df$`Vehicle Size` = factor(df$`Vehicle Size`,
                           levels = c("Large", "Medsize", "Small"),
                           c(3,2,1)
df$`Vehicle Size` = as.numeric(df$`Vehicle Size`)
```

3. Modelling

```
df$`Number of Policies` = log(df$`Number of Policies`)
df$`Customer Lifetime Value` = log(df$`Customer Lifetime Value`)
df$`Monthly Premium Auto` = log(df$`Monthly Premium Auto`)
```

Dividing data into test and train

```
library(caTools)
set.seed(123)
split = sample.split(df$`Customer Lifetime Value`,SplitRatio = 0.8)
train = subset(df,split == TRUE)
test = subset(df,split == F)
#model 1
regg = lm(formula = `Customer Lifetime Value` ~ . ,
         data = train[-1])
summary(regg)
##
## Call:
## lm(formula = `Customer Lifetime Value` ~ ., data = train[-1])
##
## Residuals:
               1Q Median
##
      Min
                               30
                                     Max
## -0.5815 -0.2397 -0.1211 0.1536 1.0873
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
                                   5.553e+00 1.101e-01 50.457 < 2e-16 ***
## (Intercept)
                                   1.239e-02 1.077e-02 1.150 0.25001
## StateCalifornia
## StateNevada
                                   1.007e-02 1.481e-02
                                                         0.680 0.49629
## StateOregon
                                   2.019e-02 1.115e-02 1.810 0.07034 .
                                  -1.130e-02 1.535e-02 -0.736 0.46164
## StateWashington
## Response
                                  2.514e-03 1.130e-02 0.222 0.82402
                                  2.466e-02 9.488e-03 2.599 0.00937 **
## CoverageExtended
                                  9.689e-02 1.464e-02 6.619 3.88e-11 ***
## CoveragePremium
## Education
                                  -1.608e-02 7.403e-03 -2.172 0.02990 *
## EmploymentStatus
                                  6.093e-02 1.279e-02 4.765 1.92e-06 ***
                                  -4.562e-03 7.517e-03 -0.607 0.54395
## Gender
## Income
                                  4.895e-07 1.901e-07
                                                         2.575 0.01005 *
## `Location Code`Suburban
                                  -2.664e-02 1.694e-02 -1.573 0.11587
                                  -1.353e-02 1.485e-02 -0.911 0.36235
## `Location Code`Urban
## `Marital Status`
                                  1.279e-02 8.072e-03 1.584 0.11322
## `Monthly Premium Auto`
                                  6.528e-01 2.317e-02
                                                                < 2e-16 ***
                                                        28.171
## `Months Since Last Claim`
                                  -3.160e-04 3.722e-04 -0.849 0.39592
## `Months Since Policy Inception`
                                                        0.457 0.64737
                                  6.167e-05 1.348e-04
                                  3.486e-01 5.333e-03 65.366 < 2e-16 ***
## `Number of Policies`
                                  3.808e-03 9.117e-03 0.418 0.67623
## `Policy Type`Personal Auto
## `Policy Type`Special Auto
                                  2.768e-02 2.035e-02
                                                         1.360 0.17377
## Policy2
                                  -1.363e-02 1.101e-02 -1.238 0.21570
```

```
-8.253e-03 1.019e-02 -0.810 0.41784
## Policy3
## `Renew Offer Type`2
                                  -4.885e-02 9.276e-03 -5.267 1.43e-07 ***
## `Renew Offer Type`3
                                  -2.535e-02 1.137e-02 -2.229 0.02587 *
## `Renew Offer Type`4
                                 -2.705e-02 1.320e-02 -2.050 0.04042 *
## `Sales Channel`Branch
                                  -1.150e-03 9.345e-03 -0.123 0.90204
## `Sales Channel`Call Center
                                  -1.697e-03 1.048e-02 -0.162 0.87134
## `Sales Channel`Web
                                  -1.243e-02 1.172e-02 -1.060 0.28909
## `Total Claim Amount`
                                                        1.456 0.14552
                                  5.516e-05 3.789e-05
## `Vehicle Class`
                                  -6.231e-02 7.573e-03 -8.228 2.23e-16 ***
## `Vehicle Size`
                                  5.376e-03 7.036e-03 0.764 0.44489
## month
                                  -1.843e-02 7.529e-03 -2.448 0.01440 *
## day
                                  -7.784e-04 4.344e-04 -1.792 0.07321 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3184 on 7273 degrees of freedom
## Multiple R-squared: 0.4932, Adjusted R-squared: 0.4909
## F-statistic: 214.5 on 33 and 7273 DF, p-value: < 2.2e-16
#R-squared 0.491 and 0.03009
```

Remove Variables one-by-one to show p -value

```
#modeL2
regg = lm(formula = `Customer Lifetime Value` ~ . ,
          data = train[-c(1,2,4,6,8,9,10,11,13,14,16,17,18,19,20,22,23,24)])
summary(regg)
##
## lm(formula = `Customer Lifetime Value` ~ ., data = train[-c(1,
       2, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23,
##
##
       24)])
##
## Residuals:
               1Q Median
##
      Min
                               30
                                      Max
## -0.6106 -0.2406 -0.1232 0.1574 1.0833
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                                     0.094636 56.685 < 2e-16 ***
## (Intercept)
                          5.364405
## CoverageExtended
                          0.021742
                                     0.009470
                                                2.296
                                                        0.0217 *
                                                6.766 1.43e-11 ***
## CoveragePremium
                          0.098941
                                     0.014624
## EmploymentStatus
                          0.082378
                                     0.008559
                                                9.624 < 2e-16 ***
                                    0.019960 34.056 < 2e-16 ***
## `Monthly Premium Auto` 0.679752
## `Number of Policies`
                                     0.005282 66.641 < 2e-16 ***
                          0.351984
## `Vehicle Class`
                         -0.062766
                                     0.007571
                                              -8.290 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3192 on 7300 degrees of freedom
```

```
## Multiple R-squared: 0.4888, Adjusted R-squared: 0.4884
## F-statistic: 1163 on 6 and 7300 DF, p-value: < 2.2e-16
#R-squared 0.4888 and mape 0.03016
#Get the pridiction of fitted value
pred = predict(regg, newdata = test[-1])
test$pred = pred
Error = test$`Customer Lifetime Value` - test$pred
#Calculating MAPE
(sum((abs(test$`Customer Lifetime Value`-test$pred))/test$`Customer Lifetime
Value`))/nrow(test)
## [1] 0.03013484
Checking of Assumption
Residuals should be uncorrelated ##Autocorrelation
Null H0: residuals from a linear regression are uncorrelated. Value should be
close to 2.
Less than 1 and greater than 3 -> concern
Should get a high p value
library(car)
## Loading required package: carData
dwt(regg)
## lag Autocorrelation D-W Statistic p-value
##
     1
           -0.005318895
                             2.01047
                                       0.604
## Alternative hypothesis: rho != 0
#Checking multicollinearity
vif(regg) # should be within 2. If it is greater than 10 then serious problem
                             GVIF Df GVIF^(1/(2*Df))
##
## Coverage
                         1.443216 2
                                            1.096056
## EmploymentStatus
                         1.000601 1
                                            1.000301
## `Monthly Premium Auto` 1.628558 1
                                            1.276150
## `Number of Policies`
                         1.000908 1
                                            1.000454
## `Vehicle Class`
                         1.174774 1
                                            1.083870
```

Heteroscedasticity

```
# Breusch-Pagan test
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
```

```
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

bptest(regg) # Null hypothesis -> error is homogenious (p value should be more than 0.05)

##
## studentized Breusch-Pagan test
##
## data: regg
## BP = 810.54, df = 6, p-value < 2.2e-16</pre>
```

Normality testing Null hypothesis is data is normal.

```
resids = regg$residuals

library(nortest)
ad.test(resids)

##

## Anderson-Darling normality test
##

## data: resids
## A = 372.55, p-value < 2.2e-16</pre>
```

Anderson-Darling test for normality P- value is > 0.05