Math 3T03 - Topology

Sang Woo Park

January 26, 2018

Contents

1	Introduction to topology 1.1 What is topology?	2 2 3
2	Functions	4
3	Relation	6
4	Finite and infinite sets	7
5	Topology	10
6	Basis 6.1 Connecting basis to topology	12 15
7	Subspace topology	16
8	Order topology	18
9	Subbasis	21

1 Introduction to topology

1.1 What is topology?

Definition 1.1 (Topology). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- $\bullet \ \varnothing \in \tau.$
- $X \in \tau$.
- The union of any collections of elements in τ is also in τ .
- THe intersection of any finite collection of elements in τ is also in τ .

Definition 1.2. (X,τ) is a topological space.

Definition 1.3. The elements of τ are called the open sets.

Example 1.1. Consider $X = \{a, b, c\}$. Is $\tau_1 = \{\emptyset, X, \{a\}\}$ a topology?

Proof. Yes, τ_1 is a topology. Clearly, $\emptyset \in \tau_1$ and $X \in \tau_1$ so it suffices to verify the arbitrary unions and finite intersection axioms.

Let $\{V_{\alpha}\}_{{\alpha}\in A}$ be a subcollection of τ_1 . Then, we want to show

$$\bigcup_{\alpha \in A} V_{\alpha} \in \mathsf{\tau}_1.$$

If $V_{\alpha} = \emptyset$ for any $\alpha \in A$, then this does not contribute to the union. Hence, φ can be omittied:

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\substack{\alpha \in A \\ V_{\alpha} \neq \emptyset}} V_{\alpha}.$$

If $V_{\alpha} = X$ for some $\alpha \in A$, then

$$\bigcup_{\alpha \in A} V_{\alpha} = X \in \mathsf{\tau}_1$$

and we are done. So we may assume $V_{\alpha} \neq X$ for all $\alpha \in A$. Similarly, if $V_{\alpha} = V_{\beta}$ for $\alpha \neq \beta$, then we can omit V_{β} from the union. Since τ_1 only contains \emptyset , X and $\{a\}$, we must have

$$\bigcup_{\alpha \in A} V_{\alpha} = \{a\} \in \mathsf{\tau}_1.$$

Similarly, if any element of $\{V_{\alpha}\}_{{\alpha}\in A}$ is empty, then

$$\bigcap_{\alpha \in A} V_{\alpha} = \varnothing \in \mathsf{\tau}_1.$$

We can therefore assume $V_{\alpha} \neq \emptyset$ for all $\alpha \in A$. Again, repetition can be ignored and any V_{α} that equals X can be ignored. Then,

$$\bigcap_{\alpha \in A} V_{\alpha} = \begin{cases} \{a\} \in \tau_1 \\ X \in \tau_1 \end{cases}$$

Example 1.2. Consider $X = \{a, b, c\}$. Is $\tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ a topology?

Proof. No. Note that $\{a\} \in \tau_2$ and $\{b\} \in \tau_2$ but $\{a\} \cup \{b\} = \{a,b\} \notin \tau_2$.

Example 1.3. Consider $X = \{a, b, c\}$. Then, $\tau_3 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ is a topology.

1.2 Set theory

Definition 1.4. If X is a set and a is an element, we write $a \in X$.

Definition 1.5. If Y is a subset of X, we write $Y \subset X$ or $Y \subseteq X$.

Example 1.4. Suppose X is a set. Then, *power set* of X is the set P(X) whose elements are all subsets of X. In other words,

$$Y \in P(X) \iff Y \subseteq X$$

Note that P(X) is closed under arbitrary unions and intersections. Hence, P(X) is a topology on X.

Definition 1.6. P(X) is the discrete topology on X.

Definition 1.7. The indiscrete (trivial) topology on X is $\{\emptyset, X\}$.

Definition 1.8. Suppose U, V are sets. Then, their union is

$$U \cup V = \{x | x \in U \text{ or } x \in V\}.$$

Note that if U_1, U_2, \dots, U_10 are sets, their union can be written as follows:

- $U_1 \cup U_2 \cup \cdots \cup U_{10}$
- $\bullet \bigcup_{k=1}^{10} U_k$
- $\bullet \bigcup_{k=\{1,2,\ldots,10\}} U_k$

Definition 1.9. Let A be any set. Suppose $\forall \alpha \in A$, I have a set U_{α} . The union of the U_{α} over $\alpha \in A$ is

$$\bigcup_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

Similarly, the intersection is

$$\bigcap_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

2 Functions

Definition 2.1. A function is a rule that assigns to element of a given set A, an element in another set B.

Often, we use a formula to describe a function.

Example 2.1. $f(x) = \sin(5x)$

Example 2.2. $g(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Definition 2.2. A rule of assignment is a subset R of the Cartesian product $C \times D$ of two sets with the property that each element of C appears as the first coordinate of at most one ordered pair belonging to R. In other words, a subset R of $C \times D$ is a rule of assignment if it satisfies

If
$$(c, d) \in R$$
 and $(c, d') \in R, d = d'$.

Definition 2.3. Given a rule of assignment R, we define the doamin of R to be the subset of C consisting of all first coordinates of elements of R:

$$domain(R) \equiv \{c \mid \exists d \in D \ s.t. \ (c, d) \in R\}$$

Definition 2.4. The image set of R is defined to be the subset of D consisting of all second coordinates.

$$image(R) \equiv \{d \mid \exists c \in C \ s.t. \ (c, d) \in R\}$$

Definition 2.5. A function is a rule of assignment R, together with a set that contains the image set of R. The domain of the rule of assignment is also called the domain of f, and the image of f is defined to be the image set of the rule of assignment.

Definition 2.6. The set B is often called the range of f. This is also referred to as the codomain.

If A = domain(f), then we write

$$f: A \to B$$

to indicate that f is a function with domain A and codomain B.

Definition 2.7. Given $a \in A$, we write $f(a) \in B$ for the unique element in B associated to a by the rule of assignment.

Definition 2.8. If $S \subseteq A$ is a subset of A, let

$$f(S)\{f(a) \mid a \in S\} \subseteq B.$$

Definition 2.9. Given $A_0 \subseteq A$, we can restrict the domain of f to A_0 . The restriction is denoted

$$f|A_0 \equiv \{(a, f(a)) \mid a \in A_0\} \subseteq A \times B.$$

Definition 2.10. If $f: A \to B$ and $g: B \to C$ then $g \circ f: A \to C$ is defined to be

$$\{(a,c) \mid \exists b \in B \text{ s.t. } f(a) = b \text{ and } g(b) = c\} \subseteq A \times C.$$

Definition 2.11. A function $f: A \to B$ is called injective (or one-to-one) if f(a) = f(a') implies a = a' for all $a, a' \in A$.

Definition 2.12. A function $f: A \to B$ is called surjective (or onto) if the image of f equals B, i.e. f(A) = B., i.e. if, for every $b \in B$, there exists $a \in A$ with f(a) = b.

Definition 2.13. $f: A \rightarrow B$ is a bijection if it is one-to-one and onto.

Definition 2.14. If $B_0 \subseteq B$ is a subset and $f: A \to B$ is a function, then the preimage of B_0 under f is the subset of A given by

$$f^{-1}(B_0) = \{ a \in A \mid f(a) \in B_0 \}$$

Example 2.3. If B_0 is disjoint from f(A) then $f^{-1}(B_0) = \emptyset$.

3 Relation

Definition 3.1. A relation on a set A is a subset R of $A \times A$.

Given a relation R on A, we will write xRy "x is related to y" to mean $(x,y) \in R$.

Definition 3.2. An equivalence relation on a set is a relation with the following properties:

- Reflexivity. $xRx \text{ holds } \forall x \in A.$
- Symmetric. if xRy then yRx holds $\forall x, y \in A$.
- Transitive. if xRy and yRz then xRz holds $\forall x, y, z \in A$.

Definition 3.3. Given $a \in A$, let $E(a) = \{x \mid x \sim a\}$ denote the equivalence class of a.

Remark. $E(a) \subseteq A$ and it is nonempty because $a \in E(a)$.

Proposition 3.1. If $E(a) \cap E(b) \neq \emptyset$ then E(a) = E(b).

Proof. IAssume the hypothesis, i.e., suppose $x \in E(a) \cap E(b)$. So $x \sim a$ and $x \sim b$. By symmetry, $a \sim x$ and by transitivity $a \sim b$.

Now suppose that $y \in E(a)$. Then $y \sim a$ but we just saw that $a \sim b$ so $y \sim b$ and $y \in E(b)$. Hence, $E(a) \subseteq E(b)$. Likewise, we can show that $E(b) \subseteq E(a)$.

Definition 3.4. A partition of a set is a collection of pairwise disjoint subsets of A whose union is all of A.

Example 3.1. Consider $A = \{1, 2, 3, 4, 5\}$. Then, $\{1, 2\}$ and $\{3, 4, 5\}$ is a partition of A.

Proposition 3.2. An equivalence relation in a set determines a partition of A, namely the one with equivalence classes as subsets. Conversely, a partition¹ $\{Q_{\alpha}|\alpha\in J\}$ of a set A determines an equivalence relation on A by: $x\sim y$ if and only if $\exists \alpha\in J$ s.t. $x,y\in Q_{\alpha}$. The equivalence classes of this equivalence relation are precisely the subsets Q_{α} .

 $^{^1}$ Note that J is an index set: $Q_\alpha\subseteq A$ for each $\alpha\in J$ and $Q_\alpha\cap Q_\beta=\varnothing$ if $\alpha\neq\beta.$ Furthermore, $\cup_{\alpha\in J}=A.$

4 Finite and infinite sets

Definition 4.1. A nonempty set A is finite if there is a bijection from A to $\{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.

Remark. Consider $n, m \in \mathbb{Z}^+$ with $n \neq m$. Then, there is no bijection from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, m\}$.

Definition 4.2. Cardinality of a finite set A is defined as follows:

- 1. $\operatorname{card}(A) = 0$ if $A = \emptyset$.
- 2. $\operatorname{card}(A) = n$ if there is a bijection form A to $\{1, 2, \dots, n\}$.

Note that \mathbb{Z}^+ is not finite. How would you prove this? A sneaky approach is that there is a bijection from \mathbb{Z}^+ to a proper subset of \mathbb{Z}^+ .

Consider the shift map:

$$S: \mathbb{Z}^+ \to \mathbb{Z}^+$$

where S(k) = k + 1. So S is a bijection from \mathbb{Z}^+ to $\{2, 3, ...\} \subset \mathbb{Z}^+$, a proper subset of \mathbb{Z}^+ . On the other hand, any proper sbset B of a finite set A with $\operatorname{card}(A) = n$ has $\operatorname{card}(B) < n$. In particular, there is no bijection from A to B. Therefore, \mathbb{Z}^+ is not finite.

Theorem 4.1. A non-empty set is finite if and only if one of the following holds:

- 1. \exists bijection $f: A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.
- 2. \exists injection $f: A \rightarrow \{1, 2, ..., N\}$ for some $N \in \mathbb{Z}^+$
- 3. \exists surjection $g: \{1, \ldots, N\} \rightarrow A$ for some $N \in \mathbb{Z}^+$

Remark. Finite unions of finite sets are finite. Finite products of finite sets are also finite.

Recall that if X is a set, then

$$X^w = \pi_{n \in \mathbb{Z}^+} X = \{ (x_n) \mid x_n \in X \forall n \in \mathbb{Z}^+ \}$$

the set of infinite sequences in X.

If $X = \{a\}$ is a singleton, then X^w is also a singleton. Otherwise, if card(X) > 1, then X^w is an infinite set.

Example 4.1. Consider $X = \{0,1\}$. Then, X^w is a set of binary sequences.

Definition 4.3. If there exists a bijection from a set X to \mathbb{Z}^+ , then X is said to be countably infinite.

Definition 4.4. Let A be a nonempty collection of sets. An indexing family is a set J together with a surjection $f: J \to A$. We use A_{α} to denote $f(a) \subseteq A$. So

$$\mathcal{A} = \{ A_{\alpha} \mid \alpha \in J \}$$

Most of the time, we will be able to use \mathcal{Z}^+ for the index set J.

Definition 4.5 (Cartesian product). Let $\mathcal{A} = \{A_i \mid i \in \mathbb{Z}^+\}$. Finite cartesian product is defined as

$$A_1 \times \cdots \times A_n = \{(x_1, \dots, x_n) \mid x_i \in A_i\}$$

It is a vector space of n tuples of real numbers.

Definition 4.6 (Infinite Cartesian product). Infinite Cartesian product \mathbb{R}^{ω} is an ω -tuple $x : \mathbb{Z}^+ \to \mathbb{R}$, i.e., a sequence

$$x = (x_i)_{i=1}^{\infty} = (x_1, x_2, \dots, x_n, \dots)$$

= $(x_i)_{i \in \mathbb{Z}^+}$

More generally, if $A = \{A_i \mid i \in \mathbb{Z}^+\}$. Then,

$$\prod_{i \in \mathbb{Z}^+} A_i = \{(a_i)_{i \in \mathbb{Z}^+} \mid a_i \in A_i\}.$$

Definition 4.7. A set A is countable if A is finite or it is countably infinite.

Theorem 4.2 (Criterion for countability). Suppose A is a non-empty set. Then, the following are equivalent.

- 1. A is countable
- 2. There is an injection $f: A \to \mathbb{Z}^+$
- 3. There is a surjection $g: \mathbb{Z}^+ \to A$

Theorem 4.3. If $C \subseteq \mathbb{Z}^+$ is a subset, then C is countable.

Proof. Either C is finite or infinite. If C is finite, it follows C is countable.

Assume that C is finite. We will define a bijection $h: \mathbb{Z}^+ \to C$ by induction. Let h(1) be the smallest element in C^2 . Suppose

$$h(1),\ldots,h(n-1)\in C$$

and are defined. Let h(n) be the smallest element in $C \setminus \{h(1), \dots h(n-1)\}$. (Note that this set is nonempty.)

We want to show that h is inejctive. Let $n, m \in \mathbb{Z}$ where $n \neq m$. Suppose n < m. So $h(n) \in \{h(1), \ldots, h(n)\}$ and

$$h(n) \in C \setminus \{h(1), h(2), \dots, h(m-1)\}.$$

So $h(n) \neq h(m)$.

We want to show that h is surjective. Suppose $c \in C$. We will show that c = h(n) for some $n \in \mathbb{Z}^+$. First, notice that $h(\mathbb{Z}^+)$ is not contained in $\{1, 2, \dots, c\}$

 $^{^2}$ $C \neq \emptyset$ and every nonempty subset of \mathbb{Z}^+ has a smallest elemnt

because $h(\mathbb{Z}^+)$ is an infinite set. Therefore, there must exists $n \in \mathbb{Z}^+$ such that h(n) > c. So let m be the smallest element with $h(m) \geq c$. Then for all i < m, h(i) < c. Then,

$$c \notin \{h(1), \dots, h(m-1)\}.$$

By definition, h(m) is the smallest element in

$$C \setminus \{h(1), \ldots, h(m-1)\}.$$

Then, $h(m) \leq c$. Therefore, h(m) = c.

Corollary 4.1. Any subset of a countable set is countable.

Proof. Suppose $A \subset B$ with B countable. Then, there exists an injection $f: B \to \mathbb{Z}^+$. The restriction

$$f|_A:A\to\mathbb{Z}^+$$

is also injective. Therefore, A is countable by the criterion.

Theorem 4.4. Any countable union of countable is countable. In other words, if J is countable and A_{α} is countable for all $\alpha \in J$, then $\bigcup_{\alpha \in J}$ is countable.

Theorem 4.5. A finite product of countable sets is countable.

Example 4.2. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

Note that a countable product of countable sets is not countable.

Example 4.3. Consider $X = \{0, 1\}$. Then, X^{ω} binary sequence is not countable.

Proof. Suppose $g: \mathbb{Z}^+ \to X^\omega$ is a function. We will show g is not surjective by contructing an element $y \neq g(n)$ for any $n \in \mathbb{Z}^+$.

Write $g(n) = (x_{n1}, x_{n2}, \dots) \in X^{\omega}$ for each $x_{ni} \in \{0, 1\}$. Define

$$y = (y_1, y_2, \dots)$$

where $y_i = 1 - x_{ii}$. Clearly, $y \in X^{\omega}$ but $y \neq g(n)$ for any n since $y_n = 1 - x_{nn} \neq x_{nn}$, the n-th entry in g(n).

Example 4.4. Let X be a set and $\{V_{\alpha}\}_{{\alpha}\in I}$ a collection of subsets of X. Show

$$\bigcup_{\alpha \in I} (X - V_{\alpha}) = X - \bigcap_{\alpha \in I} V_{\alpha}$$

Proof.

$$x \in \bigcup_{\alpha \in I} X - V_{\alpha} \iff \exists \alpha \in I, x \in X - V_{\alpha}$$

$$\iff \exists \alpha \in I, x \in X, x \notin V_{\alpha}$$

$$\iff x \in X, \exists \alpha \in I, x \notin V_{\alpha}$$

$$\iff x \in X, x \notin \bigcup_{\alpha \in I} V_{\alpha}$$

$$\iff x \in X - \bigcap_{\alpha in I} V_{\alpha}$$

5 Topology

Definition 5.1 (Topology). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- \bullet $\varnothing \in \tau$.
- $X \in \tau$.
- If $\{V_{\alpha}\}_{{\alpha}\in I}\subseteq \tau$, then $\bigcup_{{\alpha}\in I}V_{\alpha}\in \tau$.
- If $\{V_1, \ldots, V_n\} \subseteq \tau$, then $\bigcap_{k=1}^n V_k inI$.

Remark. If τ is a topology, then $\{\emptyset, X\} \subseteq \tau$ and $\tau \subseteq \mathcal{P}(X)$, where \mathcal{P} is a power set.

Definition 5.2. Suppose τ, τ' are topologies on X. We say τ is coarser than τ' if $\tau \subseteq \tau'$.

Example 5.1. If X is a set and τ is a topology. Then, τ is coarser than the discrete topology, $\mathcal{P}(X)$, and finer than the trivial topology, $\{\emptyset, X\}$.

Note that if $\tau \subseteq \tau'$ and $\tau' \subseteq \tau$, then $\tau = \tau'$.

Example 5.2. Define τ_f to consist of the subsets U of X wiith the property that X - U is finite or all of X.

Lemma 5.1. τ_f is a topology on X. This is defined as the finite complement topology.

Proof. To show $\emptyset \in \tau_f$, notice that $X - \emptyset = X$. So $\emptyset \in \tau_f$. To show that $X \in \tau_f$, notice that $X - X = \emptyset$, which is finite. So $X \in \tau_f$.

To show that it is closed under arbitrary unions, suppose

$${V_{\alpha}}_{\alpha\in I}\subseteq \tau_f.$$

It suffices to show that $X - \bigcup_{\alpha \in I} V_{\alpha}$ is finite. For this, note

$$X - \bigcup_{\alpha \in I} V_{\alpha} = \bigcap_{\alpha \in I} (X - V_{\alpha}).$$

 $X - V_{\alpha}$ is finite so

$$\bigcap_{\alpha \in I} (X - V_{\alpha}) \subseteq X - V_{\alpha}'$$

for any $\alpha' \in I$ which implies $\bigcap_{\alpha \in I} X - V_{\alpha}$ is finite. For closure under finite intersections, let

$$\{V_1,\ldots,V_n\}\subseteq \mathsf{\tau}_f.$$

Then,

$$X - \bigcap_{k=1}^{n} V_k = \bigcup_{k=1}^{n} (X - V_k)$$

is a finite union of finite sets and so it is finite.

Example 5.3. Consider $X = \mathbb{R}$. Then, $\mathbb{R} - \{0\}$ is open in the finite complement topology. $\mathbb{R} - \{0, 3, 100\}$ is open in τ_f . Note that $(4, \infty)$ is not open in τ_f because its complement is not finite.

Remark. Assume τ is a topology on X.

- (X, τ) is a topological space.
- \bullet X is a topological space.
- $U \in \tau$ iff U is open in τ iff U is an open set.

6 Basis

Definition 6.1. Let X be a set. A basis for topology on X is a collection \mathcal{B} of subsets of X satisfying:

- $\forall x \in X, \exists B \in \mathcal{B}, x \in B$
- $\forall B_1, B_2 \in \mathcal{B}$, if $x \in B_1 \cap B_2$ then $\exists B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$.

Example 6.1. Consider $X = \mathbb{R}^2$. Let \mathcal{B}_1 be a collection of interiors of circles in \mathbb{R}^2 . Then, \mathcal{B}_1 is a basis.

Example 6.2. Consider $X = \mathbb{R}^2$. Let \mathcal{B}_2 be collection of interiors of axis-parallel rectangles. Then, \mathcal{B}_2 is a basis. Note that nontrivial intersection is always a rectangle.

Definition 6.2. The topology generated by a basis \mathcal{B} is the collection τ satisfying:

$$U \in \tau \iff \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U.$$

Example 6.3. Consider $X = \mathbb{R}$ with standard topology, τ_{st} . Consider $U = \mathbb{R} - \{0\}$. Then, $U \in \tau_{st}$. Let $x \in U$:

- 1. (Case 1) x > 0. Let B = (0, x + 1). Then, $x \in B \subseteq \mathbb{R} \{0\}$.
- 2. (Case 2) x < 0. Let B = (x 1, 0). Then, $x \in B \subseteq \mathbb{R} \{0\}$.

Example 6.4. Let τ_f be finite complement topology on \mathbb{R} . If $U \in \tau_f$, then $U \in \tau_{st}$. So $\tau_f \subseteq \tau_{st}$.

Remark. $(3, \infty)$ is open in τ_{st} but not in τ_f .

Lemma 6.1. If \mathcal{B} is a basis and τ is the topology generated by \mathcal{B} , then τ is a topology.

Proof. $\emptyset \in \tau$ is vacuously true. If $x \in \emptyset$ then $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq \emptyset$.

Now, we want to prove that $X \in \tau$. Let $x \in X$. By the axioms for basis, $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq X$. Hence, $X \in \tau$.

Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a collection of τ . Let

$$x \in \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}.$$

Then, $\exists \mathcal{B} \in A$ with $x \in \mathcal{U}_{\mathcal{B}}$. Since $\mathcal{U}_{\mathcal{B}} \in Tau$, $\exists B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq \mathcal{U}_{\mathcal{B}}$. Then, $x \in B$ and $B \subseteq \mathcal{U}_{\mathcal{B}}$. So τ is closed under arbitrary unions.

Let $\{V_1, \ldots, V_n\} \subseteq \tau$. We want to use proof by induction to show that τ is closed under finite intersections. When n = 1,

$$\bigcap_{k=1}^{n} V_k = V_1 \in \tau.$$

Assume the claim is true for n. Then,

$$\bigcap_{k=1}^{n+1} V_k = \underbrace{V_{n+1}}_{W} \cap \bigcap_{k=1}^{n} V_k$$

Note $W \in \tau$ and $W' \in \tau$ by the induction hypothesis. If $W \cap W' = \emptyset$ then we are done $(\emptyset \in \tau)$. Let $x \in W \cap W'$. Then, $x \in W$ and $x \in W'$, implying that $\exists B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \subseteq W$ and $x \in B_2 \subseteq W'$. Hence, $\exists B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2 \subseteq W \cap W'$.

Example 6.5. Consider $X = \mathbb{R}$. Define

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$

for $a, b \in \mathbb{R}$. Show

$$\mathcal{B}_{st} = \{(a, b) | a, b \in \mathbb{R}\}$$

is a basis.

Let $x \in \mathbb{R}$. Then,

$$x \in (x-1, x+1) \in \mathcal{B}_{st}$$
.

For the second axiom, let $(a, b), (c, d) \in \mathcal{B}_{st}$ and assume $x \in (a, b) \cap (c, d)$. Then, $x \in (c, b) \subseteq (a, b) \cap (c, d)$.

Definition 6.3. The standard topology on \mathbb{R} is the topology τ_{st} generated by \mathcal{B}_{st} .

Lemma 6.2. Suppose \mathcal{B} and \mathcal{B}' are bases on X and τ and τ' are the topologies they generate. Then, the following are equivalent:

- 1. τ' is finer than τ ($\tau \subset \tau'$)
- 2. $\forall x \in X \text{ and } \forall B \in \mathcal{B} \text{ with } x \in B, \exists B' \in \mathcal{B}' \text{ with } x \in B' \subseteq B.$

Proof. First, we want to show that 1 implies 2. Assume $\tau \subseteq \tau'$. Let $x \in X$ and $B \in \mathcal{B}$ such that $x \in B$. Since \mathcal{B} generates τ , $B \in \tau$. Then, $B \in \tau'$. Since τ' is generated by \mathcal{B}' ,

$$\exists B' \in \mathcal{B} \text{ with } x \in B' \subseteq B$$

Other direction is left to readers as an exercise.

Let $X = \mathbb{R}^2$. Consider \mathcal{B}_1 , a collection of interior of circles, and \mathcal{B}_2 , a collection of interior of axis-parallel rectangles. Let τ_j be toplogies generated by \mathcal{B}_j where j = 1, 2.

Lemma 6.3. $\tau_1 = \tau_2$

Proof. $(\tau_1 \subseteq \tau_2)$. We use the theorem from earlier. Let $x \in \mathbb{R}^2$ and $x \in B_1 \subseteq \mathcal{B}_1$. We have to show that $\exists B_2 \in \mathcal{B}_2$ with $x \in B_2 \subseteq B_1$. Since $x \in B_1$, x sits inside a circle. But we can always construct a rectangle B_2 smaller than B_1 but contains x.

 $(\tau_2 \subseteq \tau_1)$. Let $x \in \mathbb{R}^2$ and $B_2 \in \mathcal{B}_2$ with $x \in B_2$. We can always take $B_1 \in \mathcal{B}_1$ to be a circle inside rectangle B_2 and contains x. So $x \in B_1 \subseteq B_2$. \square

Lemma 6.4. Suppose (X, τ_x) and (Y, τ_Y) are topological spaces. Consider

$$X\times Y=\{(a,b)|a\in X,b\in Y\}$$

Then,

$$\mathcal{B} = \{U \times V | U \in \tau_X, V \in \tau_Y\}$$

is a basis on $X \times Y$.

Proof. Let $(a,b) \in X \times Y$. Then, $X \times Y \in \mathcal{B}$ and $(a,b) \in X \times Y$. Let $U_1 \times V_1, U_2 \times V_2 \in \mathcal{B}$ and assume

$$(a,b) \in U_1 \times V_1 \cap U_2 \times V_2.$$

Note

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \mathcal{B}.$$

So

$$(a,b) \in (U_1 \cap U_2) \times (V_1 \cap V_2) \subseteq (U_1 \times V_1) \cap (U_2 \times V_2)$$

Definition 6.4. The product topology is the topology generated by this basis.

Theorem 6.1. Suppose \mathcal{B}_x and \mathcal{B}_y are bases for τ_x and τ_y , respectively. Then,

$$\{B_1 \times B_2 | B_1 \in \mathcal{B}_x, B_2 \in \mathcal{B}_u\}$$

is a basis for product topology on $X \times Y$.

Example 6.6. $(X, \tau_x) = (\mathbb{R}, \tau_{st}) = (Y, \tau_Y).$

Definition 6.5. The standard topology on \mathbb{R}^2 is the product topology of the (\mathbb{R}, τ_{st}) .

Remark. The theorem tells us that \mathbb{R}^2 has a basis

$$\{(a,b)\times(c,d)|a,b,c,d\in\mathbb{R}\}$$

6.1 Connecting basis to topology

Suppose \mathcal{B} is a basis for a topology τ on X.

• First, if $B \in \mathcal{B}$, then $B \in \tau$. Recall that

$$U \in \tau \iff \forall x = U, \exists B' = \mathcal{B}, x \in \mathcal{B}' \subseteq U.$$

So let $x \in B$. Then, B' = B satisfies the above condition $(x \in B \subseteq B)$. Hence, $B \in \tau$.

• Let $U \in \tau$. Then, U is a union of elements in \mathcal{B} . To prove this, let $U \in \tau$. By definition,

$$\forall x \in U, \exists B_x \in \mathcal{U}$$

such that $x \in B_x \subseteq U$. Then,

$${B_x}_{x\in U}\subseteq \tau.$$

Then,

$$\bigcup_{x \in X_U} B = U.$$

7 Subspace topology

Definition 7.1. Let (X,τ) be a topological space and $Y \subseteq X$ be any subset. The subspace topology on Y is

$$\tau_Y = \{ U \cap Y | U \in \tau \}$$

Lemma 7.1. τ_Y is a topology.

Proof.

- $\varnothing \cap Y = \varnothing \in \tau_Y$.
- $X \cap Y = Y \in \tau_Y$.
- (Unions) Let $\{V_{\alpha}\}_{{\alpha}\in A}\subseteq {\tau}_Y$, then $V_{\alpha}=U_{\alpha}\cap Y$ for some $U_{\alpha}\in {\tau}$. Then,

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\alpha \in A} (U_{\alpha} \cap Y) = \left(\bigcup_{\alpha \in A} U_{\alpha}\right) \cap Y \in \tau_{Y}$$

Theorem 7.1. Suppose \mathcal{B} is a basis for X and $Y \subseteq X$. Then,

$$\{B \cap Y | B \in \mathcal{B}\}$$

is a basis for the subspace topology on Y.

Example 7.1. Let $X = \mathbb{R}$ with $\mathcal{B} = \{(a,b)|a,b \in \mathbb{R}\}$. Consider

$$Y = [1, \infty).$$

Then, the basis for this topology is given by

$$\mathcal{B}_Y = \{[1, a) | a \in \mathbb{R}, a > 1\} \cup \{(a, b) | a, b \in \mathbb{R}, 1 \le a < b\}$$

Example 7.2. $(3,7] \notin \tau_Y$ because there does not exist open $U \in \tau$ $(U \in \mathcal{B})$ such that

$$(3,7] = U \cap [1,\infty).$$

Proof. To yield contradiction, suppose there exists such U. Then,

$$7 \in (a,b) \cap [1,\infty).$$

So $7 \in (a, b)$ and $7 \in [1, \infty)$. In other words, a < 7 < b.

Let $\epsilon = (b-7)/2$. Then, $a < 7 + \epsilon < b$ so $7 + \epsilon \in (a,b)$ and $7 + \epsilon \in [1,\infty)$. Then,

$$7 + \epsilon \in (a, b) \cap [1, \infty) = (3, 7] \implies 3 < 7 + \epsilon \le 7,$$

yielding contradiction.

Example 7.3. Let $X = \mathbb{R}$ and Y = [0, 1]. A basis for the subspace on Y is

$$\{(a,b)|0 \le a < b \le 1\} \cup \{[a,b)|0 \le b \le 1\} \cup \{(a,1)|0 \le a \le 1\}$$

Example 7.4. Consider a rectangle

$$R = [0, 1] \times [2, 6].$$

There are two ways of thinking of topology on this rectangle. Since $R \subseteq \mathbb{R}^2$, we can think of it as a subspace topology. We can also think of it as a product topology. So are they same topologis in this case?

Theorem 7.2. Suppose X and Y are topological spaces and $A \subseteq X$ and $B \subseteq Y$ are subspaces. Then, the product topology on $A \times B$ equals the topology $A \times B$ inherits as a subset of $X \times Y$.

Proof. In the subspace topology, basis element is given by

$$(A \times B) \cap (U \times V)$$

where $U \subseteq X$ and $V \subseteq Y$. Likewise, basis element of product topology is given by

$$(A \cap U) \times (B \cap V)$$
.

But then

$$(A \cap U) \times (B \cap V) = (A \times B) \cap (U \times V).$$

8 Order topology

Let X be a set.

Definition 8.1. An order relation (or simple order or linear order) is relation R on X so

- 1. (comparability) If $x, y \in X$ and $x \neq y$. Then either xRy or yRx.
- 2. (Nonreflexivity) $\not\exists x \in X \text{ such that } xRx.$
- 3. (Transitivity)s If xRy and yRz then xRz.

Example 8.1. Define $X \subseteq \mathbb{R}$ and R = <. Then, R is an order relation *Proof.*

- 1. If $x \neq qy$, either x < y or y < x.
- 2. $\not\exists x \in X$ such that x < x.
- $3. \ x < y, y < z \implies x < z.$

If X has an order relation, we often denote it <. Suppose (X,<) is a set with an order relation for $a,b\in X$.

Definition 8.2. $(a, b) = \{x \in X | a < x, x < b\}.$

Definition 8.3. $(a, b] = \{x \in X | a < x, x < b, or x = b\}.$

Definition 8.4. $[a, b) = \{x \in X | a < x, x < b, or x = a\}.$

Definition 8.5. $a_0 \in X$ is a minimal element if $\forall x \in X$, $a_0 \leq x$.

Definition 8.6. $b_0 \in X$ is a maximal element if $\forall x \in X, x \leq b_0$.

Definition 8.7. Suppose $(X, <_x)$ and $(Y, <_y)$ are simply ordered sets. The dictionary order on $X \times Y$ is the order $<_{x \times y}$ defined as follows:

$$(a_1, b_1) <_{X \times Y} (a_2, b_2)$$

if $a_1 <_x a_2$ or $a_1 = a_2$ and $b_1 <_y b_2$.

Example 8.2. Define $X = Y = \mathbb{R}$ and $<_x = <_y = <$, usual inequality. Then,

- $(0,0) <_{X \times Y} (1,-3)$ is true
- $(0,0) <_{X \times Y} (0,-3)$ is false.

Definition 8.8. Suppose (X, <) is a simply ordered set. Then, the order topology on X is the one with basis elements: (a, b) for $a, b \in X$, $[a_0, b)$ for $b \in X$ provided a_0 is the minimal element of X, and $(a, b_0]$ for $a \in X$ provided $b_0 \in X$ is the maximal element.

Example 8.3. Consider X = [0, 1] with <, the standard inequality. The order topology is the topology inherited as a subset.

Example 8.4. Consider $(\mathbb{R}^2, <_o)$ where $<_0$ is the dictionary order. The order topology is called the dictionary order topology.

Think about what this set looks like:

Example 8.5. Let X be a set with the discrete topology (all subsets are open). Show that

$$\mathcal{B}_1 = \{\{x\} | x \in X\}$$

is a basis.

Proof. Let $x \in X$ then $x \in \{x\} \subseteq B$. Let $B_1, B_2 \in \mathcal{B}_1$ and $x \in B_1 \cap B_2$. Then,

$$B_1 = \{x\} = B_2$$

so $x \in \{x\} \subseteq B_1 \cap B_2$

Let τ_1 be the topology generated by \mathcal{B}_1 . We clearly have $\tau_1 \subseteq \tau_d$, where τ_d is the discrete topology. To show that $\tau_d \subseteq \tau_1$, let $U \in \tau_d$ and let $x \in U$. Then, $x \in \{x\} \subseteq U$ and $\{x\} \in \mathcal{B}_1$. So the results follows by a theorem in section 13.

Example 8.6. Show that

$$\mathcal{B}_2 = \{ \{x\} \times (a,b) | x, a, b \in \mathbb{R} \}$$

forms a basis for $\mathbb{R} \times \mathbb{R}$ with the dictionary order topology.

Proof. Assume that it's a basis. We will show that the associated topology τ_2 is the dictionary order topology τ_{DO} .

Note that if $B \in \mathcal{B}_2$, then $\exists x, a, b \in \mathbb{R}$ such that

$$B = \{x\} \times (a,b) = ((x,a),(x,b)) = \{y \in \mathbb{R} \times \mathbb{R} | (x,a) <_{DO} y <_{DO} (x,b) \}.$$

So this is open in τ_{DO} . So $\tau_2 \subseteq \tau_{DO}$.

Let $((a_1, b_1), (a_2, b_2))$ be a basis element in the dictionary order topology. Let $y \in ((a_1, b_1), (a_2, b_2))$. Write $y = (x_1, y_1)$. There are three cases:

- 1. $a_1 < x_1 < a_2$
- 2. $a_1 = x_1$
- 3. $a_2 = x_1$

Here, we will prove case 1. Assume $a_1 < x < a_2$. Then,

$$y \in \{x\} \times (y_1 - 1, y_1 + 1)$$

Then, $\{x\} \times (y_1 - 1, y_1 + 1) \in \mathcal{B}_2$ and also

$$\{x\} \times (y_1 - 1, y_1 + 1) \subseteq ((a_1, b_1), (a_2, b_2))$$

Assuming these the topology on $\mathbb{R}_d \times \mathbb{R}$ has basis

$$\{\{x\} \times (a,b) | x, a, b \in \mathbb{R}\}.$$

This is exactly the basis that generates the dictionary order topology. So two topologies are same. $\hfill\Box$

Example 8.7. Let $X = \mathbb{R}$. The set

$$\mathcal{B}_{\ell} = \{ [a, b) | a, b \in \mathbb{R} \}$$

is a basis. The topology it generates is called the lower limit topology on \mathbb{R} . \mathbb{R} with the lower limit topology is denoted \mathbb{R}_{ℓ} .

Example 8.8. Is [0,1) open in the standard topology? No [0,1) is not open in standard topology. If it were, then there would be some $(a,b) \subseteq \mathbb{R}$ such that

$$0 \in (a, b) \subseteq [0, 1).$$

But then

$$0 \in (a,b) \implies a < 0, b > 0$$

So $a/2 \in (a, b)$. But a/2 < 0 so $a \notin [0, 1)$.

Example 8.9. Is (0,1) open in \mathbb{R}_{ℓ} ? Yes because

$$(0,1) = \bigcup_{x \in \{y|y>0\}} [x,1).$$

9 Subbasis

Suppose X,Y are topological spaces and equip $X\times Y$ with the product topology. Define

$$\pi_1: X \times Y \to X$$
$$\pi_2: X \times Y \to Y$$

Define

$$\mathcal{S} = \{\pi_1^{-1}(U) | U \subset X\} \cup \{\pi_2^{-1} | V \subset Y\}$$

The collection S is called a subbasis. The product topology is obtained by considering all unions of finite intersection of elements in S.

Definition 9.1. If X is a set, a subbasis is a collection S of subsets whose union is X. This generates a topology by considering all unions of finite intersections of things in S.