S5C: полнота и корректность

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Исчисления S5C и S5C'

Теорема о дедуктивной эквивалентности S5C и S5C' (Упражнение)

$$\vdash_{S5C} \varphi \iff \vdash_{S5C'} \varphi$$

Теорема о корректности исчисления S5C (Упражнение)

$$\vdash_{S5C} \varphi \Rightarrow \models_{S5C} \varphi$$

Компактность логики

Обозначение

$$\Gamma \models_{L} \varphi := \forall F(F \models L \Rightarrow (F \models \Gamma \Rightarrow F \models \varphi))$$

Определение. Компактность логики.

Логика L называется компактной е.т.е. $\Gamma \models_L \bot \Rightarrow \exists \Gamma' \subseteq \Gamma$ т.ч. Γ' – конечно и $\Gamma' \models_L \bot$. Альтернативное определение: ?

Компактность и сильная полнота

Теорема

Логика является сильно полной е.т.е. она полна и компактна.

Некомпактность *S5C*

Теорема.

Логика S5C не является компактной.

Доказательство.

$$X = \{\neg C_{ab}p\} \cup \{E_{ab}^n p \mid n \in \mathbb{N}\}$$

- 1. $X \models_{S5C} \bot$, т.е. X невыполнимо
- 2. $X' \not\models_{S5C} \bot$, где $X' \subseteq X$ и X' конечно

Следствие

Логика S5C не является сильно полной.

Полнота (по Крипке) S5C

Теорема

Логика S5C является полной (по Крипке), т.е. $\models_{S5C} \varphi \iff \vdash_{S5C} \varphi$

Замыкание Фишера-Ладнера

Идея: множество формул, которые могут понадобиться при работе с к.к.м.

Замыкание

Пусть $cl(\varphi)$ наименьшее множество формул, замкнутое по следующим правилам:

- 1. $\varphi \in cl(\varphi)$
- 2. если $\psi \in cl(\varphi)$, то $Sub(\psi) \subseteq cl(\varphi)$
- 3. если $\psi \in cl(\varphi)$ и ψ не начинается с отрицания, то $\neg \psi \in cl(\varphi)$
- 4. если $C_G\psi\in cl(\varphi)$, то $\{K_iC_G\psi\mid i\in G\}\subseteq cl(\varphi)$

Утверждение

Для любого $\varphi \in L_{KC}$: $cl(\varphi)$ – конечно

Доказательство.

Упражнение.

Максимальность и непротиворечивость

Определение

Множество формул $X \in L_{KC}$ называется S5C – непротиворечивым е.т.е.

- (a) $X \not\vdash_{S5C} \bot$
- (b) не существует $\varphi_1, \dots \varphi_n \in X$ т. ч. $\vdash_{S5C} \neg (\varphi_1 \wedge \dots \wedge \varphi_n)$

Упражнение: докажите, что условия (a) и (b) эквивалентны

Обозначение: $\Phi = cl(arphi)$ для $arphi \in L_{\mathcal{KC}}$

Определение.

Будем говорить, что множество $X \subset \Phi$ является Φ -максимальным S5C-непротиворечивым е.т.е.

- *X S*5*C*-непротиворечиво и
- $\forall Y \in \Phi(X \subset Y \Rightarrow Y \vdash_{S5C} \bot)$.

Конечная каноническая модель (к.к.м.)

Определение. Обозначим $\Phi = cl(\varphi)$ для формулы $\varphi \in L_{KC}$. $M^{\Phi} = (W^{\Phi}, (\sim_i^{\Phi})_{i \in A_g}, V^{\Phi})$ – конечная каноническая модель, где

- $W^{\Phi} = \{X \subset \Phi \mid X \Phi\text{-м.}S5C\text{-н.м.}$ формул $\}$
- ullet $X\sim^{ullet}_i Y:=K_i\psi\in X\Leftrightarrow K_i\psi\in Y$ для $K_i\psi\in \Phi$
- $X \models p \iff p \in X$

Обозначение

$$K_iX := \{K_i\varphi \mid K_i\varphi \in X\}$$

Каноническая модель (M^c) vs. к.к.м. (M^{ϕ})

- модели или модели
 - к.м одна «конкретная» модель
 - к.к.м. модель строится по конкретной формуле
- язык
- к.м модель задействует весь модальный язык
- к.к.м. модель задействует только формулы из замыкания Ф
- миры = м.н.м.
 - к.м бесконечные множества формул
 - к.к.м. конечные множества формул
- достижимость
 - к.м определяется универсальным образом для каждой логики
 - к.к.м. для каждой логики определяется отдельно
- что можно доказать
 - к.м сильная полнота
 - к.к.м. слабая полнота + финитная аппроксимируемость

К.м., к.к.м., теория

Определение

Пусть
$$X\subseteq L_{CK}, L\in \{K_m^C, S4_m^C, S5_m^C, \dots\}$$
, определим множество следствий $[X]_L:=\{\varphi\in L_{CK}\mid X\vdash_L\varphi\}$

Утверждение. $[X]_L$ в к.м. (M^c)

Если $X \in W^c$, то $[X]_L \subseteq X$. Более того: $[X]_L = X$

Утверждение. $[X]_L$ в к.к.м. (M^{Φ})

Если $X\in W^\Phi$, то не гарантируется, что $[X]_L\subseteq X$, но верно, что $[X]_L\cap\Phi\subseteq X$. Более того: $[X]_L\cap\Phi=X$.

Схема доказательства

Теорема о корректности и полноте исчисления S5C

$$\forall \varphi \in \mathcal{EL}\text{-}\mathcal{C} \models_{S5} \varphi \iff \vdash_{S5C} \varphi$$

Доказательство.

 (\Leftarrow) Корректность. Проверка общезначимости аксиом и правил вывода исчисления S5C (Упражнение)

(⇒) Полнота.

$$\forall_{S5C} \varphi \Rightarrow \neg \varphi \forall_{S5C} \perp \Rightarrow \{\neg \varphi\} \subset X \in W^{\Phi} \Rightarrow M^{\Phi}, X \models \neg \varphi \Rightarrow (M^{\Phi} \in S5 \Rightarrow \not\models_{S5} \varphi)$$

Нужно доказать:

- Каноничность $M^{\Phi} \in S5$
- Лемма об истинности

Каноничность к.к.м.

Определение

Класс моделей S5.

Лемма

 $M^\Phi \in S$ 5, то есть, \sim_i^Φ – рефлексивно, симметрично и транзитивно.

Лемма об истинности

Лемма

Пусть Φ замыкание некоторой формулы M^{Φ} – к.к.м., $X \in W^{\Phi}$

$$\forall \varphi' \in \Phi : \varphi' \in X \iff M^{\Phi}, X \models \varphi'$$

Докажем индукцией по построению φ' .

БИ
$$\varphi' = p$$

ШИ Сл.1
$$\varphi' = \neg \varphi$$

Сл.2
$$\varphi' = \varphi_1 \wedge \varphi_2$$

Сл.3
$$\varphi' = K_i \varphi$$

Сл.4
$$\varphi' = C_G \varphi$$

БИ, Сл.1, Сл.2

Повторяем доказательства из теоремы о полноте S5

Обозначения:

- $K_iX := \{K_i\psi \mid K_i\psi \in X\}$
- $\neg K_i X := \{ \neg K_i \psi \mid \neg K_i \psi \in X \}$

Утверждение.

$$(K_iX \cup \neg K_iX) \subseteq Y \Leftrightarrow X \sim_i^{\Phi} Y$$

Сл.2 $\varphi' = K_i \varphi \ (\Rightarrow)$

Сл.2 $\varphi' = K_i \varphi$ (\Leftarrow)

1	$K_{i}\varphi \notin X$	$\rhd M^{\Phi}, X \not\models K_i \varphi \Leftrightarrow$
		$\rhd \exists Y(X \sim_i^{\Phi} Y \land M^{\Phi}, Y \not\models \varphi)$
2	$ eg K_i \varphi \in X$	
3	$\vdash \underline{X} \rightarrow \neg K_i \varphi$	
4	$y_0 = K_i X \cup \neg K_i X \cup \{\neg \varphi\} \vdash \bot$	⊳ «⊥»
5	$K_i X, \neg K_i X \vdash \varphi$	
6	$\vdash ((K_i\psi_1 \land \cdots \land K_i\psi_n) \land (\neg K_i\chi_1 \land \cdots \land \neg K_i\chi_m)) \rightarrow \varphi$	
7	$\vdash K_{i}((K_{i}\psi_{1}\wedge\cdots\wedgeK_{i}\psi_{n})\wedge(\negK_{i}\chi_{1}\wedge\cdots\wedge\negK_{i}\chi_{m}))\rightarrowK_{i}\varphi$	
8	$\vdash ((K_i K_i \psi_1 \wedge \cdots \wedge K_i K_i \psi_n) \wedge (K_i \neg K_i \chi_1 \wedge \cdots \wedge K_i \neg K_i \chi_m)) \rightarrow K_i \varphi$	
9	$\vdash ((K_i\psi_1 \land \cdots \land K_i\psi_n) \land (\neg K_i\chi_1 \land \cdots \land \neg K_i\chi_m)) \rightarrow K_i\varphi$	
10	$\vdash \underline{X} \to ((K_i \psi_1 \wedge \cdots \wedge K_i \psi_n) \wedge (\neg K_i \chi_1 \wedge \cdots \wedge \neg K_i \chi_m))$	

11
$$\mid \vdash X \rightarrow K_i \varphi$$

12 $\mid \checkmark \bot \gg$
13 $y_0 = K_i X \cup \neg K_i X \cup \{\neg \varphi\} \not\vdash \bot$
14 $y_0 \subset Y \in W^{\Phi}$
15 $X \sim_i^{\Phi} Y$
16 $\neg \varphi \in Y$
17 $\varphi \not\in Y$
18 $M^{\Phi}, Y \not\models \varphi$ $\sqcap M$
19 $\exists Y(X \sim_i^{\Phi} Y \land M^{\Phi}, Y \not\models \varphi)$
20 $M^{\Phi}, X \not\models K_i \varphi$

Сл.3 $\varphi' = C_G \varphi$

Обозначения

- $\underline{X} := \varphi_1 \wedge \cdots \wedge \varphi_n$, где $X = \{\varphi_1, \dots, \varphi_n\}$,
- $S := \{X \in W^{\Phi} \mid M^{\Phi}, X \models C_G \varphi\}, \overline{S} := W^{\Phi} \setminus S$
- $\chi := \bigvee \{\underline{X} \mid X \in S\}$

Сл.3 (\Leftarrow) $C_G \varphi \in X \Leftarrow M^{\Phi}, X \models C_G \varphi$

$$S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \quad \chi := \bigvee \{\underline{X'} \mid X' \in S\} \quad \overline{S} := W^c \setminus S$$

$$\vdash \chi \to E_G(\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'}) \quad \xrightarrow{Y' \in \overline{S}} \quad \vdash (\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'}) \leftrightarrow \chi$$

$$\vdash \chi \to E_G \chi$$

$$\vdash \chi \to C_G \chi$$

$$\vdash \chi \to C_G \varphi$$

$$\vdash \chi \to C_G \varphi$$

$$\vdash \chi \to C_G \varphi$$

 $C_G \varphi \in X$

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \} \qquad \chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

Лемма
$$1 \vdash \underline{X} \to \chi$$

▶ Доказательство: по построению χ (по КЛВ). ◀

$$S := \{X' \in W^c \mid M^c, X' \models C_G \varphi\} \quad \chi := \bigvee \{\underline{X'} \mid X' \in S\} \quad \boxed{K_i X := \{K_i \psi \mid K_i \psi \in X\}} \quad \boxed{\neg K_i X := \{\neg K_i \psi \mid \neg K_i \psi \in X\}}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

$$K_iX := \{K_i\psi \mid K_i\psi \in X\}$$

$$\neg K_i X := \{ \neg K_i \psi \mid \neg K_i \psi \in X \}$$

 $M^{\Phi}, Y \models \varphi$

Утверждение: $\vdash \chi \rightarrow \varphi$

Достаточно доказать, что для любого $X \in S \vdash X \to \varphi$.

Утверждение. Пусть $X,Y\in W^\Phi$, тогда $X\not\sim_i^\Phi Y\Rightarrow \vdash \underline{X}\to K_i\neg\underline{Y}$

1	$X \not\sim_i^{\Phi} Y$	$ ightharpoonup \vdash \underline{X} o K_i \neg \underline{Y}$		
2	$\exists heta \in \Phi : extit{K}_i heta \in extit{X}, heta otin extit{Y}$ или $ extit{K}_i heta \in extit{Y}, heta otin extit{X}$		13	$\vdash \underline{X} \to \neg \theta$
3	$K_i\theta\in X, \theta ot\in Y$	$\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$	14	$\vdash \theta \rightarrow \neg \underline{X}$
4	$\neg \theta \in Y$	экономное отрицание?	15	$\vdash \mathcal{K}_i heta o \mathcal{K}_i eg \underline{X}$
5	$Y \vdash \neg \theta$		16	$\vdash \underline{Y} o K_i \theta$
6	$dash \underline{Y} o eg heta$		17	$\vdash \underline{Y} \to K_i \neg \underline{X}$
7	$\vdash heta ightarrow \lnot \underline{Y}$		18	$\vdash \hat{K}_i \underline{X} \rightarrow \neg \underline{Y}$
8	$dash \mathcal{K}_i heta o \mathcal{K}_i eg \underline{Y}$		19	$\vdash K_i \hat{K}_i \underline{X} \to K_i \neg \underline{Y}$
9	$dash \underline{X} o \mathcal{K}_i heta$		20	$\vdash \underline{X} ightarrow K_i \hat{K}_i \underline{X}$
10	$\vdash \underline{X} o K_i \neg \underline{Y}$		21	$\vdash \underline{X} \to K_i \neg \underline{Y}$
11	$K_i \theta \in Y, \theta \not\in X$	$\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$	22	$\vdash \underline{X} \to K_i \neg \underline{Y}$
12	$\neg \theta \in X$			

Следствие. Пусть $X,Y\in W^\Phi$, тогда $\underline{X},\hat{K_i}\underline{Y}\not\vdash\bot\Rightarrow X\sim^\Phi_i Y$

$$S := \{ X' \in W^c \mid M^c, X' \models C_G \varphi \} \qquad \chi := \bigvee \{ \underline{X'} \mid X' \in S \}$$

$$\chi := \bigvee \{\underline{X'} \mid X' \in S\}$$

Лемма:
$$\vdash \chi \to E_G(\bigwedge_{Y' \in \overline{S}} \neg \underline{Y'})$$

Достаточно доказать, что $\forall i \in G \ \forall X \in S \ \forall Y \in \overline{S} \ \vdash X \to K_i \neg Y$

1 |
$$i$$
 $i \in C$

2
$$X X \in S$$

$$Y \in W^{\Phi} \setminus S$$

4
$$M^c, X \models C_G \varphi$$
 2

5
$$M^c, Y \not\models C_G \varphi$$
 3

$$S \mid X \not\sim_i^c Y$$
 из 2,3

$$X \neq S$$
 $Y \neq W^{\Phi} \setminus S$
 $M^{c}, X \models C_{G}\varphi$ 2

 $M^{c}, Y \not\models C_{G}\varphi$ 3

 $X \not\sim_{i}^{c} Y$ из 2,3

 $X \not\sim_{i}^{c} Y$ по лемме

Лемма: $\forall S \subseteq W^c \vdash \bigwedge \{Y \mid Y \in \overline{S}\} \leftrightarrow \bigvee \{X \mid X \in S\}$, где $\overline{S} := W^c \setminus S$

- ▶ Доказательство собирается из следующих утверждений:
 - 1. $\forall X,Y \in W^c$ т.ч. $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$
 - 2. $\vdash \bigvee \{\underline{X} \mid X \in W^c\}$

<

Упражнение

Собрать доказательство леммы из утверждений. Подсказка: понадобится только КЛВ.

Утверждение: $\forall X, Y \in W^{\Phi}$ т.ч. $X \neq Y \vdash \neg(\underline{X} \land \underline{Y})$ $X \neq Y$ $X\subset (X\cup Y),\,Y\subset (X\cup Y)$ 1 теория множеств $X \cup Y \vdash \bot$ 2 по опр. м.н.м 6 $X, Y \vdash \bot$ 7 $\vdash \neg(\underline{X} \land \underline{Y})$

Утверждение $\vdash \bigvee \{X \mid X \in W^{\Phi}\}$

 $h(X_i) \in X_i$

 $\neg h(X_i) \in X_i$

« | »

5

6

8

9

10

$$\neq \underline{X_i}$$

$$\forall h(X_1) \vee \cdots \vee h(X_n)$$

$$\neg h(X_1), \ldots, \neg h(X_n) \not\vdash \bot$$

$$\{ \lnot h(X_1), \ldots, \lnot h(X_n) \} \subseteq X_j \in W^\Phi$$
 по л. Линд.

> «⊥»

 $h(X_i) := \varphi$ т.ч. $\varphi \in X_i$ и $\forall \varphi$

30 / 30