Introduction to Machine Learning

Spring Semester

Homework 2: March 28, 2023

Due: April 26, 2023

Theory Questions

1. (15 points) PAC learnability of ℓ_2 -balls around the origin. Given a real number $R \geq 0$ define the hypothesis $h_R : \mathbb{R}^d \to \{0,1\}$ by,

$$h_R(\mathbf{x}) = \begin{cases} 1 & \|\mathbf{x}\|_2 \le R \\ 0 & otherwise. \end{cases}$$

Consider the hypothesis class $\mathcal{H}_{ball} = \{h_R \mid R \geq 0\}$. Prove directly (without using the Fundamental Theorem of PAC Learning) that \mathcal{H}_{ball} is PAC learnable in the realizable case (assume for simplicity that the marginal distribution of X is continuous). How does the sample complexity depend on the dimension d? Explain.

2. (15 points) PAC in Expectation. Consider learning in the realizable case. We say a hypothesis class \mathcal{H} is PAC learnable in expectation using algorithm A if there exists a function $N(a):(0,1)\to\mathbb{N}$ such that $\forall a\in(0,1)$ and for any distribution P (realizable by \mathcal{H}), given a sample set S such that $|S|\geq N(a)$, it holds that,

$$\mathbb{E}\left[e_P(A(S))\right] \le a.$$

Show that \mathcal{H} is PAC learnable if and only if \mathcal{H} is PAC learnable in expectation (Hint: For one direction, use the law of total expectation. For the other direction, use Markov's inequality).

- 3. (15 points) Union Of Intervals. Determine the VC-dimension of \mathcal{H}_k the subsets of the real line formed by the union of k intervals (see the programming assignment for a formal definition of \mathcal{H}). Prove your answer.
- 4. (15 points) Prediction by polynomials. Given a polynomial $P : \mathbb{R} \to \mathbb{R}$ define the hypothesis $h_P : \mathbb{R}^2 \to \{0, 1\}$ by,

$$h_P(x_1, x_2) = \begin{cases} 1 & P(x_1) \ge x_2 \\ 0 & otherwise. \end{cases}$$

Determine the VC-dimension of $\mathcal{H}_{poly} = \{h_P \mid P \text{ is a polynomial}\}$. You can use the fact that given n distinct values $x_1, ..., x_n \in \mathbb{R}$ and $z_1, ..., z_n \in \mathbb{R}$ there exists a polynomial P of degree n-1 such that $P(x_i) = z_i$ for every $1 \le i \le n$.

Programming Assignment

1. Union Of Intervals. In this question, we will study the hypothesis class of a finite union of disjoint intervals, and the properties of the ERM algorithm for this class.

To review, let the sample space be $\mathcal{X} = [0, 1]$ and assume we study a binary classification problem, i.e. $\mathcal{Y} = \{0, 1\}$. We will try to learn using an hypothesis class that consists of k intervals. More explicitly, let $I = \{[l_1, u_1], \dots, [l_k, u_k]\}$ be k disjoint intervals, such that $0 \leq l_1 \leq u_1 \leq l_2 \leq u_2 \leq \dots \leq u_k \leq 1$. For each such k disjoint intervals, define the corresponding hypothesis as

$$h_I(x) = \begin{cases} 1 & \text{if } x \in [l_1, u_1] \cup \ldots \cup [l_k, u_k] \\ 0 & \text{otherwise} \end{cases}$$

Finally, define \mathcal{H}_k as the hypothesis class that consists of all hypotheses that correspond to k disjoint intervals:

$$\mathcal{H}_k = \{h_I | I = \{[l_1, u_1], \dots, [l_k, u_k]\}, 0 \le l_1 \le u_1 \le l_2 \le u_2 \le \dots \le u_k \le 1\}$$

We are given a sample of size $n: (x_1, y_1), \ldots, (x_n, y_n)$. Assume that the points are sorted, so that $0 \le x_1 < x_2 < \ldots < x_n \le 1$.

Submission Guidelines:

- Download the files skeleton.py and intervals.py from Moodle. You should implement only the missing code in skeleton.py, as specified in the following questions. In every method description, you will find specific details on its input and return values.
- Your code should be written with python 3.
- Your submission should include exactly two files: assignment2.py (replacing skeleton.py) and intervals.py.

Explanation on intervals.py:

The file intervals.py includes a function that implements an ERM algorithm for \mathcal{H}_k . Given a sorted list $xs = [x_1, \dots, x_n]$, the respective labeling $ys = [y_1, \dots, y_n]$ and k, the given function find_best_interval returns a list of up to k intervals and their error count on the given sample. These intervals have the smallest empirical error count possible from all choices of k intervals or less.

Note that in sections (c)-(e) you will need to use this function for large values of n. Execution in these cases could take time (more than 10 minutes for an experiment), so plan ahead.

(a) (10 points) Assume that the true distribution $P[x, y] = P[y|x] \cdot P[x]$ is as follows: x is distributed uniformly on the interval [0, 1], and

$$P[y=1|x] = \begin{cases} 0.8 & \text{if } x \in [0,0.2] \cup [0.4,0.6] \cup [0.8,1] \\ 0.1 & \text{if } x \in (0.2,0.4) \cup (0.6,0.8) \end{cases}$$

- and P[y=0|x]=1-P[y=1|x]. Since we know the true distribution P, we can calculate $e_P(h)$ precisely for any hypothesis $h \in \mathcal{H}_k$. What is the hypothesis in \mathcal{H}_{10} with the smallest error (i.e., $\arg\min_{h\in\mathcal{H}_{10}}e_P(h)$)?
- (b) (10 points) Write a function that, given a list of intervals I, calculates the true error $e_P(h_I)$. Then, for k = 3, $n = 10, 15, 20, \ldots, 100$, perform the following experiment T = 100 times: (i) Draw a sample of size n and run the ERM algorithm on it; (ii) Calculate the empirical error for the returned hypothesis; (iii) Calculate the true error for the returned hypothesis. Plot the empirical and true errors, averaged across the T runs, as a function of n. Discuss the results. Do the empirical and true errors decrease or increase with n? Why?
- (c) (10 points) Draw a sample of size n = 1500. Find the best ERM hypothesis for k = 1, 2, ..., 10, and plot the empirical and true errors as a function of k. How does the error behave? Define k^* to be the k with the smallest empirical error for ERM. Does this mean the hypothesis with k^* intervals is a good choice?
- (d) (10 points) Here we will use an empirical method called holdout-validation to try and find $k \in \{1, ..., 10\}$ that gives a good test error. For each value of $k \in \{1, ..., 10\}$, draw a data set of n = 1500, run the ERM algorithm for \mathcal{H}_k on a training set consisting of 80% of the data set, and then calculate the empirical error of the returned hypothesis on the remaining 20% of the examples which you did not train on. Choose the best hypothesis (i.e. the one with the lowest such error) and discuss how close this gets you to finding the hypothesis with optimal true error.