Warum sollten wir BTRFS verwenden?

- LIT2009
 - Motto: It's your turn to go ...
- LIT 2016
 - Backups
- LIT 2018
 - SSH
- LIT 2023
 - BTRFS
 - B-Tree-Filesystem
 - als Unterbau
- Ziel des Vortrages
 - einige Demos zu BTRFS
 - nicht vollständig
 - keine Vergleiche, was ist besser

https://btrfs.readthedocs.io/en/latest/

BTRFS als Ergänzung zu SSH, Backups, ...

- SSH, Filesystem, Backups (und Restore), VPN, siehe Vortrag von Joel Hatsch
- BTRFS ist Unterbau
 - mehr als ein ,Filesystem'
 - Strukturierung der Daten
 - neue Arbeitsweise mit Mountpoints über Subvolumes
 - schnelle lokale Snapshots
 - online Backups des Systems über readonly Snapshots
- Einige Links
 - https://archive.kernel.org/oldwiki/btrfs.wiki.kernel.org/index.php/SysadminGuide.html#Subvolumes (archiv)
 - https://help.ubuntu.com/community/btrfs
 - https://everything.explained.today/Btrfs/
 - https://arstechnica.com/information-technology/2014/01/bitrot-and-atomic-cows-inside-next-gen-filesystems/
 - https://www.usenix.org/system/files/login/articles/bacik 0.pdf
 - · ,The Swiss Army Knife of Storage'
 - uvam.
 - nicht immer aktuell

BTRFS Vielfalt

- https://btrfs.readthedocs.io/en/latest/
- https://archive.kernel.org/oldwiki/btrfs.wiki.kernel.org/index.php/Main Page.html
- Vorteile
 - CoW, Copy on Write
 - Snapshots
 - Checksums
 - Subvolumes mit Snapshots
 - Optimiert für SSD https://btrfs.readthedocs.io/en/latest/Trim.html
 - Optimiert für SMR Disks https://btrfs.readthedocs.io/en/latest/Zoned-mode.html
- Nachteile
 - RAID 5/6 noch nicht stabil
 - bei sehr großen Files ist bei Änderungen CoW langsam
 - fragmentiert
 - CoW lokal abschaltbar, chattr +C
 - How do I undelete a file?
 - ,There is no reliable way of doing this, other than restoring from backups. --- '
 - https://archive.kernel.org/oldwiki/btrfs.wiki.kernel.org/index.php/FAQ.html#How_do_I_undelete_a_file.3F
- Let's go to BTRFS

Eigenschaften

Sehr viel, würde Tage dauern ...

- Mostly self-healing in some configurations due to the nature of copy-on-write
- Online defragmentation and an autodefrag mount option
- Online volume growth and shrinking
- Online block device addition and removal
- Online balancing (movement of objects between block devices to balance load)
- Offline filesystem check[30]
- Online data scrubbing for finding errors and automatically fixing them for files with redundant copies
- RAID 0, RAID 1, and RAID 10[31]
- Subvolumes (one or more separately mountable filesystem roots within each disk partition)
 - Snapshots
- Transparent compression via zlib, LZO[4] and (since 4.14) ZSTD,[5] configurable per file or volume[32] [33]
- Atomic writable (via **copy-on-write**) or read-only[34] Snapshots of subvolumes
- File cloning (reflink, copy-on-write) via cp --reflink <source file> <destination file>[35]
- Checksums on data and metadata (CRC-32C[36]).
- In-place conversion from ext3/4 to Btrfs (with rollback). This feature regressed around btrfs-progs version 4.0, rewritten from scratch in 4.6.[38]
- Union mounting of read-only storage, known as file system seeding (read-only storage used as a copy-on-write backing for a writable Btrfs)[39]
- Block discard (reclaims space on some virtualized setups and improves wear leveling on SSDs with TRIM)
- **Send/receive** (saving diffs between snapshots to a binary stream)
- Incremental backup[40]
- Out-of-band data deduplication (requires userspace tools)
- Ability to handle swap files and swap partitions

https://en.wikipedia.org/wiki/Btrfs

Kommandos

auch sehr viel, btrfs + subcommands + ... + mount/device

- **btrfs** filesystem label [<device>|<mountpoint>] [<newlabel>]
- btrfs check /dev/sdh1
- blkid | grep btrfs
- btrfs --help
- send / receive
- btrfs device scan
- btrfs device scan /dev/sdh1
- btrfs filesystem show /dev/sdh1
- btrfs balance start /mnt/gdisk
- btrfs check /dev/sdh1
- btrfs check /dev/sdh1 --force
- btrfs filesystem df
- btrfs filesystem df /mnt/adisk
- btrfs filesystem show /dev/sda2
- btrfs scrub start /mnt/adisk
- btrfs scrub status /mnt/adisk
- btrfs subvolume create subvol0
- btrfs subvol list /mnt/cnano/
- btrfs subvolume delete daten/fuse/subvol4
- btrfs subvolume show daten/messen/data/
- btrfs subvolume show /mnt/wd/daten/subvol/
- btrfs filesystem defragment Videos
- btrfs filesystem balance /home/myhome

Was zeigen?

- Auswahl
 - Copy on Write als Basis
 - **Neuformatierung** eines EXT4 Filesystems mit BTRFS ohne die Daten umzukopieren
 - Datenintegrität online testen
 - **Subvolumes** und Strukturierung von Daten
 - **Snapshots** großer Datenmengen in Sekunden

Demo, Festplatte mit Partitionen ...

- /mnt/b1 BTRFS
- /mnt/b2 BTRFS
- /mnt/c1 LUKS mit BTRFS
- /mnt/e1 ext4

Alias und Python-Sckript

- alias | sblk1='lsblk -0 "NAME,TYPE,TRAN,RM,FSTYPE,MOUNTPOINT" -e7' | grep usb -A5
- ddf = df mit Filtern (Python)
 - https://manpages.ubuntu.com/manpages/jammy/man1/discus.1.html

CoW = Copy on Write

Links in Linux

- softlink = link to file or folder.
 - files -> /b1/files
 - nicht an Filesystem gebunden
 - über Partition hinweg
 - kann auf ,nichts' zeigen, dead link
 - in ,ls' ist ein Pfeil zu sehen
- hardlink = nur für Files, weiterer Inode, der auf die gleichen Daten zeigt
 - Referenzzähler zur Verwaltung
 - mit ,ls' anzeigbar
 - nur im gleichen Filesystem
 - rsnapshot verwendet Hardlinks intensiv
 - in rsync: --link-dest=DIR
 - ändern der Daten ändert alle Files, die durch den Hardlink verbunden sind
 - kann gelöscht werden, Daten bleiben erhalten, wenn Referenzzähler > 0

CoW = Copy on Write

Links in Linux:

- reflink = CoW
 - mit ,cp': --reflink=always
 - wird intern verwaltet, mit ,ls' unsichtbar
 - Metadaten werden kopiert, Daten nicht
 - erst bei Änderung der Daten werden diese auch kopiert.
 - atomarer Vorgang
 - keine offenen Files
 - Snapshots möglich

Vorteile

- schnell, platzsparend, transaktionssicher
- Snapshots
- https://www.ctrl.blog/entry/file-cloning.html

Nachteile

- belegt Platz, wenn Daten geändert werden
- nicht mit herkömmlichen FS-Tools sichtbar

Demo

- cd /mnt/b1
- cp -r --reflink=always btrfstestfiles/ abc
- filefrag -v btrfstestfiles/files/hhhhhh.txt

CoW = Copy on Write

Abschalten von CoW:

•

- chattr +C new_empty_file
- Isattr -d ./folder
- -----./folder
 - cp -r --reflink=always btrfstestfiles/ abc funktioniert nicht
- schaltet CoW und Prüfsummen ab
- Sicherheit wie bei ext4
- empfohlen bei Files für virtuelle Maschinen

online Neuformatierung eines EXT4 Filesystems mit BTRFS

- https://btrfs.readthedocs.io/en/latest/Convert.html
- /mnt/e1
- # convert from ext3/4 → Btrfs
- btrfs-convert /dev/xxx
- btrfs-convert /dev/disk/by-partlabel/e1 1m17,585s
- Isblk -o "NAME,TYPE,TRAN,RM,FSTYPE,MOUNTPOINT" -e7
- # mount the resulting Btrfs filesystem
- mount -t btrfs /dev/disk/by-partlabel/e1 /mnt/e1
- # mount the ext3/4 snapshot
- mount -t btrfs -o subvol=ext2_saved /dev/sdc4 /mnt/ext4_saved
- # loopback mount the image file
- mount -t ext4 -o loop,ro /mnt/ext4_saved/image /mnt/ext4
- diff -r ext4/ e1/
- ok
- Warnung
 - instabil bei Stromausfall
 - instabil bei zu wenig freiem Platz
 - ext4 Snapshot nicht immer mountable
- besser:
 - Backup, Format mit BTRFS, Restore

Scrub – Kontrolle aller Prüfsummen

- btrfs scrub start /mnt/b1
- btrfs scrub status /mnt/b1
- cat /var/lib/btrfs/scrub.status.a3d6bb26-76e9-4f29-b5a8-313293e898ea
- Ergebnis wird angezeigt
- Ergebnis ist in /var/lib/btrfs/scrub.status.UUID
- lange Laufzeit
- mit RAID erfolgt automatische Korrektur
- wöchentlich empfohlen
- Script
 - http://marc.merlins.org/perso/btrfs/post_2014-03-19_Btrfs-Tips_-Btrfs-Scrub-and-Btrfs-Filesystem-Repair.html
 - ionice -c 3 nice -10 btrfs scrub start -Bd \$mountpoint
- tr '|' '\n' < /var/lib/btrfs/scrub.status.56c26d49-490e-424a-bafb-f07736424be9 | g csum_errors

- Subvolume?
 - ,dynamische Partitionen^e
 - "Filesystem im Filesystem"
 - keine Namensregeln, muss selbst gestaltet werden
 - -
- rekursiv
- mountable
 - statt nur ,root',
- Doku: https://btrfs.readthedocs.io/en/latest/Subvolumes.html
 - ,A BTRFS subvolume is a part of filesystem with its own independent file/directory hierarchy and inode number namespace. Subvolumes can share file extents. A snapshot is also subvolume, but with a given initial content of the original subvolume.
 - , A subvolume looks like a normal directory, with some additional operations described below.
- Namensregeln nötig
 - mount ist nicht mehr fixe Zuordnung von Partitionen, sondern Zuordnung von Arbeitsbereichen
- tree -L 3 -d als Hilfe
- manchmal sieht man ,@' als Prefix, kann man, muss man nicht
- Subvolumes nur mit btrfs tools sichtbar
- btrfs subvolume list folder
- Wie macht Ubuntu das? VM

- Subvolume?
- vom Parentfilesystem erreichbar
- Subvolume kann Parent nicht erreichen
 - wie ,chroot'
- Demo
 - subvol create delete
 - files und tgg erzeugen
 - btrfs subvolume create files
 - cp --reflink=always -r btrfstestfiles/files/* files/
 - mv tgg/ _tgg
 - · btrfs subvolume create tgg
 - mv _tgg/* tgg/
 - rmdir _tgg/

- 0
- btrfs subvolume list b1
- mount -o subvol=files/tgg /dev/disk/by-label/b1 tgg
- /proc/self/mountinfo
- diff -r tgg b1/files/tgg
- du -sh tgg
- df -h

- send/receive
- Send/receive, only readonly Subvolumes, nicht rekursive Snapshots
- Quelle: /mnt/b1/snr, Ziel: /mnt/c1
- btrfs subvolume snapshot -r b1/files b1/files_ro
- btrfs send b1/files_ro | btrfs receive c1
- diff -r b1/files_ro/ c1/files_ro/
- tgg fehlt
- c1 ist LUKS d.h. BTRFS und LUKS ist ok
- rsync -av b1/files c1/rsync/ -P
- tgg fehlt nicht
- touch b1/files/xxxxx (erzeuge neuen File)
- btrfs subvolume snapshot -r b1/files b1/files_ro2
- send diff to c1
- btrfs send -p b1/files_ro b1/files_ro2 | btrfs receive c1
- https://aligrant.com/web/blog/2019-02-27_copying_a_btrfs_volume_to_another_disk_the_easy_way

- durch CoW effektiv
- Namensregeln für sich erstellen, "@" oder andere
- z.B. Erstellen, Backup, delete
- klein, können schnell wachsen
- mit BTRFS möglichst Partitionen nicht zu voll schreiben, testen
- rekursive Subvolumes nicht in Snapshot oder send/receive
- als Filter einsetzen
- Skripte für mount einsetzen
- flexibles mount mit Subvolumes verstehen
- Doku lesen
- https://btrfs.readthedocs.io/en/latest/

Danke

- Wie beginnen?
 - apt install btrfs-progs
 - formatieren und genau wie ein ,ext4' verwenden
 - Vorteile: Prüfsummen, Copy on Write ...
- Take Home Message
 - ein sicheres Filesystem mit Linux Bordmitteln ist nicht schwer
 - mit BTRFS gibt es eine zuverlässige Lösung
 - noch ohne RAID5/6
- meine Webseite
 - https://www.görlinux.de

Vielen Dank für Eure Aufmerksamkeit.

Richard Albrecht

LUG-Ottobrunn

Richard Albrecht

Linux in Görlitz

