

Molecular Basis of Inheritance

- 1. Monomer of nucleic acids are -(Pg. 95, E)
 - A) Peptides
 - B) Nucleosides
 - C) Ribonucleosides
 - D) None of these
- 2. DNA and RNA are types of (Pg. 95, E)
 - A) Nucleotides
- B) Nucleosides
- C) Nucleic acids
- D) Nucleamides

Paragraph 6.1

The DNA

- Length of DNA is usually defined as- (Pg. 96, E)
 - A) Number of nucleotides present in it
 - B) Number of pair of nucleotides present in it
 - C) Number of base pairs present in it
 - D) All of these
- 4. Match the length of DNA with the correct organisms (Pg. 96, M)

	A		В
I	Φ× 174	1	$4.6 \times 10^{6} \text{ bp}$
			(base pairs)
II	Bacteriophage γ	2	$3.3 \times 10^{9} \text{bp}$
III	E. coli	3	48502 bp
IV	Human DNA	4	5386 nucleotides
	(haploid)		

	Ι	II	III	IV
A)	4	3	1	2
B)	3	4	2	1
C)	4	3	2	1
D)	3	4	1	2

Paragraph 6.1.1

Structure of polynucleotides chain

- 5. A nucleotides contains (Pg. 96, E)
 - A) Hexose sugar + nitrogenous base + phosphate group
 - B) Pentose sugar + nitrogenous base + phosphate group
 - C) Hexose sugar + nitrogenous base + sulphate group
 - D) Pentose sugar + nitrogenous base + sulphate group

- 6. Which of these is a purine (Pg. 96, E)
 - A) Cytosine
 - B) Adenine
 - C) Thiamine
 - D) More than one is correct
- 7. Which of these is a pyrimidine (Pg. 96, E)
 - A) Adenine
- B) Thymine
- C) Guanine
- D) None of these
- 8. Which of these is a correct combination for a DNA nucleotides (Pg. 96, E)
 - A) Oxyribose + Phosphate + Uracil
 - B) Oxyribose + Phosphate + Thymine
 - C) Deoxyribose + Phosphate + Uracil
 - D) Deoxyribose + Phosphate + Thymine
- 9. All the given nucleotides exists, except **(Pg. 96. E)**
 - A) Deoxy uridine
- B) Thymine
- C) Both A & B
- D) None of these
- 10. Nitrogenous base is linked to which carbon of pentose sugar (**Pg. 96, E**)
 - A) 1'C
- B) 2'C
- C) 3'C
- D) 5'C
- 11. Nitrogenous base is linked to pentose sugar by which bond (**Pg. 96, E**)
 - A) N Glycosidic bond
 - B) Phosphoester bond
 - C) Phosphodiester bond
 - D) Peptide bond
- 12. Phosphate group is linked to which carbon of pentose sugar **(Pg. 96, E)**
 - A) 1'C
- B) 2'C
- C) 3'C
- D) 5'C
- 13. Identify the free ends of given polynucleotides chain **(Pg. 96, E)**

	I	II
A)	3' phosphate	5' hydroxyl
B)	5' hydroxyl	3' phosphate
C)	5' phosphate	3' hydroxyl
D)	3' hydroxyl	5' phosphate

- 14. Backbone of polynucleotide chain is formed due to -(Pg. 97, E)
 - A) Sugar and N-base
 - B) Sugar and phosphate
 - C) Phosphate and N Base
 - D) All of these
- 15. Which is correct about thymine & uracil (Pg. 97, E)
 - A) Uracil is 5-methyl thymine
 - B) Thymine is 5-methyl uracil
 - C) Uracil is 5-ethyl thymine
 - D) Thymine in 5-ethyl uracil
- 16. DNA is -(Pg. 97, E)
 - A) Acidic and positively charged
 - B) Basic and positively charged
 - C) Acidic and negatively charged
 - D) Basic and negatively charged
- 17. Name of DNA as 'Nuclein' was given by -(Pg. 97, E)
 - A) Francis crick
 - B) Erwin Chargaff
 - C) Friedrich Meischer
 - D) Rosalind Franklin
- 18. Double Helix for structure of DNA model was proposed by -(Pg. 97, E)
 - A) Wilkins and Franklin based on their Xray diffraction date
 - B) Watson and Crick based on their X-ray diffraction date
 - C) Chargaff based on their X-rav diffraction data
 - D) None of these
- 19. The proposition of base pairing between the two stands of polynucleotide chain in double Helix model of DNA was based on observation of -(Pg. 97, E)
 - A) Maurice Wilkins
 - B) Rosalind Franklin
 - C) Erwin Chargaff
 - D) Both A & B
- 20. The two chains of double Helix DNA have (Pg. 97, E)
 - A) Parallel polarity
 - B) Anti-parallel polarity
 - C) No polarity
 - D) Depends on organism
- 21. The bases in two stands of DNA are paired through (Pg. 97, E)
 - A) Hydrogen bond
- B) Peptide bond
- C) Glycosidic bond D) Sulfide bond

- 22. Which of the following is true about base pairing in DNA -(Pg. 97, E)
 - A) Adenine forms two hydrogen bond with Guanine
 - B) Adenine forms three hydrogen bond with Guanine
 - C) Adenine forms two hydrogen bond with Thymine
 - D) Adenine forms three hydrogen bond with Thymine
- 23. Which of the following is true about base pairing in DNA -(Pg. 97, E)
 - A) Guanine forms two H-bond with Cytosine
 - B) Guanine forms three H-bond with Cytosine
 - C) Guanine forms two H-bond with Adenine
 - D) Guanine forms three H-bond with Adenine
- 24. Uniform distance between two stands of Helix is due to -(Pg. 97, E)
 - A) Double and triple bond formed between base pairs
 - B) Sugar phosphate backbone
 - C) Purine pyrimidine base pairing
 - D) None of these
- 25. How many of the following statements about Double - helix structure of DNA is correct -(Pg. 97, E)
 - i) Two chains are coiled in right handed fashion
 - ii) Pitch of helix is 3.6 nm
 - iii) There are roughly 10 bp in each turn
 - iv) Plane of one base pair stacks over the other
 - A) 1

B) 2

C) 3

- D) 4
- 26. Pitch of helix in double helix DNA is -(Pg. 98, E)
 - A) 3.6 nm
- B) 3.4 nm
- C) 3.2 nm
- D) 3.8 nm
- 27. Central dogma in molecular biology was proposed by —(Pg. 98, E)
 - A) Crick
- B) Watson
- C) F. Meischar
- D) Chragaff
- 28. Identify correct labels —(Pg. 98, E)

	(i)	(ii)	(iii)
A)	Replication	Translation	Transcription
B)	Replication	Transcription	Translation
C)	Transcription	Replication	Translation
D)	Translation	Replication	Transcription

Paragraph 6.1.2

Packaging of DNA Helix

- 29. If length of E. coli DNA is 1.36 mm, calculate number of base pair in E. coli? Given distance between consecutive base pairs is 0.34×10^{-9} m. (**Pg. 99, E**)
 - A) 4×10^{6}
- B) 4×10^9
- C) 4×10^{-6}
- D) 4×10^{12}
- 30. **Assertion**: In E. coli, DNA is scattered throughout the cell

Reason: In E. coli, there is no defined nucleus (Pg. 99, M)

- A) Both Assertion & Reason are correct & Reason is correct explanation for Assertion
- B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion
- C) Assertion is correct and Reason is incorrect
- D) Reason is correct and Assertion is incorrect
- 31. Histones are (Pg. 99, E)
 - A) Positive and acidic in eukaryotes
 - B) Positive and acidic in prokaryotes
 - C) Positive and basic in eukaryotes
 - D) Positive and basic in prokaryotes
- 32. Assertion Histones are positively charged Reason Histones are rich in basic amino acid residues lysine and arginine (**Pg. 99**, **M**)
 - A) Assertion & Reason are correct and Reason is correct explanation for Assertion
 - B) Assertion & Reason are correct and Reason is not the correct explanation for Assertion

- C) Assertion is correct and Reason is wrong
- D) Both Assertion and Reason are wrong
- 33. Histones are organized into -(Pg. 99, E)
 - A) Hexamer
- B) Octamer
- C) Tetramer
- D) Dimer
- 34. A typical nucleosome contain ____ bp of DNA has (**Pg. 99, E**)
 - A) 200
- B) 400
- C) 600
- D) 800
- 35. Repeating unit of chromatin -(Pg. 99, E)
 - A) Are nucleosomes
 - B) Are seen as 'beads-on-string' under electron microscope
 - C) Are packed to form fibres
 - D) All of these
- 36. The figure show **-(Pg. 99, E)**

- A) Beads-on-string
- B) A nucleosome
- C) Chromatin
- D) More than one option is correct
- 37. Identify the correct label for given figure (Pg. 99, M)

	(i)	(ii)	(iii)
A)	H ₂ histone	DNA	Histone
			octamer
B)	H ₁ histone	Histone	DNA
		octamer	
C)	H ₂ histone	Histon octamer	DNA
D)	H ₁ histone	DNA	Histone
·			octamer

- 38. Chromosomes are connected chromatin fibres present (Pg. 99, E)
 - A) At all times in cell
 - B) Only during cell division formed at prophase
 - C) Only during cell division formed at metaphase
 - D) Only during cell division formed at Interphase
- 39. In a typical nucleus, euchromatin & hetero chromatin are present. Choose the correct set of characters for heterochromatin (Pg. 99, E)
 - i) Loosely packed
 - ii) Densely packed
 - iii) Light stain
 - iv) Dark stain
 - v) Inactive chromatin
 - vi) Active chromatin
 - A) i, iii, v
- B) ii, iv, vi
- C) i, iii, vi
- D) ii, iv, v
- 40. Choose correct set of characters for euchromatin (Pg. 99, E)
 - i) Loosely packed
 - ii) Densely packed
 - iii) Light stain
 - iv) Dark stain
 - v) Inactive chromatin
 - vi) Active chromatin
 - A) i, iii, v
- B) ii, iv, vi
- C) i, iii, vi
- D) ii, iv, v

6.2 The Search for Genetic Material

Transforming Principle

- 41. Griffith's experiments were conducted in-(Pg. 100, E)
 - A) 1928
- B) 1958
- C) 1978
- D) 1968
- 42. The experiment of Griffith was performed in- **Pg. 100, E)**
 - A) Diplococcus pneumoniae, bacteria
 - B) Haemophilus influenzas, fungi
 - C) Streptococcus pneumoniae, fungi
 - D) None of these
- 43. Match the given columns- Pg. 100, M)

I	II	III

i.	R-strain	(a)	Smooth	(1)	Mucous coat
ii.	S-strain	(b)	Rough	(2)	No
			colonies		mucous
					coat

- A) (i)-(a)-(1)
- B) (i)-(b)-(1)
- C) (ii)-(a)-(1)
- D) (ii)-(a)-(2)
- 44. Which strain of the microbe used Griffith is virulent- **Pg. 100, E)**
 - A) S-strain
- B) R-strain
- C) Both
- D) None
- 45. Griffith observed that the mice died surprisingly the following combination of strains was used, which was unusual- **Pg. 100, E)**
 - A) S-strain heat killed
 - B) Heat killed S-strain
 - C) Heat killed R-strain + Live S-strain
 - D) Heat killed S-strain + Live R-strain
- 46. In Griffith experiment (Pg. 100, E)
 - A) R-strain transformed to S-strain and became virulent
 - B) R-strain transformed to S-strain and lost virulence
 - C) S-strain transformed to R-strain and became virulent
 - D) S-strain transformed to R-strain and lost virulence
- 47. Griffith claimed that- (Pg. 100, E)
 - A) Some protein was transferred among bacteria
 - B) Some DNA was transferred among bacteria
 - C) Some carbohydrates was transferred among bacteria
 - D) None of these

Biochemical Characterization of Transforming Principle

- 48. Prior to work of Avery, Macleod and McCarty, genetic material was thought to be- (**Pg. 100, E**)
 - A) Protein
- B) DNA
- C) RNA
- D) None
- 49. Avery, Macleod & McCarty discovered that- (**Pg. 100, E**)
 - A) DNA caused transformation
 - B) RNA caused transformation
 - C) Protein caused transformation

- D) Lipid caused transformation
- 50. Which enzyme inhibited the transformation-(**Pg. 101, E**)
 - A) Protease
- B) RNase
- C) DNase
- D) All

6.2.1 The Genetic Material is DNA

- 51. Unequivocal proof that DNA is genetic material came from experiments of-(**Pg.** 101, **E**)
 - A) Avery, Macleod & McCarty
 - B) Hershey and Chase
 - C) de Vries, Correns and Tschermak
 - D) Sutton and Boveri
- 52. The scientists of Q-11 worked with- (**Pg. 101, E**)
 - A) a virus
- B) a bacteria
- C) a fungi
- D) a nematode
- 53. In the experiment performed for proving DNA as genetic material, the bacteriophages were grown on medium containing- (**Pg. 101, E**)
 - A) radioactive sulfur
 - B) radioactive nitrogen
 - C) radioactive phosphorous
 - D) More than one option
- 54. The bacteriophages growing in presence of radioactive phosphorous __(i)__ contained radioactive __(ii)__. (**Pg. 101, E**)
 - (i) (ii)
 A) P₃₂ DNA
 B) P₃₅ Protein
 C) P₃₂ Protein
- 55. Bacteriophages grown on radioactive Sulphur _(i)_ contained radioactive

DNA

__(ii)__. (**Pg. 101, E**)

(i) (ii)
A) S₃₂ DNA
B) S₃₂ Protein
C) S₃₅ DNA
D) P₃₅ Protein

- 56. The bacteria involved in Hershey & chase experiment of 1952 was- (**Pg. 102, E**)
 - A) Bacteriophage
 - B) E. coli

D) P₃₅

- C) S. pneumoniae
- D) C. butyliwm

- 57. Bacteria infected with virus that showed radioactivity had- (**Pg. 102, E**)
 - A) radioactive DNA (S₃₂)
 - B) radioactive DNA (S₃₅)
 - C) radioactive DNA (P₃₂)
 - D) radioactive DNA (P₃₅)
- 58. (**Pg. 102, E**)

Identify the correct label.

	1	2	3			
A)	Blending	Infection	Centrifugati			
			on			
B)	Infection	Blending	Centrifugati			
			on			
C)	Centrifugati	Infection	Blending			
	on					
D)	Blending	Centrifugati	Infection			
		on				

<u>6.2.2 Properties of Genetic</u> <u>Material (DNA vs RNA)</u>

- 59. RNA is genetic material in- (Pg. 102, E)
 - A) TMV
 - B) QB Bacteriophage
 - C) Both A and B
 - D) None of these
- 60. Properties of genetic material include- (**Pg. 103, E**)
 - A) Stable
- B) Mutable
- C) Replicable
- D) All of these
- 61. A Stability as a property of genetic material was very evident in Griffith's transforming principle.

- R Heat can kill the bacteria and completely destroy the properties of genetic material (**Pg. 103, M**)
- A) Both A and R are true and R is correct explanation for A
- B) Both A and R are true but R is not correct explanation for R
- C) A is true but R is false
- D) Both A and R are false
- 62. Which is more structurally and chemically stable? (**Pg. 103, E**)
 - A) DNA
- B) RNA
- C) Protein
- D) All
- 63. RNA viruses show- (Pg. 103, E)
 - A) Less mutation
 - B) Faster evolution
 - C) Slower evolution
 - D) More than one option is correct
- 64. DNA is preferred by nature over RNA for-(**Pg. 103, E**)
 - A) Storage of genetic information
 - B) Transmission of genetic information
 - C) Expression of genetic information
 - D) More than one

6.3 RNA World

- 65. Choose incorrect statement RNA- (**Pg. 104, E**)
 - A) was first genetic material
 - B) acts as catalyst too
 - C) is more stable than DNA
 - D) has protein synthesizing mechanism built around it

6.4 Replication

- 66. Scheme for replication of DNA was proposed by-(**Pg. 104, E**)
 - A) Watson & Crick
 - B) Meselson & Stahl
 - C) Taylor
 - D) Hershey & Chase
- 67. The replication of DNA is-(Pg. 104, E)
 - A) Conservative
 - B) Non-conservative
 - C) Semi-conservative
 - D) All of these depending on organism
- 68. (**Pg. 104, E**)

The figure shows-

- A) Conservative DNA replication model
- B) Semi-conservative DNA replication model
- C) Non-conservative DNA replication model
- D) Can't say

6.4.1 The Experimental Proof

- 69. The DNA replication model experimental proof was first shown in- (**Pg. 104, E**)
 - A) Human cells
- B) E. coli
- C) Plant cell
- D) Vicia faba
- 70. Meselson and stahl performed experiment for proving DNA replication scheme in-(**Pg. 105, E**)
 - A) 1952
- B) 1953
- C) 1958
- D) 1961
- 71. The bacteria were grown in medium containing-(**Pg. 105, E**)
 - A) ¹⁵NH₄Cl ¹⁵N is heavy isotope of nitrogen
 - B) ¹⁴NH₄Cl ¹⁴N is heavy isotope of nitrogen
 - C) ¹⁵NH₄Cl ¹⁵N is normal isotope of nitrogen
 - D) ¹⁴NH₄Cl ¹⁴N is normal isotope of nitrogen
- 72. The heavy DNA molecule containing heavy isotope of N is distinguished from normal DNA by- (**Pg. 105, E**)

- A) UV rays
- B) Ethidium bromide solution
- C) Centrifugation is CsCl density gradient
- D) PCR technique
- 73. In Meselson & Stahl experiment, first they-(Pg. 105, E)
 - A) grew bacteria on heavy isotope of N medium followed by normal one
 - B) grew bacteria on normal isotope of N medium followed by heavy one
 - C) grew bacteria on radioactive N followed by Keavy one
 - D) grew bacteria on heavy isotope of N followed by radioactive one

74. **(Pg. 105, E)**

Identify the correct label

	(i)	(i)	(iii)
A)	Light	Heavy	Hybrid
B)	Heavy	Hybrid	Light
C)	Light	Hybrid	Light
D)	Heavy	Hybrid	Heavy

- 75. In Meselson & Stahl expt a bacteria after dividing in 20 minutes had a hybrid DNA. What will be the ratio of Hybrid to Light after 80 minutes? (Pg. 105, E)
 - A) 2:14
- B) 14:2
- C) 16:2
- D) 2:16
- 76. Similar experiment on Vicia faba was conducted by ____ to detect distribution of newly synthesized DNA in chromosomes. (Pg. 106, E)

 - A) Taylor
- B) Stahl
- C) Gamow
- D) Nirenberg
- 77. Experiment on Vicia faba involved use of-(Pg. 106, E)
 - A) Radioactive uridine
 - B) Radioactive thymidine
 - C) Radioactive adenosine
 - D) Radioactive cytidine

6.4.2 The Machinery and the Enzymes

- 78. The main enzyme of replication is-(**Pg.** 106, E)
 - A) RNA dependent RNA polymerase
 - B) RNA dependent DNA polymerase
 - C) DNA dependent DNA polymerase
 - D) DNA dependent RNA polymerase
- 79. Choose correct statement with regard with efficiency of DNA polymerase. (Pg. 106, E)
 - A) 4.6×10^6 bp of E. coli replicate within 46 minutes
 - B) The average rate of polymerization of DNA polymerase has approximately 2000 bp/minute
 - C) The polymerization accuracy is very high and very fast
 - D) All of these
- 80. What is function of deoxyribonucleoside triphosphate-(Pg. 106, E)
 - A) It act as substrate
 - B) Provide energy for polymerization
 - C) A and B both
 - D) It is product formed after polymerization
- 81. Assertion: The two strands of DNA cannot be separated in their length.

Reason: Separation required very high energy. (Pg. 106, E)

- A) Both Assertion & Reason are correct and reason is correct explanation of assertion
- B) Both Assertion & Reason are correct and reason is not correct explanation of assertion
- C) Assertion is correct, Reason is false
- D) Assertion & Reason are false
- 82. Polymerization by DNA polymerase is in-(Pg. 106, E)
 - A) $3' \rightarrow 5'$ direction only
 - B) $5' \rightarrow 3'$ direction only
 - C) A and B both
 - D) Random
- 83. The template of replication fork with polarity $5' \rightarrow 3'$ is ____ while $3' \rightarrow 5'$ is _.(Pg. 106, E)
 - A) continuous, continuous
 - B) continuous, discontinuous
 - C) discontinuous, continuous
 - D) discontinuous, discontinuous
- 84. DNA ligase act on-(Pg. 106, E)
 - A) $5' \rightarrow 3'$ template strand

- B) $3' \rightarrow 5'$ template strand
- C) Both A and B
- D) Ligate RNA with vector of $3' \rightarrow 5'$ polarity
- 85. The replication is eukaryotes take place in-(**Pg. 106, E**)
 - A) M-phase
- B) G₁ phase
- C) S-phase
- D) G₂ phase
- 86. Polyploidy resulted by-(Pg. 106, E)
 - A) A failure in cell division after DNA replication
 - B) A failure in DNA replication after cell division
 - C) A failure in cell division before DNA replication
 - D) A and C both
- 87. (**Pg. 107, E**)

Correct label of A, B, C, D is-

- (i) A = Template parental strand
- (ii) B = Newly synthesized strand
- (iii) D = Continuous strand
- (iv) C = Discontinuous strand
- A) i, ii only
- B) iii, iv only
- C) i, ii, iii, iv
- D) None of these

6.5 Transcription

- 88. Transcription is-(Pg. 107, E)
 - A) The process of copying genetic information from both strand of DNA into RNA
 - B) The process of copying genetic information from one strand of DNA into RNA
 - C) The process of copying genetic information from RNA into DNA
 - D) A and B both

- 89. In transcription, adenosine bind with (**Pg. 107**, **E**)
 - A) Thymine
- B) Uracil
- C) Cytosine
- D) A and B both
- 90. Why both the strand of DNA are not copied during transcription-(**Pg. 107, E**)
 - A) If both strands act a template, the would code for RNA molecules same sequence
 - B) RNA formed by transcription of both strand, when code for protein, the sequence of amino acid in protein are same
 - C) The two RNA molecules if produced simultaneously would be complementary to each other
 - D) All of these
- 91. Translation of RNA would be prevented if-(**Pg. 107, E**)
 - A) RNA is single strand
 - B) RNA is double-stranded
 - C) RNA is produced by both strand of DNA
 - D) B and C both

6.5.1 Transcription Unit

- 92. Transcription unit primarily consist of-(**Pg. 107**, **E**)
 - A) 1 region
- B) 2 regions
- C) 3 regions
- D) None of these
- 93. Transcription primarily required-(**Pg. 107**, **E**)
 - A) RNA dependent RNA polymerase
 - B) DNA dependent RNA polymerase
 - C) DNA dependent DNA polymerase
 - D) RNA dependents DNA polymerase
- 94. Template strand of transcription unit is/are-(**Pg. 108, E**)
 - A) $5' \rightarrow 3'$ strand of DNA
 - B) $3' \rightarrow 5'$ strand of DNA
 - C) Site of catalysis of enzyme required for transcription
 - D) B and C both
- 95. What is coding strand of given template strand
 - 3' AGCATGCA 5' (**Pg. 108, E**)
 - A) 5' TACGTACGT 3'
 - B) 5' UACGUACGU 3'
 - C) 3' UACGUACGU 5'
 - D) 3' TACGTACGT 5'

Label A, B, C, D, E of given diagram. (**Pg.** 108, E)

	a	b	С	d	е
A)	Promot er	Struc tural gene	Templ ate strand	Coding strand	Termi nator
В)	Termin ator	Struc tural gene	Codin g strand	Templa te strand	Promo ter
C)	Promot er	Templ ate stran d	Codin g strand	Structu ral gene	Termi nator
D)	None of t	hese			

- 97. Promoter is located-(Pg. 108, E)
 - (i) 3' end
 - (ii) 5' end
 - (iii) upstream of structural gene
 - (iv) downstream of structural gene
 - A) i, iii
- B) ii, iii
- C) i, iv
- D) ii, iv
- 98. Terminator is located at (Pg. 108, E)
 - (i) 3' end
 - (ii) 5' end
 - (iii) upstream of structural gene
 - (iv) downstream of structural gene
 - A) i, iii
- B) ii, iii
- C) i, iv
- D) ii, iv

6.5.2 Transcription unit and the gene

- 99. A gene is defined as- (Pg. 108, E)
 - A) Functional unit of inheritance
 - B) Non-functional region of DNA that haven't any information
 - C) A and B both
 - D) None of these
- 100. Cistron is- (Pg. 109, E)
 - A) Segment of DNA coding for a polypeptide
 - B) Segment of RNA coding for a polypeptide

- C) Segment of DNA that are non-coding sequence
- D) Segment of RNA have not any coding sequence
- 101. Choose the correct statement. (Pg. 109, E)
 - A) Monocistronic eukaryotic structural gene have interrupted coding sequence.
 - B) Polycistronic prokaryotic structural gene have interrupted coding sequence.
 - C) Monocistronic prokaryotic structural gene have interrupted coding sequence.
 - D) A and B both
- 102. Exons are-

(Pg. 109, E)

- A) Coding sequence
- B) Non-coding sequence
- C) Expressed sequence
- D) A and C both
- 103. Intron-

(Pg. 109, E)

- A) appear is mature or processed RNA
- B) do not appear in mature or processed RNA
- C) appear is prokaryotes
- D) B and C both

6.5.3 Types of RNA & Process of Transcription

- 104. Which of following play role is protein synthesis of prokaryote? (**Pg. 109, E**)
 - A) r-RNA
- B) t-RNA
- C) m-RNA
- D) All of these
- 105. The function of some RNA are given below choose the incorrect one. **(Pg. 109, E)**
 - A) mRNA provide template strand
 - B) mRNA provide non-template strand
 - C) tRNA bring amino acid
 - D) rRNA play structural & catalytic role
- 106. How many polymerase required is bacteria for transcription of all type of RNA?

(Pg. 109, E)

- A) One
- B) Two
- C) Three
- D) Five
- 107. Choose incorrect step about transcription.

(Pg. 109, E)

A) RNA polymerase binds to promoter and initiate transcription.

- B) Nucleotide triphosphate act as substrate and polymerization in a template.
- C) A short stretch of RNA remains bound to enzyme.
- D) Last step is termination.
- 108. Initiation factor and termination factor are- (Pg. 110, E)
 - A) Sigma and Rho factor respectively.
 - B) Rho and Sigma factor respectively.
 - C) Rho and Rho factor respectively.
 - D) Sigma and Sigma factor respectively.
- 109. Translation & transcription in eukaryote occur in (Pg. 110, E)
 - A) Cytoplasm & nucleus respectively
 - B) Nucleus & cytoplasm respectively
 - C) Cytosol
 - D) Nucleus
- 110. Which of following can be coupled in bacteria? (Pg. 110, E)
 - A) Replication & transcription
 - B) Transcription & translation
 - C) Replication & translation
 - D) None of these
- 111. Transcription of 18 s rRNA is done by ____ in eukaryote. **(Pg. 111, E)**
 - A) RNA pol. I
- B) RNA pol. II
- C) RNA pol. III
- D) All of these
- 112. Choose incorrect statement. (Pg. 111, E)
 - A) 5.8 s r-RNA and 5 s-RNA transcribes by same RNA polymerase in eukaryote.
 - B) hnRNA & mRNA transcribe by same RNA polymerase in eukaryote.
 - C) tRNA & snRNA transcribes by same RNA polymerase in eukaryote.
 - D) None of these
- 113. Splicing is required to- (Pg. 111, E)
 - A) remove intron in eukaryote
 - B) remove exon in eukaryote
 - C) remove exon in prokaryote
 - D) remove intron in prokaryote
- 114. Capping is- (Pg. 111, E)
 - A) Addition of methyl guanosine triphosphate at 5' end
 - B) addition of adenylate residue at 3' end
 - C) addition of methyl guanosine triphosphate at 3' end
 - D) addition of adenylate residue at 5' end
- 115. The fully processed hnRNA is- (Pg. 111, E)
 - A) tRNA
- B) mRNA

C) rRNA

D) None of these

6.6 Genetic Code

- 116. George Gamow argued- **(Pg. 111, E)**
 - A) There are only 5 bases and if they have code for 20 amino acid the code should constitute a combination of bases
 - B) There are only 4 bases and if they have code for 20 amino acid the code should constitute a combination of bases
 - C) Genetic code is triplet
 - D) B and C
- 117. Which of following have maximum codon in genetic code-(**Pg. 112, E**)
 - A) Leu
- B) Met
- C) Cal
- D) Phe
- 118. Which of following is/are showing dual function-(**Pg. 112, E**)
 - A) UUU
- B) AUG
- C) UGA
- D) GUA
- 119. Least number of codon is for- (Pg. 112, E)
 - A) Met
- B) Phe
- C) Gls
- D) Gly

6.6.1 Mutations and Genetic Code

120. Sickle cell anaemia is classical example of-

(Pg. 113, E)

- A) point mutation
- B) frameshift mutation
- C) deletion mutation
- D) addition mutation
- 121. In sickle cell anaemia, there are changes in gene for- (Pg. 113, E)
 - A) alpha globin chain
 - B) beta globin chain
 - C) gamma globin chain
 - D) delta globin chain
- 122. In sickle cell anaemia, resultant effect of mutation is change of amino acid residue-

(Pg. 113, E)

- A) Valine to alanine
- B) Valine to glutamic acid
- C) Alanine to valine
- D) Glutamic acid to valine
- 123. The following is an example of-

BIG RED CAP ⇒ BIG REM DCA P

(Pg. 113, E)

- A) Deletion mutation
- B) Point mutation
- C) Addition mutation

- D) More than one option
- 124. RAM HAS CAP ⇒ RAM HAS BIG CAP

(Pg. 113, E)

The given example shows-

- A) Addition mutation
- B) Deletion mutation
- C) Substitution mutation
- D) More than one option

6.6.2 tRNA - the Adapter Molecule

- 125. tRNA has- (Pg. 114, E)
 - A) Codon loop
- B) Anticodon loop
- C) Both
- D) Neither
- 126. The presence of adapter molecule to read the code on DNA and bind to amino acids was postulated by
 (Pg. 114, E)
 - A) James Watson
 - B) Francis Crick
 - C) Friedrich Meisher
 - D) Both A and B
- 127. tRNA was also called- **(Pg. 114, E)**
 - A) s RNA (soluble RNA)
 - B) s RNA (single RNA)
 - C) s RNA (smart RNA)
 - D) s RNA (simple RNA)
- 128. The amino acid acceptor end of tRNA is-(**Pg. 114, E**)
 - A) 5'
 - B) 3'
 - C) Can be any of these
 - D) Free end
- 129. For initiation translation, (Pg. 114, E)
 - A) Only tRNA carries initiator amino acid to the site.
 - B) Specific rRNA carries initiator amino acid to the site.
 - C) Any rRNA carries initiator amino acid to the site.
 - D) Specific tRNA carries initiator amino acid to the site.
- 130. For stop codon- (**Pg. 114, E**)
 - A) There are specific tRNAs with amino acids.
 - B) There are specific tRNAs which do not bind to any amino acids.
 - C) There are no tRNA.
 - D) There are tRNAs which may or may not bind to amino acids.
- 131. (Pg. 114, E)

The given figure shows-

- A) Secondary structure of tRNA Cloverleaf
- B) Primary structure of tRNA clover-leaf
- C) Secondary structure of tRNA inverted-L
- D) Primary structure of tRNA inverted-L

6.7 Translation

- 132. Translation refers to process of- (**Pg. 114**, **F**)
 - A) Making RNA from DNA
 - B) Making DNA from RNA
 - C) Polymerization of nucleotide to form a DNA
 - D) Polymerization of amino acid to form a polypeptide
- 133. The order and sequence of amino acid during translation are defined by- (**Pg.** 114, E)
 - A) The sequences of bases in r-RNA
 - B) The sequences of bases in t-RNA
 - C) The sequences of bases in m-RNA
 - D) All of these
- 134. Which of following bond is formed during translation? (**Pg. 115, E**)
 - A) Glycosidic bond
 - B) Phosphodiester bond
 - C) Peptide bond
 - D) All of these
- 135. First phase of translation does not involve-(Pg. 115, E)
 - A) Charging of RNA
 - B) Amino acids are activated in presence of ATP
 - C) Activated amino acid are linked to their cognate tRNA
 - D) None of these
- 136. Initiation or first phase of translation is-(**Pg. 115, E**)
 - A) Amino acylation of tRNA
 - B) Amino acylation of mRNA

- C) Both A and B
- D) Deamino acylation of mRNA
- 137. The cellular factory responsible for synthesizing protein is- (**Pg. 115, E**)
 - A) Ribosome
- B) Lysosome
- C) Peroxisome
- D) None of these
- 138. In inactive state, protein factory of cell exist in (**Pg. 115, E**)
 - A) Two state
 - B) 4 state in prokaryote
 - C) 6 state in eukaryote
 - D) B and C both
- 139. Which of following is sign as beginning of translation? (**Pg. 115, E**)
 - A) When the large subunit of protein factory of cell encounters an mRNA.
 - B) When the small subunit of protein factory of cell encounters an mRNA.
 - C) When the small subunit of protein factory of cell encounter a tRNA.
 - D) When the large subunit of protein factory of cell encounters a tRNA.
- 140. The bond formation (peptide) between charged tRNA is accomplished due to- (**Pg.** 115, **E**)
 - A) Presence of ATP and catalyst
 - B) Two such charged tRNA are brought close by two site in large subunit of ribosome
 - C) Two charged tRNA are brought close by two site in small subunit of ribosome & presence of ATP along with catalyst
 - D) A and B both
- 141. The ribosome act as catalyst during bond formation (peptide) as in- (**Pg. 115, E**)
 - A) 28 s rRNA in bacteria
 - B) 23 s rRNA in bacteria
 - C) 23 s rRNA in eukaryote
 - D) 28 s tRNA in bacteria
- 142. Choose the correct statement- (Pg. 115, E)
 - A) A translational unit in mRNA is sequence of RNA that is flanked by start codon and stop codon and codes for polypeptide.
 - B) A translational unit is sequence of DNA that is flanked by start codon & codes for polypeptide.
 - C) A transcriptional unit in tRNA is the sequence of RNA that is flanked by

- start codon and stop codon and codes for polypeptide.
- D) A transcriptional unit in rRNA is the sequence of RNA that is flanked by start codon (AUG) and stop codon and codes for polypeptide.
- 143. UTR is/are-(**Pg. 115, E**)
 - (i) Untranslated region of mRNA
 - (ii) It present at both 5' end (start codon) and 3' end (before stop codon)
 - (iii) They are required for efficient translation process
 - (iv) It present at both 3' end (before start codon) and 3' end (after stop codon)
 - A) i, ii, iii are correct
 - B) i, ii, iii and iv are correct
 - C) i, iii, iv are correct
 - D) i, iii are correct
- 144. Initiator tRNA binds with (Pg. 115, E)
 - A) AUG codon of mRNA
 - B) at initiation of protein synthesis
 - C) ATG codon of dsDNA
 - D) A and B both
- 145. Choose the correct about elongation of translation- (**Pg. 115, E**)
 - A) Complexes composed of an amino acid linked to tRNA, sequentially bind to appropriate codon in mRNA by forming complementary base pairs with the tRNA anticodon
 - B) The ribosome moves from codon to codon along the mRNA in $(3' \rightarrow 5')$.
 - C) Complexes composed of an amino acid linked to tRNA, sequentially bind to appropriate anticodon in mRNA by forming complementary base pair with tRNA codon.
 - D) A and B both
- 146. Termination of translation complex is done when- (**Pg. 115, E**)
 - A) Release factor binds with stop codon (AUG)
 - B) Release factor binds with UGA like codon
 - C) Complete translation of DNA including UTR occurs in eukaryotes
 - D) B and C both

6.8 Regulation of Gene Expression

- 147. Gene regulation is eukaryote exerted at-(Pg. 115, E)
 - A) Formation of primary transcript
 - B) Transport of mRNA from nucleus to cytoplasm
 - C) A and B both
 - D) Regulation of splicing of tRNA
- 148. β -glactosidase is used to catalyze the hydrosis of (Pg. 116, E)
 - A) Lactose into galactose and glucose
 - B) Lactose into fructose & glucose
 - C) Lactose into fructose & fructose
 - D) None of these
- 149. E.coli do not have lactose around them to utilized for energy source, they would- (Pg. 116, E)
 - A) No longer require the synthesis of enzyme α -galactosidase
 - B) Synthesized enzyme β -galactosidase
 - C) Die due to lack of carbon source and energy source
 - D) None of these
- 150. In prokaryote, predominant site for control of gene expression is-(Pg. 116, E)
 - A) Control of rate of transcriptional initiation
 - B) Control of rate of translational
 - C) Control of rate of transcriptional elongation
 - D) B and C both
- 151. Given below are statement. Choose the incorrect statement. (Pg. 116, M)
 - A) The development and differentiation of embryo into adult organisms are result of coordinated regulation of expression of several sets of genes.
 - B) Regulatory proteins act positively in activator.
 - C) In a transcriptional unit the activity of RNA polymerase at a given promoter is in turn regulated by interaction with accessory protein.
 - D) None of these
- 152. Operator- (**Pg. 116, E**)
 - A) Region adjacent to sequence by which repressor mRNA formed
 - B) Bind with repressor protein
 - C) Bind with inducer
 - D) A and B both
- 153. Each operon has-(**Pg. 116, E**)

- A) Same operator and same repressor
- B) Same operator but specific repressor
- C) Specific operator but same repressor
- D) Specific operator and specific repressor

6.8.1 The Lac operon

- 154. Lac operon was studied first by-(Pg. 116, E)
 - A) Francois Jacob
 - B) Jacque Monod
 - C) Geneticist and Biochemist
 - D) None of these
- 155. Lac operon is/are-(**Pg. 116, E**)
 - A) Monocistronic structural regulated by a common promoter & regulators genes.
 - B) Polycistronic structural gene regulated by a common promoter & regulatory genes.
 - C) Consist of one regulatory gene, monocistronic structural gene having five gene along with promotor & operator.
 - D) A and C both
- 156. Regulatory gene of lac-operon is- (Pg. 116,

E)

A) p-gene

B) i-gene

C) o-gene

D) z-gene

- 157. i in i-gene stand for-(**Pg. 116, E**)
 - A) inducer
 - B) inhibitor
 - C) A and B both
 - D) Inactive repressor
- 158. Match Column-I & Column-II. (Pg. 116, E)

Column-I (Gene)		Column-II (Product)	
(a)	Z-gene	(i)	Repressor mRNA
(b)	a-gene	(ii)	β-gal
(c)	Y-gene	(iii)	Permease
(d)	i-gene	(iv)	Transacetylase

	а	b	C	d
A)	(iii)	(ii)	(iv)	(i)
B)	(iv)	(iii)	(ii)	(i)
C)	(i)	(ii)	(iv)	(iii)
D)	(ii)	(iv)	(iii)	(i)

159. The monomeric product of lactose is chiefly hydrolyzed by-(Pg. 116, E)

- A) i-gene
- B) z-gene
- C) a-gene
- D) y-gene.
- 160. Lac in lac-operon is for(Pg. 116, E)
 - A) Monosaccharide
 - B) Disaccharide
 - C) Polysaccharide
 - D) Insect
- 161. In absence of preferred carbon source, if lactose is provided in growth medium of bacteria, the lactose is transported into cell through by action of product formed by- (**Pg. 117, E**)
 - A) i-gene
- B) z-gene
- C) a-gene
- D) y-gene
- 162. Allolactose is-(**Pg. 117, E**)
 - A) Inducer of lac-operon
 - B) Inductive repressor
 - C) Form of lactose that bind with product of repressor mRNA and inhibit transcription of structural gene
 - D) All of these
- 163. Lac operon is-(**Pg. 117, E**)
 - A) Negative regulation operon
 - B) Positive regulation operon
 - C) A and B both
 - D) None of these
- 164. Inducer of lac-operon is-(Pg. 117, E)
 - A) Glucose
- B) Galactose
- C) Lactose
- D) Fructose
- 165. (**Pg. 117, M**)

- A) The given diagram is in presence of lactose
- B) The given diagram is in absence of lactose
- C) The given diagram is of gene off
- D) D and H is same process

6.9 6.9 Human Genome Project (HGP)

- 166. HGP was launched in- (Pg. 118, E)
 - A) 1980
- B) 1970
- C) 1990
- D) 2000

- 167. HGP was called a- (Pg. 118, E)
 - A) Minor project
 - B) Hexagonal project
 - C) Mega project
 - D) None of these
- 168. Human genome has approx. _____ bp. (**Pg. 118, E**)
 - A) 3×10^9
- B) 3×10^{6}
- C) 6×10^9
- D) 6×10^{6}
- 169. If cost of sequencing required is US \$ 3 per bp, then total cost of sequencing human genome as per 8-3 will be: (**Pg. 118, E**)
 - A) US \$ 18 billion
 - B) US \$ 9 billion
 - C) US \$ 18 million
 - D) US \$ 9 million

Goals of HGP

- 170. There were approx. ____ genes in human DNA, as per the goals of HGP (**Pg. 118, E**)
 - A) 20,000 25,000
 - B) 40,000 45,000
 - C) 10,000 15,000
 - D) 50,000 60,000
- 171. HGP was a ____ year project (**Pg. 118, E**)
 - A) 15
- B) 12
- C) 13
- D) 14
- 172. HGP was coordination by- (Pg. 118, E)
 - A) US department of engineering & national institute of health
 - B) US department of engineering and national institute of biotechnology
 - C) US department of energy and national institute of biotechnology
 - D) US department energy and National Institute of Health
- 173. The ____ of U.K was a major partner of HGP (**Pg. 118, E**)
 - A) Wellcome trust
 - B) Health trust
 - C) Social trust
 - D) Welcome trust
- 174. Project was completed in- (Pg. 118, E)
 - A) 2005
- B) 2004
- C) 2003
- D) 2002
- 175. Additional contributes to HGP was- (**Pg.** 118, **E**)
 - A) Japan
- B) China
- C) Germany
- D) All of these
- 176. Caenorhabditis elegans is a- (Pg. 119, E)

- A) Fungi
- B) Nematode
- C) Bacteria
- D) Virus
- 177. Caenorhabditis elegans is-(Pg. 119, E)
 - A) Free living, non-pathogenic
 - B) Parasitic, pathogenic
 - C) Free living, pathogenic
 - D) Parasitic, non-pathogenic
- 178. Methods / approaches of HGP include-(**Pg. 119, E**)
 - A) Excess sequence tags
 - B) Expressed sequence tags
 - C) Exercise sequence tags
 - D) Exerted sequence tags
- 179. Sequence annotations refer to- (Pg. 119,

 \mathbf{E}

- A) Identifying all genes expressed as RNA and then sequencing then
- B) Sequencing the whole set of genome and then assigning different regions with functions
- C) Identifying and sequencing the genome simultaneously
- D) More than one option is correct
- 180. For sequencing, the DNA is- (Pg. 119, E)
 - A) Partially extracted from cell
 - B) Totally isolated from cell
 - C) Not needed to isolated from cell
 - D) None of these
- 181. The DNA for sequencing is converted to fragments of small size. The fragments are made- (**Pg. 119, E**)
 - A) On a pre decided basis
 - B) On a pre defined basis
 - C) Randomly
 - D) Depending upon organism
- 182. The step in DNA sequencing after fragmentation of DNA is- (**Pg. 119, E**)
 - A) Cloning in host using vectors
 - B) Cloning in vectors using host
 - C) Amplification of DNA fragments
 - D) More than one option
- 183. Commonly used hosts for DNA cloning include- (**Pg. 119, E**)
 - A) Bacteria
- B) BAC
- C) YAC
- D) Both A and C
- 184. BAC stands for-(Pg. 119, E)
 - A) Bacterial artificial colour
 - B) Binominal artificial characterization
 - C) Bacterial artificial chromosome
 - D) Bacterial articular chromosome

- 185. Fragments were sequenced using automated DNA sequence that worked on principle of a method developed by- (**Pg.** 119, E)
 - A) Erwin Chargaff
 - B) Marshal Nirenberg
 - C) Frederick Sanger
 - D) George Gamow
- 186. Method for determination of amines acid sequence in protein was developed by- (**Pg.**

119, E)

- A) Erwin Chargaff
- B) Marshal Nirenberg
- C) Frederick Sanger
- D) George Gamow
- 187. The last of the 24 human chromosomes to be sequenced was- (**Pg. 120, E**)
 - A) Chromosome 1
 - B) Chromosome X
 - C) Chromosome 22
 - D) Chromosome Y

6.9.1 Salient Features of Human Genome

- 188. According to HGP, human genome contains-
 - A) ~ 3000 million bp
 - B) ~ 6000 million bp
 - C) ~ 9000 million bp
 - D) ~ 1000 million bp
- 189. Dystrophin was found to be-
 - A) Largest known human gene with 2.4 million bases
 - B) Smallest known human gene with 2.4 million bases
 - C) Largest known human gene with 4.8 million bases
 - D) Smallest known human gene with 4.8 million bases
- 190. Which chromosome was found to have most genes- (**Pg. 120, E**)
 - A) Chr 22
- B) Chr 1
- C) Chr 5
- D) Chr Y
- 191. Which chromosome was found to have fewest genes-(**Pg. 120, E**)
 - A) Chr X
- B) Chr Y
- C) Chr 1
- D) Chr 5

6.10 DNA Finger printing

- 192. The DNA sequence in which small stretch of DNA is repeated many times is called-(**Pg. 121, E**)
 - A) SNP
 - B) Repetitive DNA
 - C) Polymorphic DNA
 - D) More than one option
- 193. Satellite DNA classified into different categories like micro satellite , mini satellite , etc based on- (**Pg. 121, E**)
 - A) Length of segment
 - B) Number of repetitive
 - C) Base composition
 - D) All of these
- 194. Polymorphism arises due to-(Pg. 121, E)
 - A) Mutation inheritable
 - B) Stability of genetic material
 - C) Mutation non-heritable
 - D) All of these
- 195. DNA polymorphism is observed more in-(**Pg. 122, E**)
 - A) non-coding DNA sequence as its mutation affects reproduction
 - B) coding DNA sequence as its mutation affects reproduction
 - C) non-coding DNA sequence as it mutation may not affect reproduction ability
 - D) Coding DNA sequence as its mutation may not affect reproduction ability
- 196. Technique of DNA fingerprinting was initially developed by-(**Pg. 122, E**)
 - A) James Watson B) Jansley

- C) Alec Jeffreys D) Maheshwari
- 197. VNTR stands for-(Pg. 122, E)
 - A) Various number of Tendon Repeats
 - B) Variable Number of Tendon Repeats
 - C) Various Number of Tandem Repeats
 - D) Variable Number of Tandem Repeats
- 198. VNTR belongs to- Pg. 122, E)
 - A) Micro-satellite
 - B) Macro-satellite
 - C) Mini-satellite
 - D) All of these
- 199. **Pg. 123, E)**

In the given figure if 'C' is the DNA collected from crime site and 'A' & 'B' are samples from suspects, than who is the criminal?

A) B

- B) A
- C) Both A and B
- D) None of these

NEET MBBS DOCTORS

ANSWER KEY MOLECULAR BASIS OF INHERITENCE

Q	01	02	03	04	05	06	07	08	09	10
Ans	D	С	D	A	В	В	В	D	D	A
Q	11	12	13	14	15	16	17	18	19	20
Ans	A	D	С	В	В	C	С	A	С	В
Q	21	22	23	24	25	26	27	28	29	30
Ans	A	С	В	С	C	В	A	В	A	D
Q	31	32	33	34	35	36	37	38	39	40
Ans	С	A	В	A	D	D	D	С	D	С
Q	41	42	43	44	45	46	47	48	49	50
Ans	A	D	С	A	D	A	D	A	A	С
Q	51	52	53	54	55	56	57	58	59	60
Ans	В	A	D	A	D	В	С	В	С	D
Q	61	62	63	64	65	66	67	68	69	70
Ans	С	A	В	A	C	A	С	В	В	С
Q	71	72	73	74	75	76	77	78	79	80
Ans	A	С	A	С	A	A	В	С	С	C
Q	81	82	83	84	85	86	87	88	89	90
Ans	A	В	C	A	C	A	C	В	В	C
Q	91	92	93	94	95	96	97	98	99	100
Ans	D	С	В	D	A	A	В	С	A	A
Q	101	102	103	104	105	106	107	108	109	110
Ans	C	D	В	D	В	A	В	A	A	В
Q	111	112	113	114	115	116	117	118	119	120
Ans	A	A	A	A	В	В	A	В	A	A
Q	121	122	123	124	125	126	127	128	129	130
Ans	В	D	D	A	В	В	A	В	D	C
Q	131	132	133	134	135	136	137	138	139	140
Ans	A	D	C	С	D	A	A	A	В	D
В	141	142	143	144	145	146	147	148	149	150
Ans	В	A	D	D	A	В	С	A	D	A
Q	151	152	153	154	155	156	157	158	159	160
Ans	D	В	D	С	В	В	В	D	В	В
D	161	162	163	164	165	166	167	168	169	170
Ans	D	A	С	С	A	С	С	A	В	A
	171	172	173	174	175	176	177	178	179	180
Ans	С	D	A	С	D	В	A	В	В	В
Q	181	182	183	184	185	186	187	188	189	190
Ans	С	D	A	С	С	С	A	A	A	В
Q	191	192	193	194	195	196	197	198	199	
Ans	В	В	D	A	С	С	D	С	A	

NEET MBBS DOCTORS