

Definiție

Fie A, T mulțimi a.î. $A \subseteq T$. Funcția caracteristică a lui A în raport cu *T* este definită astfel:

$$\chi_A: T o \{0,1\}, \quad \chi_A(x) = egin{cases} 1, & \mathsf{dac} \ x \in A \ 0, & \mathsf{dac} \ x
otin A \end{cases}$$

Proprietăți

Dacă $A, B \subseteq T$ și $x \in T$ atunci

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x).$$

Observatie

Funcția caracteristică se poate folosi pentru a arăta că două mulțimi sunt egale: A = B ddacă $\chi_A = \chi_B$.

Familii

Fie I o multime nevidă.

Fie A o multime. O familie de elemente din A indexată de I este o funcție $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Produsul cartezian al unei familii

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice
$$j \in I$$
, aplicația $\pi_j : \prod_{i \in I} A_i \to A_j, \quad \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod_{i \in I} A_i. \ \pi_j$ este surjectivă.

Exercițiu. Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I} A_i \times \bigcup_{j\in J} B_j = \bigcup_{(i,j)\in I\times J} A_i \times B_j \text{ si } \bigcap_{i\in I} A_i \times \bigcap_{j\in J} B_j = \bigcap_{(i,j)\in I\times J} A_i \times B_j.$$

$$I = \{1, \ldots, n\}$$

Fie *n* număr natural, n > 1, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subset T$.

$$(x_i)_{i\in I} = (x_1, \dots, x_n), \text{ un } n\text{-tuplu (ordonat)}$$

$$\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_n$$

Definitie

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^{n} A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Bună ordonare și inducție

Principiul bunei ordonări

Orice submulțime nevidă a lui $\mathbb N$ are un cel mai mic element.

Principiul inducției

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ și
- (ii) pentru orice $n \in \mathbb{N}$, dacă $n \in S$, atunci $n + 1 \in S$.

Atunci $S = \mathbb{N}$.

Dem.: Fie $S \subseteq \mathbb{N}$ a.î. (i) și (ii) sunt adevărate. Presupunem că $S \neq \mathbb{N}$, deci $\mathbb{N} \setminus S \neq \emptyset$. Fie n_0 cel mai mic element din $\mathbb{N} \setminus S$. Din (i) rezultă că $n_0 \neq 0$. Deoarece $n_0 - 1 \in S$, din (ii) rezultă că $n_0 \in S$. Am obținut o contradicție. Prin urmare, $S = \mathbb{N}$.

Observație

Principul bunei ordonări și principiul inducției sunt echivalente.

Principiul inducției (forma tare)

Principiul inducției (forma tare)

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ și
- (ii) pentru orice $n \in \mathbb{N}$, dacă $\{0,1,\ldots,n\} \subseteq S$, atunci $n+1 \in S$. Atunci $S = \mathbb{N}$.

Dem.: Aplicăm Principiul inducției pentru

$$S' = \{ n \in \mathbb{N} \mid \{0, \dots, n\} \subseteq S \}.$$

Obţinem $S' = \mathbb{N}$. Rezultă că, pentru orice $n \in \mathbb{N}$, $\{0, \ldots, n\} \subseteq S$, deci $n \in S$. Prin urmare, $S = \mathbb{N}$.

Princi

Principiul inducției

Fie $P: \mathbb{N} \to \{0,1\}$ un predicat (o proprietate). P(n) = 1 înseamnă că P(n) este adevărat.

Principiul inducției

- ▶ Pasul inițial. Verificăm că P(0) = 1.
- ▶ Ipoteza de inducție. Presupunem că P(n) = 1, unde $n \in \mathbb{N}$.
- ▶ Pasul de inducție. Demonstrăm că P(n+1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

Principiul inducției (forma tare)

- ▶ Pasul inițial. Verificăm că P(0) = 1.
- ▶ Ipoteza de inducție. Presupunem că P(k) = 1 pentru orice $k \le n$, unde $n \in \mathbb{N}$.
- ▶ Pasul de inducție. Demonstrăm că P(n+1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

Principiul diagonalizării

Principiul diagonalizării

Fie R o relație binară pe o mulțime A și $D \subseteq A$ definită astfel:

$$D = \{x \in A \mid (x, x) \notin R\}.$$

Pentru orice $a \in A$, definim

$$R_a = \{x \in A \mid (a, x) \in R\}.$$

Atunci D este diferit de fiecare R_a .

Dem.: Presupunem că există $a \in A$ astfel încât $D = R_a$. Sunt posibile două cazuri:

- ▶ $a \in D$. Rezultă că $(a, a) \notin R$, deci $a \notin R_a = D$. Contradicție.
- ▶ $a \notin D$. Rezultă că $(a, a) \in R$, deci $a \in R_a = D$. Contradicție.

Prin urmare, $D \neq R_a$ pentru orice $a \in A$.

Argumentul diagonal al lui Cantor

Teoremă Cantor

Nu există o bijecție între $\mathbb N$ și mulțimea $2^{\mathbb N}$ a părților lui $\mathbb N$, deci $\mathbb N$ și $2^{\mathbb N}$ nu sunt echipotente.

Dem.: Presupunem că există o bijecție $f: \mathbb{N} \to 2^{\mathbb{N}}$. Prin urmare, $2^{\mathbb{N}}$ poate fi enumerată ca $2^{\mathbb{N}} = \{S_0, S_1, \dots, S_n, \dots, \}$, unde $S_i = f(i)$ pentru orice $i \in \mathbb{N}$. Considerăm relația binară $R \subseteq \mathbb{N} \times \mathbb{N}$ definită astfel:

$$R = \{(i,j) \mid j \in f(i)\} = \{(i,j) \mid j \in S_i\}$$

și aplicăm Principiul diagonalizării. Astfel,

$$D \ = \ \{n \in \mathbb{N} \mid (n,n) \notin R\} = \{n \in \mathbb{N} \mid n \notin S_n\},\$$

$$R_i = \{j \in \mathbb{N} \mid (i,j) \in R\} = \{j \in \mathbb{N} \mid j \in S_i\} = S_i, \quad i \in \mathbb{N}.$$

Deoarece $D \subseteq \mathbb{N}$ și f este bijecție, există $k \in \mathbb{N}$ a.î. $D = f(k) = S_k = R_k$. Pe de altă parte, conform Principiului diagonalizării, $D \neq R_i$ pentru orice $i \in \mathbb{N}$. Am obținut o contradicție.

Mulțimi numărabile

Definiție

O mulțime A este numărabilă dacă este echipotentă cu $\mathbb N$.

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Corolar

 $2^{\mathbb{N}}$ nu este mulțime numărabilă.

Propoziție

- (i) Orice submulțime infinită a lui $\mathbb N$ este numărabilă.
- (ii) Reuniunea unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.
- (iii) \mathbb{Z} și \mathbb{Q} sunt numărabile.
- (iv) Produsul cartezian al unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.

Dem.: Exerciţiu.

10