Principes de la programmation dynamique

1. Un premier exmple débranché

Enoncé

1. Combien y-a-t'il de chemin menant du point D au point A sur le graphique suivant, en ne se déplaçant à chaque pas que vers la droite ou vers le bas ?

2. Combien y-a-t'il de chemin menant du point D au point A sur le graphique suivant, en ne se déplaçant à chaque pas que vers la droite ou vers le bas ?

Solution

A venir!

2. La suite de Fibonacci

La suite de Fibonacci est une suite définie par une récurence d'ordre 2 de la manière suivante, :

$$\begin{cases} F_0 & = & 0 \\ F_1 & = & 1 \\ F_{n+2} & = & F_{n+1} + F_n \ \forall n \in \mathbb{N} \end{cases}$$

Notation

Les 10 premiers termes sont : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

On notera F(n) le nombre de la suite de Fibonacci de rang n. Par exemple F(0)=0 et F(6)=13.

Algorithmiquement parlant, la suite de Fibonacci étant une suite définie par récurence, nous serions tentés de créer une fonction récursive pour calculer les termes F(n) de la suite. Pour ce faire, nous pourrions utiliser la fonction suivante :

```
1  def fibo(n) :
2    if n == 0 :
3        return 0
4    elif n == 1 :
5        return 1
6    else :
7        return fibo(n-1) + fibo(n-2)
```

Est-ce un choix judicieux?

? Tester et voir les limites

Enoncé

1. Tester la fonction fibo avec le code suivant :

```
import time
for n in range(40) :
    start = time.perf_counter()
    print(f"fibo({n}) = {fibo(n)}", end="")
    end = time.perf_counter()
    print(f" Temps : {end - start}")
```

Que constate-t'on?

2. Réaliser un schéma de la pile d'appels récursif effectués lors de l'exécution de fibo(6).

Solutions

- 1. Le temps d'exécution croît de manière exponentielle.
- 2. On a la construction suivante :

Previous Next