Introduction to Econometrics

Lecture 6 : OLS inference (SW Cha 5 & 7)

Zhaopeng Qu

Business School, Nanjing University

Oct. 18, 2018

Outlines

- Review: Hypothesis Test
 - Hypothesis Test:
 - Simple OLS in Normal Sampling Distribution
- 2 OLS with One Regressor: Hypothesis Tests
 - ullet Hypothesis Test of of \bar{Y}
 - OLS with One Regressor: Hypothesis Tests
 - Gauss-Markov theorem and Heteroskedasticity
- 3 OLS with Multiple Regressors: Hypotheses tests
 - Hypothesis test and Confidence interval for single coefficient

Review: Hypothesis Test

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1: \theta \neq \mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1:\theta\neq\mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1: \theta \neq \mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we **reject** the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Definition

A hypothesis is a statement about a population parameter, thus θ . Formally, we want to test whether is significantly different from a certain value μ_0

$$H_0: \theta = \mu_0$$

$$H_1: \theta \neq \mu_0$$

- If the value μ_0 does not lie within the calculated condence interval, then we reject the null hypothesis.
- If the value μ_0 lie within the calculated condence interval, then we fail to reject the null hypothesis.
- The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Two Type Errors

• A Type I error is when we *reject* the null hypothesis H_0 when it is in fact true.("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(\mathit{Type}\ \mathit{I}\ error) = P(\mathit{reject}\ \mathit{H}_0\ |\ \mathit{H}_0\mathit{is}\ \mathit{true}) = \alpha$$

 A Type II error is when we fail to reject the null hypothesis when it is false.("right-wing")

$$P(Type\ II\ error) = P(accept\ H_0 \mid H_0 is\ false)$$

• Unfortunately, the probabilities of Type I and II errors are inversely related. By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.

Two Type Errors

• A Type I error is when we *reject* the null hypothesis H_0 when it is in fact true.("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

 A Type II error is when we fail to reject the null hypothesis when it is false.("right-wing")

$$P(Type\ II\ error) = P(accept\ H_0\ |\ H_0\ is\ false)$$

• Unfortunately, the probabilities of Type I and II errors are inversely related. By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.

Two Type Errors

• A Type I error is when we *reject* the null hypothesis H_0 when it is in fact true.("left-wing"). The probability of Type I error is denoted by α and called **significance level** or size of a test.

$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

 A Type II error is when we fail to reject the null hypothesis when it is false.("right-wing")

$$P(Type\ II\ error) = P(accept\ H_0\ |\ H_0\ is\ false)$$

• Unfortunately, the probabilities of Type I and II errors are inversely related. By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.

Decision Rule

- Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

→□ → →□ → → □ → ○○○

- Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

◆□▶ ◆問▶ ◆ ■ ▶ ◆ ■ り Q ○

- Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

4□ > 4問 > 4 = > 4 = > = 900

- ullet Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

- Usually, we has to carry the "burden of proof," and the case that he is interested in is stated as H_1 .
 - We would like to prove that his assertion H_1 is true by showing that the data rejects H_0 .
- The decision rule that leads us to reject or not to reject H_0 is based on a test statistic, which is a function of the data

$$T_n = T(Y_1, ..., Y_n)$$

- ullet Usually, one rejects H_0 if the test statistic falls into a **critical region**. A critical region is constructed by taking into account the probability of making a wrong decision.
- By convention, α is chosen to be a small number, for example, a = 0.01, 0.05, or 0.10.

4□ > 4問 > 4 = > 4 = > ■ 900

- The following are the steps of the hypothesis testing:
 - ① Specify H_0 and H_1 .
 - 2 Choose the significance level α .
 - Define a decision rule (critical region).
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - Specify H_0 and H_1 .
 - 2 Choose the significance level α .
 - Define a decision rule (critical region)
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - **1** Specify H_0 and H_1 .
 - **2** Choose the significance level α .
 - Oefine a decision rule (critical region)
 - Given the data compute the test statistic and see if it falls into the critical region.

7 / 48

- The following are the steps of the hypothesis testing:
 - Specify H_0 and H_1 .
 - **2** Choose the significance level α .
 - Oefine a decision rule (critical region).
 - Given the data compute the test statistic and see if it falls into the critical region.

- The following are the steps of the hypothesis testing:
 - **1** Specify H_0 and H_1 .
 - ② Choose the significance level α .
 - Define a decision rule (critical region).
 - Given the data compute the test statistic and see if it falls into the critical region.

- To provide additional information, we could ask the question: What is
 the *largest significance* level at which we could carry out the test and
 still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - lacktriangle The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value
 - $p value = 1 \Phi(t)$
 - where $\Phi(t)$ denotes the standard normal c.d.f. (we assume that n is large enough)

8 / 48

- To provide additional information, we could ask the question: What is the *largest significance* level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - lacktriangled The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value
 - $p value = 1 \Phi(t)$
 - where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

- To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the **p-value** of a test
 - Calculate the t-statistic t
 - ② The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

- To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - Calculate the t-statistic t
 - ② The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

→□ → →□ → → □ → ○○○

- To provide additional information, we could ask the question: What is the largest significance level at which we could carry out the test and still fail to reject the null hypothesis?
- Or in other word, given the data, the smallest significance level at which the null can be rejected.
- We can consider the p-value of a test
 - Calculate the t-statistic t
 - ② The largest significance level at which we would fail to reject H_0 is the significance level associated with using t as our critical value

$$p - value = 1 - \Phi(t)$$

where $\Phi(t)$ denotes the standard normal c.d.f.(we assume that n is large enough)

イロト 4個ト 4 差ト 4 差ト 差 からぐ

P-Value: Case

• Suppose that t=1.52, then we can find the largest significance level at which we would fail to reject ${\it H}_0$

$$p - value = P(T > 1.52 \mid H_0) = 1 - \Phi(1.52) = 0.065$$

• Three Basic Assumption

- Assumption :
- Assumption 2
- Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

10 / 48

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - consistent
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consisten
 - normal sampling distribution

10 / 48

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

10 / 48

- Three Basic Assumption
 - Assumption 1
 - Assumption 2
 - Assumption 3
- if the 3 least squares assumptions hold the OLS estimators
 - unbiased
 - consistent
 - normal sampling distribution

Sampling Distribution of β_1

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

11 / 48

Sampling Distribution of β_1

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2_{\hat{\beta}_1})$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that

Now we are going to derive it.

< ロ > ← □

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that.

Now we are going to derive it.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

• Recall: Sampling Distribution of \bar{Y} , based on the Central Limit theorem(C.L.T), the sample distribution in a large sample can approximates to a normal distribution.

$$\overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$

• So the sample distribution of β_1 in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T), thus

$$\hat{\beta_1} \sim N(\beta_1, \sigma_{\hat{\beta_1}}^2)$$

In last lecture We just showed you that

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{Var[(X_i - \mu_x)u_i]}{[Var(X_i)]^2}$$

but did not prove that.

• Now we are going to derive it.

4□ > 4□ > 4 = > 4 = > = 90

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

• First consider the numerator of this term, thus $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(u_i-\overline{u})$

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and w let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_x)u_i = \frac{1}{n} \sum_{i=1}^{n} v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v}-0}{\sigma_{\bar{v}}} \stackrel{d}{\to} N(0.1) \text{ or } \bar{v} \stackrel{d}{\to} N(0,\frac{\sigma_{v}^{2}}{\sigma_{v}})$$

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(u_i-\overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_x)u_i = \frac{1}{n}\sum_{i=1}^{n}v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v}-0}{\sigma_{\bar{v}}} \stackrel{d}{\to} N(0.1) \text{ or } \bar{v} \stackrel{d}{\to} N(0,\frac{\sigma_{v}^{2}}{\sigma_{\bar{v}}})$$

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(u_i-\overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_x)u_i = \frac{1}{n} \sum_{i=1}^{n} v_i = \overline{v}$$

• for Assumption 1, $E(v_i) = 0$, and Assumption 2, $\sigma_v^2 = Var[(X_i - \mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v} - 0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \text{ or } \bar{v} \xrightarrow{d} N(0, \frac{\sigma_{v}^{2}}{\sigma_{\bar{v}}})$$

 \bullet We derived that $\hat{\beta}_1$ in terms of regression and errors in following equation

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(u_i - \overline{u})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

- First consider the numerator of this term, thus $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(u_i \overline{u})$
 - Because \bar{X} is consistent, thus $X \xrightarrow{p} \mu_x$.
 - And we know that $\sum_{i=1}^n (X_i \overline{X})(u_i \overline{u}) = \sum_{i=1}^n (X_i \overline{X})u_i$ and we let $v_i = (X_i \mu_x)u_i$, then

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(u_i - \overline{u}) \xrightarrow{p} \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_x)u_i = \frac{1}{n} \sum_{i=1}^{n} v_i = \overline{v}$$

• for Assumption 1, $E(v_i)=0$, and Assumption 2, $\sigma_v^2=Var[(X_i-\mu_x)u_i]$, then \bar{v} is the sample mean of v_i , based on C.L.T,

$$\frac{\bar{v} - 0}{\sigma_{\bar{v}}} \xrightarrow{d} N(0.1) \text{ or } \bar{v} \xrightarrow{d} N(0, \frac{\sigma_{v}^{2}}{m})$$

• Next consider the expression in the denominator,

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})(X_i-\overline{X})$$

- this is the sample variance of $X(\operatorname{except}\ \operatorname{dividing}\ \operatorname{by}\ n$ rather than n-1 which is inconsequential if n is large)
- As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma_{\hat{\beta_1}}^2)$ where $\sigma_{\hat{\beta_1}}^2 = \frac{\sigma_{v_i}^2}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- (ロ) (個) (重) (重) (重) のQで

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - \bullet this is the sample variance of $X(\mbox{except dividing by }n$ rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\to} N(\beta_1, \sigma_{\hat{\beta_1}}^2)$ where $\sigma_{\hat{\beta_1}}^2 = \frac{\sigma_{v_i}^2}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- (ロ)(部)((E)(E)(E)(のQC)

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of $X(\mathsf{except}\ \mathsf{dividing}\ \mathsf{by}\ n$ rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var(X;)} \stackrel{d}{\to} N\left(0, \frac{\sigma_v^2}{n(Var(X;))^2}\right)$
- So $\hat{\beta}_1 \xrightarrow{d} N(\beta_1, \sigma_{\hat{\beta_1}}^2)$ where $\sigma_{\hat{\beta_1}}^2 = \frac{\sigma_{v_i}^2}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \stackrel{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\rightarrow} N(\beta_1, \sigma^2_{\hat{\beta}_1})$ where $\sigma^2_{\hat{\beta}_1} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- (ロ) (個) (E) (E) (E) の(C)

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of $X(\mathsf{except}\ \mathsf{dividing}\ \mathsf{by}\ n$ rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \overset{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- So $\hat{\beta}_1 \stackrel{d}{\rightarrow} N(\beta_1, \sigma^2_{\hat{\beta}_1})$ where $\sigma^2_{\hat{\beta}_1} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}$.

- 4日ト4回ト4ミト4ミト ミ かく(^

- Next consider the expression in the denominator, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})$
 - this is the sample variance of X(except dividing by n rather than n-1, which is inconsequential if n is large)
 - As discussed in Section 3.2 [Equation (3.8)], the sample variance is a consistent estimator of the population variance.
- Combining these two results, we have that, in large samples

$$\hat{\beta}_1 - \beta_1 \cong \frac{\bar{v}}{Var[X_i]}$$

- Based on the characteristics of Normal distribution, then $\frac{\bar{v}}{Var[X_i]} \stackrel{d}{\to} N\left(0, \frac{\sigma_v^2}{n[Var(X_i)]^2}\right)$
- $\bullet \ \ \text{So} \ \ \hat{\beta}_1 \xrightarrow{d} \textit{N}(\beta_1, \sigma^2_{\hat{\beta_1}}) \ \ \text{where} \ \ \sigma^2_{\hat{\beta_1}} = \frac{\sigma^2_{v_i}}{n[Var(X_i)]^2} = \frac{Var[(X_i \mu_x)u_i]}{n[Var(X_i)]^2}.$

- (ロ) (個) (E) (E) (E) の(C)

OLS with One Regressor: Hypothesis Tests

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - Step1: Compute the sample average \(\overline{\text{1}} \)
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis is

 $||t^{uct}|| > critical\ value$

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

or if n = value < significance level

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

or if p − value < significance level

→ロト→部ト→ミト→ミ のQで

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - Step2: Compute the **standard error** of \bar{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

Step4: Reject the null hypothesis if

 \bullet or if p-value < significance level

→ロト→部ト→ミト→ミ のQで

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of \overline{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if p-value < significance level

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of \overline{Y}

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q○

- $H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of Y

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

- Testing procedure for the population mean is justified by the Central Limit theorem
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- β₀ & β₁ have an approximate normal distribution in large samples.
 and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- β₀ & β₁ have an approximate normal distribution in large samples.
 and the standardized regression coefficients have approximate N(0,1)
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - β_0 & β_1 have an approximate normal distribution in large samples
 - and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - ullet and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta}_0 \& \hat{\beta}_1$ under the Least Squares assumptions holding!

- Testing procedure for the population mean is justified by the Central Limit theorem.
- Central Limit theorem states that the t-statistic (standardized sample average) has an approximate N(0,1) distribution in large samples.
- Central Limit Theorem also states that
 - $\hat{\beta_0}$ & $\hat{\beta_1}$ have an approximate normal distribution in large samples.
 - ullet and the standardized regression coefficients have approximate N(0,1) distribution in large samples.
- We can therefore use same general approach to test hypotheses about $\hat{\beta_0}$ & $\hat{\beta_1}$ under the Least Squares assumptions holding!

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = eta_0 + eta_1 X_i + u_i$ by OLS to obtain \hat{eta}
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - | t^{act} |> critical value
 - \circ or if v value < significance level

∢ロト ∢倒ト ∢差ト ∢差ト 差 めらぐ

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if

 - or if n = value < significance lene

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta_1}$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - | t^{act} |> critical value
 - or if p − value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta_1}$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

Step4: Reject the null hypothesis if

• | t^{act} |> critical value

• or if p-value < significance level

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - $\bullet \mid t^{act} \mid > critical \ value$
 - or if $p-value < significance\ level$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = \beta \ H_1: \beta_1 \neq \beta$
 - Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
 - Step2: Compute the **standard error** of $\hat{\beta}_1$
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE\left(\hat{\beta}_1\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

The Standard error of $\hat{\beta}_1$

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{1-2}\sum (X_i-X)^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$. Then it can be shown that
 - $SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\beta_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i \bar{X})^2 \hat{u}_1^2}{\left[\frac{1}{n} \sum (X_i \bar{X})^2\right]^2}}$

The Standard error of $\hat{\beta}_1$

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

◆ロト ◆個ト ◆ 種ト ◆ 種 ト ■ め へ ○

The Standard error of $\hat{\beta}_1$

- The **standard error** of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

4□ > 4□ > 4 = > 4 = > = 90

The Standard error of $\hat{\beta}_1$

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

◆ロト ◆昼 ト ◆ 差 ト ◆ 差 ・ か へ (*)

18 / 48

The Standard error of $\hat{\beta}_1$

- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$
- Recall from the last class

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)\mu_i]}{[Var(X_i)]^2}}$$

- We use sample variance $\frac{1}{n-2}\sum (X_i-\bar{X})^2\hat{u}_i^2$ to estimate population covariance $Var[(X_i-\mu_X)u_i]$
- We also use $\frac{1}{n}\sum (X_i \bar{X})^2$ to replace population covariance $Var(X_i)$
- Then it can be shown that

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

- The simple OLS regression : $TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$
- We run it in Stata

. regress test score class size, robust

Linear regression

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

- The simple OLS regression : $TestScore_i = \beta_0 + \beta_1 ClassSize_i + u_i$
- We run it in Stata

. regress test score class size, robust

Linear regression

number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

19 / 48

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

• $|t^{act}| = |-4.39|$ > critical value.1.96 • p - value = 0.00 < significance level = -1.00

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

 $|t^{act}| = |-4.39| > critical\ value.1.96$ $|v - value = 0.00| < significance\ level = |-4.39|$

◆ロト ◆御 ト ◆ 重 ト ◆ 重 ・ 夕 Q ©

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

 $| t^{act} | = | -4.39 | > critical\ value 1.96$ $| n - value = 0.00 | < significance\ level = 0.00 | < significance\ leve$

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

• Step4: Reject the null hypothesis if

 $| t^{acc} | = | -4.39 | > critical value. 1.96$ | p - value = 0.00 | < significance level = 0.00

→ □ ト → □ ト → 三 ト → 三 → つへの

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - $p-value = 0.00 < significance\ level = 0.05$

→ロト → □ ト → 三 ト → 三 ・ り Q (*)

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - $p-value = 0.00 < significance\ level = 0.05$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

- $H_0: \beta_1 = 0 \ H_1: \beta_1 \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-4.39| > critical\ value.1.96$
 - $p-value = 0.00 < significance\ level = 0.05$

| ← □ ト ← □ ト ← 亘 ト ← 亘 ・ 夕 へ ○

Critical value of the t-statistic

The critical value of *t*-statistic depends on significance level α

1% and 10% significant levels

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $\bullet \mid t^{act} \mid = \mid -4.39 \mid > critical \ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$t^{act} \mid = \mid -4.39 \mid > critical \ value.2.58$$

• p-value = 0.00 < significance level = 0.01

1% and 10% significant levels

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - $p-value = 0.00 < significance\ level = 0.1$
- Step 4: We reject the null hypothesis at a 1% significance level because

$$t^{act} \mid = \mid -4.39 \mid > critical \ value.2.58$$

p-value = 0.00 < significance level = 0.01

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

1% and 10% significant levels

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value.2.58$$

 \bullet p - value = 0.00 < significance level = 0.01

1% and 10% significant levels

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value. 2.58$$

• $p-value = 0.00 < significance\ level = 0.01$

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

1% and 10% significant levels

- Step 4: We reject the null hypothesis at a 10% significance level because
 - $|t^{act}| = |-4.39| > critical\ value.1.64$
 - p value = 0.00 < significance level = 0.1
- Step 4: We reject the null hypothesis at a 1% significance level because

$$\mid t^{act} \mid = \mid -4.39 \mid > critical \ value. 2.58$$

• p - value = 0.00 < significance level = 0.01

- 4日ト4個ト4度ト4度ト 度 めQで

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 |< critical value.1.96

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 |< critical value.1.96

→□▶→□▶→□▶→□▶ □ ○○○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

 \bullet | t^{act} |=| -0.54 |< critical value.1.96

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - め Q @

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - \bullet | t^{act} |=| -0.54 |< $critical\ value.1.96$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - め Q G

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

•
$$|t^{act}| = |-0.54| < critical value.1.96$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 \neq -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - \bullet | t^{act} |=| -0.54 |< critical value.1.96

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

• $t^{act} = -0.54 > critical\ value. -1.96$

24 / 48

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

 Step4: we can't reject the null hypothesis at 5% significant level because

• $t^{act} = -0.54 > critical \ value. -1.96$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

• Step4: we can't reject the null hypothesis at 5% significant level because

• $t^{act} = -0.54 > critical\ value. -1.96$

24 / 48

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - \bullet $t^{act} = -0.54 > critical\ value. -1.96$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $t^{act} = -0.54 > critical\ value. -1.96$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_1 = -2 \ H_1: \beta_1 < -2$
- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: we can't reject the null hypothesis at 5% significant level because
 - $t^{act} = -0.54 > critical\ value. -1.96$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value. 1.96$
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value. 1.96$
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value.1.96$.
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if $|t^{act}| > critical\ value.1.96$.
- So and will be in the confidence set if $\mid t^{act} \mid \leq critical \ value.1.96$.
- Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

25 / 48

Confidence interval for $\beta_{ClassSize}$

• Thus the 95% confidence interval for β_1 are within ± 1.96 standard errors of $\hat{\beta}_1$

$$\hat{\beta}_1 \pm 1.96 \cdot SE(\hat{\beta}_1) = -2.28 \pm (1.96 \times 0.52) = [-3.3, -1.26]$$

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

◆ロト ◆団ト ◆恵ト ◆恵ト ■ からぐ

Properties of Y as estimator of μ_Y

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_{Y}
 - has an approximate normal sampling distribution for large r
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_{Y}
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_{Y}
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Recall we discussed the properties of \bar{Y} in *Chapter 2*. It is
 - ullet an unbiased estimator of μ_Y
 - ullet a consistent estimator of μ_Y
 - has an approximate normal sampling distribution for large n
 - the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of μ_Y among all unbiased estimators.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$V_{-}(- \mid V) = \frac{2}{2}$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$Var(u_i \mid X_i) = \sigma_n^2$$

Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$Var(u_i \mid X_i) = \sigma_n^2$$

Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

- Three Basic Assumption PLUS homoskedastic assumption, thus
 - Assumption 1
 - Assumption 2
 - Assumption 3
- we add a fourth OLS assumption:
 - Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

| ← □ ト ← □ ト ← 亘 ト ← 亘 ・ 夕 へ ○

• The error term u_i is **homoskedastic** if the variance of the conditional distribution of u_i given X_i is constant for i=1,...n, in particular does not depend on X_i . Otherwise, the error term is **heteroskedastic**.

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$

ロト 4回ト 4 差ト 4 差ト き かくぐ

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$.

4□ > 4圖 > 4 = > 4 = > = 90

An Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_i .
- Variation in (log) wages is higher at higher levels of education.
- This implies that $Var(u_i \mid X_i) \neq \sigma_u^2$.

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

• In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

• In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large

 If the error terms are heteroskedastic we should use the following heteroskedasticity robust standard errors

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$

 If we assume that the error terms are homoskedastic the standard errors of the OLS estimators simplify to

$$SE\left(\hat{\beta}_1\right) = \sqrt{\frac{s_{\hat{u}}^2}{\sum (X_i - \bar{X})^2}}$$

- In many applications homoskedasticity is not a plausible assumption. If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_1$.
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large

- Since homoskedasticity is a special case of heteroskedasticity, these
 heteroskedasticity robust formulas are also valid if the error terms are
 homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x, robust

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x, robust

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

Regress y x, robust

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption It is best to use heteroskedasticity robust standard errors. (we lose nothing)
- In Stata the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

 $Regress \ y \ x \ , \ robust$

. regress test_score class_size

	Source	SS	df	MS	Trumber of one	=	420
	Model	7794.11004	1		F(1, 418) Prob > F	=	22.58 0.0000
	Residual	144315.484 418	345.252353	R-squared Adj R-squared	=	0.0512 0.0490	
	Total	152109.594	419	363.030056	Root MSE	=	18.581

test_score	Coef.	Std. Err.	t	P> t	[95% Conf. In	nterval]
class_size _cons		.4798256 9.467491	-4.75 73.82		-3.22298 680.3231	-1.336637 717.5428

. regress test score class size, robust

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
class size _cons	-2.279808 698.933	.5194892 10.36436	-4.39 67.44	0.000	-3.300945 678.5602	

Linear regression

Oct. 18, 2018

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
- The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
- The OLS estimators are consistent
 - The ULS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

4 D > 4 D > 4 D > 4 D > 3 D 9 Q Q

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

- If the error terms are heteroskedastic
 - The fourth OLS assumption is violated
 - The Gauss-Markov conditions do not hold
 - The OLS estimator is not BLUE (not efficient)
- But (given that the other OLS assumptions hold)
 - The OLS estimators are unbiased
 - The OLS estimators are consistent
 - The OLS estimators are normally distributed in large samples

OLS with Multiple Regressors: Hypotheses tests

Least Squares assumptions of the multiple regression

Fourth Basic Assumption

- Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
- Assumption 2: i.i.d sample
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.
- the OLS estimators β_j for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

イロト 4回ト 4 重ト 4 重ト 重 めの(で

Fourth Basic Assumption

- Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
- Assumption 2 : i.i.d sample
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.
- the OLS estimators β_j for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0, 1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

4□ > 4□ > 4□ > 4□ > 4□ > 9

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators β_j for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators β_j for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators β_j for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0, 1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

36 / 48

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

 We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

4□ > 4□ > 4□ > 4□ > 4□ > 9

- Fourth Basic Assumption
 - Assumption 1 : $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2: i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples. In addition

$$t = \frac{\hat{\beta}_j - \beta_{j,0}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

• We can thus perform, hypothesis tests in same way as in regression model with only one regressor.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q ()

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+\ldots+\beta_jX_{ji}+\ldots+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_i$
 - Step2: Compute the **standard error** of β_j (requires matrix algebra
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

 $\bullet \mid t^{act} \mid > critical \ value$

 \bullet or if n = value < significance level

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of eta_j (requires matrix algebra
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

a or if a - value < significance level

4□ > 4□ > 4□ > 4□ > 4□ > 9

37 / 48

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of \hat{eta}_j (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

• Step4: Reject the null hypothesis if

or if n = nalue < similicance level

→ロト→部ト→ミト→ミトーミーのQで

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_i$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

Step4: Reject the null hypothesis if

o or if n = value < significance level

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if v value < significance level

→ロト → □ ト → 三 ト → 三 ・ り Q (*)

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_j$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p value < significance level

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

37 / 48

- $H_0: \beta_j = \beta_{j,0} \ H_1: \beta_1 \neq \beta_{j,0}$
 - Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS to obtain $\hat{\beta}_i$
 - Step2: Compute the **standard error** of $\hat{\beta}_j$ (requires matrix algebra)
 - Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_j - \beta_{j,0}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - or if p-value < significance level

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q (C)

. regress test_score class_size el_pct, robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class size	-1.101296	.4328472	-2.54	0.011	-1.95213	2504616
el_pct	6497768	.0310318	-20.94	0.000	710775	5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

▶ ◀圖 ▶ ◀ 臺 ▶ ▲ 臺 → ୭ Q @

39 / 48

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

39 / 48

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\beta_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

|t| = 2.54 | > critical value = 1.90 |t| = 2.54 | > critical value = 1.90|t| = 2.54 | > critical value = 1.90

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

Step4: Reject the null hypothesis if

<ロ > < 個 > < 直 > < 直 > < 直 > の へ ②

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical \ value.1.96$
 - $p-value = 0.011 < significance\ level = 0.05$

- (ロ) (個) (E) (E) (E) の(C)

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |=| -2.54 |> $critical\ value.1.96$
 - $p-value = 0.011 < significance\ level = 0.05$

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta_1}) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - $|t^{act}| = |-2.54| > critical\ value.1.96$
 - $p-value = 0.011 < significance\ level = 0.05$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and / or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ pct}$ and $t_{calw\ pct}$ are uncorrelated:

$$Pr(t_{meal\ pct} > 1.96\ and/or\ t_{calw\ pct} > 1.96) = 1 - Pr(t_{meal\ pct} > 1.96)$$

= $1 - Pr(t_{meal\ pct} > 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

• if $t_{meal\ pct}$ and $t_{calw\ pct}$ are correlated, then it is more complicated.

- ullet Suppose we want to test hypothesis that both the coefficient on %eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= $1 - Pr(t_{meal \, pct} > 1.96)$
= $1 - 0.95 \times 0.95$
- $0.0975 > 0.05$

- ullet Suppose we want to test hypothesis that both the coefficient on %eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ nct} \neq 0 \ and/or \beta_{calw\ nct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?

$$Pr(t_{meal \, pct} > 1.96 \, and / or \, t_{calw \, pct} > 1.96) = 1 - Pr(t_{meal \, pct} > 1.96)$$

= $1 - Pr(t_{meal \, pct} > 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ pct}$ and $t_{calw\ pct}$ are uncorrelated:

$$Pr(t_{meal\ pct} > 1.96\ and/or\ t_{calw\ pct} > 1.96) = 1 - Pr(t_{meal\ pct} > 1.96)$$

= 1 - Pr(t_{meal\ pct} > 1.96)
= 1 - 0.95 \times 0.95
= 0.0975 > 0.05

ullet if $t_{meal\ pct}$ and $t_{calw\ pct}$ are correlated, then it is more complicated.

- Suppose we want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
- $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- If either $t_{meal\ pct}$ or $t_{calw\ pct}$ exceeds 1.96, we should reject?
- We assume that $t_{meal\ pct}$ and $t_{calw\ pct}$ are uncorrelated:

$$Pr(t_{meal\ pct} > 1.96\ and/or\ t_{calw\ pct} > 1.96) = 1 - Pr(t_{meal\ pct} > 1.96)$$

= 1 - Pr(t_{meal\ pct} > 1.96)
= 1 - 0.95 × 0.95
= 0.0975 > 0.05

ullet if $t_{meal\ pct}$ and $t_{calw\ pct}$ are correlated, then it is more complicated.

(ロ) (型) (基) (基) (基) のQで

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{
ho}_{t_1t_2}$ is an estimator of the correlation between the two t_i statistics

4□ > 4問 > 4 = > 4 = > = 900

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{
ho}_{t_1t_2}$ is an estimator of the correlation between the two t_i statistics

4 D > 4 A > 4 B > 4 B > B 9 Q C

Heteroskedasticity & homoskedasticity

- If we want to test joint hypotheses that involves multiple coefficients we need to use an F-test based on the F-statistic
- F-Statistic with q=2: when testing the following hypothesis

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \ and/or \beta_2 \neq 0$$

the F-statistic combines the two t-statistics as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{
ho}_{t_1t_2}$ is an estimator of the correlation between the two t-statistics.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 ९ 0°

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- ullet The null hypothesis consists of two restrictions ${\sf q}=2$
- It can be shown that the F-statistic with two restrictions has ar approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

◆□▶ ◆問▶ ◆ ■ → ○○○

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q=2
- It can be shown that the F-statistic with two restrictions has ar approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has ar approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

4 11 1 4 4 12 1 4 12 1 1 2 1 9 9 9

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

4 D > 4 D > 4 E > 4 E > E = 990

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

イロト 4回ト 4 重ト 4 重ト 重 めの(で

- We want to test hypothesis that both the coefficient on % eligible for a free lunch and the coefficient on % eligible for calworks are zero?
 - $H_0: \beta_{meal\ pct} = 0 \ \& \beta_{calw\ pct} = 0$ $H_1: \beta_{meal\ pct} \neq 0 \ and/or \beta_{calw\ pct} \neq 0$
- The null hypothesis consists of two restrictions q = 2
- It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F = 290.27$$

- Table 4 (S&W page 795) shows that the critical value at a 5% significance level equals 3.00
- This implies that we reject H_0 at a 5% significance level because 290.27 > 3

42 / 48

F-Test

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- ullet H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+\ldots+\beta_jX_{ji}+\ldots+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i=\beta_0+\beta_1X_{1i}+...+\beta_jX_{ji}+...+\beta_kX_{ki}+u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic>F_{q,\infty}^{act}$ or $p-value=Pr[F_{q,\infty}>F^{act}]$

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_j X_{ji} + ... + \beta_k X_{ki} + u_i$ by OLS
- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if $F-Statistic > F_{q,\infty}^{act}$ or $p-value = Pr[F_{q,\infty} > F^{act}]$

◆ロト ◆個ト ◆差ト ◆差ト = 900

1 . regress test score class size el pct meal pct calw pct, robust

Linear regression Number of obs 420 F(4, 415) 361.68 Prob > F 0.0000 0.7749 R-squared Root, MSE 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class size el pct meal pct calw pct _cons	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
	1298219	.0362579	-3.58	0.000	201094	0585498
	5286191	.0381167	-13.87	0.000	6035449	4536932
	0478537	.0586541	-0.82	0.415	1631498	.0674424
	700.3918	5.537418	126.48	0.000	689.507	711.2767

- 2 . test el pct meal pct calw pct
 - (1) el pct = 0
 - (2) meal pct = 0
 - (3) calw pct = 0

$$F(3, 415) = 481.06$$

 $Prob > F = 0.0000$

4日本4周本4日本4日本 日

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 : at least one of g restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - \bigcirc Step2: F-Statistic = 481.06
 - Step3: We reject the null hypothesis at a 5% significance level becaus
 - $F-Statistic > F_{3.\infty} = 2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - ② Step2: F Statistic = 481.06
 - ⑤ Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic > F_{3,\infty} = 2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - ② Step2: F Statistic = 481.06
 - § Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic > F_{3,\infty} = 2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - ③ Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

- $H_0: \beta_{el\ pct} = \beta_{meal\ pct} = \beta_{calw\ pct} = 0$
- H_1 :at least one of q restrictions under H_0 does not hold.
 - Step1: Estimate by OLS
 - 2 Step2: F Statistic = 481.06
 - § Step3: We reject the null hypothesis at a 5% significance level because $F-Statistic>F_{3,\infty}=2.6$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions
 - H_1 : at least one of q=k restrictions under H_0 does not hold.
- . regress test_score class_size el_pct meal_pct calw_pct, robust

Linear regression Number of obs = 420 F(4, 415) = 361.68 Prob > F = 0.0000 R-squared = 0.7749 Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size el pct	-1.014353 1298219	.2688613	-3.77 -3.58	0.000	-1.542853 201094	4858534 0585498
meal pct calw pct	5286191 0478537	.0381167	-13.87 -0.82	0.000 0.415	6035449 1631498	4536932 .0674424
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F-Statistics=361.68

- 4日ト 4団ト 4 差ト 4 差ト - 差 - 夕久で

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of a = k restrictions under H_0 does not hold
- . regress test score class size el pct meal pct calw pct, robust

Linear regression Number of obs = 420 F(4, 415) = 361.68 Prob > F = 0.0000 R-squared = 0.7749 Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
el_pct	1298219	.0362579	-3.58	0.000	201094	0585498
meal pct	5286191	.0381167	-13.87	0.000	6035449	4536932
calw pct	0478537	.0586541	-0.82	0.415	1631498	.0674424
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F-Statistics=361.68

- 4ロト 4個ト 4 差ト 4 差ト 差 めなぐ

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q = k restrictions under H_0 does not hold.
- . regress test_score class_size el_pct meal_pct calw_pct, robust

Linear regression Number of obs = 420 F(4, 415) = 361.68 Prob > F = 0.0000 R-squared = 0.7749 Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
el_pct	1298219	.0362579	-3.58	0.000	201094	0585498
meal pct	5286191	.0381167	-13.87	0.000	6035449	4536932
calw pct	0478537	.0586541	-0.82	0.415	1631498	.0674424
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F - Statistics = 361.68

- 4ロト 4個ト 4 差ト 4 差ト 差 めくぐ

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q=k restrictions under H_0 does not hold.
- . regress test_score class_size el_pct meal_pct calw_pct, robust

Linear regression Number of obs = 420 F(4, 415) = 361.68 Prob > F = 0.0000 R-squared = 0.7749 Root MSE = 9.0843

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. I	nterval]
class_size	-1.014353	.2688613	-3.77	0.000	-1.542853	4858534
el_pct	1298219	.0362579	-3.58	0.000	201094	0585498
meal pct	5286191	.0381167	-13.87	0.000	6035449	4536932
calw pct	0478537	.0586541	-0.82	0.415	1631498	.0674424
_cons	700.3918	5.537418	126.48	0.000	689.507	711.2767

• The overall F-Statistics=361.68

- (ロ) (個) (注) (注) (注) (E) (のQ(C)

-0.790**

420

Dependent variable: average test score in the district.

Percent on public income assistance (X_i)

The "Star War" and Regression Table

Regressor	(1)	(2)	(3)	(4)	(5)
Student–teacher ratio (X_1)	-2.28**	-1.10*	-1.00**	-1.31*	-1.01*
**	(0.52)	(0.43)	(0.27)	(0.34)	(0.27)
Percent English learners (X ₂)		-0.650**	-0.122**	-0.488**	-0.130**
0 (2)		(0.031)	(0.033)	(0.030)	(0.036)
Percent eligible for subsidized lunch (X_3)			-0.547*		-0.529*
			(0.024)		(0.038)

(A	-4/			(0.068)	(0.059)
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)
Summary Statistics					
SER	18.58	14.46	9.08	11.65	9.08
\overline{R}^2	0.049	0.424	0.773	0.626	0.773

These regressions were estimated using the data on K-8 school districts in California, described in Appendix (4.1). Heteroskedasticityrobust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% significance level using a two-sided test.

420

4 D F 4 D F 4 D F 5 0 0 0

n

420

420

0.048

420