Розглянемо набір даних про погоду, який являє собою часовий ряд.

df=pd.read_csv(weather.csv',index_col=['CET'],parse_dates=True)
df.index

За замовчуванням індекс не матиме частоти

Тому потрібно встановити частоту за допомогою метода asfreq:

df=df.asfreq('D')

За допомогою ковзних характеристик (наприклад, ковзного середнього) можна виявити наявність тренду в даних.

df.rolling(365, center = True).mean().plot() df.rolling(7, center = True).mean().plot()

В даних про погоду тренд не спостерігається. Розглянемо для порівняння дані про найвищу за день ціну акцій компанії Майкрософт на біржі:

mss.rolling(365, center = True).mean().plot()
mss.plot()

Іноді було б корисно видалити тренд з даних, особливо якщо він досить виражений, щоб можна було оцінити сезонні коливання або шум у часових рядах. Видалення тренду також може спростити процес моделювання та покращити продуктивність моделі.

Часовий ряд із трендом називається нестаціонарним. Часовий ряд, який не має тренду або який було вилучено, називається стаціонарним.

Для вилучення тренду може бути достатнім відняти від кожного значення попереднє.

```
df_diff= df.diff()
df_diff.plot()
```


Для даних, в яких спостерігався тренд:

mss_diff = mss.diff()

Автокореляція — це техніка для аналізу сезонності. Вона демонструє кореляцію часового ряду з самим собою, зсунутим в часі.

pd.plotting.autocorrelation_plot(df)

Візьмемо роки 2011-2015: pd.plotting.autocorrelation_plot(df.loc['2011':'2015']);

I для біржових даних: pd.plotting.autocorrelation_plot(mss);

Процес прогнозування складається з передбачення майбутнього значення часового ряду шляхом моделювання ряду виключно на основі його поведінки в минулому (авторегресія) або за допомогою інших зовнішніх змінних.

Щоб застосувати моделі машинного навчання до проблем прогнозування, часові ряди потрібно перетворити на таблицю, у якій кожне значення пов'язане з часовим вікном, що йому передує.

У контексті часових рядів відставання від часового кроку t визначається як значення ряду на попередніх часових кроках.

Створимо два додаткових стовпця: значення середньої температури за попередній день та різниця між днями.

```
df['Yesterday'] = df['Mean TemperatureC'].shift()
df['Yesterday_Diff'] = df['Yesterday'].diff()
df = df.dropna()
```

	Mean TemperatureC	Yesterday	Yesterday_Diff
CET			
2005-01-03	4.0	6.0	2.0
2005-01-04	3.0	4.0	-2.0
2005-01-05	3.0	3.0	-1.0
2005-01-06	6.0	3.0	0.0
2005-01-07	6.0	6.0	3.0

Розіб'ємо дані на навчальні та тестові. Часові ряди не можна розбивати випадковим чином, тому візьмемо дані за 2005-2013 роки як навчальні і дані за 2014 рік як тестові. Вхідні ознаки будуть містити температуру за попередній день та

Вхідні ознаки будуть містити температуру за попередній день та різницю температур, вихідна ознака — поточна середня температура.

```
X_train = df['2005':'2013'].drop(['Mean TemperatureC'], axis = 1)
y_train = df.loc['2005':'2013','Mean TemperatureC']
X_test = df.loc['2014'].drop(['Mean TemperatureC'], axis = 1)
y_test = df.loc['2014','Mean TemperatureC']
```

Оскільки температура — це неперервна змінна, то задача її прогнозування є задачею регресії. Спочатку застосуємо лінійну регресію.

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(X_train,y_train)
lr.score(X_test,y_test)
```

0.9194836530923867

Можна покращити результат за допомогою перехресної перевірки. Але звичайна k-кратна перехресна перевірка не підходить для часових рядів. Scikit-learn має спеціальну функцію для часових рядів — TimeSeriesSplit.

```
from sklearn.model_selection import TimeSeriesSplit
from sklearn.model_selection import cross_val_score
tscv = TimeSeriesSplit(n_splits=8)
cv_results = cross_val_score(lr, X_train, y_train, cv=tscv, scoring='r2')
cv_results.mean()
```

0.9308245971010781

Зобразимо результат графічно:

За певний місяць, наприклад, червень:

Використаємо іншу модель, а саме, випадковий ліс:

```
from sklearn.ensemble import RandomForestRegressor RF=RandomForestRegressor(max_depth=5,n_estimators=100,random_state=0) RF.fit(X_train,y_train) RF.score(X_test,y_test)
```

0.9186379885178024

Зробимо підбір гіперпараметрів:

```
search_space = {'max_features': ['auto', 'sqrt', 'log2'],'max_depth' : [i
for i in range(5,15)]}
RF=RandomForestRegressor()
tscv = TimeSeriesSplit(n_splits=8)
gs = GridSearchCV(RF, cv=tscv, param_grid=search_space, scoring='r2')
gs.fit(X_train, y_train)
gs.best_score_
```

0.9308689868805313

Отриманий в результаті графік:

За червень в порівнянні з лінійною регресією:

Виявлення аномалій в даних включає дві задачі:

Виявлення викидів - навчальні дані містять викиди, які визначаються як спостереження, далекі від інших. Таким чином, моделі для виявлення викидів намагаються підібрати регіони, де навчальні дані є найбільш сконцентрованими, ігноруючи спостереження, що сильно відхиляються.

Виявлення аномалій в нових даних - навчальні дані не забруднені викидами і модель повинна виявити, чи є нове спостереження викидом.

Одним з алгоритмів для виявлення аномалій є ізоляційний ліс. Він повертає масив значень, де -1 означає викид, 1 — звичайне спостереження.

from sklearn.ensemble import IsolationForest
isf = IsolationForest(random_state=0)
isf.fit(weather[['Mean TemperatureC']])
result=isf.predict(weather[['Mean TemperatureC']])

Виведемо середню температуру разом з максимальною в тих спостереженнях, що були класифіковані як викиди:

weather_n[weather_n.outliers==-1]

	Max TemperatureC	Mean TemperatureC	outliers
CET			
1997-01-02	7.0	3.0	-1
1997-06-01	22.0	18.0	-1
1997-07-09	28.0	23.0	-1
1997-07-15	33.0	24.0	-1
1997-07-22	30.0	24.0	-1

Візьмемо 10 найбільших значень: weather_n[weather_n.outliers==-1].nlargest(10,columns='Mean TemperatureC')

	Max TemperatureC	Mean TemperatureC	outliers
CET			
2008-06-23	31.0	45.0	-1
2011-04-30	16.0	30.0	-1
1997-08-23	35.0	29.0	-1
2002-06-26	36.0	29.0	-1
2005-06-20	36.0	29.0	-1
2010-07-08	36.0	29.0	-1
2011-08-21	37.0	29.0	-1
2013-08-12	37.0	29.0	-1
2013-08-16	37.0	29.0	-1
2015-07-22	35.0	29.0	-1

isf = IsolationForest(random_state=0,contamination=0.01)
isf.fit(weather[['Mean TemperatureC']])
result=isf.predict(weather[['Mean TemperatureC']])
weather_n[weather_n.outliers==-1].nlargest(10,columns='Mean TemperatureC')

	Max TemperatureC	Mean TemperatureC	outliers
CET			
2008-06-23	31.0	45.0	-1
2011-04-30	16.0	30.0	-1
2008-11-28	6.0	0.0	-1
2010-01-09	2.0	0.0	-1
2009-01-13	2.0	-1.0	-1

Розглянемо іншу задачу визначення аномалій.

	source_ip	username	success	failure_reason
datetime				
2018-01-01 00:05:32.988414	223.178.55.3	djones	True	NaN
2018-01-01 00:08:00.343636	223.178.55.3	djones	False	error_wrong_password
2018-01-01 00:08:01.343636	223.178.55.3	djones	True	NaN
2018-01-01 01:06:59.640823	208.101.11.88	wbrown	True	NaN
2018-01-01 02:40:47.769630	11.76.99.35	tkim	True	NaN
2018-12-31 21:13:21.846800	150.64.165.159	pkim	True	NaN
2018-12-31 21:29:34.632700	204.182.96.183	pkim	True	NaN
2018-12-31 22:05:56.299770	110.235.65.232	ybrown	True	NaN
2018-12-31 23:29:41.482166	68.150.183.142	rkim	False	error_wrong_password
2018-12-31 23:29:42.482166	68.150.183.142	rkim	True	NaN

log_data.info()

```
DatetimeIndex: 38700 entries, 2018-01-01 00:05:32.988414 to 2018-12-31 23:29:42.482166
Data columns (total 4 columns):

# Column Non-Null Count Dtype
--- --- 0 source_ip 38700 non-null object
1 username 38700 non-null object
2 success 38700 non-null bool
3 failure_reason 11368 non-null object
```

log_data.describe(include='all')

	source_ip	username	success	failure_reason
count	38700	38700	38700	11368
unique	4956	1797	2	3
top	168.123.156.81	wlopez	True	error_wrong_password
freq	314	387	27332	6646

log_data.groupby('source_ip').agg(dict(username='nunique')).usernam
e.describe()

count	4956.000000
mean	1.146287
std	1.916782
min	1.000000
25%	1.000000
50%	1.000000
75%	1.000000
max	129.000000

failure_reason attempts error_account_locked error_wrong_password error_wrong_username success success_rate error_rate source_ip

168.123.156.81	314	0	37	0	277	0.882166	0.117834
24.112.17.125	309	0	37	0	272	0.880259	0.119741
16.118.156.50	289	0	41	1	247	0.854671	0.145329
25.246.225.197	267	0	43	0	224	0.838951	0.161049
30.67.241.95	265	0	37	0	228	0.860377	0.139623

pivot.plot(kind='scatter', x='attempts', y='success',alpha=0.25);

Виділимо наступні дані:

datetime	2018-01- 01 00:08:00	2018-01- 01 00:09:00	2018-01- 01 00:10:00	2018- 01-01 00:11:00	2018-01- 01 00:12:00	2018-01- 01 00:13:00	2018-01- 01 00:14:00	2018-01- 01 00:15:00	2018-01- 01 00:16:00	2018-01- 01 00:17:00	 2018-01- 31 22:35:00	2018-01- 31 22:36:00	2018-01- 31 22:37:00	
usernames_with_failures	1	0	0	0	0	0	0	0	0	0	 0	0	0	
day_of_week_0	1	1	1	1	1	1	1	1	1	1	 0	0	0	
day_of_week_1	0	0	0	0	0	0	0	0	0	0	 0	0	0	
day_of_week_2	0	0	0	0	0	0	0	0	0	0	 1	1	1	
day_of_week_3	0	0	0	0	0	0	0	0	0	0	 0	0	0	
day_of_week_4	0	0	0	0	0	0	0	0	0	0	 0	0	0	
day_of_week_5	0	0	0	0	0	0	0	0	0	0	 0	0	0	
day_of_week_6	0	0	0	0	0	0	0	0	0	0	 0	0	0	
hour_0	1	1	1	1	1	1	1	1	1	1	 0	0	0	

Алгоритм ізоляційного лісу використовує методи розщеплення, щоб ізолювати викиди від решти даних; тому його можна використовувати для виявлення аномалій. Він використовує випадковий ліс, де розгалуження відбуваються за випадковими ознаками. Для поділу вибирається випадкове значення ознаки між її максимумом і мінімумом.

from sklearn.ensemble import IsolationForest
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
iso_forest_pipeline = Pipeline([('scale', StandardScaler()),('iforest', IsolationForest(random_state=0, contamination=0.05))]).fit(X)

Параметр contamination визначає, яку частку даних очікувано займають викиди. Також можливо провести статистичний аналіз даних, щоб задати цей параметр.

Meтoд predict() можна використовувати, щоб перевірити, чи є точка даних викидом. Алгоритми виявлення аномалій, реалізовані в scikit-learn, зазвичай повертають 1, якщо точка виглядає нормальною або -1, якщо точка є аномалією.

```
isolation_forest_preds = iso_forest_pipeline.predict(X)
pd.Series(np.where(isolation_forest_preds == -1, 'outlier',
'inlier')).value_counts()
```

```
inlier 42556
outlier 2001
```

У той час як нормальні елементи зазвичай розташовуються в більш щільних областях набору даних, викиди, як правило, розташовуються в більш ізольованих областях з кількома сусідніми точками. Алгоритм локального коефіцієнта викидів (LOF) шукає ці малонаселені області, щоб ідентифікувати викиди. Він оцінює всі точки на основі відношення щільності навколо кожної точки до щільності її найближчих сусідів. Точки, які вважаються нормальними, матимуть ту ж щільність, що й їхні сусіди; ті, у кого поблизу небагато інших точок, вважатимуться аномаліями.

from sklearn.neighbors import LocalOutlierFactor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
lof_pipeline = Pipeline([('scale', StandardScaler()),('lof', LocalOutlierFactor())]).fit(X)

Клас LocalOutlierFactor не має методу predict(), то ж використовуємо атрибут negative_outlier_factor_.

Тут неможливо прямо підрахувати кількість викидів, тому потрібно порівняти атрибут negative_outlier_factor_ з атрибутом offset_ моделі LOF, який повідомляє граничне значення, визначене моделлю LOF під час навчання.

```
pd.Series(np.where(lof_preds <
lof_pipeline.named_steps['lof'].offset_,'outlier', 'inlier')).value_counts()</pre>
```

```
inlier 44248
outlier 309
```

Використаємо метрику cohen_kappa_score(), щоб визначити, наскільки узгоджені дві моделі:

```
from sklearn.metrics import cohen_kappa_score
is_lof_outlier = np.where(lof_preds <
lof_pipeline.named_steps['lof'].offset_,'outlier', 'inlier')
is_iso_outlier = np.where(isolation_forest_preds == -1, 'outlier', 'inlier')
cohen_kappa_score(is_lof_outlier, is_iso_outlier)
0.25862517997335677
```

Отже, моделі мають низький рівень узгодження, тобто зовсім неочевидно, які саме точки є аномальними.