AlphaGo & AlphaGo Zero

Эмиль Каюмов emil.kayumov@gmail.com t.me/emilkayumov

Γο

- Го древняя китайская игра
- Поле 19 на 19
- Соперники поочерёдно ставят камни
- Можно окружать (захватывать) чужие камни
- В конце игры подсчитывается захваченная территория

Го: всё так плохо?

- Полностью детерминированная среда
- Полностью наблюдаемая среда
- Дискретное пространство действий
- Есть симулятор
- Короткие игры
- Легко оценить результат
- Есть база игр людей

То есть всё не так плохо (пост Karpathy «AlphaGo, in context»)

AlphaGo

- Известные техники соединили вместе:
 - Supervised learning
 - REINFORCE
 - Value function
 - Monte Carlo Tree Search
- Статья от 28 января 2016

- Сеть для предсказания ходов людей (SL-policy)
- Данные истории игр людей
- Оперирует набором признаков
- 57% точности
- Дополнительно на расширенном наборе признаков обучается быстрая линейная модель (fast rollout policy)

- Дообучаем SL-policy, играя с собой более старым
- Играем партию, узнаём победителя, обновляем веса
- Играем жадно на каждом ходе

- Обучаем value network для оценки победителя из произвольного хода
- Учится только на N+2 ходе синтетических данных (SL + random + RL)

- Имеем SL-policy, fast rollout policy, RL-policy, value function
- Имеем дерево позиций, находимся в корне, для каждой вершины есть Q показатель уверенности в победе

- а. Симуляция идёт по дереву по max(Q+u(P))
 - u(P) добавка, стимулирующая exploration
 - P априорные вероятности ходов от policy

b. Когда доходим до листа, добавляем новую вершину с возможными ходами и их вероятностями Р через policy

с. Оцениваем новую вершину:

$$Q_{new} = \frac{value\ function + fast\ rollout\ policy}{2}$$

d. Обновляем все Q как среднее по всем потомкам

- Во время игры используем не Q, а «количество хождений в вершину» (стабильнее)
- Для подсчёта априорных Р используется не RL-policy, a SL-policy
 - Эмпирически лучше
 - Возможно, играет разнообразнее

AlphaGo: итого

- Октябрь 2015, чемпион Европы Fan Hui 5:0
- Март 2016, Lee Sedol 4:1
- Конец 2016 начало 2017, онлайн с игроками с топовых позиций — 60:0
- Май 2017, топ1 мирового рейтинга Ke Jie 3:0

AlphaGo: претензии

- Используются игры людей для обучения
- Подаются признаки, а не просто текущая позиция
 - «сколько своих камней ты пожертвуешь, если сходишь в данную точку»
 - «поучаствует ли камень, поставленный в эту точку, в лестничном построении»
 - «сколько ходов назад был поставлен камень»
- Нужно много мощностей (176 GPU у AlphaGo Fan)
 - На самом деле дальше взяли TPU

AlphaGo Zero

- Май 2017: «AlphaGo уходит из Го, больше никаких матчей проводить не будем».
- Октябрь 2017: AlphaGo Zero

AlphaGo Zero: общее

- На вход только состояние поля за последние 8 шагов + свой цвет
- История нужна для того, чтобы сеть сама выучила правило Го против повторных ходов

AlphaGo Zero: общее

- Одна сеть с двумя головами: policy и value
- MCTS не только для финальных игр, но и для обучения
- Никаких историй игр от «кожаных мешков»

AlphaGo Zero: MCTS

- Перед каждым ходом:
 - 1. Идём по Q+U (U добавка для поиска новых путей)
 - 2. Доходим до конца, создаём новую вершину, вычисляем сетью **v** и **P** (один раз)
 - 3. Всем потомкам устанавливаем N = V = Q = 0
 - 4. Обновляем все вершины выше текущей

$$N = N + 1; \ V = V + v; \ Q = \frac{V}{N}$$

5. Повторяем цикл 1600 раз

AlphaGo Zero: ход

- Для реальной игры идём туда, где максимальный N
- Во время обучения выбираем из $\,\pi_i \sim N_i^{\frac{1}{T}}\,$

AlphaGo Zero: сеть

$$L = (z - v)^{2} + \pi^{T} \log p + c \|\theta\|^{2}$$

- 1. Сеть А играет сама с собой 25000 раз
- 2. Берём 1000 батчей по 2048 позиций из 500000 последних игр
- 3. Получаем из сети А сеть В
- 4. Сеть В играет против А 400 раз и если побеждает ≥55% раз, то становится новой сетью А, иначе начинаем заново

AlphaGo Zero: сеть

- 1. 1 convolutional-блок
- 2. 40 residual-блоков (подряд)
- 3. Policy-голова и value-голова

A residual layer

A convolutional layer

The policy head

The value head

 "Humankind has accumulated Go knowledge from millions of games played over thousands of years, collectively distilled into patterns, proverbs and books. In the space of a few days, starting tabula rasa, AlphaGo Zero was able to rediscover much of this Go knowledge, as well as novel strategies that provide new insights into the oldest of games."

- Что теперь? Ничего, просто люди уступили ещё и в Го.
- Например, для роботов:
 - 1. Пространство действий континуально
 - 2. Нет полной информации
 - 3. Симуляторы не идеальны
 - 4. Эпизоды длиннее
 - 5. Сложнее определить успех
 - 6. Нет исторических примеров

Alpha Zero

- Обобщение AlphaGo Zero:
 - Больше свободы в выборе гиперпараметров (без подбора, одинаковая инициализация для всех игр)
 - Постоянное обновление сети (без сражения двух версий сети)
 - Не использует особенности Го (симметрия, отсутствии ничьи)
- Переиграли программы в шахматы, сёги и сыграли на уровне 3-дневного AlphaGo Zero
 - Не обошлось без критики за некоторую нечестность

Ссылки

- AlphaGo Deepmind blog
- AlphaGo: <u>Mastering the game of Go with deep neural</u> networks and tree search
- AlphaGo Zero: <u>Mastering the game of Go without human</u> <u>knowledge</u>
- AlphaZero: <u>Mastering Chess and Shogi by Self-Play with</u> <u>a General Reinforcement Learning Algorithm</u>
- Фильм
- <u>AlphaGo на пальцах</u> (на русском языке)
- AlphaGo Zero на пальцах (на русском языке)