Sprint03_Tasca02

October 7, 2022

Sprint 3

Tasca 2: Dataframes i anàlisi estadístic

0.0.1 Exercici 1

Descarrega el data set Airlines Delay: Airline on-time statistics and delay causes i carrega'l a un Pandas Dataframe. Explora les dades que conté, explica breument quines variables hi ha i queda't únicament amb les columnes que consideris rellevants. Justifica la teva elecció.

```
[1]: from pathlib import Path import numpy as np import pandas as pd from scipy import stats import random import datetime as dt import math
```

- [2]: # file paths
 data_path = 'D:/Sistema_Solar/Python/itacademy/sprint03/data/'
 data_path = Path(data_path)
- [3]: file_name = 'DelayedFlights.csv'
 file = data_path / file_name
 delay_df = pd.read_csv(file)
- [4]: pd.set_option('display.max_columns', None)
 pd.set_option('display.expand_frame_repr', False)
 delay_df.describe(include='all')
- [4]: Unnamed: 0 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay TaxiIn TaxiOut DepDelay Origin Dest Distance Cancelled CancellationCode Diverted CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay 1.936758e+06 1936758.0 1.936758e+06 1.936758e+06 1.936758e+06 1.936758e+06 1.936758e+06 1.929648e+06 1.936758e+06 1936758

```
1.936758e+06 1936753
                            1.928371e+06
                                            1.936560e+06 1.928371e+06
1.928371e+06 1.936758e+06
                            1936758 1936758 1.936758e+06 1.929648e+06
1.936303e+06
              1.936758e+06
                                    1936758 1.936758e+06 1.247488e+06
1.247488e+06
              1.247488e+06
                             1.247488e+06
                                                 1.247488e+06
unique
                 NaN
                            NaN
                                          NaN
                                                         NaN
                                                                       NaN
NaN
              NaN
                            NaN
                                          NaN
                                                          20
                                                                       NaN
5366
                                    NaN
                                                                 NaN
                    NaN
                                                  \tt NaN
NaN
         303
                  304
                                NaN
                                              NaN
                                                             NaN
                                                                           NaN
                                        NaN
                                                      NaN
                                                                      NaN
            NaN
                          NaN
NaN
top
                 NaN
                            NaN
                                          NaN
                                                         NaN
                                                                       NaN
NaN
                            NaN
                                          NaN
                                                          WN
                                                                       NaN
              NaN
N325SW
                      NaN
                                      NaN
                                                    NaN
                                                                   NaN
NaN
         ATL
                  ORD
                                              NaN
                                                             NaN
                                                                           NaN
                                NaN
N
            NaN
                                        NaN
                                                                      NaN
                          NaN
                                                      NaN
NaN
                            NaN
                                                                       NaN
freq
                 NaN
                                          NaN
                                                         NaN
NaN
              NaN
                            NaN
                                          NaN
                                                      377602
                                                                       NaN
965
                   NaN
                                   NaN
                                                 NaN
                                                                NaN
                                                                              NaN
131613
         108984
                          NaN
                                        NaN
                                                       NaN
                                                                     NaN
1936125
                  NaN
                                NaN
                                              NaN
                                                             NaN
                                                                            NaN
NaN
        3.341651e+06
                         2008.0 6.111106e+00 1.575347e+01 3.984827e+00
mean
1.518534e+03 1.467473e+03
                           1.610141e+03 1.634225e+03
2.184263e+03
                            1.333059e+02
                                            1.343027e+02 1.082771e+02
                  NaN
4.219988e+01 4.318518e+01
                                NaN
                                         NaN 7.656862e+02 6.812975e+00
1.823220e+01 3.268348e-04
                                        NaN 4.003598e-03 1.917940e+01
3.703571e+00 1.502164e+01
                             9.013714e-02
                                                2.529647e+01
        2.066065e+06
                            0.0 3.482546e+00 8.776272e+00 1.995966e+00
                            5.481781e+02 4.646347e+02
4.504853e+02 4.247668e+02
                            7.206007e+01
                                            7.134144e+01 6.864261e+01
1.944702e+03
                  NaN
                                         NaN 5.744797e+02 5.273595e+00
5.678472e+01 5.340250e+01
                                NaN
                                        NaN 6.314722e-02 4.354621e+01
1.433853e+01
             1.807562e-02
2.149290e+01
              3.383305e+01
                             2.022714e+00
                                                4.205486e+01
        0.000000e+00
                         2008.0 1.000000e+00 1.000000e+00 1.000000e+00
1.000000e+00
             0.000000e+00
                            1.000000e+00 0.000000e+00
                                                                  NaN
1.000000e+00
                            1.400000e+01
                                           -2.500000e+01 0.000000e+00
                  NaN
-1.090000e+02 6.000000e+00
                                 NaN
                                          NaN 1.100000e+01 0.000000e+00
0.000000e+00 0.000000e+00
                                        NaN 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
                             0.000000e+00
                                                0.000000e+00
                         2008.0 3.000000e+00 8.000000e+00 2.000000e+00
25%
        1.517452e+06
1.203000e+03 1.135000e+03
                            1.316000e+03
                                          1.325000e+03
6.100000e+02
                            8.000000e+01
                                            8.200000e+01 5.800000e+01
                  NaN
9.000000e+00 1.200000e+01
                                NaN
                                         NaN 3.380000e+02 4.000000e+00
1.000000e+01 0.000000e+00
                                        NaN 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
                             0.000000e+00
                                                0.000000e+00
50%
        3.242558e+06
                         2008.0 6.000000e+00 1.600000e+01 4.000000e+00
```

```
1.545000e+03 1.510000e+03 1.715000e+03 1.705000e+03
                                                                NaN
                           1.160000e+02
                                           1.160000e+02 9.000000e+01
1.543000e+03
                 {\tt NaN}
2.400000e+01 2.400000e+01
                               NaN
                                        NaN 6.060000e+02 6.000000e+00
                                            0.000000e+00 2.000000e+00
1.400000e+01 0.000000e+00
0.000000e+00 2.000000e+00
                            0.000000e+00
                                               8.000000e+00
                        2008.0 9.000000e+00 2.300000e+01 6.000000e+00
75%
       4.972467e+06
1.900000e+03 1.815000e+03
                           2.030000e+03 2.014000e+03
                                           1.650000e+02 1.370000e+02
3.422000e+03
                 NaN
                           1.650000e+02
                                        NaN 9.980000e+02 8.000000e+00
5.600000e+01 5.300000e+01
                               NaN
2.100000e+01 0.000000e+00
                                       NaN 0.000000e+00 2.100000e+01
0.000000e+00 1.500000e+01
                            0.000000e+00
                                               3.300000e+01
       7.009727e+06
                        2008.0 1.200000e+01 3.100000e+01 7.000000e+00
2.400000e+03 2.359000e+03
                           2.400000e+03 2.400000e+03
9.742000e+03
                 NaN
                           1.114000e+03
                                           6.600000e+02 1.091000e+03
2.461000e+03 2.467000e+03
                                        NaN 4.962000e+03 2.400000e+02
                               NaN
                                       NaN 1.000000e+00 2.436000e+03
4.220000e+02 1.000000e+00
1.352000e+03 1.357000e+03
                                               1.316000e+03
                            3.920000e+02
```

[5]: delay_df

[5]: Unnamed: O Year Month DayofMonth DayOfWeek DepTime CRSDepTime
ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime
CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn
TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay
NASDelay SecurityDelay LateAircraftDelay

meseraj	DOGGETTOJEGE	aj Laconii.	or ar oboraj			
0	0	2008 1	3	4	2003.0	1955
2211.0	2225	WN	335	N712SW	12	8.0
150.0	116.0 -1	4.0 8	O IAD TF	PA 810	4.0	8.0
0	N	0	NaN	NaN	NaN	
NaN	Na	N				
1	1	2008 1	3	4	754.0	735
1002.0	1000	WN	3231	N772SW	12	8.0
145.0	113.0	2.0 19	O IAD TF	PA 810	5.0	10.0
0	N	0	NaN	NaN	NaN	
	Na					
2	2	2008 1	3	4	628.0	620
804.0	750	WN	448 N	1428WN	96	.0
90.0	76.0 14	.0 8.0	O IND BWI	515	3.0	17.0
0	N	0	NaN	NaN	NaN	
NaN	Na	N				
3	4	2008 1	3	4	1829.0	1755
1959.0	1925	WN	3920	N464WN	9	0.0
90.0	77.0 34	.0 34.0	O IND BWI	515	3.0	10.0
0	N	0	2.0	0.0	0.0	
0.0	32.	0				
4	5	2008 1	3	4	1940.0	1915
2121.0	2110	WN	378	N726SW	10	1.0

	87.0 11.0				4.0	10.0
0	N	0	NaN	NaN	NaN	
NaN	NaN					
•••		•••			•••	
•••		•••	•••	•••		
				•••		
•••		•••	•••			
	•••					
	7009710 2008		13			
	1552	DL	1621 N938DL		147	·.0
	120.0 25.0					18.0
0	N	0	3.0	0.0	0.0	
	22.0					
	7009717 2008					
904.0	749	DL	1631 N3743H RIC ATL		127.	0
						34.0
0	N	0	0.0	57.0	18.0	
0.0						
	7009718 2008					
1149.0			1631 N909DA			
143.0				689	8.0	32.0
0	N	0	1.0	0.0	19.0	
0.0	79.0					
1936756	7009726 2008	12	13	6	1251.0	1240
1446.0	1437	DL	1639 N646DL			
117.0	89.0 9.0		IAD ATL		13.0	13.0
0	N	0	NaN	${\tt NaN}$	NaN	
NaN	NaN					
1936757	7009727 2008	12	13	6	1110.0	1103
1413.0	1418					
135.0	104.0 -5.0	7.0	SAT ATL	874	8.0	11.0
0	N		NaN		NaN	
NaN	NaN					

[1936758 rows x 30 columns]

Redueix la dimensió del dataset de manera aleatòria per tal d'obtenir un dataset de només 200.000 registres. Tots els exercicis s'han de fer amb aquest dataset reduït.

- [6]: delay_df = delay_df.sample(n=200000, random_state=1) # El mostreig serà⊔

 →aleatori però sempre el mateix per random_state=1
- [7]: delay_df
- [7]: Unnamed: O Year Month DayofMonth DayOfWeek DepTime CRSDepTime
 ArrTime CRSArrTime UniqueCarrier FlightNum TailNum ActualElapsedTime
 CRSElapsedTime AirTime ArrDelay DepDelay Origin Dest Distance TaxiIn
 TaxiOut Cancelled CancellationCode Diverted CarrierDelay WeatherDelay

NASDelay	SecurityDelay L	ateAircraf	tDelay		
•	6516830 2008			5	1332.0 1320
1436.0	1430	WN	3858 N700GS		64.0
70.0	49.0 6.0	12.0	CLE BWI	314	7.0 8.0
0	N	0	NaN	NaN	NaN
NaN	NaN				
1074983	3577214 2008	6	17	2	1731.0 1720
	1955				342.0
335.0	316.0 18.0	11.0	EWR LAS	2227	8.0 18.0
0	N	0	11.0	0.0	7.0
0.0	0.0				
46126	148177 2008				735.0 645
918.0	815	YV	7343 N27185		103.0
90.0	54.0 63.0	50.0	ORD BNA	409	4.0 45.0
0	N	0	63.0	0.0	0.0
0.0	0.0				
327441	1035260 2008				1333.0 1230
1515.0	1438	9E	2927 87189E		102.0
128.0	80.0 37.0	63.0	ORF DTW	529	7.0 15.0
0	N	0	0.0	0.0	0.0
0.0	37.0				
1363177	4599044 2008				1359.0 1346
1517.0	1447	FL	301 N267AT		198.0
181.0	178.0 30.0	13.0	ATL DEN	1199	5.0 15.0
0	N	0	13.0	0.0	17.0
0.0	0.0				
		•••	•••		•••
•••		•••	•••	•••	
			•••	•••	
•••				•••	
•••	•••				
	5763672 2008				
112.0	2225		4205 N643MQ		133.0
	109.0 167.0				
0	N	0	0.0	0.0	8.0
0.0	159.0				
	5275042 2008		25	4	2052.0 1930
	2245				
135.0					34.0 54.0
0	N	0	0.0	0.0	150.0
0.0	0.0				
					1335.0 1325
1422.0	1415	WN	1902 N316SW		47.0
	37.0 7.0				
0	N	0	NaN	NaN	NaN
NaN				_	
1840527	6749307 2008	12	23	2	720.0 710

839.0	831		DL	1653 N996DL		79.0	
81.0	50.0	8.0	10.0	CLT ATL	227	9.0	20.0
0	N		0	NaN	NaN	NaN	
NaN	N	IaN					
1526456	5395875	2008	10	6	1	1657.0	1650
2217.0	2205		WN	748 N675AA		200.0	
195.0	185.0	12.0	7.0	PHX MDW	1444	3.0	12.0
0	N		0	NaN	NaN	NaN	
NaN	N	IaN					

[200000 rows x 30 columns]

El dataset està conformat per 29 variables:

- **0.** Unnamed **0**: Camp que ennumera els registres.
- Year: L'any.
 Month: El mes.
- 3. DayofMonth: Dia del mes.
- 4. DayofWeek: Dia de la setmana.
- **5. DepTime**: L'hora de sortida real, en hora local (format hhmm).
- 6. CRSDepTime: L'hora de sortida programda.
- 7. ArrTime: L'hora d'arribada real, en hora local.
- 8. CRSArrTime: L'hora d'arribada programada.
- 9. UniqueCarrier: Codi IATA de la companyia.
- 10. FlightNum: Número del vol.
- 11. TailNum: número de la cola del avió que identifica un avió.
- 12. ActualElapsedTime: Durada real del vol, en minuts.
- 13. CRSElapsedTime: Durada del vol programat.
- 14. AirTime: Temps en el qual l'avió es troba enlairat.
- 15. ArrDelay: Retard en l'arribada, en minuts. Sols es considera un vol ha arribat amb retard si ho fa en 15 o més minuts del programat.
- 16. DepDelay: Retard en la sortida.
- 17. Origin: Codi IATA de l'aeroport de sortida.
- 18. Dest: Codi IATA de l'aeroport d'arribada.
- 19. Distance: Distància del vol, en milles.
- 20. TaxiIn: Temps en el qual l'avió circula per pista en direcció a la pista d'enlairament.
- 21. TaxiOut: Temps en el qual l'avió circula per pista des de l'aterratge fins el lloc de desembarcament.
- 22. Cancelled: 1 si el vol ha sigut cancel·lat o 0 si no ho ha estat.
- **23.** CancellationCode: Codi de cancel·lació indicant la raó (A = Aerolinia; B = Temps; C = Retards en el Sistema d'espai aeri nacional que inclou condicions meteorologiques no extremes, operacions en l'aeroport, alt volum de tr'afic, etc...; D = Seguretat).
- **24.** Diverted: Indica si el vol ha sigut desviat (1 = Si, 0 = No).
- 25. CarrierDelay: El temps de retard degut a motius de l'aerolínia.
- 26. WeatherDelay: El temps de retard degut a motius del temps.
- 27. NASDelay: El temps de retard degut al NAS, el Sistema d'espai aeri nacional.
- 28. SecurityDelay: El temps de retard degut a motius de seguretat.
- 29. LateAircraftDelay: El temps de retard en un aeroport degut al retard en l'aeroport anterior

d'on ve un avió.

Selecció de variables i creació de noves

La columna 0 s'elimina. Les columnes 1 a 3 ens indiquen el dia i l'hora del vol, les mantenim però eliminem (4) el dia de la setmana.

Mentre que les de la 5 a la 8, ens quedem simplement amb l'hora programada ja que ja obtenim els retards en un altre camp. Però mantenim l'hora d'arribada real per fer comprovacions posteriors.

```
[8]: delay_df = delay_df.drop(columns=['Unnamed: 0', 'DayOfWeek', 'DepTime', GRSDepTime'])
```

Podem calcular el número de vols diferents que hi han a partir del número de vol

```
[9]: print(len(delay_df['FlightNum'].unique()))
```

7284

Com també quin són els vols més frequents:

```
[10]: flight_num_count = delay_df['FlightNum'].value_counts()
      print(flight_num_count)
     44
              172
      16
              168
     50
              164
              154
     511
     47
              154
     7680
                1
     7404
                 1
     7751
                1
     6837
                1
     6050
                 1
```

Name: FlightNum, Length: 7284, dtype: int64

Quin són aquests trajectes? Necessitem les columnes Origin i Dest que són les mateixes per a cada número de vol. Ho comprovem amb el número de vol mé nombròs.

```
[11]: search = delay_df['FlightNum'] == flight_num_count.iloc[0]
busiest_flight_df = delay_df[search]
```

```
[12]: busiest_flight_df['Origin']
```

```
[12]: 1148884 SF0
293499 TUS
1704202 MEM
1404151 JNU
255291 SF0
1682529 SAN
1544090 OAK
```

445	MCO
629430	SF0
318361	MEM
1211421	MEM
660595	TUS
1259845	SEA
1591231	LIH
1347596	SEA
600485	BOI
1259111	SEA
360117	SMF
1835687	SAN
1081777	SEA
1879932	OMA
1265303	SEA
1879925	MEM
629428	SF0
1408768	SMF
1259471	SEA
1065670	SMF
488276	TUS
1406660	SMF
823233	LIH
130753	MEM
1577578	SEA
1536771	OAK
1933962	SAN
1412610	SMF
68322	SF0
1412342	SMF
1211419	MEM
787566	SF0
554411	SMF
1731267	SAN
1811336	SF0
1081326	SEA
1666007	SF0
9711	MDW
600490	BOI
1241955	JNU
823232	LIH
1242467	JNU
1062350	SMF
1921765	SMF

Name: Origin, dtype: object

8

0.0.2 Continuem

Mantenim (9) UniqueCarrier per identificar l'aerolinia i (11) el número de cola. Descartem el (10) número de vol. Del (12) i (13), la diferència és el retard però mantenim (14) per calcular posteriorment la velocitat mitjana. Retindrem (15) ArrDelay i (16) DepDelay.

```
[13]: delay_df = delay_df.drop(columns=['CRSElapsedTime', 'FlightNum', Grant of the state of the
```

Mantenim els codis IATA dels aeroports d'origen i de sortida (17 i 18). Mantenim la distància per calcular la velocitat (19) però descartem el temps que està l'avió circulant a l'aeroport (20 i 21)

```
[14]: \begin{tabular}{ll} $\#delay\_df = delay\_df.drop(columns=['TaxiIn', 'TaxiOut']) \\ \end{tabular}
```

Retenim (22) i (23) per saber quins vol són cancel·lats, i els motius. i també els retards atribuïts als diferents motius (25-29).

```
[15]: delay_df = delay_df.drop(columns=['Diverted'])
```

0.0.3 Exercici 2

Fes un informe complet del dataset:

- Resumeix estadísticament el dataset i les columnes d'interès.
- Fes una anàlisi estadístic del que consideris rellevant.
- Troba quantes dades faltants hi ha per columna.
- Crea columnes noves (velocitat mitjana del vol, si ha arribat tard o no...).
- Fes una taula de les aerolínies amb més endarreriments acumulats.
- Quins són els vols més llargs? I els més endarrerits? Busca les rutes més llargues i les que acumulen més retards.
- Aporta allò que consideris rellevant.

Creem una nova columna 'Date' que uneix la informació de les columnes 1 a 4 en una sola. Aquestes columnes les el·liminem i aprofitem per reordernar-les

```
[17]: cols = delay_df.columns.tolist()
cols = cols[-1:] + cols[:-1]
delay_df = delay_df[cols]
```

- 1. Date
- 2. CRSArrTime
- 3. UniqueCarrier

- 4. FlightNum
- 5. TailNum
- 6. ArrDelay
- 7. DepDelay
- 8. Origin
- 9. Dest
- 10. Cancelled
- 11. CancellationCode
- 12. CarrierDelay
- 13. WeatherDelay
- 14. NASDelay
- 15. SecurityDelay
- 16. LateAircraftDelay

[18]: delay_df

[18]: Date ArrTime CRSArrTime UniqueCarrier TailNum AirTime ArrDelay TaxiIn TaxiOut Cancelled CancellationCode DepDelay Origin Dest Distance CarrierDelay WeatherDelay NASDelay SecurityDelay LateAircraftDelay 1750755 2008-12-19 1436.0 1430 WN N700GS 49.0 6.0 7.0 12.0 CLE BWI 314 8.0 0 N NaNNaN NaN NaN NaN 1074983 2008-06-17 1955 CO N54241 18.0 2013.0 316.0 11.0 EWR LAS 2227 8.0 18.0 0 N 11.0 0.0 7.0 0.0 0.0 YV N27185 46126 2008-01-27 63.0 918.0 815 54.0 50.0 ORD BNA 409 4.0 45.0 0 N 63.0 0.0 0.0 0.0 0.0 327441 2008-02-13 1515.0 1438 9E 87189E 80.0 37.0 63.0 ORF DTW 529 7.0 15.0 0 N 0.0 0.0 0.0 37.0 0.0 1363177 2008-08-12 1517.0 1447 FL N267AT 178.0 30.0 13.0 ATL DEN 1199 5.0 15.0 0 N 13.0 0.0 0.0 17.0 0.0

		•••		•••	•••			
•••	•••	•••	•••		•••			
1595898	2008-10-27	112.0	22	25	MQ	N643MQ	109.0	167.0
159.0	ORD BDL	783	4.0	20.0		0	N	
0.0	0.0	8.0		0.0		159.0		
1503090	2008-09-25	115.0	22	245	AA	N433AA	115.0	150.0
82.0	ORD LGA	733	34.0	54.0	0		N	
0.0	0.0	150.0		0.0		0.0		
742602	2008-05-16	1422.0	14	15	WN	N316SW	37.0	7.0
10.0	OKC DAL	181	3.0	7.0	0		N	
NaN	NaN	NaN		NaN		NaN		
1840527	2008-12-23	839.0	8	31	DL	N996DL	50.0	8.0
10.0	CLT ATL	227	9.0	20.0	0		N	
NaN	NaN	NaN		NaN		NaN		
1526456	2008-10-06	2217.0	22	205	WN	N675AA	185.0	12.0
7.0	PHX MDW	1444	3.0	12.0	0		N	
NaN	NaN	NaN		NaN		NaN		

[200000 rows x 20 columns]

Quina és la completitud de les dades disponibles? Cerquem els NA de les diferents variables?

[19]: delay_df.isna().sum()

[19]:	Date	0
	ArrTime	792
	CRSArrTime	0
	UniqueCarrier	0
	TailNum	1
	AirTime	920
	ArrDelay	920
	DepDelay	0
	Origin	0
	Dest	0
	Distance	0
	TaxiIn	792
	TaxiOut	58
	Cancelled	0
	${\tt CancellationCode}$	0
	CarrierDelay	71210
	WeatherDelay	71210
	NASDelay	71210
	SecurityDelay	71210
	${\tt LateAircraftDelay}$	71210
	dtype: int64	

[20]: delay_df.isna().sum() / len(delay_df) * 100

- [20]: Date 0.0000 ArrTime 0.3960 CRSArrTime 0.0000 UniqueCarrier 0.0000 TailNum 0.0005 AirTime 0.4600 ArrDelay 0.4600 DepDelay 0.0000 Origin 0.0000 Dest 0.0000 Distance 0.0000 TaxiIn0.3960 TaxiOut 0.0290 Cancelled 0.0000 CancellationCode 0.0000 CarrierDelay 35.6050 WeatherDelay 35.6050 NASDelay 35.6050 SecurityDelay 35.6050 LateAircraftDelay 35.6050
 - 1. Date
 - 2. ArrTime

dtype: float64

- 3. CRSArrTime
- 4. UniqueCarrier
- 5. TailNum
- 6. AirTime
- 7. ArrDelay
- 8. DepDelay
- 9. Origin
- 10. Dest
- 11. Distance
- 12. TaxiIn
- 13. TaxiOut
- 14. Cancelled
- 15. CancellationCode
- 16. CarrierDelay
- 17. WeatherDelay

- 18. NASDelay
- 19. SecurityDelay
- 20. LateAircraftDelay

1. Data

Però açò pot estar relacionat a que falten dades o bé perquè, en els casos on apareixen NA, relacionat amb que no s'ha registrat retards. Anem a inspeccionar les diferents variables.

La data de les dades és de l'any 2008

```
[21]: delay_df['Date'].min()
[21]: Timestamp('2008-01-01 00:00:00')
[22]: delay_df['Date'].max()
[22]: Timestamp('2008-12-31 00:00:00')
     2. CRSArrTime: El temps d'arribada esperada
[23]: delay_df['CRSArrTime'] = delay_df['CRSArrTime']/100
[24]: delay_df['CRSArrTime']
[24]: 1750755
                 14.30
      1074983
                 19.55
      46126
                  8.15
      327441
                 14.38
      1363177
                 14.47
                 22.25
      1595898
      1503090
                 22.45
      742602
                 14.15
      1840527
                  8.31
                 22.05
      1526456
      Name: CRSArrTime, Length: 200000, dtype: float64
```

3. UniqueCarrier.

Les diferents companyies que conformen les dades són:

Aquest és el codi IATA (International Air Transport Association). Perquè quede més clar de quines companyies parlem, anem a incloure-les a la nostra dataframe a partir de la informació

```
recabada de les següents pàgines webs. https://en.wikipedia.org/wiki/List_of_airline_codes
     https://aspm.faa.gov/aspmhelp/index/ASQP Carrier Codes And Names.html
     https://www.tvlon.com/resources/airlinecodes.htm
     Confeccionem un excel i l'apugem.
[26]: file name = 'UniqueCarrier.csv'
      file = data_path / file_name
      unique_carrier_df = pd.read_csv(file, sep = ';')
     L'excel conté la relació dels codis i el nom de la companyia
[27]: unique_carrier_df.iloc[0:2]
[27]:
        IATA Code
                     Air Carrier Name
               9E
                         Endeavor Air
      0
      1
               AA American Airlines
[28]: air_carrier_names = []
      for code in delay_df['UniqueCarrier']:
          filter = unique_carrier_df['IATA Code'] == code
          name = unique_carrier_df[filter]['Air Carrier Name']
          try:
              air_carrier_names.append(name.values[0])
          except IndexError:
              air_carrier_names.append(np.nan)
[29]: delay_df['air_carrier_names'] = air_carrier_names
     4. NumTail
[30]: print(delay_df['TailNum'].value_counts())
      print(len(delay_df['TailNum'].unique()))
     N676SW
                115
     N665WN
                108
     N325SW
                107
     N328SW
                103
     N683SW
                103
     N603NW
                  1
     N1501P
                  1
     N186DN
                  1
                  1
     N173DZ
     N823AL
                  1
     Name: TailNum, Length: 5269, dtype: int64
     5270
```

5. Rutes

Quins són els trajectes més freqüents? Amb els camps d'origen i destí, crearem un nou, la ruta.

```
[31]: delay_df['Route'] = delay_df['Origin'] + '-' + delay_df['Dest']
[32]:
      delay_df['Route'].value_counts()
[32]: ORD-LGA
                  478
      LAX-SFO
                  473
      SFO-LAX
                 423
      ATL-LGA
                 400
      LGA-ATL
                  381
      LAS-ROC
                    1
      AKN-DLG
                    1
      ABE-LGA
                    1
      OKC-SAT
                    1
      GRR-MCO
                    1
      Name: Route, Length: 4805, dtype: int64
```

Estes sigles corresponen al codi de la IATA i les podem traduir als aeroports per fer més fàcil reconèixer què rutes són, utilitzem aquesta relació dels codis:

https://datahub.io/core/airport-codes#resource-airport-codes

```
[33]: file_name = 'airport-codes_csv.csv'
file = data_path / file_name
IATA_airport_df = pd.read_csv(file, sep = ',')
```

[34]: IATA_airport_df

[34]: ident elevation_ft type name continent iso_country iso_region municipality gps_code iata_code local_code coordinates 00A heliport Total Rf Heliport 11.0 US-PA OOA NaN US Bensalem AOO -74.93360137939453, 40.07080078125 OOAA small_airport Aero B Ranch Airport 3435.0 NaNUS US-KS Leoti AAOO NaN OOAA -101.473911, 38.704022 small_airport 2 OOAK Lowell Field 450.0 US-AK Anchor Point OOAK NaN OOAK NaNUS -151.695999146, 59.94919968 3 OOAL small_airport Epps Airpark 820.0 US-AL OOAL NaN OOAL US Harvest -86.77030181884766, 34.86479949951172 closed Newport Hospital & Clinic Heliport 4 OOAR. 237.0 US-AR Newport NaN NaN NaNUS NaN-91.254898, 35.6087

```
57416
                                                    Yingkou Lanqi Airport
                                                                                     0.0
                ZYYK
                      medium_airport
      AS
                  CN
                          CN-21
                                           Yingkou
                                                       ZYYK
                                                                  YKH
                                                                              NaN
      122.3586, 40.542524
      57417
                ZYYY
                      medium_airport
                                                  Shenyang Dongta Airport
                                                                                     NaN
      AS
                  CN
                          CN-21
                                          Shenyang
                                                       ZYYY
                                                                  NaN
                                                                              NaN
      123.49600219726562, 41.784400939941406
      57418 ZZ-0001
                            heliport
                                                          Sealand Helipad
                                                                                    40.0
      EU
                  GB
                         GB-ENG
                                           Sealand
                                                        NaN
                                                                   NaN
                                                                              NaN
      1.4825, 51.894444
      57419 ZZ-0002
                       small airport
                                                Glorioso Islands Airstrip
                                                                                    11.0
      AF
                  TF
                         TF-U-A Grande Glorieuse
                                                        NaN
                                                                  NaN
                                                                              NaN
      47.296388888900005, -11.584277777799999
      57420
                ZZZZ
                       small_airport
                                                  Satsuma IÅ jima Airport
                                                                                  338.0
                          JP-46
                  JP
                                                       RJX7
                                                                  NaN
      AS
                                     Mishima-Mura
                                                                             RJX7
      130.270556, 30.784722
      [57421 rows x 12 columns]
[35]: # Creem una llista amb les rutes amb més vols i afegim el números de vols
      busiest_routes = delay_df['Route'].value_counts()
      busiest routes names = []
      length = 5
      for i in range(length):
          code = busiest_routes.index[i]
          route_name = []
          code = code.split('-') # Separem la ruta en els dos codis individuals peru
       ⇔fer la conversió al nom
          search = IATA_airport_df['iata_code'] == code[0]
          origin = IATA_airport_df[search]['name'].values[0]
          search = IATA_airport_df['iata_code'] == code[1]
          dest = IATA_airport_df[search]['name'].values[0]
          busiest_routes_names.append(origin + ' - ' + dest + ' (' +
       ⇔str(busiest_routes.values[i]) + ')')
[36]: busiest_routes_names
[36]: ["Chicago O'Hare International Airport - La Guardia Airport (478)",
       'Los Angeles International Airport - San Francisco International Airport
      (473)',
       'San Francisco International Airport - Los Angeles International Airport
      (423)',
       'Hartsfield Jackson Atlanta International Airport - La Guardia Airport (400)',
       'La Guardia Airport - Hartsfield Jackson Atlanta International Airport (381)']
```

Aquí estem considerant de forma separada viatges d'anada i tornada i les podriem intentar comptar com les mateixes. Per exemple, la primera ruta és. ORD-LGA. Per tant, ha d'exisir també la ruta LGA - ORD. Anem a buscar-ho.

```
[37]: search = delay_df['Route'] == 'LGA-ORD'
      delay_df['Route'][search]
[37]: 1566991
                 LGA-ORD
      1468307
                 LGA-ORD
      260761
                 LGA-ORD
      1038324
                 LGA-ORD
      1816177
                 LGA-ORD
                 LGA-ORD
      454743
      261023
                 LGA-ORD
                 LGA-ORD
      456196
      634465
                 LGA-ORD
      1386942
                 LGA-ORD
     Name: Route, Length: 348, dtype: object
[38]: len(delay_df['Route'][search])
[38]: 348
[39]: # Creem un nou llistat que continga sols un sentit de cada ruta
      route_preunique = delay_df['Route'].unique()
      route_unique = []
      for route in route_preunique:
          route inv = route.split('-')
          route_inv = route_inv[1] + '-' + route_inv[0]
          if (route not in route_unique and route_inv not in route_unique):
              route_unique.append(route)
[40]: len(route_preunique)
[40]: 4805
[41]: len(route_unique) # Les rutes realment úniques són més o menys la meitat que si
       \hookrightarrowles comptem les anades i tornades de forma separada
[41]: 2476
[42]: # Fem el compteig del número de vegades que es fa cada ruta única
      route_dict = {}
      for route in route_unique:
          search = delay_df['Route'] == route
          count = len(delay_df['Route'][search])
```

```
route = route.split('-')
          route_2 = route[1] + '-' + route[0]
          search = delay_df['Route'] == route_2
          count += len(delay_df['Route'][search])
          route_dict[route_2] = count
      route_df = pd.DataFrame.from_dict(data=route_dict, orient='index',__

columns=['count'])
[43]: busiest_routes_2 = route_df.sort_values(by=['count'], ascending = False)
[44]: busiest_routes_names_2 = []
      length = 10
      for i in range(length):
          code = busiest_routes_2.index[i]
          route_name = []
          code = code.split('-')
          search = IATA_airport_df['iata_code'] == code[0]
          origin = IATA airport df[search]['name'].values[0]
          search = IATA_airport_df['iata_code'] == code[1]
          dest = IATA airport df[search]['name'].values[0]
          busiest_routes_names_2.append(origin + ' - ' + dest + ' (' +
       str(busiest_routes_2.values[i]) + ')')
[45]: busiest_routes_names_2
[45]: ['San Francisco International Airport - Los Angeles International Airport
       "La Guardia Airport - Chicago O'Hare International Airport ([826])",
       'Hartsfield Jackson Atlanta International Airport - La Guardia Airport
       'William P Hobby Airport - Dallas Love Field ([656])',
       "Newark Liberty International Airport - Chicago O'Hare International Airport
      ([642])",
       "Chicago O'Hare International Airport - Dallas Fort Worth International Airport
      ([634])",
       'Los Angeles International Airport - McCarran International Airport ([625])',
       'Newark Liberty International Airport - Hartsfield Jackson Atlanta
      International Airport ([620])',
       "Chicago O'Hare International Airport - Minneapolis-St Paul International/Wold-
      Chamberlain Airport ([611])",
       'Dallas Fort Worth International Airport - Hartsfield Jackson Atlanta
      International Airport ([608])']
```

6. Retards:

En el cas dels retards, ens trobem que hi han dades NA, aquestes per què ocorren? Poden ser vols

que no hagen tingut endarreriment, s'hagin cancel \cdot lat? Ens calen les dades reals d'arribada.

[46]: # Selectionarem primer els vols amb NA en el retard i després, sí també tenen

→Nan en el temps real d'arribada

nan_delay = delay_df[np.isnan(delay_df['ArrDelay'])]

nan_delay[np.isnan(nan_delay['ArrTime'])]

[46]:		Date Ar	rTime C	RSArrTime	e UniqueCar	rier 5	ΓailNum	AirTime ArrD	elay
	DepDelay Orig	gin Dest	Distance	TaxiIn	TaxiOut	Cance	lled Can	cellationCode	
	CarrierDelay	WeatherD	elay NA	SDelay S	SecurityDel	ay La	ateAircr	aftDelay	
	air_carrier_n	names R	oute						
	1889862 2008-	-12-21	NaN	23.0	7	9E	87589E	NaN	${\tt NaN}$
	144.0 DTW	LEX	296	NaN	NaN	-	L	В	
	NaN	NaN	NaN		NaN		NaN	Ende	avor
	Air DTW-LEX								
	921578 2008-	-06-05	NaN	20.20)	XE	N14959	NaN	NaN
	190.0 MSP	IAH	1034	NaN	65.0	()	N	
	NaN	NaN	NaN		NaN		NaN		
	JSX MSP-IAH								
	1501260 2008-	-09-14	NaN	24.00)	9E	89289E	NaN	NaN
	8.0 MSP S	SDF	603	NaN 2	26.0	0		N	
	NaN	NaN	NaN		NaN		NaN	Ende	avor
	Air MSP-SDF								
	3179 2008-	-01-04	NaN	21.50)	WN	N368SW	NaN	NaN
	106.0 SJC	LAX	308	NaN	17.0	()	N	
	NaN	NaN	NaN		NaN		NaN	Southwest	
	Airlines SJC	C-LAX							
	1303762 2008-	-08-04	NaN	15.50)	YV	N75993	NaN	NaN
	217.0 MBS	ORD	222	NaN	12.0	()	N	
	NaN	NaN	NaN		NaN		NaN	Mesa Airlin	es,
	Inc. MBS-ORD)							
				•••			•••	•••	
		•••				•••			
				•••		•••			
	1420318 2008-		NaN	17.59		CO	N73251	NaN	NaN
	51.0 IAH	LGA	1416	NaN	83.0	0		N	
	NaN	NaN	NaN		NaN		NaN	Continental A	ir
	Lines IAH-LO	I A							
	1227495 2008-		NaN	21.20	-	AA	N271AA	NaN	NaN
	92.0 DFW	EWR	1372	NaN	14.0	0		N	
	NaN	NaN	NaN		NaN		NaN	American	
	Airlines DFW								
	1092843 2008-		NaN	23.10			N268WN		NaN
	11.0 PHX		1020	NaN		0		N	
	NaN	NaN	NaN		NaN		NaN	Southwest	
	Airlines PHX	T-HOU							

351149	2008-02-04	NaN	17.	30	AA	N5FEAA	NaN	NaN
231.0	EWR EGE	1725	NaN	25.0	(O	N	
NaN	NaN	NaN		NaN		NaN	America	n
Airline	s EWR-EGE							
1017381	2008-06-06	NaN	13.	20	MQ	N626AE	NaN	NaN
47.0	CLT ORD	599	NaN	24.0	0		N	
NaN	NaN	NaN		NaN		NaN		Envoy
Air CL	T-ORD							

[792 rows x 22 columns]

```
[47]: len(delay_df[delay_df.Cancelled == 1])
```

[47]: 77

Observem que la major part dels Nans es deuen a que falta l'hora d'arribada real (en alguns casos és degut a que s'han cancel·lat), tot i que sí que hi han dades del retard en l'eixida. Així que descartem els registres amb Nans.

```
[48]: delay_df_notna = delay_df[delay_df['ArrDelay'].notna()]
```

Sorpren la elevada mitjana dels retards, que supera els 40 minuts. Tot i que la mediana es de 24 minuts. Ho siga, la mitja es troba influenciada pels vols que arriben a tindre retards superiors a un dia i tot i això, hi han valors inferiors a 0 que indiquen que s'ha arribat abans. (Cosa que pot ocorrer perquè l'avió trobe vents en altura intensos de cua).

```
Mitja: 42.0
Percentil 0: -59.0
Percentil 3: -8.0
Percentil 10: 0.0
Percentil 20: 6.0
Percentil 30: 12.0
Percentil 40: 17.0
Percentil 50: 24.0
Percentil 60: 34.0
Percentil 70: 47.0
Percentil 80: 67.0
Percentil 90: 106.0
Percentil 95: 148.0
Percentil 97: 180.0
Percentil 100: 1951.0
```

Creem una nova columna i classifiquem els endarreriments. Podem considerar que si arriba en menys de 15 minuts no hi ha hagut retard.

Menys de 15 minuts: Sense retard Entre 15 y 30 minuts: Retard lleuger Entre 30 y 60 minuts: Retard moderat Més de 60 minuts: Gran retard

```
[50]: Sense retard 70290
Petit 40933
Mitjà 41635
Gran 45354
```

Name: ArrDelay_Class, dtype: int64

Un 35~% dels vols no tenen retards i més d'un 20~% tenen retards superiors a l'hora

```
[51]: round((delay_class_count / len(delay_df) * 100), 1)
```

```
[51]: Sense retard 35.1

Petit 20.5

Mitjà 20.8

Gran 22.7
```

Name: ArrDelay_Class, dtype: float64

Quins són els retards segons l'aerolínia?

```
[52]: carrier_delay_dict = {}

for carrier in delay_df['air_carrier_names'].unique():
    subset = delay_df[delay_df['air_carrier_names'] == carrier]
    carrier_delay_dict[carrier] = subset['ArrDelay_Class'].
    value_counts()[['Sense retard', 'Petit', 'Mitjà', 'Gran']]

carrier_delay_df = pd.DataFrame.from_dict(data=carrier_delay_dict,___
    orient='index')
```

```
carrier_delay_df['Total'] = carrier_delay_df['Sense retard'] +_U
carrier_delay_df['Petit'] + carrier_delay_df['Mitjà'] +_U
carrier_delay_df['Gran']

carrier_delay_df['Sense retard %'] = round(carrier_delay_df['Sense retard'] /_U
carrier_delay_df['Total'] * 100, 1)

carrier_delay_df['Petit %'] = round(carrier_delay_df['Petit'] /_U
carrier_delay_df['Total'] * 100, 1)

carrier_delay_df['Mitjà %'] = round(carrier_delay_df['Mitjà'] /_U
carrier_delay_df['Total'] * 100, 1)

carrier_delay_df['Gran %'] = round(carrier_delay_df['Gran'] /_U
carrier_delay_df['Total'] * 100, 1)
```

[53]: carrier_delay_df.sort_values(by = 'Sense retard %', ascending = False)

[53]:					Sense retard	Petit	Mitjà	Gran	Total	Sense
	retard %	Petit %	Mitjà	% Gr						
	Mapjet				35	17	8	8	68	
		25.0		11.8						
		t Airline	S		17962	8079	7105	5643	38789	
	46.3	20.8	18.3	14.5						
	Frontier	Airlines	, Inc.		1259	784	535	387	2965	
	42.5	26.4	18.0	13.1						
	Hawaiian	Airlines	Inc.		319	212	139	95	765	
	41.7	27.7	18.2	12.4	ŧ					
	Continen	tal Air L	ines		4329	1807	1897	2435	10468	
	41.4	17.3	18.1	23.3	3					
	US Airwa	ys			3872	2099	2089	2005	10065	
	38.5	20.9	20.8	19.9)					
	Alaska A	irlines			1537	914	878	707	4036	
	38.1	22.6	21.8	17.5	, ,					
	Delta Ai:	r Lines,	Inc.		4304	2655	2362	2465	11786	
	36.5	22.5	20.0	20.9)					
	AirTran				2447	1633	1506	1709	7295	
	33.5	22.4	20.6	23.4	<u> </u>					
	United A	irlines,	Inc.		4668	2614	2990	3953	14225	
	32.8	18.4	21.0	27.8	3					
	Skywest	Airlines			4405	2779	2747	3587	13518	
	32.6	20.6	20.3	26.5	,					
	Envoy Ai:	r			4502	2983	3398	3558	14441	
	31.2	20.7	23.5	24.6	3					
	Endeavor	Air			1649	1086	1214	1368	5317	
	31.0	20.4	22.8	25.7	•					
	Northwes	t Airline	S		2474	1817	2032	1687	8010	
	30.9	22.7	25.4	21.1						
	American	Airlines			6130	4081	4501	5116	19828	
	30.9	20.6	22.7	25.8	3					

```
ExpressJet Airlines
                                      2548
                                             1821
                                                    1838 2156
                                                                  8363
30.5
         21.8
                           25.8
                  22.0
Jetblue Airways Corporation
                                      1710
                                              930
                                                    1191 1797
                                                                  5628
30.4
         16.5
                  21.2
                           31.9
JSX
                                      3137
                                             2033
                                                    2324
                                                          3002
                                                                 10496
29.9
         19.4
                  22.1
                           28.6
Jetstream Intl
                                      1371
                                                    1347 1484
                                             1163
                                                                  5365
25.6
         21.7
                  25.1
                           27.7
Mesa Airlines, Inc.
                                      1632
                                             1426
                                                    1534 2192
                                                                  6784
24.1
         21.0
                  22.6
                           32.3
```

Quines rutes tenen més retards?

```
[54]: # Considerarem de nou, les anades i tornades com les mateixes rutes. Arau
       ⇔crearem un nou camp amb les rutes úniques al dataframe
      for route in route unique:
          delay_df.loc[delay_df.Route == route, 'RouteUnique'] = route
          route split = route.split('-')
          route_2 = route_split[1] + '-' + route_split[0]
          delay_df.loc[delay_df.Route == route_2, 'RouteUnique'] = route
      # Fem un diccionari per clasificar els retards en cada una de les rutes.
      route_delay_dict = {}
      for route in route_unique:
          subset = delay_df[delay_df['RouteUnique'] == route]
          delay_class_count = subset['ArrDelay_Class'].value_counts()
          route_delay_dict[route] = delay_class_count
      # Calcularem els percentatges
      route_delay_df = pd.DataFrame.from_dict(data=route_delay_dict, orient='index')
      route delay df['Total'] = route delay df['Sense retard'] + |
       →route_delay_df['Petit'] + route_delay_df['Mitjà'] + route_delay_df['Gran']
      route_delay_df['Sense retard %'] = round(route_delay_df['Sense retard'] /__
       →route_delay_df['Total'] * 100, 1)
      route_delay_df['Petit %'] = round(route_delay_df['Petit'] /__
       →route_delay_df['Total'] * 100, 1)
      route_delay_df['Mitjà %'] = round(route_delay_df['Mitjà'] /__
       →route_delay_df['Total'] * 100, 1)
      route_delay_df['Gran %'] = round(route_delay_df['Gran'] /__
       ⇔route_delay_df['Total'] * 100, 1)
      route_delay_df.sort_values(by='Total', ascending=False)
```

```
[54]: Sense retard Mitjà Petit Gran Total Sense retard % Petit % Mitjà % Gran % LAX-SFO 263.0 187.0 159.0 281.0 890.0 29.6 17.9 21.0 31.6
```

ORD-LGA	191.0	191.0	127.0	307.0	816.0	23.4	15.6
23.4 37.6							
LGA-ATL	245.0	184.0	152.0	190.0	771.0	31.8	19.7
23.9 24.6							
DAL-HOU	251.0	148.0	150.0	93.0	642.0	39.1	23.4
23.1 14.5							
ORD-EWR	163.0	128.0	83.0	262.0	636.0	25.6	13.1
20.1 41.2							
•••		•••	•••	•••	••	·	
MRY-SLC	NaN	${\tt NaN}$	NaN	1.0	${\tt NaN}$	NaN	NaN
NaN NaN							
NaN NaN TUL-OMA	NaN	NaN	NaN	1.0	NaN	NaN	NaN
	NaN	NaN	NaN	1.0	NaN	NaN	NaN
TUL-OMA	NaN NaN	NaN NaN	NaN NaN	1.0	NaN NaN	NaN NaN	NaN NaN
TUL-OMA NaN NaN							
TUL-OMA NaN NaN IAD-BUF							
TUL-OMA NaN NaN IAD-BUF NaN NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN
TUL-OMA NaN NaN IAD-BUF NaN NaN LIH-SAN	NaN	NaN	NaN	1.0	NaN	NaN	NaN

[2463 rows x 9 columns]

Abans convé fer algo amb els NaN, ja que afecta per a obtindre el valor Total

```
[55]: route_delay_df = route_delay_df[['Sense retard', 'Mitjà', 'Petit', 'Gran', \( \times 'Total'] \). fillna(0)

route_delay_df['Total'] = route_delay_df['Sense retard'] +\( \times 'route_delay_df['Petit'] + route_delay_df['Mitjà'] + route_delay_df['Gran'] \)

route_delay_df['Sense retard %'] = round(route_delay_df['Sense retard'] /\( \times 'route_delay_df['Total'] * 100, 1) \)

route_delay_df['Petit %'] = round(route_delay_df['Petit'] /\( \times 'route_delay_df['Mitjà \) '\( \times 'route_delay_df['Mitjà \) '\( \times 'route_delay_df['Mitjà \) '\( \times 'route_delay_df['Total'] * 100, 1) \)

route_delay_df['Gran \)'\( \times 'route_delay_df['Gran'] /\( \times 'route_delay_df['Total'] * 100, 1) \)

route_delay_df['Total'] * 100, 1)

route_delay_df.sort_values(by = 'Total', ascending = False)
```

```
[55]:
                                         Gran Total Sense retard % Petit %
              Sense retard Mitjà Petit
     Mitjà % Gran %
     LAX-SFO
                    263.0 187.0 159.0 281.0 890.0
                                                                29.6
                                                                        17.9
     21.0
             31.6
     ORD-LGA
                     191.0 191.0 127.0 307.0 816.0
                                                                23.4
                                                                        15.6
     23.4
             37.6
     LGA-ATL
                    245.0 184.0 152.0 190.0 771.0
                                                                31.8
                                                                        19.7
```

23.9	24.6							
DAL-HOU		251.0	148.0	150.0	93.0	642.0	39.1	23.4
23.1	14.5							
ORD-EWR		163.0	128.0	83.0	262.0	636.0	25.6	13.1
20.1	41.2							
•••			•••	•••	•••	•••	•••	
XNA-CVG		1.0	0.0	0.0	0.0	1.0	100.0	0.0
0.0	0.0							
CLE-ORF		0.0	1.0	0.0	0.0	1.0	0.0	0.0
100.0	0.0							
LGA-AGS		1.0	0.0	0.0	0.0	1.0	100.0	0.0
0.0	0.0							
KOA-LIH		1.0	0.0	0.0	0.0	1.0	100.0	0.0
0.0	0.0							
TOL-CVG		0.0	0.0	0.0	1.0	1.0	0.0	0.0
0.0 10	0.0							

[2463 rows x 9 columns]

[56]: route delay df.sort values(by='Sense retard %', ascending=Fal	[56]:	1: route delay	df.sort values	(bv='Sense	retard %'.	ascending=False
---	-------	----------------	----------------	------------	------------	-----------------

[56]:		Sense	retard	Mitjà	Petit	Gran	Total	Sense retard %	Petit %	Mitjà
%	Gran	%								
SL	.C-LGA		1.0	0.0	0.0	0.0	1.0	100.0	0.0	
0.	0	0.0								
MS	P-BJI		1.0	0.0	0.0	0.0	1.0	100.0	0.0	
0.	0	0.0								
CL	T-CMH		2.0	0.0	0.0	0.0	2.0	100.0	0.0	
	0									
	N-DLG		1.0	0.0	0.0	0.0	1.0	100.0	0.0	
	0									
	R-MSP		1.0	0.0	0.0	0.0	1.0	100.0	0.0	
0.	0	0.0								
•••				•••						
					4 0	4 0				
	SP-MCO		0.0	5.0	1.0	1.0	7.0	0.0	14.3	
	4		0 0	4 0	0 0	4 0	. .	0.0	0 0	
	E-DCA		0.0	1.0	0.0	4.0	5.0	0.0	0.0	
	0.0		0 0	0 0	0 0	0 0	0 0	0.0	0.0	
	L-BOI		0.0	2.0	0.0	0.0	2.0	0.0	0.0	
		0.0	0 0	4 0	0 0	4 0	4 0	0.0	F0 0	
	CA-CMH		0.0	1.0	2.0	1.0	4.0	0.0	50.0	
	5.0		0 0	0 0	0 0	1 0	1 0	0.0	0.0	
	L-CVG		0.0	0.0	0.0	1.0	1.0	0.0	0.0	
0.	0 10	00.0								

[2463 rows x 9 columns]

I anem a excloure les rutes que tenen pocs viatge (Per davall del percentil 5).

```
[57]: route_delay_df.Total.quantile(0.1)
route_delay_df_q01 = route_delay_df[route_delay_df.Total >= route_delay_df.

→Total.quantile(0.1)]

route_delay_df_q01.sort_values(by='Sense retard %', ascending=False)
```

[57]:	Sense	retard	Mitjà	Petit	Gran	Total	Sense retard %	Petit %	Mitjà
	% Gran %								
	PDX-CVG	9.0	0.0	2.0	0.0	11.0	81.8	18.2	
	0.0 0.0								
	ROC-DFW	6.0	0.0	0.0	2.0	8.0	75.0	0.0	
	0.0 25.0								
	TUL-SAT	5.0	1.0	1.0	0.0	7.0	71.4	14.3	
	14.3 0.0								
	SLC-BNA	5.0	0.0	2.0	0.0	7.0	71.4	28.6	
	0.0 0.0								
	MSP-LIT	5.0	1.0	1.0	0.0	7.0	71.4	14.3	
	14.3 0.0								
	•••		·						
	STL-AUS	0.0	2.0	2.0	3.0	7.0	0.0	28.6	
	28.6 42.9								
	OAK-ORD	0.0	2.0	2.0	4.0	8.0	0.0	25.0	
	25.0 50.0								
	GSP-MCO	0.0	5.0	1.0	1.0	7.0	0.0	14.3	
	71.4 14.3								
	EWR-JAN	0.0	2.0	3.0	2.0	7.0	0.0	42.9	
	28.6 28.6								
	JFK-IND	0.0	0.0	2.0	5.0	7.0	0.0	28.6	
	0.0 71.4								

[2235 rows x 9 columns]

Quines aerolínies pateixen més retards?

```
[58]: # Fem un diccionari per clasificar els retards en cada una de les rutes.
carrier_delay_dict = {}
for carrier in delay_df['air_carrier_names'].unique():
    subset = delay_df[delay_df['air_carrier_names'] == carrier]
    carrier_delay_count = subset['ArrDelay_Class'].value_counts()
    carrier_delay_dict[carrier] = carrier_delay_count

# Calcularem els percentatges
```

[58]: Sense retard Petit Mitjà Gran Total Sense retard % Petit % Mitjà % Gran % Mapjet 35 17 8 8 68 51.5 25.0 11.8 11.8 Southwest Airlines 17962 8079 7105 5643 38789 46.3 20.8 14.5 18.3 1259 Frontier Airlines, Inc. 784 535 387 2965 42.5 26.4 18.0 13.1 Hawaiian Airlines Inc. 319 212 139 95 765 41.7 12.4 27.7 18.2 Continental Air Lines 4329 1807 1897 2435 10468 41.4 17.3 18.1 23.3 US Airways 3872 2089 2005 10065 2099 38.5 20.9 20.8 19.9 Alaska Airlines 1537 914 878 707 4036 38.1 22.6 21.8 17.5 Delta Air Lines, Inc. 4304 2655 2362 2465 11786 36.5 22.5 20.0 20.9 AirTran 2447 1633 1506 1709 7295 33.5 22.4 20.6 23.4 United Airlines, Inc. 4668 2614 2990 3953 14225 32.8 18.4 21.0 27.8 Skywest Airlines 4405 2779 2747 3587 13518 32.6 20.6 20.3 26.5 Envoy Air 4502 2983 3398 3558 14441 31.2 20.7 23.5 24.6 Endeavor Air 1649 1086 1214 1368 5317 31.0 20.4 22.8 25.7 2474 Northwest Airlines 1817 2032 1687 8010 30.9 22.7 25.4 21.1 American Airlines 6130 4501 5116 4081 19828

```
30.9
         20.6
                  22.7
                          25.8
ExpressJet Airlines
                                      2548
                                             1821
                                                    1838 2156
                                                                 8363
30.5
         21.8
                  22.0
                          25.8
Jetblue Airways Corporation
                                      1710
                                              930
                                                    1191 1797
                                                                  5628
30.4
         16.5
                  21.2
                          31.9
                                                    2324 3002
JSX
                                      3137
                                             2033
                                                                10496
29.9
         19.4
                  22.1
                          28.6
Jetstream Intl
                                      1371
                                             1163
                                                    1347 1484
                                                                  5365
25.6
         21.7
                  25.1
                          27.7
Mesa Airlines, Inc.
                                      1632
                                             1426
                                                    1534 2192
                                                                  6784
24.1
         21.0
                  22.6
                          32.3
```

Hi han avions que tenen més retards que d'altres?

```
[59]: tailnum_delay_dict = {}
      for tailnum in delay df['TailNum'].unique():
          subset = delay df[delay df['TailNum'] == tailnum]
          tailnum delay count = subset['ArrDelay Class'].value counts()
          tailnum_delay_dict[tailnum] = tailnum_delay_count
      tailnum_delay_df = pd.DataFrame.from_dict(data=tailnum_delay_dict,__
       ⇔orient='index')
      tailnum_delay_df.fillna(0)
      tailnum_delay_df['Total'] = tailnum_delay_df['Sense retard'] + ___
       ⇔tailnum_delay_df['Petit'] + tailnum_delay_df['Mitjà'] +□
       →tailnum_delay_df['Gran']
      tailnum_delay_df['Sense retard %'] = round(tailnum_delay_df['Sense retard'] /__

→tailnum_delay_df['Total'] * 100, 1)
      tailnum_delay_df['Petit %'] = round(tailnum_delay_df['Petit'] /__
       →tailnum_delay_df['Total'] * 100, 1)
      tailnum delay df['Mitjà %'] = round(tailnum delay df['Mitjà'] / ___
       →tailnum_delay_df['Total'] * 100, 1)
      tailnum_delay_df['Gran %'] = round(tailnum_delay_df['Gran'] /_
       ⇔tailnum_delay_df['Total'] * 100, 1)
      tailnum_delay_df.sort_values(by='Sense retard %', ascending=False)
```

```
[59]:
              Sense retard Petit Mitjà Gran Total Sense retard % Petit % Mitjà
      % Gran %
     N87512
                                     2.0
                                           1.0
                                                 22.0
                      17.0
                              2.0
                                                                 77.3
                                                                           9.1
      9.1
              4.5
      N27239
                      26.0
                              3.0
                                     1.0
                                           7.0
                                                 37.0
                                                                 70.3
                                                                           8.1
      2.7
             18.9
     N41135
                       7.0
                              1.0
                                     1.0
                                           1.0
                                                 10.0
                                                                 70.0
                                                                          10.0
      10.0
              10.0
                                                                 69.7
      N77865
                      23.0
                              6.0
                                     3.0
                                           1.0
                                                 33.0
                                                                          18.2
```

```
9.1
         3.0
N456UW
                   22.0
                                     2.0
                                             5.0
                                                                        68.8
                             3.0
                                                    32.0
                                                                                    9.4
6.2
        15.6
N792UA
                                             1.0
                                                                                    NaN
                    NaN
                             NaN
                                     NaN
                                                     NaN
                                                                         NaN
NaN
         NaN
N808NW
                    {\tt NaN}
                             NaN
                                     {\tt NaN}
                                             1.0
                                                     NaN
                                                                         {\tt NaN}
                                                                                    NaN
NaN
         NaN
N270AY
                                             1.0
                                                                         NaN
                    NaN
                             NaN
                                     NaN
                                                     NaN
                                                                                    NaN
NaN
         NaN
N278AY
                    NaN
                             NaN
                                             1.0
                                                     NaN
                                                                         NaN
                                                                                    NaN
                                     NaN
NaN
         NaN
N823AL
                    NaN
                             NaN
                                     NaN
                                             1.0
                                                     NaN
                                                                         {\tt NaN}
                                                                                    NaN
NaN
         NaN
```

[5267 rows x 9 columns]

Contem sols els retards degut a l'aerolínia, ja que alguns d'aquests poden ser degut a manteniment, neteja del propi avió.

```
[60]: delay_df.loc[delay_df.CarrierDelay < 15, 'CarrierDelay_Class'] = 'Sense retard'
     delay_df.loc[(delay_df.CarrierDelay >= 15) & (delay_df.ArrDelay < 30),
      ⇔'CarrierDelay_Class'] = 'Petit'
     delay_df.loc[(delay_df.CarrierDelay >= 30) & (delay_df.ArrDelay < 60),_
      delay_df.loc[delay_df.CarrierDelay > 60, 'CarrierDelay_Class'] = 'Gran'
     tailnum_delay_carrier_dict = {}
     for tailnum in delay_df['TailNum'].unique():
         subset = delay_df[delay_df['TailNum'] == tailnum]
         tailnum_delay_carrier_count = subset['CarrierDelay_Class'].value_counts()
         tailnum_delay_carrier_dict[tailnum] = tailnum_delay_carrier_count
     tailnum_delay_carrier_df = pd.DataFrame.
       →from_dict(data=tailnum_delay_carrier_dict, orient='index')
     tailnum delay carrier df.fillna(0)
     tailnum_delay_carrier_df['Total'] = tailnum_delay_carrier_df['Sense retard'] +
       بtailnum_delay_carrier_df['Petit'] + tailnum_delay_carrier_df['Mitjà'] + با
       →tailnum_delay_carrier_df['Gran']
     tailnum_delay_carrier_df['Sense retard %'] = __
       ⇔round(tailnum_delay_carrier_df['Sense retard'] / ___
       ⇔tailnum_delay_carrier_df['Total'] * 100, 1)
     tailnum_delay_carrier_df['Petit %'] = round(tailnum_delay_carrier_df['Petit'] /__
       tailnum_delay_carrier_df['Mitjà %'] = round(tailnum_delay_carrier_df['Mitjà'] /__

stailnum_delay_carrier_df['Total'] * 100, 1)
```

```
tailnum_delay_carrier_df['Gran %'] = round(tailnum_delay_carrier_df['Gran'] / tailnum_delay_carrier_df['Total'] * 100, 1)

tailnum_delay_carrier_df.sort_values(by='Sense retard %', ascending=False)
```

		retard	Gran	Petit	Mitjà	Total	Sense retard %	Petit %	Mitjà
N39		47.0	1.0	1.0	1.0	50.0	94.0	2.0	
2.0 N16		43.0	1.0	1.0	1.0	46.0	93.5	2.2	
2.2 N92		37.0	1.0	1.0	1.0	40.0	92.5	2.5	
2.5	2.5								
N31 1.9		49.0	1.0	2.0	1.0	53.0	92.5	3.8	
N95 2.7		34.0	1.0	1.0	1.0	37.0	91.9	2.7	
•••		•••		•••	•••		•••		
 N16 NaN		NaN	NaN	NaN	1.0	NaN	NaN	NaN	
N18	5DN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	
NaN N12	OUA	NaN	NaN	NaN	1.0	NaN	NaN	NaN	
NaN N73	9AL	NaN	NaN	NaN	1.0	NaN	NaN	NaN	
NaN N27		NaN	NaN	NaN	1.0	NaN	NaN	NaN	
NaN	NaN								

[5196 rows x 9 columns]

I quins són els motius principals dels retards? Cercarem per cada vol, quin ha sigut el motiu més important del retard

```
# Crearem un diccionari per calcular quantes vegades cada un dels motius ha⊔
sigut el que més minuts de retard ha sumat en cada vol.

columns_req = ['CarrierDelay', 'WeatherDelay', 'NASDelay', 'SecurityDelay',

'LateAircraftDelay']
main_reason_delay = dict.fromkeys(columns_req, 0)

# Ens caldrà els indexs al que correspon cada columna en el dataframe, per si⊔
al llarg del treball canvies l'ordre. Aquí trobem el index de manera⊔
automàtica.

col_req_index = []
for column in columns_req:
```

```
col_req_index.append([i for i, x in enumerate(lst) if x][0])
[62]: main_reason_delay
[62]: {'CarrierDelay': 0,
       'WeatherDelay': 0,
       'NASDelay': 0,
       'SecurityDelay': 0,
       'LateAircraftDelay': 0}
     {'CarrierDelay': 0, 'WeatherDelay': 0, 'NASDelay': 0, 'SecurityDelay': 0, 'LateAircraftDelay': 0}
[63]: # Iterem per les files cercant quin motiu acumula més retard en cada vol
      for flight in delay_df.iterrows():
          min delays = [] # Llista per quardar els minuts de cada motiu de retard en
       →un vol concret
          for item in col_req_index:
              min_delays.append(flight[1][item])
          max_index = [] # Trobarem quina posició (o quines posicions) té el retardu
       ⊶més gran
          max_value = min_delays[0] # max_value quarda el primer valor i els_
       →compararà amb la resta per cercar el més alt (o els més alts si coincideix
       ⇔en més d'un motiu)
          for i, val in ((i, val) for i, val in enumerate(min_delays) if val >=_
       →max_value):
              if val == max_value:
                  max_index.append(i)
              else:
                  max_val = max_value
                  max_index = [i]
          for maxi in max_index: # Comptem en el diccionari el principal motiu
       ⇒traduint el índex al motiu
              if maxi == 0:
                  main_reason_delay['CarrierDelay'] += 1
              elif maxi == 1:
                  main_reason_delay['WeatherDelay'] += 1
              elif maxi == 2:
                  main_reason_delay['NASDelay'] += 1
              elif maxi == 3:
                  main_reason_delay['SecurityDelay'] += 1
              elif maxi == 4:
                  main_reason_delay['LateAircraftDelay'] += 1
[64]: main_reason_delay
```

lst = delay_df.columns == column

[64]: {'CarrierDelay': 41939,
 'WeatherDelay': 2423,
 'NASDelay': 23403,
 'SecurityDelay': 17141,
 'LateAircraftDelay': 80845}

Quina és la velocitat mitjana dels trajectes?

```
[65]: delay_df['MeanSpeed'] = round((delay_df['Distance'] / delay_df['AirTime']) * (1.
```

[66]: delay_df

[66]:	Date	ArrTime C	CRSArrTime Uniqu	eCarrier TailNum	AirTime ArrDelay
	DepDelay Origin Des	st Distance	e TaxiIn TaxiO	out Cancelled Can	cellationCode
	CarrierDelay Weath	nerDelay NA	SDelay Securit	yDelay LateAircra	aftDelay
	air_carrier_names	Route Arr	Delay_Class Rou	teUnique CarrierDe	elay_Class
	MeanSpeed		-	_	•
	1750755 2008-12-19	1436.0	14.30	WN N700GS	49.0 6.0
	12.0 CLE BWI	314	7.0 8.0	0	N
	NaN NaN	NaN	NaN	NaN	Southwest
	Airlines CLE-BWI	Sense reta	ard CLE-BWI	Nal	N 618.8
	1074983 2008-06-17	2013.0	19.55	CO N54241	316.0 18.0
	11.0 EWR LAS	2227	8.0 18.0	0	N
	11.0 0.0	7.0	0.0	0.0	Continental Air
	Lines EWR-LAS	Petit	EWR-LAS	Sense retard	680.5
	46126 2008-01-27	918.0	8.15	YV N27185	54.0 63.0
	50.0 ORD BNA	409	4.0 45.0	0	N
	63.0 0.0	0.0	0.0	0.0	Mesa Airlines,
	Inc. ORD-BNA	Gran	ORD-BNA	Gran	731.4
	327441 2008-02-13	1515.0	14.38	9E 87189E	80.0 37.0
	63.0 ORF DTW	529	7.0 15.0	0	N
	0.0 0.0	0.0	0.0	37.0	Endeavor
	Air ORF-DTW	Mitjà	ORF-DTW	Sense retard	638.5
	1363177 2008-08-12	1517.0	14.47	FL N267AT	178.0 30.0
	13.0 ATL DEN	1199	5.0 15.0	0	N
	13.0 0.0	17.0	0.0	0.0	
	AirTran ATL-DEN	Mitj	à ATL-DEN	Sense retard	650.4
			• •••	•••	
		•••	•••	•••	
	•••	•••	•••		
	1595898 2008-10-27	112.0	22.25	MQ N643MQ	109.0 167.0
	159.0 ORD BDL	783	4.0 20.0	0	N
	0.0 0.0	8.0	0.0	159.0	Envoy
	Air ORD-BDL	Gran	BDL-ORD	Sense retard	693.6
	1503090 2008-09-25	115.0	22.45	AA N433AA	115.0 150.0
	82.0 ORD LGA	733	34.0 54.0	0	N

```
0.0
               0.0
                       150.0
                                          0.0
                                                               0.0
                                                                        American
Airlines ORD-LGA
                              Gran
                                        ORD-LGA
                                                       Sense retard
                                                                          615.5
                                                                                   7.0
742602
        2008-05-16
                       1422.0
                                     14.15
                                                       WN
                                                          N316SW
                                                                       37.0
                                                         0
10.0
        OKC DAL
                         181
                                 3.0
                                           7.0
NaN
                                                                       Southwest
               NaN
                          NaN
                                          NaN
                                                              NaN
Airlines OKC-DAL
                                        DAL-OKC
                                                                          472.4
                     Sense retard
                                                                 NaN
                                                       DL N996DL
1840527 2008-12-23
                       839.0
                                      8.31
                                                                       50.0
                                                                                   8.0
10.0
        CLT ATL
                         227
                                 9.0
                                          20.0
                                                         0
                                                                           N
                                                                    Delta Air Lines,
NaN
               NaN
                          NaN
                                          NaN
                                                              NaN
                                                                      438.4
Inc.
      CLT-ATL
                 Sense retard
                                   CLT-ATL
                                                            NaN
                                                           N675AA
                                                                      185.0
1526456 2008-10-06
                      2217.0
                                     22.05
                                                       WN
                                                                                  12.0
7.0
       PHX MDW
                      1444
                                         12.0
                                                        0
                                3.0
NaN
               NaN
                          NaN
                                          NaN
                                                              NaN
                                                                       Southwest
Airlines PHX-MDW
                     Sense retard
                                        PHX-MDW
                                                                 NaN
                                                                          753.7
```

[200000 rows x 26 columns]

Quin és el percentatge i el motiu principal de cancel·lació? (A = Aerolinia; B = Temps; C = Retards en el Sistema d'espai aeri nacional que inclou condicions meteorologiques no extremes, operacions en l'aeroport, alt volum de tràfic, etc...; <math>D = Seguretat)

```
Percentatge de vols cancel·lats: 0.0385%

Temps = 35%

Aerolinia = 32%

Retards Sistema Espai Nacional (meteo no extrama, tràfic) = 10%
```

La distància té un efecte important en els retards? Podem cercar la correlació que hi ha entre el camp distància i el retard a l'arribada. La correlació però és petita, això està relacionat amb el fet amb que els principals motius dels retards venen donats dels retards que es donen a la sortida.

0.9529689239333934

Comprovem també que hi ha més correlació positiva amb el temps de TaxiOut, o siga el temps que està a l'avió en circulació en terra en l'aeroport abans d'enlairar, que en el TaxiIn. No es estrany que es produïsquen cues en els avions alhora de sortir, sobretot després de una tempesta o situacions de baixa visibilitat que redueix l'operativa de l'aeroport.

0.28615974071560346