Sieci Komputerowe Wykład 4 — ARP, UDP

Szymon Acedański

Instytut Informatyki Uniwersytet Warszawski

22 marca 2017

Warstwa sieciowa

- Adresacja logiczna
- Trasowanie (ang. routing)
- ► Fragmentacja i defragmentacja danych (w razie potrzeby)

IP — Nagłówek IP

+	Bity 0 - 3 4 - 7		8 - 15	16 - 18	19 - 31	
0	Wersja Długość nagłówka		Typ usługi (ToS)		Całkowita długość	
32	Numer iden		ntyfikacyjny	Znaczniki	Przesunięcie fragmentacji	
64	Czas życia pakietu (TTL)		Protokół warstwy wyższej		Suma kontrolna nagłówka	
96			Α	dres źródłow	ry .	
128	Adres przeznaczenia					
160	Opcje					
192	Dane					

Najważniejsze pola nagłówka IP

- Pierwsze, 4-bitowe pole zawiera numer wersji protokołu IP (dla IPv4 jest to 4)
- Kolejne 4-bitowe pole zawiera długość samego nagłówka protokołu (bez danych)..
- Następne 8 bitów prezentuje tzw. "typ usługi" (ang. Type of Service). Jest to najbardziej podstawowy sposób wyznaczania priorytetu danego datagramu.
- Kolejnym 16-bitowym polem jest całkowita długość pakietu (razem z danymi). Jego długość (2 bajty) umożliwia ustawienie rozmiaru datagramu na 65536 bajtów.

Pola nagłówka IP c.d.

- Kolejne 3 pola są wykorzystywane przy fragmentacji pakietów.
- Pole TTL (8 bitów) to czas życia pakietów (ang. Time To Live). Jest to liczba z zakresu 0-255. Przy trasowaniu pakietu przez router jest ona zmniejszana o jeden. W momencie osiągnięcia przez TTL wartości 0 pakiet jest porzucany.

Pola nagłówka IP c.d.

- Kolejne, 8-bitowe określa rodzaj protokołu warstwy wyższej, takimi jak TCP czy UDP.
- Następnym polem jest suma kontrolna nagłówka datagramu.
- Dalsze pola zawierają adresy źródłowy i przeznaczenia. Na ich podstawie można określić pochodzenie i miejsce docelowe datagramu w sieci.
- Ostatnim, 32-bitowym polem są opcje, które w normalnej transmisji zwykle nie są używane.

Fragmentacja

Datagram:

Nagłówek IP	Nagłówek UDP	Dane UDP
20 bajtów	8 bajtów	1473 bajty

20+8+1473=1501

1501>MTU dla sieci Ethernet, konieczna jest fragmentacja:

pierwszy pakiet:

Nagłówek IP	Nagłówek UDP	Dane UDP
20 baitów	8 baitów	1472 bajty

drugi nakiet:

aragi partiot.					
Nagłówek IP	Dane				
	UDP				
20 haitów	1 hait				

W kolejnych fragmentach nie ma nagłówka

Fragmentacja c.d.

- W przypadku pierwszego fragmentu, numer identyfikacyjny może mieć wartość np. 26304, pole przesunięcie fragmentacji będzie miało wartość 0.
- W przypadku drugiego fragmentu wartość numeru identyfikacyjnego pozostaje ta sama, natomiast przesunięcie fragmentacji będzie równe 1480. Oznacza to, że drugi fragment zaczyna się po 1480 bajcie oryginalnego datagramu.

Terminologia

- Porcję danych w warstwie łącza nazywamy ramką.
- W warstwie sieciowej jest to datagram lub pakiet.
- W warstwie transportu stosujemy nazwę segment, choć dla UDP używa się także nazwy datagram.

Protokół ARP

 ARP (Address Resolution Protocol) umożliwia znalezienie adresu fizycznego (MAC) odpowiadającego adresowi IP.

Ramka ARP

adres przezn aczenia	adres źródła	(0x0806)	sprzętu (1–eth)	prot (IP 0x0800)	Rozm. adresu sprzęt.	adresu prot.	zapyta nie	Eth wysyłaj	IP wysyłaj	Eth przezn	Adres IP przezn aczenia
zapytanie/odpowiedź arp					a						

- Zapytanie i odpowiedź ARP zawarte są w ramce Ethernet.
- Zapytania ARP wykorzystują mechanizm broadcast Ethernetu.
 - Adres MAC docelowy jest ustawiany na wartość: ff:ff:ff:ff

Polecenie arp

- Mapowania adresów IP na MAC są przechowywane w pamięci podręcznej ARP systemu (dla zwiększenia wydajności).
- Polecenie arp służy do manipulowania wpisami do pamięci ARP.
- Wynik działania polecenia arp -an:

```
(10.1.1.8) at 00:90:27:2A:7A:A2 [ether] on eth0.11 (10.1.2.211) at 00:0E:7B:9A:25:5F [ether] on eth0.12 (10.1.3.83) at 00:E0:7D:84:C8:4B [ether] on eth0.13 (10.1.2.4) at 00:0B:DB:93:10:6B [ether] on eth0.12
```

Demo

Zadania warstwy transportu

- Zapewnienie niezawodności
- Dostarczanie danych do odpowiedniej aplikacji w warstwie aplikacji (multipleksacja)
- · Kontrola przepływu
- Przesyłanie strumienia bajtów

Numery portów

- Numer portu służy protokołom UDP i TCP do identyfikacji procesów w warstwie aplikacji.
- Oprogramowanie warstwy aplikacji korzystające z UDP/TCP używa modelu klient-serwer.
- Numer portu jest liczbą 16 bitową.
- Numery portów poniżej 1024 są związane z aplikacjami i określone przez IANA dla każdej z aplikacji:
 - http://www.iana.org/assignments/port-numbers
- Numery portów dla aplikacji klienckich są zazwyczaj przydzielane na krótko i z zakresu powyżej 1024.

Charakterystyczne numery portów

- Lista numerów portów popularnych usług:
 - 21 FTP
 - 22 SSH
 - 23 Telnet
 - 25 SMTP
 - 53 DNS
 - 80 HTTP
 - 110 POP3
- Więcej: /etc/services

Gniazda

- Gniazda umożliwiają wielu aplikacjom jednoczesną komunikację.
- Gniazdo jest określone za pomocą pary adres IP i numer portu:
 - Np. 193.0.96.15:80
- Aby zobaczyć otwarte gniazda, należy użyć programu netstat.

UDP, nagłówek protokołu

0	15						
16 bit nr portu źródłowego	16 bit nr portu przeznaczenia						
16 bit długość UDP	16 bit suma kontrolna UDP						
dane							

- UDP (User Datagram Protocol) jest prostym protokołem warstwy transportu – nie zapewnia niezawodności.
- Nagłówek UDP ma dużo prostszą budowę niż TCP.

Pseudonagłówek UDP

0	15							
	32 bit adres źródłowy IP							
	32 bit adres przeznaczenia IP							
	zero	8 bit protokół	16 bit długość UDP					
	16 bit nr port	u źródłowego	16 bit nr portu przeznaczenia					
	16 bit dłu	gość UDP	16 bit suma kontrolna UDP					
	dane							

- Pseudonagłówek jest wykorzystywany do obliczania sumy kontrolnej.
- Jest stosowany po to, aby sprawdzić, czy dane dotarły do właściwego adresata (dlatego uwzględnia przy liczeniu sumy kontrolnej adresy IP).

Własności protokołu UDP

- Nie zapewnia niezawodności (w przeciwieństwie do TCP)
- Nie jest zorientowany strumieniowo (przeciwnie niż TCP)
- Jest protokołem bezpołączeniowym (odmiennie niż TCP)

Zastosowanie UDP

- Przykłady zastosowania:
 - DNS
 - DHCP (broadcast)
 - SIP (VoIP)
 - Quake Server