Digital Signal Processing

DSP Midterm Exam

Spring 2022

Question 1: True or False

Given a DT signal $x(n) = \delta(n) - \delta(n-2)$, please select True or False for the following statements:

- (a) **T** or **F**: The value of x(n) at n = 0 is zero.
- **(b) T** or **F**: The value of x(n) at n = 1 is zero.
- (c) **T** or **F**: The length of x(n) is 2.
- (d) **T** or **F**: The energy of x(n) is 2.
- (e) **T** or **F**: x(n) is a periodic signal.

Question 2: Operations on DT signals

Two DT signals, $x_1(n)$ and $x_2(n)$, are given as follows:

$$x_1(n) = \delta(n) - \delta(n-1)$$
$$x_2(n) = \delta(n) + 2\delta(n-1) + \delta(n-2)$$

Sketch the following (showing your work):

- (a) $x_1(n) + x_2(n+1)$
- **(b)** $x_1(n) * x_2(n+1)$ [*Note*: The * is convolution.]

Question 3: DTFT computation

A DT signal x(n) is given as follows:

$$x(n) = 2\delta(n+1) + 4\delta(n) + 2\delta(n-1)$$

- (a) Compute the signal's DTFT $X(e^{j\omega})$. You can use the table of DTFT transform pairs provided in class. You do not have to simplify your answer here in (a).
- **(b)** Write an expression for the magnitude spectrum $|X(e^{j\omega})|$. For full credit, simplify your answer.
- (c) Write an expression for the phase spectrum $4X(e^{j\omega})$. For full credit, simplify your answer.
- (d) Let y(n) = 10x(n-1). Write $Y(e^{j\omega})$ in terms of $X(e^{j\omega})$.
- (e) BONUS: Let z(n) = x(n) * x(n-1). Write $Z(e^{j\omega})$ in terms of $X(e^{j\omega})$. [Note: The * is convolution.]

Question	4:	Short	Answer
----------	----	-------	---------------

Answer the following questions in one short sentence or less:

- (a) What will the spectrum look like for a DT signal that does not change in time?
- (b) If you scale a DT signal by 2 (i.e., you double the heights of all of the samples), how does the signal's *magnitude* spectrum change?
- (c) If you scale a DT signal by 2 (i.e., you double the heights of all of the samples), how does the signal's *phase* spectrum change?
- (d) If you time-shift a DT signal by 2 to the right, how does the signal's *magnitude* spectrum change?
- (e) If you time-shift a DT signal by 2 to the right, how does the signal's *phase* spectrum change?
- **(f)** If you add $\delta(n)$ to a DT signal, how does the resulting spectrum change? In other words, given that $x(n) \stackrel{DTFT}{\longleftrightarrow} X(e^{j\omega})$, then $[x(n) + \delta(n)] \stackrel{DTFT}{\longleftrightarrow}$?
- (g) If you multiply a DT signal by $e^{j\pi n}$, how does the resulting spectrum change? In other words, given that $x(n) \stackrel{DTFT}{\longleftrightarrow} X(e^{j\omega})$, then $\left[e^{j\pi n}x(n)\right] \stackrel{DTFT}{\longleftrightarrow} ?$