Python for Data Analysis 資料視覺化

講者:楊翔斌

n07061033@mail.ncku.edu.tw

大綱

1. 前言

2. 圖表介紹

前言

文不如表表不如圖

出處:https://www.slideshare.net/tw_dsconf/ss-60041639

barplot:沿用腎臟病數據

Code:

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(5,6))#定義圖大小 Totals=datal_new["albumin"].value_counts()#計算albumin各類別的量 sns.barplot(y = Totals.values, x = Totals.index)#繪製barplot plt.xticks(rotation=90)#可調整tick的角度 plt.ylabel("count", size=20)#y軸名稱及字體大小 plt.xlabel("albumin", size=10)#x軸名稱及字體大小 法2:sns.countplot(x="albumin", data=datal_new)

countplot:

Code:

sns.countplot(x="albumin",data=datal_new)#依照albumin計數作圖,如figlsns.countplot(x="albumin",hue="sugar",data=datal_new)
#barplot 畫好後再根據sugar做分類

boxplot:顯示一組數據之分散情況,可用來尋找離群值 Code:

sns.boxplot(x="class_",y="blood pressure",data=datal_new) #依照class分類,將blood pressure數據畫出分佈圖

violinplot:定量數據在一個維度分类变量的多个层次上的分布

Code:

sns.violinplot(x="class_",y="hemoglobin",data=datal_new)#如figl sns.violinplot(x="appetite_",y="hemoglobin",data=datal_new,hue="red_blood_cells")#引入第三維度變量進來,fig2 sns.violinplot(x="appetite_",y="hemoglobin",data=datal_new,hue="red_blood_cells",split="1")

參考資料:https://www.jianshu.com/p/96977b9869ac

fig3

histogram:

Code:

sns.distplot(data1_new["packed cell volume"],
kde=False, bins=50)

#kde為False則圖為實際數據,True則圖為機率分佈。 #bin表示柱的數量

pie chart:

Code:

Totals = datal_new["albumin"].value_counts() labels1 =Totals.index#取得label explode = (0.5, 0.1, 0,0, 0,0)#調整圓餅圖間距

plt.pie(Totals, explode=explode, labels=labels1, autopct='%1.1f%', shadow=True, startangle=190) plt.legend(labels1, loc="best")

plt.axis("equal")

plt. tight_layout()

Scatter plot:

Code:

法一:plt.plot(datal_new["..."], datal_new["..."], 'ro')

法二:g=sns.FacetGrid(data1_new, hue="class_", size=5)

#要畫散布圖的

g. map(plt. scatter, "red blood cell count",

"white blood cell count", alpha=.9)

g. add_legend()

jointplot:

Code:

```
with sns.axes_style("white"):
    sns.jointplot("white blood cell count", "red blood cell count",
    data=datal_new, kind=" scatter ")
plt.text(30000, 8.5, "reg", size=30)#size可以調整字體大小
#kind可以選reg、kde、hex
```


其他技巧:subplot

Code:

fig, axes=plt. subplots(2, 3, figsize=(15, 5))
sns. boxplot(x="sugar", y="blood glucose random",
data=datal_new, ax=axes[0, 1])
sns. boxplot(x="sugar", y="age", data=datal_new, ax=axes[0, 0])
sns. boxplot(x="sugar", y="blood urea", data=datal_new, ax=axes[0, 2])
sns. boxplot(x="sugar", y="serum creatinine",
data=datal_new, ax=axes[1, 0])
sns. boxplot(x="sugar", y="sodium", data=datal_new, ax=axes[1, 1])
sns. boxplot(x="sugar", y="hemoglobin", data=datal_new, ax=axes[1, 2])

