Defenses against Adversarial Examples

Keller Jordan¹, Rene Gutierrez², Brett Gohre³

¹Department of Computer Science UCSC

²Department of Applied Mathematics & Statistics UCSC

³Department of Physical & Biological Sciences UCSC

CMPS290, Winter 2018

Optimizer Robustness

■ Used extension of EG to +/- weights case for training

Procedure

- \blacksquare Train FC 784-100-10 using GD and EG \pm on MNIST
- Run untargeted adversarial attack methods
 - Gradient Ascent (GA)
 - Fast Gradient Sign (FGS)
- Compare resulting models and adversarial examples
 - Number of iters to fool
 - Transferability of strong attacks
 - Average perturbation

Examples

Attack Difficulty

Number of iterations to fool network

Method / Optimizer	SGD	EG
Gradient Ascent	60.9(±32.3)	85.1(±40.5)
Fast Gradient Sign	52.0(±26.1)	91.0(±43.5)

A network is defined as "fooled" when its prediction changes

Average Perturbation

Transferability Results

Probability of success on other optimizer

$Method \; / \; Src {\rightarrow} Dst$	SGD→EG	EG→SGD
Gradient Ascent	67.4%	99.0%
Fast Gradient Sign	88.2%	99.8%

Iterations held constant at 200 (should be comparably strong)

Results

- Requires 1.5× stronger attacks to fool EG-trained model
- EG shows some robustness to attacks transferred from SGD
- SGD is not robust to attacks transferred to EG
- Attacks against EG make more sense w.r.t. expected structure of digit space

Defending using Reconstruction Error

Basic idea

- Use an architecture that reconstructs input images (CapsNet)
- Model will reconstruct some element of decoder-space for fooled class
- Adversarial images are unlikely to be in this space
- Expect high reconstruction error (MSE)

Capsule Network Refresher

Reconstructions

Reconstructions

Results

Results

- Method successfully detects \sim 70% of of attacks with 5% false-positive rate
- Could be improved by better loss function
- Unknown vulnerability to white-box attacks
- Expect good black-box performance due to variability of decoders and loss functions