Sets

Note 1

097312afe75d4a3d9eaa0c1f4c63748a

Intuitively speaking, {{c2::a set}} is {{c1::a collection of objects.}}

Note 2

85e21cf985524b80a8c00eb4608f34be

Intuitively speaking, a set is a collection of objects. (C22) Those objects are referred to as (C12) the elements of the set.)

Note 3

12b96daebbc04070b74e2a6f74e5b268

Given a set A, we write $\{(c2) : x \in A\}$ if $\{(c1) : x \text{ is an element of } A.\}$

Note 4

b25d749749a64c5b90880253d9839da8

Given a set A, we write $\{(c2):x \notin A\}$ if $\{(c1):x \text{ is not an element of } A$.

Note 5

39565306ec4e40e18136e7eb88fc817a

Given two sets A and B, {{c1: the union}} is written {{c2::}} $A \cup B$.}}

Note 6

73bf0eb1d16c4c5da368e326b4739d5b

Given two sets A, and B, we the union is weakefined by the rule $x\in \{a:A\cup B\}$ provided that we $x\in A$ or $x\in B$.

Note 7

8ce7db157931494bbfb6eee706e15efc

Given two sets A and B, we the intersection is written we have $A \cap B$.

Note 8

6a277df52de2409a98e48429d69b6d05

Given two sets A and B, we the intersection is we defined by the rule

 $x \in \{\{c2: A \cap B\}\}$ provided that $\{\{c1: x \in A \text{ and } x \in B.\}\}$

The set of natural numbers is denoted (c1::N.)

Note 10

49d36a026d4b4678ab86fb6103571cc

$$\{\text{\{c2::}\mathbf{N}\}\} \stackrel{def}{=} \left\{\{\{\text{c1::}1,2,3,\ldots\}\}\right\}.$$

Note 11

797c81e5adb543e1a5d4cc67e64c5e09

 $\{\{c2:: The \ set \ of \ integers\}\}\ is \ denoted \ \{\{c1:: \mathbf{Z.}\}\}\$

Note 12

d3c61bf891744c58b73cef543c6e100d

$$\{\{c2: \mathbf{Z}\}\} \stackrel{\text{def}}{=} \{\{\{c1: \ldots, -2, -1, 0, 1, 2, \ldots\}\}.$$

Note 13

57f085776972449f8bc14daf5cff6603

{{c2::The set of rational numbers}} is denoted {{c1::Q.}}

Note 14

f7e3370650134607853b41b2b1ecf54b

$$\text{(c3::} \mathbf{Q} \text{)} \stackrel{\text{def}}{=} \left\{ \text{all (c2::} \text{fractions } \frac{p}{q} \text{)} \text{ where } \text{(c1::} p,q \in \mathbf{Z} \text{ and } q \neq 0 \text{)} \right\}.$$

Note 15

faeac83ch5h740h6964551c85ad3e35h

 $\{\!\{\text{c2::} The \ set \ of \ real \ numbers\}\!\} \ is \ denoted \ \{\!\{\text{c1::} R.\}\!\}$

Note 16

6e5da98964d645d09ad6989e85679c74

 $\label{eq:contains} \begin{tabular}{ll} \end{tabular} The \ empty \end{tabular} \ set \ is \ \end{tabular} \ is the set that \ contains \ no \ elements. \end{tabular}$

Note 17

206db0a0f3d042e49a9ca532e222201f

 $\{(c2::The\ empty\ set\}\}\ is\ denoted\ \{(c1::\emptyset.)\}$

Note 18

2f0448d226db4b71b150acaed349a73b

Two sets A and B are said to be {{c2:disjoint}} if {{c1::}} $A \cap B = \emptyset$.}

Given two sets A and B, we say $\{(c2) : A \text{ is a subset of } B, \}\}$ or $\{(c2) : B \text{ contains } A\}$ if $\{(c1) : \text{every element of } A \text{ is also an element of } B.\}$

Note 20

2bd27f1fc0d40e296dceef9c9789556

Given two sets A and B, the <code>{c3-inclusion}</code> relationship <code>{c2-A} \subseteq B\$</code> or $B \supseteq A$ is used to indicate that <code>{{c1-A}}</code> is a subset of B.

Note 21

33e7c6716af48b7b9962ad803f0732f

Given two sets A and B, $\{\{c2:=A=B\}\}$ means that $\{\{c1:=A\subseteq B\}\}$ and $B\subseteq A.\}$

Note 22

74e93b42d46746dc9ec2b54f8366c43

Let A_1, A_2, A_3, \ldots be an infinite collection of sets. Notationally,

$$\bigcup_{n=1}^{\infty} A_n, \quad \bigcup_{n \in \mathbf{N}} A_n, \quad \text{or} \quad A_1 \cup A_2 \cup A_3 \cup \cdots$$

are all equivalent ways to indicate whose elements consist of any element that appears in at least on particular A_n .

Note 23

69e4627a3e7149ef8be05479a2587b41

Let A_1, A_2, A_3, \ldots be an infinite collection of sets. Notationally,

$$\bigcap_{n=1}^{\infty} A_n, \quad \bigcap_{n \in \mathbb{N}} A_n, \quad \text{or} \quad A_1 \cap A_2 \cap A_3 \cap \cdots$$

are all equivalent ways to indicate whose elements consist of any element that appears in every A_{n} .

Note 24

11a987e10fce4ceea 69672f366597729

Given $A \subseteq \mathbf{R}$, we the complement of A refers to we the set of all elements of \mathbf{R} not in A.

Note 25

8b379552450b4672af82c17476c0ff1

Given $A \subseteq \mathbf{R}$, {{c2::the complement of A}} is written {{c1:: A^c .}}

Given $A, B \subseteq \mathbf{R}$,

$$\{ (\operatorname{c2::} (A \cap B)^c \} \} = \{ (\operatorname{c1::} A^c \cup B^c.) \}$$

«{{c3::De Morgan's Law}}»

Note 27

c983927aa0304e51949e2f90a2ec2614

Given $A, B \subseteq \mathbf{R}$,

$$\{\{{\bf c2}:: (A \cup B)^c\}\} = \{\{{\bf c1}: A^c \cap B^c.\}\}$$

«{{c3::De Morgan's Law}}»

Note 28

09322548137b46529467f2946a4952d4

What is the key idea in the proof of De Morgan's Laws?

Demonstrate inclusion both ways.

Functions

Note 1

18930cfe4e4445779bcec8a2fb53f23c

Given (c3) two sets A and B,) (c2) a function from A to B) is (c1) a rule or mapping that takes each element $x \in A$ and associates with it a single element of B.)

Note 2

dfa898ef047e418fa8dfe9ee9582fd71

(c):If f is a function from A to B,) we write (c2: $f:A \to B$.)

Note 3

c2730dafa0fe4hf4hede66h7199h48h9

Let $f:A\to B$. Given $\{(ca):x\in A, (d)\}$ the expression $\{(ca):f(x)\}$ is used to represent $\{(ca):the\ element\ of\ B\ associated\ with\ x\ by\ f.(d)\}$

Note 4

65568f366ca949888310668475dbe57

Let $f:A \to B$. (c2: The set A) is called (c1: the domain of f.)

Note 5

7870a310786142fa938bcc843ca8e1ae

Let $f:A \to B$. (C2) The set $\{f(x) \mid x \in A\}$) is called (C1) the range of f .)

Note 6

716c208c9ae849b89ec722aa17f20882

Given a function f and {case a subset A of its domain,}} {{case the set}}

$$\{f(x): x \in A\}$$

ightharpoonup is called {{cl::the range of f over the set A.}}

Note 7

24aae21652754fcda1267ac61036a3ea

Given a function f and a subset A of its domain, (c2) the range of f over A) is written (c1) f(A).

Let $f:D\to \mathbf{R},\ A,B\subseteq D.$ Is it unconditionally true that

$$f(A \cup B) = f(A) \cup f(B)?$$

Yes.

Note 9

ee665e77ac9a45cf9a15d42549e6f382

Let $f:D\to \mathbf{R},\ A,B\subseteq D.$ Is it unconditionally true that

$$f(A \cap B) = f(A) \cap f(B)$$
?

No.

Note 10

5d2e9d4e1e094e06b37bd87e2c9edff8

Given $\{(c4::a,b\in\mathbf{R})\}\$ and $\{(c3::a\leq b)\}\$, $\{(c2::the set$

$$\{x \in \mathbf{R} : a \le x \le b\}$$

}} is called {{c1::a closed interval.}}

Note 11

9f383a22fc724f8fa43af5cb65e0cd5a

Given $a,b \in \mathbf{R}$ and {c3::a < b}, {c2::the set

$$\{x \in \mathbf{R} : a < x < b\}$$

}} is called {{c1::an open interval.}}

Note 12

3143096eb895471bac4b2d5840d18758

Given $a, b \in \mathbf{R}$ and $a \leq b$, (c) the closed interval

$$\{x \in \mathbf{R} : a \le x \le b\}$$

)} is written {{c2::[a,b].}}

Note 13

604897f024bd4de78723fe8247290371

Given $a,b\in\mathbf{R}$ and $a\leq b$, (can the open interval

$$\{x \in \mathbf{R} : a < x < b\}$$

)) is written {{ $(a,b).}$ }

Let $f(x) = x^2$. Find two sets A and B for which

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Singletons $\{-1\}$ and $\{1\}$.

Note 15

6ed2fb1006634dcf81707a3c4d51485

Let
$$f: D \to \mathbf{R}, \ A, B \subseteq D$$
. Then

$$\{(c3:: f(A \cup B))\} \{(c1:: =)\} \{(c2:: f(A) \cup f(B).\} \}$$

Note 16

e088ae5ae1f24425a81dac09317978fc

Let
$$f: D \to \mathbf{R}$$
, $A, B \subseteq D$. Then

$$\{c3: f(A \cap B)\}\}\{c1: \subseteq \}\}\{c2: f(A) \cap f(B).\}\}$$

Note 17

951f5a5136248dcb413f59b3271d389

Given $x \in \mathbf{R}$, (c2::the absolute value of x) is denoted (c1::|x|.)

Note 18

624dda908fd64a1cadae2b61c1277c59

Given $x \in \mathbf{R}$,

$$|x| \stackrel{\mathrm{def}}{=} \begin{cases} \text{((c1::} x, \text{))} & \text{if ((c2::} x \geq 0)),} \\ \text{((c1::} -x, \text{))} & \text{if ((c2::} x < 0)).} \end{cases}$$

Note 19

Nah23dNafe1448e397cad33Naea55883

Given $a,b \in \mathbf{R}$, $|ab| = \{\{c1: |a| \cdot |b|\}\}$.

Note 20

0h51f36fba524365b72001d318791436

Given
$$a,b\in\mathbf{R}$$
, \quad \{\text{c2::} } |a+b| \quad \{\text{KC3::} } \le \quad \{\text{MC1::} } |a|+|b| \quad \}.

«{{c4::Triangle inequality}}»

Let f:A o B. The function f is {{c2::one-to-one}} if {{c1::

$$a_1 \neq a_2$$
 in A implies that $f(a_1) \neq f(a_2)$ in B.

Note 22

66b2bf81daaf419ab1207c6693c981e6

Let f:A o B. The function f is {{c2::onto}} if {{c1::

the range of f equals B.

Note 23

cc8a358284a4b1f99f8e4336a2efdb9

Let {{c4::} $f:D \to \mathbf{R}$ } and {{c3::} $B \subseteq \mathbf{R}$.}} {{c2::The set

$$\{x \in D : f(x) = B\}$$

)) is called (cust he preimage of B under the function f.))

Note 24

h72f131ae6734hf694fd8f987hh2323d

Let $f:D\to {f R}$ and $A,B\subseteq {f R}.$ Is it unconditionally true that

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
?

Yes.

Note 25

5b3116f568a34fe2be32f403d7d081d9

Let $f: D \to \mathbf{R}$ and $A, B \subseteq \mathbf{R}$. Is it unconditionally true that

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
?

Yes.

Logic and Proofs

Note 1

4d52h740f5h494696a5hdc956906cf2

Many mathematical theorems are conditional statements, whose proofs deduce conclusions from conditions. Given such a theorem, those conditions, are known (care as the theorem's hypotheses.

Note 2

93f759e32dbf497cb30754e24c5b09f

When in {{\it (c3:}} a proof by contradiction)} {{\it (c2:}} the contradiction is with the theorem's hypothesis,}) the proof is said to be {{\it (c1:}} contrapositive.

Note 3

1f45350926704df98b0abdf205f43196

Two real number a and b are {c4-equal} {c3-if and only if} {c2-for every real number $\epsilon>0$ it follows that} {c1-|a-b|<\epsilon.}

Note 4

3ef90c9123e64df39ae9cd34271a7dcd

Two real number a and b are equal \Leftarrow for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$. What is the key idea in the proof?

By contradiction.

Note 5

aab4bb967d814e87bd85608277093755

Let $\{\{c\}: S \subseteq \mathbf{N}.\}$ If $\{\{c\}: S \text{ contains } 1\}$ and $\{\{c\}: \text{ whenever } S \text{ contains } n, \text{ it also contains } n+1,\}$ then $\{\{c\}: S = \mathbf{N}.\}$

Note 6

3dd92625856f408b9dc93fd36d82588d

Let $S\subseteq \mathbf{N}$. If S contains 1 and whenever S contains n, it also contains n+1, then $S=\mathbf{N}$. This proposition is the fundamental principle behind (C)-induction.

Does an induction argument imply the validity of the infinite case?

No, it doesn't.

Note 8

91b673c484b442ec92dd47ad0ef95f6c

Do De Morgan's rules hold for an infinite collection of sets?

Yes, they do.

Note 9

df9aa3b9e0c74da78d7e2a0a65276fcd

How De Morgan's rules for an infinite collection of sets defer from that for a finite collection?

They are essentially the same.

The Axiom of Completeness

Note 1

d7df02f228f64fb28a0a353f0fcb3160

First, **R** is sea a subfield, which contains **Q** as a subfield.

Note 2

6ac3816effb14ba682f20f91ae42bfdf

What is the key distinction between \mathbf{R} and \mathbf{Q} ?

The Axiom of Completeness.

Note 3

c2ddbcb52224d5cbad5c650d77e8a4i

 $\{\{c\}: Every\ nonempty\ set\ of\ real\ numbers\}\}\ that\ is\ \{\{c\}: bounded\ above\}\}\ has\ \{\{c\}: a\ least\ upper\ bound.\}\}$

«{{c4::Axiom of completeness}}»

Note 4

ddbb10e685c4ad49d1af25d241c03c0

Given a set $A\subseteq \mathbf{R}$, (case a number $b\in \mathbf{R}$)) such that (case $a\leq b$ for all $a\in A$)) is called (case an upper bound for A.)

Note 5

1edcfd8354464c81ab51da0d4f2f2ca4

A set $A \subseteq \mathbf{R}$ is {{e2} bounded above}} if {{e1} there exists an upper bound for A.}

Note 6

c757fa0c676941b0a4abbccb3a67fb2a

Given a set $A \subseteq \mathbf{R}$, (case a number $b \in \mathbf{R}$)) such that (case $a \ge b$ for all $a \in A$)) is called (case a lower bound for A.)

Note 7

3c9ba92f774e439dbcfb6c364a88f0ae

A set $A \subseteq \mathbf{R}$ is {{22}} bounded below} if {{1}} there exists a lower bound for A.}

Note 8

40f7ae4897174d37952c83f51894ab53

A set $A\subseteq \mathbf{R}$ is {{c2-bounded}} if {{c1-it} is bounded above and below.

Let $A \subseteq \mathbf{R}$. (64:A real number s) is (63:the least upper bound for A) if

- {{c2::s is an upper bound for A;}}
- (Casif b is any upper bound for A, then $s \leq b$.)

Note 10

369939ee0f94abcaf65896355258f0d

{{e23}} The least upper bound{}} of a set $A\subseteq {f R}$ is also frequently called {{e13}} the supremum of A.}}

Note 11

04884b60726641c6b8d7c2c3479f8b05

 $\ \ \text{{\tt [C2:]}} The \ least \ upper \ bound\\ \ \ \ of \ a \ set \ A \subseteq \mathbf{R} \ is \ denoted \ \ \ \ \ (\texttt{{\tt [C1:]}} sup \ A.)$

Note 12

afca84537fdd409e97254e6d36d736c

Let $A \subseteq \mathbf{R}$. A real number s is near the greatest lower bound for A if

- $\{\{c2::s \text{ is a lower bound for } A;\}\}$
- {{claif } b\$ is any lower bound for \$A\$, then $s \geq b$.}}

Note 13

41c9913ebc524f85be951737dc3e33e8

The greatest lower bound of a set $A \subseteq \mathbf{R}$ is also frequently called with infimum of A.

Note 14

7230c3d5f7ef4b62bc1fd6c5b94841f0

The greatest lower bound) of a set $A\subseteq \mathbf{R}$ is denoted with inf A.

Note 15

51abcbb89d7d486c9177cfc51b6e8721

Is it possible for a set $A \subseteq \mathbf{R}$ for have multiple upper bounds?

Yes.

Note 16

c9d5ad3f35a47h0h12f27639fe4a409

Is it possible for a set $A \subseteq \mathbf{R}$ for have multiple least upper bounds?

No.

Note 17

8068979c7a6949fc9af88258008a9801

If s_1 and s_2 are both least upper bounds for a set $A \subseteq \mathbf{R}$, then

$$s_1 = s_2$$
.

}}

Note 18

466b264de27a44d3bd21221e39347d2

What is the key idea in the proof of uniqueness of the least upper bound?

 $s_1 \le s_2 \text{ and } s_2 \le s_1.$

Note 19

7100e899d7d44ffb89dbc0bac76ffb3f

Let $A \subseteq \mathbf{R}$. {c4: A real number b} is {c3: a maximum of A} if b is {c2: an element of A} and {c1: an upper bound for A.}}

Note 20

5795e83831c14208a2d2h3dac0e2h139

Let $A \subseteq \mathbf{R}$. A real number b is {{e3:}a minimum of A{}} if b is {{e2:}an element of A{}} and {{e1:}a lower bound for A.}}

Note 21

2004102960754b64bdb60221209f0059

 $\operatorname{Let} A \subseteq \mathbf{R} \text{ and } \{\operatorname{c3-} c \in \mathbf{R}.\} \operatorname{Then} \{\operatorname{c2-} c + A\} \stackrel{\operatorname{def}}{=} \{\operatorname{c1-} \{c + a : a \in A\}\}.$

Let $\{\{c2:A\subseteq \mathbf{R}\}$ be nonempty and bounded above, $\{\}\}$ and let $\{\{c4:C\in \mathbf{R}\}\}$ Then

$$\{\{c3:: \sup(c+A)\}\} = \{\{c1:: c + \sup A.\}\}$$

Note 23

726f73a8cead495fa65f331e49a892ea

Let $s \in \mathbf{R}$ be (less an upper bound) for a set $A \subseteq \mathbf{R}$. Then (less $s = \sup A$) (less if and only if,)) (less for every $\epsilon > 0$,)) (less there exists an element a in A satisfying $s - \epsilon < a$.)

Note 24

4161e1c933ba4349978c94d951259701

Let $s \in \mathbf{R}$ be (cond) for a set $A \subseteq \mathbf{R}$. Then (cond) $s = \inf A_0$ (cond) and only if, (conformed exists an element a in A satisfying $s + \epsilon > a$.)

Note 25

0f8f37e55fbe4046a19926f2955f843f

Let $A \subseteq \mathbf{R}$ be nonempty and bounded. How do inf A and $\sup A$ relate?

 $\inf A < \sup A$.

Note 26

882685715e2143a0b51a1e43390e1dbc

 $\label{thm:energy:ene$

Note 27

87f1451906164b06b7ffe3cd51a2ec7f

Every nonempty set of real numbers that is bounded below has a greatest lower bound. What is the key idea in the proof?

Infimum is the supremum for the set of lower bounds.

Let $A_1, \ldots, A_n \subseteq \mathbf{R}$ be nonempty and bounded above. Then

$$\{\{\text{consup}\left(\bigcup_{k=1}^n A_k\right)\}\} = \{\{\text{consum} \max_k \sup A_k.\}\}$$

Note 29

lf28c7f86554b8d83da1931799f4181

Let A_1,A_2,\ldots be a collection of nonempty sets, each of which is bounded above. If $\lim_{k \to 1} A_k$ is bounded above, then

$$\{(\operatorname{c2::} \sup \left(\bigcup_{k=1}^\infty A_k\right)\}\} = \{(\operatorname{c1::} \sup_k \sup A_k.)\}$$

Note 30

4c14ddc5fe394879915897bbb199442a

Let $A\subseteq \mathbf{R}$ and $c\in \mathbf{R}$. Then {\(c2: cA\)\) $\stackrel{\mathrm{def}}{=}$ {\(c1: \{c \cdot a : a \in A\}\)}.

Note 31

8bdedbcb920f442787c9d475958a65dd

Let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $c \in \mathbf{R}$. If $(can c \geq 0)$, it follows that

$$\sup(cA) = \{\{c1: c \cdot \sup A.\}\}$$

Note 32

c96971d0b0eb40c39d1773c4f89a5588

Let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $c \in \mathbf{R}$. If $(c \ge c < 0)$ it follows that

$$\sup(cA) = \{\{c1 :: c \cdot \inf A.\}\}$$

Note 33

fded05f0fad74578a073f5a838a3a081

Let $A,B\subseteq \mathbf{R}$. Then $\{a\in A+B\}\stackrel{\mathrm{def}}{=}\{\{a+b:a\in A \text{ and }b\in B\}\}$ }.

Let $A, B \subseteq \mathbf{R}$ be nonempty and bounded above. Then

$$\{(c2: \sup(A+B))\} = \{(c1: \sup A + \sup B.)\}$$

Note 35

5698bb156aa40799fc85b1e2419efa2

Let $A, B \subseteq \mathbf{R}$ be nonempty and bounded above. Then

$$\sup(A+B) = \underbrace{\sup_{s} A}_{t} + \underbrace{\sup_{t} B}_{t}.$$

What is the key idea in the proof?

For $\epsilon > 0$, choose $a > s - \frac{\epsilon}{2}$ and $b > t - \frac{\epsilon}{2}$.

Note 36

6281cfff0a84b578d8cacdc6ea4779d

If $\{(c3): a \text{ is an upper bound for } A\}$ and $\{(c2): a \in A,\}$ then $\{(c1): a \in A\}$

$$a = \sup A$$
.

Note 37

eb0969a772e442dd8c3f57ed4f8ee1be

Let $A,B\subseteq {\bf R}$ and $\{a: \sup A<\sup B.\}$ Then there exists $\{a: b\in B\}$ that is $\{a: \sup A=\emptyset\}$ that is

Note 38

6b667686c9644d8b9849c735110dac20

If A and B are (cosmonempty, disjoint sets with $A \cup B = \mathbf{R}$) and (cosmonempty) and $a \in A$ and $b \in B$, then (costhere exists $c \in \mathbf{R}$ that is an upper bound for A and a lower bound for B.)

«{{c4::Cut Property}}»

Note 39

545cb11592164c31badc3f21a1e29981

What is the key idea in the proof of the Cut Property?

Use the Axiom of Completeness.

Note 40

9aa54de461b426fbe225601c0663097

The Cut Property implies (clathe Axiom of Completeness.)

Note 41

a64720500f14d66a66401dd3f133a10

The Cut Property implies the Axiom of Completeness. What is the key idea in the proof?

Consider the set of the upper bounds and its complement.

Note 42

0244652872f4c1fb020d95cfaf8836

Let $A, B \subseteq \mathbf{R}$ be nonempty, bounded above, and satisfy $A \subseteq B$. How do $\sup A$ and $\sup B$ relate?

$$\sup A \leqslant \sup B.$$

Note 43

12dc792f7f78436ea2156c1cc15355de

Let $A,B\subseteq \mathbf{R}$ be nonempty and bounded, and let $\{a\in \mathbf{R}\}$ satisfying $\{a\in \mathbf{R}\}$ satisfying $\{a\in \mathbf{R}\}$

for all $a \in A$ and $b \in B$.

Note 44

b21502823c8b4f59b97c454a58895487

Let $A, B \subseteq \mathbf{R}$ be nonempty and bounded, and let $\sup A < \inf B$. Then there exists a $c \in \mathbf{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$. What is the key idea in the proof?

Let
$$c = \frac{1}{2}(\sup A + \inf B)$$
.

Let $A,B\subseteq \mathbf{R}$ be nonempty and bounded. If we there exists a $c\in \mathbf{R}$ satisfying we have $a\leq c\leq b$ for all $a\in A$ and $b\in B$, then we have

$$\sup A \leq \inf B$$
.

}}

Note 46

7bf4ff436d8047b382ad38a9fdbc1c88

Let $A, B \subseteq \mathbf{R}$ be nonempty and bounded. If there exists a $c \in \mathbf{R}$ satisfying $a \le c \le b$ for all $a \in A$ and $b \in B$, then

$$\sup A \leq \inf B$$
.

What is the key idea in the proof?

lacksquare c is an upper bound for A and a lower bound for B.

Consequences of Completeness

Note 1

379096944c2c44f89a8f8438cb155346

Let $a,b\in\mathbf{R}$ and $a\leqslant b$. Then, a is called the neighborhand endpoint of [a,b].

Note 2

3f63313h30ce4a789cfc42d207c26d84

Let $a,b\in\mathbf{R}$ and $a\leqslant b$. Then, b is called the weight-hand endpoint of [a,b].

Note 3

c92f2518ce984069b8bee160141746f6

Let I_1,I_2,I_3,\ldots be (C2::a collection of closed intervals) such that

$$I_n \supseteq I_{n+1} \quad \forall n \in \mathbf{N}.$$

}} Then, {{c3:: $\bigcap_{n=1}^{\infty}I_n \neq \emptyset.}}}$

«[{c4::Nested Interval Property}]»

Note 4

2d3a37b00fb54f299e2cc7a467f070c2

What is the key idea in the proof of the Nested Interval Property?

Consider the least upper bound for the set of left-hand endpoints of the intervals.

Note 5

ffceba6cf93e418388528a047155adbe

Given (ic3: any number $x \in \mathbf{R}$,) (ic2: there exists an $n \in \mathbf{N}$) satisfying (ic1::

n > x.

}}

 $<\!\!<\!\!\{\!\{c4\!:\!Archimedean\ Property\}\!\}\!>\!\!>$

Given (caseany real number y>0,)) (casethere exists an $n\in \mathbf{N}$)) satisfying (case

 $\frac{1}{n} < y$.

))

Note 7

ec854594e00246c7a0bcb81abd56999d

What is the key idea in the proof of the Archimedean Property?

Show that **N** is not bounded above.

Note 8

1cc2452b17744237a7e50a513b7a3d43

What is the key idea in proving that N is not bounded above?

By contradiction + the Axiom of Completeness.

Note 9

f038c4a25eff4227b348bee12cf2d5a6

What makes a contradiction in proving that N is not bounded above?

Choose $n > \sup \mathbf{N} - 1$.

Note 10

e625796365ee4200bdf4797f7b2648f2

Given $a \in \mathbf{R}$, (clathe smallest integer $\geq a$) is written (c2:: $\lceil a \rceil$.))

Note 11

e0aee99c343c4404877954f75d91407b

Given $a \in \mathbf{R}$, (cluthe greatest integer $\leq a$) is written (c2:: $\lfloor a \rfloor$.))

Note 12

d5c2fcf277a492f98b95ef314b9feff

For every a in \mathbf{R} , $\lfloor a \rfloor + 1_{\{\{c1:: > \}\},\{\{c2:: a\}\}}$.

Note 13

0e4bf87c94b44a01981cec995bc97cdd

For every a in \mathbb{R} , $\lfloor a \rfloor + 1 > a$. What is the key idea in the proof?

Any number greater than $\lfloor a \rfloor$ is not $\leq a$ by definition of $\lfloor a \rfloor$.

Note 14

453c930dc7f1405fbd9ae6bd7546b396

For every (c3: two real numbers a and b with a < b,)) (c2: there exists a rational number r)) satisfying (c1:

$$a < r < b$$
.

«{{c4::Density of Q in R}}»

Note 15

ee8f91b90eed4a04b7649cce6ed643ed

What is the key idea in the proof of the density of \mathbf{Q} in \mathbf{R} ?

Choose 1/n < b-a and consider $\frac{\lfloor na \rfloor + 1}{n}$.

Note 16

b1cab1949d9b406295cc27a4506d8848

A set B is generated in $\mathbf{R}_{\mathbb{H}}$ if generated element of B can be found between any two real numbers a < b.

Note 17

3d1287674bbd40aba451b188049186b7

 $\{c2:: The set of irrational number\}\}$ is denoted $\{c1:: I.\}$

Note 18

06f50f67h6ad4f5fh6e27378c5e15d8c

Is N dense in R?

No.

Note 19

433f404cebfb4e6086fca5eead6644e

Is **Z** dense in **R**?

No.

Note 20

0d63ae8648dd4d2bae2004b138a20321

Is \mathbf{Q} dense in \mathbf{R} ?

Yes.

Note 21

16c7710136254657b348bacbd4a6c2e6

Is I dense in R?

Yes.

Note 22

d63e13dc03f4b1fa02450e1aee4d306

What is the key idea in the proof of the existence of square roots in \mathbb{R} ?

$$\sqrt{x} = \sup\left\{ t \in \mathbf{R} : t^2 < x \right\}.$$

Note 23

515e4a4736ae4a039f574ba78bf824f6

Given a real number $x \geq 0$, how do you show that

$$\sqrt{x} = \underbrace{\sup\left\{t \in \mathbf{R} : t^2 < x\right\}}_{\alpha}?$$

Eliminate the possibilities that $\alpha^2 < x$ and $\alpha^2 > x$.

Note 24

e9bcf04b9032477ebf9e359f1b05b57d

Let $x \ge 0$ be a real number, and let $\alpha = \sup \big\{ t \in \mathbf{R} : t^2 < x \big\}$. How do you eliminate the possibility that $\alpha^2 < x$?

By contradiction, and choose n such that

$$\left(\alpha + \frac{1}{n}\right)^2 < x.$$

Let $x \ge 0$ be a real number, and let $\alpha = \sup \{ t \in \mathbf{R} : t^2 < x \}$. Assuming $\alpha^2 < x$, how do you chose n such that

$$\left(\alpha + \frac{1}{n}\right)^2 < x?$$

Expand $(\alpha + 1/n)^2$ and notice that $\frac{1}{n^2} < \frac{1}{n}$.

Note 26

58056112e69c4c63ab3084525e5ba3b8

Let $x \ge 0$ be a real number, and let $\alpha = \sup \{ t \in \mathbf{R} : t^2 < x \}$. How do you eliminate the possibility that $\alpha^2 > x$?

By contradiction, and choose n such that

$$\left(\alpha - \frac{1}{n}\right)^2 > x.$$

Note 27

12e8ec2f07fe45a089d1a36fa2db2076

Let $x \ge 0$ be a real number, and let $\alpha = \sup \{ t \in \mathbf{R} : t^2 < x \}$. Assuming $\alpha^2 > x$, how do you chose n such that

$$\left(\alpha - \frac{1}{n}\right)^2 > x?$$

Expand $(\alpha - 1/n)^2$ and notice that $\frac{1}{n^2} > 0$.

Note 28

ch083651e17f4dfha2f203500a1daf6e

Let \circ be a binary operation. A set B is (c2::closed under \circ) if (c1::

$$a \circ b \in B$$
 for all $a, b \in B$.

Note 29

e08de199070b49108df207003392f74e

Let $a, b \in \mathbf{Q}$. Then $a + b \in \{\{c1: \mathbf{Q}\}\}$.

Let $a, b \in \mathbf{Q}$. Then $ab \in \{\{c1: \mathbf{Q}\}\}$.

Note 31

e97c0352ehe4d9h8h9e662a38870a56

Let $a \in \mathbf{Q}$ and $t \in \mathbf{I}$. Then $a + t \in \{\{c1::\mathbf{I}\}\}$.

Note 32

6089a02bb3424a79a0985a8e1464ef82

Let $a \in \mathbf{Q}$ and $t \in \mathbf{I}$. Then $at \in \{\{c\} : \mathbf{I}\}$ as long as $\{\{c\} : a \neq 0.\}$

Note 33

h2ed7798fa124138h24e4859423d757

Let $a, b \in \mathbf{I}$. Then $a + b \in \{\{c\}: \mathbf{R}\}\}$.

Note 34

597d2e4ehaac4a96a0f2560h964h3da8

Let $a, b \in \mathbf{I}$. Then $ab \in \{\{c1:: \mathbf{R}\}\}$.

Note 35

6bc9bfd548bf4ef19cc45bf424a1c298

$$\displaystyle igcap_{n=1}^{\infty} [0,1/n] = \{\{c: \{0\} .\}\}$$

Note 36

a2af66a8fd504a25b8f480c66232ea8

$$\displaystyle\bigcap_{n=1}^{\infty}(0,1/n)={\scriptstyle\{\{c1::\emptyset.\}\}}$$

Note 37

eba83589c14749909068b51944e1133d

What is the key idea in the proof of the density of $I \in \mathbb{R}$?

Choose a rational $r \in (a - \sqrt{2}, b - \sqrt{2})$.

Note 38

6bf6abe0c1cd45bc9c6359e3e324f764

Given $a \in \mathbf{R}$, {{c2::the set

$$\{x \in \mathbf{R} : x \ge a\}$$

) is called (clean unbounded closed interval.)

Given $a \in \mathbf{R}$, (see the closed unbounded interval

$$\{x \in \mathbf{R} : x \ge a\}$$

)) is written ([a, ∞).))

Note 40

bc30145749df40c9bd720035fe0eb326

Let I_1, I_2, \ldots be a sequence of closed bounded intervals with the property that

$$\bigcap_{n=1}^N I_{n\{\{c2:i\}} \neq \emptyset\}$$
 for all $N \in \mathbf{N}$.

Then $\{\{c1: \bigcap_{n=1}^{\infty} I_n \neq \emptyset.\}\}$

Note 41

6992c08bbdbe4f57b2378e33cda019cd

Let I_1, I_2, \ldots be a sequence of closed bounded intervals with the property that $\bigcap_{n=1}^{N} I_n \neq \emptyset$ for all $N \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. What is the key idea in the proof?

The sequence of $\bigcap_{n=1}^{N} I_n$ for $N \in \mathbb{N}$ is a sequence of nested closed intervals.