

Руководитель курсового проекта

Консультант

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и сис	стемы управления	
КАФЕДРА	_ИУ5 «Системы обработки и	иформации и управления»	
DACI	ιετμο ποσα		
PAC	IETHO-HOM	СНИТЕЛЬНАЯ З	БАПИСКА
	К КУРСО	ВОМУ ПРОЕКТУ	V
	H	ІА ТЕМУ:	
	<u>Решение зада</u>	чи машинного обуч	чения
Студент групп	ты <u>ИУ5-61Б</u> (Группа)	(Подпись, дата)	<u>Болгова А.В.</u> (И.О.Фамилия)

(Подпись, дата)

(Подпись, дата)

Гапанюк Ю.Е.

(И.О.Фамилия)

(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖД <i>А</i>	
Завед	ующий каф	едрой
		(Индекс)
		(И.О.Фамилия)
~	>>	20 г

ЗАДАНИЕ

на выполнение	курсового проекта	a
по дисциплине <u>«Технологии машинного обучен</u>	<u> «ки</u>	
Студент группы ИУ5-61Б		
Болгова Анас	стасия Владимировна	
	я, имя, отчество)	
Тема курсового проекта		
Направленность КП (учебный, исследовательск	ий, практический, производс	твенный, др.)
	P)	
График выполнения проекта: 25% к нед., 50	0% к нед., 75% к нед.,	100% к нед.
Задание: решение задачи машинного обучения студентом единолично.	на основе материалов дисци	плины. Выполняется
Оформление курсового проекта:	1 44	
Расчетно-пояснительная записка на26 лис Перечень графического (иллюстративного) мате		айды и т.п.)
Дата выдачи задания « 12 » февраля 2020 г.		
Руководитель курсового проекта		Гапанюк Ю.Е.
Студент	(Подпись, дата)	(И.О.Фамилия) <u>Болгова А.В.</u>
	(Подпись, дата)	(И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Оглавление

1.	Задание	4
2.	Введение	6
3.	Основная часть	6
Ι	Постановка задачи	6
(Описание набора данных	6
2	Ход работы	8
	Random Forest	13
	Stochastic gradient descent	15
	Метод ближайших соседей	17
	Support Vector Machines	19
	Градиентный бустинг	21
4.	Выводы	23
5.	Приложение	24
6	Список использованных истоиников	26

Задание

Схема типового исследования, проводимого студентом в рамках курсовой работы, содержит выполнение следующих шагов:

- Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- Формирование обучающей и тестовой выборок на основе исходного набора данных.
- Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производятся обучение моделей на основе обучающей выборки и оценка качества моделей

на основе тестовой выборки.

• Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать

перебор параметров в цикле, или использовать другие методы.

- Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Введение

Курсовой проект – самостоятельная часть учебной дисциплины «Технологии машинного обучения» – учебная и практическая исследовательская студенческая работа, направленная на решение комплексной задачи машинного обучения. Результатом курсового проекта является отчет, содержащий описания моделей, тексты программ и результаты экспериментов.

Курсовой проект опирается на знания, умения и владения, полученные студентом в рамках лекций и лабораторных работ по дисциплине.

В рамках данной курсовой работы необходимо применить навыки, полученные в течение курса «Технологии машинного обучения», и обосновать полученные результаты.

Основная часть

Постановка задачи

В данной курсовой работе ставится задача определения пригодности гриба в употребление по внешним параметрам с помощью методов машинного обучения «Stochastic gradient descent», «Support vector machine», «Decision tree», «Gradient boosting» и «Random forest».

Описание набора данных

В данной работе для исследований был выбран следующий набор данных: https://www.kaggle.com/uciml/mushroom-classification

Этот набор данных включает описания гипотетических образцов, соответствующих 23 видам жаберных грибов семейства Agaricus и Lepiota, взятых из полевого руководства общества Audubon по североамериканским грибам (1981). Каждый вид идентифицируется как определенно съедобный, определенно ядовитый или неизвестной съедобности и не рекомендуется. Этот последний класс был объединен с ядовитым. В руководстве ясно сказано, что не существует простого правила для определения съедобности гриба; нет такого правила, как «листочков три, сойдет» для ядовитого дуба и плюща.

- Файл *mushrooms.csv* содержит 8124 строки и 23 столбца. В него включены: *Атрибуты*:
- 1-Форма шапки cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s;
- 2-Поверхность шапки cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s;
- 3-Цвет шапки cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y;
- 4-Пятна bruises: bruises=t, no=f;
- 5-Запах odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s;
- 6-Крепление жабр gill-attachment: attached=a, descending=d, free=f, notched=n;
- 7-Расстояние между жабрами gill-spacing: close=c, crowded=w, distant=d;
- 8-Размер жабр gill-size: broad=b, narrow=n;
- 9-Цвет жабр gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y;
- 10-Форма ножки stalk-shape: enlarging=e, tapering=t;
- 11-Корень ножки stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?;
- 12-Покрытие ножки над кольцом stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s;
- 13-Покрытие ножки под кольцом stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s;
- 14-Цвет ножки над кольцом stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y;
- 15- Цвет ножки под кольцом stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y;
- 16- veil-type: partial=p, universal=u;
- 17- veil-color: brown=n, orange=o, white=w, yellow=y;

- 18-ring-number: none=n, one=o, two=t;
- 19-ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z;
- 20- spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y;
- 21- population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y;
- 22- habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d; *Целевой признак* (гриб съедобен или ядовит):
- 23-classes: edible=e, poisonous=p.

Для данного набора данных мы будем решать задачу классификации – определение пригодности гриба в употребление.

Ход работы

Импортируем необходимые для работы библиотеки:

```
from sklearn.utils.multiclass import unique_labels
from typing import Dict
import numpy as np
import pandas as pd
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split, learning_curve, validation_curve
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score, precision_score, recall_score, classification_report, confusion_matrix, \
    balanced_accuracy_score
from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler
from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.metrics import roc_curve, roc_auc_score
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Считываем набор данных:

```
mushrooms = pd.read_csv('data/mushrooms.csv')
```

Размер датасета:

```
mushrooms.shape
(8124, 23)
```

Первые пять строк датасета:

mushrooms.head()

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color		stalk- surface- below- ring	stalk- color- above- ring	stalk- color- below- ring	veil- type	veil- color		ring- type	spore- print- color	population
0	р	х	s	n	t	р	f	С	n	k		s	w	w	р	W	0	р	k	s
1	е	x	s	у	t	a	f	С	b	k		s	w	w	р	w	0	р	n	n
2	е	b	S	w	t	- 1	f	С	b	n		S	w	w	р	w	0	р	n	n
3	р	x	у	w	t	р	f	С	n	n		s	w	w	р	w	0	р	k	S
4	е	х	s	g	f	n	f	w	b	k		s	W	W	р	w	0	е	n	a
5 rows × 23 columns																				

Типы столбцов:

```
mushrooms.dtypes
class
                              object
cap-shape
                              object
cap-surface
                              object
cap-color
                              object
bruises
                              object
odor
                              object
gill-attachment
                              object
gill-spacing
                              object
gill-size
gill-color
                              object
                              object
stalk-shape
                              object
stalk-root
                              object
stalk-surface-above-ring
                              object
stalk-surface-below-ring
                              object
stalk-color-above-ring
                              object
stalk-color-below-ring
                              object
veil-type
veil-color
                              object
                              object
ring-number
                              object
ring-type
                              object
spore-print-color
population
                              object
                              object
habitat
dtype: object
```

Основные статистические характеристики датасета:

```
mushrooms.describe()
                                                                        stalk-
                                                                              stalk-
                                                                                    stalk-
                                                                                                               spore-
print-
color
       color-
above-
                                                                                   color-
below-
                                                                                         veil- veil- ring- ring-
type color number type
                                                                                                                     popi
                                                                         ring
                                                                               ring
                                                                                     ring
                                                                        8124
             8124
                   8124 8124
                                             8124
                                                    8124 8124 8124
                                                                              8124
                                                                                     8124 8124
 count 8124
                               8124 8124
                                                                                              8124
                                                                                                     8124 8124
                                                                                                                8124
                                                2
                                                       2
                                                           2
                                                                12 ...
         2
             6
                      4
                         10
                                  2
                                     9
                                                                          4
                                                                                9
                                                                                       9
                                                                                                4
                                                                                                            5
                                                                                                                  9
unique
                                                                                            1
                                                                                                        3
                                                               b ...
                                                                                      W
top
                                 f n
                                               f
                                                     c b
                                                                          S
                                                                                w
       e x
                   y n
                                                                                            р
                                                                                               w
                                                                                                        0
                                                                                                            р
                                                                                                                 w
                                                    6812 5612 1728 ...
  freq 4208 3656
                   3244 2284
                               4748 3528
                                             7914
                                                                        4936
                                                                              4464
                                                                                     4384 8124 7924
                                                                                                     7488 3968
                                                                                                                2388
4 rows × 23 columns
```

Названия колонок:

Проверка набора данных на пропуски:

```
mushrooms.isnull().sum()
class
cap-shape
cap-surface
                            0
cap-color
bruises
                            0
gill-attachment
gill-spacing
gill-size
gill-color
stalk-shape
stalk-root
stalk-surface-above-ring
stalk-surface-below-ring
stalk-color-above-ring
stalk-color-below-ring
veil-type
veil-color
ring-number
ring-type
spore-print-color
population
habitat
                            0
dtype: int64
```

Пропущенных значений в наборе данных нет.

5 rows × 23 columns

Закодируем значения параметров для бинарной классификации:

```
le = LabelEncoder()
for item in mushrooms:
                               mushrooms[item] = le.fit_transform(mushrooms[item])
mushrooms.head()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       stalk-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           stalk-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               stalk-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    spore-
print- population
color
                        class cap- cap- cap- bruises odor gill- gi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             veil- veil- ring- ring-
type color number type
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      surface-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           color-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    color-
below-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             below-
ring
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   above-
ring
    0 1 5 2
                                                                                                                                                              2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0
                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2
```

Теперь построим корреляционную матрицу:

На основе корреляционной матрицы сложно судить о том, насколько качественные модели машинного обучения можно построить, т.к. наиболее коррелирующие признаки с целевым имеют скромные значения, и максимальный из них — gill-size = 0.54.

Распределение данных целевого признака:

Видно, что дисбаланса классов практически не наблюдается.

Подготовим данные для разделения на обучающую и тестовую выборки:

Разбиение данных на выборки

```
#Подготовка данных

X = mushrooms.drop('class', axis = 1)
y = mushrooms['class']

Pagadeneue набора данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 1)

#Применение стандартного масштавирования для оптимизации результата
sc = MinMaxScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
```

Выберем подходящие для нашей задачи метрики:

1. Confusion matrix

Количество верно и ошибочно классифицированных данных, представленное в виде матрицы.

2. ROC-кривая

Используется для оценки качества бинарной классификации. Показывает, какую долю классов алгоритм предсказал неверно. Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

3. Accuracy

Метрика вычисляет процент (долю в диапазоне от 0 до 1) правильно определенных классов. Главная проблема метрики ассигасу в том, что она показывает точность по всем классам, но для каждого класса точность может быть разная. Поэтому более предпочтительной является метрика balanced_accuracy.

Random Forest

Ансамблевый метод, заключается в построении алгоритма машинного обучения на базе нескольких, в данном случае решающих деревьев. это множество решающих деревьев. В задаче регрессии их ответы усредняются, в задаче классификации принимается решение голосованием по большинству. Все деревья строятся независимо по следующей схеме:

- Выбирается подвыборка обучающей выборки размера samplesize (м.б. с возвращением) по ней строится дерево (для каждого дерева своя подвыборка).
- Для построения каждого расщепления в дереве просматриваем max_features случайных признаков (для каждого нового расщепления свои случайные признаки).
- Выбираем наилучшие признак и расщепление по нему (по заранее заданному критерию). Дерево строится, как правило, до исчерпания выборки (пока в листьях не останутся представители только одного класса), но есть параметры, которые ограничивают высоту дерева, число объектов в листьях и число объектов в подвыборке, при котором проводится расщепление.

Обучим модель:

```
rfc = RandomForestClassifier(n_estimators=10)
rfc.fit(X_train, y_train)
pred_rfc = rfc.predict(X_test)
```


1.0

Попробуем улучшить качество модели с помощью подбора гиперпараметров при помощи метода GridSearchCV:

```
param_rfc = {'n_estimators':[1, 3, 5, 7, 10, 13, 16, 19],
    'max_depth':[1, 3, 5, 7, 10, 13, 16, 19],
    'random_state':[0, 2, 4, 6, 8, 10, 12, 14]}
grid_rfc = GridSearchCV(rfc, param_rfc, cv=3, scoring='balanced_accuracy')
grid_rfc.fit(X_train, y_train)
class_weight=None,
                                                       criterion='gini', max_depth=None,
                                                      max_features='auto',
                                                      max leaf nodes=None,
                                                      max_samples=None,
                                                       min_impurity_decrease=0.0,
                                                      min_impurity_split=None,
min_samples_leaf=1,
                                                      min_samples_split=2,
min_weight_fraction_leaf=0.0,
                                                      n_estimators=10, n_jobs=None,
                                                      oob_score=False,
                                                       random_state=None, verbose=0,
                                                      warm_start=False),
                iid='deprecated', n_jobs=None,
               scoring='balanced_accuracy', verbose=0)
#Лучшие параметры для модели RFC grid_rfc.best_params_
{'max_depth': 10, 'n_estimators': 3, 'random_state': 10}
```


Stochastic gradient descent

Предполагает, что обучение на каждом шаге происходит не на полном наборе данных, а на одном случайно выбранном примере:

Обучим модель:

```
sgd = SGDClassifier(penalty=None)
sgd.fit(X_train, y_train)
pred_sgd = sgd.predict(X_test)
```


0.9778442660203

Попробуем улучшить качество модели с помощью подбора гиперпараметров:

{'alpha': 0.1}

Метод ближайших соседей

Исторически является одним из наиболее известных и простых методов классификации. Значение целевого признака определяется на основе значений целевых признаков ближайших объектов.

Обучим модель:

0.881131646720194

```
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
pred_knn = knn.predict(X_test)
```


1.0

{'n_neighbors': 1}

Попробуем улучшить качество модели с помощью подбора гиперпараметров:

Support Vector Machines

Метод Опорных Векторов или SVM (от англ. Support Vector Machines) — это линейный алгоритм, используемый в задачах классификации и регрессии. Данный алгоритм имеет широкое применение на практике и может решать как линейные, так и нелинейные задачи. Алгоритм создает линию или гиперплоскость, которая разделяет данные на классы. В данной работе будет использоваться метод для решения задачи классификации – SVC.

Обучим модель:

```
svc = SVC()
svc.fit(X_train, y_train)
pred_svc = svc.predict(X_test)
```


1.0

Попробуем улучшить качество модели с помощью подбора гиперпараметров:

```
#Поиск оптимальных параметров для модели SVC
param = {
    'C': [0.1,0.8,0.9,1,1.1,1.2,1.3,1.4],
    'kernel':['linear', 'rbf'],
    'gamma': [0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4]
grid_svc = GridSearchCV(svc, param_grid=param, scoring='balanced_accuracy', cv=3)
grid_svc.fit(X_train, y_train)
(C=1.0, break_ties=raise, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='scale', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tal=0.001, pashes=51sls.)
                                       tol=0.001, verbose=False),
                  #Лучшие параметры для модели SVC
grid_svc.best_params_
{'C': 0.8, 'gamma': 0.9, 'kernel': 'rbf'}
# Вновь запустим наш SVC с лучшими параметрами svc2 = SVC(C = 1.2, gamma = 0.1, kernel= 'rbf')
svc2 = SVC(C = 1.2, gamma = 0.1
svc2.fit(X_train, y_train)
pred_svc2 = svc2.predict(X_test)
plot_confusion_matrix(y_test, pred_svc2,
classes=np.array(['0', '1']),
                               normalize=True,
title='Confusion matrix SVC2')
draw_roc_curve(y_test.values, pred_svc2)
balanced_accuracy_score(y_test, pred_svc2)
```


0.9832298136645963

Градиентный бустинг

Строится многослойная модель и каждый следующий слой пытается минимизировать ошибку, допущенную на предыдущем слое.

Обучим модель:

```
gbs = GradientBoostingClassifier()
gbs.fit(X_train, y_train)
pred_gbs = gbs.predict(X_test)
```


1.0

Попробуем улучшить качество модели с помощью подбора гиперпараметров:

```
grid_gbs = GridSearchCV(gbs, param_gbs, scoring='balanced_accuracy', cv=3)
grid_gbs.fit(X_train, y_train)
GridSearchCV(cv=3, error_score=nan,
estimator=GradientBoostingClassifier(ccp_alpha=0.0,
criterion='friedman_mse',
                                               init=None, learning_rate=0.1,
                                               loss='deviance', max_depth=3,
                                               max_features=None,
                                               max_leaf_nodes=None,
min_impurity_decrease=0.0,
                                               min_impurity_split=None,
                                              min_samples_leaf=1,
min_samples_split=2,
                                               min_weight_fraction_leaf=0.0,
                                               n_estimators=100,
                                               n iter no c...
                                               presort='deprecated',
                                               random_state=None,
                                               subsample=1.0, tol=0.0001,
                                               validation_fraction=0.1,
verbose=0, warm_start=False),
            iid='deprecated', n_jobs=None,
            pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
            scoring='balanced_accuracy', verbose=0)
#Лучшие параметры для модели GB
grid_gbs.best_params_
{'learning_rate': 0.01, 'max_depth': 7, 'n_estimators': 5}
# Вновь запустим наш GB с лучшими параметрами
gbs2 = GradientBoostingClassifier(n_estimators=16, max_depth=10, learning_rate=0.5)
normalize=True,
                    title='Confusion matrix GB2')
draw_roc_curve(y_test.values, pred_gbs2)
balanced_accuracy_score(y_test, pred_gbs2)
```


1.0

Выводы

В ходе курсовой работы были закреплены полученные в течение курса знания и навыки. Для исследования использовались следующие модели: стохастический градиентный спуск, случайный лес, градиентный бустинг, метод ближайших соседей, метод опорных векторов. Для оценки качества использовались три метрики: ROC-кривая, confusion matrix и balanced_accuracy.

Еще до подбора гиперпараметров почти все модели показали высочайшие характеристики, кроме стохастического градиентного спуска, у которого оказался самый низкий показатель точности. После подбора гиперпараметров несколько методов ухудшили свои показатели: метод опорных векторов, метод ближайших соседей и стохастический градиентный спуск. Все остальные модели смогли показать аналогичное качество.

Приложение

Функции для построения ROC-кривой и матрицы ошибок:

```
def draw_roc_curve(y_true, y_score, pos_label=1, average='micro'):
    fpr, tpr, thresholds = roc_curve(y_true, y_score,
                                     pos_label=pos_label)
    roc_auc_value = roc_auc_score(y_true, y_score, average=average)
    plt.figure()
    1w = 2
    plt.plot(fpr, tpr, color='darkorange',
             lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
   plt.show()
```

```
def plot_confusion_matrix(y_true, y_pred, classes,
                          normalize=False,
                          title=None,
                          cmap=plt.cm.Blues):
    Normalization can be applied by setting `normalize=True`.
    if not title:
        if normalize:
            title = 'Normalized confusion matrix'
            title = 'Confusion matrix, without normalization'
    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    classes = classes[unique_labels(y_true, y_pred)]
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
       print("Normalized confusion matrix")
    fig, ax = plt.subplots()
    im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
    ax.figure.colorbar(im, ax=ax)
    ax.set(xticks=np.arange(cm.shape[1]),
           yticks=np.arange(cm.shape[0]),
           xticklabels=classes, yticklabels=classes,
           title=title,
   plt.setp(ax.get xticklabels(), rotation=45, ha="right",
```

Список использованных источников

1. Конспект лекций по дисциплине «Технологии машинного обучения». 2020:

https://github.com/ugapanyuk/ml_course_2020/wiki/COURSE_TMO

2. Документация scikit-learn:

https://scikit-learn.org/stable/index.html

3. Метрики в задачах машинного обучения:

https://habr.com/ru/company/ods/blog/328372/