Visión por Computadora I

Ing. Andrés F. Brumovsky (abrumov@fi.uba.ar)

Laboratorio de Sistemas Embebidos -FIUBA

PROGRAMA SUGERIDO

- Clase 1: Introducción a imágenes y OpenCV
- Clase 2: Op. de píxel, histogramas, binarización, White patch, coord. cromáticas
- Clase 3: Filtros: Lineales, separables, padding, DoG, Fourier, Bordes (Canny)
- Clase 4: Bordes. Harris. Transformada de Hough. Pirámides.
- Clase 5: Extracción de características. SIFT, SURF, ORB, FAST.
- Clase 6: Segmentación: K-Means, watersheed, mean-shift, texturas, graph-cut.
- Clase 7: Introducción a clasificación y detección: PCA, SVMs, AdaBoost.
- Clase 8: Seguimiento. Kalman, filtro de partículas.

RÉGIMEN DE APROBACIÓN

- Trabajos prácticos a implementarse y entregarse luego de las clases
- Examen teórico final online

Dinámica esperada para las clases:

- •90 minutos de teoría
- 10 minutos de descanso
- 80 minutos de práctica

HERRAMIENTAS PARA LA CURSADA

- Lenguaje de programación
 - Phyton 3.8
- Librerías de código
 - Numpy 1.18
 - OpenCV 3.4.2 Matplotlib 3.1.3
- Entorno de programación
 - Jupyter notebook 6.0.3
- IDE recomendado
 - Anaconda Navigator 1.9.12
 - https://www.anaconda.com/distribution

BIBLIOGRAFÍA SUGERIDA

- La bibliografía es de referencia y no será obligatorio el uso de la misma.
 - Computer Vision: Algorithms and Applications | Szeliski | Springer
 - http://szeliski.org/Book
 - Computer Vision: A Modern Approach | Forsyth, Ponce | Pearson
 - Computer Vision | Shapiro | Pearson
 - Learning OpenCV | Bradski, Kaehler | O'Reilly

DESAFÍOS

- ¿Por qué puede la visión por computadora resultar compleja?
 - Lo humanos reconocemos nuestro entorno con relativa facilidad
 - Podemos segmentar objetos de un entorno aparentemente sin esfuerzo
 - Podemos mirar una foto y nombrar a las personas que reconocemos
 - Inclusive podemos intuir sus emociones a partir de las expresiones
 - Podemos seguir una persona que se mueve a través de un entorno complejo

PERCEPCIÓN DE LA LUZ POR EL 010

- Cornea: Superficie transparente que envuelve al ojo
- Sclera: Lo que resta de la cobertura exterior
- Coroide: Capa que contiene capilares sanguíneos, dentro de esta capa está la retina
- Retina: Contiene dos tipos de células receptivas de luz, conos y bastones
- Nervio óptico: Conjunto de nervios que provienen de la retina
- Cristalino: Lente que cambia de forma mediante control muscular

Sensibilidad del ojo humano a la luz

FIGURE 2.4-6. Lateral inhibition effect.

PERCEPCIÓN DE LA LUZ POR EL 0J0

- Bastones: <u>Intensidad</u> (responden poco al rojo). 120 millones
- Conos: Color (concentrados en la mácula). 6~7 millones
 - Rojos 64%
 - Verdes 32 %
- **Azules** −<u>2 %</u>
- Respuesta logarítmica. Fracción de Weber (0.02)
- Daltonismo (8% hombres / 1% mujeres)

MODELOS DE COLOR

RGB: Commission Internationale d'Eclairage (CIE) en 1930

Rojo: 700 nm

Verde: 546,1 nm

Azul: 435,8nm

XYZ: Resuelve el color negativo

Además, permite separar crominancia de luminancia

$$x = \frac{x}{X+Y+Z}$$

$$\underbrace{y} = \frac{Y}{X + Y + Z}$$

$$\underbrace{x} = \frac{x}{X+Y+Z} \qquad \underbrace{y} = \frac{Y}{X+Y+Z} \qquad \underbrace{z} = \frac{Z}{X+Y+Z} - \underbrace{x} - \underbrace{x}$$

Figure 2.28 Standard CIE color matching functions: (a) $\bar{r}(\lambda)$, $\bar{g}(\lambda)$, $\bar{b}(\lambda)$ color spectra obtained from matching pure colors to the R=700.0nm, G=546.1nm, and B=435.8nm primaries; (b) $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ color matching functions, which are linear combinations of the $(\bar{r}(\lambda), \bar{q}(\lambda), \bar{b}(\lambda))$ spectra.

OTROS ESPACIOS DE COLOR

• **CIELAB** (L*a*b)

$$L^* = 116 f\left(\frac{Y}{Yn}\right); \quad a^* = 500 \left[f\left(\frac{X}{Xn}\right) - f\left(\frac{Y}{Yn}\right)\right]; \quad b^* = 200 \left[f\left(\frac{Y}{Yn}\right) - f\left(\frac{Z}{Zn}\right)\right]$$

$$f(t) = \begin{cases} t^{1/3} & \text{si } t > \delta^3 \\ \frac{t}{3\delta^2} + \frac{2\delta}{3} & \text{otro caso} \end{cases}$$

HSV

- **Hue**: Dirección alrededor de la rueda de color, en grados $\in [0, 360]$
- **Saturation:** Distancia escalada desde la diagonal $\in [0,1]$
- **Value**: Promedio o máximo valor de color $\in [0, 1]$

Conversión RGB → HSV

$$\underline{V} = \underline{M} = \max(R, G, B); \underline{m} = \min(R, G, B)$$

$$(S = (M - m)/\underline{M} (S = 0, si \underline{V} = 0)$$

$$S = (M - m)/M \quad (S = 0, si \ V = 0)$$

$$H = 60 \times \begin{cases} 0 & , si \ (M - m) = 0 \\ 0 + (G - B)/(M - m), si \ max = R \\ 2 + (B - R)/(M - m), si \ max = G \\ 4 + (R - G)/(M - m), si \ max = B \end{cases}$$

$$H = H + 360$$
, $si H < 0$

Nombre	Resolución	Nro. píxels
VGA	640x480 🚑	0,3 MP (Megapíxel)
SVGA	800×600	0,48 MP (Megapíxel)
XGA	1024×768	0,78 MP (Megapíxel)
SXGA	1280x1024	1,3 MP (Megapíxel)
UXGA	1600x1200	1,9 (2) MP (Megapíxel)
SUXGA	2048×1536	3,1 MP (Megapíxel)
-	2048x2048	4,0 MP (Megapíxel)
-	2452x2054	5,0 MP (Megapíxel)
QUXGA	3200x2400	7,7 MP (Megapíxel)
HD _	1280×720	0,92 MP (Megapíxel)
Full HD	1920×1080	2,1 MP (Megapíxel)

CCD (charge-couple device):
 Willard Boyle y George E. Smith – Laboratorios Bell – 1969

A/D central 20 a 75MHz

Blooming/Smearing

Mayor sensibilidad

- CMOS (complementary metal oxide semiconductor)
 - Conversión en el fotositio
 - Rolling shutter
 - Microlentes
- Otros parámetros a considerar
 - Eficiencia cuántica
- Capacidad de pozo
- Binning
- ROI
- LUTs

