An Overview of Labelling Hiero Models

Gideon Maillette de Buy Wenniger

Institute for Logic Language and Computation University of Amsterdam

April 26th, 2016

Outline

- Ambiguity in Hiero
- 2 Syntax-Augmented Machine Translation (SAMT)
- 3 Labelling from the Alignments
 - Motivation
 - Bilingual Phrase Reordering Labels
 - Label Substitution Features
 - Experiments
 - Conclusions
- 4 Source Side Labeling

Ambiguity in Hiero

- single non-terminal X
 - spurious (derivational) ambiguity (too) many derivations
 - syntactic (linguistic) ambiguity overgeneration
- constraints to reduce spurious ambiguity
 - lexical anchoring, no contiguous source-side NT's, etc.
 - ⇒ undergeneration

Derivations:

 $X \rightarrow \cdots$, X X

Spurious Ambiguity

Mary kisses Peter
/ \
Mary embrasse Peter

Extracted rules:

 $egin{array}{c} \mathsf{Mary} \\ \mathsf{Mary} \ \mathsf{kisses} \\ \ldots \\ \mathsf{X}
ightarrow \cdots, & \mathsf{Mary} \ \mathsf{X} \\ \ldots \\ \mathsf{X} \ \mathsf{kisses} \ \mathsf{X} \\ \end{array}$

X X X

translate: Mary loves Peter knowing: $X \rightarrow$ aime, loves

$X o \cdots$, $X ilde{X} ilde{X}$ Mary, loves, Peter X Peter $X o \cdots$, Mary X loves X Peter

Mary, loves

Syntactic ambiguity

Sentence pair 1

- die Frau₁, die ein UFO gesehen₂ hat, ist nicht verrückt₃.
- the woman₁ who has seen a UFO₂ is not crazy₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . $\mid X_1$ who has $X_2 \mid X_3 \mid X_3 \mid X_4 \mid X_5 \mid$

Sentence pair 2

- ich glaube₁, die Frau₂ hat ein UFO gesehen₃.
- I think₁ the woman₂ has seen a UFO₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . | X_1 the X_2 has X_3 .

Syntactic ambiguity

Sentence pair 1

- die Frau₁, die ein UFO gesehen₂ hat, ist nicht verrückt₃.
- the woman₁ who has seen a UFO₂ is not crazy₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . $\mid X_1$ who has X_2 X_3 .

Sentence pair 2

- ich glaube₁, die Frau₂ hat ein UFO gesehen₃.
- I think₁ the woman₂ has seen a UFO₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . | X_1 the X_2 has X_3 .

Test sentence: ich glaube, die Frau hat ein UFO gesehen .

Syntactic ambiguity

Sentence pair 1

- die Frau₁, die ein UFO gesehen₂ hat, ist nicht verrückt₃.
- the woman₁ who has seen a UFO₂ is not crazy₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . X_1 who has X_2 X_3 .

Sentence pair 2

- ich glaube₁, die Frau₂ hat ein UFO gesehen₃.
- I think₁ the woman₂ has seen a UFO₃.
- $\Rightarrow X_1$, die X_2 hat X_3 . $\mid X_1$ the X_2 has X_3 .

Test sentence: ich glaube, die Frau hat ein UFO gesehen.

- I think the woman has seen a UFO.
- ⇒ I think who has woman seen a UFO.

Undergeneration

Model expressiveness limited by

- anti-ambiguity constraints no contiguous NT's on source side, lexical anchoring
- decoding constraints max. 2 NT's on right-hand side, decoding span limit
- estimation
 limit on phrase length

Labelling to reduce ambiguity

What source of information?

- Syntactic information phrase-structure/dependency trees, POS tags, etc.
- Word (distribution) information
- Automatically learned clusters/categories with EM / EM-like algorithms
- ⇒ Question: How well do we capture context?

What perspective?

- label target/source side, and project through alignments
- label bilingual structure directly

Outline

- 1 Ambiguity in Hiero
- Syntax-Augmented Machine Translation (SAMT)
- 3 Labelling from the Alignments
 - Motivation
 - Bilingual Phrase Reordering Labels
 - Label Substitution Features
 - Experiments
 - Conclusions
- 4 Source Side Labeling

Example of syntax resolving ambiguity

Sentence pair 1

- die Frau₁, die ein UFO gesehen₂ hat, ist nicht verrückt₃.
- the woman₁ who has seen a UFO₂ is not crazy₃.
- \Rightarrow NP₁, die VBN + NP₂ hat VP₃ . | NP₁ who has VBN + NP₂ VP₃ .

Sentence pair 2

- ich glaube₁, die Frau₂ hat ein UFO gesehen₃.
- I think₁ the woman₂ has seen a UFO₃.
- \Rightarrow $NP + VB_1$, die NN_2 hat $VBN + NP_3$. | $NP + VB_1$ the NN_2 has $VBN + NP_3$.

Test sentence: ich glaube, die Frau hat ein UFO gesehen .

- \Rightarrow I think the woman has seen a UFO.
- ⇒ I think who has woman seen a UFO.

Syntax-Augmented Machine Translation (SAMT)

- label constituent phrases only
 - Risk coverage loss in strictly syntactic systems
 "Re-structuring, Re-labeling, and Re-aligning for Syntax-Based Machine Translation" (Wang et.al, 2010)
- add syntax without coverage loss w.r.t Hiero relaxed syntactic labels akin to Combinatorial Categorial Grammar

C: NP – the great wall

C1+C2: NP+VB – she+went

C1/C2: NP/NN – the great (/wall)

C1\C2 : DT\NP - (the\) great wall

default : FAIL

Example

Which label for:

- we / wir (NP:PRP)
- do not know / ...
- is happening . / ...
- do ... happening . / ...
- we do not / ...

nappenii

Example

Which label for:

- NP:PRP → we / wir
- VP/SBAR → do not know
- S:VP+. → is happening .
- ullet VP+. o do ... happening .
- FAIL → we do not

Probabilistic Features

Generative probability of a rule:

• $\hat{p}(r|lhs(r))$

Phrase weights:

- $\hat{p}(r|src(r))$
- \bullet $\hat{p}(r|tgt(r))$

Phrase smoothing weights:

- $\hat{p}(r|ul(src(r)))$
- $\hat{p}(r|ul(tgt(r)))$
- p̂(ul(tgt(r))|ul(src(r)))
- $\hat{p}(ul(src(r))|ul(tgt(r)))$

Lexical weights:

• $\hat{p}_w(tgt(r)|src(r)), \hat{p}_w(src(r)|tgt(r))$:

Results Chinese-English

ChEn. System \setminus %BLEU	Dev (MT04)	MT02	MT03	MT05	MT06	MT08	TstAvg
FULL							
Phraseb. reo=4	37.5	38.0	38.9	36.5	32.2	26.2	34.4
Phraseb. reo=7	40.2	40.3	41.1	38.5	34.6	27.7	36.5
Phraseb. reo=12	41.3*	41.0	41.8	39.4	35.2	27.9	37.0
Hier.	41.6*	40.9	42.5	40.3	36.5	28.7	37.8
SAMT	41.9*	41.0	43.0	40.6	36.5	29.2	38.1
TARGET-LM							
Phraseb. reo=4	35.9*	36.0	36.0	33.5	30.2	24.6	32.1
Phraseb. reo=7	38.3*	38.3	38.6	35.8	31.8	25.8	34.1
Phraseb. reo=12	39.0*	38.7	38.9	36.4	33.1	25.9	34.6
Hier.	38.1*	37.8	38.3	36.0	33.5	26.5	34.4
SAMT	39.9*	39.8	40.1	36.6	34.0	26.9	35.5
TARGET-LM, 10%TM							
Phraseb. reo=12	36.4*	35.8	35.3	33.5	29.9	22.9	31.5
Hier.	36.4*	36.5	36.3	33.8	31.5	23.9	32.4
SAMT	36.5*	36.1	35.8	33.7	31.2	23.8	32.1

Table 3.5.3: Results (% case-sensitive IBM-BLEU) for Ch-En NIST-large. Dev. scores with * indicate that the parameters of the decoder were MER-tuned for this configuration and also used in the corresponding non-marked configurations.

Results Arabic-English

ArEn. System \setminus %BLEU	Dev (MT04)	MT02	MT03	MT05	MT06	MT08	TstAvg
FULL							
Phraseb. reo=4	51.7	64.3	54.5	57.8	45.9	44.2	53.3
Phraseb. reo=7	51.7*	64.5	54.3	58.2	45.9	44.0	53.4
Phraseb. reo=9	51.7	64.3	54.4	58.3	45.9	44.0	53.4
Hier.	52.0*	64.4	53.5	57.5	45.5	44.1	53.0
SAMT	52.5*	63.9	54.2	57.5	45.5	44.9	53.2
TARGET-LM							
Phraseb. reo=4	49.3	61.3	51.4	53.0	42.6	40.2	49.7
Phraseb. reo=7	49.6*	61.5	51.9	53.2	42.8	40.1	49.9
Phraseb. reo=9	49.6	61.5	52.0	53.4	42.8	40.1	50.0
Hier.	49.1*	60.5	51.0	53.5	42.0	40.0	49.4
SAMT	48.3*	59.5	50.0	51.9	41.0	39.1	48.3
TARGET-LM, 10%TM							
Phraseb. reo=7	47.7*	59.4	50.1	51.5	40.5	37.6	47.8
Hier.	46.7*	58.2	48.8	50.6	39.5	37.4	46.9
SAMT	45.9*	57.6	48.7	50.7	40.0	37.3	46.9

Table 3.5.4: Results (% case-sensitive IBM-BLEU) for Ar-En NIST-large. Dev. scores with * indicate that the parameters of the decoder were MER-tuned for this configuration and also used in the corresponding non-marked configurations.

Final thoughts

- Strengths
 - as Hiero: extends phrase-based SMT more structure, no loss coverage
 - target-side disambiguation role similar to language model
- Spurious ambiguity and sparsity
 - spurious ambiguity: many labellings for same Hiero rules
 - large label set
 - $\star \ \ \text{sparsity for phrase weights} \to \text{smoothing essential}$
 - ★ blow-up Hiero grammar → memory problems, severe pruning at decoding, validity of best-derivation strategy . . .
- and further . . .
 - labelling source side (different goal and issues)
 - labelling introduces hard constraints, alternatives are soft constraints

Outline

- 1 Ambiguity in Hiero
- 2 Syntax-Augmented Machine Translation (SAMT)
- 3 Labelling from the Alignments
 - Motivation
 - Bilingual Phrase Reordering Labels
 - Label Substitution Features
 - Experiments
 - Conclusions
- 4 Source Side Labeling

Motivation

- Word alignments implicitly contain lots of reordering information
- Hiero discards almost all of this information
- Result: Hiero unable to properly model reordering at sentence level, extreme dependence on language model
- Goal: Better fulfill reordering competence promise
- Method: Effectively integrate reordering information of alignments into Hiero rules

The incoherence of translation reordering

Sentence type	Sentence contents
Source Sentence	der handlungsspielraum der beiden betroffenen regierung
	ist also durch das internationale recht begrenzt.
Reference	any action by the two governments concerned
	is therefore limited by this international law .
Hiero (Baseline)	the margin for manoeuvre of two government
	is concerned by the international community limited.

Hiero and Memento

Question: what do they have in common?

Lexicalization and Language model: the words are not enough

Coherence demands (reordering) context

Vision: Hierarchical Alignment Trees (HATs)

Outline

- Part 1: Bilingual Phrase Reordering Labels
- Part 2: Label Substitution Features
- Part 3: Experiments
- Conclusions

Part 1: Bilingual Phrase Reordering Labels

NDT with Alignment structure

→ロト→団ト→ミト→ミ りへで

NDT with Alignment structure = HAT

Reordering Labeled Grammar Extraction

Bilingual Phrase Reordering label categories

Phrase-Centric

Parent-Relative

Phrase-centric reordering labels

- Complexity relation between base phrase and children in HAT determines label
- Five cases distinguished, ordered by increasing complexity

Known labels from ITG and Phrase pair Theory

Monotonic

 Monotonic: If the alignment can be split into two monotonically ordered parts.

Inverted

Inverted: If the alignment can be split into two inverted parts.

Atomic

 Atomic: If the alignment does not allow the existence of smaller (child) phrase pairs.

New labels based on HATs

Permutation

 Permutation: If the alignment can be factored as a permutation of more than 3 parts.

Complex

• *Complex*: No alignment factorization as a permutation of parts, but smaller phrase pair is contained (i.e., it is composite).

S 10


```
COMPLEX . S
```


Parent-Relative reordering labels

Describe type of reordering relative to embedding "parent" phrase

First-order view on reordering

(Details ommitted due to time constraints)

Part 2: Label Substitution Features

Label substitution features

• Unique feature for every label pair $\langle L_{\alpha}, L_{\beta} \rangle$

- Marks specific LHS substitutes specific gap
- Two more coarse features:
 - Match
 - Nomatch

Part 3: Experiments

Motivating Example - After

Sentence type	Sentence contents		
Source Sentence	der handlungsspielraum der beiden betroffenen regierung		
Source Sentence	ist also durch das internationale recht begrenzt.		
Reference	any action by the two governments concerned		
	is therefore limited by this international law .		
Hiero (Baseline)	the margin for manoeuvre of two government		
niero (basellile)	is concerned by the international community limited.		
Our System	the scope of the two governments		
Our System	concerned is therefore limited by international law.		

Experimental Setup

- German-English and Chinese-English language pairs
- Data properties

Language pair	dataset type	size	data origin		
	train	1M	Europarl		
German-English	dev	2K	WMT-07 - dev		
	test	2K	WMT-07 - test		
	train	7.34M	MultiUn + Hong Kong Parallel Text		
Chinese-English	dev	2K	Multiple Translation Chinese		
	test	2K	Multiple Translation Chinese		

- Max sentence length 40
- Language model
 - 4-gram language model
 - Kneser-Ney discounting

Experimental Setup - Evaluation

- Evaluation Metrics
 - BLEU
 - ▶ METEOR
 - Translation Error Rate (TER)
 - KENDALL-Reordering Score (KRS)
- 3 runs all experiments
- Significance Tests
 - Re-sampling test from MultEval
 - Sign test, used for KRS

Baselines

- Comparison against Hiero and SAMT baselines
- Experiments with Joshua
- Default decoding settings used

Bilingual Phrase reordering labels

Two alternative labeling schemes:

- Hiero-0th
 - Phrase-centric bilingual reordering labels
- Hiero-1st
 - Parent-relative bilingual reordering labels

Two constraint types:

- Strict constraints
- Soft constraints

Initial Results Strict Matching

	DEV			TEST				
System Name	BLEU↑	METEOR ↑	TER↓	KRS ↑	BLEU ↑	METEOR ↑	TER↓	KRS ↑
	German-English							
Hiero	27.90	32.69	58.22	66.37	28.39	32.94	58.01	67.44
SAMT	27.76	32.67	58.05	66.84▲	28.32	32.88	57.70	67.63
Hiero-0 th _{ITG+}	27.85	32.70	58.04▲▲	66.27	28.36	32.90▼	57.83▲▲	67.30
Hiero-0 th	27.82	32.75	57.92	66.66	28.39	33.03**	57.75▲▲	67.55
Hiero-1st Coarse	27.86	32.66	58.23	66.37	28.22▼	32.90	57.93	67.47
Hiero-1st	27.74▼	32.60▼▼	58.11	66.44	28.27	32.80▼▼	57.95	67.39
	Chinese-English							
Hiero	31.70	30.72	61.21	58.28	31.63	30.56	59.28	58.03
SAMT	31.984	30.81▲	61.83▼▼	60.71	31.87	30.61	59.97▼▼	59.94
Hiero-0 th _{ITG+}	31.54	30.97**	62.79▼▼	59.54	31.94**	30.84**	60.76▼▼	59.45▲▲
Hiero-0 th	31.66	30.95▲▲	62.20▼▼	60.00▲▲	31.90	30.79▲▲	60.11▼▼	59.68▲▲
Hiero-1st Coarse	31.64	30.75	61.37	59.48▲▲	31.57	30.57	59.58▼▼	59.13▲▲
Hiero-1st	31.74	30.79	61.94▼▼	60.22**	31.77	30.62	60.13▼▼	59.89**

Main Results Soft Constraints

	DEV			TEST				
System Name	BLEU ↑	METEOR ↑	TER↓	KRS ↑	BLEU ↑	METEOR ↑	TER↓	KRS ↑
	German-English							
Hiero	27.90	32.69	58.22	66.37	28.39	32.94	58.01	67.44
SAMT	27.76	32.67	58.05	66.84▲	28.32	32.88	57.70	67.63
Hiero-0 th _{ITG+} -Sft	28.00▲	32.76▲▲	57.90	66.17	28.48	32.98	57.79▲▲	67.32
Hiero-0 th -Sft	28.01▲	32.71	57.95▲▲	66.24	28.45	32.98	57.73▲▲	67.51
Hiero-1st Coarse-Sft	27.94	32.69	57.91	66.26	28.45▲	32.94	57.75▲▲	67.36
Hiero-1st-Sft	28.13**	32.80**	57.92▲▲	66.32	28.45	33.00▲	57.79▲▲	67.45
	Chinese-English							
Hiero	31.70	30.72	61.21	58.28	31.63	30.56	59.28	58.03
SAMT	31.984	30.81▲	61.83▼▼	60.71	31.87	30.61	59.97▼▼	59.94
Hiero-0 th _{ITG+} -Sft	31.88▲	30.46▼▼	60.64	57.82▼	31.93▲▲	30.37▼▼	58.86**	57.60▼
Hiero-0 th -Sft	32.04	30.90▲▲	61.47▼▼	59.36▲▲	32.20▲▲	30.74▲▲	59.45▼	58.92▲▲
Hiero-1st Coarse-Sft	32.39**	31.02	61.56▼▼	59.51	32.55	30.86▲▲	59.57▼▼	59.03
Hiero-1st-Sft	32.63**	31.22	62.00▼▼	60.43	32.61 **	30.98	60.19▼▼	59.84

Do we really need soft-matching?

- Best sytem strict matching (Chinese-English): 31.94 BLEU
- Best sytem soft-matching (Chinese-English): 32.61 BLEU
 - ► Improvement: 0.67 BLEU
- Labels are coarse (only 5 / 8 cases)
- Feature weights (Chinese-English) show strong preference matching

 Suggests soft-matching has strong merit, at least complementary (not entirely overlapping) to proper learning labels

Conclusions

- Bilingual phrase reordering labels improve reordering and lexical selection for Hierarchical SMT
- Using soft, not strict constraints is important to be successful
- Results also far superior to syntax-labeled translation (SAMT) for Chinese-English
- \bullet Major improvements for Chinese-English, up to \pm 1 BLEU point

Outline

- 1 Ambiguity in Hiero
- 2 Syntax-Augmented Machine Translation (SAMT)
- 3 Labelling from the Alignments
 - Motivation
 - Bilingual Phrase Reordering Labels
 - Label Substitution Features
 - Experiments
 - Conclusions
- Source Side Labeling

Source Side Labeling

Source labels anchor rules into more (syntactic) source context

• How to assure rule labels match source labels?

► Option 1: enforce label matching in decoder: input label chart.

► Option 2: filter rules on the development/test set or sentence level.

 Source labels be matched only against other rule labels, as in (Chiang, 2010)

Source Side Labeling - continued

 Source labels can be thought of as adding more context, target labels as a kind of language model.

- (Mylonakis and Sima'an, 2011) illustrates how source rule labels can be matched with an input label chart, in combination with learning of rule labels.
 - Here, multiple, alternative labels per source span are allowed, with different specificity.

Questions?