[Datawhale Paper Share] Field-matrixed Factorization Machines for Recommender Systems. WWW, 2021.

Enneng Yang

Northeastern University

18th April 2021

FM²: Field-matrixed Factorization Machines for Recommender Systems

Yang Sun Yahoo Research Sunnyvale, CA, USA yang.sun@verizonmedia.com

Alex Zhang Yahoo Research Sunnyvale, CA, USA alex.zhang@verizonmedia.com Junwei Pan Yahoo Research Sunnyvale, CA, USA pandevirus@gmail.com

Aaron Flores Yahoo Research Sunnyvale, CA, USA aaron.flores@verizonmedia.com

- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- **5** References

- 1 Background
- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- 6 References

Background
000000000000

An example of multi-field categorical data for CTR prediction.

CLICK	User_ID	GENDER	ADVERTISER	PUBLISHER
1	29127394	Male	Nike	news.yahoo.com
-1	89283132	Female	Walmart	techcrunch.com
-1	91213212	Male	Gucci	nba.com
-1	71620391	Female	Uber	tripadviser.com
1	39102740	Male	Adidas	mlb.com

00000000000

Background

Sparse Features:

- Number of features: ∼ Million to Billion
- Number of active features per sample/request: \sim Ten to a Thousand

Field:

- examples:
 - Advertisers: Nike, Adidas, ...
 - AdvertisementID: 1234, 3456, ...
 - Gender: male, female, unknown
- Number of Field: \sim Ten to a Thousand
- Each feature belongs to a field

¹Referred to junwei pan's slide.

CTR: feature embedding

Embedding: raw sparse features \rightarrow dense vectors.

raw sparse features

$$\mathbf{X} = [\mathbf{X}_1; \mathbf{X}_2; \dots; \mathbf{X}_{\mathbf{N}}] \tag{1}$$

- N: the number of total feature fields
- X_i : the feature representation (one-hot vector in usual) of the i-th field
- embedding vector v_i

$$\mathbf{v_i} = \mathbf{V_i} \mathbf{X_i}, \text{ where } \mathbf{V_i} \in \mathbf{R}^{n_i \times d}$$

$$\mathbf{V} = \{\mathbf{V_1}, \mathbf{V_2}, \dots, \mathbf{V_N}\}$$
(2)

- n_i: the number of features in the i-th field
- d: the size for of embedding vectors

|ロ > 4回 > 4回 > 4回 > ~回 > ~0 への

Enneng Yang

Northeastern University

CTR: Object & Training

prediction score

$$\hat{\mathbf{y}} = \phi(\mathbf{X} \mid \mathbf{V}, \Theta) \tag{3}$$

- Θ: model' s other parameters
- ϕ (): FM, DeepFM, xDeepFM, AutoInt ...
- training loss

$$\min \mathcal{L}(\mathbf{V}, \Theta, \mathcal{D}) \tag{4}$$

- $\mathcal{D} = \{\mathbf{X}, y\}$ represent the training data fed into the model
- L is the Logloss:

$$\mathcal{L} = -\frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} (y_j \log(\hat{y}_j) + (1 - y_j) \log(1 - \hat{y}_j))$$
 (5)

Enneng Yang

Northeastern University

CTR Models:

- shallow: LR, Poly2, FM, FFM, FwFM, FvFM, FmFM
- deep: FNN, PNN, Wide&Deep, DeepFM, Deep&Cross, xDeepFM, AutoInt, AFN ...

Background 000000000

Logistic Regression (LR): a linear combination of individual features.

$$\Phi_{LR}(\boldsymbol{w}, \boldsymbol{x}) = w_0 + \sum_{i=1}^{m} w_i x_i$$
 (6)

However, linear models lack the capability to represent the feature interactions.

CTR: Related Works Overview

Degree-2 Polynomial (Poly2): can effectively capture the effect of feature interactions.

$$\Phi_{\text{Poly }2}(\boldsymbol{w},\boldsymbol{x}) = w_0 + \sum_{i=1}^{m} w_i x_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} w_{(i,j)} x_i x_j$$
 (7)

However, number of parameters in the model would be in the order $O(m^2)$.

Factorization Machines (FM): FM model the interaction between two features i and j as the dot product of their corresponding embedding vectors v_i , v_j .

$$\Phi_{FM}((\boldsymbol{w}, \boldsymbol{v}), \boldsymbol{x}) = w_0 + \sum_{i=1}^{m} w_i x_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle x_i x_j$$
 (8)

However, FM neglect the fact that a feature might behave differently when it interacts with features from different other fields.

Background

0000000000000

CTR: Field Strength

To validate the heterogeneity of the field pair interactions, we use mutual information² between a field pair (F_k, F_l) and label variable Y to quantify the interaction strength of the field pair $[PXR^+18]$:

$$MI((F_k, F_l), Y) = \sum_{(i,j) \in (F_k, F_l)} \sum_{y \in Y} p((i,j), y) \log \frac{p((i,j), y)}{p(i,j)p(y)}$$
(9)

Enneng Yang

Northeastern University

Mutual Information: https://en.wikipedia.org/wiki/Mutual_information () + ()

CTR: Field Strength

Background

0000000000000

Unsurprisingly, the interaction strengths of different field pairs are quite different. Some field pairs have very strong interactions, such as (AD ID, SUBDOMAIN), (CREATIVE ID, PAGE TLD) while some other field pairs have very weak interactions, such as (LAYOUT ID, GENDER), (DAY_OF_WEEK, AD_OSITION_ID).

Northeastern University Enneng Yang

Field-aware Factorization Machines (FFM): model such difference explicitly by learning n-1 embedding vectors for each

$$\Phi_{FFM}((\boldsymbol{w}, \boldsymbol{v}), \boldsymbol{x}) = w_0 + \sum_{i=1}^{m} w_i x_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \left\langle \boldsymbol{v}_{i, F(j)}, \boldsymbol{v}_{j, F(i)} \right\rangle x_i x_j$$
(10)

However, their number of parameters is in the order of O(mnk).

Background

0000000000000

feature.

Field-weighted Factorization Machines (FwFM): models the different field interaction strength explicitly.

$$\Phi_{FwFM}((w,v),x) = w_0 + \sum_{i=1}^{m} x_i w_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} x_i x_j \langle v_i, v_j \rangle r_{F(i),F(j)}$$
(11)

However, FwFM has only 1 degree of freedom. (FM= 0).

Background

000000000000

- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- 6 References

Field-matrixed FM

Field-matrixed Factorization Machines (FmFM)[SPZF21]:

FmFM are extensions of FwFM in that it uses a 2-dimensional matrix instead of a scalar.

$$\Phi_{FmFM}((w, v), x) = w_0 + \sum_{i=1}^{m} x_i w_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} x_i x_j \left\langle v_i M_{F(i), F(j)}, v_j \right\rangle$$
(12)

Field-Embedded Factorization Machines (FEFM)[Pan20]

$$\Phi_{FEFM}((w, v, W), x) = w_0 + \sum_{i=1}^{m} w_i x_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} v_i^T W_{F(i), F(j)} v_j x_i x_j$$
(13)

- 4 ロ ト 4 周 ト 4 差 ト 4 差 ト 2 9 9 9 9

- 1 Background
- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- 6 References

Field-matrixed Factorization Machines (FmFM)[SPZF21]:

$$\Phi_{FmFM}((w,v),x) = w_0 + \sum_{i=1}^{m} x_i w_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} x_i x_j \left\langle v_i M_{F(i),F(j)}, v_j \right\rangle$$
(14)

FM:

$$v_i = v_i I_K \tag{15}$$

FwFM:

$$v_{i,F(j)} = v_i r_{F(i)F(j)} = v_i \left(r_{F(i)F(j)} I_K \right)$$
 (16)

FvFM (Field-vectorized Factorization Machines)

$$v_{i,F(j)} = v_i D_{F(i)F(j)} = v_i \odot d_{F(i)F(j)}$$
 (17)

FFM:

FmFM v.s. OPNN:

$$\Phi_{FmFM}((\boldsymbol{w}, \boldsymbol{v}), \boldsymbol{x}) = w_0 + \sum_{i=1}^{m} x_i w_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} x_i x_j p(v_i, \boldsymbol{v}_j, \boldsymbol{W}_{F(i), F(j)})$$

where $\boldsymbol{W}_{F(i),F(j)} \in \mathbb{R}^{K \times K}$, and

$$p(v_i, v_j, W_{F(i),F(j)}) = \sum_{k=1}^{K} \sum_{k'=1}^{K} v_i^k v_j^{k'} w_{F(i),F(j)}^{k,k'}$$

- OPNN: outer product
- FmFM: weighted outer product

Model Freedom (FM v.s. FwFM v.s. FmFM):

Model	Field Interaction	Degree of Freedom
FM	Constant	0
FwFM	Scalar	1
FvFM	Vector	2
FmFM	Matrix	3

Model Complexity:

Model	N of Parameters	Estimated N in Criteo Dataset
LR	m	1.33M
Poly2	m + H	45M
FM	m + mK	14.63M
FwFM	$m + mK + \frac{n(n-1)}{2}$	14.63M
FmFM	$m + mK + \frac{n(n-1)}{2}K^2$	14.63M
FFM	m+m(n-1)K	859.18M

$$\langle v_i M_{F(i)F(j)}, v_j \rangle = \langle v_j M_{F(i)F(j)}^T, v_i \rangle$$
 (18)

To optimize the field-specific embedding vector dimension without model performance loss, we propose a 2-pass method.

- In the first pass, we use a larger fixed embedding vector dimension for all fields, e.g. k=16, and train the FmFM as a full model.
- From the full model, we learn how much information (variance) in each field, then we utilize a standard PCA dimensionality reduction to the embedding table in each field.

From the experiment we found that the new dimension which contains 95% original variance is a good trade-off.

FmFM: Variable Dimensions in Embeddings

standard PCA dimensionality reduction³: $\mathbf{X} \in \mathbb{R}^{k \times n}$

- 1 Zero mean: X
- 2 Covariance matrix: $C = \frac{1}{k}XX^{\top}$
- 3 The eigenvalues $\lambda_1, \ldots, \lambda_k$ and corresponding eigenvectors p_1, \ldots, p_k of the C.
- 4 Arrange the p_i according to the size of corresponding λ_i from top to bottom.
- 5 Information proportion (variance)⁴: $r = \sqrt{\frac{\sum_{i=1}^{k'} \lambda_i^2}{\sum_{i=1}^{k} \lambda_i^2}}$
- 6 New field embedding: X' = P'X

https://zhuanlan.zhihu.com/p/77151308

FmFM: Variable Dimensions in Embeddings

Feature	Emb	Feat. N	Feature	Emb	Feat. N
Field ID	Dim	in Field	Field ID	Dim	in Field
Field #01	3	62	Field #21	8	633
Field #02	8	113	Field #22	2	3
Field #03	5	125	Field #23	13	46,329
Field #04	7	50	Field #24	14	5,228
Field #05	9	223	Field #25	8	243,452
Field #06	8	147	Field #26	13	3,176
Field #07	6	99	Field #27	4	26
Field #08	5	78	Field #28	14	11,744
Field #09	8	103	Field #29	10	225,320
Field #10	3	8	Field #30	6	10
Field #11	5	31	Field #31	14	4,726
Field #12	3	56	Field #32	12	2,056
Field #13	6	81	Field #33	2	3
Field #14	8	1,457	Field #34	9	238,638
Field #15	12	555	Field #35	4	16
Field #16	2	245,195	Field #36	6	15
Field #17	11	166,164	Field #37	12	67,854
Field #18	5	305	Field #38	7	87
Field #19	4	18	Field #39	11	50,940
Field #20	14	12,054			

For example, the embedding table of field user_gender may only need 5-dimension (5D), while the field top_domain may need 7D. The field matrix M should be set up with a shape in (7, 5).

Enneng Yang Northeastern University

Statistics of training, validation and test sets of the Criteo data sets.

Data set		Samples	Fields	Features	Pos:Neg
	Train	36,672,493			
Criteo	Validation	4,584,062	39	1,327,180	~1:3
	Test	4,584,062			
	Train	32,343,173			
Avazu	Validation	4,042,897	23	1,544,257	~1:5
	Test	4,042,897			

Comparison among models on Avazu CTR data sets.

Models		Log Loss		
Models	Training	Validation	Test	(Test Set)
LR	0.7526	0.7521	0.7517	0.3953
FM	0.7744	0.7696	0.7695	0.3857
FFM	0.8012	0.7761	0.7761	0.3826
FwFM	0.7822	0.7730	0.7731	0.3835
FvFM(ours)	0.7836	0.7732	0.7733	0.3834
FmFM(ours)	0.7943	0.7764	0.7763	0.3822
Deep & Cross	0.8109	0.7825	0.7826	0.3791
AutoInt	-	-	0.7752	0.3823
Fi-GNN	-	-	0.7762	0.3825
FGCNN+IPNN	-	-	0.7883	0.3746
DeepLight	-	-	0.7897	0.3748

Comparison among models on the Criteo CTR data sets.

Models		Log Loss		
Models	Training	Validation	Test	(Test Set)
LR	0.7930	0.7918	0.7917	0.4582
FM	0.8142	0.8075	0.8075	0.4441
FFM	0.8230	0.8103	0.8103	0.4414
FwFM	0.8191	0.8092	0.8092	0.4426
FvFM(ours)	0.8192	0.8102	0.8101	0.4417
FmFM(ours)	0.8183	0.8109	0.8109	0.4410
Deep & Cross	0.8244	0.8118	0.8118	0.4413
Wide & Deep	-	-	0.7981	0.4677
DeepFM	-	-	0.8007	0.4508
xDeepFM	-	-	0.8052	0.4418
AutoInt	-	-	0.8061	0.4454
FiBiNET	-	-	0.8103	0.4423
DeepLight	-	-	0.8123	0.4395

Compare among FmFM optimized models with embedding dim optimization, an example of the Criteo Data Set.

Variance	Emb Dim	FLOPs	AUC	Log Loss
%	(Average)	Estimated #	(Test Set)	(Test Set)
Full	16(100%)	24,531(100%)	0.8109	0.4410
99%	10.56(66.0%)	12,884(52.5%)	0.8109	0.4410
97%	8.69(54.3%)	10,280(41.9%)	0.8107	0.4411
95%	7.72(48.2%)	8,960(36.5%)	0.8108	0.4411
90%	6.26(39.1%)	7,202(29.4%)	0.8103	0.4415
85%	3.82(23.9%)	4,716(19.2%)	0.8084	0.4432
80%	3.36(21.0%)	4,392(17.9%)	0.8080	0.4436

- 1 Background
- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- 6 References

Code & Source

Background

- Paper: https://arxiv.org/pdf/2102.12994.pdf
- Code: https://github.com/VerizonMedia/FmFM
- Blog: https://mp.weixin.qq.com/s/6x2VKkAlRBEm5xFVCYInEg
- DataSet:
 - 1 Avazu: https: //www.kaggle.com/c/avazu-ctr-prediction/data
 - 2 Criteo: http://labs.criteo.com/2014/02/
 kaggle-display-advertising-challenge-dataset/

- 1 Background
- 2 Field-matrixed FM
- 3 United Framework
- 4 Code & Source
- **5** References

[Pan20] Harshit Pande.

 $\label{lembedded} \mbox{Field-embedded factorization machines for click-through rate prediction}.$

CoRR, abs/2009.09931, 2020.

- [PXR+18] Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu. Field-weighted factorization machines for click-through rate prediction in display advertising. In WWW. pages 1349-1357. ACM, 2018.
- [SPZF21] Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. Field-matrixed factorization machines for recommender systems. In WWW. ACM. 2021.

Thanks for Listening!⁵

⊠contact me: ennengyang@qq.com

Enneng Yang Northeastern University

⁵Note: The content of this slide is for study only. <□→ <□→ <≥→ <≥→ ≥ → <≥ → >< ○