Co2_So5_函数的微分

第二章 导数与微分 第五节 函数的微分 目录

- 一、微分的定义
 - 1. 定义
 - 。 2. 延伸
- 二、微分的几何意义
- 三、基本初等函数的微分公式与微分运算法则
 - 1. 基本初等函数的微分公式
 - 。 2. 函数和、差、积、商的微分法则
 - 。 3. 复合函数的微分法则
- 四、微分在近似计算中的应用
 - 1. 函数的近似计算
 - 2. 误差估计*

一、微分的定义

1. 定义

设函数 y = f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这区间内, 如果函数的增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为

$$\Delta y = A\Delta x + o(\Delta x)$$

,其中 A 是不依赖于 Δx 的常数,那么称函数 y = f(x) 在点 x_0 是可微的,而 $A\Delta x$ 叫做函数 y = f(x) 在点 x_0 相应于自变量增量 Δx 的微分,记作 dy,即

$$dy = A\Delta x$$

2. 延伸

函数 f(x) 在点 x_0 可微的充分必要条件是函数 f(x) 在点 x_0 可导,且当 f(x) 在点 x_0 可微时,其微分一定是 $dy = f'(x_0)\Delta x$

主部、线性主部

函数的微分: $dy = f'(x)\Delta x$

自变量的微分: $dx = \Delta x$, 从而函数的微分又可记作 dy = f'(x)dx

微商: $\frac{dy}{dx} = f'(x)$

- 二、微分的几何意义
- 三、基本初等函数的微分公式与微分运算法则
- 1. 基本初等函数的微分公式

导数公式	微分公式
y' = f'(x)	dy = f'(x)dx

请参照本章第二节(函数的求导法则)中基本初等函数的导数公式

- 2. 函数和、差、积、商的微分法则
- (1) $d(u \pm v) = du \pm dv$
- (2) d(Cu) = Cdu
- (3) d(uv) = vdu + udv
- (4) $d\left(\frac{u}{v}\right) = \frac{vdu udv}{v^2} \quad (v \neq 0)$
- 3. 复合函数的微分法则

设 y = f(u) 及 u = g(x) 都可导,则复合函数 y = f[g(x)] 的微分为

$$dy = y'_{x}dx = f'(u)g'(x)dx = f'(u)du$$

上式体现了微分形式不变性

四、微分在近似计算中的应用

1. 函数的近似计算

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

取
$$x_0 = 0$$
 得: $f(x) \approx f(0) + f'(0)x$

几个工程中常用的近似公式(假定 |x| 是较小的数值):

- (1) $(1+x)^{\alpha} \approx 1 + \alpha x \quad (\alpha \in \mathbf{R})$
- (2) $\sin x \approx x$ (x 用弧度作单位来表达)
- (3) $\tan x \approx x$ (x 用弧度作单位来表达)
- (4) $e^x \approx 1 + x$
- (5) $ln(1+x) \approx x$
- 2. 误差估计*

间接测量误差

绝对误差: |A - a| 叫做 a 的绝对误差

相对误差: $\frac{|A-a|}{|a|}$ 叫做 a 的相对误差

绝对误差限: δ_A ($|A-a| \leq \delta_A$) 叫做测量 A 的绝对误差限,常简称为绝对误差

相对误差限: $\frac{\delta_A}{|a|}$ ($|A-a| \leq \delta_A$) 叫做测量 A 的相对误差限,常简称为相对误差

如果已知测量x 的绝对误差限是 δ_x ,即

$$|\Delta x| \leq \delta_x$$

,那么,当 $y' \neq 0$ 时,y的绝对误差

$$|\Delta y| \approx |dy| = |y'| \cdot |\Delta x| \le |y'| \cdot \delta_x$$

, 即 y 的绝对误差限约为

$$\delta_y = |y'| \cdot \delta_x$$

, y 的相对误差限约为

$$\frac{\delta_y}{|y|} = \left| \frac{y'}{y} \right| \cdot \delta_x$$