Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 11

Abgabe: Freitag, 08.07.2022, 09:15 Uhr

Aufgabe 1 (Frobenius automorphismen).

(4 Punkte)

Sei K ein lokaler Körper mit endlichem Restklassenkörper und L/K eine endliche Galoiserweiterung. Wir bezeichen mit $L^{\rm nr}/K^{\rm nr}$ die Erweiterung der jeweiligen maximalen unverzweigten Erweiterungen, sodass $L^{\rm nr}=L\cdot K^{\rm nr}$. Wir betrachten die Menge der *Frobeniusautomorphismen*

$$\operatorname{Frob}(L/K) := \{ \tilde{\sigma} \in \operatorname{Gal}(L^{\operatorname{nr}}/K) \mid \exists k \geq 1 \colon \tilde{\sigma}|_{K^{\operatorname{nr}}} = \varphi_K^k \},$$

wobei $\varphi_K \in \operatorname{Gal}(K^{\operatorname{nr}}/K) \cong \operatorname{Gal}(\bar{\mathbb{F}}_p/\mathbb{F}_q)$ den Frobeniusmorphismus bezeichne; diese ist offensichtlich abgeschlossen unter Multiplikation. Zeigen Sie, dass für $\tilde{\sigma} \in \operatorname{Frob}(L/K)$ mit Fixkörper $\Sigma := (L^{\operatorname{nr}})^{\langle \tilde{\sigma} \rangle}$ gilt:

(a)
$$[\Sigma:K] < \infty$$
, (b) $\Sigma^{\rm nr} = L^{\rm nr}$, (c) $\tilde{\sigma} = \varphi_{\Sigma}$.

Insbesondere besteht Frob(L/K) genau aus den Frobenii endlicher Teilerweiterungen Σ/K von $L^{\rm nr}/K$ mit $\operatorname{Gal}(L^{\rm nr}/\Sigma) \cong \hat{\mathbb{Z}}$. Zeigen Sie:

(d) Die Einschränkungsabbildung Frob $(L/K) \longrightarrow \operatorname{Gal}(L/K)$, $\tilde{\sigma} \mapsto \tilde{\sigma}|_L$, ist surjektiv.

Aufgabe 2 (Die Neukirchabbildung).

(4 Punkte)

Sei L/K eine endliche Galoiserweiterung lokaler Körper. Wir definieren die Abbildung

$$\tilde{\Upsilon}_{L/K} \colon \operatorname{Frob}(L/K) \longrightarrow K^{\times}/N_{L/K}(L^{\times}), \quad \tilde{\sigma} \mapsto N_{\Sigma/K}\pi_{\Sigma},$$

wobei π_{Σ} eine Uniformisierende des Fixkörpers Σ von $\tilde{\sigma}$ bezeichne. Zeigen Sie:

- (a) Die Abbildung $\tilde{\Upsilon}_{L/K}$ ist wohldefiniert.
- (b) Ist $\tilde{\sigma}|_L = \mathrm{id}_L$, so ist $\tilde{\Upsilon}_{L/K}(\tilde{\sigma}) = 1$.

Seien nun $\tilde{\sigma}_1, \tilde{\sigma}_2 \in \operatorname{Frob}(L/K)$ und wir setzen $\tilde{\sigma}_3 := \tilde{\sigma}_2 \tilde{\sigma}_1$. Für $i \in \{1,2,3\}$ sei Σ_i der Fixkörper von $\tilde{\sigma}_i$ und π_i eine Uniformisierende von. Man kann zeigen, dass $\operatorname{N}_{\Sigma_3/K}(\pi_3) \equiv \operatorname{N}_{\Sigma_1/K}(\pi_1) \cdot \operatorname{N}_{\Sigma_2/K}(\pi_2) \mod \operatorname{N}_{L/K}(L^{\times})$. Folgern Sie daraus:

(c) Die Abbildung $\tilde{\Upsilon}_{L/K}$ induziert einen wohldefinierten Gruppenhomomorphismus (Neukirchabbildung)

$$\Upsilon_{L/K} \colon \operatorname{Gal}(L/K) \longrightarrow K^{\times}/\mathrm{N}_{L/K}(L^{\times}), \quad \sigma \mapsto \tilde{\Upsilon}_{L/K}(\tilde{\sigma}),$$

wobei $\tilde{\sigma} \in \text{Frob}(L/K)$ eine Fortsetzung von σ bezeichne (welche nach Aufgabe 1(d) existiert).

Aufgabe 3 (Zerfällungsmodul).

(4 Punkte)

Seien G eine endliche Gruppe, $\gamma \in \mathrm{H}^2(G,\mathbb{Z})$ ein Erzeuger, wobei wir \mathbb{Z} mit der trivialen G-Wirkung verstanden wissen, und $\mathbb{Z}(\gamma)$ der zugehörige Klassenmodul. Zeigen Sie, dass ein Isomorphismus $\mathbb{Z}(\gamma) \cong \mathbb{Z}[G]$ von G-Moduln existiert.

Aufgabe 4 (Formeln für das Cup-Produkt).

(4 Punkte)

Sei G eine Gruppe und sei $A, B \in G$ -Mod. Zeigen Sie:

- (a) Für $\alpha \in H^i(G,A)$ und $\beta \in H^j(G,B)$ ist $res(\alpha \cup \beta) = res(\alpha) \cup res(\beta)$.
- (b) Für einen Normalteiler N von G und $\alpha \in H^i(G/H, A^H)$ und $\beta \in H^j(G/H, B^H)$ ist $\inf(\alpha \cup \beta) = \inf(\alpha) \cup \inf(\beta)$.
- (c) Für eine Untergruppe $H \subset G$ von endlichem Index und $\alpha \in H^i(H,A)$ und $\beta \in H^j(G,B)$ ist $cor(\alpha \cup res(\beta)) = cor(\alpha) \cup \beta$.