3

a respective second display format.

CLAIMS:

1	1. A method for indicating curve connection continuity information in a graphical
2	design system comprising the steps of:
3	(a) receiving a definition of a first curve and a second curve, the first and second curves
4	substantially meeting at a junction point;
5	(b) displaying the first and second curves on a display device;
6	(c) determining a G2 through Gn continuity value between the first and second curves at
7	the junction point, n≥3; and
8	(d) displaying at least one Gm tag indicating the value of Gm continuity, 2≤m≤ n.
1	2. The method of claim 1 wherein the displaying step comprises displaying a G2 tag
2	indicating the value of G2 continuity and a G3 tag indicating the value of G3 continuity.
1	3. The method of claim 1 wherein the displayed at least one Gm tag is displayed in
2	association with the junction point.
1	4. The method of claim 1 wherein, if the measure of Gm continuity is less than a

5. The method of claim 1, further comprising the steps of :

predefined value, the Gm tag is in a respective first display format and otherwise the Gm tag is in

2	determining a value of G1 continuity between the first and second curves at the junction
3	point; and
4	displaying a G1 tag indicating the value of G1 continuity.
1	6. The method of claim 5, wherein:
2	the value of G1 continuity is an angle alpha between a first line normal to the first curve
3	at the junction point and a second line normal to the second curve at the junction point;
4	the G1 tag being displayed in association with the junction point.
1	7. The method of claim 6, wherein the G1 tag comprises a numeric indication of the
2	angle alpha.
1	8. The method of claim 6, further comprising the step of displaying a representation
2	of the first line and the second line, the G1 tag being displayed adjacent the representation.
1	9. The method of claim 1, further comprising the step of determining a value of G1
2	continuity between the first and second curves at the junction point;
3	the step of displaying comprising displaying the G2 tag when a value of G1 continuity
4	between the first and second curves at the junction point is less than a predefined G1 value.
1	10. The method of claim 1, wherein the value of G2 continuity is a difference delta
2	between an amplitude of curvature of the first curve at the junction point and an amplitude of
3	curvature of the second curve at the junction point.

2

3

4

- 1 11. The method of claim 10, wherein the G2 tag comprises a numeric indication of the difference delta.
- 1 12. The method of claim 10, further comprising the step of displaying a graphical 2 representation of the difference in amplitude between the curvature of the first curve and the 3 curvature of the second curve at the junction point, the G2 tag being displayed adjacent the 4 representation.
 - 13. The method of claim 1, further comprising the step of determining a value of G1 continuity between the first and second curves at the junction point;
 - the step of displaying comprising displaying a G3 tag when the value of G1 continuity is less than a predefined G1 value.
 - 14. The method of claim 1, wherein:
- a value of G3 continuity is an angle beta between a first line tangent to a curvature

 envelope of the first curve at the junction point and a second line tangent to a curvature envelope

 of the second curve at the junction point.
- 1 15. The method of claim 14, wherein the G3 tag comprises a numeric indication of the angle beta.

I	16. The method of claim 14, further comprising the step of displaying a
2	representation of the first line and the second line, the G3 tag being displayed adjacent the
3	representation.
1	17. The method of claim 1, wherein:
2	the first curve lies on a first surface defined in the graphical design system;
3	the second curve lies on a second surface defined in the graphical design system and
4	intersecting the first surface;
5	the first and second curves being coplanar with a cutting plane that intersects the first
6	surface and the second surface, the junction point lying at the intersection between the first and
7	second surfaces and the cutting plane.
1	18. The method of claim 17, wherein the first and second curves are defined by the
2	intersection between the cutting plane and the first and second surfaces, respectively.
1	19. A graphical design system comprising
2	a design editor;
3	a display; and
4	a storage area containing a graphical model having first and second curves substantially
5	meeting at a junction point;
6	the graphical design system further comprising a curve connection analyzer configured
7	to:

2

3

1

2

1

2

3

4

1

- 8 (c) determine a G2 through Gn continuity value between the first and second curves at
 9 the junction point, n≥3; and
- (c) signal the display system to display in conjunction with a display of the first and
 second curves, at least one Gm tag indicating the value of Gm continuity, 2≤m≤ n.
 - 20. The system of claim 19, wherein the curve connection analyzer is configured to signal the display system to display a G2 tag indicating the value of G2 continuity and a G3 tag indicating the value of G3 continuity.
 - 21. The system of claim 19, wherein the at least one Gm tag is displayed in association with the junction point.
 - 22. The system of claim 19, wherein, for a displayed Gm tag, the curve connection analyzer is configured to signal the display system to display the Gm tag is in a respective first display format if the measure of Gm continuity is less than a predefined value, and otherwise signal the display system to display the Gm tag in a respective second display format.
 - 23. The system of claim 19, wherein the curve connection analyzer is further configured to:
- determine a value of G1 continuity between the first and second curves at the junction point; and
- 5 display a G1 tag indicating the value of G1 continuity.

2

3

1

2

1	24. The system of claim 23, wherein the value of G1 continuity is an angle alpha
2	between a first line normal to the first curve at the junction point and a second line normal to the
3	second curve at the junction point;
4	the curve connection analyzer being configured to signal the display system to display the
5	G1 tag in association with the junction point.

- 1 25. The system of claim 24, wherein the G1 tag comprises a numeric indication of the 2 angle alpha.
 - 26. The system of claim 24, wherein the curve connection analyzer is configured to signal the display system to display a representation of the first line and the second line and display the G1 tag adjacent the representation.
 - 27. The system of claim 19, wherein the value of G2 continuity is a difference delta between an amplitude of curvature of the first curve at the junction point and an amplitude of curvature of the second curve at the junction point.
- 1 28. The system of claim 27, wherein the curve connection analyzer is further 2 configured to:
- determine a value of G1 continuity between the first and second curves at the junction point; and
- signal the display system to display the G2 tag when the value of G1 continuity is less than a predefined G1 value.

- 1 29. The system of claim 27, wherein the G2 tag comprises a numeric indication of the difference delta.
- 1 30. The system of claim 27, wherein the curve connection analyzer is configured to 2 signal the display system to display a graphical representation of the difference in amplitude 3 between the curvature of the first curve and the curvature of the second curve at the junction 4 point and display the G2 tag adjacent the representation.
- 1 31. The system of claim 19, wherein the curve connection analyzer is configured to:
 2 determine a value of G1 continuity between the first and second curves at the junction
 3 point; and
 - signal the display system to display a G3 tag when the value of G1 continuity is less than a predefined G1 value.
- 1 32. The system of claim 19, wherein:
- the value of G3 continuity is an angle beta between a first line tangent to a curvature

 envelope of the first curve at the junction point and a second line tangent to a curvature envelope

 of the second curve at the junction point.
- 1 33. The system of claim 32, wherein a G3 tag comprises a numeric indication of the 2 angle beta.

34.

1

2	signal the display system to display a representation of the first line and the second line and
3	display a G3 tag adjacent the representation.
1	35. The system of claim 19 wherein:
2	the first curve lies on a first surface defined in the graphical model;
3	the second curve lies on a second surface defined in the graphical model and intersecting
4	the first surface; and
5	the first and second curves coplanar with a cutting plane that intersects the first surface
6	and the second surface, the junction point lying at the intersection between the first and second
7	surfaces and the cutting plane.
1	The system of claim 35, wherein the first and second curves are defined by the
2	intersection between the cutting plane and the first and second surfaces, respectively.
1	37. A method for indicating curve connection continuity information in a graphical
2	design system comprising the steps of:
3	(a) receiving a definition of a first curve and a second curve, the first and second curves
4	substantially meeting at a junction point;
5	(b) displaying the first and second curves on a display device;
6	(c) determining values of G1 continuity, G2 continuity, and G3 continuity between the
7	first and second curves at the junction point:

The system of claim 32, wherein the curve connection analyzer is configured to

2

- (d) if the value of G1 continuity is greater than a predefined G1 value, displaying a G1 tag in association with the junction point indicating the value of G1 continuity;
- (e) displaying a G2 tag in association with the junction point indicating the value of G2 continuity, the G2 tag being in a first format if the value of G2 continuity is greater than a predefined G2 value and otherwise being in a second format;
- (f) if the value of G1 continuity is not greater than a predefined G1 value, displaying a G3 tag in association with the junction point indicating the value of G3 continuity, the G3 tag being in the first format if the value of G3 continuity is greater than a predefined G3 value and otherwise being in the second format.
 - 38. The method of claim 37, wherein:
- the G1 tag comprises a numeric indication of an angle between a line normal to the first curve at the junction point and a line normal to the second curve at the junction point;
- the G2 tag comprises a numeric indication of a percent difference between an amplitude of curvature of the first curve at the junction point and an amplitude of curvature of the second curve at the junction point; and
- the G3 tag comprises a numeric indication of an angle between a line tangent to a curvature envelope of the first curve at the junction point and a line tangent to a curvature envelope of the second curve at the junction point.
- 39. A method for indicating surface connection continuity information in a graphical design system comprising the steps of:
- receiving a definition of a first surface and a second surface intersecting the first surface, 3
- the intersection between the first and second surfaces defining an intersection edge; 4

)	specifying at least one cutting plane that intersects the first surface and the second
6	surface, the intersection between a respective cutting plane and the first and second surfaces
7	defining a respective first and second curve lying on the first and second surfaces, respectively,
8	and meeting at a respective junction point where the cutting plane crosses the intersection edge;
9	for each pair of first and second curves:
10	(a) determining a G2 through Gn continuity value between the first and second
11	curves at the junction point, n≥3; and
12	(b) displaying at least one Gm tag indicating the value of Gm continuity, 2≤m≤ n.
1	40. The method of claim 39, further comprising the step of displaying the first and
2	second curves in each pair of curves;
1	41. The method of claim 39, wherein the at least one Gm tag is displayed in
2	association with the respective junction point.
1	42. The method of claim 39, wherein a plurality of cutting surfaces are specified and
2	which cross the intersection edge at periodic intervals.
1	43. A graphical design system comprising
2	a design editor;
3	a display; and
4	a storage area containing a graphical model having first and second intersecting surfaces,

the intersection between the first and second surfaces defining an intersection edge;

- 44. The system of claim 43, wherein the first curve is part of the definition of the first surface in the graphical model.
- 45. The system of claim 43, wherein at least a portion of the first and second curves are displayed on the display, the G2 tag and G3 tag being displayed in association with the junction point.
- 1 46. The system of claim 43 wherein the first and second curves are defined by the 2 intersection between a cutting surface and the first and second surface respectively