МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра систем сбора и обработки данных

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине: Компьютерные технологии моделирования и анализа данных на тему: Экспериментальное исследование предельных распределений статистик непараметрических критериев согласия. Часть 2.

Вариант №2

Факультет: ФПМИ

Группа: ПММ-21

Выполнил: Сухих А.С., Черненко Д.А.

Проверил: д.т.н., профессор Лемешко Борис Юрьевич

Дата выполнения: 11.12.22

Отметка о защите:

Цель работы. Исследование распределений статистик непараметрических критериев согласия при проверке простых и различных сложных гипотез. Во второй части исследуются распределения статистик критериев согласия Купера, Ватсона, Жанга со статистиками Z_K, Z_A, Z_C .

Ход работы:

1. Смоделировать распределение статистики S для заданного критерия согласия при простой гипотезе H_0 . Сравнить полученное эмпирическое распределение с предельным распределением классической статистики.

Купер:

n = 50	n = 100	n = 1000		
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)		
= 0.02949820129633391	= 0.111650002705322	= 0.464038817060303		
ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ		

Рисунок 1.1 — сравнение смоделированного распределения Купера с предельным при $n\,=\,50$

Рисунок 1.2 — сравнение смоделированного распределения Купера с предельным при $n\,=\,100$

Рисунок 1.3 — сравнение смоделированного распределения Купера с предельным при $n\,=\,1000$

Ватсон:

n = 50	n = 100	n = 1000
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)
$= 1.812117672549 * 10^{-5}$	= 0.008932589555653552	= 0.1784155569395068
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Рисунок 1.4 — сравнение смоделированного распределения Ватсона с предельным при $n\,=\,50$

Рисунок 1.5 — сравнение смоделированного распределения Ватсона с предельным при n=100

Рисунок 1.6 — сравнение смоделированного распределения Ватсона с предельным при n=1000

Жанг Z_k :

Так как у статистик критериев Жанга нет предельных распределений, а также распределение статистик зависит от объёма выборки, то распределения с объёмами n=50,100,1000 я буду сравнивать с n=2000.

Рисунок 1.7 — сравнение смоделированных распределений Жанга Z_k с распределением с n=2000

К сожалению, проверить на согласие нет возможности, так как isw не позволяет открывать файлы с расширением .dat, которым обладают смоделированные мною выборки.

Жанг Z_a :

Рисунок 1.8 — сравнение смоделированных распределений Жанга Z_a с распределением с n = 2000

Жанг Z_c :

Рисунок 1.9 — сравнение смоделированных распределений Жанга Z_c с распределением с n = 2000

2. Смоделировать распределение статистики S для этого же критерия согласия при сложной гипотезе H_0 . Попытаться идентифицировать полученное эмпирическое распределение, используя систему статистического анализа ISW.

Для всех распределений статистик критериев нашей бригадой был выставлен критерий согласия Хи-Квадрат Пирсона, а для критериев согласия Купера и Ватсона мы дополнительно пытались идентифицировать наиболее подходящие распределения по данным критериям согласия, но isw корректно не работала, к сожалению, поэтому этих данных здесь не будет.

Купер:

n = 50	n = 100	n = 1000		
Гамма (5.914, 0.083, 0.571)	Бе-ІІІ (6.4856,6.3943,2.2981,	Гамма		
	1.7055,0.5197)	(8.5080,0.0703,0.4654)		
P = 1 - G(S H0)				
= 5.628117979117486	P = 1 - G(S H0)	P = 1 - G(S H0)		
* 10 ⁻⁶	= 0.00278919735649453	= 0.4370791589141314		
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ		

Для n = 5000 наиболее подходящим распределением является Гамма (6.1160,0.0858,0.5392).

Рисунок 2.1 — Сопоставление смоделированного распределения Купера n = 50 с Гамма распределением

Рисунок 2.2 — Сопоставление смоделированного распределения Купера n = 100 с Бета-III распределением

Рисунок 2.3 — Сопоставление смоделированного распределения Купера ${\bf n}=1000~{\bf c}$ Гамма распределением

Ватсон:

n = 50	n = 100	n = 1000	
Бе-ІІІ (4.4115,3.5511,7.9560,	Бе-ІІІ (3.8900,4.0724,6.7965,	Бе-ІІІ(5.618, 3.485, 9.758,	
0.2487, 0.0067)	0.2722, 0.0084)	0.2445, 0.0067)	
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)	
= 0.2038690115925457	= 0.09575831514776979	= 0.1301202927952418	
НЕ ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	

Для n=5000 наиболее подходящим распределением является Бе-III (5.4507,4.1856,10.9990,0.3321,0.0066).

Рисунок 2.4 — Сопоставление смоделированного распределения Ватсона n=50 с Бета-III распределением

Рисунок 2.5 — Сопоставление смоделированного распределения Ватсона n = 100 с Бета-III распределением

Рисунок 2.6 — Сопоставление смоделированного распределения Ватсона n = 1000 с Бета-III распределением

Ватсона №16600 G(SIHO) НО Лог(0.0000,1.0000) SC SH n=1000 ОМР ГСЧ=100

Жанг Z_k :

n = 50	n = 100	n = 1000	
Бе-III	Бе-ІІІ (4.3781,3.9749,7.2539,	Sb-Дж	
(4.9230,4.1842,8.0262,5.95	6.7300, 0.2094)	(3.0679,1.4903,12.3442,0.363	
28,0.1179)		0)	
P = 1 - G(S H0)	P = 1 - G(S H0) =	P = 1 - G(S H0)	
= 0.1398338009829733	0.09674356367879455	= 0.006883821769333062	
НЕ ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	

Рисунок 2.7 — Сопоставление смоделированного распределения Zk n = 50 с Бета-III распределением

Рисунок 2.8 — Сопоставление смоделированного распределения Zk n = 100 с Бета-III распределением

Рисунок 2.9 — Сопоставление смоделированного распределения Zk n = 1000 с распределением Su-Джонсона

Жанг Z_a :

n = 50	n = 100	n = 1000
Бе-III	Бе-III	Бе-III
(4.3133,3.3829,9.6243,0.3538,3.28	(4.4067,3.2198,9.2492,0.19	(5.6191,4.0824,11.7266,
12)	56,	0.0407,3.2900)
	3.2871)	
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)
= 0.5001289996283291	= 0.04462262267054866	= 0.1256480132025264
НЕ ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Рисунок 2.10 — Сопоставление смоделированного распределения Za n = 50 с распределением Бе-III

Рисунок 2.11 — Сопоставление смоделированного распределения Za n = 100 с распределением Бе-III

Рисунок 2.12 — Сопоставление смоделированного распределения Za n = 1000 с распределением Бе-III

Жанг Z_c :

n = 50	n = 100	n = 1000
Su-Дж	Бе-ІІ	Su-Дж (-3.9127,1.9731,
(-3.7396, 1.8334, 1.4687,	(5.2121,9.4328,12.3935,0.8145)	2.8087, 1.8116)
0.5677)		
P = 1 - G(S H0)		
= 5.471785924367941	P = 1 - G(S H0)	P = 1 - G(S H0)
* 10 ⁻⁵	= 0.04179641648362855	= 0.1634849979102518
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Рисунок 2.13 — Сопоставление смоделированного распределения Zc n = 50 с распределением Su-Джонсона

Бета 2-го рода (5.2139,9.4270) с масштабом 12.3807 со сдвигом 0.8145
 Критерий Zc N=16600 G(\$1H0) НО Лог(0.0000,1.0000) \$C \$H n=100 OMP ГСЧ=100

Рисунок 2.14 — Сопоставление смоделированного распределения Za n = 100 с распределением Бе-II

Рисунок 2.15 — Сопоставление смоделированного распределения Za n = 1000 с распределением Su-Джонсона

Дополнительно были исследованы распределения статистик Купера и Ватсона n=5000. Выяснилось, что Критерию Купера лучше всего подходит статистика Гамма (P=3.28948951032471e-07), гипотеза о согласии в данном случае отвергается. Критерию Ватсона всё также подходит статистика Бета-III (P=0.4215775845806789, не отвергается). Данные результаты подтверждают теоретические сведения о сильной зависимости критерия Купера от объёма выборки (т.к. при её увеличении наиболее похожим распределением является Гамма, а не Бета-III), критерий Ватсона же напротив, практически не зависит от объёма выборки, и даже при n=5000 наиболее подходящим распределением для него остаётся Бета-III.

Для критериев Жанга всё выглядит достаточно сумбурно. Как мы знаем из теории, статистика критериев Z_k , Z_a , Z_c зависит от n. Для статистики Z_c , по всей видимости, при повышении объёма выборки, повышается вероятность согласия с проверяющим распределением (Su-Джонсон). Критериям Z_a и Z_k достаточно хорошо подходит распределение Бета-III, а также при повышении n Z_k начинает хуже согласовываться с распределениями Бета-III и Sb-Джонсона, а у Z_a провал в возможности согласования возникает лишь при n = 100.

Как мы можем увидеть по рисункам, у нас графики всех распределений накладываются друг на друга, но, к сожалению, это ещё не означает, что все проверяемые распределения согласуются с подобранными для проверки на согласие.

- 3. Смоделировать распределения статистики Ѕ исследуемого критерия согласия при проверке простой и сложной гипотез H_0 при справедливой гипотезе H_1 . Для того чтобы распределение, соответствующее гипотезе H_1 было наиболее близким к распределению, соответствующему гипотезе H_0 следует подобрать параметры распределения, соответствующего гипотезе H_1 , из условия минимизации расстояния до распределения, соответствующего основной гипотезе.
- 4. Построить оперативные характеристики критерия для простой и сложных гипотез как функции вида $(1-\beta)(\alpha)$. Сравнить мощности всех непараметрических критериев.

Для Купера (V_n) :

	Про	стая гипоте	3a	Сложная гипотеза		
α		$1-\beta$				
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000
0.15	0.215723	0.263855	0.882289	0.193373	0.240422	0.86494
0.1	0.15259	0.198795	0.836145	0.135181	0.17247	0.800422
0.05	0.0881928	0.118675	0.749759	0.0689157	0.0987952	0.685301
0.025	0.0460241	0.0727711	0.650723	0.0363253	0.0560843	0.555241
0.01	0.021506	0.0390361	0.511205	0.0150602	0.026506	0.405542

Для Ватсона (U_n^2):

	Про	стая гипоте	3a	Сложная гипотеза		
α		$1-\beta$				
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000
0.15	0.218313	0.272289	0.90259	0.19741	0.254337	0.918976
0.1	0.154277	0.202651	0.860241	0.133614	0.184819	0.872651
0.05	0.0898193	0.124578	0.780964	0.0693373	0.103795	0.77759
0.025	0.0496386	0.078253	0.687048	0.035	0.0613855	0.660904
0.01	0.0233735	0.0413253	0.562108	0.016506	0.0254217	0.516928

Для Жанга Z_k :

	Про	стая гипоте	3 a	Сложная гипотеза		
α	$1-\beta$					
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000
0.15	0.170181	0.189639	0.755422	0.126084	0.161386	0.93006
0.1	0.121506	0.134036	0.64494	0.0766867	0.103373	0.875542
0.05	0.0677711	0.0754217	0.460241	0.0326506	0.0448795	0.752048
0.025	0.0369277	0.0398795	0.324518	0.015	0.0204819	0.613434
0.01	0.0160241	0.0180723	0.178012	0.00427711	0.00740964	0.415181

Для Жанга Z_a :

	Про	стая гипотез	3a	Сложная гипотеза		
α		$1-\beta$				
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000
0.15	0.114398	0.147048	0.958675	0.156807	0.269036	0.995181
0.1	0.0706024	0.0906627	0.919337	0.102048	0.195181	0.990783
0.05	0.0327108	0.0389759	0.826205	0.0492169	0.102048	0.974578
0.025	0.0162048	0.016747	0.702048	0.021506	0.0540964	0.936988
0.01	0.00578313	0.00620482	0.528313	0.00722892	0.0226506	0.866687

Для Жанга \mathbf{Z}_c :

	Простая гипотеза				ожная гипот	еза
α			1	$-\beta$		
	n = 50	n = 100	n	n = 50	n = 100	n = 1000
			= 1000			
0.15	0.116265	0.144398	0.956928	0.176928	0.286024	0.995482
0.1	0.0694578	0.0859036	0.906446	0.103193	0.18494	0.99012
0.05	0.0293373	0.0355422	0.788434	0.0357229	0.070241	0.967892
0.025	0.0122289	0.0137952	0.610602	0.00795181	0.0211446	0.91
0.01	0.00427711	0.0039759	0.361627	0.000240964	0.00186747	0.78747

Для Пирсона АОГ, k = 10:

	Простая гипотеза			Сложная гипотеза				
α	$1-\beta$							
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000		
0.15	0.199639	0.248614	0.902229	0,153373	0,207892	0,896024		
0.1	0.139699	0.17994	0.857169	0,101988	0,141566	0,845361		
0.05	0.073253	0.101386	0.772831	0,0512048	0,0759036	0,743133		
0.025	0.0372892	0.0570482	0.685241	0,0246988	0,0392169	0,63241		
0.01	0.0155422	0.025	0.560964	0,0109036	0,0157831	0,476928		

Для Никулина АОГ, k = 10:

	Простая гипотеза			Сложная гипотеза				
α	$1-\beta$							
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000		
0.15	0.199699	0.248494	0.902169	0.148373	0.190361	0.87512		
0.1	0.139639	0.17988	0.857048	0.0968675	0.128494	0.818072		
0.05	0.0733133	0.101265	0.772711	0.0453012	0.0672892	0.707952		
0.025	0.0372289	0.056988	0.68506	0.0213855	0.0328916	0.585		
0.01	0.0155422	0.0249398	0.560663	0.00777108	0.0121687	0.439157		

Для Колмогорова:

	Простая гипотеза			Сложная гипотеза			
α	$1-\beta$						
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000	
0.15	0.19012	0.221386	0.666145	0.191747	0.236265	0.828253	
0.1	0.129819	0.150361	0.554337	0.133373	0.164398	0.753614	
0.05	0.0712048	0.0819277	0.373072	0.0687349	0.0930723	0.609217	
0.025	0.0418675	0.0461446	0.238193	0.0348795	0.0516265	0.476506	
0.01	0.0196386	0.0224096	0.124518	0.0145181	0.0242169	0.311205	

Для Смирнова:

	Простая гипотеза			Сложная гипотеза				
α	$1-\beta$							
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000		
0.15	0.177349	0.203855	0.541084	0.181807	0.235964	0.784277		
0.1	0.124398	0.146145	0.434819	0.123976	0.169337	0.700422		
0.05	0.0661446	0.0792771	0.298253	0.0681928	0.0904819	0.556024		
0.025	0.035241	0.0416265	0.199217	0.0363855	0.0495181	0.426867		
0.01	0.0187952	0.0198795	0.107048	0.015	0.0211446	0.267831		

Для Крамера-Мизеса-Смирнова:

	Простая гипотеза			Сложная гипотеза				
α	$1-\beta$							
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000		
0.15	0.18012	0.203614	0.682289	0.197349	0.254337	0.918976		
0.1	0.125482	0.136566	0.533795	0.133614	0.184819	0.872711		
0.05	0.0671084	0.0746988	0.329337	0.0693373	0.103795	0.77753		
0.025	0.0378916	0.0399398	0.183253	0.035	0.0613855	0.660904		
0.01	0.018494	0.0161446	0.0728313	0.016506	0.0254217	0.516867		

Для Андерсона-Дарлинга:

	Простая гипотеза			Сложная гипотеза			
α	$1-\beta$						
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000	
0.15	0.187952	0.21512	0.749157	0.178795	0.240482	0.954458	
0.1	0.132289	0.14759	0.626024	0.11988	0.17259	0.92247	
0.05	0.0683735	0.0820482	0.427711	0.0624699	0.0975301	0.846446	
0.025	0.0390361	0.0425301	0.271627	0.0316265	0.0521084	0.75241	
0.01	0.0186145	0.0174096	0.129699	0.0121084	0.0212651	0.614398	

Вывод:

В ходе выполнения лабораторной работы выяснилось, что иерархия мощностей критериев при простых и сложных гипотезах выглядит следующим образом:

Сложная гипотеза:

 $Z_k > Z_c > Z_a \ge Smir > Kol > Nickul > Pirson > AD > V_n \ge KMS \ge U_n^2$ Простая гипотеза:

 $Z_c > Z_a > Z_k > Smir > KMS > K > AD > Nickul > Pirson > V_n > U_n^2$