$\mathcal{S} = \iiint \left(\frac{1}{6} \left(2 t_{1} \, \mathcal{R}^{\alpha_{i}}_{\alpha} \, \mathcal{R}^{\theta}_{i} + 6 \, \mathcal{R}^{\alpha \beta \chi} \, \sigma_{\alpha \beta \chi} + 6 \, f^{\alpha \beta} \, \tau \left(\Delta + \mathcal{K}\right)_{\alpha \beta} - 4 t_{1} \, \mathcal{R}^{\theta}_{\alpha} \, \partial_{i} f^{\alpha_{i}} + 4 t_{1} \, \mathcal{R}^{\theta}_{i} \, \partial^{i} f^{\alpha}_{\alpha} - 2 t_{1} \, \partial_{i} f^{\theta}_{\theta} \, \partial^{i} f^{\alpha}_{\alpha} - 2 t_{1} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\theta}_{\alpha} + 4 t_{1} \, \partial^{i} f^{\alpha}_{\alpha} \, \partial_{\theta} f^{\theta}_{i} - 2 t_{1} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha}_{\alpha} \, \partial_{\theta} f^{\theta}_{i} - 2 t_{1} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha}_{\alpha} \, \partial_{\theta} f^{\theta}_{i} - 2 t_{1} \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + 4 t_{1} \, \partial^{i} f^{\alpha_{i}} \, \partial_{$ $8r_{1}\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{1}\partial_{\beta}\mathcal{R}_{\alpha\theta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}-16r_{1}\partial_{\beta}\mathcal{R}_{i\theta\alpha}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}-4r_{1}\partial_{\nu}\mathcal{R}_{\alpha\beta\theta}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{1}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{1}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{1}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}}+4r_{2}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{$ $6r_{.5}\partial_{i}\mathcal{R}_{\theta\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}^{\alpha_{i}}_{\alpha}-6r_{.5}\partial_{\theta}\mathcal{R}_{,\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}^{\alpha_{i}}_{\alpha}-6t_{.1}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha_{i}}-3t_{.1}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{i}f_{,\alpha\theta}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha_{i}}+3t_{.1}\partial_{\theta}f^{\alpha$ $6t. \mathcal{A}_{\alpha\theta_{l}} \left(\mathcal{A}^{\alpha_{l}\theta} + 2 \, \partial^{\theta} f^{\alpha_{l}} \right) - 6r. \partial_{\alpha} \mathcal{A}^{\alpha_{l}\theta} \partial_{\kappa} \mathcal{A}_{r}^{\kappa}_{\theta} + 12r. \partial^{\theta} \mathcal{A}^{\alpha_{l}}_{\alpha} \partial_{\kappa} \mathcal{A}_{r}^{\kappa}_{\theta} + 6r. \partial_{\alpha} \mathcal{A}^{\alpha_{l}\theta} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa}_{r} - 12r. \partial^{\theta} \mathcal{A}^{\alpha_{l}}_{\alpha} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa}_{r} \right)) [t, x, y, z] \, dz \, dy \, dx \, dt$

Wave operator $0.^{+}\mathcal{F}^{\parallel} 0.^{+}f^{\parallel} 0.^{+}f^{\perp}$

PSALTer results panel

 $^{0}\mathcal{A}^{\parallel}$

Spin-parity form	Covariant form	Multiplicities
$0.^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha}{}^{\beta} == 0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$\frac{2ik 1 \sigma^{\perp^{\alpha}} + 1 \tau^{\perp^{\alpha}} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1. τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k _{\cdot}^{2^{+}} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} = 0$	$ -i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\ \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} - 3 \partial_{\delta} \partial$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\sigma} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$	
	$6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau(\Delta + \mathcal{K})^{\chi\delta} - 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta + \mathcal{K})^{\chi}_{} - 4i\eta^{\alpha\beta}k^{\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta}_{\delta}) = 0$	
Total expected gauge generators:		

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{t_{\cdot}}{2r_{\cdot}} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

?
$$k^{\mu} = (p, 0, 0, p)$$
?

Massless particle

	r.+r. 1 5	1.2				
Polarisations:	2					
Unitarity conditions						

Pole residue:

 $r_1 < 0 \&\& r_1 < -r_1 \&\& t_1 > 0$