

SHARPENING AND GENERALIZATIONS OF SHAFER-FINK'S DOUBLE INEQUALITY FOR THE ARC SINE FUNCTION

FENG QI AND BAI-NI GUO

ABSTRACT. In this paper, we sharpen and generalize Shafer-Fink's double inequality for the arc sine function.

1. INTRODUCTION AND MAIN RESULTS

In [3, p. 247, 3.4.31], it was listed that the inequality

$$\arcsin x > \frac{6(\sqrt{1+x} - \sqrt{1-x})}{4 + \sqrt{1+x} + \sqrt{1-x}} > \frac{3x}{2 + \sqrt{1-x^2}} \quad (1)$$

holds for $0 < x < 1$. It was also pointed out in [3, p. 247, 3.4.31] that these inequalities are due to R. E. Shafer, but no a related reference is cited. By now we do not know the very original source of inequalities in (1).

In the first part of the short paper [1], the inequality between the very ends of (1) was recovered and an upper bound for the arc sine function was also established as follows:

$$\frac{3x}{2 + \sqrt{1-x^2}} \leq \arcsin x \leq \frac{\pi x}{2 + \sqrt{1-x^2}}, \quad 0 \leq x \leq 1. \quad (2)$$

Therefore, we call (2) the Shafer-Fink's double inequality for the arc sine function.

In [2], the right-hand side inequality in (2) was improved to

$$\arcsin x \leq \frac{\pi x / (\pi - 2)}{2 / (\pi - 2) + \sqrt{1-x^2}}, \quad 0 \leq x \leq 1. \quad (3)$$

In [13], the inequality (3) was recovered and the following Shafer-Fink type inequalities were derived:

$$\frac{\pi(4-\pi)x}{2/(\pi-2) + \sqrt{1-x^2}} \leq \arcsin x, \quad 0 \leq x \leq 1; \quad (4)$$

$$\frac{(\pi/2)x}{1 + \sqrt{1-x^2}} \leq \arcsin x, \quad 0 \leq x \leq 1. \quad (5)$$

Note that the lower bounds in (2), (4) and (5) are not included each other.

The main aim of this paper is to sharpen and generalize the above Shafer-Fink type double inequalities.

Our main results can be stated as follows.

Theorem 1. *For $\alpha \in \mathbb{R}$ and $x \in (0, 1]$, the function*

$$f_\alpha(x) = \left(\alpha + \sqrt{1-x^2} \right) \frac{\arcsin x}{x} \quad (6)$$

is strictly

2000 *Mathematics Subject Classification.* Primary 33B10; Secondary 26D05.

Key words and phrases. sharpening, generalization, Shafer-Fink's double inequality, arc sine function, monotonicity.

The first author was partially supported by the China Scholarship Council.

This paper was typeset using $\mathcal{AM}\mathcal{S}$ - $\text{L}\text{T}\text{E}\text{X}$.

- (1) increasing if and only if $\alpha \geq 2$;
- (2) decreasing if and only if $\alpha \leq \frac{\pi}{2}$.

Moreover, when $\frac{\pi}{2} < \alpha < 2$, the function $f_\alpha(x)$ has a unique minimum on $(0, 1)$.

As straightforward consequences of Theorem 1, the following double inequalities may be derived readily.

Theorem 2. If $\alpha \geq 2$, the double inequality

$$\frac{(\alpha+1)x}{\alpha+\sqrt{1-x^2}} \leq \arcsin x \leq \frac{(\pi\alpha/2)x}{\alpha+\sqrt{1-x^2}} \quad (7)$$

holds on $[0, 1]$. If $0 < \alpha \leq \frac{\pi}{2}$, the inequality (7) reverses. If $\frac{\pi}{2} < \alpha < 2$, then the inequality

$$\frac{4(1-1/\alpha^2)x}{\alpha+\sqrt{1-x^2}} \leq \arcsin x \leq \frac{\max\{\pi\alpha/2, \alpha+1\}x}{\alpha+\sqrt{1-x^2}} \quad (8)$$

holds on $[0, 1]$.

2. REMARKS

Before proving our theorems, we would like to give several remarks on them.

Remark 1. Letting $x = \sin t$ for $t \in [0, \frac{\pi}{2}]$ yields the restatement of Theorem 2 as follows:

- (1) If $\alpha \geq 2$, then

$$\frac{(\alpha+1)\sin t}{\alpha+\cos t} \leq t \leq \frac{(\pi\alpha/2)\sin t}{\alpha+\cos t}, \quad 0 \leq t \leq \frac{\pi}{2}. \quad (9)$$

- (2) If $0 < \alpha \leq \frac{\pi}{2}$, the inequality (7) reverses.

- (3) If $\frac{\pi}{2} < \alpha < 2$, then

$$\frac{4(1-1/\alpha^2)\sin t}{\alpha+\cos t} \leq t \leq \frac{\max\{\pi\alpha/2, \alpha+1\}\sin t}{\alpha+\cos t}, \quad 0 \leq t \leq \frac{\pi}{2}. \quad (10)$$

For more information on the inequalities in (9) and (10), please refer to [5] and closely-related references therein.

Remark 2. The Shafer-Fink's double inequality (2) is the special case $\alpha = 2$ in (7).

Remark 3. Taking $\alpha = \frac{\pi}{2}$ in (7) gives

$$\frac{(\pi^2/4)x}{\pi/2+\sqrt{1-x^2}} \leq \arcsin x \leq \frac{(\pi/2+1)x}{\pi/2+\sqrt{1-x^2}}, \quad 0 \leq x \leq 1. \quad (11)$$

This improves the inequality (5) and recovers the right-hand side inequality of Theorem 8 on [13, p. 61].

The left-hand side inequalities in (4) and (11) are not included each other.

The lower bound in (11) and those in (1) are not included each other.

Remark 4. Since $\frac{\pi\alpha}{2} = \alpha+1$ has a unique root $\alpha = \frac{2}{\pi-2} \in (\frac{\pi}{2}, 2)$, the inequality (3) follows from taking $\alpha = \frac{2}{\pi-2}$ in (8).

Remark 5. Let

$$h_x(\alpha) = \frac{1-1/\alpha^2}{\alpha+\sqrt{1-x^2}}$$

for $\frac{\pi}{2} < \alpha < 2$ and $x \in (0, 1)$. Then

$$\alpha(3-\alpha^2) < \alpha^3(\alpha+\sqrt{1-x^2})^2 h'_x(\alpha) = 3\alpha - \alpha^3 + 2\sqrt{1-x^2} < 2 + 3\alpha - \alpha^3.$$

This means that

- (1) when $\frac{\pi}{2} < \alpha \leq \sqrt{3}$ the function $\alpha \mapsto h_x(\alpha)$ is increasing;

(2) when $\sqrt{3} < \alpha < 2$ the function $\alpha \mapsto h_x(\alpha)$ attains its maximum

$$\frac{4 \cos^2 \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right] - 1}{4 \left\{ 2 \cos \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right] + \sqrt{1-x^2} \right\} \cos^2 \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right]}$$

at the point

$$2 \cos \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right], \quad x \in (0, 1).$$

Therefore, the following two sharp inequalities may be derived from the left-hand side inequality in (8) for $x \in (0, 1)$:

$$\arcsin x > \frac{(8/3)x}{\sqrt{3} + \sqrt{1-x^2}}, \quad (12)$$

$$\arcsin x > \frac{x \left\{ 4 \cos^2 \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right] - 1 \right\}}{\left\{ 2 \cos \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right] + \sqrt{1-x^2} \right\} \cos^2 \left[\frac{1}{3} \arctan \left(\frac{x}{\sqrt{1-x^2}} \right) \right]}. \quad (13)$$

By the famous software MATHEMATICA 7.0, we reveal that the inequality (13) is better than the left-hand side inequality in (2) and the inequalities (4) and (12) and that it does not include the inequality (5) and the left-hand side inequality (11).

Remark 6. The method to prove Theorem 1 and Theorem 2 in next section have been used in [4, 5, 6, 7, 8, 9, 10, 11, 12] and closely-related references therein.

Remark 7. The method used in next section to prove Theorem 1 and Theorem 2 is more elementary than the one utilized in [1, 2, 13, 14, 15].

Remark 8. This paper is a slightly modified version of the preprint [9].

3. PROOFS OF THEOREMS

Now we are in a position to prove our theorems.

Proof of Theorem 1. Direct differentiation yields

$$\begin{aligned} f'_\alpha(x) &= \frac{\alpha + 1/\sqrt{1-x^2}}{x^2} \left[\frac{x(\alpha + \sqrt{1-x^2})}{1 + \alpha\sqrt{1-x^2}} - \arcsin x \right] \\ &\triangleq \frac{\alpha + 1/\sqrt{1-x^2}}{x^2} h_\alpha(x), \\ h'_\alpha(x) &= \frac{x^2(\alpha^2 - 2 - \alpha\sqrt{1-x^2})}{(1 + \alpha\sqrt{1-x^2})^2 \sqrt{1-x^2}}. \end{aligned}$$

Because

$$\alpha^2 - \alpha - 2 \leq \alpha^2 - 2 - \alpha\sqrt{1-x^2} \leq \alpha^2 - 2$$

on $[0, 1]$, the derivative $h'_\alpha(x)$ is negative (or positive respectively) when $0 < \alpha \leq \sqrt{2}$ (or $\alpha \geq 2$ respectively). Moreover, if $\sqrt{2} < \alpha < 2$, the derivative $h'_\alpha(x)$ has a unique zero on $(0, 1)$. As a result, the function $h_\alpha(x)$ is increasing (or decreasing respectively) when $\alpha \geq 2$ (or $0 < \alpha \leq \sqrt{2}$ respectively) and has a unique minimum on $(0, 1)$ when $\sqrt{2} < \alpha < 2$. It is easy to obtain that $h_\alpha(0) = 0$ and $h_\alpha(1) = \alpha - \frac{\pi}{2}$. Hence,

- (1) when $\alpha \geq 2$, the function $h_\alpha(x)$ and $f'_\alpha(x)$ are positive, and so $f_\alpha(x)$ is strictly increasing on $(0, 1)$;
- (2) when $0 < \alpha \leq \sqrt{2}$, the function $h_\alpha(x)$ and $f'_\alpha(x)$ are negative, and so $f_\alpha(x)$ is strictly decreasing on $(0, 1)$;
- (3) when $\sqrt{2} < \alpha < 2$ and $\alpha \leq \frac{\pi}{2}$, the function $h_\alpha(x)$ and $f'_\alpha(x)$ are also negative, and so $f_\alpha(x)$ is also strictly decreasing on $(0, 1)$;

(4) when $\sqrt{2} < \alpha < 2$ and $\alpha > \frac{\pi}{2}$, the function $h_\alpha(x)$ and $f'_\alpha(x)$ have the same unique zero on $(0, 1)$, and so the function $f_\alpha(x)$ has a unique minimum on $(0, 1)$.

On other hand, the derivative $f'_\alpha(x)$ may be rearranged as

$$\begin{aligned} f'_\alpha(x) &= \frac{1}{x^2} \left[x \left(1 + \frac{\alpha}{\sqrt{1-x^2}} \right) - \left(\alpha + \frac{1}{\sqrt{1-x^2}} \right) \arcsin x \right] \\ &\triangleq \frac{1}{x^2} H_\alpha(x), \\ H'_\alpha(x) &= -\frac{x[x(\sqrt{1-x^2} - \alpha) + \arcsin x]}{(1-x^2)^{3/2}}. \end{aligned}$$

When $\alpha \leq 0$, the derivative $H'_\alpha(x)$ is negative, and so the function $H_\alpha(x)$ is strictly decreasing on $(0, 1)$. From

$$\lim_{x \rightarrow 0^+} H_\alpha(x) = 0,$$

it follows that $H_\alpha(x) < 0$ on $(0, 1)$. Therefore, when $\alpha \leq 0$, the derivative $f'_\alpha(x)$ is negative and the function $f_\alpha(x)$ is strictly decreasing on $(0, 1)$. The proof of Theorem 1 is complete. \square

Proof of Theorem 2. It is easy to obtain that

$$\lim_{x \rightarrow 0^+} f_\alpha(x) = \alpha + 1 \quad \text{and} \quad f_\alpha(1) = \frac{\pi}{2}\alpha.$$

From the monotonicity obtained in Theorem 1, it follows that

(1) when $\alpha \geq 2$, we have

$$\alpha + 1 < \left(\alpha + \sqrt{1-x^2} \right) \frac{\arcsin x}{x} \leq \frac{\pi}{2}\alpha \quad (14)$$

on $(0, 1]$, which can be rewritten as the inequality (7);

(2) when $0 < \alpha \leq \frac{\pi}{2}$, the inequality (14) is reversed;
(3) when $\frac{\pi}{2} < \alpha < 2$, we have

$$\left(\alpha + \sqrt{1-x^2} \right) \frac{\arcsin x}{x} \leq \max \left\{ \frac{\pi}{2}\alpha, \alpha + 1 \right\}$$

which can be rearranged as the right-hand side inequality in (8).

On the other hand, when $\frac{\pi}{2} < \alpha < 2$, the minimum point $x_0 \in [0, 1]$ of $f_\alpha(x)$ satisfies

$$\frac{\arcsin x_0}{x_0} = \frac{\alpha + \sqrt{1-x_0^2}}{1 + \alpha\sqrt{1-x_0^2}}.$$

Hence, the minimum equals

$$f_\alpha(x_0) = \frac{(\alpha + \sqrt{1-x_0^2})^2}{1 + \alpha\sqrt{1-x_0^2}} = \frac{(\alpha + u_0)^2}{1 + \alpha u_0} \geq 4 \left(1 - \frac{1}{\alpha^2} \right), \quad u_0 \in [0, 1].$$

The right-hand side inequality in (8) follows. The proof of Theorem 2 is proved. \square

REFERENCES

- [1] A. M. Fink, *Two inequalities*, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. **6** (1995), 48–49.
- [2] B. J. Malešević, *An application of λ -method on Shafer-Fink's inequality*, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. **8** (1997), 90–92.
- [3] D. S. Mitrinović, *Analytic Inequalities*, Springer-Verlag, 1970.
- [4] B.-N. Guo and F. Qi, *Sharpening and generalizations of Carlson's double inequality for the arc cosine function*, Available online at <http://arxiv.org/abs/0902.3039>.
- [5] F. Qi and B.-N. Guo, *A concise proof of Oppenheim's double inequality relating to the cosine and sine functions*, Available online at <http://arxiv.org/abs/0902.2511>.

- [6] F. Qi and B.-N. Guo, *Concise sharpening and generalizations of Shafer's inequality for the arc sine function*, Available online at <http://arxiv.org/abs/0902.2588>.
- [7] F. Qi and B.-N. Guo, *Monotonicity results and bounds for the inverse hyperbolic sine*, Available online at <http://arxiv.org/abs/0903.1676>.
- [8] F. Qi and B.-N. Guo, *Sharpening and generalizations of Carlson's inequality for the arc cosine function*, Available online at <http://arxiv.org/abs/0902.3495>.
- [9] F. Qi and B.-N. Guo, *Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function*, Available online at <http://arxiv.org/abs/0902.3036>.
- [10] F. Qi and B.-N. Guo, *Sharpening and generalizations of Shafer's inequality for the arc tangent function*, Available online at <http://arxiv.org/abs/0902.3298>.
- [11] F. Qi, Sh.-Q. Zhang and B.-N. Guo, *Sharpening and generalizations of Shafer's inequality for the arc tangent function*, J. Inequal. Appl. **2009** (2009), in press.
- [12] Sh.-Q. Zhang and B.-N. Guo, *Monotonicity results and inequalities for the inverse hyperbolic sine*, Chinese Quart. J. Math. **24** (2009), no. 3, in press.
- [13] L. Zhu, *A solution of a problem of Oppeheim*, Math. Inequal. Appl. **10** (2007), no. 1, 57–61.
- [14] L. Zhu, *New inequalities of Shafer-Fink type for arc hyperbolic sine*, J. Inequal. Appl. **2008** (2008), Article ID 368275, 5 pages; Available online at <http://dx.doi.org/10.1155/2008/368275>.
- [15] L. Zhu, *On Shafer-Fink-Type inequality*, J. Inequal. Appl. **2007** (2007), Article ID 67430, 4 pages; Available online at <http://dx.doi.org/10.1155/2007/67430>.

(F. Qi) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, TIANJIN POLYTECHNIC UNIVERSITY, TIANJIN CITY, 300160, CHINA

E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
URL: <http://qifeng618.spaces.live.com>

(B.-N. Guo) SCHOOL OF MATHEMATICS AND INFORMATICS, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN PROVINCE, 454010, CHINA

E-mail address: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
URL: <http://guobaini.spaces.live.com>