1 Incontournables

	questions suivantes est non $n \in \mathbb{N} \subseteq L$, alors L n'e		e correcte, -5 dans to	us les autres cas.		
□ vrai		 fa	ux			
Q.3 Le langa	age $\{a^mb^m \mid m \in \mathbb{N}\}$ est	:				
☐ ambigu	M hors-	-contexte	rationnel	☐ fini		
Q.4 Combie	n existe-t-il de sous-en	nsembles de {1,2,	,n}?			
$\square \frac{n(n+1)}{2}$		□ n!	$\square \frac{n(n-1)}{2}$. $\square n^2$		
Q.4 Si une g	grammaire n'est pas L	R(1), alors elle est a	mbigüe.			
faux			vrai .			
2 Théori	e des langages ra	tionnels				
Q.5 Que va	aut Fact({ab,c}) (l'ensem	ble des facteurs) :				
	$\{\varepsilon\}$ \boxtimes $\{ab,a,b,c\}$	c, ε \Box $\{a, b, c,$	ε} 🗆 Ø	● {a,b,c}		
Q.5 Que vaut l	Fact(L) (l'ensemble des f	acteurs):				
☐ Pref(P	ref(L)) Suff(Pr	$\operatorname{ref}(L)$) \square Suff(\square Pref($\overline{\operatorname{Pref}(L)}$)	$Pref(L)$ \square S	uff(Suff(L))		
Q.6 Que vau	t Fact($\{a\}\{b\}^*$) (l'ensem	ble des facteurs)				
□ {b}{a	a b b b b b	$\{b\}^* \cup \{b\}^* \qquad \Box$ $\Box \qquad \{\varepsilon\} \cup \{a\}\{a\}\{a\}$	{a,b}*{b}{a,b}*			
Q.6 Que vaut	$\overline{\{a\}^{\star}}$, avec $\Sigma = \{a, b\}$.					
□ {ε} ∪	{a}{a}{a}*	b)* $\{b\}\{a,b\}$ * \Box \Box $\{b\}\{a\}$ * \cup $\{b\}$ *	{a}{b}*{a} □	$\{a\}\{b\}^\star \cup \{b\}^\star$		
Q.6 Que vaut	$({a}{b}^*{a}^*) \cap ({a}^*{b}^*{a}^*)$	a})				
\Box $\{b\}\{a\}^* \cup$	$\{b\}^*$ \square $\{\varepsilon\} \cup \{a\}\{a\}$	a { a } * \blacksquare { a } \cup \square { a }{ b } * \cup { b } *	$\{a\}\{b\}^{\star}\{a\}$	$\{a,b\}^{\star}\{b\}\{a,b\}^{\star}$		

Q.6	Que vaut $\{a\}\{b\}^n \cap \{a\}^n$
Q.7	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \implies L_1 = L_2$.
	🛛 faux 🍘 vrai
Q.7	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\{a\}$. $L = \{a\}$. $M \implies L = M$.
	🗆 faux 📳 vrai
Q.7	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\forall n > 1$, $L^n = \{u^n u \in L\}$.
Q.7	Si e et f sont deux expressions rationnelles, quelle identité n'est pas nécessairement vérifiée?
	$(ef)^*e \equiv e(fe)^* \qquad \Box \qquad (e+f)^* \equiv (e^*f^*)^* \qquad \Box \qquad (e+f)^* \equiv (f^*(ef)^*e^*)^*$ $(ef)^*e \equiv e(fe)^* \qquad \Box \qquad (e+f)^* \equiv (f^*(ef)^*e^*)^*$ $(ef)^*e \equiv e(fe)^* \qquad \Box \qquad (e+f)^* \equiv (f^*(ef)^*e^*)^*$
Q.6	Pour toutes expressions rationnelles e, f , simplifier $e^*(e+f)^*f^*$.
	\boxtimes $(e+f)^*$ \square e^*+f \square $e+f^*$ \bigcirc e^*f^*
Q.6	Pour $e = (a+b)^* + \varepsilon, f = (a^*b^*)^*$:
Q.6	Pour $e = (ab)^*, f = a^*b^*$:
Q.6	Pour $e = (a+b)^*, f = a^*b^*$:
Q.6	Pour $e = (ab)^*, f = (a+b)^*$:

Q.6	Que vaut Suff([a](b)^)								
Q.5	Que vaut $Suff(\{ab,c\})$:								
Q.5	Que vaut Pref({ab, c}):								
Q.8	Ces deux expressions rationnelles :								
	$(a^* + b)^* + c((ab)^*(bc))^*(ab)^* \qquad c(ab + bc)^* + (a + b)^*$								
□ r	ne sont pas équivalentes								
Q.6 Un langage quelconque ☑ est toujours inclus (⊆) dans un langage rationnel ☐ peut n'être inclus dans aucun langage dénoté par une expression rationnelle ☐ n'est pas nécessairement dénombrable ☐ peut avoir une intersection non vide avec son complémentaire									
Q.8	L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :								
	'-+-1+-+-2'								
Q.7	L'expression Perl "([a-zA-Z] \\)+" engendre :								
□ '	'eol" (eol est le caractère « retour à la ligne »)								
Q.8	L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas :								
	⑤ '42,e42' ☐ '42,42e42' ☐ '42,4e42' ☐ '42e42'								
Q.8	L'expression Perl'[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :								
	☐ '-42-42' ☐ '42+(42*42)' ☐ '42+42' ☐ '-42'								
Q.6	L'expression Perl '[a-zA-Z] [a-zA-Z0-9_]*' n'engendre pas :								
	<pre></pre>								
Q.6	L'expression Perl '[-+]?[0-9]+, [0-9]*' n'engendre pas :								
	6 '42' ☐ '42,' ☐ '42,42' ☐ '42,4'								

Q.8 Combien d'états a l'automate de Thompson auquel je pense?

□ 1 □ 9 🖾 4 □ 7

Q.8 Quel automate ne reconnaît pas le langage décrit par l'expression $(a^*b^*)^*$.

Q.8 Quel automate reconnaît le langage décrit par l'expression ((ba)*b)*

Q.10 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :

 \boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_2 est rationnel \square L_1, L_2 sont rationnels \square L_1 est rationnel

Quel est le résultat d'une élimination arrière des transitions spontanées?

Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur

Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur

 \square n+1 \boxtimes 2^n \square Il n'existe pas. \square $\frac{n(n+1)}{2}$

☐ Il n'existe pas.

 $\Sigma = \{a, b, c, d\}$ don't la *n*-ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):

☐ Thompson, déterminisation, Brzozowski-McCluskey.

Q.10

 $\square \quad \frac{n(n+1)(n+2)(n+3)}{4} \qquad \qquad \square \quad 4^n \qquad \boxtimes \quad 2^n$

 $\Sigma = \{a, b\}$ dont la *n*-ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):

Q.14 Déterminiser cet automate :

Q.15 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

- \square Il existe un DFA qui reconnaisse ${\cal P}$
- \square Il existe un NFA qui reconnaisse ${\cal P}$
- P ne vérifie pas le lemme de pompage
- \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

Q.16 🎝 Quels états peuvent être fusionnés sans changer le langage reconnu.

- ☐ 2 avec 4
- 1 avec 2
- ☐ 0 avec 1 et avec 2
- ☐ 1 avec 3
- 3 avec 4
- ☐ Aucune de ces réponses n'est correcte.

Q.17

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$

Sur {a, b}, quel est le complémentaire de . Q.18

Q.15 D Qu'un langage vérifie le lemme de pompage

- est nécessaire s'il est rationnel
- est suffisant pour qu'il soit rationnel
- ☐ Aucune de ces réponses n'est correcte.

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

- a*b*c*
- \Box $(a+b+c)^*$
- ☐ (abc)*
- @ a* + b* + c*

3 Grammaires et Machines abstraites

- Q.19 Une machine de Turing nondéterministe
 - est sûrement plus efficace qu'une machine de Turing déterministe

 permet d'aboutir à une réponse là où les machines déterministes échouent
 - ☐ ne sait pas ce qu'elle fait ☐ gère les ensembles flous
- Q.19 Quel type de machines abstraites reconnaît les langages rationels?
 - ☑ les automates
 ☐ les machines de Turing bornées linéairement
 ☐ les automates à pile déterministes
 ☐ les machines de Turing
- Q.19 Quel type de machines abstraites reconnaît les langages sensibles au contexte?
 - ☐ les automates à pile ☐ les automates
 ☑ les machines de Turing bornées linéairement ☐ les machines de Turing
 ☐ les automates à pile déterministes
- **Q.19** L'équation $P \subseteq NP$ signifie
 - un problème de résolution d'équations polynomiales est plus facile qu'un problème de résolution d'équations exponentielles
 - ☐ un problème soluble par une machine de Turing à une bande *P* est soluble par une machine de Turing ayant en plus une bande *N*.
 - on ne perd pas de performances en ayant plus de crus
 - les problèmes solubles dans un polynôme précipitent dans une solution non polynomiale

Q.13 Quel type de machines abstraites reconnaît les langages hors-contexte?
 ☐ les automates à pile déterministes ☐ les machines de Turing ☑ les automates à pile ⑥ les machines de Turing bornées linéairement ☐ les automates
Q.20 Quelle est la classe de la grammaire suivante? $S \rightarrow Sac \mid c$
☐ Sensible au contexte ☐ Choix Finis ☐ Rationelle ☐ Monotone ☐ Hors contexte
Q.21 Quelle est la classe de la grammaire suivante? $S \rightarrow SaS \mid c$
☐ Sensible au contexte ☐ Rationnelle ☐ Monotone ☐ Hors contexte ☐ Choix Finis
Q.20 Quelle est la classe de la grammaire suivante? $S \rightarrow aS \mid Sb \mid c$
Q.14 Quelle est la classe de la grammaire suivante? $S \rightarrow aSb \mid c$
☐ Monotone ☐ Hors contexte ☐ Rationnelle ☐ Sensible au contexte ☐ Choix Finis
Q.20 Quelle est la classe de la grammaire suivante?
$S \rightarrow abc \mid aSQ \qquad bQc \rightarrow bbcc \qquad cQ \rightarrow Qc$
☐ Choix Finie ☐ Rationnelle ☐ Sensible au contexte
Q.21 Quelle est la classe de la grammaire suivante?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
☐ Hors contexte ☐ Sensible au contexte ☐ Choix Finis ② Monotone ☐ Rationnelle
Q.23 Quelle propriété cette grammaire vérifie? $S \rightarrow Sac \mid c$
☐ Hors contexte ☑ Linéaire à gauche ⓓ Ambigüe ☐ Linéaire à droite
Q.23 Quelle propriété cette grammaire vérifie? $S \rightarrow aSc \mid c$
☐ Linéaire à droite ☐ Ambigüe ☑ Hors contexte
Q.22 Quelle propriété cette grammaire vérifie? $S \rightarrow SpS \mid n$
☐ Rationnelle ☐ Linéaire à gauche ☐ Ambigüe ☐ Linéaire à droite

Q.21	Quelle est la classe du langage (a"b")	$C'' \mid n \in \mathbb{N}$?
	☐ Général (Type 0) ☐ Hors contexte (Type 2) ☐ Rationnel (Type 3)	☑ Sensible au contexte (Type 1)☐ Fini (Type 4)
Q.20	Quelle est la classe du langage {a ⁿ	$n \in \mathbb{N}$?
	Fini (Type 4) Rationnel (Type 3) Sensible au contexte (Type 1)	☐ Hors contexte (Type 2) ☐ Général (Type 0)
Q.21	Quelle est la classe du langage (a ⁿ b ⁿ	$ n \in \mathbb{N}\}$?
	Fini (Type 4) Sensible au contexte (Type 1) Hors contexte (Type 2)	☐ Rationnel (Type 3) ☐ Général (Type 0)
Q.21	Quelle est la classe de la grammaire s	uivante?
		$CB \rightarrow BC$ $bC \rightarrow bc$ $bB \rightarrow bb$ $cC \rightarrow cc$
×	Rationnelle (Type 3) Monotone (Type 1) Hors contexte (Type 2)	Sensible au contexte (Type 1)☐ Choix Finis (Type 4)
Q.15	Quelle est la classe de la grammaire	suivante? $P \rightarrow P$ "stm" ";" "stm" ";"
	Hors contexte (Type 2) Monotone (Type 1) Rationnelle (Type 3)	☐ Sensible au contexte (Type 1)☐ Finie (Type 4)
Q.19	Quel type de machines abstraites reco	nnaît les langages de type général (type 0)?
	☐ les machines de Turing born☐ les automates à pile détermi☐ les a	24 T. B.
Q.22	Toute grammaire hors contexte ambig	üe produit un langage
	non rationnel 👖 non	vide 🗌 infini 🗎 rationnel
Q.23	Il existe un formalisme qui permette une	description finie de tout langage.
⊠ N	on. 🔲 Oui. 🔲 Ça dépend d	e l'alphabet.

Q.19	Un transducteur est										
	un automate infini un automate fini avec des transduction spontanées	 □ un élément de transitor ⋈ une machine ayant une entrée et une sortie 									
 Q.23 Une grammaire hors contexte est ambigüe ssi il existe ☐ un automate nondéterministe qui reconnaisse ses arbres de dérivation. ☐ un mot ayant deux arbres de dérivation. ☐ un mot ayant une dérivation droite et une dérivation gauche. ☐ une dérivation gauche (ou droite) ayant deux arbres de dérivation. 											
' 4	4 Analyseurs										
Q.2	4 Les "start conditions" de Lex/Flex (%	s et %x) permettent									
	le choix du parseur à utiliser 🔲 d	chiffres en la valeur qu'elles représentent le déterminer quand l'analyse lexicale doit commencer différents contextes lexicaux									
Q.25 Un parser sert à □ segmenter un flux de caractères en un flux de tokens □ construire un analyseur syntaxique □ éliminer les récursions terminales □ s'assurer de la correction du typage □ faire de l'analyse syntaxique Q.26 Comment désambigüiser pour Yacc/Bison le morceau d'arithmétique suivant : exp: exp '+' exp exp '-' exp NUM;											
☐ %left '+' %left '-' ☑ %left '+' '-' ☐ %left '+' %left '-' %nonassoc NUM ☐ %left '-' %left '+'											
Q.27 sur '?		teint l'automate LR(1) après une transition sur E puis									
7.70704.7	$S \rightarrow E $ \$	E: E E + E 0									
	$E \rightarrow E \bullet + E [\$?+]$ $E \rightarrow E? \bullet E : E [\$?+]$ $E \rightarrow \bullet E? E : E [?+:]$ $E \rightarrow \bullet E + E [?+:]$ $E \rightarrow \bullet C [?+:]$ $E \rightarrow \bullet C E \rightarrow C E $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Q.19 Lex/Flex sont des									
☐ générateurs de parsers ☐ parseurs ☐ scanners ☐ générateurs de préprocesseurs									
Q.20 Quels sont les adjectifs usuels pour désigner une parseur LL :									
□ ascendant ⊠ prédictif □ additif □ multiplicatif ⊠ récursif □ itératif									
Q.21 Si une grammaire hors contexte est non ambiguë, alors									
\square elle est LL(k) \blacksquare elle n'est pas nécessairement LL \square elle produit nécessairement des conflits dans un parseur LL \square elle est LL(1)									
Q.25 LL(k) signifie lecture en une passe de gauche à droite, avec k symboles de regard avant lecture en une passe de gauche à droite, avec une pile limitée à k symboles lecture en deux passes de gauche à droite, avec k symboles de regard avant lecture en deux passes de gauche à droite, avec une pile limitée à k symboles									
5 Logique Propositionnelle									
Soit le langage de la logique propositionnelle, composé de deux symboles \top (vrai) et \bot (faux), de l'opération unaire \neg (non), des opérations binaires \lor (ou) et \land (et), et des parenthèses notées [,]. Ce langage inclut des mots tels que $\bot \land \bot$, $\top \lor \bot$ et $\neg \neg [\top \land \top] \lor [\bot \land \bot]$. Q.28 Que dire de la grammaire suivante?									
$S \rightarrow S \land S \mid S \lor S \mid \neg S \mid [S] \mid \top \mid \bot (G_1)$									
☐ rationnelle									
Q.29 Dans la grammaire suivante, quelles sont les priorités/associativités des opérate									
$S \rightarrow S \lor T \mid T$ $T \rightarrow T \land F \mid F$ $F \rightarrow \neg F \mid [S] \mid \top \mid \bot$ (G_2)									
 									
Q.30 Que dire de la grammaire (G_2) ?									
□ non ambigüe et non LL(1) □ non ambigüe et LL(1) □ ambigüe et LL(1) □ ambigüe et non LL(1)									

Q.31	.31 Que dire de la grammaire suivante par rapport à (G ₂)?																
			5	$S \rightarrow S' \rightarrow$	TS'	, 'S' ε	7	Γ → Γ' →	F7	Γ' FT' ε		$F \rightarrow$	¬Ι	[5]	тІт	(G ₃)
	mê mê lan	me l me l gage	angag angag diffé	ge, m ge, p rent	êm rior	es pri ités e	orité t/ou a	s et a	asso	ivités c ociativi ivités c ociativi	ités, liffé	pas rent	LL(es, p	(1) pas LL			
Q.32	Ç)uels	sont	les sy	mb	oles a	nnul	lable	s da	ans la g	gran	nmai	ire (G_3)?			
			S,S',	T, T'	,F			5, T, F			S'	T', l	2		S',T'		□ F
Q.33	Q	uels s	ont le	s firs	тdа	ns la g	gramr	naire	(G ₃)?							
	S S' T T'	FIR: -[7] εV -[7] εΛ -[7]	LT LT			S'	FIRS' ¬[T ∨∧ ¬[T ∨∧ ¬[T	T T			S S' T T' F	FIRS T V F ^[7			5	S - S' V T -	IRST [⊤⊥ [⊤⊥ \ [⊤⊥
Q.34	Qu	els so	nt les	FOLL	ow d	ans la	gram	mair	e (G	3)?							
	S S' T T' F	ε] VA] V] V]			S S' T T' F	FOLL] 			S S' T T' F	FOLL VA V] V] AV]			S S' T T' F	FOLL]		S S' T T' F	FOLL]]]]
Q.35	5	Que	dire	de la	gra	mma	ire é	tend	ue s	suivan	te p	ar ra	ppo	ort à (G	2)?		
				S	\rightarrow	T(vT	")*	T -	→ I	F(∧F)*		$F \rightarrow$	¬F	[5]	Т Т	(G_4))
. [□ 1 ⊠ 1 □ 1	nêm nêm nêm	e lang e lang	gage, gage, gage,	prie mê mê	orités mes p	et/or	u ass tés e	ocia t as	ativités ativités ssociati ssociati	dif vité	féren	ntes ais	, pas L LL(1)	12 (-13) (-14)		

Q.36 Quelle routine parse et calcule correctement S pour la grammaire (G_4) de la logique booléenne? La variable la désigne le lookahead courant, et la routine eat (expect) vérifie que le lookahead actuel est expect puis stocke le suivant dans la.

```
bool S()
{
   bool res = false;
   do
   {
      eat('v');
      res |= T();
   }
   while (la == 'v');
   return res;
}
```

```
bool S()
{
   bool res = T();
   while (la == 'V')
   {
     eat('V');
     res |= F();
   while (la == '\^')
   {
      eat('\^');
     res &= F();
   }
   return res;
}
```

```
bool S()
{
  bool res = true;
  do
  {
    eat('v');
    res |= T();
  }
  while (la == 'v');
  return res;
}
```

```
bool S()
{
   bool res = T();
   while (la == 'v')
   {
     res |= T();
     eat('v');
   }
   return res;
}
```

```
bool S()
{
    bool res = T();
    while (la == 'v')
    {
       eat('v');
       res |= T();
    }
    return res;
}
```

Q.37 Quelle est la séquence de décalages/réductions pour un parser Yacc/Bison implémentant la grammaire (G_1) avec des directives précisant correctement priorités et associativités?

