See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262372277

Effects of Water Vapor and Trace Gas Impurities in Flue Gas on CO₂/N₂ Separation Using ZIF-68

Impact Factor: 4.77 · DOI: 10.1021/jp4113969

CITATIONS	READS
12	69

4 AUTHORS, INCLUDING:

Yang Liu

King Abdula university of science and technol...

5 PUBLICATIONS **55** CITATIONS

SEE PROFILE

Jing Liu

Huazhong University of Science and Technology

40 PUBLICATIONS 603 CITATIONS

SEE PROFILE

Jerry Y S Lin

Arizona State University

307 PUBLICATIONS 9,520 CITATIONS

SEE PROFILE

Effects of Water Vapor and Trace Gas Impurities in Flue Gas on CO₂/ N₂ Separation Using ZIF-68

Yang Liu, †,‡ Jing Liu,*,† Y.S. Lin,‡ and Ming Chang§

Supporting Information

ABSTRACT: Understanding the effects of the presence of water vapor and other gas impurities (such as SO₂ and O₂) in flue gas on sorbent performance is critical to properly evaluate the use of metal organic frameworks for realistic postcombustion CO₂ capture. Grand canonical Monte Carlo calculations were performed to investigate the effects of H₂O₂, O₂, and SO₂ on CO₂ adsorption and CO₂/N₂ separation using ZIF-68. The mechanisms of these effects were also investigated by density functional theory calculations. The presence of H₂O affects the CO₂ adsorption on ZIF-68 in two opposite ways: the negative effect of competitive adsorption of the impurity gases on the adsorption sites over CO2, and the positive effects of formation of new adsorption sites for CO₂. The presence of H₂O reduces the CO₂ adsorption ability but increases the CO₂/N₂ separation factor. SO₂ is found to be strongly adsorbed in the pores of ZIF-68 and considered as an adverse factor for CO₂ adsorption and CO₂/N₂ separation. The presence of O₂ has a negligible effect on CO₂ adsorption on ZIF-68.

1. INTRODUCTION

Capturing CO₂ from flue gases using porous materials is one of the promising approaches for CO₂ capture and sequestration. Recently, many new synthetic and natural organic porous materials have been studied for this purpose. Among these materials, metal organic frameworks (MOFs) show great potential.^{2–4} One of the advantages of MOFs is the ability to modulate systematically the pore dimensions and surface chemistry within their framework, allowing tailoring sorbent materials for effective CO₂ capture.⁵ Zeolitic imidazolate frameworks (ZIFs) constitute a subclass of MOFs that adopt zeolite structure types. 6,7 In contrast to many MOF materials, ZIFs have better thermal and chemical stability more suitable for practical CO₂ capture applications.⁸

Most studies on ZIF sorbents were focused on the CO₂ adsorption capacity and CO2/N2 adsorption selectivity to evaluate the potential uses of these materials for postcombustion CO_2 capture. Banerjee et al. first reported the extraordinary capacity of ZIFs for storing CO2: 1 L of ZIF-69 can hold 83 L of CO₂ at 273 K under ambient pressure. They also investigated the functionality effects on CO2 uptake capacity in an isoreticular series of ZIFs with similar GME topology but different functional groups.9 Calculations of breakthrough curves indicate that ZIFs have much higher selectivity for CO_2 in CO_2/N_2 gas mixtures than the industrially pertinent BPL carbon. Recently, grand canonical Monte Carlo (GCMC) calculations have also been performed to investigate the adsorption or separation behaviors of CO2 in ZIF materials. 12-16 Liu et al. 12 reproduced the experimental CO₂

adsorption isotherms in ZIF-68 and ZIF-69 very well by GCMC calculations using classic UFF force field. They also found that the small pores formed by the nIM linkers are the preferential adsorption sites for CO₂ molecules, ¹² which is difficult to be observed by experimental methods. Liu and Smit¹³ evaluated the separation performance of ZIF-68 and ZIF-69 for CO₂/N₂, CO₂/CH₄, and CH₄/N₂ mixtures using a similar force field. Besides the GCMC method, density functional theory (DFT) is also widely used as an important means to study the mechanism of CO₂ adsorption in ZIFs. In our previous work, DFT calculations were performed to investigate the effects of functionalized linkers on CO2 binding in ZIFs, which is helpful to design new ZIF materials with higher CO₂ adsorption ability.¹⁷ However, although it is valuable to investigate the various influence factors on the CO₂ adsorption and separation performance of ZIFs and then find effectual ways to improve these abilities, the investigations on the effect of the operation conditions should also be performed in order to evaluate the potential of ZIFs using in a realistic industrial system.

It is well known that flue gas for coal-fired power plants contains roughly about 73–77% N_2 , 15–16% CO_2 , 5–7% H_2O_2 , 3–4% O_2 , and trace amounts of impurities such as SO_2 . ^{18,19} Although many works were conducted to investigate the effects of water vapor on CO2 adsorption or CO2/N2 separation

Received: November 20, 2013 Revised: February 18, 2014 Published: February 19, 2014

[†]State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

[‡]School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6006, United States

School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

properties of MOFs,²⁰⁻²⁴ only a few studies have been performed in the area of ZIFs.^{13,25} Liu and Smit¹³ reported that the presence of water vapor (less than 5%) has negligible effects on CO₂ adsorption properties of ZIF-68 by GCMC works. Huang et al. 25 found that the interaction between water molecules and the framework plays a crucial role when evaluating the effect of a trace amount of water on CO2 capture in the natural gas upgrading process in MOFs and ZIFs. However, the mechanism of these interactions is still not clear. Besides the effect of water, SO₂ was also considered as a significant threat to CO₂ capture in porous materials.^{26–28} Up to date, limited knowledge is available on the SO₂ adsorption in ZIFs. Ding and Yazaydin²⁹ investigated the CO₂ capture performance of four ZIF materials in the presence of SO₂ using molecular simulations and found a cooperative interaction between SO₂ and CO₂ molecules. Explaining the cobinding mechanism of CO₂ and H₂O or SO₂ in ZIFs by a more accurate quantum chemical method is expected to be helpful to understand the effect of H₂O or SO₂ presence on CO₂ adsorption in ZIFs.

ZIF-68 is one of representative ZIF materials with good CO_2 adsorption and CO_2/N_2 separation characteristics. Signariant in the present work, the GCMC method was used to predict the effects of water vapor and other trace gas impurities (O_2 and SO_2) on CO_2/N_2 separation properties of ZIF-68. The mechanisms of these influences were thoroughly investigated by GCMC and DFT calculations. To the best of our knowledge, this is the first work to explore the binding mechanism of H_2O and SO_2 on ZIFs as well as the cointeraction mechanisms between CO_2 and H_2O or SO_2 on ZIFs.

2. COMPUTATIONAL METHODOLOGY

2.1. ZIF Structure. ZIF-68 has typically GME zeolite-type topology with Zn connected to benzimidazole (bIM) and 2-nitroimidazole (nIM) to create a corresponding tetrahedron. The ZIF-68 structure was constructed from experimental X-ray diffraction (XRD) data,⁶ and the atoms belonging to the residual solvent molecules were removed. The experimental crystal structure was directly used in our simulations without DFT optimization.

2.2. Force Field. The interaction of gas—adsorbent and gas—gas were modeled as a combination of site—site Lennard—Jones (LJ) and Coulombic potentials:

$$u_{ij}(r) = \sum_{\substack{\alpha \in i \\ \beta \in j}} \left\{ 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{\gamma_{\alpha\beta}} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{\gamma_{\alpha\beta}} \right)^{6} \right] + \frac{q_{\alpha}q_{\beta}}{4\pi\varepsilon_{0}\gamma_{\alpha\beta}} \right\}$$
(1)

where ε_0 equals $8.8542 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ and is the permittivity of the vacuum, and $\sigma_{\alpha\beta}$ and $\varepsilon_{\alpha\beta}$ are the collision diameter and well depth, respectively. UFF force field 30,31 has successfully been used by Liu et al. 12 and Sirjoosingh et al. 15 to describe the CO₂ adsorption isotherm in ZIF-68 and therefore is used in this work. The partial charges of the framework atoms (as shown in the Supporting Information) obtained using Mulliken charge partitioning method by Liu et al. 12 are used to model the charge interactions between the framework atoms and the gas molecules. The spherical united-atom LJ potential model was used to represent N₂ and O₂. 32 CO₂, SO₂, and H₂O were modeled as a three sites rigid linear molecule with quadrupole moment described by a partial charge model. 33

Lorentz-Berthelot mixing rules were used to determine the LJ cross-interaction parameters.³⁴ All of the LJ potential parameters and atomic charges used in this work are listed in the Supporting Information.

2.3. Details of GCMC Calculations. The conventional GCMC method was used to investigate the adsorption and separation of various gases in ZIF-68. The ZIF-68 framework was treated as rigid with atoms frozen at their crystallographic positions during GCMC simulations. A simulation box containing 8 $(2 \times 2 \times 2)$ unit cells with periodic boundary conditions applied in all three dimensions was built in this work. A cutoff radius was set to 12.8 Å for the LI interactions. and the long-range electrostatic interactions were handled using the Ewald summation method with the tinfoil boundary condition. For each state point, GCMC simulation consists of 1.0×10^7 steps to guarantee the equilibration, followed by 1.0 \times 10⁷ steps to sample the desired thermodynamics properties. The GCMC calculations were performed using the Sorption code in Materials Studio 4.4.³⁵ The selectivity for component A relative to component B is defined by the following: $S = (\alpha_A / \alpha_A)$ $\alpha_{\rm B}$)($\beta_{\rm B}/\beta_{\rm A}$), where α and β are the molar fractions of components A and B in the adsorbed and gas phases, respectively.

2.4. Details of DFT Calculations. Cluster models were constructed using the method as described in our previous study. 17,36 All of the theoretical calculations were performed by DFT method using the Dmol³ code in Materials Studio 4.4. 35,37 The DFT method in this code uses fast convergent three-dimensional numerical integration to calculate the necessary matrix elements, and it is also an efficient and exact method for calculating the electrostatic potential. The PW91 exchange-correlation functional, 38 which is considered adequate with quantitative precision for the investigation of weak van der Waals force between MOFs and CO₂, 39 was used in the current work. The double numeric polarization (DNP)³⁷ basis set, which is comparable to 6-31G(d,p), was used to describe the atomic orbital. DFT Semicore Pseudopots (DSPP)⁴⁰ that is developed specifically for DMol³ calculations was used to set the type of core treatment.

Both of the initial cluster models (fragment 1 and fragment 2), as shown in the Supporting Information, were first optimized using the calculation methods described above. After the geometry optimizations, gas molecules were placed in different configurations separately. Additional geometry optimizations were performed to every configuration, and the binding energies were calculated. The binding energy (BE) of an adsorbate "A" on a substrate "B" can be calculated as follows:

$$BE = E(AB) - (E(A) + E(B))$$
(2)

where E(A) is the total energy of the adsorbate, E(B) is the total energy of the substrate, and E(AB) is the total energy of the adsorbate/substrate system in the equilibrium state. Binding of the adsorbate is exothermic if BE is negative. A higher negative value of BE corresponds to a stronger binding.

3. RESULTS AND DISCUSSION

3.1. Sorption of Pure Gases on ZIF-68. In a previous work, Liu et al.¹² validated the reliability of using the similar classical UFF parameters and atomic charges to describe CO₂ adsorption in ZIF-68. The bulk PVT behavior of CO₂ gas at different temperatures was calculated using NPT MC simulations to validate the force field for CO₂. In this work,

the reliability of the GCMC calculation was also validated by comparing the simulation data with experimental adsorption isotherms of CO₂, N₂, and O₂ in ZIF-68,⁹ which is available in the Supporting Information. From the comparison, the parameters used in this work give good reproduction of the corresponding experimental adsorption isotherms, which validates that the force fields used in this work are applicable.

Figure 1 shows the pure gas sorption isotherm of N_2 , CO_2 , O_2 , H_2O_2 , and SO_2 in ZIF-68 as a function of pressures. The

Figure 1. Pure gas sorption isotherm of various gases $(N_{2}, CO_{2}, O_{2}, AO_{2}, AO_{2})$ and SO_{2} and SO_{2}

partial pressures of N_2 , CO_2 , O_2 , O_2 , O_2 , and SO_2 in flue gas are used for different components. As shown in Figure 1, the uptake amount of CO_2 in ZIF-68 is significantly higher than that of N_2 , which indicates that ZIF-68 is a good material for CO_2/N_2 separation. The uptake amount of O_2 in ZIF-68 is quite low. It is notable that the uptake amount of SO_2 and SO_2 and SO_3 are very high even at low pressure, which means there is a strong interaction between them and and the ZIF-68 framework. In order to quantitatively compare the uptakes of various gases in ZIF-68, the uptake amount and isosteric heat of them at 1 kPa were illustrated in Table 1.

Table 1. Uptake Amount and Isosteric Heat of Various Gases (N_2 , CO_2 , O_2 , H_2O , and SO_2) in ZIF-68 at 298 K and 1 kPa

	N_2	CO_2	O_2	H_2O	SO_2
uptake amount	0.002	0.029	0.001	0.136	0.632
isosteric heat	13.0	23.0	11.4	32.8	37.0

Table 1 shows the uptake amount of various gases in ZIF-68 at 1 kPa and 298K, which varies widely in the sequence of $SO_2 > H_2O > CO_2 > N_2 > O_2$. Correspondingly, the isosteric heat of these gases follows the same trend. It is notable that SO_2 and H_2O have much higher uptake capacity than CO_2 in ZIF-68 at the given pressure. In previous studies, SO_2 was also found to be adsorbed in larger amounts than CO_2 in several different MOFs with open metal sites or amine groups. 26

The spatial probability distributions of H_2O , CO_2 , and SO_2 in ZIF-68 at 298 K and 1 kPa are also shown in Figure 2a–c, respectively. From Figure 2a, H_2O sorption is mainly observed in the small pores. However, CO_2 adsorption in both pores and

Figure 2. Probability distribution for (a) H_2O (green dots), (b) CO_2 (red dots), (c) SO_2 (purple dots), and their mixtures (d) CO_2/H_2O and (e) CO_2/SO_2 with an equal molar ratio (1:1) at 298 K and a total pressure of 1 kPa.

channels is seen (Figure 2b). The distribution of SO_2 in ZIF-68 is very similar to that of CO_2 but is more concentrated (Figure 2c). These phenomena are due to the differential of the nature of interaction forces between ZIF-68 and various gas molecules as well as the different gas molecular diameters. In a previous study, Liu et al. 12 reported that the small pores formed by the nIM linkers are the preferential sites for CO_2 adsorption in ZIF-68 and with increasing pressure CO_2 molecules were first adsorbed in the corners formed by the phenyl rings in the large pores and then occupied the center of the pores. Here, our GCMC calculations show that the small pores are also the preferential sites for SO_2 and SO_2 molecules, which may affect the SO_2 adsorption behavior a lot because competitive adsorption between them and SO_2 molecules may occur during the adsorption process.

Figure 3 shows the contribution percentage of dispersion force and electrostatic force to SO₂ and H₂O uptake at 1 kPa.

Figure 3. Contribution percentage of electrostatic force (red) and dispersion force (blue) to SO_2 and H_2O uptake amount in ZIF-68 at 1 kPa.

The substantial effect of H_2O is largely attributed to the electrostatic interactions because H_2O molecules are highly polar molecules, while dispersion forces play a relative weaker role during this process. In the case of SO_2 , although electrostatic force is also significant, the role of dispersion force is still the dominant force (Figure 3). Additional GCMC simulations were also performed for SO_2 and H_2O uptakes in ZIF-68 by switching off the charges of adsorbed molecules and/or framework atoms, which is available in the Supporting

Figure 4. (a) Selectivity of CO_2 from CO_2/O_2 , H_2O from H_2O/CO_2 , and SO_2 from SO_2/CO_2 ; (b) CO_2 uptake amount in mixtures with equal molar ratio (1:1) at 1 kPa (green), 5 kPa (red), and 10 kPa (blue).

Information. The results show that the contribution of atomic charges to the SO₂ and H₂O uptake amount is significant.

3.2. Selectivity of Binary Mixtures. The cobinding of binary mixtures (CO_2/O_2 , H_2O/CO_2 , and SO_2/CO_2) in ZIF-68 was investigated. Figure 4a shows the selectivity of CO_2/O_2 , H_2O/CO_2 , and SO_2/CO_2 with equal molar ratio (1:1) at 1, 5, and 10 kPa, respectively. It can be seen that ZIF-68 shows pretty good selectivity for CO_2 from CO_2/O_2 mixtures, which indicates CO_2 is preferentially adsorbed over O_2 (Figure 4a). In addition, the CO_2 uptake amount in the CO_2/O_2 mixture does not change comparing to the data obtained from the pure gas uptake measurements (Figure 4b). Thus O_2 is considered to hardly influence the CO_2 adsorption in ZIF-68, which is similar with the results obtained in previous work where MOF materials with open metal sites or amine group were used. ²⁶

ZIF-68 prefers H₂O to CO₂ in the H₂O/CO₂ mixture (Figure 4a). Figure 2d provides the spatial probability distributions of CO2 and H2O cobinding in ZIF-68 at 1 kPa. Due to the fact that the small pores are the most favorite adsorption sites for both CO2 and H2O molecules, they compete with each other in the small pores for the limited positions at such low pressure. For CO2 and SO2 cobinding in ZIF-68, the selectivity for SO₂ from CO₂ is even higher than that of H₂O from CO₂ due to the stronger interaction force (Figure 4a). In Figure 2e, one can see that SO₂ molecules almost occupy all the position of small pores and CO₂ molecules briefly appear at the other sites, which is similar with the cobinding of CO₂ and SO₂ in HKUST-1.²⁶ The uptake amount of CO₂ is not affected by H₂O or SO₂ at low pressure (total pressure 1 kPa) owing to plenty of adsorption sites for gas molecules to occupy but is significantly affected by SO2 and H₂O when the total pressure increases to 5 and 10 kPa, as shown in Figure 4b. A decrease of the selectivity for H₂O or SO₂ from CO₂ is observed when the pressure increase from 1 to 10 kPa, while the selectivity for CO2 from O2 is almost maintained (Figure 4a). In a word, both of H₂O and SO₂ have negative effect to CO₂ adsorption in ZIF-68.

3.3. Effects of O₂, H₂O, and SO₂ on CO₂/N₂ Selectivity. The selectivity for CO_2 from a binary mixture of CO_2/N_2 with a 16%:84% partial pressure ratio was calculated and is available in the Supporting Information. We can see that CO_2 is preferentially adsorbed over N₂, which makes ZIF-68 a good

choice for CO_2/N_2 separation application. In real CO_2 capture applications, a high selectivity for CO_2 from a CO_2/N_2 mixture in the presence of impurities is essential. In order to study the effect of O_2 , H_2O , and SO_2 on CO_2/N_2 separation in ZIF-68, four different gas mixtures were considered: (1) $CO_2/N_2/O_2$, (2) $CO_2/N_2/SO_2$, (3) $CO_2/N_2/H_2O$, and (4) $CO_2/N_2/O_2/SO_2/H_2O$. Partial pressures of each gas were defined to simulate the real composition of each in flue gases: 16 kPa for CO_2 , 4 kPa for O_2 , 3.16 kPa for H_2O , and 0.08 kPa for SO_2 . N_2 was used to balance the total pressure in the mixtures. The total pressure of the simulated flue gas is 100 kPa. Figure 5 shows the obtained CO_2/N_2 selectivity of all cases and the corresponding uptake amount of CO_2 and N_2 .

As shown in Figure 5a, the injection of O_2 into CO_2/N_2 (mixture $CO_2/N_2/O_2$) does not change the CO_2/N_2 separation factor as well as the uptake amounts of CO_2 and N_2 . On the

Figure 5. (a) CO_2/N_2 selectivity and (b) CO_2 and N_2 uptake amount in the mixtures of CO_2/N_2 , $CO_2/N_2/O_2$, $CO_2/N_2/SO_2$, $CO_2/N_2/SO_2$, $CO_2/N_2/SO_2$, and all gases $(CO_2/N_2/O_2/SO_2/H_2O)$ at 298 K and 100 kPa.

other hand, after adding 800 ppm SO_2 (mixture $CO_2/N_2/SO_2$), the CO_2/N_2 selectivity and the CO_2 uptake amount decrease slightly, but the N_2 uptake amount does not change (Figure 5b). However, the CO_2/N_2 selectivity is significantly improved in the presence of H_2O (Figure 5a). Both the CO_2 and N_2 uptake amount decrease in this process, but the decrement of N_2 is larger than that of CO_2 (Figure 5b). The reasons can be explained as follows: (1) the partial pressure of N_2 is significantly decreased; and (2) besides the negative effect of H_2O on CO_2 adsorption, there is also a kind of positive effect to counteract part of the negative effect, but this positive effect is absence on N_2 adsorption. In the mixture $CO_2/N_2/O_2/H_2O/SO_2$, the value of CO_2/N_2 selectivity is moderate because of the coexistence of SO_2 and H_2O .

3.4. Mechanism. GCMC results discussed above provide generic information of gas impurities uptake in ZIF-68. In the following discussion, specific information of the interaction mechanisms obtained from DFT calculations is presented and discussed. Two different fragments were constructed to present the IM linker and the nIM linker, as illustrated in the Supporting Information. It should be noted that using simplified fragments may not accurately describe the electrostatic environment inside the pores of porous material but can give specific information when discussing the variety of interaction mechanisms between the organic linkers composing the pores and various gas molecules.¹⁷ Several studies used a similar termination method to give a qualitative discussion of the gas interaction mechanism in MOFs. 41,42 Besides, the DFT method used here is within acceptable errors for obtaining binding energies compared to the MP2 method and provides a good balance between accuracy and computational cost. Torrisi et al.⁴¹ reported that the absolute values of the BEs, which are calculated by the DFT-PW91 functional and a double numerical plus (DNP) polarization basis set, are in good agreement with the BEs calculated by the MP2 method when using a triple ζ , Pople basis set plus diffuse function. They also compared the BEs and geometries of the benzene/CO₂ molecular complex calculated by DFT and MP2 methods and found that the closest BE and the closest C(CO₂)-CM (center of mass) distance can be given by the PW91/DNP method of DFT to the MP2/6-311+G(2d,2p) values.⁴⁴ The DFT method has been extensively used to investigate the CO₂⁴¹⁻⁴³ and H_2^{44-47} adsorption in MOFs, where the dominant force is van der Waals forces.

Several stable configurations of CO_2 , SO_2 , and H_2O on the fragments of ZIF-68 are shown in the Supporting Information. The highest BEs for each site are selected and illustrated in Table 2. Obviously, in the case of H_2O and CO_2 , the BEs follow

Table 2. Highest Binding Energy (kJ/mol) of CO₂, SO₂, or H₂O on Fragments of ZIF-68 Obtained from DFT Calculations

	CO_2	H_2O	SO ₂
fragment 1	-9.1	-17.7	-51.9
fragment 2	-13.1	-35.1	-18.7

the same trend for both fragments: $H_2O > CO_2$, and the BEs of fragment 2 are larger than those of fragment 1. This can be attributed to the fact that (1) H_2O is a polar molecule and thus has much stronger interactions with the adsorbent than CO_2 with quadrupolar moments and (2) the polar functional group $-NO_2$ can enhance the interactions between the adsorbent and

H₂O or CO₂. Meanwhile, considering that fragments 1 and 2 are the major components to construct the large pores and small pores, respectively, the small pores with much larger BEs for gas molecules are the preferential sorption sites for H₂O and CO₂, which is in good agreement with our GCMC results.

Unlikely H₂O and CO₂, BEs of SO₂ molecules on fragment 1 are much larger than those on fragment 2 (Table 2). The BE is -51.9 kJ/mol, which indicates a strong interaction between the SO₂ molecule and fragment 1. The Mulliken atomic charges of the stable configurations for SO₂ and fragments 1 and 2 were also calculated and shown in the Supporting Information. The results show that large charge transferring occurred between SO₂ molecules and fragment 1. Thus, according to DFT calculations, the big pores constructed by fragment 1 are considered as the preferential adsorption sites. The conclusion is conflicted with the GCMC results where the small pores composed by fragment 2 are shown as the primary sorption site for SO₂ (Figure 2C). The conflict between DFT and GCMC results can be attributed to the restriction of the GCMC method in underestimating the strong interactions using a generic classical force field. Here, it can be suggested that the actual uptake ability of SO₂ in ZIF-68 may be even higher than that predicted in this study.

Inducing specific functional groups into the pores of porous materials has been proved to be a useful way to improve the CO₂ adsorption ability. ^{17,36} In our previous study, the effects of functional groups on CO2 adsorption in ZIFs were studied in detail, and the BE of CO₂ was significantly enhanced due to the existence of a $-NO_2$ group. ¹⁷ Here, the higher BEs of CO_2 and H₂O on fragment 2 when comparing to fragment 1 can also be attributed to the enhanced polarized electron densities induced by the -NO₂ group. However, for the interaction between SO₂ and fragments 1 or 2, comparing to the high BE of SO₂ on fragment 1 with no functional group, a much lower BE was obtained on fragment 2 with the -NO₂ functional group. It means that the injection of a functional group may be a useful way to inhibit the uptake of SO₂ in porous materials. Meanwhile, it is supposed that a porous material with a specific functional group that can improve the CO₂ uptake ability and inhibit the uptake of SO₂ at the same time will be more applicable for a real postcombustion CO₂ capture system.

Additional DFT calculations were performed to investigate the effect of H_2O or SO_2 presence on CO_2 adsorption in ZIF-68. One SO_2 or H_2O molecule was preloaded on its most favorite position of fragments 1 or 2 and optimized, and then, several possible configurations of the CO_2 molecule interacting with the SO_2 or H_2O molecules on fragments were obtained and optimized, which is available in the Supporting Information

The brief results of the DFT calculations are illustrated in Figure 6. It is notable that the preloaded SO_2 or H_2O molecule does affect the CO_2 adsorption on the fragments. On fragment 1, the BE of the first adsorbed CO_2 molecule is -9.1 kJ/mol (Table 2), while the BE of the second adsorbed CO_2 molecule is -10.9 kJ/mol, as shown in Figure 6a. If the first adsorbed molecule is H_2O , the BE of the following adsorbed CO_2 molecule raises slightly to -12.2 kJ/mol. If the first adsorbed molecule is SO_2 , the BE of the following adsorbed CO_2 molecule decreases to -8.1 kJ/mol. That is to say, in the big pores constructed by fragment 1, the preloaded CO_2 and CO_2 molecules are helpful for the following adsorption of CO_2 but the preloaded CO_2 molecules have negative effects on CO_2 adsorption. On fragment 2, the preloaded CO_2 molecule also

Figure 6. BE of CO_2 on (a) fragment 1 and (b) fragment 2 with a preloaded gas molecule (SO_2 or H_2O). BE of CO_2 on fragments with preloaded CO_2 , BE of H_2O on fragments with preloaded H_2O , and BE of SO_2 on fragments with preloaded SO_2 are also presented for comparison. Red line represents the BE of CO_2 on bare fragments without any preloaded gas molecule.

significantly enhances the adsorption of CO_2 (Figure 6b). However, unlikely on fragment 1, the CO_2 adsorption is slightly enhanced by the preloaded SO_2 molecule on fragment 2. Despite the fact that the coadsorption of CO_2 and H_2O or SO_2 is not likely to happen in small pores constructed by fragment 2 due to the steric hindrance effect, it can still be concluded that the role of a polar functional group (such as the $-NO_2$ group in this work) cannot be neglected when evaluating the effects of SO_2 and H_2O existence on CO_2 adsorption in porous materials.

It is meaningful to give a comprehensive discussion about the effects of H₂O and SO₂ on CO₂ adsorption in ZIF-68. Here, our simulation results show that the presence of water vapor affects the adsorption of CO2 in MOFs by two opposite ways (positive and negative) in both types of pores, while the case of SO₂ is complicated. As shown in Figures 4 and 5b, the CO₂ adsorption amount is decreased due to the competitive adsorption with H2O in the binary and ternary mixtures as the pressure increases. The interaction strength of CO₂ in ZIF-68 is significantly weaker than that of H₂O (Tables 1 and 2), making them vulnerable during the competition. The positive effect of H₂O to CO₂ adsorption is easy to be observed from the cobinding of CO₂ and H₂O calculated using the DFT method (Figure 6): the preloaded H2O in ZIF-68 will provide additional adsorption sites for CO2. However, the positive effect will not be as significant as what we obtained from the DFT results, because there is another important concern that should not be neglected: the interactions between H2O and H₂O molecules. The BEs of H₂O on preloaded H₂O fragments are significantly higher than those of CO2 on these preloaded fragments, as shown in Figure 6. That is to say, although additional adsorption sites are provided, these sites may also prefer to be occupied by another H₂O molecule not by a CO₂ molecule. But, if the uptake amount of H₂O in ZIF-68 could be carefully controlled in a reasonable content, the CO₂/N₂ separation ability are expected to be improved (as observed in Figure 5a), which is very similar to the CO2 adsorption in HKUST-1 with preloaded water. 48 In the case of the effects of SO₂, it seems that the preloaded SO₂ has either negative (fragment 1) or positive (fragment 2) effects on CO₂

adsorption in ZIF-68 from the DFT results shown in Figure 6, which may depend on the functional group used. But overall, the positive effect can be neglected because of the strong interactions between SO_2 and the framework as well as among SO_2 molecules. Thus, the existence of SO_2 inhibits both the CO_2 adsorption and the CO_2/N_2 separation abilities, as shown in Figure 5.

4. CONCLUSIONS

The effects of the presence of water vapor and other gas impurities (such as SO₂ and O₂) in flue gas on the performance of CO₂ adsorption on ZIF-68 were systematically investigated. A hybrid method utilizing both GCMC and DFT calculations was used to give general information of these effects. The results show that the presence of O₂ has a negligible effect on CO₂ adsorption on ZIF-68. H₂O affects the CO₂ adsorption on ZIF-68 in two opposite ways: reduces the CO₂ adsorption ability due to the negative effect, but increases the CO₂/N₂ separation factor due to the positive effect. However, the presence of SO₂ inhibits both the CO₂ adsorption and the CO₂/N₂ separation abilities of ZIF-68. The results of the simulation will be compared with our experimental results in future work and provide insight into the applications of ZIF materials in realistic CO₂ capture systems. Meanwhile, it is also meaningful to investigate the role of different functional groups when evaluating the effects of H_2O and SO_2 presence on CO_2 adsorption in porous materials in future.

ASSOCIATED CONTENT

Supporting Information

Figures showing atomic partial charges of ZIF-68; comparison of simulated and experimental adsorption isotherms of CO₂, N_2 , and O_2 ; uptake amount and isosteric heat of CO_2 , N_2 , O_2 , and SO₂ in ZIF-68; uptake amount and isosteric heat of SO₂ in ZIF-68 with and without atom charges; selectivity of CO₂ from CO₂/O₂ mixture; selectivity of SO₂ from SO₂/CO₂ mixtures; selectivity for CO₂ from CO₂/N₂; fragments used in this work; possible configurations and binding energies of H₂O, CO₂, and SO₂ on fragment 1; and possible configurations and binding energies of H₂O, CO₂, and SO₂ on fragment 2; and tables showing values for LJ potential parameters; H₂O uptake amount in ZIF-68; H₂O uptake amount without framework charge; H₂O uptake amount without framework and H₂O charge; H₂O/CO₂ binary gas adsorption; atomic charge and molecular angle of CO2, SO2, and H2O before and after adsorbed on fragments 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +86 27 87545526; fax: +86 27 87545526; e-mail: liujing27@mail.hust.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (51376072, 51076055) and National Basic Research Program of China (2011CB707301).

REFERENCES

- (1) Figueroa, J. D.; Fout, T.; Plasynski, S.; McIvried, H.; Srivastava, R. D. Advances in CO₂ Capture Technology—The U.S. Department of Energy's Carbon Sequestration Program. *Int. J. Greenhouse Gas Control* **2008**, *2*, 9–20.
- (2) D'Alessandro, D. M.; Smit, B.; Long, J. R. Carbon Dioxide Capture: Prospects for New Materials. *Angew. Chem., Int. Ed.* **2010**, 49, 6058–6082.
- (3) Li, J. R; Sculley, J.; Zhou, H. C. Metal-Organic Frameworks for Separations. *Chem. Rev.* **2012**, *112*, 869–932.
- (4) Bhown, A. S.; Freeman, B. C. Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies. *Environ. Sci. Technol.* **2011**, *45*, 8624–8632.
- (5) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. Exceptional H₂ Saturation Uptake in Microporous Metal—Organic Frameworks. *J. Am. Chem. Soc.* **2006**, *128*, 3494—3495.
- (6) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO₂ Capture. *Science* **2008**, *319*, 939–943.
- (7) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. *Acc. Chem. Res.* **2010**, 43 (1), 58–67.
- (8) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *108*, 10186–10191.
- (9) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties. J. Am. Chem. Soc. 2009, 131, 3875–3877.
- (10) Wang, B.; Côte, A. P.; Furakawa, H.; O'Keeffe, M.; Yaghi, O. M. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs. *Nature* **2008**, *453*, 207–221.
- (11) Hayashi, H.; Côte, A. P.; Furakawa, H.; O'Keeffe, M.; Yaghi, O. M. Zeolite A Imidazolate Frameworks. *Nat. Mater.* **2007**, *6*, 501–506.
- (12) Liu, D.; Zheng, C.; Yang, Q.; Zhong, C. Understanding the Adsorption and Diffusion of Carbon Dioxide in Zeolitic Imidazolate Frameworks: A Molecular Simulation Study. *J. Phys. Chem. C* **2009**, *113*, 5004–5009.
- (13) Liu, B.; Smit, B. Molecular Simulation Studies of Separation of CO₂/N₂, CO₂/CH₄, and CH₄/N₂ by ZIFs. *J. Phys. Chem. C* **2010**, *114*, 8515–8522
- (14) Battisti, A.; Taioli, S.; Garberoglio, G. Zeolitic Imidazolate Frameworks for Separation of Binary Mixtures of CO₂, CH₄, N₂ and H₂: A Computer Simulation Investigation. *Microporous Mesoporous Mater.* **2011**, 143, 46–53.
- (15) Sirjoosingh, A.; Alavi, S.; Woo, T. K. Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials. *J. Phys. Chem. C* **2010**, *114*, 2171–2178.
- (16) Bankin, R. B.; Liu, J.; Kulkarni, A. D.; Johnson, J. K. Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study. *J. Phys. Chem. C* **2009**, *113*, 16906–16914.
- (17) Liu, Y.; Liu, J.; Chang, M.; Zheng, C. G. Effect of Functionalized Linker on CO₂ Binding in Zeolitic Imidazolate Frameworks: Density Functional Theory Study. *J. Phys. Chem. C* **2012**, *116*, 16985–16991.
- (18) Lee, K. B.; Sircar, S. Removal and Recovery of Compressed CO₂ from Flue Gas by a Novel Thermal Swing Chemisorption Process. *AIChE J.* **2008**, *54*, 2293–2302.
- (19) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. *Chem. Rev.* **2012**, *112*, 724–781.
- (20) Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; LeVan, M. D. CO₂/H₂O Adsorption Equilibrium and Rates on Metal—Organic Frameworks: HKUST-1 and Ni/DOBDC. *Langmuir* **2010**, *26* (17), 14301–14307.

- (21) Yu, J.; Balbuena, P. B. Water Effects on Postcombustion CO₂ Capture in Mg-MOF-74. *J. Phys. Chem. C* **2013**, *117*, 3383–3388.
- (22) Liu, J.; Benin, A. I.; Furtado, A. M. F.; Jakubczak, P.; Willis, R. R.; LeVan, M. D. Selective CO₂ Capture from Flue Gas Using Metal—Organic Frameworks——A Fixed Bed Study. *Langmuir* **2011**, 27, 11451–11456.
- (23) Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO₂ Capture. *Langmuir* **2011**, *27*, 6368–6373.
- (24) Yazaydin, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO₂ Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. *Chem. Mater.* **2009**, *21*, 1425–1430.
- (25) Huang, H.; Zhang, W.; Liu, D.; Zhong, C. Understanding the Effect of Trace Amount of Water on CO₂ Capture in Natural Gas Upgrading in Metal—Organic Frameworks: A Molecular Simulation Study. *Ind. Eng. Chem. Res.* **2012**, *51* (31), 10031–10038.
- (26) Ding, L.; Yazaydin, A. Ö. How Well Do Metal-Organic Frameworks Tolerate Flue Gas Impurities? *J. Phys. Chem. C* **2012**, *116* (43), 22987–22991.
- (27) Wang, W.; Peng, X.; Cao, D. Capture of Trace Sulfur Gases from Binary Mixtures by Single-Walled Carbon Nanotube Arrays: A Molecular Simulation Study. *Environ. Sci. Technol.* **2011**, *45*, 4832–4838
- (28) Thallapally, P. K.; Motkuri, R. K.; Fernandez, C. A.; McGrail, B. P.; Behrooz, G. S. Prussian Blue Analogues for CO₂ and SO₂ Capture and Separation Applications. *Inorg. Chem.* **2010**, *49*, 4909–4915.
- (29) Ding, L.; Yazaydin, A. Ö. The Effect of SO₂ on CO₂ Capture in Zeolitic Imidazolate Frameworks. *Phys. Chem. Chem. Phys.* **2013**, *15*, 11856–11861.
- (30) Casewit, C. J.; Colwell, K. S.; Rappe, A. K. Application of a Universal Force Field to Organic Molecules. *J. Am. Chem. Soc.* **1992**, *114*, 10035–10046.
- (31) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. *J. Am. Chem. Soc.* **1992**, *114*, 10024–10035.
- (32) Ohkubo, T.; Miyawaki, J.; Kaneko, K.; Ryoo, R.; Seaton, N. A. Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical Methane Experiment and GCMC Simulation. *J. Phys. Chem. B* **2002**, *106* (25), 6523–6528.
- (33) Hirotani, A.; Mizukami, K.; Miura, R.; Takaba, H.; Miya, T.; Fahmi, A.; Stirling, A.; Kubo, M.; Miyamoto, A. Grand Canonical Monte Carlo Simulation of the Adsorption of CO₂ on Silicalite and NaZSM-5. *Appl. Surf. Sci.* **1997**, *120*, 81–84.
- (34) Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, W. A. *Intermolecular Forces: Their Origin and Determination*; Clarendon Press: Oxford, U.K., 1981.
- (35) Accelrys Software Inc. *Materials Studio Release Notes*, Release 4.4; Accelrys Software Inc.: San Diego, CA, 2008.
- (36) Liu, Y.; Liu, J.; Chang, M.; Zheng, C. G. Theoretical Studies of CO₂ Adsorption Mechanism on Linkers of Metal-Organic Frameworks. *Fuel* **2012**, *95*, 521–527.
- (37) Delley, B. From Molecules to Solids with the DMol³ Approach. *J. Chem. Phys.* **2000**, *113*, 7756–7764.
- (38) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. *Phys. Rev. B* **1992**, *45*, 13244–13249.
- (39) Ramsahye, N. A.; Maurin, G.; Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Loiseau, T.; Devic, T.; Férey, G. Probing the Adsorption Sites for CO_2 in Metal Organic Frameworks Materials MIL-53 (Al, Cr) and MIL-47 (V) by Density Functional Theory. *J. Phys. Chem. C* **2008**, *112*, 514–520.
- (40) Delley, B. Hardness Conserving Semilocal Pseudopotentials. *Phys. Rev. B* **2002**, *66*, 155125–155134.
- (41) Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. Impact of Ligands on CO₂ Adsorption in Metal-Organic Frameworks: First Principles Study of the Interaction of CO₂ with Functionalized Benzenes.II.

Effect of Polar and Acidic Substituents. J. Chem. Phys. 2010, 132, 044705.

- (42) Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. Impact of Ligands on CO_2 Adsorption in Metal-Organic Frameworks: First Principles Study of the Interaction of CO_2 with Functionalized Benzenes.I. Inductive Effects on the Aromatic Ring. *J. Chem. Phys.* **2009**, *130*, 194703.
- (43) Torrisi, A.; Bell, R. G.; Mellot-Draznieks, C. Predicting the Impact of Functionalized Ligands on CO₂ Adsorption in MOFs: A Combined DFT and Grand Canonical Monte Carlo Study. *Microporous Mesoporous Mater.* **2013**, *168*, 225–238.
- (44) Vitillo, J. G.; Regli, L.; Chavan, S.; Ricchiardi, G.; Spoto, G.; Dietzel, P. D. C.; Bordiga, S.; Zecchina, A. Role of Exposed Metal Sites in Hydrogen Storage in MOFs. *J. Am. Chem. Soc.* **2008**, *130*, 8386–8396
- (45) Suri, M.; Dornfeld, M.; Ganz, E. Calculation of Hydrogen Storage Capacity of Metal-Organic and Covalent-Organic Frameworks by Spillover. *J. Chem. Phys.* **2009**, *131*, 174703.
- (46) Srepusharawoot, P.; Araújo, C. M.; Blomqvist, A.; Scheicher, R. H.; Ahuja, R. A Comparative Investigation of H₂ Adsorption Strength in Cd- and Zn-Based Metal Organic Framework-5. *J. Chem. Phys.* **2008**, *129*, 164104.
- (47) Lee, T. B.; Kim, D.; Jung, D. H.; Choi, S. B.; Yoon, J. H.; Kim, J.; Choi, K.; Choi, S. H. Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks. *Catal. Today* **2007**, *120*, 330–335
- (48) Yazaydin, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. L.; Willis, R. R.; Snurr, R. Q. Enhanced CO₂ Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. *Chem. Mater.* **2009**, *21*, 1425–1430.