Concepts Informatiques

2018-2019

Matthieu Picantin

Tests et examens

- CC : résultat des 3 tests (ou plus) effectués en TD
- E0 : partiel (résultats et copies corrigées sur moodle)
- E1: examen le 18 avril à 12h00
- E2 : examen mi-juin

Notes finales

- Note session 1: 20% CC + 20% E0 + 60% E1
- Note session 2 : max(E2, 20% CC + 80% E2)

Rappel

pas de note ⇒ pas de moyenne ⇒ pas de semestre

moodlesupd.script.univ-paris-diderot.fr

int res=1,cpt=2,arg=7; while(cpt<=arg) res*=cpt++; return res;

pensée

calcul récursion fonction objet

machine

circuit pile registre mémoire

Traduire tout programme dans une forme très proche de celle acceptée par les machines

```
class Recursion{
    static int u(int m, int n) {
        if (m==0 || n==0) return 1;
        return 2 * u(m-1, n+1);
    }
    public static void main(String[] a) {
        System.out.println(u(3,7));
    }
}
```



```
if(!( ((Bloc2)(p.peek())).argl==0
         ((Block)(p.peek())).val=1; break;
         ic=((Block)(p.peek())).adr; break;
ase 103: p.push(new Bloc2(ic,
         b=p.pop(); ((BlocR)(p.peek())).val=2 * ((BlocR)b).val; break;
ase 105: ic=((Block)(p.peek())).adr: break:
         if(!( ((Bloc1)(p.peek())).arq1==0)) ic+=2; break;
         if(!( ((Bloc1)(p.peek())).arq1%2==0 )) ic+=3; break;
         p.push(new Blocl(ic,((Blocl)(p.peek())).arg1/2)); ic=200; break;
         b=p.pop(); ((BlocR)(p.peek())).val
case 207: p.push(new Blocl(ic,((Blocl)(p.peek())).arg1/2)); ic=200; break;
         b=p.pop(); ((BlocR)(p.peek())).val=((BlocR)b).val; break;
         ic=((BlocR)(p.peek())).adr; break;
         if(!( ((Bloc3)(p.peek())).argl==0
```


~ | L \ P T ~ L \ + 4 L

~ | L \ P T ~ L \ + 4 \

┰┃┖┧┍┰╙┖╚+┪┖

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	- 1

Algo X de Knuth (version matricielle

si la matrice est vide, renvoyer ∅

choisir une colonne c (ayant peu de 1)

choisir une ligne ℓ ayant un 1 dans c

et l'inclure dans la solution partielle

| supprimer les colonnes ayant un 1 dans ℓ

| et les lignes ayant un 1 dans ces colonnes

I lancer la récursion sur la matrice réduite

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes

| | lancer la récursion sur la matrice réduite

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle

si la matrice est vide, renvoyer Ø
choisir une colonne c (ayant peu de 1)
| choisir une ligne ℓ ayant un 1 dans c
| et l'inclure dans la solution partielle
| | supprimer les colonnes ayant un 1 dans ℓ
| et les lignes ayant un 1 dans ces colonnes

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer ∅ choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer Ø
choisir une colonne c (ayant peu de 1)
choisir une ligne ℓ ayant un 1 dans c
et l'inclure dans la solution partielle
| supprimer les colonnes ayant un 1 dans ℓ
| et les lignes ayant un 1 dans ces colonnes
| lancer la récursion sur la matrice réduite

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer \varnothing choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle

- | supprimer les points couverts par ℓ | et les couvertures couvrant ces points
- | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Е	F	G
0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	- 1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer Ø choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | | supprimer les points couverts par ℓ | | et les couvertures couvrant ces points | | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
0	0	1	0	1	1	0
1	0	0	1	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	- 1	- 1	0	- 1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer ∅ choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
0	0	1	0	1	1	0
1	0	0	1	0		1
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer ∅ choisir un point ¢ (peu couvert) | choisir une couverture ℓ couvrant ¢ | et l'inclure dans la solution partielle | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
0	0	1	0		1	()
	0	0		0	0	
0	1	1	0	0	1	0
1	0	0	1	0	0	0
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer Ø choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
()	0	1	0	1	1	()
1	0	0		0	0	
()	1	1	0	0	1	()
	0	0		0	0	
0	1	0	0	0	0	1
0	0	0	1	1	0	1

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer Ø choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
0	0	1	0	1	1	0
	0	0		0	0	1
0	1	1	0	0	1	0
	0	0		0	0	
0	1	0	0	0	0	1
	0	0		1	0	

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer Ø choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

Trouver une sélection de lignes dont la somme est une ligne remplie de 1

Α	В	С	D	Ε	F	G
0	0	1	0	1	1	0
	0	0		0	0	
0	1	1	0	0	1	0
	0	0		0	0	
	1	0		0	0	
	0	0		1	0	

Couverture exacte (version graphique)

Trouver une sélection de couvertures couvrants exactement chacun des points

Algo X de Knuth (version matricielle)

si la matrice est vide, renvoyer \varnothing choisir une colonne c (ayant peu de 1) | choisir une ligne ℓ ayant un 1 dans c | et l'inclure dans la solution partielle | | supprimer les colonnes ayant un 1 dans ℓ | et les lignes ayant un 1 dans ces colonnes | lancer la récursion sur la matrice réduite

Algo X de Knuth (version graphique)

s'il n'y aucun point, renvoyer ∅ choisir un point c (peu couvert) | choisir une couverture ℓ couvrant c | et l'inclure dans la solution partielle | supprimer les points couverts par ℓ | et les couvertures couvrant ces points | lancer la récursion sur le graphe réduit

source: Donald E. Knuth https://arxiv.org/abs/cs/0011047

source: Donald E. Knuth https://arxiv.org/abs/cs/0011047

source: Donald E. Knuth https://arxiv.org/abs/cs/0011047