Lecture 11 EN. 553. 744

Prof. Luana Ruiz

► Graph isomorphism network

A GIN layer is defined as

 $[x_{\ell}]_{v} = 3 \left(W_{\ell} \left((1 + \mathcal{E}_{\ell}) [x_{\ell-1}]_{v} + \sum_{u \in \mathcal{N}(v)} [x_{\ell-1}]_{u} \right) \right)$

perseption or MLP over the neighbor hood multiset

(Hornik 1989) on MLP can model any injective function due to the universal approx. theorem & injective pe o 5 pe, exist for multiset X;

-D Can GIN tell them apart? (assume W=1, E=0)

Graph level readout of GIN

> not neveral jour authors clavin better generalization

with 5 as readout, GIN generalizes the WC test

(for anonymous inputs
$$x^2 = 1$$
)?

Is being as powerful as WL enough?

E.g.: Can WL distinguish between the two graphs below?

No! The computational graphs are the same (check)

One easy way to discriminate these graphs would be to count cycles:

2 & 3

But since GNNs can't discriminate them, they can't

count cycles

Why do we conve?

Many brological compounds have cycles in their network representations.

But there is another way to count cycles: densities of cycle homomorphisms

(DEF) Graph homomorphisms: Let G = (V, E) & F = (V', E'). A homomorphism From F to G is a map $Y : V' \rightarrow V$:

 $(i,j) \in E' \Rightarrow (\gamma(i), \gamma(j)) \in E'$

I.e., homomorphisms are adjacency preserving maps

Ex. how is a homomorphism & than an isomorphism? We will denote the total number of homomorphisms from F to G hom (F,G)

(DEF) Homomorphism density: the hom. density from F to G, denoted t(F,G):

$$t(F,G) = \underline{hom(F,G)}$$

$$|V|^{|V|}$$

(Claim) Let C_R is the R-cycle. Let G is a graph with adjacency eigenvalues $\lambda_1, \lambda_2, \ldots$ For $R \geqslant 2$: we have:

$$\pm(C_k,G)=(\sum_i \lambda_i^k)/n^k$$

Pf. hom (Ck, G) = 5 (Aij Ajr) Ake Aem ... Azi

5 (A^z) ik Ake Alm... Azi