28-th Canadian Mathematical Olympiad 1996

1. If α, β, γ are the roots of $x^3 - x - 1 = 0$, compute

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}.$$

2. Find all real solutions to the following system of equations:

$$\frac{4x^2}{1+4x^2} = y,$$
 $\frac{4y^2}{1+4y^2} = z,$ $\frac{4z^2}{1+4z^2} = x.$

- 3. Let f(n) denote the number of permutations a_1, a_2, \dots, a_n of $1, 2, \dots, n$ such that
 - (i) $a_1 = 1$;
 - (ii) $|a_i a_{i+1}| \le 2$ for i = 1, ..., n-1.

Determine whether f(1996) is divisible by 3.

- 4. Let ABC be an isosceles triangle with AB = AC, and let the bisector of $\angle B$ meet AC at D. Suppose that BC = BD + AD. Determine $\angle A$.
- 5. Let r_1, r_2, \ldots, r_m be positive rational numbers with the sum 1. Define the function f by $f(n) = n \sum_{k=1}^{m} [r_k n]$ for each $n \in \mathbb{N}$. Determine the minimum and maximum values of f(n).

