- **3.3.** (Sec. 3.2) Compute $\hat{\mu}$, $\hat{\Sigma}$, S, and $\hat{\rho}$ for the following pairs of observations: (34, 55), (12, 29), (33, 75), (44, 89), (89, 62), (59, 69), (50, 41), (88, 67). Plot the observations.
- **3.5.** (Sec. 3.2) Let x_1 be the body weight (in kilograms) of a cat and x_2 the heart weight (in grams). [Data from Fisher (1947b).]
 - (a) In a sample of 47 female cats the relevant data are

$$\Sigma x_{\alpha} = \begin{pmatrix} 110.9 \\ 432.5 \end{pmatrix}, \qquad \Sigma x_{\alpha} x_{\alpha}' = \begin{pmatrix} 265.13 & 1029.62 \\ 1029.62 & 4064.71 \end{pmatrix}.$$

Find $\hat{\mu}$, $\hat{\Sigma}$, S, and $\hat{\rho}$.

(b) In a sample of 97 male cats the relevant data are

$$\Sigma x_{\alpha} = \begin{pmatrix} 281.3 \\ 1098.3 \end{pmatrix}, \qquad \Sigma x_{\alpha} x_{\alpha}' = \begin{pmatrix} 836.75 & 3275.55 \\ 3275.55 & 13056.17 \end{pmatrix}.$$

Find $\hat{\mu}$, $\hat{\Sigma}$, S, and $\hat{\rho}$.

3.7. (Sec. 3.2) Invariance of the sample correlation coefficient. Prove that r_{12} is an invariant characteristic of the sufficient statistics \bar{x} and S of a bivariate sample under location and scale transformations $(x_{i\alpha}^* = b_i x_{i\alpha} + c_i, b_i > 0, i = 1, 2, \alpha = 1, ..., N)$ and that every function of \bar{x} and S that is invariant is a function of r_{12} . [Hint: See Theorem 2.3.2.]

Theorem 2.3.2. The correlation coefficient ρ of any bivariate distribution is invariant with respect to transformations $X_i^* = b_i X_i + c_i$, $b_i > 0$, i = 1, 2. Every function of the parameters of a bivariate normal distribution that is invariant with respect to such transformations is a function of ρ .

- 3.10. (Sec. 3.2) Estimation of Σ when μ is known. Show that if x_1, \ldots, x_N constitute a sample from $N(\mu, \Sigma)$ and μ is known, then $(1/N)\sum_{\alpha=1}^{N} (x_{\alpha} \mu)(x_{\alpha} \mu)'$ is the maximum likelihood estimator of Σ .
- **3.19.** (Sec. 3.4) Prove $(1/N)\sum_{\alpha=1}^{N}(x_{\alpha}-\mu)(x_{\alpha}-\mu)'$ is an unbiased estimator of Σ when μ is known.

CHAPTER 4

1 of 1 13/02/23, 19:23