Intermediate Evaluation LELEC2103

Bronchain Olivier Schellekens Vincent

Ecole Polytechnique de Louvain

November 12, 2015

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

recovery

Maximum energy

Direct maximizati

Earlygate

Results

Channel Stimation and

Outline

Symbol timing recovery

Maximum energy
Direct maximization
Earlygate

Results

Error static
Constellations

Channel Estimation and Equalization

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Maximum energoriect maximis Direct maximis Earlygate

Channel Estimation and

Received signal in discrete time after the matched filter is given by:

$$y[n] = \sqrt{E_x} \alpha e^{j\theta} \sum_m s[m] g((n-m)T - \tau_d) + v[n]$$
 (1)

$$y[n] = \sqrt{E_x} \alpha s[n] g(\tau_d)$$

$$+ \sqrt{E_x} \alpha e^{j\theta} \sum_{m \neq n} s[m] g((m-n)T - \tau_d)$$

$$+ v[n]$$
(2)

There is symbol interference due to τ_d .

Outline

Symbol timing recovery Maximum energy

Direct maximization Earlygate

Results

Error static

Constellations

Channel Estimation and Equalization

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

recovery

Maximum energy

Earlygate Results Error static

Channel
Estimation and

Constellations

Channel
Estimation and

We define energy as

$$J(\tau) = E|(y(nT+\tau))|^{2}$$

$$= \alpha^{2} E_{x} \sum_{m} |g(mT + \tau - \tau_{d})|^{2} + \sigma_{v}^{2}$$
 (3)

There is a maximum pour $\tau - \tau_d = 0$. We try to find $\hat{\tau}$ such that

$$\hat{\tau} = \operatorname{argmax}_{\tau} J(\tau) \tag{4}$$

Results Error static

Channel

hannel stimation and qualization

In pratice we are in discrete time so:

$$\hat{\tau} = \frac{kT}{M} \quad k \in [0..M - 1]$$

$$J[k] = E|r(nT + \frac{kT}{M})|^2$$
 (5)

We can find the energy over P symbols and get

$$J_{appox}[k] = \frac{1}{P} \sum_{p=0}^{P-1} |r(pT + \frac{kT}{M})|^2$$
 (6)

$$\hat{k} = \operatorname{argmax}_{k[0..M-1]} J_{\operatorname{approx}}[k] \tag{7}$$

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Direct maximization

Early gate

Now we will try to find the maximum by canceling the derivative.

$$egin{align} rac{d}{d au}J(au)&\simeq E(rac{d}{d au}|y(nT+ au)|^2)\ &\simeq rac{1}{P}\sum_{
ho=0}^{P-1}2 ext{Re}(y(
ho T+ au)(y^*(
ho T+ au+\delta)-y^*(
ho T+ au-\delta))) \end{aligned}$$

In discrete time we get

$$J_{\delta}[k] = \frac{1}{P} \sum_{p=0}^{P-1} 2Re(r[pM+k](r^*[pM+k+\delta] - r^*[pM+k-\delta]))$$
(9)

$$\hat{k} = argmin_{k \in [0..M-1]} J_{\delta}[k]$$

Outline

Symbol timing recovery

laximum energy Direct maximization Earlygate

Results

Error static
Constellations

Channel Estimation and Equalizatio

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

recovery
Maximum energy

Direct maximization Earlygate Results

Results

Error static Constellations

hannel stimation and qualization

We define the error static as:

$$\epsilon[M] = E(||\frac{\hat{\tau}(M) - \tau_d}{T_s}||^2)$$
 (10)

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Error static

Error static

The shape of error static for direct maximization is due to the delay and the oversampling factor.

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

recovery

Maximum energy

Direct maximization

Earlygate

Error static

Channel Estimation and Equalization

Constellations

Figure: Constellation for direct maximization

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

recovery

Maximum energy

Direct maximization

Earlygate

Results

Constellations

Lhannel Estimation and Equalization

Channel Estimation and

Channel distortion $(h(t) \neq \delta(t))$ so received signal suffers from ISI:

$$y[n] = h[0]s[n] + \sum_{m \neq n} s[m]h[n-m] + v[n]$$
 (11)

- Goal: reduce effect of channel (apply "inverse filter") = equalization.
- Equalization needs the channel response before = channel estimation.

Use a *training sequence* to estimate the channel. Both methods use a *least-squares approximation* method : expensive!

Direct method: apply channel estimation and equalization at once! Only 1 LLS.

$$\sum_{l=0}^{L_f} f[l]y[n+n_d-l] = t[n] , \quad n = 0...N_t$$
 (12)

Estimate filter parameters $f[0]...f[L_f]$ by creating a filter that matches training sequence t from the received signal y. Note :

- $ightharpoonup n_d = \text{filter delay}$
- $ightharpoonup L_f = \text{filter length}$

Simulation: influence of channel length

Increasing L_f from 1 to 6 (better estimations)

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Symbol timing recovery

Direct maximiza Earlygate esults

Constellations

Channel Estimation and Equalization

Simulation: influence of noise

Noise on the training sequence corrupts the equalizer and propagates to all symbols!

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Symbol timing recovery

Direct maximiza Earlygate Results Error static

Channel Estimation and Equalization

Experiment: effect of channel

No equalization! Constellation shifted + scaled.

Figure: Received constellation without equalizer.

Intermediate Evaluation

Bronchain Olivier, Schellekens Vincent

Channel

Estimation and Equalization