CSE4/574: - Introduction to Machine Learning Programming Assignment 2

Handwritten Digits Classification

Project Report

Name of Students: -

∔ Apurva Chavan (50365703)

∔ Siddhi Thakur (50365530)

🖶 Mehvish Shamshad (50374333)

Introduction: -

- In this assignment, our task is to implement Perceptron Neural Network and evaluate its performance. As a part of it, we have tuned the hyperparameters, analysed the classification results and evaluated the results on two different data sets (MNIST and FACE ALL).
- ♣We have also implemented the Deep Neural Network on Face all dataset using the TensorFlow Library.

Data Pre-processing:

As a first step towards building our Neural Network, we are loading the MNIST dataset and pre-processing it.

This includes feature selection, splitting the data into train and validation test.

Feature Selection:

- There are certain features in the Data Set for which the values are equal or same for all data points. These features will not contribute more to the classification and will not help model.
- **♣**So, we are removing such features from our dataset.
- **★**Total Number of features Selected 717

```
12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 142,143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352,
353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406,
407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433,
434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460,
461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488,
489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515,
516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542,
543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,
571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624,
625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 651, 652, 653,
654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683,
684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713,
714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744,
745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777,
```

Training the Neural Network:

Feed Forward Pass:

In this step, with the help of input features and weights we are determining the class of a particular feature vector.

Backward Propagation:

- After the feed forward pass, we get the probabilities of features belonging to a particular digit.
- We classify it to the highest probable class.
- In the training process, we determine the error in classification of data and propagate that error backwards from output to input and update the weights.

Regularization:

- Regularization is an important step in model training in order to find the good balance without underfitting or overfitting the data.
- In order to do so, we vary the hyperparameters (lambda and hidden units). We select the optimal combination giving highest test accuracy.
- We need to select the hidden units and lambda, so that we get a generalized model. Say suppose if we have a single unit in the hidden layer, we could lose information and the model will be unable to predict accurately. On the other hand, if we have large number of hidden units, the model will learn accurately on the training data but its performance on validation and test data will be terrible.
- In order to get a better generalized model and improve the test accuracies we experiment and test on combinations of lambda and hidden units and get the optimal values respectively.

Selection of Hyper-parameters:

- Let's tune the hyper-parameter '\(\frac{\gamma}{\cup}'\) and the number of hidden units in the hidden units.
- We're varying 'λ' from 0 to 60 in increments of 10 (0, 10, 20....., 60) and the number of hidden units in the hidden layer are varied in increments of 4 (4, 8, 12, 16,).

Below are the hyper-parameter combinations : -

13 10.0 28.0 94.922 94.04 94.33 72.133948 18 20.0 20.0 94.374 93.40 94.14 56.767084 20 20.0 28.0 94.448 93.46 93.97 62.328781 31 50.0 24.0 94.234 93.19 93.85 64.738766 34 40.0 28.0 94.108 93.09 93.74 65.638478 34 40.0 28.0 94.108 93.09 93.73 58.719894 40 50.0 24.0 94.372 93.40 93.73 58.719894 39 20.0 24.0 94.128 93.19 93.73 58.719894 40.0 20.0 94.214 93.38 93.69 61.904392 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 <td< th=""><th></th><th>λ</th><th>hidden_units</th><th>Train_Accuracy</th><th>Validation_Accuracy</th><th>Test_Accuracy</th><th>Training_Time</th></td<>		λ	hidden_units	Train_Accuracy	Validation_Accuracy	Test_Accuracy	Training_Time
18 20.0 20.0 94.374 93.40 94.14 56.767084 20 20.0 28.0 94.448 93.46 93.97 62.328781 41 50.0 28.0 94.142 93.35 93.91 62.799378 5 0.0 24.0 94.234 93.19 93.85 64.738766 34 40.0 28.0 94.108 93.09 93.74 65.638479 40 50.0 24.0 94.372 93.40 93.73 58.719894 19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 28 30.0 24.0 93.896 92.80 93.20 55.379991 11 10.0 20.	6	0.0	28.0	94.944	93.73	94.56	73.352560
20 20.0 28.0 94.448 93.46 93.97 62.328781 41 50.0 28.0 94.142 93.35 93.91 62.799378 5 0.0 24.0 94.234 93.19 93.85 64.738766 34 40.0 28.0 94.108 93.09 93.74 65.638479 40 50.0 24.0 94.372 93.40 93.73 58.719894 19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 27 30.0 28.0 93.834 93.01 93.58 65.791053 28 40.0 20.0 93.690 92.83 93.43 57.621713 28 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.418 92.47 93.15 62.439204 25 30.0 20.	13	10.0	28.0	94.922	94.04	94.33	72.133948
41 50.0 28.0 94.142 93.35 93.91 62.799378 5 0.0 24.0 94.234 93.19 93.85 64.738766 34 40.0 28.0 94.108 93.09 93.74 65.638479 40 50.0 24.0 94.372 93.40 93.73 58.719894 41 20.0 24.0 94.128 93.19 93.73 54.843787 42 10.0 24.0 94.176 93.18 93.69 61.904392 43 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.35 60.868069 28 30.0 24.0 93.896 92.80 93.20 55.37991 31 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 30 10.0	18	20.0	20.0	94.374	93.40	94.14	56.767084
5 0.0 24.0 94.234 93.19 93.85 64.738766 34 40.0 28.0 94.108 93.09 93.74 65.638479 40 50.0 24.0 94.372 93.40 93.73 58.719894 19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 32 40.0 20.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 20.0 93.658 92.65 92.94 63.242834 34 40.0 24.0<	20	20.0	28.0	94.448	93.46	93.97	62.328781
34 40.0 28.0 94.108 93.09 93.74 65.638479 40 50.0 24.0 94.372 93.40 93.73 58.719894 19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.660 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 25 30.0 24.0 93.658 92.65 92.94 63.242834 3 40.0 24.0 93.658 92.65 92.94 63.242834 3 40.0	41	50.0	28.0	94.142	93.35	93.91	62.799378
40 50.0 24.0 94.372 93.40 93.73 58.719894 19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.37991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 3 40.0 16.0 93.524 92.24 92.76 52.240110 3 50.0 16.0 </td <th>5</th> <td>0.0</td> <td>24.0</td> <td>94.234</td> <td>93.19</td> <td>93.85</td> <td>64.738766</td>	5	0.0	24.0	94.234	93.19	93.85	64.738766
19 20.0 24.0 94.128 93.19 93.73 54.843787 12 10.0 24.0 94.176 93.18 93.69 61.904392 4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 25 30.0 24.0 93.658 92.65 92.94 63.242834 31 40.0 24.0 93.658 92.65 92.94 63.242834 32 40.0 24.0 93.658 92.65 92.94 63.242834 33 40.0 16.0 93.524 92.24 92.76 52.240110 30 10.0 <th>34</th> <td>40.0</td> <td>28.0</td> <td>94.108</td> <td>93.09</td> <td>93.74</td> <td>65.638479</td>	34	40.0	28.0	94.108	93.09	93.74	65.638479
12 10.0 24.0 94.176 93.18 93.69 61.904392 4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 34 40.0 24.0 93.658 92.65 92.94 63.242834 35 50.0 16.0 93.524 92.24 92.76 52.240110 36 50.0 16.0 93.524 92.24 92.76 52.240110 30 10.0 16.0 92.672 91.92 92.41 51.663628 31 30.0 <th>40</th> <td>50.0</td> <td>24.0</td> <td>94.372</td> <td>93.40</td> <td>93.73</td> <td>58.719894</td>	40	50.0	24.0	94.372	93.40	93.73	58.719894
4 0.0 20.0 94.214 93.38 93.69 58.961259 27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 34 40.0 24.0 93.658 92.65 92.94 63.242834 35 50.0 20.0 93.462 92.54 92.91 60.535415 36 50.0 16.0 93.524 92.24 92.76 52.240110 30 10.0 16.0 93.672 91.92 92.41 51.663628 4 30.0 16.0	19	20.0	24.0	94.128	93.19	93.73	54.843787
27 30.0 28.0 93.834 93.01 93.58 65.791053 32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 31 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 30 50.0 20.0 93.462 92.54 92.91 60.535415 31 50.0 16.0 93.524 92.24 92.76 52.240110 30 10.0 16.0 93.016 91.77 92.72 56.076441 31 30.0 16.0 92.672 91.92 92.41 51.663628 31 40.0 12.0 92.502 91.26 92.26 47.614496 31 40.0 16.0 92.408 91.18 92.04 53.943763 32 0.0 </td <th>12</th> <td>10.0</td> <td>24.0</td> <td>94.176</td> <td>93.18</td> <td>93.69</td> <td>61.904392</td>	12	10.0	24.0	94.176	93.18	93.69	61.904392
32 40.0 20.0 93.690 92.83 93.43 57.621713 26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 3 50.0 20.0 93.462 92.54 92.91 60.535415 3 50.0 16.0 93.524 92.24 92.76 52.240110 3 10.0 16.0 93.016 91.77 92.72 56.076441 4 7 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 3 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0	4	0.0	20.0	94.214	93.38	93.69	58.961259
26 30.0 24.0 93.860 92.88 93.35 60.868069 25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 3 50.0 20.0 93.462 92.54 92.91 60.535415 3 50.0 16.0 93.524 92.24 92.76 52.240110 3 10.0 16.0 93.016 91.77 92.72 56.076441 4 30.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 3 40.0 16.0 92.408 91.18 92.04 53.943763 4 40.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 53.77883 3 30.0 12.0	27	30.0	28.0	93.834	93.01	93.58	65.791053
25 30.0 20.0 93.896 92.80 93.20 55.379991 11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 3 40.0 24.0 93.658 92.65 92.94 63.242834 3 50.0 20.0 93.462 92.54 92.91 60.535415 3 50.0 16.0 93.524 92.24 92.76 52.240110 3 10.0 16.0 93.016 91.77 92.72 56.076441 4 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 4 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 <th>32</th> <td>40.0</td> <td>20.0</td> <td>93.690</td> <td>92.83</td> <td>93.43</td> <td>57.621713</td>	32	40.0	20.0	93.690	92.83	93.43	57.621713
11 10.0 20.0 93.418 92.47 93.15 62.439204 33 40.0 24.0 93.658 92.65 92.94 63.242834 3 40.0 24.0 93.658 92.65 92.94 63.242834 9 50.0 20.0 93.462 92.54 92.91 60.535415 3 50.0 16.0 93.524 92.24 92.76 52.240110 9 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 9 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0	26	30.0	24.0	93.860	92.88	93.35	60.868069
33 40.0 24.0 93.658 92.65 92.94 63.242834 3 40.0 24.0 93.658 92.65 92.94 63.242834 3 50.0 20.0 93.462 92.54 92.91 60.535415 3 50.0 16.0 93.524 92.24 92.76 52.240110 4 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 3 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 3 30.0 12.0	25	30.0	20.0	93.896	92.80	93.20	55.379991
3 40.0 24.0 93.658 92.65 92.94 63.242834 9 50.0 20.0 93.462 92.54 92.91 60.535415 8 50.0 16.0 93.524 92.24 92.76 52.240110 9 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 9 30.0 16.0 92.758 91.71 92.34 55.199131 9 40.0 12.0 92.502 91.26 92.26 47.614496 1 40.0 16.0 92.430 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883	11	10.0	20.0	93.418	92.47	93.15	62.439204
9 50.0 20.0 93.462 92.54 92.91 60.535415 8 50.0 16.0 93.524 92.24 92.76 52.240110 0 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 3 30.0 16.0 92.758 91.71 92.34 55.199131 0 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	33	40.0	24.0	93.658	92.65	92.94	63.242834
9 50.0 20.0 93.462 92.54 92.91 60.535415 8 50.0 16.0 93.524 92.24 92.76 52.240110 0 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 3 30.0 16.0 92.758 91.71 92.34 55.199131 0 40.0 12.0 92.502 91.26 92.26 47.614496 4 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463							
3 50.0 16.0 93.524 92.24 92.76 52.240110 0 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 0 40.0 12.0 92.502 91.26 92.26 47.614496 1 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 3 20.0 12.0 91.108 90.28 90.81 50.481463	33	40.0	24.0	93.658	92.65	92.94	63.242834
0 10.0 16.0 93.016 91.77 92.72 56.076441 7 20.0 16.0 92.672 91.92 92.41 51.663628 8 30.0 16.0 92.758 91.71 92.34 55.199131 9 40.0 12.0 92.502 91.26 92.26 47.614496 1 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	9	50.0	20.0	93.462	92.54	92.91	60.535415
7 20.0 16.0 92.672 91.92 92.41 51.663628 4 30.0 16.0 92.758 91.71 92.34 55.199131 0 40.0 12.0 92.502 91.26 92.26 47.614496 1 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 3 20.0 12.0 91.108 90.28 90.81 50.481463	88	50.0	16.0	93.524	92.24	92.76	52.240110
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	0	10.0	16.0	93.016	91.77	92.72	56.076441
0 40.0 12.0 92.502 91.26 92.26 47.614496 1 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	7	20.0	16.0	92.672	91.92	92.41	51.663628
1 40.0 16.0 92.408 91.18 92.04 53.943763 0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 3 20.0 12.0 91.108 90.28 90.81 50.481463	24	30.0	16.0	92.758	91.71	92.34	55.199131
0.0 16.0 92.430 91.52 91.94 53.665437 10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	80	40.0	12.0	92.502	91.26	92.26	47.614496
10.0 12.0 92.108 90.73 91.90 55.789387 3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	31	40.0	16.0	92.408	91.18	92.04	53.943763
3 30.0 12.0 91.554 90.23 90.90 53.077883 5 20.0 12.0 91.108 90.28 90.81 50.481463	3	0.0	16.0	92.430	91.52	91.94	53.665437
5 20.0 12.0 91.108 90.28 90.81 50.481463	9	10.0	12.0	92.108	90.73	91.90	55.789387
	23	30.0	12.0	91.554	90.23	90.90	53.077883
0.0 12.0 91.096 89.86 90.65 54.170208	6	20.0	12.0	91.108	90.28	90.81	50.481463
	2	0.0	12.0	91.096	89.86	90.65	54.170208

So, from the above table we can see that the best possible hyper parameter combination is $\frac{2}{3} = 0$ and the number of hidden units = 28, as we get the highest test accuracy from this combination (94.56%).

Graphical Representations: -

Let's plot the 'Training Time vs Hidden Units' graph.

Let's plot the <u>'Accuracy vs Lambda for Optimal hidden</u> <u>units: 28'</u> graph.

Now, Let's plot the <u>'Accuracy vs Hidden Units for Optimal Lambda: 0'</u> graph.

Finally let's plot the <u>'lambda vs hidden units vs Accuracy'</u> graph.

<u>Increasing the maximum number of iterations: -</u>

We changed the value of 'maxiter': 50 to 'maxiter': 100 for the best hyper-parameter combination ($\frac{1}{1}$ = 0 and the number of hidden units = 28) and got the following result: -

```
Training set Accuracy:96.614%

Validation set Accuracy:95.53%

Test set Accuracy:95.81%
```

Again, we changed the value of 'maxiter': 100 to 'maxiter': 200 for the same hyper-parameter combination. The result is shown below: -

```
--- 244.06259942054749 seconds ---
Training set Accuracy:98.644%

Validation set Accuracy:95.75%

Test set Accuracy:95.59%
```

From the above two operations, we can observe that as we increase the maximum number of iterations, the Training accuracy increases ('maxiter': 100 = 96.614% to 'maxiter': 200 = 98.644%) but the Test accuracy decreases ('maxiter': 100 = 95.81% to 'maxiter': 200 = 95.59%) which means that overfitting is increasing as we increase the maximum number of iterations.

Implementing our perceptron Neural Network on the 'FACE_ALL' Data Set: -

Now Let's implement our perceptron neural network on the 'FACE_ALL' Data Set and observe the results.

For 'FACE_ALL' Data Set: -

```
Training set Accuracy:84.62085308056872%

Validation set Accuracy:83.30206378986867%

Test set Accuracy:84.33005299015896%

Time taken = 67.86341118812561
```

<u>Deep Neural Network Performance on</u> <u>'FACE_ALL'</u> Data Set

First, we implemented using the TensorFlow library on the 'FACE_ALL' Data Set with '1 Hidden Layer' and 28 units in the hidden layer.

```
Time take = 35.81646013259888

Optimization Finished!

Accuracy: 0.8304315
```

♣Next, we implemented using the TensorFlow library on the 'FACE_ALL' Data Set with '2 Hidden Layers'.

```
Time take = 108.86995649337769
Optimization Finished!
Accuracy: 0.78955334
```

Next, we added one more hidden layer making it a total of '3 Hidden Layers'.

```
Time take = 113.58905839920044
Optimization Finished!
Accuracy: 0.78046936
```

♣ Now we implemented using the TensorFlow library on the 'FACE_ALL' Data Set with '5 Hidden Layers'.

```
Time take = 121.17231130599976

Optimization Finished!

Accuracy: 0.75397426
```

Finally, we used '7 hidden layers' on the 'FACE_ALL' Data Set.

```
Time take = 139.78609442710876
Optimization Finished!
Accuracy: 0.7573808
```

♣We observe that the accuracy of Perceptron Neural Network is 84.33% and 83% using Tensor-flow. Though there is not much difference in the accuracy, but we see difference in the time taken.

- As we add more hidden layers and increase the hidden units to 256, the training time increases as the predictive model becomes more complex. Also, we also notice that the accuracy of the model decreases as the number of hidden layers increases.
- Again, this happens because of the overfitting of the model. The model fits the parameters as per the training data that it no longer generalizes to the data outside training data.
- We changed the value of number of features in each hidden layer to 500 for a 2-layer Deep Neural Network Model (n_hidden_1 = 500 and n_hidden_2 = 500) and observed the following: -

Time take = 158.09308409690857
Optimization Finished!
Accuracy: 0.8080999

Results from the 'Convolutional Neural Network' in terms of Accuracy and Training Time and the Confusion Matrix.

Accuracy on Test-Set: 98.7% (9870 / 10000)									
Confusion Matrix:									
[[972 0 1 0 0 1 1 1 4	0]								
[0 1121 4 0 1 0 1 1 5	0]								
	0]								
	0]								
	. 1]								
	0]								
[7 3 0 0 5 7 934 0 2	0]								
[1 1 3 3 0 0 0 1017 3	. 2]								
[3 0 2 3 2 1 0 2 95	4]								
[0 2 0 2 6 2 1 5 3	. 990]]								

