PH-211 Electronics Lab. Experiment 7: Multivibratory.

Name - Rohit Ramabhadran
Roll no. 220121072
Experiment Name: Multivibrators
Experiment No.: 7
Date = 25/09/2023

Experiment - 07: Multivibrators Ain: To construct a (a) a stable and a (b) monostable multivibrator using I6555. (5) Digital (RO (6) Pulse generator for monostable Apparative: 1) IC555 2) Bread board (7) Multipower supply. 3) Resistory & Capacitory 4) Connecting Wives Astable: (9) Resistor (1KIZ, 3.3KIZ, 10KIZ, 18KIZ) (b) Capacitions (0.001 MF, 0.01 MF, 0.1 MF) Monetable: (a) Resistory (900 K-D) (b) Capacitors (0.01 MF, IMF) they be marrey smil (=1 Formulae's beed time in astable stab 1) Astable Multivibrator lors time in stable alote Thigh = 0.693 (R1+R2) (where, R1, R2 = Resistance C = Capacitance =) Thous = 0.693 R2C trigh = Changing phase of Capaciton / Cogic high phase trow = Discharging phase of Capacition / legic low phase. Trotal = trigh + tlow = 0.693(R+R2)(+0.693R2(= 0.693(R+2R2)) forc = 1.44

Frotal = 1.44

R+PR (R,+2R2)(J= prequency of oxillator

Duty Cycline 9 = thigh x100 = R, +R= x100

$$-V_{C}(t) = V_{F} + (V_{I} - V_{F})e^{-V_{A}}$$

$$V_{I} = \frac{V_{CC}}{3}$$

$$V_{I} = \frac{2V_{CC}}{3}$$
 (initial voltage)
 $V_{F} = 0$ (final voltage)
 $V_{c}'(t) = 0$ (Discharging voltage)

Pulse width, W=1.1RC

· Equivalent Circuits a) Astable Multiviluator

RA = 1 K D RB = 3.3 K D 10 K D 18 K D C= 1 MF 0.1 MF b) Monostable Multivibrator

· Expected Haweform as a function of input.
a) Astable Multivibrator (b) Monostable Multivibrator

Observation

(a)	Astable Mu	Muibrata	lg .	100	山北北	LAGINAVO	in the pu	
Sr	Re (ka)	C (UF)	Tuigh (MS)	Tww (ms)	Ftot (ms,	for (exp)	fore (thea)	
QUE	3.3	1	2.87	2.24 (5.11	195.69HE	189.47Hz	
2	3.3	0-1	287.45	224 45	511113	1.95 KMz	1.89KHz	/
3	3.3	0.01	28.5 MS	22.7 MS	51.2 W	19.57KY2	18.95K42	
4	10	1	9.05	2.21	11-26		68.57Hz	/
5	10	0.1	897 113	218 MJ	1115 115	0 1.11	685.742	
0	10	0.01	88.2 M	21.9 US	110.10		6.85 KHZ 38-9HZ	
7	18	1	14.6 概		16.8	606 Hz	389. Hz	
8	18	0.1	1.44ms	219 US	1.65	6.09 KH2	3891 Hz	
9	18	0.01	14245	22 115	16445	0.0.		

(b) Monostable

For R= 1ke

Nuty cycle was at 75.8%

thigh = 1.5ms

t law = 1004)

for R=560-52

Duty cycle = 59.17%

thigh = 593 us

tlow = 409.5 W

For K= 560_2

T= tright tow-5893 444095 = 1002.945.

1.1 KC= 1.1x560x 14f

Theoritical = 616 MS.

Puty cycle = thigh = 1593.4 us

= 59.17%

Duty cycle (obs) = 59.170/0

Regult (1) As you increase the biant-Calculation (9) Astable Multivibrator. Duty cycle e/o = RA+BB X100°/0
(RA+2RB) (a) For R=3.3 KD Duty aprile => 1+3.3 ×100=56.570/s (b) For RB=10KIL Puty Cycta = (1+10) ×100 -52.30 0/0 (C) For RB = 18K-2 Duty april = 1+18 ×100 = 51.35% (b) Monostable multivibration: () they will you T=trigh + trow = 593.4 + 409.5 = 1002.9 MS. W=1.1RC =1.1X5 60xLUF Tokes = 6-16 Us. 593.4MS

Duty cycle = trigh = 5=93 1002.9 MS = 59.170/0 Daty gile (observed)= 59.27%

200 h = 200-

Result The Trigh ~ Trow for the output signal is a stable multivibrate when RB >7 For Astable Multivibrator · The Duty cycle & seen for Monartable Multivibrator is 59.270/0 Discussion and precaution and Result (a) Astable mullivibrations marked as experted. (c) To the pregners increases & pulses width decreases (C) Thigh & Two for output signed in artable multivibrator

(d) Operate using a Vac that gives you output prequency as dose to theoritical value.

(e) Connections must be tight.

(1) Don't paus high avoients

(9) Make sure the circuit is not shortled -

(h) 75% Duty Cycle was observed for R= (KS2 and 59.17% for 560-2 in monstable circuit.

(i) With decreasing capacitains, tright & tow increased.

() 1 Doily Puty cycle for artable circuit for RB = 3-3k Duras
found as 56:57°Co.