Mécanique des Milieux Continus

Équations fondamentales

Adnane BOUKAMEL

adnane.boukamel@centrale-casablanca.ma

Plan du cours

- Calcul tensoriel
- Cinématique des milieux continus
 - Généralités
 - Description de Lagrange
 - Description d'Euler
- Efforts dans les milieux continus
 - Représentations des efforts extérieurs
 - Représentations des efforts intérieurs
- Lois de conservations Equations fondamentales

Modélisation des efforts dans un milieu continu

- Représentation des efforts extérieurs
- Représentation des efforts intérieurs
 - Forces de cohésions ; vecteur contrainte
 - Tenseur des contraintes
 - Interprétation physique des contraintes
 - Étude locale des contraintes

Représentation des efforts extérieurs

Les efforts extérieurs résument les effets mécaniques, autres que cinématiques, exercés sur le milieu considéré.

- $\blacksquare \emptyset = \partial \omega_F \cap \partial \omega_U$

forces volumiques :

$$\vec{f}(N/m^3)$$

forces surfaciques :

$$\vec{F}(N/m^2 = Pa)$$

Forces de cohésion

On partitionne le domaine ω en:

 ω_1 et ω_2 via S

Les efforts extérieurs appliqués à ω_1 sont:

- les efforts extérieurs agissant sur la partie ω_1 ;
- \blacksquare les actions de ω_2 sur ω_1

Les efforts exercés par ω_2 sur ω_1 sont les **efforts de cohésion interne**; leur densité surfacique est notée \vec{T} .

Hypothèse:

Soit \vec{n} la normale unitaire à un élément dS de S.

La densité surfacique \vec{T} ne dépend que du point M et de la direction \vec{n} :

$$\vec{T} = \vec{T}(M, \vec{n})$$

Vecteur contraintes

Le vecteur $\vec{T}(M, \vec{n})$ est appelé vecteur contraintes en M pour la direction \vec{n}

Principe d'action-réaction:

La densité d'efforts de cohésion exercés par ω_1 sur ω_2 en M à travers dS est égale à l'opposé de la densité d'efforts exercés par ω_2 sur ω_1 en M à travers dS:

$$\vec{T}(M, \vec{n}) = -\vec{T}(M, -\vec{n})$$

Tenseur des contraintes

Problème:

Afin de connaître l'état du milieu continu, il nous faut connaître \vec{T} :

- \blacksquare en tout point M de ω
- \blacksquare et dans toutes les directions \vec{n} pour tous ces points !!!!!

Théorème de Cauchy:

En tout point M et à chaque instant t, la dépendance de \vec{T} par rapport à \vec{n} est linéaire.

Il existe donc un tenseur d'ordre 2, $\bar{\sigma}$ tel que, pour tout M et pour tout t, on ait :

$$\boxed{\vec{T}(M, \vec{n}) = \bar{\bar{\sigma}}(M) \cdot \vec{n}}$$

 $\bar{\sigma}$ est le **tenseur des contraintes de Cauchy**, ce tenseur est symétrique.

Interprétation physique des contraintes

Si on représente $\bar{\sigma}$ et \vec{n} dans la base orthonormée

$$\vec{T} = \sigma_{ij} n_j \vec{e_i}$$

La composante σ_{ij} représente la composante, selon la direction \vec{e}_i du vecteur contrainte sur la facette de normale \vec{e}_j .

 σ_{ij} est homogène à une pression (Unité: $N/m^2 = Pa$)

Etude locale des contraintes

Autour d'un particule M, considérons une facette de normale \vec{n} . On peut décomposer le vecteur contrainte $\vec{T}(M, \vec{n})$ sur cette facette, comme suit:

$$\vec{T}(M, \vec{n}) = T_n \vec{n} + \vec{T}_t$$

avec

$$T_n = \vec{n} \cdot \vec{T} = \vec{n} \cdot \bar{\bar{\sigma}} \cdot \vec{n}, \qquad \vec{T}_t = \vec{T} - T_n \vec{n}$$

- T_n (souvent noté σ) est la contrainte normale sur la facette (Si $\sigma \geq 0$ elle est de Traction, si $\sigma \leq 0$ elle est de Compression)
- La norme du vecteur tangent à la facette \vec{T}_t répresente la contrainte tangentielle (noté parfois τ) sur cette facette:

$$|\tau| = ||\vec{T}_t|| = (||\vec{T}||^2 - T_n^2)^{1/2}$$

Etude locale des contraintes

Le tenseur des contraintes $\bar{\sigma}$ est symétrique,il admet donc trois valeurs propres et trois vecteurs propres associés.

Ces trois directions sont appelées directions principales de contraintes. Les valeurs propres, notées σ_i , sont appelées contraintes principales. Elles sont solutions de:

$$P(\lambda) = \det\left(\bar{\bar{\sigma}} - \lambda\bar{\bar{I}}\right) = J_3 - \lambda J_2 + \lambda^2 J_1 - \lambda^3 = 0$$

On définit ainsi les invariants de contraintes:

$$\begin{cases} J_3(\bar{\bar{\sigma}}) = det\bar{\bar{\sigma}} \\ J_2(\bar{\bar{\sigma}}) = \frac{1}{2} \left[(trace\bar{\bar{\sigma}})^2 - trace\bar{\bar{\sigma}}^2 \right] \\ J_1(\bar{\bar{\sigma}}) = trace\bar{\bar{\sigma}} \end{cases}$$

Etude locale des contraintes

On décompose le tenseur des contraintes $\bar{\sigma}$

$$\bar{\bar{\sigma}} = \bar{\bar{\sigma}}^S + \bar{\bar{\sigma}}^D$$

avec

La contrainte sphérique:

$$\bar{\bar{\sigma}}^S = \frac{1}{3} trace \bar{\bar{\sigma}}\bar{\bar{1}}$$

La contrainte déviatorique:

$$\bar{\bar{\sigma}}^D = \bar{\bar{\sigma}} - \bar{\bar{\sigma}}^S$$

Lois de conservation Equations fondamentales

- Position du problème physique
- Conservation de la masse, Equation de continuité
- Equations fondamentales de la mécanique
 - Conservation de la quantité de mouvement
 - Equations d'équilibre local
- Conservation de l'énergie.

Position du problème physique

On considère un milieu continu occupant le domaine ω , de frontière $\partial \omega = \partial \omega_F \cup \partial \omega_U$ $(\partial \omega_F \cap \partial \omega_U = \emptyset)$.

Le système considéré est soumis:

- lacksquare un champ de vitesse imposé \vec{V} sur $\partial \omega_U$;
- \blacksquare des forces volumiques \vec{f} dans ω ;
- lacksquare des forces surfaciques $ec{F}$ sur $\partial \omega_F$

Problème:

Déterminer le champ de vitesses \vec{v} et le champ de contraintes $\bar{\sigma}$ en tout point de ω et à chaque instant t>0

Pour cela, on utilise deux types d'équations:

- les équations de conservation;
- les équations constitutives Milieux Continus-Équations fondamentales p. 13/20

Conservation de la masse:

Equation de continuité

Soient $\rho(\vec{x},t)$ la densité volumique de masse et $\vec{v}(\vec{x},t)$ la vitesse au point \vec{x} , à l'instant t.

La conservation de la masse pour tout sous-domaine $\mathcal{D} \subset \omega$, s'écrit en évaluant la dérivée particulaire:

$$\frac{D}{Dt} \iiint_{\mathcal{D}} \rho\left(\vec{x}, t\right) dv = \iiint_{\mathcal{D}} \left(\frac{D\rho}{Dt} + \rho div\vec{v}\right) dv = 0$$

De façon locale, on obtient l'équation de continuité du milieu continu:

$$\frac{D\rho}{Dt} + \rho div\vec{v} = \frac{\partial\rho}{\partial t} + div(\rho\vec{v}) = 0 \quad \forall t, \quad \forall \vec{x} \in \omega$$

Remarque:

Pour un milieu incompressible, l'équation de continuité s'écrit:

Equations fondamentales:

Conservation de la quantité de mouvement

La variation du torseur cinétique est, pour un domaine \mathcal{D} quelconque, égale à la somme des torseurs des efforts extérieurs exercés sur \mathcal{D} :

$$\forall \mathcal{D} \subset \omega \begin{cases} \frac{D}{Dt} \iiint_{\mathcal{D}} \rho \vec{v} dv = \iint_{\partial \mathcal{D}} \bar{\bar{\sigma}} \cdot \vec{n} ds + \iiint_{\mathcal{D}} \vec{f} dv \\ \frac{D}{Dt} \iiint_{\mathcal{D}} \vec{x} \wedge \rho \vec{v} dv = \iint_{\partial \mathcal{D}} \vec{x} \wedge (\bar{\bar{\sigma}} \cdot \vec{n}) ds + \iiint_{\omega} \vec{x} \wedge \vec{f} dv \end{cases}$$

A partir de la seconde équation, on démontre que le tenseur des contraintes $\bar{\sigma}(\vec{x},t)$ est symétrique.

Quant à la première équation, elle conduite à:

$$\vec{\text{div}}\bar{\bar{\sigma}} + \vec{f} = \rho \frac{D\vec{v}}{Dt} \quad \forall t, \quad \forall \vec{x} \in \omega$$

Equations fondamentales:

Equations du mouvement

Reconsidérons notre milieu continu occupant le domaine ω , de frontière $\partial \omega = \partial \omega_F \cup \partial \omega_U$ $(\partial \omega_F \cap \partial \omega_U = \emptyset)$ et soumis:

- \blacksquare aux forces volumiques \vec{f} dans ω ,
- lacksquare aux forces surfaciques $ec{F}$ sur $\partial \omega_F$
- lacksquare au champ de vitesse imposé \vec{V} sur $\partial \omega_U$.

Les équations du mouvement (ou d'équilibre) du milieu continu sont:

$$\forall t > 0 \qquad \begin{cases} \vec{\operatorname{div}} \bar{\bar{\sigma}} + \vec{f} = \rho \frac{D\vec{v}}{Dt} & \forall \vec{x} \in \omega \\ \bar{\bar{\sigma}} \cdot \vec{n} = \vec{F} & \forall \vec{x} \in \partial \omega_F \\ \bar{\bar{\sigma}} \cdot \vec{n} = \vec{R} & \forall \vec{x} \in \partial \omega_U \end{cases}$$

Equations fondamentales:

Equations d'équilibre statique

En statique,

$$\frac{D\vec{v}}{Dt} = 0$$

et les équations d'équilibre du milieu continu deviennent:

$$\forall t > 0 \qquad \begin{cases} \vec{\mathsf{div}}\bar{\bar{\sigma}} + \vec{f} = 0 & \forall \vec{x} \in \omega \\ \bar{\bar{\sigma}} \cdot \vec{n} = \vec{F} & \forall \vec{x} \in \partial \omega_F \\ \bar{\bar{\sigma}} \cdot \vec{n} = \vec{R} & \forall \vec{x} \in \partial \omega_U \end{cases}$$

Conservation de l'énergie:

Premier principe de la thermodynamique

La variation de l'énergie totale (énergie cinétique et énergie interne) est, pour un domaine \mathcal{D} quelconque, égale à la somme du travail des efforts extérieurs exercés sur \mathcal{D} et de la quantité de chaleur apportée à \mathcal{D} :

$$\frac{D}{Dt} \iiint_{\mathcal{D}} \left[\rho e + \frac{1}{2} \rho \|\vec{v}\|^2 \right] dv = \iiint_{\mathcal{D}} \vec{f} \cdot \vec{v} dv + \iint_{\partial \mathcal{D}} (\bar{\bar{\sigma}} \cdot \vec{n}) \cdot \vec{v} ds + Q$$

$$\forall \mathcal{D} \subset \omega$$

Avec:

- e, la densité spécifique de l'énergie interne
- lacksquare Q, le taux de chaleur apportée à \mathcal{D} :

$$Q = \iiint_{\mathcal{D}} r dv - \iint_{\partial \mathcal{D}} \vec{q} \cdot \vec{n} ds$$

Conservation de l'énergie:

Equation locale de conservation

En utilisant les formules de dérivation particulaire est le équations d'équilibre, on obtient la forme locale de la conservation de l'énergie:

$$\rho \frac{De}{Dt} = \bar{\bar{\sigma}} : \bar{\bar{D}} + r - div\vec{q} \qquad \forall t, \qquad \forall \vec{x} \in \omega$$

Avec:

$$\bar{\bar{D}} = \frac{1}{2} \left[\bar{\mathsf{grad}} \vec{v} + \bar{\mathsf{grad}}^T \vec{v} \right]$$

Ou encore:

$$\rho \frac{De}{Dt} = \sigma_{ij} v_{i,j} + r - q_{i,i} \qquad \forall t, \qquad \forall \vec{x} \in \omega$$