Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of determining, in a predefined target
position, the so	$\frac{1}{2}$ und a sound pressure (Δp) resulting from sound emitted from a surface element
(ΔS) of a sound	emitting surface (S), the method-comprising comprising:
-measuring,	measuring, using a three-dimensional array of a plurality of
microphones ar	ranged in a first predefined measuring position relative to the surface element
(ΔS), a first thre	ee-dimensional distribution of sound pressure, pressure;
-calculating,	calculating, based on the first three-dimensional distribution of sound
pressure, the air	r-particle an air-particle velocity (u_n) on the surface element (ΔS) and
perpendicular to	the surface element (ΔS), resulting from the sound emitted from the surface
(S), (<u>S);</u>	
-arranging	arranging a sound source capable of emitting a volume velocity (Q _v) in
the target positi	on, position;
-causing	causing the sound source to emit the volume velocity $(Q_v)_{,(Q_v)}$;
-measuring,	measuring, using a three-dimensional array of a plurality of
microphones ar	ranged in a second predefined measuring position relative to the surface
element (ΔS) an	nd with the volume velocity (Q _v) emitted from the sound source in the target
position creating	g a dominating sound, a second three-dimensional distribution of sound
pressure, pressu	<u>re;</u>
-calculating,	calculating, based on the second three-dimensional distribution of
sound pressure,	, the sound a sound pressure (p_V) at the surface element (ΔS) resulting from the
volume velocit	y (Q _v) emitted from the sound source in the target position, position;

- determining	determining the transfera transfer function $H = p_v/Q_v$ as the ratio of the	
sound pressure (p _v) a	t the surface element (ΔS) to the volume velocity (Q_v) emitted from the	
sound source in the target position, position; and		
- determining	determining the sound pressure (Δp) in the target position as	
$\Delta p = H \cdot (u_n \cdot \Delta S).$		
2. (Curre	ently Amended) A method of determining, in a predefined target	
position, the sounda	sound pressure (Δp) resulting from sound emitted from a surface element	
(ΔS) of a sound emitting surface (S), the method comprising comprising:		
-measuring,	measuring, using a three-dimensional array of a plurality of	
microphones arrange	ed in a first predefined measuring position relative to the surface element	
(ΔS), a first three-dimensional distribution of sound pressure;		
-calculating,	calculating, based on the first three-dimensional distribution of sound	
pressure, the air-particle an air-particle velocity (u_n) perpendicular to the surface element (ΔS)		
and on the surface element (ΔS), and the sound pressure (p) on the surface element		
(ΔS), resulting from the sound emitted from the surface (S) , (S) ;		
-arranging	arranging a sound source capable of emitting a volume velocity (Q _v) in	
the target position;		
-causing	causing the sound source to emit the volume velocity (Q_v) , (Q_v) ;	
- measuring,	measuring, using a three-dimensional array of a plurality of	
microphones arranged in a second predefined measuring position relative to the surface		
element (ΔS) and with the volume velocity (Q_v) emitted from the sound source in the target		
position creating a dominating sound, a second three-dimensional distribution of sound		
pressure, pressure;		

calculating, based on the second three-dimensional distribution of sound pressure, the sound pressure (p_V) at the surface element (ΔS) and the component of the particle particle velocity ($u_{V,n}$) perpendicular to the surface element (ΔS) resulting from the volume velocity (Q_v) emitted from the sound source in the target position, position; and

-determining determining the sound pressure (Δp) in the target position in accordance with the formula

$$\Delta p = \iint_{\Delta S} \left[\frac{p_{\nu}}{Q_{\nu}} u_n - \frac{u_{\nu,n}}{Q_{\nu}} p \right] dS.$$

- 3. (Currently Amended) A method according to claim 1 wherein claim 1, the target position is a listening position suitable for being occupied by a human being.
- 4. (Currently Amended) A method according to elaim 1—whereinclaim 1, the airparticle velocity (u_n) perpendicular to the surface element (ΔS) resulting from the sound emitted from the surface (S) is calculated, based on the first three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method, and that _______ the sound pressure (p_V) at the surface element (ΔS) resulting from the volume velocity (Q_v) emitted from the sound source in the target position is calculated, based on the second three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method.
- 5. (Currently Amended) A method according to elaim 2 wherein claim 2, the airparticle velocity (u_n) perpendicular to the surface element (ΔS) and the sound pressure (p) resulting from the sound emitted from the surface (S) are calculated, based on the first three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method, and that

the sound pressure (p_V) at the surface element (ΔS) and the air-particle velocity $(u_{V,n})$ perpendicular to the surface element ΔS resulting from the volume velocity (Q_v) emitted from the sound source in the target position are calculated, based on the second three-dimensional distribution of sound pressure, using a Near-Field Acoustical Holography (NAH) method.

- 6. (Currently Amended) A method according to elaim 1, wherein by using using, as the volume velocity sound source source, a simulator simulating acoustic properties of at least a head of a human being, the simulator having a simulated ear with an orifice and a sound source for outputting sound signals through the orifice of the simulated ear.
- 7. (Currently Amended) A method according to elaim 6 wherein claim 6, the simulator simulates the acoustic properties of the head and a torso of a human being.
- 8. (Currently Amended) A method according to elaim 1 wherein by using, as the three-dimensional array of a plurality of microphones, an array having two parallel layers of microphones, where each layer comprises a plurality of microphones arranged in a two-dimensional grid.
- 9. (Currently Amended) A method according to elaim 1 whereinclaim 1, by using, as the three-dimensional array of a plurality of microphones, an array comprising a combination of pressure microphones and particle velocity sensors.
- 10. (Currently Amended) A method according to elaim 9-whereinclaim 9, by using, as the three-dimensional array of a plurality of microphones and velocity sensors, a planar array of combination sensors, each being able to measure both the sound pressure and the particle velocity component perpendicular to the array plane.

11. (Currently Amended) A method according to elaim 2 claim 2, the sound pressure (Δp) in the target position is determined as an approximation in accordance with the formula

$$\Delta p = \left[\frac{p_{\nu}}{Q_{\nu}} u_n - \frac{u_{\nu,n}}{Q_{\nu}} p \right] \Delta S.$$