Reinforcement Learning Based Resolution Improvement of Geophysical Data

Himanshu Jain 20MC0039

Under The Guidance Of

Prof. Swarandeep Sahoo

Assistant Professor

Department of Applied Geophysics

Indian Institute of Technology (Indian School of Mines), Dhanbad

Objective:

- Objective is to predict unknown IGRF coefficients for the epoch 1900 to 1995 for degree n = 11 to n=13.
- Create a model specifically for the IGRF values using different methodologies to predict the best possible missing values

Data:

• The magnetic potential due to the internal origin:

$$V(r,\theta,\phi) = R \sum_{n=0}^{N} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \left[g_n^m \cos m\phi + h_n^m \sin m\phi\right] P_n^m(\cos\theta)$$

- From 1900 to 1995 we have IGRF constants till n=10 only.
- After 2000 we have IGRF constants till n=13.

Challenges with machine learning algorithms:

- Small data set.
- Number of values to be predicted is large.
- Model should satisfy the laws of Physics.

Reinforcement learning:

- Agent
- Environment
- State
- Action
- Reward
- Policy

Fig. a) Working of reinforcement learning model

Fig. b) Example of reinforcement learning

Markov Decision Process:

• It is defined by the tuple of 5 elements:

$$(S, A, P_{SS}^a, R_{SS}^a, \gamma)$$

- State (S)
- Action (A)
- State Transition Probability (P_{ss}^a)
- Reward Function (R_{ss}^a)
- Discount factor (γ)

Advantages

- Converges faster.
- Better understanding of working of the algorithm.

Disadvantages

- Need of state transition probability matrix
- Need to provide each state before the execution of the program

Q- Learning:

- Model free reinforcement learning algorithm.
- Explore every state of the environment and available actions in each state.
- Create a table (matrix) of shape [state, actions].
- Example of Q-Learning

Fig. a) Q-learning example

Fig. b) Reward vs episode in Q-learning

Problem Formulation:

1) Agent:

- Coefficients to be predicted will work as agent for environment.
- So the agent will be a number which will work in environment.

2) Actions:

• Only two actions are allowed for each agent. It can be increased or decreased by a factor.

3) Reward:

• Reward will be based on how much criteria a set of agents follow.

4) Environment:

(a) Total magnetic field:

- The average change in total magnetic field due to coefficients of degree n=10 and n=13 is 27nT for the year 2000 to 2020.
- The Model will try to reduce error to 30nT to satisfies the criteria.

(b) Inclination anomaly:

• Inclination due to geocentric axial dipole is given by:

$$tan I_{GAD} = 2 tan \lambda$$

Fig. a) Variation of inclination (θ^o) values with respect to latitude for dipole.

Inclination anomaly with 10' latitude bins and 95% confidance interval for the year 2020

Fig. b) Fisher mean of inclination anomaly (θ^o) with 10' latitude bins and 95% confidence interval

Fig. c) Inclination anomaly (θ^o) from the coefficients.

Fig. d) Inclination anomaly (θ^o) from the predicted coefficients.

Working of Model:

Results:

Fig: (a) and (c) corresponds to the inclination anomaly of available coefficients and (b) and (d) corresponds to the inclination anomaly for predicted coefficients

References:

- Adams, J., 2007. Fisher statistics.
- Alken, P., Thébault, E., Beggan, C.D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T.N., Brown, W.J., Califf, S., Chambodut, A. and Chulliat, A., 2021. International geomagnetic reference field: the thirteenth generation. *Earth, Planets and Space*, 73(1), pp.1-25.
- Olsen, N., Friis-Christensen, E., Floberghagen, R., Alken, P., Beggan, C.D., Chulliat, A., Doornbos, E., Da Encarnação, J.T., Hamilton, B., Hulot, G. and van den IJssel, J., 2013. The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. *Earth, Planets and Space*, 65(11), pp.1189-1200.
- Sprain, C.J., Biggin, A.J., Davies, C.J., Bono, R.K. and Meduri, D.G., 2019. An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (QPM). *Earth and Planetary Science Letters*, 526, p.115758.
- Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
- https://www.ngdc.noaa.gov/

Thank you