Aufgabe 1

(a) Weil L Zerfällungskörper von f über K ist, muss L/K normal sein. Für endliche Körper oder char K=0 ist L/K separabel. Wegen $(n,\operatorname{char} K)=1$ gilt $f'=nX^{n-1}\neq 0$ und daher ist L/K separabel. Für beliebige K ist also L/K normal und separabel und damit galoissch. Sei b eine Nullstelle von f. Es gilt $X^n-1=\prod_{\zeta\in\mu_n}(X-\zeta)$ und daher

$$X^{n} - a = X^{n} - b^{n} = b^{n}((Xb^{-1})^{n} - 1) = b^{n} \prod_{\zeta \in \mu_{n}} (Xb^{-1} - \zeta) = \prod_{\zeta \in \mu_{n}} (X - \zeta b).$$

Insbesondere gilt $\zeta b \in K(b) \forall \zeta \in \mu_n$, sodass f über K(b) vollständig in Linearfaktoren zerfällt. b liegt als Nullstelle von f notwendigerweise in L. Insgesamt folgern wir L = K(b).

(b) Jedes $\sigma \in \operatorname{Gal}(L/K)$ ist wegen Teilaufgabe (a) eindeutig gegeben durch $\sigma(b)$. Die Menge der Nullstellen hatten wir in (a) bereits bestimmt als $M = \{b\zeta \colon \zeta \in \mu_n\}$. Daher gilt $\operatorname{Gal}(L/K) = \{\sigma_\zeta \colon \zeta \in \mu_n\}$ mit $\sigma_\zeta(b) = \zeta b$. Insbesondere gilt $\psi(\sigma_\zeta) = \frac{\sigma_\zeta(b)}{b} = \zeta \in \mu_n$. Daher hängt ψ nur von der Wahl von $\sigma \in \operatorname{Gal}(L/K)$ ab. Offensichtlich besitzt jedes $\zeta \in \mu_n$ ein Urbild unter ψ , sodass wir im $\psi = \mu_n$ folgern können. Weiterhin gilt

$$\psi(\sigma_{\zeta}\sigma_{\zeta'}) = \frac{\sigma_{\zeta}(\sigma_{\zeta'}(b))}{b} = \frac{\sigma_{\zeta}(\zeta'b)}{b} = \frac{\zeta'\sigma_{\zeta}(b)}{b} = \zeta'\zeta.$$

Es handelt sich also um einen Gruppenhomomorphismus. Für die Injektivität genügt es zu zeigen, dass $\ker \psi = \{ \mathrm{id} \}$. Das folgt aber sofort aus $\psi(\sigma) = 1 \Leftrightarrow \sigma(b) = b \Leftrightarrow \sigma = \mathrm{id}$. Wir erhalten daher einen Gruppenisomorphismus $\psi \colon \mathrm{Gal}(L/K) \xrightarrow{\sim} \mu_n$. Da μ_n zyklisch ist, muss auch $\mathrm{Gal}(L/K)$ zyklisch sein.

(c) Für ein Gegenbeispiel siehe Aufgabe 2 auf Zettel 8. Dort gilt $K = \mathbb{Q}$, n = 4, $f = X^4 - 2$, $\mu_n = \{1, -1, i, -i\} \subsetneq \mathbb{Q}$ und $Gal(L/K) \cong D_4$. D_4 ist aber nicht zyklisch.

Aufgabe 2

- (a) Wir zeigen zunächst, dass jedes $\binom{e}{f} \in V$ eine Darstellung $g \cdot m$ mit $g \in G, m \in M$ besitzt. Dazu unterscheiden wir drei Fälle
 - (1) $f \neq 0$. Dann gilt

$$\begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} 1 & e \\ 0 & f \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

(2) $f = 0, e \neq 0$. Dann gilt

$$\begin{pmatrix} e \\ 0 \end{pmatrix} = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(3) f = e = 0. Dann gilt

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Nun müssen wir zeigen, dass die von $m,n\in M$ erzeugten Bahnen für $n\neq m$ disjunkt sind. Es gilt aufgrund der Linearität

$$G\begin{pmatrix}0\\0\end{pmatrix} = \left\{g\begin{pmatrix}0\\0\end{pmatrix} : g \in G\right\} = \left\{\begin{pmatrix}0\\0\end{pmatrix}\right\}.$$

Da alle Matrizen aus $G \subset \mathrm{GL}_2(\mathbb{F}_p)$ invertierbar sind, gilt außerdem

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \notin G \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix} \notin G \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Es verbleibt zu zeigen, dass $G \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cap G \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \emptyset$. Nehmen wir an $\exists g \in G$ mit

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = g \begin{pmatrix} 0 \\ 1 \end{pmatrix} \implies \exists a, b, d \in \mathbb{F}_p, a \neq 0, d \neq 0 \colon \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$$

so erhalten wir durch Komponentenvergleich d=0, Widerspruch. Nehmen wir stattdessen an $\exists g \in G$ mit

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = g \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \exists a, b, d \in \mathbb{F}_p, a \neq 0, d \neq 0 \colon \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix},$$

so erhalten wir durch Komponentenvergleich a=0, Widerspruch. Daher zerfällt V in die disjunkte Vereinigung der durch Gruppenoperation von G aus $m\in M$ erzeugten Teilmengen, M ist also eine Repräsentantensystem der Bahnen.

- (b) Sei $x = \begin{pmatrix} e \\ f \end{pmatrix} \in V$. Wir unterscheiden drei Fälle
 - (1) $f \neq 0$. Für $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G_x$ gilt dann

$$\begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} ae + bf \\ df \end{pmatrix} \Leftrightarrow d = 1 \land ae + bf = e \Leftrightarrow d = 1 \land b = (1 - a)e \cdot f^{-1}$$

Daraus folgt

$$G_x = \left\{ \begin{pmatrix} a & (1-a)e \cdot f^{-1} \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}_2(\mathbb{F}_p), a \neq 0 \right\}.$$

Insbesondere gilt $\#G_x = p - 1$, da ein Vertreter von G_x durch $a \in \mathbb{F}_p^{\times}$ bereits eindeutig bestimmt ist.

(2) $f = 0, e \neq 0$. Für $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G_x$ gilt dann

$$\begin{pmatrix} e \\ 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} e \\ 0 \end{pmatrix} = \begin{pmatrix} ae \\ 0 \end{pmatrix} \Leftrightarrow e = ae \Leftrightarrow a = 1.$$

Wir erhalten daher

$$G_x = \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{F}_p), d \neq 0 \right\}.$$

Insbesondere ist $\#G_x = p \cdot (p-1)$.

- (3) Für $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ist die Isotropiegruppe wegen $G \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ durch ganz G gegeben.
- (c) Es gilt $\#G = (p-1) \cdot p \cdot (p-1)$, da es jeweils p-1 Möglichkeiten für a und d und p Möglichkeiten für b gibt. Sei $x = \begin{pmatrix} e \\ f \end{pmatrix} \in V$. Wir unterscheiden wieder drei Fälle
 - (1) $f \neq 0$. Wegen

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} ae + bf \\ df \end{pmatrix}$$

und $df \neq 0$ gilt $Gx \subset \mathbb{F}_p \times \mathbb{F}_p^{\times}$. $(df \neq 0$ folgt wegen $d \neq 0, f \neq 0)$. Da \mathbb{F}_p ein Körper ist, gilt außerdem für beliebige $a \in \mathbb{F}_p, b \in \mathbb{F}_p^{\times}$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & (a-e)f^{-1} \\ 0 & bf^{-1} \end{pmatrix} \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} e + (a-e)f^{-1}f \\ bf^{-1}f \end{pmatrix} \in Gx.$$

Daraus folgt sofort die Gleichheit $Gx = \mathbb{F}_p \times \mathbb{F}_p^{\times}$. Insbesondere gilt $\#Gx = p \cdot (p-1)$. Damit erhalten wir

$$\#Gx \cdot \#G_x = p \cdot (p-1) \cdot (p-1) = \#G.$$

(2) $e \neq 0, f = 0$. Wegen

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot \begin{pmatrix} e \\ 0 \end{pmatrix} = \begin{pmatrix} ae \\ 0 \end{pmatrix}$$

und $ae \neq 0$ gilt $Gx \subset \mathbb{F}_p^{\times} \times \{0\}$. $(ae \neq 0 \text{ folgt wegen } a \neq 0, e \neq 0)$. Da \mathbb{F}_p ein Körper ist, gilt außerdem für beliebiges $a \in \mathbb{F}_p$

$$\begin{pmatrix} a \\ 0 \end{pmatrix} = \begin{pmatrix} ae^{-1} & b \\ 0 & d \end{pmatrix} \begin{pmatrix} e \\ 0 \end{pmatrix} \in Gx.$$

Daraus schließen wir die Gleichheit $Gx = \mathbb{F}_p^{\times} \times \{0\}$. Insbesondere gilt #Gx = p-1. Damit erhalten wir $\#Gx \cdot \#G_x = (p-1) \cdot (p-1) \cdot p = \#G$.

- (3) e = f = 0. Wie oben gezeigt ist dann $Gx = \{x\}$ und $G_x = G$. Es gilt also $\#G_x \cdot \#(Gx) = \#G \cdot \#\{x\} = \#G$.
- (d) Nach Lemma 5.10 gilt $(G: G_x) = \#Gx$. Wir betrachten die drei Elemente von M.
 - (1) $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Es gilt $(G: G_x) = \#Gx = p \cdot (p-1)$ (siehe (c), Fall 1).
 - (2) $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Es gilt $(G: G_x) = \#Gx = (p-1)$ (siehe (c), Fall 2).
 - (3) $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Es gilt $(G: G_x) = \#Gx = 1$ (siehe (c), Fall 3).

Insgesamt erhalten wir

$$\sum_{x \in M} (G: G_x) = p \cdot (p-1) + p - 1 + 1 = p^2 = \#\mathbb{F}_p^2 = \#V.$$

Aufgabe 3

- (a) Die Anzahl s der 101-Sylowgruppen teilt $2020 = 2^2 \cdot 5 \cdot 101$. Außerdem gilt $s \equiv 1 \mod 101$. Allerdings gilt für jeden Teiler d von 2020 mit d > 20 sofort 101|d, also $d \equiv 0 \mod 101$. Daraus folgt s = 1. Wir bezeichnen die eindeutig bestimmte 101-Sylowgruppe mit S. Nach Bemerkung 5.30 und wegen $2020 = 20 \cdot 101$ mit (20,101) = 1 folgt #S = 101. G operiert durch Konjugation auf seinen Untergruppen. gSg^{-1} ist daher eine Untergruppe von G und wegen $\#gSg^{-1} = \#S = 101$ ist gSg^{-1} eine 101-Gruppe. Nach Satz 5.29 existiert dann eine 101-Sylowgruppe S' mit $gSg^{-1} \subset S'$. Es gibt aber nur eine 101-Sylowgruppe, S = S'. Insbesondere ist also $S \in \operatorname{Fix}_G(\{H \text{ Untergruppe in } G\}) \Leftrightarrow S \triangleleft G$ wegen Lemma 5.18. Da #S prim ist, muss S kommutativ sein. Also ist S der gesuchte kommutative nicht-triviale Normalteiler.
- (b) Es gilt 43 < 47 und $43 \not| 47 1$. Nach Korollar 5.34 ist jede Gruppe der Ordnung $2021 = 43 \cdot 47$ zyklisch und insbesondere abelsch. Nach dem Hauptsatz für endliche abelsche Gruppen ist daher jede Gruppe der Ordnung 2021 isomorph zu $\mathbb{Z}/2021\mathbb{Z}$.
- (c) Die Anzahl s der 3-Sylowgruppen teilt $36 = 2^2 \cdot 3^2$. Außerdem gilt $s \equiv 1 \mod 3$. Daher gilt $3 \not | s$. Wir erhalten die zwei Möglichkeiten s = 1 oder s = 4.

Für s=1 argumentieren wir analog wie in Teilaufgabe (a): Wir bezeichnen die eindeutig bestimmte 3-Sylowgruppe mit S, dann gilt $S \in \text{Fix}_G(\{H \text{ Untergruppe in } G\}) \Leftrightarrow S \triangleleft G$. S hat die Ordnung 9, da $36=4\cdot 9$ mit (4,9)=1. In diesem Fall existiert also ein nicht-trivialer Normalteiler.

Ist nun s=4, so gibt es vier verschiedene 3-Sylowgruppen. Wie oben bewiesen ist für eine p-Sylowgruppe S auch gSg^{-1} eine p-Sylowgruppe. Daher operiert G vermöge der Konjugation auf der Menge X ihrer 3-Sylowgruppen. Wir betrachten daher den analog zu Beispiel 5.2 3) von der Konjugation induzierten Homomorphismus

$$\varphi \colon G \to \mathfrak{S}(X) \cong \mathfrak{S}_4 \tag{1}$$

$$g \mapsto \tau_q$$
 (2)

Nun gilt wegen im $\varphi \subset \mathfrak{S}(X)$ auch $\# \operatorname{im} \varphi < 24$, φ kann also nicht injektiv sein und wir erhalten $\ker \varphi \neq \{1\}$. Wäre $\ker \varphi = G$, so wäre im $\varphi = \operatorname{id}$. Da es aber vier verschiedene zueinander konjugierte Untergruppen gibt, können wir diesen Fall auch ausschließen. Damit ist $\ker \varphi$ der gesuchte nichttriviale Normalteiler.

Aufgabe 4

Def. 1. Zwei Transpositionen (a, b) und (c, d) heißen disjunkt, wenn $\{a, b\} \cap \{c, d\} = 0$ gilt.

- (a) Sei $n \in \{1, ..., n\}$. Wir unterscheiden zwei Fälle.
 - (1) $n = \sigma(x_i)$ für ein $i \in \{1, \ldots, r\}$. Dann gilt

$$\sigma(x_1,\ldots,x_r)\sigma^{-1}(n)=\sigma(x_1,\ldots,x_r)(x_i)=\sigma(x_{i+1}).$$

(2) $n \neq \sigma(x_i) \forall i \in \{1, \dots, r\}$. Dann gilt

$$\sigma(x_1, \dots, x_r)\sigma^{-1}(n) = \sigma(\sigma^{-1}(n)) = n.$$

Insgesamt erhalten wir daher

$$\sigma(x_1,\ldots,x_r)\sigma^{-1}=(\sigma(x_1),\ldots,\sigma(x_n)).$$

- (b) Für $\tau \in \mathfrak{V}_4$ gilt $\tau = \tau_1 \tau_2$ für zwei disjunkte Transpositionen τ_1 und τ_2 . Wir folgern $\sigma \tau \sigma^{-1} = \sigma \tau_1 \sigma^{-1} \sigma \tau_2 \sigma^{-1} = \tau_1' \tau_2'$ für zwei Zyklen τ_1' und τ_2' . Permutationen erhalten Disjunktheit von Mengen, also insbesondere auch Disjunktheit von Transpositionen. Daher sind τ_1' und τ_2' ebenfalls disjunkt. \mathfrak{V}_4 enthält aber bereits alle möglichen Kompositionen von zwei disjunkten Zyklen in \mathfrak{S}_4 . Daher gilt $\sigma \tau \sigma^{-1} \in \mathfrak{V}_4 \forall \tau \in \mathfrak{V}_4$. Folglich ist \mathfrak{V}_4 ein Normalteiler in \mathfrak{S}_4 .
- (c) $1 \triangleleft \mathfrak{V}_4$ ist trivial. \mathfrak{V}_4 ist Normalteiler in \mathfrak{S}_4 , also insbesondere auch in \mathfrak{A}_4 . \mathfrak{A}_4 ist als Kern des Gruppenhomomorphismus sgn: $\mathfrak{S}_4 \to \{1, -1\}$ Normalteiler in \mathfrak{S}_4 . $1 \triangleleft \mathfrak{V}_4 \triangleleft \mathfrak{A}_4 \triangleleft \mathfrak{S}_4$ bildet daher eine Normalreihe. Es gilt $(\mathfrak{S}_4 : \mathfrak{A}_4) = 2$. Jede Gruppe der Ordnung 2 ist abelsch, da ein Element das neutrale Element ist. Außerdem gilt $\#\mathfrak{A}_4 = 12$, $\#\mathfrak{V}_4 = 4$ und damit $(\mathfrak{A}_4 : \mathfrak{V}_4) = 3$. Eine Gruppe der Ordnung drei besitzt die Elemente e, a und b. e kommutiert mit allen Gruppenelementen. Da jedes Element ein Inverses besitzen muss und wegen $a \neq e \implies a^{-1} \neq e$ gilt weiter ab = e = ba. Folglich ist $\mathfrak{A}_4/\mathfrak{V}_4$ abelsch. Schließlich müssen wir noch nachweisen, dass \mathfrak{V}_4 abelsch ist. Da Transpositionen kommutieren, ist dies aber sofort klar. Per Definition ist \mathfrak{S}_4 daher auflösbar.