Real Variables: Problem Set VI

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set VI of Real Variables 2015 at NYU.

1 Solutions

Question 9.10.

Solution. Let $\{X_n, \rho_n\}_{n=1}^{\infty}$ be a countable collection of metric spaces. We now define $(\prod_{n=1}^{\infty} X_n, p_*) = (X, p_*)$ such that for $x, y \in X$,

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}.$$

First, we can show that p_* is well-defined via comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, as $0 \le \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} \le 1$ for all n.

As $p_n(x_n,y_n)\geq 0$ for all n, we have $p_*(x,y)\geq 0$ for all $x,y\in X$. If $p_*(x,y)=0$, then $p_n(x_n,y_n)=0$ for all n. As each p_n is a metric space $x_n=y_n$ for all n. Therefore, x=y. If x=y, then $x_n=y_n$ for all n. As each p_n is a metric space, $p_n(x_n,y_n)=0$ for all n. Therefore, $p_*(x,y)=0$.

Since $p_n(x_n, y_n) = p_n(y_n, x_n)$ for all n, for $x, y \in X$, we

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(y_n, x_n)}{1 + p_n(y_n, x_n)}$$
$$= p_*(y, x).$$

Let $x, y, z \in X$. By the problem 6 and the triangle inequality of each metric space X_n , which gives $p_n(x_n, z_n) \le p_n(x_n, y_n) + p_n(y_n, z_n)$ for each n, we have

$$\frac{p_n(x_n, z_n)}{1 + p_n(x_n, z_n)} \leq \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} + \frac{p_n(y_n, z_n)}{1 + p_n(y_n, z_n)},$$

for all n. Hence, we have

$$\sum_{n=1}^{\infty} \frac{p_n(x_n, z_n)}{1 + p_n(x_n, z_n)} \leq \sum_{n=1}^{\infty} \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} + \frac{p_n(y_n, z_n)}{1 + p_n(y_n, z_n)},$$

which can be written as

$$p_*(x,z) \le p_*(x,y) + p_*(y,z).$$

Therefore, we have shown that all required properties of a metric space hold for (X, p_*) . (X, p_*) is a metric space. \Box

Question 9.20.

Solution. Let E be a subset of a metric space X, and let $\mathrm{int}E$ be the interior of E. We first show that $\mathrm{int}E\subseteq E$. If $x\in X\setminus E$, then every ball of x contains a point in $X\setminus E$. Hence, $x\in E$. Therefore, $\mathrm{int}E\subseteq E$.

Now, we wish to show that $\operatorname{int} E$ is open. For the first case, assume that $E=\operatorname{int} E$. Let $x\in\operatorname{int} E$. Since x is an interior point of E, there exists an open ball B(x,r) contained in E. Since $E=\operatorname{int} E$, the open ball B(x,r) is contained in $\operatorname{int} E$ as well. Hence, $\operatorname{int} E$ is open in this case. For the remaining case, assume that $E\setminus\operatorname{int} E\neq\emptyset$. Let $x\in\operatorname{int} E$. Since x is an interior point of E, there exists an open ball B(x,r) contained in E. Suppose that there exists $y\in B(x,r)\cap E\setminus\operatorname{int} E$. Then, we have d(x,y)< r. Consider B(y,r-d(x,y)), which is valid since r-d(x,y)>0. By the triangle inequality, for any point $z\in B(y,r-d(x,y))$,

$$\begin{array}{rcl} d(x,z) & \leq & d(x,y) + d(y,z) \\ & < & r. \end{array}$$

Hence, B(y, r - d(x, y)) is an open ball contained in B(x, r), which is again contained E, which contradicts the fact that $y \in E \setminus \text{int} E$. Hence, B(x, r) is contained in int E. Therefore, int E is open. As we covered all cases, int E for any subset E of a metric space X is open.

Assume E is open. Let $x \in E$. As E is open, there exists an open ball around x contained in E. Therefore, $x \in \text{int} E$. Hence, $E \subseteq \text{int} E$. As we have $\text{int} E \subseteq E$ from above, we have shown that E = int E.

Assume E = intE. Let $x \in E$. Then, as E = intE, $x \in \text{int}E$. By the definition of interior point, there exists an open ball around x contained in E. Hence, E is open. \square

Ouestion 9.32.

Solution. (a) We claim that f is 1-Lipschitz. Let $x, y \in \mathbb{R}$. Then, by the triangle inequality, we have

$$\begin{array}{lcl} \operatorname{dist}(x,E) & \leq & d(x,e) \\ & \leq & d(x,y) + d(y,e), \end{array}$$

for all $e \in E$. By taking the inf over $e \in E$ on the RHS, we have

$$\operatorname{dist}(x, E) \leq d(x, y) + \operatorname{dist}(y, E).$$

Hence, it follows that

$$\operatorname{dist}(x, E) - \operatorname{dist}(y, E) \leq d(x, y).$$

By symmetry, we also obtain that

$$dist(y, E) - dist(x, E) \le d(x, y).$$

Hence, it follows that

$$|\operatorname{dist}(x, E) - \operatorname{dist}(y, E)| \leq d(x, y).$$

Therefore, f is 1—Lipshictz, thus continuous.

(b) Let $x \in \overline{E}$. By the definition of closure, there exists a sequence $\{x_n\}$ from E such that $x_n \to x$. Since dist is continuous, we have $\operatorname{dist}(x_n, E) \to \operatorname{dist}(x, E)$. As $x_n \in E$, it follows that $\operatorname{dist}(x_n, E) = 0$ for all n. Therefore, we have $\operatorname{dist}(x, E) = 0$. Hence, we obtain

$$\overline{E} \subseteq \{x \in X \mid \operatorname{dist}(x, E) = 0\}.$$

Let $x \in \{x \in X \mid \operatorname{dist}(x, E) = 0\}$. Then, for all n, there exists $y \in E$ such that $\rho(x, y) > \frac{1}{n}$, which we label as x_n . Then, $\{x_n\}$ is a sequence from E such that $x_n \to x$. Hence, $x \in \bar{E}$. Consequently, we obtain

$$\{x \in X \mid \operatorname{dist}(x, E) = 0\} = \overline{E},$$

as desired. \Box

Question 9.43.

Solution. Let $f:(X,\rho)\to (Y,\sigma)$, and $\{u_n\}$ and $\{v_n\}$ be any two sequences in X such that $\lim_{n\to\infty}\rho(u_n,v_n)=0$. Assume that f is uniformly continuous. Fix $\epsilon>0$. Let $\delta>0$ be the real number, that responds to the ϵ -challenge of uniform continuity of f. Then, there exists an index N such that $\rho(u_n,v_n)<\delta$ for $n\geq N$. By uniform continuity of f, it follows that

$$\sigma(f(u_n), f(v_n)) < \epsilon,$$

for $n \geq N$. Since ϵ was arbitrary, we have

$$\lim_{n \to \infty} \sigma(f(u_n), f(v_n)) = 0,$$

as desired.

Conversely, assume that $\lim_{n\to\infty}\sigma(f(u_n),f(v_n))=0$ holds for any two sequences $\{u_n\}$ and $\{v_n\}$ in X such that $\lim_{n\to\infty}\rho(u_n,v_n)=0$. Suppose for sake of contradiction of f is not uniform continuous. Then, there exists $\epsilon>0$, such that for any $\delta>0$, $\rho(u,v)<\delta$ does not imply $\sigma(f(u),f(v))<\epsilon$. Then, we can construct two sequence $\{u_n\}$, $\{v_n\}$, such that $(u_n,v_n)<\frac{1}{n}$ and $\sigma(f(u_n),f(v_n))\geq\epsilon$ for all n. It follows that $\rho(u_n,v_n)\to 0$, but $\sigma(f(u_n),f(v_n))\to 0$. This is a contradiction. Hence, f is uniformly continuous.

Question 9.72.

Solution. Assume $A \cap B \neq \emptyset$. Then, there exists $x \in A \cap B$. Since $\rho(x,x) = 0$, we have $\operatorname{dist}(A,B) = 0$. By contrapositive, we have shown that if $\operatorname{dist}(A,B) > 0$, then $A \cap B = \emptyset$.

Assume $\operatorname{dist}(A,B)=0$. Then, we can construct two sequences $\{u_n\}$ and $\{v_n\}$ such that $u_n\in A$ and $v_n\in B$, and $\rho(u_n,v_n)<\frac{1}{n}$. Since A is compact there exists a subsequence $\{u_{n_k}\}$ that converges to a point in A. We denote the point of convergence as u. Then, by construction, it follows that $\{v_{n_k}\}\to u$. Since B is closed, and u is a limit of a sequence from $B,u\in B$. Hence, $u\in A\cap B$, and $A\cap B\neq\emptyset$. By contrapositive, if $A\cap B=\emptyset$, then $\operatorname{dist}(A,B)>0$.

Question 9.77.

Solution. Let (X, d_X) and (Y, d_Y) be separable metric spaces. Consider the standard product metric on $X \times Y$. Then, there exist a countable dense subset D_X in X and countable dense subset D_Y in Y. Observe that $D_X \times D_Y$ is countable. We claim that $D_X \times D_Y$ is a dense subset in $X \times Y$. Consider an open nonempty subset O of $X \times Y$. Let $(x_0, y_0) \in O$. Since O is open, there exists $\epsilon > 0$, such that

$$B((x_0, y_0), \epsilon) = \{(x, y) \mid (d_X(x, x_0)^2 + d_Y(x, x_0)^2)^{\frac{1}{2}}\} \subseteq O.$$

Since D_X is dense in X and D_Y is dense in Y, there exist $x^* \in D_X$ and $y^* \in D_Y$, such that

$$d_X(x^*, x_0) < \frac{\epsilon}{\sqrt{2}}$$
$$d_Y(y^*, y_0) < \frac{\epsilon}{\sqrt{2}}.$$

By substitution, we see that $(x^*,y^*)\in B((x_0,y_0),\epsilon)$ and subsequently in O. As, O was an arbitrary open subset of $X\times Y$, we have shown that $X\times Y$ is separable. \square