ミクロ経済学 [演習 第13回 解答

作成日 | 2017年7月22日

問題1

まずナッシュ均衡を考える、このゲームを利得表で表すと以下のようになる、最

	ℓ	r
IN,L	1, <u>3</u>	0,0
IN,R	0,0	<u>3,1</u>
OUT,L	<u>2,2</u>	2, <u>2</u>
OUT,R	<u>2,2</u>	2 <u>,2</u>

適反応は表中の下線で表している.よって純粋戦略ナッシュ均衡は $((OUT,L),\ell)$, $((OUT,R),\ell)$, ((IN,R),r) の三つである.

次に部分ゲーム完全均衡を考える.プレイヤー 1 が IN を選んだ後の部分ゲーム (仮に Γ' とする)を利得表で表すと,以下のようになる .. よってこの部分ゲームで

$$\begin{array}{c|cc}
\ell & r \\
L & \underline{1,3} & 0,0 \\
R & 0,0 & \underline{3,1}
\end{array}$$

のナッシュ均衡は (L,ℓ) , (R,r) である.

プレイヤー 1 による IN と OUT の選択から始まる部分ゲーム(元のゲーム全体)を考える. Γ' で (L,ℓ) が選ばれるとき,プレイヤー 1 の利得は IN を選べば 1,OUT を選べば 2 なのでここではプレイヤー 1 は OUT を選ぶ.よって一つの部分ゲーム 完全均衡は $((OUT,L),\ell)$ である.次に Γ' で (R,r) が選ばれるとき,プレイヤー 1 の 利得は IN を選べば 3,OUT を選べば 2 なのでここではプレイヤー 1 は IN を選ぶ.よってもう一つの部分ゲーム完全均衡は ((IN,R),r) である.

問題 2

プレイヤー 1 が「続ける」を選んだ後の部分ゲームを考える.プレイヤー i=1,2 の申告する数を a_i と表す.この部分ゲームでのナッシュ均衡では a_1 , a_2 とも正の数では有り得ない.一般性を失わず $a_1>0$ だとすると,任意の整数 $a_2\geqslant 0$ について, $a_1(a_2+1)>a_1a_2$ が成り立つことから最適な a_2 は存在しない.よってナッシュ均衡では $a_i=0$ である.一方 $a_1=a_2=0$ であれば,一人でどのような逸脱を行って

も利得が厳密に大きくなることは無い.したがってこの部分ゲームでの一意のナッシュ均衡は $a_1=a_2=0$ である.

これを考慮してプレイヤー 1 の「辞める」か「続ける」かの選択を考える.辞める場合は利得 1 , 続ける場合は利得 0 になるので辞めるを選択する.したがってこのゲームの部分ゲーム完全均衡は ((辞める,0),0) である.

申告可能な整数に M という上限がある場合も ((辞める,0),0) は部分ゲーム完全均衡である.加えて,((続ける,M),M) も部分ゲーム完全均衡になる.プレイヤー 1 が続けるを選んだ後の部分ゲームを考える.ここで両者が M を選んでいるとき,両者の利得は M^2 である.申告可能などのような整数 $N \leqslant M$ に逸脱しても,得られる利得は $NM \leqslant M^2$ なので (M,M) はこの部分ゲームのナッシュ均衡である.更に, $M^2 > 1$ なのでプレイヤー 1 の「辞める」か「続ける」かの選択では「続ける」を選択する.

問題 3

(a) 経営者が x を提示し,労働者がそれを受諾した後の部分ゲームを考える.労働者 の利得は努力すれば 10(1-x)-3,努力しなければ 1-x である.よって労働者が努力するための条件は

$$10(1-x) - 3 \ge 1 - x \iff 9(1-x) \ge 3 \iff 1 - x \ge \frac{1}{3}$$
$$\iff x \le \frac{2}{3}$$

である.

次に経営者がxを提示し,労働者がそれを拒否した後の部分ゲームを考える.労働者の利得は努力すれば1-3=-2,努力しなければ1/10である.よって拒否した場合xによらず労働者は努力しない.

労働者の受諾と拒否の選択を考える.拒否した後は努力しないので利得は x によらず 1/10 である. $x \le 2/3$ を受諾した場合努力するので利得は 10(1-x)-3 となる.よって $x \le 2/3$ を受諾する条件は,

$$10(1-x) - 3 \geqslant \frac{1}{10} \iff 10x \leqslant \frac{69}{10} \iff x \leqslant \frac{69}{100}$$

である.今 $x\leqslant 2/3$ なのでこれは常に満たされる.よって $x\leqslant 2/3$ なら受諾する.一方 x>2/3 について考える.これを受諾した後は努力しないので利得は 1-x である.拒否すると利得は 1/10 なので, $1-x\geqslant 1/10\iff x\leqslant 9/10$ のとき受諾する.

まとめると,均衡での労働者のxに対する戦略は,

 $\left\{egin{aligned} x\leqslant 2/3 \ \text{のとき受諾 }.\ \text{受諾したなら努力 },\ \text{受諾しなかったなら努力しない} \\ 2/3 < x \leqslant 9/10 \ \text{のとき受諾 }.\ \text{受諾してもしなくても努力しない} \\ x>9/10 \ \text{のとき拒否 }.\ \text{受諾してもしなくても努力しない} \end{aligned} \right.$

(1)

である.これを所与として経営者の最適な x を求める. $x \le 2/3$ を提示すると 労働者は受諾して努力するので利得は $10x \le 20/3$, $2/3 < x \le 9/10$ を提示すると労働者は受諾して努力しないので利得は $x \in (2/3,9/10]$,x > 9/10 を提示すると労働者は拒否して努力しないので利得は 9/10.よって経営者にとって x = 2/3 を提示することが最適であり,これと (1) の組が部分ゲーム完全均衡である.

(b) 労働者が努力するかどうかを選択し, π だけの利益が発生したのを観察して経営者が x を提示した後の部分ゲームを考える.労働者が努力した場合 $\pi=10$,努力しなかった場合 $\pi=1$ である.労働者が要求を受諾すると利得 $\pi(1-x)$ を,拒否すると利得 $\pi/10$ を得る.よって,

$$\pi(1-x) \geqslant \frac{\pi}{10} \iff x \leqslant \frac{9}{10}$$

であれば(努力したかどうかによらず)労働者は要求を受諾する.これを考慮して経営者の要求 x を考える.x>9/10 を要求すると労働者に拒否され,経営者の利得は $9\pi/10$ になる.一方 $x\leqslant 9/10$ であれば労働者は受諾し,経営者の利得は πx となる. $\pi x\leqslant 9\pi/10$ なので経営者は x>9/10 を提示して労働者に拒否させるのが最適である.

労働者の努力の選択を考える.努力の有無によらず経営者は x>9/10 を提示して労働者はそれを拒否することになるので,努力した場合の労働者の利得は 1/10 である.よって労働者は努力することが最適である.

したがって,このゲームの純粋戦略による部分ゲーム完全均衡は,((努力する,「努力したかどうかによらず $x\leqslant \frac{9}{10}$ なら受諾, $x>\frac{9}{10}$ なら拒否」),常に x>9/10)である.

(a) の場合の均衡経路上で得られる経営者と労働者の利得はそれぞれ 20/3 , 10/3-3=1/3 である . (b) の場合の均衡経路上で得られる経営者と労働者の利得はそれぞれ 9 , 1-3=-2 となる .

問題 4

相手がトリガー戦略に従うとして,任意の t 期目以降の部分ゲームを考える.

(i) 過去に (C,C) が実現し続けているとき 自分もトリガー戦略を取った場合の割引利得の総和は,

$$5 + 5\delta + 5\delta^2 + \dots = \frac{5}{1 - \delta} \tag{2}$$

である.期には相手はC を選んでいるので,ここで逸脱してD を選ぶとt 期の利得はT である.以降相手はトリガー戦略に従いD を選び続ける.これに対しては自分もD を選び続けることで最大の利得を得られるので,t 期に逸脱して得られる最大の割引利得の総和は,

$$7 + 1 \cdot \delta + 1 \cdot \delta^2 + \dots = 7 + \frac{\delta}{1 - \delta} \tag{3}$$

(2)≥(3) となる条件を求めると,

$$\frac{5}{1-\delta} \geqslant 7 + \frac{\delta}{1-\delta} \iff 5 \geqslant 7(1-\delta) + \delta \iff \delta \geqslant \frac{1}{3}.$$

したがって $\delta \geqslant 1/3$ であればトリガー戦略はこの部分ゲームでのナッシュ均衡になる .

(ii) 過去に少なくとも一方が D を選んだことがあるとき 相手がトリガー戦略に従うなら相手は D を選び続ける.自分もトリガー戦略に 従うと割引利得の総和は,

$$1 + 1 \cdot \delta + 1 \cdot \delta^2 + \dots = \frac{1}{1 - \delta}$$

である.一方その期に逸脱して C を選んでも相手は D を選び続けるので,自分も D を選び続けることで最大利得が達成できる.よって最大で得られる割引利得の総和は,

$$0 + 1 \cdot \delta + 1 \cdot \delta^2 + \dots = \frac{\delta}{1 - \delta}$$

したがって δ の値によらずトリガー戦略に従うことが最適である.

(iii) ゲーム全体での最適性

1 期目に逸脱するかどうかは , (i) のケースと同様の条件によって判定できる . よって $\delta \geqslant 1/3$ のとき 1 期目にはトリガー戦略に従う .

まとめると, $\delta \geqslant 1/3$ のときトリガー戦略は部分ゲーム完全均衡になる.

◀ 相手が D であるときに Cを選ぶとその期の利得 は 0 , D を選ぶと 1 であ る . しかも仮に C を選 んでも相手が C に戻っ てくることは無い .