Mujie_Wang_Assignment#1

Mujie Wang 2019/10/7

prob 1

```
#1(a) read first column as vet.time
vet <- read.csv ("/Users/wangmujie/Desktop/vets.txt", header = FALSE, sep = "")</pre>
vet.time <- vet$V1</pre>
#1(b) read second column as vet.cns
vet.cns <- vet$V2</pre>
#1(c) load library
library(survival)
  #using Surv function, call it vet.surv
vet.surv <- Surv(vet.time,vet.cns)</pre>
  #print out the result
print(vet.surv)
     [1]
          72
              411
                   228
                         126
                              118
                                    10
                                         82 110
                                                  314
                                                        100+ 42
                                                                     8
                                                                        144
                                                                              25+
##
   [15]
         11
               30
                   384
                           4
                               54
                                    13
                                        123+ 97+ 153
                                                         59
                                                             117
                                                                        151
                                                                              22
                                                                    16
##
   [29] 56
               21
                    18
                        139
                               20
                                    31
                                         52 287
                                                    18
                                                         51
                                                             122
                                                                    27
                                                                         54
## [43] 63
              392
                    10
                           8
                               92
                                    35
                                              132
                                                    12
                                                        162
                                                                    95 177
                                                                             162
                                        117
                                                               3
## [57] 216
              553 278
                          12
                              260
                                   200
                                        156
                                             182+ 143
                                                        105
                                                            103
                                                                   250
                                                                             999
                                                                        100
## [71] 112
               87+ 231+ 242
                              991 111
                                          1 587
                                                   389
                                                         33
                                                              25
                                                                   357
                                                                        467
                                                                             201
##
   [85]
           1
               30
                    44
                         283
                               15
                                    25
                                        103+
                                             21
                                                    13
                                                         87
                                                               2
                                                                    20
                                                                          7
                                                                              24
## [99]
                    99
                          61
                               25
                                    95
                                         80
                                                    29
                                                         24
                                                                    83+
                                                                              51
          99
                8
                                               51
                                                              18
                                                                         31
## [113]
          90
               52
                    73
                          8
                               36
                                    48
                                          7
                                             140
                                                   186
                                                         84
                                                              19
                                                                         80
                                                                              52
                                                                    45
## [127] 164
               19
                    53
                          15
                               43
                                   340
                                        133
                                             111
                                                   231
                                                        378
                                                              49
#1(d) Calculate the mean vet.time
mean(vet.time)
## [1] 121.6277
#because it includes censored data, so it is biased
#1(e) Calculate the sum
sum(vet.cns)
## [1] 128
sum(vet.cns*vet.time)
## [1] 15632
#sum(vet.time) represent the total number of occurance
#sum(vet.cns*vet.time) represent the total time of every event to occur
#when multiply by the result will only be the sum of every event
#1(f) run the function
mean(vet.surv)
```

prob 2

```
#2(a) read data and construct object

retire <- read.table("/Users/wangmujie/Desktop/retire.txt", header = TRUE, skip = 2)
ret.surv <- Surv(retire$time,retire$death)

#2(b) function survfit
ret.fit <- survfit(ret.surv ~ 1)

#2(c) plot the result
plot(ret.fit,
    main = "Kaplan-Meier Curves \n for patients lived at a retirement home",
    xlab = "Times(Months)",
    ylab = "S(t)",
    col = "blue")</pre>
```

Kaplan–Meier Curves for patients lived at a retirement home


```
#2(d) generate a summary of the survival function
summary(ret.fit)
```

```
## Call: survfit(formula = ret.surv ~ 1)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 458 1 0.998 0.00218 0.994 1.000
```

##	2	457	2	0.993 0.00377	0.986	1.000
##	6	440	1	0.991 0.00439	0.983	1.000
##	7	438	1	0.989 0.00492	0.979	0.999
##	8	434	2	0.984 0.00586	0.973	0.996
##	9	427	2	0.980 0.00668	0.967	0.993
##	10	424	1	0.977 0.00705	0.964	0.991
##	11	423	1	0.975 0.00740	0.961	0.990
##	12	420	2	0.970 0.00806	0.955	0.986
##	13	415	1	0.968 0.00838	0.952	0.985
##	14	412	1	0.966 0.00868	0.949	0.983
##	15	411	1	0.963 0.00897	0.946	0.981
##	16	408	1	0.961 0.00926	0.943	0.979
##	17	406	1	0.959 0.00953	0.940	0.978
##	18	404	2	0.954 0.01006	0.934	0.974
##	19	399	3	0.947 0.01080	0.926	0.968
##	21	393	1	0.944 0.01104	0.923	0.966
##	22	392	5	0.932 0.01214	0.909	0.956
##	23	386	1	0.930 0.01235	0.906	0.954
##	24	384	1	0.928 0.01255	0.903	0.952
##	26	380	1	0.925 0.01275	0.900	0.950
##	31	367	2	0.920 0.01317	0.895	0.946
##	32	362	1	0.917 0.01338	0.892	0.944
##	33	359	1	0.915 0.01358	0.889	0.942
##	34	356	3	0.907 0.01418	0.880	0.935
##	35	351	2	0.902 0.01456	0.874	0.931
##	36	343	2	0.897 0.01494	0.868	0.927
##	37	337	2	0.891 0.01532	0.862	0.922
##	38	333	2	0.886 0.01569	0.856	0.917
##	39	330	3	0.878 0.01622	0.847	0.910
##	40	327	2	0.873 0.01656	0.841	0.906
##	41	324	3	0.865 0.01705	0.832	0.899
##	42	319	1	0.862 0.01721	0.829	0.896
##	43	317	2	0.856 0.01753	0.823	0.892
##	44	315	2	0.851 0.01784	0.817	0.887
## ##	45 46	312 310	1 2	0.848 0.01799 0.843 0.01828	0.814 0.808	0.884 0.879
##	47	307	1	0.840 0.01843	0.805	0.879
##			1			
##	50 51	304 302	1	0.837 0.01857 0.835 0.01872	0.802 0.799	0.875 0.872
##	52	301	1	0.832 0.01886	0.796	0.870
##	53	298	1	0.829 0.01900	0.793	0.867
##	54	296	2	0.823 0.01928	0.786	0.862
##	56	294	3	0.815 0.01968	0.777	0.854
##	57	291	1	0.812 0.01981	0.774	0.852
##	58	287	1	0.809 0.01995	0.771	0.849
##	59	283	1	0.806 0.02008	0.768	0.847
##	60	280	2	0.801 0.02035	0.762	0.842
##	61	277	2	0.795 0.02061	0.756	0.836
##	63	273	2	0.789 0.02086	0.749	0.831
##	65	270	1	0.786 0.02099	0.746	0.828
##	66	266	1	0.783 0.02112	0.743	0.826
##	67	265	3	0.774 0.02149	0.733	0.818
##	68	261	2	0.768 0.02173	0.727	0.812
##	69	258	2	0.762 0.02197	0.721	0.807

##	70	256	1	0.760 0.02208	0.717	0.804
##	71	254	4	0.748 0.02253	0.705	0.793
##	72	250	2	0.742 0.02274	0.698	0.788
##	73	247	3	0.733 0.02305	0.689	0.779
##	74	244	4	0.721 0.02344	0.676	0.768
##	77	237	1	0.718 0.02354	0.673	0.765
##	79	235	1	0.714 0.02364	0.670	0.762
##	81	232	1	0.711 0.02374	0.666	0.759
##	82	231	2	0.705 0.02393	0.660	0.754
##	83	229	3	0.696 0.02420	0.650	0.745
##	85	226	1	0.693 0.02429	0.647	0.742
##	86	224	1	0.690 0.02438	0.644	0.739
##	89	218	1	0.687 0.02447	0.640	0.736
##	90	215	3	0.677 0.02475	0.630	0.727
##	93	210	1	0.674 0.02484	0.627	0.724
##	96	206	2	0.667 0.02502	0.620	0.718
##	97	204	1	0.664 0.02511	0.617	0.715
##	98	203	1	0.661 0.02520	0.613	0.712
##	100	199	3	0.651 0.02547	0.603	0.703
##	101	195	2	0.644 0.02564	0.596	0.696
##	102	193	1	0.641 0.02572	0.592	0.693
##	104	189	1	0.637 0.02581	0.589	0.690
##	106	186	2	0.631 0.02598	0.582	0.684
##	107	184	1	0.627 0.02607	0.578	0.680
##	108	183	4	0.613 0.02638	0.564	0.667
##	109	179	1	0.610 0.02646	0.560	0.664
##	110	178	2	0.603 0.02660	0.553	0.658
##	111	174	4	0.589 0.02688	0.539	0.644
##	112	170	2	0.582 0.02700	0.532	0.638
##	113	168	3	0.572 0.02718	0.521	0.628
##	114	165	1	0.568 0.02724	0.518	0.624
##	115	164	2	0.562 0.02734	0.510	0.618
##	117	159	1	0.558 0.02740	0.507	0.614
##	118	157	3	0.547 0.02756	0.496	0.604
##	119	154	2	0.540 0.02765	0.489	0.597
##	120	152	2	0.533 0.02774	0.481	0.590
##	122	149	1	0.530 0.02779	0.478	0.587
##	123	147	1	0.526 0.02783	0.474	0.583
##	124	143	1	0.522 0.02788	0.470	0.580
##	125	142	1	0.519 0.02792	0.467	0.576
##	127	140	3	0.507 0.02805	0.455	0.566
##	128	137	2	0.500 0.02813	0.448	0.558
##	129	135	2	0.493 0.02819	0.440	0.551
##	130	133	1	0.489 0.02822	0.437	0.548
##	132	132	1	0.485 0.02825	0.433	0.544
##	135	129	1	0.481 0.02828	0.429	0.540
##	136	126	1	0.478 0.02832	0.425	0.540
##	130	120	1	0.410 0.02032	0.420	0.557

#in the past 50 months, the probability of sample surviving #is between 80.2% and 87.5%