

C. Knoll, X. Jia, R. Heedt

Trajectory Planning for Closed Kinematic Chains Applied to Cooperative Motions in Health Care

Kassel (virtual), 2021-03-17

• Important situation in health care: standing up from sitting position

Source: https://www.robotik-produktion.de/ allgemein/roboter-in-der-pflege/

- Important situation in health care: standing up from sitting position
- Usual strategy: physical support from care giver

Source: https://www.robotik-produktion.de/ allgemein/roboter-in-der-pflege/

- Important situation in health care: standing up from sitting position
- Usual strategy: physical support from care giver
- Challenge: variety of possible motion patterns
- \rightarrow Different stress levels for care giver and receiver
- ullet Optimal motion? o mathematical model necessary

Source: https://www.robotik-produktion.de/ allgemein/roboter-in-der-pflege/

- Important situation in health care: standing up from sitting position
- Usual strategy: physical support from care giver
- Challenge: variety of possible motion patterns
- ightarrow Different stress levels for care giver and receiver
- Optimal motion? → mathematical model necessary
- Simplifications:
 - Humans ê planar kinematic chains

Source: https://www.robotik-produktion.de/ allgemein/roboter-in-der-pflege/

- Important situation in health care: standing up from sitting position
- Usual strategy: physical support from care giver
- Challenge: variety of possible motion patterns
- \rightarrow Different stress levels for care giver and receiver
- Optimal motion? → mathematical model necessary
- Simplifications:

 - Support point: revolute joint at shoulders

Source: https://www.robotik-produktion.de/ allgemein/roboter-in-der-pflege/

- Important situation in health care: standing up from sitting position
- Usual strategy: physical support from care giver
- Challenge: variety of possible motion patterns
- ightarrow Different stress levels for care giver and receiver
- ullet Optimal motion? o mathematical model necessary
- Simplifications:

 - Support point: revolute joint at shoulders
- → Motion planning for **closed kinematic chains** necessary

Outline

- → Modelling of Closed Kinematic Chains
- ☐ Motion Planning for Kinematic Chains
- ☐ Simplification via Quasi-Stationary Trajectory Planing
- ☐ Conclusion and Outlook

Simple Case: Four Bar Linkage

- 4 revolute joints
- 4 links (including basis)
- Closed kinematic chain
- One degree of freedom

Source: https://en.wikipedia.org/wiki/Four-bar_linkage

Simple Case: Four Bar Linkage

- 4 revolute joints
- 4 links (including basis)
- Closed kinematic chain
- One degree of freedom
- Quite "complex" motion of the 2nd link

Simple Case: Four Bar Linkage

- 4 revolute joints
- 4 links (including basis)
- Closed kinematic chain
- One degree of freedom (e.g. θ_1)
- Quite "complex" motion of the 2nd link
- \exists functional dependencies " $\theta_2(\theta_1)$ " and " $\theta_3(\theta_1)$ " in closed form

Source: https://en.wikipedia.org/wiki/Four-bar_linkage

Four Bar Linkage - Modeling Options

Option 1: Use functional dependencies $\theta_2(\theta_1)$, $\theta_3(\theta_1)$

- One independent variable: θ_1
- \Rightarrow Lagrange Eq. of 2nd kind applicable \to ODE System (n=2)

Four Bar Linkage - Modeling Options

Option 1: Use functional dependencies $\theta_2(\theta_1)$, $\theta_3(\theta_1)$

- One independent variable: θ_1
- \Rightarrow Lagrange Eq. of 2nd kind applicable \to ODE System (n=2)

Option 2: Chain closing via virtual spring

- Three independent variable: $\theta_1, \dots, \theta_3$
- \Rightarrow Lagrange Eq. of 2nd kind applicable \rightarrow (stiff) ODE System (n=6)

Four Bar Linkage - Modeling Options

Option 1: Use functional dependencies $\theta_2(\theta_1)$, $\theta_3(\theta_1)$

- One independent variable: θ_1
- \Rightarrow Lagrange Eq. of 2nd kind applicable \to ODE System (n=2)

Option 2: Chain closing via virtual spring

- Three independent variable: $\theta_1, \ldots, \theta_3$
- \Rightarrow Lagrange Eq. of 2nd kind applicable \rightarrow (stiff) ODE System (n=6)

Option 3: Keep algebraic condition $\mathbf{E}_1 - \mathbf{E}_2 \stackrel{!}{=} \mathbf{0}$

- Three independent variables: $\theta_1, \dots, \theta_3$
- ⇒ Lagrange Eq. of 1st kind necessary
- \Rightarrow DAE System, $n_x = 6$, $n_\lambda = 2$, Index: 3

• Algebraic condition: $\mathbf{E}_1(\boldsymbol{\theta}) - \mathbf{E}_2(\boldsymbol{\theta}) =: \mathbf{a}(\boldsymbol{\theta}) \stackrel{!}{=} \mathbf{0}$

• Algebraic condition: $\mathbf{E}_1(\boldsymbol{\theta}) - \mathbf{E}_2(\boldsymbol{\theta}) =: \mathbf{a}(\boldsymbol{\theta}) \stackrel{!}{=} \mathbf{0}$

ullet Jacobian: $\mathbf{A}(oldsymbol{ heta}) := rac{\partial \mathbf{a}}{\partial oldsymbol{ heta}}$

• Algebraic condition: $\mathbf{E}_1(\boldsymbol{\theta}) - \mathbf{E}_2(\boldsymbol{\theta}) =: \mathbf{a}(\boldsymbol{\theta}) \stackrel{!}{=} \mathbf{0}$

 $oldsymbol{eta}$ Jacobian: $oldsymbol{f A}(oldsymbol{ heta}) := rac{\partial {f a}}{\partial oldsymbol{ heta}}$

• Equations of motion:

$$\underbrace{\frac{\mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{K}(\boldsymbol{\theta})}_{=:\mathbf{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}})} = \boldsymbol{\tau} - \mathbf{A}^T(\boldsymbol{\theta})\boldsymbol{\lambda} = \mathbf{H}(\boldsymbol{\theta})\underbrace{(\frac{\boldsymbol{\tau}}{\boldsymbol{\lambda}})}_{\boldsymbol{\mu}},$$

$$\mathbf{a}(\boldsymbol{\theta}) = \mathbf{0}$$

• Algebraic condition: $\mathbf{E}_1(\boldsymbol{\theta}) - \mathbf{E}_2(\boldsymbol{\theta}) =: \mathbf{a}(\boldsymbol{\theta}) \stackrel{!}{=} \mathbf{0}$

ullet Jacobian: $\mathbf{A}(oldsymbol{ heta}) := rac{\partial \mathbf{a}}{\partial oldsymbol{ heta}}$

• Equations of motion:

$$\underbrace{\mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{K}(\boldsymbol{\theta})}_{=:\mathbf{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}})} = \boldsymbol{\tau} - \mathbf{A}^{T}(\boldsymbol{\theta})\boldsymbol{\lambda} = \mathbf{H}(\boldsymbol{\theta})\underbrace{(\overset{\boldsymbol{\tau}}{\boldsymbol{\lambda}})}_{\boldsymbol{\mu}},$$

$$\mathbf{a}(\boldsymbol{\theta}) = \mathbf{0}$$

- State space form of ODE-part: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \boldsymbol{\mu})$, with $\mathbf{x} = \begin{pmatrix} \boldsymbol{\theta} \\ \dot{\boldsymbol{\theta}} \end{pmatrix}$
- Index 3 ⇒ Finding initial values and simulation nontrivial

• Algebraic condition: $\mathbf{E}_1(\boldsymbol{\theta}) - \mathbf{E}_2(\boldsymbol{\theta}) =: \mathbf{a}(\boldsymbol{\theta}) \stackrel{!}{=} \mathbf{0}$

 $oldsymbol{eta}$ Jacobian: $oldsymbol{f A}(oldsymbol{ heta}) := rac{\partial {f a}}{\partial oldsymbol{ heta}}$

• Equations of motion:

$$\underbrace{\mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{C}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{K}(\boldsymbol{\theta})}_{=:\mathbf{L}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \ddot{\boldsymbol{\theta}})} = \boldsymbol{\tau} - \mathbf{A}^T(\boldsymbol{\theta})\boldsymbol{\lambda} = \mathbf{H}(\boldsymbol{\theta})\underbrace{\begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}}_{\boldsymbol{\mu}},$$

$$\mathbf{a}(\boldsymbol{\theta}) = \mathbf{0}$$

- ullet State space form of ODE-part: $\dot{f x}={f f}({f x},m\mu)$, with ${f x}=egin{pmatrix} m heta \ \dot{m heta} \end{pmatrix}$
- Index 3 ⇒ Finding initial values and simulation nontrivial

General formula:

$$F = (N_{\mathsf{links}} - 1) \cdot N_{\mathsf{m.p.}} - \sum_{i=1}^{N_{\mathsf{joints}}} (N_{\mathsf{m.p.}} - f_i)$$
 with $N_{\mathsf{m.p.}}$: motion possibilities

General formula:

$$F = (N_{\mathsf{links}} - 1) \cdot N_{\mathsf{m.p.}} - \sum_{i=1}^{N_{\mathsf{joints}}} (N_{\mathsf{m.p.}} - f_i)$$
 with $N_{\mathsf{m.p.}}$: motion possibilities

Planar linkage with only revolute joints:

$$F = (N_{\text{links}} - 1) \cdot 3 - \sum_{i=1}^{N_{\text{joints}}} (3 - 1) = (N_{\text{links}} - 1) \cdot 3 - N_{\text{joints}} \cdot 2$$

General formula:

$$F = (N_{\mathsf{links}} - 1) \cdot N_{\mathsf{m.p.}} - \sum_{i=1}^{N_{\mathsf{joints}}} (N_{\mathsf{m.p.}} - f_i)$$
 with $N_{\mathsf{m.p.}}$: motion possibilities

Planar linkage with only revolute joints:

$$F = (N_{\text{links}} - 1) \cdot 3 - \sum_{i=1}^{N_{\text{joints}}} (3 - 1) = (N_{\text{links}} - 1) \cdot 3 - N_{\text{joints}} \cdot 2$$

Single-loop closed chain: $N_{\mathsf{links}} = N_{\mathsf{joints}}$

$$F = N_{\mathsf{joints}} - 3$$

General formula:

$$F = (N_{\mathsf{links}} - 1) \cdot N_{\mathsf{m.p.}} - \sum_{i=1}^{N_{\mathsf{joints}}} (N_{\mathsf{m.p.}} - f_i)$$
 with $N_{\mathsf{m.p.}}$: motion possibilities

Planar linkage with only revolute joints:

$$F = (N_{\mathsf{links}} - 1) \cdot 3 - \sum_{\mathsf{i}=\mathsf{i}}^{N_{\mathsf{joints}}} (3 - 1) = (N_{\mathsf{links}} - 1) \cdot 3 - N_{\mathsf{joints}} \cdot 2$$

Single-loop closed chain: $N_{\mathsf{links}} = N_{\mathsf{joints}}$

$$F = N_{\mathsf{joints}} - 3$$

F = 4 - 3

General formula:

$$F = (N_{\mathsf{links}} - 1) \cdot N_{\mathsf{m.p.}} - \sum_{i=1}^{N_{\mathsf{joints}}} (N_{\mathsf{m.p.}} - f_i)$$
 with $N_{\mathsf{m.p.}}$: motion possibilities

Planar linkage with only revolute joints:

$$F = (N_{\mathsf{links}} - 1) \cdot 3 - \sum_{i=1}^{N_{\mathsf{joints}}} (3 - 1) = (N_{\mathsf{links}} - 1) \cdot 3 - N_{\mathsf{joints}} \cdot 2$$

Single-loop closed chain: $N_{\mathrm{links}} = N_{\mathrm{joints}}$

$$F = N_{\mathsf{joints}} - 3$$

Outline

- → Motion Planning for Kinematic Chains
- ☐ Simplification via Quasi-Stationary Trajectory Planing
- ☐ Conclusion and Outlook

• Original DAE model:
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mu)$$
 with $\mathbf{x} = \begin{pmatrix} \theta \\ \dot{\theta} \end{pmatrix}$ and $\mu = \begin{pmatrix} \tau \\ \lambda \end{pmatrix}$

• Original DAE model:
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \boldsymbol{\mu})$$
 with $\mathbf{x} = \begin{pmatrix} \boldsymbol{\theta} \\ \dot{\boldsymbol{\theta}} \end{pmatrix}$ and $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}$

• Euler discretization for N steps k = 0, ..., N-1:

$$\mathbf{x}_{k+1} = \Delta t \cdot \mathbf{f}(\mathbf{x}_k, \boldsymbol{\mu}_k)$$
 with $\mathbf{x}_k := \mathbf{x}(k\Delta t), \ \boldsymbol{\mu}_k := \boldsymbol{\mu}(k\Delta t)$

• Original DAE model:
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mu)$$
 with $\mathbf{x} = \begin{pmatrix} \boldsymbol{\theta} \\ \dot{\boldsymbol{\theta}} \end{pmatrix}$ and $\mu = \begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}$

• Euler discretization for N steps k = 0, ..., N-1:

$$\mathbf{x}_{k+1} = \Delta t \cdot \mathbf{f}(\mathbf{x}_k, \boldsymbol{\mu}_k)$$
 with $\mathbf{x}_k := \mathbf{x}(k\Delta t), \ \boldsymbol{\mu}_k := \boldsymbol{\mu}(k\Delta t)$

Optimization variables: $\mathbf{Z} := (\mathbf{x}_0, oldsymbol{\mu}_0, \dots, oldsymbol{\mu}_{N-1}, \mathbf{x}_N)$

• Original DAE model:
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \boldsymbol{\mu})$$
 with $\mathbf{x} = \begin{pmatrix} \boldsymbol{\theta} \\ \dot{\boldsymbol{\theta}} \end{pmatrix}$ and $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}$

• Euler discretization for N steps k = 0, ..., N-1:

$$\mathbf{x}_{k+1} = \Delta t \cdot \mathbf{f}(\mathbf{x}_k, \boldsymbol{\mu}_k) \text{ with } \mathbf{x}_k := \mathbf{x}(k\Delta t), \ \boldsymbol{\mu}_k := \boldsymbol{\mu}(k\Delta t)$$

- ullet Optimization variables: $\mathbf{Z}:=(\mathbf{x}_0,oldsymbol{\mu}_0,\ldots,oldsymbol{\mu}_{N-1},\mathbf{x}_N)$
- Cost function: $J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k \to \min$

• Original DAE model:
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \boldsymbol{\mu})$$
 with $\mathbf{x} = \begin{pmatrix} \boldsymbol{\theta} \\ \dot{\boldsymbol{\theta}} \end{pmatrix}$ and $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}$

• Euler discretization for N steps k = 0, ..., N-1:

$$\mathbf{x}_{k+1} = \Delta t \cdot \mathbf{f}(\mathbf{x}_k, \boldsymbol{\mu}_k)$$
 with $\mathbf{x}_k := \mathbf{x}(k\Delta t), \ \boldsymbol{\mu}_k := \boldsymbol{\mu}(k\Delta t)$

- Optimization variables: $\mathbf{Z} := (\mathbf{x}_0, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_{N-1}, \mathbf{x}_N)$
- Cost function: $J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k \to \min$
- Constraints:
 - Discretized equations of $\mathbf{c}_{1,k}(\mathbf{Z}) := \Delta t \cdot \mathbf{f}(\mathbf{x}_k, \boldsymbol{\mu}_k) \mathbf{x}_{k+1} \stackrel{!}{=} 0$
 - Chain closing condition: $\mathbf{c}_{2,k}(\mathbf{Z}) := \bar{\mathbf{a}}(\mathbf{x}_k) \stackrel{!}{=} 0$

How big ist the problem (e.g. for N=100)?

$$\dim \mathbf{c}_{1,k} = \dim \mathbf{x} = 2 \cdot \dim \boldsymbol{\theta} = 12$$
,
 $\dim \mathbf{c}_{2,k} = \dim \mathbf{a} = 2$

How big ist the problem (e. g. for N=100)?

$$\dim \mathbf{c}_{1,k} = \dim \mathbf{x} = 2 \cdot \dim \boldsymbol{\theta} = 12,$$

 $\dim \mathbf{c}_{2,k} = \dim \mathbf{a} = 2$

Number of constraints: $N_{\sf c} = N \cdot \dim \mathbf{c}_{1,k} + N \cdot \dim \mathbf{c}_{2,k} = 1400$

How big ist the problem (e.g. for N=100)?

 $\dim \mathbf{c}_{1,k} = \dim \mathbf{x} = 2 \cdot \dim \boldsymbol{\theta} = 12$,

 $\dim \mathbf{c}_{2,k} = \dim \mathbf{a} = 2$

Number of constraints: $N_c = N \cdot \dim \mathbf{c}_{1,k} + N \cdot \dim \mathbf{c}_{2,k} = 1400$

Number of variables: $\dim \mathbf{Z} = (N+1) \cdot \dim \mathbf{x} + N \cdot \dim \boldsymbol{\mu} = 2012$

How big ist the problem (e. g. for N = 100)?

$$\dim \mathbf{c}_{1,k} = \dim \mathbf{x} = 2 \cdot \dim \boldsymbol{\theta} = 12$$
,

 $\dim \mathbf{c}_{2,k} = \dim \mathbf{a} = 2$

Number of constraints: $N_c = N \cdot \dim \mathbf{c}_{1,k} + N \cdot \dim \mathbf{c}_{2,k} = 1400$

Number of variables:
$$\dim \mathbf{Z} = (N+1) \cdot \dim \mathbf{x} + N \cdot \underbrace{\dim \boldsymbol{\mu}}_{} = 2012$$

6+2

Calculation time:
$$t_{\sf calc} \approx 1 \, {\rm min} \dots 1 \, {\rm h}$$

(Setup: CasADi, IPOPT, PC@3.2GHz)

Outline

- ☑ Motivation
- ☑ Motion Planning for Kinematic Chains
- → Simplification via Quasi-Stationary Trajectory Planing
- ☐ Conclusion and Outlook

Reconsidering the Problem

Equations of motion:

$$\mathbf{M}(\theta)\ddot{\theta} + \mathbf{C}(\theta,\dot{\theta}) + \mathbf{K}(\theta) = \boldsymbol{\tau} - \mathbf{A}^T(\theta)\boldsymbol{\lambda} = \mathbf{H}(\theta)\underbrace{(\frac{\boldsymbol{\tau}}{\boldsymbol{\lambda}})}_{\mu},$$

$$\mathbf{a}(\theta) = \mathbf{0}$$
(*)

Reconsidering the Problem

Equations of motion (assuming slow motion):

$$\underbrace{\mathbf{M}(\theta)\ddot{\theta} + \mathbf{C}(\theta, \dot{\theta})}_{\approx \mathbf{0}} + \mathbf{K}(\theta) = \boldsymbol{\tau} - \mathbf{A}^{T}(\theta)\boldsymbol{\lambda} = \mathbf{H}(\theta)\underbrace{\begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\lambda} \end{pmatrix}}_{\mu},$$

$$\mathbf{a}(\theta) = \mathbf{0}$$
(*)

Reconsidering the Problem

Equations of motion (assuming slow motion):

$$\mathbf{K}(m{ heta}) = \mathbf{H}(m{ heta}) m{\mu},$$

$$\mathbf{a}(m{ heta}) = \mathbf{0}$$

New (smaller) problem:

Find equilibrium configuration heta and load $\mu=inom{ au}{\lambda}$ such that (*) is satisfied.

Reconsidering the Problem

Equations of motion (assuming slow motion):

$$\mathbf{K}(m{ heta}) = \mathbf{H}(m{ heta}) m{\mu},$$

$$\mathbf{a}(m{ heta}) = \mathbf{0}$$

New (smaller) problem:

Find equilibrium configuration heta and load $\mu=inom{ au}{\lambda}$ such that (*) is satisfied.

Idea: patch neighboring equilibria together \to definition of geometric path \to choose time scaling $t\mapsto \theta(t)$ (additional design freedom)

Original cost function

$$J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k$$

constraints

$$\mathbf{c}_{1,k}, \mathbf{c}_{2,k}$$
 for $k=1,\ldots,N$

Original cost function

$$J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k$$

New cost function

$$\bar{J}_k(\bar{\mathbf{Z}}_k, \bar{\mathbf{P}}_k) = \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k + \sigma(\bar{\mathbf{P}}_k)$$

constraints

$$\mathbf{c}_{1,k}, \mathbf{c}_{2,k}$$
 for $k = 1, \dots, N$

constraints

$$(ar{\mathbf{c}}_{1,k},ar{\mathbf{c}}_{2,k},ar{\mathbf{c}}_{3,k}(ar{\mathbf{P}}_k))$$
 for k fixed

Original cost function

$$J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k$$

New cost function

$$\bar{J}_k(\bar{\mathbf{Z}}_k, \bar{\mathbf{P}}_k) = \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k + \sigma(\bar{\mathbf{P}}_k)$$

with $\bar{\mathbf{Z}}_k := (\mathbf{x}_k, \boldsymbol{\mu}_k)$, dim $\bar{\mathbf{Z}}_k = 14$

and parameters $ar{\mathbf{P}}_k := (y_{\mathsf{E},k}, ar{\mathbf{Z}}_{k-1}, ar{\mathbf{Z}}_{k-2})$

constraints

$$\mathbf{c}_{1,k}, \mathbf{c}_{2,k}$$
 for $k=1,\ldots,N$

constraints

$$(ar{\mathbf{c}}_{1,k},ar{\mathbf{c}}_{2,k},ar{\mathbf{c}}_{3,k}(ar{\mathbf{P}}_k))$$

for k fixed

Original cost function

$$J(\mathbf{Z}) = \sum_{k=0}^{N-1} \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k + \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k$$

New cost function

$$\bar{J}_k(\bar{\mathbf{Z}}_k, \bar{\mathbf{P}}_k) = \boldsymbol{\mu}_k^T \mathbf{R} \boldsymbol{\mu}_k + \sigma(\bar{\mathbf{P}}_k)$$

with $\bar{\mathbf{Z}}_k := (\mathbf{x}_k, \boldsymbol{\mu}_k)$, $\dim \bar{\mathbf{Z}}_k = 14$

and parameters $ar{\mathbf{P}}_k := (y_{\mathsf{E},k}, ar{\mathbf{Z}}_{k-1}, ar{\mathbf{Z}}_{k-2})$

ightarrow For each k increase $y_{\sf E}$ ("standing up") via $ar{f c}_{3,k}$ and penalize changes in $ar{f Z}$

constraints

$$\mathbf{c}_{1,k}, \mathbf{c}_{2,k}$$
 for $k=1,\dots,N$

constraints

$$(\bar{\mathbf{c}}_{1,k},\bar{\mathbf{c}}_{2,k},\bar{\mathbf{c}}_{3,k}(\bar{\mathbf{P}}_k))$$

for k fixed

For each $k = 0, \ldots, N$:

- (2) Solve small nonlinear optimization problem $\bar{J}_k(\bar{\mathbf{Z}}_k, \bar{\mathbf{P}}_k) \to \min \mathbf{s.t.} \ \bar{\mathbf{c}}_{i,k}$

For each $k = 0, \ldots, N$:

- 2 Solve small nonlinear optimization problem $\bar{J}_k(\bar{\mathbf{Z}}_k,\bar{\mathbf{P}}_k) o \min \mathbf{s.t.} \; \bar{\mathbf{c}}_{i,k}$
- 3 Calculate $ar{\mathbf{P}}_{k+1}$ and $ar{\mathbf{c}}_{i,k+1}$ according to results
- $\boxed{4} \quad k := k + 1 \to \boxed{1}$

For each $k = 0, \ldots, N$:

- 1 Choose y_{E} from $\sum_{1.0}^{1.2} \frac{1}{1.0}$
- 2 Solve small nonlinear optimization problem $\bar{J}_k(\bar{\mathbf{Z}}_k, \bar{\mathbf{P}}_k) \to \min \mathbf{s.t.} \; \bar{\mathbf{c}}_{i,k}$
- 3 Calculate $ar{\mathbf{P}}_{k+1}$ and $ar{\mathbf{c}}_{i,k+1}$ according to results
- (4) $k := k + 1 \rightarrow (1)$

Result: geometric path $k \mapsto \theta_k$, static torques $k \mapsto \mu_k$

For each $k = 0, \ldots, N$:

- (5) Choose time scaling $t \mapsto k(t)$
- 6 Calculate $t \mapsto (\boldsymbol{\theta}(t), \dot{\boldsymbol{\theta}}(t), \ddot{\boldsymbol{\theta}}(t))$ (via interpolation)

- (2) Solve small nonlinear optimization problem $\bar{J}_k(\bar{\mathbf{Z}}_k,\bar{\mathbf{P}}_k) o \min \mathsf{s.t.} \; \bar{\mathbf{c}}_{i,k}$
- (3) Calculate $ar{\mathbf{P}}_{k+1}$ and $ar{\mathbf{c}}_{i,k+1}$ according to results
- (4) $k := k + 1 \rightarrow (1)$

Result: geometric path $k\mapsto \theta_k$, static torques $k\mapsto \mu_k$

For each $k = 0, \ldots, N$:

- (2) Solve small nonlinear optimization problem $\bar{J}_k(\bar{\mathbf{Z}}_k,\bar{\mathbf{P}}_k) o \min \mathsf{s.t.} \; \bar{\mathbf{c}}_{i,k}$
- (3) Calculate $ar{\mathbf{P}}_{k+1}$ and $ar{\mathbf{c}}_{i,k+1}$ according to results
- $4) \quad k := k + 1 \to 1$

Result: geometric path $k \mapsto \theta_k$, static torques $k \mapsto \mu_k$

- (5) Choose time scaling $t \mapsto k(t)$
- 6 Calculate $t\mapsto (\pmb{\theta}(t),\dot{\pmb{\theta}}(t),\ddot{\pmb{\theta}}(t))$ (via interpolation)
- 7 Calculate actual *dynamic* torques

$$\mu^{\star}(t) = \arg\min_{\mu} \mu^{T} \mathbf{R} \mu$$

s.t.

$$\mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{C}(\boldsymbol{\theta},\dot{\boldsymbol{\theta}}) + \mathbf{K}(\boldsymbol{\theta}) = \mathbf{H}(\boldsymbol{\theta})\boldsymbol{\mu}$$

for each desired time step t

Results

Calculation time:

"1 big promblem (N=100)": $t_{\sf calc} \approx 1 \, {
m min} \dots 1 \, {
m h}$ (reminder)

Results

Calculation time:

"1 big promblem (N=100)": $t_{\sf calc} \approx 1 \, {
m min} \dots 1 \, {
m h}$ (reminder)

N=100 "small promblems": $t_{\mathsf{calc}} \approx 0.5\,\mathrm{s}\dots 1\,\mathrm{s}$

Results

Calculation time:

"1 big promblem (N=100)": $t_{\mathsf{calc}} \approx 1 \, \mathrm{min} \dots 1 \, \mathrm{h}$ (reminder)

N=100 "small promblems": $t_{\mathsf{calc}} \approx 0.5\,\mathrm{s}\dots 1\,\mathrm{s}$

Numerical Results:

See also: https://github.com/TUD-RST/MPCKC

Outline

- ☑ Motion Planning for Kinematic Chains
- ☑ Simplification via Quasi-Stationary Trajectory Planing
- → Conclusion and Outlook

Conclusion and Outlook

Summary:

- Modelling of closed kinematic chains via Lagrange Eq. of 1st kind
- Formulation as optimal control problem
- Simplification via sequential solution of quasi-stationary auxiliary problems
 - $\rightarrow \approx 1000 \times \text{speedup}$
- Python based software frame work: https://github.com/TUD-RST/MPCKC

Conclusion and Outlook

Summary:

- Modelling of closed kinematic chains via Lagrange Eq. of 1st kind
- Formulation as optimal control problem
- Simplification via sequential solution of quasi-stationary auxiliary problems
 - $\rightarrow \approx 1000 \times \text{speedup}$
- Python based software frame work: https://github.com/TUD-RST/MPCKC

Outlook:

- Parameter studies (lengths, masses, \mathbf{R}_{ii})
- More realistic humans (e.g. with arms)
- Consideration of tilting (ZMP)

