ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.3.1 Получение и измерение вакуума

> Серебренников Даниил Группа Б02-826

Цель работы: 1) измеренеи объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным. По степени разряжения вакуумные установки принято делить на три класса: 1) низковакуумные — до 10^{-2} - 10^{-3} торр; 2) высоковакуумные — 10^{-4} - 10^{-7} торр; 3) установки сверхвысокого вакуума — 10^{-8} - 10^{-11} торр. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул газа оказывается сравнима с размерами установки; сверхвысокий вакуум характерен крайней важностью процессов адсорбции частиц на поверхности вакуумной камеры.

1 Теоретическая часть

1.1 Процесс откачки

Производительность насоса определяется скоростью откачки W (π /c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос», к которому, кроме самого насоса, отнесем трубопроводы и краны, через которые производится откачка нашего объема. Обозначим через Q_d количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через Q_i — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть Q_n — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа Q_d , Q_i и Q_n в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt. (1)$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление P_{pr})

$$\frac{dP}{dt} = 0, (2)$$

$$W = \frac{\sum Q_i}{P_{pr}}. (3)$$

Обычно Q_i постоянно, а Q_n и Q_d слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки W, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P = P_o \exp\left(-\frac{W}{V}t\right) + P_{pr}.\tag{4}$$

1.2 Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном давлении и даже при понижении давления до форвакуумного длина свободного пробега меньше диаметра трубок и течение откачиваемого газа определяется его вязкостью, т. е. вза-имодействием его молекул. При переходе к высокому вакууму картина меняется. Столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками. Течение газа в трубе напоминает в этих условиях диффузию газа из области больших концентраций в области, где концентрация ниже, причем роль длины свободного пробега играет ширина трубы. Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_2 - P_1}{L}.$$
 (5)

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P_1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении $P=P_2$. Пропускная способность трубы

$$C_{tr} = \left(\frac{dV}{dt}\right)_{tr} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}.$$
 (6)

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

При расчете вакуумных систем нужно принимать во внимание также пропускную способность отверстий, например, в кранах. Для диффузионного насоса можно считать, что каждая молекула воздуха, попавшая в кольцевой зазор между соплом и стенками насоса, увлекается струей пара и не возвращается обратно в откачиваемый объем. Скорость откачки такого насоса можно считать равной пропускной способности отверстия с площадью, равной площади кольцевого зазора, т. е. насос качает как кольцевой зазор, с одной стороны которого расположен откачиваемый объем, а с другой — пустота.

2 Модель экспермиента

1. Определим объемы форвакуумной и высоковакуумной частей установки. Сначала впустим атмосферу в установку. Запрем воздух при комнатных условиях в капилляре между кранами 5 и 6. После этого откачаем воздух из оставшейся части установки (сделав это в два этапа - сначала насос должен откачать сам себя, а только потом - установку). После этого мы сначала высвободим запертый воздух только в ФВ часть, а затем добавим к ней и ВВ. Тогда записав уравнение Менделеева-Клапейрона и зная объем капилляра, мы найдем объемы соответствующих частей установки:

$$P_0 V_0 = P_v (V_f + V_v), (7)$$

где P_0 – атмосферное давление; V_0 – объем капилляра и кранов 5 и 6; P_v – установившееся давление; V_f и V_v – соотвественно объемы форвауумной и высоковакуумной частей.

- 2. Для измерения скорости откачки диффузионного насоса измерим улучшение вакуума во времени. Построим график зависимости $-\ln\frac{P-P_{pr}}{P_0}$ от t. Из формулы (4) следует, что наклон, построенной кривой, есть W/V
- 3. Откроем кран 6 и создадим исскуственную течь через капилляр. Рассчитаем производительность насоса по различию P_{pr} и P_u , где P_u установившееся давление в высоковакуумной части с искусственной течью. В условиях высокого вакуума справдлива формула (5), где положим $P_1 := P_u$, P_2 давление в форвакуумной части.

3 Экспериментальные данные

В таблице 1 приведены параметры установки и случайные ошибки измерения величин, определяемых в ходе эксперимента.

Таблица 1: Некоторые параметры установки и ошибки измерений.

	$ ho$, k $\Gamma/{ m M}^3$	Δh , mm	V_0 , cm ³	P_0 , Topp	$P_{pr}, 10^{-6} \text{ ropp}$
Величина	885,0	124,0	63	731	63
Погрешность	0,0	0,1	3	0,0	0,0
ε , %	0	0,1	4,8	0	0

В таблице 2 представлены результаты измерений и расчетов при измерении объемов частей экспериментальной установки. В таблице 3 приведены исходные данные (результаты измерений) для построения графика (рис. 1).

Таблица 2: Результаты измерений и вычислений.

	Δh_f , MM	Δh_v , mm	V_f , M^3	$V_f + V_v$, m ³	V_v , M^3	σ_V , 3
1	172,0	123,0	0,0419	$0,\!0586$	0,0167	0,0008
$\boxed{2}$	172,0	124,0	0,0419	0,0582	0,0162	0,0008

Рис. 1: Зависимость $\ln{(P-P_{pr})/P_0}$ от t.

Таблица 3: Результаты измерений.

t, c	$P, 10^{-6} \text{ Topp}$	$\ln\left(P - P_{pr}\right)/P_0$
0	740	13,89
1	650	14,03
3	450	14,45
4	340	14,79
5	290	14,98
7	220	15,35
8	170	15,74
11	140	16,07
13	120	16,37
17	100	16,80
23	93	17,01
25	91	17,08
28	89	17,15
30	87	17,23
36	85	17,32
38	84	17,37
40	83	17,41
45	81	17,52
53	79	17,64
63	77	17,77
74	75	17,93
91	73	18,11
111	71	18,33
138	69	18,62
169	67	19,02
204	65	19,72

Кривую, представленную на рис. 1, методом наименьших квадратов аппроксимируем двумя прямыми "А"и "В"в компьютерной программе «OriginPro». Наклоны прямых представлены в таблице 4.

Таблица 4: Результаты вычислений.

	$W/V, c^{-1}$	$\sigma_{W/V}, c^{-1}$	W, л/с	σ_W , л/с	ε_W , %
ſ	0,198	0,008	3,31	0,13	3,9
	0,0140	0,0006	0,23	0,01	4,3

Значения высокого вакуума торр в высоковакуумной части и низкого вакуума торр в форвакуумной части установки: $P_1=1,6\cdot 10^{-4}$ и $P_2=1,9\cdot 10^{-2}$. В нашем случае характерные параметры трубы и условия экспермиента – L=70 мм, r=0,9 мм, T=293 К, $\mu=29$ г/моль. Тогда при численном расчете W по формуле (5) получим:

$$W = 0.25 \, \pi/c$$

4 Обсуждение результатов

Итак, в ходе данной лабораторной работы нам удалось получить высокий вакуум $(P=6,3\cdot 10^{-5}\ {\rm торp})$ с помощью диффузионного и форвакуумного насосов. Рассчитали скорость откачки насоса двумя независимыми способами: по улучшению вакуума и по скорости течения газа через трубу в условиях высокого вакуума. Результаты отличаются менее чем на 5%, поэтому можно утверждать, что они совпадают в пределах погрешности. Стоит отметить, что построенный график (рис. 1) оказался не сплошной прямой, как можно было предположить, а представим в виде двух прямых с сильно отличающимися углами наклона (более чем на 90%. Естественно, что это связано с падением концентрации молекул, а это в свою очередь влияет на скорость откачки. Именно поэтому практический интерес представляет прямая "В".

Вакуум необходим для получения тонких магнитных пленок. Важнейшей областью применения магнитных пленок является их использование для записи и хранения информации в запоминающих устройствах. Для увеличения плотности записи в магнитных пленках намагниченность ориентируют перпендикулярно плоскости пленок. Перпендикулярная ориентация намагниченности в тонких пленках энергетически невыгодна. Сильная перпендикулярная анизотропия в магнитных пленках возможна только при определенных условиях: толщина магнитного материала должна быть не выше критической и магнитный материал должен быть ограничен слоями некоторых тяжелых металлов (Pd, Pt, Ru). Именно граничные слои наводят перпендикулярную анизотропию во всей магнитной пленке. Напыление магнитного материала и тяжелых металлов, например, кобальта (Co) и (Pd) на кремниевую подложку (SiO_2) возможно только в сверхвысоком вакууме.

5 Выводы

- 1. Получили высокий вакуум: $P = 6, 3 \cdot 10^{-5}$ торр.
- 2. По улучшению вакуума определили скорость откачки насоса: $W=(0,23\pm0,01)~\pi/\mathrm{c}.$
- 3. По скорости течения газа в трубе в высоком вакууме определили скорость откачки насоса: $W=0,25~\mathrm{n/c}$.