Codes and number systems

Introduction to Computer Yung-Yu Chuang

with slides by Nisan & Schocken (www.nand2tetris.org) and Harris & Harris (DDCA)

Coding

 Assume that you want to communicate with your friend with a flashlight in a night, what will you do?

light painting? What's the problem?

Solution #1

• B: 2 blinks

• C: 3 blinks

:

• Z: 26 blinks

What's the problem?

• How are you? = 131 blinks

Solution #2: Morse code

			I		
A	-	J		S	•••
В		K		T	-
С		L		U	
D		M		V	•••-
Е	•	N		W	•
F		О		X	
G		P		Y	
Н	••••	Q		Z	
I	••	R	•		

Hello

Lookup

• It is easy to translate into Morse code than reverse. Why?

Lookup

••	I	 N
	A	 M

•	•—••				
•••	S		D		
	U		K		
•	R		G		
	W		O		

••••	Н	 В
•••=	V	 X
••	F	 С
	Ü	 Y
	L	 Z
•	Ä	 Q
	P	 Ö
	J	 Ş

Number of Dots and Dashes	Number of Code
1	2
2	4
3	8
4	16
T	10

number of codes = $2^{\text{number of dots and dashes}}$

Lookup

Useful for checking the correctness/redundency

Braille

- 1 0 0 4
- 2 O O 5
- 3 O O 6

Braille

::	: • : :	•	: • : •		: • : •	 . •	: •
•::	••	• · : •	• • • •	• •	• • · ·	• · : •	· •
•:	• :	••	••	• •	•••	••	•
•:	• •	•••	•••	• •	• •	• •	• •
:: •:	· • · ·	•			• •	••	
• :	• •	• •	• •	• •	• •	• •	• • • •
•	• •	••	• •	• •	• •	••	•
•	• •	• •		• •	• •	• •	::

What's common in these codes?

• They are both binary codes.

Binary representations

- Electronic Implementation
- Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Number systems

Number Systems

• Decimal numbers

• Binary numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <13>

Number Systems

Decimal numbers

$$5374_{10} = 5?10^3 + 3?10^2 + 7?10^1 + 4?10^0$$
three thousands tens ones

• Binary numbers

$$\frac{\frac{80}{8} + \frac{8}{8} + \frac{8}{8} + \frac{1}{8}}{\frac{80}{8} + \frac{8}{8} + \frac{1}{8}} = \frac{1}{8} + \frac{1}{8} +$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <14>

Binary numbers

- Digits are 1 and 0 (a binary digit is called a bit)
 - 1 = true
 - 0 = false
- MSB -most significant bit
- LSB -least significant bit
- Bit numbering:

MSB	LSB
1011001010011	100
15	0

• A bit string could have different interpretations

Powers of Two

- $2^8 =$
- $2^{10} =$
- $2^{11} =$
- $2^{12} =$
- $2^{13} =$
- $2^{14} =$
- $2^{15} =$

Powers of Two

•
$$2^0 = 1$$

•
$$2^8 = 256$$

•
$$2^1 = 2$$

•
$$2^9 = 512$$

•
$$2^2 = 4$$

•
$$2^{10} = 1024$$

•
$$2^3 = 8$$

•
$$2^{11} = 2048$$

•
$$2^4 = 16$$

•
$$2^{12} = 4096$$

•
$$2^5 = 32$$

•
$$2^{13} = 8192$$

•
$$2^6 = 64$$

•
$$2^{14} = 16384$$

•
$$2^7 = 128$$

•
$$2^6 = 64$$

• $2^7 = 128$
• $2^{14} = 16384$
• $2^{15} = 32768$

• Handy to memorize up to 29

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <17>

Translating binary to decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$dec = (D_{n\text{-}1} \times 2^{n\text{-}1}) + (D_{n\text{-}2} \times 2^{n\text{-}2}) + ... + (D_1 \times 2^1) + (D_0 \times 2^0)$$

D = binary digit

binary 00001001 = decimal 9:

$$(1 \times 2^3) + (1 \times 2^0) = 9$$

Unsigned binary integers

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2:

1	1	1	1	1	1	1	1
27		25					

Table 1-3 Binary Bit Position Values.

Every binary number is a sum of powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	28	256
21	2	29	512
22	4	2 ¹⁰	1024
2 ³	8	211	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	215	32768

Translating unsigned decimal to binary

• Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1 / 2	0	1

$$37 = 100101$$

Number Conversion

- Decimal to binary conversion:
 - Convert 100112 to decimal
- Decimal to binary conversion:
 - Convert 47₁₀ to binary

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <21>

M ZERO

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$
- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <22>

M ZERO TO ONE

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:
- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^N 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- *N*-bit binary number
 - How many values? 2^N
 - Range: $[0, 2^N 1]$
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: [0, 7] = [000₂ to 111₂]

Integer storage sizes

Standard sizes:

FROM ZERO

byte 8
word 16
doubleword 32
quadword 64

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low-high)	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to (2 ¹⁶ – 1)
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

Practice: What is the largest unsigned integer that may be stored in 20 bits?

Bits, Bytes, Nibbles...

• Bits

10010110 most least significant significant bit bit

• Bytes & Nibbles

10010110 nibble

Bytes

CEBF9AD7
most least significant significa

significant byte

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <26>

byte

Large Powers of Two

• $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$

• $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$

• $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2²⁴?

 How many values can a 32-bit variable represent?

FROM ZERO TO

Estimating Powers of Two

• What is the value of 2²⁴?

 $-2^4 \times 2^{20} \approx 16$ million

How many values can a 32-bit variable represent?

 $-2^2 \times 2^{30} \approx 4$ billion

© Digital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 <29>

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
C	12	
D	13	
Е	14	
F	15	

Large measurements

- Kilobyte (KB), 2¹⁰ bytes
- Megabyte (MB), 2²⁰ bytes
- Gigabyte (GB), 230 bytes
- Terabyte (TB), 2⁴⁰ bytes
- Petabyte
- Exabyte
- Zettabyte
- Yottabyte

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <33>

Translating binary to hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 0001011010101011110010100 to hexadecimal:

1	6	A	7	9	4
0001	0110	1010	0111	1001	0100

© Digital Design and Computer Architecture, 2nd Edition, 2012

Converting hexadecimal to decimal

 Multiply each digit by its corresponding power of 16:

$$dec = (D_3 \times 16^3) + (D_2 \times 16^2) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

- Hex 1234 equals $(1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^0)$, or decimal 4,660.
- Hex 3BA4 equals $(3 \times 16^3) + (11 * 16^2) + (10 \times 16^1) + (4 \times 16^0)$, or decimal 15,268.

Hexadecima Hexadecima

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 11112
- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $16^{2} \times 4 + 16^{1} \times 10 + 16^{0} \times 15 = 1199_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <37>

Converting decimal to hexadecimal

Division	Quotient	Remainder
422 / 16	26	6
26 / 16	1	A
1 / 16	0	1

decimal 422 = 1A6 hexadecimal

Powers of 16

Used when calculating hexadecimal values up to 8 digits long:

16 ⁿ	Decimal Value	16 ⁿ	Decimal Value
16 ⁰	1	16 ⁴	65,536
16 ¹	16	16 ⁵	1,048,576
16 ²	256	16 ⁶	16,777,216
16 ³	4096	16 ⁷	268,435,456

Addition

• Decimal

• Binary

Binary Addition Examples

 Add the following 4-bit binary numbers

Add the following
 4-bit binary
 numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <41>

Binary Addition Examples

Add the following
 4-bit binary
 numbers

• Add the following 4-bit binary numbers

Overflow!

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <42>

Overflow

• Overflow: when result is too big to fit in the available number of bits

• See previous example of 11 + 6

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

		1	1
36	28	28	6A
42	45	58	4B
78	6D	80	B5

Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <45>

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A: \{a_{N-1}, a_{N-2}, \dots, a_2, a_1, a_0\}$
 - Negative number: sign bit = 1 $A = (-1)^{a_{n-1}} \sum_{i=1}^{n-2} a_i 2^i$
- Example, 4-bit sign/mag representations of \pm 6:
 - +6 =
 - **-** 6 =
- Range of an *N*-bit sign/magnitude number:

Signed integers

The highest bit indicates the sign. 1 = negative, 0 = positive

If the highest digit of a hexadecmal integer is > 7, the value is negative. Examples: 8A, C5, A2, 9D

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$
 - Negative number: sign bit = 1 $A = (-1)^{a_{n-1}} \sum_{i=1}^{n-2} a_i 2^i$
- Example, 4-bit sign/mag representations of \pm 6:
 - +6 = 0110
 - -6 = 1110
- Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

• Problems:

- Addition doesn't work, for example -6 + 6:

1110

+0110

10100 (wrong!)

– Two representations of $0 (\pm 0)$:

1000

0000

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <49>

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <50>

Two's complement notation

Steps:

- Complement (reverse) each bit
- Add 1

Starting value	0000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 11111111 = 00000000

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

ROM ZERO

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$\frac{2. + 1}{1101} = -3_{10}$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <53>

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001₂?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <54>

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001
 - $\frac{2. + 1}{1010_2 = -6_{10}}$
- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110
 - $\frac{2. + 1}{0111_2} = 7_{10}$, so $1001_2 = -7_{10}$

- When subtracting A B, convert B to its two's complement
- Add A to (–B)

Advantages for 2's complement:

- No two 0's
- Sign bit
- Remove the need for separate circuits for add and sub

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <57>

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

111

0110

+ 1010

10000

• Add -2 + 3 using two's complement numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <58>

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

M ZERO TO

Sign-Extension

- Sign bit copied to msb's
- Number value is same
- Example 1:
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011
- Example 2:
 - 4-bit representation of -5 = 1011
 - 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers
- Example 1:

4-bit value =

 $0011_2 = 3_{10}$

- 8-bit zero-extended value: $00000011 = 3_{10}$

• Example 2:

4-bit value =

 $1011 = -5_{10}$

- 8-bit zero-extended value: $00001011 = 11_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 <61>

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <62>

Ranges of signed integers

The highest bit is reserved for the sign. This limits the range:

Storage Type	Range (low-high)	Powers of 2		
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$		
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$		
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$		
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63}-1)$		

Character

- Character sets
 - Standard ASCII (0 127)
 - Extended ASCII (0 255)
 - ANSI (0 255)
 - Unicode (0 65,535)
- Null-terminated String
 - Array of characters followed by a null byte
- Using the ASCII table
 - back inside cover of book

DECIMAL VALUE	•	0	16	32	48	64	80	96	112
•	HEXA DECIMAL VALUE	0	1	2	3	4	5	6	7
0	0	BLANK (NULL)	4	BLANK (SPACE)	0	(a)	P	4	p
1	1	\odot	4	!	1	A	Q	a	q
2	2	•	1	"	2	В	R	b	r
3	3	•	!!	#	3	C	S	c	s
4	4	*	TP	\$	4	D	T	d	t
5	5	*	§	%	5	E	U	e	u
6	6	٨	-	&	6	F	V	f	v
7	7	•	1	′	7	G	W	g	w
8	8	• 1	1	(8	Н	X	h	X
9	9	0	1)	9	I	Y	i	у
10	Α	0	\rightarrow	*	:	J	Z	j	z
11	В	Q	←	+	;	K	[k	{
12	С	Q	$ \sqsubseteq $,	<	L	/	1	1
13	D	1	\longleftrightarrow	_	=	M]	m	}
14	Е	Ą	•		>	N	^	n	\sim
15	F	⋫	•	/	?	O	_	О	Δ

DECIMAL VALUE	•	128	144	160	176	192	208	224	240
	HEXA DECIMAL VALUE	8	9	Α	В	С	D	Е	F
0	0	Ç	É	á				∞	\equiv
1	1	ü	æ	í	**		\vdash	β	\pm
2	2	é	Æ	ó	***	-		Γ	\geq
3	3	â	ô	ú		F		π	\leq
4	4	ä	ö	ñ	\exists		E	Σ	ſ
5	5	à	ò	Ñ	\exists	\mp	F	σ	J
6	6	å	û	<u>a</u>	H			y	÷
7	7	Ç	ù	ō		ΠH		τ	\approx
8	8	ê	ÿ	i	F		H	φ	0
9	9	ë	Ö	\vdash	R			θ	•
10	Α	è	Ü	\neg		JL		Ω	•
11	В	ï	Ċ	1/2				δ	\
12	С	î	£	1/4		F		∞	n
13	D	ì	¥	i				ф.	2
14	Е	Ä	R	<<		==		\in	ı
15	F	Å	£	>>	\neg	1		\cap	BLANK

Representing Instructions

• Same for NT and for Linux

• NT / Linux not fully binary

compatible


```
int sum(int x, int y)
                              Alpha sum
                                          Sun sum
                                                     PC sum
   return x+y;
                                            81
                                                       55
                                00
                                00
                                            C3
                                                       89
                                30
                                            E0
                                                       E5
- For this example, Alpha &
                                42
                                            08
                                                       8в
 Sun use two 4-byte
                                01
                                            90
                                                       45
  instructions
                                80
                                                       0C
                                FA
                                                       03
   • Use differing numbers of
                                            09
                                                       45
                                6B
     instructions in other cases
                                                       80
- PC uses 7 instructions
                                                       89
 with lengths 1, 2, and 3
                                                       EC
 bytes
                                                       5D
                                                       C3
```

Different machines use totally different instructions and encodings