Electricity is a broad concept that includes several important terms and concepts, including **voltage**, **current (amperage)**, **resistance**, and **power**. These terms describe different aspects of how electricity behaves and interacts with materials. Let's break it down:

Key Terms in Electricity

1. Voltage (V)

- What it is: Voltage is the electrical "pressure" or "force" that pushes electrons through a conductor.
- Unit: Volts (V)
- Analogy: Think of voltage as the pressure in a water pipe that pushes water through the pipe.
- **Role:** Without voltage, current cannot flow.

2. Current (Amperage) (I)

- What it is: Current is the flow of electric charge (electrons) through a conductor.
- Unit: Amperes (A), or simply amps
- Analogy: Current is like the flow rate of water through a pipe, measured in liters per second.
- Role: Current is what powers devices. Too much current can cause damage or harm.

3. Resistance (R)

- **What it is:** Resistance is the opposition to the flow of current in a material.
- \circ Unit: Ohms (Ω)
- Analogy: Resistance is like the size or friction inside a water pipe that restricts water flow.
- **Role:** Resistance controls how much current flows for a given voltage. Insulators have high resistance, while conductors have low resistance.

4. Power (P)

- What it is: Power is the rate at which electrical energy is consumed or produced.
- Unit: Watts (W)
- Formula: Power = Voltage × Current (P = V × I)
- Analogy: Power is the total amount of water delivered by the pipe per second.
- o **Role:** Power tells you how much energy an electrical device uses or generates.

5. **Energy (E)**

- **What it is:** Energy is the total amount of electrical work done over time.
- Unit: Joules (J) or Watt-hours (Wh)
- Formula: Energy = Power × Time
- **Role:** Energy indicates how much electricity is consumed over time, like the kilowatt-hours (kWh) on your electricity bill.

How They Relate

These terms are interconnected through **Ohm's Law** and the **power formula**:

• Ohm's Law:

 $V = I \times R$

(Voltage = Current × Resistance)

• Power Formula:

 $P = V \times I$

(Power = Voltage × Current)

Summary Table

Term	Unit	Description	Analogy
Voltage	Volts (V)	Electrical pressure	Water pressure
Current	Amperes (A)	Flow of electrons	Flow rate of water
Resistance	Ohms (Ω)	Opposition to current	Pipe friction
Power	Watts (W)	Energy used/generated per second	Water delivered/sec
Energy	Joules (J) or Watt-hours (Wh)	Total work done over time	Total water delivered

Why These Terms Matter

Each term represents a fundamental aspect of how electricity behaves:

- Voltage causes the flow.
- Current is the flow.
- **Resistance** controls the flow.
- Power describes the work done by the flow.

By understanding these terms, you can analyze and design electrical systems effectively.

Attributes of Electricity

Electric Potential, Current, and Resistance

Watts / Volts / Amps / Ohms calculator