10621312

GAMMA-EMISSION DATA FOR THE CALCULATION OF EXPOSURE RATES FROM NUCLEAR DEBRIS. Vol. II. Induced Activities

by G. R. Crocker D. T. Wong

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
SAN FRANCISCO · CALIFORNIA · 94135

PHYSICAL CHEMISTRY BRANCH E. C. Freiling, Head

CHEMICAL TECHNOLOGY DIVISION R. Cole, Head

ADMINISTRATIVE INFORMATION

The work reported is part of a project sponsored by the Division of Biology and Medicine of the Atomic Energy Commission under Contract $\Lambda T(49-7)-1963$, Mod. 5.

DDC AVAILABILITY NOTICE

Distribution of this document is unlimited.

Engene P. Korper

Eugene P. Cooper Scientific Director D. C. Compbell, CAPT USN
Commanding Officer and Director

ABSTRACT

Fhoton energies and photon abundances have been compiled and summarized for some induced activities which may result from nuclear events. The data are presented in tabular form, including photon energies and abundances for the gamma rays, X rays, and beta particles emitted per disintegration. A list of multipliers is also presented for converting activities of the radionuclides to infinite-plane exposure rates.

SUMMARY

The radiation exposure rate from fillout depends upon the energies and abundances of the photons emitted by the fission products and the induced activities. The latter may result from activation of device materials or of materials on the site of the detonation, including the ground, and may sometimes make a major contribution to the total exposure rate. This report presents a compilation of the photon energies and abundances for some induced activities which may be present in debris from nuclear weapons. A list of factors for converting radionuclide activities to infinite-plane exposure-rate contributions is also presented.

INTRODUCTION

strakiskanianishishinangssaist, sepirahilishikkannn maditen pemman

In order to predict exposure rates for fallout, it is necessary to know the energies and abundances per disintegration of the gamma photons emitted by the fission products and the induced activities. In addition, the exposure per unit of photon flux, as a function of energy, must be calculated for the situation of interest. This latter result can be expressed as the average exposure at a well-defined point (in a standard situation) that results from one disintegration of a specified radionuclide. This value can be regarded as a multiplier for converting the activity of that nuclide to its contribution to the exposure rate.

Volume I of this series presented gamma-photon energies and abundances for the fission products of uranium and plutonium. Appendix I of this volume presents similar data on some radionuclides which may reasonably be expected to be induced by neutron activation of materials in the vicinity of a nuclear explosion or of a reactor or of the materials of the device itself. Many of the radionuclides included in this volume have been reported to be present in fallout; the presence of others has been a matter only of speculation. Appendix II presents a list of multipliers for converting nuclide activities to exposure-rate contributions.

SOURCES AND INTERPRETATION OF PUBLISHED DECAY DATA

The Nuclear Data Sheets (NDS) published by the National Academy of Sciences-National Research Council, including additions and revisions to date, formed the basic source for this compilation. In addition, many recently published papers which have not yet been incorporated into NDS were taken into consideration.

Data on the gamme and X radiation accompanying beta decay are usually presented in the literature with a view toward establishing the energy-level structure of the nuclides involved, rather than toward displaying photon energies and abundances as such. Consequently, it is usually necessary to deduce the photon abundances by interpretation of the decay

data in conjunction with a logical decay scheme. The revhous followed in assembling the data reported here are presented in datail, with illustrative examples, in Reference 1.

Many of the induced activities, in contrast with the fission products, decay by electron capture. This process is usually accompanied by the clission of a K- or L-series X ray. Since the K-L branching ratios are not usually well known; it was assumed for the purposes of this report that each electron capture results in the emission of a K-series X ray. This is in accord with the practice followed in Reference 1 of preferring overestimation of gamma-decay energy to underestimation, since the data are intended for use in predicting radiation hazards.

The X-ray photon abundances have not been corrected for fluorescent yield, since the contribution of the X rays to the exposure is small and the extra calculation did not seem warranted. The K-series X-ray energies have been taken from Nuclear Spectroscopy Tables.² For the i-series X rays, the binding energies taken from Siegbahn,³ have been used.

BRANCHING RATIOS

In the case of branching decays, all possible decay paths were considered in calculating the photon abundances. The decay paths were considered to extend only to the next stable or metastable state. For the convenience of the user, the branching ratios used are summarized here:

Mass	64	Ni (stable) 62%	$-Cu (13 h) \xrightarrow{38\%} > Zn$	(stable)
Maas	74	Ge (stable) < 68%	$-As (18 d) \xrightarrow{32\%} Se$	(stable)
Mass	102	Ru (stable) < 77% (4% of the deca	-Rh (206 d) 19% >Pd by not accounted for)	(stable)
Mass	106	Pri (stable) < 996	-Ag (24 m) 1% >Cd	(stable)
Mass	108	Pd (stable) 74.18	Ag (≥ 5 yr) 8.5% 95.9% cd Ag (2.4 m)	(stable)
Mass	110		Ag (253 d) 98g 2.0% 100% Cd Ag (24 s)	(stable)
Mass	113	ca (3 x 10 ¹⁵ y)	0.14 Cá (14 y) 99.9%	In (stable)
Mass	114		In (2.5 s) 100% In (50 d) 96.5% In (72 s) 99.05% Sn	(stable)
Mass	120	Sn (stable) 100%	_Sb (5.8 d) Sb (16 m)	
Mass	126	Te (stable) < 56%	- I (13 d) — ↓↓↓↓¶ → Xe	(stable)

A STATE OF THE STA

```
Sm (stable) 100% Eu (9.3 h)
Mass 152
                           Gd (stable) \stackrel{86\%}{\leftarrow} Tb (150 y) \stackrel{14\%}{\rightarrow} Dy (stable)
Mass 158
                          но (1200 у)
Mass 166
                           Ho (27 h) 100% Er (stable)
                           Er (stable) 15% Tm (127 d) 99.85% Yb (stable)
Mass 170
                           Lu (3.7 h)
Mass 176
                           Lu (2.2 \times 10^{10} \text{ y}) \xrightarrow{1006} \text{Mf (stable)}
                           Hf (stable) Ta (8.15 h) W (stable)

Ta (> 10<sup>13</sup> y)
Mass 180
                            W (stable) Re (90 h) 96\% Os (stable)
 Mass 186
                            Os (10 m) < 100% Ir (3.2 h)
 Mass 190
                            0s (stable) < 100% Ir (12 d)
                            0s (15 d) 99.9% Ir (4.9 s)
 Mass 191
                                                  ≯Ir (stable)
                            Os (stable) \stackrel{44\%}{\leftarrow} Ir (74 d) \stackrel{96\%}{\longrightarrow} Pt (stable)
 Mass 192
                            Pt (stable) \stackrel{\text{Oly}}{\leftarrow} Au (6.18 d) \stackrel{\text{6\%}}{\longrightarrow} Hg (stable)
 Mass 196
```

CALCULATION OF EXPOSURE-RATE MULTIPLIERS

というできません。

The gamma-photon abundances have been used to calculate exposurerate multipliers for converting radionuclide activities to exposure rates three feet above a uniformly contaminated, infinite plane. The multipliers are based on the build-up factors of Gates and Eisenhauer.⁴ The energy conversion was made according to the following expression:

$$D = (5.97E - 1.21E^2 + 0.201E^3 - 0.013E^4) \times 10^{-6}$$
 (1)

where D is the exposure rate, in roentgens per hour, at a point 3 feet above an infinite plane uniformly contaminated with one emitter per square centimeter emitting one photon of energy E, in Mev, per second. If nuclide n emits N_1 photons of energy E_1 per disintegration, N_2 photons of energy E_2 , etc., then a total exposure-rate multiplier, D_n , for the nuclide can be defined:

$$D_n = D_1 N_1 + D_2 N_2 + \cdots$$

If the activity per square centimeter, A_n , of the nuclide is known, the contribution of the nuclide to the exposure rate is D_nA_n roentgens per hour.

The exposure-rate multipliers for the induced activities are listed in Appendix II. Since the multipliers were hand-calculated, the energy-to-exposure-rate conversion factors were read from a graph of equation 1. Those multipliers marked with an asterisk pertain to nuclides which do not emit photons with energies greater than 0.075 Mev. Calculations for such low energies are very uncertain.

REFERENCES

- 1. G. R. Crocker, M. A. Connors, "Gamma-Emission Data for the Calculation of Exposure Rates From Nuclear Debris, Vol. I. Fission Products," U. S. Naval Radiological Defense Laboratory, USNRDL-TR-876, 28 July 1965.
- 2. A. H. Wapstra, G. J. Nijgh, R. van Lieshout. <u>Nuclear Spectroscopy</u>
 <u>Tables</u>. New York, Interscience Publishers, Inc., 1959.
- 3. K. Slegbahn. Beta- and Gamma-Ray Spectroscopy. New York, Interscience Publishers, Inc., 1955.
- 4. L. D. Gates, Jr., C. Eisenhauer, "Spectral Distribution of Gamma Rays Propagated in Air," Armed Forces Special Weapons Project, Technical Analysis Report AFSWP No. 502A, 1954.

APPENDIX I

SUMMARY OF PHOTON ENERGIES AND ABUNDANCES

Nuclides are arranged by ascending atomic numbers, ordered by mass number. Metastable-state decays are summarized separately. The half-life of each nuclide is stated below its identification. The source or sources of the data are quoted at the beginning of each summary. The abbreviation NDS is used for the Nuclear Data Sheets compiled and published by the National Academy of Sciences-National Research Council. Other literature abbreviations follow standard practice.

The data contained in the columns is indicated by the headings, as follows:

E. - Gamma energy in Mev.

NT - Number of transitions per disintegration. This column is totalled. This column was for the compiler's convenience and was frequently omitted.

Ny - Number of gamma photons emitted per disintegration. This column is totalled.

 N_{K} - Number of gammas converted to X-ray photons per disintegration. This column is totalled.

 $N_{\gamma}E_{\gamma}$ - Product of abundance and energy. This column is totalled.

E's - End-point beta-ray energy in Mev.

NB - Corresponding number of beta particles per disintegration.

Following the columns the X-ray energy, ${\rm E}_{\rm K}$, is given. The product of this energy times the total of the ${\rm N}_{\rm K}$ column is given. The following totals are then listed:

PH - Total photons emitted per disintegration.

HPH - Total photons emitted per disintegration with energies greater than 0.020 Mev.

FD - Total photon energy per disintegration (Mev/D).

HFD - Total photon energy per disintegration (Mev/D) counting only photons greater than 0.020 Mev.

Source: J. G. V. Taylor and J. S. Merritt, Can. J. Phys. 40, 926 (1962). 4 Be 7 53.4 days

$\mathbf{E}_{\boldsymbol{\gamma}}$	Ny	NK	$N_{\gamma}E_{\gamma}$
Mev	·····		Mev/D
0.477 capture e	0.115	1.0	0.055
$E_{K} = 5 \times 10^{\circ}$ PH = 0.115 HPH = 0.115	- ⁵ Mev) 955 Mev/D 055 Mev/D

Decays by E. C.

NB

 $\mathbf{E}_{\boldsymbol{\beta}}$

Mev

Source: NDS 59-4-16 and 59-4-19

11 Na 22 2.6 years

\mathbf{E}_{γ}	$^{ m N}\gamma$	N _K	$^{ m N}\gamma^{ m E}\gamma$
Mev			Mev/D
1.274 capture e	1.0	0.102	1.274
E _K = 0.00087 PH = 1.102 HPH = 1.0	Mev	$E_{K}^{N}_{K} \sim 0$ ED = 1.274 HED = 1.271	Mev/D Mev/D

E_β N_β Mev 0.898

Source: NDS 59-6-10a and 59-6-13

11 Na. 24 15.0 hours

$^{ ext{L}}\gamma$	Nγ	NK	$^{N}\gamma^{c}\gamma$
Mev	<u> </u>		Mev/D
1.368	1.0		1.368
2.750	1.0		2.750
Total	2.0		4.118
$E_{K} = 0.001$.3 Mev	$N_K E_K = 0$	
PH = 2.0		ED = 4.13	18 Mev/D
HBH = 5.0			118 Mev/D

E_β N_β Mev 0.391 1.0

Source: NDS 59-6-27 and 59-6-34

13 Al 26 7.4 x 10 years

Ε _γ Mev	$^{ m N}{ m T}$	Nγ	NK	N _γ E _γ Mev/D	Έ _β Mev	Nβ
2.97 1.14 1.83 capture e	0.003 0.037 0.997	0.003 0.037 0.997	0.052	0.009 0.042 1.825	1.16	0.96
Total	1.037	1.037	0.052	1.876		
$E_{K} = 0.0013 \text{ MeV}$ $PH = 1.089$ $HPH = 1.037$			${}^{N}{}_{K}{}^{E}{}_{K} = 0.0$ ED = 1.870 HED = 1.8	6 Mev/D		

Source: NDS 60-3-25 and 60-3-27

14 Si 31 2.6 hours

E_{γ}	N_{γ}	$N^{\mathbf{K}}$	$N_{\gamma}^{E}_{\gamma}$	Eβ	Nβ
Mev			Mev/D	Mev	
1.27	0.0007	* * *	0.001	0.210 1.477	0.0007 0.9993
PH = 0.0007 HPH = 0.0007	,	ED = 0.00 $HED = 0.0$			

Source: NDS 60-1-53 and 60-1-57

17 C1 34m 32.4 min.

					J
Ε _γ Mev	N _y	NK	N _γ E _γ Mev/D	E _β Mev	N _β
1.16 2.13 3.30 4.10 capture e	0.166 0.353 0.166 0.006	0.015	0.193 0.752 0.548 0.025	0.43 1.24 2.41	0.0.3 0.322 0.351
Total E _K = 0.0029 PH = 0.706		0.015 N _K E _K = 0 ED = 1.53	18 Mev/D		
		ED = 1.53			

Source: NDS 60-1-60 and 60-1-63

NAMES OF STREET OF STREET, STR

17 C1 38 38 min.

Ey	N ₇	^N κ	$^{N}{}_{\gamma}{}^{E}{}_{\gamma}$	EB	NB
Mev			Mev/D	Mev	-
1.60	0.31	** **	0.496	1.11	0.31
2.16	0.47		1.015	2.77 4.81	0.16 0.53

Total	0.78		1.511		
PH = 0.78 HPH = 0.78			ED = 1.511 Mev/D		

Source: D. W. Engelkemeir, K. F. Flynn and L. E. Glendenin, Phy. Rev. 126, 1818 (1962).

19 x 40 1.27 x 10⁹ year

E _y Mev	Ny	^N K	N _γ E _γ Mev/D	E _β Mev	N _B
1.46 capture e	0.11	0.11	0.161	1.321	0.89
E _K = 0.0032 PH = 0.11 HPH = 0.11	Mev	N _K E _K = 0 ED = 0.16 HED = 0.3			

Source: NDS 60-6-3

19 K 42 12.5 hours

E _γ Mev	N _y	N _K	N _γ E _γ Mev/D	B _B Mev	η _β
1.92 1.02 0.49 2.44 0.90 0.60 0.32	0.0006 0.0002 0.0002 0.0002 0.0002 0.0020		0.0010 0.0002 0.0001 0.0002 0.0001 0.0006	0.09 0.28 1.11 1.71 2.03 3.55	0.0008 0.0002 0.0006 0.0018 0.1770 0.8200
1.52 Total PH = 0.18			0.2736 0.2767 167 Mev/D		
HPH = 0.1	.838	HED = 0.3	2767 Mev/D		

Source: NDS 60-2-16 and 60-2-20

21 Sc 44m 2.4 days

E _y Mev	N _T	Nγ	N _K	N _y E _y Mev/D	R β Me v	N _B
0.27	1.0	0.877	0.123	0.2368	Isome: Trans:	ric Ition*
E _K = 0.0			NE x = 0.	0005		

K = 0.0041 MeV K = 0.0041 MeV K = 0.0005 K = 0.0005

*There is actually some small unknown amount of E. C. directly to Ca (L. T. Dillman and J. J. Kraushaar, Nucl. Phys., 42, 383, 1963), but this has been ignored. This schema is for: Sc 44m 100% Sc 44 100% Ca

Source: NDS 60-2-16 and 60-2-20

21 Sc 44 3.9 hours

E ₇ Me v	N _T	N**	NK	${}^{\mathrm{N}_{oldsymbol{\gamma}}\mathrm{E}_{oldsymbol{\gamma}}}_{oldsymbol{Mev/D}}$	^K β Mev	N _B
2.69 1.50 2.28	0.010	0.002 0.002 0.002		0.005 0.015 0.005	1.467	0.915
1.14 1.16 capture e	0.002 0.030 1.000	0.030	0.085	0.034 1.160		
Total	1.044	1.044	0.085	1.219		
E _K = 0.0037 PH = 1.129 HPH = 1.044			$N_{K}^{E}_{K} = 0.$	9 Mev/D		

^{**}Gamma intensities agree reasonably well with L. T. Dillman and J. J. Kraushaar, Nucl. Phys., 42, 383, 1963.

Source: NDS 60-2-30 and 60-2-34

21 Sc 46m 20 sec.

Eγ	$\mathbf{n}^{\mathbf{n}}$	N _y	NK	N _y E _y	E _B N _B
Mev				Mev/D	Mev
0.15	1.0	0.5	0.5	0.075	Isomeric
					Transition
$E_{K} = 0.0$	O41 Mev		$N_{K}E_{K} = C$.0021	
PH = 1.0)		ED = 0.0	77 Mev/D	
HPH = 0.	5			0/5 Mev/D	

Source: NDS 60-2-30 and 60-2-33

21 Sc 46 84 days

\mathbf{E}_{γ}	Ny	NK	$N_{\gamma}E_{\gamma}$	$^{\mathrm{E}}_{oldsymbol{eta}}$	N _B
Mev			Mev/D	Mev	
1.119	1.0	e us gas	1.119	0.357	1.0
1.119 0.887	1.0	~ ~ ~	0.887		
	**********		·		
Total	2.0		2.006		

(There is probably a crossover transition of ~ 2 Mev of very low intensity. See Ark. Fys. 21, 383, 1962)

PH = 2.0 HPH = 2.0 ED = 2.006 Mev/DHED = 2.006 Mev/D

Source: NDS 60-2-23 and 60-2-28

22 Ti 45 3.1 hours

Ε _γ Mev	N ₂	NK	N _γ E _γ Mev/D	Έ β Mev	n _B
0.376	0.003		0.001	0.62	0.003 0.850
capture e	100 000 000	0.15		3. • Ot.	0.00
E _K = 0.0041 Mev		$N^{K}E^{K} = 0$			
PH = 0.153 HPH = 0.003	3		016 Mev/D 001 Mev/D		

Source NDS 61-3-3

23 V 49 330 days

NB

$\mathbf{E}_{oldsymbol{\gamma}}$	N _y	NK	$^{\mathrm{N}_{\gamma}\mathrm{E}_{\gamma}}$
Mev			Mev/D
capture e		1.0	Tab. 140 410
EK = 0.0046	6 Mev	NKEK ≈ O	.0046
PH = 1.0		ED = 0.0	046 Mev/D
HPH = 0		HED = O	Mev/D

Decays by E. C.

EB

Mev

Source: NDS 61-3-3 and 61-3-11

24 Cr 49 42 min.

Ey	Ny	N _K	NyEy	Eβ	Nβ
Mev			Mev/D	Mev	
0.063	0.130	0.018	0.0082	1.39	0.266
0.089	0.277	0.018	0.0247	1.46	0.139
0.150	0.139	0.003	0.0209	1.54	0.527
capture e		0.068	*** ***		
	-	***************************************			
Total	0.546	0.107	0.0538		
E _K = 0.0046 Mev PH = 0.653 HPH = 0.546		$N_K^E_K = 0.0005$ ED = 0.0543 Mev/D HED = 0.0538 Mev/D			

Source: NDS 61-3-14 and 61-3-20

24 Cr 51 28 days

E _γ Mev	Ny	N _K	N _γ E _γ Mev/D	E _β Mev	^N в
0.645 0.320 0.322 capture e	0.0005 0.0010 0.0910	1.0	0.0003 0.0003 0.0293	Decays t	by E. C.
Total	0.0925	1.0	0.0299		
$E_{K} = 0.0046$ PH = 1.0925 HPH = 0.092	•	$N_K^E K = 0.03$ $HED = 0.03$			

Source: P. Kramer, Miss E. C. Bos, A. deBeer and J. Blok, Physica 28, 569 (1962). C. Manduche and G. Zannoni, Nuovo Cimento 27, 251 (1963).

25 Mn 54 291 days

Ε _γ Mev	N _γ	N _K	$N_{\gamma}E_{\gamma}$ Mev/D	Ε _β Μεν	N _β
0.842 capture e	1.0	0.902	0,842	Decays by	E. C.
$E_{K} = 0.0059$ PH = 1.902 HPH = 1.0) Mev	${}^{N}_{K}{}^{E}_{K} = 0.0$ ${}^{E}_{D} = 0.84$ ${}^{H}_{E}_{D} = 0.8$	7 Mev/D		

Source: NDS 59-4-50. D. A. Howe, L. M. Langer, E. H. 25 Mn 56 Spejweski and D. E. Wortman, Phys. Rev. 128, 2748 (1962). 2.58 hours

Έ _γ Mev	N _{\gamma}	N _K	$N_{\gamma}E_{\gamma}$ Mev/D	E β Mev	N _B
0.845 1.810 2.120 2.520 2.660 2.960 3.390	1.000 0.333 0.175 0.009 0.007 0.005 0.002		0.845 0.603 0.371 0.023 0.019 0.015 0.007	0.300 0.718 1.028 2.838	0.01 0.18 0.34 0.47
Total E _K = 0.00 PH = 1.53 HPH = 1.5	31	N _K E _K = 0 ED = 1.8 HED = 1.			

Source: NDS 59-2-3 and 59-2-9

26 re 55 2.7 years

Ε _γ Mev	Nγ	N _K	N _γ E _γ Mev/D	^E β ^N β Mev
capture e		1.0		Decays by E. C.
$E_{K} = 0.0069$ PH = 1.0 HPH = 0	5 Mev	ED = 0.0	0065 Mev/D Mev/D	

Source: NDS 60-6020

26 Fe 59 45 days

Ε _γ Mev	Ny	N _K	${}^{\mathrm{N}_{oldsymbol{\gamma}}\mathrm{E}_{oldsymbol{\gamma}}}$ Mev/D	E _β Mev	N _β
0.337 0.145 1.290 0.191 1.100 Total PH = 1.051	0.003 0.008 0.440 0.030 0.57 0	ED = 1.2	0.0010 0.0012 0.5676 0.0057 0.6270 1.2025	0.130 0.271 0.462 1.560	0.010 0.460 0.540 0.003
HPH = 1.051		HED = 1.	203 Mev/D		

Source: NDS 61-2-13 and 61-2-21. P. Kramer, et al, Physica 28, 569 (1962).

27 Co 57 270 days

N_{γ}	N _K	$^{ m N}\gamma^{ m E}\gamma$
		Mev/D
0.120	0.780	0.0017
0.890	0.010	0.1086
0.088	0.012	0.0120
0.002		0.0014
	0.870	

1.100	1.672	0.1237
Mev		.0109 346 Mev/D 1237 Mev/D
	0.120 0.890 0.088 0.002 1.100	0.120 0.780 0.890 0.010 0.088 0.012 0.002 0.870 1.100 1.672 Mev N _K E _K = 0 ED = 0.13

⁵ β Mev			β	
Decays	ρ'n.	E.	c.	

Source: NDS 60-5-12 and 60-5-18

27 Co 58m 9.0 hours

E _γ Mev	Nγ	^N K	${}^{\mathrm{N}}{}_{\gamma}{}^{\mathrm{E}}{}_{\gamma}$ Mev/D	E β Mev
0.025	1.0		0.025	Isomeri
PH = 1.0 HPH = 1.0			025 Mev/D .025 Mev/D	

Mev
Isomeric Transition

Source: NDS 60-5-12 and 60-2-17

27 Co 58 71 days

Ε _γ	N_{γ}	N _K	$N_{\gamma}E_{\gamma}$
Mev			Mev/D
1.650 0.810 0.805 capture e	0.005 0.016 0.995	0.852	0.0083 0.0130 0.8010
Total	1.016	0.852	0.8223
$E_{K} = 0.0065$ PH = 1.868 HPH = 1.016	Mev	$N_K E_K = 0.00$ ED = 0.8278 HED = 0.822	Mev/D

Source: NDS 60-5-24 and 60-5-27

27 Co 60 5.27 years

$\mathbf{F}_{\boldsymbol{\gamma}}$	Ny	N _K	$\mathbf{N}_{\gamma}\mathbf{E}_{\gamma}$	EB	Nβ
Mev			Mev /t)	Mev	
1.173 1.332	1.0	17 to 00	1.173 1.332	0.318	1.0
Total	5.0		2,505		
PH = 1.0 HPH = 1.0		ED = 2.50 HED = 2.5	05 Mev/D		

Source: G. Chilosi, S. Monaro and R. A. Ricci.

28 Ni 57 36.5 hours

E _γ Mev	N _T	N _γ	N.K.	$\frac{N_{\gamma}E_{\gamma}}{Mev/D}$	E' p Mev	м _в
1.360 0.130 1.590 1.750 1.910 capture e	0.750 0.130 0.012 0.075 0.160	0.750 0.130 0.012 0.075 0.160	0.624	1.020 0.017 0.019 0.131 0.306	0.32 0.47 0.63 0.73 0.86	0.006 0.011 0.003 0.043 0.310
Total E _K = 0.0070 PH = 1.751 HPH = 1.127		1.127	0.624 1.493 N _K E _K = 0.0044 ED = 1.497 Mev/D HED = 1.493 Mev/D			

Source: R. A. Ricci et al., Nuovo Cimento 17, 523 (1960). R. Jambunathan et al., Phys. Rev. 120, 1839 (1960). 28 Ni 65 2.5 hours

E _γ Mev	N _T	۲,	N _K	N _γ E _γ Mev/D	E B Mev	N _β
1.730	0.006	0.006	50 1-2	0.0104	0.375	0.004
1.630	0.011	0.011	~	0.0179	0.477	0.004
1.490	0.280	0.280		0.4172	0.618	0.220
0.360	0.060	0.060		0.0216	0.986	0.079
1.120	0.130	0.130		0.1456	2.100	0.690
		Martine and Associated States and Associated				
Total	0.487	0.487		0.6127		

PH = 0.487HPH = 0.487 ED = 0.6127 Mev/DED = 0.6127 Mev/D Source: NDS 59-2-13 and 59-2-16

29 Cu 64 13 hours

E _y Mev	N ₇	N _K	N _γ E _γ Mev/D	E β Mev	^N β
1.34 capture e	0.006	0.43	0.008	0.573 0.656	0.38 0.19
$E_{K} = 0.0076$ $PH = 0.436$ $HPH = 0.006$		$ \begin{array}{ll} N_{K}E_{K} = 0 \\ ED = 0.0 \\ HED = 0.0 \end{array} $			

Source: J. B. Cumming and N. T. Porile, Phy. Rev. 122, 1267 (1961). 30 Zn 63 38.4 min.

E _γ Mev	N _T	N ₇	N ^K	$N_{\gamma}E_{\gamma}$ Mev/D	E _β Mev	N _B
0.67 0.96	0.074 0.051	0.074 0.051		0.050 0.045	2.33 1.66 1.37	0.800 0.074 0.051
Few other capture e	weak 7's	(<0.010)	0.059			ers <0.01
Total	1.125	0.125	0.059	0.099		
$E_{K} = 0.0088$ $PH = 0.184$ $HPH = 0.125$			$N_{K}E_{K} = 0.$ $ED = 0.09$ $HED = 0.0$	995 Mev/D		

Source: NDS 59-2-23 and 59-2-26

30 Zn 65 245 days

$\mathbf{E}_{\boldsymbol{\gamma}}$	N_{γ}	N _K	$N_{\gamma}^{E}_{\gamma}$	E	N _B
Mev			Mev/D	Mev	`
1.114 capture e	0.49	0.983	0.546	0.326	0.017
E _K = 0.0082 Mev PH = 1.473 HPH = 0.49		$ \begin{array}{ccc} \mathbf{N}_{\mathbf{K}}\mathbf{E}_{\mathbf{K}} & = & 0 \\ \mathbf{E}\mathbf{D} & = & 0 \cdot 5 \\ \mathbf{H}\mathbf{E}\mathbf{D} & = & 0 \cdot 5 \end{array} $	54 Mev/D		

Source: NDS 59-3-30 and 59-3-32

30 Zn 69m 14 hours

Ey	N ₂	N _K	$N_{\gamma}E_{\gamma}$	Eβ	$^{N}_{\boldsymbol{\beta}}$
Mev			Mev/D	Mev	
0.435	0.943	0.05/	0.410	Isomeri	c Transition
$E_{K} = 0.0087$ PH = 1.000 HPH = 0.943		${}^{N}K^{E}K = 0$ $ED = 0.4$ $HED = 0$.0005 105 Mev/D 4100 Mev/D		

Source: NDS 59-2-39 and 59-2-41 T. T. Thwaites and W. W. Pratt, Phys. Rev. 124, 1526 (1961). 4 hours

E,	Ny	N _K	NyEy	$\mathbf{E}_{\boldsymbol{\beta}}$	N _B
Mev			Mev/D	Merv	ngganggangan sampinang panahanggan kalamatah dalam
0.38	1.0		0.38	1.5	1.0
0.49	1.0		0.49		
0.61	1.0		0.61		
	-		-		
Total	3.0		1.48		
PH = 3.0 HPH = 3.0		ED = 1.44 $HED = 1.4$	8 Mev/D 48 Mev/D		

Source: T. T. Thwaites and W. W. Pratt Phys. Rev. 124, 1526 (1961). 30 Zn 71 2.45 min

Eγ	Ny	NK	N ₇ E _~	EB	NB
(Mev)	,			(Mev)	
1.63	0.001		0.0016	0.99	0.017
1.12	0.013		intro.0	1.69	0.030
0.68	0.003		0.0020	2.10	O 3pO
0.92	0.031		0.0285	2 61	0.820
0.12	0.009		0.0011		
0.39	0.013		0.0051		
0.51	0.140	-	0.0714		
Total	0.210		0.1243		
PH = 0.2	210		ED 0.1243	Mev/D	
нен - 0.			HED - 0.124	3 Mev/D	

Source: A. W. Schardt and A. Goodman, Phys. Rev. 123, 893 (1961)

33 As 74m 8 sec.

E ₇ Mev	Ny	NK	N _y E _y Mev/D	Ε _β Mev	N _в
0.283	1.0	* *	0.283		c Transition
PH = 1.0 HPH = 1.0			283 Mev/D .283 Mev/D		

Source: NDS 59-4-67 and 59-4-71

33 As 74 18 days

E ₇ Mev	N _γ	N _K	N _γ E _γ Mev/D	E β Mev	Nβ
0.5963	0.608		0.363	0.72	0.145
0.6350	0.145		0.921	1.36	0.177
				0.91	0.261
				1.51	0.036
capture e		0.381	100 54 60		
Total	0.753	0.381	0.4559		
Covered were	w smak Yla	i em amad			

Several very weak 7's ignored.

 $\mathbf{E}_{\mathbf{K}} \approx 0.010 \; \mathbf{Mev}$

PH = 1.134 HPH = 7.53

 $N_{K}^{E}_{K} = 0.0038$ ED = 0.4597 Mev/D HED = 0.4559 Mev/D

Source: NDS 60-3-67 and 60-3-73

39 Y 88 105 days

できると

${ t E}_{\gamma}$ Mev	N _γ	NK	N _y E _y Mev/D	E β Mev	N _B
2.760 0.899 1.835 capture e	0.005 0.920 1.000	0.993	0.0138 0.8271 1.8350	0.57	0.007
Total	1.925	0.993	2.6759		
$E_{K} = 0.0144$ $PH = 2.918$ $HPH = 1.925$.0143 902 Mev/D 6759 Mev/D		

Source: NDS 61-2-37. P. Born, C. Bobeldijk, H. M. W. Booy and J. Blok, Physica 27, 1229 (1961) 45 Rh 102 206 days

E _γ Mev	Nγ	N _K	${}^{ m N}_{\gamma}{}^{ m E}_{\gamma}$ Mev/D	E β Mev	^N в
0.417	0.020		0.0083	1.15	0.186
0.475	0.545		0.2589	0.81	0.039
0.630	0.110		0.0693	1.28	0.102
0.695	0.064		0.0445		
0.745	0.005		0.0037		
0.765	0.047		0.0360		
1.050	ა.063	~	0.0662		
1.110	0.027		0.0300		
1.105	0.028	~ ~ ~	0.0309		
1.365	0.004		0.0055		
1.565	0.002		0.0031		
capture e		0.585			
_					
Total	0.915	0.585	0.5564		
$E_{K} = 0.0196$		$N_{K}E_{K} = 0$.0115		
PH = 1.500		ED = 0.56	79 Mev/D		
HPH = 0.915		HED = 0.9	5564 Mev/D		

Source: NDS 60-4-44 and 60-4-52

47 Ag 106m 8.3 days

Ε _γ	Ny	^N K	$^{N}\gamma^{E}\gamma$		
Mev			Mev/D		
1.20	0.09		0.108		
0.81	0.11	** **	0.089		
0.72	0.23		0.166		
0.46	0.22		0.101		
0.41	0.30		0.123		
1.83	0.03		0.055		
1.23	0.09		0.111		
0.78	0.12		0.094		
0.41	0.05		0.021		
0.74	0.13		0.096		
0.21	0.09		0.019		
1.58	0.09		0.142		
1.54	0.15	• • •	0.231		
0.70	0.08		0.056		
0.31	0.01		0.003		
0.82	0.17		0.139		
0.75	0.05		0.038		
1.73	0.016		0.028		
1.56	0.01		0.016		
1.05	0.31		0.326		
0.85	0.08		0.068		
1.12	0.11	•	0.123		
0.612	0.23		0.141		
0.513	0.86		0.441		
capture e		1.0			
Total	3.63	1.0	2.735		
$E_{K} = 0.0216$	Mev	N N			
PH = 4.63		ED = 2.757	Mev/D		
HPH = 4.63		HED = 2.75	Mev/D		

Source: NDS 60-4-44 and 60-4-52

47 Ag 106 24 min.

E _γ Mev	$\mathbf{n}_{\mathbf{T}}$	N _y	NK	N _γ E _γ Mev/D	^E β Mev	Nβ
0.513	1.0	1.0		0.513	1.45	0.07
		w w w			1.96	0.56
capture e	** ** **	and 400 Min	0.39			
EK = 0.0516	Mev		$N_K E_K = 0.$			
PH = 1.39 HPH = 1.39			ED = 0.52 $HED = 0.5$			

Source: NDS 60-5-135 and 60-5-141

47 Ag 107m 44 sec.

$\mathbf{E}_{\boldsymbol{\gamma}} \qquad \mathbf{N}_{\boldsymbol{\gamma}}$	NK	$^{ m N}\gamma^{ m E}\gamma$	E _B N _B	
(Mev)		(Mev/D)	(Mev)	
0.094 0.095	0.905	0.0089	Isomeric Transition	

 $E_{K} = 0.0226$ Mev $N_{K}E_{K} = 0.0205$ PH = 1.00 ED = 0.0294 Mev/D HPH = 1.00 HED = 0.0294 Mev/D Source: NDS 5-1-5 and 5-1-10

47 Ag 108m >5 years

\mathbf{E}_{γ}	N _y	Nκ	$N_{\gamma}E_{\gamma}$		
Mev	, 		Mev/D		
0.724	1.000	wa wa ant	0.724		
0.618	1.000		0.618		
0.433	1.000		0.433		
0.031	0.085		0.003		
0.081	0.067	0.018(Ag)	0.005		
capture e		0.915(Pd)			
		**************	***********		
Total	3.152	0.933	1.783		
$E_K(Ag) = 0.$	0226 Mev	$N_K E_K = 0.00$	004 Mev/D		
$E_{K}(Pd) = 0.$	0216 Mev	$N_{K}E_{K} = 0.0198 \text{ MeV/D}$			
PH = 4.085 HPH = 4.085		ED = 1.803	ED = 1.803 Mev/D HED = 1.803 Mev/D		

E _β Mev	N _β
Isomeric and E. C.	Transition •

Source: NDS 5-1-5 and 5-1-9

47 Ag 108 2.4 min.

Ε _γ Mev	Ny	NX	N _γ E _γ Mev/D	E β Mev	Nβ
0.633 0.617 0.433 capture e	0.019 0.004 0.006	0.033	0.012 0.002 0.003	1.02 1.65 0.69	0.019 0.940 0.002
Total	0.029	0.033	0.017		
E _K = 0.0216 PH = 0.062 HPH = 0.062			.0007 177 Mev/D 0177 Mev/D		

Source: NDS 60-2-47

47 Ag 109m 39.00 sec.

E _γ I (Mev)	N _γ	N _K	N _γ E _γ (Mev/D)	^E β (Mev)	Nβ
0.088	0.046	0.436	0.004	Isomeric	Transition
$E_{K} = 0$ $HPII = 0$.482	v	$N_K E_K = 0.010$ ED = 0.014 Me HED = 0.014 M		

Source: NDS 60-2-62 and -66 and -67

47 Ag 110m 253d

Ŋβ

0.65

E_β Mev 0.085

0.530

$^{\mathrm{E}}\gamma$	$N_{ extbf{T}}$	N_{γ}	n^{K}	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$
Mev				Mev/D
0.116	J.02		0.02	
0.030	0.02		0.02	
1.384	0.24	0.54		.3322
0.764	0.23	0.23		.1757
0.706	0.19	0.19		.1341
0.446	0.06	0.06	en 42	.0268
0.937	0.34	0.34		.3186
1.56	0.01	0.01		.0156
0.745	0.02	0.02		.0149
0.677	0.09	0.09		.0609
1.504	0.12	0.12		.1805
0.687	0.07	0.07		.0481
0.619	0.04	0.04		.0248
0.885	0.72	0.72		.6372
1.474	0.05	0.05		.0737
0.815	0.07	0.07		.0571
0.656	0.93	0.93		.6101
Total	3.22	3.18	0.04	2.7103

 $E_{x} = 0.0226 \text{ MeV}$ PH = 3.22

HPH = 3.22

 $E_K N_K = 0.0009 \text{ Mev/D}$ ED = 2.7112 Mev/D HED = 2.7112 Mev/D

Source: NDS 60-2-62 and 60-2-63

47 Ag 110 24 sec.

E _γ N _γ (Mev)	N _K	^N γ ^E γ (Mev/D)	^B β (Mev)	N _B	
0.656 0.05		0.0328	2.21	0.05	
			2.87	0.95	
PII = 0.05		ED = 0.032	8 Mev/D		
IIPH = 0.05		FO.O = O.O3	28 Mev/D		

Source: NDS 60-5-135 and 60-5-143. N. L. Lark et al., Nucl. Phys. 35, 582, (1962).

48 Cd 107 6.5 hours

Ε _γ Mev	Nγ	N _K	N _γ E _γ Mev/D	E _β Mev	Nβ
0.846 0.094 capture e	0.002 0.513 0.515	0.224 0.997 1.221	0.002 0.048 0.050	0.32	0.003
E _K = 0.0226 Mev PH = 1.736 HPH = 1.736		$ \begin{array}{c} N_K E & = 0 \\ ED & = 0.0 \\ HED & = 0.0 \end{array} $			

Source: NDS 60-2-48 and 60-2-56

48 cd 109 470 days

Ε _γ Mev	N _y	N _K	$N_{\gamma}E_{\gamma}$ Mev/D	E _β Mev	N _β
capture e		1.0		Decays	by W. C.
E _K = 0.0226 Mev PH = 1.0 HPH = 1.0		MED = 0.4	0.0226 0226 Mev/D .0226 Mev/D		

Source: NUS 60-2-99 and 60-2-103

48 Cd 113m 14 years

E _γ (Mev)	Nγ	N _K	^N γ ^E γ (Mev/D)	E _β (Mev)	n _s
0.265	0.001	= -	0.0003	0.575	0.999
PH = 0.0 $HPH = 0$			= 0.0003 Mev/D D = 0.0003 Mev/D		

Source: NDS 60-2-99 and 60-2-105

49 In 113m 1.7 hours

E _γ Mev	N _y	N _K	N _y E _y Mev/D	E β Mev	^N β
0.393	0.667	0.333	0.2621	Isomeri	c Transit: on
E _K = 0.0247 Mev PH = 1.0 HPH = 1.0		$N_{K}^{E}_{K} = 0.0082$ ED = 0.270 Mev/D HED = 0.270 Mev/D			

Source: NDS 60-3-88 and 60-3-98

49 In 114m₂ 2.5 sec

Eγ	N_{γ}	N _K	$^{ m N}\gamma^{ m E}\gamma$	E _B	N _B
Mev		···	Mev/D	Mev	·
0.150	1.0		0.150	Isomeri	c Transition
		ED = 0.15 $HED = 0.15$	50 Mev/D L50 Mev/D		

Source: NDS 60-3-88 and 60-3-97

49 In 114m₁ 50 days

$\mathbf{E}_{oldsymbol{\gamma}}$	Ny	NK	$^{ m N}\gamma^{ m E}\gamma$	
Mev	·		Mev/D	
0.192	0.182	0.783(In)	0.0349	
0.722	0.035	~	0.0253	
0.556	0.035		0.0195	
capture e		0.035(c a)		

Total	0.252	0.818	0.0797	
$E_{K}(Cd) = 0.0$	0236 Mev	$N_{K}E_{K} = 0.0008$		
$E_{K}(In) = 0.0$)247 Mev	$N_K E_K = 0.03$		
PH = 1.070		ED = 0.0996 HED = 0.099	Mev/D	
HPH = 1.070		HED = 0.099	98 Mev/D	

 $\frac{E_{\beta}}{\text{Mev}} \frac{N_{\beta}}{\text{Isomeric Transition}}$ and E. C.

Source: NDS 60-3-88 and 60-3-96

49 In 114 72 sec.

$\mathbf{E}_{oldsymbol{\gamma}}$	N_{γ}	NK	$^{ m N}\gamma^{ m E}\gamma$
Mev			Mev/D
1.30	0.0015		0.0020
1.21	0.0025		0.0030
		** **	
capture e		0.01	~

Total	0.0040	0.01	0.0050
$E_{K} = 0.0236$	Mev	$N_K E_K = 0$.0002
PH = 0.0140 HPH = 0.014		ED = 0.00 $HED = 0.0$	052 Mev/D 0052 Mev/D

Eβ	Nβ		
Mev			
0.670	0.002		
1.984	0.989		
0.397	0.003		

Source: NDS 60-2-99 and 60-2-106

50 Sn 113m 27 min.

E ₇	N_{γ}	N _K	$N_{\gamma}E_{\gamma}$
Mev			Mev/D
0.079	1.0		0.079
PH = 1.0 HPH = 1.0		ED = 0.0 $HED = 0.$	79 Mev/D 079 Mev/D

E_β N_β
Mev
Isomeric Transition

Ource: NDS 60-2-99 and 60-2-106. W. E. Phillips and J. I. Hopkins, Phys. Rev. 119, 1315 (1960).

50 Sn 113 118 days

E _γ Mev	N _γ	N _K	N _γ Ē _γ Mev/D	E _β Mev	n β
0.255 0.393 capture e	0.02	0.32	0.0051	Decays by	y E. C.
Total E _K = 0.0247 PH = 2.02 HPH = 2.02	0.70 Mev		0.3723 .0326 049 Mev/D 4049 Mev/D		

Source: NDS 60-4-66 and 60-4-70

51 Sb 120m 5.8 days

E _γ Mev	N _T	N _γ	N _K	N _y E _y Mev/D	E β Mev	N _B
0.039 0.199 1.040 1.180 capture e	0.90 1.00 1.00 1.00	0.70 0.89 1.00 1.00	0.20	0.062 0.175 1.040 1.180	Decays	by E. C.
Total	3.90	3.58	1.32	2.457		
$E_{K} = 0.0258$ $PH = 4.90$ $HPH = 4.90$	Mev		$ \begin{array}{ll} N_{K}E &= 0. \\ ED &= 2.49 \\ HED &= 2.4 \end{array} $)l Mev/D		

Source: NDS 60-4-66 and 60-4-70

51 Sb 120 16 min.

E _γ Mev	Nγ	N _K	$N_{\gamma}E_{\gamma}$ Mev/D	E _β Mev	N _B
1.18 capture e	0.013	0.551	0.015	1.70	0.436
$E_{K} = 0.0008$ PH = 0.56' HPH = 0.04					

Source: NDS 60-6-104 and -109 and -110

53 I 126 13 day

Eγ	r T	N ₂	NK	$^{ m N}\gamma^{ m E}\gamma$	E	Nв
(Mev)				(Mev/D)	(Mev)	-
1.41	0.004	0.004	* *	.0056	0.385	0.06
0.747	0.040	0.040		.0299	0.865	0.29
0.665	0.330	0.330		.2195	1.25	0.09
0.860	0.010	0.010		.0086	0.46	0.003
0.48	0.050	0.050		.0240	1.129	0.010
0.386	0.340	0.330	0.01(X	e) .1274	•	
capture e-			0.55(T	e)		
Total	0.774	0.764	0.56	0.4150		
$E_{K}(Xe) = 0$			E _K N _K =	.0003 Mev/D		
$E_{K}^{(Te)} = 0$.0280 Me	v	E.N. =	.0154 Mev/D		
PH = 1.324			ED -	4307 Mev/D		
HPH = 1.32						
nrn = 1.32	4		ued =	.4307 Mev/D		

Source: NDS 61-2-69 and -79

55 Cs 132 6.5 day

E ₇	Ny	N_{K}	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	E _B N _B
(Mev)	·		(Mev/D)	(Mev)
0.673	0,99		.6663	0.6 0.012
capture (e-	0.97 (X	e)	
Total	0.99	0.97	-6663	
	weak gamounted for		ossible weak n	egatron decay

 $E_{K} = 0.0304 \text{ MeV}$ $E_{K}N_{K} = 0.0295 \text{ MeV/D}$ PH = 1.96 ED = 0.6958 MeV/DHPH = 1.96 HED = 0.6958 MeV/D

Source: NDS 59-1-96 and -101

59 Pr 142 19.3 hours

E (Mev)	Ny	NK	N _χ E _γ (Meγ/D)	Egev) NB
1.57	0.04	w ##	.0628	0.58 0.04 2.15 0.96
$E_{K} = 0.0$ $PH = 0.0$ $HPH = 0.0$	4	ED =	= 0.0 Mev/D 0.0628 Mev/D = 0.0628 Mev/D	

Source: NDS 59-4-79

63 Eu 152m 9.30 hrs.

E _γ (Mev)	Nγ	N _K	$N_{\gamma}^{E}_{\gamma}$ (Mev/D)	^E β (Mev)	N _B
1.390 0.963 0.841 0.563 0.122 1.320 0.975 0.344 Total	0.010 0.090 7.110 0.240 0.132 0.010 0.005 0.026 0.623	0. 0. 0. 0. 0. 0. 0.	0.014 0.087 0.093 0.135 0.016 0.013 0.005 0.009	0.210 0.560 1.260 1.550 1.870	0.000 0.016 0.000 0.020 0.740
$E_K = 0.0$ $PH = 0.0$ $HPH = 0$	623		$N_{K}^{E}_{K} = 0.$ ED = 0.372 I HED = 0.372		

Source: NDS 59-4-77

63 Eu 152 13.00 y

Eγ (Mev)	Ny	N _K	N _γ E _γ (Mev/D)	Ε _β (Με	ev)	N _β
0.344	0.252	0.008	0.087	0.2	220	0.020
0.411	0.020	0.000	0.008	0.3	360	0.027
0.778	0.120	0.000	0.093		710	0.120
0.692	0.002	0.	0.001		040	0.018
1.100	0.025	0.	0.027		+70	0.075
1.240	0.020	0.	0.025		•	• •
0.122	0.387	0.232	0.047			
0.245	0.075	0.005	0.018			
1.085	0.120	0.000	0.130			
0.964	0.150	0.000	0.144			
0.866	0.040	0.000	0.034			
1.112	0.130	0.000	0.144			
0.443	0.050	0.000	0.022			
1.411	0.250	0.000	0.352			
1.210	0.020	0.	0.024			
Total	1.661	0.245	1.156			
E _K = 0.0)나나 Mev		N _v E _v =	0.011		

PH = 1.906 HPH = 1.906

NKE = 0.011 ED = 1.167 Mev/D HED = 1.167 Mev/D

Source: NDS 5-5-27 and -39

64 Gd 153 242 days

$^{\mathrm{E}}\gamma$	${ t N}_{f T}$	N_{γ}	N_{K}	$^{ m N}\gamma^{ m E}\gamma$	E _B N _B
(Mev)				(Mev/D)	(Mev)
0.0697	0.160	0.037	0.123	0.0026	Decays by E.C.
0.1032	0.560	0.224	0 .33 6	0.0231	
0.0895	0.004	0.002	0.002	0.0002	
0.0198	0.004	0.001			
0.0974	0.380	0.280	0.090	0.0273	
0.0141	0.003				
0.0834	0.011	0.007	0.004	0.0006	
capture (e" <u></u>		1.000		
Total	1.122	0.551	1.555	0.0538	
E _K = .042	25 Mev	N	KEK = 0.0	0661 Mev/D	
PH = 2.10) 6	E	D = .1.	199 Mev/D	
HPH 2.10	06	H	ED = .119		

Source: NDS 5-6-108 and -116

65 Tb 158 150 years N_β

0.01

E_β (Mev) 0.628 0.845

$^{\mathrm{E}}\gamma$	N _T	N_{γ}	N_{K}	$N_{\gamma}E_{\gamma}$
(Mev)				(Mev/D)
0.2181	0.01	0.01	, ,	0.0022
0.0990	0.14	0.04	0.10(Dy)	
0.9630	0.24	0.24		0.2311
0.7770	0.14	0.14		0.1088
0.9450	0.41	0.41	7	0.3875
0.18 20	0.17	0.13	0.04(Gd)	0.0237
0.0795	0.86	0.12	0.74(Gd)	0.0095
capture e			0.86(Gd)	
Total	1.97	<u>7.00</u>	1.74	0.7668
$E_{K}(Dg) = 0$	0.0470 Mev	iv _K E _K = 0	0.0047 mev	·/ɒ
	0.0440 Mev			
PH = 2.83		ED = 0.8	437 Mev/D	•
		HED - 0.	8437 Mev/	D
HPH = 2.8	3	HED $= 0$.	8437 Mev/	D

Source NDS 5-5-81 and -88

66 Dy 159 144 day

E _γ (Mev)	N _T	N _γ	N K	$N_{\gamma}^{\mathrm{E}}_{\gamma}$ (Mev/D)	E _β ^N β (Mev)
0.0580 capture e- Total	0.260 0.260	0.034 0.034	0.226 1.00 1.226	0.0020	Decays by E. C.
E _K = 0.045 PH = 1.260 HPH = 1.26			ED = 0.0	0.0558 Mev/D 0578 Mev/D 0578 Mev/D	

Source: NDS 6-4-36

67 Ho 166m 1200 years

$^{\mathrm{E}}\gamma$	$^{\mathrm{N}}\mathrm{_{T}}$	N_{γ}	N _K	$^{ m N}{_{\gamma}^{ m E}}{_{\gamma}}$	1	Eβ	$^{N}_{\beta}$
(Mev)				(Mev/I		(Mev)	
0.751	0.144	0.144		.1081		0.01	0.15
0.610	0.025	0.025		.0153	(0.06	0.85
0.451	0.027	0.027		.0122			
1.242	0.010	0.010		.0124			
0.711	0.580	0.580		.4124			
0.569	0.071	0.071		.0404			
0.410	0.130	0.130		.0533			
0.830	0.106	0.106		.0880			
0.465	0.017	0.017		.0079			
0.300	0.037	0.037		.0111			
0.950	0.033	0.033		.0314			
0.670	0.057	0.057		.038છ			
0.258	0.010	0.010	~ *	.0026			
0.810	0.600	0.600		.4860			
0.529	0.100	0.100		.0529			
0.2153	0.045	0.045		.0097			
0.6917	0.014	0.014		.0097			
0.365	0.017	0.017	~ -	.0062			
0.7796	0.037	0.037		.0288			
0.200	0.310	0.292	0.018	.0818			
0.1843	0.980	0.742	0.148	.1368			
0.0806	1.000	0.125	0.209	.0101			
Total	4.350	3.219	0.375	1.6553			
(Conversion	ai atab	missing	on many	of these	gammas.		

(Conversion data is missing on many of these gammas. Some ${\rm N}_{\gamma}$ values may be overestimated.)

 $E_{K} = 0.0502 \text{ MeV}$

 $N_K E_K = 0.0188 \text{ MeV/D}$

PH = 3.594HPH = 3.594 ED = 1.6721 Mev/D IED = 1.6721 Mev/D

Source: NDS 6-4-36 and -44 and -45

67 Ho 166 27 hours

Ey	N_{T}	$^{ m N}\gamma$	N _K	$^{ m N}\gamma^{ m E}\gamma$	Eβ	Nβ
(Mev)				(Mev/D)	(Mev)	
1.380 0.0806 Total	0.009 0.480 0.489	0.009 0.060 0.069	0.102 0.102	0.0124 0.0048 0.0.72	0.02 0.23 0.40	0.000¼ 0.0030 0.0100
, ,	y weak gam		tions		•	0.4760 0.5160

 $E_K = 0.0502 \text{ MeV}$ $N_K E_K = 0.0051 \text{ MeV/D}$ PH = 0.171 ED = 0.0223 MeV/DHPH = 0.171 HED = 0.0223 MeV/D Source: NDS 6-1-56, 6-1-57 and 6-1-64

68 Er 169 9.3 days

Ey	Ny	N _M	$N_{\gamma}E_{\gamma}$	EB	NB
Mev			Mev/D	Mev	
0.0084		0.42	19 Wa Wa	0.332	0.42
				0.340	0.58
$E_{M} = 0.002$	131	$N_{M}E_{M} = 0$.001		
PH = 0.42		ED = 0.00			
HPH = 0		HED = 0 1	Mev/D		

Source: NDS 6-4-102 and 6-4-107

68 Er 171 7.5 hours

					• •	
E _y Mev	N _T	Ny	N.K	N _y E _y Mev/D	E _β Mev	Nβ
0.9060	0.0100	0.0100	~ ~	0.009	0.493	0.005
0.7960	0.0090	0.0090		0.007	0.528	0.005
0.2770	0.0085	0.0085		0.002	0.575	0.038
0.2110	0.0090	0.0090		0.002	0.753	0.004
0.1664	0.0080	0.0080		0.001	0.816	0.004
0.3083	0.7200	0.7060	0.014	0.218	1.065	0.910
0.2958	0.2900	0.2840	0.006	0.084	1.370	0.015
0.1240	0.2060	0.0940	0.056	0.012	1.490	0.021
0.1167	0.0580	0.0310	0.027	2.004		
0.1116	0.6500	0.3000	0.350	0.033		

Total	1.969	1.460	0.453	0.372		

(many less than 0.01 ignored)

 $E_{K} = 0.0519 \text{ MeV}$

PH = 1.969 HPH = 1.969

NKEK = 0.0235

ED = 0.396 Mev/D HED = 0.396 Mev/D

69 Tm 168 86 days

E _γ (Mev)	N _T	N _γ	N _K	$\frac{N_{\gamma}^{\mathrm{E}}_{\gamma}}{(\mathrm{Mev}/\mathrm{D})}$	Eβ ^N β (Mev)
	0.005 0.040 0.180 0.020 0.030 0.290 0.020 0.090 0.030 0.530 0.040 0.050 0.050 0.140 0.140 0.140 0.110 0.012 0.210 0.860	0.005 0.040 0.180 0.020 0.030 0.279 0.020 0.090 0.050 0.050 0.050 0.140 0.140 0.110 0.012 0.175 0.129	0.011 		(Mev) Decays by E.C.
capture e Total	 - 	2.587	$\frac{1.000}{1.260}$	1.4052	

 $E_{K} = 0.0502 \text{ MeV}$ $M_{K}E_{K} = .0633 \text{ MeV/D}$ PH = 3.847

HPH = 3.847

ED = 1.4685 Mev/D HED = 1.4685 Mev/D

Source: NDS 6-4-87 and 6-4-91

69 Tm 170 127 days

Ε _γ Mev	и	N _K	^{N}L	N _γ E _γ Mev/D	^E β Mev	Nβ
0.0843	0.039	0.054	0.149	0.003	0.882	0.24
			-,	wa 4m wa	0.967	0.76
$E_{K} = 0.05$	36 Mev		$N_{K}E_{K} = 0$.	.003		
$E_L = 0.01$	O Mev		$N_{L}E_{L} = 0.$	001		
PH = 0.24	5		ED = 0.00	7 Mev/D		
HPH = 0.0	93		HED = 0.0	XX6 Mev/D		

Source: NDS 6-4-103 and 6-4-111

69 Tm 171 1.9 years

Ε _γ Mev	Ny	^N K	N _γ E _γ Mev/D	Έ _β Mev	^N в
0.06673 E _K = 0.0536 PH = 0.02 HPH = 0.02	** ** ** **	0.02 NKE = 0.00 HED = 0.001	001 Mev/D	0.0300 0.0965	0.02 0.98

Source: NDS 59-2-95 and 59-2-98. P. F. Fussan and B. Herskind, Nucl. Phys. 40, 2h (1963,

71 Lu 176m 3.7 hours

Eγ	N _T	Ny	r	N _γ E _γ Mev <i>i</i> ⊂	E _β Mev	nβ
0.0883	1.00	0.085	0.91	0.0078	1.1	1.0
E _K = 0.05 PH = 1.0 HPH = 1.0			${}^{N}K^{*}K = 0$ ED = 0.0 HED = 0.	.0521 599 Mev/D 0599 Mev/D		

Source: NDS 59-3-99. H. I. est, Jr., L. G. Me. and R. J. Nagle, Phys. Rev. 124, 527 (1961)

71 Lu 177 6.75 days

 $^{N}_{\beta}$

0.123 0.003 0.119 0.755

110 0 1 11mgm-)						
E _y Mev	n _T	N,	: ''	$N_{\gamma}^{E}_{\gamma}$ Mev/D	E _β Mev	
0.2084 0.1130 0.2497 0.3213	0.121 0.239 0.002 0.002	0.121 0.075 0.002 0.002	0.059	0.0252 0.0085 0.0050 0.0060	0.175 0.246 0.383 0.496	
Total	0.364	0.200	0.059	0.0348		
$E_{K} = 0.05$	71 Mev		$N_{\mathbf{E}}^{\mathbf{K}} = \cdot$			
PH = 0.25			ED = 0.03 $HED = 0.03$	382 Mev/D 0382 Mev/D		

Source: J. Valentin, D. J. Horen and J. M. Hollander, Nucl. Phys. 31, 353 (1962).

E _γ Mev	N _T	$^{ m N}_{\gamma}$	N _K	N _γ E _γ Mev/D	E _β Mev	Nβ
0.0778	0.001	0.001	m	0.0001		s by E. C.
0.1236	0.985	0.835	0.150	0.1032		
0.1349	0.112	0.064	0.048	0.0086		
0.1396	0.297	0.114	0.183	0.0159		
0.1618	0.059	0.054	0.005	0.0087		
0.2967	0.372	0.366	0.006	0.1086		
0.3064	0.058	0.058		0.0178		
0.3111	0.096	0.096		0.0299		
0.3568	0.005	0.005		0.0018		
0.4223	0.005	0.005		0.0021		
0.8977	0.019	0.019		0.0171		
capture e			1.000			
	***************************************	-	***			
Total	2.009	1.617	1.392	0.3138		
$E_{K} = 0.0553$	3 Mev		$N_K E_K = 0.$	0770		
PH = 2.009		ED = 0.39	08 Mev/D			
HPH = 2.009)		HED = 0.3	908 Mev/D		
/C						

(Several very weak 7's ignored.)

Source: NDS 59-2-89 and 59-2-92

72 Hf 175 70 days

72 Hf 173 24 hours

E _γ Mev	N _γ	N _K	N _γ E _γ Mev/D	^E β Mev	N _в
0.08936 0.11381 0.22960 0.34340 0.43300 capture e	0.031 0.003 0.006 0.769 0.012	0.068 0.006 0.001 0.081	0.0028 0.0003 0.0014 0.2641 0.0052	Decays b	by E. C.
Total E _K = 0.0553 PH = 1.977 HPH = 1.977	0.821 Mev		0.2738 .0639 377 Mev/D		

Source: NDS 60-1-117 and 60-1-119

Ey	N _y	N ^K	$N_{\gamma}E_{\gamma}$ Mev/D
0.501 0.058 0.444 0.332 0.216 0.093	0.166 0.624 0.809 0.948 0.870 0.200	0.004 0.021 0.052 0.130 0.260	0.0832 0.0362 0.3592 0.3147 0.1879 0.0186
Total E _K = 0.09 PH = 4.00 HPH = 4.00	3.617 571 Mev	0.467 EN = 0 KK ED = 1.0 HED = 1.	0.9998 0.0267 027 Mev/D 027 Mev/D

72 Hf 180m 5.5 hours

Eβ	ďβ
Mev	
Tsomeric	Transition

Source: NDS 60-2-110

72 Hf 181 45 day

Eγ	$^{ m N}\gamma$	NK	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	Eβ	N _B
Mev			Mev/D	Mev	
0.3476	0.001		0.0003	0.065	0.003
0.3423	0.001		0.0003	0.340	0.010
0.2590	0.002		0.0005	0.404	0.040
0.6990	0.010		0.0070	0.408	0.920
0.2170	0.005	~ ~ ~	0.0011	0.550	0.020
0.6190	0.0004		0.0002		
0.1369	0.041		0.0056		
0.6155	0.003		0.0018		
0.1330	0.650	0.210	0.0865		
0.4820	ი.800	0.019	0.3856		
0.4760	0.020		0.0095		
0.3458	0.140		0.0484		
0.1361	0.050	0.100	0.0068		
0.0063	0.020		0.0001		
Total	1.743	0.329	0.5537		
$E_{K} = 0.0573$	l Mev	$N_K E_K = 0.0$	0188		
PH = 2.072		ED = 0.578	25 Mev/D		
HPH = 2.073	2	HED = 0.5	* .		

Source: NDS 60-1-117 and -121, and C. J. Gallagher, Jr.,
M. Jørgensen and O. Skilbreid, Nucl. Phys. 33, 285
(1962).

E_{γ}	N_{γ}	NK	$^{\mathrm{N}_{\boldsymbol{\gamma}^{\mathrm{E}}_{\boldsymbol{\gamma}}}}$	$^{\mathrm{E}}_{oldsymbol{eta}}$	N _B
Mev			Mev/D	Mev	
0.102 0.093 capture e- Total	0.007 0.068 0.075	0.006 (W) 0.068 (Hf) 0.870 (Hf)		0.600 0.705	0.032 0.098
E _K (W) = 0.0607 Mev E _K (Hf) = 0.0571 Mev PH = 1.019 HPH = 1.019		$N_K^E_K = 0.000^{14}$ $N_K^E_K = 0.0536$ ED = 0.061 Mev/D HED = 0.061 Mev/D			

Source: NDS 60-1-126 ard -132

73	Ta	182m
16	mir	1

Eγ	${ t N}_{f T}$	N ₇	N _K	$^{\mathrm{N}_{\boldsymbol{\gamma}}\mathrm{E}_{\boldsymbol{\gamma}}}$ Mev/D	E _β N _β Mev
0.356 0.184 0.319 0.172 0.147	0.042 0.958 0.074 0.884 0.926	0.008 0.551 0.067 0.505 0.463	0.034 0.407 0.007 0.379 0.463	0.0028 0.1014 0.0214 0.0869 0.0681	Isomeric transition
Total	2.884	1.594	1.290	0.2806	
E _K = 0.0589 Mev PH = 2.884 HPH = 2.884		${}^{N}{}_{K}{}^{E}{}_{K} = 0$ $ED = 0.3$ $HED = 0.3$).0760 566 Mev/D 3566 Mev/D		

Source: NDS 60-1-126 and 60-1-137

73 Ta 182 115 days

Eγ	n _T	N_{γ}	NK	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	Eβ	Nβ
Mev	•	,		Mev/D	Mev	
0.264	0.0800	0.074	0.006	0.0195	0.180	0.38
0.220	0.1300	0.130		0.0286	0.250	0.05
0.179	0.0700	0.055	0.015	0.0098	0.330	0.02
0.006	0.1000	0.026		0.0017	0.363	0.20
0.198	0.0400	0.034	o .00 6	0.0067	0.443	0.23
0.156	0.0400	0.040		0.0062	0.480	0.04
0.114	0.0600	0.020	0.040	0.0023	0.514	0.08
0.116	0.0200	0.020		0.0023		
1.375	0.0040	0.004		0.0055		
1.273	0.0019	0.002		0.0025		
0.152	0.0090	0.006	0.003	0.0009		
0.085	0.1400	0.042		0.0036		
1.231	0.1100	0.110		0.1354		
1.003	0.0300	0.030		0.0301		
1.289	0.0160	0.016		0.0206		
1.189	0.1500	0.004	0.146	0.0048		
0.960	0.0080	0.008		0.0077		
0.0677	0.3400	0.266		0.0180		
1.254	0.0200	0.020		0.0251		
1.155	0.0100		0.010			
0.927	0.0090	0.009		0.0083		
1.222	0.2800	0.013	0.267	0.0159		
1.122	0.3300	0.010	0.320	0.0112		
0.229	0.0800	0.070	0.010	0.0160		
0.100	0.5600	0.280	0.280	0.0280		
Total	2.6380	1.289	1.103	0.4107		
	C 5.0	N 17 -	0.0670			

 $E_{K} = 0.0607 \text{ MeV}$ $N_{K}E_{K} = 0.0670$ PH = 2.392 ED = 0.4777 MeV/DHPH = 2.392 HED = 0.4777 MeV/D

Source: A. H. Muir, Jr., and F. Boehm, Phys. Rev. 122, 1564 (1961) 74 W 181 145 Day

E _γ Mev	T ^N T	Nγ	N ^K	$N_{\gamma}^{E}_{\gamma}$ Mev/D	E _β Mev	Nβ
0.1525 0.13625 0.00625 capture e- Total	0.0011 0.0007 0.3500 0.3518	0.0005 0.0003 0.0008	0.0006 0.0004 1.0000 1.0010	0.0001	Decays by	
E _K = 0.0589 Mev PH = 1.0018 HPH = 1.0018		${}^{N}_{K}{}^{E}_{K} = 0.$ $ED = 0.05$ $HED = 0.05$				

Source: K. Maak Bisgard, K. Olesen and P. Østergard, Nucl. Phys. 33, 126 (1962).

74 w 187 24 hour

Eγ	Ny	$N_{\mathbf{K}}$	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	Eβ	N _B
Mev			Mev/D	Nev	
0.072	0.1470	0.1540	0.0106	0.325	0.08
0.107	0.0005	0.0014	0.0001	0.625	0.74
0.114	0.0011	0.0031	0.0001	1.329	0.18
0.134	0.1190	0.2120	0.0159		
0.206	0.0015	0.00146	0.0003		
0.239	0.0010	0.0004	0.0002		
0.246	0.0016	0.0005	0.0004		
0.479	0.3039	0.0061	0.1456		
0.511	0.0079	0.0002	0.0040		
0.552	0.0639	0.0004	0.0353		
0.618	0.0785	0.0025	0.0485		
0.625	0.0130		0.0081		
0.686	0.3526	0.0014	0.2419		
0.773	0.0492	0.0008	0.0380		
0.867	0.0047	0.0001	0.0041		
Total	1.1454	0.3874	0.5531		
E _K = 0.0	626 Mev	$N_K E_K = 0$.0243		
PH = 1.5	PH = 1.533 ED =		774 Mev/D		
HPH = 1.	- - .		5774 Mev/D		

Source: K. M. Bisgard, C. S. Cook, P. Horskøj and A. B. Knutsen, 75 Re 184 Nucl. Phys. 41, 32 (1963), and NDS 60-1-142 and -148.

^E γ Mev	N _T	Nγ	N _K	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$ $\mathrm{Mev/D}$	E _β N _β Mev
0.330 0.230 0.250 0.895 0.642 0.904 0.793 0.540 0.253 0.111 capture e	0.003 0.004 0.008 0.190 0.005 0.400 0.400 0.042 0.600	0.003 0.004 0.008 0.190 0.005 0.400 0.396 0.006 0.037 0.151	0.004 0.005 0.151 1.000	0.0010 0.0009 0.0020 0.1701 0.0032 0.3616 0.3140 0.0032 0.0094 0.0168	Decays by E.C.
E _K = 0.0607 PH = 2.360 HPH = 2.360	= 0.0607 $N_K E_K = 0.0704$ = 2.360 ED = 0.9526 Mev/D				

Source: NDS 59-5-132 and -134

75 Re 186 90 hours

Eγ	N _T	$^{ m N}\gamma$	NK	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	E _β N _β	
Mev				Mev/D	Mev	
0.122	0.0383	0.0343	0.0040 (W)	0.0042	0.34 0.069	
0.768	0.0003	0.0003		0.0002	0.934 0.231	
0.631	0.0004	0.0004		0.0003	1.071 0.73	
0.137	1.0000	0.4348	0.1739 (0s)	0.0596		
capture e-			0.0383 (W)			
Total	1.0390	0.4698	0.2162	0.0643		
$E_{K}(W) = 0.0607 \text{ MeV}$ $N_{K}E_{K} = 0.0026$						
$E_{K}^{N}(Os) = O.$	$N_{K}E_{K} = 0.0026$ $N_{K}E_{K} = 0.0026$ $N_{K}E_{K} = 0.0112$					
PH = 0.686		ED = 0.0781 Mev/D				
HPH = 0.686	5	HED = 0.07	/81 Mev/D			

Source: R. Hardell and S. Nilsson Nucl. Phys. 39, 286 (1962)

75 Re 188m 18.7 min

Eγ Mev	N _y	N _K	$N_{\gamma}E_{\gamma}$ Mev/D	E _B N _B Mev
0.064	0.333	0.667	0.0213	Isomeric Transition
		0.0418 0631 Mev/D 0631 Mev/D		

Source: NDS 59-3-119 and 59-3-123

75 Re 188 17 hour

E _γ Mev	N _γ	Nγ	N _K	$N_{\gamma}^{E}_{\gamma}$ Mev/D	E β Mev	N _B
0.155 0.478 0.633 0.828	0.200 0.010 0.015 0.005	0.116 0.010 0.015 0.005	0.084	0.0180 0.0048 0.0095 0.0041	0.16 0.18 0.35 0.66	0.0004 0.0004 0.0010 0.0040
0.931 Total	0.006	0.006	0.084	0.0056	1.03	0.0010
E _K = 0.2; PH = 0.2; HPH = 0.3		$N_{K}E_{K} = 0$ $ED = 0.0$ $HED = 0.$).0054)474 Mev/I ,0474 Mev/) 'D	1.48 1.96 2.116	0.0100 0.2000 0.7800

Source: NDS 5-3-3 and 5-3-7

76 Os 190m 10 min.

E _γ Mev	N _T	N _γ	N _K	N _γ E _γ Mev/D	E _β N _β Mev
0.0384 0.1870 0.3610 0.5000 0.6140	1.00 0.88 0.92 1.00 0.91	0.74 0.88 0.98 0.90	1.00 0.14 0.04 0.02 0.01	0.1384 0.3177 0.4900 0.5526	Isomeric Transition
Total	4.71	3.50	1.21	1.4987	
$E_{K} = 0.0645 \text{ MeV}$ $PH = 4.71$ $HPH = 4.71$			ED = 1.57		

Source: NDS 5-3-17

76 Os 191 15 days

E _γ (Mev)	N _T	Ny	N _K	$\frac{^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma}{(\mathrm{Mev/D})}$	E _β (Mev)	N _β
c 1867	0.001	0.001		.0002	0.123	0.001
0.042	0.999				0.139	0.999
0.1294	0.999	0.250	0.749	.0324		
0.047						
0.0823						
Total	1.999	0.251	0.749	.0326		
E _K = 0.061	5 Mev	N _K E _K -	.0483 Mev/I)		
PH = 1.000)	ED0	809 Mev/D			
HPH = 1.00	00		0809 Mev/D			

Source: NDS 61-3-97

76 Os 193 32 hours

Eγ (Mev)	т	N _y	NK	$^{\mathrm{N}_{\gamma^{\mathrm{E}}\gamma}}_{(\mathrm{Mev}/\mathrm{D})}$	^E β (Mev)	Nβ
0.299	0.004	0.004		.0012	0.52	0.008
0.251	0.004	0.003	0.001	.0008	0.57	0.032
0.559	0.022	0.021	0.001	.0117	0.67	0.074
0.468	0.003	0.003		.0014	0.77	0.004
0.460	0.041	0.038	0.003	.0175	0.82	0.004
0.278	0.006	0.006		.0017	0.85	0.010
0.196	0.001	0.001		.0002	0.88	0.013
0.3 88	0.016	0.014	0.001	.0054	0.99	0.087
0.322	0.017	0.016	0.001	.0052	1.059	0.064
0.362	0.006	0.005		.0018	1.132	0.700
0.289	0.003	0.003		.0009		
0.314	0.003	0.003		.0009		
0.243	0.002	0.002		.0005		
0.117	0.003	0.002	0.001	.0004		
0.281	0.016	0.013	0.003	.0037		
0.248	0.003	0.003		.0007		
0.107	0.010	0.003		.0003		
0.139	0.012	0.005	0.006	.0007		
0.073	0.085		* -	<u>.</u>		
Total	0.257	0.145	0.017	.0550		
E _K = 0.061	+5 Mev	NKEK =	0.0011 M	ev/D		

PH = .162 HPH = .162

ED = 0.0561 Mev/D HED = 0.0561 Mev/D

Source: NDS 5-3-3 and 5-3-11

77 Ir 190m 3.2 hours

\mathbf{E}_{γ} \mathbf{N}_{γ}	NK	$^{\mathrm{N}}{_{\gamma}^{\mathrm{E}}}{_{\gamma}}$	E	N _B
Mev		Mev/D	Mev	` ·
capture e	o 88	as 170 mm	2.04	0.12
$E_{K} = 0.0645 \text{ MeV}$	$N_K E_K = 0$	0.0568	Dec ay is 76 Os 190	to 10 min. Om, q.v.
PH = 0.88		0568 Mev/D		

Source: NDS 5-3-3 and 5-3-9

	Ir 19 i ay s	90
E _B Mev	Ŋβ	
Decays	by I	E. C.

E ₇	$N_{\mathbf{T}}$	N	NK	$N_{\gamma}E_{\gamma}$
Mev				Mev/D
1.330	0.005	0.005	445 ton 105	0.0067
0.197	0.070	0.050	0.020	0.0099
0.725	0.039	0.039	44 0 44	0.0283
0.518	0.270	0.270		0.1399
0.295	0.082	0.082		0.0242
1.020	0.028	0.028		0.0286
0.827	0.040	0.040		0.0331
0.224	0.052	0.052		0.0116
0.604	0.320	0.317	0.003	0.1915
0.407	0.270	0.263	0.007	0.1070
0.206	0.040	0.040		0.0082
0.767	0.020	0.020		0.0153
0.397	0.056	0.056		0.0222
0.199	0.010	0.007	0.003	0.0014
0.569	0.250	0.247	0.003	0.1405
0.198	0.030	0.021	0.009	0.0042
0.557	0.280	0.276	0.004	0.1537
0.371	0.230	0.222	0.008	0.0824
0.361	0.150	0.144	0.006	0.0520
0.187	0.720	0.576	0.144	0.1077
capture e	165 Min 1614		1.000	
Total	2.962	2.755	1.207	1.1684

 $E_{K} = 0.0645 \text{ MeV}$

PH = 3.962HPH = 3.962

 $N_{K}E_{K} = 0.0779$

ED = 1.246 Mev/D HED = 1.246 Mev/D

Source: NDS 5-3-33 and 5-3-44

77 Ir 192m₂ 650 year

$^{\mathrm{E}}\gamma$	$^{ m N}_{ m T}$	$^{ m N}\gamma$	NK	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$
Mev				Mev/D
0.161	1.0	0.08	0.92	0.0129

E_β N_β Mev Isomeric Transition

 $E_K = 0.0664 \text{ MeV } N_K E_K = 0.0611$

PH = 1.0

ED = 0.0740 Mev/D

HPH = 1.0

HED = 0.0740 Mev/D

SOURCE: NDS 5-3-33 and 5-3-37 to 41

77 Ir 192 74 day

$^{\mathrm{E}}\gamma$	$\mathbf{n}_{\mathbf{T}}$	Nγ	$^{N}_{K}$ $^{N}\gamma^{E}\gamma$
Mev			Mev/D
0.4847	0.030	0.029	0.001 ⁰⁸ 0.0141
0.2013	0.007	0.006	0.0010s 0.0012
0.3744	0.006	0.006	0.0022
0.4891	0.004	0.004	0.0020
0.2834	0.004	0.004	0.0011
0.2057	0.038	0.038	0.0078
0.885	0.004	0.004	0.0035
0.5886	0.048	0.047	0.001Pt 0.0277
0.417	0.014	0.014	0.0058
0.282	0.010	0.010	0.0028
0.6044	0.093	0.091	0.002Pt 0.0550
0.3084	0.030	0.028	0.002Pt 0.0086
0.1363	0.018	0.018	0.0025
0.4680	0.480	0.471	0.009Pt 0.2204
0.173	0.012	0.012	0.0021
0.6124	0.063	0.062	0.001Pt 0.0380
0.2959	0.290	0.282	0.008Pt 0.0834
0.3165	0.800	0.759	0.041Pt 0.2402
capture e-			0.043 ^{0s}
Total	1.951	1.885	0.109 0.7184

E_β N_β Mev .0008 .095 .0012 .24 .076 .535 .42 .669 .46

 $E_{K}(Os) = 0.0645 \text{ MeV}$

 $N_{K}E_{K} = 0.0029$

 $E_{K}(Pt) = 0.0684 \text{ MeV}$

 $N_K E_K = 0.0044$

PH = 1.994

ED = 0.7257 Mev/D

HPH = 1.994

HED = 0.7257 Mev/D

Source: NDS 61-3-97 and 61-3-103

77 Ir 193m 12 days

Eγ	$N_{\overline{\mathbf{T}}}$	Ny	N _K	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	$\bar{\epsilon}_{oldsymbol{eta}}$
Mev				Mev/D	Mev
0.0802	1.0	1.0	•	0.0802	Isomeric Transition

PH = 1.0HPH = 1.0

ED = 0.0802 Mev/DHED = 0.0802 MeV/D

Source: NDS 61-4-65 and 61-4-70 and -71

77 Ir 194 19 hours

$^{\mathrm{E}}\gamma$	$\mathbf{n}_{\mathbf{T}}$	$^{\mathrm{N}}\gamma$	Νĸ	$^{ m N}\gamma^{ m E}\gamma$	EB	Nβ
Mev		·		Mev/D	Me v	
0.293	0.069	0.065	0.004	0.0190	0.438	0.0135
0.3285	0.330	0.330		0.1084	0.725	0.0107
0.6453	0.027	0.027		0.0174	0.756	0.0166
0.9389	0.015	0.015		0.0141	0.969	0.0416
1.1513	0.016	0.016		0.0184	1.614	0.0306
Total	0.457	0.453	0.004	0.1773	1.908	0.2050
(Severa)	L weak gamma	s are not			2.236	0.6600
account	ted for.)				Many others	0.01

 $E_{K} = .0684 \text{ MeV}$

ED = .1776 Mev/D

PH = .457 HPH .457

HED = 1776 Mev/D

SOURCE: NDS 5-3-16 and 5-3-24

78 Pt. 191 3 days

$^{\mathrm{E}}\gamma$	N _K	N_{γ}	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	E _B N _B
Mev	•-	•	Mev/D	Mev
0.0965	0.044	0.0220	0.0008	Decays by E. C.
0.1294	0.044	0.0220	0.0028	•
0.175		0.0255	0.0045	
0.269		0.0072	0.0019	
0.360		0.0867	0.0312	
0.410		0.0510	0.0209	
0.457		0.0193	0.0088	
0.539		0.1734	0.0935	
0.624		0.0182	0.0114	
capture	1.0			
Total	1.044	0.4120	0.1758	
(Several	weak gammas	and some		

(Several weak gammas and some
L X-rays are not accounted for.)

E_K = 0.0664 Mev, N_KE_K = 0.0693 ED
HEI

 $ED \approx 0.2451 \text{ Mev/D}$ HED = 0.2451 Mev/D

PH = 1.456 HPH = 1.456

SOURCE: NDS 61-3-97 and 61-3-104

A STATE OF THE STA

7	8 P	t	193n
4	.4	đ	ays

Isomeric Transition

E_β Mev

E ₇	$^{\mathbf{N}}\mathbf{T}$	N _K	$^{ m N}\gamma$	$^{ m N_{\gamma^E_{\gamma}}}$
Mev				Mev/D
0.1355 0.0127	1.00	1.00	1.00	0.0127
Total	2.00	1.00	1.00	0.0127
$E_{K} = 0.0684 \text{ MeV}$ $PH = 2.00$ $HPH = 1.00$			$N_K E_K = 0.08$ ED = 0.08 HED = 0.08	

Source: NDS 61-4-92 and 61-4-98

78 Pt 195m 4.1 days

$\mathbf{E}_{\boldsymbol{\gamma}}$	$N_{\mathbf{T}}$	N_{γ}	N _K	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	E _B N _B
(Mev)		, 		(Mev/D)	(Mev)
0.130 0.0988 0.129 0.0308	1.00 0.90 0.10 0.90	0.812 0.090 0.100 0.300	0.188 0.810	0.1056 0.0089 0.0129 0.0092	Isomeric Transition
Total	2.90	1.302	0.998	0.1366	
$E_{K} = 0.068$ $PH = 2.30$ $HPH - 2.30$					

Source: NDS 5-1-17 and 5-1-21

78 Pt 197 20 hours

$\mathbf{E}_{\boldsymbol{\gamma}}$	$N_{\mathbf{T}}$	$^{ m N}\gamma$	N _K	$^{ m N}_{\gamma}^{ m E}_{\gamma}$	EB	N _B
(Mev)	·-			(Mev/D)	(Mev)	
0.0773 0.191 0.279 Total	1.00 0.09 0.01 1.10	0.227 0.028 0.010 0:265	0.062	0.0175 0.0053 0.0028 0.0256	0.468 0.479 0.670	0.09
$E_{K} = 0.070^{14}$ PH = 0.327 HPH = 0.327		1	$N_K E_K = 0.0$ $ED = 0.030$ $EED = 0.030$	O Mev/D		

Source: NDS 5-3-55 and 5-3-58

78 Pt 199m 14 sec

Eγ	$^{\mathtt{N}}{}_{\mathtt{T}}$	$^{ m N}_{\gamma}$	NK	$^{ m N}\gamma^{ m E}\gamma$	EB	$^{ m N}_{ m B}$
(Mev)				(Mev/D)	(Mev)	
0.032 0.393 Total	1.0 1.0 2.0	0.048 0.920 0.968	0.080	0.0015 0.3616 0.3631	Isomeric	Transition
$E_{K} = 0.0684$ $PH = 1.048$ $HPH = 1.048$			$N_K E_K = 0$ $ED = 0$ $HED = 0$	0.0055 3686 Mev/D .3686 Mev/D		

Source: NDS 5-2-29 and 5-2-40

79 Au 196m 9.7 hr

E _γ (Mev)	N _T	Nγ	N _K	${}^{ m N}\gamma^{ m E}\gamma \ ({ m Mev/D})$	E _B N _B (Mev)
0.1749	1.00		0.32		Isomeric Transition
0.3162	0.08	0.08		0.025	
0.2885	0.07	0.07		0.020	
0.1478	0.85	0.28	0.21	0.041	
0.1882	0.65	0.21	0.36	0.040	
0.1683	0.18	0.05	0.11	0.008	
0.1377	0.03		0.03		
0.0505	0.01				
0.0307	0.09				
0.0199	0.20	0.13		0.003	
0.0846	1.00	0.06		0.005	
Total	4.18	0.88	1 33	0.142	
$E_{K} = 0.070$ PH = 1.91	C4 Mev		N _K E _K =	0.073	
PH = 1.91 HPH = 1.78	8			215 Mev .212 Mev	

Source: NDS 5-2-28 and 5-2-37 and 38

79 Au 196 6.18 days

Eγ	$N_{\mathbf{T}}$	N_{γ}	$N_{\mathbf{K}}$	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	Eβ	NB
(Mev)				(Mev/D)	(Mev)	
0.3557	0.94	0.90	0.04	0.3201	0.259	0.06
0.3330	0.27	0.26	0.01	0.0866		
0.4261	0.06	0.06		0.0256		
capture e-			0.94			
Total	1.27	1.22	0.99	0.4323		
(Several we	ak gamm	as not a	accounted f	for)		
$E_{K} = 0.0684$	Mev		κ_{κ}	0.0677		
PH = 2.21			ED = O	499 Mev/D		
HPH = 2.21			HED = 0	0.499 Mev/D		

Source: NDS 5-2-48, 5-2-54 and 55

79 Au 198 2.7 days

$\mathbf{E}_{oldsymbol{\gamma}}$	$^{ m N}_{ m T}$	$^{ m N}_{\gamma}$	N_{K}	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	EB	^N B
(Mev)				(Mev/D)	(Mev)	
1.087	0.0018	0.0018		0.0020	0.287	0.01
0.675	0.0082	0.0082		0.0055	0.962	0.99
0.4118		0.9710	0.0272	0.3999		
Total	1.0082	0.9810	0.0272	0.4074		
$E_{K} = 0.072$	25 Mev		N_{KE}^{K}	= 0.0020		
PH = 1.008	3			0.4094 Mev/D		
HPH = 1.00	80		HED =	0.4094 Mev/D		

Source: NDS 5-3-55 and 5-3-59

79 Au 199 3.15 days

$\mathbf{E}_{\boldsymbol{\gamma}}$	$^{\mathbf{N}}\mathbf{T}$	N _y	NK	$N_{\gamma}E_{\gamma}$	E	NB
(Mev)				(Mev/D)	(Mev)	
0.0498	0.053				0.251	0.23
0.1583	0.753	0.58	0.17	0.0918	0.302	
0.5085	0.177	0.10	0.08	0.0208	0.460	0.76
Total	0.983	0.68	0.25	0.1126		
E ^K = 0.0	725 Mev		NKEK =	0.0181		
PH = 0.9	3			1307 Mev/D		
HPH = 0.	93		HED = 0	1.1307 Mev/D		

Source: NDS 5-1-17 and 5-1-27

80 Hg 197m 24 hours

E _γ (Mev)	N _T	N _y	N _K	$N_{\gamma}^{\rm E}_{\gamma}$ (Mev/D)	E _β N _β (Mev)
0.130 0.279 0.165 0.134 capture e	0.035 0.035 0.965 0.965 2.000	0.032 0.023 0.003 0.311 0.369	0.003 0.012 0.192 0.242 <u>0.035</u> 0.484	.0042 .0064 .0005 .0417 	Isomeric Transition and E. C.
E _K = 0.0 PH = .853 HPH = .85			ED = .08	.0351 Mev/D 879 Mev/D 0879 Mev/D	

Source: NDS 5-1-17 and 5-1-26

80 Hg 197 65 hours

E	$\mathbf{n}^{\mathbf{L}}$	Nγ	N _K	$N_{\gamma}E_{\gamma}$	E _B N _B
(Mev)				(Mev/D)	(Mev)
0.191	0.017	0.006	0.012	.0011	Decays by E. C.
0.0773	1.000	0.233		.0180	
capture e-			1.000		
Total	1.017	0.239	1.015	.0191	
E _K = 0.0725 Mev			$N_{K^{\mathbf{E}}K}$	= .0734 Mev/D	
PH = 1.251			ED = 0.0925 Mev/D		
HPH = 1.251			HED = 0.0925 Mev/D		

Source: NDS 5-2-92

80 Hg 203 47 days

^E γ (Mev)	N _T	Nγ	N _K	^N γ ^E γ (Mev/D)	E _β N _β (Mev)	
0.279	1.0	0.86	0.14	0.240	0.212 1.0	
$E_{K} = 0.0740$ PH = 1.0 HPH = 1.0	6	** **	0.0104 0.250 Mev/1 0.250	D		

Source: NDS 5-2-92 and 5-2-98

82 Pb 203 52 hours

^E γ (Mev)	N _T	Nγ	N _K	$^{\mathrm{N}_{oldsymbol{\gamma}^{\mathrm{E}}_{oldsymbol{\gamma}}}}$ (Mev/D)	^E β (Mev)	$^{\mathrm{N}}_{\beta}$
0.680 0.401 0.279 capture e- Total	0.008 0.045 0.990 1.043	0.008 0.039 0.853 0.900	0.006 0.137 1.0 1.143	0.0054 0.0156 0.2380 0.2590		by E. C.
$E_{K} = 0.0746$ $PH = 2.043$ $HPH = 2.043$				0.0853 3443 Mev/D .3443 Mev/D		

Source: NDS 5-1-36 and 5-1-41

82 Pb 204m 67 min

E _γ (Mev)	N _T	Nγ	N _K	N _γ E _γ (Mev/D)	E _β N _β (Mev)
0.912 0.375 0.899 Total	1.0 1.0 1.0 3.0	0.95 0.96 0.99 2.90	0.05 0.04 0.01 0.10	0.8664 0.3600 0.8900 2.1164	Isomeric Transition
$E_{K} = 0.076$ $PH = 3.0$ $HPH = 3.0$	7 Mev			0.0077 124 Mev/D 124 Mev/D	

Source: J. O. Rasmussen, F. L. Canavan and J. M. Hollander, 92 U 237 Phys. Rev. 107, 141 (1957). 6.75 days

$^{\mathrm{E}}\gamma$	117	N _K	$_{\rm M}$ rr	$_{\rm N}$ 15	$_{\rm M}$ r3	N_{M}	$^{\mathrm{N}}\gamma^{\mathrm{E}}\gamma$	Eβ	N _B
(Mev)			····		_	·		(Mev)	·
	0.360		0.075	0.149	0.047	0.085	0.021	0.248	0.960
	0.023		0.003	0.003	0.003		0.001		
	0.036	0.005		0.013	0.00 6		0.006		
		0.620	0.108	0.014	0.001	0.022	0.050		
		0.001							
		0.005	0.005						
	0.014						0.005		
	0.002						0.001		
Total	0.675	0.631	0.190	0.179	0.057	0.112	0.084		
$\mathbf{E}^{\mathbf{K}} =$	0.103 Me	·V		$N_K E_K = 0$.	065				
	0.055 W			$N^{IJ}E^{IJ} =$	0.004				
	0.022 N			N _{IS} E _{IS} =					
$E^{r3} =$	0.018 N	lev		$_{\rm M} {\rm r3_E r3} =$					
	0.006 N	lev		$N_{M}E_{M} = 0.$					
PH =				ED = 0.15					
HPH ≈	1.675			HED = 0.1	.57 Mev/	D			

Source: C. F. Miller, USNRDL-TR-160, (1957).

92 U 239 23.5 Min.

E_{γ} N_{γ}	N _K	$^{\mathrm{N}}^{\mathrm{L}}$	$^{ m N}\gamma^{ m E}\gamma$	EB	N _B	
(Mev)				(Mev)		_
0.074 0.830		0.170	0.062	1.210	1.000	_
$E_{L} = 0.022$			$N_L E_L = O$.004		
PH = 1.000 HPH = 1.000			ED = 0.00 $HED = 0.0$	66 Mev/D 066 Mev/D		

Source: M. E. Bunker, et al. Phys. Rev. 116, 143 (1959).

92 U 240 14.1 hrs.

E _γ (Mev)	Nγ	N _L	$^{\mathrm{N}_{\boldsymbol{\gamma}^{\mathrm{E}}_{\boldsymbol{\gamma}}}}$	E _β (Mev)	^N β
0.044	0.063	0.188	0.003	0.320	0.250
E _L = 0.02 PH = 0.25 HPH = 0.2	51			$N_{L}E_{L} = 0.004$ ED = 0.007 M HED = 0.007	lev/D

J. Borggreen, O. B. Nielsen and H. Nordby Nucl. Phys. 29, 515 (1962). Source:

93 Np 238 2.1 Days

E _γ N _γ (Mev)	N _K	_N TJ' +	12	N _I I3	N _M	N _N	N _y E _y	E _B	N _в
0.044 1.010 0.885 0.00 0.925 0.02 0.986 0.24 1.030 0.17 Total 0.44	25 11 0.003	2 0.001		0.009	0.175 0.010 0.185	0.002	0.008 0.023 0.238 0.180	1.240 0.260	
$E_{K} = 0.106$	Mev			77 17	= 0.00				
$E_{L3} = 0.00$ $E_{M} = 0.000$	8 Mev	.022 Mev	$n^{r3}E$	+ 12 E) = 0.00	.002	5 = 0.(004		
$E_{N} = 0.002$				= 0.00					
PH = 0.958				0.457		D			

Source: C. F. Miller, USNRDL-TR-160, (1957).
R. D. Connor and I. L. Fairweather,
Pro. Phys. Soc. (London) 74, 161 (1959).

93 Np 239 56.0 hrs.

E _γ (Mev)	Nγ	NK	N _L + M	N	Eγ	E _β (Mev)	N _β
0 0/15	0.001		0.016	_		0.713	0.065
				_	_		0.040
-					-		0.480
		~ -		0	.00 ¹ 1		0.135
				0.	.004		0.280
				~	.033	عرر،ں	0.200
					.001		
		0.080			.006		
		0.002					
		0.187			.019		
		0.002			.006		
		0.015		0.	.002		
		0.178		0.	.037		
0.286	0.012	0.025	0.010	0	.003		
0.316	0.004			0.	.001		
0.335	0.021	0.001		0	.007		
•	0.696	0.487	0.690	Ō	.119		
		Ť			•		
$E_{K} =$	0.10 6 :	Mev		N _K E _K	= 0.052		
$E^{\Gamma} =$	0.022	Mev		$_{N}^{\Gamma}_{E}^{\Gamma}$	= 0.015		
PH =	1.873			ED =	0.186 Mev	/D	
	1.873				= 0.186 Me		

Source: M. E. Bunker, B. J. Dropesky, J. D. Knight
J. W. Starner and B. Warren, Phys. Rev. 116, 143
(1959).

E _γ (Mev)	N _y	N ^K	E_N _y	^E β (Mev)	η _β
0.260	0.019	0.001	0.005	2.180	0.520
0.304	0.009		0.003	1.600	0.310
0.554	0.214	0.002	0.119	1.300	0.100
0.597	0.126	0.001	0.075	0.650	0.070
0.758	0.013		0.010		•
0.816	0.016		0.013		
0.820	0.003		0.002		
0.898	0.012		0.011		
0.936	J.003		0.003		
0.942	0.019		0.018		
1.490	0.015		0.055		
1.530	0.019		0.029		
1.620	0.007		0.011		
Total	0.475	0.004	0.321		
$E_{K} = 0.$	479 Mev			$N_{KE}^{K} = 0.000$	
PH = 0.				ED = 0.321	
HPH = 0	1.479			HED = 0.321	

Source: F. Asaro and I. Perlman, Phys. Rev. 94, 381 (1954), 94 Pu 238 and D. C. Hoffman, G. P. Ford and F. O. Lawrence, J. Inorg. Nucl. Chem. 5, 6 (1957).

Ey (Mev)	Nγ	N ^K	N ^L	N _y E _y	Eα Nα (Mev)
Total	0.0001 0.0004 0.0005 veak 0.15		0.0008 0.2796 0.2804 gamma obs		Alpha decay 5.352 0.0009 5.452 0.28 5.495 0.72
PH ≈ C	0.017 Mev 0.2809 0.0005	•	E	LE _I , = 0.0048 D = 0.0048 ED 0	

APPENDIX II

是一个人,我们就是一个人,我们就是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也

EXPOSURE-RATE MULTIPLIERS

The following list gives an exposure-rate multiplier for each nuclide contained in Appendix I. The point of exposure is assumed to be 3 feet above an infinite plane uniformly contaminated with the nuclide in question. The units of the multiplier are roentgens-sec-cm²-hr-1-disintegrations-1. The multiplier will convert nuclide activities in disintegrations-sec-1-cm-2 to exposure rates in roentgens-hr-1. The figure in parentheses indicates the number of zeros between the decimal point and the first significant figure; i.e., (6)297 is to be read 0.000000297 or 0.297x10-6.

Nuclide	Half-life	Multiplier	Nuclide	Half-life	Multiplier
Be 7 Na 22 Na 24 Al 26 Si 31	53.4 d 2.6 y 15.0 h 7.4x10 ⁵ y 2.6 h	(6)297 (5)605 (4)171 (5)812 (8)422	Ag 108m Ag 108 Ag 109m Ag 110m Ag 110	2.4 m 39.0 s 253 d 24 s	(5)953 (7)943 (7)805 (4)137 (6)175
C1 34m	32.4 m	(5)617	Cd 107	6.5 h	(6)384
C1 38	38 m	(5)642	Cd 109	470 d	(6)106
K 40	1.27x109 y	(6)737	Cd 113m	14 y	(8)140
K 42	12.5 h	(5)126	In 113m	1.7 h	(5)144
Sc 44m	2.4 d	(5)127	In 114m ₂	2.5 s	(6)798
sc 44	3.9 h	(5)589	In 114m ₁	50 d	(6)506
sc 46m	20 s	(6)400	In 114	72 s	(7)248
sc 46	84 d	(4)100	Sn 113m	27 m	(6)426
T1 45	3.1 h	(8)923	Sn 113	118 d	(5)263
*V 49	330 d	-	Sb 120m	5.8 d	(4)123
Cr 49 Cr 51 Mn 54 Mn 56 *Fe 55	42 m 28 d 291 d 2.58 h 2.7 y	(6)288 (6)160 (5)431 (5)872	Sb 120 I 126 Cs 132 Pr 142 Eu 152m	16 m 13 d 6.5 d 19.3 h 9.3 h	(6) 143 (5) 230 (5) 366 (6) 283 (5) 192
Fe 59	45 d	(5)580	Eu 152	13.0 y	(5)580
Co 57	270 d	(6) <i>6</i> 49	Gd 153	242 d	(6)617
*Co 58m	9.0 h	(6)120	Tb 158	150 y	(5)427
Co 58	71 d	(5)426	Dy 159	144 d	(6)337
Co 60	5.27 y	(4)119	Ho 166m	1200 y	(5)874
Ni 57 Ni 65 Cu 64 Zn 63 Zn 65	36.5 h 2.5 h 2.3 h 2.4 m 2.45 d	(5)682 (5)286 (7)377 (6)508 (5)267	Ho 166 *Er 169 Er 171 Tm 168 Tm 170	27 h 9•3 d 7•5 h 86 d 127 d	(6)110 (5)212 (5)764 (7)390
Zn 69m	1l: h	(5)220	*Tm 171 IN 176 IN 177 IN 173 HF 175	1.9 y	(8)532
Zn 71m	4 h	(5)793		3.7 h	(6)333
Zn 71	2.45 m	(6)650		6.75 d	(6)204
As 74m	8.0 s	(5)150		24 h	(5)210
As 74	18 d	(5)246		70 d	(5)176
Y 88	105 d	(4)123	Hf 180m	5.5 h	(5)548
Rh 102	206 d	(5)299	Hf 181	45 d	(5)306
Ag 106m	8.3 d	(4)139	Ta 180m	8.15 h	(6)337
Ag 106	24 m	(5)278	Ta 182m	16 m	(5)190
Ag 107m	44 s	(6)141	Ta 182	115 d	(5)2 ^L 1

^{*}All energies less than 75 Kev.

Nuclide	Half-life	Multiplier
W 181	145 d	(6)320
W 187	24 h	(5)306
Re 184	50 d	(5)488
Re 186	90 h	(6)417
*Re 188m	18.7 m	(6)319
Re 188	17 h	(6)251
Os 190m	10 m	(5)839
Os 191	15 d	(6)413
Os 193	32 h	(6)300
*Ir 190m	3.2 h	(6)281
Ir 190	12 d	(5)669
Ir 192m ₂	650 y	(6)362
Ir 192	74 d	(5)391
Ir 193m	12 d	(6)426
Ir 194	19 h	(6)940
Pt 191	3 d	(5)133
Pt 193m Pt 195m Pt 197 Pt 199m Au 196m	4.1 20 h 14 s	(6)388 (5)110 (6)163 (5)196 (5)115
Au 196	6.18 d	(5)270
Au 198	2.7 d	(5)224
Au 199	3.15 d	(6)699
Hg 197m	24 h	(6)455
Hg 197	65 h	(6)482
Hg 203	47 d	(5)134
Pb 203	52 h	(5)182
Pb 204m	67 m	(4)109
U 237	6.75 d	(6)845
*U 239	23.5 m	(6)327
U 240	14.1 h	(7)333
Np 238	2.1 d	(5)227
Np 239	56.0 h	(6)966
Np 240	7.3 m	(5)165
Pu 238	86.4 y	(7)299

^{*}All energies less than 75 Kev.

Chemistry-Health and Safety

INTIAL DISTRIBUTION

Copies

	NAVY
1 2 1 1 2 5 1	Chief, Bureau of Ships (Code 320-364A) Chief, Bureau of Ships (Code 210L) Chief, Bureau of Naval Weapons (RRRE-5) Chief, Bureau of Yards and Docks Chief of Naval Operations (Op-07T) Director, Naval Research Laboratory Office of Naval Research, FPO, New York CO, Naval Medical Research Institute Supt., Naval Postgraduate School, Monterey
	ARMY
1 1 2 1 1 2 1 1 1 1 1	Chief of Engineers CG, Ballistic Research Laboratories CO, Army Chemical Research and Development Lab., Maryland Commandant, Chemical Center and School Commander, Nuclear Defense Laboratory Hq., Army Environmental Hygiene Agency Civil Defense Unit, Army Library Hq., Dugvay Proving Ground CG, Quartermaster Research and Engineering Command CO, Engineer Research and Development Lab., (STINFO) Director, USACDS Nuclear Group CO, Army Office Ordnance Research (R.O. Ulsh) CG, Munitions Command (Picatinny Arsenal) Office of Civil Defense, Washington
	AIR FORCE
1 1 1	Assistant Chief of Staff Intelligence (AFNIE) Chief, System Engineering Group (SEPIR) Director, USAF Project RAND Director, Air University Library, Maxwell AFB

OTHER DOD ACTIVITIES

3 1 1 1 20	Director, Defense Atomic Support Agency (Library) Commander, FC/DASA, Sandia Base (FCTG5, Library) Director, Armed Forces Radiobiology Research Institute Director, Weapons Systems Evaluation Group (OSD) Defense Documentation Center AEC ACTIVITIES AND OTHERS
	100 1001112200 1100 011010
5	Argonne National Laboratory
1	Atomic Bomb Casualty Commission
3	Atomic Energy Commission, Washington
1	Atomic Energy of Canada, Limited
2	Atomics International
2	Battelle Memorial Institute
1	Boston College (Prof. I.J. Russell)
1	Bureau of Mines, Washington
1	Committee on the Effects of Atomic Radiation
2	Director, Division of Biology and Medicine (AEC)
2	Knolls Atomic Power Laboratory
2	Los Alamos Scientific Laboratory (Library)
1	Lovelace Foundation
1	Massachusetts Institute of Technology
1	Mound Laboratory
l	NASA, Lewis Research Center
5	NASA, Scientific and Technical Information Facility
1.	National Academy of Sciences
1	National Cancer Institute
2	Nevada Operations Office
1	New Brunswick Area Office
1	New York University (Eisenbud)
2	Public Health Service, Washington
1	Sandia Corporation, Albuquerque
1	Sandia Corporation, Livermore
2	U. of California Lawrence Radiation Lab., Berkeley
2	U. of California Lawrence Radiation Lab., Livermore
1	U. of California, Los Angeles (Longwill)
1	U. of California (S.F. Medical Center)
1	University of Chicago Radiation Laboratory
1	University of Rochester (Atomic Energy Project)
1	University of Washington (Donaldson)
1	U.S. Weather Bureau, Las Vegas
1	U.S. Weather Bureau, Washington
15	Division of Technical Extension, Oak Ridge

USNRDL

35 Technical Information Division

DISTRIBUTION DATE: 14 October 1965

UNCLASSIFIED

Security Classification

Security Classification	برياد المراج المراج المراجع ا				
DOCUMENT (Security classification of title, body of abstract and ind	CONTROL DATA - RE		the overall report is classified)		
1. ORIGINATING ACTIVITY (Corporate author)			RT SECURITY C LASSIFICATION		
U. S. Naval Radiological Defense Laboratory		UNCLASSIFIED			
San Francisco, California 94135		25 GROUP			
3. REPORT TITLE					
GAMMA-EMISSION DATA FOR THE CALCAULAT VOLUME II. INDUCED ACTIVITIES	TION OF EXPOSURE	RATES F	ROM NUCLEAR DEBRIS.		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
S AUTHOR(S) (Last name, first name, initial)					
Crocker, Glenn R.					
Wong, Dennis T. K.					
6. REPORT DATE	74 TOTAL NO. OF	PAGES	75. NO. OF REFS		
14 October 1965	89		1+		
Ba. CONTRACT OR GRANT NO.	Se. ORIGINATOR'S R		IBER(S)		
Contract AT(49-7)-1963, Mod 5.	usnrdl-tr-888				
& PROJECT NO.					
a.	AA OTHER REPORT	1 10/3) (Any	other numbers that may be seedined		
u.	this report)	MOLEN LINE	other numbers that may be sealgred		
d.					
10. AVAILABILITY/LIMITATION NOTICES		,*			
Distribution of this document is unli	imited.				
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY			VITY		
	Atomic Energy Commission Washington, D. C. 20545				
13. ABSTRACT Photon energies and photon abunda	ances have been	compiled	and summarized for		
some induced activities which may res					

Photon energies and photon abundances have been compiled and summarized for some induced activities which may result from nuclear events. The data are presented in tabular form, including photon energies and abundances for the gamma rays, X rays, and beta particles emitted per disintegration. A list of Multipliers is also presented for converting activities of the radionuclides to infinite-plane exposure rates.

DD 150RM. 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED

4. KEY WORDS		LIN	LINK A		LINK B		LINK C	
	KEY WORDS	ROLE	WT	ROLE	WT	MOLE	WT	
Exposure-rate Induced-activity Gamma-ray Abundance Radionuclide								

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period in covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter tast name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES Enter the total number of references cited in the report.
- 8s. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sp.nsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

The second secon

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is nc" authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: U e for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying ior) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the documen indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclessified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equirent model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

1. Gamma emission 2. Dose rate 2. Dose rate 3. Induced radio- 4. Decay scheme 4. Decay scheme 6. Wong 13 August 1965 89 p. 6. Wong 13 August 1965 89 p. 7. Mong 1965 89 p. 7. M	emitted per disintegration. A list of multipliers is also presented for converting activities of the radionuclides to infinite-plane exposure rates.	UNCLASSIFIED
Naval Radiological Defense Laboratory USNRDL-TR-888 GAMMA-EMISSION DATA FOR THE CALCULATION OF EXPOSIRE RATES FROM NUCLEAR DEBRIS. VOLUME II. INDUCED ACTIVITIES, by G. R. Crand D. T. K. Wong 13 August 1965 89 p 4 refs. Photon energies and photon abundances have been compiled and summarized for some induced activities which may result from nuclear events. The data are presented in tabular form, including photon energies and abundances for the gamma rays, X rays, and beta particles (over)	emitted per disintegration. for converting activities of posure rates.	
1. Gamma emission 2. Dose rate 3. Induced radio- activity er h. Decay scheme I. Grocker, G. R. III. Wong, D. T. K. III. Title IV.	to infinite-plane ex-	UNCLASSIFIED
Maval Hadiological Defense Laboratory USNRDL-TR-888 GAWA-EMISSION DATA FOR THE CALCULATION OF EXPOSURE RATES FROM NUCLEAR DEBRIS. VOLUME II. INDUCED ACTIVITIES, by G. R. Crocker and D. T. K. Wong 13 August 1965 89 p. 4 refs. Thoton energies and photon abundances have been compiled and summarized for some induced activities which may result from nuclear events. The data are presented in tabular form, including photon energies and abundances for the gamma rays, X rays, and beta particles (over)	emitted per disintegration. A list of multipliers is als for converting activities of the radionuclides to infinit posure rates.	

W. Carrier