

Divisibilité et congruences

I. Divisibilité et division euclidienne.

1. Divisibilité dans Z.

Définition:

a et b sont deux entiers relatifs ($b \neq 0$).

Dire que **b divise a** signifie qu'il existe un entier k tel que a=kb.

Vocabulaire : on dit alors que b est un diviseur de a ou que a est divisible par b.

On traduit aussi cette définition en disant que a est un multiple de b.

EXEMPLE:

- 1. $-45 = (-5) \times 9 = 5 \times (-9)$ donc 5, 5,9 et 9 divisent -45.
- 2. Les diviseurs dans \mathbb{Z} du chiffre 6 sont -6;-3;-2;-1;1;2;3;6.

REMARQUE:

1 et -1 tout entier relatif n car $1 \times n = (-1) \times (-n) = n$.

2. Propriétés de la divisibilité.

Comparaison:

a et b sont deux entiers relatifs ($b \neq 0$), il résulte de la définition que :

1. Si b divise a alors - b divise a.

2. Si b divise a et si $a \neq 0$, alors $|b| \leq |a|$.

Théorème:

a et b sont deux entiers relatifs non nuls.

Si a divise b et b divise a, alors a=b ou a=- b.

Théorème (transitivité):

Soient a,b et c sont trois entiers relatifs ($a \neq 0$, $b \neq 0$).

Si a divise b et b divise c alors a divise c.

Théorème : divisibilité d'une combinaison linéaire.

Soient a, b, d sont trois entiers relatifs ($d \neq 0$).

Si d divise a et b, alors d divise tout entier ma + nb $(m, n \in \mathbb{Z})$.

En particulier, d divise leur somme a + b et leur différence a - b.

PREUVE:

Par hypothèses, on peut écrire a=dk et b=dk' avec k et k' entiers.

ma + nb = mdk + ndk' = (mk + nk')d avec mk + nk' entiers, donc d divise ma + nb.

3.La division euclidienne dans N.

Théorème:

a et b sont deux entiers naturels et b est non nul.Il existe un couple unique (q;r) d'entiers naturels tel que a=bq+r et $0 \le r < b$.

Définition :

a et b sont deux entiers naturels, $b \neq 0$. Effectuer la division euclidienne dans \mathbb{N} de a par b, c'est déterminer le couple d'entiers naturels (g;r) tel que a = bq + r et $0 \leq r < b$.

VOCABULAIRE:

a est le dividende, b est le diviseur, q est le quotient et r est le reste.

CONSÉQUENCE :

b divise a, si et seulement si, dans la division de a par b, le reste est nul.

4.La division euclidienne dans Z

Théorème : (admis)

a et b sont deux entiers relatifs avec b non nul.

Alors il existe un unique couple (q;r) tel que q entier relatif et r entier naturel tel =bq+r que et $0 \le r < |b|$.

EXEMPLE:

$$a = -50, b = -3; -50 = -3 \times 16 - 2.$$

Pour obtenir un reste positif, on écrit $-50=-3 \times 16-3+3-2=-3 \times 17+1$.

Ainsi
$$q = 17$$
 et $r = 1$.

II. Congruences.

1.Entiers congrus modulo m.

Définition :

m est un entier naturel non nul.

Dire que deux entiers relatifs a et b sont congrus modulo m signifie qu'ils ont le même reste dans la division euclidienne par m.

NOTATION:

On écrit $a \equiv b \pmod{m}$.On lit **a est congru à b modulo m**.

EXEMPLE:

 $11 \equiv 5 \pmod{3}$ et $-4 \equiv 2 \pmod{3}$.

Théorème:

m est un entier naturel non nul.

Pour tous entiers relatifs a et b, $a \equiv b \pmod{m} \Leftrightarrow m \operatorname{divise} a$.

REMARQUES:

- 1. Si r est le reste de la division euclidienne de a par m, alors $a \equiv r \pmod{m}$.
- 2. $a = 0 \pmod{m}$ si et seulement si m divise a.

2. Propriétés des congruences.

Théorème : (transitivité)

m est un entier naturel non nul. Pour tous entier relatif a,b et c,

si
$$a \equiv b \pmod{m}$$
 et $b \equiv c \pmod{m}$, alors $a \equiv c \pmod{m}$.

Théorème : (congruences et opérations)

m est un entier naturel non nul et a,b,a',b' sont des entiers relatifs.si $a \equiv b \pmod{m}$ et $a' \equiv b' \pmod{m}$, alors :

$$\star a + a' \equiv b + b' \pmod{m}$$

$$\star a - a' \equiv b - b' \pmod{m}$$

$$\star aa' \equiv bb'(mod \, m)$$

Conséquence :

 $a \equiv b \pmod{m}$, alors pour tout entier p positif, $a^p \equiv b^p \pmod{m}$.