This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R) File 352: Derwent

(c) 2000 Derwent Info Ltd. All rts. reserv.

012788624 **Image available**
WP! Acc No: 1999-594851/199951

XRPX Acc No: N99-439129

Light reflecting structure of reflecting type liquid crystal display device for portable terminals — has optical reflecting plate whose rough surface aligning with rough surface of insulating film, provided above lower substrate

Patent Assignee: NEC CORP (NIDE)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 11258596 A 19990924 JP 9859475 A 19980311 199951 B

JP 3019831 B2 20000313 JP 9859475 A 19980311 200017

Priority Applications (No Type Date): JP 9859475 A 19980311

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 11258596 A 20 G02F-001/1335

JP 3019831 B2 20 G02F-001/1335 Previous Publ. patent JP 11258596

Abstract (Basic): JP 11258596 A

NOVELTY — A pillared projection (73) lying parallel to a thin film transistor (5) is provided over a lower substrate (72A) and is covered by an insulating film (30) whose surface is rough. The rough surface of an optical reflecting plate (74) aligns with the rough surface of the insulating film (30). DETAILED DESCRIPTION — The insulating film (30) which has a rough surface with a large radius of curvature is made of the same material as that of thin film transistor (5). An INDEPENDENT CLAIM is also included for the manufacturing method of reflecting type liquid crystal display device.

USE - For reflecting type liquid crystal display device of portable terminals.

ADVANTAGE - Display device with reduced power consumption and favorable display quality is obtained. DESCRIPTION OF DRAWING(S) - The figure shows the side sectional view of reflecting type liquid crystal display device. (5) Thin film transistor; (30) Insulating film: (72A) Lower substrate; (73) Pillared projection; (74) Optical reflecting plate.

Dwg. 1/22

Title Terms: LIGHT; REFLECT: STRUCTURE; REFLECT; TYPE: LIQUID: CRYSTAL: DISPLAY; DEVICE; PORTABLE: TERMINAL: OPTICAL: REFLECT; PLATE: ROUGH: SURFACE; ALIGN: ROUGH: SURFACE; INSULATE; FILM; ABOVE: LOWER: SUBSTRATE

Derwent Class: P81; U14

International Patent Class (Main): G02F-001/1335

International Patent Class (Additional): GO2F-001/1343; GO2F-001/136:

G02F-001/1365

File Segment: EPI; EngPI

DIALOG(R) File 347: JAPIO (c) 2000 JPO & JAPIO. All rts. reserv.

06316998 **Image available**

REFLECTION TYPE LIQUID CRYSTAL DISPLAY DEVICE AND MANUFACTURE THEREOF

PUB. NO. :

11-258596 [JP 11258596 A]

PUBL I SHED:

September 24, 1999 (19990924)

INVENTOR(s): KANO HIROSHI

YAMAGUCHI YUICHI

APPLICANT(s): NEC CORP

APPL. NO. :

10-059475 [JP 9859475]

FILED:

March 11, 1998 (19980311)

INTL CLASS: G02F-001/1335; G02F-001/1343; G02F-001/136

ABSTRACT

PROBLEM TO BE SOLVED: To provide a reflection type liquid crystal display device with an excellent display function and make it possible to manufacture the device through a simplified process.

SOLUTION: This device 70 has a lower side substrate 72A, a counter side substrate 72B opposed to the lower side substrate 72A. The lower side substrate 72A comprises an insulating substrate 35A, an active matrix driving element 5 formed on the surface, columnar projecting parts 73 formed on the same surface and forming irregularity thereon. a 2nd insulating film 30 deposited to cover the active matrix driving element 5 and the columnar projecting parts 73 and having smooth irregularity on the surface, and a reflection plate 74 formed thereon. The reflection plate 74 has smooth irregularity on the surface, and also electrically connects to a source electrode of the active matrix driving element 5 or a drain electrode, and reflects the light made incident thereon from the outside of the lower side substrate 72A. The columnar projection parts 73 and active matrix driving part 5 can be formed at the same time by patterning.

COPYRIGHT: (C) 1999. JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-258596

(43)公開日 平成11年(1999)9月24日

(51) Int.Cl.s		識別記号	FΙ		
G02F	1/1335	5 2 0	G 0 2 F	1/1335	520
	1/1343			1/1343	
	1/136	500		1/136	500

		音楽師水 付 請水項の数10 01 (主 20 頁)
(21)出願番号	特頭平 10-59475	(71)出蹟人 000004237
		日本電気株式会社
(22) 出顧日	平成10年(1998) 3月11日	東京都港区芝五丁目7番1号
		(72)発明者 加納 博司
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(72)発明者 山口 裕一
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
		(74)代理人 弁理士 移垣 清

(54) 【発明の名称】 反射型液晶表示装置及びその製造方法

(57) 【要約】

【課題】 良好な表示機能を有し、かつ、簡略化された 工程で製造可能な反射型液晶表示装置及びその製造方法 を提供する。

【解決手段】 反射型液晶表示装置70は、下部側基板72Aと、下部側基板72Aに対向する対向側基板72 Bとを備えている。下部側基板72Aは、絶縁性基板35Aと、その面上に形成されたアクティブマトリクス駆動素子5と、同じ面上に形成され、該面上に凹凸を表式する柱状突起部73と、アクティブマトリクス駆動でる柱状突起部73を覆うように成膜され、表面に形成された反射板74とを備えている。反射板74は、表別に滑らかな凹凸を有し、かつ、アクティブマトリクスに滑らかな凹凸を有し、かつ、アクティブマトリクスをし、第1基板の外側から入射した光を反射する。柱状突起部73及びアクティブマトリクス駆動素子5は、パターンニングにより同時に形成されることが可能である。

【特許請求の範囲】

【請求項1】 絶縁性基板及びその上に設けられた導電性の光反射板を有する第1基板と、透明電極を有して第1基板に対向する第2基板と、両基板間に収容された液晶層と、絶縁性基板の第2基板対向面上に形成され、ソース電極又はドレイン電極を介して光反射板と電気的に接続して、アクティブマトリクス駆動素子として機能する薄膜トランジスタとを備えたアクティブマトリクス駆動方式の反射型液晶表示装置であって、

第1基板が、更に、

絶縁性基板上に形成され、かつ、第1の絶縁膜を上部に 有して、薄膜トランジスタと並設して第2基板に向けて 突起する複数個の突起部と、

薄膜トランジスタ及び突起部を覆い、薄膜トランジスタ 及び突起部と絶縁性基板との高低に沿って、曲率半径の 大きい凹凸面を有する第2の絶縁膜とを備え、

第1基板に設けられた光反射板が、第2の絶縁膜上に形成され、第2の絶縁膜の凹凸面に沿った凹凸面を有する ことを特徴とする反射型液晶表示装置。

【請求項2】 薄膜トランジスタは、第1の絶縁膜と同じ材料の絶縁膜をトランジスタ構造の上に備え、

突起部は、金属膜、絶縁膜及び半導体膜のうちの少なくとも1つの膜とその上の第1の絶縁膜とから形成された積層構造であり、かつ、前記少なくとも1つの膜が、薄膜トランジスタの層構造を形成する層と同じ材料で形成されていることを特徴とする請求項1に記載の反射型液晶表示装置。

【請求項3】 第1の絶縁膜は、感光性材料からなることを特徴とする請求項1に記載の反射型液晶表示装置。

【請求項4】 第1の絶縁膜により形成された突起部の 頂部は、第2基板に向けて徐々に断面寸法が小さいこと を特徴とする請求項1又は2に記載の反射型液晶表示装 置。

【請求項5】 第2の絶縁膜は、感光性材料からなることを特徴とする請求項1に記載の反射型液晶表示装置。

【請求項6】 反射板は、第2の絶縁膜のうち突起部を 覆う領域にのみ形成されていることを特徴とする請求項 1から5のうち何れか1項に記載の反射型液晶表示装 置。

【請求項7】 薄膜トランジスタが順スタガー構造の薄膜トランジスタであることを特徴とする請求項1から6のうち何れか1項に記載の反射型液晶表示装置。

【請求項8】 薄膜トランジスタが逆スタガー構造の薄膜トランジスタであることを特徴とする請求項1から6のうち何れか1項に記載の反射型液晶表示装置。

【請求項9】 薄膜トランジスタに代えてMIMダイオードが設けられ、反射板は、MIMダイオードの電極に電気的に接続することを特徴とする請求項1から6のうち何れか1項に記載の反射型液晶表示装置。

【請求項10】 請求項1に記載の反射型液晶表示装置

の製造方法であって、

絶縁性基板上に、金属膜、絶縁膜、及び半導体膜のうち の少なくとも1つの膜を成膜し、

次いで、絶縁膜を成膜し、該絶縁膜を所定形状にパター ンニングして絶縁膜マスクを形成し、

更に、絶縁膜マスクを使用して前記少なくとも1つの膜をパターンニングすることにより、薄膜トランジスタを 形成しつつ突起部を形成する工程と、

次いで、薄膜トランジスタ及び突起部を覆い、薄膜トランジスタ及び突起部と絶縁性基板との高低に沿って、曲率半径の大きい凹凸面を有する第2の絶縁膜を成膜する工程と、

更に、第2の絶縁膜上に、第2の絶縁膜の凹凸面に沿った凹凸面を有する光反射板を形成する工程とを備えていることを特徴とする反射型液晶表示装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、反射型液晶表示装置及びその製造方法に関し、更に詳しくは、良好な表示機能を有し、かつ、簡略化された工程で製造可能な反射型液晶表示装置及びその製造方法に関するものである。 【0002】

【従来の技術】反射型液晶表示装置は、装置内部に反射 板を有し、外部から入射した光を反射板により反射して 表示光源として利用しており、光源としてバックライト が不要である。このため、携帯端末用の表示装置として 多用されており、透過型液晶表示装置に比べ、低消費電 力化、薄型化、軽量化を達成するのに有効である。反射 型液晶表示装置の基本構造は、TN(ツイステッドネマ テッィク)方式、一枚偏光板方式、STN(スーパーツ イステッドネマテッィク)方式、GH(ゲストホスト) 方式、PDLC(高分子分散)方式、コレステリック方 式等を用いた液晶と、これをスイッチングするための素 子と、液晶セル内部或いは外部に設けた反射板とからな る。更に詳しく説明すると、反射型液晶表示装置には、 髙精細・髙画質を実現できる薄膜トランジスタ或いは、 金属/絶縁膜/金属構造ダイオードをスイッチング素子 として用いたアクティブマトリクス駆動方式が採用さ れ、これに反射板が付随した構造となっている。以下、 図面を参照し、例を挙げて従来の反射型液晶表示装置を 説明する。

【0003】図21は、従来の反射型液晶表示装置の具体的構造を示す断面図である。従来の反射型液晶表示装置10は、互いに対向する下部側基板1A及び対向側基板1Bを備えている。本明細書では、対向側基板とは外部からの光が入射され、反射光により数字や文字等を表示する側の基板であり、下部側基板とは対向側基板から入射された光を装置内で反射する側の基板である。下部側基板1Aは、ガラス基板2Aと、その上に形成されたアクティブマトリクス駆動素子、例えば逆スタガー構造

の薄膜トランジスタ6と、その上部に形成された層間絶 緑膜、例えばボリイミド膜11と、薄膜トランジスタ6 のソース電極21又はドレイン電極22に接続され、反射板及び画素電極としての機能を有する反射電極板24 とから構成される。本明細書では、反射電極板24 その機能の観点から反射板24や反射画素電極板24 その機能の観点から反射板24や反射画素電極板24 記載しているが、何れも同じものを指す。対向側基板1 Bは、ガラス基板2B、カラーフィルタ3、及が到型液晶表示装置1 0は、下部側基板1Aと対向側基板1Bとの間に、、装置1 個人はばGH液晶14を有する。反射型液晶表示表面 1Aは、外部からの入射光15がガラス基板2B、カーフィルタ3、透明電極4、及び、液晶層14を透過し、反射電極板で反射でれてなる反射光16を表示用の光源として利用する。

【0004】反射型液晶表示装置10の表示性能としては、液晶透過状態の場合、明るく且つ、白い表示を呈することが要求される。この表示性能を実現するために、様々な方位からの入射光を効率的に反射型液晶表示装置前方、すなわち対向側基板から外側に向けて出射させる必要がある。それゆえ、ボリイミド膜11の表面に凹凸を形成することにより反射電極板24の表面に凹凸形状を形成しており、凹凸形状を制御して形成することが、表示性能を決定する要因として重要である。

【0005】以下、反射型液晶表示装置10を製造する方法を説明する。図22(a)から(h)は、それぞれ、従来の反射型液晶表示装置10の製造工程を示す側面断面図である。本明細書でPR(図22参照)とはフォトリソグラフィ工程(フォトリソ工程)の略であり、PRの前の記載する数字は、フォトリソ工程の積算回数を示す。例えば2PRは2回目のフォトリソ工程であることを示す。反射型液晶表示装置10を製造するには、ガラス基板2の上にゲート電極17を形成し(図22(a))、続いて、絶縁膜18、半導体層19、ドーピング層20を順次成膜し(図22(b))、パターン形成することによりアイランドを形成し(図22

(c))、更にソース電極21、ドレイン電極22を順 次形成(図22(d)) するトランジスタ製造工程を行 う。その後、絶縁膜18を形成し(図22(e))、次 いで、反射板形成領域への凹凸25を形成し(図22 (f))、更に、コンタクトホール23を形成し(図2 2 (g))、次いで、反射電極板(反射画素電極板)7 4 (図22(h)) を形成する反射画素電極製造工程を 行う。凹凸25の形成は、有機系絶縁膜26へのパター ンニングにより形成する方法で行う。これらの方法は、 特公昭61-6390号公報、または、プロシーディン グス・オブ・エスアイディー (Tohru Koizu mi and Tatsuo Uchida, Pro ceedings of the SID, Vol. 29, 157, 1988) に開示されている。

[0006]

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明に係る反射型液晶表示装置は、絶縁性基板及 びその上に設けられた導電性の光反射板を有する第1基 板と、透明電極を有して第1基板に対向する第2基板 と、両基板間に収容された液晶層と、絶縁性基板の第2 基板対向面上に形成され、ソース電極又はドレイン電極 を介して光反射板と電気的に接続して、アクティブマト リクス駆動素子として機能する薄膜トランジスタとを備 えたアクティブマトリクス駆動方式の反射型液晶表示装 置であって、第1基板が、更に、絶縁性基板上に形成さ れ、かつ、第1の絶縁膜を上部に有して、薄膜トランジ スタと並設して第2基板に向けて突起する複数個の突起 部と、薄膜トランジスタ及び突起部を覆い、薄膜トラン ジスタ及び突起部と絶縁性基板との高低に沿った凹凸面 を有する第2の絶縁膜とを備え、第1基板に設けられた 光反射板が、第2の絶縁膜上に形成され、第2の絶縁膜 の凹凸面に沿って、曲率半径の大きい凹凸面を有するこ とを特徴としている。

【0008】本明細書で光反射板とは、前述の反射板を言う。反射板は、通常、反射率の高い金属からなる。第1基板は下部側基板であり、第2基板は対向側基板である。突起部は、例えば柱状突起部や帯状突起部である。突起部は、柱状突起部である場合、第1基板に平行の電点、柱状突起部である場合、第1基板に平行範に、第1の絶縁膜と同じ材料の絶縁膜をトランジスタ構のの上に備え、突起部は、金属膜、絶縁膜及び半導体膜と同じ材料の絶縁膜をトランジスタ構のうちの少なくとも1つの膜とその上の第1の絶縁膜とからの形成された積層構造であり、かつ、前記少ならるをとも1つの膜とその上の第1の絶縁膜とからの膜が、薄膜トランジスタの層構造を形成する層とも1つに関が、薄膜トランジスタの層構造を形成する層とも1つの膜が、薄膜トランジスタの層構造を形成する層と対対で形成されている。第1の絶縁膜は、無機系材料で形成されている。第1の絶縁膜は、無機系材料で形成されている。第1の絶縁膜は、無機系材料であってもよく、好適には感光性材料のらなる。これにより、従来の反射型液晶表示装置に

おいて行われていたパターンニングに必要とされるレジスト工程を省くことができ、製造工程数を更に削減できる。第1の絶縁膜により形成された突起部の頂部は、例えば、第2基板に向けて徐々に断面寸法が小さい。

【0009】第2の絶縁膜は、第1の絶縁膜と同様、無機系材料であっても有機系材料であってもよく、好適には感光性材料からなる。これにより感光性絶縁膜への露光、現像プロセスを用いて該絶縁膜を直接パターンニング形成ができることから、従来の反射型液晶表示装置において行われてきたレジスト工程、エッチング工程において行われてきたレジスト工程、エッチング工程において行われてきたレジスト工程、エッチング工程において行われてきたレジスト工程、エッチング工程によりできる。反射板は、第2の絶縁膜のうち突に入することができる。反射板は、第2の絶縁膜のうち突に入するとができる。反射板は、第2の絶縁膜のうち突に入すできる。反射板は、第2の薄膜トランジスタに代えてMIMダイオードが設けられ、反射板は、MIMダイオードの電極に電気的に接続していてもよい。

【0010】本発明方法に係る反射型液晶表示装置の製造方法は、本発明に係る反射型液晶表示装置を製造する方法であって、絶縁性基板上に、金属膜、絶縁膜、及半導体膜のうちの少なくとも1つの膜を成膜し、次いで、絶縁膜を成膜し、該絶縁膜を所定形状にパターンニングして絶縁膜を成膜し、更に、絶縁膜マスクを形成し、更に、絶縁膜マスクを形成して前記少なくとも1つの膜をパターンニングすることにより、薄膜トランジスタを形成しつつ突起部ので、薄膜トランジスタ及び突起部と絶縁性基板との大きい凹凸面を有する第2の絶縁膜を成膜する工程と、更に、第2の絶縁膜といる。第2の絶縁膜の凹凸面に沿った凹凸面を有する光反射板を形成する工程とを備えていることを特徴としている。

【0011】反射板の凹凸を形成する基礎(ベース)となり、突起部やアクティブマトリクス駆動素子によって形成される第1の凹凸は、アクティブマトリクス駆動素子を構成するために成膜された膜と、該膜の上側に形成され、アクティブマトリクス駆動素子のいずれかのパターンを形成する際にマスクとして利用される第1の絶縁膜との積層膜によって形成される。この積層膜の上側に、滑らかな凹凸面を有するように所定の厚みで第2の絶縁膜を成膜すると、この上に形成される反射板は、光を所望の方向に反射させる凹凸面を有する。すなわち、アクティブマトリクス駆動素子におけるいずれかのパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成と、第1の凹凸を形成する突起部のパターン形成とを、同一の積層された膜を用いて同一工程で行うことができる。

【0012】突起部は、例えば柱状突起部や帯状突起部である。これにより、従来のように、アクティブマトリクス駆動素子の製造工程に、凹凸を形成する工程を別工程として別材料で行う必要がなく、製造工程が簡略化さ

れる。また、表示性能を決定する反射板表面の凹凸形状は、パターンニング工程により形成される突起部によってほぼ決定されるため、反射板表面の凹凸形状を制御する事ができ、明るい反射板、すなわち高輝度反射型液晶装置装置を得ることができる。

[0013]

【発明の実施の形態】以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつより詳細に説明する。実施形態例1では、従来と同じものには同じ符号を付してその説明を省略する。実施形態例2からは、従来と同じものには同じ符号を付してその説明を省略し、また、材質及び機能が実施形態例1と同様のものには、形状が若干異なっても同じ符号を付す。各実施形態例を説明する各図の左横に記載されたアルファベットの小文字は、本明細書で各工程に付した文字に対応している。

実施形態例1

本実施形態例は、本発明の順スタガー構造の薄膜トランジスタを有する例である。図1は、本実施形態例の反射型液晶表示装置の構成を示す側面断面図である。本実施形態例の反射型液晶表示装置70は、互いに対向する下部側基板72A及び対向側基板72Bと、両基板間に設けられた液晶層13、例えばGH液晶14とを備えている。

【0014】下部側基板72Aは、絶縁性基板35A と、絶縁性基板35Aの上に形成されたアクティブマト リクス駆動素子5と、絶縁性基板面上の所定位置に配列 された柱状突起部73と、アクティブマトリクス駆動素 子5の上側に形成された第1の絶縁膜28と、アクティ ブマトリクス駆動素子5及び柱状突起部73を覆うよう に形成され、曲率半径の大きい凹凸面を有する第2の絶 縁膜30と、第2の絶縁膜上に形成され、高反射効率金 属からなる反射電極板74(反射板)とを有する。アク ティブマトリクス駆動素子5は、ソース電極21、ドレ イン電極22と、半導体層19と、ドーピング層20 と、ドーピング層20の上の絶縁層18と、その上の金 属層27とから構成される順スタガー構造の薄膜トラン ジスタ8である。第1の絶縁膜28の表面(対向側基板 72日に向けた側の面)には、柱状突起部73及びアク ティブマトリクス駆動素子るによって形成され、反射電 極板74の凹凸のベースとなる第1の凹凸29が形成さ れている。反射電極板74の表面の凹凸25A(以下、 反射電極板の表面の凹凸を反射板凹凸と言う)は、第2 の絶縁膜30の凹凸構造25を反映しており、入射され た光15を散乱させて反射させる機能を有する。また、 反射電極板74は、スイッチング素子5のソース電極2 1と電気的に接続されており、反射板及び画素電極とし ての両方の機能を有する。対向側基板72Bは、絶縁性 基板35Aと同様の絶縁性基板35Bと、絶縁性基板3 5 Bの下側(下部側基板72Aに向けた側)に形成され

たカラーフィルタ3と、その下側に形成された透明電極 4とから構成される。

【0015】以下、反射型液晶表示装置70の使用中の状態を説明する。反射型液晶表示装置70が透過状態では、対向側基板72Bの外側から入射した入射光15は、GH液晶層14を通過して、反射板凹凸25Aの形状を反映した指向性に従って光が反射され、再び液晶層13を通過した反射光16が、対向側基板72Bの外側から見える。反射型液晶表示装置70が遮光状態では、対向側基板72Bの外側から入射した入射光は、反射電板74に到達する前にGH液晶14で全て吸収され、対向側基板72Bから外部に光が出射されることはない。それゆえ、反射型液晶表示装置70の表示画面は、高コントラストで明るい。

【0016】本実施形態例では、反射板凹凸25Aは、第1の凹凸29と、さらにその上部を覆う第2の絶縁膜30とによって形成される。第1の凹凸29はスイッチング素子製造工程におけるフォトリソ工程及びエッチング素子製造工程におけることが可能である。従って、簡略化された製造工程で良好な表示機能を有する反射型液晶表示装置が実現される。尚、柱状突起部73は、アクティブマトリクス駆動素子5の製造時に成膜された金属層27、ゲート絶縁層18、半導体層19、及びドーピング層20のうちの1つ以上の膜と、その上部の第1の絶縁膜28との積層膜からなっていてもよい。【0017】実施形態例2

図2は、本実施形態例の反射型液晶表示装置の構成を示 す側面断面図である。本実施形態例の反射型液晶表示装 置80は、実施形態例1の反射型液晶表示装置70に比 べ、半導体層19及びドーピング層20の上に全面にわ たり形成された絶縁膜18と、その上に形成されたゲー ト電極17と、その上側に形成された第1の絶縁膜28 と、金属膜及び第1の絶縁膜28から構成される柱状突 起部73と、ゲート電極17、第1の絶縁膜18、及び 柱状突起部73を覆う第2の絶縁膜30と、その上に形 成された反射電極板74とを備えている。すなわち、反 射板凹凸25Aのベースとなる第1の凹凸29が、ゲー ト電極17と第1の絶縁膜28との積層膜、及び柱状突 起部73により形成されている。本実施形態例の反射型 液晶表示装置は、第1の凹凸29が、スイッチング素子 製造工程におけるいずれかのフォトリソ工程及びエッチ ング工程を用いて形成されており、スイッチング素子製 造工程の他に凹凸製造工程を付加することなく得られて いる。

【0018】 実施形態例3

図3は、本実施形態例の反射型液晶表示装置の構成を示す側面断面図である。本実施形態例の反射型液晶表示装置84は、スイッチング素子として逆スタガー構造TFT素子7を用いている。本実施形態例により、スイッチング素子或いはスイッチング素子構造が実施形態例1や

2に比べて異なっていても、第1の凹凸29が、スイッチング素子製造工程における何れかのフォトリソ工程及びエッチング工程を用いて形成される限り、反射型液晶表示装置が、実施形態例1や2のように順スタガー構造TFT8を有する場合と同様、製造工程を簡略化できる。尚、本実施形態例では、反射型液晶表示装置84に限らず、反射型液晶表示装置が、図3に示すように、逆スタガー構造TFT7を構成する1つ以上の膜と、その上部に位置する絶縁膜の積層膜でベースとなる第1の凹凸29とが構成された構造を有する反射型液晶表示装置である限り、同様の効果を奏することができる。

[0019] 実施形態例4

図4は、本実施形態例の反射型液晶表示装置の構成を示す側面断面図である。本実施形態例の反射型液晶表示装置86は、スイッチング素子としてMIMダイオード(MIM素子)71を用いている。本実施形態例により、実施形態例3と同様の効果を奏することができる。尚、本実施形態例では、反射型液晶表示装置86に限らず、反射型液晶表示装置が、図4に示すように、MIM素子71を構成する1つ以上の膜と、その上部に位置する絶縁膜28の積層膜でベースとなる第1の凹凸29とが構成された構造を有する反射型液晶表示装置である限り、同様の効果を奏することができる。

【0020】実施形態例5

本実施形態例は、実施形態例1から4の何れかの改変例 である。第1の凹凸29を形成している第1の絶縁膜の 下側の膜は、スイッチング素子を構成している膜である 限り、単層であっても2層以上の積層膜であってもよ く、その積層膜の組み合わせも限定されない。明るい反 射型液晶表示装置を得るためには、第1の凹凸29は、 0. 4 μ m~ 4 μ mの高さを有していればよく、例え ば、スイッチング素子の構成膜36と第1の絶縁膜28 の高さとの合算値が0. 4μ m $\sim 4 \mu$ mの範囲内である ように各膜の成膜条件を制御してもよい。また、第2の 絶縁膜30は、厚さが0.6 μm~4μmの範囲内であ るように成膜すればよい。また、反射電極板(反射画素 電極板)74が、第2の絶縁膜30を介して、配線又は TFT7、8やMIM9、71などのスイッチング素子 上にオーバラップさせて、開口率を向上させることが可 能な構造を有していてもよい。

【0021】 実施形態例 6

を容易に変えることができるためである。第1の絶縁膜28の構成材料として、より好適には、ボリイミド樹脂、アクリル樹脂、或いはSOGが好適である。この理由としては、これらの材料は、膜厚設定が広い範囲で可能であるのに加えて、TFT製造工程時で使用される材料とのプロセス整合性、さらに材料性能(電気的絶縁性、強度、密着性、膜応力、安定性)が優れているからである。

[0022] 本実施形態例では、有機系或いは無機系絶 緑膜の膜厚を制御することにより、良好な反射性能を得 るために必要とされる反射電極板表面の凹凸(反射板凹 凸)25Aの高さを容易に得ることができる。

【0023】図5は、本実施形態例の別の反射型液晶表示装置の構成を示す断面図である。本実施形態例では、図5に示すように、第1の絶縁膜28の側壁38がテーパ状である。これにより、反射板凹凸が滑らかな傾斜形状を有するので、反射板の散乱性能を高めることができ、従って、明るい反射型液晶表示装置を実現できる。

【0024】図6は、本実施形態例の更に別の反射型液晶表示装置の構成を示す側面断面図である。図6に示すように凹凸構造の一部に用いられている第1の有機系絶縁膜33或いは無機系絶縁膜34に熱溶融性或いは熱収縮性を有する有機系或いは無機系絶縁膜を選定し、焼成条件を適正に設定することにより、凸部39の上部の平坦部は丸くなり、平坦領域40の抑制と反射板凹凸の傾斜角度の変換とを行うことができる。すなわち、焼成条件の制御のみで、プロセス数を付加することなく反射板の反射効率をより高めることができ、明るい反射型液晶表示装置を実現できる。

【0025】図7及び図8は、それぞれ、本実施形態例でスイッチング素子として逆スタガー構造TFT7を用いた反射型液晶表示装置、及び、MIMダイオード71を用いた反射型液晶表示装置の構成を示す側面断面図である。これらの反射型液晶表示装置では、スイッチング素子の種類によらず、順スタガー構造TFT8をアクティブマトリクス駆動素子に用いた場合と同様、表示画面が明るい。また、図9に示すように、反射型液晶表示装置は、1画素における反射板の領域が減少するものの、凹凸構造を有する領域のみに反射板を設ける画素構造を有していてもよい。

【0026】本実施形態例では、第1の凹凸29がスイッチング素子41の形成と同時に基板上に形成され、反射板74が、その上側、すなわち第2の絶縁膜を介した画素最上部側に位置している。したがって、反射板74は、第2の絶縁膜30を間に挟むようにして形成され、スイッチング素子41及び配線21、22(ソース、ドレイン)とは異なる層であるように形成できるので、反射板面積を著しく広くでき、反射光量を大きくすることができる。反射板74の下側に形成される凹凸25は、第1の凹凸29の上部を覆う第2の絶縁膜30の最上部

表面の形状である。そのため、第1の凹凸29が図5に示すように上側に平坦面を有していても、第2の絶縁膜30で覆うことにより作られる表面には、平坦面が存在しない。さらに、第1の凹凸29の寸法、或いは、第2の絶縁膜30の膜厚を変更することにより、最終的に形成される反射板凹凸の傾斜角度を広い範囲で変化させることができる。それゆえ、より良好な反射性能を有する反射板凹凸25Aを形成できる。

【0027】また、第1の絶縁膜28として、感光性能 を有する絶縁材料を用いて感光性絶縁膜32を形成して もよい。図10aは、感光性絶縁膜32を有する反射型 液晶表示装置を製造する工程を示す側面断面図であり、 10 a 1 から 10 a 3 にわたり順次製造されていく様子 を示す。このような感光性絶縁膜32を用いると、図1 0 a に示すように、第1の凹凸のパターン形成の際、第 1の絶縁膜28を成膜し、現像によるパターン化を行 い、その後、パターン化された絶縁膜をマスク50にし てエッチング処理することでスイッチング素子 41のパ ターン形成ができ、この膜をそのまま第1の凹凸29の 構成膜として利用することで、少ない製造工程数で反射 型液晶表示装置を製造できる。また、第1の絶縁膜に非 感光性材料を用いた場合であっても、図10bに示すよ うに、さらにその上部に感光性絶縁材料を積層すること により、図10aに示した工程と同様、製造工程の工程 削減化ができる。尚、図10cに示すように、通常のレ ジスト工程を使用した場合、レジスト塗布、現像、エッ チング処理に、更に剥離プロセス処理が追加されるた め、工程数が増え、好ましくない。

【0028】第2の絶縁膜30においても、第1の絶縁 膜28と同様に無機系材料或いは有機系材料が利用でき る。第2の絶縁膜30は、スピン塗布或いは印刷方式に より形成できる絶縁膜であることが好ましい。第2の絶 縁膜30の材質は、第1の絶縁膜28と同様にポリイミ ド樹脂、アクリル樹脂、或いはSOGが好適である。第 1の絶縁膜と同様、第2の絶縁膜30は感光性能を有す る絶縁材料で形成されていてもよい。図11a(a)及 び(b)は、それぞれ、第2の絶縁膜30として感光性 能を有する絶縁材料を用いた場合の反射型液晶表示装置 を製造する工程毎の側面断面図であり、図11b(a) から(e)は、それぞれ、第2の絶縁膜30として非感 光性能を有する絶縁材料を用いた場合の反射型液晶表示 装置を製造する工程毎の側面断面図である。第2の絶縁 膜として感光性能を有する絶縁膜を用いることにより、 反射板とスイッチング素子を電気的に接続するためのコ ンタクトホール23の形成工程に、通常のレジスト工程 を必要としなく、さらに、従来のパターン形成で使用し てきたドライエッチング工程を使用することなく、ウェ ットエッチング処理でパターン形成が可能となるため、 製造への負担を軽減でき、低コストで製造できる。な お、反射型液表示装置装置を形成する基板はガラスに限

定されるものではなく、例えば、ブラスチック、アクリル等の有機系材料からなる基板や、石英、セラミクス、シリコン等の無機系材料からなる基板であってもよく、 更には、半導体基板を用いることも可能である。

【0029】<u>実施形態例7</u>

図12は、本実施形態例の反射型液晶表示装置の構成を示す断面図である。本実施形態例は、液晶方式がGH液晶に限定されず、反射型液晶表示装置が、液晶セル内部にスイッチング素子41と共に反射板74を有する例である。例えば、一枚偏光板方式が挙げられる。図12で、45は偏光板、46は1/4波長板である。

【0030】実施形態例8

本実施形態例は、本発明に係る反射型液晶表示装置の製造方法の実施形態例であって、順スタガー構造の薄膜トランジスタ(TFT)を形成しつつ製造する例である。本発明に係る反射型液晶表示装置では、アクティブであるマリクス駆動素子として、解スタガー構造薄膜トランジスタが、そして、MIM構造薄膜トランジスタの適用が、高性能スイッチングを増造薄膜トランジスタの適用が、高性能スイッチングをで有効である。図13は、本実施形態例で反射型液晶表示装置を製造する工程を示す側面断面図であり、13Aから13Fにわたり順次製造されていく様子を示す。

【0031】本実施形態例でのTFT基板構造の製造工程は、(a)電極金属の成膜、(b)ソース21、ドレイン22電極のパターン形成(1PR)、(c)ドーピング層20、半導体層19、ゲート絶縁膜17の成膜、

(d) 電極金属の成膜、(e) 第1の感光性有機絶縁膜47の成膜、(f) 感光性有機絶縁膜へのTFTアイランドパターン及び凹凸パターンの形成(2PR)、

(g) TFTアイランドパターン及び第1の凹凸29の パターンの形成、(h)第2の感光性有機絶縁膜48の 成膜、(i)感光性有機絶縁膜へのコンタクトホール2 3のパターン形成 (3 P R) 、 (j) 高効率反射金属層 31の成膜、(k)反射画素電極板74のパターン形成 (4 P R) の各工程からなる。この製造工程では、アク ティブマトリクス駆動素子5の製造工程で成膜された金 属膜27、絶縁膜18、半導体膜19の積層膜と、この 積層膜の上側に形成された第1の絶縁膜28として感光 性絶縁膜を形成し、感光性絶縁膜に露光、現像工程を施 して、第1の凹凸29のパターンとTFT素子のパター ンとを形成し、これをマスクとして用いて、スイッチン グ素子を構成する金属膜、絶縁膜、半導体膜の積層膜を エッチングして、TFT素子のアイランド49の形成と 第1の凹凸29の形成を行っている。これにより、反射 板下に形成される第1の凹凸29をアクティブマトリク ス駆動素子5の形成と同時に形成でき、さらに、マスク 材50として用いた第1の絶録膜28をそのまま第1の 凹凸29を構成する膜の一部として利用できる。その

後、第2の絶縁膜30に感光性有機絶縁膜を形成し、レジストプロセスを使用することなく、コンタクト23を形成し、その上部に形成された反射効率の高い金属にパターン形成することで反射画素電極板(反射板)74を形成する。

【0032】本実施形態例では、反射板下に形成される凹凸25をアクティブマトリクス駆動素子5とは別に製造する必要がなく、かつ第1の凹凸及びTFT形成に用いたマスク材50をそのまま凹凸29の一部として残している。従って、従来のレジストブロセスを用いた場合に必要とされるレジスト剥離工程を省けるため、製造プロセスの簡略化が図れる。したがって、従来の反射型液晶表示装置10(図22)の製造では、TFT基板側

(下部側基板)の製造完了までに必要なPR数が7であったのに対し、本実施形態例ではPR数が4となり、従来に比べ、遥かに少ないホトリソ工程数で、すなわち遥かに少ないプロセス数で、反射型液晶表示装置を製造できる。また、第1の絶縁膜28及び第2の絶縁膜30に感光性の無機絶縁膜を使用してもよく、感光性有機絶縁膜と同様、製造プロセスの簡略化がはかれる。

【0033】尚、第1の絶縁膜28及び第2の絶縁膜3 0に非感光性の有機膜或いは無機膜を用い、レジストブ ロセスを用いてパターン形成した場合、レジスト塗布、 剥離工程が付加されるが、従来の反射型液晶表示装置の 製造工程に比べ、工程数をより少なくできる。本実施形 態例では、反射板下に形成される第1の凹凸29には、 アクティブマトリクス駆動素子の製造工程で成膜された 金属膜27、絶縁膜18、半導体膜19の積層膜と、こ の上側に形成された第1の絶縁膜28の積層膜とを用い ているが、この組み合わせに限定されることはない。金 属膜、絶縁膜、半導体膜の一つ以上の膜と第1の絶縁膜 の積層膜であればよい。また、第1の絶縁膜への第1の 凹凸のパターン形成工程は、スイッチング素子製造工程 内のどのパターン工程を利用してもよく、ソースドレイ ン電極用金属膜の上に第1の絶縁膜を積層し、ソースド レインパターン形成と同時に第1の凹凸のパターン形成 を行ってもよい。すなわち、スイッチング素子を形成す るいずれかのパターン形成時に、第1の凹凸パターンを 同時に形成すればよい。

【0034】実施形態例8の改変例

図14は、本改変例で反射型液晶表示装置を製造する工程を示す側面断面図であり、14Aから14Gにわたり順次製造されていく様子を示す。また、本発明のその他の実施例として、図14に示すように、感光性有機絶縁膜47へのTFTアイランドバターン及び凹凸パターンの形成(2PR)後、該バターンの断面形状にテーパ或いは丸み51形状にしてもよい。

【0035】 実施形態例9

本実施形態例は、本発明に係る反射型液晶表示装置の製造方法の実施形態例であって、逆スタガー構造の薄膜ト

ランジスタ(TFT)を形成しつつ製造する例である。 スイッチング素子に逆スタガー構造TFTを用いた場合 の製造工程は、(a)電極金属の成膜、(b)ゲート電 極と凹凸形状をパターン形成(1PR)、(c)ゲート 絶縁膜、半導体層、ドーピング層の成膜、(d)金属電 極の成膜、(e)第1の有機系或いは無機系絶縁膜の成 膜、(f) TFT素子アイランド部及び、凹凸のパター ン形成 (2 P R)、(g) 前記パターンの形状変換 (メ ルト)、(h)アイランド形成、(i)第2有機系或い は無機系絶縁膜の成膜、(j)コンタクト形成(4P R)、(k) 高効率反射金属の成膜、(l) 反射画素電 極板のパターン形成(5PR目)の各工程からなる。こ の製造工程における全PR数は5であり、従来に比べ、 簡略化されておりPR数が少なく、低コストで反射型液 晶表示装置を製造でき、明るく、高コントラストを有す る反射型液晶表示装置を提供できる。尚、本実施形態例 では、スイッチング素子を形成する際に用いられるいず れかのパターン形成工程を利用して第1の凹凸パターン が形成され、その際に利用した第1の絶縁膜が、そのま ま第1の凹凸を形成する積層膜の一部として用いられれ ばよい。それゆえ、実施形態例1とは異なる種類のスイ ッチング素子を形成する場合であって、実施形態例1と 同様の効果を奏する。

[0036] 実施形態例10

本実施形態例は、本発明に係る反射型液晶表示装置の製造方法の実施形態例であって、MIMダイオードを形成しつつ製造する例である。スイッチング素子にMIMダイオードを用いた場合の製造工程は、(a)金属電極の成膜、(b)リード電極のパターン形成。(1PR)、

- (c) 陽極酸化膜とブラズマCVD酸化膜の成膜、
- (d) 有機系或いは無機系絶縁膜の成膜、(f) MIM素子アイランド部のパターン形成(2 PR)、(g) MIM素子上部の有機系或いは無機系絶縁膜膜の除去(3 PR)、(h) 高効率反射金属の成膜、(i) 反射画素電極板のパターン形成(4 PR目)の各工程からなる。この製造工程における全PR数は4となり、従来の6に比べて簡略化されて少なく、低コストで反射型液晶表示装置を製造できる。また、反射板下部に位置する凹凸高さとその形状を自由に設定できるため、明るく、高コントラストを有する反射型液晶表示装置を提供できる。

【0037】以下、上記実施形態例を実際に適用した反射型液晶表示装置の製造方法の具体例を実施例として示す。

実施例1

本実施例では、スイッチング素子を順スタガー構造の薄膜トランジスタ8とした。図15は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、15Aから15Fにわたり順次製造されていく様子を示す。本実施例では、ガラス基板上に以下の(a)から(k)の工程を行った。

- (a) Cr 金属 52 をスパッタリング法により 50 nm 形成する。
- (b) ソース21、ドレイン22電極を形成(1PR) する(15A参照)
- (c) ドーピング層 2 0 を 1 0 0 n m、半導体層 1 9 を 1 0 0 n m、ゲート絶縁膜 1 8 を 4 0 0 n m ブラズマ C V D により成膜する。
- (d)スパッタリング法によりCr膜52を50nm成 障する。
- (e) スピンコート法により、第1の絶縁膜28を 2μ m成膜し、更に、レジスト膜を塗布する(15B参照)。
- (f) PR工程により、TFT素子及び第1の凹凸形成用のレジストパターンを形成する(2PR)(図15C参照)。
- (g) 形成したレジストパターンをマスクとして使用し、エッチング工程によりTFT素子部アイランド49 及び、第1の凹凸29を形成する(2PR)(15D参照)。
- (h) 第2の絶縁膜30であるポリイミド膜を形成する。
- (i) 第2の絶縁膜30にコンタクト領域23を形成(3PR) する(15E参照)。
- (j) アルミニウム54をスパッタリング法により300m m成膜する。
- (k) 反射画素電極板 7 4 を形成 (4 P R) する (1 5 F 参照)。

【0038】以下、各工程について詳しく説明する。上 記工程(c)において、ゲート絶縁膜18にはシリコン 酸化膜55とシリコン窒化膜56の積層膜、半導体層に はアモルファスシリコン膜57、ドーピング層20には n型化アモルファスシリコン膜58をそれぞれ使用し、 これらのプラズマCVDによる成膜条件は、以下のよう に設定した。シリコン酸化膜を成膜する場合、反応ガス としてシランガスと酸素ガスとを用い、ガス流量比(シ ランガス流量/酸素ガス流量)は、0.1~0.5程度 に設定し、成膜温度200~300℃、圧力1Tor r、プラズマパワーを200Wとした。シリコン窒化膜 を成膜する場合、反応ガスとしてシランとアンモニアガ スとを用い、ガス流量比(シラン/アンモニア)は、 0.1~0.8の範囲内に設定し、成膜温度250℃、 ガス圧力1Torr、プラズマパワー200Wとした。 アモルファスシリコン膜を成膜する場合、反応ガスとし てシランと水素ガスとを用い、ガス流量比(シラン/水 素)は、0.25~2の範囲内に設定し、成膜温度20 0℃~250℃、ガス圧力1Torr、ブラズマパワー 50Wとした。n型化アモルファスシリコン膜を成膜す る場合、反応ガスとしてシランとホスフィンとを用い、 ガス流量比(シラン/フォスフィン)は、1~2程度に 設定し、成膜温度200~250℃、ガス圧力1Tor

r、ブラズマパワー50Wとした。

【0039】工程(e)の有機系絶縁膜33として、ボリイミド膜11(日産化学製RN-812)と、絶縁膜33にパターン形成するための積層膜とを使用した。積層膜はレジスト膜からなる。ボリイミド膜の塗布条件

(成膜条件)は、スピン回転数 1200 r. p. m.、仮焼成温度 90 ℃、仮焼成 10 分間とし、本焼成温度 250 ℃、本焼成時間 1 時間とした。レジスト膜の成膜条件は、スピン回転数 1000 r. p. m.、仮焼成温度 90 ℃、仮焼成 5 分間を行い、その後、露光、現像によりパターンを形成し、ボストベークを 90 ℃で 30 分間処理した。その後、レジストパターンを 70 で 100 で

【0040】また、工程(g)で、TFT素子部のアイ ランド49及び第1の凹凸29を形成する際、Cr層5 2のエッチングはウェットエッチングで、シリコン酸化 膜55、シリコン窒化膜56、及び、アモルファスシリ コン層57はドライエッチングでそれぞれ行った。Сг 層のエッチングには、過塩化水素酸と硝酸第2セリウム アンモニウムとの混合水溶液を用いた。また、シリコン 窒化膜56、シリコン酸化膜55のエッチングには、エ ッチングガスとして四塩化フッ素と酸素ガスとを用い、 エッチング反応させるガス圧力を5mTorr~300 mTorrの範囲内、プラズマパワーを100~300 Wとした。また、アモルファスシリコン層のエッチング は、塩素と水素ガスとを用い、エッチング反応させるガ ス圧力を5mTorr~300mTorrの範囲内、プ ラズマパワーを50W~200Wの範囲内とした。工程 (g) で形成された第1の凹凸の平面形状はランダムな 形状となっている。なお、第1の凹凸29の最大高さ は、スイッチング素子の厚さである700nmとその上 部の第1の有機系絶縁膜の厚さ2μmとレジスト層の厚 側に、後述のように第2の絶縁膜30を形成すること で、反射板12の反射板凹凸が得られている。

【0041】反射板表面に形成される第1の凹凸29は、工程(g)で、TFT素子部のアイランド化と同時に形成され、このパターン形成で使用したマスク材50であるレジスト53も剥離することなく、そのまま残し第1の凹凸29を形成する積層膜の一部として利用することにより、従来に比べてブロセスが簡略化されている。

【0042】工程(g)の後、凹凸25及びTFT素子

部 59 と反射画素電極板 74 との間に第 2 の絶縁膜(層間絶縁膜) 30 として 2μ m厚の第 2 の有機系絶縁膜を形成した。第 2 の有機系絶縁膜 30 には、日産化学製ボリイミドである RN-812 を使用した。ボリイミド膜の塗布条件は、スピン回転数 800 r. p. m. 、仮焼成温度 90 ℃、仮焼成時間 10 分間とし、本焼成温度 250 ℃、本焼成時間 1 時間とした。尚、種々のパラメータを変更することによりスピン回転数を 1200 r. p. m. にしてもよい。

【0043】更に、工程(i)のコンタクト形成工程におけるレジストプロセスとドライエッチプロセスにより、コンタクト領域23のボリイミド膜11を除去し、コンタクト形成に用いたレジスト層の剥離を行い、ンタクト形成を行った。なお、該ボリイミド膜11のドルステイエッチング条件は、上記工程(g)のボリイミド膜11のボリイミド膜11のボリイミド膜11のボリイミド膜11のボリイミド膜11の形成を行った。その後、反射効率の高く、TFTプロセスとの整合性がよいアルミニウム金属54を形成し、これをパターン形成することで、画素電極、エッチング処理を行い、エッチング液には60℃に加熱したリン酸、酢酸、硝酸の混合液を使用した。

【0044】工程(k)では、反射板(反射画素電極 板) 74の開口率は、80%で製造した。その後、上記 TFT基板61と、透明導電膜のITO60で形成され た透明電極を有する対向基板を、各々の膜面が対向する ようにして重ね合わせた。なお、TFT基板と対向基板 には、配向処理が施され、両基板はプラスチック粒子等 のスペーサを介して、パネル周辺部にエボキシ系の接着 剤を塗ることにより、張り合わされた。その後GH型の 液晶を注入し液晶層とすることで、液晶表示装置を製造 した。この反射型液晶表示装置の反射画素電極板は、均 一で、光散乱性のよい反射性能を有しており、これを用 いた反射型液晶表示装置は、新聞紙よりも明るい白表示 を有するモノクロ反射型パネルを有していた。従って、 このような良好な表示性能を有する反射型液晶表示装置 を低コストで実現することができた。また、対向基板側 にRGBカラーフィルタを設置することにより、明るい カラー反射型パネルを低コストで実現できた。

【0045】本実施例では、反射板表面に形成される凹凸として、上記(a)、(c)、(d)そして(e)で成膜された積層膜を使用し、レジストプロセスにより、上記(g)のTFT素子部のアイランド化と同時に、凹凸パターン形成し、さらに、パターンニングに使用したレジスト層も第1の凹凸29の一部として利用するため、プロセスの簡略化を図ることができた。それゆえ、本実施例の全PR数は4となり、従来に比べ、プロセスの削減に大きな成果を有する。また、本実施例の凹凸29の高さ37は、上記の値に限定されるものではない。該凹凸の高さは、TFT素子成膜時に形成される電極金属29、絶縁層18、半導体層19と、第100絶縁膜28

である有機系絶縁膜の膜厚を変えることで、自由に設定 できる。特に、有機系或いは無機系絶縁膜の膜厚は、T FT積層膜よりも広い範囲で変えることができるため、 本実施例のように反射板下の凹凸構造25を用いること で、反射板性能の指向性を大きく変えた反射型液晶表示 装置を提供できる。さらに、本実施例では、スイッチン グ素子製造時に成膜されたクロム/シリコン酸化膜/シ リコン窒化膜/アモルファスシリコン膜/n型アモルフ ァスシリコン膜/クロムと有機系絶縁膜の全層を用いた 積層膜とを凹凸の一部として用いたが、この他の組み合 わせでもよい。組み合わせとしては、数種の組み合わせ が可能である。従って、工程数を増やすことなく数種類 の凹凸高さ37変更することができる。なお、本実施例 では、有機系絶縁膜33として、ボリイミド膜11を用 いたが、これに限定されるものではない。その他の材料 として、シリカ系材料(例えば、東レ製PSBシリー ズ)、アクリル樹脂(例えば、日本合成ゴム製MFR3 05)、SOG膜(例えば住友化学製SF9214)を 用いれば、本実施例と同様の効果が得られる。

【0046】実施例1の改変例

本改変例では、実施例1で、スイッチング素子製造時に 成膜されたクロム/シリコン酸化膜/シリコン窒化膜/ アモルファスシリコン膜/n型アモルファスシリコン膜 /クロムと有機系絶縁膜の全層を用いた積層膜に代え て、以下の構造の積層膜を形成する。すなわち(1)クロムの単層、(2)クロム/有機系絶縁膜の積層、

(3) クロム/n型アモルファスシリコン膜/アモルファスシリコン膜/シリコン窒化膜/シリコン酸化膜/シリコン窒化膜/クロムの積層、(4) クロム/n型アモルファスシリコン膜/アモルファスシリコン膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/シリコン窒化膜/クロム/有機系絶縁膜等の組み合わせによる積層構造(柱状突起部)を形成した。これにより、反射板の散乱性能が一層、向上できた。また、第1の凹凸のパターン形成を行う際に、レジストプロセス条件と露光条件を変化させることで、該凹凸側壁のテーパ化を実現でき、反射板の散乱性能が向上した。

【0047】 <u>実施例2</u>

本実施例は、実施例1の工程(e)で成膜する第1の絶縁膜28、及び工程(h)で成膜する第2の絶縁膜30として、何れも感光性膜を用いた例であり、それ以外の基本的な製造工程及び製造条件は、実施例1と同じである。図16は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、16Aから16Fにわたり順次製造されていく様子を示す。本実施例では、TFT基板製造工程は、(a)クロム52の成膜、(b)ソース21、ドレイン22電極と凹凸形状とをウェットエッチングにてパターン形成(1PR)、(c)n型化アモルファスシリコン層58、アモルファスシリコン層57、シリコン窒化膜56の成膜、(d)ゲート電極1

7であるクロム層の成膜、(e)第1の感光性絶縁膜62の成膜、(f)感光性絶縁膜にパターン形成(2 PR)、(g)該パターン形成された感光性絶縁膜をマスクにして、TFT素子部59、及び、凹凸29をドライエッチングにて形成、(h)第2の感光性絶縁膜63の成膜、(i)感光性絶縁膜にコンタクト領域23形成(3 PR)、(j)高効率反射金属であるアルミニウム54層の成膜、(k)反射画素電極板74のウェットエッチングによるパターン形成(4 PR)の各工程を行った。得られた反射型液晶表示装置は、明るい表示性能を有した。

【0048】本実施例では、実施例1と同様、PR数4で反射型液晶表示装置のTFT基板を製造でき、さらに、第1の絶縁膜28と第2の絶縁膜30に感光性能を有する絶縁膜を使用したことにより、パターン形成後のレジスト剥離工程も必要ないので、従来に比べて製造プロセスが簡略化される。また、本実施例では感光性膜として東京応化製OFPR800を用いたが、これ以外の感光性の絶縁膜であれば、有機系材料、無機系材料であっても同様の凹凸構造が形成される。

【0049】実施例3

図17は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、17Aから17Gにわたり順次製造されていく様子を示す。本実施例では、実施例2に比べ、工程(e)で、第1の絶縁膜28として熱熱性を有する有機系或いは無機系の絶縁膜を用いたこと、及び、工程(f)のパターン形成後の工程で、第1の絶縁膜の上部の形状を変換したことが実施例2と共の後、それ以外の工程は同じである。工程(f)の後、51の世界1の絶縁膜を200℃で焼成することにより、217Dに示すように、第1の凹凸パターンは、テーバ38の形状を有し、かつ最上部の断面形状が丸み51を有するように形状変換した。

【0050】本実施例では、実施例1や実施例2と同 様、反射型液晶表示装置のTFT基板をPR数4で製造 できた。また、熱溶融性を有する有機系或いは無機系の 絶縁膜を第1の絶縁膜28として用いたので、第1の凹 凸29のパターン形成後の焼成温度を適正に設定するこ とにより、凸部39を丸くして、平坦領域を減少させる ことができ、正反射成分減少効果による反射性能の向上 を実現できた。例えば、本実施例で使用した東京応化製 TMR-P3を前記絶縁膜として用い、上記製造工程に 従って、凹凸を形成した後、200℃で10分間加熱す る事により、凹凸が溶融して凹凸上部の平坦部が消失 し、凹凸上部を滑らかな丸型形状64に変換できる。ま た、東京応化製〇FPR800を用いても、同様の滑う かな凹凸面65を有する反射板凹凸構造を実現できた。 従って、反射板下部に位置する凹凸パターン形状及びそ の配置と、凹凸形成条件、例えば、塗布膜厚、焼成温

度、凹凸位置、大きさ、凹凸形成後の焼成温度、焼成時間を制御することにより、目的に応じた反射性能を有する反射板を提供できる。また、無機系の絶縁膜或いは感光型無機系絶縁膜を用いても、同様の反射型液晶表或い無機系絶縁膜を第1の絶縁膜28として用いなくとも、第1の凹凸側壁のテーパ化38(図5)を行えば、同様の表示性能を有する反射型液晶表示装置を実現できる。テーパ化の方法としては、例えば、感光性膜を用いた場合では、第1の凹凸パターンのPR工程時に、露光条件や現像条件を制御してテーパ領域の角度制御を行う。また、凹凸パターン形成で、ドライエッチング工程を用いてもテーパ化を実現できた。

【0051】 実施例4

本実施例は、スイッチング素子として順スタガー構造TFTを用いた例である。図18は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、18Aから18Gにわたり順次製造されていく様子を示す。本実施例では、TFT基板製造工程は、(a)クロム膜の成膜、(b)ソース21、ドレイン電極22をウェットエッチングにて、パターン形成(1PR)、

(c) n型化アモルファスシリコン層58、アモルファ スシリコン層57、シリコン窒化膜56の成膜、(d) アイランド49の形成(2PR)、(e)シリコン窒化 膜の成膜、(f)クロム膜52の成膜、(g)第1の感 光性絶縁膜62の成膜、(h) 感光性絶縁膜にパターン 形成(3PR)、(i) 該パターン形成された感光性絶 緑膜をマスク50にして、ゲート電極17及び凹凸29 をエッチングにて形成、(j)第2の感光性絶縁膜63 の成膜、(k)感光性絶縁膜にコンタクト領域23形成 (4 P R)、(1) 高効率反射金属であるアルミニウム 層54の成膜、(m)反射画素電極板74のウェットエ ッチングによるパターン形成 (5 P R) の各工程を行っ た。このようにして得られた反射型TFT基板を用い て、対向基板と組み合わせる事により得られた反射型液 晶表示装置の表示性能は、新聞紙に匹敵する明るさを有 することが確認された。

【0052】本実施例では、反射型液晶表示装置のTFT基板をPR数5で製造できた。スイッチング素子に用いられる金属膜のCェ、半導体膜のアモルファスシリコン、ゲート絶縁膜のシリコン窒化膜は、これに限定されず、他のスイッチング素子材料であってもよい。さらに、第1の感光性有機系絶縁膜62及び第2の感光性有機系絶縁膜63には、ポリイミド樹脂を使用したが、これに限定されず、他の有機系樹脂或いは無機系絶縁膜を用いても同様の効果が得られる。また、実施例3と同様、第1の絶縁膜28として熱溶融性を有する材料を使用することにより、第1の凹凸上部を丸くすることができ、滑らかな反射板凹凸面が形成され、従って、より散乱性の強い反射板を提供でき、使用環境の影響をあまり

受けない表示が可能な反射型液晶表示装置を実現できた。

【0053】<u>実施例5</u>

本実施例は、アクティブマトリクス駆動用スイッチング素子に、逆スタガー構造TFTを用いた例である。図19は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、19Aから19Gにわたり順次製造されていく様子を示す。本実施例では、製造工程は、(a)電極金属の成膜、(b)ゲート電極17をパターン形成。(1PR)、(c)ゲート絶縁膜18、半導体層19、ドーピング層20の成膜、(d)TFT素子アイランド49形成、(e)金属電極27の成膜、

(f) 有機系或いは無機系絶縁膜62の成膜、(g) TFT素子59とソース21、ドレイン22電極の形成(3PR)、(h) 第2の有機系或いは無機系絶縁膜30の形成、(i) コンタクト23形成及び周辺端子の露出(4PR)、(j) 高効率反射金属の成膜、(k) 反射画素電極板74のパターン形成(5PR)の各工程からなる。この製造工程における全PR数は5であり、従来構造の6に比べて少なく、低コストで反射型液晶表示装置を製造でき、かつ、明るく、高コントラストを有する反射型液晶表示装置を提供できる。

【0054】 <u>実施例6</u>

本実施例は、アクティブマトリクス駆動用スイッチング素子に、MIMを用いた例である。図20は、本実施例で反射型液晶表示装置を製造する工程を示す側面断面図であり、20Aから20Fにわたり順次製造されていく様子を示す。本実施例では、製造工程は、(a)リード電極であるのタンタル層68の成膜、(b)リード電極66をウェットエッチングにて、パターン形成(1PR)、(c)陽極酸化によりタンタルオキサイド膜67とプラズマCVDによりシリコン酸化膜56の成膜、

(d) 第1の有機系絶縁膜であるボリイミド膜11の成膜、(e) MIM素子アイランド部49をドライエッチングにて、パターン形成(2PR)、(f) 前記パターンの溶融による凸形状変換により丸み51の形成、

(g)第2の有機系絶緑膜30であるボリイミド膜11の形成、(h)コンタクトの形成(3PR)、(i)高効率反射金属であるアルミニウム54層の成膜、(j)反射画素電極板74のウェットエッチングによるパターン形成(4PR)の各工程からなる。本実施例では、反射型液晶表示装置の製造工程における全PR数は4となり、従来構造の6に比べて少なく、低コストで反射型液晶表示装置を製造でき、かつ、明るく、高コントラストを有する反射型液晶表示装置を提供できる。

[0055]

【発明の効果】本発明によれば、第1基板は、絶縁性基板上に、薄膜トランジスタと、柱状突起部と、薄膜トランジスタ及び柱状突起部を覆うように成膜され、表面に曲率半径の大きい凹凸を有する第2の絶縁膜と、第2の

絶緑膜上に形成されて、第2の絶縁膜の凹凸に沿った凹凸面を有する反射板とを備えている。これにより、柱状突起部は、スイッチング素子である薄膜トランジスタの形成と同時に形成される。よって、反射板の凹凸の製造工程が簡略化された反射型液晶表示装置が実現される、すなわち、低コストで、且つ良好な表示性能を有する反射型液晶示装置が得られる。

【図面の簡単な説明】

【図1】実施形態例1の反射型液晶表示装置の構成を示す側面断面図である。

【図2】実施形態例2の反射型液晶表示装置の構成を示す側面断面図である。

[図3] 実施形態例3の反射型液晶表示装置の構成を示す側面断面図である。

【図4】実施形態例4の反射型液晶表示装置の構成を示す側面断面図である。

【図5】実施形態例6で、第1の絶縁膜がテーパ状である反射型液晶表示装置の一構成を示す断面図である。

【図6】実施形態例6で、第1の絶縁膜の上部が滑らかな丸み形状を有する反射型液晶表示装置の一構成を示す側面断面図である。

【図7】実施形態例6で、第1の絶縁膜の上部が滑らかな丸み形状を有し、スイッチング素子として逆スタガー 構造TFTを用いた反射型液晶表示装置の構成を示す側 面断面図である。

【図8】実施形態例6で、第1の絶縁膜の上部が滑らかな丸み形状を有し、スイッチング素子としてMIMダイオードを用いた反射型液晶表示装置の構成を示す側面断面図である。

【図9】実施形態例6の反射型液晶表示装置の一構成を 示す側面断面図である。

【図10a】実施形態例6で、感光性絶縁膜を有する反射型液晶表示装置を製造する工程を示す側面断面図であり、10a1から10a3にわたり順次製造されていく様子を示す。

【図10b】実施形態例6で、感光性絶縁膜を有する反射型液晶表示装置を製造する工程を示す側面断面図であり、10b1から10b4にわたり順次製造されていく様子を示す。

【図10c】実施形態例6で、感光性絶縁膜を有する反射型液晶表示装置を製造する工程を示す側面断面図であり、10c1から10c5にわたり順次製造されていく様子を示す。

【図11a】図11a(a)及び(b)は、それぞれ、第2の絶縁膜として感光性能を有する絶縁材料を用いた場合の反射型液晶表示装置を製造する工程毎の側面断面図である。

【図11b】図11b(a)から(e)は、それぞれ、 第2の絶縁膜として非感光性能を有する絶縁材料を用い た場合の反射型液晶表示装置を製造する工程毎の側面断 面図である。

【図12】実施形態例7の反射型液晶表示装置の構成を 示す断面図である。

【図13】実施形態例8で反射型液晶表示装置を製造する工程を示す側面断面図であり、13Aから13Fにわたり順次製造されていく様子を示す。

【図14】実施形態例8の本改変例で反射型液晶表示装置を製造する工程を示す側面断面図であり、14Aから14Gにわたり順次製造されていく様子を示す

【図15】実施例1の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【図 1 6】実施例 2 の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【図17】実施例3の反射型液晶表示装置のスイッチン グ素子基板の製造工程図である。

【図18】実施例4の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【図19】実施例5の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【図20】実施例6の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【図21】従来の反射型液晶表示装置の具体的構造を示す断面図である。

【図22】図22(a)から(h)は、それぞれ、従来の反射型液晶表示装置のスイッチング素子基板の製造工程図である。

【符号の説明】

- 1A. 下部側基板
- 1B. 対向側基板
- 2A.B. ガラス基板
- 3. カラーフィルタ
- 4. 透明電極
- 5. アクテイプマトリクス駆動素子
- 6. 薄膜トランジスタ
- 7. 逆スタガー構造TFT
- 8. 順スタガー構造TFT
- 9. MIMダイオード
- 10. 反射型液晶表示装置
- 11. ポリイミド膜
- 13. 液晶層
- 14. GH液晶
- 15. 入射光
- 16. 反射光
- 17. ゲート電極
- 18. 絶縁膜
- 19. 半導体層
- 20. ドーピング層
- 21. ソース電極
- 22. ドレイン電極
- 23. コンタクトホール

- 24. 反射画素電極板
- 25. 凹凸
- 25A 反射板凹凸
- 26. 有機絶縁膜
- 27. 金属膜
- 28. 第1の絶縁膜
- 29. 第1の凹凸
- 30. 第2の絶縁膜
- 31. 反射金属層
- 32. 感光性絶縁膜
- 33. 有機系絶縁膜
- 34. 無機系絶縁膜
- 35A B. 絶縁性基板
- 36. スイッチング素子の構成膜
- 37. 凹凸高さ
- 38. テーパ形状
- 39. 凸部
- 40. 平坦領域
- 41. スイッチング素子42. 配線
- 43. 凹凸傾斜角度
- 44. 凹凸構造を有する領域
- 45. 偏光板
- 46. 1/4波長板
- 47. 第1の感光性有機絶縁膜
- 48. 第2の感光性有機絶縁膜
- 49. アイランド
- 50. マスク材

- 51. 丸み
- 52. C r
- 53. レジスト
- 54. A l
- 55. シリコン酸化膜
- 56. シリコン窒化膜
- 57. アモルファスシリコン膜
- 58. n型化アモルファスシリコン膜
- 59. TFT素子
- 60. I T O
- 61. TFT基板
- 62. 第1の感光性絶縁膜
- 63. 第2の感光性絶縁膜
- 64. 滑らかな丸型
- 65. 滑らかな凹凸
- 66. リード電極
- 67. タンタルオキサイド
- 68. タンタル
- 70. 反射型液晶表示装置
- 71. MIMダイオード
- 72A 下部側基板
- 72B. 対向側基板
- 73. 柱状突起部
- 74. 反射電極板
- 80. 反射型液晶表示装置
- 84. 反射型液晶表示装置
- 86. 反射型液晶表示装置

[図1]

[図2]

【図22】

