The goal of the estima function is to estimate the coefficients of the two centered autologistic regression :

$$\begin{split} logit(p_{i,t}) &= X_{i,t}^T \beta + \beta_{past} \sum_{j \in N_i^{past}} Z_{j,t-1} + \rho_1 \sum_{j \in N_i} Z_{j,t}^{**} + \rho_2 Z_{i,t-1} \\ \Leftrightarrow \qquad p_{i,t} &= \frac{exp(X_{i,t}^T \beta + \beta_{past} \sum_{j \in N_i^{pas}} Z_{j,t-1} + \rho_1 \sum_{j \in N_i} Z_{j,t}^{**} + \rho_2 Z_{i,t-1})}{1 + exp(X_{i,t}^T \beta + \beta_{past} \sum_{j \in N_i^{pas}} Z_{j,t-1} + \rho_1 \sum_{j \in N_i} Z_{i,t}^{**} + \rho_2 Z_{i,t-1})} \end{split}$$

where $Z_{i,t}$ is a binary variable of parameter $p_{i,t}$, N_i is the neighborhood of the site i for the instantaneous spatial dependence, N_i^{past} is the neighborhood of the site i for the spatio-temporal dependence (spread of the illness) and $Z_{i,t-1}^{**}$ is given by:

$$Z_{i,t}^{**} = Z_{i,t} - \frac{exp(X_{i,t}^T \beta + \beta_{past} \sum_{j \in N_i^{past}} Z_{j,t-1} + \rho_2 Z_{i,t-1})}{1 + exp(X_{i,t}^T \beta + \beta_{past} \sum_{j \in N_i^{past}} Z_{j,t-1} + \rho_2 Z_{i,t-1})}.$$

Estimation uses the pseudo-likelihood:

$$\mathcal{L}(\beta, \beta_{past}, \rho_1, \rho_2) = \prod_{t=1}^{T} \prod_{1 \le i \le n} (p_{i,t})^{z_{i,t}} (1 - p_{i,t})^{1 - z_{i,t}}.$$

For more detail see Gegout-Petit, Guérin-Dubrana, Li, 2019.

The parameters of spatio-temporal dependence ρ_1 , ρ_2 , β_{past} can be interpreted as practical biological processes:

- Instantaneous spatial dependence ρ_1 . It quantifies the spatial autocorrelation between neighbours for the occurrence of the event at each time t,
- Temporal dependence ρ_2 . It quantifies the temporal dependence on the previous year's status,
- Coefficient β_{past} : it quantifies the spread of the illness coming from the previous year's status of the neighbours

The function "estima" estimates the parameters with different possibilities for β_{past} and $\sum_{j \in N_i^{pas}} Z_{j,t-1}$:

if "covpast = FALSE : estimates the parameter
$$\beta=\begin{pmatrix}\beta_0\\\beta_1\\\beta_2\\\beta_3\end{pmatrix}$$
 and $X_{i,t}^T=$

$$\begin{pmatrix} 1 \\ x_{i,t}^1 \\ x_{i,t}^2 \\ x_{i,t}^3 \end{pmatrix} \text{ where } x_{i,t}^j \forall j \in (1,2,3) \text{ is a spatio-temporal covariate. There}$$

can be 0, 1, 2 or 3 covariates. In this case, there is no regression on $\sum_{j \in N^{pas}} Z_{j,t-1}$ ($\beta_{past} = 0$).

if "covpast = TRUE": the function estimates the parameters
$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$
 and β_{nast} .