STM32 course

Preparing for hackathon

Going back to USART for a little while

- Synchronous mode
- Half-duplex and full-duplex modes
- Parity bits
- DMA support
- Noise detection
- Programmable transfer data size
- Modem flow control

Type of communication service

Simplex communication

Half-duplex communication

Full-duplex communication

Killer-feature of USART

Debug might become easier and PC-like

But we give no warranty

SPI. Serial peripheral interface

- Master or slave operation
- Full-duplex, half-duplex and simplex
- 4-bit to 16-bit data size selection
- Programmable clock polarity and phase
- NSS management by hardware or software

SPI. Full-duplex

SPI. Half-duplex

SPI. Simplex

SPI. Multi slave mode

SPI. Multi master mode

SPI. CPHA (clock phase) = 1

SPI. CPHA (clock phase) = 0

SPI. RX and TX FIFOs

SPI. Example

Switch to example!

Hackathon. Diagram

CAN Underlayer

GitHub link: https://github.com/edosedgar/CAN underlayer

Main sources:

- main.c
- can_core.c
- can_api.c
- can_callbacks.c

CAN underlayer. Main idea

