# STAT 659 Spring 2016 Homework 10 Solution

#### 7.3

- (a)  $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately  $(i)\chi^2=0.4794,$  df=1, p-value = 0.4887.  $(ii)G^2=0.5196,$  df=1, p-value = 0.4710. Since the p-values are greater than 0.05, so at significant level  $\alpha=0.05$ , we fail to reject  $H_0$  which means there is no evidence of lack of fit.
- (b) Conditional OR for PB association:  $e^{0.7211} \approx 2.0567$ . Conditional OR for PH association:  $e^{1.5520} \approx 4.7209$ . Conditional OR for BH association:  $e^{0.4672} \approx 1.5955$ .
- (c)  $H_0: (PH, BH) \Leftrightarrow BP$  are conditionally independent The model under the null hypothesis is  $\log(\mu_{i,j,k}) = \lambda + \lambda_i^P + \lambda_j^B + \lambda_k^H + \lambda_{ik}^{PH} + \lambda_{jk}^{BH}$ .  $G^2 = 4.64, df = 1$ , p-value = 0.0313. At significant level  $\alpha = 0.05$ , we reject  $H_0$ . There is evidence of conditional association BP.
- (d) 95% C.I. for BP conditional OR:  $(e^{0.7211-1.96(0.3539)}, e^{0.7211+1.96(0.3539)}) \simeq (1.0278, 4.1154)$ .

#### 7.4

#### Criteria For Assessing Goodness Of Fit

| Criterion          | DF | Value  | Value/DF |
|--------------------|----|--------|----------|
| Deviance           | 1  | 0.3007 | 0.3007   |
| Scaled Deviance    | 1  | 0.3007 | 0.3007   |
| Pearson Chi-Square | 1  | 0.3074 | 0.3074   |
| Scaled Pearson X2  | 1  | 0.3074 | 0.3074   |

Log Likelihood 2304.2847, Full Log Likelihood -22.8414

AIC (smalleris better) 59.6827, AICC (smaller is better) .

BIC (smaller is better) 60.2388 Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

|                  |    | Likelih  | ood Ratio |         |          |
|------------------|----|----------|-----------|---------|----------|
| Parameter        | DF | Estimate | SD        | TS      | Pr>ChiSq |
| Intercept        | 1  | 4.3426   | 0.1120    | 1502.59 | <.0001   |
| gender F         | 1  | 0.3856   | 0.1434    | 7.23    | 0.0072   |
| gender M         | 0  | 0.0000   | 0.0000    | •       |          |
| info O           | 1  | -2.7147  | 0.3035    | 80.02   | <.0001   |
| info S           | 0  | 0.0000   | 0.0000    | •       |          |
| health O         | 1  | 0.7269   | 0.1353    | 28.88   | <.0001   |
| health S         | 0  | 0.0000   | 0.0000    | •       |          |
| gender*info FO   | 1  | 0.4636   | 0.2406    | 3.71    | 0.0540   |
| gender*info FS   | 0  | 0.0000   | 0.0000    | •       |          |
| gender*info MO   | 0  | 0.0000   | 0.0000    | •       |          |
| gender*info MS   | 0  | 0.0000   | 0.0000    | •       |          |
| gender*health FO | 1  | -0.2516  | 0.1749    | 2.07    | 0.1503   |
| gender*health FS | 0  | 0.0000   | 0.0000    | •       |          |
| gender*health MO | 0  | 0.0000   | 0.0000    | •       |          |
| gender*health MS | 0  | 0.0000   | 0.0000    | •       |          |
| info*health 00   | 1  | 0.8997   | 0.2852    | 9.95    | 0.0016   |
| info*health OS   | 0  | 0.0000   | 0.0000    | •       |          |
| info*health SO   | 0  | 0.0000   | 0.0000    | •       |          |
| info*health SS   | 0  | 0.0000   | 0.0000    |         | •        |

LR Statistics For Type 3 Analysis

| Source        | DF | Chi-Square | Pr > ChiSq |
|---------------|----|------------|------------|
| gender        | 1  | 15.94      | <.0001     |
| info          | 1  | 345.34     | <.0001     |
| health        | 1  | 68.54      | <.0001     |
| gender*info   | 1  | 3.83       | 0.0505     |
| gender*health | 1  | 2.08       | 0.1490     |
| info*health   | 1  | 11.37      | 0.0007     |

- (a)  $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately  $\chi^2 = 0.3074, df = 1$ , p-value = 0.579. At significant level  $\alpha = 0.05$ , we fail to reject  $H_0$ . So there is no evidence of lack of fit.
- (b) The estimated conditional GI odds ratio is  $\exp(0.4636)=1.5898$ . The 95% confidence interval for  $OR_{\rm GI(H)}$ :  $(e^{-0.0009},e^{0.9452})\simeq(0.9991,2.5733)$ .

Since 1 lies within the interval, we are 95% confident that there is no conditional association between G and I.

(c)  $H_0: \lambda^{GI} = 0 \ v.s. \ H_a: \lambda^{GI} \neq 0$  $\chi^2 = 3.71, \ df = 1, \text{ p-value} = 0.054.$ 

At significant level  $\alpha = 0.05$ , there is slight evidence that G and I are conditionally independent. GI does not need to be in the model.

#### 7.6

- (a) For the mutually independence model, the deviance is 135.86 with P-value close to zero. So the model is not adequate.
- (b) For the homogeneous model, the SN\*JP term has the largest likelihood ratio test statistic 74.63, which indicates that the estimated conditional association between SN and JP is strongest.
- (c) Similarly, the likelihood ratio test statistic between EI and TF or EI and JP are the smallest with P-values greater than 0.1, thus there is no strong evidence of conditional association between these two pairs.

#### 7.7

- (a) The test statistic is  $TS = 12.3687 10.16 = 2.2087 \sim \chi_2$ . The P-value is 0.3314 which implies the model that assumes conditional independence between E/I and T/F and between E/I and J/P holds.
- (b) The 95 percent CI for the conditional odds ratio between the S/N and J/P is  $(e^{-1.5075}, e^{-0.9382}) = (0.221, 0.391)$ . Since this interval excludes one, so we can see S/N and J/P are conditionally associated.
- (c) If we use this parameterization, then the estimated conditional odds ratio is  $e^{1.2202} = 3.388$  and the 95 percent likelihood-ratio confidence interval is  $(e^{0.9382}, e^{1.5075}) = (2.555, 4.515)$ .

#### 7.8

(a) For the mutually independence model,  $\log(\mu_{ijkl}) = \lambda + \lambda_i^{EI} + \lambda_j^{SN} + \lambda_k^{TF} + \lambda_l^{JP}$ , so the number of parameters is 5; For the homogeneous association model,  $\log(\mu_{ijkl}) = \lambda + \lambda_i^{EI} + \lambda_j^{SN} + \lambda_k^{TF} + \lambda_{ij}^{IP} + \lambda_{ij}^{EI*SN} + \lambda_{ik}^{EI*TF} + \lambda_{il}^{EI*JP} + \lambda_{jk}^{SN*TF} + \lambda_{jl}^{SN*JP} + \lambda_{kl}^{TF*JP}$ , so the

number of parameters is 11; for the model with all the three-factor interaction terms,  $\log(\mu_{ijkl}) = \lambda + \lambda_i^{EI} + \dots + \lambda_{kl}^{TF*JP} + \lambda_{ijk}^{EI*SN*TF} + \lambda_{ijl}^{EI*SN*JP} + \lambda_{ikl}^{EI*TF*JP} + \lambda_{jkl}^{SN*TF*JP}$ , so the number of parameters is 11 + 4 = 15.

(b) The AIC scores for the above three models are -6940.38, -7054.1, -7049.16 respectively. Since the second model has the smallest AIC score, it is preferred.

#### 7.9

(a) 
$$\widehat{OR}_{AG(D)} = e^{-0.0999} \approx 0.9.$$
 
$$\widehat{OR}_{AG} = \frac{(1198)(1278)}{(557)(1493)} \approx 1.84.$$

Men applied in greater numbers to D(1,2) which had relatively high admission rates and women applied in greater numbers to D(3,4,5,6) which had relatively low admission rates.

- (b) (i)  $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately  $G^2 = 20.2043, df = 5$ , p-value = 0.001. At significant level  $\alpha = 0.05$ , we reject  $H_0$ . There is evidence of lack of fit.
  - (ii) extraordinary standardized residuals in department 1: (-4.0273, 4.0273, 4.0272, -4.0273).
     The standardized residuals show lack of fit for department 1.
- (c) (i)  $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately  $G^2 = 2.5564, df = 4$ , p-value = 0.63. At significant level  $\alpha = 0.05$ , we fail to reject  $H_0$ . There is no evidence of lack of fit.
  - (ii) All absolute values of standardized residuals are less than 2. So, there is good fit.

(d) 
$$logit(\pi(A=yes)) = \alpha + \beta_i^D \times D_i + \beta^G \times G, i = 2, 3, 4, 5; G = \begin{cases} 1, \text{ Male} \\ 0, \text{ Female} \end{cases}$$
.

For each department, the estimated conditional odds ratio (male:female)  $e^{0.0307} \approx 1.03$  between gender and admission.

- (ii) In log-linear model,  $\hat{\lambda}^{AG} = 0.0307 \Rightarrow e^{0.037} \approx 1.03$ . The result is the same as that of the logit model.
- (iii) 95% confidence interval for  $OR_{AG(D)}$ : (0.87, 1.22). It is plausible that admissions and gender are conditionally independent for these departments.

7.10
Let B: status of seat belt in use, E: whether ejected, and I: status of injury

#### Summary Measures for Loglinear Models

| modnum | model_name  | G2        | DF | loglikhd   |
|--------|-------------|-----------|----|------------|
| 1      | BEI         | 11444.38  | 4  | 6674995.13 |
| 2      | B*E B*I E*I | 2.85      | 1  | 6680715.89 |
| 3      | B*E B*I     | 1680.41   | 2  | 6679877.11 |
| 4      | B*E E*I     | 1144.64   | 2  | 6680145.00 |
| 5      | B*I E*I     | 7133.98   | 2  | 6677150.33 |
| 6      | B*E         | 775659.55 | 4  | 6292887.55 |
| 7      | B*I         | 739427.94 | 4  | 6311003.35 |
| 8      | E*I         | 120479.48 | 4  | 6620477.58 |
| 9      | B*E*I       | 0.00      | 0  | 6680717.32 |

(a) The model (BE, BI, EI) is the best choice for the loglinear model except for the saturated model.

$$\log(\mu_{ijk}) = \alpha + \lambda_i^B + \lambda_j^E + \lambda_k^I + \lambda_{ij}^{BE} + \lambda_{ik}^{BI} + \lambda_{jk}^{EI}$$

$$\frac{\hat{\lambda}_{1(\text{yes})}^B \quad \hat{\lambda}_{1(\text{no})}^E \quad \hat{\lambda}_{1(\text{no})}^I \quad \hat{\lambda}^{BE} \quad \hat{\lambda}^{BI} \quad \hat{\lambda}^{EI} \quad \hat{\alpha}}{\text{Estimates} \quad -3.1564 \quad -0.7278 \quad 2.2458 \quad 2.3996 \quad 1.7173 \quad 2.7978 \quad 6.1947}$$

- (i) the conditional odds ratio of BE is  $e^{2.3996} \approx 11.02$ .
- (ii) the conditional odds ratio of BI is  $e^{1.7173} \approx 5.57$ .
- (iii) the conditional odds ratio of EI is  $e^{2.7978} \approx 16.41$ .

(b) Define 
$$B = \begin{cases} 1, & \text{Belt in use} \\ 0, & \text{o.w.} \end{cases}$$
;  $E = \begin{cases} 1, & \text{Not ejected} \\ 0, & \text{o.w.} \end{cases}$ .

 $logit(\hat{\pi}(fatal)) = -2.2455 - 1.7173B - 2.7982E.$ 

- (i) Controlling for the ejected level, the effect on using belt is  $e^{-1.7173} \approx 0.18$ .
- (ii) Controlling for the level of using belt, the effect on ejected is  $e^{-2.7982} \approx 0.061$ .
- (c)  $\hat{D} = 4.7675 \times 10^{-5}$  is very small. It suggests that the sample data is consistent with the model.

 $\bf 7.14$  Let PS=S, RA=R, PV=P and BC=B

#### Summary Measures for Loglinear Models

| modnum   | model_name                          | G2      | DF |         |    |         |
|----------|-------------------------------------|---------|----|---------|----|---------|
| loglikhd | numpar aicc                         |         |    |         |    |         |
| 1        | PS RA BC PV                         | 277.085 | 18 | 2556.86 | 6  | 289.176 |
| 2        | PS*RA PS*BC PS*PV RA*BC RA*PV BC*PV | 6.963   | 9  | 2691.92 | 15 | 37.491  |
| 3        | PS*RA*BC PS*RA*PV PS*BC*PV RA*BC*PV | 0.451   | 2  | 2695.18 | 22 | 45.571  |

| 4  | PS*RA | PS*BC | PS*PV | RA*BC            | RA*PV | 32.950 | 11 | 2678.93 | 13 | 59.349 |
|----|-------|-------|-------|------------------|-------|--------|----|---------|----|--------|
| 5  | PS*RA | PS*BC | PS*PV | RA*BC            | BC*PV | 10.701 | 11 | 2690.05 | 13 | 37.100 |
| 6  | PS*RA | PS*BC | PS*PV | RA*PV            | BC*PV | 20.725 | 10 | 2685.04 | 14 | 49.186 |
| 7  | PS*RA | PS*BC | RA*BC | RA*PV            | BC*PV | 25.866 | 11 | 2682.47 | 13 | 52.265 |
| 8  | PS*RA | PS*PV | RA*BC | RA*PV            | BC*PV | 64.064 | 10 | 2663.37 | 14 | 92.525 |
| 9  | PS*BC | PS*PV | RA*BC | RA*PV            | BC*PV | 56.124 | 10 | 2667.34 | 14 | 84.585 |
| 10 | PS*RA | PS*BC | PS*PV | RA*BC            |       | 39.332 | 13 | 2675.74 | 11 | 61.621 |
| 11 | PS*RA | PS*BC | PS*PV | BC*PV            |       | 27.108 | 12 | 2681.85 | 12 | 51.449 |
| 12 | PS*RA | PS*BC | RA*BC | BC*PV            |       | 34.899 | 13 | 2677.95 | 11 | 57.188 |
| 13 | PS*RA | PS*PV | RA*BC | BC*PV            |       | 66.053 | 12 | 2662.38 | 12 | 90.394 |
| 14 | PS*BC | PS*PV | RA*BC | $\mathtt{BC*PV}$ |       | 65.156 | 12 | 2662.83 | 12 | 89.498 |

(a) We can choose the model: (PS\*RA, PS\*BC, PS\*PV, RA\*BC, BC\*PV). Additionally, we do the model checking:

 $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately  $G^2 = 10.701$ , df = 11, p-value = 0.47.

At significant level  $\alpha = 0.05$ , we fail to reject  $H_0$ . There is no evidence of lack of fit on the selected model.

| (b) | Association      | $\hat{\lambda}^{PS*RA}$ | $\hat{\lambda}^{PS*BC}$ | $\hat{\lambda}_{(1)}^{PS*PV}$ | $\hat{\lambda}_{(2)}^{PS*PV}$ | $\hat{\lambda}^{RA*BC}$ | $\hat{\lambda}^{BC*PV}_{(1)}$ | $\hat{\lambda}^{BC*PV}_{(2)}$ |
|-----|------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------------|-------------------------------|
|     | Estimates        | 1.1898                  | 1.13                    | 0.8844                        | 0.1008                        | 0.6418                  | 0.9729                        | 0.6342                        |
|     | Conditional $OR$ | 3.29                    | 3.1                     | 2.42                          | 1.11                          | 1.9                     | 2.65                          | 1.89                          |

(c) Logistic model without interactions:  $(RA+PV+BC) \iff$ 

Loglinear model: (PS\*RA, PS\*BC, PS\*PV, RA\*BC, BC\*PV, RA\*PV, RA\*PV\*BC).

 $H_0$ : Model fits adequately v.s.  $H_a$ : Model does not fit adequately

 $G^2 = 5.7870, df = 7, \text{ p-value} = 0.565.$ 

At significant level  $\alpha = 0.05$ , we fail to reject  $H_0$ . There is no evidence of lack of fit.

| Association      | $\lambda^{PS*RA}$ | $\lambda^{PS*BC}$ | $\lambda_{(1)}^{PS*PV}$ | $\lambda_{(2)}^{PS*PV}$ |
|------------------|-------------------|-------------------|-------------------------|-------------------------|
| Estimates        | 1.1489            | 1.1487            | 0.8054                  | 0.0774                  |
| Conditional $OR$ | 3.15              | 3.15              | 2.24                    | 1.08                    |

The results shown in table indicate that the effect in (b) is more significant than that in (c). Moreover, we also carry out a test:

 $H_0$ : Simpler model in (a) is better v.s.  $H_a$ : Model in (c) is better

 $G^2 = 4.914$ , df = 4, p-value = 0.30.

At significant level  $\alpha = 0.05$ , we fail to reject  $H_0$ . So, the model in (a) is more effective than the model in (c).

(d) The independence graph of the loglinear model selected in (a):



For each connected pair, the fitted marginal and conditional associations are not identical.

#### 7.16

(a)

$$\begin{aligned} \log \operatorname{it}(P(I=1)) &= \log \left\{ \frac{P(I=1|G=g,L=l,S=s)}{P(I=2|G=g,L=l,S=s)} \right\} \\ &= \log(\mu_{1gls}) - \log(\mu_{2gls}) \\ &= (\lambda_1^I - \lambda_2^I) + (\lambda_{g1}^{GI} - \lambda_{g2}^{GI}) + (\lambda_{1l}^{IL} - \lambda_{2l}^{IL}) + (\lambda_{1s}^{IS} - \lambda_{2s}^{IS}) \end{aligned}$$

(b)

$$\begin{aligned} & \operatorname{logit}(P(I=1|S=1)) - \operatorname{logit}(P(I=1|S=2)) \\ &= \operatorname{log}\left(\frac{\mu_{1gl1}\mu_{2gl2}}{\mu_{1gl2}\mu_{2gl1}}\right) \\ &= \operatorname{log}(\mu_{1gl1}) + \operatorname{log}(\mu_{2gl2}) - \operatorname{log}(\mu_{1gl2}) - \operatorname{log}(\mu_{2gl1}) \\ &= \lambda_{11}^{IS} + \lambda_{22}^{IS} - \lambda_{12}^{IS} - \lambda_{21}^{IS} \end{aligned}$$

#### 7.19

(a) The independence graph of the loglinear model selected in (a):



- (b) (i)  $\lambda^{XY}$  is not in the model, so X and Y are conditionally independent.
  - (ii) All terms in the saturated model that are not in the model (WXZ, WYZ) involve X and Y and so permit XY conditional association.

7.20

(a) Yes.



(b) No. Even if given Z, X and Y are conditional association via W.



7.22

(AM) involves with G and C.



(a) (i) (AM) still involve with G and C.



(ii) (AM) just involves with C.



(b) For given A, (RG) and (CM) are conditionally independent.



# (c) (AC, AM, CM) do not involve with (GR).



# 7.24 Independence model

#### Criteria For Assessing Goodness Of Fit

| Criterion          | DF | Value    | Value/DF |
|--------------------|----|----------|----------|
| Deviance           | 24 | 112.5356 | 4.6890   |
| Scaled Deviance    | 24 | 112.5356 | 4.6890   |
| Pearson Chi-Square | 24 | 106.1941 | 4.4248   |
| Scaled Pearson X2  | 24 | 106.1941 | 4.4248   |
|                    |    |          |          |

Log Likelihood 2204.8616

Full Log Likelihood -144.1743

AIC (smaller is better) 312.3487

AICC (smaller is better) 325.9139

BIC (smaller is better) 331.3509 Algorithm converged.

#### Analysis Of Maximum Likelihood Parameter Estimates

|           |    |          | Standard | Wald 95% ( | Confidence | Wald       |            |
|-----------|----|----------|----------|------------|------------|------------|------------|
| Parameter | DF | Estimate | Error    | Limit      | ts         | Chi-Square | Pr > ChiSq |
| Intercept | 1  | 2.2811   | 0.1508   | 1.9854     | 2.5767     | 228.69     | <.0001     |

| RA                                        | RAO | 1 | 0.7932  | 0.1596 | 0.4804  | 1.1061 | 24.69 | <.0001 |
|-------------------------------------------|-----|---|---------|--------|---------|--------|-------|--------|
| RA                                        | RA1 | 1 | 0.3390  | 0.1733 | -0.0007 | 0.6787 | 3.82  | 0.0505 |
| RA                                        | RA2 | 1 | 0.8548  | 0.1581 | 0.5449  | 1.1647 | 29.22 | <.0001 |
| RA                                        | RA3 | 1 | 0.5317  | 0.1669 | 0.2046  | 0.8588 | 10.15 | 0.0014 |
| RA                                        | RA4 | 1 | 0.2474  | 0.1768 | -0.0990 | 0.5938 | 1.96  | 0.1616 |
| RA                                        | RA5 | 1 | 0.5002  | 0.1679 | 0.1712  | 0.8293 | 8.88  | 0.0029 |
| RA                                        | RA6 | 1 | -0.1310 | 0.1938 | -0.5108 | 0.2487 | 0.46  | 0.4989 |
| RA                                        | RA7 | 1 | 1.3276  | 0.1490 | 1.0356  | 1.6196 | 79.41 | <.0001 |
| RA                                        | RA8 | 0 | 0.0000  | 0.0000 | 0.0000  | 0.0000 | •     |        |
| TBC                                       | SA  | 1 | 0.4565  | 0.1014 | 0.2579  | 0.6552 | 20.29 | <.0001 |
| TBC                                       | S   | 1 | 0.7118  | 0.0968 | 0.5221  | 0.9016 | 54.05 | <.0001 |
| TBC                                       | D   | 1 | 0.1886  | 0.1072 | -0.0216 | 0.3988 | 3.09  | 0.0786 |
| TBC                                       | SD  | 0 | 0.0000  | 0.0000 | 0.0000  | 0.0000 | •     |        |
| Scale                                     |     | 0 | 1.0000  | 0.0000 | 1.0000  | 1.0000 |       |        |
| NOTE: The scale parameter was held fixed. |     |   |         |        |         |        |       |        |
| Observation Statistics                    |     |   |         |        |         |        |       |        |

# Observation Statistics

|             |           |           |           | Std       | Std       |            |
|-------------|-----------|-----------|-----------|-----------|-----------|------------|
|             | Raw       | Pearson   | Deviance  | Deviance  | Pearson   | Likelihood |
| Observation | Residual  | Residual  | Residual  | Residual  | Residual  | Residual   |
| 1           | 14.846652 | 2.5404573 | 2.3834313 | 3.0034247 | 3.2012973 | 3.0781692  |
| 2           | 4.9136069 | 0.740028  | 0.726883  | 0.9699119 | 0.9874517 | 0.9776392  |
| 3           | -7.12527  | -1.394026 | -1.465915 | -1.771441 | -1.684569 | -1.744526  |
| 4           | -12.63499 | -2.716418 | -3.079352 | -3.64022  | -3.211181 | -3.523517  |
| 5           | 9.3153348 | 2.0004242 | 1.8780325 | 2.3013201 | 2.4512975 | 2.3524814  |
| 6           | -0.991361 | -0.187378 | -0.188501 | -0.244592 | -0.243135 | -0.244001  |
| 7           | -5.587473 | -1.371909 | -1.462324 | -1.718388 | -1.612141 | -1.68975   |
| 8           | -2.736501 | -0.738342 | -0.765149 | -0.879578 | -0.848762 | -0.872181  |
| 9           | 9.6781857 | 1.6058693 | 1.5414716 | 1.9522347 | 2.0337928 | 1.9833385  |
| 10          | 8.1144708 | 1.1850612 | 1.1531304 | 1.546424  | 1.5892453 | 1.5655799  |
| 11          | -2.784017 | -0.528171 | -0.537382 | -0.652654 | -0.641468 | -0.649073  |
| 12          | -15.00864 | -3.12893  | -3.621385 | -4.302545 | -3.717462 | -4.140501  |
| 13          | 7.7073434 | 1.5030986 | 1.4374041 | 1.7793472 | 1.8606698 | 1.8080147  |
| 14          | 3.0604752 | 0.5253346 | 0.5177219 | 0.6786284 | 0.688607  | 0.6828171  |
| 15          | -1.112311 | -0.248025 | -0.250365 | -0.297208 | -0.294429 | -0.296404  |
| 16          | -9.655508 | -2.365899 | -2.678691 | -3.110703 | -2.747465 | -3.021005  |
| 17          | 1.212743  | 0.2726315 | 0.2699154 | 0.3293914 | 0.3327059 | 0.3304839  |
| 18          | -3.542117 | -0.700865 | -0.718079 | -0.92792  | -0.905676 | -0.919061  |
| 19          | -1.136069 | -0.29201  | -0.295782 | -0.346147 | -0.341733 | -0.344962  |
| 20          | 3.4654427 | 0.9788231 | 0.938239  | 1.0741187 | 1.1205804 | 1.0853102  |
| 21          | 0.5205184 | 0.1031195 | 0.1027713 | 0.12699   | 0.1274202 | 0.1271386  |
| 22          | 3.1101512 | 0.5423137 | 0.5340867 | 0.698816  | 0.7095804 | 0.7033128  |
| 23          | -3.490281 | -0.79059  | -0.816144 | -0.967093 | -0.936812 | -0.958476  |
| 24          | -0.140389 | -0.034944 | -0.034995 | -0.040566 | -0.040507 | -0.040551  |
| 25          | -5.552916 | -1.508359 | -1.634402 | -1.968185 | -1.816401 | -1.922351  |
| 26          | -1.4946   | -0.357333 | -0.362611 | -0.462383 | -0.455653 | -0.459803  |
| 27          | 4.6328294 | 1.4388522 | 1.3477845 | 1.5564363 | 1.6616023 | 1.5833981  |
| 28          | 2.4146868 | 0.8241054 | 0.7894029 | 0.8917846 | 0.9309878 | 0.9004141  |
| 29          | -26.27754 | -3.442184 | -3.766736 | -5.034885 | -4.601065 | -4.848657  |
| 30          | -10.22678 | -1.179106 | -1.20746  | -1.709033 | -1.668901 | -1.689053  |
| 31          | 12.421166 | 1.8603644 | 1.7826853 | 2.2850876 | 2.3846584 | 2.324566   |
| 32          | 24.083153 | 3.9637025 | 3.6197802 | 4.5390055 | 4.9702651 | 4.7005752  |
| 33          | -11.45032 | -2.913057 | -3.477062 | -4.20399  | -3.522072 | -4.001131  |
| 34          | -2.943845 | -0.65919  | -0.676494 | -0.866097 | -0.843943 | -0.857527  |

| 35 | 4.1814253 | 1.2163031 | 1.1534605 | 1.337383  | 1.410246  | 1.3564187 |
|----|-----------|-----------|-----------|-----------|-----------|-----------|
| 36 | 10.212743 | 3.2644641 | 2.8566686 | 3.2401362 | 3.7026726 | 3.3486734 |

- (a) (i)  $\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y$ ,  $i = 1, \dots, 8$ ; j = 1, 2, 3. The parameter estimates are obtained from the above table.
  - (ii) From the standardized Pearson residuals, we observe that there are many absolute values greater than 2. So, we concern the adequacy.

Linear by linear association model(1)

Criteria For Assessing Goodness Of Fit

| Criterion               | DF | Value     | Value/DF |
|-------------------------|----|-----------|----------|
| Deviance                | 23 | 19.9014   | 0.8653   |
| Scaled Deviance         | 23 | 19.9014   | 0.8653   |
| Pearson Chi-Square      | 23 | 19.6035   | 0.8523   |
| Scaled Pearson X2       | 23 | 19.6035   | 0.8523   |
| Log Likelihood          |    | 2251.1787 |          |
| Full Log Likelihood     |    | -97.8572  |          |
| AIC (smaller is better) |    | 221.7145  |          |
| AICC(smaller is better) |    | 238.2599  |          |
| BIC (smaller is better) |    | 242.3002  |          |
| Algorithm converged.    |    |           |          |

Analysis Of Maximum Likelihood Parameter Estimates

|           |     |    |          | Standard | Wald 95% C | onfidence | Wald       |            |
|-----------|-----|----|----------|----------|------------|-----------|------------|------------|
| Parameter |     | DF | Estimate | Error    | Limits     |           | Chi-Square | Pr > ChiSq |
| Intercept |     | 1  | -1.4604  | 0.4566   | -2.3554    | -0.5655   | 10.23      | 0.0014     |
| RA        | RAO | 1  | 3.0099   | 0.2931   | 2.4354     | 3.5843    | 105.46     | <.0001     |
| RA        | RA1 | 1  | 2.3283   | 0.2841   | 1.7716     | 2.8851    | 67.18      | <.0001     |
| RA        | RA2 | 1  | 2.6043   | 0.2565   | 2.1015     | 3.1071    | 103.07     | <.0001     |
| RA        | RA3 | 1  | 2.0278   | 0.2427   | 1.5520     | 2.5035    | 69.78      | <.0001     |
| RA        | RA4 | 1  | 1.4756   | 0.2303   | 1.0242     | 1.9270    | 41.06      | <.0001     |
| RA        | RA5 | 1  | 1.4452   | 0.2039   | 1.0456     | 1.8449    | 50.23      | <.0001     |
| RA        | RA6 | 1  | 0.5150   | 0.2098   | 0.1037     | 0.9263    | 6.02       | 0.0141     |
| RA        | RA7 | 1  | 1.6586   | 0.1548   | 1.3553     | 1.9619    | 114.85     | <.0001     |
| RA        | RA8 | 0  | 0.0000   | 0.0000   | 0.0000     | 0.0000    | •          | •          |
| TBC       | SA  | 1  | 2.3280   | 0.2376   | 1.8624     | 2.7937    | 96.02      | <.0001     |
| TBC       | S   | 1  | 2.0573   | 0.1900   | 1.6850     | 2.4297    | 117.27     | <.0001     |
| TBC       | D   | 1  | 0.9090   | 0.1408   | 0.6329     | 1.1850    | 41.65      | <.0001     |
| TBC       | SD  | 0  | 0.0000   | 0.0000   | 0.0000     | 0.0000    | •          | •          |
| assoc     |     | 1  | 0.1215   | 0.0134   | 0.0953     | 0.1477    | 82.51      | <.0001     |
| Scale     |     | 0  | 1.0000   | 0.0000   | 1.0000     | 1.0000    |            |            |

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

| Source | DF | Chi-Square | Pr > ChiSq |
|--------|----|------------|------------|
| RA     | 8  | 260.54     | <.0001     |
| TBC    | 3  | 158.47     | <.0001     |
| assoc  | 1  | 92.63      | < .0001    |

- (b) (i)  $\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \beta u_i u_j$ ,  $i = 1, \dots, 8; j = 1, 2, 3$ . The parameter estimates are obtained from the above table.
  - (ii)  $\hat{\beta} = 0.12515$  with S.E = 0.0134.

The positive estimate suggests that subjects having less favorable attitudes about the availability of teen birth control tend to have more times about religious attendance.

The estimated local odds ratio is  $e^{0.1215} \approx 1.13$ . The nonlocal odds ratio is stronger.

(c) 
$$H_0: \beta = 0 \ v.s. \ H_a: \beta \neq 0$$
  
 $G^2[(X,Y)|L \times L] = 92.63, \ df = 1, \text{ p-value} < 0.0001.$ 

At significant level  $\alpha = 0.05$ , we reject  $H_0$ . There is extremely strong evidence of an association.

Linear by linear association model(2)

Criteria For Assessing Goodness Of Fit

| DF | Value          | Value/DF                                                                                              |
|----|----------------|-------------------------------------------------------------------------------------------------------|
| 23 | 22.0044        | 0.9567                                                                                                |
| 23 | 22.0044        | 0.9567                                                                                                |
| 23 | 21.2202        | 0.9226                                                                                                |
| 23 | 21.2202        | 0.9226                                                                                                |
|    | 2250.1272      |                                                                                                       |
|    | -98.9087       |                                                                                                       |
|    | 223.8175       |                                                                                                       |
|    | 240.3629       |                                                                                                       |
|    | 244.4032       |                                                                                                       |
|    |                |                                                                                                       |
|    | 23<br>23<br>23 | 23 22.0044<br>23 22.0044<br>23 21.2202<br>23 21.2202<br>2250.1272<br>-98.9087<br>223.8175<br>240.3629 |

Analysis Of Maximum Likelihood Parameter Estimates

|           |     |    |          | Standard | Wald 95% Co | nfidence | Wald       |            |
|-----------|-----|----|----------|----------|-------------|----------|------------|------------|
| Parameter |     | DF | Estimate | Error    | Lim         | nits     | Chi-Square | Pr > ChiSq |
| Intercept |     | 1  | -0.8850  | 0.3975   | -1.6642     | -0.1059  | 4.96       | 0.0260     |
| RA        | RAO | 1  | 2.5722   | 0.2550   | 2.0724      | 3.0719   | 101.76     | <.0001     |
| RA        | RA1 | 1  | 1.9435   | 0.2525   | 1.4485      | 2.4384   | 59.23      | <.0001     |
| RA        | RA2 | 1  | 2.2732   | 0.2295   | 1.8234      | 2.7231   | 98.09      | <.0001     |
| RA        | RA3 | 1  | 1.7511   | 0.2221   | 1.3158      | 2.1865   | 62.15      | <.0001     |
| RA        | RA4 | 1  | 1.2539   | 0.2159   | 0.8308      | 1.6770   | 33.74      | <.0001     |
| RA        | RA5 | 1  | 1.2787   | 0.1944   | 0.8977      | 1.6598   | 43.27      | <.0001     |
| RA        | RA6 | 1  | 0.4039   | 0.2056   | 0.0009      | 0.8068   | 3.86       | 0.0495     |
| RA        | RA7 | 1  | 1.6029   | 0.1533   | 1.3025      | 1.9034   | 109.37     | <.0001     |
| RA        | RA8 | 0  | 0.0000   | 0.0000   | 0.0000      | 0.0000   |            |            |
| TBC       | SA  | 1  | 2.1794   | 0.2238   | 1.7409      | 2.6180   | 94.86      | <.0001     |
| TBC       | S   | 1  | 2.0739   | 0.1906   | 1.7003      | 2.4475   | 118.38     | <.0001     |
| TBC       | D   | 1  | 0.6878   | 0.1248   | 0.4432      | 0.9325   | 30.37      | <.0001     |
| TBC       | SD  | 0  | 0.0000   | 0.0000   | 0.0000      | 0.0000   |            |            |
| assoc     |     | 1  | 0.0836   | 0.0093   | 0.0655      | 0.1018   | 81.65      | <.0001     |
| Scale     |     | 0  | 1.0000   | 0.0000   | 1.0000      | 1.0000   |            |            |

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

| Source | DF | Chi-Square | Pr > ChiSq |
|--------|----|------------|------------|
| RA     | 8  | 253.15     | <.0001     |
| TBC    | 3  | 154.96     | <.0001     |
| assoc  | 1  | 90.53      | <.0001     |

- (d) When comparing the result with that of (c), the results are not substantively different with these scores. However, the strength of association decrease a little bit.
- (e) Column (2, 3)  $\Rightarrow A = e^{2\hat{\beta}(u_c u_d)} \Rightarrow \log(A) = 2\hat{\beta}(u_c u_d)$ .
  - (i) Column (1, 2)  $\Rightarrow$  log  $\left(e^{\hat{\beta}(u_c-u_d)}\right) = \hat{\beta}(u_c-u_d)$ .
  - (ii) Column (3, 4)  $\Rightarrow$  log  $\left(e^{\hat{\beta}(u_c-u_d)}\right) = \hat{\beta}(u_c-u_d)$ .

So, the claim holds.

| (add.) |                | df | $G^2$    | p-value  | AIC      | AICc     |
|--------|----------------|----|----------|----------|----------|----------|
|        | Saturated      | _  | _        | _        | 247.8131 | _        |
|        | Independence   | 24 | 112.5356 | < 0.0001 | 312.3487 | 325.9139 |
|        | $L \times L$   | 23 | 19.9014  | 0.6479   | 221.7145 | 238.2599 |
|        | Row effects    | 16 | 10.9624  | 0.8118   | 226.7755 | 282.7755 |
|        | Column effects | 21 | 19.8323  | 0.5319   | 225.6454 | 249.6454 |
|        | Row & Column   | 14 | 10.9171  | 0.6925   | 230.7302 | 308.5763 |

Based on AIC or AICc , the  $L \times L$  model is better and it is adequate.

## **Additional Problem**

| I. |            | df | $G^2$   | p-value  | AIC     | AICc     |
|----|------------|----|---------|----------|---------|----------|
|    | Saturated  | _  | _       | _        | 53.2384 | _        |
|    | (GC,GS,CS) | 1  | 10.1379 | 0.0015   | 61.3763 | _        |
|    | (GC,GS)    | 2  | 10.1625 | 0.0062   | 59.4099 | 143.4009 |
|    | (GC,CS)    | 2  | 25.6199 | < 0.0001 | 74.8584 | 158.8584 |
|    | (GS,CS)    | 2  | 12.9093 | 0.0016   | 62.1477 | 146.1477 |
|    | GC         | 3  | 26.1499 | < 0.0001 | 73.3883 | 103.3883 |
|    | GS         | 3  | 13.4392 | 0.0038   | 60.6776 | 90.6776  |
|    | CS         | 3  | 28.8967 | < 0.0001 | 76.1351 | 106.1351 |
|    | (G,C,S)    | 4  | 29.4266 | < 0.0001 | 74.6650 | 87.9984  |

From the above results, the saturated model may be adopted.

- II. A. (WXZ, YZ)
  - B. (WX,WY,XZ,YZ)
  - C. (ACM,ARG,AMG)

#### Only for students having taken STAT 414,610 or 630

#### 7.25

- (a) When we take  $\beta = 0$ , the model reduces to  $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$ .
- (b) LR statistic comparing this model to (XZ, YZ).
- (c) Please refer to pp.230-pp.231.
- (d) The local odds ratio will become  $e^{\beta_k}$  for the kth level of Z. Therefore, there is a heterogeneous  $L \times L$  association model.

## 7.26

Within row i,

$$\log\left(\frac{\mu_{j+1}}{\mu_{j}}\right) = \log(\mu_{j+1}) - \log(\mu_{j})$$

$$= \lambda + \lambda_{i}^{X} + \lambda_{j+1}^{Y} + \beta x(j+1) - (\lambda + \lambda_{i}^{X} + \lambda_{j+1}^{Y} + \beta xj)$$

$$= (\lambda_{j+1}^{Y} - \lambda_{j}^{Y}) + \beta x$$

$$= \alpha_{j} + \beta x$$