7. Gross errors and local redundancies

- Direct statistical tests
- Data snooping
 - √ make a preliminary least squares adjustment
 - ✓ check the estimated errors one by one
- Local redundancy, errros of hypothesis tests, minimum detectable gross errors and reliablility

Classification of measurement errors

- Systematic errors
 - influences of instruments, environment or surveyors etc
 - eliminate the causes, reduce/eliminate the effect
 - apply theoretical correction or automatic detection
- Random errors
 - arithmatic mean approaches zero

- equal chance for positive and negative errors
- more small errors than larger errors
- magnitude of errors is limited
- use statistical methods: normal distribution
- Gross errors
 - mistakes which should be avoided. Automatic detection

Direct tests

Main ideas

- We start from the assumption that the measurement errors are random errors with given distributions. This is actually our null hypothesis (H_0) . The alternative hypothesis (H_1) is simply that the measurement errors are not from the assumed distribution;
- We then construct some quantities which can be computed from observation data and which have well-defined statistical distribution when the above assumption holds;
- Now we test the computed sample values of the above statistics against the theoretical critical values at certain risk level. If the test is passed, we then accept H_0 . Otherwise, we may suspect there might exist systematic or gross errors in the measurement results.

Direct tests

- Testing the maximum value of the errors
- Testing the sum of the errors
- Testing the number of positive errors versus number of negative errors
- Testing the order of the signs of errors
- Testing the sum of positive errors squared versus negative errors squared

Testing maximum absolute value of errors

Statistics :
$$arepsilon_m = \max_{1 \leq i \leq n} (|arepsilon_i|)$$

If:
$$\varepsilon_i \sim N(0, \sigma^2)$$

Then :
$$P\left\{\frac{\varepsilon_m}{\sigma} < c_{\frac{1}{2}\alpha}\right\} = 1 - \alpha$$

Conclusion: if $|\varepsilon_m| < \sigma$

if $|\varepsilon_m| < \sigma \ c_{\frac{1}{2}\alpha}$, we accept $\, \varepsilon_i \sim N(0, \, \sigma^2) \,$

Testing the sum of errors

Statistics: $s = \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_n$

If: $\varepsilon_i \sim N(0, \sigma^2)$ are uncorrelated with each other, $\longrightarrow s$ will have normal distribution $N(0, n\sigma^2)$

, 5 10.00

Then : $P\left\{\left|\frac{s}{\sqrt{n}\sigma}\right| < c_{\frac{1}{2}lpha}
ight\} = 1-lpha$

Conclusion : If $|s| < \sqrt{n} \cdot \sigma \cdot c_{\frac{1}{2}\alpha}$, we accept $\varepsilon_i \sim N(0, \sigma^2)$

Number of positive vs negative errors

s+ is number of positive errors ε_i ($1 \le i \le n$) and Statistics:

s- is number of negative errors :

s+ follows binomial distribution with expectation

and variance: $\mu = \frac{1}{2}n$, $\sigma^2 = \frac{n}{4}$

 $\frac{s_+ - \frac{1}{2}n}{\frac{1}{2}\sqrt{n}} \sim N(0, 1)$ If n is large :

 $P\left\{\left|\frac{s_+ - \frac{1}{2}n}{\frac{1}{2}\sqrt{n}}\right| < c_{\frac{1}{2}\alpha}\right\} = P\left\{\left|\frac{s_+ - s_-}{\sqrt{n}}\right| < c_{\frac{1}{2}\alpha}\right\} = 1 - \alpha$ Then:

 $P\left\{|s_+ - s_-| < \sqrt{n}c_{\frac{1}{2}\alpha}\right\} = 1 - \alpha$

Conclusion: if $|s_+ - s_-| < \sqrt{n}c_{\frac{1}{2}\alpha}$ we accept H_0

 $H_0: s_+ = s_- \quad \text{and} \quad H_1: s_+ \neq s_-$

Testing the randomness of signs

Statistics: s1 is number of error pairs with the same sign

s₀ is number of error pairs with different signs

 $s_1 = x_1 + x_2 + \dots + x_{n-1}$

 $x_i = \left\{ egin{array}{ll} 1 & ext{ if } arepsilon_i ext{ and } arepsilon_{i+1} ext{ have the same sign} \\ & & ext{ otherwise.} \end{array}
ight.$

s₁ follows binomial distribution and approaches Then:

standard normal distribution when n is large:

 $\frac{s_1 - \frac{1}{2}(n-1)}{\frac{1}{2}\sqrt{n-1}} = \frac{s_1 - s_0}{\sqrt{n-1}} \sim N(0,1)$

Conclusion: if $|s_1 - s_0| < \sqrt{n - 1}c_{\frac{1}{2}\alpha}$, we accept H_0

 $H_0: s_1 = s_0 \quad \text{ and } \quad H_1: s_1 \neq s_0$

Difference of positive/negative errors squared

$$\begin{aligned} \textit{Statistics} : \ s^2 &= \lambda_1 \varepsilon_1^2 + \lambda_2 \varepsilon_2^2 + \dots + \lambda_n \varepsilon_n^2 \qquad \lambda_i = \begin{cases} \ +1 & \text{if } \varepsilon_i > 0 \\ \ -1 & \text{if } \varepsilon_i < 0 \end{cases} \\ P(\lambda_i = +1) &= P(\lambda_i = -1) = \frac{1}{2} \qquad (i = 1, 2, \dots, n) \\ E(\lambda_i) &= (+1) \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0 \\ E(\lambda_i^2) &= (+1)^2 \cdot \frac{1}{2} + (-1)^2 \cdot \frac{1}{2} = 1 \end{cases} \\ E(\lambda_i \varepsilon_i^2) &= E(\lambda_i) \cdot E(\varepsilon_i^2) = 0 \\ E\left[(\lambda_i \varepsilon_i^2)^2\right] &= E(\lambda_i^2) \cdot E(\varepsilon_i^4) = E(\varepsilon_i^4) = 3\sigma^4 \\ E(s^2) &= \sum_{i=1}^n \left[E(\lambda_i \varepsilon_i^2) \right] = 0 \\ E\left[(s^2)^2\right] &= \sum_{i=1}^n \left[E(\lambda_i^2 \varepsilon_i^4) \right] = \sum_{i=1}^n \left[E(\lambda_i^2) \cdot E(\varepsilon_i^4) \right] = 3n\sigma^4 \end{aligned}$$

Difference of positive/negative errors squared

When n is large, s^2 approaches normal distribution

$$\longrightarrow P\left\{ \left| \frac{s^2}{\sqrt{3n}\sigma^2} \right| < c_{\frac{1}{2}\alpha} \right\} = 1 - \alpha$$

If:
$$\left|s^2\right| < \sqrt{3n}\sigma^2 \ c_{\frac{1}{2}\alpha}$$

Then: s^2 is statistically equal to zero

Example of direct tests

Table 1.1: List of Triangular Misclosures

i	w_i (")	i	w_i (")	i	w_i (")
1	+1.5	11	-2.0	21	-1.1
2	+1.0	12	-0.7	22	-0.4
3	+0.8	13	-0.8	23	-1.0
4	-1.1	14	-1.2	24	-0.5
5	+0.6	15	+0.8	25	+0.2
6	+1.1	16	-0.3	26	+0.3
7	+0.2	17	+0.6	27	+1.8
8	-0.3	18	+0.8	28	+0.6
9	-0.5	19	-0.3	29	-1.1
10	+0.6	20	-0.9	30	-1.3

The standard error of w_i is assumed to be $\sigma=\pm 0.93''$. We want to test the randomness of this group of triangular misclosures using the five different tests described above. The risk level is chosen to be: $\alpha=4.55\%$, for which the critical value of the standard normal distribution is $c_{\frac{1}{2}\alpha}=2$.

5 statistical tests

- (i) Testing the maximum absolute value of errors $|w_m| = |w_{11}| = |-2.0| = 2.0'' > \sigma \cdot c_{\frac{1}{2}\alpha} = 1.86''$ \implies test is not passed!
- (ii) Testing the sum of errors $|s| = |2.6| = 2.6 < \sqrt{n}\sigma \cdot c_{\frac{1}{2}\alpha} \approx 10.2$ \Longrightarrow test is passed!
- (iii) Testing the number of positive versus negative errors $|s_+ s_-| = |14 16| = 2 < \sqrt{n} \cdot c_{\frac{1}{2}\alpha} \approx 11$ \implies test is passed!
- (iv) Testing the order of positive versus negative errors $|s_1 s_0|| = |18 11| = 7 < \sqrt{n-1} \cdot c_{\frac{1}{2}\alpha} \approx 11$ \implies test is passed!
- (v) Testing the sum of positive versus negative errors squared $|s^2| = |3.40| = 3.4 < \sqrt{3n}\sigma^2 \cdot c_{\frac{1}{2}\alpha} \approx 16.41$ \Longrightarrow test is passed!

Data Snooping

- Based on the results of a least squares adjustment.
- Data snooping aims to check if one of the measurements contains a very big gross error
- In order to find that big gross error, data snooping makes statistical test of each measurement, one by one.

LS adjustment under Ho

$$H_0: \begin{cases} L - \varepsilon = A X \\ n \cdot 1 - n \cdot 1 = n \cdot m \cdot M \cdot 1 \end{cases}$$

$$E \{ \varepsilon \} = 0$$

$$E \{ \varepsilon \varepsilon^{\top} \} = \sigma_0^2 Q = \sigma_0^2 P^{-1}$$

$$\widehat{X} = (A^{\top} P A)^{-1} A^{\top} P L$$

$$\widehat{\varepsilon} = [I - A(A^{\top} P A)^{-1} A^{\top} P] L$$

$$C_{\widehat{\varepsilon}\widehat{\varepsilon}} = \sigma_0^2 \cdot Q_{\widehat{\varepsilon}\widehat{\varepsilon}}$$

$$Q_{\widehat{\varepsilon}\widehat{\varepsilon}} = P^{-1} - A(A^{\top} P A)^{-1} A^{\top} = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{bmatrix}$$

$$\Omega = \widehat{\varepsilon}^{\top} P \ \widehat{\varepsilon} = L^{\top} \ [P - P A(A^{\top} P A)^{-1} A^{\top} P] L$$

LS adjutsment under H_1

$$H_1: \left\{ \begin{array}{l} L - \varepsilon = A \underset{n \cdot 1}{X} + e_i \cdot \Delta_i \\ E\left\{\varepsilon\right\} = 0 \\ E\left\{\varepsilon\varepsilon^\top\right\} = \sigma_0^2 Q = \sigma_0^2 P^{-1} \end{array} \right. \quad \left. \begin{array}{l} e_i = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ 1 \\ 0 \\ \cdots \\ 0 \end{array} \right.$$

$$\widehat{X}_{\Delta} = \widehat{X} - \left(A^{ op}PA
ight)^{-1}A^{ op}Pe_i\cdot\widehat{\Delta}_i$$

$$\widehat{\Delta}_i = \left(e_i^\top P Q_{\widehat{\boldsymbol{\varepsilon}}\widehat{\boldsymbol{\varepsilon}}} P e_i\right)^{-1} e_i^\top P \widehat{\boldsymbol{\varepsilon}}$$

$$\Omega_{\Delta} = \widehat{\varepsilon}_{\Delta}^{\top} P \widehat{\varepsilon}_{\Delta} = \widehat{\varepsilon}^{\top} P \widehat{\varepsilon} - \Delta \Omega = \Omega - \Delta \Omega$$

$$\Delta\Omega = \widehat{\varepsilon}^\top P e_i \left(e_i^\top P Q_{\widehat{\varepsilon}\widehat{\varepsilon}} P e_i \right)^{-1} e_i^\top P \widehat{\varepsilon}$$

For a diagonal weight matrix

$$P_{n\cdot n} = \left[egin{array}{ccc} p_1 & & & & \ & p_2 & & & \ & & & \ddots & \ & & & p_n \end{array}
ight]$$

$$\Delta\Omega = rac{\widehat{arepsilon}_i^2}{q_{ii}} \ \widehat{\Delta}_i = rac{\widehat{arepsilon}_i}{p_i \cdot q_{ii}}$$

$$\frac{\Omega}{\sigma_0^2} \sim \chi^2(n-m) \qquad \frac{\Delta\Omega}{\sigma_0^2} \sim \chi^2(1) \quad \text{or equivalently:} \quad \frac{\sqrt{\Delta\Omega}}{\sigma_0} \sim N(0,1)$$

$$u_{i} = rac{\sqrt{\Delta\Omega}}{\sigma_{0}} = rac{\widehat{arepsilon}_{i}}{\sigma_{0}\sqrt{q_{ii}}} = rac{\widehat{arepsilon}_{i}}{\sigma_{\widehat{arepsilon}_{i}}} \sim N\left(0,1
ight)$$

Procedure of data snooping

- Make a least squares adjustment
- Overall test of $\Omega: X^2$ -test

If $\Omega < \sigma_0^2 \cdot \chi_{n-m, \alpha}$, we accept H_0 (i.e. there is no gross error) and reject H_0 otherwise. $\chi_{n-m, \alpha}$ is the critical value of $\chi^2(n-m)$ at risk level α .

• Individual test: u-test (snooping)

$$u_{i}=rac{\sqrt{\Delta\Omega}}{\sigma_{0}}=rac{\widehat{arepsilon}_{i}}{\sigma_{0}\sqrt{q_{ii}}}=rac{\widehat{arepsilon}_{i}}{\sigma_{\widehat{oldsymbol{arepsilon}_{i}}}}\sim N\left(0,1
ight)$$

If $|u_i| < c_{\frac{1}{2}\alpha}$, we accept H_0 and otherwise reject H_0 . Here $c_{\frac{1}{2}\alpha}$ denotes the critical value of N(0,1) at risk level α .

• If estimated variance factor is used, individual test by t-test:

$$\widehat{\sigma}_0^2 = \frac{\Omega}{n-m} = \frac{\widehat{\varepsilon}^\top P \widehat{\varepsilon}}{n-m}$$

$$\widehat{\sigma}_0^2 = rac{\Omega}{n-m} = rac{\widehat{arepsilon}^{ op} P \widehat{arepsilon}}{n-m} \qquad \qquad w_i = rac{\widehat{arepsilon}_i}{\widehat{\sigma}_0 \sqrt{q_{ii}}} \sim t \left(n-m-1
ight)$$

Data snooping: Example 2.4, 3.3

Least squares adjustment:

$$\widehat{\varepsilon} = \begin{bmatrix} +6.45'' \\ -3.40'' \\ +2.95'' \\ +4.82 \frac{mm}{-3.98} \end{bmatrix}$$

Data snooping: Example 2.4, 3.3

$$Q_{\widehat{L}\widehat{L}} = \left[\begin{array}{cccccc} +1.8664 & -1.1792 & -0.6872 & -0.1377 & +0.7148 \\ -1.1792 & +1.8664 & -0.6872 & +0.7148 & -0.1377 \\ -0.6872 & -0.6872 & +1.3744 & -0.5771 & -0.5771 \\ -0.1377 & +0.7148 & -0.5771 & +0.3616 & +0.1230 \\ +0.7148 & -0.1377 & -0.5771 & +0.1230 & +0.3616 \end{array} \right]$$

$$Q_{\widehat{\epsilon}\widehat{\epsilon}} = \begin{bmatrix} +2.1336 & +1.1792 & +0.6872 & +0.1377 & -0.7148 \\ +1.1792 & +2.1336 & +0.6872 & -0.7148 & +0.1377 \\ +0.6872 & +0.6872 & +2.6256 & +0.5771 & +0.5771 \\ +0.1377 & -0.7148 & +0.5771 & +0.6384 & -0.1230 \\ -0.7148 & +0.1377 & +0.5771 & -0.1230 & +0.6384 \end{bmatrix}$$

Data snooping: Example 2.4, 3.3

Risk level: 5%

$$c_{\frac{1}{2}\alpha} = 1.96, \quad t_{\frac{1}{2}\alpha}(n-m-1) = t_{\frac{1}{2}\alpha}(2) = 4.3$$

i	$\widehat{arepsilon}_i$	q_{ii}	$\sqrt{q_{ii}}$	$u_i = rac{\widehat{arepsilon}_i}{\sigma_0 imes \sqrt{q_{ii}}} \left(\sigma_0 = 3^{\ mm} ight)$	$w_i = rac{\widehat{arepsilon}_i}{\widehat{\sigma}_0 imes \sqrt{q_{ii}}} \ \ (\widehat{\sigma}_0 = 4.26 \ ^{mm})$
1	+6.45''	2.1336	1.46	+1.47	+1.04
2	-3.40''	2.1336	1.46	-0.78	-0.55
3	+2.95''	2.6256	1.62	+0.61	+0.43
4	$+4.82^{mm}$	0.6384	0.80	+2.01	+1.41
5	-3.98^{mm}	0.6384	0.80	-1.66	-1.17
				$\alpha = 5\%, c_{\frac{1}{2}\alpha} = 1.96$	$\alpha = 5\%, \ t_{\frac{1}{2}\alpha}(2) = 4.3$

Local redundancies

$$\underset{n \cdot n}{R} = Q_{\widehat{\varepsilon}\widehat{\varepsilon}} \cdot P = \underset{n \cdot n}{I} - A (A^{\top}PA)^{-1} A^{\top}P = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ r_{n1} & r_{n2} & \cdots & r_{nn} \end{bmatrix}$$

$$\begin{split} tr(R) &= tr \begin{bmatrix} I \\ n \cdot n \end{bmatrix} - tr \left[A \left(A^{\top} P A \right)^{-1} A^{\top} P \right] = \\ &= n - tr \left[\left(A^{\top} P A \right)^{-1} A^{\top} P A \right] = n - m = r \end{split}$$

$$r_i=(R)_{ii}=r_{ii} \qquad (i=1,2,\cdot\cdot\cdot,n)$$

$$r_1 + r_2 + \dots + r_n = r$$

$$0 < r_i < 1$$

If weight matrix P is diagonal!

 $r_i = q_{ii} \cdot p_i$

Errors of hypothesis tests

 $H_0: u_i \sim N(0,1); \qquad H_1: u_i \sim N(\delta_0,1)$

Type I error:

H_o is true but rejected incorrectly when $|u_i|$ is larger than $c_{rac{1}{2}lpha}$

Type II error:

 H_0 is false but accepted incorrectly when $|u_i|$ is smaller than $\frac{c_1}{2}\alpha$ Probability of type II error is β . 1 - β is called the power of the test.

Smallest detectable shift

 $H_0: u_i \sim N(0,1); H_1: u_i \sim N(\delta_0,1)$

$$\delta_0\left(\alpha,\beta\right) = c_{\frac{1}{2}\alpha} + c_{1-\beta}$$

 $\delta_0\left(\alpha,\beta\right)$ is the smallest shift in a standard normal distriution u_i that can be detected by a statistical test for the chosen α and β .

Normally one chooses $\alpha = 5\%$ and $\beta = 20\%$, which gives $\delta_0 \approx 2.80$.

Internal reliability

$$u_{i} = \frac{\sqrt{\Delta\Omega}}{\sigma_{0}} = \frac{\widehat{\varepsilon}_{i}}{\sigma_{0}\sqrt{q_{ii}}} = \frac{\widehat{\varepsilon}_{i}}{\sigma_{\widehat{\varepsilon}_{i}}} \sim N\left(0,1\right)$$

$$\widehat{\Delta}_{i} = \frac{\widehat{\varepsilon}_{i}}{p_{i} \cdot q_{ii}} \qquad r_{i} = q_{ii} \cdot p_{i} \qquad \sigma_{i} = \frac{\sigma_{0}}{\sqrt{p_{i}}}$$

$$\widehat{\Delta}_{i} = \frac{\sigma_{0} \cdot \sqrt{q_{ii}}}{p_{i} \cdot q_{ii}} \cdot u_{i} = \frac{\sigma_{0}/\sqrt{p_{i}}}{\sqrt{p_{i} \cdot q_{ii}}} = \frac{\sigma_{i}}{\sqrt{r_{i}}} \cdot u_{i}$$

$$\longrightarrow$$
 $\theta_i = |\Delta_i|_{\min} = \frac{\sigma_i}{\sqrt{r_i}} \cdot \delta_0(\alpha, \beta)$

- → Smallest gross error in measurement No. i that is possible to detect through statistical test
- → Internal reliability of measurement No. i (Baarda, 1967)

External reliability

$$\Delta_i^{(X)} = \widehat{X}_\Delta - \widehat{X} = -\left(A^\top P A\right)^{-1} A^\top P e_i \cdot \widehat{\Delta}_i$$

$$\begin{split} \Delta_i^{(\widehat{L})} &= A \left(\widehat{X}_{\Delta} - \widehat{X} \right) = -A \left(A^\top P A \right)^{-1} A^\top P e_i \widehat{\Delta}_i \\ &= (I - R) \cdot e_i \widehat{\Delta}_i \end{split}$$

$$\Delta_i^{(\widehat{\ell}_i)} = (1-r_i)\cdot \widehat{\Delta}_i$$

$$arphi_i = \left| \Delta_i^{(\widehat{\ell_i})}
ight|_{\min} = (1-r_i) \cdot rac{\sigma_i}{\sqrt{r_i}} \delta_0(lpha,eta) = (1-r_i) \cdot heta_i$$

External reliability of measurement No. i (Baarda, 1967)

Example 6.3 (3.2)

$$\ell_1 = +1.002 \; metres, \qquad s_1 \approx 1 \; km$$

 $\ell_2 = +2.004 \; metres, \qquad s_2 \approx 1 \; km$
 $\ell_3 = -2.001 \; metres, \qquad s_3 \approx 2 \; km$
 $\ell_4 = -1.002 \; metres, \qquad s_4 \approx 2 \; km$

 $\ell_4 = -1.002 \ metres,$ $\ell_5 = +3.012 \ metres,$

Assuming a theoretical variance factor $\sigma_0^2=22.5~mm^2$

$$\begin{cases} \sigma_1 = \sigma_0/\sqrt{p_1} = 3.35 \text{ mm} \\ \sigma_2 = \sigma_0/\sqrt{p_2} = 3.35 \text{ mm} \\ \sigma_3 = \sigma_0/\sqrt{p_3} = 4.74 \text{ mm} \\ \sigma_4 = \sigma_0/\sqrt{p_4} = 4.74 \text{ mm} \\ \sigma_5 = \sigma_0/\sqrt{p_5} = 3.35 \text{ mm} \end{cases}$$

Compute local redundancies

$$Q_{\widehat{ee}} = \frac{1}{28} \left[\begin{array}{cccccc} 5 & 5 & 2 & 2 & -4 \\ 5 & 5 & 2 & 2 & -4 \\ 2 & 2 & 12 & 12 & 4 \\ 2 & 2 & 12 & 12 & 4 \\ -4 & -4 & 4 & 4 & 6 \end{array} \right]$$

$$\left\{ \begin{array}{l} r_1 = \frac{5}{14} \\ r_2 = \frac{5}{14} \\ r_3 = \frac{6}{14} \\ r_4 = \frac{6}{14} \\ r_5 = \frac{6}{14} \end{array} \right. \qquad \left(check : \sum_{i=1}^5 r_i = 2 = n - m \right)$$

Compute internal/external reliabilities

Normally one chooses $\alpha = 5\%$ and $\beta = 20\%$, which gives $\delta_0 \approx 2.80$.

$$\left\{ \begin{array}{l} \theta_1 = 2.8 \times \sigma_1/\sqrt{r_1} = 4.7\sigma_1 = 15.7 \ ^{mm} \\ \theta_2 = 2.8 \times \sigma_2/\sqrt{r_2} = 4.7\sigma_2 = 15.7 \ ^{mm} \\ \theta_3 = 2.8 \times \sigma_3/\sqrt{r_3} = 4.3\sigma_3 = 20.3 \ ^{mm} \\ \theta_4 = 2.8 \times \sigma_4/\sqrt{r_4} = 4.3\sigma_4 = 20.3 \ ^{mm} \\ \theta_5 = 2.8 \times \sigma_5/\sqrt{r_5} = 4.3\sigma_5 = 14.3 \ ^{mm} \end{array} \right.$$

$$\left\{ \begin{array}{l} \varphi_1 = (1-r_1)\theta_1 = 10.1 \ ^{mm} \\ \varphi_2 = (1-r_2)\theta_2 = 10.1 \ ^{mm} \\ \varphi_3 = (1-r_3)\theta_3 = 11.6 \ ^{mm} \\ \varphi_4 = (1-r_4)\theta_4 = 11.6 \ ^{mm} \\ \varphi_5 = (1-r_5)\theta_5 = 8.2 \ ^{mm} \end{array} \right.$$