A. 演化樹分析 (Agreement)

問題描述

彼得是一位生物學家。有次他在兩筆資料中分析同一群現存物種集合 $\Sigma = \{1, 2, ..., n\}$ 間的演化關係、卻得到了不太一樣的演化樹,想知道這兩棵演化樹的類似程度。

一棵演化樹 T 是一棵無向無根樹 (undirected, unrooted tree),其中葉節點為現存物種 $1,2,\ldots,n$,其他節點則為已滅絕物種。設 $v \in V(T)$,我們用 $\deg(v)$ 來表示與節點 v 相鄰的節點個數。在一棵演化樹中,每個代表已滅絕物種的節點 v 均有 $\deg(v) \geq 3$ 。對於一個現存物種的子集合 $X \subseteq \Sigma$,我們用 $T\{X\}$ 來代表 X 中的現存物種在 T 上的演化關係所形成的「演化子樹」,建構方式如下:

- 1. 對所有 X 中的任兩點,標記其在 T 上的簡單路徑,並將所有不在 X 且未被標記的點刪除以得到 T'。
- 2. 從 T' 中不斷刪除滿足 $\deg(v)=2$ 的非葉節點 v 以得到 $T\{X\}$:將與 v 連結的兩條邊合併成 一條,並移除 v。

以下圖的演化樹 T 為例。T 裡的現存物種集合為 $\Sigma = \{1, 2, 3, 4, 5\}$,若取 $X = \{3, 4, 5\}$,則經步驟 1 後會得到 T',再經過步驟 2 後會得到 $T\{X\}$ 。注意當 $X = \emptyset$ 時,根據定義我們有 $T\{X\} = \emptyset$ 。

從一棵演化樹 T 中移除大小為 $k \geq 0$ 的任意邊集合 K, 可以得到 k+1 棵子樹 $T^{(1)}, T^{(2)}, \ldots, T^{(k+1)}$, 其中每棵子樹 $T^{(i)}$ 上的物種在 T 中的演化關係都會構成一棵**演化子樹**,我們稱它們為從 T 中移除 K 所導出的**演化森林**。注意我們有

- 1. T 自身為移除 ∅ 後導出的演化森林。
- 2. 若一棵子樹 $T^{(i)}$ 上沒有任何現存物種,對應的演化子樹為空。

以上圖中的 T 為例,移除 $K = \{(1,7), (7,8), (2,8), (5,8)\}$ 四條邊可以得到五棵子樹 $T^{(1)}, T^{(2)}, \ldots, T^{(5)}$,接著導出演化森林:

比較兩座現存物種相同的演化森林時,我們只關注現存物種間的關係,因此已滅絕物種(即非葉節點)的編號並不重要。設 F_1 與 F_2 為兩座現存物種相同的演化森林,若移除它們的非葉節點編號後變得完全相同,我們就稱 F_1 與 F_2 類似。更精確地說,我們稱 F_1 與 F_2 類似,若且唯若存在某個一對一函數 $\Phi:V(F_1)\to V(F_2)$,滿足

- 1. 對任意 $u \in \Sigma = \{1, 2, ..., n\}$, 我們有 $\Phi(u) = u$ 。
- 2. 對任意 $u, v \in V(F_1)$, 我們有

$$(u,v) \in E(F_1) \iff (\Phi(u),\Phi(v)) \in E(F_2).$$

以下圖為例,如果將 T_1,T_2,T_3 的非葉節點編號都移除,會發現 T_1 與 T_2 不類似,而 T_2 與 T_3 類似。

設 T_1 與 T_2 為現存物種相同的兩棵演化樹。若存在從 T_1 與 T_2 中各刪除 k 條邊的方法,使得兩者導出的演化森林類似,則稱 T_1 與 T_2 的差異不大於 k,而滿足此條件的最小整數 k^* 稱為 T_1 與 T_2 的**差異數**。如上圖中 T_2 與 T_3 的差異數為 T_1 與 T_2 的差異數為 T_2 的

2023 年全國資訊學科能力競賽

設從 T_1 與 T_2 中刪除的邊集合分別為 K_1 與 K_2 ,兩種刪除方法被視為不同若且唯若 K_1 不同或 K_2 不同。現給定兩棵物種集合均為 Σ 的演化樹 T_1, T_2 以及一個整數上限 k,彼得想知道它們的差異數 k^* 是否不大於 k;如果 $1 \le k^* \le k$,彼得也想知道有多少種從 T_1 和 T_2 中各刪除 k^* 條邊的方法,可以使它們導出類似的演化森林。

輸入格式

- n 代表現存物種集合 $\Sigma = \{1, 2, ..., n\}$ 的大小。
- m_1 代表在 T_1 中已滅絕物種(以 $n+1, n+2, ..., n+m_1$ 表示)的數量。
- m_2 代表在 T_2 中已滅絕物種(以 $n+1, n+2, ..., n+m_2$ 表示)的數量。
- k 代表彼得設定的上限。
- u_i, v_i 代表 T_1 有一條邊從 u_i 連接到 v_i 。
- u_i', v_i' 代表 T_2 有一條邊從 u_i' 連接到 v_i' 。

輸出格式

如果 $k^* = 0$,請輸出

0

如果 $1 \le k^* \le k$,請輸出

```
egin{array}{c} k^* \ S \end{array}
```

其中 S 為一整數,代表從 T_1 與 T_2 中各刪除 k^* 條邊後導出的演化森林類似的刪除方法數。如果 $k^* > k$,請輸出

-1

2023 年全國資訊學科能力競賽

測資限制

- $n \geq 2_{\circ}$
- $0 \le m_1 \le 300 n_{\circ}$
- $0 \le m_2 \le 300 n_0$
- $k \in \{0, 1, 2\}_{\circ}$
- $1 \le u_i \le n + m_{1^{\circ}}$
- $1 \le v_i \le n + m_{1\circ}$
- $1 \le u_i' \le n + m_{2\circ}$
- $1 \le v_i' \le n + m_{2\circ}$
- 給定的 T_1 與 T_2 保證連通,且
 - 1. 若 $u \in \{1, 2, ..., n\}$, 則在 T_1 與 T_2 中 $\deg(u) = 1$ 。
 - 2. 若 $u \in \{n+1, n+2, \dots, n+m_1\}$, 則在 $T_1 + \deg(u) \ge 3$ 。
 - 3. 若 $u \in \{n+1, n+2, \dots, n+m_2\}$, 則在 $T_2 \oplus \deg(u) \ge 3$ 。
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
5 3 3 2 1 7 2 8 3 6 4 6 5 8 6 7 7 8 1 6 2 8 3 6 4 7 5 8 6 7 7 8	1 4
4 2 2 0 1 5 2 5 3 6 4 6 5 6 1 6 2 6 3 5 4 5 5 6	0
6 3 3 2 1 7 2 7 3 7 4 8 5 9 6 9 7 8 8 9 1 7 2 7 3 9 4 9 5 8 6 8 7 8 8 9	2 9

6 1 4 2	-1
1 7	
2 7	
3 7	
4 7	
5 7	
6 7	
1 7	
2 7	
3 8 4 8	
4 8	
5 9	
6 9	
7 10	
8 10	
9 10	
	I

評分說明

本題共有四組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	21	k = 0
2	13	$k \in \{0, 1\}$
3	23	$n + m_1 \le 30 \perp n + m_2 \le 30$
4	43	無額外限制

B. 人工智慧模擬 (AI Simulation)

問題描述

在 2023 年的現在人工智慧非常地流行。為了獲得人工智慧學習的資料,我們希望產生一個人工智慧機器人來模擬人類。首先,我們邀請一些受訪者進行調查。在調查中,我們找來了 n 位受訪者,並得到了每位受訪者的 k 項特徵。第 i 位受訪者的特徵可以用長度為 k 的 01 字串 $b_{i,1}b_{i,2}\dots b_{i,k}$ 表示,稱之為第 i 位受訪者的特徵序列。如果第 i 位受訪者符合第 j 特徵,則 $b_{i,j}=1$,反之為 0。

我們做出來的人工智慧亦可以用特徵序列描述。為了讓作出來的人工智慧盡可能地接近人類,人工智慧的特徵序列 $q_1q_2 \dots q_k$ 需要滿足以下規定:任意取人工智慧相異的 t 項特徵,都能找出一位在這 t 項特徵中完全相同的受訪者。更嚴謹地說,對任意下標序列 j_1, j_2, \dots, j_t ,其中 $1 \le j_1 < j_2 < \dots < j_t \le k$,都能找到某位受訪者 i,滿足對任意 $l \in \{1, 2, \dots, t\}$,均有 $b_{i,j_l} = q_{j_l}$ 。並且由於倫理要求,人工智慧的特徵序列不可以與任何一個受訪者的特徵序列完全相同。

現在經費十分有限,你只能製作出最多擁有 3 項特徵的人工智慧,也就是特徵序列 $q_1q_2 \dots q_k$ 中最多只能有 3 個位置為 1。請找出任一個合法且可以製作的人工智慧特徵序列;如果無法滿足條件,請輸出 none。

輸入格式

```
 \begin{array}{c} n \ k \ t \\ b_{1,1}b_{1,2}\dots b_{1,k} \\ b_{2,1}b_{2,2}\dots b_{2,k} \\ \vdots \\ b_{n,1}b_{n,2}\dots b_{n,k} \end{array}
```

- n 為受訪者數量。
- *k* 為特徵序列長度。
- t 為需要相同的特徵數。
- b_i , 為第 i 位受訪者是否符合第 j 項特徵。
- 以上變數皆為整數。

2023 年全國資訊學科能力競賽

輸出格式

如果存在合法且可以製作的人工智慧特徵序列 $q_1q_2 \dots q_k$, 請輸出

$$q_1q_2\dots q_k$$

其中 q_j 為此人工智慧是否符合第 j 項特徵。如果有多種合法的 $q_1q_2\dots q_k$,輸出任一個即可。否則請輸出

none

測資限制

- $1 \le n \le 100_{\circ}$
- $2 \le t < k \le 10_{\circ}$
- $b_{i,j} \in \{0,1\}_{\circ}$
- *n*, *t* 與 *k* 皆為整數。

範例測試

Sample Input	Sample Output
8 6 2 010010 000000 000010 110111 011010 101110 100000 000001	000011
8 3 2 000 001 010 100 011 101 110 111	none

2023 年全國資訊學科能力競賽

評分說明

本題共有三組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	3	輸入滿足 $n \leq 5$,且每位受訪者的特徵序列均有超過 3 個位置為 1
2	5	輸入滿足 $n \leq 5$
3	92	無額外限制

(此頁為空白頁)

C. 與自動輔助駕駛暢遊世界 (Autocopilot)

問題描述

知名汽車公司 EWM 在自家的汽車上加裝了最新的自動輔助駕駛 (auto co-pilot) 技術,讓汽車在駕駛人沒有給出明確指令的情況下,也能依據 AI 做出的決策前進。身為車主的小明,自然開始計畫使用這款具備自動輔助駕駛技術的汽車以暢遊世界。

這個世界可以看作一張有向圖 (directed graph) G,其中 G 上的點 s 為小明目前的位置,點 t 為小明欲到達的終點。為了兼顧行車安全,EWM 的汽車在 G 上的行進期間,必須遵循有向邊 (directed edge) 的方向前進,不能逆向行駛;在此前提下,無論所在的位置為何,AI 都會從所有可以前進的方向中,均勻隨機地 (uniformly random) 選擇一個方向前進。舉例來說,若汽車目前在點 a,而點 a 有三條向外的邊,分別連到點 b,c,d,此時 AI 輔助駕駛會從點 b,c,d 中,以機率各為 1/3 的方式選出一個前進。

為了讓駕駛人能控制汽車往他/她希望的方向前進,EWM 公司提供了以下的機制:在 AI 做出決策前,駕駛人可以支付 1 枚 EWM 公司發行的代幣,讓 AI 選擇駕駛人希望的方向。以上一個例子為例,若小明在點 a 時不希望 AI 做隨機選擇,而是直接選擇某個點(例如點 b)前進,那麼他可以支付 1 枚代幣,控制 AI 直接選擇走向點 b。請注意一次代幣支付僅限使用於一次選擇,亦即若汽車重新回到了同一個支付過代幣的點,AI 並不會直接往上一次支付代幣時指定的方向前進,而是會重新均勻隨機地做出選擇;如果駕駛人仍想指定汽車的前進方向,必須再次支付 1 枚代幣。

小明想要知道,他最少需要準備多少枚代幣,才能保證在抵達終點 t 前的任何時刻都存在一條從他的所在地抵達終點 t 的路徑。

輸入格式

- n 代表 G 的節點數。
- *m* 代表 *G* 的邊數。
- u_i, v_i 代表 G 有一條邊從 u_i 有向連接到 v_i 。
- s 代表小明目前的位置。
- t 代表小明欲到達的終點。

2023 年全國資訊學科能力競賽

輸出格式

如果小明有辦法在支付一些代幣後到達 t, 請輸出

ans

其中 ans 代表最少需要支付的代幣數。否則,請輸出

-1

測資限制

- $1 \le n \le 3000_{\circ}$
- $1 \le m \le 30000_{\circ}$
- $1 \le u_i \le n_\circ$
- $1 \le v_i \le n_\circ$
- $1 \le s \le n_{\circ}$
- $1 \le t \le n_{\circ}$
- 對任意 $i, j \in \{1, 2, ..., m\}$,若 $i \neq j$,則 $(u_i, v_i) \neq (u_j, v_j)$ 。
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
5 5 1 2 2 3 3 1 2 4 3 5 1 5	2
5 6 1 2 2 3 3 1 4 2 4 5 5 4 1 5	-1
8 11 1 2 2 1 2 3 3 4 3 8 4 1 4 5 5 6 5 7 6 7 6 8 1 8	1

評分說明

本題共有四組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	4	m=n-1,且存在某個點 r 滿足從 r 出發可以到達 G 上的其他點
2	24	G 不包含任何環 (cycle)
3	31	$n \le 100, m \le 1000$
4	41	無額外限制

(此頁為空白頁)

D. 共同子凸包 (Convex Hull)

問題描述

在數學上,一個點集合 S 的**凸包** (convex hull) 定義為包含 S 的最小凸集合,記作 Conv(S)。在平面上,若 S 為非空有限點集合,則 Conv(S) 為一包含內部與邊界的最小凸多邊形,或其退化形式。另一方面,設 E_1 與 E_2 為平面上的兩個點集合。若存在某個二維向量 \mathbf{v} ,滿足

$$P \in E_1 \iff P + \mathbf{v} \in E_2,$$

則稱 E_1 與 E_2 經過平移後重合。

現給定平面上的有限點集合 S_1 與 S_2 ,並考慮它們的非空子集合 $T_1 \subseteq S_1$ 與 $T_2 \subseteq S_2$ 。已知子凸包 $Conv(T_1)$ 與子凸包 $Conv(T_2)$ 面積皆大於 0 且經過平移後重合,請求出 $Conv(T_1)$ 所有可能的面積。

以下展示兩個子凸包平移後重合的例子。

輸入格式

- n 代表 S_1 的集合大小。
- m 代表 S_2 的集合大小。
- x_i, y_i 代表 S_1 包含點 (x_i, y_i) 。
- ξ_i, η_i 代表 S_2 包含點 (ξ_i, η_i) 。

輸出格式

```
 \begin{array}{c} k \\ a_1 \\ a_2 \\ \vdots \\ a_k \end{array}
```

- k 代表若子凸包 $Conv(T_1)$ 與子凸包 $Conv(T_2)$ 經過平移後重合, $Conv(T_1)$ 所有可能的非 0 面積數。
- a_i 為一整數,代表 $Conv(T_1)$ 所有可能的非 0 面積中,第 i 小的數的**兩倍**。

測資限制

- $3 \le n \le 40_{\circ}$
- $3 \le m \le 40_{\circ}$
- $0 \le x_i \le 20_{\circ}$
- $0 \le y_i \le 20_\circ$
- $0 \le \xi_i \le 20_\circ$
- $0 \le \eta_i \le 20_{\circ}$
- 對任意 $i, j \in \{1, 2, ..., n\}$,若 $i \neq j$,則 $(x_i, y_i) \neq (x_j, y_j)$ 。
- 對任意 $i, j \in \{1, 2, ..., m\}$,若 $i \neq j$,則 $(\xi_i, \eta_i) \neq (\xi_j, \eta_j)$ 。
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output	
6 5 0 2 1 1 1 3 2 3 3 2 4 2 2 0 2 1 2 2 3 1 5 1	1 6	
4 4 0 0 1 1 1 2 2 0 2 0 2 0 1 2 1 1 0 0	3 1 2 4	
4 4 0 1 1 1 1 2 2 2 0 1 1 0 1 1 2 0	0	

評分說明

本題共有四組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	7	所有可能的非 0 面積必能從 T_1 與 T_2 中各選 3 個點得到
2	23	$n+m \le 30$
3	41	$S_1 = S_2$
4	29	無額外限制

(此頁為空白頁)

E. 迷宮鑰匙圈 (Maze)

問題描述

小咪到夜市玩遊戲, 贏得了一副鑰匙圈。這副鑰匙圈上有個迷宮面板, 裡面有好幾顆小鋼珠:

圖片來源:FB 粉絲專頁「小藍貓:3」(BlueCatFriends)

將鑰匙圈的面板向左或向右旋轉 90 度,可以使每顆仍在迷宮內的小鋼珠向下掉落,直到該小鋼珠掉出迷宮,碰到迷宮擋板,或碰到其他仍在迷宮內的小鋼珠為止。更明確地說,這座迷宮可以用 $N\times M$ 的二維矩陣表示,一次的 90 度旋轉會將迷宮變換為 $M\times N$ 的二維矩陣,其中

- 一次 90 度左旋轉會將位置 (i, j) 變換成位置 (M j + 1, i)。
- 一次 90 度右旋轉會將位置 (i, j) 變換成位置 (j, N i + 1)。

此外, 若旋轉後位置 (i,j) 有一顆小鋼珠, 則

- 若存在某個 i' > i 滿足 (i', j) 為迷宮擋板,則
 - 1. 設最小的 i' 為 i*。
 - 2. 若 (i,j), (i+1,j),..., (i^*-1,j) 間恰有 k 顆小鋼珠,則原位置 (i,j) 的小鋼珠會掉到 位置 (i^*-k,j) 。
- 否則, 該小鋼珠將掉出迷宮。

給定迷宮與小鋼珠的起始位置,請算出至少需要向左或向右旋轉90度幾次,才能使每顆小鋼珠都

掉出迷宮。

以下是一個迷宮大小為 10×7的例子:

輸入格式

- n 代表迷宮的列數。
- m 代表迷宮的行數。
- $s_{i,j}$ 代表位置 (i,j) 的狀態,以字元 b、s、w 表示,其中
 - 1. b 代表該格為空且有小鋼珠。
 - 2. s 代表該格為空且沒有小鋼珠。
 - 3. w 代表該格為迷宮擋板。

輸出格式

如果存在使每顆小鋼珠都掉出迷宮的旋轉方式, 請輸出

ans

其中 ans 為一整數,代表所需的旋轉次數。否則,請輸出

-1

測資限制

- $1 \le n \le 15_{\circ}$
- $1 \le m \le 15_{\circ}$
- 對任意 $i\in\{1,2,\ldots,n\}$ 與 $j\in\{1,2,\ldots,m\},\ s_{i,j}$ 只能是 b、s、或 w。
- 滿足 $s_{i,j}$ 為 b 的 (i,j) 對數介於 1 與 3 之間。
- 給定的迷宮保證不會有不穩定的狀態,亦即若 $s_{i,j}$ 為 b,則必定存在某個 $i^* > i$ 滿足
 - 1. $s_{i^*,j}$ 為 w。
 - 2. $s_{i,j}, s_{i+1,j}, \dots, s_{i^*-1,j}$ 均為 b。
- n 與 m 皆為整數。

範例測試

Sample Input	Sample Output
10 7	7
w w w w w	
WSSSSW	
WSSSSW	
WSWWWSW	
WSSSWSW	
wsbbwsw	
wwwwsw	
SSSSSW	
SSSSSW	
w w w w w	
5 3	5
S W S	
S S S	
w b w	
w b w	
SWS	
5 3	-1
SWS	
WSW	
s b s	
w b w	
s w s	

評分說明

本題共有三組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	37	迷宮裡的小鋼珠數量為1
2	29	迷宮裡的小鋼珠數量不超過2
3	34	無額外限制

F. 恐怖的黑色魔物 (Monster)

問題描述

G 公司最近用黑科技在某個神秘的地方建立了新的研發總部。這座研發總部的形狀是個長方體,內部共有 F 層樓,每一層樓均有形狀大小相同且由 M 列 N 行組成的矩形房間。一個房間的位置以三個正整數 (p,q,r) 表示,代表該房間位於研發總部 p 樓的第 q 列第 r 行。

G 公司的員工均可以透過黑科技直接傳送至隔壁、樓下或樓上的房間。更明確地說,位於房間 (p,q,r) 的 G 公司員工,

- 1. 當 p > 1 時,可傳送至房間 (p 1, q, r)。
- 2. 當 p < F 時,可傳送至房間 (p+1, q, r)。
- 3. 當 q > 1 時,可傳送至房間 (p, q 1, r)。
- 4. 當 q < M 時,可傳送至房間 (p, q + 1, r)。
- 5. 當 r > 1 時,可傳送至房間 (p, q, r 1)。
- 6. 當 r < N 時,可傳送至房間 (p, q, r + 1)。

G公司為了節省員工的用餐休息時間,在其中的 R 個房間開設了餐廳,方便員工在研發總部內直接 用餐。但餐廳的食物會滋生一種恐怖的黑色魔物,有一部分的 G 公司員工非常害怕這種恐怖的黑色魔 物,因此不敢在這些餐廳用餐。

你的上司 K 先生特別害怕這種恐怖的黑色魔物。他總認為這些恐怖的黑色魔物,也能透過黑科技,在研發總部裡自由穿梭。他定義了「黑色恐怖距離」:若一個房間至少須使用 d 次黑科技傳送,才能抵達餐廳,則該房間的黑色恐怖距離就是 d。對 K 先生來說,黑色恐怖距離越小就越恐怖,因次他每次在研發總部內移動時,都會計算該如何使用黑科技,才能讓途中經過的房間,最小的黑色恐怖距離最大。作為 K 先生下屬的你,打算撰寫一個程式,幫助 K 先生快速算出在最不恐怖的路徑上,所經過的房間裡黑色恐怖距離的最小值。

輸入格式

- F 代表 G 公司研發總部的樓層數。
- M 代表 G 公司研發總部的列數。
- N 代表 G 公司研發總部的行數。
- R 代表 G 公司研發總部的餐廳數。
- (p_i, q_i, r_i) 代表 G 公司研發總部內第 i 間餐廳的位置。
- Q 代表 K 先生計畫移動的次數。
- (a_i, b_i, c_i) 代表 K 先生計畫第 i 次移動的起點。
- (x_i, y_i, z_i) 代表 K 先生計畫第 i 次移動的終點。

輸出格式

```
\begin{bmatrix} d_1^* \\ d_2^* \\ \vdots \\ d_Q^* \end{bmatrix}
```

• d_i^* 代表 K 先生第 i 次移動時,所有可能的路徑中,最小黑色恐怖距離的最大值。

測資限制

- $1 \le F \le 2 \times 10^5$ °
- $1 \le M \le 2 \times 10^5$ °
- $1 \le N \le 2 \times 10^5$ °
- $1 \le FMN \le 2 \times 10^5$ °
- $1 \le R \le FMN_{\circ}$
- $1 \le p_i \le F_\circ$
- $1 \leq q_i \leq M_{\circ}$
- $1 \le r_i \le N_{\circ}$
- $1 \le Q \le 2 \times 10^5$ °
- $1 \le a_i \le F_\circ$
- $1 \le b_i \le M_{\circ}$
- $1 \le c_i \le N_\circ$
- $1 \le x_i \le F_{\circ}$
- $1 \leq y_i \leq M_{\circ}$
- $1 \le z_i \le N_\circ$
- 對任意 $i, j \in \{1, 2, ..., R\}$,若 $i \neq j$,則 $(p_i, q_i, r_i) \neq (p_j, q_j, r_j)$ 。
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
3 3 3 3 1 1 1 2 2 2 3 3 3 4 1 3 3 3 1 1 1 2 2 3 2 2 1 2 3 1 2 3 1 1 1 3 3 3	2 1 2 0
1 1 3 1 1 1 2 1 1 1 1 1 3	0

評分說明

本題共有五組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	6	$F = R = 1, MN \le 100, Q \le 100$
2	21	對任意 $i \in \{1, 2, \dots, Q\}$,均有 $(a_i, b_i, c_i) = (x_i, y_i, z_i)$
3	4	$FMN \le 3000$
4	25	Q = 1
5	44	無額外限制

G. 博物館 (Museum)

問題描述

在 H 國有一座博物館,陳列了 n 件作品在一條直線的走廊上。從門口開始,由左至右,放置於第 i 個位置的作品價值為 c_i 。

今日有重要的貴賓要蒞臨博物館,但是因為行程緊湊,貴賓只能觀賞最接近門口,也就是最左邊的k件作品。為了提升博物館的形象,博物館館長打算把一些貴重的作品移至前方。亦即把價值最高的前k件作品移至最左邊的k個位置。

因為博物館中的作品都非常地珍貴,每一次搬動,都只能交換相鄰的兩件作品,並且為了最小化損壞作品的風險,館長要求要用最少次數的搬動來完成。

給定當前每件作品的價值、請輸出最少的搬動次數以完成館長的要求。

輸入格式

 $\begin{array}{cccc}
n & k \\
c_1 & c_2 & \dots & c_n
\end{array}$

- n 表示作品的數量。
- k 表示貴賓欣賞的作品數量。
- c_i 表示當前放置於第 i 個位置的作品價值。

輸出格式

m

• m 為滿足館長要求的最少搬動次數。

測資限制

- $1 < k < n < 10^5$
- $1 < c_i < 10^9$
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
5 3 1 2 3 4 5	6
6 2 2 3 2 3 2 3	3

評分說明

本題共有三組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	3	$n \le 500$ 且 c_1, c_2, \dots, c_n 兩兩相異
2	19	c_1, c_2, \ldots, c_n 兩兩相異
3	78	無額外限制

H. 整數的迴文分解法 (Palindrome)

問題描述

H 教授是一位密碼學專家,他現在正在研究如何對一個正整數做特殊分解,因而發明了正整數的迴文分解法,其分解方法如下:對於一個正整數 n,把 n 分解成 k 個正整數 x_1, x_2, \ldots, x_k 的和,滿足 $n = x_1 + x_2 + \ldots + x_k$,且 x_1, x_2, \ldots, x_k 由左讀到右和由右讀到左相同。

當兩種分解法分解出來的正整數數量不同,或是出現的次序不同時,則視為不同的分解法。更嚴謹地說,設 $n = a_1 + a_2 + \ldots + a_k = b_1 + b_2 + \ldots + b_l$ 為兩種迴文分解法。若 $k \neq l$,或者 k = l 但存在 $i \in \{1, 2, \ldots, k\}$ 使得 $a_i \neq b_i$,則視為不同的分解法。例如正整數 6 有 8 種迴文分解法,分別是

```
1. 6;

2. 2 + 2 + 2;

3. 3 + 3;

4. 2 + 1 + 1 + 2;

5. 1 + 4 + 1;

6. 1 + 1 + 2 + 1 + 1;

7. 1 + 2 + 2 + 1;

8. 1 + 1 + 1 + 1 + 1 + 1<sub>o</sub>
```

給定一個正整數 n,請寫一支電腦程式去計算 n 有多少種不同的迴文分解法。因為這個數字可能很大,你只要求出方法數除以 $10^9 + 7$ 的餘數就行了。

輸入格式

- t 代表你的電腦程式需要處理的正整數 n 的個數。
- n_i 代表第 i 筆詢問的正整數 n_o

輸出格式

```
ans_1
ans_2
\vdots
ans_t
```

• ans_i 代表 n_i 的迴文分解方法數除以 $10^9 + 7$ 的餘數。

測資限制

- $1 \le t \le 10^4$ °
- $1 \le n_i \le 10^{15}$ °
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output		
2 3 6	2 8		

評分說明

本題共有四組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	10	輸入的 n_i 兩兩相異,且 $n_i \leq 30$
2	30	$n_i \le 1000$
3	10	$n_i \le 10^6$
4	50	無額外限制

I. 對戰機器馬 (Race)

問題描述

這天,小齊與小田各派出 n 隻機器馬進行 n 回一對一的對戰,雙方的出賽順序均已排定且不得再更改。已知對於 $1 \le i \le n$,小齊第 i 場出賽的機器馬原始戰力是 a_i ,小田第 i 場的機器馬原始戰力則是 b_i ,且 $0 \le a_i, b_i < P$,其中 P 是一個給定的正整數。每一場對戰時,戰力高者獲勝。

小田為了贏取更多的勝利,研發出了能調整這些機器馬戰力的燃料,每一種燃料有一個魔力值 m,當原始戰力 b_i 的機器馬使用了魔力值 m 的燃料,戰力就會變成 $(b_i+m)\%P$,這裡 % 表示取餘數的運算。對小田來說,如果每一隻機器馬都可以挑選不同魔力值的燃料,當然就太好了,但是由於某些限制,小田只能生產出最多兩種燃料,且每一隻機器馬都必須使用恰一種燃料才可以。換句話說,小田可以選擇兩個非負整數 s 與 t,若 $(b_i+s)\%P>a_i$ 或 $(b_i+t)\%P>a_i$,則小田可以贏得第 i 場比賽的勝利。小田希望能挑選出兩種魔力值,以獲得最多的勝利。請計算並輸出小田的最大勝利場次數。請注意,小田的每一隻機器馬必須使用所生產的兩種燃料之一,即使原先戰力已經勝過對方的機器馬也必須挑選其中之一使用。

舉例來說,假設 P = 10,小齊與小田的原始戰力如下表。若小田選擇生產魔力值 s = 1 與 t = 6的兩種燃料,那麼他可以戰勝 5 場比賽。另,小田沒有戰勝 6 場以上比賽的可能,因此所求答案是 5。

小齊戰力 a_i	6	7	9	4	8	5	5
小田戰力 b_i	3	7	6	9	9	1	5
s=1與 $t=6$	3+6 > 6	7 + 1 > 7		(9+6)%10 > 4		1+6 > 5	5+1 > 5

輸入格式

 $\begin{array}{cccc}
n & P \\
a_1 & a_2 & \dots & a_n \\
b_1 & b_2 & \dots & b_n
\end{array}$

- n 代表比賽的回合數,同時也是小齊和小田各自派出的機器馬數量。
- P 代表計算戰力用的參數。
- a_i 代表小齊第 i 場出賽的機器馬原始戰力。
- b_i 代表小田第 i 場出賽的機器馬原始戰力。

輸出格式

ans

• ans 代表小田的最大勝利場次數。

測資限制

- $1 \le n \le 2 \times 10^5$ °
- $1 \le P \le 10^9$ °
- $0 \le a_i < P_\circ$
- $0 \le b_i < P_\circ$
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
5 6 3 1 5 3 4 0 2 3 4 0	4
7 10 6 7 9 4 8 5 5 3 7 6 9 9 1 5	5

評分說明

本題共有五組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	5	$n \le 100, P \le 100$
2	7	$n \leq 100, P \leq 10000$
3	17	$n \le 5000$
4	40	對於所有 $i, b_i \leq a_i$
5	31	無額外限制