Exercicis de Càlcul d'una Variable GRAU DE MATEMÀTIQUES. FME.

Departament de Matemàtiques Universitat Politècnica de Catalunya

Curs 2018-2019

1 Funcions elementals

1. Trobeu el domini de la funció

$$f(x) = \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}$$

- 2. Resoleu les equacions següents:
 - (a) $2x + \sqrt{x} = 1$.

(b)
$$\sqrt{x+3} + \sqrt{x-2} = \sqrt{6x-11}$$
.

(c)
$$\sqrt{\frac{x}{2}+4} = \sqrt[3]{2x+8}$$
.

- (d) $e^{2x} 2e^x = 15$.
- (e) $(\log x)^2 = \log(x^4)$.
- (f) $\cos(2x) = \sin(x)$, per $x \in [-5, 5]$.
- 3. Resoleu les desigualtats següents:
 - (a) $\frac{2x-3}{x+2} < \frac{1}{3}$.
 - (b) $x^2 5x + 9 > x$.
 - (c) $\frac{1}{x} + \frac{1}{1-x} > 0$.
 - (d) $x^2 (a+b)x + ab < 0$.
 - (e) |x-5| < |x+1|.
 - (f) $|x^2 x| > 1$.
 - (g) |x-1|+|x+1|<1.
- 4. Trobeu l'interval més gran en el qual la funció $f(x)=\sqrt{1-|x|+|x-1|}$ té inversa. Calculeu la inversa en aquest cas.
- 5. Trobeu la funció inversa de $f(x) = x^2 x + 1$ quan es restringeix a $x \ge 1/2$. Quin és el domini de la funció inversa?
- 6. Proveu que la funció $f(x)=5x^3+9$ té inversa a tot $\mathbb R$ i doneu-ne l'expressió explícita.
- 7. Una funció f satisfà

$$f(2x+3) = x^2$$
, per tot $x \in \mathbb{R}$.

Quan val f(t) per $t \in \mathbb{R}$? Quan val f(f(2))?

8. Proveu que si m és un nombre natural que no és quadrat de cap nombre natural, és a dir, $m \neq n^2$ per a tot $n \in \mathbb{N}$, llavors \sqrt{m} és un nombre real no racional.

Indicació: Useu la descomposició de m en factors primers.

- 9. Justifiqueu les afirmacions següents:
 - (a) La suma d'un nombre racional i un nombre irracional és un nombre irracional.
 - (b) El producte d'un nombre racional no zero per un nombre irracional és un nombre irracional.
 - (c) La suma i el producte de dos nombres irracionals pot ser racional o irracional.
 - (d) Els nombres $\sqrt{2} + \sqrt{3}$, $\sqrt{6} \sqrt{2} \sqrt{3}$ i $\frac{\sqrt{5} + 2}{3\sqrt{5} + 4}$ són irracionals.
- 10. Proveu les desigualtats següents i justifiqueu quan són igualtats:
 - (a) $a + \frac{1}{a} \ge 2$, on a > 0.
 - (b) $2xy \le x^2 + y^2$.
 - (c) $4xy \le (x+y)^2$
 - (d) $x^2 + xy + y^2 \ge 0$.
 - (e) $(a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1) \ge 27abc$, on a > 0, b > 0, c > 0.
- 11. Proveu les desigualtats següents:
 - (a) 0 < x + y xy < 1, sempre que 0 < x < 1 i 0 < y < 1.
 - (b) $\frac{1}{x} + \frac{1}{a+b-x} < \frac{1}{a} + \frac{1}{b}$, sempre que 0 < a < x < b.
- 12. Proveu que $|x| + |y| + |z| \le |x + y z| + |x y + z| + |-x + y + z|$.

 Indicació: utilitzeu la designaltat triangular per a nombres reals, $|x + y| \le |x| + |y|$.
- 13. Estudieu quines de les següents igualtats són certes i, quan no ho siguin, doneu un contraexemple. Se suposa que f, g i h són funcions definides a \mathbb{R} .
 - (a) $f \circ (g+h) = f \circ g + f \circ h$.
 - (b) $(g+h) \circ f = g \circ f + h \circ f$.
 - (c) $\frac{1}{f \circ g} = \frac{1}{f} \circ g$.
 - (d) $\frac{1}{f \circ g} = f \circ \frac{1}{g}$.
- 14. Siguin $f, g : \mathbb{R} \longrightarrow \mathbb{R}$. Indiqueu el domini natural de definició de la funció h donada per la regla que a cada cas s'indica

$$h(x) = \frac{f(x)}{g(x)}, \quad h(x) = \arcsin(f(x)), \quad h(x) = \log(f(x))$$

$$h(x) = \sqrt{f(x)}, \quad h(x) = \arccos(f(x)), \quad h(x) = \arctan(f(x)), \quad h(x) = g(x)^{f(x)}.$$

15. Una funció f és parella si f(x) = f(-x) i senar si f(x) = -f(-x).

- (a) Estudieu si la suma, el producte i la composició de funcions parelles o senars és una funció parella o senar. Considereu tots els casos possibles.
- (b) Proveu que tota funció pot escriure's de forma única com suma d'una funció parella més una funció senar.
- 16. Proveu que la funció donada per $f(x) = \frac{1}{1+x}$, és estrictament decreixent en \mathbb{R}^+ . Deduïu que

$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}, \quad x, y \in \mathbb{R}.$$

- 17. (a) Compareu $a^{\log b}$ i $b^{\log a}$.
 - (b) Simplifiqueu les expressions $a^{\log(\log a)/\log a}$ i $\log_a(\log_a(a^{a^x}))$.
- 18. Proveu que $\log(x + \sqrt{1+x^2}) + \log(\sqrt{1+x^2} x) = 0$.
- 19. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ una funció que verifica les propietats:
 - (a) f(x+y) = f(x) + f(y) per a tot $x, y \in \mathbb{R}$.
 - (b) f(xy) = f(x)f(y) per a tot $x, y \in \mathbb{R}$.

Proveu que o bé f és f(x) = 0 per a tot $x \in \mathbb{R}$, o bé és f(x) = x per tot $x \in \mathbb{R}$.

Indicació: Suposeu que f no és identicament nul.la, proveu primer que f és estrictament creixent i que f(r) = r per a tot $r \in \mathbb{Q}$. Suposeu també que hi ha algun nombre a tal que $f(a) \neq a$ i deduïu una contradicció (utilitzeu que entre dos nombres reals qualssevol sempre hi ha un nombre racional).

- 20. Sigui $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ una funció que verifica les propietats:
 - (a) f(xy) = f(x) + f(y) per a tot $x, y \in \mathbb{R}^+$.
 - (b) f(x) > 0 per a tot x > 1;
 - (c) f(e) = 1.

Prova que $f(x) = \log(x)$ per a tot $x \in \mathbb{R}^+$.

Indicació: Proveu primer que f és creixent i que $f(e^r) = r$ per a tot $r \in \mathbb{Q}$. Sigui $\varphi(x) = f(\exp(x))$. Justifiqueu que φ és estrictament creixent. Suposeu que hi ha algun nombre a tal que $\varphi(a) \neq a$ i deduïu una contradicció (utilitza que entre dos nombres reals qualssevol sempre hi ha un nombre racional).

21. Proveu les igualtats següents:

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}; \quad \sin(\arctan x) = \frac{x}{\sqrt{1+x^2}};$$
$$\tan(\arcsin x) = \frac{x}{\sqrt{1-x^2}}; \quad x \in (-1,1); \quad \arccos x + \arcsin x = \frac{\pi}{2}, \quad x \in [-1,1].$$

22. Les funcions hiperbòliques elementals són el sinus, cosinus i tangent hiperbòlics, definits respectivament, com:

$$\sinh x = \frac{e^x - e^{-x}}{2}; \quad \cosh x = \frac{e^x + e^{-x}}{2}; \quad \tanh x = \frac{\sinh x}{\cosh x}.$$

- (a) Proveu les igualtats següents: $\cosh^2 x \sinh^2 x = 1$ i $\tanh^2 x = 1 \frac{1}{\cosh^2 x}$.
- (b) Trobeu el domini i recorregut d'aquestes tres funcions hiperbòliques i doneu les seves gràfiques.
- 23. Doneu l'expressió explícita de les funcions inverses de les funcions hiperbòliques elementals anomenades arg sinh, arg cosh i arg tanh, respectivament. Trobeu els corresponents domini i recorregut d'aquestes funcions i les gràfiques respectives.
- 24. Proveu que la funció $f(x) = x + e^x$ és estrictament creixent, deduïu que f és bijectiva de \mathbb{R} sobre \mathbb{R} i feu un esquema de la seva gràfica.

$\mathbf{2}$ Successions i sèries numèriques

- 1. Trobeu l'ínfim i el suprem en Q dels conjunts següents, en cas d'existència. Quins tenen mínim o màxim?
 - (a) $A = \left\{ \frac{1}{n}, \ n \in \mathbb{N} \right\}$.

(d) $D = \{x \in \mathbb{Q}; x > 0, x^2 < 3\}.$

(b) $B = A \cup \{0\}.$

- (e) $E = \{x \in \mathbb{Q}; \ x^2 < 4\}.$
- (c) $C = \left\{ \frac{1}{n} + (-1)^n, \ n \in \mathbb{N} \right\}.$
- (e) $E = \{x \in \mathbb{Q}; \ x^2 < 4\}.$ (f) $F = \{x \in \mathbb{Q}; \ x^2 + 3x + 2 < 0\}.$
- 2. Utilitzant la definició de límit, proveu

 - (a) $\lim_{n} \frac{1}{n+1} = 0.$ (c) $\lim_{n} \frac{2n+1}{3n} = \frac{2}{3}.$ (b) $\lim_{n} \frac{3n}{n+2} = 3.$ (d) $\lim_{n} \frac{n^2+1}{2n^2+1} = \frac{1}{2}.$
- 3. Per a $\varepsilon=1/1000$, trobeu el mínim n_0 tal $|a_n-l|<\varepsilon$, per a $n>n_0$ en cadascun dels límits de l'exercici anterior.
- 4. Proveu la designaltat de Bernouilli:

$$(1+x)^n > 1 + nx, \quad \forall x > -1, \ n \in \mathbb{N}.$$

Justifiqueu que la igualtat es verifica si i només si n = 1 o x = 0.

5. A partir de la designaltat de Bernouilli demostreu que si x > -1

$$(1+x)^{\frac{1}{n}} \le 1 + \frac{x}{n}, \ \forall n \in \mathbb{N}.$$

Deduïu de la desigualtat anterior i/o del teorema binomial:

- (a) $\lim_{n} \sqrt[n]{c} = 1$, si c > 0. (b) $\lim_{n} \sqrt[n]{n} = 1$.
- 6. Justifiqueu els resultats següents:

 - (a) $\lim_{n} (\sqrt{n^2 + 1} n) = 0$ (c) $\lim_{n} (\frac{1 + \dots + n}{n^2}) = \frac{1}{2}$
 - (b) $\lim_{n} (\sqrt{n^2 + n} n) = \frac{1}{2}$ (d) $\lim_{n} \frac{n!}{n^n} = 0$
- 7. Utilitzant que $\lim_{n} \left(1 + \frac{1}{n}\right)^n = e$, trobeu els límits següents:
 - (a) $\lim_{n} \left(1 \frac{1}{n}\right)^n$ (c) $\lim_{n} \left(1 + \frac{1}{n^2}\right)^n$
 - (b) $\lim_{n} \left(1 \frac{1}{n^2}\right)^{n^2}$ (d) $\lim_{n} \left(1 \frac{2}{n}\right)^{n^2}$
- 8. Useu el lema del sandvitx per calcular els límits següents:
 - (a) $\lim_{n} \left(\sum_{i=1}^{n} \frac{1}{\sqrt{n^2 + k}} \right)$ (b) $\lim_{n} \left(\sqrt[n]{n^2 + n} \right)$ (c) $\lim_{n} \left((n!)^{1/n^2} \right)$

- 9. (a) Sigui $\{x_n\}$ una successió i suposem que existeixen nombres $\rho \in (0,1), n_0 \in \mathbb{N}$, tals que per tot $n \geq n_0$ es té $|x_{n+1}| \leq \rho |x_n|$. Proveu que $\lim_n \{x_n\} = 0$.
 - (b) Sigui $\{x_n\}$ una successió de nombres no nuls verificant $\lim_{n} \frac{|x_{n+1}|}{|x_n|} = \lambda$, on $0 \le \lambda < 1$. Proveu que $\lim_{n} \{x_n\} = 0$.
 - (c) Utilitzeu l'apartat anterior per provar que, donats $a \in (-1,1)$ i $k \in \mathbb{N}$, $\lim_{n} \{n^k a^n\} = 0$.
- 10. Estudieu la convergència de les successions següents

(a)
$$x_n = n^2 \left(\frac{1+n}{3n}\right)^n$$
 (c) $x_n = \frac{x^n}{n!}, (x \in \mathbb{R})$ (b) $x_n = \sqrt[n]{a^n + b^n}, (a > 0, b > 0)$ (d) $x_n = \left(\sqrt{n^2 + \sqrt{n}} - n\right) \left(\sqrt{n+1} + \sqrt{2n}\right)$

11. Estudieu la convergència de la successió:

$$x_n = 2\sqrt{n} - \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

Indicació: Proveu que per tot $k \ge 1$, $0 < x_{k+1} - x_k < \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$

12. Donats $0 < a_1 < b_1$, definim per tot $n \in \mathbb{N}$:

$$b_{n+1} = \frac{a_n + b_n}{2}, \quad a_{n+1} = \sqrt{a_n b_n}.$$

Justifiqueu que les successions així definides són monòtones i convergeixen al mateix valor.

13. Estudieu la convergència de les successions següents:

(a)
$$x_1 = 1$$
, $x_{n+1} = \sqrt{3x_n}$.

(b)
$$x_1 = 3$$
, $x_{n+1} = \frac{3+3x_n}{3+x_n}$.

(c)
$$x_1 = 1$$
, $x_{n+1} = \frac{4+3x_n}{3+2x_n}$.

(d) Per
$$a \in (-2, -1)$$
, definim $x_1 = a$, $x_{n+1} = \frac{x_n - 2}{x_n + 4}$.

(e) Donat
$$a > 0$$
, definim $x_1 = \sqrt{a}$, $x_{n+1} = \sqrt{a + x_n}$.

Indicació: per cada cas, estudieu monotonia i acotació.

14. (a) Sigui $\{x_n\}$ una successió de nombres reals i suposem que existeixen nombres $\rho \in (0,1), M > 0$ i n_0 tal que $|x_{n+1} - x_n| \leq M \rho^n$ per tot $n \geq n_0$. Proveu que $\{x_n\}$ és convergent.

Indicació: Tenint en compte que tot $n, h \in \mathbb{N}$ es compleix:

$$\rho^{n+h-1} + \rho^{n+h-2} + \dots + \rho^n < \frac{\rho^n}{1-\rho}$$

deduïu que $\{x_n\}$ verifica una condició de Cauchy.

- (b) Sigui $\{x_n\}$ una successió de nombres reals i suposem que existeixen nombres $\rho \in (0,1), n_0 \in \mathbb{N}$, tals que $|x_{n+1} - x_n| \leq \rho |x_n - x_{n-1}|$ per tot $n \geq n_0$. Proveu que $\{x_n\}$ és convergent utilitzant l'apartat anterior.
- (c) Estudia la convergència de la successió definida per tot $n \in \mathbb{N}$ com:

$$x_1 = 1, \ x_{n+1} = \frac{1}{1 + x_n}.$$

- 15. Calculeu els límits superior i inferior de les successions següents
 - (a) $a_n = (-1)^n n/(n+1)$.
 - (b) $a_n = \frac{1}{n}$, si *n* és parell i $a_n = \frac{2n}{(3n+1)}$, si *n* és senar.
 - (c) $a_n = (-1)^n n/(n+1) + (-1)^{n+1} 2n/(n+1)$.
 - (d) $a_n = \cos^n \frac{2\pi n}{3}$.
- 16. Sigui $\{x_n\}$ una successió i suposem que hi ha dues successions parcials $\{x_{\sigma(n)}\}$ i $\{x_{s(n)}\}\$ que convergeixen al mateix nombre x i tal que $\sigma(\mathbb{N}) \cup s(\mathbb{N}) = \mathbb{N}$. Prova que $\{x_n\}$ també és convergent a x.
- 17. Sigui $\{x_n\}$ una successió tal que les successions parcials $\{x_{2n}\}$, $\{x_{2n+1}\}$ i $\{x_{3n}\}$ són convergents. Prova que $\{x_n\}$ també és convergent.
- 18. Suposant que $\lim \{x_n\} = x$, proveu que el conjunt $A = \{x_n; n \in \mathbb{N}\} \cup \{x\}$ té element màxim i mínim.
- 19. (Criteris de la mitjana aritmètica i geomètrica)
 - (a) Suposeu que $\{a_n\}_n \to L$ on L és un nombre real, o $L = +\infty$, $L = -\infty$, llavors es té

$$\left\{\frac{a_1 + \dots + a_n}{n}\right\}_n \to L.$$

(b) Suposeu que $\{a_n\}_n \to L$ on L és un nombre real, o $L = +\infty$ i la successió $\{a_n\}_n$ és de termes positius, llavors es té

$$\{\sqrt[n]{a_1\cdots a_n}\}_n\to L.$$

- (c) Suposeu que $\{x_{n+1}/x_n\}_n \to L$ on $\{x_n\}_n$ és una successió de termes positius i L és un nombre real o bé $L=\infty$. Proveu que $\{\sqrt[n]{x_n}\}_n \to L$. Indicació: apliqueu l'apartat b) a la sucessió $a_1 = 1$, $a_n = x_{n+1}/x_n$ per tot $n \in \mathbb{N}$.
- 20. Calculeu el límit de les successions següents:

(a)
$$x_n = \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
, on $p \in \mathbb{N}$. (d) $x_n = \left(\frac{(2n)!}{(n!)^2}\right)^{1/n}$.
(b) $x_n = \frac{\log n}{1 + \frac{1}{2} + \dots + \frac{1}{n}}$. (e) $x_n = \sqrt[n]{\left(\frac{2}{1}\right)\left(\frac{3}{2}\right)}$

(b)
$$x_n = \frac{\log n}{1 + \frac{1}{2} + \dots + \frac{1}{n}}$$
.
(e) $x_n = \sqrt[n]{\left(\frac{2}{1}\right) \left(\frac{3}{2}\right)^2 \dots \left(\frac{n+1}{n}\right)^n}$.

(c)
$$x_n = \frac{1+4+7+\cdots+(3n-2)}{5+7+9+\cdots+(2n+3)}$$
.

21. Si $\{a_n\}$ és una successió monòtona decreixent de termes positius tal que $\sum a_n$ és convergent, llavors:

$$\lim_{n\to\infty} na_n = 0.$$

- 22. Siguin $\{a_n\}$ i $\{b_n\}$ successions de termes positius tals que $\sum_{n=1}^{\infty} a_n^2$ i $\sum_{n=1}^{\infty} b_n^2$ són convergents. Proveu que les sèries $\sum_{n=1}^{\infty} a_n b_n$, $\sum_{n=1}^{\infty} (a_n + b_n)^2$ i $\sum_{n=1}^{\infty} a_n / n$ també convergeixen.
- 23. Estudieu el caràcter de les sèries següents:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$
.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$
. (c) $\sum_{n=1}^{\infty} \frac{\cosh(n)}{\cosh(2n)}$.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{1+2+\cdots+n}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{1+2+\cdots+n}$$
. (d) $\sum_{n=1}^{\infty} \frac{1}{q^n-p^n}$, on $0 .$

24. Estudieu el caràcter de les sèries següents:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}.$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$
.

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}.$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}$$
. (e) $\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$.
(c) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{(\log n)}}$. (f) $\sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}$.

(f)
$$\sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}$$

- 25. Sigui $a_n \ge 0$ per tot $n \in \mathbb{N}$. Proveu que les sèries $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ tenen el mateix caràcter: totes dues convergents o divergents, simultàniament
- 26. Estudia la convergència i, mitjançant el càlcul de les seves sumes parcials, calculeu la suma de las sèries: a) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ i b) $\sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n}\right)$
- 27. Raoneu que la sèrie $\sum_{i=1}^{\infty} na^n$ és convergent si i només si |a| < 1 i trobeu la seva suma.

Indicació: Per trobar la suma de la sèrie, calculeu $\sum_{n=0}^{\infty} (n+1)a^n - \sum_{n=0}^{\infty} na^n$.

3 Continuïtat i límits de funcions

- 1. Proveu que si $f:A\longrightarrow \mathbb{R}$ és contínua en a també ho és |f|. Doneu un exemple de funció discontínua amb valor absolut continu.
- 2. Denotem per [x] la part entera de x, el menor nombre enter més petit o igual a x. Feu un esquema de les gràfiques de les funcions següents i estudieu la seva continuïtat:
 - (a) f(x) = x [x].
 - (b) $f(x) = \left[\frac{1}{x}\right]$.
- 3. Estudieu la continuïtat de la funció $f:[0,1] \longrightarrow \mathbb{R}$ donada per:

$$f(x) = \begin{cases} 0 & \text{si } x = 0 \text{ o } x \text{ \'es irracional,} \\ \frac{1}{q} & \text{si } x = p/q \text{ (fracci\'o irredu\"ible).} \end{cases}$$

- 4. Sigui $f:[a,b] \longrightarrow \mathbb{R}$ contínua. Suposem que $a \le f(x) \le b$ per tot $x \in [a,b]$. Proveu que existeix algun punt $c \in [a,b]$ tal que f(c) = c.
- 5. Sigui a>1. Proveu que l'equació $x+e^{-x}=a$ té almenys una solució positiva i una negativa.
- 6. Proveu que l'equació $x + e^x + \arctan x = 0$ té una sola solució real. Doneu un interval de longitud 1 en el qual es trobi aquesta solució.
- 7. (a) Sigui $f:[a,b] \longrightarrow \mathbb{R}$ contínua amb f(a) < f(b). Donat $n \in \mathbb{N}, n \ge 2$, proveu que hi ha algun punt $c \in \left[a,b-\frac{(b-a)}{n}\right]$ tal que

$$f(c + (b - a)/n) - f(c) = \frac{f(b) - f(a)}{n}.$$

- (b) Un corredor recorre 6 quilòmetres en 30 minuts. Proveu que en algun moment de la seva carrera recorre 1 quilòmetre en exactament 5 minuts.
- 8. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ contínua i decreixent. Proveu que hi ha un únic $a \in \mathbb{R}$ tal que f(a) = a.
- 9. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ contínua i complint l'equació funcional $f(x)((f \circ f)(x)) = 1$ per tot $x \in \mathbb{R}$. Sabent que f(1000) = 999, calculeu f(500).
- 10. Proveu que la funció $f:(-1,1) \longrightarrow \mathbb{R}$ definida per $f(x) = \log\left(\sqrt{\frac{1+x}{1-x}}\right)$ és bijectiva. Calculeu f^{-1} i comproveu que és una funció contínua.
- 11. Sigui $L \in \mathbb{R} \cup \{+\infty, -\infty\}$. Proveu que

$$\lim_{x \to 0^+} f(x) = L \Leftrightarrow \lim_{x \to +\infty} f\left(\frac{1}{x}\right) = L,$$

$$\lim_{x \to 0^{-}} f(x) = L \Leftrightarrow \lim_{x \to -\infty} f\left(\frac{1}{x}\right) = L,$$

12. Sigui $f:(0,1) \longrightarrow \mathbb{R}$ la funció definida per $x \in (0,1)$ com:

$$f(x) = \frac{2}{x} + \frac{1}{x(x-1)}.$$

Proveu que $\lim_{x\to 0^+} f(x) = +\infty$ i que $\lim_{x\to 1^-} f(x) = -\infty$. Deduïu que la imatge de f és tot \mathbb{R} .

13. Sigui $\alpha \in \mathbb{R}$ i $f:[0,\infty) \longrightarrow \mathbb{R}$ la funció definida per f(0)=0 i, per x>0 com

$$f(x) = x^{\alpha} \sin\left(\frac{1}{x}\right).$$

Estudieu la continuïtat de f segons els valors d' α .

14. Siguin $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ les funcions definides per:

$$f(x) = \begin{cases} \frac{1}{1 + e^{1/x}} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases} \quad g(x) = \begin{cases} \frac{e^x}{x} & \text{si } x < 0, \\ x & \text{si } 0 \leq x < 1, \\ \sqrt[5]{x}, & \text{si } x \geq 1. \end{cases}$$

Estudieu la continuïtat de f i g en tot punt de $\mathbb R$ i l'existència de límits de f i g a $+\infty$ i $-\infty$.

- 15. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ una funció contínua no nul.
la tal que $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$. Proveu que si f(x) > 0 per tot $x \in \mathbb{R}$, llavors f assoleix un màxim absolut sobre \mathbb{R} .
- 16. Sigui f una funció contínua amb límit finit tant a $+\infty$ com a $-\infty$, proveu que f és fitada i uniformement contínua. Doneu un exemple d'una funció fitada i uniformement contínua, amb domini a tot \mathbb{R} , que no verifiqui les hipòtesis anteriors.
- 17. Estudieu si són uniformement contínues les funcions següents:

 - (a) $f(x) = \frac{1}{x}$ a l'interval $[1, \infty)$ (b) $f(x) = \frac{1}{x}$ a l'interval [0, 1]
 - (c) $f(x) = \frac{1}{1+x^2}$ a tot \mathbb{R} .
- 18. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ una funció contínua al punt x=0 i verificant l'equació funcional de Cauchy:

$$f(x+y) = f(x) + f(y)$$
, per tot $x, y \in \mathbb{R}$.

Proveu que f és contínua a tot \mathbb{R} i que f(x) = ax per una certa constant $a \in \mathbb{R}$. Indicació: Proveu primer que f(x) = ax per $x \in \mathbb{Q}$.

19. Considerem l'equació $x^n + x^{n-1} + \cdots + x^2 + x = 1$, per a tot $n \ge 1$ enter.

- (a) Fixat n, demostreu que l'equació té una única solució real positiva. Denoteu-la per α_n .
- (b) Demostreu que la successió $(\alpha_n)_{n\in\mathbb{N}}$ és decreixent i trobeu-ne el límit.
- 20. Sigui I un interval tancat, $f:I\longrightarrow \mathbb{R}$ una funció i suposem que existeix $\alpha\in(0,1)$ tal que, per tot $x,y\in\mathbb{R}$:

$$|f(x) - f(y)| \le \alpha |x - y|.$$

Es diu llavors que f és **contractiva** en I. Suposem, a més, que $f(x) \in I$ per tot $x \in I$. Donat un punt $a \in I$, definim $x_1 = a$ i, recurrentment, $x_{n+1} = f(x_n)$ per tot $n \in \mathbb{N}$.

- (a) Proveu que la successió $\{x_n\}$ és de Cauchy i, per tant convergent, cap un punt fix x de f, és a dir, f(x) = x.

 Indicació: Podeu fer servir l'exercici 14 apartat b) del tema anterior.
- (b) Proveu que aquest punt fix és únic.
- (c) Estudieu la convergència de la successió $\{x_n\}$ definida per $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 x_n}$ i calculeu el seu límit.

4 Derivabilitat

- 1. Un punt P es mou sobre la part de la paràbola $x=y^2$ situada al primer quadrant de forma que la seva coordenada x augmenta a raó de 5 cm/seg. Calculeu la velocitat a la qual el punt P s'allunya de l'origen quan x=9.
- 2. El volum d'un cub augmenta a una raó de 70 cm³ per minut. Calculeu la velocitat a la qual augmenta l'àrea d'aquest cub quan la longitud del costat és de 12 cm.
- 3. Una bola esfèrica de gel es desfà de manera uniforme a tota la superfície, a raó de 50 cm³/min. Amb quina velocitat disminueix el radi de la bola quan aquest medeix 15 cm?
- 4. Calculeu el valor d'a i b en funció de c, perquè existeixi la derivada en el punt c per cadascuna de les funcions següents:

$$f(x) = \begin{cases} x^2 & x \le c, \\ ax + b & x > c. \end{cases} \quad g(x) = \begin{cases} \frac{1}{|x|} & |x| > c, \\ a + bx^2 & |x| \le c. \end{cases} \quad h(x) = \begin{cases} \cos x & x \le c, \\ ax + b & x > c. \end{cases}$$

5. Calculeu directament, aplicant la definició, la derivada de les funcions següents en un punt genèric a del seu domini

(a)
$$x^3$$
, (b) $\sqrt{x+7}$, (c) $\frac{1}{x+2}$

- 6. Suposem que f és una funció que verifica una designaltat del tipus $|f(x)| \leq |x|^r$ a algun interval obert que conté el punt 0, on r > 1. Proveu que f és derivable en el 0 i calculeu f'(0).
- 7. Calculeu la derivada en tot punt de la funció definida per:

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

8. Calculeu les equacions de les rectes tangent i normal a una el·lipse d'equació

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

en un punt (x_0, y_0) genèric d'aquesta.

- 9. Determineu el rectangle amb costats paral.
lels als eixos coordenats inscrit a l'el. lipse d'equaci
ó $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,$ i que tingui àrea màxima.
- 10. Trobeu un punt P de la circumferència $x^2 + y^2 = 1$ amb coodenades positives i tal que el triangle els vèrtexs del qual són el punt (0,0) i les interseccions de la tangent a la circumferència en el punt P amb els eixos de coordenades tingui àrea mínima.

- 11. Es vol confeccionar una tenda de campanya de forma cònica amb un volum prefixat. Per fer això, es retalla un sector circular d'un cercle de tela i es construeix la tenda. Calculeu quines han de ser totes les seves dimensions perquè la quantitat de material emprat sigui mínim.
- 12. Demostra que de tots els triangles isòscels que poden circumscriure a una circumferència de radi r, el que té àrea mínima és l'equilàter d'alçada 3r.
- 13. Calculeu el límit, en el punt a indicat a cada cas, de cadascuna de les funcions següents:

- (a) $f(x) = (\sin x + \cos x)^{1/x}$, a = 0. (b) $f(x) = (\cot x)^{\sin x}$, a = 0(c) $f(x) = \frac{x \arctan x}{\sin^3 x}$, a = 0. (d) $f(x) = (1 + \tan x)^{1/x^2}$, a = 0. (e) $f(x) = \frac{\log(\sin x)}{(\pi 2x)^2}$, $a = \pi/2$. (f) $f(x) = (x + e^x)^{\frac{1}{x}}$, a = 0.
- (f) $f(x) = (x + e^x)^{\frac{1}{x}}, a = 0.$
- 14. Justifiqueu que per tot $r \in \mathbb{R}$ i tot s > 0 es verifica:

$$\lim_{x \to +\infty} \frac{(\log x)^r}{x^s} = 0, \quad \lim_{x \to +\infty} \frac{x^r}{e^{sx}} = 0, \quad \lim_{x \to 0^+} x^s |\log x|^r = 0.$$

- 15. Calculeu el límit, en el punt a que s'indica a cada cas, per les funcions següents:
 - (a) $f(x) = \frac{x^2 \sin(1/x)}{\log x}$, $a = +\infty$. (c) $f(x) = \sin \sqrt{1+x} \sin \sqrt{x}$, $a = +\infty$.

 - (b) $f(x) = \sin x \sin \frac{1}{x}$, a = 0, $a = +\infty$. (d) $f(x) = \left(\cos \frac{\pi}{x+2}\right)^{x^2}$, $a = +\infty$.
- 16. Sigui $g: \mathbb{R} \longrightarrow \mathbb{R}$ derivable a \mathbb{R} i dos cops derivable en el punt 0, sent a més, g(0) = 0. Definim $f: \mathbb{R} \longrightarrow \mathbb{R}$ com $f(x) = \frac{g(x)}{x}$ si $x \neq 0$, f(0) = g'(0). Estudieu la derivabilitat de f. És f' contínua a x=0
- 17. Calculeu els límits següents:
 - (a) $\lim_{x \to 0} \left(\frac{1}{\sin^2 x} \frac{1}{x^2} \right)$.
- (d) $\lim_{x \to 1} \frac{1}{\log x} \frac{1}{x 1}$.
- (b) $\lim_{x \to \infty} \left(\frac{\pi}{2} \arctan x \right)^{\frac{1}{\log x}}$
- (c) $\lim_{x \to 0} \left(\frac{\tan x}{r} \right)^{1/x^2}$
- (e) $\lim_{x \to 0} \frac{\arctan x \sin x}{x(1 \cos x)}.$ (f) $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{1/(1 \cos x)}.$
- 18. Calculeu els límits següents i expliqueu perquè no és aplicable la regla de L'Hôpital:

$$\lim_{x \to +\infty} \frac{x - \sin x}{x + \cos x}; \quad \lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}.$$

- 19. Calculeu el nombre de zeros i la imatge de la funció polinòmica $f(x) = x^6 3x^2 + 2$.
- 20. Calculeu el nombre de solucions de l'equació $3 \log x x = 0$.

- 21. Justifiqueu que l'equació $x^2 = x \sin x + \cos x$ té exactament dues solucions reals.
- 22. Utilitzeu el teorema de Rolle per justificar els fets següents:
 - (a) L'equació $5x^4 4x + 1 = 0$ té alguna solució a l'interval [0, 1].
 - (b) Entre cada dues solucions reals de l'equació $e^x \sin x = 1$ hi ha almenys una solució real de l'equació $e^x \cos x = -1$.
- 23. Sigui $f:[a,b] \longrightarrow \mathbb{R}$ contínua a l'interval [a,b] i dos cops derivable a l'interval (a,b). Suposem que el segment d'extrems (a,f(a)) i (b,f(b)) talla la gràfica de f en un punt (c,f(c)) amb a < c < b. Demostreu que existeix algun punt $d \in (a,b)$ tal que f''(d) = 0.

Indicació: Interpreteu gràficament el resultat.

24. Siguin 0 < x < y. Proveu que:

(a)
$$\frac{y-x}{y} < \log y - \log x < \frac{y-x}{x}.$$

(b)
$$\frac{y-x}{1+y^2} < \arctan y - \arctan x < \frac{y-x}{1+x^2}.$$

25. Proveu que per tot x > -1 es compleix

$$\frac{x}{x+1} \le \log(x+1) \le x.$$

Quan es dóna la igualtat a cadascuna de les desigualtats?

26. Proveu que per tot $x \in (0, \frac{\pi}{2})$ es verifica que

(a)
$$1 - \frac{x^2}{2} < \cos x < 1$$
;

(b)
$$\frac{2x}{\pi} < \sin x < x < \tan x.$$

- 27. Sigui $f:(0,1] \longrightarrow \mathbb{R}$ una funció derivable tal que $|f'(x)| \le 1$ per tot $x \in (0,1)$. Proveu que la successió $\{f(1/n)\}$ és convergent.
- 28. Sigui $f:[a,b] \longrightarrow \mathbb{R}$ derivable amb f' creixent. Proveu que la funció $g:(a,b] \longrightarrow \mathbb{R}$ definida per tot $x \in (a,b]$ com

$$g(x) = \frac{f(x) - f(a)}{x - a}$$

és creixent.

- 29. Calculeu una funció polinòmica φ de grau mínim tal que $\lim_{x\to 0} \frac{\sqrt[3]{1+x}-\varphi(x)}{x^5}=0$.
- 30. Calculeu una funció polinòmica φ de grau mínim tal que $\lim_{x\to 0} \frac{\log(\arctan(x+1)) \varphi(x)}{x^2} = 0$.
- 31. Calculeu, fent servir un desenvolupament de Taylor convenient, un valor aproximat del nombre real α amb un error menor de 10^{-3} en cadascun dels casos següents:

(a)
$$\alpha = \sqrt[3]{7}$$
. (b) $\alpha = \sqrt{e}$. (c) $\alpha = \sin(\frac{1}{2})$. (d) $\alpha = \sin(61^{\circ})$.

- 32. Useu polinomis de Taylor adequats per calcular els límits a l'origen de les següents functions:

- (a) $\frac{x \tan x}{\log(1 x^3)}$ (d) $\frac{(1 \cos x)^3}{\sin(x^6)}$ (g) $\frac{\arctan(x) \cos(x^2) x}{x^3}$ (b) $\frac{1 \cos(x^2)}{\arcsin(x^4)}$ (e) $\frac{\cos x e^{-x^2/2}}{\sin(x^4)}$ (h) $\frac{\sin(x^2) \sin^2(x)}{x^4}$ (c) $\frac{e^x x \cos x}{\sin^3 x}$ (f) $\frac{(\sin x x)^2 \frac{1}{36}x^6}{x^8}$ (i) $\frac{x + \log(1 x)}{1 \sqrt{1 x^2}}$
- 33. Calculeu els valors màxim i mínim de les funcions següents en els intervals que s'indiquen:
 - (a) $f(x) = x^3 x^2 8x + 1$ en l'interval [-2, 2].
 - (b) $f(x) = \frac{x+1}{x^2+1}$ en l'interval [-1,2].
 - (c) $f(x) = \frac{1}{2}(\sin^2 x + \cos x) + 2\sin x x$ en l'interval $[0, \pi/2]$.
 - (d) $f(x) = \sqrt[3]{x^2}(5-2x)$ en l'interval [-1, 2].
 - (e) $f(x) = -x^3 + 12x + 5$ en l'interval [-3, 3].
- 34. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ la funció definida per $f(x) = e^{-\frac{1}{x^2}}$ per $x \neq 0$, i f(0) = 0. Estudieu la continuïtat i derivabilitat de f i calculeu la seva imatge.
- 35. Raoneu si la funció $f(x) = 1 + x^8 e^{-x}$ té un extrem relatiu a l'origen, de dues maneres diferents: estudiant-ne el creixement, i a partir dels polinomis de Taylor de la funcio e^{-x} .
- 36. Justifiqueu que existeix una funció $g: \mathbb{R} \longrightarrow \mathbb{R}$ derivable i que verifica que g(x) + $e^{g(x)} = x$ per tot $x \in \mathbb{R}$. Calculeu g'(1) i g'(1+e).
- 37. Sigui $f: \mathbb{R} \longrightarrow \mathbb{R}$ verificant que f(x+y) = f(x)f(y) per tot $x,y \in \mathbb{R}$; $f(0) \neq 0$ i f derivable al punt x=0. Justifica que f és derivable a tot punt i que existeix un nombre real α tal que $f(x) = e^{\alpha x}$ per tot $x \in \mathbb{R}$.

5 Integració

1. Calculeu les primitives següents.

(a)
$$\int \frac{1}{a^2 + x^2} dx$$
(b)
$$\int \frac{1}{\sqrt{2x - x^2}} dx$$
(c)
$$\int e^{e^x} e^x dx$$
(d)
$$\int \frac{x}{\sqrt{1 - x^4}} dx$$
(e)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
(f)
$$\int \frac{\arctan x}{1 + x^2}$$
(g)
$$\int \frac{1 + \sin x}{\cos^2 x} dx$$
(h)
$$\int \frac{1}{x \log x} dx$$
(i)
$$\int \log(\cos x) \tan x dx$$
(j)
$$\int \frac{x}{\cos^2(x^2)} dx$$
(k)
$$\int \frac{1}{\cosh x} dx$$
(l)
$$\int \frac{1}{x \log x \log(\log x)} dx$$

2. Calculeu les primitives següents, pel mètode d'integració per parts.

(a)
$$\int x \arctan x \, dx$$

 (b) $\int x(\log x)^2 \, dx$
 (c) $\int \log \sqrt{1+x^2} \, dx$
 (d) $\int x^3 e^{x^2} \, dx$
 (e) $\int e^{ax} \cos(bx) \, dx$, on $a,b \in \mathbb{R}$

3. Calculeu les primitives següents, mitjançant un canvi de variable.

(a)
$$\int \frac{1}{\sqrt{1+e^x}} dx$$
 (d)
$$\int \frac{\log(3x)}{x \log(6x)} dx$$
 (g)
$$\int \sqrt{x^2 - 1} dx$$

(b)
$$\int \frac{\sqrt{1-x}}{1-\sqrt{x}} dx$$
 (e)
$$\int \sqrt{1-x^2} dx$$
 (h)
$$\int \frac{x^2}{\sqrt{x^2 - 16}} dx$$

(c)
$$\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} dx$$
 (f)
$$\int \sqrt{1+x^2} dx$$
 (i)
$$\int \sqrt{-x^2 + 2x} dx$$

4. Calculeu les primitives racionals següents.

(a)
$$\int \frac{2x+1}{x^3 - 3x^2 + 3x - 1} dx$$
 (c) $\int \frac{x+3}{x^2 + x + 2} dx$
 (b) $\int \frac{x^2 - x + 12}{(x-1)^2(x+2)} dx$ (d) $\int \frac{x^3}{x^3 + 1} dx$

5. Calculeu les primitives següents, sense fer cap canvi de variable.

(a)
$$\int \cos^3 x \, dx$$
 (c) $\int \cos^6(x/2) \, dx$ (e) $\int \sinh^2 x \, dx$ (b) $\int \sin^2 x \, dx$ (d) $\int \sin^3 x \cos^2 x \, dx$

- 6. Canvis de variable per a integrals de funcions racionals de funcions trigonomètriques. Sigui $\mathcal{R}(z_1, z_2)$ una funció racional (quocient de polinomis) en dues variables. Els canvis de variable següents transformen integrals de funcions trigonomètriques, del tipus $\mathcal{R}(\cos x, \sin x)$, en integrals racionals.
 - $\sin x = t$, quan $\mathcal{R}(-\cos x, \sin x) = -\mathcal{R}(\cos x, \sin x)$.
 - $\cos x = t$, quan $\mathcal{R}(\cos x, -\sin x) = -\mathcal{R}(\cos x, \sin x)$.
 - $\tan x = t$, quan $\mathcal{R}(-\cos x, -\sin x) = \mathcal{R}(\cos x, \sin x)$.

Utilitzeu algun d'aquests canvis de variable per calcular les primitives següents.

(a)
$$\int \frac{dx}{\sin x}$$
 (b) $\int \frac{dx}{\cos x}$ (c) $\int \tan^4 x \, dx$ (d) $\int \frac{\sin x \cos x}{1 - \cos x} \, dx$

7. Sigui $f(x) = \frac{e^x \sin x}{x}$. Justifiqueu que f és integrable a [0,1] i es compleix la desigualtat

$$0 \le \int_0^1 f(x) \ dx \le e - 1.$$

- 8. Sigui f una funció contínua i positiva a l'interval [a,b] tal que $\int_a^b f(x) \ dx = 0$. Proveu que f(x) = 0 per tot $x \in [a,b]$.
- 9. Fent servir que, si x > 0, $\int_1^x \frac{dt}{t} = \log x$. Justifiqueu les designaltats

$$\frac{1}{n+1} < \log \frac{n+1}{n} < \frac{1}{n},$$

i deduïu d'aquestes que $e = \lim_{n} \left(1 + \frac{1}{n}\right)^{n}$.

10. Calculeu els límits de les successions següents expressant-les com a sumes de Riemann

(a)
$$x_n = \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}, \ \alpha > 0.$$

(b)
$$x_n = \frac{1}{\sqrt{n(n+1)}} + \frac{1}{\sqrt{n(n+2)}} + \dots + \frac{1}{\sqrt{n(n+n)}}$$
.

(c)
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$
.

(d)
$$x_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 4} + \dots + \frac{n}{n^2 + n^2}$$

(e)
$$x_n = \frac{n+1}{n^2+1} + \frac{n+2}{n^2+4} + \dots + \frac{n+n}{n^2+n^2}$$
.

(f)
$$x_n = \sum_{k=1}^n \frac{(n-k)k}{n^3}$$
 (h) $x_n = \left(\frac{(2n)!}{n! \ n^n}\right)^{1/n}$.

(g)
$$x_n = \frac{1}{n^2} \sum_{k=1}^n k \sin\left(\frac{k\pi}{n}\right)$$
 (i) $x_n = \sum_{k=np+1}^{nq} \frac{1}{k}$ $(p, q \in \mathbb{N}, p < q)$.

- 11. Siguin f i g dues funcions definides en [a, b], i $c \in (a, b)$. Suposem que f és integrable en [a, b].
 - (a) Si g(x) = f(x), per a tot $x \neq c$, i $g(c) \neq f(c)$, proveu que g és integrable i $\int_a^b g(x)dx = \int_a^b f(x)dx.$
 - (b) Suposem que f i g prenen els mateixos valors a [a,b] excepte en un nombre finit de punts. Proveu que g és integrable i $\int_a^b g(x)dx = \int_a^b f(x)dx$.
- 12. Sigui f una funció integrable a [-a, a], a > 0. Demostreu que
 - (a) si f és una funció parella, aleshores $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$.
 - (b) si f és una funció senar, aleshores $\int_{-a}^{a} f(x)dx = 0$.
 - (c) si f és una funció parella o senar, aleshores $\int_{-a}^{a} (f(x))^{2} \sin x dx = 0$.
- 13. Considereu la funció real f definida per

$$f(x) = \begin{cases} 1 - x, & 0 \le x \le 1; \\ 2 - x, & 1 < x \le 2. \end{cases}$$

Trobeu l'expressió analítica i estudieu la continuïtat i la derivabilitat de la funció

$$F(x) = \int_0^x f(t)dt, \quad x \in [0, 2].$$

- 14. Sigui $f:[0,1] \longrightarrow \mathbb{R}$ la funció definida com f(x)=0 si x és irracional, f(x)=1/n si x=m/n és racional de (0,1) amb $\operatorname{mcd}(m,n)=1$. Proveu que f és integrable a [0,1] i que $\int_0^1 f(x) \ dx=0$.
- 15. Comproveu les següents fórmules recurrents vàlides per $n \geq 2$, nombre natural :

(a)
$$I_n = \int \cos^n x \, dx = \frac{1}{n} \left(\cos^{n-1} x \sin x + (n-1) I_{n-2} \right).$$

(b)
$$J_n = \int \tan^n x \ dx = \frac{1}{n-1} \tan^{n-1} x - J_{n-2}.$$

- 16. Definim per tot $n \in \mathbb{N} \cup \{0\}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$,
 - (a) Proveu que $I_0 = \frac{\pi}{2}$, i $I_n = (n-1)(I_{n-2} I_n)$, si $n \ge 2$.

(b) Proveu que $I_1 = 1$, i si $n \ge 1$

$$I_{2n} = \frac{1 \cdot 3 \cdots (2n-3)(2n-1)}{2 \cdot 4 \cdots (2n-2)(2n)} \cdot \frac{\pi}{2}$$

i

$$I_{2n+1} = \frac{2 \cdot 4 \cdots (2n-2)(2n)}{1 \cdot 3 \cdots (2n-1)(2n+1)}.$$

(c) Deduïu que, si $n \ge 1$,

$$\frac{I_{2n}}{I_{2n+1}} = \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n-2)(2n)}\right)^2 \frac{(2n+1)\pi}{2}.$$

(d) Proveu les designaltats $0 \le I_{2n+1} \le I_{2n} \le I_{2n-1}$ i que, per tant,

$$1 \le \frac{I_{2n}}{I_{2n+1}} \le \frac{I_{2n-1}}{I_{2n+1}} = 1 + \frac{1}{2n}.$$

(e) Demostreu que

$$\lim_{n \to \infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n-2)(2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}$$

(f) Demostreu que

$$\lim_{n \to \infty} \sqrt{n} \cdot \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n+1)} = \frac{\sqrt{\pi}}{2}.$$

- 17. Sigui f una funció contínua tal que $\int_0^x t \ f(t) \ dt = \sin x x \cos x$. Calculeu $f(\frac{\pi}{2})$ i $f'(\frac{\pi}{2})$.
- 18. Sigui f una funció contínua i definim $F(x) = \int_1^x \left(t \int_1^t f(s) \ ds\right) \ dt$. Calculeu F'(1) i F''(x).
- 19. Proveu que per tot $x \in [0, \pi/2]$ es verifica la igualtat:

$$\int_0^{\cos^2 x} \arccos(\sqrt{t}) dt + \int_0^{\sin^2 x} \arcsin(\sqrt{t}) dt = \frac{\pi}{4}.$$

20. Sigui $f:\mathbb{R}\to\mathbb{R}$ una funció contínua. Es defineix $F:\mathbb{R}\to\mathbb{R}$ tal que

$$F(x) = \begin{cases} \frac{1}{2x} \int_{-x}^{x} f(t)dt, & x \neq 0. \\ f(0), & x = 0. \end{cases}$$

Demostreu que

- (a) F és contínua a \mathbb{R} i derivable a $\mathbb{R} \{0\}$.
- (b) si existeix f'(0), aleshores existeix F'(0).

21. Sigui $f:\mathbb{R}\to\mathbb{R}$ una funció contínua i derivable tal que f(0)=0 i f'(0)=1. Demostreu que

$$F(x) = \int_{-2x+1}^{4x^2-1} f(t)dt$$

té un mínim al punt $x = \frac{1}{2}$.

- 22. Estudieu la monotonia de la funció $f(x) = \int_x^{2x} \frac{1}{\sqrt{t^4 + t^2 + 2}} dt$.
- 23. Calculeu els límits següents:

(a)
$$\lim_{x \to 0^+} \frac{\int_0^{x^2} \sin(\sqrt{t}) \ dt}{x^3}$$

(b)
$$\lim_{x \to +\infty} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$$

(c)
$$\lim_{x \to 0} \frac{\int_{1}^{x^{2}+1} \frac{e^{-t}}{t} dt}{x^{2}}$$

24. Calculeu totes les funcions de classe C^1 en $\mathbb R$ tals que:

$$f^{2}(x) = \int_{0}^{x} (f(t)^{2} + f'(t)^{2}) dt + 2018.$$

25. Sigui $f:[a,b] \longrightarrow [f(a),f(b)]$ una funció derivable tal que f'(x)>0, per tot $x\in [a,b]$. Demostreu l'equació següent de les dues maneres que s'indiquen:

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(x) dx = bf(b) - af(a).$$

- (a) Treballant directament el membre de l'esquerra.
- (b) Derivant ambdós costats respecte b (i considerant a fix).

Doneu una interpretació geomètrica d'aquesta fórmula.

- 26. Calculeu l'àrea comuna als cercles $x^2 + y^2 = 9$ i $(x-3)^2 + y^2 = 9$.
- 27. Calculeu el valor d'a > 0 per tal que la funció $f(x) = x^3$ divideixi en dues parts iguals el triangle determinat per la funció g(x) = ax, l'eix OX i el punt de tall més gran de les funcions f i g.
- 28. Trobeu l'àrea limitada per la corba $\sqrt{x} + \sqrt{y} = 1$ i els eixos de coordenades.
- 29. Calculeu l'àrea de la regió comú a la circumferència $x^2+y^2=4$ i l'el.lipse $\frac{x^2}{16}+y^2=1$.