See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/45493204

ChemInform Abstract: Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · AUGUST 2010

Impact Factor: 12.11 · DOI: 10.1021/ja1001696 · Source: PubMed

CITATIONS

29

READS

23

6 AUTHORS, INCLUDING:

Francis M Mann

Winona State University

15 PUBLICATIONS 184 CITATIONS

SEE PROFILE

Donald Bruce Fulton

Iowa State University

64 PUBLICATIONS **2,021** CITATIONS

SEE PROFILE

Xiaoming Chen

Wenzhou Medical University, Wenzhou, China

14 PUBLICATIONS 237 CITATIONS

SEE PROFILE

Reuben J Peters

Iowa State University

92 PUBLICATIONS 2,831 CITATIONS

SEE PROFILE

Edaxadiene: A New Bioactive Diterpene from *Mycobacterium tuberculosis* [*J. Am. Chem. Soc.* **2009**, *131*, 17526–17527]. Francis M. Mann, Meimei Xu, Xiaoming Chen, D. Bruce Fulton, David G. Russell, and Reuben J. Peters*

Page 17526. Our assignment of the *Mycobacterium tuberculosis* natural product resulting from action of the enzyme encoded by Rv3378c on the bicyclic halimadienyl diphosphate (1) product of the neighboring Rv3377c as a tricyclic diterpene was incorrect. The actual structure is a bicyclic diterpenoid tertiary alcohol that presumably results from water quenching the initially formed allylic carbocation formed upon diphosphate ester ionization.¹ Accordingly, Scheme 1 in the published

 $\it Scheme~1.$ Production of $\it 2~$ from $\it 1~$ by Rv3378c or via Pseudourea Treatment of $\it 3~$

Communication should be replaced with the Scheme 1 shown here. Note that, while the chemical structure was in error, the reported biological activity remains valid.

Literature Cited

 Maugel, N.; Mann, F. M.; Hillwig, M. L.; Peters, R. J.; Snider, B. B. Org. Lett. 2010, 12, 2626–2629.

> JA1001696 10.1021/ja1001696 Published on Web 07/15/2010

Highly Enantioselective Organocatalytic Biginelli and Biginelli-Like Condensations: Reversal of the Stereochemistry by Tuning the 3,3'-Disubstituents of Phosphoric Acids [*J. Am. Chem. Soc.* 2009, 131, 15301–15310]. Nan Li, Xiao-Hua Chen, Jin Song, Shi-Wei Luo,* Wu Fan, and Liu-Zhu Gong*

Page 15303. The structures of compounds **9** and **11** in Scheme 1 are incorrect and should be shown as follows:

Page 15306. The reaction time, 6 days, should be added to eq 2.

Page 15307. The caption of Figure 3 should be "Activation models and possible reaction pathways of the stereogenic step in the phosphoric acid catalyzed Biginelli and Biginelli-like reactions."

Page 15308. The structure of **TS-2-R** in Figure 5 is incorrect and should be shown as follows:

Page 15308, line 34. The term "energy deference" should be changed to "energy difference".

We thank Prof. Feng Shi at Xuzhou Normal University for pointing out the errors in structures 9 and 11, and we apologize for these oversights.

JA105157B 10.1021/ja105157b Published on Web 07/21/2010