COMPLEXITY CLASS OPERATORS

ROBERT SANDERS

A *complexity class operator* op is an inclusion-preserving automorphism on the set of all complexity classes, written as op \cdot C for a complexity class C. Thus, if $C \subseteq D$, then op \cdot C \subseteq op \cdot D. Complexity Zoology's knowledge of operators consists of inequalities of the form op₁ \leq op₂, meaning that $(op_1 \cdot C)^A \subseteq (op_2 \cdot C)^A$ for each class C and oracle A, and quadratic relations of the form $op_1 \cdot op_2 = op_3 \cdot op_4$, meaning that $(op_1 \cdot op_2 \cdot C)^A = (op_3 \cdot op_4 \cdot C)^A$ for each class C and oracle A.

1. Definitions

The definitions of the following complexity class operators preserve relativization. In other words, if an operator op is defined by the property that

$$\operatorname{op} \cdot \mathsf{C} = \{ \mathscr{L} \subseteq \Sigma^* : \varphi(\mathscr{L}, \mathsf{C}) \}$$

for any complexity class C, then the relativized version of op · C is

$$(\mathsf{op} \cdot \mathsf{C})^A = \{ \mathscr{L} \subseteq \Sigma^* : \varphi(\mathscr{L}, \mathsf{C}^A) \}.$$

The simplest operators are id, the identity operator; co, which swaps "yes" and "no" answers to each decision problem; and cocap, which takes the intersection of a class with its complement.

Definition. For each complexity class C, we set

$$\begin{split} \operatorname{id} \cdot \mathsf{C} &:= \{\mathscr{L} \subseteq \Sigma^* : \mathscr{L} \in \mathsf{C}\} = \mathsf{C}, \\ \operatorname{co} \cdot \mathsf{C} &:= \{\mathscr{L} \subseteq \Sigma^* : \Sigma^* \setminus \mathscr{L} \in \mathsf{C}\}, \\ \operatorname{cocap} \cdot \mathsf{C} &:= \{\mathscr{L} \subset \Sigma^* : \mathscr{L} \in \mathsf{C} \,\&\, \mathscr{L} \in \operatorname{co} \cdot \mathsf{C}\} = \mathsf{C} \cap (\operatorname{co} \cdot \mathsf{C}). \end{split}$$

A class is **symmetric** if $C = co \cdot C$ with respect to every oracle.

For example, the class P is symmetric, while NP is not, because there is an oracle A relative to which $NP^A \neq coNP^A$ (although, of course, this is an open problem in the absence of an oracle.

The poly operator adds a polynomial-length advice string to each input. To be precise, we denote by $|\mathscr{O}(n^*)|$ the set of all functions $p: \mathbb{N} \to \Sigma^*$ such that $|p(n)| = \mathscr{O}(n^k)$ for some $k \in \mathbb{N}$. A function $p \in |\mathscr{O}(n^*)|$ is regarded as an *advice function* when p(n) is given as an argument for each input of length n.

Definition. For a complexity class C, we define

$$\mathsf{poly} \cdot \mathsf{C} = \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}, p \in |\mathscr{O}(n^*)|) (\forall x \in \Sigma^*) [x \in \mathscr{L} \iff \langle x, p(|x|) \rangle \in \mathscr{L}'] \}.$$

We allow advice functions to map to the null string ε of length zero. In the case of tuples, $\langle x, \varepsilon \rangle$ should be understood to be x, so that, as we will see, poly \cdot C always contains C. For most classes with polynomial advice, we write poly \cdot C = C/poly; we have, for instance, P/poly, NP/poly, and BQP/poly.

1

The operators \oplus , N, and P are all defined in terms of certificates, strings whose lengths are polynomials of the length of the original input. Let $\mathscr{O}(n^*)$ denote the set of all functions $p: \mathbb{N} \to \mathbb{N}$ such that $p(n) = \mathscr{O}(n^k)$ for some $k \in \mathbb{N}$; then, for a quantifier Q, we can define an operator op Q by

$$\mathsf{op}_O \cdot \mathsf{C} := \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}, p \in \mathscr{O}(n^*)) (\forall x \in \Sigma^*) [x \in \mathscr{L} \Longleftrightarrow (Qy \in \Sigma^{p(|x|)}) [\langle x, y \rangle \in \mathscr{L}']] \}.$$

The aforementioned operators are then equal to op_Q for different choices of Q.

Definition. The operators \oplus , N, and P are defined as follows for a complexity class C:

- $\oplus \cdot \mathsf{C} := \mathsf{op}_O \cdot \mathsf{C}$, where $(Qy \in S)$ means "for an odd number of $y \in S$."
- $\mathbb{N} \cdot \mathbb{C} := \mathsf{op}_Q^{\sim} \cdot \mathbb{C}$, where $(Qy \in S)$ means $(\exists y \in S)$.
- $P \cdot C := op_{Q} \cdot C$, where $(Qy \in S)$ means "for more than 1/2 of all $y \in S$."

⊕ is read as "parity."

The bounded probabilistic operator BP is defined similarly.

Definition. For each complexity class C,

$$\mathsf{BP} \cdot \mathsf{C} := \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}', p \in \mathscr{O}(n^*)) (\forall x \in \Sigma^*) [[x \in \mathscr{L} \Longrightarrow (\exists_{>2/3} \, y \in \Sigma^{p(|x|)}) [\langle x, y \rangle \in \mathscr{L}']] \},$$

$$\& [x \notin \mathscr{L} \Longrightarrow (\exists_{>2/3} \, y \in \Sigma^{p(|x|)}) [\langle x, y \rangle \notin \mathscr{L}']] \},$$

where $(\exists_{>2/3} y \in \Sigma^{p(|x|)})$ is understood to mean "for more than 2/3 of all $y \in \Sigma^{p(|x|)}$."

All of these operators are named in such a way that they suggest the definitions of common complexity classes; for example, $NP = N \cdot P$, $PP = P \cdot P$, $PP = P \cdot P$, and $PP = P \cdot P$.

Finally, we have the operator $C \mapsto P^C$, which maps to C to P with C-oracle, as well as exppad, which adds an exponential length of zeros to input, generally for the purpose of buying additional computational time.

Definition. For every complexity class C,

$$\mathsf{P}^\mathsf{C} := \{ \mathscr{L} \subseteq \Sigma^* : (\exists A \in C) [\mathscr{L} \in \mathsf{P}^A] \} = \bigcup_{A \in C} \mathsf{P}^A,$$

where the languages in C have been identified with their decision functions.

The above operator is used in the definition of the polynomial hierarchy: for every $n \in \mathbb{N}$, $\Delta_{n+1}^{P} = P^{\Sigma_{n}^{P}}$.

Definition. Let $\mathscr{O}(2^{\mathrm{poly}})$ denote the set of all functions $f: \mathbb{N} \to \mathbb{N}$ such that $f(n) = \mathscr{O}(2^{p(n)})$ for some polynomial function $p: \mathbb{N} \to \mathbb{N}$. Then, for a complexity class C ,

$$\mathsf{exppad} \cdot \mathsf{C} := \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}, f \in \mathscr{O}(2^{\mathsf{poly}})) [x \in \mathscr{L} \Longleftrightarrow x0^{f(|x|)} \in \mathscr{L}'] \}.$$

NEXP, for example, is not defined to be $N \cdot EXP$, but rather exppad $\cdot NP$.

2. Properties of Complexity Classes

Proving the properties of complexity operators often requires that the underlying complexity classes themselves have certain regularity properties. First, every complexity class of interest should be *nontrivial* in the sense that it contains a nonempty language not equal to Σ^* . We also expect that if $\mathcal{L} \in C$, then any languages that are reducible to \mathcal{L} in polynomial-time are also in C.

Definition. A complexity class C is **polynomial-time self-reducible** if for every $\mathcal{L} \in C$ and every function $f \in FP$,

$$f^{-1}[\mathscr{L}] = \{ x \in \Sigma^* : f(x) \in \mathscr{L} \} \in \mathsf{C}.$$

Every class in this project is relativizingly nontrivial and polynomial-time self-reducible, so that for each oracle A, if $f \in \mathsf{FP}^A$ and $\mathscr{L} \in \mathsf{C}^A$ then $f^{-1}[\mathscr{L}] \in \mathsf{C}^A$. As a result, P lies at the bottom of Complexity Zoology's inclusion hierarchy.

Proposition. *If* C *is a nontrivial, polynomial-time self-reducible complexity class, then* $P \subset C$.

Proof. Fix a nontrivial language $\mathcal{L} \in C$, so that $\mathcal{L} \neq \emptyset$ and $\mathcal{L} \in \Sigma^*$. Then there exists $x_1 \in \mathcal{L}$ and $x_0 \notin \mathcal{L}$.

Now suppose $\mathcal{L}' \in \mathsf{P}$.. Then define $f: \Sigma^* \to \Sigma^*$ to be

$$f(x) = \begin{cases} x_1 & \text{if } x \in \mathcal{L}', \\ x_0 & \text{if } x \notin \mathcal{L}'. \end{cases}$$

We have $f \in \mathsf{FP}$, since it can be determined whether or not $x \in \mathscr{L}'$ in polynomial-time, and then writing x_1 or x_0 can be accomplished in constant time. Therefore $\mathscr{L}' = f^{-1}[\mathscr{L}] \in \mathsf{C}$ by polynomial-time self-reducibility, so we can conclude that $\mathsf{P} \subseteq \mathsf{C}$.

Additionally, complexity classes should be closed under joins and projections. The *join* of a pair of languages $\mathcal{L}, \mathcal{L}' \subseteq \Sigma^*$ is

$$\mathcal{L} \oplus \mathcal{L}' = \{ x \in \Sigma^* : (x = 0y \& y \in \mathcal{L}) \text{ or } (x = 1y \& y \in \mathcal{L}') \}.$$

The *0-projection* of a language \mathcal{L} is

$$\{x \in \Sigma^* : 0x \in \mathcal{L}\},\$$

and the 1-projection is defined similarly.

3. RELATIONS AND INCLUSIONS

Proposition. The id, co, and cocap operators satisfy the following properties:

- (1) cocap < co and cocap < id;
- (2) co is involutive, so that $co \cdot co = id$;
- (3) $co \cdot cocap = cocap \cdot co = cocap$.

Proof. (1) and (2) are immediate from the definitions of the operators. For (3), we have

$$cocap \cdot co \cdot C = (co \cdot C) \cap (co \cdot co \cdot C)$$
$$= (co \cdot C) \cap C$$
$$= cocap \cdot C,$$

and

$$\begin{split} \mathscr{L} \in \mathsf{co} \cdot \mathsf{cocap} \cdot \mathsf{C} &\iff \Sigma^* \setminus \mathscr{L} \in \mathsf{cocap} \cdot \mathsf{C} \\ &\iff \Sigma^* \setminus \mathscr{L} \in \mathsf{C} \,\&\, \Sigma^* \setminus \mathscr{L} \in \mathsf{co} \cdot \mathsf{C} \\ &\iff \mathscr{L} \in \mathsf{co} \cdot \mathsf{C} \,\&\, \mathscr{L} \in \mathsf{co} \cdot \mathsf{co} \cdot \mathsf{C} \\ &\iff \mathscr{L} \in \mathsf{co} \cdot \mathsf{C} \,\&\, \mathscr{L} \in \mathsf{C} \\ &\iff \mathscr{L} \in \mathsf{cocap} \cdot \mathsf{C}. \end{split}$$

For many operators, it is the case that $C \in op \cdot C$ for every C, because the definitions of these classes include an additional certificate or advice string.

Proposition. id \subseteq op, where op = poly, \oplus , BP, P, N or exppad.

Proof. Fix $\mathcal{L} \in C$. Then $\mathcal{L} \in op \cdot C$ for each possible choice of op:

- If op = poly, take $\mathcal{L}' = \mathcal{L}$ and $p(n) = \varepsilon$ for all $n \in \mathbb{N}$ in the definition of poly \cdot C.
- If op = \oplus , BP, P, or N, take $\mathcal{L}' = \mathcal{L}$ and p(n) = 0 for all $n \in \mathbb{N}$ in the definition of op \cdot C.

• If op = exppad, take $\mathscr{L}' = \mathscr{L}$ and $f(n) = \varepsilon$ for all $n \in \mathbb{N}$ in the definition of exppad · C.

Since the condition $\mathscr{L} \in \mathsf{BP} \cdot \mathsf{C}$ is a strengthening of the condition that $\mathscr{L} \in \mathsf{P} \cdot \mathsf{C}$, the following is immediate.

Proposition. $BP \leq P$.

We next consider some commutativity properties.

Proposition. $co \cdot op = op \cdot co$, where op = BP, P, or poly.

Proof. For each of the possible choices of op, the definition of op · C has the following form:

$$op \cdot \mathsf{C} := \{\mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}) \psi(\mathscr{L}, \mathscr{L}')\},\$$

where $\psi(\mathcal{L},\mathcal{L}')$ is a proposition having the property that

$$\psi(\mathscr{L}, \Sigma^* \setminus \mathscr{L}') \Longleftrightarrow \psi(\Sigma^* \setminus \mathscr{L}, \mathscr{L}').$$

Thus,

$$\begin{split} \mathsf{co} \cdot \mathsf{op} \cdot \mathsf{C} &= \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}) \psi(\Sigma^* \setminus \mathscr{L}, \mathscr{L}') \} \\ &= \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{C}) \psi(\mathscr{L}, \Sigma^* \setminus \mathscr{L}') \} \\ &= \{ \mathscr{L} \subseteq \Sigma^* : (\exists \mathscr{L}' \in \mathsf{co} \cdot \mathsf{C}) \psi(\mathscr{L}, \mathscr{L}') \} \\ &= \mathsf{op} \cdot \mathsf{co} \cdot \mathsf{C} \end{split}$$

for each possible choice of op.

A similar argument, based on the structure of te definitions of the relevant operators, can be used to show that poly commutes with \oplus , N, and P.

Proposition. *If complexity classes are assumed to be polynomial-time self-reducible, then* poly $op = op \cdot poly$, *where* $op = \oplus$, N, *or* poly.

Proof. We say that $\mathscr{L} \in \mathsf{poly} \cdot \mathsf{op} \cdot \mathsf{C}$ if there exist $\mathscr{L}' \in \mathsf{C}$, $p \in \mathscr{O}(n^*)$, and $q \in |\mathscr{O}(n^*)|$ such that for every $x \in \Sigma^*$,

$$x \in \mathcal{L} \iff (Qy \in \Sigma^{p(|\langle x, q(|x|)\rangle|)})[\langle \langle x, q(|x|)\rangle, y\rangle \in \mathcal{L}'],$$

where Q is the quantifier in the definition of the operator that is being considered. Similarly, we say that $\mathscr{L} \in \mathsf{op} \cdot \mathsf{poly} \cdot \mathsf{C}$ if there exist $\mathscr{L}' \in \mathsf{C}$, $p \in \mathscr{O}(n^*)$, and $q \in |\mathscr{O}(n^*)|$ such that for every $x \in \Sigma^*$,

$$x \in \mathcal{L} \iff (Qy \in \Sigma^{p(|x|)})[\langle \langle x, y \rangle, q(|\langle x, y \rangle |) \rangle \in \mathcal{L}'].$$

The condition $\mathcal{L} \in \mathsf{poly} \cdot \mathsf{op} \cdot \mathsf{C}$ is equivalent to the condition that there are $\mathcal{L}' \in \mathsf{C}$, $\bar{p} \in \mathcal{O}(n^*)$, and $q \in |\mathcal{O}(n^*)|$ such that for all $x \in \Sigma^*$,

$$x \in \mathscr{L} \iff (Qy \in \Sigma^{\bar{p}(|x|)})[\langle \langle x, q(|x|) \rangle, y \rangle \in \mathscr{L}'].$$

For instance, if $\mathcal{L} \in \mathsf{poly} \cdot \mathsf{op} \cdot \mathsf{C}$, then we can set $\bar{p}(n) = p(N)$, where $N = |\langle x, q(|x|) \rangle|$ for |x| = n. Likewise, in the conditions for $\mathcal{L} \in \mathsf{op} \cdot \mathsf{poly} \cdot \mathsf{C}$ we can replace q with a \bar{q} so that

$$x \in \mathcal{L} \iff (Qy \in \Sigma^{p(|x|)})[\langle \langle x, y \rangle, \bar{q}(|x|) \rangle \in \mathcal{L}'].$$

The rewritten conditions for $\mathscr{L} \in \mathsf{poly} \cdot \mathsf{op} \cdot \mathsf{C}$ and $\mathscr{L} \in \mathsf{op} \cdot \mathsf{poly} \cdot \mathsf{C}$ are then equivalent to each other because a mapping between $\langle \langle x, z \rangle, y \rangle$ and $\langle \langle x, y \rangle, z \rangle$ is polynomial-time computable.

Proposition. *If complexity classes are assumed to be polynomial-time self-reducible, then* $co \cdot \oplus =$

Finally, we consider the properties of the operator $C \mapsto P^C$.

Proposition. For any complexity class C,

- (1) $C \subseteq P^C$:
- (2) $\operatorname{co} \cdot \mathsf{C} \subseteq \mathsf{P}^\mathsf{C}$; (3) $\operatorname{co} \cdot \mathsf{P}^\mathsf{C} = \mathsf{P}^{\operatorname{co} \cdot \mathsf{C}} = \mathsf{P}^\mathsf{C}$.

Proof. If $\mathcal{L} \in C$ and A is the decision function for \mathcal{L} , then $\mathcal{L} \subseteq P^A \subseteq P^C$. Hence $C \subseteq P^C$. Moreover, P^A is a symmetric class for every A, and so

$$\begin{split} \mathscr{L} \in \mathsf{co} \cdot \mathsf{P}^C &\iff \Sigma^* \setminus \mathscr{L} \in \mathsf{P}^\mathsf{C} \\ &\iff (\exists A \in \mathsf{C}) [\Sigma^* \setminus \mathscr{L} \in \mathsf{P}^A] \\ &\iff (\exists A \in \mathsf{C}) [\mathscr{L} \in \mathsf{P}^A] \\ &\iff \mathscr{L} \in \mathsf{P}^\mathsf{C}, \end{split}$$

and

$$\mathcal{L} \in \mathsf{P}^{\mathsf{co} \cdot \mathsf{C}} \Longleftrightarrow (\exists A \in \mathsf{C})[\mathcal{L} \in \mathsf{P}^{1-A}]$$
$$\iff (\exists A \in \mathsf{C})[\mathcal{L} \in \mathsf{P}^{A}]$$
$$\iff \mathcal{L} \in \mathsf{P}^{\mathsf{C}},$$

because $P^A = P^{1-A}$ for every oracle A. Thus, (1) and (3) are true. (2) then follows immediately, because $C \subseteq P^C \Longrightarrow co \cdot C \subseteq co \cdot P^C \Longrightarrow co \cdot C \subseteq P^C$.

Proposition. For any complexity class non-trivial, polynomial-time self reducible class C that is closed under joins, poly $\cdot P^C = P^{\mathsf{poly} \cdot C}$ and $BP \cdot P^C = P^{\mathsf{BP} \cdot C}$.

Proof of first equation. First, we show that it is unconditionally the case that $P^{poly \cdot C} \subseteq poly \cdot P^C$. Suppose that $\mathcal{L} \in \mathsf{P}^{\mathsf{poly} \cdot \mathsf{C}}$. Then there is a polynomial-time algorithm with A-oracle that computes \mathcal{L} , where A is a decision function for a language $\mathcal{L}' \in \mathsf{poly} \cdot \mathsf{C}$. By the definition of the poly operator, there exists a language $\mathcal{L}'' \in C$ and an advice function $p \in |\mathcal{O}(n^*)|$ such that $x \in \mathcal{L}'$ if and only if $\langle x, p(|x|) \rangle \in \mathcal{L}''$.

Let A' indicate the decision function for \mathscr{L}'' . Also, let $f \in \mathscr{O}(n^*)$ denote time bound for the P^A algorithm for \mathcal{L} , so that the question of whether $x \in \mathcal{L}$ is decided in at most f(|x|) computational steps. Define $P: \mathbb{N} \to \Sigma^*$ so that, for each $n \in \mathbb{N}$, P(n) is the concatenation $p(0)p(1) \dots p(f(n))$.

The following algorithm in poly $\cdot P^{A'}$ decides whether $x \in \mathcal{L}$:

- (1) The advice function is P. Note that $P \in |\mathcal{O}(n^*)|$, because for sufficiently large n |P(n)| is at most f(n)|p(f(n))|.
- (2) Follow the $P^{\hat{A}}$ algorithm for \mathcal{L} exactly, except when there is an oracle call.

(3) When an oracle call to A occurs with the string $y \in \Sigma^*$, replace it with an oracle call to A' with the string $\langle y, p(|y|) \rangle$. This oracle call is possible because P(|x|) contains the advice strings for all y that are short enough for the P^A algorithm to be able to query the oracle.

Thus, we have $\mathscr{L} \in \mathsf{poly} \cdot \mathsf{P}^{A'} \subseteq \mathsf{poly} \cdot \mathsf{P}^\mathsf{C}$, and we can conclude that $\mathsf{P}^{\mathsf{poly} \cdot \mathsf{C}} \subseteq \mathsf{poly} \cdot \mathsf{P}^\mathsf{C}$ in all cases. For the inclusion $\mathsf{poly} \cdot \mathsf{P}^\mathsf{C} \subseteq \mathsf{P}^{\mathsf{poly} \cdot \mathsf{C}}$, suppose that $\mathscr{L} \in \mathsf{poly} \cdot \mathsf{P}^\mathsf{C}$. This means that there exists a P^A algorithm that decides \mathscr{L} when provided with some advice function $p \in |\mathscr{O}(n^*)|$, where A is the decision function of some $\mathscr{L}'\Sigma^* \to \Sigma$ according to the following rules:

- If $x = 0 \langle y, z \rangle$, then A'(x) is equal to the zth bit of p(|y|).
- If x = 1y, then A'(x) = A(y).

The language \mathscr{L}'' determined by A' is the join of two languages. One, which we will call \mathscr{L}_0'' , is the set of all $\langle y, z \rangle$ such that the zth bit of p(|y|) is 1; the second language is \mathscr{L}' .

We claim that \mathcal{L}'' lies in poly \cdot C. To prove this, it is enough to show that $\mathcal{L}''_1 \in P/poly$. Then $P/poly \subseteq poly \cdot C$ (we know that $P \subseteq C$ because C si assumed to be nontrivial and polynomial-time self-reducible), and $\mathcal{L}' \in poly \cdot C$ by assumption, so $\mathcal{L}'' \in poly \cdot C$ by the hypothesis that C, and therefore $poly \cdot C$, is closed under joints.

To see that $\mathcal{L}_1'' \in P/\text{poly}$, let $P \in |\mathcal{O}(n^*)|$ be the function defined by the concatenation $P(n) = p(0)p(1) \dots p(n)$. Then, given $\langle y, z \rangle$, P can be used as an advie function to check whether the zth bit of p(|y|) is 1.

Hence $\mathcal{L}'' \in \mathsf{polyC}$. To show that $\mathcal{L} \in \mathsf{P}^{\mathsf{poly.C}}$, we show that $\mathcal{L} \in P^{A'}$. The following is a $\mathsf{P}^{A'}$ algorithm for deciding whether $x \in \mathcal{L}$:

- (1) First, extract the advice string p(|x|) from the A'-oracle. Make the oracle queries $0\langle x,j\rangle$, $j\leq |p(|x|)|$ until the entirety of p(|x|) has been recorded.
- (2) Carry out the rest of the computation according to the poly $\cdot P^A$ algorithm. Replace oracle queries to A about the string y with oracle queries to A' about the string y.

Therefore $\mathcal{L} \in \mathsf{P}^{\mathsf{poly} \cdot \mathsf{C}}$, concluding the proof that $\mathsf{P}^{\mathsf{poly} \cdot \mathsf{C}} = \mathsf{poly} \cdot \mathsf{P}^{\mathsf{C}}$.

The first of these equations is true because advice can be moved between the polynomial-time computation and the oracle class, while the latter equation is true because randomness in computation is equivalent to randomness in the oracle. The class C must satisfy the regularity properties discussed in the previous section.