

FIN014 Gestão Financeira para Engenharia de Produção II

PROFa. DRa HELOÍSA BERNARDO

CAPÍTULO 3

REGRAS DE ANÁLISE DE INVESTIMENTO PARTE 1

NOSSA META

COMPREENDER CONSTRUIR AVALIAR

<u>Compreender</u> os conceitos básicos do orçamento de capital para

<u>Construir</u> modelos de análise de projetos em ativos de capital e

<u>Avaliar</u> alternativas de projetos de ativos de capital

CONTEÚDO

- Etapas da avaliação de um projeto
- Aplicando NPV como medida de avaliação (projetos independentes ou mutuamente exclusivos)
- TIR (OU IRR)
- Problemas em potencial ao usar a IRR para avaliar projetos mutuamente exclusivos
- MIRR (ou MTIR)

BIBLIOGRAFIA DA PARTE 3.1 DO CAPÍTULO 3

EHRHARDT, Michael C.; BRIGHAM, Eugene F. Administração Financeira: teoria e prática. São Paulo: Cengage Learning, 2016.

CAPÍTULO 10 (10.1 a 10.5)

ROSS, Stephen A. et al. Administração financeira. AMGH Editora, 2015.

CAPÍTULO 5 (5.6 e 5.7)

SOUZA, Alceu; CLEMENTE, Ademir. Decisões financeiras e análise de investimentos: fundamentos, técnicas e aplicações. Atlas, 2008.

CAPÍTULO 5 (5.1 a 5.5; 5.8; 5.10)

Orçamento de capital

CAPITAL: Ativos de longo prazo usado na produção

ORÇAMENTO/PLANEJAMENTO: Plano que descreve a projeção de gastos para o futuro

ORÇAMENTO DE CAPITAL: Resumo do planejamento do investimento futuro em ativos de longo prazo

ORÇAR/PLANEJAR O CAPITAL: É o processo de análise e decisão de quais projetos devem ser aprovados e incluí-los no orçamento de capital

CAPEX - CAPITAL EXPENDITURE - Orçamento de Capital, Investimentos de Capital

Custo de capital e criação de valor

- Custo de capital é o retorno exigido pelos investidores e é uma função do risco
- Risco: probabilidade de que o resultado futuro seja diferente do esperado

Criação de valor para o investidor se dá quando o retorno do investimento se dá em patamar acima do custo de capital

Uso da regra de valor presente liquido e outras metodologias

NA TOMADA DE DECISÕES DE INVESTIMENTO CRIADORAS DE VALOR Objetivo da empresa capitalista

Maximizar o valor para os proprietários

Decisões de investimento e Valor

Fluxo de caixa do projeto (FCt)

$$VPL = \frac{FC_1}{(1+r)^1} + \frac{FC_2}{(1+r)^2} + \frac{FC_3}{(1+r)^3} + \dots + \frac{FC_n}{(1+r)^n} - investimento\ inicial$$

Taxa de Juros de Mercado

Aversão ao risco de mercado Custo de Capital ajustado ao risco do projeto (r) Estrutura de Capital do projeto

Grau de risco do projeto

Métodos de Avaliação de Investimentos

Parte 1

- > VPL
 - ➤ Valor Presente Líquido
- >TIR (OU IRR)
 - > Taxa Interna de Retorno
- ➤ MIRR (ou MTIR)
 - > Taxa Interna de Retorno Modificada

Valor presente liquido

$$VPL = -FC_0 + \frac{FC_1}{(1+r)^1} + \frac{FC_2}{(1+r)^2} + \frac{FC_3}{(1+r)^3} + \dots + \frac{FC_n}{(1+r)^n}$$

$$VPL = \sum_{t=0}^{n} \frac{FC_t}{(1+r)^t}$$

TAXA = r = custo de capital = taxa de atratividade

Etapas de Aplicação da Regra do VPL

Projetos S e L

Considere o projeto S com os seguintes fluxos de caixa a lado. Qual o VPL dos Projetos considerando a taxa de desconto de 10% ao ano.

٨٥٥	Fluxo de Caixa			
Ano	Projeto S	Projeto L		
0	-10.000	-10.000		
1	5.300	1.900		
2	4.300	2.700		
3	1.874	2.345		
4	1.500	7.800		
taxa	10%	10%		
VPL	804,38	1.048,02		

$$VPL_S = -10.000 + \frac{5.300}{(1+0.1)^1} + \frac{4.300}{(1+0.1)^2} + \frac{1.874}{(1+0.1)^3} + \frac{1.500}{(1+0.1)^4}$$
= 804,38

$$VPL_L = -10.000 + \frac{1.900}{(1+0.1)^1} + \frac{2.700}{(1+0.1)^2} + \frac{2.345}{(1+0.1)^3} + \frac{7.800}{(1+0.1)^4}$$

= 1.048,02

Projetos independentes ou mutuamente exclusivos

INDEPENDENTES: fluxos de caixa não são afetados por outros projetos.

MUTUAMENTE EXCLUSIVOS – duas maneiras diferentes de alcançar o mesmo resultado, \rightarrow a aprovação de um implica a rejeição do outro.

Projetos independentes ou mutuamente exclusivos

- 1. PROJETOS INDEPENDENTES: se o VPL for superior a zero, aceite o projeto.
- 2. PROJETOS MUTUAMENTE EXCLUSIVOS: aceite o projeto com o VPL positivo mais alto. Caso nenhum projeto tenha VPL positivo, rejeite todos.

Taxa interna de retorno (TIR)

TIR é a taxa em que:
$$FC_0 = \sum_{t=1}^{n} \frac{FC_t}{(1-r)^t}$$

$$VPL = FC_0 + \sum_{t=1}^{n} \frac{FC_t}{(1+r)^t}$$

TIR é comparada com o custo de capital

Taxa interna de retorno (TIR)

$$VPL = FC_0 + \frac{FC_1}{(1+TIR)^1} + \frac{FC_2}{(1+TIR)^2} + \frac{FC_3}{(1+TIR)^3} + \dots + \frac{FC_n}{(1+TIR)^n}$$

$$VPL = \sum_{t=0}^{n} \frac{FC_t}{(1+TIR)^t} = 0$$

Para o Projeto S, temos:

$$VPL_S = -10.000 + \frac{5.300}{(1+TIR)^1} + \frac{4.300}{(1+TIR)^2} + \frac{1.874}{(1+TIR)^3} + \frac{1.500}{(1+TIR)^4} = 0$$

No excel a função TIR resolve essa equação:

TIR(valores, [suposição])

$$TIR = 14,69\%$$

Problemas a TIR

Para escolha de projetos mutuamente exclusivos

	Projeto S	Projeto L
TIR	14,69%	13,79%
VPL	804,38	1.048,02

As causas de possiveis conflitos entre a TIR e a VPL para projetos mutuamente exclusivos: Perfis de VPL

VPL para múltiplos custos de capital

─VPL Projeto S —VPL Projeto L

Determinar a intersecção de Fisher

	Fluxo de Caixa			
Ano	Projeto S	Projeto L	Diferença S - L	
0	-10.000	-10.000	0	
1	5.300	1.900	3.400	
2	4.300	2.700	1.600	
3	1.874	2.345	-471	
4	1.500	7.800	-6.300	
TIR	14,69%	13,79%	12,27%	

Aplicando a TIR como medida de avaliação

Ao usar a TIR, é importante distinguir entre projetos independentes e projetos mutuamente exclusivos. Se voce avaliar um projeto independente com fluxos de caixa normais, os critérios do VPL e do TIR sempre levam à mesma decisão de aceitação/rejeição: se o VPL diz "aceitar", então a TIR também diz "aceitar", e vice-versa.

TIR_S > TIR_L, então a regra de decisão da TIR diria para aceitar o Projeto S em vez do Projeto L.

Enquanto o custo de capital for maior do que a taxa de cruzamento de 12,274%, os dois métodos concordam que o Projeto S é melhor: $VPL_S > VPL_L$ e $TIR_S > TIR_L$. Portanto, se r for maior do que a taxa de cruzamento, não haverá conflitos.

Entretanto, se o custo de capital for menor do que a taxa de cruzamento, surge um conflito: o VPL opta por L,mas a TIR opta pelo S. Nesse caso, selecione o projeto com o maior VPL, mesmo que ele tenha a menor TIR.

Taxa Interna de Retorno

- Taxa que iguala o total de entradas com o total de saídas trazidas à data zero (entradas e saídas)
- É a rentabilidade (ou custo) de uma operação
- Deve ser comparada com rendimento de uma operação com risco semelhante

TIR Modificada (MTIR)

A TIR Modificada (MTIR) supõe que os fluxos de caixa são reinvestidos ao custo de capital (ou alguma outra taxa explicita, o que é uma suposição mais razoável).

- 1. As saídas de caixa são levadas a valor presente ao custo de capital
- 2. Cada entrada é levada para a data final do projeto pela taxa de aplicação
- 2. Então, encontramos o valor futuro de cada entrada, composta pelo custo de capital para o "ano final", que é o ano em que a ultima entrada é recebida. Assumimos que os fluxos de caixa são reinvestidos pelo custo de capital. Para o Projeto S, o primeiro fluxo de caixa, \$ 5.300, é composto pelo custo de capital = 10% para 3 anos e aumenta para \$ 7.054,00. A segunda entrada, \$ 4.300, aumenta para \$ 5.203, e a terceira, \$ 1.874, aumenta para \$ 2.061,00. A ultima entrada, \$ 1.500, é recebida no final, por isso não é composta de maneira alguma. A soma dos valores futuros, \$ 15.819, é chamada de "valor terminal", ou simplesmente TV (terminal valeu).
- 3. Agora temos o custo em t = 0, -\$ 10.000, e o TV no Ano 4, \$ 15.819,00. Existe alguma taxa de desconto que irá fazer com que o VP do valor terminal seja igual ao custo. Essa taxa de juros é definida como Taxa Interna de Retorno Modificada (MTIR). A MTIR é 12,16%.

Esquema MTIR e <u>fórmulas do excel</u>

taxa(4; 0; -10000; 15819) = 12,15%

Função MTIR(valores, taxa_financ, taxa_reinvest)

Mais MTIR:

Cálculo do VPL, a TIR e a MTIR do projeto XPTO

TAXA		
Captação	10,0%	
Aplicação	8,0%	

		Solução MTIR pel	o fluxo de caixa
Ano	Projeto XPTO	Valor em TO	Valor em T8
0	-10.000	-10.000	
1	-3.000	-2.727	
2	2.500		3.967
3	3.500		5.143
4	4.500		6.122
5	-1.800	-1.118	
6	8.000		9.331
7	4.000		4.320
8	500		500
		 10015	00.000

Total	-13.845	29.383
Taxa	9,863%	

Pela fórmula	VPL	726
	TIR	11,403%
	MTIR	9,863%