

PECS | Programa de Pós-Graduação em Engenharia de Computação e Sistemas

ALGORITMOS E ESTRUTURAS DE DADOS

Disciplina: ALGORITMOS E ESTRUTURAS DE DADOS

Carga Horária: 60h

Professor: Dr. Reinaldo

Estruturas de dados do tipo árvore

As estruturas de dados do tipo árvore são não lineares, ou seja, os elementos que as compõem não estão armazenados de forma sequencial e também não estão todos encadeados.

Conceito

- As árvores são estruturas de dados hierárquicas amplamente utilizadas em computação.
- Elas organizam informações em uma estrutura ramificada, com um nó raiz e vários nós filhos.

Conceitos básicos da árvore

Uma árvore é composta por nós, que representam informações, conectados por arestas, que representam a relação hierárquica. O nó raiz é o nó superior, e os nós filhos são conectados a ele.

Nó raiz	O nó principal da árvore, que serve como ponto de partida para navegar na estrutura de dados.
Nós filhos	Nós que estão conectados a um nó pai. Cada nó pode ter vários nós filhos.
Nó Pai	O elemento superior na hierarquia, com nós filhos conectados.
Altura da árvore	O número de níveis na árvore, medido a partir do nó raiz.

Árvores na tecnologia: exemplos de uso

As árvores são uma estrutura de dados fundamental em várias áreas da tecnologia.

Sistemas de arquivos	Organização de arquivos e pastas, com pastas como nós filhos de pastas pai.
Algoritmos de busca	Árvores binárias e árvores AVL permitem buscas eficientes em conjuntos de dados ordenados.
Compiladores	Árvores sintáticas representam a estrutura gramatical de um programa, facilitando a análise e interpretação.
Banco de dados	Árvores B são usadas para indexar dados, garantindo um acesso rápido a registros específicos.

Representações

As representações podem ser ilustradas de três formas:

Por Parênteses Aninhados

Vantagens da utilização de árvores

As árvores oferecem diversas vantagens em comparação com outras estruturas de dados, tornando-as uma escolha popular em várias aplicações.

Eficiência de busca

as ideais para grandes navegação entre eles. conjuntos de dados.

Organização hierárquica

Árvores bem balanceadas Sua estrutura hierárquica permitem busca eficiente em facilita a representação de tempo logarítmico, tornando-dados relacionados e a

Flexibilidade

As árvores podem ser usadas para representar uma ampla variedade de informações, desde estruturas de dados simples até sistemas complexos.

Desafios e limitações no uso de árvores

Complexidade

 Implementação e gerenciamento de árvores podem ser complexos, especialmente para árvores complexas e balanceadas.

Desempenho

 Árvores desbalanceadas podem levar a tempos de busca longos, impactando o desempenho do sistema.

Uso de memória

 As árvores podem ocupar uma quantidade significativa de memória, especialmente em conjuntos de dados grandes

Árvore binária

Conjunto finito de elementos, em que cada um é denominado **nó** e o primeiro é conhecido como **raiz**. Pode estar vazio ou ser particionado em três subconjuntos: 1º subconjunto (**nó raiz**), 2º subconjunto (**sub**árvore direita) e 3º subconjunto (subárvore esquerda).

Árvore binária

- a) Todos os nós de uma sub-árvore direita são maiores que o nó raiz.
- b) Todos os nós de uma sub-árvore esquerda são menores que o nó raiz.
- c) Cada sub-árvore é também uma árvore binária.
- d) O grau de um nó representa o seu número de sub-árvores.

- e) Na árvore binária, o grau máximo de um nó é 2.
- f) O grau de uma árvore é igual ao máximo dos graus de todos os seus nós.
- g) Uma árvore binária tem grau máximo igual a 2.
- h) Nó pai: nó acima e com ligação direta a outro nó.
- i) Nó filho: nó abaixo e com ligação direta a outro nó. São os nós raízes das sub-árvores.
- j) Nós irmãos: são que possuem o mesmo nó pai.
- k) Nó folha ou terminal: nó que não possui filhos.

Graus dos nós de uma árvore binária

l) Nós ancestrais: estão acima de um nó e têm ligação direta ou indireta

m) Nós descendentes: estão abaixo de um nó e possuem ligação direta ou indireta.

n) Nós descendentes direito: estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da sub-árvore direita.

o) Nós descendentes esquerdo: estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da sub-árvore esquerda.

- p) Nível de um nó: distância do nó raiz.
- q) Altura ou profundidade da árvore: nível mais distante da raiz.

r) Expressão que representa o número máximo de nós em um nível da árvore binária = 2^n , onde n é o nível em questão.

- s) Árvore estritamente binária: árvore em que todos os nós têm o ou 2 filhos.
- t) Expressão que representa o número de nós de uma árvore estritamente binária = 2n-1, onde $n \not e$ o número de nós folha.

Quantidade de nós
folha = 4.
Os nós folha são:
1, 3, 5 e 8.
Número de nós desta
árvore estritamente
binária = 2.n - 1, onde
n é o número de folhas
2.4 - 1 = 7 nós

u) Árvore completa: todos os nós com menos de dois filhos ficam no último e no penúltimo nível.

v) Árvore cheia: árvore estritamente binária e completa.

Árvore binária

- Na inserção, as propriedades da árvore devem ser obedecidas e todo novo nó é sempre uma folha.
- Na remoção, o filho da direita, que é o mais velho, assume o lugar do nó pai.
- Na consulta (em ordem, pré-ordem e pósordem), todos os nós são listados, alterando-se apenas a ordem.

Árvore binária

- Consulta em ordem: cada árvore é mostrada com o ramo da esquerda, a raiz e posteriormente o ramo da direita.
- Consulta pré-ordem: cada árvore é mostrada com a raiz, o ramo da esquerda e posteriormente o ramo da direita.
- Consulta pós-ordem: cada árvore é mostrada com o ramo da esquerda, o ramo da direita e posteriormente a raiz.

Consultas em um árvore binária

Busca

O processo de busca em árvores é normalmente feito a partir da raiz na direção de alguma de suas folhas

Naturalmente, são de especial interesse as árvores com a menor altura possível

A altura mínima de uma árvore binária com n > 0 nós é $h = 1 + \lfloor log_2 n \rfloor$

Implementação

Usando vetores

A idéia é armazenar níveis sucessivos da árvore seqüencialmente no vetor

