

SPM@TESTES

Teste de Matemática 11.º ano

2023

11.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos. (seis páginas)

VERSÃO 1

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é necessário o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Na Figura 1, está representada, num referencial
o.n. x0y, uma circunferência de raio 4.

Sabe-se que:

- o ponto C tem coordenadas (4,0);
- a circunferência tem centro na origem;
- o ponto A pertence à circunferência;
- α é a inclinação da reta $AB\left(\alpha \in \left]\frac{\pi}{2}, \pi\right[\right)$

Figura 1

- **1.2.** Para um determinado valor de α o declive da reta AC é igual a $-\frac{\sqrt{3}}{3}$. Determine as coordenadas do ponto A para esse valor de α .
- **2.** Seja f a função definida em \mathbb{R} por $f(x)=k-2a\sin(ax)$, com $a,k\in\mathbb{N}$. Sendo $D_f'=[-1,15]$ o contradomínio da função f, então o período positivo mínimo de f é:
 - (A) 8π
- (B) $\frac{\pi}{2}$
- (C) $\frac{\pi}{4}$
- (D) 4π
- **3.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \sin x \cos x$
 - **3.1.** Mostre que f é uma função periódica de período π
 - **3.2.** Determine os valores de $x \in [-\pi, \pi[$ tais que $f(x) = \sin^2 x$

4. Considere, num referencial o.n. xOy, uma reta r definida pela equação $y=\sqrt{5}~x-1$. Seja t uma reta perpendicular à reta r.

Se a inclinação da reta t for α , qual é o valor de $\sin \alpha$?

- (A) $\frac{\sqrt{6}}{6}$ (B) $\frac{\sqrt{30}}{6}$ (C) $-\frac{\sqrt{6}}{6}$
- **5.** Considere, num referencial o.n. Oxyz, o plano α de equação 2x y + z 1 = 0 e o ponto A(2, -1, 8).
 - **5.1.** Determine o raio da superfície esférica de centro em A e tangente ao plano α
 - **5.2.** Para certos valores reais de m e n, a seguinte equação vetorial define uma reta r:

$$(x, y, z) = (n, -1, -4m) + k(3m, m, m - 6), k \in \mathbb{R}$$

Determine os valores de m e n sabendo que a reta r está contida no plano α

6. Sabe-se que a sucessão (v_n) tem todos os termos positivos e $v_n \times (3 - v_n) \ge 0$, para todo o valor natural de n.

Qual das seguintes afirmações é necessariamente verdadeira?

- (A) (v_n) não é monótona
- **(B)** (v_n) é limitada
- (C) (v_n) é crescente
- **(D)** Existe um valor natural de n para o qual $\frac{v_n}{4-v_n} < 0$
- **7.** Considere duas sucessões (a_n) e (b_n) que têm as seguintes características:
 - (a_n) é uma progressão geométrica;
 - (b_n) é uma progressão aritmética;
 - Em ambas as sucessões o primeiro termo é igual a 3;
 - $a_2 = b_4 e a_3 = b_8$.

Determine a razão de cada uma das progressões.

8. Considere a sucessão (u_n) definida por $\begin{cases} u_1=10\\ u_n=u_{n+1}+2,\ n\in\mathbb{N} \end{cases}$

Qual o valor de $\lim u_n$?

(A) 0

(B) -10

(C) $+\infty$

(D) $-\infty$

- 9. Na Figura 2, estão representados, num referencial o.n. xOy, parte dos gráficos das funções f e g bem como o triângulo [OAB].
 - O ponto A é o ponto de interseção dos gráficos de f e g com abcissa positiva;
 - O ponto B é o ponto de interseção do gráfico de f com o eixo Ox;
 - A função f define-se, no respetivo domínio, por $f(x) = \frac{3x-4}{x-2}$

Figura 2

- A função g define-se, em \mathbb{R} , por $g(x) = \frac{1}{2}x + 2$
- **9.1.** Determine as coordenadas dos pontos A e B e a área do triângulo [OAB].
- **9.2.** Determine o domínio da função h definida por $h(x) = \sqrt{-f(x)}$.
- **9.3.** Para cada valor de a e de b tem-se a função j definida por j(x) = f(x a) + b. Os valores de a e de b para os quais as assíntotas vertical e horizontal do gráfico da função j coincidem, respetivamente, com os eixos Oy e Ox, são:

(A)
$$a = 3 e b = -2$$

(B)
$$a = 2 e b = 3$$

(C)
$$a = -2 e b = -3$$

(D)
$$a = 2 e b = -3$$

10. Na Figura 3, está representada, num referencial o.n. xOy, parte do gráfico da função h, bem como as respetivas assíntotas verticais, de equações x = -1, x = 0 e x = 2e a assintota horizontal y=0Sabe-se que $\lim h(u_n) = +\infty$.

Então a sucessão (u_n) pode ser definida por:

(A)
$$u_n = -\frac{1}{n+2}$$

(A)
$$u_n = -\frac{1}{n+2}$$
 (B) $u_n = 2 + \frac{(-1)^n}{n+2}$

(C)
$$u_n = -1 + \frac{1}{n+2}$$
 (D) $u_n = 2n + 5$

Figura 3

Responda a um e um só dos grupos A ou B

Se responder a mais do que um destes grupos deve indicar qual deles pretende que seja classificado.

Se não der esta indicação será classificado o grupo a que responder em primeiro lugar.

GRUPO A

11. Considere as sucessões (a_n) , (b_n) e (c_n) definidas por:

$$a_n = 4n^3 - 2n^2$$

$$a_n = 4n^3 - 2n^2$$
 $b_n = (1+2n)(5n-2n^2+1)$ $c_n = \frac{1}{\sqrt{4n^2-1}}$

$$c_n = \frac{1}{\sqrt{4n^2 - 1}}$$

- **11.1.** Calcule o valor de $\lim (a_n \times c_n)$
- **11.2.** Indique, justificando, qual o valor lógico da afirmação: $\lim a_n \neq \lim b_n$, mas $\lim \frac{a_n}{b_n} = \lim \frac{b_n}{a_n}$

GRUPO B

11. Considere as funções reais de variável real f, g e h definidas por:

$$f(x) = 2x^2 - 8$$

$$f(x) = 2x^2 - 8$$
 $g(x) = \sqrt{4x^2 - 1}$ $h(x) = x^2 - 4$

$$h(x) = x^2 - 4$$

- **11.1.** Calcule, caso exista, o valor de $\lim_{x \to 2} \left(\frac{x}{f(x)} \frac{1}{h(x)} \right)$
- 11.2. Indique, justificando, qual o valor lógico da afirmação:

$$\lim_{x \to -\infty} \frac{h(x)}{g(x)} \neq \lim_{x \to +\infty} \frac{h(x)}{g(x)}$$

FIM

Ou	Questão	1.1	1.2	2.	3.1	3.2	4.	5.1	5.2	6.	7.	8.	9.1	9.2	9.3	10.	Grupo A		Grupo B	
																	11.1	11.2	11.1	11.2
Со	tação	16	12	8	12	16	8	16	12	8	16	8	16	12	8	8	12	12	12	12

SPM@TESTES

Teste de Matemática 11.º ano

2023

11.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos. (seis páginas)

VERSÃO 2

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é necessário o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Na Figura 1, está representada, num referencial
o.n. xOy, uma circunferência de raio 4.

Sabe-se que:

- a reta CB é definida pela equação x=4;
- o ponto C tem coordenadas (4,0);
- a circunferência tem centro na origem;
- o ponto A pertence à circunferência;
- α é a inclinação da reta $AB\left(\alpha \in \left]\frac{\pi}{2}, \pi\right[\right)$

Figura 1

- **1.2.** Para um determinado valor de α o declive da reta AC é igual a $-\frac{\sqrt{3}}{3}$. Determine as coordenadas do ponto A para esse valor de α .
- **2.** Seja f a função definida em \mathbb{R} por $f(x)=k-2a\sin(ax)$, com $a,k\in\mathbb{N}$. Sendo $D_f'=[-1,15]$ o contradomínio da função f, então o período positivo mínimo de f é:
 - (A) 4π
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- **(D)** 8π
- **3.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \sin x \cos x$
 - **3.1.** Mostre que f é uma função periódica de período π
 - **3.2.** Determine os valores de $x \in [-\pi, \pi[$ tais que $f(x) = \sin^2 x$

4. Considere, num referencial o.n. xOy, uma reta r definida pela equação $y = \sqrt{5} x - 1$. Seja t uma reta perpendicular à reta r.

Se a inclinação da reta t for α , qual é o valor de $\sin \alpha$?

- (A) $-\frac{\sqrt{6}}{6}$ (B) $-\frac{\sqrt{30}}{6}$ (C) $\frac{\sqrt{6}}{6}$
- **5.** Considere, num referencial o.n. Oxyz, o plano α de equação 2x y + z 1 = 0 e o ponto A(2, -1, 8).
 - **5.1.** Determine o raio da superfície esférica de centro em A e tangente ao plano α
 - **5.2.** Para certos valores reais de m e n, a seguinte equação vetorial define uma reta r:

$$(x, y, z) = (n, -1, -4m) + k(3m, m, m - 6), k \in \mathbb{R}$$

Determine os valores de m e n sabendo que a reta r está contida em α

6. Sabe-se que a sucessão (v_n) tem todos os termos positivos e $v_n \times (3 - v_n) \ge 0$, para todo o valor natural de n.

Qual das seguintes afirmações é necessariamente verdadeira?

- (A) (v_n) é crescente
- **(B)** Existe um valor natural de n para o qual $\frac{v_n}{4-v_n} < 0$
- (C) (v_n) não é monótona
- **(D)** (v_n) é limitada
- **7.** Considere duas sucessões (a_n) e (b_n) que têm as seguintes características:
 - (a_n) é uma progressão geométrica;
 - (b_n) é uma progressão aritmética;
 - Em ambas as sucessões o primeiro termo é igual a 3;
 - $a_2 = b_4 e a_3 = b_8$.

Determine a razão de cada uma das progressões.

8. Considere a sucessão (u_n) definida por $u_n=\begin{cases} u_1=10 \\ u_n=u_{n+1}+2, \ n\in\mathbb{N} \end{cases}$

Qual o valor de $\lim u_n$?

(A)
$$-\infty$$

(B)
$$-10$$

(D)
$$+\infty$$

- 9. Na Figura 2, estão representados, num referencial o.n. x0y, parte dos gráficos das funções f e g bem como o triângulo [OAB].
 - ullet O ponto A é o ponto de interseção dos gráficos de f e g com abcissa positiva;
 - ullet O ponto B é o ponto de interseção do gráfico de fcom o eixo Ox;
 - A função f define-se, no respetivo domínio, por $f(x) = \frac{3x-4}{x-2}$

Figura 2

- A função g define-se, em \mathbb{R} , por $g(x) = \frac{1}{2}x + 2$
- **9.1.** Determine as coordenadas dos pontos $A \in B$ e a área do triângulo [OAB].
- **9.2.** Determine o domínio da função h definida por $h(x) = \sqrt{-f(x)}$.
- **9.3.** Para cada valor de a e de b tem-se a função j definida por j(x) = f(x a) + b. Os valores de a e de b para os quais as assíntotas vertical e horizontal do gráfico da função j coincidem, respetivamente, com os eixos Oy e Ox, são:

(A)
$$a = 2 e b = 3$$

(B)
$$a = 3 e b = -2$$

(C)
$$a = 2 e b = -3$$

(C)
$$a = 2 e b = -3$$
 (D) $a = -2 e b = -3$

10. Na Figura 3, está representada, num referencial o.n. xOy, parte do gráfico da função h, bem como as respetivas assíntotas verticais, de equações x = -1, x = 0 e x = 2e a assintota horizontal y=0Sabe-se que $\lim h(u_n) = +\infty$.

Então a sucessão (u_n) pode ser definida por:

(A)
$$u_n = 2n + 5$$
 (B) $u_n = -1 + \frac{1}{n+2}$

(C)
$$u_n = 2 + \frac{(-1)^n}{n+2}$$
 (D) $u_n = -\frac{1}{n+2}$

Figura 3

Responda a um e um só dos grupos A ou B

Se responder a mais do que um destes grupos deve indicar qual deles pretende que seja classificado.

Se não der esta indicação será classificado o grupo a que responder em primeiro lugar.

GRUPO A

11. Considere as sucessões (a_n) , (b_n) e (c_n) definidas por:

$$a_n = 4n^3 - 2n^2 \qquad b$$

$$a_n = 4n^3 - 2n^2$$
 $b_n = (1+2n)(5n-2n^2+1)$ $c_n = \frac{1}{\sqrt{4n^2-1}}$

$$c_n = \frac{1}{\sqrt{4n^2 - 1}}$$

- **11.1.** Calcule o valor de $\lim (a_n \times c_n)$
- **11.2.** Indique, justificando, qual o valor lógico da afirmação: $\lim a_n \neq \lim b_n$, mas $\lim \frac{a_n}{b_n} = \lim \frac{b_n}{a_n}$

GRUPO B

11. Considere as funções reais de variável real f, g e h definidas por:

$$f(x) = 2x^2 - 8$$

$$f(x) = 2x^2 - 8$$
 $g(x) = \sqrt{4x^2 - 1}$ $h(x) = x^2 - 4$

$$h(x) = x^2 - 4$$

- **11.1.** Calcule, caso exista, o valor de $\lim_{x\to 2} \left(\frac{x}{f(x)} \frac{1}{h(x)}\right)$
- 11.2. Indique, justificando, qual o valor lógico da afirmação:

$$\lim_{x\to -\infty} \frac{h(x)}{g(x)} \neq \lim_{x\to +\infty} \frac{h(x)}{g(x)}$$

FIM

Questão	1.1	1.2	2.	3.1	3.2	4.	5.1	5.2	6.	7.	8.	9.1	9.2	9.3	10.	Grupo A		Grupo B	
Questiae																11.1	11.2	11.1	11.2
Cotação	16	12	8	12	16	8	16	12	8	16	8	16	12	8	8	12	12	12	12