



# Mathematical Programming-1 Session-5

**Farkas Lemma** 

#### **Koneru Lakshmaiah Education Foundation**

(Deemed to be University estd, u/s. 3 of the UGC Act, 1956) (NAAC Accreditated "A++" Grade University)

#### **Farkas Lemma**



- Farkas' lemma is a solvability theorem for a finite system of linear in equalities in mathematics. It was originally proven by the Hungarian mathematician Gyula Farkas.
- Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming).
- It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming.



### **Farkas Lemma**



**Farkas' lemma** — Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and  $\mathbf{b} \in \mathbb{R}^m$ . Then exactly one of the following two assertions is true:

- 1. There exists an  $\mathbf{x} \in \mathbb{R}^n$  such that  $\mathbf{A}\mathbf{x} = \mathbf{b}$  and  $\mathbf{x} \geq 0$ .
- 2. There exists a  $\mathbf{y} \in \mathbb{R}^m$  such that  $\mathbf{A}^\mathsf{T} \mathbf{y} \geq 0$  and  $\mathbf{b}^\mathsf{T} \mathbf{y} < 0$ .



#### **Farkas Lemma**



• Here the notation  $x \ge 0$  means that all components of the vector x are non negative.



### Variants of Farkas Lemma



The Farkas Lemma has several variants with different sign constraints (the first one is the original version):<sup>[7]:92</sup>

- Either the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  has a solution with  $\mathbf{x} \geq 0$ , or the system  $\mathbf{A}^\mathsf{T}\mathbf{y} \geq 0$  has a solution with  $\mathbf{b}^\mathsf{T}\mathbf{y} < 0$ .
- Either the system  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  has a solution with  $\mathbf{x} \geq 0$ , or the system  $\mathbf{A}^\mathsf{T}\mathbf{y} \geq 0$  has a solution with  $\mathbf{b}^\mathsf{T}\mathbf{y} < 0$  and  $\mathbf{y} \geq 0$ .
- Either the system  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  has a solution with  $\mathbf{x} \in \mathbb{R}^n$ , or the system  $\mathbf{A}^\mathsf{T}\mathbf{y} = 0$  has a solution with  $\mathbf{b}^\mathsf{T}\mathbf{y} < 0$  and  $\mathbf{y} \geq 0$ .
- Either the system  $\mathbf{A}\mathbf{x}=\mathbf{b}$  has a solution with  $\mathbf{x}\in\mathbb{R}^n$  , or the system  $\mathbf{A}^\mathsf{T}\mathbf{y}=0$  has a solution with  $\mathbf{b}^\mathsf{T}\mathbf{y}\neq 0$ .



# Farkas Lemma: Certificate of Infeasibility



#### Farkas Lemma: Certificate of Infeasibility

Let 
$$A \in R^{m \times n}, b \in R^m \text{ and } x = [x_1, x_2, ..., x_n]^T$$
.

Then  $Ax \geq b$  has no solution or is inconsistent iff

there exists  $y \in \mathbb{R}^m$  such that:

- 1.  $y \ge 0$ ,
- 2.  $A^T y = 0$  and
- 3.  $b^T y < 0$ .

The IDEA is if we could find a vector y, such that above conditions are satisfied, then we can conclude that the given system of linear equations have no solution.



## **Example on Farkas Lemma**



#### Example:

Consider the following system of linear equations:

$$x_1 + x_2 + 2x_3 \ge 1$$
 (1)  
 $-x_1 + x_2 + x_3 \ge 2$  (2)  
 $x_1 - x_2 + x_3 \ge 1$  (3)  
 $-x_2 - 3x_3 \ge 0$  (4)

Here, 
$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & -1 & -3 \end{bmatrix}$$
,  $b = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$ 





Next we go for elimination of  $x_1$ :

$$(1) + (2) \implies$$

$$(2) + (3) \Longrightarrow$$

$$2x_2 + 3x_3 \ge 3$$

$$2x_3 \ge 3$$

$$-x_2 - 3x_3 \ge 0$$

Next we go for elimination of  $x_2$ :

$$\frac{1}{2} \times (5) \implies$$

$$x_2 + \frac{3}{2}x_3 \ge \frac{3}{2}$$

$$2x_3 \ge 3$$

$$-x_2 - 3x_3 \ge 0$$





Now,

$$(4) + (7) \implies$$

$$\frac{-3}{2}x_3 \ge \frac{3}{2}$$

$$2x_3 \ge 3$$

Next we go for elimination of  $x_3$ :

$$\frac{3}{4} \times (6) \implies$$

$$\frac{3}{2}x_3 \ge \frac{9}{4}$$

$$\frac{-3}{2}x_3 \ge \frac{3}{2}$$

If we add (8) and (9), we have

$$0 \ge \frac{15}{4}$$

(this is a contradiction)





The contradiction is due to

$$(9) + (8) = \frac{3}{4}(6) + (8)$$

$$= \frac{3}{4}[(2) + (3)] + [(4) + (7)]$$

$$= \frac{3}{4}[(2) + (3)] + (4) + \frac{1}{2}(5)$$

$$= \frac{3}{4}[(2) + (3)] + (4) + \frac{1}{2}[(1) + (2)]$$

$$= \frac{3}{4}(2) + \frac{3}{4}(3) + (4) + \frac{1}{2}(1) + \frac{1}{2}(2)$$

$$= \frac{1}{2}(1) + \frac{5}{4}(2) + \frac{3}{4}(3) + (4)$$

Therefore, the y vector is the set of the coefficients in the above equation, i.e.,  $y = \begin{bmatrix} 1/2 \\ 5/4 \\ 3/4 \end{bmatrix}$ 



#### **Koneru Lakshmaiah Education Foundation**



Now, 
$$A^{T}y = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 \\ 2 & 1 & 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1/2 \\ 5/4 \\ 3/4 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} (1) \cdot (\frac{1}{2}) + (-1) \cdot (\frac{5}{4}) + (1) \cdot (\frac{3}{4}) + (0) \cdot (1) \\ (1) \cdot (\frac{1}{2}) + (1) \cdot (\frac{5}{4}) + (-1) \cdot (\frac{3}{4}) + (-1) \cdot (1) \\ (2) \cdot (\frac{1}{2}) + (1) \cdot (\frac{5}{4}) + (1) \cdot (\frac{3}{4}) + (-3) \cdot (1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$





Also, 
$$b^T y = \begin{bmatrix} 1 & -2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1/2 \\ 5/4 \\ 3/4 \end{bmatrix}$$
  

$$= \begin{bmatrix} (1) \cdot (\frac{1}{2}) + (-2) \cdot (\frac{5}{4}) + (1) \cdot (\frac{3}{4}) + (0) \cdot (1) \end{bmatrix}$$
  

$$= \begin{bmatrix} -\frac{5}{4} \end{bmatrix} < 0$$

As the conditions are satisfied, we can conclude that the given system of equations is inconsistent.





### **End of Session**



#### **Certifying infeasibility**

solution if and only if there exists  $\mathbf{y} \in \mathbb{R}^m$  such that  $\mathbf{y}^\mathsf{T} \mathbf{A} = \mathbf{0}$  and  $\mathbf{y}^\mathsf{T} \mathbf{b} \neq \mathbf{0}$ .



A well known result in linear algebra states that a system of linear equations  $\mathbf{A}\mathbf{x} = \mathbf{b}$  (where  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{b} \in \mathbb{R}^m$ , and  $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$  is a tuple of variables) has no

It is easily seen that if such a  $\mathbf{y}$  exists, then the system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  cannot have a solution. (Simply multiply both sides of  $\mathbf{A}\mathbf{x} = \mathbf{b}$  on the left by  $\mathbf{y}^\mathsf{T}$ .) However, proving the converse requires a bit of work. A standard elementary proof involves using Gauss-Jordan elimination to reduce the original system to an equivalent system  $\mathbf{R}\mathbf{x} = \mathbf{d}$  such that  $\mathbf{R}$  has a row of zero, say in row i, with  $d_i \neq 0$ . The process can be captured by a square matrix  $\mathbf{M}$  satisfying  $\mathbf{M}\mathbf{A} = \mathbf{R}$ . We can then take  $\mathbf{y}^\mathsf{T}$  to be the ith row of  $\mathbf{M}$ .

An analogous result holds for systems of linear inequalities. The following result is one of the many variants of Farkas' Lemma:

**Theorem 2.1.** With A, x, and b as above, the system  $Ax \geq b$  has no solution if and only if there exists  $y \in \mathbb{R}^m$  such that

$$\mathbf{y} \ge \mathbf{0}, \ \mathbf{y}^\mathsf{T} \mathbf{A} = \mathbf{0}, \ \mathbf{y}^\mathsf{T} \mathbf{b} > 0.$$

In other words, the system  $\mathbf{A}\mathbf{x} \ge \mathbf{b}$  has no solution if and only if one can infer the inequality  $0 \ge \gamma$  for some  $\gamma > 0$  by taking a nonnegative linear combination of the inequalities.

This result essentially says that there is always a certificate (the m-tuple y with the prescribed properties) for the infeasibility of the system  $Ax \ge b$ . This allows third parties to verify the claim of infeasibility without having to solve the system from scratch.



#### **Koneru Lakshmaiah Education Foundation**



#### **Example.** For the system

$$2x - y + z \ge 2$$

$$-x + y - z \ge 0$$

$$-y + z \ge 0,$$

adding two times the second inequality and the third inequality to the first inequality gives  $0 \ge 2$ . Hence,  $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$  is a certificate of infeasibility.

We now give a proof of the lemma above.

**Proof of Theorem 2.1.** It is easy to see that if such a y exists, then the system Ax > b has no solution.

Conversely, suppose that the system  $\mathbf{A}\mathbf{x} \geq \mathbf{b}$  has no solution. It suffices to show that we can infer the inequality  $0 \geq \alpha$  for some positive  $\alpha$  by taking nonnegative linear combination of the inequalities in the system  $\mathbf{A}\mathbf{x} \geq \mathbf{b}$ . If the system already contains an inequality  $0 \geq \alpha$  for some positive  $\alpha$ , then we are done. Otherwise, we show by induction on n that we can infer such an inequality.

**Base case**: The system  $Ax \ge b$  has only one variable.

For the system to have no solution, there must exist two inequalites  $ax_1 \ge t$  and  $-a'x_1 \ge t'$  such that a, a' > 0 and  $\frac{t}{a} > \frac{-t'}{a'}$ . Adding  $\frac{1}{a}$  times the inequality  $ax_1 \ge t$  and  $\frac{1}{a'}$  times the inequality  $-a'x_1 \ge t'$  gives the inequality  $0 \ge \frac{t}{a} + \frac{t'}{a'}$  with a positive right-hand side. This establishes the base case.





Induction hypothesis: Let  $n \ge 2$  be an integer. Assume that given any system of linear inequalities  $\mathbf{A}'\mathbf{x} \ge \mathbf{b}'$  in n-1 variables having no solution, one can infe the inequality  $0 \ge \alpha'$  for some positive  $\alpha'$  by taking a nonnegative linear combination of the inequalities in the system  $\mathbf{A}'\mathbf{x} \ge \mathbf{b}'$ .

Apply Fourier-Motzkin elimination to eliminate  $x_n$  from  $\mathbf{A}\mathbf{x} \geq \mathbf{b}$  to obtain the system  $\mathbf{A}'\mathbf{x} \geq \mathbf{b}'$ . As  $\mathbf{A}\mathbf{x} \geq \mathbf{b}$  has no solution,  $\mathbf{A}'\mathbf{x} \geq \mathbf{b}'$  also has no solution.

By the induction hypothesis, one can infer the inequality  $0 \ge \alpha$  for some positive  $\alpha$  by taking a nonnegative linear combination of the inequalities in  $\mathbf{A'x} \ge \mathbf{b'}$ . However, each inequality in  $\mathbf{A'x} \ge \mathbf{b'}$  can be obtained from a nonnegative linear combination of the inequalities in  $\mathbf{Ax} \ge \mathbf{b}$ . Hence, one can infer the inequality  $0 \ge \alpha$  by taking a nonnegative linear combination of nonnegative linear combinations of the inequalities in  $\mathbf{Ax} \ge \mathbf{b}$ . Since a nonnegative linear combination of nonnegative linear combination of the inequalities in  $\mathbf{Ax} \ge \mathbf{b}$ , the result follows.

Remark. Notice that in the proof above, if A and b have only rational entries, then we can take y to have only rational entries as well.

Corollary 2.2. Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and let  $\mathbf{b} \in \mathbb{R}^m$ . Prove that

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

has no solution if and only if there exists  $\mathbf{y} \in \mathbb{R}^m$  such that  $\mathbf{y}^\mathsf{T} \mathbf{A} \ge \mathbf{0}$  and  $\mathbf{y}^\mathsf{T} \mathbf{b} < \mathbf{0}$ . Furthermore, if  $\mathbf{A}$  and  $\mathbf{b}$  are rational,  $\mathbf{y}$  can be taken to be rational.





#### **Worked examples**

1. You are given that the following system has no solution.

$$x_1+x_2+2x_3 \geq 1 \ -x_1+x_2+x_3 \geq 2 \ x_1-x_2+x_3 \geq 1 \ -x_2-3x_3 \geq 0.$$

Obtain a certificate of infeasibility for the system.

Hide solution

The system can be written as  $\mathbf{A}\mathbf{x} \geq \mathbf{b}$  with  $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & -1 & -3 \end{bmatrix}$  and  $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ . So we need to find  $\mathbf{y} \geq \mathbf{0}$  such that  $\mathbf{y}^\mathsf{T}\mathbf{A} = \mathbf{0}$  and  $\mathbf{y}^\mathsf{T}\mathbf{b} > \mathbf{0}$ . As the system of

equations  $\mathbf{y}^T \mathbf{A} = \mathbf{0}$  is homogeneous, we could without loss of generality fix  $\mathbf{y}^T \mathbf{b} = \mathbf{1}$ , thus leading to the system

$$\mathbf{y}^{\mathsf{T}}\mathbf{A} = \mathbf{0}$$
$$\mathbf{y}^{\mathsf{T}}\mathbf{b} = 1$$
$$\mathbf{y} \ge \mathbf{0}$$

that we could attempt to solve directly. However, it is possible to obtain a y using the Fourier-Motzkin Elimination Method.





#### Let us first label the inequalities:

$$x_1 + x_2 + 2x_3 \ge 1$$
 (1)

$$-x_1+x_2+x_3\geq 2$$
 (2)

$$x_1 - x_2 + x_3 \ge 1$$
 (3)

$$-x_2-3x_3\geq 0.$$
 (4)

Eliminating  $x_1$  gives:

$$-x_2 - 3x_3 \ge 0$$
 (4)

$$2x_2 + 3x_3 \ge 3$$
 (5)

$$2x_3 \geq 3$$
. (6)

Note that (5) is obtained from (1) + (2) and (6) is obtained from (2) + (3).

Multiplying (5) by  $\frac{1}{2}$  gives

$$-x_2-3x_3\geq 0 \qquad (4)$$

$$x_2 + \frac{3}{2}x_3 \ge \frac{3}{2}$$
 (7)

$$2x_3 \geq 3.$$
 (6)

Eliminating  $x_2$  gives: \begin{align\*\*}  $2x_3$  & \geq  $3\sim\sim\sim\sim\sim$ (6) \ - \frac{3}{2}  $x_3$  & \geq \frac{3}{2}  $\sim\sim\sim\sim$ (8) \end{align\*} where (8) is obtained from (4) + (7).

Now  $\frac{3}{4} \times (6) + (8)$  gives  $0 \ge \frac{15}{4}$ , a contradiction.

ation



To obtain a certificate of infeasibility, we trace back the computations. Note that  $\frac{3}{4}(6)+(8)$  is given by  $\frac{3}{4}((2)+(3))+(4)+(7)$ , which in turn is given by  $\frac{3}{4}((2)+(3))+(4)+\frac{1}{2}(5)$ , which in turn is given by  $\frac{3}{4}((2)+(3))+(4)+\frac{1}{2}(5)$ .

Thus, we can obtain  $0 \ge \frac{15}{4}$  from the nonnegative linear combination of the original inequalities as follows:  $\frac{1}{2}(1) + \frac{5}{4}(2) + \frac{3}{4}(3) + (4)$ .

Therefore, 
$$\mathbf{y} = \begin{bmatrix} \frac{1}{2} \\ \frac{5}{4} \\ \frac{3}{4} \\ 1 \end{bmatrix}$$
 is a certificate of infeasibility.

(Check that  $\mathbf{y}^T \mathbf{A} = \mathbf{0}$  and  $\mathbf{y}^T \mathbf{b} > \mathbf{0}$ .

2. Prove Corollary 2.2.

Show solution

3. Let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and let  $\mathbf{b} \in \mathbb{R}^m$ . Prove that

$$Ax \ge b$$
  
 $x \ge 0$ 

has no solution if and only if there exists  $\mathbf{y} \in \mathbb{R}^m$  such that  $\mathbf{y} \geq \mathbf{0}, \ \mathbf{y}^\mathsf{T} \mathbf{A} \leq \mathbf{0}$  and  $\mathbf{y}^\mathsf{T} \mathbf{b} > 0$ .

Show solution







#### **Koneru Lakshmaiah Education Foundation**