UC San Diego

IQA: Visual Question Answering in Interactive Environments

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, Ali Farhadi

Presenter: Fanbo Xiang 06/02/2020

Visual Question Answering

Who is wearing glasses? man woman

Is the umbrella upside down?

Where is the child sitting? fridge arms

How many children are in the bed?

Answer question using vision

Interactive Question Answering

Answer question with vision and interaction

IQA Setting

Challenges

- Navigate the environment
- Understanding the objects
- Interact with the objects
- Plan actions conditioned on the question

Environment

- Al2-THOR
- A Unity based environment
- Discrete actions, no dynamics

IQA Dataset

Interactive Question Answering Dataset Statistics				
	Train	Test		
Existence	25,600	640		
Counting	25,600	640		
Spatial Relationships	25,600	640		
Rooms	25	5		
Total scene configurations (s.c.)	76,800	1,920		
Avg # objects per (s.c.)	46	41		
Avg # interactable objects (s.c.)	21	16		
Vocabulary Size	70	70		

Now let's solve the problem

Q: How many mugs are in the room? A: 3

How do we approach this problem?

- Go to the counter
- Look for mugs
- Look for drawers and doors
- Open drawers and doors one by one
- Keep a counter in our head
- Answer the question

Now let's solve the problem

How do we approach this problem?

We think

 Go to the counter 	Navigator
 Look for mugs 	Detector
 Look for drawers and doors 	Scanner
 Open drawers and doors one by one 	Manipulator
 Keep a counter in our head 	Memory
 Answer the question 	Answerer
How do we decide which action to take?	

Planner

HIMN: Hierarchical Interactive Memory Network

Related works

- VQA (Answerer)
- (Hierarchical) Reinforcement learning
- Visual navigation (Navigator)
- Visual pladnning (Planner)
- Visual learning by Simulation

Semantic Memory

Since there are counting tasks, we want the agent to hold on the information of specific locations for long.

Idea: use explicit memory that encodes a representation for each location in the scene.

Semantic Memory

Egocentric Spatial GRU

Planner

RL-like module Given state (visual input, language input, memory) Produce action (which low-level controller to use)

Planner

INPUTS: Images + Previous Actions + Question

Trained with rewards. It also predicts which actions are possible.

Low level controllers

Navigator

Planner decides a position (5×5 in front of the agent) Planner(state) \rightarrow ("navigator", (x, y))

- The navigator takes the coordinate and current estimated occupancy grid and runs A^* .
- The navigator uses the esGRU to produce a new estimation of local occupancy given current visual input (supervised learning).
- The navigator invokes the scanner to find objects on its way.
- The navigator also predicts if the position is not reachable.

Scanner

Scanner simply rotates the camera up, down, left, and right. Each time it calls the **detector**.

Detector

- Object detection: YOLOv3 fine tuned on Al2-THOR.
- Depth estimation: FCRN (Fully Convolutional Residual Networks).
- It also learns what objects have interactions. (Microwave can be opened)

Manipulator

The manipulator is invoked by the planner Planner(state) \rightarrow ("manipulator", "microwave")

 Manipulator fails if the object cannot be interacted or it is too far away or out of view.

Answerer

It answers the question.

- It uses current image, the full spatial memory, and question embedding vector to predict the probability of each answer.
- The episode ends when the question is answered.

Training

- Planner: ground truth detector and navigator.
- Navigator: train by random start and random goal.
- Answerer: Pretrained with partial semantic maps which contains enough information for a correct answer.
- Detector: YOLOv3.
- Scanner and Manipulator: hard-coded.
- Joint training in the end.

Experimental Results

	Existence		Counting		Spatial Relationships	
Model	Accuracy	Length	Accuracy	Length	Accuracy	Length
Most Likely Answer Per Q-type (MLA)	50	-	25	-	50	-
A3C with ground truth (GT) detections	48.59	332.41	24.53	998.32	49.84	578.71
HIMN with YOLO [56] detections	68.47	318.33	30.43	926.11	58.67	516.23
Human (small sample)	90	58.40	80	81.90	90	43.00

A3C with ground truth detection actually performs no better than trivial solution.

Abalation study

	Existence		Counting		Spatial Relationships	
Model	Accuracy	Length	Accuracy	Length	Accuracy	Length
HIMN with YOLO [56] detections	68.47	318.33	30.43	926.11	58.67	516.23
HIMN with GT detection	86.56	679.70	35.31	604.79	70.94	311.03
HIMN with GT detection and oracle navigator (HIMN-GT)	88.60	618.63	48.44	871.12	72.50	475.55
HIMN-GT Question not given to planner	50.00	150.60	24.50	293.33	50.25	118.09
HIMN-GT No loss on invalid actions	49.84	659.28	24.84	911.46	50.00	613.50

Generalization

	Existence		Counting		Spatial Relationships	
Model	S	U	S	U	S	U
HIMN with YOLO [56] detections	73.68	68.47	36.26	30.43	60.71	58.67
HIMN with GT detections	94.00	86.56	42.38	35.31	73.38	70.94

Takeaways

- Long horizon planning problems are very hard for End-to-end RL even with some ground truth.
- A solution: compose low-level learning tasks and high-level learning tasks.
- Introducing human designed procedure can help get the task done.