正定値行列と半正定値行列

固有値がすべて 0 以上になる対称行列は、応用上さまざまな場面で現れる

ref: 線形代数セミナー

p29

◆ 半正定値行列:すべての固有値が非負(正または零)である対称行列

ref: 応用がみえる線形

● 正定値行列:すべての固有値が正である対称行列

代数 p137~138

正定値行列 A をエルミート行列(対称行列)とし、任意のベクトル $\mathbf{x} \in \mathbb{C}^n$ ($\mathbf{x} \in \mathbb{R}^n$) に対して、

が成り立つとき、A は正定値行列であるという

・ 正定値性と固有値の正実性 エルミート行列 A が正定値行列 であることと、A のすべての固有値が正の実数であることは同値 である

正定値行列 = 固有値が正

A の固有値を λ 、対応する固有ベクトルをx とすると、

$$A\mathbf{x} = \lambda \mathbf{x}$$

両辺で 変 との内積をとると、

$$(A\boldsymbol{x},\boldsymbol{x}) = \lambda(\boldsymbol{x},\boldsymbol{x}) = \lambda \|\boldsymbol{x}\|^2$$

A が正定値行列であることから、(Ax, x) > 0 が成り立ち、

$$\lambda \|\boldsymbol{x}\|^2 > 0$$

ここで、固有ベクトルは零ベクトルではないので、 $\|\boldsymbol{x}\|^2>0$ である

よって、 $\lambda \|\boldsymbol{x}\|^2 > 0$ の両辺を $\|\boldsymbol{x}\|^2$ で割ることにより、

$$\lambda > 0$$

が得られる

固有値が正 = 正定値行列

A の固有値を $\lambda_1, \ldots, \lambda_n > 0$ とする

A はエルミート行列であることから、ユニタリ行列 U を用いて次のように対角化できる

$$A = UDU^{-1} = UDU^* = U \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^*$$

随伴による内積の表現より、

$$(A\boldsymbol{x},\boldsymbol{x}) = \boldsymbol{x}^*A\boldsymbol{x} = \boldsymbol{x}^*UDU^*\boldsymbol{x}$$

ここで、 $\boldsymbol{y} = U^* \boldsymbol{x}$ とおくと、

$$\boldsymbol{y}^* = (U^*\boldsymbol{x})^* = \boldsymbol{x}^*U$$

となるので、次のように書き換えられる

$$(A\boldsymbol{x},\boldsymbol{x}) = \boldsymbol{y}^* D \boldsymbol{y} = (D\boldsymbol{y},\boldsymbol{y})$$

左辺の内積を計算すると、

$$(Doldsymbol{y},oldsymbol{y}) = egin{pmatrix} \lambda_1 y_1 & & & & \\ & \ddots & & \\ & & \lambda_n y_n \end{pmatrix} egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \ & = \lambda_1 |y_1|^2 + \dots + \lambda_n |y_n|^2$$

 $\lambda_1, \ldots, \lambda_n > 0$ であることから、すべての項が正になるので、

$$(Ax, x) = (Dy, y) > 0$$

よって、*A* は正定値行列である

半正定値行列は、正定値行列の条件に等号を含むようにしたものである

常 半正定値行列 A をエルミート行列(対称行列)とし、任意 のベクトル $\boldsymbol{x} \in \mathbb{C}^n \ (\boldsymbol{x} \in \mathbb{R}^n)$ に対して、

 $(A\boldsymbol{x},\boldsymbol{x})\geq 0$

が成り立つとき、*A* は半正定値行列であるという

♣ 半正定値性と固有値の非負実性 エルミート行列 A が半正定 値行列であることと、Aのすべての固有値が非負の実数であるこ とは同値である

対称行列を構成する行列積

スペクトル分解は対称行列に対するものだったが、これを任意の長方行列 ref: 線形代数セミナー に拡張したものが特異値分解である

p29

対称行列から任意の行列へ議論を拡張するにあたって、次の定理が重要と なる

♣ 自身の随伴行列との積で構成されるエルミート行列 A を任 意の複素行列(長方行列)とするとき、A*A および AA* はエル ミート行列である

証明

積をエルミート行列にすると順序が入れ替わることに注意して、

$$(A^*A)^* = A^*(A^*)^* = A^*A$$

よって、A*A はエルミート行列である

同様に、

$$(AA^*)^* = (A^*)^*A^* = AA^*$$

よって、*AA** もエルミート行列である

A を実行列とすれば、次が成り立つ

・ 自身の転置行列との積で構成される対称行列 A を任意の実行列(長方行列)とするとき、 $A^{T}A$ および AA^{T} は対称行列である

A*A および AA* という形の行列には、さらに固有値に関する重要な性質がある

♣ 自身の随伴行列との積で構成される半正値行列 任意の行列A に対して、AA* および A*A はともに半正値行列である

証明

エルミート行列 AA^* の固有ベクトルを ${\boldsymbol u}$ とし、その固有値を ${\boldsymbol \lambda} \in \mathbb{C}$ とすると、

$$AA^*\boldsymbol{u} = \lambda \boldsymbol{u}$$

両辺で \mathbf{u} との内積をとると、

$$(\boldsymbol{u}, AA^*\boldsymbol{u}) = \lambda(\boldsymbol{u}, \boldsymbol{u}) = \lambda \|\boldsymbol{u}\|^2$$

この左辺は、随伴公式を用いて、

$$(\boldsymbol{u}, AA^*\boldsymbol{u}) = (\boldsymbol{u}, A(A^*\boldsymbol{u}))$$
 外側の A に $= (A^*\boldsymbol{u}, A^*\boldsymbol{u})$ 随伴公式を適用 $= \|A^*\boldsymbol{u}\|^2 \ge 0$

となるので、

$$||A^*\boldsymbol{u}||^2 = \lambda ||\boldsymbol{u}||^2 \ge 0$$

ここで、固有ベクトルは零ベクトルではないので、 $\| {m u} \|^2 > 0$ である

よって、 $\lambda \|\boldsymbol{u}\|^2 \geq 0$ の両辺を $\|\boldsymbol{u}\|^2$ で割ることにより、

$$\lambda \ge 0$$

が得られる

 A^*A についても同様に、

$$(\boldsymbol{u}, A^*A\boldsymbol{u}) = (A\boldsymbol{u}, A\boldsymbol{u}) = ||A\boldsymbol{u}||^2 \ge 0$$

から、 $\lambda \geq 0$ が得られる

・ 特異値と左右特異ベクトルの対応関係 A を O でない任意 の行列とするとき、 $A^{T}A$ と AA^{T} は共通の正の固有値 σ^{2} を持ち、それぞれの固有ベクトル \boldsymbol{u} , \boldsymbol{v} は次の関係を満たす

$$A\boldsymbol{v} = \sigma \boldsymbol{u}, \quad A^{\top} \boldsymbol{u} = \sigma \boldsymbol{v}$$

AA^{T} の固有値が σ^2 と仮定した場合

 AA^{T} の固有値が非負の固有値 σ^2 を持ち、対応する固有ベクトルが \boldsymbol{u} であるとすると、

$$AA^{\mathsf{T}}\boldsymbol{u} = \sigma^2\boldsymbol{u}$$

この両辺に左から A^{T} をかけて、

$$A^{\mathsf{T}}AA^{\mathsf{T}}\boldsymbol{u} = A^{\mathsf{T}}\sigma^{2}\boldsymbol{u}$$

ここで、 $\boldsymbol{v} = \frac{A^{\top}\boldsymbol{u}}{\sigma}$ とおくと、 $A^{\top}\boldsymbol{u} = \sigma\boldsymbol{v}$ となるので、

$$A^{\mathsf{T}} A \sigma \boldsymbol{v} = \sigma^3 \boldsymbol{v}$$
$$A^{\mathsf{T}} A \boldsymbol{v} = \sigma^2 \boldsymbol{v}$$

よって、 σ^2 は A^TA の固有値でもあり、対応する固有ベクトル \boldsymbol{v} は

$$A^{\mathsf{T}}\boldsymbol{u} = \sigma \boldsymbol{v}$$

を満たす

$A^{\top}A$ の固有値が σ^2 と仮定した場合

 $A^{T}A$ の固有値が非負の固有値 σ^{2} を持ち、対応する固有ベクトルが \boldsymbol{v} であるとすると、

$$A^{\top}A\boldsymbol{v} = \sigma^2\boldsymbol{v}$$

この両辺に左から A をかけて、

$$AA^{\mathsf{T}}A\boldsymbol{v} = A\sigma^2\boldsymbol{v}$$

ここで、 $\boldsymbol{u} = \frac{A\boldsymbol{v}}{\sigma}$ とおくと、 $A\boldsymbol{v} = \sigma\boldsymbol{u}$ となるので、

$$AA^{\mathsf{T}}\sigma \boldsymbol{u} = \sigma^{3}\boldsymbol{u}$$

 $AA^{\mathsf{T}}\boldsymbol{u} = \sigma^{2}\boldsymbol{u}$

よって、 σ^2 は AA^{T} の固有値でもあり、対応する固有ベクトル $oldsymbol{u}$ は

 $A\mathbf{v} = \sigma \mathbf{u}$

を満たす