Tensors for signal and frequency estimation in subspace-based methods: when they are useful?

Nikita Khromov, Nina Golyandina

St. Petersburg State University Department of Statistical Modeling

DD.09.2025, CDAM'2025

Introduction to Singular Spectrum Analysis (SSA)

Problems that can be solved by SSA-related methods:

- Signal extraction
- Frequency estimation
- Smoothing and Noise reduction
- Signal decomposition (Trend and Periodicity extraction)
- Forecasting
- Missing data imputation
- Change in structure detection
- Many others. . .

SSA References

Books:

- J.Elsner and A.Tsonis. Singular Spectrum Analysis: A New Tool in Time Series Analysis, Plenum, 1996.
- N.Golyandina, V.Nekrutrin and A.Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques, CRC Press, 2001.
- S.Sanei and H.Hassani. Singular Spectrum Analysis for Biomedical Signals, CRC Press, 2016.
- N.Golyandina, A.Korobeynikov and A.Zhigljavsky. Singular spectrum analysis with R, Springer, 2018.
- N.Golyandina and A.Zhigljavsky. Singular Spectrum Analysis for Time Series, Springer, 2013, 2020 (2nd Edition).

Implementations:

- R Package: Rssa https://CRAN.R-project.org/package=Rssa
- Python Package: PyRssa (Python wrapper over Rssa) https://pypi.org/project/pyrssa/

Decomposition and Estimation Example

Data: Coordinates of Earth pole motion [IERS EOP 14 C04] Plotted each over time and against each other

Decomposition and Estimation Example

Decomposition of time series:

- Low-frequency component + high-frequency component
- Signal + noise
- ullet Trend + Seasonality + Noise

Extracted signal

Estimates:

Period (Days)	Damping rate
365.41	$-5.5 \cdot 10^{-6}$
433.10	$-2.2 \cdot 10^{-5}$
$\rightarrow \infty$	$2.7 \cdot 10^{-5}$

SSA Algorithm: Embedding

Input: time series $X = (x_1, x_2, \dots, x_N)$, window length L, signal rank r.

9 Embedding. Constructing the *L-Trajectory* Hankel matrix $\mathbf{X} \in \mathbb{C}^{L \times K}$ from the series X, where K = N - L + 1:

$$\mathbf{X} = \mathcal{T}^{(L)}(\mathsf{X}) = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}$$

SSA Algorithm: Decomposition, Grouping, Reconstruction

- ② **Decomposition**. Constructing the singular value decomposition (SVD) of matrix \mathbf{X} : $\mathbf{X} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \widehat{\mathbf{X}}_j$ where \mathbf{H} denotes Hermitian conjugation, U_j and V_j are left and right singular vectors of \mathbf{X} , $\sqrt{\lambda_j}$ its singular values in descending order.
- **3 Grouping**. Grouping the terms $\widehat{\mathbf{X}}_j$ from the decomposition related to the signal: $\mathbf{S} = \sum_{j=1}^r \widehat{\mathbf{X}}_j = \Pi_r \mathbf{X}$, where Π_r is the projector onto the space of matrices with rank not greater than r.
- **Quantity Reconstruction**. Applying projection onto the space of Hankel matrices: $\widetilde{\mathbf{S}} = \Pi_{\mathcal{H}} \widehat{\mathbf{S}}$, and return to the series form: $\widetilde{\mathsf{S}} = \left(\mathcal{T}^{(L)}\right)^{-1}(\widetilde{\mathbf{S}})$

Series Rank

Definition

Series X has rank d < N/2, if the rank of its L-trajectory matrix equals d for any L such that $d \leq \min(L, N - L + 1)$.

If such d exists, then X is called a series of finite rank.

If the signal S is a series of finite rank, then it is generally recommended to use rank(S) as parameter r in the SSA method

Series rank examples

- rank of S with $s_n = A\sin(2\pi\omega n + \varphi)$, $0 < \omega < 1/2$, equals 2
- rank of S with $s_n = A \exp(\alpha n)$, $\alpha \in \mathbb{C}$, equals 1

Signal Model

What we consider a signal $S = (s_1, s_2, \dots, s_N)$:

- The trajectory matrix $\mathbf{S} = \mathcal{T}^{(L)}(\mathsf{S})$ is rank-deficient (\Longrightarrow the time series is of some finite rank: $\mathrm{rank}(\mathsf{S}) = r$)
- Any signal S can be represented in the form of a finite sum:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n + i2\pi\omega_j n),$$

where $p_i(n)$ is a polynomial in n

• Real case:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n) \sin(2\pi\omega_j n + \varphi_j),$$

ESPRIT method estimates damping factors $lpha_j$ and frequencies ω_j

ESPRIT Algorithm: General Idea

Consider a signal S with elements s_n :

$$s_n = \sum_{j=1}^{2} \exp(\alpha_j n + i(2\pi\omega_j n + \varphi_j)) = A_1 z_1^n + A_2 z_2^n$$

where
$$A_j = \exp(\mathrm{i}\varphi_j)$$
, $z_j = \exp(\alpha_j + \mathrm{i}2\pi\omega_j)$

Signal subspace basis is given by

$$\mathbf{M} = egin{pmatrix} z_1 & z_2 \ z_1^2 & z_2^2 \ dots & dots \ z_1^L & z_2^L \end{pmatrix} \Rightarrow \overline{\mathbf{M}} = \underline{\mathbf{M}} egin{pmatrix} z_1 \ & z_2 \end{pmatrix} \Rightarrow \underline{\mathbf{M}}^- \overline{\mathbf{M}} = egin{pmatrix} z_1 \ & z_2 \end{pmatrix}$$

where M denotes M without the first row, \underline{M} — without the last \underline{M}^- denotes the pseudoinverse of \underline{M}

ESPRIT Algorithm

Input: same as in SSA: X, L, r

- **1** Embedding. $\mathbf{X} = \mathcal{T}^{(L)}(X)$
- ② Decomposition. $\mathbf{X} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}}$, $\mathbf{U}_r = [U_1:U_2:\ldots:U_r]$
- **§** Estimation. Finding eigenvalues z_j of matrix $\underline{\mathbf{U}}_r^- \overline{\mathbf{U}}_r$ From $z_j = \exp(\alpha_j + \mathrm{i} 2\pi \omega_j)$ parameters α_j and ω_j can be found

Multi-Channel Time Series, MSSA

$$\mathbf{X} = \left(\mathbf{X}^{(1)}, \, \mathbf{X}^{(2)}, \, \dots, \, \mathbf{X}^{(P)} \right), \qquad \mathbf{X}^{(p)} = \left(x_1^{(p)}, \, x_2^{(p)}, \, \dots, \, x_N^{(p)} \right) - \text{channels}$$

The only change in the algorithms — Embedding step:

$$\mathbf{X} = \mathcal{T}_{\text{MSSA}}^{(L)}(\mathsf{X}) = \left[\mathbf{X}^{(1)} : \mathbf{X}^{(2)} : \dots : \mathbf{X}^{(P)}\right],$$
$$\mathbf{X}^{(p)} = \mathcal{T}^{(L)}(\mathsf{X}^{(p)})$$

When to choose MSSA over SSA for each channel:

- All channels have "similar" structure
- "Supporting" channels with lower noise level

Introduction of Tensors

Tensor SVD Extensions:

- Higher-Order SVD (HOSVD)
- Canonical Polyadic Decomposition (CPD)
- T-SVD
- $(L_r, L_r, 1)$ -Decomposition

Mapping Time Series to Tensor

Some tensor decompositions

- CPD: sum of rank-1 tensors (\mathcal{A} is rank-1 if $\mathcal{A} = B \circ C \circ D$ for some vectors B, C, D, where \circ denotes an outer product).
 - Considered for signal extraction in [Kouchaki, Sanei (2013)]
 - Requires to know number of components in advance
 - Does not provide any form of orthogonality of components
 - No connection between signal rank and number of components
- T-SVD: $\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\mathrm{H}}$, where $\mathcal{D} = \mathcal{B} * \mathcal{C} \Leftrightarrow d_{ilk} = \sum_{j} b_{ijk} c_{jlk}$, subindex H denotes complex conjugation of all frontal slices, $\mathcal{U} = \mathcal{U}^{\mathrm{H}}$, $\mathcal{V} = \mathcal{V}^{\mathrm{H}}$, all frontal slices of \mathcal{S} are diagonal matrices (tubal form)
 - Considered for signal extraction and decomposition in [Trung et al. (2024)]
 - Provides some orthogonality
 - Numerical experiments show less precision than matrix-based methods

Some tensor decompositions

- $(L_r, L_r, 1)$: sum of tensors with elements of form $a_{ilk}^{(r)} = b_{il}^{(r)} d_k^{(r)}$, for some vector $D^{(r)}$ and matrix $\mathbf{B}^{(r)}$ of rank L_r (r is a sum index)
 - Considered for signal extraction and decomposition in [De Lathauwer (2011)]
 - Sparse theory and no open-source implementation
- HOSVD: $\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{k=1}^{K} z_{ilk} U_i^{(1)} \circ U_l^{(2)} \circ U_k^{(3)}$
 - Considered for signal parameter estimation in [Papy et al. (2005)], [Papy et al. (2009)]
 - Provides orthogonality of components
 - Has proven connection between number of components and signal rank

Higher-Order SVD. Higher-Order Orthogonal Iterations

$$SVD(\mathbf{X}) = \sum_{j=1}^{\text{rank}(\mathbf{X})} \sqrt{\lambda_j} U_j V_j^{\text{H}}$$

$$HOSVD(\mathcal{X}) = \sum_{i=1}^{\text{rank}_1(\mathcal{X})} \sum_{l=1}^{\text{rank}_2(\mathcal{X})} \sum_{k=1}^{\text{rank}_3(\mathcal{X})} \mathcal{Z}_{ilk} U_i^{(1)} \circ U_l^{(2)} \circ U_k^{(3)}$$

•
$$\widetilde{\mathbf{X}} = \sum_{j=1}^{R} ... \Rightarrow \left\| \mathbf{X} - \widetilde{\mathbf{X}} \right\|_{F} = \min_{\text{rank}(\widehat{\mathbf{X}}) \leqslant R} \left\| \mathbf{X} - \widehat{\mathbf{X}} \right\|_{F}$$

•
$$\widetilde{\mathcal{X}} = \sum_{i=1}^{R_1} \sum_{l=1}^{R_2} \sum_{k=1}^{R_3} \ldots \Rightarrow \left\| \mathcal{X} - \widetilde{\mathcal{X}} \right\|_F \geqslant \min_{\operatorname{rank}_m(\widehat{\mathcal{X}}) \leqslant R_m} \left\| \mathcal{X} - \widehat{\mathcal{X}} \right\|_F$$

Truncation of SVD is optimal, but truncation of HOSVD is not Iterative algorithm for finding optimal approximation – HOOI

T-SSA, T-MSSA and T-ESPRIT with HOSVD

Input: time series X, window length: (I,L) for single-channel or L for multi-channel, signal ranks $(r_1,\,r_2,\,r_3)$, d — estimation dimension for HO-ESPRIT.

- ② Decomposition & Approximation. Using (r_1, r_2, r_3) $\mathcal{X} \mapsto \operatorname{Trunc}(\operatorname{HOSVD}(\mathcal{X})) = \widetilde{\mathcal{S}} \text{ or } \mathcal{X} \mapsto \operatorname{HOOI}(\mathcal{X}) = \widetilde{\mathcal{S}}$
- Reconstruction or Estimation.
 - Reconstruction. $S = \mathcal{T}^{-1}\left(\Pi_{\mathcal{H}_T}(\widetilde{\mathcal{S}})\right)$, $\Pi_{\mathcal{H}_T}$ projector onto the space of Hankel tensors
 - **Estimation**. Finding eigenvalues z_j of matrix $\underline{\mathbf{U}}^-\overline{\mathbf{U}}$, where $\mathbf{U} = \left[U_1^{(d)}:U_2^{(d)}:\ldots:U_{r_d}^{(d)}\right]$. From $z_j = \exp(\alpha_j + \mathrm{i}2\pi\omega_j)$ damping factors α_j and frequencies ω_j of the signal can be found

Dtack Modifications

Possible problem for ESPRIT: components with close frequencies can mix into one in presence of noise. Solution: using Dstack mapping.

Consider
$$X=(x_1,\,x_2,\,\ldots,\,x_N)$$
, $M=\lfloor N/D \rfloor$, then

$$\operatorname{Dstack}_{D}(\mathsf{X}) = \mathcal{D}_{D}(\mathsf{X}) = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{D} \\ x_{D+1} & x_{D+2} & \dots & x_{2D} \\ x_{2D+1} & x_{2D+2} & \dots & x_{3D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{(M-1)D+1} & x_{(M-1)D+2} & \dots & x_{MD} \end{bmatrix}$$

$$\begin{array}{c|cccc} \mathsf{Dstack}\text{-SSA} & \mathsf{X} \mapsto \mathbf{X} = \mathcal{T}_{\mathrm{MSSA}}^{(L)} \left(\mathcal{D}_{D}(\mathsf{X})\right) \\ \hline \mathsf{Dstack}\text{-T-SSA} & \mathsf{X} \mapsto \mathcal{X} = \mathcal{T}_{\mathrm{T-MSSA}}^{(L)} \left(\mathcal{D}_{D}(\mathsf{X})\right) \end{array}$$

Undersampling:
$$\omega \mapsto \hat{\omega} = D\omega \implies \max |\omega| \leqslant \frac{1}{2D}$$

Single-Channel Case Comparison, Parameters Estimation

$$x_n = e^{\alpha_1 n} e^{2\pi i \omega_1 n} + e^{\alpha_2 n} e^{2\pi i \omega_2 n} + \zeta_n$$

 ζ_n — Complex white gaussian noise, $D(\zeta_n)=0.04^2$, $\omega_1=0.2$, $\omega_2=0.22$, $\alpha_1=\alpha_2=0$ (same results for $\alpha_1=\alpha_2<0$ and $\alpha_1<\alpha_2<0$).

Figure: RMSE of estimates for ω_1 vs window lengths $(I \times L \times K)$

Single-Channel Case Comparison, Signal Extraction

$$x_n = e^{\alpha_1 n} e^{2\pi i \omega_1 n} + e^{\alpha_2 n} e^{2\pi i \omega_2 n} + \zeta_n$$

 ζ_n — Complex white gaussian noise, $D(\zeta_n)=0.04^2$, $\omega_1=0.2$, $\omega_2=0.22$, $\alpha_1=\alpha_2=0$ (same results for $\alpha_1=\alpha_2<0$ and $\alpha_1<\alpha_2<0$).

Figure: RMSE of signal estimation vs window lengths $(I \times L \times K)$

Single-Channel Case, Dstack Parameters Estimation

$$x_n=\cos(2\pi\omega_1n)+\cos(2\pi\omega_2n)+\xi_n$$

$$\omega_1=0.02,\,\omega_2=0.0205,\,\xi_n$$
 — white gaussian noise, $\mathrm{D}(\xi_n)=0.2^2$

Figure: RMSE of estimates for frequencies by default ESPRIT (left) and Dstack variant (right). Low noise level case.

Single-Channel Case, Dstack Parameters Estimation

$$x_n=\cos(2\pi\omega_1n)+\cos(2\pi\omega_2n)+\xi_n$$

$$\omega_1=0.02,\,\omega_2=0.0205,\,\xi_n$$
 — white gaussian noise, $\mathrm{D}(\xi_n)=0.6^2$

Figure: RMSE of estimates for frequencies by default ESPRIT (left) and Dstack variant (right). High noise level case.

Single-Channel Case, Dstack Signal Extraction

$$x_n=\cos(2\pi\omega_1n)+\cos(2\pi\omega_2n)+\xi_n$$

$$\omega_1=0.02,\,\omega_2=0.0205,\,\xi_n$$
 — white gaussian noise, $\mathrm{D}(\xi_n)=0.2^2$

Figure: RMSE of signal estimate by default SSA (left) and Dstack variant (right).

Multi-Channel Case, Parameters Estimation

$$x_n^{(m)}=a_1^{(m)}e^{2\pi\mathrm{i}\omega_1n}+a_2^{(m)}e^{2\pi\mathrm{i}\omega_2n}+\zeta_n^{(m)},$$
 $\zeta_n^{(m)}$ — Complex white gaussian noise, $\mathrm{D}\left(\zeta_n^{(m)}\right)=0.2^2$, $\omega_1=0.2,~\omega_2=0.22$

Figure: RMSE of estimates for ω_1 vs window length L.

Multi-Channel Case, Signal Extraction

$$x_n^{(m)}=a_1^{(m)}e^{2\pi\mathrm{i}\omega_1n}+a_2^{(m)}e^{2\pi\mathrm{i}\omega_2n}+\zeta_n^{(m)},$$
 $\zeta_n^{(m)}$ — Complex white gaussian noise, $\mathrm{D}\left(\zeta_n^{(m)}\right)=0.2^2,$ $\omega_1=0.2,~\omega_2=0.22$

Figure: RMSE of signal estimation vs window length L.

Results and Fututre Work

Results:

- Majority of tensor-based methods have lower precision than their matrix-based counterparts for single-channel problems
- Exception is estimation of parameters for components with close frequencies in presence of high-level noise using Dstack
- For multi-channel problems tensor-based methods have generally higher precision but the difference between minimal errors is low

Future Work:

- Trying other tensor decompositions
- Implementation of tensor modifications for other SSA-based methods
- . . .

Algorithms Complexities

$$\mathcal{X} \in \mathbb{C}^{I \times L \times K}$$
, $\mathbf{X} \in \mathbb{C}^{\hat{L} \times \hat{K}}$, $I < L < K$, $\hat{L} < \hat{K}$, $I + L + K = N + 2$, $\hat{L} + \hat{K} = N + 1$

- SVD(X): $O(\hat{L}^2\hat{K})$, or $O(r\hat{L}\hat{K})$ if only need r-rank approximation, or $O(rN\log(N))$ if X is Hankel
- HOSVD(\mathcal{X}): O(ILKN), or $O(ILK(r_1+r_2+r_3))$ if only need (r_1,r_2,r_3) -rank approximation, or $O((r_1+r_2+r_3)I(L+K)\log(L+K))$ if \mathcal{X} is Hankel
- HOOI-SSA:

$$O(r_1r_2r_3(I+L+J)),$$

with linear convergence. For precision level of ε :

$$O\left(ILJ(r_1+r_2+r_3)+\frac{1}{\varepsilon}r_1r_2r_3(I+L+J)\right)$$