Cloe

- après eq 7.5 : "where s and b are considered to be uncorrelated"
- the optical modules that are separated from the source by less than 10 OMs (i.e. less than half the wall-lenght)
- "However, qualitatively comparing data and simulations is not so obvious" ==> j'aimais bien
 "hazardous" moi. Ou alors, "not straightforward". Je pense pas que "obvious" soit l'usage correcte dans ce cas.
- "We observe that $\hat{s}^{far}/\hat{d}^{far}\ll 1$, which is compatible with the lpha coefficient values, being 5% in the **worse** case".
 - o "Worse case"
 - ° Ce n'est pas plutot $ilde{s}^{far}/\hat{d}^{far}\ll 1$, ou encore $\hat{d}^{far}/\hat{d}^{close}\ll 1$? Je ne suis pas certain de comprendre.
 - ° Je ne suis pas certain de comprendre le lien avec la valeur de lpha, qui représente plutot $lpha= ilde{s}^{far}/ ilde{s}^{close}\ll 1$?
 - o Pour résumer tes résultats, je le comprends plutôt comme ceci :
 - lacktriangle lpha est petit, mais ça ne fait pas tout. Il faut aussi que b soit grand comparé à s^{far} .
 - ullet Cela semble être le cas, car \hat{d}^{far} est beaucoup plus grand que $ilde{s}^{far}$ (ou encore, $ilde{s}^{far}/\hat{d}^{far}\ll 1$). Donc \hat{d}^{far} semble contenir majoritairement autre chose que du signal, bref, du coup on se doute que c'est du background.
- Le fait lpha soit petit dans tes simulations ne te permet pas de conclure que $\hat{d}^{far}\simeq b$. Par contre, cela te permet de calculer le ratio signal-sur-background en négligeant la partie "signal" qui se trouve dans ton estimation de bruit de fond :
 - $\circ~$ Ton estimation $\hat{S}/\hat{B}=\hat{d}^{close}/\hat{d}^{far}$
 - $\circ~$ Si on développe : $\hat{S}/\hat{B} = (s^{close} + b)/(s^{far} + b)$
 - \circ Sauf que $s^{close}\gg b$, et $s^{far}\ll b$, ainsi que $s^{far}\ll s^{close}$. La derniére condition pouvant être réécrite comme $s^{far}/s^{close}\ll 1$, ou encore $lpha\ll 1$.
 - o Du coup ton estimation de signal/bruit est non-biasiée, car elle se simplifie en :
 - $\circ ~~ \hat{S}/\hat{B} \simeq s^{close}/b.$
- To sum up, in this sub-section
- Sinon tout le reste c'est bien, j'ai compris, et c'est bien écrit :)