Fonctions et équations du 2nd degré 1^{ère} Spécialité Math

Définition et représentation

Définition : Fonction du 2nd degré

On appelle fonction polynôme de degré 2 toute fonction f définie sur $\mathbb R$ par une expression de la forme

$$f(x) = ax^2 + bx + c$$

où a, b et $c \in \mathbb{R}$ avec $a \neq 0$.

Remarque:

Une fonction polynôme de degré 2 s'appelle fonction **trinôme du 2nd degré** ou **"trinôme"**.

Exemples et contre-exemples :

(1)
$$f(x) = 3x^2 - 7x + 3$$

Fonction du 2^{nd} degré $\Rightarrow a = 3$, $b = -7$ et $c = 3$

Exemples et contre-exemples :

(1)
$$f(x) = 3x^2 - 7x + 3$$

Fonction du 2^{nd} degré $\Rightarrow a = 3$, $b = -7$ et $c = 3$

(2)
$$g(x) = \frac{1}{2}x^2 - 5x + \frac{3}{5}$$

Fonction du 2^{nd} degré $\Rightarrow a = \frac{1}{2}$, $b = -5$ et $c = \frac{3}{5}$

Exemples et contre-exemples :

- (1) $f(x) = 3x^2 7x + 3$ Fonction du 2^{nd} degré $\Rightarrow a = 3$, b = -7 et c = 3
- (2) $g(x) = \frac{1}{2}x^2 5x + \frac{3}{5}$ Fonction du 2^{nd} degré $\Rightarrow a = \frac{1}{2}$, b = -5 et $c = \frac{3}{5}$
- (3) $h(x) = 4 2x^2$ Fonction du 2^{nd} degré $\Rightarrow a = -2$, b = 0 et c = 4

(4)
$$k(x) = (x - 4)(5 - 2x)$$

 $(x - 4)(5 - 2x) = (5 \times x) - (2x \times x) - (4 \times 5) + (2 \times 4x)$
 $= -2x^2 + 13x - 20$
 $k(x) = -2x^2 + 13x - 20 \Rightarrow Fonction du \ 2^{nd} \ degré \Rightarrow a = -2, \ b = 13 \ et$
 $c = -20$

(4)
$$k(x) = (x-4)(5-2x)$$

 $(x-4)(5-2x) = (5 \times x) - (2x \times x) - (4 \times 5) + (2 \times 4x)$
 $= -2x^2 + 13x - 20$
 $k(x) = -2x^2 + 13x - 20 \Rightarrow Fonction \ du \ 2^{nd} \ degré \Rightarrow a = -2 \ , \ b = 13 \ et \ c = -20$

(5)
$$m(x) = 5x - 3$$

 $m(x)$ est une fonction polynôme de degré 1 (fonction affine).

(4)
$$k(x) = (x - 4)(5 - 2x)$$

 $(x - 4)(5 - 2x) = (5 \times x) - (2x \times x) - (4 \times 5) + (2 \times 4x)$
 $= -2x^2 + 13x - 20$
 $k(x) = -2x^2 + 13x - 20 \Rightarrow Fonction \ du \ 2^{nd} \ degré \Rightarrow a = -2, \ b = 13 \ et c = -20$

- (5) m(x) = 5x 3m(x) est une fonction polynôme de degré 1 (fonction affine).
- (6) $n(x) = 5x^4 7x^3 + 3x 8$ n(x) est une fonction polynôme de degré 4.

Variations et représentation graphique

Exemple

Soit f définie sur \mathbb{R} par : $f(x) = 2x^2 - 4x + 5$. Calculons quelques valeurs de f(x).

Variations et représentation graphique

Exemple

Soit f définie sur \mathbb{R} par : $f(x) = 2x^2 - 4x + 5$. Calculons quelques valeurs de f(x).

•
$$f(-2) = 2 \times (-2)^2 - 4 \times (-2) + 5 = 21$$

•
$$f(-1) = 2 \times (-1)^2 - 4 \times (-1) + 5 = 11$$

•
$$f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

• ...

Variations et représentation graphique

Exemple

Soit f définie sur \mathbb{R} par : $f(x) = 2x^2 - 4x + 5$. Calculons quelques valeurs de f(x).

•
$$f(-2) = 2 \times (-2)^2 - 4 \times (-2) + 5 = 21$$

•
$$f(-1) = 2 \times (-1)^2 - 4 \times (-1) + 5 = 11$$

•
$$f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

• . . .

X	-2	-1	0	1	2	3	4
f(x)	21	11	5	3	5	11	21

X	-2	-1	0	1	2	3	4
f(x)	21	11	5	3	5	11	2

X	-2	-1	0	1	2	3	4
f(x)	21	11	5	3	5	11	21

Remarque

• La représentation graphique d'une fonction du 2nd degré est une **parabole**.

Remarque

• La représentation graphique d'une fonction du 2nd degré est une **parabole**.

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0$. • Si a > 0, f admet un **minimum** pour $x = \frac{-b}{2a}$.

Ce **minimum** est égal à $f\left(\frac{-b}{2a}\right)$.

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0$. • Si a > 0, f admet un **minimum** pour $x = \frac{-b}{2a}$.

- Si a > 0, f admet un **minimum** pour $x = \frac{-b}{2a}$ Ce **minimum** est égal à $f\left(\frac{-b}{2a}\right)$.
- Si a < 0, f admet un **maximum** pour $x = \frac{-b}{2a}$. Ce **maximum** est égal à $f\left(\frac{-b}{2a}\right)$.

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

- Si a > 0, f admet un **minimum** pour $x = \frac{-b}{2a}$.
 - Ce **minimum** est égal à $f\left(\frac{-b}{2a}\right)$.
- Si a < 0, f admet un **maximum** pour $x = \frac{-b}{2a}$. Ce **maximum** est égal à $f\left(\frac{-b}{2a}\right)$.

On appelle :

•
$$\alpha = \frac{-b}{2a}$$

•
$$\alpha = \frac{-b}{2a}$$

• $\beta = f\left(\frac{-b}{2a}\right)$

Propriété : Variations de
$$f(x) = ax^2 + bx + c$$

 $a < 0$ $a > 0$

x	$-\infty$	$-\frac{b}{2a}$	$+\infty$
f(x)	$-\infty$	$f(\frac{-b}{2a})$	$-\infty$

x	$-\infty$	$-\frac{b}{2a}$	$+\infty$
f(x)	+∞	/	$+\infty$
	j	$f(\frac{-b}{2a})$	

Méthode : Etudier les variations d'une fonction du 2^{nd} degré Variations de $f(x) = -x^2 + 4x - 1$.

Méthode : Etudier les variations d'une fonction du 2nd degré

Variations de
$$f(x) = -x^2 + 4x - 1$$
.

On a
$$a=-1$$
 , $b=4$ et $c=-1$.

$$\alpha = \frac{-b}{2a} = \frac{-4}{2 \times (-1)} = 2 \text{ et } \beta = f(\alpha) = f(2) = -(2)^2 + 4 \times 2 - 1 = 3$$

Méthode : Etudier les variations d'une fonction du 2nd degré

Variations de
$$f(x) = -x^2 + 4x - 1$$
.

On a
$$a=-1$$
 , $b=4$ et $c=-1$.

$$\alpha = \frac{-b}{2a} = \frac{-4}{2 \times (-1)} = 2$$
 et $\beta = f(\alpha) = f(2) = -(2)^2 + 4 \times 2 - 1 = 3$

Sommet de la parabole $\Rightarrow S(2;3)$.

Sommet de la parabole $\Rightarrow S(2;3)$.

Sommet de la parabole $\Rightarrow S(2;3)$.

a < 0 donc le tableau de variation de f est :

X	$+\infty$	2	$+\infty$
f(x)	$-\infty$	3	$-\infty$

X	$+\infty$	2	$+\infty$
f(x)	$-\infty$	3	$-\infty$

Forme factorisée

Il se peut que le polynôme du 2^{nd} degré ne se présente pas sous la forme **developpée** mais sous une forme **factorisée** comme par exemple : f(x) = (x-1)(x-2)

En effet:

$$f(x) = (x - 1)(x - 2)$$

$$= x^{2} - 2x - 1x + 2$$

$$= x^{2} - 3x + 2$$

$$\Rightarrow a = 1, b = -3 \text{ et } c = 2$$

Définition