Алгоритм Эрли

Позднякова Алиса Б05-924

4 октября 2022

Алгоритм Эрли - алгоритм, осуществляющий парсинг слова в условиях заданной КС грамматики и определяющий, принадлежит ли слово ей.

Синтаксический анализ (парсинг) – это процесс сопоставления линейной последовательности лексем (слов, токенов) языка с его формальной грамматикой.

Синтаксический анализатор (парсер) – это программа или часть программы, выполняющая синтаксический анализ.

Парсинг применяется прежде всего:

- 1. Для регулярных выражений;
- 2. Для разбора математических выражений, ЯП, структурированных форматов данных;
- 3. Для анализа естественных языков орфография, пунктуация, грамматика, машинный перевод;

Алгоритм Эрли может использоваться на этапе компиляции для построения AST-дерева из исходного кода программы.

1 Необходимые математические понятия

 $\underline{\mathrm{Def:}}$ Формальная грамматика — способ описания формального языка, представляющий собой четверку

$$\Gamma = <\Sigma, N, S \in N, P \subset ((\Sigma \cup N)^*N(\Sigma \cup N)^*) \times (\Sigma \cup N)^* >$$
, где:

- Σ алфавит, элементы которого называют терминалами;
- N множество, элементы которого называют нетерминалами;
- S начальный символ грамматики;
- P набор правил вывода $\alpha \to \beta$

 $\underline{\mathrm{Def:}}$ Контекстно-свободной грамматикой называется грамматика, у которой в левых частях всех правил стоят только одиночные нетерминалы.

Пример КС грамматики:

Правильные скобочные последовательности задаются КС грамматикой, где

- $\Sigma = \{(,)\}$ алфавит;
- $N = \{S\}$ нетерминал;
- S стартовый нетерминал;
- Р набор правил:

- 1. $S \to (S)S$
- $2. S \rightarrow S(S)$
- $S \to \epsilon$

2 Описание алгоритма Эрли

Алгормтм Эрли получает на вход KC грамматику и слово. Затем проверяет принадлежит ли это слово KC грамматике.

Алгоритм:

```
Пусть G = \langle N, \Sigma, P, S \rangle - КС грамматика; w = w_0 w_1 \dots w_{n1} - слово из символов алфавита
```

Введем понятие ситуации:

```
Ситуация - объект вида [A \to \alpha \cdot \beta, i], где A \to \alpha \beta - правило из грамматики, i - позиция буквы в слове w.
```

Алгорим Эрли - динамический алгоритм. Он состоит из n итераций построения списков ситуаций.

Список ситуаций на ј итерации обозначим D_j . Наличие ситуации $[A \to \alpha \cdot \beta, i]$ в этом списке означает, что из стартового нетерминала выводится $w = w_0 w_1 \dots w_{i1} A \delta$, а из нетерминала A выводится $w = w_i w_{i+1} \dots w_{j1}$ (то есть часть слова до ј буквы, возможно с добавлением нескольких терминальных и нетерминальных символов, выводится по правилам КС грамматики; причем часть слова от і до ј буквы выводится из нетерминала A)

Суть алгоритма заключается в том, что на каждой итерацией мы проверям выводима ли часть слова до j буквы, то есть если на n итерации список ситуаций содержит $[S \to S_1 \cdot, 0] \in D_n$

 D_{i} строится по следующим правилам:

- 1. Если $[A \to \alpha \cdot w_j \beta, i] \in D_{j-1},$ то $[A \to \alpha w_j \cdot \beta, i] \in D_j$
- 2. Если $[B \to \eta \cdot , i] \in D_j$ и $[A \to \alpha \cdot B\beta, k] \in D_i$, то $[A \to \alpha B \cdot \beta, k] \in D_j$.
- 3. Если $[A \to \alpha \cdot B\beta, i] \in D_j$ и $(B \to \eta) \in P$, то $[B \in \eta, j] \in D_j$.

Пример

Построим список разбора для строки w=(a+a) в грамматике со следующими правилами:

- ullet S o T + S
- ullet S o T
- ullet T o Fst T
- $\bullet \ T \to F$
- ullet F o (S)
- ullet F o a

D_0	D_1	D_2
Ситуация Из правила	Ситуация Из правила	
$[S' ightarrow \cdot S, 0]$ o	$[F ightarrow (\cdot S), 0]$ 1	Ситуация Из правила $[F o a\cdot,1]$ 1
$[S ightarrow \cdot T + S, 0]$ з	$\parallel [S ightarrow \cdot T + S, 1]$ з	$egin{array}{cccc} [T ightarrow a\cdot,1] & 1 \ [T ightarrow F\cdot *T,1] & 2 \end{array}$
$[S ightarrow \cdot T, 0]$ 3	$[S ightarrow \cdot T,1]$ 3	
$[T ightarrow \cdot F * T, 0]$ з	$[T ightarrow \cdot F*T,1]$ з	' '
$[T ightarrow \cdot F, 0]$ з	$[T ightarrow \cdot F,1]$ 3	$[S o T \cdot, 1]$ 2
$[F ightarrow \cdot (S), 0]$ з	$[F ightarrow\cdot(S),1]$ з	$[S \rightarrow T \cdot +S, 1]$ 2
$[F ightarrow \cdot a, 0]$ з	$[F ightarrow\cdot a,1]$ 3	$[F ightarrow (S \cdot), 0]$ 2

D_3	D_4	D_5
Ситуация Из правила $[S o T+\cdot S,1]$ 1 $[S o \cdot T+S,3]$ 3 $[S o \cdot T,3]$ 3	Ситуация Из правила $[F o a\cdot,3]$ 1 $[T o F\cdot *T,3]$ 2 $[T o F\cdot,3]$ 2	Ситуация Из правила $[F o (S) \cdot, 0]$ 1 $[T o F \cdot *T, 0]$ 2
$egin{array}{ll} [T ightarrow\cdot F*T,3] & \mathtt{3} \ [T ightarrow\cdot F,3] & \mathtt{3} \ [F ightarrow\cdot (S),3] & \mathtt{3} \ [F ightarrow\cdot a,3] & \mathtt{3} \end{array}$	$egin{array}{ccc} [S ightarrow T\cdot +S,3] ext{ 2} \ [S ightarrow T\cdot ,3] & ext{ 2} \ [S ightarrow T+S\cdot ,1] ext{ 2} \ [F ightarrow (S\cdot),0] & ext{ 2} \end{array}$	$egin{array}{ccc} [T ightarrow F\cdot,0] & 2 \ [S ightarrow T\cdot +S,0] \ 2 \ [S ightarrow T\cdot,0] & 2 \ [S' ightarrow S\cdot,0] & 2 \end{array}$

Так как $[S' o S\cdot,0]\in D_5$, то $w\in L(G)$.

Библиотека и АРІ:

Код: https://github.com/alicepozd/Erley-algo В этом же репозитории есть doxygen документация

Чтобы начать использовать модуль:

1. Соберите библиотеку erley:

Для этого выполните код, подсавив вместо path_to_project путь до директории:

- doxygen
- mkdir build
- $_{\rm 3}$ cd build
- cmake ./path_to_project
- 5 <u>make</u>

2. Алгоритм Эрли реализован в виде класса Erley. И имеет 2 public функции:

void set_grammar(const std::set<std::string>& new_grammar)

Функция, которая устанавливает КС грамматику.

Вход функции: множество правил, заданных строками вида $A \to \alpha$,

где A - нетерминал, α - некоторая последовательность терминальных и нетерминальных символов

bool predict(std::string& word)

Функция проверяет принадлежность слова к установленной в алгоритме грамматике.

Вход: строка (последовательность терминальных символов)

Выход: 0 (если слово не лежит в грамматике) / 1 (если слово лежит в грамматике)

Детали реализации:

Для реализации алгоритма дополнительно используются структуры Rule и Situation, coomветствующие описанным выше.

Алгоритм иницализируется с помощью добавления в D_0 правила $[S' \to S]$, где S - стартовый нетерминал. Сам алгоритм динамический, каждая итерация - построение і списка ситуаций. Для этого используются 3 функции:

1. Функция Scan. Применяется в начале каждого построения нового списка: проходя по всем ситуациям списка D_{i-1} проверяет выполнения правила 1, после чего добавляет в список нужную ситуацию.

Затем пока D_i изменяется последовательно выполяем следующие функции:

- 2. Функция Complete. Дополняет D_i с помощью правила 3. (отличие от остальных функций проходит по всем спискам ситуаций, а не только по D_{i-1})
- 3. Функция Predict. Дополняет D_i с помощью правила 2.

3 Тестирование

Написаны тесты для грамматик:

- 1)Задающей арифметические выражения
- 2)Задающей правильные скобочные последовательности
- 3)Для грамматики из примера выше

Тесты собираются в объект erley test.

Для запуска тестов из директории build воспользуйтесь командой:

./source/erley/erley_test

4 Ссылки

Article: Earley - An Efficient Context-Free Parsing Algorithm
http://staff.icar.cnr.it/ruffolo/progetti/projects/10.Parsing%20Earley/1970-An%20efficient%
20context-free%20parsing%20algorithm-earley.pdf

Формальные грамматики:

https://neerc.ifmo.ru/wiki/index.php?title=%D0%A4%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%B3%D1%80%D0%B0%D0%BC%D0%B0%D0%B0%D1%82%D0%B8%D0%BA%D0%B8

КС грамматики:

Алгоритм Эрли:

 $\label{local_bound_bound_bound_bound} $$ $$ https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%AD%D1%80%D0%BB%D0%B8$

Асимптотика:

https://neerc.ifmo.ru/wiki/index.php?title=%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%AD%D1%80%D0%BB,_%D0%B4%D0%BE%D0%BB%D0%B0%D0%B0%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE_%D0%BE%D1%86%D0%B5%D0%BD%D0%B0%D0%BA%D0%B8_0(n%5E2)_%D0%B4%D0%BB%D1%8F_%D0%BE%D0%BB%D0%BF%D0%BD%D0%B0%D1%87%D0%BD%D0%BB%D0%BD%D0%BB%D0%BD%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BB%D0%BD%D0%BB%D0%BD%D0%BB%D0%BD%D0%BB%D0%BB%D0%BD%D0%BB%D0%BD%D0%BD%D