Nanoscattering Software

February to July 2022

Neven Gentil supervised by **Søren Raza Nanomade Team**

Working Principle

Working Principle

Comparison with each computed radius

Set of Radius (50 nm to 100 nm)

Main Formula for simulation:

$$W_{s} = \frac{1}{2k\omega\mu} \left[\int_{\phi_{1}}^{\phi_{2}} \cos^{2}\phi \,d\phi \int_{\theta_{1}}^{\theta_{2}} \Re\left\{ \sum_{n=1}^{\infty} E_{n} (ia_{n}\xi'_{n}\tau_{n} - b_{n}\xi_{n}\pi_{n}) \left(\sum_{n=1}^{\infty} E_{n} (ib_{n}\xi'_{n}\pi_{n} - a_{n}\xi_{n}\tau_{n}) \right)^{*} \right\} \sin\theta \,d\theta$$
$$- \int_{\phi_{1}}^{\phi_{2}} \sin^{2}\phi \,d\phi \int_{\theta_{1}}^{\theta_{2}} \Re\left\{ \sum_{n=1}^{\infty} E_{n} (b_{n}\xi_{n}\tau_{n} - ia_{n}\xi'_{n}\pi_{n}) \left(\sum_{n=1}^{\infty} E_{n} (ib_{n}\xi'_{n}\tau_{n} - a_{n}\xi_{n}\pi_{n}) \right)^{*} \right\} \sin\theta \,d\theta$$

 ϕ and θ represent the spherical coordinates where the scattered light is collected

Experimental Collection Shape:

Wished Shape Applied for the Simulation:

Note: Due to the small size (nano scaled) of the particle, the shape of the incident light doesn't matter. Only the collection shape is important here.

Problem:

Integration by variables (ϕ and θ) doesn't support these kinds of shape: it's mathematically impossible to parametrize these variables in order to obtain this specific *disk* shape.

Solution:

Numerical integration being equivalent to a summation, we compute each value of the *main* equation at (ϕ, θ) then sum all of them in the wished shape.

$$h = \sin(\frac{a^2 + c^2 - b^2}{2ac})$$

$$V_1 = \frac{1}{2} cahd$$

$$V_2 = \frac{1}{3} \times \frac{(f+e)c}{2} \times h$$

$$a_1 = \frac{c_1}{1 + d_1/d_3} \quad b_1 = \frac{d_1 a_1}{d_3} \quad a_2 = \frac{c_2}{1 + d_1/d_2} \quad b_2 = \frac{d_1 a_2}{d_2}$$

$$h_a = a_2 \sin(\gamma_{d_2}) \quad h_b = b_2 \sin(\gamma_{d_1})$$

$$\gamma_{d_1} = \arccos\left(\frac{c_1^2 + c_2^2 - c_3^2}{2c_1c_2}\right) \quad \gamma_{d_2} = \arccos\left(\frac{c_2^2 + c_3^2 - c_1^2}{2c_2c_3}\right)$$

$$V_1 = \frac{d_1 b_1}{2} \times h_b \times \frac{1}{3} \quad V_2 = \frac{d_3 a_1}{2} \times h_b \times \frac{1}{3}$$

$$V_{Total} = \sum V_i \qquad V_3 = \frac{(d_2 + d_3)c_3}{2} \times h_a \times \frac{1}{3}$$

Selection (by color)

Selection (by angle)

Choose precision

- whole-low.ply
- whole-medium.ply
- whole-high.ply

Select proper angles (inside the software)

Challenge: Find the best theoretical spectrum fitting the experimental one

 n_a = 0.2 x π and n_i = 0.25 x π with "whole-high.ply"

67 nm (radius) according to the AFM measurements

Transformation on **each** theoretical spectrum: remove negative values

Transformation on **the** experimental spectrum: redistribute values in the same range of wavelength

Rescale by area: g(x) = experimental spectrum; f(x) = theoretical spectrum

$$A \times \int_{-\infty}^{+\infty} g(x)dx = \int_{-\infty}^{+\infty} f(x)dx$$

$$A = \frac{\int_{-\infty}^{+\infty} f(x)dx}{\int_{-\infty}^{+\infty} g(x)dx}$$

Compute the absolute difference in order to avoid negative compensations after integration

Best matching

Worst matching

We keep the lowest value of the area described by the green curve.

Some examples...

AFM radius: 67 nm Software: 66.8 nm AFM radius: 72 nm Software: 71.7 nm AFM radius: 82 nm Software: 82.1 nm

THE END