

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 03.11.77 (21) 2539059/23-04

с присоединением заявки № -

(23) Приоритет -

Опубликовано 25.11.79. Бюллетень № 43

Дата опубликования описания 25.11.79

(II) 698980

патентно-техническая
библиотека МГА

(51) М. Кл.²

С 07 С 101/00//
А 61 К 31/195

(53) УДК 547.466.
.07 (088.8)

(72) Авторы
изобретения

В. М. Беликов, С. В. Гордиенко, В. К. Латов
М. В. Подольский и Л. Н. Ермакова

(71) Заявитель

Ордена Ленина институт элементоорганических
соединений АН СССР

(54) СПОСОБ ПОЛУЧЕНИЯ СМЕСИ АМИНОКИСЛОТ

1
Настоящее изобретение относится к усовершенствованному способу получения смеси аминокислот, не содержащих фенилаланина, используемых для лечебного питания.

2
В настоящее время в промышленности лечебные аминокислотные смеси получают кислотным гидролизом белка, в частности крови крупного рогатого скота или казеина, соляной или серной кислотами с последующей нейтрализацией кислоты одним из известных способов и удалением фенилаланина их деминерализованных гидролизатов обработкой их активированным углем. Содержание фенилаланина по требованиям временной фармакопейной статьи в них не должно превышать 0,1% от веса сухих веществ.

3
Известен способ получения лечебных смесей аминокислот путем очистки гидролизата белка от фенилаланина с помощью активированного угля при нагревании гидролизата с углем при 75-80° в течение часа [1].

4
Метод удаления фенилаланина с помощью активированного угля требует предварительной обработки угля, заключающийся в обработке последнего уксусной или азотной кислотами с

5
последующим длительным отмыванием угля от следов кислоты, что вызывает большой расход воды. Во всех случаях уголь используется однократно, так как регенерация его длительна, трудоемка и экономически нецелесообразна. Без такой предварительной обработки угля кислотами потери ценных аминокислот повышаются до 45%.

6
В связи с этим наиболее близким к предлагаемому способу по технической сущности решением, является способ получения лечебной смеси аминокислот (гипофената), путем обработки деминерализованного с помощью аминокислоты продукта поликонденсации фенилаланимина и резорцина с формальдегидом, гидролизата крови, представляющего собой кислотный гидролизат крови крупного рогатого скота, путем подкисления его до pH 4,3 уксусной кислоты с последующей обработкой гидролизата углем, активированным в вакууме [2] и кипящей водой при 70-75°С и выделением целевого продукта путем сушки.

7
Недостатками прототипа являются.
1. Использование кислотного гидролизата лишь после предварительной деминерализации его любым из извест-

ных путей, что представляет собой отдельную стадию обработки гидролизата и часто влечет за собой необходимость немедленного высушивания деминерализованного гидролизата из-за возможности быстрого микробного заражения.

2. Потери ценных аминокислот (снижение выхода целевого продукта до 40-45%) на стадии деминерализации, а также при обработке деминерализованного гидролизата углем.

3. Недостаточная очистка целевого продукта от фенилаланина и его пептидов. Содержание фенилаланина в лечебной смеси аминокислот, выделенной по способу, описанному в прототипе, превышало 0,1%, и составляло 0,24-0,35%, а содержание фенилаланина в пептидах составляло до 10%.

Целью изобретения является устранение этих недостатков, а именно: повышение чистоты и выхода целевого продукта - лечебной смеси аминокислот.

Указанная цель достигается тем, что кислотный гидролизат казеина подвергают деминерализации на макропористом поликонденсационном ионите и полученный деминерализованный гидролизат затем пропускают через сульфокатионит в водородной форме с последующим пропусканием водного раствора аминокислот через ионит поликонденсационного типа.

Описываемый способ имеет следующие технологические стадии, включающие оптимальные условия проведения процесса.

1. Кислотный гидролизат казеина пропускают через колонку с микропористым анионитом поликонденсационного типа в гидроксильной форме, при соотношении гидролизата и анионита (1:2,2-1:2,5) с последующей промывкой двумя объемами дистиллированной воды.

2. Пропущенный через анионит гидролизат затем поступает на сильно-кислотный сульфокатионит в водородной форме с последующей промывкой катионита дистиллированной водой.

3. Десорбцию аминокислот с катионита осуществляют 4%-ным раствором амиака до полного вытеснения аминокислот.

4. Упаривание полученного водно-аммиачного раствора аминокислот проводят досуха для более полного удаления амиака.

5. Сухой остаток аминокислот растворяют в дистиллированной воде для получения 4,5-6,0%-ного раствора.

5. Полученный раствор аминокислот пропускают через макропористый анионит поликонденсационного типа, отмытый от щелочи водой до pH 8,9-9,0 в соотношении раствора и анионит

(1:1,4) с последующей промывкой водой и отбором фракций, имеющих поглощение в УФ-спектре не более $D_{258\text{nm}} = 0,11$, что свидетельствует о высокой степени очистки от фенилаланина.

7. Для получения целевого продукта отобранные нингидрин положительные фракции аминокислот высушивают в вакууме досуха при температурах, не превышающих 37-42°C.

Пропускание недеминерализованного гидролизата через колонку с макропористым анионитом - продуктом поликонденсации m -фенилендиамина и формалина с резорцином в гидроксильной форме позволило не только деминерализовать гидролизат, но и удалить все пигментные, гуминовые примеси, снизить содержание фенилаланина в 25-33 раза по сравнению с исходным содержанием его в гидролизате, а также удалить высокомолекулярные пептиды. Для отделения смеси аминокислот, находящейся в гидролизате, от сопутствующих примесей таких компонентов гидролизата, как сахара и аминосахара, а также анионов органических кислот и катионов металлов, в частности катионов железа, попадающих в гидролизат из аппаратов, гидролизат пропускают через сильно-кислотный сульфокатионит в водородной форме. Чем больше расходуется воды на промывку катионита, тем меньше остается в смеси аминокислот посторонних примесей.

Удаление из водно-аммиачной смеси аминокислот амиака необходимо для того, чтобы в очищенной смеси аминокислот было минимальное содержание амиака, перед пропусканием смеси на колонку с анионитом и значение pH раствора не превышало 6-7. Окончательное удаление фенилаланина и его пептидов происходит на стадии обработки смеси аминокислот при пропускании ее через колонку с макропористым анионитом ИА-1р в гидроксильной форме.

П р и м е р 1. 100 мл солянокислого гидролизата казеина с pH ~ 0,2, содержанием ионов хлора 6,5%, цветностью при 460 нм 0,44, содержанием аминокислот по данным аминокислотного анилиза 60,07%, в том числе фенилаланина - 1,7%, тирозина - 2,5% и триптофана - 0,04%, пропускали через колонку размером 34x400 мм, заполненную 220 мл анионита ИА-1р в гидроксильной форме. Скорость пропускания 6-9 мл/см²ч. Анионит отмыли от щелочи водой до значения pH 8,9-9,2.

Аминокислоты собирали фракционно по 25 мл, отсекая нингидринотрицательные фракции. После окончания пропускания гидролизата анионит промывали 250 мл дистиллиро-

ванной воды, продолжая собирать фракции аминокислот до значения pH 1,5.

Фракции, содержащие аминокислоты со значением pH не ниже 1,5, объединяли и определяли остаточное содержание ионов хлора. Оно составляло 1,19-1,07%, что соответствовало значению pH 3,2 - 3,6. Содержание ароматических аминокислот, определяемое по поглощению спектрофотометра при длине волны 258 нм, уменьшалось по сравнению с исходным в 25 - 33 раза, а цветность составляла 0,02 - 0,06 при зеленом светофильтре.

Пропущенный через анионит гидролизат (250-300 мл) затем поступал на колонку с сильнокислотным сульфокатионитом (100 мл) со скоростью 0,5 мл/см²·ч, катионит промывали 250 - 300 мл дистиллированной воды.

Вытеснение аминокислот с катионита осуществляли 4%-ным водным аммиаком, собирая нингидринположительные фракции. Упаривали водно-аммиачную фракцию аминокислот в вакууме до полного удаления аммиака, добавляя в колбу дистиллированную воду и вновь упаривая досуха в вакууме, в роторном испарителе на водяной бане при 37-42°C.

Сухой остаток аминокислот 4,6-5,5 г растворяли в дистиллированной воде (100 мл) и пропускали через колонку с анионитом IA-1р в гидроксильной форме (28x400 мм, 140 мл) со скоростью 6 - 9 мл/см²·ч. Анионит должен быть отмыт до значения pH 8,9 - 9,0 и не иметь поглощения (при 258 нм). После окончания пропускания раствора аминокислот, анионит

промывали дистиллированной водой - 250 - 300 мл. Аминокислоты собирали, отсекая фракции с поглощением D₂₅₈ > 0,1.

Для получения целевого продукта, отобранные нингидринположительные фракции с отсутствием поглощения при 258 нм (кроме вышеуказанных значений) объединяли и высушивали в вакууме при 37 - 42° на водяной бане. Выход аминокислот по выделению из гидролизата казеина от исходного содержания составлял 60 - 55%, с содержанием фенилаланина менее 0,1%.

Технико-экономические показатели. Описываемый способ позволяет значительно повысить чистоту лечебной смеси аминокислот. В целевом продукте содержание фенилаланина не превышает 0,1%, что в 2 - 3 раза превышает чистоту по фенилаланину по сравнению с прототипом.

Кроме того, особенно важно, что в полученной по предлагаемому способу смеси аминокислот не остается пептидов фенилаланина, что доказывается кислотным гидролизом целевого продукта и последующего аминокислотного анализа полученного гидролизата.

Помимо этого выход целевого продукта от исходного содержания в гидролизате казеина составляет 55-60%, что на 25 - 30% выше, чем в продукте, получаемом по прототипу. Аминокислотный состав целевого продукта, выделенного по описываемому способу и продукта после кислотного гидролиза представлены в таблице.

Аминокислоты	Исходный кислотный гидролизат казеина, %	Смесь аминокислот после ионообменной обработки по предлагаемому способу, %	
		после гидролиза	после дегидролиза
Лизин	5,4	1,08	1,86
Гистидин	0,65	0,00	0,26
Аммиак	1,10	0,62	0,90
Аргинин	0,60	0,00	0,26
Аспарагиновая кислота	6,56	7,12	9,52
Тreonин	2,75	4,31	7,50
Серин	2,92	6,71	9,50

Продолжение табл.

Аминокислоты	Исходный кислотный гидролизат казеина, %	Смесь аминокислот после ионообменной обработки по предлагаемому способу, %	
		после гидролиза	после дегидролиза
Глутаминовая кислота	16,60	20,77	29,00
Пролин	7,10	13,14	15,00
Глицин	1,60	2,01	3,60
Аланин	0,98	3,52	6,70
Валин	2,40	3,77	7,50
Метоконин	1,26	0,55	0,29
Изолейцин	1,65	1,77	3,91
Лейцин	4,30	5,27	8,90
Тирозин	2,50	0,00	0,00
Фенилаланин	1,70	0,00	0,00
Триптофан	0,04	0,00	0,00
Сумма аминокислот	60,07%	70,63%	99,40%

Формула изобретения

35

Способ получения смеси аминокислот из кислотного гидролизата белка путем его деминерализации с помощью анионита с последующим удалением из гидролизата фенилаланина и выделением целевого продукта путем сушки в вакууме, отличающийся тем, что, с целью повышения качества и выхода целевого продукта, в качестве анионита используют макропористый поликонденсационный ионит

40

и полученный деминерализованный гидролизат затем пропускают через сульфокатионит в водородной форме с последующим пропусканием водного раствора аминокислот через ионит поликонденсационного типа.

Источники информации, принятые во внимание при экспертизе

1. Патент Польши 51.391, 1966, кл. 30 h 2/04.
2. Авторское свидетельство СССР № 271720, кл. А 61 К 34/15, 1972 (прототип).

Составитель Л. Иофе
 Редактор Е. Виноградова Техред С. Мигай Корректор М. Вигула
 Заказ 7148/24 Тираж 513 Подписьное
 ЦНИИПИ Государственного комитета СССР
 по делам изобретений и открытий
 113035, Москва, Ж-35, Раушская наб., д. 4/5
 Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4