Universidade Federal de São Paulo – UNIFESP

Segurança Computacional

Aula 04: Gerenciamento de chaves e Criptografia de chave pública

Prof. Valério Rosset 2015-1

Criptografia simétrica

Gerenciamento de chaves

- Utilização puramente de criptografia simétrica em ambientes distribuídos é pouco aplicável em virtude do problema de distribuição chaves.
- Esse problema ocorre porque nesse modelo de criptografia se torna necessário o conhecimento prévio de uma chave pelas partes envolvidas.

Criptografia simétrica

Gerenciamento de chaves

Criptografia simétrica

Gerenciamento de chaves

 Para que isso ocorra é necessário que A e o KDC conhecam Ka e B e KDC conheçam Kb (essas chaves são chamadas chaves mestras).

Criptografia Assimétrica ou de chave Pública

- Princípios:
 - Existem duas chaves distintas que podem ser usadas para decifrar ou cifrar informações.
 - Cada uma dessas chaves decifra o resultado da outra
 - Uma dessas chaves é um segredo e é chamada chave privada
 - Outra é distribuída livremente para qualquer indivíduo (chave pública)

Propriedades

Confidencialidade

Criptografia de chave Pública Propriedades

Autenticidade

Criptografia de chave Pública Propriedades

Confidencialidade + Autenticidade

- Formato
 - $C = M^e \mod n$
 - $M = C^d \mod n$
- Requisitos:
 - p,q : dois primos (priv. escolhidos)
 - n = p.q; (público, calculado)
 - e, com mdc (Φ (n), e) = 1; (pub, escolhido)
 - $d \equiv e^{-1} \pmod{\Phi(n)}$ (priv. calculado)

Onde: $\Phi(n)$ é a função Totiente de Euler, # de inteiros positivos relativamente primos e menores a n, $\Phi(1)=1$, $\Phi(6)=2$, $\Phi(11)=10$...

Dois # são relativamente primos se o único divisor comum for 1. Equivalente à mdc(a,b)=1.

RSA – Geração de chaves

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

- Choose two large primes p, q
- 2. Compute n = p * q
- 3. Compute $\Phi(n) = (p-1) * (q-1)$
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n)-1\}$ such that $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key d such that $d * e \equiv 1 \mod \Phi(n)$
- **6. RETURN** $k_{pub} = (n, e), k_{pr} = d$

RSA – Geração de chaves Exemplo

- 1. Selecione 2 primos, p = 17 and q = 11.
- 2. Calcule $n = pq = 17 \times 11 = 187$.
- 3. Calcule $\Phi(n) = (p-1)(q-1) = 16 \times 10 = 160$.
- 4. selecione e sendo relativamente primo a $\Phi(n) = 160$ e menor que $\Phi(n)$: e = 7.
- 5. Determine d assumindo que: $de \equiv 1 \pmod{160}$, d < 160. o valor será d = 23, porque $23 \times 7 = 161 = 10 \times 160 + 1$; d poderá ser calculado usando o Alg. Ext. de Euclides.

RSA – Aplicação

Exemplo

RSA - Exemplo

Criptografia de chave pública Gerenciamento de chaves

- Modelos:
 - Anúncio público
 - Diretório
 - Autoridade de Chave pública
 - Certificados

Criptografia de chave pública Gerenciamento de chaves

- Anúncio público
 - Enviam a todos a sua chave pública

- Problema:
 - Falsificação de anúncio ...

Criptografia de chave pública Gerenciamento de chaves

Diretório

- Usuários publicam suas chaves em um diretório.
- Inclusão dessas chaves necessita de acordo prévio.

 Necessita de uma autoridade de controle, porém pode sofrer com ataques sobre as chaves dessa autoridade.

Criptografia de chave pública Gerenciamento de chaves

Autoridade de Chave Pública

Criptografia de chave pública Gerenciamento de chaves

- Autoridade de Chave Pública
 - Desvantagens:

Gargalo para essa entidade

Diretório sujeito a violação

Criptografia de chave pública Gerenciamento de chaves

Certificados de Chave Pública

- Não necessita contactar a autoridade certificadora
- Ideia básica é disponibilizar um conjunto de chave publica de usuários criado com a chave privada da certificadora.
- Qualquer usuário pode usar esse certificado para confirmar a chave publica de outro.

Criptografia de chave pública Gerenciamento de chaves

Certificados de Chave Pública

Criptografia de chave pública Criptoanálise

- Vúlnerável a força bruta
 - Contramedida natural é o aumento do tamanho da chave
 - Entretanto quanto maior a chave menor o desenpenho do processo de cifragem e decifragem.
- Encontrar a chave privada a partir da chave pública
- Ataque de mensagem conhecida.
 - Reduçao do problema ao número de mensagens possíveis

Criptografia de chave pública Distribuição de chaves secretas (sessão)

- A distribuição de chaves públicas impede a interceptação e violação de informações.
- Desempenho dos protocolos de chave pública quando aplicados a troca de mensagens em grande volume não é satisfatório.
- Utilizamos o esquema de chave pública para transferir de modo seguro uma chave de sessão comum.

Distribuição de chaves secretas (sessão)

- Distribuição simples de chave (Merkle 79).
 - 1) A calcula PUa e envia a B (PUa | IDa)e
 - 2) B gera Ks e envia para A.
 - 3) A calcula D(PRa, E(Pua,Ks))
 - 4) A e B trocam mensagens usando Ks

Criptografia de chave pública Distribuição de chaves secretas (sessão)

- PROBLEMA: O esquema proposto por Merkle é vulnerável ao ataque man-in-the-middle:
 - 1) Bisbilhoteiro intercepta a mensagem inicial de A e envia a B : (PUbisbilhteiro, IDA).
 - 2) B gera Ks e envia E(PUbisbilhoteiro,Ks)
 - 3) Bibilhoteiro agora tem Ks e o transmite para A: E(Pua,Ks)

Distribuição de chaves secretas (sessão)

- Solução 1 : (NEED 78)
 - 1) Assumindo que ambos já conheçam suas chaves públicas.

Criptografia de chave pública Distribuição de chaves secretas (sessão)

• Exercício :

1) Formule um processo de troca de chaves otimizado para a solução 1 proposta.

Distribuição de chaves secretas (sessão)

- Solução 2:
 - 2) Um esquema mais enxuto. A é cliente e B é um servidor.

Distribuição de chaves secretas (sessão)

 Os esquemas apresentados precisam necessariamente de um cálculo de um par de chaves e também sua publicação em algum local.

 Um esquema alternativo para a troca de chaves de sessão pode ser alcançado através do mesmo princípio da criptografia de chave pública, porém sem a necessidade do cálculo e distribuição do par de chaves dos pares envolvidos na comunicação.

Acordo de chaves Diffie-Hellman

- Esse esquema deu origem a criptografia de chave pública [1976].
- Algoritmo permite acordar sobre um valor de chave comum entre 2 participantes.
- Funcionalidade restrita apenas para troca de chaves.

Criptografia de chave pública Acordo de chaves Diffie-Hellman

- Fundamentação:
 - Consiste na dificuldade em computar logaritmos discretos.
 - Sendo a uma raiz primitiva de um primo p e b um inteiro qualquer, existe um expoente i único que satifaz a seguinte condição:

 $b \equiv a^i \pmod{p}$ em que $0 \le i \le (p-1)$

A raiz primitiva de um primo p é aquele cuja as potências módulo p geram todos os inteiros entre 1 até p-1 (em Z_p^*). Onde os números: a mod p, a² mod p, ..., a^{p-1} mod p; são distintos.

Acordo de chaves Diffie-Hellman

Regra:

$$K = (Yb)^{Xa} \equiv (Ya)^{Xb} \mod q$$

- Existem dois números públicos:
 - Um primo q
 - Uma raiz primitiva de q : α
- A seleciona Xa < q (priv.) e calcula
 - Ya = α^{Xa} mod q (pública)
- B faz o mesmo Xb < q :
 - Yb = α^{Xb} mod q (pública)

Global Public Elements

q prime number

 α $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private X_A

 $X_A < q$

Calculate public Y_A

 $Y_A = \alpha^{X_A} \mod q$

User B Key Generation

Select private X_B

 $X_B < q$

Calculate public Y_B

 $Y_R = \alpha^{X_B} \mod q$

Acordo de chaves Diffie-Hellman

- Para finalizar o processo, A e B trocam suas chaves públicas e calculam uma chave de sessão K:
- A calcula:
 - $K = (Yb)^{Xa} \mod q$
- B calcula:
 - $K = (Ya)^{Xb} \mod q$

Acordo de chaves Diffie-Hellman

Exemplo:

- Sejam $q = 353 e \alpha = 3$:
 - A seleciona Xa = 97 < 353
 - B seleciona Xb = 233 < 353
- A e B Calculam:
 - Ya = 3^{97} mod 353 = 40
 - Yb = $3^{233} \mod 353 = 248$
- Depois
 - A: K = 248 ⁹⁷ mod 353 = **160**
 - B: $K = 40^{233} \mod 353 = 160$

Acordo de chaves Diffie-Hellman

Exercício:

1) Calcule a Chave K, assumindo que q = 353, α= 3, Xa= 98 e Xb = 234.

Criptografia de chave pública Acordo de chaves Diffie-Hellman

Exercício 1:

- Sejam $q = 353 e \alpha = 3$:
 - A seleciona Xa = 98 < 353
 - B seleciona Xb = 234 < 353
- A e B Calculam:
 - Ya = 3 98 mod 353 = 120
 - Yb = $3^{234} \mod 353 = 38$
- Depois
 - A: K = (38) 98 mod 353 = **336**
 - B: K = (120) ²³⁴ mod 353 = 336

Acordo de chaves Diffie-Hellman

- Quebra da Chave :
- Um atacante pode calcular Xa e Xb visto que :
 - q =353, α = 3, Ya = 40 e Yb = 248 : são conhecidos
- Por :
 - $3^{Xa} \mod 353 = 40$ ou $3^{Xb} \mod 353 = 248$
 - Nesse caso é possível estimar os valores através de força bruta
- Porém a complexidade em se determinar Xa e Xb com números primos grandes torna esse processo impraticável.

Atividade

 Desenvolva um método/classe que implemente a de troca de chaves de sessão baseado no modelo de Diffie e Hellman para a aplicação de chat seguro.

Prática 3

 Implemente um algoritmo de força bruta para encontrar a chave K utilizada para a criptografia de mensagens utilizadas no Chat_Seguro com RC4.

Busca por palavras ou mensagens conhecidas:

 Por convenção assuma que as mensagens trocadas no Chat será utilizado o seguinte conjunto de strings conhecidas:

Ola; Como vai?; Bom dia!; Boa Tarde.; Tudo bem?; Sim.; Nao.; Adeus; Ate logo; lol; :); :(; ok; td bem; sem problemas; tchau; reuniao; me liga; obrigado!; de nada; muito obrigado; :0;.

 Simule a captura de algumas conversas entre dois grupos e aplique o algoritmo de força bruta para encontrar o valor da chave do