Group_9_Analysis

Brent Strong, Enyu Li, Haotian Wang, Honjin Ren, Mu He3/7/2022

Exploratory Data Analysis

Have a look of summary statistics of raw data

Table 1: Summary statistics of continuous variables in the data set.

Variable	Mean	SD	Min.	1st Q.	Median	3rd Q.	Max.
aroma	7.57	0.39	0	7.42	7.58	7.75	8.75
flavor	7.52	0.40	0	7.33	7.58	7.75	8.67
acidity	7.54	0.39	0	7.33	7.50	7.75	8.58
$category_two_defects$	3.67	5.41	0	0.00	2.00	5.00	55.00
$altitude_mean_meters$	1850.69	9392.09	1	1100.00	1310.64	1600.00	190164.00
harvested	2013.67	1.81	2010	2012.00	2014.00	2015.00	2018.00

The following table is the number of batches and the proportion of good quality for each country.

Table 2: Summary statistics of the sepal length by species of irises

country_of_origin	number_of_batch	Proportion_of_good_quality
Brazil	116	0.47
Burundi	2	0.50
China	14	0.64
Colombia	158	0.80
Costa Rica	41	0.56
Cote d?Ivoire	1	0.00
Ecuador	3	0.33
El Salvador	20	0.70
Ethiopia	38	0.92
Guatemala	152	0.50
Haiti	5	0.20
Hawaii	62	0.55
Honduras	48	0.25
India	10	0.50
Indonesia	16	0.56
Japan	1	1.00
Kenya	24	0.92
Laos	2	0.00
Malawi	11	0.09
Mauritius	1	0.00
Mexico	203	0.27
Myanmar	6	0.00
Nicaragua	23	0.22
Panama	4	0.75
Peru	9	0.56
Philippines	5	0.40
Puerto Rico	3	0.33
Taiwan	62	0.42
Tanzania	32	0.50
Thailand	23	0.70
Uganda	32	0.78
United States	9	0.67
Vietnam	8	0.50
Zambia	1	0.00

The following boxplot is for good quality rates for each country, in which we can check if any countries have unusual high or low good quality rate. It seems like all good quality rates lie in IQR.

Figure 1: Boxplots of good quality rate for each country.

The following table filter countries and its number of batch with 20% good quality rate before and after, which provides more detailed information than the above boxplot. The number of batch can imply the reliability. For instance, Colombia has a relatively high good quality rate with large number of batch.

Table 3: Origins with twenty percent good quality rate before and after

country_of_origin	$good_quality_porprotion$	$number_of_batch$
Cote d?Ivoire	0.00	1
Laos	0.00	2
Mauritius	0.00	1
Myanmar	0.00	6
Zambia	0.00	1
Malawi	0.09	11
Haiti	0.20	5
El Salvador	0.70	20
Thailand	0.70	23
Panama	0.75	4
Uganda	0.78	32
Colombia	0.80	158
Ethiopia	0.92	38
Kenya	0.92	24
Japan	1.00	1

The following table is the distribution of features between coffee in good and poor quality. We can check if there is any obvious difference in some features.

Table 4: Summary statistics of the sepal length by species of irises

Variable	Qualityclass	n	Mean	SD	Min	Median	Max	IQR
aroma	Good	588	7.76	0.23	7.08	7.75	8.75	0.08
aroma	Poor	557	7.37	0.41	0.00	7.42	8.25	0.16
flavor	Good	588	7.74	0.23	7.00	7.67	8.67	0.16
flavor	Poor	557	7.29	0.42	0.00	7.33	8.08	0.17
acidity	Good	588	7.72	0.25	6.75	7.67	8.58	0.16
acidity	Poor	557	7.34	0.40	0.00	7.33	8.33	0.17
category_two_defects	Good	588	2.87	3.82	0.00	2.00	40.00	2.00
category_two_defects	Poor	557	4.52	6.60	0.00	2.00	55.00	4.00
altitude_mean_meters	Good	588	1431.04	629.05	1.00	1450.00	11000.00	255.16
altitude_mean_meters	Poor	557	2281.15	13346.02	1.00	1250.00	190164.00	200.00
harvested	Good	588	2013.74	1.90	2010.00	2014.00	2018.00	1.00
harvested	Poor	557	2013.59	1.71	2010.00	2013.00	2018.00	2.00

Figure 2: Boxplots2 of countinous features on different quality class.

There are several observations with extremly high altitude which are impossible. Hence, delete observations which have altitude higher than Mt. Everest.

Figure 3: Histogram and boxplot for altitude after removing implausable observations.

The following two histograms comparing distributions of altitude before and after removing implausible observations.

Figure 4: Histogram for altitude befor and after removing implausable observations.

The following table is the distribution of featers between good and poor coffee. We can check if there is obvious difference in some features between good and poor coffee after data cleaning.

Table 5: Summary statistics of features of good and poor coffee

Variable	Qualityclass	\mathbf{n}	Mean	SD	Min	Median	Max	IQR
aroma	Good	477	7.76	0.23	7.17	7.75	8.75	0.08
aroma	Poor	463	7.38	0.43	0.00	7.42	8.25	0.16
flavor	Good	477	7.74	0.22	7.25	7.67	8.67	0.16
flavor	Poor	463	7.30	0.43	0.00	7.33	8.08	0.17
acidity	Good	477	7.72	0.24	7.08	7.67	8.58	0.16
acidity	Poor	463	7.33	0.43	0.00	7.33	8.33	0.17
category_two_defects	Good	477	2.83	3.84	0.00	2.00	40.00	2.00
category_two_defects	Poor	463	4.43	6.43	0.00	2.00	47.00	4.00
altitude_mean_meters	Good	477	1410.98	451.40	1.00	1450.00	3850.00	250.00
altitude_mean_meters	Poor	463	1236.91	500.90	1.00	1250.00	4287.00	200.00
harvested	Good	477	2013.76	1.90	2010.00	2014.00	2018.00	1.00
harvested	Poor	463	2013.63	1.72	2010.00	2013.00	2018.00	2.00

Here is 6 box-plots comparing features distribution between good and poor coffee after data cleaning

Figure 5: Boxplots of countinous features on different quality class after data cleaning.

Formal Analysis Using Logistic Regression

Number of Fisher Scoring iterations: 4

Firstly we fit a model using altitude levels as the only explanatory variable.

```
Call:
glm(formula = Qualityclass ~ level - 1, family = binomial(link = "logit"),
    data = coffee_final)
Deviance Residuals:
   Min
            1Q
                                   Max
               Median
                            3Q
-1.286 -1.286
                 1.073
                         1.073
                                 1.369
Coefficients:
       Estimate Std. Error z value Pr(>|z|)
level1 -0.43891
                   0.18321
                            -2.396 0.01659 *
level2 -0.40968
                            -2.823 0.00476 **
                   0.14513
level3 0.25131
                   0.08175
                             3.074
                                    0.00211 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1290.6 on 931 degrees of freedom
Residual deviance: 1267.1 on 928 degrees of freedom
AIC: 1273.1
```

Table 6: confidence interval of estimated parameters

	Estimate	Std error	P_value	Lower_ci	Upper_ci
level1	-0.44	0.18	0.02	-0.80	-0.08
level2	-0.41	0.15	0.00	-0.70	-0.13
level3	0.25	0.08	0.00	0.09	0.41

If the level of altitude is the only explanatory variable in the model, the effect of three levels are all statistically significant. In detail, high altitude has a positive influence on the quality of coffee.

Secondly, we fit a model using harvested year as the only explanatory variable.

```
Call:
glm(formula = Qualityclass ~ year - 1, family = binomial(link = "logit"),
   data = coffee_final)
Deviance Residuals:
   Min
             10 Median
                               30
                                      Max
                                   1.3683
-1.7125 -1.1774
                0.7244
                           1.1146
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
year2010 1.204e+00 4.655e-01 2.587 0.009694 **
year2011 1.012e+00 4.129e-01
                               2.450 0.014277 *
year2012 -4.383e-01 1.283e-01 -3.417 0.000634 ***
year2013 1.495e-01 1.733e-01
                               0.863 0.388102
year2014 3.093e-15 1.436e-01
                               0.000 1.000000
year2015 1.699e-01 1.848e-01
                               0.919 0.357851
year2016 2.144e-01 1.982e-01
                               1.082 0.279346
year2017 -1.133e-01 2.752e-01 -0.412 0.680441
year2018 9.555e-01 5.262e-01
                               1.816 0.069408 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1290.6 on 931 degrees of freedom
Residual deviance: 1257.3 on 922 degrees of freedom
AIC: 1275.3
```

Table 7: confidence interval of estimated parameters

	Estimate	Std error	P_value	Lower_ci	Upper_ci
year2010	1.20	0.47	0.01	0.35	2.21
year2011	1.01	0.41	0.01	0.24	1.88
year2012	-0.44	0.13	0.00	-0.69	-0.19

If harvested year is the only explanatory variable in the model, the effects of year 2010, 2011 and 2012 are statistically significant. Coffee harvested in year 2012 has a higher odds ratio. Coffee harvested in year 2010 and 2011 has a lower odds ratio.

Then, we fit a model using country of region as the only explanatory variable.

```
Call:
```

```
Deviance Residuals:
```

Min 1Q Median 3Q Max -2.14597 -1.01655 0.00036 1.08424 2.18993

Coefficients:

Estimate Std. Error z value Pr(>|z|)country of originBrazil 6.596e-02 2.098e-01 0.314 0.75320 country_of_originBurundi 0.000e+00 1.414e+00 0.000 1.00000 country_of_originChina 5.878e-01 5.578e-01 1.054 0.29197 country_of_originColombia 1.563e+00 2.345e-01 6.666 2.64e-11 *** country_of_originCosta Rica 2.231e-01 3.354e-01 0.665 0.50587 -0.007 0.99449 country_of_originCote d?Ivoire -1.657e+01 2.400e+03 country_of_originEcuador -1.570e-16 1.414e+00 0.000 1.00000 country_of_originEl Salvador 1.816 0.06941 . 9.555e-01 5.262e-01 country_of_originEthiopia 1.657e+01 5.003e+02 0.033 0.97359 country_of_originGuatemala 7.878e-02 1.776e-01 0.444 0.65736 -1.386e+00 1.118e+00 -1.240 0.21500 country_of_originHaiti country of originHawaii 1.657e+01 2.400e+03 0.007 0.99449 country_of_originHonduras -1.070e+00 3.345e-01 -3.200 0.00137 ** 0.000 1.00000 country_of_originIndia 0.000e+00 6.325e-01 0.533 0.59425 country_of_originIndonesia 2.877e-01 5.401e-01 country_of_originKenya 2.197e+00 7.454e-01 2.948 0.00320 ** -1.657e+01 1.697e+03 -0.010 0.99221 country_of_originLaos country of originMalawi -2.303e+00 1.049e+00 -2.195 0.02813 * -1.657e+01 2.400e+03 -0.007 0.99449 country_of_originMauritius country_of_originMexico -1.046e+00 1.612e-01 -6.488 8.68e-11 *** country_of_originMyanmar -1.657e+01 9.796e+02 -0.017 0.98651 -1.204e+00 6.583e-01 -1.829 0.06740 . country_of_originNicaragua country_of_originPanama 1.099e+00 1.155e+00 0.951 0.34139 country_of_originPeru -1.657e+01 2.400e+03 -0.007 0.99449 -4.055e-01 9.129e-01 country_of_originPhilippines -0.444 0.65692 country_of_originPuerto Rico -6.931e-01 1.225e+00 -0.566 0.57143 country_of_originTaiwan -3.909e-01 2.700e-01 -1.448 0.14769 country_of_originTanzania -6.899e-02 3.716e-01 -0.186 0.85271 country_of_originThailand 2.877e-01 5.401e-01 0.533 0.59425 1.190e+00 4.317e-01 country_of_originUganda 2.756 0.00585 ** country of originUnited States 6.931e-01 7.071e-01 0.980 0.32696 country_of_originVietnam 2.877e-01 7.638e-01 0.377 0.70642 country_of_originZambia -1.657e+01 2.400e+03 -0.007 0.99449

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.6 on 931 degrees of freedom Residual deviance: 1072.7 on 898 degrees of freedom

AIC: 1138.7

Table 8: confidence interval of estimated parameters

	Estimate	Std error	P_value	Lower_ci	Upper_ci
country_of_originColombia	1.56	0.23	0.00	1.12	2.05
$country_of_originHonduras$	-1.07	0.33	0.00	-1.77	-0.44
country_of_originKenya	2.20	0.75	0.00	0.95	4.04
$country_of_originMalawi$	-2.30	1.05	0.03	-5.21	-0.65
$country_of_originMexico$	-1.05	0.16	0.00	-1.37	-0.74
$country_of_originUganda$	1.19	0.43	0.01	0.39	2.11

If the country of origin is the only explanatory variable, Colombia, Mexico, Honduras, Kenya, Malawi, Uganda have statistically significant effect on the odds ratio.

All variables which are significant above are considered to be potential explanatory variables. They are all three altitude levels, year 2010, 2011 and 2012 and countries of Colombia, Mexico, Honduras, Kenya, Malawi and Uganda.

The following model use all potential explanatory variables. And use step AIC to select variables again.

Call:

```
glm(formula = Qualityclass ~ aroma + flavor + acidity + Colombia +
    Mexico + Honduras + Kenya + Malawi + Uganda + category_two_defects +
    level + year2010 + year2011 + year2012, family = binomial(link = "logit"),
    data = coffee final)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-4.2233	-0.3110	0.0010	0.3332	3.4913

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-124.52106	9.39969	-13.247	< 2e-16	***
aroma	4.42037	0.73018	6.054	1.41e-09	***
flavor	7.21914	0.87975	8.206	2.29e-16	***
acidity	4.80821	0.72879	6.598	4.18e-11	***
Colombia	1.77971	0.39212	4.539	5.66e-06	***
Mexico	-0.82994	0.34382	-2.414	0.0158	*
Honduras	-0.58919	0.53161	-1.108	0.2677	
Kenya	0.99751	1.34387	0.742	0.4579	
Malawi	-1.26603	1.15543	-1.096	0.2732	
Uganda	-1.29548	0.62048	-2.088	0.0368	*
category_two_defects	0.05244	0.02894	1.812	0.0700	•
level2	0.13831	0.39437	0.351	0.7258	
level3	0.39276	0.33774	1.163	0.2449	
year2010	-0.40857	0.86051	-0.475	0.6349	
year2011	-0.47132	0.65362	-0.721	0.4708	
year2012	-0.22952	0.31593	-0.726	0.4675	
Cimpif andog, 0 14		0 01 2.1.	0 0E 1	, 0 1 , ;	, ,

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.6 on 930 degrees of freedom

```
Residual deviance: 499.0 on 915 degrees of freedom
AIC: 531

Number of Fisher Scoring iterations: 7

Start: AIC=531
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
Honduras + Kenya + Malawi + Uganda + category_two_defects +
level + year2010 + year2011 + year2012

Df Deviance AIC
- level 2 500.68 528.68
```

1 499.22 529.22 - year2010 1 499.51 529.51 - year2011 - year2012 1 499.53 529.53 - Kenya 1 499.62 529.62 - Honduras 1 500.28 530.28 1 500.51 530.51 - Malawi 499.00 531.00 <none> - category_two_defects 1 502.16 532.16 1 503.06 533.06 - Uganda 1 504.93 534.93 - Mexico - Colombia 1 522.71 552.71 1 550.65 580.65 - aroma - acidity 1 552.26 582.26 1 589.47 619.47 - flavor

Step: AIC=528.68

Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico + Honduras + Kenya + Malawi + Uganda + category_two_defects + year2010 + year2011 + year2012

	Df	Deviance	AIC
- year2010	1	500.81	526.81
- year2011	1	501.21	527.21
- year2012	1	501.31	527.31
- Honduras	1	501.45	527.45
- Kenya	1	501.46	527.46
- Malawi	1	502.00	528.00
<none></none>		500.68	528.68
<pre>- category_two_defects</pre>	1	504.11	530.11
- Uganda	1	504.17	530.17
+ level	2	499.00	531.00
- Mexico	1	506.09	532.09
- Colombia	1	528.97	554.97
- aroma	1	554.14	580.14
- acidity	1	556.27	582.27
- flavor	1	589.52	615.52

Step: AIC=526.81

Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico + Honduras + Kenya + Malawi + Uganda + category_two_defects + year2011 + year2012

```
Df Deviance
                                     AIC
- year2011
                       1 501.31 525.31
- year2012
                           501.40 525.40
- Honduras
                       1 501.56 525.56
- Kenya
                          501.60 525.60
- Malawi
                          502.12 526.12
                       1
<none>
                           500.81 526.81
                           504.25 528.25
- Uganda
                       1
- category_two_defects 1
                           504.30 528.30
+ year2010
                           500.68 528.68
                       1
+ level
                       2
                           499.22 529.22
- Mexico
                          506.23 530.23
                       1
- Colombia
                          529.18 553.18
                       1
                          554.21 578.21
- aroma
- acidity
                       1 556.49 580.49
- flavor
                        1
                           589.60 613.60
Step: AIC=525.31
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
   Honduras + Kenya + Malawi + Uganda + category_two_defects +
   year2012
                      Df Deviance
                                     ATC
- year2012
                       1 501.78 523.78
                          502.01 524.01
- Honduras
                       1
- Kenva
                       1 502.12 524.12
- Malawi
                          502.58 524.58
                       1
<none>
                           501.31 525.31
                          504.68 526.68
- Uganda
                       1
                          504.80 526.80
- category_two_defects 1
                           500.81 526.81
+ year2011
                        1
+ year2010
                       1
                           501.21 527.21
                       2
                          499.68 527.68
+ level
- Mexico
                          506.85 528.85
                       1
                          529.36 551.36
- Colombia
                       1
- aroma
                       1
                          555.00 577.00

    acidity

                           556.77 578.77
- flavor
                           589.70 611.70
Step: AIC=523.78
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
   Honduras + Kenya + Malawi + Uganda + category_two_defects
                      Df Deviance
                                      AIC
- Honduras
                           502.38 522.38
                       1
                           502.61 522.61
- Kenya
                        1
- Malawi
                           503.00 523.00
<none>
                           501.78 523.78
- Uganda
                       1
                           505.00 525.00
                           505.00 525.00
- category_two_defects 1
                           501.31 525.31
+ year2012
                       1
                       1 501.40 525.40
+ year2011
                       1 501.71 525.71
+ year2010
+ level
                       2 500.04 526.04
```

```
511.24 531.24
- Mexico
- Colombia
                          529.38 549.38
                        1
- aroma
                        1
                           555.13 575.13
                        1 557.73 577.73
- acidity
- flavor
                           590.18 610.18
Step: AIC=522.38
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
   Kenya + Malawi + Uganda + category_two_defects
                       Df Deviance
                                      AIC
                           503.26 521.26
- Kenya
                        1
- Malawi
                            503.52 521.52
                            502.38 522.38
<none>
- Uganda
                            505.47 523.47
                        1
- category_two_defects 1
                            505.49 523.49
+ Honduras
                            501.78 523.78
                        1
+ year2012
                        1
                           502.01 524.01
+ year2011
                           502.03 524.03
                        1
+ year2010
                        1
                           502.32 524.32
+ level
                        2
                          501.13 525.13
- Mexico
                        1
                           511.31 529.31
- Colombia
                        1 531.79 549.79
- aroma
                        1
                           556.16 574.16
                           559.22 577.22

    acidity

                        1
- flavor
                            591.11 609.11
Step: AIC=521.26
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
   Malawi + Uganda + category_two_defects
                       Df Deviance
                                      AIC
- Malawi
                           504.42 520.42
<none>
                            503.26 521.26
+ Kenva
                        1
                            502.38 522.38
- Uganda
                           506.40 522.40
                        1
- category_two_defects 1
                           506.40 522.40
+ Honduras
                           502.61 522.61
                        1
+ year2012
                        1
                           502.89 522.89
                          502.89 522.89
+ year2011
                        1
+ year2010
                        1 503.20 523.20
+ level
                        2 501.87 523.87
- Mexico
                           512.59 528.59
                        1
- Colombia
                          532.34 548.34
                        1
                           556.51 572.51
- aroma
                        1
                            561.04 577.04
- acidity
                        1
                            593.35 609.35
- flavor
Step: AIC=520.42
Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
   Uganda + category_two_defects
                       Df Deviance
                                      AIC
```

<none>

504.42 520.42

```
+ Malawi
                    1 503.26 521.26
- Uganda
                    1 507.44 521.44
+ Kenya
                   1 503.52 521.52
+ Honduras
                   1 503.85 521.85
- category_two_defects 1 507.92 521.92
+ year2011
                    1 504.06 522.06
+ year2012
                    1 504.09 522.09
                   1 504.36 522.36
+ year2010
+ level
                    2 503.14 523.14
- Mexico
                   1 513.43 527.43
- Colombia
                   1 534.72 548.72
                    1 557.63 571.63
- aroma
acidity
                    1 562.84 576.84
                    1 596.95 610.95
- flavor
```

Call:

```
glm(formula = Qualityclass ~ aroma + flavor + acidity + Colombia +
   Mexico + Uganda + category_two_defects, family = binomial(link = "logit"),
   data = coffee_final)
```

Deviance Residuals:

```
Min
               Median
                            3Q
            1Q
                                    Max
-4.1969 -0.3208
               0.0010 0.3370
                                 3.4697
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-125.42332	9.27395	-13.524	< 2e-16	***
aroma	4.44405	0.71829	6.187	6.13e-10	***
flavor	7.16176	0.86051	8.323	< 2e-16	***
acidity	4.98081	0.72085	6.910	4.86e-12	***
Colombia	1.83828	0.36232	5.074	3.90e-07	***
Mexico	-0.87447	0.29601	-2.954	0.00313	**
Uganda	-1.09151	0.60860	-1.793	0.07290	
category_two_defects	0.05394	0.02831	1.905	0.05672	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.55 on 930 degrees of freedom Residual deviance: 504.42 on 923 degrees of freedom

AIC: 520.42

Number of Fisher Scoring iterations: 7

In the selected model, two terms are not significant. Then, we try to delete term Uganda which has the highest p-value.

After deleting Uganda, category_two_defects is still not significant. Hence, it was deleted. And we use anova to compare three models. There isn't statistically significant difference among them. Hence, it is reasonable to delete them and get a simple model.

```
Call:
```

```
glm(formula = Qualityclass ~ aroma + flavor + acidity + Colombia +
```

```
Mexico + category_two_defects, family = binomial(link = "logit"),
   data = coffee_final)
Deviance Residuals:
   Min
             10
                 Median
                               3Q
                                       Max
```

3.4487

Coefficients:

Estimate Std. Error z value Pr(>|z|)9.00647 -13.622 < 2e-16 *** (Intercept) -122.68887 4.16837 aroma 0.69442 6.003 1.94e-09 *** 0.85662 8.310 < 2e-16 *** flavor 7.11890 0.71480 6.899 5.25e-12 *** acidity 4.93107 Colombia 0.35907 5.268 1.38e-07 *** 1.89169 Mexico -0.81385 0.29179 -2.789 0.00528 ** category_two_defects 0.05398 0.02817 1.916 0.05534 .

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.55 on 930 degrees of freedom Residual deviance: 507.44 on 924 degrees of freedom

AIC: 521.44

Number of Fisher Scoring iterations: 7

-4.1273 -0.3217 0.0012 0.3439

Call:

glm(formula = Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico, family = binomial(link = "logit"), data = coffee_final)

Deviance Residuals:

1Q Median Min 3Q Max -4.1419 -0.3215 0.0013 0.3473 3.3870

Coefficients:

Estimate Std. Error z value Pr(>|z|)(Intercept) -121.1845 8.8906 -13.631 < 2e-16 *** 0.6982 5.980 2.23e-09 *** aroma 4.1755 7.0057 0.8582 8.163 3.27e-16 *** flavor 0.7118 6.824 8.86e-12 *** 4.8571 acidity Colombia 1.8308 0.3557 5.147 2.64e-07 *** -0.6596 0.2780 -2.372 0.0177 * Mexico

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.55 on 930 degrees of freedom Residual deviance: 510.96 on 925 degrees of freedom

AIC: 522.96

Analysis of Deviance Table

Model 2: Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico +
 category_two_defects

Model 3: Qualityclass ~ aroma + flavor + acidity + Colombia + Mexico Resid. Df Resid. Dev Df Deviance

- 1 923 504.42
- 2 924 507.44 -1 -3.0223
- 3 925 510.96 -1 -3.5196

[1] 3.841459

Final Model

Call:

Deviance Residuals:

Min 1Q Median 3Q Max -4.1419 -0.3215 0.0013 0.3473 3.3870

Coefficients:

aroma 4.1755 0.6982 5.980 2.23e-09 ***
flavor 7.0057 0.8582 8.163 3.27e-16 ***
acidity 4.8571 0.7118 6.824 8.86e-12 ***
Colombia 1.8308 0.3557 5.147 2.64e-07 ***
Mexico -0.6596 0.2780 -2.372 0.0177 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1290.55 on 930 degrees of freedom Residual deviance: 510.96 on 925 degrees of freedom

AIC: 522.96

$$\ln(\frac{p_i}{1-p_i}) = \alpha + \beta_1 \cdot aroma_i + \beta_2 \cdot flavor_i + \beta_3 \cdot acidity_i + \beta_4 \cdot \mathbb{I}_{Colombia}(x) + \beta_5 \cdot \mathbb{I}_{Mexico}(x)$$

$$\mathbb{I}_{\mbox{Colombia}}(x) = \left\{ \begin{array}{ll} 1 & \mbox{if Country of region of xth observation is Colombia,} \\ 0 & \mbox{Otherwise.} \end{array} \right.$$

$$\mathbb{I}_{\mbox{Mexico}}(x) = \left\{ \begin{array}{ll} 1 & \mbox{if Country of region of xth observation is Mexico,} \\ 0 & \mbox{Otherwise.} \end{array} \right.$$

The following is the fitted model.

$$\ln(\frac{p_i}{1-p_i}) = -121.18 + 4.18 \cdot aroma_i + 7.01 \cdot flavor_i + 4.86 \cdot acidity_i + 1.83 \cdot \mathbb{I}_{\mbox{Colombia}}(x) - 0.66 \cdot \mathbb{I}_{\mbox{Mexico}}(x)$$

Generate a summary table containing confidence intervals of estimated parameters of final model.

Table 9: confidence interval of estimated parameters

	Estimate	Std error	P value	Lower_ci	Upper_ci
(Intercept)	-121.18	8.89	0.00	-139.59	-104.68
aroma	4.18	0.70	0.00	2.85	5.58
flavor	7.01	0.86	0.00	5.38	8.75
acidity	4.86	0.71	0.00	3.49	6.29
Colombia	1.83	0.36	0.00	1.16	2.56
Mexico	-0.66	0.28	0.02	-1.21	-0.12

Based on the model we built, we try to use 10-folds cross validation to test the validity of our final model. In the validation we prefer three criteria: accuracy, sensitivity and specificity.

- [1] 0.8839625
- [1] 0.8931425
- [1] 0.8766441

The accuracy of our final model is 0.88. The sensitivity of our final model is 0.89. The specificity of our final model is 0.88.

Classification boundry

0.00

65.07

1102.88

Area under the curve: 0.956

Table 10: Regression coefficients and exponentiated coefficients.

128.65

6.24

0.52

	(Intercept)	aroma	flavor	acidity	Colombia	Mexico
coefficients	-121.18	4.18	7.01	4.86	1.83	-0.66
$\exp(\text{coefficients})$	0.00	65.07	1102.88	128.65	6.24	0.52

- [1] 0.8871768
- [1] 0.9177465
- [1] 0.8571202

After adjusting the classification boundary. The accuracy of our final model is 0.89. The sensitivity of our final model is 0.92. The specificity of our final model is 0.86.

In addition, we try the linear mix model. However, it doesn't improve the performance of predicting.