Robotic Validation of AFM, Scale-freeness, Local Communication etc.

Md Omar Faruque Sarker

Robotic Intelligence Lab University of Wales, Newport

May 2010

Outline

Introduction

Update since last meeting in Dec 2009 Short review

Robotic Validation of AFM

Centralized Communication Mode - Global attractive filed sensing

Local P2P Communication Model

Local attractive filed sensing and local P2P communication

Next: Scale-freeness, Random communication

Keeping the ratios of robots, tasks, area etc. constant

Software code, experiments, papers, Hardware up-gradation ...

- Software code on HEAD
 Hybrid Event-Driven Architecture on D-Bus
- ► AFM validation experiments: using centralized and local communication (approx. 15 hours, with 8 and 16 robots)
- Three conference papers:
 - ANTS 2010 (Belgium): accepted
 - IROS 2010 (Taiwan)
 - Control 2010 (UK)
- Extending robot hardware: Bluetooth → Wifi for 16 to 40 robots
- Only 3-4 months left: to wrap-up everything..:-)

What is self-organization...?

Figure: The 4 perspectives

Self-regulation of an agent

So, AFM: the 4 stars in sky of self-organization?

Robotic Validation of AFM

Robots, Tasks, Camera, Bluetooth and beep beep beep...

- ▶ 5 x Centralized comm. expt: 8 robots/2 tasks/ 2 sq. m. (60min)
- ▶ 5 x Centralized comm. expt: 16 robots/ 4 tasks / 4 sq. m. (40min)
- ▶ 3 x Local comm. mode expt : 16 robots, 1m radii of comm. (40min)
- ➤ 3 x Local comm. mode expt : 0.5m radii of comm. (40min)

Virtual Manufacturing Shop-floor: TODO of Future

Experimental Parameters: Size doesn't matter

Parameter	Value
Total number of robots (N)	16
Total number of tasks (M)	4
Experiment area (A)	4 m ²
Initial production work-load/machine (Ω_j^p)	100 unit
Task urgency increase rate ($\Delta \phi_{INC}$)	0.005
Task urgency decrease rate ($\Delta \phi_{DEC}$)	0.0025
Initial sensitization (K_{INIT})	0.1
Sensitization increase rate (Δk_{INC})	0.03
Sensitization decrease rate (Δk_{DEC})	0.01
Task info update interval (ΔTS_u)	5s

Snapshot of Task Urgencies: Call for duty..

Workload: I'm free to wander or work...

Workers: Ready to serve in your need

Global attractive filed: that made us crazy

Who did the work: Oh! yes some of us...

Forget about everything: we need some rest

Local sensing/comm.: Talk less, Move less, Work more

Next: sky is the limit...

Hardware upgrade, More experiments, publishing ...

- Local communication with random peer selection
- Scale-freeness: Compare 4 sets of expt: 40, 32, 16, 8 robots
- ▶ Virtual Shop-floor ← real-task implementation etc.

Figure: New Epuck robot with Wifi and Linux extension board

32 robots in action: Camera ready, blind closed ..

Tracking all 40 robots: Camera ready, light up ..

Conclusion: our story ends when they start living happily:)

Journey towards self-regulation

- Robots can do self-regulation of tasks by listening attractive field, concurrency, learning, forgetting
- Plasticity and task specialization : DoL observed
- Without much dependence on any particular communication/sensing paradigm
- Now It's the time for Solving real-world problems