第二章 随机变量及其分 布

刘春光

暨南大学数学系

2018年2月

目录 随机变量 离散型 常用离散分 连续型 公布函数

概率密度 常用连续分布 函数的分布

联合分布 边缘分布 条件分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

随机变量

在实际问题中,随机试验的结果虽有各种不同的表现形式,但是都可以用数量来表示,由 此就产生了随机变量的概念。 目录 随机变量 高散型 常用离散分布 连续型 分布函密度 然果的分布

条件分布 随机变量的独 立性 一维亦品品

二维变量函数 的分布 有些试验的结果本身就是数值,如

- 掷一颗骰子所得的点数;
- 抽查样品时的废品个数;
- •广州每日的平均气温;
- 某电子管的使用寿命;

随机变量

随机变量

有些试验的结果看起来与数值无关,但我们可以引进一个映射使每个结果与一个数值对应,把试验结果数值化。

Definition (随机变量(random variable))

设 (Ω, \mathscr{F}, P) 为概率空间, $X = X(\omega)$ 为 Ω 上定义的实值函数。如果对于每个 $x \in \mathbb{R}$,都有

$$\{\omega \mid X(\omega) < x\} \in \mathscr{F},$$

则称 $X(\omega)$ 为随机变量。

随机变量一般用大写的英文字母或小写的希腊字母来表示。

随机变量的分类

- 离散随机变量(discrete r.v.)
- ② 连续随机变量(continuous r.v.)
- 奇异随机变量(singular r.v.)
- 混合型(mixed type)

目录

目录 随机变量 **离散型** 常用离散分布 连续型

分布函数 概率密度

常用连续分布 函数的分布

联合分布边缘分布

随机变量的¾ 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

离散型

Definition (离散随机变量(discrete random variable)) 只能取有限个或者可列个值的随机变量称为离散随机变量。

例: 骰子的点数、抽取的次品数、收到的呼 叫次数等 Definition (离散随机变量的概率分布)

若离散随机变量X的所有可能值为 $\{x_k\}$,分别对应概率 $\{p_k\}$,则称

$$P\{X=x_k\}=p_k, \quad k=1,2,\cdots$$

为X的概率分布或者分布律。

概率分布也常用下面表格的形式给出:

$$\{p_k\}$$
的性质: $\left\{ egin{array}{ll} p_k \geq 0, & k=1,2,\cdots \ \sum_k p_k = 1 \end{array}
ight.$

X	1	2	3	4	5
P	c	4 <i>c</i>	6 <i>c</i>	4 <i>c</i>	c

求常数c并计算

$$P{X = 2|X < 5}, P{X^2 + 4 = 5X}.$$

离散型

例1袋中装有两个白球与三个黑球,每次从袋中任取一个球,直至取得白球为止,求以下两种取法下取球次数的概率分布:

- 每次取出的球不再放回;
- ② 每次取球观察颜色后放回袋中。

Definition (几何分布(geometric distribution)) 如下概率分布

$$P\{X=k\} = pq^{k-1}, \quad k=1,2,\cdots$$

(其中 $p,q>0,p+q=1$) 称为几何分布。

注:几何分布描述反复进行的Bernoulli试验中第一次成功所需试验次数的概率。

目录

四、 随机变量 离散型 常用离散分布 连续型

分布函数概率密度

常用连续分布函数的分布

联合分布边缘分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

Definition (两点分布)

只有两个可能取值的分布称为两点分布, 其分 布律可表示为:

$$P{X = x_1} = p, \quad P{X = x_2} = 1 - p,$$

其中0 。

两点分布的对应分布表为	X	x_1	x_2
四点为"明初",还为"本人"	P	p	1 - p

Definition (0-1分布)

若随机变量X只能取0或1, 其概率分布为:

$$P{X = 1} = p, P{X = 0} = 1 - p \quad (0$$

则称X服从参数为p的0-1分布,记为

$$X \sim B(1,p)$$
.

X	0	1
P	1-p	p

Definition (二项分布(binomial distribution))

如果随机变量X服从以下分布律

$$P\{X = k\} = b(k; n, p) = C_n^k p^k (1 - p)^{n - k},$$

其中 $p \in (0,1), k \in \overline{0,n}$,则称X服从参数为n,p的二项分布。简记为

$$X \sim B(n, p)$$
.

注:二项分布描述n重Bernoulli试验中成功次数的概率。

二项分布与0-1分布的关系:

- **① 0-1**分布B(1,p)是二项分布B(n,p)在n=1时的特殊情况。
- ② 设在某试验中事件A的概率为p,将该试验独立地进行n次。记X为n次试验中事件A发生的总次数,X_i为第i次试验中事件A发生的次数,则有

$$X = X_1 + X_2 + \cdots + X_n.$$

常用离散分布

例1某班有学生20名,其中有5名女生,今从班上任选4名学生去参观展览,被选到的女生数X是一个随机变量,求X的分布。

例2某班有学生20名,其中有3名女生,今从班上任选4名学生去参观展览,被选到的女生数X是一个随机变量,求X的分布。

Definition (超几何分布(Hypergeometric distribution)) 设N个元素分为两类,第一类有M个元素,从中不重复抽取n个,以X表示抽到的第一类元素的个数,则X的分布律为

$$P\{X=k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \quad k=0,1,\cdots,\min\{M,n\}.$$

称X服从超几何分布,记为 $X \sim H(n, M, N)$ 。

二维变量函数 的分布

Theorem

固定正整数n,若超几何分布的参数列 $\{(M,N)\}$ 满足

$$\lim_{N\to\infty}\frac{M}{N}=p\in(0,1),$$

则对任意的 $k=0,1,\cdots,n$,有

$$\lim_{N \to \infty} \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} = C_n^k p^k (1-p)^{n-k}.$$

```
常用离散分布
```

前述定理的意义为:对超几何分布H(n,M,N),当N,M非常大,而n相对很小的时候,可将其近似视为二项分布B(n,p),其中 $p=\frac{M}{N}$ 。

泊松(Poisson)分布

Definition (泊松分布(Poisson distribution))

如果随机变量X服从以下分布律

$$P{X=k} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k=0,1,\cdots$$

其中 $\lambda > 0$, 则称X服从参数为 λ 的泊松分布, 记为

$$X \sim P(\lambda)$$
.

泊松(Poisson)分布

Example

以下随机变量常以泊松分布作为其概率模型:

- 服务系统中对服务的呼唤数;
- ② 产品的缺陷数;
- 一定时期内出现的稀有事件(事故、灾害等)个数;
- 放射性物质发射出的粒子数。

历史上, 泊松分布是作为二项分布的近似, 于1837年由法国数学家泊松引入的。

Theorem

对一列二项分布 $\{B(n,p_n)\}$,若其参数列满 $\mathbb{E}\lim_{n\to\infty}np_n=\lambda>0$,则对任意的非负整数k有

$$\lim_{n\to\infty}b(k;n,p_n)=\frac{\lambda^k}{k!}e^{-\lambda}.$$

常用离散分布

泊松(Poisson)分布

前述定理的意义为:对二项分布B(n,p),当n充分大、p很小时,对任意固定的非负整数k,有近似式

$$b(k; n, p) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

其中 $\lambda = np$ 。

习惯设定: $n \ge 100, p \le 0.01$, 且 $np \le 20$ 。

常用离散分布

泊松(Poisson)分布

例设一批产品共2000个,其中有40个次品。 随机抽取100个样品,求样品中次品数的概率分 布,如果抽样方式是

- 不放回抽样;
- ② 放回抽样。

目录

目录 随机变量 离散型 常用离散分布 连续型

- 分布函数 概率密度
- 常用连续分布函数的分布
- 边缘分布
- 随机变量的独 立性
- 二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

连续型

连续随机变量

例某机床加工零件的长度与标准尺寸的误差 范围为[-30,30](单位:微米)。抽取250个零件,以5μm为单位分组:

$$[-30, -25], (-25, -20], \cdots, (25, 30].$$

统计各组的样本频数,并做直方图说明样本的分布。

目录随机变量离散型

连续型 分布函数

常用连续分布

联合分布

边缘分布

随机变量的

二维变量函数 的分布

250个样本,频数直方图

连续型

随机变量的? 立性

二维变量函数 的分布

250个样本,频率直方图

随机变量 离散型

连续型

概率密度 常用连续分布

市 用 过 疾 力 。 函 数 的 分 布

联合分布

条件分布

随机变量的 立性

二维变量函数 的分布

250个样本,密度直方图

二维变量函数 的分布

1000个样本,密度直方图

目录

目录 随机变量 离散型 常用离散分布 连续型

分布函数 概率密度 常用连续分布 函数的分布

联合分布 边缘分布 条件分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

Definition (分布函数(cumulative distribution function (c.d.f.)))

对随机变量X, 称函数

$$F(x) := P\{X \le x\}, \quad x \in \mathbb{R}$$

为X的分布函数。

由上述定义得:对任意实数a < b,都有

$$P{a < X \le b} = F(b) - F(a).$$

二维变量函数 的分布

Theorem (分布函数的性质)

设F(x)为某随机变量的分布函数,则其有以下性质:

- ① 广义单增性: $a < b \Rightarrow F(a) \leq F(b)$;
- ② 右连续性: $F(x) = \lim_{t \to x^+} F(t)$;
- ③ 规范性: 值域为[0,1], 且

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$

$$F(+\infty) = \lim_{x \to +\infty} F(x) = 1.$$

分布函数

广义单增性、右连续性与规范性是分布函数的本征性质,即 \mathbb{R} 上的函数F(x)是某个随机变量的分布函数当且仅当F(x)满足以上三条性质。

随机变量 离散型 常用离散分布

分布函数 概率密度 常用连续分布

函数的分布 联合分布 边缘分布

亦「刀が随机変量的祖立性

二维变量函数 的分布 离散随机变量的分布函数

设离散型随机变量X的分布律为

$$P\{X=x_k\}=p_k, \quad k=1,2,\cdots.$$

则

$$F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k,$$

这里的和式是对所有满足 $x_k \leq x$ 的k求和。

分布函数

离散随机变量的分布函数

例袋中装有两个白球与三个黑球,不放回地 依次从袋中取球,直至取得白球为止,用X表示 取球次数,则其分布律为

X	1	2	3	4
P	0.4	0.3	0.2	0.1

则X的分布函数为

```
分布函数
```

离散随机变量的分布函数

$$F(x) = \begin{cases} 0, & x < 1, \\ 0.4, & 1 \le x < 2, \\ 0.7, & 2 \le x < 3, \\ 0.9, & 3 \le x < 4, \\ 1, & x \ge 4. \end{cases}$$

容易看出,离散随机变量的分布函数是一个纯 跳跃函数:它在X的每个可能值 x_k 上有跃度 p_k , 在不含任何可能值的区间上恒取常值。

分布函数

连续随机变量的分布函数

例1 向半径为R的圆形靶射击,击中点M落在以靶心O为中心、r为半径的圆内的概率与该圆的面积成正比,并且不会出现脱靶的情况。用X表示击中点M与靶心O的距离,

- 求X的分布函数;
- ② 如果击中点M落在以靶心O为中心、内外半径分别为 $\frac{i}{10}R$ 及 $\frac{i+1}{10}R$ ($i=0,1,\cdots,9$)的圆环域内,则计为10-i环。求一次射击得到10-i环的概率。

分布函数

连续随机变量的分布函数

例2使用了t小时的电子元件在以后的 Δt 小时内损坏的概率等于 $\lambda \Delta t + o(\Delta t)$,其中 $\lambda > 0$ 为常数。求电子元件寿命的分布函数。

目录

目录 随机变量 离散型 常用离散分布 连续型

概率密度

常用连续分布

联合分布 边缘分布

条件分布 随机变量的3

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

概率密度

连续随机变量的概率密度

Definition (continuous random variable, probability density function (p.d.f.))

如果存在函数f(x),满足

$$(1) f(x) \ge 0, \quad (2) \int_{-\infty}^{+\infty} f(x) dx = 1,$$

且随机变量X的分布函数F(x)可以写成

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

则称X为连续随机变量,称f(x)为X的概率密度函数。

概率密度

连续随机变量的概率密度

Definition (续)

此时,我们称X服从以f(x)为密度的概率分布,简记为

$$X \sim f(x)$$
.

连续随机变量的概率密度

练习:函数 $f(x) = -\sin x, x \in I$ 可以做某随机变量的密度函数,若区间I为

$$(A)\ \left[-\frac{\pi}{2},0\right]$$

$$(B)$$
 $\left[0,\frac{\pi}{2}\right]$

$$(C)\ \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

$$(D) \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

Definition (绝对连续性(absolute continuity))

设I为 \mathbb{R} 上的区间,F为定义在I上的函数。如果对任意的 $\varepsilon > 0$,都存在 $\delta > 0$,使得对任意有限个两两不交的区间 $\{(x_k, z_k)\}_{1 \le k \le n}$,只要

$$\sum_{k=1}^{n} (z_k - x_k) < \delta,$$

就有

$$\sum_{k=1}^{n} |F(z_k) - F(x_k)| < \varepsilon,$$

则称f在I上绝对连续。

目录 随机变量 离散型 常用离散分⁷

概率密度

常用连续分布

联合分布

边缘分布

条件分布

随机变量的独立性

二维变量函数 的分布 ★补充:绝对连续性

由定义可知:

绝对连续⇒→一致连续⇒→连续。

★补充:绝对连续性

Theorem (绝对连续性的等价条件)

设F为定义在[a,b]上的函数。以下论断相互等价:

- F在[a,b]上绝对连续;
- ② F在[a,b]上几乎处处可导, F'(x)Lebesque可积, 且

$$F(x) = F(a) + \int_{a}^{x} F'(t)dt, \quad \forall x \in [a, b].$$

3 存在Lebesque可积的函数f, 使得

$$F(x) = F(a) + \int_{a}^{x} f(t)dt, \quad \forall x \in [a, b].$$

概率密度

★补充:绝对连续性

由等价定理可知:连续随机变量的分布函数 是绝对连续的。

概率密度

连续随机变量的概率密度

细节辨析:

- 连续型随机变量的分布函数是连续的,但密 度函数不一定连续;
- ② 如果密度函数f(x)在点x0连续,则

$$F'(x_0) = f(x_0);$$

且对足够小的 $\Delta x > 0$,

$$P\{x_0 - \Delta x < X \le x_0 + \Delta x\} \approx f(x_0) \cdot 2\Delta x$$
,即 $f(x_0)$ 可近似视为 x_0 附近小区间上的平均概率。

概率密度

连续随机变量的概率密度

任意区间上概率的计算:由密度函数的定义可知,

$$P\{X \in (a,b]\} = F(b) - F(a) = \int_a^b f(x)dx.$$

上式中的区间(a,b]改为(a,b), [a,b)或[a,b]后等 式仍成立。

特别地,对每个实数a,有

$$P\{X=a\}=0.$$

高數型 常用离散分布 连续型 分布函数 概率密度 常用连续分布 函数的分布 联合公布

条件分布 随机变量的? 立性

二维变量函数 的分布

连续随机变量的概率密度

由定积分的几何意义, $P\{X \in [a,b]\}$ 等于以下 曲线

$$x = a, x = b; y = 0, y = f(x)$$

所围成的曲边梯形的面积。

连续随机变量的概率密度

细节辨析:

对连续型随机变量而言,概率为零的事件与 不可能事件是不同的概念:

不可能事件的概率一定为零;但概率为零的 事件也可能发生。

• 同样道理,必然事件概率一定为1,但概率 为1的事件也不一定是必然事件。

概率密度

连续随机变量的概率密度

Definition

若事件A的概率为1,则称该事件几乎必然发生(happens almost surely (a.s.))。

连续随机变量的概率密度

例1 已知连续型随机变量X的分布函数为

$$F(r) = \begin{cases} 0, & r < 0, \\ \frac{r^2}{R^2}, & r \in [0, R], \\ 1, & r > R, \end{cases}$$

求其概率密度函数。

概率密度

连续随机变量的概率密度

例2设连续随机变量X的概率密度为

$$f(x) = \frac{A}{1 + x^2}, \quad x \in \mathbb{R}.$$

求

- 常数A的值;
- ② 随机变量X落在区间[0,1]内的概率;
- ❸ 随机变量X的分布函数。

二维变量函数 的分布 Definition (柯西分布(Cauchy distribution)) 若随机变量X有概率密度

$$f(x) = \frac{1}{\pi(1+x^2)},$$

则称X服从柯西分布,其分布函数为

$$F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x.$$

概率密度

连续随机变量的概率密度

例3已知连续型随机变量X的密度函数为

$$f(x) = \begin{cases} c + x, & x \in [-1, 0), \\ c - x, & x \in [0, 1], \\ 0 & \text{else} \end{cases},$$

求(1) 常数c; (2) 概率 $P\{|X| \leq 0.5\}$; (3) X的分布函数F(x)。

目录

目录 随机变量 离散型 常用离散分布 连续型

分布函数

常用连续分布

联合分布

条件分布

立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

Definition (均匀分布(uniform distribution)) 若随机变量X有概率密度

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & \text{else}, \end{cases}$$

则称X服从区间[a,b]上的均匀分布,记为 $X \sim U[a,b]$.

常用连续分布

条件分布 随机变量的系 立性 二维变量函数 的分布 区间[a,b]上均匀分布的分布函数为

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a, b], \\ 1, & x > b. \end{cases}$$

常用连续分布

例1 用电子表计时一般准确至0.01s,即如果以秒为时间的计量单位,则小数点后第二位数字是按"四舍五入"原则得到的,求使用电子表计时产生的随机误差X的概率密度,并计算误差的绝对值不超过0.002s的概率。

Definition (指数分布(exponential distribution))

如果随机变量X有以下概率密度

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称X服从参数为 λ 的指数分布。其分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

目录 随机变量 离散型

连续型 分布函数

常用连续分布

函数的分布 联合分布

联合分布边缘分布

条件分布

随机变量的独 立性

二维变量函数 的分布

指数分布的密度函数

目录 随机变量 密勘规

常用离散分 连续型

极率容度

常用连续分布

函数的分布

联合分布

边缘分布

随机变量的独

二维变量函数 的分布

指数分布的分布函数

常用连续分布

指数分布经常作为等待时间的分布,如产品的寿命,排队模型中的服务时间等。

例2设某电子管的使用寿命X(单位:小时) 服从参数为 $\lambda = 0.001$ 的指数分布。求电子管使用寿命超过1000小时的概率。

练习(指数分布的无记忆性): 随机变量 ξ 服从参数为 λ 的指数分布。设s,t>0,求以下条件概率

$$P\{\xi > s + t | \xi > s\}.$$

连续型 分布函数 概率密数 度 **常用连续分布** 函数合分布 玻络分分布 边缘分分布 造缘分分布 随性

★补充: 奇异型分布

Definition (奇异型分布(singular distribution)) 若随机变量X的取值范围为零测度集,且X取每个可能值的概率均为零,则称X为奇异型随机变量、称其分布为奇异型分布。

奇异型分布的分布函数为连续函数,但不是 绝对连续。如康托函数(Cantor function)。

★补充:分布函数的分解

Theorem (Lebesgue分解)

任意分布函数F(x)都可分解为如下形式:

$$F(x) = c_1 F_1(x) + c_2 F_2(x) + c_3 F_3(x),$$

其中常数 $c_1, c_2, c_3 \ge 0$, $c_1 + c_2 + c_3 = 1$, $F_1(x), F_2(x), F_3(x)$ 都是分布函数, $F_1(x)$ 为纯跳 跃函数, $F_2(x)$ 是绝对连续函数, $F_3(x)$ 为奇异函数。

目录

目录 随机变量 离散型 常用离散分布 连续型

分布函数 概率密度

常用连续分布函数的分布

联合分布 边缘分布

条件分布

立性 二维查量函数

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

函数的分布

随机变量的函数

在实际问题中,有时我们关心的随机变量Y不容易直接测量,而是要测量另外一个随机变量X,把Y表示为X的函数Y = g(X)。

由此引出的问题是:已知X的分布,如何得到Y的分布?例如:已知圆球直径D的分布,求圆球体积 $V=\frac{\pi D^3}{6}$ 的分布。

函数的分布

业性 二维变量函数 的分布 离散随机变量的函数的分布

例1设随机变量X的分布为

\overline{X}	-2	-1	0	1	2	3
P	0.1	0.2	0.25	0.2	0.15	0.1

求 $Y_1 = -2X, Y_2 = X^2$ 的概率分布。

函数的分布

离散随机变量的函数的分布

总结:设离散型随机变量X的概率分布为

$$P{X = x_k} = p_k, \quad k = 1, 2, \cdots$$

令Y = g(X),则Y也是一个离散型随机变量,其分布可按如下步骤求得

- 根据函数关系列出Y的所有可能值;
- ② 对Y的每个可能值y, $P{Y = y}$ 等于所有满足 $g(x_k) = y$ 的 p_k 之和。

离散随机变量的函数的分布

练习: 假设随机变量ξ的分布为

$=$ ξ	-1	0	1	2
P	0.2	0.25	0.3	0.25

求
$$\eta_1 = \xi^2 + 1$$
, $\eta_2 = \xi^2 - \xi$ 的概率分布。

边缘分布

随机变量的¾ 立性

二维变量函数 的分布

离散随机变量的函数的分布

例2设随机变量X的分布为

$$p(k) = \frac{1}{2^k}, \quad k = 1, 2, \cdots.$$

求随机变量 $Y = \sin(\frac{\pi}{2}X)$ 的概率分布。

分布函数 概率密度 常用连续分布 联合分分布 边缘分分布 边缘件分变量 的系 随直性

连续随机变量的函数的分布

对连续型随机变量X, 求Y = g(X)的密度函数的基本方法是

● 根据函数关系先求Y的分布函数

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$$

= $P\{X \in I_y\} = \int_{I_y} f(x)dx$,

其中
$$I_{y} = \{x | g(x) \leq y\};$$

② 然后对 $F_Y(y)$ 求导可得Y的概率密度。

函数的分布

连续随机变量的函数的分布

例3 设随机变量X有概率密度函数 $f_X(x)$, 求Y=a+bX的概率密度函数,其中a及 $b\neq 0$ 都 是常数。

例5设随机变量X服从参数为 λ 的指数分布, $求Y = e^X$ 的概率密度函数。

函数的分布

连续随机变量的函数的分布

练习: 假设随机变量ξ的概率密度为

$$\varphi_{\xi}(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

证明: $\eta = 1 - e^{-2\xi}$ 服从区间(0,1)上的均匀分 布。

函数的分布

连续随机变量的函数的分布

Theorem

设随机变量X有密度函数 $f_X(x)$, $x \in (\alpha, \beta)$ 。如果g(x)在 (α, β) 上是严格单调的连续函数,存在唯一的反函数x = h(y), $y \in (a, b)$,并且h'(y)存在且连续,那么Y = g(X)也是连续型随机变量,具有密度函数

$$f_Y(y) = f_X[h(y)] \cdot |h'(y)|, y \in (a, b).$$

函数的分布

随机变量的3 立性

二维变量函数 的分布

连续随机变量的函数的分布

例4 设 $X \sim U[0,\pi]$,求 $Y = \sin X$ 的概率密度函数。

例6 设 $X \sim U[-1,2]$,求 $Y = X^2$ 的概率密度函数。

函数的分布

连续随机变量的函数的分布

例:某种电子元件的使用寿命X服从参数为0.2的指数分布(单位:年)。当X>0.5时称元件为合格品,每个合格元件的利润为a元;不合格品则需要生产厂家免费更换新品,造成损失b元(即利润为-b元)。若用Y=g(X)表示零件的利润,则

$$Y = g(X) = \begin{cases} a, & X > 0.5, \\ -b, & X \le 0.5. \end{cases}$$

求Y的概率分布。

目录

目录 随机变量 离散型 常用离散分布 连续型

万 中 函 数 概率密度 营 田 连 禁 △

常用连续分布函数的分布

联合分布 边缘分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

多维随机变量

很多随机现象只用一个随机变量来描述是不 够的, 需要用几个随机变量同时来描述。如:

- 平面上一点的位置需要用两个坐标来表示:
- 天气通常由最高、最低气温, 相对湿度, 风 力. 降水量等因素决定:
- 钢材的质量有含碳量、含硫量和硬度等基本 指标。

二维变量函数 的分布 Definition (多维随机变量(multivariate random variable)) 设 Ω 是某随机试验的样本空间, X_1, X_2, \cdots, X_n 是该空间上的随机变量,称

$$\vec{X}=(X_1,X_2,\cdots,X_n)$$

为 Ω 上的随机向量或n维随机变量。

联合分布

二维离散随机变量的联合分布

Definition

设二维离散型随机变量(X,Y)的所有可能取值为

$$(x_i, y_j), \quad i = 1, 2, \cdots, j = 1, 2, \cdots$$

称

$$P{X = x_i, Y = y_j} = p_{ij},$$

 $i = 1, 2, \dots, j = 1, 2, \dots$

为该随机向量的联合概率分布。

联合分布

二维离散随机变量的联合分布

二维离散型随机向量的联合分布也可以用表格表示:

X Y	<i>y</i> ₁	<i>y</i> ₂	•••	y_j	
x_1	p_{11}	p_{12}			
x_2	p_{21}	p_{22}		p_{2j}	• • •
÷	:	÷		÷	
x_i	p_{i1}	p_{i2}		p_{ij}	
:	:	:		÷	

联合分布

二维离散随机变量的联合分布

例1设有10件产品,其中3件一等品,5件二等品,2件三等品。现从中任取四件。求一等品、二等品件数的联合概率分布。

联合分布

二维离散随机变量的联合分布

例3 随机掷三枚骰子,用X,Y分别表示三枚骰子中出现点数的最小值与最大值,求二维随机变量(X,Y)的联合分布。

联合分布

条件分布 随机变量的3 立性

二维变量函数 的分布

二维离散随机变量的联合分布

练习:袋中有标上号码1、2、2的三个球,从中任取一个且不再放回,然后再从袋中任取一球,以X,Y分别表示第一、二次取到球上的号码数,求(X,Y)的分布律。

Definition

设(X, Y)为二维随机向量, 称二元函数

$$F(x, y) = P\{X \le x, Y \le y\}$$

为(X, Y)的联合分布函数(joint distribution function).

联合分布

联合分布

二维随机变量的联合分布函数

分布函数的性质:

- F(x,y)对每个自变量都是广义单增的;
- **2** $0 \le F(x, y) \le 1$;
- **3** $F(x, -\infty) = F(-\infty, y) = 0$, $F(+\infty, +\infty) = 1$;
- 4 随机向量(X,Y)落在矩形区域 $(x_1,x_2] \times (y_1,y_2]$ 内的概率为

$$P\{x_1 < X \le x_2, y_1 < Y \le y_2\}$$

= $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$

边缘分布条件分布

随机变重 立性

的分布

二维连续随机变量的联合密度

Definition (joint density)

如果存在一个非负函数f(x,y),使得二元随机变量(X,Y)的分布函数F(x,y)可以写成

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t)dtds,$$

则称(X,Y)为二元连续性随机变量。函数f(x,y)称为(X,Y)的联合概率密度。

二维连续随机变量的联合密度

联合概率密度函数的基本性质:

- ❸ 若函数f在点(x,y)处连续,则有

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y).$$

二维连续随机变量的联合密度

联合概率密度函数的基本性质:

● 对任意的平面区域D,

$$P\{(X,Y) \in D\} = \iint_{(x,y)\in D} f(x,y) dx dy.$$

特别地,

$$P\{a < X \le b, c < Y \le d\} = \int_a^b \int_a^d f(x, y) dy dx.$$

联合分布

二维连续随机变量的联合密度

Definition

设D是平面上的有界区域,其面积为d,若二维随机向量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{d} & (x,y) \in D \\ 0 & \text{else} \end{cases}$$

则称(X,Y)服从D上的均匀分布。

联合分布

二维连续随机变量的联合密度

若(X,Y)服从D上的均匀分布,则(X,Y)落在某一区域A内的概率

$$P\{(X,Y) \in A\} = \iint_A f(x,y) dx dy$$
$$= \iint_{A \cap D} \frac{1}{d} dx dy$$
$$= \frac{S}{d}$$

其中S为A ∩ D的面积。

联合分布

随机变量的数 立性

二维变量函数 的分布

二维连续随机变量的联合密度

例2设二维随机变量(X,Y)服从圆域

$$R = \{(x, y) | x^2 + y^2 \le r^2 \}$$

上的均匀分布, 求其联合概率密度。

二维连续随机变量的联合密度

例4设二维随机变量(X,Y)服从G上的均匀分布,其中G为抛物线 $y=x^2$ 与直线y=x+2所围成的区域,求

- (X, Y)的联合概率密度;
- ② 概率 $P\{X + Y \ge 2\}$ 。

目录

日水 随机变量 离散型 常用离散分布 连续型

分中函数 概率密度 常用连续分

边缘分布 条件分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

Definition (边缘分布(Marginal distribution))

二维随机向量(X,Y)作为一个整体,有联合分布 函数F(x,y), 其分量X与Y都是随机变量, 有各 自的分布函数,分别记成 $F_X(x)$ 和 $F_Y(y)$,称 为X和Y的边缘分布函数。

边缘分布由联合分布完全确定:

$$F_X(x) = F(x, +\infty), \qquad F_Y(y) = F(+\infty, y).$$

目录 随离常用类型 散力分布 连分布率密 数 度 使分分布 不可以 数 度

边缘分布 条件分布

随机变量的数 立性

二维变量函数 的分布

二维离散随机变量的边缘分布

设二维离散型随机向量(X,Y)的分布律为

$$P{X = x_i, Y = y_j} = p_{ij},$$

 $i = 1, 2, \dots, j = 1, 2, \dots$

则

$$P{X = x_i} = \sum_{j} p_{ij}, \quad i = 1, 2, \cdots$$
 $P{Y = y_j} = \sum_{i} p_{ij}, \quad j = 1, 2, \cdots$

连 分 概 常 函 数 度 数 度 量 分 布 离 数 合 分 布 面 数 合 分 布 布 布 布

二维离散随机变量的边缘分布

通常记

$$p_{i\cdot} = P\{X = x_i\} = \sum_{j} p_{ij}, \quad i = 1, 2, \cdots$$
 $p_{\cdot j} = P\{Y = y_j\} = \sum_{i} p_{ij}, \quad j = 1, 2, \cdots$

两个分布分别写在联合分布的右边和下边,"边缘"一词由此而来。

二维离散随机变量的边缘分布

例1 求以下联合分布的边缘分布

Y	0	1	2	3	4
0	0	0	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{1}{42}$
1	0	$\frac{1}{14}$	$\frac{2}{7}$	$\frac{1}{7}$	0
2	$\frac{1}{70}$	$\frac{1}{7}$	$\frac{1}{7}$	0	0
3	$\frac{1}{105}$	$\frac{1}{42}$	0	0	0

边缘分布

二维离散随机变量的边缘分布

练习: 袋中有5个球, 三个标数字0, 两个标数字1。现依次从袋中取出两个球, 分别以X, Y表示第一和第二个球上的数字。对有放回和不放回两种抽取方式, 分别写出(X, Y)的联合分布与边缘分布。

总结: 边缘分布由联合分布完全确定, 但反之 不真, 仅由边缘分布一般不能得到联合分布。

立性 二维变量函数 的分布

二维离散随机变量的边缘分布

练习:设随机变量 ξ 与 η 各只有-1,0,1等三个可能值,且满足条件

$$P\{\xi = 1\} = P\{\xi = -1\} = \frac{1}{4},$$

$$P\{\xi + \eta = 0\} = 1.$$

试求 (ξ,η) 的联合概率分布。

边缘分布

二维连续随机变量的边缘分布

设(X,Y)是二维连续型随机向量,有联合概率 密度函数f(x,y),则

$$F_X(x) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(s, t) dt \right] ds,$$

$$F_Y(y) = \int_{-\infty}^y \left[\int_{-\infty}^{+\infty} f(s, t) ds \right] dt.$$

故X,Y的边缘概率密度分别为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy,$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

边缘分布

二维连续随机变量的边缘分布

例2设(X,Y)服从圆域

$$R = \{(x, y) | x^2 + y^2 \le r^2 \}$$

上的均匀分布。求X和Y的边缘概率密度。

例4设二维随机变量(X,Y)服从G上的均匀分布,其中G为抛物线 $y=x^2$ 与直线y=x+2所围成的区域,求X和Y的边缘概率密度。

日随离常为建立分概常函联会分级常品联合的分布。

随机变量的数 立性

二维变量函数 的分布

二维连续随机变量的边缘分布

练习:设(X,Y)的联合概率密度为

$$f(x, y) = x + y, \quad x \in [0, 1], y \in [0, 1].$$

求X与Y的边缘概率密度。

二维连续随机变量的边缘分布

练习:设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-y} & 0 \le x \le y \\ 0 & \text{else} \end{cases}$$

求X与Y的边缘概率密度。

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

设X为样本空间 Ω 上的随机变量,固定事件B (P(B) > 0),则每一事件A都有关于B的条件概率P(A|B)。

特别地, X关于这个条件概率的分布就是事件B发生条件下X的条件分布。如X关于B的条件分布函数为

$$F(x|B) = P\{X \le x|B\} = \frac{P\{X \le x, B\}}{P(B)}.$$

Definition

当 $p_{i} > 0$ 时,称

$$P\{X = x_i | Y = y_j\} = \frac{p_{ij}}{p_{\cdot j}}$$
 $i = 1, 2, \cdots$

为 $Y = y_i$ 时X的条件概率分布。

当 $p_i > 0$ 时,称

$$P{Y = y_j | X = x_i} = \frac{p_{ij}}{p_{i\cdot}}$$
 $j = 1, 2, \cdots$

为 $X = x_i$ 时Y的条件概率分布。

条件分布

二维离散随机变量的条件分布

例1 求以下联合分布中, Y = 2时X的条件概率分布, 及X = 1时Y的条件概率分布:

Y	0	1	2	3	4
0	0	0	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{1}{42}$
1	0	$\frac{1}{14}$	$\frac{2}{7}$	$\frac{1}{7}$	0
2	$\frac{1}{70}$	$\frac{1}{7}$	$\frac{1}{7}$	0	0
3	$\frac{1}{105}$	$\frac{1}{42}$	0	0	0

条件分布

二维离散随机变量的条件分布

练习:二维随机变量(X,Y)的联合分布及边缘分布为

Y	0	1	$p_{i\cdot}$
0	$\frac{7}{15}$	$\frac{7}{30}$	$\frac{7}{10}$
1	$\frac{7}{30}$	$\frac{1}{15}$	$\frac{3}{10}$
$p_{\cdot j}$	$\frac{7}{10}$	$\frac{3}{10}$	

求Y在X的各个取值下的条件分布。

Definition

给定y, 设对任意 $\Delta y > 0$,

$$P\{y - \Delta y < Y \le y + \Delta y\} > 0.$$

若对任意x, 极限

$$\lim_{\Delta y \to 0} P\{X \le x | y - \Delta y < Y \le y + \Delta y\}$$

存在,则称该极限为Y = y条件下,X的条件分布函数,记为 $P\{X \le x | Y = y\}$ 或 $F_{X|Y}(x|y)$ 。

二维变量函数 的分布

二维连续随机变量的条件分布

Theorem

若 $f(\cdot,\cdot)$ 在点(x,y)处连续, $f_Y(\cdot)$ 在点y处连续,且 $f_Y(y)>0$,则

$$F_{X|Y}(x|y) = \int_{-\infty}^{x} \frac{f(s,y)}{f_Y(y)} ds.$$

条件分布

二维连续随机变量的条件分布

Definition (conditional probability density function) 若 $f_Y(y) > 0$,称

$$f_{X|Y}(x|y) := \frac{f(x,y)}{f_Y(y)}$$

为在Y = y条件下, X的条件概率密度; 同样, 当 $f_X(x) > 0$ 时, 称

$$f_{Y|X}(y|x) := \frac{f(x,y)}{f_X(x)}$$

条件分布

二维连续随机变量的条件分布

例2设(X,Y)服从圆域

$$R = \{(x, y) | x^2 + y^2 \le r^2 \}$$

上的均匀分布。求X和Y的条件概率密度。

例4设二维随机变量(X,Y)服从G上的均匀分布,其中G为抛物线 $y=x^2$ 与直线y=x+2所围成的区域,求X和Y的条件概率密度。

目 隨 离 常 连 介 板 雷 曹 连 介 板 電 曹 查 分 板 電 型 數 度 分 布 本 窜 密 度 经 经 分 布 年 百 连 经 经 分 布

常用连续分布 函数的分布

联合分布

条件分布

随机变量的》 立性

二维变量函数 的分布

二维连续随机变量的条件分布

练习:设(X,Y)的联合概率密度为

$$f(x, y) = x + y, \quad x \in [0, 1], y \in [0, 1].$$

求条件概率密度。

条件分布

二维连续随机变量的条件分布

练习:设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-y} & 0 \le x \le y \\ 0 & \text{else} \end{cases}$$

求条件概率密度。

目录 随机变量 离散型 常用离散分布 连续型

分布函数 概率密度

常用连续分布 函数的分布

联合分布 边缘分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

Definition

设二维随机向量(X,Y)的联合分布函数 为F(x,y),边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$,若对任意实数x,y有

$$F(x,y) = F_X(x) \cdot F_Y(y),$$

则称X,Y相互独立。

X, Y相互独立即是指对任意实数x, y,事件 $\{X \le x\}$ 与 $\{Y \le y\}$ 相互独立。

随机变量的独 立性

二维变量函数 的分布

离散随机变量的独立性

设二维离散型随机向量(X,Y)的分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \cdots,$$

则X与Y的边缘分布分别为

$$p_{i\cdot} = P\{X = x_i\} = \sum_{j} p_{ij}, \quad i = 1, 2, \dots;$$

 $p_{\cdot j} = P\{Y = y_j\} = \sum_{i} p_{ij}, \quad j = 1, 2, \dots.$

则X,Y相互独立的充要条件为

$$p_{ij}=p_{i\cdot}\cdot p_{\cdot j}, \quad i,j=1,2,\cdots.$$

随机变量的独

离散随机变量的独立性

练习: 二维随机变量(X,Y)的服从以下分布律

Y	-1	0	1
-1	1/8	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	<u>1</u> 8	<u>1</u> 8

判断X,Y的独立性。

立性

离散随机变量的独立性

练习:袋中有标上号码1、2、2的三个球.从 中任取一个且不再放回, 然后再从袋中任取一 球,以X,Y分别表示第一、二次取到球上的号码 数, $\bar{x}(X,Y)$ 的分布律, 并判断两个随机变量的 独立性。

随机变量的独

离散随机变量的独立性

练习:袋中有5个球,三个标数字0,两个标数字1。现依次从袋中取出两个球,分别以X,Y表示第一和第二个球上的数字。对有放回和不放回两种抽取方式,分别讨论两个随机变量的独立性。

随机变量的独

离散随机变量的独立性

例2二维随机变量(X,Y)的服从以下分布律

Y	<i>y</i> ₁	У2	у3
x_1	0.08	α	0.12
<i>x</i> ₂	β	0.3	γ

当 α, β, γ 取何值时, X, Y相互独立?

随机变量的独

连续随机变量的独立性

 $\dot{z}(X,Y)$ 是连续型随机向量,则X,Y相互独立的充要条件为:对几乎所有的实数x,y,有

$$f(x,y) = f_X(x) \cdot f_Y(y).$$

注:这里的"几乎所有"是指:例外的点(x,y)组成的集合在xOy平面上面积为零。

连续随机变量的独立性

常用连续分布 函数的分布

联合分布

边缘分布

随机变量的独 立性

二维变量函数 的分布 例1设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2e^{-(x+2y)} & x,y > 0 \\ 0 & \text{else,} \end{cases}$$

目录 随机变量 离散型 常用离散分布 连续型 分布函度 概率密度 统等用连续分布

随机变量的独立性

二维变量函数 的分布

连续随机变量的独立性

练习:设(X,Y)的联合概率密度为

$$f(x,y) = x + y, \quad x \in [0,1], y \in [0,1].$$

连续随机变量的独立性

目录 随机变量 离散型 常用离散分布 连续型 分布函数

分布函数 概率密度

常用连续分布

联合分布

边缘分布

随机变量的独 立性

二维变量函数 的分布 练习:设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} xe^{-(x+y)} & x, y > 0 \\ 0 & \text{else} \end{cases}$$

连续随机变量的独立性

目录 随机变量 离散型 常用离散分布 连续型 分布函数 概率密度

常用连续分布

联合分布

边缘分布

随机变量的独 立性

二维变量函数 的分布 练习:设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-y} & 0 \le x \le y \\ 0 & \text{else} \end{cases}$$

随机变量的独 立性

二维变量函数 的分布

连续随机变量的独立性

若两个随机变量相互独立,则可直接由边缘分布得到联合分布。

练习:设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,求(X,Y)的联合概率密度。

练习:设随机变量X与Y相互独立,分别服从[2,4]上的均匀分布与参数为3的指数分布,求(X,Y)的联合概率密度。

随机变量的独

连续随机变量的独立性

若两个随机变量相互独立,则每个随机变量的条件分布都等于边缘分布。

目录

目录 随机变量 离散型 常用离散分布 连续型

分布函数概率密度

常用连续分布函数的分布

联合分布边缘分布

随机变量的独 立性

二维变量函数 的分布

- 1 随机变量的概念
- 2 离散随机变量
- 3 常用离散型分布
- 4 连续随机变量
- 5 随机变量的分布函数
- 6 连续随机变量的概率密度

- 7 常用连续型分布
- 8 随机变量函数的分布
- 9 二维随机变量的联合分布
- 10 二维随机变量的边缘分布
- 11 二维随机变量的条件分布
- 12 随机变量的独立性
- 13 二维随机变量函数的分布

二维变量函数 的分布

离散随机向量的函数的分布

总结:设离散型随机向量(X,Y)的联合分布为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \cdots$$

令Z = g(X, Y),则Z也是一个离散型随机变量, 其分布可按如下步骤求得

- 根据函数关系列出Z的所有可能值;
- ② 对Z的每个可能值z, $P\{Z=z\}$ 等于所有满足 $g(x_i,y_i)=z$ 的 p_{ij} 之和。

二维变量函数

的分布

离散随机向量的函数的分布

例1设随机变量X与Y相互独立、且都服从二 项分布 $B(2,\frac{1}{2})$, 求它们的和Z=X+Y的分布。

推广:设随机变量X与Y相互独立. 分别服从 二项分布B(n,p)与B(m,p), 则它们的 和Z = X + Y服从二项分布B(m+n,p)。

二维变量函数 的分布

离散随机向量的函数的分布

例2设随机变量X与Y相互独立,分别服从参数为 λ_x 与 λ_y 的泊松分布,求它们的和Z=X+Y的分布。

总结:服从泊松分布的相互独立的随机变量 的和也服从泊松分布,且参数等于相加的随机 变量参数的和。

二维变量函数 的分布

离散随机向量的函数的分布

练习: 二维随机变量(X,Y)服从以下分布律

Y	-1	0	1
-1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
0	$\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	<u>1</u> 8	1/8

- **①** 求Z = X + Y的分布:

随机变量的¾ 立性

二维变量函数 的分布

离散随机向量的函数的分布

练习:二维随机变量(X,Y)服从以下分布律

Y X	-2	0	3
1	0.07	0.28	0.15
2	0.09	0.22	0.19

- $\bar{x}Z = X + Y$ 的分布;
- ② $求U = \max\{X,Y\}, V = \min\{X,Y\}$ 的分布。

二维变量函数

连续随机向量的函数的分布

对连续型随机变量(X,Y),求Z=g(X,Y)的密度函数的基本方法是

● 根据函数关系先求Z的分布函数

$$F_Z(z) = P\{Z \le z\} = P\{g(X, Y) \le z\}$$

= $P\{(X, Y) \in D_z\} = \iint_{D_z} f(x, y) dx dy$,

其中
$$D_z = \{(x, y) | g(x, y) \le z\};$$

② 然后对FZ(Z)求导可得Z的概率密度。

二维变量函数 的分布

连续随机变量的和的分布

设连续型随机变量(X,Y)的密度函数为f(x,y),则Z=X+Y的概率密度为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$
$$= \int_{-\infty}^{+\infty} f(z - y, y) dy.$$

二维变量函数

连续随机变量的和的分布

如果X与Y相互独立,概率密度分别为 $f_X(x)$ 和 $f_Y(y)$,则Z = X + Y的概率密度为

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$
$$= \int_{-\infty}^{+\infty} f_X(z - y) f_Y(y) dy.$$

上述公式称为卷积(convolution)公式。

二维变量函数 的分布

连续随机变量的和的分布

例3设随机变量X与Y相互独立,且都服从[a,b]上的均匀分布,求它们的和Z=X+Y的分布。

二维变量函数 的分布

连续随机变量的和的分布

练习: 设某种商品在一周内的需要量是一个 随机变量, 其概率密度函数为

$$f(x) = \begin{cases} xe^{-x} & x > 0\\ 0 & x \le 0 \end{cases}$$

如果各周的需要量相互独立, 求两周需要量的 概率密度函数。

二维变量函数 的分布

连续随机变量的商的分布

例4设随机变量X与Y相互独立,分别服从参数为 λ 和 μ 的指数分布,求随机变量 $Z=\frac{X}{Y}$ 的概率密度。

二维变量函数 的分布

连续随机变量的平方和的分布

例5设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} \frac{8}{\pi(x^2 + y^2 + 1)^3}, & x \ge 0, y \ge 0, \\ 0, & \text{else,} \end{cases}$$

求随机变量 $Z = X^2 + Y^2$ 的概率密度。

二维变量函数

的分布

连续随机变量的最值的分布

设连续型随机变量(X,Y)的联合分布函数 为F(x,y),则 $U=\max\{X,Y\}$ 的分布为

$$F_U(u) = F(u, u).$$

特别若X与Y相互独立,边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$,则有

$$F_U(u) = F_X(u)F_Y(u).$$

二维变量函数 的分布

连续随机变量的最值的分布

设(X,Y)的联合分布函数为F(x,y),边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$,则 $V=\min\{X,Y\}$ 的分布为

$$F_V(v) = F_X(v) + F_Y(v) - F(v, v).$$

特别若X与Y相互独立,则有

$$F_V(v) = F_X(v) + F_Y(v) - F_X(v)F_Y(v)$$

= 1 - (1 - F_X(v))(1 - F_Y(v)).

连续随机变量的最值的分布

例6 电子仪器由六个相互独立的部件 L_{ij} (i=1,2;j=1,2,3)组成,联接方式如图所示。设各个部件的使用寿命 X_{ij} 均服从参数为 λ 的指数分布,求仪器使用寿命的概率密度。

二维变量函数

混合型随机向量的函数的分布

例:设随机变量X, Y相互独立,X的概率分布为 $P\{X=i\}=rac{1}{3}\,(i=-1,0,1)$,Y的概率密度为

$$f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & \sharp \dot{\Sigma} \end{cases},$$

记
$$Z = X + Y$$
, $U = \max\{X, Y\}$,

- $*P\{Z \leq \frac{1}{2}|X=0\};$
- ② 求Z的概率密度;
- ③ 求*U*的分布函数。