Análisis de datos en tiendas de comercio electrónico para segmentación de clientes

Por:

Diego Alejandro Cifuentes Garcia Juan David Arcila Moreno Sebastian Patiño Barriento

Objetivo principal

Segmentar los clientes del retail partiendo de su comportamiento de adquisición de artículos con el fin de facilitar la implementación de estrategias de fidelización.

Dataset #1

Segmentar a partir del gasto que ha hecho el del cliente en las compras.

Dataset #2

Segmentar a partir del comportamiento y características de los artículos registrados en las compras

Metodología: CRISP-DM

1. Entendimiento

- Tienda electrónica localizada en Reino Unido.
- Se enfoca en la venta al detal de regalos para toda ocasión.
- Se presentan las ventas realizadas entre el 1/12/2009 y el 09/12/2011
- Dataset mantenido por UCI Machine Learning Repository.

Los campos incluyen, entre otros:

- Descripción del producto.
- Precio Unitario del producto.
- Cantidad adquirida.
- Fecha de la transacción.
- ID del cliente.
- País de origen de la transacción.

540K Registros

~3.5M Registros

^{*} En el reporte técnico pueden encontrar descripciones más detalladas.

2.1. Preparación: E-Commerce

Se generaron variables adicionales para ayudar a la clasificación:

- Artículos totales por cada factura.
- Media de los precios en las transacciones del cliente.
- Número de días desde la última compra.
- Total de articulos adquiridos.
- Costo total de los artículos que ha adquirido.
- Número de transacciones hecha por el cliente.
- Cantidad de artículos únicos comprados por transacción.

Eliminación de Outliers

- Clientes con una sola transacción
- Calculo de Z-score (variables alejadas 3 desviaciones estándar de su media)

Histogramas de variables luego de eliminación de Outliers

2.1. Preparación: E-Commerce

Análisis de dependencias (R^2)

Covarianza

Correlaciones

2.2. Preparación: Instacart

Se realizó un proceso *ETL* para obtener los campos de interés:

- Artículos facturados por departamento
- Demás columnas desnormalizadas

Histogramas de valores por cada departamento

2.2. Preparación: Instacart

Análisis de dependencias entre departamentos (R^2)

Otros Analisis:

- VG=3.64x10^35, Coef de dependencia=31%

Covarianza departamentos

Correlaciones departamentos

2.2. Preparación: Instacart

Análisis de dependencias entre pasillos (R^2)

Otros Analisis:

VG= 3.73x10^73, Coef de dependencia=18%

Covarianza pasillos

Correlaciones pasillos

3. Modelado

K-MEANS

Segmentar los clientes. Clientes que comparten características pueden pertenecer a una misma campaña de marketing. Usando métrica **Euclidiana** y de **Mahalanobis**

Análisis de Siluetas

Modelo de regresión lineal en Instacart

Predice compra de vegetales

3.1. Modelado de E-Commerce

K Puntuación silueta promedio 2 0.37 3 0.44 4 0.47 5 0.46 6 0.43

Suma de todas las distancias para cada k

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

3.2. Modelado de Instacart

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Modelo de regresión lineal en Instacart

Modelo	Train (R^2)	Test (R^2)	# Parametros
Lineal	0.740932	0.731464	133
Ridge	0.740932	0.731464	133
Lasso	0.733220	0.723949	54
Elastic	0.736440	0.727093	71

Artículos comprados por el cliente en cada pasillo para predecir el número de vegetales que compra.

4.1. Evaluación y Resultados E-Commerce

- **Morado:** Clientes que no volvieron a comprar. (Recencia y transacciones altas).
- Anaranjados: Clientes fieles a la compañía. (Recencia baja, transacciones altas).

- Azules: Clientes nuevos en la compañía. (Recencia baja y nivel de transacciones media-baja).
- Amarillos: Generan ganancias a la compañía (Tienen una venta promedio alta, sin importar su recencia).

4.2. Evaluación y Resultados Instacart

```
{'fresh herbs': 1.5761808631578627.
 grains rice dried goods': 0.9345221362255276,
 'oils vinegars': 0.7208791380913167,
 'canned jarred vegetables': 0.6785465498334853,
 'meat counter': 0.6760754741004801,
 poultry counter': 0.6026518813374828,
 'seafood counter': 0.54458384783037,
 'spices seasonings': 0.47635715244316745,
 'tofu meat alternatives': 0.42310927110006086,
 'canned meals beans': 0.3553327304667675,
 'packaged vegetables fruits': 0.3366186098861134,
 'fresh fruits': 0.3012762893706071,
 'butter': 0.29944498924734664,
 'eggs': 0.281273824768218,
 'asian foods': 0.2773922997589251,
 'soup broth bouillon': 0.22929119556610264,
 'dry pasta': 0.195121036495169,
 'pickled goods olives': 0.16879789901691927.
 'condiments': 0.16086051443218397,
 'pasta sauce': 0.15748508990899088,
 'canned meat seafood': 0.13133616408409407,
 'bulk grains rice dried goods': 0.08915945681909532,
 'tortillas flat bread': 0.0844460752927546.
 'frozen produce': 0.07109769202879822,
 'other creams cheeses': 0.07019498986539723,
 'packaged meat': 0.05657110954382472,
 'hot dogs bacon sausage': 0.0501504930157616,
 'packaged poultry': 0.048638845739511515,
 'baking ingredients': 0.03479658473624968,
 'soy lactosefree': 0.027360728256831366,
 'specialty cheeses': 0.011196023441348079,
```

```
'fruit vegetable snacks': -0.0971045387270356,
'breakfast bars pastries': -0.10109383858700476,
'granola': -0.10461798143266768,
'cereal': -0.10878544072949561,
'breakfast bakery': -0.11331304439533242,
'instant foods': -0.12698918457974467,
'doughs gelatins bake mixes': -0.1501667238718087,
'packaged produce': -0.15688240580517462,
'canned fruit applesauce': -0.18365311506446091}
```

- Resultados de Clustering no fueron concluyentes (haciendo uso los departamentos, pasillos y otras columnas).
- La regresión de "Fresh Vegetables" tiene dió buenos resultados.
- Existen relación con los pesos.

Conclusiones

Resultados de clustering

Son altamente interpretables y puede aplicarse a distintas campañas de marketing

Depende de la articulación con otros componentes de la arquitectura de negocio

Despliegue de la solución

Aplicables a otras organizaciones

Creemos que los análisis realizados pueden ser útiles para otra organizaciones de comercio electrónico.

