	pello del 9 luglio 2013 – 	
Università degli Studi di Padova - Facoltà di Scienze MM.FF.NI	N Corso di Laurea	in Informatica
Regole dell'esame Il presente esame scritto deve essere svolto in forma individuale in un tempo mass Non è consentita la consultazione di libri o appunti in forma cartacea o elettronica La correzione e la sessione orale avverrà in data e ora comunicate dal docente esposti sul sito del docente entro il giorno precedente gli orali. Il punti assegnati a ciascun esercizio sono indicativi, il docente si riserva di modifi Per la convalida e registrazione del voto finale il docente si riserva di proporre al s	, né l'uso di palmari e tel e durante la prova scrit carli (lievemente) in sed	lefoni cellulari. ta; i risultati saranno e di correzione.
Quesito 1 (7 punti): 0,5 punti per risposta giusta, <u>diminuzione</u> di 0,25 punti per	ogni sbaglio, 0 punti pe	
DOMANDA		Vero/Falso
In un sistema di memoria a paginazione, il <i>Translation Lookaside Buffe</i> traduzione di indirizzi fisici in indirizzi virtuali	r (TLB) velocizza la	
La gestione della memoria con segmentazione può ridurre il consumo d consente a più processi di condividere blocchi di codice e di dati	i memoria, in quanto	
Nella gestione della memoria con paginazione, il fenomeno della framment	azione interna è tanto	
meno rilevante quanto più la lunghezza media dei programmi è grande rispetto pagina		
Il meccanismo dei semafori consente forme più generali di sincronizzazione tri mutua esclusione	ra processi rispetto alla	
l'attesa indefinita (<i>starvation</i>) è un caso particolare dello stallo		
In riferimento allo <i>scheduling</i> di processi, la politica FIFO non causa mai politica LRU	meno page fault della	
Una system call generata da un processo utente viene gestita in modalità utente		
Lo <i>switch</i> di un processo utente avviene sempre contestualmente (utente->kernel, kernel->utente)		
Un <i>interrupt</i> viene gestito in modalità <i>kernel</i>		
Il process switch può avvenire sia in modalità kernel che in modalità utente		
Il termine <i>copy-on-write</i> indica il caso in cui ad ogni modifica di una variabi procede immediatamente con l'aggiornamento anche della sua copia su partizione		
Ogni <i>interrupt</i> può essere associato ad un processo che ha richiesto una operaz		
Molti <i>page fault</i> su un processo non modificano le prestazioni degli altri proces		
Un processo per lanciare un nuovo processo deve fare una system call	551	
On processo per fanciare un nuovo processo deve fare una system can		
Quesito 2 – (6 punti): Si consideri l'algoritmo AGING di <i>page replacement</i> con contatore (o stimatore) dispettivamente le pagine 1 2 3 e 4 di un certo processo. Si supponga che subito d'all'istante <i>t0</i> i contatori siano inizializzati come segue: contatore pagina 1: 110 contatore pagina 2: 111 contatorepagina	opo uno <i>sweep</i> (aggiorna ina 3: 101 contato	amento del contatore) ore pagina 4: 100
All'istante <i>t1</i> avviene uno <i>sweep</i> . Tra <i>t0</i> e <i>t1</i> è stata eseguita la seguente sequenza pagina 4, pagina 2; pagina 4, pagina 2.	di accessi a memoria, ne	ell'ordine:

[2.B] Supponendo invece che subito dopo t0 fosse avvenuto un $page\ fault$, di quale pagina avrebbe causato la sostituzione? Perché?

contatore pagina 1: ____ contatore pagina 2: ____ contatore pagina 3: ____ contatore pagina 4: ____

[2.A] Che valore avranno i contatori dopo lo *sweep* in t1?

perativi – Appello del 9 luglio 2013 –	Versione Compito A
atricola:	Posto:
•	

Quesito 3 – (8 punti):

Sia data una partizione di disco ampia 256 GB organizzata in blocchi dati di ampiezza 1 KB. Sotto queste ipotesi si determini l'ampiezza massima di file ottenibile per l'architettura di file system ext2fs nel caso pessimo di contiguità nulla, assumendo i-node ampi 512 B, i-node principale contenente 13 indici di blocco e 1 indice di I, II e III indirezione ciascuno. Si determini poi il rapporto inflattivo che ne risulta, ossia l'onere proporzionale dovuto alla memorizzazione delle strutture di rappresentazione rispetto a quella dei dati veri e propri.

Effettuati tali calcoli si discuta se e con quale rapporto inflattivo le architetture FAT e NTFS rispettivamente possano rappresentare file di tale ampiezza nella partizione data, sotto le medesime ipotesi di contiguità nulla. Per l'architettura NTFS si assumano record ampi 512 B, 208 B riservati all'attributo dati nel record principale e 400 B nei record di estensione.

Cognome e nome:		luglio 2013 – Versione Compito A Posto:
Quesito 4 – (2 punti): Si consideri la politica di <i>scheduling Round Robin</i> di tutti con lo stesso comportamento. Ciascuna interazio Se $c < q$ quanto tempo aspetta al più l'utente prima ch	one dà luogo ad un CPU burst che richie	ede la CPU per un tempo c .
Quesito 5 – (2 punti): Si elenchino, senza spiegarle, le condizioni relative al	l verificarsi dello stallo (<i>deadlock</i>).	

Quesito 6 – (5 punti):

Supponiamo di avere 3 processi che condividono una variabile x e che i loro pseudo-codici siano i seguenti:

P1:	P2:	P3:
P(SemA) P(Mutex) x=x-2 V(Mutex) V(SemC) P(SemA) V	P(SemB) P(Mutex) x=x+2 V(Mutex) V(SemC) P(SemB)	P(SemC) P(Mutex) if (x<0) then V(SemB) V(Mutex) P(SemC) print(x)

Si assuma che il valore iniziale di x sia 0 e che i tre semafori abbiano i seguenti valori iniziali: SemA = 1, SemB = 0, SemC = 0, Mutex = 1.

Si discuta l'ordine di esecuzione dei vari processi (e delle loro istruzioni) e si determini l'output print (x) del processo P3

Cognome e nome: _ Soluzione

Soluzione al Quesito 1

DOMANDA	Vero/Falso
In un sistema di memoria a paginazione, il <i>Translation Lookaside Buffer</i> (TLB) velocizza la traduzione di indirizzi fisici in indirizzi virtuali	F
La gestione della memoria con segmentazione può ridurre il consumo di memoria, in quanto consente a più processi di condividere blocchi di codice e di dati	V
Nella gestione della memoria con paginazione, il fenomeno della frammentazione interna è tanto meno rilevante quanto più la lunghezza media dei programmi è grande rispetto alla dimensione della pagina	V
Il meccanismo dei semafori consente forme più generali di sincronizzazione tra processi rispetto alla mutua esclusione	V
l'attesa indefinita (starvation) è un caso particolare dello stallo	F
In riferimento allo <i>scheduling</i> di processi, la politica FIFO non causa mai meno <i>page fault</i> della politica LRU	F
Una system call generata da un processo utente viene gestita in modalità utente	F
Lo <i>switch</i> di un processo utente avviene sempre contestualmente a 2 <i>mode switch</i> (utente->kernel, kernel->utente)	V
Un interrupt viene gestito in modalità kernel	V
Il process switch può avvenire sia in modalità kernel che in modalità utente	F
Il termine <i>copy-on-write</i> indica il caso in cui ad ogni modifica di una variabile in memoria RAM si procede immediatamente con l'aggiornamento anche della sua copia su partizione di disco	F
Ogni interrupt può essere associato ad un processo che ha richiesto una operazione di I/O	F
Molti page fault su un processo non modificano le prestazioni degli altri processi	F
Un processo per lanciare un nuovo processo deve fare una system call	V

Soluzione al Quesito 2

[2.A] contatore pagina 1: _011_ contatore pagina 2: _111_ contatore pagina 3: _010_ contatore pagina 4: _110_ [2.B] Sostituirebbe la pagina 4 perché ha il valore di contatore più basso fra tutti.

Soluzione al Quesito 3

In questa soluzione useremo la notazione informatica tradizionale, con prefissi che denotano potenze di 2.

Essendo la memoria secondaria ampia 256 GB e i blocchi dati ampi 1 KB, è immediato calcolare

che sono necessari: $\left[\frac{256GB}{1KB}\right] = 256 \text{ M} = 2^8 \times 2^{20} = 2^{28} \text{ indici, la cui rappresentazione binaria banalmente richiede 28 bit.}$

Stante l'ovvio vincolo che la dimensione dell'indice debba essere un multiplo di un "ottetto" (8 bit), otteniamo la dimensione di 32 bit (4 B).

File system di tipo ext2fs:

Sotto queste ipotesi, il file di massima dimensione rappresentabile dall'architettura ext2fs fissata dal quesito sarà composto da:

- 13 blocchi, risultanti dall'utilizzo dei corrispondenti indici diretti presenti nell'i-node principale, al costo di 1 i-node, pari a 512 B
- $\left\lfloor \frac{512B}{4B} \right\rfloor$ = 128 blocchi, risultanti dall'utilizzo dell'intero i-node secondario denotato dall'indice di I indirezione

presente nell'i-node principale, al costo di 1 i-node, pari a 512 B

- $128^2 = 2^{14} = 16$ K blocchi, risultanti dall'utilizzo dell'indice di II indirezione, al costo di 1 + 128 = 129 i-node, pari a: $129 \times 512B = (4.096 + 128)B = (2^{16} + 512)B = 66.048$ B
- $128^3 = 2^{21} = 2$ M blocchi, risultanti dall'utilizzo dell'indice di III indirezione, al costo di $1 + 128 + 128^2 = 16.513$ inode, pari a: 16.513×512 B = 8.454.656 B

corrispondenti a 13 + 128 + 16.384 + 2.097.152 = 2.113.677 blocchi ampi 1 KB, al costo complessivo di 1 + 1 + 129 + 16.513 = 16.644 i-node

i-node ampi 128 B, per un rapporto inflattivo di: $\frac{16.644 \times 512 \text{ B}}{2.113.677 \times 1 \text{ KB}} = \frac{16.644}{2.113.677 \times 2} = 0,39\%.$

	1 11	9 luglio 2013 – Versione Compito A
Cognome e nome:	Matricola:	Posto:
Vediamo ora di determinare se e in che mo tale ampiezza sotto le ipotesi fissate dal que	do le architetture di file system FAT e NTFS sia	ano in grado di rappresentare file di
File system di tipo FAT:		
La struttura FAT, che rappresenta la vista d	lell'intera partizione in termini di blocchi dati, sa	arà composta da $\left[\frac{256GB}{1KB}\right] = 256 \text{ M}$

celle ampie 4 B, una per indice di blocco: di queste, il file che dobbiamo rappresentare ne occuperà 2.113.677, per un rapporto inflattivo — calcolato considerato che l'architettura FAT concettualmente usa l'intera struttura per ogni singolo file — pari a:

 $256 \text{ M} \times 4 \text{ B} \equiv$ = $\frac{1.048.576\,\text{KB}}{1.048.576\,\text{KB}}$ = 49,61%, un onere piuttosto imponente. 1 GB 2.113.677 KB 2.113.677 KB 2.113.677 KB

Nota: anche il caso 28 bit (anziché 32 bit = 4B è stata considerata corretta per quanto discusso in aula sulla FAT-32).

File system di tipo NTFS:

Dei 208 B riservati all'attributo dati nel record principale, 2×4 B = 8 B saranno riservati alla coppia {base, indice}, mentre i rimanenti 208 - 8 = 200 B potranno essere utilizzati per denotare le sequenze contigue che, sotto le ipotesi di contiguità nulla fissate del quesito, sono tutte ampie 1 blocco. Poiché ciascuna sequenza di tipo {inizio, fine} richiede 8 B, il record principale potrà ospitare: $\left| \frac{200B}{1} \right| = 25$, mentre un singolo record di estensione dispone di 400 B per la memorizzazione di

8Bulteriori sequenze. Ne segue che, per rappresentare un file dell'ampiezza data, l'architettura NTFS necessiterà, in prima approssimazione, di: $1 + \left\lceil \frac{2.113.677 - 25blocchi}{50blocchi/record} \right\rceil = 1 + \left\lceil \frac{2.113.652}{50} \right\rceil = 1 + 42.274 = 42.275 \ record.$

In conclusione, un rapporto inflattivo pari a: $\frac{42.275 \times 512B}{1} = 1 \%$.

Soluzione al Quesito 4

L'utente aspetta (N-1)c + c = Nc

Soluzione al Quesito 5

Le quattro condizioni sono mutua esclusione, assenza di prerilascio, accumulo di risorse, attesa circolare

Soluzione al Quesito 6

print(x)

```
Riguardo all'ordine di esecuzione, prima parte P1, l'unico dei tre processi che non si blocca subito a un semaforo, ed esegue
P(SemA)
P(Mutex)
                    \\ il valore di x diventa dunque −2
x=x-2
V(Mutex)
V(SemC)
A questo punto, P1 si blocca su P(SemA) ma ha già risvegliato P3 tramite V(SemC); P3 quindi esegue
P(SemC)
P(Mutex)
                                  if (x<0) then V(SemB)
V(Mutex)
A questo punto P3 si blocca su P (SemC) ma ha già risvegliato P2 tramite V (SemB); P2 quindi esegue
P(SemB)
P(Mutex)
                     \ il valore di x torna dunque 0
x=x+2
V(Mutex)
V(SemC)
A questo punto P2 si blocca su P(SemB) ma ha già risvegliato P3 tramite V(SemC); P3 quindi esegue
P(SemC)
```

L'ultima istruzione, print(x), stampa il valore finale di x che risulta quindi essere 0