The Entity-Relationship Model (Part III)

R &G - Chapter 2

Review: the ER Model

Basic issues in ER design

- Entities and entity set
- Relationships and relationship sets
- Key constraints
- Cardinality constraints (1:1, 1:M, M:N)
- Participation constraints (total, partial)
- Weak entities

Clarification: How To Draw Weak Entity Sets?

Most textbooks (including CS442 required textbook)

Clarification: How To Draw Weak Entity Sets?

Few textbooks

Final Decision

Follow our textbook

Facts:

- The university provides several courses, each course has its name, ID, and number of credits.
- A popular course may have several sections, each taught by a different professor. Each section has its own ID, classroom and meeting times.
- It is possible that the sections of different courses may have the same ID.

Question:

 Design the ER diagram of the course and section entity sets, and the has relationship between them.

Today's Lecture

- Advanced ER-diagram:
 - Hierarchy
 - Aggregation
 - Design Issues of ER diagram

Entity Type Hierarchies

- One entity type might be subtype of another
 - Freshman is a subtype of Student
- The IsA (" is a") relationship exists between the supertype entity and its subtype entity
 - Freshman IsA Student

IsA

Properties of IsA

Inheritance

- Subtype inherits all attributes of supertype.
- The key of the supertype is the key of the subtype
- Subtypes can have new attributes
 - E.g., GraduationDate attribute adds to Senior

Transitivity

- Freshman is subtype of Student, Student is subtype of Person, so Freshman is also a subtype of Person
- Question: what is the key of Freshman?

IsA Constraints

❖If we declare A IsA B, every A entity is also considered to be a B entity.

- Overlap constraints: Can Simon be an Hourly_Emps as well as a Contract_Emps entity?
 - Allowed: overlap constraint
 - Disallowed: no overlap constraint
- Covering constraints: Does every Employees entity have to be either an Hourly_Emps or a Contract_Emps entity?
 - Yes: covering constraint
 - No: no covering constraint

Today's Lecture

- Advanced ER diagram:
 - Hierarchy
 - Aggregation
 - Design Issues of ER diagram

Aggregation: Motivation Example

- How to model relationships between relationships?
 - E.g.: Associate project monitor officers with sponsor relationship set

Aggregation

- Solution: Aggregation
 - Used to model a relationship involving a relationship set.

Aggregation

- Describes
 relationship
 among
 relationships
- Treat a relationship set as an entity set

Aggregation vs. Ternary Relationship?

Can we merge Monitors and Sponsors relationships?

Aggregation vs. Ternary Relationship?

- Can we merge Monitors and Sponsors relationships?
- * Answer: NO
 - Monitors is a distinct relationship, with a descriptive attribute.
 - Also, each sponsorship is a distinct relationship.

So use aggregation!

Today's lecture

- Advanced ER diagram:
 - Hierarchy
 - Aggregation
 - Design Issues of ER diagram

Conceptual Design Using the ER Model

- ER modeling can get tricky!
- Design choices:
 - 1. Should a concept be modeled as an entity or an attribute?
 - 2. Should a concept be modeled as an <u>entity</u> or a <u>relationship</u>?
 - 3. Identifying relationships: <u>Binary or ternary</u>?

Design Issue #1: Entity vs. Attributes

 Sometimes information can be represented as either an entity or an attribute.

Schema 1

Should *Semester* be:

an attribute, or an entity?

Schema 2

Design Issue #1: Entity vs. Attributes

- Rule 1: If the concept allows multiple values, it must be designed as an entity
 - Why? Because the attributes cannot be set-valued.
 - E.g., if the students can take the same course in different semesters, *semester* must be an entity

- E.x.
 - What about address for the student entity?
 - What about name for the student entity?

Design Issue #1: Entity vs. Attributes (Cont.)

- Rule 2: If the concept allows structure (sub-concepts), it must be designed as an entity
 - Why? Because attribute values are atomic.
 - E.g., if structure (enrollment, holidays, etc.) of semester is important, semester must be modeled as an entity.
- E.x.
 - What about address for the student entity?
 - What about name for the student entity?

Exercise 1

 Fact: an employee can work in the same department for two or more different periods.

Question: Which schema is correct?

