## Dependence logic with generalized quantifiers

Logic Colloquium 2012, Manchester

Fredrik Engström University of Gothenburg

July 13, 2012

## Branching in Natural Languages

Most of the dots and most of the stars are all connected by lines. (Barwise, 1979)



$$\begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} R(x, y)$$



$$Q_1 x Q_2 y R(x, y)$$

$$Q_2 y Q_1 x R(x, y)$$

#### THE SEMANTICS OF BRANCHING

- ► A generalized quantifier *Q* is a class of structures.
- $Q_M = \{ \bar{R} \mid (M, \bar{R}) \in Q \}.$
- ►  $M \vDash Qx \varphi \text{ iff } \varphi^M \in Q_M$ .
- ▶  $Q_1$  and  $Q_2$  are increasingly monotone quantifiers.

$$\binom{Q_1 x}{Q_2 y} R(x, y)$$

is defined as

INTRODUCTION

0

$$Br(Q_1, Q_2)xyR(x, y).$$

$$\begin{array}{c|c} \operatorname{Br}(Q_1,Q_2)_M = \\ \left\{ \; R \subseteq M^2 \; \middle| \; \exists A \in Q_{1M} \, \exists B \in Q_{2M} \colon A \times B \subseteq R \; \right\}. \end{array}$$

► Not compositional!

## DEPENDENCE LOGIC

- ▶ Dependence logic: FOL + D $(t_1, \ldots, t_k)$  (Väänänen, 2007)
- ► (Negation may only appear in front of atomic formulas.)
- ► The Henkin quantifier  $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$  corresponds to the formula:

$$\forall x \exists y \forall z \exists w (D(z, w) \land \dots)$$

GENERALIZED OUANTIFIERS IN DEPENDENCE LOGIC

## HODGES' SEMANTICS

INTRODUCTION

- ► X is a team, i.e., a set of assignments.
- $\blacktriangleright$  M,  $X \models \varphi$ .
- ▶ For first-order  $\varphi$ :  $M, X \models \varphi$  iff for all  $s \in X$ :  $M, s \models \varphi$ .
- $\blacktriangleright$   $M, X \models \neg D(\bar{x}) \text{ iff } X = \emptyset.$

$$M, X \models D(\bar{x}, y)$$

iff for all  $s, s' \in X$  if  $s(\bar{x}) = s'(\bar{x})$  then s(z) = s'(z).

| x | у | $\overline{z}$ |
|---|---|----------------|
| 1 | 4 | 4              |
| 1 | 5 | 4              |
| 2 | 4 | 2              |
| 2 | 6 | 2              |

- $\blacktriangleright$  M,  $X \not\vDash x = z$
- $\blacktriangleright$  M,  $X \not\vDash x \neq z$
- $\blacktriangleright$   $M, X \models D(x, z)$
- $\blacktriangleright M, X \not\models D(x, y)$

## Hodges' semantics II

- ▶  $M, X \vDash \varphi \land \psi$  iff  $M, X \vDash \varphi$  and  $M, X \vDash \psi$ .
- ▶  $M, X \vDash \varphi \lor \psi$  iff there are Y and Z such that  $M, Y \vDash \varphi$  and  $M, Z \vDash \psi$  and  $X = Y \cup Z$ .
- ▶  $M, X \models \exists x \varphi$  iff there is  $f: X \to M$  such that  $M, X[f/x] \models \varphi$ .
- $M, X \vDash \forall x \varphi \text{ iff } M, X[M/x] \vDash \varphi.$

$$X[f/x] = \{ s[f(s)/x] \mid s \in X \}.$$
  
 $X[M/x] = \{ s[a/x] \mid a \in M, s \in X \}.$ 

▶  $M \vDash \sigma \text{ iff } M, \{ \epsilon \} \vDash \sigma.$ 

## Branching in Dependence Logic

$$M \vDash \operatorname{Br}(\forall \exists, \forall \exists) xyzwR(x, y, z, w)$$
 iff

$$M \vDash \forall x \exists y \forall z \exists w \big( D(z, w) \land R(x, y, z, w) \big)$$

What about generalized quantifiers?

$$M \vDash \operatorname{Br}(Q_1, Q_2)xy R(x, y)$$
iff
$$M \vDash Q_1 x Q_2 y \left( \operatorname{D}(y) \wedge R(x, y) \right)$$

# Generalized quantifiers in Dependence logic

## LIFTING FUNCTIONS

The **Hodges space** of order ideals on the power set is

$$\mathcal{H}(A) = \mathcal{L}(\mathcal{P}(A)).$$

Given  $h : \mathcal{P}(A) \to \mathcal{P}(B)$  we define the **lift**:

$$\mathcal{L}(h):\mathcal{H}(A)\to\mathcal{H}(B),\,\mathscr{X}\mapsto \mathop{\downarrow} \left\{ \right. h(X)\mid X\in\mathscr{X}\left. \right\},$$

where  $\downarrow \mathscr{X}$  is the downward closure of  $\mathscr{X}$ , i.e.

$$\downarrow \mathscr{X} = \{ X \mid \exists Y \in \mathscr{X}, X \subseteq Y \}.$$

## LIFTING QUANTIFERS

- Q a monotone type  $\langle 1 \rangle$  quantifier.
- $\qquad \qquad P(M^{n+1}) \to \mathcal{P}(M^n)$
- $\blacktriangleright \ \mathcal{L}(Q_M): \mathcal{H}(M^{n+1}) \to \mathcal{H}(M^n)$
- ► Gives truth conditions for *Q* in Hodges semantics:

$$M, X \vDash Qx \varphi$$
 iff there is  $F: X \to Q_M$  such that  $M, X[F/x] \vDash \varphi$ .

where 
$$X[F/x] = \{ s[a/x] \mid a \in F(s), s \in X \}.$$

▶  $\mathcal{L}$  applied to  $\exists$  and  $\forall$  give equivalent truth conditions for  $\exists$  and  $\forall$ .

#### Proposition

For FO(Q) formulas  $\varphi$ :

$$M, X \vDash \varphi$$
 iff for all  $s \in X : M, s \vDash \varphi$ .

## GENERALIZED QUANTIFIERS AND DEPENDENCE ATOMS

If  $Q_M$  contains no singletons and  $X \neq \emptyset$  then  $M, X \not\vDash Qx(D(x) \land \varphi)$ .



## Dependence Logic with GQ

## Proposition (Engström and Kontinen)

For non-trivial Q,  $D(Q) \equiv ESO(Q)$ .

- ▶ Thus,  $D(Br(Q_1, Q_2)) \le D(Q_1, Q_2)$  and so branching of generalized quantifiers can be defined with the dependence atom.
- ▶ Open question: Can this be done compositionally?

## Multivalued Dependence

## Multivalued dependence and teams

#### **DEFINITION**

$$M, X \models [\bar{x} \rightarrow y] \text{ if }$$

for all  $s, s' \in X$  such that  $s(\bar{x}) = s'(\bar{x})$  there exists  $s_0 \in X$  such that  $s_0(\bar{x}) = s(\bar{x})$ ,  $s_0(y) = s(y)$ , and  $s_0(\bar{z}) = s'(\bar{z})$ , where  $\bar{z}$  are the variables in dom $(X) \setminus (\{\bar{x}\} \cup \{y\})$ .

#### Proposition

If  $Q_1$  and  $Q_2$  are monotone then  $M \models Br(Q_1, Q_2)xyR(x, y)$  iff

$$M \vDash Q_1 x Q_2 y ([\rightarrow y] \land R(x, y)).$$

#### Proposition

 $FOL + multivalued dependence \equiv D.$ 

## EMBEDDED MULTIVALUED DEPENDENCE

► Multivalued dependence is dependent on context.

#### DEFINITION

$$M, X \models [\bar{x} \rightarrow \bar{v} \mid \bar{z}] \text{ if}$$

 $Y \models [\bar{x} \rightarrow \bar{y}]$  where *Y* is the projection of *X* onto  $\{\bar{x}, \bar{y}, \bar{z}\}$ .

- ▶  $[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$  is independent on context.
- ► This is the independence atom introduced by Väänänen and Grädel:  $\bar{y} \perp_{\bar{x}} \bar{z}$  iff  $[\bar{x} \rightarrow \bar{y} \mid \bar{z}]$
- ► However, embedded multivalued dependence is **not** axiomatizable. (Sagiv and Walecka, 1982) (Both functional and multivalued dependence are.)

## **BIBLIOGRAPHY**

- Jon Barwise. On branching quantifiers in English. J. Philos. Logic, 8(1):47–80, 1979. ISSN 0022-3611.
- Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic. To appear.
- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21:299–324, 2012. ISSN 0925-8531.
- Jakko Hintikka. Quantifiers vs quantification theory. Linguistic Inquiry, V: 153–177, 1974.
- Yehoshua Sagiv and Scott F. Walecka. Subset dependencies and a completeness result for a subclass of embedded multivalued dependencies. J. Assoc. Comput. Mach., 29(1):103–117, 1982. ISSN 0004-5411.
- Jouko Väänänen. Dependence logic, volume 70 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2007.