COP4634 - Systems & Networks I
Fall 2017 - November 17, 2017
Project 3 - Large Arrays
Page Fault Problem
Ali Al-Senan
Benjamin Linam

Introduction

We are given an array that is 20,480 rows by 4,096 columns and told to implement an LRU page replacement algorithm to evict pages from memory for two processes which access memory: *ReadRow* and *ReadColumn*. We are asked to determine the total number of page faults for each process. We are then asked to assume the following:

- 1. Each process is given 10 frames of virtual memory by the system.
- 2. The two-dimensional array is a global data element.
- 3. 2 of the 10 frames are used for code and stack together.
- 4. An LRU page replacement algorithm is applied to evict pages from memory.

Diagram Analysis

Since we have been given 10 frames of virtual memory and each frame is 4,096 bytes so it will contain exactly one row of data from the array.

	Virtual Memory (After the first 8 Page Faults)	
	ReadRow	ReadColumn
Frame 1	Row 0 – Reads whole row	Row0 – Reads one element
		of row
Frame 2	Row 1 – Reads whole row	Row1 - Reads one element
		of row
Frame 3	Row 2 – Reads whole row	Row2 - Reads one element
		of row
Frame 4	Row 3 – Reads whole row	Row3 - Reads one element
		of row
Frame 5	Row 4 – Reads whole row	Row4 - Reads one element
		of row
Frame 6	Row 5 – Reads whole row	Row5 - Reads one element
		of row
Frame 7	Row 6 – Reads whole row	Row6 - Reads one element
		of row
Frame 8	Row 7 – Reads whole row	Row7 - Reads one element
		of row
Frame 9	Reserved for Code and Stack	Reserved for Code and Stack
Frame 10		

The LRU algorithm (Least Recently Used) dictates that the least recently used frame is replaced by new data. For *ReadColumn*, each row is accessed sequentially, so a single frame will never stay in memory long enough to be available for access again. *ReadRow* will access a whole row of data so once it has read every element, it will never need access to that same frame of data.

	Virtual Memory (After 16 page faults)	
	ReadRow	ReadColumn
Frame 1	Row 8 – Reads whole row	Row 8 – Reads one element
		of row
Frame 2	Row 9 – Reads whole row	Row 9 - Reads one element
		of row
Frame 3	Row 10 – Reads whole row	Row 10 - Reads one element
		of row
Frame 4	Row 11 – Reads whole row	Row 11 - Reads one element
		of row
Frame 5	Row 12 – Reads whole row	Row 12 - Reads one element
		of row
Frame 6	Row 13 – Reads whole row	Row 13 - Reads one element
		of row
Frame 7	Row 14 – Reads whole row	Row 14 - Reads one element
		of row
Frame 8	Row 15 – Reads whole row	Row 15 - Reads one element
		of row
Frame 9	Reserved for Code and Stack	Reserved for Code and Stack
Frame 10		

For *ReadRow*, each row of the array will be stored and each element of the row will be accessed. Virtual Memory will be updated for the number of times that there are rows: 20,480 and since the program never accesses the same row twice, we will have 20,480 page faults.

For *ReadColumn*, each row of the array will be stored; however, only one element of any given row will be accessed sequentially. This means that Virtual Memory will be updated for the number of times that there are rows (20,480) times the number of columns (4,096). In total there will be 83,886,080 page faults.