Lecture 13: CMOS amplifier, concept

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

NMOSFET

- In the NMOSFET, electrons are mobile carriers.
 - When V_{GS} is lower than V_{TH} , holes are depleted from the Si/SiO₂ interface.
 - When V_{GS} is larger than V_{TH} , electrons are collected at the Si/SiO₂ interface. (Electron inversion)
- Imagine its "dual" device.
 - Its V_{TH} is usually negative.
 - When V_{GS} is larger than V_{TH} ($|V_{GS}| > |V_{TH}|$), electrons are depleted from the Si/SiO₂ interface.
 - When V_{GS} is smaller than V_{TH} ($|V_{GS}| < |V_{TH}|$), holes are collected at the Si/SiO₂ interface. (Hole inversion)
 - Is there such a device? Yes.

PMOSFET

The PMOSFET

- The source voltage is the highest one.
- For example, $V_{TH,P} = -1.5$ V. Assume that V_S is 3 V. The gate voltage of 2 V does not turn on the transistor. The gate voltage of 1 V turns on the transistor.
- The drain voltage is lower than the source voltage. In the usual operation condition, the drain current is negative.

Biasing of PMOS devices

- Express the source current as a function of the drain voltage.
 - The absolute value of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Do the same job with the gate voltage of 1.8 V.

Why amplifiers?

Signal amplification

- Usually, signals are "weak." (in the μ V or mV range)
- It is too small for reliable processing.
- If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

"Strong" signal

- For example, a voltage amplifier amplifies the input voltage signal.
 Its output is also a voltage.
- When $V_{in}(t) = V_{DC,in} + v_{in}(t)$, ideally,we want to have $V_{out}(t) = V_{DC,out} + A_v v_{in}(t)$.
- A_v is the voltage gain. (Of course, it is a unitless quantity.)

Transistor turned off

- In the circuit shown in this slide, $V_{out} = V_{DD} I_D R$.
 - But, the transistor is not turned on. ($I_D \approx 0$)
 - The transconductance(g_m) is zero.
 - The small-signal change of the gate voltage does not change I_D .

This is a solution.

- The following circuit shows a revised circuit.
 - It has a meaningful value of g_m . (As much as $V_{TH} < 0.75 \text{ V}$)
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Homework#6 (1)

- Due: 09:00, April 30
- Write a program, which reads a netlist file.
 - In this program, the matrix describes a system:
 - For a voltage source:
 - The voltage difference between two terminals is fixed.
 - Sum of two terminal currents vanishes.
 - For a resistor:
 - The terminal current and the voltage difference satisfy Ohm's law.
 - Sum of two terminal currents vanishes.
 - For every element terminal, the terminal voltage is equal to the circuit node voltage.
 - For the GND node, the node voltage is zero.
 - For all other circuut nodes, the KCL is applied.

Homework#6 (2)

(Continued)

- For example, consider the example in Homework#4. A voltage source and a resistor are found.
- The matrix is explicitly shown below.

Homework#6 (3)

(Continued)

- In Homework#6, just solve the set of equations shown in the previous slide.
- The fully functional code will be needed in Homework#7.

Homework#6 (4)

- Solve the following problems of the mid-term exam in 2018.
 (Not 2017)
 - P4
 - P27
 - P28
 - P35
 - P36
 - P41
 - P42