Development Board For FPGA USER GUIDE MODEL NT-FTRAIN-02

PRODUCT DETAILS

Product Name FPGA Training Kit

Model NT-FTRAIN-02

Configuration Code FTRAIN0405

Firmware Reference NTFTRAIN-004-003

Issue Date 06/04/2005

LIST OF TABLES

S/NO	DESCRIPTION	PAGE
1	Source Types	20
2	Connection b/w NT-FTRAIN-01, FROM II and FPGA	26-27
3	Serial port to FPGA connections	28
4	7 Segments to FPGA Connections.	29

LIST OF FIGURES

S/NO	DESCRIPTION	Page
1	NT-FTRAIN Block Diagram	7
2	FPGA Training Board	8
3	NT-FTRAIN Package	9
4	Training Card Without FROM	10
5	Training Card With FROM	10
6	Power Adapter	11
7	Parallel Cable And Connections	11
8	Serial Port Cable	12
9	I/O Headers 13	
10	Programming Cable Orientation 13	
11	Orientation Of FROM-II In NT-FTRAIN	14
12	12 Project Navigator Main Window 16	
13	Serial Port To FPGA Connections	28
14	Seven Segment To FPGA Connections	29
15	NT-FTRAIN 80 Pins Connectors	30
16	Pinout of FPGA	31

Table of Contents

Chapter 1 Introduction Introduction General Block Diagram	8 8 8
Chapter 2 Features Benefits of Board-Based Training NT-FTRAIN Features NT-FTRAIN Package	10 10 11
Chapter 3 Technical Description Power Feed Parallel Port Serial Port 7 Segment Display Headers Programming Cables Programming Cable Connections Dip Switch System Reset Orientation Of From II In Trainer Card	13 13 13 14 14 15 15 15 16
Chapter 4 Project Navigator About Project Navigator Project Navigator Processes Starting Project Navigator Project Navigator Interface Project Navigator Main Window Title Bar Menu Bars Toolbars Sources In Project Window Sources in Project Windows tab Project Workspace HDL Editor Workspace Snapshots and Archives Taking a Snapshot Deleting a Snapshot	17 17 17 18 18 18 19 19 19
Chapter 5 Projects About Projects Creating a Project	20 20

NT-FTRAIN-01 Manual

	Project Name and Directory evice and Design Flow evice ew Source isting Source	20 21 21 21 21 22 22
Chapter 6 Design Flow About Design Flow Design Entry Constraint Types and Entry Tools Constraint Entry Tools Synthesis XST from Xilinx FPGA Express from Synopsis Simulation Simulation Points Implementation Device Programming		23 23 24 24 24 24 24 25 25 25
Chapter 7 Device Programming Creating FPGA Programming Files Launching Programming Tools Device Programming Tools PROM File Formatter iMPACT		
	Selection and Configuration PROM and Configuration of FPGA figuration:	28 29
Appendix B Appendix C Appendix D Appendix E Appendix E Appendix F	Connections B/W NT-FTRAIN, From Ii Headers And Fpga Fpga To Serial Port Connections Fpga To 7 Segment Connections VGA Connections DIP Switch Connections NT-FTRAIN-01 80 Pins Connectors. Pinout of FPGA Block Diagram of NexTek FPGA Training Board	38 40 41 43 44 45 46 47 48 49

INTRODUCTION

- 1. NT-FTRAIN-01 is a Field Programmable Gate Array Trainer. It is a development station for beginners as well as for professionals.
- 2. The learner of an FPGA (Field Programmable Gate Array) can use this development board to exercise the Digital Logic Designs (DLDs) keeping in view the hardware limitations of an FPGA used.
- 3. The professional can use this tool to develop his/her hardware and also to program the FROM modules in the production cycle.
- 4. The NT-FTRAIN is designed keeping in view the portability of FPGAs of different resources. Using this tool, FPGA can be programmed directly through the parallel port of a Personal Computer.

General

- 5. The NexTek FPGA Trainer, NT-FTRAIN, has been developed with an aim of providing a combination of training as well as a development environment.
- 6. The NT-FTRAIN is a low cost FPGA development platform based on SPARTAN-II FPGA. Trainers for other families of FPGAs are also being developed at NexTek Service.
- 7. The kit has the following features:
 - (a) The NT-FTRAIN has basic on–board resources to allow maximum target use.
 - (b) Dual programming modes are provided i.e. Parallel port interface and a JTAG programmer.
 - (c) Serial interface is given on NT-FTRAIN to communicate with a PC using RS232 interface.
 - (d) Two Seven-segment displays are provided for a host of application that range from debugging to state monitoring.
 - (e) VGA port is provided on NT-FTRAIN for interface with a monitor/LCD.
 - (f) The FPGA is given on NT-FTRAIN in the form of a small PCB called FROM-II.
 - (g) Configuration PROM (Programmable Read Only Memory), 16 MHz Crystal, Voltage Regulator, JTAG interfaces, and power connectors are built-in on FROM-II.
- 8. The FROM-II is an ideal module for the developers who do not want to get into the hassle of defining and designing components around the FPGA.
- 9. It takes a 5VDC power input and relieves the designer from designing surface mount boards and afterwards finding surface mount soldering sources.
- 10. A power adapter is given with NT-FTRAIN. On-board regulators are used to feed the desired power to the FPGA.
- 11. A small cable is given with the package, which is used to connect the NT-FTRAIN with FROM-II for the programming of an FPGA.

12. SPARTAN –II FPGA contains maximum of 150K user gates, and can operate at clock rates beyond 100MHz. The multi-volt I/O allows 2.5V, 3.3V or 5.0V to be used as VCCIO.

BLOCK DIAGRAM

Figure 1: NT-FTRAIN
Block diagram

FEATURES

Benefits of Board-Based Training

- 1. Learn language skills using a realistic project-based design rather than isolated code fragments.
- 2. Complete the design flow by implementing your project in hardware using our unique development board.
- 3. Take the board away with you, together with a design software package, at the end project.
- 4. Use the board to customize the lab project; create your own designs and experiment with the language & methodology.

New NT-FTRAIN-02 Features

- 5. Straight-forward, clear-cut board design easy to understand.
- 6. Ready to use "out of the box" no additional logic required.
- 7. Expandable extension port for interfacing with other hardware.
- 8. Flexible additional logic on board for further development beyond the training course lab.
- 9. Generous device capacity implement designs in excess of 150K gates
- 10. No CPLD/FPGA experience required tool scripts provided for easy implementation and configuration.

Figure 1: FPGA Training Board

NT-FTRAIN Package

- 11. The NT-FTRAIN-01 Development Board
- 12. An elegant skin finish, desktop with Brett Boards.
- 13. 9V 1A Adapter.
- 14. Parallel Cable (for downloading using parallel port).
- 15. Download cable (for downloading using JTAG programmer)
- 16. Serial Cable for interface with a personal computer.
- 17. Implementation software package
- 18. Operating Manual, datasheets, reference material.

Figure 2: NT-FTRAIN-01Package

Figure 3: Training Card without FROM

Figure 4: Training Card with FROM

TECHNICAL DESCRIPTION

POWER FEED

- 1. 9 Volt adapter is supplied with the package which is used for the power feed to the board. The pin of the adapter is connected with the J5 power jack.
- 2. The voltage is then regulated to 5 volts and 3.3 volts for the supply to FROM-II and the other components on the board.
- 3. Two LEDs D17 and D19 are the indication of 5V and 3.3V respectively.

Figure 1: Power Adapter

PARALLEL PORT

4. Parallel port is used for the programming of an FPGA. Parallel cable is connected to the NT-FTRAIN and a PC.

Figure 2: Parallel Cable and Connections

SERIAL PORT

- 5. Standard DB9 connector is used to provide an interface between NT-FTRAIN and a PC.
- 6. The serial communication can be established between NT-FTRAIN and a PC using HyperTerminal.
- 7. Max 232 is used for providing RS232 and TTL levels. It is connected directly to the I/O pins of an FPGA.
- 8. The pinout of Serial Port with FPGA and its schematic is given in Appendix B.

Figure 3: Serial Port Cable and Max 232 Connections

SEVEN SEGMENT DISPLAY

- **9.** The results of different labs can be shown on a 7-segment displays available on NT-FTRAIN.
- **10.** It is a Common Cathode display. It can be used for debugging purposes also.
- **11.** The user can single step through the code and keep on checking the code while displaying the results of each statements on 7 segment displays.
- 12. The Pinout of 7 Segment Display with FPGA and its schematic is given in Appendix C. The datasheet is given in the "datasheets" folder of Product CD.

HEADERS

- 13. General-purpose input output pins (I/Os) can be accessed through headers available on the NT-FTRAIN.
- 14. Total of 142 pins are available for general-purpose input output. These pins can be declared as inputs or outputs in the code.

The description of the pins and Schematic is given in Appendix A and D respectively.

Headers for accessing the I/Q pins of FPGA.

Figure 4: I/O Headers

PROGRAMMING CABLE

15. 6 pins cable is given with package for the programming of FROM-II. The programming signals from the parallel port are routed to FROM-II by this cable.

PROGRAMMING CABLE CONNECTION

16. The strips pasted on both ends of the cable can verify the orientation of programming cable.

Figure 5: Programming cable orientation.

SYSTEM RESET

17. A switch given on NT-FTRAIN resets FPGA. This switch is connected to the GCK0 (pin 80) of FPGA.

ORIENTATION OF FROM II IN TRAINER CARD

18. The orientation of FROM II in NT-FTRAIN-01 is shown below. After placing the FROM II at its proper orientation, remove the crystal either from FROM II or NT-FTRAIN-01 Trainer Card.

Figure 6: Orientation of FROM-II In NT-FTRAIN-01

DIP SWITCH:

The FPGA TRAINING BOARD comes by default at low state. However, you may re-configure your unit multiple times upon your requirements. A person who is familiar with data communications products and terminology best undertakes such a task. You will observe that there is an 8-pin red Dipswitch assembly, with individual sliders numbered 1 to 8. The position of all these is shown in the diagram on the summary pages at the end of this section.

CAUTION!

This unit contains device, which are static sensitive. Great care should be taken when adjusting switches and monitoring to avoid touching any connections directly. Whenever possible, anti-static precautions should be taken, such as the use of an earthed wrist-strap and anti-static mat.

Project Navigator

This chapter contains the following sections:

- 1. About Project Navigator
- 2. Starting Project Navigator
- 3. Project Navigator Interface
- 4. Snapshots and Archives

About Project Navigator

1. Project Navigator is the primary user interface for ISE 4.x. You create your FPGA or CPLD design using a suite of tools accessible from Project Navigator. Each step of the design process, from design entry to downloading the design to the chip, is managed from Project Navigator as part of a project.

Project Navigator Processes

- Project Navigator integrates the following processes.
 - Design Entry
 - Constraint Entry
 - Synthesis
 - Simulation
 - Implementation
 - Device Programming

Starting Project Navigator

To start Project Navigator on personal computers:
 Double-click the Project Navigator icon on your desktop.
 OR

Click Start \rightarrow Programs \rightarrow Xilinx ISE Series 4.x \rightarrow Project Navigator.

Note Your startup menu path is created during installation, and may differ from the path shown above.

4. The first time you open Project Navigator all of its windows are empty. After that, Project Navigator opens with the last project you worked on if you selected Edit → Preferences → General → Window Settings → Always Open Last Project.

Project Navigator Interface

5. The Project Navigator interface contains the following:

- Project Navigator Main Window
- Sources In Project Window
- Sources in Project Windows tab
- Project Workspace
- HDL Editor Workspace

Project Navigator Main Window

6. The following figure shows the windows, toolbars, workspaces, and other objects in the Project Navigator main window.

Figure 1:Project Navigator Main Window

7. The Project Navigator main window contains the following:

• Title Bar

The Title bar displays the name of the application and the path of the current project.

Menu Bar

The Menu bar allows you to access the Project Navigator commands.

Toolbars

The toolbars provide convenient access to frequently used commands.

Sources In Project Window

8. The Sources in Project window lists all the design files associated with a project. A source is any element that contains information about a design definition.

Sources in Project Window Tabs

- 9. Tabs at the bottom of the Sources in Project window allow you to select three different views of the source data:
 - Module View
 - Snapshot View
 - Library View

Project Workspace

10. The Project Workspace consists of the Sources in Project window and the Processes for Current Source window. These windows are grouped together for viewing purposes. Click **View** → **Project Workspace** to toggle the display of these two windows as one item.

HDL Editor Workspace

11. The HDL Editor workspace is the main text editing area for HDL code. It is the only Project Navigator window that cannot be hidden or undocked.

Snapshots and Archives

- 12. To save a specific revision of your project, you can archive it or take a snapshot of it. When you archive a project, you create a ZIP file for that version and place it in a specified directory.
- 13. To archive a project, click **Project** \rightarrow **Archive** in Project Navigator. To open an archive or see the files in it, unzip it.
- 14. When you take a snapshot of a project, the snapshot becomes part of the project. It is accessible from the Snapshot View of the Sources in Project window.

Taking a Snapshot

- 15. To take a snapshot of the current version of your project:
 - Click **Project** → **Take Snapshot**.
 - Enter a name and comments in the Take a Snapshot of the Project dialog box.

Deleting a Snapshot

- 16. To delete a snapshot:
 - Go to the Sources in Project window.
 - Click the Snapshot View tab.
 - Click a snapshot name.
 - Click Source → Remove from the Project Navigator.

PROJECTS

This chapter contains the following sections:

- 1. About Projects
- 2. Creating a Project
- 3. Creating a New Source
- 4. Source Types

About Projects

1. ISE 4.x organizes and tracks your FPGA or CPLD design as a *project*. This section discusses some of the key concepts and features of projects.

Project

A project is a collection of all files necessary to create and download your design to the selected device.

Project Properties

Each project has a directory, device family, device, and design flow associated with it as *project properties*.

Sources

A *source* is any element that contains information about a design, such as HDL files, state diagrams, schematics, documentation files, simulation models, and test files. You create and add the sources to your project.

Process

A *process* is an action you can perform on a source to test and implement your design.

Creating a Project

- Creating a project consists of the following:
 - Setting Project Properties
 - Specifying a Project Name and Directory
 - Selecting a Device and Design Flow

Setting Project Properties

- 3. Specify the following project properties when you create a new project:
 - Project name

Give your project a unique name.

• Project directory

Specify a unique directory to store the project's source files, intermediate data files, and resulting files.

Device family

Target your design for a specific Xilinx device family (architecture). Vertex, Spartan, XC9500 are examples of device families.

Device

Target your design for a specific device within the selected device family. An example of a device is *S05 PC844-4*, where *S05* designates a specific Spartan device, *PC844* specifies the package, and *-4* indicates the speed grade.

Design flow

Specify a design flow, either EDIF or a synthesis tool. FPGA Express and XST are the synthesis tools. VHDL, Verilog, and ABEL versions are available for these tools.

Specifying a Project Name and Directory

4. Specify a project name and directory when you create a new project. For each project, designate a separate, unique directory containing only one project file (*project_name*.npl).

Selecting a Device and Design Flow

5. The first time you create a new project, a default device and design flow appear in the New Project dialog box. For subsequent projects, the device and design flow you used for your last project are used as the default for the new project.

Selecting a Device

- 6. To select or change a device:
 - Open the project.
 - Click the Device and Design Flow line in the Sources in Project window.
 - Click Source → Properties.
 - Click the scroll button on the right side of the Device Family Value field to display the device family list.
 - Scroll through the device family list and select the device by clicking its name.

Creating a New Source

- 7. To create a new source file:
 - Open the project.
 - Click **Project** → **New Source**.
 - Select the source type you want to create from the list.
 - Enter a name for the new source file in the File Name field.
 - Check the Add to Project box to add this source automatically after it is created.
 - Click Next.

- Click **Next** in the Define Sources in Project window.
- Click **Finish** in the New Source Information window.

Adding an Existing Source

- Open a project.
- Click a source in the Sources in Project window.
- Click Project → Add Source.
- Use the Add Existing Sources in Project dialog box to browse through your directories and select the source you want to add.
- Click open.
- After selecting the file, the Choose Source Type dialog box may open.
- When you click **Open** to select a file in the Add Existing Sources in Project dialog box or **OK** in the Choose Source type dialog box, the file appears in the Sources in Project window for the current project.

Source Types

8. Projects can include the source types listed in the following table.

Source Type	File Extension
Verilog module	.V
ABEL-HDL logic description	.abl
ABEL-HDL test vectors	.abv (or .abl)
COREgen IP	.XCO
LogiBLOX module	.mod
Testbench Waveform	.tbw
Block Memory Map file	.bmm
Executable CPU code	.elf
EDIF Source file	.edn, .edf, .edif, .sedif
Project file	.npl
User document (such as a	.txt, .wri, .doc, .xls, .hlp
Schematic	.sch
State diagram	.dia
VHDL module	.vhd
VHDL package	.vhd
VHDL testbench	.vhd
Waveform stimulus	.wdl

Table 1: Source Types

DESIGN FLOW

This chapter contains the following sections:

- 1) About Design Flow
- 2) Design Entry
- 3) Constraint Types and Entry Tools
- 4) Synthesis
- 5) Simulation
- 6) Implementation
- 7) Device Programming

About Design Flow

- 1. Design flow is a multi-step, iterative process that includes:
 - Design Entry
 - Constraint Entry
 - Synthesis
 - Simulation
 - Implementation
 - Device Programming

Design Entry

- 2. You can create your design using HDL code, Intellectual Property such as CORE Generator, schematics, and state diagrams. You can create new sources or add existing sources to your project. ISE 4.x includes the following design entry tools, all of which are accessible from Project Navigator:
 - HDL Editor
 - StateCAD State Machine Editor
 - Engineering Capture System (ECS)
 - CORE Generator
 - LogiBLOX

Constraint Types and Entry Tools

- 3. The following constraints are available for use with your FPGA and CPLD designs:
 - Timing Constraints
 - Placement Constraints
 - Grouping Constraints
 - Mapping Directives
 - Routing Directives
 - Modular Design Constraints

- Synthesis Constraints
- Fitter Directives
- Initialization Directives
- DLL and DCM Constraints
- Logical and Physical Constraints

Caution Not all constraints are available for all devices, nor can they be entered with every tool or method.

Constraint Entry Tools

4. Constraints can be entered at various stages throughout the entire design process, using a variety of tools. Constraint entry methods and tools include the Xilinx Constraints Editor, UCF files, FPGA Express, and XST Constraint files, as well as several others.

Synthesis

- 5. After your design has been successfully analyzed, the next step is to translate the design into gates and optimize it for the target architecture. This is the synthesis phase. Two synthesis tools are generally used:
 - XST from Xilinx
 - FPGA Express from Synopsis
- 6. You choose the synthesis tool in the Design Flow option when you create a project.

XST from Xilinx

- 7. XST (Xilinx Synthesis Technology) is a Xilinx tool that synthesizes HDL designs to create an NGC file. The Project Navigator invokes XST processing when you select a source and then select a synthesis process for a project that has the XST synthesis tool associated with it.
- 8. An XST flow project can contain either VHDL (XST VHDL) or Verilog (XST Verilog) modules, but not a mix of both. A functional VHDL model (XST VHDL) or Verilog model (XST Verilog) is created for schematics prior to synthesis. Process properties can be set to control XST synthesis.

FPGA Express from Synopsis

- 9. FPGA Express from Synopsys, Inc., can synthesize VHDL, Verilog, or mixed HDL designs to create EDIF netlists.
- 10. A functional VHDL model (FPGA Express VHDL) or Verilog module (FPGA Express Verilog) is created for schematics prior to synthesis.

Simulation

11. Simulation verifies the operation of your design before you implement it as hardware.

Simulation Points

- 12. Several simulation points are available to test your design:
 - Behavioral simulation to check the logic prior to synthesis
 - Functional Simulation to check the logic post-synthesis
 - Post-MAP simulation to verify behavior post-map
 - Post-route Simulation to verify that the design meets the timing requirements you set for your design in the targeted device.

Implementation

- 13. The implementation stage consists of taking the synthesized netlists through translation, mapping, and place and route.
- 14. To check your design as it is implemented, reports are available for each stage in the implementation process.

Device Programming

- 15. When your design meets all your requirements, you can create a programming file that can be downloaded to the target device.
- 16. Use the following tools to program a device:
 - iMPACT
 - PROM File Formatter

Device Programming

This chapter contains the following sections:

- 1. Creating FPGA Programming Files
- 2. Generating CPLD Programming Files
- 3. Device Programming Tools

Creating FPGA Programming Files

- 1. After the design has been completely routed, you must configure the device so that it can execute the desired function. Xilinx's bitstream generation program, BitGen, takes a fully routed NCD (Native Circuit Description) file as its input and produces a configuration bitstream—a binary file with a .bit extension.
- 2. The BIT file contains all of the configuration information from the NCD file defining the internal logic and interconnections of the FPGA, plus device-specific information from other files associated with the target device. The binary data in the BIT file can then be downloaded into the FPGA's memory cells, or it can be used to create a PROM file.
- 3. To create a configuration bitstream file:
 - Click the top-level source for the project in the Sources in Project window.
 - Click **Generate Programming File** in the Processes for Current Source window.
 - Click **Process** → **Run** in the Project Navigator menu.
 - To view the Programming File Report in the report window, doubleclick **View Programming File Generation Report** in the Processes for Current Source window.

Launching Programming Tools

- 4. To launch a programming tool:
 - Click the top-level source file in the Sources in Project window.
 - Double-click the programming tool name in the Processes for Current Source window.

Device Programming Tools

- 5. After creating the programming file, use one of the following programming tools to configure your device:
 - PROM File Formatter
 - iMPACT

PROM File Formatter

6. An FPGA or daisy chain of FPGAs can be configured from serial or parallel PROMs.

- 7. The PROM File Formatter can create MCS, EXO, or TEK style files. The files are read by a PROM programmer that turns the image into a PROM.
- 8. A HEX file can also be used to configure an FPGA or a daisy chain of FPGAs through a microprocessor.
- 9. The PROM File Formatter is available for FPGA designs only. The PROM File Formatter provides a graphical user interface that allows you to:
 - Format BIT files into a PROM file compatible with Xilinx and third-party PROM programmers
 - Concatenate multiple bitstreams into a single PROM file for daisy chain applications
 - Store several applications in the same PROM file

IMPACT

10. The iMPACT configuration tool, a command line and GUI based tool, allows you to configure your PLD designs using Boundary-Scan, Slave Serial, and Select MAP configuration modes. iMPACT supports both the Parallel (JTAG) and MultiLINX cables.

iMPACT also allows you to:

- ReadBack and Verify design configuration data
- Run Boundary-Scan TAP debug operations
- Create SVF and STAPL Files

Selection and Configuration

- 1. PROM file is generated with *.mcs extension.
- 2. Following dialog boxes show the complete procedure of generating a PROM file.

- 3. In PROM File Name give the name of the PROM file.
- 4. In Location give the path where the PROM file should be created.
- 5. Important point in generating a PROM file is to know the part number and family of PROM used with FPGA.
- 6. The PROM used with FROM is xcf01s.
- 7. Select xcf as a PROM.
- 8. Select the part number xcf01s as shown in the following dialog box and click Add.

9. Now click Add File...

FPGA is detected and is displayed along with its part number. 10. Select No as we have only one device (FPGA) to configure.

11. Click yes to generate the PROM file and then click finish.

- 12. The above dialog box shows the successful generation of PROM file.
- 13. Close the window.
- 14. Now double click the last step of "Generate Programming File" i.e. "configure device (iMPACT)" in project navigator window.
- 15. Choose the options shown below.

iMPACT Configuration:

The iMPACT configuration tool, a command line and GUI based tool, allows you to configure your PLD designs using Boundary-Scan, Slave Serial, and Select MAP configuration modes. iMPACT supports both the Parallel (JTAG) and MultiLINX cables.

iMPACT also allows you to:

- ReadBack and Verify design configuration data
- Run Boundary-Scan TAP debug operations
- Create SVF and STAPL Files

iMPACT configuration is described by hierarchical GUI as shown below.

Now double click the last step of "Generate Programming File" i.e. "configure

device (iMPACT)" in project navigator window.

Choose the options shown below.

- Add .mcs file to PROM and .bit file to FPGA.
- Select the part number of PROM as xcf01s_vo20.

- Ignore the warning, Right click the PROM and click program.
- Click the following options in an appearing dialog box.
- The PROM is programmed successfully. The PROM will configure the FPGA automatically.

APPENDIX A CONNECTIONS B/W NT-FTRAIN, FROM II HEADERS AND FPGA

Conn	Pin	Signal	Header	FPGA	Conn	Pin	Signal	Header	FPGA
J18	1	GCK3	J5_21	P185	J19	1	I/O180	J5_20	P180
J18	2	GCK2	J5_22	P182	J19	2	I/O181	J5_19	P181
J18	3	I/0188	J5_23	P188	J19	3	I/O178	J5_18	P178
J18	4	I/O187	J5_24	P187	J19	4	I/O179	J5_17	P179
J18	5	I/O189	J5_25	P189	J19	5	I/O175	J5_16	P175
J18	6	I/O191	J5_26	P191	J19	6	I/O176	J5_15	P176
J18	7	I/O192	J5_27	P192	J19	7	I/O173	J5_14	P173
J18	8	I/O193	J5_28	P193	J19	8	I/O174	J5_13	P174
J18	9	I/O194	J5_29	P194	J19	9	I/O168	J5_12	P168
J18	10	I/O195	J5_30	P195	J19	10	I/O172	J5_11	P172
J18	11	I/O199	J5_31	P199	J19	11	I/O166	J5_10	P166
J18	12	I/O200	J5_32	P200	J19	12	I/O167	J5_9	P167
J18	13	I/O201	J5_33	P201	J19	13	I/O164	J5_8	P164
J18	14	I/O202	J5_34	P202	J19	14	I/O165	J5_7	P165
J18	15	I/O203	J5_35	P203	J19	15	I/O162	J5_6	P162
J18	16	I/O204	J5_36	P204	J19	16	I/O163	J5_5	P163
J18	17	I/O205	J5_37	P205	J19	17	I/O160	J5_4	P160
J18	18	I/O206	J5_38	P206	J19	18	I/O161	J5_3	P161
J18	19	3.3V			J19	19	3.3V		
J18	20	3.3V			J19	20	3.3V		
J18	21	GND	J6_1	P1	J19	21	GND	J5_1	P19
J18	22	I/O3	J6_2	P3	J19	22	NC		
J18	23	I/O5	J6_3	P5	J19	23	NC		
J18	24	I/O4	J6_4	P4	J19	24	NC		
J18	25	I/O7	J6_5	P7	J19	25	I/O154	J3_5	P154*
J18	26	I/O6	J6_6	P6	J19	26	I/O153	J3_6	P153*
J18	27	I/O9	J6_7	P9	J19	27	I/O152	J3_7	P152*
J18	28	I/O8	J6_8	P8	J19	28	I/O151	J3_8	P151*
J18	29	I/O14	J6_9	P14	J19	29	I/O150	J3_9	P150*
J18	30	I/O10	J6_10	P10	J19	30	I/O149	J3_10	P149*
J18	31	I/O16	J6_11	P16	J19	31	I/O148	J3_11	P148*
J18	32	I/O15	J6_12	P15	J19	32	I/O147	J3_12	P147*
J18	33	I/O18	J6_13	P18	J19	33	I/O142	J3_13	P142
J18	34	I/O17	J6_14	P17	J19	34	I/O146	J3_14	P146
J18	35	I/O20	J6_15	P20	J19	35	I/O141	J3_15	P141
J18	36	I/O21	J6_16	P21	J19	36	I/O140	J3_16	P140
J18	37	I/O22	J6_17	P22	J19	37	I/O138	J3_17	P138
J18	38	I/O23	J6_18	P23	J19	38	I/O139	J3_18	P139
J18	39	I/O24	J6_19	P24	J19	39	I/O135	J3_19	P135
J18	40	I/O27	J6_20	P27	J19	40	I/O136	J3_20	P136

Conn	Pin	Signal	Header	FPGA	Conn	Pin	Signal	Header	FPGA
J18	41	I/O29	J6_21	P29	J19	41	I/O133	J3_21	p133
J18	42	INHIBIT	J6_22		J19	42	I/O134	J3_22	P134
J18	43	I/O30	J6_23	P30	J19	43	I/O129	J3_23	P129
J18	44	I/O31	J6_24	P31	J19	44	I/O132	J3_24	P132
J18	45	I/O33	J6_25	P33	J19	45	I/O126	J3_25	P126
J18	46	I/O34	J6_26	P34	J19	46	I/O127	J3_26	P127
J18	47	I/O35	J6_27	P35	J19	47	I/O123	J3_27	P123
J18	48	I/O36	J6_28	P36	J19	48	I/O125	J3_28	P125
J18	49	I/O37	J6_29	P37	J19	49	I/O121	J3_29	p121
J18	50	I/O41	J6_30	P41	J19	50	I/O122	J3_30	p122
J18	51	I/O42	J6_31	P42	J19	51	I/O119	J3_31	p119
J18	52	I/O43	J6_32	P43	J19	52	I/O120	J3_32	p120
J18	53	I/O44	J6_33	P44	J19	53	I/O114	J3_33	p114
J18	54	I/O45	J6_34	P45	J19	54	I/O115	J3_34	p115
J18	55	I/O46	J6_35	P46	J19	55	I/O112	J3_35	P112
J18	56	I/O47	J6_36	P47	J19	56	I/O113	J3_36	P113
J18	57	I/O48	J6_37	P48	J19	57	I/O110	J3_37	P110
J18	58	I/O49	J6_38	P49	J19	58	I/O111	J3_38	P111
J18	59	GND	J6_39	P11	J19	59	I/O108	J3_39	P108
J18	60	VIN	J6_40		J19	60	I/O109	J3_40	P109
J18	61	I/O58	J4_40	P58	J19	61	GND	J4_1	P25
J18	62	1/057	J4_39	P57	J19	62	TDO	J4_2	p157
J18	63	I/O60	J4_38	P60	<mark>J19</mark>	<mark>63</mark>	CLK	<mark>J4_3</mark>	P77
J18	64	I/O59	J4_37	P59	<mark>J19</mark>	<mark>64</mark>	RESET	<mark>J4_4</mark>	P36
J18	65	I/O62	J4_36	P62	J19	65	TCK	J4_7	P207
J18	66	I/O61	J4_35	P61	J19	66	TDI	J4_6	P159
J18	67	I/O67	J4_34	P67	J19	67	TMS	J4_5	P2
J18	68	I/O63	J4_33	P63	J19	68	I/O102	J4_8	P102
<mark>J18</mark>	<mark>69</mark>	<mark>I/O69</mark>	<mark>J4_32</mark>	P69	J19	69	I/O101	J4_9	P101
J18	70	I/O68	J4_31	P68	J19	70	I/O100	J4_10	P100
J18	71	I/O71	J4_30	P71	J19	71	I/O99	J4_11	P99
J18	72	I/O70	J4_29	P70	J19	72	I/O98	J4_12	P98
J18	73	I/O74	J4_28	P74	J19	73	I/O97	J4_13	P97
J18	74	I/O73	J4_27	P73	J19	74	I/O96	J4_14	P96
J18	75	I/O75	J4_26	P75	J19	75	I/O95	J4_15	P95
J18	76	I/O81	J4_25	P81	J19	76	I/O94	J4_16	P94
J18	77	I/O83	J4_24	P83	J19	77	I/O90	J4_17	P90
J18	78	I/O82	J4_23	P82	J19	78	I/O89	J4_18	P89
J18	79	I/O86	J4_22	P86	J19	79	I/O87	J4_19	p87
J18	80	I/O84	J4_21	P84	J19	80	I/O88	J4_20	P88

Table A : Header J18, J19, FROM II and FPGA connections

APPENDIX B

FPGA TO SERIAL PORT CONNECTIONS

S/NO	SERIAL PORT	FPGA PINS
1	3	I/O71
2	2	I/O69

TABLE B: SERIAL PORT TO FPGA CORRESPONDING CONNECTIONS

Figure B: SERIAL PORT TO FPGA CONNECTIONS

APPENDIX C

SEVEN SEGMENT CONNECTIONS

A,B,C

S/NO	7 SEGMENT PINS	HEADER	FPGA PINS
1	Α	J4_12	I/O98
2	В	J4_13	I/O97
3	С	J4_15	I/O95
4	D	J4_16	I/O94
5	E	J4_17	I/O90
6	F	J4_20	I/O88
7	G	J4_18	I/O89
8	Dot (DP)	J4_14	I/O96

TABLE C: SEVEN SEGMENT (D24) TO FPGA CONNECTIONS

Figure C: SEVEN SEGMENT TO FPGA CONNECTIONS

SEVEN SEGMENT CONNECTIONS

S/NO	7 SEGMENT PINS	HEADER	FPGA PINS
1	Α	J3-10	I/O149
2	В	J3-09	I/O150
3	С	J3-06	I/O153
4	D	J3-07	I/O152
5	E	J3-08	I/O151
6	F	J3-11	I/O148
7	G	J3-12	I/O147
8	Dot	J3-05	I/O154

TABLE D: SEVEN SEGMENT (D25) TO FPGA CONNECTIONS

Figure D: SEVEN SEGMENT TO FPGA CONNECTIONS

APPENDIX D

VGA CONNECTIONS

S/NO	VGA Connector	HEADER	FPGA PINS
1	VSYNC	J5-5	I/O163
2	HSYNC	J5-26	I/O191
3	Blue0	J5-3	I/O161
4	Blue1	J5-4	I/O160
5	Green0	J5-19	I/O181
6	Green1	J5-24	I/O187
7	Red0	J5-20	I/O180
8	Red1	J5-17	I/O179

<u>APPENDIX E</u>

DIP SWITCH CONNECTIONS

S.No.	Switch No	HEADER	FPGA PINS
1	Sw-1	J5_23	I/O 188
2	Sw-2	J5_25	I/O 189
3	Sw-3	J5_27	I/O 192
4	Sw-4	J5_29	I/O 194
5	Sw-5	J5_31	I/O199
6	Sw-6	J5_33	I/O 201
7	Sw-7	J5_35	I/O 203
8	Sw-8	J5_37	I/O 205

APPENDIX F

Figure D: NT-FTRAIN-01 80 pins Connectors.

APPENDIX G

Figure E: Pinout of FPGA

APPENDIX H Block Diagram of NexTek FPGA Training Board

REFERENCES

The following references are used for the compilation of this technical manual.

- http://www.support.xilinx.com/
- http://www.xilinx.com/apps/
- http://www.synopsys.com/
- http://www.exemplar.com/
- http://www.model.com/
- http://www.verilog.com/
- http://www.xilinx.com/ipcenter/

Ordering Information:

NT-FTRAIN-01-XXX -T Where,

XXX is the number of logic gates FPGA to have. The values are:

'050' for 50,000 gates

'100' for 100,000 gates

and, '150' for 150,000 gates

T is the Temperature type of the module. The values are:

'C' for commercial range (0 Celsius to 75 Celsius) and, 'l' fro industrial version (- 35 Celsius to 80 Celsius)

For pricing and further information:

NexTek Service

133, St-65. F-11/4. Islamabad-44000

Fax: +92-51-2103399

Email: sales@NexTekService.com