Project Euler #209: Circular Logic

This problem is a programming version of Problem 209 from projecteuler.net

A k-input binary truth table is a map from k input bits (binary digits, 0 [false] or 1 [true]) to 1 output bit. For example, the 2-input binary truth tables for the logical AND and XOR functions are:

х	y	x and y	x XOR y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

How many \emph{n} -input binary truth tables, $\emph{ au}$, satisfy the formula

$$au(F_1(a_1,a_2,\ldots,a_n),F_2(a_1,a_2,\ldots,a_n),\ldots,F_n(a_1,a_2,\ldots,a_n))$$
 AND $au(G_1(a_1,a_2,\ldots,a_n),G_2(a_1,a_2,\ldots,a_n),\ldots,G_n(a_1,a_2,\ldots,a_n))=0$ for all n -bit inputs (a_1,a_2,\ldots,a_n) ?

Input Format

The first line of each test file contains a single integer n. n lines follow with descriptions of the functions F_i on each line. n lines follow then with descriptions of the functions G_i on each line.

Every description follow the grammar described below:

 $Formula
ightarrow Summand | Summand + Formula \ Summand
ightarrow 0 | 1 | Product \ Product
ightarrow Letter | Letter \& Product \ Letter
ightarrow a Index \ Index
ightarrow 1..n$

where & means logical AND, + means logical XOR, aIndex result into $a_1 \ldots a_n$.

For example, one of the possible function descriptions could look as follows:

```
a1&a2+a1+1
```

One should interprete this as the function $(a_1 \ AND \ a_2) \ XOR \ a_1 \ XOR \ 1$

Constraints

- $1 \le n \le 6$
- ullet Every description of a function has length < 600. Moreover, every possible summand occurs in each description not more than once.

Output Format

Print exactly one number, which is the answer to the problem.

Sample Input 0

```
1
1
al
al+1
```

Sample Output 0

```
3
```

Explanation 0

Let's look at all possible au:

- ullet au(x)=0. Then it doesn't depend on a1 and the statement is always true
- ullet au(x)=1. It also doesn't depend on a1 but now the statement is always false
- $\tau(x) = x$ and $\tau(x) = x \, XOR \, 1$ both lead us to the statement $a1 \, AND \, (a1 \, XOR \, 1) = 0$ which is always true.

That said, our answer is 3.

Sample Input 1

```
1
1
al
0
```

Sample Output 1

```
2
```

Explanation 1

Using the same logic as in previous sample, we can deduce that $\tau(x)=0$ is good and $\tau(x)=1$ is bad. Let's take a look into $\tau(x)=x$ and $\tau(x)=x$

- au(x)=x. After substitution we get $a1\,AND\,0=0$ which is always true.
- $\tau(x) = x \, XOR \, 1$. Now we get $(a1 \, XOR \, 1) \, AND \, 1 = 0$. It is wrong for a1 = 0.

That leaves us with only two good au.

Sample Input 2

```
2
a1&a2
a1&a2+1
a1
a1&a2+1
2
1
a1
a1&a2+a2+a1+1
a2+a1
```

Sample Output 2

```
4 5
```

Sample Input 3

```
2 3
```

```
a2&a3+a1&a3+a1
a1&a2&a3+a2*a3+a2
a2&a3+a1&a3
a2&a3+a1&a3+a1&a2+a2
a2&a3+a1&a3+a1&a2+a1
3
a1&a2&a3+a2&a3+a3+a2+a1
a1&a2&a3+a2&a3+a1&a2+1
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1+1
a1&a2&a3+a2&a3+a3+a1&a2+a2+a1+1
a1&a2&a3+a2&a3+a3+a1&a2+a2+a1
```

Sample Output 3

