Probabilités et statistiques pour l'ingénieur M1 Informatique

Examen, 4 janvier 2016

Ce devoir surveillé consiste en 4 exercices sur un total de 4 pages.

Les calculatrices ne sont pas autorisées.

Les exercices peuvent être traités dans le désordre.

La notation prendra en compte le soin et la clarté des réponses.

Exercice 1.

On considère une pièce de monnaie C et deux dés à six faces A et B. On suppose que

- C est non biaisée : la probabilité que C tombe sur pile et la même que celle qu'elle tombe sur face,
- A est non biaisé : les faces ont toutes la même probabilité,
- B est biaisé : les valeurs 4 et 6 a été remplacée par la valeur 1.

On considère le jeu suivant : on lance C, et après on lance A si on a obtenu pile et on lance B si on a obtenu face. On gagne si on obtient un nombre pair.

- 1. Calculer la probabilité p de victoire.
- Calculer la probabilité conditionnelle d'avoir obtenu face sachant qu'on a gagné.
- 3. On répète le jeu n fois et on considère la variable aléatoire X_n qui compte le nombre de victoires sur les n répétitions. Quelle est la distribution exacte de X_n ? Donner la formule en fonction de n et p.
- 4. Quel est le nombre attendu de victoires sur n = 10 répétitions?
- 5. On considère la fréquence empirique de victoire $\frac{X_n}{n}$. Quelle est la limite de $\frac{X_n}{n}$ quand $n\to\infty$? Justifier à l'aide d'un important théorème vu en cours.

Exercice 2.

1. On veut vérifier si un dé à 6 faces est biaisé ou pas. Quelle expérience mèneriez-vous? Proposez un test statistique pour cela : donner les hypothèses H_0 , H_1 et le nom du test.

- 2. On s'intéresse à savoir si il y a une dépendance entre le revenu X et le niveau d'étude Y d'une personne. Pour cela on considère trois catégories pour X (faible, moyen, élevé) et cinq catégories pour Y (pré-baccalauréat, baccalauréat, licence, master, doctorat). Proposer un test pour étudier l'association entre X et Y : donner les hypothèses et le nom du test.
- 3. On veut vérifier si il y a une dépendance entre l'âge X et la pression artérielle Y. En particulier on se demande si la pression artérielle augmente avec l'âge. Proposer un test pour cela : donner les hypothèses, le nom du test et sa latéralité.

Exercice 3.

Chaque jour à Paris cinq millions de voyageurs empruntent les transports en commun, dont un certain nombre sans titre de transport. A la suite de contrôles sur un total de n voyageurs en un jour donné, on a sanctionné s fraudeurs. Un estimateur ponctuel de la proportion p de fraudeurs est $\hat{p} = \frac{s}{s}$.

- 1. Montrer que \hat{p} est un estimateur sans biais de p, c'est à dire que $E[\hat{p}] = p$, où $E[\cdot]$ note l'espérance d'une variable aléatoire.
- 2. Dans un échantillons de $n=10^4$ voyageurs, on a compté s=1000 fraudeurs. Donner l'intervalle de confiance symétrique au seuil 95% pour p calculé sur la base de l'échantillon. Indication : on rappelle que

$$\mathbb{P}\left(\hat{p} - 2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- 3. Est-ce que le résultat des contrôles effectués est d'une quelconque utilité pour savoir si le la proportion de fraudeurs est supérieur à 10%? Justifier la réponse.
- 4. Donner le nombre minimal de voyageurs qu'il aurait fallu contrôler pour être au 95% certains que l'erreur d'estimation était inférieur à $\pm 0.4\%$, c'est à dire $|\hat{p} p| \le 0.004$.

Exercice 4.

On s'intéresse à la relation entre deux variables aléatoires X et Y. Pour cela on a relevé 50 observations (x,y): voir Fig. 1.

FIGURE 1 – Paires (x, y).

On modélise Y en fonction de X à l'aide d'un modèle de régression linéaire.

1. Ecrire l'équation du modèle en précisant ses hypothèses.

On estime les paramètres du modèle à l'aide du logiciel R et on obtient le listing de la Fig. 2. Au vu de ces résultats :

- 2. Donner l'estimation des paramètres du modèles. Peut-on conclure que les paramètres sont différents de zéro? Pourquoi?
- 3. Ecrire la droite des moindres carrés.
- 4. Ecrire la valeur attendu de Y sachant X = 50.
- 5. Donner et commenter une mesure de la $qualit\acute{e}$ du modèle.
- 6. Donner une estimation (approximative) du coefficient de corrélation entre X et Y.

```
Call:
lm(formula = y ~ x)
Residuals:
   Min
            1Q Median
                           ЗQ
                                 Max
-16.196 -3.666 1.099
                       3.608
                                9.310
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 152.0841
                    6.7749 22.45 <2e-16 ***
                       0.1351 -16.51 <2e-16 ***
           -2.2304
X
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.445 on 48 degrees of freedom
Multiple R-squared: 0.8503, Adjusted R-squared: 0.8471
F-statistic: 272.6 on 1 and 48 DF, p-value: < 2.2e-16
```

FIGURE 2 – Régression linéaire modélisant Y en fonction de X, sortie R