Sieć AS-i w pytaniach i odpowiedziach

1. Czy w sieci AS-i może występować więcej niż jedna jednostka nadrzędna?

Nie. Sieć AS-i, podobnie jak sieć MODBUS, jest klasycznym przykładem sieci typu monomaster czyli sieci z jedną jednostką nadrzędną.

2. Czy błędem jest zaprojektowanie sieci AS-i składających się wyłącznie z jednostek podporządkowanych.?

Tak. Dotyczy to wszystkich sieci typu monomaster. Taka sieć nie będzie siecią funkcjonalną. W takiej sieci nie będzie mogła być realizowana wymiana informacji. Urządzenia podporządkowane w sieci AS-i nie mają możliwości inicjacji transakcji sieciowych.

3. Czy sieć AS-i może składać się tylko z jednej jednostki nadrzędnej i jednej jednostki podporządkowanej?

Tak. Taka sieć spełnia wszystkie wymogi właściwej topologii sieci AS-i.

4. Czy topologia drzewa jest dopuszczalna w sieci AS-i?

Tak. W sieci AS-i możliwe jest stosowanie topologii drzewa. Ponadto w sieci AS-i możliwe jest stosowania topologii magistrali, łańcucha, siatki, a nawet pierścienia.

5. W sieci MODBUS, w przypadku stosowania w warstwie fizycznej nadajników/odbiorników linii zgodnych z RS485, stosowane są rezystory terminalne. Czy istnieje konieczność stosowania takich rezystorów także w sieci AS-i?

Nie. W sieci AS-i rezystory terminalne nie są stosowane. Ze względu na stosunkowo krótki zasięg sieci, tłumienie efektów odbić w magistrali przy umiarkowanej prędkości transmisji i zastosowanym sposobie modulacji sygnału w sieci nie są tak istotne. Pośrednio rolę jednego terminatora magistrali spełnia układ symetryzujący zasilacza AS-i. Drugi (rozproszony) układ terminatora tworzą pośrednio impedancje wejściowe dołączonych urządzeń sieciowych.

6. W jakim celu stosowany jest ekstender magistrali AS-i?

Ekstender magistrali umożliwia geograficzne oddalenie jednostki nadrzędnej od pierwszego urządzenia podporządkowanego. Maksymalna odległość ekstendera od urządzenia nadrzędnego wynosi 100m.

7. Czy sieć AS-i należy do klasy tzw. sieci dwuprzewodowych?

Tak. Sieci dwuprzewodowe to sieci, w których ta sama para przewodów służy do przesyłania informacji i jednocześnie do zasilania urządzeń sieciowych. Do sieci takich zaliczyć można oprócz AS-i, także takie sieci jak: HART, PROFIBUS PA, FOUNDATION FIELDBUS H1.

8. Jaki sygnał jest nośnikiem fizycznym informacji w sieci AS-i?

W sieci AS-i nadajnik informacji generuje sygnał prądowy. Zmiany tego prądu indukują odpowiednie zmiany napięcia w cewkach układów odprzęgających wszystkich odbiorników. Na podstawie tych zmian, odtwarzana jest w sieciowych urządzeniach odbiorczych binarna postać informacji przesyłanej przez nadajnik. W rzeczywistych sieciach AS-i zmiany prądu w czasie transmisji wahają się w granicach 55..68mA. Zmiany te indukują napięcia o wartościach z zakresu: ±2V.

9. Czy urządzenia sieciowe AS-i muszą być koniecznie zasilane ze specjalnego zasilacza AS-i?

Tak. Zasilacz AS-i oprócz zasilania urządzeń sieciowych pełni dodatkową rolę w sieci. Pozwala między innymi na: separację i symetryzację sygnału AS-I oraz zawiera układ odprzęgania danych.

10. Czy w sieci AS-i mogą być stosowane dwa lub więcej zasilacze AS-i?

Nie. Zasilacz AS-i ma charakterystykę źródła napięcia o niskiej impedancji dla sygnałów niskoczęstotliwościowych. Urządzenia sieciowe, w tym zasilacz AS-i łączone są w sposób równoległy. Połączenie równoległe dwóch lub większej liczby zasilaczy AS-i spowodowało by niekontrolowany przepływ prądów wyrównawczych pomiędzy zasilaczami o wywołując skutki podobne jak w przypadku zwarcia magistrali. Impedancja wyjściowa zasilacza AS-i jest ściśle określona w specyfikacji warstwy fizycznej sieci. Dołączenie większej liczby zasilaczy do sieci zmieniłoby impedancję wynikową i spowodowałoby zniekształcenie modulowanego sygnału w sieci.

11. Czy w sieci AS-i mogą oprócz zasilacza AS-i mogą być stosowane inne zasilacze?

Nie. Dodatkowe zasilacze mogą być stosowane tylko poza siecią AS-i do dodatkowego zasilania urządzeń sieciowych. Przypadek taki ma miejsce szczególnie wtedy, gdy w sieci dołączonych jest wiele urządzeń wykonawczych (np. silniki, elektromagnesy itp.). Dodatkowe zasilanie dostarcza jedynie energię do stopni mocy sterujących urządzeniami wykonawczymi. Zasilanie to nie dostarcza energii do samej sieci AS-i.

12. Czy jest dopuszczalne łączenie urządzeń sieci AS-i innym kablem niż kabel AS-i?

Tak, o ile kabel ten jest odpowiednio izolowanym kablem miedzianym dwużyłowym o przekroju każdej żyły min. 1,5mm². Zastosowanie innego kabla nie pozwala na realizację tak szybkiego i wygodnego montażu elektrycznego jak w przypadku kabla AS-i.

13. Czym się różnią kabel żółty AS-i i kabel czarny AS-i?.

Kabel żółty AS-i jest wykorzystywany do łączenia urządzeń sieciowych. Kabel czarny wykorzystywany jest opcjonalnie do doprowadzenia dodatkowego zasilania do urządzeń współpracujących z urządzeniami sieciowymi AS-i.

14. Jaki adres nadawany jest fabrycznie nowym urządzeniom AS-i?

Fabrycznie nowym urządzeniom AS-i nadawany jest adres 0. Adres ten służy do automatycznego rozpoznania przez jednostkę nadrzędną nowego urządzenia.

15. Czy urządzenie podporządkowane w prawidłowo skonfigurowanej sieci AS-i może mieć adres równy 0?

Tak, ale tylko przejściowo. Po dołączeniu urządzenia o adresie 0 do sieci następuje automatyczne rozpoznanie urządzenia i przypisanie mu innego adresu.

16. Czy wszystkie adresy urządzeń w sieci AS-i muszą być unikalne?

Tak. Przyporządkowanie unikalnych adresów urządzeniom sieciowym jest konieczne ze względu na wymóg jednoznaczności adresowania urządzeń podporządkowanych w sieci.

17. Czy możliwe jest odłączenie urządzenia podporządkowanego w czasie pracy sieci AS-i?

Tak, ale spowoduje to wykrycie przez jednostkę nadrzędną uszkodzenia lub nieobecności tego urządzenia. Jednostka nadrzędna sygnalizuje ten fakt.

18. Czy wymiana uszkodzonego urządzenia na fabrycznie nowe jest możliwa bez konieczności zatrzymania sieci i jej ponownej konfiguracji i parametryzacji?

Tak, o ile uszkodzeniu uległo tylko jedno urządzenie. Po dołączeniu nowego urządzenia jednostka nadrzędna dokona automatycznego rozpoznania jego obecności (wykrywa adres 0), jego parametrów (bit D4=1), fabrycznego kodu identyfikacyjny urządzenia. Jeśli kod identyfikacyjny dołączonego urządzenia jest zgodny z kodem urządzenia uszkodzonego, to następuje automatyczne nadanie temu urządzeniu adresu sieciowego identycznego z adresem urządzenia uszkodzonego.

19. Czy jednostka nadrzędna posiada swój własny adres?

Nie. Jednostka nadrzędna nie posiada adresu, a zatem nie wymaga adresowania. Substytutem adresu jednostki nadrzędnej jest jej prawo do inicjacji transakcji sieciowych.

20. Jaka jest procedura uruchamiania sieci AS-i?

Jest wiele sposobów. Najwygodniejszy polega na zastosowaniu odpowiedniego oprogramowania. Większość programów konfiguracyjnych zawiera programy wspomagające adresowanie urządzeń sieciowych. Na początku, przy pomocy takich programów należy dokonać konfiguracji projektowanej sieci AS-i. Następnie, konfiguracja ta jest przesyłana do jednostki nadrzędnej sieci AS-i (ang. download) i uruchamiany jest specjalny program do wspomagania operacji adresowania (asystent). Następnie, do sieci dołączane są kolejne urządzenia podporządkowane. Jeśli program wspierający adresowanie wykryje nowe urządzenie o adresie 0, to dokona zmiany jego adresu na docelowy.

21. Czy adresy urządzeń AS-i mogą być nadawane poza siecią przy pomocy programatora?

Tak. Adresy urządzeń AS-i mogą być nadawane poza siecią przy pomocy specjalnego programatora.

22. Dlaczego nowe urządzenie nadrzędne zgłasza błąd komunikacji bezpośrednio po dołączeniu jej do nowo skonfigurowanej sieci przy pomocy programatora AS-i?

Po zakończeniu procesu nadawania adresów urządzeniom podporządkowanym przy pomocy programatora i po podłączeniu wszystkich urządzeń do magistrali możliwe jest dołączenie napięcia zasilającego. Następnie uruchamiane jest urządzenie nadrzędne sieci. Zwykle, urządzenie to na samym początku zgłasza błąd konfiguracji. Wynika on stąd, że w fabrycznie nowe urządzenie nadrzędne nie posiada zapamiętanej konfiguracji sieci. W związku z tym, w następnym kroku należy wprowadzić aktualną konfigurację sieci do pamięci urządzenia nadrzędnego. Większość urządzeń nadrzędnych posiada możliwość ręcznego wprowadzenia aktualnej konfiguracji sieci przy pomocy odpowiedniego przycisku.

23. Jakie zalety ma przechowywanie konfiguracji sieci w urządzeniu nadrzędnym?

Przez porównanie konfiguracji docelowej i rzeczywistej jednostka nadrzędna pozwala na:

- wykrycie uszkodzenia urządzenia podporządkowanego,
- wykrycie braku urządzenia podporządkowanego,
- sygnalizację zbyt dużej liczbę zainstalowanych urządzeń podporządkowanych,
- wskazanie błędnego typu urządzenia włączonego do sieci.

24. Czy jednostka nadrzędna może wykryć błąd polegający na tym, ze dwóm lub większej liczbie jednostek podporządkowanym nadano te same adresy?

Tak. W wyniku błędnego nadania adresów jednostkom podporządkowanym z dużym prawdopodobieństwem wystąpi kolizja odpowiedzi udzielanych przez jednocześnie zaadresowane jednostki podporządkowane. Kolizje takie będą wykrywane przez jednostkę nadrzędną dzięki zastosowanym metodom kontroli poprawności komunikacji.

25. Czy w AS-i stosowana jest redundancyjna suma kontrolna do sprawdzania poprawności komunikacji?

Tak. Redundancyjna suma kontrolna jest w sieci AS-i zredukowana do kontrolnego bitu parzystości, który jest zarówno elementem ramki generowanej przez jednostkę nadrzędną jak i każdej ramki odpowiedzi udzielanych przez urządzenie podporządkowane.

26. Jakie są sposoby kontroli poprawności transmisji stosowane w sieci AS-i?

Kontrola poprawności formalnej transmitowanych w sieci AS-i ramek jest możliwa dzięki zastosowaniu mechanizmu kontrolnego w postaci bitu parzystości oraz dzięki wprowadzeniu kodowania transmisyjnego PE i modulacji APM. Przyjmuje się następujące kryteria kontroli wiarygodności ramek transmitowanych z wykorzystaniem modulacji APM:

- pierwszy impuls ramki musi być impulsem ujemnym,
- kolejne pary impulsów muszą mieć przeciwną polaryzację,
- odstęp czasowy między sąsiednimi impulsami nie może przekraczać 0,5 okresu zegara taktującego transmisję,
- w drugiej połowie nadawanego bitu (w odniesieniu do nadawanej informacji) musi zawsze wystąpić impuls,
- liczba dodatnich impulsów (bez uwzględnienia bitów ST i EB) musi być parzysta,
- · ostatni impuls ramki musi być dodatni,
- bezpośrednio po bicie stopu (EB) nie mogą wystąpić żadne impulsy

27. Czy prędkość transmisji w sieci AS-i podlega parametryzacji?

Nie. Prędkość transmisji jest stała i niezmienna i wynosi 167kb/s.

28. Czy prędkość transmisji w sieci AS-i jest różna w specyfikacjach 2.0 i 2.11?

Nie. Prędkość transmisji jest identyczna i wynosi 167kb/s.

29. Jaka jest standardowa wartość czasu oczekiwania na odpowiedź w sieci AS-i ?

Standardową wartością czasu oczekiwania na odpowiedź w sieci AS-i jest czas 18µs.

30. Jaka jest maksymalna wartość czasu oczekiwania na odpowiedź w sieci AS-i ?

Maksymalną wartością czasu oczekiwania na odpowiedź w sieci AS-i jest czas 60µs.

31. Jaka jest maksymalna wartość tolerowanego czasu przesunięcia czoła impulsu w naprzemiennej modulacji impulsowej APM?

Maksymalną wartością tolerowanego czasu przesunięcia czoła impulsu w naprzemiennej modulacji impulsowej APM jest czas 3µs.

32. Czy czas dostępu do każdego urządzenia podporządkowanego jest identyczny?

Nie. Czas dostępu do każdego urządzenia waha się w pewnych granicach. W skrajnych przypadkach może się różnić nawet o 28%.

33. Czy czas dostępu do każdego urządzenia podporządkowanego jest zależny od liczby urządzeń dołączonych do sieci?

Tak. Czas dostępu do każdego urządzenia jest równy sumie czasów realizacji komunikacji z każdym z urządzeń sieciowych z osobna, powiększonym dodatkowo o czas cyklu identyfikującego nowe urządzenie.

34. Czy sieć AS-i należy do sieci deterministycznych?

Tak, ponieważ jest przewidywalny i ściśle określony maksymalny czas dostępu do każdego urządzenia podporządkowanego.

35. Jaka jest maksymalna liczba urządzeń podporządkowanych w sieci AS-i?

Maksymalna liczba urządzeń podporządkowanych w sieci AS-i jest zależna od specyfikacji sieci. W specyfikacji 2.0 maksymalna liczba urządzeń podporządkowanych wynosi 31, W specyfikacji 2.11 maksymalna liczba urządzeń podporządkowanych wynosi 62.

36. Czy możliwe jest dołączenie do sieci AS-i zgodnej ze specyfikacją 2.11 urządzeń podporządkowanych zgodnych ze specyfikacją 2.0?

Tak. W specyfikacji 2.11 została zachowana kompatybilność wsteczna.

37. Czy dołączenie do sieci AS-i zgodnej ze specyfikacją 2.11 urządzeń podporządkowanych zgodnych ze specyfikacją 2.0 ma jakieś ograniczenia?

Tak. Konsekwencją rozszerzenia możliwości adresowych sieci jest ograniczenie liczby bitów przeznaczonych na informacje wyjściową (z 4 do 3). Wszystkie urządzenia podporządkowane zgodnie ze specyfikacją 2.11 mają możliwość przesyłania tylko 3 bitów wyjściowych. Ograniczenie to nie dotyczy odpowiedzi urządzenia podporządkowanego.

38. W jaki sposób obsługiwana jest sieć, w której występują urządzenia AS-i zgodne ze specyfikacją 2.11 i zgodne ze specyfikacją 2.0?

Zakładamy, że w takiej sieci jednostka nadrzędna jest zgodna ze specyfikacją 2.11. Jeśli przeanalizujemy postać ramki zgodnej ze specyfikacją 2.11, to można zauważyć zmianę na pozycji I3. W specyfikacji 2.11 bit ten nosi nazwę SEL i ma znaczenie bitu wyboru. Bit wyboru jest interpretowany jako dodatkowy bit adresowy. Zatem w specyfikacji 2.11 do adresowania urządzeń podporządkowanych stosowanych jest łącznie 6 bitów co oznacza możliwość zaadresowania do 64 takich urządzeń. W specyfikacji AS-i 2.11 zamiast posługiwania się adresami np. 33 czy 34, stosowany jest inny zapis. Adresy podzielone są na dwie grupy A i B. W związku z tym operujemy adresami od 1A do 31A i od 1B do 31B. W ten sposób możliwe jest zaadresowanie 62 różnych urządzeń podporządkowanych.

Jeśli do urządzenia nadrzędnego AS-i zgodnego ze specyfikacja 2.11 zostanie dołączone urządzenie podporządkowane zgodne ze specyfikacją 2.0, to urządzenie to będzie zajmowało dwa adresy należące do grup adresowych A i B. Wówczas urządzenie podporządkowane interpretuje bit wyboru (SEL) jako bit danych i może w dalszym ciągu obsługiwać 4 bity informacji wyjściowych.

Załóżmy, że w sieci mamy trzy urządzenia o adresach: 10,11,12. Urządzenie 12 jest zgodne ze specyfikacją 2.0, pozostałe urządzenia są zgodne ze specyfikacją 2.11. Komunikacja w systemie mieszanym składającym się z urządzeń podporządkowanych zgodnych ze specyfikacjami 2.0 i 2.11 wygląda następująco:

W pierwszym cyklu magistrali urządzenie nadrzędne odpytuje urządzania o adresach 10A, 11A i 12A. W następnym cyklu odpytywane są kolejno urządzenia 10B, 11B i nieistniejące urządzenie 12B. Informacja o tym, czy dołączone urządzenie jest urządzeniem zgodnym ze specyfikacją 2.0, czy też specyfikacją 2.11 jest zapisywana w urządzeniu nadrzędnym.

Jeśli urządzenie podporządkowane zgodne ze specyfikacją 2.0 jest dołączone do sieci obsługiwanej przez jednostkę nadrzędną zgodną ze specyfikacją 2.11, to typowy czas dostępu jest równy 5 ms. Jeśli są wykorzystywane wyłącznie adresy należące do grupy A lub adresy należące wyłącznie do grupy B, to czas dostępu wynosi także 5 ms. Jeśli wykorzystywane są adresy należące do grup A i B, to czas dostępu wynosi 10ms.

39. Dlaczego w specyfikacji 2.11 wprowadzono nowe kody identyfikacyjne ID1 i ID2?

Urządzenia podporządkowane zbudowane zgodnie ze specyfikacją 2.11 mogące obsługiwać adresy należące do grup A i B mają przyporządkowane kody identyfikacyjne o wartości $A_{(\text{hex})}$. Wynika jednak stąd problem polegający na tym, że niemożliwe jest bez dodatkowych informacji rozróżnienie pomiędzy sensorem AS-i i modułem sprzęgającym. Z tego powodu w specyfikacji 2.11 wprowadzono nowe kody identyfikacyjne ID1 i ID2.

40. Czy urządzenie podporządkowane ma możliwość przesyłania w sieci AS-i informacji o długości przekraczającej 4 bity?

Tak. Urządzenia podporządkowane mogą pracować w trybie tzw. komunikacji złożonej. W specyfikacji 2.0, transfer ten mógł być dokonywany wyłącznie na drodze programowej. W tym celu konieczne było napisanie odpowiedniego programu dla sterownika programowalnego PLC lub komputera klasy PC obsługującego taki transfer. Urządzenie nadrzędne w specyfikacji 2.11. poprzez kod identyfikacyjny i kod konfiguracji wejść/wyjść rozpoznaje, czy ma do czynienia z urządzeniem podporządkowanym wymagającym wielobitowej wymiany informacji. Jeśli tak jest, to urządzenie nadrzędne rezerwuje w swojej pamięci obszar pamięci konieczny na tę informację. Wielkość tego obszaru jest zależna od tzw. profilu urządzenia. Zapełnienie obszaru zarezerwowanej pamięci następuje sukcesywnie w kolejnych cyklach. W tym celu jednostka nadrzędna wysyła odpowiednio sformatowane rozkazy mające znaczenie żądania transmisji kolejnej porcji danych. Dla przykładu transfer informacji ośmiobitowej zgodnej z profilem S-7.A.A. wymaga realizacji 4 takich rozkazów. Po skompletowaniu, odebrana informacja jest udostępniana przez urzadzenie nadrzedne do zewnetrznych urządzeń (np. sterowników PLC).