Homework #2: Similar items, Clustering, Community Detection

Problem 3

(a)

Uniform distribution, $x \in [-1, 1], y \in [0, 5]$

(b)

Gaussian with center at [1,1] and std=2

Three Gaussians

(d)

The first letter of both your first names - AF

Problem 4

For hierarchical clustering and the plot of the dendrogram we use the package scipy.cluster.hierarchy. Function linkage provides the hierarchical clustering algorithm for different methods. We use method='centroid' in part (a) and method='complete' in part (b). Function dendrogram is used to plot the dendrogram.

(a) merge clusters with the closest centroids

The Dendrogram shows that we would get 4 clusters if we decide to stop clustering at a distange of 0.1m and 2 clusters if we decide to stop at 0.5m.

(b) merge clusters so that the new diameter is the smallest among all options

The Dendrogram shows that with this method we would get 5 clusters if we decide to stop clustering at a distange of 0.1m and 2 clusters if we decide to stop at 0.5m.					