(*) t-test for testing the significance of F difference between two means: (or testing the significance of diff bet mean of two independent Given two independent sandom samples of simple sizes on, and one with sample means X, and Xo and sample standard deviations S, and So, We may be interested in testing the hypothesis that both scionples have come from the scione normal population. = ie We may want to test Ho: U, = llo against F H1: 117 = 112 where II, and II2 are the population means. F We we the following test statistic. + = X1 - X2 S / 1 + 1 F where X = mean of the first sample F X2 = mean of the Becond sample n, = nyonber of observations in the first scrople. no = mumber of observations in the Second Schoople. s = combined standard devication. The value of s can be calculated by $S = \frac{\left[\sum (x_1 - \overline{x}_1)^2 + \sum (x_2 - \overline{x}_2)^2 + \sum (x_2 - \overline{x}_2)^2\right]}{n_1 + n_2 - 2}$

F

: 5 = (n,-1) si + (n,-1) s2 n, +n, - 2 Where S, and So we s. D of first and second sample respectively cohere di = Xi - A and da = Xa - B, A and B being the assumed means for the firest and second sample. The degrees of freedom = n,+ na -2 From the table of t-distribution, we find the value to, the -2, 0.05, It It < tn,+n2-2,0.05 ; We accept to otherwise we reject it at 5% level of significance Ext Two types of dangs were used on 5 and 7 patients for reducing their weights Dring A is imported and drug Bindigeneas The decrease in the weight after using the drugs for six months was recorded Derega II 13 12 14 10 Drug B. 12 9 8 15 Is there significant difference in the efficacy of two drugs & It not, which drug should you buy s

sol : Let Ho: There is no significant diff in the
efficacy of the two daugs.
H. There & significant diff in the officers
of two days.
NOW.
\times ,
11 -1 12 1
13 1 9 -2 9
12 0 0 8 -3 9
14 2 4 15 4 16
10 -2 4 14 3 9
9 -2 4
and the same of th
$ZX_1=60$ $Z(X_1-\overline{X}_1)^2$ $ZX_2=77$ $Z(X_2-\overline{X}_2)^2=44$
- 10 - 3 - 10 - 3 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
X, = \(\times \) = 60 - 12 \(\times \) = \(\times \) = \(\times \) = \(\times \)
10 17 7,010 51 mark 116 14 109, 10 4
appropriation to level the
S= [(x,-x1)2+2(x2-x2)2
$S = \sum (x_1 - \overline{x_1})^2 + \sum (x_2 - \overline{x_2})^2$ $y_1 + y_2 + 2$
and program of although the second and the second a
1 10+44 = 54 = 2.3237
V 5+7+2 V TO
haben se was orthogra visions apres sell it
b. 11 1 To The Control of the Contro
10 t= X1-X
3 [1 + 1 a.3237 [1 + 4]
S I + 1 2.3237 + + +
50,7300 14

of the desired of It not, could drive should you but

d.f=n,+n2-2=5+7-9=10

From the table of t-distribution we obtain $t_{10,0.05} = 2.225$. Here $1 \pm 1 < t_{10,0.05}$

is we accept the at 5% level of significance.

and conclude that there so no significant

difference in the efficacy of two daugs.

EX-2 Blood glycose level of pigeons is computed with rabbits. Apply proper statistical test to know the significance of difference of blood glycose levels of the two using the following data and comment on your result.

596.	Blood glucose	level per 100 ml				
NO	pigeone	Rabbits.				
1	200	145				
2	186	125				
3	176	100				
4	184	112				
5	170	127				
6	172	139				
7	170	151				
8	163	140				
9	176	159				
10	173.	132				

sol? Let X, = Blood glycose level of pigeons!

Xa = Blood glycose level of rabbits.

-						THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	
	X,	$X_1 - \overline{X}_1$	$(x_1-\overline{x}_1)^2$	X2	X2-X2	(xa-X2)2	
	200	23	529	145	12	144	1
	186	9	81	125	-8	64	L
	176	-1	1	100	-33	1089	
	184	7	49	112	1-21	441	
	170	-7	49	127	-6	36	
	172	-5	25	139	6	36	
	170	-7	49	151	18	324	
	163	-14	196	140	7	49	
	176	otla?	andaria	159	26	676	
	173	-4	16	132	Hilla	5 Adding	
	Ex, = 1770	09.140	Z(x1-x1)=996	EX2 = 1330	11-11	$Z(x_a-\bar{x}_2)^2=2860$	
	0			41			

$$\frac{\overline{X}_1 - \overline{Z} \, X_1}{\eta_1} = \frac{1770}{10} = \frac{177}{177}, \, \overline{X}_2 = \frac{\overline{Z} \, X_2}{\eta_2} = \frac{1330}{10} = \frac{133}{10}$$

$$S = \left[\frac{\sum (x_1 - \overline{x_1})^2 + \sum (x_2 - \overline{x_2})^2}{n_1 + n_2 - 2} \right]$$

Let Ho: There is no significant difference in blood glycose levels of pigeons and rabbits.

H: There is significant difference in blood glycose levels of pigeons and rabbits.

$$|t| = |x_1 - x_2| = |177 - 133$$

$$|5| \frac{1}{n_1} + \frac{1}{n_2}| = |14.6363| \frac{1}{10} + \frac{1}{10}|$$

= 144 × 55 1 14.6363

= 6.72.

 $d \cdot f = n_1 + n_2 - 2 = 10 + 10 + 2 = 18$. From the table of t-distribution, coe find. t_{16} , 0.05 = 2.101

1+1 > t18,0.05

and conclude that there is significant difference in blood glucose levels of pigeons and rabbits.

Ex-3. A large group of teachers are trained under QIP (Quality Improvement programme.) where some are trained by institution A and some are trained by institution B. In a random sample of 10 teachers taken from a large group, the following marks are obtained in an appropriate achinement test.

Instit	ute A	65	69	73	71	75	66	71	68	68	74
Institz	te B:	78	69	72	77	84	70	73	77	75	65

Test the claim that institution B is more effective at 0.05 level of significance under the

assumption that the two populations are normally distributed with same variances

7					
Sol) XA	Xx - Xx	(x,-x)2	Xg	XB-XB	(XB-XB)2
(x moltali	and and	avita esta		0	
6.5	-5	25	78	4	16
69	-1	1	69	-5	25
73	3.0	9 300	72	-2	4
71	1	1	77	3	9
75	5	25	84	10	100
66	- 4	16	70	44.0	16
H	1	1	73	-1	
68	-2	41-01	77	× 3 ×	9 1
68	-2	4,	75	1	,
Fy	4	16	65	-9	81
ZXA = 700		[(xA-xA)=102	IXB=74	0	2 (xB-XB)=262

Let XA = marks obtained in appropriate achievement test by teachers trained by institute A.

$$XB = "$$
 by institute B. $M_A = M_B = 10$.

$$S = \sqrt{\sum (x_A - \overline{x}_A)^2 + \sum (x_B - \overline{x}_B)^2}$$

$$\sqrt{n_A + n_B - 2}$$

$$= \frac{102 + 262}{10 + 1052} = \frac{364}{18} = \frac{120.22}{18} = 4.50$$

Null hypothesis Ho: MA = UB (there is no difference in teaching by institute A and B) Alternative hypothesis H, : M < UB (Institute B is more (left one tailed test.) Now $t = x_A - x_B$ = 70 - 74 = -4 = -1.9885/1+1 (4.50) 10 10 2.012 Here dot = my + mB+2 = 10+10-2 = 18 From the table of to distribution we find t18 0.05 = 1-11.734 : t < t18,0.05 (left side .00 negative side) :. We reject to at 5% level of significance. Thu, we conclude that the institution B. is more effective than the institution A. in teaching. Note: In the Ex-2 (Ex-3 there are equal nymber of observations in the two samples, we compot we the paired t-test in this two

Examples, because the observations in the

two schoolples are not paired. i.e they are not

3

1

-

-

-

-