Introduction

Increased popularity of social networks

Increased number of users In short amount of time.

Billions/Millions of users are accessing the networks. At a instant

Thousands of users are getting added. Generating big volumes of data.

Images Videos Text Sound

People are getting Added

Generate **BIG DATA**

Blogs
Social Networking Sites
NewsGroups
Chat Rooms

Massive data is available.

Is stored at node level.

To get
Knowledge
Predictions
Decision-making.

Objective: Mining such social networks for patterns.

Social Network is represented as a Graph.

Task:

- 1. Clustering techniques to **identify communities** in a social network scenario.
- Community detection which identifies dense subgraphs from social network graphs.LEADS TO STANDARD GRAPH ALGORITHMS
- 1. SimRank algorithm provides a way to discover similarities among the nodes of a graph.
- 2. Triangle counting as a way to measure the connectedness of a community.

Networks & Communities

- We often think of networks being organized into modules, cluster, communities.
- Goal is to find densely connected clusters.

Applications of Social network Mining

1. Viral Marketing applications:

explores how individuals get influenced by the buying habits of others. aims to optimise positive word-of-mouth effect among customers. identify strong communities and influential nodes.

IT CAN SPEND MONEY ON MAKETING TO AN INDIVIDUAL WHO HAS MANY CONNECTIONS.

2. Personalised Recommendation:

Grouping together customers who have similar buying profiles. Community discovery in mobile ad-hoc networks can enable message routing and posting.

3. Applications like:

Data aggregation and mining

Network propagation mining

Network modeling and sampling

User attribute and behaviour analysis

Community maintained resource support.

Location based interaction analysis

Social sharing and filtering

Recommendation Systems

Customer interactions and analysis

Targeted marketing.

Social Networks as a Graph

Social Network === Large Graph

Node = Object [represent one person or

group of persons

or Organizations or document or

computers]

Links = relationships / interactions between People, groups, organisations, computers, info/knowledge processing entities.

LinkedIn

User profiles: Registered User

Connections: real-world professional

relationship between people.

FIND A PERSON

Finding a path in the network.

Company --- Targeted Advertising

Wants to find out most influential person due to which others will get influenced.

IDENTIFY THE NODES WITH HIGH OUT-DEGREE IN THE GRAPH REPRESENTING SOCIAL NETWORK.

Social Networks as a Graph

> Heterogeneous and Multi-relational dataset.

[standard model of graph : node sets are same type]

- ➤ Nodes and Edges can have attributes.
- ➤ Objects may have class labels.
- > Facebook : connect entities thru relationship called as Friends
- ➤ LinkedIn :connect entities thru relationship called as Endorse
- ➤ Relationship need not be yes or no in some SN
- > Relationship can be a degree.

[Degree is represented by labeling edges. Edges can be one-directional/bi directional/need not be binary.]

E.g. degree of endorsement of a skill as novice, expert.. It can also be a real number.

➤ SN have a property called as **non-randomness** called as **locality.**

Locality = property of SN

Nodes and edges tend to cluster in communities.

Difficult to formalize.

Relationships tend to cluster.

If A is related to B and C

Higher probability than average the B and C are related.

Most relationship in real world tend to cluster around a small set of individuals.

Follow Relationship in Twitter.

John follows Carla, Celine, Diana and Simon Diana follows nobody.

John and Simon follow each other.

Carla	Nodes	Edges
John Celine	Id,Label,Attribute 1,John,1 2,Carla,2	Source, Target 1,2 1,3
Diana	3,Simon,1 4,Celine,2 5,Winston,1 6,Diana,2	1,4 1,6 2,4 2,6 3,6
Winston		4,6 5,6

CO-Authorship relationship in DBLP

Edge can be labelled via number where these authors have co-authored together.

Types of Social Networks

http://snap.stanford.edu/data

//large list of social network examples.

1. Collaboration graph: displays interactions among entities.

Co-Authorships among scientists

Co-Appearance in movies by actors and actresses

WikiPedia editors updated same article.

NBA graph in sports indicating two player played together in a team

2. Who-Talks-to-Whom Graphs: Communication network.

Microsoft's instant messenger (IM) graph.

Edges between A and B is A talks to B

Enron Email communication network

nodes = email addresses j to j directed edge indicates I sent at least 1 email to j Phone conversation records.

Call graphs: node = phone number and edge is the conversation between two numbers

Types of Social Networks

3. Information Linkage Graphs:

Snapshot of WEB

Nodes = web pages and Directed Edge = link from one page to other Millions of personal pages on social networking sites linked to other web pages of their interest.

Product co-purchasing products

Nodes = products Edges= commonly co-purchased products.

Internet Networks

Road Networks

WikiPedia/Flickr/Reddit

4. Heterogeneous Social Networks: Heterogeneous nodes and links.

Multimode network and relationships

Product nodes ----- customer nodes

Amazon

Customer, Product, Distributor

Movie

k-partite Graph: k disjoint set of nodes with no edges between the nodes of same set. movie, role, studio, distributor, genre, award, country

Clustering of Social Graphs

Discovering Communities is a fundamental requirement in SN apps.

- Community allows us to discover groups of interacting objects and relations between them.
- Community = collection of individuals with dense relationship patterns within a group and sparse link outside the group.
- Target marketing can benefit by identifying clusters of shoppers and targeting a campaign wholly customized for them.
- Summary of network, easy to visualize and understand.
- Simple method to find communities is use clustering technique on social graph.
- K-means and Hierarchical clustering can not be used in extended social graphs.
- Popular Graph Clustering Technique will be Girvan-Newman Algorithm.

Applying Standard Clustering techniques

1. Cluster similar data points in a social network graph:

need to find similarity measure.

if it is a labeled graph then that value = similarity measure.

e.g. DBLP: Edge labeled as number of papers co-authored.

But most of the graphs are unlabeled.

1. if edge is present then SimM = 1 else SimM=0

[or dist=1 or 1.5]

problem = it does not satisfy triangular in equality property.

i.e. dist(AB) +dist(BC) < dist(AC)

because the notion of distance does not have any meaning in social

network.

{5,6,7,8} are two clusters

{ 1,2,3,4}

If hierarchical

clustering is used then {1-8} may have a single large cluster. **K- means**: would land into wrong clusters.

If initial centroids are 4 and 8 then 5 and 6 are equidistant So they would be wrongly clustered instead they should be clustered to 8

Betweenness Measure of Graph Clustering

Extract dense subgraph from the social graph. (DISJOINT COMMUNITIES)

One dense subgraph may be connected to other dense subgraph by minimum set of edges. identify these edges and remove them to get dense subgraphs.

Edge betweenness: Edges that are likely to connect different dense regions of graph have higher betweenness scores than other edges in the communities.

The edge e in the graph, edge betweenness of e is defined as the number of shortest paths between all the node pairs (vi, vj) in the graph such that the shortest path between vi and vj passes through e.

EB(1,2) = 4 (=6/2 + 1) from 2 shortest path to all the nodes 4,5,6,7,8,9 and e(1,2) =shortest path

EB(4,5) = from 9,7,8 to 4,3,2,1 either thru
$$e(4,5)$$
 or $e(4,6) = 12/2 = 6 + 5$ to 1,2,3,4 = 4 thus $6 + 4 = 10$

$$EB(4,6) = 10 EB(5,7) = 6 and so on.$$

Girvan & Newman: betweenness clustering

Algorithm

- compute the betweenness of all edges
- while (betweenness of any edge > threshold):
 - remove edge with highest betweenness
 - recalculate betweenness
- Betweenness needs to be recalculated at each step
 - removal of an edge can impact the betweenness of another edge
 - very expensive: all pairs shortest path O(N³)
 - may need to repeat up to N times
 - does not scale to more than a few hundred nodes, even with the fastest algorithms

Girvan-Newman: Example

Girvan-Newman: Example

Girvan-Newman: Results

Communities in physics collaborations

Another example

Another example

(a) Step 1

Another example

(b) Step 2

Direct discovery of communities in a Social Graph.

Classification of Communities:

- Disjoint communities
 - ➤ Girvan Nirmann algorithm
- ➤ Overlapped communities
 - ➤ In SN it is possible that the individual may be a part of different communities at a time.
 - ➤ Twitter and facebook
 - ➤ Clique Percolation Method (CPM) find clique in a graph.

Clique Percolation Method (CPM)

Contents

• What is CPM?

Algorithm

Analysis

Conclusion

What is CPM?

- Method to find <u>overlapping</u> communities
- Finding all cliques of a given size = NP-hard problem
- Based on concept:
 - internal edges of community likely to form cliques
 - Intercommunity edges unlikely to form cliques

Clique: Complete graph

• k-clique: Complete graph with k vertices

Clique: Complete graph

k-clique: Complete graph with k vertices

Clique: Complete graph

k-clique: Complete graph with k vertices

Clique: Complete graph

k-clique: Complete graph with k vertices

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

Adjacent k-cliques

k-clique community

Union of all k-cliques that can be reached from each

other through a series of adjacent k-cliques

k-clique community

k-clique community

k-clique community

k-clique community

SimRank

SimRank = Measure of node similarity between nodes of same type.

Movie Database: Check similarity of two actors or two movies.

Applicable in any domain where relationships between objects are represented.

It gives a numeric value to similarity of structural context in which objects occur based on their relationships with other objects.

TRI-Partitle Graph:

A, C: Actors

X1, X2, X3 : Movies

If walker starts at X1..
he may reach at A or C or P1

If reaches at A
He may reach
X1 or X2 or P1or P2

If reaches at C He may reach X1 or X2 or P1

So From X1 there are chances to reach to X2 than X3. Computations similar to that of PageRank

Counting Triangle in Social Graph

Identify small connected communities and count their occurrence.

Sub-Graph = triangle (3-clique)

Most Commonly occurring pattern found in SN Graph.

- tendency of similar individuals to form group.
- Transitive nature of relationships A-B and B-D then A-D
- The basic structure of a graph is a triangle or 3-clique.
- Counting Triangle is an important aspect in SN analysis.
- Why to count triangles?
- Clustering Coefficient: degree to which a node's neighbors are themselves neighbors.
- > = No. of closed triplets in nodes neighborhood/ Total number of triplets in the neighborhood
- High Clustering Coefficient = Closely connected communities.
- Such communities are interested for the apps
- Targeted Marketing Social recommendation
- > Low Clustering Coefficient = Structural hole
- A vertex that is well connected to many communities that are not otherwise connected to each other
- Such vertices can act as a bridge between communities.
- Apps need to find influential nodes who can propagate info.

Counting Triangle Approach

Brute Force Method: Check every group if three triangles and check if they form a triangle or not?

Complexity = O(n3) times where n = number of vertices

High Computation cost: check if 3 v form triangle or to determine it does not form triangle

Smarter approach

- > List all two-edge paths that are formed in the graph.
- ➤ Such paths of size 2 are called as wedges
- For every edge of (x, y) check if (x,y,z) forms a triangle .. If so add 1 to count of triangles. Repeat process.
- \triangleright Analysis = $O(\sum_{v \in V} degree^2_v)$