PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

SISTEMAS OPERATIVOS

Examen 2 (Segundo semestre de 2017)

Horario 0781: prof. V. Khlebnikov

Duración: 3 horas

Nota: No se puede usar ningún material de consulta.

La presentación, la ortografía y la gramática influirán en la calificación. El examen debe ser desarrollado en el cuadernillo usando <u>lapicero</u>. Lo escrito con lápiz será considerado como borrador que no se evalúa.

Puntaje total: 20 puntos

<u>Pregunta 1</u> (1 punto – 9 min.) Complete el texto dentro de los dos elementos inferiores del siguiente diagrama de flujo.

Pregunta 2 (4 puntos – 36 min.) Tenemos un sistema con gestión de memoria MFT compuesto por cuatro particiones descritas por las siguientes tuplas de (base de la partición, tamaño de la partición, estado): (0K, 150K, asignada al S.O.), (150K, 100K, libre), (250K, 150K, libre), (400K, 100K, libre). El nombre, el instante de llegada, la duración, y el tamaño de los procesos que llegan al sistema son los siguientes: (A, 0, 3, 130K), (B, 1, 3, 90K), (C, 2, 2, 80K), (D, 3, 2, 70K), (E, 5, 4, 110K). Considere que los tiempos de carga y desalojo en/de memoria son despreciables. Se pide determinar cómo se realiza la asignación de particiones y el tipo y tamaño de la fragmentación que se produce para los siguientes casos:

a) (2 puntos – 18 min.) Se emplea una cola de procesos por partición (one process queue per

Dir. virtua Pág. er ¿Dir. Acceder MF? válida? No No No ¿Dir. Vo accede válida? Sí Sí Cargar pág. en MF ¿ Marco libre? Modificar tabla pág No No Selecc. pág. víctima

partition). El algoritmo de ubicación asigna al proceso de todas las particiones la partición <u>más pequeña en la que quepa</u> (sin importar en qué estado está esta actualmente) colocando el proceso en su cola respectiva.

b) (2 puntos – 18 min.) Se emplea una cola única de procesos. El algoritmo de ubicación asigna la primera partición disponible en la que quepa el proceso.

<u>Pregunta 3</u> (1 punto – 9 min.) El sistema operativo utiliza un mapa de bits para contabilizar el uso de la memoria. Se sabe que la memoria tiene un tamaño de 1,5 GB, que se utiliza un sistema de gestión de memoria paginada y que el tamaño de la página es de 3 KB. Se desea conocer cuántas KB ocupa el mapa de bits que contabiliza el uso de la memoria.

<u>Pregunta 4</u> (2 puntos – 18 min.) Cada página tiene un tamaño de 2 KB. Calcular la cadena de referencia correspondiente a las siguientes direcciones generadas por el proceso y dadas en hexadecimal:

0100	0200	0100	0200	0300	0200	0300	0900	0800	0900	0800
1000	0900	1100	1000	0900	1200	1100	1200	1100	3000	3100
3250	3150	3250	3150	3250	3150	4111	3200	4111	5000	6000

<u>Pregunta 5</u> (1 punto – 9 min.) Supongamos un sistema que gestiona una memoria paginada. Cada página tiene un tamaño de 2 KB. Se pide calcular el máximo espacio de direccionamiento lógico, sabiendo que la tabla de páginas ocupa 28 KB y que cada entrada suya ocupa 16 bits.

<u>Pregunta 6</u> (1 punto – 9 min.) Nuestro sistema operativo realiza una gestión de memoria virtual. Tenemos un proceso cuyo espacio lógico de direcciones está formado por 100 páginas. Cada una de estas páginas tiene un tamaño de 2 KB. También sabemos que el tamaño de la memoria física es de 1 MB. Queremos conocer de cuántos bits se componen tanto la dirección física o real como la lógica o virtual.

<u>Pregunta 7</u> (3 puntos – 27 min.) Disponemos de un disco duro en el que queremos situar un sistema de archivos UNIX SYSTEM V, pero hemos introducido algunas modificaciones:

- 1. Los punteros a bloques de datos de los *i*-nodos han sido reducidos de forma que ahora cada *i*-nodo contiene únicamente 8 apuntadores directos a bloques de datos y un apuntador indirecto simple a bloques de datos.
- 2. El área de datos está formada por 256 bloques.
- 3. El tamaño del bloque es de 16 bytes.
- a) (1 punto 9 min.) Calcule cuál será el tamaño máximo de un archivo (en bytes) con las condiciones enumeradas.

b) (2 puntos – 18 min.) Disponemos de nuevo de un área de datos formada por 256 bloques, pero en este caso el tamaño del bloque es indeterminado. Se pide:

- 1. Justifique cuál será el número máximo de bloques que podrán ser utilizados para almacenar los datos del archivo.
- 2. Determine cuál será el tamaño mínimo de bloques necesario para que un único archivo pueda llegar a ocupar toda el área de datos.
- 3. Calcule cuál será el tamaño máximo de ese archivo en bytes.

Pregunta 8 (2 puntos – 18 min.) El sector de arranque de un disco MS-DOS de 64 MB contiene la siguiente información:

- 512 bytes/sector
- 4 sectores/*cluster*
- 2 FAT

Determine:

- 1. Tipo de FAT necesaria (FAT12, FAT16, FAT32) para poder gestionar todos los *clusters* del disco.
- 2. Número de *clusters* ocupados por cada tabla FAT.
- 3. Número máximo de archivos que puede albergar el directorio raíz si ocupa 16 clusters.
- 4. Posición del primer sector de datos.

<u>Pregunta 9</u> (5 puntos – 45 min.) Se dispone de una versión simplificada del sistema de archivos UNIX SYSTEM V en el que la definición de *i*-nodo y de entrada de directorio han sido modificadas:

Estructura de un i-nodo:

Bytes ocupados	Descripción	Ejemplo
1	Tipo de archivo y permisos	drwxr-x
1	Id de dispositivo	0×XX
4	Puntero directo	0×00000004
4	Puntero directo	0×00000000
4	Puntero indirecto simple	0×00000000
4	Puntero indirecto doble	0×00000000
4	Tamaño (bytes)	32000
10	Fechas v otros	0×XXXXXXXXXXXXX

Estructura de una entrada de directorio:

Bytes ocupados Descripción Ejemplo
12 Nombre de archivo a.out
4 i-nodo 0x00000006

A partir de esas estructuras y de los siguientes extractos de la tabla de *i*-nodos y del área de datos:

Tabla de *i*-nodos:

i-nodo	byte 0	1	2	6	10	14	18	22	31
0	reservad	0							
1	reservad	0							
2	drwxr-x	10	0x00000006	0x00000000	0x00000000	0×00000000	1024		
3	- rwxr-x	10	0x0000000F	0x00000010	0x00000011	0x00000012	4053696		
4	- FWXF-X	10	0x00000020	0x00000021	0x00000000	0×00000000	3072		
5	drwxr-x	10	0x00000022	0x00000000	0x00000000	0×00000000	96		
6	drwxr-x	10	0x00000023	0x00000000	0x00000000	0×00000000	96		
7	- FWXF-X	10	0x00000010	0x00000012	0x00000006	0x0000000F	4053696		

Bloques del área de datos:

bloque 6	var	0×00000002 0×00000006	 etc	0×00000002 0×00000008	vmunix lost+found	0×00000003 0×00000001	tmp 	0×00000005 0×0FF00000
• <u>•</u> •								
F	0x00001000	0x00001001	0x00001002	0x00001003	0x0000FFFF	0x000010FF	• • •	
10	0x00002000	0x00002001	0x00002002	0x00002003	0x00002FFF	0x000020FF		
11	0x000000A0	0x000000A1	0x000000A2	0x000000A3	0x000000B0	0x000000B1		
12	0x00000014	0x00001002	0x00000013	0x00001003	0x00001004	0x00001005		
13	0x00003000	0x00003001	0x0000CAFE	0x00002903	0x000010FF	0x000010FE		
14	0×00000700	0x00000701	0x00000702	0x00000903	0x0000F00F	0x000007FE		
20	0x00002000	0x00002001	0x00002002	0x00002003	0x00002FFF	0x000020FF		
21	0x00001000	0×00001001	0x00001002	0x00001003	0x00001004	0x00001005		
22		??????????		??????????	a.out	0×000000004	vmunix	0×00000007
~~	•		• •		u.ou.	0.00000004	VITIGITIEN	0.00000001

se pide:

- 1. Si los bloques son de 2 KB, determine el tamaño de los siguientes componentes:
 - a) Tamaño máximo del sistema de archivo.
 - b) Tamaño máximo que puede ocupar un archivo.
 - c) Número máximo de archivos que se pueden almacenar en el sistema si la tabla de *i*-nodos ocupa los 5 bloques siguientes al superbloque.
 - d) Número de bloques del área de datos si tenemos un disco de 180 GB. Calcule también la densidad de *i*-nodo empleada (el tamaño promedio de un archivo) y comente el resultado.
- 2. Bloque de disco en el que se encuentra el byte 3153940 del archivo /vmunix
- 3. ¿Cuál es la ruta absoluta al archivo a.out?
- 4. ¿Qué números de i-nodo deben aparecer en las entradas . y . . del bloque 22?
- 5. ¿Qué inconsistencia existe entre las entradas del directorio raíz?

Preparado por VK con LibreOffice Writer en Linux Mint 18.2 Sonya

Profesor del curso: (0781) V. Khlebnikov

Pando, 29 de noviembre de 2017