DEVELOPMENT OF
FORECASTING MODEL
TO IDENTIFY EMERGING
BUSINESS TOPIC
VIA TEXT MINING APPROACH
USING WEB-CRAWLED
PATENT DATA

AeLee Im

aelee.im@gmail.com

GOAL OF THIS PROJECT

- Developing the prototype of program to process and analyze the data
 - To forecast future emerging business topics within specific industry
 - Via designing, developing & implementation of algorithm, analysis framework and process

SCOPE OF THIS PROJECT

- Range of interesting industry for web-crawling of input data
 - Digitalization, Digital Asset Management, Automation of documentation or working process
- Scope of methodology
 - Data acquisition by web-crawling
 - Text analysis & Clustering by Topic Modeling
 - Network & Citation analysis to develop evaluation principle

PROJECT AT A GLACE

Key Phrase identification

Identifying innovative topic

Identifying potentiality

- Patent Search(for setting the analysis range) via web crawling
- Data cleasing due to the duplication issue from ,Patent Family'
- Key-phrases extraction : via RAKE(Rapid Automatic Keyword Extraction) approach
- Patent-keyword matrix with the frequency after TF-IDF conversion
- Topic mdeling via LDA(latent dirichlet allocation) approach
- Topic keywords distribution matrix
- Patent topic distribution matrix -> adjusting with threshold via VSM approach & labeling
 - Compute potentiality and verify emerging topics
- via OFIT(Opportunity-focused innovation topic) map
- Visualization and writing report

DATA ACQUISITION BY WEB CRAWLING

• Python Script for web crawling

```
import sqlite3
from bs4 import BeautifulSoup
import requests
import time
conn = sqlite3.connect('test.sqlite3')
for patent in conn.execute('select id from gp_search_new'):
   patent = patent[0]
   url = conn.execute('select url from qp_search_new where id = ?', (patent,)).fetchone()[0]
    if type(url) is str and 'https' in url:
       try:
            website = requests.get(url)
       except requests.exceptions.ConnectionError:
            status_code = "Connection refused"
       print(website.status_code)
       soup = BeautifulSoup(website.content, 'html.parser')
        for i in ["%04d" % x for x in range(1, 1000)]:
            try:
                part = soup.find(id='p-' + i).text
                full_text += ' ' + part
            except Exception as e:
                print(e)
                break
       conn.execute('replace into gp_search_new(id,full_text) values(?,?)',(patent,full_text,))
       conn.commit()
       time.sleep(5)
```

- Web-crawled input data for this project
 - From Google Patents

	patent_id	full_text	priority_id
0	US-2019147554-A1	Embodiments of the disclosure relate generally	US201762584246P
1	US-2017329307-A1	This application claim priority to U S Provi	US201662336332P
2	US-2018211465-A1	The present patent application patent claim th	US201762448697P
3	US-2017116693-A1	This application claim priority under U S C	US201562246992P
4	US-2018307759-A1	This application claim the benefit of priority	US201762487820P
5	US-2018189887-A1	The present disclosure relates generally to sy	US15/859,890

RAKE KEYWORDS EXTRACTION

• Python Script for RAKE keywords extraction

```
import sqlite3
import nitk
from rake_nltk import Rake, Metric
import nltk
from nltk.stem import WordNetLemmatizer
import re
nltk.download('punkt')
conn = sqlite3.connect('test.sqlite3')
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
pool = []
for i in conn.execute('select distinct id, full_text from gp_search_new'):
   str(i[1]).replace("[^a-zA-Z]", " ") # remove non-letters
str(i[1]).replace("\d+", " ") # remove numbers
str(i[1]).replace(r'"', '') # remove quotation
    # Lemmatize list of words and join
    lemma = WordNetLemmatizer()
    text1 lemma= [lemma.lemmatize(x) for x in str(i[1])]
    try:
        if len(text1_lemma) > 10:
             # Keywords expraction by RAKE
             r = Rake(stopwords=None,
                       punctuations=None,
                       language="english",
                       ranking_metric=Metric.DEGREE_TO_FREQUENCY_RATIO,
                       max_length=50,
                       min_length=10)
             r.extract_keywords_from_text(text1_lemma)
             # Append patent's id column
             pool.append((i[0], r.get_ranked_phrases_with_scores()) )
    except:
```

Fianl VSM matrix after keywords extraction

keywords patent_id	access association medium device identifier premise device associate proximity platform	access network address translation functionality network address translation function network address	access user demographic information aspect may authentication user user device target communication service	access user demographic information user first medium device second medium device user demographic information	access user demographic information user identify user first user device aspect target communication service	access user demographic information user identify user plurality user device aspect target communication service	access virtualize industrial automation system industrial automation system virtualize industrial automation system	accurate refined location would node may determine base location master node	activate campaign depend continue presence user device first premise device step target communication service
US- 10165397- B2	1000.128648	0.000000	990.881689	1051.860185	1036.425709	1028.318296	0.000000	0.000000	968.870420
US- 10251022- B2	999.963010	0.000000	990.853488	1051.860185	1036.394327	1028.287516	0.000000	0.000000	968.774891
US- 2016274553- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	959.992218	0.000000	0.000000
US- 2017012813- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
US- 2017127128- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
US- 2017149733- A1	0.000000	894.354859	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
US- 2017279892- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	949.648048	0.000000
US- 2017302613- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
US- 2018034642- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
US- 2018035101- A1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

LDA TOPIC MOLDEING AND MODEL OPTIMIZATION

• Python Script for LDA Topic Modeling/GridSearch • Model Optimization & Final selection of best model

```
[ ] ###### new LDA model ########
    # Build LDA Model
    lda_model = LatentDirichletAllocation(n_components=20,
                                                                    # Number of topics
                                                                    # Max learning iterations
                                         max iter=10.
                                         learning method='online',
                                         random state=100,
                                                                    # Random state
                                          batch size=100,
                                                                    # n docs in each learning iter
                                         evaluate_every = -1,
                                                                    # compute perplexity every n iters, default: Don't
                                         n_{jobs} = -1,
                                                                    # Use all available CPUs
    lda_output = lda_model.fit_transform(data_vectorized)
    print(lda_model) # Model attributes
[ ] ###### new LDA model #######
    ## Diagnose model performance with perplexity and log-likelihood
    # Log Likelyhood: Higher the better
    print("Log Likelihood: ", lda_model.score(data_vectorized))
    # Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
    print("Perplexity: ", lda_model.perplexity(data_vectorized))
    # See model parameters
    pprint(lda_model.get_params())
[ ] ###### new LDA model #######
    ## GridSearch the best LDA model
    # Define Search Param
    search_params = {'n_components': [10, 15, 20, 25, 30], 'learning_decay': [.5, .7, .9]}
    # Init the Model
    lda = LatentDirichletAllocation()
    # Init Grid Search Class
    model = GridSearchCV(lda, param grid=search params)
    # Do the Grid Searchss
    model.fit(data_vectorized)
[ ] ###### new LDA model #######
    ## Model Tuning, find the best topic model and its parameters
    # Best Model
    best lda model = model.best estimator
    # Model Parameters
    print("Best Model's Params: ", model.best_params_)
    # Log Likelihood Score
    print("Best Log Likelihood Score: ", model.best_score_)
    print("Model Perplexity: ", best_lda_model.perplexity(data_vectorized))
```


	Metric	Value for the model by full-text data source	Value for the model by extracted key-phrase	
Best model's	Learning decay	0.5	0.5	
parameters	Number of topics	30	10	
Best Log	g Likelihood Score	-35130325.64	-37261401.92	
Best N	Iodel Perplexity	734.83	755.79	

NETWORK ANALYSIS FOR IMPORTANCE INDEX

Python Script for Network Analysis

```
#add weights to edges
edge_list = [] #test networkx
for index, row in coocc.iterrows():
    for col in row:
        weight = col
        edge_list.append((index, coocc.columns[i], weight))
#Remove edge if 0.0
updated_edge_list = [x for x in edge_list if not x[2] == 0.0]
#create duple of char, occurance in novel
node_list = []
for i in topicnames:
    for e in updated_edge_list:
        if i == e[0] and i == e[1]:
           node_list.append((i, e[2]))
for i in node_list:
    if i[1] == 0.0:
        node_list.remove(i)
#remove self references
for i in updated_edge_list:
    if i[0] == i[1]:
        updated_edge_list.remove(i)
plt.subplots(figsize=(14,14))
#networkx graph
G = nx.Graph()
for i in sorted(node_list):
    G.add_node(i[0], size = i[1])
G.add_weighted_edges_from(updated_edge_list)
node_order = topicnames
#reorder node list
updated_node_order = []
for i in node order:
    for x in node list:
        if x[0] == i:
            updated_node_order.append(x)
test = nx.get_edge_attributes(G, 'weight')
updated_again_edges = []
for i in nx.edges(G):
    for x in test.keys():
        if i[0] == x[0] and i[1] == x[1]:
            updated_again_edges.append(test[x])
#drawing custimization
node_scalar = 2
edge scalar = 0.0001
sizes = [x[1]*node_scalar for x in updated_node_order]
widths = [x*edge_scalar for x in updated_again_edges]
pos = nx.spring_layout(G, k=0.42, iterations=17)
nx.draw(G, pos, with_labels=True, font_size = 8, font_weight = 'bold', node_color = 'r',
        node_size = sizes, width = widths)
plt.axis('off')
plt.savefig("test_network.png") # save as png
## calculate degree central
c = nx.closeness_centrality(G)
# convert to dataframe
closseness_centrality = pd.DataFrame(list(c.items()), columns=['topic', 'closeness_centrality'])
```

Model Optimization & Final selection of best model

• Compute importance level $(C_c(v))$: via closeness centrality

$$C_c(v) = \frac{(N-1)}{\sum_{v \neq t \in V} d(v, t)}$$

- d(v,t) = the distance, which is the shortest path, between nodes v and t
- N = the number of nodes in the network for obtaining normalized closeness centrality values

CITATION ANALYSIS FOR MATURITY INDEX

Python Script for Network Analysis

```
topic_list = df_document_topic.loc[:, 'Topic0':'Topic29']
citation list = df citation final['citation']
citation_list = citation_list.astype(float)
satisfy = []
# Yields a tuple of column name and series for each column in the dataframe
for (columnName, columnData) in topic_list.iteritems():
   sum=0
   citation_stock=0
   for i in range(len(columnData)):
       init_citation_stock = columnData[i]*citation_list[i]
       sum += init_citation_stock
   citation_stock = sum
   satisfy.append((columnName, citation_stock))
   print(columnName, citation_stock)
# convert list to data frame
final_satisfy = pd.DataFrame(satisfy, columns = ['topic' , 'citation_stock'])
# plotting bar chart for satisfaction level
import random
import matplotlib.pyplot as plt
new_final_satisfy = final_satisfy.sort_values('citation_stock',ascending=False)
n = new_final_satisfy['topic'].unique().__len__()+1
all_colors = list(plt.cm.colors.cnames.keys())
random.seed(100)
c = random.choices(all_colors, k=n)
# Plot Bars
plt.figure(figsize=(16,10), dpi= 80)
plt.bar(new_final_satisfy['topic'], new_final_satisfy['citation_stock'], color=c, width=.5)
# Decoration
plt.gca().set_xticklabels(new_final_satisfy['topic'], rotation=60, horizontalalignment= 'right')
plt.title("Score of satisfection level per each topic", fontsize=22)
plt.ylabel('Score of citation stock(satisfection level)')
#plt.ylim(0, 45)
plt.show()
plt.savefig("citation_stock.jpg")
```

• Model Optimization & Final selection of best model

• Copute satisfaction level : via computing citation stock (CSi)

$$CS_i = \sum_{j \in S} CP_{ij} \times FC_{j,}$$

- CPij = contribution probability of innovation topic i in patent j
- FCj = the number of forward citations of j

FORECASTING FUTURE EMERGING OPPORTUNITY

• Python Script for Network Analysis

```
ofit_map = pd.merge(closseness_centrality, final_satisfy, how='left', on=['topic'])
# OFIT mapping : x-axis('closeness_centrality'), y-axis('citation_stock')
# scatter plot here..
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
# average of importance
avg_cent = closseness_centrality['closeness_centrality'].mean()
print(avg_cent) # => avg_cent = 0.7940293400835674
fig=plt.figure()
ax=fig.add_axes([0,0,1,1])
ax.scatter(ofit_map['closeness_centrality'], ofit_map['citation_stock'], color='r')
ax.set_xlabel('importance of topic (closeness_centrality)')
ax.set_ylabel('Satisfection of topic (citation_stock)')
ax.set_title('Opportunity-focused Innovation Topic(OFIT) map')
for i, txt in enumerate(ofit_map['topic']):
    ax.annotate(txt, (ofit_map['closeness_centrality'][i], ofit_map['citation_stock'][i]))
line = mlines.Line2D([0, 1], [0, 1], color='red')
transform = ax.transAxes
line.set transform(transform)
ax.add_line(line)
| # 0.618 = (avg_cent-0.45)/0.55 (* avg_cent = 0.7940293400835674)
line = mlines.Line2D([0.6232073678495466, 1], [0, 1], color='blue')
transform = ax.transAxes
line.set_transform(transform)
ax.add line(line)
ax.fill_between(ofit_map['closeness_centrality'], line, color= 'skyblue')
plt.show()
plt.savefig("test_OFIT.png") # save as png
```

Model Optimization & Final selection of best model

POSSIBLE APPLICATION

Supporting data driven strategy

- Identifying investment opportunity
- Forecasting emerging opportunity

Data driven Long-term planning

- Identifying potential M&A candidate
- Finding out potential Start-Up with emerging technology

Market analysis

- Landscaping the market's interest
- -Examination of customer's interest trend