CS 101, Assignment 3

Christopher Huynh, Oliver Rene

April 2016

1 Question 1

1.1

$$T(n) \le 7T(\frac{n}{3}) + n^2$$
, $T(3) \le 1$

If we draw a recursion tree we find that there are 7^i nodes at depth i, and input size is $\frac{n}{3^i}$. Therefore the total cost of T(n) at depth i is $c \cdot 7^i \cdot (\frac{n}{3^i})^2$ or $c \cdot (\frac{7}{9})^i \cdot n^2$. For finding the total cost of T(n) we solve

$$\sum_{i=0}^{maxdepth} c \cdot (\frac{7}{9})^i \cdot n^2 = cn^2 \sum_{i=0}^{maxdepth} (\frac{7}{9})^i$$

$$\leq cn^2 \sum_{i=0}^{\infty} (\frac{7}{9})^i = O(n^2)$$

1.2

$$T(n) \le 7T(\frac{n}{3}) + n, T(3) \le 1$$

If we apply the master theorem where a = 7, b = 3, c = 1, then $log_37 \approx 1.77 > 1$. Therefore by the master theorem $T(n) = O(n^{log_37})$

1.3

$$T(n) \leq 7T(\frac{n}{3}) + 1$$
 or $T(n) \leq 7T(\frac{n}{3}) + n^0$, $T(3) \leq 1$

If we apply the master theorem where a=7, b=3, c=0, then $log_37\approx 1.77>0$. Therefore by the master theorem $T(n)=O(n^{log_37})$

1.4 Definition of Master Theorem

If $T(n) = aT(n/b) + n^c$ for constants $a > 0, b > 1, c \ge 0$, then

- 1. $T(n) = O(n^c)$ if $log_b a < c$
- 2. $T(n) = O(n^c \log n)$ if $\log_b a = c$
- 3. $T(n) = O(n^{\log_b a})$ if $\log_b a > c$

2 Question 2

 $T(n) \leq 2T(\frac{n}{2}) + c\sqrt{n} \text{ with } T(1) = 1$ Prove T(n) = O(n) We will therefore need to prove that

$$T(n) \le 4(n - \sqrt{n})$$

for some $n \ge n_0$ Choose $n_0 = 2$

> • Base case: $T(2) \le 2T(\frac{2}{2}) + \sqrt{2}$ $\le 2 + \sqrt{2}$ $4x(2 - \sqrt{2}) = 8 - \sqrt{2} \ge T(2)$

• Induction:
$$T(n) \le 2T(\frac{n}{2}) + \sqrt{n}$$

 $\le 2(4(\frac{n}{2} - \sqrt{\frac{n}{2}})) + \sqrt{n}$
 $= 2(2n - 4\sqrt{\frac{n}{2}}) + \sqrt{n}$
 $= 2(2n - \sqrt{\frac{16n}{2}}) + \sqrt{n}$
 $= 2(2n - \sqrt{8n}) + \sqrt{n}$
 $= 2(2n - 2\sqrt{2n}) + \sqrt{n}$
 $= 4n - 4\sqrt{2n} + \sqrt{n}$
 $\le 4(n - \sqrt{n})$

By proof by induction, T(n) = O(n)

3 Question 3

3.1 Pseudocode

```
Count-Inversions(A)
    n = A.length
1
2
    if n == 1, return 0
 3
    count = 0
    L = A[1..n/2]
   R = A[(n/2+1)..n]
    L_{count} = \text{Count-Inversions}(L)
6
     R_{count} = \text{Count-Inversions}(R)
 7
8
    L[m+1] = R[m+1] = \infty
9
    i = j = 1
     while L[i] < \infty or R[j] < \infty
10
          if L[i] > R[j]
11
12
                if L[i] != \infty, count = count + 1
13
                i = i + 1
          else j = j + 1
14
15
     return count + L_{count} + R_{count}
```

3.2 Time-Complexity Analysis

In each recurrence of Count-Inversion, it runs itself 2 more time on sizes $\frac{n}{2}$. All additional run time (including the while loop) is in $\theta(n)$, so its at most cn. Therefore the recurrence relation for Count-Inversion is

$$T(n) \le 2T(n/2) + cn$$
$$T(1) < 1$$

Lets guess $T(n) = O(n\log_2 n)$

We will therefore need to prove that

$$T(n) \le c' n log_2 n$$

for some constant c' > 0 and $n \ge n_0$. Choose c = c and $n_0 = 2$.

- Base case: $T(2) \le 2T(1) + cn$ = 2 + c $c \cdot 2 \cdot log_2 2 = 2c \ge T(2)$
- Induction: $T(n) \le 2T(n/2) + cn$ $\le 2c(n/2)log_2(n/2) + cn$ $= cnlog_2(n/2) + cn$ $= cn(log_2n - 1) + cn$ $= cnlog_2n$

Therefore by proof by induction, the time complexity of Count-Inversion, T(n) = O(nlogn)

4 Question 4

4.1 Pseudocode

```
Kth-Smallest(A, k)
1
    piv = A[1]
    // Partition A around the pivot and return the position of pivot
    pos = Partition(A)
    if pos == k, return piv
    else if pos > k, return Kth-Smallest(A[1..(pos - 1)], k)
    else if pos < k, return Kth-Smallest(A[(pos + 1)..n], k - pos)
Partition(A)
    n = A.length
1
2
    piv = A[1]
 2
    i = 1
3
    j = n + 1
4
    while (True)
         do i = i + 1 while A[i] < piv
5
         do j = j - 1 while A[j] > piv
 6
 7
         if i \geq j, break
8
         Swap A[i] and A[j]
10
    Swap A[1] and A[j]
11
    return j
```

4.2 Worst-Case Time Complexity

In the worst case that the position of the pivot after partitioning is always less than k, the recurrence of Kth-Smallest would run itself once on a size n-1. All additional run time (including the partitioning step) is in $\theta(n)$, so its at most cn. Therefor the recurrence relation for Kth-Smallest is

$$T(n) \le T(n-1) + cn$$

This is the exact recurrence relation of Quick-Sort (which run time was solved in class) so we can conclude that Kth-Smallest, $T(n) = O(n^2)$

4.3 Randomized Pivot

Because we only care about the kth smallest element we are only running recurrences in the event that pivot < k or pivot > k. Each element in array A has the possibility to be the pivot with the chance of 1/n. Let s be size of each best case recursion. From this we get the recurrence relation

$$T(n) \le \frac{1}{n} [\sum_{s=0}^{n-1} T(s)] + cn$$

$$T(0) = 0, T(1) = c$$

Lets guess that T(n) = O(n)We need to prove that $T(n) \le 2cn$ for $n \ge n_0$ Choose c = c and $n_0 = 2$

- Base case: $T(2) \le \frac{1}{2} \sum_{s=0}^{1} T(s) + 2c$ = $\frac{1}{2} \cdot (T(1) + T(0)) + 2c$ = $\frac{c}{2} + 2c = \frac{5c}{2}$ $c \cdot 2 \cdot 2 = 4c \ge T(2)$
- Induction: Assume $T(s) \leq 2cs$ for all $i \leq n-1$. $T(n) \leq \frac{1}{n} \sum_{s=0}^{n-1} T(s) + cn$ $\leq \frac{1}{n} \sum_{s=0}^{n-1} 2cs + cn$ $= \frac{2c}{n} \sum_{s=0}^{n-1} s + cn$ $= \frac{2c}{n} \cdot \frac{n(n-1)}{2} + cn$ = c(n-1) + cn = cn c + cn = 2cn c $\leq 2cn$

Therefore by proof by induction, the time complexity of Kth-Smallest is $T(n) = O(n) \blacksquare$

5 Question 5

The elements must be distinct because partitions of equal size will be confused. In the even that there are many of the same elements, how do you decide which is k smallest? Would you consider each to be k or would you completely skip over all recurrences of the same element? A change that could be made to our original algorithm actually run a different form of recursion so that the entire array is sorted, then simply find the kth smallest element regardless of non-distinct elements. The time complexity should be similar if not identical to QuickSort.