Techniques algébriques

QCOP TALG. 1

- **1.** Définir $\binom{n}{k}$ pour $(n,k) \in \mathbb{N}^2$.
- 2. Énoncer et démontrer la formule du binôme de Newton.
- **3.** Soient E et F deux ensembles finis.
 - a) Calculer Card $(\mathscr{P}(E))$.
 - **b)** Calculer Card $(\mathscr{P}(E \times F))$.

QCOP TALG.2

- 1. Donner la relation de Pascal.
- 2. Démontrer par récurrence que

$$\forall n \in \mathbb{N}, \ \forall k \in \llbracket 0, n \rrbracket, \ \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

3. Soit $n \in \mathbb{N}^*$. Soit $k \in \llbracket 0, n-1 \rrbracket$.

Calculer le quotient $\frac{\binom{n}{k}}{\binom{n}{k+1}}$.

QCOP TALG.3

- 1. Énoncer et démontrer de manière combinatoire la formule du triangle de Pascal pour les coefficients binomiaux.
- **2.** Soient $n, p \in \mathbb{N}$. On considère

$$S_n := \sum_{k=0}^n \binom{p+k}{p}.$$

- a) Représenter les termes de S_n sur le triangle de Pascal.
- **b)** Soit $k \in \mathbb{N}^*$. Simplifier

$$\binom{p+k+1}{p+1} - \binom{p+k}{p+1}$$
.

c) Calculer S_n .

QCOP TALG.4 ★

- **1.** Soient $a, b \in \mathbb{R}$. Soit $n \in \mathbb{N}^*$. Compléter et démontrer : $a^n b^n = \cdots \sum_{k = \dots}^{\dots} \cdots$.
- **2.** Soient $a_0, a_1, a_2, a_3 \in \mathbb{R}$. On définit la fonction $P: x \longmapsto a_0 + a_1x + a_2x^2 + a_3x^3$. Soit $c \in \mathbb{R}$ tel que P(c) = 0. Montrer que

$$\exists b_0, b_1, b_2 \in \mathbb{R} : \forall x \in \mathbb{R}, \quad P(x) = (x - c)(b_0 + b_1 x + b_2 x^2).$$