III Algebraic Geometry

Ishan Nath, Michaelmas 2024

Based on Lectures by Prof. Mark Gross

October 21, 2024

Page 1 CONTENTS

Contents

0	Introduction		
	0.1	Recap	2
	0.2	Categorical Philosophy	2
	0.3	What we want	3
	0.4	Introductory Definitions	4
1	Sheaves		
	1.1	Sheafification	9
	1.2	Passing between Spaces	13
2	2 Affine Schemes		15
Index			16

0 Introduction

Introductory reading by Hassett and Reid.

More commutative algebra by Atiyah and Macdonald, and Matsumura.

Standard AG texts by Hartshorne, Görtz-Wedhorn, and Ravi Vakil.

0.1 Recap

In undergraduate, we fix an algebraically closed field K, and define affine n-space $\mathbb{A}^n = K^n$, and for an ideal $I \subseteq K[x_1, \dots, x_n]$ we define

$$Z(I) = \{(a_1, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, \dots, a_n) = 0 \text{ for all } f \in I\} \subseteq \mathbb{A}^n.$$

We can define a topology on \mathbb{A}^n by taking the closed sets to be the sets of the form Z(I).

This turns out to be no good. We will instead introduce schemes. Natural questions are; why schemes, and why not varieties? Well,

- With varieties, we always work with algebraically closed fields, to relate the algebra with the geometry. If $K = \mathbb{R}$, and $I = (x^2 + y^2 + 1) \subseteq K[x, y]$, then $Z(I) = \emptyset$, losing information about I.
- We may be interested in Diophantine equations, where the natural space is \mathbb{Z} .
- Even if K is algebraically closed, we lose information passing from I to Z(I). For example if $I = (x^2)$, $Z = \{0\}$, then I(Z(I)) = (x).

But it is natural to consider ideals like (x^2) , for example considering $(y - x^2, y - \alpha) \subseteq \mathbb{C}[x, y]$. This produces two points for $\alpha \neq 0$, but only one point if $\alpha = 0$, but with some multiplicity.

0.2 Categorical Philosophy

Let **Set** be the category of sets. **Set** is the category with objects being all sets with morphisms between objects being maps of sets. If X, Y are sets, we write Hom(X, Y) for the set of maps between X and Y.

Note that there is a bijection $\operatorname{Hom}(\{*\}, X) \to X$ given by $(f : \{*\} \to X) \mapsto f(*)$.

We can use this philosophy to understand points on affine algebraic varieties. Nota \mathbb{A}^0 is a point. If X is an affine variety, then the points of X should be in one-to-one correspondence with $\text{Hom}(\mathbb{A}^0, X)$.

Recall morphisms of affine varieties. Denote A(X) by $K[x_1, \ldots, x_n]/I(X)$, where $I(X) = \{f \in K[x_1, \ldots, x_n] \mid f|_X = 0\}$. A(X) is the coordinate ring of X, a K-algebra.

We showed that if X, Y are affine varieties, then

$$\operatorname{Hom}(X, Y) = \operatorname{Hom}(A(Y), A(X)).$$

So,

$$\operatorname{Hom}(\mathbb{A}^0, X) = \operatorname{Hom}(K[x_1, \dots, x_n]/I(X), K).$$

Note giving a K-algebra homomorphism $K[x_1, \ldots, x_n]/I(X) \to K$ can be done by specifying the images of x_1 , say $x_1 \mapsto a_1$, such that, for any $f \in I(X)$, $f(a_1, \ldots, a_n) = 0$. So there is a one-to-one correspondence between such K-algebra homomorphisms, and points of X.

If K is algebraically closed, the maximal ideals of $K[x_1, \ldots, x_n]$ are precisely ideals of the form $(x_1 - a_1, \ldots, x_n - a_n)$ by Hilbert's Nullstellensatz. Similarly, for A(X), the maximal ideals are $(x_1 - a_1, \ldots, x_n - a_n) \mod I(X)$, with $(a_1, \ldots, a_n) \in X$.

Thus there is a bijection between points on X, and the maximal ideals of A(X). This gives three objects, X, the homomorphisms and the maximal ideals, which are all bijective.

Now suppose K is not algebraically closed. Consider the K-algebra homomorphisms $A(X) \to L$, where L is an extension of K. If $x_i \mapsto a_i$, then $f(a_1, \ldots, a_n) = 0$ for all $f \in I(X)$. Thus,

$$\operatorname{Hom}_K(A(X), L) = \{(a_1, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, \dots, a_n) = 0 \text{ for all } f \in I(X)\}.$$

These correspond to L-valued points.

We could also work over \mathbb{Z} . Take an ideal $I \subseteq \mathbb{Z}[x_1, \dots, x_n]$, and $A = \mathbb{Z}[x_1, \dots, x_n]/I$.

Then ring homomorphisms $A \to \mathbb{Z}$ are in one-to-one correspondence with points $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ such that $f(a_1, \ldots, a_n) = 0$ for all $f \in I$.

Moreover maps $A \to \mathbb{F}_p$ give solutions mod p, and $A \to \mathbb{Q}$ give rational solutions.

0.3 What we want

Given a ring A, we want to define a gadget

$$X = \operatorname{Spec} A$$
,

and an R-valued point of X is a ring-homomorphism $A \to R$. We write the set of R-valued points as

$$X(R) = \operatorname{Hom}(A, R).$$

Morphisms Spec $B \to \operatorname{Spec} A$ should be the same as ring homomorphisms $A \to B$. In category theory,

Definition 0.1. The category of affine schemes it the *opposite category* of rings.

Reminder: In this course, all of our rings are unital, are commutative, and ring homomorphism $\phi: A \to B$ satisfy $\phi(1) = 1$.

Definition 0.2. A *scheme* is a geometric object which is locally an affine scheme.

Currently this is a nonsensical definition, which we will be trying to make sense of. The motivating example is the manifold, which locally looks like an open subset of \mathbb{R}^n .

0.4 Introductory Definitions

Definition 0.3. Let A be a ring. Then,

Spec
$$A = \{ p \subseteq A \mid p \text{ is a prime ideal} \}.$$

In general, if we have an L-valued point of $X = Z(I) \subseteq \mathbb{A}^n$, we get a ring homomorphism $\phi: A(X) \to L$, which has image an integral subdomain of L, and so Ker ϕ is prime.

Definition 0.4. For $I \subseteq A$ an ideal, define

$$V(I) = \{ p \in \operatorname{Spec} A \mid p \supset I \}.$$

Again recall p is no longer a point, but a prime ideal.

Proposition 0.1. The sets V(I) form the closed sets of a topology on Spec A, the Zariski topology.

Proof: Need to check a handful of things.

- $V(A) = \emptyset$, so \emptyset is closed.
- $V(0) = \operatorname{Spec} A$, so $\operatorname{Spec} A$ is closed.

• If $\{I_j\}_{j\in J}$ is a collection of ideals, then note

$$\bigcap_{j \in J} V(I_j) = V\left(\sum_{j \in J} I_j\right).$$

• We show that $V(I_1) \cup V(I_2) = V(I_1 \cap I_2)$. Indeed, if $p \supseteq I_1$ or $p \supseteq I_2$, then $p \supseteq I_1 \cap I_2$.

In the other direction, then $p \supseteq I_1 \cap I_2$, then $p \supseteq I_1$ or $p \supseteq I_2$. This was proven in Part II. Or see Atiyah + Macdonald.

This is easy: if $I_1, I_2 \not\subseteq p$, then there exists $i_1, i_2 \in I_1, I_2$ respectively that are not in p. But now $i_1 i_2 \in I_1 \cap I_2 \subseteq p$, so $i_1 i_2 \in p$.

However p is prime, so either $i_1 \in p$ or $i_2 \in p$, contradiction.

Example 0.1.

Consider $A = K[x_1, ..., x_n]$ with K algebraically closed. For $I \subseteq A$, the maximal ideals of A corresponding to points of Z(I) are precisely the maximal ideals containing I.

Page 6 1 SHEAVES

1 Sheaves

Fix a topological space X.

Definition 1.1. A presheaf \mathcal{F} on X consists of data, such that:

• For every open set $U \subseteq X$, we have an abelian group $\mathcal{F}(U)$ (or more generally any element of a category).

• Whenever $V \subseteq U \subseteq X$ is open, there is a restriction homomorphism

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V),$$

such that $\rho_{UU} = \mathrm{id}_{\mathcal{F}(U)}$, and if $W \subseteq V \subseteq U \subseteq X$, then

$$\rho_{UW} = \rho_{VW} \circ \rho_{UV}.$$

Remark. This is precisely a contravariant functor from the category of open sets to the category of abelian groups. As mentioned, we may replace the category of abelian groups with any category.

Definition 1.2. If \mathcal{F}, \mathcal{G} are presheaves on X, then a morphism $f : \mathcal{F} \to \mathcal{G}$ is data for each $U \subseteq X$, a group homomorphism $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ such that whenever $V \subseteq U$, we have a commutative diagram

$$\mathcal{F}(U) \xrightarrow{f_U} \mathcal{G}(U)$$

$$\downarrow^{\rho_{UV}^{\mathcal{F}}} \qquad \downarrow^{\rho_{UV}^{\mathcal{G}}}$$

$$\mathcal{F}(V) \xrightarrow{f_V} \mathcal{G}(V)$$

Definition 1.3. A presheaf \mathcal{F} on X is a *sheaf* if it satisfies:

- 1. If $U \subseteq X$ is covered by $\{U_i\}$, and $s \in \mathcal{F}(U)$ such that $s|_{U_i} = \rho_{UU_i}(s) = 0$ for all i, then s = 0.
- 2. If $U, \{U_i\}$ are as in the above, and $s_i \in \mathcal{F}(U_i)$ for each i such that

$$s_i|_{U_i\cap U_j} = s_j|_{U_i\cap U_j}$$

for all i, j, then there exists $s \in \mathcal{F}(U)$ such that

$$s|_{U_i} = s_i$$

for all i.

Page 7 1 SHEAVES

Remark.

• If \mathcal{F} is a sheaf, then $\mathcal{F}(\emptyset) = 0$, since the empty cover is a cover of \emptyset .

• The two conditions together can be stated by saying

$$0 \longrightarrow \mathcal{F}(U) \xrightarrow{\alpha} \bigoplus_{i \in I} \mathcal{F}(U_i) \xrightarrow{\beta_1 \atop \beta_2} \bigoplus_{i,j \in I} \mathcal{F}(U_i \cap U_j)$$

is exact for all $U \subseteq X$ open, and open covers $\{U_i\}$ of U. Here,

$$\alpha(s) = (s|_{U_i})_{i \in I},$$

$$\beta_1((s_i)_{i \in I}) = (s_i|_{U_i \cap U_j})_{i,j \in I},$$

$$\beta_2((s_i)_{i \in I}) = (s_j|_{U_i \cap U_j})_{i,j \in I}.$$

In category theory, α is the equalizer of β_1, β_2 .

Exactness means that:

- $-\alpha$ is injective (property 1).
- $-\beta_1 \circ \alpha = \beta_2 \circ \alpha.$
- For any $(s_i) \in \bigoplus \mathcal{F}(U_i)$ with $\beta_1((s_i)) = \beta_2((s_i))$, there exists an $s \in \mathcal{F}(U)$ with $\alpha(s) = (s_i)$ (property 2).

This definition works even if $\mathcal{F}(U)$ is a set, rather than an abelian group.

Example 1.1.

1. For X any topological space,

$$\mathcal{F}(U) = \{ \text{continuous functions } f: U \to \mathbb{R} \}$$

is a sheaf.

2. If $X = \mathbb{C}$ with the Euclidean topology, then

$$\mathcal{F}(U) = \{ f : U \to \mathbb{C} \mid f \text{ bounded and holomorphic} \}$$

is not a sheaf, as gluing fails because it does not preserve boundedness.

3. Let G be a group, and set $\mathcal{F}(U) = G$ for all $U \subseteq X$. Then $\rho_{UV} = \mathrm{id}$. This is a presheaf known as the *constant presheaf*.

If we give G the discrete topology, set

$$\mathcal{F}(U) = \{ f : U \to G \text{ continuous} \}.$$

Page 8 1 SHEAVES

These are all locally constant functions, and is obviously a sheaf, called the *constant sheaf*.

4. If X is a variety, denote by $\mathcal{O}_X(U)$ the set of regular functions $f: U \to K$. Then $\mathcal{O}_X(U)$ is a sheaf, called the *structure sheaf* of X.

Definition 1.4. Let \mathcal{F} be a presheaf in $X, p \in X$. Then the *stalk* of \mathcal{F} at p is

$$\mathcal{F}_p = \{(U, s) \mid U \text{ an open neighbourhood of } p, s \in F(U)\}/\cong$$

where $(U,s)\cong (V,t)$ if there exists $W\subseteq U\cap V$, a neighbourhood of p, such that

$$s|_W = t|_W$$
.

The equivalence class of $(U, s) \in \mathcal{F}_p$ is written as s_p , and is the *germ* of s at p.

So the stalk is the set of germs. The stalks should be thought of as the local information of the sheaf around p. Note that given a morphism $f: \mathcal{F} \to \mathcal{G}$, we obtain $f_p: \mathcal{F}_p \to \mathcal{G}_p$ by

$$f_p(U,s) = (U, f_U(s)).$$

Proposition 1.1. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves (i.e. a morphism of presheaves). Then f is an isomorphism if and only if f_p is an isomorphism, for all $p \in X$.

Proof: The forward direction is obvious.

For the other direction, assume f_p is an isomorphism for all p. We will show that $f(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for all U, and then we can define the inverse to f by $(f^{-1})_U = (f_U)^{-1}$.

First we show f_U is injective. Suppose $s \in \mathcal{F}(U)$ is such that $f_U(s) = 0$. Then for all $p \in U$,

$$f_p((U,s)) = (U, f_U(s)) = (U,0) = 0 \in \mathcal{G}_p.$$

Thus $s_p = 0$ since f_p is injective. So there is an open neighbourhood $V_p \subseteq U$ of p such that $s|_{V_p} = 0$.

But $\{V_p\}$ covers U, so by property 1, s=0.

Now we show f_U is surjective. Let $t \in \mathcal{G}(U)$. Then for all $p \in U$, there exists $s_p \in \mathcal{F}_p$ such that $f_p(s_p) = t_p$, i.e. there exists an open neighbourhood V_p at $p \in U$ and a germ (V_p, \tilde{s}_p) representing s_p such that

$$(V_p, f_{V_p}(\tilde{s}_p)) \cong (U, t) = t_p.$$

Page 9 1 SHEAVES

Shrinking V_p if necessary, we can assume that $f_{V_p}(\tilde{s}_p) = t|_{V_p}$. Now on $V_p \cap V_q$,

$$f_{V_p \cap V_q}(\tilde{s}_p|_{V_p \cap V_q} - \tilde{s}_q|_{V_p \cap V_q}) = t|_{V_p \cap V_q} - t|_{V_p \cap V_q} = 0.$$

Since we have shown that $f_{V_p \cap V_q}$ is injective, we get

$$\tilde{s}_p|_{V_p \cap V_q} = \tilde{s}_q|_{V_p \cap V_q},$$

and so by property 2, there exists $s \in \mathcal{F}(U)$ such that

$$s|_{V_p} = \tilde{s}_p,$$

for all p. Now,

$$f_U(s)|_{V_p} = f_{V_p}(s|_{V_p}) = f_{V_p}(\tilde{s}_p) = t|_{V_p}.$$

Therefore, $f_U(s) - t = 0$, so by property 1, $f_U(s) = t$. Hence f_U is surjective.

Remark. If $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is injective for all p, then $f_U: \mathcal{F}(U) \to \mathcal{G}(U)$ is still injective.

But instead if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is surjective for all p, it need not be the case that $f_U: \mathcal{F}(U) \to \mathcal{G}(\mathcal{U})$ is surjective.

1.1 Sheafification

Given a presheaf \mathcal{F} , there exists a sheaf \mathcal{F}^+ and a morphism $\theta: \mathcal{F} \to \mathcal{F}^+$, satisfying the following universal property:

For any sheaf \mathcal{G} and morphism $\phi: \mathcal{F} \to \mathcal{G}$, there exists a unique morphism $\phi^+: \mathcal{F}^+ \to \mathcal{G}$ such that

$$\mathcal{F} \xrightarrow{\theta} \mathcal{F}^{+}$$

$$\downarrow^{\phi^{+}}$$

$$\mathcal{G}$$

commutes.

The pair (\mathcal{F}^+, θ) is unique up to isomorphism. Also $\mathcal{F}_p \cong \mathcal{F}_p^+$ via θ_p , for all $p \in X$.

The sheafification is defined as follows: define $\mathcal{F}^+(U)$ to be the functions

$$s: U \to \bigsqcup_{p \in U} \mathcal{F}_p$$

such that:

Page 10 1 SHEAVES

- (i) $s(p) \in \mathcal{F}_p$ for all p,
- (ii) for each $p \in U$, there exists an open neighbourhood $p \in V \subseteq U$ and an element $t \in \mathcal{F}(V)$ such that

$$(V,t) = s(q),$$

for all $q \in V$.

We define $\theta: \mathcal{F} \to \mathcal{F}^+$ given by

$$\mathcal{F}(U) \ni s \mapsto (p \mapsto (U, s) \in \mathcal{F}_p).$$

We can check that this satisfies the universal property stated previously.

Definition 1.5. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves. We define:

1. The presheaf kernel of f as

$$(\ker f)(U) = \ker(f_U : \mathcal{F}(U) \to \mathcal{G}(U)).$$

2. The presheaf cokernel of f as

$$(\operatorname{coker} f)(U) = \operatorname{coker} f_U.$$

3. The presheaf image as

$$(\operatorname{im} f)(U) = \operatorname{im} f_U.$$

Remark. If $f: \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then ker f is a sheaf. First note that any sub-presheaf of \mathcal{F} satisfies property 1.

To check property 2, given $s_i \in (\ker f)(U_i) \subseteq \mathcal{F}(U_i)$ for $\{U_i\}$ an open cover of U, suppose $s_i|_{U_i \cap U_i} = s_j|_{U_i \cap U_i}$. Then the s_i 's glue to given an $s \in \mathcal{F}(U)$. Now,

$$f_U(s)|_{U_i} = f_{U_i}(s_i) = 0,$$

so by property 1, $f_U(s) = 0$. Hence $s \in (\ker f)(U)$.

Example 1.2.

Take $X = \mathbb{P}^1$, or the Riemann sphere, and let $P, Q \in X$ be distinct points.

Let \mathcal{G} be the sheaf of regular functions on X (or the holomorphic functions on X), and let \mathcal{F} be the sheaf of regular functions on X vanishing at P and Q (or the holomorphic functions vanishing at P, Q).

Page 11 1 SHEAVES

Note $\mathcal{F}(U) = \mathcal{G}(U)$ if $U \cap \{P, Q\} = \emptyset$. By Liouville's theorem, $\mathcal{G}(X) = K$, and $\mathcal{F}(X) = 0$.

Let $U = X \setminus \{P\}$, $V = X \setminus \{Q\}$, and $f : \mathcal{F} \to \mathcal{G}$ the obvious inclusion. Note $\mathcal{G}(U) = K[x]$ by affine geometry, $\mathcal{F}(U) = (x)$. So,

$$(\operatorname{coker} f)(X) = \mathcal{G}(X)/\mathcal{F}(X) = K,$$

$$(\operatorname{coker} f)(U \cap V) = \mathcal{G}(U \cap V)/\mathcal{F}(U \cap V) = 0,$$

$$(\operatorname{coker} f)(U) = \mathcal{G}/\mathcal{F}(U) = K[x]/(x) = K,$$

$$(\operatorname{coker} f)(V) = K.$$

Choose $s_U \in (\operatorname{coker} f)(U)$, $s_V \in (\operatorname{coker} f)(V)$. But now $s_U|_{U \cap V} = s_V|_{U \cap V} = 0$, and this would imply that if coker f were a sheaf, that

$$K \oplus K \subseteq (\operatorname{coker} f)(X)$$
.

Remark. This shows that coker f need not be a sheaf. The same is true of im f.

Definition 1.6. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. The *sheaf kernel* of f is ker f, the presheaf kernel.

The *sheaf cokernel* of f is the sheafification of the presheaf cokernel. We still write this as coker f.

Note that to show $\operatorname{coker} f$ is a presheaf, we need to use the third isomorphism theorem.

We can also show that the sheaf image of f is a subsheaf of \mathcal{G} (prove this).

We say that f is *injective* if ker f = 0, and f is *surjective* if im $f = \mathcal{G}$. We say that a sequence

$$\cdots \longrightarrow \mathcal{F}^{i-1} \stackrel{f^i}{\longrightarrow} \mathcal{F}^i \stackrel{f^{i+1}}{\longrightarrow} \mathcal{F}^{i+1} \longrightarrow \cdots$$

is exact if $\ker f^{i+1} = \operatorname{im} f^i$.

If $\mathcal{F}' \subseteq \mathcal{F}$ is a subsheaf, we write \mathcal{F}/\mathcal{F}' for the sheaf associated to the presheaf

$$U \mapsto \mathcal{F}(U)/\mathcal{F}'(U)$$
.

This is $\operatorname{coker}(\iota : \mathcal{F}' \hookrightarrow \mathcal{F})$, where ι is the inclusion.

Lemma 1.1. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then,

$$(\ker f)_p = \ker(f_p : \mathcal{F}_p \to \mathcal{G}_p),$$

 $(\operatorname{im} f)_p = \operatorname{im} f_p.$

Page 12 1 SHEAVES

Proof: We have a map $(\ker f)_p \to \ker f_p$, defined as follows: if $(U, s) \in (\ker f)_p$, then $s \in (\ker f)(U)$, and $(U, s) \in \mathcal{F}_p$. So,

$$f_n(U,s) = (U, f(s)) = (U,0) = 0 \in \mathcal{G}_n$$

thus $(U, s) \in \ker f_p$.

It is easy to see this map is injective: if (U, s) = 0 in \mathcal{F}_p , then in some neighbourhood $s|_V = 0$. So $(U, s) \sim (V, s|_V) = 0$ in $(\ker f)_p$.

We now tackle surjectivity. If $(U, s) \in \ker f_p$, then $0 = f_p(U, s) = (U, f_U(s))$ in \mathcal{G}_p , so in some neighbourhood V, $f_U(s)|_V = 0$.

Thus $f_V(s|_V) = 0$, so $(U, s) \sim (V, s|_V)$, and $s|_V \in (\ker f)(V)$. Thus $(V, s|_V) \in (\ker f)_p$, which maps to $(U, s) \in \ker f_p$.

We now prove the appropriate theorem for images. Let im' f denote the presheaf image. Recall that if \mathcal{F} is a presheaf, then $\mathcal{F}_p \cong \mathcal{F}_p^+$, via θ_p . So it is enough to show there is an isomorphism

$$(\operatorname{im}' f)_p \cong \operatorname{im} f_p.$$

First, define

$$(\operatorname{im}' f)_p \to \operatorname{im} f_p$$

 $(U, s) \mapsto (U, s),$

with $s \in f_U(t)$ for some $t \in \mathcal{F}(U)$, which lives in im f_p since

$$f_p(U,t) = (U, f_U(t)) = (U,s)$$

First we show injectivity. If (U, s) = 0 in \mathcal{G}_p , then there exists $p \in V \subseteq U$ such that $s|_V = 0$. But then,

$$(U,s) \sim (V,s|_V) = (V,0) = 0$$

in $(\operatorname{im}' f)_p$.

To show surjectivity, we know that for $(U, s) \in \text{im } f_p$, that there is $(V, t) \in \mathcal{F}_p$ with $f_p(V, t) \sim (U, s)$. We can replace U with the smaller open set V, so can assume that U = V, and then

$$f_p(U,t) = (U, f_U(t)) \sim (U,s)$$

in \mathcal{G}_p . Shrinking U further, we can assume $f_U(t) = s$, and hence

$$(U,s) = (U, f_U(t)) \in (\operatorname{im}' f)_p.$$

Page 13 1 SHEAVES

Proposition 1.2. $f: \mathcal{F} \to \mathcal{G}$ is injective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is injective for all p.

 $f: \mathcal{F} \to \mathcal{G}$ is surjective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is surjective for all p.

Proof: We have

$$f_p$$
 is injective $\iff \ker f_p = 0$ $\forall p$
 $\iff (\ker f)_p = 0$ $\forall p$ by the lemma
 $\iff \ker f = 0.$

Note this uses the easy fact that if \mathcal{F} is a sheaf, and $\mathcal{F}_p = 0$ for all p, then $\mathcal{F} = 0$. Also,

$$f_p$$
 is surjective $\iff \operatorname{im} f_p = \mathcal{G}_p \qquad \forall p$
 $\iff (\operatorname{im} f)_p = \mathcal{G}_p \qquad \forall p \text{ by the lemma}$
 $\iff \operatorname{im} f = \mathcal{G}.$

Hence if $\mathcal{F} \subseteq \mathcal{G}$ are sheaves with $\mathcal{F}_p = \mathcal{G}_p$, we can check that $\mathcal{F} = \mathcal{G}$.

1.2 Passing between Spaces

Let $f: X \to Y$ be a continuous map of topological spaces.

Let \mathcal{F} be a sheaf in X. Define a sheaf $f_*\mathcal{F}$ on Y by

$$(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}(U)).$$

This is the *push-forward* of \mathcal{F} . This can be checked to be a sheaf.

If \mathcal{G} is a sheaf on Y, define the *pull-back* sheaf $f^{-1}\mathcal{G}$ to be the sheaf associated to the presheaf

$$U \mapsto \{(V, s) \mid V \subseteq f(U), V \text{ open}, s \in \mathcal{G}(V)\}/\sim,$$

where $(V, s) \sim (V', s')$ if there exists W with $f(U) \subseteq W \subseteq V \cap V'$ with $s|_W = s'|_W$.

Example 1.3.

If $f: \{p\} \hookrightarrow Y$, then $f^{-1}\mathcal{G} = \mathcal{G}_p$, by identifying a sheaf \mathcal{F} on a topological space X with the group $\mathcal{F}(X)$.

More generally, if $\iota: Z \hookrightarrow X$ is an inclusion, we often write $\mathcal{F}|_Z$ for the sheaf $\iota^{-1}\mathcal{F}$.

Page 14 1 SHEAVES

If $\iota: U \hookrightarrow X$ is an open subset, then in fact $i^{-1}\mathcal{F} = \mathcal{F}|_Z$ is the sheaf $V \mapsto \mathcal{F}(V)$, for $V \subseteq U$ open.

If $s \in \mathcal{F}(U)$, we call s a section of \mathcal{F} over U. We often also write

$$\mathcal{F}(U) = \Gamma(U, \mathcal{F}),$$

thinking of $\Gamma(U,\cdot)$ as a covariant functor

 $\Gamma(U,\cdot): \mathbf{Presheaves}_X \to \mathbf{Ab}.$

2 Affine Schemes

Let A be a ring. Spec A is a topological space analogous to the sheaf of regular functions.

Let $S \subseteq A$ be a multiplicatively closed subset, i.e. $1 \in S$ and whenever $a, b \in S$, we have $a \cdot b \in S$. We define

$$S^{-1}A = \{(a, s) \mid a \in A, s \in S\} / \sim,$$

where $(a, s) \sim (a', s')$ if there exists $s'' \in S$ such that

$$s''(as' - a's) = 0.$$

This is called the *localization* of A at S.

Example 2.1.

1. Say $S = \{1, f, f^2, \ldots\}$ for some $f \in A$. Then

$$A_f = S^{-1}A = \left\{ \frac{a}{f^n} \mid a \in A, n \ge 0 \right\} / \sim.$$

2. Take $P \subseteq A$ a prime ideal, and $S = A \setminus P$. Then we write $A_P = S^{-1}A$.

Our goal is to now construct the sheaf

$$\mathcal{O} = \mathcal{O}_{\operatorname{Spec} A}$$
.

For $U \subseteq \operatorname{Spec} A$ open, we write

$$\mathcal{O}(U) = \left\{ s : U \to \bigsqcup_{p \in U} A_p \mid s(p) \in A_p \land \text{for each } p \in U, \exists q \in V \subseteq U \right.$$

$$\text{and } a, f \in A \text{ such that } \forall q \in V, f \not\in q \land s(q) = \frac{a}{f} \in A_q \right\}$$

Apparently this is clearly a sheaf.

Index

equalizer, 7 push-forward, 13 exact, 11 restriction, 6 germ, 8 scheme, 4 section, 14 localization, 15 sheaf, 6 morphism of presheaves, 6 sheaf cokernel, 11 sheaf kernel, 11 presheaf, 6 spectrum, 4 presheaf cokernel, 10 stalk, 8 presheaf image, 10 structure sheaf, 8 presheaf kernel, 10 Zariski topology, 4 pull-back, 13