Veri Madenciliği İle Akciğer Kanser Tespiti

EKİP:

02200201006

Samed Sonkaya

02200201013

Anıl Berkan Torun

02200201011

Habib Şako

Veri Madenciliği İle Akciğer Kanser Tespiti

Veri madenciliği, büyük veri setlerinden anlamlı bilgiler çıkarmak için kullanılan bir analiz yöntemidir.

Veri madenciliği ile akciğer kanseri tespiti; önceden toplanan verilerden hastanın sigara kullanımı, yaşı alkol kullanımı ve yaşam kalitesi parametreleri ile analizler oluşturur. Bu veriler üzerinde yapılan C4.5 algoritması ile potansiyel kanser vakalarını belirlemede kullanılabilir.

Sonuç olarak bu teknoloji, hastalığın erken teşhisini kolaylaştırarak, daha etkili tedavi stratejilerinin belirlenmesine ve hastaların yaşam kalitesinin artırılmasına katkı sağlar.

Kullandığımız Algoritma C4.5

- Karar ağaçları ile sınıflandırma yapmaktadır.
- ✓ Ağaçtaki her düğüm bir özellikteki testi gösterir.
- ✓ Düğüm dalları testin sonucunu belirtir.
- ✓ Ağaç yaprakları sınıf etiketlerini içerir.
- Entropiye dayalı bir sınıflandırma algoritmasıdır.
- ✓ Entropi rastgeleliği, belirsizliği ve beklenmeyen durumun ortaya çıkma olasılığını gösterir.
- ID3 algoritmasından tek farkı nümerik değerlerin kategorik değerler haline dönüştürülmesidir.

Kullanılacak Data Seti Örneği

▲ Name =	▲ Surname =	# Age =	# Smokes =	# AreaQ =	# Alkhol =	# Result =
Yul	Brynner	18	10	6	3	0
Joan	Crawford	25	2	5	1	0
Jane	Wyman	28	20	2	8	1
Anna	Magnani	34	25	4	8	1
Katharine	Hepburn	39	18	8	1	0
Katharine	Hepburn	42	22	3	5	1
Barbra	Streisand	19	12	8	0	0
Maggie	Smith	62	5	4	3	1
Glenda	Jackson	73	10	7	6	1
Jane	Fonda	55	15	1	3	1
Maximilian	Schell	33	8	8	1	0
Gregory	Peck	22	20	6	2	0
Sidney	Poitier	44	5	8	1	0
Rex	Harrison	77	3	2	6	1
Lee	Marvin	21	20	5	3	0
Paul	Scofield	37	15	6	2	0
Rod	Steiger	34	12	8	0	0
John	Wayne	55	20	1	4	1
Gene	Hackman	40	20	2	7	1
Marlon	Brando	36	13	5	2	0

https://www.kaggle.com/datasets/yusufdede/lung-cancer-dataset/data

Verilerin Alınması ve Gruplandırılması (Ön İşlem)

Yapılan işlemler:

- Verilerin .csv dosyasından alınması.
- Veri sütunlarının belirlenen değerler aralığında gruplandırılması. Ör: 0 ile 25 yaş arasındaki değerlere 'Genc' grubuna atanması.
- Oluşturulan yeni değerler ile yeni tablo oluşturulması.

```
#Verinin gruplandlr:lmasi

df['Age_Class'] = pd.cut(df['Age'], bins=[0, 25, 40, float('inf')], labels=['Genc', 'Orta', 'Yasli'])

df['Alkhol_Class'] = pd.cut(df['Alkhol'], bins=[-1, 3, 6, float('inf')], labels=['0', '1', '2'])

df['Smokes_Class'] = pd.cut(df['Smokes'], bins=[-1, 7, 13, float('inf')], labels=['0', '1', '2'])

df['AreaQ_Class'] = pd.cut(df['AreaQ'], bins=[-1, 3, 7, float('inf')], labels=['0', '1', '2'])

new_data=_ df[['Age_Class', 'Alkhol_Class', 'Smokes_Class', 'AreaQ_Class', 'Result']]
Entropi_data=_ df[['Result']]
print(new_data)
```

```
data = pd.read_csv('lung_cancer_examples.csv')
print(data)
df = pd.DataFrame(data)
```

Örnek

Eşik değerinin belirlenmesi

Nitelik 2 = {65, 70, 75, 80, 85, 90, 95, 96} için eşik değer
 (80+85)/2 = 83 alınmıştır.

SINII	NİTELİK3	NİTELİK2	NİTELİKI
sınıf1	doğru	70	a
sinif2	doğru	90	a
sinif2	yanlış	85	а
sınıf2	yanlış	95	a
sinifl	yanlış	70	a
smifl	doğru	90	b
sınıfl	yanlış	78	b
sınıfl	doğru	65	b
sınıf1	yanlış	75	b
sınıf2	doğru	80	c
smif2	doğru	70	c
smifl	yanlış	80	c
sınıfl	yanlış	70	c
sınıfl	yanlış	96	c

NİTELİK2≤ 83 veya NİTELİK2>83 testi uygulanarak düzenleme yapıldığında yandaki tablo elde edilir.

Entropilerin Hesaplanması

Yapılanlar İşlemler:

- Gruplama yapılan sınıftaki her bir niteliğe göre ayrı ayrı entropilerin alınması.
- Sınıfın entropisinin bulunması.
- Entropi_result değerinden sınıf entropi değerinin çıkarılarak kazancın bulunması.

```
Ornek

H(SINIF) = -\left(\frac{5}{14}\log_2\frac{5}{14} + \frac{9}{14}\log_2\frac{9}{14}\right) = 0.940
H(NITELIK1_a) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0.971
H(NITELIK1_b) = -\left(\frac{4}{4}\log_2\frac{4}{4} + \frac{0}{4}\log_2\frac{0}{4}\right) = 0
H(NITELIK1_c) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.971
H(NITELIK1_c) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.971
H(NITELIK1, SINIF) = \frac{5}{14}H(NITELIK1_a) + \frac{4}{14}H(NITELIK1_b) + \frac{5}{14}H(NITELIK1_c)
= \frac{5}{14}0.971 + \frac{4}{14}0 + \frac{5}{14}0.971 = 0.694
Kazanç(NITELIK1, SINIF) = 0.940 - 0.694 = 0.246
```

```
58 Yaslı 0 2

Result_Entropisi = 0.9981341775041116

Kazanc_Age = 0.31959267094489074

Kazanc_Smoke = 0.18539078304824685

Kazanc_Alkhol = 0.6012021187969507

Kazanc_AreaQ = 0.5305682824370093
```

Bulunan Entropilere Göre Karar Ağacının Oluşturulması ve Test Edilmesi

Yapılan İşlemler:

- Bulunan kazanç değerlerine göre en büyük olan değerden en küçük olan değere doğru sıralama yapılır.
- Yapılan sıralamaya göre en büyük değerden başlanarak karar ağacı oluşturulmaya başlanır.
- Dallanmada bulunan değerlerin hepsi aynı sınıfa aitse düğüm yaprak olarak sonlanıyor ve sınıf etiketini alıyor. (0,1)
- Ağaç oluşturulduktan sonra test için örnek veri gönderiliyor ve tahmin değeri alınıyor.

```
Kazanc_AreaQ = 0.5305682824370093
|--- Alkhol_Class <= 0.50
| |--- AreaQ_Class <= 0.50
| | |--- class: 1
| |--- AreaQ_Class > 0.50
| | |--- Age_Class <= 1.50
| | |--- Age_Class > 1.50
| | |--- Age_Class > 1.50
| | | |--- Smokes_Class <= 1.50
| | | | |--- Smokes_Class <= 0.50
| | | | | |--- Class: 0
| | | | | |--- class: 0
| | | | | |--- class: 0</pre>
| | | | | |--- class: 0
| | | | | |--- class: 0
| | | | | |--- class: 0
| | | | | |--- class: 0
| | | | | |--- class: 1
| | | | |--- class: 1
| | | | |--- class: 0
| | | | |--- class: 1
```

```
Oluşturulan karar ağacı

NİTELİK1-99
NİTELİK1-90
NİTELİK3-90(yık NİTELİK3-yanlış NİTELİK3-doğru

Sınıf1
Sınıf2
Sınıf1
Sınıf2
```

```
class_mapping = {'Genc': 0, 'Orta': 1, 'Yasli': 2}
new_data['Age_Class'] = df['Age_Class'].map(class_mapping)

X = new_data[['Alkhol_Class', 'Smokes_Class', 'AreaQ_Class', 'Age_Class']]
y = new_data['Result']

# Eğitim ve test veri setlerine ayırma
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Karar ağacı modeli oluşturma
clf = DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
tree_rules = export_text(clf, feature_names=['Alkhol_Class', 'Smokes_Class', 'AreaQ_Class', 'Age_Class'])
print(tree_rules)
```

```
# Karar ağacından test etme
new_data_test = pd.DataFrame({'Alkhol_Class': [0], 'Smokes_Class': [2], 'AreaQ_Class': [0], 'Age_Class':[2]})
prediction = clf.predict(new_data_test)
```

```
| |--- AreaQ_Class > 1.50
| | |--- class: 0
```

Teşekkürler