MetaVers: Meta-Learned Versatile Representations with Large Margins for Personalized Federated Learning

Installation

- Create a virtual environment with conda create
 - o conda create -n mvs python=3.8.5
 - o conda activate mvs
 - o pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 f https://download.pytorch.org/whl/torch_stable.html
 - o pip install learn2learn
 - o pip install tensorboardX
 - o pip install tensorflow
 - o pip install sklearn

Fast Run

Results on CIFAR-10

Run: python trainer.py --dataset cifar10 --rand 0 --seed_list 42

Results on CIFAR-100

Run: python trainer.py --dataset cifar100 --rand 0 --seed_list 42

Results on CINIC-10

Run: python trainer.py --dataset cinic --rand 0 --seed_list 42

For Details

```
--loss: What loss to use, for cross-entropy; ce or tirplet; riplet. Default: hybrid
--d_from: How to set the margin of the parameter used for triplet loss, for fixed margin; margin
Default: select
--w: Interval Value W. Default: 50
--control: Non-random way, according to the benchmark maximum way. Default: fixed
--seed_list: Receive a list of how to make a random seed (adjust the result randomness)
--method: Whether episodes are created locally in a decentralized setting, for centralized setting;
centralized Default: decentralized
-- Tr: Learning rate for gradient update. Default: 0.001
--optimizer: Whether to use decay for Adam optimizer. When using a weight decay of 1e-3: 1
Default: 0
--evaluation_unit: Evaluate using the validation set every n round. Default: 50
--activated: Number of the activated clients. Default: 5
--embedder: which model to use.[conv4, lenet, resnet18] Default: lenet
--gamma: loss balancing hyper parameter. Default: 0.5
--rand: Fix the randomness of the PyTorch according to the seed.(adjust the result randomness)
Default: 1
```

MetaVers: PFL Results Performance Reproduction

Table 1. Test accuracy (\pm SEM) on CIFAR-10, CIFAR-100, and CINIC-10.

	CIFAR-10			CIFAR-100			CINIC-10		
# clients # samples/client	50 800	100 400	500 80	50 800	100 400	500 80	50 1800	100 900	500 180
Local FedAvg [12]		82.1 ± 0.2 59.7 ± 0.5			44.5 ± 0.4 24.0 ± 0.2	31.0 ± 0.3 20.4 ± 0.0		57.4 ± 0.4 44.7 ± 0.5	
LG-FedAvg [9] pFedMe [4] FedU [5] FedProto [16] Per-FedAvg [2] pFedHN [15] pFedGP [1] FedPer [2] FedRep [3] kNN-Per [11] FedBABU [13]	$\begin{array}{c} 86.4 \pm 0.8 \\ 80.6 \pm 0.3 \\ 85.9 \pm 0.7 \\ 71.1 \pm 1.5 \\ 90.2 \pm 0.6 \\ 89.2 \pm 0.3 \\ 83.8 \pm 0.8 \\ 82.4 \pm 1.5 \\ 89.6 \pm 0.6 \end{array}$	83.6 ± 0.7 85.0 ± 0.3 78.1 ± 0.5 79.0 ± 0.4 79.1 ± 3.7 87.4 ± 0.2 88.8 ± 0.2 81.5 ± 0.5 80.7 ± 1.0 89.5 ± 0.4 58.5 ± 0.6	$\begin{array}{c} 80.3 \pm 0.5 \\ 65.6 \pm 0.4 \\ 51.0 \pm 0.0 \\ 67.7 \pm 1.9 \\ 83.2 \pm 0.8 \\ 87.6 \pm 0.4 \\ 76.8 \pm 1.2 \\ 77.3 \pm 0.8 \\ 84.8 \pm 0.4 \end{array}$	49.8 ± 0.5 41.1 ± 0.2 47.8 ± 0.5 38.2 ± 2.0 60.0 ± 1.0 63.3 ± 0.1 48.3 ± 0.6 45.1 ± 2.8 61.8 ± 0.3	$\begin{array}{c} 47.7 \pm 0.4 \\ 36.0 \pm 0.2 \\ 17.8 \pm 0.1 \\ 34.1 \pm 0.4 \\ 52.3 \pm 0.5 \\ 61.3 \pm 0.2 \\ 43.6 \pm 0.2 \\ 38.8 \pm 1.1 \\ 56.0 \pm 0.3 \end{array}$	15.9 ± 0.4 10.9 ± 0.1 32.8 ± 1.7 34.1 ± 0.1 50.6 ± 0.2 25.6 ± 0.3 30.2 ± 0.4	69.9 ± 0.5 59.3 ± 0.2 58.2 ± 0.7 53.8 ± 0.8 70.4 ± 0.4 71.8 ± 0.3 70.6 ± 0.2 67.1 ± 1.1 71.8 ± 0.2	$\begin{array}{c} 59.9 \pm 2.1 \\ 68.9 \pm 0.7 \\ 55.4 \pm 0.6 \\ 40.3 \pm 0.8 \\ 53.5 \pm 0.6 \\ 69.4 \pm 0.5 \\ 71.3 \pm 0.4 \\ 68.4 \pm 0.5 \\ 64.7 \pm 0.0 \\ 72.0 \pm 0.2 \\ 50.7 \pm 0.2 \end{array}$	$\begin{array}{c} 58.8 \pm 0.1 \\ 41.6 \pm 0.5 \\ 26.0 \pm 0.0 \\ 59.6 \pm 0.7 \\ 64.2 \pm 0.1 \\ 68.1 \pm 0.3 \\ 62.2 \pm 0.1 \\ 61.5 \pm 0.5 \\ 69.2 \pm 0.6 \end{array}$
$ \begin{array}{c} \textbf{Ours} \\ (K,Q) \\ \texttt{MetaVers} \ (\texttt{only} \ \mathcal{L}_T) \\ \texttt{MetaVers} \ (\texttt{only} \ \mathcal{L}_S) \\ \textbf{MetaVers} \end{array} $	89.9 ± 0.3		88.1 ± 0.1	$\textbf{66.7} \pm \textbf{0.1}$	$(10, 20)$ 62.9 ± 0.3 64.6 ± 0.2 64.8 ± 0.1		72.8 ± 0.3	(25, 35) 72.7 ± 0.2 72.5 ± 0.2 73.2 ± 0.3	71.7 ± 0.1

Samples/client indicates the mean number of samples per local client in each case.

PFL Results Performance Reproduction on CIFAR-10

- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cifar10 --num_user 50 --optimizer 1 -train_shot 20 --train_query 30 --gamma 0.4
- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -- control fixed --seed_list 0 21 42 --dataset cifar10 --num_user 100 --optimizer 1 -- train_shot 20 --train_query 30 --gamma 0.3
- `python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cifar10 --num_user 500 --optimizer 1 -train_shot 20 --train_query 30 --gamma 0.2

PFL Results Performance Reproduction on CIFAR-100

- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cifar100 --num_user 50 --optimizer 0 -shot_500 3 --train_shot 10 --train_query 20 --gamma 0.6
- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cifar100 --num_user 100 --optimizer 0 -shot_500 3 --train_shot 10 --train_query 20 --gamma 0.6
- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 500 -control fixed --seed_list 0 21 42 --dataset cifar100 --num_user 50 --optimizer 0 -shot_500 3 --train_query 15 --gamma 0.6

PFL Results Performance Reproduction on CINIC-10

- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cinic --num_user 50 --optimizer 0 -train_shot 25 --train_query 35 --gamma 0.5
- python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cinic --num_user 100 --optimizer 0 -train_shot 25 --train_query 35 --gamma 0.5

⁽K,Q) indicates the number of samples per class corresponding to the support set and the query set constituting the training episode. R^* indicates the remaining data samples per class after securing K samples by prioritizing the support set configuration.

• python trainer.py --exp_name reproduction --loss hybrid --d_from select --w 50 -control fixed --seed_list 0 21 42 --dataset cinic --num_user 500 --optimizer 0 -train_shot 20 --train_query 30 --gamma 0.5

Additional Experiment

[1] Only one Loss Example

• Triplet Loss (only \mathcal{L}_T)

```
python trainer.py --loss triplet --d_from margin --margin 3.0 --w 50 --dataset cinic --num_user 500 --exp_name triplet --seed_list 0 21 42 --optimizer 0 --train_shot 25 --train_query 35 --gamma 0.5 --lr 0.001 --gpu_number 0
```

• Cross-entropy Loss (only \mathcal{L}_S)

```
python trainer.py --loss ce --dataset cinic --num_user 500 --exp_name ce --
seed_list 0 21 42 --optimizer 0 --train_shot 20 --train_query 30 --gamma 0.5 --lr
0.001 --qpu_number 0
```

[2] Lower Way Example

- python trainer.py --loss hybrid --d_from select --w 50 --dataset cifar100 --num_user
 100 --exp_name table4_low --low_way 5 --seed_list 0 21 42 --optimizer 0 --train_shot 10 --train_query 20
- Random Way

```
python trainer.py --random_way various --loss hybrid --d_from select --w 50 --
dataset cinic --num_user 100 --exp_name table4_random --low_way 3 --seed_list 0
21 42 --optimizer 0 --train_shot 25 --train_query 35
```

[3] Centralized Learning Example

• python trainer.py --version eccv --loss hybrid --d_from select --w 50 --dataset cifar100 --num_user 50 --exp_name table5_central --method centralized --seed_list 0 21 42 --optimizer 0 --train_shot 10 --train_query 20

CINIC-10 Dataset Download

• If the CINIC-10 dataset is not downloaded correctly, you can download it directly from the link and put it in the "'./cinic" folder.

https://datashare.is.ed.ac.uk/bitstream/handle/10283/3192/CINIC-10.tar.gz