Statistical Inference for NLP algorithms

Kishore Basu & TJ Ayoub

What are the authors trying to solve?

Computer Science/Linguistics

- In NLP, statistical techniques used infrequently
- O Uncertainty quantification is difficult
- word2vec has strong statistical underpinnings

Statistical Approaches

high blood pressure"

C = c (Center Word)	C' = c' (Neighbouring Word)	D = 0/1 (Boolean neighbour)	
diabetes	history	D = 1	
diabetes	diabetes	D=1	PMI > 0 - C, C' associated
diabetes	high	D=1	
diabetes	blood	D=1	G, G ussociated
diabetes	pressure	D = 0	PMI < 0
			-C, C' not associated
pressure	history	D = 0	
			<u>,</u> •

Can statistical techniques improve our understanding of diabetes classification?

Yes, but we need to do some work first.

- PMI model
- MLE estimation
- Multivariate delta method

$$PMI = log \frac{P_1(C = c \mid C' = c', D = 1)}{P_2(C = c \mid D = 1)}$$

$$P_{1}(C = c \mid C' = c', D = 1) = \frac{\exp(\beta^{T}X)}{1 + \exp(\beta^{T}X)} \rightarrow \hat{\beta} \rightarrow \widehat{\sigma_{1}}^{2} = Var(\widehat{P_{1}})$$

$$P_{2}(C = c \mid D = 1) = \frac{\exp(\alpha)}{1 + \exp(\alpha)} \rightarrow \hat{\alpha} \rightarrow \widehat{\sigma_{2}}^{2} = Var(\widehat{P_{2}}) \nearrow$$

$$\widehat{PMI}$$

Building a predictive model from data

- O Goal: Identify type-2 diabetes in EHR
- Two summary statistics for two groups
- Word association pairs, words with the 'diabet' stem

$$(diabet-,c') \qquad (c,c')$$

$$m_k PMI_d^d \qquad m_k PMI^d$$

$$m_k PMI_d^{xd} \qquad m_k PMI^{xd}$$

1000 patients

500 Diabetes, 500 non-diabetes

61,489 total words

Each patient has many records (notes)

1500 words kept

Reduces dimensionality of dataset

PREDICTIVE MODEL

PREDICTIVE MODEL

Mean PMI over nondiabetics where C'= `diabet'

Key Takeaway:

Less words associated with 'diabet' in non-diabetics

More words associated with 'diabet' in diabetics

PREDICTIVE MODEL

Mean PMI over nondiabetics where $C' = \Delta t$

Key Takeaway:

Non-diabetics have tighter distribution

PMI's in non-diabetes group are better at predicting who doesn't have diabetes

So understanding the distribution of the PMI can tell us a lot!

In summary,

Novel framework to calculate SEs for PMI

$$PMI = log \frac{P(C = c \mid C' = c', D = 1)}{P(C = c \mid D = 1)} \rightarrow Var(\widehat{PMI})$$

Importance of statistical analysis in NLP and data science

In summary,

High relevance contribution in a sparse literature space

Thank you for listening

