Theoretische Informatik 1

21. Mai 2013

Praktikumsaufgabe 3

Lucas Jenss und Tommy Redel in Gruppe 1

1 Definitionen

1.1 Lebendigkeit

Eine Transition $t \in T$ ist lebendig in N_{M_0} , wenn sie für alle Markierungen $M \in EG$ M-erreichbar ist.

Ein Netz N_{M_0} ist lebendig, wenn alle seine Transitionen lebendig sind.

2 Eigenschaften von Netzen

2.1 Reversibilität - Lebendigkeit (1)

Unabhängig.

Reversibel + Lebendig

Reversibel + nicht lebendig

Nicht reversibel + Lebendig

Nicht reversibel + nicht lebendig

2.2 Beschränktheit - Lebendigkeit (2)

Unabhängig.

beschrnkt + lebendig

Nicht beschrnkt + lebendig

beschrnkt + nicht lebendig

Nicht beschrnkt + nicht lebendig

2.3 Beschränktheit - Reversibilität (3)

Unabhängig.

beschraenkt + reversibel

Nicht beschraenkt + reversibel

beschraenkt + nicht reversibel

licht beschraenkt, nicht reversibel

2.4 Stelleninvarianten - Lebendigkeit (4)

Unabhängig.

P-Inv + lebendig

keine P-Inv + lebendig

P-Inv + nicht lebendig

keine P-Inv + nicht lebendig

2.5 Stelleninvarianten - Reversibilität (5)

Unabhängig.

P-Inv + reversibel

keine P-Inv + reversibel

P-Inv + nicht reversibel

keine P-Inv + nicht reversibel

2.6 Stelleninvarianten - Beschränktheit (6)

Wenn ein Netz eine Stelleninvariante hat, d.h. I^T , als homogenes Gleichungssystem gelöst, eine Lösung hat, dann muss das Netz beschränkt sein, denn dann bleibt die nach der Invariante gewichtete Tokensumme immer gleich. Demnach gilt Stelleninvariante \iff Beschraenktheit.

2.7 Transitionsinvarianten - Lebendigkeit (7)

Eine echt positive Transitionsinvariante und Lebendigkeit sind nur unter Einschränkung verknüpft. Nimmt man eine endliches, beschränktes, lebendiges Netz N, dann muss es für dieses Netz auch eine echt positive Transitionsinvariante geben.

Weitere Zusammenhänge sind nicht erkennbar:

T-Inv, lebendig

keine T-Inv, tot

keine T-Inv, lebendig

2.8 Transitionsinvarianten - Reversibilität (8)

Transitionsinvarianten beschreiben Zyklen im Erreichbarkeitsgraphen eines Netzes N=(P,T,W), allerdings unabhängig von der Startmarkierung M_0 des Netzes. Die Existenz einer echt positiven Transitionsinvariante besagt also, dass eine Markierung M_0 existiert, für die das Netz reversibel ist, also dass es einen endlichen Pfad $M_0 \xrightarrow{t_1} \dots \xrightarrow{t_n} M_{n+1}$ gibt, sodass $M_0 = M_{n+1}$.

Eine allgemeine Aussage ist allerdings anhand einer echt positiven Transitionsinvariante nicht treffbar. Es gilt zwar, dass ein reversibles Netz auch eine Transitionsinvariante haben muss, allerdings nicht zwingend eine echt positive.

2.9 Transitionsinvarianten - Beschränktheit (9)

Unabhängig

T-Inv + beschraenkt

T-Inv + nicht beschraenkt

keine T-Inv + nicht beschraenkt

2.10 Transitionsinvarianten - Stelleninvarianten (10)

Die Transitionsinvarianten eines Netzes N=(P,T,W) sind die Stelleninvarianten des Netzes N'=(P',T',W') gdw. W=W' sowie T'=P und P'=T.

2.11 Überdeckungsgraph - Lebendigkeit

Es gilt:

$$\left(\forall m \in UG : m \xrightarrow{t_1} \dots \xrightarrow{t_n} m : T \setminus \{t_1, \dots, t_n\} = \emptyset\right) \Longrightarrow \text{Lebendig}$$

Die umgekehrte Annahme gilt nicht, denn im UG ist es nicht möglich, von einer ω -Markierung wieder zurück zur Ursprungsmarkierung zu gelangen.

2.12 Überdeckungsgraph - Reversibilität

Es gilt:

$$\left(\forall m \in UG : m \xrightarrow{t_1} \dots \xrightarrow{t_n} M_0\right) \Longrightarrow \text{Reversibel}$$

Die umgekehrte Annahme gilt aus dem selben Grund wie für "Überdeckungsgraph - Lebendigkeit" nicht.

2.13 Überdeckungsgraph - Stelleninvarianten

TODO

2.14 Überdecksungsgraph - Beschränktheit (13)

Ein Netz ist genau dann beschränkt, wenn in seinem Überdeckungsgraphen keine ω -Stellen vorkommen.