Internet Of Things

Lab - 9

23 October 2020

Aim:

To Apply and use the MQTT protocol with the help of Node-RED and concepts of IoT.

Software:

Node-Red Software and HiveMQ MQTT broker.

Methodology:

This video instructions are followed: https://www.youtube.com/watch?v=LCYIFoyBn2I

Simulation And Output:

1) Implementing an RFID chip scanner

(1.1) MQTT In Node

Edit mqtt in node	
Delete	Cancel
♣ Properties	
Server	RFID Reader@broker.mqttdashboard.cc >
≅ Topic	RFID Reader
⊛ QoS	2 •
Output	auto-detect (string or buffer)
Name Name	RFID Reader

(1.2) MQTT Server Configuration

(1.3) JSON Node

(1.4) Debug Node

(1.5) HiveMQ Window

(1.6) Complete Circuit Flow

(1.7) Complete Circuit Flow Code

[{"id":"3a2877a0.3a12b8","type":"tab","label":"RFID Scanner","disabled":false,"info":""},{"id":"c6bf52d5.82e86","type":"mqtt in","z":"3a2877a0.3a12b8","name":"RFID Reader","topic":"RFID Reader","qos":"2","datatype":"auto","broker":"7d9cbc85.412e24","x":240," y":140,"wires":[["3e74b8c6.94c8c8"]]},

{"id":"3e74b8c6.94c8c8","type":"json","z":"3a2877a0.3a12b8","name":""," property":"payload","action":"","pretty":false,"x":440,"y":120,"wires": [["5ef106ab.7245b8"]]},

{"id":"5ef106ab.7245b8","type":"debug","z":"3a2877a0.3a12b8","name":"", "active":true,"tosidebar":true,"console":false,"tostatus":false,"complete":" payload","targetType":"msg","statusVal":"","statusType":"auto","x":600,"y":180,"wires":[]},{"id":"7d9cbc85.412e24","type":"mqtt-

broker","z":"","name":"","broker":"broker.mqttdashboard.com","port":"188 3","clientid":"RFID

Reader", "usetls": false, "compatmode": false, "keepalive": "60", "cleansession": true, "birthTopic": "", "birthQos": "0", "birthPayload": "", "closeTopic": "", "closeQos": "0", "closePayload": "", "willTopic": "", "willQos": "0", "willPayload": ""}]

(1.8) Output

23/10/2020, 13:19:08 node: 5ef106ab.7245b8

RFID Reader: msg.payload: Object

▼object

Name: "Aadhitya Swarnesh"

Organization: "VIT"

RegNo: "18BCE1087"

2) Implementing a Speedometer

(2.1) MQTT In Node

(2.2) MQTT Server Configuration

(2.3) JSON Node

(2.4) Gauge Node

(2.5) UI Tab

(2.6) UI Group

(2.7) Text Node

(2.8) Speed Indicator Node

(2.9) Debug Node

(2.10) Complete Circuit Flow

(2.11) Complete Circuit Flow Code

```
[{"id":"34557bbc.d95494","type":"tab","label":"Speed
Sensor", "disabled": false, "info": ""}, { "id": "865124dc.fa4818", "type": "mqtt
in","z":"34557bbc.d95494","name":"Speed Sensor","topic":"Speed
Sensor", "qos": "2", "datatype": "auto", "broker": "7c19841a.1ec52c", "x": 210, "y
":180,"wires":[["1644041c.69b39c"]]},
{"id":"1644041c.69b39c","type":"json","z":"34557bbc.d95494","name":"","
property": "payload", "action": "", "pretty": false, "x": 390, "y": 100, "wires":
[["7a011c5f.3874d4","d1ec4bd2.1099e8","765821bb.f3efc","431c0808.6]
5b448"]]},
{"id":"431c0808.65b448","type":"debug","z":"34557bbc.d95494","name":"
","active":true,"tosidebar":true,"console":false,"tostatus":false,"complete":
"false", "status Val": "", "status Type": "auto", "x": 390, "y": 280, "wires": []},
{"id":"7a011c5f.3874d4","type":"ui_gauge","z":"34557bbc.d95494","name
":"Speedometer", "group": "16c53fcc. 777ba", "order": 0, "width": 0, "height": 0,
"gtype":"gage", "title": "Speedometer", "label": "units", "format": "{ {value} }", "m
in":0,"max":"100","colors":
["#00b500","#e6e600","#ca3838"],"seg1":"","seg2":"","x":610,"y":120,"wire
s":[]},
{"id":"dlec4bd2.1099e8","type":"ui text input","z":"34557bbc.d95494","
name": "Speed Slider", "label": "Speed
Slider", "tooltip": "", "group": "16c53fcc. 777ba", "order": 1, "width": 0, "height":
0,"passthru":true,"mode":"text","delay":300,"topic":"","x":600,"y":200,"wir
es":[[]]},
{"id":"765821bb.f3efc","type":"ui_slider","z":"34557bbc.d95494","name":"
Speed Indicator", "label": "Speed
Indicator", "tooltip": "", "group": "16c53fcc. 777ba", "order": 2, "width": 0, "heig
ht":0,"passthru":true,"outs":"all","topic":"","min":0,"max":"100","step":1,"x":
610, "y": 280, "wires": [[]]}, {"id": "7c19841a.1ec52c", "type": mgtt-
broker", "z": "", "name": "Speed
Sensor", "broker": "broker.mgttdashboard.com", "port": "1883", "clientid": "S
peed
Sensor", "usetls": false, "compatmode": false, "keepalive": "60", "cleansession":
true, "birthTopic": "", "birthQos": "O", "birthPayload": "", "closeTopic": "", "closeQ
os":"O","closePayload":"","willTopic":"","willQos":"O","willPayload":""},
{"id":"16c53fcc.777ba","type":"ui_group","z":"","name":"Bike","tab":"d4af2
056.81534","order":2,"disp":true,"width":"6","collapse":false},
{"id":"d4af2056.81534","type":"ui tab","z":"","name":"Bike
UI", "icon": "dashboard", "disabled": false, "hidden": false}]
```

(2.12) HiveMQ Dashboard Portal

(2.13) Output

23/10/2020, 13:42:11 node: 431c0808.65b448 Speed Sensor : msg.payload : number 80

3) Implementing a IoT based smart Fridge

(3.1) Inject Nodes

(3.2) Debug Node

(3.3) MQTT Out Node

(3.4) MQTT Server Configuration

(3.5) Complete Circuit Flow

(3.6) Complete Circuit Flow Code

```
[{"id":"5bb40bc2.5f7b94","type":"tab","label":"Refrigerator
","disabled":false,"info":""},
{"id":"51f9f6c8.c31fb8","type":"inject","z":"5bb40bc2.5f7b94","name":"Veg
etable Controller","props":[{"p":"payload"},
{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDelay":0.1,
"topic": "Fridge Sensor", "payload": "Tomatoes not
available", "payloadType": "str", "x": 160, "y": 100, "wires":
[["c52fe37.0882b2","a36731d5.8a1ba"]]},
 \\ \{"id":"98d45325.9a81e","type":"inject","z":"5bb40bc2.5f7b94","name":"Minject","perconstruction (a.g., a.g., baseline and the construction (b. 1) and the construction
lk Controller","props":[{"p":"payload"},
{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDelay":0.1,
"topic": "Fridge Sensor", "payload": "Three Packets of milk
available", "payloadType": "str", "x": 160, "y": 160, "wires":
[["c52fe37.0882b2","a36731d5.8a1ba"]]},
{"id":"af6fb88.ab7eb48","type":"inject","z":"5bb40bc2.5f7b94","name":"Eg
g Controller", "props": [{"p": "payload"},
{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":true,"onceDelay":"0.2
","topic":"Fridge
Sensor", "payload": "12", "payloadType": "num", "x": 180, "y": 220, "wires":
[["c52fe37.0882b2","a36731d5.8a1ba"]]},
{"id":"a36731d5.8a1ba","type":"debug","z":"5bb40bc2.5f7b94","name":"","
active":true, "tosidebar":true, "console":false, "tostatus":false, "complete": "fa
lse", "status Val": "", "status Type": "auto", "x": 490, "y": 100, "wires": []},
{"id":"c52fe37.0882b2","type":"mqtt
out","z":"5bb40bc2.5f7b94","name":"","topic":"Fridge
Sensor", "qos": "", "retain": "", "broker": "7d9cbc85.412e24", "x": 500, "y": 200, "
wires":[]},{"id":"7d9cbc85.412e24","type":"mqtt-
broker", "z": "", "name": "Refrigerator", "broker": "broker.mqttdashboard.com
","port":"1883","clientid":"","usetls":false,"compatmode":false,"keepalive":"
```

60","cleansession":true,"birthTopic":"","birthQos":"0","birthPayload":"","closeTopic":"","closeQos":"0","closePayload":"","willTopic":"","willQos":"0","willPayload":""}]

(3.7) HiveMQ Window

(3.8) Output

Result:

Thus, with the help of Node-RED we have implemented the MQTT protocol utilising HiveMQ, and have also visualised outputs using Node Red dashboard and have thus applied it in a practical use case scenario.