Analiza Dużych Zbiorów Danych

Lista 3 - Błąd predykcji i kryteria informacyjne

Dla n=1000 wygeneruj macierz planu $X_{n\times 950}$ tak, że jej elementy są niezależnymi zmiennymi losowymi z rozkładu normalnego $N(0, \sigma = \frac{1}{\sqrt{n}})$. Następnie wygeneruj wektor zmiennej odpowiedzi zgodnie modelu

$$Y = X\beta + \varepsilon,$$

gdzie $\beta = (\beta_1, \dots, \beta_{950})^T$, $\beta_1 = \dots = \beta_{20} = 3.5$, $\beta_i = 0, i > 20$, $\varepsilon \sim N(0, I)$. Wykonaj następujące analizy w oparciu o modele wykorzystujące

- i) pierwszych 10 zmiennych;
- ii) pierwszych 20 zmiennych;
- iii) pierwszych 30 zmiennych;
- iv) pierwszych 50 zmiennych;
- v) pierwszych 100 zmiennych;
- vi) pierwszych 500 zmiennych;
- vii) wszystkie 950 zmiennych.
 - 1. a) Dla każdego z powyższych modeli
 - Wyestymuj β metodą najmniejszych kwadratów i wyznacz RSS = $||\hat{Y} Y||^2$ oraz wylicz oczekiwaną wartość błędu predykcji

$$PE = \mathbf{E}_{\varepsilon^*} ||Y^* - \hat{Y}||^2, \quad Y^* = X\beta + \varepsilon^*,$$

gdzie $\varepsilon^* \sim N(0, I)$ jest wektorem losowym niezależnym od próby treningowej.

- Użyj RSS do estymacji PE wykorzystując prawdziwą wartość i zastępując ją jej klasycznym nieobciążonym estymatorem.
- Wyestymuj PE stosując walidację krzyżową typu "leave-one-out".
- b) Wybierz optymalny model stosując powyższe estymatory PE.
- c) Powtórz powyższe analizy 100 razy i dla każdego z powyższych modeli porównaj wykresy pudełkowe wartości PE – PE dla wyżej wymienionych estymatorów PE.

1

lab 3 2024

- 2. Zastosuj AIC, BIC, RIC, mBIC i mBIC2 (można użyć biblioteki bigstep w R) do identyfikacji istotnych zmiennych w bazach danych składających się z
 - i) pierwszych 50 zmiennych;
 - ii) pierwszych 100 zmiennych;
 - iii) pierwszych 200 zmiennych;
 - iv) pierwszych 500 zmiennych;
 - v) wszystkich 950 zmiennych.
 - a) Podaj liczbę prawdziwych i fałszywych odkryć i kwadratowy błąd estymacji wektora $EY = X\beta$:

$$SE = ||X\hat{\beta} - X\beta||^2.$$

- b) Powtórz punkt a) 100 razy i podaj wyestymowaną moc, FDR i średni błąd kwadratowy estymacji $EY = X\beta$ dla wszystkich powyższych kryteriów. Omów uzyskane wyniki względem liczby predyktorów.
- 3. Powtórz zadania 1 i 2 w sytuacji gdy n=5000. Omów uzyskane wyniki względem liczby obserwacji.