WSTEP - INFORMATYKA INSPIROWANA BIOLOGIĄ

Jacek Kluska

Politechnika Rzeszowska

Plan

- Mózg a komputer
- Od neurofizjologii do sztucznych sieci neuronowych
- Rozwiązanie problemu przez programowanie czy przez uczenie ?
- Ewolucja naturalna i sztuczna
- 3 Sztuczna ewolucja: odkrywanie praw fizyki na podstawie eksperymentów
- Sztuczna ewolucja w odkrywaniu reguł dla potrzeb medycznych
- Systemy złożone: inteligencja roju, samoorganizacja
- Systemy złożone: inteligencja roju (mrówki, pszczoły, ...)
- Systemy złożone: przykład wykorzystania inteligencji mrówek
- Podsumowanie zastosowania sztucznej inteligencji i eksploracji danych
- Czy wszystkie algorytmy muszą wynikać z naśladowania natury ?

Mózg a komputer

Komputer

- Logika dwuwartościowa
- Sprzęt cyfrowy
- Programy
- Praca szeregowa

Mózg

- Logika "miękka" ?
- Sieci neuronowe
- Uczenie
- Praca równoległa

Mózg a komputer = c.d.

Superkomputer (2010)

- Tianhe-1A (Droga Mleczna), Chiny
- 7 168 μP graficz. Nvidia, 14 336 proc. Intel. 4.04 MW, 88 mln USD.
- 2.507 * 10¹⁵ operacji zmiennoprzecinkowych/s.

Mózg

- Kora mózgowa (3 mm),
 0.01 mm..1 m, 100 000 km
 (!), 10¹⁵ synaps,
- $\tau=1..2\,\mathrm{ms}$: neurony są zadziwiająco wolne !
- Mózg: 10^{18} op/s (10 op * 10^{15} synaps * 100 Hz)

Stopień współbieżności w żywych sieciach neuronowych jest niewspółmiernie większy od stopnia współbieżności w najnowocześniejszych systemach wieloprocesorowych.

Od neurofizjologii do sztucznych sieci neuronowych

- Model; McCulloch, Pitts, 1943
- Uczenie; Hebb, 1949
- Perceptron; Rosenblatt,1958
- Adaline, MadaLine; Widrow, 1960
- "Perceptrons" ↓; Minsky, Papert, 1969
- Rozpoznawanie mowy; Grossberg, 1970
- Rozpoznawanie znaków; Fukushima, 1978
- Sprzężenia zwrotne; Hopfield, 1982
- Samoorganizacja; Kohonen (1977-1987)
- "Parallel Distributed Processing" \(\);
 Rumelhart, McClelland, 1986
- LVQ, RBF, PNN, ...

Rozwiązanie problemu przez programowanie czy przez uczenie ?

Bardzo proste zadanie

Dane (a, b, c) = (1, -9, 20) i równanie: $ax^2 + bx + c = 0$. Szukamy x_1, x_2 .

Podejście klasyczne

• Algorytm rozwiązujący problem \rightarrow program komputerowy $\Delta = b^2 - 4ac$, if $\Delta \ge 0$, then $x_1 = \ldots$, $x_2 = \ldots$, else \ldots Wynik: $x_1 = 4$, $x_2 = 5$

ANN

 Architektura sieci i sposób uczenia → uczenie: Dla wielu danych uczących: {(a, b, c), (x₁, x₂)}, zmieniaj parametry sieci neuronowej dotąd, aż sieć osiągnie błąd minimalny.

Wynik: $x_1 = 3.99$, $x_2 = 5.01$

Ewolucja naturalna i sztuczna

Ewolucja naturalna

Ch. Darwin 1859, On the Origin of Species by Means of Natural Selection.

- Selekcja naturalna podstawa ewolucji biologicznej.
- Miarą sukcesu jest dostosowanie (fitness) na poziomie osobników w populacji lub genów.
- Organizmy posiadające korzystne cechy mają większą szansę na przeżycie i rozmnażanie, co prowadzi do zwiększania częstości występowania "korzystnych" genów w populacji.

Ewolucja sztuczna

- Ewolucja populacji rozwiązań problemu poprzez:
 - selekcję,
 - krzyżowanie,
 - mutację,
 - reprodukcję.
- Strategie ewolucyjne i algorytmy genetyczne,
- Programowanie genetyczne,
- Zastosowania:
 - optymalizacja,
 - systemy decyzyjne,
 - klasyfikatory.

Sztuczna ewolucja: odkrywanie praw fizyki na podstawie eksperymentów #1

III prawo Keplera

 $T^2=c*a^3$, T - okres obiegu planety, a - maks. odległość planety od środka

masy układu Słońce-planeta, $c=(2\pi)^2$ / $(G\,(M+m))$, , G - stała grawitacji, M - masa Słońca, m - masa planety,

	Planeta	ā	$T=\overline{a}^{3/2}$	
1	Wenus	0.72	0.61	
2	Ziemia	1.00	1.00	
3	Mars	1.52	1.84	\Rightarrow
4	Jowisz	5.20	11.90	
5	Saturn	9.53	29.40	
6	Uran	19.10	83.50	

Wynik GEP

Komputer sam napisze program w języku K:

$$T^2 = c * a^3$$

Wynik: Dwa chromosomy (h = 7, t = 8):

$$(+*-Qaa+aaaaaaaa + a+a+-**aaaaaaaaa) \Leftrightarrow T = \bar{a}^{3/2}$$

Sztuczna ewolucja: odkrywanie praw fizyki na podstawie eksperymentów #2

GP: Without any prior knowledge about physics, kinematics, or geometry, we can discover Hamiltonians, Lagrangians, and other laws ...

Schmidt M., Lipson H. (2009), *Distilling Free-Form Natural Laws from Experimental Data*, Science, Vol. 324, No. 5923, pp. 81-85.

GP: Regresja symboliczna

Systemy złożone: inteligencja roju, samoorganizacja

- Systemy złożone trudno opisywalne metodami klasycznej matematyki.
 Niektóre cechy:
 - emergencja; zachowanie całości nie wynika wprost z zachowania jego części składowych,
 - trudno ustalić granice systemu,
 - zachowania mogą być chaotyczne,
 - mają dynamikę i pamięć (historia zachowań decyduje o obecnym i przyszym zachowaniu),
 - są to systemy otwarte (nie posiadają równowagi energetycznej lecz mogą być stabilne),
 - komponenty systemu złożonego także mogą być systemami złożonymi,
 - związki między elementami składowymi mogą być nieliniowe i niestacjonarne.
- Inteligencja roju: zachowania emergentne; działania niezależne i równoległe.
- Samoorganizacja: pojedynczy osobnik nie ma inteligencji lecz czerpie informacje na temat otoczenia i swojej roli nie od zwierzchnika, lecz z niezliczonych interakcji z innymi osobnikami. Działania jednostki przynoszą korzyści całej społeczności.

Systemy złożone: inteligencja roju (mrówki, pszczoły, ...)

 $\label{eq:definition} \textbf{Z} \\ \textbf{r} \\ \textbf{o} \\ \textbf{d} \\ \textbf{o} \\ \textbf{http://www.pestcontrolrx.com, http://www.birdminds.com/Starling.php, http://www.newsweek.pl/newsweek.$

Mrówki

Szybko odnajdują najkrotszą drogę do pożywienia ("losowy" wywiad robotnic, komunikacja za pomocą stopniowo wyparowujących feromonów, samowzmacniający się szlak optymalny).

Pszczoły

Bez szefa kolektywnie decydują gdzie założyć nowy ul (wywiad robotnic, taniec, kompromis między decyzją trafną i szybką).

Systemy złożone: przykład wykorzystania inteligencji mrówek

TSP problem (M. Dorigo)

- "AntNet" usprawnia funkcjonowanie ruterów w sieci Internet: pakiet informacji jest wirtualną mrówką odnajdującą najkrótszą drogę do celu.
- American Air Liquide (USA): 100 zakładów produkcyjnych i 6 000 odbiorców gazy dla medycyny i przemysłu. System informatyczny analizuje komunikaty od ciężarówek (mrówek). Wirtualne mrówki w centralnym komputerze kierują całą siecią transportową. Odszukanie właściwej drogi zajmuje 1 sek dla 2.5 tryliona kombinacji ("normalny" algorytm dla PC przy 1 mln dróg/sek, potrzebowałby 77 140 lat!). Podobne systemy: sieć supermarketów Migros (Szwajcaria), producent makaronów Barilla (Włochy).
- Usprawnienie nawiązywania połączeń między centralami telefonicznymi; oprogramowanie zostawia wirtualne feromony na każdej z central, połączenia unikają central obleganych (British Telecom, Hewlett-Packard, Bristol, GB).

Podsumowanie - zastosowania sztucznej inteligencji i eksploracji danych

- Ilość danych na świecie rośnie zaskakująco (numeryczne, tekstowe, dźwiękowe, obrazowe, multimedialne). Z danych można odkrywać wiedzę.
- Warto tworzyć oprogramowanie oparte na obserwacjach zachowania organizmów żywych:
 - sztuczne sieci neuronowe (bez sprzężeń zwrotnych, ze sprzężeniami zwrotnymi, uczone pod nadzorem lub bez nadzoru),
 - algorytmy ewolucyjne (programowanie genetyczne, programowanie ekspresji genów),
 - algorytmy oparte na zachowaniu roju (mrówek, pszczół, ptaków, ryb, ...),
 - systemy wieloagentowe.
- Stworzone oprogramowanie warto wykorzystać do rozwiązywania problemów:
 - optymalizacji wielokryterialnej,
 - klasyfikacji i grupowania,
 - regresji klasycznej i regresji symbolicznej.
- Stworzone przez komputer **modele** mogą mieć postać: *czarnych, szarych* lub *białych skrzynek* (sprzęt cyfrowy, programy komputerowe, drzewa decyzyjne, wyrażenia matematyczne, ...).

Podsumowanie - zastosowania sztucznej inteligencji i eksploracji danych - c.d.

- Rozpoznawanie **ludzi** na podstawie ich cech fizycznych (biometria): twarz, linie papilarne, tęczówka oka, kształt dłoni, głos, . . .
- Rozpoznawanie obrazów, pisma, mowy, stanu emocjonalnego człowieka, woli człowieka niepełnosprawnego, ...
- Wykrywanie niebezpiecznych ładunków w prześwietlonym bagażu, odróżnianie "swój-przeciwnik" w akcjach bojowych.
- Systemy wspomagania decyzji: diagnostyka medyczna (wykrywanie ryzyka pooperacyjnego, przewidywanie wystąpienia choroby we wczesnym stadium).
- Diagnostyka techniczna i sterowanie inteligentne: automatyzacja zrobotyzowanych gniazd i całych linii produkcyjnych; autonomiczne roboty latające, naziemne i podwodne.
- Wspomaganie **decyzji menedżerskich** (prognozowanie decyzji kupna lub sprzedaży, ocena ryzyka, wiarygodności kredytobiorców, ...).
- Identyfikacja zagrożeń ze strony terrorystów, żywiołów natury.

Podsumowanie - zastosowania sztucznej inteligencji i eksploracji danych - c.d.

- **Systemy biologiczne** stanowią źródło inspiracji dla **informatyków**, inżynierów, lekarzy, żołnierzy, biznesmenów, ...
- Możemy mieć ogromne korzyści wynikające z obserwacji natury oraz zastosowaniu algorytmów inspirowanych biologią w oprogramowaniu, czasami nawet sprzętu, zwłaszcza przy rozwiązywaniu trudnych problemów z zakresu:
 - optymalizacji,
 - rozpoznawania (identyfikacji),
 - diagnostyki i prognozowania,
 - poszukiwania "dobrych" modeli realnego świata, w tym modeli systemów złożonych, modeli ewolucji i rozwoju.

Czy wszystkie algorytmy muszą wynikać z naśladowania natury ?

Nie muszą

(...) SVM

S. Ramaswamy, P. Tamayo, R. Rifkin, at al. (2001), "Multiclass cancer diagnosis using tumor gene expression signatures", PNAS, vol. 98 no. 26, 15149-15154.

