-----파이썬 자료구조

CHAPTER

10장. 학습 목표

- 그래프의 개념을 이해한다.
- 그래프를 표현하는 방법을 이해한다.
- 파이썬의 내장 자료형을 이용해 그래프를 표현하는 방법들을 이해 한다.
- 그래프의 탐색 방법을 이해한다.
- 그래프 탐색을 이용한 문제해결 능력을 배양한다.
- 다양한 문제에 그래프를 활용할 수 있는 능력을 기른다.

10.1 그래프란?

- 그래프의 역사
- 그래프의 정의,
- 그래프의 종류,
- 그래프 용어
- 그래프 ADT

그래프란?

- 연결되어 있는 객체 간의 관계를 표현하는 자료구조
- 가장 일반적인 자료구조 형태

항공 노선도

그래프 역사

- 오일러 문제 (1800년대)
 - 다리를 한번만 건너서 처음 출발했던 장소로 돌아오는 문제
 - 위치: 정점(node), 다리: 간선(edge)
 - 오일러 정리
 - 모든 정점에 연결된 간선의 수가 짝수이면 오일러 경로 존재함
 - 따라서 그래프 (b)에는 오일러 경로가 존재하지 않음

그래프 정의

- 그래프 G는 (V, E)로 표시
 - 정점(vertices) 또는 노드(node)
 - 간선(edge) 또는 링크(link): 정점들 간의 관계 의미

• 다른 그래프? 같은 그래프?

그래프의 종류

- 간선의 종류에 따라
 - 무방향 그래프(undirected graph)

•
$$(A, B) = (B, A)$$

$$V(G1) = \{A, B, C, D\}$$

$$E(G1) = \{(A, B), (A, C), (A, D), (B, C), (C, D)\}$$

G1

방향 그래프(directed graph)

•
$$\langle A, B \rangle \neq \langle B, A \rangle$$

$$V(G3) = \{A, B, C\},$$

$$V(G3) = \{A, B, C\}, E(G3) = \{\langle A, B \rangle, \langle B, A \rangle, \langle B, C \rangle\}$$

G3

그래프의 종류

- 가중치 그래프, 네트워크
 - 간선에 비용이나 가중치가 할당된그래프

• 부분 그래프

- 인접 정점
 - 간선에 의해 직접 연결된 정점
- 차수(degree)
 - 정점에 연결된 간선의 수
 - 무방향 그래프
 - 차수의 합은 간선 수의 2배
 - 방향 그래프
 - 진입차수, 진출차수
 - 모든 진입(진출) 차수의 합은 간선의 수

G3

- 그래프의 경로(path)
 - 무방향 그래프의 정점 s로부터 정점 e까지의 경로
 - 정점의 나열 s, v1, v2, ..., vk, e
 - 반드시 간선 (s, v1), (v1, v2), ..., (vk, e) 존재해야 함
 - 방향 그래프의 정점 s로부터 정점 e까지의 경로
 - 정점의 나열 s, v1, v2, ..., vk, e
 - 반드시 간선 <s, v1>, <v1, v2>, ... ,<vk, e> 존재해야 함
- 경로의 길이(length)
 - 경로를 구성하는데 사용된 간선의 수

- 단순 경로(simple path)
 - 경로 중에서 반복되는 간선이 없는 경로
 - B,A,C,D는 단순 경로
 - B,A,C,A는 단순 경로 아님

- 사이클(cycle)
 - 시작 정점과 종료 정점이 동일한 경로
 - B,A,C,B는 사이클

- 연결 그래프(connected graph)
 - 모든 정점들 사이에 경로가 존재하는 그래프
- 트리(tree)
 - 사이클을 가지지 않는 연결 그래프
- 완전 그래프(complete graph)
 - 모든 정점 간에 간선이 존재하는 그래프
 - n개의 정점을 가진 무방향 완전그래프의 간선의 수 = n×(n-1)/2
 - n=4, 간선의 수 = (4×3)/2 = 6

그래프 ADT

정의 10.1 Graph ADT

데이터: 정점과 간선의 집합

연산

- isEmpty(): 그래프가 공백 상태인지 확인한다.
- countVertex(): 정점의 수를 반환한다.
- countEdge(): 간선의 수를 반환한다.
- getEdge(u,v): 정점 u에서 정점 v로 연결된 간선을 반환한다.
- degree(v): 정점 v의 차수를 반환한다.
- adjacent(v): 정점 v에 인접한 모든 정점의 집합을 반환한다.
- insertVertex(v): 그래프에 정점 v를 삽입한다.
- insertEdge(u,v): 그래프에 간선 (u,v)를 삽입한다.
- deleteVertex(v): 그래프의 정점 v를 삭제한다.
- deleteEdge(u,v): 그래프의 간선 (u,v)를 삭제한다.

10.2 그래프의 표현

- 인접 행렬을 이용한 표현
- 인접 리스트를 이용한 표현
- 인접 행렬과 인접 리스트의 복잡도 비교
- 파이썬을 이용한 그래프의 인접 행렬 표현
- 파이썬을 이용한 그래프의 인접 리스트 표현

인접 행렬을 이용한 표현

- 인접 행렬 M을 이용
- 간선 (i, j)가 있으면: M[i][j] = 1, 또는 true
- 그렇지 않으면: M[i][j] = 0, 또는 false
- 무방향 그래프: 인접 행렬이 대칭

인접 리스트를 이용한 표현

• 무방향 그래프

인접 리스트 표현

• 방향 그래프

인접 행렬과 인접 리스트의 복잡도 비교

인접 행렬	인접 리스트
간선의 수에 무관하게 항상 n^2 개의 메모리 공간이 필요하다. 따라서 정점에 비해 간선의 수가 매우 많은 조밀 그래프(dense graph)에서 효과적이다.	n개의 연결 리스트가 필요하고, $2e$ 개의 노드가 필요하다. 다. 즉 $n+2e$ 개의 메모리 공간이 필요하다. 따라서 정점에 비해 간선의 개수가 매우 적은 희소 그래프 (sparse graph)에서 효과적이다.
u와 v를 연결하는 간선의 유무는 $M[u][v]$ 를 조사하면 바로 알 수 있다. 따라서 $getEdge(u,v)$ 의 시간 복잡 도는 $O(1)$ 이다.	$getEdge(u,v)$ 연산은 정점 u 의 연결 리스트 전체를 조사해야 한다. 정점 u 의 차수를 d_u 라고 한다면 이 연산의 시간 복잡도는 $O(d_u)$ 이다.
정점의 차수를 구하는 $degree(v)$ 는 정점 v 에 해당하는 행을 조사하면 되므로 $O(n)$ 이다. 즉, 정점 v 에 대한 차수는 다음과 같이 계산된다.	정점 v의 차수 $degree(v)$ 는 v의 연결 리스트의 길이를 반환하면 된다. 따라서 시간 복잡도는 $O(d_v)$ 이다.
$degree(v) = \sum_{k=0}^{n-1} M[v][k]$	
정점 v의 인접 정점을 구하는 $adjacent(v)$ 연산은 해당 행의 모든 요소를 검사하면 되므로 $O(n)$ 의 시간이 요구된다.	정점 v에 간선으로 직접 연결된 모든 정점을 구하는 $adjacent(v)$ 연산도 해당 연결리스트의 모든 요소를 방문해야 되므로 $O(d_v)$ 이다.
그래프에 존재하는 모든 간선의 수를 알아내려면 인접 행렬 전체를 조사해야 하므로 n^2 번의 조사가 필요하 다. 따라서 $O(n^2)$ 의 시간이 요구된다.	전체 간선의 수를 알아내려면 헤더 노드를 포함하여 모든 인접 리스트를 조사해야 하므로 $O(n+e)$ 의 연산이 요구된다.

파이썬을 이용한 인접 행렬 표현

무방향 그래프	인접 행렬 표현
	vertex = ['A','B','C','D','E','F','G','H']
A C E G B D F H	adjMat = [[0, 1, 1, 0, 0, 0, 0, 0],
	[1, 0, 0, 1, 0, 0, 0, 0],
	[1, 0, 0, 1, 1, 0, 0, 0],
	[0, 1, 1, 0, 0, 1, 0, 0],
	[0, 0, 1, 0, 0, 0, 1, 1],
	[0, 0, 0, 1, 0, 0, 0, 0],
	[0, 0, 0, 0, 1, 0, 0, 1],
	[0, 0, 0, 0, 1, 0, 1, 0]]

가중치 그래프	인접 행렬 표현				
	vertex = ['A',	'B',	'C',	'D',	'E']
A 13 B 18 C D 34	adjMat = [[0,	13,	10,	None,	None],
	[13,	0,	None,	25,	18],
	[10,	None,	0,	27,	None],
	[None,	25,	27,	0,	34],
	[None,	18,	None,	34,	0]]

파이썬을 이용한 인접 리스트 표현

- 다양한 방법으로 인접 리스트를 표현할 수 있음
- 방법1: 인접 정점 인덱스의 리스트

그래프	인접 정	점 인덱스의 리스트
	vertex = ['A','B','C','D','E','F','G','H']	
	adjList = [[1, 2],	# 'A'의 인접정점 인덱스
	[0, 3],	# 'B'의 인접정점 인덱스
$\begin{array}{c c} A & \hline \\ C & \hline \\ E & \hline \\ G & \\ \end{array}$	[0, 3, 4],	# 'C'
	[1, 2, 5],	# 'D'
$B \longrightarrow D \longrightarrow F \longrightarrow H$	[2, 6, 7],	# 'E'
	[3],	# 'F'
	[4, 7],	# 'G'
	[4,6]]	# 'H'

파이썬을 이용한 인접 리스트 표현

• 방법4: 파이썬의 딕셔너리와 인접 정점 집합 이용

그래프	딕셔너리와 집합을 이용한 표현
A C E G B D F H	graph = { 'A': set(['B','C']), # 또는 'A': {'B', 'C'} 'B': set(['A','D']), 'C': set(['A','D','E']), 'D': set(['B','C','F']), 'E': set(['C','G','H']), 'F': set(['D']), 'G': set(['E','H']), 'H': set(['E','G']) }

- graph['C']: 정점 'C'의 인접 정점 집합 { 'A', 'D', 'E' }
- graph['C']의 모든 원소 출력 코드

```
for v in graph['C'] : # 정점 C의 인접 정점 집합의 모든 원소에 대해 print(v) # 그 원소를 화면에 출력
```

10.3 그래프의 탐색

- 그래프의 탐색이란?
- 깊이 우선 탐색
 - 인접 리스트 구현
- 너비 우선 탐색
 - 인접 리스트 구현
- 탐색 알고리즘 성능

그래프의 탐색이란?

- 가장 기본적인 연산
 - 시작 정점부터 차례대로 모든 정점들을 한 번씩 방문
 - 많은 문제들이 단순히 탐색만으로 해결됨
 - 도로망 예: 특정 도시에서 다른 도시로 갈 수 있는지 여부
 - 전자회로 예: 특정 단자와 다른 단자의 연결 여부

• 방법: 깊이 우선 탐색 (DFS) / 너비 우선 탐색 (BFS)

깊이 우선 탐색 알고리즘

- DFS: depth-first search
 - 한 방향으로 끝까지 가다가 더 이상 갈 수 없게 되면 가장 가까운 갈림길로 돌아와서 다른 방향으로 다시 탐색 진행
 - 되돌아가기 위해서는 스택 필요
 - 순환함수 호출로 묵시적인 스택 이용

```
def dfs(graph, start, visited = set() ): # 처음 호출할 때 visited 공집합
if start not in visited : # start가 방문하지 않은 정점이면
visited.add(start) # start를 방문한 노드 집합에 추가
print(start, end=' ') # start를 방문했다고 출력함
nbr = graph[start] - visited # nbr: 차집합 연산 이용
for v in nbr: # v ∈ {인접정점} - {방문정점}
dfs(graph, v, visited) # v에 대해 dfs를 순환적으로 호출
```

깊이우선탐색 예

(a) A에서 시작: A→B

(b) B→D(A는 방문했음)

(c) D→C(B는 방문했음)

(d) C→E(A, D는 방문했음)

(e) E→G(C는 방문했음)

(f) G→H(E는 방문했음)

(g) H에서는 모두 방문했음 G, E, C, D순으로 되돌아 감. D에서는 가지 않은 F가 있음.

(h) D→F

(i) F에서도 모두 방문했음 D, B, A순으로 되돌아 감 탐색 완료 방문 순서: ABDCEGHF

너비 우선 탐색 알고리즘

- BFS: breadth-first search
 - 시작 정점으로부터 가까운 정점을 먼저 방문하고 멀리 떨어져 있는 정점을 나중에 방문하는 순회 방법
 - 큐를 사용하여 구현됨

```
def bfs(graph, start):
                                        # 맨 처음에는 start만 방문한 정점임
   visited = set([start])
   queue = collections.deque([start])
                                        # 컬렉션의 덱 객체 생성(큐로 사용)
                                        # 공백이 아닐 때 까지
   while queue:
                                        # 큐에서 하나의 정점 vertex를 빼냄
     vertex = queue.popleft()
                                        # vertex는 방문했음을 출력
     print(vertex, end=' ')
     nbr = graph[vertex] - visited
                                        # nbr: 차집합 연산 이용
     for v in nbr:
                                        # v ∈ {인접정점} - {방문정점}
                                        # 이제 v는 방문했음
        visited.add(v)
        queue.append(v)
                                        # v를 큐에 삽입
```

너비우선탐색 예

(a) A에서 시작 큐 내용: A

(b) A→B, C 큐 내용: BC

(c) B→D

큐 내용: CD

(d) C→E 큐 내용: DE

(e) D→F 큐 내용: EF B D F H

(f) E→G, H

큐 내용: FGH

(g) F에서는 모두 방문했음 큐 내용: GH

(h) G에서는 모두 방문했음 큐 내용: H

(i) H에서도 모두 방문했음큐 공백상태 → 탐색 완료방문 순서: ABCDEFGH

탐색 알고리즘 성능

- 깊이 우선 탐색 / 너비 우선 탐색
 - 인접 행렬 표현: $O(n^2)$
 - 인접 리스트로 표현: O(n+e)
- 완전 그래프와 같은 조밀 그래프>인접 행렬이 유리
- 희소 그래프 > 인접리스트가 유리

10.4 연결 성분 검사

- 연결 성분이란?
- 연결 성분 검사 알고리즘
 - 인접 리스트 구현

연결 성분이란?

- 최대로 연결된 부분 그래프들을 구함
 - DFS 또는 BFS를 반복적으로 이용

연결 성분 검사 알고리즘


```
def find connected component(graph) :
   visited = set()
                                               # 이미 방문한 정점 집합
   colorList = []
                                               # 부분 그래프별 정점 리스트
  for vtx in graph:
                                               # 그래프의 모든 정점들에 대해
      if vtx not in visited:
                                               # 방문하지 않은 정점이 있으면
        color = dfs_cc(graph, [], vtx, visited) # 새로운 컬러 리스트
        colorList.append( color )
                                               # 컬러 리스트 추가
   print("그래프 연결성분 개수 = %d " % len(colorList))
   print(colorList)
                                               # 정점 리스트들을 출력
def dfs cc(graph, color, vertex, visited):
   if vertex not in visited:
                                           # 아직 칠해지지 않은 정점에 대해
     visited.add(vertex)
                                           # 이제 방문했음
     color.append(vertex)
                                           # 같은 색의 정점 리스트에 추가
     nbr = graph[vertex] - visited
                                           # nbr: 차집합 연산 이용
     for v in nbr:
                                           # v ∈ {인접정점} - {방문정점}
        dfs cc(graph, color, v, visited)
                                           # 순환 호출
   return color
                                           # 같은 색의 정점 리스트 반화
```

자근.

테스트 프로그램

10.5 신장 트리

- 신장 트리란?
- 신장 트리 알고리즘
 - 인접 리스트 구현

신장 트리란?

- 그래프 내의 모든 정점을 포함하는 트리
 - 사이클을 포함하면 안됨, 간선의 수 = n-1

신장 트리 알고리즘


```
def bfsST(graph, start):
   visited = set([start])
                                            # 맨 처음에는 start만 방문한 정점임
   queue = collections.deque([start])
                                            # 파이썬 컬렉션의 덱 생성(큐로 사용)
                                            # 공백이 아닐 때 까지
   while queue:
                                            # 큐에서 하나의 정점 v를 빼냄
       v = queue.popleft()
                                            # nbr = {v의 인접정점} - {방문정점}
       nbr = graph[v] - visited
       for u in nbr:
                                            # 갈 수 있는 모든 인접 정점에 대해
          print("(", v, ",", u, ") ", end="")
                                            # (v,u)간선 추가
                                            # 이제 나는 방문했음
          visited.add(u)
          queue.append(u)
                                            # 내를 큐에 삽입
```

10.6 위상 정렬

- 위상 정렬이란?
- 신장 트리 알고리즘
 - 인접 행렬 구현

위상 정렬이란?

방향 그래프에 대해 정점들의 선행 순서를 위배하지 않으면서 모든 정점을 나열하는 것

과목번호	과목명	선수과목
А	컴퓨터개론	없음
В	이산수학	없음
С	자료구조	А
D	알고리즘	A, B, C
Е	운영체제	В
F	인공지능	C, D, E

교과목의 선후수 관계 표

방향 그래프로 표시한 선후수 관계

위상 정렬 과정

위상 정렬 알고리즘


```
def topological sort AM(vertex, graph) :
   n = len(vertex)
   inDeg = [0] * n
                            # 정점의 진입차수 저장
   for i in range(n) :
      for j in range(n) :
         if graph[i][j] > 0:
           inDeg[j] += 1
                        # 진입차수를 1 증가시킴
   vlist = []
                                # 진입차수가 0인 정점 리스트를 만듦
   for i in range(n) :
      if inDeg[i]==0 :
        vlist.append(i)
   while len(vlist) > 0 :
                     # 리스트가 공백이 아닐 때 까지
      v = vlist.pop()
                         # 진입차수가 0인 정점을 하나 꺼냄
      print(vertex[v], end=' ') # 화면 출력
      for u in range(n):
         if v = u and graph[v][u] > 0:
            inDeg[u] -= 1 # 연결된 정점의 진입차수 감소
            if inDeg[u] == 0: # 진입차수가 0이면
              vlist.append(u) # vlist에 추가
```

테스트 프로그램

topological_sort:
BEACDF

10장 연습문제, 실습문제

감사합니다!