CSCI 3100 Software Engineering

Assignment 3

Jonathan Lam Pui Hong (1155093597)

Question 1

Please refer to Fig.1.1 and 1.2 in the appendix. A possible firing sequence for Q1.2 is

```
Patient1: P01 > P02 > P03 > P09 > P12 >
                                               > P13 > P14 > P08
Patient2: P01 > P02 > P03 > P04 > P05 > P06 > P07 > P08
Patient3: P01
                              > P02 > P03 > P04 > P05 > P06 > P07 > P08
Patient4: P01
                              > P02 > P03 >
                                                     > P09 > P10 > P11 > P08
Director: 01 >
                        > 00
                                    > 01 > 00
                                                     > 01 > 00 > 01
                        > 01
Doctor: 02 >
                                    > 00
                                               > 02
                                                           > 01 > 02
Nurse:
         02 > 00
                        > 02 > 00 >
                                         > 01 > 00 > 01 > 02 > 01 > 02
```

Question 2

Please refer to Fig.2.1, 2.2, and 2.3 in the appendix.

Question 3

Please refer to Fig.3 in the appendix. There are following assumptions:

- Clients' contact are assumed to be able to repeat, i.e. client can only have one contact, but contact can be referred by multiple clients.
- A branch's assets are those with relationship with branch, similar to the relationship between client and saving accounts. In other words, "assets" do not exist as an attribute of the branch.

Question 4.1

There are following assumptions:

- A statement is TRUE if and only if the number is a positive (non-zero and non-negative) integer.

In the tables provided, the leftmost 5 columns are the variables c, x, y, i, j in valid_sequence(); separated by a blank column, the remaining variables are those in valid_layers(). c[i] replaces c_i in the specification to denote the ith character in sequence c, where index i starts from 1. Elipses (...) are used to denote those neglected runs when 1) for all fails with one exception, denoted in red or 2) exists succeeds with one success, denoted in green. Light grey are used to denote those irrelevant information; in 4.1e onwards, some of these are omitted for clarity.

Logic Specification

```
valid_layer(i, j, m, n) =
                                                    valid_sequence(m, n) =
                                                    (
(
    j = i and
                                                        m = n and
                                                        c[m] = "B"
    c[i] = "N"
) or
                                                    ) or
                                                    (
    n - m + 1 = 2 (j - i + 1) and
                                                        c[m] = "N" and
    j != i and
                                                        exists d implies (
                                                             d >= 3 and
    for all x (
                                                             for all c (3 <= c <= d) implies (</pre>
        m \le x \le n and
        {\it exists} t
                                                                 exists x,y,i,j (
        implies (x - m = 3t - 1)
                                                                     y-x+1 = 2^(c-3) \times 3 and
    ) implies c[x] = "S"
                                                                     j-i+1 = 2^{(c-2)} \times 3 and
    and
                                                                     j \le n and
    for all y (
                                                                     i = y + 1
        i \le y \le j and
                                                                 )implies valid_layer(x,y,i,j)
        c[y] != "S"
                                                            )
                                                        )
    ) implies (
            c[y] = "B" and
            for all w (
                 2(y-i) \le w \le 3(y-i)-1
            ) implies c[m+w] = "B"
        ) or
            c[y] = "N" and
            for all k (
                 2(y-i) \le k \le 3(y-i)-1
             ) implies c[m+3k] = "N"
        )
    )
)
```

- a. **FALSE.** There does not exists a d in which for all c there exists a pair $\{x, y, i, j\}$ where all of which are non-negative integer.
- b. **FALSE.** There does not exists a d in which for all c there exists a pair $\{x, y, i, j\}$ that returns true in valid_layer().

														w	m+w	c[m+w]
С	х	У	i	j	n-m+1	j-i+1	х	t	c[x]	У	c[y]	2(y-i)	3(y-i)-1	k	m+3k	c[m+3k
3	2	4	5	10	6	6	10	2	S							
	2	4	5	10			9	1.7								
	2	4	5	10			8	1.3								
	2	4	5	10			7	1	S							
	2	4	5	10			6	0.7								
	2	4	5	10			5	0.3								
	2	4	5	10						4	S					
	2	4	5	10						3	N	2	2	2	11	
	2	4	5	10						2	N					
	1	3	4	9	6	6	9	2	В							
	1	3	4	9			8	1.7								
	1	3	4	9			7	1.3								
	1	3	4	9			6	1	N							
	1	3	4	9			5	0.7								
	1	3	4	9			4	0.3								

c. **TRUE.** There exists a d (d = 3) in which for all c (c in [3, 3]) there exists a pair $\{x = 14, y = 16, i = 17, j = 22\}$ that returns true in valid_layer().

														w	m+w	c[m+w]
С	х	У	i	j	n-m+1	j-i+1	х	t	c[x]	У	c[y]	2(y-i)	3(y-i)-1	k	m+3k	c[m+3k]
3	17	19	20	25	6	6	25	2	S							
	17	19	20	25			24	1.7								
	17	19	20	25			23	1.3								
	17	19	20	25			22	1	S							
	17	19	20	25			21	0.7								
	17	19	20	25			20	0.3								
	17	19	20	25						19	S					
	17	19	20	25						18	N	2	2	2	26	
	17	19	20	25						17	N					
	16	18	19	24	6	6	24	2	N							
	16	18	19	24			23	1.7								
	16	18	19	24			22	1.3								
	16	18	19	24			21	1								
	16	18	19	24			20	0.7								
	16	18	19	24			19	0.3								
	15	17	18	23	6	6	23	2	N							
	15	17	18	23			22	1.7								
	15	17	18	23			21	1.3								
	15	17	18	23			20	1								
	15	17	18	23			19	0.7								
	15	17	18	23			18	0.3								
	14	16	17	22	6	6	22	2	S							
	14	16	17	22			21	1.7								
	14	16	17	22			20	1.3								
	14	16	17	22			19	1	S							
	14	16	17	22			18	0.7								
	14	16	17	22			17	0.3								
	14	16	17	22						16	S					
	14	16	17	22						15	N	2	2	2	23	N
	14	16	17	22						14	N	0	-1	TRUE		

1d. **FALSE.** There does not exists a d in which for all c there exists a pair $\{x, y, i, j\}$ that returns true in valid_layer().

														w	m+w	c[m+w]
С	X	У	i	j	n-m+1	j-i+1	х	t	c[x]	У	c[y]	2(y-i)	3(y-i)-1	k	m+3k	c[m+3k]
3	2	4	5	10	6	6	10	2	S							
	2	4	5	10			9	1.7								
	2	4	5	10			8	1.3								
	2	4	5	10			7	1	S							
	2	4	5	10			6	0.7								
	2	4	5	10			5	0.3								
	2	4	5	10						4	S					
	2	4	5	10						3	В	2	2	2	7	S
	2	4	5	10						2	N					
	1	3	4	9	6	6	9	2	В							
	1	3	4	9			8	1.7								
	1	3	4	9			7	1.3								
	1	3	4	9			6	1								
	1	3	4	9			5	0.7								
	1	3	4	9			4	0.3								

1e. **FALSE.** There does not exists a d in which for all c there exists a pair $\{x, y, i, j\}$ that returns true in valid_layer().

С	х	у	i	j	n-m+1	j-i+1	х	t	c[x]	у	c[y]	2(y-i)	3(y-i)-1	k	m+3k	c[m+3k]
3	14	16		22	6	-	22	2	S							
	14	16		22			21	1.7								
	14	16		22			20	1.3								
	14	16		22			19	1	S							
	14	16		22			18	0.7	-							
	14	16		22			17	0.3								
	14	16		22			11	0.5		16	S					
	14	16		22						15	В	2	2	2	19	9
															19	
	14	16		22		_	24	-	_	14	В					
	13		16		6	0	21	2	В							
	13	15		21			18	1								
	12		15		6	6	20	2	В							
	12	14		20	_		17	1								
	11		14		6	6	19	2	S							
	11	13		19			16	1	S							
	11	13		19						13	S					
	11	13		19						12	N	2	2	2	20	E
	11	13		19						11	В					
	10	12	13	18	6	6	18	2	В							
	10	12	13	18			15	1								
	9	11	12	17	6	6	17	2	В							
	9	11	12	17			14	1								
	8	10	11	16	6	6	16	2	S							
	8	10	11	16			13	1	S							
	8	10	11	16						10	S					
	8	10		16						9	В	2	2	2	13	
	8	10		16						8	В					
	7	9		15	6	6	15	2	В	_	_					
	7	9	10	15			12	1								
	6	8	9	14	6	6	14	2	В							
	6	8	9	14	0		11	1								
	5	7	8		6	6	13	2	 S							
	5	7	8	13	0	0	10	1	S							
	5	7	8	13			10		3	7	S					
	5	7		13							В	2	2	2	10	
			8							6				2	10	
	5	7	8			-	12	_		5	N					
	4	6		12	6	6	12	2	N							
	4	6	7	12	_	_	9	1								
	3	5		11	6	6	11	2	В							
	3	5		11			8	1								
	2	4		10	6	6	10	2	S							
	2	4	5	10			7	1	S							
	2	4	5	10						4	S					
	2	4	5	10						3	В	2	2	2	7	
	2	4	5	10						2	N					
	1	3	4	9	6	6	9	2	В							
	1	3	4	9			6	1								

1f. **FALSE.** There does not exists a d in which for all c there exists a pair $\{x, y, i, j\}$ that returns true in valid_layer(). (Ref: Appendix.)

Question 4.2

In valid sequence(), there are two main cases:

- 1. when the sequence starts with B as the only letter, which will then pass the predicate, or;
- 2. when the sequence starts with N, and the sequence has at least 9 letters, which will then pass x, y, i, j to valid layer().

Each pass to valid_layer() will only concern a sub-sequence between x to j with a length of $9 \times 2^{c-3}$, where c starts from 3. The sequence is further divided into two sub-sub-sequences between x to y and i to j, where x to y occupies one-third of the sub-sequence and i to j the remaining two-thirds.

In the following example, ABCDEF123456789012 is the sub-sequence (with c = 4),

In valid_layer(), given the call condition from valid_sequence(), the following sections have fixed outputs:

1.
$$j = i$$
 and $c[i] = "N"$ FALSE
2. $n - m + 1 = 2 (j - i + 1)$ TRUE
3. $j != i$ TRUE

for all x (m <= x <= n and exists t implies (x - m = 3t - 1)) implies c[x] = "S" checks whether the latter sub-sub-sequence is all composed of multiples of XXS.

for all y ($i \le y \le j$ and c[y] != "S") implies (...) checks whether the letters, excluding S, of the former sub-sub-sequence satisfy a condition. The condition depends on whether the letter is E or N; however, the condition is almost guaranteed to fail.

For example, say if $c = \{3, 4\}$, the first sub-sequence is all B, "v" marks y position, and "-" marks the range of m+w that the condition checks,

If the for all x () implies () predicate passes, the condition for all w () implies c[m+w] = "B" always fails.

Similarly, for example, say if $c = \{3, 4\}$, the first sub-sequence is all N, "v" marks y position, and "-" marks the range of m+3k that the condition checks,

If the for all x () implies () predicate passes, the condition for all k () implies c[m+3k] = "N" always fails with the only exception of k = 5.

In short, the valid_layer() call within valid_sequence() is problematic in a sense that the only time it returns TRUE is when

- 1. an "N" situates at the second (i+1) position of the first sub-sub-sequence AND an "N" situates at the seventh (m+4) position of the second sub-sub-sequence, or;
- 2. there are all "B"s or "N"s within the range of m+w or m+3k, respectively, that is out of bound of the sub-sequence.

Therefore, given the above conclusion, I cannot think of what valid_sequence(m, n) will check in data structure. The whole question is rendered as obsolete since the combined use of these two logic specifications has no apparent meaningful outcome.

Question 4a

(So much time than planned have been spent on Q4 to decipher the logic behind these specification that I have to forfeit this problem. I am sure I have the ability to finish this bonus problem but at the same time regretful to come to this conclusion since HW3 has been too overwhelming. Especially in Q4, it appears to be designed only for the sake of homework, but not applicable in the foreseeable future. I apologize in advance if there were any error in my reasoning in Q4, but too much is too much.)

Fig. 1.1

Fig. 1.2

Fig. 2.1

Fig. 2.2

P*01 P*02	*_turn_ready * attack	T*01 T*02	*_chooses_crit check ^ HP	A possible f	iring sequence:
P*03	* critical attack	T*03	return * ready	PA01	
P*04	check ^ HP	T*04	judge * crit valid	PA02	
P*05	*_critical_attack_judgement	T*05	fails_*_crit	PA08 >	PB09
P*06	*_critical_attack_fails	T*06	succeeds_*_crit	PA09	PB01
P*07	*_critical_attack_succeeds	T*07	*_chooses_attack		PB03
P*08	*_action_end	T*08	distribute_crit_fails_damage		PB04
P*09	*_turn_wait	T*09	distribute_crit_succeeds_damage		PB05
		T*10	distribute_attack_damage		PB06
*	A/B	T*11	ready_*		PB08
٨	B/A	T*12	restart_*_round		PB09
		*	A/B		
		٨	B/A		

Fig. 2.3


```
w m+w c[m+w]
                                    t c[x] y c[y] 2(y-i) 3(y-i)-1 k m+3k c[m+3k]
   x y i j
                   n-m+1 j-i+1 x
3 38 40 41 46
                        6
                              6 46
                                      2
                                          S
  38 40 41 46
                                    1.7
                                45
                                    1.3
  38 40 41 46
                                44
  38 40 41 46
                                      1
                                          S
                                43
  38 40 41 46
                                    0.7
                                42
                                    0.3
  38 40 41 46
                                41
  38 40 41 46
                                             40
                                                  S
  38 40 41 46
                                                        2
                                                                2 2
                                             39
                                                  В
                                                                        43
                                                                                  S
  38 40 41 46
                                             38
                                                  В
                                                        ...
  37 39 40 45
                        6
                              6 45
                                      2
  37 39 40 45
                                44
                                    1.7
  37 39 40 45
                                    1.3
                                43
  37 39 40 45
                                42
                                      1
                                          •••
  37 39 40 45
                                    0.7
                                41
  37 39 40 45
                                40
  36 38 39 44
                        6
                              6 44
                                      2
                                          В
  36 38 39 44
                                43
                                    1.7
  36 38 39 44
                                    1.3
                                42
  36 38 39 44
                                41
                                      1
                                          •••
  36 38 39 44
                                40
                                    0.7
  36 38 39 44
                                    0.3
  35 37 38 43
                        6
                              6 43
                                      2
                                          S
  35 37 38 43
                                42
                                    1.7
  35 37 38 43
                                    1.3
                                41
  35 37 38 43
                                40
                                      1
                                          S
  35 37 38 43
                                    0.7
  35 37 38 43
                                    0.3
                                38
  35 37 38 43
                                             37
                                                  S
  35 37 38 43
                                                        2
                                                                2 2
                                                  В
                                                                        40
                                                                                  S
                                             36
  35 37 38 43
                                             35
                                                  В
                                                        ...
  34 36 37 42
                        6
                              6 42
                                      2
                                          В
  34 36 37 42
                                39
                                      1
  33 35 36 41
                        6
                              6 41
                                      2
  33 35 36 41
                                38
                                      1
  32 34 35 40
                                      2
                              6 40
                                          S
                        6
  32 34 35 40
                                37
                                          S
  32 34 35 40
                                             34
                                                  S
                                                                        37
  32 34 35 40
                                                        2
                                                                2 2
                                             33
                                                  В
                                                                                  S
  32 34 35 40
                                             32
                                                  В
                                                        ...
  31 33 34 39
                              6 39
                                          В
                        6
                                      2
  31 33 34 39
                                36
                                      1
  30 32 33 38
                        6
                              6 38
                                      2
                                          В
  30 32 33 38
                                35
                                      1
                                          ...
  29 31 32 37
                        6
                              6 37
                                      2
                                          S
                                          S
  29 31 32 37
                                34
                                      1
  29 31 32 37
                                             31
                                                  S
```

	32 37				30	В	2	2	2	34 S
29 31	32 37	C	C 2C	2	29	В	•••			
28 30 28 30	31 3631 36	6	6 36 33	2 1	В					
27 29	30 35	6	6 35	2	 B					
27 29	30 35	· ·	32	1						
26 28	29 34	6	6 34	2	S					
26 28	29 34		31	1	S					
26 28	29 34				28	S				
26 28	29 34				27	В	2	2	2	31 S
26 28	29 34				26	В				
25 27		6	6 33	2	В					
	28 3327 32	6	30 6 32	1 2	 B					
	27 32	O	29	1						
23 25		6	6 31	2	 S					
23 25		•	28	1	S					
23 25	26 31				25	S				
23 25	26 31				24	Ν	2	2	2	32 B
23 25	26 31				23	Ν				
22 24		6	6 30	2	В					
	25 30		27	1						
	24 29	6	6 29	2	В					
	24 2923 28	6	26 6 28	1 2	 S					
	23 28		25	1	S					
20 22			25	_	22	S				
20 22					21	В	2	2	2	25 S
20 22	23 28				20	В				
19 21	22 27	6	6 27	2	В					
19 21	22 27		24	1						
	21 26		6 26	2	В					
	21 26		23	1						
	20 25		6 25	2	S					
	20 2520 25		22	1	S 19	S				
	20 25				18	В	2	2	2	22 S
	20 25				17	В		_	_	
	19 24		6 24	2	N	_				
	19 24		21	1	•••					
15 17	18 23	6	6 23	2	N					
	18 23		20	1						
	17 22		6 22	2	S					
	17 22		19	1	S					
	17 22				16	S	2	2	2	10 6
	17 22				15 14	В	2	2	2	19 S
	17 2216 21		6 21	2	14 B	В	•••			
12 13	10 21	U	0 21	_	ט					

13	15	16	21			18	1								
12	14	15	20	6	6	20	2	В							
12	14	15	20			17	1								
11	13	14	19	6	6	19	2	S							
11	13	14	19			16	1	S							
11	13	14	19						13	S					
11	13	14	19						12	В	2	2	2	16	S
11		14	19						11	Ν					
10			18	6	6	18	2	В							
	12					15	1								
9		12		6	6	17	2	В							
9		12				14	1	•••							
8		11		6	6	16	2	S							
8		11				13	1	S							
8	10	11							10	S					
8	10	11							9	В	2	2	2	13	S
8	10		16	_					8	В	•••				
7		10		6	6	15	2	В							
7		10	15	_	_	12	1	•••							
6			14	6	6	14	2	В							
6		9	14		_	11	1								
5		8	13	6	6	13	2	S							
5		8	13			10	1	S	_	6					
5		8	13						7	S	2	2	_	4.4	
5		8	13						6	N	2	2	2	14	В
5		8	13	6	_	12	2	_	5	N	•••				
4 4		7	12	6	ь	12 9	2	В							
3			12 11	6	6	9 11	1 2	 N							
	5			Ü	O	8									
2			10	6	6	10	1 2								
2		5		U	U	7	1	S S							
2		5				,		3	4	S					
2		5							3	В	2	2	2	7	S
2			10						2	N		_	_	,	3
1			9	6	6	9	2	В	_	. 4	•••				
1			9	0	J	6									
_	9	7				9	-	•••							

...