Fully-convolutional

Ausgangspunkt VGG16

http://kronos.scs-ad.scs.ch/~emanuel/netscope/#/preset/vgg-16

Die räumlichen Dimensionen der letzten feature map werden im ersten «Analyse»-layer aggregiert.

- ➤ Die erforderliche Grösse des Eingangsbildes lässt sich ausrechnen.
- Eine andere Grösse des Eingangsbildes erfordert ein anderes Netz.
- Das ganze Bild wird klassifiziert.

Fully-convolutional

Erweiterung zum Pixelklassifikator

http://kronos.scs-ad.scs.ch/~emanuel/netscope/#/preset/vgg16-fcn

Die fully-connected layer werden durch Faltungen ersetzt.

- Die einzelnen Operationen eines Faltungskernels sind die gleichen wie die eines Skalarproduktes.
- > Das Eingangsbild ist von beliebiger Grösse.
- Einzelne Pixel werden klassifiziert.
- > Das Ausgangsbild hat stark reduzierte Auflösung.

FCN + Deconvolution

Rekonstruktion in voller Auflösung

https://arxiv.org/pdf/1411.4038 http://kronos.scs-ad.scs.ch/~emanuel/netscope/#/preset/fcn-32s http://kronos.scs-ad.scs.ch/~emanuel/netscope/#/preset/fcn-16s

Was ist die inverse Operation zur Faltung?

- Deconvolution in CNNs:
 - Eine Art Faltung
 - Eine Art gelernte bilineare Interpolation
- Verbesserung des Resultats durch frühere feature maps:
 - Frühe maps haben mehr räumliche Information
 - Späte maps haben mehr Klasseninformation

Recurrent neural network

Feedback im Netzwerk

ausgerollt ein normales neuronales Netzwerk

Trainingsschwierigkeiten

LSTM / Resnet

- LSTM
 - Gedächtnis «ausprogrammiert»
 - keine Lernschwierigkeiten
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Resnet (http://arxiv.org/pdf/1512.03385.pdf)
 - CNN mit Bypasses
 - Mehr Tiefe, einfacher zu lernen
 ...ein neuer Rekord...

Freiheitsgrade

- Netztiefe
 - Anzahl von Layern
- Netzbreite
 - Neuronenmenge (channels)
- Vernetzung
 - Graph
- Elemente
 - conv, relu, pool, concat, deconv...
- Bildgrösse
 - Auch feature-map-Grösse