

Outline

- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Multiclass Classification and Weak Supervision

Model Evaluation and Selection

- ☐ How to evaluate the quality of a classifier
 - A typical measure: Accuracy
 - Other metrics to consider?
- ☐ How to assess the classification quality
 - Use (independent) validation test set instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
 - Holdout method
 - Cross-validation
 - Bootstrap
- Comparing classifiers using ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- □ In a confusion matrix with m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals
- ☐ An example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity, and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- □ Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

□ Error rate: 1 - accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
 - One class may be rare
 - E.g., fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
- Measures handle the class imbalance problem
 - Sensitivity (recall): True positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- □ **Precision** (Exactness): What percentage of tuples labeled as positive is actually positive? $P = Precision = \frac{TP}{TP + FP}$
- □ **Recall** (Completeness): What percentage of positive tuples are labeled as positive?
 - □ Range: [0, 1]

$$R = Recall = \frac{TP}{TP + FN}$$

- ☐ The "inverse" relationship between precision & recall
- □ F measure (or F-score): Harmonic mean of precision and recall
 - ☐ In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{D} + (1 - \alpha) \cdot \frac{1}{D}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Assigning β times as much weight to recall as to precision

- □ F1-measure (balanced F-measure)
 - \Box That is, when $\beta = 1$,

$$F_1 = \frac{2PR}{P + R}$$

Classifier Evaluation Metrics: Example

Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (accuracy)

- Sensitivity = TP/P = 90/300 = 30%
- Specificity = TN/N = 9560/9700 = 98.56%
- \square Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- \square Error rate = (FP + FN)/All = (140 + 210)/10000 = 3.50%
- \square Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- \square Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- \blacksquare F1 = 2 P × R /(P + R) = 2 × 39.13% × 30.00%/(39.13% + 30%) = 33.96%

Classifier Evaluation: Holdout & Cross-Validation

Holdout method

- ☐ The given data set is randomly partitioned into two independent sets
 - ☐ Training set (e.g., 2/3) for model construction
 - ☐ Test set (e.g., 1/3) for accuracy estimation
- □ Repeated random sub-sampling validation: A variation of holdout
 - □ Repeat holdout k times, accuracy = average of the accuracies obtained
- \square Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - □ At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: Folds are stratified so that class distribution in each fold is approximately the same as that in the initial data

Classifier Evaluation: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- □ Several bootstrap methods, and a common one is .632 bootstrap
 - □ A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - \square Repeating the sampling procedure k times, the overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Model Selection: ROC Curves

- **ROC** (Receiver Operating Characteristics) curve: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve (AUC: Area Under Curve) is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: The one that is most likely to belong to the positive class appears at the top of the list
- ☐ The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- The vertical axis represents the true positive rate
- The horizontal axis represents the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Issues Affecting Model Selection

- Accuracy
 - Classifier accuracy: Predicting class label
- Speed
 - Time to construct the model (training time)
 - Time to use the model (classification/prediction time)
- □ **Robustness**: Handling noise and missing values
- □ **Scalability**: Efficiency in disk-resident databases
- Interpretability
 - Understanding and insight provided by the model
- Other measures
 - E.g., goodness of rules, such as decision tree size or compactness of classification rules