Survey on Vector Databases

Andreas og Eivind IN4120 18.11.2024

Vector databases

Allow the user to look up vectors similar to a given input vector

Essentially implement approximate nearest neighbor algorithms

This presentation:

- Why we need dedicated vector databases
- Storage and search methods used in vector databases for ANN
- Evaluating which method is right for a given use case
- Use cases for vector databases

Why do we need dedicated vector databases?

- Traditional database technologies
 - Scalars vs vectors
 - Dimensionality curse
 - No concept of semantic similarity
- Key question how do you sort vectors in a meaningful way?

Vectors need a new kind of database

Storage

- Sharding
 - Hash-based sharding
 - Range-based sharding
- Partitioning
 - List partitioning
 - Range partitioning
- Caching
 - Least Recently Used policy
- Replication
 - Leaderless replication
 - Leader-follower replication

ANN methods (some review from the lectures)

- Treebased
 - K-means Tree
- Hashbased (or clusters)
 - Deep Hashing
- Graph based
 - Navigable Small World

Performance evaluation

Speed recall tradeoff

How quickly can we get the similar vectors?

VS.

 How well does the database get the vectors that are actually most similar to the query?

Vector databases and LLMs

Vector databases allow LLMs to store embeddings outside of itself. A couple of example use-cases:

- RAG
- Distributed training

Vector database products

