

Sharing a Library between Proof Assistants: Reaching out the HOL Family

François Thiré

July 7, 2018

LSV, CNRS, Inria, ENS Paris-Saclay

Introduction

$STT \forall_{\beta\delta}$

A real implementation of $\overline{STT} \forall_{\beta\delta}$?

A real implementation of $\overline{STT} \forall_{\beta\delta}$?

A real implementation of $\overline{STT} \forall_{\beta\delta}$?

In this talk, Dedukti is abstract!

The encoding is shallow

STT

Types
$$A, B :\equiv \iota \mid o \mid A \rightarrow B$$

Terms $t, u :\equiv x \mid \lambda x^A. \ t \mid t \ u \mid \forall x^A. \ t \mid t \Rightarrow u$

4

STT

Types
$$A, B :\equiv \iota \mid o \mid A \rightarrow B$$

Terms $t, u :\equiv x \mid \lambda x^A. \ t \mid t \ u \mid \forall x^A. \ t \mid t \Rightarrow u$

Fig. 1: Proof system

$STT_{\beta\delta}$

Types
$$A, B :\equiv \iota \mid o \mid A \rightarrow B$$

Terms $t, u :\equiv x \mid \lambda x^A. \ t \mid t \ u \mid \forall x^A. \ t \mid t \Rightarrow u$

$$\frac{C \vdash t : o}{C, t \vdash t} \text{ ASSUME} \qquad \frac{C \vdash t \qquad t \equiv_{\beta \delta} t'}{C \vdash t'} \text{ CONV}$$

$$\frac{C \vdash t \qquad C \vdash t \Rightarrow u}{C \vdash u} \Rightarrow_{E} \qquad \frac{C, t \vdash u}{C \vdash t \Rightarrow u} \Rightarrow_{I}$$

$$\frac{C \vdash \forall x^{A}. t \qquad C \vdash u : A}{C \vdash t[x := u]} \forall_{E} \qquad \frac{C, x : A \vdash t \qquad x \not\in C}{C \vdash \forall x^{A}. t} \forall_{I}$$

Fig. 1: Proof system

$\mathsf{STT} \forall_{\beta\delta}$ is an extension of STT

$$STT \forall_{\beta\delta} = STT_{\beta\delta} + \text{prenex polymorphism}$$

$\mathsf{STT} \forall_{\beta\delta}$ is an extension of STT

monotypes
$$A, B :\equiv o \mid A \rightarrow B \mid X \mid p A_1 \dots A_n$$

polytypes $T :\equiv \forall_K X. T \mid A$

- nat
- $\forall_K X$. list X
- list nat
- $\forall_K X. X \rightarrow X \rightarrow o$

$\mathsf{STT}\forall_{\beta\delta}$ is an extension of STT

```
monotypes A, B :\equiv o \mid A \rightarrow B \mid X \mid p A_1 \dots A_n

polytypes T :\equiv \forall_K X. T \mid A

monoterms t, u :\equiv \dots \mid c A_1 \dots A_n \mid \Lambda X. t

polyterms \tau :\equiv \forall X. \tau \mid t
```

- 0 : nat
- ΛX . λx^X . λy^X . $\forall P^{X \to o}$. $P x \Rightarrow P y : \forall_K X$. $X \to X \to o$ (eq)
- VX. $\forall a^X$. eq X a a

$\mathsf{STT} \forall_{\beta\delta}$ is an extension of STT

. . .

$$\frac{\mathcal{C} \vdash \mathcal{V}X. \ \tau \qquad \mathcal{C} \vdash A \ \mathbf{wf}}{\mathcal{C} \vdash \tau[X := A]} \ \mathcal{V}_{E} \qquad \qquad \frac{\mathcal{C}, X \vdash \tau}{\mathcal{C} \vdash \mathcal{V}X. \ \tau} \ \mathcal{V}_{E}$$

Fig. 2: Rules for $STT \forall_{\beta\delta}$

$$eq; \emptyset; \emptyset \vdash \mathcal{V}X. \ \forall a^{X}. \ eq \ X \ a \ a$$

$$\frac{eq; X; \emptyset \vdash \forall a^{X}. \ eq \ X \ a \ a}{eq; \emptyset; \emptyset \vdash \mathcal{V} X. \ \forall a^{X}. \ eq \ X \ a \ a} \mathcal{V}_{I}$$

$$\frac{eq; X, a : X; \emptyset \vdash eq X \ a \ a}{eq; X; \emptyset \vdash \forall a^{X}. \ eq X \ a \ a} \forall_{I}$$

$$eq; \emptyset; \emptyset \vdash VX. \ \forall a^{X}. \ eq X \ a \ a}{\forall_{I}}$$

$$\frac{eq; X, a : X; \emptyset \vdash P \ a \Rightarrow P \ a}{eq; X, a : X; \emptyset \vdash eq \ X \ a \ a} \xrightarrow[eq; X; \emptyset \vdash \forall a^{X}. \ eq \ X \ a \ a]{}^{CONV}$$

$$eq; X; \emptyset \vdash \forall a^{X}. \ eq \ X \ a \ a}$$

$$eq; \emptyset; \emptyset \vdash VX. \ \forall a^{X}. \ eq \ X \ a \ a}$$

$$\frac{eq; X, a : X; P a \vdash P a}{eq; X, a : X; \emptyset \vdash P a \Rightarrow P a} \Rightarrow_{I} \\
eq; X, a : X; \emptyset \vdash P a \Rightarrow P a \\
eq; X, a : X; \emptyset \vdash eq X a a}{eq; X; \emptyset \vdash \forall a^{X}. eq X a a} \forall_{I} \\
eq; \emptyset; \emptyset \vdash \forall X. \forall a^{X}. eq X a a}$$

$STT \forall_{\beta\delta}$ as a PTS

$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2 \qquad (s_1, s_2, s_3) \in \mathcal{R}}{\Gamma \vdash (x : A) \rightarrow B : s_3}$$

$STT \forall_{\beta\delta}$ as a PTS

$$\mathcal{S}, \mathcal{A} = \textbf{Prop}: \textbf{Type}: \textbf{Kind}$$

 $\forall_{\mathcal{K}}$ (Type, Kind, Kind) \forall (Type, Prop, Prop) \Rightarrow (Prop, Prop, Prop) \rightarrow (Type, Type, Type) \checkmark (Kind, Prop, Prop)

Type ≺ **Kind** (subtyping)

OpenTheory

OpenTheory vs $STT \forall_{\beta\delta}$

Terms and types are almost the same!

Three main differences:

In STT $\forall_{\beta\delta}$:

- ullet eta and δ extensional
- \forall and \Rightarrow connectives
- \forall_K is explicit

In OpenTheory:

- β and δ intensional
- = connective
- \forall_K is implicit

OpenTheory vs $STT \forall_{\beta\delta}$

Why is it hard?

$$\frac{\mathcal{C} \vdash t \qquad t \equiv_{\beta\delta} t'}{\mathcal{C} \vdash t'} \text{ CONV}$$

- $\equiv_{\beta\delta}$ is the one of Dedukti
- How to annotate proofs? Reduce the term step by step.
- β of $STT \forall_{\beta\delta}$ vs administrative β
- Don't compute the normal form everytime!

Coq

Trivial: $STT \forall_{\beta\delta}$ is a subsystem of Coq !

DEMO

Arithmetic library

	Dedukti[STT]	OpenTheory	Coq	Matita	Lean	PVS
size (mb)	1.5	41	0.6	0.6	0.6	9
translation time (s)	-	18	3	3	3	3
checking time (s)	0.1	13	6	2	1	\sim 300

Arithmetic library

	Dedukti[STT]	OpenTheory	Coq	Matita	Lean	PVS
size (mb)	1.5	41	0.6	0.6	0.6	9
translation time (s)	-	18	3	3	3	3
checking time (s)	0.1	13	6	2	1	\sim 300

- Theorems: 340 (Commutativity of addition, Fermat's little theorem)
- Parameters: 46 (nat, bool, ...)
- Axiom: 71 (equalities generated from recursive definitions,...)
- Definitions: 34 (le,primes,...)

Concept Alignement

Fermat's little theorem

```
Theorem congruent_exp_pred_SO : forall p a : Nat, prime p \rightarrow Not (divides p a) \rightarrow congruent (exp a (pred p)) (S O) p.
```

Fermat's little theorem

```
Theorem congruent_exp_pred_SO :
forall p a : Nat, prime p -> Not (divides p a) ->
congruent (exp a (pred p)) (S 0) p.
```

Fermat's little theorem

```
Theorem congruent_exp_pred_SO:
forall p a : Nat, prime p -> Not (divides p a) ->
congruent (exp a (pred p)) (S 0) p.
Parameter exp : Nat -> Nat -> Nat.
Axiom axiom_exp_0 : forall n : Nat,
      equal Nat (exp n 0) (S 0).
Axiom axiom_exp_S : forall n m : Nat,
      equal Nat (exp n (S m)) (times (exp n m) n).
```

Conclusion

Conclusion

- A relatively weak logic: $STT \forall_{\beta\delta}$
- An automatic translation of a library to 5 other proof systems

Future work

- Sharing the aritmetic library to other systems (Agda, Idris,...)
- Developing an encylopedia of proofs: Logipedia
- A standardization of an arithmetic library?

Future work

- Sharing the aritmetic library to other systems (Agda, Idris,...)
- Developing an encylopedia of proofs: Logipedia
- A standardization of an arithmetic library?

Contributions are welcome! https://github.com/Deducteam/Logipedia

