Luiz Felipe

=> Denivadas impontantes.

f (x)	F'(x)	F (x)	F'(x)	7 (x)	F'(x)
KER	9	ben x	(05 X	e x	e ×
a×η	n a x ⁿ⁻¹	Cosx	- benx	lnx	1/x
ΛX	1/2 · 1/x	t _g x	hec² x	a ×	a* In a
1/x	- 1/ _x z	co tex	- Cossec ZX	lozax	1
		becx	becx tgx	0 a	×. Ina
		Cossecx			
			7		

· Conceitualmente, a primeira equação diferencial: $f(x) = e^x$, $f'(x) = e^x$

f(x) = f'(x) $y - y' = 0 ; y = c e^{x}$

· Conceitos impontantes:

Lineahidade: $\begin{cases} y''(x) - \frac{1}{7}y(x) = 0 \\ y''(x) + \log(y(x)) = 0 \end{cases}$ $y''(x) + \log(y(x)) = 0$ $y''(x) + \log(x) + \log(x) = 0$

Homogeneidade: $\begin{cases} y'(x) + 4y(x) = 0 & (homogenea) \\ y'(x) + 4y(x) = x^2 & (\hat{N} homogenea) \end{cases}$

CASO APAREÇA UM TERMO QUE NÃO SEJA Y(x) A EQUAÇÃO DEIXA DE SER HOMEGÊNEA.

Exemplo: y'(x) = Z y(x); $y(x) = e^{2x}$

$$y'(x) = e^{2x}$$

$$y'(x) = 2 e^{2x} = 2 y(x)$$

$$y'(x)$$

$$y'(x) = 3e^{2x}$$

 $y'(x) = 2.3e^{2x}$
 $y(x)$

Logo, y(x) = Ce^{zx}; CEIR L> solução genal. $3e^{2x} \qquad \qquad y'(x) = 2y(x)$ $2e^{2x} \qquad \qquad$

ezx

Familia de soluções

• Problema do valor inicial (β , V. I)

Sabenda que $\gamma(0) = 3 \Rightarrow \gamma(x) = ce^{2x} \Rightarrow 3 = c.1 \Rightarrow c = 3 \Rightarrow \gamma(x) = 3e^{2x}$

Pon Laplace:
$$y'(x) = 2y(x) \stackrel{\mathcal{L}}{=} > b y(b) - y(0) = 2 y(b) = > (b-2) y(b) = 3$$

 $y(b) = 3 \stackrel{\mathcal{L}}{=} > y(x) = 3 \cdot e^{2x}$

$$y(x) = 3 \cdot e^{2x}$$

• Exemplo intuitivo: $y'' + 9y(x) = 0 \sim y'' = -9y(x)$; tomando y(x) = hen3x y'(x) = 3(053x) y''(x) = -9hen3xy''(x) = -9y(x)

Solução genal: Y(x) = c nen 3x

=> família de soluções

O P.V.I. PARA ESSE CASO PRECISA DE DUAS INFORMAÇÕES, ISTO É, DEVE-SE FORNECER Y'(x) E Y(x). PARA UMA E.D. DE TERCEIRA ORDEM, NECESSITA-SE DE TRÊS INFORMAÇÕES. E ASSIM POR DIANTE.

 $9VI: Y(\widehat{ir}) = A \cos(\widehat{s}\widehat{ir}) + B ben(\widehat{s}\widehat{ir}) = 0 = > A.-1 = 0 = > A=0$

Logo, $y(x) = B/3 \text{ ben}(3x) = y'(x) = B\cos(3x)$ $y'(ii) = B\cos(3ii) = -1$ $B \cdot (-1) = -1$ B = 1 $y(x) = \frac{1}{3} \text{ ben}(3x)$

· A soma de duas soluções também é solução.

$$soma: S = Y(1(x) + Y_2(x) = > S" = Y(1)(x) + Y_2"(x) (2)$$

$$= > (2) - > (1) ; \quad 5" + 9 s = 0 \Rightarrow \qquad Y1" + Y2" + 9 (Y1 + Y2) = 0$$

$$= 0 \qquad = 0$$

Assim,
$$a \cdot h^2 k e^{hx} + b n k e^{hx} + c k e^{hx} = 0$$
; $k \neq 0$ (bena evitar a solução trivial)
 $a n^2 + b n + c = 0$ (Equação carac tenística)

· Raizes neais e distintas:

Considerando 9 P.V.I.:
$$y(0) = 0 e \quad y'(0) = -1$$

Assim, $y(0) = k_1 + k_2 = 0 = 0 \quad k_1 + k_2 = 0 \quad (1)$

$$y(x) = k_1 e^x + 2k_2 e^{2x} = 0 \quad y'(0) = k_1 + 2k_2 = -1 = 0 \quad k_1 + 2k_2 = -1 \quad (2)$$

$$(2) - (1) = k_2 = -1$$

$$k_1 = 1$$

$$y(x) = e^{x} - e^{2x}$$

Raizes complezas; Exemplo:
$$y'' - 8y' + 25y = 0$$
 $h^2 - 8n + 25 = 0 \Rightarrow h = 8 \pm \sqrt{64 - 4.25} = 8 \pm 6i = 4 \pm 33$

Z

Assim, $y(x) = k_1 e^{4x} e^{4x} + k_2 e^{4x} e^{-13x} = e^{4x} (k_1 e^{13x} + k_2 e^{-13x})$
 $y(x) = e^{4x} (k_1 \cos 3x + k_1 \mu \cos 3x + k_2 \cos 3x - k_2 \mu \cos 3x)$
 $y(x) = e^{4x} (C_1 \cos 3x + C_2 \mu \cos 3x)$

Pontanto, se a haiz fon do tipo $h = a \pm 1b$ a solução genal e:

 $y(x) = k_1 e^{4x} \cos(bx) + k_2 e^{4x} \sin(bx)$

*Raizes nepetidas: Exemplo:
$$y'' - 8y'' + 16y = 0$$
 $h^2 - 8h + 16 = 0 = > h = 8 \pm \sqrt{64 - 4.16} = 4$

Z

 $y(x) = Cie^{4x} + Czxe^{4x}$
L> Acrescenta.

L> A solução particular é similar a f(x)

Pontanto, a solução genal e: y(x) = yn(x) + yp(x)

• A solução particular e determinade pon: Método dos coeficientes

Exemplo: y'+3y = 2x

A solução particular e determinade pon: Método dos coeficientes

a determinar

Sol. homogenea: y' + 3y = 0 h + 3 = 0 = h = -3 $y_h(x) = C_1 e^{-3x}$

Sol. particular: Assumi-se que yp(x) e similar a f(x), logo, y(x) = Ax +B.

$$(Ax+B1)^{2}+3(Ax+B)=2x=>A+3Ax+3B=2x->A+3B=0=>B=-2/9$$

 $\Rightarrow 3A=Z=>A=2/3$

Dessa forma, $y_p(x) = \frac{2}{3}x - \frac{2}{9}$

$$y(x) = C1e^{-3x} + \frac{2}{3}x - \frac{2}{9}$$

· Considerações impontante para de ginição de yp(x):

=> Equações de primeira ordem:

$$\begin{array}{ccc} 1. & \underline{dy} & = f(x) \\ & & \\ & & \\ & & \end{array}$$

1.
$$\frac{dy}{dx} = f(x)$$
 2. $\frac{dy}{dx} = f(y)$ (Autônoma) 3. $\frac{dy}{dx} = f(x,y)$

$$\frac{3. d f}{d x} = t(x, y)$$

Exemplos: 1. $\frac{dy}{dx} = 2x^2$, 2. $\frac{dy}{dx} = 3y$

3.
$$\frac{dy}{dx} = xy$$

• Tipo1:
$$\frac{dy}{dx} = 3x^2 = > dy = 3x^2 dx = > \int dy = 3 \int x^2 dx$$
 $y = x^3 + c$; by: $y(1) = 1 = > 1 = 1 + c = > c = 0$
 $y = x^3$

• Tipo 3: (Equações separa veis)
$$\frac{dy}{dx} = -x = 5 \int y dy = \int -x dx$$

$$\frac{y^2}{z} = -\frac{x^2}{z} + c = 5 \quad y^2 + x^2 = c$$

As retas tangentes opostas bia-me tralmente são paralelas.

Ex,:
$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y - 1)}$$
 = $\int (2y - 2)dy = \int (3x^2 + 4x + 2)dx$
 $y^2 - 2y = x^3 + 2x^2 + 2x + c$; $f(y - 1) = (0, -1)$
 $1 + 2 = c = 2$ ($y - 1 = 2$)
 $y^2 - 2y = x^3 + 2x^2 + 2x + 3$
 $y = 1 \pm \sqrt{x^2 + 2x^2 + 2x + 4}$
 $y = 1 \pm \sqrt{x^2 + 2x^2 + 2x + 4}$
 $y = 1 \pm \sqrt{x^2 + 2x^2 + 2x + 4}$
 $y = 1 \pm \sqrt{x^2 + 2x^2 + 2x + 4}$

Tipo 2: dy = F(y) Autônomas, pode-se henlizan um estudo de dx compontamento das soluções.

Considerando: y(0) = 1; $\frac{dy}{dx} = 3y = y + y + y = 0$ $y(x) = Ce^{3x}$ $y(x) = e^{3x}$ $y(x) = e^{3x}$

Exemplo: (Equação Logistica)
$$h = cte de proponcionalidade$$

$$k = capacidade supon te$$

$$\frac{d}{dx}y = hy(1 - \frac{y}{k})$$

$$\frac{dy}{dx} \uparrow \frac{hk}{4}$$

$$k/2 \qquad k \qquad y$$

$$\frac{dy}{dx} = hy(1 - \frac{y}{k}) =>$$

$$\int \frac{1}{y(1-\frac{y}{k})} dy = \int n dx$$

$$(*)$$

$$\frac{(*) - \frac{1}{2(1 - \frac{1}{2}/k)} = \frac{A}{1} + \frac{B}{1}; A = 1 + \frac{B}{1} = \frac{1}{2}/k}{2(1 - \frac{1}{2}/k)}$$

$$\frac{1}{y} \int \frac{1}{1 - \frac{1}{k}} dy = hx + C; \quad u = 1 - \frac{y}{k}; \quad \frac{du}{dy} = -1$$

$$y = \frac{1}{ce^{-hx} + 1/k}$$

Considerando k.v.I.: y (0) = yo

$$y(0) = \frac{1}{C + 1/K} = y_0 = x - 1 = C = x - y_0$$
 $C + 1/K$
 $y_0 = x_0$
 $y_0 =$

$$y(x) = \frac{kyo}{(k-yo)e^{-hx} + yo}$$

Solução no by thon:
$$y(x) = \frac{ky e^{hx}}{k + y e^{hx} - y e^{hx}}$$

$$\frac{ky e^{-hx}}{k e^{-hx} + y e^{-hx}} = \frac{ky e^{hx}}{k + y e^{hx} - y e^{-hx}}$$

$$\frac{ky e^{-hx}}{k e^{-hx} + y e^{-hx}} = \frac{ky e^{-hx}}{k + y e^{-hx} + y e^{-hx}}$$

a)
$$y'+3y=z^2$$
 (a order / linear / \bar{n} homogenea
d) $y''-3y'+2y=0$ 2a order / linear | homogenea
g) $y''-y^2=xxx$ 2a order / \bar{n} linear | \bar{n} homogenea

$$dx^{2}+bx+c=0 => x^{2}+b x+c = 0 => x^{2}+b/ax + (b/2a)^{2}-(b/2a)^{2}+c=0$$

$$(x + b/2a)^{2} = +(b/2a)^{2} - c/a = + x + b/2a = + \frac{b^{2}}{4a^{2}} - c$$

$$x = -b + \frac{b^{2}}{4a^{2}} - c = + x = -b + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} - c$$

$$za + \frac{b^{2}}{4a^{2}} - \frac{c}{a} = + \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$