$$D = \begin{pmatrix} r & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & t \end{pmatrix}.$$

Considerando este hecho y pensando en términos de matrices de transición, explique por qué $A = VDV^{-1}$, donde $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- 9. Cambio de base por rotación en \mathbb{R}^2 Sean \mathbf{e}_1 y \mathbf{e}_2 la base canónica para \mathbb{R}^2 , donde \mathbf{e}_1 es un vector unitario a lo largo del eje x y \mathbf{e}_2 es un vector unitario a la largo del eje y. Si se rotan los ejes un ángulo θ en sentido positivo alrededor del origen, entonces \mathbf{e}_1 rota a un vector \mathbf{v}_1 y \mathbf{e}_2 rota a un vector \mathbf{v}_2 tal que $\{\mathbf{v}_1, \mathbf{v}_2\}$ es una base para \mathbb{R}^2 .
 - a) (Lápiz y papel) Demuestre que

$$\mathbf{v}_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \quad \mathbf{y} \quad \mathbf{v}_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$

b) Sea $V = [\mathbf{v}_1 \ \mathbf{v}_2]$. Entonces $\mathbf{v}_1 = V\mathbf{e}_1$ y $\mathbf{v}_2 = V\mathbf{e}_2$. Exploraremos la geometría de $\mathbf{w} = a\mathbf{v}_1 + b\mathbf{v}_2$, es decir, la geometría de las combinaciones lineales en términos de la nueva base. Nos interesa la relación de las combinaciones lineales con la rotación.

Suponga que $\mathbf{x} = a\mathbf{e}_1 + b\mathbf{e}_2$. Entonces $\mathbf{w} = a\mathbf{v}_1 + b\mathbf{v}_2 = V\mathbf{x}$ representa el vector \mathbf{x} rotado en sentido positivo un ángulo θ alrededor del origen.

El programa de MATLAB que se muestra a continuación ayuda a visualizar esta geometría. Grafica los vectores como segmentos de recta que comienzan en el origen. El vector $\mathbf x$ se grafica en rojo y el vector $\mathbf w$ en azul. Observe cómo $\mathbf w$ (el vector azul) es la rotación positiva θ de $\mathbf v$ (el vector rojo). Dé el comando plot primero y después los dos comandos de axis. Vea la gráfica después de los comandos axis.

Precaución. La impresión de la gráfica producida directamente de la pantalla no mostrará longitudes iguales ni los ángulos rectos como tales.

```
a=1;b=2; % define vector a rotar
x=[a;b]; M=norm(x);
th=pi/2; % Ángulo de rotación
v1=[cos(th);sin(th)];
v2=[-sin(th);cos(th)];
V=[v1,v2]; % Matriz de cambio de base
w=V*x; % rotación del vector x
plot([0,x(1)],[0,x(2)],'r',[0,w(1)],[0,w(2)],'b')
axis square
axis([-M M -M M]);
grid
title('Vector origina: rojo, Vector rotado: azul')
xlabel('x')
ylabel('y')
```