Summary for Complex Variables I

SEUNGWOO HAN

Contents

CHAPIER I	PRELIMINARIES	PAGE Z	
1.1	Complex Plane	2	
1.2	Rectangular Representation	2	
1.3	Polar Representation	3	
CHAPTER 2	Elementary Complex Functions	Page 4	
2.1	Exponential Functions	4	
	Mapping Properties	5	
	Logarithmic "Functions"	5	
2.4	Complex Exponents	5	
CHAPTER 3	Analytic Functions	Page 7	
3.1	Cauchy–Riemann Equation	7	
3.2	Analyticity	9	
CHAPTER 4	Power Series	Page 13	
4.1	Quick Review	13	
CHAPTER 5	Complex Integration and Cauchy's Theorem	Page 15	
	Definitions	15	
CHAPTER 6	CONFORMAL MARRING	DAGE 16	

Preliminaries

1.1 Complex Plane

Definition 1.1.1: Complex Number

 $i := \sqrt{-1}$ is called the *imaginary unit*. $\mathbb{C} := \{x + iy \mid x, y \in \mathbb{R}\}$ is the set of complex numbers where \mathbb{R} is the set of real numbers.

Definition 1.1.2: Algebras of \mathbb{C}

For $z_k := x_k + iy_k$ where $k \in \mathbb{Z}_+$ and $x_k, y_k \in \mathbb{R}$,

- $z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$
- $z_1 \cdot z_2 := (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1).$

Theorem 1.1.3

 \mathbb{C} is a field.

Proof. Trivial.

Note

z = a + ib, $a, b \in \mathbb{R}$ with $z \neq 0$. Then, $z^{-1} = \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}$.

1.2 Rectangular Representation

Definition 1.2.1

Let z = x + iy where $x, y \in \mathbb{R}$.

- (i) $|z| := \sqrt{x^2 + y^2}$ is called *modulus* of z.
- (ii) $\overline{z} := x iy$ is called *conjugate* of z.
- (iii) $\operatorname{Re} z = x$ is called the *real part* of z and $\operatorname{Im} z = y$ is called the *imaginary part* of z.
- (iv) For $z_1, z_2 \in \mathbb{C}$, $|z_1 z_2|$ is the distance between z_1 and z_2 .

Note

- $z + \overline{z} = 2 \operatorname{Re} z$
- $z \overline{z} = 2i \operatorname{Im} z$
- $|z_1 + z_2| \le |z_1| + |z_2|$
- $||z_1| |z_2|| \le |z_1 z_2|$

1.3 Polar Representation

Given $z \in \mathbb{C}$, |z| is unique. $\arg z = \theta + 2k\pi \ (k \in \mathbb{Z})$ (Or $\arg z = \theta \ (\text{mod } 2\pi)$)

Definition 1.3.1

If $z = |z| \cdot (\cos \theta + i \sin \theta)$, θ is called an *argument* of z and is written $\arg z = \theta \pmod{2\pi}$ (as $\theta + 2k\pi$ for $k \in \mathbb{Z}$ is an argument of z as well). If $\arg z = \theta^* \pmod{2\pi}$, and if $-\pi < \theta^* \le \pi$, then we define $\operatorname{Arg} z = \theta^*$ and it is called the *principal argument* of z.

Theorem 1.3.2

For $z_1, z_2 \in \mathbb{C}$ with $z_1, z_2 \neq 0$, $\arg z_1 z_2 = \arg z_1 + \arg z_2 \pmod{2\pi}$.

Proof. Let $\arg z_1 = \theta_1 \pmod{2\pi}$ and $\arg z_2 = \theta_2 \pmod{2\pi}$ Then, $z_1 = |z_1|(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = |z_2|(\cos \theta_2 + i \sin \theta_2)$. Now, we have $z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$.

Elementary Complex Functions

2.1 Exponential Functions

Definition 2.1.1: Exponential Function

For each z = x + iy where $x, y \in \mathbb{R}$, we define $e^z := e^x \cdot (\cos y + i \sin y)$.

Theorem 2.1.2

For each $z \in \mathbb{C}$, $e^z = \sum_{j=1}^{\infty} \frac{z^j}{j!}$.

Proof. Proved later using complex integral.

Theorem 2.1.3

For each $z, z' \in \mathbb{C}$,

(a)
$$e^{z+z'} = e^z \cdot e^{z'}$$
,

(b)
$$e^{-z} = \frac{1}{e^z}$$
, and

(c) $e^{z+2k\pi i} = e^z$ for all $k \in \mathbb{Z}$.

Definition 2.1.4

For each $z \in \mathbb{C}$,

$$(1) \cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$(2) \sin z := \frac{e^{iz} - e^{-iz}}{2i}$$

$$(3) \cosh z = \frac{e^z + e^{-z}}{2}$$

(4)
$$\sinh z = \frac{e^z - e^{-z}}{2}$$

Theorem 2.1.5

For each $z \in \mathbb{C}$, we have $\cosh z = \cos(iz)$ and $\sinh z = -i\sin(iz)$.

Example 2.1.6

Let us solve $\cos z = 2$. Let $t := e^{iz}$ to obtain $t^2 - 4t + 1 = 0$, which gives $t = 2 \pm \sqrt{3}$. Write z = x + iy where $x, y \in \mathbb{R}$ to have $e^{ix}e^{-y} = 2 \pm \sqrt{3}$. Taking modulus to both sides gives $e^{-y} = 2 \pm \sqrt{3}$, i.e., $y = -\ln(2 \pm \sqrt{3})$. Taking argument to both sides gives $x = 2k\pi$

for $k \in \mathbb{Z}$. Thus, $z = 2k\pi - i \ln(2 \pm \sqrt{3})$ for $k \in \mathbb{Z}$.

2.2 Mapping Properties

대충 그래프 그리는 이야기 ㅇㅇ

2.3 Logarithmic "Functions"

Definition 2.3.1: Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $w = \ln z$ if and only if $e^w = z$.

Note 🖠

How to compute $\ln z$? Note that $z = |z| \cdot e^{i(\operatorname{Arg} z + 2k\pi)}$ for $k \in \mathbb{Z}$. Let w = u + iv where $u, v \in \mathbb{R}$ so that $e^w = e^u \cdot e^{iv} = |z| \cdot e^{i(\operatorname{Arg} z + 2k\pi)}$. Hence, we have $u = \ln|z|$ and $v = \operatorname{Arg} z + 2k\pi$. In other words, $\ln z = \ln|z| + i \operatorname{arg} z$. (Note that this is not a "function"!)

Definition 2.3.2: Principal Logarithmic Function

For any $z \in \mathbb{C} \setminus \{0\}$, we define $\text{Log } z := \ln|z| + i \operatorname{Arg } z$ and it is called the *principal value* of $\ln z$.

Definition 2.3.3: Branch of Logarithm

A *branch* of $\ln z$ is a function given by ω : $\ln z$ with $\theta_0 < \arg z \le \theta_0 + 2\pi$. Here, θ_0 is called a *branch cut*.

Example 2.3.4

 $B := \{z \mid |z+2| < 1\}$ when mapped with Log is not an open ball but it becomes an open ball when the branch cut is $-\pi/2$.

2.4 Complex Exponents

Definition 2.4.1: Complex Exponents

For $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$, define

$$z^w := e^{w \ln z}$$
.

Note

Complex exponentiation is not a function! If one considers the complex exponentiation as a set of possible values, then $z^{\eta_1} \cdot z^{\eta_2} = z^{\eta_1 + \eta_2}$ may easily fail!

Example 2.4.2

To solve $z^{1-i} = 4$, write $e^{(1-i)\ln z} = e^{\ln 4}$, i.e., $\ln z = (1+i)(\ln 2 + k\pi i)$ for $k \in \mathbb{Z}$. In other words, $\ln |z| + i \arg z = (\ln 2 - k\pi) + i(\ln 2 + k\pi)$. Hence, $|z| = e^{\ln 2 - k\pi}$ and $\arg z = \ln 2 + k\pi$ (mod 2π).

Analytic Functions

3.1 Cauchy-Riemann Equation

Definition 3.1.1: Continuity

For a fixed point $z_0 \in \mathbb{C}$, a function f is said to be continuous at z_0 if

$$\lim_{|z-z_0|\to 0} |f(z)-f(z_0)| = 0.$$

Definition 3.1.2: Differentiability

For a fixed point $z_0 \in \mathbb{C}$, a function f is said to be *continuous at* z_0 if

$$\lim_{\substack{|\omega|\to 0\\\omega\in\mathbb{C}}}\frac{f(z_0+\omega)-f(z_0)}{\omega}$$

exists. If f is differentiable at z_0 , then define the *derivative* of f at z_0 by

$$f'(z_0) \coloneqq \lim_{\substack{|\omega| \to 0 \\ \omega \in \mathbb{C}}} \frac{f(z_0 + \omega) - f(z_0)}{\omega}.$$

Example 3.1.3

For each $n \in \mathbb{N}$, one can derive that $f'(z) = nz^{n-1}$ where $f(z) = z^n$.

Theorem 3.1.4

If f is differentiable at z_0 , then it is continuous at z_0 .

Example 3.1.5

Let us determine differentiability of $f(z) = |z|^2$. Write z = x + iy and $\omega = p + iq$ for $x, y, p, q \in \mathbb{R}$. Then,

$$\frac{f(z+\omega)-f(z)}{\omega} = \frac{2(xp+yq)+|\omega|^2}{\omega}$$

As we know $\lim_{\omega \to 0} \frac{|\omega|^2}{\omega} = 0$, we only need to care if $\lim_{\omega \to 0} \frac{2(xp+yq)}{p+iq}$. Evaluating the limit along the real axis and the imaginary axis gives 2x and -2yi; hence f is not

differentiable at $z \in \mathbb{C} \setminus \{0\}$. At the origin, we have $f'(0) = \lim_{\omega \to 0} \frac{f(0+\omega) - f(0)}{\omega} = 0$.

Theorem 3.1.6

Product, quotient, chain rule still holds in complex derivative. Let $f,g:\mathbb{C}\to\mathbb{C}$ be complex functions.

- (1) If f and g are differentiable at z_0 , then f + g is differentiable at z_0 and $(f + g)'(z_0) = f'(z_0) + g'(z_0)$.
- (2) If f and g are differentiable at z_0 , then f g is differentiable at z_0 and $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$.
- (3) If f and g are differentiable at z_0 , and if $g(z_0) \neq 0$, then f/g is differentiable at z_0 and $\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.
- (4) If g is differentiable at z_0 and f is differentiable at $f(z_0)$, then $f \circ g$ is differentiable at z_0 and $(f \circ g)'(z_0) = f'(g(z_0))f'(z_0)$.

Definition 3.1.7: Cauchy-Riemann Equations

Let $f : \mathbb{C} \to \mathbb{C}$ be a complex function. Write f(x + iy) = u(x, y) + iv(x, y) for $x, y \in \mathbb{R}$ and real functions u and v. Then, the system of equations

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

is called the *Cauchy–Riemann equations*. This is the equivalent to $if_x(z) = f_y(z)$.

Theorem 3.1.8

If f is differentiable at z, then f satisfies the Cauchy–Riemann equations at z.

Proof.
$$f_x(z) = \lim_{\xi \to 0} \frac{f(z+\xi) - f(z)}{\xi} = f'(z)$$
 and $-if_y(z) = \lim_{\eta \to 0} \frac{f(z+i\eta) - f(z)}{i\eta} = f'(z)$.

Note

We may write $f(z) = u\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right) + iv\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right)$. If f is differentiable, we define

$$\begin{split} \frac{\partial f}{\partial z} &:= \left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) u + i\left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) v = \left(\frac{1}{2}\partial_x + \frac{1}{2i}\partial_y\right) f \\ \frac{\partial f}{\partial \overline{z}} &:= \left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) u + i\left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) v = \left(\frac{1}{2}\partial_x - \frac{1}{2i}\partial_y\right) f \,. \end{split}$$

So that $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2}(\partial_x + i\partial_y)f = 0$ if f is differentiable.

Definition 3.1.9: Domain

A domain is an open and connected subset of \mathbb{C} . (In the topological sense.)

Theorem 3.1.10

Any two points in a domain can be connected by polygonal lines parallel to the coordinate axes that lies in the domain.

Proof. Let D be a domain and let $z_0 \in D$. Let $A \subseteq D$ be the set of all points in D that can be connected from z_0 by polygonal lines parallel to the coordinate axes. Let $B := D \setminus A$. If $z \in A$ and r > 0 satisfy $B_r(z) \subseteq D$, then $B_r(z) \subseteq A$; hence A is open. Similarly, B is open as well. As D is connected, A or B is empty but $z_0 \in A$; hence, $B = \emptyset$.

Theorem 3.1.11

If $f'(z) \equiv 0$ in a domain *D*, then *f* is constant on *D*.

Proof. $f_x \equiv f_y \equiv 0$; hence $u_x \equiv v_x \equiv u_y \equiv u_x \equiv 0$ on D. Thus, f is contant on every line segment in D parallel to coordinate axes. Hence, f is constant on D by Theorem 3.1.10. \square

Corollary 3.1.12

Let f be differentiable on a domain D.

- (1) If Re f(z) is constant on D, then f is constant on D.
- (2) If Im f(z) is constant on D, then f is constant on D.
- (3) If Arg f(z) is constant on D, then f is constant on D.

Proof.

(1) There is $\omega_0 \in \mathbb{C}$ such that, when g is defined by $g(z) \triangleq f(z) - \omega_0$, we have $\operatorname{Re} g(z) \equiv 0$ and g is differentiable on D.

$$\lim_{\xi \to 0} \frac{f(z+\xi) - f(z)}{\xi} = f'(z) = \lim_{\eta \to 0} \frac{f(z+i\eta) - f(z)}{i\eta}$$

where the left hand side is real and the right hand side is purely imaginary. Therefore, f'(z) = 0 for all $z \in D$. The result follows from Theorem 3.1.11.

- (2) Let g(z) = if(z) so that g is differentiable on D and Re g(z) is constant. Therefore, by Corollary 3.1.12 (1), g is constant and thus f is constant.
- (3) There is $\omega_0 \in \mathbb{R}$ such that, when g is defined by $g(z) \triangleq f(z)e^{-i\omega_0}$, we have $\operatorname{Re} g(z)$ is constant and g is differentiable on D. Tehrefore, by Corollary 3.1.12 (1), g is constant and thus f is constant.

3.2 Analyticity

Definition 3.2.1: Analytic Function

- For a fixed point $z_0 \in \mathbb{C}$, a function f is *analytic* at z_0 if there is some r > 0 such that f is differentiable at every point in $B_r(z_0) \triangleq \{z \in \mathbb{C} : |z z_0| < r\}$.
- A function f is analytic in domain D if it is analytic at z for all $z \in D$.
- A function f is *entire* if it is analytic in \mathbb{C} .

Theorem 3.2.2

Given a function f(z) = u(x, y) + iv(x, y) in domain D, if

- (1) u(x,y) and v(x,y) are C^1 in D, and if
- (2) u(x, y) and v(x, y) satisfy the Cauchy–Riemann equations in D, then f is analytic in D.

Proof. Fix $z = x + iy \in D$ and write $\Delta z := \xi + i\eta$ for $\xi, \eta \in \mathbb{R}$ where Δz is sufficiently small. (This is possible since D is open.) Then,

$$f(z + \Delta z) = (f(z + \xi) - f(z)) - (f(z + \Delta z) - f(z + \xi))$$

$$= \int_{0}^{1} \frac{d}{dt} f(x + t\xi, y) dt + \int_{0}^{1} \frac{d}{dt} f(x + \xi + i(y + t\eta)) dt$$

$$= \xi \int_{0}^{1} f_{x}(x + t\xi) dt + \eta \int_{0}^{1} f_{y}(x + \xi + i(y + t\eta)) dt$$

$$= \xi \int_{0}^{1} f_{x}(x + t\xi) dt + i\eta \int_{0}^{1} f_{x}(x + \xi + i(y + t\eta)) dt$$

$$= f_{x}(z) \Delta z + \xi \int_{0}^{1} (f_{x}(x + t\xi) - f_{x}(z)) dt + i\eta \int_{0}^{1} (f_{x}(x + \xi + i(y + t\eta)) - f_{x}(z)) dt$$

As f_x is continuous at z, we have

$$\left| \int_0^1 (f_x(x+t\xi) - f_x(z)) dt \right| \to 0 \text{ and}$$

$$\left| \int_0^1 (f_x(x+\xi+i(y+t\eta)) - f(z)) dt \right| \to 0$$

as $\Delta z \rightarrow 0$. Moreover, since (Re z)/z and (Im z)/z are bounded, we have

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = f_x(z).$$

Example 3.2.3

Let $f(x+iy) = x^2 + y^2 + ixy$. $u_x = 2x$, $u_y = 2y$, $v_x = y$, and $v_y = x$. Hence, u and v are C^1 in \mathbb{R}^2 . $f_x = 2x + yi$ and $-if_y = -i(2y + xi) = x - 2yi$; hence f satisfies the Cauchy–Riemann equation only at z = 0. Hence, by Theorem 3.2.2, f is nowhere analytic.

Theorem 3.2.4 Cauchy–Riemann Equations for Polar Coordinates

Let $f: \mathbb{C} \to \mathbb{C}$ be differentiable at $z_0 \neq 0$. Then, it satisfies

$$\begin{cases} u_r = v_\theta/r \\ u_r = -u_\theta/r \end{cases},$$

i.e., $f_r(z) = -if_\theta(z)/r$ at z_0 where f(x+iy) = u(x,y) + iv(x,y). Moreover, this is equivalent to the Cauchy–Riemann equations.

Proof. By Theorem 3.1.8, f satisfies the Cauchy–Riemann equations at z_0 , i.e., $u_x = v_y$ and $u_y = -v_x$ hold at z_0 . Write $z = re^{i\theta} \neq 0$ with r > 0 so that

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}$$

$$= \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta$$

$$= \frac{1}{r} \left(\frac{\partial v}{\partial y} \cos \theta - \frac{\partial v}{\partial x} \cdot r \sin \theta \right)$$

$$= \frac{1}{r} \left(\frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} \right) = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

and

$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r}$$

$$= \frac{\partial v}{\partial x} \cos \theta + \frac{\partial v}{\partial y} \sin \theta$$

$$= -\frac{1}{r} \left(\frac{\partial u}{\partial y} \cdot r \cos \theta - \frac{\partial u}{\partial x} \cdot r \sin \theta \right)$$

$$= -\frac{1}{r} \left(\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} \right)$$

$$= -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

is satisfied at z_0 .

To see the equivalence, assume the Cauchy–Riemann equations for polar coordinates hold at z_0 . Then, we have

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y}$$

$$= \frac{\partial u}{\partial r} \cos \theta - \frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}$$

$$= \frac{\partial v}{\partial \theta} \frac{\cos \theta}{r} + \frac{\partial v}{\partial r} \sin \theta$$

$$= \frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial y} + \frac{\partial v}{\partial r} \frac{\partial r}{\partial y} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y}$$

$$= \frac{\partial u}{\partial r} \sin \theta + \frac{\partial u}{\partial \theta} \frac{\cos \theta}{r}$$

$$= \frac{\partial v}{\partial \theta} \frac{\sin \theta}{r} - \frac{\partial v}{\partial r} \cos \theta$$

$$= -\left(\frac{\partial v}{\partial \theta} \frac{\partial \theta}{\partial x} + \frac{\partial v}{\partial r} \frac{\partial r}{\partial x}\right) = -\frac{\partial v}{\partial x}.$$

Example 3.2.5 Analyticity of Principal Log

Let f(z) = Log z and let $D = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$ be a domain. Write $\text{Log } z = \ln \sqrt{x^2 + y^2} + i \operatorname{Arg} z$ so $u = \ln \sqrt{x^2 + y^2}$ and $v = \operatorname{Arg}(x + iy)$. u is obviously C^1 on D. As for v, as z is fixed,

one may choose Arg z from

$$\operatorname{Arg} z = \pm \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \arctan\left(\frac{y}{x}\right)$$

depending on z to argue that $\operatorname{Arg} z$ is C^1 on a local neighborhood of z. Hence, v is C^1 on D.

Write $f(z) = \ln r + i\theta$ in polar coordinates. Then, we have $irf_r(z) = i$ and $f_{\theta}(z) = i$. By Theorems 3.2.2 and 3.2.4, f is analytic on D.

Power Series

Quick Review 4.1

Some review on definitions of convergence, Cauchy sequence, completeness, Euclidean norm, Banach space, pointwise and uniform convergence, series.

Definition 4.1.1: Power Series

Given a complex sequence $\langle a_n \rangle_{n \in \mathbb{Z}_{>0}}$,

- (i) $\sum_{n=0}^{\infty} a_n z^n$ is called a *Maclaurin series*. (ii) $\sum_{n=0}^{\infty} a_n (z-b)^n$ is called a *Taylor series* centered at b.

Let $P(z) = \sum_{n=0}^{\infty} a_n z^n$. If the series converges at $z = z_0$, then P(z) is convergent and analytic in $B_{|z_0|}(0)$.

Proof. Note that $|a_n z^n|$ is bounded, say, by M > 0. Thus, for any z with $|z| < |z_0|$,

$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n| |z_0|^n \left(\frac{|z|}{|z_0|}\right)^n \le M \sum_{n=0}^{\infty} \left(\frac{|z|}{|z_0|}\right)^n;$$

hence $\sum_{n=0}^{\infty} a_n z^n$ (absolutely) converges. Similarly, fixing $\varepsilon \in (0, |z_0|)$, for 0 < n < m and $|z| \le |z_0| - \varepsilon$, we have

$$\left| \sum_{j=n+1}^{m} a_n z^n \right| \le M \sum_{j=n+1}^{m} \left(\frac{|z|}{|z_0|} \right)^j \le M \sum_{j=n+1}^{m} \left(1 - \frac{\varepsilon}{|z_0|} \right)^j \to 0$$

as $n, m \to \infty$. Hence, P(z) uniformly converges on $D = \{z \in \mathbb{C} : |z| \le |z_0| - \varepsilon \}$. We now prove the analyticity. Fix z_1 with $|z_1| < |z_0|$ and any $\varepsilon \in \mathbb{R}_{>0}$.

$$L(z) := \frac{P(z) - P(z_0)}{z - z_0} - \sum_{n=1}^{\infty} n a_n z^{n-1}.$$

Take any $\varepsilon \in \mathbb{R}_{>0}$. Let $P_k(z)$ be the kth partial sum of P(z). Then, we have

$$L(z) = \underbrace{\frac{P_k(z) - P_k(z_1)}{z - z_1} - P'_k(z_1)}_{\mu_k(z)} + \underbrace{\sum_{n=k+1}^{\infty} a_n \left(\frac{z^n - z_1^n}{z - z_1} - nz_1^{n-1}\right)}_{\omega_k(z)}.$$

for any k. Now, we have

$$|\omega_k(z)| = \left| \sum_{n=k+1}^{\infty} a_n \left(\sum_{\ell=0}^{n-1} z^{\ell} z_1^{n-1-\ell} - n z_1^{n-1} \right) \right| \le \sum_{n=k+1}^{\infty} |a_n| \cdot 2n (\max\{z, z_1\})^{n-1}$$

Let $P(z) = \sum_{n=0}^{\infty} a_n z^n$. If the series diverges at $z = z_0$, then P(z) is divergent at z for all $|z| > |z_0|$.

Corollary 4.1.4

Let $P(z) = \sum_{n=0}^{\infty} a_n z^n$. Let

$$R \triangleq \sup \left\{ |z| : \sum_{n=0}^{\infty} |a_n| |z|^n \text{ converges} \right\}.$$

Then,

- (i) P(z) converges absolutely in |z| < R;
- (ii) P(z) converges uniformly in $|z| \le r$ for 0 < r < R;
- (iii) P(z) diverges for |z| > R.

Example 4.1.5

Given a power series $P(z) = \sum_{n=0}^{\infty} a_n z^n$, if the radius of the convergence is R, what is the radius of convergence of

$$\sum_{n=1}^{\infty} n a_n z^{n-1}?$$

We have

$$\limsup_{n \to \infty} \sqrt[n]{n|a_n||z|^{n-1}} = \limsup_{n \to \infty} \sqrt[n]{n} \sqrt[n]{|a_n|} |z|^{1-1/n}$$
$$= |z| \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

Hence, by the root test, the radius of convergence is *R*.

Corollary 4.1.6

If $P(z) = \sum_{n=0}^{\infty} a_n z^n$ has the radius of convergence R > 0, then

$$a_n = \frac{P^{(n)}(0)}{n!}$$

for $n \ge 0$.

Corollary 4.1.7

If $\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n$ in some open neighborhood of 0, then $a_n = b_n$ for all $n \ge 0$.

Complex Integration and Cauchy's Theorem

5.1 Definitions

Lemma 5.1.1

Let $f:[a,b]\to\mathbb{C}$ be a continuous function. Then,

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leq \int_a^b |f(t)| \, \mathrm{d}t.$$

Proof.

Definition 5.1.2: Curves on Complex Plane

Given two continuous real-valued function x(t) and y(t) defined on [a, b],

$$z(t) = x(t) + iy(t)$$

is called a (parametrized) curve on \mathbb{C} .

Definition 5.1.3: Simple and Closed Curve

Let Γ : z(t) = x(t) + iy(t) be a (parametrized) curve on \mathbb{C} .

(i) Γ is said to be *simple* if it has no self-intersection. In other words,

$$z(t_1) \neq z(t_2)$$
 whenever $t_1 \neq t_2$ for t_1 or $t_2 \in (a, b)$.

(ii) Γ is said to be *closed* if z(a) = z(b).

Chapter 6 Conformal Mapping