Cell Phone Anomaly Detection

Hong Tang

https://www.linkedin.com/in/hong-tang/

Summary and Recommendation

• Why: detect anomaly using ML to motivate optimization in base station

Findings:

- Decrease in resources usage and decrease in active user number tends to have high correlation with occurrence of anomaly
- Feature engineering improves prediction accuracy
- KNN imputation outperforms other 6 methods
- Final selected model has robust AUC 0.94 in both training and testing set

Lessons Learned and Best Practices

- Focus on feature engineering: creating two additional features from CellNum significantly improve AUC
- ML Pipeline makes feature engineering, modeling easy to read and maintain

• Plan Forward:

- Improve feature engineering;
- Investigate unsupervised classification

ML Process

Feature EDA

Existing numerical features

Model Selection

Simple Logistic regression

Feature EDA

Time features

Numerical features
Categorical features
Generate new features

Modeling OVART

imputation methods

Log transform

Outlier treatment

Further feature engineering

Finetune RFC

Model Deployment

Summary

recommendation

Univariate Feature Analysis

- Skewed distribution for most features; log transformation is recommended to be applied prior to modeling
- In general, Unusual features(blue) tend to be more skewed compared to usual features(maroon)

Summary Decrease in Resources usage DL PRBUsageDL PRB Medium impact to anomaly detection Resources Very high collinearity between usage metrics Usage 0.44 Carrier **Increase in carrier Throughput Throughput** Unlikely has any impact on 0.35 maxThr_DL anomaly 0.22 0.32 0.34 0.42 0.43 0.15 **Active User** 1.9e-05 0.088 0.053 0.12 -0.079 0.23 **Equipment** 0.42 0.18 0.19 0.42 0.18 0.35 **Feature Correlation** -0.12 -0.096-0.068-0.062-0.069-0.021-0.19-0.029-0.14-0.12With Target

PRBUsageUL PRBUsageDL meanThr_DL meanThr_UL maxThr_DL

meanUE_DL meanUE_UL

maxThr_UL

Decrease Active User Equipment

- Active Number ofUser
 Equipment=>Medium to strong
 correlation with anomaly or
 unusual behavior
- Strong colinearlity

- 0.6

-0.4

- 0.2

Importance of Influence from RandomForrest Modeling

Active User Equipment and Resources Usage are big hitter for anomaly detection

Data Colineality with Unusal labels

- In general, KDE distribution with significant difference or cross plots with clear separation could be informative for classification
- Strong colineality between MaxUE_DL-MaxUE_UL-MeanUE_DL-MeanUE_UL, should be addressed in modeling stage
- Bimodal distribution on maxThr_UL, maxThr_DL(two clear cloud groups)

Imputation Methods Sensitivity Study

- Per customer request, six imputation methods are tested;
- relating AUC indicates that there is no significant improvement of final AUC.
- The tests were done by holding other modeling parameters are the same, only vary imputation methods.

Methods	Training AUC	Test AUC
KNN Impute	0.917	0.903
Iterative Impute	0.915	0.903
Simple Impute	0.917	0.902
Median Impute	0.915	0.901
RandomSample Impute	0.914	0.899
Median Imputewith endpoints	0.914	0.898

Feature Engieering Steps Sensitivity Study

- IQR outlier treatment and Log Transformation were tested on the data set.
- The impact on final AUC is low; however, these process are still recommended since they allows input data to better follow statistics assumptions (normality)
- These feature engineering steps are implemented into data processing pipeline for streamlined deployment

Methods	Training AUC	Test AUC
Outlier Treatment	0.917	0.901
No Outlier Treatment	0.917	0.900
Log Transformation	0.917	0.902
No Log Tranformation	0.915	0.901

Model improvement from additional feature creation

1.0

Positive 0.4 **ROC Curve**

AUC improves from 90-94%

XaLTE: X is the base station

a is the cell within base station

Benchmark Kaggle ranking 17 place

