# 算法设计与分析实验报告

| 实验名称:周游                                  | 骑士问题                                                                    |
|------------------------------------------|-------------------------------------------------------------------------|
| 一、问题陈述,相关背景、应用及                          |                                                                         |
| 何才能让骑士不重不漏的经过棋盘上的每个棒                     | 骑士(knight,马)位于任意一个位置。问如各?本问题中已知骑士位置(m,n),其中<br>「用 8*8 矩阵输出,其中值表示骑士到达此位置 |
|                                          | 日字型两格点间连一条无向线,那么整个棋盘<br>一次,所以骑士的路径是一条哈密顿回路。现<br>条哈密顿通路。                 |
| 结合上一次实验知道,一个图上的哈<br>模拟骑士运动,并且在此基础上进行优化。标 | 密顿通路是否存在是 NP 完全问题。所以考虑<br>莫拟的时候可以使用递归的办法。                               |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |
|                                          |                                                                         |

### 二、模型拟制、算法设计和正确性证明

因为图中的路径是高度对称的,即成日字型分布,且方向固定为 8 个方向,长度也固定,所以考虑用方向数组来表示图上路径。

考虑到骑士运动时不能走重复的路径,而且最后要输出骑士的运动轨迹,所以用一个 8\*8 的状态数组保存格点的状态,0 的话就是格点没有被走过,i!=0 的话就是格点被遍历的顺序是第 i 个。

考虑递归模拟骑士的运动:

如果当前已经跳完了所有格点,就结束递归,输出路径。

如果当前没有可达格点(没有走过的可以到达的格点)而且还没有跳完所有格点, 就返回上一步。

如果当前有可达格点,就依方向数组的顺序,并且递归下一层。

这个算法可以找出所有可能的路径,相当于是模拟一个骑士在棋盘上移动,如果进入了死胡同就会回退,所以可以找出所有的路径。

只要一条路径的话就在找到第一条可行路径时退出所有循环就可以了。

在测试过程中,发现有些情况是比较特殊的:



如图,黑色格点表示当前骑士所在的格点(2,3),5个红色格点和1个绿色格点是 黑色格点的可达格点。

在这种情况下,更推荐黑色格点先遍历绿色格点,因为当前情况下绿色格点的可达格点就 2 个,如果骑士不走绿色格点,而走其他的红色格点的话,那绿色格点的可达格点就只有一个了(3,2),于是,绿色格点就必须是所有后续可行路径上的最后一个结点,这极大地限制的后续路径成功的可能性,所以说推荐先遍历绿色的格点,这样可以先以大概率去找可行的路径,而不是先去找小概率(以绿色格点为终点)的可行的路径(还可能多半没有)。

所以想到一个优化枚举的办法:将当前格点的各个可达格点按照其可达格点数从小 到大排序遍历。优化后的递归方法为:

考虑递归模拟骑士的运动:

如果当前已经跳完了所有格点,就结束递归,输出路径。

如果当前没有可达格点而且还没有跳完所有格点,就返回上一步。

如果当前有可达格点,就依可达格点数从小到大的顺序,并且递归下一层。

| 三、时间和空间复杂性分析                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 如果时找出所有的路径的话,算法的时间复杂度是 $0(8^{}(n*n))$ ,因为一般一个格点的下一个格点有 $8$ 个选择,共选 $n*n$ 次,所以时间复杂度是 $0(8^{}(n*n))$ 。但实际运行中由于只需要找出一条路径,所以算法的时间复杂度会小于 $0(8^{}(n*n))$ ,不知道时间具体的 |
| 复杂度怎么算,但是最坏情况下还是 0(8 <sup>(n*n))</sup> 。<br>空间复杂度在于储存路径的二维数组,其占用的空间是 0(n*n)。                                                                                |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |
|                                                                                                                                                             |

## 四、程序实现和实验测试过程

递归算法用 dfs(th, x, y, n, m) 函数实现,th 表示当前走第 th 步,x, y 表示当前走到了(x, y)格点,n, m 表示格子大小。

找一个格点的可达格点数用 cnt(x, y, n, m)函数实现。

由于格点是高度对称的,有三条对称轴,所以枚举 1/8 的格点作为起点就可以了。测试过程是先枚举出起点位置(i,j),然后 dfs 就可以了。运行结果如下:

| 1 * 1<br>4<br>23<br>20<br>57<br>6<br>51<br>44       | 22<br>19<br>2<br>5<br>50<br>43<br>58<br>7  | 3<br>24<br>21<br>56<br>27<br>60<br>45<br>52 | 18<br>29<br>26<br>49<br>42<br>55<br>8<br>59  | 25<br>14<br>35<br>28<br>61<br>48<br>53<br>46 | 30<br>17<br>32<br>41<br>54<br>39<br>62<br>9 | 13<br>34<br>15<br>36<br>11<br>64<br>47<br>38 | 16<br>31<br>12<br>33<br>40<br>37<br>10<br>63 |
|-----------------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| 1 * 2<br>4<br>7<br>2<br>21<br>48<br>9<br>26<br>23   | 1<br>20<br>5<br>8<br>25<br>22<br>47        | 6<br>3<br>18<br>49<br>46<br>63<br>24<br>27  | 19<br>44<br>37<br>60<br>55<br>50<br>11<br>62 | 36<br>17<br>58<br>45<br>64<br>61<br>28<br>51 | 41<br>38<br>43<br>54<br>59<br>56<br>31      | 16<br>35<br>40<br>57<br>14<br>33<br>52<br>29 | 39<br>42<br>15<br>34<br>53<br>30<br>13<br>32 |
| 1 * 3<br>23<br>2<br>21<br>18<br>25<br>4<br>53<br>44 | 20<br>17<br>24<br>3<br>52<br>45<br>26<br>5 | 1<br>22<br>19<br>46<br>27<br>54<br>43<br>64 | 16<br>29<br>34<br>51<br>58<br>63<br>6<br>55  | 33<br>12<br>47<br>28<br>35<br>56<br>59<br>42 | 30<br>15<br>32<br>57<br>50<br>39<br>62<br>7 | 11<br>48<br>13<br>36<br>9<br>60<br>41<br>38  | 14<br>31<br>10<br>49<br>40<br>37<br>8<br>61  |

#### 所有结果:

1 \* 1

| 1                       | 22                      | 3                   | 18                                                    | 25                   | 30                   | 13                   | 16                   |
|-------------------------|-------------------------|---------------------|-------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|
| 4                       | 19                      | 24                  | 29                                                    | 14                   | 17                   | 34                   | 31                   |
| 23                      | 2                       | 21                  | 26                                                    | 35                   | 32                   | 15                   | 12                   |
| 20                      | 5                       | 56                  | 49                                                    | 28                   | 41                   | 36                   | 33                   |
| 57                      | 50                      | 27                  | 42                                                    | 61                   | 54                   | 11                   | 40                   |
| 6                       | 43                      | 60                  | 55                                                    | 48                   | 39                   | 64                   | 37                   |
| 51                      | 58                      | 45                  | 8                                                     | 53                   | 62                   | 47                   | 10                   |
| 44                      | 7                       | 52                  | 59                                                    | 46                   | 9                    | 38                   | 63                   |
|                         |                         |                     |                                                       |                      |                      |                      |                      |
|                         |                         |                     |                                                       |                      |                      |                      |                      |
| 1 *                     | 2                       |                     |                                                       |                      |                      |                      |                      |
| 1 *<br>4                | 2<br>1                  | 6                   | 19                                                    | 36                   | 41                   | 16                   | 39                   |
|                         |                         | 6                   | 19<br>44                                              | 36<br>17             | 41<br>38             | 16<br>35             | 39<br>42             |
| 4                       | 1                       | -                   |                                                       |                      |                      |                      |                      |
| 4<br>7                  | 1<br>20                 | 3                   | 44                                                    | 17                   | 38                   | 35                   | 42                   |
| 4<br>7<br>2             | 1<br>20<br>5            | 3<br>18             | 44<br>37                                              | 17<br>58             | 38<br>43             | 35<br>40             | 42<br>15             |
| 4<br>7<br>2<br>21       | 1<br>20<br>5<br>8       | 3<br>18<br>49       | 44<br>37<br>60                                        | 17<br>58<br>45       | 38<br>43<br>54       | 35<br>40<br>57       | 42<br>15<br>34       |
| 4<br>7<br>2<br>21<br>48 | 1<br>20<br>5<br>8<br>25 | 3<br>18<br>49<br>46 | <ul><li>44</li><li>37</li><li>60</li><li>55</li></ul> | 17<br>58<br>45<br>64 | 38<br>43<br>54<br>59 | 35<br>40<br>57<br>14 | 42<br>15<br>34<br>53 |

```
1 * 3
23
    20
        1
             16
                 33
                     30
                          11
                              14
2
    17
        22
             29
                 12
                     15
                          48
                              31
21
    24
        19
             34
                 47
                      32
                              10
                          13
18
    3
        46
                 28
                     57
                              49
             51
                          36
25
    52
        27
             58
                 35
                     50
                          9
                              40
    45
4
        54
            63
                 56
                     39
                          60
                              37
53
    26
        43
             6
                 59
                     62
                          41
                              8
    5
        64
                 42
                     7
44
            55
                          38
                              61
1 * 4
40
    37
        16
            1
                 52
                     23
                          14
                              21
    2
17
        39
            42
                 15
                     20
                          51
                              24
38
    41
        36
            19
                 48
                     53
                          22
                              13
3
    18
        47
             56
                 43
                     50
                          25
                              54
46
    35
        44
            49
                 62
                     55
                          12
                              29
7
    4
        63
             32
                 57
                     28
                          61
                              26
34
    45
        6
             9
                 64
                     59
                          30
                              11
5
    8
        33
            58
                 31
                     10
                          27
                              60
2 * 2
19
    16
        51
            2
                 21 6
                          45
                              4
        20
                 52
                     3
                          22
                              7
50
    1
            17
                 23
15
    18
        49
             56
                     44
                          5
                              46
    57
        24
60
                 48
                     55
                          8
                              31
             53
25
    14
        59
             62
                 43
                     32
                          47
                              36
58
    61
        42
                     37
                              9
             33
                 54
                          30
13
    26
        63
             40
                 11
                     28
                          35
                              38
64
    41
        12
            27
                 34
                     39
                          10
                              29
2 * 3
2
    21
        4
             35
                 52
                     19
                              33
                         14
5
    36
        1
             20
                 15
                     34
                          53
                              18
22
    3
                 62
        38
             51
                     17
                          32
                              13
37
    6
        61
             16
                 39
                     50
                          59
                              54
    23
44
        40
            49
                 60
                     63
                          12
                              31
7
    26
        45
            64
                 41
                     48
                          55
                              58
24
    43
        28
            9
                     57
                 46
                          30
                              11
27
    8
        25
            42
                 29
                     10
                          47
                              56
2 * 4
        7
5
    2
             20 37
                     40 17
                              46
8
    21
        4
             1
                 18
                     45
                          36
                              39
```

```
3
                 41
    6
        19
            44
                     38
                         47
                              16
22
    9
        52
             55
                 60
                     43
                          50
                              35
53
    26
        61
            42
                 51
                     56
                         15
                              48
10
    23
        54
            59
                     49
                 64
                         34
                              31
27
    62
        25
            12
                 29
                     32
                          57
                              14
24
    11
        28
            63
                 58
                         30
                              33
                     13
3 * 3
15
    2
        27
            36
                 17
                     12
                          21
                              24
    37
                 26
                     23
28
        16
            13
                          18
                              11
3
    14
        1
             44
                 35
                     20
                         25
                              22
    29
38
        54
            33
                 46
                     43
                         10
                              19
55
   4
        45
            42
                 61
                     34
                         47
                              50
30
    39
        32
                 58
                              9
            53
                     49
                          64
    56
            60
                 7
                     62
                         51
                              48
5
        41
    31
                         8
40
        6
             57
                 52
                     59
                              63
3 * 4
32
                 2
                         20
    15
        30
            41
                     17
                              39
29
    42
        33
            16
                 35
                     40
                         3
                              18
                              21
    31
            1
                 60
                     19
                          38
14
        44
43
    28
        59
            34
                 45
                     36
                         57
                              4
48
    13
        46
            61
                 58
                     53
                         22
                              37
27
    62
                     56
        49
            54
                 51
                         5
                              8
12
                     7
                              23
    47
        64
            25
                 10
                          52
63
    26
                     24
                         9
                              6
        11
            50
                 55
4 * 4
21
    18
        33
            28
                 23
                     8
                          3
                              6
    29
        22
                 2
32
            19
                     5
                          26
                              9
                     24
17
   20
        31
            34
                27
                         7
                              4
30
    35
                              25
        40
            1
                 52
                     45
                         10
39
        53
                61
                     48
                              46
    16
            44
                         57
36
   41
        38
            49
                 56
                     51
                         64
                              11
15
    54
        43
            60
                 13
                     62
                         47
                              58
42
   37
        14 55
                50
                     59
                         12
                              63
```

### 五、总结

递归算法要注意起始条件和终止条件。