

Relatório 9 Programação de Alto Desempenho (HPC) usando Open MP – Computação Paralela

Cristiano Lopes Moreira

Matrícula: 119103-0

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implement		
Data	Versão	Turma	Nome do arquivo		Página
08/09/2019	08/09/2019 1 2º. Semestre de 2		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	1 (11)

Relatório 9

Sumário

1.	Introdução	. 3
2.	Desenvolvimento teórico	. 3
2.1.	Descrição do problema:	. 5
2.2.	Algoritmo de Newton, método dos pontos médios, com OpenMP:	. 6
3.	Proposta de implementação	. 7
4.	Experimentação e Resultados	. 8
5.	Conclusão	11
6.	Referências	11

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implemen			
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	08/09/2019 1 2º. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	2 (11)	

1. Introdução

A crescente demanda por sistemas de uso em tempo real em conjunto com os limites físicos que delimitam o crescimento da capacidade de processamento dos computadores vem desde 1955, pela iniciativa da IBM com o arquiteto de computadores Gene Amdahl, impulsionando desenvolvimento de tecnologias de Programação de Alto Desempenho (HPC) e possibilitando a interconexão de múltiplos computadores e processadores com suas unidades de memórias para dividir uma tarefa e compartilhar a capacidade de cada unidade de processamento.

Dentre as técnicas HPC desenvolvidas encontra-se a técnica de computação paralela via open Multi Processing que compartilha a memória de 01 processo entre múltiplas threads executadas entre multi processadores, com métodos consolidar as variáveis que são tratadas individualmente pelas threads.

O objetivo deste trabalho é implementar a tecnologia de computação paralela utilizando open MP, verificar e quantificar seus ganhos e perdas na tarefa de cálculo numérico de integral pelo método de Newton-Cotes pontos médios.

2. Desenvolvimento teórico

Como já afirmado por Amdahl (1967), a décadas os profetas expressaram a alegação de que a organização de um único computador atingiu seus limites, e que avanços verdadeiramente significativos podem ser feitos apenas pela interconexão de uma multiplicidade de computadores de maneira a permitir uma solução cooperativa.

Geralmente, métodos de computação paralela têm sido usados para aumentar o desempenho do sistema ou aumentar sua disponibilidade, porém a busca por esta interconexão trilha os desafios de conflitos no uso de recursos simultâneos como memória, discos, i/o. Três pontos são limitantes no progresso da computação com

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implementa			
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	08/09/2019 1 2º. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	3 (11)	

Relatório 9

multiprocessadores: custo, facilidade de aplicação e desempenho (RODGERS, 1985).

No que tange a custos, apartado do elevado custo de memória cache (tipicamente integrada direto na CPU), que reduz os problemas de conflitos e colisões no uso de memória entre os processadores; o crescimento da oferta dos elementos de hardware nos anos entre 2017 e 2019 reduziu os valores dos elementos computacionais que não se mostra mais um grande limitante para a computação com multiprocessadores.

No limitante de facilidade de aplicação é possível verificar que as práticas de design de sistemas de hardware e software que produzem um bom desempenho de processador monolítico quando aplicadas a multiprocessadores levam a gargalos de desempenho devido à largura de banda de memória e falta de recursos de serviços do sistema. O próprio sistema operacional gera algumas dependências de serialização, o que limita o desempenho da adição de múltiplos processadores, sendo o ponto mais importante a interação física do sistema de interconexão com o sistema de memória, já que os processadores compartilham estes recursos.

Uma das técnicas utilizadas para contornar o desafio do compartilhamento dos recursos de memória é a arquitetura de endereçamento virtual de memória, mas além de adicionar uma complexidade na gestão de tabelas de indexação de memória, cria uma latência adicional e consequente Overhead de gerenciamento do paralelismo (podendo variar de acordo com o tamanho do problema e número de núcleos utilizados) que culminando em uma redução do desempenho da aplicação [3] e [4].

Outra abordagem, ainda na parte de aplicação, é a definição de arquiteturas para uso da memória e do gerenciamento das aplicações:

Estrutura de conexão de memória por

- Multiprocessadores com barramento compartilhado no tempo
- Multiprocessadores com chave de barra cruzada

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório e implementa		
Data	Versão	Turma	Nome do arquivo		Página
08/09/2019	08/09/2019 1 2°. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	4 (11)

Multiprocessadores com memória multiportas

Gestão das aplicações por

- Supervisor separado em cada processador
- Sistema operacional mestre-escravo
- Sistema operacional de supervisor flutuante

De todas as formas os sistemas de multiprocessadores compartilham (memoria, I/O, devices, interrupções de sistemas etc.) e recursos como memória e I/O são atribuídos dinamicamente a processos, e não permanentemente conectados aos processadores (RODGERS, 1985).

Nos estudos realizados por Amdahl (1967) ele já observava que a fração computacional responsável por gerenciamento de memória corresponde cerca de 40%; esse fato somado as instruções que são necessariamente sequencias, como I/O, geram um gargalo a todo o processamento e coloca um limite superior na aceleração

Aceleração
$$S = \frac{1}{r_s + \frac{r_p}{n}}$$
 (1)

Onde $r_s+r_p=1$ (2) e r_s representa a proporção da porção sequencial em um programa.

Levando (2) em (1)
$$S = \frac{1}{(1 - r_p) + \frac{r_p}{n}}$$
 (3)

2.1. Descrição do problema:

Deseja-se calcular a integral da função abaixo utilizando o método dos Pontos Médios, com adaptação do resultado pela variação da taxa de erro, implementada

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatóri implemen			
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	09/2019 1 2º. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	5 (11)	

com computação paralela utilizando openMP, e avaliar a eficiência do paralelismo em processadores multicores de 8 cores.

Função
$$y = \frac{4}{1+x^2} \tag{4}$$

2.2. Algoritmo de Newton, método dos pontos médios, com OpenMP:

O algoritmo de integração numérica pelo método dos pontos médios, de integração por aproximação, utiliza a metodologia de Newton-Cotes variando as fórmulas de Newton-Cotes em cada caso, para calcular a função integral determinada. Suas operações consistem em calcular o a função f(x), calcular a integral da função f(x), calcular a precisão da integral, calcular e retornar o número de subintervalos são necessários para uma dada precisão.

Sua integração utilizando openMP é realizada pela divisão da tarefa no loop "for" entre "n" threads, de um mesmo processo, que compartilham a memória em suas interações e agrupa o resultado de cada thread pela rotina "reduction" do openMP.

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implemen			
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	08/09/2019 1 2º. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	6 (11)	

Seus métodos principais são:

Seus métodos principais são:

construtor (): inicializa a função.

rg_medio (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra dos pontos médios.

rg_trapezio (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra trapezoidal.

rg_simpson (x0, x1, erro): recebe o intervalo superior, intervalo inferior e taxa de erro aceitável, e realiza os cálculos e divisões dos intervalos para retornar o valor da integral utilizando a regra de simpson.

prtAccurate(), retorna a taxa de erro no cálculo da derivada;

qtPassos, retorna o número de intervalos necessários para calcular a integral com a taxa de erro aceitável.

opm_parallel for: divide o processo entre as threads e pelo reduction agrupa as váriáveis

3. Proposta de implementação

Pseudocódigo:

Adiciona biblioteca omp

Calcula integral (double a, double b, double erro) delta = (a+b)/2

> Integral = calcula integral (a, b); Erro = calcula erro integral

enquanto (erro > precisao)

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi		Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	08/09/2019 1 2º. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	7 (11)	

Relatório 9

delta = delta /2
integral=0
erro=0

#inicializa open MP no loop com redução para integral e erro
para passo = início até passo < fim, incrementa passo +1
x= (passo*delta+ passo*delta+delta)/2
integral = integral + delta * calculaf(x);
erro = erro +calcula erro integral
Retorna integral

4. Experimentação e Resultados

Foram executados 230 ciclos com 16.7 milhões subdivisões sendo distribuída a tarefa entre threads de um mesmo processo utilizando openMP da seguinte forma: 1 acrescido em 1 até 10 threads, de 10 acrescido de 10 até 100 threads e de 100 acrescido de 50 até 250; como observação inicial do resultado comparado com a aplicação executada sem nenhuma técnica de paralelismo.

Ambiente:

Processoador model name: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 8 cores

OS Linux openSUSE Leap 15.1

Resultado do cálculo da área da sob a função $f(x)=4/(1+x^2)$

Newton-Cotes regra dos pontos médios							
N	Integral	Erro					
16.777.215	3.1415924152	-0.0000000000000473695					

Aluno		RA/Matrícula	Professor	Tipo		
Cristiano Lop	es Moreira	119103-0	Dr Reinaldo Bianchi Relatório implemen			
Data	Versão	Turma	Nome do arquivo		Página	
08/09/2019	08/09/2019 1 2°. Semestre de 2019		PEL_216_Relatório_9_Cristiano_Mo	reira.doc	8 (11)	

Relatório 9

Tempo de execução por threads com openMP

			N	úmero d	a Execu	ção - Res	sultado	[segundo	os]		
threads	1	2	3	4	5	6	7	8	9	10	Média
S/openMP	4.72	4.74	4.7	4.73	4.7	4.74	4.63	4.7	4.96	4.66	4.728
1	7.94	5.22	5.45	5.06	4.69	4.89	5.04	4.96	5.04	5	5.329
2	3.01	3.26	3.3	3.07	3.43	3.11	3.32	3.29	3.31	3.09	3.219
3	2.28	2.34	2.4	2.39	2.65	2.38	2.44	2.57	2.44	2.54	2.443
4	1.85	1.89	1.91	2.02	2.16	2.01	2.06	2.17	2.05	2.02	2.014
5	1.8	2.02	1.8	1.96	2.02	1.82	1.9	1.68	1.94	1.81	1.875
6	1.66	1.55	1.61	1.72	1.77	1.73	1.56	1.55	1.69	1.52	1.636
7	1.4	1.6	1.53	1.48	1.46	1.42	1.46	1.49	1.46	1.55	1.485
8	1.55	1.58	1.56	1.6	1.49	1.5	1.51	1.51	1.5	1.53	1.533
9	1.44	1.41	1.43	1.42	1.46	1.44	1.45	1.44	1.48	1.44	1.441
10	1.37	1.42	1.49	1.66	1.57	1.43	1.42	1.44	1.46	1.43	1.469
20	1.39	1.34	1.36	1.35	1.39	1.34	1.36	1.35	1.35	1.34	1.357
30	1.32	1.25	1.29	1.32	1.31	1.35	1.33	1.32	1.32	1.3	1.311
40	1.36	1.33	1.34	1.3	1.26	1.27	1.33	1.31	1.29	1.37	1.31
50	1.27	1.26	1.3	1.24	1.25	1.27	1.3	1.27	1.27	1.26	1.269
60	1.28	1.24	1.39	1.24	1.23	1.29	1.25	1.28	1.24	1.25	1.269
70	1.24	1.22	1.22	1.23	1.21	1.23	1.27	1.24	1.24	1.26	1.236
80	1.22	1.24	1.26	1.25	1.24	1.23	1.22	1.23	1.22	1.22	1.233
90	1.24	1.23	1.24	1.24	1.25	1.24	1.24	1.23	1.24	1.24	1.239
100	1.21	1.19	1.22	1.2	1.21	1.24	1.22	1.21	1.23	1.22	1.215
150	1.18	1.18	1.22	1.21	1.18	1.2	1.22	1.22	1.22	1.2	1.203
200	1.21	1.22	1.21	1.23	1.23	1.22	1.26	1.21	1.2	1.19	1.218
250	1.2	1.22	1.22	1.21	1.22	1.19	1.2	1.24	1.22	1.21	1.213

Tempo de execução por threads com openMP

		Número da Execução - Resultado [segundos]									
threads	1	2	3	4	5	6	7	8	9	10	Média
50	1.27	1.26	1.3	1.24	1.25	1.27	1.3	1.27	1.27	1.26	1.269
100	1.21	1.19	1.22	1.2	1.21	1.24	1.22	1.21	1.23	1.22	1.215
150	1.18	1.18	1.22	1.21	1.18	1.2	1.22	1.22	1.22	1.2	1.203
200	1.21	1.22	1.21	1.23	1.23	1.22	1.26	1.21	1.2	1.19	1.218
250	1.2	1.22	1.22	1.21	1.22	1.19	1.2	1.24	1.22	1.21	1.213
500	1.28	1.26	1.26	1.23	1.26	1.24	1.24	1.25	1.24	1.24	1.25
1000	1.38	1.41	1.39	1.38	1.38	1.37	1.37	1.39	1.42	1.38	1.387
5000	4.74	4.64	4.53	4.57	4.67	4.77	4.81	4.96	4.76	4.71	4.716
10000	15.37	16.92	15.66	15.99	15.63	15.53	16.28	15.26	15.6	15.6	15.784

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
08/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_9_Cristiano_Moreira.doc		9 (11)

Relatório 9

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo	Página	
08/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_9_Cristiano_Mo	L_216_Relatório_9_Cristiano_Moreira.doc 10 (

5. Conclusão

O acréscimo de threads paralelos até o máximo do número de cores do processador acelera a execução da tarefa computacional, porém não proporcional à quantidade de cores adicionadas, é observada reduções do acréscimo de aceleração a cada processador adicionado em confirmação da lei de Amdahl.

Para acréscimos de threads acima do número de cores do processador observa-se que o comportamento é contrário, desacelerando a execução da tarefa computacional de forma exponencial com a quantidade de processos adicionados, o que confirma os custos de Overhead mensurados nos trabalhos de Höfinger e Haunschmid (2017) e Oliveira et al. (2018).

6. Referências

- [1] AMDAHL, Gene M.. Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS SPRING JOINT COMPUTER CONF, 67., 1967, Atlantic City. (**Spring**) **Proceedings of the April 18-20**. Reston: Afips Press, 1967. v. 30, p. 483 485
- [2] RODGERS, David P.. Improvements in Multiprocessor System Design. In: ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 12., 1985, Boston. ISCA '85 Proceedings. Los Alamitos: Ieee Computer Society Press, 1985. p. 225 - 231.
- [3] HÖFINGER, Siegfried; HAUNSCHMID, Ernst. **Modelling parallel overhead from simple run-time records**. 2017. The Journal of Supercomputing. Disponível em: https://doi.org/10.1007/s11227-017-2023-9. Acesso em: 31 mar. 2017.
- [4] OLIVEIRA, Victor H. F. et al. Application Speedup Characterization: Modeling Parallelization Overhead and Variations of Problem Size and Number of Cores. In: ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, 18., 2018, Berlin. **Proceeding ICPE '18 Companion of the 2018**. New York: Acm, 2018. p. 43 44

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
08/09/2019	1	2º. Semestre de 2019	PEL_216_Relatório_9_Cristiano_Moreira.doc		11 (11)