MATH 355: HOMEWORK 1

ALEXANDER LEE

Exercise 1 (1.2.2). Suppose towards a contradiction that there is a rational number $r \in \mathbf{Q}$ satisfying $2^r = 3$. Since $r \in \mathbf{Q}$, we can write $r = \frac{p}{q}$ for some $p, q \in \mathbf{Z}$ with $q \neq 0$. Thus, we have $2^{\frac{p}{q}} = 3 \Rightarrow 2^p = 3^q$. TODO

Exercise 2 (1.2.3). (a) False. Consider infinite set of the form $A_n = [0, \frac{1}{n}]$ for $n \in \mathbb{N}$. Our definition of A_n satisfies $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \cdots$. However, notice that $\bigcap_{n=1}^{\infty} A_n = \{0\}$, which is not an infinite set.

- (b) True
- (c) Let $A = \{0\}$, $B = \{0, 1\}$, and $C = \{2, 3\}$. Then,

$$A \cap (B \cup C) = \{0\} \cap (\{0,1\} \cup \{2,3\}) = \{0\},\$$

but

$$(A \cap B) \cup C = (\{0\} \cap \{0,1\}) \cup \{2,3\} = \{0,2,3\}.$$

Here, $A \cap (B \cup C) \neq (A \cap B) \cup C$.

- (d) True.
- (e) True.

Exercise 3 (1.2.6). (a) Suppose $a, b \in \mathbf{R}$ where a, b > 0. We have that |a + b| = |a| + |b|. We also have that |-a + (-b)| = |-(a + b)| = |a + b| = |-a| + |-b| = |a| + |b|. Thus, the triangle inequality holds when a and b have the same sign.

(b) Given $a, b \in \mathbf{R}$,

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$\leq |a|^{2} + 2|a||b| + |b|^{2}$$

$$= (|a| + |b|)^{2}. \quad \Box$$

(c) Given $a, b, c, d \in \mathbf{R}$,

$$|a-b| = |(a-c) + (c-d) + (d-b)|$$

 $\leq |a-c| + |(c-d) + (d-b)|$ (by the triangle inequality)
 $\leq |a-c| + |c-d| + |d-b|$ (by the triangle inequality). \square

(d) Given $a, b \in \mathbf{R}$,

$$||a| - |b|| = ||a - b + b| - |b||$$

 $\leq ||a - b| + |b| - |b||$ (by the triangle inequality)
 $= ||a - b||$
 $= |a - b|$. \square

Exercise 4 (1.2.8). (a) Impossible.

(b) Let $f: \mathbf{N} \to \mathbf{N}$ be defined by $f(a) = |a|, a \in \mathbf{N}$.

(c) Impossible.

Exercise 5 (1.2.10).

Exercise 6 (1.3.2).

Exercise 7 (1.3.3).

Exercise 8 (1.3.6).