SCORE Search Results Details for Application 10552515 and Search Result 20080630_144100_us=10-552-515-7 rp;

Score Home Retrieve Application SCORE System SCORE Comments /	
- SPARA HISTRA - HATRIANA BARRIJANI STIAN STIAN STIAN STIAN STIAN STIAN STANDARD SAME STANDARD STANDAR	
Concretions (Circus Auditoria Contra	

This page gives you Search Results detail for the Application 10552515 and Search Result 20080630_144100_us-10-552-515-7. rpr.

Go Back to previous page

GenCore version 6.2.1
Copyright (c) 1993 - 2008 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: June 30, 2008, 17:45:41; Search time 6 Seconds

(without alignments)

157.446 Million cell updates/sec

Title: US-10-552-515-7

Perfect score: 40

Sequence: 1 ILILSKIYV 9

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : PIR_80:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2	33 32	82.5 80.0			A99100 T47314	phosphatidylinosit hypothetical prote

3	32	80.0	117	2	H86640	ribonuclease P (EC
4	32	80.0	148	2	H72781	hypothetical prote
5	32	80.0	735	2	T39464	hypothetical prote
6	31	77.5	264	2	T26558	hypothetical prote
7	31	77.5	285	2	T01119	hypothetical prote
8	31	77.5	314	2	T11711	probable small GTP
9	31	77.5	758	2	S46625	finger protein YJL
10	30	75.0	143	2	F95116	GtrA family protei
11	30	75.0	143	2	D97986	mesH proteine [imp
12	30	75.0	204	2	S22616	hypothetical prote
13	30	75.0	260	2	G64690	type IIS restricti
14	30	75.0	286	2	G90140	conserved hypothet
15	30	75.0	306	2	B82396	probable chemotaxi
16	30	75.0	365	2	T04718	hypothetical prote
17	30	75.0	486	2	T44639	capsular polysacch
18	30	75.0	848	2	H64208	oligopeptide trans
19	30	75.0	861	2	S59770	probable membrane
20	30	75.0	1022	2	S50534	hypothetical prote
21	30	75.0	1223	2	S43579	C28A5.1 protein (c
22	29	72.5	127	2	S02163	spore germination
23	29	72.5	156	2	D81343	probable integral
24	29	72.5	166	2	F97128	probable membrane
25	29	72.5	191	2	D86358	hypothetical prote
26	29	72.5	249	2	C83795	hypothetical prote
27	29	72.5	255	1	SNHUC8	proteasome endopep
28	29	72.5	255	1	SNRTC8	proteasome endopep
29	29	72.5	255	2	S38529	proteasome endopep
30	29	72.5	280	2	C82490	probable potassium
31	29	72.5	325	2	JN0148	necdin, brain - mo
32	29	72.5	329	2	JC5173	stress response pr
33	29	72.5	330	2	T29675	hypothetical prote
34	29	72.5	346	2	E72672	hypothetical prote
35	29	72.5	359	2	B59105	hypothetical prote
36	29	72.5	381	2	G89009	protein R08F11.5 [
37	29	72.5	393	2	H72352	lipopolysaccharide
38	29	72.5	411	2	A96985	uncharacterized co
39	29	72.5	443	2	B26696	hypothetical prote
40	29	72.5	445	2	E22845	hypothetical prote
41	29	72.5	450	2	T25542	hypothetical prote
42	29	72.5	564	2	G86358	protein Similar to
43	29	72.5	595	2	AI0042	thiol, disulfide in
44	29	72.5	617	2	D90487	maltose ABC transp
45	29	72.5	746	2	S67203	probable membrane

ALIGNMENTS

```
RESULT 1
A99100
```

phosphatidylinositol 4-kinase [imported] - Guillardia theta nucleomorph
C; Species: nucleomorph Guillardia theta

A;Note: a nucleomorph is the vestigial nucleus of a eukaryotic endosymbiont C;Date: 10-May-2001 #sequence_revision 10-May-2001 #text_change 09-Jul-2004 C;Accession: A99100

R; Douglas, S.; Zauner, S.; Fraunholz, M.; Beaton, M.; Penny, S.; Deng, L.T.; Wu, X.; Reith, M.; Cavalier-Smith, T.; Maier, U.G.

```
Nature 410, 1091-1096, 2001
A; Title: The highly reduced genome of an enslaved algal nucleus.
A; Reference number: A99082; MUID:11323671; PMID:11323671
A; Accession: A99100
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-521 < DOU>
A;Cross-references: UNIPROT:Q98RM0; UNIPARC:UPI000009662D; GB:AF165818; NID:g13794553; PIDN:
AAK39928.1; GSPDB:GN00150
C: Genetics:
A; Gene: PI4K
A; Map position: 1
A; Genome: nucleomorph
C; Keywords: nucleomorph
 Query Match
                          82.5%; Score 33; DB 2; Length 521;
 Best Local Similarity
                          66.7%; Pred. No. 33;
 Matches
           6; Conservative 2; Mismatches
                                                1; Indels
                                                                 0; Gaps
                                                                              0;
Qу
            1 ILILSKIYV 9
              | :||||:
Db
          234 IFLLSKIYI 242
RESULT 2
T47314
hypothetical protein T12K4.10 - Arabidopsis thaliana
C; Species: Arabidopsis thaliana (mouse-ear cress)
C; Date: 20-Apr-2000 #sequence_revision 20-Apr-2000 #text_change 09-Jul-2004
C; Accession: T47314
R; Monfort, A.; Casacuberta, E.; Puigdomenech, P.; Mewes, H.W.; Rudd, S.; Lemcke, K.; Mayer,
K.F.X.; Quetier, F.; Salanoubat M.Mewes, H.W.; Rudd, S.; Lemcke, K.; Mayer, K.F.X.
submitted to the Protein Sequence Database, April 2000
A; Reference number: Z24460
A; Accession: T47314
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-98 < MON>
A; Cross-references: UNIPROT: 09M2A8; UNIPARC: UPI00000A9E99; EMBL: AL138640
A; Experimental source: cultivar Columbia; BAC clone T12K4
C; Genetics:
A; Map position: 3
A; Introns: 50/3; 74/3
A; Note: T12K4.10
  Query Match
                          80.0%; Score 32; DB 2; Length 98;
 Best Local Similarity 66.7%; Pred. No. 10;
 Matches
          6; Conservative 2; Mismatches 1; Indels
                                                                 0; Gaps
                                                                              0;
           1 ILILSKIYV 9
Qу
             |:|| |:||
           33 IIILKKLYV 41
Db
RESULT 3
H86640
ribonuclease P (EC 3.1.26.5) [imported] - Lactococcus lactis subsp. lactis (strain IL1403)
```

```
C; Species: Lactococcus lactis subsp. lactis
C; Date: 23-Mar-2001 #sequence_revision 23-Mar-2001 #text_change 05-Oct-2004
C; Accession: H86640
R; Bolotin, A.; Wincker, P.; Mauger, S.; Jaillon, O.; Malarme, K.; Weissenbach, J.; Ehrlich,
S.D.; Sorokin, A.
Genome Res. 11, 731-753, 2001
A; Title: The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp.
lactis IL1403.
A; Reference number: A86625; MUID:21235186; PMID:11337471
A; Accession: H86640
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-117 <STO>
A;Cross-references: UNIPROT:Q9CJ73; UNIPARC:UPI000013442D; GB:AE005176; PID:g12722976; PIDN:
AAK04226.1; GSPDB:GN00146
A; Experimental source: strain IL1403
C; Genetics:
A; Gene: rnpA
C; Superfamily: bacterial ribonuclease P, protein component
C; Keywords: hydrolase
  Query Match
                          80.0%; Score 32; DB 2; Length 117;
  Best Local Similarity 77.8%; Pred. No. 12;
  Matches
            7; Conservative 1; Mismatches 1; Indels
                                                                  0; Gaps
                                                                              0;
            1 ILILSKIYV 9
Qу
              : | | | | | | |
Db
          104 VLKLSKIYV 112
RESULT 4
H72781
hypothetical protein APE0241 - Aeropyrum pernix (strain K1)
C; Species: Aeropyrum pernix
C; Date: 20-Aug-1999 #sequence_revision 20-Aug-1999 #text_change 09-Jul-2004
C; Accession: H72781
R; Kawarabayasi, Y.; Hino, Y.; Horikawa, H.; Yamazaki, S.; Haikawa, Y.; Jin-no, K.;
Takahashi, M.; Sekine, M.; Baba, S.; Ankai, A.; Kosugi, H.; Hosoyama, A.; Fukui, S.; Nagai,
Y.; Nishijima, K.; Nakazawa, H.; Takamiya, M.; Masuda, S.; Funahashi, T.; Tanaka, T.;
Kudoh, Y.; Yamazaki, J.; Kushida, N.; Oguchi, A.; Aoki, K.; Kubota, K.; Nakamura, Y.;
Nomura, N.; Sako, Y.; Kikuchi, H.
DNA Res. 6, 83-101, 1999
A; Title: Complete genome sequence of an aerobic hyper-thermophilic Crenarchaeon, Aeropyrum
pernix K1.
A; Reference number: A72450; MUID: 99310339; PMID: 10382966
A; Accession: H72781
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-148 < KAW>
A; Cross-references: UNIPROT: Q9YFK7; UNIPARC: UPI000005DA72; DDBJ: AP000058; NID: q5103388;
PIDN:BAA79154.1; PID:d1042930; PID:q5103633
A; Experimental source: strain K1
C; Genetics:
A; Gene: APE0241
C; Superfamily: Aeropyrum pernix hypothetical protein APE0241
  Query Match
                          80.0%; Score 32; DB 2; Length 148;
```

```
Best Local Similarity 55.6%; Pred. No. 16;
            5; Conservative 4; Mismatches 0; Indels 0; Gaps
  Matches
                                                                              0;
           1 ILILSKIYV 9
Qу
             |::|||:|:
           89 IVLLSKLYI 97
Db
RESULT 5
T39464
hypothetical protein SPBC1539.05 - fission yeast (Schizosaccharomyces pombe)
C; Species: Schizosaccharomyces pombe
C; Date: 03-Dec-1999 #sequence_revision 03-Dec-1999 #text_change 09-Jul-2004
C; Accession: T39464
R; Mc Dougall, R.; Rajandream, M.A.; Barrell, B.G.; Seeger, K.; Quail, M.; Harris, D.
submitted to the EMBL Data Library, July 1999
A; Reference number: Z21856
A; Accession: T39464
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-735 < MCD>
A;Cross-references: UNIPROT:Q9Y7Z4; UNIPARC:UPI000006BCF4; EMBL:AL096874; PIDN:CAB51337.1;
GSPDB:GN00067; SPDB:SPBC1539.05
A; Experimental source: strain 972h-; cosmid c1539
C; Genetics:
A; Gene: SPDB: SPBC1539.05
A; Map position: 2
A; Introns: 23/3; 157/3; 214/3; 260/3; 337/3; 516/3
  Query Match
                          80.0%; Score 32; DB 2; Length 735;
  Best Local Similarity
                          75.0%; Pred. No. 76;
  Mat.ches
          6; Conservative 2; Mismatches 0; Indels 0; Gaps
                                                                              0;
           1 ILILSKIY 8
QУ
              :: | | | | | |
Db
          505 LIILSKIY 512
RESULT 6
T26558
hypothetical protein Y24F12A.a - Caenorhabditis elegans
C; Species: Caenorhabditis elegans
C; Date: 15-Oct-1999 #sequence_revision 15-Oct-1999 #text_change 09-Jul-2004
C; Accession: T26558
R; Lennard, N.
submitted to the EMBL Data Library, September 1999
A; Reference number: Z20233
A; Accession: T26558
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-264 <WIL>
A; Cross-references: UNIPROT: Q9TVH6; UNIPARC: UPI000017BC4F; EMBL: AL110480; NID: e1542182;
PIDN:CAB54377.1; CESP:Y24F12A.a
A; Experimental source: clone Y24F12A
C; Genetics:
A; Gene: CESP: Y24F12A.a
A; Introns: 36/2; 68/1; 216/3
```

```
77.5%; Score 31; DB 2; Length 264;
  Query Match
 Best Local Similarity
                          85.7%; Pred. No. 46;
 Matches
           6; Conservative 1; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
            3 ILSKIYV 9
Qу
              | | | | | | | :
Db
          228 ILSKIYI 234
RESULT 7
T01119
hypothetical protein At2g32880 [imported] - Arabidopsis thaliana
N; Alternate names: hypothetical protein T21L14.18
C; Species: Arabidopsis thaliana (mouse-ear cress)
C; Date: 12-Feb-1999 #sequence_revision 12-Feb-1999 #text_change 09-Jul-2004
C; Accession: T01119; F84738
R; Rounsley, S.D.; Lin, X.; Ketchum, K.A.; Crosby, M.L.; Brandon, R.C.; Sykes, S.M.; Kaul,
S.; Mason, T.M.; Kerlavage, A.R.; Adams, M.D.; Somerville, C.R.; Venter, J.C.
submitted to the EMBL Data Library, December 1997
A; Description: Arabidopsis thaliana chromosome II BAC T21L14 genomic sequence.
A; Reference number: Z14209
A; Accession: T01119
A; Status: translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-285 < ROU>
A; Cross-references: UNIPROT: 048777; UNIPARC: UPI000009E1EC; EMBL: AC003033; NID: q2702261; PID:
g2702282
A; Experimental source: cultivar Columbia
R; Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.;
Mason, T.M.; Bowman, C.L.; Barnstead, M.E.; Feldblyum, T.V.; Buell, C.R.; Ketchum, K.A.;
Lee, J.J.; Ronning, C.M.; Koo, H.; Moffat, K.S.; Cronin, L.A.; Shen, M.; VanAken, S.E.;
Umayam, L.; Tallon, L.J.; Gill, J.E.; Adams, M.D.; Carrera, A.J.; Creasy, T.H.; Goodman, H.
M.; Somerville, C.R.; Copenhaver, G.P.; Preuss, D.; Nierman, W.C.; White, O.; Eisen, J.A.;
Salzberg, S.L.; Fraser, C.M.; Venter, J.C.
Nature 402, 761-768, 1999
A; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.
A; Reference number: A84420; MUID: 20083487; PMID: 10617197
A; Accession: F84738
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-285 <STO>
A; Cross-references: UNIPARC: UPI000009E1EC; GB: AE002093; NID: g2702282; PIDN: AAB91985.1;
GSPDB:GN00139
C; Genetics:
A; Gene: T21L14.18; At2g32880
A; Map position: 2
A; Introns: 11/1; 54/2; 105/1; 206/2
C; Superfamily: Arabidopsis thaliana hypothetical protein A_TM018A10.12
  Query Match
                          77.5%; Score 31; DB 2; Length 285;
                          55.6%; Pred. No. 50;
 Best Local Similarity
 Matches
           5; Conservative 3; Mismatches 1; Indels
                                                                  0; Gaps
                                                                              0;
            1 ILILSKIYV 9
Qу
              | | | : | : | :
```

269 ILLFSKLYI 277

Db

```
RESULT 8
T11711
probable small GTPase - fission yeast (Schizosaccharomyces pombe)
C; Species: Schizosaccharomyces pombe
C; Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 09-Jul-2004
C; Accession: T11711
R; Seeger, K.; Harris, D.; Wood, V.; Rajandream, M.A.; Barrell, B.G.
submitted to the EMBL Data Library, August 1998
A; Reference number: Z17318
A; Accession: T11711
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-314 <SEE>
A; Cross-references: UNIPROT: 074544; UNIPARC: UPI000006C651; EMBL: AL031532; NID: e1319424; PID:
e1319429
A; Experimental source: strain 972h(-)
C; Genetics:
A; Map position: IIIR
A; Introns: 47/2
A; Note: SPCC777.05
 Query Match
                          77.5%; Score 31; DB 2; Length 314;
 Best Local Similarity 85.7%; Pred. No. 55;
 Matches
           6; Conservative 1; Mismatches
                                                 0; Indels
                                                                   0; Gaps
                                                                               0;
            3 ILSKIYV 9
Qу
              : | | | | | |
          204 VLSKIYV 210
Db
RESULT 9
S46625
finger protein YJL206c - yeast (Saccharomyces cerevisiae)
N; Alternate names: probable membrane protein YJL206c; protein J0316
C; Species: Saccharomyces cerevisiae
C; Date: 13-Jan-1995 #sequence_revision 13-Jan-1995 #text_change 05-Oct-2004
C; Accession: S46625; S56993
R; Purnelle, B.; Coster, F.; Goffeau, A.
Yeast 10, 1235-1249, 1994
A; Title: The sequence of a 36 kb segment on the left arm of yeast chromosome X identifies
24 open reading frames including NUC1, PRP21 (SPP91), CDC6, CRY2, the gene for S24, a
homologue to the aconitase gene ACO1 and two homologues to chromosome III genes.
A; Reference number: S46621; MUID: 95274326; PMID: 7754713
A; Accession: S46625
A; Status: nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-758 < PUR>
A; Cross-references: UNIPROT: P39529; UNIPARC: UPI000013B60A; EMBL: X77688; NID: g1183992; PIDN:
CAA54752.1; PID:q547586
R; Purnelle, B.; Coster, F.; Goffeau, A.
submitted to the Protein Sequence Database, September 1995
A; Reference number: S56977
A: Accession: S56993
A; Molecule type: DNA
A; Residues: 1-758 < PUW>
```

```
A; Cross-references: UNIPARC: UPI000013B60A; EMBL: Z49481; NID: g1015584; PIDN: CAA89502.1; PID:
g1015585; MIPS:YJL206c
C; Genetics:
A; Cross-references: SGD:S0003741
A; Map position: 10L
C; Keywords: DNA binding; nucleus; transcription regulation; transmembrane protein; zinc
finger
F;42-78/Domain: GAL4 zinc binuclear cluster homology <GAL4>
  Query Match
                          77.5%; Score 31; DB 2; Length 758;
 Best Local Similarity
                          75.0%; Pred. No. 1.3e+02;
 Matches
           6; Conservative 2; Mismatches 0; Indels 0;
                                                                     Gaps
                                                                             0;
           1 ILILSKIY 8
Qу
             |||:|:||
Db
         409 ILIMSRIY 416
RESULT 10
F95116
GtrA family protein [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C; Date: 03-Aug-2001 #sequence_revision 03-Aug-2001 #text_change 09-Jul-2004
C; Accession: F95116
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson, S.;
Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn, M.; Kolonay, J.
F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.; Salzberg, S.L.; Lewis, M.R.;
Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.; Utterback, T.R.; Hansen, C.L.;
McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.; Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.; Morrison, D.
A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: F95116
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-143 < KUR>
A;Cross-references: UNIPROT:Q97R28; UNIPARC:UPI000005169E; GB:AE005672; PIDN:AAK75127.1;
PID:g14972484; GSPDB:GN00164; TIGR:SP4SP1011
A; Experimental source: strain TIGR4
C; Genetics:
A; Gene: SP1011
                          75.0%; Score 30; DB 2; Length 143;
 Query Match
 Best Local Similarity
                          71.4%; Pred. No. 42;
          5; Conservative 2; Mismatches 0; Indels 0; Gaps
                                                                           0;
 Matches
           3 ILSKIYV 9
Qу
              | | | | : | :
         134 ILSKVYI 140
Db
RESULT 11
D97986
mesH proteine [imported] - Streptococcus pneumoniae (strain R6)
C; Species: Streptococcus pneumoniae
```

```
C; Date: 22-Oct-2001 #sequence_revision 22-Oct-2001 #text_change 09-Jul-2004
C; Accession: D97986
R; Hoskins, J.A.; Alborn Jr., W.; Arnold, J.; Blaszczak, L.; Burgett, S.; DeHoff, B.S.;
Estrem, S.; Fritz, L.; Fu, D.J.; Fuller, W.; Geringer, C.; Gilmour, R.; Glass, J.S.; Khoja,
H.; Kraft, A.; LaGace, R.; LeBlanc, D.J.; Lee, L.N.; Lefkowitz, E.J.; Lu, J.; Matsushima,
P.; McAhren, S.; McHenney, M.; McLeaster, K.; Mundy, C.; Nicas, T.I.; Norris, F.H.; O'Gara,
M.; Peery, R.; Robertson, G.T.; Rockey, P.; Sun, P.M.; Winkler, M.E.
J. Bacteriol. 183, 5709-5717, 2001
A; Authors: Yang, Y.; Young-Bellido, M.; Zhao, G.; Zook, C.; Baltz, R.H.; Jaskunas, S.R.;
Rosteck Jr., P.R.; Skatrud, P.L.; Glass, J.I.
A; Title: Genome of the Bacterium Streptococcus pneumoniae Strain R6.
A; Reference number: A97872; MUID: 21429245; PMID: 11544234
A; Accession: D97986
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-143 < KUR>
A;Cross-references: UNIPROT:Q8DQ02; UNIPARC:UPI00000E3559; GB:AE007317; PIDN:AAK99720.1;
PID:g15458524; GSPDB:GN00174
C; Genetics:
A; Gene: mesH
 Query Match
                          75.0%; Score 30; DB 2; Length 143;
 Best Local Similarity
                          71.4%; Pred. No. 42;
           5; Conservative 2; Mismatches
 Matches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
            3 ILSKIYV 9
Qу
              | | | | | : | :
Db
          134 ILSKVYI 140
RESULT 12
S22616
hypothetical protein 14.9 - Salmonella choleraesuis
C; Species: Salmonella choleraesuis
C; Date: 22-Nov-1993 #sequence_revision 26-May-1995 #text_change 22-Oct-1999
C; Accession: S22616
R; Brown, P.K.; Romana, L.K.; Reeves, P.R.
Mol. Microbiol. 6, 1385-1394, 1992
A; Title: Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain
M67): the genetic basis of the polymorphism between groups C2 and B.
A; Reference number: S22613; MUID: 92349966; PMID: 1379320
A; Accession: S22616
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-204 <BRO>
A;Cross-references: UNIPARC:UPI00000BBBEC; EMBL:X61917; NID:g47004; PIDN:CAA43910.1; PID:
g47008
C; Superfamily: galactoside acetyltransferase
 Query Match
                          75.0%; Score 30; DB 2; Length 204;
 Best Local Similarity
                          66.7%; Pred. No. 60;
           6; Conservative 2; Mismatches 1; Indels 0; Gaps
 Matches
                                                                              0;
           1 ILILSKIYV 9
Qу
              | | | | | | | | | | | |
Db
         113 ILIGSKVYI 121
```

```
RESULT 13
G64690
type IIS restriction enzyme M1 protein - Helicobacter pylori (strain 26695)
C; Species: Helicobacter pylori
C; Date: 09-Aug-1997 #sequence_revision 09-Aug-1997 #text_change 09-Jul-2004
C; Accession: G64690
R; Tomb, J.F.; White, O.; Kerlavage, A.R.; Clayton, R.A.; Sutton, G.G.; Fleischmann, R.D.;
Ketchum, K.A.; Klenk, H.P.; Gill, S.; Dougherty, B.A.; Nelson, K.; Quackenbush, J.; Zhou,
L.; Kirkness, E.F.; Peterson, S.; Loftus, B.; Richardson, D.; Dodson, R.; Khalak, H.G.;
Glodek, A.; McKenney, K.; Fitzegerald, L.M.; Lee, N.; Adams, M.D.; Hickey, E.K.; Berg, D.
E.; Gocayne, J.D.; Utterback, T.R.; Peterson, J.D.; Kelley, J.M.; Cotton, M.D.; Weidman, J.
M.; Fujii, C.; Bowman, C.; Watthey, L.
Nature 388, 539-547, 1997
A; Authors: Wallin, E.; Hayes, W.S.; Borodovsky, M.; Karpk, P.D.; Smith, H.O.; Fraser, C.M.;
Venter, J.C.
A; Title: The complete genome sequence of the gastric pathogen Helicobacter pylori.
A; Reference number: A64520; MUID: 97394467; PMID: 9252185
A; Accession: G64690
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-260 < TOM>
A;Cross-references: UNIPROT:025920; UNIPARC:UPI00000D30C7; GB:AE000637; GB:AE000511; NID:
g2314536; PIDN:AAD08411.1; PID:g2314538; TIGR:HP1367
C; Genetics:
A; Start codon: TTG
C; Superfamily: type II site-specific DNA-methyltransferase
 Query Match
                          75.0%; Score 30; DB 2; Length 260;
 Best Local Similarity
                          62.5%; Pred. No. 76;
 Matches
            5; Conservative 3; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            2 LILSKIYV 9
             : | | : | | | :
Db
           1 MILNKIYI 8
RESULT 14
G90140
conserved hypothetical protein [imported] - Sulfolobus solfataricus
C; Species: Sulfolobus solfataricus
C; Date: 24-May-2001 #sequence_revision 24-May-2001 #text_change 09-Jul-2004
C; Accession: G90140
R; She, Q.; Singh, R.K.; Confalonieri, F.; Zivanovic, Y.; Allard, G.; Awayez, M.J.; Chan-
Weiher, C.C.Y.; Clausen, I.G.; Curtis, B.A.; De Moors, A.; Erauso, G.; Fletcher, C.;
Gordon, P.M.K.; Heikamp-de Jong, I.; Jeffries, A.C.; Kozera, C.J.; Medina, N.; Peng, X.;
Thi-Ngoc, H.P.; Redder, P.; Schenk, M.E.; Theriault, C.; Tolstrup, N.; Charlebois, R.L.;
Doolittle, W.F.; Duguet, M.; Gaasterland, T.; Garrett, R.A.; Ragan, M.A.; Sensen, C.W.; Van
der Oost, J.
submitted to GenBank, April 2001
A; Description: Sulfolobus solfataricus complete genome.
A; Reference number: A99139
A; Accession: G90140
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-286 < KUR>
A; Cross-references: UNIPROT: Q981D0; UNIPARC: UPI0000064167; GB: AE006641; NID: q13813144; PIDN:
```

```
AAK40382.1; GSPDB:GN00155
C; Genetics:
A; Gene: SSO0015
  Query Match
                          75.0%; Score 30; DB 2; Length 286;
 Best Local Similarity
                          55.6%; Pred. No. 83;
 Matches
            5; Conservative 4; Mismatches 0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
           1 ILILSKIYV 9
Qу
             |::||::||
Db
         114 IVLLSQVYV 122
RESULT 15
B82396
probable chemotaxis protein CheV VCA0954 [imported] - Vibrio cholerae (strain N16961
serogroup 01)
C; Species: Vibrio cholerae
C; Date: 18-Aug-2000 #sequence_revision 20-Aug-2000 #text_change 09-Jul-2004
C; Accession: B82396
R; Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.; Dodson, R.J.;
Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.A.; Gill, S.R.; Nelson, K.E.; Read, T.
D.; Tettelin, H.; Richardson, D.; Ermolaeva, M.D.; Vamathevan, J.; Bass, S.; Qin, H.;
Dragoi, I.; Sellers, P.; McDonald, L.; Utterback, T.; Fleishmann, R.D.; Nierman, W.C.;
White, O.; Salzberg, S.L.; Smith, H.O.; Colwell, R.R.; Mekalanos, J.J.; Venter, J.C.;
Fraser, C.M.
Nature 406, 477-483, 2000
A; Title: DNA Sequence of both chromosomes of the cholera pathogen Vibrio cholerae.
A; Reference number: A82035; MUID: 20406833; PMID: 10952301
A; Accession: B82396
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-306 <HEI>
A;Cross-references: UNIPROT:Q9KKZ6; UNIPARC:UPI00000C36E3; GB:AE004422; GB:AE003853; NID:
g9658387; PIDN:AAF96850.1; GSPDB:GN00127; TIGR:VCA0954
A; Experimental source: serogroup O1; strain N16961; biotype El Tor
C; Genetics:
A; Gene: VCA0954
A; Map position: 2
                          75.0%; Score 30; DB 2; Length 306;
  Query Match
 Best Local Similarity 85.7%; Pred. No. 89;
 Matches
          6; Conservative 1; Mismatches
                                                   0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
            2 LILSKIY 8
Qу
             1:1111
Db
         146 LLLSKIY 152
Search completed: June 30, 2008, 17:46:48
```

Job time: 8.375 secs