JEE (ADVANCED) 2018 PAPER 1 PART-III MATHEMATICS

SECTION 1 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks : **0** If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

• For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

Q.1 For a non-zero complex number z, let arg(z) denote the principal argument with $-\pi < arg(z) \le \pi$. Then, which of the following statement(s) is (are) **FALSE?**

(A)
$$arg(-1 - i) = \frac{\pi}{4}$$
, where $i = \sqrt{-1}$

- (B) The function $f: \mathbb{R} \to (-\pi, \pi]$, defined by $f(t) = \arg(-1 + it)$ for all $t \in \mathbb{R}$, is continuous at all points of \mathbb{R} , where $i = \sqrt{-1}$
- (C) For any two non-zero complex numbers z_1 and z_2 ,

$$arg\left(\frac{z_1}{z_2}\right) - arg(z_1) + arg(z_2)$$

is an integer multiple of 2π

(D) For any three given distinct complex numbers z_1 , z_2 and z_3 , the locus of the point z satisfying the condition

$$\arg\left(\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\right) = \pi,$$

lies on a straight line

- Q.2 In a triangle PQR, let $\angle PQR = 30^{\circ}$ and the sides PQ and QR have lengths $10\sqrt{3}$ and 10, respectively. Then, which of the following statement(s) is (are) TRUE?
 - (A) $\angle QPR = 45^{\circ}$
 - (B) The area of the triangle PQR is $25\sqrt{3}$ and $\angle QRP = 120^{\circ}$
 - (C) The radius of the incircle of the triangle PQR is $10\sqrt{3} 15$
 - (D) The area of the circumcircle of the triangle PQR is 100 π

Q.3 Let P_1 : 2x + y - z = 3 and P_2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is (are) TRUE?

- (A) The line of intersection of P_1 and P_2 has direction ratios 1, 2, -1
- (B) The line

$$\frac{3x-4}{9} = \frac{1-3y}{9} = \frac{z}{3}$$

is perpendicular to the line of intersection of P_1 and P_2

- (C) The acute angle between P_1 and P_2 is 60°
- (D) If P_3 is the plane passing through the point (4, 2, -2) and perpendicular to the line of intersection of P_1 and P_2 , then the distance of the point (2, 1, 1) from the plane P_3 is $\frac{2}{\sqrt{3}}$
- Q.4 For every twice differentiable function $f: \mathbb{R} \to [-2, 2]$ with $(f(0))^2 + (f'(0))^2 = 85$, which of the following statement(s) is (are) TRUE?
 - (A) There exist $r, s \in \mathbb{R}$, where r < s, such that f is one-one on the open interval (r, s)
 - (B) There exists $x_0 \in (-4, 0)$ such that $|f'(x_0)| \le 1$
 - (C) $\lim_{x \to \infty} f(x) = 1$
 - (D) There exists $\alpha \in (-4,4)$ such that $f(\alpha) + f''(\alpha) = 0$ and $f'(\alpha) \neq 0$
- Q.5 Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two non-constant differentiable functions. If

$$f'(x) = (e^{(f(x)-g(x))})g'(x)$$
 for all $x \in \mathbb{R}$,

and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE?

(A) $f(2) < 1 - \log_{e} 2$

(B) $f(2) > 1 - \log_e 2$

(C) $g(1) > 1 - \log_e 2$

(D) $g(1) < 1 - \log_e 2$

Q.6 Let $f:[0, \infty) \to \mathbb{R}$ be a continuous function such that

$$f(x) = 1 - 2x + \int_0^x e^{x - t} f(t) dt$$

for all $x \in [0, \infty)$. Then, which of the following statement(s) is (are) TRUE?

- (A) The curve y = f(x) passes through the point (1, 2)
- (B) The curve y = f(x) passes through the point (2, -1)
- (C) The area of the region $\{(x,y) \in [0,1] \times \mathbb{R} : f(x) \le y \le \sqrt{1-x^2} \}$ is $\frac{\pi-2}{4}$
- (D) The area of the region $\{(x,y) \in [0,1] \times \mathbb{R} : f(x) \le y \le \sqrt{1-x^2} \}$ is $\frac{\pi-1}{4}$

SECTION 2 (Maximum Marks: 24)

- This section contains EIGHT (08) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the **second decimal place**; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered as answer.

Zero Marks : 0 In all other cases.

Q.7 The value of

$$((\log_2 9)^2)^{\frac{1}{\log_2 (\log_2 9)}} \times (\sqrt{7})^{\frac{1}{\log_4 7}}$$

is .

- Q.8 The number of 5 digit numbers which are divisible by 4, with digits from the set {1, 2, 3, 4, 5} and the repetition of digits is allowed, is _____.
- Q.9 Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, ..., and Y be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, Then, the number of elements in the set $X \cup Y$ is _____.
- Q.10 The number of real solutions of the equation

$$\sin^{-1}\left(\sum_{i=1}^{\infty} x^{i+1} - x \sum_{i=1}^{\infty} \left(\frac{x}{2}\right)^{i}\right) = \frac{\pi}{2} - \cos^{-1}\left(\sum_{i=1}^{\infty} \left(-\frac{x}{2}\right)^{i} - \sum_{i=1}^{\infty} (-x)^{i}\right)$$

lying in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is _____.

(Here, the inverse trigonometric functions $\sin^{-1}x$ and $\cos^{-1}x$ assume values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[0, \pi]$, respectively.)

Q.11 For each positive integer n, let

$$y_n = \frac{1}{n} ((n+1)(n+2)\cdots(n+n))^{\frac{1}{n}}.$$

For $x \in \mathbb{R}$, let [x] be the greatest integer less than or equal to x. If $\lim_{n \to \infty} y_n = L$, then the value of [L] is

Q.12 Let \vec{a} and \vec{b} be two unit vectors such that $\vec{a} \cdot \vec{b} = 0$. For some $x, y \in \mathbb{R}$, let $\vec{c} = x \vec{a} + y \vec{b} + (\vec{a} \times \vec{b})$. If $|\vec{c}| = 2$ and the vector \vec{c} is inclined at the same angle α to both \vec{a} and \vec{b} , then the value of $8\cos^2 \alpha$ is _____.

Q.13 Let a, b, c be three non-zero real numbers such that the equation

$$\sqrt{3} a \cos x + 2 b \sin x = c, \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

has two distinct real roots α and β with $\alpha + \beta = \frac{\pi}{3}$. Then, the value of $\frac{b}{a}$ is ______.

Q.14 A farmer F_1 has a land in the shape of a triangle with vertices at P(0,0), Q(1,1) and R(2,0). From this land, a neighbouring farmer F_2 takes away the region which lies between the side PQ and a curve of the form $y = x^n$ (n > 1). If the area of the region taken away by the farmer F_2 is exactly 30% of the area of ΔPQR , then the value of n is .

SECTION 3 (Maximum Marks: 12)

• This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.

- Each question has FOUR options. ONLY ONE of these four options corresponds to the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

PARAGRAPH "X"

Let S be the circle in the xy-plane defined by the equation $x^2 + y^2 = 4$.

(There are two questions based on PARAGRAPH "X", the question given below is one of them)

Q.15 Let E_1E_2 and F_1F_2 be the chords of S passing through the point P_0 (1, 1) and parallel to the x-axis and the y-axis, respectively. Let G_1G_2 be the chord of S passing through P_0 and having slope -1. Let the tangents to S at E_1 and E_2 meet at E_3 , the tangents to S at E_1 and E_2 meet at E_3 , and the tangents to E_3 and E_4 meet at E_3 . Then, the points E_3 , E_4 and E_5 lie on the curve

(A)
$$x + y = 4$$

(B)
$$(x-4)^2 + (y-4)^2 = 16$$

(C)
$$(x-4)(y-4) = 4$$

(D)
$$xy = 4$$

PARAGRAPH "X"

Let S be the circle in the xy-plane defined by the equation $x^2 + y^2 = 4$.

(There are two questions based on PARAGRAPH "X", the question given below is one of them)

Q.16 Let *P* be a point on the circle *S* with both coordinates being positive. Let the tangent to *S* at *P* intersect the coordinate axes at the points *M* and *N*. Then, the mid-point of the line segment *MN* must lie on the curve

$$(A) (x+y)^2 = 3xy$$

(B)
$$x^{2/3} + y^{2/3} = 2^{4/3}$$

$$(C) x^2 + y^2 = 2xy$$

(D)
$$x^2 + y^2 = x^2 y^2$$

PARAGRAPH "A"

There are five students S_1 , S_2 , S_3 , S_4 and S_5 in a music class and for them there are five seats R_1 , R_2 , R_3 , R_4 and R_5 arranged in a row, where initially the seat R_i is allotted to the student S_i , i = 1, 2, 3, 4, 5. But, on the examination day, the five students are randomly allotted the five seats.

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

- The probability that, on the examination day, the student S_1 gets the previously allotted seat R_1 , and **NONE** of the remaining students gets the seat previously allotted to him/her is
 - (A) $\frac{3}{40}$
- (B) $\frac{1}{8}$
- (C) $\frac{7}{40}$ (D) $\frac{1}{5}$

PARAGRAPH "A"

There are five students S_1 , S_2 , S_3 , S_4 and S_5 in a music class and for them there are five seats R_1 , R_2 , R_3 , R_4 and R_5 arranged in a row, where initially the seat R_i is allotted to the student S_i , i = 1, 2, 3, 4, 5. But, on the examination day, the five students are randomly allotted the five seats.

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

- Q.18 For i = 1, 2, 3, 4, let T_i denote the event that the students S_i and S_{i+1} do **NOT** sit adjacent to each other on the day of the examination. Then, the probability of the event $T_1 \cap T_2 \cap T_3 \cap T_4$ is
 - (A) $\frac{1}{15}$
- (B) $\frac{1}{10}$
- (C) $\frac{7}{60}$ (D) $\frac{1}{5}$

END OF THE QUESTION PAPER