Teoretická informatika – 2. domácí úloha

Ondřej Ondryáš (xondry02), 9. listopadu 2022

Příklad 1

Automat přijímá přechodem do cílového stavu f. Bylo by možné v tomto stavu vyprázdnit zásobník, tento krok jsem ale pro přehlednost vynechal. U přechodů jsou zásobníkové symboly uvedeny tak, že nejlevější symbol bude po provedení přechodu na vrcholu zásobníku. V zápisu konfigurací níže je zápis obdobný, tedy dno zásobníku je nejpravější symbol, vrchol je nejlevější.

$$(s_0, abaabA, \times) \vdash (s_1, baabA, \bullet \times) \vdash (s_1, aabA, \times) \vdash (s_1, abA, \bullet \times) \vdash (s_1, bA, \bullet \bullet \times) \vdash (s_1, A, \bullet \times) \vdash (f, \varepsilon, \times)$$

Příklad 2

Uvažovaný jazyk L je bezkontextový, neboť je zadaný pomocí bezkontextové gramatiky. Bezkontextové jazyky nejsou uzavřeny vůči doplňku, tedy $\exists L \in \mathcal{L}_2 : \overline{L} \notin \mathcal{L}_2$.

Uvažme, že L je právě takový jazyk, pro který $\overline{L} \notin \mathcal{L}_2$, a pak předpokládejme, že L' je bezkontextový, a tedy je možné zkonstruovat gramatiku $G' = (N, \Sigma \cup \{0, 1\}, P, S)$ takovou, že L(G') = L'. Bez újmy na obecnosti dále předpokládejme, že G' je v Chomského normální formě, neobsahuje nedostupné ani zbytečné symboly.

Všechny řetězce v jazyce L' končí buď symbolem 0, nebo 1, zároveň se ani jeden z těchto symbolů nemůže v řetězci z L' vyskytovat na jiné než poslední pozici. Zřejmě musí v G' existovat pravidla generující symboly 0 a 1, pojmenujme neterminály na jejich levých stranách X a Y: $(X \to 0) \in P$, $(Y \to 1) \in P$.

Pro každý řetězec terminálů, který G' generuje, je tak možné zapsat derivaci, která jej generuje, jedním ze způsobů:

$$S \Rightarrow^* \alpha X \Rightarrow \alpha 0 \qquad (\alpha \in \Sigma^*) \tag{1}$$

$$S \Rightarrow^* \beta Y \Rightarrow \beta 1 \qquad (\beta \in \Sigma^*) \tag{2}$$

Existence jedné z těchto derivací zároveň z definice jazyka L' vylučuje existenci druhé:

$$\forall \alpha \in \Sigma^* : (S \Rightarrow^* \alpha X \Rightarrow \alpha 0) \to \neg (S \Rightarrow^* \alpha 1)$$
$$\forall \beta \in \Sigma^* : (S \Rightarrow^* \beta Y \Rightarrow \beta 1) \to \neg (S \Rightarrow^* \beta 0)$$

Dále G' nemůže vygenerovat větnou formu $\gamma_1 X \gamma_2$ nebo $\gamma_1 Y \gamma_2$, neboť by při G' v CNF v obou případech platilo, že $\gamma_2 \Rightarrow^* \delta$, kde $|\delta| > 0$, ale pak by se symbol 0 nebo 1 vyskytnul na jiné než poslední pozici řetězce. Pro případ (1) zjevně platí $\alpha \in \overline{L}$, pro případ (2) zjevně platí $\beta \in L$.

Sestrojme nyní gramatiku $G''=(N,\Sigma\cup\{0,1\},P',S)$, kde P' vznikne z P nahrazením pravidla $Y\to 1$ pravidlem $Y\to Y$. Pokud byla G' bezkontextová, G'' bude také bezkontextová, neboť do ní nebylo přidáno žádné pravidlo, které by tuto vlastnost porušovalo.

Nahlédněme, že všechny derivace generující řetězce terminálů v G'' nyní odpovídají pouze tvaru (1). Gramatika G'' tedy generuje jazyk $\overline{L} \cdot \{0\}$. Evidentně $\overline{L} \notin \mathcal{L}_2 \Rightarrow (\overline{L} \cdot \{0\}) \notin \mathcal{L}_2$.

Došli jsme tedy ke sporu: G'' má být bezkontextová, ale jazyk, který generuje, bezkontextový není. Nemůže tedy platit původní předpoklad, že L' je bezkontextový, a tedy nelze vytvořit algoritmus, který by sestavil bezkontextovou gramatiku G' takovou, že L(G') = L'.

Příklad 3

Zavedeme pomocné množiny neterminálů generujících řetězec terminálů, řetězec terminálů začínající symbolem a a řetězec terminálů končící symbolem a:

$$N_t = \{ A \in N \mid \exists w \in \Sigma^* : A \Rightarrow_G^+ w \}$$

$$N_{a*} = \{ A \in N \mid \exists w \in \Sigma^* : A \Rightarrow_G^+ aw \}$$

$$N_{*a} = \{ A \in N \mid \exists w \in \Sigma^* : A \Rightarrow_G^+ wa \}$$

Definujeme algoritmy pro výpočet uvedených množin:

Algoritmus 1: Výpočet množiny neterminálů generujících řetězec terminálů.

Vstup: Gramatika $G = (N, \Sigma, P, S)$.

Výstup: Množina N_t .

Metoda:

- 1. $N_0 = \emptyset$, i = 1
- 2. $N_i = \{A \in N \mid \exists \alpha : (A \to \alpha) \in P \land \alpha \in (N_{i-1} \cup \Sigma)^*\}$
- 3. Pokud $N_i \neq N_{i-1}$, i := i+1 a vrať se k 2., jinak $N_t := N_i$ a skonči.

Algoritmus 2: Výpočet množiny neterminálů generujících řetězec terminálů začínající symbolem a.

Vstup: Gramatika $G = (N, \Sigma, P, S)$.

Výstup: Množina N_{a*} .

Metoda:

- 1. Vypočítej množinu N_t pro G pomocí algoritmu 1 a množinu N_ϵ pro G.
- 2. $N_0 := \emptyset, i = 1$
- 3. $N_i := \{A \in N_t \mid \exists \alpha : (A \to \alpha) \in P \land \alpha \in N_{\epsilon}^* \cdot (\{a\} \cup N_{i-1}) \cdot (N_t \cup \Sigma)^* \}$
- 4. Pokud $N_i \neq N_{i-1}$, i := i+1 a vrať se k 3., jinak $N_{a*} := N_i$ a skonči.

Algoritmus 3: Výpočet množiny neterminálů generujících řetězec terminálů končící symbolem a.

Vstup: Gramatika $G = (N, \Sigma, P, S)$.

Výstup: Množina N_{*a} .

Metoda:

- 1. Vypočítej množinu N_t pro G pomocí algoritmu 1 a množinu N_ϵ pro G.
- 2. $N_0 := \emptyset, i = 1$
- 3. $N_i := \{A \in N_t \mid \exists \alpha : (A \to \alpha) \in P \land \alpha \in (N_t \cup \Sigma)^* \cdot (\{a\} \cup N_{i-1}) \cdot N_{\epsilon}^* \}$
- 4. Pokud $N_i \neq N_{i-1}$, i:=i+1 a vrať se k 3., jinak $N_{*a}:=N_i$ a skonči.

S využitím uvedených algoritmů vypočteme množinu N_{aa} :

Algoritmus 4: Výpočet množiny neterminálů generujících řetězec terminálů, který obsahuje podřetězec aa:

Vstup: Gramatika $G = (N, \Sigma, P, S)$.

Výstup: Množina N_{aa} .

Metoda:

1. Vypočítej množiny N_t, N_{a*}, N_{*a} pro G pomocí algoritmů 1, 2, 3 a množinu N_{ϵ} pro G.

2.
$$N_0 := \emptyset, i = 1$$

3.
$$N_i := \{ A \in N_t \mid \exists \alpha : (A \to \alpha) \in P \land (\alpha \in (N_t \cup \Sigma)^* \cdot N_{i-1} \cdot (N_t \cup \Sigma)^* \\ \lor \alpha \in (N_t \cup \Sigma)^* \cdot (N_{*a} \cup \{a\}) \cdot N_{\epsilon}^* \cdot (N_{a*} \cup \{a\}) \cdot (N_t \cup \Sigma)^*) \}$$

4. Pokud $N_i \neq N_{i-1}$, i := i+1 a vrať se k 3., jinak $N_{aa} := N_i$ a skonči.

Demonstrace použití algoritmu:

$$N_{\epsilon} = \{X, Y, \hat{S}\}.$$

Výpočet množiny N_t :

Výpočet množiny
$$N_{a*}$$
:

Výpočet množiny
$$N_{*a}$$
:

1.
$$N_0 = \emptyset$$

2.
$$N_1 = \{X, Y\}$$

3.
$$N_2 = \{X, Y, S\}$$

4.
$$N_3 = \{X, Y, S\} = N_t$$

1.
$$N_0 = \emptyset$$

2.
$$N_1 = \{Y\}$$

3.
$$N_2 = \{Y, S\}$$

4.
$$N_3 = \{Y, S\} = N_{*a}$$

1.
$$N_0 = \emptyset$$

2.
$$N_1 = \{X\}$$

3.
$$N_2 = \{X, S\}$$

4.
$$N_3 = \{X, S\} = N_{*a}$$

Výpočet množiny N_{aa} :

1.
$$N_0 = \emptyset$$

2.
$$N_1 = \{S\}$$

3.
$$N_2 = \{S\} = N_{aa}$$

Příklad 4

V jazyce $L_1 \blacktriangle L_2$ jsou řetězce ze Σ^* , pro jejichž všechna možná rozdělení $w = w_1, w_2$, platí aspoň jedno z: $w_1 \in L_1$, $w_2 \in L_2$. Uzavřenost operace \blacktriangle na třídě \mathcal{L}_0 ukážeme sestrojením algoritmu, který pracuje s TS přijímajícími jazyky $L_1, L_2 \in \mathcal{L}_0$, jehož výstupem je TS, který přijímá jazyk $L_1 \blacktriangle L_2$.

- 1. Zkonstruujeme TS M_1 , M_2 , pro které $L(M_1) = L_1$, $L(M_2) = L_2$.
- 2. Zkonstruujeme 3páskový TS M, který:
 - na pásce 1 obsahuje řetězec w,
 - na pásce 2 obsahuje kód TS M_1 ,
 - na pásce 3 obsahuje kód TS M_2 .

Předpokládejme přitom, že TS M je univerzální TS, který na páskách 2 a 3 zvládne opakovaně spouštět simulaci jiných TS s různými vstupy (tedy je schopen na požádání pásku uvést do stavu, kdy obsahuje pouze původní kód TS bez vstupu).

- 3. M na pásce 1 postupně enumeruje prefixy w_1 řetězce w a dělí jej tak na dvě části $w_1, w_2 : w_1w_2 = w$. V prvním kroce zvolí $w_1 = \varepsilon, w_2 = w$, v dalších krocích postupně rozšiřuje w_1 o jeden symbol z w.
- 4. Pro každé zvolené w_1, w_2 : M vhodně okopíruje právě zvolený w_1 na pásku 2 tak, aby byl vstupem pro simulaci M_1 , podobně okopíruje právě zvolený w_2 na pásku 3 tak, aby byl vstupem pro simulaci M_2 .
- 5. Pak M současně simuluje M_1 na pásce 2 a M_2 na pásce 3, a to tak, že jednotlivé kroky simulace provádí proloženě krok po kroku (tedy nejprve provede krok M_1 , poté krok M_2 , poté další krok M_1 ...).
- 6. Pokud M_1 nebo M_2 přijme, pak:
 - pokud $w_2 = \varepsilon$, pak M přijímá, tedy $w \in L_1 \blacktriangle L_2$;
 - pokud $w_2 \neq \varepsilon$, pak M zastaví obě simulace, uvede pásky 2 a 3 do počátečního stavu (z bodu 2) a pokračuje v enumeraci prefixů z bodu 3.

Díky proloženému provádění kroků simulace může jeden ze simulovaných TS přijmout, i když druhý cyklí.

- 7. Pokud M_1 i M_2 odmítnou, M odmítá, tedy $w \notin L_1 \blacktriangle L_2$.
- 8. Pokud M_1 i M_2 cyklí, M cyklí, tedy $w \notin L_1 \blacktriangle L_2$.
- 9. Pokud právě jeden z M_1, M_2 cyklí a druhý z nich odmítne, M cyklí, tedy $w \notin L_1 \blacktriangle L_2$.

TS M přijme řetězec $w \in \Sigma^*$ právě tehdy, když pro každé rozdělení $w_1w_2 = w$ alespoň jeden ze simulovaných TS přijme, a v jiných případech řetězec w odmítne nebo cyklí. $L(M) = L_1 \blacktriangle L_2$, tedy $L_1 \blacktriangle L_2 \in \mathcal{L}_0$.