Heli Hyttinen

Diskreetti matematiikka Joukko-oppi

2019

SISÄLLYS

1	Α	RGUMENTTI PROPOSITIOLOGIIKAN SYMBOLEIN	.3
	1.1	Totuustaulu	.3
2	J(OUKOT A, B	.4
	2.1	A∩B ja (AUB)°	.4
3	S	UUNNATTU GRAAFI JA PARTITIO	.4
4	R	ELAATIOTAULUT	.6
	4.1	Q ei ole funktio	.7
	4.2	Alkioiden määrä 𝒯 (U × V)	.8
5	T	ÄYDELLINEN TULOJEN-SUMMAMUOTO	.8

1 ARGUMENTTI PROPOSITIOLOGIIKAN SYMBOLEIN

Jos tekstinkäsittely onnistuu, niin tietokone toimii. Jos tekstinkäsittely ei onnistu, niin mainoskirjettä ei voi korjata. Mainoskirjeen voi korjata. Siis, tietokone toimii.

Tekstinkäsittely onnistuu p

Tietokone toimii q

Mainoskirjeen voi korjata r

Jos p niin q, jos ei p niin ei r, kuitenkin r, siis q.

$$p \longrightarrow q$$
, $\neg p \longrightarrow \neg r$, $r \vdash Q$

1.1 Totuustaulu

р	q	r	p→q	¬р	¬r	$\neg p \rightarrow \neg r$
T	T	Т	Т	F	F	T
T	T	F	Т	F	Т	T
Т	F	Т	F	F	F	Т
Т	F	F	F	F	Т	T
F	T	Т	Т	Т	F	F
F	T	F	Т	Т	Т	T
F	F	Т	Т	Т	F	F
F	F	F	Т	Т	Т	Т

taulukko 1

Taulukosta 1 reunoilla korostettujen sarakkeiden r, $p \rightarrow q$ ja $\neg p \rightarrow \neg r$ tulosten (T tai F) tulee taulukon ainakin yhdellä rivillä olla kaikkien totta (true/T). Tässä totuustaulussa ensimmäisellä rivillä r, $p \rightarrow q$ ja $\neg p \rightarrow \neg r$ ovat kaikki totta (T), joten argumentti kohdassa 1.2 on validi.

2 JOUKOT A, B

Perusjoukko $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $A = \{x \in U \mid x \text{ on parillinen}\}$, otetaan perusjoukosta U kaikki parilliset luvut. Joten $A = \{2, 4, 6, 8\}$

 $B = \{x \in U \mid x \le 7\}$, otetaan perusjoukosta U kaikki lukua 7 pienemmät luvut. Joten $B = \{1, 2, 3, 4, 5, 6, 7\}$.

2.1 A∩B ja (AUB)°

Luvut 2, 4 ja 6 esiintyvät molemmissa joukoissa A ja B. Joten A \cap B = {2, 4, 6}.

Määrätäkseni $(A \cup B)^c$, selvitän aluksi molempien joukkojen alkiot, $(A \cup B) = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

Seuraavaksi tarkistan mitä jäisi perusjoukkoon U jäljelle, jos yllä olevat alkiot otettaisi sieltä pois. Jäljelle jäisi 9, joten $(A \cup B)^c = \{9\}.$

3 SUUNNATTU GRAAFI JA PARTITIO

$$S = \{1, 2, 3, 4, 5\}$$

Ekvivalenssirelaatio S:ssa on R = $\{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5)\}$

Kuva 1: suunnattu graafi relaatiosta R

Relaation R indusoima joukon S partitio määrätään kuvan 1 perusteella aloittamalla solmusta 1. Merkitään graafin solmu R[x] ja nuolen osoittaman solmun luku otetaan ylös. Solmut ovat nimetty alkioiden mukaan.

$$R[1] = \{1\}$$

$$= \{2\}$$

$$R[2] = \{1\}$$

$$= \{2\}$$

$$R[3] = \{3\}$$

$$R[4] = \{4\}$$

$$= \{5\}$$

$$R[5] = \{4\}$$

$$= \{5\}$$

R[1] on sama kuin R[2], joten jätetään R[2] pois. Nyt partitiossa on $\{1,2\}$ [1] mukaisesti.

Alkio 3 ei esiinny muissa kuin R[3], joten $\{3\}$ myös osaksi partitiota. R[4] on sama kuin R[5], joten jätetään [5] pois, ja saadaan $\{4,5\}$ osaksi partitiota.

S partitio R indusoimana on $[\{1,2\}, \{3\}, \{4,5\}]$.

4 RELAATIOTAULUT

$$\label{eq:U} \begin{split} &U = \{1,2,3,4\} \\ &V = \{50,60,70\} \\ &\text{Tulojoukko U} \times V \ \text{relaatio R} = \{(1,50), (2,60), (3,50), (4,60)\} \\ &\text{Tulojoukko V} \times U \ \text{relaatio Q} = \{(70,4), (50,2), (50,3)\} \end{split}$$

Relaatiotaulu R

U	V
1	50
2	60
3	50
4	60

Taulun vasempaan sarakkeeseen U on sijoitettu relaation R vasemman puoleiset koordinaatit ja sarakkeeseen V on vastaavasti sijoitettu relaation R oikean puoleiset koordinaatit.

Relaatiotaulu Q

V	U
70	4
50	2
50	3

Taulun vasempaan sarakkeeseen V on sijoitettu relaation Q vasemman puoleiset koordinaatit ja sarakkeeseen U on vastaavasti sijoitettu relaation Q oikean puoleiset koordinaatit. Järjestys on tauluissa ylhäältä alas.

Relaatiotaulu Q o R

U	V
2	60
2	50
3	50
4	60
4	70

Kompositio $Q \circ R$ tulee siitä, kun relaatiot $R \subseteq U \times V$ ja $Q \subseteq V \times U$ yhdistetään. Ajattelin relaatiotaulujen joukon U henkilöinä ja joukon V eri automerkkeinä.

Relaatiotaulussa R henkilöllä 1 on automerkki 50, mutta relaatiotaulussa Q ei ole henkilöä 1. Jätän sen pois komposition relaatiotaulusta.

Relaatiotaulussa R henkilöllä 2 on automerkki 60 ja relaatiotaulussa Q tämän automerkki on 50, komposition relaatiotauluun laitan molemmat autot henkilölle 2.

Relaatiotaulussa R henkilöllä 3 on automerkki 50 samoin kuin relaatiotaulussa Q. Laitan tämän relaatiotauluun, sillä se esiintyy molemmissa.

Relaatiotaulussa R henkilöllä 4 on automerkki 60 ja relaatiotaulussa Q tämän automerkki on 70, komposition relaatiotauluun laitan molemmat autot henkilölle 4.

4.1 Q ei ole funktio

Q ei ole funktio, koska joukosta U alkio 60 ei määrää mitään ja alkio 50 määrää kahta. Relaatiossa Q pitäisi jokaista $u \in U$ kohti olla olemassa $v \in V$, jotta Q voisi olla funktio.

4.2 Alkioiden määrä $\mathcal{P}(U \times V)$

Lasken joukon $U \times V$ potenssijoukon alkioiden määrän kertomalla 2 itsellään alkioiden määrän verran. Joukolla U on neljä alkiota ja joukolla V on kolme alkiota, yhteensä 7.

$$2^7 = 128$$
 alkiota.

$$\mathcal{G}(\mathbf{U} \times \mathbf{V}) = 128$$

Selvitin vielä erikseen joukkojen V ja U potenssijoukkojen alkioiden määrän.

$$2^4 = 16$$
 alkiota. $\mathcal{G}(U) = 16$

$$2^3 = 8$$
 alkiota. $\mathcal{G}(V) = 8$

$$U = \{U, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{3,4\}, \{4,4\},$$

$$\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{\emptyset\}\}$$

$$V = \{V, \{50\}, \{60\}, \{70\}, \{50,60\}, \{50,70\}, \{60,70\}, \{\emptyset\}\}\}$$

Ja joukkojen potenssijoukkojen alkioiden määrät kerrottuna

$$8*16 = 128$$

5 TÄYDELLINEN TULOJEN-SUMMAMUOTO

$$E(x,y,z) = (x+y'z)(y+z')$$

$$(x+y'z)(y+z')$$

=(xy'+z)+(yz'), DeMorganin sääntö vaihtaa operaattorit päinvastoin

= xy(z+z') + x(y+y')z', perusteena Distributiivisuus eli osittelulaki, jossa yhteiset yhteenlaskettavat määritellään.

= xy + xz', soveltaen kompelementtilakia a + a' = 0 ja absorptiota

Täydellisen tulojen-summamuodon päättelin ihan vain päättelemällä muuttujan x lisäksi nuo kaikki mahdolliset muuttujat.

$$= xyz + xyz' + xyz + xy'z'$$

$$= xyz + xyz' + xy'z'$$
, sillä xyz esiintyy jo kerran.