Table Generation

- 1.1 B-Splines
- 1.1.1 L-U Factorization
- 1.2 HDF5 Databases
- 1.3 Software API
- 1.3.1 Table Generation
- 1.3.2 B-Splines
- 1-D Splines
- 2-D Splines

Higher-Dimensional Splines

Reaction Models

Given a single-phase reacting system with N_s species, one must specify N_s+1 variables (e.g., N_s-1 mass fractions, temperature and pressure) to uniquely specify the entire thermochemical state, ϕ , of the system [1, 2, 3]. Reaction models parameterize ϕ by $N_{\eta} \ll N_s+1$ parameters called reaction variables, which we represent collectively as η . A reaction model then provides a unique mapping from η to ϕ , i.e., each ϕ_i is represented by an N_{η} -dimensional surface in η -space.

We define a reaction model as a mapping between thermochemical state variables and reaction variables,

$$\phi = \phi(\eta). \tag{2.1}$$

2.1 The Mixture Fraction

As many of the results will use the mixture fraction as a reaction variable, it is briefly defined here. Elemental mass fractions, Z_{ℓ} , may be defined in terms of the species mass fractions, Y_i , as

$$Z_{\ell} = \sum_{i=1}^{N_s} \frac{a_{\ell,i} W_{\ell}}{W_i} Y_i, \tag{2.2}$$

where N_s is the number of species, $a_{\ell,i}$ is the number of atoms of element ℓ in species i, W_{ℓ} is the molecular weight of element ℓ , and W_i is the molecular weight of species i. The mixture fraction, f, may be written in terms of coupling functions, β , as [1]

$$f = \frac{\beta - \beta_0}{\beta_1 - \beta_0},\tag{2.3}$$

where β_1 and β_0 are constants evaluated in the fuel and oxidizer streams, respectively. The coupling function, β , is defined in terms of the elemental mass

fractions as

$$\beta = \sum_{\ell=1}^{N_e} \gamma_{\ell} Z_{\ell} = \sum_{\ell=1}^{N_e} \gamma_{\ell} \sum_{i=1}^{N_s} \frac{a_{\ell,i} W_{\ell} Y_i}{W_i}, \tag{2.4}$$

where γ_{ℓ} are weighting factors. The γ_{ℓ} are not unique; for this study Bilger's definition [4] of the mixture fraction is adopted, for which $\gamma_{\rm C}=2/W_{\rm C}, \, \gamma_{\rm H}=1/(2W_{\rm H}), \, \gamma_O-1/W_{\rm O}, \, \gamma_{\rm N}=0$. The stoichiometric mixture fraction, f_{st} , is determined from equation (2.3) with $\beta=0$. The dissipation rate is defined as $\chi=2D\nabla f\cdot\nabla f$, with D obtained from Le = $\lambda/(\rho c_p D)$. In this study, the Lewis number of the mixture fraction was assumed to be unity.

2.2 Effects of Heat Loss

Heat loss is an important aspect of combustion modeling, and may occur through radiation or conduction/convection. We define the fractional heat loss, γ as

$$\gamma = \frac{h_a - h}{h_a - h_c} = \frac{h_a - h}{h_{a.s}} \tag{2.5}$$

$$h_{a,s} \equiv \sum_{i=1}^{N_s} Y_i h_{a,i} - h_i^o$$
 with

$$c_p = \sum_{i=1}^{N_s} Y_i c_{p,i}, (2.6)$$

$$h = \sum_{i=1}^{N_s} Y_i h_i, (2.7)$$

$$h_i = h_i^o + \int_{T_c}^T c_{p,i} dT, \qquad (2.8)$$

where h_i is the enthalpy of species i, h_i^o is the enthalpy of of formation of species i at temperature T_o , and c_p is the isobaric heat capacity.

2.3 Burke-Schuman Model

Burke-Schuman chemistry assumes infinitely fast, irreversible, and complete reaction. Thus, composition is a piece-wise linear function of mixture fraction. The enthalpy is determined from the composition and equation (2.7). For the adiabatic case, all state variables are unique functions of the mixture fraction, $\phi = \phi(f)$.

2.3.1 Heat Loss

2.4 Equilibrium Model

The chemical equilibrium model is valid when chemistry is infinitely fast and reversible. For an adiabatic two-stream mixing problem, the thermochemical state is uniquely parameterized by the mixture fraction, $\phi = \phi(f)$.

2.4.1 Heat Loss

Mixing Models

In a Reynolds-Avaraged Navier-Stokes (RANS) or Large-Eddy Simulation (LES) calculation, mean or filtered state state variables are needed as functions of the mean (or filtered) reaction variables. This is typically achieved through

$$\bar{\phi}_i = \int_{\eta_{N_{\eta}}} \cdots \int_{\eta_1} \phi_i^*(\boldsymbol{\eta}) P(\eta_1 \cdots \eta_{N_{\eta}}) d\eta_1 \cdots d\eta_{N_{\eta}},$$
 (3.1)

where $\phi_i^*(\eta)$ is the reaction model, which provides state variables, ϕ , as unique functions of the set of reaction variables, η , and $P(\eta_1 \cdots \eta_{N_{\eta}})$ is the joint probability density function (PDF) of all reaction variables. Clearly, in a RANS or LES computation, the error in $\bar{\phi}$ has contributions from the reaction model as well as the model used to approximate the joint PDF. This study examines only the error due to the reaction model, $\phi_i(\eta)$.

User-Interface

- 4.1 The Parser
- 4.2 Line Commands

Bibliography

- [1] F. A. Williams. *Combustion Theory*. Perseus Books, Cambridge, second edition, 1985.
- [2] R. M. Felder and R. W. Rousseau. *Elementary Principles of Chemical Processes*. John Wiley & Sons, New York, second edition, 1986.
- [3] J. M. Smith, H. C. Van Ness, and M. M. Abbott. *Introduction to Chemical Engineering Thermodynamics*. McGraw-Hill, Boston, sixth edition, 2001.
- [4] R. W. Bilger, S. H. Stårner, and R. J. Kee. On reduced mechanisms for methane-air combustion in nonpremixed flames. *Combust. Flame*, 80(2):135–149, 1990.