NETWORK

Complex Systems in Human Disease and Therapeutics

Edited by Joseph Loscalzo, Albert-László Barabási, and Edwin K. Silverman

Network

Adjacency Matrix

Single-Input Motif

Multiple-Input Motif

Feed-Forward Loop Motif

Feedback Loop Motif

Network

Degree Distribution

a) Network

c) Betweenness Centralities

Nodes	1	2	3	4	5
Shortest Paths Including Node	4	4	9	7	4
Betweenness	0.4	0.4	0.9	0.7	0.4

Betweenness Centrality = (No. of Shortest Paths including Node)
(No. of Shortest Paths)

b) Shortest Path Lengths

Nodes	1–2	1-3	1–4	1–5	2-3	2-4	2-5	3–4	3–5	4–5
Shortest Paths	1-3-2	1–3	1-3-4	1-3-4-5	2–3	2-3-4	2-3-4-5	3–4	3-4-5	4–5
Path Length	2	1	2	3	1	2	3	1	2	1

Characteristic Path Length = Mean Shortest Path Length = 18/10 = 1.8

