

Quality of Service on IP Networks

Arquitectura e Gestão de Redes

Current Internet Services

- Internet supports a lot of services, besides the basic packet exchange service
 - Interactive games
 - Real time audio/video
 - High definition moving images
 - Complex databases
 - Cloud
 - Peer-to-peer
 - Mobile services

Service Requirements

Packet loss

- Some applications (e.g., real-time audio/video) support losses
 - Voice is more tolerant to losses than video
- Others (file transfer and telnet, for example) require 100% of transmission success
 - Use TCP

Bandwidth

- Some applications (ex., multimedia) require a minimum bandwidth to work
 - Full queues
 - High delays and some losses
- Others ("elastic", like e-mail or file transfer) use the bandwidth they can get

Delays

- Some applications (ex., VoIP, multi-user games) require low delays
- Others (non real-time) do not impose limits to the end-to-end delay

- Example: 1Mbps VoIP and FTP share a 1.5 Mbps connection
 - FTP burts can congestion the router, causing audio losses
 - Audio traffic should have priority

Principle 1

The router can only distinguih between different traffic classes if packets are marked; new packet scheduling mechanisms are needed

- What happens if applications misbehave (audio sends more than the declared rate)?
 - policing: forces sources to adhere to pre-established BW
- Marking and policing at the network entry

Principle 2

Protecting a traffic class from the others.

 Assigning a fixed BW to the flow: inneficient use of the link if the flow does not use the whole assigned BW

Principle 3

Resources should be used in the most efficient way

It is not possible to support requests that go beyond the link

capacity

Principle 4

Call admission: a flow declares its needs, the network can block a call (ocuppied signal) if it cannot support it

IP Network with QoS Support

Scheduling algorithms

- Decide the service order of the packets, when packets belong to different flows
- Work conserving scheduling algorithms guarantee that the server is always occupied when there are packets to transmit
 - FIFO
 - Strict priority
 - Fair Queuing,
 - Weighted Fair Queuing.

First In First Out (FIFO)

- Does not invlove ordering
- Does not allow QoS differentiation
- Flows with more traffic receive more service
- In finite length queues, flows with smaller size packets receive more service

Priority Queueing

- Involve traffic classification, according to the priority
- Higher priority traffic is always served before the lower priority one
- Allows QoS differentiation
- High priority flows can avoid low priority ones from being served

Fair Queueing (FQ)

- Involve traffic classification in different queues
- Transmission bandwidth is equally distributed among the nonempty queues
- Allows QoS deployment

Weighted Fair Queuing (WFQ)

Each queue receives a percentage of the connection bandwidth that is <u>at least</u> equal to its weight divided be the sum of the weights of all queues

$$R_A = \frac{2}{2+3+4} BW$$

$$R_B = \frac{3}{2+3+4} BW$$

$$R_C = \frac{4}{2+3+4}BW$$

Packet discarding policies

Tail Drop

- Router interfaces experience congestion when the output queue is full
 - Additional incoming packets are dropped
 - Dropped packets may cause significant application performance degradation
 - Tail drop has significant drawbacks

Random Early Detection (RED)

Tail drop can be avoided if congestion is prevented

RED is a mechanism that randomly drops packets before a queue is full

RED increases drop rate as the average queue size increases

RED result:

TCP sessions slow to the approximate rate of output-link bandwidth Average queue size is small (much less than the maximum queue size) TCP sessions are desynchronized by random drops

RED Modes

RED has three modes:

No drop: When the average queue size is between 0 and the minimum threshold

Random drop: When the average queue size is between the minimum and the maximum threshold

Full drop (tail drop): When the average queue size is above the maximum threshold

Random drop should prevent congestion (prevent tail drops).

RED Drop Profiles

Weighted Random Early Detection (WRED)

WRED can use multiple RED profiles.

Each profile is identified by:

Minimum threshold

Maximum threshold

Mark probability denominator

WRED profile selection is based on:

IP precedence (8 profiles)

DSCP (64 profiles)

WRED drops less important packets more aggressively than more important packets.

WRED Building Blocks

Integrated Services Architecture

Integrated Services (IntServ)

- For flows requiring QoS, it is necessary to reserve resources on the path from source(s) to destination(s)
- Reservations are made on a per flow basis
- The RSVP signaling protocol is used, allowing:
 - The source to describe the characteristics of the IP packet flow
 - The destinations to describe the reservation they want
 - The routers to know how to process the packet flow in order to cope with the required reservation(s)
- The network implements a call admission control mechanism
 - Flows that do not obtain a reservation are treated as "best effort" traffic

Scenario that needs QoS support

Call admission control

The starting session must:

- Declare its QoS requirements
 - R-spec: defines the required QoS
- Characterize the traffic that will be sent to the network
 - T-spec: defines the traffic characteristics

A signaling protocol is necessary to transport R-spec and T-spec to the routers (where reservation is made)

- RSVP [RFC 2205]

IntServ service classes

- Controlled Load (RFC 2211)
 - Provides a service similar to the "best effort" service on a uncongestioned network
 - End stations should feel that a high percentage of the packets is delivered with very small queueing delays at the routers
- Guaranteed Service (RFC 2212)
 - Guaranteed a maximum delay for all IP packets

 In both cases, the source has to condition its packets to a "token bucket" model

Token Bucket model

r =token filling rate (bytes/s)

b = bucket size (bytes)

p = maximum sending rate (bytes/s)

M = maximum packet size (bytes)

m = minimum packet size (bytes) - any packet with a size smaller than <math>m will be traweated as having size m

Token Bucket model

• In an interval Δt , the number of admitted packets $(p\Delta t)$ should be less than or equal to $(r\Delta t + b)$

Guaranteed Services

It is possible to guarantee a maximum delay for the flow:

$$Delay_{max} = \begin{cases} \left[\frac{b-M}{R} \times \frac{p-R}{p-r}\right] + \frac{M+C_{tot}}{R} + D_{tot} & \text{if } p > R \ge r \\ \frac{M+C_{tot}}{R} + D_{tot} & \text{if } R \ge p \ge r \end{cases}$$

C – delay of the packets due to the flow parameters

D – delay introduced by the network nodes

C_{tot} and D_{tot} are updated by routers on RSVP PATH messages

RSVP (Resource Reservation Protocol)

- RFC 2205
- Encapsulated in IP; $protocol\ type = 46\ (0x2E)$
- Signaling is based on the exchange of PATH and RESV messages
 - PATH announces the source traffic characteristics
 - RESV establishes the reservations requested by the receivers
 - If the reservation cannot be established, a RESV ERR message is sent
- Reservation states should be periodically refreshed (soft states)

RSVP operation

- Source-network signaling
 - Path message: torna a presença do emissor conhecida aos routers
 - Anulação do caminho: apaga dos routers o estado do caminho correspondente ao emissor
- Sinalização receptor-rede
 - Mensagem reservation: reserva recursos do(s) emissor(es) até ao receptor
 - Anulação da reserva: apaga as reservas feitas pelo receptor
- Sinalização rede-sistema terminal
 - path error
 - reservation error

RSVP - Funcionamento Básico

Formato das Mensagens RSVP

iHL Tipo de Serviço Dimensão Total	
Identificação Flag Offset do Fragmento	
ive Protocolo: 46 Checksum do cabeçalho	Cabeçalho
Endereço fonte	IP v 4
Endereço destino	
O p ç õ e s P a d d in g	
lags Tipo RSVP Checksum	C a b e ç a lh o
L Reservado Dimensão da Mensagem	RSVP
Corpo da mensagem RSVP	O bjectos RSVP
I	

Formato de cada objecto RSVP:

Dimensão do Objecto	N ° C lasse	Tipo de Classe
Cont	e ú d o	

Mensagem Path: sinalização emissor-rede

- Comunica a informação do emissor e a informação de encaminhamento correspondente ao caminho inverso até ao emissor
- PATH(Type = 0x01)
 - Tspec ("flow traffic specification"): contém os parâmetros que descrevem a fonte de tráfego baseados no modelo "Token Bucket"
- Conteúdo da mensagem path:
 - address: destino unicast ou grupo multicast
 - flowspec: especificação dos requisitos de LB
 - filter flag: se for igual a 1, grava as identidades dos emissores localizados a montante (para permitir a filtragem de pacotes com base na fonte)
 - Salto anterior: ID do router/host localizado a montante
 - refresh time: intervalo de tempo ao fim do qual esta informação expira

RSVP: mensagem PATH

Esta mensagem inclui três objectos RSVP obrigatórios (para além do FLOWSPEC):

- SESSION Identifica a sessão pelo endereço IP destino, porto destino e ID protocolo
- RSVP_HOP Indica ao próximo router o endereço IP e porta emissora
- TIME_VALUES Indica o período de tempo entre envios de mensagens PATH

1	0	Tipo RSVP:1	C h e c	k s u m
Send_	_ T T L	0	Dimensão da Mensagem: 40	
D im ens	ão do obje	c to S E S S 10 N : 12	N ° C lasse: 1	Tipo de Classe: 1
		En de re ç o	D e s tin o	
ID Protocolo Flags		porto de destino		
D im en sã	o do objec	to R S V P _ H O P : 12	N ° C lasse: 3	Tipo de Classe: 1
		Last Hop	Address	
	l	Logical Interface Han	dle doúltimonó (LIH)	
Dim.do	objecto T	IM E_VALUES:8	N ° C lasse: 5	Tipo de Classe: 1
		Período de Refre	escamento (ms)	

RSVP PATH (Exemplo)

V s .: 4 iH L :5	S e rviç o	D im . Total: 60		tal: 60
ld e n tif	F Ig	O ffset d	o Fragmento	
Tim e to Live	Protocolo: 46	C h	ecksum d	o cabeçalho
Endereço Fonte: Servidor de Vídeo				e o
Endereço Destino: Cliente Vídeo				0
1 0	T ip o : 1	C h e c k s u m		k s u m
Send_TTL	0	Dim. Mensagem: 40		
D im . S E S	N° C	lasse: 1	T ip 0 C 1.: 1	
E	ndereço Destin	o: C lie	nte Víde	0
ID Protocolo Flags Po			Porto de	d e s tin o
Dim.RSVF	_ H O P : 12	N° C	lasse: 3	T ip o C 1.: 1
Last Hop Address: Servidor de Vídeo				
Logical Interface Handle do último nó (LIH)				
Dim.TIME_VALUES:8			lasse: 5	T ip o C 1.: 1
Período de Refrescam ento (m.s.)				

V s .:4	iH L:5	Serviço	D im . Total: 60		
ld e n tific a ç ã o			F Ig	Offset do Fragmento	
Tim e t	o Live	Protocolo: 46	Checksum do cabeçalho		
	Endereço Fonte: Servidor de Vídeo				
	Е	ndereço Destin	o: C lie	ente Vídeo	
1	0	T ip o : 1	Checksum		
Send	Send_TTL 0		Dim. Mensagem: 40		
D im . S E S S IO N : 12			N° C	lasse: 1 Tipo C I.: 1	
	Е	ndereço Destin	o: C lie	ente Vídeo	
ID Protocolo Flags		Porto de destino			
D im . R S V P _ H O P : 12		N° C	lasse: 3 Tipo Cl.: 1		
Last Hop Address: Router B					
Logical Interface Handle do últim o nó (LIH)					
Dim.TIME_VALUES:8			N° C	lasse: 5 Tipo Cl.: 1	
Período de Refrescam ento (m.s.)					

V s .:4 iH	L:5	S e rviç o	D im . Total: 60		
ld e n tific a ç ã o		F Ig	Offset do Fragmento		
Time to Live Protocolo: 46			C h	ecksum do cabeçalho	
Endereço Fonte: Servidor de Vídeo				or de Vídeo	
Endereço Destino: Cliente Vídeo				ente Vídeo	
1 (0	T ip o : 1	Checksum		
Send_TT	L	0	D im . M ensagem: 40		
D im . S E S S IO N : 12			N ° C	lasse: 1 Tipo Cl.: 1	
	Ε	ndereço Destin	o: C lie	ente Vídeo	
ID Protocolo Flags			Porto de destino		
D im . R S V P _ H O P : 12		N ° C	lasse: 3 Tipo Cl.: 1		
Last Hop Address: Router D					
Logical Interface Handle do últim			últim o nó (LIH)		
Dim.TIME_VALUES:8			N ° C	lasse: 5 Tipo Cl.: 1	
	Período de Refrescam ento (m.s.)				

RSVP: audioconferência simples

- H₁, H₂, H₃, H₄, H₅ simultaneamente emissores e receptores
- Grupo multicast: m₁
- Não há filtragem: os pacotes de qualquer emissor são encaminhados
- Ritmo do áudio: b
- Apenas é possível uma árvore de encaminhamento multicast

RSVP: construíndo o estado do caminho

- H₁, ..., H₅ enviam mensagens para *m1*: (address=*m*₁, Tspec=*b*, filter-spec=no-filter, refresh=100)
- Supondo que H₁ envia a primeira mensagem path

RSVP: construíndo o estado do caminho

• a seguir, H₅ envia uma mensagem *path*

RSVP: construíndo o estado do caminho

 H₂, H₃, H₅ enviam mensagens path, completando as tabelas de estado do path

Mensagem reservation: sinalização receptor-rede

- Conteúdo da mensagem reservation:
 - desired bandwidth: parte do RSpec
 - filter type: filtra que pacotes podem utilizar a reserva
 - <u>no filter:</u> quaisquer pacotes endereçados ao grupo multicast podem usar a reserva
 - <u>fixed filter:</u> apenas os pacotes provenientes de um conjunto específico de emissores podem usar a reserva
 - <u>dynamic filter:</u> os emissores cujos pacotes podem ser encaminhados através da ligação mudarão (por escolha do receptor) ao longo do tempo.
 - filter spec: identifica os pacotes pertencentes a uma reserva
- As reservas irão fluir na direcção upstream, do receptor até aos emissores, reservando recursos e criando estados adicionais nos routers relacionados com as especificações dos receptores.

RSVP: mensagem **RESERVATION**

- RESV (Type = 0x02)
 - Tspec: o mesmo que foi recebido na mensagem PATH
 - FilterSpec ("filter specification"): contém o descritor do fluxo que permite os routers identificarem os pacotes pertencentes a esta reserva (endereço origem, endereço destino, tipo de protocolo, número de porto origem, número de porto destino, uma qualquer combinação destes)
 - Rspec ("flow reservation specification"): contém os parâmetros que descrevem a reserva que o receptor pretende ver suportado
 - o Rspec é especificado se o receptor pretender um serviço do tipo "guaranteed service"; quando não é especificado, significa que o receptor pretende um serviço do tipo "controlled load"

RSVP: mensagem **RESV**

STYLE – Identifica o estilo de reserva (receptor especifica valor de reserva para qualquer emissor, por emissor ou conjunto de emissores)

FLOWSPEC – Inclui o TSpec e o RSpec

FILTER_SPEC – Indica a informação necessária para o classificador de pacotes

	C a b e ç a l h o
	RESV
1	
8	S E S S 10 N
1	
F	R S V P _ H O P
1	TIME VALUE
	TIME_VALUES
1	STYLE
	51111
	FLOW SPEC
1	
	FILTER_SPE

RSVP RESV (Exemplo)

V s .:4 iH L :5	Serviço		Dimensão Total
ld e n tif	cação	Fig Offset do Fragmento	
Tim e to Live	Protocolo: 46	Checksum do cabeçalho	
	Endereço For	te:R	outer A
Endereço Destino:			dor de Vídeo
1 0	T ip o : 2	C h e c k s u m	
Send_TTL	0	D in	n ensão da Mensagem
Dim ensão do	S E S S 10 N : 12	N° C	lasse: 1 Tipo C I.: 1
Endereço Destino: Cliente Vídeo			ente Vídeo
P ro to c o l ld	Flags	Ро	rto protocolar Destino
D im . d o R S V P _ H O P : 12		N ° C	lasse: 3 Tipo C I.: 1
Endereço do últim o nó: Router A			
Logical Interface Handle do últim o nó (LIH)			
Dim.doTIME	_ V A L U E S : 8	N° C	lasse: 5 Tipo C I.: 1
Período de Refr		escam	ento (m.s.)
D im . do O bje	cto STYLE:8	N ° C	lasse: 8 Tipo C I.: 1
Flags	S ty le O p tio	on Ve	ctor: 0 x 0 0 0 0 0 A (FF)
D im ensão do	FLOW SPEC	N ° C	lasse: 9 Tipo Classe
Conteúdo do Objecto FLOW SPEC			
Dim.doFILTER_SPEC:12		N °	C I.: 10 Tip o C I.: 1
Endereço Fonte: S			orde Vídeo
Reservado	Reservado	Р	orto protocolar Fonte

V s .:4	iH L:5	S e rviç o	D im ens	ão Total
	ld e n tific a ç ã o		Fig Offset d	o Fragmento
T im e t	o Live	Protocolo: 46	Checksum d	o cabeçalho
		Endereço For	ite: Router C	
	Endereço Destino: Router B			
1	0	T ip o : 2	Chec	k s u m
Send	_ T T L	0	D im ensão da	n Mensagem
D im e n	Dimensão do SESSION: 12		N°C lasse: 1	T ip o C 1.: 1
	Endereço Destino: Cliente Vídeo			
Proto	c o l ld	Flags	Porto protoc	o la r D e s tin o
D im .	D im . d o R S V P _ H O P : 12		N°C lasse: 3	T ip o C 1.: 1
	Endereço do últimonó: Router C			
	Logical Interface Handle do últim o nó (LIH)			
Dim.doTIME_VALUES:8 N°Classe:5 TipoCl.			T ip o C 1.: 1	
	Período de Refrescamento (m.s.))
D im .	do Obje	cto STYLE:8	N°C lasse:8	T ip o C 1.: 1
Fla	Flags Style Option Vector: 0x00000A (FF)			000A (FF)
D im e i	nsão do	FLOW SPEC	N°C lasse: 9	Tipo Classe
	Conteúdo do Objecto FLOW SPEC			
D im . o	O FILTE	R_SPEC:12	N ° C I.: 10	T ip o C 1.: 1
	Endereço Fonte: Servidor de Vídeo			0
Rese	rvado	Reservado	Porto proto	colar Fonte

V s .:4 iH L :5	Serviço		Dimens	ão Total
ld en tific a ç ã o		Fig Offset do Fragmento		o Fragmento
Tim e to Live	Protocolo: 46	Checksum do cabeçalho		o cabeçalho
Endereço Fonte:			nte Vídeo	
Endereço Destino: Router D				
1 0	T ip o : 2		Chec	ksum
Send_TTL	0	D in	nensão da	Mensagem
D im ensão do	S E S S 10 N : 12	N ° C	lasse: 1	T ip o C 1.: 1
Endereço Destino: Cliente Vídeo			0	
P ro to c o l ld	F la g s	Ро	rto protoc	olar Destino
D im . d o R S V P _ H O P : 12		N ° C	lasse: 3	T ip o C 1.: 1
Endereço do últimonó: Cliente Vídeo				
Logical Interface Handle do últim o nó (LIH)				
Dim.do TIM E	_ V A L U E S : 8	N ° C	lasse: 5	T ip o C 1.: 1
P	eríodo de Refr	escam	ento (m s)
Dim.do Obje	cto STYLE:8	N ° C	lasse: 8	Tipo C I.: 1
Flags	Style Optio	n Ve	tor: 0 x 0 0	000A (FF)
Dim ensão do	FLOW SPEC	N ° C	lasse: 9	Tipo Classe
Conteúdo do Objecto FLOW SPEC				
Dim.doFILTER_SPEC:12		N °	C I.: 10	T ip o C I.: 1
Endereço Fonte: S		Servid	orde Víde	0
Reservado	Reservado	Р	orto proto	colar Fonte

Estilos de Reserva suportados pelo RSVP

- "Fixed Filter" (Style Option Vector = 0x00000A)
 - O receptor especifica um valor de reserva por cada emissor
- "Wildcard Filter" (Style Option Vector = 0x000011)
 - O receptor especifica um valor de reserva único para receber o tráfego de qualquer emissor
- "Explicit Filter" (Style Option Vector = 0x000012)
 - O receptor especifica uma lista de emissores dos quais quer receber informação e um valor de reserva único para receber o tráfego dos emissores especificados
- Nas mensagens RSVP RESV:
 - O estilo de reserva é declarado pelo objecto STYLE
 - Os emissores são declarados no objecto FILTER SPEC

Parâmetros RSVP

Parâmetros RSVP	Descrição
TOKENBUCKETRATE (r)	TSpec: Rate of arriving tokens
TOKENBUCKETSIZE (b)	TSpec: Size of bucket
PEAKRATE (p)	TSpec: Maximum bit rate of the flow
MINIMUMPOLICEDUNIT (m)	TSpec: Minimum packet size considered
MAXIMUMPACKETSIZE (M)	TSpec: Maximum packet size
RATE (R)	RSpec*: Reservation rate
DELAYSLACKTERM	RSpec*: Tolerance of the requested delay

^{*} RSpec é especificado apenas em Guaranteed Services

Reserva RSVP - Exemplo 1

H₁ pretende receber áudio de todos os emissores

- A mensagem de reserva de H₁ circula ao longo da árvore até ás fontes
- H₁ apenas reserva LB suficiente para 1 stream de áudio
- A reserva é do tipo "no filter" qualquer emissor pode usar a LB reservada

Reserva RSVP - Exemplo 1

- As mensagens de reserva de H₁ circulam ao longo da árvore até ás fontes
- Os routers e os hosts reservam a LB b necessária nas ligações downstream em direcção a H_1

Reserva RSVP - Exemplo 1

- De seguida, H₂ efectua uma reserva de LB b do tipo no-filter
- H₂ encaminha para R₁, R₁ encaminha para H₁ e R₂
- R_2 não toma nenhuma acção, uma vez que a LB b já tinha sido reservada em L_6

RSVP: questões sobre a reserva feita pelo receptor

- E se houver múltiplos emissores (e.g., H_3 , H_4 , H_5) na mesma ligação (e.g., L_6)?
 - pacotes são intercalados de forma arbitrária
 - o fluxo de pacotes em L₆ é policiado por um *leaky bucket*: se o ritmo de envio de H₃+H₄+H₅ exceder b, ocorrerão perdas de pacotes

RSVP - Exemplo 2

- H₁, H₄ são apenas emissores
 - Enviam mensagens path
 - Os routers armazenam os emissores localizados a montante para cada ligação upstream
- H₂ pretende receber apenas de H₄

RSVP - Exemplo 2

- H1, H4 são apenas emissores
 - Enviam mensagens path

RSVP - Exemplo 2

- O receptor H₂ envia uma mensagem de reserva de uma LB
 b para a fonte H₄
 - Propagada para montante em direcção a H₄, reservando a LB b

RSVP: soft-state

- Emissores reenviam periodicamente mensagens path para actualizar (manter) o estado
- Receptores reenviam periodicamente mensagens resv para actualizar (manter) o estado das reservas
 - As mensagens path e resv têm um campo TTL, que especifica o intervalo de actualização

RSVP: soft-state

- Suponham que H4 (emissor) se retira sem fazer o teardown
- Eventualmente o estado nos routers irá expirar e desaparecer!

Os múltiplos usos da actualização reservation/path

- Recuperar da perda de uma mensagem anterior de actualização
 - O tempo esperado até à recepção de uma nova actualização deve ser maior do que o timeout interval
- Suportar receptor/emissor que desaparece sem efectuar o teardown
 - O estado do emissor/receptor irá expirar e desaparecer
- As actualizações das reservas irão fazer com que novas reservas possam ser feitas para um receptor que pretenda receber de um emissor que entretanto se tenha juntado desde a última actualização de reservas

Outras Mensagens RSVP

- PATH ERR (Type = 0x03):
 - Enviada pelos routers em situações de erro
- RESV ERR (Type = 0x04):
 - Enviada pelos routers quando uma reserva não pode ser suportada
- PATH TEAR (Type = 0x05):
 - Enviada pelos emissores quando termina o envio de informação
- RESV TEAR (Type = 0x06):
 - Enviada pelos receptores quando não querem mais uma reserva
- RESV CONFIRMATION (Type = 0x07):
 - Enviada pelos routers para confirmar que uma reserva foi estabelecida

Arquitectura dos Routers

Regiões sem suporte RSVP

• O objecto RSVP_HOP enviado nas mensagens PATH permite que as mensagens RESV sejam correctamente encaminhadas

O Logical Interface Handler (LIH) do objecto RSVP_HOP permite resolver o problema quando uma mensagem RESV chega a um router por uma interface diferente da que foi utilizada para enviar a mensagem PATH

 LIH especifica a interface de saída correcta, a que deve receber o pedido, independente da interface de chegada

 Um router RSVP reencaminha uma mensagem RESV sem a processar se não tiver recebido qualquer mensagem PATH

Receptor

Características do RSVP

- Modelo multiponto-multiponto
- Reservas iniciadas pelos receptores
- Reservas temporizadas (soft state)
- Separação entre reserva e encaminhamento
- Separação entre reserva e filtragem de pacotes
- Suporte de diferentes estilos de reservas
- Agregação de reservas

Arquitectura "Differentiated Services"

Arquitectura Differentiated Services (DiffServ)

Problemas da arquitectura Integrated Services:

- Os Routers mantêm a informação de estado das reservas extremo-a-extremo
 - pouca escalabilidade
- Os Routers determinam o atendimento com base em múltiplos campos (endereço origem e destino, protocolo, porto origem e destino)
 - penaliza o desempenho
- Suporta apenas duas classes de serviço "controlled load" e "guaranteed service"
 - pouca flexibilidade
- Exige sinalização extremo-a-extremo RSVP
 - tempo de estabelecimento das reservas elevados

• Arquitectura DiffServ:

- Por contrato, o fluxo de tráfego de cada cliente é classificado como pertencente a uma classe particular
- Trata classes de fluxos que exijam a mesma Qualidade de Serviço
- À entrada da rede, os pacotes são marcados como pertencentes à classe contratada e o escalonamento dos pacotes é baseado na marca do pacote

Ideias Base

- Implementar operações simples de encaminhamento nos routers interiores (core routers) da rede e deixar as operações complexas para os routers fronteira (edge routers) da rede.
- Definem-se apenas elementos funcionais que permitem suportar qualquer classe de serviço.

morcações ele prioritiza a possagem...

Elementos funcionais

Edge Routers:

- Classificam os pacotes: marcam cada pacote no campo Type of Service do cabeçalho IP
- Condicionam o tráfego: por exemplo, usam um "Token Bucket" para verificar se o tráfego de entrada é o contratado e
 - atrasam o tráfego em excesso ou
 - descartam o tráfego em excesso

• Core Routers:

 Identificam o tratamento a dar aos pacotes com base na marca e de acordo com um *Per-Hop-Behavior* (PHB)

Edge Routers: marcação dos pacotes

- Os pacotes são marcados no campo Type of Service (TOS) do cabeçalho IPv4 ou Traffic Class do cabeçalho IPv6
 - DSCP DifferentiatedService Code Point
 - CU Currently Unused

Egde Routers: Classificação e condicionamento de tráfego

- Classifier: identifica a classe de tráfego a que pertencem os pacotes
- Marker: preenche o campo ToS dos pacotes com o DSCP apropriado
- Shaper: atrasa os pacotes dos fluxos por forma a estarem de acordo com os SLAs (Service Level Agreement) respectivos
- *Dropper*: elimina alguns pacotes dos fluxos por forma a estarem de acordo com os SLAs respectivos
- *Meter*: mede as características dos fluxos de pacotes para determinar se estão de acordo com os SLAs respectivos

X

Classificação

- Muitos mecanismos de QoS tradicionais incluem classificadores intrínsecos
 - Committed Access Rate (CAR)
 - Propagação de políticas de QoS via BGP (QPPB)
 - Route-maps
 - Mecanismos de Queuing

– **...**

Monitorização

O modelo Token Bucket é usado na monitorização

- Committed Access Rate (CAR)
- Generic Traffic Shaping (GTS)
- Frame Relay Traffic Shaping (FRTS)
- Class-based Weighted Fair Queuing (CB-WFQ)
- Class-based Low Latency Queuing (CB-LLQ) (Cisco-based inclui prioridades)
- Class-based Policing
- Class-based Shaping

Marcação

A marcação é usada para estabelecer:

- IP precedence
- DSCP
- QoS group
- MPLS experimental bits
- Frame Relay DE bit
- ATM CLP bit
- IEEE 802.1Q or ISL CoS

• Mecanismos de marcação:

- Comitted Access Rate (CAR)
- QoS Policy Propagation
- through BGP (QPPB)
- Policy-based Routing (PBR)
- Class-based Marking

Condicionamento

• Mecanismos de Traffic Shaping:

- Generic Traffic Shaping (GTS)
- Frame Relay Traffic Shaping (FRTS)
- Class-based Shaping
- Hardware shaping on ATM VC

Condicionamento

Mecanismos de Dropping:

- O Committed Access Rate (CAR) e Class-based Policing podem descartar os pacotes que excedem a taxa contratualizada
- O Weighted Random Early Detection (WRED) pode descartar pacotes aleatoriamente quando um interface se aproxima do nível de congestionamento

Encaminhamento

• Mecanismos de encaminhamento

- Routing
- e.g. Cisco Express Forwarding (CEF)

X

Queuing

- Mecanismos de queuing tradicionais
 - FIFO, Priority Queuing (PQ), Custom Queuing (CQ)
- Família Weighted Fair Queuing (WFQ)
 - WFQ, dWFQ (distributed, implementação de um WFQ mas num Versatile Interface Processor (VIP)), CoS-based dWFQ, QoS-group dWFQ
- Mecanismos de queuing avançados
 - Class-based WFQ, Class-based LLQ

Queuing

Mecanismos de dropping

- Tail drop quando ocorre congestionamento da fila de espera
- WFQ possui um esquema melhorado de tail-drop
- WRED descarta os pacotes aleatoriamente quando a fila de espera se aproxima do congestionamento

Encaminhamento nos Core Routers

DOS Edge Routers tombém fagam ista...

- Diferentes PHBs (*Per-Hop-Behaviors*) resultam em diferentes desempenhos da rede que podem ser observáveis
- Os PHBs não especificam que mecanismos de atendimento às filas de espera devem ser usados
 Exemples de PHPs:
- Exemplos de PHBs:
 - Aos pacotes da Classe A é atribuído x% da largura de banda da ligação física durante qualquer intervalo de tempo de uma duração especificada
 - Os pacotes da Classe A são sempre servidos primeiro que os pacotes da classe B
 - Os pacotes da Classe A são servidos com o dobro da largura de banda de serviço dos pacotes da Classe B

Per-hop-behaviors (PHBs)

- PHB por omissão Não quero aplicon quelidade de serviço
 - Serviço best effort tradicional
 - Valor de DSCP (recomendado) é de "000000"
- **Class-Selector PHBs**
 - Para preservar a compatibilidade com o esquema de precedência do IP (IP precedence)
 - Valores DSCP da forma "xxx000"
 - Estes PHBs asseguram que nós compatíveis com DiffServ podem coexistir com nós que apenas suportam a precedência IP
- de banda assegurada
 - Valor de DSCP recomendado é de "101110"
- **Assured Forwarding (AF) PHB**
 - Pode oferecer diferentes garantias: por exemplo, o tráfego pode ser dividido nas classes ouro, prata e bronze, sendo-lhes atribuídas as percentagens de largura de banda de 50%, 30% e 20%, respectivamente 75
 - O PHB AFxy define quatro classes AFx: AF1, AF2, AF3, and AF4

Expedited Forwarding

- O PHB Expedited Forwarding (EF):
 - Assegura uma taxa mínima de transmissão
 - Garante largura de banda a largura de banda é assegurada através de encaminhamento prioritário
 - Efectua o policiamento da largura de banda a classe não pode ultrapassar a largura de banda garantida (o tráfego em excesso é descartado)
- Valor de DSCP: "101110"; idêntico a um valor *IP precedence* de 5 para dispositivos não compatíveis com DiffServ

Implementações EF PHB

- Priority Queuing
- Prioritização do IP RTP
- Class-based Low-latency Queuing (CB-LLQ)
- Strict Priority queuing com Modified Deficit Round Robin (MDRR)

Assured Forwarding

- O PHB Assured Forwarding (AF):
 - Garante largura de banda
 - Permite acesso à largura de banda extra, se estiver disponível
- Quatro classes standard (AF1, AF2, AF3 e AF4)
- Valores de DSCP na seguinte gama: "aaadd0", em que "aaa" é um valor binário da classe e "dd" é a probabilidade de descarte

Classes de serviço DiffServ

- Default (DE) \rightarrow DSCP = 000000
 - serviço best-effort com uma única fila de espera do tipo FIFO
- Expedited Forwarding (EF) \rightarrow DSCP = 101110
 - serviço tipo "linha alugada virtual"
 - disponibiliza controle de perdas, do atraso e da variância do atraso dentro de uma determinada largura de banda máxima
- Assured Forwarding (AF)
 - fornece uma Qualidade de Serviço relativa (AFi é servido com mais largura de banda que AFj para i<j)
 - em cada classe há 3 níveis de precedência para eliminação de pacotes em caso de congestionamento

AF Codepoints	AF1	AF2	AF3	AF4
Low drop precedence	001010	010010	011010	100010
Medium drop precedence	001100	010100	011100	100100
High drop precedence	001110	010110	011110	100110

Exemplo de Implementação

Definição dos PHBs AF

- Um nó DiffServ deve alocar uma quantidade configurável e mínima de recursos de encaminhamento (espaço de armazenamento e largura de banda) por cada classe AF
- Os recursos em excesso poderão ser alocados entre as classes que estiverem activas. A forma de o fazer deve ser especificada.
- Não é permitida a reordenação dos pacotes IP do mesmo fluxo se eles pertencerem à mesma classe AF

Implementação dos PHBs AF

- CBWFQ (4 classes) com WRED dentro de cada classe
- (M)DRR com WRED dentro de cada classe
- Opcionalmente, Custom Queuing (não suporta descarte diferenciado)

Integração IntServ e DiffServ

• Usar:

- a arquitectura *IntServ* (apropriada para redes pequenas) nas redes de acesso
- a arquitectura DiffServ (apropriada para redes grandes) na rede de trânsito

Os routers fronteira dos dois tipos de rede:

- classificam os pedidos RSVP nas classes de serviço *DiffServ* apropriadas
- se não houver recursos suficientes, recusam os pedidos de reserva RSVP

Vantagens:

- Proporcionar serviços *IntServ* em grandes redes
- Proporcionar controlo de admissão explícito em vez de SLAs em redes *DiffServ*

Domínios DiffServ e SLAs

A Qualidade de Serviço proporcionada a um cliente é configurada:

• por gestão (configuração do condicionamento de tráfego no *Edge Router* respectivo)

Common Open Policy Service

- Common Open Policy Service (COPS) proporciona os seguintes benefícios quando usado com RSVP:
 - Gestão centralizada dos serviços
 - Controlo centralizado de admissão e autorização dos fluxos RSVP
- As soluções de QoS baseadas em RSVP tornam-se mais escaláveis

COPS para RSVP

- O servidor PDP contém as políticas de reserva
- O router é configurado para solicitar ao servidor as decisões relativas ás mensagens RSVP.
- Os fluxos de tráfego são processados pelo router (Policy Enforcement Point PEP) :
 - Quando uma mensagem de sinalização RSVP chega ao router, este pergunta ao servidor PDP como a processar aceitar, rejeitar, encaminhar, etc
 - O servidor PDP envia a decisão para o router, que então processa a mensagem
- Alternativamente, é possível configurar o router para tomar as decisões localmente, sem ter que consultar antes o servidor PDP server.

