MAT195S CALCULUS II

Midterm Test #1

11 February 2014 9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructors: P. Athavale and J. W. Davis

Family Name:	JW Devis			
Given Name:	Solutions			
Student #:				

FOR MARKER USE ONLY						
Question	Marks Earned					
1	13					
2	11					
3	12					
4	10					
5	10					
6	9					
7	10					
TOTAL	75	/70				

Tutorial Section:						
TA Name:						

1) Evaluate the following integrals.

a)
$$\int x^{3/2} \ln x \, dx$$

b)
$$\int \frac{dx}{(x+1)(x+2)}$$

c)
$$\int \frac{x^5}{\sqrt{x^2 + 2}} dx$$

b)
$$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} \implies 1 = A(x+2) + B(x+1)$$

$$x = -2 \Rightarrow B = -1$$

$$x = -1 \Rightarrow A = 1$$

$$\int \frac{dx}{(x+1)(x+2)} = \int \frac{dx}{x+1} - \int \frac{dx}{x+2} = \ln|x+1| - \ln|x+2| + C$$

c)
$$\int \frac{x^{5}}{\sqrt{x^{2}+2}} dx$$

$$\int \frac{x^{5}}{\sqrt{x^{5}+2}} dx$$

$$= 4 \int z \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + 1 \right) du = 4 \int z \left(\frac{1}{2} \right)^2 \frac{1}{2} \left(\frac{1}$$

=
$$4Jz$$
 (see 6 -1) see 6
= $4Jz$ ($u^{2}-1$) $du = 4Jz$ ($u^{4}-2u^{2}+1$) $du = 4Jz$ [$u^{5}-2u^{2}+u$] $+C$

$$= 4 \int 2 \left(\frac{5e^{5}\theta}{5} - \frac{75e^{2}\theta}{3} + \frac{5e^{2}\theta}{3} +$$

$$= \frac{1}{5} (x^{2}+2)^{5/2} - \frac{4}{3} (x^{2}+2)^{3/2} + 4 (x^{2}+2) + C$$

2) a) Show that the surface area of rotation about the x-axis for the function y = 1/x for $1 \le x < \infty$, is infinite.

(5 marks)

$$A = \int 2\pi y \, ds$$

$$= \int 2\pi \cdot \frac{1}{x} \cdot \int 1 + \left(\frac{1}{x^2}\right)^2 \, dx = \int 2\pi \int 1 + \frac{1}{x^4} \, dx$$

$$= \int 2\pi \int x \, dx + \int dx = \int 2\pi \int x \, dx$$

$$= \int 2\pi \int x \, dx = \int 2\pi \int x \, dx$$

$$= \left[2\pi \int x \, dx\right] = 2\pi \int (0 - \ln x) = 0$$

b) Find the value for the constant C for which the integral $\int_{0}^{\infty} \left(\frac{x}{x^2 + 1} - \frac{C}{3x + 1} \right) dx$ converges. Evaluate the integral for this value of C.

(6 marks)
$$\int_{0}^{\infty} \left(\frac{x}{x^{2}+1} - \frac{C}{3x+1}\right) dx = \left[\frac{1}{2} \ln \left(x^{2}+1\right) - \frac{C}{3} \ln \left(3x+1\right)\right]_{0}^{\infty} = \left[\ln \frac{\left(x^{2}+1\right)^{2}}{\left(3x+1\right)^{2}}\right]_{0}^{\infty}$$

For this to have a finite value $\frac{\left(x^{2}+1\right)^{2}}{\left(3x+1\right)^{2}}$ must approach a constant value as $x \to \infty$; approaching either 0 or ∞ would lead to divergence. Thus we must have equal powers of x top and bottom:

$$C = 3 \Rightarrow \frac{\left(x^{2}+1\right)^{1/2}}{3x+1} = \frac{\left(x^{2}+1\right)^{1/2}}{\left(9x^{2}+6x+1\right)^{2}} = \frac{1}{4}$$

$$\therefore \left[\ln \frac{\left(x^{2}+1\right)^{1/2}}{\left(3x+1\right)^{3/3}}\right]_{0}^{\infty} \to -0 + \ln \frac{1}{3} = -\ln 3$$
Page 3 of 8

3) Sketch a graph of the parametric curve: $x = t^2 - 2$ $v = t^3 - t$

Show all vertical and horizontal tangents, the tangents at (-1, 0), and identify the asymptotic behaviour.

(10 marks)

$$x = t^{2} - 2$$
 $y = t^{3} - t$
 $y' = 3t^{2} - 1$
 $y' = 0 \implies t = \pm 1/33 \implies (-17/3, \pm \frac{2}{35/3})$

Intercepts:
$$x=0 \Rightarrow t=\pm Jz \Rightarrow (0\pm Jz)$$

 $y=0 \Rightarrow t=0, t=\pm 1 \Rightarrow (-2,0) & (-1,0)$

Slope at
$$x = -1$$
: $t = \pm 1$: $t = (=) \frac{y}{x} = \frac{z}{z} = 1$

$$t = (=) \frac{y}{x} = \frac{z}{z} = -1$$

Asymptotic behaviour: Ast > ±00: x > t2 } y=±x

Page 4 of 8

- 4) Sketch the region indicated, and find an integral representing the area of the region. Do not evaluate the integrals.
 - a) The region enclosed by one petal of the curve $r = \cos 2\theta$.
 - b) The region that lies inside both $r = \sin 2\theta$ and $r = \cos 2\theta$.
 - c) The region that lies inside $r = 2 \cos\theta$ but outside $r = 1 + \cos\theta$.

(12 marks)

intersections:

intersections:

$$\sin 2\theta = \cos 2\theta = 7 + \cos 2\theta = 1$$

 $\Rightarrow 2\theta = 11/4 - 1$
 $\theta = 11/8 - 1$
 $A = 16 \int_{0}^{11/8} \frac{1}{2} (\sin 2\theta)^{2} d\theta$
 $= 16 \int_{0}^{11/4} \frac{1}{2} (\cos 2\theta)^{2} d\theta$

$$2 - \cos\theta = (+\cos\theta)$$

$$- \cos\theta = \frac{1}{2} = 0 = \frac{1}{3}, \frac{5\pi}{3}$$

$$A = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} \left[(2 - \cos\theta)^2 - (1 + \cos\theta)^2 \right] d\theta$$

5) Find the centroid of the region trapped between the curves $y = x^2$ and $y = x^3$. Use Pappus's theorem to find the volume formed by rotating this region about the line y = x.

(10 marks)

$$A = \int_{0}^{1} (x^{2} - x^{3}) dx = \begin{bmatrix} x^{3} - x^{4} \end{bmatrix}_{0}^{1} = \frac{1}{12}$$

$$x A = \int_{0}^{1} x (x^{2} - x^{3}) dx = \begin{bmatrix} x^{4} - x^{5} \end{bmatrix}_{0}^{1} = \frac{1}{20}$$

$$\therefore x = \frac{12}{20} = \frac{3}{5}$$

$$y A = \int_{0}^{1} \frac{1}{2} (x^{4} - x^{6}) dx = \frac{1}{2} \begin{bmatrix} x^{5} - x^{7} \end{bmatrix}_{0}^{1} = \frac{1}{35}$$

$$\therefore y = \frac{12}{35}$$

Distance to line y=x:

Shope =
$$-1 \Rightarrow \frac{12}{35} = (-1)(\frac{3}{5}) + b \Rightarrow b = \frac{33}{35} \Rightarrow y = \frac{33}{35} - x$$

z) find intersection with line
$$y = 3c$$
:
$$y = \frac{33}{35} - y \implies y = \frac{33}{70} \implies x = \frac{33}{70}$$

3) distance from centroid to line
$$y = x$$
.
 $R = \int (\Delta x)^2 + (\Delta y)^2 = \int (\frac{4z}{70} - \frac{33}{70})^2 + (\frac{33}{70} - \frac{24}{70})^2 = \frac{95z}{70}$

6) Determine whether the following sequence converges or diverges; if it converges, find the limit:

a)
$$a_n = \frac{(\ln n)^2}{n}$$

b) $a_n = \sqrt[n]{2^{1+3n}}$
c) $a_n = n - \sqrt{n+1}\sqrt{n+3}$

(9 marks)

a)
$$a_n = \frac{(\ln n)^2}{n}$$
 => $f(x) = \frac{(\ln x)^2}{x}$ = $\lim_{x \to \infty} \frac{2 \ln x \cdot \frac{1}{x}}{x}$ = $\lim_{x \to \infty} \frac{2 \ln x}{x}$ = \lim_{x

b)
$$Q_n = (2^{1+3n})^{1/n} = 2^{\frac{1+3n}{n}}$$
 $Q_n = (2^{1+3n})^{1/n} = 2^{\frac{1+3n}{n}}$
 $Q_n = (2^{1+3n})^{1/$

c)
$$\alpha_{n} = n - \sqrt{n+1} \sqrt{n+3}$$
 $\frac{n + \sqrt{n+1} \sqrt{n+3}}{n + \sqrt{n+1} \sqrt{n+3}}$

$$= \frac{n^{2} - n^{2} - 4n - 3}{n + \sqrt{n+1} \sqrt{n+3}} = -\frac{1 + \frac{3}{n}}{1 + \left(1 + \frac{4}{n} + \frac{3}{n^{2}}\right)^{1/2}} \longrightarrow \frac{-4}{2} = -2$$

$$converges.$$

7) The Completeness Axiom states that any non-empty set of real numbers that is bounded below has a greatest lower bound. Given this axiom, prove that a monotonic decreasing sequence that is bounded below converges.

(10 marks)

- i) Given {an} is a monotonic decreasing sequence and is hounded, the Completeness Arion guaranters that the set of numbers given by $S = \{an \mid n \ge 13\}$ will have a greatest lower bound, L.
- 2) Now L++ cannot be a lower bound for S since L is the greatest lower bound:

: an LL+E for some N

3) But since the sequence is dear easing, an = an fer all n > N

:. an LL+E for N > N

or O Lan-LLE since an ZL

4) Thus | L-a | LE for n 7 N

: |im an = L