Section 4

Michael Brodskiy

Professor: A. Martsinkovsky

November 9, 2022

Contents

1 Vector Fields 3

1 Vector Fields

- A vector field in \mathbb{R}^n is an assignment that goes from $\mathbb{R}^n \to \mathbb{R}^n$, where the former is viewed as a bunch of points, and the latter is a bunch of vectors
 - Two examples: a force field (e.g. gravity, electrostatic, magnetic) or a velocity field (e.g. fluid mechanics)
- Ex. A gravitational field, with two masses, one fixed (M), and one floating (m)
 - The pull = magnitude \cdot direction $\to G \frac{Mm}{|\overline{d}|^2} \cdot \frac{\overline{d}}{|\overline{d}|} = G \frac{Mm}{|\overline{d}|^3} \overline{d}$
- Ex. Gradient vector fields

$$- f(\overline{x}) \to \nabla f = \left\langle \frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, \cdots, \frac{\delta f}{\delta x_n} \right\rangle$$

- Not every vector field can be realized as a gradient vector field of some function
- The 'del' operator is as follows: $\nabla := \left\langle \frac{\delta}{\delta x_1}, \frac{\delta}{\delta x_2}, \cdots, \frac{\delta}{\delta x_n} \right\rangle$
- Apply ∇ to a function f to obtain a gradient vector field (use dot product)

$$- \nabla \cdot F = \frac{\delta F_1}{\delta x_1} + \frac{\delta F_2}{\delta x_2} + \dots + \frac{\delta F_n}{\delta x_n} = \operatorname{div}(F)$$

- * This is the divergence of F
- $-\nabla \times F$ describes the curl of F (how the vector field curls in three dimensions)

Using the ∇ operator:

Using the V operator.		
input	output	significance
function f	∇f	gradient of f (a vector field)
vector field of f	$\nabla \cdot f$	divergence of f (a function)
n=3 vector field of f	$\nabla \times f$	curl of f (a vector field)

- To view 2D vector fields as 3D vector fields, convert $F = \langle P(x,y), Q(x,y) \rangle \rightarrow \langle P(x,y), Q(x,y), 0 \rangle$
- The curl of a two dimensional vector field, converted to three dimensions, is $\operatorname{curl}(F) = Q_x P_y$

3