Numerical Methods

Math 3338 - Spring 2022

Worksheet 5

Pointers, λs and Weirdness

1 Reading

CP NMEP

Table 1: Sections Covered

2 Pointers and Weirdness

Without using a computer, make a prediction about what the following will display,

L = [1,2,3]G = L

print(G) #What does this output?

G[0] = 10

print(G) #What does this output?

print(L) #What does this output?

Make a prediction, then test it. Try to explain why this happened.

Python uses a lot of pointers. A pointer is a reference to a location in memory. When we wrote G = L, we're really saying that G and L look at the same location in memory, see Figure 1. When we modified

Figure 1: Both L and G "point" at the same object

G, G[0] = 10, Python looked at that location in memory and changed the value. Next, we printed L. L looked at the same memory location, and saw the new value. This is one of the problems with mutability. We didn't expect L to change it's value.

We took a *shallow copy*, basically we just changed the name. The advantage is that the operation is very fast, it's only copying a pointer (which is the size of an integer). Compare this to a *deep copy*, where we copy the list to an entirely new location in memory. This can be very expensive, especially if the object is very large. To do this we could use G = [i for i in L] or numpy.copy.

3 Generators

Try the following code,

```
L = range(10)
G = list(L)
print(L)
print(G)
```

Notice that L and G printed different things. This is because range is a generator. A generator is, essentially, an initial value and a rule to get the next value. For example, if you wanted to use the first 10 trillion integers and you tried to create a list containing these numbers, you'll crash your computer. The size of that list is larger than the memory in your computer. As a generator, this is the size of a single integer and the rule "add 1".

Generators are easy to make, the yield statement does all the work. Here is a simplified implementation of range,

```
def range(a,b,step=1):
    out = a
    while out < b:
        yield out
    out+= step</pre>
```

Another way to think of a generator is as an *iterator* as you iterate over them.

You can also list comprehension to create a generator.

(value for value in range(50) if value%2!=0) #This is a generator

4 Lambda Functions

Every once in a while, you need to use a function exactly once. And it's overkill to write an entire function to do the job. This is the use of *lambda functions*. For example, lets say we want to sort a list of tuples by the second argument, sorted([(3,2),(4,1),(1,3)]) will sort by the first coordinate. To fix this,

```
sorted([(3,2),(4,1),(1,3)],key = lambda x:x[1])
```

The key argument is telling the sort function how to sort the list.

Lambda functions are single use, simple functions. If something is long or complicated, make a real function. These may prove useful as we start integrating, differentiating and other fun stuff.

5 The Python Way

Go into your console and enter

```
import this
```

For more information, https://docs.python-guide.org/writing/style/. This is required reading. It explains everything you need to know to be a decent Python programmer.

6 Numerical Strangeness

Integers are amazing and perfect. Python handles integers perfectly (at least between -2^{1023} and 2^{1024}). However, not everything is an integer. Try this 1.1+2.2, it probably didn't give 3.3, but a ton of decimals. This is due to *floating point error*.

We need to be aware of these issues moving forward. Numerical error compounds, a .1% error repeated 100 times is a 10% error, which is huge.

Relatedly this is one reason multiplayer games have problems, if my processor and your processor computes numbers differently, we end up seeing different things happen.

Numerical Methods

Math 3338 - Spring 2022

Homework 5 (Due: Tuesday, February 1)

Problem 1 (1 pt) On the first homework, you created a program called quadratic. Use this to solve the equation,

$$0.001x^2 + 1000x + .001 = 0$$

This is not the only way to write the quadratic formula. Multiply the top and bottom by the conjugate of the top and we get

$$x = \frac{2x}{-b \pm \sqrt{b^2 - 4ac}}$$

Use this to solve the same polynomial.

Explain what happened and conjecture why it happened. How might you solve this problem? This is submitted as a PDF on Canvas. Use LATEX to create the PDF.

Problem 2 (1 pt) We (should) know that

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Write a function diff(f,x,h) that calculates the derivative of f(x) at the point x using a step of h. Give h a default value of .01.

Problem 3 (1 pt) Use the function you created in the previous problem to calculate the derivative of f(x) = x(x-1) at x = 1. Make a table for $h = 10^{-i}$ for $i \in \{2, 4, ..., 14\}$. Also calculate the exact value (using calculus). You should be using a lambda function for this problem.

You should notice the approximation gets worse as the value of h gets smaller. Why do you think this happens?

Problem 4 (1 pt) Use the derivative function you created to make a graph of the function $f(x) = xe^{-x^2}$ and it's derivative for $-5 \le x \le 5$. Put these on the same axes and label them.

Use $h \in \{10, 5, 1, .01, .0001\}$ and describe the differences.