THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

UNCLASSIFIED A Q 4 4 7 G

Firmed Services Technical Information Agency

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

WADC TECHNICAL REPORT 55-56 PART I FC

PROTECTIVE SHOT PEENING OF PROPELLERS

Part I — Residual Peening Stresses

RONALD F. BRODRICK

LESSELLS AND ASSOCIATES, INC.

JUNE 1955

WRIGHT AIR DEVELOPMENT CENTER

WADC TECHNICAL REPORT 55-56 PART I

PROTECTIVE SHOT PEENING OF PROPELLERS

Part I — Residual Peening Stresses

RONALD F. BRODRICK

LESSELLS AND ASSOCIATES, INC.

JUNE 1955

PROPELLER LABORATORY CONTRACT No. AF 33(616)-2324 PROJECT No. 3346

WRIGHT AIR DEVELOPMENT CENTER
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Carpenter Litho & Prtg. Co., Springfield, 0. 200 - 30 January 1956

FOREWORD

This report was prepared by Lessella and Associates, Inc., Boston, Massachusetts, under U. S. Air Force Contract No. AF 33(616)-2324. Project No. 3346, "Propeller Blades." The contract was administered under the direction of the Propeller Laboratory, Wright Air Development Center, with Mr. Marshall Baldwin acting as project engineer. The author wishes to acknowledge the assistance of Mr. E. L. Rich, who supervised many of the tests and calculations.

WADC TR 55-56, Part 1

ABSTRACT

This report is one of two reports covering work performed under Contract No. AF33(616)-2324 during the period from 1 February 1954 to 30 April 1955. The object of the investigation was to determine any benefits of shot peening as a means of protecting aircraft propeller blades against the reduction of fatigue strength arising from surface damage. This report covers the investigation of the residual stresses induced by each of a variety of shot peening conditions on (1) AISI +340 steel of three different heat-treatments, (2) Aluminum alloy 76S-TS, and (3) Titanium alloy Ti 150A. Part 2 of this report will cover fatigue tests on materials which have been shot peened and subjected to simulated propeller damage.

The results indicate that the depth of resulting layer of compressive stress can be controlled quite precisely. Values of depth ranged from 0.001 in. to 0.041 in. for the materials and conditions tested. Average values of the maximum induced compressive stress were equal to the yield point for AISI 4340 at hardness R 31 and were about 60% of the yield point at hardness R_c52.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

L. M. TAYLOR

Colonel, USAF

Chief, Propeller Laboratory Directorate of Laboratories

TABLE OF CONTENTS

Sections		Page
I	INTRODUCTION	1
	The Propeller Damage Problem	1 1 2 2
11	SPECIMENS	2
	Specimen Size and Shape	2 3
Ш	SHOT PEENING	5
	Specifications and Variables	5 6
IV	RESIDUAL STRESS MEASUREMENTS	18
	Procedure	18 22
v	SUMMARY AND CONCLUSIONS	22
	Residual Stress Distribution	22 23
	BIBLIOGRAPHY	39
	APPENDIX I Sample Calculation	40
	APPENDIX II Residual Stress Results	48
	APPENDIX III Residual Stress Data	373

LIST OF TABLES

Table		Page
1 2 3 4 5	Tensile Test Results	3 10 12 14 16
	LIST OF ILLUSTRATIONS	
Figure		Page
1 2 3	Residual Stress Specimen	3 4 4
4 5	Microstructure of AISI 4340 (R _c 52)	4
6	Microstructure of Titanium Ti 150A	4
7 8	Shot Peening Equipment	6 7
9 10	Interior of Peening Cabinet	8 19
11 12	Comparator Gage Schematic	20 21
13 14-24	Etching Apparatus	21 25-35
25 26	Residual Stress Vs. Tensile Strength	36 36
27 28	Arc Height Distribution of Almen "A" and "C" Strips Indication of Creep in Titanium	37 38
29 30	Sample Data Sheet	43
31	Sample Calculation Sheet (Sheet No. 1)	44 45
32	Change in Arc Height Vs. Thickness Removed for Specimen No. 118	46
33 34-357	Sample Residual Stress Distribution	47 49-372

I. INTRODUCTION

THE PROPELLER DAMAGE PROBLEM

Aircraft propeller blades, like other mechanisms operating under alternating loads, are subject to failure by fatigue. Design calculations and experimental stress measurements make it possible to construct propellers of adequate strength to assure many hours of safe operation, provided the blade surfaces retain their original smooth configuration. Unfortunately, however, propeller blades are subjected to damage by sand, stones, and other foreign objects which impinge upon them during operation. The impingement of these objects produces surface damage in the form of scratches, nicks, or gouges. The resulting discontinuities produce stress concentrations and are thus potential generators of fatigue cracks.

The designer cannot predict the location or magnitude of these areas of damage and cannot, therefore, design a perfectly safe blade, even at considerable sacrifice of aircraft performance. As a result, in order to ensure safety in flight, it is necessary to conduct frequent inspections of propeller blades, judge the seriousness of each individual damage point, and blend out those judged to be of potentially serious nature. It is obvious that this procedure is expensive, both in terms of ground time of the airplane and in the training and maintenance of personnel qualified to assess the severity of damage. In addition, there is always the risk that damage will be overlooked with subsequent serious consequence.

From consideration of the above, it is apparent that any means of protecting the propeller blade from damage by foreign objects, or of mini nizing the detrimental effects of this damage, would be of great value. The large expense of detailed inspection would be reduced while flight safety would be maintained.

In the search for a means of providing this surface protection against damage, the possibility of the use of a layer of compressive residual stress, as introduced by shot peening, has arisen. The present investigation is based on this possibility.

SHOT PEENING AND FATIGUE STRENGTH

Many investigators, e. g. (1) $\frac{1}{}$ have studied the effects of shot peening on fatigue strength with generally favorable results. The beneficial effect of shot peening is attributed principally to the layer of residual compressive stress imposed at the peened surface. The superposition of this compressive stress on the applied stress of external loads results in a surface stress which is more compressive than otherwise. If the surface stress due to applied load is tensile, the resultant stress is less tensile than it would be in the absence of peening. Similarly, if the applied load produces compressive stress, then the resultant is more compressive than it would be without peening. The fact that peening often increases fatigue strength indicates

^{1/} Numbers in parenthesis refer to the Bibliography.

that resultant tensile stresses are primarily responsible for failure. The increased magnitude of compressive stress is not usually detrimental while the decreased value of censile strength is beneficial.

In many materials, the peened layer is also work hardened. The hardening may contribute to improvement of fatigue properties. Although there is not complete agreement among the various investigators as to the relative roles of compressive stress and work hardening, there is no doubt of the benefits of shot peening in a large variety of engineering applications.

PEENING AND PROPELLER DAMAGE

As previously mentioned, it has been suggested that shot peening might improve the resistance of aircraft propeller blades to fatigue, even after they have been damaged by foreign objects. The reasoning here is that if a layer of compressive stress can be introduced to a depth somewhat greater than the damage depth, then the benefits of the compressive stress should remain even after damage. The total effect of damage is not thoroughly understood, but it is probably a combination of notch effect and work hardening. The notch effect is definitely detrimental, but might be counteracted to some extent by work hardening. Any peening would have to be of sufficient depth so as to be retained after the external damage had been imposed.

METHOD OF INVESTIGATION

On the basis of the problem and the potential solution suggested above, the present program was undertaken. It was desired to determine what alleviation of the propeller damage problem might be obtainable through shot peening. It was also desired to obtain general quantitative residual stress data on a variety of shot peening treatments, since these treatments are applicable to many other machine parts. This information was necessary for application to the propeller problem, and very desirable as an addition to general engineering knowledge.

Thus, the program was conducted in two parts. The first part consisted of the measurement of residual stresses resulting from each of a wide range of shot peening conditions. It is this part which is being reported here. The second portion of the program consisted of the study of the benefits of peening in connection with surface damage. That portion is reported separately in WADC TR 55-56, Part 2.

II. SPECIMENS

SPECIMEN SIZE AND SHAPE

In choosing the specimen size and shape, several factors were considered. It was required that the specimen be of such a form that residual stresses could be measured easily and accurately and that the thickness be representative of critical sections of propeller blades. These requirements

that resultant tensile stresses are primarily responsible for failure. The increased magnitude of compressive stress is not usually detrimental while the decreased value of tensile strength is beneficial.

In many materials, the peened layer is also work hardened. The hardening may contribute to improvement of fatigue properties. Although there is not complete agreement among the various investigators as to the relative roles of compressive stress and work hardening, there is no doubt of the benefits of shot peening in a large variety of engineering applications.

PEENING AND PROPELLER DAMAGE

As previously mentioned, it has been suggested that shot peening might improve the resistance of aircraft propeller blades to fatigue, even after they have been damaged by foreign objects. The reasoning here is that if a layer of compressive stress can be introduced to a depth somewhat greater than the damage depth, then the benefits of the compressive stress should remain even after damage. The total effect of damage is not thoroughly understood, but it is probably a combination of notch effect and work hardening. The notch effect is definitely detrimental, but might be counteracted to some extent by work hardening. Any peening would have to be of sufficient depth so as to be retained after the external damage had been imposed.

METHOD OF INVESTIGATION

On the basis of the problem and the potential solution suggested above, the present program was undertaken. It was desired to determine what alleviation of the propeller damage problem might be obtainable through shot peening. It was also desired to obtain general quantitative residual stress data on a variety of shot peening treatments, since these treatments are applicable to many other machine parts. This information was necessary for application to the propeller problem, and very desirable as an addition to general engineering knowledge.

Thus, the program was conducted in two parts. The first part consisted of the measurement of residual stresses resulting from each of a wide range of shot peening conditions. It is this part which is being reported here. The second portion of the program consisted of the study of the benefits of peening in connection with surface damage. That portion is reported separately in WADC TR 55-56. Part 2.

II. SPECIMENS

SPECIMEN SIZE AND SHAPE

In choosing the specimen size and shape, several factors were considered. It was required that the specimen be of such a form that residual stresses could be measured easily and accurately and that the thickness be representative of critical sections of propeller blades. These requirements

Figure 1. Residual Stress Specimen

conflicted to some extent, especially as regards specimen thickness. For example, assuming a flat specimen, residual stress measurements are more sensitive in a thin section. The peening will not develop high values of stress if the section is too thin, since there is little unpeened material to resist the expansion of the peened surface. Further, it was desirable to use the same specimen thickness for residual stress work as was to be used in the eventual fatigue tests to ensure that the peening would be identical insofar as possible. Thus, the

fatigue tests (reported in Part 2) influenced the choice of residual stress specimen. The specimen selected for residual stress measurement is shown in Figure 1. It is 2 in. square and 1/4 in. thick. These dimensions represent what is felt to be a good compromise.

MATERIALS AND TEST PROPERTIES

Residual stress measurements were conducted on Type 4340 alloy steel, 76S-T6 Aluminum Alloy and Ti 150A Titanium Alloy. The steel was forged to 6 ft lengths of 2-1/2 in. x 1/2 in. cross section. The Titanium was in the form of rolled sheet of 1/4 in. thickness. Three heat-treatments of the steel were tested. These treatments were such as to give approximately 130,000 psi, 190,000 psi and 260,000 psi ultimate strengths. Tensile test results are given in Table 1. Tensile specimens for the Titanium were subsize (1/8 in. dia) since the only material available was in the form of 1/4 in. sheet. Tensile specimens for the highest strength steel were also 1/8 in. dia because of difficulty with the testing machine on larger sizes of this strength. Photomicrographs of the test materials are shown in Figures 2 through 6.

TABLE 1 TENSILE TEST RESULTS

Note: Each number represents the average of 5 specimens.

Material	Hardness	Yield Pt. (psi)	Ultimate Strength (psi)
AISI 4340 (heat E69643)	52R	226,000	257,000
AISI 4340 (heat E69643)	41Rc	174,000	187,000
AISI 4540 (heat E69643)	30Rc	107,000	131,000
76S-T6	88Rb	64,000	74,200
Ti 150A	38Rc	163,000	167,000

Figure 2. Microstructure of AISI 4340 (R_c 31) - Normalized and Annealed - Nital Etch (250X)

Figure 3. Microstructure of AISI 4340 (R_C 42) - 1475° F
O. Q. 900° F Draw
Nital Etch (250X)

Figure 4. Microstructure of AISI 4340 (R_c 52) - 1475° F O. Q. 500° F Draw Nital Etch (250X)

Figure 5. Microstructure of Aluminum 76S-T6 Kellers Etch (250X)

Figure 6. Microstructure of Titanium Ti 150A HF Etch (250X)

III. SHOT PEENING

SPECIFICATIONS AND VARIABLES

Several factors must be considered in the specification of shot peening treatments. The shot size, shot quality, shot velocity, and degree of coverageall affect the degree and manner in which the subject surface is affected. As yet the specifications are somewhat empirical, although some effort is being made to place them on a sound unive.sal basis (2). The development of the Almen arc height strip (2) has permitted appraisal of the degree of peening to which a machine part has been subjected. This strip is peened simultaneously with the part. Since it is peened on one side only, it acquires a curvature as a result of the plastic displacement of material on the peened side. This curvature, in terms of arc height over a specified gage length, is used as the measure of peening intensity. This arc height is used as an indirect measure of the depth of peening, magnitude of compressive stress and degree of coverage attained. As shot size and velocity are increased, the arc height increases. The arc height also increases as coverage increases, approaching exponentially a maximum value for each combination of shot size and velocity.

Specification of peening conditions on the basis of arc height values is empirical, since none of the factors influencing the arc height values can be quantitatively determined from these values. Different combinations of the peening variables can give the same arc heights. In practice, the shot size is usually specified and a series of tests conducted to determine the peening time and shot velocity required to give complete coverage and the desired Almen arc height. The final test of peening conditions can lie only in fatigue testing or service experience. As a result, the actual specifications derive primarily from experience with a particular product.

When quantitative data on the effects of shot peening are desired, it is necessary to resort to more elaborate tests. Of these, coverage determination is the simplest. Coverage, as determined by the arc height strip, applies only to the strip and not to the machine part being peened. For example, soft brass would be completely covered long before the hard steel arc height strip under the same conditions, since the individual shot would make deeper, larger indentations in the soft brass. For accurate measurement of coverage, it is necessary to observe the surface of the subject part and note the percentage of area which has been struck by shot. This method is attributed to Straub (3). It is generally believed that high coverage is desirable for the development of optimum fatigue properties.

Depth of cold work due to peening can often be observed by sectioning and metallurgical examination.

Depth and magnitude of the residual stresses produced can only be determined by residual stress measurements. Presently available techniques for this are time consuming, and are generally restricted to simple specimen geometries. They are, consequently, not used extensively.

In the present study, shot size was specified as an independent variable. Shot velocity was controlled indirectly through nozzle size and air pressure in the air blast type of equipment. Coverage was controlled by means of a

shot metering valve and by peening time, and was measured by observation of the peened surface. Almen "A" and "C" strips were peened simultaneously with each specimen. The strip giving the higher value of arc height was recorded unless that value exceeded 0.015 in., in which case the lower value was used. Further description of the equipment is contained in succeeding paragraphs.

Three degrees of coverage were used in the test. These are designated low, complete and high. Low coverage is defined here as 70% to 85% by area measurement. Complete coverage is 90% to 98%. High coverage is defined here as 4 times the amount of peening required to produce complete coverage.

SHOT PEENING EQUIPMENT

The air-blast cabinet type of peening equipment was used in the present work, as it is more adaptable to laboratory use than is the wheel type. A photograph of the general arrangement of apparatus is shown in Figure 7. A schematic drawing of the cabinet and accessories is shown in Figure 8.

Figure 7. Shot Peening Equipment

FIGURE 8. SHOT PEENING MACHINE LAYOUT

The cycle of shot travel through the apparatus was altered to some extent from the commercial configuration in order that good control over rate of shot flow and shot velocity could be obtained. Shot was collected in an open hopper above the cabinet. It was fed to the nozzle through a modified gate valve ha calibrated dial, such that an essentially constant rate of flow could be maintained, thence through an open funnel and into the nozzle. At the nozzle, the shot was forced by air pressure to impinge on a moving work carriage. After striking the work, the shot fell to the bottom of the cabinet, where it was fed into a return hose. Suction was maintained on this hose by a large tank-type commercial vacuum cleaner at the extreme op of the machine. Thus, the spent shot was drawn up into the vacuum cleaner tank. A dump valve on the bottom of the vacuum cleaner allowed periodic replenishment of the supply of shot in the open hopper, such that the cycle could be repeated.

The work table was driven by an automatically reversing motor in such a manner that the work passed repeatedly through the shot stream at a lineal speed of ten inches per minute. Figure 9 shows a specimen mounted on the work table. The number of passes through the stream required for a particular specimen was based on the degree of coverage attained.

Figure 9. Interior of Peening Cabinet

Air for the peening cabinet came from a 250 psi source, thence through a filter and a regulator. Pressure readings used during the tests were those taken with the nozzle supply valve open and the air flowing. Different nozzles were used with the different shot sizes. A 1/8 in. air nozzle and 1/4 in. shot nozzle was used with the 110 size shot; a 3/16 in. air and 3/8 shot nozzle with the 230 and 390 size shot; a 1/4 in. air and 1/2 in. shot nozzle with the larger sizes of shot.

Commercial steel shot was used in all cases except the 1/8 in. dia size. Shot of this large size consisted of steel bearing balls heat-treated to a hardness of R 45-50. Shot size is designated in accordance with SAE specifications by a three-digit number. The first two numbers indicate the shot diameter in thousandths of an inch, except that the 1/8 in. dia shot is given as .125.

It was desired to obtain residual stress data for the entire range of practical peening treatments. In order to limit the number of tests to a reasonable value, it was decided to cover the complete range of peening conditions on each of three hardnesses of AISI 4340 steel, with only a limited number of tests on Aluminum and Titanium. Each type of steel was subjected to each possible combination of five shot sizes, three air pressures and three degrees of coverage. Two specimens of each condition were tested, resulting in a total of 90 specimens of each strength of steel for these conditions. In addition to these, unpeened specimens of each material were analyzed for residual stress.

Afurther addition came about as follows: Six sizes of shot were utilized in the program, but only five sizes were planned for each group; these sizes being selected such that the softer specimens received generally smaller shot and the harder specimens generally larger shot. Results indicated the desirability of adding tests using the smallest shot on the harder specimens also. Thus, a few more specimens were added to the program. These added tests were performed with the small shot at high coverage and three pressures on the medium and high strength steels.

Tests on the Aluminum and Titanium were restricted to two pressures and one degree of coverage (high).

A complete list of the 324 specimens on which residual stress analyses were conducted is given in Tables 2 through 6. It should be noted that in these tables specimen numbers are consecutive in accordance with the peening treatments, except for the added tests using small shot, and the tests on unpeened material. These specimens are placed in the proper material groups without regard to succession of numbers.

TABLE 2
SHOT PEENING SCHEDULE
RESIDUAL STRESS TESTS

<u>Material - 4340 Steel</u> <u>Tensile Strength - 130,000 psi</u>

Specimen No.	Shot Size	Air Pressure	Coverage	Specimen No.	Shot Size	<u>Air</u> Pressure	Coverage
1	110	30	L	25	230	50	L
2	110	30	L	26	230	50	L
3	110	30	С	27	230	50	С
4	110	30	С	* 28	230	50	С
5	110	30	H	29	230	50	Н
6	110	30	Н	30	230	50	н
7	110	50	L	31	230	90	L
8	110	50	L	32	230	90	L
9	110	50	С	33	230	90	С
10	110	50	С	34	230	90	С
11	110	50	H	35	230	90	Н
12	110	50	H	36	230	90	н
13	110	90	L	37	390	30	L
14	110	90	L	38	390	30	С
15	110	90	С	39	390	30	L
16	110	90	С	40	390	30	С
17	110	90	H	41	390	30	Н
18	110	90	н	42	390	30	Н
19	230	30	L	43	390	50	L
, 20	230	3 0	L	44	390	50	L
21	230	30	С	45	390	50	С
22	230	30	С	46	39 0	50	С
23	230	30	H	47	390	50	Н
24	230	30	H	48	3 90	50	Н

TABLE 2 (CONTINUED)

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Material - 4340 Steel Tensile Strength - 130,000 psi

Spe	No.	Shot Size	Air Pressure	Coverage	Specimen No.	Shot Size	Air Pressure	Coverage
	49	390	90	L	71	660	90	Н
	50	390	90	L	72	660	90	Н
	51	390	90	С	73	. 125	30	L
	52	390	90	С	74	. 125	30	L
	53	390	90	Н	75	. 125	30	С
	54	390	90	H	76	.125	30	С
	55	660	30	L	77	. 125	30	Н
	56	660	30	L	78	. 125	30	H
	57	660	30	С	7 9	. 125	50	L
	58	660	30	C	80	. 125	50	L
	59	660	30	H	81	. 125	50	. С
	60	660	30	Н	82	. 125	50	С
	61	660	50	L	83	. 125	50	Н
	62	660	50	L	84	. 125	50	Н
	63	660	50	С	85	. 125	90	L
	64	660	50	С	86	. 125	90	L
	65	660	50	Н	87	. 125	90	С
	66	660	50	H	88	. 125	90	С
	67	660	90	L	89	. 125	90	Н
	68	660	90	L	90	.125	90	Н
	69	660	90	С	271	None		
	70	660	90	С	272	None		-

TABLE 3

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Material - 4340 Steel Tensile Strength - 180,000 psi

Specimen No.	Shot Size	Air Pressure	Coverage	Specimen No.	Shot Size	Air Pressure	Coverage
91	230	3 0	L	115	390	50	L
92	230	30	L	116	390	50	L
93	230	30	С	117	390	50	С
94	230	30	С	118	390	50	С
95	230	30	н	119	390	50	Н
96	230	30	H	120	390	50	Н
97	230	50	L	121	3 90	90	L
98	230	50	L	122	3 90	90	L
99	230	50	C	123	3 90	90	С
100	230	50	С	124	390	90	С
101	230	50	H	125	390	90	H
102	230	50	н	126	390	90	Н
103	230	90	L	127	660	30	L
104	230	90	L	128	660	30	L
105	230	90	С	129	660	30	С
106	230	90	С	130	660	30	С
107	230	90	Н	131	660	30	H
108	230	90	н	132	660	30	H
109	390	30	L	133	660	50	L
110	390	30	L	134	660	50	L
111	390	30	С	135	660	50	С
112	390	30	С	136	660	50	С
113	390	30	Н	137	660	50	H
114	390	• 30	Н	138	660	50	H

TABLE 3 (CONTINUED)

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Material - 4340 Steel Tensile Strength - 180,000 psi

Specimen No.	Shot Size	Air Pressure	Coverage	Specimen No.	Shot Size	Air Pressure	Coverage
139	660	90	L	164	.125	30	L
140	660	90	L	165	. 125	30	С
141	660	90	С	166	.125	30	C .
142	660	90	С	167	.125	30	H
143	660	9C	н	168	.125	30	H
144	660	90	н	169	.125	50	L
145	780	30	L	170	.125	50	L
146	780	30	L	171	.125	50	С
147	780	30	С	172	.125	50	C
148	780	30	С	173	.125	50	H
149	780	30	н	174	.125	50	н
150	780	30	н	175	.125	90	L
151	780	50	L	176	.125	90	L
152	780	50	L	177	.125	90	С
153	780	50	С	178	.125	90	С
154	780	50	С	179	.125	90	H
155	780	50	н	180	.125	90	н
156	780	50	н	273	None	#	
157	780	90	L	274	None	_	
158	780	90	L	313	110	30	H
159	780	90	С	314	110	30	H
160	780	90	С	315	110	50	H
161	780	90	н	316	110	50	н
162	780	90	H	317	110	90	H
163	. 125	30	L	318	110	90	н

TABLE 4

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Material - 4340 Steel Tensile Strength - 260,000 psi

Specimen No.	Shot Size	Air Pressure	Coverage	Specimen No.	Snot Size	Air Pressure	Coverage
181	230	30	L	205	3 90	5 0	L
182	230	30	L	206	39 0	50	L
183	230	30	С	207	39 0	50	С
184	230	30	С	2.08	3 90	50	C
185	230	30	H	209	390	50	Н
186	230	30	Н	210	39 0	50	Н
187	230	50	L	211	390	90	L
188	230 -	50	L	212	390	90	1.
189	230	50	С	213	3 90	90	С
190	230	5 0	С	214	3 90	90	С
191	230	50	Н	215	390	90	H
192	230	50	Н	216	390	90	н
193	230	90	L	217	660	30	L
194	230	90	L	218	660	30	L
195	230	90	С	219	660	30	С
196	230	90	С	220	660	30	С
197	230	90	Н	221	660	30	Н
198	230 -	90	H	222	660	30	H
199	390	30	L	223	660	50	L
200	390	30	L	224	660	5 0	L
201	390	30	С	225	660	50	C
202	390	30	С	226	660	50	С
203	390	30	Н	227	660	50	Н
204	390	30	Н	228	660	50	Н

TABLE 4 (CONTINUED)

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

. Material - 4340 Steel Tensile Strength - 350,000 psi

Specimen No.	Shot Size	Air Pressure	Coverage	Specimen No.	Shot Size	<u>Air</u> Pressure	Coverage
229	660	90	L	254	.125	30	L
230	660	90	L	255	.125	30	С
231	660	90	С	256	. 125	30	С
232	660	90	С	257	.125	3 0	н
233	660	90	н	258	. 125	30	Н
234	660	90	H	259	. 125	50	L
235	78 0	30	L	260	. 125	50	L
236	780	30	L	261	. 125	50	С
237	780	30	C	262	. 125	5 0	С
238	78 0	30	С	263	. 125	50	H
239	780	30	H	264	. 125	5 0	H
240	78 0	30	Н	265	. 125	90	L
241	780	50	L	266	. 125	90	L
242	780	50	L	26 7	. 125	90	С
243	78 0	50	С	268	. 125	90	С
244	780	50	С	269	. 125	90	H
245	78 0	50	Н	270	. 125	90	H
246	78 0	50	н	275	None		-
247	780	90	L	276	None		-
248	780	90	L	319	110	30	н
249	780	90	С	320	110	30	н
250	78 0	90	С	321	110	50	Н
251	780	90	Н	322	110	50	Н
252	780	90	H	323	110	90	Н
253	125	30	L	324	110	90	Н

TABLE 5

SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Aluminum 765-T6

Specimen No.	Shot Size	Air Pressure	Coverage
277	110	30	н
278	110	30	н
279	110	90	н
280	110	90	H
281	230	30	Н
282	230	3 0	н
283	230	90	н
284	230	90	н
285	390	30	н
286	390	30	н
287	390	90	н
288	390	90	Н
289	660	30	н
290	660	30	Н
291	660	90	н
292	660	90	н
293	None		-
294	None	_	_

TABLE 6 SHOT PEENING SCHEDULE RESIDUAL STRESS TESTS

Titanium Ti 150A

Specimen No.	Shot Size	Air Pressure	Coverage
295	110	30	н
296	110	30	H
297	110	90	H
298	110	90	Н
299	230	30	Н
300	230	30	н
301	230	90	Н
302	230	90	н
303	660	30	н
304	660	30	Н
305	660	90	H
306	660	90	Н
307	780	30	н
308	780	30	н
309	780	90	н
310	780	90	н
311	None		_
312	None	_	-

IV. RESIDUAL STRESS MEASUREMENTS

PROCEDURE

The general procedure used here is the outgrowth of many years of experience in the field of residual stress measurement by numerous laboratories. It would be impossible here to cite all those whose efforts have contributed so much to the complex problem. The method used, however, derives more or less directly from methods discussed by Richards, (4) Waisman (5) and Letner (6) plus other unpublished works.

Analysis of the simple specimens used consists of the procedure of removing successive layers of material from one surface and the observation of specimen thickness and curvature after the removal of each layer. Calculation of the stresses can be performed from these data.

The cycle of test operations to which each specimen was subjected, together with comments about each operation, is as follows.

Lap: One 2 by 2 in. surface was lapped to nearly optical flatness, using 800 grit Alundum abrasive suspended in kerosene. It was necessary to use 320 grit on the Titanium in order to prevent galling and seizing between specimen and lapping plate. This coarser grit gave a completely adequate surface for the curvature measurements.

Thickness: Initial thickness was measured by micrometer. The average of five readings was taken as the value of initial thickness.

Weight: Weight was determined to the nearest milligram, using a laboratory balance. The ratio of weight loss to original weight was used as the measure of thickness removed at each step since it was more accurate than direct micrometer measurement of thickness.

Curvature: The curvature of the lapped surface was measured on a modified comparator gage. A photograph of this gage is shown in Figure 10. In operation, the specimen was placed on the gage such that the lapped surface was in contact with three carbide-tipped supports. Two of these are shown as the outer supports in Figure 11. The distance between these two fixed supports served as the gage length of 1-1/2 in. A third fixed support (not shown in Figure 11) served to steady the specimen. A small weight was placed on the specimen to ensure good contact at the supports. I his weight was arranged with three guided legs such that the force was applied exactly opposite the fixed supports, thus preventing any bending of the specimen. A fourth carbide tip formed the end of the movable sensitive element of the gage. This was located midway between the two fixed support gage points, as shown in Figure 11. The height of the movable plunger with respect to the fixed supports thus provided a measure of the specimen curvature. This curvature was referenced from an optical flat (flat within 1 x 10⁻⁶ in.) or to one of several other standards of known curvature (some shown at bottom of Figure 10). Figure 12 shows a specimen mounted in the gage head. The gage was accurately calibrated with gage blocks. The sensitivity was such that are height could be estimated to one millionth of an inch. Two observations were taken for each curvature datum point. Each of two operators made

Figure 10. Comparator Gage

one observation. It was required that the spread between observations not exceed 0.000002 in. in some cases and 0.000005 in. in others, depending on the accuracy required on the particular test. Observations of the curvature in each of two perpendicular directions designated A(perpendicular to grain flow) and B (parallel to grain flow) were made on each specimen.

Mask: The lapped surface and edges of the specimen were covered with electrical tape to protect them from attack by the etchant.

Etch: Steel specimens were etched in a solution of one part HNO₃ to ten parts water, by volume. The specimens were placed on a rack and submerged in the solution, as shown in Figure 13. The solution was stirred slowly by a magnetic mixer mounted under the table. The position of the specimen and the stirring action kept the test surface free from bubbles, resulting in a uniform etch. The time of etching was varied from one minute to one hour, according to the amount of material removal desired. The rate of removal was about 0.004 in. per hour.

The Aluminum specimens were etched in a solution of one part HCl to six parts water, by volume. This also removed about 0.004 in. per hour.

FIGURE II. COMPARATOR GAGE SCHEMATIC

Figure 13. Etching Apparatus

Figure 12. Specimen Mounted in Gage Head

After etching with HCl, the Aluminum was given a short etch in 10% HNO₃ by volume, to remove the black residue from the surface.

The Titanium specimens were etched in a solution composed of 25 grams of potassium fluoride, 60 cc HNO₃ and 600 cc water. This also resulted in a rate of about 0.004 in. per hour.

Wash and Strip: Following the etch, each specimen was scrubbed in cold water, stripped of masking tape, and dried.

Recycle: After drying, each specimen was subjected to additional cycles of weighing, measuring, etching, etc., until the required amount of data had been collected. Most tests were discontinued after about 0.050 in. of material had been removed, since this was sufficiently below the zone greatly affected by shot peening.

CALCULATIONS

The background and the details of calculation are discussed in Appendix I. A sample calculation is included.

V. SUMMARY AND CONCLUSIONS

RESIDUAL STRESS DISTRIBUTION

Summary curves of the depth of the compressive layer vs. peening treatment are given in Figures 14 through 24. In these figures, the depth of the compressive layer is defined as the depth to the intersection of the stress curve with the zero stress line. This parameter was chosen for its probable significance in relation to the propeller damage problem. It can be observed that smooth curves have been drawn through the data points. These are extrapolated to the origin of coordinates on the assumption that infinitesimal shot would give infinitesimal effective depth. The data appear to bear out this assumption.

As would be expected, the effective depth increases with increasing shot size and with increasing air pressure (which relates to shot velocity). The depth also increases with increased coverage, as can be seen by comparison of curves of the same pressure but different coverages. The latter is not as marked as the effects of shot size and pressure. It is generally believed that high coverage is necessary for the development of optimum fatigue properties, as high coverage implies that the peening action has covered all points of the surface. Thus, until data appear which indicate otherwise, application of these values should favor the higher coverages.

The maximum compressive stress vs. ultimate strength of the steel is shown in Figure 25. Each point in this figure represents the average of all peening treatments at high coverage for each strength of the steel. It can

be seen that the increase in degree of induced compressive stress is at a much lower rate than the increase in ultimate strength. In fact, Figure 26 reveals that the softer specimens show compressive stresses averaging about 100% of the yield strength whereas the harder specimens show average maximum compressive stresses of about 60% of the yield strength. A possible explanation for the relatively high value in the soft material lies in the possibility of surface work hardening by the shot. Thus, the surface could be appreciably stronger than the value indicated by tensile tests on the parent material.

The residual stress results on each specimen tested are given in Figures 34 through 357, Appendix II. These are arranged in numerical order of specimen numbers. Tables 2 through 6, wherein specimen numbers are catalogued according to material and peening treatment, serve as an index for these figures.

It will be noted that the residual stress curves show the same general shape regardless of peening treatment. Only the magnitudes and relative depths increase with increasing peening intensity. One possible exception to the above observation can be seen in stresses near the peened surfaces. In some cases (e. g., Specimen No. 221) a reverse curve appears, whereas in others (e. g., Specimen No. 140) this does not appear. This reverse loop has been observed by other investigators (1). It occurs in the region of least accurate measurement of rate of change of curvature. This is also in the region of least accurate knowledge of thickness removed, since the peened surface is initially rough. Thus, it is possible that the reverse curve may be partially a false indication. Additional remarks on precision in this regard will be found in succeeding paragraphs.

PRECISION

Because of the large number of conditions tested and the limited number of specimens at each condition, it is not possible to determine statistically the precision of the tests. However, most of the sources of variation can be recognized and some evaluation of their magnitudes conducted. The first source of variation is, of course, in the test material itself. The degree of uniformity of the parent material is indicated to some extent by the hardness values given on the residual stress results plots. Scatter in data was greatest for the soft steel specimens and is a result of non-uniformity in the normalizing and annealing. However, the shot peening masks this effect to some extent, reducing the scatter in the area affected by peening.

A second source of variation arises in the shot-peening treatment. Variations in peening intensity will appear as variations in residual stress patterns. Although considerable effort was made to control the peening, there is little doubt that some variability did exist. This is borne out to some extent by the variation in Almen archeights for identical peening treatments. It should be noted, however, that the Almen arc height itself is subject to variation. Figure 27 indicates that this can be considerable. Each point in this figure represents the simultaneous peening of one Almen "A" and one Almen "C" strip.

The other sources of variation lie in the procedure of residual stress analysis. Of the steps used here, the curvature measurement is the most critical, especially during measurement of stresses nearest the surface. The errors arising from this source were reduced by refinements in technique as the tests proceeded. They are largest on the early tests, which were on the steel specimens using the smallest shot at low and medium coverage. The high coverage data were obtained after the refinements in technique had been incorporated.

The possible error in weight measurement for thickness determination is negligible (assuming no human error) as the sensitivity was considerably in excess of that required. Human error in data collection and in calculation was held to a very small amount by a system wherein different operators checked each other.

Some error in theory arises from the fact that the peened surface is rough. The etching procedure attacks the surface protuberances at a somewhat higher rate than it attacks the surface indentations. Thus, the actual stress in the layers removed in the early stages may differ from the calculated value, since the calculation procedure assumes uniform stress throughout each layer removed.

It is felt that the maximum test error, excluding those that are caused by surface roughness and excluding the Titanium specimens, is in the order of 20,000 psi at points very near the surface and in the order of 5,000 psi at deeper points. The average error is probably much less than this but, because of the wide range of conditions tested, is impossible to determine accurately.

The Titanium specimens exhibited a condition not observed in steel or Aluminum. This is indicated in Figure 28 which is a plot of the data from which the stresses are calculated. In this plot, the ordinate represents the arc height measurement indicative of the specimen curvature. It can be noted that this measurement changed drastically during idle periods between tests. This is probably a result of creep and is of such magnitude as to render the results highly unreliable. An attempt was made to vertically displace the points beyond each discontinuity in such a way as to compensate for creep. This resulted in extremely high calculated stresses. The values finally used were taken from a smooth curve drawn through the end points of each group of consecutive tests. This procedure resulted in fairly good agreement with specimens which were tested over relatively short time periods. Nevertheless, the putential error is too great to justify any great degree of confidence in the Titanium results.

FIGURE 14. EFFECTIVE DEPTH OF PEENING

FIGURE 15. EFFECTIVE DEPTH OF PEENING

FIGURE 16. EFFECTIVE DEPTH OF PEENING

29

FIGURE 19. EFFECTIVE DEPTH OF PEENING

FIGURE 20. EFFECTIVE DEPTH OF PEENING

FIGURE 21. EFFECTIVE DEPTH OF PEENING

FIGURE 22. EFFECTIVE DEPTH OF PEENING

FIGURE 23. EFFECTIVE DEPTH OF PEENING

WADC TR 55-56. Part 1

FIGURE 24.

FIGURE 25. RESIDUAL STRESS Vs. TENSILE STRENGTH

FIGURE 26. RATIO OF RESIDUAL STRESS TO YIELD STRENGTH

FIGURE 27. ARC HEIGHT DISTRIBUTION OF ALMEN "A" & "C" STRIPS

FIGURE 28. INDICATION OF CREEP IN TITANIUM

BIBLIOGRAPHY

- Mattson, R. L. and Coleman, W.S. Jr. Effect of Shot Peening Variables and Residual Stresses on the Fatigue Life of Leaf-Spring Specimens. Transactions of the Society of Automotive Engineers, New York. Volume 62. 1954. pp. 546-556.
- 2. <u>SAE Manual on Shot Peening.</u> Special Publications. Nos. 84 and 126. Society of Automotive Engineers, New York.
- 3. Shot Peening. Fourth Edition. American Wheelabrator and Equipment Corporation, Mishawaka, Indiana. 1951. pp. 31-34.
- 4. Richards, D. G. <u>A Study of Certain Mechanically Induced Residual Stresses</u>, Proceedings of the Society for Experimental Stress Analysis. Volume III. No. 1, 1945, pp. 40-61.
- 5. Waisman, J. L. and Phillips, A. <u>Simplified Measurement of Residual Stresses</u>. Proceedings of the Society for Experimental Stress Analysis. Volume XI. No. 2. 1954. pp. 29-44.
- 6. Letner, H. R. Residual Grinding Stress in Steel. American Society of Mechanical Engineers. Preprint No. 54-A-56. 1954.

APPENDIX I

SAMPLE CALCULATION

LIST OF SYMBOLS

t = Thickness (inches).

W = Weight (grams).

H = Arc height (inches).

dH = Total change in arc height (inches).

dt = Total thickness removed (inches).

△t = Incremental thickness removed (inches).

dh/dt = Slope of curve of total change in arc height vs. thickness
 removed. (Inches per inch.)

E. I. = Even Interval.

= Angle of the slope on the dH vs. dt curve (degrees).

S.F. = Scale factor converting degrees to inches arc height/inches thickness.

G = Indicates nomograph operation.

S = Stress (psi).

M = Poisson's ratio = 0.3.

E = Modulus of elasticity (psi).

(2) = Indicates column used.

A = Subscript indicating curvature measured perpendicular to grain flow of metal.

B = Subscript indicating curvature measured parallel to grain flow of metal.

o = Subscript indicating initial value.

n = Subscript indicating value at step number "n."

n-1 = Subscript indicating value at step number "n-1."

The calculation of stress is based on the equations given by J. F. Waisman (5) for a balanced biaxial stress condition. After introduction of the relation between curvature and arc height (over the gage length of 1-1/2 in.) and proper adjustment of algebraic signs, the residual stress equation appears as follows:

$$S = -S_1 - S_2 + S_3 \tag{1}$$

Where:
$$S_1 = \frac{0.593E}{1-1} t_n^2 \frac{dh}{dt}$$
 (2)

$$S_2 = \frac{\sum_{0}^{n-1} S \cdot \Delta t}{t_{n-1}}$$
(3)

$$S_3 = \frac{1.775E}{1-\mu}$$
 t_{n-1} $(H_0 - H_{n-1})$ (4)

The solution of the above equations was broken down into a series of simple operations. This involved three types of form: the data sheet, the plot of arc height vs. thickness removed, and the calculation sheet.

A sample data sheet is shown in Figure 29. On this sheet the Reference Height column gives the arc height (above the optically flat condition) of the particular reference plate in use. The Scale Reading columns denote the excess in arc height of the specimens over that of the reference plate in the two perpendicular directions measured. The total arc height of the test plate is the algebraic sum of the reference height and the scale reading. A positive number here represents a condition wherein the specimen curvature is convex on the shot peened side.

A sample calculation π^{ν} set is shown in Figure 30 and continued in Figure 31.

The first six columns of the calculation sheet are used for obtaining values suitable for plotting the curve of arc height vs. thickness. Columns 4, 5 and 6 give these values, which are then plotted as shown in Figure 32. This curve represents the total (hange in arc height for the various amounts of material removed. It should be noted that, as a result of the direction of subtraction, a decreasing arc height is plotted positive upward. For convenience, the data given in Appendix III are taken from Columns 4, 5 and 6 of the calculation sheet. Thus, the slope curves, as in Figure 32, can be plotted directly from the tabulated data. The pairs of points for both the A and B directions are plotted, and a smooth curve drawn through the average between these pairs. In most cases, the points for the two directions are in good agreement. The exceptions usually lie at the greater depths where the calculated stress is fairly insensitive to discrepancies between the two. Thus, the assumption of a balanced biaxial stress condition is justified. Most of the scatter at these greater depths can be attributed to non-uniform annealing of the soft steel, a situation which was corrected in later tests.

The remaining routine of calculation can be simplified by the selection of even intervals of thickness from the plot. These intervals are chosen for each specimen in such a manner as to reveal the salient features of the arc height vs. thickness curve. For example, the intervals are closely spaced near the origin of the plot and near areas of high curvature (of the plot). The intervals selected for the sample calculations are indicated in Column 7 of Figure 30. The average angle of slope for each interval is then measured and recorded in Column 8 in the line corresponding to the higher step number. The angle is then converted to slope by taking the tangent of he angle and multiplying it by the appropriate scale factor to give units of inches arc height/inches thickness, Columns 9 and 10. The thicknesses remaining at Steps (n) and (n-1) on even intervals are readily obtained from Columns 1 and 7 and tabulated in Columns 11 and 13, respectively. From the smoothed dH vs. dt curve the total change in arc height at each even interval of thickness is determined and listed in Column 14. With the preceding information tabulated, Equations (2) and (4) can now be solved. Considering the mass of calculations involved, two nomographs were devised such that, with the information given in Columns 10 and 11, S1 in Column 12 could be obtained and, having Columns 13 and 14, S, in Column 15 could be obtained. Column 16, the change in thickness between steps, comes from Column 13 minus Column 11. The last four columns (17-20) are calculated in successive steps to get the solution of Equations (1) and (3). For example, at Step 1 there was no previous removal and therefore Columns 17 and 18 have values of zero. The total stress, Column 19, can then be computed. From the total stress and the change in thickness between each interval, Column 20 can be determined. This same procedure is repeated continuously for each step until the complete stress distribution is obtained.

A preliminary stress curve is now drawn by plotting Column 19 vs. Column 7. Each point represents the average stress in the layer between it and the previous point. In order to have these points lie in their proper positions in relation to depth, each point is relocated in a direction parallel to the depth axis such that it lies halfway between its original position and the position of the point immediately preceding it on the preliminary curve. A curve through these relocated points represents the residual stress pattern in the specimen. This procedure is depicted in Figure 33.

SAMPLE DATA SHEET

Specimen No. 118

Initial Thickness = .2508

	REFERENCE		SCALE I	READING
STEP	HEIGHT (10 ⁻⁴ in.)	WEIGHT (gm)	H _A (10 ⁻⁴ in.)	H _B (10 ⁻⁴ in.)
0	7.14	122.9220	. 63	. 82
1		122. 8268	. 52	. 72
2		122.7148	. 39	. 52
3		122.6116	. 20	. 39
4		122.4510	.00	. 22
5		122.3682	06	. 08
6	=	122.0916	40	30
7		121.6809	-1.05	87
8		121.3699	-1.48	-1.46
9		120.2018	-3.42	-3.30
10	3. 18	119.3480	91	60
11		117. 8179	-3.01	-2.84
12		114. 2585	-3.05	-2.85
13		111.8356	-2.96	-2.78
14		109.6408	-2.98	-3.06
15		107.0130	-2.80	-2.71
16		104.3427	-2.68	-2.60
17	19	101.6942	-2.58	-2. 43
18		99.0162	-2.46	-2.33
19		96.4788	-2.33	-2.20

Figure 29. Sample Data Sheet

SAMPLE CALCULATION SHEET

Specii	Specimen No.	118							Scale Factor	tor = .04
	1	2	3	4	5	9	7	8	6	10
Step	t o	$\begin{bmatrix} \mathbf{w} & \mathbf{n-1} \\ \mathbf{w} & \mathbf{v} \end{bmatrix}$	1-3	A Direction Ho-Hn-1	B Direction Ho-Hn-1		E. I. to-t	Θ	tan \varTheta	dh/dt = SF xØ
- (. 2508	1	0	0	0	0	100	67.6	1.594	. 0637
7 (666.	. 001	+. 11	+.10	. 0003	. 002	-	1.705	. 0681
~ ·		866.	700.	+. 25	+.30	. 0005	.004	61.9	1.873	. 0749
4		. 997	. 003	+.43	+. 43	8000.	900	64.0	2.050	.0820
2		966.	. 004	+.63	+.60	. 0010	800.	64.3	2.078	. 0830
9		966 .	. 004	+.69	+.74	. 0010	600.	58.5	1.632	. 0652
~		. 993	7.00 .	+1.03	+1.12	. 0018	.010	47.3	1.084	. 0433
∞		066.	. 010	+1.68	+1.69	. 0025	.011	35.0	. 700	.0280
6		. 987	.013	+2.11	+2.28	. 0033	.012	23.3	. 431	. 0172
10		. 978	. 022	+4.05	+4.12	. 0055	.013	10.6	. 187	. 0075
=		. 971	. 029	+5.54	+5.42	. 0073	. 014	3	005	0002
12		. 951	6#).	+7.64	+7.66	. 0123	. 015	-1.1	019	0008
13		. 929	. 071	+7.68	+7.67	. 0178	. 020	-1.4	025	0010
4.		.910	060 .	+7.59	+2.60	. 0226	. 025	-1.8	031	0012
15		. 892	. 108	+7.61	+7.88	. 0271	. 030	-2.2	038	0016
16		. 871	. 129	+7.43	+7.53	. 0324	. 035	-3.1	054	0022
17		. 849	. 151	+7.31	+7.42	. 0379	. 0.40	-3.1	054	0022
8		. 827	. 173	+7.21	+7.25	. 0434	. 045	-3.1	054	0022
19		908.	. 194	+7.09	+7.15	. 0487				
20		. 785	. 215	+6.96	+7.02	. 0539				

Figure 30. Sample Calculation Sheet (Sheet No. 1)

		T -									_				_				
20	s \text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	001	105	-225	-236	-226	000	-47	-223	2-	+7	+ 18	61+	66+	+97	40+	+04	7 0 1	2
19	S = S-4S-	-100 000	-105,400	-112,700	-117,900	-112.900	-80,800	-47,100	-22,30	-6.600	+7,400	+18,400	+19.400	+19,700	+19,400	+19,000	+18 700	+17,600	+16,500
18	S ₂ = (1)/(1)	0	-400	-800	-1700	-2700	-3700	-4000	-4200	-4400	-4400	-4400	-4300	-4300	-3900	-3600	-3200	-2900	-2500
17	∑s∆t = (Ø+@ ₋₁	0	-100	-205	-430	999-	-892	-973	-1020	-1042	-1049	-1042	-1024	-1005	906-	-809	-711	-617	-529
16	Δt = (3-(1)	.001	. 001	. 002	. 002	.002	.001	.001	.001	.001	. 001	.001	. 001	. 005	. 005	. 005	.005	. 005	. 005
15	S, (1), (1)	0	1,200	2,500	5,400	8,400	11,500	12,900	13,500	14,000	14,000	14,000	14,000	14,000	13,900	13,400			11,700
14	E. I. (dH) _{n-1}	0	09.	1.30	2.80	4.40	6.10	6.80	7.20	7.50	7.60	7.70	7.75	7.75	7.70	7.60	7.50	7.40	7.10
13	E. I. t _{n-1}	. 251	. 250	. 249	. 247	. 245	. 243	. 242	. 241	. 240	. 239	. 238	. 237	. 236	. 231	. 226	. 221	. 216	. 211
12	_{ട,} ത്ര. ത	100,000	107,000	116,000	125,000	124,000	000'96	64,063	40,000	25,000	11,000	0	1,100	-1,400	-1,600	-2,000	-2,600	-2,500	-2,300
11	t = (0) (0)	. 250	. 249	. 247	. 245	. 243	. 242	. 241	. 240	. 239	. 238	. 237	. 236	. 231	. 226	. 221	. 216	. 211	. 206
	Step	-1	7	m .	4' 1	ς,	ه د		× 0	6 ;	0 ;	1:	71	13	14	15	16	17	82

Figure 31. Sample Calculation Sheet (Sheet No. 2)

CHANGE IN ARC HEIGHT VERSUS THICKNESS REMOVED FOR SPECIMEN NO. 118 FIGURE 32.

FIGURE 33. SAMPLE RESIDUAL STRESS DISTRIBUTION

APPENDIX II

RESIDUAL STRESS RESULTS

The following pages give the detailed residual stress distributions for all specimens tested. The curves are arranged in numerical order, according to specimen identification numbers. Tables 2 through 6, Pages 10 through 17, serve as an index to these results. The specimen number corresponding to a particular peening condition can be determined from these tables.

FIGURE 34. RESIDUAL STRESS DISTRIBUTION

FIGURE 35. RESIDUAL STRESS DISTRIBUTION

FIGURE 36. RESIDUAL STRESS DISTRIBUTION

FIGURE 37. RESIDUAL STRESS DISTRIBUTION

FIGURE 38. RESIDUAL STRESS DISTRIBUTION

FIGURE 39. RESIDUAL STRESS DISTRIBUTION

FIGURE 40. RESIDUAL STRESS DISTRIBUTION

FIGURE 41. RESIDUAL STRESS DISTRIBUTION

FIGURE 42. RESIDUAL STRESS DISTRIBUTION

FIGURE 43. RESIDUAL STRESS DISTRIBUTION

FIGURE 44. RESIDUAL STRESS DISTRIBUTION

FIGURE 45. RESIDUAL STRESS DISTRIBUTION

FIGURE 45. RESIDUAL STRESS DISTRIBUTION

FIGURE 46. RESIDUAL STRESS DISTRIBUTION

FIGURE 47. RESIDUAL STRESS DISTRIBUTION

WADC TR 55-56, Part 1

FIGURE 48. RESIDUAL STRESS DISTRIBUTION

FIGURE 49. RESIDUAL STRESS DISTRIBUTION

FIGURE 50. RESIDUAL STRESS DISTRIBUTION
WADC TR 55-56 . Part 1 65

FIGURE 51. RESIDUAL STRESS DISTRIBUTION

FIGURE 52. RESIDUAL STRESS DISTRIBUTION

FIGURE 53. RESIDUAL STRESS DISTRIBUTION

FIGURE 54. RESIDUAL STRESS DISTRIBUTION

FIGURE 55. RESIDUAL STRESS DISTRIBUTION

FIGURE 56. RESIDUAL STRESS DISTRIBUTION

FIGURE 57. RESIDUAL STRESS DISTRIBUTION

FIGURE 58. RESIDUAL STRESS DISTRIBUTION

FIGURE 59. RESIDUAL STRESS DISTRIBUTION

FIGURE 60. RESIDUAL STRESS DISTRIBUTION

FIGURE 61. RESIDUAL STRESS DISTRIBUTION

FIGURE 62. RESIDUAL STRESS DISTRIBUTION

FIGURE 63. RESIDUAL STRESS DISTRIBUTION

FIGURE 64. RESIDUAL STRESS DISTRIBUTION

FIGURE 65. RESIDUAL STRESS DISTRIBUTION

FIGURE 66. RESIDUAL STRESS DISTRIBUTION

FIGURE 67. RESIDUAL STRESS DISTRIBUTION

FIGURE 68. RESIDUAL STRESS DISTRIBUTION

FIGURE 69. RESITUAL STRESS DISTRIBUTION

FIGURE 70. RESIDUAL STRESS DISTRIBUTION

FIGURE 71. RESIDUAL STRESS DISTRIBUTION

FIGURE 72. RESIDUAL STRESS DISTRIBUTION

FIGURE 73. RESIDUAL STRESS DISTRIBUTION

FIGURE 74. RESIDUAL STRESS DISTRIBUTION

FIGURE 75. RESIDUAL STRESS DISTRIBUTION

FIGURE 76. RESIDUAL STRESS DISTRIBUTION

FIGURE 77. RESIDUAL STRESS DISTRIBUTION

FIGURE 78. RESIDUAL STRESS DISTRIBUTION

FIGURE 79. RESIDUAL STRESS DISTRIBUTION

FIGURE 80. RESIDUAL STRESS DISTRIBUTION

FIGURE 81. RESIDUAL STRESS DISTRIBUTION

FIGURE 82. RESIDUAL STRESS DISTRIBUTION

FIGURE 83. RESIDUAL STRESS DISTRIBUTION

FIGURE 84. RESIDUAL STRESS DISTRIBUTION

FIGURE 85. RESIDUAL STRESS DISTRIBUTION

FIGURE 86. RESIDUAL STRESS DISTRIBUTION

FIGURE 87. RESIDUAL STRESS DISTRIBUTION

FIGURE 88. RESIDUAL STRESS DISTRIBUTION

FIGURE 89. RESIDUAL STRESS DISTRIBUTION

FIGURE 90. RESIDUAL STRESS DISTRIBUTION

FIGURE 91. RESIDUAL STRESS C'STRIBUTION

FIGURE 92. RESIDUAL STRESS DISTRIBUTION

FIGURE 93. RESIDUAL STRESS DISTRIBUTION

FIGURE 94. RESIDUAL STRESS DISTRIBUTION

FIGURE 95. RESIDUAL STRESS DISTRIBUTION

FIGURE 96. RESIDUAL STRESS DISTRIBUTION

FIGURE 97. RESIDUAL STRESS DISTRIBUTION

FIGURE 98. RESIDUAL STRESS DISTRIBUTION

FIGURE 99. RESIDUAL STRESS DISTRIBUTION

FIGURE 100. RESIDUAL STRESS DISTRIBUTION

FIGURE 101. RESIDUAL STRESS DISTRIBUTION

FIGURE 102. RESIDUAL STRESS DISTRIBUTION

FIGURE 103. RESIDUAL STRESS DISTRIBUTION

FIGURE 103. RESIDUAL STRESS DISTRIBUTION

FIGURE 104. RESIDUAL STRESS DISTRIBUTION

FIGURE 105. RESIDUAL STRESS DISTRIBUTION

FIGURE 106. RESIDUAL STRESS DISTRIBUTION

FIGURE 107. RESIDUAL STRESS DISTRIBUTION

FIGURE 108. RESIDUAL STRESS DISTRIBUTION

FIGURE 109. RESIDUAL STRESS DISTRIBUTION

FIGURE IIO. RESIDUAL STRESS DISTRIBUTION

FIGURE III. RESIDUAL STRESS DISTRIBUTION

FIGURE 112. RESIDUAL STRESS DISTRIBUTION

FIGURE 113. RESIDUAL STRESS DISTRIBUTION

FIGURE 114. RESIDUAL STRESS DISTRIBUTION

FIGURE 115. RESIDUAL STRESS DISTRIBUTION

FIGURE 116. RESIDUAL STRESS DISTRIBUTION

FIGURE 117. RESIDUAL STRESS DISTRIBUTION

FIGURE 118. RESIDUAL STRESS DISTRIBUTION

FIGURE 119. RESIDUAL STRESS DISTRIBUTION

FIGURE 120. RESIDUAL STRESS DISTRIBUTION

FIGURE 121. RESIDUAL STRESS DISTRIBUTION

FIGURE 122. RESIDUAL STRESS DISTRIBUTION

FIGURE 123. RESIDUAL STRESS DISTRIBUTION

FIGURE 124. RESIDUAL STRESS DISTRIBUTION

FIGURE 125. RESIDUAL STRESS DISTRIBUTION

FIGURE 126. RESIDUAL STRESS DISTRIBUTION

FIGURE 127. RESIDUAL STRESS DISTRIBUTION

FIGURE 128. RESIDUAL STRESS DISTRIBUTION

FIGURE 129. RESIDUAL STRESS DISTRIBUTION

FIGURE 130, RESIDUAL STRESS DISTRIBUTION

FIGURE 131. RESIDUAL STRESS DISTRIBUTION

FIGURE 132. RESIDUAL STRESS DISTRIBUTION

FIGURE 133. RESIDUAL STRESS DISTRIBUTION

FIGURE 134. RESIDUAL STRESS DISTRIBUTION

FIGURE 135 RESIDUAL STRESS DISTRIBUTION

FIGURE 136. RESIDUAL STRESS DISTRIBUTION

FIGURE 137. RESIDUAL STRESS DISTRIBUTION

FIGURE 138. RESIDUAL STRESS DISTRIBUTION

FIGURE 139. RESIDUAL STRESS DISTRIBUTION

FIGURE 140. RESIDUAL STRESS DISTRIBUTION

FIGURE 141. RESIDUAL STRESS DISTRIBUTION

FIGURE 142. RESIDUAL STRESS DISTRIBUTION

FIGURE 143. RESIDUAL STRESS DISTRIBUTION

FIGURE 144. RESIDUAL STRESS DISTRIBUTION

FIGURE 145. RESIDUAL STRESS DISTRIBUTION

FIGURE 146. RESIDUAL STRESS DISTRIBUTION

FIGURE 147. RESIDUAL STRESS DISTRIBUTION

FIGURE 148. RESIDUAL STRESS DISTRIBUTION

FIGURE 149. RESIDUAL STRESS DISTRIBUTION

FIGURE 150. RESIDUAL STRESS DISTRIBUTION

FIGURE 151. RESIDUAL STRESS DISTRIBUTION

FIGURE 152. RESIDUAL STRESS DISTRIBUTION

FIGURE 153. RESIDUAL STRESS DISTRIBUTION

FIGURE 154. RESIDUAL STRESS DISTRIBUTION

FIGURE 155. RESIDUAL STRESS DISTRIBUTION

FIGURE 156. RESIDUAL STRESS DISTRIBUTION

FIGURE 157. RESIDUAL STRESS DISTRIBUTION

FIGURE 158. RESIDUAL STRESS DISTRIBUTION

FIGURE 159. RESIDUAL STRESS DISTRIBUTION

FIGURE 160. RESIDUAL STRESS DISTRIBUTION

FIGURE 161. RESIDUAL STRESS DISTRIBUTION

FIGURE 162. RESIDUAL STRESS DISTRIBUTION

FIGURE 163. RESIDUAL STRESS DISTRIBUTION

FIGURE 164. RESIDUAL STRESS DISTRIBUTION

FIGURE 165. RESIDUAL STRESS DISTRIBUTION

FIGURE 166. RESIDUAL STRESS DISTRIBUTION

FIGURE 167. RESIDUAL STRESS DISTRIBUTION

FIGURE 168. RESIDUAL STRESS DISTRIBUTION

FIGURE 169. RESIDUAL STRESS DISTRIBUTION

FIGURE 170. RESIDUAL STRESS DISTRIBUTION

FIGURE 171. RESIDUAL STRESS DISTRIBUTION

FIGURE 172. RESIDUAL STRESS DISTRIBUTION

FIGURE 173. RESIDUAL STRESS DISTRIBUTION

FIGURE 174. RESIDUAL STRESS DISTRIBUTION

FIGURE 175. RESIDUAL STRESS DISTRIBUTION

FIGURE 176. RESIDUAL STRESS DISTRIBUTION

FIGURE 177. RESIDUAL STRESS DISTRIBUTION

FIGURE 178. RESIDUAL STRESS DISTRIBUTION

FIGURE 179. RESIDUAL STRESS DISTRIBUTION

FIGURE 180. RESIDUAL STRESS DISTRIBUTION

FIGURE 181. RESIDUAL STRESS DISTRIBUTION

FIGURE 182. RESIDUAL STRESS DISTRIBUTION

FIGURE 183. RESIDUAL STRESS DISTRIBUTION

FIGURE 184. RESIDUAL STRESS DISTRIBUTION

FIGURE 185. RESIDUAL STRESS DISTRIBUTION

FIGURE 186. RESIDUAL STRESS DISTRIBUTION

FIGURE 187. RESIDUAL STRESS DISTRIBUTION

FIGURE 188. RESIDUAL STRESS DISTRIBUTION

FIGURE 189. RESIDUAL STRESS DISTRIBUTION

FIGURE 190. RESIDUAL STRESS DISTRIBUTION

FIGURE 191. RESIDUAL STRESS DISTRIBUTION

FIGURE 192. RESIDUAL STRESS DISTRIBUTION

FIGURE 193. RESIDUAL STRESS DISTRIBUTION

FIGURE 194. RESIDUAL STRESS DISTRIBUTION

FIGURE 195. RESIDUAL STRESS DISTRIBUTION

FIGURE 196. RESIDUAL STRESS DISTRIBUTION

FIGURE 197. RESIDUAL STRESS DISTRIBUTION

FIGURE 198. RESIDUAL STRESS DISTRIBUTION

FIGURE 199. RESIDUAL STRESS DISTRIBUTION

FIGURE 200. RESIDUAL STRESS DISTRIBUTION

FIGURE 201. RESIDUAL STRESS DISTRIBUTION

FIGURE 202. RESIDUAL STRESS DISTRIBUTION

FIGURE 203. RESIDUAL STRESS DISTRIBUTION

FIGURE 204. RESIDUAL STRESS DISTRIBUTION

FIGURE 205. RESIDUAL STRESS DISTRIBUTION

FIGURE 206. RESIDUAL STRESS DISTRIBUTION

FIGURE 207. RESIDUAL STRESS DISTRIBUTION

FIGURE 208. RESIDUAL STRESS DISTRIBUTION

FIGURE 209. RESIDUAL STRESS DISTRIBUTION

FIGURE 210. RESIDUAL STRESS DISTRIBUTION

FIGURE 211. RESIDUAL STRESS DISTRIBUTION

FIGURE 212. RESIDUAL STRESS DISTRIBUTION

FIGURE 213. RESIDUAL STRESS DISTRIBUTION

FIGURE 214. RESIDUAL STRESS DISTRIBUTION

FIGURE 215. RESIDUAL STRESS DISTRIBUTION

FIGURE 216. RESIDUAL STRESS DISTRIBUTION

FIGURE 217. RESIDUAL STRESS DISTRIBUTION

FIGURE 218. RESIDUAL STRESS DISTRIBUTION

FIGURE 219. RESIDUAL STRESS DISTRIBUTION

: -19.

FIGURE 220. RESIDUAL STRESS DISTRIBUTION

FIGURE 221. RESIDUAL STRESS DISTRIBUTION

FIGURE 222. RESIDUAL STRESS DISTRIBUTION

FIGURE 223. RESIDUAL STRESS DISTRIBUTION

FIGURE 224. RESIDUAL STRESS DISTRIBUTION

FIGURE 225. RESIDUAL STRESS DISTRIBUTION

FIGURE 226. RESIDUAL STRESS DISTRIBUTION

FIGURE 227. RESIDUAL STRESS DISTRIBUTION

FIGURE 228. RESIDUAL STRESS DISTRIBUTION

FIGURE 229. RESIDUAL STRESS DISTRIBUTION

FIGURE 230. RESIDUAL STRESS DISTRIBUTION

FIGURE 231. RESIDUAL STRESS DISTRIBUTION

FIGURE 232. RESIDUAL STRESS DISTRIBUTION

FIGURE 233. RESIDUAL STRESS DISTRIBUTION

FIGURE 234. RESIDUAL STRESS DISTRIBUTION

FIGURE 235. RESIDUAL STRESS DISTRIBUTION

FIGURE 236. RESIDUAL STRESS DISTRIBUTION

FIGURE 237. RESIDUAL STRESS DISTRIBUTION

FIGURE 238. RESIDUAL STRESS DISTRIBUTION

FIGURE 239. RESIDUAL STRESS DISTRIBUTION

FIGURE 240. RESIDUAL STRESS DISTRIBUTION

FIGURE 241. RESIDUAL STRESS DISTRIBUTION

FIGURE 242. RESIDUAL STRESS DISTRIBUTION

FIGURE 243. RESIDUAL STRESS DISTRIBUTION

FIGURE 244. RESIDUAL STRESS DISTRIBUTION

FIGURE 245. RESIDUAL STRESS DISTRIBUTION

FIGURE 246. RESIDUAL STRESS DISTRIBUTION

FIGURE 247. RESIDUAL STRESS DISTRIBUTION

FIGURE 248. RESIDUAL STRESS DISTRIBUTION

FIGURE 249. RESIDUAL STRESS DISTRIBUTION

FIGURE 250. RESIDUAL STRESS DISTRIBUTION

FIGURE 251. RESIDUAL STRESS DISTRIBUTION

FIGURE 252. RESIDUAL STRESS DISTRIBUTION

FIGURE 253. RESIDUAL STRESS DISTRIBUTION

FIGURE 254. RESIDUAL STRESS DISTRIBUTION

FIGURE 255. RESIDUAL STRESS DISTRIBUTION

FIGURE 256. RESIDUAL STRESS DISTRIBUTION

FIGURE 257. RESIDUAL STRESS DISTRIBUTION

FIGURE 258. RESIDUAL STRESS DISTRIBUTION

FIGURE 259. RESIDUAL STRESS DISTRIBUTION

FIGURE 260. RESIDUAL STRESS DISTRIBUTION

FIGURE 260. RESIDUAL STRESS DISTRIBUTION

FIGURE 261. RESIDUAL STRESS DISTRIBUTION

FIGURE 262. RESIDUAL STRESS DISTRIBUTION

WADC TR 55-56, Part 1

FIGURE 263. RESIDUAL STRESS DISTRIBUTION

FIGURE 264. RESIDUAL STRESS DISTRIBUTION

FIGURE 265. RESIDUAL STRESS DISTRIBUTION

FIGURE 266. RESIDUAL STRESS DISTRIBUTION

FIGURE 267. RESIDUAL STRESS DISTRIBUTION

FIGURE 268. RESIDUAL STRESS DISTRIBUTION

FIGURE 269. RESIDUAL STRESS DISTRIBUTION

FIGURE 270. RESIDUAL STRESS DISTRIBUTION

FIGURE 271. RESIDUAL STRESS DISTRIBUTION

FIGURE 272. RESIDUAL STRESS DISTRIBUTION

FIGURE 273. RESIDUAL STRESS DISTRIBUTION

FIGURE 274. RESIDUAL STRESS DISTRIBUTION

FIGURE 275. RESIDUAL STRESS DISTRIBUTION

FIGURE 276. RESIDUAL STRESS DISTRIBUTION

FIGURE 277. RESIDUAL STRESS DISTRIBUTION

FIGURE 278. RESIDUAL STRESS DISTRIBUTION

FIGURE 279. RESIDUAL STRESS DISTRIBUTION

FIGURE 280. RESIDUAL STRESS DISTRIBUTION

FIGURE 281. RESIDUAL STRESS DISTRIBUTION

FIGURE 282. RESIDUAL STRESS DISTRIBUTION

FIGURE 283. RESIDUAL STRESS DISTRIBUTION

FIGURE 284. RESIDUAL STRESS DISTRIBUTION

FIGURE 285. RESIDUAL STRESS DISTRIBUTION

FIGURE 286. RESIDUAL STRESS DISTRIBUTION

FIGURE 287. RESIDUAL STRESS DISTRIBUTION

302

FIGURE 288. RESIDUAL STRESS DISTRIBUTION

FIGURE 289. RESIDUAL STRESS DISTRIBUTION

FIGURE 290. RESIDUAL STRESS DISTRIBUTION

FIGURE 291. RESIDUAL STRESS DISTRIBUTION

FIGURE 292. RESIDUAL STRESS DISTRIBUTION

FIGURE 293. RESIDUAL STRESS DISTRIBUTION

FIGURE 294. RESIDUAL STRESS DISTRIBUTION

FIGURE 295. RESIDUAL STRESS DISTRIBUTION

FIGURE 296. RESIDUAL STRESS DISTRIBUTION

FIGURE 297. RESIDUAL STRESS DISTRIBUTION

FIGURE 298. RESIDUAL STRESS DISTRIBUTION

FIGURE 299. RESIDUAL STRESS DISTRIBUTION

FIGURE 300. RESIDUAL STRESS DISTRIBUTION

FIGURE 301. RESIDUAL STRESS DISTRIBUTION

FIGURE 302. RESIDUAL STRESS DISTRIBUTION

FIGURE 303. RESIDUAL STRESS DISTRIBUTION

FIGURE 304. RESIDUAL STRESS DISTRIBUTION

FIGURE 305. RESIDUAL STRESS DISTRIBUTION

FIGURE 306. RESIDUAL STRESS DISTRIBUTION

FIGURE 307. RESIDUAL STRESS DISTRIBUTION

FIGURE 308. RESIDUAL STRESS DISTRIBUTION

FIGURE 309. RESIDUAL STRESS DISTRIBUTION

FIGURE 310. RESIDUAL STRESS DISTRIBUTION

FIGURE 311. RESIDUAL STRESS DISTRIBUTION

FIGURE 312. RESIDUAL STRESS DISTRIBUTION

FIGURE 313. RESIDUAL STRESS DISTRIBUTION

FIGURE 314. RESIDUAL STRESS DISTRIBUTION

FIGURE 315. RESIDUAL STRESS DISTRIBUTION

FIGURE 316. RESIDUAL STRESS DISTRIBUTION

FIGURE 317. RESIDUAL STRESS DISTRIBUTION

FIGURE 318. RESIDUAL STRESS DISTRIBUTION

FIGURE 319. RESIDUAL STRESS DISTRIBUTION

FIGURE 320. RESIDUAL STRESS DISTRIBUTION

FIGURE 321. RESIDUAL STRESS DISTRIBUTION

FIGURE 322. RESIDUAL STRESS DISTRIBUTION

FIGURE 323. RESIDUAL STRESS DISTRIBUTION

FIGURE 324. RESIDUAL STRESS DISTRIBUTION

FIGURE 325. RESIDUAL STRESS DISTRIBUTION

FIGURE 326. RESIDUAL STRESS DISTRIBUTION

FIGURE 327. RESIDUAL STRESS DISTRIBUTION

FIGURE 328. RESIDUAL STRESS DISTRIBUTION

FIGURE 329. RESIDUAL STRESS DISTRIBUTION

FIGURE 330. RESIDUAL STRESS DISTRIBUTION

FIGURE 331. RESIDUAL STRESS DISTRIBUTION

FIGURE 332. RESIDUAL STRESS DISTRIBUTION

FIGURE 333. RESIDUAL STRESS DISTRIBUTION

FIGURE 334. RESIDUAL STRESS DISTRIBUTION

FIGURE 335. RESIDUAL STRESS DISTRIBUTION

FIGURE 336. RESIDUAL STRESS DISTRIBUTION

FIGURE 337. RESIDUAL STRESS DISTRIBUTION

FIGURE 338. RESIDUAL STRESS DISTRIBUTION

FIGURE 339. RESIDUAL STRESS DISTRIBUTION

FIGURE 340. RESIDUAL STRESS DISTRIBUTION

FIGURE 341. RESIDUAL STRESS DISTRIBUTION

FIGURE 342. RESIDUAL STRESS DISTRIBUTION

FIGURE 343. RESIDUAL STRESS DISTRIBUTION

FIGURE 344. RESIDUAL STRESS DISTRIBUTION

FIGURE 345. RESIDUAL STRESS DISTRIBUTION

FIGURE 346. RESIDUAL STRESS DISTRIBUTION

FIGURE 347. RESIDUAL STRESS DISTRIBUTION

FIGURE 348. RESIDUAL STRESS DISTRIBUTION

FIGURE 349. RESIDUAL STRESS DISTRIBUTION

FIGURE 350. RESIDUAL STRESS DISTRIBUTION

FIGURE 351. RESIDUAL STRESS DISTRIBUTION

FIGURE 352. RESIDUAL STRESS DISTRIBUTION

 ϱ^{β_-}

FIGURE 353. RESIDUAL STRESS DISTRIBUTION

FIGURE 354. RESIDUAL STRESS DISTRIBUTION

FIGURE 355. RESIDUAL STRESS DISTRIBUTION

FIGURE 356. RESIDUAL STRESS DISTRIBUTION

FIGURE 357. RESIDUAL STRESS DISTRIBUTION

APPENDIX III

RESIDUAL STRESS DATA

The following pages contain arc height and thickness data from which the residual stress calculations were made. The data are arranged in numerical order of specimen numbers. Tables 2 through 6, Pages 10 through 17, serve as an index relating peening treatment to specimen number.

Values of dH_A and dH_B are in units of 10^{-4} in. Values of dt are in units of inches. Use of the data and the definitions of symbols under which the data are listed are discussed in Appendix I.

Specimen No. 1 t_o = .2599 Specimen No. 2 t_o = .2617 Specimen No. 3 t_o = .2607

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
ı	0	0	0	0	0	0	0	0	0
2	.17	. 18	.0002	. 20	. 22	.0001	. 17	. 23	. 0001
3	. 29	. 28	.0003	. 31	. 31	.0003	. 16	. 15	.0003
4	. 29	. 26	.0004	.30	. 33	.0004	. 29	. 41	.0005
5	. 42	. 36	.0006	. 43	. 39	.0006	. 38	. 47	.0006
6	. 46	. 38	.0007	. 50	.51	.0008	. 46	. 59	.0008
7	. 54	. 51	.0008	.50	. 53	.0009	1.13	1.28	.0017
8	1.04	. 94	.0016	. 92	. 98	.0016	1.53	1.71	.0029
9	1.29	1.17	.0022	1.25	1.38	.0023	1.74	2.05	.0034
10	1.69	1.41	.0029	1.55	1.73	.0032	2.03	2. 25	.0055
11	2.00	1.59	.0036	1.71	1.90	.0040	1.95	2.19	.0070
12	2.16	1.64	.0054	1.70	1.97	.0058	1.55	1.85	.0135
13	1.88	. 97	.0126	1.48	1.85	. 0129	1.40	1.22	.0213
14	1.93	. 61	.0196	1.32	1.33	.0193	1.25	1.20	.0275
15	2.04	. 37	.0275	1.25	1.78	. 0265	1.15	1.10	.0343
16	2.14	.18	. 0352	1.12	1.68	. 0339	1.05	1.00	.0410
17	2.73	04	.0413	.80	1.48	.0398	. 93	. 79	.0471
18	2.19	19	.0480	.91	1.57	. 0463	. 85	.65	. 0533
19	2.19	43	.0556	.72	1.39	.0535			

Specimen No. 4 $t_0 = .2611$

Specimen No. 5 $t_0 = .2609$

Specimen No. 6 t_o = .2603

		0							
Step	dH _A	dH _B	dt	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.16	. 16	. 0001	. 04	0	.0001	.04	. 02	.0001
3	. 16	. 18	.0003	.13	. 15	.0002	. 08	. 09	.0002
4	. 33	. 37	.0005	. 20	. 18	.0003	. 21	. 22	.0003
5	. 51	. 51	. 0006	.30	. 21	.0004	. 26	. 29	.0004
6	. 56	. 55	.0008	. 40	. 35	.0006	. 38	. 39	.0006
7	1.09	1.02	. 9018	. 47	. 40	.0007	. 46	. 50	.0008
8	1.50	1.51	.0027	1.13	1.07	.0017	1.06	1.10	.0019
9	1.71	1.73	.0032	1.61	1.55	.0028	1.46	1.54	.0028
10	2.11	2. 21	.0052	1.95	1.90	.0037	1.96	1.94	. 0037
11	2.12	2.19	.0066	2.30	2.20	.0057	2.31	2.40	.0960
12	1.72	1.86	. 0132	2.10	1.95	.0075	2.36	2. 35	.0080
13	1.61	1.68	. 0209	1.35	1.10	.0140	2.06	2.20	.0132
14	1.31	1.56	.0277	1.13	. 70	.0208	2.08	2.40	.0214
15	.91	1.41	. 0345	. 96	. 56	.0272	2.07	2. 49	. 0279
16	1.01	1.36	.0409	.80	. 34	.0338	2.07	2.65	. 0343
17	. 82	1.18	. 0467	.65	. 20	.0400	2.08	2.77	. 0406
18	. 71	1.04	. 0523	. 44	.01	. 0461	2.08	2.91	.0468
19				. 15	20	. 0512	2.14	3.10	. 0527

Specimen No. 7 t_o = .2603 Specimen No. 8 t_o = .2604

Specimen No. 9 t_o = .2608

Step	dHA	dH _B	dt	$^{ m dH}{f A}$	$^{ m dH}$ B	dt	$^{ m dH}_{ m A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 08	.10	. 0001	. 07	.12	. 0001	.18	. 17	. 0002
3	. 15	. 14	.0002	, 17	. 22	. 0002	. 46	. 52	.0007
4	. 20	. 26	. 0005	. 24	. 25	.0004	. 67	.61	.0010
5	. 40	.40	. 0007	. 39	. 29	. 0006	1.30	1,20	.0019
6	. 51	.50	.0008	. 59	. 52	.0008	1.72	1.67	. 0029
7	. 59	. 57	.0010	. 54	. 56	.0010	2.11	2.06	. 0036
8	1.36	1.41	. 0025	1.51	1.49	. 0025	2.44	2.39	. 0043
9	2.06	2. 28	. 0045	2.37	1.96	.0049	3.10	3.09	.0060
1 c	2. 13	2.35	.0053	2.49	2.04	.0053	3.13	3.16	.0075
11	2.11	2.35	.0000	2.59	2.04	. 0061	3.10	3.09	.0093
12	1.95	2. 22	.0078	2.03	1.94	. 0079	3.09	3.09	.0104
13	1.86	1.70	.0141	2.54	1.29	.0136	2.93	2.97	.0135
14	1.95	1.55	. 0205	2.61	1.13	.0195	2.89	2.88	. 0156
15	1.93	1.41	. 0268	2.62	. 87	.0259	2.74	2.59	. 0226
16	1.95	1.41	. 0326	2.61	. 75	.0318	2.59	2.41	. 0287
17	1.91	1.40	. 0399	2.59	.64	. 0399	2.40	2.17	. 0349
18	1.97	1.41	. 0451	2.54	. 45	. 0456	2.22	1.95	. 0402
19	1.71	1.60	. 0514	2.45	. 27	. 0516	1.99	1.63	.0458
20							1.73	1.36	.0508

Specimen No. 10 t = .2617 Specimen No. 11 t_o = .2615 Specimen No. 12 t₂ = .2594

		0			0		2		
Step	dH _A	dН _В	dt	dH _A	^{dH} B	dt	dH _A	dH _B	dt
1 2	0 . 09	0 . 09	0 . 0001	0 . 05	0 . 09	0 .0001	0 .13	0 .15	0 .0002
3 4	. 16 . 27	. 16 . 25	.0002	.09	.11	.0002	. 44	. 42	.0007
5	. 39 . 47	. 36	. 0006	. 37	.35	.0006	1.40	1.41	.0022
7 8 9	. 54 1. 13 1. 46	.50 1.07 1.42	.0009 .0018 .0026	.51 1.13 1.60	.49 1.19 1.62	.0009 .0020 .0029	2.51 2.90 3.61	2.58 2.94 3.59	.0043 .0053 .0060
10	1.93	1.83	.0034	2.02	2. 03 2. 72	.0036	3.66 3.67	3.65 3.60	.0084
12	2. 69 2. 61	2.72 2.57	.0077	2.98	2.92 2.92 2.92	.0076 .0137 .0199	3. 48 3. 43 3. 42	3.59 3.40 3.39	.0111 .0144 .0144
14 15 16	2. 54 2. 44 2. 35	2. 49 2. 37 2. 28	. 0203 . 0273 . 0337	2.70 2.72 2.80	2. 92 2. 93 2. 97	.0263	3.17	3.12 2.99	.0214
17 18	2.14	2. 15	. 0388	2.77 2.92	2.95 2.96	. 0389 . 0 4 51	2. 75 2. 48	2.81 2.61	.0354
19 20				3.00	2.85	. 0517	2.18 1.96	2. 31 2. 16	.0465 .0518

Specimen No. 13 t_o = .2618 Specimen No. 14 t_o = .2613 Specimen No. 15 t_o = .2599

Step	dHA	dн _В	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0_	0
2	. 97	. 98	. 0016	. 91	. 86	. 0015	1.21	1.17	.0020
3	1.72	1.80	.0032	1.63	1.87	. 0033	2.12	2.06	. 0036
4	2.44	2.62	.0047	2. 29	2.64	.0048	2.43	2. 4 7	.0043
5	3.05	3.20	.0069	2.99	3.38	.0074	3.22	3.30	.0064
6	3.00	3.21	. 0086	2.95	3.30	.0093	3.50	3.66	.0081
7	2.94	3.21	.0098	2.91	3.32	. 0105	3.56	3.75	.0092
8	2.63	3.03	.0170	2.71	3.24	. 0176	3.54	3.67	.0168
9	2.49	3.01	. 0236	2.63	3.20	. 0248	3.45	3.62	.0240
10	2.35	2.94	.0304	2.68	3.31	.0310	3.38	3.50	. 0316
11	2. 29	3.00	. 0372	2.71	3.32	. 0379	3.30	3.45	. 0388
12	2.18	3.00	. 0437	2.72	3.30	. 0452	3.22	3.28	. 0463
13	2.04	2.98	.0524	2.64	3.29	. 0526	3.12	3.13	. 0536
14				2.48	3.22	. 0608			

Specimen No. 16 $t_0 = .2608$

Specimen No. 17 t_o = .2604 Specimen No. 18 0 = .2601

Step	dHA	dH _B	dt	dH _A	^{dH} B	dt	^{dH} A	\mathtt{dH}_{B}	dt
1 2 3 4 5 6 7 8 9 10 11 12	0 .81 1.63 2.07 2.91 3.15 3.12 2.18 1.85 1.55 1.28 1.09 .85	0 .92 1.80 2.24 3.18 3.48 3.56 3.12 2.90 2.74 2.60 2.43 2.23	0 .0015 .0031 .0039 .0061 .0074 .0084 .0165 .0230 .0302 .0373 .0441	0 1.10 1.95 2.59 3.35 3.53 3.60 3.11 2.60 2.27 2.02 1.84 1.73	0 1.14 1.96 2.66 3.45 3.72 3.76 3.67 3.55 3.66 3.79 3.98 4.25	0 . 0018 . 0034 . 0048 . 0069 . 0086 . 0097 . 0176 . 0241 . 0319 . 0391 . 0470	0 1.37 2.20 2.88 3.82 4.05 4.16 4.41 4.45 4.60 4.62 4.69 4.72	0 1.39 2.16 2.75 3.62 3.79 3.81 3.63 3.49 3.41 3.41 3.43 3.41	0 .0021 .0035 .0048 .0071 .0086 .0094 .0171 .0240 .0315 .0382 .0451

Specimen No. 19 $t_0 = .2619$

ï

Specimen No. 20 $t_0 = .2612$ Specimen No. 21 $t_0 = .2594$

Step	dH _A	dH _B	dt	dH _A	$^{ m dH}_{ m B}$	dt	$^{ m dH}_{ m A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.10	.10	. 0001	. 07	.10	.0001	. 06	. 06	.0001
3	. 17	. 17	. 0001	.12	. 12	.0001	.13	. 13	.0002
4	. 20	. 19	. 0003	.17	. 16	.0002	. 26	. 26	. 0003
5	. 32	.30	.0004	. 22	. 24	.0004	.38	. 38	.0005
6	. 32	. 34	.0006	. 32	. 22	. 0006	.65`	. 65	.0006
7	. 48	. 49	.0008	. 52	. 43	.0008	1.29	1.29	.0008
8	. 98	1.09	.0017	.92	1.43	.0018	1.93	1.93	.0019
9	1.47	1.39	. 0027	1.44	1.43	. 0028	2.53	2.53	.0030
10	2. 29	2.22	. 0039	2.14	2. 22	. 0038	3.10	3.10	.0043
11	3.42	3.54	. 0063	3.40	3.50	. 0063	4.35	4.20	.0070
12	3.89	4.09	. 0083	3.99	4.05	.0084	4.87	4.62	.0100
13	3.85	4.19	.0151	4.31	4.14	.0148	5.13	4.72	.0170
14	3.74	4.16	. 0226	4.42	4.11	. 0218	5.15	4.65	. 0237
15	3.57	4.01	. 0292	4.47	4.02	. 0281	5.10	4.50	. 0321
16	3.67	4.00	. 0354	4.53	3.97	. 0344	5.00	4.34	. 0389
17	3.84	4.04	.0422	4.62	4.02	.0411	4.88	4.17	. 0463
18	3.84	3.98	. 0464	4.62	3.97	. 0453	4.72	4. 00	. 0537
19	3.97	3.89	. 0560	4.67	4.02	. 0539			

Specimen No. 22 t = .2618 Specimen No. 23 t = .2608 Specimen No. 24 $t_0 = .2602$

		0			0			0	
Step	dH _A	dНВ	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1 2 3 4 5 6 7 8 9	0 .13 .13 .28 .47 .57 .79 1.38 2.28 2.88	0 .12 .17 .27 .39 .47 .77 1.37 2.25 2.85 3.70	0 .0001 .0002 .0003 .0005 .0007 .0009 .0023 .0036 .0047	0 .14 .22 .37 .47 .57 .67 1.77 2.45 2.97 4.02	0 .13 .22 .37 .47 .62 .72 1.67 .2.31 2.82 3.77	0 .0002 .0003 .0005 .0008 .0009 .0012 .0029 .0041 .0051	0 .08 .21 .34 .46 .52 .66 1.91 2.52 3.05 4.20	0 .13 .24 .38 .43 .53 .67 1.93 2.53 3.08 4.23	0 .0001 .0002 .0004 .0006 .0008 .0010 .0031 .0042 .0052
11 12 13 14 15 16 17 18	3.97 4.81 4.88 4.76 4.83 4.68 4.63 4.58	3. 70 4. 49 4. 52 4. 39 4. 27 4. 09 3. 92 3. 72	.0102 .0170 .0244 .0318 .0386 .0466	4.02 4.52 4.97 5.05 5.07 5.03 4.89 4.75 4.59	3. 77 4. 34 4. 62 4. 67 4. 75 4. 78 4. 79 4. 77 4. 86	.0073 .0090 .0168 .0229 .0292 .0369 .0432 .0501	4. 20 4. 73 4. 96 5. 03 5. 21 5. 31 5. 41 5. 51	4. 23 4. 73 4. 93 4. 93 4. 93 4. 98 5. 13	. 0078 . 0095 . 0165 . 0233 . 0294 . 0364 . 0438 . 0507

Specimen No.	25
$t_2 = .2617$	

Specimen No. 26 t = .2605 Specimen No. 27 t_o = .2623

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dн в	dt
1	0	0	0	0	0	0	0	0	0
2	. 22	. 28	.0001	. 20	. 10	.0001	.08	. 14	.0001
3	. 27	. 33	.0002	. 23	. 20	. 0002	. 20	. 18	. 0002
4	. 34	. 39	.0004	. 31	. 30	. 0003	. 33	. 35	.0004
5	. 43	. 55	. 0006	. 40	. 40	. 0005	. 40	. 45	. 0005
6	. 55	. 60	.0008	.50	. 45	. 0007	. 47	. 53	.0007
7	. 50	. 58	. 0009	. 47	. 43	. 0009	. 63	. 62	.0009
8	1.25	1.38	. 0024	1.33	1.30	. 0023	1.20	1.25	.0020
9	2.02	2.12	. 0036	2.02	2.08	. 0036	1.65	1.77	. 0030
10	2.82	2.83	.0048	2.87	2.88	. 0048	2.20	2.30	.0040
11	4.17	4.08	. 0069	4.30	4.28	.0074	3.45	3.62	. 0063
12	5.37	4.68	. 0089	5.02	5.08	. 0105	4.15	4.37	.0082
13	5.34	5.50	. 0167	5.59	5.66	.0177	6. 25	5.75	.0151
14	5. 24	5.46	. 0238	5.76	5.73	. 0256	6.45	5.74	. 0230
15	5. 20	5.38	. 0309	5.91	5.82	. 0319	6.47	5.60	. 0301
16	5.14	5.18	. 0377	6.08	5.85	. 0396	6.48	5.48	. 0372
17	5.05	5.19	. 0448	6. 21	5.89	. 0460	6.45	5.35	. 0446
18	5.01	5.13	. 0516				6.40	5.17	. 0523

Specimen No. 28 t_o = .2608 Specimen No. 29 t_o = .2567 Specimen No. 30 t_o = .2600

Step	^{dH} A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 10	0	.0001	1.47	1.41	.0024	1.60	1.60	. 0023
3	. 30	. 10	. 0002	2.57	2.41	.0041	2.51	2.57	. 0039
4	. 40	. 10	.0004	3.09	2.91	. 0050	2.95	3.01	.0048
5	. 50	. 10	. 0005	4.06	3.93	. 0069	3.87	4.04	. 0067
6	.70	. 20	. 0007	4.84	4.72	. 0085	4.49	4.69	. 0082
7	. 80	. 40	. 0009	5. 23	5.18	. 0096	5.03	5.17	. 0095
8	1.20	1.10	.0020	6.51	6.52	.0165	6.20	6. 23	. 0179
9	2.00	2.00	. 0029	6.66	6.61	. 0238	6.05	6.24	. 0249
10	3.12	2.75	.0040	6.84	6.70	. 0309	6.01	6.28	.0314
11	4.30	3.97	. 0063	7.06	6.87	. 0378	5.88	6.39	.0388
12	5.18	4.98	. 0081	7.33	7.05	. 0454	5.77	6.40	. 0466
13	6.31	6.35	. 0149	7.57	7. 29	. 0520	5.64	6.42	. 0538
14	5.98	6.40	. 0222						
15	5.80	6.42	. 0292	1			ĺ		
16	5.88	6.61	. 0370	į .					
17	5.88	6.70	. 0433						
18	5.93	6.80	. 0505						
19	5.92	6.90	. 0575						

Specimen No. 31 $t_0 = .2601$

3

Specimen No. 32 t_o = .2597 Specimen No. 33 $t_0 = .2600$

Step	dH _A	dH _B	dt	dH _A	dH _B	(.	dH _A	dH _B	dî
1 2 3 4 5 6 7 8 9 10 11	0 1.39 2.35 2.88 3.96 4.82 5.29 7.18 7.35 7.34 7.27 7.19	0 1.36 2.25 2.82 3.74 4.61 5.04 6.41 6.35 6.25 6.10 5.93	0 .0025 .0041 .0049 .0068 .0083 .0094 .0172 .0243 .0312 .0381	0 2.05 3.07 3.57 4.66 5.42 5.97 7.45 4.65 7.76 7.85 7.95	0 1.75 2.77 3.21 4.42 5.37 5.92 7.60 7.80 7.92 8.12 8.39	0 .0025 .0042 .0050 .0071 .0086 .0099 .0171 .0248 .0320 .0395 .0466	0 .40 .90 1.00 1.40 1.70 2.20 3.60 6.81 8.20 8.57	0 .50 .90 1.00 1.50 1.90 2.20 3.30 3.50 6.81 8.09 8.20	0 .0003 .0008 .0010 .0018 .0026 .0034 .0049 .0049 .0104 .0161
13 14 15 16 17 18	7.06	5 . 7 9	. 0524	8.11	8. 59	. 0538	8.59 8.53 8.42 8.16 8.03 7.92	8. 19 8. 17 8. 07 8. 05 8. 01 8. 01	.0281 .0338 .0364 .0419 .0476

Specimen No. 34 t = .2605 Specimen No. 35 $t_0 = .2607$

Specimen No. 36 $t_0 = .2604$

		0			0	_	0		
St 2	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 20	. 40	.0003	. 40	.10	.0003	.20	. 40	.0003
3	. 40	.60	.0005	.30	.30	. 0005	.30	. 50	.0005
4	. 40	. 50	. 0005	.40	.30	. 0005	.30	.50	.0005
5	.50	.60	.0008	.70	. 40	. 0008	.50	.80	.0008
6	.50	.60	.0010	.70	.30	.0010	.60	.70	.0008
7	1.00	1.10	.0018	1.10	1.00	.0018	1.00	1.10	.0016
8	1.40	1.50	. 0026	1.70	1.30	.0023	1.60	1.50	.0023
9	1.90	2.00	.0034	1.90	1.90	.0034	1.90	2.10	.0034
10	3.20	3.10	.0050	2.90	2.90	. 0047	2.80	3.10	.0047
11	3.40	3.20	.0052	3.10	2.90	. 0047	3.00	3.10	.0047
12	6.49	6.60	. 0107	6.86	6.58	.0107	6.55	6.75	.0104
13	7.64	7.79	. 0164	8.70	8.69	.0164	8.51	8.65	.0164
14	7.82	8.02	. 0219	9.13	9.11	. 0222	9.27	9.01	. 0224
15	7.93	8.08	. 0274	9.09	9. 29	. 0282	9.42	8.98	.0281
16	8.00	8.19	. 0333	9.03	9. 4 3	. 0341	9.49	9.02	. 0336
17	7.99	8.20	. 0359	9.00	9.44	. 0368	9.51	9.04	.0362
18	8.02	8.20	.0417	9.10	9.54	. 0420	9.46	9.08	.0404
19	8.11	8.23	.0474	8.83	9.69	. 0480	9.42	9.11	. 0479
20	8. 21	8.31	. 0529	8.80	9.68	. 0532	9.48	9.17	. 0539

Specimen No. 37 t_o = .2591 Specimen No. 38 $t_0 = .2595$

Specimen No. 39 $t_0 = .2588$

Step	dH _A	dH _B	dt	$^{\mathrm{dH}}\mathbf{A}$	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	С	0
2	. 26	. 24	. 0003	.20	. 25	.0003	. 20	.30	.0003
3	. 43	.31	. 0005	. 32	. 41	.0005	. 40	.60	.0005
4	. 58	. 42	. 0005	. 48	. 54	.0005	1.10	. 84	.0008
5	. 61	. 53	.0008	.64	.62	.0008	1.18	. 95	.0008
6	. 70	. 57	. 0008	.67	. 59	.0008	₹.60	1.27	.0018
7	. 53	1.00	.0010	1.11	1.14	.0018	2.11	1.82	. 0026
8	1.60	1.44	.0018	1.53	1.54	.0023	2.43	2.16	.0034
9	1.88	1.83	. 0026	1.98	1.98	.0034	3.49	3.30	. 0049
10	2.78	2.72	.0047	2.84	2.92	.0047	3.98	3.81	.0057
11	2.81	2.69	.0047	2.87	3.03	.0047	6.30	5.94	. 0012
12	4.99	5.12	.0107	5.05	4.99	.0101	6.40	6.25	.0177
13	5.50	5.62	.0169	5.90	5.17	.0166	6.18	6.21	. 0237
14	5.80	5.75	. 0229	6.29	5.14	. 0224	6.55	6.20	. 0361
15	6. 20	5.84	. 0289	6.6 8	5.09	. 0281	6.88	6.20	. 0416
16	-6.61	6.03	. 0354	7.07	5.06	. 0341	7.08	6.19	. 0465
17	7.02	6. 25	.0411	7.36	5.02	.0390	7.40	6.25	.0525
18	7.46	6.42	. 0465	7.67	5.05	.0442			
19	7.66	6.60	. 0517	7.87	4, 88	. 0494			

Specimen No. 40 t_o = . 2593 Specimen No. 41 $t_0 = .2585$

Specimen No. 42 $t_0 = .2580$

		0 23/3			0			0	
Step	qH ^V	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 53	. 61	.0003	. 20	. 40	.0003	. 35	.30	.0003
3	. 64	.74	.0005	.30	. 40	. 0005	. 45	. 40	.0005
4	. 77	. 84	.0005	.70	.80	.0008	.65	.70	.0005
5	. 87	. 96	.0008	.70	.60	.0010	. 75	.50	.0008
6	.94	1.14	.0010	.80	.90	.0013	. 75	.60	.0010
7	1.26	1.35	.0018	1.20	1.40	.0021	1.25	1.20	.0018
8	1.70	1.75	. 0026	2.31	2.53	.0031	2.15	1.90	. 0029
19	2.06	2.14	.0031	2.89	3.03	.0036	2.97	2.81	. 0039
10	3.02	2.98	. 0047	3.60	2.97	.0052	3.70	3.58	.0052
11	3.47	3.55	. 0055	4.92	4.97	.0073	5.04	4.89	.0075
12	5.85	5.95	. 01 09	6.94	7.07	.0130	6.48	6. 28	. 0135
13	6.42	6.35	.0177	7.43	6.87	.0187	6.55	6.38	.0190
14	6.58	6.44	. 0237	7.71	6.81	.0242	6.48	6.30	. 0247
15	6.72	6.54	. 0294	7.94	6.80	. 0299	6.40	6.20	.0307
16	6.86	6.64	. 0366	8.20	6.66	. 0364	6.43	6.20	. 0361
17	7.02	6.72	.0408	8.43	6.75	. 0426	6.45	6.31	. 0419
18	7.20	6.95	.0468	8.68	6.79	. 0489	6.55	6.59	.0478
19	7. 29	7.13	. 0525	8.99	6.80	. 0551	6.63	6.70	. 0538

Specimen No.	43
$t_0 = .2599$	

-

Specimen No. 44 t_o = .2597 Specimen No. 45 t_o = .2590

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 30	. 20	. 0003	.30	.10	. 0003	. 20	.30	.0003
3	. 70	. 40	. 0005	. 40	. 40	. 0005	.40	.30	.0005
4	. 80	. 80	. 0005	. 80	.80	. 0005	.40	.60	.0005
5	.70	. 70	.0008	.70	. 40	. 0008	.40	.60	.0005
6	. 80	. 20	.0010	.90	.60	.0010	.60	.70	.0008
7	1.30	1.00	. 0021	1.30	1.30	. 0023	1.10	1.10	.0016
8	2. 23	2.05	.0031	2.37	2.22	. 0029	1.40	1.70	.0021
9	2.77	2.57	.0039	2.96	2.80	. 0039	2.42	2.49	.0034
10	3.53	3.40	.0055	3.74	3.72	.0052	3.66	3.73	.0054
11	4.82	4.74	.0075	5.00	5.12	.0078	4.33	4.39	.0067
12	7.08	6.90	.0130	6.80	7.24	.0133	6.94	6.86	.0130
13	7:90	7 . 4 8	.0179	7.03	7.76	. 0187	7.27	7.13	.0184
14	8.31	7.65	.0234	7.00	7.82	.0242	7.20	7.08	.0241
15	8.53	7.73	. 0294	6.86	7.97	.0302	7.16	6.92	.0293
16	8.78	7.81	. 0359	6.76	8.00	. 0354	7.01	6.80	.0355
17	8.97	7.85	. 0416	6.61	8.00	. 0411	7.00	6.70	.0412
18	9.18	8.00	.0478	6.53	8.00	. 0465	6.90	6.50	.0471
19	9.38	8.00	. 0536	6.39	8.00	.0528_	6.72	6.22	. 0521

Specimen No. 46 t_o = .2588 Specimen No. 47 $t_0 = .2598$

Specimen No. 48 t_o = .2600

		0			0			0		
Step	dH _A	^{dH} B	dt	dH _A	dH _B	dt	$^{ m dH}_{f A}$	dH _B	dt	
1	0	0	0	0	0	0	O	0	0	
2	0	.50	. 0003	0	0	. 0003	0	0	.0003	
3	. 20	.60	.0003	. 20	10	.0003	0	.10	.0003	
4	.30	.60	. 0005	.10	.10	,0005	.10	0	.0005	
5	.30	.70	.0008	.40	. 20	.0005	.20	.30	.0005	
6	. 50	.80	.0008	.60	.30	.0008	.70	. 40	.0008	
7	1.10	1.40	.0016	1.00	.90	.0016	1.30	1.40	.0023	
8	1.60	1.80	.0023	1.40	1.30	.0023	2.20	2,20	.0034	
9	2.30	2.70	. 0036	2.20	2.20	.0036	3.40	3. 50	.0052	
10	3.53	3.88	.0052	3.00	3.20	.0052	4.53	4.50	.0065	
11	3.53	3.88	.0052	3.80	3.90	.0062	8.08	7.89	. 0127	
12	6.15	6.73	.0104	7.24	7.35	.0117	9.49	9. 29	.0182	
13	7.46	8.10	.0161	9.40	9.60	.0177	9.80	9.48	.0234	
14	7.79	8.24	.0220	9.83	10.04	.0231	9.93	9.55	. 0291	
15	7.97	8. 26	.0280	9.87	10.19	.0283	9.98	9.20	.0356	
16	8.12	8.41	.0339	9.91	10.27	.0343	9.96	9. 29	.0419	
1.7	8. 20	8.53	. 0401	9.97	10.40	.0403	9.88	9.12	.0481	
18	8.40	8.63	. 0456	9.88	10.49	.0458	9.90	8.90	.0536	
19				9.64	10.59	.0520				

Specimen No. 49 t = .2590 Specimen No. 50 t_o = .2590

Specimen No. 51 $t_0 = .2597$

Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.10	10	. 0003	10	20	. 0003	~.30	20	.0003
3	.30	.30	. 0005	.10	.10	. 0005	.10	.10	.0005
4	. 40	.30	. 0005	. 20	10	.0005	0	.10	.0005
5	.50	.30	. 0008	. 20	.30	.0008	.60	. 40	.0008
6	1.08	. 86	.0010	.80	. 91	.0010	.81	. 86	.0010
7	1.75	1.45	. 0021	1.29	1.34	. 0021	1.45	1.45	.0021
8	2.40	2.03	. 0028	1.74	1.95	. 0026	2.02	2.02	.0029
9	2.79	2.41	. 0036	2.32	2.45	.0034	2.42	2.43	.0036
10	3.62	3.28	. 0052	3.29	3.47	.0052	3.45	3.57	.0052
11	4. 21	3.80	. 0062	3.30	3.49	.0052	4.05	4.22	.0062
12	7.68	6.93	. 0117	6.93	7.32	.0114	7.63	8.03	.0127
13	10.17	9.19	.0174	9.42	9.72	.0176	10.11	10.37	.0185
14	11.05	9.97	. 0233	10.37	10.71	. 0230	11.32	11.23	.0242
15	11.04	9.99	. 0293	10.51	10.82	. 0290	11.93	11.56	. 0299
16	11.06	9.93	. 0357	10.46	10.85	.0352	12.42	11.74	. 0359
17	10.82	9.96	. 0407	10.44	10.94	.0414	12.82	11.82	.0421
18	10.42	9.90	.0474	10.32	11.10	. 0479	13.00	12.01	. 0486
19	10.22	9.85	. 0544	10.27	11.15	. 0546	13.05	12.16	. 0554

Specimen No. 52 t = .2602 Specimen No. 53 $t_0 = .2596$

Specimen No. 54 t₀ = .2595

		0			0 - 123/0			0 133/3			
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt		
1	0	0	0	0	0	0	0	0	0		
2	0	20	. 0003	.11	.10	.0003	.12	. 09	.0003		
3	.30	.10	. 0 003	. 16	. 20	.0005	. 20	. 40	.0003		
4	. 40	.30	. 0005	.30	. 27	. 0005	.30	.31	.0005		
5	.60	.30	. 0008	. 40	. 40	.0008	. 41	. 42	.0005		
6	1.03	. 91	.0010	. 54	. 54	. 0009	. 52	. 54	.0008		
7	1.65	1.52	. 0021	1.87	1.89	.0031	1.92	1.82	.0031		
8	2.14	1.96	. 0026	2.36	2.38	.0093	2.33	2.26	. 0036		
9	2.62	2.32	.0034	3.13	3.16	.0052	3.10	3.07	.0049		
10	3,54	3.33	. 0049	4.85	4.88	.0078	4.51	4.53	.0073		
11	3.53	3.32	.0049	6.01	6.08	.0094	5.45	5.57	. 0091		
12	7.42	7.07	.0112	10.09	10.09	.0166	9.25	9.37	.0148		
13	10.42	9.72	.0172	11.74	11.62	. 0226	11.98	11.82	. 0216		
14	12.05	10.83	. 0231	12.13	11.69	. 0291	12.54	12.15	. 0273		
15	12.67	11.00	. 0286	12.28	11.5 8	. 0348	12.57	11.95	.0348		
16	13.02	10.92	. 0351	12.45	11.37	.0416	12.55	11.70	. 0416		
17	13.42	10.81	. 0408	12.50	11.12	. 0473	12.38	11.36	. 0418		
18	13.85	10.71	. 0476	12.57	10.83	. 0536	12.22	11.04	. 0543		
	14.42	10.63	. 0546								

Specimen No.	55	Specimen No. 5	6	Specimen No. 57
$t_0 = .2591$		$t_0 = .2596$		$t_0 = .2604$

Step	dH _A	dH _B	dt	$^{ m dH}_{f A}$	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	, 11	.15	.0003	.17	.17	.0003	.13	.10	.0003
3	.19	. 26	.0005	. 32	. 22	.0005	.16	.16	.0005
4	. 30	.32	.0008	. 37	. 36	.0005	. 26	. 24	.0005
5	. 42	. 45	.0010	. 45	. 43	.0005	. 25	. 21	.0005
6	. 52	. 56	.0013	. 53	. 49	.0008	. 44	. 38	.0008
7	1.58	1.73	. 0031	2.11	1.60	.0028	. 82	. 77	.0016
8	2.01	2.19	. 0039	1.84	1.94	.0034	1.63	1.51	.0026
9	2.76	2.96	.0052	2. 59	2.70	.0047	2.28	2.27	.0042
10	4.34	4.53	.0078	4.11	4.18	.0073	3.66	3.61	.0060
11	5. 25	5.40	.0093	5.31	5.39	.0091	5.70	5.63	.0094
12	8.70	8.84	.0166	8.37	8.50	.0153	8.77	8.80	.0156
13	10.07	9.70	. 0243	9.61	9.65	.0210	10.06	10.31	. 0221
14	10.30	9.67	. 0298	9.76	9.73	. 0275	10.21	10.75	. 0291
15	10.43	9.46	. 0365	9.72	9.63	.0337	10.26	10.98	.0354
16	10.50	9.26	.0433	9.54	9.51	. 0396	10.30	11.30	.0419
17	10.65	9.05	. 0502	9.41	9.34	. 0456	10.38	11.50	.0478
18	10.65	8.71	.0518	9.08	9.19	. 0521	10.36	11.83	. 0549

_,	Spe	t _o = .25°	o. 58 90 ————	Sp	t _o = .259		Specimen No. 60 t = .2584		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.11	. 09	.0003	.07	.16	.0003	.09	.10	.0003
3	.17	.14	.0005	.16	. 28	.0003	.16	.18	.0003
4	.17	.15	.0005	.19	. 36	.0005	. 20	. 25	.0005
5	.14	.19	.0005	. 36	. 49	.0008	.20	. 27	.0005
6	. 25	. 31	.0008	. 49	.63	.0008	.34	. 40	.0008
7	.73	. 80	.0016	.98	1.10	.0018	.68	.74	.0013
8	1.34	1.43	.0023	1.73	1.84	.0031	1.43	1.52	.0026
9	2.11	2. 25	. 0039	2.48	2.55	.0044	2.32	2.31	.0039
10	3.54	3.67	.0062	4.12	4.35	.0070	4.11	3.92	.0067
11	5.40	5.43	.0091	6. 22	6.16	. 01 01	6, 21	6.04	.0098
12	9.34	8.68	.0158	9.90	9.76	.0166	9.75	9.57	.0165
13	10.11	9.77	. 0223	11.58	11.47	. 0233	11.13	10.85	.0227
14	10.33	9.83	.0282	11.94	11.76	. 0290	11.34	11.08	. 0295
15	10.33	9.86	.0339	12.01	11.74	.0352	11.40	11.06	.0354
16	10.42	9.80	. 0396	12.03	11.53	. 0425	11.20	10.95	.0413
17	10.40	9.87	. 0466	11.93	11.37	.0482	11.33	10.78	.0483
18	10.30	9.79	.0528	11.50	11.16	. 0539	11.22	10.60	. 0561

Specimen No. 61 $t_0 = .2609$

Specimen No. 62 $t_0 = .2582$

Specimen No. 63 $t_0 = .2602$

Step	dH _A	dH _B	dt	dH^V	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.13	.15	. 0003	.18	. 20	.0003	. 24	. 39	.0003
3	. 24	. 26	.0005	. 28	. 35	.0005	.32	. 49	.0005
4	.40	. 38	.0008	. 42	. 4.2	.0008	. 46	.62	.0009
5	. 47	. 48	.0008	. 51	. 41	.0008	. 56	. 69	.001/0
6	. 57	.60	.0010	.63	. 57	.0010	.65	.80	.0010
7	1.14	1.18	.0018	1.16	1.13	.0021	1.23	1.34	.0021
8	1.77	1.79	.0029	1.85	1.79	.0031	1.84	1.91	.0031
9	2.27	2.28	.0039	2.36	2.32	.0039	2.32	2.42	.0039
10	3.73	3.80	.0060	3.48	3.35	.0057	3.71	3.87	.0060
11	3.74	3.81	.0060	4. 21	4.13	.0070	4.57	4.61	.0073
12	7.14	7.17	.0117	8.18	8.14	.0130	8.30	8.81	.0133
13	10.34	10.42	.0183	10.87	10.93	.0194	11.43	12.10	.0195
14	11.83	11.88	. 0237	12. 26	12.25	. 0253	12.89	13.97	. 0260
15	12.34	12.34	. 0292	12.64	12.59	. 0312	13.27	14.71	. 0325
16	12.67	12.53	.0352	12.92	12.65	.0380	13.36	15.00	.0414
17	13.04	12.66	.0417	12.96	12.62	. 0439	13.17	14.92	. 0461
18	13.44	12.84	.0480	12.95	12.45	. 0504	13.07	15.12	. 0523
19	13.59	12.92	.0524	12.87	12.32	. 0555	13.13	15.23	. 0570

Specimen No. 64 t_ = .2581 Specimen No. 65 $t_2 = .2589$

Specimen No. 66 $t_0 = .2585$

_	0 = . 2581			o = .2367			t _o = . 2383		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 21	. 14	.0003	. 09	. 17	. 0003	. 16	. 16	. 0003
3	. 28	. 20	.0005	. 29	.30	.0005	. 33	. 27	. 0005
4	.41	. 33	.0007	. 42	. 42	.0008	. 37	. 37	.0008
5	. 46	. 38	. 0007	. 52	. 58	. 0010	. 56	. 60	.0010
6	. 63	. 54	.0010	.70	. 73	.0013	. 75	. 70	.0013
7	1.05	1.09	.0018	1.32	1.38	. 0023	1.30	1.35	. 0023
-8	1.74	1.64	.0028	1.79	1.76	. 0031	1.78	1.82	.0031
9	2. 21	2.22	. 0036	2.15	2.20	. 0036	2.17	2.86	. 0039
10	3.76	3.90	. 0057	3.32	3.35	. 0054	3.05	3. 26	. 0054
11	4.49	4.77	.0070	3.76	3.85	. 0065	3.66	3.77	. 0065
12	8.00	8.53	.0129	8.31	8.39	.0132	8.47	8.41	.0134
13	11.18	11.99	.0194	12.57	12.34	.0199	12.59	12.56	. 0202
14	13.00	13.64	.0250	14.91	14.33	. 0259	15.07	14.86	. 0271
15	13.90	14.50	.0312	16.08	14.91	. 0326	16.06	15.54	. 0339
16	14.37	15. 1û	. 0377	16.69	15.03	. 0388	16.57	15.76	.0408
17	14.68	15.55	. 0436	16.99	14.97	. 0448	16.97	15.96	. 0460
18	14.84	15.92	. 0496	17. 29	14.70	. 0520	17.38	16.05	. 0517
19	14.92	16.14	. 0552						

Specimen No. 67 t_o = .2582 Specimen No. 68 t_o = .2593 Specimen No. 69 t_o = .2598

Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	^{dH} B	dt	$^{ m dH}_{ m A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 14	. 16	. 0003	. 12	. 13	. 0003	. 15	. 16	. 0003
3	. 29	. 31	. 0005	. 24	. 24	. 0005	. 25	. 26	.0005
4	. 43	. 44	. 0008	. 41	. 45	.0008	. 34	. 35	. 0005
5	. 53	. 56	.0010	.51	. 56	.0010	. 45	. 46	.0008
6	. 63	. 65	.0013	. 64	67	.0013	. 58	.62	.0010
7	1.24	1.22	. 0023	1.23	1.24	. 0023	1.30	1.35	.0023
8	1.66	1.71	.0031	1.62	1.63	.0029	1.72	1.75	. 0031
9	1.95	2.14	.0036	2.03	2.01	. 0036	2.16	2. 26	.0039
10	3.01	3.21	.0054	3.12	3.12	.0054	4.10	4.04	. 0068
11	3.07	3.22	.0054	3.69	3.60	. 0062	5.62	5.37	.0088
12	7.57	7.88	.0119	8.39	8.33	. 0135	10.54	10.34	.0158
13	11.33	11.71	.0186	11.87	11.96	. 0205	14.11	13.82	. 0223
14	13.07	13.54	. 0245	13.72	13.83	. 0275	16.12	15.65	. 0275
15	14.05	14.29	.0310	14.32	14.48	. 0345	16.75	16.20	. 0346
16	14.44	14.56	. 0372	14.68	14.64	.0412	16.94	16.47	. 0413
17	16.44	16.67	. 0442	16.64	16.64	. 0462	16.90	16.58	. 0483
18	14.74	14.86	.0522	14.88	14.63	.0534	16.73	16.50	. 0551

Specimen No. 70 t = .2598 Specimen No. 71 t = .2584 Specimen No. 72 $t_0 = .2600$

		6 237			0			0	
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 11	. 08	. 0003	. 20	. 16	. 0003	. 18	. 16	. 0003
3	. 16	. 18	. 0005	. 26	. 20	. 0005	. 25	. 20	. 0005
4	. 16	. 21	. 0005	. 33	. 27	. 0005	. 33	. 38	.0005
5	. 29	. 29	. 0008	. 44	. 36	.0008	. 40	. 41	.0008
6	. 33	. 37	.0010	. 54	. 46	.0010	.50	. 60	.0010
7	1.47	1.41	. 0026	1.56	1.51	. 0026	1.19	1.29	.0021
8	2.07	2.11	.0036	2.24	2.16	. 0036	1.78	1.82	. 0031
' 9	2.48	2.59	.0044	2.72	2. 76	.0044	2.31	2. 21	. 0039
10	4.30	4.39	.0070	4.80	4.80	. 0075	4.50	4.50	. 0073
11	5.72	5.74	.0094	6.54	6.52	.0098	5.98	5.98	.0094
12	9.74	9.88	.0151	11.86	11.51	.0168	9.32	9.82	.0151
13	13.97	13.56	. 0218	16.37	15.83	. 0240	13.79	13.99	. 0213
14	16.43	15.41	. 0283	18.66	17.82	. 0305	17.12	17. 25	. 0283
15	17.67	15.99	.0346	19.88	18.45	. 0364	18.57	18.50	. 0346
16	18.38	16.19	. 0405	20.76	18.84	. 0432	19.31	18.98	. 0413
17	18.61	16.29	. 0463	21.56	19.08	. 0504	19.72	19.24	. 0478
18	18.77	16. 27	. 0520	22.17	19.30	. 0563	19.92	19.42	. 0543

Specimen No. 73 t_o = .2583 Specimen No. 74 $t_c = .2608$

Specimen No. 75 t_o = .2595

Step	dH _A	dH _B	dt	dH _A	^{dH} B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.80	. 79	. 0015	. 83	. 79	. 0016	1.02	1.14	. 0018
3	1.89	1.93	. 0036	2.10	1.83	. 0037	1.99	2.17	. 0036
4	2.61	2.68	. 0049	2.96	2.79	.0050	2.90	3.24	. 0049
5	6. 73	6.92	. 0116	6.94	6.77	.0112	7. 29	7. 86	. 0114
6	10.63	9. 59	. 0188	10.63	9. 57	. 0167	11.36	12. 26	. 0176
7	13.50	12.97	. 0248	13.83	12.20	.0230	14.53	15.46	. 0236
8	15.02	14.07	. 0302	15.58	13.44	.0290	16.63	17.34	. 0288
9	15.94	14.47	. 0364	16.30	13.80	. 0352	17.94	18.44	. 0348
10	16. 45	14.60	. 0424	16. 57	13.80	. 0417	18.59	18.99	.0410
11	16. 90	14.69	. 0486	16.76	13.65	. 0488	19.02	19. 21	.0470
12	17. 33	14.68	. 0553	17.02	13.98	. 0553	19. 16	19.42	. 0534

Specimen No. 76

Specimen No. 77

Specimen No. 78

		$t_0 = .259$	0		$t_0 = .258$	9		$t_0 = .258$	5
Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
11	0 1. 10 2. 17 3. 09 7. 74 12. 12 15. 35 17. 14 17. 76 17. 99 18. 11 18. 16	0 1. 04 2. 12 3. 06 7. 46 11. 79 15. 04 16. 92 17. 69 18. 08 18. 48 18. 68	0 .0021 .0039 .0052 .0114 .0179 .0243 .0306 .0365 .0433	0 1.16 2.18 3.07 6.93 11.51 16.49 19.69 21.69 23.10 23.97 24.50	0 1.15 2.08 2.79 6.81 11.39 16.56 19.15 20.45 20.93 21.22 21.29	0 .0018 .0034 .0044 .0101 .0163 .0238 .0303 .0360 .0422 .0479	0 . 88 2. 01 2. 89 6. 77 11. 56 16. 73 19. 95 21. 78 22. 79 23. 46 23. 99	0 .98 2.08 2.90 6.90 11.79 16.50 19.37 20.60 21.23 21.47 21.62	0 . 0016 . 0034 . 0044 . 0098 . 0163 . 0235 . 0292 . 0354 . 0414 . 0476 . 0543

Specimen No. 79 $t_0 = .2607$

Specimen No. 80 t_o = .2584 **Specimen No. 81** t_o = .2591

Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dH _B	dt	^{dH} A	$^{ m dH}_{ m B}$	dt
1	0	0	0	0	0	0	0	0	0
2	. 99	1.06	. 0019	. 76	. 79	. 0016	1.30	1. 27	. 0023
3	1.61	1.76	.0032	1.79	1.91	.0034	2.57	2. 52	.0041
4	2.20	2.45	. 0043	2.44	2.57	.0044	3.32	3. 26	.0054
5	5.98	6.17	.0098	6.53	6.85	.0103	8.09	7.53	.0117
6	10. 23	10.30	. 0160	10.82	11.42	.0168	12.17	11.93	. 0176
7	15.01	15.02	. 0234	14.87	15.76	. 0233	15.68	15.44	. 0225
8	17.96	17.85	. 0295	17.34	18. 7 5	. 0295	19.11	19.01	. 0288
9	20.00	19.69	.0359	18.83	20.64	. 0362	21.20	21.37	. 0352
10	21.03	20.64	.0418	19.47	21.55	.0424	22. 18	22.63	. 0402
11	21.73	21.05	. 0474	19.86	22.04	. 0488	22.83	23.46	. 0461
12	22. 29	21.39	. 0537	19.93	22. 24	. 0550	22.98	23.83	. 0521

Specimen No. 82 $t_0 = .2602$

Specimen No. 83 $t_0 = .2591$

Specimen No. 84 t_o = .2601

		•			-			_	
Step	dH _A	dH _B	dt	^{dH} A	^{dH} B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	1.24	1.30	.0021	1.16	1.29	.0021	. 96	1.37	. 0023
3	2.24	2. 28	. 0039	2.47	2.46	.0041	2.42	2. 56	. 0042
4	2.84	3.00	. 0047	3.37	3.44	. 0054	3.01	3.13	. 0049
5	7. 20	7.51	.0107	7.35	7.60	. 0109	7.48	7.76	.0112
6	11.75	12.30	.0172	12.76	13.12	. 0179	11.85	12.31	.0172
7	15.85	16.57	. 0229	17.47	17.80	. 0233	16.65	17.38	. 0231
8	18.97	19.90	. 0294	22. 26	22.32	.0301	21.27	22.38	. 0297
9	20.66	22.02	. 0354	25.57	25.43	. 0365	24.32	25.74	. 0359
10	21.44	23.04	. 0406	27.65	27.30	. 0428	26.24	27.92	.0421
11	21.82	23.64	. 0468	28.82	28. 27	. 0490	28.42	29.35	. 0479
12	21.92	23.93	. 0523	29.54	28.83	. 0549	28.46	30.27	. 0536

Specimen No. 85 $t_0 = .2596$

Specimen No. 86 $t_0 = .2586$

Specimen No. 87 t_o = .2578

Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dH _B	dt
1 2 3 4 5 6 7 8 9 10	0 1.21 2.99 4.45 9.07 14.52 19.23 24.16 27.95 31.50 33.80	0 1.32 3.01 4.43 9.17 14.64 19.08 23.95 27.95 30.81 32.86	0 .0021 .0047 .0068 .0122 .0184 .0239 .0304 .0371 .0434 .0493	0 1.21 2.57 3.79 9.51 15.28 20.14 24.98 28.29 31.21 32.75	0 1.11 2.52 3.75 9.40 14.97 19.46 24.16 27.34 29.86 30.97	0 .0021 .0044 .0062 .0129 .0194 .0256 .0318 .0385 .0453	0 1.22 2.52 3.66 7.65 14.02 19.66 24.96 29.29 32.58 34.78	0 1. 21 2. 49 3. 69 7. 90 14. 29 19. 61 24. 99 29. 69 32. 96 35. 22	0 .0021 .0039 .0059 .0111 .0175 .0235 .0299 .0368 .0428

Specimen No. 88 $t_0 = .2603$

Specimen No. 89 t_o = .2598 Specimen No. 90 $t_0 = .2610$

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	dH _B	dt
1 2 3 4 5 6 7 8 9 10	0 1.20 2.89 4.36 9.76 15.13 20.48 25.46 29.51 32.31 33.83	0 1.33 2.87 4.32 9.81 15.30 20.71 25.43 29.51 32.12 33.65	0 .0021 .0047 .0068 .0130 .0193 .0255 .0318 .0390 .0458	0 2.40 3.05 5.03 10.55 16.33 22.07 26.95 31.96 35.38 38.90	0 2.35 3.13 5.11 10.88 16.88 22.89 27.73 32.56 35.39 38.60	0 .0042 .0052 .0080 .0153 .0216 .0281 .0338 .0405 .0468	0 1.96 2.86 4.61 10.83 16.33 21.38 25.84 29.99 32.63 34.32	0 2. 24 3. 08 5. 12 11. 49 16. 13 22. 39 26. 99 31. 20 33. 88 35. 86	0 .0037 .0050 .0078 .0154 .0214 .0271 .0331 .0402 .0465

	t	cimen No. $cimen No.$	8 8		cimen N t _o = .25		Specimen No. 93 t _o = .2505		
Step	dH _A	$^{ m dH}$ B	dt	^{dH} A	^{dH} B	dt	dH _A	$^{ m dH}_{ m B}$	dt
1	0	0	O	0	0	0	0	0	0
2 3	. 49	. 51	.0008	. 47	. 47	.0008	.09	.05	.0003
3	. 88	.90	.0013	.79	. 79	.0013	. 21	.20	. 0003
4	1.38	1.42	.0020	1.31	1.39	.0018	.37	. 37	.0003
5	2.42	2.44	. 0036	2. 28	2.38	.0033	. 47	. 45	.0005
6	2. 29	3.08	.0043	2.81	2.96	.0044	. 56	. 56	.0008
7	3.43	3.53	. 0056	3.24	3.40	.0051	. 76	. 66	.0010
8	3.60	3.73	.0072	3.50	3.70	.0069	1.51	1.50	.0020
9	3.60	3.72	. 0052	3.56	3.71	.0082	1.51	1.50	.0033
10	3.60	3.72	. 0097	3.58	3.72	. 0095	3.10	3.20	.0043
11	3.60	3.72	.0123	3.58	3.71	.0118	3.67	3.80	.0060
12	3.62	3.75	.0133	3.60	3.72	.0128	3.86	3.98	.0080
13	3.62	3.75	.0181	3.60	3.72	.0174	3.82	3.90	.0133
14	3.62	3.75	. 0230	3.60	3.72	. 0225	3.78	3.90	.0190
15	3.67	3.78	. 0276	3.61	3.72	. 0277	3.78	3.85	.0240
16	3.69	3.79	. 0327	3.60	3.72	. 0325	3.71	3.78	. 0306
17	3.74	3.82	. 0381	3.62	3.74	. 0377	3.68	3.75	. 0363
18	3.72	3.85	. 0437	3.63	3.75	. 0433	3.63	3.64	.0423
19	3.73	3.84	. 0488	3.70	3. 79	. 0487	3.58	3.58	.0478
20				<u> </u>			3.47	3.46	.0534

		$t_0 = .250$			$ \begin{array}{l} \text{imen No} \\ \text{o} = .250 \end{array} $		Specimen No. 96 t _o = . 2502		
Step	dH _A	dН _В	dt	$^{ m dH}{f A}$	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 07	. 08	.0003	. 29	, 33	. 0005	.01	0	. 0002
2	. 27	. 28	. 0003	1.33	1.33	.0020	. 09	.10	.0002
4	. 37	. 38	. 0005	2.08	2.15	.0030	. 24	. 25	.0002
5	. 58	. 63	.0008	2.93	2.95	.0040	.37	. 36	.0005
6	. 79	. 79	.0010	4.03	4.00	.0060	. 46	. 45	. 0007
7	1.00	. 81	.0013	4.33	4.25	.0080	. 66	. 65	.0090
8	1.80	1.84	. 0025	4.34	4.25	.0138	1.39	1.52	.0018
9	1.50	1.86	.0035	4.28	4.20	.0168	2. 26	2.35	.0030
10	3.33	3.48	.0045	4.38	4.28	. 0250	2. 98	3.11	.0039
11	3.89	4.10	. 0069	4.31	4.24	.0305	3.96	4.20	.0060
12	3.93	4.15	. 0085	4.33	4.25	. 0363	4.24	4.45	.0076
13	3.83	4.06	.0163	4.31	4.23	. 0425	4. 26	4.47	.0127
14	3.83	3.96	.0203	4.33	4.23	. 0485	4.21	4.45	.0182
15	3.68	3.91	. 0260	4. 28	4.08	. 0548	4. 23	4.46	.0230
16	3.54	3.76	.0328				4.14	4.40	.0283
17	3.60	3.74	.0383				4.16	4.41	. 0336
18	3.57	3.66	. 0440				4.06	4.35	.0389
19	3.47	3.53	. 0495				4.06	4.35	.0444
20	3.41	3, 45	. 0548				3.96	4. 28	. 0490

Specimen No. 97 Specimen No. 98 Specimen No. 99 $t_0 = .2502$ $t_0 = .2502$ 0 = .2502

Step	dH _A	$^{ m dH}_{ m B}$	dt	$^{\mathrm{dH}}$ A	dH _B	dt	$^{\rm dH}_{\backslash \bf A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 05	. 05	. 0003	.04	. 09	. 0003	.10	.10	. 0003
3	. 09	. 13	.0003	.14	.14	.0003	. 24	. 22	.0003
4	. 17	. 20	. 0003	.30	. 25	. 0005	. 37	. 40	.0005
5	. 37	. 35	.0005	.34	. 37	.0005	. 57	. 58	.0008
6	. 55	. 58	.0008	. 42	. 47	.0008	. 75	. 75	.0010
7	. 75	.80	.0013	. 54	. 58	.0010	.80	. 85	.0013
8	1.70	1.58	.0023	1.67	1.90	.0028	1.73	1.68	.0020
9	2.22	2.12	.0033	2. 27	2.59	.0038	2.33	2. 27	.0030
10	2.89	2.70	.0045	2.63	2.99	.0048	3.13	3.00	.0040
11	3.20	3.05	.0073	2.83	3.20	. 0063	3.83	3.78	.0065
12	3.17	3.03	. 0083	2.92	3.30	.0083	3.85	3.80	.0093
13	3.17	3.03	.0138	2.91	3.25	.0138	3.85	3.80	.0150
14	3.10	3.00	.0208	2.92	3.30	.0213	3.77	3.78	.0215
15	3.13	3.02	. 0265	2.95	3.30	. 0298	3.74	3.77	.0278
16	3.02	2.93	. 0333	2.87	3.30	. 0343	3.67	3.73	.0338
17	2.99	2.93	. 0395	2.92	3.30	. 0395	3.63	3.67	.0388
18	2.96	2.90	. 0450	2.92	3.25	.0453	3.55	3.70	. 0448
19	2.82	2.80	. 0516	2.90	3.25	.0503	3.54	3.67	.0505

No.		to = .25			cimen No t _o = .247		Specimen No. 102 t ₀ = .2506		
Step	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	dH _B	dt	dHA	dН _В	dt
1	0	0	0	0	0	0	0	0	0
2	. 05	. 06	. 0003	.10	. 08	.0002	. 21	. 28	. 0003
3	. 15	. 19	. 0003	. 30	. 23	. 0002	. 48	. 48	.0008
4	. 40	. 38	. 0005	. 42	.41	. 0005	1.23	1.18	.0018
5	. 55	. 58	.0008	.80	. 66	.0010	1.80	1.81	.0026
6	. 75	. 73	.0013	1.20	1.01	.0012	2.50	2.55	. 0036
7	.90	. 88	.0015	.97	. 96	.0015	3.22	3.25	. 0046
8	1.65	1.63	.0020	2.12	2.13	.0030	4.12	4.15	.0061
9	2.45	2.53	. 0035	3.15	3.01	.0042	4.56	4.56	. 0069
10	3.15	3.37	. 0048	3.97	3.91	. 0057	5.19	5.28	.0084
11	3.56	3.84	. 0078	4.88	4.84	. 0077	5.39	5.49	.0102
12	3.58	3.86	.0108	5.21	5.13	. 0084	5.39	5.49	.0112
13	3.52	3.82	.0163	5.38	5.31	. 0144	5.43	5.56	. 0156
14	3.49	3.78	. 0240	5.25	5.20	.0206	5.49	5.58	.0197
15	3.39	3.71	. 0300	5, 22	5.17	. 0258	5.51	5.61	. 0256
16	3.38	3.71	. 0375	5.21	5.15	. 0315	5.60	5.68	. 0317
17	3.27	3.68	. 0431	5.18	5.14	. 0367	5.59	5.67	.0368
18	3.20	3.59	.0491	5.13	5.10	.0438	5.60	6.71	.0417
19	3.05	3.49	. 0511	5.12	5.11	. 0503	5.63	5.77	.0447
20				5.21	5.20	. 0558			

		men No. = .2500		Spec t	imen No o = .250	. 104 0	Specimen No. 105 $t_0 = .2512$		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 23	. 15	.0003	1.34	1.31	.0020	1.65	1.76	.0023
3	. 23	. 15	.0003	2.90	3.00	. 0038	2.87	3.0 7	.0040
4	. 33	.30	. 0005	4.35	4.47	. 0052	3.71	3.93	.0053
5	. 46	. 35	.0005	5.68	5.95	.0102	5.92	6.25	.0101
6	. 68	.50	.0008	5.59	5.87	.0147	5.90	6.21	.0151
7	. 73	. 70	.0010	5.69	5.88	.0202	5.83	6.19	.0196
8	1.11	1.10	.0018	5.58	5.80	. 0278	5.82	6.16	.0249
9	1.71	1.71	.0025	5.48	5.69	.0302	5.88	6.22	. 0294
10	2. 23	2.30	.0033	5.39	5.61	. 0357	5.84	6.17	. 0349
11	3.96	4.05	.0053	5.29	5.51	.0405	5.84	6.16	. 0394
12	5.13	5.40	.0073	5.10	5.36	. 0457	5.81	6.12	. 0447
13	6.04	6.43	.0120				5.79	6.07	.0500
14	6.11	6.46	.0183				1		
15	6.03	6.42	.0235						
16	6.09	6.45	.0295	Ī					
17	6.02	6.40	. 0345	1					
1 10	/ 00	/ 20	0.410	1					

Specimen No.	106
$t_0 = .2508$	

6.39

6.42

6.48

.0295 .0345

.0480

17 18

19

20

6.02

6.02

6.07

Specimen	No.	107
t = .	2512	

Specimen No. 108 t_o = . 2499

Step	dH _A	dH _B	dt	^{dH} A	^{dH} B	dt	dH _A	dH B	dt
1 2 3 4 5 6 7 8	0 2. 20 3. 45 4. 36 6. 87 6. 86 6. 77 6. 68 6. 79	0 2. 20 3. 36 4. 26 6. 94 6. 96 6. 87 6. 77 6. 83	0 .0020 .0035 .0045 .0095 .0143 .0186 .0230	0 1.70 3.09 3.80 6.72 6.93 6.86 6.80 6.87	0 1.67 3.09 3.76 6.63 6.78 6.70 6.66 6.75	0 .0023 .0043 .0050 .0100 .0153 .0209 .0256	0 1.77 3.09 3.83 6.66 6.91 6.84 6.82 6.86	0 1.82 3.08 3.90 6.43 6.52 6.28 6.43 6.52	0 .0025 .0042 .0052 .0095 .0147 .0192 .0242
10 11 12 13	6.68 6.60 6.51 6.45	6.68 6.56 6.47 6.33	.0344 .0392 .0454 .0509	6.79 6.75 6.63 6.60	6.66 6.65 6.52 6.49	.0364 .0417 .0472 .0523	6.85 6.83 6.74 6.73	6. 44 6. 42 6. 33 6. 31	.0347 .0392 .0442 .0495

Specimen No. 109 t_o = .2504 Specimen No. 110 $t_0 = .2512$

Specimen No. 111 $t_0 = .2498$

Step	dH _A	dH _B	dt	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 03	. 05	. 0005	.01	.02	.0003	.04	. 05	.0003
3	. 13	. 16	.0005	. 13	. 13	. 0005	. 18	. 16	.0003
4	. 25	. 28	. 0005	. 18	. 20	. 0005	. 25	. 25	.0005
5	. 32	. 37	.0008	.40	. 24	. 0005	. 32	. 35	. 0005
6	. 42	. 45	.0008	. 44	. 37	.0008	. 44	. 46	.0008
7	2.03	2.10	. 0030	2.09	2.06	.0030	1.87	1.87	. 0028
8	2.75	2.81	.0040	2.78	2.79	.0038	2.62	2.65	.0038
9	3.38	3.34	.0045	3.40	3.42	.0040	3.29	3.27	. 0045
10	4.38	4.37	.0060	4.30	4.31	.0060	4.45	4.48	. 0063
11	5.34	5.38	.0088	5.34	5.35	.0085	5.71	5.67	.0085
12	5.50	5.36	.0135	5.53	5.54	.0138	5.99	5.87	.0138
13	5.38	5.17	.0185	5.58	5.53	.0191	5.91	5.81	.0188
14	5.19	5.10	.0234	5.43	5.47	. 0239	5.82	5.76	.0240
15	5.16	5.16	.0290	5.52	5.43	. 0311	5.80	5. 7 0	. 0290
16	5.80	4.98	. 0338	5.54	5.44	. 0337	5.73	5.67	.0343
17	4.91	4.80	.0398	5.52	5.32	. 0394	5.64	5.58	.0401
18	4.74	4.66	.0458	5.55	5.45	.0450	5.51	5.51	. 0463
19	4.61	4. 49	.0511	5.54	5.44	.0510	5.43	5.36	. 0516

Specimen No. 112 $t_0 = .2509$

Specimen No. 113 $t_0 = .2510$

Specimen No. 114 $t_0 = .2510$

	L	o = . 2509	,	L L	0 = . 251	U	ι,	0 = . 251	U
Step	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	^{dH} B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 05	. 03	. 0003	. 20	. 13	.0003	. 19	. 20	.0003
3	. 16	. 13	.0003	. 28	. 25	.0003	.30	. 31	.0005
4	. 28	. 25	. 0005	. 39	. 33	. 0008	. 37	. 39	. 0005
5	. 37	. 32	. 0005	. 63	. 54	.0008	. 54	. 54	.0008
6	. 45	. 42	. 0008	.60	. 49	.0010	.60	. 61	. 0010
7	2.10	2.03	.0030	1.21	1.05	.0018	1.29	1.24	.0020
8	2.81	2.75	.0040	1.59	1.43	.0023	1.63	1.66	. 0025
9	3.34	3.38	.0048	2.06	1.87	. 0030	2. 23	2.19	.0033
10	4.37	4.38	.0060	4.08	3.94	. 0058	4.33	4.30	.0058
11	5.38	5.34	.0088	5.14	5.20	. 0075	5.49	5.53	.0078
12	5.36	5.50	.0138	6.44	6.47	.0120	6.49	6.40	.0123
13	5.17	5.38	. 0186	6.43	6.44	.0173	6.34	6.37	.0173
14	5.10	5.29	. 0238	6.40	6.44	.0221	6.36	6.38	. 0223
15	5.06	5.16	. 0291	6.40	6.38	. 0271	6.34	6.33	.0281
16	4.98	5.08	. 0346	6.42	6.34	.0324	6.35	6.30	.0331
17	4.80	4.91	. 0407	6.40	632	. 0374	6.32	6.28	. 0379
18	4.66	4.74	. 0467	6.39	6. 26	.0427	6.31	6.24	.0432
19	4.49	4.61	.0522	6.36	6.27	. 0479	6.36	6.25	.0487
20				6.38	6.27	. 0532	6.35	6. 23	. 0540

Specimen No. 115	Specimen No. 116
$t_0 = .2503$	$t_0 = .2512$

Specimen No. 117 $t_0 = .2491$

Step	dH _A	dH _B	dt	dH _A	dН _В	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 18	. 16	. 0003	. 20	. 19	. 0003	. 08	. 12	.0002
3	. 35	. 24	. 0005	.31	.30	. 0005	. 26	. 33	. 0005
4	. 36	.30	. 0005	. 39	. 37	. 0005	. 41	. 43	. 0008
5	.50	. 44	.0008	. 54	. 54	.0008	. 66	. 63	.0010
6	. 63	. 63	.0010	.61	.60	.0010	.80	. 85	.0012
7	1.33	1.19	.0020	1.24	1.29	.0020	1.18	1.28	.0017
8	1.75	1.55	. 0025	1.56	1.33	.0025	1.75	1.83	. 0025
9	2.39	2. 23	.0033	2. 19	2.23	.0033	2.43	2.54	.0035
10	4.55	4.29	.0060	4.30	4.33	.0058	4.24	4.39	. 0057
11	5.87	5.53	.0080	5.43	5.49	.0078	5.72	5.90	. 0075
12	6.96	6.40	.0123	6.40	6.39	.0118	7.51	7.69	.0125
13	6.95	6.36	.0168	6.37	6.34	.0171	7.56	7.77	.0174
14	6.88	6.23	.0215	6.38	6.36	.0224	7.56	7.78	. 0227
15	6.77	6.19	.0270	6.33	6.34	.0274	7.66	7.82	. 0277
16	6.74	6.09	.0303	6.50	6.33	.0324	7.53	7.75	. 0326
17	6.67	6.02	.0380	6.28	6.36	. 0377	7.52	7.69	. 0379
18	6.57	5.92	. 0436	6.24	6.37	.0435	7.59	7.68	. 0431
19	6.59	5.83	. 0486	6.25	6.34	.0480	7.58	7.66	. 0488
20	6.52	5.80	. 0536	6. 23	6.35	. 0533	7.57	7.70	. 0538

Specimen No. 118 $t_0 = .2508$

Specimen No. 119 t_o = .2510 Specimen No. 120 $t_0 = .2509$

Step	$^{ m dH}$ A	dН _В	dt	dH _A	^{dH} B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.10	. 11	. 0003	. 21	. 11	.0003	. 16	.14	. 0003
3	.30	. 25	. 0005	. 39	. 33	. 0005	. 26	. 25	. 0005
4	. 43	. 43	. 0008	. 53	. 47	. 0005	. 36	. 27	. 0008
5	.60	. 63	.0010	. 79	.74	.0010	.64	.61	.0010
6	.74	. 69	.0010	. 89	. 88	.0013	. 77	. 75	.0013
7	1.12	1.03	.0018	1.21	1.19	.0018	1.21	1.26	.0018
8	1.69	1.68	. 0025	1.87	1.69	.0028	1.79	1.82	.0028
9	2.28	2.11	.0033	2.48	2.49	. 0035	2. 37	2.40	. 0035
10	4.12	4.05	. 0055	4.39	4.30	.0058	4.53	4.47	. 0060
11	5.42	5.54	.0073	5.60	5.50	.0078	5.74	5.76	. 0078
12	7.66	7.64	. 0123	8.49	8.43	.0126	8.52	8.52	.0130
13	7.67	7.68	.0178	8.57	8.52	.0173	8.63	8.59	.0181
14	7.60	7.59	.0226	8.48	8.48	.0218	8.57	8.53	. 0231
15	7.88	7.61	.0271	8.16	8.31	. 0261	8.58	8.38	.0281
16	7.53	7.43	. 0324	8.19	8.27	.0314	8.5 8	8.41	. 0329
17	7. 42	7.31	. 0379	8.13	8.12	. 0366	8.57	8.39	.0381
18	7.25	7.21	.0434	7.96	8.01	.0424	8.56	8.12	.0434
19	7.15	7. 09	. 0487	7.80	7.87	. 0479	8.52	8.14	.0472
20	7.02	6.96	. 0539	7.67	7.73	. 0535	8.44	8.02	. 0544

Specimen No. 121 t_o = .2494 Specimen No. 122 t_o = .2496 Specimen No. 123 $t_0 = .2511$

Step	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	^{dН} в	dt	dH _A	^{dH} B	dt
,	0	0	0	0	0	0	0	0	0
2	.10	. 04	. 0003	. 05	.10	.0001	. 16	. 13	. 0003
3	. 22	.20	. 0003	. 23	.19	.0001	. 24	. 23	.0005
4	. 34	. 37	.0008	. 34	. 34	.0005	. 37	. 41	. 0008
5	. 49	. 52	. 0008	. 55	.60	.0008	.61	. 63	. 0008
6	. 61	. 62	.0010	.61	. 66	.0010	.7 0	.70	.0010
7	1.10	1.15	. 0017	1.20	1.24	.0017	1.35	1.30	.0018
8	1.91	1.85	. 0027	1.98	1.96	.0027	2.09	2.05	.0028
9	2.50	2.45	. 0035	2.59	2.63	.0035	2.65	2.76	.0035
10	3.45	3.47	. 0047	3.81	3.72	.0047	3.90	3.75	.0050
11	3.45	3.55	. 0047	4.52	4.58	.0060	3.88	3.72	.0050
12	6.89	7. 25	.0092	7.62	7.88	.0105	7.97	7.84	.0100
13	8.37	9.03	. 0150	8.39	9.00	.0162	9.97	9.83	.0161
14	8.35	8.92	. 0200	8.29	8.75	.0201	9.92	9.75	. 0206
15	8.30	8.88	. 0252	8.22	8.78	.0260	9.90	9.85	. 0256
16	8.30	8.83	. 0302	8.18	8.76	.0310	9.87	9.74	. 0306
17	8. 23	8.75	. 0352	8.17	8.70	. 0361	9.80	9.66	.0357
18	8. 28	8.73	.0402	8.00	8.59	.0412	9.81	9.67	. 0399
19	8.19	8.62	. 0456	7.85	8.50	.0464	9.77	9.61	.0449
20	8.10	8.54	. 0509	7.83	8.43	.0512	9.76	9.63	.0502

Specimen No. 124 t₀ = .2512

Specimen No. 125 $t_0 = .2512$

Specimen No. 126 t = .2512

		0		0 2322			0 2312		
Step	dH _A	^{dH} B	dt	^{dH} A	dH _B	dt	$^{ m dH}{f A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 08	. 06	. 0003	1.49	1.47	.0020	1.48	1.45	.0020
3	. 21	. 21	.0003	2.57	2.57	.0033	2.61	2.46	.0033
4	07	. 32	. 0005	3.49	3.46	.0048	3.82	3.73	.0048
5	.51	. 46	.0008	8.60	8.60	.0108	8.87	8.69	.0110
6	. 52	. 57	.0010	10.58	10.57	. 0156	10.42	10.17	.0161
7	1.13	1.17	. 0018	10.69	10.70	. 0209	10.46	10.18	.0216
8	1.92	1.82	. 0028	10.64	10.66	. 0261	10.41	10.15	.0269
9	2.49	2.41	.0035	10.59	10.59	.0317	10.39	10.12	. 0306
10	3.53	3.41	. 0048	10.55	10.56	.0302	10.31	10.05	.0364
11	4.39	4.35	.0058	10.48	10.50	.0422	10.36	10.06	.0420
12	8.29	8. 22	.0111	10.38	10.48	.0475	10.32	9.99	. 0470
13	9.55	9.56	.0168	10.35	10.43	.0530	10.25	9.91	.0515
14	9.52	9.43	. 0219	1					
15	9.53	9.44	.0288						
16	9.52	9.43	. 0322						
17	9.50	9.41	. 0377				1		
18	9.46	9.41	. 0420				1		
19	9.40	9.33	. 0467						
20	9.45	9.39	. 0520						

Specimen No. 127 t_o = .2507 Specimen No. 128 $t_0 = .2507$

Specimen No. 129 $t_0 = .2509$

Step	dHA	$^{\mathrm{dH}}\mathrm{B}$	dt	$^{ m dH}_{ m A}$	$^{ m dH}_{ m B}$	dt	$^{ m dH}_{ m A}$	$^{ m dH}_{ m B}$	dt
1 2 3 4 5 6 7 8 9 10 11	0 1.16 1.86 3.14 6.63 7.30 7.85 7.25 7.22 7.19 7.18 7.18	0 1.06 1.78 2.96 6.56 7.08 7.09 7.08 7.04 7.02 6.99 6.98	0 .0015 .0028 .0043 .0100 .0151 .0198 .0248 .0316 .0349 .0397	0 .99 .96 1.86 5.67 6.68 6.71 6.64 6.59 6.53 6.53	0 1.16 1.13 2.19 6.11 7.04 7.13 7.01 6.93 6.81 6.81 6.84 6.75	0 .0020 .0020 .0033 .0090 .0138 .0188 .0241 .0281 .0346 .0396 .0444 .0486	0 1.59 3.11 3.11 6.83 7.83 7.85 7.72 7.67 7.31 7.25 7.19 7.13	0 1.51 3.09 3.09 6.84 7.87 7.78 7.71 7.37 7.32 7.29	0 .0023 .0043 .0043 .0095 .0143 .0193 .0243 .0291 .0339 .0389 .0442

Specimen No. 130 t₀ = .2504 Specimen No. 131 $t_0 = .2511$

Specimen No. 132 $t_0 = .2512$

		0			0				
Step	dHA	dH _B	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1 2 3 4 5 6 7 8 9 10 11 12	0 1.60 3.18 4.04 7.14 7.85 7.86 7.77 7.66 7.69 7.67 7.68 7.57	0 1.62 8.17 4.06 7.12 7.84 7.88 7.80 7.77 7.89 7.88 7.83 7.80	0 .0023 .0045 .0055 .0103 .0153 .0203 .0248 .0293 .0341 .0391 .0443	0 1.64 3.24 3.76 8.23 9.15 9.07 8.92 8.80 8.84 8.73 8.63 8.39	0 1.57 3.18 4.17 8.21 9.24 9.16 9.02 8.92 8.94 8.77 8.67 8.54	0 .0025 .0045 .0058 .0110 .0158 .0216 .0266 .0319 .0372 .0422 .0475	0 1.48 2.99 3.92 7.66 9.06 9.01 8.96 9.01 8.90 8.86 8.79	0 1.48 3.06 3.97 7.72 9.16 9.19 9.15 9.08 9.01 9.08 9.07	0 .0023 .0043 .0055 .0103 .0157 .0210 .0256 .0309 .0357 .0402 .0450

ĵ

		men No. = .2508	133		imen No. = . 2508		_	imen No. o = .2511	135
Step	dH _A	dH _B	dt	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	^{dH} B	d

Step	^{dH}A	dH _B	dt	dH _A	^{dH} B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.17	1.13	. 0018	1.06	1.17	.0018	1.25	1.28	.0018
3	2.19	2.24	. 0033	2.02	2. 17	. 0083	2.35	2. 45	. 0033
4	2.86	2.82	.0040	2.77	2. 87	. 0043	3.02	3.14	.0040
5	7.08	7.00	. 0095	6.80	7.04	.0095	7.00	7.58	. 0095
6	8.93	8.65	.0148	8.51	8.91	.0145	8.70	9.31	. 0143
7	9.01	8.66	. 0201	8.62	9.07	.0193	8.71	9.42	.0196
8	8.90	8.54	. 0253	8.56	8.99	. 0246	8.59	9.32	. 0251
9	8.81	8.43	. 0286	8.50	8.90	. 0298	8.48	9.24	. 0301
10	8.69	8.31	. 0356	8.40	8. 79	. 0351	8.36	9.10	. 0345
11	8.62	8.19	. 0406	8.35	8.76	.0401	8. 24	9.07	. 0402
12	8.56	8.04	. 0464	8.30	8.70	. 0464	8.09	8.98	. 0454
13	8.42	7.89	.0517	8. 22	8.63	. 0501	7.94	8.90	. 0507

Specimen No. 136	Specimen No. 137	Specimen No. 138
t _o = .2507	t = .2509	t _o = .2503

		0						00		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	^{dH} A	dH _B	dt	
1	0	0	0	0	0	0	0	0	0	
2	1.47	1.48	. 0020	1.79	1.73	. 0023	1.54	1.67	.0020	
3	2.45	2.48	.0035	2.87	2.81	. 0038	2.69	2.80	. 0035	
4	3.36	3.33	. 0045	3.83	3.77	.0050	3.43	3.57	.0045	
5	7.68	7.64	.0098	8.01	7.85	.0098	7.92	8.06	. 0098	
6	9.68	9.91	.0155	11.40	11.27	.0151	10.96	11.02	.0143	
7	9.75	10.02	. 0208	11.96	11.98	.0198	11.97	11.95	.0193	
8	9.70	10.03	. 0258	11.80	11.88	. 0248	11.93	11.93	. 0238	
9	9.72	10.00	.0311	11.67	11.76	. 0299	11.86	11.77	. 0285	
10	9.72	9.99	. 0361	11.55	11.67	. 0354	11.79	11.69	. 0343	
11	9.67	9.96	. 0416	11.40	11.55	. 0409	11.64	11.49	. 0403	
12	9.69	9.97	.0471	11.23	11.44	. 0457	11.60	11.42	. 0443	
13	9.69	9.95	. 0519	11.13	11.28	.0512	11.44	11.31	. 0503	
							•			

Specimen No. 139 t_o = .2512 Specimen No. 140 t_o = .2501 Specimen No. 141 t_o = .2510

Specimen No. 142 t_o = .2505 Specimen No. 143 $t_0 = .2505$

Specimen No. 144 t_o = .2498

Step	dHA	dH _B	dt	dH _A	^{dH} B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.69	1.72	.0030	1.72	1.74	.0025	1.96	1.91	.0025
3	3.15	3.20	.0043	3.18	3.08	.0040	3.43	3.34	.0042
4	4.05	4.21	.0055	3.83	3.77	.0050	4.33	4.28	.0052
5	8.63	8.83	.0110	8.64	8.49	.0103	9.12	8.79	. 01 05
6	11.31	11.50	.0160	12.25	11.97	.0152	12.60	12.31	.0152
7	11.94	12.11	. 0225	14.09	14.00	.0200	14.32	14.35	.0212
8	11.80	11.97	. 0278	13.98	13.92	. 0266	14.21	14.31	.0260
9	11.70	11.86	. 0328	13.87	13.72	.0313	14.17	14.28	. 0307
10	11.47	11.70	. 0381	13.72	13.79	. 0366	14.10	14.19	.0355
11	11.37	11.60	. 0436	13.60	13.69	. 0421	14.07	14.18	.0407
12	11.19	11.42	. 0491	13.48	13.56	.0468	13.99	14.17	. 0455
13	11.03	11.31	. 0539	13.34	13.44	.0519	13.85	14.08	.0505

Spec	in	nen	No.	145
	t_	= .	2509	

Specimen No. 146 $t_0 = .2506$

Specimen No. 147 t_o = .2507

Step	$^{ m dH}_{f A}$	dH _B	dt	dH _A	dH _B	dt	$^{ m dH}_{f A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.16	.12	.0003	.11	. 23	. 0003	.12	.12	.0003
3	. 33	. 26	. 0005	. 22	. 32	.0010	. 32	. 29	. 0005
4	.50	. 42	.0010	. 40	. 45	.0010	. 55	. 46	.0008
5	. 99	. 91	.0018	.92	1.08	.0018	1.09	. 96	.0016
6	1.59	1.48	. 0025	1.40	1.54	. 0025	1.72	1.57	.0028
7	1.98	1.81	.0033	1.83	2.03	.0033	2.21	2.06	.0035
8	2.78	2.50	. 0045	2.54	2.75	.0045	3. 27	3.10	.0048
9	3.31	3.10	.0053	2.59	2.79	.0045	4.10	3.82	.0058
10	5.99	5.94	. 01 00	5.62	5.91	.0095	7.22	6.87	.0113
11	6.95	6.95	.0161	7.00	7.13	.0155	7.70	7.54	.0165
12	6.96	6.90	. 0218	7.01	7.08	.0208	7.60	7.48	. 0213
13	6.89	6.82	. 0268	6.94	7.53	. 0266	7.51	7.36	. 0268
14	6.73	6.76	. 0319	6.90	7.36	.0311	7.43	7.45	.0323
15	6.69	6.60	. 0366	6.85	7.31	. 0363	7.39	7.41	.0374
16	6.71	6.66	.0422	6.81	7.33	.0419	7.33	7.36	. 0431
17	6.72	6.58	. 0482	6.76	7.30	.0479	7.23	7.27	. 0499

Specimen No. 148 t = .2513 Specimen No. 149 t_o = .2516 Specimen No. 150 t_o = .2494

		0		0						
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dН _В	dt	
1	0	0 ,	0	0	0	0	0	0	0	
2	.14	.11	.0003	.14	.13	.0003	.10	.10	.0003	
3	.33	. 30	.0008	.34	.34	.0005	.33	.34	.0005	
4	. 48	. 41	.0010	. 55	. 52	.0008	. 61	. 57	.0010	
5	1.02	1.01	.0020	5.36	5.14	.0068	4.79	4.77	.0062	
6	1.52	1.56	.0028	9.07	8.93	. 01 25	8.81	8.73	.0112	
7	2.03	2.09	.0035	10.53	10.33	.0169	10.50	10.35	.0160	
8	3.06	3.00	.0048	10.62	10.39	.0052	10.61	10.38	.0232	
9	3.73	3.77	.0058	10.51	10.29	. 0307	10.49	10.25	. 0287	
10	7.03	7.03	.0116	10.43	10.21	.0362	10.37	10.16	.0339	
11	7.73	7.73	.0173	10.36	10.16	.0408	10.28	10.06	.0394	
12	7.67	7.67	. 0223	10.33	10.14	. 0473	10.23	10.01	.0444	
13	7.61	7.61	. 0269	10.26	10.06	.0516	10.11	9.94	. 0494	
14	7.55	7.55	.0324	10.23	9.99	.0564	10.00	9.83	.0546	
15	7.51	7.51	.0377	1			i			
16	7.49	7.49	. 0444							
17	7.40	7.38	. 0497				l			

nen No. 153 = . 2497		men No. = . 2493		Specimen No. 151 t = .2490				
dH _B d	dH _A d	dt	$^{ m dH}_{ m B}$	dH _A	dt	dH _B	dH _A	Step
0 0		0	0	0	0	0	0	1
.12 .00		.0003	.14	.04	.0003	. 0 7	.10	2
.31 .00		. 0005	. 37	. 28	.0005	.31	. 36	3
.54 .00		. 0007	. 54	. 43	.0010	.50	. 57	4 5
.94 .00		. 0067	4.77	4.47	.0067	4.58	4.78	5
1.44 .00		. 01 27	8.57	8.00	.0127	8.03	8.35	6
2.31 .00	2.45 2	.0179	9.80	9.05	. 0177	9. 27	9.71	7
4.17 .00	4.21 4	. 0257	9. 9 1	9.24	.0254	9.42	9.88	8
5.41 .00	5.25 5	.0312	9.90	9.16	. 0309	9.27	9.73	9
9.42 .01	9.62 9	.0369	9.87	9.16	. 0359	9.18	9.63	10
11.01 .01	11.32 11	.0419	9.89	9.21	.0413	9.14	9.54	11
11.23 .02		.0471	9.88	9.20	.0458	9.07	9.50	12
10.17 .03		.0521	9.86	9.20	. 0513	8.96	9.41	13
11.08 .03								
10.98 .04								
10.99 .04								
11.90 .05								
	11.38 11.33 11.33 11.24	.0558	9.82	9. 21	.0570	8.88	9. 27	14 15 16 17

		to = .249		-	$\lim_{0 \to \infty} No.$		Specimen No. 156 t = .2500		
Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	dH _B	dt
1 2 3 4 5 6 7 8 9	0 .15 .40 .48 1.00 1.45 2.23 4.16 5.47 9.48	0 .07 .30 .43 .92 1.36 2.13 4.07 5.44 9.42	0 .0003 .0005 .0007 .0015 .0022 .0030 .0057 .0072	0 .14 .31 .49 1.05 1.43 2.19 4.33 5.57 9.95	0 .20 .31 .51 1.10 1.50 2.33 4.45 5.63	0 .0003 .0005 .0007 .0015 .0022 .0030 .0057 .0072	0 .14 .38 .59 1.02 1.53 2.16 4.11 5.35 9.67	0 .15 .34 .51 .90 1.43 2.25 4.26 5.56 10.05	0 .0003 .0005 .0008 .0015 .0023 .0033 .0055 .0073
11 12 13 14 15 16	11.21 11.42 11.33 11.25 11.15 11.12 11.04	11.19 11.39 11.30 11.22 11.10 11.07	.0177 .0297 .0322 .0375 .0429 .0487	13.23 14.28 14.23 14.18 14.12 14.12	13. 42 14. 41 14. 31 14. 26 14. 24 14. 29 14. 23	.0172 .0266 .0309 .0356 .0408 .0466	12.94 13.74 13.67 13.65 13.64 13.66	13.27 13.98 13.94 13.90 13.88 13.89 13.86	.0175 .0298 .0323 .0373 .0435 .0485

Specimen No. 157	Specimen No. 158	Spe cimen No. 159
t _o = . 2494	t _o = .2495	t _o = .2496

Step	dHA	dH _B	dt	dH _A	dH _B	dt	A ^{Hb}	$^{ m dH}_{ m B}$	dt
1	0	0	0	0	0	0	0	0	0
2	1.33	1.48	.0020	1.34	1.20	.0018	1.39	1.35	. 0017
3	2. 23	2.46	.0030	2.33	2. 21	.0033	2.56	2.48	.0032
4	3.15	3.39	.0042	3.24	3.12	.0043	3.29	3.15	.0042
5	7.44	7.68	.0097	7.14	7.11	.0093	7.89	7.58	. 0095
6	10.63	10.83	. 0145	10.76	10.55	. 0145	12.11	11.62	.0152
7	12.34	12.52	.0192	12.46	12.08	.0198	13.80	13.24	. 0205
8	12.69	12.83	.0249	12.58	12.16	.0258	13.89	13.37	. 0265
9	12.67	12.82	.0302	12.51	12.07	.0313	13.86	13.35	.0314
10	12.76	12.94	.0354	12.50	11.93	.0360	13.86	13.39	.0362
11	12.84	12.91	. 0409	12.41	11.98	.0413	13.83	13.36	.0417
12	12.83	12.89	.0461	12.34	11.87	.0460	13.79	13.36	.0464
13	12.77	12.84	. 0511	12.22	11.76	.0510	13.73	13.32	. 0509

	Specimen No. 160 t _o = .2500				Specimen No. 161 t _o = .2497			Specimen No. 162 t _o = .2496		
Step	$^{ m dH}_{ m A}$	dH _B	dt	$^{ m dH}_{f A}$	dH _B	dt	dH _A	dH _B	dt	
1 2 3 4 5 6 7 8	0 1.11 2.20 3.03 7.77 11.49 13.43 13.83 13.78	0 1.03 2.12 2.89 7.56 11.35 13.23 13.59 13.54	0 .0018 .0030 .0043 .0098 .0148 .0195 .0258	0 1.47 2.43 3.35 8.45 13.16 15.57 15.86 15.87	0 1.52 2.53 3.42 8.48 13.15 15.36 15.60	0 .0021 .0035 .0045 .0103 .0158 .0210 .0260	0 1.20 2.26 3.14 7.63 12.22 15.81 16.67 16.74	0 1.23 2.26 3.12 7.43 12.27 15.71 16.82 16.90	0 .0020 .0032 .0044 .0092 .0142 .0200 .0250	
10 11 12 13	13.86 13.82 13.76 13.72	13.55 13.53 13.46 13.41	.0355 .0413 .0463 .0513	15.80 15.87 15.81 15.75	15.55 15.61 15.57 15.48	.0360 .0408 .0465 .0520	16.67 16.76 16.70 16.63	16.83 16.93 16.70 16.74	.0357 .0412 .0472 .0527	

Specimen No. 163 $t_0 = .2484$

Specimen No. 164 t_o = .2495

Specimen No. 165 t_o = .2496

			_						
Step	dH _A	dН _В	dt	$^{ m dH}{f A}$	dH _B	dt	$^{ m dH}_{f A}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.70	1.49	.0020	1.72	1.70	.0020	1.49	1.48	.0020
3	2.64	2.39	.0032	2.50	2.62	.0032	2.69	2.67	.0035
4	3.57	3.29	.0042	3.34	3.29	.0042	3.87	3.90	.0047
5	7.87	7.29	.0092	7.94	7.70	.0097	9.69	9.64	.0110
6	11.13	10.46	. 0139	11.33	10.79	.0147	14.09	13.47	.0165
7	13.12	12.38	. 0174	12.91	12.23	.0200	15.60	15.23	. 0225
8	13.48	12.59	. 0243	13.01	12.32	.0252	15.67	15.26	. 0282
9	13.50	12.63	. 0293	12.99	12.28	.0302	15.57	15.16	. 0339
10	13.55	12.80	. 0348	12.90	12.18	.0357	15.51	15.12	. 0394
11	13.69	13.08	. 0397	12.96	12.25	.0404	15.39	15.04	. 0447
12	13.66	13.08	. 0457	12.91	12.19	.0459	15.37	14.97	.0504
13	13.56	13.00	. 0509	12.80	12.04	.0511			

Specimen No. 166 t = .2509 Specimen No. 167 $t_0 = .2509$

Specimen No. 168 $t_0 = .2504$

	0				<u> </u>		0		
Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dН _В	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	
2	1.45	1.47	.0020	1.49	1.56	.0020	1.61	1.56	. 0023
3	2.51	2.48	. 0033	2.58	2.59	.0035	2.85	2.70	.0038
4	3.82	3.78	. 0045	3.59	3.65	.0048	3.71	3.53	.0048
5	9.07	9.17	.0105	8.98	8.96	.0105	9.62	9.42	.0110
6	12.73	13.05	.0165	13.27	13.30	.0156	14.11	13.57	. 0163
7	14.30	14.79	. 0226	16.73	17.11	.0206	17.05	16.53	. 0228
8	14.31	14.81	. 0279	17.17	17.56	. 0273	17.23	16.77	. 0280
9	14.22	14.71	.0331	17.07	17.47	.0331	17.18	16.62	. 0336
10	14.19	14.67	. 0381	17.01	17.41	.0381	17.10	16.56	. 0396
11	14.12	14.58	. 0434	16.96	17.33	.0432	17.01	16.48	. 0446
12	14.08	14.53	.0487	16.95	17.30	.0484	16.97	16.38	.0498

51

f.

Specimen No. 169 t_o = .2488 Specimen No. 170 t_o = .2507 Specimen No. 171 $t_0 = .2507$

Step	$^{\mathrm{dH}}\mathbf{A}$	dH _B	dt	dH _A	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	C
2	1.15	1.18	.0020	1.22	1.46	.0023	1.49	1.44	.0020
3	2.87	3.15	.0045	3.20	3.71	.0048	3.28	3.28	.0043
4	3.91	4.26	.0057	4.46	5.13	.0065	4.46	4.58	.0058
5	8.66	9.08	.0112	8.65	9.83	.0110	9.10	9.26	.0105
6	12.21	12.53	.0164	12.31	14.00	.0160	13.58	13.80	.0153
7	14.32	14.66	.0221	14.85	17.01	.0213	17.78	17.89	.02.1
8	14.81	15.13	. 0266	15.71	17.90	. 0261	19.49	19.57	. 0256
9	14.83	15.16	.0311	15.80	17.99	.0311	19.87	19.96	.0303
10	14.85	15.15	.0363	15.80	17.99	. 0361	19.94	20.00	.0354
11	14.82	15.11	.0415	15.74	17.91	. 0409	19.88	19.91	.0404
12	14.75	14.99	. 0468	15.72	17.57	.0461	19.78	19.80	.0451
13	14.75	14.99	.0520	15.72	17.69	. 0509	19.77	19.80	.0499

Specimen No. 172 t = .2505 Specimen No. 173 $t_0 = .2506$

Specimen No. 174 t = . 2505

	0			0			0		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	$^{ m dH}_{ m A}$	dH _B	dt
1	0	0	0	0	0	0	, 0	0	0
2	1.58	1.55	.0020	. 41	. 41	.0008	. 59	. 54	.0008
3	3.58	3.58	. 0045	.92	. 82	.0013	1.01	. 97	.0013
4	5.18	5.15	.0063	1.38	1.26	.0018	1.50	1.44	.0021
5	10.28	10.20	.0115	2.52	2.41	.0033	2.71	2.71	.0033
6	14.06	14.61	.0165	3.30	3.13	.0043	3.26	3.26	.0044
7	18.69	17.96	. 0220	4.20	4.01	.0054	4.16	4.19	.0054
8	19.99	18.99	. 0266	5.62	5.43	.0072	5.50	5.60	.0072
9	20.17	19.11	.0301	6.52	6.33	.0082	6.27	6.39	.0082
10	20.18	19.11	.0373	7.38	7.22	. 0095	7. 29	7.46	.0095
11	20.07	19.01	.0428	9.14	9.04	.0115	9.40	9.59	.0118
12	19.96	18.90	.0473	10.45	10.33	.0128	10.96	11.22	.0136
13	19.88	18.87	. 0524	14.29	14.37	.0174	14.76	14.93	.0182
14				17.24	17.63	.0222	17.53	17.61	. 0231
15				18.69	19.47	. 0266	18.59	18.43	. 0277
16				19.14	20.13	.0322	18.62	18.58	.0328
17				19.30	20.15	.0373	18.77	18.60	.0382
18				19.30	20.14	.0427	18.81	18.63	.0433
19				19.34	20.16	.0483	18.82	18.63	. 0485

Specimen No. 175 t_o = .2508 Specimen No. 176 t_o = .2509 Specimen No. 177 t_o = .2503

Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1 2 3 4 5 6 7 8	0 2.57 3.90 4.72 8.56 13.77 17.00 19.60 20.55	0 2.52 3.84 4.62 8.54 13.77 17.12 19.73 20.59	0 .0029 .0045 .0055 .0098 .0151 .0193 .0248	0 2. 25 3. 56 4. 27 8. 32 12. 55 16. 63 18. 86 19. 47	0 2.52 3.87 4.63 8.94 13.32 17.72 20.12 20.47	0 .0026 .0044 .0054 .0105 .0146 .0197 .0251	0 .70 2.60 3.66 8.65 14.45 19.16 22.40 23.99	0 .68 2.48 3.48 8.00 13.69 18.12 21.13 22.52	0 .0010 .0030 .0043 .0095 .0148 .0198 .0248
10 11 12 13 14	20.82 20.75 20.77 20.68	20.80 20.72 20.71 20.57	. 0341 . 0386 . 0441 . 0489	19.80 19.46 19.42 19.30	20. 59 20. 86 20. 77 20. 73	. 0346 . 0396 . 0447 . 0497	24. 28 24. 19 24. 11 24. 08 24. 03	22. 97 22. 69 22. 68 22. 62 22. 50	. 0353 . 0403 . 0450 . 0503 . 0551

Specimen No. 178 t_o = .2508

4)

Specimen No. 179 t_o = .2500

Specimen No. 180 t_o = .2508

Step	dHA	dH _B	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1	0	0,	0	0	0	0	0	0	0
3	.73 2.51	. 63 2. 48	.0010	. 95 2. 65	. 99 2. 74	.0013	. 89 2. 80	. 96 2. 75	.0013
4	3.81	3. 49	. 0043	3.84	3.82	. 0045	3.94	3.86	. 0035
5	9.00	8.56	. 0099	8.40	8.31	. 0098	8.49	8.39	.0098
6 7	14.66	13.96	. 0153	14.24	14.34	. 0155	14. 28	14.03	. 0153
8	18. 29 22. 11	17.13 21.17	.0193 .0243	18.95 22.56	19.18 23.22	.0200 .0245	18.39 21.88	18.38 22.30	.0193
9	22.42	22.84	. 0298	25.12	25.90	. 0300	24.69	25.14	. 0293
10	22.56	22.98	. 0359	25.83	26.74	. 0355	25. 42	26.05	. 0349
11	22.60	23.11	. 0396	25.81	26.71	. 0405	25. 44	26.07	. 0401
13	22.51	23.07 22.90	.0416 .0492	25.73 25.70	26.41 26.52	. 0453 . 0498	25. 43 25. 41	25.91 25.89	. 0449 . 0494
14	22.49	22.92	. 0539	25.64	26.42	. 0548	25.37	25.82	. 0547

	Specimen No. 181 t _o = .2511			Specimen No. 182 t = .2517			Specimen No. 183 t _o = .2509		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	1.21	1.31	.0018	1.26	1.23	. 0018	1.45	1.42	.0018
3	2.69	2.69	. 0035	2.40	2.49	. 0038	2.69	2.69	.0033
4	3.05	3.09	. 0045	2.68	2.84	. 0048	2.70	2.69	.0033
5	3.35	3.49	. 0098	2.71	2.96	. 0096	3.65	3.67	.0083
6	3.22	3.33	.0153	2.46	2.70	. 0156	3.41	3.45	.0143
7	3.03	3.18	.0198	2.15	2.44	. 0216	3.10	3.22	. 0196
8	2.79	2.94	. 0251	1.95	2.19	. 0264	2.83	3.00	.0241
9	2.55	2.76	. 0309	1.61	1.91	. 0330	2.59	2.80	.0281
10	2.36	2.58	.0364	1.32	1.68	. 0385	2.33	2.63	.0354
11	2.05	2.32	.0417	.99	1.39	. 0438	2.05	2.42	.0414
12	1.78	1.95	. 0482	. 58	. 95	. 0511	1.77	2.20	.0474
13	1.52	1.73	. 0545	. 28	. 75	. 0576	1.52	2.12	.0542

	Specimen No. 184 t _o = . 2503			Specimen No. 185 t _o = .2496			Specimen No. 186 t _o = .2504		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.69	1.45	.0018	1.48	1.42	.0020	1.51	1.61	.0020
3 4	2.78	2. 6 6	.0033	2.88	2.93	. 0035	2.95	2.98	.0038
4	3. 4 5	3.33	. 0045	3.88	3.94	.0055	3.78	3.99	. 0055
5	3.88	3.85	. 0098	4.36	4.37	.0107	4.21	4.33	.0105
6	3.78	3.72	. 0153	4.09	4.16	. 0165	4.02	4.06	.0163
7	3.56	3.56	. 0203	3.78	3.80	. 0217	3.79	3.78	.0218
8	3.32	3.36	. 0255	3.50	3.61	.0280	3.58	3.60	. 0273
9	3.04	3.15	. 0315	3.22	3.37	. 0339	3.39	3.37	. 0333
10	2.77	2.92	. 0373	2.91	3.31	. 0399	3.12	3.13	.0391
11	2.45	2.67	. 0433	2.67	3.09	. 0462	2.81	2.94	.0453
12 13	2.14 1.95	2. 47 2. 29	. 0501 . 0558	2.32	2.79	. 0522	2.70	2.74	. 0513

Specimen	No.	187	Spec
t = .	2501		t

t_o = . 2516 Specimen No. 189

Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	$^{ m dH}_{ m B}$	dt
1	0	. 0	0	0	0	0	0	0	0
2	1.34	1.25	.0018	1.35	1.24	. 0018	1.38	1.48	.0018
3	2.68	2.50	.0035	2.35	2.34	. 0045	2.75	2.94	. 0035
4	3.53	3.32	. 0053	3.64	3.34	. 0070	3.46	3.71	. 0048
5	4.08	3.83	.0108	4.32	3.95	. 0103	4.19	4. 46	.0113
6	3.91	3.62	.0170	4.14	3.74	. 0166	4.33	4.57	.0170
7	3.68	3.41	. 0225	3.91	3. 4 9	. 0226	4. 23	4.47	.0220
8	3.49	3.18	. 0285	3.71	3.28	. 0289	4.08	4.39	. 0283
9	3. 29	2.99	. 0340	3.51	3.03	. 0350	4.01	4. 28	. 0338
10	3.05	2.72	. 0403	3. 27	3.00	. 0410	3.93	4.17	. 0393
11	2.84	2.51	. 0465	3.04	2.63	. 0473	3.88	3.99	. 0451
12	2.67	2.40	. 0525	2. 88	2.51	. 0531	3.73	3.88	. 0503

Specimen No. 190 t_o = .2515

1

51

Specimen No. 191 t_o = . 2506 **Specimen No.** 192 t_o = .2508

	<u> </u>				0		0		
Step	dHA	dHP	dt	dHA	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.41	1.41	.0018	1.23	1.28	.0018	1.42	1.39	.0020
3	2.77	2.70	. 0035	2. 26	2.36	.0033	2.82	2.81	. 0035
4	3.68	3.51	.0045	3.04	3.17	. 0038	3.80	3.74	.0048
5	4.55	4.21	. 0106	4.78	4.99	. 0105	5.22	5. 06	.0108
6	4.59	4. 22	.0163	4.88	5.09	. 0163	5.09	4.92	.0168
7	4. 45	4.10	. 0219	4.72	4.99	. 0220	4.80	4.68	. 0223
8	4.32	3.98	. 0282	4.57	4.90	. 0278	4.49	4.42	. 0278
9	4. 26	3.89	. 0332	4.48	4.82	. 0335	4.30	4.21	. 0334
10	4.14	3.76	. 0382	4.35	4.73	. 0391	4.04	3.90	. 0386
12	3.98	3.68	. 0440	4. 23	4.61	. 0456	3.82	3.60	. 0441
12	3.94	3.58	. 0483	4. 15	4.57	. 0501	3.62	3.50	. 0492

Specimen No. 193	Specimen No. 194	Specimen No. 195
t _o = .2516	t _o = .2510	t _o = .2518

Step	dH _A	dH _B	dt	dHA	dH _B	dt	$^{ m dH}_{f A}$	dН _В	dt	
1	0	0	0	0	0	0	0	0	0	
2	1.24	1.10	.0015	1.55	1.63	. 0023	1.55	1.57	. 0020	
3	2.96	2.62	.0038	3.03	3.23	. 0040	3, 41	3.44	.0043	
4	4.09	3.73	. 0058	3.99	4.26	. 0060	4.58	4.67	.0060	
5	4.52	4.18	.0113	4.38	4.78	. 0115	5. 22	5.38	.0116	
6 7	4.41	3.99	. 0166	4.24	4.66	.0171	5.13	5.33	. 0171	
	4.12	3.71	. 0224	4.00	4.43	. 0233	4.94	5.16	. 0229	
8	3.89	3.48	. 0279	3.74	4. 28	. 0291	4.81	4.99	. 0287	
9	3.65	3.16	. 0335	3,65	4.13	. 0344	4.74	4.87	. 0342	
10	3.34	2.85	. 0392	3.45	3.96	. 0409	4.54	4.70	.0400	
11	3.15	2.59	. 0445	3.31	3.84	. 0449	4.33	4.56	.0451	
12	2.81	2. 27	. 0508	3.12	3.71	. 0507	4.43	4.37	. 0511	

	Spec	imen No t _o = . 251		Specimen No. 197 t _o = .2509			Specimen No. 198 t _o = .2507		
Step	dH _A	dH _B	dt	dHA	dH _B	d t	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.51	1.56	.0020	1.51	1.47	.0021	1.60	1.04	. 6022
3	3.16	3.18	.0040	2.89	2.88	. 0037	3.02	3.10	. 0038
4	4. 27	4.19	. 0058	2.99	2.89	. 0037	3.06	3.12	. 0038
5	4.91	4.69	.0113	5.81	5.64	. 0098	5.74	6.12	. 0093
6	4.80	4.57	. 0169	5.86	5.66	. 0148	5.89	6.26	. 0143
7	4.49	4.32	. 0226	5.69	5.38	. 0203	5.63	6.04	. 0201
8	4.21	4.07	. 0284	5.31	5.08	. 0258	5.40	5.81	. 0251
9	3.91	3.73	. 0345	4.98	4.77	. 0316	5.02	5.54	. 0308
10	3.53	3.52	. 0407	4.78	4.58	. 0366	4.90	5.41	. 0358
11	3. 26	3.34	. 0458	4.59	4.37	. 0416	4.68	5.18	. 0409
12	2.94	3.06	. 0523	4.34	4.10	. 0472	4.46	5.01	. 0466
13				4.01	3.78	. 0529	3.89	4.77	. 0511

	Specimen No. 199 t _o = .2507			Specimen No. 200 t _o = .2508			Specimen No. 201 t _o = .2506		
Step	dHA	dHB	dt	dH _A	dH _B	dt	^{dH} A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	1.45	1.47	. 0023	1.50	1.39	. 0023	1.50	1.54	. 0020
3	2.60	2.68	. 0038	2.72	2.55	.0038	3.13	3.19	.0040
4	3.09	3.13	. 0045	3.09	2.95	. 0043	3.82	3.80	. 0048
5	4.28	4.24	. 0103	4.27	4.00	. 0098	5.35	5.30	. 0103
6 7	4.28	4.28	. 0156	4.32	4.06	. 0145	5. 22	5.12	.0160
7	3.99	4.00	. 0216	4.14	3.86	. 0203	4.98	4.89	. 0210
8	3.72	3.78	. 0271	4.01	3.68	. 0253	4.82	4.75	. 0268
9	3.42	3.49	. 0323	3.79	3.39	.0311	4. 43	4.59	. 0318
10	3.20	3.28	. 0379	3.71	3.28	. 0361	4.44	4, 39	. 0376
11	2.97	3.07	. 0431	3.58	3.10	.0414	4.32	4.21	. 0434
12	2.70	2.83	. 0486	3.45	2.97	. 0461	4.19	4.05	. 0491
13	2.37	2.52	. 0549	3.28	2.70	. 0522			

	Specimen No. 202 t _o = . 2509			Specimen No. 203 $t_0 = .2509$			Specimen No. 204 t _o = .2518		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2 3	1.51	1.45	. 0020	1.79	1.73	.0022	1.21	1.23	. 0018
3	3.02	3.00	.0040	3.28	3.22	.0040	2.73	2.78	. 0035
4 5	3.80	3.82	. 0050	4. 21	4.19	.0050	3.72	3.84	. 0045
5	4.92	4.99	. 0095	5.78	5.83	. 0105	5.78	5.71	. 0093
6 7	4.74	4.75	. 0158	5.54	5.64	.0156	5.80	5.73	. 0154
7	4.51	4.53	. 0206	5.31	5.43	. 0221	5.69	5.55	. 0216
8	4.35	4.31	. 0263	5.09	5. 23	. 0281	5.61	5.53	. 0272
Ġ.	4.20	4.10	. 0311	4.89	4.91	. 0336	5.57	5. 46	. 0325
10	3.94	3.76	. 0371	4.60	4.72	.0401	5.40	5.27	. 0382
1/3	3.78	3.63	. 0422	4.36	4.53	. 0459	5.31	5.19	. 0436
12	3.63	3.43	. 0482	4.14	4.34	.0517	5. 28	5.16	. 0486

1

	-	imen No. t _o = .251		-	Specimen No. 206 t _o = . 2510			Specimen No. 207 t _o = .2506		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt	
1	0	0	0	0	0	0	0	0	0	
2	.16	. 15	.0002	.14	.17	. 0001	.17	.12	.0002	
3	. 40	. 42	.0008	. 44	. 48	. 0007	. 49	. 42	.0008	
4	. 71	.70	.0012	. 75	. 78	. 0012	. 76	. 67	. 0010	
5	1.55	1.61	.0023	1.48	1.49	.0022	1.45	1.40	.0020	
6	2.20	2.26	.0030	2.30	2.31	.0033	2.41	2.34	.0030	
7	3.11	3.17	.0043	3.09	3.15	.0043	3.22	3.21	.0040	
8	4.82	4.82	.0073	5.00	5.02	.0073	5.43	5.42	.0070	
9	5.28	5.29	.0093	5.60	5.53	. 0095	6. 28	6. 23	.0093	
10	5.11	5.27	. 0148	5.55	5.37	. 0143	6.52	6.42	. 0143	
11	4.96	5.03	.0201	5.37	5.21	.0208	6.44	6.35	. 0193	
12	4.77	4.82	. 0251	5.19	5.01	. 0266	6.35	6. 26	. 0248	
13	4.47	4.59	.0314	5.01	4.81	. 0326	6.32	6.21	. 0300	
14	4.27	4.37	.0370	4.88	4.66	. 0371	6.16	6.07	. 0360	
15	3.97	4.10	. 0430	4.78	4.46	. 0431	6.04	5.97	. 0413	
16	3.85	3.99	. 0473	4.70	4.31	. 0474	5.97	5.90	. 0466	
17	3.57	3.67	. 0533	4.51	4.19	. 0527	5.84	5.73	. 0526	

	Specimen No. 208 t = .2507			Specimen No. 209 8 t _o = . 2504			Specimen No. 210 t _o = .2505		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	^{dH} B	dt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0 .16 .40 .69 1.59 2.37 3.43 5.31 6.18 6.28 5.97 5.80 5.65 5.37 5.15 4.88 4.67	0 .13 .34 .63 1.54 2.24 3.28 5.30 6.15 6.27 6.00 5.76 5.55 5.24 5.08 4.75 4.52	0 .0002 .0008 .0010 .0022 .0030 .0043 .0070 .0093 .0143 .0208 .0261 .0313 .0371 .0426 .0476	0 1.59 1,60 2.28 6.96 7.37 7.12 6.96 6.85 6.64 6.45 6.22	0 1.57 1.58 2.31 6.98 7.30 7.13 6.98 6.88 6.69 6.50 6.24	0 .0020 .0020 .0030 .0093 .0145 .0205 .0255 .0303 .0348 .0398	0 1.51 1.51 2.64 7.11 7.05 6.83 6.65 6.53 6.32 6.10 5.88	0 1.46 1.46 2.61 7.11 7.06 6.82 6.61 6.41 6.20 5.97 5.72	0 .0020 .0020 .0032 .0103 .0163 .0230 .0286 .0351 .0401 .0458

Specimen No. 211 t_o = .2510 Specimen No. 212 t_o = .2515 Specimen No. 213 t_o = .2517

Step	dHA	$^{ m dH}_{ m B}$	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1 2 3 4 5 6 7 8 9 10 11 12	0 .84 2.04 3.06 6.95 6.86 6.60 6.39 6.26 5.96 5.75 5.57	0 .95 2.11 3.13 7.24 7.22 6.93 6.72 6.57 6.13 5.94 5.74	0 .0015 .0030 .0040 .0110 .0171 .0241 .0289 .0351 .0412 .0469	0 1.12 2.61 3.32 6.99 7.16 6.92 6.69 6.59 6.27 6.03 5.79	0 1.03 2.51 3.36 6.85 7.07 6.76 6.47 6.27 5.94 5.69 5.42	0 .0018 .0035 .0043 .0103 .0153 .0221 .0279 .0342 .0392 .0445 .0498	0 .14 1.07 2.46 3.61 7.66 7.77 7.42 7.19 6.94 6.67 6.55 6.28	0 .12 .99 2.41 3.52 7.56 7.67 7.20 6.91 6.66 6.29 6.06 5.77	0 .0002 .0018 .0035 .0045 .0108 .0171 .0257 .0317 .0370 .0428 .0486

Specimen No. 214 t_o = .2505 Specimen No. 215 $t_0 = .2494$

Specimen No. 216 t_o = .2515

	4								
Step	dH _A	dH _B	dt	dH _A	$^{\mathtt{dH}}_{\mathrm{B}}$	dt	dH _A	$^{ m dH}_{ m B}$	dt
1 2 3 4 5 6 7 8 9 10 11 12 13	0 .13 1.52 2.98 4.11 8.13 8.25 8.05 7.92 7.77 7.62 7.62	0 .15 1.60 2.88 3.93 8.14 8.31 8.08 7.90 7.73 7.56 7.54	0 .0002 .0021 .0038 .0051 .0103 .0175 .0245 .0308 .0361 .0411	0 .14 1.29 2.57 3.54 8.01 9.02 8.70 8.42 8.11 8.11 8.07 7.68	0 .09 1.07 2.47 3.56 8.03 8.79 8.48 8.21 7.94 7.69 7.55 7.25	0 .0002 .0017 .0032 .0045 .0100 .0155 .0234 .0299 .0359 .0406	0 .14 1.50 2.89 4.07 8.38 9.40 9.28 9.14 3.99 8.81 8.82	0 .31 1.47 2.84 3.96 8.46 9.49 9.37 9.28 9.10 8.90 8.82 8.63	0 .0002 .0020 .0038 .0048 .0101 .0161 .0237 .0289 .0340 .0397 .0440

Specimen No. 217	Specimen No. 218	Specimen No. 219
t _o = .2505	$t_0 = .2512$	$t_0 = .2486$

Step	dHA	dH _B	dt	dH _A	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	⁺ 0	0	0
2	. 09	.14	.0002	.14	.10	.0002	0	.14	.0002
3	. 05	. 24	.0005	. 21	.18	.0002	. 06	. 21	.0005
4	. 25	. 33	. 0005	. 29	. 24	.0005	. 06	. 31	.0005
5	. 37	. 51	.0008	. 38	. 33	.0008	.34	. 51	.0007
6	. 96	1.04	.0018	.79	. 78	.0015	. 81	. 93	. 0017
7	1.55	1.57	.0030	1.40	1.41	.0028	1.66	1.79	.0030
8	2.40	2.05	.0035	1.81	1.79	.0033	2.16	2. 22	. 0037
9	3. 25	3.21	. 0053	1.80	1.81	.0033	3.22	3.35	.0052
10	4.37	4.33	. 0075	3.41	3.38	. 0060	4.61	4.60	.0077
11	4.91	5.00	.0130	4.91	4.87	.0118	5.53	5.59	.0137
12	4.77	4.84	.0180	4.73	4.70	. 0176	5.36	5.38	. 0191
13	4.63	4.67	. 0230	4.51	4.48	. 0229	5.16	5.20	. 0244
14	4. 45	4.45	. 0286	4. 29	4.25	.0281	4.88	4.97	.0318
15	4.30	4.35	. 0351	4.09	4.03	. 0359	4.69	4.33	.0380
16	4.17	4.15	.0410	3.88	3.86	. 0392	4.46	4.59	.0438
17	4.03	3.94	. 0476	3.63	3.69	. 0437	4.18	4.31	. 0500
18	3.96	3.79	. 0531	3.51	3.59	.0490	3.97	4.11	. 0547

Specimen No. 220	Specimen No. 221	Specimen No. 222
t = .2484	t _o = .2485	t = .2485

		0 240			0 - 12-1			0 - 1 - 1	
Step	dН _А	dH _B	dt	dH _A	dH _B	dt	A ^{Hb}	dH _B	dt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 .09 .13 .22 .45 .82 1.42 1.74 3.13 4.92 5.95 5.86 5.75 5.54 5.16 5.07 4.89	0 .11 .09 .20 .32 .73 1.33 1.71 3.04 4.73 5.74 5.66 5.47 5.30 5.11 4.99 4.87 4.72	0 .0002 .0002 .0005 .0007 .0015 .0025 .0030 .0047 .0077 .0137 .0194 .0251 .0330 .0392 .0454 .0499	0 1.08 1.07 2.02 6.03 7.60 7.50 7.29 7.06 6.79 6.46 6.28	0 .98 .95 1.87 5.84 7.37 7.27 7.06 6.85 6.62 6.31 6.12	0 .0017 .0017 .0030 .0077 .0132 .0196 .0253 .0308 .0375 .0437	0 .90 1.78 2.89 6.59 7.21 7.06 6.96 6.79 6.67 6.30 6.26	0 1.06 1.93 2.96 6.74 7.38 7.21 7.08 6.90 6.76 6.54 6.42	0 .0017 .0030 .0042 .0094 .0152 .0226 .0278 .0338 .0405 .0475

		imen No. o = .251		Specimen No. 224 t _o = .2513			Specimen No. 225 t _o = .2511		
Step	dH _A	dH _B	dt	dHA	dH _B	dt	dH _A	dН _В	dt
1 2 3 4 5 6 7 8 9	0 1.01 2.02 3.15 6.06 6.67 6.24 5.75 5.27	0 .97 1.99 3.16 5.98 6.67 6.39 6.03 5.62 5.29	0 .0020 .0035 .0050 .0101 .0151 .0226 .0289 .0354	0 .81 1.81 2.92 5.89 6.49 6.20 5.93 5.67	0 .98 2.00 2.95 6.11 6.73 6.45 6.17 5.83 5.49	0 .0020 .0035 .0050 .0103 .0158 .0231 .0286 .0349	0 .74 2.36 3.47 6.62 7.15 6.84 6.49 6.11 5.76	0 .74 2.41 3.54 6.64 7.11 6.74 6.40 5.95 5.49	0 .0015 .0040 .0055 .0010 .0176 .0234 .0289 .0354
11	4. 25 3. 69	4.92 4.60	.0478 .0528	4.90 4.67	5.16 4.74	.0498 .0530	5.41 5.06	5. 21 4. 78	.0464

		imen No t _o = .247		Specimen No. 227 t _o = .2575			Specimen No. 228 t _o = .2475		
Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 93	1.05	.0020	1.36	. 94	. 0015	1.13	1.17	.0017
3	2.69	2.93	.0044	3.26	2.90	.0041	3.05	2.94	.0040
4	3.94	4.20	. 0059	4.78	4.40	. 0057	4.73	4.62	.0057
5	6.81	7.27	.0114	9.80	9.33	.0113	8.50	8.36	. 0106
6	7.30	7.72	.0181	11.42	10.89	. 0180	9.82	9.86	.0173
7	7.04	7.49	. 0243	11.39	10.80	. 0240	9.62	9.58	. 0228
8	6.81	7. 26	. 0290	11.21	10.62	. 0301	9.35	9. 29	. 0285
9	6.62	7.04	. 0342	11.13	10.42	. 0363	9.12	9.07	. 0337
10	6.34	6.79	.0401	11.03	11.23	.0414	8.88	8.79	. 0386
11	6.06	6.48	. 0468	10.98	10.11	. 0469	8.58	8.58	.0448
12	5.78	6.18	. 0530	10.90	9.97	. 0525	8.25	8.16	. 0515

Specimen No. 229 Specimen No. 230 Specimen No. 231 $t_0 = .2465$ $t_0 = .2583$ $t_0 = .2509$

Step	dHA	dH _B	dt	A ^H b	dH _B	dt	dHA	dH _B	dt
	0	0	0						
-		-		0,	0	0	0	0	0
2	. 15	. 17	. 0002	. 11	.10	. 0002	. 14	. 17	. 0003
3	. 15	. 18	. 0005	.11	. 09	. 0005	. 28	. 30	. 0005
4	. 0.3	. 06	. 0007	.12	. 13	. 0008	.32	. 33	. 0006
5	. 3 -	. 35	.0010	. 25	. 22	.0010	. 45	. 47	.0008
6	. 06	. 38	.0010	.30	. 29	.0010	. 47	. 49	.0010
7	1.06	1.20	. 0027	. 47	.50	.0031	1.60	1.63	.0029
8	1.67	1.75	.0034	1.76	1.75	. 0036	2.00	2.06	.0035
9	2.15	2. 28	.0042	2.26	2.22	. 0046	2.48	2.62	.0042
10	3.26	3.60	. 3059	3.40	3.38	.0064	4.22	4.18	.0060
11	5.23	5.45	.0086	5.02	4.98	.0090	5.91	5.90	.0080
12	7.73	8.23	. 0140	7.34	7.01	. 0145	9.30	9.31	.0134
13	8.01	8.51	.0197	7.50	7.09	.0191	9.88	9.89	.0194
14	7.89	8.47	. 0256	7.20	6.79	. 0258	9.61	9.53	. 0255
15	7.71	8.27	.0308	6.96	6.51	. 0315	9.33	9.22	.0312
16	7.47	8.13	.0372	6.56	6.03	. 0364	8.91	8.81	. 0372
17	7.44	7.98	.0419	6.28	5.71	. 0426	8.61	8.38	. 0435
18	7.32	7.85	. 0473	6.06	5. 43	. 0473	8. 29	8.11	.0481
19	7.17	7.62	.0530	5.81	4.89	. 0522	7.95	7.71	. 0525

	0					0				
Step	dH _A	$^{ m dH}_{ m B}$	dt	dH _A	dHB	dt	dH _A	dH _B	dt	
1	0	0	0	0	0	0	0	0	0	
2	. 25	. 21	.0003	. 15	.10	.0002	. 15	.13	.0002	
3	. 33	.19	.0005	. 24	. 19	. 0005	. 26	. 29	. 0005	
4	. 42	. 36	. 0007	.30	. 35	. 0008	. 43	. 33	.0008	
5	. 53	. 43	. 0009	. 45	. 39	.0010	. 47	. 42	.0010	
6	. 52	. 48	.0010	.61	. 51	.0010	. 54	. 58	.0010	
7	1.46	1.41	.0025	1.16	1.21	. 0020	1.30	1.23	.0022	
8	1.96	1.90	.0032	2.01	1.97	. 0033	2.04	1.86	.0030	
9	2.72	2.61	.0039	2.54	2.56	.0040	2.70	2.47	.0040	
10	4.62	4.32	.0061	4.04	4.19	. 0058	4.14	3.98	. 0055	
11	9.20	8.96	.0117	5. 21	5.18	.0070	5.39	5.12	.0070	
12	10.63	10.33	.0169	10.18	10.43	.0134	10.85	10.80	. 0138	
13	10.78	10.38	. 0231	11.66	11.47	. 0179	12.02	11.97	.0158	
14	10.72	10.33	. 0282	11.67	11.52	. 0232	12.06	12.27	. 0236	
15	10.61	10.16	. 0328	11.52	11.39	. 0282	11.86	12.00	. 0286	
16	10.52	10.09	. 0375	11.33	11.22	. 0333	11.66	11.85	. 0341	
17	10.39	9.97	. 0433	11.09	11.02	. 0386	11.48	11.74	. 0398	
18	10.28	9.83	. 0490	10.93	10.88	. 0428	11.39	11.60	. 0454	
19				10.62	10.63	. 0491	11.22	11.48	. 0516	
20				10.33	10.48	. 0544	11.04	11.37	. 0566	

Specimen No. 235 $t_0 = .2433$

I

Specimen No. 236 t_o = .2480 Specimen No. 237 t = .2518

Step	dHA	dH _B	dt	dH _A	dHB	dt	^{dH} A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 15	. 09	. 0002	.11	. 07	.0002	. 20	.17	. 0002
3	. 21	. 15	. 0005	.19	.10	. 0005	. 28	. 21	. 0005
4	. 29	. 20	. 0007	. 25	. 08	. 0007	. 40	. 35	. 0008
5	. 39	. 28	.0010	. 28	. 13	.0010	. 44	. 37	. 0008
6	. 49	. 39	.0012	. 20	. 22	. 0012	. 47	. 38	. 0010
7	. 98	. 83	. 0029	1.01	. 71	. 0025	.94	. 80	. 0018
8	1.33	1.23	. 0036	1.30	1.13	.0032	1.40	1.24	. 0025
9	1.70	1.65	. 0039	1.59	1.41	.0040	1.72	1.51	. 0030
10	2.69	2.52	. 0056	2.59	2. 43	. 0060	3.77	3.55	. 0060
11	3.31	3.07	. 0068	3.24	3.08	.0072	4.83	4.64	.0080
12	4.63	4.69	. 0131	4.78	4.67	.0134	6.17	5.87	. 0126
13	4.38	4.26	.0178	4.47	4.23	.0184	6.22	5.86	. 0186
14	3.88	4.16	. 0241	4.02	3.81	. 0243	5.85	5.46	. 0237
15	3.50	3.93	. 0290	3.71	3.51	. 0300	5.48	5.06	. 0292
16	3.08	3.34	. 0346	3.40	3.12	. 0360	5.12	4.68	. 0342
17	2.59	3.20	. 0399	3.10	2.85	.0414	4.83	4.30	. 0393
18	2.24	2.87	. 0443	2.88	2.50	. 0466	4.39	3.75	. 0461
19	1.78	2.44	. 0499	2.49	2.17	. 0536	3.93	3.32	. 0514
20	1.26	2.09	. 0550	2.13	1.79	. 0590			

Specimen No. 238 t = .2454 Specimen No. 239 t_ = .2518 Specimen No. 240 $t_0 = .2523$

	<u>'</u>	0 2 - 3	T	·	0 231	0		0 232	
Step	dHA	dH _B	dt	dH _A	^{dH} B	dt	dH _A	dН _В	dt
1	0	0	0	0	0	0	0	0	0
2	. 21	. 21	.0002	.17	. 19	. 0002	.17	.17	. 0002
3	.30	. 25	. 0005	. 26	. 31	. 0005	. 27	. 21	. 0005
4	. 41	. 37	. 0007	. 45	. 42	. 0008	. 46	. 38	.0008
5	. 46	. 42	.0010	. 47	. 52	.0008	. 48	. 39	. 0010
6	. 53	. 51	.0010	. 55	. 58	. 0010	. 75	. 54	.0010
7	1.21	1.17	.0022	1.33	1.37	.0020	1.09	1.10	. 0020
8	1.54	1.48	.0027	1.82	1.81	.0028	1.77	1.82	. 0028
9	1.90	1.82	. 0032	2.24	2.11	.0030	3.61	3.57	. 0030
10	3.83	4.04	.0064	4.94	4.74	. 0063	4. 24	4.22	. 0060
11	5.32	5.28	. 0083	6.66	6.40	. 0086	5.82	5.80	. 0081
12	6.68	6.58	. 0128	8.56	8.50	. 0136	8.34	8.15	. 0136
13	6.61	6.57	. 0196	8.72	8.62	. 0202	8.68	8.36	. 0202
14	6.38	6.27	. 0243	8.31	8. 28	. 0259	8.46	8.18	. 0250
15	6.20	6.18	. 0294	8.07	8.00	. 0307	8. 23	7.94	. 0305
16	5.97	6.04	. 0344	7.66	7.69	. 0365	7.96	7.71	. 0363
17	5.74	5.76	. 0405	7.38	7.39	. 0410	7.73	7.47	. 0424
18	5.45	5.61	. 0464	7.02	6.99	. 0473	7.67	6.98	. 0492
19	4.60	5.35	. 0523	6.74	6.69	. 0529	7. 22	6.72	. 0555

Specimen No. 241 t_o = .2487 Specimen No. 242 t_o = .2465 Specimen No. 243 t_o = .2521

Step	dH _A	dH _B	ďt	dHA	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 03	. 13	. 0002	. 14	. 05	. 0002	. 18	. 13	.0002
3	. 06	. 20	.0007	. 26	. 12	. 0007	. 34	. 30	. 0008
4	. 21	. 32	.0012	. 34	. 26	. 0012	. 61	. 51	.0013
5	. 53	. 71	.0023	. 74	. 57	. 0022	1.10	1.03	. 0025
6	. 87	1.06	. 0030	1.20	. 98	.0032	1.61	1.52	. 0030
7	1.32	1.56	.0037	1.62	1.36	. 0039	2. 20	2.04	.0040
8	1.75	2.01	.0047	2.09	1.80	. 0049	2.20	2.04	.0040
9	2.57	2.83	.0062	2.82	2.45	.0064	3. 23	3.05	. 0055
10	4.62	4.92	.0122	4.80	4.31	.0121	6.58	6.38	.0113
11	5.05	5.40	. 0196	5.14	4.43	.0200	7.62	7.33	.0181
12	4.97	5. 27	. 0246	4.91	4.22	.0249	7.49	7.15	. 0237
13	4.91	5.18	. 0303	4.63	4.00	. 0306	7.31	6.92	. 0285
14	4.78	5.01	. 0361	4.47	3.97	.0350	7.14	6.73	. 0333
15	4.75	4.88	. 0418	4. 21	3.52	.0412	6.43	6.46	.0391
16	4.61	4.67	. 0485	3.91	3.22	. 0468	6.69	6.23	. 0446
17	4.57	4.58	. 0537	3.74	3.09	.0518	6.53	5.84	. 0507
18	4.42	4.39	. 0587	3.51	2.83	. 0567	6.35	5.67	. 0554

Specimen No. 244 t_o = .2520

Specimen No. 245 t_o = .2520 Specimen No. 246 t_o = .2508

								0	
Step	dH _A	dH _B	dt	dH _A	dН _В	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 13	. 05	. 0002	. 13	. 15	.0002	. 13	. 13	.0002
3	. 29	. 23	.0008	. 32	. 33	. 0005	. 33	. 34	.0005
4	. 61	. 53	.0013	.51	. 53	.0010	. 47	. 49	.0010
5	1.00	. 85	.0020	. 95	. 93	.0015	. 92	. 97	.0018
6	1.60	1.40	.0030	1.56	1.50	. 0025	1.60	1.61	.0028
7	2.04	1.85	.0038	2. 23	3.11	.0035	2. 28	2. 28	. 0038
8	2.69	2.51	.0048	3.48	3.46	.0050	3.51	3.50	.0050
9	2.65	2.51	.0048	5.72	5.72	.0076	5.71	5.71	.0078
10	6.00	5.88	.0106	8.75	8.75	.0118	8.95	9.03	.0125
11	7.13	6.94	.0174	10.30	10.38	. 0169	10.47	10.41	.0183
12	6.91	6.67	. 0227	10.42	10.52	. 0219	10.31	10.42	. 0246
13	6.55	6.33	. 0282	10.08	10.08	. 0277	10.18	10.39	. 0296
14	6.19	5.94	. 0338	9.92	10.04	. 0328	10.04	10.19	.0341
15	5.83	5.62	. 0388	9.69	9.84	. 0375	9.93	10.02	. 0396
16	5, 42	5.11	. 0444	9.35	9.58	. 0423	9.73	9.86	. 0456
17	5.07	4.78	. 0494	9.11	9.07	. 0474	9.53	9.66	. 0516
18	4.61	4.38	. 0552	, , , , , ,					

	Specimen No. 247 t = . 2486			Specimen No. 248 t = .2519			Specimen No. 249 t _o = .2509		
Step	dH _A	dH _B	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 09	.12	.0002	. 13	. 09	.0002	. 88	. 87	.0022
3 4	. 15	. 22	. 0005	. 22	. 16	.0005	1.66	1.60	.0035
:4	. 21	. 28	.0007	.33	. 24	.0008	2.08	1.96	.0043
5	. 53	. 63	.0017	. 61	. 44	.0018	6.68	6.63	.0110
6	.93	1.02	. 0027	1.05	. 86	.0028	8.39	8.31	. 0166
7	1.49	1.61	.0037	1.48	1.23	.0035	8.52	8.45	.0228
8	2.44	2.49	.0052	2.42	2.16	.0050	8.11	8.08	. 0291
١ ٧	3.82	3.92	. 0075	3.74	3.46	.0073	7.72	7.78	. 0344
10	6.55	6.69	. 01 27	6.28	5.82	.0128	7.37	7.46	. 0396
11	7.63	7.81	. 0186	7.12	6.59	.0181	7.10	7.08	. 0462
12	7.68	7.89	. 0202	7.03	6.55	.0242	6.93	7.04	.0474
13	7.71	7.81	. 0286	6.96	6.45	.0290	6.56	6.76	. 0539
14	7.65	7.75	. 0336	6.66	6.18	.0345			
15	7.60	7.68	. 0395	6.42	5.99	.0395			
16	7.54	7.60	. 0455	6.15	5.81	.0451			
17	7.50	7.54	. 0517	5.87	5.56	.0509			

	Specimen No. 250 t _o = .2462			Spec	Specimen No. 251 t = .2467			Specimen No. 252 t _o = . 2519		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dHA	dH _B	dt	
1	0	0	0	0	0	0	0	0	0	
2	1.10	1.22	.0025	1.43	1.30	.0022	1.60	1.38	.0023	
3	2.09	2. 21	.0039	2.64	2.49	.0037	2.47	2. 27	.0035	
4	2.49	2.63	.0047	3.58	3.40	.0047	3.26	3.06	.0043	
5	7.39	7.42	.0016	9.68	9.71	.0108	9.43	8.92	.0111	
6	9.31	9.30	.0177	13.02	12.90	.0163	12.19	11.45	.0161	
7	9.31	9.31	. 0241	13.83	13.56	.0222	13.09	12.29	. 0229	
8	8.98	9.01	.0310	13.54	13.27	. 0279	13.07	12.24	.0292	
9	8.63	8.74	.0357	13.20	12.89	.0333	13.01	12.16	.0340	
10	8.37	8.51	.0409	12.82	12.56	.0385	12.93	12.05	.0393	
11	8.02	8.15	. 0468	12.23	12.09	.0449	12.77	11.76	. 0463	
12	7.92	8.10	. 0480	12.32	12.00	. 0459	12.79	11.75	. 0476	
13	7.60	7.73	. 0542	11.81	11.49	. 0525	12.69	11.73	. 0537	

Specimen No. 253 $t_0 = .2516$

Specimen No. 254 t_o = . 2511

Specimen No. 255 $t_0 = .2485$

Step	dHA	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 98	. 89	.0020	. 93	. 70	.0020	. 96	1.15	. 0020
3	4.66	4. 49	.0075	4.88	4.39	.0078	5.19	5.55	.0074
4	5.44	5.23	. 0096	5.69	5.00	. 0093	6.18	6.51	. 0092
5	6.31	6.24	.0143	6.90	6.07	.0148	7.51	8.04	. 0142
6	6.21	6.02	.0199	6.79	5.90	. 0211	7.51	8.08	. 0206
7	5.94	5.78	.0245	6.58	5.63	. 0261	7. 23	7.81	. 0263
8	5.52	5.49	.0314	6.30	5. 29	. 0319	6.99	7.60	.0318
9	5.38	5. 28	. 0367	6.10	5.06	. 0364	6.77	7.37	. 0368
10	5.08	5.12	.0423	5.88	4.78	. 0417	6.48	7.10	. 0430
11	4.93	4.91	. 0476	5.65	4.52	.0472	6.22	6.94	. 0487
12	4.60	4.71	. 0533	5.45	4.29	. 0522	5.98	6.62	. 0542

Specimen No. 256 t_o = .2465 Specimen No. 257 $t_0 = .2489$

Specimen No. 258 t_o = .2481

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	A ^{Hb}	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.00	1.27	.0020	1.23	1.12	.0016	1.10	1.23	. 0017
3	5.35	6.07	.0080	2.82	2.62	.0032	2.68	2.80	.0032
4	6.30	7.00	.0094	2.80	2.61	.0032	3.85	3.99	. 0045
5	7.69	8.62	.0145	8.22	8.11	.0087	9.79	10.24	.0102
6	7.58	8.53	.0210	12.71	12.15	.0138	14.47	14.95	. 0156
7	7.26	8.21	. 0266	14.80	14.20	.0189	16.22	16.63	. 0208
8	6.92	7.87	. 0320	15.08	14.40	.0251	16.24	16.62	. 0273
9	6.61	7.58	.0370	15.06	14.32	.0301	16.03	16.41	. 0325
10	6.31	7.33	. 0426	14.89	14.12	. 0366	15.61	16.09	. 0387
11	6.00	7.02	.0481	14.79	13.99	. 0423	15.33	15.86	. 0444
12	5.67	7.68	. 0537	14.60	13.81	.0480	14.95	15.52	. 0501

Specimen No. 259 t_o = .2512 **Specimen No.** 260 t_o = .2520

Specimen No. 261 t_o = .2503

Step	dH _A	dH _B	dt	dH _{A}	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 83	.72	.0018	.62	.90	.0018	1.57	1.35	. 0025
3	2.03	1.82	.0033	1.86	2.24	.0033	2.82	2.51	.0040
4	2.9C	2.71	. 0045	1.85	2.22	.0033	3.75	3.46	.0048
5	7.92	7.93	.0105	6.79	7.64	.0093	8.66	8.50	.0100
6	11.46	11.81	.0158	10.32	11.21	. 01 41	13.26	12.99	.0150
7	13.04	13.09	. 0203	12.59	13.56	. 0197	16.04	15.75	.0208
8	13.16	13.12	.0271	12.98	14.04	.0272	16.69	16.33	. 0263
9	12.79	12.71	. 0332	13.00	13.91	. 0323	16.90	16.34	. 0315
10	12. 22	12.19	. 0394	12.67	13.76	. 0393	16.71	16.11	.0383
11	11.71	11.73	. 0455	12.40	13.58	. 0449	16.61	15.94	.0438
12	11.21	11.23	. 0512	12.23	13.40	. 0509	16.51	15.79	. 0503

Specimen No. 262 t_o = .2483

(

Specimen No. 263 $t_0 = .2483$

Specimen No. 264 t_o = .2489

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	A _{HP}	dH _B	dt
1	0	0	0	0	0	0	0	0	o
2	1.87	1.69	. 0027	1.93	1.98	. 0025	2.19	2.18	.0030
3	3.54	3.38	. 0045	3.86	3.93	. 0045	4. 27	4.24	.0047
4	4.52	4.38	. 0055	4.96	5.00	. 0056	5.19	5.23	. 0060
5	10.49	9.90	.0112	11.32	11.81	. 0109	11.58	11.73	.0112
6	14.18	13.54	. 0159	16.88	16.94	. 0159	16.85	16.92	.0162
7	16.77	15.95	. 0214	20.39	20.25	. 0216	20.61	20.40	. 0222
8	17.22	16.33	. 0276	21.91	21.49	. 0281	21.62	21.31	. 0281
9	17.07	16.23	. 0328	21.82	21.45	. 0335	21.61	21.27	.0328
10	16.81	15.99	. 0387	21.41	21.12	. 0397	21.30	21.03	. 0383
11	16.68	15.83	. 0432	21.10	20.86	. 0457	21.09	20.83	. 0433
12	16.38	15.57	. 0494	20.65	20.52	.0524	20.68	20.50	. 0500

Specimen No. 265 t_o = . 2517 Specimen No. 266 $t_0 = .2510$

Specimen No. 267 t_o = .2507

Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH ^A	dH _B	dt		
1	0	0	0	0	0	0	0	0	0		
2	. 84	. 82	. 0018	.84	. 91	.0018	1.09	. 94	.0018		
3	2.50	2.47	.0038	2.44	2.58	. 0035	2.67	2.53	. 0035		
4	3.00	3.03	. 0043	3.09	3.22	.0043	3.27	3.12	.0040		
5	8.60	8.96	. 01 06	8.93	9.21	. 01 05	9.75	9.42	. 01 03		
6	14.79	15.43	.0164	14.58	14.90	. 0158	16.04	15.80	.0160		
7	18.78	19.33	.0222	18.60	18.99	.0218	20.72	20.83	. 0216		
8	20.78	21.24	. 0277	20.18	20.50	. 0269	22.71	22.90	. 0261		
9	20.31	20.74	. 0342	20.64	21.08	.0331	23.51	23.64	. 0336		
10	21.39	21.75	.0408	20.49	20.99	. 0407	23.23	23.30	. 0396		
11	21.18	21.59	. 0466	20.33	20.89	. 0464	22.89	22.87	. 0451		
12	20.90	21.27	. 0526	20.16	20.71	. 0525	22.53	22.51	. 0511		

Specimen No. 268 t₀ = .2517 Specimen No. 269 t = .2464 Specimen No. 270 t_o = .2520

.

	0 - 12311			0 - 12101			t _o = . 2320		
Step	dHA	dH _B	dt	dH _A	a ^{Hb}	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 93	1.05	.0018	1.30	1.27	. 0020	1.40	1.23	. 0020
3	2.32	2.46	.0035	3.30	3. 21	. 0039	3.23	3.13	. 0040
4	3.02	3.18	.0043	5.44	5.43	. 0057	5. 23	5.18	. 0055
5	8.89	9.54	.0103	11.90	11.90	. 0113	10.95	11.16	.0111
6	14.13	14.94	.0164	18.43	18.62	. 0165	16.34	16.83	. 0159
7	17.02	17.72	. 0216	23.27	23.79	. 0219	21.63	21.67	. 0209
8	17.89	18.69	. 0264	26.03	26.92	. 0278	25.39	25.06	. 0265
9	17.98	18.83	. 0327	27. 24	28.10	.0340	27.02	26.55	. 0325
10	17.62	18.53	. 0390	27.44	28. 26	.0402	27.45	26.95	. 0391
11	17.31	18.30	. 0448	27.33	28.09	. 0456	27.31	26.87	. 0438
12	17.01	17.92	. 0506	27. 23	27.88	. 0510	27.10	26.70	.0491

Specimen No. 271 t_o = .2585 Specimen No. 272 t_o = .2587 Specimen No. 273 t_o = . 2499

	0			O .			0		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 02	. 14	. 0002	.11	. 09	. 0002	0	. 09	. 0002
3	. 03	. 30	. 0007	.10	. 21	. 0007	11	. 05	. 0007
4	10	. 26	. 0012	03	.17	.0010	21	. 01	.0010
5	83	47	. 0029	57	25	. 0031	29	06	.0010
6	-1.29	98	. 0051	91	63	.0051	57	23	. 0026
7	-1.42	-1.09	.0060	-1.02	72	. 0063	71	26	.0042
8	-1.58	-1.23	. 0075	-1.13	85	. 0075	71	25	. 0052
9	-1.64	-1.28	. 0087	-1.22	94	.0084	69	26	. 0060
10	-1.71	-1.34	.0104	-1.35	-1.04	. 0099	70	26	. 0095
11	-1.75	-1.38	. 0116	-1.37	-1.07	. 0113	71	26	. 0122
12	-1.76	-1.39	. 0145	-1.51	-1.23	. 0140	69	27	.0195
13	-1.80	-1.47	. 0169	-1.59	-1.31	. 0166	70	26	. 0257
14	-1.83	-1.49	. 0207	-1.39	-1.29	.0166	70	26	. 0320
15	-1.99	-1.61	. 0273	-1.67	-1.58	. 0234	70	27	. 0377
16	+2.22	-1.88	. 0348	-2.02	-1.96	. 0306	71	30	. 0462
17	-2.41	-2.07	.0413	-2.31	-2.26	. 0372	76	29	. 0527
18	-2.60	-2.28	. 0454	-2.53	-2.50	. 0415	73	30	.0602
19	-2.79	-2.51	. 0509	-2.87	-2.85	. 0473	73	31	. 0675
20	-2.90	-2.68	. 0555	-2.98	-3.04	. 0521	71	30	. 0735
21	-3.19	-3.00	. 0613	-3.27	-3.41	. 0579	68	26	. 0807
22	-3.69	-3.52	. 0668	-3.78	-4.01	. 0632	68	27	. 0865
23	-4.10	-4. 00	. 0731	-4.19	-4.45	. 0700	61	24	. 0937
24	-4.46	-4.39	. 0787	-4.79	-5.03	. 0755	59	24	. 0995
25	-4.86	-4.76	.0810	-4.99	-5.23	. 0777	53	19	.1055
26	-5.27	-5.25	. 0871	-5.46	-5.73	. 0832	49	11	.1115
27	-5.77	-5.72	. 0939	-6.19	-6.51	. 0905	41	11	.1185
28	-6.29	-6. 26	. 1011	-7.18	-7.42	. 0977	33	17	.1240
29	-6.71	-6.60	.1047	-7.86	-8.21	.1020	40	21	. 1317
30	-7.40	-7.39	.1103	-8.90	-9.33	.1076			
31	-7.98	-7.97	.1158	-9.97	-10.56	.1129			
32	-8.96	-9.10	. 1236	-11.39	-12.31	.1204			

Specimen No. 274 t = . 2504 Specimen No. 275 t_o = .2515 Specimen No. 276 t_o = . 2517

		0		0			0		
Step	AHB	dH _B	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 15	. 03	. 0003	. 09	02	. 0003	01	. 08	. 0003
3	. 14	02	. 0005	.14	. 02	. 0003	. 02	.17	. 0003
4	. 04	12	. 0008	.12	06	. 0005	08	.10	. 0005
5	01	20	. 0010	. 04	10	. 0008	14	. 08	. 0005
6	08	29	. 0013	01	16	.0010	26	02	. 0010
7	36	76	. 0025	01	16	.0013	31	03	. 0013
8	55	94	. 0038	29	43	. 0025	-,61	27	. 0023
9	57	99	. 0050	49	58	. 0033	79	47	. 0033
10	60	-1.08	. 0065	67	56	. 0043	80	51	. 0043
11	61	-1.12	. 0095	-1.29	-1.06	. 0068	-1.21	72	. 0065
12	61	-1.12	.0123	89	-1.03	. 0091	-1.11	62	. 0088
13	74	-1.04	.0173	-1.31	-1.43	.0151	-1.51	-1.01	. 0159
14	72	-1.23	. 0230	-1.39	-1.56	. 0211	-1.73	-1.26	. 0224
15	72	-1.24	. 0293	-1.59	=1.76	. 0274	-2.07	-1.52	. 0284
16	71	-1.28	. 0353	-1.97	-2.16	.0342	-2.61	-2.02	. 0365
17	78	-1.33	.0406	-2.39	-2.37	. 0402	-2.91	-2.34	. 0438
18	84	-1.38	. 0468	-2.44	-2.64	. 0470	-3.21	-2.62	. 0486
19	84	-1.46	. 0526	-2,71	-2.86	. 0531	-3.61	-2.96	. 0574
20	94	-1.50	. 0581	-3.03	-3.16	. 0596	-3.86	-3.25	. 0647
21	96	-1.53	. 0636	-3.49	-3.56	. 0676	-4.39	-3.60	. 0722
22	96	-1.57	. 0704	-3.89	-3.79	. 0754	-4.73	-4.14	. 0798
23	-1.04	-1.63	. 0766	-4.21	-4.28	. 0815	-5.02	-4.41	. 0876
24	-1.14	-1.74	. 0839	-4.52	-4.54	. 0890	-5.35	-4.74	. 0954
25	-1.19	-1.74	. 0889	-4.84	-4.78	. 0946	-5.89	-5.00	. 1009
26	-1.28	-1.80	. 0936	-5.14	-5.12	.1014	-6.04	-5.32	. 1085
27	-1.27	-1.82	. 1032	-5.53	-5.49	. 1092	-6.43	-5.72	. 1160
28	-1.41	-2.12	. 1119	-6.07	-5.98	. 1167	-6.81	-6.0 4	. 1241
29	-1.96	-1.98	.1184		• =				
30	-1.58	-2.06	. 1239						
31	-1.63	-2.13	. 1295	i					

Specimen No. 277	Specimen No. 278	Specimen No. 279
t = .2488	t _o = . 2435	t _o = .2499

Step	dHA	dHB	dt	$\mathtt{dH}_{\mathbf{A}}$	dHB	dt	dH [▼]	dHB	dt
1	0	0	0	0	0	0	0	0	0
2	. 47	. 31	. 0005	. 47	. 29	. 0003	.35	. 29	. 0005
3	1.54	1.21	.0015	1.87	1.22	.0015	1.86	1.64	.0019
4	2.21	1.82	. 0020	2.37	1.82	.0022	3.02	2.32	.0024
5	3. 21	3.15	. 0037	3.64	3.09	.0040	5.03	3.87	.0034
6	3.64	3.92	. 0065	3.86	3.90	.0062	7.02	6.07	.0063
7	3.70	3.82	.0082	3.64	3.81	. 0085	7.80	7.06	.0083
8	3.90	3.93	.0187	4. 23	4.03	.0190	9.01	7.90	.0197
9	4.02	4.03	. 0202	4.34	4.12	. 0205	9.27	7.95	. 0209
10	4.08	4.05	. 0284	4.40	4.13	. 0280	10.24	8.44	. 0292
11	4.14	4.14	. 0323	4.44	4.16	.0327	10.88	8.75	. 0338
12	4.22	4. 23	. 0396	4.48	4. 21	. 0400	11.76	9.08	.0412
13	4. 27	4.31	.0468	4.52	4. 24	.0477	12.81	9.43	. 0492
14	4.31	4.34	. 0522	4.58	4. 25	. 0537	13.44	9.67	.0533

Specimen No. 280	Specimen No. 281	Specimen No. 282
t _o = . 2449	t _o = .2491	$t_o = .2505$

		<u> </u>		· · · · · · · · · · · · · · · · · · ·			<u> </u>			
Step	dH ^A	dH _B	dt	dH ^A	dH _B	dt	dH _A	dН _В	dt	
1	0	0	0	0	0	0	0	0	0	
2	. 27	. 33	. 0005	. 27	.19	. 0005	. 41	. 20	.0003	
3	1.73	1.67	.0017	1.30	. 89	.0017	2.03	1.58	.0023	
4	2.90	2.38	.0022	1.72	1.18	.0012	2.62	1.80	.0025	
5	4.26	3.37	. 0029	4.97	3.77	.0037	6.02	4.53	.0050	
6	6.01	5.48	.0054	7.47	5.77	. 0060	8.07	6.61	.0070	
7	6.82	6.88	. 0078	8.54	6.76	. 0067	8.58	7.28	.0080	
8	7.04	7.48	.0181	9.30	8.77	.0142	8.69	8.39	.0160	
9	7.13	7.47	.0196	9.39	8.77	. 0147	8.92	8.54	.0165	
10	7.30	7.58	. 0274	9.49	9.06	.0199	8.93	8.58	.0213	
11	7.34	7.74	.0323	9.59	9.24	. 0269	8.98	8.65	.0288	
12	7.41	7.74	. 0397	9.80	9.52	. 0359	9.34	8.81	. 0386	
13	7.44	7.69	.0470	9.90	9.65	.0436	9.61	8.98	.0468	
14	7.47	7.72	. 0526	10.01	9.76	.0503	9.96	9.17	. 0544	

0

Specimen No. 283 Specimen No. 284 Specimen No. 285

t = . 2484 t = . 2514 t = . 2507

Step	dH _A	dH _B	dt	dH _▲	dHB	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 40	.10	.0007	. 20	. 20	.0010	1.00	. 20	.0008
3	1.30	1.20	. 0022	1.70	1.50	.0030	.90	. 80	. 0010
4	1.60	1.10	. 0022	2.10	1.80	. 0030	1.90	1.70	. 0023
5	4.60	4.10	. 0050	5.80	4.50	. 0058	2.60	1.90	. 0028
6	8.90	6.60	. 0072	9.00	7.00	. 0078	4.70	3.70	.0042
7	11.60	8.20	.0080	11.30	8.30	. 0085	9.70	7.90	. 0088
8	13.70	13.20	. 0157	13.90	12.90	. 0163	12.60	12.00	.0130
9	13.90	13.40	.0161	14.00	13.20	. 0168	13.60	13.10	.0150
10	13.80	14.00	. 0206	14.40	13.20	. 0211	13.90	14.20	. 0228
11	14.00	14.30	. 0281	15.00	13.80	. 0287	14.40	14.70	. 0288
12	14.60	14.70	. 0375	15.50	14.10	. 0382	14.50	14.70	. 0361
13	14.50	14.90	. 0460	15.80	14.20	. 0460	14.80	15.10	. 0441
14	15.50	15.30	. 0534	16.10	14.30	. 0530	15.50	15.80	. 0511
15							15.60	15.80	. 0592

Specimen No. 286	Specimen No. 287	Specimen No. 288
t = . 2435	t _o = . 2492	t _o = .2487
	- 2 TV T	

Step	dH _A	dH _B	dt	qH ^V	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 59	. 50	. 0005	. 20	.30	.0007	.60	. 30	. 0007
2 3	1.10	. 90	.0010	. 20	. 30	. 0007	. 80	. 40	. 0010
4	2.90	1.60	. 0019	1.10	1.30	. 0020	1.90	2.00	. 0022
5	3.20	2.10	. 0024	2.00	1.90	. 0030	2.60	2.10	. 0027
6	4.90	3.50	. 0039	4.00	3.20	. 0045	4.80	3.70	. 0045
7	10.40	7.40	. 0080	9.00	7.10	. 0087	10.20	7.90	. 0087
8	14.00	12.00	.0124	13.90	12.00	.0120	14.90	12.90	. 0129
9	15.30	13.20	. 0146	16.90	14.10	. 0145	17.70	15.00	. 0152
10	15.90	14.20	. 0217	19.50	18.90	. 0214	19.60	18.60	. 0221
11	16.00	14.30	. 0270	20.20	19.70	. 0252	19.80	19.30	. 0274
12	16.10	14.10	. 0336	20.20	20.00	. 0332	20.00	19.40	. 0338
13	16.60	14.1C	. 0409	20.40	20.10	. 0401	20.60	19.40	. 0410
14	17.10	14.60	. 0475	20.90	20.30	. 0469	20.80	19.80	. 0473
15	17.00	14.30	. 0548	20.70	20.10	. 0543	20.70	19.30	. 0545

Specimen No. 289 t_o = . 2478 Specimen No. 290 t_o = . 2436 Specimen No. 291 t_o = .2506

	0				0		0			
Step	dHA	анв	dt	dH [▼]	анв	dt	A ^{Hb}	dHB	dt	
1	0	0	0	0	0	0	0	0	0	
2	. 80	.80	. 0005	.40	. 40	.0002	1.07	1.07	. 0005	
3	1.70	1.50	. 0015	2.60	.90	.0010	2. 25	2.02	. 0010	
4	3.20	2. '0	.0030	3.50	2.30	.0022	2.87	2.52	. 001	
5	5.30	4.40	. 0045	5.60	3.90	.0039	4.16	3. 83	. 002	
6	6.90	4.60	. 0052	9.50	4.60	. 0046	6.90	6.79	. 006	
7	11.80	8.70	. 0084	10.50	8.10	. 0078	7.18	6.96	. 006	
8	19.10	16.90	. 0176	20.00	17.80	. 0171	9.37	8.66	. 007	
9	20.80	19.40	. 0292	23.00	21.60	. 0292	11.03	10.25	. 008	
10	21.00	19.80	. 0357	23.30	21.70	. 0356	13.60	12.85	. 011	
11	21.20	19.90	. 0421	23.60	22.00	. 0424	15.35	14.26	. 012	
12	22.00	20.00	. 0523	24.30	22.70	. 0424	17.32	16.27	. 013	
13	21.10	19.90	. 0585	24, 50	22.70	. 0626	19.56	18.58	. 015	
14				1			21.97	21.08	. 018	
15							24.35	23.38	. 020	
16	1						26.37	25.58	. 022	
17				i			27.66	26.71	. 023	
18							28.47	27.08	. 024	
19	1			12			29.24	27.77	. 025	
20							29.82	29.00	. 026	
21							30.04	29.14	. 029	
22							30.93	30.11	. 034	
23							31.37	30.41	. 040	
24							31.45	30.57	. 044	
25					•		31.65	30.79	. 0524	

Specimen No. 292 t = .2475 Specimen No. 293 t_o = .2383 Specimen No. 294 t_o = . 2507

1.

Step	dHA	dHB	dt	dHA	dH _B	dt	$\mathbf{A}^{\mathbf{H}\mathbf{b}}$	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	1.15	1.11	. 0005	02	0	. 0001	. 20	.18	. 0002
3	2.21	2.08	. 0013	02	0	. 0002	. 33	. 23	.0002
4	2.86	2.71	. 0018	08	. 02	. 0008	.71	. 62	.0010
5	4.20	4.15	. 0036	. 17	. 08	. 0020	. 84	. 71	.0020
5	7.04	7.09	. 0064	. 49	. 38	. 0092	1.37	1.20	. 0097
7	7. 26	7.29	. 0064	. 58	. 45	. 01 02	1.51	1.32	. 0110
8	9.13	8.98	. 0077	.70	. 50	. 0133	1.68	1.50	. 0136
8	10.67	10.59	. 0090	. 88	. 59	. 0168	1.89	1.69	. 0174
10	12.97	12.81	.0113	1.12	. 79	. 0222	2.24	2.03	. 0230
11	14.39	14.10	.0124	1.30	. 89	. 0245	2.56	2. 26	. 0256
12	16.00	15.78	. 0134	1.68	1.12	. 0334	3.01	2.72	. 0338
13	18.18	18.01	. 0157	1.79	1.19	. 0360	3.19	2.90	. 0373
14	20.40	20.24	. 0180	1.98	1.30	. 0406	3.36	3.09	. 0414
15	22.42	22.35	. 0193	2.20	1.48	. 0457	3.61	3.36	. 0473
16	24.79	24.93	. 0216	2.56	1.69	. 0533	3.90	3.72	. 0550
17	26.20	26.14	. 0229	2.81	1.97	. 0564	4.17	3.98	. 0583
18	27.07	26.92	. 0237	2.88	1.91	. 0584	4.20	4.01	. 060
19	27.94	27.63	. 0245	2.97	1.95	. 0600	4. 27	4.10	. 0616
20	28.66	28.35	. 0258	3.00	1.98	.0610	4.30	4.13	. 062
21	29.27	29.03	. 0281	3.08	2.01	. 0625	4. 43	4. 21	. 064
22	30.60	30. 21	. 0325	3.20	2.12	. 0648	4.48	4.33	. 066
23	31.38	30.73	. 0384	3.50	2.33	. 0714	4.67	4.60	. 072
24	31.56	30.86	. 0423	3.82	2.59	. 0765	5.01	5.01	. 0770
25	31.69	31.06	. 0492	4.02	2.69	. 0791	5.13	5.15	. 0793
26				4.08	2.71	. 0791	5.22	5.22	. 0793
27				4.09	2.74	. 0809	5. 23	5.23	. 081
28				4.20	2.97	. 0832	5. 23	5.31	. 083
29				4.38	2.99	. 0865	5.40	5.47	. 087
30				4.63	3.15	. 0936	5.57	5.74	. 0913

Specimen No. 297 Specimen No. 295 Specimen No. 296 to: .2465 $t_0 = .2467$ $t_0 = .2423$ dHA dHB dHA dHB Step dHA dt dH_B dt dt 0 0 0 0 0 0 0 0 0 . 0002 . 26 2. . 18 . 25 . 17 . 27 .0002 . 22 . 0002 3 .71 . 92 . 0007 . 70 . 87 .0007 . 76 . 83 . 0007 4 1.09 1.40 .0012 1.02 1.26 .0014 1.20 1.35 .0012 5 1.77 2.08 .0019 1.62 2.03 . 0020 2.11 2.45 .0020 6 1.75 2.03 . 0027 1.52 2.10 . 0027 2.96 3.28 . 0027 7 1.68 1.88 . 0034 1.38 2.03 . 0034 3.45 3.78 . 0037 1.52 1.65 . 0040 1.28 1.78 .0039 3.47 3.84 . 0039 9 1.07 .0071 .0070 1.05 . 0068 .70 1.20 2.91 3.41 . 88 10 . 85 . 0097 . 83 1.15 .0098 2.35 3.04 .0103 11 . 34 . 24 . 32 . 70 .0121 .0123 1.58 2.41 .0128 -. 18 12 . 0145 -. 10 -. 13 . 35 . 0150 1.00 1.95 . 0155 -.50 . 54 13 -. 53 -. 76 .0167 -. 05 . 0167 1.57 . 0177 14 -. 94 -1.18.0174 -. 83 -. 36 -. 07 .0194 1.07 . 0207 -1.4015 -1.45-1.76. 0221 -.88 . 0222 -.63 . 62 . 0229 16 -1.67 -2.04 .0250 -1.62 -. 98 -1.01. 0256 . 34 . 0263 17 -2.12-2.61 . 0272 -2.11 -1.48. 0283 -1.49-. 16 . 0288 18 -2.54-3.24 . 0305 -2.79 -2.05-.64 . 0316 -1.86 . 0320 19 -2.81 -3.61. 0335 -2.91-2. 16 . 0347 -2.24 -1.07. 0352 20 -1.60 -2.67. 0364 -1.29-. 52 . 0374 -1.56 -. 75 . 0382 21 -2.24 -3.50. 0390 -1.99-1.20 . 0399 -2.19-1.42. 0406 22 -2.90-4. 43 . 0417 -2.91-2.01 . 0428 -2.55 -2.08 . 0433 23 -2.72 -4.58. 0448 -2.99 . 0460 -2.17 . 0455 -2.38 -2. 26 24

-4.02

. 0480

-2.94

. 0490

-2.56

-2.92

. 0495

-2.99

-5.46

4

۹,

-

0

Specimen No. 298 t_o = . 2417 Specimen No. 299 t_o = .2412 Specimen No. 300 t_o = .2460

		0			0			0	
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 14	. 25	. 0002	.19	.19	. 0002	. 16	. 21	. 0002
3	. 59	.80	. 0067	. 69	. 92	. 0007	. 61	. 79	. 0007
4	1.08	1.38	. 0012	1.04	1.22	. 0010	. 94	1.25	.0010
5	2.00	2.58	. 0019	1.89	2.17	. 0017	1.61	1.82	. 0017
6	2.77	3.58	. 0027	2.51	2.93	. 0021	1.98	2.06	. 0022
7	3.20	4.30	.0034	2.94	3.52	. 0026	2.40	3.05	.0024
8	3.11	4. 36	.0040	4.17	5.12	. 0038	3.37	4.61	. 0039
9	2.79	4.17	. 0070	4.65	5.82	. 0045	4. 08	5.57	. 0046
10	3.06	4.35	. 0099	4.50	5.81	. 0053	3.89	5.16	. 0051
11	2.78	3.87	.0128	4.42	5.72	. 0055	3.78	5.11	. 0056
12	2.53	3.48	. 0155	4.39	5.65	. 0069	3.85	5.13	. 0068
13	2.39	3. 26	. 0176	4. 23	5.53	. 0076	3.67	5.01	. 0077
14	2.38	3.14	. 0201	3.68	5.00	. 0100	3. 26	4.62	. 0097
15	2.10	2.74	. 0227	3.44	4.18	. 0129	3.15	4.52	. 01 23
16	2.20	2.77	. 0254	3.30	4.14	. 0136	2.95	4.30	. 0131
17	1.80	2. 24	. 0280	2.79	3.92	. 0155	2.66	3.95	. 0155
18	1.43	1.70	. 0314	2. 27	3. 25	. 0186	2. 20	3.33	. 0179
19	1.28	1.67	. 0348	1.99	2.75	. 0220	2. 00	2.99	.0210
20	3.11	3.70	. 0380	1.35	2.02	. 0248	1.45	2. 28	. 0240
21	2.39	3.06	. 0404	. 92	1.43	. 0277	1.08	1.81	. 0269
22	1.60	2.34	. 0430	2.19	2.56	. 0306	2. 21	2.81	. 0298
23	1.48	2.43	. 0462	1.39	1.63	. 0334	1.53	2.01	. 0324
24	. 40	1.55	. 0491	. 81	. 93	. 0358	1.17	1.21	. 0353
25				. 32	. 23	. 0389	. 85	. 65	. 0387
26				08	38	. 0418	. 27	07	. 0414
27				28	74	. 0447	. 17	37	. 0443
28				66	-1.27	. 0475	16	72	. 0474

	t	imen No. o = . 2278	301 3	t	men No. = . 2437	302	t	men No. = . 2409	303
Step	dHA	dHB	dt	dH [▼]	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.14	. 24	. 0002	. 09	. 13	. 0002	. 03	.10	. 0001
3	. 49	. 83	. 0007	. 62	. 64	. 0007	.30	. 50	. 0006
4	1.08	1.32	. 0011	. 96	1.01	.0011	. 56	. 85	.0010
5	1.92	2.27	. 0018	1.63	1.84	.0017	1.42	1.75	.0017
6	2.65	3.09	. 0023	2. 22	2.55	. 0022	2. 07	2.57	.0024
7	3.21	3.76	. 0026	2.73	3.11	. 0025	2.71	3.30	. 0029
8	5.23	6.23	. 0039	4.33	5.11	. 0039	2.94	3.60	. 0031
9	6.24	7. 21	. 0046	5.12	5. 9 3	. 0046	3.50	4.30	. 0034
10	6.72	7.72	. 0052	6.65	6.61	. 0051	5.43	6.72	. 0051
11	7.27	8.32	. 0055	6.20	7.03	. 0056	6.17	7.72	. 0058
12	8.35	9.42	.0070	7.21	8.03	. 0068	7.67	9.50	. 0070
13	8.37	9.47	. 0077	7.22	8.09	. 0075	8. 20	10.20	. 0079
14	7.65	9.01	. 01 02	6.98	7.79	.0100	8. 45	10.71	.0094
15	7.12	7.39	. 0130	6.92	7.66	. 01 27	8.55	10.85	.0101
16	6.80	8.52	. 0141	6.61	7.50	.0134	8.04	10.50	. 0125
17	6.17	8.11	. 0164	6.33	7.24	. 0158	7.41	9.66	. 0156
18	5.21	7.49	.0191	5.94	6.81	.0185	6.94	9.70	. 0183
19	4.79	6.92	. 0225	5.69	6.53	. 0217	6.54	9.24	. 0212
20	3.89	6. 13	. 0254	5.05	5.94	. 0248	5.96	8.73	. 0250
21	3.10	5.43	. 0282	4.65	5.43	. 0277	5.76	8.54	. 0282
22	5.33	7.51	. 0316	5.95	6.78	. 0304	6. 93	9.78	. 0313
23	4. 46	6.54	. 0348	5. 25	6.14	. 0329	6.05	8.87	. 0344
24	3.48	5.5C	. 0377	4.65	5.46	. 0353	5.73	8.51	. 0368
25	3.11	4.95	. 0416	4. 19	5.02	. 0387	5.93	7.63	. 0392
26	2.65	4. 27	. 0448	5. 26	4.44	. 0411	4.34	6.91	. 0426
27	2.69	4.05	. 0479	3. 26	4.19	. 0441	3.95	6.45	. 0448
28	2.41	3.56	. 0511	2.83	3.74	. 0472	3.74	6.01	. 0479
29							4.54	6.82	. 0479

Specimen No. 304 t_o = .2432

Specimen No. 305 $t_0 = .2452$

Specimen No. 306 t_o = .2413

)			0			0		
Step	dH _A	dH _B	dt	dH _A	dH _B	dt	dHA	dH _B	dt	
1	0	0	0	0	0	0	0	• 0	0	
2	. 01	. 11	. 0002	01	. 09	. 0002	03	11	.0001	
3	. 34	. 47	. 0007	.30	. 43	. 0007	. 21	. 22	. 0006	
4	. 64	. 80	.0010	.60	. 68	.0010	. 53	. 46	. 0009	
5	1.79	1.75	.0017	1.11	1.24	. 0017	1.27	1.30	. 0017	
6	2.10	2.58	.0024	1.78	2.13	. 0024	1.85	1.89	. 0022	
7	2.84	3.43	. 0029	2.58	2.90	. 0029	2.53	2.59	. 0027	
8	3.06	3.70	.0032	3.00	3.15	. 0023	2.81	2.94	.0030	
9	3.56	4.29	. 0037	3.14	3.88	.0034	3.29	3.50	. 0034	
10	5.09	6.01	. 0049	5.11	6.06	. 0051	5.12	5.85	. 0049	
11	5.82	6.84	. 0059	6.11	7.24	. 0059	6.14	7.05	.0058	
12	7.07	8.03	. 0069	7.66	9.40	. 0071	7.71	8.77	.0070	
13	7.53	8.50	. 0076	8.51	10.36	.0078	8.73	9.84	. 0077	
14	7.78	8.81	. 0093	9.91	12.05	.0090	10.35	11.62	.0091	
15	7.75	8.83	.0103	10.69	12.97	.0098	11.35	12.79	. 0101	
16	7.07	8.18	.0130	11.83	14.37	.0122	12.33	14.12	. 0128	
17	6.25	7.57	. 0157	11.83	14.23	.0152	12.31	14.43	. 0156	
18	5.86	6.98	.0186	11.63	13.89	.0183	12.12	14.38	. 0185	
19	5.53	6.53	. 0211	11.38	13.39	. 0210	11.87	14.20	. 0207	
20	5.22	6.00	. 0252	10.99	12.67	. 0244	11.43	14.07	. 0245	
21	4.84	5.45	. 0287	10.75	12.26	. 0276	11.10	13.88	. 0272	
22	5.54	6.53	. 0321	11.61	12.90	. 0308	11.56	14.46	. 0301	
23	4.91	5.07	. 0343	11.05	12.13	. 0332	10.76	13.80	. 0332	
24	4.47	4.47	. 0375	10.72	11.64	. 0357	10.28	10.39	. 0361	
25	3.96	3.63	. 0397	9.97	10.76	. 0381	9.59	12.73	. 0387	
26	3.65	3.07	. 0426	9.63	10.16	. 0416	9. 26	12.33	. 0421	
27	3.42	2.61	.0451	9.41	9.77	. 0440	8. 98	12.22	. 0445	
28	3.54	2. 45	. 0485	9.32	9.56	. 0469	8.69	12.21	. 0479	
29	3.97	2.82	. 0485	9.93	10.15	. 0469	9.56	12.73	. 0479	

Specimen No. 307 Specimen No. 308 Specimen No. 309

t = .2448 t = .2284 t = .2372

	0				0					
Step	dH _A	dH _B	dt	dH _A	^{dH} B	dt	dHA	dH _B	dt	
1	0	0	0	0	0	0	0	0	0	
2	. 14	. 09	. 0002	. 23	. 11	.0002	. 11	. 22	.0002	
3	. 40	. 39	. 0005	. 49	. 35	. 0007	.35	. 53	. 0007	
4	. 61	. 57	. 0007	. 76	. 60	. 0009	. 69	. 27	. 0009	
5	1.22	1.19	. 0015	1.54	1.43	.0018	1.14	1.44	.0017	
6	1.76	1.87	.0020	2.32	2.20	.0023	1.77	2.19	.0024	
7	2.13	2.40	.0024	2.90	2.91	. 0029	2. 21	2.75	.0028	
8	2.40	2.72	. 0027	3.21	3.25	.0030	2.55	3.12	.0031	
9	2.91	3.24	.0030	3.82	3.95	. 0035	3.04	3.69	. 0036	
10	4.59	5.32	. 0046	5.83	6.35	.0050	4.69	5.79	.0050	
11	5.88	6.79	. 0056	7.39	8.06	.0062	6.28	7.55	. 0059	
12	6.75	7.84	0068	8.35	9. 28	.0071	7.76	9.13	. 0071	
13	7.17	8.35	.0081	9.18	10.15	.0078	8.90	10.55	.0081	
14	7.39	8.64	.0108	9.96	10.88	.0110	12.14	14.40	.0109	
15	7.20	8.23	.0132	9.64	11.16	.0133	15.52	15.99	. 01 28	
16	6.92	7.93	. 0162	9.37	10.75	.0164	14.80	17.28	. 0159	
17	6.40	7.23	. 0191	8.82	10.01	.0194	14.23	16.71	.0190	
18	6.17	6.68	. 0220	8.22	9.33	. 0226	13.67	16.15	. 0223	
19	5.58	6.41	. 0250	7.98	9.04	. 0258	13.36	15.76	. 0251	
20	6.70	7.52	. 0274	9.71	10.83	. 0276	14.46	16.89	. 0273	
21	6.02	6.74	. 0299	9.05	10.25	. 0306	13.89	16.19	. 0299	
22	5.33	5.89	. 0328	8.31	9.44	. 0329	13.23	15.29	. 0325	
23	4.99	5.48	. 0360	7.84	9.00	. 0363	12.82	14.71	.0358	
24	4.49	4.82	. 0387	7.06	8. 28	. 0393	12.13	13.92	. 0387	
25	4.11	4.30	. 0411	6.50	7.77	.0418	11.73	13.37	.0410	
26	3.88	3.93	. 0411	6.10	7.45	. 0445	11.63	12.98	. 0436	

4.

Specimen No. 310 t_o = . 2408 Specimen No. 311 t_o = .2434 Specimen No. 312 t_o = .2337

.7

		0		0					
Step	dH _A	dH _B	dt	dHA	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 10	. 09	. 0002	32	30	. 0002	20	06	. 0002
3	. 36	. 31	.0007	63	40	. 0005	99	37	. 0007
4	. 69	. 51	.0010	96	59	. 0009	-1.58	61	.0014
5	1.42	1.29	.0018	-1.53	-1.00	. 0014	-2.49	-1.03	. 0028
6	2.06	2.07	.0024	-1.92	-1.18	.0021	-2.78	-1.11	.0038
7	2.51	2.61	.0029	-2.45	-1.50	. 0030	-3.12	-1.41	. 0049
8	2.91	2.99	.0031	-2.98	-1.73	.0040	-3.48	-1.61	.0061
9	3.40	3.52	. 0036	-3.28	-1.95	.0049	-3.05	-1.14	. 0066
10	5.64	5.78	. 0053	-3.49	-2.15	. 0063	-3.51	-1.69	. 0092
11	7.38	7.57	. 0065	-3.97	-2.84	. 0098	-3.99	-2.23	.0122
12	9.13	9.57	. 0077	-3.18	-1.99	. 0098	-4.31	-2.53	. 0155
13	10.17	11.01	. 0086	-3.62	-2.65	.0129	-4.69	-2.92	.0179
14	13.26	14.71	.0015	-4.13	-3.43	. 0159	-5.26	-3.46	. 0207
15	14.43	15.94	. 0139	-4.63	-4.03	.0194	-5.67	-3.97	.0240
16	14.96	17.07	.0173	-5.01	-4.51	. 0218	-6.13	-4.28	. 0266
17	14.37	16.64	. 0204	-5.54	-5.21	. 0248	-6.45	-4.59	. 0301
18	13.84	16.23	. 0235	-5.76	-5.59	. 0281	-6.63	-4.74	. 0329
19	13.30	15.84	. 0264	-6.15	-6.10	. 0302	-5.95	-4.18	. 0329
20	14.04	16.45	. 0288	-6.45	-6.60	. 0335	-6.61	-4.47	. 0353
21	13.22	15.72	. 0317	-6.57	-6.91	. 0368	-7.16	-4.91	. 0383
22	12.46	14.94	. 0343	-5.78	-6.10	. 0368	-7.54	-5.25	.0414
23	12.06	14.49	. 0372	-6.45	-6.91	. 0396	-6.84	-4.51	.0414
24	11.63	13.86	. 0400	-7.01	-7.60	. 0422	-5.37	-2.89	. 0463
25	11.29	13.48	. 0423	-7.41	-8.10	. 0454	-6.65	-4.10	. 0501
26	11.14	13.15	. 0451	-6.55	-7.33	. 0454	-7.65	-5.05	. 0533
27				-5.01	-5.67	. 0508	-8.21	-5.56	. 0559
28				-6.28	-6.98	. 0543	-7.66	-4.97	. 0580
29				-7.24	-8.01	. 0571	-8.86	-6.0 7	. 0616
30				-7.88	-8.98	. 0595	-9.40	-6.58	. 0639
31				-7. 29	-8.17	. 0621	-9.99	-7.41	. 9670
32				-8.44	-9.30	. 0653	-9. 21	-6. 28	. 0693
33				-8.79	-9.74	. 0679	-10.32	-7. 27	. 0717
34				-9.61	-10.51	. 0712	-10.83	-7.81	. 0745
35				-8.45	-9.37	. 0733	-11.63	-8.52	. 0771
36				-9.57	-10.47	. 0759	-11.51	-8. 27	. 0801
37				-9.90	-10.86	. 0789			
38				-10.65	-11.50	. 0817			
39				-10.54	-11.29	. 0846			

Specimen No. 314 Specimen No. 315 Specimen No. 313 $t_0 = .2562$ $t_0 = .2563$ $t_0 = .2564$

Step	dH _A	dH _B	dt	dHA	dH _B	dt	dHA	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	.12	. 11	. 0003	.10	. 18	. 0003	. 17	.14	. 0003
3	. 34	. 39	. 0005	. 39	. 46	. 0005	. 31	. 32	. 0005
4	. 62	. 60	. 0008	. 61	. 62	. 0008	. 56	. 69	. 0008
5	. 92	. 90	.0013	. 89	. 87	.0013	. 88	. 87	. 0013
6	1.24	1.22	.0018	1.30	1.27	.0018	1.53	1.51	. 0023
7	1.60	1.52	. 0023	1.60	1.54	.0023	1.99	2.01	.0031
8	1.82	1.70	. 0031	1.86	1.76	.0031	2.42	2.50	.0041
9	1.92	1.80	. 0043	1.95	1.82	. 0049	2.54	2.61	. 0051
10	1.94	1.82	. 0056	1.96	1.84	. 0061	2.54	2.62	.0062
11	2.08	1.88	. 0072	2.00	1.85	.0074	2, 57	2.67	. 0095
12	2.04	1.83	. 0089	1.98	1.83	. 0095	2.58	2.69	.0118
13	2.05	1.86	. 01 25	1.98	1.83	. 9118	2.59	2.68	. 0169
14	2.12	1.89	.0171	1.99	1.83	0167	2.67	2.71	. 0223
15	2.12	1.90	. 0225	1.99	1.84	. 0220	2.72	2.75	. 0269
16	2.14	1.92	. 0276	1.99	1.85	. 0274	2.74	2.74	. 0321
17	2.18	1.93	. 0322	1.99	1.86	. 0323	2.78	2.77	. 0369
18	2.20	1.99	. 0378	2.06	1.87	. 0379	2.88	2.80	. 0421
19	2. 21	2.00	. 0414	2.04	1.87	. 0423	2.87	2.82	. 0477

		imen No c = . 256		•	imen No t _o = . 255		Specimen No. 318 t _o = . 2561		
Step	dH _A	dH _B	dt	A ^{Hb}	dH _B	dt	dH _A	^{dH} B	dt
1	0	0	0	0	0	0	0	0	0
2	. 16	. 17	. 0003	. 13	. 16	. 0003	. 16	. 11	. 0003
2	. 33	. 32	. 0005	. 30	. 32	. 0005	. 35	. 37	. 0005
4	. 61	.60	. 0008	.61	. 65	. 0008	. 63	.64	.0010
5	. 84	. 83	. 0013	.94	. 95	. 0013	. 93	. 92	.0013
6	1.50	1.53	. 0023	1.56	1.57	. 0023	1.63	1.68	. 0023
7	1.98	2.20	. 0031	2.19	2.15	. 0031	2.15	2.18	.0031
8 9	2.42	2.54	. 0041	2.89	2.88	. 0041	2.83	2.87	.0041
9	2.52	2.71	. 0054	3.31	3.40	.0054	3. 27	3.37	.0054
10	2.53	2.72	.0062	3.44	3.54	.0061	3.35	3.58	.0064
11	2.59	2.72	. 0095	3.57	3.71	. 0095	3.47	3.68	. 0095
12	2.59	2.72	.0115	3.53	3.67	.0118	3.44	3.64	. 0115
13	2.60	2.72	.0167	3.52	3.63	.0171	3.44	3.62	. 0166
14	2.63	2.73	.0220	3.56	3.63	. 0225	3.44	3.66	. 0215
15	2.69	2.74	. 0264	3.53	3.63	. 0274	3.34	3.68	. 0264
	- 1-					0005	0 00	- 1-	

3.59

3.63

3.64

3.55

3.51

3.51

3.59

3.58

.0325

. 0376

.0420

. 0473

3.38

3.45

3.53

3.48

3.67

3.69

3.76

3.69

. 0315

.0361

.0412

.0469

. 0315

. 0364

.0410

. 0466

2.78

2.80

2.85

2.84

2.69

2.72

2.82

2.81

16

17

18

19

•

		imen No. o = .2487	- ·	Specimen No. 320 t _o = .2487			Specimen No. 321 t _{o.} = .2487		
Step	dHA	dH _B	dt	dHA	dH _B	dt	dH _A	dH _B	dt
1	0	0	0	0	0	0	0	0	0
2	. 25	. 20	. 0002	. 25	. 27	. 0002	. 22	. 17	. 0002
3	. 47	. 42	. 0007	. 49	. 56	. 0007	. 42	. 32	. 0007
4	1.36	1.25	. 0017	1.29	1.35	. 0017	. 75	. 70	.0010
5	1.85	1.62	. 0027	1.78	1.81	. 0027	1.03	. 97	. 0015
6	1.84	1.62	. 0037	1.79	1.88	. 0037	1.49	1.38	. 0020
7	1.80	1.59	. 0050	1.79	1.87	. 0052	2.24	2.10	. 0037
8	1.78	1.59	. 0065	1.80	1.90	. 0065	2.24	2.03	. 0045
9	1.77	1.58	. 0077	1.80	1.89	. 0075	2. 23	2.03	. 0050
10	1.77	1.53	. 0095	1.80	1.89	. 0092	2. 24	2.06	. 0099
11	1.78	1.53	. 0109	1.87	1.97	.0112	2. 24	2.01	. 0154
12	1.83	1.53	. 0122	1.89	1.98	. 0124	2. 25	2.01	. 0203
13	1.79	1.51	. 0174	1.99	2.00	. 0177	2.30	1.95	. 0276
14	1.76	1.44	. 0221	2.14	2.07	. 0226	2.33	1.94	. 0313
15	1.77	1.43	. 0284	2.32	2. 19	. 0291	2.34	1.91	. 0368
16	1.77	1.44	. 0358	2.57	2. 28	. 0361	2.42	1.93	. 0420
17	1.78	1.47	. 0413	2.75	2.38	. 0413	2. 43	1.92	. 0473
18	1.78	1.45	. 0465	2.91	2.48	. 0465			
19	1.85	1.45	. 0500	3.08	2.59	. 0502			

		imen No t = . 248			imen No t _o = . 248		Specimen No. 324 t _o = .2488		
Step	dHA	dH _B	dt	dHA	dH _B	dt	dHA	gH _B	dt
10	0	0	0	0	0	0	0	0	0
2	. 27	. 17	. 0002	. 26	. 30	. 0002	. 26	. 24	.0002
3	. 45	. 31	. 0005	. 44	. 48	. 0005	. 41	. 44	. 0005
0.400	.72	. 58	.0010	. 76	. 79	.0010	. 75	. 76	. 0010
5	1.01	. 89	. 0014	1.07	1.10	. 0015	1.01	1.04	. 0014
6	1.50	1.28	. 0020	1.63	1.66	. 9020	1.58	1.62	. 0020
7	2.46	2.16	. 0037	2.94	2.90	. 0037	2.88	2.76	. 0037
8	2.50	2.17	. 0047	3.12	3.07	. 0047	3.09	2.94	. 0045
9	2.51	2.10	. 0060	3. 23	3.08	. 0052	3.14	2.95	. 0057
10	2.58	2.26	. 0107	3.15	3.07	. 0102	3.12	2.95	. 0107
11	2.60	2.30	. 0167	3.14	3.07	. 0157	3.08	2.93	. 0157
12	2.65	2.29	. 0214	3.16	3.07	. 0204	3.09	2.86	. 0206
13	2.71	2. 27	. 0271	3. 22	3.06	. 0264	3.11	2.83	. 0261
14	2.79	2.34	. 0328	3. 25	3.05	. 0316	3.09	2.82	. 0316
15	2.38	2.86	. 0381	3.28	3.07	. 0366	3.09	2.78	. 0371
16	2.94	2.40	. 0435	3.34	3.08	. 0418	3.11	2.77	. 0423
17	3.00	2.40	. 0488	3.42	3.08	. 0470	3.17	2.78	. 0473

UNCLASSIFIED

UNCLASSIFIED