2017 级高等代数-2 测验-04

- 1. (2016) 设 V 为实线性空间且 $\epsilon_1, \epsilon_2, \epsilon_3$ 是 V 的一个基. 设 \mathbb{A} 为 V 上的线性变换 且满足 $\mathbb{A}(\epsilon_1) = -\epsilon_2 2\epsilon_3, \mathbb{A}(\epsilon_2) = \epsilon_1 + 2\epsilon_2 + 3\epsilon_3, \mathbb{A}(\epsilon_3)(\epsilon_3) = -\epsilon_3.$
 - (1) (10 分) 求线性变换 ▲ 的特征子空间;
 - $(2) \ (10\ \pmb{\beta})\ \pmb{\lozenge}\ B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).\ \pmb{\mathsf{id}}$ 问是否存在 V 的一个基 η_1,η_2,η_3 使得 $\mathbb A$ 在

基 η_1, η_2, η_3 下的矩阵为 B, 说明理由:

- (3) (5 分) 求线性变换 A 的包含 ϵ_1 的最小的不变子空间:
- (4) (5 分) 是否存在 V 的一个基使得线性变换 \mathbb{A} 在此基下的矩阵为对称矩阵,说明理由.(假设已知任意的实对称方阵在 \mathbb{R} 上可对角化.)

提示: 考察特征多项式、特征子空间、相似、不变子空间、可对角化等基本概念.

解答. (1) 令矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -2 & 3 & -1 \end{pmatrix}$$
. 由题意可知 $\mathbb{A}(\epsilon_1, \epsilon_2, \epsilon_3) = (\epsilon_1, \epsilon_2, \epsilon_3)A$.

利用矩阵 A 计算线性变换 A 的特征多项式可得

$$f_{\mathbb{A}}(\lambda) = |\lambda E_3 - A| = (\lambda - 1)^2 (\lambda + 1).$$

令
$$\lambda=1$$
,求解线性方程组 $(E_3-A)X=0$ 可得 $\alpha_1=\begin{pmatrix}2\\2\\1\end{pmatrix}$ 为矩阵 A 的

特征值 1 的特征子空间的一个基;

令
$$\lambda = -1$$
, 求解线性方程组 $(-E_3 - A)X = 0$ 可得 $\alpha_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 为矩

阵 A 的特征值 -1 的特征子空间的一个基.

由此可知线性变换 \mathbb{A} 的特征值 1 的特征子空间 $V_1 = L(2\epsilon_1 + 2\epsilon_2 + \epsilon_3)$, 特征值 -1 的特征子空间 $V_{-1} = L(\epsilon_3)$.

(2) 存在.

由
$$(1)$$
 知矩阵 A 的 $Jordan$ 标准型为 $J_A=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. 易知存在

基 η_1,η_2,η_3 使得 $\mathbb A$ 在此基下的矩阵为 $\mathbb B$ 当且仅当 $\mathbb A$ 与 $\mathbb B$ 相似.

计算 B 的初等因子可得 $(\lambda-1)^2$, $(\lambda+1)$ (或求矩阵 B 的特征子空间), 从 而矩阵 B 的 Jordan 标准型也等于 J_A . 特别地, A 与 B 相似.

- (3) 设 W 是 A 的包含 ε₁ 的最小的不变子空间.
 由不变子空间的定义可得 A(ε₁) = -ε₂ 2ε₃ ∈ W.
 进一步地, A²(ε₁) = -ε₁ 2ε₂ ε₃ ∈ W 且 ε₁ + A²(ε₁) = -2ε₂ ε₃ ∈ W.
 由 -ε₂ 2ε₃ ∈ W 及 2ε₂ ε₃ ∈ W 可得 ε₂, ε₃ ∈ W, 从而 W = V.
- (4) 不存在.

假设存在基使得 A 在此基下的矩阵为对称矩阵 C,则 A 在实数域 \mathbb{R} 上相似于对称矩阵 C. 由实对称矩阵一定可对角化,由此可知 A 在实数域 \mathbb{R} 上相似于对角矩阵. 但由 (1) 知矩阵 A 不可对角化,矛盾. 因此不存在 V 的基使得 \mathbb{A} 在此基下的矩阵为对称矩阵.

- 2. (2016) 设实矩阵 A 的所有初等因子为 $(\lambda + 1), (\lambda 1)^2$.
 - (1) (5 分) 求矩阵 A 的行列式 |A|;
 - (2) (5 分) 问是否存在实矩阵 B 使得 $A = B^3$, 说明理由.

提示:考察不变因子、初等因子与特征多项式及 Jordan 标准形的关系.

- **解答.** (1) 矩阵的所有的初等因子的乘积等于矩阵的特征多项式, 由此可得 $f_A(\lambda) = (\lambda+1)(\lambda-1)^2$. 另一方面, 矩阵的行列式等于所有的特征值的乘积. 因此, $|A|=-1\times 1\times 1=-1$.
- (2) 存在.

由
$$(1)$$
 知 A 相似于 $J=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. 因此存在矩阵 B 使得 $A=B^3$ 当

且仅当存在矩阵 C 使得 $\hat{J} = C^3$.

不妨假设
$$C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & x & 1 \end{pmatrix}$$
, 则 $C^3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3x & 1 \end{pmatrix}$. 特别地, $C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{3} & 1 \end{pmatrix}$ 满足 $C^3 = J$ 成立.

3.~(2013) 设 $\varphi:M_n(\mathbb{F})\longrightarrow M_n(\mathbb{F})$ 为线性变换, 其中对任意的 $X\in M_n(\mathbb{F}), \, \varphi(X)=X^T-2018X.$ 求线性变换 φ 的特征多项式并判断 φ 是否可对角化, 请说明理由.

提示: 考察可对角化线性变换的判别: 一般常规方法是先求特征多项式再求特征 值和特征子空间, 但有时可能先求特征子空间在求特征多项式. 解答. 注意到对任意的对称矩阵 $A^T = A \in M_n(\mathbb{F})$, $\varphi(A) = A^T - 2018A = -2017A$. 特别地, 任意非零的对称矩阵是线性变换 φ 的特征值为 -2017 的特征向量; 另一方面, 对任意的反对称矩阵 $B^T = -B$, $\varphi(B) = -2019B$. 即任意的非零的反对称矩阵为 φ 的特征值为 -2019 的特征向量. 分别记 V_{-2017} 及 V_{-2019} 表示 φ 的特征值为 -2017 和 -2019 的特征子空间,则 $V_{-2017} + V_{-2019} \subset M_n(\mathbb{F})$. 另一方面, 任意 n 阶矩阵可以表示为一个对称矩阵和一个反对称矩阵的和且

$$\{A \in M_n(\mathbb{F}) \mid A^T = A\} \subseteq V_{-2017}, \ \{A \in M_n(\mathbb{F}) \mid A^T = -A\} \subseteq V_{-2019}.$$

由此可知 $M_n(\mathbb{F}) = V_{-2017} + V_{-2019} = V_{-2017} \oplus V_{-2019}$ 且

$$V_{-2017} = \{ A \in M_n(\mathbb{F}) \mid A^T = A \}, \ V_{-2019} = \{ A \in M_n(\mathbb{F}) \mid A^T = -A \}.$$

特别地. φ 可对角化且 φ 的特征多项式为

$$f(\lambda) = (\lambda + 2017)^{\frac{n(n+1)}{2}} (\lambda + 2019)^{\frac{n(n-1)}{2}}.$$

4. (2013) 设
$$A = \begin{bmatrix} 0 & 2016 & 2017 & 2018 \\ 0 & 0 & 2016 & 2017 \\ 0 & 0 & 0 & 2016 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in M_4(\mathbb{C}).$$

- (1) (10 分) 求矩阵 A 的不变因子和 Jordan 标准形;
- (2) (5 分) 问矩阵方程 $X^2=A$ 是否有解, 其中 $X\in M_4(\mathbb{C})$, 请说明理由.

<u>提示:</u> 考察不变因子、Jordan 标准形、幂零矩阵等的基本概念. 通过对相关知识的理解简化计算题的计算量.

解答. (1) 直接计算矩阵 A 的行列式因子. 考虑

$$(\lambda E_4 - A) = \begin{bmatrix} \lambda & -2016 & -2017 & -2018 \\ 0 & \lambda & -2016 & -2017 \\ 0 & 0 & \lambda & -2016 \\ 0 & 0 & 0 & \lambda \end{bmatrix}.$$

显然 $\lambda E_4 - A$ 有一个三阶子式为

$$\begin{vmatrix} \lambda & -2016 & -2017 \\ 0 & \lambda & -2016 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda^3.$$

另一方面, $\lambda E_4 - A$ 有一个三阶子式为

$$g(\lambda) = \begin{vmatrix} -2016 & -2017 & -2018 \\ \lambda & -2016 & -2017 \\ 0 & \lambda & -2016 \end{vmatrix}.$$

显然 $\lambda=0$ 不是 $g(\lambda)$ 的根. 因此 $(g(\lambda),\lambda^3)=1$. 特别地, $D_3=1$. 注意到 $D_1\mid D_2,D_2\mid D_3$, 由此可得 $D_1=D_2=1$. 另一方面, 我们显然有 $D_4=|\lambda E_4-A|=\lambda^4$. 由行列式因子和不变因子的关系可得

$$d_1 = d_2 = d_3 = 1, d_4 = \lambda^4,$$

而矩阵 A 只有一个初等因子 λ^4 . 由此可知矩阵 A 的 Jordan 标准形为

$$J_A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(2) 原问题等价于是否存在矩阵 $Y \in M_4(\mathbb{C})$ 使得 $Y^2 = J_A$. 注意到 $J_A^4 = 0$ 但 $J_A^3 \neq 0$. 因此如果存在 $Y \in M_4(\mathbb{C})$ 使得 $Y^2 = J_A$, 那么 Y 一定为幂零矩阵. 从而 $Y^4 = 0$. 但是 $0 \neq A^3 = (Y^2)^3 = Y^6$, 矛盾. 因此假设不成立. 特别地, 不存在 X 使得 $X^2 = A$.