Problem 1 - CSS

Professor Plum likes it when the College of Saint Scholastica, CSS, hosts MICS. He wants you to write a program to generate an ASCII art "CSS" sign. He plans on taping the sign on the side of the van when traveling to MICS Since he does not know the dimensions of the sign, he wants your program to take as input positive integer scaling factors and generate multiple signs of different sizes.

Scaling	Letter Dimension	Line Width	Blanks Between
Factor	of CSS	of All Letters	CSS Letters
	$(\#chars \times \#chars)$	(#chars)	
1	5×5	1	5
2	10×10	2	10
3	15×15	3	15
10	50×50	10	50

Input

The first line contains the number of scaling factors. Each of the following lines contains a single positive integer scaling factor. The below sample input has 2 scaling factors.

2

1

3

Output

The output should contain the ASCII art for each sign corresponding to the scaling factors specified by the input. NOTE: All lines for a sign should be the same length by padding shorter lines with blanks. Five blank lines are after each case. Output for the above input is shown below.

Case 1:		
CCCCC	SSSSS	SSSSS
C	S	S
C	SSSSS	SSSSS
C	S	S
CCCCC	SSSSS	SSSSS

Case :	2 :	:
--------	-----	---

CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSSS
CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCC	SSS	SSS
CCC	SSS	SSS
CCC	SSS	SSS
CCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCC	SSS	SSS
CCC	SSS	SSS
CCC	SSS	SSS
CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSS
CCCCCCCCCCCCC	SSSSSSSSSSSSS	SSSSSSSSSSSSS