SUBSPACES

DEFINITION (SUBSPACES)

Let V be a subset of \mathbb{R}^n .

If there exists a set of vectors

$$S = \{\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_k\} \text{ in } \mathbb{R}^n$$

$$\{ \bullet \bullet \bullet \}$$

such that span(S) = V, then V is said to be a subspace of \mathbb{R}^n .

Remember: span(S) = set of all linear combinations of $u_1, u_2, ..., u_k$.

DEFINITION (SUBSPACES)

Let V be a subset of \mathbb{R}^n .

If there exists a set of vectors

$$S = \{u_1, u_2, ..., u_k\} \text{ in } \mathbb{R}^n$$

$$\{ \bullet \bullet \bullet \}$$

such that span(S) = V,

then V is said to be

a subspace of \mathbb{R}^n .

- 1) V is the subspace spanned by S.
- 2) V is the subspace spanned by $u_1, u_2, ..., u_k$.

3)
$$S$$
 spans V .

THE ZERO SPACE

 $\{\mathbf{0}\}$ = span $\{\mathbf{0}\}$ is a subspace of \mathbb{R}^n .

(Here, $\mathbf{0}$ is the zero vector of \mathbb{R}^n .)

It is also called the zero space of \mathbb{R}^n .

It is also the only subspace of \mathbb{R}^n with a finite number (in this case, one), and thus the least, of vectors.

THE "ENTIRE UNIVERSE"

Consider the vectors in \mathbb{R}^n :

$$e_1 = (1,0,....,0)$$
 $e_2 = (0,1,....,0)$ $e_n = (0,0,....,1)$

$$\mathbb{R}^n = \{(u_1,u_2,...,u_n) \mid u_1,u_2,...,u_n \in \mathbb{R}\}$$

$$= \{u_1e_1 + u_2e_2 + ... + u_ne_n \mid u_1,u_2,...,u_n \in \mathbb{R}\}$$

$$= \text{the set of all linear combinations of } e_1,e_2,...,e_n$$

$$= \text{span}\{e_1,e_2,...,e_n\} = \text{a subspace of } \mathbb{R}^n$$

So \mathbb{R}^n is a subspace of itself and to some extent, it can be thought of as the subspace of \mathbb{R}^n with the 'largest' number of vectors.

$$V_1 = \{(a-2b,3b) \mid a,b \in \mathbb{R}\}.$$
 V_1 is a subset of \mathbb{R}^2 .

Is V_1 a subspace of \mathbb{R}^2 ?

Idea: Can you try to write V_1 as a linear span?

$$V_1 = \{(a-2b,3b) \mid a,b \in \mathbb{R}\}$$

$$= \{a(1,0) + b(-2,3) \mid a,b \in \mathbb{R}\}$$

$$= \text{span}\{(1,0),(-2,3)\}$$

So V_1 is a subspace of \mathbb{R}^2 .

Is there a vector in \mathbb{R}^2 that is not in V_1 ?

Is
$$V_1 = \mathbb{R}^2$$
?

$$V_1 = \{(a-2b,3b) \mid a,b \in \mathbb{R}\}.$$
 V_1 is a subspace of \mathbb{R}^2 .
Is $V_1 = \mathbb{R}^2$?

Idea: Is span $\{(1,0),(-2,3)\} = \mathbb{R}^2$?

$$a(1,0)+b(-2,3)=(x,y)$$

$$\begin{cases} a - 2b = x \\ 3b = y \end{cases} \qquad \begin{pmatrix} 1 -2 \mid x \\ 0 \mid 3 \mid y \end{pmatrix} \qquad \text{Row-echelon form}$$

$$V_1 = \text{span}\{(1,0),(2,-3)\} = \mathbb{R}^2$$

$$V_2 = \{(x, y, z) \mid x - 3y + 2z = 0\}.$$
 V_2 is a subset of \mathbb{R}^3 .

Describe V_2 geometrically. Is V_2 a subspace of \mathbb{R}^3 ? YES!

Idea: Can we express V_2 in another form?

$$(x,y,z) \in V_2 \iff x-3y+2z=0 \iff \begin{cases} x = 3s-2t \\ y = s \\ z = t, s,t \in \mathbb{R} \end{cases}$$

$$V_2 = \{(x, y, z) \mid x - 3y + 2z = 0\}$$

$$= \{(3s - 2t, s, t) \mid s, t \in \mathbb{R}\}$$

$$= \{s(3,1,0) + t(-2,0,1) \mid s, t \in \mathbb{R}\} = \text{span}\{(3,1,0), (-2,0,1)\}$$

$$V_3 = \{(x, y, z) \mid x - 3y + 2z = 1\}.$$
 V_3 is a subset of \mathbb{R}^3 .

Describe V_3 geometrically. Is V_3 a subspace of \mathbb{R}^3 ?

$$(0,0,0) \notin V_3$$
 since $0-3(0)+2(0) \neq 1$.

We have already shown that any linear span must contain the zero vector. Since V_3 does not contain the zero vector, it cannot be a linear span.

So V_3 is not a subspace of \mathbb{R}^3 .

$$V_4 = \{(x, y, z) \mid x \le y \le z\}.$$
 V_4 is a subset of \mathbb{R}^3 .

Is $V_{\scriptscriptstyle A}$ a subspace of \mathbb{R}^3 ? No!

If $V_{\scriptscriptstyle A}$ is a subspace, then it can be expressed as a linear span, that is, $V_{\Delta} = \text{span}(T)$ for some finite set T.

By the closure property of linear spans,

For any
$$v_1, v_2, ..., v_r \in \text{span}(T) = V_4$$
 and $c_1, c_2, ..., c_r \in \mathbb{R}$,

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_r \mathbf{v}_r \in \text{span}(T) = V_4.$$

$$(1,1,2),(0,2,4) \in V_4$$
 but $(1,1,2)-2(0,2,4)=(1,-3,-6) \notin V_4$.

So V_{A} is not a subspace of \mathbb{R}^{3} .

SUMMARY

- 1) Definition of a subspace.
- 2) Zero space is a subspace of \mathbb{R}^n and \mathbb{R}^n is a subspace of itself.
- 3) How we can show that a given subset is NOT a subspace.