Math 185

Homework #3

Chapter 2, Section 2:

Ex. 5: Show that if f is analytic on D, then $g(z)=\overline{f(\bar{z})}$ is analytic on the reflected domain $D^*=\{\bar{z}:z\in D\}$ and $g'(z)=\overline{f'(\bar{z})}$

We check to see if g(z) is differentiable at each point of D^*

Let z_0 be a point on D. Then $\overline{z_0}$ is a point in the reflected domain.

so for any $\overline{z} \in D^*$ s.t. $\overline{z} o \overline{z_0}$

$$\lim_{\overline{z} o \overline{z_0}} rac{g(\overline{z}) - g(\overline{z_0})}{\overline{z} - \overline{z_0}} = \lim_{\overline{z} o \overline{z_0}} rac{\overline{f(z)} - \overline{f(z_0)}}{\overline{z} - \overline{z_0}} = \lim_{\overline{z} o \overline{z_0}} \overline{\left(rac{f(z) - f(z_0)}{z - z_0}
ight)}$$

We have that for any $\delta>0$, if $z\neq z_0$ and $0<|z-z_0|<\delta$ then $0<|\bar z-\bar z_0|=|z-z_0|=|z-z_0|<\delta$, so as $z\to z_0,\,\bar z\to\bar z_0$

so the limit above is equal to

$$\lim_{z o z_0} \overline{(rac{f(z)-f(z_0)}{z-z_0})}$$

and since f is analytic on D, $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists and is equal to $f'(z_0)$

and so for every $\epsilon>0$, $\exists\;\delta>0$ such that $\forall z\in D$, with $z\neq z_0$ if $0<|z-z_0|<\delta$ then

$$|rac{f(z)-f(z_0)}{z-z_0}-f'(z_0)|<\epsilon$$
 this also means that if $0<|z-z_0|<\delta$

$$|\overline{(\frac{f(z)-f(z_0)}{z-z_0})}-\overline{f'(z_0)}|=|\overline{(\frac{f(z)-f(z_0)}{z-z_0})-f'(z_0)}|=|\frac{f(z)-f(z_0)}{z-z_0}-f'(z_0)|<\epsilon$$

so
$$\lim_{\overline{z} o \overline{z_0}} rac{g(\overline{z}) - g(\overline{z_0})}{\overline{z} - \overline{z_0}} = \overline{f'(z_0)} = g'(\overline{z_0})$$

so since $\overline{z_0}$ was an arbitrary point in D^* , for every $z\in D^*$, we have that $g'(z)=\overline{f'(\overline{z})}$

Chapter 2, Section 3

Ex. 3: Show that if f and \bar{f} are both analytic on a domain, then f is constant.

$$Re(f)=rac{1}{2}(f+ar{f}\,)$$
 and $Im(f)=rac{1}{2}(f-ar{f}\,)$

and since f, \bar{f} are analytic, Re(f), Im(f) are analytic along with being real-valued, meaning they are constant, which means f = Re(f) + iIm(f) is constant.

Ex. 4: Show that if f is analytic on a domain D, and if |f| is constant, then f is constant

If f(z)=0 for some $z\in D$, then |f(z)|=0, and since |f| is constant, we must have $f\equiv 0$ on D

Otherwise, f(z)
eq 0 for all $z \in D$, and therefore $ar{f} = |f|^2/f$ is defined for all $z \in D$

Since f is analytic, and it is differentiable, 1/f is differentiable since $f(z) \neq 0$ for all $z \in D$ and g(z) = 1 is differentiable.

and since $|f|^2$ is a constant, $ar{f}=|f|^2/f$ is differentiable at all $z\in D$ and therefore analytic on D

Also, $\overline{f}'=-|f|^2/f^2$, which is continuous, since products and sums of continuous functions are continuous... so \overline{f} is analytic.

and if f and \bar{f} are both analytic, by exercise 3, then f is constant.

Chapter 2, Section 4

Ex. 8: Sketch the image of the circle $|z-1| \leq 1$ under the map $w=z^2$. Compute the are of the image.

the domain is any
$$(x,y)$$
 satisfying $(x-1)^2+y^2=1$

since
$$x=|z|\cos heta$$
 and $y=|z|\sin heta$, where $heta=\arg z$

we have that
$$|z|^2\cos^2\theta-2|z|\cos\theta+1+|z|\sin^2\theta=1$$

$$|z|^2 - 2|z|\cos\theta = 0$$

$$|z|^2 = 2|z|\cos\theta$$

$$|z| = 2\cos\theta$$

$$z=2\cos\theta e^{i\theta}$$

$$z^2 = 4\cos^2 heta e^{i2 heta}$$
 = $4\cos^2(heta/2)e^{i heta}$

From the graphs above, the function $f(z)=z^2$ is bounded. Also, it is analytic, since polynomials are differentiable, and one to one over the bounded domain D = $\{z:|z-1|\leq 1\}$: $f(w)=f(z)\implies w^2=z^2$

 $\implies w$ and z are square roots of $w^2=z^2$

since z is a square root, another root would be w=-z.

But for z to be in the domain, Re(z)>0 , since $|z-1|=\sqrt{(Re(z)-1)^2+Im(z)^2}\geq |Re(z)-1|$ and if Re(z)<0, then $Re(z)-1<-1\implies |Re(z)-1|>1$

so if z is in the domain, -z cannot be, so if $f(z)=f(w)\implies z=w$ Therefore, $f(z)=z^2$ over D is one to one so:

The area of the image = $\int \int \det J_f dx dy$

$$\det J_f = |f'(z)|^2 = |2z|^2 = 4|z|^2 = 4(x^2 + y^2)$$

so
$$D$$
 = $\{(r,\theta)|-\pi/2\leq \theta\leq \pi/2, 0\leq r\leq 2\cos\theta\}$

So we have $4\int\int_D(x^2+y^2)dA=4\int_{-\pi/2}^{\pi/2}\int_0^{2cos heta}r^3d heta dr$

$$=16\int_{-\pi/2}^{\pi/2}\cos^4{ heta}d heta=16\int_{-\pi/2}^{\pi/2}(rac{1+\cos{2 heta}}{2})^2d heta=4\int_{-\pi/2}^{\pi/2}(1+2\cos{2 heta}+(rac{1+\cos{4 heta}}{2}))$$

$$=4[\theta+\sin 2\theta+\theta/2+(\sin 4\theta)/8]_{-\pi/2}^{\pi/2}=4[3\pi/4+3\pi/4]=6\pi$$

Extra Problems

1. Let $f:\mathbb{C}\to\mathbb{C}$ be analytic function on the complex plane and f(0)=0. Suppose that for all real numbers $x,y\in\mathbb{R}$ we have $Re(f(x+iy))=e^{-y}(x\cos(x)-y\sin(x))$.

Find an expression for f(z) as a function of a complex variable z=x+iy

so
$$u(x,y) = e^{-y}(x\cos(x) - y\sin(x))$$

since f is analytic:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = e^{-y}(\cos(x) - x\sin(x) - y\cos(x))$$

$$-rac{\partial u}{\partial y}=rac{\partial v}{\partial x}=-[-e^{-y}(x\cos(x)-y\sin(x))+e^{-y}(-\sin(x))]=e^{-y}(x\cos(x)-y\sin(x))+e^{-y}\sin(x)$$

$$= e^{-y}(x\cos(x) + \sin(x) - y\sin(x))$$

So:

$$v(x,y)=\int e^{-y}(\cos(x)-x\sin(x))-ye^{-y}\cos(x)dy$$
 =

$$e^{-y}(x\sin(x)-\cos(x))+(ye^{-y}+e^{-y})(\cos(x))+C(x)$$

$$=e^{-y}(x\sin(x)+y\cos(x))+C(x)$$
, then we derive this w.r.t. to x and equate it to $-rac{\partial u}{\partial y}$

$$e^{-y}(x\cos(x)+\sin(x)-y\sin(x))+C'(x)=e^{-y}(x\cos(x)+\sin(x)-y\sin(x))$$

$$e^{-y}(x\cos(x)+\sin(x)+\sin(x))+(ye^{-y}+e^{-y})(\cos(x))$$

Simplifying:

C'(x) = 0 meaning C(x) is a real constant.

$$u(x,y) + iv(x,y) = e^{-y}(x\cos(x) - y\sin(x)) + i[e^{-y}(x\sin(x) + y\cos(x)) + C]$$

$$f(0) = u(0,0) + iv(0,0) = 0 + iC = 0$$

so
$$f(x+iy) = e^{-y}(x\cos(x) - y\sin(x)) + i[e^{-y}(x\sin(x) + y\cos(x))]$$

$$f(x+iy) = e^{-y}[(x+iy)(\cos(x) + i\sin(x))] = e^{-y}ze^{ix} = ze^{iz}$$

2. Let $f:D\to\mathbb{C}$ be an analytic function on a domain $D\subset\mathbb{C}$. Denote the real and imaginary part of f as u(x,y) and v(x,y) such that f(x+iy)=u(x,y)+iv(x,y)

Let ∇u and ∇v denote the gradient vector fields,

- 1. Find the angle between the horizontal axis and the vector (abla u)(x_0,y_0),
- 2. Find the angle between the horizontal axis and the vector (∇v) (x_0, y_0)\$

if
$$f'(z_0)=5e^{i\pi/6}$$
 at the point $z_0=x_0+iy_0$

We have
$$f'(z_0) = f'(x_0 + iy_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0) = 5e^{i\pi/6}$$

= $5(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$

$$rac{\partial u}{\partial x}(x_0,y_0)=rac{\partial v}{\partial u}(x_0,y_0)=5\cos(\pi/6)=5(\sqrt{3}/2)$$

$$rac{\partial v}{\partial x}(x_0,y_0)=-rac{\partial u}{\partial y}(x_0,y_0)=5\sin(\pi/6)=5/2$$

so
$$abla u(x_0,y_0)=(5(\sqrt{3}/2),-5/2)$$
 and $abla v(x_0,y_0)=(5/2,5(\sqrt{3}/2))$

We can find the angle between any two vectors a, b using

$$heta = rccos(rac{a \cdot b}{|a||b|})$$

so
$$|
abla u|=|
abla v|=|5e^{i\pi/6}|=5$$

letting the vector w=<1,0>

1.
$$\theta=\arccos(rac{5\sqrt{3}/2}{5})=\pi/6$$
 specifically, $\pi/6$ below the x -axis 2. $\theta=\arccos(rac{5/2}{5})=\pi/3$, above the x -axis

2.
$$\theta = \arccos(\frac{5/2}{5}) = \pi/3$$
, above the x -axis