Tableau 7

Is the outcome of a coin toss really random?

Tableau 7

Is the outcome of a coin toss really random?

The toss of a coin

Gravitational force

Initial velocity

Mass density

Angular velocity

Floor elasticity

Gravitational force

Initial velocity

Mass density

Angular velocity

Floor elasticity

Gravitational force

Initial velocity

Mass density

Angular velocity

Floor elasticity

Gravitational force

Initial velocity

Angular velocity

Mass density

Floor elasticity

Gravitational force

Initial velocity

Angular velocity

Mass density

Floor elasticity

- * Coin: thin uniform disk, one side marked "Head", the other "Tail".
- * Initial conditions (time t = 0): Head facing upwards; the coin is tossed straight up with initial velocity v and angular velocity ω about the horizontal axis. Measure coin height vertically from centre of mass at rest, coin rotation with respect to horizontal axis. Initial height y(0) = 0; initial angular orientation $\theta(0) = 0$.
- * At time t: Coin height y(t), angle with horizontal $\theta(t)$.
- * Termination time $t = \tau$: Catch the coin at its initial height when its centre of mass returns to its initial position. Final height $y(\tau) = 0$; final angular orientation $\theta(\tau)$.

- * Coin: thin uniform disk, one side marked "Head", the other "Tail".
- * Initial conditions (time t = 0): Head facing upwards; the coin is tossed straight up with initial velocity v and angular velocity ω about the horizontal axis. Measure coin height vertically from centre of mass at rest, coin rotation with respect to horizontal axis. Initial height y(0) = 0; initial angular orientation $\theta(0) = 0$.
- * At time t: Coin height y(t), angle with horizontal $\theta(t)$.
- * Termination time $t = \tau$: Catch the coin at its initial height when its centre of mass returns to its initial position. Final height $y(\tau) = 0$; final angular orientation $\theta(\tau)$.

- * Coin: thin uniform disk, one side marked "Head", the other "Tail".
- * Initial conditions (time t = 0): Head facing upwards; the coin is tossed straight up with initial velocity v and angular velocity ω about the horizontal axis. Measure coin height vertically from centre of mass at rest, coin rotation with respect to horizontal axis. Initial height y(0) = 0; initial angular orientation $\theta(0) = 0$.
- * At time t: Coin height y(t), angle with horizontal $\theta(t)$.
- * Termination time $t = \tau$: Catch the coin at its initial height when its centre of mass returns to its initial position. Final height $y(\tau) = 0$; final angular orientation $\theta(\tau)$.

- * Coin: thin uniform disk, one side marked "Head", the other "Tail".
- * Initial conditions (time t = 0): Head facing upwards; the coin is tossed straight up with initial velocity v and angular velocity ω about the horizontal axis. Measure coin height vertically from centre of mass at rest, coin rotation with respect to horizontal axis. Initial height y(0) = 0; initial angular orientation $\theta(0) = 0$.
- * At time t: Coin height y(t), angle with horizontal $\theta(t)$.
- * Termination time $t = \tau$: Catch the coin at its initial height when its centre of mass returns to its initial position. Final height $y(\tau) = 0$; final angular orientation $\theta(\tau)$.

- * Coin: thin uniform disk, one side marked "Head", the other "Tail".
- * Initial conditions (time t = 0): Head facing upwards; the coin is tossed straight up with initial velocity v and angular velocity ω about the horizontal axis. Measure coin height vertically from centre of mass at rest, coin rotation with respect to horizontal axis. Initial height y(0) = 0; initial angular orientation $\theta(0) = 0$.
- * At time t: Coin height y(t), angle with horizontal $\theta(t)$.
- * Termination time $t = \tau$: Catch the coin at its initial height when its centre of mass returns to its initial position. Final height $y(\tau) = 0$; final angular orientation $\theta(\tau)$.