

k-Anonymität

Thomas Maier, Kai Sonnenwald, Tom Petersen

Universität Hamburg Fachbereich Informatik

Agenda

- 1. Motivation & Abgrenzung
- 2. k-Anonymität
 - Generalisierung
 - Suppression
- 3. Schwächen der k-Anonymität
- 4. I-Diversity
- 5. Schwächen der I-Diversity
- 6. t-Closeness
- 7. Literaturverzeichnis

Anonym?

Medical Data

Voter List

Massachusetts Group Insurance Commission (GIC) medical data and voter registration data. Entnommen aus [Swe02]

Sweeney - Beispiel [Swe02]

Anonym? II

-> [Swe00], [Gol06] Studien über die Eindeutigkeit von demographischen Faktoren in der U.S.-Bevölkerung Sweeney für die 1990 US census data, Golle wiederholte das für 2000

	Geb.dat.	M. & J.	J.	2 J.
PLZ	87.1	3.7	0.04	0.01
Ort	58.4	3.6	0.04	0.01
County	18.1	0.04	0.00004	0.00000

	T. M. J.	M. J.	J.	2 J.
PLZ	87.1 %	3.7 %	0.04 %	0.01 %
Ort	58.4 %	3.6 %	0.04 %	0.01 %
County	18.1 %	0.04 %	0.00004 %	0.00000 %

Eindeutig identifizierbarer Individuenanteil an der U.S.-Bevölkerung 1990. Entnommen aus [Swe00]

Durch Geburtsdatum, Geschlecht, PLZ konnten 87% der Bevölkerung eindeutig identifiziert werden

Abgrenzung

-> Vermeintlich anonyme Daten sind es nicht. Daher: wie können wir Anonymität formalisieren bzw. Aussagen über die "Güte" der Anonymisierung machen?

_

Worum geht es?

NICHT Begrenzung des Zugriffs (Authentifikation, Multi-Level-Datenbanken).

NICHT statistische Datenbanken (Aggregation, Begrenzung von Selektionsarten, Logging und Abwägen von Anfragen, Hinzufügen von Zufall). Oftmals Verlust der Integrität der Daten.

SONDERN Anonyme Veröffentlichung von Daten als Individualdatensätze.

Identifier	Nicht-sensibel			Sensibel
Name	Geschlecht	PLZ	Geburtsdatum	Erkrankung
Mia Schulz	W	21989	20.5.1944	Osteoporose
Elias Wagner	m	21727	25.8.1983	Gicht
Hanna Weber	w	20817	28.3.1953	Osteoporose
Leon Schulz	m	21220	28.10.1994	Bronchitis
Sofia Koch	w	20270	21.1.1965	Gicht
Leon Schmidt	m	20188	5.5.1958	Hepatitis
Hanna Schäfer	w	21462	11.2.1999	Epilepsie
Elias Schneider	m	20388	3.8.1971	Multiple Skle
Mia Fischer	w	21896	14.12.1999	Diabetes
Ben Meyer	m	21024	8.1.1982	Diabetes

Begriffe

- Explicit identifier Attribut, das ein Individuum (nahezu) eindeutig identifiziert. Bsp: Name, Adresse, Steuernummer, ...
- Sensitive attribute Attribut, dessen Wert für ein Individuum in einer Datenmenge nicht herausgefunden werden darf.
- Quasi identifier Attributmenge, die ein Individuum in Kombination identifizieren kann. Formal in [Swe02] p. 7 auch [MKGV07] p. 3: Eine Menge nicht-sensibler Attribute $\{A_i,\ldots,A_j\}$ einer Tabelle, deren Attribute mit einer externen Datenquelle verknüpft werden können, um mindestens ein Individuum der Gesamtmenge eindeutig zu identifizieren.

k-Anonymität

Informell: Eine Tabelle (Datensatz?) erfüllt k-Anonymität, wenn jede Zeile (jeder Eintrag) ununterscheidbar von k-1 anderen Zeilen im Bezug auf jede "quasi identifier"-Menge ist.

k-Anonymität

Sei $T(A_1, ..., A_n)$ eine Tabelle und $Q_T = \{A_i, ..., A_j\}$ der zugehörige quasi identifier.

T erfüllt k-Anonymität genau dann, wenn jede Belegung von Werten in $T[Q_T]$ mindestens k mal auftritt, wobei $T[Q_T]$ die duplikatenerhaltende Projektion von T auf die Attribute des quasi identifiers beschreibt.

BEISPIEL

Generalisierung

Vergröberung der Werte, die ein Attribut annehmen kann (Generalisierung auf Attributebene).

Beispiele für Generalisierungshierarchien:

1. PLZ:

$$P_0 = \{22765, 22769, 22529, 20246\} \ \textit{Grundwertebereich} \\ \rightarrow P_1 = \{2276^*, 2252^*, 2024^*\} \\ \rightarrow P_2 = \{2^{****}\}$$

2. Geschlecht:

$$G_0 = \{ \text{männlich, weiblich} \}$$
 Grundwertebereich $\rightarrow G_1 = \{ \text{nicht_veröffentlicht} \}$

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

```
\begin{split} \text{PLZ:} & P_0 = \{22765, 22769, 22529, 20246\} \\ & \rightarrow P_1 = \{2276^*, 2252^*, 2024^*\} \\ & \rightarrow P_2 = \{2^{****}\} \\ \text{Geschlecht:} & G_0 = \{\text{männlich, weiblich}\} \\ & \rightarrow G_1 = \{\text{nicht\_ver\"offentlicht}\} \end{split}
```


Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_0P_0}$

Geschlecht	PLZ
m	22765
m	22765
m	22769
m	22529
m	20246
W	22765
W	22765
W	22769
W	22529
W	22529
W	22529
W	20246

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_1P_0}$

Geschlecht	PLZ
*	22765
*	22765
*	22769
*	22529
*	20246
*	22765
*	22765
*	22769
*	22529
*	22529
*	22529
*	20246

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_0P_1}$

Geschlecht	PLZ
m	2276*
m	2276*
m	2276*
m	2252*
m	2024*
W	2276*
W	2276*
W	2276*
W	2252*
W	2252*
W	2252*
W	2024*

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_1P_2}$

Geschlecht	PLZ
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****

Nicht jede Generalisierung ist gleichermaßen sinnvoll.
Triviallösung: Für jedes Attribut die höchste Stufe der
Generalisierung wählen -> Jedes Tupel bezogen auf den Quasi
identifier enthält die gleichen Werte -> auf Kosten hoher
Generalisierung und damit geringer Nutzbarkeit der Daten.

k-minimale Generalisierung.

 T_i ist die k-minimale Generalisierung einer Tabelle T gdw.

- T_i k-Anonymität erfüllt und
- keine Tabelle T_j existiert, die ebenfalls k-Anonymität erfüllt und für die T_i eine Generalisierung darstellt.

Unterdrückung

Unterdrückung

Entfernen von Daten aus der Tabelle - hier auf Tupelebene, d.h. Tupel können nur komplett entfernt werden.

Unterdrückung ist jedoch auch auf Attributebene möglich (entspricht dann maximaler Generalisierung).

G.	PLZ
m	22765
W	22765
m	22769
W	22769
m	80043

Daten

G.	PLZ
m	*
W	*
m	*
W	*
m	*

Generalisierung

G.	PLZ
m	2276*
W	2276*
m	2276*
W	2276*

Unterdrückung & Generalisierung

Implementierungen

Berechnung von k-anonymer Tabelle NP-schwer, es wurden jedoch $\mathcal{O}(k)$ -Approximationsalgorithmen gefunden [?, ?].

	Unterdrückung			
Generalisierung	Tupel Attribut Zelle Keine			
Attribut	AG_TS	AG_AS = AG	AG_CS	AG = AG_AS
Zelle	CG_TS	CG_AS	CG_CS = cg	CG = cg_cs
Keine	TS	AS	CS	-

Klassifizierung von Techniken für die Erstellung k-anonymer Tabellen. Entnommen aus [?]

Zusätzlich (und hier nicht abgedeckt): gewichtete Attribute, Schwellwerte für maximale Anzahl an unterdrückten Tupeln, mehrere sensible Attribute, ... Datafly μ -Argus Incognito

Schwächen der k-Anonymität

Unsorted matching attack Veröffentlichung mehrerer *k*—anonymer Tabellen mit derselben Sortierung ausgehend von einer nicht-öffentlichen Tabelle. [Swe02] p.10 Complementary release attack Veröffentlichung mehrerer *k*—anonymer Tabellen unterschiedlicher Generalisierung, die zusammengeführt die k-Anonymität verletzen. [Swe02] p.11 Temporal attack Dynamische Tabellen können k-Anonymität verletzen. [Swe02] p.12

Homogeneity attack Gleichheit der sensitive attributes einer Gruppe, die sich in den Werten des guasi identifiers gleicht, leakt das sensitive attribute eines Individuums. [MKGV07] p. 2

Background knowledge attack Nutzen von Hintergrundwissen, um mit hoher Wahrscheinlichkeit auf den Wert des sensitive attributes eines Individuumsin einer Gruppe

Unsorted matching attack

G.jahr	PLZ
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725

G.jahr	PLZ	Erkrankung	
1970	2198*	Hepatitis X	
1970	2198*	Hepatitis Y	
1970	2172*	Hepatitis Z	
1970	2172*	Hepatitis X	
1975	2198*	Hepatitis Y	
1975	2198*	Hepatitis Z	
1975	2172*	Hepatitis X	
1975	2172*	Hepatitis Y	
1980	2198*	Hepatitis Z	
1980	2198*	Hepatitis X	
1980	2172*	Hepatitis Y	
1980	2172*	Hepatitis Z	
k = 2			

k = 3=> Zufällige Sortierung verhindert diesen Angriff

Complementary release attack

TBD

Temporal attack

TBD?

Homogeneity attack

G.jahr	PLZ	Erkrankung
1970	21***	Hepatitis X
1970	21***	Hepatitis Y
1970	21***	Hepatitis Z
1970	21***	Hepatitis Y
1975	21***	Hepatitis X

k = 4

Background knowledge attack

G.jahr	PLZ	Erkrankung
1970	21***	Hepatitis X
1970	21***	Hepatitis Y
1970	21***	Hepatitis Z
1970	21***	Hepatitis Y
1975	21***	Hepatitis X
1975	21***	Hepatitis X
1975	21***	Hepatitis Y
1975	21***	Hepatitis Y

$$k = 4$$

Hintergrundwissen: Hepatitis X tritt nur bzw. mit hoher Wahrscheinlichkeit lediglich bei Männern auf.

I-Diversity

Schwächen der I-Diversity

Skewness attack similarity attack

t-Closeness

Literaturverzeichnis I

GOLLE, Philippe:

Revisiting the uniqueness of simple demographics in the US population.

In: Proceedings of the 5th ACM workshop on Privacy in electronic society ACM, 2006, S. 77–80

MACHANAVAJJHALA, Ashwin; KIFER, Daniel; GEHRKE, Johannes; VENKITASUBRAMANIAM, Muthuramakrishnan: I-diversity: Privacy beyond k-anonymity.

In: ACM Transactions on Knowledge Discovery from Data (TKDD) 1 (2007), Nr. 1, S. 3

Literaturverzeichnis II

SAMARATI, Pierangela; SWEENEY, Latanya:

Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression / Technical report, SRI International.

1998. -

Forschungsbericht

SWEENEY, Latanya: Simple Demographics Often Identify People Uniquely. (2000)

SWEENEY, Latanya:

k-anonymity: A model for protecting privacy.

In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), Nr. 05, S. 557–570