Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

por Raphael Felberg Levy

Rio de Janeiro - Brasil 2023

Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

"Declaro ser o único autor do presente projeto de monografia que refere-se ao plano de trabalho a ser executado para continuidade da monografia e ressalto que não recorri a qualquer forma de colaboração ou auxílio de terceiros para realizá-lo a não ser nos casos e para os fins autorizados pelo professor orientador."

Raphael Felberg Levy

Rio de Janeiro - Brasil 2023

Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

"Projeto de Monografia apresentado à Escola de Matemática Aplicada como requisito parcial para continuidade ao trabalho de monografia."

Aprovado em	de	de	-
Grau atribuído	ao Projeto de	Monografia:	

Professor Orientador: Flávio Codeço Coelho Escola de Matemática Aplicada Fundação Getúlio Vargas

Sumário

1	Introdução	4
2	Metodologia 2.1 Modelos 2.1.1 yy 2.2 xx	
3	Resultados	15
4	Discussão	16
5	Conclusão	17
6	Referências Cronológicas	18
7	Referências Usadas	19

1 Introdução

A Amazônia é uma das maiores e mais biodiversas florestas tropicais do mundo, abrigando inúmeras espécies de plantas, animais e microrganismos, incluindo vetores e patógenos responsáveis pela transmissão de diversas doenças. Entre elas, uma das mais comuns é a malária, que é causadas por protozoários do gênero *Plasmodium*, transmitidos pela picada da fêmea infectada do mosquito do gênero *Anopheles*. Ela está presente em 22 países americanos, porém as áreas com maior risco de infecção estão localizadas na região amazônica, englobando nove países, e que representaram 68% dos casos de infecção em 2011 ^[1]. Apesar de ser muito comum nas Américas, a malária não é limitada a esse continente, sendo encontrada em países da África e Ásia, tendo resultado em mais de dois milhões de casos de infecção e 445 mil mortes ao redor do mundo em 2016 ^[2].

Notavelmente, a transmissão de doenças por vetores é intimamente relacionada à alterações ambientais que interferem no ecossistema dos organismos transmissores e dos organismos afetados. No caso da Amazônia, povoados agrícolas e agropecuários são uns dos fatores que mais favorecem a transmissão da doença, tanto pelo desmatamento que causam para seu estabelecimento, assim como o agrupamento de pessoas em ambientes próximos ao habitat do vetor [3]. Além disso, outros fatores, como chuvas, queimadas e mineração, também são muito influentes na transmissão de doenças na região. Esses eventos resultam em perda de habitat, fragmentação de ecossistemas e alterações no clima, afetando a distribuição e abundância de vetores e hospedeiros, bem como a interação entre eles e os patógenos. Além disso, o crescimento populacional e a urbanização também têm um papel importante na disseminação de doenças, uma vez que aumentam a exposição dos seres humanos aos vetores e aos riscos de infecção.

Diante desse contexto, este trabalho visa investigar a transmissão de doenças por vetores na Amazônia e analisar como os impactos ambientais influenciam a dinâmica de transmissão da malária, os fatores ecológicos e socioeconômicos que afetam essa disseminação e possíveis estratégias de prevenção e controle, tendo como referência principal o Projeto Trajetórias-Sinbiose, elaborado pela FIOCRUZ, um dataset incluindo indicadores ambientais, epidemiológicos, econômicos e socioeconômicos para todos os municípios da Amazônia Legal, analisando a relação espacial e temporal entre trajetórias

econômicas ligadas à dinâmica dos sistemas agrários, sendo eles rurais de base familiar ou produção agrícola e de gado em larga escala, a disponibilidade de recursos naturais e o risco de doenças [4].

(Ao longo deste trabalho, serão abordados os seguintes tópicos: (1) uma revisão das principais doenças transmitidas por vetores na Amazônia e seus vetores e patógenos associados; (2) análise dos fatores ecológicos, climáticos e socioeconômicos que influenciam a transmissão de doenças; (3) discussão sobre os modelos epidemiológicos, incluindo adaptações aos modelos SIR e SEI, para avaliar o impacto das mudanças ambientais na transmissão de doenças; e (4) identificação de estratégias de prevenção e controle baseadas na compreensão da dinâmica de transmissão e nos desafios específicos da região amazônica.)

2 Metodologia

Para a elaboração do trabalho, serão usados dados do dataset do Projeto Trajetórias, e serão abordados métodos de transmissão de doenças baseados em equações diferenciais ordinárias, como o SIR, e, partindo de uma modelagem simples, serão incluídos os fenômenos ambientais, como desmatamento e queimada, para ver como modificações no ecossistema irão interferir no modelo elaborado previamente.

2.1 Modelos

Descrevendo primeiramente SIR ^{[5],[6]}, que pode ser considerado a base de modelos que serão usados ao longo do projeto, este foi desenvolvido por W. O. Kermack e A. G. McKendrick em 1927, sendo um dos modelos mais usados para a modelagem de epidemias, levando em consideração três compartimentos:

S: número de indivíduos suscetíveis I: número de indivíduos infectados R: número de indivíduos recuperados

Nesse modelo, os indivíduos saudáveis na classe S são suscetíveis ao contato

com indivíduos da classe I, e são transferidos para esse compartimento caso contraiam a doença. Indivíduos infectados podem espalhar a doença por contato direto com indivíduos suscetíveis, mas também podem se tornar imunes ao longo do tempo, sendo transferidos para o compartimento R. Em geral, R inclui o total de recuperados (imunes) e mortos em decorrência da doença, mas podemos assumir que o número de mortos é muito baixo em relação ao tamanho da população total, podendo ser ignorado. Consideramos também que indivíduos nessa categoria não voltarão a ser suscetíveis ou infecciosos.

Considerando uma epidemia em um espaço curto de tempo e que a doença não é fatal, podemos ignorar dinâmicas vitais de nascimento e morte. Com isso, podemos descrever o modelo SIR através do seguinte sistema de EDOs:

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta SI}{N} \\ \frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I \\ \frac{dR}{dt} = \gamma I \end{cases}$$

No modelo, N(t) = S(t) + I(t) + R(t), ou seja, a população total no tempo t, enquanto que β é a taxa de infecção e γ é a taxa de recuperação. Dado que S + I + R é sempre constante se ignorarmos nascimento e morte, temos $\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0.$

Para que a doença possa se espalhar, é fácil ver que $\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I > 0$. Assim, $\frac{\beta SI}{N} > \gamma I \Rightarrow \frac{\beta S}{N} > \gamma$. Supondo que estamos no início da infeccção, dado que queremos ver como se espalha, I será muito pequeno e $S \approx N$. Concluímos então que $\frac{\beta N}{N} > \gamma \Rightarrow \frac{\beta}{\gamma} > 1$. É possível derivar esse valor adimensionalizando o modelo: sejam $y^* = \frac{S}{N}, \ x^* = \frac{I}{N}, \ z^* = \frac{R}{N}$ e $t^* = \frac{t}{1/\gamma} = \gamma t$, de forma que $y^* + x^* + z^* = 1$. Substituindo o sistema de EDOs acima utilizando esses valores:

$$\begin{cases} \frac{dS}{dt} = \frac{d(y^*N)}{d(t^*/\gamma)} = -\frac{\beta SI}{N} = -\frac{\beta(y^*N)(x^*N)}{N} = -\beta y^*Nx^* \\ \frac{dI}{dt} = \frac{d(x^*N)}{d(t^*/\gamma)} = \frac{\beta SI}{N} - \gamma I = \frac{\beta(y^*N)(x^*N)}{N} - \gamma(x^*N) = \beta y^*Nx^* - \gamma x^*N \\ \frac{dR}{dt} = \frac{d(z^*N)}{d(t^*/\gamma)} = \gamma I = \gamma(x^*N) \end{cases}$$

Agora, cancelando os fatores N e γ em ambos os lados das equações:

$$\begin{cases} \frac{d(y^*)}{d(t^*)} = -\frac{\beta y^* x^*}{\gamma} \\ \frac{d(x^*)}{d(t^*)} = \frac{\beta y^* x^*}{\gamma} - x^* \\ \frac{d(z^*)}{d(t^*)} = x^* \end{cases}$$

Sendo assim temos um sistema dado apenas por y^* e x^* e o parâmetro $\frac{\beta}{\gamma}$, que podemos chamar de R_0 .

Como esse trabalho será focado principalmente na modelagem de malária, irei agora apresentar um dos primeiros modelos desenvolvidos especialmente para essa doença, por Sir Ronald Ross em 1911 ^[7], que usa duas EDOs distintas das apresentadas acima:

$$\begin{cases} \frac{dI}{dt} = bp'i\frac{N-I}{N} - aI \\ \\ \frac{di}{dt} = bp(n-i)\frac{I}{N} - mI \end{cases}$$

Nesse caso, N é a população humana total, I(t) é o número de humanos infectados no tempo t, n é a população total de mosquitos, i(t) é o número de

mosquitos infectados no tempo t, b é a taxa de mordidas, p é a probabilidade de transmissão do humano para o mosquito por mordida, p' é a probabilidade de transmissão do mosquito para o humano por mordida, a é a taxa de recuperação da infecção de um humano e m é a taxa de mortalidade dos mosquitos. $bp'i\frac{N-I}{N}dt-aIdt$ representam respectivamente o número de novos humanos infectados e o número de humanos recuperados no intervalo dt, enquanto que $bp(n-i)\frac{I}{N}dt-mIdt$ representam respectivamente o número de novos mosquitos infectados e o número de mosquitos que morrem nesse intervalo de tempo, assumindo que a infecçção não interfere na taxa de mortalidade dos mosquitos.

Para esse modelo, Ross discutiu dois pontos de equilíbrio, em que $\frac{dI}{dt}=\frac{di}{dt}=0$. Eles ocorrem quando I=i=0, que é o caso onde não existe malária, e, para I,i>0, $I=N\frac{1-amN/(b^2pp'n)}{1+aN/(bp'n)}$ e $i=n\frac{1-amN/(b^2pp'n)}{1+m/(bp)}$. Ainda, para que a doença se estabeleça, n deve ser maior que um valor limiar $n^*=\frac{amN}{b^2pp'}$. Nesse caso a doença se torna endêmica. Caso $n< n^*$, o equilíbrio estará em I=i=0 e a dença irá desaparecer.

Dividindo as equações dos pontos de equilíbrio por $I \times i$, temos:

$$\begin{cases} \frac{bp}{N} = \frac{bpn}{Ni} - \frac{m}{I} \\ \frac{bp'}{N} = \frac{bp'}{I} - \frac{a}{i} \end{cases}$$

O que transforma o problema em um sistema linear com dois desconhecidos, I e i.

Agora, irei apresentar o modelo que será usado para o desenvolvimento do trabalho, elaborado por Paul E. Parham e Edwin Michael em 2010, que leva em consideração fatores como a chuva e temperatura (R e T, respectivamente) [8].

Definindo as equações que serão utilizadas:

Definindo as equações que serão utilizadas:
$$\begin{cases} \frac{dS_M}{dt} = b - ab_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\ \frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - ab_1 \left(\frac{I_H(t - \tau_M)}{N}\right) S_M(t - \tau_M) l(\tau_M) \\ \frac{dI_M}{dt} = ab_1 \left(\frac{I_H(t - \tau_M)}{N}\right) S_M(t - \tau_M) l(\tau_M) - \mu I_M \\ \frac{dS_H}{dt} = -ab_2 \left(\frac{I_M}{N}\right) S_H \\ \frac{dI_H}{dt} = ab_2 \left(\frac{I_M(t - \tau_H)}{N}\right) S_H(t - \tau_H) - \gamma I_H \\ \frac{dR_H}{dt} = \gamma I_H \end{cases}$$

Tendo as equações do modelo, irei primeiro definir os parâmetros utilizados na modelagem e outras funções necessárias, e depois as variáveis usadas:

Parâmetro	Definição	Cálculo
T(t)	Temperatura	$T_1(1+T_2\cos(\omega_1t-\phi_1))$
R(t)	Precipitação	$R_1(1+R_2\cos(\omega_2t-\phi_2))$
b(R,T)	Taxa de nascimento de mosquitos (/ dia)	$\frac{B_E p_E(R) p_L(R, T) p_P(R)}{(\tau_E + \tau_L(T) + \tau_P)}$
a(T)	Taxa de mordidas (/dia)	$\frac{(T-T_1)}{D_1}$
$\mu(T)$	Taxa de mortalidade de mosquitos per capita (/ dia)	$-\log(p(T))$
$ au_M(T)$	Duração do ciclo de esporozoitos (dias)	$\frac{DD}{(T-T_{min})}$
$ au_L(T)$	Duração da fase de desenvolvimento das larvas (dias)	$\frac{1}{c_1T + c_2}$
p(T)	Taxa diária de sobrevivência dos mosquitos (dias)	$e^{(-1/(AT^2+BT+C))}$
$p_L(R)$	Probabilidade de sobrevivência das larvas de- pendente de chuva	$(\frac{4p_{ML}}{R_L^2})R(R_L - R)$
$p_L(T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura	$e^{-(c_1T+c_2)}$
$p_L(R,T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura e chuva	$p_L(R)p_L(T)$
$l(au_M)(T)$	Probabilidade de sobrevivência de mosquitos durante o ciclo de esporozoitos (/ dia)	$p(T)^{ au_M(T)}$
M(t)	Número total de mosquitos	$S_M(t) + E_M(t) + I_M(t)$
N(t)	Número total de humanos	$S_H(t) + I_H(t) + R_H(t)$

Parâmetro	Definição
b_1	Proporção de mordidas de mosquitos suscetíveis em humanos infectados que produzem infecção
b_2	Proporção de mordidas de mosquitos infectados em humanos suscetíveis que produzem infecção
$ au_H$	Período latente da infecção em humanos (dias)
γ	1/Duração média da infecciosidade em humanos (dias ⁻¹)
T_1	Temperatura média na ausência de sazonalidade (° C)
T_2	Amplitude da variabilidade sazonal na temperatura
R_1	Precipitação mensal média na ausência de sazonalidade (mm)
R_2	Amplitude da variabilidade sazonal na precipitação
ω_1	Frequência angular das oscilações sazonais na temperatura (meses ⁻¹)
ω_2	Frequência angular das oscilações sazonais na precipitação (meses ⁻¹)
ϕ_1	"Phase lag" da variabilidade da temperatura (defasagem de fase)
ϕ_2	"Phase lag" da variabilidade da precipitação (defasagem de fase)
B_E	Número de ovos colocados por adulto por oviposição
p_{ME}	Probabilidade de sobrevivência dos ovos
p_{ML}	Probabilidade de sobrevivência das larvas
p_{MP}	Probabilidade de sobrevivência das pupas
$ au_E$	Duração da fase de desenvolvimento dos ovos

Parâmetro	Definição
$ au_P$	Duração da fase de desenvolvimento das pupas
R_L	Chuva limite até que os sítios de reprodução sejam eliminados, removendo indivíduos de estágio imaturo
T_{min}	Temperatura mínima, abaixo dessa temperatura não há desenvolvimento do parasita (° C)
DD	"Degree days" para desenvolvimento do parasita [9]
A	Constante: $-0.03 \ (^{\circ}C^{2} \text{dias}^{-1})$
В	Constante: $1.31 (^{\circ}C \text{dias}^{-1})$
C	Constante: $-4.4 ext{ (dias}^{-1})$
D_1	Constante: 36.5
c_1	Constante: $0.00554 \ (^{\circ}C \text{dias}^{-1})$
c_2	Constante: $-0.06737 (\mathrm{dias}^{-1})$

Com essas funções e parâmetros, podemos calcular o número reprodutivo básico (R_0) e os equilíbrios endêmicos:

$$R_0 = \frac{Ma^2b_1b_2l(\tau_M)}{\gamma\mu(T)N}$$

$$I_{M}^{*} = \frac{M(R_{0} - 1)}{\left(\frac{R_{0}}{l(\tau_{M})}\right) + \left(\frac{ab_{2}M}{\gamma N}\right)}$$

$$I_H^* = \frac{N(R_0 - 1)}{R_0 + (\frac{ab_1}{\mu})}$$

Figura 1: tabela.

Figura 2: tabela.

2.1.1 yy

уу

$$f_i(x) = (10x + 100),$$
 (1)

$$f_{ii}(x) = (20x + 200),$$
 (2)

$$f_{iii}(x) = (30x + 300), (3)$$

XX

$$Vm_i(p,l) = ((-1.9141)p + 49.466)l + ((199.51)p - 10795.0), l = 0$$
 (4)

$$f_n(y) = \frac{y}{1000},\tag{5}$$

2.2 xx

XX

$$Funcao_i(p) = \gamma + \delta p + \theta p^2 + \omega p^3, \tag{6}$$

3 Resultados

Nesta seção serão apresentados os resultados esperados...

4 Discussão

5 Conclusão

6 Referências Cronológicas

- [1] Pimenta et al. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(1): 23-47, February 2015. https://doi.org/10.1590/0074-02760140266.
- [2] Josling, G. A., Williamson, K. C., Llinás, M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annual Review of Microbiology 2018 72:1, 501-519. https://doi.org/10.1146/annurev-micro-090817-062712.
- [3] Silva-Nunes, M., Codeço, C. T. et al. Malaria on the Amazonian Frontier: Transmission Dynamics, Risk Factors, Spatial Distribution, and Prospects for Control. Am J Trop Med Hyg. 2008 Oct;79(4):624-35. PMID: 18840755.
- [4] Rorato, A.C., Dal'Asta, A.P., Lana, R.M. et al. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 10, 65 (2023). https://doi.org/10.1038/s41597-023-01962-1.
- [5] Coelho, F. C. Github Modelagem-Matematica-IV. https://github.com/fccoelho/Modelagem-Matematica-IV/tree/master
- [6] Prasad, R., Sagar, S.K., Parveen, S. et al. Mathematical modeling in perspective of vector-borne viral infections: a review. Beni-Suef Univ J Basic Appl Sci 11, 102 (2022). https://doi.org/10.1186/s43088-022-00282-4.
- [7] Bacaër, N. (2011). Ross and malaria (1911). In: A Short History of Mathematical Population Dynamics. Springer, London. https://doi.org/10.1007/978-0-85729-115-8_12.
- [8] Parham, P.E., Michael, E. (2010). Modelling Climate Change and Malaria Transmission. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1_13.
- [9] McCord, G. Malaria ecology and climate change. Eur. Phys. J. Spec. Top. 225, 459–470 (2016). https://doi.org/10.1140/epjst/e2015-50097-1

7 Referências Usadas

- [1] Rorato, A.C., Dal'Asta, A.P., Lana, R.M. et al. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 10, 65 (2023). https://doi.org/10.1038/s41597-023-01962-1
- [2] Prasad, R., Sagar, S.K., Parveen, S. et al. Mathematical modeling in perspective of vector-borne viral infections: a review. Beni-Suef Univ J Basic Appl Sci 11, 102 (2022). https://doi.org/10.1186/s43088-022-00282-4.
- [3] Vyhmeister E., Provan G., Doyle B., Bourke B. Multi-cluster and environmental dependant vector born disease models. Heliyon, Volume 6, Issue 9 (2020). https://doi.org/10.1016/j.heliyon.2020.e04090
- [4] Arquam, M., Singh, A., Cherifi, H. (2020). Integrating Environmental Temperature Conditions into the SIR Model for Vector-Borne Diseases. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_34.
- [5] ALVES, Leon Diniz. Weather-driven mathematical models of dengue transmission dynamics in twelve Brazilian sites. 2021. 137 f. Tese (Doutorado em Biologia Computacional e Sistemas) Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 2021. https://www.arca.fiocruz.br/handle/icict/52536
- [6] Alves, Leon Diniz, Raquel Martins Lana, and Flávio Codeço Coelho. 2021. "A Framework for Weather-Driven Dengue Virus Transmission Dynamics in Different Brazilian Regions" International Journal of Environmental Research and Public Health 18, no. 18: 9493. https://doi.org/10.3390/ijerph18189493.
- [7] Prasad, R., Sagar, S.K., Parveen, S. et al. Mathematical modeling in perspective of vector-borne viral infections: a review. Beni-Suef Univ J Basic Appl Sci 11, 102 (2022). https://doi.org/10.1186/s43088-022-00282-4.
- [8] Abdullah, Seadawy, A. Jun, W. New mathematical model of vertical transmission and cure of vector-borne diseases and its numerical simulation. Adv Differ Equ 2018, 66 (2018). https://doi.org/10.1186/s13662-018-1516-z. [9] N. Shah and J. Gupta, "SEIR Model and Simulation for Vector Borne Diseases," Applied Mathematics, Vol. 4 No. 8A, 2013, pp. 13-17. doi: 10.4236/am.2013.48A003.