Dual of the Basic Quadratic Soft margin ν -SVM Problem (SVM_{s4}):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} X^{\top} X + \frac{1}{2K} I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$

$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \geq \nu$$

$$\lambda_{i} \geq 0, \quad i = 1, \dots, p$$

$$\mu_{j} \geq 0, \quad j = 1, \dots, q.$$

The above program is similar to the program that was obtained for Problem (SVM_{s2'}) but the matrix $X^{\top}X$ is replaced by the matrix $X^{\top}X + (1/2K)I_{p+q}$, which is positive definite since K > 0, and also the inequalities $\lambda_i \leq K$ and $\mu_j \leq K$ no longer hold. If the constraint $\eta \geq 0$ is dropped, then the inequality

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j \ge \nu$$

is replaced by the equation

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j = \nu.$$

We obtain w from λ and μ , and γ , as in Problem (SVM_{s2'}); namely,

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j$$

and η is given by

$$(p+q)K_s\nu\eta = \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \left(X^\top X + \frac{1}{2K_s} I_{p+q} \right) \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$

The constraints imply that there is some i_o such that $\lambda_{i_0} > 0$ and some j_0 such that $\mu_{j_0} > 0$, which means that at least two points are misclassified, so Problem (SVM_{s4}) should only be used when the sets $\{u_i\}$ and $\{v_j\}$ are not linearly separable. We can solve for b using the active constraints corresponding to any i_0 such that $\lambda_{i_0} > 0$ and any j_0 such that $\mu_{j_0} > 0$. To improve numerical stability we average over the sets of indices I_{λ} and I_{μ} .