mmf175u4h

March 11, 2024

```
[1]: import pandas as pd
     # Define the file path
     file_path = r"C:\Users\krestty\Downloads\Femor_img_dataset_
      →(1)\Femor_img_dataset\dataset_bmd.csv"
     # Load the dataset
     data = pd.read_csv(file_path)
     # Display the first few rows of the dataframe
     print(data.head())
                                                               Genetic sex
       Unnamed: O Participant ID Age at recruitment
                                                          Sex
              2596
                                                                        0.0
    0
                           6022277
                                                      58
    1
              4309
                           3361500
                                                      42
                                                                        1.0
    2
             12197
                           3056510
                                                      69
                                                            0
                                                                        0.0
    3
             12941
                           1182673
                                                      62
                                                            1
                                                                        1.0
    4
             15337
                           4606954
                                                      58
                                                            0
                                                                        0.0
       Standing height | Instance 0
                                       Standing height | Instance 1 \
    0
                                149.5
                                                                  NaN
                                185.0
                                                                185.0
    1
    2
                                173.0
                                                                172.0
    3
                                172.0
                                                                  NaN
    4
                                158.0
                                                                156.0
       Standing height | Instance 2
                                       Standing height | Instance 3
    0
                                151.0
                                                                  NaN
    1
                                186.0
                                                                  NaN
    2
                                172.0
                                                                  NaN
    3
                                171.0
                                                                  NaN
    4
                                154.0
                                                                  NaN
       Weight | Instance O(participant - p21002_i0) ... \
    0
                                                  63.6 ...
    1
                                                  83.6 ...
    2
                                                  81.8 ...
    3
                                                  91.7 ...
```

```
58.9 ...
4
   Treatment/medication code | Instance 1
0
                     1140871310 | 1140865634
1
2
                                         NaN
3
                                         NaN
4
                                       99999
   Treatment/medication code | Instance 2
0
                                         NaN
1
                     1140871310 | 1140865634
2
                                 1140865634
3
                                         NaN
4
                                         NaN
   Treatment/medication code | Instance 3
0
                                         NaN
1
                                         NaN
2
                                         NaN
                                         NaN
3
4
                                         NaN
                                      Diagnoses - ICD10 \
   E039|F171|F250|F329|F419|I10|R33|S7200|T814|W0...
            M8725|N492|N508|S7210|T931|V134|Z470|Z874
1
  D758|E538|I269|J90|K011|K029|K296|K30|K573|K57...
2
3
  A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
               H001 | I839 | N950 | R298 | R42 | Z866 | Z871 | Z888
4
                           Diagnoses - secondary ICD10
                                                          Diagnoses - ICD9
0
                E039|F171|F329|F419|I10|R33|Z864|Z911
                                                                         NaN
1
                                         T931 | Z470 | Z874
                                                                         NaN
  D758|E538|I269|J90|K029|K296|K573|K590|M8199|N...
                                                                      NaN
3
  A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
                                                                      NaN
4
                                    R298 | Z866 | Z871 | Z888
                                                                         NaN
   Diagnoses - secondary ICD9
                                fracture FRAX_bmd FRAX_without_bmd
0
                            NaN
                                      True
                                                  2.6
                                                                     0.6
                            NaN
                                      True
                                                  0.0
                                                                     0.1
1
2
                                                  0.5
                                                                     2.5
                            NaN
                                      True
3
                                      True
                            NaN
                                                  1.9
                                                                     0.9
                            NaN
                                    False
                                                  4.3
                                                                     0.9
```

[5 rows x 160 columns]

[2]: # Display statistical summary of the dataframe print(data.describe())

```
Unnamed: 0
                       Participant ID
                                        Age at recruitment
                                                                     Sex
          300.000000
                         3.000000e+02
                                                 300.000000
                                                              300.000000
count
mean
       260278.200000
                         3.200962e+06
                                                  57.280000
                                                                0.473333
std
       143370.259678
                         1.609800e+06
                                                   7.764614
                                                                0.500123
                         1.004467e+06
                                                  41.000000
min
         2596.000000
                                                                0.000000
25%
       140208.750000
                         1.674056e+06
                                                  51.000000
                                                                0.000000
50%
       266014.500000
                         3.147242e+06
                                                  58.000000
                                                                0.000000
75%
       380320.500000
                         4.574412e+06
                                                  64.000000
                                                                1.000000
       501096.000000
                         6.022829e+06
                                                  69.000000
                                                                1.000000
max
                     Standing height | Instance 0
       Genetic sex
        293.000000
                                        300.000000
count
mean
          0.474403
                                         169.483667
std
          0.500199
                                          8.975580
min
          0.000000
                                         142.000000
25%
          0.000000
                                        163.000000
50%
          0.000000
                                        170.000000
75%
          1.000000
                                         176.250000
          1.000000
                                        191.000000
max
       Standing height | Instance 1
                                       Standing height | Instance 2
                            71.000000
                                                           295.000000
count
                          169.339437
                                                           168.721356
mean
                             8.118594
                                                             9.065940
std
                          151.000000
                                                           142.000000
min
25%
                          163.750000
                                                           162.250000
50%
                          170.000000
                                                           170.000000
75%
                          174.000000
                                                           175.000000
max
                          188.500000
                                                           191.000000
       Standing height | Instance 3
                            19.000000
count
                          171.736842
mean
                             9.780037
std
                          151.000000
min
25%
                          164.000000
50%
                          174.000000
75%
                          180.500000
                          185.000000
max
       Weight | Instance O(participant - p21002_i0)
count
                                            300.000000
mean
                                             76.977000
std
                                             15.020066
```

```
50.200000
min
25%
                                            65.675000
50%
                                            75.200000
75%
                                            85.500000
max
                                           139.500000
       Calcium | Instance 1(participant - p100024_i1)
                                                          Calcium | Instance 2
count
                                              98.000000
                                                                     87.000000
                                             954.755816
                                                                    968.173563
mean
std
                                             374.572966
                                                                    431.965239
                                             279.650000
                                                                     196.900000
min
25%
                                             680.927500
                                                                    729.160000
50%
                                             914.885000
                                                                    924.110000
75%
                                            1135.662500
                                                                   1108.520000
max
                                            2218.910000
                                                                   3522.710000
       Calcium | Instance 3
                              Calcium | Instance 4
                  114.000000
                                         109.000000
count
                 1007.974035
                                        1002.354679
mean
                  370.459250
                                         609.009466
std
min
                  156.030000
                                         216.550000
25%
                  726.132500
                                         737.010000
50%
                  979.935000
                                         878.190000
75%
                 1219.772500
                                        1136.510000
                 2511.780000
                                        6095.940000
max
       Number of treatments/medications taken | Instance 0
count
                                                300.000000
mean
                                                   2.033333
                                                   2.395416
std
                                                   0.000000
min
25%
                                                   0.000000
50%
                                                   1.000000
75%
                                                   3.000000
                                                 16.000000
max
       Number of treatments/medications taken | Instance 1
count
                                                 72.000000
mean
                                                   1.916667
std
                                                   2.180257
                                                  0.00000
min
25%
                                                   0.000000
50%
                                                   1.000000
75%
                                                   2.000000
                                                 10.000000
max
       Number of treatments/medications taken | Instance 2 \
                                                273.000000
count
```

```
2.216117
    mean
                                                      2.630596
    std
                                                      0.000000
    min
    25%
                                                      0.000000
    50%
                                                      2.000000
    75%
                                                      3.000000
    max
                                                     18.000000
           Number of treatments/medications taken | Instance 3
                                                                     FRAX_bmd \
                                                     19.000000
                                                                   300.000000
    count
                                                                     1.127333
                                                      1.315789
    mean
    std
                                                      2.161600
                                                                     1.371540
                                                      0.000000
                                                                     0.00000
    min
    25%
                                                      0.000000
                                                                     0.200000
    50%
                                                      0.000000
                                                                     0.600000
    75%
                                                      2.000000
                                                                     1.425000
    max
                                                      8.000000
                                                                    11.000000
           FRAX_without_bmd
                  300.000000
    count
    mean
                    1.001667
    std
                    0.810939
    min
                    0.100000
    25%
                    0.300000
    50%
                    0.800000
    75%
                    1.500000
                    4.300000
    max
    [8 rows x 129 columns]
[4]: print(data.columns)
    Index(['Unnamed: 0', 'Participant ID', 'Age at recruitment', 'Sex',
            'Genetic sex', 'Standing height | Instance 0',
            'Standing height | Instance 1', 'Standing height | Instance 2',
            'Standing height | Instance 3',
            'Weight | Instance O(participant - p21002_i0)',
           'Treatment/medication code | Instance 1',
           'Treatment/medication code | Instance 2',
           'Treatment/medication code | Instance 3', 'Diagnoses - ICD10',
            'Diagnoses - secondary ICD10', 'Diagnoses - ICD9',
            'Diagnoses - secondary ICD9', 'fracture', 'FRAX_bmd',
            'FRAX_without_bmd'],
          dtype='object', length=160)
```

```
[5]: import pandas as pd
    # Define the file path
    file_path = r"C:\Users\krestty\Downloads\Femor_img_dataset_

¬(1)\Femor_img_dataset\dataset_bmd.csv"

    # Load the dataset into a DataFrame
    df = pd.read_csv(file_path)
    # Count the occurrences of each unique value in the 'fracture' column and print_{\sf L}
     ⇔the result
    df_fracture_counts = df['fracture'].value_counts()
    print(df_fracture_counts)
    fracture
            187
    False
    True
             113
    Name: count, dtype: int64
[6]: # Extracting unique prefixes from column names
    instances = set(col.split(' | ')[0] for col in df.columns)
    \hookrightarrow prefix
    columns = []
    # Iterate over unique prefixes
    for prefix in instances:
        # Select columns starting with the current prefix
        columns_to_check = [col for col in df.columns if col.startswith(prefix)]
        # Calculate counts of non-missing values for each selected column
        non_missing_counts = df[columns_to_check].count()
        # Find column with maximum non-missing values
        column_with_max_non_missing = non_missing_counts.idxmax()
        # Append column with maximum non-missing values to the list
        columns.append(column_with_max_non_missing)
    # Select columns with maximum non-missing values for each prefix and display,
     → the resulting DataFrame
    df_max_non_missing = df[columns]
    print(df_max_non_missing.head())
```

```
1
                                                5.27111
2
                                                5.45140
3
                                                3.86018
4
                                                3.29454
        Treatment/medication code | Instance 0 \
               1140921600 | 1141191044 | 1140928274
0
1
                                      1140884488
2
                                             NaN
3
                                             NaN
   1189 | 1140909674 | 1141188442 | 1140876592 | 99999
   Femur neck BMD (bone mineral density) (right) | Instance 2 fracture \
0
                                               0.723206
                                                                       True
                                               0.868022
                                                                       True
1
2
                                               0.996041
                                                                       True
3
                                               0.687088
                                                                       True
                                               0.708290
                                                                      False
   Femur wards BMD (bone mineral density) (right) | Instance 2 \
                                               0.460578
0
                                               0.717409
1
2
                                               0.768620
3
                                               0.436912
4
                                               0.490887
  Illnesses of father | Instance 0 \
                          8|6|1|-27
0
                            8|2|-27
1
2
                               2|-27
3
                                 3|2
                               6|-27
   Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                             -2.239100
1
                                             -0.599261
2
                                             -0.235811
3
                                             -2.094850
                                             -1.809550
   Tobacco smoking \
0
                NaN
1
             114.0
2
                NaN
3
             113.0
                NaN
```

Femur upper neck BMD (bone mineral density) T-score (left) | Instance 2 \

```
0
                                                     NaN
1
                                                     NaN
2
                                                    -0.9
3
                                                     NaN
4
                                                     NaN
  Type of special diet followed | Instance 4
0
                                             NaN
1
                                            {\tt NaN}
2
                                            NaN
3
                                             {\tt NaN}
4
                                              13
   Country of Birth (non-UK origin) | Instance 0
0
                                                 NaN
1
2
                                                 NaN
3
                                                 NaN
4
                                                 NaN
  Femur upper neck BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                                     NaN
                                                     NaN
1
2
                                                    -0.9
3
                                                     NaN
4
                                                     NaN
              Weight | Instance 0(participant - p21002_i0)
   FRAX_bmd
        2.6
0
                                                          63.6
        0.0
1
                                                          83.6
2
        0.5
                                                          81.8
3
        1.9
                                                          91.7
        4.3
                                                          58.9
                           Diagnoses - secondary ICD10
                E039|F171|F329|F419|I10|R33|Z864|Z911
0
                                         T931 | Z470 | Z874
1
   D758|E538|I269|J90|K029|K296|K573|K590|M8199|N...
   A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
4
                                    R298 | Z866 | Z871 | Z888
   Femur total BMD (bone mineral density) (left) | Instance 2 \
0
                                                0.760295
1
                                                1.077890
2
                                                0.929056
3
                                                0.741237
4
                                                0.619315
```

```
Variation in diet | Instance 2 Diagnoses - ICD9 \
    0
                                                      NaN
                                   1.0
                                                      NaN
    1
    2
                                   2.0
                                                      NaN
    3
                                   2.0
                                                     NaN
    4
                                   2.0
                                                      NaN
      Ethnic background | Instance O Country of birth (UK/elsewhere) | Instance O
                               1001.0
    0
                                                                                 1.0
                               1001.0
    1
                                                                                 1.0
    2
                               1001.0
                                                                                 1.0
    3
                               1001.0
                                                                                 1.0
    4
                               1001.0
                                                                                 1.0
    [5 rows x 64 columns]
[7]: # Extracting unique prefixes from column names
     instances = set(col.split(' | ')[0] for col in df.columns)
     # Initialize a list to store columns with maximum non-missing values for each
      \hookrightarrow prefix
     columns = []
     # Iterate over unique prefixes
     for prefix in instances:
         # Select columns starting with the current prefix
         columns_to_check = [col for col in df.columns if col.startswith(prefix)]
         # Calculate counts of non-missing values for each selected column
         non_missing_counts = df[columns_to_check].count()
         # Find column with maximum non-missing values
         column_with_max_non_missing = non_missing_counts.idxmax()
         # Append column with maximum non-missing values to the list
         columns.append(column_with_max_non_missing)
     # Print the length of the columns list
     print("Number of selected columns:", len(columns))
     # Print the contents of the columns list
     print("Selected columns:", columns)
    Number of selected columns: 64
    Selected columns: ['Femur neck BMC (bone mineral content) (right) | Instance 2',
    'Treatment/medication code | Instance O', 'Femur neck BMD (bone mineral density)
    (right) | Instance 2', 'fracture', 'Femur wards BMD (bone mineral density)
    (right) | Instance 2', 'Illnesses of father | Instance 0', 'Femur troch BMD
```

(bone mineral density) T-score (right) | Instance 2', 'Tobacco smoking', 'Femur upper neck BMD (bone mineral density) T-score (left) | Instance 2', 'Type of special diet followed | Instance 4', 'FRAX without bmd', 'Non-cancer illness code, self-reported | Instance 2', 'Pelvis BMC (bone mineral content) | Instance 2', 'Frequency of consuming six or more units of alcohol', 'Number of treatments/medications taken | Instance O', 'Duration of moderate activity | Instance 2', 'Femur shaft BMD (bone mineral density) T-score (left) | Instance 0', 'Femur upper neck BMD (bone mineral density) (right) | Instance 2', 'Vitamin and mineral supplements | Instance 2', 'Genetic sex', 'Fractured/broken bones in last 5 years | Instance 0', 'Age at recruitment', 'Femur neck BMC (bone mineral content) (left) | Instance 2', 'Diagnoses - ICD10', 'Femur wards BMD (bone mineral density) T-score (right) | Instance 2', 'Femur total BMD (bone mineral density) (right) | Instance 2', 'Falls in the last year | Instance 0', 'Femur troch BMD (bone mineral density) T-score (left) | Instance 2', 'Calcium | Instance O(participant - p30680_i0)', 'Standing height | Instance O', 'Alcohol drinker status | Instance 0', 'Femur shaft BMD (bone mineral density) T-score (right) | Instance 0', 'Unnamed: 0', 'Participant ID', 'Fractured bone site(s) | Instance O', 'Femur lower neck BMD (bone mineral density) (right) | Instance 2', 'Smoking status | Instance 0', 'Femur upper neck BMD (bone mineral density) (left) | Instance 2', 'Femur wards BMD (bone mineral density) T-score (left) | Instance 2', 'Femur troch BMD (bone mineral density) (left) | Instance 2', 'Sex', 'Femur total BMD (bone mineral density) T-score (left) | Instance 2', 'Genetic ethnic grouping', 'Alcohol consumed | Instance 3', 'Femur lower neck BMD (bone mineral density) (left) | Instance 2', 'Major dietary changes in the last 5 years | Instance 0', 'Femur troch BMD (bone mineral density) (right) | Instance 2', 'Femur total BMD (bone mineral density) T-score (right) | Instance 2', 'Illnesses of mother | Instance 0', 'Femur wards BMD (bone mineral density) (left) | Instance 2', 'Diagnoses - secondary ICD9', 'Ever had rheumatoid arthritis affecting one or more joints', 'Femur neck BMD (bone mineral density) (left) | Instance 2', 'Average total household income before tax | Instance 2', 'Country of Birth (non-UK origin) | Instance O', 'Femur upper neck BMD (bone mineral density) T-score (right) | Instance 2', 'FRAX_bmd', 'Weight | Instance O(participant - p21002_i0)', 'Diagnoses - secondary ICD10', 'Femur total BMD (bone mineral density) (left) | Instance 2', 'Variation in diet | Instance 2', 'Diagnoses - ICD9', 'Ethnic background | Instance 0', 'Country of birth (UK/elsewhere) | Instance 0']

```
[8]: # Calculate percentage of missing values in each column
missing_data = (df.isnull().sum() / len(df)) * 100

# Print the percentage of missing values for each column
print("Percentage of missing values in each column:")
print(missing_data)
```

Percentage of missing values in each column:

Unnamed: 0 0.000000
Participant ID 0.000000
Age at recruitment 0.000000

```
Genetic sex
                                     2.333333
     Diagnoses - ICD9
                                    97.333333
     Diagnoses - secondary ICD9
                                    99.000000
     fracture
                                     0.000000
     FRAX bmd
                                     0.000000
     FRAX_without_bmd
                                     0.000000
     Length: 160, dtype: float64
[10]: import matplotlib.pyplot as plt
      X = []
      y = []
      excluded = []
      # Iterate over the columns
      for column in df.columns:
          # Check if the column has less than 150 missing values
          if df[column].isna().sum() < 150:</pre>
              X.append(df[column].isna().sum())
              y.append(column)
          else:
              # Add the column to the excluded list
              excluded.append(column)
      # Remove excluded columns from the columns list
      for column in excluded:
          df.drop(column, axis=1, inplace=True)
      # Define a custom color for the bars
      bar_color = 'salmon'
      # Visualize the total missing values in the included columns with the specified_
       \hookrightarrowcolor
      plt.figure(figsize=(10, 10))
      plt.title("Total Missing Values in Included Columns")
      plt.bar(y, X, color=bar_color)
      plt.xticks(rotation=90)
      plt.xlabel('Columns')
      plt.ylabel('Number of Missing Values')
      plt.tight_layout()
      plt.show()
```

0.000000

Sex


```
[11]: df_selected_columns = df[columns].head()
print(df_selected_columns)
```

```
Femur neck BMC (bone mineral content) (right) | Instance 2 \
                                                3.40979
0
                                                5.27111
1
2
                                                5.45140
3
                                                3.86018
4
                                                3.29454
        Treatment/medication code | Instance 0
               1140921600 | 1141191044 | 1140928274
0
1
                                      1140884488
```

```
2
                                              NaN
3
                                              NaN
  1189 | 1140909674 | 1141188442 | 1140876592 | 99999
   Femur neck BMD (bone mineral density) (right) | Instance 2 fracture \
0
                                               0.723206
                                                                        True
1
                                               0.868022
                                                                        True
2
                                               0.996041
                                                                        True
3
                                               0.687088
                                                                        True
4
                                               0.708290
                                                                      False
   Femur wards BMD (bone mineral density) (right) | Instance 2 \
0
                                               0.460578
                                               0.717409
1
                                               0.768620
2
3
                                               0.436912
4
                                               0.490887
  Illnesses of father | Instance 0 \
0
                          8|6|1|-27
                             8|2|-27
1
2
                               2 | -27
3
                                 3|2
4
                               6 | -27
   Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                              -2.239100
                                              -0.599261
1
2
                                              -0.235811
3
                                              -2.094850
4
                                              -1.809550
   Tobacco smoking FRAX_without_bmd \
0
                NaN
                                   0.6
              114.0
                                   0.1
1
                NaN
                                   2.5
3
              113.0
                                   0.9
4
                NaN
                                   0.9
  Non-cancer illness code, self-reported | Instance 2 ... \
0
                                              1226 | 1262
1
                                                   1465
2
                                                   1515
3
                                         1459 | 1065 | 1526
4
                                              1469 | 1538
   Ever had rheumatoid arthritis affecting one or more joints \
0
                                                    NaN
```

```
0.0
1
2
                                                    0.0
3
                                                    NaN
4
                                                    0.0
   Femur neck BMD (bone mineral density) (left) | Instance 2 \
0
                                              0.710107
                                              1.419990
1
2
                                              1.015170
3
                                              0.764439
4
                                              0.655488
   Average total household income before tax | Instance 2 FRAX_bmd \
                                                    1.0
0
                                                                    2.6
                                                    4.0
                                                                    0.0
1
                                                    1.0
                                                                    0.5
2
3
                                                    2.0
                                                                    1.9
                                                    2.0
                                                                    4.3
  Weight | Instance 0(participant - p21002_i0)
0
                                             63.6
1
                                            83.6
                                            81.8
2
3
                                            91.7
4
                                            58.9
                          Diagnoses - secondary ICD10 \
                E039|F171|F329|F419|I10|R33|Z864|Z911
0
1
                                        T931 | Z470 | Z874
  D758|E538|I269|J90|K029|K296|K573|K590|M8199|N...
   A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
3
                                   R298 | Z866 | Z871 | Z888
   Femur total BMD (bone mineral density) (left) | Instance 2 \
0
                                              0.760295
                                               1.077890
1
2
                                              0.929056
3
                                              0.741237
                                              0.619315
   Variation in diet | Instance 2 Ethnic background | Instance 0 \
0
                                3.0
                                                               1001.0
1
                                1.0
                                                               1001.0
2
                                2.0
                                                               1001.0
3
                                2.0
                                                               1001.0
4
                                2.0
                                                               1001.0
```

```
0 1.0
1 2 1.0
3 1.0
4 1.0
```

[5 rows x 50 columns]

```
[12]: # Print the number of columns obtained after preprocessing
print("Number of columns after preprocessing:", len(columns))

# Print the list of column names
print("Columns obtained after preprocessing:")
print(columns)
```

```
Number of columns after preprocessing: 50
Columns obtained after preprocessing:
['Femur neck BMC (bone mineral content) (right) | Instance 2',
'Treatment/medication code | Instance O', 'Femur neck BMD (bone mineral density)
(right) | Instance 2', 'fracture', 'Femur wards BMD (bone mineral density)
(right) | Instance 2', 'Illnesses of father | Instance 0', 'Femur troch BMD
(bone mineral density) T-score (right) | Instance 2', 'Tobacco smoking',
'FRAX without bmd', 'Non-cancer illness code, self-reported | Instance 2',
'Pelvis BMC (bone mineral content) | Instance 2', 'Frequency of consuming six or
more units of alcohol', 'Number of treatments/medications taken | Instance 0',
'Duration of moderate activity | Instance 2', 'Vitamin and mineral supplements |
Instance 2', 'Genetic sex', 'Fractured/broken bones in last 5 years | Instance
O', 'Age at recruitment', 'Femur neck BMC (bone mineral content) (left) |
Instance 2', 'Diagnoses - ICD10', 'Femur wards BMD (bone mineral density)
T-score (right) | Instance 2', 'Femur total BMD (bone mineral density) (right) |
Instance 2', 'Falls in the last year | Instance 0', 'Femur troch BMD (bone
mineral density) T-score (left) | Instance 2', 'Calcium | Instance 0(participant
- p30680_i0)', 'Standing height | Instance 0', 'Alcohol drinker status |
Instance 0', 'Unnamed: 0', 'Participant ID', 'Smoking status | Instance 0',
'Femur wards BMD (bone mineral density) T-score (left) | Instance 2', 'Femur
troch BMD (bone mineral density) (left) | Instance 2', 'Sex', 'Femur total BMD
(bone mineral density) T-score (left) | Instance 2', 'Genetic ethnic grouping',
'Major dietary changes in the last 5 years | Instance 0', 'Femur troch BMD (bone
mineral density) (right) | Instance 2', 'Femur total BMD (bone mineral density)
T-score (right) | Instance 2', 'Illnesses of mother | Instance 0', 'Femur wards
BMD (bone mineral density) (left) | Instance 2', 'Ever had rheumatoid arthritis
affecting one or more joints', 'Femur neck BMD (bone mineral density) (left) |
Instance 2', 'Average total household income before tax | Instance 2',
'FRAX_bmd', 'Weight | Instance O(participant - p21002_i0)', 'Diagnoses -
secondary ICD10', 'Femur total BMD (bone mineral density) (left) | Instance 2',
'Variation in diet | Instance 2', 'Ethnic background | Instance 0', 'Country of
birth (UK/elsewhere) | Instance 0']
```

[13]: df[columns].info()

<pre><class 'pandas.core.frame.dataframe'=""></class></pre>	
RangeIndex: 300 entries, 0 to 299	
Data columns (total 50 columns):	
# Column	Non-
Null Count Dtype	
O Femur neck BMC (bone mineral content) (right) Ins	tance 2 296
non-null float64	
1 Treatment/medication code Instance 0	194
non-null object	0.00
2 Femur neck BMD (bone mineral density) (right) Ins	tance 2 296
non-null float64	200
3 fracture non-null bool	300
	stance 2 296
4 Femur wards BMD (bone mineral density) (right) Inspon-null float64	stance 2 290
5 Illnesses of father Instance 0	290
non-null object	230
6 Femur troch BMD (bone mineral density) T-score (right	nt) Instance 2 296
non-null float64	10) 1110001100 2 200
7 Tobacco smoking	161
non-null float64	
8 FRAX_without_bmd	300
non-null float64	
9 Non-cancer illness code, self-reported Instance 2	227
non-null object	
10 Pelvis BMC (bone mineral content) Instance 2	299
non-null float64	
11 Frequency of consuming six or more units of alcohol	188
non-null float64	
12 Number of treatments/medications taken Instance 0	300
non-null int64	
13 Duration of moderate activity Instance 2	269
non-null float64	
14 Vitamin and mineral supplements Instance 2	295
non-null object	000
15 Genetic sex	293
non-null float64	000
16 Fractured/broken bones in last 5 years Instance 0 non-null float64	299
17 Age at recruitment	300
non-null int64	300
18 Femur neck BMC (bone mineral content) (left) Insta	ance 2 300
non-null float64	

19 Diagnoses - ICD10	276
non-null object	
20 Femur wards BMD (bone mineral density) T-score (right) Instance 2	296
non-null float64	
21 Femur total BMD (bone mineral density) (right) Instance 2	295
non-null float64	
22 Falls in the last year Instance 0	299
non-null float64	
23 Femur troch BMD (bone mineral density) T-score (left) Instance 2	300
non-null float64	060
24 Calcium Instance O(participant - p30680_i0) non-null float64	262
	300
25 Standing height Instance 0 non-null float64	300
26 Alcohol drinker status Instance 0	299
non-null float64	233
27 Unnamed: 0	300
non-null int64	000
28 Participant ID	300
non-null int64	
29 Smoking status Instance 0	299
non-null float64	
30 Femur wards BMD (bone mineral density) T-score (left) Instance 2	300
non-null float64	
31 Femur troch BMD (bone mineral density) (left) Instance 2	300
non-null float64	
32 Sex	300
non-null int64	
33 Femur total BMD (bone mineral density) T-score (left) Instance 2	299
non-null float64	
34 Genetic ethnic grouping	263
non-null float64	
35 Major dietary changes in the last 5 years Instance 0	299
non-null float64	
36 Femur troch BMD (bone mineral density) (right) Instance 2	296
non-null float64	
37 Femur total BMD (bone mineral density) T-score (right) Instance 2	295
non-null float64	005
38 Illnesses of mother Instance 0	295
non-null object	200
39 Femur wards BMD (bone mineral density) (left) Instance 2	300
non-null float64	240
40 Ever had rheumatoid arthritis affecting one or more joints non-null float64	240
41 Femur neck BMD (bone mineral density) (left) Instance 2	300
non-null float64	500
42 Average total household income before tax Instance 2	295
non-null float64	200

```
43 FRAX_bmd
                                                                                300
     non-null
                 float64
      44 Weight | Instance O(participant - p21002_i0)
                                                                                300
     non-null
                 float64
      45 Diagnoses - secondary ICD10
                                                                                246
     non-null
                 object
      46 Femur total BMD (bone mineral density) (left) | Instance 2
                                                                                299
     non-null
                 float64
      47 Variation in diet | Instance 2
                                                                                295
     non-null
                 float64
      48 Ethnic background | Instance 0
                                                                                299
     non-null
                 float64
      49 Country of birth (UK/elsewhere) | Instance 0
                                                                                299
     non-null
                 float64
     dtypes: bool(1), float64(37), int64(5), object(7)
     memory usage: 115.3+ KB
[14]: import itertools
      import matplotlib.pyplot as plt
      # Select only float64 and int64 columns
      numeric_cols = df[columns].select_dtypes(include=['float64', 'int64']).columns
      # Number of rows for the figure grid
      n = len(numeric_cols)
      ncols = 2
      nrows = n // ncols
      nrows += n % ncols
      # Create a position index for the plots
      position = list(itertools.product(range(nrows), range(ncols)))
      fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(10, 5*nrows))
      # Define a custom color for the scatter plots
      scatter_color = 'orange'
      for col, pos in zip(numeric_cols, position):
          ax = axes[pos[0]][pos[1]]
          ax.scatter(df.index, df[col], color=scatter_color)
          ax.set_xlabel('Index')
          ax.set_ylabel(col)
          ax.set_title(f'{col} vs Index')
      # Remove empty subplots
      if len(numeric_cols) % 2 != 0:
          fig.delaxes(axes.flatten()[-1])
      plt.show()
```



```
[15]: # Define a function to handle outliers in a column using IQR method
      def handle_outliers(column):
          Q1 = column.quantile(0.25)
          Q3 = column.quantile(0.75)
          IQR = Q3 - Q1
          lower_bound = Q1 - 1.5 * IQR
          upper_bound = Q3 + 1.5 * IQR
          return column[(column > lower_bound) & (column < upper_bound)]</pre>
      # Apply the function to handle outliers in each float column
      float_cols = df.select_dtypes(include=['float64']).columns
      for col in float_cols:
          df[col] = handle_outliers(df[col])
      # Apply the function to handle outliers in each integer column
      int_cols = df.select_dtypes(include=['int64']).columns
      for col in int_cols:
          df[col] = handle_outliers(df[col])
[16]: # List of columns identified for removal due to little to no variation
      to_drop = [
          ' Country of birth (UK/elsewhere) | Instance 0',
          ' Alcohol drinker status | Instance 0',
          'Ever had rheumatoid arthritis affecting one or more joints',
          'Ethnic background | Instance 0',
          'Genetic ethnic grouping',
          'Average total household income before tax | Instance 2',
          'Tobacco smoking'
      ]
      # Extend the to_drop list with additional columns
      to_drop.extend([
          'additional column 1',
          'additional_column_2'
          # Add more columns as needed
      ])
      # Filter out columns marked for removal from the original columns list
      columns = [item for item in columns if item not in to_drop]
[18]: #Let's look at object columns
      obj_cols = df[columns].select_dtypes(include=['object'])
      obj_cols
```

```
[18]:
                  Treatment/medication code | Instance 0 \
                         1140921600 | 1141191044 | 1140928274
      1
                                                  1140884488
      2
                                                          {\tt NaN}
      3
                                                          NaN
      4
            1189 | 1140909674 | 1141188442 | 1140876592 | 99999
      295
                                                          NaN
      296
                                     1140879802 | 2038460150
      297
                                                  1140883534
      298
                                                          NaN
      299
                                                  2038460150
           Illnesses of father | Instance 0 \
      0
                                     8|6|1|-27
      1
                                       8|2|-27
      2
                                          2 | -27
                                            3|2
      3
      4
                                          6|-27
                                          6 | -27
      295
      296
                                            {\tt NaN}
      297
                                        -17 | -27
                                          2|-27
      298
      299
                                          2 | -27
           Non-cancer illness code, self-reported | Instance 2 \
                                                          1226 | 1262
      0
      1
                                                                1465
      2
                                                                1515
      3
                                                    1459 | 1065 | 1526
      4
                                                          1469 | 1538
      295
                                                                1111
      296
                                         1065 | 1286 | 1458 | 1078 | 1465
      297
                            1473 | 1265 | 1081 | 1386 | 1066 | 1655 | 99999
      298
                                                                1196
      299
                                                    1111 | 1536 | 1312
           Vitamin and mineral supplements | Instance 2 \
      0
                                                           -7
      1
      2
                                                           -7
      3
                                                           -7
      4
      295
```

```
-7
296
297
                                                      -7
                                                      -7
298
                                                       7
299
                                           Diagnoses - ICD10 \
0
      E039|F171|F250|F329|F419|I10|R33|S7200|T814|W0...
1
               M8725|N492|N508|S7210|T931|V134|Z470|Z874
2
      D758 | E538 | I269 | J90 | K011 | K029 | K296 | K30 | K573 | K57...
3
      A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
4
                  H001|I839|N950|R298|R42|Z866|Z871|Z888
295
                                                            NaN
296
    F101|F314|F329|I10|K573|K579|M199|M819|R194|R9...
297
      G439 | H534 | I632 | I639 | I694 | Q211 | R42 | Z136 | Z864 | Z867
298 B968|F329|I10|N359|N390|S7200|W184|Z038|Z115|Z...
299 A099 | D033 | E780 | G551 | J459 | M169 | M179 | M199 | M2333 | ...
    Illnesses of mother | Instance 0 \
0
                                    12 | 10
1
                                  -17 | -27
2
                                  8|1|-27
3
                                  -17 | -27
4
                                  2|1|-27
. .
                                      •••
295
                                    91 - 27
296
                                      NaN
297
                                  -17 | -27
298
                                    2 | -27
299
                                 10|2|-27
                               Diagnoses - secondary ICD10
0
                    E039|F171|F329|F419|I10|R33|Z864|Z911
1
                                               T931 | Z470 | Z874
2
      D758 | E538 | I269 | J90 | K029 | K296 | K573 | K590 | M8199 | N...
3
      A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
4
                                         R298 | Z866 | Z871 | Z888
. .
295
                                                            NaN
296 F101|F329|I10|K579|M199|M819|T404|T426|X619|X6...
297
                        G439|H534|I694|Q211|R42|Z864|Z867
298
      B968 | F329 | I10 | N390 | W184 | Z115 | Z501 | Z507 | Z864 | Z874
299 E780 | G551 | J459 | M169 | M179 | M199 | M2578 | M4806 | M513...
```

[300 rows x 7 columns]

```
[19]: | # Print unique values for the specified columns
      print(df['Vitamin and mineral supplements | Instance 2'].unique(), '\n')
      print(df['Illnesses of mother | Instance 0'].unique(), '\n')
      print(df['Illnesses of father | Instance 0'].unique(), '\n')
     ['-7' '7' '4' '4|7' nan '3|4' '2|3|7' '3|7' '3|4|6' '3' '2|3|4' '2' '1|4'
      '6' '3|4|7' '2|3|4|5|7' '2|7' '-3' '2|4' '4|5' '5' '2|6' '4|6' '1|2|5|6'
      '1|2|3|4|5|6|7' '6|7']
     ['12|10' '-17|-27' '8|1|-27' '2|1|-27' nan '10|-27' '-11|-27' '4|-17'
      '10|8|5' '8|-21' '1|-27' '11|2' '8|2|1|-27' '12|4|-17' '8|4' '9|8|-27'
      '8|-27' '2|-27' '10|9|-27' '11|10' '5|1' '11|5|-17' '8|2|-27' '11|-17'
      '12|8' '10|8|2|1|-27' '6|-27' '6|1|-27' '11|8' '8|5' '3|-17' '6|3'
      '9|-27' '9|8|2|1|-27' '12|-17' '5|-17' '9|8|5|2|1' '8|6|-27' '9|2|-27'
      '10|2|-21' '12|8|1' '-11|-21' '8|4|1' '9|8|3|1' '9|8|5|2' '8|2|1|-21'
      '12|9' '3|2' '4|1' '1|-21' '8|6|1|-27' '10|1|-27' '6|-21' '11|8|2'
      '9|8|4' '12|-11' '9|-21' '12|4|2|1' '10|8|-21' '8|5|2' '5|3|-17'
      '9|1|-27' '9|8|2|-27' '12|1' '9|8|-21' '10|2|-27']
     ['8|6|1|-27' '8|2|-27' '2|-27' '3|2' '6|-27' nan '3|-17' '8|1|-27' '4|-17'
      '2|1|-27' '-17|-27' '6|-21' '10|-27' '8|-27' '-11|-27' '8|2|-21' '6|3|1'
      '1|-27' '6|1|-27' '13|-17' '13|8|1' '10|8|1|-27' '9|1|-21' '12|2|1'
      '8|4|1' '12|-17' '8|6|2|-21' '-11|-21' '9|3|1' '9|-21' '3|-11' '4|1'
      '6|3' '9|8|-27' '10|9|2|-27' '9|-27' '12|9|1' '9|1|-27' '13|12|8|1'
      '9|2|1|-27' '9|2|-27' '13|9|8|6|1' '6|4|1' '10|6|-27' '-17|-21'
      '13|3|-17' '6|4' '1|-21' '12|4|-17' '9|8|1|-27' '9|8|2|-27' '12|9|8|1'
      '9|4' '8|2|1|-27' '12|9' '12|2' '10|9|-27' '13|1' '13|8' '8|6|-27'
      '10|-21' '11|-17' '13|9|8|2' '12|8' '8|3' '10|2|-27' '8|-21' '13|9|4|3|1'
      '12|8|1' '9|8|1|-21']
[20]: # List of columns to drop
      to_drop = ['Illnesses of father | Instance O', 'Vitamin and mineral supplements_
      'Illnesses of mother | Instance O', 'Diagnoses - secondary ICD10',
                 'Treatment/medication code | Instance 0']
      # Remove specified columns from the list of columns
      columns = [item for item in columns if item not in to_drop]
      # Display the updated list of columns
      columns
[20]: ['Femur neck BMC (bone mineral content) (right) | Instance 2',
       'Femur neck BMD (bone mineral density) (right) | Instance 2',
       'Femur wards BMD (bone mineral density) (right) | Instance 2',
```

```
'FRAX_without_bmd',
       'Non-cancer illness code, self-reported | Instance 2',
       'Pelvis BMC (bone mineral content) | Instance 2',
       'Frequency of consuming six or more units of alcohol',
       'Number of treatments/medications taken | Instance 0',
       'Duration of moderate activity | Instance 2',
       'Genetic sex',
       'Fractured/broken bones in last 5 years | Instance 0',
       'Age at recruitment',
       'Femur neck BMC (bone mineral content) (left) | Instance 2',
       'Diagnoses - ICD10',
       'Femur wards BMD (bone mineral density) T-score (right) | Instance 2',
       'Femur total BMD (bone mineral density) (right) | Instance 2',
       'Falls in the last year | Instance 0',
       'Femur troch BMD (bone mineral density) T-score (left) | Instance 2',
       'Calcium | Instance O(participant - p30680_i0)',
       'Standing height | Instance 0',
       'Alcohol drinker status | Instance 0',
       'Unnamed: 0',
       'Participant ID',
       'Smoking status | Instance 0',
       'Femur wards BMD (bone mineral density) T-score (left) | Instance 2',
       'Femur troch BMD (bone mineral density) (left) | Instance 2',
       'Sex',
       'Femur total BMD (bone mineral density) T-score (left) | Instance 2',
       'Major dietary changes in the last 5 years | Instance 0',
       'Femur troch BMD (bone mineral density) (right) | Instance 2',
       'Femur total BMD (bone mineral density) T-score (right) | Instance 2',
       'Femur wards BMD (bone mineral density) (left) | Instance 2',
       'Femur neck BMD (bone mineral density) (left) | Instance 2',
       'FRAX_bmd',
       'Weight | Instance O(participant - p21002_i0)',
       'Femur total BMD (bone mineral density) (left) | Instance 2',
       'Variation in diet | Instance 2',
       'Country of birth (UK/elsewhere) | Instance 0']
[21]: # Copy the DataFrame with selected columns
      df_copy = df[columns].copy()
      # Select columns with data type 'object'
      object_columns = df_copy.select_dtypes(include=["object"])
      # Display the DataFrame containing only object columns
      object_columns
```

'Femur troch BMD (bone mineral density) T-score (right) | Instance 2',

```
[21]:
                         Non-cancer illness code, self-reported | Instance 2 \
                                                                                                                                1226 | 1262
               0
               1
                                                                                                                                             1465
               2
                                                                                                                                             1515
               3
                                                                                                                   1459 | 1065 | 1526
               4
                                                                                                                                1469 | 1538
               . .
                                                                                                                                               •••
               295
                                                                                                                                             1111
               296
                                                                                          1065 | 1286 | 1458 | 1078 | 1465
               297
                                                               1473 | 1265 | 1081 | 1386 | 1066 | 1655 | 99999
               298
                                                                                                                                             1196
               299
                                                                                                                   1111 | 1536 | 1312
                                                                                                            Diagnoses - ICD10
               0
                           E039|F171|F250|F329|F419|I10|R33|S7200|T814|W0...
               1
                                               M8725 | N492 | N508 | S7210 | T931 | V134 | Z470 | Z874
               2
                           D758 | E538 | I269 | J90 | K011 | K029 | K296 | K30 | K573 | K57...
               3
                           A099|B370|B955|B968|B972|D649|E559|E669|E780|F...
               4
                                                       H001 | I839 | N950 | R298 | R42 | Z866 | Z871 | Z888
               295
                                                                                                                                               NaN
               296 F101|F314|F329|I10|K573|K579|M199|M819|R194|R9...
               297
                           G439|H534|I632|I639|I694|Q211|R42|Z136|Z864|Z867
               298 B968|F329|I10|N359|N390|S7200|W184|Z038|Z115|Z...
                          A099|D033|E780|G551|J459|M169|M179|M199|M2333|...
               [300 rows x 2 columns]
[23]: import pandas as pd
               import numpy as np
               # Expand the entries in the 'Diagnoses - ICD10' column into separate columns_{\sqcup}
                 ⇔and create dummy variables
               df_copy['Diagnoses - ICD10'] = df_copy['Diagnoses - ICD10'].apply(lambda x: x.
                  ⇒split('|') if pd.notnull(x) else np.nan)
               df1 = df_copy['Diagnoses - ICD10'].str.join('|').str.get_dummies()
               # Do the same for the cancer illness column
               df_copy['Non-cancer illness code, self-reported | Instance 2'] = ___
                  Germand Grand Gra

¬x: x.split('|') if pd.notnull(x) else np.nan)
               df2 = df_copy['Non-cancer illness code, self-reported | Instance 2'].str.
                  →join('|').str.get dummies()
               df1.head()
```

```
[23]:
                        A084
                                      A415
                                             A418
                                                            A498
                                                                   B07
                                                                                   Z954
                                                                                          Z955
          A039
                 A048
                               A099
                                                    A419
                                                                         B181
              0
                            0
                                                 0
                                                                                       0
       0
                     0
                                   0
                                          0
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                              0
       1
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                       0
                                                                                              0
       2
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                       0
                                                                                              0
       3
              0
                     0
                            0
                                          0
                                                 0
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                              0
                                   1
                                                                                       0
       4
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                       0
                                                                                              0
          Z958
                 Z960
                        Z961
                               Z966
                                       Z967
                                              Z968
                                                     Z974
                                                            Z988
                            0
                                                 0
                                                        0
       0
              0
                     0
                                   0
                                          0
                                                               0
       1
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
       2
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
       3
              0
                     0
                            0
                                   1
                                          0
                                                 0
                                                        0
                                                               0
                                                               0
       4
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
       [5 rows x 1157 columns]
[24]:
      df2.head()
[24]:
                                      1075
                                                     1081
                                                            1082
                                                                   1093
                                                                          1094
                                                                                     1653
          1065
                 1066
                        1072
                               1074
                                              1078
                                                                                           \
       0
              0
                     0
                            0
                                          0
                                                 0
                                                        0
                                                               0
                                                                      0
                                                                             0
                                                                                        0
                                   0
                                                 0
       1
              0
                     0
                            0
                                   0
                                          0
                                                        0
                                                               0
                                                                      0
                                                                             0
                                                                                        0
       2
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                       0
                                                                             0
                                                                                        0
       3
              1
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                             0
                                                                                        0
       4
              0
                     0
                            0
                                                 0
                                                        0
                                                               0
                                                                                        0
                                   0
                                          0
                                                     1670
                                                                   99999
          1655
                 1656
                        1657
                               1665
                                       1666
                                              1668
                                                            1677
       0
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                       0
       1
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                       0
       2
                                                                       0
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
       3
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                       0
              0
                     0
                            0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                       0
       [5 rows x 186 columns]
[25]: # Concatenate all three dataframes together along the columns (axis=1)
       df_final = pd.concat([df_copy, df1, df2], axis=1)
       # Drop the original columns 'Diagnoses - ICD10' and 'Non-cancer illness code, \Box
        ⇔self-reported | Instance 2'
       # axis=1 indicates that we're dropping columns, inplace=True modifies the
        \hookrightarrow DataFrame in place
       df_final.drop(['Diagnoses - ICD10', 'Non-cancer illness code, self-reported | U
        →Instance 2'], axis=1, inplace=True)
```

Display the information about the final DataFrame

df_final.info()

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 300 entries, 0 to 299
     Columns: 1381 entries, Femur neck BMC (bone mineral content) (right) | Instance
     2 to 99999
     dtypes: bool(1), float64(33), int64(1347)
     memory usage: 3.2 MB
[26]: # Create a cross-tabulation of 'fracture' by 'Sex'
      cross sex = pd.crosstab(df['Sex'], df['fracture'])
      # Display the cross-tabulation
      cross_sex
[26]: fracture False True
     Sex
                          70
      0
                   88
      1
                   99
                          43
[27]: from sklearn.feature_selection import VarianceThreshold
      # Define the threshold for variance
      threshold = 0.01
      # Create a VarianceThreshold object
      selector = VarianceThreshold(threshold=threshold)
      # Fit the selector to the DataFrame
      selector.fit(df_final)
      # Get the boolean array indicating selected features
      features = selector.get_support()
      # Get the names of the selected features
      kept_features = df_final.columns[features]
      # Update the DataFrame to contain only selected features
      df_final = df_final[kept_features]
      # Display the DataFrame with selected features
      df_final
     C:\Users\krestty\anaconda3\Lib\site-
     packages\sklearn\feature_selection\_variance_threshold.py:112: RuntimeWarning:
     Degrees of freedom <= 0 for slice.
       self.variances_ = np.nanvar(X, axis=0)
```

```
[27]:
           Femur neck BMC (bone mineral content) (right) | Instance 2 \
                                                         3.40979
      0
      1
                                                         5.27111
      2
                                                         5.45140
      3
                                                         3.86018
      4
                                                         3.29454
      . .
      295
                                                         4.15081
      296
                                                         2.88761
                                                         5.59233
      297
      298
                                                             NaN
      299
                                                         4.66290
           Femur neck BMD (bone mineral density) (right) | Instance 2 fracture \
                                                        0.723206
      0
                                                                                True
      1
                                                        0.868022
                                                                                True
      2
                                                        0.996041
                                                                                True
      3
                                                        0.687088
                                                                                True
      4
                                                        0.708290
                                                                               False
      . .
                                                        0.942686
      295
                                                                               False
      296
                                                        0.593618
                                                                                True
      297
                                                        1.179270
                                                                               False
      298
                                                             NaN
                                                                                True
      299
                                                        0.801873
                                                                                True
           Femur wards BMD (bone mineral density) (right) | Instance 2 \
                                                        0.460578
      0
      1
                                                        0.717409
      2
                                                        0.768620
      3
                                                        0.436912
      4
                                                        0.490887
      295
                                                       0.767654
      296
                                                        0.433743
      297
                                                        0.871136
      298
                                                             \mathtt{NaN}
      299
                                                        0.507284
           Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
      0
                                                      -2.239100
      1
                                                      -0.599261
      2
                                                      -0.235811
      3
                                                      -2.094850
      4
                                                      -1.809550
      295
                                                       0.477970
```

```
296
                                                -1.331690
297
                                                 0.162941
298
                                                      NaN
299
                                                -1.909560
     FRAX_without_bmd Pelvis BMC (bone mineral content) | Instance 2 \
                   0.6
0
                                                                  196.965
1
                   0.1
                                                                  384.824
                   2.5
2
                                                                  322.331
3
                   0.9
                                                                  333.434
4
                   0.9
                                                                  206.776
                                                                  264.125
295
                   0.4
296
                   1.3
                                                                  198.665
297
                   0.1
                                                                  377.965
298
                   1.6
                                                                  311.616
299
                                                                  345.933
                   2.6
     Frequency of consuming six or more units of alcohol \
0
                                                       NaN
1
                                                       2.0
2
                                                       1.0
3
                                                      NaN
4
                                                       1.0
. .
295
                                                      NaN
296
                                                      NaN
297
                                                      3.0
298
                                                       2.0
299
                                                       1.0
     Number of treatments/medications taken | Instance 0 \
0
                                                       3.0
                                                       1.0
1
2
                                                       0.0
3
                                                       0.0
4
                                                       5.0
295
                                                       0.0
                                                       2.0
296
297
                                                       1.0
298
                                                      0.0
299
                                                       1.0
     Duration of moderate activity | Instance 2 ... 1567
                                                              1568
                                                                    1569
                                                                           1570 \
0
                                              -1.0
                                                                 0
                                                                        0
                                                           0
                                                                              0
1
                                              10.0 ...
                                                                 0
                                                                        0
                                                                              0
                                                           0
```

```
30.0 ...
2
                                                      0
3
                                       20.0 ...
                                                  0
                                                       0
4
                                       -1.0 ...
                                                       0
                                                             0
                                                                  0
                                        ... ... ...
. .
295
                                       60.0 ...
                                                  0
                                                       0
                                                             0
                                       60.0 ...
296
                                                  0
                                                       0
                                                             0
297
                                       60.0 ...
                                                  0
                                                      0
                                                             0
                                                                  0
                                                                  0
298
                                       60.0 ...
                                                  0
                                                      0
                                                             0
                                                                  0
299
                                       -1.0 ...
                                                  0
                                                      0
                                                             0
```

	1571	1597	1598	1617	1637	99999
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
295	0	0	0	0	0	0
296	0	0	0	0	0	0
297	0	0	0	0	0	1
298	0	0	0	0	0	0
299	0	0	0	0	0	0

[300 rows x 336 columns]

```
[28]: # Calculate correlation matrix
      correlation_matrix = df_final.corr()
      # Extract correlation with the target variable 'fracture' and sort by absolute_
      ⇔values in descending order
      fracture_correlation = correlation_matrix['fracture'].drop('fracture') # Drop_u
      →'fracture' column for self-correlation
      fracture_correlation = fracture_correlation.abs().sort_values(ascending=False)
      # Print correlation with likelihood of hip fractures
      print("Correlation with likelihood of hip fractures:")
      print(fracture_correlation)
      # Define threshold for correlation
      threshold = 0.2
      # Identify features with correlation below the threshold
      unnecessary_features = fracture_correlation[fracture_correlation < threshold].
       ⇔index
      # Remove unnecessary features from the DataFrame
      df_final.drop(columns=unnecessary_features, inplace=True)
```

```
# Print DataFrame after removing unnecessary features
print("\nDataFrame after removing unnecessary features:")
print(df_final)
Correlation with likelihood of hip fractures:
                                                                          0.782352
Femur total BMD (bone mineral density) T-score (left) | Instance 2
                                                                          0.500803
Femur total BMD (bone mineral density) T-score (right) | Instance 2
                                                                          0.491086
                                                                          0.490624
Femur total BMD (bone mineral density) (left) | Instance 2
                                                                          0.484233
Unnamed: 0
                                                                          0.001387
R31
                                                                          0.000816
1396
                                                                          0.000816
1154
                                                                          0.000569
M1399
                                                                          0.000569
Name: fracture, Length: 335, dtype: float64
DataFrame after removing unnecessary features:
     Femur neck BMC (bone mineral content) (right) | Instance 2 \
0
                                                 3.40979
1
                                                 5.27111
2
                                                 5.45140
3
                                                 3.86018
4
                                                 3.29454
. .
295
                                                 4.15081
                                                 2.88761
296
297
                                                 5.59233
298
                                                     NaN
299
                                                 4.66290
     Femur neck BMD (bone mineral density) (right) | Instance 2 fracture \
                                                0.723206
0
                                                                        True
                                                                        True
1
                                                0.868022
2
                                                                        True
                                                0.996041
3
                                                0.687088
                                                                        True
4
                                                0.708290
                                                                       False
295
                                                0.942686
                                                                       False
296
                                                0.593618
                                                                        True
                                                                       False
297
                                                1.179270
298
                                                                        True
                                                     {\tt NaN}
299
                                                0.801873
                                                                        True
```

Femur wards BMD (bone mineral density) (right) | Instance 2 \

```
0
                                                  0.460578
1
                                                  0.717409
2
                                                  0.768620
3
                                                  0.436912
4
                                                  0.490887
. .
295
                                                  0.767654
                                                  0.433743
296
297
                                                  0.871136
298
                                                       {\tt NaN}
299
                                                  0.507284
     Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                                 -2.239100
1
                                                 -0.599261
2
                                                 -0.235811
3
                                                 -2.094850
4
                                                 -1.809550
. .
                                                       ...
295
                                                  0.477970
296
                                                 -1.331690
297
                                                  0.162941
298
                                                       {\tt NaN}
299
                                                 -1.909560
     FRAX_without_bmd Pelvis BMC (bone mineral content) | Instance 2 \
0
                   0.6
                                                                    196.965
                   0.1
1
                                                                    384.824
2
                   2.5
                                                                    322.331
3
                   0.9
                                                                    333.434
                   0.9
4
                                                                    206.776
                   0.4
295
                                                                    264.125
296
                   1.3
                                                                    198.665
297
                   0.1
                                                                    377.965
298
                   1.6
                                                                    311.616
299
                   2.6
                                                                    345.933
     Age at recruitment
0
                       58
                       42
1
2
                       69
3
                       62
4
                       58
. .
295
                       56
296
                       65
297
                       43
```

```
298
                             62
      299
                             68
           Femur neck BMC (bone mineral content) (left) | Instance 2 \
                                                           3.27879
     0
      1
                                                               NaN
      2
                                                           5.62017
      3
                                                           4.33504
      4
                                                           3.56223
      . .
      295
                                                           4.26806
      296
                                                           2.80757
      297
                                                           5.18932
      298
                                                           3.86859
      299
                                                           4.35525
           Femur wards BMD (bone mineral density) T-score (right) | Instance 2 \dots
     0
                                                        -3.457090
      1
                                                        -1.866090
                                                                                         •••
      2
                                                        -1.087540
      3
                                                        -4.023750
      4
                                                        -3.223950
      295
                                                        -1.094970
     296
                                                        -3.663520
      297
                                                        -0.683568
      298
                                                               {\tt NaN}
      299
                                                        -3.482430
                  W010
                         W019
                               W190
                                      Z115
                                             Z130
                                                    Z470
                                                           Z501
                                                                  Z507
                                                                        Z966
     0
               0
                     0
                            0
                                   0
                                          0
                                                 0
                                                       0
                                                              0
                                                                     0
                                                                            0
      1
               0
                     0
                            0
                                   0
                                          0
                                                 0
                                                       1
                                                              0
                                                                     0
                                                                            0
      2
               0
                            0
                     0
                                   0
                                          1
                                                 1
                                                       0
                                                              0
                                                                     0
                                                                            0
      3
               0
                     1
                            0
                                   0
                                          0
                                                 0
                                                       0
                                                              1
                                                                     0
                                                                            1
      4
               0
                     0
                            0
                                   0
                                          0
                                                 0
                                                       0
                                                              0
                                                                     0
                                                                            0
      . .
                     0
                                                 0
                                                              0
                                                                     0
                                                                            0
      295
               0
                            0
                                          0
      296
               0
                     1
                            0
                                   0
                                          0
                                                 0
                                                       0
                                                              0
                                                                            1
      297
               0
                     0
                            0
                                   0
                                          0
                                                 0
                                                       0
                                                              0
                                                                     0
                                                                            0
     298
               0
                            0
                                                 0
                                                                            0
                     0
                                   0
                                          1
                                                        0
                                                              1
                                                                     1
                            0
                                                 0
      299
               0
                     0
                                   0
                                          1
                                                       0
                                                              1
                                                                     1
                                                                            1
      [300 rows x 35 columns]
[30]: # Select numeric columns
      numeric_cols = df_final.select_dtypes(include=['float64', 'int64']).columns
```

```
# Fill missing values with the mean of each numeric column
df_final[numeric_cols] = df_final[numeric_cols].fillna(df_final[numeric_cols].
  →mean())
# Display the first few rows of the updated DataFrame
print(df_final.head())
   Femur neck BMC (bone mineral content) (right) | Instance 2 \
0
                                                 3.40979
                                                 5.27111
1
2
                                                 5.45140
3
                                                 3.86018
4
                                                 3.29454
   Femur neck BMD (bone mineral density) (right) | Instance 2 fracture \
0
                                                0.723206
                                                                         True
1
                                                0.868022
                                                                         True
2
                                                0.996041
                                                                         True
3
                                                0.687088
                                                                         True
4
                                                0.708290
                                                                        False
   Femur wards BMD (bone mineral density) (right) | Instance 2 \
0
                                                0.460578
1
                                                0.717409
2
                                                0.768620
3
                                                0.436912
4
                                                0.490887
   Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                               -2.239100
                                               -0.599261
1
2
                                               -0.235811
3
                                               -2.094850
4
                                               -1.809550
   \label{lem:bmd_policy} FRAX\_without\_bmd \ \ Pelvis \ BMC \ (bone \ mineral \ content) \ | \ Instance \ 2 \ \ \backslash
0
                 0.6
                                                                  196.965
1
                 0.1
                                                                  384.824
2
                 2.5
                                                                  322.331
3
                 0.9
                                                                  333.434
4
                                                                  206.776
                 0.9
   Age at recruitment \
0
                     58
1
                    42
2
                     69
3
                     62
```

```
3.278790
     1
                                                    4.708105
     2
                                                    5.620170
     3
                                                    4.335040
     4
                                                    3.562230
        Femur wards BMD (bone mineral density) T-score (right) | Instance 2 ... \
     0
                                                    -3.45709
     1
                                                    -1.86609
     2
                                                    -1.08754
     3
                                                    -4.02375
     4
                                                    -3.22395
        V184
              W010
                     W019
                           W190
                                  Z115
                                        Z130
                                               Z470
                                                     Z501
                                                            Z507
                                                                  Z966
     0
            0
                  0
                        0
                               0
                                     0
                                            0
                                                  0
                                                         0
                                                               0
     1
            0
                  0
                        0
                               0
                                     0
                                            0
                                                         0
                                                               0
                                                                     0
                                                  1
     2
            0
                  0
                        0
                               0
                                     1
                                            1
                                                  0
                                                         0
                                                               0
                                                                     0
     3
            0
                  1
                        0
                               0
                                     0
                                            0
                                                  0
                                                         1
                                                                     1
     4
            0
                  0
                        0
                               0
                                     0
                                            0
                                                  0
                                                         0
                                                                     0
      [5 rows x 35 columns]
[31]: df_final.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 300 entries, 0 to 299
     Data columns (total 35 columns):
          Column
                                                                                    Non-
     Null Count Dtype
          Femur neck BMC (bone mineral content) (right) | Instance 2
                                                                                    300
     non-null
                  float64
           Femur neck BMD (bone mineral density) (right) | Instance 2
                                                                                    300
                  float64
     non-null
      2
          fracture
                                                                                    300
     non-null
                  bool
          Femur wards BMD (bone mineral density) (right) | Instance 2
                                                                                    300
     non-null
                  float64
          Femur troch BMD (bone mineral density) T-score (right) | Instance 2
                                                                                    300
     non-null
                  float64
      5
          FRAX_without_bmd
                                                                                    300
                  float64
     non-null
          Pelvis BMC (bone mineral content) | Instance 2
                                                                                    300
     non-null
                  float64
```

4

0

58

Femur neck BMC (bone mineral content) (left) | Instance 2 \

•	recruitment	300
	int64 meck BMC (bone mineral content) (left) Instance 2	300
	float64 rards BMD (bone mineral density) T-score (right) Instance 2	300
	float64 otal BMD (bone mineral density) (right) Instance 2	300
	float64 croch BMD (bone mineral density) T-score (left) Instance 2	300
	float64 vards BMD (bone mineral density) T-score (left) Instance 2	300
	float64 croch BMD (bone mineral density) (left) Instance 2	300
	float64 cotal BMD (bone mineral density) T-score (left) Instance 2	300
15 Femur t	float64 roch BMD (bone mineral density) (right) Instance 2	300
16 Femur t	float64 cotal BMD (bone mineral density) T-score (right) Instance 2	300
17 Femur w	float64 vards BMD (bone mineral density) (left) Instance 2	300
18 Femur n	float64 leck BMD (bone mineral density) (left) Instance 2	300
19 FRAX_bm		300
20 Femur t	float64 cotal BMD (bone mineral density) (left) Instance 2	300
21 J189	float64	300
22 M819	int64	300
23 S7200	int64	300
24 S7210	int64	300
25 V184	int64	300
26 W010	int64	300
27 W019	int64	300
28 W190	int64	300
29 Z115	int64	300
30 Z130	int64	300

```
31 Z470
                                                                                  300
     non-null
                  int64
      32 Z501
                                                                                  300
     non-null
                  int64
      33 Z507
                                                                                  300
     non-null
                 int64
      34 Z966
                                                                                  300
     non-null
                  int64
     dtypes: bool(1), float64(19), int64(15)
     memory usage: 80.1 KB
[32]: X = df_final.copy()
      X.drop(['fracture','FRAX_bmd', 'FRAX_without_bmd'], axis=1, inplace=True)
      y = df_final['fracture'].astype('int')
      Х, у
[32]: (
            Femur neck BMC (bone mineral content) (right) | Instance 2 \
                                                       3.409790
       1
                                                       5.271110
       2
                                                       5.451400
       3
                                                       3.860180
       4
                                                       3.294540
                                                       4.150810
       295
       296
                                                       2.887610
       297
                                                       5.592330
       298
                                                       4.693209
       299
                                                       4.662900
            Femur neck BMD (bone mineral density) (right) | Instance 2 \
       0
                                                       0.723206
       1
                                                       0.868022
       2
                                                       0.996041
       3
                                                       0.687088
       4
                                                       0.708290
       . .
                                                       0.942686
       295
       296
                                                       0.593618
       297
                                                       1.179270
       298
                                                       0.886000
       299
                                                       0.801873
            Femur wards BMD (bone mineral density) (right) | Instance 2 \
       0
                                                       0.460578
       1
                                                       0.717409
                                                       0.768620
       2
       3
                                                       0.436912
```

```
4
                                                0.490887
. .
295
                                                0.767654
                                                0.433743
296
297
                                                0.871136
298
                                                0.672579
299
                                                0.507284
     Femur troch BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                               -2.239100
1
                                               -0.599261
2
                                               -0.235811
3
                                               -2.094850
4
                                               -1.809550
295
                                                0.477970
296
                                               -1.331690
297
                                                0.162941
298
                                               -0.616048
299
                                               -1.909560
     Pelvis BMC (bone mineral content) | Instance 2 Age at recruitment \
0
                                              196.965
                                                                         58
                                                                         42
1
                                              384.824
2
                                              322.331
                                                                         69
3
                                              333.434
                                                                         62
4
                                              206.776
                                                                         58
. .
295
                                              264.125
                                                                         56
296
                                              198.665
                                                                         65
297
                                              377.965
                                                                         43
298
                                                                         62
                                              311.616
299
                                              345.933
                                                                         68
     Femur neck BMC (bone mineral content) (left) | Instance 2 \
0
                                                3.278790
                                                4.708105
1
                                                5.620170
2
3
                                                4.335040
4
                                                3.562230
. .
295
                                                4.268060
296
                                                2.807570
297
                                                5.189320
298
                                                3.868590
299
                                                4.355250
```

```
Femur wards BMD (bone mineral density) T-score (right) | Instance 2 \
0
                                                 -3.457090
1
                                                 -1.866090
2
                                                 -1.087540
3
                                                 -4.023750
4
                                                 -3.223950
. .
                                                 -1.094970
295
296
                                                 -3.663520
297
                                                 -0.683568
298
                                                 -2.013155
299
                                                 -3.482430
     Femur total BMD (bone mineral density) (right) | Instance 2 \
0
                                                  0.723348
1
                                                  0.970351
2
                                                  0.973764
3
                                                  0.763192
4
                                                  0.757765
. .
295
                                                  1.036840
296
                                                  0.737125
297
                                                  1.165070
298
                                                  0.946033
299
                                                  0.857143
     Femur troch BMD (bone mineral density) T-score (left) | Instance 2 ...
0
                                                 -1.658510
1
                                                  0.129092
2
                                                 -0.859427
3
                                                 -2.649160
4
                                                 -1.824990
295
                                                  0.432288
296
                                                 -1.493160
297
                                                 -0.466274
298
                                                 -1.161010
299
                                                 -2.272810
     V184
           W010
                  W019
                         W190
                               Z115
                                      Z130
                                            Z470
                                                   Z501
                                                          Z507
                                                                Z966
0
        0
               0
                                   0
                                         0
                                                0
                                                                    0
        0
1
               0
                      0
                            0
                                   0
                                         0
                                                1
                                                             0
                                                                    0
2
        0
               0
                      0
                            0
                                   1
                                         1
                                                0
                                                      0
                                                             0
                                                                    0
3
        0
               1
                      0
                            0
                                   0
                                         0
                                                0
                                                      1
                                                             0
                                                                    1
4
        0
               0
                      0
                                   0
                                         0
                                                0
                                                                    0
                            0
                                                             0
. .
               0
                            0
                                   0
                                                0
                                                      0
                                                             0
                                                                    0
295
        0
                      0
```

```
297
               0
                     0
                                0
                                      0
                                             0
                                                   0
                                                                     0
       298
               0
                     0
                           0
                                0
                                      1
                                             0
                                                   0
                                                                     0
       299
               0
                                       1
       [300 rows x 32 columns],
              1
      1
             1
      2
             1
      3
             1
             0
      295
       296
             1
      297
             0
       298
             1
      299
             1
      Name: fracture, Length: 300, dtype: int32)
[33]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,__
       stest_size=0.2, train_size=0.8, random_state=42)
[35]: #Cross Validation
      from sklearn.model_selection import KFold
      from sklearn.ensemble import RandomForestClassifier
      kf = KFold(n_splits=5, shuffle=True)
      kf
[35]: KFold(n_splits=5, random_state=None, shuffle=True)
[37]: from sklearn.ensemble import RandomForestClassifier
      # Create an instance of RandomForestClassifier
      model = RandomForestClassifier()
      # Train the model
      model.fit(X_train, y_train)
      # Make predictions on the test data
      predictions = model.predict(X_test)
[38]: from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,
       →recall_score, f1_score
```

0 0 0

```
def calculate_metrics(true, predictions):
          # Calculate confusion matrix
          grid_cm = confusion_matrix(true, predictions)
          # Extract TP, TN, FP, FN from confusion matrix
          tn, fp, fn, tp = grid_cm.ravel()
          # Calculate specificity, sensitivity, precision, f1 score, and accuracy
          grid_specificity = tn / (tn + fp)
          grid_sensitivity = tp / (tp + fn)
          grid_precision = precision_score(true, predictions)
          grid_f1 = f1_score(true, predictions)
          grid_accuracy = accuracy_score(true, predictions)
          # Print confusion matrix
          print("The Confusion Matrix is:\n")
          print(grid_cm)
          # Return a list containing the calculated metrics
          return [(grid_accuracy, grid_sensitivity, grid_specificity, grid_precision,_

grid_f1)]
      # Example usage:
      # metrics = calculate_metrics(true_labels, predicted_labels)
[52]: from sklearn.model_selection import KFold
      # Define the number of splits for cross-validation
      n_splits = 5
      # Initialize KFold object
     kf = KFold(n_splits=n_splits, shuffle=True)
[48]: # Use Gridsearch to find the best hyperparameters
      from sklearn.model_selection import GridSearchCV
      # Define the parameters grid
      params = {
          'n_estimators': [40, 50, 100],
          'max_features': ['sqrt', 'log2'],
          'max_depth': [4, 5, 6, 8],
          'min_samples_split': [10, 12, 13],
          'min_samples_leaf': [6, 8, 10]
      # Instantiate GridSearchCV
```

grid_search = GridSearchCV(model, param_grid=params, cv=kf, scoring='recall')

```
# Fit the model
      grid_search.fit(X_train, y_train)
      # Get the best hyperparameters
      best_params = grid_search.best_params_
      # Get the best estimator
      best model = grid search.best estimator
      # Get the best score
      best_score = grid_search.best_score_
      # Get the CV results
      cv_results = grid_search.cv_results_
      # Print the best parameters and best score
      print("Best Hyperparameters:", best_params)
      print("Best Score:", best_score)
     Best Hyperparameters: {'max_depth': 5, 'max_features': 'log2',
     'min_samples_leaf': 6, 'min_samples_split': 12, 'n_estimators': 50}
     Best Score: 0.8156625074272134
[50]: #Use Gridsearch to find the best hyper parameters
      from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
      from random import randint
      params = {
          'n_estimators' : [40,50,100],
          'max_features': [ 'sqrt', 'log2'],
          'max depth': [4,5,6,8],
          'min_samples_split': [10,12,13],
          'min_samples_leaf': [6,8,10],
      }
      #Fit the model
      grid_search = GridSearchCV(model, param_grid=params, cv = kf, scoring='recall').
       →fit(X_train, y_train)
      grid_search
[50]: GridSearchCV(cv=KFold(n_splits=5, random_state=None, shuffle=True),
                   estimator=RandomForestClassifier(),
                   param_grid={'max_depth': [4, 5, 6, 8],
                               'max_features': ['sqrt', 'log2'],
                               'min_samples_leaf': [6, 8, 10],
                               'min_samples_split': [10, 12, 13],
                               'n_estimators': [40, 50, 100]},
```

```
scoring='recall')
[51]: print('Best parameters:', grid_search.best_params_)
     print('Best score:', grid_search.best_score_)
    Best parameters: {'max depth': 5, 'max features': 'sqrt', 'min samples leaf': 6,
     'min_samples_split': 13, 'n_estimators': 40}
    Best score: 0.8358434547908233
[53]: # Predict target variable for the training set
     y_pred_tr = grid_search.best_estimator_.predict(X_train)
     # Predict target variable for the test set
     y_pred = grid_search.best_estimator_.predict(X_test)
[55]: train_metrics = calculate_metrics(true=y_train, predictions=y_pred_tr)
     test_metrics = calculate_metrics(true=y_test, predictions=y_pred)
     grid_scores = pd.DataFrame(data=train_metrics + test_metrics,__
      grid scores['Model'] = ["Random Forest", 'Random Forest']
     grid_scores['Data'] = ['Train Data', 'Test Data']
     grid_scores
    The Confusion Matrix is:
    [[144
           61
     [ 15 75]]
    The Confusion Matrix is:
    [[34 3]
     [ 5 18]]
       Accuracy Sensitivity Specificity Precision F1 Score
[55]:
                                                                  Model \
     0 0.912500
                   0.833333
                               0.960000 0.925926 0.877193 Random Forest
     1 0.866667
                   0.782609
                               Data
     0 Train Data
       Test Data
```

[57]: best_model = grid_search.best_estimator_

importances = best_model.feature_importances_

Get feature importances

```
# Get feature names
feature_names = X_train.columns
# Sort feature importances in descending order
indices = np.argsort(importances)[::-1]
# Pl.ot.
plt.figure(figsize=(10, 6))
plt.title("Feature Importances")
plt.bar(range(X_train.shape[1]), importances[indices], align="center", __
 ⇔color='skyblue') # Change color here
plt.xticks(range(X_train.shape[1]), [feature_names[i] for i in indices],__
 →rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.xlabel("Feature")
plt.ylabel("Importance")
plt.tight_layout()
plt.show()
```



```
[]: from sklearn.model_selection import cross_val_score

score2 = cross_val_score(grid_search, X_train, y_train, cv=kf, scoring='recall')
grid_cv_score = score2.mean()
grid_cv_stdev = stdev(score2)
print('Cross Validation Recall scores are: {}'.format(score2))
```

```
print('Average Cross Validation Recall score: ', grid_cv_score)
print('Cross Validation Recall standard deviation: ', grid_cv_stdev)
[]:
```