CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Graph Search Algorithms

Instructor: Jingjin Yu

Outline

Solving problems via search

Basic graph search algorithms

```
⇒Graph
```

⇒BFS

⇒DFS

⇒Uniform cost

⇒A*

All pairs shortest path

A word on the principle of dynamic programming

Solving Problems through Search: An Example

Search for a route in Romania

Components of a Search Problem

- \Rightarrow State space S: in this case, an edge-weighted graph
- \Rightarrow Initial (start) and goal (final) states: x_I and x_G
 - ⇒There can be more than one start/goal state: solve one side of a Rubik's cube
- ⇒**Action**: in this case, moving from one state to a nearby state
- \Rightarrow Transition model: tuples (s_1, a, s_2) that are valid
 - \Rightarrow Sometimes written as $T(s_1, a) = s_2$
 - \Rightarrow There are usually costs/rewards associated with a transition, $R(s_1, a)$
- \Rightarrow **Solution**: valid transitions connecting x_I and x_G
 - ⇒Optimal solution: solution with lowest cost (e.g., length of the path)

Example: Vacuum-Cleaner World

- \Rightarrow State space: $\{A, B\} \times \{A_{dirty}, A_{clean}\} \times \{B_{dirty}, B_{clean}\}$
 - \Rightarrow State space size: $2 \times 2 \times 2 = 8$
- \Rightarrow Action: { left, right, suck }
- \Rightarrow Transition example: $(A, A_{clean}, B_{dirty}) \xrightarrow{\text{right}} (B, A_{clean}, B_{dirty})$
- ⇒Initial state: can be an arbitrary state
- \Rightarrow Goal states: $\{A, B\} \times \{A_{clean}\} \times \{B_{clean}\}$
- ⇒Cost: can be the number of actions in a solution

State Space of the Vacuum-Cleaner World

Example: 8-Queens

⇒State space: possible locations of 8 queens

 \Rightarrow State space size: $C(64,8) = \frac{64 \times 63 \times \cdots \times 57}{8!} \approx 4 \times 10^9$

- ⇒Action/transition: place or move a queen
- ⇒Initial state: can be an arbitrary state
- ⇒Goal states: a placement of queens in which no two queens attacking
- ⇒Cost: no clear cost

Example: 8-puzzle

- ⇒State space: arrangements of the 8 pieces
 - \Rightarrow State space size: 9! = 362880
- ⇒Action/transition: shifting a piece to the empty cell
- ⇒Initial state: an arbitrary state
- ⇒Goal state: an arbitrary fixed state
- ⇒Cost: number of actions (moves)

Discrete Search Algorithms

What are discrete search algorithms?

- ⇒An algorithm whose **data structure** is a graph
- ⇒That is, a set of "nodes" with "neighborhoods"
- ⇒The graph may be explicit
- ⇒Or it may be implicit
 - ⇒ What are the nodes here?
 - ⇒ And neighborhoods?
- ⇒And even not fully known!

8 Queens

8-puzzle

C&C: Red alert (Electronic Arts)

Graph View of Search: A Recap

Examples Revisited: Vacuum World

Examples Revisited: Navigation

Examples Revisited: Eight Queens

Examples Revisited: Eight Puzzle

Applications of Discrete Search Algorithms

Navigation

Robot motion planning

Competitive chess

and go

Game Al

Graph Basics

A graph G = (V, E) is a set of vertices V and a set of edges E

⇒Example

$$\Rightarrow V = \{A, B, C, G, S\}$$

$$\Rightarrow E = \{(A, B), (A, C), (A, G), (A, S), (B, S), (B, C), (C, G)\}$$

- ⇒A graph may be **directed**
- ⇒There can be **multi-edges** between two vertices
 - ⇒ This is called a **multi-graph**
 - ⇒ We will not consider multi-graphs in our course

Basic properties

- \Rightarrow An undirected graph with n vertices has $\underline{\mathsf{at}\;\mathsf{most}}^n$
 - ⇒ When this happens, the graph is a **complete** graph
- ⇒A graph is **connected** if there is a path between any two vertices
- \Rightarrow A connected graph with n-1 edges is a **tree**

A Generic Graph Search Algorithm

```
input: G = (V, E), x_I, x_G

AddToQueue(x_I, Queue); // Add x_I to a queue of nodes to be expanded while(!IsEmpty(Queue))

x \leftarrow \text{Front}(Queue); // Retrieve the front of the queue if(x.expanded == true) continue; // Do not expand a node twice x.expanded = true; // Mark x as expanded if(x == x_G) return solution; // Return if goal is reached for each neighbor n_i of x // Add all neighbors of to the queue if(n_i.expanded == false) AddToQueue(n_i, Queue) return failure;
```

Different graph search algorithms (breadth first, depth-first, uniform-cost, ...) differ at the function AddToQueue

To retrieve the actual path, use back pointers

Classical Search Algorithms

- ⇒Breadth-first search (BFS)
 - ⇒Always add new nodes at the **end** of the queue
- ⇒ Depth-first search (DFS)
 - ⇒Always add new nodes in the **front** of the queue
- ⇒Uniform-cost (Dijkstra's)
 - ⇒Always keep the node with the **best cost** in the front of the queue
- ⇒A*
 - ⇒Similar to uniform-cost, but also uses a **guess** of distance to goal

Breadth First search

Problem graph (a weighted directed graph)

Neighbor list
S: A, B
A: B, C, G
B: C
C: G
G:

Running BFS graph search (we do not use weights here)

Path can be retrieved by storing S in A and A in G as back pointers.

Depth First search

Running DFS graph search (again we do not use weights here)

Q: S

Q: B, A

Q: C, A

Q: G, A

Q: A

Uniform-Cost Search

Maintain queue order based on current cost

- ⇒ Produces **optimal** path!
- ⇒This is basically the Dijkstra's algorithm

Admissible and Consistent Heuristic

 \Rightarrow Assume the cheapest path from x to a goal is c(x), an **admissible** heuristic satisfies

$$h(x) \le c(x)$$

⇒A **consistent** heuristic is defined as

$$h(n) \le c(n, n') + h(n')$$

⇒A form of triangle inequality

⇒The reverse is not always true

⇒Example of heuristic functions

- ⇒ Manhattan distance
- ⇒ Straight-line distance

A* Search w/ a Consistent Heuristic

State	h(x)
S	7
Α	6
В	4
С	2
G	0

A* Search w/ an Inadmissible Heuristic

State	h(x)
S	7
Α	6
В	4
С	20
G	0

Not optimal!

h(x) is **inadmissible**, e.g., h(C) = 20 > 3 = c(C), the actual cost from C to G

A* Search w/ an Inconsistent Heuristic

State	h(x)
S	7
Α	6
В	2
С	1
G	0

Not optimal!

h(x) is **inconsistent**, e.g., h(S) > c(S, B) + h(B), h(A) > c(A, B) + h(B)

Heuristic Function Design

For route finding problems, Euclidean distance is consistent ⇒Also very efficient!

Designing heuristic functions can be non-trivial

Consider two heuristics for the 8-puzzle

 $\Rightarrow h_1$: number of misplaced pieces

 $\Rightarrow h_2$: sum of Manhattan distances to goal for all pieces

Heuristic Function Design

 h_1 : #misplaced game pieces = 8

 h_2 : sum Manhattan distances = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Both heuristics are admissible and consistent

- ⇒ How to choose?
- \Rightarrow Generally, using the largest h is preferred: closer to the actual cost
- \Rightarrow Because h are **underestimates**
- \Rightarrow In this case, we can use h_2 or simply $h = \max\{h_1, h_2\}$

Advantage of A* Search

Both A* and uniform-cost (i.e., Dijkstra's) are optimal. Why A*?

⇒ Because A* biases the search toward the goal

⇒ A* may visit much fewer nodes

⇒Similarly, better heuristic → smaller explored area

All Pairs Shortest Paths (Floyd-Warshall)

Floyd-Warshall is a type of dynamic programming

- ⇒So are most other optimal search algorithms (e.g., Dijkstra, A*)
- ⇒ Pseudo-code

- ⇒ Does not directly produce paths
- ⇒A path tree from any vertex can be constructed by adding back pointers
- \Rightarrow Runs in time $O(|V|^3)$

The Principle of Dynamic Programming

Dynamic programming is a type of recursion

- ⇒It breaks a big problem into smaller pieces
 - \Rightarrow E.g., $P(n) = P(n_1) + P(n_2)$ with $n = n_1 + n_2$
- ⇒The problem must have structures that allow computation to be reused
 - ⇒ E.g., for path optimality, any segment of an optimal path must also be optimal

- ⇒ Divide-and-conquer search algorithms, e.g., merge-sort, are special cases
 - $\Rightarrow P(n) = P(n_1) + P(n_2) \text{ for } n_1 = n_2 = \frac{n}{2}$
- ⇒Dijkstra's and A* are also types of dynamic programming

Dynamic Programming in Search

Recall AddToQueue is the crucial step of graph search

- ⇒BFS and DFS do not care about edge costs
- ⇒Uniform cost and A* do
- ⇒This is in fact dynamic programming!
- ⇒Priority of unvisited = cost-to-come + estimated cost-to-go
- \Rightarrow I.e., f = g + h
 - $\Rightarrow g$, cost-to-come, is fixed
 - \Rightarrow h, estimated cost-to-go, determines algorithm behavior
 - \Rightarrow Uniform cost: h = 0
 - \Rightarrow A*: *h* is consistent
 - \Rightarrow Other behaviors are possible by changing h

D* Algorithm Brief Intro

D* and D*-lite stand for "dynamic" A*

- ⇒Supports previously unknown obstacles
- ⇒Initially, for parts of the environment that is unknown, assume no obstacle
- ⇒Runs A* backwards to find an initial optimal solution
- ⇒Then, execute the path
- ⇒If we hit an obstacle along the way
 - ⇒ Update the node itself to be unavailable
 - ⇒ Put all its descendent nodes on the queue for search again
 - ⇒ Do the above step recursively
 - ⇒ Restart the A* search to find an optimal path
- ⇒Repeat the previous two steps
- ⇒One may view D* as running many A* searches
- ⇒A new A* search will be run as a previously unknown obstacle is met
- ⇒ More details: https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar-howie.pdf

