業

西安电子科技大学

望途旅游,本港游 / 自来是 试 壓 考试时间 120 分钟

题	号	444	=	三.1	三.2	三.3	三.4	三.5	总分
得	分					1 -1.14	39.	4 - 0 .	

- 1. 考试形式: 闭卷: 2. 本试卷共三大题, 满分 100 分; 3. 考试日期: 2018
- 一. 单项选择题 (每小题 4 分, 共 20 分)
- 1. 针对随机事件 A, B 的正确说法是 [
 - (A) P(AB) = P(A)P(B) 的一个充分条件是 $A = \emptyset$ (B) 若 P(AB) = 0,则 A,B 互不相容

(C) $P(A \cup B) = P(A) + P(B)$

- **(D)** P(A-B) = P(A) P(B)
- 2. 若随机变量 X 和 Y 相互独立,则一定有 [
- (A) X 是离散的 Y 不是离散的 (B) X, Y 的联合分布函数等于边缘分布函数之积
- (C) X, Y 的联合概率密度等于边缘概率密度之积 (D) E(XY) = E(X)E(Y)
- 3. 设 X_1, X_2, X_3, X_4 独立同分布, $E(X_1) = 0$, $D(X_1) = 1$,则[
 - (A) $D(\frac{1}{x})=1$

- **(B)** $D(X_1-X_2) = D(X_3+X_4)$
- (C) $D(X_1 X_2) = 0$ (D) $D(X_1 X_2) = 1$
- 4. 若 $\lim_{n\to\infty} P\left\{\frac{1}{n}\sum_{k=1}^{n}X_k-a\right>1\right\}=0$,其中 a 是非随机的常数,则 [].
 - (A) $\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} X_k a \right| > 0 \right\} = \frac{1}{2}$ (B) $\lim_{n \to \infty} P\left\{ \frac{1}{n} \sum_{k=1}^{n} X_k a < 1 \right\} = 1$
 - (C) $\lim_{n \to \infty} P\left\{\frac{1}{n}\sum_{k=1}^{n} X_k a < -1\right\} = 1$ (D) $\lim_{n \to \infty} P\left\{\left|\frac{1}{n}\sum_{k=1}^{n} X_k a\right| > 2\right\} = 0$
- 5. X1,…,X1,是独立同分布的标准正态随机变量,下面表述正确的是[

- (A) $X_2^2 \sim \chi^2(1)$ (B) $\frac{\chi_1}{\sqrt{\chi_2^2/2}} \sim t(2)$ (C) $\frac{\chi_1}{\chi_2} \sim t(1)$ (D) $\frac{\chi_1}{\sqrt{(\chi_1^2 + \dots + \chi_2^2)/n}} \sim t(n)$
- 二. 填空题 (每小题 4 分, 共 20 分)
- 1. 设X的概率密度是偶函数且 $P\{X \le -2\} = \frac{3}{8}$,则 $P\{0 \le X \le 2\} = [____]$.
- 2. 某人喜欢玩"娃娃机",每次成功抓到一个娃娃的概率是 $\frac{1}{3}$,则从他(她)第一次尝 试开始直到成功抓到一个娃娃结束,平均尝试的次数为! 1.
- 3. 设 X_1, \dots, X_n 是来自X 的样本,X 的均值 μ 和方差 σ^2 存在但都未知,则 σ^2 的矩估 计量是[____].

第1页共4页

- 5. 三星公司生产某型号半导体所需工时(以小时计)近似服从正态分布. 现有该型号 (21 个产品的工时数据,标准差为 0. 74 小时,则总体方差的置信水平为 99%的置信区间 为[_______]. ($\chi^2_{0.005}(20) = 40, \chi^2_{0.995}(20) = 7.4$)

三. 解答题 (共 60 分)

五 4 世 首 6 草

1. (15 分) 已知事件 A, B 使得 $P(A|B) = P(B|A) = \frac{1}{2}$, $P(A) = \frac{1}{3}$, 定义两个随机变量

 $X = \begin{cases} 0, & A$ 不发生 1, & A 发生 1, & A 发生 1, & B 发生 1, & B 发生 1, & B 发生

(10分) 放性 医增强率强度法疗(x.)。

2. (10 分) 随机变量 X 服从[-1,1]上的均匀分布,求 $Y=1-X^2$ 的概率密度 $f_Y(y)$.

好企業。直標率密度为上口。 气管定义 。之下: 的条件资料强义

3. (10 分) 总体 X 的概率密度为 $f(x,t)=\begin{cases} t^2xe^{-tx}, & x\geq 0, t>0 \\ 0, & \text{其他} \end{cases}$, 其中 t 是未知参数. 证明: $\hat{t}=\frac{2}{X}$ 是 t 的最大似然估计量,这里 X_1,\cdots,X_n 是 X 的一个样本, \overline{X} 为样本均值.

4. (10 分) 总体 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ^2 未知, X_1, \dots, X_n 是来自 X 的样本. 考虑检验 问题 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$,显著性水平为 α . 试确定一个检验统计量并推导与之 对应的拒绝域.

1.考试形式。周卷: 2.本层卷其三大题。覆分100分; 3.考试日期。2018

A) PRINTED TO STAND STORY OF THE PRINTED BY STORY OF T

(A) 《是离景的广木是南南的 (B) 《广知联合分布函数等于边缘分布函数之形

(C) A, Y 的统合概率在度等 1 (E) 和 (E) T(XY) = E(A)E(C) (E)

(H) DOM: (X) DOM: (H)

5. (15 分) 一名学生从宿舍楼到教学楼去上课, 48%的概率会选 Mobike 单车, 52%的概 率会选 Ofo 单车. 当选定一辆单车时(比如 Ofo),若它正常就骑去教学楼;若发现故 障就改为选择一辆另一类型的单车(即 Mobike),此时单车正常就骑去教学楼,否则不 再选择任何单车,而是步行去教学楼. 设 Mobike 出现故障的概率为 3%, Ofo 发生故障 的概率是8%. 假设选择哪一种单车与单车的故障率之间相互独立,且两种单车各自是否 发生故障也相互独立. 回答下列问题:

(1) 该生最终步行去教学楼的概率多大?

(2) 已知该牛骑车去的教学楼,则骑的是 Mobike 的概率 p 多大? (保留四位小数)

第4页共4页