

Animation for Computer Games COMP 477/6311

Prof. Tiberiu Popa

Forward Kinematics

Character Animation using Keyframes

I. Pose the character in keyframes

Keyframe 1

Keyframe 2

Keyframe 3

Character Animation using Keyframe Animation

2. Interpolate in between keyframes

- How to pose geometry?
- Geometry → min 10,000 vertices, sometimes 100,000 or more
- Have to move every vertex!!!

• Define a rig \rightarrow simple and low dimensional control

- Hierarchical skeleton
- Joints and bones
 - Parent transformations are inherited by children
 - Geometry is "attached" to the skeleton
 When bone moves → skin follows (skinning)

Transformation

Generally local rotations!!!

Skeleton not the only rigging possible, but a classic widely used in games today

- 1. Construct and attach the skeleton to skin
- 2. Pose the skeleton
- 3. Deform the character
- 4. Interpolate transformations (i.e. rotations)

I. Construct and attach the skeleton to skin

- I. Construct and attach the skeleton to the skin
 - I. Animator decides skeleton structure (i.e. how many joints, bones, etc.)
 - Depending on the type of character (i.e level of detail required)
 - For humanoid characters there are a few standard presets - see Maya

- I. Construct and attach the skeleton to the skin
 - I. Animator decides skeleton structure
 - 2. Positioning of the bones inside the geometry (semi automatic medial axis)

- I. Construct and attach the skeleton to the skin
 - I. Animator decides skeleton structure
 - 2. Positioning of the bones inside the geometry
 - 3. "Attaching" the bone to the geometry (i.e. skinning)

- I. Construct and attach the skeleton to the skin
 - 3. "Attaching" the bone to the geometry (i.e. skinning)

- Uses a skinning weight matrix w of size BxN
 - N number of vertices
 - B number of bones
 - w(i,j) = influence of bone i onto vertex j
 - Sometimes written as: $w_i(j)$

- The problem:
 - Finding weights for each vertex/bone: $w_i(j)$
- Semi-automatic solutions:
 - An initial weight matrix computed automatically
 - Artist edits the weights to avoid artifacts

Skeleton not the only rigging possible, but a classic widely used in games today

- 1. Construct and attach the skeleton to skin
- 2. Pose the skeleton (live Maya demo)
- 3. Transform the character
- 4. Interpolate transformations (i.e. rotations)

Skeleton not the only rigging possible, but a classic widely used in games today

- 1. Construct and attach the skeleton to skin
- 2. Pose the skeleton
- 3. Transform the character
- 4. Interpolate transformations (i.e. rotations)

$$\mathbf{p}' = \sum_{i \in B} w_i(\mathbf{p}) T_i \mathbf{p}$$

