Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

MA111 / REAL ANALYSIS & CALCULUS

Week 3 / August 2023

Problem Set 1

GR.

Real Analysis

Notations: Set of Real Numbers (\mathbb{R}), Set of Natural Numbers (\mathbb{N}), sup is *supremum / least upper bound*, inf is *infimum / greatest lower bound*.

Properties of \mathbb{R} : Archimedean Property, lub property etc.

■ Tutorial Problems

- 1. If *a* be a real number such that $0 \le a < \frac{1}{n}$ for every natural number *n*, then show that a = 0. [Hint: Use Archimedean Property]
- 2. If *y* be a positive real number, show that there exists a natural number *m* such that $0 < \frac{1}{2^m} < y$. [Hint: Use Archimedean Property]
- 3. Find the solution set of the inequality $\left| \frac{x+3}{2x-6} \right| \le 1$.
- 4. Find $\sup A$ and $\inf A$, where

(i)
$$A = \{x \in \mathbb{R} : x^2 < 1\},$$

(ii)
$$A = \{x \in \mathbb{R} : 3x^2 + 8x - 3 < 0\},$$

(iii)
$$A = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\},$$

(iv)
$$A = \left\{ \frac{n + (-1)^n}{n} : n \in \mathbb{N} \right\}$$
.

5. Let S be a non-empty subset of \mathbb{R} bounded below. A lower bound ℓ of S is such that for each natural number n there exists an elements s_n in S satisfying $s_n < \ell + \frac{1}{n}$. Prove that $\ell = \inf S$.

[Hint: Use the definition of infimum and the Archimedean Property]

■ Assignment Problems

- 1. A and B are non-empty bounded subsets of \mathbb{R} . Prove that
 - (i) $\sup A \cup B = \max \{ \sup A, \sup B \}$,
 - (ii) $\inf A \cup B = \min \{\inf A, \inf B\}.$