

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CAMPUS SEDE CAPÍTULO ESTUDANTIL IEEE RAS UFCG PROCESSO SELETIVO DE INTEGRANTES DO CAPÍTULO ESTUDANTIL IEEE RAS UFCG

SEGUNDA ETAPA MISSÃO DE ESPECIALIZAÇÃO MISSÃO 4.0

DETECTAR OBJETOS POR COR

CANDIDATA: Mércia Regina da Silva

SUMÁRIO

1. INTRODUÇÃO	3
2. OBJETIVOS	4
3. METODOLOGIA EXPERIMENTAL	5
4. REFERÊNCIAS	7

1. INTRODUÇÃO

Este diretório possui dois arquivos: detectar-cor e maskGreenYellow

Na visão computacional a influência da luz interfere diretamente na variação da cor.

Desse modo, o código "detectar-cor" permite você identifique o limiar máximo e mínimo de cada cor que pretende rastrear.

Esses valores (max e min) serão necessários para você ajustar as cores no maskGreenYellow, caso queira rastrear outras cores.

Originalmente, o código "maskGreenYellow" realiza o processo de visão computacional, rastreando as cores: verde e amarelo.

Após identificar as cores, é criado uma máscara retangular sobre as respectivas cores.

2. OBJETIVOS

Criar uma primeira aplicação com OpenCV. O Object Tracking by color é uma aplicação em que objetos são reconhecidos por meio das suas cores. Além disso, deve exibir a uma parte da trajetória do objeto detectado.

Materiais necessários:

- ✓ Python3;
- ✓ Bibliotecas;
- ✓ Download OpenCV: Linux;
- ✓ Download Numpy.

Atividade:

- ✓ Detectar objetos por cor;
- ✓ Desenhar um retângulo nos objetos detectados;
- ✓ Criação de uma interface gráfica para criação de máscaras;
- ✓ Exibir uma parte da trajetória do objeto.
- ✓ Enviar os códigos comentados:
- ✓ Explicação do que o código faz;
- ✓ Explicação do que cada linha do código faz.

3. METODOLOGIA EXPERIMENTAL

Para que um robô visualize o ambiente, junto com a detecção do objeto, a detecção de sua cor em tempo real também é muito importante.

Por que isso é importante?

Em carro com direção automática, para detectar os sinais de trânsito.

A detecção de várias cores é usada em alguns robôs industriais, para realizar tarefas de pick-and-place na separação de objetos de cores diferentes.

Esta é uma implementação de detecção de várias cores (aqui, apenas as cores Green (Verde) e Yellow (Amarelo) foram consideradas) em tempo real usando a linguagem de programação Python.

Bibliotecas Python usadas:

- ✓ NumPy;
- ✓ OpenCV-Python.

Descrição do Fluxo de Trabalho:

- Etapa 1: Entrada: Capture vídeo pela webcam;
- Etapa 2: Leia o fluxo de vídeo em quadros de imagem;
- Etapa 3: Converta o imageFrame em BGR (espaço de cores RGB representado como três matrizes de vermelho, verde e azul com valores inteiros de 0 a 255) para espaço de cores HSV (hue-saturation-value). Matriz descreve uma cor em termos de saturação, representa a quantidade de cor cinza nessa cor e o valor descreve o brilho ou intensidade da cor. Isso pode ser representado como três matrizes no intervalo de 0-179, 0-255 e 0-255, respectivamente.
 - Etapa 4: Defina o intervalo de cada cor e crie a máscara correspondente.
- Etapa 5: Transformação Morfológica: Dilatação, para remover ruídos das imagens.
- Etapa 6: Bitwise_and entre o quadro da imagem e a máscara é realizada para detectar especificamente aquela cor particular e separar outras.
- Etapa 7: Cria um contorno para as cores individuais para exibir a região colorida detectada de maneira distinta;
 - Etapa 8: Saída: Detecção das cores em tempo real.

Resultado:

4 REFERÊNCIA

Consultas realizadas para realização da Missão 4.0:

Acesso: 24.03.2024 à 27.03.2024

 $\underline{https://acervolima.com/deteccao-de-varias-cores-em-tempo-real-usando-python-opencv/}$

https://pyimagesearch.com/2014/08/04/opency-python-color-detection/

Consultas GitHub:

 $\frac{https://github.com/MariaEduardaDeAzevedo/detector-decores/blob/master/README.md$

https://github.com/riosmarcel