Module	Geometry Processing I					
MA-INF 2205						
Workload	Credit points	Duration	Freque	ncy		
180 h	6 CP	1 semeste	every y	ear		
Module	Prof. Dr. Reinhard Klein					
coordinator						
Lecturer(s)	Prof. Dr. Reinhard Klein					
Classification	Programme		Mode		Semester	
	M. Sc. Compu	Optiona				
Technical skills	Analytical formulation of problems related to geometry					
	processing and knowledge of techniques and algorithms to					
	optimize, process and store geometry data. Especially, lear of techniques to generate highly detailed three-dimensional					
	digital models of real objects and to implement current					
G & 1 211	geometry processing algorithms.					
Soft skills	Analytical problem description, creativity, self-dependent					
	solution of practical problems in the area of mesh processing,					
	presentation of solution strategies and implementations,					
	self-dependent literature research, collaboration abilities, self-management					
Contents	Topics among other will be: Methods for the generation of					
Contents	polygonal meshes (Laser scanning, registration and integration					
	of single mesh parts, etc.), Point based representations,					
	Reconstruction techniques, Efficient mesh data structures and					
	mesh compression, Optimization: denoising and smoothing,					
	Mesh decimation and refinement, Hierarchical representations:					
	coarse-to-fine und fine-to-coarse, Editing of polygonal mes					
	addition results from state of the art research will be presented.					
Prerequisites						
•						
	Teaching forma	at G	roup size	h/week	Workload[h]	CP
Format	Lecture		60	2	30 T / 45 S	2.5
	Exercises		30	2	30 T / 75 S	3.5
	T = face-to-face teaching; S = independent study					
Exam achievements	Oral exam (graded)					
Study achievements	Successful exercise participation				(not graded)	
Forms of media						
	• R. Scopigno, C. Andujar, M. Goesele, H. Lensch: 3D Data					
Literature	Acquistion, Eurographics Tutorial, 2002					
	• E. Grinspun, M. Desbrun (organizers): Discrete Differential					
	Geometry: An Applied Introduction, Siggraph Course Notes,					
	2006					
	• M. Botsch, M. Pauly: Geometric Modeling Based on Triangle					
	Meshes, Siggraph Course Notes, 2006					