

UNIVERSITÀ DEGLI STUDI DI PALERMO DIPARTIMENTO DI INGEGNERIA

CORSI DI LAUREA IN INGEGNERIA CIBERNETICA ED ELETTRONICA

ELETTRONICA DEI SISTEMI EMBEDDED

(2° sessione)

Prof. C.G. GIACONIA

A.A. 2022/2023

30 giugno 2023

Prova Finale riservata agli studenti del Nuovo Ordinamento

Durata della Prova: 100 minuti

Candidato (scrivere a stampatello):

Nome: Cognome: Consegnato: (SI - NO)

Corso di Laurea: Matricola: Macchina:

Riportare i dati personali e riconsegnare al docente alla fine della prova.

IMPORTANTE

I programmi devono essere realizzati in linguaggio C ed essere eseguibili su:

> ATMEGA328P-XMINI (con l'ausilio della ESDPLab EDUBOARD)

NOTE RELATIVE ALL'ARCHIVIAZIONE DEI RISULTATI DELLA PROVA

Per la corretta archiviazione bisogna seguire i passi seguenti:

Il quesito va risolto con l'uso dell'ambiente di sviluppo ATMEL STUDIO 6.2, installato sulle macchine dell'Aula Informatica.

Indicazioni per il corretto salvataggio:

- 1. Formare una cartella denominata con il proprio cognome, numero_di_matricola sul
 Desktop (es.: C:\Utenti\f100\Desktop\cognome0123456);
- 2. Alla consegna salvare l'intero progetto in un unico file .zip chiamato con il proprio numero di matricola (es.: cognome0123456.zip) e copiarlo sul desktop

IL NON ATTENERSI A QUESTA PROCEDURA COMPORTA L'IMPOSSIBILITÀ,
PER IL DOCENTE, DI LEGGERE I CONTENUTI DELLA PROVA ED IL CONSEGUENTE
ESITO NEGATIVO DELLA STESSA

QUESITO:

Il candidato realizzi un eseguibile che simula il comportamento di un'agitatore meccanico per recipienti contenenti liquidi di sviluppo fotolitografico.

In particolare l'agitatore deve realizzare le seguenti funzionalità: all'accensione il Led LO dovrà essere acceso per indicare la presenza tensione. Tramite il pulsante B5 sarà possibile selezionare il periodo "t" di agitazione del recipiente che potrà assumere i valori: 3000 msec, 2000 msec, 1000 msec e 600 msec, in funzione del numero di volte in cui si pigia il pulsante B5. Tramite il tasto B7 si fa partire l'agitatore e tale agitazione è simulata tramite l'accensione dei LED (L1, L2 L3, L4, L5) con un andamento rappresentato in figura:

L5				ON									
L4			ON		C	N							
L3		ON					0	Ν					
L2	ON								0	N		NC	
L1 ON											ON		
-	•	•	•			•				→		•	

periodo t [msec]

Il pulsante **B4** invece ferma momentaneamente l'agitazione e la sequenza dei led si "freeza" nello stato in cui è giunta quando il pulsante **B4** è stato premuto. Essa può successivamente riprendere pigiando nuovamente il pulsante **B7**.

L'agitatore continua il suo funzionamento fino a che non si pigia il pulsante **B2** per un tempo maggiore di 1 secondo. In tal caso la macchina si riporta nello stato iniziale in attesa di una nuova impostazione dei tempi di agitazione. L'agitatore inoltre può fermarsi se è trascorso un timeout di 10 secondi senza alcun intervento dell'operatore.

Infine, la pressione del tasto $\bf B6$ (di allarme) ferma immediatamente l'agitazione ed il Led $\bf L0$ inizia a lampeggiare con periodo 1 secondo e duty cycle del 25% indicando la situazione di pericolo. In tale condizione nessuno dei pulsanti (tranne $\bf B2$) risulta più attivo e la sola via di uscita è un reset ($\bf B2$ per tempo maggiore di 4 secondi).