INICIACIÓN AL ÁLGEBRA

Evaluación A

1. Continúa las siguientes series añadiendo tres términos más a cada una.

d) 10 000, 1 000, 100, 10, 1; 0,1; 0,01

■ Ten en cuenta ■

Para continuar una serie de números intenta averiguar si se ha construido mediante una regla.

- 2, 5, 8, 11, 13,... Se suma 3 unidades para obtener el siguiente término.
- 1, 4, 9, 16,... Cada término es el cuadrado del lugar que ocupa.

2. Expresa en lenguaje algebraico.

Recuerda

- Cuando queremos referirnos a un número cualquiera empleamos letras que le representan.
- Cuando escribimos una multiplicación de un número por una letra prescindimos del signo.

 $2 \cdot x$ se escribe 2x

- **a)** La edad de Marta dentro de cinco años si hoy tiene *m* años.
- **b)** La edad de Luis hace cuatro años si hoy tiene *x* años.
- **c)** La mitad de los bombones de una caja si tiene *b* bombones.
- **d)** La altura de Sara que mide 10 cm menos que el doble de su hermano Marcos que mide *m* cm.

<u>b</u> 2

m + 5

x - 4

2*m* – 10

3. Calcula el valor numérico de las siguientes expresiones algebraicas para el valor dado a la letra *n* en cada caso.

a)
$$3n + 1$$
 para $n = 4 \longrightarrow 3 \cdot 4 + 1 = 13$

b)
$$2 \cdot (n+5)$$
 para $n=1 \longrightarrow 2 \cdot (1+5) = 2 \cdot 6 = 12$

c)
$$\frac{n-1}{2} + n$$
 para $n = 2$ \longrightarrow $\frac{2-1}{2} + 2 = \frac{1}{2} + 2 = \frac{5}{2}$

d)
$$3n^2 - 5n$$
 para $n = 1 \longrightarrow 3 \cdot 1^2 - 5 \cdot 1 = 3 - 5 = -2$

Recuerda

El **valor numérico** de una expresión algebraica, es el número que se obtiene al sustituir por un número las letras que aparecen en la expresión y realizar las operaciones indicadas.

 $3n^2 + 5n$ para n = 2 tiene el siguiente valor numérico: $3 \cdot 2^2 + 5 \cdot 2 = 12 + 10 = 22$

4. El área, A, de un trapecio viene dada por la fórmula: $A = \frac{B+b}{2} \cdot h$

Calcula el área de un trapecio con las medidas indicadas en la figura.

$$A = \frac{10+6}{2} \cdot 4 = 32 \text{ m}^2$$

5. Completa la tabla.

Monomio	Coeficiente	Parte literal	Grado
3 <i>x</i>	3	X	1
2 <i>y</i> ³	2	y³	3
-3 <i>xy</i>	-3	xy	2
$\frac{2x^2}{3}$	2/3	X ²	2

Recuerda

On **monomio** es el producto de un número por una o varias letras cuyos exponentes son números naturales.

El **grado** de un monomio es la suma de los exponentes de la parte literal.

En el monomio a63:

Coeficiente: 1

Parte literal: a63

Grado: 1 + 3 = 4

6. Reduce las siguientes sumas y restas a un solo monomio.

Recuerda

Las sumas o restas de monomios con la misma parte literal se pueden reducir a un solo monomio, cuyo coeficiente es la suma o la resta de los coeficientes y cuya parte literal es la misma.

$$3x + 5x = (3 + 5)x = 8x$$

$$3x + 5x = (3 + 5)x = 8x$$
 $3x^2 - 10x^2 = (3 - 10)x^2 = -7x^2$

a)
$$3x + 2x = 5x$$

b)
$$2ab + 5ab = 7ab$$

c)
$$16y + y = 17y$$

d)
$$-3xy^2 + 2xy^2 = -xy^2$$

e)
$$ab + ab = 2ab$$

f)
$$5a^2 - 3a^2 = 2a^2$$

g)
$$3xy - 8xy = -5xy$$

h)
$$-4x^2 - 3x^2 = -7x^2$$

i)
$$3y + (-3y) = 0$$

j)
$$a^3b - 3a^3b = -2a^3b$$

7. Realiza las siguientes multiplicaciones.

a)
$$3x \cdot 2x = 6x^2$$

e)
$$4 \cdot 2x = 8x$$

b)
$$2a^2 \cdot a = 2a^3$$

f)
$$3xy \cdot (-2xy) = -6x^2y^2$$

c)
$$3a \cdot 4b = 12ab$$

a)
$$-a^2 \cdot 3a = -3a^3$$

$$4)$$
 v^3 $3v^2 - 3v^3$

d)
$$x^3 \cdot 3x^2 = \frac{3x^5}{}$$
 h) $-2a \cdot (-3b^2) = \frac{6ab^2}{}$

Recuerda

Para multiplicar monomios se multiplican, por un lado los coeficientes y, por otro, las partes literales.

$$5x^2 \cdot 3x = (5 \cdot 3) \cdot (x^2 \cdot x) = 15x^3$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$15 \qquad \qquad \downarrow \qquad \qquad \downarrow$$

8. Resuelve las siguientes ecuaciones.

🛚 Ten en cuenta 🖿

Para resolver la ecuación:

$$3x + 2 = -6 - x$$

Pasamos el término 2 al otro lado, y como está sumando pasa restando.

pasa sumando.

Pasamos el término x al otro lado, y como está restando

$$3x + x = -6 - 2$$

Reducimos términos operando.

El 4, que está multiplicando, pasa al otro lado dividiendo.

$$4x = -8$$
and o.
$$x = -\frac{8}{2} = -4$$

a)
$$8x + 10 = 3x - 5$$

$$8x = 3x - 5 - 10$$

$$8x - 3x = -5 - 10$$

$$5x = -15 \rightarrow x = -3$$

b)
$$10 = 2x + 9 - x$$

$$10 - 9 = 2x - x$$

$$1 = x$$

9. Un rectángulo tiene un perímetro de 18 cm. Su altura mide x y su base el doble. ¿Cuánto mide la altura de ese rectángulo?

$$x + x + 2x + 2x = 18 \rightarrow 6x = 18 \rightarrow x = 3$$
 cm

La altura mide 3 cm.

10. Luis tiene x años, dos más que su hermana y entre los dos suman 18 años. ¿Cuál es la edad de Luis?

$$x + x - 2 = 18 \rightarrow x + x = 18 + 2 \rightarrow 2x = 20 \rightarrow x = 10$$
 años. Luis tiene 10 años.

Evaluación B

1. Dibuja una figura más de la serie, completa la tabla y contesta a las preguntas planteadas.

Lugar	Número de puntos
1	1
2	4
3	9
4	16
5	25

a) ¿Cuántos puntos tendrá la figura que ocupe el lugar número seis?

$$6 \cdot 6 = 36$$

b) ¿Cuántos tendrá la figura que ocupe el lugar número diez?

$$10 \cdot 10 = 100$$

c) Si *n* representa el lugar de una figura, ¿cuántos puntos tendrá cualquier figura según el lugar que ocupa?

 n^2

- 2. Escribe en lenguaje algebraico las siguientes expresiones.
 - a) La suma del cuadrado de un número más dos $\xrightarrow{}$ $x^2 + 2$
 - **b)** El doble de la diferencia de dos números distintos \longrightarrow $2 \cdot (x y)$
 - c) La suma del doble de un número menos otro \longrightarrow 2x y
 - **d)** La mitad de la suma de dos números $\xrightarrow{x+y}$
 - e) La diferencia de la mitad de un número menos otro $\longrightarrow \frac{x}{2} y$

Ten en cuenta

Al traducir al lenguaje algebraico ten en cuenta que no es lo mismo el doble de la suma de dos números, 2(x + y), que la suma del doble de un número más otro 2x + y.

- 3. Averigua el valor numérico de las siguientes expresiones.
 - a) 3a 2b para a = 5, $b = 2 \rightarrow 3 \cdot 5 2 \cdot 2 = 15 4 = 11$
 - **b)** $2xy^2 + x^2$ para x = 3, $y = 2 \rightarrow 2 \cdot 3 \cdot 2^2 + 3^2 = 24 + 9 = 33$
- 4. Reduce haciendo las sumas y restas posibles.

a)
$$3x + 2x - 7x = -2x$$

b)
$$2x^2 + 3x - x^2 = x^2 + 3x$$

c)
$$7x + x^2 - 3x^2 + x - 2x = -2x^2 + 6x$$

d)
$$2xy + 3xy^2 - xy = xy + 3xy^2$$

Ten en cuenta

Solo se pueden sumar o restar monomios con la misma parte literal.

$$x^{2} + 6x + 2x^{2} - x = 3x^{2} + 5x$$

$$x^{2} + 2x^{2} - 6x - x$$

5. Expresa las siguientes multiplicaciones como suma y resta de monomios.

a)
$$5 \cdot (3x + 6) = 15x + 30$$

b)
$$4 \cdot (x^2 - 2x) = 4x^2 - 8x$$

c)
$$3x \cdot (3-4x) = 9x - 12x^2$$

d)
$$2x \cdot (x^2 - 3x + 4) = \frac{2x^3}{6x^2} + \frac{8x}{8x}$$

= Ten en cuenta ====

Para multiplicar un número o un monomio por una suma o resta de monomios se aplica la propiedad distributiva.

$$3 \cdot (2x-6) = 3 \cdot 2x - 3 \cdot 6 = 6x - 18$$

6. Realiza las siguientes divisiones.

a)
$$8x^3:(2x)=4x^2$$

b)
$$6xy:(2xy)=3$$

c)
$$12x^2 : (-3x) = -4x$$

d)
$$x^3y : x = \frac{x^2y}{x^2}$$

e)
$$-10x^4:(-2x^2)=5x^2$$

f)
$$8xy : 2 = 4xy$$

Recuerda

Para dividir monomios por una parte se dividen los coeficientes y, por otra, las partes literales.

$$9x^{2}: 3x = \frac{9x^{2}}{3x} = \frac{9}{3} \cdot \frac{x^{2}}{x} = 3x$$

$$9: 3 = 3$$

7. Indica si las siguientes igualdades son identidades o ecuaciones.

Recuerda

Identidad: Cualquier valor de las letras hace cierta la igualdad.

Ecuación: Cualquier valor de las letras no hace cierta la igualdad.

a)
$$2 \cdot (x + y) = 2x + 2y$$
 es una identidad.

b)
$$3x + 3 = 12$$
 es una ecuación.

c)
$$x + y = y + x$$
 es una identidad.

d)
$$4x^2 = 0$$
 es una ecuación.

8. Resuelve las siguientes ecuaciones.

a)
$$2 \cdot (x+3) - x = 4x - 3$$

$$(\lambda + 3)$$
 $\lambda = 4\lambda + 3$

$$2x + 6 - x = 4x - 3$$

 $2x - x - 4x = -3 - 6$

$$-3x = -9$$

$$x = 3$$

b)
$$5 - 3 \cdot (2x - 1) = 0$$

$$-6x = -5 - 3$$

5 - 6x + 3 = 0

$$-6x = -8$$

$$x = \frac{8}{6} = \frac{4}{3}$$

c)
$$9 - (3 - 2x) = 3 \cdot (x + 1)$$

$$9 - 3 + 2x = 3x + 3$$

$$2x - 3x = 3 - 9 + 3$$

$$-x = -3$$

$$x = 3$$

9. Javier se ha comprado 3 pantalones del mismo precio y 2 camisas iguales. Recuerda que cada pantalón le ha costado 10 € más que cada camisa y que en total ha pagado por toda la compra 155 €. ¿Cuánto le ha costado cada prenda?

Ten en cuenta

Si un pantalón cuesta $10 \in \text{más}$ que una camisa, y su precio lo representamos por la letra x, el precio de la camisa será x - 10.

Si compramos 3 pantalones el precio de la compra será 3x.

Si compramos 2 camisas su precio será: $2 \cdot (x - 10)$

Precio de un pantalón: x

Precio de una camisa: x - 10

3 pantalones + 2 camisas = 155

$$3x + 2 \cdot (x - 10) = 155$$

$$3x + 2x - 20 = 155$$

$$5x = 175 \rightarrow x = 35$$

1 pantalón cuesta 35 € y una camisa 25 €.

10. La diferencia del triple de un número menos 8 es igual al doble de la suma de ese número más 8. Averigua de qué número se trata.

$$3x - 8 = 2 \cdot (x + 8) \rightarrow 3x - 8 = 2x + 16 \rightarrow x = 24$$

Evaluación C

Relaciona con flechas cada enunciado con la expresión algebraica correspondiente.

La suma del triple de un número más 8

 $3 \cdot (x + 8)^2$

El triple de la suma del cuadrado de un número más 8

 $3 \cdot (x^2 + 8)$

La suma del cuadrado del triple de un número más 8

3x + 8

El triple de la suma de un número más 8

 $(3x)^2 + 8$

El triple del cuadrado de la suma de un número más 8

 $3 \cdot (x + 8)$

El cuadrado de la suma del triple de un número más 8

 $(3x + 8)^2$

2. Calcula el valor de las siguientes expresiones algebraicas.

a)
$$3x^2 + 1$$
 para $x = -1$

$$3 \cdot (-1)^2 + 1 = 3 \cdot 1 + 1 = 3 + 1 = 4$$

b)
$$2 \cdot (3x - 1) - x$$
 para $x = 0$

$$2 \cdot (3 \cdot 0 - 1) = 2 \cdot (-1) = -2$$

c)
$$x^3 - 2 \cdot (x^2 - 2x)$$
 para $x = -2$

$$(-2)^3 - 2 \cdot [(-2)^2 - 2 \cdot (-2)] = -8 - 2 \cdot (4 + 4) = -8 - 2 \cdot 8 = -8 - 16 = -24$$

🖿 Ten en cuenta 💳

Cuando sustituyas las letras por valores numéricos negativos estos debes ponerlos entre paréntesis para evitar errores con los signos.

La expresión $2x^3 - x$ para x = -2 es:

$$2 \cdot (-2)^3 - (-2) = 2 \cdot (-8) + 2 = -16 + 2 = -14$$

3. Resuelve las siguientes operaciones con monomios.

a)
$$3x + \frac{1}{2}x = \frac{7}{2}x$$

d)
$$\frac{3}{4}x \cdot 2x = \frac{3}{2}x^2$$

g)
$$\frac{1}{5} x^4 : \left(\frac{2}{5} x^2\right) = \frac{1}{2} x^2$$

b)
$$\frac{2}{3}x^2 - \frac{1}{5}x^2 = \frac{7}{15}x^2$$

e)
$$\frac{1}{2}x^2 \cdot \frac{1}{2}x = \frac{1}{4}x^3$$

h)
$$x^2: \left(-\frac{1}{2}x\right) = -2x$$

c)
$$\frac{3}{4}x + x = \frac{7}{4}x$$

f)
$$\frac{2}{3}x^3 \cdot (-3x) = -2x^4$$

i)
$$\frac{2}{3}x:(\frac{1}{3}x)=2$$

4. Averigua si alguno de los valores dados de x es solución de la ecuación.

a)
$$3x + 7 = 2 \cdot (x - 1)$$
 $x = -9, x = 1$

$$x = -9$$
 $x = 1$

Sustituimos x por -9:

$$3 \cdot (-9) + 7 = 2 \cdot (-9 - 1) \rightarrow -20 = -20$$

x = -9 es solución de la ecuación.

Sustituimos x por 1:

$$3 \cdot 1 + 7 \neq 2 \cdot (1 - 1) \rightarrow 10 \neq 0$$

x = 1 no es solución de la ecuación.

b)
$$\frac{2x+3}{3} + x = x - 3$$
 $x = 0, x = -6$

1
$$x = 2$$
 si es solución ya que al sustituir x por 2 tenemos que: $2 \cdot 2 + 3 = 2 + 5$ ya que $7 = 7$

Por ejemplo dada la ecuación 9x + 3 = x + 5:

tenemos que: $2 \cdot 1 + 3 \neq 1 + 5$ ya que $5 \neq 6$

Recuerda

Para que un valor de la incógnita sea solución de una ecuación al

sustituir la incógnita por ese valor se tiene que cumplir la igualdad.

x = 1 no es solución de la ecuación ya que al sustituir x por 1

Sustituimos x por 0: $\frac{2 \cdot 0 + 3}{3} + 0 \neq 0 - 3 \rightarrow 1 \neq -3 \rightarrow x = 0$ no es solución.

Sustituimos x por -6: $\frac{2 \cdot (-6) + 3}{3} + (-6) = -3 - 6 \rightarrow \frac{-12 + 3}{3} - 6 = -6 - 3 \rightarrow -9 = -9 \rightarrow x = -6$ es solución.

5. Averigua el término que falta para que el valor dado de x sea solución de la ecuación.

a)
$$3x + \boxed{4} = 10$$
, para $x = 2$

b)
$$6x - 2 = x + (-7)$$
, para $x = -1$

c)
$$2 \cdot (x-1) = \boxed{1} + x$$
, para $x = 3$

🖿 Ten en cuenta 🚃 🚃

Al sustituir la incógnita en una ecuación por el valor de su solución la igualdad se tiene que cumplir.

Relaciona cada ecuación con un enunciado.

Recuerda

Las ecuaciones se nombran por su número de incógnitas y su grado.

El grado de una ecuación es el de su término de mayor érado.

7. Resuelve las siguientes ecuaciones.

■Ten en cuenta 🛶

Cualquier ecuación de primer grado con una incógnita solo tiene una solución, salvo que al resolverla y cambiar de lado los términos suceda que al sumar los términos de cada miembro:

Los dos miembros de la ecuación valgan 0. Entonces la igualdad inicial era una identidad no una ecuación.

$$3 \cdot (x + 1) + x = 4x + 3$$

$$3x + 3 + x = 4x + 3$$

$$3x + x - 4x = 3 - 3$$

$$0x = 0 \rightarrow Es$$
 una identidad.

■ El miembro donde está la incógnita valga 0 y el otro sea distinto de 0. En este caso la ecuación no tiene solución.

$$2x - 3 = 2x$$

$$2x - 2x = 3$$

$$0x = 3 \rightarrow \text{No tiene solución}.$$

a) $3 \cdot (2x - 2) = 4x - (x + 3)$ 6x - 6 = 4x - x - 36x - 4x + x = -3 + 6

$$6x - 4x + x = -3 + 6$$

$$3x = 3 \rightarrow x = 1$$

b)
$$4 - (3 - x) = 2(x + 1) - x$$

$$4 - 3 + x = 2x + 2 - x$$

$$x - 2x + x = 2 - 4 + 3$$

$$0x = 1 \rightarrow \text{No tiene solución}$$
.

c)
$$5x + 3(3 - 2x) = 13 - (4 - x)$$

$$5x + 9 - 6x = 13 - 4 + x$$

$$5x - 6x - x = 13 - 4 - 9$$

$$-2x = 0 \rightarrow x = 0$$

8. El doble de la suma de un número más tres es igual a la diferencia del cuádruple de dicho número menos dos. Averigua de qué número se trata.

$$2 \cdot (x + 3) = 4x - 2 \rightarrow 2x + 6 = 4x - 2 \rightarrow -2x = -8 \rightarrow x = 4$$

3. La suma de las medidas de dos listones es 1 m y uno de ellos mide 20 cm más que el otro. ¿Qué longitud tiene el más corto de los dos?

$$x + x + 20 = 100 \rightarrow 2x = 80 \rightarrow x = 40$$

El más corto mide 40 cm

10. El padre de Ana tiene 25 años más que ella y dentro de cinco años la suma de sus edades será igual a 65 años. ¿Qué edad tiene actualmente Ana?

Edad actual de Ana: $x \rightarrow$ Dentro de 5 años: x + 5

Edad actual del padre: $x + 25 \rightarrow$ Dentro de 5 años: x + 25 + 5

 $x + 5 + x + 25 + 5 = 65 \rightarrow 2x = 30 \rightarrow x = 15$

Ana tiene 15 años.

Evaluación D

- 1. Añade tres términos más en cada serie.
 - a) 5, 9, 13, 17, 21, 25 , 29 , 33
 - **b)** 1, -1, 2, -2, 3, -3, 4, -4 , 5 , -5
 - c) 2, 4, 8, 16, 32, 64 , 128 , 256
 - **d)** 6, –12, 24, –48, 96, –192 , 384
- 2. Observa la serie de figuras construidas con cerillas y contesta a las preguntas planteadas.

- a) ¿Cuántas cerillas tendrá la siguiente figura de la serie?
- b) ¿Cuántas cerillas tendrá la figura que ocupa la décima posición?
- c) ¿Cuántas cerillas tendrá la figura que ocupa el lugar n en la serie? n+2
- **3.** Expresa en lenguaje algebraico.
 - a) El precio de la compra de n entradas de cine a $5 \in la$ entrada \longrightarrow 5n
 - **b)** El perímetro de un cuadrado cuyo lado mide *a* cm 4*a*
 - c) El producto del doble de un número por el cuadrado de otro —— 2xy²
 - d) El cuadrado de la diferencia del doble de un número menos otro \longrightarrow $(2x y)^2$
 - e) La suma de la mitad de un número más su doble $\longrightarrow \frac{x}{2} + 2x$
- **4.** Calcula el valor numérico de las siguientes expresiones algebraicas para x = 2 e y = -3.
 - a) $3 \cdot (x^2 2) \rightarrow 3 \cdot (2^2 2) = 3 \cdot 2 = 6$
 - **b)** $2x y \rightarrow 2 \cdot 2 (-3) = 4 + 3 = 7$
 - c) $\frac{x-2y}{4} y^2 \rightarrow \frac{2-2 \cdot (-3)}{4} (-3)^2 = \frac{2+6}{4} 9 = 2-9 = -7$
 - d) $(x + y)^2 \rightarrow (2 + (-3))^2 = (-1)^2 = 1$
- 5. Completa la tabla.

Monomio	Coeficiente	Parte literal	Grado
-2 <i>x</i> ³	-2	X ³	3
2ab²	2	ab²	3
$\frac{2x^2}{3}$	<u>2</u> 3	X ²	2

Opera.

a)
$$3x^2 + 5x^2 = 8x^2$$

e)
$$3x^2 \cdot 2x = 6x^3$$

i)
$$12x: 6x = 2$$

b)
$$-3xy + 5xy = 2xy$$

f)
$$6ab \cdot b^2 = 6ab^3$$

i)
$$9a^4: (-3a^2) = -3a^2$$

c)
$$4a - 6a = -2a$$

g)
$$3y \cdot (-2xy) = -6xy^2$$

k)
$$6xy^4:(2xy)=3y^3$$

d)
$$\frac{2}{3}x + \frac{1}{2}x = \frac{7}{6}x$$

h)
$$\frac{1}{5}x \cdot \frac{5}{4}x^2 = \frac{1}{4}x^3$$

1)
$$\frac{3}{4} n^3 : \left(-\frac{1}{4} n\right) = -3n^2$$

7. Opera y reduce las siguientes expresiones.

a)
$$2x + x^2 - 3x + 2x^2 = 3x^2 - x$$

b)
$$3xy^2 + 2xy - xy^2 - 2x^2y - 3xy = 2xy^2 - xy - 2x^2y$$

8. Indica si x = 2 es solución de estas ecuaciones.

a)
$$4 \cdot (3x - 5) = 6x - 8$$

b)
$$x^2 - 2 = 2x + 1$$

c)
$$\frac{2x}{4} - 1 = 3 - (1 + x)$$

$$4 \cdot (3 \cdot 2 - 5) = 6 \cdot 2 - 8$$

$$4 \cdot 1 = 12 - 8$$

$$2^{2} - 2 \neq 2 \cdot 2 + 1$$

 $4 - 2 \neq 4 + 1$

$$\frac{2 \cdot 2}{4} - 1 = 3 - (1 + 2)$$

$$4 = 4$$

$$1 - 1 = 3 - 3$$

$$2 \neq 5$$

$$0 = 0$$

Es solución.

No es solución.

Es solución.

9. Resuelve las siguientes ecuaciones.

a)
$$x - (2x - 1) = 6x + 3 \cdot (2 - 2x)$$

$$x - 2x + 1 = 6x + 6 - 6x$$

$$x - 2x = 6 - 1$$

$$-x = 5 \rightarrow x = -5$$

b)
$$8x - 3 \cdot (2x + 4) = 0$$

$$8x - 6x - 12 = 0$$

$$2x = 12$$

$$x = 6$$

10. Resuelve los siguientes problemas.

Jaime tiene tres años más que Andrea y esta dos años menos que Rosa. La suma de las tres edades es 20 años. ¿Cuántos años tiene cada uno?

Edad Rosa: x

Edad de Andrea: x - 2

Edad de Jaime: x - 2 + 3

$$x + x - 2 + x - 2 + 3 = 20 \rightarrow 3x - 1 = 20 \rightarrow 3x = 21 \rightarrow x = 7$$

Rosa tiene 7 años; Andrea, 5 años y Jaime 8 años.

■ Natalia ha contestado a un examen de 20 preguntas. Por cada acierto le dan 3 puntos y por cada fallo le restan 1 punto. En total ha obtenido 36 puntos. ¿Cuántas preguntas ha contestado bien?

N.º de preguntas bien contestadas: x

N. $^{\circ}$ de preguntas mal contestadas: 20 – x

$$3 \cdot x - (20 - x) = 36 \rightarrow 3x - 20 + x = 36 \rightarrow 4x = 56 \rightarrow x = 14$$

Ha contestado bien a 14 preguntas.