EECS16A Lab: Touchscreen 3

Capacitive Touchscreens

Electronic Systems

Most systems perform 3 tasks:

- Sense (Physical to Electrical)
- Process (Signal Conditioning)
- Actuate (Electrical to Physical)

Goals: Touch 3

- Understand charge-sharing circuit for a capacitive touch sensor
- Understand comparators
- ✗ Build a functioning Touch Pixel

New Tools

Introducing: EECS16A Lab Boosterpack

Capacitive Touchscreen

- Exploits capacitive properties of finger/body
- Touching the screen changes the capacitance
- No moving parts
- Multi-touch is possible
- **X** More sensitive

How to measure capacitance?

Capacitance and the touchpad

What is a capacitor and how does it work?

Capacitive Touch Sensor

- Screen + finger = unknown capacitance
- ✗ In parallel with known capacitance

Let's try to figure out a way to detect this increase in capacitance!

Measuring Capacitance

Start by charging our capacitor touch sensor

Measuring Capacitance

Charge-sharing invariant: Q = CV

X Q remains

constantWhat happens to capacitors in parallel?

Measuring Capacitance

C_pixel is a variable value – may contain our finger or not

Model finger as another capacitor in parallel with our capacitive touch sensor

* How does the capacitance of what we're charging change?

1. Connect capacitors to ground to discharge fully v_{DD}

2. Disconnect clean switch from ground to enable charge storing

3. Charge touchscreen (+ finger?)

4. Share charge between C_{pixel} and C_{pixel}

Process Comparator

Compares input voltage at positive terminal to a reference voltage at negative terminal (think

">" symbol)

Essentially does:

if V_in > V_ref:

return V_dd else:

return GND = 0V

Full Circuit - Sense Process Actuate

Notes

- W Unplug MSP before moving circuit components
- Op Amp goes across middle of breadboard
- Make sure your circuit is grounded and has a common ground
- Initial charge sharing diagrams are theoretical--don't start building right away

