Artificial Neural Networks

Lecture 4: Cover's Theorem
Dr Juan Neirotti

j.p.neirotti@aston.ac.uk

2023

Why do we need to go beyond Perceptrons?

- Perceptrons are simple networks (with only one unit) that are easy to analyze.
- Is it possible to find $\mathbf{w} \in \Omega \subset \mathbb{R}^d$ and $w_0 \in \mathbb{R}$ for any $\mathcal{D} = \{(\mathbf{x}_\ell, t_\ell)\}_{\ell=1}^L$ with $\mathbf{x}_\ell \in \mathcal{X} \subset \mathbb{R}^d$ and $t_\ell \in \{\pm 1\}$ such that $t_\ell \operatorname{sgn}(\langle \mathbf{w} | \mathbf{x}_\ell \rangle + w_0) > 0$?
- No, it is not. Can we measure how many classifications can be solved by a perceptron?

Linearly Separable Dichotomies

Let $\mathscr{X} \subset \mathbb{R}^d$ be an arbitrary set of vectors. A dichotomy $\{\mathscr{X}^+,\mathscr{X}^-\}$ of \mathscr{X} is linearly separable if and only there is a vector $\mathbf{w} \in \mathbb{R}^d$ and a scalar $w_0 \in \mathbb{R}$ such that

$$\langle \boldsymbol{w} | \boldsymbol{x} \rangle + w_0 > 0 \qquad \forall \boldsymbol{x} \in \mathscr{X}_d^+$$

 $\langle \boldsymbol{w} | \boldsymbol{x} \rangle + w_0 < 0 \qquad \forall \boldsymbol{x} \in \mathscr{X}_d^-.$

▶ The dichotomy is homogeneous if it is linearly separable and $w_0 = 0$.

Linearly Separable Dichotomies

Figure: Half of all possible dichotomies of vectors $\mathbf{x} \in \{\pm 1\}^2$. Observe that (g) is not linearly separable.

Augmented Homogeneous Dichotomies

- Suppose that the dichotomy $\{\mathscr{X}^+,\mathscr{X}^-\}$ of $\mathscr{X}\subset\mathbb{R}^d$ is linearly separable with for $\pmb{w}\in\mathbb{R}^d$ $\mathbb{R}\ni w_0\neq 0$. Then, for all $\pmb{x}\in\mathscr{X}$ we define $\pmb{y}\in\{1\}\times\mathscr{X}=\mathscr{Y}$ such that $|\pmb{y}\rangle=|1\rangle\otimes|\pmb{x}\rangle=|1,\pmb{x}\rangle$ and $|\pmb{W}\rangle=|w_0,\pmb{w}\rangle$ where $(w_0,\pmb{w})\in\mathbb{R}^{d+1}$. Then, the dichotomy $\{\mathscr{Y}^+,\mathscr{Y}^-\}$ of $\mathscr{Y}\subset\mathbb{R}^{d+1}$ is homogeneous for $\pmb{W}\in\mathbb{R}^{d+1}$.
- ▶ Observe that the linear dependencies of the sets \mathscr{Y} , \mathscr{Y}^+ and \mathscr{Y}^- are identical to the correspondent linear dependencies of \mathscr{X} , \mathscr{X}^+ and \mathscr{X}^- .
- ► Given this last property we will only consider homogeneous dichotomies in the following discussion.

Augmented Homogeneous Dichotomies

Figure: Augmented dichotomies of vectors $\mathbf{x} \in \{\pm 1\}^2$.

Vectors in General Position

A set $\mathscr{X} = \{x_1, \dots, x_L\}$ is linearly independent if the equation:

$$\alpha_1 |\mathbf{x}_1\rangle + \cdots + \alpha_N |\mathbf{x}_N\rangle = |\mathbf{0}\rangle$$

with $\alpha_i \in \mathbb{R}$ admits only the solution $\alpha_i = 0$ for all 1 < i < N.

- A set of N vectors is in *general position* in d-dimensional space if every subset of d or fewer vectors is linearly independent. Thus: $\forall \, \mathscr{X}_\ell \subseteq \mathscr{X} = \{x_1, \dots, x_N\}$ with $x_j \in \mathbb{R}^d$ and $|\mathscr{X}_\ell| \leq d$ for all ℓ are linearly independent, then \mathscr{X} is in general position.
- ▶ Observe that the set of vertexes of the top square in \mathbb{R}^3 :

$$\mathscr{X} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\} \text{ is a set in general position.}$$

Lemma

- Let \mathscr{X}^+ and \mathscr{X}^- be subsets of \mathbb{R}^{d+1} and let $\mathbf{y} \in \mathbb{R}^{d+1}$ a point other than the origin. Then the dichotomies $\{\mathscr{X}^+ \cup \{\mathbf{y}\}, \mathscr{X}^-\}$ and $\{\mathscr{X}^+, \mathscr{X}^- \cup \{\mathbf{y}\}\}$ are both homogeneously linearly separable if and only if $\{\mathscr{X}^+, \mathscr{X}^-\}$ is homogeneously linearly separable by a d-dimensional subspace containing \mathbf{y} .
- Let us define the set \mathscr{W} of separating vectors $\mathscr{W} = \{\mathbb{R}^{d+1} \ni \boldsymbol{w} : \langle \boldsymbol{w} | \boldsymbol{x} \rangle > 0, \ \boldsymbol{x} \in \mathscr{X}^+; \langle \boldsymbol{w} | \boldsymbol{x} \rangle < 0, \ \boldsymbol{x} \in \mathscr{X}^- \}.$

- The dichotomy $\{\mathscr{X}^+ \cup \{y\}, \mathscr{X}^-\}$ is homogeneously linearly separable iff there exists $w_1 \in \mathscr{W}$ such that $\langle w_1 | y \rangle > 0$, $\langle w_1 | x^+ \rangle > 0$ for all $x^+ \in \mathscr{X}^+$ and $\langle w_1 | x^- \rangle < 0$ for all $x^- \in \mathscr{X}^-$; and the dichotomy $\{\mathscr{X}^+, \mathscr{X}^- \cup \{y\}\}$ is homogeneously linearly separable iff there exists $w_2 \in \mathscr{W}$ such that $\langle w_2 | y \rangle < 0$, $\langle w_2 | x^+ \rangle > 0$ for all $x^+ \in \mathscr{X}^+$ and $\langle w_2 | x^- \rangle < 0$ for all $x^- \in \mathscr{X}^-$.
- If $\{\mathscr{X}^+ \cup \{y\}, \mathscr{X}^-\}$ and $\{\mathscr{X}^+, \mathscr{X}^- \cup \{y\}\}$ homogeneously linearly separable by w_1 and w_2 respectively, then $|w^{\star}\rangle = -\langle w_2 \, |y\rangle \, |w_1\rangle + \langle w_1 \, |y\rangle \, |w_2\rangle$ separates the dichotomy $\{\mathscr{X}^+, \mathscr{X}^-\}$ by the plane $\{x: \langle w^{\star} \, |x\rangle = 0\}$ passing through y.
- ▶ Conversely, if $\{\mathscr{X}^+, \mathscr{X}^-\}$ is homogeneously linearly separable by a hyperplane containing y, then there exists a $w^* \in \mathscr{W}$ such that $\langle w^* | x^+ \rangle > 0$, $\langle w^* | x^- \rangle < 0$ and by definition of the hyperplane $\langle w^* | y \rangle = 0$.

Extension

- ▶ Since \mathscr{W} is open there exists an $\epsilon > 0$ such that $|\boldsymbol{w}^{\star}\rangle \pm \epsilon |\boldsymbol{y}\rangle$ are both in \mathscr{W} and $\{\mathscr{X}^{+} \cup \{\boldsymbol{y}\}, \mathscr{X}^{-}\}$ and $\{\mathscr{X}^{+}, \mathscr{X}^{-} \cup \{\boldsymbol{y}\}\}$ are both h.l.s. by $|\boldsymbol{w}^{\star}\rangle \pm \epsilon |\boldsymbol{y}\rangle$ respectively.
- ▶ Remember that $\langle w_{1,2} | x^+ \rangle > 0$, $\langle w_{1,2} | x^- \rangle < 0$ for all $x^{\pm} \in \mathscr{X}^{\pm}$, then:

$$\langle x^{+} | (|w^{\star}\rangle + \epsilon_{1} | y \rangle) > 0$$
 $\langle x^{+} | (|w^{\star}\rangle - \epsilon_{2} | y \rangle) > 0$
 $\langle x^{-} | (|w^{\star}\rangle + \epsilon_{1} | y \rangle) < 0$ $\langle x^{-} | (|w^{\star}\rangle - \epsilon_{2} | y \rangle) < 0$

Theorem

▶ There are C(N, d + 1) homogeneously linearly separable dichotomies of N points in general position in \mathbb{R}^{d+1} , where

$$C(N, d+1) = 2 \sum_{k=0}^{d} {N-1 \choose k}.$$

- $\qquad \qquad \binom{m}{n} = \frac{m!}{(m-n)! \, n!} \, .$
- ightharpoonup d+1 is the dimension of the augmented representation of the vectors.

- Let us suppose we have a set $\mathscr{X} = \{x_1, \dots, x_N : x_\ell \in \mathbb{R}^{d+1}; 1 \le \ell \le N\}$, that has a number C(N, d+1) of homogeneously linearly separable dichotomies.
- ► Consider a new point $x_{N+1} \in \mathbb{R}^{d+1}$ in such a way that $\mathscr{X} \cup \{x_{N+1}\}$ is in general position.

- If a dichotomy $\{\mathscr{X}^+,\mathscr{X}^-\}$ is separable, by the lemma we have that both $\{\mathscr{X}^+ \cup \{x_{N+1}\},\mathscr{X}^-\}$ and $\{\mathscr{X}^+,\mathscr{X}^- \cup \{x_{N+1}\}\}$ must be separable if and only if there exists a separating vector \boldsymbol{w} for $\{\mathscr{X}^+,\mathscr{X}^-\}$ lying in the d hyperplane orthogonal to x_{N+1} , i.e. $\langle \boldsymbol{w} | x_{N+1} \rangle = 0$.
- ▶ Given that for each dichotomy $\{\mathscr{X}^+, \mathscr{X}^-\}$ there is at least a vector \mathbf{w} such that $\langle \mathbf{w} | \mathbf{x}_{N+1} \rangle = 0$, observe that for all $\mathbf{x}_+ \in \mathscr{X}^\pm$ we have that

$$|\mathbf{x}_{\pm}\rangle = \frac{\langle \mathbf{x}_{N+1} | \mathbf{x}_{\pm} \rangle}{\|\mathbf{x}_{N+1}\|_2} |\mathbf{x}_{N+1}\rangle + |\mathbf{x}_{\pm,\perp}\rangle,$$

where $\mathbf{x}_{\pm,\perp}$ is projection of \mathbf{x}_{\pm} to the space perpendicular to \mathbf{x}_{N+1} , then $\langle \mathbf{w} | \mathbf{x}_{\pm} \rangle = \langle \mathbf{w} | \mathbf{x}_{\pm,\perp} \rangle$.

Then a dichotomy $\{\mathscr{X}^+,\mathscr{X}^-\}$ is separable by \mathbf{w} with $\langle \mathbf{w} \, | \mathbf{x}_{N+1} \rangle = 0$, if and only if the projection of the set $\mathscr{X} = \mathscr{X}^+ \cup \mathscr{X}^-$ onto the d-dimensional orthogonal subspace to \mathbf{x}_{N+1} is separable. (This would not be possible in all cases if \mathbf{x}_{N+1} were a linear combination of the elements of \mathscr{X} , that is why it is required that $\mathscr{X} \cup \{\mathbf{x}_{N+1}\}$ is in general position). By hypothesis, a set of N vectors in general position in a d-dimensional space must have a total of C(N,d) dichotomies.

▶ Putting these two components together we have that:

$$C(N+1,d+1) = C(N,d+1) + C(N,d)$$

$$= C(N-1,d+1) + 2C(N-1,d) + C(N-1,d-1)$$

$$= C(N-2,d+1) + 3C(N-2,d) + 3C(N-2,d-1) + C(N-2,d-2)$$

$$\vdots$$

$$= {m \choose 0}C(N+1-m,d+1) + {m \choose 1}C(N+1-m,d) + \cdots + {m \choose m}C(N+1,d+1-m)$$

$$\vdots$$

$$= {N \choose 0}C(1,d+1) + {N \choose 1}C(1,d) + \cdots + {N \choose N}C(1,d+1-N)$$

$$C(N+1,d+1) = \sum_{k=0}^{N} {N \choose k}C(1,d+1-k).$$

Observe that:

$$C(1,j) = \begin{cases} 2 & j \ge 1 \\ 0 & j < 1, \end{cases}$$

thus

$$C(N,d+1) = 2\sum_{k=0}^{d} \binom{N-1}{k}.$$

Total number of binary functions.

We have consider the case in \mathbb{R}^2 (d=2) with 4 vectors (N=4) $\mathscr{X}=\left\{\binom{1}{1},\binom{-1}{1},\binom{1}{-1},\binom{-1}{-1}\right\}$, that corresponds to the set of augmented vectors in \mathbb{R}^3 , that posses 14 dichotomies:

$$C(4,3) = 2\left\{ \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} = 2\{1+3+3\} = 14.$$

▶ In the general case we have C(N, d + 1) and 2^N as the number of dichotomies and possible classifications respectively.

Total number of binary functions.

► Observe that the the fraction of dichotomies decays with the dimension of the space:

$$\frac{C(2^d, d+1)}{2^{2^d}} = \frac{1}{2^{2^d}} \sum_{k=0}^d {2^d - 1 \choose k}$$

d	2 ^{2^d}	С	%
1	4	4	100
2	16	14	87.5
3	256	104	40.6
4	65,536	1,882	2.87
5	4.3 10 ⁹	94,572	$2.2 \ 10^{-3}$
6	1.8 10 ¹⁹	5.03 10 ⁶	$2.7 \ 10^{-11}$