Adenosine Cyclic Ketal (ACK)

when
$$R_1 = R_2 = \begin{pmatrix} H_2 & H_2 \\ C & C \\ H_2 & H_2 \end{pmatrix}$$

and R_3 , R_4 and R_5 = hydrogen

and
$$R_6 =$$
 C
 H_2
OH

Figure 1A. Chemical structure of adenosine cyclic ketal (ACK) and the chemical formula of the compound nonamethonium adenosine cyclic ketal (nonamethonium ACK).

$$CI$$
 i, ii
 i, ii
 iii
 ii
 iii
 ii

Figure 1B: The synthetic scheme for synthesizing nonamethonium adenosine cyclic ketal. The reagents and conditions are: i) zinc dust, tetrahydrofuran (THF); ii) N-methylpyrrolodine, CoBr₂, carbon monoxide; iii) adenosine, HCl/dioxane, (EtO)₃CH, DMF; iv) 40% Me₃N in H₂O.

Fig. 2A

Fig. 2B

Fig. 3A

Fig. 3B

Fig. 4A

Fig. 4B

Pretreated with DPSPX (10 mg i.v. bolus + 0.15 mg/min)

Fig. 5A

Pretreated with DPSPX (10 mg i.v. bolus + 0.15 mg/min)

Fig. 5B

