דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	השונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	np	$\binom{n}{i} \cdot p^{i} \cdot (1-p)^{n-i} , i = 0, 1, \dots, n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp{\{\lambda(e^t-1)\}}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$\left(\frac{pe^t}{(1-(1-p)e^t)}\right)^r$ $t < -\ln(1-p)$	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \begin{pmatrix} m \\ i \end{pmatrix} \begin{pmatrix} N-m \\ n-i \end{pmatrix} / \begin{pmatrix} N \\ n \end{pmatrix} , i = 0,1,,m $	היפרגיאומטרית
	$(n^2-1)/12$	m+(1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a)$, $a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma) \cdot e^{-(x-\mu)^2/(2\sigma^2)} , -\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P\bigg(\bigcup_{i=1}^{n}A_{i}\bigg) = \sum_{i=1}^{n}P(A_{i}) - \sum_{i< j}P(A_{i}\cap A_{j}) + \ldots + (-1)^{n+1}P(A_{1}\cap A_{2}\cap \ldots \cap A_{n})$$
 כלל ההכלה וההפרדה

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

הסתברות מותנית

$$P(A_{\!\scriptscriptstyle 1} \cap A_2 \cap \ldots \cap A_{\!\scriptscriptstyle n}) = P(A_{\!\scriptscriptstyle 1}) P(A_{\!\scriptscriptstyle 2} \mid A_{\!\scriptscriptstyle 1}) P(A_{\!\scriptscriptstyle 3} \mid A_{\!\scriptscriptstyle 1} \cap A_2) \cdot \ldots \cdot P(A_{\!\scriptscriptstyle n} \mid A_{\!\scriptscriptstyle 1} \cap A_2 \cap \ldots \cap A_{\!\scriptscriptstyle n-1})$$
נוסחת הכפל

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$
 , S אורים ואיחודם הוא $\{B_i\}$

נוסחת ההסתברות השלמה

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum\limits_{i=1}^n P(A \mid B_i)P(B_i)}$$
 , S ארים ואיחודם הוא $\{B_i\}$

$$E[X] = \sum_{x} x p_{X}(x) = \int x f(x) dx$$

תוחלת

$$E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$$

תוחלת של פונקציה של מ"מ

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

שונות

$$E[aX + b] = aE[X] + b$$

תוחלת ושונות של פונקציה לינארית

$$Var(aX + b) = a^2 Var(X)$$

$$P\{X > s + t | X > t\} = P\{X > s\}$$
, $s, t \ge 0$

תכונת חוסר-הזכרון

$$E[X \mid Y = y] = \sum_{x} x \, p_{X|Y}(x \mid y) = \int x \, f_{X|Y}(x \mid y) \, dx$$

תוחלת מותנית

$$Var(X | Y = y) = E[X^2 | Y = y] - (E[X | Y = y])^2$$

שונות מותנית

$$E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_{Y}(y)$$

נוסחת התוחלת המותנית

$$E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$$

$$Var(X) = E[Var(X | Y)] + Var(E[X | Y])$$

נוסחת השונות המותנית

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

תוחלת של סכום משתנים מקריים

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

שונות משותפת

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

שונות של סכום משתנים מקריים

$$\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$$

מקדם המתאם הלינארי

$$M_X(t) = E[e^{tX}]$$
 ; $M_{aX+b}(t) = e^{bt}M_X(at)$

פונקציה יוצרת מומנטים

$$M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$$
 : כאשר מיים ביית מתקיים X_i

תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי

$$E\left[\sum_{i=1}^{N} X_{i}\right] = E[N]E[X_{1}]$$

(מיימ ביית שייה X_i כאשר

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X_{1}) + (E[X_{1}])^{2}\operatorname{Var}(N)$$

$$M_{X_1+\ldots+X_N}(t) = E\left[\left(M_{X_1}(t)\right)^N\right]$$

$$P\{X \ge a\} \le E[X]/a$$
 , $a > 0$, מיימ אי-שלילי X

אי-שוויון מרקוב

$$P\{|X-\mu| \ge a\} \le \sigma^2/a^2$$
 , $a>0$, $\mu,\sigma^2 < \infty$

אי-שוויון ציבישב

$$Pigg\{(\sum\limits_{i=1}^n X_i - n\mu)igg/\sqrt{n\sigma^2} \leq aigg\} \mathop{
ightarrow}_{n o\infty} \Phi(a) \quad , \quad \mu,\sigma^2 < \infty \ , \$$
משפט הגבול המרכזי אמיימ ביית ושייה איז משפט הגבול המרכזי

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \quad ; \quad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad ; \quad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \quad \underline{\qquad}$$

$$\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x \quad ; \quad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \quad ; \quad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \quad ; \quad \sum_{i=1}^{\infty} \frac{x^i}{i} = -\ln(1-x) \quad , \quad 0 < x < 1$$

$$(x+y)^n = \sum_{i=0}^{n} \binom{n}{i} x^i y^{n-i}$$

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} \ , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b) \qquad \qquad$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a \ln b} b^{ax} \qquad \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
 חוקי לוגים

 $\log_n a = \log_m a/\log_m n \qquad ; \qquad \log_n (a^b) = b \cdot \log_n a \qquad ; \qquad \log_n (ab) = \log_n a + \log_n b$ בשימת טענות :

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי A אם A יתרחש לפני המאורע A יתרחש לפני המאורע A היא
- אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של תהליך פואסון עם קצב λ ליחידת משתנה מקרי פואסוני עם הפרמטר מון אחת, אז מספר המופעים שמתרחשים ביחידת משחת הוא משתנה מקרי פואסוני עם הפרמטר λ
- X_n אם X_n אם X_n אם X_n אם הפרמטרים הפרמטרים הפרמטרים , i=1,2,...,n לכל הוא משתנה מקרי בינומי עם הפרמטרים . $\left(\sum_{i=1}^n n_i,p\right)$ הוא משתנה מקרי בינומי עם הפרמטרים $\sum_{i=1}^n X_i$ הוא משתנה מקרי בינומי עם הפרמטרים
- בלתי-תלויים X_n ,... , X_2 , X_1 הוא משתנה מקרי גיאומטרי עם הפרמטר p לכל p בלתי-תלויים בלתי-תלויים $\sum_{i=1}^n X_i$ הוא משתנה מקרי בינומי שלילי עם הפרמטרים .(n,p)
- X_n ,... , X_2 , X_1 ואם , i=1,2,...,n לכל לכל λ_i הפרמטר פואסוני עם הפרמטר מקרי פואסוני עם הפרמטר . $\sum_{i=1}^n \lambda_i$ הוא משתנה מקרי פואסוני עם הפרמטר $\sum_{i=1}^n X_i$ הוא משתנה מקרי פואסוני עם הפרמטר אז בלתי-תלויים זה בזה, אז
 - יסכום של n משתנים מקריים נורמליים בלתי-תלויים עם הפרמטרים μ_i הוא משתנה מקריn סכום של n טכום של n נורמלי עם הפרמטרים ב $\Sigma \sigma_i^2$ ו- $\Sigma \mu_i$
- אם X ו- (n_X,p) ו- (n_X,p) אם X התאמה, בהתאמה, בינומיים בינומיים בינומיים בלתי-תלויים עם הפרמטרים בינומיים מקריים מקריים בינומיים בלתי-תלויים עם הפרמטרים אז ההתפלגות של המשתנה המקרי המותנה X בהינתן בהינתן X+Y=n היא היפרגיאומטרית עם הפרמטרים . n=n ו- $n=n_X$, $N=n_X+n_Y$
- אם אז ו- χ הם משתנים מקריים פואסוניים בלתי-תלויים עם הפרמטרים ו χ , בהתאמה, אז החתפלגות של המשתנה המקרי המותנה χ בהינתן בהינתן χ היא בינומית עם הפרמטרים χ ההתפלגות של המשתנה המקרי המותנה χ