Second Semester-B.Tech Course work Mid Semester Examination, May, 2023

Course code: FCMT007 Course title: Mathematics II

Time: 1 hour 30 min.

Maximum Marks. 25

Note: Attempt all five questions. Missing data/information(if any), may be suitably assumed and mentioned in the answer.

Q. No.	Question	Marks	CO
1a/	Find the general solution of the following differential equation:	2.5	CO1
	$rac{d^2y}{dx^2} + 6rac{dy}{dx} + 9y = 9rac{e^{-3x}}{x^3}$		
1 b	Solve the differential equation: $x^3\frac{d^3y}{dx^3}+3x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}+y=0.$	2.5	CO1
22	Find the general solution of the following differential equation: $\frac{d^3y}{dx^3} + y = \sin x$	2.5	CO1
2b/	Find the roots of indicial equations and recurrence relation of the coeficient of the series solution of following equation: $4x\frac{d^2y}{dx^2}+2\frac{dy}{dx}+y=0.$	2.5	CO1
3a/	If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$ then prove that	2.5	CO2
	$x rac{\partial u}{\partial x} + y rac{\partial u}{\partial y} = an u.$		
3b	If $u=f(y-z,z-x,x-y)$, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0.$	2.5	CO2
4a	Find the Jacobian $\frac{\partial(u,v,w)}{\partial(r,\theta,\phi)}$ of the following functions $u(r,\theta,\phi)=r\cos\theta\cos\phi, v(r,\theta,\phi)=r\cos\theta\sin\phi, w(r,\theta,\phi)=r\sin\theta.$	2.5	CO2
	2-242	2.5	CO2
4%	Using Taylor's formula, find the quadratic approximations for the function $e^{-x^2-2y^2}$ at origin.	2.5	CO2
5a 5b	Discuss the maximum or minimum values for the function: $u(x,y) = x^3 + y^3 - 3xy$. Using Lagrange's method of undteremined multiplier, detremine the maximum or minimum value of $x^2 + y^2 + z^2$ when $ax^2 + by^2 + cz^2 = 1$.	2.5	CO2

on 110.....

Second Semester-B.Tech Course End Semester Examination, July, 2023

Course code: FCMT007 Course title: Mathematics II

Time: 3 hours.

Maximum Marks. 50

Note: Missing data/information(if any), may be suitably assumed and mentioned in the answer.

Q. No.	Question	Marks	CO
Q1	Attempt any 2 parts of the followings:		
(la)	Solve the following initial value problem:	5	CO1
	$(D^3 - D^2 + 2D - 2)y = 0$, $y(0) = 1$, $y'(0) = 0 = y''(0)$, where $D \equiv \frac{d}{dx}$.		
1b/	Find the complete solution of the differential equation:	5	CO1
	$x^2y'' - 3xy' + 5y = x^2\sin\log x.$		
1c	Using Frobenius method, find the series solution about the point $x = 0$ of the differential equation:	5	CO1
	9x(1-x)y'' - 12y' + 4y = 0.		
Q2	Attempt any 2 parts of the followings:		
2a	If $u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ then prove that	5	CO2
	(ii) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\cos 3u \sin u$.		
	(ii) $x \frac{\partial x^2}{\partial x^2} + 2xy \frac{\partial x}{\partial y^2} + y \frac{\partial y^2}{\partial y^2} = 2\cos 3u \sin u.$		10
2b	Find the maximum and minimum of the function	5	CO2
	$f(x,y) = x^3 + y^3 - 63(x+y) + 12xy.$		
36	Transform the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ into polar coordinates.	5	CO2
Q3	Attempt any 2 parts of the followings:		
34	Using change the order of integration, evaluate $\int_0^2 \int_0^{4-x^2} \frac{2xe^{3y}}{4-y} dy dx$.	5	CO3
316	Evaluate $\iiint_D 2(z^2x^2+z^2y^2) dx dy dz$, where $D = \{(x,y,z) \in \mathbb{R}^3, \; x^2+y^2 \leq 1, \; -1 \leq z \leq 1\}$.	5	CO3
Зс	Prove that $\int_0^2 (8-x^3)^{-1/3} dx = \frac{2\pi}{3\sqrt{3}}.$	5	CO3

Q4	Attempt any 2 parts of the followings:	T	
36	In each of the following parts, perform only one iteration:	5	CO4
	Use Newton-Raphson method, to find a root of the equation $xe^x - 1 = 0$, with $x_0 = 0.6$.		
	(ii) Solve the system of equations		
	27x + 6y - z = 85		
	6x - 15y + 2z = 72		
	x + y + 54z = 110		
	with initial approximation $(x_0,y_0,z_0)=(0,0,0),$ using Gauss-Siedel method .		
4b/	Compute the value of the integral $\int_{0.2}^{1.4} (x+e^x)dx$, taking 6 intervals using (i) Trapezoidal rule (ii) Simpson's 1/3 rule.	5	CO4
4c	Consider $\frac{dy}{dx} = x^2 + y^2$, where $y(0) = 1$. Find $y(0.1)$ correct to four decimal places, by fourth order Runge-Kutta method.	5	CO4
Q5	Attempt any 2 parts of the followings:	1	
5a	With the usual notations, find p for a binomial variate X , if $n=6$ and $9P(X=4)=P(X=2)$. Further, find (i) mean (ii) $P(X \le 3)$ (iii) $P(X > 3)$?	5	CO5
56	The marks of 1000 students in an examination follows a normal distribution with mean 70 and standard deviation 5. Find the number of students whose marks will be (i) less than 65 (ii) more than 75 and (iii) between 65 and 75. (Use $P(0 < Z < 1) = \phi(1) = 0.3413$).	5	CO5
55/	Find the correlation coefficient and obtain the equations of two lines of regression for the following data:	5	CO5