# Musterlösung 01/09/2014

#### 1 Quickies

- (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m=1t,  $v=100{\rm km/h}$ ) keine Rolle?
- (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von  $\lambda_1=500$  m,  $\lambda_2=500$ nm und  $\lambda_3=0.5$ nm?
- (c) Kann man den Aufenthaltsort eines quantenmechanischen Teilchens zu einem beliebigen Zeitpunkt vorherbestimmen? Begründen Sie Ihre Antwort.
- (d) Welche physikalische Bedeutung besitzt die Normierung der Schrödingergleichung?
- (e) Welche physikalischen Phänomene kennen Sie, die nicht klassisch aber quantenmechanisch erklärt werden können?

#### 2 Welle-Teilchen-Dualismus

- (a) Betrachten Sie einen Körper der Masse 5g mit einer Geschwindigkeit  $v=100 \,\mathrm{m/s}$ . Welche Breite müsste ein Spalt haben um Beugungsmuster zu beobachten? Ist dies physikalisch realisierbar?
- (b) Ein Neutron werde an einem Atomkern der Größe  $9 \cdot 10^{-15}$ m gestreut. Welche Energie besitzt das Neutron?

# 3 Bragg-Winkel

Ein Strahl langsamer Neutronen ( $E_{kin} = 2\text{eV}$ ) fällt auf einen Kristall mit Gitterabstand  $d = 1.6 \cdot 10^{-10} m$ . Bestimmen Sie den Bragg-Winkel für das Intensitätsmaximum 1. Ordnung.

## 4 Unschärferelation

(a) Angenommen der Impuls eines Teilchens wird mit der Genauigkeit 1: 1000 gemessen. Wie groß ist die minimale Ortsunschärfe, wenn es sich um ein makroskopisches Teilchen der Masse 5g mit der Geschwindigkeit 2m/s handelt?

Wie groß ist die minimale Ortsunschärfe, wenn es sich um ein Elektron der Geschwindigkeit 10<sup>4</sup>km/s handelt?

(b) Wie groß ist die minimale Energieunschärfe eines Wasserstoffatoms, das sich in einem angeregten Zustand mit der Lebensdauer  $10^{-8}$ s befindet?

### 5 Wellenpaket

- (a) Betrachten Sie ein Elektron mit dem Impuls  $p = \hbar k$  in x-Richtung. Wie lautet die zugehörige Wellenfunktion  $\psi(x,t)$ ?
- (b) Bestimmen Sie die Phasengeschwindigkeit der Elektronenwelle aus (a), indem Sie eine Stelle fester Phase im Laufe der Zeit durch den Raum verfolgen. Wie verhält sich die Phasengeschwindigkeit  $v_{ph}$  der Welle zur Geschwindigkeit  $v_T = p/m$  des Elektrons?

#### 6 Quantenmechanische Wellenfunktion

Betrachten Sie die quantenmechanische Wellenfunktion

$$\psi(x) = N \cdot \exp\left[-\frac{|x|}{a}\right], \quad a > 0$$
 (1)

(a) Bestimmen Sie den Normierungsfaktor N mit der Bedingung

$$\int_{-\infty}^{\infty} \mathrm{d}x |\psi|^2 = 1 \tag{2}$$

Welche Einheit hat die Wellenfunktion und warum ist die Normierung wichtig für die Interpretation in der Quantenmechanik?

(b) Wie groß ist die Wahrscheinlichkeit das Teilchen am Ort x = 0 zu finden? Wie groß ist die Wahrscheinlichkeit das Teilchen in einem Intervall [0, dx] zu finden? Wie groß ist die Wahrscheinlichkeit das Teilchen in einem Intervall [0, a] zu finden?

#### 7 Potentialkasten

Gegeben sei ein eindimensionales Potential der Form

$$V(x) = \begin{cases} 0, & \text{für } 0 < x < a \\ \infty, & \text{sonst} \end{cases}$$

in dem sich ein kräftefreies Teilchen befinde.

- (a) Bestimmen Sie die Wellenfunktion  $\psi_n$ .
- (b) Berechnen Sie die Energieeigenwerte  $E_n$ .
- (c) Berechnen Sie den Erwartungswert des Ortes x und des Impulsoperators  $\hat{p}$ .
- (d) Berechnen Sie die Energieunschärfe  $\Delta \hat{\mathcal{H}}$  und interpretieren Sie das Ergebnis.

Hinweis: Für die Energieunschärfe gilt:

$$\Delta \hat{\mathcal{H}} = \sqrt{\langle \hat{\mathcal{H}}^2 \rangle - \langle \hat{\mathcal{H}} \rangle^2}$$

#### 8 Potentialbarriere

Betrachten Sie die abgebildete stückweise konstante Potentiallandschaft in Abbildung 1. Ein von rechts einlaufendes Teilchen habe die Masse m und die Energie E mit  $0 < E < V_0$ .



Abbildung 1

- (a) Geben Sie die Ansätze für die Wellenfunktionen für die verschiedenen Regionen I-IV an und verwenden Sie dabei  $\hbar$ , m,  $V_0$ ,  $V_1$  und E. Die Schrödingergleichung muss nicht gelöst werden.
- (b) Stellen Sie die Anschlussbedingung für x = c auf.
- (c) Unter der Annahme, dass in Bereich III gebundene Zustände existieren, stellen Sie wie in Aufgabe (a) die Lösungen für die vier Regionen auf.

#### 9 Eindimensionaler harmonischer Oszillator

Der Hamiltonoperator eines eindimensionalen harmonischen Oszillators ist gegeben durch

$$\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}$$

(a) Gegeben sei nun die Wellenfunktion

$$\psi_{\lambda}(x) = A \exp[-\lambda x^2]$$

Berechnen Sie hiermit den Erwartungswert des Hamiltonoperators. Verwenden Sie

$$\int \mathrm{d}x \, \sqrt{\frac{a}{\pi}} \exp\left[-ax^2\right] = 1$$

Betrachten Sie nun ein Teilchen, auf das die Kraft  $K = -kx + k_0$  mit  $k = m_0\omega^2$  wirkt.

- (b) Stellen Sie die dazugehörige Schrödingergleichung auf. Zeigen Sie, dass es sich um einen harmonischen Oszillator handelt.
- (c) Geben Sie die Energieeigenwerte des Teilchens an.

#### 10 Kommutatorrelation

Der Drehimpulsoperator ist

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$$

Berechnen Sie folgende Kommutatoren:

- (a)  $[L_y, L_z]$
- (b)  $\left[\mathbf{L}^2, L_z\right]$