List of Concepts for Chapter 4

Section 4.1:

- A transformation $L: V \rightarrow W$, is linear if
 - (i) $L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})$ for every \mathbf{x} and \mathbf{y} in \mathbf{V}
 - (ii) $L(\alpha \mathbf{x}) = \alpha L(\mathbf{x})$ for every scalar α and every \mathbf{x} in V

Make sure you know how to determine whether a given transformation is linear or not.

- A linear transformation $L: V \rightarrow W$ maps the zero vector in V into the zero vector in W.
- Given a linear transformation $L: V \rightarrow W$.
 - The Kernel of L, Ker(L) is the set of vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = 0$.
 - The Image in L of the subspace S is the set of vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in S$. In particular, the <u>Range</u> of L is the image of the whole space V.

Section 4.2:

PART I: Matrix representations w.r.t. standard bases

- Theorem 4.2.1: If L is a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$, then there is an $m \times n$ matrix A such that $L(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for each $\mathbf{x} \in \mathbb{R}^n$. The *j*-th column vector of \mathbf{A} is given by $\mathbf{a}_j = L(\mathbf{e}_j)$, j = 1, 2 ... n where $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ are the standard basis vectors in \mathbb{R}^n . The matrix \mathbf{A} is called the standard matrix representation of L.
- If $L(\mathbf{x}) = \mathbf{A}\mathbf{x}$, then $Ker(L) = N(\mathbf{A})$ and Range of $L = R(\mathbf{A})$ (column space of the matrix \mathbf{A}).
- Make sure you know how to find the matrix representations of basic transformations such as rotations, reflections and projections. In particular, remember that the matrix that rotates a vector in \mathbb{R}^2 by an angle θ in the counterclockwise direction is given by $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. The rotation matrix that rotates by an angle θ in the clockwise direction is given by $R^{-1} = R^T = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.

PART II: Matrix representations w.r.t. general bases

• Theorem 4.2.2: If $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ and $\mathcal{W} = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ are ordered bases for vector spaces V and W, respectively, then there is an $m \times n$ matrix \mathbf{B} such that

$$[L(\mathbf{v})]_{\mathcal{W}} = \mathbf{B}[\mathbf{v}]_{\mathcal{V}} \text{ for each } \mathbf{v} \in V$$

The *j*-th column of **B** is given by $\mathbf{b}_j = [L(\mathbf{v}_j)]_{\mathcal{W}}$, i.e., it is the vector of coefficients of $L(\mathbf{v}_j)$ as a linear combination of the vectors in \mathcal{W} .

• **Property**: Let $L: \mathbb{R}^n \to \mathbb{R}^m$, and let **A** be the matrix representation of L w.r.t the standard bases i.e. $L(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Let \mathcal{V} and \mathcal{W} be bases of \mathbb{R}^n and \mathbb{R}^m respectively, that are not standard, and let **B** be the matrix representation of L w.r.t. these bases, i.e. $[L(\mathbf{x})]_{\mathcal{W}} = \mathbf{B}[\mathbf{x}]_{\mathcal{V}}$. Then

$$A = W B V^{-1}$$

where V and W are the transition matrices from the bases V and W to the standard bases of \mathbb{R}^n and \mathbb{R}^m respectively.