1. Моя сестра положит новую книгу о цветах на стол.

Для перевода в грамматику НС необходимо в дереве составляющих (построенном на основе КС-грамматики) поднять слова-вершины на уровень корневых узлов (чёрным цветом).

2. Алгоритмы, основанные на ограничениях: имеется полный граф (каждая пара различных вершин смежна), после чего задается набор ограничений (для построения правильного дерева), на основании которого из первоначального графа удаляются лишние рёбра.

Примеры ограничений:

Полное прилагательное:

$$Word(pos(x)) = Adj => (label(x) = NMOD, word(mod(x)) = (Noun, mod(x) > pos(x)))$$

Местоимение:

$$Word(pos(x)) = Pron \Rightarrow (label(x) = NMOD, word(mod(x)) = (Noun, mod(x) > pos(x)))$$

Существительное:

$$Word(pos(x)) = Noun \Rightarrow (label(x) = SUBJ, word(mod(x)) = (V, mod(x) > pos(x)))$$

$$Word(pos(x)) = Noun \Rightarrow (label(x) = OBJ, word(mod(x)) = (V, mod(x) < pos(x)))$$

3. Алгоритм Nivre: имеется стек и очередь, а также набор операций (Shift (SH), Reduce (RE), Left-Arc (LA), Right-Arc (RA)). Для исходного предложения создадим таблицу, аналогичную той, что дана в задании:

Root	Моя	Сестра	Положит	Новую	Книгу	0	Цветах	На	Стол
-	1	2	3	4	5	6	7	8	9

Operation	Stack	Input	Created arc
	0	(1, 2, 3, 4, 5, 6, 7, 8, 9)	
SH	(1)	(2, 3, 4, 5, 6, 7, 8, 9)	
LA	0	(2, 3, 4, 5, 6, 7, 8, 9)	(1 ← 2)
SH	(2)	(3, 4, 5, 6, 7, 8, 9)	
LA	0		(2 ← 3)
SH	(3)	(4, 5, 6, 7, 8, 9)	

SH	(3, 4)	(5, 6, 7, 8, 9)	
LA	(3)	(5, 6, 7, 8, 9)	(4 ← 5)
SH	(3, 5)	(6, 7, 8, 9)	
SH	(3, 5, 6)	(7, 8, 9)	
LA	(3, 5)	(7, 8, 9)	(6 ← 7)
SH	(3, 5, 7)	(8, 9)	
SH	(3, 5, 7, 8)	(9)	
LA	(3, 5, 7)	(9)	(8 ← 9)
SH	(3, 5, 7, 9)	0	

Создаем правые связи (предварительно поменяем местами стек и очередь):

	0	(9, 7, 5, 3)	
SH	(9)	(7, 5, 3)	
SH	(9, 7)	(5, 3)	
RA	(9)	(5, 3)	$(5 \rightarrow 7)$
SH	(9, 5)	(3)	
RA	(9)	(3)	$(3 \rightarrow 5)$
RA	0	(3)	$(3 \rightarrow 9)$
SH	(3)	0	

Таким образом, получаем, что 3 (положит) – вершина.