1 Osnove

1.1 Ponovitev logaritmov

•
$$log_a x = \frac{log_b x}{log_b a}$$

•
$$log_b(\frac{x}{y}) = log_b x - log_b y$$

•
$$x = b^y \implies log_b x = y$$

•
$$log_2 x = log x$$

•
$$0log0 = 0$$

1.2 Entropija je povprecje vseh lastnih informacij:

$$H(X) = \sum_{i=1}^{n} p_i I_i = -\sum_{i=1}^{n} p_i log p_i$$

Lastnosti: je zvezna, simetricna funckija (vrsni red p_i ni pomemben, sestevanje je komutativno). Je vedno vecja od 0 ($p_i \ge 0 \rightarrow$

 $-p_i \log p_i \ge 0 \to H(X) \ge 0$) in navzgor omejena z $\log n$.

Ce sta dogodka **neodvisna** velja aditivnost: H(X,Y) = H(X) + H(Y).

Vec zaporednih dogodkov neodvisnega vira: $X^l = X \times \cdots \times X \to H(X^l) = lH(X)$.

2 Kodi

2.1 Uvod

 \mathbf{Kod} sestavljajo kodne zamenjave, ki so sestavljene iz znakov \mathbf{kodne} abecede. Stevilo znakov v kodni abecedi oznacujemo z \mathbf{r} .

Ce so $\{p_1,\ldots,p_n\}$ verjetnosti znakov $\{s_1,\ldots,s_n\}$ osnovnega sporocila in $\{l_1,\ldots,l_n\}$ dolzine prejetih kodnih zmanjav, je povprecna dolzina kodne zamenjave

$$L = \sum_{i=1}^{n} p_i l_i$$

2.2 Tipi kodov

- optimalen ce ima najmanjso mozno dolzino kodnih zamenjav
- idealen ce je povprecna dolzina kodnih zamenjav enaka entropiji
- enakomeren ce je dolzina vseh kodnih zamenjav enaka
- enoznacen ce lahko poljuben niz znakov dekodiramo na en sam nacin
- trenuten ce lahko osnovni znak dekodiramo takoj, ko sprejmemo celotno kodno zamenjavo
- **2.3** Kraftova neenakost Za dolzine kodnih zamenjav $\{l_1, \ldots, l_n\}$ in r znaki kodne abecede obstaja trenutni kod, iff:

$$\sum_{i=1}^{n} r^{-li} \le 1$$