Anycost GAN

Вспомним StyleGAN

Вспомним StyleGAN

Вспомним StyleGAN

Красиво, но дорого!

Идея

Идея

AnycostGAN: составной генератор

Составной генератор

Составной генератор

(a) vanilla StyleGAN2

(b) multi-resolution training

Условный дискриминатор

Адаптивные каналы

$$\mathcal{L}_{\text{ada-ch}} = \mathbb{E}_{\mathbf{x},k}[\log D(\mathbf{x}^k)] + \mathbb{E}_{\mathbf{w},k,\mathbb{C}}[\log(1 - D(G_{\mathbb{C}}^k(\mathbf{w})))]$$

Сохраняем консистентность

$$\mathcal{L}_{ ext{total}} = \mathcal{L}_{ ext{ada-ch}} + \mathbb{E}_{\mathbf{w},k,\mathbb{C}}[\ell(G_{\mathbb{C}}^k(\mathbf{w}),G(\mathbf{w}))].$$

(c) w/o consistency loss

(d) w/ consistency loss

Использование

Проецирование:

$$E^* = \arg\min_{E} \mathbb{E}_{\mathbf{x}}[\ell(G(E(\mathbf{x})), \mathbf{x}) + \alpha \mathbb{E}_{k, \mathbb{C}} \ell(G_{\mathbb{C}}^k(E(\mathbf{x})), \mathbf{x})]$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} [\ell(G(\mathbf{w}), \mathbf{x}) + \alpha \mathbb{E}_{k, \mathbb{C}} \ell(G_{\mathbb{C}}^k(\mathbf{w}, \mathbf{x}))]$$

Использование

Проецирование:

$$E^* = \arg\min_{E} \mathbb{E}_{\mathbf{x}}[\ell(G(E(\mathbf{x})), \mathbf{x}) + \alpha \mathbb{E}_{k, \mathbb{C}} \ell(G_{\mathbb{C}}^k(E(\mathbf{x})), \mathbf{x})]$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} [\ell(G(\mathbf{w}), \mathbf{x}) + \alpha \mathbb{E}_{k, \mathbb{C}} \ell(G_{\mathbb{C}}^k(\mathbf{w}, \mathbf{x}))]$$

Редактирование:

$$G(\mathbf{w} + \Delta \mathbf{w})$$

$$G_{\mathbb{C}}^k(\mathbf{w} + \Delta \mathbf{w})$$

(b) LSUN Car generated samples

			FID-	Path length↓			
Channels:		1.0×	0.75×	0.5×	0.25×	1.0×	0.5×
FFHQ 1024	StyleGAN2	2.84	-	3.31	-	145.0	124.5
	Anycost	2.77	3.05	3.28	5.01	144.2	147.2
Car 512	StyleGAN2	2.32	-	3.19	_	415.5	471.2
	Anycost	2.38	2.46	2.61	3.69	380.1	430.0

Table 5: Inference FPS & speed up rates on different devices.

FLOPs reduction	1×	$2\times$	4×	6×	8×	10×
Xeon CPU FPS speed up rate	0.00	1.78 2.8×		6.24 10.0×	7.48 11.9×	7.35 11.7×
Nano GPU FPS speed up rate	0.65 1×		2.77 4.2×	3.59 5.5×	4.07 6.2×	4.1 6.3×

Источники

• Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zhu https://arxiv.org/abs/2103.03243