

- Place the sample of dry sand (Clay removed sand) in the upper sieve
- · Vibrate the Sieve shaker for a definite period.
- Weigh the amount of sand retained on each sieve
- Compute the percentage distribution of grains.

D

A sample of 50 gms of moulding sand was sieved through a sieve shaker. The quantities of sand collected in different sieve were recorded. Determine AFS grain fineness number (GFN) of the said sand

US Sieve Serial no	Sand retained On each sieve(gm)	% of sand retain (A)	Multiple factor (B)	Product (AXB)
6	none	0.0	3	0
12	none	0.0	5	0
20	none	0.0	10	0
30	none	0.0	20	0
40	0.20	0.40	30	12
50	0.65	1.3	40	52
70	1.20	2.4	50	120
100	2.25	4.5	70	315
as Rov	8.55	17.1	100	1710
las Roy	11.05	22.1	140	3094

GFN =Sum of products/Sum of % weight of sand retained = 15243/88.2 =172.8 ≈ 173

Permeability Test:

The quantity of air that will pass through a standard specimen of the sand at a particular pressure condition is called the permeability of the sand

B

Major part of Permeability test equipment

- An inverted bell Jar, which floats in a water
- Specimen tube (for holding the sand specimen)
- Manometer (for measuring the air pressure)

Step involved;

- The air (2000 cc volume) held in the bell jar is forced to pass through the sand specimen
- At this time, air entering the specimen is equal to the air escaped through the specimen
- Take the pressure reading in the manometer
- 4. Note the time required for 2000 cc of air to pass the specimen

Permeability number (N) = VH/APT
Where, V = Volume of air (cc)
H= Height of the Specimen (cm)
A = Area of the Specimen (cm²)
P = Air pressure (gm/cm²)
T = Time taken by the air to pass through

the sand Specimen (Sec)

odas Roy

Determine the permeability a AFS sandard sand specimen of 5.08 cm (2 inch) diameter and 5.08 cm in height. The air drum was raised to take 2000 cm³ of air into it. The whole air was then allowed to escape through the sand specimen at a pressure of 10g/cm³ in a span of 15 sec.

odas Roy

