Sreelakshmi Bindu Jyothikumar

Kerala, India-673104

☑ sreelakshmi.bj@gmail.com | ☐ (+91) 8608078968 | in https://www.linkedin.com/in/sreelakshmi-b-j-9640721b3/

Education

2016-2018 Master of Science | Human Genetics and Molecular Biology | Bharathiar University | India CGPA-8.2/10.0 First class with distinction.

2013-2016 Bachelor of Science | Plant Biology and Plant Biotechnology | PSGR Krishnammal College | India CGPA-8.2/10.0 First class with distinction.

Research Experience

2024-present Project associate | National Centre for Biological Sciences (NCBS-TIFR) | India

- Generated and characterized patient-derived induced pluripotent stem cells (iPSCs) for biorepository.
- Generated cortical neurons from iPSCs through directed differentiation.
- Investigation of lithium sensitivity in bipolar disorder using iPSC-derived cortical neurons.
- Introducing point mutation in bipolar disorder patient-derived iPSC using base editing.

2021-2024 Junior research fellow | Rajiv Gandhi Centre for Biotechnology (RGCB) | India

- Delineated mechanoresponsive signaling pathways in altered flow-induced vascular malformations.
- Identified potential drug targets.

2019 Project trainee | University of Madras | India

Studied toxicological effects of various phytochemicals using zebrafish embryos.

2018 Master's thesis | Bharathiar University | India

- Investigated mutational screening and chromosomal alteration in autism spectrum disorder.
- Performed karyotype analysis and identified gene mutation.

2017 Summer internship | CSIR-Cellular and Molecular Biology (CCMB) | India

- Studied the impact of maternal prenatal stress during adolescence using a mice model.
- Conducted animal behavioural tests.

Publications

- Ahalya S, Karthika CL, **Sreelakshmi BJ**, et al. Altered venous flow drives endothelial to mesenchymal transition in varicose veins by suppressing PIEZO1-KLF2 signaling. *Manuscript submitted*.
- **B.J. Sreelakshmi**, C.L. Karthika, S. Ahalya, et al. Mechanoresponsive ETS1 causes endothelial dysfunction and arterialization in varicose veins via NOTCH4/DLL4 signaling. *European Journal of Cell Biology*, Volume 103, Issue 2, 2024,151420, ISSN 0171-9335. https://doi.org/10.1016/j.ejcb.2024.151420.
- Karthika CL, Venugopal V, **Sreelakshmi BJ**, et al. Oscillatory shear stress modulates Notch mediated endothelial mesenchymal plasticity in cerebral arteriovenous malformations. *BMC Cellular and Molecular Biology Letters* 28, 22 (2023). https://doi.org/10.1186/s11658-023-00436-x.

Achievements

- Best poster award International Conference on Emerging Trends in Genomics and Biomedicine (ETGB 2023).
- Certification course on Laboratory Animal Science, Animal Research Facility, RGCB.
- Qualified Graduate Aptitude Test in Engineering (GATE 2021).
- TOEFL iBT Score 94/120.

Conferences

- **BJ Sreelakshmi**, CL Karthika, S Sumi. "Aberrant mechanosensitive signaling pathway induces venous endothelial dysfunction in varicose veins". *International Conference on Emerging Trends in Genomics and Biomedicine* (ETGB 2023), University of Kerala, India, 15th -17th November 2023 (Poster).
- Sreelakshmi BJ, Karthika CL, Sumi S. "Altered venous shear stress induce endothelial mechanosensitive Ets1-Notch4/Dll4 signaling in varicose veins". *International conference on Advances in Biotechnology: Current Discoveries and Future Perspectives (ICAB- 2023)*, Amity University, India, 17th -18th October 2023 (*Oral*).
- **BJ Sreelakshmi**, CL Karthika, S Sumi. "Disturbed hemodynamics activates aberrant endothelial Notch signaling via mechanosensitive Ets1 in varicose veins". *International Conference on Advances on Cardiovascular Medicine and Research (ACMR 2023)*, PGIMER, India, 16th 18th February 2023 (*electronic poster*).

Technical Skills

Programming languages

Mammalian cell culture	hiPSCs, cortical neurons, LCL, HUVEC, HCMEC, EA.hy926, U87MG; LCL to iPSC generation, iPSC to cortical neuron differentiation; <i>In vitro</i> fluid shear stress experiments.
Molecular biology techniques	DNA/RNA isolation, cDNA synthesis, PCR, qRT-PCR, SDS-PAGE, Western blot,
	Immunofluorescence, siRNA knockdown, Immunohistochemistry, Electroporation,
	Base editing.
Biophysical instrumentation	Basic level: Confocal microscopy, NMR spectroscopy.
Model organisms handled	Mice, Zebrafish, C.elegans.
	Animal behavioural tests: open field, forced swim.
Microbiology techniques	Bacterial transformation, Plasmid isolation.
Data analysis software	ImageJ, Graphpad prism.

Basic level: Python.