# Variational Auto-encoders: Representations for image generation and semi-supervised learning

JIANBO CHEN, BILLY FANG, CHENG JU Departments of Statistics and Biostatistics, UC Berkeley CS 294-129, FALL 2016

#### BACKGROUND, DATA, TOOLS

- Variational auto-encoders are useful for generating new examples from observed data
- Learns latent encoding of data
- Can be used for semi-supervised learning
- Data: MNIST digits dataset and SVHN dataset
- Tools: TensorFlow, GeForce GTX 770 GPU

# VARIATIONAL AUTO-ENCODER

- latent variable model:  $z \sim \mathcal{N}(0,I)$ ,  $x \mid z \sim f(x;z,\theta)$  (e.g. Bernoulli)
- variational inference: maximize lower bound on log likelihood

 $\log p(x) \ge \mathbb{E}_{z \sim Q(\cdot \mid x)}[\log p(x \mid z)] - \mathrm{KL}(Q(z \mid x) || p(z)).$ 

### CONDITIONAL VAE (CVAE)

• condition everything on label y



 $\log p(x \mid y) \ge \mathbb{E}_{z \sim Q(\cdot \mid y, x)}[\log p(x \mid y, z)] - \mathrm{KL}(Q(z \mid x, y) || p(z \mid y)).$ 

# SEMI-SUPERVISED LEARNING (SSL) VAE

- Handle datasets with missing labels
- Models label distribution
- Labeled and unlabeled examples enter loss differently

 $\log p(x,y) \ge \mathbb{E}_{z \sim Q(z|x,y)} [\log p(x \mid y, z) + \log p(y)]$  $- \text{KL}(Q(z \mid x, y) || p(z)) =: -\mathcal{L}(x,y)$  $\log p(x) \ge \sum_{z \in Q(z|x,y)} q(y \mid x) (-\mathcal{L}(x,y)) + H(q(y \mid x))$ 

Validation/test error on MNIST (55000 training examples)

|                   | 1000 labeled | 600 labeled |
|-------------------|--------------|-------------|
| Fully connected   | 4.7% / 5.1%  | 11.5%/12.0% |
| Convolutional     | 4.2%/4.8%    | 6.0%/6.2%   |
| Kingma et al. [3] | 2.4%         | 2.6%        |

### DRAW

- attention-based sequential generation
- RNN structure



#### CVAE WITH GAN

CVAEGAN results here

# SSL WITH GANS

CVAEGAN results here

# DRAW WITH GANS

Add GAN on the top of the last output of DRAW



# FUTURE DIRECTIONS

# CVAE FOR COMPLETION



# ADDING GANS

- VAE output is often blurry
- Add discriminator to encourage sharpness
- Replace decoder loss with comparison of discriminator layers



#### CVAE FOR STYLE TRANSFER



### REFERENCES

- [1] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.
- [2] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. DRAW: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.
- [3] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In *Advances in Neural Information Processing Systems*, pages 3581–3589, 2014.
- [4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- [5] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoencoding beyond pixels using a learned similarity metric. *arXiv preprint arXiv:1512.09300*, 2015.