强化训练

A 组 夯实基础

1. (2024 • 江苏模拟)

定义集合运算: $A \odot B = \{z \mid z = xy(x+y), x \in A, y \in A,$

B} ,集合 $A = \{0,1\}$, $B = \{2,3\}$,则集合 $A \odot B$ 所有元素之和为_____.

1. 18

解析: $x \rightarrow y$ 分别来自 $A \rightarrow B$, 而 A, B 的元素个数较少, 故所有可能的组合不多, 考虑逐一罗列, 分析 Z 的取值,

x	0	0	1	1
У	2	3	2	3
z = xy(x+y)	0	0	6	12

由上表可知 z 所有可能的取值有 0, 6, 12, 所以 $A \odot B = \{0.6,12\}$, 故 $A \odot B$ 的所有元素之和为 0+6+12=18.

2. (2023 • 河南期中) (多选)

当两个集合中一个集合为另一个集合的子集时,称这两个集合构成"全食"; 当两个集合有公共元素,但互不为对方子集时,称这两个集合成"偏食". 对于集合 $A=\left\{-2,0,\frac{1}{2},1\right\}$, $B=\left\{x\mid(ax-1)(x+a)=0\right\}$,若 $A=\left\{-2,0,\frac{1}{2},1\right\}$, $A=\left\{x\mid(ax-1)(x+a)=0\right\}$,若 $A=\left\{x\mid(ax-1)(x+a)=0\right\}$

B 构成"全食"或"偏食",则实数 a 的取值可以是()

B.
$$-\frac{1}{2}$$

2. BCD

解法 1:构成"全食"或"偏食",意味着两个集合有公共元素,A的元素已知,B的元素与a的值有关,可考虑把选项依次代

A 项, 当 a = -2 时, 由 (-2x-1)(x-2) = 0 得 $x = -\frac{1}{2}$ 或 2,

所以 $B = \left\{-\frac{1}{2}, 2\right\}$, 此时 $A \cap B = \emptyset$, 不合题意,

入B中的方程, 求出B再看它与A的关系,

故 A 项错误;

B 项, 当 $a = -\frac{1}{2}$ 时, 由 $(-\frac{1}{2}x - 1)(x - \frac{1}{2}) = 0$ 得 x = -2 或

$$\frac{1}{2}, 所以 B = \left\{-2, \frac{1}{2}\right\},$$

此时 $B \subsetneq A$, $A \vdash B$ 构成"全食", 故 B 项正确;

C项, 当 a=0 时, 由 -x=0 可得 x=0, 所以 $B=\{0\}$,

此时 $B \subseteq A$, $A \subseteq B$ 构成"全食", 故 C 项正确;

D 项, 当 a=1 时, 由 (x-1)(x+1)=0 得 x=1 或 -1,

所以 $B = \{1, -1\}$,此时 $A \cap B = \{1\}$,A 与 B构成"偏食",

故 D 项正确.

解法 2: 观察发现集合 B 的方程 (ax-1)(x+a)=0 好解,因此可先解方程,得到集合 B,再来分析怎样能使 A 和 B 有公共元素.要求解 B 的方程,需要讨论 a 是否为 0,

当 a = 0 时, (ax - 1)(x + a) = 0 即为 -x = 0,解得: x = 0,

所以 $B = \{0\}$, 此时 $B \subsetneq A$, 所以 A 与 B 构成 "全食";

当 $a \neq 0$ 时,由 (ax-1)(x+a) = 0 可得 $x = \frac{1}{a}$ 或 -a ,

显然 $\frac{1}{a} \neq -a$,否则 $a^2 = -1$,矛盾,所以 $B = \left\{ \frac{1}{a}, -a \right\}$,

A和 B构成"全食"或"偏食"等价于 A, B有公共元素,

故
$$\frac{1}{a} = -2$$
或 $\frac{1}{a} = \frac{1}{2}$ 或 $\frac{1}{a} = 1$ 或 $-a = -2$ 或 $-a = \frac{1}{2}$ 或 $-a = 1$,

解得: $a = -\frac{1}{2}$ 或 2 或 1 或 -1,

综上所述,满足题意的 a 可以为 0, $-\frac{1}{2}$, 2, 1, -1,

结合选项可知答案为 BCD.

3. (2024 · 山东模拟) (多选)

我们知道,如果集合 $A \subseteq S$,那么 S 的子集 A 的补集为 $\mathbb{C}_S A = \{x \mid x \in S \ \exists \ x \notin A\}$,类似地,对于集合 A, B 我 们把集合 $\{x \mid x \in A \perp x \notin B\}$, 叫作集合 $A \cap B$

的差集,记作A-B,例如, $A = \{1,2,3,4,5\}$,B =

 $\{4,5,6,7,8\}$,则 $A-B=\{1,2,3\}$, $B-A=\{6,7,8\}$,下列解答正确的是(

A. 己知 $A = \{4,5,6,7,9\}$, $B = \{3,5,6,8,9\}$,

则 $B-A=\{3,7,8\}$

B. 已知 $A = \{x \mid x < -1$ 或 $x > 3\}$, $B = \{x \mid -2 \le x\}$

< 4}, 则 $A - B = \{x \mid x < -2$ 或 $x \ge 4\}$

C. 如果 $A \subset B$, 那么 $A - B = \emptyset$

D. 已知全集 U, 集合 A, B 的关系如下图所示,则 $A-B=A\cap (C_UB)$

3. BCD

解析: A 项, 由题意, $A \cap B = \{5,6,9\}$, 在 B 中把 $A \cap B$ 的元素去掉可得 $B - A = \{3,8\}$, 故 A 项错误;

B 项, 如图 1, $A \cap B = \{x \mid -2 \le x < -1$ 或 $3 < x < 4\}$,

在 $A 中把 A \cap B$ 的元素去掉得 $A - B = \{x \mid x < -2 \text{ od } x \ge 4\}$,

故 B 项正确;

C 项, 若 $A \subset B$, 则不存在元素 $x \in A$ 且 $x \notin B$,

所以 $A-B=\{x\mid x\in A\ \exists\ x\notin B\}=\varnothing$,故C项正确;

D 项, $A \cap (C_{n}B)$ 为如图 2 所示的阴影部分,它恰好是 $\{x \mid x \in A \perp E \neq B\}$,所以 $A - B = A \cap (C_{n}B)$,故 D 项正确.

B组 强化能力

4. (2023·上海徐汇期末)

若集合 A 同时具有以下三个性质: (1) $0 \in A$ $, 1 \in$

A; (2) 若 $x,y \in A$, 则 $x-y \in A$; (3) 若 $x \in A \perp x \neq 0$, 则 $\frac{1}{x} \in A$; 则称A为"好集".

已知命题: ①集合 $\{1,0,-1\}$ 是好集; ②对任意一个好集A,若 $x,y \in A$,则 $x+y \in A$. 以下判断正确的是(

- A. ①和②均为真命题
- B. ①和②均为假命题
- C. ①为真命题, ②为假命题
- D. ①为假命题, ②为真命题

4. D

解析: 对于命题①, $0 \in \{1,0,-1\}$, $1 \in \{1,0,-1\}$,

满足性质(1),

因为 $1 \in \{1,0,-1\}$, $-1 \in \{1,0,-1\}$,但 $1-(-1)=2 \notin \{1,0,-1\}$,

所以不满足性质(2),故①为假命题;

对于命题②, 我们发现条件有 $x-y\in A$, 让判断的是 $x+y\in A$ 是否正确, 怎样由x-y变成x+y? 注意到x+y=x-(-y),

所以可考虑先论证 $-y \in A$, 而-y可看成

0-y, 0恰好也在A中, 思路就有了,

对任意一个好集 A,由性质 (1) 可知 $0 \in A$,

又因为 $x \in A$, $-y \in A$, 所以再由性质 (2) 可得x - (-y)

 $= x + v \in A$, 故②为真命题.

5. (2023 • 北京期中)

定义集合 $P = \{x \mid a \le x \le b\}$ 的"长度"是 b - a,其中 $a, b \in \mathbb{R}$.已如集合 $M = \left\{x \mid m \le x \le m + \frac{1}{2}\right\}$, $N = \left\{x \mid m \le x \le m + \frac{1}{2}\right\}$,

$$\left\{x \middle| n - \frac{3}{5} \le x \le n\right\}$$
, 且 M , N 都是集合 $\{x \mid 1 \le x \le 2\}$ 的子集,则 $M \cap N$ 的"长度"的最小值是______;

5.
$$\frac{1}{10}$$
; $\left\{ n \middle| \frac{8}{5} \le n < \frac{17}{10} \stackrel{?}{\Longrightarrow} \frac{9}{5} < n \le 2 \right\}$

解析: 由题意,集合 *M* 的长度是 $m + \frac{1}{2} - m = \frac{1}{2}$,集合 *N* 的长度是 $n - (n - \frac{3}{5}) = \frac{3}{5}$,

集合 M, N的长度都不随 m, n的变化而改变,调整 m, n, 不外乎就是这两个集合在数轴上的位置会移动,于是考虑画图分 析, 找 $M \cap N$ 长度最小的临界状态,

如图 1,集合 M, N 可在数轴上滑动,但它们的长度保持不变,且都不超出 1 到 2 的范围,

怎样能使 $M \cap N$ 的长度最小? 应该让二者重叠的区域最少,此时不妨让 M 靠最左边,N 靠最右边(反过来也行),

如图 2, 当 m=1, n=2 时, $m+\frac{1}{2}=\frac{3}{2}$, $n-\frac{3}{5}=\frac{7}{5}$, 此时 $M\cap N$ 的长度最小,

所以 $M \cap N$ 的长度的最小值为 $\frac{3}{2} - \frac{7}{5} = \frac{1}{10}$;

注意到集合 N 的长度恰为 $\frac{3}{5}$,M 的长度为 $\frac{1}{2} < \frac{3}{5}$,故要使 $M \cup N$ 的长度大于 $\frac{3}{5}$,只需 M 不包含于 N 就行了,否则 $M \cup N = N$,其长度等于 $\frac{3}{5}$. 显然 M 包含于 N 比正面考虑 M 不包含于 N 更容易,故按此求 n 的范围,再取补集,

若
$$m=\frac{6}{5}$$
 ,则 $m+\frac{1}{2}=\frac{17}{10}$,假设 $M\subseteq N$,则如图 3,

应有
$$n-\frac{3}{5} \le \frac{6}{5}$$
 且 $\frac{17}{10} \le n$,解得: $\frac{17}{10} \le n \le \frac{9}{5}$ ①,

由 $N \subseteq \{x \mid 1 \le x \le 2\}$ 得 $n - \frac{3}{5} \ge 1$ 且 $n \le 2$, 所以 $\frac{8}{5} \le n \le 2$ ②,

要使 $M \cup N$ 长度大于 $\frac{3}{5}$, 应有 M 不包含于 N, 故在②中把①去掉得 n 的取值范围为 $\left\{n \middle| \frac{8}{5} \le n < \frac{17}{10} \stackrel{\circ}{\to} \frac{9}{5} < n \le 2\right\}$.

6. (2023•山东临沂期中)(多选) 一数 高中数学一本通

给定数集 M,若对于任意 $a,b\in M$,有 $a+b\in M$,且 $a-b\in M$,则称集合 M 为闭集合,则下列说法中不正确的是(

- A. 集合 $M = \{-2, -1, 0, 1, 2\}$ 为闭集合
- B. 整数集是闭集合
- C. 集合 $M = \{n \mid n = 2k, k \in \mathbb{Z}\}$ 为闭集合
- D. 若集合 A_1 , A_2 为闭集合,则 A_1 $\bigcup A_2$ 为闭集合

6. AD

解析: A 项, 由题意, $1 \in M$, $2 \in M$, 但 $1+2=3 \notin M$,

所以集合M不是闭集合,故A项错误;

B 项,对任意的 $a \in \mathbb{Z}$, $b \in \mathbb{Z}$,都有 $a+b \in \mathbb{Z}$, $a-b \in \mathbb{Z}$,

所以整数集 Z 是闭集合, 故 B 项正确;

C 项,因为 $M = \{n \mid n = 2k, k \in \mathbb{Z}\}$,所以 M 是全体偶数构成的集合,对 M 中的任意两个偶数 $a,b,a \pm b$ 仍是偶数,所以 $a \pm b \in M$,从而集合 M 是闭集合,故 C 项正确;

D项,C项的集合 M可看成所有能被 2 整除的整数构成的集合,受此启发,可以想象,所有能被 3, 4, 5, \cdots 整除的数各自 也都能构成闭集合,但从中取两个求并集后就不一定是闭集合了,下面我们举个例子,

设 $A_1 = \{x \mid x = 2k, k \in \mathbb{Z}\}$, $A_2 = \{x \mid x = 3k, k \in \mathbb{Z}\}$,则 A_1 , A_2 都是闭集合, $A_1 \cup A_2 = \{x \mid x = 2k \text{ 或 } x = 3k, k \in \mathbb{Z}\}$,

元素 2 和 3 在 $A_1 \cup A_2$ 中,但 2+3=5 不在 $A_1 \cup A_2$ 中,

所以 $A_1 \cup A_2$ 不是闭集合,故D项错误.

C 组 拓展提升

7. (2024 • 全国模拟) (多选)

由无理数引发的数学危机一直延续到 19 世纪,直到 1872 年,德国数学家戴德金从连续性的要求出发,用有理数的"分割"来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为"无理"的时代,也结束了持续 2000 多年的数学史上的第一次大危机。所谓戴德金分割,是指将有理数集 \mathbf{Q} 划分为两个非空的子集 M 与 N ,且满足 M \bigcup N = \mathbf{Q} , M \bigcap N = \emptyset ,M 中的每一个元素,则称 (M,N) 为戴德金分割,试判断下列选项中,可能成立的是(

- A. $M = \{x \in \mathbf{Q} \mid x < 0\}$, $N = \{x \in \mathbf{Q} \mid x > 0\}$ 是一个戴德金分割
- B. M没有最大元素, N有一个最小元素
- C. M有一个最大元素,N有一个最小元素
- D. M 没有最大元素, N 也没有最小元素

7. BD

解析: A 项, 由题意, $M \cup N = \{x \in \mathbf{Q} \mid x < 0 \text{ 或 } x > 0\}$,

所以有理数 0 不在 $M \cup N$ 中,从而 $M \cup N \neq \mathbf{Q}$,

故(M,N)不是一个戴德金分割,故A项错误;

B项, 受 A 项的启发, 把 0 补上就能产生戴德金分割, 能否满足此项结论呢? 可以, 把 0 补到 N 中即可,

设 $M = \{x \in \mathbf{Q} \mid x < 0\}$, $N = \{x \in \mathbf{Q} \mid x \ge 0\}$, 则 $M \cup N = \mathbf{Q}$,

 $M \cap N = \emptyset$,且 M中的每一个元素小于 N中的每一个元素,所以(M,N)是戴德金分割,此时 M没有最大的元素,

N有一个最小元素,此最小元素是 0,故 B 项正确;

C项,任意两个有理数之间都有无穷多个有理数,所以直观想象可知,若M有一个最大元素,N有一个最小元素,则它们之间的有理数必不在 $M \cup N$ 中,不满足 $M \cup N = \mathbf{Q}$,故此选项不可能成立,若要严格论证,可用反证法,

假设存在戴德金分割 (M,N) ,M有一个最大元素 a,N有一个最小元素 b,则 a < b ,且 $a,b \in \mathbf{Q}$,所以 $\frac{a+b}{2} \in \mathbf{Q}$,

因为
$$a < \frac{a+b}{2} < b$$
,所以 $\frac{a+b}{2} \notin M$, $\frac{a+b}{2} \notin N$,

从而 $M \cup N \neq \mathbf{Q}$, 与 (M,N) 为戴德金分割矛盾,

故不存在戴德金分割 (M,N), 使 M有一个最大元素 a,

N有一个最小元素 b, 故 C 项错误;

D项,此为多选题,已排除选项 A、C,则 D 项必定正确,下面我们举一个满足 D 项结论的戴德金分割,

设 $M = \{x \in \mathbf{Q} \mid x < \sqrt{2}\}$, $N = \{x \in \mathbf{Q} \mid x > \sqrt{2}\}$,

则 $M \cup N = \mathbf{Q}$, $M \cap N = \emptyset$, 且 M 中的每一个元素小于 N 中的每一个元素,所以 (M, N) 是戴德金分割,

此时 M没有最大元素, N也没有最小元素, 故 D项正确.

8. (2024 • 全国模拟)

大数据时代,需要对数据库进行检索,检索过程中有时会出现笛卡尔积现象,而笛卡尔积会产生大量的数据, 对内存、计算资源都会产生巨大压力,为优化检索软件,编程人员需要了解笛卡尔积. 两个集合 A 和 B,用 A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫作 A 与 B 的笛卡尔 积,又称直积,记为 $A \times B$. 即 $A \times B = \{(x,y) | x \in A \perp y \in B\}$,关于任意非空集合M,N,T,下列说法一定 正确的是()

- A. $M \times N = N \times M$
- B. $(M \times N) \times T = M \times (N \times T)$
- C. $M \times (N \cup T) \subsetneq (M \times N) \cup (M \times T)$
- D. $M \times (N \cap T) = (M \times N) \cap (M \times T)$

8. D

解析: 四个选项都不容易直接看出是否成立, 正面论证也较难, 故考虑取特值排除选项,

假设 $M = \{1\}$, $N = \{2\}$, $T = \{3\}$,

A \mathfrak{P} , $M \times N = \{(x, y) \mid x \in M, y \in N\} = \{(1, 2)\}$,

 $N \times M = \{(x, y) \mid x \in N, y \in M\} = \{(2,1)\},$

所以 $M \times N \neq N \times M$, 故 A 项错误:

B \mathfrak{P} , $(M \times N) \times T = \{(x, y) \mid x \in M \times N, y \in T\}$

 $= \{((1,2),3)\}, N \times T = \{(x,y) \mid x \in N, y \in T\} = \{(2,3)\},\$

所以 $M \times (N \times T) = \{(x, y) \mid x \in M, y \in N \times T\} = \{(1, (2,3))\}$,

从而 $(M \times N) \times T \neq M \times (N \times T)$,故B项错误;

C 项, $N \cup T = \{2,3\}$, 所以 $M \times (N \cup T) =$

 $\{(x,y) \mid x \in M, y \in N \cup T\} = \{(1,2),(1,3)\}$,

 $X M \times N = \{(1,2)\}, M \times T = \{(1,3)\},$

所以 $(M \times N) \cup (M \times T) = \{(1,2),(1,3)\}$,

从而 $M \times (N \cup T) = (M \times N) \cup (M \times T)$, 故 C 项错误;

此为单选题,A、B、C 均错误,必定选 D,下面我们也给出严格的证明. 注意到 $M \times (N \cap T) = (M \times N) \cap (M \times T)$ 的左右都是 集合、证集合相等、可考虑证它们相互包含、于是不失一般性地设集合中的元素来分析、

D 项,对任意的 $(x,y) \in M \times (N \cap T)$,应有 $x \in M$,

 $y \in N \cap T$,所以 $y \in N \perp \perp y \in T$,

由 $x \in M$, $y \in N$ 可得 $(x,y) \in M \times N$,

由 $x \in M$, $y \in T$ 可得 $(x, y) \in M \times T$,

所以 $(x,y) \in (M \times N) \cap (M \times T)$,

故 $M \times (N \cap T) \subset (M \times N) \cap (M \times T)$ ①;

对任意的 $(x,y) \in (M \times N) \cap (M \times T)$, 应有 $(x,y) \in M \times N$

 $\mathbb{H}(x,y) \in M \times T$,

由 $(x,y) \in M \times N$ 可得 $x \in M$, $y \in N$ ②,

由 $(x,y) \in M \times T$ 可得 $x \in M$, $y \in T$ ③,

结合②③可得 $y \in N \cap T$,

又因为 $x \in M$, 所以 $(x,y) \in M \times (N \cap T)$,

故 $(M \times N) \cap (M \times T) \subseteq M \times (N \cap T)$ ④;

综合①④可得 $M \times (N \cap T) = (M \times N) \cap (M \times T)$,

故 D 项正确.

9. (2024 • 全国模拟)

设 A 为非空数集,若对一切 $a \in A$, $b \in A$,都有 $ab \in A$,那么就说集合 A 对乘法运算是封闭的.

- (1) 设 $A = \{x \mid x = m + \sqrt{2}n, m, n \in \mathbb{Z}\}$,判断A对乘法运算是否封闭?证明你的结论.
- (2) 设 $B = \{x \mid x = m + \sqrt{2}n, m, n \in \mathbb{Z}, \exists n \neq 0\}$, 问B对乘法运算是否封闭?证明你的结论.
- 9. \mathbf{M} : (1) (要判断 A 是否封闭,只需从 A 中任取两个元素,

看看它们相乘的结果是否仍在 A 中)

设 $a=x+\sqrt{2}y$, $b=k+\sqrt{2}p$ 为A中任意的两个元素,

其中 $x, y, k, p \in \mathbb{Z}$,则 $ab = (x + \sqrt{2}y)(k + \sqrt{2}p)$

 $=xk + \sqrt{2}xp + \sqrt{2}yk + 2yp = (xk + 2yp) + \sqrt{2}(xp + yk)$,

由 $x, y, k, p \in \mathbb{Z}$ 可知 xk + 2yp 和 xp + yk 都是整数,

记m = xk + 2yp, n = xp + yk, 则 $ab = m + \sqrt{2}n$,

且 $m,n \in \mathbb{Z}$, 所以 $ab \in A$, 故 A 对乘法运算是封闭的.

(2) (集合 B 只是在 A 的基础上新增了 $n \neq 0$,故要看 ab 是否在 B 中,只需看(1)问求得的 ab 中,xp + yk 是否可能为 0,

直观感觉可以为 0, 故尝试举个反例)

对于 (1) 中的 a, b, 取 x = 2, y = 1, k = -2, p = 1可

得 $a = 2 + \sqrt{2}$, $b = -2 + \sqrt{2}$, 则 $a \in B$, $b \in B$,

但此时 $ab = (2 + \sqrt{2})(-2 + \sqrt{2}) = -2 \notin B$,

所以B对乘法运算不封闭.