Roteiro de Projetos Práticos com PLC

Atividade 02 – Protocolos de Rede

Objetivo

- Configurar um PLC para comunicar via protocolo de rede industrial (PROFINET, MODBUS TCP ou PROFIBUS).
- Realizar a troca de dados entre dispositivos (PLC
 ← Supervisório / PLC
 ← PLC / PLC
 ← Simulador).
- Analisar o comportamento do sistema automatizado diante de comandos enviados pela rede.

Materiais Necessários

- 01 Controlador Lógico Programável (PLC) com suporte a rede (Ethernet/Modbus/Profibus).
- 01 Notebook com software de programação (TIA Portal, Codesys, RSLogix ou equivalente).
- 01 Switch ou cabo Ethernet (para PROFINET/Modbus TCP).
- Opcional: software de supervisório (ScadaBR, Elipse, WinCC) ou simulador Modbus (Modbus Poll/Slave).
- Módulos de I/O ou simulação de entradas (botões, sensores) e saídas (lâmpadas, atuadores).

Roteiro da Atividade

Passo 1 – Configuração de Rede

- 1. Defina os endereços IP do PLC e do computador na mesma sub-rede.
 - Exemplo:

PLC: 192.168.1.10

• PC: 192.168.1.20

2. Teste a conectividade com o comando ping.

Passo 2 – Configuração do Protocolo

- Caso **Modbus TCP**: ativar servidor Modbus no PLC e definir portas/endereços de registradores.
- Caso **PROFINET**: configurar nome do dispositivo e arrastar os módulos de I/O no TIA Portal.
- Caso **PROFIBUS**: configurar endereço do nó e importar o arquivo GSD correspondente.

Passo 3 – Mapeamento de Variáveis

- Associe variáveis de programa aos registradores ou endereços de rede:
 - Ex.: Holding Register 40001 ↔ Velocidade do Motor.
 - o Coil 00001 ↔ Estado da Bomba (ligada/desligada).

Passo 4 – Desenvolvimento da Lógica

- No software do PLC, crie um programa simples:
 - \circ Se o sensor de nível estiver **alto** \rightarrow ligar bomba.
 - \circ Se o sensor de nível estiver **baixo** \rightarrow desligar bomba.
- Faça com que a variável BombaLigada também possa ser controlada via rede.

Passo 5 – Testes de Comunicação

- No computador, utilize software supervisório ou cliente Modbus/Profinet:
 - Leia o estado das entradas digitais do PLC.
 - o Force a escrita em uma saída digital via rede.
- Observe no CLP se a saída realmente aciona a lâmpada/atuador.

Passo 6 – Registro e Análise

- Capture prints da configuração de rede e da tela de supervisão.
- Verifique os tempos de resposta (latência da comunicação).
- Discuta vantagens e limitações do protocolo utilizado (ex.: PROFIBUS é determinístico, Modbus é simples mas menos robusto).

Entrega da Atividade

O aluno deverá entregar um **relatório** contendo:

- 1. Descrição do hardware/software utilizados.
- 2. Configuração da rede (endereços IP ou nós PROFIBUS).
- 3. Trecho do programa do PLC com comentários.
- 4. Prints/telas comprovando a comunicação.
- 5. Conclusão: benefícios da integração em rede industrial.

Sugestão de variação:

Caso não haja PLC físico, a atividade pode ser feita em **simulação**: usar **Codesys + Modbus Slave** ou **TIA Portal + PLCSIM + Modbus Poll**.

ATENÇÃO: Se preferir você pode fazer no CLIC 02

Atividade Prática – Comunicação em Rede com CLIC 02 (Schneider)

Objetivo

- Configurar o CLIC 02 para comunicar via Modbus.
- Realizar leitura/escrita de variáveis internas e saídas físicas do controlador por meio de rede.
- Demonstrar o funcionamento em laboratório com atuadores (lâmpadas, contatores, sirenes).

Materiais Necessários

- 01 CLIC 02 com porta RS-485 integrada ou módulo Ethernet adicional.
- 01 Cabo serial RS-485 ↔ USB (se comunicação Modbus RTU).
- 01 Notebook com software CLIC 02.
- 01 Software cliente Modbus (ex.: **Modbus Poll** ou **ModRSsim2**).
- 02 Lâmpadas 24 V ou LEDs + resistores (saídas digitais).
- 01 Botão NA (entrada digital).
- 01 Fonte 24 VDC.

Roteiro da Atividade

Passo 1 – Configuração do CLIC

- 1. No software CLIC, abra um novo projeto.
- 2. Configure a porta de comunicação:
 - o Protocolo: Modbus RTU.
 - o Velocidade: 9600 bps.
 - Paridade: None.
 - o Stop bit: 1.
 - Endereço do escravo: 1.

Passo 2 – Programação do CLIC

- Crie um programa simples:
 - o Entrada I1 → aciona saída Q1.
 - \circ Se variável interna M1 = 1 → aciona saída Q2.

Assim:

- Botão físico liga Q1.
- Comando via rede liga **Q2**.

Passo 3 – Mapeamento de Variáveis

- Defina endereços Modbus:
 - \circ Coil 00001 \rightarrow Saída Q1.
 - \circ Coil 00002 \rightarrow Saída Q2.
 - \circ Coil 10001 \rightarrow Entrada I1.
 - \circ Coil 20001 \rightarrow Variável interna M1.

Passo 4 – Teste com Software Modbus

- 1. Abra o Modbus Poll no PC.
- 2. Configure porta serial (COM3 ou equivalente).
- 3. Defina: Escravo ID = 1.
- 4. Leia/Escreva os coils:
 - o Ler Coil 10001 → verificar estado do botão I1.
 - \circ Escrever Coil 20001 = 1 → observar Q2 ligar a lâmpada.

Passo 5 – Relatório

O aluno deve registrar:

- Endereços configurados.
- Prints do software CLIC e Modbus Poll.
- Foto/print do acionamento das lâmpadas.
- Explicação: diferença entre acionar fisicamente (botão) e remotamente (comando via Modbus).

Extensões da Atividade

- Testar leitura de registradores de palavra (Holding Registers).
- Simular supervisório (ScadaBR/Elipse) em vez de Modbus Poll.
- Conectar **dois** CLIC **02** via RS-485 (um como mestre, outro como escravo).