

8.8: Gas-Evolution Reactions

In a **gas-evolution reaction**, a gas forms, resulting in bubbling. As in precipitation reactions (see Section 8.5.), the reactions occur when the anion from one reactant combines with the cation of the other. Many gas-evolution reactions are also acid-base reactions. Some gas-evolution reactions form a gaseous product directly when the cation of one reactant combines with the anion of the other. For example, when sulfuric acid reacts with lithium sulfide, dihydrogen sulfide gas forms:

$$\mathrm{H_{2}SO_{4}}\left(aq\right)+\mathrm{Li_{2}S}\left(aq\right)\rightarrow\mathrm{H_{2}S}\left(g\right)+\mathrm{Li_{2}SO_{4}}\left(aq\right)$$

Other gas-evolution reactions form an intermediate product that then decomposes (breaks down into simpler substances) to form a gas. For example, when aqueous hydrochloric acid is mixed with aqueous sodium bicarbonate, the following reaction occurs (Figure 8.20):

$$\operatorname{HCl}\left(aq\right) + \operatorname{NaHCO_{3}}\left(aq\right) \to \underset{\text{intermediate product}}{\operatorname{H_{2}CO_{3}}\left(aq\right)} + \operatorname{NaCl}\left(aq\right) \to \operatorname{H_{2}O}\left(l\right) + \operatorname{CO_{2}}\left(g\right) + \operatorname{NaCl}\left(aq\right)$$

Figure 8.20 Gas-Evolution Reaction

Gas-Evolution Reaction

NaHCO₃(aq) + HCl(aq)
H₂O(l) + NaCl(aq) + CO₂(g)

When aqueous sodium bicarbonate is mixed with aqueous hydrochloric acid, gaseous CO₂ bubbles are the result of the reaction.

NaHCO₃(aq)
HCO₃

HCO₃

HCO₄

HCO₄

HCO₃

HCO₄

HCO₅

HCO₆

HCO₇

HCO₈

HCO₈

HCO₉

H

了到核设

 $H_2O(l)$

NaCl(aq)

Gas-evolution reactions, such as the reaction of hydrochloric acid with limestone $(CaCO_3)$, often produce CO_2 ; bubbling occurs as the gas is released.

The intermediate product, H_2CO_3 , is not stable and decomposes into H_2O and gaseous CO_2 . Other important gas-evolution reactions form either H_2SO_3 or NH_4OH as intermediate products:

$$\begin{split} & \operatorname{HCl}\left(aq\right) + \operatorname{NaHSO}_{3}\left(aq\right) \to \underbrace{\operatorname{H}_{2}\operatorname{SO}_{3}\left(aq\right)}_{\text{intermediate product}} + \operatorname{NaCl}\left(aq\right) \to \operatorname{H}_{2}\operatorname{O}\left(l\right) + \operatorname{SO}_{2}\left(g\right) + \operatorname{NaCl}\left(aq\right) \\ & \operatorname{NH}_{4}\operatorname{Cl}\left(aq\right) + \operatorname{NaOH}\left(aq\right) \to \underbrace{\operatorname{NH}_{4}\operatorname{OH}\left(aq\right)}_{\text{intermediate product}} + \operatorname{NaCl}\left(aq\right) \to \operatorname{H}_{2}\operatorname{O}\left(l\right) + \operatorname{NH}_{3}\left(g\right) + \operatorname{NaCl}\left(aq\right) \\ & \operatorname{SO}_{2}\left(q\right) \to \operatorname{NaCl}\left(aq\right) \to \operatorname{NaCl}\left(aq\right) \to \operatorname{NaCl}\left(aq\right) \\ & \operatorname{NaCl}\left(aq\right) \to \operatorname{NaCl}\left(aq\right) \to \operatorname{NaCl}\left(aq\right) \\ & \operatorname$$

The intermediate product NH_4OH provides a convenient way to think about this reaction, but the extent to which it actually forms is debatable.

Table 8.3 ☐ lists the main types of compounds that form gases in aqueous reactions, as well as the gases that form.

Table 8.3 Types of Compounds That Undergo Gas-Evolution Reactions

Reactant Type	Intermediate Product	Gas Evolved	Example
Sulfides	None	H ₂ S	$2 \text{ HCI}(aq) + \text{K}_2\text{S}(aq) \longrightarrow \text{H}_2\text{S}(\xi)$
Carbonates and bicarbonates	H₂CO₃	CO ₂	$2 \text{ HCI}(aq) + \text{K}_2\text{CO}_3(aq) \longrightarrow \text{H}_2\text{C}$
Sulfites and bisulfites	H₂SO₃	SO ₂	$2 \text{ HCI}(aq) + \text{K}_2 \text{SO}_3(aq) \longrightarrow \text{H}_2($
Ammonium	NH ₄ OH	NH ₃	$NH_4CI(aq) + KOH(aq) \longrightarrow H_2C$

Example 8.14 Writing Equations for Gas-Evolution Reactions

Write a molecular equation for the gas-evolution reaction that occurs when you mix aqueous nitric acid $\frac{1}{2}$

Begin by writing an unbalanced equation in which the cation of each reactant combines with the anion of

$$HNO_3(aq) + Na_2CO_3(aq) \longrightarrow H_2CO_3(aq) + NaNO_3(aq)$$

You must then recognize that $\mathrm{H_{2}CO_{3}}\left(aq\right)$ decomposes into $\mathrm{H_{2}O}\left(l\right)$ and $\mathrm{CO_{2}}\left(g\right)$ and write these products into the equation.

$$\mathrm{HNO_{3}}\left(aq\right) + \mathrm{Na_{2}CO_{3}}\left(aq\right) \rightarrow \mathrm{H_{2}O}\left(l\right) + \mathrm{CO_{2}}\left(g\right) + \mathrm{NaNO_{3}}\left(aq\right)$$

Finally, balance the equation.

and aqueous sodium carbonate.

$$2\ \mathrm{HNO_{3}}\left(aq\right) + \mathrm{Na_{2}CO_{3}}\left(aq\right) \rightarrow \mathrm{H_{2}O}\left(l\right) + \mathrm{CO_{2}}\left(g\right) + 2\ \mathrm{NaNO_{3}}\left(aq\right)$$

FOR PRACTICE 8.14 Write a molecular equation for the gas-evolution reaction that occurs when you mix aqueous hydrobromic acid and aqueous potassium sulfite.

FOR MORE PRACTICE 8.14 Write a net ionic equation for the reaction that occurs when you mix hydroiodic acid with calcium sulfide.