LES SOLUTIONS AQUEUSES ACIDES ET BASIQUES

I) NOTION DE pH:

Le pH (potentiel hydrogène) est un nombre sans unité compris entre 0 et 14, il permet d'évaluer l'acidité ou la basicité d'une solution aqueuse.

II) MESURE DU pH D'UNE SOLUTION AQUEUSE:

1) Mesure avec le papier pH:

a) Notion de papier pH:

Le papier pH est un papier contenant une matière chimique qui change de couleur selon la solution testée.

b) Utilisation du papier pH:

- ✓ On découpe un marceau de papier.
- ✓ A l'aide d'un agitateur on dépose une goutte de la solution sur la papier pH.
- ✓ On compare la couleur obtenue avec celle de l'échelle, le nombre correspondant à cette couleur est le pH du solution testée.

2) Mesure avec le pH-mètre :

a) Notion du pH-mètre :

Le pH-mètre est un appareil de mesure constitué d'une électrode reliée à un boitier électronique indiquant la valeur du pH sur un écran.

b) Utilisation du pH-mètre :

Pou mesurer le pH d'une solution aqueuse avec le pH-mètre on rince l'électrode et on la plonge dans la solution. La valeur du pH s'affiche sur l'écran du boitier.

III) CLASSIFICATION DES SOLUTION AQUEUSES:

a) Expérience:

A l'aide d'un pH-mètre on mesure le pH des solutions différentes. On note les mesures dans un tableau :

Solution aqueuse	Eaux de chaux	Eaux de javel	Solution de soude	chlorure de sodium	Eau pur	Jus d'orange	Jus de citron	Acide chlorhydrique
рН	9	10,4	12,5	7	7	4,5	3,2	1,2

b) Observation et interprétation :

- ✓ Le pH des solutions d'eau de chaux, d'eau de javel et la soude est supérieur à 7. On les appelle des solutions basiques.
- ✓ Le pH des solutions de chlorure de sodium et d'eau pure est égal à 7. On les appelle des solutions neutres.
- ✓ Le pH des solutions jus d'orange, jus de citron et d'acide chlorhydrique est inférieur à 7. On les appelle des solutions acides.

c) Conclusion:

Selon le pH on classe les solutions aqueuses en trois types :

- ✓ Des solutions acides ayant un pH<7.</p>
- ✓ Des solutions basiques ayant un pH>7.
- ✓ Des solutions neutres ayant un pH=7.

REMARUE:

- ✓ Une solution est plus acide si son pH est plus petit.
- ✓ Une solution est plus basique si son pH est plus grand.

IV) LIEN ENTRE LE pH ET LES ION H⁺ ET LES ION HO⁻:

Toute solution aqueuse contient des molécules d'eau, des ions hydrogène H⁺ et des ions hydroxyde HO⁻.

- ✓ Une solution acide (pH<7) contient plus d'ions hydrogène H⁺ que d'ions hydroxyde HO⁻.
- ✓ Une solution basique (pH>7) contient mois d'ions hydrogène H⁺ que d'ions hydroxyde HO⁻.
- ✓ Une solution neutre (pH=7) contient autant d'ions hydrogène
 H⁺ que d'ions hydroxyde HO⁻.

V) ECHELLE DE pH:

Mohamed LAHLALI

LES SOLUTIONS ACIDES ET BASIQUES

VI) DILUTION D'UNE SOLUTION:

1) Dilution d'une solution acide :

a) Expérience:

On prépare une solution (S_0) de l'acide chlorhydrique de pH=2.

- ✓ Dans un bécher (A) contenant 90mL d'eau on verse 10mL de la solution (S₀).
- ✓ Dans un bécher (B) contenant 90mL d'eau on verse 10mL de la solution (A).
- ✓ Dans un bécher (C) contenant 90mL d'eau on verse 10mL de la solution (B).

Après on mesure le pH des trois solutions :

Solution	Α	В	С
рН	3	4	5

b) Observation et interprétation :

On observe que pH_{S0} < pH_A < pH_B < pH_C . On déduit que la dilution provoque une augmentation de pH.

c) Conclusion:

Quand on dilue une solution acide, elle devient moins acide et son pH augmente.

2) Dilution d'une solution basique :

a) Expérience :

On prépare une solution(S_0) de soude (hydroxyde de sodium) de pH=12. On prépare trois solutions A, B et C à partir de la solution (S_0) en suivant la même procédure de l'expérience précédente. Après on mesure leurs pH.

Solution	Α	В	С
pН	11	10	9

b) Observation et interprétation :

On observe que pH_{S0} > pH_A > pH_B > pH_C . On déduit que la dilution provoque une diminution de pH.

c) Conclusion:

Quand on dilue une solution basique, elle devient moins basique et son pH diminue.

3) Conclusion:

La dilution d'une solution est un procédé consiste à obtenir une solution moins acide ou moins basique à celle de départ. Lorsqu'on dilue une solution acide ou basique la valeur du pH rapproche à 7. C'est pourquoi :

- ✓ Le pH d'une solution acide augmente.
- ✓ Le pH d'une solution basique diminue.

VII) LES DANGERS DES SOLUTIONS ACIDES ET BASIQUE :

1) Les dangers :

La plupart de ces solutions sont dangereuses, surtout si elles sont concentrées.

- ✓ Les solutions acides sont corrosifs ce qui peut causer des brulures graves de la peau et des yeux.
- ✓ L'inhalation de vapeurs acides peut causer une irritation et des brûlures au système respiratoire.
- ✓ L'exposition à des acides et des bases faibles ou dilués peut endommager les tissus.

Pour bien connaître les dangers, on rencontre souvent des **pictogrammes** sur les étiquettes des flacons contenant ces solutions :

Nocif

Irritan

Toxique

Corros

Facilement inflammable

Comburan

Explosit

Dangereux pour l'environnement

2) Les précautions :

Lors de l'utilisation de solutions acides et basiques, les précautions suivantes doivent être prises:

- ✓ Ne pas toucher, goûter ou inhaler les solutions.
- ✓ Ne mélangez pas les solutions concentrées avec des solutions inconnues.
- ✓ Ventilez le lieu d'utilisation de ces solutions.
- ✓ Ajoutez de l'acide à l'eau pour éviter la volatilisation des gouttes d'acide.
- ✓ Ne jetez pas de solutions acides et alcalines dans les cours d'eau pour préserver l'environnement.
- ✓ Diluez les solutions concentrées d'acide et de base avant utilisation.
- ✓ des gants, des lunettes de protection, une blouse ou des vêtements longs.