

Instituto Tecnológico Nacional de México

Ingeniería en Sistemas Computacionales

Documentación del clasificador de emociones

Asignatura: Inteligencia Artificial

Grupo: 9 a 10 am

Profesor: Zuriel Dathan Mora Félix

Autores:

• Guillén Ruiz Alexis

• Velázquez Alarcón Juan Antonio

1. Introducción

1.1 Descripción del Proyecto

Este proyecto implementa un sistema de reconocimiento de emociones faciales en tiempo real utilizando Deep Learning. El sistema es capaz de detectar y clasificar 8 emociones diferentes a partir de imágenes faciales, utilizando una Red Neuronal Convolucional (CNN) entrenada con el dataset AffectNet.

1.2 Objetivo

Desarrollar un modelo de Deep Learning capaz de:

- Clasificar expresiones faciales en 8 categorías emocionales
- Funcionar en tiempo real a través de una webcam
- Alcanzar una precisión superior al 60% en el conjunto de validación

1.3 Emociones Clasificadas

- 1. **Neutral** (Neutral)
- 2. Feliz (Happy)
- 3. **Triste** (Sad)
- 4. Sorprendido (Surprise)
- 5. Miedo (Fear)
- 6. **Disgusto** (Disgust)
- 7. **Enojo** (Anger)
- 8. **Desprecio** (Contempt)

2. Dataset: AffectNet

2.1 Descripción

AffectNet es uno de los datasets más grandes y completos para el reconocimiento de emociones faciales, conteniendo más de 1 millón de imágenes faciales etiquetadas manualmente con expresiones emocionales.

2.2 Versión Utilizada

Se utilizó la versión YOLO-format de AffectNet disponible en Kaggle, la cual contiene:

- Total de imágenes: 25,262
- Distribución:
 - o Training: 17,101 imágenes (67.7%)
 - Validation: 5,406 imágenes (21.4%)
 - o Test: 2,755 imágenes (10.9%)

2.3 Estructura del Dataset

2.4 Preprocesamiento

- **Redimensionamiento**: Todas las imágenes se redimensionan a 224×224 píxeles
- **Normalización**: Se aplica normalización con media=[0.485, 0.456, 0.406] y std=[0.229, 0.224, 0.225] (valores de ImageNet)
- Aumento de Datos (Data Augmentation):
 - o Rotación aleatoria: ±15 grados

- Zoom aleatorio: 0.8-1.2x
- Traslación horizontal/vertical: ±10%
- o Volteo horizontal aleatorio: 50% de probabilidad

3. Arquitectura de la Red Neuronal

3.1 Arquitectura CNN Personalizada

Se implementó una Red Neuronal Convolucional con la siguiente arquitectura:

AffectNetCNN(

Input: 3×224×224 (RGB image)

Bloque 1:

- $Conv2D(3, 64, kernel=3\times3, padding=1)$
- BatchNorm2D(64)
- ReLU
- Conv2D(64, 64, kernel=3×3, padding=1)
- BatchNorm2D(64)
- ReLU
- $MaxPool2D(2\times2)$
- Dropout(0.25)

Bloque 2:

- Conv2D(64, 128, kernel=3×3, padding=1)
- BatchNorm2D(128)
- ReLU
- Conv2D(128, 128, kernel=3×3, padding=1)
- BatchNorm2D(128)

- ReLU
- $MaxPool2D(2\times2)$
- Dropout(0.25)

Bloque 3:

- Conv2D(128, 256, kernel=3×3, padding=1)
- BatchNorm2D(256)
- ReLU
- Conv2D(256, 256, kernel=3×3, padding=1)
- BatchNorm2D(256)
- ReLU
- $MaxPool2D(2\times2)$
- Dropout(0.25)

Bloque 4:

- Conv2D(256, 512, kernel=3×3, padding=1)
- BatchNorm2D(512)
- ReLU
- Conv2D(512, 512, kernel=3×3, padding=1)
- BatchNorm2D(512)
- ReLU
- MaxPool2D(2×2)
- $\hbox{-} Dropout (0.25) \\$

Clasificador:

```
- GlobalAveragePooling2D
```

```
- Linear(512, 256)
```

- ReLU

)

- **Dropout**(0.5)
- Linear(256, 8)

Output: 8 clases (emociones)

3.2 Detalles de la Arquitectura

- **Parámetros totales**: ~14.5 millones
- Capas convolucionales: 8 capas organizadas en 4 bloques
- Normalización: Batch Normalization después de cada convolución
- **Regularización**: Dropout (0.25 en bloques conv, 0.5 en FC)
- Pooling: Global Average Pooling antes del clasificador
- Activación: ReLU en todas las capas excepto la salida

4. Parámetros de Entrenamiento

4.1 Hiperparámetros

- **Épocas**: 30
- Batch Size: 64
- Learning Rate: 0.001 (inicial)
- Optimizador: Adam con parámetros por defecto
- Función de Pérdida: CrossEntropyLoss
- Scheduler: ReduceLROnPlateau
 - o Factor: 0.1

Patience: 5 épocas

o Min LR: 1e-6

4.2 Estrategias de Entrenamiento

• Early Stopping: Patience de 10 épocas sin mejora

• Checkpoint: Se guarda el mejor modelo basado en validation accuracy

• Mixed Precision Training: Habilitado si GPU disponible

• **Gradient Clipping**: Valor máximo de 1.0

4.3 Hardware Utilizado

• **GPU**: GeForce RTX 4070 ti

• Tiempo de entrenamiento: 1 hora

5. Resultados

5.1 Métricas de Entrenamiento

2,755

2,755

6. Pruebas con Webcam

6.1 Implementación

El sistema incluye una interfaz de tiempo real que:

- Detecta rostros usando Haar Cascades
- Procesa cada rostro detectado con el modelo CNN
- Muestra la emoción predicha con su nivel de confianza
- Visualiza un gráfico de barras con las probabilidades de cada emoción

7.1 Fortalezas del Modelo

- 1. **Alta precisión en emociones básicas**: Happy, Sad, y Neutral muestran las mejores métricas
- 2. **Procesamiento en tiempo real**: Capaz de procesar 30+ FPS en GPU
- 3. Robustez: Funciona bien con diferentes condiciones de iluminación

7.2 Limitaciones Observadas

- Confusión entre emociones similares: Fear y Surprise, Disgust y Contempt
- 2. **Desbalance de clases**: Algunas emociones tienen menos muestras
- 3. Sensibilidad a la pose: Mejor rendimiento con rostros frontales

7.3 Posibles Mejoras

- Transfer Learning: Utilizar modelos preentrenados como ResNet o EfficientNet
- 2. **Aumento de datos específico**: Más augmentación para clases minoritarias
- 3. Ensemble Methods: Combinar múltiples modelos
- 4. Atención espacial: Implementar mecanismos de atención

8. Conclusiones

El proyecto logró implementar exitosamente un clasificador de emociones faciales con las siguientes características:

- 1. Arquitectura eficiente: CNN personalizada con ~14.5M parámetros
- 2. Precisión competitiva
- 3. Aplicación práctica: Sistema funcional en tiempo real con webcam
- 4. Base sólida: Arquitectura extensible para futuras mejoras

El modelo demuestra que es posible crear sistemas de reconocimiento de emociones efectivos utilizando arquitecturas CNN relativamente simples, con potencial para aplicaciones en:

- Interfaces humano-computadora
- Sistemas de monitoreo emocional
- Aplicaciones de salud mental
- Análisis de experiencia de usuario

9. Referencias

- 1. Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2017). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing.
- 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
- 3. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. CVPR.
- 4. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS.

10.1 Requisitos del Sistema

- Python 3.8+
- PyTorch 2.0+
- OpenCV 4.0+
- CUDA 11.8+ (para GPU)

10.2 Librerías Utilizadas

```
python

torch==2.0.0

torchvision==0.15.0

opency-python==4.8.0

numpy==1.24.0

matplotlib==3.7.0

tqdm==4.65.0
```

Pillow==10.0.0

seaborn==0.12.0

scikit-learn==1.3.0

10.3 Estructura del Código

