This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/12, 5/10, C07K 14/71, 14/48, 16/28, G01N 33/50, 33/566, C12Q 1/68, A61K 38/17, A01K 67/027, G06F 17/30, 17/50, 19/00

(11) International Publication Number:

WO 99/53055

(43) International Publication Date:

21 October 1999 (21.10.99)

(21) International Application Number:

PCT/GB99/01108

A2

(22) International Filing Date:

9 April 1999 (09.04.99)

(30) Priority Data:

9807781.1

9 April 1998 (09.04.98) GB

GB

(71) Applicant (for all designated States except US): UNIVERSITY OF BRISTOL [GB/GB]; Senate House, Tyndall Avenue, Bristol BS8 1TH (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ROBERTSON, Alan, George, Simpson [GB/GB]; Division of Medicine (c/o Elderly), Bristol Royal Infirmary, Bristol BS2 8HW (GB). ALLEN, Shelley, Jane [GB/GB]; Division of Medicine (c/o the Elderly), Bristol Royal Infirmary, Bristol BS2 8HW (GB). DAWBARN, David [GB/GB]; Division of Medicine (c/o the Elderly), Bristol Royal Infirmary, Bristol BS2 8HW (GB).
- (74) Agent: WITHERS & ROGERS; Goldings House, 2 Hays Lane, London SE1 2HW (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: THERAPEUTIC AGENT FOR NGF

(57) Abstract

This invention relates to the use of a domain of Trk as a therapeutic agent and for screening purposes and rational design of NGF mimetics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	1.U	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
۸Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	.LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

THERAPEUTIC AGENT FOR NGF

This invention relates to therapeutic agents and screening methods. In particular, the invention relates to the use of the Ig2 domain of the tyrosine kinase TrkA and fragments thereof in the treatment of disorders in which levels of neurotrophins, such as NGF, are elevated such as in pain disorders. It also relates to the use of the TrkAIg2 domain as a target for screening for compounds which act to antagonise or to mimic the actions of neurotrophins such as NGF. TrkAIg2 is defined here as including the TrkAIg-like sub-domain 2 together with the proline rich region (Fig. 1A).

Nerve Growth Factor (NGF) is a potent neurotrophic factor for forebrain cholinergic neurones and promotes the survival and differentiation of sympathetic and sensory neurones during development. In animal models it has been shown that administration of NGF is able to correct the effects of cholinergic atrophy in aged or lesioned animals. Purified mouse NGF has been used as a treatment for Alzheimer's disease. This treatment, however, requires invasive surgery and a long term solution would be the generation of small molecule agonists able to mimic the trophic actions of NGF. NGF usually exists as a dimer, however, for these purposes, the term NGF embraces monomeric dimeric, trimeric, or heterodimeric forms.

Evidence suggests that NGF may also act as a mediator of some persistent pain states (McMahon S.B. Series B-Biological Sciences, (1996), Vol.351, No.1338, 431-440) by interacting with receptors on nociceptive primary afferents. In a variety of experimental inflammatory conditions NGF levels are rapidly increased in the inflamed tissue. Similarly, the systematic or local application of exogenous NGF produces a rapid and prolonged behavioural hyperalgesia in both animals and humans. In a number of animal models, much of the hyperalgesia associated with experimental inflammation is blocked by molecules which are able to sequester NGF, including antibodies. Therefore

2

peripherally acting NGF - sequestering agents or NGF antagonists may potentially be used in treating some chronic pain states.

Peripheral inflammation is usually characterised by heightened pain sensitivity or hyperalgesia, which is the consequence of the release of inflammatory mediators, cytokines and growth factors. NGF seems to play a central role in pain mediation through its action on the TrkA receptors of a sub-group of the nociceptive sensory neurons of the dorsal root ganglion (DRG). In the adult this comprises some 40% of DRG cells. These neurons also express the peptides Substance P and calcitonin-gene related peptide (CGRP). By the action of NGF on TrkA receptors there results an increase in neuropeptide levels in these sensory neurons; in addition sodium and calcium channels are affected such that these neurons are increased in excitability. These actions may result in an increase in pain levels. Thus, NGF sequestering agents such as the TrkA extracellular domains may potentially be used to reduce these pain levels.

Under conditions of continual NGF up-regulation, chronic inflammation may lead to a persistent pain state. There are various models of chronic inflammation which involve exogenous administration of NGF or its upregulation. One such model (Woolf, C.J. et al. British Journal Of Pharmacology, (1997), Vol.121, No.3, 417- 424) is that induced by intraplantar injection of complete Freund's adjuvant in adult rats. This produces a localized inflammation of the hindpaw with elevation in the levels of TNF β , IL-1 β and NGF. TNF α injections have been reported to produce an increase in thermal and mechanical sensitivity which is attenuated by prior administration of anti-NGF antiserum. Carrageenan administration is known to cause a specific increase in NGF mRNA levels (of up to 500%) which is not seen for other neurotrophins such as NT-3 and BDNF.

In chronic inflammatory states the effects of consistently elevated levels of NGF may result in a long-term disabling pain state. Examples of this may be in some forms of bladder cystitis where raised levels of NGF have been found in biopsies (Lowe, E. M. et al British Journal Of Urology, (1997), Vol.79, No.4, 572-577). A rat model of human chronic cystitis, induced by administration of an irritant chemical can be treated, again by NGF sequestration, by administration of TrkA immunoadhesin (Dmitrieva, N. et al Neuroscience, (1997), Vol.78, No.2, 449-459). Systemic treatment with the

3

NGF-sequestering molecule was able to partially and significantly reverse established inflammatory changes, by about 30-60%. The administration of exogenous NGF into the lumen of the urinary bladders of normal rats also has been shown to produce a rapid and marked bladder hyper-reflexia similar to that seen with experimental inflammation. It is also likely that chronically increased NGF levels may lead to both peripheral sensitization of nociceptors and central sensitization of dorsal horn neurons and perhaps even long-term sensory neuronal abnormalities (McMahon, S. B. Series B-Biological Sciences, (1996), Vol.351, No.1338, 431-440).

In arthritic synovial fluid, high levels of NGF have been observed. Transgenic arthritic mice have also been shown to have raised levels of NGF and an increase in the number of mast cells (Aloe, L. et al International Journal Of Tissue Reactions-Experimental And Clinical Aspects, (1993), Vol.15, No.4, 139-143). Purified NGF antibodies injected into arthritic transgenic mice cause a reduction in the number of mast cells, as well as a decrease in histamine and substance P levels within the synovium (Aloe, L. et al. Rheumatology International, (1995), Vol.14, No.6, 249-252).

It seems likely also that the postherpetic neuralgia (PHN), associated with the disorder shingles, may involve upregulation of NGF protein. Varicella-zoster virus (VZV) is an α herpes virus responsible for two human diseases: chicken pox in childhood (varicella), and shingles. The virus remains latent in dorsal root ganglia and may re-emerge later in life, taking advantage of the decline in immune function that occurs with aging. Reactivation causes herpes zoster, commonly known as shingles. The incidence of herpes zoster increases with advancing age. Pain, allodynia, and sensory loss in the affected dermatome are the central manifestations of the disorder. Severe pain is the major cause of acute and chronic morbidity in patients with herpes zoster. The chronic and often debilitating pain, PHN, is the most common complication of herpes zoster. Up to 50% of elderly patients who have had shingles may develop PHN. Antiviral agents appropriately administered systemically greatly relieve the pain of acute shingles, also antidepressants maybe useful; conventional analgesics however are generally of little use, though in a few patients some relief has been obtained with opioids, particularly methadone. The difficulty with testing the effects of anti-NGF treatment is that the model for shingles is not possible in the rat, there is only a cat model. However, it may be possible to investigate such treatments in

4

human subjects, with the potential for reduction of NGF levels and alleviation of associated pain.

Chronic inflammatory conditions are widespread and current therapies are severely limited. For instance it is estimated that arthritis affects 37.9 million people and interstitial cystitis 450,00 people in the United States. In a study of rheumatoid arthritis, more than 80% of the patients were in severe pain despite the fact that the majority were taking analgesics. Similarly, there is no effective therapy for interstitial cystitis, which is characterised by painful bladder symptoms.

NGF is one of a family of neurotrophins involved in the development and maintenance of the peripheral and central nervous system. NGF may be isolated from various sources, most particularly from male mice salivary glands. It may be isolated first as 75 NGF, named for its sedimentation coefficient, which is a complex of β-NGF and γNGF. 2.5S NGF may be obtained from this. 2.5S NGF is known to be responsible for the neurotrophic biological activity of the complex. 2.5S NGF is βNGF but often partially proteolysed at the amino and carboxy termini. The other members include for example BDNF, NT-3 and NT-4. All of the neurotrophins bind to a common receptor p75NGFR. Each also binds to one of a homologous family of tyrosine kinase receptors: NGF binds to TrkA, BDNF and NT-4 bind to TrkB, and NT-3 binds to TrkC. NT-3 can also bind TrkA and TrkB with reduced affinity.

Although the three dimensional structure of the TrkA extracellular domain is unknown, distinct structural motifs in the sequence have been characterised (Figure 1A). The Trk extracellular domain comprises three tandem leucine rich motifs (LRM), flanked by two cysteine cluster regions, followed by two immunoglobulin-like (Ig-like) domains. Based on sequence homology with the neural cell adhesion molecule and the platelet derived growth factor (PDGF) receptor, the Ig-like domains have previously been classified as belonging to the C2 class of the immunoglobulin superfamily (IgSF) (Williams, AF, and Barclay AN (1988) Ann Rev Immunol 6, 381-405). Numerous studies have defined neurotrophin residues which interact with p75NGFR and Trk receptors but little is known about the Trk residues which are involved in binding the neurotrophins.

Recently two groups have shown that the Ig-like domains of the Trk receptors play important roles in the binding of neurotrophin ligands and receptor activation. Perez P. et al (Molecular and Cellular Neuroscience 6: 97-105 (1995)) concluded that both of the Ig-like domains are important for the binding of NGF to TrkA. Urfer, R. et al (EMBO J. 14 p2795-2805 (1995)) concluded that the second Ig-like sub-domain and proline rich region, Ig2 (Figure 1A) provide the main contacts for NGF binding.

5

The extracellular domain of TrkA is 375 amino acids long. The inventors have recently shown that a protein comprising the two immunoglobulin-like domains and proline-rich region (amino acids 160-375) alone are able to bind NGF with a similar affinity to that of the complete extracellular domain (Holden P. H et al (1997) Nature Biotchnology 15: 668-672). This region has been defined here as TrkAIg1,2. Surprisingly, the inventors have found that an even smaller domain of TrkA referred to as TrkAIg2 (amino acids 253-375) is able to bind NGF with a similar affinity to the complete extracellular domain or the TrkAIg1,2 region and is thus responsible primarily for its binding properties.

The inventors have demonstrated that the recombinant Ig-like domains are able to bind neurotrophins such as NGF with high affinity and inhibit the biological activity of NGF in vitro and in vivo. In particular, TrkAIg2 as defined by amino acids 253-375, (Figure 1A) is the major contributor to NGF binding. The inventors have used molecular modelling techniques to model the TrkAIg1 and TrkAIg2 domains. Surprisingly, they find that TrkIg2 - like sub-domain 2 is not of the C2 class but of the V set of Ig-like domains (Figure 1B).

This gives rise to several uses for TrkAIg2 and polypeptides derived therefrom. Structural data from co-crystals of TrkAIg2-NGF will identify the residues in TrkA which are involved in binding NGF. This will enable rational design of neutrophin, particularly NGF, mimetics. Immobilised TrkAIg2 can be used as a target for phage display libraries as well as combinatorial chemical libraries and fungal extracts. This will allow for selection of molecules able to bind TrkA and thus either act as agonists or antagonists at the receptor. A third use of TrkAIg2 is as a therapeutic agent for a number of chronic pain states. NGF is particularly important for peripheral sensory neurones, evidence suggests that NGF may act as a mediator of some persistent pain states by interacting with receptors

on nociceptive primary afferents and that peripherally acting NGF antagonists may be of use in treating some chronic pain states such as rheumatoid arthritis, interstitial cystitis and shingles.

A first aspect of the invention provides a polypeptide comprising the amino acid sequence of residues 22 to 119 of Fig. 4(B) or a portion of the amino acid sequence of Figure 4(B), and which binds a neurotrophin. Preferably, the polypeptide consists of the whole sequence of amino acids 22-144 of Figure 4(B). The polypeptide may be TrkAIg1,2 or a portion thereof. Such a polypeptide may be produced by chemical or biological means.

We exclude the full coding sequence of natural TrkA.

The polypeptide may be derived from animal cells. More preferably, the polypeptide is selected from mammalian cells, and in particular, may be selected from human cells. Alternatively, the polypeptide may be selected from avian cells including chicken cells or reptile or amphibian or fish or insect.

Preferably, the neurotrophin is NGF, NT-3, or a neurotrophin which binds p75 NGFR. Such a neurotrophin may exist in a monomeric, dimeric, trimeric or heterodimeric form, and may be from a mammalian, such as a human.

A second aspect of the invention provides a DNA sequence encoding a polypeptide according to a first aspect of the invention; or variants of such a DNA sequence due to the degeneracy of the genetic code, or insertion or deletion mutants thereof that encode a polypeptide according to a first aspect of the invention, and DNA sequences which hybridise to such a DNA sequence. This DNA sequence may be inserted into a plasmid or other vector such as pET15b.

A further aspect of the invention provides a complex comprising a polypeptide according to a first aspect of the invention in combination with at least one neurotrophin or neurotrophin subunit, such as NGF or NT-3.

7

A further aspect of the invention provides a method of producing a polypeptide according to a first aspect of the invention comprising introducing a DNA sequence according to a second aspect of the invention into a suitable host and cultivating that host whereby the TrkAlg2 is expressed. A suitable host may be selected from animal cells such as bacterial cells, insect cells and mammalian cells, particularly human cells.

Further, the TrkAIg2 may be conveniently used as a target for a high throughput screen for molecules which bind to the TrkA receptor using a polypeptide according to a first aspect of the invention. Such a method may involve the use of phage or peptide display libraries, combinatorial chemical libraries and fungal extracts, and ELISA techniques.

A futher aspect of the invention comprises comparative binding of a putative ligand to at least a portion of TrkAIg1 with its binding to at least a portion of TrkAIg2. Such methods may involve selecting molecules which bind to at least one solvent exposed loop of TrkAIg2, such as the E to F loop or C" to D loop as shown in Fig. 1(B). The molecules selected may enhance the binding of a polypeptide according to a first aspect of the invention, or at least a portion of TrkA in its natural state, to a neurotrophin.

A further aspect of the invention provides a method of combinatorial chemistry comprising generating compounds and screening the compounds using their binding affinities to a polypeptide according to a first aspect of the invention.

A further aspect of the invention comprises an antibody raised against a polypeptide according to a first aspect of the invention, particularly TrkAIg2.

A further aspect of the invention comprises a host cell containing a polypeptide according to a first aspect of the invention carried on a plasmid. Such as host cell may be mammalian (including human), bacterial, insect, yeast, avian, amphibian, fish or reptilian.

A further aspect of the invention comprises a diagnostic probe comprising a portion of a polypeptide according to a first aspect of the invention. The probe may be labelled with a fluorescent tag or radiolabel.

8

A further aspect of the invention comprises diagnostic tests, assays, or monitoring methods using a polypeptide according to a first aspect of the invention, particularly in the detection of elevated neurotrophin levels.

A further aspect of the invention comprises an organism engineered to express a polypeptide according to a first aspect of the invention.

A further aspect of the invention comprises a method of treating a subject with pain associated with increased neurotrophin polypeptide levels, the method comprising supplying to the subject a pharmaceutical composition comprising a polypeptide according to a first aspect of the invention, or an NGF analogue isolated or identified by a screeening procedure as described above.

The pain may be a symptom of ISU, interstitial cystitis, arthritis, shingles, peripheral inflammation, chronic inflammation, or postherpetic neuralgia.

A further aspect of the invention comprises a treating a subject of Alzheimer's disease comprising supplying to the subject a pharmaceutical composition comprising a polypeptide according to a first aspect of the invention, or a composition comprising a neurotrophin analogue isolated or identified by a screening procedure involving a polypeptide according to a first aspect of the invention.

A composition comprising a polypeptide according to a first aspect of the invention can be used to reduce free NGF levels in a subject.

All references above to neurotrophin embrace NGF and NT-3.

A further aspect of the invention includes a homology model having the coordinates shown in Fig. 21, and machine readable data storage medium on which such a homology model has been stored, and a computers programmed with, or arranged to provide such a homology model.

WO 99/53055

PCT/GB99/01108

A further aspect of the invention provides crystalling TrkAIg2.

A further aspect of the invention provides compounds obtained by a method as mentioned above, using a computer as mentioned above, or using a machine readable data storage medium as mentioned above.

A further aspect of the invention comprises a crystal comprising a polypeptide according to a first aspect of the invention, particularly a TrkAIg2 polypeptide.

The invention will now be described, by way of example only, with reference to the accompanying drawings Figures 1 to 20 in which

Fig. 1 (A) is a schematic representation of the TrkA structure (the filled circles represent consensus glycosylation sites);

Fig. 1(B) shows a modelled structure for TrkAIg1 and TrkAIg2; the most important binding determinates probably occur in the loop connecting strands E and F (the EF loop).

Fig. 2(A) is a restriction map of the plasmid pET15b;

Fig. 2(B) shows the sequence of oligonucleotides used to amplify TrkAlg1,2.

Fig. 3 shows the nucleotide sequence of the insert of pET15b-TrkAIg1,2 and its derived amino acid sequence;

Fig. 4(A) shows the nucleotide sequence and derived amino acid sequence of his TrkAIg1;

Fig. 4(B) shows the nucleotide sequence and derived amino acid sequence of his TrkAIg2;

Fig. 4(C) shows the TrkAIg2 domain of a splice variant of TrkA including the six amino acid insert in the proline-rich region able to bind NT-3;

Fig. 5 is a gel illustrating expression of TrkAlg1,2, TrkAlg1 and TrkAlg2;

Fig. 6(A) is a gel illustrating purification of TrkAIg2;

WO 99/53055

- Fig. 6(B) is a gel illustrating purification of TrkAlg1;
- Fig. 7(A) shows an elution profile of TrkAlg1 from Poros 20HQ after refolding;
- Fig. 7(B) shows an elution profile of TrkAIg2 from Poros 20HQ after refolding
- Fig. 8 shows a Circular Dichroism spectrum of TrkAlg2. The molecular ellipticity (θ) is shown as a function of wavelength.
- Fig. 9 shows competitive binding Assay for TrkAIg1,2 and TrkAIg2; The axis is given in logarithmic scale as 1×10^{-11} to 1×10^{-5} M.
- Fig. 10 shows surface plasmon resonance (SPR) of NGF binding to Immobilised TrkAIg2;
- Fig. 11 illustrates the results of binding experiments where TrkAIg2 (2μM) and TrkAIg1 (2μM) were incubated separately with a standard curve of βNGF (0-1000pM);
- Fig. 12 illustrates the results of binding experiments where increasing concentrations of βNGF (1-200μM) were incubated separately with 2μM TrkAIg1 or 2μM TrkAIg2;
- Fig. 13 shows the effect of TrkAIg2 on NGF dependent neurite outgrowth on PC12 cells.
- Fig. 14 A to F illustrates the effect of co-injected TrkAIg1,2 on NGF-induced plasma extravasation;
- Fig. 15 illustrates the effect of 5 minute pre-treatment with TrkAlg1,2 on NGF- induced plasma extravasation;
- Fig. 16 illustrates the effect of 40 minute pre-treatment with TrkAIg1,2 on NGF-induced plasma extravasation;
- Fig. 17 illustrates the effect of co-injected TrkAIg1 on NGF-induced plasma extravasation;
- Fig. 18 illustrates the effect of co-injection of TrkAIg2 on NGF-induced plasma extravasation;

11

Fig. 19 illustrates the effect of 5 minute pre-treatment with TrkAIg2 on NGF-induced plasma extravasation;

Fig. 20 illustrates the effect of 40 minute pre-treatment with TrkAIg2 on NGF-induced plasma extravasation.

Fig. 21 shows the coordinate data for the model of Fig. 1 (B).

Structure prediction of the extracellular domain of TrkA and modelling of the Ig-like domains:

Secondary structure analysis of the Ig-like regions using PredictProtein (Rost B. and Sander C. (1993) PNAS 90: 7553-7562; Rost B. and Sander C. (1993) J. Mol. Biol. 232: 584-599; Rost B. and Sander C. (1994) Proteins 19: 55-72) showed defined stretches of β-strands. The first Ig-like sub-domain, TrkAIg1, consists of residues 160-252 (Fig. 1A) in the mature extracellular domain of TrkA, while the second Ig-like sub-domain consists of residues 253-349 (Fig. 1A). There is also a proline rich region at residues 349-375 (Fig. 1A).

For TrkAIg1, two known proteins (parents) were identified as homologues from which a model could be built. These are 2NCM (domain 1 of mouse NCAM) and 1VCA (domain 1 of human vascular cell adhesion molecule). Both domains are I-set Ig domains and have 32% and 29% sequence identity, respectively, with the target sequence. 2NCM was identified as the most suitable parent on which to base the model, apart from residues 38-50 connecting β -strand C to D where the smaller loop found in 1VCA was used (Figure 1B).

For TrkAIg2, two parents were identified as homologues from which a model could be built. These are 1TNM (titin module M5) and 1HNG (CD2 domain 1). The homologues are quite distantly related at 21% and 14% sequence identity and belong to the Ig-set I family and the V set family respectively. However, certain key features of the Ig fold can be identified including a disulphide bridge and a Trp in the C strand. This is surprising since both homologues lack a disulphide bond. These homologues show higher sequence identity in different regions, hence a chimeric model was built using 1TNM as the main

WO 99/53055

12

PCT/GB99/01108

template and 1HNG being used to model residues 39-59 (Figure 1B) and the coordinate data is shown in Fig. 21.

Following slight manual interventions in the sequence alignment the inventors have elucidated a model containing 8 β-strands with strands (ABDE) in one sheet and (A'CFG) in the other sheet. Together they form the β-sandwich for TrkAIg1. For TrkAIg2, the A' strand is absent and two extra strands C' and C'' are predicted with the β-sandwich formed by β-strands (ABDE) and (GFC'C"). For domain 1, the alignment mapped the disulphide between strands B and F across the β-sandwich to the same position as found in 2NCM. This disulphide also superimposed onto the 1VCA disulphide between residues 23-71. Conversely for domain 2, a disulphide is predicted on the surface of the molecule bridging two adjacent β-strands, B and E, the second Cys aligns with a Ser in 1TNM. This disulphide bond arrangement is similar to the model predicted by Urfer *et al* (Urfer, R., Tsoulfas, P., O'Connell, L., Hongo, J.A., Zhao, W. and Presta, L.G. (1998). J. Biol.Chem. Urfer *et al.* (supra) 273: 5829-5840) modelled on 1VCA domain 1 although our TrkAIg2 model predicts nine β-sheets, of the V-set, in contrast with the model with seven β-sheets in a I-set arrangement. The modelled structures are shown in Figure 1B and the co-ordinate data is shown in DATA.1.

In terms of the structural model built here for TrkAIg2 the parents used in model construction, titin module M5 (1tnm) and CD2 domain 1 (1hng) are clearly distant homologues, that can be identified by sensitive sequence search methods (Barton, G.J. (1993) Comput. Appl. Biosci. 9: 729-734; Henikoff, S. and Henikoff, J.G. 1991. Nucleic Acids Research 19: 6565-6572). The VCAM domain 1 used to model build TrkAIg2 by Urfer et al. (Urfer, R., Tsoulfas, P., O'Connell, L., Hongo, J.A., Zhao, W. and Presta, L.G. (1998) JBC 273: 5829-5840 is not significantly related by sequence, however, is homologous by virtue of being an Ig-fold. Relative to titin and VCAM (both I-set domains) the TrkAIg2 sequence has a significant insertion (~10 residues) between strands C and D. The region corresponding to positions 39-59 which includes this insert has more significant homology to CD2 domain 1 than other Ig domains. Furthermore, the predicted secondary structure (Rost B. and Sander C. (1993) PNAS 90: 7553-7562) of TrkAIg2 in this region corresponds to the existence of two extra strands (C' and C'') in accordance

with the CD2 structure. This results in a predicted V-set domain as opposed to the I-set domain proposed by Urfer *et al.* (Urfer, R., Tsoulfas, P., O'Connell, L., Hongo, J.A., Zhao, W. and Presta, L.G. (1998). JBC 273: 5829-5840)

13

The importance of key residues in binding NGF can be understood by reference to our model and the extensive mutational analysis of TrkAIg2 by Urfer et al. (Urfer, R., Tsoulfas, P., O'Connell, L., Hongo, J.A., Zhao, W. and Presta, L.G. 1998. J. Biol.Chem. 273: 5829-5840). The most important binding determinants in TrkAIg2 occur in the loop connecting strands E and F (the EF-loop) with single mutations T319A, H320A and N323A exhibiting greater than 100-fold reduction in binding. Reference to our structural model indicates that all three residues are in solvent exposed locations near the apex of the EF-loop. Minor contributors to loss in binding affinity also occur in the spatially adjacent AB-loop with mutations H258A, V261E, M263A and H264A. The first three residue locations are in solvent exposed locations on the surface of this loop. Only two other mutations exhibit greater than 50-fold reduction in binding affinity, these are P269E and H310A. These two residues are spatially adjacent to one another in our model and in close proximity to the disulphide bridge (C267-C312) connecting strands B and E. It is possible these residues play a direct role in binding NGF as suggested by Urfer et al. (Urfer, R., Tsoulfas, P., O'Connell, L., Hongo, J.A., Zhao, W. and Presta, L.G. 1998. J. Biol.Chem. 273: 5829-5840). However an alternative explanation may be their importance in maintaining the structural integrity of the disulphide bridge. Unlike the conserved core disulphide bond of canonical Ig domains the solvent exposed disulphide bridge may not be important in stabilising the structure of the domain, however, the covalent link between strands B and E may be important in maintaining the conformation of the AB and EF loops in binding. Indeed the loss of the disulphide with mutations C267A or C312A results in a 10 to 30-fold reduction in binding, underlining the importance of the disulphide bridge in the binding mechanism.

An alternatively spliced form of TrkA containing a six amino acid insert (at amino acid position 224-225 (Fig. 3)) in the proline rich domain, VSFSPV, shows a higher affinity for NT3 and therefore may be important for ligand binding (Clary, D. O & Reichardt L. F. (1994) PAISA 91: 11133-11137). This sequence is also found in the rat TrkA sequence and a similar sequence is found in the chicken TrkA. There is also a similar of polar residues in all of the TrkB sequences (Allen S. J. et al. (1994) Neuroscience 60: 825-834).

It is therefore possible that this region may contribute to the binding of the neurotrophins or to the receptor's specificity.

14

The TrkAIg1,2 region is generally considered as comprising amino acids 160-375 of the mature extracellular domain of TrkA (Fig. 1A), TrkAIg1 or TrkAIg like sub-domain 1, as comprising amino acids 160-252 and including TrkAIg - like subdomain 2 as amino acids 253-349. TrkAIg2 here comprises amino acids 253-375 the proline rich region. In all cases the use of variants of TrkA and its sub domains such as those described above are embraced by the present invention.

Construction of TrkAIg2 with the Insert from the Alternatively Spliced Variant:

TrkAIg2 with the insert from the alternatively spliced variant was created by PCR mutagenesis. The mutagenesis was done in two stages. First the 5' and 3' fragments were amplified such that there is an overlap encoding the sequence of the alternative spliced form of TrkA. In the second stage, the PCR products of the 5' and 3' fragments were spliced together using the overlapping sequence and the two flanking primers. The first round of PCR involved oligo66816 (ATCATATGCC GGCCAGTGTG CAGCT) and oligo49234 (CCACTGGCGA GAAGGAGACA GGGATGGGGT CCTCGGGG) to produce the 5'-fragment and oligo49233 (GTCTCCTTCT CGCCAGTGGA CACTAACAGC ACATCTGG) and the **T7** terminator primer (GCTAGTTATTGCTCAGCGG) to produce the 3'-fragment. The products were then purified and used as target for a second round of PCR using oligo66816 and T7terminator primer. The PCR product from the second round of PCR was then cloned into pET15b and expressed in the same way as TrkAIg2.

Sub-cloning of TrkAIg1,2:

From the secondary structure prediction data, it was decided to subclone the DNA encoding amino acids 160 to 375 (Fig.1A)of the extracellular domain of TrkA. Oligonucleotide primers (10692 and 10693) were designed that would provide appropriate restriction sites in order that the TrkAIg1,2 insert would be in-frame with the poly-histidine tag of the expression vector, pET15b (Novagen) and two stop codons to terminate translation. A map of pET15b and the sequence of the oligonucleotide primers is shown in Figure 2.

15

Amplification by PCR was then carried out using the primers oligo10692 and oligo10693 (Cruachem Ltd) and the full-length Human TrkA cDNA clone (a gift from David Kaplan, Montreal Neurological Institute, Canada) as target. The PCR product was then ligated into the plasmid pCRII (Invitrogen), to give pCRII-TrkAIg1,2. pCRII-TrkAIg1,2 was then digested with XhoI and the insert purified from a low-melting point agarose gel by phenol extraction and ligated into pET15b (Novagen) previously prepared by digesting with XhoI and dephosphorylating using Calf-Intestinal Alkaline Phosphatase (CIAP). After transformation into Escherichia coli XL1Blue (Stratagene), transformants were screened by PCR using the T7 promoter primer which anneals to pET15b and oligo10693. In this way, clones were identified which had the TrkAIg1,2 insert in the correct orientation for expression from the T7 promoter. The resulting clone, pET15b-TrkAIg1,2 was sequenced from the T7 promoter primer and the T7 terminator primer to ensure that the insert had ligated to the pET15b at the XhoI site. The DNA sequence of the insert of pET15b-TrkAIg1,2 and the derived amino acid sequence are shown in bold in Fig. 3 (amino acids 24-239, nucleotides 71-718). Enzymes and enzyme buffers were obtained from Boerhinger.

Sub-cloning of TrkAIg1:

An oligonucleotide primer was designed which would allow amplification of the TrkAIg1 domain using the left primer for TrkAIg1,2 such that the PCR product could be ligated into the XhoI site of pET15b in-frame with the poly-histidine tag.

oligo36770 Right Primer For TrkA Ig1;

cgctcgaq tta tca GAAGGAGACGTTGACC
Xhol STOP STOP

Amplification by PCR was then carried out using oligo10692 and oligo36770 with pET15b-TrkAIg1,2 as target. The PCR product was then ligated into pCRII (Invitrogen) to give pCRII-TrkAIg1 which was then digested with XhoI and subjected to low melting point agarose gel electrophoresis. The insert was then purified and ligated into pET15b previously digested with XhoI and treated with CIAP. After transformation into E. coli XL1Blue, transformants were screened by PCR using oligo10692 and the T7 terminator primer. The resulting clone pET15b-TrkAIg1, was then sequenced to ensure that the

16

reading frame of TrkAIg1 was in-frame with the poly-histidine tag of pET15b. Figure 4a shows the nucleotide sequence (residues 71-349) and deduced amino acid sequence (residues 24-116) of TrkAIg1, in bold.

Sub-cloning of TrkAIg2:

An oligonucleotide primer was designed which would allow amplification of the TrkAIg2 domain using the T7 terminator primer of pET15b-TrkAIg1,2;

oligo66816 Left Primer For TrkA Ig2; atcatatgCC GGCCAGTGTG CAGCT NdeI

Amplification by PCR was then carried out using oligo66816 and the T7 terminator primer with pET15b-TrkAIg1,2 as the template DNA. The PCR product was then digested with NdeI and BamHI and ligated into pET15b previously prepared by digestion with the same enzymes and treated with CIAP. Transformants were screened by PCR using the T7 promoter primer and oligo10693 and the positive clones were sequenced. Figure 4b shows, in bold, the nucleotide sequence (residues 65-433) and derived amino acid sequence (residues 22-144) of TrkAIg2.

Hybridisation to TrkA DNA sequence

DNA encoding TrkAIg1,2 or TrkAIg2 (sequences according to Figures 3, and 4B) may be used for a hybridization assay. A DNA sequence encoding TrkAIg1,2 or TrkAIg2 or portions of such a sequence may be obtained by reverse transcriptase PCR of genomic DNA or directly by PCR or restriction digest from the cDNA for TrkA. DNA or RNA which is complimentary to the DNA encoding TrkAIg1,2 or TrkAIg2 or portions of such a sequence, or a sequence which is similar in composition but contains a degeneracy of sequence, may be hybridized to the DNA prepared above. Such a sequence is referred to herein as a probe. Usually, the complimentary DNA or RNA is tagged by radioactive or non-radioactive substances.

One example of this is the northern analysis of TrkAIg2 using a radioactively labelled cDNA probe. A cDNA probe is random primed (Stratagene, CA) with ³²P-dATP (6000Ci/mmol; Dupont NEN). The probe is then purified using a Nuctrap column (Stratagene), to a specific activity in the region of 2 x 10⁶ cpm/ng. Chinese hamster ovary

17

cells (CHO) expressing TrkA are then homogenised in Ultraspec™ (Biotecx, Houston Texas) and total RNA extracted. The RNA is loaded onto a 1% denaturing agarose gel and seperated by electrophoresis, before being blotted onto Hybond N (Amersham, Cardiff, UK) overnight and baked for 2 hours at 80°C. These Hybond N filters are pre-hybridized for 4 hours at 65°C by revolving in hybridization buffer (6SSC, 5 x Denhardts, 0.5% SDS and 0.002% acid cleaved salmon sperm DNA), in a hybridization oven. The probe is then denatured for 5 minutes at 100°C, before being added to fresh hybridisation solution. Filters are then hybridized under these conditions of high stringency, overnight at 65°C. Stringency may be varied according to degeneracy of probe or homology of target. Lower temperatures such as 50°C, and higher salt concentrations, such as 20x55C, will allow for lower stringency. The presence of formamide decreases the affinity of nucleic acid binding and allows for variance in stringency. Such strategies are well described (e.g. Nucleic acid hybridisation, a practical approach edited by Hames and Higgins, IRL Press 1988). The next day, the filters are washed in 2 x SSC/ 0.5% SDS and washed twice for 30 minutes at 65°C in Hybaid with 2 x SSC/ 0.5% SDS. The filters are then dried and exposed to Hyperfilm (Hyperfilm MP, Amersham) overnight, at -70°C, and developed the following day. DNA probes which have bound to RNA encoding the TrkAIg2 sequence are visualised as exposed, black, areas of the autoradiographic film.

A further example of this is the detection of expression of TrkAIg1,2 or TrkAIg2, or a similar sequences in an expression library. A λGT10 human brain cDNA library (M Goedert, Cambridge) is used to infect *E. coli* c600 cells. These are plated onto 24cm x 24cm agar plates to give 10,000pfu per plate. A plaque lift is then carried out by laying Nylon membrane Hybond N (Amersham, Cardiff, UK) onto the agar plate for 1 minute. The filter is then placed, DNA side up, on denaturing solution (1.5N NaCl, 0.5N NaOH) for 30 sec, before being immersed for 2 minutes. The filter is then immersed into neutralising solution (1.5N NaCl, 0.5N Tris-HCl pH 8.0) for 5 min. Immersion is repeated in fresh neutralising solution. The filter is then rinsed briefly in 2 X SSC (0.3N NaCl, 0.03N Na₃Citrate, pH 7.0) and placed on filter paper which is baked at 80°C for 2 hours. Hybridization is carried out as described above. The position of DNA probes which have bound to plaques encoding the TrkA sequence is visualised as exposed, black, areas of the autoradiographic film. These exposed, black areas can be re-aligned to the plates to identify

18

positive clones expressing sequences similar to TrkAIg1,2 or TrkAIg2 or a portion of such a DNA sequence.

Hybridisation may also occur using homologous PCR techniques. Specific or degenerate oligonucleotides corresponding to a region in the sequence for TrkAIg1,2 may be used to amplify a portion of the sequence as described for example, in the section entitled 'sub-cloning of TrkAIg2'. Such hybridization assays may be used as tools to detect the presence of TrkAIg1,2 or TrkAIg2 sequences, or portions thereof, in diagnostic kits.

Expression of TrkAlg1,2, TrkAlg1 and TrkAlg2:

Competent BL21(DE3) cells were transformed with the above vector and expression was carried out using a variation on the method described in the pET (Novagen) manual for difficult target proteins. Briefly, 2 ml of 2YT broth (containing 200mg/ml carbenecillin) was inoculated with a colony and grown at 37°C to mid log phase. Cells were not centrifuged and resuspended in 2YT (as in manual) but used directly to inoculate 50 ml of 2 YT broth (containing 500 mg/ml carbenecillin) and grown at 37°C to mid log phase. The cells were not harvested by centrifugation and resuspended but used directly to infect 5 litres of 2 YT (containing 500 μg/ml ampicillin). Once an OD₆₀₀ of 1 was reached the cell culture was induced by the addition of IPTG to a final concentration of 1 mM and the cells were grown for a further 2 hrs at 37°C. Figure 5 shows a 15% SDS PAGE gel of extracts of cultures of BL21(DE3) containing the various pET15b-TrkAIg constructs. Further analysis of the cell extracts revealed that for all of the constructs, the expressed TrkAIg protein was insoluble. Several attempts were made to express the TrkAIg protein in the soluble fraction, but were unsuccessful. However, the fact that the TrkAIg proteins were insoluble faciliated in their purification.

Purification and Refolding of TrkAlg1,2:

The harvested cells were resuspended in 10% glycerol, frozen at -70°C and the pellet was passed 3 times through an Xpress (BioX, 12 ton psi). The lysed cells were washed with 20 mM Tris-HCl (pH 8.0) and centrifuged for 30 min at 10,000 rpm at 4,°C until all soluble matter was removed, leaving inclusion bodies containing insoluble protein. The purified

19

inclusion bodies were solubilised in 6M urea buffer (20 mM Tris-HCl pH 8.5, 1 mM β-mercaptoethanol) at approximately 0.1 mg/ml protein and incubated on ice with gentle shaking for 1 hour. Refolding was carried out by dialysis against 400x buffer (20 mM Tris-HCl, 100 mM NaCl, pH 8.5) for 24 hrs at 4°C, with one buffer change. The refolded TrkA-Ig1,2 protein was loaded onto a 1ml Resource Q (Pharmacia) column and eluted with a linear gradient of 0-1M NaCl in 20 mM Tris-HCl over 40mls at 2 mls per minute. The main peak as detected at 280 nm (using a UV detector) was collected and affinity purified according to the Novagen His column purification protocol using a 2.5 ml disposable column of His-bind resin (Novagen). Finally, the eluted protein was re-applied to the Resource Q column to remove imidazole. This was eluted with a 10 ml salt gradient of 0-1m NaCl in 20 mM Tris buffer pH 8.0.

Purification of TrkAIg1 and TrkAIg2:

The harvested cells were resuspended in 10% glycerol, frozen at -70°C and the pellet was passed 3 times through an Xpress (BioX). The extract was then centrifuged at 10,000 rpm, 4°C for 30min to pellet the insoluble inclusion bodies. The inclusion bodies were then washed in 50 ml 1%(v/v) Triton X-100, 10 mMTrisHCl pH8.0, 1 mM EDTA followed by 50 ml 1M NaCl 10mMTrisHCl pH8.0, 1 mM EDTA and finally 10 mM TrisHCl pH8.0, 1 mM EDTA. The inclusion bodies were then solubilised in 20 mM Na Phosphate, 30 mM Imidazole, 8 M Urea pH7.4. The solubilised inclusion bodies were then clarified by centrifugation before loading on a 5 ml HisTrap column (Pharmacia). The column was washed with 50 ml 20 mM NaPhosphate, 30 mM Imidazole, 8 M Urea pH7.4 and the purified TrkAIg1 and TrkAIg2 eluted with 25 ml 20 mM NaPhosphate, 300 mM Imidazole, 8 M Urea pH7.4 at 2 mls/minute (Figure 6(A) and 6(B)).

Refolding of TrkAIg1 and TrkAIg2:

The purified TrkAIg proteins were adjusted to a concentration of 0.1 mg/ml in 20 mM NaPhosphate, 30 mM Imidazole, 8 M Urea pH7.4 with the addition of 1 mM β-mercaptoethanol and dialysed against 20 mM TrisHCl, 50 mM NaCl, pH8.5 for TrkAIg2 and 20 mM TrisHCl, 50 mM NaCl pH9.0 for TrkAIg1 (2x100 volumes). The dialysed proteins were loaded onto a 1.6 ml Poros 20HQ column and eluted with a linear gradient of 0.05-1 M NaCl over 20 column volumes (Figure 7).

Three peaks were eluting from the Poros 20HQ column for TrkAIg2, all of which gave a band corresponding to TrkAIg2 (data not shown). Therefore the refolding process must result in three species of TrkAIg2, all of which have a different conformation. Displacement binding studies reveal that the first peak to elute binds NGF while the others do not. The first peak was therefore collected, glycerol added to a final concentration of 20% (v/v), and snap frozen in liquid nitrogen before storage at -70°C.

20

For TrkAIg1, only two peaks elute from the Poros 20HQ column with more protein in the flow through. Again SDS page of each peak and the flow through show that TrkAIg1 is the only protein present. Displacement binding assays of the two peaks show that neither of these species of TrkAIg1 bind to NGF (data not shown).

Circular Dichroism Studies on TrkAIg2

To determine the secondary structure content of the folded protein, far-UV circular dichroism (CD) measurements were made. The CD of proteins is primarily the CD of the amide chromophore, which begins absorbing far into the UV region with the first band at about 220 nm. Antiparallel β-sheet structures typically display a negative Cotton effect with a minimum near 218 nm and a positive effect with a maximum around 195 nm. The amplitude of the far-UV spectra of different immunoglobulins such as light chain variable (VL) and constant (CL) domains also show a minimum around 215-218 nm. Similar results were therefore expected with the TrkAIg proteins.

CD spectra were recorded at room temperature on a Jobin Yvon CD6 instrument using a cuvette of 0.5mm path length at a protein concentration of 40μM. Ten scans were accumulated with a scan speed of 0.5nm/s. Spectra were averaged and the small signal arising from the buffer was subtracted. The CD of the active TrkAIg2shows a minimum at 218nm and a maximum near 200nm (Figure 8). This is typical of anti-parallel β-sheet, which display a negative Cotton effect with a minimum near 218nm and a positive Cotton effect with a maximum at around 195nm (Yang, J.T., Wu, C.S.C. and Martinez, H.M. (1986). Methods Enzymol. 130: 208-269). Similar results have been reported for other immunoglobulin domains (Ikeda, K., Hamaguchi, K. and Migita, S. (1968) J. Biochem. 63: 654-660) and for TrkAIg1,2 (Holden, P.H., Asopa, V., Robertson, A.G.S., Clarke, A.R., Tyler, S., Bennett, G.S., Brain, S.D., Wilcock, G.K., Allen, S.J., Smith, S. and

WO 99/53055 PCT/GB99/01108-

21

Dawbarn, D. (1997) Nat. Biotechnol 15: 668-672). These results are consistent with the model of TrkAIg2 shown in Figure 1B.

Thus the CD data indicates that TrkAIg2 eluting first from the Poros 20HQ column is folded into a compact structure and is likely to have a similar structure to the other immunoglobulin domains.

The binding of NGF to Immunoglobulin-like Domains of TrkA

1 Competitive Binding

The binding affinity of ¹²⁵I-NGF to the Ig-like domains of TrkA was determined by a competitive binding assay using the melanoma cell line A875 American Tissue Culture Collection (ATCC) which expresses the NGF receptor p75^{NGFR}.

Purified recombinant human NGF was radioiodinated with I¹²⁵ using a lactoperoxidase. method and equilibrium binding with [125]-NGF was carried out (Treanor et al., 1991; Neuroscience Letters 121 p73-76). Briefly A875 cells (106 per ml) were incubated with [125] NGF (0.14 nM) and serial dilutions of unlabeled human NGF (concentration range: 10⁻⁶ M to 1 x 10⁻¹¹M), TrkAIg1,2 (concentration range; 4 x 10⁻⁶ M to 1 x 10⁻¹¹ M) or TrkAIg2 (concentration range 5 x 10⁻⁶ M to 1 x 10⁻¹¹m). Tubes were shaken vigorously at room temperature for 1 hr. 100 µl aliquots were then layered over 200 µl sucrose (0.15 M in binding buffer) in Beckman tubes. After centrifugation (15 seconds at 20,000 g) bound [125]]-NGF were separated by freezing the tubes in liquid nitrogen and and free determining the bound [125]-NGF of the cell pellet. Binding reactions were carried out in triplicate. Counts were corrected for background and specific binding was between 85-87% of total binding. The competitive binding assay (figure 9) allowed estimation of the binding affinity of [125]-NGF to the recombinant TrkAIg2 protein. A range of concentrations of Ig-like domains are incubated with 125I-NGF and A875 cells (Vale R. D. & Shooter E. M (1985) Methods in Enzymology 109: 21-39). This results in a competition

22

between the TrkAIg domains and the p75^{NGFR} for available ¹²⁵I-NGF. Two competing equilibria are:

Kdl Kd2

 $N + R \Rightarrow N:R$ and $N + T \Rightarrow N:T$

where N represents NGF; R the p75^{NGFR} cell receptor and T the TrkAIg2 domain.

The data represent the NGF bound to the cell at varying TrkAIg2 concentrations, as a fraction of that bound in the absence of TrkAIg2. Owing to the high affinity of NGF for the p75^{NGFR} cellular receptor, the analytical solution to the curve is complex thus data were fitted using numerical simulation (FACSIMILE, U.K.A.E.A).

The fitted value for the dissociation constant for the TrkAIg1,2/NGF interaction (K_d2) was 3.3 nM (Holden *et al.*, 1997; Nature Biotechnology **15** p668-672). This agrees well with a K_d of between 0.1 and 1.0 nM. for NGF binding to ectopically expressed TrkA in mammalian cells. The IC₅₀ (concentration of cold NGF required to inhibit ¹²⁵I-NGF by 50%) for unlabelled (cold) NGF was 0.2nM (Holden, P. H *et al.* (1997) Nature Biotechnology **15**: 668-672) (Figure 4B).

Results show that TrkAIg2 binds NGF with a similar affinity to TrkAIg1,2 (Fig. 9). The IC50 for TrkAIg2 is only three-fold higher than that of TrkAIg1,2, indicating a very similar affinity for NGF. This surprising result indicates that the major contribution to binding within TrkAIg1,2 is found in the second Ig domain, TrkAIg2.

2 Surface Plasmon Resonance Studies:

Kinetic data of the binding of NGF to TrkAIg2 was obtained using a BiaCore-X. Biacore technology allows real-time measurements of rate constants using very low amounts of protein. Briefly, varying concentrations of sample (analyte) are flowed across a sensor chip to which the protein of interest (the ligand) has been bound. As the analyte binds to the

23

ligand there is a change in the electron density on the surface of the sensor chip which affects the intensity and wavelength of light absorbed by the surface.

Since the data from competitive binding assays indicated that TrkAIg2 was the major contributor to NGF binding, this domain was further investigated.

TrkAIg2 was covalently attached to the surface of the sensor chip by coupling with armine groups on TrkAIg2 to carboxyl groups on the surface using BiaCore Amine Coupling kit and varying concentrations of NGF passed over at a constant flow rate of 20 μl/min for two minutes. Data were collected for a range of NGF concentrations of 1 μM to 1 nM. It was found that at the high concentrations and at the very low concentrations, the data became difficult to interpret possibly due to aggregation of the NGF at the high concentrations and to non-specific interactions with the surface at very low concentrations. However, data collected for the range 40 nM to 500 nM could be successfully evaluated. Using the fitting software, BiaEval 3.0, a Kd of 11.8 nM was obtained. The K_d value of 11.8 nM obtained is consistent with the fact that the IC₅₀ for TrkAIg2 is three fold higher than that of TrkAIg1,2 given that the K_d for TrkAIg1,2 binding to NGF is 3.3 nM as determined by competitive binding assay.

In addition, 20 µM BDNF was also passed over the TrkAIg2 with negligible observed binding. It is clear that as well as being the main contributor to the NGF binding capability of TrkA, TrkAIg2 is also specific for NGF.

3 Binding of TrkAIg-like domains using the ELISA Technique

Method 1

Anti-βNGF (Sigma polyclonal rabbit anti mouse NGF, 1:1000) diluted in Coat I Buffer (50 mM sodium carbonate pH 9.6, NaN3 0.1%) is plated (50 μl per well) onto 96 well plates and left overnight at 4°C. Wells were emptied and 100 μl per well Coat II Buffer (Coat I plus 1% BSA) was added. After 2 hours at 4°C, the plate was washed 3 times using Wash Buffer (50 mM Tris HCl pH 7.2, 200 mM NaCl, 0.1% Triton X-100, 0.1% NaN₃, 0.25% gelatin) and samples and standard curve of NGF (0-1000pg/ml) diluted in Sample Buffer (Wash buffer plus 1% BSA) were added (50 μl per well). Samples had been

24

pre-incubated with varying concentrations of TrkAIg-like domains for ten minutes with shaking at room temperature before adding to the plate. The plate was left one hour at room temperature before washing 3 times with Wash Buffer, anti βNGF galactosidase conjugate (Boerhinger: 2.5-20mU and 5-10ng antibody per assay) diluted (1:40) in wash buffer (50 μl per well was added). The plate was incubated for 2 hours at room temperature and then washed 3 times with Wash Buffer before adding 50 μl of substrate (200 mM of 4-methyl umbelliferyl galactoside (4-MUG)) in Substrate Buffer (100 mM sodium phosphate pH 7.3, 1 mM MgCl2). The production of a fluorescent product (4-methylubelliferone) from 4-MUG was then measured using a fluorimeter at excitation wavelength 364 nm, emission at 448 nm.

Method 2

The assay is similar to that of method 1 except that the TrkAIg1,2 domain was plated directly onto the 96 well plate in Coat I Buffer and left overnight at 4°C. The wells were then emptied and Coat II Buffer added for 2 hours at 4°C. A standard curve of βNGF (0-200 nM) was preincubated for 10 minutes at room temperature with 2 μM TrkAIg1 or 2 μM TrkAIg2 and added to the plate. This was incubated at room temperature for one hour before washing and the addition of anti βNGF galactosidase conjugate. The plate was then incubated for 2 hours at room temperature and washed with Wash Buffer before adding substrate (200 mM of 4-MUG). The production of a fluorescent product was then measured using a fluorimeter at an excitation wavelength of 364 nm, emission at 448 nm..

The TrkAIg1 had no effect on NGF binding to the anti-βNGF antibodies on the plate indicating that they were not sequestering NGF in the pre-incubation. By contrast the TrkAIg2 bound to 22% of the NGF at 0.5 nM and 38% at 1 nM NGF (Figure 11)

TrkAIg2 was able to sequester NGF and thus less NGF was available for binding to the TrkAIg1,2. The binding was lowered by 40% at 200 nM NGF. TrkAIg1 was not able to sequester NGF and therefore the binding to TrkAIg1,2 was unaffected (Figure 12).

These results show that TrkAIg2 will bind to NGF resulting in a lowering of NGF concentration available for binding to a 96 well plate. TrkAIg1 is not able to do this. The

preceding protocols describe a choice of methods whereby high throughput screening of non-peptide or peptide databases may be carried out on a 96 well plate format. Competition by unknown ligands with NGF for binding to plated TrkAIg-like domains may be measured by diminution of fluorescence.

25

In Vitro Effects of TrkAIg-like Domains on NGF-Induced Neurite Outgrowth By PC12 Cells

PC12 (derived from a transplantable rat adrenal phaeochromocytoma, ECACC No. 88022401) cells grown in the presence of 4 ng NGF (Fig. 13A) differentiate and produce neurites after 72 hrs. This does not occur in the absence of NGF (Fig. 13B). TrkAIg2 added to PC12 cells in the presence of 4 ng NGF at 2.5 μ M (Fig. 13C), 1.25 μ M (Fig. 13D) and 0.625 μ M (Fig. 13E) inhibits neurite outgrowth. Only when the TrkAIg2 concentration is reduced to 0.312 μ M (Fig. 13F) does neurite outgrowth start to appear.

Results show that the TrkAIg2 domain is able to inhibit neurite outgrowth of PC12 cells by sequestration of NGF (Fig. 13) whereas TrkAIg1 is not able to do this.

In Vivo Effects of TrkAIg-like domains: Inhibition of Plasma Extravasation

Inhibition of NGF activity in vivo

All *in vivo* experiments were carried out according to the Animals (Scientific Procedures) Act 1986 under terminal anaesthesia. Plasma protein extravasation in rat skin induced by intradermal (i.d.) NGF was measured by the extravascular accumulation of intravenous (i.v.) ¹²⁵I-human serum albumin (Brain, S A and Williams T. J. (1985) British Journal of Pharmacology 86: 855-860) Male Wistar rats (200-350 g) were anaesthetised with 60 mg/kg intra peritoneal (i.p.) with maintenance doses (15 mg/ml) as necessary. The dorsal skin was shaved and marked out for injection of test substances according to a balanced, randomized plan with two sites per test agent. The rats received ¹²⁵I-human serum albumin (100 kBq) and Evans Blue dye (0.2-0.5 ml of 2.5 % w/v in saline) i.v. via the tail vein at the start of the accumulation period. NGF and other test agents (in Tyrodes buffered salt

solution) were then injected i.d. and accumulation allowed over a 30 min period. A blood sample was taken by cardiac puncture (for plasma) and the rats killed by cervical dislocation. The dorsal skin was then removed and injection sites punched out (16 mm diameter). Plasma and skin sites were counted in a gamma counter. The plasma protein extravasation at each site was expressed as volume of plasma extravasated.

26

For co-injection experiments, all skin sites received 100 µl (i.d.) of either NGF (8 pmol) or Tyrode (with or without TrkAIg1,2, TrkAIg1 or TrkIg2). For pretreatment experiments, skin sites received 100 µl (i.d.) of either TrkAIg1,2 TrkAIg1 or TrkIg2 (24 or 80 pmol) or vehicle (Tyrode solution) at -5 or -40 min. These sites then received 50 µl (i.d.) NGF (8 pmol) or Tyrode at start of accumulation period (0 min).

The effect of TrkAlg1,2 on NGF-induced plasma extravasation.

The effect of co-injection of TrkAIg1,2 on NGF-induced plasma extravasation is shown in Fig. 14. Results are expressed as plasma extravasated (μ l/site) in response to intradermal test agent, mean \pm s.e.mean, n = 6. The response induced by 7S NGF(7S NGF is a complex of 2.55 (β -NGF) and γ NGF), both alone and with co-injection of TrkAIg1,2, is shown (8 pmol, filled squares). For comparison, the response induced by Tyrode's solution (vehicle, open circles), alone and with co-injection of TrkAIg1,2 is also shown. Plasma extravasation in sites receiving agent plus co-injected TrkAIg1,2 differing significantly from the sites receiving agent alone are shown as ** p < 0.01, as assessed by ANOVA with Bonferroni's post-test.

The TrkAlg1,2 can antagonize the actions of NGF when used at a dose of 24 pmol, i.e. threefold higher than the dose of NGF used. In contrast, injection of TrkAlg1,2 in vehicle produced no significant plasma extravasation. Thus, TrkAlg1,2 can antagonize the action of NGF particularly when premixed and co-injected. This indicates that TrkAlg12 is able to bind to, and thus sequester, NGF thus inhibiting its action of extravasation. To investigate the ability of TrkAlg1,2 to antagonize NGF in vivo, skin sites were pre-treated by intradermal injection of TrkAlg1,2, and NGF was given (i.d.) 5 min later. The results, shown in Fig. 15, show that 24 pmol TrkAlg1,2 can significantly inhibit the plasma extravasation induced by 8 pmol 7S NGF. Results are expressed as plasma extravasated (µl/site) in response to intradermal test agent, mean \pm s.e.mean, n = 4. The response

induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and in sites pre-treated with increasing doses of TrkAIg1,2, shown. For comparison, the response induced 7S NGF (8 pmol) co-injected with TrkAIg1,2 (24 pmol) is shown in the filled bar. Plasma extravasation induced by intradermal injection of GR 73632 (30 pmol) is shown in the filled triangles and Tyrode's solution (vehicle) in the open circles, with the pre-treatment dose of TrkAIg1,2 shown. Plasma extravasation in sites receiving agent plus co-injected TrkAIg1,2 differing significantly from the sites receiving agent alone are shown as ** p < 0.01, as assessed by ANOVA with Bonferroni's post-test.

27

The plasma extravasation seen with NGF in sites pre-treated with 24 pmol TrkAIg1,2 was similar to the plasma extravasation produced by NGF co-injected with 24 pmol TrkAIg1,2. As with the co-injection experiments, pre-treatment with TrkAIg1,2 produced no significant plasma extravasation when injected alone. In an attempt to determine if the action of TrkAIg1,2 was specific to NGF-induced responses or a general anti-inflammatory effect, the NK1 agonist GR73632 (30 pmol) was injected into TrkAIg1,2 pre-treated sites. The 5 min. pre-treatment failed to inhibit the plasma extravasation induced by GR73632, as also shown in Fig 15.

In order to evaluate the stability of the NGF sequestration, skin sites were pre-treated for a longer period (40 min) with TrkAIg1,2 and NGF given (i.d.) at the start of the accumulation period, as shown in Fig. 16. Results are expressed as plasma extravasated (μ I/site) in response to intradermal test agent, mean \pm s.e.mean, n = 4. The response induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and in sites pre-treated with increasing doses of TrkAIg1,2, is shown. For comparison, the response induced 7S NGF (8 pmol) co-injected with TrkAIg1,2 (24 pmol) is shown by the filled bar. Plasma extravasation induced by intradermal injection of GR73632 (30 pmol) is shown in the filled triangles and Tyrode's solution (vehicle) in the open circles, with the pre-treatment dose of TrkAIg1,2 shown on the y-axis. Plasma extravasation in sites receiving agent plus co-injected TrkAIg1,2 differing significantly from the sites receiving agent alone are shown as * p < 0.05, as assessed by ANOVA with Bonferroni's post-test.

In these experiments, NGF-induced plasma extravasation was significantly inhibited by 80 pmol, but not 24 pmol, TrkAIg1,2. The plasma extravasation induced by co-injection of 8

pmol NGF with 80 pmol TrkAIg1,2 is shown for comparison. In keeping with the results of the previous experiments, the doses of TrkAIg1,2 used failed to produce significant plasma extravasation when injected alone and also failed to inhibit the plasma extravasation induced by GR73632 (as before).

28

The effect of TrkAIg1 on NGF-induced plasma extravasation.

Following the previous series of experiments, using both immunoglobulin-like domains (TrkAIg1,2), we attempted to further characterize the binding of NGF to the immunoglobulin-like domains of TrkA. To do this, we used a sample of recombinant TrkAIg1, the first immunoglobulin-like domain. As can be seen in Fig. 17, co-injection experiments with TrkAIg1 showed no significant inhibition of NGF-induced plasma extravasation at doses up to 80 pmol/site.

Results are expressed as plasma extravasated (μ l/site) in response to intradermal test agent, mean \pm s.e.mean, n = 6. The response induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and with co-injection of TrkAlg1, shown. For comparison, the response induced by Tyrode's solution (vehicle) is shown in the open circles, with the dose of TrkAlg1 co-injected shown. Plasma extravasation in sites receiving agent plus co-injected TrkAlg1 differing significantly from the sites receiving agent alone are shown as ns, not significant, as assessed by ANOVA with Bonferroni's post-test.

The effect of TrkAIg2 on NGF-induced plasma extravasation.

The ability of TrkAlg2 to bind and sequester NGF was evaluated.

As can be seen in Fig. 18, co-injection of TrkAIg2 with NGF was able to produce significant inhibition of NGF-induced plasma extravasation, when given in a ten-fold excess. At all of the doses used, TrkAIg2 produced no inhibition of plasma extravasation induced by GR73632, and also produced no significant plasma extravasation when injected alone. Results are expressed as plasma extravasated (μ I/site) in response to intradermal test agent, mean \pm s.e.mean, n = 4 - 8. The response induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and with co-injection of TrkAIg2, shown. For comparison, the response induced by GR73632 (30 pmol) is shown in the filled triangles and that induced by Tyrode's solution (vehicle) is shown in the open circles, with

the dose of TrkAIg2 co-injected shown. Plasma extravasation in sites receiving agent plus co-injected TrkAIg2 differing significantly from the sites receiving agent alone are shown as *** p < 0.001, as assessed by ANOVA with Bonferroni's post-test.

29

Pre-treatment of skin sites with 80 pmol TrkAIg2 with NGF was also able to inhibit the plasma extravasation induced by 8 pmol NGF, given 5 min later Fig. 19. Results are expressed as plasma extravasated (µl/site) in response to intradermal test agent, mean ± s.e.mean, n = 4. The response induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and in sites pre-treated with increasing doses of TrkAIg2, shown. Plasma extravasation induced by intradermal injection of GR73632 (30 pmol) is shown in the filled triangles and Tyrode's solution (vehicle) in the open circles, with the pre-treatment dose of TrkAIg2 shown. Plasma extravasation in sites receiving agent plus co-injected TrkAIg2 differing significantly from the sites receiving agent alone are shown as [***]p < 0.001, as assessed by ANOVA with Bonferroni's post-test. Again, this pre-treatment had no effect on GR73632-induced plasma extravasation, and produced no significant plasma extravasation when injected alone (Fig. 19).

Similar results were seen when TrkAIg2 was used as a 40 min pre-treatment, as shown in Fig. 20. Results are expressed as plasma extravasated (µl/site) in response to intradermal test agent, mean ± s.e.mean, n = 3. The response induced by 7S NGF (8 pmol) is shown in the filled squares, both alone and in sites pre-treated with increasing doses of TrkAIg2, shown. Plasma extravasation induced by intradermal injection of GR73632 (30 pmol) is shown in the filled triangles and Tyrode's solution (vehicle) in the open circles, with the pre-treatment dose of TrkAIg2 shown. Plasma extravasation in sites receiving agent plus co-injected TrkAIg2 differing significantly from the sites receiving agent alone are shown as *** p < 0.001, as assessed by ANOVA with Student-Newman-Keuls post-test. The plasma extravasation induced by NGF was significantly inhibited by TrkAIg2 at 80 pmol. For comparison, the plasma extravasation induced by 8 pmol 7S NGF co-injected with 80 pmol TrkAIg2 is shown in the filled column. Pre-treatment with TrkAIg2 induced no plasma extravasation alone and did not affect the plasma extravasation induced by GR 73632.

The results clearly demonstrate that the TrkIg2 domain is able to bind to NGF in vivo and block its biological activity.

Crystallisation of TrkAlg2

Crystals of recombinant TrkA-Ig2 have been obtained under a variety of conditions between 14-20% MPD, pH5.0 (100mM Na-citrate), 300 to 500mM NaCl, pH 5.0 (100mM Na-citrate), most favourably at 500mM NaCl, pH 5.0. The crystals grow reproducibly to approximate dimensions of 0.2 x 0.2 x 0.2 mm. Crystals are then cryo-preserved. Using the home source (rotating anode, mirrors, imaging plate), and the synchrotron source at Hamburg, these crystals diffract to about 2.8 Å. Assuming 50% solvent, it is estimated that there are 4 (or possibly 3) molecules in the asymmetric unit. Crystals of a selenoMet form of the protein have been prepared using a selenoMet auxotroph (there are 4 methionines in the construct) which has been used for MAD phasing and as a heavy atom derivative. Recombinant forms of both the native and selenoMet TrkA-Ig2 were prepared, purified and refolded using the established procedures as defined elsewhere in the description.

Therapeutic Aspects of TrkAIg2

Since certain pain states are caused by overexpression of NGF, it is anticipated and evidence indicates, that application of NGF antagonists such as antibodies or recombinant TrkAIg2 binding domain may alleviate resulting pain states (McMahon, S. B.Series B-Biological Sciences, (1996), 351, No.1338, 431- 440; Woolf, C. J. et al. British Journal Of Pharmacology, (1997), 121, No.3, 417- 424; Lowe, E. M. et al. British Journal Of Urology, (1997), 79, No.4, 572-577; Dmitrieva, N. et al. Neuroscience, (1997), 78, No.2, 449-459; Aloe, L. et al. International Journal Of Tissue Reactions-Experimental And Clinical Aspects, (1993), 15, No.4, 139-143; Aloe, L. et al. Rheumatology International, (1995), 14, No.6, 249-252).

Therefore, in summary, the inventors have demonstrated the inability of the region referred to as TrkAIg1 to bind NGF. The smallness of the TrkAIg2 molecule and the abundance with which this protein can be produced for example in *E. coli*, and purified and refolded into its correct formation confers certain advantages over the complete extracellular domain which, by necessity, must be made in mammalian or insect cells.

31

There are known to be various pain states, often chronic inflammatory conditions which are associated with an increase in NGF protein levels. These include idiopathic sensory urgency and interstitial cystitis, arthritis and shingles. It is also suggested that such chronic conditions may result in sensitization of peripheral neurons and perhaps even long-term sensory neuronal abnormalities. By sequestration of this increased NGF, by the use of TrkAIg2, it will be possible to alleviate pain in such conditions and in other conditions in which NGF is elevated.

Throughout the specification, the following abbreviations have been used:

Abbreviations for amino acids

	Three-letter	One-letter	
Amino acid	abbreviation	symbol	
Alanine	Ala	Α	
Arginine	Arg	R	
Asparagine	Asn	N	
Aspartic acid	Asp	D	
Asparagine or aspartic acid	Asx	В	
Cysteine	Cys	С	
Glutamine	Gln	Q	
Glutamic acid	Glu	E	
Glutamine or glutamic acid	Glx	Z	
Glycine	Gly	G	
Histidine	His	Н	
Isoleucine	Ile	I	
Leucine	Leu	L	
Lysine	Lys	K	
Methionine	Met	M	
Phenylalanine	Phe	F	
Proline	Pro	P	
Serine	Ser	S	
Threonine	Thr	T	
Tryptophan	Тгр	W	
Tyrosine	Tyr	Y ·	
Valine	Val	v	

Abbreviations for nucleotides:

- Adenine Α
- Guanine G
- C Cytosine
- T Thymine
- U Uracil

Abbreviations for mutations:

X_1NNNX_2

an amino acid one letter symbol as defined above. X_1 and X_2

numerical digits indicating the position of the mutation within the NNN =

amino acid sequence.

CLAIMS

- 1. A polypeptide consisting of or comprising the amino acid sequence of residues 22 to 119 of Fig. 4B or a portion of the amino acid sequence of Fig. 4B, the amino acid sequence being capable of binding a neurotrophin.
- 2. A polypeptide according to claim 1 comprising residues 22 to 144 of Fig. 4 B.
- 3. A polypeptide according to claim 1 or 2 wherein the polypeptide is TrkAIg1,2, or a portion thereof.
- 4. A polypeptide according to any one of claims 1 to 3 which binds with high affinity to a neurotrophin.
- 5. A polypeptide according to claim 4 which binds to a neurotrophin with a disassociation constant of less than 10nM.
- 6. A polypeptide according to any preceding claim wherein the polypeptide is isolated from animal cells.
- 7. A polypeptide according to claim 6 wherein the animal cells are mammalian cells.
- 8. A polypeptide according to claim 7 wherein the mammalian cells are human cells.
- 9. A polypeptide according to claim 6 wherein the animal cells are insect cells reptilian cells, fish cells, avian cells or amphibian cells.
- 10. A polypeptide according to any preceding claim wherein the neurotrophin is NGF, NT-3 or a neurotrophin which binds p75NGFR.
- 11. A polypeptide according to any preceding claim wherein the neurotrophin exists as a monomer, dimer, trimer, or a neurotrophin heterodimer.
- 12. A polypeptide according to any preceding claim wherein the neurotrophin is from a mammal, insect, reptile, fish, bird or amphibian.

13. A polypeptide according to claim 12 wherein the mammalian neurotrophin is a human neurotrophin.

34

- 14. A DNA sequence which encodes a polypeptide according to any of claims 1 to 13 or variants of such a DNA sequence due to the degeneracy of the genetic code, or insertion or deletion mutants thereof that encode a polypeptide according to any of claims 1 to 13 and DNA sequences which hybridise at 50°C, 6xSSC salt concentration to such DNA sequences.
- 15. A DNA sequence which encodes a polypeptide according to any of claims 1 to 13 or variants of such a DNA sequence due to the degeneracy of the genetic code, or insertion or deletion mutants thereof that encode a polypeptide according to any of claims 1 to 13 and DNA sequences which hybridise at 65°C, 2xSSC salt concentration to such DNA sequences.
- 16. A plasmid or other vector comprising a DNA sequence according to claim 14 or claim 15.
- 17. A plasmid according to claim 16 wherein the plasmid is an expression vector.
- 18. A plasmid according to claim 16 or claim 17 wherein the plasmid is pET-15b.
- 19. A complex comprising at least one polypeptide according to any of claims 1 to 13 and at least one neurotrophin or neurotrophin subunit, manomer or biologically active portion thereof.
- 20. A method of producing a polypeptide according to any one of claims 1 to 13 comprising introducing a DNA sequence according to claim 14 or a plasmid according to any of claims 15 to 17 into a suitable host whereby the DNA sequence is expressed.
- 21. A method according to claim 20 wherein the host is an animal cell.
- 22. A method according to claim 21 wherein the host is a bacterial cell.
- 23. A method according to claim 22 wherein the host is a mammalian cell.

- 24. A method according to claim 23 wherein the host is a human cell.
- 25. A method of screening for molecules which bind to the TrkA receptor using a polypeptide according to any of claims 1 to 13.
- 26. A method according to claim 25 comprising comparing the binding of a putative ligand to TrkAIg1, or a portion thereof, with the binding of the same putative ligand to TrkAIg2 or a portion thereof.
- 27. A method according to claim 25 or claim 26 comprising selecting molecules which bind to at least one solvent-exposed loop of TrkAIg2.
- 28. A method according to claim 27 wherein the solvent-exposed loop is loop E to F as shown in Fig.1(B).
- 29. A method according to claim 27 or 28 wherein the solvent-exposed loop is loop C" to D as shown in Fig.1(B).
- 30. A method according to claim 28 or claim 29 wherein molecules with an affinity of at least 10nM are selected.
- 31. A method according to any claims 25 to 30 comprising selecting molecules which enhance binding of a polypeptide according to any one of claims 1 to 13 or TrkA or a portion thereof in its natural state to a neurotrophin.
- 32. A method of combinatorial chemistry comprising:
 - 1. a compound generating step
 - 2. a compound screening step which involves the binding of the compound generated during step 1 with a polypeptide or a portion of a polypeptide according to any of claims 1 to 13.
- 33. An antibody raised against a polypeptide according to any of claims 1 to 13.
- 34. An antibody according to claim 33 wherein the polypeptide is TrkAIg2.

35. A host cell containing a DNA sequence according to claim 14 or a plasmid or other vector according to any of claims 16 to 18.

36

- 36. A host cell according to claim 35 wherein the host cell is a mammalian, bacterial, insect, or yeast cell.
- 37. A host cell according to claim 32 wherein the mammalian cell is a human cell.
- 38. A diagnostic probe wherein the probe comprises any portion of a polypeptide according to any of claims 1 to 13.
- 39. A diagnostic probe according to claim 38 wherein the probe is labelled.
- 40. A diagnostic probe according to claim 39 wherein the label comprises a fluorescent tag or a radiolabel.
- 41. Diagnostic tests, assays or monitoring methods using a polypeptide or any fragment of a polypeptide according to any of claims 1 to 13, or an antibody according to claim 33 or 34.
- 42. Diagnostic tests, assays or monitoring methods using a probe comprising at least a portion of a DNA sequence according to claim 14, or a probe according to any of claims 38 to 40.
- 43. Diagnostic tests, assays or monitoring methods according to claim 41 or claim 42 wherein the tests, assays, or monitoring methods comprise microbiological, animal cell, or biodiagnostic tests, assays or monitoring methods.
- 44. Diagnostic tests, assays or monitoring methods according to any of claims 41 to 43 which detect elevated neurotrophin levels associated with peripheral inflammation, chronic inflammation, postherpetic neuralgia, interstitial cystitis, arthritis or shingles.
- 45. A method of producing a polypeptide according to any of claims 1 to 13 by chemical or biological means.

- 46. An organism engineered to contain, express or overexpress a polypeptide according to any of claims 1 to 13 or a DNA sequence according to claim 14 or claim 15.
- 47. An organism according to claim 46 wherein the organism is an animal, bacteria, yeast, or insect.
- 48. An organism according to claim 47 wherein the animal is a mammal, bacteria, yeast or insect.
- 49. A composition for the control of pain associated with an increase in neurotrophin levels comprising a polypeptide according to any of claims 1 to 13.
- 50. A method of treating a subject with pain associated with increased neurotrophin levels, the method comprising supplying to the subject a pharmaceutical composition comprising a polypeptide according to any of claims 1 to 13 or a neurotrophin analogue isolated or identified by a screening procedure involving a polypeptide according to any of claims 1 to 13.
- 51. A method according to claim 50 wherein the pain is a symptom of conditions selected from idiopathic sensory urgency (ISU), interstitial cystitis, arthritis, shingles, peripheral inflammation, chronic inflammation, or postherpetic neuralgia.
- 52. A method of treating a subject with Alzheimers disease, the method comprising supplying to the subject a pharmaceutical composition comprising a polypeptide according to any of claims 1 to 13.
- 53. A method of treating a subject with Alzheimers disease, the method comprising supplying to the subject a pharmaceutical composition comprising an neurotrophin analogue isolated or identified by a screening procedure involving a polypeptide according to any of claims 1 to 13.
- 54. A method of reducing free NGF levels in a subject, the method comprising supplying to a subject, a polypeptide according to any of claims 1 to 13.
- 55. A method of reducing plasma extravasation comprising supplying to a subject, a polypeptide according to any of claims 1 to 13.

38

- 56. A method according to any of claims 50 to 555 in which the neurotrophin is NGF.
- 57. A pharmaceutical composition comprising a polypeptide according to any of claims 1 to 13 together with a pharmaceutically acceptable carrier or diluent.
- 58. A pharmaceutical composition according to claim 57 including at least one neurotrophin.
- 59. A machine readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using the data, is capable of displaying a graphical three-dimensional representation of a polypeptide according to any of claims 1 to 13.
- 60. A homology model having the coordinates shown in Fig. 21.
- 61. A computer programmed with or arranged to provide a homology model for at least a portion of a polypeptide according to any one of claims 1 to 13, or a complex of such a polypetide with another molecule.
- 62. A machine readable data storage medium on which has been stored in machine readable form a homology model of a polypeptide according to any one of claims 1 to 13 or a complex of such a polypetide with another molecule.
- 63. A computer according to claim 61 or a machine readable data storage medium according to claim 62 in which the model is obtained from coordinates shown in Fig. 21.
- 64. Compounds obtained by a method according to any of claims 25 to 32 or using a computer according to claim 61 or 63 or using a machine readable data storage medium according to claim 62 or 63.
- 65. Crystalline Trk AIg2.
- 66. A crystal comprising at least a portion of a polypeptide according to any of claims 1 to 11.
- 67. A crystal according to claim 63 wherein a polypeptide is TrkAIg2.

Fig. 1(B)

Fig. 2.

A)

B)

Oligo10692 Left Primer for TrkAlg1,2

CCGATCTCGAGGGTGTGCCCACGCTG

Xhol

Oligo10693

Right Primer for TrkAIg1,2
CCGATCTCGAG

Xhol

Stop Stop

Fig. 3. 3/27

							His						12
1	ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC	
	Gly	Leu	Val	Pro	Arg	Gly	Ser	His	Met	Leu	Glu	Gly	24
38							AGC						
	Val	Pro	Thr	Leu	Lys	Val	Gln	Val	Pro	Asn	Ala	Ser	36
74	GTG	CCC	ACG	CTG	AAG	GTC	CAG	GTG	CCC	AAT	GCC	TCG	
	Val	Asp	Val	Gly	Asp	qsA	Val	Leu	Leu	Arg	Cys	Gln	48
110	GTG	GAT	GTG	GGG	GAC	GAC	GTG	CTG	CTG	CGG	TGC	CAG	
	Val	Glu	Gly	Arg	Gly	Leu	Glu	Gln	Ala	Gly	Trp	Ile	60
146	GTG	GAG	GGG	CGG	GGC	CTG	GAG	CAG	GCC	GGC	TGG	ATC	
	Leu	Thr	Glu	Leu	Glu	Gln	Ser	Ala	Thr	Val	Met	Lys	72
182	CTC	ACA	GAG	CTG	GAG	CAG	TCA	GCC	ACG	GTG	ATG	AAA	
	Ser	Gly	Gly	Leu	Pro	Ser	Leu	Gly	Leu	Thr	Leu	Ala	84
218	TCT	GGG	GGT	CTG	CCA	TCC	CTG	GGG	CTG	ACC	CTG	GCC	
	Asn	Val	Thr	Ser	Asp	Leu	Asn	Arg	Lys	Asn	Leu	Thr	96
254							AAC						
	Сув	Trp	Ala	Glu	Asn	qzA	Val	Gly	Arg	Ala	Glu	Val	108
290	TGC	TGG	GCA	GAG	AAC	GAT	GTG	GGC	CGG	GCA	GAG	GTC	
							Ser						120
326							TCC						
	Gln	Leu	His	Thr	Ala	Val	Glu	Met	His	His	Trp	Cys	132
362	CAG	CTG	CAC	ACG	GCG	GTG	GAG	ATG	CAC	CAC	TGG	TGC	
							Gly						144
398							GGG						
	Leu	Arg	Trp	Leu	Phe	Asn	Gly	Ser	Val	Leu	Asn	Glu	156
434							GGC						
	Thr	Ser	Phe	Ile	Phe	Thr	Glu	Phe	Leu	Glu	Pro	Ala	168
470							GAG						
	Ala	Asn	Glu	Thr	Val	Arg	His	Gly	Сув	Leu	Arg	Leu	180
506							CAC						
	naA	Gln	Pro	Thr	His	Val	Asn	Asn	Gly	Asn	Tyr	Thr	192
542	AAC	CAG	CCC	ACC	CAC	GTC	AAC	AAC	GGC	AAC	TAC	ACG	
							Phe						204
578							TTC						
	Ser	Ile	Met	Ala	Ala	Phe	Met	Asp	Asn	Pro	Phe	Glu	216
614							ATG						
							Ile						228
650							ATC						
												Stop	239
686	ACA	TCT	GGA	GAC	CCG	GTG	GAG	AAG	AAG	GAC	GAA	TGA	
722	TAAC	TTCG	CATC	CGG									

Fig.4.

4/27

A)

A.,	,													
		Mot	Gly	Ser	Ser	Hie	Hie	Hic	Uic	uic	uic	50-	Co=	10
	1	MAC	GGC	yec	yec	CAT	Cyd	Cyd	UTO	UTS	UIS	261	Set	12
	-		Leu											24
	3.8		CTG											44
	,		Pro											36
	74	GTG	CCC	aca.	CTG	770	GRC	CAG	OTO.	CCC	224	VIG	MCC 961	30
	, •		Asp											40
	110	GTG	GAT	GTG	GGG	GIC	CAC	GTG.	CTG	CTC	LCCC.	CAB	CJU	48
			Glu											60
	146		GAG											60
			Thr											70
	182		ACA											72
	101		Gly											0.4
	218		GGG											84
			Val											0.5
	254	AAM	GTC	ACC.	D G T	CAC	TIGHT	VRT.	YEG	TAR	WRIT	TOU	THE	96
	234	Cyre	Trp	Al-	Gl.	Z cm	220	MAC.	71	AAG Amm	AAC	770	ACG	
	200		TGG											108
	230		Val									GAG	GTC	
	326		GTT									3000		116
	320		G11	CAG	GIC	AAC	GIC	100	110	IGA	TAA	-100/	NGCG	
3)														
-,														
		Met	Glv	Ser	Ser	His	His	His	His	His	His	Ser	Ser	12
	1		GGC											12
	•		Leu											24
	38		CTG											
			Gln											36
			CAG											30
			Ile											48
	110		ATC											
			Leu											60
	146		CTG											•
			Thr											72
	182		ACC											
			Ala											84 .
	21 B		GCC											
			Asn											96
	254		AAC											
			Leu											108
	290		CTG											
			Ser											120
			TCC							-				
			Phe											132
	362		TTC											
			Thr											144
	398		ACA											
		Stor												144
	434		TAAC	TCG	GATO	GG								

WO 99/5	53055												РСТ	/GB99/01108
	C)						5/27	•						
1	Met ATG							His CAT					12	
		Leu	Val	Pro	Arg	Gly	Ser	His	Met	Pro	Ala	Ser	24	
74	GTG	CAG	CTG	CAC	ACG	GCG	GTG		ATG	CAC	CAC	TGG	36	
110	TCG	ATC	CCC	TTC	TCT	GTG	GAT	Gly GCG Gly	CAG	CCG	GCA	CCG	48 60	
146	TCT	CTG	CGC	TGG	CTC	TTC	AAT		TCC	GTG	CTC	AAT	72	
	GAG Ala	ACC Ala	AGC Asn	TTC Glu	ATC Thr	TTC Val	ACT Arg	GAG His	TTC Gly	CTG Cys	GAG Leu	CCG Arg	84	
		Asn	Gln	Pro	Thr	His	Val	Asn	Asn	Gly	Asn	Tyr	96	
	Thr ACG	Leu	Leu	Ala	Ala	Asn	Pro	Phe	Gly	Gln	Ala	Ser	108	
		Ser	Ile	Met	Ala	Ala	Phe	Met	Asp	Asn	Pro	Phe	120	
362	GAG	TTC	AAC	CCC	GAG	GAC	CCC		CCT	GTC	TCC	TTC	132	
398	TCG	CCA	GTG	GAC	ACT		AGC						144 150	
434	GTG								CTCG	AGAT(CGG		10,0	
Fig. 5.			7									•		
			pET15b-TrkAlg1,2		kAIgl		kAIg2							
	15b		156-Tr		pET15b-TrkAIg1		pET15b-TrkAlg2							
	pET15b		PET		pET		pET							
		77. 	ب و		(")	TG •	(2)	- 5T						
	No IPTG	1mM IPT(No IP 1G		No IPTG	ImM IPT	No IPTG	1mM IPT				•		•
		2			e-i-i-i			e de la						
				14.0										
			Ā				,					TrkAlg	1,2	
				inex.										
		9								4		TrkAlg	2	

TrkAlgl

PCT/GB99/01108

Fig. 6B.

Fig. 7(B)

Fig. 9. Displacement Binding Curve for TrkAIg1,2 and TrkAIg2 120 110 100 90 %-age Max (TrkAlg2) 60 %-age Max (TrkAlg12) %-age Max 1µM NGF 30 20 10 IB-10 1B-07 [TrkAlg2] M

WO 99/53055

Fig. 10.

Fig. 11.

Fig. 13.

Fig. 15.

Fig. 16.

Fig. 17.

TrkAIg2 coinjected (pmol)

Fig. 18.

Fig. 19

Fig. 20.

```
Fig. 21
                                16/27
REMARK
          TrkA domain 2
REMARK
          1 SEX
                   SER S
                            3
                               LEU S
SHEET
                                        6
          2 SEX
                   HIS S
                           13
                               CYS
                                   S
SHEET
                                       16
SHEET
          3 SEX
                   SER S
                           28
                               LEU
                                    S
                                       32
          4
            SEX
                   LEU S
                           38
                               SER S
                                       42
SHEET
                   GLU S
                           47
SHEET
          5
            SEX
                               GLU
                                   S
                                       50
            SEX
                   ALA S
                           53
SHEET
          6
                               VAL
                                    S
                                       57
          7
            SEX
                   CYS S
                           61
                               ASN
                                    S
                                       65
SHEET
                           76
            SEX
                   THR S
                               ASN
                                    S
SHEET
          8
                                       81
                   GLY S
                           84
                               ALA S
          9
            SEX
                                       88
SHEET
                 PRO S
                          7
                             ALA S
                                     11
          1
TURN
TURN
          2
                 SER S
                        17
                             VAL S
                                     20
                 LEU S
TURN
          3
                         35
                             LEU S
                                     37
                 LEU S
                         42
                             HIS S
                                     45
TURN
                         51
                             HIS S
          5
                 HIS S
                                     52
TURN
                         58
                             THR S
TURN
          6
                 THR S
                                     59
                                     83
                         82
                            MET S
          7
                 MET S
TURN
          1 CYS S
                     16
                            CYS S
                                     61
SSBOND
           1
              N
                   PRO S
                            1
                                    25.261 138.102
                                                      16.261
                                                               1.00
                                                                      0.00
ATOM
                   PRO S
                                    25.908 137.182
                                                      17.231
                                                               1.00
ATOM
           2
              CA
                            1
                                                                      0.00
                   PRO
                       S
                                    27.226 137.778
                                                      17.735
                                                               1.00
                                                                      0.00
ATOM
           3
              C
                            1
ATOM
           4
              0
                   PRO
                       S
                            1
                                    27.661 138.818
                                                      17.283
                                                               1.00
                                                                      0.00
                                    26.158 135.916
ATOM
           5
              CB
                   PRO
                       S
                            1
                                                      16.416
                                                               1.00
                                                                      0.00
                                                               1.00
                                    26.226 136.374
                                                      14.994
                                                                      0.00
              CG
                   PRO
                       S
ATOM
           6
                            1
                                    25.365 137.605
                                                      14.880
                                                               1.00
                                                                      0.00
           7
              CD
                   PRO S
                            1
ATOM
           8
              N
                   ALA S
                            2
                                    27.863 137.129
                                                      18.673
                                                               1.00
                                                                      0.00
ATOM
                                    29.147 137.662
                                                      19.204
                                                               1.00
                                                                      0.00
ATOM
           q
              CA
                   ALA S
          10
                   ALA S
                            2
                                    30.334 136.946
                                                      18.552
                                                               1.00
                                                                      0.00
ATOM
              С
                                                               1.00
                                                                      0.00
          11
              0
                   ALA S
                            2
                                    30.246 136.466
                                                      17.439
MOTA
                                                                      0.00
                                                               1.00
          12
              CB
                   ALA S
                            2
                                    29.116 137.510
                                                      20.735
ATOM
                                                               1.00
                                    31.442 136.873
                                                                      0.00
                   SER S
                                                      19.236
              N
                            3
ATOM
          13
                                    32.633 136.190
                                                      18.656
                                                               1.00
                                                                      0.00
              CA
                   SER S
                            3
          14
ATOM
          15
              С
                   SER S
                            3
                                    33.500 135.589
                                                      19.764
                                                               1.00
                                                                      0.00
ATOM
                                    33.256 135.791
                                                      20.937
                                                                      0.00
MOTA
          16
              0
                   SER S
                            3
                                                               1.00
                   SER S
                            3
                                    33.393 137.278
                                                      17.924
                                                               1.00
                                                                      0.00
MOTA
          17
              CB
               OG
                   SER S
                            3
                                    33.868 138.236
                                                      18.860
                                                               1.00
                                                                      0.00
ATOM
          18
MOTA
          19
              N
                   VAL S
                            4
                                    34.518 134.856
                                                      19.396
                                                               1.00
                                                                      0.00
                                    35.419 134.237
                                                      20.420
                                                               1.00
                                                                      0.00
                   VAL S
ATOM
          20
              CA
                            4
                                                      19.783
                                                               1.00
                                                                      0.00
          21
              С
                   VAL S
                                    36.421 133.276
                            4
ATOM
          22
              0
                   VAL S
                            4
                                    36.512 133.123
                                                      18.577
                                                               1.00
                                                                      0.00
MOTA
                                    34.556 133.490
                                                      21.513
                                                               1.00
                                                                      0.00
ATOM
          23
              CB
                   VAL S
                            4
               CG1 VAL S
                                    33.872 132.169
                                                      21.068
                                                               1.00
                                                                      0.00
ATOM
          24
                                                                      0.00
                                                      22.795
                                                               1.00
          25
               CG2 VAL S
                            4
                                    35.345 133.129
ATOM
                                                      20.620
                                                               1.00. 0.00
ATOM
          26
               N
                   GLN S
                            5
                                    37.157 132.611
                                                      20.143
                                                               1.00
                                                                      0.00
                   GLN S
                            5
                                    38.157 131.621
          27
              CA
ATOM
                   GLN S
          28
              C
                            5
                                    38.093 130.394
                                                      21.051
                                                               1.00
                                                                      0.00
MOTA
          29
              0
                   GLN S
                            5
                                    38.538 130.421
                                                      22.181
                                                               1.00
                                                                      0.00
ATOM
                            5
                                     39.552 132.283
                                                      20.151
                                                               1.00
                                                                      0.00
ATOM
          30
               CB
                   GLN
                       S
                   GLN
                        S
                            5
                                     39.779 133.429
                                                      19.110
                                                               1.00
                                                                      0.00
ATOM
          31
               CG
               CD
                                                               1.00
                                                                      0.00
                   GLN
                        S
                            5
                                     39.726 133.100
                                                      17.612
ATOM
          32
                                                                      0.00
          33
               OE1
                   GLN
                        S
                            5
                                     40.247 132.089
                                                      17.171
                                                               1.00
ATOM
                                                                      0.00
                                     39.138 133.925
                                                      16.783
                                                               1.00
                             5
ATOM
          34
               NE2
                   GLN
                        S
                                     37.535 129.322
                                                      20.568
                                                               1.00
                                                                      0.00
          35
                   LEU
                       S
                             6
ATOM
               N
                   LEU S
                                     37.435 128.093
                                                      21.423
                                                               1.00
                                                                      0.00
          36
               CA
                             6
ATOM
                                     38.594 127.146
                                                               1.00
                                                                      0.00
ATOM
          37
               С
                   LEU S
                             6
                                                      21.128
                                     39.504 127.475
                                                      20.397
                                                               1.00
                                                                      0.00
          38
               0
                   LEU S
                             6
MOTA
                                                               1.00
                                                                      0.00
                   LEU S
                             6
                                     36.064 127.391
                                                      21.210
MOTA
          39
               CB
                                     34.840 127.921
                                                      22.004
                                                               1.00
                                                                      0.00
ATOM
          40
               CG
                   LEU S
                             6
```

ATOM	41		LEU S		6		865			23.439	1.00	0.00
MOTA	42	CD2	LEU S		6		772			22.035	1.00	0.00
MOTA	43	N	HIS S		7		564			21.690	1.00	0.00
MOTA	44	CA	HIS		7		722			21.289	1.00	0.00
MOTA	45	С	HIS !		7		524			21.380	1.00	0.00
MOTA	46	0	HIS		7		384		.188	21.436	1.00	0.00
MOTA	47	CB	HIS :		7 7		908		.004 .819	22.188 21.872	1.00	0.00
ATOM	48	CG	HIS		7		551			20.613	1.00	0.00
MOTA	49		HIS		7		953			22.769	1.00	0.00
MOTA	50		HIS :		7		603			20.744	1.00	0.00
ATOM	51 52		HIS		ז				. 468	22.021	1.00	0.00
MOTA MOTA	53	N	THR		8				.000	21.431	1.00	0.00
ATOM	54	CA	THR		8				.569	21.109	1.00	0.00
ATOM	55	C	THR		8				.616	21.219	1.00	0.00
ATOM	56	ō	THR		8				0.395			0.00
ATOM	57	СВ	THR		8				.037	21.933	1.00	0.00
ATOM	58		THR		8	42.	. 669	120	.062	21.171	1.00	0.00
ATOM	59	CG2	THR	S	8	41.	468	120	.390	23.235	1.00	0.00
ATOM	60	N	ALA	S	9	39.			.074		1.00	0.00
ATOM	61	CA	ALA	S	9				.829	19.787	1.00	0.00
ATOM	62	С	ALA	S	9				.752	20.710	1.00	0.00
ATOM .	63	0	ALA		9				.716	21.365	1.00	0.00
ATOM	64	CB	ALA		9				.660	20.007	1.00	0.00
ATOM	. 65	N	VAL		10				.834	20.758	1.00	0.00
ATOM	66	CA	VAL		10				.358	22.047	1.00	0.00
ATOM	67	С	VAL		10				.909	22.345	1.00	0.00
MOTA	68	0	VAL		10				.141	22.521	1.00	0.00
MOTA	69	CB	VAL		10				.436	22.177 23.514	1.00	0.00
MOTA	70		VAL		10				.303	21.066	1.00	0.00
MOTA	71		VAL		10				.270	22.326	1.00	0.00
MOTA	72	N CA	GLU GLU		11 11				.086	23.593	1.00	0.00
MOTA	73 74	CA.	GLU		11				.702	23.901	1.00	0.00
MOTA MOTA	75	0	GLU		11				.138	24.739	1.00	0.00
ATOM	76	СВ	GLU		11				.181	23.462	1.00	0.00
ATOM	77	CG	GLU		11				.138	24.601	1.00	0.00
ATOM	78	CD	GLU		11	36	.545	126	.192	24.357	1.00	0.00
ATOM	79		GLU	S	11	36	.715	127	.008	25.222	1.00	0.00
ATOM	80	OE2	GLU.	S	11	37	.184	126	5.186	23.288	1.00	0.00
ATOM	81	N	MET	S	12				.775	23.233	1.00	0.00
ATOM	82	CA	MET	S	12				.429	23.416	1.00	0.00
ATOM	83	С	MET	S	12				5.157	22.137	1.00	0.00
MOTA	84	0	MET		12		.315		.609	21.300	1.00	0.00
MOTA	85	CB	MET	S	12	31	.557	126	.421	24.555	1.00	0.00
MOTA	86	CG	MET		12				5.730	25.889	1.00	0.00
MOTA	87	SD	MET		12				5.899	27.244	1.00	0.00
MOTA	88	CE	MET		12				5.712	28.551	1.00	0.00
HOTA	89	N	HIS		13				7.382	21.980 20.757	1.00	0.00
MOTA	90	CA	HIS		13 13				3.109	20.737	1.00	0.00
ATOM	91	C	HIS		13				7.162	19.988	1.00	0.00
MOTA	92	O CB	HIS		13				7.510	19.580	1.00	0.00
MOTA	93 94	CG	HIS		13				7.891	19.650	1.00	0.00
ATOM	95		HIS		13				7.508	20.653	1.00	0.00
MOTA	96		HIS		13				8.671	18.746	1.00	0.00
MOTA MOTA	97		HIS		13				B.044	20.356	1.00	0.00
ATOM	98		HIS		13				B.745	19.220	1.00	0.00
ATOM	99	N	HIS		14				9.145	20.904	1.00	0.00
ATOM	100	CA	HIS		14				9.193	20.683	1.00	0.00
ATOM	101	c	HIS		14				0.561	20.107	1.00	0.00
		_		-	-							

		_								
ATOM	102	0	HIS	_	14	27.447	131.584	20.601	1.00	0.00
ATOM	103	CB	HIS		14	26.730	128.971	22.058	1.00	0.00
ATOM	104	CG	HIS	S	14	27.070	127.629	22.639	1.00	0.00
ATOM	105	ND1	HIS	S	14	26.417	126.431	22.359	1.00	0.00
ATOM	106	CD2	HIS	S	14	28.105	127.445	23.544	1.00	0.00
ATOM	107	CE1	HIS	S	14		125.594	23.135	1.00	0.00
ATOM	108	NE2	HIS	s	14		126.115	23.874	1.00	
ATOM	109	N	TRP		15		130.593	19.062		0.00
ATOM	110	CA	TRP		15		131.900		1.00	0.00
ATOM	111	C	TRP		15			18.460	1.00	0.00
ATOM	112	Ö	TRP		15		131.983	18.264	1.00	0.00
		CB	TRP		-		130.988	18.052	1.00	0.00
ATOM	113				15		131.999	17.118	1.00	0.00
ATOM	114	CG	TRP		15		131.962	17.347	1.00	0.00
ATOM	115	CD1			15		133.072	17.566	1.00	0.00
ATOM	116		TRP	_	15		130.786	17.383	1.00	0.00
ATOM	117		TRP		15		132.710	17.743	1.00	0.00
ATOM	118		TRP		15	30.232	131.231	17.622	1.00	0.00
ATOM	119		TRP		15	28.661	129.425	17.227	1.00	0.00
ATOM	120	CZ2	TRP	S	15	31.265	130.312	17.709	1.00	0.00
ATOM	121	CZ3	TRP	S	15	29.694	128.506	17.314	1.00	0.00
ATOM	122	CH2	TRP	S	15		128.955	17.552	1.00	0.00
ATOM	123	N	CYS	S	16		133.160	18.327	1.00	0.00
ATOM	124	CA	CYS	S	16		133.496	18.183	1.00	0.00
ATOM	125	С	CYS		16		134.927	18.480	1.00	0.00
ATOM	126	0	CYS		16		135.408	19.605	1.00	0.00
ATOM	127	CB	CYS		16		132.638	19.173	1.00	0.00
ATOM	128	SG	CYS		16		132.873	19.077		
ATOM	129	N	ILE		17		135.659	17.467	1.00	0.00
ATOM	130	CA	ILE		17		137.083		1.00	0.00
ATOM	131	C	ILE		17		137.083	17.695	1.00	0.00
	132	0	ILE					18.157	1.00	0.00
ATOM					17		137.501	17.348	1.00	0.00
MOTA	133	CB	ILE		17		137.815	16.391	1.00	0.00
ATOM	134	CG1			17		139.327	16.656	1.00	0.00
MOTA	135	CG2	ILE		17		137.589	15.364	1.00	0.00
ATOM	136		ILE		17		140.068	15.520	1.00	0.00
ATOM	137	N	PRO		18		137.607	19.471	1.00	0.00
ATOM	138	CA	PRO		18		138.065	19.995	1.00	0.00
ATOM	139	С	PRO		18		139.267	19.219	1.00	0.00
ATOM	140	0	PRO		18		139.406	18.932	1.00	0.00
ATOM	141	CB	PRO		18		138.436	21.470	1.00	0.00
ATOM	142	CG	PRO		18		138.302	21.793	1.00	0.00
ATOM	143	ÇD	PRO		18		138.094	20.336	1.00	0.00
ATOM	144	N	PHE		19	19.228	140.179	18.875	1.00	0.00
ATOM	145	CA	PHE	S	19	18.797	141.326	18.074	1.00	0.00
ATOM	146	С	PHE		19	18.034	140.915	16.867	1.00	0.00
ATOM	147	0	PHE	S	19	17.580	141.768	16.033	1.00	0.00
ATOM	148	CB	PHE	S	19		142.135	17.663	1.00	0.00
ATOM	149	CG	PHE	S	19		143.469	18.331	1.00	0.00
ATOM	150		PHE		19		143.597	19.685	1.00	0.00
ATOM	151	CD2	PHE	S	19		144.542	17.612	1.00	0.00
ATOM	152	CE1	PHE	S	19		144.800	20.327	1.00	0.00
ATOM	153		PHE		19		145.750	18.264	1.00	0.00
ATOM	154	CZ	PHE		19		145.880	19.624	1.00	0.00
ATOM	155	N	SER		20		139.567	16.695	1.00	0.00
ATOM	156	CA	SER		20		138.992			
	157	C	SER		20			15.860	1.00	0.00
ATOM	158	0	SER				139.163	14.368	1.00	0.00
ATOM					20		140.071	13.942	1.00	0.00
ATOM	159	CB	SER		20		139.695	16.291	1.00	0.00
ATOM	160	OG	SER		20		141.102	16.423	1.00	0.00
ATOM	161	N	VAL		21		138.323	13.764	1.00	0.00
ATOM	162	CA	VAL	S	21	15.991	138.891	12.422	1.00	0.00

ATOM	163	С	VAL S	: 2	21	1	4.596	139	.156	11.835	1.00	0.00
ATOM	164	0	VAL S	3	21		3.712			11.884	1.00	0.00
ATOM	165	CB	VAL S		21	1	6.723	137	.887	11.521	1.00	0.00
ATOM	166		VAL S		21		6.178			11.752	1.00	0.00
ATOM	167	CG2	VAL S		21		6.517			10.049	1.00	0.00
ATOM	168	N	ASP S		22		4.140			11.434	1.00	0.00
MOTA	169	CA	ASP S		22 .	1	.2.707	140	.438	11.055	1.00	0.00
ATOM	170	С	ASP S		22		.2.549			9.579	1.00	0.00
MOTA	171	0	ASP S		22		3.508			8.840	1.00	0.00
MOTA	172	CB	ASP S		22		2.329			11.323	1.00	0.00
MOTA	173	CG	ASP S		22		2.290			12.831	1.00	0.00
MOTA	174		ASP S		22	_	1.957			13.575	1.00	0.00
ATOM	175		ASP S		22		2.595			13.212	1.00	0.00
ATOM	176	N	GLY S		23	•	1.345			9.152	1.00	0.00
ATOM	177	CA	GLY S		23	,	1.114			7.722	1.00	0.00
ATOM	178	C	GLY S		23 23		9.731 9.222			7.282	1.00	0.00
MOTA	179	O N	GLY S		23 24		9.118			6.363	1.00	0.00
ATOM	180	N CP	GLN S		24 24		7.769			5.890	1.00	0.00
ATOM	181 182	CA C	GLN		24		7.193			4.901	1.00	0.00
ATOM	183	0	GLN		24		7.087			3.725	1.00	0.00
ATOM	184	CB	GLN		24		7.885			5.236	1.00	
atom atom	185	CG	GLN		24		6.539			4.827	1.00	0.00
ATOM	186	CD	GLN		24		6.577			4.172	1.00	0.00
ATOM	187		GLN		24		7.637			3.950	1.00	0.00
ATOM	188		GLN		24		5.460	143	.813	3.867	1.00	0.00
ATOM	189	N	PRO		25		6.805			5.398	1.00	0.00
ATOM	190	CA	PRO :	S	25		6.929	137	.190	6.830	1.00	0.00
ATOM	191	С	PRO	S	25		8.136	136	.266	7.043	1.00	0.00
ATOM	192	٥	PRO	S	25		8.532			6.150	1.00	0.00
ATOM	193	CB	PRO .	S	25		5.633				1.00	0.00
MOTA	194	CG	PRO		25		5.209			5.752	1.00	0.00
ATOM	195	CD	PRO		25		6.086			4.685	1.00	0.00
ATOM	196	N	ALA .		26		8.702			8.222	1.00	0.00
ATOM	197	CA	ALA		26		9.862			8.510	1.00	0.00
ATOM	198	С	ALA		26		10.981			7.467	1.00	0.00
ATOM	199	0	ALA		26		10.858			6.346	1.00	0.00
ATOM	200	CB	ALA		26		9.336 12.050			8.577 7.874	1.00	0.00
ATOM	201	N	PRO		27 27		12.030 13.198			6.956	1.00	0.00
ATOM	202	CA C	PRO PRO		27		13.150 13.952			6.713	1.00	0.00
atom Atom	203 204	0.	PRO		27		13.526			7.120	1.00	0.00
ATOM	205	СВ	PRO		27		14.085			7.719	1.00	0.00
ATOM	206	CG	PRO		27		13.745			9.158	1.00	0.00
ATOM	207	CD	PRO		27		12.296			9.204	1.00	0.00
ATOM	208	N	SER		28		15.081			6.064	1.00	0.00
ATOM	209	CA	SER		28		15.887	133	3.951	5.801	1.00	0.00
ATOM	210	Ċ	SER		28		17.330	134	.208	6.234	1.00	0.00
ATOM	211	0	SER		28		17.789			6.234	1.00	0.00
ATOM	212	CB	SER	S	28		15.773			4.316	1.00	0.00
ATOM	213	OG	SER	S	28		16.338			3.416	1.00	0.00
ATOM	214	N	LEU	S	29		18.050	133	3.191	6.611	1.00	0.00
ATOM	215	CA	LEU	S	29		19.466			7.049	1.00	0.00
ATOM	216	С	LEU	S	29		20.429			6.214	1.00	0.00
ATOM	217	0	LEU		29		20.055			5.664		0.00
ATOM	218	CB	LEU		29		19.622			8.568	1.00	0.00
ATOM	219	CG	LEU		29		19.23			9.575	1.00	0.00
ATOM	220		LEU		29		20.37			9.687	1.00	0.00
ATOM	221		LEU		29		17.927			9.196	1.00	0.00
MOTA	222	N	ARG		30		21.66			6.111	1.00	0.00
ATOM	223	CA	ARG	S	30		22.64	L 13	2.189	5.308	1.00	0.00

MOTA	224	С	ARG S		•		132.227	5.965	1.00	0.00
MOTA	225	0	ARG S				132.935	5.524	1.00	0.00
MOTA	226	CB	ARG S	30	l		132.754	3.862	1.00	0.00
ATOM	227	CG	ARG S	_	ŀ		131.864	2.829	1.00	0.00
MOTA	228	CD	ARG S)		132.487	1.429	1.00	0.00
ATOM	229	NE	ARG S	30)	24.147	131.551	0.514	1.00	0.00
ATOM	230	CZ	ARG S	30)	24.360	131.752	-0.779	1.00	0.00
ATOM	231	NH1	ARG S	30)	23.980	132.812	-1.429	1.00	0.00
ATOM	232	NH2	ARG S	30)	24.983	130.833	-1.428	1.00	0.00
ATOM	233	N	TRP S	3 31		24.224	131.467	7.007	1.00	0.00
ATOM	234	CA	TRP S	3 31		25.571	131.477	7.655	1.00	0.00
ATOM	235	C	TRP S	3 31		26.608	131.059	6.620	1.00	0.00
ATOM	236	0	TRP S	3 31			130.178	5.818	1.00	0.00
ATOM	237	CB	TRP S	3 31		25.490	130.474	8.809	1.00	0.00
ATOM	238	CG	TRP S	3 31		24.550	131.007	9.829	1.00	0.00
ATOM	239	CD1	TRP S				130.849	9.797	1.00	0.00
ATOM	240		TRP S				131.793	11.019	1.00	0.00
ATOM	241		TRP S				131.495	10.886	1.00	0.00
ATOM	242		TRP S				132.093	11.670	1.00	0.00
ATOM	243		TRP S				132.273	11.588	1.00	0.00
ATOM	244		TRP S				132.846	12.844	1.00	0.00
ATOM	245		TRP S				133.028	12.770	1.00	0.00
ATOM	246	CH2	TRP S				133.315	13.397	1.00	0.00
ATOM	247	N	LEU S				131.699	6.616	1.00	0.00
ATOM	248	CA	LEO S				131.367	5.611	1.00	0.00
ATOM	249	C	LEU S				132.188	5.861	1.00	0.00
ATOM	250	ō	LEO S				133.349	6.218	1.00	0.00
ATOM	251	CB	LEU S				131.687	4.232	1.00	0.00
ATOM	252	CG	LEU S				133.174	4.091	1.00	0.00
ATOM	253		LEO S				133.957	3.631	1.00	0.00
MOTA	254		LEU S				133.348	3.045	1.00	0.00
ATOM	255	N.	PHE S				131.582	5.667	1.00	0.00
MOTA	256	CA	PHE S				132.282	5.871	1.00	0.00
ATOM	257	c	PHE S				131.325	5.513	1.00	0.00
ATOM	258	ō	PHE S				130.920	6.353	1.00	0.00
ATOM	259	СВ	PHE S				132.738	7.356	1.00	0.00
ATOM	260	CG	PHE S				131.623	8.407	1.00	0.00
ATOM	261		PHE S				131.117	8.756	1.00	0.00
ATOM	262		PHE S				131.063	8.975	1.00	0.00
ATOM	263		PHE S				130.055	9.645	1.00	0.00
ATOM	264		PHE S				130.005	9.873	1.00	0.00
ATOM	265	CZ	PHE S				129.498	10.206	1.00	0.00
ATOM	266	N	ASN S				130.914	4.276	1.00	0.00
ATOM	267	CA	ASN S				129.928	3.887	1.00	0.00
ATOM	268	c	ASN S				128.668	4.739	1.00	0.00
ATOM	269	ō	ASN		_		127.883			
ATOM	270	СВ	ASN S				130.563	4.077	1.00	0.00
ATOM	271	CG	ASN S				131.648	3.075	1.00	0.00
ATOM	272		ASN S				131.533	1.874	1.00	0.00
ATOM	273		ASN S				132.721	3.520	1.00	0.00
ATOM	274	N	GLY :				128.478	5.271	1.00	0.00
ATOM	275	CA	GLY S				127.286	6.120	1.00	0.00
ATOM	276	C	GLY S				126.501	5.536	1.00	0.00
ATOM	277	o	GLY :				125.886	6.251	1.00	0.00
ATOM	278	N	SER				126.528	4.239	1.00	0.00
	279	CA	SER S			•	125.793	3.607	1.00	0.00
MOTA	280	C	SER S				126.322	4.163	1.00	0.00
ATOM	281	0	SER				125.596	4.760	1.00	0.00
ATOM ATOM	282	CB	SER				123.356	3.804	1.00	0.00
ATOM	283	OG	SER				123.737	3.169	1.00	0.00
ATOM	284	N	VAL				127.595	3.969	1.00	0.00
MIUM	~ 0 9	1.4	ALTH		•	23.020	101.333	J. 303	1.00	0.00

ATOM	285	CA	VAL S	37	27.811 128.253	4.425	1.00	0.00
MOTA	286	C	VAL S	37	27.367 127.743	5.797	1.00	0.00
ATOM	287	0	VAL S	37	26.149 127.679	6.103	1.00	0.00
MOTA	288	CB	VAL S	37	26.714 127.993	3.378	1.00	0.00
ATOM	289	CG1	VAL S	37	25.359 128.461	3.900	1.00	0.00
ATOM	290	CG2	VAL S	37	27.032 128.743	2.086	1.00	0.00
ATOM	291	N	LEU S	38	28.366 127.332	6.620	1.00	0.00
ATOM	292	CA	LEU S	38	28.052 126.711	7.913	1.00	0.00
ATOM	293	C	LEU S	38	26.753 125.947	7.891	1.00	0.00
ATOM	294	0	LEU S	38	26.705 124.711	8147	1.00	0.00
ATOM	295	CB	LEU S	38	27.925 127.809	8.970	1.00	0.00
ATOM	296	CG	LEO S	38	29.126 128.735	9.025	1.00	0.00
ATOM	297		LEU S	38	28.777 130.105	9.613	1.00	0.00
ATOM	298		LEU S	38	30.247 128.170	9.896	1.00	0.00
ATOM	299	N	ASN S	39	25.675 126.692	7.632	1.00	0.00
ATOM	300	CA	asn s	39	24.357 126.130	7.806	1.00	0.00
ATOM	301	С	ASN S	39	23.279 126.989	7.185	1.00	0.00
ATOM	302	0	ASN S	39	23.465 128.203	6.943	1.00	0.00
ATOM	303	CB	ASN S	39	24.112 126.005	9.301	1.00	0.00
ATOM	304	CG	ASN S	39	22.686 125.595	9.516	1.00	0.00
ATOM	305		ASN S	39	22.347 124.420	9.586	1.00	0.00
ATOM	306		ASN S	39	21.824 126.622	9.609	1.00	0.00
ATOM	307	N	GLU S	40	22.111 126.468	6.900	1.00	0.00
ATOM	308	CA	GLU S	40	21.022 127.276	6.398	1.00	0.00
ATOM	309	С	GLU S	40	19.698 126.735	6.922	1.00	0.00
ATOM	310	0	GLU S	40	19.501 125.521	6.855	1.00	0.00
ATOM	311	CB	GLU S	40	20.992 127.237	4.894	1.00	0.00
MOTA	312	CG	GLU S	40	19.960 128.182	4.298	1.00	0.00
ATOM	313	CD	GLU S	40 40	19.931 128.272 19.218 129.105	2.794 2.210	1.00	0.00
ATOM	314 315		GLU S	40	20.658 127.492	2.210	1.00	0.00
ATOM	316	N N	THR S	41	18.841 127.619	7.441	1.00	0.00
ATOM ATOM	317	CA	THR S	41	17.464 127.340	7.853	1.00	0.00
ATOM	318	c	THR S	41	16.612 127.970	6.761	1.00	0.00
ATOM	319	ō	THR S	41	16.859 129.136	6.461	1.00	0.00
ATOM	320	СВ	THR S	41	17.194 127.906	9.288	1.00	0.00
ATOM	321	OG1	THR S	41	18.058 127.294	10.236	1.00	0.00
ATOM	322	CG2	THR S	41	15.776 127.683	9.857	1.00	0.00
ATOM	323	N	SER S	42	15.627 127.286	6.201	1.00	0.00
ATOM	324	CA	SER S	42	14.747 127.887	5.217	1.00	0.00
ATOM	325	С	SER S	42	13.377 127.367	5.584	1.00	0.00
ATOM	326	0	SER S	42	13.266 126.188	5.873	1.00	0.00
ATOM	327	CB	SER S	42	15.220 127.555	3.779	1.00	0.00
ATOM	328	OG	SER S	42	16.514 128.089	3.481	1.00	0.00
ATOM	329	N	PHE S	43	12.369 128.209	5.531	1.00	0.00
ATOM	330	CA	PHE S		. 11.048 127.921	6.037	1.00	0.00
ATOM	331	С	PHE S		10.341 126.626	5.679	1.00	0.00
ATOM	332	0	PHE S		10.229 125.847	6.621	1.00	0.00
MOTA	333	CB	PHE S		10.046 129.023	5.575	1.00	0.00
ATOM	334	CG	PHE S		8.606 128.898	6.093	1.00	0.00
MOTA	335		PHE S		8.324 129.188	7.433	1.00	0.00
ATOM	336		PHE S		7.583 128.438	5.261	1.00	0.00
ATOM	337		PHE S		7.041 129.003	7.937 5.763	1.00	0.00
ATOM	338	CEZ	PHE S		6.297 128.263 6.027 128.542	7.102	1.00	0.00
ATOM ATOM	339 340	N N	ILE S		9.835 126.212	4.530	1.00	0.00
ATOM	341	CA	ILE S		9.139 124.919	4.536	1.00	0.00
ATOM	342	C	ILE S		10.107 123.838	4.134	1.00	0.00
ATOM	343	0	ILE S		9.842 123.092	3.206	1.00	0.00
ATOM	344	СВ	ILE S		7.844 124.957	3.627	1.00	0.00
ATOM	345		ILE S		8.119 125.214	2.111	1.00	0.00
		_	-					

ATOM	346	CG2	ILE S	44	6.794 126.003	4.113	1.00	0.00
ATOM	347	CD1	ILE S	44	6.959 124.882	1.149	1.00	0.00
ATOM	348	N	PHE S	45	11.226 123.703	4.810	1.00	0.00
ATOM	349	CA	PHE S	45	12.233 122.765	4.373	1.00	0.00
ATOM	350	С	PHE . S	45	13.025 122.195	5.507	1.00	0.00
ATOM	351	0	PHE S	45	12.819 122.593	6.650	1.00	0.00
ATOM	352	CB	PHE S	45	13.228 123.464	3.397	1.00	0.00
ATOM	353	CG	PHE S	45	12.619 124.092	2.134	1.00	0.00
ATOM	354	CD1	PHE S	45	12.159 125.413	2.170	1.00	0.00
ATOM	355		PHE S	45	12.462 123.341	0.966	1.00	0.00
ATOM	356		PHE S	45	11.533 125.970	1.060	1.00	0.00
ATOM	357		PHE S	45	11.845 123.902	-0.148	1.00	0.00
ATOM	358	CZ	PHE S		11.378 125.215	-0.101	1.00	0.00
ATOM	359	N	THR S		13.898 121.240	5.218	1.00	0.00
ATOM	360	CA	THR S		14.725 120.690	6.282	1.00	0.00
ATOM	361	C	THR S		16.076 121.403	6.180	1.00	0.00
ATOM	362	ō	THR S		16.491 121.794	5.089	1.00	0.00
ATOM	363	СВ	THR S		14.833 119.134	6.146	1.00	0.00
ATOM	364	0G1			15.519 118.784	4.951	1.00	0.00
ATOM	365	CG2	THR S		13.500 118.359	6.067	1.00	0.00
ATOM	366	N	GLU S		16.680 121.725	7.327	1.00	0.00
ATOM	367	CA	GLU S		18.008 122.306	7.440	1.00	0.00
ATOM	368	c	GLU S		19.157 121.726	6.653	1.00	0.00
ATOM	369	ō	GLU S		19.285 120.524	6.462	1.00	0.00
ATOM	370	СВ	GLU S		18.437 122.270	8.933	1.00	0.00
ATOM	371	CG	GLU S		17.611 123.139	9.939	1.00	0.00
ATOM	372	CD	GLU S		16.261 122.605	10.424	1.00	0.00
ATOM	373	OE1	GLU S		15.865 121.475	10.175	1.00	0.00
ATOM	374	OE2	GLU S		15.547 123.506	11.156	1.00	0.00
ATOM	375	N	PHE S		20.009 122.619	6.241	1.00	0.00
ATOM	376	CA	PHE S		21.214 122.238	5.567	1.00	0.00
ATOM	377	С	PHE S		22.243 122.515	6.644	1.00	0.00
ATOM	378	ō	PHE S		22.276 123.633	7.151	1.00	0.00
ATOM	379	СВ	PHE S		21.486 123.120	4.329	1.00	0.00
ATOM	380	CG	PHE S		20.461 122.941	3.240	1.00	0.00
ATOM	381	CD1			19.451 123.873	3.049	1.00	0.00
ATOM	382	CD2	PHE S		20.396 121.768	2.510	1.00	0.00
ATOM	383	CE1	PHE S	48	18.412 123.649	2.168	1.00	0.00
ATOM	384	CE2	PHE S	48	19.356 121.533	1.629	1.00	0.00,
ATOM	385	CZ	PHE S	48	18.360 122.471	1.457	1.00	0.00
ATOM	386	N	LEU S	49	23.057 121.530	6.983	1.00	0.00
ATOM	387	CA	LEU S	49	24.204 121.685	7.871	1.00	0.00
ATOM	388	С	LEU S	49	25.370 121:144	7.051	1.00	0.00
ATOM	389	0	LEU S	49	25.182 120.088	6.465	1.00	0.00
ATOM	390	СВ	LEU S	49	24.120 120.835	9.146	1.00	0.00
ATOM	391	CG	LEU S	49	23.058 120.927	10.250	1.00	0.00
ATOM	392	CD1	LEU S	49	23.214 119.760	11.179	1.00	0.00
ATOM	393	CD2	LEU S	49	23.186 122.224	11.006	1.00	0.00
ATOM	394	N	GLU S	5 50	26.526 121.769	6.935	1.00	0.00
ATOM	395	CA	GLU S	50	27.653 121.249	6.174	1.00	0.00
ATOM	396	С	GLU S		28.112 119.861	6.627	1.00	0.00
ATOM	397	0	GLU S	5 50	28.510 119.040	5.816	1.00	0.00
ATOM	398	СВ	GLU S		28.830 122.257	6.285	1.00	0.00
ATOM	399	CG	GLU S		29.569 122.348	7.662	1.00	0.00
ATOM	400	CD	GLU S		30.762 123.300	7.784	1.00	0.00
ATOM	401		GLU S		30.776 124.418	7.286	1.00	0.00
ATOM	402		GLU S		31.803 122.785	8.497	1.00	0.00
ATOM	403	N	PRO S		28.122 119.585	7.912	1.00	0.00
ATOM	404	CA	PRO S		28.568 118.309	8.440	1.00	0.00
ATOM	405	С	PRO S		27.907 118.154	9.800	1.00	0.00
ATOM	406	0	PRO S		27.068 118.983	10.147	1.00	0.00
-								

ATOM	40,7	CB	PRO S		1		118.404	8.562	1.00	0.00
ATOM	408	CG	PRO :		1		119.892	8.916	1.00	0.00
MOTA	409	CD	PRO :		1		120.596	8.008	1.00	0.00
ATOM	410	N	ALA :		2		117.163	10.597	1.00	0.00
MOTA	411	CA	ALA :		2		116.957	11.928	1.00	0.00
MOTA	412	С	ALA :		2		117.934	12.969	1.00	0.00
MOTA	413	0	ALA		2		117.928	14.093	1.00	0.00
MOTA	414	CB	ALA		i2		115.503	12.334	1.00	0.00
MOTA	415	N	ALA ALA		i3 i3		118.789 119.729	12.642 13.593	1.00	0.00
MOTA	416	CA C	ALA				120.901	14.020	1.00	0.00 0.00
MOTA	418	0	ALA		53		121.555	15.025	1.00	0.00
ATOM ATOM	419	CB	ALA		,, ,,		120.269	12.997	1.00	0.00
ATOM	420	N	ASN		54		121.125	13.233	1.00	0.00
ATOM	421	CA	ASN		54		122.311	13.353	1.00	0.00
ATOM	422	c	ASN		54		121.889	13.574	1.00	0.00
ATOM	423	ō	ASN		54		120.796	13.198	1.00	0.00
ATOM	424	СВ	ASN		54		123.182	12.073	1.00	0.00
ATOM	425	CG	ASN		54	28.645	123.902	11.893	1.00	0.00
ATOM	426	OD1	ASN	s !	54	29.199	124.489	12.811	1.00	0.00
ATOM	427	ND2	NEA	s !	54 .	29.202	123.908	10.712	1.00	0.00
MOTA	428	N	GLU		55		122.785	14.131	1.00	0.00
MOTA	429	CA	GLU		55		122.559	14.366	1.00	0.00
ATOM	430	С	GLU		55		123.972	14.322	1.00	0.00
ATOM	431	0	GLU		55		124.903	14.755	1.00	0.00
MOTA	432	CB	GLU		55		121.921	15.712	1.00	0.00
ATOM	433	CG	GLU		55 55	22.134	121.248	15.915	1.00	0.00
ATOM	434	CD	GLU		55 55		120.761 119.900	17.336 17.738	1.00	0.00
MOTA	435 436		GLU		55		121.241	18.045	1.00	0.00
ATOM	437	N N	THR		56		124.153	13.769	1.00	0.00
ATOM	438	CA	THR		56		125.474	13.654	1.00	0.00
ATOM	439	c	THR		56		125.411	14.668	1.00	0.00
ATOM	440	ō	THR		56		124.458	14.714	1.00	0.00
ATOM	441	CB	THR		56		125.761	12.175	1.00	0.00
ATOM	442	OG1	THR	S	56	19.788	124.886	11.780	1.00	0.00
ATOM	443	CG2	THR	S .	56	21.927	125.569	11.099	1.00	0.00
ATOM	444	N	VAL		57		126.347	15.577	1.00	0.00
ATOM	445	CA	VAL		57		126.367	16.643	1.00	0.00
ATOM	446	С	VAL		57		127.012	16.227	1.00	0.00
MOTA	447	0	VAL		57		127.733	15.228	1.00	0.00
MOTA	448	CB	VAL		57 		127.122	17.897	1.00	0.00
ATOM	449		VAL		57 53		126.492	18.545	1.00	0.00
MOTA	450		VAL		57 50		128.598 126.805	17.619 17.069	1.00	0.00
MOTA	451 452	n Ca	ARG		58 58		127.333	16.873	1.00	
ATOM	453	C	ARG		58		128.801	16.474	1.00	0.00
ATOM ATOM	454	Ö	ARG		58		129.186	15.698	1.00	0.00
ATOM	455	СВ	ARG		58		127.120	18.174	1.00	0.00
ATOM	456	CG	ARG		58		125.641	18.615	1.00	0.00
ATOM	457	CD	ARG		5B		124.784	17.559	1.00	0.00
ATOM	458	NE	ARG		5B	13.880	123.361	17.972	1.00	0.00
ATOM	459	CZ	ARG		58		122.330	17.304	1.00	0.00
ATOM	460		ARG		58		122.426	16.171	1.00	0.00
ATOM	461		ARG		58	13.536	121.159	17.815	1.00	0.00
ATOM	462	N	HIS		59		129.637	16.972	1.00	0.00
MOTA	463	CA	HIS		59		131.077	16.775	1.00	0.00
MOTA	464	C	HIS		59		131.530	15.718	1.00	0.00
MOTA	465	0	HIS		59	17.465	132.722	15.606	1.00	0.00
MOTA	466	CB	HIS		59		131.716	18.129	1.00	0.00
ATOM	467	CG	HIS	S	59	15.498	131.447	19.173	1.00	0.00

ATOM	468	ND1	HIS S	59	15.546 130.		1.00	0.00
ATOM	469		HIS S	59	14.338 132.		1.00	0.00
MOTA	470		HIS S	59	14.384 130.		1.00	0.00
ATOM	471		HIS S	59	13.606 131. 17.710 130.		1.00	0.00
ATOM	472	N CA	GLY S	60 60	17.710 130. 18.690 130.		1.00	0.00
MOTA	473 474	C	GLY S	60	20.126 130.		1.00	0.00
MOTA MOTA	475	0	GLY S	60	20.991 131.		1.00	0.00
ATOM	476	N	CYS S	61	20.463 130.			0.00
ATOM	477	CA	CYS S	61	21.841 130.		1.00	0.00
ATOM	478	С	CYS S	61	22.709 129.	572 15.685	1.00	0.00
ATOM	479	0	CYS S	61	22.215 128.		1.00	0.00
MOTA	480	CB	CYS S	61	21.818 130.	•	1.00	0.00
MOTA	481	SG	CYS S	61	20.269 131.		1.00	0.00
ATOM	482	N	LEU S	62	24.013 129.		1.00.	
ATOM	483	CA	LEU S	62	24.923 128.		1.00	0.00
ATOM	484	C	LEU S	62	25.707 128.		1.00	0.00
ATOM	485	0	LEU S	62 62	26.381 128. 25.893 129.		1.00	0.00
ATOM	486 487	CB CG	LEU S	62	26.804 128.		1.00	0.00
ATOM ATOM	488		LEU S	62	26.039 127.		1.00	0.00
ATOM	489		LEU S	62	27.866 129.		1.00	0.00
ATOM	490	N	ARG S	63	25.721 126.		1.00	0.00
ATOM	491	CA	ARG S	63	26.508 126.	175 17.209	1.00	0.00
ATOM	492	С	ARG S	63	27.689 125.		1.00	0.00
MOTA	493	0	ARG S	63	27.584 124.		1.00	0.00
ATOM	494	СВ	ARG S	63	25.569 125.		1.00	0.00
MOTA	495	CG	ARG S	63	26.160 124.		1.00	0.00
MOTA	496	CD	ARG S	63 63	25.201 123. 25.845 123.		1.00	0.00
ATOM	497 498	NE CZ	ARG S	63	25.311 122.		1.00	0.00
ATOM ATOM	499		ARG S	63	24.136 121.		1.00	0.00
ATOM	500		ARG S	63	26.005 122.		1.00	0.00
ATOM	501	N	LEU S	64	28.815 125.		1.00	0.00
ATOM	502	CA	LEU S	64	29.982 124.		1.00	0.00
ATOM	503	С	LEU S	64	30.433 123.		1.00	0.00
ATOM	504	0	LEU S	64	30.865 123.		1.00	0.00
ATOM	505	CB	LEU S	64	31.149 125.		1.00	0.00
ATOM	506	CG	LEU S	64	30.904 126. 32.068 127.		1.00	0.00
ATOM	507 · 508		LEU S	64 64	30.711 126		1.00	0.00
ATOM ATOM	509	N N	ASN S	65	30.335 122		1.00	0.00
ATOM	510	CA	ASN S	65 ⁻	30.756 121		1.00	0.00
ATOM	511	C	ASN S	65	31.594 120		1.00	0.00
ATOM	512	ō	ASN S	65	31.485 120		1.00	0.00
ATOM	513	CB	ASN S	65	29.497 120		1.00	0.00
ATOM	514	CG	asn s	65	28.698 121		1.00	0.00
ATOM	515		asn s	65	27.484 121		1.00	0.00
MOTA	516		ASN S	65	29.339 121		1.00	0.00
ATOM	517	N	GLN S	66	32.431 119		1.00	0.00
ATOM	518	CA	GLN S	66	33.277 118 33.958 119		1.00	0.00
ATOM	519	С 0	GLN S GLN S	66 66	34.271 118			0.00
ATOM ATOM	520 521	СВ	GLN S	66	32.388 117			0.00
ATOM	521	CG	GLN S	66	31.824 116		1.00	0.00
ATOM	523	CD	GLN S	66	32.803 115			0.00
ATOM	524		GLN S	66	33.757 114			0.00
ATOM	525	NE2		66	32.607 115			0.00
ATOM	526	N	PRO S	67	34.186 120			0.00
MOTA	527	CA	PRO S		34.845 121			0.00
MOTA	528	С	PRO S	67	36.275 120	.760 14.725	1.00	0.00

MOTA	529	0	PRO	S	67			120.891	15.579	1.00	0.00
MOTA	530	CB	PRO		67			122.715	15.401	1.00	0.00
MOTA	531	CG	PRO		67			122.534	16.918	1.00	0.00
ATOM	532	CD	PRO		67		34.127		17.252	1.00	0.00
ATOM	533	N	THR		68		36.537		13.583	1.00	0.00
ATOM	534	CA	THR		68			119.672	13.295	1.00	0.00
MOTA	535	С	THR		68			120.815	12.809	1.00	0.00
ATOM	536	0	THR		68			121.976	12.993	1.00	0.00
ATOM	537	CB	THR		68			118.510	12.247	1.00	0.00
ATOM	538		THR		68		37.384		10.993	1.00	0.00
ATOM	539	CG2	THR		68			117.332	12.583	1.00	0.00
ATOM	540	N	HIS		69			120.501	12.193	1.00	0.00
ATOM	541	CA	HIS		69			121.575	11.700	1.00	0.00
ATOM	542	C	HIS		69			122.034	10.300	1.00	0.00
ATOM	543	O	HIS	S	69 60			122.132	9.399	1.00	0.00
ATOM	544	CB	HIS		69			120.965	11.667	1.00	0.00
ATOM	545 546	CG	HIS		69 69			120.545	13.028	1.00	0.00
ATOM			HIS					121.374	13.975	1.00	0.00
ATOM	547		HIS		69			119.243	13.494	1.00	0.00
ATOM	548 549		HIS		69 69			120.484	14.966	1.00	0.00
ATOM			VAL		70			119.197 122.318	14.760	1.00	0.00
ATOM	550 551	N CA	VAL		70			122.318	10.111	1.00	0.00
ATOM ATOM	552	C	VAL		70			123.571	8.772	1.00	0.00
ATOM	553	0	VAL		70		36.420		8.920	1.00	0.00
ATOM	554	СВ	VAL		70		38.468	121.526	8.202 7.822	1.00	0.00
ATOM	555		VAL		70			120.613	8.131	1.00	0.00
ATOM	556		VAL		70			121.894	6.325	1.00 1.00	0.00
ATOM	557	N	ASN		71			124.459	9.860	1.00	0.00
ATOM	558	CA	ASN		71			125.285	10.098	1.00	0.00
ATOM	559	C	ASN		71	٠		126.725	10.427	1.00	
ATOM	560	ō	ASN		71			127.661	10.024	1.00	0.00
ATOM	561	СВ	ASN		71			124.659	11.250	1.00	0.00
ATOM	562	CG	ASN		71			123.205	11.067	1.00	0.00
ATOM	563		ASN		71			122.271	11.605	1.00	0.00
ATOM	564		ASN		71			122.956	10.293	1.00	0.00
ATOM	565	N	ASN		72			126.888	11.162	1.00	0.00
ATOM	566	CA	ASN		72			128.248	11.557	1.00	0.00
ATOM	567	С	ASN		72			129.099	12.106	1.00	0.00
ATOM	568	0	ASN	S	72			128.696	12.127	1.00	0.00
ATOM	569	CB	ASN	S	72			128.938	10.329	1.00	0.00
ATOM	570	CG	ASN	S	72			128.392	9.878	1.00	0.00
ATOM	571	OD1	ASN	S	72		41.034	128.119	10.673	1.00	0.00
ATOM	572	ND2	ASN	S	72		40.368	128.233	8.601	1.00	0.00
ATOM	573	N	GLY	S	73		37.299	130.248	12.613	1.00	0.00
ATOM	574	CA	GLY	S	73		36.274	131.093	13.211	1.00	0.00
ATOM	575	С	GLY	S	73		35.613	132.016	12.232	1.00	0.00
ATOM	576	0	GLY	S	73		34.541	131.721	11.771	1.00	0.00
ATOM	577 -	. N	NZA	S	74		36.203	133.166	12.011	1.00	0.00
ATOM	578	CA	ASN	S	74		35.600	134.226	11.123	1.00	0.00
ATOM	579	С	asn	S	74			133.736	10.423	1.00	0.00
ATOM	580	0	ASN		74		34.345	133.328	9.285	1.00	0.00
ATOM	581	CB	ASN		74			134.574	10.090	1.00	0.00
ATOM	582	CG	asn		74			135.372	10.736	1.00	0.00
ATOM	583		ASN		74			136.278	11.507	1.00	0.00
ATOM	584	ND2	asn		74			135.085	10.430	1.00	0.00
ATOM	585	N	TYR		75			133.745	11.128	1.00	0.00
ATOM	586	CA	TYR		75.			133.248	10.537	1.00	0.00
ATOM	587	C	TYR		75			134.381	10.416	1.00	0.00
ATOM	588	0	TYR		75			135.125	11.352	1.00	0.00
ATOM	589	CB	TYR	S	75		31.389	132.210	11.525	1.00	0.00

							,					
	MOTA	590	CG	TYR		75	31.029	13	2.854	12.841	1.00	0.00
	ATOM	591		TYR		75	31.92			13.914	1.00	0.00
	ATOM	592		TYR		75	29.76			12.988	1.00	0.00
	ATOM	593		TYR		75	31.55			15.133	1.00	0.00
	ATOM	594		TYR		75	29.39			14.201	1.00	0.00
	MOTA	595	CZ	TYR		75	30.28			15.277	1.00	0.00
	MOTA	596	OH	TYR		75	29.92			16.479	1.00	0.00
	ATOM	597	N	THR		76	30.26			9.294	1.00	0.00
	ATOM	598	CA	THR THR		76	29.263			9.197	1.00	0.00
	MOTA	599 600	C 0	THR		76 76	27.880			8.903	1.00	0.00
	atom atom	601	CB	THR		76	27.708 29.688			8.764	1.00	0.00
	ATOM	602		THR		76	29.67			8.104	1.00	0.00
	ATOM	603	CG2	THR		76	31.10			6.816 8.241	1.00	0.00
	ATOM	604	N		S	77	26.89			8.806	1.00	0.00
	ATOM	605	CA		S	77	25.51			8.507	1.00	0.00
	ATOM	606	C		S	77	24.78			7.564	1.00	0.00
	ATOM	607	0	LEU	S	77	24.38			7.948	1.00	0.00
	ATOM	608	CB	LEU	S	77	24.71			9.824	1.00	0.00
	MOTA	609	CG	LEU	S	77	23.37	13	4.397	9.749	1.00	0.00
	ATOM	610	CD1	LEU	S	77	22.52	2 13	4.691	10.990	1.00	0.00
	ATOM	611	CD2	LEU		77	22.56	13	4.718	8.478	1.00	0.00
	atom	612	N	LEU		78	24.57			6.346	1.00	0.00
	ATOM	613	CA	LEU		78	23.83			5.407	1.00	0.00
	ATOM	614	С		S	78	22.340			5.563	1.00	0.00
	ATOM	615	0	LEU		78	21.873			5.253	1.00	0.00
	ATOM	616	ÇB	LEU		78	24.33			3.949	1.00	0.00
	ATOM	617	CG	LEU	S	78 78			7.522		1.00	0.00
	atom Atom	618 619		LEU		78	24.182 24.153			3.057 1.423	1.00	0.00
	ATOM	620	N	ALA		79	21.58			6.062	1.00	0.00
	ATOM	621	CA	ALA		79	20.13			6.264	1.00	0.00
	ATOM	622	c	ALA		79	19.29			5.342	1.00	0.00
	ATOM	623	0	ALA		79	19.41			5.360	1.00	0.00
	ATOM	624	СВ	ALA	S	79	19.82			7.755	1.00	0.00
	ATOM	625	N	ALA	S	80	18.462	13	7.525	4.534	1.00	0.00
	atom	626	CA	ALA	S	80	17.632	2 13	8.344	3.606	1.00	0.00
	ATOM	627	С	ALA		80	16.162			4.028	1.00	0.00
	MOTA	628	0	ALA		80	15.83			5.173	1.00	0.00
	ATOM	629	CB	ALA		80	17.85			2.183	1.00	0.00
	ATOM	630	N	ASN		81			8.588		1.00	0.00
	ATOM	631	CA	ASN		81	13.82			3.447	1.00	0.00
	ATOM	632	C	asn asn		81	12.992			2.165	1.00	0.00
	atom Atom	633 634	O CB	ASN		81 81	13.512 13.647			1.094 4.330	1.00	0.00
	ATOM	635	CG			81	12.24			4.940	1.00 1.00	0.00
	ATOM	636		ASN		81	11.52			4.881	1.00	0.00
	ATOM	637		ASN		81	11.813			5.527	1.00	0.00
	ATOM	638	N	PRO		82	11.700			2.267	1.00	0.00
	ATOM	639	CA	PRO		82	10.829			1.056	1.00	0.00
	MOTA	640	С	PRO	S	82	11.132			0.270	1.00	0.00
	ATOM	641	0	PRO		82	10.88			-0.915	1.00	0.00
	MOTA	642	CB	PRO		82			8.679	1.565	1.00	0.00
	ATOM	643	CG	PRO		82			9.447	2.885	1.00	0.00
	ATOM	644	CD	PRO		82	10.872			3.466	1.00	0.00
	MOTA	645	N	PHE		83	11.66			0.925	1.00	0.00
	MOTA	646	CA	PHE		83	11.99			0.236	1.00	0.00
	ATOM	647	C	PHE		83	13.088			1.009	1:00	0.00
	ATOM	648	0 .	PHE		83	12.98			1.260	1.00	0.00
	MOTA	649 650	CB CG	PHE		83	10.72			0.136	1.00	0.00
•	atom	650	CG	PHE	3	83	9.58	14	2.538	-0.750	1.00	0.00

ATOM	651		PHE		83	8.465	141.947	÷0.158	1.00	0.00
ATOM	652		PHE		83	9,683	142.588	-2.144	1.00	0.00
MOTA	653		PHE	-	83		141.397	-0.948	1.00	0.00
ATOM	654	CE2			83	8.672	142.047	-2.934	1.00	0.00
MOTA	655	CZ	PHE		83	7.564	141.449	-2.337	1.00	0.00
ATOM	656	N	GLY		84		142.222	1.390	1.00	0.00
ATOM	657	CA	GLY		84		142.895	2.147	1.00	0.00
MOTA	658	С	GLY		84	16.530	142.112	1.980	1.00	0.00
MOTA	659	0	GLY		84	16.578	141.094	1.320	1.00	0.00
ATOM	660	N	GLN		85	17.591	142.583	2.579	1.00	0.00
ATOM	661	CA	GLN		85	18.899	141.876	2.463	1.00	0.00
MOTA	662	С	GLN		85	19.900	142.466	3.460	1.00	0.00
ATOM	663	0	GLN	S	85	20.044	143.668	3.562	1.00	0.00
ATOM	664	CB	GLN		85	19.404	142.004	1.009	1.00	0.00
ATOM	665	CG	GLN		85	20.641	141.124	0.627	1.00	0.00
ATOM	666	CD	GLN		85	20.483	139.601	0.566	1.00	0.00
ATOM	667	OE1			85	21.199	138.866	1.227	1.00	0.00
ATOM	668	NE2		_	85	19.587	139.067	-0.225	1.00	0.00
ATOM	669	N	ALA		86	20.592	141.639	4.200	1.00	0.00
MOTA	670	CA	ALA		86		142.168	5.183	1.00	0.00
ATOM	671	С	ALA		86		141.092	5.513	1.00	0.00
ATOM	672	0	ALA		86		140.043	4.898	1.00	0.00
ATOM	673	CB	ALA		86		142.663	6.407	.1.00	0.00
ATOM	674	N	SER		87		141.334	6.481	1.00	0.00
ATOM	675	CA	SER		87		140.314	6.849	1.00	0.00
ATOM	676	С	SER		87		140.709	8.132	1.00	0.00
ATOM	677	0	SER		87		141.842	8.570	1.00	0.00
ATOM	678	CB	SER		87		140.073	5.681	1.00	0.00
ATOM	679	OG	SER		87		141.224	5.379	1.00.	0.00
ATOM	680	N	ALA	-	88		139.771	8.723	1.00	0.00
ATOM	681	CA	ALA		88		140.050	9 .977	1.00	0.00
ATOM	682	С	ALA		88		139.346	9.899	1.00	0.00
ATOM	683	0	ALA		88		138.687	8.930	1.00	0.00
ATOM	684	CB	ALA	_	88		139.514	11.147	1.00	0.00
ATOM	685	OXT	ALA	S	88	28.690	139.488	10.891	1.00	0.00
TER										