

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i. Na si

_

AD A 137749

UNCLASSIFIED

BITY CLASSIFICATION OF THIS PAGE

كالمراح والمراها بمناه والمناه والمناه والمناه والمناه والمناع والمناه والمناه والمناه والمناه والمناه والمناه					
REPORT DOCUMENTATION PAGE					
18. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS			
UNCLASSIFIED					
28 SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	_		:
26. DECLASSIFICATION/DOWNGRADING SCHED	ULE	Approved for unlimited.	public re.	rease; distr	ibucion
-	_	unilimited.			
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION RE	PORT NUMBER(S)	
		Aroch "	TTD 0.4	0.000	
	6b. OFFICE SYMBOL	AFOSR - T	K. 34	<u>- 9 03 2</u>	
	(If applicable)				,
Stanford University		Air Force Of	Tice of Sc	ientilic Res	earcn
6c. ADDRESS (City. State and ZIP Code)		7b. ADDRESS (City, State and ZIP Code)			
Department of Mathematics		Directorate			rmation
Stanford CA 94305		Sciences, Bo	olling AFB	DC 20332	
A. MAME OF FUNDAMENTAL	Bb. OFFICE SYMBOL	A ADOCUMENTS:	AICTO 1545-1-1-1	PAYIEIOATION	MOSP
8s. NAME OF FUNDING/SPONSORING ORGANIZATION	(If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NO	MBEH
AFOSR	NM	AFOSR-79-0134	,		
Sc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	IDING NOS.		
•		PROGRAM	PROJECT	TASK	WORK UNIT
- Bolling AFB DC 20332		ELEMENT NO.	NO.	NO.	NO.
11. TITLE (Include Security Classification)					
"Progress Report. Grant AFOSR-	.70 013/ San 1	61102F	2304	A4	
	Aug 31, 1982"	<u> </u>	2004	<u> </u>	•
Joseph B. Keller					
134. TYPE OF REPORT 13b. TIME CO		14. DATE OF REPOR	RT (Yr., Mo., Day)	15. PAGE CO	U
Interim					
ELECTE 1084					
				ELLE	a 1084
17. COSATI CODES	18. SUBJECT TERMS (Co	ontinue on reverse if ne	cessary and identi		
FIELD GROUP SUB. GR.					
					E
19. ABSTRACT (Continue on reverse if necessary and	identify by block number		··		
This is a progress report of	•		un in the l	Mathematics I	longntmont
Stanford University. This g					
supported by the Office of I					
OResearch Office, the Air For					-
OThe personnel comprising thi					
Joseph B. Keller, Professor					
Assistant Professor, Stanfor			-		-
University; Philip F. Rhodes-Robinson, Professor of Mathematics, Victoria University of					
Wellington; Victor Twersky, Professor of Mathematics, University of Illinois, Chicago					
Circle; John G. Watson, Assistant Professor, University of Miami; Gary Lieberman,					
Assistant Professor, Iowa State University; Bernard A. Lippmann, Professor of Physics,					
Emeritus, New York University; Si-Xiong Chen, Head, Applied Mathematics Group, (CONTINUED					
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION					
UNCLASSIFIED/UNLIMITED & SAME AS APT. & DTIC USERS		UNCLASSIFIED			
224 NAME OF RESPONSIBLE INDIVIDUAL		225 TELEPHONE N	UMBER	22c OFFICE SYME	IOL
		linclude Area Co	de)		-
Dr. Robert N. Buchal	المناوي والمحاكم والتراوي	(0. 767 – 4	939	INN	

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE

UNICASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

ITEM #19, ABSTRACT, CONTINUED: Institute of Mechanics, Beijing, People's Republic of China; Meira Falkovitz, Postdoctoral Fellow, Stanford University; John H. Maddocks, Postdoctoral Fellow, Stanford University; Allan D. Jepson, Postdoctoral Fellow, Stanford University; Kevin C. Nunan, Graduate Student. The various research activities of the members of this group are indicated by the list of publications contained in Section II. Abstracts of these publications are contained in Section III. A description of some of the research activities which have been completed but not yet submitted for publication, or which are still in progress, is contained in Section IV.

UNCLASSIFIED

PROGRESS REPORT, Grant AFOSR - 79 - 0134

September 1, 1981 - August 31, 1982

Applied Mathematics Group Department of Mathematics Stanford University

Principal Investigator: Joseph B. Keller

I. Introduction.

This is a progress report of the Applied Mathematics Group in the Mathematics Department, Stanford University. This group began functioning officially on September 1, 1979, and is supported by:

- 1. Office of Naval Research;
- 2. National Science Foundation;
- 3. Army Research Office;
- 4. Air Force Office of Scientific Research;
- 5. Stanford University.

The personnel comprising this group during all or part of the reporting period are:

- 1. Joseph B. Keller, Professor of Mathematics, Stanford University;
- 2. Russel E. Caflisch, Assistant Professor, Stanford University;
- 3. John C. Neu, Assistant Professor, Stanford University;
- 4. Philip F. Rhodes-Robinson, Professor of Mathematics, Victoria University of Wellington;
- 5. Victor Twersky, Professor of Mathematics, University of Illinois, Chicago Circle;

34 02 10 134 Approved for publication in the distribution unlimited.

6°3

- 7. Gary Lieberman, Assistant Frofessor, lowa State University:
- 8. Bernard A. Lippmann, Professor of Physics, Emeritus, New York University;
- 9. Si-Xiong Chen, Head, Applied Mathematics Group, Institute of Mechanics, Beijing, People's Republic of China;
 - 10. Meira Falkovitz, Postdoctoral Fellow, Stanford University;
 - 11. John H. Maddocks, Postdoctoral Fellow, Stanford University;
 - 12. Allan D. Jepson, Postdoctoral Fellow, Stanford University;
 - 13. Kevin C. Nunan, Graduate Student.

The various research activities of the members of this group are indicated by the list of publications contained in Section II. Abstracts of these publications are contained in Section III.

A description of some of the research activities which have been completed but not yet submitted for publication, or which are still in progress, is contained in Section IV.

Acces	sion For		
	GRALI	X	
DTIC TAB			
Unannounced Justification			
Ву			
Distribution/			
Availability Codes			
Avail and/or Dist Special			
A-1	1 1		

AIR FORCE OFFICE OF SCIENTIFIC RESEAR NOTICE OF STANDARD TO DTIC This technic to the population of the bound of the bound

II. PUBLICATIONS OF THE APPLIED MATHEMATICS GROUP

1	J. B. Keller	Training in applied mathematics
		Pub: Proc. of the Conf. on Graduate Training in Math., T. L. Sherman, ed., Rocky Mountain Mathematics Consortium, Tempe, Arizona, 1979, pp. 110-113.
2	JM. Vanden-Broeck L. W. Schwartz	Numerical computation of steep gravity waves in shallow water
		<u>Pub</u> : Phys. Fluids, <u>22</u> , 1868-1871, 1979.
3	H. McMaken J. D. Achenbach L. Adler	Diffraction of ultrasonic waves by penny- shaped cracks in metals: Theory and experiment
	D. K. Lewis	<u>Pub</u> : J. Acoust. Soc. Am., <u>66</u> , 1848-1856, 1979.
4	JM. Vanden-Broeck	A new family of capillary waves
	J. B. Keller	<u>Pub</u> : J. Fluid Mech., <u>98</u> , 161-169, 1980.
5	JM. Vanden-Broeck	Nonlinear stern waves
		Pub: J. Fluid Mech., 93, 603-611, 1980.
6	J. B. Keller	Plate failure under pressure
	•	<u>Pub</u> : SIAM Rev., <u>22</u> , 227-228, 1980.
7	JM. Vanden-Broeck	Advances in the numerical computation of capillary-gravity waves
		Pub: Nonlinear Partial Differential Equations in Engineering and Applied Science, R. L. Sternberg, A. J. Kalinowski and J. S. Papadakis, eds., Marcel Dekker, New York, 1980, pp. 299-310.
8*	S. Childress	Lichen growth
	J. B. Keller	Pub: J. Theor. Biol., 82, 157-163, 1980.

^{*}Not supported by AFOSR.

9	J. B. Kellor	Lieseging rings and a theory of fast reaction and slow diffusion
		Pub: Dynamics and Modelling of Reactive Systems, W. Stewart, ed., Academic, New York, 1980, pp. 211-224.
10	J. B. Keller	Darcy's law for flow in porous media and the two-space method
		Pub: Nonlinear Partial Differential Equations in Engineering and Applied Science, R. L. Sternberg, A. J. Kalinowski and J. S. Papadakis, eds., Marcel Dekker, New York, 1930, pp. 429-443.
11	R. E. Caflisch	The Boltzmann equation with a soft potential, Part I: Linear, spatially-homogeneous
		<u>Pub</u> : Comm. Math. Phys., <u>74</u> , 71-95, 1980.
12	R. E. Caflisch	The Boltzmann equation with a soft potential, Part II: Nonlinear, spatially-periodic
		<u>Pub</u> : Comm. Math. Phys., <u>74</u> , 97-109, 1980.
13	J. C. Neu	The method of near identity transformations and applications
		<u>Pub</u> : SIAM J. Appl. Math., <u>38</u> , 189-208, 1980.
14	J. C. Neu	Large populations of chemical oscillators <u>Pub:</u> SIAM J. Appl. Math., <u>38</u> , 305-316, 1980.
15	J. B. Keller	Bubble oscillations of large amplitude
	ii. Miksis	<u>Pub</u> : J. Acoust. Soc. Am., <u>68</u> , 628-633, 1980.
16	JM. Vanden-Broeck J. B. Keller	Bubble or drop distortion in a straining flow in two dimensions
		<u>Pub</u> : Phys. Fluids, <u>23</u> , 1491-1495, 1980.
17	J. B. Keller	Some bubble and contact problems
		Pub: SIAM Rev., 22, 442-458, 1980.
18	JM. Vanden-Broeck J. B. Keller	Deformation of a bubble or drop in a uniform flow
		<u>Pub</u> : J. Fluid Mech., <u>101</u> , 673-686, 1980.

19	JM. Vanden-Broeck	Conlinear gravity-capillary stern waves Pub: Phys. Fluids, 23, 1949-1953, 1980.
20	R. E. Caflisch	An inverse problem for Toeplitz matrices and the synthesis of discrete transmission lines
		Pub: J. Linear Algebra and Its Applications, 38, 255-272, 1980.
21	R. E. Caflisch	The fluid dynamic limit of the nonlinear Boltzmann equation
		Pub: Comm. Pure Appl. Math., 33, 651-666, 1980.
22*	J. B. Keller	Tendril shape and lichen growth
		Pub: Some Mathematical Questions in Biology, Lectures on Math. in the Life Sciences, Vol. 13, Am. Math. Soc., Providence, 1980, pp. 257-274.
23	R. E. Caflisch	Distortion of the arterial pulse
	C. Peskin G. Majda G. Strumolo	<u>Pub</u> : Math. Bio. Sci., <u>51</u> , 229-260, 1980.
24	P. S. Hagan H. Simpson D. S. Cohen	Spatial structures in predator-prey communities with hereditary effects and diffusion
		<u>Pub</u> : Math. Biosci., <u>44</u> , 167-177, 1979.
25	JM. Vanden-Broeck	Numerical calculation of gravity-capillary interfacial waves of finite amplitude
		<u>Pub</u> : Phys. Fluids, <u>23</u> , 1723-1726, 1980.
26	JM. Vanden-Broeck	Two-dimensional drops in slow viscous flow
		<u>Pub</u> : Phys. Fluids, <u>24</u> , 175-176, 1981.
27	P. S. Hagan	The instability of non-monotonic wave so- lutions of parabolic equations
		<u>Pub</u> : Stud. Appl. Math., <u>64</u> , 57-88, 1981.

^{*}Not supported by AFOSR.

28	J. B. Keller JM. Vanden-Broeck	Shape of a sail in a flow Pub: Phys. Fluids, 24, 552-553, 1981.
29	J. B. Keller	Temperley's model of gas condensation <pre>Pub: J. Chem. Phys., 74, 4203-4204, 1981.</pre>
30	J. B. Keller J. G. Watson	Kelvin wave production <u>Pub</u> : J. Phys. Ocean., <u>11</u> , 284-285, 1981.
31	J. B. Keller S. I. Rubinow	Recurrent precipitation and Liesegang rings Pub: J. Chem. Phys., 74, 5000-5007, 1981.
32	J. B. Keller M. J. Miksis JM. Vanden-Broeck	Axisymmetric bubble or drop in a uniform flow Pub: J. Fluid Mech., 108, 89-100, 1981.
33	JM. Vanden-Broeck	Numerical calculation of standing waves in water of arbitrary uniform depth Pub: Phys. Fluids, 24, 812-815, 1981.
34	R. E. Caflisch	Evaluation of a function at infinity from
	·	its power series Pub: Phys. Rev. Letters, 46, 1255-1256, 1981.
35	J. B. Keller D. M. Levy D. S. Ahluwalia	its power series Pub: Phys. Rev. Letters, 46, 1255-1256,
35 36	J. B. Keller D. M. Levy	its power series Pub: Phys. Rev. Letters, 46, 1255-1256, 1981. Internal and surface wave production in a stratified fluid
	J. B. Keller D. M. Levy D. S. Ahluwalia R. E. Caflisch	Pub: Phys. Rev. Letters, 46, 1255-1256, 1981. Internal and surface wave production in a stratified fluid Pub: Wave Motion, 3, 215-229, 1981. Quench front propagation

The second of the second of

39	J. B. Keller	Oblique derivative boundary conditions and the image method
		Pub: SIAM J. Appl. Math., 41, 294-300, 1981.
40	R. Burridge J. B. Keller	Poroelasticity equations derived from microstructure
		Pub: J. Acoust. Soc. Am., <u>70</u> , 1140-1146, 1981.
41	J. C. Neu	Stochastically perturbed resonance
		Pub: SIAM J. Appl. Math., 41, 365-369, 1981.
42	M. J. Miksis	Shape of a drop in an electric field
		<u>Pub</u> : Phys. Fluids, <u>24</u> , 1967-1972, 1981.
43	JM. Vanden-Broeck	The influence of capillarity on cavitating flow past a flat plate
		Pub: Quart. J. Mech. Appl. Math., 34, 465-473, 1981.
44	A. Jeffrey J. Mvungi	A note on the effect of submerged obstacles on water waves in a channel
44	——————————————————————————————————————	
44	——————————————————————————————————————	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763,
	J. Mvungi	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981.
	J. Mvungi	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981. Target patterns in reaction-diffusion systems
45	J. MvungiP. S. HaganP. S. Hagan	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981. Target patterns in reaction-diffusion systems Pub: Adv. Appl. Math., 2, 400-416, 1981. Diffusion induced morphogenesis in the
45	P. S. Hagan M. S. Cohen P. S. Hagan D. Z. Ting	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981. Target patterns in reaction-diffusion systems Pub: Adv. Appl. Math., 2, 400-416, 1981. Diffusion induced morphogenesis in the development of Dictoystelium
45 46	P. S. Hagan M. S. Cohen P. S. Hagan	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981. Target patterns in reaction-diffusion systems Pub: Adv. Appl. Math., 2, 400-416, 1981. Diffusion induced morphogenesis in the development of Dictoystelium Pub: J. Theor. Biol., 93, 881-908, 1981. Nuclear magnetic-resonance studies of cation-
45 46	P. S. Hagan M. S. Cohen P. S. Hagan D. Z. Ting	on water waves in a channel Pub: J. Appl. Math. Phys., 32, 756-763, 1981. Target patterns in reaction-diffusion systems Pub: Adv. Appl. Math., 2, 400-416, 1981. Diffusion induced morphogenesis in the development of Dictoystelium Pub: J. Theor. Biol., 93, 881-908, 1981. Nuclear magnetic-resonance studies of cation-transport across vesicle bilayer membranes

LAND LANGUAGE KILLERY DOBOTOD SEBERCE ANTONIN CHARGOD RECESSES LUSTRE

49	J. C. Neu	Monlinear interfacial wives Acc: Phys. Fluids, in press.
50	J. B. Keller	Optimum inspection policies Acc: Management Sci., in press.
51	P. S. Hagan	Travelling and stacked travelling wave so- lutions of parabolic equations
		Acc: SIAM J. Math. Anal., in press.
52	JM. Vanden-Broeck	Contact problems involving the flow past an inflated aerofoil
		Acc: J. Appl. Mech., in press.
53	JM. Vanden-Broeck	Nonlinear two-dimensional sail theory
		Acc: Phys. Fluids, in press.
54	J. C. Neu	Convective flow with subcritical instability
		Acc: Phys. Fluids, in press.
5 5	P. S. Hagan	Spiral waves in reaction diffusion equations
	•	Acc: SIAM J. Appl. Math., in press.
56	JM. Vanden-Broeck J. B. Keller	Parabolic approximations for ship waves and wave resistance
		Acc: Proceedings of the Third International Conference on Numerical Ship Hydrodynamics, Paris, France, June 16-19, 1981.
57	A. Jeffrey	Asymptotic Methods in Nonlinear Wave Problems
	T. Kawahara	Acc: Pitman Publishing, Ltd., London, in press.
58	M. J. Miksis	Rising bubbles
	JM. Vanden-Broeck J. B. Keller	Acc: J. Fluid Mech., in press.
59	J. C. Neu	Resonantly interacting waves
		Acc: SIAM J. Appl. Math., in press.

THE MERCES SECTIONS INVOICES CONTROL CONTROLS REPORTED TO THE PROPERTY OF THE

60	J. B. Keller	Surface tension driven flows
	M. J. Miksis	Acc: SIAM J. Appl. Math., in press.
61	A. Jepson A. Spence	Folds in solutions of two parameter systems and their calculation: Part I
		Acc: Stanford Univ. Numer. Anal. Report, in press.
62	J. B. Keller	Time-dependent queues
		Acc: SIAM Rev.
63	R. E. Caflisch B. Nicolaenko	Shock profile solutions of the oltmann equation
		Sub: Comm. Math. Phys.
64	P. S. Hagan R. E. Caflisch	Arrow's model of optimal pricing, use and exploration of undertain natural resources
	J. B. Keller	Sub: Econometrica
65	R. E. Caflisch	Radiation transport in a hot plasma
		Sub: SIAM J. Appl. Math.
66	J. B. Keller JM. Vanden-Broeck	Jets rising and falling under gravity
	J. SM. Vanden-Broeck	Sub: J. Fluid Mech.
67	R. E. Caflisch	Fluid dynamics and the Boltzmann equation
		Acc: Stud. Stat. Mech., to appear.
68	M. S. Falkovitz M. Seul	Theory of periodic structures in lipid bilayer membranes
	H. L. Frisch H. M. McConnell	Sub: Proc. Nat. Acad. Sci.
69	R. E. Caflisch	The fluid-dynamic limit of a model Boltzmann equation in the presence of a shock
		Pub: Institut National de Recherche en Informatique et en Automatique, INRIA No. 81, June 1981, 1-34.

62. "Time-dependent queues" by Joseph B. Keller, SIAM Rev., submitted.

A single server queue is considered having exponentially distributed inter-arrival and service times with slowly changing time-dependent rates $\lambda(\epsilon t)$ and $\mu(\epsilon t)$. The parameter is the ratio of an average interarrival time to the time over which the rates change appreciably, so it is small. Therefore an asymptotic solution, valid for a small, is constructed for the time-dependent queue length probability distribution. It consists of five typical parts corresponding to five typical time periods. They are the initial period, the period of light traffic when λ/μ < 1, the saturation transition period when λ/μ increases through unity, the oversaturation period when λ/μ starts out greater than unity and then decreases below unity, and the transition period at the end of oversaturation, when the queue returns to the light traffic condition. By combining the solutions for these five intervals, the solution for any queue with slowly varying rates can be obtained. Some of these parts were found previously by G. F. Newell, and some of the formal results have been shown to be asymptotic by W. A. Massey.

63. "Shock profile solutions of the Boltzmann equation" by R. E. Caflisch and B. Nicolaenko, Comm. Math. Phys., submitted.

Shock waves in gas dynamics can be described by the Euler Navier-Stokes, or Boltzmann equations. We prove the existence of shock profile solutions of the Boltzmann equation for shocks which are weak. The shock is written as a truncated expansion in powers of the shock straigth, the first two terms of which come exactly from the Taylor $\tanh(x)$ profile for the Navier-Stokes solution. The full solution is found by a projection method like the Lyapunov-Schmidt method as a bifurcation from the constant state in which the bifurcation parameter is the difference between the speed of sound c_0 and the shock speed s.

64. "Arrow's sidel of optimal pricing, use and exploration of uncertain natural resources" by P. S. Hagan, R. E. Caflisch, and J. B. Keller, Econometrics, submitted.

Arrow's model for finding the optimal rates of exploration, consumption and pricing of a randomly distributed natural resource is analyzed. At first the model is modified so that each discovery reveals an arbitrary amount of resource. Then it is analyzed asymptotically when this amount is small, and analyzed approximately when the amount is medium or large. In both cases explicit results for the optimal exploration, consumption, and pricing policies are obtained. Finally a numerical method is devised which is applicable whatever the size of the discoveries. The results using it are found to agree with the analytical results in both cases.

65. "Radiation transport in a hot plasma" by Russel E. Caflisch, SIAM J. Appl. Math., submitted.

In various astronomical events, Compton scattering is the dominant interaction mechanism between the radiation and electron fields in a plasma. As a result the radiation distribution rapidly becomes a Bose-Einstein given by $\lambda^{-2}(\alpha e^{\lambda^{-1}}-1)^{-1}$ with λ the wavelength and $\alpha \geq 1$, a time dependent constant. However due to the divergence of the Bremstrahlung emission spectrum at long wavelengths, the distribution must be Planckian there. In between is a transition region. Based on these principles an expansion is found which is an asymptotically exact solution of the Fokker-Planck equation. Then a simple equation for the time evolution of the radiation temperature is obtained. It is solved numerically and compares well with previous methods.

66. "Jets rising and falling under gravity" by J. B. Keller and J.-M. Vanden-Broeck, J. Fluid Mech., submitted.

Steady two dimensional jets of inviscid incompressible fluid, rising and falling under gravity, are calculated numerically. The shape of each jet depends upon a single parameter, the Froude number $\lambda = q_c(Qg)^{-1/3}$, which ranges from zero to infinity. Here q_c is the velocity at the crest of the jet, i.e. the highest point of the upper surface, Q is the flux in the jet, and g is the acceleration of gravity. For $\lambda = \infty$, the jet is slender and parabolic. It becomes thicker as λ decreases, and reaches a a limiting form at $\lambda = 0$. Then there is a stagnation point at the crest,

where the surface makes a 120° angle with itself. This angle is predicted by the same argument Stokes used in his study of water waves.

The problem is formulated as an integro-differential equation for the two free surfaces of the jet. This equation is discretized to yield a set of nonlinear equations which are solved numerically by Newton's method. In addition asymptotic results for λ large are obtained analytically. Graphs of the results are presented.

67. "Fluid dynamics and the Beltomann equation" by Russel E. Caflisch, Stud. Stat. Mech., to appear.

The fluid dynamic equations and the Boltzmann equation provide alternative descriptions for the evolution of a gas. In the limit of small mean free path, the Euler or Navier-Stokes equations can be derived from the Boltzmann equation through the Hilbert of Chapman-Enskog expansions. These expansions are singular near boundaries, shocks, and general initial data and special boundary, shock, and initial layers are needed to complete the solution. In the outer region away from these layers, the expansions are shown to be valid, under certain conditions. They approximate a solution of the Boltzmann equation for a reasonable time period, and they provide the dominant term in the long time asymptotics of the solution of the near linear problem. Shock wave solutions of the Boltzmann equation are also discussed. The Boltzmann solution for a weak shock is constructed and is shown to agree with the Navier-Stokes profile to leading order.

68. "Theory of periodic structures in lipid bilayer membranes" by Meira S. Falkovitz, Michael Seul, Harry L. Frisch, and Harden M. McConnell, Proc. Nat. Acad. Sci., submitted.

An approximate, new model for the structure of the periodic, undulated P_{β} , phase of phosphatidylcholine bilayers is proposed. The properties of this phase are deduced by minimizing a Landau-de Gennes expression for the bilayer free energy when this free energy contains a term favoring a spontaneous curvature of the membrane. The theoretical calculation leads to a model for the P_{β} , phase of phosphatidylcholine bilayers having a number of novel physical properties, including periodic variations in membrane "fluidity."

69. "The fluid-dynamic limit of a model Boltzmann equation in the presence of a shock" by Russel E. Caflisch, Institut National de Recherce en Informatique et en Automatique, INRIA Report No. 81, June 1981, 1-34.

The Broadwell equation is the simplest model of the Boltzmann equation of kinetic theory for which the corresponding model fluid dynamic equations are non-trivial. For this equation there is a complete existence theory for the initial value problem. Here we show formally that if the model fluid dynamic equations can be solved, then the Broadwell solution asymptotically converges to the fluid dynamic solution as the mean free path goes to zero. This limit is valid even if there is a shock in the fluid flow, although there is a thin shock layer in which

the convergence does not hold. Arbitrary smooth initial data is allowed, which leads to a short initial layer of non-convergence, but the initial and shock layers do not interact due to the assumed initial smoothness.

61. "Folds in solutions of two parameter systems and their calculation: Part I" by Allan Jepson and Alastair Spence, Stanford Univ. Numer. Anal. Report, in press.

This paper treats the existence of paths of turning points in solutions of nonlinear systems having two parameters. It is well known that these paths are solutions of a particular extended system of nonlinear equations. In this paper both regular and simple turning points in the extended system are related to the local geometry of the solution surfface of the original nonlinear system. A description is given of numerical methods both for solving the extended system and for calculating parameters determining the local geometry of the solution surface.

Applications to perturbed bifurcation, to the formation of isolas, and to the calculation of the multiplicity of solutions are also discussed.

IV. WORE IN PROGRESS.

- 1. "Optimal catalyst distribution in a membrane" (Joseph B. Keller, Meira Falkovitz and Harry Frisch). \$It is shown how to distribute a fixed amount of catalyst across the thickness of a plane membrane to maximize the rate of reaction of a substance diffusin through the membrane and reacting within it. The result is that all the catalyst should be located at the front or high concentration face of the membrane. It is also shown how to distribute the catalyst to minimize the flux of unreacted substance out of the membrane. In this case the catalyst should be uniformly distributed in a layer which is symmetric about the midplane of the membrane. The thickness of the layer is determined. The analysis employs the methods of the calculus of variations.
- 2. "Crawling of worms" (Joseph B. Keller and Meira Falkovitz).

 SThe mechanics of a worm crawling along a flat surface is analyzed. The external forces of friction and gravity, and the internal tension, are taken into account. An equation of motion is formulated, and solutions are sought in which both the tension and the linear density are required to lie between prescribed bounds. Periodic travelling wave solutions on worms of finite length and pulse-like travelling waves on worms of infinite length are treated. The maximum crawling velocity is determined, as well as the wave form which achieves it. The results are compared with experimental observations.

- 3. "A relation between the bases and maximum likelihood methods" (Joseph B. Keller). §The Bayes transformation B_y , based upon an observed value y, converts a prior distribution $p_0(\theta)$ of a parameter θ into a posterior distribution $B_y p_0(\theta)$. J. J. Higgins [Bayesian inference and the optimality of maximum likelihood estimation, Inter. Stat. Rev., 45 (1977), 9-11] has shown that $B_y^n p_0(\theta)$ converges, as n increases, to $[\theta \theta_1(y)]$ where $\theta_1(y)$ is the unique maximum likelihood estimate of θ based upon y. We show that when there are several maximum likelihood points in the support of $p_0(\theta)$, $B_y^n p_0(\theta)$ converges to a sum of delta functions located at these points. Each is multiplied by a certain coefficient which we determine. This suggests a way of extending the maximum likelihood method to the case of several maximum likelihood points.
- 4. "Weakly nonlinear geometrical optics" (John K. Hunter and Joseph B. Keller). §A theory of weakly nonlinear solutions of systems of hyperbolic partial differential equations is contructed. The theory leads to propagation of waves along the rays of the corresponding linearized theory. However, the amplitude satisfies a nonlinear equation along these rays. This leads to waveform distortion and shock formation. The theory can be used to describe weak shock waves in any number of dimensions. Its relation to the theory of G. B. Whitham [Linear and Nonlinear Waves, Wiley, 1974] and of L. D. Landau is demonstrated.

- 6. "Water wave production by an oscillating body" (Joseph B. Keller and Si-Xiong Chen). Sasymptotic methods are employed to calculate the waves generated by an oscillating body floating on the surface of a fluid. The method of geometrical optics is used to describe the far field, and boundary layer methods are used to describe the near field. The results generalize those of other authors.
- 7. "Reflection, transmission, absorption and scattering of acoustic waves by rough surfaces" (John G. Watson and Joseph B. Keller). 5The first and second moments, i.e. the coherent field and the two-point two-time correlation function, are calculated for the acoustic fields scattered from various rough surfaces. For each surface they yield the reflection, transmission, absorption and differential scattering coefficients, as well as an equivalent boundary condition for the coherent

at grazing incidence. The results are specialized to surfaces which are statistically homogeneous in both space and time, to surfaces which are not moving, to surfaces which are simply or multiply periodic, and to surfaces consisting of randomly placed bosses on a smooth surface. The surfaces considered are slightly rough, moving, soft or hard boundaries, and flat surfaces with random admittance or impedance. The analysis is based on the regular perturbation method. Comparisons with previous results are made.

8. "The product-expansion technique" (John G. Watson). Swe present a method, the product-expansion technique, which is an alternative to the smoothing method. Given equations for a random process, the technique produces an approximate solution for the expected value in the form of the product of averages of operator products. An application to rough surface acoustic scattering is given.

SANKAL:

9. "Branches of periodic solutions and their computation"

(Allan D. Jepson, Esabius Doedel and Herbert B. Keller). SBranches of periodic solutions to autonomous systems of differential equations with a free parameter are studied. A bifurcation analysis is presented with a view towards numerical methods. A computational package for following these branches, detecting bifurcation points, switching branches at simple bifurcation points, and switching branches at Hopf bifurcation points is tested on several examples.

- equations, Parts I and II" (Allan D. Jepson and Herbert B. Keller).

 The numerical solution of two point boundary value problems on semiinfinite intervals is often obtained by truncating the interval at some
 finite point. In this paper, we determine a hierarchy of increasingly
 accurate boundary conditions for the truncated interval problem. Both
 linear and nonlinear problems are considered. Numerical techniques for
 error estimation and the determination of an appropriate truncation point
 are discussed. Several numerical examples are given.
- 11. "Fredholm theories for two point boundary value problems on semi-infinite intervals" (Allan D. Jepson). §A simple method to determine the Fredholm properties of two point boundary value problems on semi-infinite intervals is presented. The general problem is reduced to an equivalent regular problem on a finite interval. The Fredholm properties then follow from the well known theory for regular problems and from asymptotic estimates on particular solutions of the singular problem.
- 12. "Paths of simple bifurcation points and their computation"

 (Allan D. Jepson and Alastair Spence). SNumerical methods for following simple bifurcation points in nonlinear systems with three parameters are presented. Critical points in these branches are studied.

- 14. "Bifurcation and stability in constrained variational problem" (John H. Maddocks). SThe main result presented is a theorem determining when a quadratic form subject to linear constraints is positive-definite. Such quadratic forms arise as tests for stability in general constrained variational problems. Connections with bifurcation and exchange of stability are also described.
- 15. "Stability of the elastica" (John H. Maddocks). §The elastica is a standard model for the buckling of an elastic rod. This paper determines stability properties of various planar equilibria of a non-linearly elastic rod, both to variations in the plane and out of the plane. Previously undiscovered second bifurcations with associated loss of stability are described.

FILMED
3-84

DTIC

