PCA and Clustering

MSBA7002 Business Statistics Tutorial 4

Table of Contents

1 PCA

Clustering

- Unsupervised Learning
 - X supervises itself
- Geometry Intuition: "rotation"

- "Intrinsic" purpose: Dimension Reduction
 - Use reduced number of uncorrelated dimensions
 - Retain as much variance
- "Extrinsic" purpose:
 - i. Solve multicolinearity
 - ii. Number of predictor is too large
- Assumption:
 - There are not any outliers
- Data-preprocessing procedure:
 - Normalization is recommended

$$\tilde{X} = \frac{X - \hat{\mu}_X}{\hat{\sigma}_X}$$

$$= \underbrace{\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}}_{n \times p}_{n \times p}$$

$$= \underbrace{\begin{pmatrix} s_{11} & s_{12} & \dots & s_{1k} \\ s_{21} & s_{22} & \dots & s_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \dots & s_{nk} \end{pmatrix}}_{n \times k} \begin{pmatrix} l_{11} & l_{12} & \dots & l_{1p} \\ l_{21} & l_{22} & \dots & l_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ l_{k1} & l_{k2} & \dots & l_{kp} \end{pmatrix}}_{k \times p}$$
PC Score

PC loading

- Computation method
 - SVD (Singular Value Decomposition)

- Popular outputs used
 - i. PC score

Be used do further research

- → Data Visualization
- → Linear Discriminant Analysis
- → Clustering
- → Principal Component Regression

- Popular outputs used
 - i. PC score

Be used do further research

- → Data Visualization ✓
- → Linear Discriminant Analysis
- → Clustering √
- → Principal Component Regression ✓

- Popular outputs used
 - ii. PC loading Reveals the relationship between PCs and original variables
 - → Biplot

- Number of PC
 - Scree plot
 - Percentage of Variance Explained
 - Prior information
 - Other models (e.g. Error of PC regression)

- Number of PC
 - Scree plot
 - Percentage of Variance Explained
 - Prior information
 - Other models (e.g. Error of PC regression)

Scree Plot of First 8 PC's

Comparison with LDA

	LDA	PCA	
	Supervised Learning	Unsupervised Learning	
y required?	yes no		
Normalization?	not necessary	strongly recommended	
Rule for rotation	seperate the classes	capture variance	

Table of Contents

1 PCA

Clustering

Clustering

- Core idea
 - The observations in the same cluster are more simlar
- Models
 - Connectivity-based model
 - Hierarchy Clustering
 - Centroid model
 - K-means Clustering
 - Distribution model
 - Graph-based model
 - Others
- Data-preprocessing procedure:
 - Normalization is recommended

$$\tilde{X} = \frac{X - \hat{\mu}_X}{\hat{\sigma}_X}$$

Hierarchy Clustering

Core idea

 Observations being more related to nearby observations than to observations farther away

Procedures

- Measure the distance among observations
- Build cluster dendrogram
- Determine number of cluster and get prediction

Hierarchy Clustering

Hierarchy Clustering

Step 1

Measure the distance among observations

$$d(A,B) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

	Α	В	С	D
Α		2.5	3	5
В	2.5		3.9	3.4
С	3	3.9		4
D	4	3.4	4	

Hierarchy Clustering

Step 2

Build cluster dendrogram

	Α	В	С	D
\Rightarrow A		2.5	3	5
\Rightarrow B	2.5		3.9	3.4
\Rightarrow C	3	3.9		4
\Rightarrow D	5	3.4	4	

Hierarchy Clustering

Step 2

Build cluster dendrogram

	Α	В	С	D
$\Rightarrow A$		2.5	3	5
\Rightarrow B	2.5		3.9	3.4
\Rightarrow C	3	3.9		4
\Rightarrow D	5	3.4	4	

Hierarchy Clustering

Step 3

Determine number of cluster and get prediction

Hierarchy Clustering

K-means Clustering

- Core idea
 - Each observation belongs to the cluster with the nearest cluster centroid
- Procedures
- Step 1 Determine number of clusters *K*
- Step 2 Select cluster centroids
- Step 3 Cluster observations
- Step 4 Use mean as centroid for each cluster
- Step 5 If centroids are almost the same, stop. If not, go back to step 2.

K-means Clustering

K-means Clustering

Step 1

Determine number of clusters K=2

Step 2

Select cluster centroids

i A and B

ii A and D

K-means Clustering

Summary

	Class	Model
Supervised Learning		Linear Regression
	Regression	Lasso Regression
		Ridge Regression
		Possion Regression
	Classification	Logistic Regression
		Linear Discriminant Analysis
		Quadratic Discriminant Analysis
		Support Vector Machines
Unsupervised		Principal Component Analysis
Learning		K-means Clustering
		Hierarchy Clustering