Tutorial: Sampling, Weighting and Estimation Day 4

Stefan Zins, Matthias Sand and Jan-Philipp Kolb

GESIS - Leibniz Institute for the Social Sciences

January 22, 2016

USEFULL COMMANDS

OF THE SURVEY PACKAGE

Computation of contrasts

Using the multi-stage sample of day 3 (mul.surv)

 The command svycontrast() can be used to estimate contrasts for linear and nonlinear survey statistics and their standard error

⇒ svyratio(~0 api00,~0 api99,mul.surv) generates the same results

OF THE SURVEY PACKAGE

Weighted regression

```
summary(svyglm(api00~enroll+meals+api99,mul.surv))
Call:
svyglm(formula = api00 ~ enroll + meals + api99, mul.surv)
Survey design:
svydesign(id = ~cds + id, fpc = ~fpc + fpc2, strata = NULL, data = DATA.s,
   pps = "brewer")
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.31730 38.64877 2.96 0.0049 **
enroll
          -0.00535 0.00472 -1.13 0.2623
       0.06558 0.18715 0.35 0.7277
meals
           0.86531 0.04505 19.21 <2e-16 ***
api99
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 406.9)
Number of Fisher Scoring iterations: 2
```

OF THE SURVEY PACKAGE

Weighted regression

summary(svyglm(api00~enroll+meals+api99,mul.surv))

- The svyglm() function fits linear and generalized lin. models to the data stored in a survey object
- syntax almost identical to the glm, except that the data argument is replaced by a design argument → weighted least square
- Main difference to glm(): svyglm() doe not use a maximum likelihood approach

USEFULL COMMANDS

OF THE SURVEY PACKAGE

Survey weighted contingency tables and chi squared tests

```
tab1 <- svytable(~stype+sch.wide,mul.surv)
tab1

    sch.wide
stype    No    Yes
    E    2003 62108
    H   2003 10441
    M   8014 16028</pre>
```

Creates the weighted contingency table of two or more variables

```
plot(tab1, col="blue",xlab = "school type",
+ ylab = "growth target",cex.lab=0.25)
```

 Such contingency tables can easily be visualized to learn more about the sampled variables

USEFULL COMMANDS

OF THE SURVEY PACKAGE

Survey weighted contingency tables and chi squared tests

Met school-wide target

OF THE SURVEY PACKAGE

Survey weighted contingency tables and chi squared tests

chi <- svychisq(~stype+sch.wide,mul.surv,statistic="adjWald")
chi</pre>

Design-based Wald test of association

```
data: svychisq(~stype + sch.wide, mul.surv, statistic = "adjWald")
F = 4.071, ndf = 2, ddf = 48, p-value = 0.02327
```

- Tests for the association of sample variables
- Numerous tests are applicable
- In this case it is tested for independence under the consideration of the number of PSUs

OF THE SURVEY PACKAGE

Estimation of subpopulations

 Within a stratified random sample, subtotals for each stratum are easy to compute, since every stratum can be treated like a separate srs

OF THE SURVEY PACKAGE

Estimation of subpopulations

- Within a stratified random sample, subtotals for each stratum are easy to compute, since every stratum can be treated like a separate srs
- For an unstratified design or subpopulations that are no strata, the situation is more complicated, since the joint inclusion probabilities π_{kl} are unequal to those that would be, if this group had been a stratum
- Sampling weights would be correct, but pairwise sampling probability would be incorrect

OF THE SURVEY PACKAGE

Estimation of subpopulations

- Within a stratified random sample, subtotals for each stratum are easy to compute, since every stratum can be treated like a separate srs
- For an unstratified design or subpopulations that are no strata, the situation is more complicated, since the joint inclusion probabilities π_{kl} are unequal to those that would be, if this group had been a stratum
- Sampling weights would be correct, but pairwise sampling probability would be incorrect
- ⇒ Unbiased point estimates; but standard errors would be wrong

OF THE SURVEY PACKAGE

Estimation of subpopulations

- The survey package deals with these problems without any further specification as long as the full sample is used to define a survey object
- Subpopulations either by subset or svyby

```
sub1 <- subset(mul.surv,sch.wide=="Yes")</pre>
 svymean(~api00+api99,sub1)
              SE
      mean
api00 638 12.7
api99 602 14.4
 sub2 <- svyby(~api00, ~stype, svymean, design = mul.surv)</pre>
 print(sub2)
  stype api00
                  se
      E 645.1 16.69
Ε
Н
      H 619.9 11.10
М
      M 653.6 16.26
```

WITH THE RATIO ESTIMATOR

The ratio estimator

$$\frac{\hat{t}_{y,HT}}{\hat{t}_{x,HT}}$$

• Drawing a sample of n = 130 from bm

```
bm$pik <- inclusionprobabilities(bm$Tot03,130)
s <- UPmaxentropy(bm$pik)
ratioest(y=bm$TaxableIncome[s==1],x=bm$averageincome[s==1],
+ Tx=sum(bm$averageincome),pik=bm$pik[s==1])</pre>
```

[1] 1.385e+11

- Returns the ratio estimator of the population total
- Another way to calculate the ratio estimator is implemented in the survey package

WITH THE RATIO ESTIMATOR

The ratio estimator

 The svyratio() command returns the ratio between the two weighted sampling variables.

WITH THE RATIO ESTIMATOR

The ratio estimator

 To obtain an estimator for the total, the ratio must be multiplied with the population total of the auxiliary variable

```
as.numeric(svyratio(~TaxableIncome,~averageincome,obj))*
+ sum(bm$averageincome)
```

WITH THE RATIO ESTIMATOR

Variance estimation

• Estimating the Variance of the ratio estimator via Taylor Linearization with the sampling package

```
vartaylor_ratio(Ys=samp$TaxableIncome, Xs=samp$averageincome,
                  pikls = IPkl[s==1,s==1])
+
$ratio
[1] 9370
```

\$estvar

[1] 234061

[1] 483.8

WITH THE RATIO ESTIMATOR

Variance estimation

• Estimating the Variance of the ratio estimator via *Taylor Linearization* with the sampling package

```
vartaylor_ratio(Ys=samp$TaxableIncome,Xs=samp$averageincome,
+ pikls = IPkl[s==1,s==1])
```

\$ratio

[1] 9370

\$estvar

[1] 234061

[1] 483.8

 The survey package uses Taylor Linearization by default to estimate standard errors based on design information

WITH THE RATIO ESTIMATOR

Variance estimation

• Estimating the Variance of the ratio estimator via *Taylor Linearization* with the sampling package

```
vartaylor_ratio(Ys=samp$TaxableIncome,Xs=samp$averageincome,
+ pikls = IPkl[s==1,s==1])
```

\$ratio

[1] 9370

\$estvar

[1] 234061

[1] 483.8

- The survey package uses Taylor Linearization by default to estimate standard errors based on design information
- The vartaylor_ratio() returns the HT-estimator of the variance, not the YG-type

- Within the survey package all of the common strategies are implemented and easy to use
- First step: redefine the survey object as a replicate weights object with the as.svrepdesign() command
- Second step: choosing a strategy with the type= argument

- Within the survey package all of the common strategies are implemented and easy to use
- First step: redefine the survey object as a replicate weights object with the as.svrepdesign() command
- Second step: choosing a strategy with the type= argument
- ⇒ Most of the strategies cannot create replicate weights under unequal inclusion probabilities and resample only the PSUs to create replicate weights

q0.75 15.83

Jackknife

```
dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1,
                       fpc= rep(757/15,times=nrow(apiclus1)))
 clus.rep <- as.svrepdesign(dclus1,type = "JK1")</pre>
 svyquantile(~api00 , clus.rep, c (.25 ,.5 ,.75) ,
              interval.type ="probability")
Statistic:
      api00
q0.25 551.8
q0.5 652.0
q0.75 717.5
SE:
      api00
q0.25 30.34
q0.5 34.21
```

- Allows the estimation of standard errors for quantiles, etc.
- In case of estimates for the totals and means, the estimates for the standard error are comparable to those of the Taylor Linearization

Bootstrap

```
rep.clus2 <- as.svrepdesign(dclus1, type = "bootstrap",
                               replicates = 100)
 svyquantile(~api00,rep.clus2,c (.25 ,.5 ,.75) ,
              interval.type ="probability")
Statistic:
      api00
q0.25 551.8
q0.5 652.0
q0.75 717.5
SE:
      api00
q0.25 29.33
q0.5 30.90
q0.75 15.75
```

- ⇒ Reduces the standard error
 - design weights are the starting weights multiplied by the times they have been sampled within each iteration (srswr!)

Balanced Repeated Replicates (BRR)

- BRR is appealing because it requires less computational effort than the Jackknife method
- BRR standard errors are valid for quantiles and median, while the Jackknife method might produce invalid results

```
dstrat <- svydesign(id=~1, weights=~pw, strata = ~stype,</pre>
                       data = apistrat,fpc = ~fpc)
 rep3 <- as.svrepdesign(dstrat,type = "BRR")
 svyquantile(~api00,rep3,c (.25 ,.5 ,.75) ,
               interval.type ="probability")
Statistic:
      api00
q0.25 562.2
q0.5 667.2
q0.75 755.1
SE:
      api00
q0.25 15.05
q0.5 11.33
q0.75 13.18
```


- All three methods can only be applied to single-stage samples or resample only on the PSU-level
- All three approaches ignore the fpc

- All three methods can only be applied to single-stage samples or resample only on the PSU-level
- All three approaches ignore the fpc
- Bootstrap is only straightforward, when all strata sizes are large

- All three methods can only be applied to single-stage samples or resample only on the PSU-level
- All three approaches ignore the fpc
- Bootstrap is only straightforward, when all strata sizes are large
- The BRR approach yields the smallest estimates for the standard error, but has difficulties when dealing with cluster samples

- All three methods can only be applied to single-stage samples or resample only on the PSU-level
- All three approaches ignore the fpc
- Bootstrap is only straightforward, when all strata sizes are large
- The BRR approach yields the smallest estimates for the standard error, but has difficulties when dealing with cluster samples
- ⇒ BRR can only be applied for samples with two clusters per stratum

- All three methods can only be applied to single-stage samples or resample only on the PSU-level
- All three approaches ignore the fpc
- Bootstrap is only straightforward, when all strata sizes are large
- The BRR approach yields the smallest estimates for the standard error, but has difficulties when dealing with cluster samples
- ⇒ BRR can only be applied for samples with two clusters per stratum
- \Rightarrow All three approaches have problems with multi-stage samples and unequal inclusion probabilities

Multi-stage samples and replicate weights

- In case of multi-stage samples, the mrb or mrbbootstrap method of Preston should be employed
- ⇒ Resamples PSUs and SSUs rather than only PSUs

```
summary(svyglm(api00~enroll+meals+api99,mul.surv))
Call:
svyglm(formula = api00 ~ enroll + meals + api99, mul.surv)
Survey design:
svydesign(id = ~cds + id, fpc = ~fpc + fpc2, strata = NULL, data = DATA.s,
   pps = "brewer")
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.31730 38.64877 2.96 0.0049 **
           -0.00535 0.00472 -1.13 0.2623
enroll
           0.06558 0.18715 0.35 0.7277
meals
           0.86531 0.04505 19.21 <2e-16 ***
api99
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 406.9)
Number of Fisher Scoring iterations: 2
```


Multi-stage samples and replicate weights

```
rep4 <- as.svrepdesign(mul.surv,type = "mrbbootstrap")
 summary(syvglm(api00~enroll+meals+api99.rep4))
Call:
svvglm(formula = api00 ~ enroll + meals + api99, rep4)
Survey design:
as.svrepdesign(mul.surv, type = "mrbbootstrap")
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.31730 19.95635 5.73 7.4e-07 ***
enroll
            -0.00535 0.00256 -2.09 0.042 *
            0.06558 0.09243 0.71 0.482
meals
            0.86531 0.02384 36.30 < 2e-16 ***
api99
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 406.7)
Number of Fisher Scoring iterations: 2
```

- Reduces standard error of the estimates
- Estimates are far more significant
- Needs more computational time then other resampling strategies
- ⇒ But: correct approach for multi-stage samples