Modelos e Aplicações - Aula 2

Caio Lopes, Henrique Lecco

ICMC - USP

21 de julho de 2020

Um pequeno resumo

Na aula de ontem, vimos:

- Vocabulários: símbolos lógicos e não lógicos;
- Termos e fórmulas;
- Teorias;

Um pequeno resumo

Na aula de ontem, vimos:

- Vocabulários: símbolos lógicos e não lógicos;
- Termos e fórmulas;
- Teorias;

Terminamos discutindo um pouco sobre a teoria *DLO*.

Modelos

Isso nos leva, então, à semântica. Precisamos definir o que é um modelo.

Modelos

Isso nos leva, então, à semântica.

Precisamos definir o que é um modelo.

Definição

Um modelo é um conjunto munido de uma função, chamada interpretação, que leva:

- Símbolos de constantes em constantes;
- Símbolos de relações em relações;
- Símbolos de funções em funções.

A maneira mais fácil de compreender a definição talvez seja por meio de exemplos.

Considere a linguagem de grupos: $L = \{*, \mathbf{e}\}.$

Um modelo para essa linguagem será um conjunto com um elemento destacado (e) e munido de uma operação (*).

A maneira mais fácil de compreender a definição talvez seja por meio de exemplos.

Considere a linguagem de grupos: $L = \{*, \mathbf{e}\}.$

Um modelo para essa linguagem será um conjunto com um elemento destacado (e) e munido de uma operação (*).

Descrevemos um modelo como:

$$\mathcal{M} = \{M, \cdot^{\mathcal{M}}\}$$

Em que M é o universo e $\cdot^{\mathcal{M}}$ é a interpretação.

Vamos buscar modelos para o vocabulário de anéis.

Considere o modelo $\mathcal{Z} = \{\mathbb{Z}, \cdot^{\mathcal{Z}}\}$, em que:

$$\boldsymbol{e}^{\mathcal{Z}}=0$$

$$*^{\mathcal{Z}} = +$$

Considere o modelo $\mathcal{Z} = \{\mathbb{Z}, \cdot^{\mathcal{Z}}\}$, em que:

$$\mathbf{e}^{\mathcal{Z}} = 0$$
$$*^{\mathcal{Z}} = +$$

Isto é, o modelo $\mathcal Z$ é o conjunto $\mathbb Z$ com o elemento 0 destacado e a operação de soma (+).

Observe: \mathcal{Z} é um grupo abeliano. Mas nem todo grupo é abeliano.

Considere o modelo $\mathcal{Z} = \{\mathbb{Z}, \cdot^{\mathcal{Z}}\}$, em que:

$$\mathbf{e}^{\mathcal{Z}} = 0$$
$$*^{\mathcal{Z}} = +$$

Isto é, o modelo \mathcal{Z} é o conjunto \mathbb{Z} com o elemento 0 destacado e a operação de soma (+).

Observe: \mathcal{Z} é um grupo abeliano. Mas nem todo grupo é abeliano.

Dependendo do modelo para esse vocabulário, teremos propriedades diferentes.

Seja, agora, $\mathcal{S} = \{S_5, \cdot^{\mathcal{S}}\}$ com

- $\mathbf{e}^{\mathcal{S}} = Id$;
- $*^{\mathcal{S}} = \circ$.

Isto é, $\mathcal S$ é o conjunto das permutações de $\{1,2,3,4,5\}$ munido da operação de composição.

Seja, agora, $\mathcal{S} = \{ \emph{S}_5, \cdot^{\mathcal{S}} \}$ com

- $\mathbf{e}^{\mathcal{S}} = Id$;
- $*^{\mathcal{S}} = \circ$.

Isto é, \mathcal{S} é o conjunto das permutações de $\{1,2,3,4,5\}$ munido da operação de composição.

Veja que $(1\ 2)\circ(1\ 3)\neq(1\ 3)\circ(1\ 2)$, ou seja, ${\mathcal S}$ não é abeliano.

Seja, agora, $\mathcal{S} = \{\mathcal{S}_5, \cdot^{\mathcal{S}}\}$ com

- $\mathbf{e}^{\mathcal{S}} = Id$;
- $*^{\mathcal{S}} = \circ$.

Isto é, \mathcal{S} é o conjunto das permutações de $\{1,2,3,4,5\}$ munido da operação de composição.

Veja que $(1\ 2)\circ(1\ 3)\neq(1\ 3)\circ(1\ 2)$, ou seja, ${\mathcal S}$ não é abeliano.

Usando apenas o vocabulário L, a fórmula que diz ser abeliano é:

$$\forall x \forall y * (x, y) = *(y, x)$$

Como * é um símbolo de função binária, também podemos escrever:

$$\forall x \forall y \ x * y = y * x$$

Veja, então, como a interpretação dos modelos \mathcal{Z} e \mathcal{S} faz diferença. Em um dos casos, faz a sentença que descreve a comutatividade ser falsa e, em outro, ser verdadeira.

Veja, então, como a interpretação dos modelos \mathcal{Z} e \mathcal{S} faz diferença. Em um dos casos, faz a sentença que descreve a comutatividade ser falsa e, em outro, ser verdadeira.

Só podemos saber se uma sentença é verdadeira ou falsa se conhecermos a interpretação! Por isso dizemos que o modelo dá "sentido" ou "significado".

Veja, então, como a interpretação dos modelos \mathcal{Z} e \mathcal{S} faz diferença. Em um dos casos, faz a sentença que descreve a comutatividade ser falsa e, em outro, ser verdadeira.

Só podemos saber se uma sentença é verdadeira ou falsa se conhecermos a interpretação! Por isso dizemos que o modelo dá "sentido" ou "significado".

Mas e se quisermos fazer um modelo um pouco diferente?

Considere, também para o vocabulário de grupos, o seguinte modelo: $\mathcal{M}=\{\mathbb{Z},\cdot^{\mathcal{M}}\}$, tal que:

 \bullet $\mathbf{e}^{\mathcal{M}}=0$;

Considere, também para o vocabulário de grupos, o seguinte modelo: $\mathcal{M} = \{\mathbb{Z}, \cdot^{\mathcal{M}}\}$, tal que:

- $e^{\mathcal{M}} = 0$;
- $*^{\mathcal{M}} = \times$.

Ou seja, $\mathbb Z$ com a operação de multiplicação e o elemento destacado 0.

É claro que isso não vai ser um grupo, mas vamos analisar as sentenças da teoria de grupos uma por uma...

- **1** Associatividade: $\forall x \forall y \forall z * (*(x, y), z) = *(x, *(y, z);$
- 2 Elemento neutro: $\forall x \ x * \mathbf{e} = x$;
- **3** Elemento inverso: $\forall x \exists y \ x * y = \mathbf{e}$;

- **1** Associatividade: $\forall x \forall y \forall z * (*(x, y), z) = *(x, *(y, z);$
- 2 Elemento neutro: $\forall x \ x * \mathbf{e} = x$;
- **3** Elemento inverso: $\forall x \exists y \ x * y = \mathbf{e}$;

Veja que ${\mathcal M}$ não satisfaz a propriedade de elemento neutro com o elemento destacado 0.

Sim, existe o 1 que é um elemento neutro para a multiplicação, mas o modelo interpreta como o elemento destacado **e** o inteiro 0.

- **1** Associatividade: $\forall x \forall y \forall z * (*(x, y), z) = *(x, *(y, z);$
- 2 Elemento neutro: $\forall x \ x * \mathbf{e} = x$;
- **3** Elemento inverso: $\forall x \exists y \ x * y = \mathbf{e}$;

Veja que ${\mathcal M}$ não satisfaz a propriedade de elemento neutro com o elemento destacado 0.

Sim, existe o 1 que é um elemento neutro para a multiplicação, mas o modelo interpreta como o elemento destacado **e** o inteiro 0.

Mas se ${\mathcal M}$ não é um grupo, como pode ser um modelo para a lingugagem de grupos?

- **1** Associatividade: $\forall x \forall y \forall z * (*(x, y), z) = *(x, *(y, z);$
- 2 Elemento neutro: $\forall x \ x * \mathbf{e} = x$;
- **3** Elemento inverso: $\forall x \exists y \ x * y = \mathbf{e}$;

Veja que ${\mathcal M}$ não satisfaz a propriedade de elemento neutro com o elemento destacado 0.

Sim, existe o 1 que é um elemento neutro para a multiplicação, mas o modelo interpreta como o elemento destacado **e** o inteiro 0.

Mas se ${\mathcal M}$ não é um grupo, como pode ser um modelo para a lingugagem de grupos?

Ele não é um modelo para a teoria de grupos.

Verdade ou consequência falsidade

Falamos sobre sentenças serem verdadeiras e falsas em determinados modelos e, embora isso bastante intuitivo, não demos um tratamento formal a essa noção.

Denotamos $\mathcal{M} \models \varphi$ para "o modelo \mathcal{M} satisfaz a sentença φ ", ou "a sentença φ é verdadeira no modelo \mathcal{M} "

Verdade ou consequência falsidade

Falamos sobre sentenças serem verdadeiras e falsas em determinados modelos e, embora isso bastante intuitivo, não demos um tratamento formal a essa noção.

Denotamos $\mathcal{M} \models \varphi$ para "o modelo \mathcal{M} satisfaz a sentença φ ", ou "a sentença φ é verdadeira no modelo \mathcal{M} "

Para fórmulas atômicas, temos:

$$\mathcal{M} \models \mathbf{R}(t_1, ..., t_n) \Leftrightarrow \mathbf{R}^{\mathcal{M}}(t_1^{\mathcal{M}}, ..., t_n^{\mathcal{M}})$$

$$\mathcal{M} \models t = s \Leftrightarrow t^{\mathcal{M}} = s^{\mathcal{M}}$$

Interpretação, mais a fundo

Considere, então, o vocabulário $L = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{R}\}.$ Consideramos dois modelos \mathcal{M} e \mathcal{N} :

- \bullet $M=\mathbb{Z}$:
- $oldsymbol{c}_{\scriptscriptstyle 1}^{\mathcal{M}}=1$
- $\mathbf{c}_{2}^{\mathcal{M}} = 2$
- \bullet $\mathbf{R}^{\mathcal{M}} = <$
- \bullet $N=\mathbb{Z}$:
- $\mathbf{c}_{1}^{\mathcal{N}} = 1$
- $\mathbf{c}_{2}^{\mathcal{N}} = 2$
- $\mathbf{R}^{\mathcal{N}} = >$

Diferentes interpretações...

Considere, agora, a *L*-fórmula φ como $\mathbf{R}(\mathbf{c}_1, \mathbf{c}_2)$.

Sabemos que
$$1<2$$
, portanto: $\mathbf{R}^{\mathcal{M}}(\mathbf{c}_1^{\mathcal{M}},\mathbf{c}_2^{\mathcal{M}})\equiv 1<2$ e $\mathbf{R}^{\mathcal{N}}(\mathbf{c}_1^{\mathcal{N}},\mathbf{c}_2^{\mathcal{N}})\equiv 1>2$

Diferentes interpretações...

Considere, agora, a *L*-fórmula φ como $\mathbf{R}(\mathbf{c}_1, \mathbf{c}_2)$.

Sabemos que
$$1<2$$
, portanto: $\mathbf{R}^{\mathcal{M}}(\mathbf{c}_1^{\mathcal{M}},\mathbf{c}_2^{\mathcal{M}})\equiv 1<2$ e $\mathbf{R}^{\mathcal{N}}(\mathbf{c}_1^{\mathcal{N}},\mathbf{c}_2^{\mathcal{N}})\equiv 1>2$

Portanto, $\mathcal{M} \models \varphi$ e $\mathcal{N} \not\models \varphi$.

Não apenas constantes...

Mas além de constantes, temos também variáveis nos termos do vocabulário.

Se esses termos têm variáveis, como fica a interpretação?

Devemos introduzir o conceito de valoração:

Definição

Uma valoração α é uma função que leva os termos da linguagem em elementos do universo do modelo.

Valorações

Sobre as valorações, há dois comentários a serem feitos:

- A valoração de uma constante depende somente da interpretação;
- A valoração de um termo depende somente da valoração de variáveis e constantes.

Valorações

Sobre as valorações, há dois comentários a serem feitos:

- A valoração de uma constante depende somente da interpretação;
- A valoração de um termo depende somente da valoração de variáveis e constantes.

As valorações conferem sentido a fórmulas com variáveis livres. Considere o mesmo vocabulário do exemplo anterior e o mesmo modelo $\mathcal{M}.$

Sendo x uma variável, não faz sentido afirmar se $\mathcal{M} \models \mathbf{R}(x, \mathbf{c}_1)$.

Valoração

Considere, então, as valorações α e β , que levam variáveis de L a elementos de M e suponha que $\alpha(x)=5$ e $\beta(x)=-1$. Seja $\psi(x)$ a fórmula $\mathbf{R}(x,\mathbf{c}_1)$. Lembre que $\mathbf{c}_1^{\mathcal{M}}=1$.

Valoração

Considere, então, as valorações α e β , que levam variáveis de L a elementos de M e suponha que $\alpha(x)=5$ e $\beta(x)=-1$. Seja $\psi(x)$ a fórmula $\mathbf{R}(x,\mathbf{c}_1)$. Lembre que $\mathbf{c}_1^{\mathcal{M}}=1$. Podemos afirmar, então, que:

$$\mathcal{M} \not\models \psi(\mathbf{x})[\alpha]$$

$$\mathcal{M} \models \psi(\mathbf{x})[\beta]$$

Valoração

Considere, então, as valorações α e β , que levam variáveis de L a elementos de M e suponha que $\alpha(x)=5$ e $\beta(x)=-1$. Seja $\psi(x)$ a fórmula $\mathbf{R}(x,\mathbf{c}_1)$. Lembre que $\mathbf{c}_1^{\mathcal{M}}=1$. Podemos afirmar, então, que:

$$\mathcal{M} \not\models \psi(\mathbf{x})[\alpha]$$

$$\mathcal{M} \models \psi(\mathbf{x})[\beta]$$

Ou, por simplicidade, podemos suprimir a valoração:

$$\mathcal{M} \not\models \psi(5)$$

$$\mathcal{M} \not\models \psi(-1)$$

Satisfação de fórmulas

De acordo com o que falamos, veja que sentenças são independentes da valoração, pois nenhuma variável ocorre livremente. Por isso, fórmulas são passos intermediários para chegar às sentenças. Mas, daremos a noção de satisfação usando a valoração para sermos mais gerais.

Satisfação de fórmulas

De acordo com o que falamos, veja que sentenças são independentes da valoração, pois nenhuma variável ocorre livremente. Por isso, fórmulas são passos intermediários para chegar às sentenças. Mas, daremos a noção de satisfação usando a valoração para sermos mais gerais.

Seja L uma linguagem, \mathcal{M} um L-modelo e α uma valoração. Definimos satisfação indutivamente:

$$\mathcal{M} \models t = s[\alpha] \iff \alpha(t) = \alpha(s)$$

$$\mathcal{M} \models \mathbf{R}(t_1, ..., t_n)[\alpha] \iff \mathbf{R}^{\mathcal{M}}(\alpha(t_1), ..., \alpha(t_n))$$

$$\mathcal{M} \models \varphi \land \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ e } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \varphi \lor \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ ou } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \neg \varphi[\alpha] \iff \mathcal{M} \not\models \varphi[\alpha]$$

$$\mathcal{M} \models t = s[\alpha] \iff \alpha(t) = \alpha(s)$$

$$\mathcal{M} \models \mathbf{R}(t_1, ..., t_n)[\alpha] \iff \mathbf{R}^{\mathcal{M}}(\alpha(t_1), ..., \alpha(t_n))$$

$$\mathcal{M} \models \varphi \land \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ e } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \varphi \lor \psi[\alpha] \iff \mathcal{M} \models \varphi[\alpha] \text{ ou } \mathcal{M} \models \psi[\alpha]$$

$$\mathcal{M} \models \neg \varphi[\alpha] \iff \mathcal{M} \not\models \varphi[\alpha]$$

Faltam os quantificadores. Dado um elemento $m \in M$, uma variável x e uma valoração α , dizemos que α_x^m é a valoração α substituindo-se $\alpha(x)$ por m.

$$\mathcal{M} \models \exists x \varphi(x) \Leftrightarrow \text{ existe um elemento } m \text{ em } M \text{ tal que } \mathcal{M} \models \varphi(x)[\alpha_x^m]$$

 $\mathcal{M} \models \forall x \varphi(x) \Leftrightarrow \text{ para todo elemento } m \text{ em } M, \ \mathcal{M} \models \varphi(x)[\alpha_x^m]$

Considere $\mathcal M$ um modelo. Dada uma fórmula relativa a esse modelo, se não for atômica ou negação de atômica, podemos reduzi-la da seguinte maneira:

Considere $\mathcal M$ um modelo. Dada uma fórmula relativa a esse modelo, se não for atômica ou negação de atômica, podemos reduzi-la da seguinte maneira:

• $\varphi \wedge \psi$ se reduz a φ ou a ψ ;

Considere $\mathcal M$ um modelo. Dada uma fórmula relativa a esse modelo, se não for atômica ou negação de atômica, podemos reduzi-la da seguinte maneira:

- $\varphi \wedge \psi$ se reduz a φ ou a ψ ;
- $\varphi \lor \psi$ se reduz a φ ou a ψ ;

Considere $\mathcal M$ um modelo. Dada uma fórmula relativa a esse modelo, se não for atômica ou negação de atômica, podemos reduzi-la da seguinte maneira:

- $\varphi \wedge \psi$ se reduz a φ ou a ψ ;
- $\varphi \lor \psi$ se reduz a φ ou a ψ ;
- Para cada $m \in M$, $\forall x \varphi(x)$ se reduz a $\varphi(m)$;

Considere ${\cal M}$ um modelo. Dada uma fórmula relativa a esse modelo, se não for atômica ou negação de atômica, podemos reduzi-la da seguinte maneira:

- $\varphi \wedge \psi$ se reduz a φ ou a ψ ;
- $\varphi \lor \psi$ se reduz a φ ou a ψ ;
- Para cada $m \in M$, $\forall x \varphi(x)$ se reduz a $\varphi(m)$;
- Para cada $m \in M$, $\exists x \varphi(x)$ se reduz a $\varphi(m)$;

Indutivamente...

Agora, note que:

• Se φ e ψ são verdadeiras em \mathcal{M} , então $\varphi \wedge \psi$ é verdadeira em \mathcal{M} ;

Indutivamente...

Agora, note que:

- Se φ e ψ são verdadeiras em \mathcal{M} , então $\varphi \wedge \psi$ é verdadeira em \mathcal{M} ;
- Se uma dentre φ e ψ é verdadeira em \mathcal{M} , então $\varphi \lor \psi$ é verdadeira em \mathcal{M} ;

Indutivamente...

Agora, note que:

- Se φ e ψ são verdadeiras em \mathcal{M} , então $\varphi \wedge \psi$ é verdadeira em \mathcal{M} ;
- Se uma dentre φ e ψ é verdadeira em \mathcal{M} , então $\varphi \lor \psi$ é verdadeira em \mathcal{M} ;
- Se para qualquer elemento m de M, $\varphi(m)$ é verdadeira em \mathcal{M} , então $\forall x \varphi(x)$ é verdadeira em \mathcal{M} ;

Indutivamente...

Agora, note que:

- Se φ e ψ são verdadeiras em \mathcal{M} , então $\varphi \wedge \psi$ é verdadeira em \mathcal{M} ;
- Se uma dentre φ e ψ é verdadeira em \mathcal{M} , então $\varphi \lor \psi$ é verdadeira em \mathcal{M} ;
- Se para qualquer elemento m de M, $\varphi(m)$ é verdadeira em \mathcal{M} , então $\forall x \varphi(x)$ é verdadeira em \mathcal{M} ;
- Se existe um elemento m de M tal que $\varphi(m)$ é verdadeira em \mathcal{M} , então $\exists x \, \varphi(x)$ é verdadeira em \mathcal{M} .

Indutivamente...

Agora, note que:

- Se φ e ψ são verdadeiras em \mathcal{M} , então $\varphi \wedge \psi$ é verdadeira em \mathcal{M} ;
- Se uma dentre φ e ψ é verdadeira em \mathcal{M} , então $\varphi \lor \psi$ é verdadeira em \mathcal{M} ;
- Se para qualquer elemento m de M, $\varphi(m)$ é verdadeira em \mathcal{M} , então $\forall x \varphi(x)$ é verdadeira em \mathcal{M} ;
- Se existe um elemento m de M tal que $\varphi(m)$ é verdadeira em \mathcal{M} , então $\exists x \, \varphi(x)$ é verdadeira em \mathcal{M} .

Ou seja, para verificar uma fórmula, temos que "abri-la".

Estratégias

Suponha que tenhamos a fórmula $\varphi \lor \psi$ Se quisermos mostrar que $\varphi \lor \psi$ é *verdadeira*, basta mostrar que alguma dentre φ e ψ é verdadeira.

Estratégias

Suponha que tenhamos a fórmula $\varphi \lor \psi$ Se quisermos mostrar que $\varphi \lor \psi$ é *verdadeira*, basta mostrar que alguma dentre φ e ψ é verdadeira. Ou seja, precisamos "escolher"qual é a verdadeira:

Estratégias

Suponha que tenhamos a fórmula $\varphi \lor \psi$ Se quisermos mostrar que $\varphi \lor \psi$ é *verdadeira*, basta mostrar que alguma dentre φ e ψ é verdadeira. Ou seja, precisamos "escolher"qual é a verdadeira:

Qual das duas escolher?

Estratégias

Suponha que tenhamos a fórmula $\varphi \lor \psi$ Se quisermos mostrar que $\varphi \lor \psi$ é *verdadeira*, basta mostrar que alguma dentre φ e ψ é verdadeira. Ou seja, precisamos "escolher"qual é a verdadeira:

Estratégias

Da mesma forma, se tivermos $\varphi \wedge \psi$ e quisermos mostrar que é *falsa*, basta exibir que *uma delas é falsa*.

Estratégias

Da mesma forma, se tivermos $\varphi \wedge \psi$ e quisermos mostrar que é *falsa*, basta exibir que *uma delas é falsa*.

Qual das duas escolher?

Estratégias

Da mesma forma, se tivermos $\varphi \wedge \psi$ e quisermos mostrar que é *falsa*, basta exibir que *uma delas é falsa*.

Há um processo natural de "escolha" para se verificar uma fórmula. Podemos introduzir um argumento de *jogo* para trabalhar com isso.

Há um processo natural de "escolha" para se verificar uma fórmula. Podemos introduzir um argumento de *jogo* para trabalhar com isso.

Teremos dois jogadores:

Há um processo natural de "escolha" para se verificar uma fórmula. Podemos introduzir um argumento de *jogo* para trabalhar com isso.

Teremos dois jogadores:

Phoenix quer mostrar que a fórmula é verdadeira

Miles quer mostrar que a fórmula é falsa

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Se a fórmula é do tipo $\varphi \lor \psi$, Phoenix escolhe φ ou ψ .

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Se a fórmula é do tipo $\varphi \lor \psi$, Phoenix escolhe φ ou ψ . Se a fórmula é do tipo $\varphi \wedge \psi$, Miles escolhe φ ou ψ .

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Se a fórmula é do tipo $\varphi \lor \psi$, Phoenix escolhe φ ou ψ . Se a fórmula é do tipo $\varphi \wedge \psi$, Miles escolhe φ ou ψ .

Se a fórmula é do tipo $\exists x \varphi(x)$, Phoenix escolhe uma fórmula $\varphi(m)$, para algum elemento m de M.

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Se a fórmula é do tipo $\varphi \lor \psi$, Phoenix escolhe φ ou ψ .

Se a fórmula é do tipo $\exists x \varphi(x)$,

Phoenix escolhe uma fórmula $\varphi(m)$, para algum elemento m de M.

Se a fórmula é do tipo $\varphi \wedge \psi$, Miles escolhe φ ou ψ .

Se a fórmula é do tipo $\forall x \varphi(x)$, Miles escolhe uma fórmula

Miles escolhe uma formula $\varphi(m)$, para algum elemento m de M.

Regra do jogo

Começamos com uma fórmula escrita na forma normal e um modelo (escopo) M. A cada rodada, os jogadores vão "abrindo" a fórmula, da seguinte maneira:

Se a fórmula é do tipo $\varphi \lor \psi$, Phoenix escolhe φ ou ψ .

Se a fórmula é do tipo $\exists x \varphi(x)$,

Phoenix escolhe uma fórmula $\varphi(m)$, para algum elemento m de M.

Se a fórmula é do tipo $\varphi \wedge \psi$, Miles escolhe φ ou ψ .

Se a fórmula é do tipo $\forall x \varphi(x)$, Miles escolhe uma fórmula $\varphi(m)$, para algum element

 $\varphi(m)$, para algum elemento m de M.

A próxima rodada continua da fórmula que algum dos jogadores escolheu na rodada anterior.

Quando acaba?

O jogo termina quando um dos jogadores escolher uma *fórmula atômica*, isto é, irredutível.

Quando acaba?

O jogo termina quando um dos jogadores escolher uma *fórmula* atômica, isto é, irredutível.

- Phoenix ganhará a partida se essa fórmula for verdadeira;
- Miles ganhará a partida se essa fórmula for falsa.

 $\forall x \exists y \ x < y, \ M = \mathbb{N}$

 $\forall x \exists y \ x < y$

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \, x < y$$

$$x = 0$$
?

$\forall x \exists y \ x < y, \ M = \mathbb{N}$

$$\forall x \exists y \, x < y$$

x = 2993813?

$$\forall x \exists y \, x < y$$

$$x = 16997543776$$
?

$\forall x \exists y \ x < y, \ M = \mathbb{N}$

$$\forall x \exists y \, x < y$$

$$x = 700$$

$\forall x \exists y \ x < y, \ M = \mathbb{N}$

 $\exists y \, 700 < y$

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \, x < y$$

$$\exists y 700 < y$$

$$y = 500$$
?

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \ x < y$$

$$\exists y 700 < y$$

$$y = 552$$

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \ x < y$$

$$\exists y 700 < y$$

Miles ganha.

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \, x < y$$

$$\exists y 700 < y$$

$$y = 701$$

$$\forall x \exists y \ x < y, \ M = \mathbb{N}$$

$$\forall x \exists y \ x < y$$

$$\exists y 700 < y$$

Phoenix ganha.

Uma estratégia

Se Miles escolher um número n, basta que Phoenix escolha n+1.

Uma estratégia

Se Miles escolher um número n, basta que Phoenix escolha n+1. Essa é uma estratégia que garante que Phoenix sempre ganha nesse jogo específico (para essa fórmula e nesse modelo).

Além disso, veja que $\mathbb{N} \models \forall x \exists y \ x < y$.

Uma estratégia

Se Miles escolher um número n, basta que Phoenix escolha n+1. Essa é uma estratégia que garante que Phoenix sempre ganha nesse jogo específico (para essa fórmula e nesse modelo).

Além disso, veja que $\mathbb{N} \models \forall x \exists y \ x < y$.

Será que existe uma relação?

$$M = \{a, b, c\}$$

 $\forall x (\psi(x) \land \varphi(x)) \lor \eta(x)$

$$M = \{a, b, c\}$$

Verificação por jogos

Resultados

Teorema. Phoenix tem estratégia vencedora se, e somente se, a fórmula é verdadeira.

Verificação por jogos

Resultados

Teorema. Phoenix tem estratégia vencedora se, e somente se, a fórmula é verdadeira.

A prova é feita por indução.

- Se Phoenix pode escolher uma fórmula para a qual ele sabe que vence, então basta que ele a escolha.
- Se Miles só consegue escolher fórmulas para as quais é sabido que Phoenix vence, então ele não tem muito o que fazer.

Até amanhã!