import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

data=pd.read_excel('/content/data.xlsx')

data.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	4
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	4
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	4
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	

data.isnull().sum()

```
age
            0
            0
sex
            0
ср
trestbps
            0
chol
            0
fbs
            0
restecg
thalach
            0
exang
oldpeak
            0
slope
            0
ca
            0
thal
            0
target
dtype: int64
```

data.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 303 entries, 0 to 302
 Data columns (total 14 columns):

Data	COTUMINS (COCAI 14 COIUIII	15).
#	Column	Non-Null Coun	t Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64

```
7
   thalach
             303 non-null
                            int64
                            int64
8
  exang
            303 non-null
   oldpeak 303 non-null
9
                            float64
10 slope
             303 non-null
                            int64
                            int64
11 ca
             303 non-null
12 thal
             303 non-null
                            int64
13 target
             303 non-null
                            int64
```

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

data.nunique()

age	41
sex	2
ср	4
trestbps	49
chol	152
fbs	2
restecg	3
thalach	91
exang	2
oldpeak	40
slope	3
ca	5
thal	4
target	2
dtype: int64	
	sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

data['sex']=data['sex'].replace({1 : 'male',0 : 'female'})

data.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	t
	0	63	male	3	145	233	1	0	150	0	2.3	0	0	
	1	37	male	2	130	250	0	1	187	0	3.5	0	0	
	2	41	female	1	130	204	0	0	172	0	1.4	2	0	
	3	56	male	1	120	236	0	1	178	0	0.8	2	0	
	4	57	female	0	120	354	0	1	163	1	0.6	2	0	>

data['thal'].nunique()

→ 4

data['thal'].value_counts()

→ thal
2 166
3 117
1 18

0 2

Name: count, dtype: int64

data.describe()

	age	ср	trestbps	chol	fbs	restecg	thalac
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	54.366337	0.966997	131.623762	246.264026	0.148515	0.528053	149.64686
std	9.082101	1.032052	17.538143	51.830751	0.356198	0.525860	22.90516
min	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.00000
25%	47.500000	0.000000	120.000000	211.000000	0.000000	0.000000	133.50000
50%	55.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.00000
75%	61.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.00000
max	77.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.00000

data1=pd.read_excel('/content/data.xlsx')

data1.agg('mode')

7		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
	0	58.0	1.0	0.0	120.0	197	0.0	1.0	162.0	0.0	0.0	2.0	0.0
	1	NaN	NaN	NaN	NaN	204	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	2	NaN	NaN	NaN	NaN	234	NaN	NaN	NaN	NaN	NaN	NaN	NaN ▶

data1.agg('median')

sex
ср
tre
cho
fbs
res
tha

→ age

55.0 1.0 1.0

1.0

restbps 130.0 hol 240.0 bs 0.0 estecg 1.0 halach 153.0

exang 0.0 oldpeak 0.8 slope 1.0 ca 0.0 thal 2.0

dtype: float64

target

```
data1.agg('var')
```

```
82.484558
age
sex
               0.217166
               1.065132
ср
trestbps
            307.586453
chol
            2686.426748
fbs
              0.126877
restecg
               0.276528
thalach
            524.646406
              0.220707
exang
oldpeak
               1.348095
slope
               0.379735
               1.045724
ca
thal
               0.374883
target
               0.248836
dtype: float64
```

data1.agg('skew')

```
age
           -0.202463
sex
           -0.791335
           0.484732
ср
trestbps
           0.713768
chol
           1.143401
fbs
           1.986652
restecg
          0.162522
thalach
         -0.537410
          0.742532
exang
oldpeak
           1.269720
slope
          -0.508316
ca
           1.310422
thal
           -0.476722
          -0.179821
target
dtype: float64
```

prompt: identify the data variables which might be categorical in nature

categorical_variables = data.select_dtypes(include=['object']).columns.tolist()
print("Categorical variables:", categorical_variables)

→ Categorical variables: ['sex']

data.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 303 entries, 0 to 302
 Data columns (total 14 columns):

Ducu	COTAMINS (COCAT IT COTAMINS	'/・
#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	object
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64

```
5
                    303 non-null
          fbs
                                    int64
                    303 non-null
      6
         restecg
                                    int64
     7
         thalach
                    303 non-null
                                    int64
      8
                    303 non-null
                                    int64
          exang
      9
          oldpeak
                    303 non-null
                                    float64
                    303 non-null
                                    int64
     10 slope
      11 ca
                    303 non-null
                                    int64
     12 thal
                    303 non-null
                                    int64
     13 target
                    303 non-null
                                    int64
     dtypes: float64(1), int64(12), object(1)
     memory usage: 33.3+ KB
data['thal'].value_counts()
    thal
     2
          166
     3
          117
     1
           18
            2
     Name: count, dtype: int64
data['thal']=data['thal'].replace({0 : np.NAN,1 : 'normal',2 : 'fixed defect',3 : 'revers
data['thal'].value_counts()
→ thal
     fixed defect
                          166
     reversible defect
                          117
     normal
                           18
    Name: count, dtype: int64
data['thal']=data['thal'].astype('object')
data.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
     Data columns (total 14 columns):
     #
          Column
                    Non-Null Count Dtype
          -----
                    -----
                                    ----
     ---
                                    int64
     0
          age
                    303 non-null
     1
                                    object
          sex
                    303 non-null
      2
                    303 non-null
                                    int64
         ср
         trestbps 303 non-null
      3
                                    int64
      4
         chol
                    303 non-null
                                    int64
      5
         fbs
                    303 non-null
                                    int64
      6
          restecg
                    303 non-null
                                    int64
      7
         thalach
                    303 non-null
                                    int64
      8
          exang
                    303 non-null
                                    int64
     9
          oldpeak
                    303 non-null
                                    float64
      10
         slope
                    303 non-null
                                    int64
                    303 non-null
                                    int64
     11 ca
      12
                    301 non-null
                                    object
         thal
      13
         target
                    303 non-null
                                    int64
     dtypes: float64(1), int64(11), object(2)
```

memory usage: 33.3+ KB

sns.countplot(x=data['sex'],palette='Set1',edgecolor='Black')
plt.show()

<ipython-input-48-103507cb145b>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. sns.countplot(x=data['sex'],palette='Set1',edgecolor='Black')

sns.countplot(x=data['thal'],palette='Set1',edgecolor='Black')
plt.show()

<ipython-input-49-0bce94f3ec42>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.

data['exang']=data['exang'].replace({0 : 'No',1 : 'Yes'})

data.info()

 \rightarrow <class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype - - -____ 0 age 303 non-null int64 1 303 non-null sex object 2 ср 303 non-null int64 3 trestbps 303 non-null int64 4 chol 303 non-null int64 5 fbs 303 non-null int64 restecg 303 non-null int64 6 7 thalach 303 non-null int64 8 303 non-null object exang 9 oldpeak 303 non-null float64 int64 10 slope 303 non-null 11 303 non-null int64 ca thal 12 301 non-null object 13 target 303 non-null int64 dtypes: float64(1), int64(10), object(3) memory usage: 33.3+ KB

```
sns.countplot(x=data['exang'],palette='Set1',edgecolor='Black')
plt.show()
```

<ipython-input-52-9252fc7459ef>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.

sns.countplot(x=data['exang'],palette='Set1',edgecolor='Black')


```
import pandas as pd
import matplotlib.pyplot as plt
data['age_group'] = pd.cut(data['age'], bins=[0, 30, 40, 50, 60, 70, 80], labels=['0-30',
cvd_counts = data.groupby('age_group')['target'].value_counts()

# Create a bar chart to visualize the occurrence of CVD across different age groups.
cvd_counts.unstack().plot(kind='bar')
plt.xlabel('Age Group')
plt.ylabel('Number of Patients')
plt.title('Occurrence of CVD across Different Ages')
```

prompt: study the occurrence of cvd across different ages

plt.show()

data['age_group1']=pd.cut(data['age'] , bins=[0,30,40,50,60,70,80], labels=['0-30','30-40
cvd_counts1=data.groupby('age_group1')['target'].value_counts()

cvd_counts

\rightarrow	age_group	target	
	0-30	1	1
		0	0
	30-40	1	12
		0	6
	40-50	1	53
		0	23
	50-60	0	65
		1	64
	60-70	0	43
		1	30
	70-80	1	5
		0	1

Name: count, dtype: int64

cvd_counts1.plot(kind='bar')

<Axes: xlabel='age_group1,target'>

cvd_counts1.unstack().plot(kind='bar')

<a> <Axes: xlabel='age_group1'>

prompt: study the comparison of overall patients wrt gender

```
import pandas as pd
import matplotlib.pyplot as plt
# Create a crosstab table to compare the overall number of patients with respect to gende
gender_counts = pd.crosstab(data['sex'], data['target'])

# Print the crosstab table.
print(gender_counts)

# Visualize the crosstab table using a bar chart.
gender_counts.plot(kind='bar', color=['red', 'green'])
plt.xlabel('Gender')
plt.ylabel('Number of Patients')
plt.title('Comparison of Overall Patients wrt Gender')
plt.show()
```


gender_counts1=pd.crosstab(data['sex'],data['target'])

gender_counts1

print(gender_counts1)

gender_counts1.plot(kind='bar',color=['red','green'])
plt.xticks(rotation = 0)

Double-click (or enter) to edit

gender_counts2=data.groupby('sex')['target'].value_counts()

gender_counts2

\rightarrow	sex	target	
	female	1	72
		0	24
	male	0	114
		1	93

Name: count, dtype: int64

gender_counts2.unstack().plot(kind='bar',color=['red','green'])
plt.xticks(rotation=0)

data1.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	;
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	4
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	4
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	1
	1													

sns.regplot(x='target',y='chol',data=data1)
data[['target','chol']].corr()

	target	chol
target	1.000000	-0.085239
chol	-0.085239	1.000000

prompt: describe relation between cholestrol level and target variable

The provided code snippet analyzes a dataset containing patient information and performs

1. **Correlation Analysis:**

The code snippet includes the following line:

data1.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
0	63	1	3	145	233	1	0	150	0	2.3	0	0	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	
	1 2 3	0 631 372 413 56	 0 63 1 1 37 1 2 41 0 3 56 1 	 0 63 1 3 1 37 1 2 2 41 0 1 3 56 1 1 	0 63 1 3 145 1 37 1 2 130 2 41 0 1 130 3 56 1 1 120	0 63 1 3 145 233 1 37 1 2 130 250 2 41 0 1 130 204 3 56 1 1 120 236	0 63 1 3 145 233 1 1 37 1 2 130 250 0 2 41 0 1 130 204 0 3 56 1 1 120 236 0	0 63 1 3 145 233 1 0 1 37 1 2 130 250 0 1 2 41 0 1 130 204 0 0 3 56 1 1 120 236 0 1	0 63 1 3 145 233 1 0 150 1 37 1 2 130 250 0 1 187 2 41 0 1 130 204 0 0 172 3 56 1 1 120 236 0 1 178	0 63 1 3 145 233 1 0 150 0 1 37 1 2 130 250 0 1 187 0 2 41 0 1 130 204 0 0 172 0 3 56 1 1 120 236 0 1 178 0	0 63 1 3 145 233 1 0 150 0 2.3 1 37 1 2 130 250 0 1 187 0 3.5 2 41 0 1 130 204 0 0 172 0 1.4 3 56 1 1 120 236 0 1 178 0 0.8	0 63 1 3 145 233 1 0 150 0 2.3 0 1 37 1 2 130 250 0 1 187 0 3.5 0 2 41 0 1 130 204 0 0 172 0 1.4 2 3 56 1 1 120 236 0 1 178 0 0.8 2	1 37 1 2 130 250 0 1 187 0 3.5 0 0 2 41 0 1 130 204 0 0 172 0 1.4 2 0 3 56 1 1 120 236 0 1 178 0 0.8 2 0

sns.regplot(x='target',y='slope',data=data1)
data1[['target','slope']].corr()

sns.pairplot(data1)

sns.distplot(data1['thalach'])

<ipython-input-78-c579f341f382>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data1['thalach']) <Axes: xlabel='thalach', ylabel='Density'>

data1.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	4
	2	41	0	1	130	204	0	0	172	0	1 4	2	0	