ICS 321 Fall 2009 Storage & Indexing

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

Application View of DBMS

- DBMS holds data in the form of relations or tables
- A table is a bag of tuples or records
- SQL is used to manage and query the data
- Data stored in a DBMS is <u>persistent</u>

Data Storage

- Main Memory
 - Random access
 - Volatile
- Flash Memory
 - Random access
 - Random writes are expensive
- Disk
 - Random access
 - Sequential access cheaper
- Tapes
 - Only sequential access
 - Archiving

CPU Cache **Main Memory Tapes** Disk **Optical** Disks

Tertiary Storage

Relational Tables on Disk

Bufferpool

- Record -- a tuple or row of a relational table
- RIDs record identifiers that uniquely identify a record across memory and disk
- Page a collection of records that is the unit of transfer between memory and disk
- Bufferpool a piece of memory used to cache data and index pages.
- Buffer Manager a component of a DBMS that manages the pages in memory
- Disk Space Manager a component of a DBMS that manages pages on disk

Magnetic Disks

- A disk or platter contains multiple concentric rings called tracks.
- Tracks of a fixed diameter of a spindle of disks form a cylinder.
- Each track is divided into fixed sized sectors (ie. "arcs").
- Data stored in units of disk blocks (in multiples of sectors)
- An array of disk heads moves as a single unit.
- **Seek time**: time to move disk heads over the required track
- Rotational delay: time for desired sector to rotate under the disk head.
- Transfer time: time to actually read/write the data

Accessing Data on Disk

- Seek time: time to move disk heads over the required track
- Rotational delay: time for desired sector to rotate under the disk head.
 - Assume uniform
 distribution, on average
 time for half a rotation
- Transfer time: time to actually read/write the data

Example: Barracuda 1TB HDD (ST31000528AS)

- What is the average time to read 2048 bytes of data?
- = Seek time + rotational latency + transfer time
- = 8.5 msec + 4.16 msec + (2048 / 512) / 63 * (60 000 msec / 7200 rpm)
- = 8.5 + 4.16 + 0.265

cylinders	121601
Bytes/cylinder	16065*512
Blocks/ cylinder	8029
Sectors/track	63
Heads	255
Sprindle Speed	7200 rpm
Average Latency	4.16 msec
Random read seek time	< 8.5 msec
Random read Write time	< 9.5 msec

File Organizations

How do we organize records in a file?

- Heap files: records not in any particular order
 - Good for scans
- Sorted files: records sorted by particular fields
 - scans in the sorted order or range scans in the sorted order
- Indexes: Data structures to organize records via trees or hashing.
 - Like sorted files, they speed up searches for a subset of records, based on values in certain ("search key") fields
 - Updates are much faster than in sorted files

Comparing File Organizations

Consider an employee table with search key <age,sal>

- Scans: fetch all records in the file
- Point queries: find all employees who are 30 years old
- Range queries: find all employees aged above
 65.
- Insert a record.
- Delete a record given its RID.

Simple Evaluation Model

- B: number of data pages
- R : number of records per page
- D : average time to read/write a disk page
 - From previous calculations, if a page is 2K bytes, D is about 13 milliseconds
- C: average time to process a record
 - For the 1 Ghz processors we have today, assuming it takes 100 cyles, C is about 100 nanoseconds