

Mathématiques

Classe: 4^{ème} Informatiques

Série: Révision 1er et 2éme

trimestres

Nom du prof : Haythem Mhadhbi

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

www.takiacademy.com

73.832.000

Exercice 1:

(\$\sqrt{30}\text{ min}

6 pts

- 1. On considère dans $\mathbb C$ l'équation $(E):z^2-(1+i)z+2+2i=0.$
 - (a) Calculer $(1-3i)^2$.
 - (b) Résoudre l'équation (E).
- 2. Le plan est muni d'un repère orthonormé $\left(\mathbf{O},\ \overrightarrow{u},\ \overrightarrow{v}\right)$. On désigne par $A,\ B$ et C les points d'affixes $4;\ 1-i$ et 2i.
 - (a) Placer les points A, B et C.
 - (b) Montrer que le triangle ABC est isocèle et rectangle.
 - (c) Soit D le point d'affixe 3 + 3i. Montrer que ABCD est un carré.
- 3. Soit M un point du plan d'affixe z et M' le point d'affixe $z'=(z-4)(i\bar{z}-2)$
 - (a) Calculer z' lorsque z = 1 i.
 - (b) Vérifier que $z' = i(z-4)(\overline{z-2i})$.
 - (c) En déduire que si M appartient à la droite (AC) alors M' appartient à une droite que l'on précisera.

Exercice 2:

(\$\) 40 min

6 pts

Dans la figure ci-dessous , $\left(\mathbf{O},\ \overrightarrow{u},\ \overrightarrow{v}\right)$ est un repère orthonormé et $\mathscr C$ est le cercle de centre O et de rayon $\sqrt{3}$.

- 1. Soit A le point d'affixe $z_A = \sqrt{2} + i$.
 - (a) Montrer que A appartient au cercle \mathscr{C} .
 - (b) Placer A.

- 2. On considère dans $\mathbb C$ l'équation $(E): z^2 + (\sqrt{6} i\sqrt{3})z 3i\sqrt{2} = 0$.
 - (a) Vérifier que $i\sqrt{3}$ est une solution de (E).
 - (b) En déduire l'autre solution.
- 3. On considère les points $I,\ J$ et K d'affixes $z_I=i\sqrt{3},\quad z_J=-\sqrt{6}$ et $z_K=\sqrt{6}+2i\sqrt{3}$
 - (a) Montrer que $(z_I z_J) \times \overline{z_A} = 3\sqrt{3}$. En déduire que la droite (IJ) est parallèle à la droite (OA).
 - (b) Montrer que le point I est le milieu du segment [JK].
 - (c) Placer le point I et construire alors les points J et K.

Exercice 3:

(\$\) 40 min

6 pts

Soit la suite u définie sur $\mathbb N$ par : $\begin{cases} u_0 = 6 \\ u_{n+1} = \frac{u_n + 1}{3} \end{cases}.$

- 1. (a) Montrer que pour tout entier $n, u_n > \frac{1}{2}$.
 - (b) Montrer que (u_n) est décroissante.
 - (c) Déduire que (u_n) est convergente et donner sa limite.
- 2. On pose $v_n = \ln\left(u_n \frac{1}{2}\right)$.
 - (a) Montrer que (v_n) est arithmétique et préciser sa raison et son premier terme.
 - (b) Écrire v_n puis u_n en fonction de n.
 - (c) Retrouver $\lim_{n\to+\infty} u_n$.

Exercice 4:

6 pts

Soit la suite (u_n) définie sur $\mathbb N$ par $\left\{\begin{array}{l} u_0=3\\ u_{n+1}=\sqrt{\frac{1+u_n^2}{2}} \ ; n\in \mathbb N \end{array}\right.$

- 1. (a) Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a : $u_n > 1$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{1 u_n^2}{2(u_{n+1} + u_n)}$.
 - (c) En déduire que la suite (u_n) est décroissante.
 - (d) En déduire que la suite (u_n) est convergente et calculer sa limite .
- 2. Soit la suite (v_n) définie sur \mathbb{N}^* par $v_n = \ln \left(u_n^2 1 \right)$.
 - (a) Montrer que (v_n) est une suite arithmétique de raison $r=-\ln 2$.
 - (b) Calculer v_n puis u_n en fonction de n.
 - (c) Retrouver $\lim_{n\to+\infty} u_n$.

- 1. Soit l'équation (E): 11x 13y = 9 avec $x, y \in \mathbb{Z}$.
 - (a) vérifier que (2,1) est une solution particulière de l'équation (E).
 - (b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2. Soit $d = x \wedge y$ où (x, y) est solution de (E). Déterminer les valeurs possibles de d.
- 3. On donne le système (S): $\begin{cases} n \equiv 0[11] \\ n \equiv 9[13] \end{cases} n \in \mathbb{Z}.$ Montrer que n est solution de (S) équivaut à $n \equiv 22[143]$
- 4. (a) Vérifier que $55^2 \equiv 9[13]$ et $55^3 \equiv 1[13]$
 - (b) En déduire que 55^{2021} est une solution de (S).
 - (c) Déterminer le reste de 55^{2021} modulo 143 .

Exercice6:

(5) 40 min

6 pts

- 1. (a) Montrer que pour tout entier naturel n on a $16^{2n+1} + 18^n \equiv 0$ [17]
 - (b) En déduire le reste de la division de $16^{2019} + 18^{1009} + 2019$ par 17.
- 2. Soit a et b deux entiers vérifiant $a^{17}\equiv b[17]$ et $a^{40}\equiv 1[17]$. Montrer que $b^{33}\equiv a[17]$
- 3. Soit l'équation (E): 17x 40y = 1 avec x et y deux entiers relatifs.
 - (a) Vérifier que (-7, -3) est une solution de (E).
 - (b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
 - (c) Déterminer le plus entiers naturel n tel que $17n \equiv 1[40]$
- 4. Soit l'équation (F) $x^2 + 2x \equiv 0$ [5] avec x est entier relatif.
 - (a) Montrer que si x = 5k + 3 avec $k \in \mathbb{Z}$ alors x est une solution de (F)
 - (b) Résoudre dans $\mathbb Z$ l'équation (F).

Exercice7:

(5) 40 min

6 pts

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = (x-1)e^x$. On désigne par \mathscr{C} la courbe représentative de f dans un repère orthonormé $\left(\mathbf{O}, \overrightarrow{i}, \overrightarrow{j}\right)$.
 - (a) Calculer $\lim_{x\to -\infty} f(x).$ Interpréter graphiquement le résultat.
 - (b) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats.
 - (c) Montrer que f est dérivable sur $\mathbb R$ et que pour tout $x \in \mathbb R$, $f'(x) = xe^x$.
 - (d) Dresser le tableau de variation de f.
- 2. Montrer que le point $A\left(-1,-\frac{2}{e}\right)$ est un point d'inflexion pour la courbe $\mathscr{C}.$
- 3. On donne dans la figure ci-dessous le repère orthonormé (O,\vec{i},\vec{j}) et les droites: Δ d'équation $y=-\frac{1}{e}x-\frac{3}{e}$ et Δ' d'équation y=e(x-1).

- (a) Vérifier que Δ est la tangente à la courbe ($\mathscr C$) au point A et que Δ' est la tangente à la courbe ($\mathscr C$) au point d'abscisse 1.
- (b) Placer le point A et tracer ($\mathscr C$) dans le repère $\left(\mathbf{O},\ \overrightarrow{i},\ \overrightarrow{j}\right)$.
- 4. (a) Vérifier que $f(x) = f'(x) e^x$.
 - (b) En déduire une primitive F de f sur \mathbb{R} .
 - (c) Calculer l'aire de la partie du plan limitée par la courbe ($\mathscr C$), les deux axes des coordonnés et la droite d'équation x=1.
- 5. Soit g la restriction de f à $[0,+\infty[$
 - (a) Montrer que g réalise une bijection de $[0,+\infty[$ sur un intervalle J que l'on précisera.
 - (b) Construire dans le même repère la courbe (\mathscr{C}') de la fonction g^{-1} la réciproque de g.

Taki Academy www.takiacademy.com

Exercice8:

(5) 40 min

Soit
$$A = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -1 & 1 & 2 \\ 1 & 0 & -2 \end{pmatrix}$

- Montrer que la matrice A est inversible.
 - b Montrer que $A^{-1} = B$.
 - \mathbb{C} Résoudre dans \mathbb{R}^3 le système $\begin{cases} 4x + 2y + z = -8 \\ y + z = 2 \\ 2x + y = -2 \end{cases}$
- ② On considère l'application f de $\mathbb C$ dans $\mathbb C$ définie par $f(z)=z^3+az^2+bz+c$,où a;b , et c sont des réels.
 - a Déterminer a;b, et c sachant que f(2) = f(1-i) = 0.
 - ь Résoudre dans \mathbb{C} l'équation (E) : $z^3 4z^2 + 6z 4 = 0$.
- 3 Le plan complexe étant muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) ; on désigne par A et B les points d'affixes respectives 2 et 1-i.
 - \blacksquare Montrer que le triangle OAB est rectangle en B.
 - b Soit C le symétrique de B par rapport à l'axe des abscisses; Montrer que OBAC est un carré.

