

Winter - 2013 Examination

Model Answer Page No: 1/32 Subject & Code: Engg. Maths (12013)

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Que.

No.

1)

Sub.

Que.

b)

Ans.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model answers

OR

Attempt any TEN of the following:

If $f(x) = x - x^{-1}$ then show that $f\left(\frac{1}{x}\right) = -f(x)$.

 $= -\left(x - \frac{1}{x}\right) \quad or \quad -\left(x - x^{-1}\right)$

If $f(x) = x^7 - 5x^3 + 3\sin x$ then find f(x) + f(-x)

 $=(-1)^7 x^7 - 5(-1)^3 (x)^3 + 3(-\sin x)$

 $\therefore f(x) + f(-x) = x^7 - 5x^3 + 3\sin x - x^7 + 5x^3 - 3\sin x$

OR

Subject & Code: Engg. Maths (12013)

 $\therefore f\left(\frac{1}{x}\right) = \frac{1}{x} - \left(\frac{1}{x}\right)^{-1}$

 $\therefore f\left(\frac{1}{x}\right) = \frac{1}{x} - \left(\frac{1}{x}\right)^{-1}$

 $= \frac{1}{x} - x$ $-f(x) = -(x - x^{-1})$

 $=-\left(x-\frac{1}{x}\right)$

 $f(x) = x^7 - 5x^3 + 3\sin x$

 $f(-x) = (-x)^7 - 5(-x)^3 + 3\sin(-x)$

 $=-x^7+5x^3-3\sin x$

 Page No	o: 2/32
Marks	Total Marks
1/2	
1/2	
1/2	
1/2	2
, -	
1/2	
1/2	
1/2	
1/2	2
1/2	
/2	
1/2 1/2	

Subject & Code: Engg. Maths (12013)

Page No: 3/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	Que.	$f(x) = x^7 - 5x^3 + 3\sin x$		Marks
		$\therefore f(-x) = (-x)^7 - 5(-x)^3 + 3\sin(-x)$	1/2	
		$= (-1)^7 x^7 - 5(-1)^3 (x)^3 + 3(-\sin x)$	72	
		$=-x^7+5x^3-3\sin x$	1/	
		$=-\left(x^{7}-5x^{3}+3\sin x\right)$	1/2	
		=-f(x)	1/2	
		$\therefore f(x) + f(-x) = 0$	1/2	2
		OR	, 2	
		$f(x) = x^7 - 5x^3 + 3\sin x$		
		$\therefore f(x) + f(-x) = \left[x^7 - 5x^3 + 3\sin x\right] + \left[(-x)^7 - 5(-x)^3 + 3\sin(-x)\right]$	1/2	
		$= x^7 - 5x^3 + 3\sin x + (-1)^7 x^7 - 5(-1)^3 (x)^3 + 3(-\sin x)$		
		$= x^7 - 5x^3 + 3\sin x - x^7 + 5x^3 - 3\sin x$	1	_
		= 0	1/2	2
	c)	$r^3 + 1$		
	- /	Evaluate $\lim_{x\to 1} \frac{x^3+1}{x+1}$		
	Ans.	$\lim_{x \to -1} \frac{x^3 + 1}{x + 1} = \lim_{x \to -1} \frac{(x + 1)(x^2 - x + 1)}{x + 1}$	1/2	
		$= \lim_{x \to -1} \left(x^2 - x + 1 \right)$	1/2	
		$=(-1)^2-(-1)+1$	1/	
		= 3	1/ ₂ 1/ ₂	2
		OR		
		$\lim_{x \to -1} \frac{x^3 + 1}{x + 1} = \lim_{x \to -1} \frac{x^3 + 1^3}{x + 1}$	1/2	
		$=3(-1)^2$	1	
		= 3	1/2	2
		Note: The above solution method is the direct application of the		
		result $\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$ or $\lim_{x \to -a} \frac{x^n + a^n}{x + a} = n(-a)^{n-1}$		
		Evaluate $\lim_{x \to \infty} \sin 7x$		
	d)	Evaluate $\lim_{x\to 0} \frac{\sin^{-x}x}{\tan 3x}$		
	Ans.	$\sin 7x$ $\sin 7x$		
		$\lim_{x \to 0} \frac{\sin 7x}{\tan 3x} = \lim_{x \to 0} \frac{x}{\frac{\tan 3x}{\tan 3x}}$		
		x		

Subject & Code: Engg. Maths (12013) **Page No:** 4/32

Que.	Sub.	Model answers	Marks	Total
No.	Que.		IVIAIRS	Marks
1)		$= \lim_{x \to 0} \frac{\frac{\sin 7x}{7x} \times 7}{\frac{\tan 3x}{3x} \times 3}$ 1×7	1/2	
		$= \frac{1 \times 7}{1 \times 3}$ $= \frac{7}{3}$	1 1/2	2
		OR		
		$\lim_{x \to 0} \frac{\sin 7x}{\tan 3x} = \lim_{x \to 0} \frac{\sin 7x}{x} \times \frac{x}{\tan 3x}$		
		$= \lim_{x \to 0} \frac{\sin 7x}{7x} \times 7 \times \frac{3x}{\tan 3x} \times \frac{1}{3}$	1/2	
		$=1\times7\times1\times\frac{1}{3}$	1	2
		$=\frac{7}{3}$	1/2	2
	e)	Evaluate $\lim_{x\to 0} \frac{e^{5+2x}-e^5}{x}$		
	Ans.	$\lim_{x \to 0} \frac{e^{5+2x} - e^5}{x} = \lim_{x \to 0} \frac{e^5 \cdot e^{2x} - e^5}{x}$		
		$=\lim_{x\to 0}\frac{e^5\left(e^{2x}-1\right)}{x}$	1/2	
		$=\lim_{x\to 0}e^5\left(\frac{e^{2x}-1}{x}\right)$		
		$= \lim_{x \to 0} e^5 \left(\frac{e^{2x} - 1}{2x} \times 2 \right)$	1/2	
		$=e^{5}\left(1\times2\right)$	1/2	_
		$=2e^5$	1/2	2
	f)	Evaluate $\lim_{x\to\infty} \left(1+\frac{3}{2x}\right)^{2x}$		
	Ans.	$\lim_{x \to \infty} \left(1 + \frac{3}{2x} \right)^{2x}$		
		$=\lim_{x\to\infty} \left(1+\frac{3}{2x}\right)^{\frac{2x}{3}\times 3}$	1	
		$=e^3$	1	2

Subje	ect & Co	ode: Engg. Maths (12013)	Page No	: 5/32
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	g)	If $y = \sec x + \tan x$, then show that $\frac{1}{y} \frac{dy}{dx} = \sec x$		Iviairs
	Ans.	$y = \sec x + \tan x$ $y = \sec x + \tan x$		
	1110.			
		$\therefore \frac{dy}{dx} = \sec x \tan x + \sec^2 x$	1	
		$= \sec x (\sec x + \tan x)$	1/	
		$= \sec x \cdot y$ $1 \ dy$	1/2 1/2	2
		$\therefore \frac{1}{y} \frac{dy}{dx} = \sec x$		
		\mathbf{OR} $y = \sec x + \tan x$		
		$\therefore \frac{dy}{dx} = \sec x \tan x + \sec^2 x$	1	
			1	
		$= \sec x (\sec x + \tan x)$ $1 dy$	1/2	
		$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \times \sec x (\sec x + \tan x)$		
		$= \sec x$	1/2	2
	h)	Evaluate $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$		
	Ans.	$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \times \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$		
		$= \lim_{x \to 0} \frac{(1+x) - (1-x)}{x} \times \frac{1}{\sqrt{1+x} + \sqrt{1-x}}$	1/2	
		$= \lim_{x \to 0} \frac{1 + x - 1 + x}{x} \times \frac{1}{\sqrt{1 + x} + \sqrt{1 - x}}$		
		$= \lim_{x \to 0} \frac{2x}{x} \times \frac{1}{\sqrt{1+x} + \sqrt{1-x}}$	1/2	
		$= \lim_{x \to 0} 2 \times \frac{1}{\sqrt{1+x} + \sqrt{1-x}}$		
		$=2\times\frac{1}{\sqrt{1}+\sqrt{1}}$	1/2	
		$ \begin{array}{c} \sqrt{1+\sqrt{1}} \\ =1 \end{array} $	1/2	2
	i)	Find $\frac{dy}{dx}$, if $y = x \sin x + \cos x$		
	Ans.	$\frac{dy}{dx} = x \cdot \cos x + \sin x \cdot 1 - \sin x$	1	
		$ dx = x \cos x $	1	2
			1	

Subject & Code: Engg. Maths (12013)

Page No: 6/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	j)	Find $\frac{dy}{dx}$, if $y = \cot(4x+5)$		IVIGINS
	Ans.	$\frac{dy}{dx} = -\cos ec^2 \left(4x+5\right) \cdot \frac{d}{dx} \left(4x+5\right)$	1/2	
		$= -\cos ec^{2}(4x+5)\cdot(4+0)$	1/2	0
		$=-4\cos ec^2(4x+5)$	1	2
		OR		
		$Put \ u = 4x + 5$		
		$\therefore \frac{du}{dx} = 4$	1/2	
		$\therefore y = \cot u$		
		$\therefore \frac{dy}{du} = -\cos ec^2 u$	1/2	
		an	/2	
		$\therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$		
		$=-\cos ec^2(4x+5)\cdot 4$		•
		$=-4\cos ec^2(4x+5)$	1	2
	k)			
	10)	The mean of 20 observations is 25 and mean of 10 observations is 15. Find the mean of combined 30 observations.		
	Ans.	15.11111111111111111111111111111111111		
	Ans.	$\frac{1}{x_2} = 15$ $N_2 = 10$		
		$\therefore \overline{x} = \frac{N_1 \overline{x_1} + N_2 \overline{x_2}}{N_1 + N_2}$		
		$=\frac{20\times25+10\times15}{}$	1	
		$ \begin{array}{c} 20+10 \\ = 21.667 \end{array} $	1	•
		_ 21.00 <i>/</i>	1	2
	<i>l</i>)	Find the median and mode of the following data:		
	Ans.	5, 8, 10, 9, 7, 6, 5, 8, 5.		
		Rearrange the data as: 5, 5, 5, 6, 7, 8, 8, 9, 10		
		$Median = value \left(\frac{N+1}{2}\right) th \ item$		
		=5th value	1	
		= 7		
		Mode = item having max. frequency	1	2
		= 5	1	=

Subject & Code: Engg. Maths (12013) **Page No:** 7/32

Que.	Sub.	Model answers	Marks	Total
No. 2)	Que.	Attempt any FOUR of the following:		Marks
	a)	Find $f(t)$, if $f(x) = \frac{x+2}{4x-3}$ and $t = \frac{2+3x}{4x-1}$.		
	Ans.	$\therefore f(t) = \frac{t+2}{4t-3}$ $= \frac{\frac{2+3x}{4x-1} + 2}{4\left(\frac{2+3x}{4x-1}\right) - 3}$		
		(4.1)	1	
		$=\frac{\frac{2+3x+2(4x-1)}{4x-1}}{\frac{4(2+3x)-3(4x-1)}{4x-1}}$		
		$= \frac{2+3x+2(4x-1)}{4(2+3x)-3(4x-1)}$ $2+3x+8x-2$	1	
		$= \frac{2+3x+8x-2}{8+12x-12x+3}$ $= \frac{11x}{11}$	1	
		= x	1	4
		If $f(t) = 4.5 \left[\sin pt + \frac{1}{2} \sin 2pt \right]$, then show that $f\left(\frac{2\pi}{p} + t\right) = f(t)$.		
	b)	$f\left(\frac{2\pi}{p} + t\right) = 4.5 \left[\sin p\left(\frac{2\pi}{p} + t\right) + \frac{1}{2}\sin 2p\left(\frac{2\pi}{p} + t\right)\right]$	1	
	Ans.	$= 4.5 \left[\sin(2\pi + pt) + \frac{1}{2} \sin(4\pi + 2pt) \right]$	1	
		$=4.5\left[\sin pt + \frac{1}{2}\sin 2pt\right]$	1	
		$= f(t)$ $x^2 - x - 6$	1	4
	c)	Evaluate $\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3x^2 + x - 3}$ $x^2 - x - 6$ $(x - 3)(x + 2)$	1	
	,	$\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3x^2 + x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{(x - 3)(x^2 + 1)}$		
	Ans.	$= \lim_{x \to 3} \frac{x+2}{x^2+1}$ $= \frac{3+2}{3^2+1}$	1	
		$-\frac{3^2+1}{3^2+1}$ $=\frac{1}{2}$	1	4

Page No: 8/32

Subject & Code: Engg. Maths (12013)

d) Evaluate $\lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}}$ Ans. $\lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} = \lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} \times \frac{\sqrt{x + \sqrt{a}}}{\sqrt{x + \sqrt{a}}}$ $= \lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} \times (\sqrt{x + \sqrt{a}})$ $= \lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} \times (\sqrt{x + \sqrt{a}})$ Put $x - a = t$ As $x \to a$, $t \to 0$ $\lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} = \lim_{t\to 0} \frac{\sin(t + a) - \sin a}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t\to 0} \frac{2\cos(\frac{t + 2a}{2})}{t} \times \frac{\sin(\frac{t}{2})}{x} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t\to 0} 2\cos(\frac{t + 2a}{2}) \times \frac{\sin(\frac{t}{2})}{\frac{t}{2}} \times \frac{1}{2} \times (\sqrt{t + a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ OR $\lim_{t\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} = \lim_{t\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x + \sqrt{a}}}$ $= \lim_{t\to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} \frac{\cos(\frac{x + a}{2})}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} 2\cos(\frac{x + a}{2}) \times \frac{\sin(\frac{x - a}{2})}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{t\to a} 2\cos(\frac{x + a}{2}) \times \frac{\sin(\frac{x - a}{2})}{x - a}$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$	No.	Que.	Model answers	Marks	Total Marks
Ans. $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $Put \ x - a = t As x \to a, \ t \to 0$ $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{t \to 0} \frac{\sin(t + a) - \sin a}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} 2 \cos\left(\frac{t + 2a}{2}\right) \sin\left(\frac{t}{2}\right) \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} 2 \cos\left(\frac{t + 2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{\frac{t}{2}} \times \frac{1}{2} \times (\sqrt{t + a} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2 \cos\left(\frac{x + a}{2}\right) \sin\left(\frac{x - a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1	2)	d)	Evaluate $\lim_{x\to a} \frac{\sin x - \sin a}{\sqrt{x - \sqrt{a}}}$		
$= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $Put \ x - a = t As x \to a, t \to 0$ $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{t \to 0} \frac{\sin(t + a) - \sin a}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} \frac{2 \cos\left(\frac{t + 2a}{2}\right) \sin\left(\frac{t}{2}\right)}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} 2 \cos\left(\frac{t + 2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{\frac{t}{2}} \times \frac{1}{2} \times (\sqrt{t + a} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2 \sqrt{a} \cos a$ OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\cos x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \sin\left(\frac{x - a}{2}\right) \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1		Ans.			
Put $x - a = t$ As $x \to a$, $t \to 0$ $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{t \to 0} \frac{\sin(t + a) - \sin a}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} \frac{2\cos\left(\frac{t + 2a}{2}\right)\sin\left(\frac{t}{2}\right)}{t} \times (\sqrt{t + a} + \sqrt{a})$ $= \lim_{t \to 0} 2\cos\left(\frac{t + 2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{t} \times \frac{1}{2} \times (\sqrt{t + a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\sqrt{a}\cos a$ OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x + a}{2}\right)\sin\left(\frac{x - a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$= \lim_{x \to a} \frac{\sin x - \sin a}{\left(\sqrt{x}\right)^2 - \left(\sqrt{a}\right)^2} \times \left(\sqrt{x} + \sqrt{a}\right)$		
$\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{t \to 0} \frac{\sin(t+a) - \sin a}{t} \times (\sqrt{t+a} + \sqrt{a})$ $= \lim_{t \to 0} \frac{2\cos\left(\frac{t+2a}{2}\right)\sin\left(\frac{t}{2}\right)}{t} \times (\sqrt{t+a} + \sqrt{a})$ $= \lim_{t \to 0} 2\cos\left(\frac{t+2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{t} \times \frac{1}{2} \times (\sqrt{t+a} + \sqrt{a})$ $= \lim_{t \to 0} 2\cos\left(\frac{t+2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{t} \times \frac{1}{2} \times (\sqrt{t+a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\sqrt{a}\cos a$ OR $\lim_{t \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{t \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$	1/2	
$= \lim_{t \to 0} \frac{2\cos\left(\frac{t+2a}{2}\right)\sin\left(\frac{t}{2}\right)}{t} \times (\sqrt{t+a} + \sqrt{a})$ $= \lim_{t \to 0} 2\cos\left(\frac{t+2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{\frac{t}{2}} \times \frac{1}{2} \times (\sqrt{t+a} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\sqrt{a}\cos a$ OR $\lim_{t \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{x - a} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$Put \ x - a = t \qquad As x \to a, t \to 0$	1/2	
$= \lim_{t \to 0} 2\cos\left(\frac{t + 2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{\frac{t}{2}} \times \frac{1}{2} \times \left(\sqrt{t + a} + \sqrt{a}\right)$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$ $= 2\sqrt{a}\cos a$ OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x + a}{2}\right)\sin\left(\frac{x - a}{2}\right)}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} 2\cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{\frac{x - a}{2}} \times \frac{1}{2} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$ 1				1/2	
$= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ $= 2\sqrt{a}\cos a$ OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1 1 1			$= \lim_{t \to 0} \frac{2\cos\left(\frac{t+2a}{2}\right)\sin\left(\frac{t}{2}\right)}{t} \times \left(\sqrt{t+a} + \sqrt{a}\right)$	1	
OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2 \cos\left(\frac{x + a}{2}\right) \sin\left(\frac{x - a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{\frac{x - a}{2}} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$= \lim_{t \to 0} 2\cos\left(\frac{t+2a}{2}\right) \times \frac{\sin\left(\frac{t}{2}\right)}{\frac{t}{2}} \times \frac{1}{2} \times \left(\sqrt{t+a} + \sqrt{a}\right)$	1/2	
OR $\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x - a} \times (\sqrt{x} + \sqrt{a})$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$= 2\cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$	1/2	
$\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} \frac{2 \cos\left(\frac{x + a}{2}\right) \sin\left(\frac{x - a}{2}\right)}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} 2 \cos\left(\frac{x + a}{2}\right) \times \frac{\sin\left(\frac{x - a}{2}\right)}{\frac{x - a}{2}} \times \frac{1}{2} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$ 1			$=2\sqrt{a}\cos a$	1/2	4
$= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times \left(\sqrt{x} + \sqrt{a}\right)$ $= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$ 1 1 1 1			OR		
$= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x-a} \times \left(\sqrt{x} + \sqrt{a}\right) $ $= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times \left(\sqrt{x} + \sqrt{a}\right) $ $= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right) $ 1 1 1					
$= \lim_{x \to a} 2 \cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times (\sqrt{x} + \sqrt{a})$ $= 2 \cos(a) \times 1 \times \frac{1}{2} \times (\sqrt{a} + \sqrt{a})$ 1			$= \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \times \left(\sqrt{x} + \sqrt{a}\right)$	1/2	
$= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$			$= \lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right)\sin\left(\frac{x-a}{2}\right)}{x-a} \times \left(\sqrt{x} + \sqrt{a}\right)$	1	
$= 2\cos(a) \times 1 \times \frac{1}{2} \times \left(\sqrt{a} + \sqrt{a}\right)$			$= \lim_{x \to a} 2\cos\left(\frac{x+a}{2}\right) \times \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}} \times \frac{1}{2} \times \left(\sqrt{x} + \sqrt{a}\right)$	1	
$=2\sqrt{a}\cos a$				1	
			$=2\sqrt{a}\cos a$	1/2	4

Subject & Code: Engg. Maths (12013)

Page No: 9/32

Que.	Sub.	Model answers	Marks	Total
No. 2)	Que.			Marks
	e)	Evaluate $\lim_{x\to 0} \frac{4^{2x} - 2^{3x}}{x}$		
	A	$\lim_{x \to 0} \frac{4^{2x} - 2^{3x}}{x} = \lim_{x \to 0} \frac{4^{2x} - 1 - 2^{3x} + 1}{x}$	1/	
	Ans.		1/2	
		$= \lim_{x \to 0} \frac{\left(4^{2x} - 1\right) - \left(2^{3x} - 1\right)}{x}$		
		$= \lim_{x \to 0} \left(\frac{4^{2x} - 1}{x} - \frac{2^{3x} - 1}{x} \right)$	1	
		$= \lim_{x \to 0} \left(\frac{4^{2x} - 1}{2x} \times 2 - \frac{2^{3x} - 1}{3x} \times 3 \right)$	1	
		$= \log 4 \times 2 - \log 2 \times 3$	1 1/2	4
		$= 2\log 4 - 3\log 2$ OR	72	
		$\lim_{x \to 0} \frac{4^{2x} - 2^{3x}}{x} = \lim_{x \to 0} \frac{16^x - 8^x}{x}$	1	
		$= \lim_{x \to 0} \frac{16^x - 1 - 8^x + 1}{x}$	1	
		$= \lim_{x \to 0} \frac{(16^x - 1) - (8^x - 1)}{x}$		
		$= \lim_{x \to 0} \left(\frac{16^x - 1}{x} - \frac{8^x - 1}{x} \right)$	1	
		$= \log 16 - \log 8 \qquad \text{OR} \log \left(\frac{16}{8}\right) = \log 2$	1	4
		OR 2log 4-3log 2		
	f) Ans.	Evaluate $\lim_{x \to \infty} \left(\frac{x+2}{x+1} \right)^x$		
		$\lim_{x \to \infty} \left(\frac{x+2}{x+1} \right)^x = \lim_{x \to \infty} \left(\frac{1+\frac{2}{x}}{1+\frac{1}{x}} \right)^x$	1	
		$= \lim_{x \to \infty} \frac{\left(1 + \frac{2}{x}\right)^x}{\left(1 + \frac{1}{x}\right)^x}$		
		$= \lim_{x \to \infty} \frac{\left(1 + \frac{2}{x}\right)^{\frac{x}{2} \times 2}}{\left(1 + \frac{1}{x}\right)^{x}}$	1	
			1	
		$=\frac{e^2}{e}$	1	4
		= <i>e</i>	1	

Subject & Code: Engg. Maths (12013) **Page No:** 10/32

Que.	Sub.	Model answers	Marks	Total
No. 3)	Que.	Attempt any FOUR of the following:		Marks
		and the first part of the firs		
	a)	If $x = 3\cos t - 2\cos^3 t$, $y = 3\sin t - 2\sin^3 t$ then find $\frac{dy}{dx}$.		
	Ans.	$x = 3\cos t - 2\cos^3 t$		
		$\frac{dx}{dt} = -3\sin t - 2 \times 3\cos^2 t \left(-\sin t\right)$		
		$=-3\sin t+6\cos^2 t\sin t$		
		$=3\sin t\left(-1+2\cos^2 t\right)$	1	
		$y = 3\sin t - 2\sin^3 t$		
		$\frac{dy}{dt} = 3\cos t - 2 \times 3\sin^2 t (\cos t)$		
		$=3\cos t - 6\sin^2 t \cos t$		
		$=3\cos t\left(1-2\sin^2 t\right)$	1	
		$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3\cos t \left(1 - 2\sin^2 t\right)}{3\sin t \left(-1 + 2\cos^2 t\right)}$		
		$dx dx/dt 3\sin t \left(-1 + 2\cos^2 t\right)$		
		$=\frac{\cos t \cos 2t}{\sin t \cos 2t}$	1	
		$ \begin{aligned} \sin t \cos 2t \\ &= \cot t \end{aligned} $	1	4
	b)	Differentiate $\tan^{-1} \left(\frac{\sqrt{1-x^2}}{x} \right)$ w. r. t. $\sin^{-1} \left(2x\sqrt{1-x^2} \right)$		
	Ans.	$u = \tan^{-1} \left(\frac{\sqrt{1 - x^2}}{x} \right)$		
		$Put \ x = \cos \theta$		
		$u = \tan^{-1} \left(\frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta} \right) = \tan^{-1} \left(\frac{\sin \theta}{\cos \theta} \right) = \tan^{-1} \left(\tan \theta \right) = \theta$		
		$\therefore u = \cos^{-1} x$	1	
		$\therefore \frac{du}{dx} = -\frac{1}{\sqrt{1-x^2}}$	1/2	
		$v = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$		
		Put $x = \sin \theta$ (or also $x = \cos \theta$)		
		$\therefore v = \sin^{-1}\left(2\sin\theta\sqrt{1-\sin^2\theta}\right) = \sin^{-1}\left(2\sin\theta\cos\theta\right) = \sin^{-1}\left(\sin2\theta\right) = 2\theta$	1	
		$\therefore v = 2\sin^{-1} x$	1	
		$\therefore \frac{dv}{dx} = \frac{2}{\sqrt{1-x^2}}$	1/2	

Subject & Code: Engg. Maths (12013)

Page No: 11/32

Que.	Sub.	Model answers	Marks	Total
No. 3)	Que.			Marks
		$\therefore \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{-\sqrt{1-x^2}}{\frac{2}{\sqrt{1-x^2}}} = -\frac{1}{2}$	1	4
	c)	Find $\frac{dy}{dx}$, $\sin xy + \cos(x + y) = 1$.		
	Ans.	$\sin xy + \cos(x+y) = 1$ $\therefore \cos xy \frac{d}{dx}(xy) - \sin(x+y) \frac{d}{dx}(x+y) = 0$	1	
		$\therefore \cos xy \left(x \frac{dy}{dx} + y \right) - \sin \left(x + y \right) \left(1 + \frac{dy}{dx} \right) = 0$	1	
		$\therefore x \cos xy \frac{dy}{dx} + y \cos xy - \sin(x+y) - \sin(x+y) \frac{dy}{dx} = 0$		
		$\left[\therefore \left[x \cos xy - \sin \left(x + y \right) \right] \frac{dy}{dx} = \sin \left(x + y \right) - y \cos xy \right]$	1	
		$\therefore \frac{dy}{dx} = \frac{\sin(x+y) - y\cos xy}{x\cos xy - \sin(x+y)}$	1	4
	d)	Differentiate $(\sin x)^x$ w. r. t. x.		
	Ans.	Let $y = (\sin x)^x$		
		$\therefore \log y = x \log(\sin x)$	1	
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{d}{dx} \Big[\log(\sin x) \Big] + \log(\sin x) \cdot \frac{d}{dx} (x)$		
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \left[\frac{1}{\sin x} \cdot \cos x \right] + \log(\sin x) \cdot [1]$	1	
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cot x + \log(\sin x)$	1	
		$\therefore \frac{dy}{dx} = y \Big[x \cot x + \log(\sin x) \Big]$	1	4
	e)	If $x^y = e^{x-y}$, then show that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$		
	Ans.	$x^{y} = e^{x-y}$		
		$\therefore y \log x = x - y$	1/2	
		$\therefore y \log x + y = x$	1/2	
		$\therefore y(\log x + 1) = x$	/ 2	

Subject & Code: Engg. Maths (12013)

Page No: 12/32

Que.	Sub.	Model answers	Marks	Total
No. 3)	Que.	X		Marks
		$\therefore y = \frac{x}{\log x + 1}$	1	
		$\therefore \frac{dy}{dx} = \frac{\left(\log x + 1\right) \cdot 1 - x\left(\frac{1}{x} + 0\right)}{\left(\log x + 1\right)^2}$	1	
		$\therefore \frac{dy}{dx} = \frac{\log x + 1 - 1}{\left(\log x + 1\right)^2}$		
		$\therefore \frac{dy}{dx} = \frac{\log x}{(\log x + 1)^2}$	1	4
		$\frac{dx}{dx} \left(\log x + 1 \right)$ OR		
		$x^{y} = e^{x-y}$		
		$\therefore y \log x = x - y \qquad \dots (1)$	1/2	
		$\therefore y \log x + y = x \qquad \dots (2)$		
		$\therefore y \cdot \frac{1}{x} + \log x \frac{dy}{dx} + \frac{dy}{dx} = 1$	1	
		$\therefore (\log x + 1) \frac{dy}{dx} = 1 - \frac{y}{x} = \frac{x - y}{x}$	1/2	
		$\therefore \frac{dy}{dx} = \frac{x - y}{x(\log x + 1)}$	1	
		$= \frac{y \log x}{y(\log x + 1)(\log x + 1)} $ (by 1 & 2)		
		$=\frac{\log x}{\left(\log x+1\right)^2}$	1	4
	f)	If $y = \sin(m \sin^{-1} x)$, the show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0$		
	Ans.	$y = \sin\left(m\sin^{-1}x\right)$		
		$\therefore \frac{dy}{dx} = \cos\left(m\sin^{-1}x\right) \cdot m \cdot \frac{1}{\sqrt{1-x^2}}$	1	
		$\therefore \sqrt{1-x^2} \cdot \frac{dy}{dx} = m\cos\left(m\sin^{-1}x\right)$		
		$\therefore \frac{1}{2\sqrt{1-x^2}} (-2x) \cdot \frac{dy}{dx} + \sqrt{1-x^2} \frac{d^2y}{dx^2} = -m \cdot \sin\left(m \sin^{-1}x\right) \cdot m \cdot \frac{1}{\sqrt{1-x^2}}$	1	
		$\therefore -x \cdot \frac{dy}{dx} + \left(1 - x^2\right) \frac{d^2y}{dx^2} = -m^2 \cdot y$	1	
		$\therefore \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0$	1	4
		OR		

Subject & Code: Engg. Maths (12013)

Page No: 13/32

Que.	Sub.	Model answers	Marks	Total
	Que.			Marks
Que. No. 3)	Sub. Que.	Model answers OR $y = \sin(m \sin^{-1} x)$ $\therefore \frac{dy}{dx} = \cos(m \sin^{-1} x) \cdot m \cdot \frac{1}{\sqrt{1 - x^2}}$ $\therefore \sqrt{1 - x^2} \cdot \frac{dy}{dx} = m \cos(m \sin^{-1} x)$ $\therefore (1 - x^2) \cdot \left(\frac{dy}{dx}\right)^2 = m^2 \cos^2(m \sin^{-1} x)$ $\therefore (1 - x^2) \cdot 2 \cdot \frac{dy}{dx} \cdot \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 \cdot (-2x)$ $= m^2 \cdot 2 \cos(m \sin^{-1} x) \left[-\sin(m \sin^{-1} x) \cdot m \cdot \frac{1}{\sqrt{1 - x^2}} \right]$ $\therefore 2 \cdot \frac{dy}{dx} \left[(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} \right] = -2m^2 y \frac{dy}{dx}$ $\therefore (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = -m^2 y$ $\therefore (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0$	Marks 1 1 1	Total Marks
4)	a) Ans.	Attempt any FOUR of the following: In a potentiometer circuit, R is given by $R = \frac{1}{x} - \frac{1}{x-a}$ where a is constant. Find the value of x which makes R minimum. Also calculate this minimum value of R. $R = \frac{1}{x} - \frac{1}{x-a}$ $\therefore \frac{dR}{dx} = -\frac{1}{x^2} + \frac{1}{(x-a)^2}$ $\therefore \frac{d^2R}{dx^2} = \frac{2}{x^3} - \frac{2}{(x-a)^3}$ For stationary values, $\frac{dR}{dx} = 0$ $\therefore -\frac{1}{x^2} + \frac{1}{(x-a)^2} = 0 \text{or} \frac{1}{(x-a)^2} = \frac{1}{x^2} \text{or} x^2 = (x-a)^2$ $\therefore 2ax = a^2$ $\therefore x = \frac{a}{2}$	1 1	

Subject & Code: Engg. Maths (12013)

Page No: 14/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)		At $x = \frac{a}{2}$, $\frac{d^2R}{dx^2} = \frac{2}{\left(\frac{a}{2}\right)^3} - \frac{2}{\left(\left(\frac{a}{2}\right) - a\right)^3} = \frac{32}{a^3} > 0$	1/2	
		$\therefore At \ x = \frac{a}{2}, R \ has \ \min imum \ value \ and \ it \ is$		
		$R = \frac{1}{\frac{a}{2}} - \frac{1}{\frac{a}{2} - a} = \frac{4}{a}$	1/2	4
	b)	The rate of working of an engine is given by the expression $10v + \frac{4000}{v}$. Find the speed v at which the rate of working is the		
		least. $Let R = 10v + \frac{4000}{v}$		
	Ans.	$\therefore \frac{dR}{dv} = 10 - \frac{4000}{v^2}$	1	
		$\therefore \frac{d^2R}{dv^2} = \frac{8000}{v^3}$	1	
		For stationary values, $\frac{dR}{dv} = 0$		
		$\therefore 10 - \frac{4000}{v^2} = 0 or 10 = \frac{4000}{v^2} or v^2 = 400$		
		v = 20, -20	1	
		$At \ v = 20, \frac{d^2R}{dv^2} = \frac{8000}{20^3} > 0$	1/2	
		$\therefore At \ v = 20, \ R \ has \ \min imum \ value.$	1/2	4
	c)	Show that the radius of curvature for the cycloid		
	C)	$x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$ at any point θ is $4a \cos \frac{\theta}{2}$.		
	Ans.	$x = a(\theta + \sin \theta)$		
		$\therefore \frac{dx}{d\theta} = a(1 + \cos \theta)$ $y = a(1 - \cos \theta)$ $\therefore \frac{dy}{d\theta} = a \sin \theta$	1/2	
		$y = a(1 - \cos \theta)$		
		$\therefore \frac{dy}{d\theta} = a\sin\theta$	1/2	

Subject & Code: Engg. Maths (12013) **Page No:** 15/32

Que.	Sub.	Model answers	Marks	Total
No. 4)	Que.			Marks
,		$\therefore \frac{dy}{dx} = \frac{dy / d\theta}{dx / d\theta}$		
		$dx dx/d\theta$		
		$=\frac{a\sin\theta}{a(1+\cos\theta)}$		
		$=\frac{\sin\theta}{1+\cos\theta}$		
		$=\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}$		
		$2\cos^2\frac{\theta}{2}$		
		$=\tan\frac{\theta}{2}$	1	
		$\therefore \frac{d^2 y}{dx^2} = \sec^2 \frac{\theta}{2} \cdot \frac{d\theta}{dx} \cdot \frac{1}{2}$		
		$= \frac{1}{2}\sec^2\frac{\theta}{2} \cdot \frac{1}{a(1+\cos\theta)}$		
		$= \frac{1}{2}\sec^2\frac{\theta}{2} \cdot \frac{1}{a\left(2\cos^2\frac{\theta}{2}\right)}$		
		$=\frac{1}{4a}\sec^4\left(\frac{\theta}{2}\right)$	1	
		$\therefore \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$		
		$\left[1 + \tan^2\left(\frac{\theta}{2}\right)\right]^{3/2}$	1/	
		$= \frac{\left[1 + \tan^2\left(\frac{\theta}{2}\right)\right]^{3/2}}{\frac{1}{4a}\sec^4\left(\frac{\theta}{2}\right)}$	1/2	
		$\sec^3\left(\frac{\theta}{2}\right)$		
		$=\frac{\sec^3\left(\frac{\theta}{2}\right)}{\frac{1}{4a}\sec^4\left(\frac{\theta}{2}\right)}$		
		$=\frac{4a}{\sec\left(\frac{\theta}{2}\right)}$		
		$=4a\cos\left(\frac{\theta}{2}\right)$	1/2	

Subject & Code: Engg. Maths (12013) **Page No:** 16/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	d) Ans.	If $y = 4x - 5$ touches the curve $y^2 = ax^3 + b$ at the point (2, 3). Find the value of a and b .		IVIUINS
		$y^2 = ax^3 + b$ $\therefore 2y \frac{dy}{dx} = 3ax^2$	1/2	
		$\therefore \frac{dy}{dx} = \frac{3ax^2}{2y}$	1/2	
		$\therefore at(2, 3), slope \ m = \frac{3a(2)^2}{2(3)} = 2a$	1/2	
		But slope of given tangent is $m = 4$		
		$\therefore 2a = 4$	1/2	
		$\therefore a = 2$	1	
		But the point (2, 3) is on the line.		
		$\therefore 3^2 = a(2)^3 + b$		
		$\therefore 9 = 8a + b = 16 + b$		
		$\therefore \boxed{b = -7}$	1	4
	e)	Find the median marks obtained by 49 students in the following distribution table graphically.		
		Marks 5-10 10-15 15-20 20-25 25-30 30-35 No. of Students 06 07 16 11 05 04		
		No. 01 Students 06 07 16 11 03 04		
	Ans.	Class Fi < c. f.		
	AIIS.	0-5 6 6		
		5-10 7 13		
		10-15 16 29	1	
		15-20 11 40		
		20-25 5 45 25-30 4 49		
		25-30 4 49		
		(Note: The median can also be calculated by drawing Greater than Ogive Curve and also by drawing both the ogives simultaneously. So marks to be given accordingly. If the graph is too small or not clear to understand, marks		
		can be deducted. On x-axis, instead of writing points 0,		
		5, 10, 15, etc., if class 0-5, 5-10, 10-15, etc. are		
		written, no marks to be given. The same is also applicable for histogram.)		
		applicable for instogram.)		

Subject & Code: Engg. Maths (12013) **Page No:** 17/32

No.	Sub. Que.		1	Model an	swers			Marks	Total Marks
4)		50 45 40 35 30 25 20 15 10 5	10	15 20	25	Media 30	n = 13.5	1+1+1	
	f)	Marks Distribute curve corrections axis. 1 may approximacceptable	rectly. 1 rk for valu ate valu e in case	mark for alue of m e. Differe of graph	drawing edian. N ence of +	g line of rote the volume of t	nedian to x- alue 16 is 5 is	-	4
		Frequency	14	23	27	21	15		
	Ans.								

Subject & Code: Engg. Maths (12013) **Page No:** 18/32

Que.	Sub.	Model answers	Marks	Total
No. 4)	Que.	Marks Distribution: 1 mark for plotting points and drawing histogram correctly. 1 mark for drawing the cross lines in the modal class. 1 mark for drawing line of mode to x-axis. 1 mark for value of mode. Note the value 24 is approximate value. Difference of +0.5 or -0.5 is acceptable in case of graph. (Note: If the graph is too small or not clear to understand, marks can be deducted. On x-axis, instead of writing points 10, 20, 30, etc., if class 0-10, 10-20, 20-30, etc. are written, no marks to be given.)		Marks
5)		Attempt any FOUR of the following:		
	a)	The mean weight of 100 students is 55 kg. Two weights are wrongly recorded as 49 and 73 instead of 69 and 63 kg. Find the correct mean weight of the students.		
	Ans.	Given $\bar{x} = 55$, $n = 100$	1	
		$\sum x_i = n\overline{x} = 100 \times 55 = 5500$ $\therefore Incorrect \sum x_i = 5500$		
		$\therefore Correct \sum x_i = Incorrect \sum x_i - wrong + correct items$ $= 5500 - 49 - 73 + 69 + 63 = 5510$	2	
		$\therefore Correct \ mean = \frac{Correct}{n} \sum_{i} x_{i} = \frac{5510}{100} = 55.1$	1	4
	b)	Calculate the median of the following frequency distribution analytically:		
		C.I. 45-60 60-75 75-90 90-105 105-120 120-135 135-150		
		fi 43 99 152 180 160 40 26		
	Ans.	Class Fi < c. f.		
		45-60 43 43 60-75 99 142		
		75-90 152 294	1	
		90-105 180 474		
		105-120 160 634		
		120-135 40 674		
		135-150 26 700		
		100 100 20 700		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

,		ode: Engg. Mat	`	,						Page No:	•
Que. No.	Sub.			N	Model an	swers				Marks	Tota Mark
5)	Que.	N 700	N	250							IVIALK
,		N = 700	$\therefore {2} =$	= 350							
			$\frac{N}{2}$	C.F.							
		∴ Median = L	$+\frac{2}{f}$	×	h						
		$=90 + \frac{350 - 294}{180} \times 15$									
		= 94	.66							1	4
		Find the mean deviation about mean of the following data:									
	c)										
		C. I.		0-10	10-20	20-30	30-	40	40-50		
		Frequer	ncy	15	18	21	17	7	12		
		Class	xi	f_i	$f_i x_i$	$D_i = x_i $	$\frac{\overline{-x}}{ x }$		f_iD_i		
		0-10	5	15	75	19.15			7.355		
		10-20	15	18	270	9.15		+	4.826		
		20-30 30-40	25 35	21 17	525 595	0.843 10.84		1	7.703 4.331	1+1	
		40-50	45	12	540	20.84			0.116		
				83	2005			90	4.331		
		$-\sum f_i x_i = 2$	2005							1	
		$\frac{1}{x} = \frac{\sum f_i x_i}{N} = \frac{2}{N}$	83	24.157						1	
		$M.D. = \frac{\sum f_i D_i}{N}$	<u>i</u>								
		· ·									
		$=\frac{904.33}{83}$	<u> </u>								
		=10.896								1	
										1	4
		Find the mea	 n devi	ation a	about me	edian of t	 the fo	llow	 ⁄inσ		
	d) Find the mean deviation about median of the following distribution.										
			1,4	12 1	4 5	6 7	0	\neg			
			xi fi	3 4	4 5 9 10	6 7 8 6	8				
			111	*	, 110	10 10	10				

Subject & Code: Engg. Maths (12013)

Page No: 20/32

Que.	Sub.				el answe	orc		Marks	Total		
No.	Que.				IVIOU	er aris vv c				IVICITIES	Marks
5)	Ans.		xi	f_i	C. F	. D _i =	$= x_i - \overline{x} $	f_iD_i			
			3	4	4		2	8			
			4	9	13		1	9			
			5	10	23		0	0			
			6	8	31		1	8		1+1	
			7	6	37		2	12			
			8	3	40		3	9			
				40				46			
	e) Ans.	Frequency	tandardon: Class 0-20 20-40	0-20 20 xi 10 30	ation for f_i $ \begin{array}{c c} f_i \\ \hline 20 \\ \hline 130 \end{array} $	or the for $\frac{-40}{30} = \frac{40}{2}$ $\frac{x_i^2}{100}$ $\frac{100}{900}$	1lowing for 10-60 60 60 50 50 50 50 50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-100 60	1	4
		4	10-60	50	220	2500	11000	550000		2	
			60-80 0-100	70 90	70 60	4900 8100	4900 5400	343000		2	
			0-100	90	500	8100	25400	486000 1498000			
					500	<u> </u>	ZJ 1 00	1470000	,		
		$S.D. = \sqrt{\sum_{i=1}^{n}}$	$\frac{\left(f_{i}x_{i}^{2}\right)}{N}$	$\left(\frac{\sum f_i}{N}\right)$	$\left(\frac{x_i}{x_i}\right)^2$						
		$=\sqrt{\frac{149}{5}}$	98000 500	$\left(\frac{2540}{500}\right)$	$\left(\frac{00}{0}\right)^2$					1	
										1	4
						OD					
						OR					

Subject & Code: Engg. Maths (12013)

Page No: 21/32

Que.	Sub.		Model answers								Marks	Total
No.	Que.				1,1001						11101110	Marks
5)			Class	:	f	d	f d	$d_i^{\ 2}$	f d 2	7		
				xi	f_i	$\frac{d_i}{2}$	$f_i d_i$		$f_i d_i^2$			
			0-20 20-40	10 30	20 130	-2 -1	-40 -130	1	80 130	1		
			40-60	50 50	220	0	0	0	0	1	2	
			60-80	70	70	1	70	1	70	1		
			80-100	90	60	2	120	4	240	1		
					500		20		520	1		
		A = 50	$=50 h=20, d_i = \frac{x_i - A}{x_i}$									
		71 50	$= 50 h = 20, d_i = \frac{1}{h}$									
			$\sum_{i} f_i d_i^2 \left(\sum_{i} f_i d_i\right)^2$									
		S.D. = h	$h = 50 h = 20, d_i = \frac{x_i - A}{h}$ $h = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$									
			١,		<u> </u>						1	
		= 20	$\times \sqrt{\frac{520}{500}}$	$\left(\frac{20}{20}\right)$)2						1	
			√ 500	(500))						1	
		= 20	.38									4
			udents m									
			low exan lues vary	_					_	_		
			me.	acco.	rumgry	. Dui	tite iiita	1 alisw	ei wiii i	Je tile		
	f)	In two fa	actories A	A and	B, the	averaș	ge week	dy wag	ges in R	s. and		
	,	the stand	dard dev	iation	are as	follov	vs:					
			Г		Ι Δ			C D				
			Fa	ctory	Ave		wages	S. D				
				A B		34.5 28.5		5.0 4.5				
				D		20.0	,	1.5				
		Which fa	actory A	or B h	nas grea	ater va	ariabilit	y in in	dividua	1		
		wages?	J		O			J				
	Ans.	C.V.(A)	$=\frac{\sigma}{=}\times100$	$=\frac{5}{}$	-×100 =	= 14.49	93				1	
			X	34.	5							
		C.V.(B)	$=\frac{\sigma}{=}\times 100$	$0 = \frac{4.3}{1}$	$\frac{5}{-} \times 100$	=15.7	89				1	
			x	28	.5							
		$\therefore C.V.(A)$	$\therefore C.V.(A) < C.V.(B)$								1	
												4
		$\therefore B \text{ is m}$	nore varia	ble.							1	1

Subject & Code: Engg. Maths (12013) Page No: 22/32

Que.	Sub.	Model engrance	Marlia	Total
No.	Que.	Model answers	Marks	Marks
6)		For Civil, Electrical and Mechanical Groups		
		Attempt any FOUR of the following:		
	a)	If $z_1 = 3 + 2i$, $z_2 = 3 - 5i$, find $\frac{z_1}{z_2} + \frac{\overline{z_1}}{\overline{z_2}}$		
	(4)			
	Ans.	$\therefore \overline{z_1} = 3 - 2i, \qquad \overline{z_2} = 3 + 5i$		
		$\frac{z_1}{z_2} + \frac{\overline{z_1}}{\overline{z_2}} = \frac{3+2i}{3-5i} + \frac{3-2i}{3+5i}$		
		$= \frac{3+2i}{3-5i} \times \frac{3+5i}{3+5i} + \frac{3-2i}{3+5i} \times \frac{3-5i}{3-5i}$	1/2	
		$= \frac{9+15i+6i-10}{9+25} + \frac{9-15i-6i-10}{9+25}$	1	
		$=\frac{-1+21i}{34}+\frac{-1-21i}{34}$	1	
		$=\frac{-1+21i-1-21i}{34}$	1/2	
		$=\frac{-2}{34}$	1/2	
		$=-\frac{1}{17}$	1/2	4
		OR		
		$\therefore \overline{z_1} = 3 - 2i, \qquad \overline{z_2} = 3 + 5i$		
		$\therefore \frac{z_1}{z_2} = \frac{3+2i}{3-5i}$		
		$= \frac{3+2i}{3-5i} \times \frac{3+5i}{3+5i}$		
		$=\frac{9+15i+6i-10}{}$		
		9+25		
		$=\frac{-1+21i}{34}$	1	
			1/2	
		$\therefore \frac{\overline{z_1}}{\overline{z_2}} = \frac{3 - 2i}{3 + 5i}$		
		$= \frac{3-2i}{3+5i} \times \frac{3-5i}{3-5i}$		
		$\frac{3+5i^{3}-5i}{3-5i}$		
		$=\frac{9-15i-6i-10}{9+25}$		
			1	
		$=\frac{-1-21i}{34}$		

Page No: 23/32

Subject & Code: Engg. Maths (12013)

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)		$\therefore \frac{z_1}{z_2} + \frac{\overline{z_1}}{\overline{z_2}} = \frac{-1 + 21i}{34} + \frac{-1 - 21i}{34}$		
		$=\frac{-1+21i-1-21i}{34}$	1/2	
		$=\frac{-2}{34}$	1/2	
		$=-\frac{1}{17}$	1/2	4
	b)	Express $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ in the polar form.		
	Ans.	Let $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$		
		$\therefore r = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1$	1½	
		$\theta = \tan^{-1} \left(\frac{\sqrt{3}/2}{1/2} \right) = \tan^{-1} \left(\sqrt{3} \right) = 60^{\circ} \text{ or } \frac{\pi}{3}$	1½	
		$\therefore z = r(\cos\theta + i\sin\theta)$ $= \cos 60^{\circ} + i\sin 60^{\circ} or \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$	1	4
	c)	Prove that		
		$\left(1 + \cos\theta + i\sin\theta\right)^n + \left(1 + \cos\theta - i\sin\theta\right)^n = 2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$		
	Ans.	$(1+\cos\theta+i\sin\theta)^n = \left[(1+\cos\theta)+i(\sin\theta)\right]^n$ $= \left[2\cos^2\frac{\theta}{2}+i\left(2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)\right]^n$ $= \left[2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)\right]^n$	1/2	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)^{n}$	1/2	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)$	1/2	
		$\therefore (1 + \cos \theta - i \sin \theta)^n = 2^n \cos^n \frac{\theta}{2} \left(\cos \frac{n\theta}{2} - i \sin \frac{n\theta}{2} \right)$	1	

Subject & Code: Engg. Maths (12013)

Page No: 24/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	-	$\therefore (1+\cos\theta+i\sin\theta)^n+(1+\cos\theta-i\sin\theta)^n$		
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)+2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$		
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}+\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$	1/2	
		$=2^n\cos^n\frac{\theta}{2}\left(2\cos\frac{n\theta}{2}\right)$	1/2	
		$=2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$	1/2	4
		OR		
		Let $z = 1 + \cos \theta + i \sin \theta = (1 + \cos \theta) + i(\sin \theta)$ $\therefore r = \sqrt{(1 + \cos \theta)^2 + \sin^2 \theta}$		
		$= \sqrt{1 + 2\cos\theta + \sin^2\theta} = \sqrt{1 + 2\cos\theta + 1}$ $= \sqrt{1 + 2\cos\theta + \cos^2\theta + \sin^2\theta} = \sqrt{1 + 2\cos\theta + 1}$		
		$= \sqrt{1 + 2\cos\theta + \cos\theta}$ $= \sqrt{2 + 2\cos\theta}$		
		$=\sqrt{2(1+\cos\theta)}=\sqrt{2\left(2\cos^2\frac{\theta}{2}\right)}$		
		$=\sqrt{4\cos^2\frac{\theta}{2}}$		
		$=2\cos\frac{\theta}{2}$	1/2	
		$\theta = \tan^{-1} \left[\frac{\sin \theta}{1 + \cos \theta} \right] = \tan^{-1} \left[\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right] = \tan^{-1} \left[\tan \frac{\theta}{2} \right] = \frac{\theta}{2}$	1/2	
		$\therefore z = 2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$		
		$\left[(1 + \cos \theta + i \sin \theta)^n = \left[2\cos \frac{\theta}{2} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right) \right]^n \right]$		
		$=2^n\cos^n\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)^n$		
		$=2^n\cos^n\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)$	1/2	
		$\therefore (1 + \cos \theta - i \sin \theta)^n = 2^n \cos^n \frac{\theta}{2} \left(\cos \frac{n\theta}{2} - i \sin \frac{n\theta}{2} \right)$	1	
		$\therefore (1+\cos\theta+i\sin\theta)^n+(1+\cos\theta-i\sin\theta)^n$		
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)+2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$		
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}+\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$	1/2	

Subject & Code: Engg. Maths (12013) **Page No:** 25/32

Que.	Sub.	Model answers	Marks	Total
No. 6)	Que.		1,101110	Marks
		$=2^n\cos^n\frac{\theta}{2}\left(2\cos\frac{n\theta}{2}\right)$	1/2	
		$=2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$	1/2	4
		OR		
		$(1+\cos\theta+i\sin\theta)^n+(1+\cos\theta-i\sin\theta)^n$		
		$= \left[2\cos^2\frac{\theta}{2} + i\left(2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)\right]^n + \left[2\cos^2\frac{\theta}{2} - i\left(2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)\right]^n$		
		$= \left[2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)\right]^{n} + \left[2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}\right)\right]^{n}$	1	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)^{n}+2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{\theta}{2}-i\sin\frac{\theta}{2}\right)^{n}$	1/2	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right)+2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$	1	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}+\cos\frac{n\theta}{2}-i\sin\frac{n\theta}{2}\right)$	1/2	
		$= 2^{n} \cos^{n} \frac{\theta}{2} \left(2 \cos \frac{n\theta}{2} \right)$ $= 2^{n+1} \cos^{n} \left(\frac{\theta}{2} \right) \cos \left(\frac{n\theta}{2} \right)$	1/2	
		1/2	4	
	1	Simplify using Demoiver's theorem		
	d)	$(\cos 3\theta + i\sin 3\theta)^4 (\cos 5\theta - i\sin 5\theta)^{\frac{4}{5}}$		
		$ \frac{1}{\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}}\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10}} $		
	Ans.	$(\cos 3\theta + i\sin 3\theta)^4 (\cos 5\theta - i\sin 5\theta)^{\frac{4}{5}}$		
		$ \frac{1}{\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}}}\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10} $		
		$=\frac{\left(\cos\theta+i\sin\theta\right)^{3\times4}\left(\cos\theta+i\sin\theta\right)^{-5\times\frac{4}{5}}}{\left(\cos\theta+i\sin\theta\right)^{-5\times\frac{4}{5}}}$		
		$-\frac{1}{(\cos\theta+i\sin\theta)^{\frac{9}{2}\times\frac{2}{3}}(\cos\theta+i\sin\theta)^{\frac{4}{5}\times10}}$	2	
		$= \frac{(\cos\theta + i\sin\theta)^{12}(\cos\theta + i\sin\theta)^{-4}}{(\cos\theta + i\sin\theta)^{-4}}$	1	
		$-\left(\cos\theta + i\sin\theta\right)^{3} \left(\cos\theta + i\sin\theta\right)^{8}$		
		$= (\cos\theta + i\sin\theta)^{12-4-3-8}$		
		$= (\cos\theta + i\sin\theta)^{-3}$	1/ ₂ 1/ ₂	4
		$=\cos 3\theta - i\sin 3\theta$	72	

Subject & Code: Engg. Maths (12013)

Page No: 26/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	~	OR $($ $($ $($ $($ $($ $($ $($ $($ $($ $($	1/2	
		$\left(\cos 3\theta + i\sin 3\theta\right)^4 = \left(\cos \theta + i\sin \theta\right)^{3\times 4} = \left(\cos \theta + i\sin \theta\right)^{12}$	72	
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}} = \left(\cos \theta + i\sin \theta\right)^{-5\times \frac{4}{5}} = \left(\cos \theta + i\sin \theta\right)^{-4}$	1/2	
		$\left[\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}} = \left(\cos\theta + i\sin\theta\right)^{\frac{9}{2}\times\frac{2}{3}} = \left(\cos\theta + i\sin\theta\right)^{3}\right]$	1/2	
		$\left[\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10} = \left(\cos\theta + i\sin\theta\right)^{\frac{4}{5}\times 10} = \left(\cos\theta + i\sin\theta\right)^{8}\right]$	1/2	
		$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}$		
		$\therefore \frac{\left(\cos 3\theta + i\sin 3\theta\right)^4 \left(\cos 5\theta - i\sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos \frac{9}{2}\theta + i\sin \frac{9}{2}\theta\right)^{\frac{2}{3}} \left(\cos \frac{4}{5}\theta + i\sin \frac{4}{5}\theta\right)^{10}}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-4}}{\left(\cos\theta + i\sin\theta\right)^{3} \left(\cos\theta + i\sin\theta\right)^{8}}$	1	
			1	
		$=(\cos\theta+i\sin\theta)^{12-4-3-8}$	1/	
		$= (\cos\theta + i\sin\theta)^{-3}$	1/2	
		$=\cos 3\theta - i\sin 3\theta$ OR	1/2	4
		$(\cos 3\theta + i \sin 3\theta)^4 (\cos 5\theta - i \sin 5\theta)^{\frac{4}{5}}$		
		$\frac{\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}}\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10}}{\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}}\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10}}$		
		$=\frac{\left(e^{3i\theta}\right)^4\left(e^{-5i\theta}\right)^{\frac{4}{5}}}{2}$		
		$=\frac{\sqrt{\left(e^{\frac{9}{2}i\theta}\right)^{\frac{2}{3}}\left(e^{\frac{4}{5}i\theta}\right)^{10}}}{\left(e^{\frac{9}{5}i\theta}\right)^{\frac{2}{3}}\left(e^{\frac{4}{5}i\theta}\right)^{10}}$	2	
		$(e^{12i\theta})(e^{-4i\theta})$		
		$=\frac{\left(e^{3i\theta}\right)\left(e^{8i\theta}\right)}{\left(e^{8i\theta}\right)}$	1	
		$=e^{12i\theta-4i\theta-3i\theta-8i\theta}$		
		$=e^{-3i\theta}$	1/2	4
		$=\cos 3\theta - i\sin 3\theta$	1/2	4
		\mathbf{OR} $\left(\cos 3\theta + i\sin 3\theta\right)^4 = \left(e^{3i\theta}\right)^4 = e^{12i\theta}$	1/2	
		$(\cos 5\theta - i \sin 5\theta)^{\frac{4}{5}} = (e^{-5i\theta})^{\frac{4}{5}} = e^{-4i\theta}$	1/2	
		$\left(\cos\frac{9}{2}\theta + i\sin\frac{9}{2}\theta\right)^{\frac{2}{3}} = \left(e^{\frac{9}{2}i\theta}\right)^{\frac{2}{3}} = e^{3i\theta}$	1/2	
		$\left(\cos\frac{4}{5}\theta + i\sin\frac{4}{5}\theta\right)^{10} = \left(e^{\frac{4}{5}i\theta}\right)^{10} = e^{8i\theta}$	1/2	

Page No: 27/32

Subject & Code: Engg. Maths (12013)

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	2	$ \therefore \frac{\left(\cos 3\theta + i \sin 3\theta\right)^4 \left(\cos 5\theta - i \sin 5\theta\right)^{\frac{4}{5}}}{\left(\cos \frac{9}{2}\theta + i \sin \frac{9}{2}\theta\right)^{\frac{2}{3}} \left(\cos \frac{4}{5}\theta + i \sin \frac{4}{5}\theta\right)^{10}} $ $ = \frac{\left(e^{12i\theta}\right)\left(e^{-4i\theta}\right)}{\left(e^{3i\theta}\right)\left(e^{8i\theta}\right)} $ $ = e^{12i\theta - 4i\theta - 3i\theta - 8i\theta} $ $ = e^{-3i\theta} $ $ = \cos 3\theta - i \sin 3\theta $	1 1/2 1/2	4
	e) Ans.	Using Euler's formulae prove that $\cos^2 \theta = 1 - \sin^2 \theta$ $\cos^2 \theta = \left[\frac{e^{i\theta} + e^{-i\theta}}{2} \right]^2$ $= \frac{\left(e^{i\theta} \right)^2 + 2e^{i\theta}e^{-i\theta} + \left(e^{-i\theta} \right)^2}{4}$ $= \frac{e^{2i\theta} + 2 + e^{-2i\theta}}{4}$ $1 - \sin^2 \theta = 1 - \left[\frac{e^{i\theta} - e^{-i\theta}}{2i} \right]^2$ $= 1 - \frac{e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}}{-4}$ $= 1 + \frac{e^{2i\theta} - 2 + e^{-2i\theta}}{4}$ $= \frac{4 + e^{2i\theta} - 2 + e^{-2i\theta}}{4}$	1	
		$= \frac{e^{2i\theta} + 2 + e^{-2i\theta}}{4}$ $\therefore \cos^2 \theta = 1 - \sin^2 \theta$ Separate into real and imaginary parts $\cosh(x + iy)$.	1	4
	f) Ans.	cosh $(x+iy)$ = cosh x cosh iy + sinh x sinh iy = cosh x cos $y + i$ sinh x sin y	2 2	4

Subject & Code: Engg. Maths (12013)

Page No: 28/32

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	Que.	For Computer/Information Technology Group		IVIGINS
		Attempt any FOUR of the following:		
	a)			
		Find the roots of the equation $x^3 - 4x - 9 = 0$ using bisection method by taking three iterations.		
	Ans.	$f(x) = x^3 - 4x - 9$		
		$\therefore f(2) = -9$	1/2	
		f(3) = 6	1/2	
		\therefore the root is in $(2, 3)$.	1/2	
		$\therefore x_1 = \frac{2+3}{2} = 2.5$	1/2	
		f(2.5) = -3.375	1/2	
		\therefore the root is in $(2.5, 3)$.		
		$\therefore x_2 = \frac{2.5 + 3}{2} = 2.75$	1/2	
		$\therefore f(2.75) = 0.797$	1/2	
		\therefore the root is in (2.5, 2.75).	1/	
		$\therefore x_3 = \frac{2.5 + 2.75}{2} = 2.625$	1/2	4
		OR		
		$f(x) = x^3 - 4x - 9$ $\therefore f(2) = -9$		
		$\therefore f(2) = -9$	1/2	
		f(3) = 6	1/2	
		\therefore the root is in $(2, 3)$.	1/2	
		a b $f(a)$ $f(b)$ $x = \frac{a+b}{2}$ $f(x)$		
		2 3 -9 6 2.5 -3.375	1	
		2.5 3 -3.375 6 2.75 0.797	1	
		2.5 2.75 -3.375 0.797 2.625	1/2	4
	b)	Solve the equation $e^x - 4x = 0$ using regula-falsi method by taking three iterations.		
	Ans.	$f(x) = e^x - 4x$		
		$\therefore f(0) = 1$	1/2	
		f(1) = -1.282	1/2	
		\therefore the root is in $(0, 1)$.	1/2	

Subject & Code: Engg. Maths (12013)

Page No: 29/32

Que. No.	Sub. Que.				Model an	swers		Marks	Total Marks
6)	2		$\frac{af(b) - bf}{f(b) - f}$ $438) = -0$		38			1/ ₂ 1/ ₂	
		$\therefore \text{ the r}$ $\therefore x_2 = 0$	oot is in ((0, 0.438)				1/ ₂ 1/ ₂	
		,	oot is in (). OR			1/2	4
		f(0)	$e^{x} - 4x$ $= 1$ $= -1.282$ root is in ((0, 1).				1/ ₂ 1/ ₂ 1/ ₂	
	c)	a 0 0 0 0 Using	b 1 0.438 0.364 Newton-	f (a) 1 1 1 Raphson	f (b) -1.282 -0.202 -0.0169	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ 0.438 0.364 0.358 find the approxim	f(x) -0.202 -0.0169	1 1 1/2	4
	Ans.	the equation $x^3 - $	$3x-5=0$ x^3-3x-1 x^3-3x-1 x^3-3x-1	-3x-5=		ng two iterations.		1/ ₂ 1/ ₂ 1/ ₂	
		: the	root is in	$\frac{f(x)}{x} = \frac{3}{2}$	$\frac{x(3x^{2}-3)}{3x^{3}-3x-x}$ $\frac{3x^{3}-3x-x}{3x^{2}-3}$ $\frac{3x^{3}+5}{3x^{2}-3}$			1	
		$\therefore \text{ start}$ $\therefore x_1 = 2$ $x_2 = 2$		· 2	5			1 1/2	4

Subject & Code: Engg. Maths (12013) **Page No:** 30/32

Que.	Sub.	N. 11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
6)		Note: Once the formula (*) is formed, writing the direct values of x_i 's is permissible, as we allow it in case of table format for either bisection method or regula-falsi method.		
		OR		
		$x^3 - 3x - 5 = 0$		
		$x^{3} - 3x - 5 = 0$ $f(x) = x^{3} - 3x - 5$ $\therefore f'(x) = 3x^{2} - 3$ $\therefore f(2) = -3$	1/2	
		$\therefore f(2) = -3$	1/2	
		f(3) = 13	1/2	
		\therefore the root is in $(2, 3)$.		
		\therefore start with $x_0 = 2$		
		$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$=2-\frac{f(2)}{f'(2)}$		
		$=2-\frac{-3}{9}$	1/2	
		= 2.333	1	
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$		
		$=2.333 - \frac{f(2.333)}{f'(2.333)}$		
		$=2.333-\frac{0.699}{13.329}$		
			1	4
		= 2.281		
	d)	Solve by Gauss elimination method: x + y + z = 6, $2x + y + 3z = 13$, $3x + 3y + 3z = 20$		
	Ans.	Note for RAC		
		No weightage should be given while assessing this bit.		

Subject & Code: Engg. Maths (12013) **Page No:** 31/32

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
6)	e)	Solve the system using Gauss-Seidel iterative method up to two iterations: 10x + y + z = 12, $2x + 10y + z = 13$, $x + y + 5z = 7\therefore x = \frac{1}{10}(12 - y - z)$		
	Ans.	$y = \frac{1}{10}(13 - 2x - z)$ $z = \frac{1}{5}(7 - x - y)$	1	
		Starting with $x_0 = 0 = y_0 = z_0$ $x_1 = 1.2$ $y_1 = 1.06$		
		$z_1 = 0.948$ $x_2 = 0.999$ $y_2 = 1.005$	1	
		$z_2 = 0.999$ $x_3 = 1$ $y_3 = 1$	1	
		Note for Numerical Problems: For practical purpose, generally the values of fractional numbers are truncated up to 3 decimal points by the method of rounded-off. Thus the solution is taken up to 3 decimal points only. If answer is truncated more than 3 decimal points, the final answer may vary for last decimal point. Due to the use of advance calculators, such as modern scientific non-programmable calculators, 1/3 is actually 0.333333333333333333333333333333333333	1	4

Subject & Code: Engg. Maths (12013) **Page No:** 32/32

Que.	Sub.	M 11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
6)	f)	Solve by Jacobi's method by taking three iterations: $5x+2y+z=12$, $x+4y+2z=15$, $x+2y+5z=20$		
	Ans.	5x + 2y + z = 12		
		x + 4y + 2z = 15		
		x + 2y + 5z = 20		
		$\therefore x = \frac{1}{5}(12 - 2y - z)$ $y = \frac{1}{4}(15 - x - 2z)$ $z = \frac{1}{5}(20 - x - 2y)$		
		$y = \frac{1}{4}(15 - x - 2z)$		
		$z = \frac{1}{5}(20 - x - 2y)$	1	
		Starting with $x_0 = 0 = y_0 = z_0$		
		$x_1 = 2.4$		
		$y_1 = 3.75$		
		$z_1 = 4$	1	
		$x_2 = 0.1$		
		$y_2 = 1.15$		
		$z_2 = 2.02$	1	
		$x_3 = 1.536$		
		$y_3 = 2.715$		
		z ₃ = 3.520	1	4
		Important Note		
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		