

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ IN RUCTIONS BEFORE CO PLETING FO
AFOSR-TR- 83-0676 AD-A1315	3. RECIPIENT'S CAT LOG
4. TITLE (and Subritle)	5. TYPE OF REPORT & PERIOD COVERED
"RISING BUBBLES"	INTERIM
	6. PERFORMING ORG. REPORT NUMBER
7. AuthoR(e) Joseph B. Keller	8. CONTRACT OR GRANT NUMBER(#)
	AFOSR-79- 0 134
9. PERFORMING ORGANIZATION NAME AND ADDRESS Stanford University Stanford, CA 94305	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	PE61102F; 2304/A4
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
AFOSR/NM	Dec 1982
Bldg. 410	13. NUMBER OF PAGES
Bolling AFB DC 20332	16
14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS, (of this report)
	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Approved for public release; distribution unlimite	ed
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, If different fro	m Report)
	•
18 SUPPLEMENTARY NOTES	ELECTE AUG 19 1983

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

D

20 ABSTRACT (Continue on reverse side if necessery and identify by block number)

This is a progress report of the Applied Mathematics Group in the Mathematics Department, Stanford University. This report lists publications supported by AFOSR through March 16, 1982 - December 31, 1982.

DD 1 JAN 73 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AFOSR-TR: 8,3-0676

ASING Bubbles

PROGRESS REPORT

March 16, 1982 - December 31, 1982

Applied Mathematics Group Department of Mathematics Stanford University

Principal Investigator: Joseph B. Keller

Accession For	
NTIS	GEA&I
DTIC '	TAB 🗇
Unam	ounced 📋
Justi	fication
Ву	
Distribution/	
Availability Codes	
	Avail and/or
Dist	Special
	, , ,
L	12.

I. Introduction

This is a progress report of the Applied Mathematics Group in the Mathematics Department, Stanford University. This group began functioning officially on September 1, 1979, and is supported by:

- 1. Office of Naval Research;
- 2. National Science Foundation;
- 3. Army Research Office;
- 4. Air Force Office of Scientific Research;
- 5. Stanford University.

The personnel comprising this group during all or part of the reporting period are:

- 1. Joseph B. Keller, Professor of Mathematics, Stanford University;
- 2. Russel E. Caflisch, Assistant Professor, Stanford University;
- 3. John C. Neu, Assistant Professor, Stanford University;
- 4. Victor Twersky, Professor of Mathematics, University of Illinois, Chicago Circle;
 - 5. John G. Watson, Assistant Professor, University of Miami;
- 6. Bernard A. Lippmann, Professor of Physics, Emeritus, New York University;
- 7. Si-Xiong Chen, Head, Applied Mathematics Group, Institute of Mechanics, Beijing, People's Republic of China;
 - 8. Meira Falkovitz, Postdoctoral Fellow, Stanford University;

Approved for public release; distribution unlimited.

- 9. John H. Maddocks, Postdoctoral Fellow, Stanford University;
- 10. Allan D. Jepson, Postdoctoral Fellow, Stanford University;
- 11. Kevin C. Nunan, Graduate Student;
- 12. Michael I. Weinstein, Postdoctoral Fellow, Stanford University;
- 13. Stephanos Venakides, Assistant Professor, Stanford University;
- 14. Margaret Cheney, Research Associate, Stanford University;
- 15. Graham Eatwell, Postdoctoral Fellow, Stanford University;
- 16. Luis Bonilla, Research Associate, Stanford University;
- 17. James Geer, Professor of Mathematics, School of Advanced Studies, SUNY, Binghampton, New York.

The various research activities of the members of this group are indicated by the list of publications contained in Section II. Abstracts or introductions from the papers produced during the report period are contained in Section III.

In addition to the manuscripts already submitted, a number of projects are nearing completion. Thus Professor Keller, while at the Woods Hole Oceanographic Institute during the summer of 1982, studied the turbulent diffusion of a chemically reacting substance. Professor Keller and Dr. Falkovitz are completing a paper on Liesegang rings to account for the recent results of John Ross and his co-worker in the Chemistry Department at Stanford. Their theory uses the fourth order Cahn-Hilliard equation to describe diffusion. Dr. Eatwell is studying the propagation of an acoustic wave through a bubbly fluid, or through a medium containing resonant scatterers. Dr. Bonilla is studying the effective behavior of an elastic solid composed of randomly oriented crystallites. Mr. Nunan is calculating the effective viscosity of a suspension of rigid spherical particles in a viscous fluid. Professors Geer and Keller are studying scattering of waves by thin bodies.

In December, Professor Keller was invited to deliver the Weizmann Lectures at the Weizmann Institute of Science in Rohovot, Israel.

AIR PORTE OFFICE OF SCHENTIFIC RESTARMS (AFSC) NOTICE OF MINEROSTIAL TO PTIC This technical incompt headson reviewed and is approved for any list of the 120 App 120-12. Distribution to unlimited.

MATTHEW J. KERPER Chief, Technical Information Division

II. PUBLICATIONS OF APPLIED MATHEMATICS GROUP

1.	J. B. Keller	Training in applied mathematics
		Pub: Proc. of the Conf. on Graduate Training in Math., T. L. Sherman, ed., Rocky Mountain Mathematics Consortium, Tempe, Arizona, 1979, pp. 110-113.
2.	JM. Vanden-Broeck L. W. Schwartz	Numerical computation of steep gravity waves in shallow water
		<u>Pub</u> : Phys. Fluids, <u>22</u> , 1868-1871, 1979.
3.	H. McMaken J. D. Achenbach L. Adler	Diffraction of ultrasonic waves by penny-shaped cracks in metals: Theory and experiment
	D. K. Lewis	<u>Pub</u> : J. Acoust. Soc. Am., <u>66</u> , 1848-1856, 1979.
4.	JM. Vanden-Broeck	A new family of capillary waves
	J. B. Keller	Pub: J. Fluid Mech., 98, 161-169, 1980.
5.	JM. Vanden-Broeck	Nonlinear stern waves
		<u>Pub</u> : J. Fluid Mech., <u>93</u> , 603-611, 1980.
6.	J. B. Keller	Plate failure under pressure
		<u>Pub</u> : SIAM Rev., <u>22</u> , 227-228, 1980.
7.	JM. Vanden-Broeck	Advances in the numerical computation of capillary-gravity waves
		Pub: Nonlinear Partial Differential Equations in Engineering and Applied Science, R. L. Sternberg, A. J. Kalinowski and J. S. Papadakis, eds., Marcel Dekker, New York, 1980, pp. 299-310.
8.*	S. Childress	Lichen growth
	J. B. Keller	<u>Pub</u> : J. Theor. Biol., <u>82</u> , 157-163, 1980.
9. :	J. B. Keller	Liesegang rings and a theory of fast reaction and slow diffusion
		Pub: Dynamics and Modelling of Reactive Systems, W. Stewart, ed., Academic, New York, 1980, pp. 211-224.

^{*}Not supported by AFOSR or ONR.

10.	J. B. Keller	Darcy's law for flow in porous media and the two-space method
		Pub: Nonlinear Partial Differential Equations in Engineering and Applied Science, R. L. Sternberg, A. J. Kalinowski and J. S. Papadakis, eds., Marcel Dekker, New York, 1980, pp.429-443.
11.	R. E. Caflisch	The Boltzmann equation with a soft potential, Part I: Linear, spatially-homogeneous
		Pub: Comm. Math. Phys., 74, 71-95, 1980.
12.	R. E. Caflisch	The Boltzmann equation with a soft potential, Part II: Nonlinear, spatially-periodic
		<u>Pub</u> : Comm. Math. Phys., <u>74</u> , 97-109, 1980.
13.	J. C. Neu	The method of near identity transformations and applications
		<u>Pub</u> : SIAM J. Appl. Math., <u>38</u> , 189-208, 1980.
14.	J. C. Neu	Large populations of chemical oscillators
		<u>Pub</u> : SIAM J. Appl. Math., <u>38</u> , 305-316, 1980.
15.	J. B. Keller	Bubble oscillations of large amplitude
	M. Miksis	<u>Pub</u> : J. Acoust. Soc. Am., <u>68</u> , 628-633, 1980.
16.	JM. Vanden-Broeck J. B. Keller	Bubble or drop distortion in a straining flow in two dimensions
		Pub: Phys. Fluids, 23, 1491-1495, 1980.
17.	J. B. Keller	Some bubble and contact problems
		Pub: SIAM Rev., 22, 442-458, 1980.
18.	JM. Vanden-Broeck J. B. Keller	Deformation of a bubble or drop in a uniform flor
•.		Pub: J. Fluid Mech., 101, 673-686, 1980.
19.	JM. Vanden-Broeck	Nonlinear gravity-capillary stern waves

Pub: Phys. Fluids, 23, 1949-1953, 1980.

20.	R. E. Caflisch	An inverse problem for Toeplitz matrices and the synthesis of discrete transmission lines
		Pub: J. Linear Algebra and Its Applications, 38, 255-272, 1980.
21.	R. E. Caflisch	The fluid dynamic limit of the nonlinear Boltzmann equation
		Pub: Comm. Pure Appl. Math., 33, 651-666, 1980.
22.*	J. B. Keller	Tendril shape and lichen growth
		Pub: Some Mathematical Questions in Biology, Lectures on Math. in the Life Sciences, Vol. 13, Am. Math. Soc., Providence, 1980, pp. 257-274.
23.*	R. E. Caflisch	Distortion of the arterial pulse
	C. PeskinG. MajdaG. Strumolo	<u>Pub</u> : Math. Bio. Sci., <u>51</u> , 229-260, 1980.
24.*	P. S. Hagan H. Simpson	Spatial structures in predator-prey communities with hereditary effects and diffusion
	D. S. Cohen	<u>Pub</u> : Math. Biosci., <u>44</u> , 167-177, 1979.
25.	JM. Vanden-Broeck	Numerical calculation of gravity-capillary interfacial waves of finite amplitude
		<u>Pub</u> : Phys. Fluids, <u>23</u> , 1723-1726, 1980.
26.	JM. Vanden-Broeck	Two-dimensional drops in slow viscous flow Pub: Phys. Fluids, 24, 175-176, 1981.

^{27.} P. S. Hagan

The instability of non-monotonic wave solutions of parabolic equations

Pub: Stud. Appl. Math., 64, 57-88, 1981.

28. J. B. Keller
J.-M. Vanden-Broeck

Shape of a sail in a flow

Pub: Phys. Fluids, 24, 552-553, 1981.

^{*}Not supported by AFOSR or ONR.

29.	J. B. Keller	Temperley's model of gas condensation Pub: J. Chem. Phys., 74, 4203-4204, 1981.
30.	J. B. Keller J. G. Watson	Kelvin wave production <u>Pub</u> : J. Phys. Ocean., <u>11</u> , 284-285, 1981.
31.	J. B. Keller S. I Rubinow	Recurrent precipitation and Liesegang rings Pub: J. Chem. Phys., 74, 5000-5007, 1981.
32.	J. B. Keller M. J. Miksis JM. Vanden-Broeck	Axisymmetric bubble or drop in a uniform flow Pub: J. Fluid Mech., 108, 89-100, 1981.
33.	JM. Vanden-Broeck	Numerical calculation of standing waves in water of arbitrary uniform depth Pub: Phys. Fluids, 24, 812-815, 1981.
34.	R. E. Caflisch K. C. Nunan	Evaluation of a function at infinity from its power series Pub: Phys. Rev. Letters, 46, 1255-1256, 1981.
35.	J. B. Keller D. M. Levy D. S. Ahluwalia	Internal and surface wave production in a stratified fluid Pub: Wave Motion, 3, 215-229, 1981.
36.	R. E. Caflisch J. B. Keller	Quench front propagation Pub: Nuc. Eng. Design, 65, 97-102, 1981.
37.	M. J. Miksis	A bubble in an axially symmetric shear flow Pub: Phys. Fluids, 24, 1229-1231, 1981.
38.	JM. Vanden-Broeck	Deformation of a liquid surface by an impinging gas jet Pub: SIAN J. Appl. Math., 41, 306-309, 1981.
39.	J. B. Keller	Oblique derivative boundary conditions and the image method Pub: SIAM J. Appl. Math., 41, 294-300, 1981.

ŧ

40.	R. Burridge J. B. Keller	Poroclasticity equations derived from microstructure
		<u>Pub</u> : J. Acoust. Soc. Am., <u>70</u> , 1140-1146, 1981.
41.	J. C. Neu	Stochastically perturbed resonance
	÷.	<u>Pub</u> : SIAM J. Appl. Math., <u>41</u> , 365-369, 1981.
42.	M. J. Miksis	Shape of a drop in an electric field
		<u>Pub</u> : Phys. Fluids, <u>24</u> , 1967-1972, 1981.
43.	JM. Vanden-Broeck	The influence of capillarity on cavitating flow past a flat plate
		Pub: Quart. J. Mech. Appl. Math., 34, 465-473, 1981.
44.	A. Jeffrey J. Mvungi	A note on the effect of submerged obstacles on water waves in a channel
		<u>Pub</u> : J. Appl. Math. Phys., <u>32</u> 756-763, 1981.
45.	P. S. Hagan	Target patterns in reaction-diffusion systems
		<u>Pub</u> : Adv. Appl. Math., <u>2</u> , 400-416, 1981.
46.*	P. S. Hagan M. S. Cohen	Diffusion-induced morphongenesis in the development of <u>Dictyostelium</u>
	•	<u>Pub</u> : J. Theor. Biol., <u>93</u> , 881-908, 1981.
47.	P. S. Hagan D. Z. Ting	Nuclear magnetic-resonance studies of cation- transport across vesicle bilayer membranes
	J. D. Doll	Pub: Biophys. J., 34, 189-214, 1981.
48.	Λ. Jeffrey	Λ note on the multiple scale Fourier transform
	T. Kawahara	Pub: Nonlinear Anal., Theory, Methods and Applics., 5, 1331-1340, 1981.
49.	J. C. Neu	A nonlinear analysis of interfacial waves
→ 7.	U. U. NEU	Acc: Phys. Fluids, in press.

^{*}Not supported by AFOSR or ONR.

50.	J. B. Keller	Optimum inspection policies
		<u>Pub</u> : Management Sci., <u>28</u> , 447-450, 1982.
51.	P. S. Hagan	Travelling and stacked travelling wave solutions of parabolic equations
	•	<u>Pub</u> : SIAM J. Math. Anal., <u>13</u> , 717-738, 1982.
52.	JM. Vanden-Broeck	Contact problems involving the flow past an inflated aerofoil
		<u>Pub</u> : J. Appl. Mech., <u>49</u> , 263-265, 1982.
53.	JM. Vanden-Broeck	Nonlinar two-dimensional sail theory
		<u>Pub</u> : Phys. Fluids, <u>25</u> , 420-423, 1982.
55.	P. S. Hagan	Spiral waves in reaction diffusion equations
		Pub: SIAM J. Appl. Math., 42, 762-786, 1982.
56.	JM. Vanden-Broeck J. B. Keller	Parabolic approximations for ship waves and wave resistance
		Pub: Proceedings of the Third International Conference on Numerical Ship Hydrodynamics, Paris, France, June 16-19, 1981.
57.	A. Jeffrey	Asymptotic Methods in Nonlinear Wave Problems
	T. Kawahara	Pub: Pitman Publishing, Ltd., London, 1982.
58.		Rising Bubbles
	JM. Vanden-Broeck J. B. Keller	<u>Pub</u> : J. Fluid Mech., <u>123</u> , 31-42, 1982.
59.	J. C. Neu	Resonantly interacting waves
		Acc: SIAM J. Appl. Math., in press.
	J. B. Keller	Surface tension driven flows
M. J. Miksis	M. J. Miksis	Acc: SIAM J. Appl. Math., in press.
61.	A. Jepson A. Spence	Folds in solutions of two parameter systems and their calculation: Part I
		Pub: Stanford Univ. Numer. Anal. Report, 82-02.

62.	J. B. Keller	Time-dependent queues Pub: SIAM Rev., 24, 401-412, 1982.
63.	R. E. Caflisch B. Nicolaenko	Shock profile solutions of the Boltzmann equation <u>Sub</u> : Comm. Math. Phys.
64.	P. S. Hagan R. E. Caflisch J. B. Keller	Arrow's model of optimal pricing, use and exploration of undertain natural resources Sub: Econometrica
65.	R. E. Caflisch	Radiation transport in a hot plasma Acc: SIAM J. Appl. Math., in press.
66.	J. B. Keller JM. Vanden-Broeck	Jets rising and falling under gravity Acc: J. Fluid Mech., in press.
67.	R. E. Caflisch	Fluid dynamics and the Boltzmann equation Acc: Stud. Stat. Mech., in press.
68.*	M. S. Falkovitz M Seul H. L. Frisch H. M. McConnell	Theory of periodic structures in lipid bilayer membranes Pub: Proc. Nat. Acad. Sci., 79, 3918, 1982.
69.	R. E. Caflisch	The fluid-dynamic limit of a model Boltzmann equation in the presence of a shock Pub: Institute National de Recherche en Informatique et en Automatique, INRIA No. 81, June 1981, 1-34.
70.	P. F. Rhodes-Robinson	On the short surface waves due to half-immersed circular cylinder oscillating on water of infinite depth Sub:
71.	P. F. Rhodes-Robinson	Note on the reflexion of water waves at a wall in the presence of surface tension Sub:

^{*}Not supported by AFOSR or ONR.

72.	P. F. Rhodes-Robinson	On the generation of surface waves at an inertial boundary
		Sub:
73.	R. E. Caflisch G. C. Papanicolaou	Dynamic theory of suspensions with Brownian effects
		Acc: SIAM J. Appl. Math., in press.
74.	R. E. Caflisch G. C. Papanicolaou	Instability in settling of suspensions due to Brownian effects
		Acc: Proceedings of Conference Two-Phase Flow.
75.	R. E. Caflisch B. Nicolaenko	Shock waves and the !tzmann equation
	b. Nicolaenko	Acc: Proceedings N - Conference non-linear PDE.
76.	J. H. Maddocks	Restricted quadratic forms and their application to bifurcation and stability in constrained variational principles
		Sub: SIAM J. Appl. Math.
77.	M. S. Falkovitz L. A. Segel	Spatially inhomogeneous polymerization in unstirred bulk
		Acc: SIAM J. Appl. Math., in press.
78.	M. S. Falkovitz J. L. Frisch	The scale of non-homogeneity as defined by diffusion measurements
		Pub: Journal of Membrane Science, 10, 61, 1982.
79.	M. S. Falkovitz	Optimal catalyst distribution in a membrane
	H. L. Frisch J. B. Keller	Sub: Chem. Eng. Sci.
80.*	M. S. Falkovitz	Crawling of Worms
	J. B. Keller	Sub: J. Theor. Biol.
81.	A. Jeffrey J. Mvungi	The random choice method and the free-surface water profile after the collapse of a dam wall
		<u>Pub</u> : Wave Motion, <u>4</u> , 381-389, 1982.

^{*}Not supported by AFOSR or ONR.

82.	J. G. Watson E. L. Reiss	A statistical theory for imperfect bifurcation Pub: SIAM J. Appl. Math., 42, 135-148, 1982.
83.	J. G. Watson J. B. Keller	Acoustical scattering from rough surfaces To be submitted.
84.	M. I. Weinstein	Global existence for a generalized Korteweg - de Vries equation <u>Sub</u> : SIAM J. Math. Anal.
85.	M. I. Weinstein	Nonlinear Schrödinger equations and sharp interpolation estimates Acc: Comm. Math. Phys.
86.	M. Cheney	Two-dimensional scattering: the number of bound states from scattering data (a <u>Sub</u> : J. of Math. Phys.

III. ABSTRACTS OF MANUSCRIPTS SUBMITTED SINCE MARCH 15, 1982.

✓ 1. Dynamic theory of suspensions with Brownian effects, by R. E. Caflisch and G. C. Papanicolaou.

We consider a suspension of particles in a fluid settling under the influence of gravity and dispersing by Brownian motion. A mathematical description is provided by the Stokes equations and a Fokker-Planck equation for the one-particle phase space density. This is a nonlinear system that depends on a number of parametric functions of the spatial concentration of the particles. These functions are known only empirically or for dilute suspensions. We analyze the system, its stability, its asymptotic behavior under different scalings and its validity from a more microscopic description.

2. <u>Two-dimensional scattering</u>: the number of bound states from scattering <u>data</u>, (a), by M. Cheney.

Relations are found between scattering data and the spectrum for the two-dimensional Schrödinger operator $\Delta+V(x)$, where V is a local noncentral potential. In particular a two-dimensional version of the Levinson theorem is obtained; this theorem gives the number of bound states in terms of the change in phase of the determinant of the scattering operator.

✓ 3. Shock profile solutions of the Boltzmann equation, by R. E. Caflisch and
B. Nicolaenko.

Shock waves in gas dynamics can be described by the Euler Navier-Stokes, or Boltzmann equations. We prove the existence of shock profile solutions of the Boltzmann equation for shocks which are weak. The shock is written as a truncated expansion in powers of the shock strength, the first two terms of which come exactly from the Taylor tanh (x) profile for the Navier-Stokes solution. The full solution is found by a projection method like the Lyapunov-Schmidt method as a bifurcation from the constant state in which the bifurcation parameter is the difference between the speed of sound contact and the shock speed s.

4. Restricted quadratic forms and their application to bifurcation and stability in constrained variational principles, by J. H. Maddocks.

The subjects of this investigation are the abstract properties and applications of restricted quadratic forms. The first part of the presentation resolves the following question: if L is a self-adjoint linear operator mapping a Hilbert space \mathcal{H} into itself, and S is a subspace of \mathcal{H} , when is the quadratic form $\langle u, Lu \rangle$ positive for any non-zero $u \in S$? In the second part of the presentation, restricted quadratic forms are further examined in the specific context of constrained variational principles; and the general theory is applied to obtain information on stability and bifurcation. Two examples are then solved: one is finite-dimensional and of an illustrative nature; the other is a longstanding problem in elasticity concerning the stability of a buckled rod. In addition to being a valuable analytical tool for isoperimetric problems in the calculus of variations, the tests described are amenable to numerical treatment. A theorem concerning the variational characterization of eigenvalues is also obtained.

5. Spatially inhomogeneous polymerization in unstirred bulk, by M. S. Falkovitz and L. A. Segel.

A new experimental method for the formation of large polymers of very

narrow molecular weight distribution is examined theoretically. The problem belongs to the general class of transport-reaction problems in multi-component media. A comprehensive mathematical model of the phenomenon is presented. Noteworthy is the fact that diffusive fluxes are decomposed into two parts, pure diffusion and back-bulk-flow. It is shown that the full problem, which consists of an infinite number of coupled nonlinear differential equations, can be reduced to two such equations. Heat production is also considered in an auxiliary investigation. The appropriate differential equations are solved numerically and the physical significance of the results is discussed.

6. The scale of non-homogeneity as defined by diffusion measurements, by M. S. Falkovitz and H. L. Frisch.

The asymptotic behaviour of the permeation rate in non-homogeneous laminar slabs of increasing width ℓ is studied. We show rigorously that for a wide class of slabs with non-homogeneities distributed in a statistically homogeneous manner, the permeation rate approaches that of a homogeneous slab as $1/\ell^2$. The result is compared with previous studies of this subject.

7. Crawling of worms, by J. B. Keller and M. S. Falkovitz.

The mechanics of a worm crawling along a flat surface is analyzed. The external forces of friction and gravity, and the internal pressure and tension, are taken into account. An equation of motion is formulated, and solutions are sought in which both the tension and the linear density are required to lie between prescribed bounds. Pulse and periodic travelling wave solutions are constructed. The maximum crawling velocity is determined, as well as the wave form which achieves it. Comparison of the results with experimental observations shows that the theory yields a maximum crawling velocity which is much larger than the observed velocity. Therefore the theory was changed to require that the time rate of change of tension be less than a prescribed bound, rather than

that the tension be bounded. With this modification, the theory agrees fairly well with the observations.

8. The random choice method and the free-surface water profile after the collapse of a dam wall, by A. Jeffrey and J. Mvungi.

The random choice (RC) method due to Glimm [1], subsequently modified by Chorin [2] and Sod [3], is applied to the shallow water equations of Stoker [4], in order to determine the free-surface profile of water, as a function of position and time, when a dam wall suddenly collapses. The numerical results obtained by this method are compared with the analytical results due to Stoker for this classical problem [5], and with numerical results obtained by a further modification of the Glimm-Chorin scheme involving a smoothing operation. The improvement brought about by the smoothing, and the generally close agreement with the exact result that is then obtained, is a feature of this modified approach.

9. A statistical theory for imperfect bifurcation, by J. G. Watson and E. L. Reiss.

An "honest" statistical method is presented to analyze the effects of imperfections, and other disturbances on the bifurcation of solutions of non-linear problems. First, uniformly valid asymptotic approximations of the solutions are obtained for any realization of the imperfections. The approximations are valid as the magnitude of the imperfections approaches zero. The statistical properties of the solutions are then deduced directly from these approximations, for specified statistics of the imperfections. For simplicity of presentation, the imperfections are taken as zero-mean, wide-sense stationary, Gaussian random processes. The statistical analysis is elementary. It provides easily analyzed results for the expected values and variances of the solutions. Confidence limits are also given.

10. Global existence for a generalized Korteweg - de Vries equation, by M. Weinstein.

A sufficient condition for global existence is obtained for the generalized Korteweg - de Vries Equation (GKdV) $u_t + u^4 u_x + u_{xxx} = 0$, $x \in \mathbb{R}^1$, $t \in \mathbb{R}^+$. This condition is expressed in terms of the solitary (traveling) wave solution of GKdV.

11. Nonlinear Schrödinger equations and sharp interpolation estimates, by M. I. Weinstein.

A sharp sufficient condition for global existence is obtained for the nonlinear Schrödinger equation

(NLS)
$$2i\phi_t + \Delta\phi + |\phi|^{2\sigma}\phi = 0$$
, $x \in \mathbb{R}^N$, $t \in \mathbb{R}^+$,

in the case σ = 2/N. This condition is in terms of an exact stationary solution (nonlinear ground state) of (NLS). It is derived by solving a variational problem to obtain the "best constant" for classical interpolation estimates of Nirenberg and Gagliardo.

END DATE FILMED

9 — 83 DTIC