Computational aspects of modular parametrizations of elliptic curves

Hao Chen

University of Washington Ph.D. defense

Advisor: William Stein

April 26, 2016

Critical subgroups of elliptic curves

- Critical subgroups of elliptic curves
 - Elliptic curves and modular curves
 - The critical subgroup and critical polynomials
 - Computing the critical subgroup
- $\bigcirc q$ -expansion of newforms at non-unitary cusps
 - Problem description
 - Deriving the formula
 - Computing twists and pseudo-eigenvalues
- Chow-Heegner points
 - Even index
 - Computing Chow-Heegner points

Elliptic curves over $\mathbb Q$

Definition

An elliptic curve over $\mathbb Q$ is a nonsingular projective curve $E\subseteq \mathbb P^2$ with defining equation

$$y^2z = x^3 + Axz^2 + Bz^3,$$

where $A, B \in \mathbb{Q}$ and $4A^3 + 27B^2 \neq 0$.

Theorem (Mordell-Weil)

 $E(\mathbb{Q})$ is a finitely generated abelian group, i.e.,

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$$
,

for some $r \ge 0$ and T finite.

r is called the rank. T is the torsion subgroup.

The BSD conjecture

There is an entire function L(E, s) called the L-function of E.

The rank part of the Birch and Swinnerton-Dyer (BSD) conjecture is:

$$rank(E(\mathbb{Q})) = ord_{s=1} L(E, s).$$

RHS is the analytic rank, denoted by $r_{an}(E)$.

The BSD conjecture is open when $r_{an}(E) > 1$.

The proof of rank BSD for $r_{an}(E) \le 1$ uses Heegner points.

Modular curves

Let $N \ge 1$ be an integer, consider the group

$$\Gamma_0(N) = \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL_2(\mathbb{Z}) : N \mid c
ight\}.$$

Let $\mathcal{H}^* = \{z \in \mathbb{C} : im(z) > 0\} \cup \mathbb{P}^1(\mathbb{Q}).$

 $\Gamma_0(N)$ acts on \mathcal{H}^* by fractional linear transformations.

Definition

$$X_0(N) = \Gamma_0(N) \backslash \mathcal{H}^*$$
.

- $X_0(N)$ has the structure of a nonsingular projective curve.
- Rational functions on $X_0(N)$ are called modular functions. They have q-expansions at infinity:

$$u(q) = \sum_{n > -m} b_n q^n, \ q = e^{2\pi i z}.$$

The modularity theorem

Theorem (Modularity)

For every elliptic curve E/\mathbb{Q} , there exists an integer N>1 and a surjective morphism $\varphi: X_0(N) \to E$ defined over \mathbb{Q} .

The smallest N is called the conductor of E.

Let $\omega = \varphi^*(\frac{dx}{y})$. Then $\omega = cf(z)dz$, where f is the modular form attached to E.

We assume E is optimal. Then φ is unique up to sign.

Idea: use φ to find points on E.

– rational points on $X_0(N)$ – cusps. – Heegner points. – Ramification points. – Others??

Note: up to now, no known construction in ≥ 2 .

The critical subgroup $E_{crit}(\mathbb{Q})$

Let $R_{\varphi} = \sum (e_{\varphi}(z) - 1)[z]$ be the ramification divisor of φ .

Definition (Mazur, Swinnerton-Dyer)

The critical subgroup of E is

$$E_{crit}(\mathbb{Q}) = \langle tr(\varphi([z])) : [z] \in \operatorname{supp} R_{\varphi} \rangle \subseteq E(\mathbb{Q}),$$

where
$$tr(P) = \sum_{\sigma: \mathbb{Q}(P) \to \bar{\mathbb{Q}}} P^{\sigma}$$
.

• $R_{\varphi} = \operatorname{div}(\omega)$. In particular, $\deg R_{\varphi} = 2g(X_0(N)) - 2$.

Question (Mazur and Swinnerton-Dyer, 1974)

Is there an elliptic curve E/\mathbb{Q} with $r_{an}(E) \geq 2$ and $rank(E_{crit}(\mathbb{Q})) > 0$?

Critical *j*-polynomial

To help compute $E_{crit}(\mathbb{Q})$, we make the following definition.

Definition

Write $div(\omega) = \sum n_z[z]$. The critical j-polynomial of E is

$$F_{E,j}(x) = \prod_{z \in \text{supp div}(\omega), j(z) \neq \infty} (x - j(z))^{n_z}.$$

 $F_{E,j}(x) \in \mathbb{Q}[x]$ and deg $F_{E,j} \leq 2g-2$ (equality holds if N is square free). For $h \in \mathbb{Q}(X_0(N))$, can define $F_{E,h}(x)$.

Polynomial Relation (I)

Let C be a curve and let $r, u \in \mathbb{Q}(C)$.

A minimal polynomial relation of r and u is an irreducible polynomial $P(x,y) \in \mathbb{Q}[x,y]$, such that P(r,u) = 0. Say $P(x,y) = f_n(y)x^n + \cdots + f_1(y)x + f_0(y)$.

Lemma (C.)

If
$$\mathbb{Q}(C) = \mathbb{Q}(r, u)$$
 and $\gcd(f_0(y), f_n(y)) = 1$, then
$$f_0(y) = c \prod_{z \in \text{supp div}_0(r) \setminus \text{supp div}_\infty(u)} (y - u(z))^{mult_z(\text{div}_0(r))}.$$

Polynomial Relation (II)

Set

$$r = j(j - 1728)\frac{\omega}{dj}, \ u = \frac{1}{j}.$$

Then $r, u \in \mathbb{Q}(X_0(N))$, and $\operatorname{div}_0(r) = \operatorname{div}(\omega) + D_0$, where points in supp D_0 have j-value 0 or 1728.

Proposition (C.)

For $T \gg 0$, let $P(x,y) = f_n(y)x^n + \cdots + f_1(y)x + f_0(y)$ be a minimal polynomial relation of rj^T and u. Then

$$F_{E,j}(x) = f_0(1/x) \cdot x^A (x - 1728)^B$$

where A, B are explicitly computable.

The Algorithm

Input: The newform f_E attached to elliptic curve E/\mathbb{Q} ;

Output: $F_{E,j}$.

$$r = \frac{j(j-1728)f_E dz}{dj}, \ u = \frac{1}{j}.$$

Compute the q-expansions of r and u to precision q^M .

Solve the linear equations $\sum c_{a,b}r(q)^au(q)^b=0\pmod{q^M}$ for $c_{a,b}$.

Set $P(x,y) = \sum c_{a,b} x^a y^b$ and apply the proposition.

For a discriminant d < 0, let H_d be the Hilbert class polynomial of disc d.

Example

$$F_{44a,j}(x) = H_{-44}(x)^2$$
. $F_{37a,j}(x) = H_{-148}(x)$. $F_{37b,j}(x) = H_{-16}(x)^2$.

The critical subgroup $E_{crit}(\mathbb{Q})$

Elliptic points: a finite set of points on $X_0(N)$ corresponding to elliptic curves with extra endormorphisms.

For i = 2, 3, let $\mathscr{E}_i(N)$ be the set of elliptic points on $X_0(N)$ of period i.

Lemma (C.)

Let
$$P_{all} = \sum_{z \in \text{supp } R_{\varphi}} \text{mult}_{R_{\varphi}}(z) \varphi(z)$$
. Then $6P_{all} = -3 \sum_{c \in \mathscr{E}_2(N)} \varphi(c) - 4 \sum_{d \in \mathscr{E}_3(N)} \varphi(d)$.

Theorem (C.)

Suppose $r_{an}(E) \ge 2$, and assume at least one of the following holds:

- (1) $F_{E,j} = \prod_{m=1}^k H_{D_m}^{s_i} \cdot F_0$, where $\mathbb{Q}(\sqrt{D_m}) \neq \mathbb{Q}(\sqrt{D_n})$ for all $m \neq n$, and F_0 is irreducible.
- (2) $F_{E,h}$ is irreducible for some non-constant function $h \in \mathbb{Q}(X_0(N))$. Then $rank(E_{crit}(\mathbb{Q})) = 0$.

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\ \mbox{(I)}$

Ε	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
389a	32	j	$H_{-19}(x)^2(x^{60}+\cdots)$
433a	35	j	$x^{68} + \cdots$
446d	55	j	$x^{108} + \cdots$
563a	47	j	$H_{-43}(x)^2(x^{90}-\cdots)$
571b	47	j	$H_{-67}(x)^2(x^{90}-\cdots)$
643a	53	j	$H_{-19}(x)^2(x^{102}-\cdots)$
664a	81	$\frac{\eta_4 \eta_8^2 \eta_{332}^5}{\eta_{166} \eta_{664}^6 \eta_2}$	$x^{160}-\cdots$
655a	65	j	$x^{128}-\cdots$
681c	75	j	$x^{148}-\cdots$
707a	67	j	$x^{132}-\cdots$

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\ (\mbox{II})$

Ε	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
709a	58	j	$x^{114}-\cdots$
718b	89	j	$H_{-52}(x)^2(x^{172}-\cdots)$
794a	98	j	$H_{-4}(x)^2(x^{192}-\cdots)$
817a	71	j	$x^{140}-\cdots$
916c	113	j	$H_{-12}(x)^8(x^{216}+\cdots)$
944e	115	$\frac{\eta_{16}^{4}\eta_{4}^{2}}{\eta_{8}^{6}}$	$x^{224}-\cdots^1$
997b	82	j	$H_{-27}(x)^2(x^{160}-\cdots)$
997c	82	j	$x^{162}-\cdots$

¹Here 4 of the critical points are cusps, so deg F = 2g - 6.

Discussion

Corollary

For all elliptic curves E of rank 2 and conductor N < 1000, the rank of $E_{crit}(\mathbb{Q})$ is 0.

Future work:

- Compute $E_{crit}(\mathbb{Q})$ for E = 5077a. Current method will take roughly 5500/(number of cpus) hours.
- Prove or disprove that $\operatorname{rank}(E_{crit}(\mathbb{Q})) = 0$ whenever $r_{an}(E)$ is even. (For infinitely many?)

q-expansion of newforms at non-unitary cusps

- Critical subgroups of elliptic curves
 - Elliptic curves and modular curves
 - The critical subgroup and critical polynomials
 - Computing the critical subgroup
- - Problem description
 - Deriving the formula
 - Computing twists and pseudo-eigenvalues
- Chow-Heegner points
 - Even index
 - Computing Chow-Heegner points

Modular forms

Let f be a function $f: \mathcal{H} \to \mathbb{C}$, $\alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{Z})$, and let $k \in \mathbb{Z}$. The weight-k action of α on f is defined by

$$f|[\alpha]_k(z):=(cz+d)^{-k}f(\alpha z).$$

Definition

A **modular form** of weight k and level N is a holomorphic function

- $f:\mathcal{H}\to\mathbb{C}$ s.t.
- (1) $f(z) = f|[\alpha]_k(z), \forall \alpha \in \Gamma_0(N) (\Gamma_1(N)).$
- (2) f has holomorphic extension to all cusps of $X_0(N)$ ($X_1(N)$).

Cusp forms = modular forms that are zero at all cusps.

Modular forms have q-expansions: $f(q) = \sum_{n\geq 0} a_n q^n$, $q = exp(2\pi iz)$.

The space of cusp forms = $S_k(N)$.

Operators on modular forms

- Hecke operators: a family $\{T_n, n \geq 1\} \cup \{\langle d \rangle : (d, N) = 1\}$ of commuting linear operators on $S_k(N)$.
- B_d and U_d operators: $B_d(\sum a_n q^n) = \sum a_n q^{nd}$, $U_d(\sum a_n q^n) = \sum a_{nd} q^n$.
- The Atkin-Lehner involution W_N . If f is a newform on $\Gamma_1(N)$, then

$$f|W_N=w(f)\bar{f}$$

 $w(f) \in \mathbb{C}_1$ is called the pseudo-eigenvalue of f.

Newforms

- When $M \mid N$, \exists degeneracy maps $S_k(M) \rightarrow S_k(N)$.
- Old subspace = span of images of all degeneracy maps.
- New subspace = (Old subspace) $^{\perp}$.
- $S_k(N)^{new}$ has a basis of simultaneous eigenforms for all Hecke operators. These eigenforms are called newforms.

Fourier expansion

Let $f \in S_k(\Gamma_0(N))$ be a newform and let $\mathfrak{c} \in X_0(N)$ be a cusp other than ∞ .

Goal: compute the expansion of f at \mathfrak{c} . First, only well-defined for $denom(\mathfrak{c})^2 \mid N$. Equivalent to computing the expansion of

$$f | \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ \textit{Id} & 1 \end{pmatrix} \end{bmatrix}$$

at ∞ for all $d^2 \mid N, I \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.

Idea of computing

Let
$$S_c' = \begin{pmatrix} 1 & \frac{1}{c'} \\ 0 & 1 \end{pmatrix}$$
 and $A_c' = \begin{pmatrix} 1 & 0 \\ c' & 1 \end{pmatrix}$. Then

$$A_c^{-u} = W_N S_{c'}^u W_N, \, \forall u \in \mathbb{Z}.$$

For a character χ modulo c', put

$$f|R_{\chi}(c'):=\sum_{u=0}^{c'-1}\bar{\chi}(u)f|S_{c'}^u.$$

 $f|R_{\chi}(\operatorname{cond}\chi)=g(\bar{\chi})f_{\chi}.$ $(f_{\chi}(q)=\sum a_n(f)\chi(n)q^n$ is a modular form of level N'.) We have

$$\varphi(c')A_c^{-a} = \sum_{\operatorname{cond}(\chi)|c'} \chi(a)W_N R_{\chi}(c')W_N. \tag{2.1}$$

Applying to f, we arrive at

$$f_{\left[\frac{a}{c}\right]}(q) = \frac{w(f)}{\varphi(c')} \sum_{\operatorname{cond}(\chi)|c'} \chi(-a) f |R_{\chi}(c')W_{N}|.$$

(2.2)

Idea (ctnd)

It suffices to compute the expansions of each $f|R_{\chi}(c')W_N$ in the sum.

 $f \otimes \chi :=$ the unique newform such that $a_p(f \otimes \chi) = a_p(f_\chi)$ for almost all p. (We call $f \otimes \chi$ the twist of f by χ).

If $c' = \operatorname{cond}(\chi)$ and $f_{\chi} = f \otimes \chi$, then $f|R_{\chi}(c')W_{N} = w(f \otimes \chi)f_{\chi}$.

Otherwise, $f_{\chi} = (f \otimes \chi)|(1 - U_d|B_d)$, and we use

Lemma

$$f|B_d|W_N = \left(\frac{N}{Md^2}\right)^{\kappa/2} w(f)(f|B_{\frac{N}{Md}})^*.$$

Conclusion: suffices to compute $f \otimes \chi$ and $w(f \otimes \chi)$.

Algorithm for twists

Lemma

Let ϵ be the character of f. Then the level of $f \otimes \chi$ divides $lcm(N, cond(\epsilon) cond(\chi), cond(\chi)^2)$.

Lemma

For every $N \ge 1$, there exists an integer B = B(N) such that if g_1 , g_2 be two normalised newforms of levels N_1 , N_2 dividing N and

$$a_n(g_1) = a_n(g_2)$$
, for all $1 \le n \le B$ such that $\gcd(n, N) = 1$,

then $g_1 = g_2$.

Algorithm to compute $f \otimes \chi$

Algorithm 1 Identifying $f \otimes \chi$

```
Input: f \in S_k(\Gamma_0(N)) a normalized newform; \chi – Dirichlet character of
  prime power conductor Q = q^{\beta} (Q^2 \mid N).
Output: The newform f \otimes \chi.
  for each M \mid N do
      Compute a basis \{g_1, \ldots, g_s\} of S_k(M, \chi^2)^{new}.
       B := \text{the Sturm bound for } \Gamma_1(MQ^2).
      for 1 < i < s do
          if a_n(g_i) = a_n(f)\chi(n) for all 1 \le n \le B, gcd(n, q) = 1 then
               return g_i.
           end if
      end for
  end for
  return Error.
```

Computing the pseudo-eigenvalue

Recall that modular symbols are linear combinations of $\{\alpha, \beta\}$, $\alpha, \beta \in \mathbb{Q} \cup \infty$, and we put

$$\langle f, \{\alpha, \beta\} \rangle := \int_{\alpha}^{\beta} f dz.$$

Lemma (C.)

There exists a weight-k modular symbol M be such that $W_N(M) = N^{k/2-1}M^*$. Moreover, if $\langle f, M \rangle \neq 0$, then

$$w(f) = \frac{\langle f, M \rangle}{\langle f, M \rangle}.$$

Examples (I)

Example

 $E = \mathbf{50a}$. f_E is twist-minimal. Let $\mathfrak{c} = \begin{bmatrix} \frac{1}{10} \end{bmatrix}$, write $\alpha_0 = 0$ and

$$x^4 + x^3 + x^2 - x + \frac{1}{5} = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4).$$

Then

$$f_{\mathfrak{c}}(q) = \sum_{n \geq 1} \alpha_{n \mod 5} a_n(f) q^n.$$

Example

Let E = 48a and let $\mathfrak{c} = \left\lceil \frac{1}{12} \right\rceil$. We computed that

$$f_c(a) = -2ia^2 + 2ia^6 + O(a^7).$$

Since the first coefficient vanishes, we conclude that the modular parametrization $\varphi: X_0(48) \to E$ is ramified at the cusp \mathfrak{c} .

Examples (II)

Definition

A newform f is twist-minimal if it is not a twist of a newform of lower level.

Example

Let E=98a and $\mathfrak{c}=\left[\frac{1}{14}\right]$. Then f_E is not twist-minimal. More precisely, if χ is the quadratic character modulo 7, then

$$f \otimes \chi(q) = q - q^2 - 2q^3 + q^4 + O(q^6)$$

is a newform of level 14. We computed numerically that

$$f_c(q) = (-0.755 - 0.172i) q + (0.441 - 0.916i) q^2 + (1.392 + 1.110i) q^3$$

$$+ (0.696 - 0.555i) q^4 + (1.510 - 0.344i) q^6 - 3.023iq^7 + O(q^8)$$

Further work

Assume E/\mathbb{Q} , $f = f_E$ is minimal by twist.

- relation to automorphic side: psuedo-eigenvalues relates to epsilon factors of $\pi_{f \otimes \chi}$. Another way to determine the local components of π_f .
- Let \mathfrak{c} be a cusp of prime denominator $p \geq 5$. Seems that $a_1(f_{\mathfrak{c}})$ is only divisible by primes that are $\pm 1 \mod p$. Can we prove this?

Chow-Heegner points

- Critical subgroups of elliptic curves
 - Elliptic curves and modular curves
 - The critical subgroup and critical polynomials
 - Computing the critical subgroup
- q-expansion of newforms at non-unitary cusps
 - Problem description
 - Deriving the formula
 - Computing twists and pseudo-eigenvalues
- Chow-Heegner points
 - Even index
 - Computing Chow-Heegner points

29/3

Definition: Chow-Heegner points

E, F: two non-isogeneous elliptic curves of same conductor N.

 φ, ψ : modular parametrisations of E, F.

The Chow-Heegner point associated to the pair (E, F) is

$$P_{E,F} = \sum \varphi(\psi^*(Q)), \forall Q \in F(\mathbb{C})$$

Facts: (1) $P_{E,F}$ is independent of the choice of Q;

(2)
$$P_{E,F} \in E(\mathbb{Q})$$
.

Even index of Chow-Heegner points

Theorem (Yuan-Zhang-Zhang)

Assume some technical conditions. Then

$$\hat{h}(P_{E,F}) = (\star) \cdot L'(E,F,F,\frac{1}{2}),$$

where (*) is nonzero.

When E has rank 1, numerical evidence suggests that the index $i_{E,F} := [E(\mathbb{Q})/tors : \mathbb{Z}P_{E,F}]$ is even, when it is finite.

Theorem (C.)

Let $\sigma_0(N)$ denote the number of distinct prime factors of N. If

$$\sigma_0(N) > \log_2(\#E[2](\mathbb{Q})) + \log_2(\#F[2](\mathbb{Q})) + 2,$$

then $P_{E,F} \in 2E(\mathbb{Q})$.

31 / 37

Computing Chow-Heegner points: previous work

There exist numerical algorithms to compute Chow-Heegner points.

- Darmon, Daub, Lichtenstein and Rotger using (complex and p-adic) iterated integrals.
- Stein using complex integration to lift points via modular parametrization.

My algorithm and an example

We present an algorithm that either computes the Chow-Heegner point $P_{E,F}$.

Let x_E, y_E, x_F, y_F be the compositions of φ, ψ with the x and y coordinate functions on E and F, respectively. Note that there exists an algorithm to compute the q-expansions of x_E, x_F, y_E and y_F .

Algorithm: computing Chow-Heegner points

```
Input: E, F = \text{non-isogeneous elliptic curves of conuductor } N; q-expansions
  of X_F, Y_F, X_F, Y_F.
Output: P_{E,F}.
  u_F := (x_F)^{-1} and u_F := (x_F)^{-1}.
  Compute a polynomial F(x, y) such that F_{E,F}(u_E, u_F) = 0.
   f_{ch,x}(x) := F_{F,F}(u_F,0).
  Repeat for v_F = (y_F)^{-1} and u_F, get f_{ch,v}(x).
  Factor f_{ch,x} = \prod (x - a_i) over \bar{\mathbb{Q}}.
   for each a; do
       if f_{ch,v}(b_i) = 0 then P_i = (a_i, b_i)
       else P_i = -(a_i, b_i).
       end if
  end for
  Output P_{E,F} = \sum_{i} P_{i}.
```

Example

Example

Consider $E = \mathbf{89a}$ and $F = \mathbf{89b}$. Here $\deg(\varphi) = 2$ and $\deg(\psi) = 5$. Let $D = D_{\varphi,\psi} = \varphi(\psi^*(\infty)) \in \operatorname{div}(E)$. Define $G_1(x) = \prod_{P \in D} (x - x(P))$ and $G_2(y) = \prod_{P \in D} (y - y(P))$. We computed

$$G_1(x) = x^4 + \frac{13}{4}x^3 + \frac{17}{4}x^2 + \frac{21}{4}x + \frac{9}{2}, \ G_2(y) = y^4 + \frac{1}{8}y^3 + \frac{21}{4}y^2 + \frac{7}{2}y + 3.$$

Write $G_1(x) = \prod (x - a_i)$ with $a_i \in \overline{\mathbb{Q}}$. We found $b_i = -\frac{8}{9}a_i^3 - \frac{20}{9}a_i^2 - \frac{28}{9}a_i - \frac{10}{3}$ is the root of G_2 such that $(a_i, b_i) \in E$. Hence

$$P_{E,F} = \sum_{i=1}^{4} P_i$$
, where $P_i = (a_i, b_i)$.

Carrying out the summation, we obtain $P_{E,F} = (\frac{3}{4}, -\frac{15}{8})$.

Future work

- Compute Chow-Heegner points for curves of different conductors.
- Prove even index in all cases.
- Verify the data of Chow-Heegner points in Stein's paper and extend the table.

Thank you!