

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C12N 15/38, 15/44, 15/40, 15/35, 15/31, A61K 39/295		A1	(11) Numéro de publication internationale: WO 98/03658 (43) Date de publication internationale: 29 janvier 1998 (29.01.98)
(21) Numéro de la demande internationale: PCT/FR97/01313		(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) Date de dépôt international: 15 juillet 1997 (15.07.97)			
(30) Données relatives à la priorité: 96/09338 19 juillet 1996 (19.07.96) FR			
(71) Déposant (pour tous les Etats désignés sauf US): MERIAL [FR/FR]; 17, rue Bourgelat, F-69002 Lyon (FR).		Publiée <i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i>	
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): AUDONNET, Jean-Christophe [FR/FR]; 119, rue de Créqui, F-69006 Lyon (FR). BOUCHARDON, Annabelle [FR/FR]; 118, cours Gambetta, F-69007 Lyon (FR). BAUDU, Philippe [FR/FR]; 58, avenue Edouard Simon, F-69290 Craponne (FR). RIVIERE, Michel [FR/FR]; 11, chemin du Chancelier, F-69130 Ecully (FR).			
(74) Mandataire: COLOMBET, Alain; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR).			
(54) Title: POLYNUCLEOTIDE VACCINE FORMULA FOR TREATING PORCINE RESPIRATORY AND REPRODUCTIVE DISEASES			
(54) Titre: FORMULE DE VACCIN POLYNUCLEOTIDIQUE CONTRE LES PATHOLOGIES RESPIRATOIRES ET DE REPRODUCTION DES PORCS			
(57) Abstract			
<p>A porcine vaccine formula for treating porcine respiratory and reproductive disease, including at least three polynucleotide vaccine valencies that each include a plasmid containing a porcine pathogen valency gene capable of being expressed <i>in vivo</i> in host cells. Said valencies are selected from two groups which consist of Aujeszky's disease virus, swine influenza virus, mysterious swine disease virus, parvovirus disease virus, pest disease virus, and bacteria causing actinobacillosis. Said plasmids include one or more genes per valency, and said genes are selected from the group which consists of gB and gD for Aujeszky's disease virus, HA, NP and N for swine influenza virus, E, N, ORF3 and M for mysterious swine disease virus, VP2 for parvovirus disease virus, E1 and E2 for pest disease virus, and apxI, apxII and apxIII for actinobacillosis virus.</p>			
(57) Abrégé			
<p>La formule de vaccin porcin contre la pathologie respiratoire et/ou de reproduction des porcs, comprend au moins 3 valences de vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à exprimer <i>in vivo</i> dans les cellules hôtes, un gène d'une valence de pathogène porcin, ces valences étant choisies parmi deux groupes consistant en virus de la maladie d'Aujeszky, virus de la grippe porcine, mystérieuse du porc, virus de la grippe porcine, virus de la maladie mystérieuse du porc, virus de la parvovirose, virus de la pestivirose et bactéries responsables de l'actinobacillose, les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes choisis parmi le groupe consistant en gB et gD pour le virus de la maladie d'Aujeszky, HA, NP, N pour le virus de la grippe porcine, E, N, ORF3, M pour le virus de la maladie mystérieuse, VP2 pour le virus de la parvovirose, E1, E2 pour le virus de la pestivirose et apxI, apxII et apxIII pour le virus de l'actinobacillose.</p>			

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizstan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

FORMULE DE VACCIN POLYNUCLEOTIDIQUE CONTRE LES PATHOLOGIES
RESPIRATOIRES ET DE REPRODUCTION DES PORCS

La présente invention est relative à une formule de vaccin 5 permettant notamment la vaccination des porcs contre les pathologies respiratoires et de reproduction. Elle est également relative à une méthode de vaccination correspondante.

Au cours des dernières décennies, les méthodes de production porcines ont fondamentalement changé. L'élevage 10 intensif en espace clos s'est généralisé avec comme corollaire le développement dramatique des pathologies respiratoires.

L'ensemble des symptômes de pathologie respiratoire porcine est en général regroupé sous l'appellation complexe de maladie respiratoire des porcs et implique une grande variété 15 d'agents pathogènes, comprenant aussi bien des virus que des bactéries et des mycoplasmes.

Les principaux agents intervenant dans les troubles respiratoires sont *Actinobacillus pleuropneumoniae*, le virus de l'infertilité et du syndrome respiratoire (PRRS) encore appelé virus de la maladie mystérieuse, le virus de la maladie d'Aujeszky (PRV) et le virus de la grippe porcine.

D'autres virus entraînent des troubles de la reproduction se traduisant par des avortements, des momifications de foetus et de l'infertilité. Les principaux virus sont PRRS, le parvovirus et le virus de la peste porcine classique (HCV). Secondairement, les virus PRV, grippe porcine et *A. pleuropneumoniae* peuvent aussi entraîner de tels troubles. Des mortalités peuvent intervenir avec *A. pleuropneumoniae*, HCV et PRV.

En outre, les interactions entre les microorganismes sont très importants dans le complexe respiratoire porcin. En effet, la plupart des pathogènes bactériens sont des hôtes habituels des zones nasopharyngées et des amygdales chez le jeune animal. Ces pathogènes, qui proviennent de la truie, sont souvent inhalés par les jeunes porcs durant leurs premières heures de vie, avant que l'immunité colostrale soit devenue efficace. Les organismes résidant dans le tractus respiratoire supérieur peuvent envahir le tractus inférieur lorsque les mécanismes de

défense respiratoires de l'hôte sont mis à mal par un agent précurseur tel que *Actinobacillus pleuropneumoniae* ou par des virus. L'invasion pulmonaire peut être très rapide en particulier dans le cas de pathogènes précurseurs tels que *Actinobacillus pleuropneumoniae* qui produisent des cytotoxines puissantes capables d'endommager les cils des cellules épithéliales respiratoires et les macrophages alvéolaires.

Des infections virales importantes, telles que influenza, infections à coronavirus respiratoires et virus d'Aujeszky, peuvent jouer un rôle dans la pathogénie du complexe respiratoire, au côté de bactéries à tropisme respiratoire et de mycoplasmes.

Enfin certains agents ont une incidence à la fois en respiratoire et en reproduction. Des interactions peuvent aussi se produire sur le plan de la pathologie de la reproduction.

Il paraît donc nécessaire de tenter de mettre au point une prévention efficace contre les principaux agents pathogènes intervenant dans les pathologies respiratoires et de reproduction des porcs.

Les associations développées jusqu'à présent étaient réalisées à partir de vaccins inactivés ou de vaccins vivants et éventuellement de mélanges de tels vaccins. Leur mise en œuvre pose des problèmes de compatibilité entre valences et de stabilité. Il faut en effet assurer à la fois la compatibilité entre les différentes valences de vaccin, que ce soit au plan des différents antigènes utilisés au plan des formulations elles-mêmes, notamment dans le cas où l'on combine à la fois des vaccins inactivés et des vaccins vivants. Il se pose également le problème de la conservation de tels vaccins combiné et aussi de leur innocuité notamment en présence d'adjuvant. Ces vaccins sont en général assez coûteux.

Les demandes de brevet WO-A-90 11092, WO-A-93 19183, WO-A-94 21797 et WO-A-95 20660 ont fait usage de la technique récemment développée des vaccins polynucléotidiques. On sait que ces vaccins utilisent un plasmide apte à exprimer dans les cellules de l'hôte l'antigène inséré dans le plasmide. Toutes les voies d'administration ont été proposées (intrapéritonéal, intraveineuse, intramusculaire, transcutanée; intradermique,

mucosale, etc.). Différents moyens de vaccination peuvent également être utilisés, tels que ADN déposé à la surface de particules d'or et projeté de façon à pénétrer dans la peau de l'animal (Tang et al., Nature 356, 152-154, 1992) et les injecteurs par jet liquide permettant de transfecter à la fois dans la peau, le muscle, les tissus graisseux et les tissus mammaires (Furth et al., Analytical Biochemistry, 205, 365-368, 1992).

Les vaccins polynucléotidiques peuvent utiliser aussi bien des ADN nus que des ADN formulés par exemple au sein de liposomes de lipides cationiques.

M-F Le Potier et al., (Second International Symposium on the Eradication of Aujeszky's Disease (pseudo rabies) Virus August 6th to 8th 1995 Copenhagen, Denmark) et M. Monteil et al. (Les Journées d'Animation Scientifique du Département de Pathologie Animale, INRA-ENV, Ecole Nationale Vétérinaire de LYON, 13-14 déc 1994) ont tenté de vacciner les porcs contre le virus de la maladie d'Aujeszky à l'aide d'un plasmide permettant l'expression du gène gD sous le contrôle d'un promoteur fort, le promoteur majeur tardif de l'adénovirus de type 2. Malgré une réponse en anticorps de bon niveau, aucune protection n'a pu être mise en évidence. Or, des résultats satisfaisants en matière de protection ont été enregistrés après inoculation aux porcs d'un adénovirus recombinant dans lequel a été inséré le gène gD et le même promoteur, prouvant que la glycoprotéine gD serait suffisante pour induire une protection chez le porc.

L'art antérieur ne donne aucun résultat de protection chez le porc par la méthode de la vaccination polynucléotidique.

L'invention se propose de fournir une formule de vaccin multivalent permettant d'assurer une vaccination des porcs contre un certain nombre d'agents pathogènes intervenant notamment dans la pathologie respiratoire et/ou dans la pathologie de la reproduction.

Un autre objectif de l'invention est de fournir une telle formule de vaccin associant différentes valences tout en présentant tous les critères requis de compatibilité et de stabilité des valences entre elles.

Un autre objectif de l'invention est de fournir une telle formule de vaccin permettant d'associer différentes valences dans un même véhicule.

5 Un autre objectif de l'invention est de fournir une telle formule de vaccin qui soit de mise en oeuvre aisée et peu coûteuse.

10 Un autre objectif encore de l'invention est de fournir une telle formule de vaccin et une méthode de vaccination des porcs qui permette d'obtenir une protection, y compris une protection multivalente, avec un niveau élevé d'efficacité et de longue durée, ainsi qu'une bonne innocuité et une absence de résidus.

La présente invention a donc pour objet une formule de vaccin notamment contre la pathologie respiratoire et/ou de reproduction des porcs, comprenant au moins 3 valences de 15 vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à l'exprimer *in vivo* dans les cellules hôtes, un gène d'une valence de pathogène porcin, ces valences étant choisies parmi celles du groupe consistant en virus de la maladie d'Aujeszky (virus PRV ou pseudororge), virus de la grippe porcine (virus influenza porcin, SIV), virus de la maladie mystérieuse du porc (virus PRRS), virus de la parvovirose (virus PPV), virus de la peste porcine classique (virus HCV ou Hog Cholera virus) et bactérie responsable de 20 l'actinobacilleuse (*A. pleuropneumoniae*), les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes 25 choisis parmi le groupe consistant en gB et gD pour le virus de la maladie d'Aujeszky, HA, NP, N pour le virus de la grippe porcine, ORF5 (E), ORF3, ORF6 (M) pour le virus PRRS, VP2 pour le virus de la parvovirose, E1, E2 pour le virus de la peste porcine classique et apxI, apxII et apxIII pour *A. pleuropneumoniae*.

30 Par valence, dans la présente invention, on entend au moins un antigène assurant une protection contre le virus du pathogène considéré, la valence pouvant contenir, à titre de sous-valence, un ou plusieurs gènes naturels modifiés d'une ou plusieurs souches du pathogène considéré.

35 Par gène d'agent pathogène, on entend non seulement le gène complet, mais aussi les séquences nucléotidiques

différentes, y compris fragments, conservant la capacité à induire une réponse protectrice. La notion de gène recouvre les séquences nucléotidiques équivalentes à celles décrites précisément dans les exemples, c'est-à-dire les séquences 5 différentes mais codant pour la même protéine. Elle recouvre aussi les séquences nucléotidiques d'autres souches du pathogène considéré, assurant une protection croisée ou une protection spécifique de souche ou de groupe de souche. Elle recouvre encore les séquences nucléotidiques qui ont été 10 modifiées pour faciliter l'expression *in vivo* par l'animal hôte mais codant pour la même protéine.

De manière préférée, la formule de vaccin selon l'invention comprendra les valences Aujeszky et grippe porcine auxquelles on pourra adjoindre d'autres valences, de préférence 15 choisies parmi les valences PRRS et *A. pleuropneumoniae* (*actinobacillose*). On pourra leur adjoindre éventuellement d'autres valences choisies parmi les valences parvovirose et peste porcine classique.

Il va de soi que toutes les combinaisons de valences sont 20 possibles. Toutefois, dans le cadre de l'invention, on considère les valences Aujeszky et grippe porcine, puis PRRS et *A. pleuropneumoniae* comme préférées.

Dans l'optique d'une vaccination dirigée plus spécifiquement contre la pathologie respiratoire des porcs, on 25 préférera sélectionner les valences parmi Aujeszky, grippe porcine, PRRS et *actinobacillose*.

Dans l'optique d'un vaccination dirigée spécifiquement contre la pathologie de la reproduction, on préférera choisir 30 les valences parmi PRRS, parvovirose, peste porcine classique et Aujeszky.

En ce qui concerne, la valence Aujeszky, on peut mettre en oeuvre l'un ou l'autre des gènes gB et gD. Préférentiellement, on utilise les deux gènes, ceux-ci étant dans ce cas montés dans des plasmides différents ou dans un seul et même plasmide.

En ce qui concerne la valence grippe porcine, on préfère 35 mettre en oeuvre les gènes HA et NP. On peut utiliser l'un ou l'autre de ces deux gènes ou les deux gènes simultanément, montés dans des plasmides différents ou dans un seul et même

plasmide. De préférence, on associera dans le même vaccin les séquences HA de plus d'une souche de virus influenza, en particulier des différentes souches rencontrées sur le terrain. En revanche, NP assure une protection croisée et l'on pourra donc se contenter de la séquence d'une seule souche du virus.

En ce qui concerne la valence PRRS, on préfère utiliser les gènes E et ORF3 ou encore M. On peut utiliser ces gènes seuls ou en combinaison ; dans le cas d'une combinaison, on peut monter les gènes dans des plasmides séparés ou dans des plasmides combinant 2 ou 3 de ces gènes. On pourra avantageusement associer dans le même vaccin des gènes provenant d'au moins deux souches, notamment d'une souche européenne et d'une souche américaine.

En ce qui concerne la valence peste porcine classique, on peut utiliser l'un ou l'autre des gènes E1 et E2 ou également des gènes E1 et E2 combinés, dans deux plasmides différents ou éventuellement dans un seul et même plasmide.

En ce qui concerne la valence actinobacilleuse, on peut utiliser l'un des trois gènes cités plus haut ou une combinaison de 2 ou 3 de ces gènes, montés dans des plasmides différents ou des plasmides mixtes, afin d'assurer une protection contre les différents sérotypes de A. pleuropneumoniae. Pour les antigènes apxI, II et III, on peut prévoir de modifier les séquences codantes pour obtenir les antigènes détoxifiés, en particulier comme dans les exemples.

La formule de vaccin selon l'invention pourra se présenter sous un volume de dose compris de manière générale entre 0,1 et 10 ml, et en particulier entre 1 et 5 ml notamment pour les vaccinations par voie intramusculaire.

La dose sera généralement comprise entre 10 ng et 1 mg, de préférence entre 100 ng et 500 µg et préférentiellement entre 1 µg et 250 µg par type de plasmide.

On utilisera de préférence des plasmides nus simplement placés dans le véhicule de vaccination qui sera en général de l'eau physiologique (NaCl 0,9 %), de l'eau ultrapure, du tampon TE, etc. On peut bien entendu utiliser toutes les formes de vaccin polynucléotidiques décrites dans l'art antérieur.

Chaque plasmide comprend un promoteur apte à assurer

l'expression du gène inséré sous sa dépendance dans les cellules hôtes. Il s'agira en général d'un promoteur eucaryote fort et en particulier d'un promoteur précoce du cytomégalovirus CMV-IE, d'origine humaine ou murine, ou encore éventuellement d'une autre origine telle que rat, cochon, cobaye.

De manière plus générale, le promoteur pourra être soit d'origine virale, soit d'origine cellulaire. Comme promoteur viral, on peut citer le promoteur précoce ou tardif du virus SV40 ou le promoteur LTR du virus du Sarcome de Rous. Il peut aussi s'agir d'un promoteur du virus dont provient le gène, par exemple le promoteur propre au gène.

Comme promoteur cellulaire, on peut citer le promoteur d'un gène du cytosquelette, par exemple le promoteur de la desmine (Bolmont et al., Journal of Submicroscopic Cytology and Pathology, 1990, 22, 117-122 ; et ZHENLIN et al., Gene, 1989, 78, 243-254), ou encore le promoteur de l'actine.

Lorsque plusieurs gènes sont présents dans le même plasmide, ceux-ci peuvent être présentés dans la même unité de transcription ou dans deux unités différentes.

La combinaison des différentes valences du vaccin selon l'invention peut être effectuée, de préférence, par le mélange de plasmides polynucléotidiques exprimant le ou les antigène(s) de chaque valence, mais on peut également prévoir de faire exprimer des antigènes de plusieurs valences par un même plasmide.

L'invention a encore pour objet des formules de vaccin monovalent comprenant un ou plusieurs plasmides codant pour un ou plusieurs gènes de l'un des virus choisis parmi le groupe consistant en PRV, PRRS, PPV, HCV et A. pleuropneumoniae, les gènes étant ceux décrits plus haut. En dehors de leur caractère monovalent, ces formules peuvent reprendre les caractéristiques énoncées plus haut en ce qui concerne le choix des gènes, leurs combinaisons, la composition des plasmides, les volumes de dose, les doses, etc.

Les formules de vaccin monovalent peuvent être utilisées (i) pour la préparation d'une formule de vaccin polyvalent tel que décrit plus haut, (ii) à titre individuel contre la

pathologie propre, (iii) associées à un vaccin d'un autre type (entier vivant ou inactivé, recombinant, sous-unité) contre une autre pathologie, ou (iv) comme rappel d'un vaccin comme décrit ci-après.

5 La présente invention a en effet encore pour objet l'utilisation d'un ou de plusieurs plasmides selon l'invention pour la fabrication d'un vaccin destiné à vacciner les porcs primo-vaccinés au moyen d'un premier vaccin classique du type de ceux de la technique antérieure, à savoir notamment choisi
10 dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin (monovalent ou multivalent) présentant (c'est-à-dire contenant ou pouvant exprimer) le ou les antigène(s) codé(s) par le ou les plasmides ou antigène(s) assurant une protection croisée. De manière remarquable, le vaccin
15 polynucléotidique a un effet de rappel puissant se traduisant par une amplification de la réponse immunitaire et l'installation d'une immunité de longue durée.

20 De manière générale, les vaccins de primo-vaccination pourront être choisis parmi les vaccins commerciaux disponibles auprès des différents producteurs de vaccins vétérinaires.

25 L'invention a aussi pour objet un kit de vaccination regroupant un vaccin de primo-vaccination tel que décrit ci-dessus et une formule de vaccin selon l'invention pour le rappel. Elle a aussi trait à une formule de vaccin selon l'invention accompagnée d'une notice indiquant l'usage de cette formule comme rappel d'une primo-vaccination telle que décrite ci-avant.

30 La présente invention a également pour objet une méthode de vaccination des porcs contre la pathologie respiratoire et/ou la pathologie de la reproduction des porcs, comprenant l'administration d'une dose efficace d'une formule de vaccin telle que décrit plus haut. Cette méthode de vaccination comprend l'administration d'une ou de plusieurs doses de la formule de vaccin, ces doses pouvant être administrées successivement dans un court laps de temps et/ou successivement à des moments éloignés l'un de l'autre.

35 Les formules de vaccin selon l'invention pourront être

administrées dans le cadre de cette méthode de vaccination, par les différentes voies d'administration proposées dans l'art antérieur pour la vaccination polynucléotidique et au moyen des techniques d'administration connues. On pourra notamment 5 utiliser la vaccination par voie intradermique à l'aide d'un injecteur par jet liquide, de préférence par jets multiples, et en particulier un injecteur utilisant une tête d'injection munie de plusieurs trous ou buses, notamment comprenant de 5 à 10 6 trous ou buses, tel que l'appareil Pigjet fabriqué et distribué par la société Endoscopic, Laons, France.

Le volume de dose pour un tel appareil sera réduit de préférence entre 0,1 et 0,9 ml, en particulier entre 0,2 et 0,6 ml et avantageusement entre 0,4 et 0,5 ml, le volume pouvant être appliqué en une ou plusieurs, de préférence 2, 15 applications.

L'invention a encore pour objet la méthode de vaccination consistant à faire une primo-vaccination telle que décrite ci-dessus et un rappel avec une formule de vaccin selon l'invention. Dans une forme de mise en oeuvre préférée du 20 procédé selon l'invention, on administre dans un premier temps, à l'animal, une dose efficace du vaccin de type classique, notamment inactivé, vivant, atténué ou recombinant, ou encore un vaccin de sous-unité de façon à assurer une primo-vaccination, et, après un délai de préférence de 2 à 6 25 semaines, on assure l'administration du vaccin polyvalent ou monovalent selon l'invention.

L'invention concerne aussi la méthode de préparation des formules de vaccin, à savoir la préparation des valences et leurs mélanges, telle qu'elle ressort de cette description.

30 L'invention va être maintenant décrite plus en détails à l'aide de modes de réalisation de l'invention pris en référence aux dessins annexés.

Liste des figures

- Figure N° 1 : Plasmide pVR1012
Figure N° 2 : Séquence du gène PRV gB (souche NIA3)
5 Figure N° 3 : Construction du plasmide pAB090
Figure N° 4 : Séquence du gène PRV gD (souche NIA3)
Figure N° 5 : Construction du plasmide pPB098
Figure N° 6 : Séquence du gène Grippe porcine HA (souche H1N1)
Figure N° 7 : Construction du plasmide pPB143
10 Figure N° 8 : Séquence du gène Grippe porcine NP (souche H1N1)
Figure N° 9 : Construction du plasmide pPB142
Figure N° 10 : Séquence du gène Grippe porcine HA (souche H3N2)
Figure N° 11 : Construction du plasmide pPB144
Figure N° 12 : Séquence du gène Grippe porcine NP (souche H3N2)
15 Figure N° 13 : Construction du plasmide pPB132
Figure N° 14 : Plasmide pAB025
Figure N° 15 : Plasmide pAB001
Figure N° 16 : Plasmide pAB091
Figure N° 17 : Plasmide pAB092
20 Figure N° 18 : Plasmide pAB004
Figure N° 19 : Plasmide pAB069
Figure N° 20 : Plasmide pAB061
Figure N° 21 : Plasmide pPB162
Figure N° 22 : Plasmide pPB163
25 Figure N° 23 : Plasmide pPB174
Figure N° 24 : Plasmide pPB189
Figure N° 25 : Plasmide pPB190

Liste des séquences SEQ ID N°

- SEQ ID N° 1 : Séquence du gène PRV gB (souche NIA3)
SEQ ID N° 2 : Oligonucléotide AB166
5 SEQ ID N° 3 : Oligonucléotide AB167
SEQ ID N° 4 : Oligonucléotide AB168
SEQ ID N° 5 : Oligonucléotide AB169
SEQ ID N° 6 : Séquence du gène PRV gD (souche NIA3)
SEQ ID N° 7 : Oligonucléotide PB101
10 SEQ ID N° 8 : Oligonucléotide PB102
SEQ ID N° 9 : Oligonucléotide PB107
SEQ ID N° 10 : Oligonucléotide PB108
SEQ ID N° 11 : Séquence du gène grippe porcine HA (souche H1N1)
SEQ ID N° 12 : Oligonucléotide PB097
15 SEQ ID N° 13 : Oligonucléotide PB098
SEQ ID N° 14 : Séquence du gène grippe porcine NP (souche H1N1)
SEQ ID N° 15 : Oligonucléotide PB095
SEQ ID N° 16 : Oligonucléotide PB096
SEQ ID N° 17 : Séquence du gène grippe porcine HA (souche H3N2)
20 SEQ ID N° 18 : Séquence du gène grippe porcine NP (souche H3N2)
SEQ ID N° 19 : Oligonucléotide AB055
SEQ ID N° 20 : Oligonucléotide AB056
SEQ ID N° 21 : Oligonucléotide AB001
SEQ ID N° 22 : Oligonucléotide AB002
25 SEQ ID N° 23 : Oligonucléotide AB170
SEQ ID N° 24 : Oligonucléotide AB171
SEQ ID N° 25 : Oligonucléotide AB172
SEQ ID N° 26 : Oligonucléotide AB173
SEQ ID N° 27 : Oligonucléotide AB007
30 SEQ ID N° 28 : Oligonucléotide AB010
SEQ ID N° 29 : Oligonucléotide AB126
SEQ ID N° 30 : Oligonucléotide AB127

12

- SEQ ID N° 31 : Oligonucléotide AB118
SEQ ID N° 32 : Oligonucléotide AB119
SEQ ID N° 33 : Oligonucléotide PB174
SEQ ID N° 34 : Oligonucléotide PB189
5 SEQ ID N° 35 : Oligonucléotide PB190
SEQ ID N° 36 : Oligonucléotide PB175
SEQ ID N° 37 : Oligonucléotide PB176
SEQ ID N° 38 : Oligonucléotide PB191
SEQ ID N° 39 : Oligonucléotide PB192
10 SEQ ID N° 40 : Oligonucléotide PB177
SEQ ID N° 41 : Oligonucléotide PB278
SEQ ID N° 42 : Oligonucléotide PB279
SEQ ID N° 43 : Oligonucléotide PB280
SEQ ID N° 44 : Oligonucléotide PB307
15 SEQ ID N° 45 : Oligonucléotide PB303
SEQ ID N° 46 : Oligonucléotide PB306
SEQ ID N° 47 : Oligonucléotide PB304
SEQ ID N° 48 : Oligonucléotide PB305

EXEMPLES**Exemple 1 : Culture des virus**

Les virus sont cultivés sur le système cellulaire approprié jusqu'à obtention d'un effet cytopathique. Les systèmes cellulaires à utiliser pour chaque virus sont bien connus de l'homme du métier. Brièvement, des cellules sensibles au virus utilisé, cultivées en milieu minimum essentiel de Eagle (milieu "MEM) ou un autre milieu approprié, sont inoculées avec la souche virale étudiée en utilisant une multiplicité d'infection de 1. Les cellules infectées sont alors incubées à 37°C pendant le temps nécessaire à l'apparition d'un effet cytopathique complet (en moyenne 36 heures).

Exemple 2 : Culture des bactéries et extraction de l'ADN bactérien

Les souches d'*Actinobacillus pleuropneumoniae* ont été cultivées comme décrit par A. Rycroft *et al.* (J. Gen. Microbiol. 1991. 137. 561-568). L'ADN de haut poids moléculaire (ADN chromosomique) a été préparé selon les techniques standards décrites par J. Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York, 1989).

Exemple 3 : Extraction des ADNs génomiques viraux:

Après culture, le surnageant et les cellules lysées sont récoltées et la totalité de la suspension virale est centrifugée à 1000 g pendant 10 minutes à + 4°C pour éliminer les débris cellulaires. Les particules virales sont alors récoltées par ultracentrifugation à 400000 g pendant 1 heure à + 4°C. Le culot est repris dans un volume minimum de tampon (Tris 10 mM, EDTA 1 mM; pH 8,0). Cette suspension virale concentrée est traitée par la protéinase K (100 µg/ml final) en présence de sodium dodecyl sulfate (SDS) (0,5% final) pendant 2 heures à 37°C. L'ADN viral est ensuite extrait avec un mélange de phénol/chloroforme, puis précipité avec 2 volumes d'éthanol absolu. Après une nuit à - 20°C, l'ADN est centrifugé à 10000 g pendant 15 minutes à + 4°C. Le culot d'ADN est séché, puis repris dans un volume minimum d'eau ultrapure stérile. Il peut alors être digéré par des enzymes de restriction.

Exemple 4 : Isolement des ARNs génomiques viraux

Les virus à ARN ont été purifiés selon les techniques bien connues de l'homme du métier. L'ARN viral génomique de chaque virus a été ensuite isolé en 5 utilisant la technique d'extraction "thiocyanate de guanidium/phénol-chloroforme" décrite par P. Chomczynski et N. Sacchi (Anal. Biochem. 1987. 162. 156-159).

Exemple 5 : Techniques de biologie moléculaire

10 Toutes les constructions de plasmides ont été réalisées en utilisant les techniques standards de biologie moléculaire décrites par J. Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). Tous les fragments de restriction utilisés pour la présente invention ont été isolés en utilisant le kit 15 "Geneclean" (BIO101 Inc. La Jolla, CA).

Exemple 6 : Technique de RT-PCR

Des oligonucléotides spécifiques (comportant à leurs extrémités 5' des sites de restriction pour faciliter le clonage des fragments amplifiés) ont été synthétisés 20 de telle façon qu'ils couvrent entièrement les régions codantes des gènes devant être amplifiés (voir exemples spécifiques). La réaction de transcription inverse (RT) et l'amplification en chaîne par polymérase (PCR) ont été effectuées selon les techniques standards (J. Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold 25 Spring Harbor. New York. 1989). Chaque réaction de RT-PCR a été faite avec un couple d'amplimers spécifiques et en prenant comme matrice l'ARN génomique viral extrait. L'ADN complémentaire amplifié a été extrait au phénol/chloroforme/alcool isoamylque (25:24:1) avant d'être digéré par les enzymes de restriction.

30

Exempl 7 : plasmide pVR1012

Le plasmide pVR1012 (Figure N° 1) a été obtenu auprès de Vical Inc. San

Diego, CA, USA. Sa construction a été décrite dans J. Hartikka *et al.* (Human Gene Therapy, 1996, 7, 1205-1217).

Exemple 8 : Construction du plasmide pAB090 (gène PRV gB)

- 5 Le plasmide pPR2.15 (M. Rivière *et al.* J. Virol. 1992, 66, 3424-3434) a été digéré avec *Apal* et *Nael* pour libérer un fragment *Apal-Nael* de 2665 pb (fragment A) contenant le gène codant pour la glycoprotéine gB du virus de la maladie d'Aujeszky (Souche NIA3) (Figure N° 2 et SEQ ID N° 1).

Par hybridation des 2 oligonucléotides suivants:

- 10 AB166 (33 mer) (SEQ ID N° 2)

5'GATGCCCGCTGGTGGCGGTCTTGGCGCGGGCC 3'

AB167 (33 mer) (SEQ ID N° 3)

5'ACGTCTACGGGCGACCACCGCCAGAAACCGCGC 3'

un fragment de 33 pb contenant la séquence du gène gD, du codon initial ATG

- 15 jusqu'au site *Apal* a été reconstitué, avec création d'un site *PstI* en 5' (fragment B).

Par hybridation des 2 oligonucléotides suivants:

AB168 (45 mer) (SEQ ID N° 4)

5'GGCACTACCAGCGCCTCGAGAGCGAGGGACCCGACGCCCTGTAGG 3'

- 20 AB169 (49 mer) (SEQ ID N° 5)

5'GATCCCTACAGGGCGTCGGGGCTCGCTCTCGAGGCCTGGTAGTGCC 3'

un fragment de 45 pb contenant la séquence du gène gD, du site *Nael* au codon stop TAG a été reconstitué, avec création d'un site *BamHI* en 3' (fragment C).

- 25 Les fragments A, B et C ont été ligaturés ensemble dans le vecteur pVR1012 (exemple 7), préalablement digéré par *PstI* et *BamHI*, pour donner le plasmide pAB090 (7603 pb) (Figure N° 3).

Exemple 9 : Construction du plasmide pPB098 (gène PRV gD)

- 30 Le plasmide pPR29 (M. Rivière *et al.* J. Virol. 1992, 66, 3424-3434) a été digéré par *Sall* et *BglII* pour libérer un fragment *Sall-BglII* de 711 pb (fragment A) contenant la partie 3' du gène codant pour la glycoprotéine gD du virus de

la maladie d'Aujeszky (Souche NIA3) (Figure N° 4 et SEQ ID N° 6).

Le plasmide pPR29 a été digéré par *Eco*47III et *Sa*/I pour libérer un fragment Eco47III-SalI de 498 pb contenant la partie 5' du gène codant pour la glycoprotéine gD du virus de la maladie d'Aujeszky (Souche NIA3) (fragment 5 B).

Par hybridation des 2 oligonucléotides suivants:

PB101 (15 mer) (SEQ ID N° 7)

5'GATGCTGCTCGCAGC 3'

PB102 (19 mer) (SEQ ID N° 8)

10 5'GCTGCGAGCAGCATCTGCA 3'

un fragment de 15 pb contenant la séquence 5' du gène gD, du codon initial ATG jusqu'au site Eco47III a été reconstitué, avec création d'un site PstI en 5' (fragment C).

Après purification, les fragments A, B et C ont été ligaturés ensemble dans le

15 vecteur pVR1012 (exemple 7), préalablement digéré par PstI et *Bg*/II, pour donner le plasmide pPB098 (6076 pb) (Figure N° 5).

Exemple 10 : Construction du plasmide pPB143 (gène Grippe porcine HA souche H1N1)

20 Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus de la grippe porcine (souche SIV H1N1 "SW"), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

PB107 (32 mer) (SEQ ID N° 9)

25 5'GTTCTGCAGCACCCGGGAGCAAAAGCAGGGGA 3'

PB108 (33 mer) (SEQ ID N° 10)

5'ATTGCGGCCGCTAGTAGAAACAAGGGTAAAAA 3'

en vue d'isoler précisément le gène codant pour la protéine HA du SIV H1N1 (Figure N° 6 et SEQ ID N° 11) sous la forme d'un fragment PCR de 1803 pb.

30 Après purification, ce fragment a été ligaturé avec le vecteur PCRII-direct (Invitrogen Référence K2000-01), pour donner le vecteur pPB137 (5755 pb).

Le vecteur pPB137 a été digéré par *Eco*RV et *Nor*I pour libérer un fragment

EcoRV-*NotI* de 1820 pb contenant le gène HA. Ce fragment a ensuite été ligaturé dans le vecteur pVR1012 (exemple 7), préalablement digéré par EcoRV et *NotI*, pour donner le plasmide pPB143 (6726 pb) (Figure N° 7).

5 Exemple 11 : Construction du plasmide pPB142 (gène Grippe porcine NP souche H1N1)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus de la grippe porcine (souche SIV H1N1 "SW"), préparé selon la technique décrite dans l'exemple 4, et avec les 10 oligonucléotides suivants:

PB097 (36 mer) (SEQ ID N° 12)

5'CCGGTCGACCGGGATAATCACTCACTGAGTGACATC 3'

PB098 (33 mer) (SEQ ID N° 13)

5'TTGCAGGCCGCTGTAGAACACAAGGGTATTTTCT 3'

15 en vue d'isoler précisément le gène codant pour la protéine NP du SIV H1N1 (Figure N° 8 et SEQ ID N° 14) sous la forme d'un fragment *Sall*-*NotI*. Après purification le produit de RT-PCR de 1566 pb a été ligaturé avec le vecteur PCRII-direct (Invitrogen Référence K2000-01), pour donner le vecteur pPB127 (5519 pb).

20 Le vecteur pPB127 a été digéré par *Sall* et *NotI* pour libérer un fragment *Sall*-*NotI* de 1560 pb contenant le gène NP. Ce fragment a ensuite été ligaturé dans le vecteur pVR1012 (exemple 7), préalablement digéré par *Sall* et *NotI*, pour donner le plasmide pPB142 (6451 pb) (Figure N° 9).

25 Exemple 12 : Construction du plasmide pPB144 (gène Grippe porcine HA souche H3N2)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus de la grippe porcine (souche SIV H3N2 Côtes du Nord 1987), préparé selon la technique décrite dans l'exemple 4, et 30 avec les oligonucléotides suivants:

PB095 (31 mer) (SEQ ID N° 15)

5'GTTCTGCAGGCAGGGATAATTCTATCAACC 3'

PB096 (36 mer) (SEQ ID N° 16)

5' TTGCGGCCGCAAGGGTGTAAAAATTACTAATATAC 3'

en vue d'isoler précisément le gène codant pour la protéine HA du SIV H3N2 (Figure N° 10 et SEQ ID N° 17) sous la forme d'un fragment PstI-NotI. Après

5 purification, le produit de RT-PCR de 1765 pb a été ligaturé avec le vecteur PCRII-direct (Invitrogen Référence K2000-01) pour donner le vecteur pPB120 (5716 pb).

Le vecteur pPB120 a été digéré par NotI pour libérer un fragment NotI-NotI de 1797 pb contenant le gène HA. Ce fragment a ensuite été ligaturé dans le
10 vecteur pVR1012 (exemple 7), préalablement digéré par NotI, pour donner le plasmide pPB144 (6712 pb) contenant le gène HA H3N2 dans l'orientation correcte par rapport au promoteur (Figure N° 11).

Exemple 13 : Construction du plasmide pPB132 (gène Grippe porcine NP
15 souche H3N2)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus de la grippe porcine (souche SIV H3N2 Côtes du Nord 1987), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

20 PB097 (36 mer) (SEQ ID N° 12)

5' CCGGTCGACCGGGATAATCACTCACTGAGTGACATC 3'

PB098 (33 mer) (SEQ ID N° 13)

5' TTGCGGCCGCTGTAGAAACAAGGGTATTTTCT 3'

en vue d'isoler précisément le gène codant pour la protéine NP du SIV H3N2 (Figure N° 12 et SEQ ID N° 18) sous la forme d'un fragment SalI-NotI. Après
25 purification le produit de RT-PCR de 1564 pb a été ligaturé avec le vecteur PCRII-direct (Invitrogen Référence K2000-01) pour donner le vecteur pPB123 (5485 pb).

Le vecteur pPB123 a été digéré par SalI et NotI pour libérer un fragment SalI-
30 NotI de 1558 pb contenant le gène NP. Ce fragment a ensuite été ligaturé dans le vecteur pVR1012 (exemple 7), préalablement digéré par SalI et NotI, pour donner le plasmide pPB132 (6449 pb) (Figure N° 13). .

Exemple 14 : Construction du plasmide pAB025 (gène PRRSV ORF5) souche Lelystad.

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus PRRSV (Souche Lelystad) (J.

- 5 Meulenber *et al.* Virology. 1993. 19. 62-72), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

AB055 (34 mer) (SEQ ID N° 19)

5'ACGCGTCGACAATATGAGATGTTCTCACAAATTG 3'

AB056 (33 mer) (SEQ ID N° 20)

10 5'CGCGGATCCCGTCTAGGCCTCCCATTGCTCAGC 3'

en vue d'isoler précisément le gène "ORF5" codant pour la glycoprotéine d'enveloppe E (gp25) du virus PRRS souche Lelystad. Après purification, le produit de RT-PCR de 630 pb a été digéré par *Sa*I et *Bam*H I pour isoler un fragment *Sa*I-*Bam*H I de 617 pb. Ce fragment a été ligaturé avec le vecteur 15 pVR1012 (exemple 7), préalablement digéré avec *Sa*I et *Bam*H I, pour donner le plasmide pAB025 (5486 pb) (Figure N° 14).

Exemple 15 : Construction du plasmide pAB001 PRRSV ORF5 souche USA

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été

- 20 réalisée avec l'ARN génomique du virus PRRSV (Souche ATCC-VR2332) (M. Murtaugh *et al.* Arch Virol. 1995. 140. 1451-1460), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

AB001 (30 mer) (SEQ ID N° 21)

5'AACTGCAGATGTTGGAGAAATGCTTGACCG 3'

25 AB002 (30 mer) (SEQ ID N° 22)

5'CGGGATCCCTAAGGACGACCCATTGTTCC 3'

en vue d'isoler précisément le gène codant pour la glycoprotéine d'enveloppe E ("gp25") du virus PRRS souche ATCC-VR2332. Après purification, le produit de RT-PCR de 620 pb a été digéré par *Pst*I et *Bam*H I pour isoler un fragment

- 30 *Pst*I-*Bam*H I de 606 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Pst*I et *Bam*H I, pour donner le plasmide pAB001 (5463 pb) (Figure N° 15).

Exemple 16 : Construction du plasmide pAB091 (gène PPRSV ORF3) souche Lelystad.

Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus PRRSV (Souche Lelystad) (J.

- 5 Meulenbergh *et al.* Virology. 1993. 19. 62-72), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

AB170 (32 mer) (SEQ ID N° 23)

5'AAACTGCAGCAATGGCTCATCAGTGTGCACGC 3'

AB171 (30 mer) (SEQ ID N° 24)

10 5'CGCGGATCCTTATCGTGATGTACTGGGGAG 3'

en vue d'isoler précisément le gène "ORF3" codant pour la glycoprotéine d'enveloppe "gp45" du virus PRRS souche Lelystad. Après purification, le produit de RT-PCR de 818 pb a été digéré par *PstI* et *BamHI* pour isoler un fragment *PstI-BamHI* de 802 pb. Ce fragment a été ligaturé avec le vecteur

- 15 pVR1012 (exemple 7), préalablement digéré avec *PstI* et *BamHI*, pour donner le plasmide pAB091 (5660 pb) (Figure N° 16).

Exemple 17 : Construction du plasmide pAB092 (gène PPRSV ORF3 souche USA.

- 20 Une réaction de RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus PRRSV (Souche ATCC-VR2332) (M. Murtaugh *et al.* Arch Virol. 1995. 140. 1451-1460), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

AB172 (32 mer) (SEQ ID N° 25)

25 5'AAACTGCAGCAATGGTTAACAGCTGTACATTTC 3'

AB173 (32 mer) (SEQ ID N° 26)

5'CGCGGATCCCTATGCCGTACGGCACTGAGGG 3'

en vue d'isoler précisément le gène "ORF3" codant pour la glycoprotéine d'enveloppe "gp45" du virus PRRS souche ATCC-VR2332. Après purification,

- 30 le produit de RT-PCR de 785 pb a été digéré par *PstI* et *BamHI* pour isoler un fragment *PstI-BamHI* de 769 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *PstI* et *BamHI*, pour donner

le plasmide pAB092 (5627 pb) (Figure N° 17).

Exemple 18 : Construction du plasmide pAB004 (gène Parvovirus porcin VP2).

Une réaction RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée

- 5 avec l'ARN génomique du parvovirus porcin (Souche NADL2) (J. Vasudevacharya *et al.*, Virology, 1990, 178, 611-616), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:
AB007 (33 mer) (SEQ ID N° 27)
5'AAAAACTGCAGAATGAGTGAAAATGTGGAACAAAC 3'
10 AB010 (33 mer) (SEQ ID N° 28)
5'CGCGGATCCCTAGTATAATTTCTTGGTATAAG 3'
pour amplifier un fragment de 1757 pb contenant le gène codant pour la protéine VP2 du parvovirus porcin. Après purification le produit de RT-PCR a été digéré par *Pst*I et *Bam*HI pour donner un fragment *Pst*I-*Bam*HI de 1740 pb.
15 Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Pst*I et *Bam*HI, pour donner le plasmide pAB004 (6601 pb) (Figure N° 18).

Exemple 19 : Construction du plasmide pAB069 (gène Peste porcine HCV E1).

- 20 Une réaction RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée avec l'ARN génomique du virus de la peste porcine (Hog Cholera Virus) (HCV) (Souche Alfort) (G. Meyers *et al.*, Virology, 1989, 171, 18-27), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:
AB126 (36 mer) (SEQ ID N° 29)
25 5'ACGCGTCGACATGAAACTAGAAAAAGCCCTGTTGGC 3'
AB127 (34 mer) (SEQ ID N° 30)
5'CGCGGATCCTCATAGCCGCCCTGTGCCCGGTC 3'
pour isoler la séquence codant pour la protéine E1 du virus HCV sous la forme d'un fragment RT-PCR de 1363 pb. Après purification, ce fragment a été digéré
30 par *Sa*II et *Bam*HI pour donner un fragment *Sa*II-*Bam*HI de 1349 pb.
Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Sa*II et *Bam*HI, pour donner le plasmide pAB069 (6218 pb) (Figure

N° 19).

Exemple 20 : Construction du plasmide pAB061 (gène Peste porcine HCV E2).

Une réaction RT-PCR selon la technique décrite dans l'exemple 6 a été réalisée

5 avec l'ARN génomique du virus de la peste porcine (Hog Cholera Virus) (HCV) (Souche Alfort) (G. Meyers *et al.*, Virology, 1989, 171, 18-27), préparé selon la technique décrite dans l'exemple 4, et avec les oligonucléotides suivants:

AB118 (36 mer) (SEQ ID N° 31)

5'ACGCGTCGACATGTCAACTACTGCGTTCTCATTG 3'

10 AB119 (33 mer) (SEQ ID N° 32)

5'CGCGGATCCTCACTGTAGACCAGCAGCGAGCTG 3'

pour isoler la séquence codant pour la protéine E2 du virus HCV sous la forme d'un fragment RT-PCR de 1246 pb. Après purification, ce fragment a été digéré par *Sall* et *BamHI* pour donner un fragment *Sall-BamHI* de 1232 pb. Ce

15 fragment a été ligaturé avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Sall* et *BamHI*, pour donner le plasmide pAB061 (6101 pb) (Figure N° 20).

Exemple 21 : Construction du plasmide pPB162 (gène *Actinobacillus*

20 *pleuropneumoniae apxl* déleté).

Le gène *apxl* d'*Actinobacillus pleuropneumoniae* a été cloné de façon à déleter la région en acides aminés riche en glycine (impliquée dans la fixation de l'ion calcium) comprise entre les acides aminés 719 et 846.

25 Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 1) (J. Frey *et al.*, Infect. Immun., 1991, 59, 3026-3032), préparé selon la technique décrite dans les exemples 2 et 3, et avec les oligonucléotides suivants:

PB174 (32 mer) (SEQ ID N° 33)

5'TTGTCGACGTAAATAGCTAAGGAGACAACATG 3'

30 PB189 (29 mer) (SEQ ID N° 34)

5'TTGAATTCTTCTTCAACAGAACATGTAATTG 3'

pour amplifier la partie 5' du gène *apxl* codant pour la protéine hémolysine I d'

Actinobacillus pleuropneumoniae, sous la forme d'un fragment *Sall-EcoRI*. Après purification, le produit de PCR de 2193 pb a été digéré par *SaI* et *EcoRI* pour isoler un fragment *Sall-EcoRI* de 2183 pb (fragment A).

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus*

- 5 *pleuropneumoniae* (Sérotype 1) (J. Frey et al., Infect. Immun. 1991. 59. 3026-3032) et avec les oligonucléotides suivants:

PB190 (31 mer) (SEQ ID N° 35)

5'TTGAATTCTATCGCTACAGTAAGGAGTACGG 3'

PB175 (31 mer) (SEQ ID N° 36)

10 5'TTGGATCCGCTATTTATCATCTAAAAATAAC 3'

pour amplifier la partie 3' du gène *apxI* codant pour la protéine hémolysine I d'*Actinobacillus pleuropneumoniae*, sous la forme d'un fragment *EcoRI-BamHI*.

Après purification, le produit de PCR de 576 pb a été digéré par *EcoRI* et *BamHI* pour isoler un fragment *EcoRI-BamHI* de 566 pb (fragment B). Les fragments

- 15 A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *SaI* et *BamHI*, pour donner le plasmide pPB162 (7619 pb) (Figure N° 21).

Exemple 22 : Construction du plasmide pPB163 (gène *Actinobacillus* 20 *pleuropneumoniae apxII* délétré).

Le gène *apxII* d'*Actinobacillus pleuropneumoniae* a été cloné de façon à déléter la région en acides aminés riche en glycine (impliquée dans la fixation de l'ion calcium) comprise entre les acides aminés 716 et 813.

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus*

- 25 *pleuropneumoniae* (Sérotype 9) (M. Smits et al., Infection and Immunity. 1991.

59. 4497-4504), préparé selon la technique décrite dans les exemples 2 et 3, et avec les oligonucléotides suivants:

PB176 (31 mer) (SEQ ID N° 37)

5'TTGTCGACGATCAATTATATAAAGGAGACTC 3'

30 PB191 (30 mer) (SEQ ID N° 38)

5'TTGAATTCTCTTCAACTGATTGAGTGAG 3'

pour amplifier la partie 5' du gène *apxII* codant pour la protéine hémolysine II

d' *Actinobacillus pleuropneumoniae*, sous la forme d'un fragment *Sall-EcoRI*. Après purification, le produit de PCR de 2190 pb a été digéré par *Sall* et *EcoRI* pour isoler un fragment *Sall-EcoRI* de 2180 pb (fragment A).

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus*

- 5 *pleuropneumoniae* (Sérotype 9) (M. Smits *et al.*, Infection and Immunity. 1991, 59, 4497-4504) et avec les oligonucléotides suivants:

PB192 (29 mer) (SEQ ID N° 39)

5'TTGAATTCGTAATCTTAAAGACCTCACC 3'

PB177 (30 mer) (SEQ ID N° 40)

- 10 5'TGGATCCACCATAGGATTGCTATGATTG 3'

pour amplifier la partie 3' du gène *apxII* codant pour la protéine hémolysine II

d' *Actinobacillus pleuropneumoniae*, sous la forme d'un fragment *EcoRI-BamHI*.

Après purification, le produit de PCR de 473 pb a été digéré par *EcoRI* et *BamHI* pour isoler un fragment *EcoRI-BamHI* de 463 pb (fragment B).

- 15 Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Sall* et *BamHI*, pour donner le plasmide pPB163 (7513 pb) (Figure N° 22).

Exemple 23 : Construction des plasmides pPB174', pPB189 et pPB190 (gène

- 20 *Actinobacillus pleuropneumoniae apxIII* déleté).

Premier exemple de délétion dans ApxIII (plasmide pPB174') :

Le gène *apxIII* d'*Actinobacillus pleuropneumoniae* a été cloné de façon à déléter la région en acides aminés riche en glycine (impliquée dans la fixation de l'ion

- 25 calcium) comprise entre les acides aminés 733 et 860.

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus*

pleuropneumoniae (Sérotype 8) (M. Smits 1992, N° d'accès séquence Genbank = X68815), préparé selon la technique décrite dans les exemples 2 et 3, et

avec les oligonucléotides suivants:

- 30 PB278 (30 mer) (SEQ ID N° 41)

5'TTTGTGACATGAGTACTTGGTCAAGCATG 3'

PB279 (29 mer) (SEQ ID N° 42)

5' TTTATCGATTCTTACTGAATGTAATTC 3'

pour amplifier la partie 5' du gène *apxIII* (codant pour la protéine hémolysine III d'*Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Sall-Clal*.

Après purification, le produit de PCR de 2216 pb a été digéré par *Sall* et *Clal*

5 pour isoler un fragment *Sall-Clal* de 2205 pb (fragment A).

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 8) (M. Smits. 1992. N° d'accès séquence Genbank = X68815) et avec les oligonucléotides suivants:

PB280 (33 mer) (SEQ ID N° 43)

10 5' TTTATCGATTATGTTATCGTTCCACTTCAGG 3'

PB307 (32 mer) (SEQ ID N° 44)

5' TTGGATCCTTAAGCTGCTCTAGCTAGGTTACC 3'

pour amplifier la partie 3' du gène *apxIII* (codant pour la protéine hémolysine III d'*Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Clal-BamHI*.

15 Après purification, le produit de PCR de 596 pb a été digéré par *Clal* et *BamHI* pour isoler un fragment *Clal-BamHI* de 583 pb (fragment B).

Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 7); préalablement digéré avec *Sall* et *BamHI*, pour donner le plasmide pPB174' (7658 pb) (Figure N° 23).

20

Deuxième exemple de délétion dans ApxIII (plasmide pPB189) :

Le gène *apxIII* d'*Actinobacillus pleuropneumoniae* a été cloné de façon à déléter la région en acides aminés riche en glycine (impliquée dans la fixation de l'ion calcium) comprise entre les acides aminés 705 et 886.

25 Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 8) (M. Smits. 1992. N° d'accès séquence Genbank = X68815), préparé selon la technique décrite dans les exemples 2 et 3, et avec les oligonucléotides suivants:

PB278 (30 mer) (SEQ ID N° 41)

30 5' TTTGTCGACATGAGTACTTGGTCAAGCATG 3'

PB303 (32 mer) (SEQ ID N° 45)

5' TTTATCGATTCTCACGTTACCAACAGCAG 3'

pour amplifier la partie 5' du gène apxIII (codant pour la protéine hémolysine III d' *Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Sall*-*Clal*. Après purification, le produit de PCR de 2133 pb a été digéré par *Sall* et *Clal* pour isoler un fragment *Sall*-*Clal* de 2122 pb (fragment A).

- 5 Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 8) (M. Smits. 1992. N° d'accès séquence Genbank = X68815) et avec les oligonucléotides suivants:

PB306 (31 mer) (SEQ ID N° 46)

5' TTTATCGATTCTGATTTTCCTCGATCGTC 3'

- 10 PB307 (32 mer) (SEQ ID N° 44)

5' TTGGATCCTTAAGCTGCTCTAGCTAGGTTACC 3'

pour amplifier la partie 3' du gène apxIII (codant pour la protéine hémolysine III d' *Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Clal*-*BamHI*. Après purification, le produit de PCR de 518 pb a été digéré par *Clal* et *BamHI*

- 15 pour isoler un fragment *Clal*-*BamHI* de 506 pb (fragment B).

Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Sall* et *BamHI*, pour donner le plasmide pPB189 (7496 pb) (Figure N° 24).

- 20 Troisième exemple de délétion dans ApxIII (plasmide pPB190) :

Le gène apxIII d'*Actinobacillus pleuropneumoniae* a été cloné de façon à déléter la région en acides aminés riche en glycine (impliquée dans la fixation de l'ion calcium) comprise entre les acides aminés 718 et 876.

- 25 Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 8) (M. Smits. 1992. N° d'accès séquence Genbank = X68815), préparé selon la technique décrite dans les exemples 2 et 3, et avec les oligonucléotides suivants:

PB278 (30 mer) (SEQ ID N° 41)

5' TTTGTCGACATGAGTACTGGTCAAGCATG 3'

- 30 PB304 (33 mer) (SEQ ID N° 47)

5' TTTATCGATACTGATTGCGTTAACATAATC 3'

pour amplifier la partie 5' du gène apxIII (codant pour la protéine-hémolysine III

d' *Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Sall*-*Cla*I. Après purification, le produit de PCR de 2172 pb a été digéré par *Sa*/I et *Cla*I pour isoler un fragment *Sall*-*Cla*I de 2161 pb (fragment A).

Une réaction de PCR a été réalisée avec l'ADN génomique d'*Actinobacillus pleuropneumoniae* (Sérotype 8) (M. Smits. 1992. N° d'accès séquence Genbank = X68815) et avec les oligonucléotides suivants:

PB305 (31 mer) (SEQ ID N° 48)

5'TTTATCGATAAATCTAGTGATTAGATAAAC 3'

PB307 (32 mer) (SEQ ID N° 44)

10 5'TTGGATCCTTAAGCTGCTTAGCTAGGTTACC 3'

pour amplifier la partie 3' du gène apxIII (codant pour la protéine hémolysine III d'*Actinobacillus pleuropneumoniae*) sous la forme d'un fragment *Cla*I-*Bam*HI.

Après purification, le produit de PCR de 548 pb a été digéré par *Cla*I et *Bam*HI pour isoler un fragment *Cla*I-*Bam*HI de 536 pb (fragment B).

15 Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 7), préalablement digéré avec *Sall* et *Bam*HI, pour donner le plasmide pPB190 (7565 pb) (Figure N° 25).

Exemple 24 : Préparation et purification des plasmides

20 Pour la préparation des plasmides destinés à la vaccination des animaux, on peut utiliser toute technique permettant d'obtenir une suspension de plasmides purifiés majoritairement sous forme superenroulée. Ces techniques sont bien connues de l'homme de l'art. On peut citer en particulier la technique de lyse alcaline suivie de deux ultracentrifugations successives sur gradient de chlorure 25 de césum en présence de bromure d'éthidium telle que décrite dans J. Sambrook et al. (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). On peut se référer également aux demandes de brevet PCT WO 95/21250 et PCT WO 96/02658 qui décrivent des méthodes pour produire à l'échelle industrielle des 30 plasmides utilisables pour la vaccination. Pour les besoins de la fabrication des vaccins (voir exemple 17), les plasmides purifiés sont resuspendus de manière à obtenir des solutions à haute concentration (> 2 mg/ml)-compatibles avec

le stockage. Pour ce faire, les plasmides sont resuspendus soit en eau ultrapure, soit en tampon TE (Tris-HCl 10 mM; EDTA 1 mM, pH 8,0).

Exemple 25 : Fabrication des vaccins associés

- 5 Les divers plasmides nécessaires à la fabrication d'un vaccin associé sont mélangés à partir de leurs solutions concentrées (exemple 16). Les mélanges sont réalisés de telle manière que la concentration finale de chaque plasmide corresponde à la dose efficace de chaque plasmide. Les solutions utilisables pour ajuster la concentration finale du vaccin peuvent être soit une solution
10 NACI à 0,9 % , soit du tampon PBS.

Des formulations particulières telles que les liposomes, les lipides cationiques, peuvent aussi être mises en œuvre pour la fabrication des vaccins.

Exemple 26 : Vaccination des porcs

- 15 Les porcs sont vaccinés avec des doses de 100 µg, 250 µg ou 500 µg par plasmide.
Les injections peuvent être réalisées à l'aiguille par voie intramusculaire. Dans ce cas, les doses vaccinales sont administrées sous un volume de 2 ml.
Les injections peuvent être réalisées par voie intradermique en utilisant un
20 appareil d'injection à jet liquide (sans aiguille) délivrant une dose de 0,2 ml en 5 points (0,04 ml par point d'injection) (par exemple, appareil "PIGJET"). Dans ce cas, les doses vaccinales sont administrées sous des volumes de 0,2 ou 0,4 ml, ce qui correspond respectivement à une ou à deux administrations. Lorsque deux administrations successives sont pratiquées au moyen de l'appareil
25 PIGJET, ces administrations sont réalisées de manière décalée, de façon à ce que les deux zones d'injection soient séparées l'une de l'autre par une distance d'environ 1 à 2 centimètres.

REVENDICATIONS

1. Formule de vaccin porcin contre la pathologie respiratoire et/ou de reproduction des porcs, comprenant au moins 3 valences de vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à exprimer *in vivo* dans les cellules hôtes, un gène d'une valence de pathogène porcin, ces valences étant choisies parmi deux groupes consistant en virus de la maladie d'Aujeszky, virus de la grippe porcine, virus de la maladie mystérieuse du porc, virus de la parvovirose, virus de la peste porcine classique et bactérie responsable de l'actinobacillose, les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes choisis parmi le groupe consistant en gB et gD pour le virus de la maladie d'Aujeszky, HA, NP, N pour le virus de la grippe porcine, E, ORF3, M pour le virus de la maladie mystérieuse, VP2 pour le virus de la parvovirose, E1, E2 pour le virus de la pestivirose et apxI, apxII et apxIII pour l'actinobacillose.

2. Formule de vaccin selon la revendication 1, caractérisée en ce qu'elle comprend au moins les valences Aujeszky et grippe porcine.

3. Formule de vaccin selon la revendication 2, caractérisée en ce qu'elle comprend en plus l'une au moins des valences choisies parmi maladie mystérieuse et actinobacillose.

4. Formule de vaccin selon la revendication 3, caractérisée en ce qu'elle comprend la valence peste porcine classique.

5. Formule de vaccin selon la revendication 2, caractérisée en ce qu'elle comprend en plus au moins une valence choisie parmi le groupe des valences maladie mystérieuse, parvovirose et peste porcine classique.

6. Formule de vaccin selon la revendication 1, caractérisée en ce qu'elle comprend le gène HA et/ou NP du virus de la grippe porcine.

7. Formule de vaccin selon la revendication 1, caractérisée en ce qu'elle comprend le gène E et/ou ORF3 du virus de la maladie mystérieuse.

8. Formule de vaccin selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend gB et gD d'Aujeszky.

9. Formule de vaccin selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle se présente sous un volume de dose compris entre 0,1 et 10 ml, de préférence entre 1 et 5 ml.

5 10. Formule de vaccin selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle est adaptée à une administration intradermique par jet liquide, de préférence par jets multiples, sous un volume de dose compris entre 0,1 et 0,9 ml, en particulier entre 0,2 et 0,6 ml, de préférence entre 10 0,4 et 0,5 ml.

11. Formule de vaccin selon la revendication 10, caractérisée en ce qu'elle comprend entre 10 ng et 1 mg, de préférence entre 100 ng et 500 µg, plus préférentiellement encore entre 1 µg et 250 µg par type de plasmide.

15 12. Utilisation d'une formule de vaccin selon l'une quelconque des revendications 1 à 11, pour la fabrication d'un vaccin destiné à vacciner les porcins primo-vaccinés au moyen d'un premier vaccin choisi dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, 20 vaccin recombinant, ce premier vaccin présentant l'antigène codé par le vaccin polynucléotidique ou un antigène assurant une protection croisée.

25 13. Kit de vaccination regroupant une formule de vaccin selon l'une quelconque des revendications 1 à 11, et un vaccin choisi dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant l'antigène codé par le vaccin polynucléotidique ou un antigène assurant une 30 protection croisée, pour une administration de ce dernier en primo-vaccination et pour un rappel avec la formule de vaccin.

35 14. Formule de vaccin selon l'une quelconque des revendications 1 à 11, accompagnée d'une notice indiquant que cette formule est utilisable en rappel d'un premier vaccin choisi dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant l'antigène codé par le vaccin polynucléotidique ou un antigène assurant une protection croisée.

Figure N° 1

FEUILLE DE REMPLACEMENT (REGLE 26)

1 ATGCCCGCTGGTGGCGGTCTTGCCCCGGCCCGGGGCAATCGGCCCCGGCACACGGCGGT
 1 Met Pro Ala Gly Gly Leu Trp Arg Gly Pro Arg Gly His Arg Pro Gly His His Gly Gly
 PsII
 64 GCTGGCCTCGGACGTCTTGCCCTGCTCCACACCACAGCTGCAGCTGCCGGGGCGCCCTCGCG
 22 ▶ Ala Gly Leu Gly Arg Leu Trp Pro Ala Pro His His Ala Ala Ala Ala Arg Gly Ala Val Ala
 127 CTACGGCTGCTGCTGCGCTGCCGCCGCGCCGCGCCGCGCCGCGCCGCGCCGCG
 43 ▶ Leu Ala Leu Leu Leu Ala Leu Ala Ala Pro Pro Cys Gly Ala Ala Ala Val Thr Arg
 190 GCCGCCCTCGGCTCGCCGACGCCGGGACCGGCCACCCCAACGACGTCTCGGCCAGGGC
 64 ▶ Ala Ala Ser Ala Ser Pro Thr Pro Gly Thr Gly Ala Thr Pro Asn Asp Val Ser Ala Glu Ala
 Xhol
 253 TCCCCTCGAGGAGATCGAGCGTCTCCCCCGCCCGCTCGAGGAGGCCGAGCGAGTACGGC
 85 ▶ Ser Leu Glu Glu Ile Glu Ala Phe Ser Pro Gly Pro Ser Glu Ala Pro Asp Gly Glu Tyr R Gly
 316 GACCTGGACGCCGCCGACGGCCGTGCGCCGCCGCGACCCAGCGGGACCCCTCTACGCTCTGC
 106 ▶ Asp Leu Asp Ala Arg Thr Ala Val Arg Ala Ala Ala Thr Glu Arg Asp Arg Phe Tyr Val Cys
 379 CGCCCGCCGCTCCGCTCACCGCTGCTGCGCCCTGGAGGCCGAGCAGGCCCTGCCCGAGTACTCG
 127 ▶ Pro Pro Pro Ser Gly Ser Thr Val Val Arg Leu Glu Pro Glu Glu Ala Cys Pro Glu Tyr Ser
 442 CACGGGCGCAACTCACGGAGGGATCGCCCTGCTCTCAAGGAGAACATCGCCCCCGACAAG
 148 ▶ Glu Gly Arg Asn Phe Thr Glu Gly Ile Ala Leu Leu Phe Lys Glu Asn Ile Ala Pro His Lys
 505 TTCAAGGCCACATCTACTACAAGAACGTATCGTCAGCACCGTGTGGTCGGGAGCACGTAC
 169 ▶ Phe Lys Ala His Ile Tyr Tyr Lys Asn Val Ile Val Thr Thr Val Trp Ser Gly Ser Thr Tyr
 568 GCGGCCATCACGAACCGCTTCACAGACCGCTGCCCCCTCCCGTGCAGGAGATCACGGACGTG
 190 ▶ Ala Ala Ile Thr Asn Arg Phe Thr Asp Arg Val Pro Val Pro Val Glu Ile Thr Asp Val
 631 ATCGACCGCCGCCAACAGTGCCTCTCAAGGCCGAGTAGCTGCGCAACAAACCACAAGTGACC
 211 ▶ Ile Asp Arg Arg Gly Lys Cys Val Ser Ile Ala Glu Tyr Val Arg Asn Asn His Lys Val Thr
 694 GCTTCGACCGCGACGGAGAACCCCGTCGAGGTGGACCTCGCCGCCCTCGCCCTGAAACGGCTC
 232 ▶ Ala Phe Asp Arg Asp Glu Asn Pro Val Glu Val Asp Leu Arg Pro Ser Arg Leu Asn Ala Leu
 757 GGCACCCCGCCCTGGCACACCACCAACGACACTACACCAAGATCGGCCCGCGGCTTCTAC
 253 ▶ Gly Thr Arg Ala Trp His Thr Thr Asn Asp Thr Tyr Thr Lys Ile Gly Ala Ala Gly Phe Tyr
 820 CAGACGGGACCTCCGTCACACTGTCAGGAGGAGTGGAGGCCCTCGCTACCCCTAC
 274 ▶ Glu Thr Gly Thr Ser Val Asn Cys Ile Val Glu Glu Val Glu Ala Arg Ser Val Tyr Pro Tyr
 883 GACTCTTCGCCCTGTCACGGGACATTGTGACATGTCCCCTCTACGGCCCTGCCGCGAG
 295 ▶ Asp Ser Ala Leu Ser Thr Gly Asp Ile Val Tyr Met Ser Pro Phe Tyr Gly Leu Arg Glu
 946 GCGCCCAACGGGAGCAGATCGCTACCGCCCGGGCTTCCAGCACGTGGACCACTACTAC
 316 ▶ Gly Ala His Gly Glu Glu Ile Gly Tyr Ala Pro Gly Arg Phe Glu Glu Val Glu His Tyr Tyr
 1009 CCCATCGACCTGGACTCGCCCTCCGCCCTCCGAGACGGTGAACGCGCAACTTCTACCCAGC
 337 ▶ Pro Ile Asp Leu Asp Ser Arg Leu Arg Ala Ser Glu Ser Val Thr Arg Asn Phe Leu Arg Thr
 1072 CCCACTTCACGGTGGCTGGGACTGGGCCCCAAGACGCCGCGCGTGTGCAAGCTGGCCAAG
 358 ▶ Pro His Phe Thr Val Ala Trp Asp Trp Ala Pro Lys Thr Arg Arg Val Cys Ser Leu Ala Lys
 1135 TGGCCGAGGCCGAGCAGATGACCCCGCAGAGACGCCGCAAGGCTCTCCGCTTACCGTGG
 379 ▶ Trp Arg Glu Ala Glu Glu Met Thr Arg Asp Glu Thr Arg Asp Gly Ser Phe Arg Phe Thr Ser
 PsII
 1198 CGGGCCCTGGGCCCTCTCGTCAGCGACGTCACCGACGCTGCACTGCCAGGGCTGCCACCTG
 400 ▶ Arg Ala Leu Gly Ala Ser Phe Val Ser Asp Val Thr Glu Leu Asp Leu Glu Arg Val His Leu
 1261 GGGCACTGGCTCCTCCGCCAGGCCCTCGGAGGCCATCGACGCCATCTACGGCCGGCTACAAAC
 421 ▶ Gly Asp Cys Val Leu Arg Glu Ala Ser Glu Ala Ile Asp Ala Ile Tyr Arg Arg Arg Tyr Asn
 1324 ACCACGGCACGTGCTGCCGCCACAGGCCGAGGTGTACCTGCCCGGGGGCTTCGTGGTG
 442 ▶ Ser Thr His Val Leu Ala Gly Asp Arg Pro Glu Val Tyr Leu Ala Arg Gly Phe Val Val

Figure N° 2

FEUILLE DE REMPLACEMENT (REGLE 26)

XbaI

1387 GCCTTCGGCCCGCTGATCTCGAACAGCTGGCCAGCTGTACGCCGCCAGCTCGACGCCCT
 463 ▶ AlaPheArgProLeuIleSerAsnGluLeuAlaGlnLeuTyrAlaArgGluLeuGluArgLeu
 1450 GGCCTCGCCGGCGCTCGTGGCCCCCGGGCCCCCGCGGCCGCTCGGCCGCTCCCCC
 484 ▶ GlyLeuAlaGlyValValGlyProAlaAlaProAlaAlaArgArgAlaArgArgSerPro
 1513 GGCCCGGGGGGACGCCCGACCCCCCGGCCGTAACGGCACGGGCACCTGCCATCACACG
 505 ▶ GlyProAlaGlyThrProGluProProAlaValAsnGlyThrGlyHisLeuArgIleThrThr
 PsII

1576 GGCTCGCGGAGTTTGCAGCTGCAGTTACCTACGACCACATCCAGGCCACGTGAACGAC
 526 ▶ GlySerAlaGluPheAlaArgLeuGlnPheThrTyrAspHisIleGlnAlaHisValAsnAsp

PstI

1639 ATGCTGGCCCGCATCGGGCCGCTGGTGGAGCTGCCAGAACAGGACCCACCCGTGGAGC
 547 ▶ MetLeuGlyArgIleAlaAlaAlaTrpCysGluLeuGlnAsnLysAspArgThrLeuTrpSer
 1702 GAGATGTCGCGCTGAACCCCAGGCCGTGGCACGGCCACGGCCGCTCGGCCAGCGCGTCTGGCG
 568 ▶ GluMetSerArgLeuAsnProSerAlaValAlaThrAlaLeuGlyGlnArgValCysAla
 1765 CGCATGTCGGCACGGTGATGCCATCTCCGGCTGGAGGTGGCCGGGGCGTGTACGTG
 589 ▶ ArgMetLeuGlyAspValMetAlaIleSerArgCysValGluValArgGlyGlyValTyrVal
 1828 CAGAACTCATGGCGTGCCCCGGAGCGCGCACGTCCTACAGCCCCCCTGGTCACCTTC
 610 ▶ GlnAsnSerMetArgValProGlyGluArgGlyThrCysTyrSerArgProLeuValThrPhe
 1891 GACCAACAACGGCACGGGCTGATCGAGGGCAGCTCGGCACGACAACGAGCTCCCTCATCTCG
 631 ▶ GluHisAsnGlyThrGlyValIleGluGlyGlnLeuGlyAspAspAsnGluLeuIleSer
 1954 CGCGACCTCATCGAGCCCTGCACCGGAAACCCGGGCTACTTTAAGCTGGGAGCGGGTAC
 652 ▶ ArgAspLeuIleGluProCysThrGlyAsnHisArgArgTyrPheLysLeuGlySerGlyTyr
 2017 GTGTAACAGGAGACTACAACTAGTGGCATGGTGGAGGTGGCCGAGACGATCACACCGGG
 673 ▶ ValTyrTyrGluAspTyrAsnTyrValArgMetValGluValProGluThrIleSerThrArg
 XbaI

2080 GTTACCTGAACCTGACGCTGCTGGACGCCGAGTCTCTCCCTCGAGGTGTACACGGCC
 694 ▶ ValThrLeuAsnLeuThrLeuLeuGluAspArgGluPheLeuProLeuGluValTyrThrArg
 2143 GAGGAGCTCGCCGACACGGGCTCTCGACTACAGGAGATCCAGCCGACCCAAACAGCTGCAC
 715 ▶ GluGluLeuAlaAspThrGlyLeuLeuAspTyrSerGluIleGlnArgArgAsnGlnLeuHis
 2206 GCGCTCAATTCTACGACATCGACCGCTGGTCAAGGTGGACACAAACGTGGCTGCTGCC
 736 ▶ AlaLeuLysPheTyrAspIleAspArgValVallysValAspHisAsnValValLeuLeuArg
 2269 GGCATCGCAACTTCTCAGGGCTCGGCCACGTGGGCCGGCTCGCAAGGTGGCTCG
 757 ▶ GlyIleAlaAsnPhePheGlnGlyLeuGlyAspValGlyAlaAlaValGlyLysValValLeu
 2332 CCTGCCACGGGGGGCTGATCTCGCCGCTCGGCCGATGGTGTCTCTGTCAAACCCCTTC
 778 ▶ GlyAlaThrGlyAlaValIleSerAlaValGlyGlyMetValSerPheLeuSerAsnProPhe
 2395 GGGCGCTGCCATCGGCTGCTGGTGGCTGGCCGGCTGGTCCGGCTTCTGGCCTACCGG
 799 ▶ GlyAlaLeuAlaIleGlyLeuLeuValLeuAlaGlyLeuValAlaAlaPheLeuAlaTyrArg
 2458 CACATCTCGGCCCTGGCCGCAACCCATGAAGGCCCTGTACCCGTACGACGAAGACGCTC
 820 ▶ HisIleSerArgLeuArgArgAsnProMetLysAlaLeuTyrProValThrThrLysThrLeu
 Sall

2521 AAGGAGGACGGCGTCGACGAAGGGACGTTGGACGGAGGCCAACGCTGGACCAGGCCGGGACATG
 841 ▶ LysGluaspGlyValAspGluGlyAspValAspGluAlaLysLeuAspGlnAlaArgAspMet
 XbaI

2584 ATCCGGTACATGTCATCGTGTGGCCCTCGAGCAGCAGGAGCACAGGCCGCAAGAAGAAC
 862 ▶ IleArgTyrMetSerIleValSerAlaLeuGluGlnGlnGluHisLysAlaArgLysLysAsn
 2647 AGCGGCCCGCCCTGCTGGCACCCGGCTGGCCGGCATGCCACGCCGCCACTACCAAG
 863 ▶ SerGlyProAlaLeuAlaSerArgValGlyAlaMetAlaThrArgArgHisTyrGln
 XbaI

2710 CGCCTCGAGAGGGAGGACCCCGACGCCCTGTAG
 904 ▶ ArgLeuGluSerGluAspProAspAlaLeu...

Figure N°2 (suite et fin)

FEUILLE DE REMplacement (REGLE 26)

1 ATGCTGCTCGCAGCGTATTGGCGCCGTGGTCGCCCGGACGACGCCCGTGGTGCAGCTGGAC
 1 Met Leu Leu Ala Ala Leu Leu Ala Ala Leu Val Ala Arg Thr Thr Leu Gly Ala Asp Val Asp
 64 CCCGTGCCCGCGCCGACTTCCCCCGCCGTACCCGTACCCGACTCGTGCGAGCTGACCG
 22 ▶ Ala Val Pro Ala Pro Thr Phe Pro Pro Pro Ala Tyr Pro Tyr Thr Glu Ser Trp Gin Leu I Thr
 127 CTGACGACGGTCCCCTCGCCCTTCGTCGGCCCCGGACCGTACCCACACGCCGCCGCTGGAG
 43 ▶ Leu Thr Thr Val Pro Ser Pro Phe Val Gly Pro Ala Asp Val Tyr His Thr Arg Pro Leu Glu
 190 GACCCGTGGGGTGCTGGCGCTGATCTCGAACCCGAGCTGGACCGCTGCTGAACGAGGGC
 64 ▶ Asp Pro Cys Gly Val Val Ala Leu Ile Ser Asp Pro Gln Val Asp Arg Leu Leu Asn Glu Ala
 253 CTGGCCCACCGCCGCCACGTACCGCCGCCACGTGGCTGGTACCGCATCGCCGACGGGTGC
 85 ▶ Val Ala His Arg Arg Pro Thr Tyr Arg Ala His Val Ala Try Tyr Arg Ile Ala Asp Gly Cys
 316 GCACACCTGCTGACTTTATCGAGTACGCCGACTCGGACCCCAGGCAGGCAGATCTTGGGC
 106 ▶ Ala His Leu Leu Tyr Phe Ile Glu Tyr Ala Asp Cys Asp Pro Arg Gln Ala Asp Leu Trp Ala
 379 CTGCCGCCGCCACCACGCCGATGTGGTGACCCCGTCCGGACTACATGTTCCCCACCGA
 127 ▶ Leu Pro Ala Pro His His Ala Asp Val Val Asp Pro Val Arg Gly Leu His Val Pro His Gly
 442 GGACGACCTGGGCTGCTCATGGTGCCCCGGCCGGTTCAACCGAGGGCCAGTACCGGCC
 148 ▶ Gly Arg Ala Gly Ala Ala His Gly Pro Arg Ala Val Gln Arg Gly Pro Val Pro Ala Pro
 505 GGTGTCCGTCGACGGCGTGAACATCTCACCGACTTCATGGTGCGCTCCCCAGGGCAAGA
 169 ▶ Gly Val Arg Arg Arg Glu His Pro His Arg Leu His Gly Ala Pro Arg Gly Ala Arg
 568 GTGCCCGTTGCCCGCGTGGACCAGCACCCACGTACAAGTTGGCGGTGCTGGAGCGACCA
 190 ▶ Val Pro Val Arg Pro Arg Gly Pro Ala Pro His Val Gln Val Arg Arg Val Leu Glu Arg Arg
 631 CAGCTTCAAGCGGGCGTGGACGTGATGCGATTCTGACGCCGTTCTACCAGCAGCCCCGCA
 211 ▶ Gln Leu Gln Ala Gly Arg Gly Arg Asp Ala Ile Pro Asp Ala Val Leu Pro Ala Ala Pro Ala
 694 CCGGGACGTGGTGAACACTGGTACCGCAAGAACGGCCGACGCCCTCCGGCCGCCACGCC
 232 ▶ Pro Gly Gly Glu Leu Leu Val Pro Gln Glu Arg Pro Asp Ala Pro Ala Gly Pro Arg Arg
 757 CGCCACCGCGTACGCCATCGACCCCGCGGCCCTCGCGGGCTCGCCGAGGGCCCGGCC
 253 ▶ Arg His Ala Val Arg His Arg Pro Arg Ala Ala Leu Gly Gly Leu Ala Glu Ala Pro Ala Pro
 820 GCCCCGGCCCCGGCCCGCGAAGCCGAGCCGCCCGGACGCCGCCGCCGCCGCC
 274 ▶ Ala Pro Ala Pro Ala Glu Ala Arg Ala Arg Pro Gly Asp Ala Arg Ala Pro Arg Pro
 883 CCTGCCCGACCGGGGACCCGGGACCACGCCGCCGGGGCCCCCACGCCGCCACCCCCGAG
 295 ▶ Pro Ala Arg Ala Gly Asp Ala Gly Pro Arg Arg Gly Pro Pro His Ala Ala Thr Pro Glu
 946 GCCCCGAGACGCCGACCGCCCTTCGCCCCGCCGGCGTCCGCCCCAGCGGGTGGCCGCAGCC
 316 ▶ Ala Arg Asp Ala Ala Pro Pro Leu Arg Pro Ala Gly Arg Arg Ala Gln Arg Val Ala Ala Ala
 1009 CGCCGAGCCGTTCCAGCCGGACCCCGCCGCCGGCGTCTCGGCCACCGCTCGGTGAT
 337 ▶ Arg Gly Ala Val Pro Ala Ala Asp Pro Arg Arg Ala Gly Arg Leu Ala Pro Pro Leu Gly Asp

Figure N° 4

FEUILLE DE REMPLACEMENT (REGLE 26)

6/31

1972 CGTCGGCACGGGCACCGCGATCGGCGCGCTCCTGGTGGCCGTGCGTCTACATCTTCTTCCG
358► ArgArgHisGlyHisArgAspGlyArgAlaProGlyArgValArgLeuHisLeuLeuPro
1135 CCTGAGGGGGCGAACGGGTATCGCCTCCTGGGCCGTCCCGGACGCCGACGAGCTAAAGC
379► ProGluGlyGlyGluGlyValSerProProGlyArgSerArgGlyArgArgArgAlaLysSer
1198 GCAGCCCCGGTCCGTAG
400► AlaAlaArgSerVal

Figure N° 4 (suite et fin)

7/31

Figure N° 5

FEUILLE DE REMplacement (REGLE 26)

1 ATGGAAGCAAAACTATTCCTATTATTCGTACATTCACTGCGCTGAAAGCTGACACCACCTGT
 1► MetGluAlaLysLeuPheValLeuPheCysThrPheThrAlaLeuLysAlaAspThrIleCys
 64 GTAGGATACCAGCTAACAACTTCCACAGATACTGTCGACACAATACTGGAGAAGAAATGTGACT
 22► ValGlyTyrHisAlaAsnAsnSerThrAspThrValAspThrIleLeuGluLysAsnValThr
 127 GTGACTCATTCACTTAATTACTAGAAAACAGTCATAATGCCAAACTCTGCAGCCTGAATGGA
 43► ValThrHisSerValAsnLeuLeuGluAsnSerHisAsnGlyLysLeuCysSerLeuAsnGly
 190 GTAGCCCCCTGCAACTAGGGAAAGTGCAACGTAGCAGGGTGGATCCTGGCAACCCAGAAATGT
 64► ValAlaProLeuGlnLeuGlyLysCysAsnValAlaGlyTrpIleLeuGlyAsnProGluCys
 253 GACCTGTTGCTCACAGCGAATTCACTGGCTTACATAATAGAGACTTCAAATTGAGAAAATGGA
 85► AspLeuLeuLeuThrAlaAsnSerTrpSerTyrIleIleGluThrSerAsnSerGluAsnGly
 316 ACATGCTACCCCCGAGAATTCACTGGATTAGAGAATTAGGGAGCAGCTGAGTTCACTGTC
 106► ThrCysTyrProGlyGluPheIleAspTyrGluGluLeuArgGluGlnLeuSerSerValSer
 379 TCATTGAAAGGTTGAAATTTCACAGCAAACATGGCCAAATCATGAGACAACCAAA
 127► SerPheGluArgPheGluIlePheProLysAlaAsnSerTrpProAsnHisGluThrThrLys
 442 GGTATTACAGCTGCATGCTTACTCTGGAACCCCCAGTTTTATCGGAATTGCTATGGATA
 148► GlyIleThrAlaAlaCysSerTyrSerGlyThrProSerPheTyrArgAsnLeuLeuTrpIle
 505 GTAGAGAGGGAAAATTCTATCCTAAACTCAGCAAATCATACACAAACAAACAGGGAAAGAA
 169► ValGluArgGluAsnSerTyrProLysLeuSerLysSerTyrThrAsnAsnLysGlyLysGlu
 568 GTGCTTATAATCTGGGAGTCGACCACCCCTCAACTACCAATGACCAACAAAGCCTATCAG
 190► ValLeuIleIleTrpGlyValHisHisProProThrThrAsnAspGlnGlnSerLeuTyrGln
 631 AATGCTGATGCATATGTTTCACTGGGTCACTAAAAATAACCGAACGGTCACACCAGAAATA
 211► AsnAlaAspAlaTyrValSerValGlySerSerLysTyrAsnArgArgPheThrProGluIle
 694 GCAGCTAGACCTAAAGTCAAAGGACAAGCAGGCAGAAATGAATTATTGGACATTGTTAGAT
 232► AlaAlaArgProLysValLysGlyGlnAlaGlyArgMetAsnTyrTyrTyrThrLeuLeuAsp
 757 CAAGGAGACACCATAACGTTGAAAGCCACTGGAACTTAATAGCACCAGGGTACGCCCTCGCA
 253► GlnGlyAspThrIleThrPheGluAlaThrGlyAsnLeuIleAlaProTrpTyrAlaPheAla
 820 TTGAATAAGGGCTCTGGTTCTGGAATTATAACGTCGGATACTCGGTTACAATTGTGATACA
 274► LeuAsnLysGlySerGlyIleIleThrSerAspThrProValHisAsnCysAspThr
 883 AAGTGCCAAACCCCTCATGGGCCCTGAAACAGTACTCTTCAGAACGTCATCCCAC
 295► LysCysGlnThrProHisGlyAlaLeuAsnSerSerLeuProPheGlnAsnValHisProIle
 946 ACTATTGAGAACCCCCAAATATGTTAAAGCACCACAAACTGAGAACATGAAACAGGACTAAC
 316► ThrIleGlyGluCysProLysTyrValLysSerThrLysLeuArgMetAlaThrGlyLeuArg
 1009 AACGTCCCCCTCTATTCAATCCAGAGGACTTTGGAGCAATTGCTGGATTCATGAGGAGGA
 337► AsnValProSerIleGlnSerArgGlyLeuPheGlyAlaIleAlaGlyPheIleGluGlyGly

Figure N° 6

FEUILLE DE REMplacement (REGLE 26)

9/31

1072 TGGACAGGAATGATACTGGGTGCTATGGGTATCACCATCAGAATGACCAGGGATCTGGTTAC
 358 ▶ TrpThrGlyMetIleAspGlyTrpTyrGlyTyrHisHisGlnAsnGluGlnGlySerGlyTyr

 1135 GCAGCTGATCAGAAAAGCACACAATTGCAATTGACGGGATCAGCAACAAAGTGAACTCAGTA
 379 ▶ AlaAlaAspGlnLysSerThrGlnIleAlaIleAspGlyIleSerAsnLysValAsnSerVal

 1198 ATTGAGAAAATGAAACTCAATTCACTGCAGTGGCAAGGAATTCAATGATCTAGAAAAAAGG
 400 ▶ IleGluLysMetAsnThrGlnPheThrAlaValGlyLysGluPheAsnAspLeuGluLysArg

 1261 ATTGAGAAAATTGAAATAAGAAAAGTCGATGATGGGTTTTGGATGTTGGACATATAATGCTGAG
 421 ▶ IleGluAsnLeuAsnLysValAspAspGlyPheLeuAspValTrpThrTyrAsnAlaGlu

 1324 TTGCTCGTTTGCTCGAGAACGAAAGGACTCTAGATTCCATGACTTTAACGTAAGAAAATTAA
 442 ▶ LeuLeuValLeuLeuGluAsnGluArgThrLeuAspPheHisAspPheAsnValArgAsnLeu

 1387 TATGAAAAGGTCAAGTCACAATTGAGAAAACAATGCCAAAGAAATCGGGATGGTTGTTTGAG
 463 ▶ TyrGluLysValLysSerGlnLeuArgAsnAsnAlaLysGluIleGlyAsnGlyCysPheGlu

 1450 TTCTATCAAATGTGATGACGAATGCATGAAGAGCGTAAAGAATGGCACATATAACTACCCC
 484 ▶ PheTyrHisLysCysAspAspGluCysMetLysSerValLysAsnGlyThrTyrAsnTyrPro

 1513 AAATATTCAAGAAGAACCAATTGAAATAGAGAGGAAATAGACGGTGTGAAACTAGAAATCAATG
 505 ▶ LysTyrSerGluGluSerLysLeuAsnArgGluGluIleAspGlyValLysLeuGluSerMet

 1576 GGAGTTTACCAAGATTGGCGATCTACTCCACAGTCGCCAGTTCCCTGGCTTGTTAGTCCTCC
 526 ▶ GlyValTyrGlnIleLeuAlaIleTyrSerThrValAlaSerSerLeuValLeuValSer

 1639 CTGGGGGCAATCAGCTCTGGATGTGTTCTAATGGTCATTGCAATGCAGAAATGCATTAA
 547 ▶ LeuGlyAlaIleSerPheTrpMetCysSerAsnGlySerLeuGlnCysArgIleCysIle...

Figure N° 6 (suite et fin)

FEUILLE DE REMPLACEMENT (REGLE 26)

10/31

Figure N° 7

FEUILLE DE REMPLACEMENT (REGLE 26)

1 ATGGCGCTCAAGGCACCAACGATCTTATGAGCAGATGGAAACCGGTGGAGAACGCCAGAAT
 1► MetAlaSerGlnGlyThrLysArgSerTyrGluGlnMetGluThrGlyGlyGluArgGlnAsn

 64 GCTACTGAAATCAGAGCATCTGTGGGGATGGTTGGTGGAAATTGGAAGATTCATACAG
 22► AlaThrGluIleArgAlaSerValGlyGlyMetValGlyGlyIleGlyArgPheTyrIleGln

 127 ATGTGCACTGAACTCAAACCTCAGTGACTATGAAGGGAGGCTGATCCAGAACAGCATAACAATA
 43► MetCysThrGluIleLeuLysLeuSerAspTyrGluGlyArgLeuIleGlnAsnSerIleThrIle

 190 GAGAGAAATGGTTCTCTGCATTGATGAGAGGAGGAACAAATACCTGGAGAACATCCAGT
 64► GluArgMetValLeuSerAlaPheAspGluArgArgAsnLysTyrLeuGluGluHisProSer

 253 GCGGGGAAAGGACCCAAAAGAAAACTGGAGGTCAAATCTACAGAAAGAGAGACGGAAAATGGATG
 85► AlaGlyLysAspProLysLysThrGlyGlyProIleTyrArgLysArgAspGlyLysTrpMet

 316 AGAGAGCTGATTCTATATGACAAAAGAGGAGATCAGGAGGATTGGCGTCAAGCAAACAATGGT
 166► ArgGluLeuIleLeuTyrAspLysGluGluIleArgArgIleTrpArgGlnAlaAsnAsnGly

 379 GAAGATGCTACTCCTGGTCTCACTCATCTGATGATTGGCATTCACCTGAAATGATGCCACA
 127► GluAspAlaThrAlaGlyLeuThrHisLeuMetIleTrpHisSerAsnLeuAsnAspAlaThr

 442 TATCAGAGAACAAAGAGACTCGTGCCTACTGGATGGACCCCAGAAATGTGCTCTGTGATGCAA
 148► TyrGlnArgThrArgAlaLeuValArgThrGlyMetAspProArgMetCysSerLeuMetGln

 505 GGATCAACTCTCCGAGGAGATCTGGACCTGCTGGCGGAGTAAAGGGAGTTGGGAGGATG
 169► GlySerThrLeuProArgArgSerGlyAlaAlaGlyAlaAlaValLysGlyValGlyThrMet

 568 GTAATGGAACCTCGGATGATAAAAGCGGGATCAATGATCGGAACCTCTGGAGAGGGGAA
 190► ValMetGluLeuIleArgMetIleLysAlaGlyIleAsnAspArgAsnPheTrpArgGlyGlu

 631 AATGGACGAAGAACAAAGAAATTGCATATGAGAGAATGTGCAACATCCTCAAAGGGAAATTTCAG
 211► AsnGlyArgArgThrArgIleAlaTyrGluArgMetCysAsnIleLeuLysGlyLysPheGln

 694 ACAGCAGCGCAACAAGCAATGATGGACCAGGTGCGAGAAATGACAAATCTGGAAATGCTGAG
 232► ThrAlaAlaGlnGlnAlaMetMetAspGlnValArgGluMetThrAsnProGlyAsnAlaGlu

 757 ACTGAAGACCTTATCTTCTGGCACGATCTGCACTCATCTGAGAGGATCAGTCGCTCATAAA
 253► ThrGluAspLeuIlePheLeuAlaArgSerAlaLeuIleLeuArgGlySerValAlaHisLys

 820 TCCTGCCTGCCTGCTGTGTATATGGACTTGTGGCAACTGGATATGACTTGTGAAAGAGAA
 274► SerCysLeuProAlaCysValTyrGlyLeuValValAlaSerGlyTyrAspPheGluArgGlu

 883 CGGTACTCTAGTCGGAATAGATCCTTCCGCTGCTCCAAAACAGCCAGGTGTTCAAGCCTC
 295► GlyTyrSerLeuValGlyIleAspProPheArgLeuLeuGlnAsnSerGlnValPheSerLeu

 946 ATTAGACCAAATGAGAATCCAGCACATAAGACTCAGCTGGTATGGATGGCATGCCATTCTGCA
 316► IleArgProAsnGluAsnProAlaHisLysSerGlnLeuValTrpMetAlaCysHisSerAla

 1009 GCATTTGAAGATCTGAGACTGTCAGACTTTCATCAGAGGACAAAGAGTGGTCCAACAGGGACAA
 337► AlaPheGluAspLeuArgValSerSerPheIleArgGlyThrArgValValProArgGlyGln

Figure N° 8

FEUILLE DE REMplacement (REGLE 26)

12/31

1972 CTCCTCCACCAGAGGAGTTCAAATTGCTCAATGAAAACATGGAAACATGGAGTCCAGTACT
358► LeuSerThrArgGlyValGlnIleAlaSerAsnGluAsnMetGluThrMetGluSerSerThr
1135 CTTGAAC TGAGAACAAATCTGGGCTATAAGAACCGAGGAGGGAGGAAACACCAACCAACAG
379► LeuGluLeuArgSerLysTyrTrpAlaIleArgThrArgSerGlyGlyAsnThrAsnGlnGln
1198 AGAGCATCTGCAGGGCAAATCAGTGTACAACCTTACTTCCTCGGTACAGAGAAATCTTCCTTC
400► ArgAlaSerAlaGlyGlnIleSerValGlnLeuThrPheSerValGlnArgAsnLeuProPhe
1261 GAGAGAGCGACCACATGGCAGCATTTACAGGGAACACTGAAGGCAGAACATCTGACATGAGG
421► GluArgAlaThrIleMetAlaAlaPheThrGlyAsnThrGluGlyArgThrSerAspMetArg
1324 ACTGAAATTATAAGAATGATGGAAAGTGCCAGACCACAGATGTGTCTTCCAGGGGGGGGA
442► ThrGluIleIleArgMetMetGluSerAlaArgProGluAspValSerPheGlnGlyArgGly
1387 GTCTTCGAGCTCTGGACGAAAGGCAACGAACCCGATCGTGCCTTCCTTGACATGAGTAAT
463► ValPheGluLeuSerAspGluLysAlaThrAsnProIleValProSerPheAspMetSerAsn
1450 GAGGGATCTTATTTCTCGGAGACAATGCAGAGGACTATGACAATTAA
484► GluGlySerTyrPhePheGlyAspAsnAlaGluGluTyrAspAsn...
Figure N° 8 (suite et fin)

FEUILLE DE REMPLACEMENT (REGLE 26)

13/31

Figure N° 3

FEUILLE DE REMplacement (REGLE 26)

1 ATGAAAGACTGTCATTGCCTTGAGCTACATTTCTGTCGGTTCTGGCCAAGACCTCCAGAA
 1 Met Lys Thr Val Ile Ala Leu Ser Tyr Ile Phe Cys Leu Val Leu Gly Gln Asp Leu Pro Glu
 64 AATGCCAGCAGCACAGCAAAGCCTGGTCTGGACATCATGCGGTGCCAACCGAACGTTAGTG
 22 ▶ Asn Gly Ser Ser Thr Ala Lys Pro Gly Leu Gly His His Ala Val Pro Asn Gly Thr Leu Val
 127 AAAACAATCACGAATGATCAGCATCGAAGTCACTAATGCTACTGAGCTGGCCAGACTGTTCTCA
 43 ▶ Lys Thr Ile Thr Asn Asp Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Phe Ser
 190 ATGGTAAAATATGCAACAATCCTCATCGAGTTCTTGATGGAGCAAACGTACACTGATAGAT
 64 ▶ Met Gly Lys Ile Cys Asn Asn Pro His Arg Val Leu Asp Gly Ala Asn Cys Thr Leu Ile Asp
 253 CCTCTATTGGGGGACCCTCATGGTGGCTTCAAAATGAGAAATGGGACCTTTCTGAA
 85 ▶ Ala Leu Leu Gly Asp Pro His Cys Asp Gly Phe Gln Asn Glu Lys Trp Asp Leu Phe Val Glu
 316 CGCAGCAAATGCTTCAGCAACTGTTACCTTATGATGTCAGATTATGCCCTCCCTAGGTCA
 106 ▶ Arg Ser Lys Cys Phe Ser Asn Cys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser
 379 CTAATTGCCTTCGGGCACTTGGAGTTATCAATGAAGGTTCAATTGGACTGGGTCACT
 127 ▶ Leu Ile Ala Ser Ser Gly Thr Leu Glu Phe Ile Asn Glu Gly Phe Asn Trp Thr Gly Val Thr
 442 CAGAACGGAGGAAGCAATGCTGCAAGAGGGGGCCTGATAGCGGTTCTTCAGTAGGCTGAAC
 148 ▶ Gln Asn Gly Gly Ser Asn Ala Cys Lys Arg Gly Pro Asp Ser Gly Phe Phe Ser Arg Leu Asn
 505 TGGTTGTACAAATCAGGAAACACATAACCGATGCTGAACGTTGACTATGCCAAACAGTGATAAT
 169 ▶ Trp Leu Tyr Lys Ser Gly Asn Thr Tyr Pro Met Leu Asn Val Thr Met Pro Asn Ser Asp Asn
 568 TTTGACAAATTATACATTGGGGGTTACCATCCGAGCACAGACAGGGAAACAAACCAACCTA
 190 ▶ Phe Asp Lys Leu Tyr Ile Trp Gly Val His His Pro Ser Thr Asp Arg Glu Gln Thr Asn Leu
 631 TATGTTCAAGTATCAGGGAAAGCAACGGTTTCACCAAGAGAACGCCAGCAGACCAATAATCCG
 211 ▶ Tyr Val Gln Val Ser Gly Lys Ala Thr Val Phe Thr Lys Arg Ser Gln Gln Thr Ile Ile Pro
 694 AACAGTCGGCTAGACCTGGGTAAGGGCTGTCTAGTAGAATAAGCATCCATTGGACAATA
 232 ▶ Asn Ser Arg Ser Arg Pro Trp Val Arg Gly Leu Ser Ser Arg Ile Ser Ile His Trp Thr Ile
 757 GTTAAACCGGGGACATTCTGATAATTAGTAATGGAACCTAATTGCTCCTGGGGTTAC
 253 ▶ Val Lys Pro Gly Asp Ile Leu Ile Asn Ser Asn Gly Asn Leu Ile Ala Pro Arg Gly Tyr
 820 TTCAAAATGCCACAATGGGAGAACGCTAAATGAGGTCAGATGCACTATTGCCACCTGGCACTGCACT
 274 ▶ Phe Lys Met His Asn Gly Arg Ser Ser Ile Met Arg Ser Asp Ala Pro Ile Gly Thr Cys Ser
 883 TCTGAATGCATCACTCCAAATGGAAGCATCCAAATGACAAACCCCTTCAAAACGTAACAG
 295 ▶ Ser Glu Cys Ile Thr Pro Asn Gly Ser Ile Pro Asn Asp Lys Pro Phe Gln Asn Val Asn Lys
 946 ATCACATATGGGCATGCTCTAACAGTATGTTAACAAAACACTCTGAACTGGCAACAGGGATC
 316 ▶ Ile Thr Tyr Gly Ala Cys Pro Lys Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr Gly Met
 1009 CGGAATATACGGAAAAACAAACTAGAGGCATATTGGCGCAATAGCAGGTTCTAGAGAAAT
 337 ▶ Arg Asn Ile Pro Glu Lys Gln Thr Arg Gly Ile Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn

Figure N° 10

FEUILLE DE REMPLACEMENT (REGLE 26)

1072 GGTTGGGAAGGAATGGTAGACGGCTGGTACGGTTTCAGACATCAAATTCTGAGGGCACAGGA
 358► GlyTrpGluGlyMetValAspGlyTrpTyrGlyPheArgHisGlnAsnSerGluGlyThrGly
 1135 CAAGCACCAGACCTAAAAGCACCCAAAGCAGCCATCGACCAAATCAACGGGAAACTGAATAGA
 379► GlnAlaAlaAspLeuLysSerThrGlnAlaAlaIleAspGlnIleAsnGlyLysLeuAsnArg
 1198 CTAATCGAGAACGAAACGGAAATTCCATCAAATCGAAAAGGAATTCTCAATAGTAGAAGGG
 400► LeuIleGluLysThrAsnGlyLysPheHisGlnIleGluLysGluPheSerIleValGluGly
 1261 AGAATTTCAGGACCTCGAGAAATACGTTGAAGACACTAAAAATAGATCTCTGGCTTACAATGCG
 421► ArgIleGlnAspLeuGluLysTyrValGluAspThrLysIleAspLeuTrpSerTyrAsnAla
 1324 GAACTCTTGTGCGCTCTGGAGAACCAACATACAATTGATCTGACTGACTCGGAAATGAGCAA
 442► GluLeuLeuValAlaLeuGluAsnGlnHisThrIleAspLeuThrAspSerGluMetSerLys
 1387 CTGTTGAAAAAACAGGAGCCAAGTGAGGGAAATGCTGAGGACATGGGAAACCGCTTGCCTT
 463► LeuPheGluLysThrArgArgGlnLeuArgGluAsnAlaGluAspMetGlyAsnGlyCysLeu
 1450 CAAATATACCACAAATGTGACAATGCTTGATAGAGTCATAAGAAATGGGACTTATGACCAT
 484► GlnIleTyrHisLysCysAspAsnAlaCysIleGluSerIleArgAsnGlyThrTyrAspHis
 1513 AATGAATACAGAGACGAAGCATTAAACAACCGATTCAGATCAAAGGTGTTGAGCTGAAGTCG
 505► AsnGluTyrArgAspGluAlaLeuAsnAsnArgPheGlnIleLysGlyValGluLeuLysSer
 1576 GGATACAAAGACTGGATCCTGTGGATTTCCTCTGCCATATCATGCTTTTGCTTGTGCTT
 526► GlyTyrLysAspTrpIleLeuTrpIleSerSerAlaIleSerCysPheLeuLeuCysValVal
 1639 TTGCTAGGATTATCATGTCGGCCTGCCAGAAAGCAACATTAGGTGCAACATTGCACTCTGA
 547► LeuLeuGlyPheIleMetTrpAlaCysGlnLysGlyAsnIleArgCysAsnIleCysIle...

Figure N° 10 (suite et fin)

FEUILLE DE REMplacement (REGLE 26)

16/31

Figure N° 11

FEUILLE DE REMPLACEMENT (REGLE 26)

1 ATGCCGTCTCAAGGACTAAACGATCTTATGACGAGATGGAAACCGCTGGAGAACGCCGGAAT
 1 Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Gly Gly Glu Arg Arg Asn

 64 CCTACTGAAATCAGAGCATCTGTTGGGGATGGTGGTGGATTGGAAGATTCTACATACAG
 22 ▶ Ala Thr Glu Ile Arg Ala Ser Val Gly Gly Met Val Gly Gly Ile Gly Arg Phe Tyr Ile Gln

 127 ATGTGCACTAAACTCAAACACTGACTATGAAGGGAGGCTGATCCAGAACAGCATAACAATA
 43 ▶ Met Cys Thr Lys Leu Lys Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Ile Thr Ile

 190 GAGAGAATGGTTCTCTGCATTTGATGAGAGGAGGAACAAATACCTGGAAGAACATCCCAGT
 64 ▶ Glu Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu Glu His Pro Ser

 253 CGGGGGAGGACCCAAAGAAAATGGAGGTCCAATATACAGAAAGAGAGACGGAAAATGGATG
 85 ▶ Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile Tyr Arg Lys Arg Asp Gly Lys Trp Met

 316 AGAGAGCTGATTATGATGACAAAGAGGAGATCAGGAGGATTGGCGTCAAGCAAACAAATGGT
 106 ▶ Arg Glu Leu Ile Met Tyr Asp Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly

 379 GAAGATGCTACTGCTGGTCTCACTCATCTCATGATGATTGGCATTCAAACCTGAATGATGCCACA
 127 ▶ Glu Asp Ala Thr Ala Gly Leu Thr His Leu Met Ile Trp His Ser Asn Leu Asn Asp Ala Thr

 442 TATCAGAGAACAAAGAGCTCTCGTGCCTACTGGGATGGACCCCAGAAATGTGCTCTGATGCCAA
 148 ▶ Tyr Glu Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp Pro Arg Met Cys Ser Leu Met Gln

 505 GGATCAACTCTCCCAGGAGATCTGGAGCTGCTGGCAGCAGTAAAGGGAGTGGGACGATG
 169 ▶ Gly Ser Thr Leu Pro Arg Arg Ser Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met

 568 GTAATGGAACGTGATTGGATGATAAACGCGGGGATCAATGATCGGAACCTCTGGAGAGGCGAA
 190 ▶ Val Met Glu Leu Ile Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg Gly Glu

 631 AATGGACGAAGAACAAAGAATTGCAATATGAGAGAATGTGCAACATCCTCAAAGGAAATTTCAG
 211 ▶ Asn Gly Arg Arg Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn Ile Leu Lys Gly Phe Gln

 694 ACAGCAGCGCAACGAGAACGATGGACCAGGTGCGAGAAAGCAGAAATCCTGGAAATGCTGAG
 232 ▶ Thr Ala Ala Gln Arg Ala Thr Met Asp Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu

 757 ATTGAAGACCTTATCTTCTAGCACGATCTGCACTCATTCTGAGAGGATCAGTGGCTCATAAA
 253 ▶ Ile Glu Asp Leu Ile Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His Lys

 820 TCCCTGCTGCCCTGCTTGTCTATATGGACTTGTGGCAAGTGGATATGACTTTGAAAGAGAA
 274 ▶ Ser Cys Leu Pro Ala Cys Val Tyr Gly Leu Val Val Ala Ser Gly Ile Tyr Asp Phe Glu Arg Glu

 883 GGGTACTCTACTCGGAATAGATCCTTCCGCTGCTCCAGAACAGCCAGGTGTTAGCCCTC
 295 ▶ Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe Arg Leu Leu Gln Asn Ser Gln Val Phe Ser Leu

 946 ATTAGACCAAATGAGAATCCAGCACATAAGAGTCAGTGGATATGGATGCCATTCTGCA
 316 ▶ Ile Arg Pro Asn Glu Asn Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys His Ser Ala

 1009 GCATTTGAAGATCTGAGACTGCAACTTTCATCAGAGGGACAAAAGTGCTCCCAGAGGACAA
 337 ▶ Ala Phe Glu Asp Leu Arg Val Ser Ser Phe Ile Arg Gly Thr Lys Val Val Pro Arg Gly Gln

Figure N° 12

FEUILLE DE REMPLACEMENT (REGLE 26)

18/31

1072 CTGTCCACTAGAGGAGTTCAAATTGCTTCAAATGAAAACATGAAACAATGGACTCCATTACT
 358 ▶ LeuSerThrArgGlyValGlnIleAlaSerAsnGluAsnMetGluThrMetAspSerIleThr
 1135 CTTGAACTGAGAACAAATACTGGGCTATAAGAACCGAGCAGGGAGGAAACACCAACCAACAG
 379 ▶ LeuGluLeuArgSerLysTyrTrpAlaIleArgThrArgSerGlyGlyAsnThrAsnGlnGln
 1198 AGGGCATCTGCAGGGCAAATCAGTGTCACACCTACTTCTCGGTACAGAGAAATCTTCCTTC
 400 ▶ ArgAlaSerAlaGlyGlnIleSerValGlnProThrPheSerValGlnArgAsnLeuProPhe
 1261 GAGAGAGCGACCACATGGCAGCAATTACAGGGAAACACTGAAGGCAGAACATCTCACATGAGG
 421 ▶ GluArgAlaThrIleMetAlaAlaPheThrGlyAsnThrGluGlyArgThrSerAspMetArg
 1324 ACTGAAATTATAAGAATGATGGAAGTGCCAGACAGAACAGAAGATGTGTCCTTCAGGGCCGGGA
 442 ▶ ThrGluIleIleArgMetMetGluSerAlaArgProGluAspValSerPheGlnGlyArgGly
 1387 GTCTTCGAGCTCTCGGACGAAAAAGCAACGAACCGATCGCTTCTTGTGACCTGAGTAAT
 463 ▶ ValPheGluLeuSerAspGluLysAlaThrAsnProIleValProSerPheAspValSerAsn
 1450 GAGGCATCTTATTTCTCGGAGACAATGCCAGAGGAGTATAACAAATTAA
 484 ▶ GluGlySerTyrPhePheGlyAspAsnAlaGluGluTyrAsnAsn...

Figure N° 12 (suite et fin)

FEUILLE DE REMplacement (REGLE 26)

19/31

Figure N° 13

FEUILLE DE REMPLACEMENT (REGLE 26)

20/31

Figure N° 14

FEUILLE DE REMplacement (REGLE 26)

21/31

Figure N° 15

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure N° 16

FEUILLE DE REMPLACEMENT (REGLE 26)

23/31

Figure N° 17

FEUILLE DE REMPLACEMENT (RÈGLE 26)

Figure N° 18

FEUILLE DE REMPLACEMENT (REGLE 26)

25/31

Figure N° 19

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure N° 20

FEUILLE DE REMPLACEMENT (REGLE 26)

27/31

Figure N° 21

FEUILLE DE REMPLACEMENT (RÈGLE 26)

Figure N° 22

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure N° 23

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure N° 24

FEUILLE DE REMPLACEMENT (REGLE 26)

Figure N° 25

FEUILLE DE REMPLACEMENT (REGLE 26)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 97/01313

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/38 C12N15/44 C12N15/40 C12N15/35 C12N15/31
A61K39/295

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 06619 A (PAUL PREM S ;MENG XIANG JIN (US); HALBUR PATRICK (US); MOROZOV IGO) 7 March 1996 see claims 1,14	1-14
A	WO 95 20660 A (UNIV MASSACHUSETTS MEDICAL :ST JUDE CHILDREN S RESEARCH HO (US)) 3 August 1995 cited in the application see page 1, line 27 - page 3, line 13 see page 6, line 16 - page 13, line 33	1-14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

1

Date of the actual completion of the international search

2 December 1997

Date of mailing of the international search report

09/12/1997

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Sitch, W

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/FR 97/01313

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9606619 A	07-03-96	CA 2198461 A EP 0776209 A	07-03-96 04-06-97
WO 9520660 A	03-08-95	CA 2181832 A EP 0740704 A JP 9508622 T US 5620896 A	03-08-95 06-11-96 02-09-97 15-04-97

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale No
PCT/FR 97/01313

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 6 C12N15/38 C12N15/44 C12N15/40 C12N15/35 C12N15/31
A61K39/295

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 C07K A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO 96 06619 A (PAUL PREM S ;MENG XIANG JIN (US); HALBUR PATRICK (US); MOROZOV IGO) 7 mars 1996 voir revendications 1,14 ----	1-14
A	WO 95 20660 A (UNIV MASSACHUSETTS MEDICAL ;ST JUDE CHILDREN S RESEARCH HO (US)) 3 août 1995 cité dans la demande voir page 1, ligne 27 - page 3, ligne 13 voir page 6, ligne 16 - page 13, ligne 33 -----	1-14

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date du dépôt international ou après cette date
- "L" document pouvant élever un doute sur une revendication de priorité ou être cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (elle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette comparaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

I Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

2 décembre 1997

09/12/1997

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Sitch, W

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR 97/01313

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9606619 A	07-03-96	CA 2198461 A EP 0776209 A	07-03-96 04-06-97
WO 9520660 A	03-08-95	CA 2181832 A EP 0740704 A JP 9508622 T US 5620896 A	03-08-95 06-11-96 02-09-97 15-04-97

THIS PAGE BLANK (USPTO)