Here is a collection of old exam problems:

1. Let $\beta(t): I \to \mathbb{R}^3$ be a regular curve with speed $\frac{ds}{dt} = \left| \frac{d\beta}{dt} \right|$, where s is the arclength parameter. Prove that

$$\kappa = \frac{\sqrt{\frac{d^2\beta}{dt^2} \cdot \frac{d^2\beta}{dt^2} - \left(\frac{d^2s}{dt^2}\right)^2}}{\left(\frac{ds}{dt}\right)^2}$$

2. Let $\beta(t): I \to \mathbb{R}^3$ be a regular curve such that its tangent field $\mathbf{T}(t)$ is also regular. Let s be the arclength parameter for β and θ the arclength parameter for \mathbf{T} . Show that

$$\kappa = \frac{d\theta}{ds}$$

and

$$\det\left(\mathbf{T},\frac{d\mathbf{T}}{d\theta},\frac{d^2\mathbf{T}}{d\theta^2}\right) = \left[\mathbf{T},\frac{d\mathbf{T}}{d\theta},\frac{d^2\mathbf{T}}{d\theta^2}\right] = \frac{\tau}{\kappa}.$$

3. Let $\gamma(\theta)$ be a simple closed planar curve with $\kappa > 0$ parametrized by θ , where θ is defined as the arclength parameter of the unit tangent field e_1 . Further assume that the width

$$w = \langle e_2(\theta), (\gamma(\theta + \pi) - \gamma(\theta)) \rangle$$

is constant. Show that:

$$w = \frac{1}{\kappa(\theta)} + \frac{1}{\kappa(\theta + \pi)}.$$

Start by establishing the facts:

$$\frac{d\gamma}{d\theta} = \frac{1}{\kappa}e_1$$

$$\frac{de_1}{d\theta} = e_2$$

$$\frac{de_2}{d\theta} = -e_1$$

$$e_1(\theta + \pi) = -e_1(\theta)$$

4. Let $\alpha(s)$ unit speed curve with $\kappa > 0$. Let θ be the arclength parameter for $\frac{d\alpha}{ds}$. Show that the curvature satisfies:

$$\kappa = \frac{d\theta}{ds}$$

5. Prove that if $\alpha(s)$ is an oval (a closed planar curve with positive curvature and no self intersections), then the unit tangent field e_1 is parallel to e_1'' at four or more points.

- 6. Prove that the concept of a vertex for a planar curve does not depend on the parametrization.
- 7. Let c(t) be a closed Frenet curve in \mathbb{R}^3 . Show that if its curvature is $\leq R^{-1}$, then its length is $\geq 2\pi R$.
- 8. Let $\alpha(s)$ unit speed curve with $\kappa > 0$. Let θ be the arclength parameter for $\mathbf{T} = \frac{d\alpha}{ds}$. Show that the curvature satisfies:

$$\kappa = \frac{d\theta}{ds}$$

- 9. Prove that if $\alpha(s)$ is an oval (a closed planar curve with positive curvature and no self intersections), then the unit tangent field **T** is parallel to **T**" at four or more points.
- 10. Let $\beta(t)$ be a regular curve in \mathbb{R}^3 with $\kappa > 0$. Prove that β is planar if and only if the triple product

$$\left[\frac{d\beta}{dt}, \frac{d^2\beta}{dt^2}, \frac{d^3\beta}{dt^3}\right] \equiv 0$$

- 11. Let $\gamma(t): I \to \mathbb{R}^3$ be a regular curve with positive curvature. Show that γ lies in a plane if and only if the torsion vanishes.
- 12. Let $\alpha(s) = (x(s), y(s))$ be a planar unit speed curve. Show that the signed curvature can be computed by

$$\kappa = \det \left[\alpha', \alpha'' \right]$$

13. Let $\alpha(s)$ be a unit speed curve in \mathbb{R}^3 Prove that

$$\det \left[\alpha', \alpha'', \alpha'''\right] = \kappa^2 \tau.$$

It is also possible to find formulas for

$$\det \left[\alpha'', \alpha''', \alpha''''\right]$$

etc.

- 14. Prove that the concept of a vertex for a planar curve does not depend on the parametrization.
- 15. Let $\gamma(t): I \to \mathbb{R}^3$ be a regular curve. Prove that

$$\kappa = \frac{\sqrt{\frac{d^2\gamma}{dt^2} \cdot \frac{d^2\gamma}{dt^2} - \left(\frac{d}{dt} \left| \frac{d\gamma}{dt} \right| \right)^2}}{\left| \frac{d\gamma}{dt} \right|^2}$$

16. Let $\gamma(t): I \to \mathbb{R}^3$ be a regular curve with positive curvature. Show that the unit tangent $\mathbf{T}(t)$ is a regular and that, if θ is an arclength parameter for \mathbf{T} , then

$$\begin{array}{rcl} \frac{d\gamma}{d\theta} & = & \frac{1}{\kappa}\mathbf{T} \\ \frac{d\mathbf{T}}{d\theta} & = & \mathbf{N} \\ \frac{d\mathbf{N}}{d\theta} & = & -\mathbf{T} + \frac{\tau}{\kappa}\mathbf{B} \\ \frac{d\mathbf{B}}{d\theta} & = & -\frac{\tau}{\kappa}\mathbf{N} \end{array}$$

- 17. Let $\gamma(t): I \to \mathbb{R}^3$ be a regular curve with positive curvature. Show that γ lies in a plane if and only if the torsion vanishes.
- 18. Let $\gamma\left(s\right)=\sigma\left(u\left(s\right),v\left(s\right)\right)$ be a unit speed curve on a surface S. Prove that

$$\frac{dn}{ds} = -\mathrm{II}(T, T)T - \mathrm{II}(T, C)C,$$

where $T = \frac{d\gamma}{ds}$, n is the normal to S, and $C = n \times T$.

19. Let $X, Y \in T_pS$ be an orthonormal basis for the tangent space at p to the surface S. Prove that the mean and Gauss curvatures can be computed as follows:

$$\begin{split} H &=& \frac{1}{2} \left(\mathrm{II} \left(X, X \right) + \mathrm{II} \left(Y, Y \right) \right), \\ K &=& \mathrm{II} \left(X, X \right) \mathrm{II} \left(Y, Y \right) - \left(\mathrm{II} \left(X, Y \right) \right)^2 \end{split}$$

20. Let $\alpha:(a,b)\to\mathbb{R}^3$ be a unit speed curve with $\kappa(s)\neq 0$ for all $s\in(a,b)$. Define

$$\sigma(s,t) = \alpha(s) + t\alpha'(s).$$

Prove that σ defines a parametrization surface as long as $t \neq 0$. Compute the first and second fundamental forms and show that the Gauss curvature K vanishes.

- 21. For a surface of revolution $x(t,\theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ compute the first and second fundamental forms and the principal curvatures.
- 22. Let γ be a curve on the unit sphere S^2 . Prove that its normal curvature κ_n is constant.
- 23. Let $\sigma\left(u,v\right)$ be a parametrized surface. Recall that a tangent vector is a principal direction if it is an eigenvector for the Weingarten map. Assume that the principal curvature are different and show that $\frac{\partial \sigma}{\partial u}$ and $\frac{\partial \sigma}{\partial v}$ are the principal directions if and only if F=0=M.

24. Let $\alpha(u)$ be a unit speed curve in the x, y plane \mathbb{R}^2 . Show that

$$\sigma\left(u,v\right) = \left(\alpha\left(u\right),v\right).$$

yields a parametrized surface. Compute its first and second fundamental forms and principal curvatures. Compute its Gauss curvature.

25. Show that the equation

$$ax + by + cz = d$$

defines a surface if and only if $(a, b, c) \neq (0, 0, 0)$. Show that this surface has a parametrization that is Cartesian.

26. Let γ be a unit speed curve on a surface S with normal N. Define $C=N\times T,\, T=\dot{\gamma}$ and

$$\kappa_g = \frac{dT}{ds} \cdot C, \, \kappa_n = \frac{dT}{ds} \cdot N, \, \tau_g = \frac{dC}{ds} \cdot N$$

Prove that

$$\begin{aligned} \frac{dT}{ds} &= \kappa_g C + \kappa_n N, \\ \frac{dC}{ds} &= -\kappa_g T + \tau_g N, \\ \frac{dN}{ds} &= -\kappa_n T - \tau_g C. \end{aligned}$$

27. Let $\gamma(u)$ be a regular curve in the x, y plane \mathbb{R}^2 . Show that

$$\sigma\left(u,v\right) = \left(\gamma\left(u\right),v\right).$$

yields a parametrized surface. Compute its first fundamental form and construct a local isometry from a subset of the plane to the surface.

- 28. For a regular curve $\gamma(u): I \to \mathbb{R}^3 \{(0,0,0)\}$ show that $\sigma(u,v) = v\gamma(u)$ defines a surface for v>0 provided γ and $\dot{\gamma}$ are linearly independent. Compute its first fundamental form. Show that it admits Cartesian coordinates by rewriting the surface as $\sigma(r,\theta) = r\delta(\theta)$ for a suitable unit speed curve $\delta(\theta)$.
- 29. Let $\sigma(z, \theta) = (\sqrt{1 z^2} \cos \theta, \sqrt{1 z^2} \sin \theta, z)$ with -1 < z < 1 and $-\pi < \theta < \pi$. Show that σ defines a patch on a surface. What is the surface?
- 30. Let σ be a coordinate patch such that E=1 and F=0. Prove that the u curves are unit speed with acceleration that is perpendicular to the surface. The u curves are given by $\gamma(u) = \sigma(u, v)$ where v is fixed.

31. For a surface of revolution $\sigma(t,\theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ show that the first fundamental form is given by

$$\left[\begin{array}{cc} E & F \\ F & G \end{array}\right] = \left[\begin{array}{cc} \dot{r}^2 + \dot{z}^2 & 0 \\ 0 & r^2 \end{array}\right]$$

and that the longitudes/meridians $\gamma(t) = \sigma((t, \theta))$ have acceleration perpendicular to the surface provided that (r(t), 0, z(t)) is unit speed.

- 32. Find a conformal map from a surface of revolution $\sigma_1(r,\theta) = (r\cos\theta, r\sin\theta, z_1(r))$ to a circular cylinder $\sigma_2(r,\theta) = (\cos\theta, \sin\theta, z_2(r))$.
- 33. Reparametrize the curve (r(u), z(u)) so that the new parametrization $\sigma(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ is conformal.
- 34. Find an equiareal map from a surface of revolution $\sigma_1(r,\theta) = (r\cos\theta, r\sin\theta, z_1(r))$ to a circular cylinder $\sigma_2(r,\theta) = (\cos\theta, \sin\theta, z_2(r))$.
- 35. Reparametrize the curve (r(u), z(u)) so that the new parametrization $\sigma(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), z(t))$ is equiareal.
- 36. Let $\sigma: U \to S^2$ be a parametrization of part of the unit sphere. Show that the normal $\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v}$ is always proportional to σ .
- 37. Show that a Monge patch z = f(x, y) is equiareal if and only if f is constant.
- 38. Show that a Monge patch z = f(x, y) is conformal if and only if f is constant.
- 39. Show that the equation

$$ax + by + cz = d$$

defines a surface if and only if $(a, b, c) \neq (0, 0, 0)$. Show that this surface has a parametrization that is Cartesian.

40. The conoid is a special type of ruled surface given by

$$\sigma(t,\theta) = (r(t)\cos\theta, r(t)\sin\theta, z(\theta))$$

= $(0,0,z(\theta)) + r(t)(\cos\theta,\sin\theta,0)$

Compute its first fundamental form. Show that if $z(\theta) = a\theta$ for some constant a, then r(t) can be reparametrized in such a way that we get a conformal parametrization.

41. Consider the two parametrized surfaces given by

$$\sigma_1(\phi, u) = (\sinh \phi \cos u, \sinh \phi \sin u, u)$$

$$= (0, 0, u) + \sinh \phi (\cos u, \sin u, 0)$$

$$\sigma_2(t, \theta) = (\cosh t \cos \theta, \cosh t \sin \theta, t)$$

Compute the first fundamental forms for both surfaces and construct a local isometry from the first surface to the second. (The first surface is a ruled surface with a one-to-one parametrization called the helicoid, the second surface is a surface of revolution called the catenoid.)

42. Let $S = \left\{ x \in \mathbb{R}^3 : |x - m|^2 = R^2 \right\}$. Show that S is a surface, and that if I and II denote the first and second fundamental forms, then

$$II = \pm \frac{1}{R}I$$

43. 7. The conoid is a special type of ruled surface given by

$$\sigma(t,\theta) = (t\cos\theta, t\sin\theta, z(\theta))$$
$$= (0, 0, z(\theta)) + t(\cos\theta, \sin\theta, 0)$$

Compute its first and second fundamental forms as well as the Gauss and mean curvatures.

44. Let $\gamma(t):I\to S$ be a regular curve on a surface S, with N being the normal to the surface. Show that

$$\kappa_n = \frac{\mathrm{II}(\dot{\gamma}, \dot{\gamma})}{\mathrm{I}(\dot{\gamma}, \dot{\gamma})}, \, \kappa_g = \frac{\det(\dot{\gamma}, \ddot{\gamma}, N)}{\left(\mathrm{I}(\dot{\gamma}, \dot{\gamma})\right)^{3/2}}$$

- 45. Show that the principal curvatures at a point $p \in S$ are equal if and only if at p the mean and Gauss curvatures are related by $H^2 = K$.
- 46. Compute the matrix representation of the Weingarten map for a Monge patch $\sigma\left(x,y\right)=\left(x,y,f\left(x,y\right)\right)$ with respect to the basis $\frac{\partial\sigma}{\partial x},\frac{\partial\sigma}{\partial y}$.