Aplicação de NoSQL em dados de redes de sensores sem fio: um estudo de caso utilizando MongoDB

Danilo de Souza Miguel Roberto Fray da Silva

PCS5031 - Introdução à Ciência dos Dados

Introdução

- RSSF → sensores espalhados em um ambiente → observar e monitorar um fenômeno
- Grande quantidade de dados, que podem ter características distintas

Descrição do dataset

- Dataset → projeto Sensorscope → RSSF
 de baixo custo para monitoramento
 ambiental em montanhas na Suíça
- Set e Out 2008, 23 estações, 588.524
 medições

Projeto Sensorscope

Descrição do dataset

- Sensores → temperatura (ar e solo), radiação solar, umidade (relativa e solo), velocidade e direção do vento
- Partes: localização geográfica das estações (2) e dados coletados (24)

Objetivo

 Analisar a aplicação de NoSQL e técnicas de análises estatísticas para dados de monitoramento ambiental do projeto Sensorscope

Metodologia

- 1. Descrição do dataset
- 2. Estudo de ciclo de vida dos dados (DMPTool)
- 3. Elaboração de questões de pesquisa
- 4. Escolha dos software (arm., proc., vis.)
- 5. Realização das análises
- 6. Avaliação dos resultados
- 7. Relatório final e compartilhamento dos dados e resultados via GitHub

Metodologia

- Coleta → Google Chrome
- Armazenamento de dados → MongoDB
- Pré-processamento → Rstudio
- Processamento e análise de dados → Rstudio e
 LibreOffice Calc
- Visualização dos dados → R Shiny
- Publicação dos resultados → GitHub, Datacite,
 Artigo evento

Coleta e armazenamento

- Site oficial do projeto
- Análise da estrutura
- Grande quantidade de medições +
 velocidade de inserção no banco +
 acesso → NoSQL
- Redis, Neo4j, Cassandra, MongoDB

 Quais as médias, modas e desvios padrão para as variáveis?

	Média	Moda	DesvPad
Temperatura ambiente(c)	3	-1	5
Umidade relativa(%)	65	2	18
Umidade do solo(%)	21	20	8
Radiação solar(w/m2)	122	0	206
Temperatura do solo(c)	3	1	7
Marca d'água(kPa)	-11	-1	4
Direção do vento(o)	150	0	80
Velocidade do vento(m/s)	2	1	2

 Qual é a distribuição da direção do vento (graus) ao longo da amostra?

Direção vento (graus)

Velocidade vento (m/s)

- Existem diferenças significativas entre as observações das diferentes estações?
 - Sim, nas temperaturas

Temperatura ambiente (C)

Temperatura solo (C)

Velocidade vento (m/s)

Radiação solar (w/m2)

- As diferenças observadas podem ser relacionadas à localização das estações?
 - Acreditamos que sim, pois estas estão dispostas em áreas com características distintas (exposição solar, vento, altitude)

- Quais os aspectos limitadores
 considerados no desenvolvimento do
 projeto Sensorscope?
 - Quantidade de dados, custo de leituras e de equipamentos, acesso em tempo real, feedback estado do sistema

- Como foi a coleta, disponibilização e análise dos dados?
 - Teste em laboratório da RSSF, implementação em campo
 - Servidores próprios e site do projeto
 - Análise estatística básica

- O uso de bancos de dados NoSQL apresenta vantagens neste projeto?
- Sim → volume de dados, acesso em tempo real + fácil distribuição do BD + facilidade de criação de novos campos
- MapReduce em projetos futuros

Conclusões

- Entendimento e aplicação do ciclo de vida dos dados
- Conhecimento no uso das ferramentas
- Entendimento do problema e resposta a problemas da pesquisa
- NoSQL se mostrou como uma alternativa interessante para o dataset