在 hw1 作业代码的基础上调整了一下, 详见源代码说明文档(此题用的 c++, 我知道错了, 但是懒得改成 python 了)

2

Α

根据二次导数值为零的边界条件, $m_1=m_3=0$,所以矩阵的第一行为 1, 0, 0, 第三号为 0, 0, 1

再根据递推公式 $\mu_j M_{j-1} + 2M_j + \lambda_j M_{j+1} = d_j \pi \mu_j$, λ_j , d_j 分别的推导公式(此处省略,详见ppt),可以写出要求解的线性方程组为:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0.6 & 1.8 & 0.3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -4.28694 \\ 0 \end{pmatrix}$$

解得:
$$\binom{m_1}{m_2} = \begin{pmatrix} 0 \\ -2.38163 \\ 0 \end{pmatrix}$$

解得 m 后,即可代回S(x)的表达式(详见 ppt)求得具体的函数。 所以

$$S_1(x) = -0.66x^3 + 0.13x + 1$$

$$S_2(x) = 1.32(x - 0.9)^3 - 0.94(x - 0.6) + 0.97$$

В

根据一次导数值的边界条件:

$$2h_0 m_0 + h_0 m_1 = 6\left(\frac{y_1 - y_0}{h_0} - A\right)$$
, 其中 A 为 x=0 点的一阶导

$$2h_{n-1}m_n + h_{n-1}m_{n-1} = 6\left(B - \frac{y_n - y_{n-1}}{h_{n-1}}\right)$$
, 其中 B 为 x=0.9 点的一阶导

可列出线性方程组

$$\begin{pmatrix} 1.2 & 0.6 & 0 \\ 0.6 & 1.8 & 0.3 \\ 0 & 0.3 & 0.6 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} -0.641032 \\ -4.28694 \\ -2.89433 \end{pmatrix}$$

解得
$$\binom{m_1}{m_2} = \begin{pmatrix} 0.3989 \\ -1.8661 \\ -3.8908 \end{pmatrix}$$

解得 m 后,即可代回S(x)的表达式(详见 ppt)求得具体的函数。

$$S_1(x) = -0.11(x - 0.6)^3 - 0.52x^3 + 0.12x + 0.98$$

$$S_2(x) = -1.04(x - 0.9)^3 - 2.16(x - 0.6)^3 - 0.72(x - 0.6) + 0.96$$

Α

根据-1 到 1 之间 21 个均匀分布的节点使用拉格朗日内插法创建 $P_{20}(x)$, 然后对 41 个点 (包括中点),分别获得 $x,f(x),P_{20}(x),f(x)-P_{20}(x)$,列表如下:

x	f(x)	$P_{20}(x)$	$f(x) - P_{20}(x)$
-1.0000	0.0385	0.0385	0.0000
-0.9500	0.0424	-39.9524	39.9949
-0.9000	0.0471	0.0471	0.0000
-0.8500	0.0525	3.4550	-3.4025
-0.8000	0.0588	0.0588	0.0000
-0.7500	0.0664	-0.4471	0.5134
-0.7000	0.0755	0.0755	0.0000
-0.6500	0.0865	0.2024	-0.1159
-0.6000	0.1000	0.1000	0.0000
-0.5500	0.1168	0.0807	0.0361
-0.5000	0.1379	0.1379	0.0000
-0.4500	0.1649	0.1798	-0.0148
-0.4000	0.2000	0.2000	0.0000
-0.3500	0.2462	0.2384	0.0077
-0.3000	0.3077	0.3077	0.0000
-0.2500	0.3902	0.3951	-0.0048
-0.2000	0.5000	0.5000	0.0000
-0.1500	0.6400	0.6368	0.0032
-0.1000	0.8000	0.8000	0.0000
-0.0500	0.9412	0.9425	-0.0013
0.0000	1.0000	1.0000	0.0000
0.0500	0.9412	0.9425	-0.0013
0.1000	0.8000	0.8000	0.0000
0.1500	0.6400	0.6368	0.0032
0.2000	0.5000	0.5000	0.0000
0.2500	0.3902	0.3951	-0.0048
0.3000	0.3077	0.3077	0.0000
0.3500	0.2462	0.2384	0.0077
0.4000	0.2000	0.2000	0.0000
0.4500	0.1649	0.1798	-0.0148
0.5000	0.1379	0.1379	0.0000
0.5500	0.1168	0.0807	0.0361
0.6000	0.1000	0.1000	0.0000

0.6500	0.0865	0.2024	-0.1159
0.7000	0.0755	0.0755	0.0000
0.7500	0.0664	-0.4471	0.5134
0.8000	0.0588	0.0588	0.0000
0.8500	0.0525	3.4550	-3.4025
0.9000	0.0471	0.0471	0.0000
0.9500	0.0424	-39.9524	39.9949
1.0000	0.0385	0.0385	0.0000

在同一张图上画出f(x), $P_{20}(x)$ 如图:

在更大的 y 尺度上如图:

可以看出,内插阶数较高时,拉格朗日多项式体现出越来越严重的震荡特性,Runge 现象十分明显。

В

使用对 20 个标准的 chebyshev 节点使用 chebyshev 方法进行函数插值得到chebyshev(x), 然后对 41 个点(包括中点),分别获得x, f(x), chebyshev(x), f(x) — chebyshev(x), 列表如下:

x	f(x)	chebyshev(x)	f(x) – chebyshev (x)
-1.0000	0.0385	0.0370	0.0014
-0.9500	0.0424	0.0408	0.0016
-0.9000	0.0471	0.0487	-0.0016
-0.8500	0.0525	0.0523	0.0002
-0.8000	0.0588	0.0567	0.0021
-0.7500	0.0664	0.0672	-0.0008
-0.7000	0.0755	0.0783	-0.0028
-0.6500	0.0865	0.0865	0.0000
-0.6000	0.1000	0.0964	0.0036
-0.5500	0.1168	0.1141	0.0027
-0.5000	0.1379	0.1405	-0.0026
-0.4500	0.1649	0.1711	-0.0062
-0.4000	0.2000	0.2028	-0.0028

-0.3500	0.2462	0.2402	0.0060
-0.3000	0.3077	0.2963	0.0114
-0.2500	0.3902	0.3853	0.0049
-0.2000	0.5000	0.5119	-0.0119
-0.1500	0.6400	0.6639	-0.0239
-0.1000	0.8000	0.8126	-0.0126
-0.0500	0.9412	0.9221	0.0191
0.0000	1.0000	0.9624	0.0376
0.0500	0.9412	0.9221	0.0191
0.1000	0.8000	0.8126	-0.0126
0.1500	0.6400	0.6639	-0.0239
0.2000	0.5000	0.5119	-0.0119
0.2500	0.3902	0.3853	0.0049
0.3000	0.3077	0.2963	0.0114
0.3500	0.2462	0.2402	0.0060
0.4000	0.2000	0.2028	-0.0028
0.4500	0.1649	0.1711	-0.0062
0.5000	0.1379	0.1405	-0.0026
0.5500	0.1168	0.1141	0.0027
0.6000	0.1000	0.0964	0.0036
0.6500	0.0865	0.0865	0.0000
0.7000	0.0755	0.0783	-0.0028
0.7500	0.0664	0.0672	-0.0008
0.8000	0.0588	0.0567	0.0021
0.8500	0.0525	0.0523	0.0002
0.9000	0.0471	0.0487	-0.0016
0.9500	0.0424	0.0408	0.0016
1.0000	0.0385		
	1 1 1 () != !!!		

在同一张图上画出f(x), chebyshev(x)如图:

放大局部细节如图:

散点图是这样的:

从表格和图像上都能看出,chebyshev 内插给出了函数 f(x)一个非常好的近似,并且避免了runge 现象。

C

根据-1 到 1 之间 21 个均匀分布的节点使用三次样条内插法创建g(x),然后对 41 个点(包括中点),分别获得x,f(x),g(x),f(x)-g(x),列表如下:

x	f(x)	g(x)	f(x) - g(x)
-1.0000	0.0385	0.0385	0.0000
-0.9500	0.0424	0.0425	-0.0001
-0.9000	0.0471	0.0471	0.0000
-0.8500	0.0525	0.0524	0.0000
-0.8000	0.0588	0.0588	0.0000
-0.7500	0.0664	0.0664	0.0000
-0.7000	0.0755	0.0755	0.0000
-0.6500	0.0865	0.0865	0.0000
-0.6000	0.1000	0.1000	0.0000
-0.5500	0.1168	0.1168	0.0000
-0.5000	0.1379	0.1379	0.0000
-0.4500	0.1649	0.1649	0.0001
-0.4000	0.2000	0.2000	0.0000
-0.3500	0.2462	0.2463	-0.0001
-0.3000	0.3077	0.3077	0.0000
-0.2500	0.3902	0.3894	0.0008
-0.2000	0.5000	0.5000	0.0000
-0.1500	0.6400	0.6432	-0.0032
-0.1000	0.8000	0.8000	0.0000
-0.0500	0.9412	0.9389	0.0023
0.0000	1.0000	1.0000	0.0000
0.0500	0.9412	0.9389	0.0023

0.1000	0.8000	0.8000	0.0000
0.1500	0.6400	0.6432	-0.0032
0.2000	0.5000	0.5000	0.0000
0.2500	0.3902	0.3894	0.0008
0.3000	0.3077	0.3077	0.0000
0.3500	0.2462	0.2463	-0.0001
0.4000	0.2000	0.2000	0.0000
0.4500	0.1649	0.1649	0.0001
0.5000	0.1379	0.1379	0.0000
0.5500	0.1168	0.1168	0.0000
0.6000	0.1000	0.1000	0.0000
0.6500	0.0865	0.0865	0.0000
0.7000	0.0755	0.0755	0.0000
0.7500	0.0664	0.0664	0.0000
0.8000	0.0588	0.0588	0.0000
0.8500	0.0525	0.0524	0.0000
0.9000	0.0471	0.0471	0.0000
0.9500	0.0424	0.0425	-0.0001
1.0000	0.0385	0.0385	0.0000

在同一张图上画出f(x), g(x)如图:

原始散点图如图:

综合表和图可以看出, 三次样条函数内插效果最好, 41 个点中有 36 个点的误差小于 0.0001.

4

Α

 $r(\varphi) = 1 - \cos\varphi$

选取 $\varphi = t\pi/4$, t = 0,1,2,3,4,5,6,7,8, 给出= $r(\varphi)cos\varphi \pi y_i = r(\varphi)sin\varphi$ 的值, 列表如下:

x_i	y_i
0.0000	0.0000
0.2071	0.2071
0.0000	1.0000
-1.2071	1.2071
-2.0000	0.0000
-1.2071	-1.2071
0.0000	-1.0000
0.2071	-0.2071
0.0000	0.0000

В

通过三次样条插值给出过这九个点的两个三次样条函数gx,gy具体过程见源代码 4b

C

画出参数形式的曲线 x_t-y_t ,同时画出严格的曲线,即心形线 $r(\varphi)=1-cos\varphi$,并将 9 个节点画在图上,如图:

三次样条插值通过使用三次多项式来平滑地连接给定的离散数据点,它的平滑性来自于两个主要方面:

- 1. 连续性: 曲线必须要通过每个节点, 这确保了在相邻数据点之间的过渡是无缝的, 没有 突变或跳跃
- 2. 光滑性: 因为在相邻数据点之间的曲线段上, 一阶导数和二阶导数是连续的, 所以曲线段是平滑的, 没有锐角或拐点

5

Α

经过初等行列变换对角化 H,

$$\binom{H}{I} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & -1 \\ 0 & -1 & 1 \\ 1 & 1/2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & 1 \\ 1 & 1/2 & 1/3 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}$$

即
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/3 & 2/3 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,使得 $H = LDL^T$

В

同 A 中操作一样进行初等行列变换,

$$\binom{H}{I} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & q \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & -1 \\ 0 & -1 & q - 2/3 \\ 1 & 1/2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & q - 2/3 \\ 1 & 1/2 & 1/3 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}$$

 $H = LDL^{T}$, 其中 $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & q-2/3 \end{pmatrix}$,要使 H 为半正定,只要 D 的三个矩阵元都 > 零,

所以 q 的最小是是 2/3

C

当右下角的矩阵元为 2 时, 对于这个三角矩阵可以看出规律: $\det(H_n) = (2-\lambda)\det(H_{n-1}) - \det(H_{n-2})$

当 $H_{33}=2$ 时, $\det(H_3)=(2-\lambda)(\lambda-1)(\lambda-3)-(2-\lambda)=0$,解方程得到 $\lambda=2,\lambda=2+\sqrt{2},\lambda=2-\sqrt{2}$

对于 4*4 的矩阵
$$H' = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$
求特征值,

先列出其特征方程:

$$\det(H') = (2-\lambda)\det(H_3) - \det(H_2) = (2-\lambda)(2-\lambda)(\lambda^2 - 4\lambda + 2) - (\lambda^2 - 4\lambda + 3) = 0 \ ,$$

解得其四个特征值
$$\lambda = \frac{1}{2}(3-\sqrt{5}), \lambda = \frac{1}{2}(5-\sqrt{5}), \lambda = \frac{1}{2}(3+\sqrt{5}), \lambda = \frac{1}{2}(5+\sqrt{5}).$$