		Meses / Semanas																						
Actividad		2016									_		2017											
		Junio		Julio		Agosto	Septiemb		Octubre		Noviembre	Diciembre		Enero	Febr			ırzo		Abril	4	Mayo	Junio	
Evalución del problema	Identificar el estado del arte de la tomografía óptica de coherencia en aplicaciones biomédicas.					1 2 3 4 A A M M					1 2 3 4	1 2 3	4	1 2 3 4	1 2	3 2	+ 1 2	3 4	H 1	2 3	4	1 2 3 4	1 2 3	3 4
	2. Escribir anteproyecto del trabajo de grado			В	В	M M A A	A A A	A A	. A A N	M N	ИВВ													
	3. Implementar un sistema óptico de prueba de concepto de campo completo en la tomografía óptica de coherencia.					в в м	M A A	A A	. A A I	M E	3													
Simulación	4. Realizar una simulación del muestreo y la formación de imagen en tomografía óptica de coherencia, incluyendo elementos de corrupción de fase.							ВМ	I A A A	A A	A A M M	мвв												
Desarrollo	5. Desarrollar un método de posprocesamiento, que permita recuperar el mapa de corrupción del objeto simulado anteriormente.								ВММ	M A	A A A A	A A A A	A A	A A A A	ММ	М М	МВ	В В						
Fxnerimentación	el Wellman Center for Phtonomedicine.											F	ВВ	M M A	A A	A A	A A	A A	A N	M M 1	МВ	В		
	7. Documentar resultados y sustentación.	В	В	В В В	В	в в в в	ВВВ	ВВ	ВВВ	3 E	в в в в	ВВВВ	ВВ	В В В	ВВ	ВВ	ВМ	M M	A A	4 A A	A A	A A A	A A A	. A

Intensidad alta

Intensidad media

Intensidad baja