Some conservation results for higher order reverse mathematics

Jeffry Hirst, Professor Emeritus Appalachian State University Boone, NC

August 2025

ESI Reverse Mathematics: New Paradigms

Motivation for conservation results

With luck, in higher order reverse mathematics, we have one of two interesting outcomes.

Motivation for conservation results

With luck, in higher order reverse mathematics, we have one of two interesting outcomes.

Either:

(1) The higher order theory has the same second order consequences as a familiar second order theory. This allows us to work in the expressive higher order theory and draw conclusions about second order arithmetic.

Motivation for conservation results

With luck, in higher order reverse mathematics, we have one of two interesting outcomes.

Either:

(1) The higher order theory has the same second order consequences as a familiar second order theory. This allows us to work in the expressive higher order theory and draw conclusions about second order arithmetic.

Or:

(2) The higher order theory does not have the same second order consequences as any familiar second order theory.

The base system RCA_0^{ω}

In his article *Higher order reverse mathematics* [5], Kohlenbach presents axioms for doing reverse mathematics using arithmetic in all finite types. The axioms for RCA₀^{ω} include:

Feferman's E-PRA "which includes axioms for arithmetic on numbers (type 0 objects), functions from numbers to numbers (type 0 \rightarrow 0 objects, also called type 1), functions from type 1 objects to numbers, and so on. . .

The base system RCA_0^{ω}

In his article *Higher order reverse mathematics* [5], Kohlenbach presents axioms for doing reverse mathematics using arithmetic in all finite types. The axioms for RCA₀ $^{\omega}$ include:

Feferman's E-PRA "which includes axioms for arithmetic on numbers (type 0 objects), functions from numbers to numbers (type 0 \rightarrow 0 objects, also called type 1), functions from type 1 objects to numbers, and so on. . .

plus, the choice scheme QF - AC^{1,0}: $\forall x^1 \exists y^0 A(x,y) \rightarrow \exists Y^{1 \rightarrow 0} \forall x^1 A(x,Y(x))$ where A(x,y) is quantifier-free.

The base system RCA₀^ω

In his article *Higher order reverse mathematics* [5], Kohlenbach presents axioms for doing reverse mathematics using arithmetic in all finite types. The axioms for RCA $_0^{\omega}$ include:

Feferman's E-PRA "which includes axioms for arithmetic on numbers (type 0 objects), functions from numbers to numbers (type 0 \rightarrow 0 objects, also called type 1), functions from type 1 objects to numbers, and so on. . .

plus, the choice scheme QF - AC^{1,0}: $\forall x^1 \exists y^0 A(x,y) \rightarrow \exists Y^{1 \rightarrow 0} \forall x^1 A(x,Y(x))$ where A(x,y) is quantifier-free.

Kohlenbach proves that RCA_0^{ω} has the same second order theorems as (a function based version of) RCA_0 .

The base system RCA_0^{ω}

In his article *Higher order reverse mathematics* [5], Kohlenbach presents axioms for doing reverse mathematics using arithmetic in all finite types. The axioms for RCA $_0^{\omega}$ include:

Feferman's E-PRA " which includes axioms for arithmetic on numbers (type 0 objects), functions from numbers to numbers (type 0 \rightarrow 0 objects, also called type 1), functions from type 1 objects to numbers, and so on. . .

plus, the choice scheme QF
$$-$$
 AC^{1,0}: $\forall x^1 \exists y^0 A(x,y) \rightarrow \exists Y^{1 \to 0} \forall x^1 A(x,Y(x))$ where $A(x,y)$ is quantifier-free.

Kohlenbach proves that RCA_0^{ω} has the same second order theorems as (a function based version of) RCA_0 .

The proof uses the type structure ECF (extensional hereditarily continuous functionals) of Troelstra.

We can write ACA_0^ω for the higher order subsystem consisting of RCA_0^ω plus the axiom (\exists^2) .

The axiom (\exists^2) asserts the existence of a type 2 function \exists^2 with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then $\exists^2 (f) = 0$ if and only if 0 is in the range of f.

We can write ACA_0^ω for the higher order subsystem consisting of RCA_0^ω plus the axiom (\exists^2) .

The axiom (\exists^2) asserts the existence of a type 2 function \exists^2 with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then $\exists^2 (f) = 0$ if and only if 0 is in the range of f.

 \exists^2 is related to Kleene's E2 and can be viewed as a realizer for the Weihrauch problem LPO.

We can write ACA_0^{ω} for the higher order subsystem consisting of RCA_0^{ω} plus the axiom (\exists^2) .

The axiom (\exists^2) asserts the existence of a type 2 function \exists^2 with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then $\exists^2 (f) = 0$ if and only if 0 is in the range of f.

 \exists^2 is related to Kleene's E2 and can be viewed as a realizer for the Weihrauch problem LPO.

Kohlenbach's original article [5] notes that ACA_0^{ω} is conservative over PA for first order formulas.

James Hunter [4] shows that ACA_0^{ω} has the same second order theorems as ACA_0 .

We can write ACA_0^{ω} for the higher order subsystem consisting of RCA_0^{ω} plus the axiom (\exists^2) .

The axiom (\exists^2) asserts the existence of a type 2 function \exists^2 with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then $\exists^2 (f) = 0$ if and only if 0 is in the range of f.

 \exists^2 is related to Kleene's E2 and can be viewed as a realizer for the Weihrauch problem LPO.

Kohlenbach's original article [5] notes that ACA_0^{ω} is conservative over PA for first order formulas.

James Hunter [4] shows that ACA_0^{ω} has the same second order theorems as ACA_0 .

The proof uses a re-axiomatization of ACA_0^{ω} that simplifies the verification that the higher order model satisfies the axioms.

A misleading question

 $RCA_0^\omega + (LPO)$ has the same second order theorems as $ACA_0.$

Does $RCA_0^\omega + (LLPO)$ have the same second order theorems as WKL0?

A misleading question

 $RCA_0^\omega + (LPO)$ has the same second order theorems as $ACA_0.$

Does $RCA_0^\omega + (LLPO)$ have the same second order theorems as WKL0?

No. Absolutely not.

LPO and LLPO

(LLPO) is an axiom that asserts the existence of a type 2 function LLPO with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then LLPO(f) is the parity of the location of first 0 in the range of f, if there is such a location.

LPO and LLPO

(LLPO) is an axiom that asserts the existence of a type 2 function LLPO with the following property:

If $f: \mathbb{N} \to \mathbb{N}$ is any function on the natural numbers, then LLPO(f) is the parity of the location of first 0 in the range of f, if there is such a location.

The article [3] (joint with Carl Mummert) includes a proof of:

Theorem (RCA $_0^{\omega}$) (LLPO) is equivalent to (\exists^2) (which is (LPO)).

The proof uses Kohlenbach's [5] equivalence of (\exists^2) with the existence of a sequentially discontinuous function. That result is based on Lemma 1 of Grilliot [2].

Weihrauch and higher order

In Weihrauch analysis, we have LLPO $<_{W}$ LPO.

However, RCA_0^{ω} proves (LLPO) \equiv (LPO).

Why are these different?

Weihrauch and higher order

In Weihrauch analysis, we have LLPO $<_{W}$ LPO.

However, RCA_0^{ω} proves (LLPO) \equiv (LPO).

Why are these different?

The reverse math result (roughly) shows us that any realizer for LPO can be used to compute a realizer for LPO. However, the computation is not uniform, so it doesn't show that LPO can be Weihrauch reduced to LLPO.

Weak Konig's Lemma

In Higher order reverse mathematics [5], Kohlenbach provides a conservation result for WKL_0 , based on a fan functional that can compute moduli of uniform continuity.

(MUC): There is a function Ω defined on functions from $2^{\mathbb{N}}$ to 2, such that for any $\varphi: 2^{\mathbb{N}} \to 2$, and any $f_1, f_2 \in 2^{\mathbb{N}}$, if f_1 and f_2 agree on the first $\Omega(\varphi)$ entries then $\varphi(f_1) = \varphi(f_2)$.

(MUC) is not restricted to continuous functions, and so is inconsistent with (\exists^2) .

Prop. 3.15 [5] (paraphrased): RCA_0^{ω} +(MUC) is conservative over WKL₀.

Note that Ω is a type 3 object.

More moduli of uniform continuity

Section 8 of *Banach's theorem in HORM* [3] (joint with Carl Mummert), discusses functions that compute moduli of uniform continuity.

 $(M_{[0,1]})$: There is function M such that if $f:[0,1]\to\mathbb{R}$ is continuous, then M(f) is a modulus of uniform continuity for f.

More moduli of uniform continuity

Section 8 of *Banach's theorem in HORM* [3] (joint with Carl Mummert), discusses functions that compute moduli of uniform continuity.

 $(M_{[0,1]})$: There is function M such that if $f:[0,1]\to\mathbb{R}$ is continuous, then M(f) is a modulus of uniform continuity for f.

Lemma: RCA_0^{ω} plus (\exists^2) proves $(M_{[0,1]})$.

Prop: The second order theorems of $RCA_0^{\omega} + (M_{[0,1]})$ are exactly the same as those of WKL_0 .

Note: $M_{[0,1]}$ is a type 3 object.

Preliminary results

Viewing $2^{\mathbb{N}}$ and 2 as complete separable metric spaces, we can formulate restrictions of (MUC).

 $(M_{2^{\mathbb{N}}})$: There is a function M such that if $f: 2^{\mathbb{N}} \to 2$ is continuous, then M(f) is a modulus of uniform continuity for f.

Prop: RCA_0^{ω} plus (\exists^2) proves $(M_{2^{\mathbb{N}}})$. (See [3].)

Conj: The second order theorems of $RCA_0^{\omega} + (M_{2^{\mathbb{N}}})$ are exactly the same as those of WKL_0 .

More preliminary results

Further restrictions of $M_{2^{\mathbb{N}}}$ may be of interest.

 $(M_{2^{\mathbb{N}},code})$: There is a function M such that if $f:2^{\mathbb{N}}\to 2$ is a continuous function defined by a traditional RM code (set of quintuples), then M(f) is a modulus of uniform continuity for f.

More preliminary results

Further restrictions of $M_{2^{\mathbb{N}}}$ may be of interest.

 $(M_{2^{\mathbb{N}},code})$: There is a function M such that if $f:2^{\mathbb{N}}\to 2$ is a continuous function defined by a traditional RM code (set of quintuples), then M(f) is a modulus of uniform continuity for f.

Conj: RCA₀^{ω} plus (\exists ²) proves ($M_{2^{\mathbb{N}},code}$). (Section 8 of [3] plus extraction of functions from codes.)

Conj: The second order theorems of $RCA_0^\omega + (\textit{M}_{2^\mathbb{N},code})$ are exactly the same as those of WKL_0 .

More preliminary results

Further restrictions of $M_{2^{\mathbb{N}}}$ may be of interest.

 $(M_{2^{\mathbb{N}},code})$: There is a function M such that if $f:2^{\mathbb{N}}\to 2$ is a continuous function defined by a traditional RM code (set of quintuples), then M(f) is a modulus of uniform continuity for f.

Conj: RCA $_0^{\omega}$ plus (\exists^2) proves ($M_{2^{\mathbb{N}},code}$). (Section 8 of [3] plus extraction of functions from codes.)

Conj: The second order theorems of $RCA_0^\omega + (\textit{M}_{2^\mathbb{N},code})$ are exactly the same as those of WKL_0 .

Conj: RCA_0^{ω} plus $(M_{2^{\mathbb{N}},code})$ does not prove $(M_{2^{\mathbb{N}}})$.

Idea for the proof: $M_{2^{\mathbb{N}},code}$ is a type 2 object. Using an argument based on Grilliot's lemma, prove that if any principle asserting the existing of a type 2 object implies $(M_{2^{\mathbb{N}}})$, then it also implies (\exists^2) .

Stronger theories: Π_1^1 -CA₀

The theory Π_1^1 -CA₀ is related to the Suslin functional.

(SF): There is a function S mapping trees from $\mathbb{N}^{<\mathbb{N}}$ to 2 such that S(T)=0 if and only if T is well-founded.

Theorem (Sakamoto and Yamizaki [6], based on work of Avigad and Feferman) RCA $_0^{\omega}$ plus (SF) is conservative over Π_1^1 -CA $_0$ for Π_3^1 sentences.

Question: Can Hunter's argument for ACA $_0^\omega$ be adapted? Does a Fefermanesque μ style reaxiomatization streamline the proof?

Stronger theories: ATR₀

In second order arithmetic, there are parallels between WKL₀ and ATR₀.

$$WKL_0 \equiv \Sigma_1^0$$
-separation $ATR_0 \equiv \Sigma_1^1$ -separation

Questions:

- What are good candidates for functionals that have the same second order theorems as ATR₀?
- Are the ATR₀ level Weihrauch problems good candidates?
- Is the LPO/LLPO behavior repeated at this level?
- Is there a good candidate of type 2?

References

[1] Damir D. Dzhafarov and Carl Mummert, *Reverse mathematics—problems, reductions, and proofs*, Theory and Applications of Computability, Springer, Cham, 2022.

DOI 10.1007/978-3-031-11367-3.

Zbl 07571046

[2] Thomas J. Grilliot, On effectively discontinuous type-2 objects, The Journal of Symbolic Logic 36 (1971), 245–248.
DOI 10.2307/2270259.
7bl 0224 02034

[3] Jeffry L. Hirst and Carl Mummert, Banach's theorem in higher-order reverse

aj Jeffry L. Hirst and Carl Mummert, *Banach's theorem in nigner-order reverse mathematics*, Computability **12** (2023), no. 3, 203–225.

DOI 10.3233/COM-230453.

Zbl 07

Zbl 07772623

- [4] James Hunter, Higher-order reverse topology, ProQuest LLC, Ann Arbor, MI, 2008.
 Available from ProQuest.
- [5] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse mathematics 2001, Wellesley, MA: A K Peters; Urbana, IL: Association for Symbolic Logic (ASL), 2005, pp. 281–295.

DOI 10.1017/9781316755846.018.

Zbl 1097.03053

[6] Nobuyuki Sakamoto and Takeshi Yamazaki, Uniform versions of some axioms of second order arithmetic, Mathematical Logic Quarterly (MLQ) 50 (2004), no. 6, 587–593.

DOI 10.1002/malg.200310122.

Zbl 1063.03045