1 Формулы с прошлого урока:

$$1) \quad \sin(-x) = -\sin x;$$

3)
$$\sin(180 - x) = \sin x$$
;

3)
$$\sin(180 - x) = \sin x;$$
 5) $\sin(180 + x) = -\sin x;$

$$2) \quad \cos(-x) = \cos x;$$

4)
$$\cos(180 - x) = -\cos x$$
:

2)
$$\cos(-x) = \cos x$$
; 4) $\cos(180 - x) = -\cos x$; 6) $\cos(180 + x) = -\cos x$.

2 Вычислить:

1)
$$\cos 120^{\circ}$$

3)
$$\sin 225^{\circ}$$

$$5) \cos 225^{\circ}$$

7)
$$\cos 405^{\circ}$$

9)
$$\cos(-510^{\circ})$$

2)
$$\cos 150^{\circ}$$

4)
$$\sin(-135^{\circ})$$

6)
$$tg(-120^{\circ})$$

8)
$$\sin 540^{\circ}$$

4)
$$\sin(-135^{\circ})$$
 6) $\tan(-120^{\circ})$ 8) $\sin 540^{\circ}$ 10) $\sin(-450^{\circ})$

3 Формулы суммы/разности синуса или косинуса:

1)
$$\sin(x+y) = \sin x \cos y + \sin y \cos x$$

3)
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$2) \quad \sin(x-y) = \sin x \cos y - \sin y \cos x$$

4)
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

4 Упростить с помощью данных формул:

1)
$$\sin(90 + x)$$

3)
$$\sin(180 + x)$$

5)
$$\sin(270 + x)$$

7)
$$\sin(360 + x)$$

2)
$$\sin(90 - x)$$

2)
$$\sin(90-x)$$
 4) $\sin(180-x)$

6)
$$\sin(270 - x)$$

8)
$$\sin(360-x)$$

5 Упростить с помощью данных формул:

1)
$$\cos(90+x)$$

3)
$$\cos(180 + x)$$

3)
$$\cos(180+x)$$
 5) $\cos(270+x)$

7)
$$\cos(360 + x)$$

2)
$$\cos(90-x)$$

2)
$$\cos(90-x)$$
 4) $\cos(180-x)$

6)
$$\cos(270-x)$$

8)
$$\cos(360-x)$$

6 Вычислить:

1)
$$\sin 300^{\circ}$$

3)
$$tg 330^{\circ}$$

5)
$$\sin 390^{\circ}$$

7)
$$\cos(-780^{\circ})$$

9)
$$tg(-225^{\circ})$$

2)
$$\cos 240^{\circ}$$

4)
$$\cos 120^{\circ}$$

6)
$$\cos 495^{\circ}$$

8)
$$\sin(-300^{\circ})$$

8)
$$\sin(-300^{\circ})$$
 10) $\sin(-1200^{\circ})$

7 Вычислить:

1)
$$\frac{16\cos 35^{\circ}}{\sin 55^{\circ}}$$

2)
$$7 \text{ tg } 9^{\circ} \text{ tg } 81^{\circ}$$

2)
$$7 \operatorname{tg} 9^{\circ} \operatorname{tg} 81^{\circ}$$
 3) $-4\sqrt{3} \cos(-750^{\circ})$ 4) $\frac{14 \sin 409^{\circ}}{\sin 49^{\circ}}$

4)
$$\frac{14\sin 409^{\circ}}{\sin 409^{\circ}}$$

8 Вычислить:

1)
$$\frac{51\cos 4^{\circ}}{\sin 86^{\circ}} + \frac{\sqrt{3}}{2} \cdot \frac{\sin 60^{\circ}}{3}$$

2)
$$\frac{32\cos 116^{\circ}}{\sin 64^{\circ}} + \frac{25\cos 29^{\circ}}{\sin 61^{\circ}}$$

9 При температуре 0° рельс имеет длину $l_0 = 12,5$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^{\circ}) = l_0(1 + \alpha \cdot t^{\circ})$, где $\alpha = 1, 2 \cdot 10^{-5} ({}^{\circ}C)^{-1}$ – коэффициент теплового расширения, t° – температура (в градусах Цельсия). При какой температуре рельс удлинится на 6 мм? Ответ выразите в градусах Цельсия.

Из пункта
$$A$$
 в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути – со скоростью, на 16 км/ч больше скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.