# Slicing

#### Mohammad Mousavi

Department of Informatics, King's College London

Software Testing and Measurement, November 23, 2021

Mousavi Slicing SMT'21 1/33

#### Outline

Sequential Slicing

Structured Slicing



Mousavi Slicing SMT'21 2/33

#### Slices

An executable subset of the program

- capturing possible (indirect) dependencies
- among all definitions and uses
- influencing the value of a set of variables.

Also called: cone of influence reduction



Mousavi Slicing SMT'21 3/33

#### Annotated Flow Graphs

#### Defining nodes

DEF(n, v) holds (for a var. v and a node n), when n defines v. Examples:

- input(v), or
- v := exp

$$DEF(n) = \{v \mid DEF(n, v)\}$$



Mousavi

#### Annotated Flow Graphs

#### Using nodes

USE(n, v) holds (for a var. v and a node n), when n uses the values of v. Examples:

- output(v),
- x := exp(v),
- if cond(v) then, or
- while cond(v) do, ...

$$USE(n) = \{v \mid USE(n, v)\}$$

Also REF(n, v) in the literature



Mousavi Slicing SMT'21 5/33

# Definitions and Uses: An Example

- 1: Input(x)
- 2: Input(y)
- 3: if x < 10 then
- 4: y := y + 2
- 5: **else**
- 6: x := x+1
- 7: end if
- 8: **if** y > 20 **then**
- 9: y := y + 1;
- 10: **end if**
- 11: Write(x,y)
- 12: **end**





SMT'21

#### Definitions and Uses: An Example

```
1: Input(x) \{ DEF(1) = \{x\} \}
2: Input(y) \{DEF(2) = \{y\}\}
 3: if x < 10 then
   y := y + 2 \{ DEF(4) = USE(4) = \{y\} \}
 5: else
 6: x = x + 1
7: end if
 8: if y > 20 then
 9: y := y + 1;
10: end if
11: Write(x,y) \{USE(11) = \{x,y\}\}
12: end
```



```
1: Input(x)
 2: Input(y)
 3: total := 0
 4: sum := 0
 5: if x \le 1 then
 6:
    sum := y
 7: else
 8: Input(z)
   total := x * y
10: end if
11: Write(total, sum)
Slice on {total} at 11?
```



Mousavi Slicing SMT'21 7/33

```
1: Input(x)
 2: Input(y)
 3: total := 0
 4: sum := 0
 5: if x \le 1 then
 6:
   sum := y
 7: else
 8: Input(z)
   total := x * y
10: endif
11: Write(total, sum)
Slice on {total} at 11?
```



8/33

Mousavi

Slicing

```
Slice on {total} at 11:

1: Input(x)

2: Input(y)

3: total := 0

4: if x ≤ 1 then

5:

6: else

7: total = x * y

8: end if
```

```
1: Input(b)
2: c := 1
3: d := 3
4: a := d
5: d := b + d
6: b := b + 1
7: a := b + c
8: Write(a)

Slice on {d, c} at 6?
```



Mousavi Slicing SMT'21 10/33

Slice on  $\{d, c\}$  at 6:

```
1: Input(b)
2: c := 1
3: d := 3
4: d := b + d

(6, {d, c}) (in general (n, V)): the slicing criterion
```



 Mousavi
 Slicing
 SMT'21
 11/33

#### Outline of the algorithm

#### Slice criterion (n, V)

- Statements in the slice: those define the relevant variables.
- At  $n, v \in V$ : relevant.
- A relevant  $v \in DEF(m)$ : v is no more relevant above m,
- but then all variables in USE(m) become relevant above m.

12/33

Mousavi Slicing SMT'21

#### Relevant Variables

```
Given a slicing criterion (n, V), Relevant_0(m) = \begin{cases} V & \text{if } m = n + 1 \\ \{v \mid \exists_{m \to m'} (v \in relevant(m') \setminus DEF(m) \lor & \text{otherwise} \\ (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m))) \} \end{cases}
```

Mousavi Slicing

#### Relevant Variables

```
Given a slicing criterion (n, V), Relevant_0(m) = \begin{cases} 1) \ V & \text{if } m = n+1 \\ 2a)\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2b) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m)))\} \end{cases} otherwise
```

- 1) base case: all variables in V are initially relevant
- 2a) v remains relevant: has been relevant below and not defined at m
- 2b) v becomes relevant: defines relevant variables

Mousavi Slicing SMT'21 13/33

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                 if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2\mathsf{b}) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m))) \end{cases}
                                                                                                      otherwise
                           Relevant_0(m)
  m
  1 Input(b)
 2 c := 1
 3 d := 3
 4 a = d
 5 d := b + d
 6 b := b + 1
                           \{d,c\}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                                    if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2\mathsf{b}) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m))) \end{cases}
                                                                                                                         otherwise
                               Relevant<sub>0</sub>(m)
  m
  1 Input(b)
  2 c := 1
  3 d := 3
  4 a = d
  5 d := b + d
  6 b := b + 1 \quad \{ \textcolor{red}{\textit{d}}, \textcolor{red}{\textit{c}} \}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                                           if m = n + 1
\begin{cases} 2\mathsf{a})\{v\mid \exists_{m\to m'}(v\in \mathit{relevant}(m')\setminus \mathit{DEF}(m)\vee\\ 2\mathsf{b}) & (\mathit{DEF}(m)\cap \mathit{relevant}(m')\neq\emptyset \land v\in \mathit{USE}(m)))\} \end{cases}
                                                                                                                                otherwise
                                 Relevant<sub>0</sub>(m)
  m
  1 Input(b)
  2 c := 1
  3 d := 3
  4 a = d
  5 d := b + d \quad \{c, b, d\}

6 b := b + 1 \quad \{d, c\}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                             if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2\mathsf{b}) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m)))\} \end{cases}
                                                                                                                 otherwise
                           Relevant<sub>0</sub>(m)
  m
  1 Input(b)
  2 c := 1
  3 d := 3
 4 a := d  \{c, b, d\}

5 d := b + d  \{c, b, d\}
  6 b := b + 1 \quad \hat{\{d,c\}}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                     if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2\mathsf{b}) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m))) \end{cases}
                                                                                                         otherwise
                         Relevant<sub>0</sub>(m)
  m
  1 Input(b)
 2 c := 1
 3 d := 3 \{c, b\}

4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\}
 6 b := b + 1 \{ d, c \}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                        if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in relevant(m') \setminus DEF(m) \lor \\ 2\mathsf{b}) & (DEF(m) \cap relevant(m') \neq \emptyset \land v \in USE(m))) \end{cases}
                                                                                           otherwise
                     Relevant<sub>0</sub>(m)
 m
 1 Input(b)
 2 c := 1 {b}
 3 d := 3 {c, b}
 4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\}
 6 b := b + 1 \{d, c\}
```

```
Slicing criterion: (6, \{d, c\})?
Relevant_0(m) =
                                                                                                  if m = n + 1
\begin{cases} 2\mathsf{a})\{v \mid \exists_{m \to m'}(v \in \mathit{relevant}(m') \setminus \mathit{DEF}(m) \lor \\ 2\mathsf{b}) & (\mathit{DEF}(m) \cap \mathit{relevant}(m') \neq \emptyset \land v \in \mathit{USE}(m)))\} \end{cases}
                                                                                                      otherwise
                       Relevant<sub>0</sub>(m)
  m
  1 Input(b) \emptyset
 2 c := 1 {b}
 3 d := 3 { c, b}
 4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\}
 6 b := b + 1 \{d, c\}
```

```
m \in Slice_0(n, V) when
```

- **1** n = m and  $DEF(m) \cap V \neq \emptyset$ , or
- ②  $m \to ... \to n$  and there exists an m' such that  $m \to m'$  and  $DEF(m) \cap Relevant_0(m') \neq \emptyset$



SMT'21

15/33

Mousavi Slicing

```
m \in Slice_0(n, V) when
 0 n=m and DEF(m) \cap V \neq \emptyset, or
 2 m \rightarrow \ldots \rightarrow n and
     there exists an m' such that m \to m' and
     DEF(m) \cap Relevant_0(m') \neq \emptyset
                   Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(6, {d, c})
 m
 1 Input(b) \emptyset
 2 c := 1 {b}
 3 d := 3 { c, b}
 4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\}
 6 b := b + 1 \{d, c\}
                   {d, c}
```

```
m \in Slice_0(n, V) when
 0 n=m and DEF(m) \cap V \neq \emptyset, or
 2 m \rightarrow \ldots \rightarrow n and
     there exists an m' such that m \to m' and
     DEF(m) \cap Relevant_0(m') \neq \emptyset
                   Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(6, {d, c})
 m
 1 Input(b) \emptyset
 2 c := 1 {b}
 3 d := 3 { c, b}
 4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\}
 6 b := b + 1 \{d, c\}
                                     {b}
                                                           X
                   {d, c}
```

```
m \in Slice_0(n, V) when
 0 n=m and DEF(m) \cap V \neq \emptyset, or
 2 m \rightarrow \ldots \rightarrow n and
     there exists an m' such that m \to m' and
     DEF(m) \cap Relevant_0(m') \neq \emptyset
                  Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(6, {d, c})
 m
 1 Input(b) \emptyset
 2 c := 1 {b}
 3 d := 3  { c, b}
 4 a := d \{c, b, d\}
 5 d := b + d \{c, b, d\} \{d\}
 6 b := b + 1 \{d, c\}
                  {d, c}
```

 $6 b := b + 1 \quad \{d, c\} \qquad \{b\}$  $\{d, c\}$ 

 $m \in Slice_0(n, V)$  when

```
0 n=m and DEF(m) \cap V \neq \emptyset, or
2 m \rightarrow \ldots \rightarrow n and
    there exists an m' such that m \to m' and
    DEF(m) \cap Relevant_0(m') \neq \emptyset
                 Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(6, {d, c})
m
1 Input(b) \emptyset
2 c := 1 {b}
3 d := 3  { c, b}
4 a := d  \{c, b, d\} \{a\}
5 d := b + d \{c, b, d\} \{d\}
```

```
m \in Slice_0(n, V) when
```

- ②  $m \to ... \to n$  and there exists an m' such that  $m \to m'$  and  $DEF(m) \cap Relevant_0(m') \neq \emptyset$

```
\begin{array}{llll} \mathbf{m} & & \mathsf{Relevant_0(m)} & \mathbf{DEF(m)} & \in \mathsf{Slice_0}(6, \{\mathsf{d}, \mathsf{c}\}) \\ 1 \ \mathsf{Input(b)} & \emptyset & & & \\ 2 \ \mathsf{c} := 1 & \{b\} & & & \\ 3 \ \mathsf{d} := 3 & \{c, b\} & \{d\} & & & \\ 4 \ \mathsf{a} := \mathsf{d} & \{c, b, d\} & \{a\} & & \times \\ 5 \ \mathsf{d} := \mathsf{b} + \mathsf{d} & \{c, b, d\} & \{d\} & & & \\ 6 \ \mathsf{b} := \mathsf{b} + 1 & \{d, c\} & \{b\} & & \times \\ & \{d, c\} & & & \\ \end{array}
```

```
m \in Slice_0(n, V) when
```

- **1** n = m and  $DEF(m) \cap V \neq \emptyset$ , or
- ②  $m \to ... \to n$  and there exists an m' such that  $m \to m'$  and  $DEF(m) \cap Relevant_0(m') \neq \emptyset$

```
\begin{array}{llll} \mathbf{m} & & \text{Relevant}_0(\mathsf{m}) & \mathbf{DEF(m)} & \in \text{Slice}_0(6, \{\mathsf{d}, \mathsf{c}\}) \\ 1 & \text{Input}(\mathsf{b}) & \emptyset & & & & & \\ 2 & \mathsf{c} & := 1 & \{b\} & \{c\} & & & & \\ 3 & \mathsf{d} & := 3 & \{c, b\} & \{d\} & & & & \\ 4 & \mathsf{a} & := & \mathsf{d} & \{c, b, d\} & \{a\} & & & \\ 5 & \mathsf{d} & := & \mathsf{b} + & \mathsf{d} & \{c, b, d\} & \{d\} & & & \\ 5 & \mathsf{d} & := & \mathsf{b} + & \mathsf{d} & \{c, b, d\} & \{d\} & & & \\ 6 & \mathsf{b} & := & \mathsf{b} + & \mathsf{1} & \{d, c\} & \{b\} & & & \\ & \{d, c\} & & & & & \\ \end{array}
```

```
m \in Slice_0(n, V) when
```

- **1** n = m and  $DEF(m) \cap V \neq \emptyset$ , or
- ②  $m \to ... \to n$  and there exists an m' such that  $m \to m'$  and  $DEF(m) \cap Relevant_0(m') \neq \emptyset$

```
\begin{array}{llll} \textbf{m} & & \text{Relevant}_0(\textbf{m}) & \textbf{DEF(m)} & \in \text{Slice}_0(6, \{d, c\}) \\ 1 & \text{Input(b)} & \emptyset & \{b\} & \sqrt{} \\ 2 & \text{c} & := 1 & \{b\} & \{c\} & \sqrt{} \\ 3 & \text{d} & := 3 & \{c, b\} & \{d\} & \sqrt{} \\ 4 & \text{a} & := d & \{c, b, d\} & \{a\} & \times \\ 5 & \text{d} & := b + d & \{c, b, d\} & \{d\} & \sqrt{} \\ 6 & \text{b} & := b + 1 & \{d, c\} & \{b\} & \times \\ & & \{d, c\} & \end{array}
```

#### Outline

Sequential Slicing

2 Structured Slicing



Mousavi Slicing SMT'21 17/33

- 1: Input(x)
- 2: Input(z)
- 3: if x < 10 then
- 4: z := z + 2:
- 5: **else**
- 6: z := z 1;
- 7: end if
- 8: Write(z)

Slice wrt. the criterion  $(3, \{x\})$ ?



SMT'21

18 / 33

Mousavi Slicing

```
Slice wrt. the criterion (3, \{x\})?

m Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(3, \{x\})
1 Input(x)
2 Input(z)
3,5 if x < 10 then / else
\{x\}
```



SMT'21

```
Slice wrt. the criterion (3, \{x\})?
```

```
\begin{array}{lll} \mathbf{m} & \mathsf{Relevant_0(m)} & \mathbf{DEF(m)} & \in \mathsf{Slice_0}(3, \{x\}) \\ 1 \; \mathsf{Input(x)} & & \\ 2 \; \mathsf{Input(z)} & & \\ 3,5 \; \mathbf{if} \; x < 10 \; \mathbf{then} \; / \; \mathbf{else} & \{x\} & \emptyset & \times \\ & \{x\} & & \\ \end{array}
```

Slice wrt. the criterion  $(3, \{x\})$ ?

| m                                                | $Relevant_0(m)$ | DEF(m) | $\in Slice_0(3, \{x\})$ |
|--------------------------------------------------|-----------------|--------|-------------------------|
| 1 Input(x)                                       |                 |        |                         |
| 2 Input(z)                                       | { <i>x</i> }    | {z}    | ×                       |
| 3,5 <b>if</b> $x < 10$ <b>then</b> / <b>else</b> | { <i>x</i> }    | Ø      | ×                       |
|                                                  | { <i>x</i> }    |        |                         |



Mousavi Slicing

Slice wrt. the criterion  $(3, \{x\})$ ?

| m                                                | $Relevant_0(m)$ | DEF(m)       | $\in Slice_0(3, \{x\})$ |
|--------------------------------------------------|-----------------|--------------|-------------------------|
| 1 Input(x)                                       | Ø               | { <i>x</i> } | $\sqrt{}$               |
| 2 Input(z)                                       | { <i>x</i> }    | {z}          | ×                       |
| 3,5 <b>if</b> $x < 10$ <b>then</b> / <b>else</b> | { <i>x</i> }    | $\emptyset$  | ×                       |
|                                                  | {x}             |              |                         |

Mousavi Slicing

- 1: Input(x)
- 2: Input(z)
- 3: if x < 10 then
- 4: z := z + 2:
- 5: **else**
- 6: z := z 1;
- 7: end if
- 8: Write(z)

Slice wrt. the criterion  $(8, \{z\})$ ?



Mousavi Slicing

```
Relevant<sub>0</sub>(m) DEF(m) \in Slice<sub>0</sub>(8, {z})
1 \operatorname{Input}(x)
2 Input(z)
3,5 if x < 10 then / else
4 z := z + 2
6 z := z - 1
7 end if
8 Write(z)
                                   \{z\}
```

m

```
\begin{array}{lll} \mathbf{m} & \text{Relevant}_0(\mathsf{m}) & \mathbf{DEF(m)} & \in \mathsf{Slice}_0(8,\{z\}) \\ 1 \ \mathsf{Input}(\mathsf{x}) & \\ 2 \ \mathsf{Input}(\mathsf{z}) & \\ 3,5 \ \textbf{if} \ x < 10 \ \textbf{then} \ / \ \textbf{else} \\ 4 \ \mathsf{z} := \mathsf{z} + 2 & \\ 6 \ \mathsf{z} := \mathsf{z} - 1 & \\ 7 \ \textbf{end} \ \textbf{if} & \\ 8 \ \mathsf{Write}(\mathsf{z}) & \{z\} & \emptyset & \times \\ \{z\} & \\ \end{array}
```

21/33

21/33

| $Relevant_0(m)$ | DEF(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\in$ Slice <sub>0</sub> (8, {z})                                                                                                                                                                                               |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |
| Ø               | {z}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\checkmark$                                                                                                                                                                                                                    |
| $\{z\}$         | $\emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                               |
| $\{z\}$         | {z}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sqrt{}$                                                                                                                                                                                                                       |
| $\{z\}$         | {z}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sqrt{}$                                                                                                                                                                                                                       |
| $\{z\}$         | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                               |
| $\{z\}$         | $\emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                               |
| $\{z\}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |
|                 | <pre>\$\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)</pre> | $ \begin{cases} z \\ z \\ \end{cases} \qquad \qquad \begin{cases} z \\ z \\ \end{cases} $ $ \begin{cases} z \\ z \\ \end{cases} \qquad \qquad \emptyset $ $ \{z \} \qquad \qquad \emptyset $ $ \{z \} \qquad \qquad \emptyset $ |

| Relevant $_0(m)$ | DEF(m)       | $\in$ Slice <sub>0</sub> (8, {z})               |
|------------------|--------------|-------------------------------------------------|
| Ø                | { <i>x</i> } | ×                                               |
| Ø                | $\{z\}$      | $\sqrt{}$                                       |
| $\{z\}$          | Ø            | ×                                               |
| {z}              | $\{z\}$      | $\sqrt{}$                                       |
| {z}              | {z}          | $\sqrt{}$                                       |
| $\{z\}$          | Ø            | ×                                               |
| $\{z\}$          | Ø            | ×                                               |
| $\{z\}$          |              |                                                 |
|                  | <pre>Ø</pre> | $ \emptyset                                   $ |

#### Slicing Structured Programs: Informal Idea

- Start with sequential slicing algorithm:  $Slice_0(n, v)$
- **②** Find all conditionals  $Cond_{k+1}(n, V)$  influencing  $m \in Slice_k(n, v)$
- **3** Add the following node to  $Slice_k(n, V)$ , the result:  $Slice_{k+1}(n, V)$ 
  - 1 the conditional in  $c \in Cond_k n, V$  and
  - those statement influencing the conditions of c
- repeat 2 until a fixed-point

Mousavi

## (Inverse) Denominators

```
m \in IDen(n) (m inversely denominates n)
when m appears in all paths n \to \ldots \to n_t.
m = NIDen(n) (the nearest inverse denominator of n) when
m \in IDen(n) and
for all m' \in IDen(n) either m = m' or there is a simple path
m \to \ldots \to m'
m \in Infl(n) (m is influenced by n) when
m appears in a path from n to NIDen(n)
(m \neq n, m \neq NIDen(n), NIDen(n)) may not appear in the path).
```

Mousavi

- 1: Input(x)
- 2: Input(z)
- 3: if x < 10 then
- 4: z = z + 2;
- 5: **else**
- 6: z = z 1;
- 7: end if
- 8: Write(z)
- NIDen(1)? Infl(1)?
- NIDen(2)? Infl(2)?
- NIDen(3)? Infl(3)?



Mousavi

Slicing

24 / 33

```
1: Input(x)
```

- 2: Input(z)
- 3: if x < 10 then
- 4: z = z + 2;
- 5: **else**
- 6: z = z 1;
- 7: end if
- 8: Write(z)

NIDen(1)? 2. Infl(1)?  $\emptyset$ .

NIDen(2)? Infl(2)?

NIDen(3)? Infl(3)?



```
    Input(x)
    Input(z)
    if x < 10 then</li>
    z = z + 2;
    else
```

6: z = z - 1:

7: end if

8: Write(z)

NIDen(1)? 2. Infl(1)?  $\emptyset$ .

NIDen(2)? 3. Infl(2)? ∅.

Observation, for sequential nodes  $Infl(n) = \emptyset$ .

NIDen(3)? Infl(3)?



24 / 33

```
1: Input(x)
2: Input(z)
3: if x < 10 then
4: z = z + 2;
```

6: 
$$z = z - 1$$
;

- 7: end if
- 8: Write(z)

$$NIDen(1)$$
? 2.  $Infl(1)$ ?  $\emptyset$ .

$$NIDen(2)$$
? 3.  $Infl(2)$ ?  $\emptyset$ .

Observation, for sequential nodes  $Infl(n) = \emptyset$ .

NIDen(3)? 7. Infl(3)?  $\{4,6\}$ .



## Slicing Structured Programs

```
Given a slicing criterion (n, V):
m \in Cond_{k+1}(n, V) (conditions influencing Slice_k(n, V)) when
  there exists m' \in Slice_k(n, V) and m' \in Infl(m).
```

## Slicing Structured Programs

```
Given a slicing criterion (n, V):

m \in Cond_{k+1}(n, V) (conditions influencing Slice_k(n, V)) when there exists m' \in Slice_k(n, V) and m' \in Infl(m).

v \in Relevant_{k+1}(m) when v \in Relevant_k(m) or there exists an m' \in Cond_{k+1}(n, V) and v \in Relevant_0(m) w.r.t. the slicing criterion (m', USE(m')).
```

## Slicing Structured Programs

```
Given a slicing criterion (n, V):
m \in Cond_{k+1}(n, V) (conditions influencing Slice_k(n, V)) when
  there exists m' \in Slice_k(n, V) and m' \in Infl(m).
v \in Relevant_{k+1}(m) when
  v \in Relevant_k(m) or
  there exists an m' \in Cond_{k+1}(n, V) and
    v \in Relevant_0(m) w.r.t. the slicing criterion (m', USE(m')).
m \in Slice_{k+1}(n, V) when
  m \in Cond_{k+1}(n, V) or
   there exists an m' such that m \to m' and
     DEF(m) \cap Relevant_{k+1}(m') \neq \emptyset.
```

```
Slice wrt. (8, {z})

1: Input(x)

2: Input(z)

3: if x < 10 then

4: z = z + 2;

5: else

6: z = z - 1;

7: end if

8: Write(z)
```

```
Slice wrt. (8, \{z\})
 1: Input(x)
 2: Input(z)
 3: if x < 10 then
 4: z = z + 2:
 5: else
 6: z = z - 1;
 7: end if
 8: Write(z)
Slice_0(8, \{z\}) = \{2, 4, 6\}.
```

26/33

Mousavi Slicing SMT'21

```
Slice wrt. (8, \{z\})
 1: Input(x)
 2: Input(z)
 3: if x < 10 then
 4: z = z + 2;
 5: else
 6: z = z - 1:
 7: end if
 8: Write(z)
Slice_0(8, \{z\}) = \{2, 4, 6\}.
m \in Cond_{k+1}(n, V) (conditions influencing Slice_k(n, V)) when
  there exists m' \in Slice_k(n, V) and m' \in Infl(m).
```

Mousavi Slicing SMT'21 26/33

```
Slice wrt. (8, \{z\})
 1: Input(x)
 2: Input(z)
 3: if x < 10 then
 4: z = z + 2:
 5: else
 6: z = z - 1;
 7: end if
 8: Write(z)
Slice_0(8, \{z\}) = \{2, 4, 6\}.
Cond_1(8, \{z\}) = \{3\}
Slice_1(8, \{z\})?
```

Mousavi

```
\begin{array}{ll} \textbf{m} & \text{Relevant}_1(\textbf{m}) & \textbf{DEF(m)} & \in \text{Slice}_1(8,\{z\}) \\ 1 & \text{Input}(\textbf{x}) \\ 2 & \text{Input}(\textbf{z}) \\ 3,5 & \textbf{if } x < 10 & \textbf{then } / & \textbf{else} \\ 4 & \textbf{z} := \textbf{z} + 2 \\ 6 & \textbf{z} := \textbf{z} - 1 \\ 7 & \textbf{end if} \\ 8 & \text{Write}(\textbf{z}) \\ & \{z\} \end{array}
```



```
\begin{array}{lll} \mathbf{m} & \text{Relevant}_1(\mathsf{m}) & \mathbf{DEF(m)} & \in \mathsf{Slice}_1(8, \{z\}) \\ 1 \ \mathsf{Input}(\mathsf{x}) & \\ 2 \ \mathsf{Input}(\mathsf{z}) & \\ 3,5 \ \textbf{if} \ x < 10 \ \textbf{then} \ / \ \textbf{else} \\ 4 \ \mathsf{z} := \mathsf{z} + 2 & \\ 6 \ \mathsf{z} := \mathsf{z} - 1 & \\ 7 \ \textbf{end} \ \textbf{if} & \\ 8 \ \mathsf{Write}(\mathsf{z}) & \{z\} & \emptyset & \times \\ \{z\} & \\ \end{array}
```

```
Relevant<sub>1</sub>(m) DEF(m) \in Slice<sub>1</sub>(8, {z})
m
1 \operatorname{Input}(x)
2 Input(z)
3,5 if x < 10 then / else
4 z := z + 2
6 z := z - 1
7 end if
8 Write(z)
```

28 / 33

```
\begin{array}{llll} \textbf{m} & & \text{Relevant}_1(\textbf{m}) & \textbf{DEF(m)} & \in \text{Slice}_1(8, \{z\}) \\ 1 & \text{Input}(\textbf{x}) & & \\ 2 & \text{Input}(\textbf{z}) & & \\ 3,5 & \textbf{if } x < 10 & \textbf{then } / & \textbf{else} \\ 4 & \textbf{z} := \textbf{z} + 2 & & \\ 6 & \textbf{z} := \textbf{z} - 1 & & \{z\} & & \sqrt{} \\ 7 & \textbf{end if} & & \{z\} & & \emptyset & \times \\ 8 & \text{Write}(\textbf{z}) & & \{z\} & & \emptyset & \times \\ & \{z\} & & \emptyset & \times \\ \end{array}
```

| m                                                | Relevant <sub>1</sub> (m) | DEF(M)      | $\in$ Slice <sub>1</sub> (8, {z}) |
|--------------------------------------------------|---------------------------|-------------|-----------------------------------|
| 1 Input(x)                                       |                           |             |                                   |
| 2 Input(z)                                       | { <b>x</b> }              | {z}         | $\checkmark$                      |
| 3,5 <b>if</b> $x < 10$ <b>then</b> / <b>else</b> | $\{z, x\}$                | $\emptyset$ | $\sqrt{}$                         |
| 4 z := z + 2                                     | $\{z\}$                   | $\{z\}$     | $\sqrt{}$                         |
| 6 z := z - 1                                     | $\{z\}$                   | $\{z\}$     | $\sqrt{}$                         |
| 7 end if                                         | $\{z\}$                   | $\emptyset$ | ×                                 |
| 8 Write(z)                                       | $\{z\}$                   | Ø           | ×                                 |
|                                                  |                           |             |                                   |

{*z*}

| Relevant <sub>1</sub> (m) | DEF(m)                                           | $\in$ Slice <sub>1</sub> (8, {z})                                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ø                         | { <i>x</i> }                                     | $\sqrt{}$                                                                                                                                                                                                                                   |
| { <b>x</b> }              | $\{z\}$                                          | $\sqrt{}$                                                                                                                                                                                                                                   |
| $\{z, x\}$                | $\emptyset$                                      | $\checkmark$                                                                                                                                                                                                                                |
| $\{z\}$                   | $\{z\}$                                          | $\sqrt{}$                                                                                                                                                                                                                                   |
| {z}                       | { <i>z</i> }                                     | $\sqrt{}$                                                                                                                                                                                                                                   |
| $\{z\}$                   | Ø                                                | ×                                                                                                                                                                                                                                           |
| $\{z\}$                   | $\emptyset$                                      | ×                                                                                                                                                                                                                                           |
| $\{z\}$                   |                                                  |                                                                                                                                                                                                                                             |
|                           | <pre> Ø {x} {z,x} {z} {z} {z} {z} {z} {z} </pre> | $ \begin{cases} x \\ \{z, x\} \end{cases} \qquad \begin{cases} z \\ \{z, x\} \end{cases} \qquad \emptyset $ $ \{z\} \qquad \qquad \{z\} $ $ \{z\} \qquad \qquad \{z\} $ $ \{z\} \qquad \qquad \emptyset $ $ \{z\} \qquad \qquad \emptyset $ |

28 / 33

### Another Example

Slice wrt.  $(11, \{sum\})$ ?

- 1: Input(x)
- 2: Input(y)
- 3: sum := 0
- 4: if x < 1 then
- 5: y := 1
- 6: end if
- 7: while  $y \ge 1$  do
- 8: sum := sum + x
- 9: y := y 1
- 10: end while
- 11: Write(sum)



|    | DEE( )         | D. I. ( )       | CI:                |          | Б.                      | CI:                |
|----|----------------|-----------------|--------------------|----------|-------------------------|--------------------|
| m  | DEF(m)         | $Relevant_0(m)$ | Slice <sub>0</sub> | $Cond_1$ | Rel <sub>1</sub>        | Slice <sub>1</sub> |
| 1  | { <i>x</i> }   | Ø               | ,                  | ×        | Ø                       |                    |
| 2  | { <i>y</i> }   | {x}             | ×                  | ×        | { <i>x</i> }            |                    |
| 3  | {sum}          | {x}             |                    | ×        | { <i>x</i> , <i>y</i> } |                    |
| 4  | Ø              | $\{sum, x\}$    | ×                  | ×        | $\{sum, x, y\}$         | ×                  |
| 5  | { <i>y</i> }   | $\{sum, x\}$    | ×                  | ×        | $\{sum, x\}$            |                    |
| 6  | Ø              | $\{sum, x\}$    | ×                  | ×        | $\{sum, x, y\}$         | ×                  |
| 7  | Ø              | $\{sum, x\}$    | ×                  |          | $\{sum, x, y\}$         |                    |
| 8  | { <i>sum</i> } | $\{sum, x\}$    |                    | ×        | $\{sum, x, y\}$         |                    |
| 9  | { <i>y</i> }   | $\{sum, x\}$    | ×                  | ×        | $\{sum, x, y\}$         |                    |
| 10 | Ø              | {sum}           | ×                  | ×        | {sum}                   | ×                  |
| 11 | Ø              | {sum}           | ×                  | ×        | {sum}                   | ×                  |
|    |                | {sum}           |                    |          | {sum}                   |                    |

Mousavi Slicing SMT'21 30 / 33

| m  | DEF(m)       | $Cond_2$ | Rel <sub>2</sub>        | Slice <sub>2</sub> | Slice <sup>(*)</sup> |
|----|--------------|----------|-------------------------|--------------------|----------------------|
| 1  | {x}          | ×        | Ø                       |                    |                      |
| 2  | { <i>y</i> } | ×        | { <i>x</i> }            |                    |                      |
| 3  | $\{sum\}$    | ×        | { <i>x</i> , <i>y</i> } |                    |                      |
| 4  | Ø            |          | $\{sum, x, y\}$         |                    |                      |
| 5  | { <i>y</i> } | ×        | $\{sum, x\}$            |                    |                      |
| 6  | Ø            | ×        | $\{sum, x, y\}$         | ×                  |                      |
| 7  | Ø            |          | $\{sum, x, y\}$         |                    |                      |
| 8  | $\{sum\}$    | ×        | $\{sum, x, y\}$         |                    |                      |
| 9  | { <i>y</i> } | ×        | $\{sum, x, y\}$         |                    |                      |
| 10 | Ø            | ×        | {sum}                   | ×                  |                      |
| 11 | Ø            | ×        | {sum}                   | ×                  | ×                    |

(\*) Syntactic check after generating the slice:

if then  $(/\text{else}) \in \textit{Slice} \Rightarrow (\text{the corresponding})$  end if  $\in \textit{Slice}$  while . . . do  $\in \textit{Slice} \Rightarrow (\text{the corresponding})$  end while  $\in \textit{Slice}$ 

. . .



#### The Ideal Slicing Algorithm?

Slice wrt.  $(2, \{x\})$ ?

1: Input(x)

 $2\colon\, X:=X$ 

Mousavi Slicing SMT'21 32/33

#### The Ideal Slicing Algorithm?

```
Slice wrt. (2, \{x\})?

1: Input(x)

2: x := x
```

Slice wrt.  $(5, \{x\})$ ?

- 1: if true then
- 2: x := 1
- 3: **else**
- 4: x := 2
- 5: end if

#### The Ideal Slicing Algorithm?

```
Slice wrt. (2, \{x\})?

1: Input(x)

2: x := x

Slice wrt. (5, \{x\})?
```

- 1: if true then
- 2: x := 1
- 3: **else**
- 4: x := 2
- 5: end if

No algorithm for the smallest slice exists!

Reason: Undecidability of halting/termination.



#### Slicing: Applications

- Test adequacy: for each output variable, all du-paths in its slice must be covered
- ② Robustness testing: Add pseudo-variables that check dangerous situations, generate the slice and test
- Regression testing: testing if a change influences a particular component
   (i.e., if the slice of the component interface contains the change)
- Debugging: code review comparing a correct running program with a new faulty version