Revista Colombiana de Estadística Nº 6 - 1982

FUNCIONES DE SUPERVIVENCIA DE UN PARAMETRO

Ramón Fandiño Arbeláez

Profesor Universidad Nacional

Resumen: En el presente estudio se construyen funciones de supervivencia que se adaptan bastante bien al patrón normal de mortalidad y en contraposición con las funciones de Gompertz y Makeham, son funciones de un sólo parámetro.

Introducción. Una función de supervivencia es una función S(x) definida en el intervalo $\begin{bmatrix} 0,\omega \end{bmatrix}$ tal que S(0) = 1, $S(\omega) = 0$ y S(x) decrece de 1 a 0. Ade más S(x) se define como la probabilidad de que una nueva vida de edad 0 sobreviva hasta alcanzar la edad x.

Las funciones de supervivencia que más se adaptan al patrón normal de mortalidad son las curvas de Gompertz $S(x) = a^{b^X}y$ Makeham $S(x) = a^Xb^{c^X}$

pero presentan el gran inconveniente de sus parámetros a, b y c que no se pueden estimar fácilmente. Las curvas de Compertz y Makeham presenta la configuración:

Anotamos además que ω usualmente se toma grande 90, 95, 100 ó 105 y $S(\omega)$ se define como 0.

En este estudio construímos funciones de supervivencia de un sólo parámetro a partir de las curvas de Lamé (Gabriel Lamé, físico francés del siglo XIX). Estas tienen como ecuación

$$\left|\frac{x}{a}\right|^{\alpha} + \left|\frac{y}{b}\right|^{\alpha} = 1$$
 con $a, b, y \alpha$ positivos reales

Figuras muy familiares como la circunferencia, la elipse, el rombo y la astroide son curvas de Lamé.

Si en la ecuación $\left|\frac{x}{a}\right|^{\alpha} \left|\frac{y}{b}\right|^{\alpha} = 1$, tomanos $a = \omega = 100$, b = 1 y $\alpha > 1$, obtenemos una función de supervivencia que se puede adaptar bastante bien al patrón normal de mortalidad y que presenta el sólo parámetro α .

Sea esta:

$$S(x) = \left(1 - \left(\frac{x}{100}\right)^{\alpha}\right)^{1/\alpha} \text{ para } 0 \leqslant x \leqslant 100$$

Claramente S(0) = 1, S(100) = 0 y S(x) decrece de 1 a 0.

Para justificar el hecho de que S(x) es una probabilidad, suponemos la existencia de cierta variable aleatoria X y su correspondiente función de probabilidad P.

Planteamos la ecuación:

$$P(X > x) = \left(1 - \left(\frac{x}{100}\right)^{\alpha}\right)^{1/\alpha}$$

luego existe una función de distribución F_{χ} dada por:

$$F_X(x) = P(X \le x) = 1 - (1 - (\frac{x}{100})^{\alpha})^{1/\alpha}$$
 con $\alpha > 1$ y $0 \le x \le 100$

su gráfica es:

La densidad es:

$$\delta_X(x) = \frac{d}{dx} F_X(x) = \frac{1}{100} \left(\frac{x}{100}\right)^{\alpha - 1} \left(1 - \left(\frac{x}{100}\right)^{\alpha}\right)^{\frac{1}{\alpha} - 1}$$

$$\cos \alpha > 1 \quad \text{y} \quad 0 \le x < 100,$$

su gráfica es:

Definimos formalmente:

Una variable aleatoria X tiene distribución de Lamé con parámetro α y notamos $X \sim L(\alpha)$; $\alpha > 1$; si su den sidad viene dada por:

La fx definida aquí es una función de densidad, em efecto:

a)
$$f_X(x) \geqslant 0$$
 , para todo x real

b)
$$\int_{-\infty}^{\infty} \int_{X} (x) dx = 1.$$

La función de distribución es:

$$F_X(x) = \int_{-\infty}^{x} \delta_X(t) dt = 1 - (1 - (\frac{x}{100})^{\alpha})^{1/\alpha}$$
.

Queda claro entonces que S(x) es una probabilidad, pues S(x) = P(X > x) con $X \sim L(\alpha)$.

La fuerza de mortalidad o susceptibilidad del hombre hacia la muerte viene dada por:

$$\mu_{\chi} = \frac{\chi^{\alpha}}{100^{\alpha} - \chi^{\alpha}} \quad ; \qquad 0 \leqslant \chi < 100.$$

su gráfica es:

Ahora presentamos la Tabla de Mortalidad basada en la función de supervivencia desarrollada.

Tomamos
$$\alpha = \frac{1 + \sqrt{5}}{2}$$
 y $\ell_0 = 100.000$

TABLA DE MORTALIDAD

χ	ℓ_{χ}	x	l _x
1	99964.11	26	92851.55
2	99889.80	27	92390.11
3	99787.56	28	91916.50
4	99661.50	29	91430.76
5	99514.09	30	90932.90
6	99347.02	31	90.422.94
7	99161.56	32	89900.86
8	98958.70	33	89366.67
9	98739.22	34	88820.34
10	98503.78	35	88261.85
11	98252.93	36	87691.15
12	97987.14	37	87108.20
13	97706.81	38	86512.96
14	97412.28	39	85905.34
15	97103.86	40	85285,29
16	96781.82	41	84652.71
17	96446.39	42	84007.53
18	96097.76	43	83349.64
19	95736.13	44	82678.92
20	95361.66	45	81995.26
21	94974.47	46	81298.54
22	94574.69	47	80588.60
23	94162.42	48	79865.30
24	93737.76	49	79128.48
25	93300.78	50	78377.96

x	ℓ_{χ}	x	l _x
51	77613.55	76	53052.78
52	76835.05	77	51789.63
53	76047.25	78	50496.73
54	75234.91	69	49172.50
55	74412.80	80	47815.18
56	73575.65	81	46422.80
57	72723.18	82	44993.14
58	71855.09	83	43523.68
59	70971.07	84	42011.56
60	70070.77	85	40453.46
61	69153.83	86	38845.55
62	68219.85	87	37183.33
63	67268.43	88	35461.48
64	66299.11	89	33673.60
6.5	65311.41	90	31811.88
66	64304.83	91	29866.64
67	63278.80	92	27825.54
68	62232.73	93	25672.54
69	61165.97	94	23385.93
70	60077.84	95	20935.05
71	58967.56	96	18273.90
72	57.834.33	97	15327.14
73	56677.26	98	11952.86
74	55495.37	99	7803.00
75	54287.60	100	000.00

BIBLIOGRAFIA

- [1] Jordan, Chester Wallace Jr., Life Contingencies,
 The Society of Actuaries, (1967)
- [2] Bohm. Matematicas Actuariales I y II, Editorial Uteha. (19).