Orthogonal Matrices

 $Q_{n\times n}$ is an orthogonal matrix iff has orthonormal cols: Properties:

- 1. $(Q\vec{x})^T(Q\vec{z}) = \vec{x}^T z$ (angle preserving)
- 2. $||Q\vec{x}|| = ||\vec{x}||$ (length preserving)
- 3. $Q^T = Q^{-1}$ (true iff Q is orthogonal)
- 4. $\det(Q) = \pm 1$
- 5. Product of orthogonal matrices is orthogonal det(Q) = 1 for rotation det(Q) = -1 for reflection

Diagonalization: $A = PDP^{-1}$

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}, P = \begin{bmatrix} \overrightarrow{\text{eigen}}_{\lambda_1} & \dots & \overrightarrow{\text{eigen}}_{\lambda_n} \end{bmatrix}$$

A and D are similar $\Leftrightarrow A = PDP^{-1}$.

- $\bullet A$ is similar to itself.
- $\bullet A$ diagonalizable $\Leftrightarrow A^n = PD^nP^{-1}$

A is diagonalizable iff (equivalent statements):

- A has n linearly independent eigenvectors
- $\sum_{i} GM(\lambda_i) = n$. $GM(\lambda) :=$ number of eigenvectors for eigenvalue λ

Dot Product

- $\bullet \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (u_1)(v_1) + (u_2)(v_2)$
- $\bullet \vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$
- $\bullet \vec{u} \cdot \vec{u} = (||\vec{u}||)^2$
- $\bullet \vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u}, \vec{v} \text{ orthogonal} \Leftrightarrow ||\vec{u}|| + ||\vec{v}|| = ||\vec{u} + \vec{v}||$
- $\bullet(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$
- $\bullet || \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T || = \sqrt{v_1^2 + v_2^2}$

Eigenvalues and Eigenvectors

Eigenvalues of triangular matrix along the diagonal.

• $AM(\lambda = 0) = nullity(A)$

To **Find Eigenvalues** of
$$A = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$$

Solve $|A - \lambda I_n| = 0 \Leftrightarrow \begin{bmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{bmatrix}$

Solve
$$|A - \lambda I_n| = 0 \Leftrightarrow \begin{bmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{bmatrix} = 0$$

To Find Eigenvectors for λ_i , solve:

$$\begin{bmatrix} -5 - \lambda_i & 2 & 0 \\ -9 & 6 - \lambda_i & 0 \end{bmatrix}$$

Linear Programming

Canonical formulation: Maximize $f(\vec{x}) = \vec{c}^T \vec{x}$ Subject to $A\vec{x} \leq \vec{b}; \vec{x_i} \geq 0 \forall i$

Solution: Feasible intersection point which maximizes objective function

Orthogonal Compliments

Definition: if W is a subspace of \mathbb{R}^n , then W^{\perp} contains all vectors $\in \mathbb{R}^n$ perpendicular to W

Properties:

- 1. $W^{\perp} = \text{Null}(A^T)$
- $2. \dim(W) + \dim(W^{\perp}) = n$
- 3. $(W^{\perp})^{\perp} = W$
- 4. $W \cap W^{\perp} = \{\vec{0}\}\$
- 5. $(\mathbb{R}^n)^{\perp} = \{\vec{0}\}; \{\vec{0}\}^{\perp} = \mathbb{R}^n$

Subspaces of \mathbb{R}^n :

- $\operatorname{Row}(A) = (\operatorname{Nul}(A))^{\perp}$
- $Nul(A) = (Row(A))^{\perp}$
- $\bullet \dim(\text{Row}(A)) = \text{Rank}(A)$
- $\bullet \dim(\text{Nul}(A)) = n \text{Rank}(A)$

Subspaces of \mathbb{R}^m :

- $\operatorname{Col}(A) = (\operatorname{Nul}(A^T))^{\perp}$
- $\bullet Nul(A^T) = (Col(A))^{\perp}$
- $\bullet \dim(\operatorname{Col}(A)) = \operatorname{Rank}(A)$
- $\bullet \dim(\operatorname{Nul}(A^T)) = m \operatorname{Rank}(A)$

Example: find a basis for Row(A)

$$\vec{v} = \begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix}^T$$
, and $A\vec{v} = \vec{0}$

 $A\vec{v} = \vec{0}$, so $\vec{v} \in \text{Nul}(A)$.

Let W = Nul(A), so $W^{\perp} = \text{Row}(A)$ $\Rightarrow \text{Nul}(\vec{v}^T)$ is a basis for Row(A).

$$\operatorname{Nul}(\begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix}) = \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\0\\1 \end{bmatrix} \right\}$$

= basis for Row(A)

Span

Def The span of a set of vectors is the set of linear combinations of the vectors.

Check if $\vec{w} \in \text{span}\{\vec{u}, \vec{v}\}$:

 $\begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{bmatrix} \vec{w} \in \text{span}\{\vec{u}, \vec{v}\} \text{ iff that system has a}$ solution.

Check if span $\{\vec{u}, \vec{v}, \vec{w}\} = \mathbb{R}^3$:

(equivalent to $\operatorname{col}[\vec{u}, \vec{v}, \vec{w}] = \mathbb{R}^3$)

 $\begin{bmatrix} u_1 & v_1 & w_1 \end{bmatrix}$

 u_2 v_2 w_2 True iff \exists a pivot in each row/column $\begin{bmatrix} u_3 & v_3 & w_3 \end{bmatrix}$

Orthogonal Decomposition

W a subspace of $\mathbb{R}^n \Leftrightarrow y = \hat{y} + z$, s.t. $\hat{y} \in W, z \in W^{\perp}$ $\hat{y} = proj_{u_1}y + ... + proj_{u_p}y = proj_W y = \sum_{i=1}^p \frac{y \cdot u_i}{||u_i||^2}$

Matrix Properties

 $A_{m \times n} \Rightarrow \text{transformation } \vec{x} \to A\vec{x} \text{ is from } \mathbb{R}^n \to \mathbb{R}^m$ Rank(A) + nullity(A) = n

 $A^TA \& AA^T$:

- 1. have same non 0 eigenvalues
- 2. Symmetric, positive semidefinite

$\bullet A^T A$ invertible iff A has independent columns

Determinants
$$\det(AB) = \det(A) \det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(\operatorname{adj}(A)) = \det(A)^{n-1}$$

$$\det(A^n) = (\det(A))^n$$

$$\det(cA) = c^n \det(A)$$

$$\det(cA) = \int_{i=1}^n A_{i,i}$$

$$\det(A^n) = \det(A) = |A|$$

$$\det(A_{\operatorname{tringl}}) = \prod_{i=1}^n A_{i,i}$$

$$\det\left[a \quad b \atop c \quad d\right] = ad - bc$$
Inverse
$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^{-1})^{-1} = A$$

$$(kA^{-1}) = \frac{1}{k}A$$

$$(A^{-1})^{-1} = I_n$$

$$\begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d \quad -b \\ -c \quad a \end{bmatrix}$$
Transpose
$$(A^T)^T = A$$

$$(AB)^T = B^TA^T$$

$$(kA^T) = kA^T$$

Injectivity and Surjectivity

Injective: (one-to-one)

1. $f(x) = f(y) \leftarrow x = y$ (map to the same point)

 $(A + B)^T = A^T + B^T$

- 2. rank(A) = n
- 3. pivot in every column

Surjective: (onto)

- 1. $\forall \vec{b} \in \mathbb{R}^m, \exists \vec{x} \in \mathbb{R}^n \text{ such that } f(\vec{x}) = \vec{b}$
- 2. $\operatorname{rank}(A) = \mathbf{m}$
- 3. pivot in every row

Gram-Schmidt Process

Gram-Schmidt Process: (orthogonalize basis)

 $\vec{v_1} = \vec{x_1}$ (remember to normalize at end)

 $\vec{v_2} = \vec{x_2} - \frac{\vec{v_2} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1}$ $\vec{v_p} = \vec{x_p} - \frac{\vec{x_p} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} - \frac{\vec{x_p} \cdot \vec{v_2}}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} - \dots \frac{\vec{x_p} \cdot \vec{v_{p-1}}}{\vec{v_{p-1}} \cdot \vec{v_{p-1}}} \vec{v_{p-1}}$

QR Factorization (A = QR):

 $A_{n\times q}$ has independent columns. Apply Gram-Schmidt on columns to get $\{\vec{v_1},..,\vec{v_q}\}$, then normalize to $\{\vec{u_1}, ..., \vec{u_q}\}$

- $\bullet Q = [\vec{u_1}, ..., \vec{u_q}]$
- $\bullet R = Q^T A$

Invertible Matrix Theorem

- 1. A is row-equivalent to the $n \times n I_n$.
- 2. A has n pivot positions.
- 3. The equation Ax = 0 has only the trivial solution.
- 4. The columns of A form a linearly independent set.
- 5. The linear transformation $x \mapsto Ax$ is one-to-one.
- 6. $\forall b \in \mathbb{R}^n$, $A\vec{x} = \vec{b}$ has a unique solution.
- 7. The columns of A span \mathbb{R}^n .
- 8. The linear transformation $x \mapsto Ax$ is a surjection.
- 9. There is an $n \times n$ matrix C such that $CA = I_n$.
- 10. There is an $n \times n$ matrix D such that $AD = I_n$.
- 11. The transpose matrix A^T is invertible.
- 12. The columns of A form a basis for \mathbb{R}^n .
- 13. The column space of A is equal to \mathbb{R}^n .
- 14. The dimension of the column space of A is n.
- 15. The rank of A is n.
- 16. The null space of A is $\{0\}$.
- 17. The dimension of the null space of A is 0.
- 18. 0 fails to be an eigenvalue of A.
- 19. $\det(A) \neq 0$
- 20. The orthogonal complement of Col(A) is $\{0\}$.
- 21. The orthogonal complement of Nul(A) is \mathbb{R}^n .
- 22. The row space of A is \mathbb{R}^n .

Projections

- 1. Projection matrices are symmetric.
- 2. $P^2 = P$ (1&2 $\Leftrightarrow P$ is projection matrix)
- $\bullet P$ projects onto Col(P)
- $\bullet proj_{\vec{u}}\vec{v} = \frac{\vec{v} \cdot \vec{u}}{||\vec{u}||^2}\vec{u}$
- $\bullet proj_w \vec{b} = P\vec{b}, w = col(A)$
- $\bullet P_{\text{Row}(A)} = I P_{\text{Col}(A)}$
- $\bullet \vec{v} \in \text{Nul}(A) \Rightarrow \forall \vec{u} \text{ s.t. } \vec{u} \cdot \vec{v} = 0, \vec{u} \in \text{Row}(A)$
- $\bullet \vec{v} \in w \Leftrightarrow proj_w \vec{v} = \vec{v}, \text{ so } P\vec{v} = \vec{v} \Rightarrow v \in w$
- $\bullet \vec{v} \in w^{\perp} \Leftrightarrow proj_w \vec{v} = 0$, so $P\vec{v} = 0 \Rightarrow v \in w^{\perp}$
- $Rank(P_{subspace}) = dim(subspace)$
- $\bullet ||P_{\text{Row}(A)}\vec{x}||$ is shortest distance from \vec{x} to Nul(A)
- • $P = A(A^TA)^{-1}A^T$ In general (subspace)
- $P = \frac{(\vec{a})(\vec{a}^T)}{(\vec{a}^T)(\vec{a})}$ (for line only)

Shortcut for Orthonormal vectors:

 $P\vec{b} = (\vec{a_1} \cdot \vec{b})\vec{a_1} + (\vec{a_2} \cdot \vec{b})\vec{a_2} + \dots + (\vec{a_n} \cdot \vec{b})\vec{a_n}$

Shortcut for Orthogonal vectors:

 $P\vec{b} = proj_{\vec{a_1}}b + proj_{\vec{a_2}}b + \dots + proj_{\vec{a_n}}b$

Example:
$$P_W \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$$
, find W

$$\vec{b} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \notin W, \vec{b} \notin W^{\perp}$$

so
$$\vec{z} = \vec{b} - P\vec{b}$$
, and $\vec{z} \in W^{\perp}$

$$\vec{z} = \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} - \begin{bmatrix} 0\\-2\\-2 \end{bmatrix} = \begin{bmatrix} 1\\3\\3 \end{bmatrix} \Rightarrow W \text{ given by } x + 3y + 3z = 0$$

Singular Value Decomposition

 $A = U\Sigma V^T$; orthogonal, diagonal, orthogonal

Finding an SVD: $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$

- 1. orthogonally diagonalize $A^T A$
- 2. Σ : diagonal decreasing $\sqrt{\text{eigenvalues}}$, 0's elsewhere
- 3. V: eigen's corresponding to Σ 's $\sqrt{\text{eigenvalues}}$
- 4a. $\vec{u_i} = \frac{1}{\sigma_i} A \vec{v_i}$, while possible

4b.
$$\vec{u}_{(n+1...m)} = \text{Nul}\left(\begin{bmatrix} \vec{u_1}^T \\ \vdots \\ \vec{u_n}^T \end{bmatrix}\right) (\because U \text{ is orthogonal})$$

Pieces of SVD: $A = \sum_{i=1}^{r} = \sigma_i \vec{u}_i \vec{v}_i^T$

- $\sum_{i=1}^{\phi} = \sigma_i \vec{u}_i \vec{v}_i^T$ is best rank ϕ approximation of A Reduced SVD: $A = U_r \Sigma_r V_r^T$

 $\bullet A_{m \times n} = U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$ Psuedo-Inverse $A^+ = V_r \Sigma_r^{-1} U_r^T$:

- $\bullet \hat{x} = A^+ \vec{b}$
- $\bullet AA^+ = P_{\operatorname{Col}(A)} = U_r U_r^T$
- $\bullet A^+ A = P_{\text{Row}(A)} = V_r V_r^T$

Geometry of SVD:

- 1. σ_1 : max length of ellipsoid
- 2. $\vec{v_1}$: $A\vec{v}$ maximizes len(ellipsoid)
- 3. $\vec{u_1}$: direction of largest axis
- rotate, stretch, rotate (like orthog. diagonalization)
- $\bullet A \operatorname{Row}(A) = \operatorname{Col}(A) = \operatorname{Row}(A^T)$
- $||\vec{x}|| = 1 \Rightarrow \max(||A\vec{x}||) = \sigma_1$. Occurs at $\vec{x} = \text{cor-}$ responding eigen.

Polar Decomposition: A = QS: (rotate, stretch)

- 1. $S = V \Sigma V^T$ is symmetric positive semidefinite
- 2. $Q = UV^T$ is orthogonal

Bases of 4 fundamental subspaces from SVD:

- 1. Col(A): first r cols of U
- 2. Nul(A^T): cols beyond rth of U; (r + 1...m)
- 3. Row(A): first r rows of V^T
- 4. Nul(A): rows beyond rth of V^T ; (r+1...n)

Applications of SVD to Stats

 $B_{m \times n}$: A w/ elements as value - row's mean

Covariance Matrix: $S_{m \times m} = \frac{1}{n-1}BB^T$

 \mathbf{PCA} : Principal Components are unit eigen of S

- Total Variance = $\sum_{i=1}^{m} S_{(i,i)} = \sum_{i=1}^{m} \lambda_i$
- var(principle component i) = λ_i

Least Squares

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

- Normal equations for $A\vec{x} = \vec{b}$: $A^T A \vec{x} = A^T \vec{b}$
- $\bullet A^T A \vec{x} = A^T \vec{b}$ has same solutions as \hat{x} .
- $\bullet A\hat{x} = proj_w \vec{b}$
- $\bullet \hat{x} = R^{-1}Q^T\vec{b}$, where A = QR factorization
- $\bullet \hat{x} = \vec{x}$ s.t. $A\hat{x}$ is as close as possible to \vec{b}
- $\bullet \hat{x} = A^+ \vec{b}$

Orthogonal Diagonalization & Spec. Decomp.

- $A = QDQ^T$ for orthogonal Q
- $-A^T = A \Rightarrow A\vec{x} = (A\vec{x})^T$

Spectal Theorem for Orthognal Matrices:

- 1. A is orthogonally diagonalizable iff $A = A^T$
- 2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation
 - 3. Eigen for different λ 's orthogonal
 - 4. Symmetric A has real eigenvalues

Spectral Decomposition:

$$\vec{A} = \sum_{i=1}^{n} \lambda_i \vec{u_i} \vec{u_i}^T \Leftrightarrow (Q = [\vec{u_1}, \vec{u_2}, ..., \vec{u_n}])$$

Quadratic Forms of Symmetric Matrices

 $A_{n\times n}$ has quadratic form $Q(\vec{x}) = \vec{x}^T A \vec{x}$ for $\vec{x} \in \mathbb{R}^n$

$$Q(x) = a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 \Leftrightarrow A = \begin{bmatrix} a_1 & \frac{a_2}{2} \\ \frac{a_2}{2} & a_2 \end{bmatrix}$$

- Definite: $Q(\vec{x}) < 0 \forall x \neq 0 \Leftrightarrow \lambda < 0 \forall \lambda$
- Semidefinite: $Q(\vec{x}) \leq 0 \forall x \neq 0 \Leftrightarrow \lambda \leq 0 \forall \lambda$
- + Definite: $Q(\vec{x}) > 0 \forall x \neq 0 \Leftrightarrow \lambda > 0 \forall \lambda$
- + Semidefinite: $Q(\vec{x}) \ge 0 \forall x \ne 0 \Leftrightarrow \lambda \ge 0 \forall \lambda$
- Semidefinite has ∞ mins/maxes
- Definite matrices are symmetric
- Q(x) of $A_{n\times n}$ has $n x_i^2$ terms
- $||\vec{x}|| = 1 \Rightarrow \min_{\alpha} Q(\vec{x}) = \min_{\alpha}(\lambda), \max_{\alpha} Q(\vec{x}) = \max_{\alpha}(\lambda)$
- Max occurs at $\vec{x} = \frac{1}{||\text{eigen}||}$ eigen for $\max(\lambda)$

Principal Axes Theorem:

Symmetric A has orthogonal change of vars $\vec{x} = P\vec{y}$, transforms $\vec{x}^T A \vec{x}$ into $\vec{y}^T Q \vec{y}$ w/ no cross-prod term.

- After change of vars, coeff's on y_i^2 are eigenvalues