- D. nuclear magnetic resonance
 - magnetic technique
 - magnetism originates from unpaired spin
 - electrons have spin, but most of the time they are paired, so no net magnetism.
 - there is a technique called electron spin resonance (ESR) that can be used to interrogate radicals and other exotic molecules with unpaired electrons.
 - we will be concerned instead with nuclear spins

VII.D IR and NMR

- 1. magnetic nuclei
 - nuclei have quantized spins (I)
 - ullet I is an angular momentum like ℓ and s.
 - \bullet just like any angular momentum, it has z-component \textbf{m}_{I} that run from -I to I

• I = 1/2:
$$m_I = -1/2, \frac{1}{2}$$

• I = 2: $m_I = -2, -1, 0, 1, 2$

• you cannot predict the value of I, but you can predict whether it will be ½-integer or whole integer from the number of protons and neutrons

protons	neutrons	I	example
even	even	0	¹² C, ¹⁶ O
even	odd	½-integer	¹ H, ¹³ C
odd	even	½-integer	¹⁹ F, ³¹ P
odd	odd	integer	² H, ¹⁴ N

1

- 1. magnetic nuclei cont.
 - in absence of magnetic field, m_I states are degenerate
 - add a magnetic field (B) and the spin magnetic moment interacts with the magnetic moment of the field
 - E of state now depends on m_1 : $E = -\gamma \hbar m_1 B_0$
 - γ = magnetogyric ratio (rad T⁻¹ s⁻¹)
 - isotope dependent
 - scaling factor
 - $\hbar = h/2\pi (J s rad^{-1})$
 - B₀ = applied field strength (T)
 - consider $I = \frac{1}{2}$
 - $m_1 = \pm \frac{1}{2}$
 - +½ stabilized
 - -1/2 destabilized

VII.D IR and NMR

• 1. magnetic nuclei continued

magnetic moment lines up and precesses around the applied field.

 B_0

- two states: with the field or against the field
 - $\Delta E = \gamma \hbar B_0$
 - for 7 Tesla magnet, ¹H
 - $\Delta E = \frac{2.675 \times 10^8 * 6.626 \times 10^{-34} * 7.0 T}{2\pi}$
 - 1.97 x 10⁻²⁵ J
 - Δ E=hv gives v=3 x 10⁸ Hz, 300 MHz

- 1. magnetic nuclei cont.
 - ullet different nuclei have different γ values and will have different energy gaps.
 - typically one fixed the magnet (B₀) and varies the frequency of applied radiation

VII.D IR and NMR

- 1. magnetic nuclei cont.
 - since ΔE is so small, there is only a very small excess in the ground state.

•
$$\frac{N_1}{N_0} = e^{-\frac{\Delta E}{k_B T}} = e^{-\frac{1.97 \times 10^{-25} J}{1.38 \times 10^{-23} J K^{-1} * 298 K}} = 0.99995$$

- this leads to N_0/N_1 = 1.0000486, i.e. 49 ppm excess in ground state
- radio frequency EM radiation is used to promote ½ of the excess ground state spins to the excited state
- at this point $N_0 = N_1$ and we say that the system is "spin saturated" and no net change in population occurs.
- once the r.f. pulse is turned off, the excited molecules will "relax" back to the equilibrium populations

• 2. relaxation

- nuclei that have been excited to their excited states will relax via one of two mechanisms
 - a. spin-lattice (T₁)
 - external conversion-like transfer of excess energy to the solvent
 - also called longitudinal relaxation
 - T₁ is ½ life for relaxation through this mechanism
 - b. spin-spin (T₂)
 - energy transfer to neighboring spins (self quenching)
 - results in a newly excited nuclei that is out of phase (see next slide)
 - T₂ is ½ life for relaxation through this mechanism
- overall relaxation is due to a combination of both mechanisms

VII.D IR and NMR

- 3. Fourier transform NMR
 - first step in an experiment is called a 90° pulse.
 - short pulse of r.f. radiation that equalizes the population of up and down spins

- in addition to equalizing the spin population, the pulse also causes all of the nuclei to precess in phase with each other
 - creates a net moment precessing around the magnetic field
 - this moment can be detected by r.f. coils

7

• 3. FT-NMR cont.

- precessing magnetic moment is detected as a sine wave at the detector with magnitude proportional to the total number of spins that are "in phase" with each other
- once the r.f. pulse ends, T₁ will cause the xy-component of the moment decrease in magnitude due to fewer excited spins (spin down). tip angle goes from 90°back to equilibrium angle

VII.D IR and NMR

• 3. FT-NMR cont

- precessing magnetic moment is detected as a sine wave at the detector with magnitude proportional to the total number of spins that are "in phase" with each other
- once the r.f. pulse ends, T₂ will cause the xy-component of the moment decrease in magnitude due to spins being out of phase.

• 3. FT-NMR cont

- result of T₁ and T₂ relaxation is called a free-induction decay
 - exponentially decaying function of time $(e^{-\left(\frac{t}{T_1} + \frac{t}{T_2}\right)})$

VII.D IR and NMR

• 3. FT-NMR cont.

• the precession frequency depends on the energy gap, so nuclei in different environments have different frequencies that can be obtained by Fourier transform

• 4. chemical shift

- we have been saying that ¹H has an energy gap corresponding to 300 MHz, but that is not strictly true
 - electrons generate a magnetic field (B_{σ}) that opposes the applied field B_0 creating an "effective" magnetic field ($B_{\rm eff}$)
 - B_{σ} is said to "shield" the nucleus from the applied field (B_0).
 - we can define a shielding parameter (σ) that describes the amount of shielding
 - large electron density = large σ , shielded nucleus, smaller E gap
 - small electron density = small σ , de-shielded nucleus, large E gap

VII.D IR and NMR

- 4. chemical shift cont.
 - consider CH₃OH
 - two types of proton

	CH ₃	ОН
e- density @ H	high	low
shielding (σ)	high (shielded)	low (deshielded)
B _{eff}	smaller	larger
ΔΕ, ν	smaller	larger

- 4. chemical shift cont.
 - since field strengths vary, we use an internal standard and reference all resonances to it
 - tetramethylsilane (TMS) is often used as reference.
 - inert, single peak, very highly shielded

VII.D IR and NMR

- 4. chemical shifts cont.
 - define: chemical shift (δ) is the amount the resonant frequency for each "sample" nuclei exceeds that of the "reference" nuclei
 - usually quite small and measured in parts per million (ppm)

•
$$\delta = \frac{v_{sample} - v_{reference}}{v_{reference}} x \ 10^6$$

- example:
 - v_{CH3} = 300,001,020 Hz, v_{TMS} = 300,000,000
 - $\Delta v = 1020 \text{ Hz}$
 - δ = 1020/300,000,000 x 10⁶ = 3.4 ppm
- important: δ is independent of B_0
- CH₃ protons in methanol will always appear at 3.4 ppm regardless of the instrument

• 4. chemical shifts

VII.D IR and NMR

- 5. magnetic anisotropy
 - aromatic and alkyne protons seem out of place
 - this is due to magnetic anisotropy
 - p-electrons in circular arrangement can produce a current that interacts with the proton's nuclear spin.

- 6. spin-spin coupling
 - similar to spin-orbit coupling
 - individual spins interact with each other if they are close to each other
 - consider diethyl ether CH₃CH₂OCH₂CH₃
 - two types of protons CH₃ and CH₂
 - now let's consider just ONE of the methyl protons (1)
 - it is close enough to interact with the two CH₂ protons
 - · each of those can be either up or down

 \uparrow

 \uparrow

 \uparrow

- the vectors add so the both are up, the CH₃ shifts down-field, when both are down the CH₃ shifts up-field and when one is up and one is down the CH₃ doesn't shift.
- results in a triplet with weight 1:2:1

VII.D IR and NMR

- 6. spin-spin splitting
 - CH₃CH₂OCH₂CH₃ continued
 - now consider the CH₂ protons

 \uparrow $\uparrow \uparrow \downarrow$

 $igwedge \psi_{\psi \uparrow}$

 \uparrow $\uparrow \uparrow \uparrow$

 \uparrow $\uparrow \downarrow \uparrow$

 \uparrow $\downarrow \uparrow \downarrow$

 \uparrow \downarrow \downarrow \downarrow

 \uparrow $\uparrow \uparrow \downarrow$

 \uparrow $\uparrow \downarrow \downarrow$

• results in a quartet (1:3:3:1)

- 6. spin-spin splitting rules
 - a. equivalent nuclei DO NOT split each other
 - this allowed us to only consider 1 CH₃ or 1 CH₂ proton
 - b. significant splitting only observed for:
 - geminal (two bonds)
 - vicinal (three bonds)

- c. multiplicity of peak given by (2nI+1)
 - I = spin of splitting nucleus
 - n = number of splitting nuclei
 - for H, $I = \frac{1}{2}$, so splitting is (n+1)
 - examples:
 - CHF₃: H will be a quartet (2*½*3 + 1)
 - CH_2F_2 : H will be a triplet $(2*\frac{1}{2}*2 + 1)$
 - CH₃F: H will be a doublet (2*½*1 + 1)

21

VII.D IR and NMR

- 6. spin-spin splitting cont.
 - d. If more than one different splitting type of proton (A and C), the multiplicity for proton B is given by

$$(n_A + 1)(n_C + 1)$$

example: for CH₃CH₂CH₂CN

 H_A : split by 2 H_B = triplet

 H_B : split by 2 H_C and 2 H_A = (2+1)(3+1) = 12 total peaks (multiplet)

 H_C : split by 2 H_B = triplet

compare with CH₃CH₂CH₃

red H: split by 2 blue H: triplet blue H:split by 6 red H: septet

- 6. spin-spin splitting cont.
 - d. continued
 - ullet coupling constants J_{XY} give the strength of interaction between two nuclei.
 - consider H_B in CH₃CH₂CH₂CN again
 - \bullet two different coupling constants J_{AB} and J_{BC}

23

VII.D IR and NMR

- 6. spin-spin splitting rules
 - e. peak heights within multiplets given by Pascal's triangle

what if you did H_C first? H_C triplet 1:2:1 then H_a quartet and each quartet is 1:3:3:1

1

4

1

1

1

1:2:1 3:6:3 3:6:3 1:2:1

- 6. spin-spin splitting rules
 - f. coupling constants are always measured in Hz and are independent of B₀
 - allows discernment of J and δ (which will resonate at different Hz value depending on ${\rm B}_{\rm O})$
 - g. the number of hydrogens contributing to a given multiplet is given by integration of the peak area.

25

VII.D IR and NMR

• 7. ¹³C NMR

- 13C is also a spin ½ nucleus
 - gives sharp peaks in NMR
 - but weak signals due to
 - low abundance
 - small γ (~25% of ¹H)
 - much larger chemical shift range (~250 ppm)
 - ¹³C spectra are broadband decoupled from ¹H
 - sample is flooded with radiation that spin saturates ALL of the protons in the molecule.
 - equal chance of spin up or spin down protons
 - ALL ¹³C resonances are singlets (unless ³¹P or ¹⁹F present)
 - spin-spin coupling between ¹³C is negligible due to low abundance
 - integration not useful
 - · main use is to tell the number of distinguishable carbons

• 7. ¹³C NMR

VII.D IR and NMR

• 8. NMR instrumentation

- powerful but pricey
 - \$300,000 > \$1,000,000
- most modern instruments are 300 MHz and up
- need magnets > 7 Tesla
- can't get there with permanent magnets or traditional electromagnets
- need to use superconducting materials (next slide)
- which need to be cooled with liquid He to 4.2 K

• 8. NMR instrumentation

- magnetic field is produced in superconducting coils of wire (Nb-Ti or Nb₃Sn)
- · additional coils are used to:
 - shim the magnetic filed (shim coils)
 - create pulses of r.f. radiation (excite coils)
 - detect signal from nuclei (detect coils)
 - flood sample with continuous r.f. radiation for de-coupling (de-coupling coils)

29

VII.D IR and NMR

• 9. examples: (CH₃CH₂Cl)

• 9. examples: CH₃CH₂CH₂Cl

VII.D IR and NMR

• 9. examples: (CH₃)₂CHCl

• 9. examples: (CH₃CH₂CH₃)

VII.D IR and NMR

• 9. examples: C₆H₅CH₃

• 9. examples: p-Cl-C₆H₄-CH₃

VII.D IR and NMR

• 9. examples: i-pr-C(=O)-CH₃

• 9. examples: cis-2-pentene

VII.D IR and NMR

• 9. examples: trans- vs cis-2-pentene

- 9. examples: pentanol
 - new splitting rule: H's on OH, NH, do not split and are not split

VII.D IR and NMR

• 9. examples: HO-CH₂CH₂CH₂-NH₂

• 9. examples: butanal

