Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică

Secția: Informatică engleză Curs: Dynamical Systems

Primăvara 2024

Lecture 14 - List of problems

- 1. Find a range of values for h > 0 such that the attractor equilibrium point of $x' = x^2 + 5x + 6$ is also an attractor fixed point of the discrete dynamical system associated to the Euler's numerical formula with stepsize h > 0 for the given differential equation. \diamond
 - 2. We consider the pray-predator system

$$\dot{x} = x(1-y), \quad \dot{y} = -y(2-x).$$

- (a) Find the expression of a first integral in $(0, \infty) \times (0, \infty)$. Check it using the corresponding first order partial differential equation.
 - (b) If (2,1) is an equilibrium point, is it hyperbolic? Is it stable? \diamond
- **3.** (a) Let $A \in \mathcal{M}_n(\mathbb{R})$ and $\eta \in \mathbb{R}^n$. Write a representation formula for the solution of the IVP

$$X' = AX, \quad X(0) = \eta.$$

(b) Let $t \in \mathbb{R}$. Using the definition of the matrix exponential, compute

$$e^{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}, \quad e^{t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}, \quad e^{t \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}, \quad e^{t \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}.$$

(c) Let $A, J, P \in \mathcal{M}_n(\mathbb{R})$ and assume that P is invertible and $A = PJP^{-1}$. Prove that $e^A = Pe^JP^{-1}$. \diamond

4. Let $a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}$ be such that $a_{12} \neq 0$. Show that the roots of the characteristic equation corresponding to the second-order difference equation obtained by reducing the linear system

$$x_{k+1} = a_{11}x_k + a_{12}y_k, \quad y_{k+1} = a_{21}x_k + a_{22}y_k$$

are the eigenvalues of the matrix associated to this system. \diamond

- **5.** We consider the IVP y' = -200y, y(0) = 1, where the unknown is the function y(t).
 - a) Find the solution and its limit as $t \to \infty$.
 - b) Write the Euler's numerical formula with constant step-size h.
- c) For h=0.001, and, respectively, h=0.01 find the solution $(y_k)_{k\geq 0}$ of the difference equation found at b) and decide if it satisfies $\lim_{k\to\infty}y_k=0$.
- d) Find a range of values for the step-size h such that the solution $(y_k)_{k\geq 0}$ of the difference equation found at b) satisfies $\lim_{k\to\infty}y_k=0$. \diamond