CÂU LAC BÔ CHÚNG TA CÙNG TIẾN

BÀI TẬP TỰ LUYỆN CUỐI KÌ - MÔN: ĐẠI SỐ TUYẾN TÍNH

CHUONG 4+5: KHÔNG GIAN EUCLID+ÁNH XẠ TUYỀN TÍNH

I. Chương 4:

1. Trắc nghiệm

Câu 1. Trong không gian \mathbb{R}_2 , cho tích vô hướng $(x,y) = ((x_1;x_2),(y_1;y_2)) = x_1y_1 + 2x_1y_2 + x_2y_1 + x_2y$ $3x_2y_2$. Tính ((2;5),(3;1))

(A) 40.

(**B**) 22.

 $(\mathbf{C}) 34.$

Câu 2. Trong không gian Euclid V với hai vector x,y và không gian con M. Khẳng định nào sau đây không chính xác?

 $(\mathbf{A})||x|| - ||y|| \le ||x + y||.$

 $\mathbf{C}(x,x)$ có thể mang giá trị âm.

Câu 3. Tìm một cơ sở trực giao của không gian vector con V của \mathbb{R}_4 , biết

$$L = <(1; 1; 0; 0), (1; 1; 1; 1), (0; -1; 0; 1) >$$

Câu 4. Trong không gian vector Euclid \mathbb{R}_3 với tích vô hướng chính tắc, cho không gian con F = <(1;0;2),(2;-1;2) > và vector z = (1;1;-1). Tìm d(z,F).

 $\bigcirc \frac{10}{2}$.

Câu 5. Trong không gian $P_2[x]$ có tích vô hướng $(p(x), q(x)) = \int p(x) \cdot q(x) dx$ và hai vector $a(x) = \int p(x) \cdot q(x) dx$

 $2x^2-4, b(x)=-x^2+4x+6.$ Tính d(a,b) (làm tròn đến 2 chữ số).

 (\mathbf{B}) 14, 12.

 (\mathbf{C}) 10, 91.

 (\mathbf{D}) 13, 20.

Câu 6. Lấy dữ kiện từ câu 5, tính cos góc giữa a và b (làm tròn đến 2 chữ số).

 $(\mathbf{A}) - 0.69.$

 $(\mathbf{B}) - 0.88.$

 $(\mathbf{C}) - 0.91.$

 $(\mathbf{D}) = 0.96.$

Câu 7. Trong không gian \mathbb{R}_2 cho một tích vô hướng $(x,y)=4x_1y_1+mx_1y_2+nx_2y_1+x_2y_2$ và vector x=(a;b). Biết $||x||=\sqrt{4a^2+b^2}, \forall a,b\in\mathbb{R}$. Hỏi bộ số (m,n) nào dưới đây thỏa mãn đề bài?

 $(\mathbf{A})(2;-1).$

 $(\mathbf{B})(4;4).$

 $(\mathbf{C})(1;2).$

(**D**) Đáp án khác.

2. Tự luận

Câu 8. Tìm cơ sở trực chuẩn của của không gian vector con V thuộc \mathbb{R}_4 , biết

$$V = \left\{ (x_1, x_2, x_3, x_4) \middle| \begin{cases} -x_1 + x_2 + x_3 = 0 \\ 2x_1 - x_3 + 3x_4 = 0 \end{cases} \right\}$$

Đề bài sau dùng cho câu 9 và 10

Trong không gian \mathbb{R}_3 với tích vô hướng

$$\forall x = (x_1; x_2; x_3), y = (y_1; y_2; y_3) : (x, y) = x_1 y_1 + 3x_2 y_2 - 2x_2 y_3 - 2x_3 y_2 + 4x_3 y_3$$

cho hai không gian con $F = \{(x_1; x_2; x_3) | 2x_1 - x_2 + 3x_3 = 0\}$ và G = <(1; 0; 2), (0; 1; -1) >

Câu 9. Tìm một cơ sở và số chiều của F^{\perp} .

Câu 10. Tìm một cơ sở và số chiều của $(F \cap G)^{\perp}$

Câu 11. Tìm số chiều và một cơ sở trực chuẩn của họ DLTT với tích vô hướng chính tắc

$$F = \{(1; 1; 1; 1), (1; 0; 1; 1), (-1; -2; 0; 1), (3; 3; -1; 2)\}$$

II. Chương 5:

1. Trắc nghiêm

Câu 12. Trong không gian với hệ trục tọa độ Oxyz, cho ánh xạ tuyến tính f là phép chiếu vuông góc đến mặt phẳng (P): -x + 2y - z = 0. Tìm f(2; 3; 1). $\textcircled{\mathbf{A}}(\frac{2}{5}; 5; -\frac{3}{2})$. $\textcircled{\mathbf{B}}(\frac{1}{2}; 6; -\frac{1}{2})$. $\textcircled{\mathbf{C}}(\frac{6}{5}; \frac{6}{5}; \frac{1}{2}; \frac{$

$$(\mathbf{A})(\frac{2}{5};5;-\frac{3}{2}).$$

B
$$(\frac{1}{2}; 6; -\frac{1}{2}).$$

$$(\mathbf{C})(\frac{6}{5}; \frac{23}{5}; \frac{1}{5}).$$

$$\bigcirc$$
 $(\frac{5}{2}; 2; \frac{3}{2}).$

Câu 13. Cho ánh xạ tuyến tính $f : \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết $f(x_1; x_2; x_3) = (2x_1 + x_3; x_2 - 3x_3; x_1 + x_2 - x_3)$. Tìm ma trận A của f trong cơ sở $E = \{(2; 1; 4), (-1; 3; 1), (0; 5; 3)\}$

Câu 14. Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết $\forall x = (x_1; x_2; x_3) \in \mathbb{R}_3, f(x) = (x_1 + x_2 - x_3)$ $3x_3; x_1+2x_2; x_2+3x_3).$ Tìm một cơ sở và số chiều của Kerf.

- $(\mathbf{A})\{(6;3;1),(2;0;5)\},\dim(Kerf)=2.$
- $(\mathbf{B})\{(6; -3; 1)\}, \dim(Kerf) = 1.$

(C) $\{(-2, 0, 5)\}, \dim(Kerf) = 1.$

 $(\mathbf{D})\{(1;-2;3)\}, \dim(Kerf) = 1.$

Câu 15. Lấy ánh xạ tương nhự như câu 3, hãy tìm cơ sở và số chiều của Imf.

- $(\mathbf{A})\{(1;1;0),(0;1;1)\},\dim(Imf)=2.$
- $(\mathbf{B})\{(1;1;0),(-1;0;1)\},\dim(Imf)=2.$
- $(\mathbf{C})\{(1;1;0),(1;2;1),(-3;0;-3)\},\dim(Imf)=3.$
- $(\mathbf{D})\{(1;1;0),(0;1;1),(1;0;-1)\},\dim(Im f)=3.$

Câu 16. Cho ánh xạ tuyến tính $f: P_3[x] \longrightarrow P_3[x]$, biết $f(p(x)) = x^3 \cdot p'(x)$. Vector nào sau đây không thuộc Im(f)?

- $(\mathbf{A}) 2x^4 3x^3.$
- **(B)** $2x^5 7x^4$. **(C)** $3x^6$.

 $(\mathbf{D}) x^3$.

Câu 17. Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$, biết f(1; -2; 1) = (2; -1), f(2; 0; 2) = (3; 0), f(-1; 3; 2) =(1;1). Tính f(7;3;22).

- (A)(-1;14).
- (\mathbf{B}) (4; 17).
- (C) (3; -2).
- $(\mathbf{D})(26;-1).$

2. Tự luận

Câu 18. Cho ánh xạ tuyến tính $f: \mathbb{R}_2 \longrightarrow \mathbb{R}_3$, biết $f(x_1; x_2) = (x_1 + x_2; x_1 - 6x_2; 2x_2)$. Tìm ma trận A của f trong cặp cơ sở $E = \{(1, 4), (3, 5)\}, F = \{(1, 2, 2), (0, 2, 5), (3, 4, 4)\}.$

Câu 19. Tìm một ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết Kerf được sinh ra bởi $\{(2;2;3)\}$ và Imfđược sinh ra bởi $\{(0;1;2),(2;5;4),(1;2;1)\}$.

Câu 20. Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết ma trận của f trong cặp cơ sở E =

$$\{(1;0;2),(1;1;1),(2;1;0)\} \text{ và } F = \{(1;2;2),(-1;0;0),(0;2;1)\} \text{ là } A = \begin{pmatrix} 1 & -3 & 1 \\ -2 & 3 & 0 \\ 1 & 0 & -1 \end{pmatrix}. \text{ Tìm một } \text{cơ sở của } Ker f$$

co sở của Kerf.