Data Structures and Algorithms

Spring 2009-2010

Outline

- Graph Algorithms
 - Weighted Shortest-Path Algorithms

Outline

- Graph Algorithms
 - Weighted Shortest-Path Algorithms

Shortest Path on Weighted Graphs

- Problem is similar to unweighted case but now we may discover a cheaper path to a node than we had already
- When a cheaper path to a node is discovered need to update cost of getting to the node and path that gets you there
- This happens when distances do not obey the triangle inequality: compare A - C - D with A - D

Dijkstra's Algorithm

- The problem with an identical approach to BFS is that we may encounter a cheaper path to a vertex later in the algorithm
- Dijkstra's Algorithm replaces the queue data structure with a priority queue
- At each step, instead of picking out the first vertex in the queue to explore next we pick out the nearest one (del_min operation)
- The key argument of the algorithm is that the vertex removed from the priority queue cannot be reached by a shorter path

What is the shortest distance from s to e?

S	Α	В	С	D	е	Explore
0	∞	∞	∞	∞	∞	S
	3(<i>s</i>)	1(<i>s</i>)	∞	∞	∞	В
	2(<i>B</i>)		4(<i>B</i>)	6(<i>B</i>)	∞	Α
			4(<i>B</i>)	6(<i>B</i>)	∞	С
				5(<i>C</i>)	7(<i>C</i>)	D
					6(<i>D</i>)	е

Notation: an entry of "5(C)" in column D means there is a path of cost 5 to D with C as immediate predecessor; read downwards, a node's column changes from a) ∞ to b) better and better to, finally, c) best cost to it.

Row entries indicate the shortest known distance **to date**; when it is smallest in row it is **explored**.

So, working backwards, best path is *sBCDe*

What is the shortest distance from *H* to *B*?

Н	F		G		E		D		Α		С		В		Explo		
0	\propto	0	∞		∞		∞		∞		0	0	∞)	H		
	1(<i>F</i>	1)	2(<i>H</i>)		0	0	∞		∞		∞		0	0	∞)	_ F
			2(<i>H</i>)		5(F)	∞		∞		0	0	∞		G		
					5(F)	4(<i>G</i>)		С	0	0	0	∞)	<i>D</i>		
					5(1	F)			7(D)	7(1	D)	∞)	_ E		
									7(D)	7(1	D)	8(<i>E</i>	Ξ)	<i>A</i>		
											7(1	<u>D)</u>	8(<i>E</i>	Ξ)	_ C		
													8(<i>E</i>	=)	В		

At each iteration choose as node to explore next the smallest-value node in the row.

A node is **active** (in priority queue) when it is not ∞ (it has been discovered) and it has not yet turned black (not yet been removed from priority queue)

- Code for Dijkstra's algorithm is here
- Dijkstra's algorithm is an example of greedy algorithm
- A greedy algorithm is one which the item with the most "stuff" is taken on each iteration
- We have not discussed the operation decrease_p() on a priority queue; nonetheless, it can be shown that a node's cost can be adjusted in time O(log|V|)
- The while (! PQ.empty()) loop executes exactly O(|V|) times, taking a new node from the PQ each time
- These |V| delete_mins take time $O(|V|\log|V|)$
- Either a PQ insert() or decrease_p (each taking O(log|V|)) is done for each node that is connected to the node extracted from PQ iteration: O(|E|log|V|)

- Using a priority queue, the running time of algorithm is $O(|E|\log|V| + |V|\log|V|) = O(|E|\log|V|)$ since $|E| \ge |V|$ almost always
- Within the forall_adj_edges loop it appears that a node that has been selected by an earlier del_min could be reinserted in PQ
- The proof of correctness of the algorithm prevents this happening
- Correctness: exercise (either look it up in book or think about what it means for a node to be selected by the del_min() operation