```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing,svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

Out[3]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1	lounge	51	882	25000	1	44.907242	8.611560
	1	2	рор	51	1186	32500	1	45.666359	12.241890
	2	3	sport	74	4658	142228	1	45.503300	11.417840
	3	4	lounge	51	2739	160000	1	40.633171	17.634609
	4	5	pop	73	3074	106880	1	41.903221	12.495650
									•••
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920
	1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
	1535	1536	pop	51	2223	60457	1	45.481541	9.413480
	1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
	1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

```
In [4]: dt=dt[['engine_power','price']]
dt.columns=['Engine','Price']
```

In [5]: dt.head(10)

\sim			F = 1	1
	ш	т	. .	
•	ч	_		

	Engine	Price
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
5	74	7900
6	51	10750
7	51	9190
8	73	5600
9	51	6000

In [7]: sns.lmplot(x='Engine',y='Price',data=dt,order=2,ci=None)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x2a35d8a81c0>


```
Vehicle - Jupyter Notebook
 In [9]: |dt.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1538 entries, 0 to 1537
          Data columns (total 2 columns):
               Column Non-Null Count Dtype
                       -----
           0
               Engine 1538 non-null
                                          int64
           1
               Price
                        1538 non-null
                                          int64
          dtypes: int64(2)
          memory usage: 24.2 KB
In [10]:
          dt.describe()
Out[10]:
                     Engine
                                    Price
           count 1538.000000
                              1538.000000
                              8576.003901
           mean
                   51.904421
             std
                    3.988023
                              1939.958641
                   51.000000
                              2500.000000
            min
            25%
                   51.000000
                              7122.500000
            50%
                              9000.000000
                   51.000000
            75%
                   51.000000
                             10000.000000
            max
                   77.000000 11100.000000
```

In [11]: dt.fillna(method='ffill')

Engine Price

1535

1536

1537

Out[11]:

1538 rows × 2 columns

51

51

51

7500

5990

7900

```
In [15]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.04821162291901515

```
In [16]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [18]: dt500=dt[:][:500]
sns.lmplot(x="Engine",y="Price",data=dt500,order=1,ci=None)
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x2a35fb95ea0>


```
In [20]: dt500.fillna(method='ffill',inplace=True)
    x=np.array(dt500['Engine']).reshape(-1,1)
    y=np.array(dt500['Price']).reshape(-1,1)
    dt500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.0679559435816165


```
In [27]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred-model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

82 score: 0.0679559435816165