REGISTER

- Clocked sequential circuits
 - A group of flip-flops and combinational gates.
 - Flip-flops + Combinational gates (essential) (optional)
- Register
 - A group of flip-flops.
 - Gates that determine how the information is transferred into the register.

REGISTERS

- A *n*-bit register
 - *n* flip-flops capable of storing *n* bits of binary information.
 - 4-bit register is shown in Fig.6.1.

Clear =0 (active low); $A_x = 0$ Clock= \uparrow ; $A_x = I_x$ Normal Operation; Clear =1

Fig. 6.1 Four-bit register

REGISTERS

- loading / updating the register:
 The transfer of new information into a register
- Parallel loading: When all the bits of the register are loaded simultaneously with a common clock pulse

Register with Parallel load [Self Study]

Fig. 6.1 Four-bit register

SHIFT REGISTERS

- A register capable of **shifting the binary information** held in each cell to its neighbouring cell, in a selected direction is called a **shift register**.
 - Clock controls the shift operation

Universal Shift Register

- Three types of shift register
 - Unidirectional shift register
 - •A register capable of shifting in one direction.
 - Bidirectional shift register
 - •A register can shift in both directions.
 - Universal shift register
 - Has both direction shifts & parallel load/out capabilities.

Universal Shift Register (1/4)

- Capability of a universal shift register:
 - 1. A clear control to clear the register to 0;
 - 2. A clock input to synchronize the operations;
 - 3. A shift-right control to enable the shift right operation and the serial input and output lines associated w/ the shift right;
 - 4. A shift-left control to enable the shift left operation and the serial input and output lines associated w/ the shift left;
 - 5. A parallel-load control to enable a parallel transfer and the *n* parallel input lines associated w/ the parallel transfer;
 - 6. n parallel output lines;
 - 7. A control state that leaves the information in the register unchanged in the presence of the clock;

Universal Shift Register

Mode Control				
s ₁	s ₀	Register operation		
0	0	No change		
0	1	Shift right		
1	0	Shift left		
1	1	Parallel load		

UNIVERSAL SHIFT REGISTER Parallel outputs

Fig. 6.7 Four-bit universal shift register

Ring Counter

RING COUNTERS ARE IMPLEMENTED USING SHIFT REGISTERS. IT IS ESSENTIALLY A CIRCULATING SHIFT REGISTER CONNECTED SO THAT THE LAST FLIP-FLOP SHIFTS ITS VALUE INTO THE FIRST FLIP-FLOP. THERE IS USUALLY ONLY A SINGLE 1 CIRCULATING IN THE REGISTER, AS LONG AS CLOCK PULSES ARE APPLIED. (STARTS 1000->0100->0010->0001 REPEAT)

* Johnson Counter

The Johnson counter, also known as the twisted-ring counter, is exactly the same as the ring counter except that the inverted output of the last flip-flop is connected to the input of the first flip-flop.

Truth Table for a 4-bit Johnson Ring Counter

Clock Pulse No	FFA	FFB	FFC	FFD
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

AS WELL AS COUNTING OR ROTATING DATA AROUND A CONTINUOUS LOOP, RING COUNTERS CAN ALSO BE USED TO DETECT OR RECOGNIZE VARIOUS PATTERNS OR NUMBER VALUES WITHIN A SET OF DATA. BY CONNECTING SIMPLE LOGIC GATES SUCH AS THE *AND* OR THE *OR* GATES TO THE OUTPUTS OF THE FLIP-FLOPS THE CIRCUIT CAN BE MADE TO DETECT A SET NUMBER OR VALUE. STANDARD 2, 3 OR 4-STAGE JOHNSON RING COUNTERS CAN ALSO BE USED TO DIVIDE THE FREQUENCY OF THE CLOCK SIGNAL BY VARYING THEIR FEEDBACK CONNECTIONS AND DIVIDE-BY-3 OR DIVIDE-BY-5 OUTPUTS ARE ALSO AVAILABLE.

Sources:

- Digital Logic ,Stephen Brown
- http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/c wl3/report.html#bcd
- http://people.wallawalla.edu/~curt.nelson/engr354/lecture/brown/chapter7_reg_counters.pdf
- http://www.electronics-tutorials.ws