page - 1 - NIVEAU : 1 SM

COURS N° 8

Les suites numériques

I. GENERALITES SUR LES SUITES :

01. Définition :

f I est une partie de $\Bbb N$, toute application f u de f I vers $\Bbb R$ s'appelle suite numérique . Donc :

 $\mathbf{u}: \mathbf{I} \to \mathbb{R}$

 $n \mapsto u(n)$ on note simplement la suite par $(u_n)_{n \in I}$.

02. Exemples :

$$\bullet \quad \left(w_{n}=2n\right)_{n\geq 0} \; . \; v_{n}=\frac{1}{n-1} \; ; \; n\geq 2 \; . \; u_{n}=\sqrt{n+3}-\sqrt{n} \; ; \; n\in \mathbb{N} \; . \; \begin{cases} u_{n+2}=2u_{n+1}-u_{n} \; ; \; n\geq 0 \\ u_{0}=3 \; ; \; u_{1}=4 \end{cases}$$

- Pour la dernière suite pour calculer u_{i+2} il faut calculer u_i et u_{i+1} ; la suite $\left(u_n\right)$ est appelée suite récurrente d'ordre 2.
- Calculer: u, et u₃.

03. Vocabulaire:

- u_n s'appelle le terme général de la suite.
- $\mathbf{u}_{\mathbf{n}_0}$ s'appelle le premier terme de la suite avec \mathbf{n}_0 est le plus petit élément de I .
- Le nombre $u_{n_0} + u_{n_0+1} + \cdots u_n$ s'appelle la somme des $\left(n n_0 + 1\right)$ premiers termes de la suite .

04. Application :

On considère la suite numérique $\left(v_n\right)_{n\geq 1}$ définie par : $\begin{cases} v_1=1\\ v_{n+1}=1+v_n \end{cases}$.

- Calculer \mathbf{v}_2 ; \mathbf{v}_3 ; \mathbf{v}_4 .
- **2** Montrer que $\forall n \in \mathbb{N}$; $\mathbf{v}_n = \mathbf{n}$.

II. Suite majorée – suite minorée – suite bornée :

01. Activité:

On considère la suite $(u_n = \frac{1}{n})_{n>1}$.

- **1** Montrer que : \forall n ∈ $\mathbb{N}^* \setminus \{1\}$; $\mathbf{u}_n < 1$.
- **2** Montrer que : $\forall n \in \mathbb{N}^* \setminus \{1\}$; $\mathbf{u}_n > 0$.
- 3 Que peut-on déduire ?

02. Définitions :

 $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_{\mathbf{n}}}$ est une suite numérique, M et m de \mathbb{R} .

- $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_0}$ est une suite majorée par \mathbf{M} équivaut à $\forall \mathbf{n} \geq \mathbf{n}_0$; $\mathbf{u}_{\mathbf{n}} \leq \mathbf{M}$ (ou encore $\forall \mathbf{n} \geq \mathbf{n}_0$; $\mathbf{u}_{\mathbf{n}} < \mathbf{M}$).
- $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_0}$ est une suite minorée par m équivaut à $\forall \mathbf{n} \geq \mathbf{n}_0$; $\mathbf{m} \leq \mathbf{u}_{\mathbf{n}}$ (ou encore $\forall \mathbf{n} \geq \mathbf{n}_0$; $\mathbf{m} < \mathbf{u}_{\mathbf{n}}$)
- $(\mathbf{u_n})_{\mathbf{n}\geq\mathbf{n_0}}$ est une suite bornée équivaut à $(\mathbf{u_n})$ est une suite majorée et minorée .

03. Application:

page - 2 - NIVEAU: 1 SM

COURS N° 8

Les suites numériques

On considère la suite numérique $(w_n = \frac{n+3}{n+4})_{n \in \mathbb{N}}$.

 \mathbf{I} Montrer que la suite (\mathbf{u}_n) est majorée et minorée.

III. Monotonie d'une suite :

01. Activité:

 $\left(u_{n}\right)_{n\geq n_{0}}$ est une suite numérique . n et n' supérieure ou égale à $n_{0}\,$.

- Compléter pour que la suite (u_n) est croissante . $\forall n \geq n_0$, $\forall n' \geq n_0$: $n > n' \Rightarrow \dots$.
- **2** Compléter pour que la suite (u_n) est décroissante. $\forall n \geq n_0$, $\forall n' \geq n_0 : n > n' \Rightarrow \dots$

02. Définitions :

 $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} > \mathbf{n}_{\mathbf{n}}}$ est une suite numérique.

- la suite (u_n) est croissante équivaut à : $\forall n \ge n_0$, $\forall n' \ge n_0$: $n > n' \implies u_n \ge u_{n'}$.
- la suite (u_n) est strictement croissante équivaut à : $\forall n \ge n_0$, $\forall n' \ge n_0$: $n > n' \implies u_n > u_{n'}$.
- la suite (u_n) est décroissante équivaut à : $\forall n \ge n_0$, $\forall n' \ge n_0$: $n > n' \implies u_n \le u_{n'}$.
- la suite (u_n) est strictement décroissante équivaut à : $\forall n \ge n_0$, $\forall n' \ge n_0$: $n > n' \implies u_n < u_{n'}$.
 - la suite (u_n) est constante équivaut à : $\forall n \ge n_0$, $\forall n' \ge n_0$: $u_n = u_{n'}$.

03. Propriété:

 $(u_n)_{n\geq n_0}$ est une suite numérique.

- la suite (u_n) est croissante équivaut à : $\forall n \ge n_0 : u_{n+1} \ge u_n$.
- la suite (u_n) est strictement croissante équivaut à : $\forall n \ge n_0 : u_{n+1} > u_n$.
- la suite (u_n) est décroissante équivaut à : $\forall n \ge n_0 : n > n' \implies u_{n+1} < u_n$.
- la suite (u_n) est strictement décroissante équivaut à : $\forall n \ge n_0$: $u_{n+1} < u_n$.

la suite (u_n) est constante équivaut à : $\forall n \ge n_0 : u_{n+1} = u_n$.

04. Application :

On considère la suite numérique (u_n) définie par : $u_1 = 1$ et $u_{n+1} = 1 + u_n$.

L Etudier la monotonie de la suite (u_n) .

IV. Suite arithmétique :

01. Activité :

On suppose que une montagne sa hauteur est 1600 m à l'année 2000 tel que sa hauteur est influencée par l'hersions , sa hauteur démunie 2 cm chaque année .

- **1** Ecrire ses données sous forme d'une suite.
- **2** Précisé l'année tel que la hauteur sera 1599 mètre

 $Indication: on prend \ la \ suite: \ (v_n)_{n\geq 2000} \ \ tel \ que \ \ v_{n+1}=v_n-2 \ \ et \ \ v_{2000}=160000=16\times 10^4 \ .$

02. Vocabulaire:

page - 3 - NIVEAU: 1 SM

COURS N° 8

Les suites numériques

La suite (v_n) s'appelle suite arithmétique de raison r = -2.

03. Définition :

 $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_{\mathbf{n}}}$ est une suite numérique . r est un nombre réel non nul .

La suite (u_n) est arithmétique de raison r et de premier terme u_n équivaut à

$$\forall \mathbf{n} \ge \mathbf{n}_0 : \mathbf{u}_{n+1} - \mathbf{u}_n = \mathbf{r}$$
 (ou encore $\forall \mathbf{n} \ge \mathbf{n}_0 : \mathbf{u}_{n+1} = \mathbf{u}_n + \mathbf{r}$).

04. Application:

On considère la suite numérique (u_n) définie par : $u_n = 2n + 3$; $n \ge 0$.

lacksquare Montrer que : $(\mathbf{u_n})$ est une suite arithmétique et précisé ses éléments caractéristiques .

${f V}_{ullet}$ La formule du terme général d'une suite arithmétique :

01. Propriété :

(u_n)_{n≥n₀} est une suite arithmétique de raison r et de premier terme u_{n₀} on a : ∀n ≥ n₀ : u_n = u_{n₀} + (n − n₀)r

02. Démonstration :

Démontrer la propriété précédente :

03. Propriété:

 $(\mathbf{u}_n)_{n\geq n_0}$ est une suite arithmétique de raison r et de premier terme \mathbf{u}_{n_0} on a $\forall \mathbf{p}, \mathbf{q} \geq \mathbf{n}_0 : \mathbf{u}_{\mathbf{q}} = \mathbf{u}_{\mathbf{p}} + (\mathbf{q} - \mathbf{p})\mathbf{r}$

<u>04.</u> Application :

- (u_n) est une suite arithmétique de raison r = 3 et de premier terme $u_7 = 10$ calculer u_{2007} .
- (u_n) est une suite arithmétique de raison r et de premier terme $u_0 = 5$ et $u_{100} = -45$ déterminer sa raison r et u_n en fonction de n.

VI. La somme des n premier termes d'une suite arithmétique :

<u>01.</u> Propriété :

 $(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_0}$ est une suite arithmétique de raison r et de premier terme $\mathbf{u}_{\mathbf{n}_0}$ et $\mathbf{n}_0 \leq \mathbf{p} \leq \mathbf{n}$ on a :

$$S_{n} = \sum_{i=p}^{i=n} u_{i} = u_{p} + u_{p+1} + u_{p+2} + \dots + u_{n} = \left[\frac{u_{n} + u_{p}}{2} \right] \times (n-p+1) \text{ ou encore :}$$

 $\frac{S_n}{S_n} = \frac{\text{(le premier terme)} + \text{(le dernier terme)}}{2} \times \text{(le nombre des termes de la somme)}.$

02. Remarque:

- La somme suivante $S_n = u_0 + u_1 + u_2 + \dots + u_n$ possède n+1 terme . (c.à.d. n-0+1) .
- La somme suivante $S_n = u_1 + u_2 + u_3 + \dots + u_n$ possède n terme . (c.à.d. n-1+1).
- La somme suivante $S_n = u_{n_0} + u_{n_0+1} + u_{n_0+2} + \dots + u_n$ possède n+1 terme . (c.à.d. $n-n_0+1$).

VII. Suite géométrique :

page - 4 - NIVEAU : 1 SM

COURS N° 8

Les suites numériques

01. Définition :

 $(\mathbf{u}_{n})_{n \geq n_0}$ est une suite numérique . q est un nombre réel non nul .

La suite (u_n) est géométrique de raison q et de premier terme u_{n_0} équivaut à

$$\forall n \geq n_0 : u_{n+1} = q \times u_n \text{ (ou encore } \forall n \geq n_0 : \frac{u_{n+1}}{u_n} = q \text{ ; } (u_n \neq 0) \text{)}.$$

 $\overline{\text{VIII}}$. La formule du terme général d'une suite géométrique (c.à.d. u_n en fonction de n)

$$\underline{01.} \quad \text{Exemple}: \mathbf{u}_{\mathbf{n}} = 2 \times 5^{\mathbf{n}} \; ; \; \mathbf{n} \ge 0$$

On considère la suite numérique (u_n) définie par :

 \mathbf{l} Montrer que : (\mathbf{u}_n) est une suite géométrique et précisé ses éléments caractéristiques .

<u>02.</u> Propriété:

 $(\mathbf{u}_n)_{n\geq n_0}$ est une suite géométrique de raison q et de premier terme \mathbf{u}_{n_0} on $\mathbf{a}: \forall n\geq n_0: \mathbf{u}_n=\mathbf{u}_{n_0}\times q^{(n-n_0)}$

03. Démonstration :

Démontrer la propriété précédente on utilise démonstration par récurrence :

04. Propriété:

 $(\mathbf{u_n})_{\mathbf{n} \geq \mathbf{n_0}}$ est une suite géométrique de raison q et de premier terme $\mathbf{u_{n_0}}$ on a : $\forall \mathbf{p}$, $\mathbf{q} \geq \mathbf{n_0}$: $\mathbf{u_q} = \mathbf{u_p} \times \mathbf{q^{q-p}}$

IX. La somme des n premier termes d'une suite géométrique :

03. Propriété :

 $(u_n^-)_{n\geq n_0}$ est une suite géométrique de raison q et de premier terme u_{n_0} et $n_0\leq p\leq n$.

• Si
$$q \ne 1$$
 on $a : S = \sum_{i=p}^{i=n} u_i = u_p + u_{p+1} + u_{p+2} + \dots + u_n = \left\lceil \frac{q^{(n-p+1)} - 1}{q - 1} \right\rceil \times u_p$.

• Si
$$q = 1$$
 on $a : S = \sum_{i=p}^{i=n} u_i = u_p + u_{p+1} + u_{p+2} + \dots + u_n = u_p + u_p + u_p + \dots + u_p = u_p (n-p+1)$.

X. La moyenne arithmétique – la moyenne géométrique :

<u>01.</u> Propriété 1 :

Si $u_i = a$ et $u_{i+1} = b$ et $u_{i+2} = c$ sont trois terme consécutifs d'une suite arithmétique alors

$$u_i + u_{i+2} = 2u_{i+1}$$
 ou encore $a + c = 2b$. (on n'oublie pas $u_i = u_{i+1} - r$ et $u_{i+2} = u_{i+1} + r$).

La relation a+c=2b (ou $u_i+u_{i+2}=2u_{i+1}$) s'appelle moyenne arithmétique.

02. Propriété 2 :

Si $u_i = a$ et $u_{i+1} = b$ et $u_{i+2} = c$ sont trois terme consécutifs d'une suite géométrique alors

$$\mathbf{u}_{i} \times \mathbf{u}_{i+2} = (\mathbf{u}_{i+1})^2$$
 ou encore $\mathbf{a} \times \mathbf{c} = \mathbf{b}^2$. (on n'oublie pas $\mathbf{u}_{i} = \mathbf{u}_{i+1} - \mathbf{r}$ et $\mathbf{u}_{i+2} = \mathbf{u}_{i+1} + \mathbf{r}$).

La relation $a \times c = b^2$ (ou $u_i \times u_{i+2} = (u_{i+1})^2$) s'appelle moyenne géométrique.