Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică - informatică.

- $Filiera\ vocațional \"{a},\ profilul\ militar},\ specializarea\ matematic \~{a}-informatic \~{a}.$
 - Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
 - Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I		(30 de puncte)
1.	$-24 \le x + 1 \le 24$	2p
	$-25 \le x \le 23$	1p
	Card A = 49	2p
2.	$2x - 1 = 2x^2 - 3x + 1$	1p
	$x_1 = 2, x_2 = \frac{1}{2}$	2 p
	Punctele de intersecție sunt $(2,3)$ și $(\frac{1}{2},0)$	2 p
3.	$1 + 7x = 1 + 3x + 3x^2 + x^3$	1p
	$x(x^2 + 3x - 4) = 0$	1p
	$x_1 = 0, x_2 = 1, x_3 = -4$	3р
4.	Alegem 2 numere impare din cele 5 în $C_5^2 = 10$ moduri	2p
	Alegem un număr par din cele 5 în 5 moduri	1p
	Sunt 50 de submulţimi	2p
5.	Mijlocul segmentului are coordonatele (2,1)	1p
	Dreapta AB are panta 3, deci mediatoarea are panta $-\frac{1}{3}$	2 p
	Ecuația mediatoarei este $y = -\frac{1}{3}x + \frac{5}{3}$	2 p
6.	$\cos 2x = 1 - 2\sin^2 x = \frac{1}{3}$	2p
	$\sin x = \pm \frac{1}{\sqrt{3}}$	2 p
	$x \in \left(0, \frac{\pi}{2}\right) \Rightarrow \sin x = \frac{1}{\sqrt{3}}$	1p
SUBI	ECTUL al II-lea	(30 de puncte)

SUBI	ECTUL al II-lea (30	0 de puncte)
1.a)	$\Delta = \begin{vmatrix} 1 & m & m^2 \\ m & m^2 & 1 \\ m^2 & 1 & m \end{vmatrix} = -(m^3 - 1)^2$ Finalizare: $m = 1$	3p
b)	Dacă sistemul are soluții nenule, atunci $\Delta = 0$	2p
	În acest caz, sistemul se reduce la $x + y + z = 0$	1p
	Această ecuație nu are soluții cu toate componentele strict pozitive	2p
c)	Pentru $m=1$, rangul este 1	2p
	Pentru $m \neq 1$, rangul este 3	3p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

2.a)	$(x*y)*z = \frac{1}{4}(x-1)(y-1)(z-1) + 1 \text{ si } x*(y*z) = \frac{1}{4}(x-1)(y-1)(z-1) + 1$	4p	
	Finalizare: legea este asociativă	1p	
b)	Trebuie să arătăm că există $e \in \mathbb{R}$ astfel încât $x * e = e * x = x$, pentru orice $x \in \mathbb{R}$	1p	
	$x * e = x \Leftrightarrow x + e - xe + 1 = 2x \Leftrightarrow (e+1)(x-1) = 0, \forall x \in \mathbb{R}, \text{ deci } e = -1$	3р	
	Verificarea relației $(-1) * x = x, \forall x \in \mathbb{R}$	1p	
c)	$x * x * x = \frac{x^3 - 3x^2 + 3x + 3}{4}$	2p	
	Ecuația $x * x * x = 3$ este echivalentă cu $(x-3)(x^2+3) = 0 \Rightarrow x = 3$	3p	
CLIDI	CUDICCTIII al III las		

	>0				
SUBI	SUBIECTUL al III-lea (30 de puncte				
1.a)	$f(-x) = -x^3 + 3x + 2$	2p			
	$\lim_{x \to +\infty} \frac{x^3 - 3x + 2}{-x^3 + 3x + 2} = -1$	3р			
b)	$f'(x) = 3x^2 - 3$	2p			
	$f'(x) \le 0, \forall x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1]$	3p			
c)	$f(1) = 0, f(-1) = 4, \lim_{x \to +\infty} f(x) = +\infty, \lim_{x \to -\infty} f(x) = -\infty$	2p			
	Din studiul variației funcției deducem că ecuația $f(x) = m$ are trei soluții reale distincte dacă și numai dacă $m \in (0,4)$	3р			
2.a)	$I_2 = \int_0^1 1 dx - 2 \int_0^1 x^2 dx + \int_0^1 x^4 dx =$	1p			
	$ = \left(x - \frac{2x^3}{3} + \frac{x^5}{5}\right) \Big _0^1 = $	3р			
	$=\frac{8}{15}$	1p			
b)	$I_n - I_{n+1} = \int_0^1 x^2 (1 - x^2)^n dx \ge 0$ pentru orice <i>n</i> , deci şirul este descrescător	3 p			
	$I_n \ge 0$, deci şirul este mărginit inferior	1p			
	Finalizare	1p			
c)	$I_n = x(1-x^2)^n \Big _0^1 - n \int_0^1 x(1-x^2)^{n-1} \cdot (-2x) dx =$	2p			
	$= -2n \int_0^1 \left[(1-x^2) - 1 \right] (1-x^2)^{n-1} dx =$	1p			
	$= -2nI_n + 2nI_{n-1} \Rightarrow (2n+1)I_n = 2nI_{n-1}, \forall n \ge 2$	2p			