IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Previously Presented): A calixarene compound shown by following formula (1):

$$Z^{17}O \qquad (X^{9})_{q9}OZ^{18} \qquad (X^{3})_{q3} \qquad Z^{19}O \qquad (X^{10})_{q_{10}}OZ^{20}$$

$$Z^{16}O \qquad CH \qquad Z^{5}O \qquad CH \qquad CH \qquad CH \qquad (X^{11})_{q_{11}}$$

$$Z^{15}O \qquad CH \qquad R^{2} \qquad R^{3} \qquad CH \qquad (X^{12})_{q_{12}}$$

$$Z^{13}O \qquad CH \qquad R^{4} \qquad R^{6} \qquad CH \qquad OZ^{23}$$

$$Z^{4}O \qquad CH \qquad R^{4} \qquad CH \qquad OZ^{24}$$

$$Z^{4}O \qquad CH \qquad CH \qquad OZ^{24}$$

$$Z^{10}O \qquad CH \qquad CH \qquad OZ^{25}$$

$$Z^{10}O \qquad CH \qquad CH \qquad OZ^{25}$$

$$Z^{10}O \qquad OZ^{25}$$

wherein R^1 to R^6 individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^1 to X^{12} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; Z^1 to Z^{24} individually represent a hydrogen atom, a group having a polymerizable functional group, a group having an alkali-soluble group, or a substituted alkyl

group having an alkyl chain with a 1 to 8 carbon atom content, or two adjacent Zs in combination represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; q^1 to q^{12} individually represent an integer of 0 or 1.

Claim 2 (Original): The calixarene compound according to claim 1, wherein X^1 to X^{12} in the formula (1) are methyl groups.

Claim 3 (Original): The calixarene compound according to claim 1 , wherein q^1 to q^{12} in the formula (1) are 0.

Claim 4 (Previously Presented): The calixarene compound according to claim 1, wherein R^1 to R^6 are individually an alkylene group having 3, 5, 7, or 8 carbon atoms.

Claim 5 (Previously Presented): The calixarene compound according to claim 1, wherein all of the Z^1 to Z^{24} groups in the formula (1) are hydrogen atoms.

Claim 6 (Previously Presented): The calixarene compound according to claim 1, wherein at least one of the Z^1 to Z^{24} groups in the formula (1) is a group other than hydrogen atom.

Claim 7 (Original): The calixarene compound according to claim 6, wherein at least one of the Z^1 to Z^{24} groups in the formula (1) has a polymerizable functional group.

Claim 8 (Original): The calixarene compound according to claim 7, wherein the polymerizable functional group is a polymerizable unsaturated group and/or a cyclic ether group.

Claim 9 (Previously Presented): The calixarene compound according to claim 6, wherein at least one of the Z^1 to Z^{24} groups in the formula (1) has an alkali-soluble group.

Claim 10 (Original): The calixarene derivative according to claim 9, wherein the alkali-soluble group is at least one group selected from the group consisting of a carboxyl group, amino group, sulfonamide group, sulfonic acid group, and phosphoric acid group.

Claim 11 (Previously Presented): The calixarene derivative according to claim 6, wherein at least one of the groups among Z^1 to Z^{24} in the formula (1) has both a polymerizable functional group and an alkali-soluble group.

Claim 12 (Currently Amended): At least one intermediate of a calixarene compound selected from the group shown by of the following formulas formulae [[(2)]] (3), to (8):

wherein R⁷-represents a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X¹³ to X¹⁶-individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q¹³-to q¹⁶-individually represent an integer of 0 or 1,

$$(X^{21})_{q21}$$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q22}$
 $(X^{$

wherein R^8 and R^9 individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{17} to X^{23} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{17} to q^{23} individually represent an integer of 0 or 1,

wherein R^{10} to R^{12} individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{24} to X^{33} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; q^{24} to q^{33} individually represent an integer of 0 or 1,

$$(X^{36})_{q30} \xrightarrow{(X^{40})_{q40}} \xrightarrow{(X^{41})_{q41}} \xrightarrow{(X^{41})_{q41}} \xrightarrow{(X^{39})_{q39}} \xrightarrow{(X^{39})_{q39}} \xrightarrow{(X^{42})_{q42}} \xrightarrow{(Y^{42})_{q42}} \xrightarrow{(Y^{34})_{q34}} \xrightarrow{(Y^{34})_{q34}} \xrightarrow{(Y^{37})_{q37}} \xrightarrow{(Y^{37})_{q37}} \xrightarrow{(Y^{36})_{q36}} \xrightarrow{(Y^{36})_{q$$

wherein R^{13} to R^{15} individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{34} to X^{42} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{34} to q^{42} individually represent an integer of 0 or 1,

$$(X^{52})_{q52} = (X^{53})_{q53} = (X^{45})_{q45} = (X^{43})_{q43} = (X^{45})_{q45} = (X^{43})_{q43} = (X^{45})_{q45} = (X^{44})_{q44} = (X^{45})_{q45} = (X^{44})_{q44} = (X^{45})_{q45} = (X^{$$

wherein R^{16} to R^{19} represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{43} to X^{54} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{43} to q^{54} individually represent an integer of 0 or 1,

Application No. 10/588,313 Reply to Office Action of June 19, 2009

wherein R^{20} to R^{23} represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{55} to X^{65} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{55} to q^{65} individually represent an integer of 0 or 1,

wherein R^{24} to R^{29} represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms;; X^{66} to X^{80} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{66} to q^{80} individually represent an integer of 0 or 1.

Claim 13 (Currently Amended): The intermediate of a calixarene compound according to claim 12, wherein X^{13} X^{17} to X^{80} in the formulas [[(2)]] (3) to (8) are methyl groups.

Claim 14 (Currently Amended): The intermediate of a calixarene compound according to claim 12, wherein e^{13} e^{17} to e^{80} in the formulas [[(2)]] (3) to (8) are 0.

Claim 15 (Currently Amended): The intermediate of a calixarene compound according to claim 12, wherein \mathbb{R}^7 \mathbb{R}^8 to \mathbb{R}^{29} in the formulas [[(2)]] (3) to (8) are individually an alkylene group having 3, 5, 7, or 8 carbon atoms.

Claim 16 (Currently Amended): A method for manufacturing a calixarene compound comprising condensing at least one compound shown by the of formula (9) and at least one compound shown by the of formula (10):

Application No. 10/588,313 Reply to Office Action of June 19, 2009

$$(X_{81})^{d81} \longrightarrow (3)$$

wherein X⁸¹ represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q⁸¹ is an integer of 0 or 1,

$$OHC - R^{30} - CHO \qquad (10)$$

wherein R³⁰ represents a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms.

Claim 17 (Original): The method according to claim 16, wherein X^{81} in the formula (9) is a methyl group.

Claim 18 (Original): The method according to claim 16, wherein q⁸¹ in the formula (9) is 0.

Claim 19 (Previously Presented): The method according to claim 16, wherein R³⁰ in the formula (10) is an alkylene group having 3, 5, 7, or 8 carbon atoms.

Claim 20 (Previously Presented): A composition comprising a calixarene compound of claim 1 and a solvent which dissolves the calixarene compound of the formula (1):

$$Z^{17}O \xrightarrow{(X^9)_{q9}} OZ^{18} \xrightarrow{(X^3)_{q3}} Z^{19}O \xrightarrow{(X^{10})_{q10}} OZ^{20}$$

$$Z^{16}O \xrightarrow{(X^8)_{q8}} CH \xrightarrow{(X^{11})_{q11}} CH \xrightarrow{(X^{11})_{q11}} CH \xrightarrow{(X^{11})_{q12}} CH \xrightarrow{(X^7)_{q7}} Z^{13}O \xrightarrow{(X^7)_{q7}} CH \xrightarrow{(X^7)_{q7}} CH \xrightarrow{(X^1)_{q12}} CH \xrightarrow{(X^2)_{q22}} CH \xrightarrow{(X^1)_{q12}} CH \xrightarrow{(X^2)_{q22}} CH \xrightarrow{(X^1)_{q13}} CH \xrightarrow{(X^1)_{q14}} CH \xrightarrow{$$

wherein R^1 to R^6 individually represent a substituted or unsubstituted alkylene group having 1-8 carbon atoms; X^1 to X^{12} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; Z^1 to Z^{24} individually represent a hydrogen atom, a group having a polymerizable functional group, a group having an alkali-soluble group, or a substituted alkyl group having an alkyl chain with a 1 to 8 carbon atom content, or two adjacent Zs in combination represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; q^1 to q^{12} individually represent an integer of 0 or 1.

Application No. 10/588,313 Reply to Office Action of June 19, 2009

Claim 21 (Original): The composition according to claim 20, wherein the calixarene compound has a polymerizable functional group for at least one of the Z^1 to Z^{24} groups in the formula (1) and the composition further comprises a polymerization initiator.

Claim 22 (Original): The composition according to claim 20, wherein the calixarene compound has an alkali-soluble group for at least one of the Z^1 to Z^{24} groups in the formula (1).