American Express - Default Prediction

Title: Predicting Credit Card Default: A Machine Learning Approach

Author: Kausik Chattapadhyay

Institution: Bellevue University

Course: DSC680: Applied Data

Science

Date: **05/25/2024**

Abstract

Objective: Develop and apply a machine learning model for predicting credit card defaults using American Express data

Goal: Enhance accuracy of default predictions to improve risk management and lending decisions

Introduction

Problem: Credit card defaults pose significant risks to financial institutions

Solution: Accurate prediction can optimize lending strategies, mitigate risks, and improve customer experience

Focus: Build a predictive model using anonymized customer data from American Express

Business Problem

Aim: Leverage machine learning to assess the probability of customer default on credit card balance

Benefits: Optimize lending decisions, enhance risk management strategies, and improve customer experience

Context: Credit cards offer convenience but predicting repayment is challenging

Data Explanation

Objective: Predict the probability of future credit card payment defaults

Data: Anonymized and normalized customer profile features, categorized into delinquency, spend, payment, balance, and risk variables

Target Variable: Binary indicator of default within 120 days after the latest statement date

Categorical Features

Every categorical attribute consists of a maximum of eight distinct categories, enabling the possibility of employing One-hot encoding.

- The disparities in distributions between target=0 and target=1 suggest that categorical attributes
 offer predictive insights into the target variable. Hence, it is advisable to explore the modeling of
 these categorical variables.
- The attributes D_114, D_116, D_120, and D_66 are binary in nature, with values restricted to 0, 1, or left as missing.

Most Highly-Correlated Spend Variables (Log Transformed Relationship))

The hist plots illustrate noticeable disparities in distributions between target values of 0 and 1. It appears that the spend variables carry significant information regarding the target and warrant inclusion in modeling efforts.

Several spend features exhibit strong correlations, notably S_22 and S_24 with a Pearson correlation coefficient of 0.965. It's important to note that Pearson's correlation coefficient solely evaluates linear relationships, potentially overlooking nonlinear associations.

target	1.00	0.48	0.46	0.45	0.43	0.42	0.40	0.39	0.37	0.37	0.29	0.26	0.24	0.23	0.23		1.0
6,	0.48	1.00	0.45								0.18		0.19				
D_75		0.45	1.00	0.93	0.59								0.06				- 0.8
0 S8			0.93	1.00	0.65	0.67		0.37			0.17		0.04				
6,7					1.00	1.00					0.07		0.04				
B_23					1.00	1.00	0.73	0.64			0.06		0.02		0.49		0.6
e .			0.69	0.74	0.69		1.00	0.50	0.50	0.29	0.07		-0.03		0.73		
e .								1.00	1.00	0.23	0.06		0.05	0.13			
E -					0.61	0.62		1.00	1.00	0.22	0.05	0.11	0.03	0.12			- 0.4
2										1.00	0.17	0.64	0.09	0.58	0.22		
œ,		0.18	0.19		0.07	0.06	0.07	0.06	0.05	0.17	1.00	0.07	0.31		0.05		- 0.2
<u>د</u> -		0.19					0.17	0.12	0.11	0.64	0.07	1.00	0.03		0.09		0.2
4.		0.19	0.06	0.04	0.04	0.02	-0.03	0.05	0.03	0.09		0.03	1.00	0.05	-0.09		
R_10		0.22			0.18	0.19	0.22	0.13	0.12	0.58	0.12		0.05	1.00	0.15		- 0.0
8,28	0.23	0.27	0.53	0.57	0.44	0.49	0.73	0.34	0.36	0.22	0.05	0.09	-0.09	0.15	1.00		
	target	B_9	D_75	D_58	B_7	B_23	B_4	B_1	B_11	R_1	R_3	R_2	P_4	R_10	B_28		

- Examining the relationship between features and the target variable reveals correlations spanning from -61% to 50%.
- P_2 exhibits the strongest negative correlation with the target at -61%.
- Exploring the utilization of the most highly correlated features in modeling could yield promising results

Data Preprocessing

Steps

Handle missing values by imputation or removal

Feature engineering through one-hot encoding, normalization, and scaling

Categories: Delinquency , Spend , Payment , Balance , Risk

Methods

Exploratory Data Analysis

Understand data distributions and relationships

Use visualizations like correlation matrices and scatter plots

Model Training and Evaluation: Used cross-validation and evaluated with metrics like accuracy, precision, recall, and AUPRC

Analysis

	Model	Accuracy
1	Logistic Regression	0.900667
2	Support Vector Classifier	0.954400
3	Decision Tree Classifier	0.924933
4	Light GBM Classifier	0.980000

Out[45]:		customer_ID	prediction
	0	00000469 ba 478561 f23 a92 a868 bd366 de6 f6527 a684 c9a	0
	1	00001bf2e77ff879fab36aa4fac689b9ba411dae63ae39	0
	2	0000210045da4f81e5f122c6bde5c2a617d03eef67f82c	0
	3	00003b41e58ede33b8daf61ab56d9952f17c9ad1c3976c	0
	4	00004b22eaeeeb0ec976890c1d9bfc14fd9427e98c4ee9	0

Best Model: XGBoost Classifier with approximately 85% accuracy

Insights: Identified key features influencing predictions

Visualization: Performance visualized through confusion matrices and classification reports

Conclusion and Recommendations

Conclusion: The model provides a robust tool for assessing credit card default risk with high accuracy

Recommendations

Continuously update the model with new data Implement regular audits to ensure fairness Integrate the model into a broader risk management framework

Future Uses and Ethical Considerations

Future Uses

Integrate into real-time credit scoring systems

Extend to other financial products

Explore deep learning models for improved performance

Ethical Considerations

Ensure data privacy and confidentiality

Address potential biases

Adhere to regulatory guidelines like the Fair Credit Reporting Act

Key Benefits of Predictive Model for American Express

Enhanced Decision-Making:

Accurate default risk assessments optimize credit approvals and risk management.

Improved Customer

Experience: Personalized interventions and timely credit assessments boost satisfaction.

Cost Savings: Reduces credit defaults and operational costs in risk assessment.

Revenue Generation: Maintains a healthier loan book and offers competitive credit products to drive customer acquisition.

Scalability: Scales across the customer base, addressing data integrity and computational challenges.

References

- Kaggle American Express Default Prediction Competition
- Academic papers on credit risk modeling
- Regulatory guidelines from FCRA and CFPB
- Ethical frameworks for AI and machine learning
- https://www.kaggle.com/competitions/amex-default-prediction/data