⑲ 日本国特許庁(JP)

⑪特許出願公開

@ 公 開 特 許 公 報 (A) 平2-50841

⊕Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)2月20日

B 41 J 2/045

7513-2C B 41 J 3/04

103 A

審査請求 未請求 請求項の数 1 (全5頁)

②特 願 昭63-202252

②出 願 昭63(1988) 8月12日

⑫発 明 者 米 窪 周 二 長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

伽発明者 松澤 正尚 長野県諏

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

勿出 願 人 セイコーエプソン株式

東京都新宿区西新宿2丁目4番1号

会社

砂代 理 人 弁理士 鈴木 喜三郎 外1名

明 一概 一卷

1. 発明の名称

インクジェットヘッド

2. 特許請求の範囲

少なくとも1つ以上のノズル開口を有するノズル形成部材と、前記ノズル開口の各々に対向して配置され一端を自由端とし他端を固定端とする片持ち架状振動子からなる圧電変換器と、 該圧電変換器と前記ノズル形成部材との間隙及び前記圧電変換器の周辺を充すインクとを備え、 印加電圧により前記圧電変換器を変位させてインクを前記ノズル開口から吐出させるインクジェットへッドにおいて、前記圧電変換器の自由端近傍は軟柄造部材で構成されることを特徴とするインクジェットへッド。

3. 発明の詳細な説明 (産業上の利用分野) 本発明はインク流を飛翔させ記録紙等の媒体上にインク像を形成するプリンタ等インクジェット 記録装置に関し、 さらに詳細にはインクジェット プリンタヘッドに関する。

〔従来の技術〕

-1-

また、ノズル形成部材と振動子の間隔は、インク 吐出特性に大きな影響を与えるため微小な間隙を 保つように構成されている。

[発明が解決しようとする課題]

そこで本発明はこのような問題点を解決するもので、その目的とするところは製造上の歩留まりが良く、インク滴の吐出スピード、吐出量、吐出

-3-

ているため、接触の際に振動子の受ける衝撃は軟 構造部材によって吸収され、振動子の自由端はさ ちにノズル形成部材倒へ当接状態を続けながら変 位する。

(実施例)

以下本発明の詳細を具体例により図面を参照して説明する。

第1図は本発明におけるインクジェットへッドを搭載したブリンタの斜視図であって、記録線はは、カローラー2・3の押圧によりプラテン4に接き回され、記録の進行に従い矢印5の方向に接き回される。ガイド軸6・7に案内されブラテン4の軸に平行な方向に移動可能なキャリッジ8上には、複数のノズルを有するインクジェットへッド9が搭載されており、矢印10の方向に移動でよりが搭載されており、矢印10の方向に移動はつつ各々のノズルからインク滴を吐出して記録媒体上にインク像を形成する。

第2図は本発明によるインクジェットヘッドの 断箇を示したものであって、複数のノズル13を 列設したノズル形成部材であるノズル板12とこ 安定性といった諸特性が各ノズル間で揃った性能 の優れたインクジェットヘッドを提供することに ある。

〔課題を解決するための手段〕

本発明におけるインクジェットへッドは、 複数 のノズル 開口を有するノズル形成部材と、 ノズル 開口を有する と 配置された 職 を 自由 は と し て 配置された 職 を 自 を な と す る 片 持 ち 突 換 器 と 、 で の 居 電 変 換 器 と 、 で の 居 電 変 換 器 と と で で 変 換 器 と と で で 変 換 器 と と で で で と で で と で て か ら 吐 出 さ せ る インクジェット へ で で で で か ら 吐 出 き せ る インクジェット へ か が お で 横 成 さ れ る こ と を 特 徹 と す る。

(作用)

本発明の上記構成によれば、片持ち梁状振動子の自由端がノズル形成部材側に変位した際、片持ち梁状振動子の自由端の反りのばらつきのためにノズル形成部材に接触するような振動子があっても、振動子の自由端近傍が軟構造部材で構成され

-4-

れらのノズル13に1対1に対向する複数の振動子14を有する圧電変換器11は、スペーサ19を介してフレーム20とサブフレーム21の間に一体的に取付けられている。またフレーム20とノズル板12およびサブフレーム21によっか(図示せず)がカーム21の間後に配置され、ノズルがカリザーバ(図示を省略)から供給され、ノズルの駆けで充たしている。22は圧電変換器11への駆動信号を供給するための配線である。

第3 図は圧電変換器11の構成を説明するため の斜視図であり、この圧電変換器11はPZTよりなる圧電索子17の一面にNi層よりなるバター 電極18を接着し、他面にAu層よりなるバターン電極16を蒸着したものとして構成され、しか も切り込み30によって支持基体31の一側に積 めの振動子14が櫛窗状に突出したものとして構成 成されている。さらに、振動子14の先端部分に は軟構造部材である弾性ゴム15が接合されてい

-5.

第4図(a),(b)はともにインク滴の吐出原理を説明するためのヘッド断面図である。振動子14が形成されている圧電変換器の共通電とにないる圧電変換器の知道を設めまるとパターン電極16の間に電圧を印加すると圧運動果により圧電電器では収縮し、一方で対して収縮を18のN1層は高い理性率を有するためバターンで低低16の側に曲がるごとく助けモーメントが発生し変形の位は信号電極18に電圧を印がように振動子14の自体では信号ではは、第4図(b)に電圧を解除すれば、第4図(b)がように振動子14の自体はノズル振動子14の間にを変形変位し、ノズルを13から吐出さる。

ところで、振動子14の自由場には軟構造部材である弾性ゴム15が接合されており、振動子の反りのばらつきがあっても、電圧解除時には第4図(b)の如く弾性ゴム15がノズル板12に押圧・当接することにより、振動子とノズルとの問

-9-

ムが使われているが、 軟構造部材が弾性変形する 材料でありさえすれば、 どんな材質であってもよ いことは発明の主旨上明白である。

また上記実施例では待機時に信号電極に電圧を 印加しているが、待機時には非電圧印加状態にし ておいて、選択的に電圧を印加し解除することで ノズル近傍のインクを押圧しノズルから吐出させ ることも可能である。

(発明の効果)

以上述べたように本発明の上記構成によれば、 片持ち梁状振動子の自由端がノズルを傾いに変位らった。 に変れ、 に変な状振動子の自由端がの反りののような振動子の自由端近傍が弾性変形する。 ででも、振動子の自由端近傍が弾性変形する自由端がする。 は軟構造部材の弾性変形に従ってノズスルを側には は軟構造部材の弾性変形に従ってはずる。 は軟構造部材の弾性変形に従ってはずる。 は軟構造の反りのばらつきがあっても、 振動子自由端の反りのばらつきがあっても、 は出いながら滑きないまま、 に出いるといまま、 に出いるといまま、 に出いるといままに にはいまってこのばらった。 にはいまってこのばらった。 にはいまま、 にはいまってこのばらった。 隔を高精度に保つことが可能になる。 また、接触の際に振動子の受ける衝撃は軟構造部材である弾性ゴム15の変形によって吸収され、振動子の自由端は、 さらにノズル板側へ当接状態を続けながら変位する。 これらにより、振動子の反りのばらつきに対してノズル近傍のインクに発生する圧力及びインクの流れはほぼ一定となる。

第5図は、本発明におけるインクジェットへッドに用いられる圧電変換器の他の実施例であって、振動子14の先端部は軟構造部材である。この場合、振動子がノズル板に当接・接触した際、軟構造部材である野性ゴム15の変位量は前実施例に比べてさらに大きくとれるため、振動子はさらに大きくとれるため、振動子はさらに満らかにノズル側に変位できる。このほか、弾性ゴムの加工度の大きさを利用してノズルに対向する部分を円板形状にして振動子の振動エネルギーを効率よくインクに伝える構造にすることも本実施例の場合には可能である。

なお上記实施例では、軟構造部材として弾性ゴ

-8-

を掲正できるため、振動子とノズル板とのギャップマージンが大きくなりヘッド製造における歩留まりが向上するとともに、インク滴の吐出スピード・吐出量・吐出安定性といった語特性が各ノズル関で揃った性能の優れたインクジェットヘッドが実現できる。

さらに本発明の上記摘成によれば、 摂動子の自由端がノズル板側に変位した際、ノズル板に接触する振動子の受ける衝撃は軟構造部材によって吸収されるため、 振動子に衝撃による応力集中が及ぶことなく耐久性に優れたインクジェットヘッドが実現できる。

4. 図面の簡単な説明

第1図は本発明による一実施例を示すインクジェットへッドを搭載したプリンタの斜視図。

第2図は本発明による一実施例におけるインク ジェットヘッドの断面図。

第3図は第2図に示された圧電変換器の構成を 説明するための斜視図。

-9-

1: 記錄媒体

9: インクジュットヘッド

第4図(a)。(b)はインク滴の吐出原理を 説明するための第2図に示されたヘッドの断面拡 大図。

第5図は本発明におけるインクジェットヘッド に用いられる圧電変換器の他の実施例を説明する ためのヘッド断面拡大図。

1…記録媒体

9…インクジェットヘッド

11…圧電変換器

12…ノズル板

13…ノズル

1 4 … 振動子

15…弾性ゴム

以上 t式会社

出願人 セイコーエプソン株式会社 代理人弁理士 鈴木薯三郎 他1名

-11-

第 1 図

第 2 図

11 圧電変換器 12 リズル板

13 /ズル 14 振動子 15 弾性ゴム

THIS PAGE BLANK (USPTO)