

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES DEPARTAMENTO DE CÓMPUTO CIENTÍFICO y ESTADÍSTICA

Laboratorio 4: Prueba de hipótesis.

Por:

Andrés Navarro #11-10688

Nabil Marquez #11-10683

REPORTE

Presentado ante la Ilustre Universidad Simón Bolívar

Sartenejas, Agosto del 2016.

Prueba de hipótesis para la diferencia de medias

Para determinar si las medias de las notas del primer examen y el segundo examen son distintas, se realizó una prueba de hipótesis, usando una significancia del 3%. Este estudio se hizo para cada año y sección. Así, el análisis sería de esta manera:

• Hipótesis planteadas fueron las siguientes:

O H0: μ E1 - μ E2 = 0

- O Ha : μ E1 \neq μ E2
- O μ E1 y μ E2 representan a la media de las notas del primer examen y el segundo examen, respectivamente.
- O La región de rechazo será el complemento del intervalo de confianza.r
- Para aceptar una hipótesis nula es necesario que el estadístico t obtenido no se encuentre dentro de la región de rechazo. Para aceptar la hipótesis alternativa, es necesario que ocurra el recíproco.

• Los resultados para el periodo 13-14 fueron:

Nº sección	Estadistico t	Lc	Uc	Conclusión
Sección 6	-2.2679	-11.8803202	-0.1204862	На
	-2.2079	-11.0003202	-0.1204862	Па
Sección 8	1.2736507	-4.200743	15.486457	На
Sección 9	1.0262804	-3.503041	9.468756	На

• Los resultados para el periodo 15-16 fueron:

Nº sección	Estadistico t	Lc	Uc	Conclusión
Sección 2	0.31464	-4.667367	6.205012	На
Sección 8	-3.29	-8.232944	-1.585238	На
Sección 9	-1.65	-5.7135567	0.8630132	На

Utilizando los P-Valores

Por otro lado, una vez calculados los P-valores, si estos son mayores la significatividad (alfa), se acepta H0. En el caso contrario, se rechaza. Así:

• Los resultados para el periodo 13-14 fueron:

Nº sección	P-valor	Rech. H0	Discrepancia Con intervalo
Sección 6	0.02691	Sí	No
Sección 8	0.2076	No	Sí
Sección 9	0.3095	No	Sí

• Los resultados para el periodo 15-16 fueron:

Nº sección	P-valor	Rech. H0	Discrepancia Con intervalo
Sección 2	0.7542	No	Sí
Sección 8	0.001748	Sí	No
Sección 9	0.1055	No	Sí

Podemos ver que si se concluye utilizando el P-valor, La sección 8 y 9 en el periodo 13-14 y la sección 2 y 9 en el periodo 15-16 concluyen que la diferencia de las medias de sus notas respectivas, son iguales para cada caso. Una discrepancia con lo concluido a partir de la prueba de hipótesis.

Código utilizado

```
6 #Leyendo los datos
7 e11 <- read.table("Notas13-14.txt", header=T, fill = T)
8 e12 <- read.table("Notas15-16.txt", header=T, fill = T)
9 e21 <- read.table("Notas213-14.txt", header=T, fill = T)
10 e22 <- read.table("Notas215-16.txt", header=T, fill = T)</pre>
   11
   #Longitudes de cada sección
13 * lengthNNA = function(x){
14    return (length(x[!is.na(x)]))
15 }
         nel1 <- c(lengthNNA(e11$56),lengthNNA(e11$58),lengthNNA(e11$59))
          ne12 <- c(lengthNNA(e12$52),lengthNNA(e12$58),lengthNNA(e12$59))
ne21 <- c(lengthNNA(e21$56),lengthNNA(e21$58),lengthNNA(e21$59))
ne22 <- c(lengthNNA(e22$52),lengthNNA(e22$58),lengthNNA(e22$59))
   17
   19
          #Medias y Desviaciones por examen (para cada sección)
m11 <- c(mean(e11$56[1:ne11[1]]),mean(e11$58[1:ne11[2]]),mean(e11$59[1:ne11[3]]))
m12 <- c(mean(e12$52[1:ne12[1]]),mean(e12$58[1:ne12[2]]),mean(e12$59[1:ne12[3]]))
m21 <- c(mean(e21$56[1:ne21[1]]),mean(e21$58[1:ne21[2]]),mean(e21$59[1:ne21[3]]))
   21
   22
           m22 <- c(mean(e22$52[1:ne22[1]]),mean(e22$58[1:ne22[2]]),mean(e22$59[1:ne22[3]]))
   26
          s11 <- c(sd(e11$56[1:ne11[1]]),sd(e11$58[1:ne11[2]]),sd(e11$59[1:ne11[3]])
   # Determinar si las medias poblacionales de las notas son iguales o no entre el primer y segundo examen,
# con significancia de 3%.
# Usando una prueba de hipă³tesis
   32
   33
           # Ho: mE1 - mE2 = 0, Ha: mE1 != mE2
         r16 <- t.test(e11$56[1:ne11[1]],e21$56[1:ne21[1]],mu=0,conf.level=0.97)
r18 <- t.test(e11$58[1:ne11[2]],e21$58[1:ne21[2]],mu=0,conf.level=0.97)
r19 <- t.test(e11$59[1:ne11[3]],e21$59[1:ne21[3]],mu=0,conf.level=0.97)
   37
   40 r22 <- t.test(e12$S2[1:ne12[1]],e22$S2[1:ne22[1]],mu=0,conf.level=0.97)
   41
         r28 <- t.test(e12$58[1:ne12[2]],e22$58[1:ne22[2]],mu=0,conf.level=0.97)
r29 <- t.test(e12$59[1:ne12[3]],e22$59[1:ne22[3]],mu=0,conf.level=0.97)
   43
   44
          # Una manera alterna usando esta funcion:
#r1za.z.p = function(m1,m2,s1,s2,n1,n2){
   45
                     alfa = 0.03
           # Zalfa = qnorm(alfa/2,lower.tail = F)
         # Z = (m1 - m2)/sqrt((s1^2/n1) + (s2^2/n2))

# # Calculando el p-valor

# p_valor = 2*pnorm(z,lower.tail = F)
   48
   49
          # bool1 = Z > Zalfa
# bool2 = Z < (-1*Zalfa)
# return (c(Zalfa,Z,p_valor,bool1 || bool2))</pre>
   51
   52
    53
          # r16 = za.z.p(m11[1],m21[1],s11[1],s21[1],ne11[1],ne21[1])
# r18 = za.z.p(m11[2],m21[2],s11[2],s21[2],ne11[2],ne21[2])
# r19 = za.z.p(m11[3],m21[3],s11[3],s21[3],ne11[3],ne21[3])
   55
   56
   58 #No utilizadas debido a ciertas discordancias, por ejemplo para el 13-14
59 #Sec 6 2.170090 -2.267857 1.976662 1.000000 #Z está en Zona de r
60 #Sec 8 2.1700904 1.2736507 0.2027872 0.0000000 #Z no está en la ZR
                                                                                                             #Z está en Zona de rechazo pero P-valor > 0.03 (Rechaza y Acepta H0)

#Z no está en la ZR pero P-valor < 0.03 (Acepta y Rechaza H0)

#Z no está en la ZR y P-valor > 0.03 (Acepta Ho)
   61 #Sec 9 2.1700904 1.0262804 0.3047594 0.0000000
```