

Neural Network for Chess Evaluation

Final Project for Neural Networks

► Dipartimento Ingegneria dell'informazione e scienze matematiche

Silas Ueberschaer, Benjamin Pöhlmann SIENA 15/01/2024

Goal for the Project

- Creating a Neural Network that can predict who is currently winning
- Create our own dataset
- Play against the Neural Network, or let it play against another chess engine (Stockfish)

Creating our own data

Custom position

- Using custom start position with reduced amount of pieces to limit possible moves
 - Faster learning
 - Less data
- Simulating games and labeling them with Stockfish evaluation
 - \circ >0.5 = white losing
 - <0.5 = white winning</p>
 - =0.5 = draw
- Playing a mixture between good moves and random moves to create diverse dataset

Dataset

Dataset Distribution

- The dataset used for training consists of 70.000 positions
- Index 0 shows whose turn it is
 - 1 = White
 - \circ 0 = Black
- Index 1 to 64 is a numerical representation of the chess board
 - 0 = empty, 1 = Pawn, 5 = Rook, 100 = King
- Index 65 shows the Stockfish evaluation of the position

Architecture

- Simple feedforward neural network with multiple layers and RELU activation function
- To choose the right architecture we trained multiple models with K-Fold Cross-Validation (only on 10.000 positions)
 - \circ k = 3
 - \rightarrow learning rate = 0.001/0.01/0.1
 - batch size = 1000/100/10
- Evaluation with MSE, MAE and R2
- Overall best is 3-Layer Neural Network (256,128,64) with learning rate = 0.01 and batch size = 1000

Training

- Split the Data into Train and Eval
 - 80% Train, 20% Eval
- MSE Loss function and Adam Optimizer
- Trained for 400 Epoch
 - learning rate = 0.01
 - batch size = 1000
- Reached little to no improvement after around 200 epochs on the eval dataset

Playing

- Plays all moves and evals the board after that move and plays the best move
- Uses minimax to look multiple moves ahead
- Possibility to check if position is checkmate and return custom value instead of eval value
 - model not trained to detect checkmate
- Results (depth=2):
 - wins or draws against random moves
 - loses against stockfish at elo 200

Reinforcement Learning

Reduced number of pieces

- Goal: Use Reinforcement Learning to teach a neural network to play chess
- Deep Q Network used
 - Map a state and action to a Q-Value which is the immediate reward and discounted future rewards
- Simplifications used:
 - Reduce number of pieces (see figure)
 - Assume every piece can theoretically move everywhere
 - Only distinction for reward if move was good or bad but not to what degree

Reinforcement Learning - Setup/Architecture

```
one hot mapping = {
0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                              # Empty
1: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                              # White Pawn
    [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                                              # White Bishop
 4: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
                                              # White Knight
                                              # White Rook
                                              # White King
                                              # Black Pawn
-3: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
                                              # Black Bishop
-4: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
                                              # Black Knight
-5: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
                                              # Black Rook
 -1000: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
                                              # Black King
```

One-Hot-Mapping of chess board

- Environment:
 - Chess board and its rules for legal moves
 - Enemy player (1000 elo)
- Agent is white player
- Reward: Evaluation by Stockfish if move increased probability to win, in general:
 - +1 if increased
 - -1 if decreased
- Input is a one-hot-representation of the board for each square on the board
- Output is Q-Value for each action that can theoretically be taken (even if illegal in current board)

Data creation, training and result

Win distribution of playing 10.000 games of max. 20 turns versus an enemy doing random moves

- Play games with limited amount of turns (max. 20 each) to focus on early game
- Using epsilon-greedy algorithm to make mostly random moves
- For each move we save as training example
 - Current state (current board)
 - Action taken (move we did)
 - Reward for our action (change of Stockfish evaluation)
 - Next state (board after we and the enemy player moved)
- First 64 elements in output are actions of first pawn, then second pawn,

Problems and Future Work

- Dataset is to little and focuses more on early game
 - Create more data
- Try out more ways to convert chess board
 - extra neurons for check, checkmate, castle, etc
 - extra neuron that counts all the piece values together
 - O ...
- The models are still "small" for such a complex topic
 - use bigger models -> longer training
- Instead of using custom position train it on the standard chess position
 - Needs even more data and bigger models