ISC ASSIGNMENT -08_part2

ROLL NO: U21C5052 NAME : PANCHAL GUNGUN PARESH

OpenSSL Library commands.

Task 3: Perform the following instructions to digitally sign a document and verify it.

a) Generate a private key using RSA asymmetric cryptography technique.

Private Key Generation:

openssl genrsa -out privatekey.pem 2048

b) Digitally Sign a document data.txt.

openssl dgst -sha256 -sign privatekey.pem -out data.txt.signature data.txt

c) Generate a public key using RSA asymmetric cryptography technique to verify the document data.txt.signature.

Public Key Generation:

openssl rsa -in privatekey.pem -outform PEM -pubout -out publickey.pem

Verification:

openssl dgst -sha256 -verify publickey.pem -signature data.txt.signature data.txt

Task 4:

To perform ECDSA (Elliptic Curve Digital Signature Algorithm) digital signature generation and verification follow these steps. ECDSA is based on elliptic curve cryptography and is commonly used for digital signatures.

a) Generate ECDSA Private Key

openssl ecparam -genkey -name prime256v1 -out ecdsa_private_key.pem

b) Extract ECDSA Public Key

openssl ec -in ecdsa_private_key.pem -pubout -out ecdsa_public_key.pem

c) Sign Data data.txt with ECDSA Private Key
openssl dgst -sha256 -sign ecdsa_private_key.pem -out signature.bin message.txt

d) Verify Signature with ECDSA Public Key openssl dgst -sha256 -verify ecdsa_public_key.pem -signature signature.bin message.txt

