DATA PREPARATION AND FEATURE ENGINEERING

Lecture 4

MALI, 2025

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

A MACHINE LEARNING PROJECT

A MACHINE LEARNING PROJECT

Feedback

THE IMPORTANCE OF DATA PREPARATION

THE TRAVELING SALESPERSONS

Salesperson ID	Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
1	2	200000	North	Male	NaN	3.5	400
2	5	550000	NaN	Female	NaN	4.0	50
3	10	980000	West	Male	14.3	NaN	10
4	1	80000	North	Female	NaN	5.0	100
5	15	1600000	North	Male	NaN	4.5	10
6	7	900000	East	Female	NaN	4.2	5
7	20	2100000	South	Male	10.1	2.5	200

THE TRAVELING SALESPERSONS

Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
2	200000	North	Male	NaN	3.5	400
5	550000	NaN	Female	NaN	4.0	50
10	980000	West	Male	14.3	NaN	10
I	80000	North	Female	NaN	5.0	100
15	1600000	North	Male	NaN	4.5	10
7	900000	East	Female	NaN	4.2	5
20	2100000	South	Male	10.1	2.5	200

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
2	200000	North	Male	NaN	3.5	400
5	550000	NaN	Female	NaN	4.0	50
10	980000	West	Male	14.3	NaN	10
I	80000	North	Female	NaN	5.0	100
15	1600000	North	Male	NaN	4.5	10
7	900000	East	Female	NaN	4.2	5
20	2100000	South	Male	10.1	2.5	200

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	Training Hours
2	200000	North	Male	3.5	400
5	550000	NaN	Female	4.0	50
10	980000	West	Male	NaN	10
I	80000	North	Female	5.0	100
15	1600000	North	Male	4.5	10
7	900000	East	Female	4.2	5
20	2100000	South	Male	2.5	200

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	Training Hours
2	200000	North	Male	3.5	400
5	550000	North	Female	4.0	50
10	980000	West	Male	3.95	10
I	80000	North	Female	5.0	100
15	1600000	North	Male	4.5	10
7	900000	East	Female	4.2	5
20	2100000	South	Male	2.5	200

STRATEGIES FOR MISSING VALUES

MICE: MULTIPLE IMPUTATIONS BY CHAINED EQUATIONS

A	В	С
	4.2	7.8
3.1	3.1	
4.3		6.3
9.8	5.5	8.1

impute with mean

A	В	С
5.7	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

A	В	C
	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

linear regression with A as target

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

B back to missing

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3		6.3
9.8	5.5	8.1

linear regression with B as target

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3	4.4	6.3
9.8	5.5	8.1

C back to missing

and so on

WHY IS DATA MISSING?

Missing Not At Random MNAR

Probability of missing X depends on the value of X

Missing At Random MAR

Probability of missing X does not depend on the value of X, but may depends on other features

Missing Completely At Random MCAR

Probability of missing X does not depend on any features at all

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

OUTLIERS

OUTLIERS

TRANSFORMING SKEWED DATA

Transform left-skewed data with e^x or x^2

Transform right-skewed data with log(x) or \sqrt{x}

TRANSFORMING SKEWED DATA

3.5 5.99

ale 4.0 3.91

3.95 2.30

ale 5.0 4.61

4.5 2.30

ale 4.2 1.61

2.5 5.30

Customer

Satisfaction

log(Training

Hours)

Such data transformations may be relevant for skewed data even if there are no outliers!

THE BOXPLOT QUIZ boys 130 140 150 160 170 180 cm 190 girls

True or False?

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

SCALING

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)
2	200000	North	Male	3.5	5.99
5	550000	North	Female	4.0	3.91
10	980000	West	Male	3.95	2.30
I	80000	North	Female	5.0	4.61
15	1600000	North	Male	4.5	2.30
7	900000	East	Female	4.2	1.61
20	2100000	South	Male	2.5	5.30

DIFFERENT TYPES OF SCALING

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import StandardScaler

SCALING

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)	
-0.89	-1.06	North	Male	-0.61	1.46	
-0.45	-0.54	North	Female	0.07	0.13	
0.30	0.09	West	Male	0.00	-0.91	
-1.04	-1.23	North	Female	1.42	0.57	
1.04	1.01	North	Male	0.75	-0.91	
-0.74	-0.02	East	Female	0.34	-1.35	
1.79	1.74	South	Male	-1.97	1.02	

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

DEALING WITH STRINGS

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	North	Male	-0.61	1.46
-0.58	-0.54	North	Female	0.07	0.13
0.20	0.09	West	Male	0.00	-0.91
-1.20	-1.23	North	Female	1.42	0.57
0.98	1.01	North	Male	0.75	-0.91
-0.11	-0.02	East	Female	0.34	-1.35
1.76	1.74	South	Male	-1.97	1.02

WHAT MAY STRINGS REPRESENT?

BAG OF WORDS

Did you hear about the mathematician who is afraid of the negative numbers? She will stop at nothing to avoid them.

Are monsters good at math? Not unless you Count Dracula.

ONE-HOT ENCODING

ONE-HOT ENCODING

Years In Business	Total Sales (\$)	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	1	0	0	0	1	-0.61	1.46
-0.58	-0.54	1	0	0	0	0	0.07	0.13
0.20	0.09	0	T	0	0	1	0.00	-0.91
-1.20	-1.23	I	0	0	0	0	1.42	0.57
0.98	1.01	1	0	0	0	I	0.75	-0.91
-0.11	-0.02	0	0	I	0	0	0.34	-1.35
1.76	1.74	0	0	0	1	I	-1.97	1.02

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

FEATURE ENGINEERING

Years In Business	Total Sales (\$)	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	1	0	0	0	1	-0.61	1.46
-0.58	-0.54	1	0	0	0	0	0.07	0.13
0.20	0.09	0	1	0	0	1	0.00	-0.91
-1.20	-1.23	1	0	0	0	0	1.42	0.57
0.98	1.01	1	0	0	0	1	0.75	-0.91
-0.11	-0.02	0	0	I	0	0	0.34	-1.35
1.76	1.74	0	0	0	I	I	-1.97	1.02

CORRELATION MATRIX

data.corr()

AND WITH OUR NEW FEATURE

Years In Business	Sales/Years	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-0.30	1	0	0	0	1	-0.61	1.46
-0.58	0.44	1	0	0	0	0	0.07	0.13
0.20	-0.45	0	1	0	0	1	0.00	-0.91
-1.20	-1.78	1	0	0	0	0	1.42	0.57
0.98	0.20	1	0	0	0	1	0.75	-0.91
-0.11	1.82	0	0	I	0	0	0.34	-1.35
1.76	0.07	0	0	0	I	I	-1.97	1.02

CORRELATION MATRIX (AGAIN)

OUR FINAL DATA MATRIX

Salesperson ID	Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
I	2	200000	North	Male	NaN	3.5	400
2	5	550000	NaN	Female	NaN	4.0	50
3	10	980000	West	Male	14.3	NaN	10
4	1	80000	North	Female	NaN	5.0	100
5	15	1600000	North	Male	NaN	4.5	10
6	7	900000	East	Female	NaN	4.2	5
7	20	2100000	South	Male	10.1	2.5	200

Years In Business	Sales/Years	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-0.30	1	0	0	0	1	-0.61	1.46
-0.58	0.44	1	0	0	0	0	0.07	0.13
0.20	-0.45	0	1	0	0	1	0.00	-0.91
-1.20	-1.78	1	0	0	0	0	1.42	0.57
0.98	0.20	I	0	0	0	1	0.75	-0.91
-0.11	1.82	0	0	1	0	0	0.34	-1.35
1.76	0.07	0	0	0	I	I	-1.97	1.02

- Explain why data preparation is necessary
- Explain the steps needed to prepare a dataset
- Prepare a dataset for use in ML models in sklearn