

Khalifa University of Science, Technology and Research Electronic Engineering Department

Microprocessor Systems Laboratory ELCE333

Experiment No. 1

Pre-Lab Report

MICROCONTROLLER ASSEMBLY PROGRAM DEVELOPMENT

Lab Partners:

Dana Bazazeh, 100038654 Moza Al Ali 100038604

Date Report Submitted: 28/01/2015

Lab Instructor: Dr.Mohamed Al Zaabi/ Dr.Mahmoud Khonji

Pre-Lab Tasks

Task 2

In this task, we are asked to simulate a program line by line using the Code Warrior IDE software in chip simulation mode and note down the changes that occur to the contents of the memory and registers after each instruction is executed. Below are the snaps showing the changes.

Table 1 Program Step by Step Execution

Instruction	x1000	x1010	Accumulator	Accumulator	Index
			A	В	Register X
LDAA #\$FF	FF		FF		
STAA \$1000	FF		FF	-	
CLRA	FF	FF	0		
STAA \$1010	FF	00	0		
MOVB \$1000,\$1010	FF	FF	0	11	
LDAB \$1010	FF	FF	0	FF	
LDX #\$0011	FF	FF	0	FF	11
EXG X,B	FF	FF	0	11	FF

Task 3

Identify the addressing mode of the following instructions

a) LDAA #\$FF

Immediate Addressing

Operation: load the immediate hexadecimal number FF into 8 bit accumulator a.

b) CLRA

Inherent Addressing

Operation: clears accumulator a by setting its content to 0.

c) LDAB \$1000

Extended addressing

Operation: load the contents of long address 1000 into accumulator b.

Pre-Lab Questions

1. How much RAM does your microcontroller have? How much EEPROM and how much

Flash? Does it have any other kind of memory?

RAM: 12Kbyte

EEPROM: 4Kbyte

Registers: within the first 1 Kbyte of EEPROM

FLASH ROOM_4000: 16 Kbyte

FLASH BANK WINDOW: 16Kbyte

HCS12 SERIAL MONITOR(VECTORS): 2Kbyte

2.Draw the memory map of your microcontroller.

3. What registers does your microcontroller have?

Accumulators A, B, and D: A & B accumulators represent the upper and lower content of accumulator D which means A & B are each 8 bit and D is 16 bits. These are usually used to hold data resulting from ALU operations.

Index Registers X and Y: Used for indexed addressing modes usually as a base register.

Program Counter: The program counter shows the address of the next instruction to be executed and sometimes used as a base register

Condition Code Register: Register that is used during operations such as ALU operations that can be set or reset. They consist of: carry C, overflow V, Zero Z, Sign N and Half carry H, Interrup I XIRQ_L interrupt bit X and disable bit S.