Homework 2

Elencare le coordinate q r s di tutte le posizioni atomiche in un reticolo cubico a facce centrate.

Point number	q	r	S
1	0 1	0	0
2 3	1	0 1	0 0
4	0	1	0
4 5 6	0	0	1
	1	0	1
7	1	1	1
8	0	1	1
9	$\frac{1}{2}$	$\frac{1}{2}$	0
10	$\frac{1}{2}$	0	$\frac{1}{2}$
11	1	$\frac{1}{2}$	$\frac{1}{2}$
12	$\frac{1}{2}$	1	$\frac{1}{2}$
13	0	$\frac{1}{2}$	$\frac{1}{2}$
14	$\frac{1}{2}$	$\frac{1}{2}$	1

Disegnare in una cella ortorombica la direzione $[12\overline{1}]$.

Determinare gli indici per le direzioni indicate in figura.

 $\hbox{\tt [}\,[\overline{4}30].;\,[2\overline{3}2];\,[13\overline{6}]\hbox{\tt]}$

Determinare gli indici per le direzioni indicate in figura.

 $[[10\overline{1}1].; [\overline{2}\overline{2}43]]$

Determinare il tipo di cella cristallina e gli indici dei piani disegnati.

[Ortorombica (210); Tetragonale (020), $(2\overline{2}1)$]]

Disegnare in un sistema cubico i seguenti piani.

- (a) $(0\overline{11})$
- (e) $(\overline{1}1\overline{1})$
- (b) $(11\overline{2})$
- (f) $(1\overline{22})$
- (c) $(10\overline{2})$
- (g) $(\overline{1}2\overline{3})$
- (d) $(1\overline{3}1)$
- (h) $(0\overline{13})$

Determinare gli indici di Miller dei seguenti piani.

[A= $(32\overline{2})$, B= $(20\overline{2})$, riducibile a $(10\overline{1})$]

Identificare le direzioni ottenute dall'intersezione dei seguenti piani: : (a) (100) e (010), (b) (111) e (11 $\overline{1}$). [a= [001], b= [1 $\overline{1}$ 0]]

Determinare gli indici di Miller per i piani disegnati sotto (sistema a 4 coordinate).

 $[[\overline{1}101]; [1\overline{1}01]]$

Determinare la densità planare di atomi in funzione di R (raggio atomico) sui piani (1 1 1) e (0 0 0 1) di un reticolo FCC e HCP. Quale frazione di spazio piino risulta occupata dagli atomi?

[PD=1/(2 $3^{0.5}$ R²), è la stessa in entrambi i casi, il piano (1 1 1) in FCC è infatti ad alto impaccamento;

90.7%]

Determinare la densità lineare di atomi nelle direzioni [1 0 0] e [1 1 1] di un reticolo BCC. Riportare il risultato in funzione del raggio atomico R.

 $[LD_{100} = 3^{0.5}/4R; LD_{111} = 1/2R]$

Il Cromo (Aw=51.996 g/mol) ha struttura BCC. Il paattern di diffrazione usando luce monocromatica di lunghezza d'onda 0.0711 nm evidenzia la presenza dei seguenti picchi di diffrazione (tutti del primo ordine, ossia n=1 nella legge di Bragg). Determinare il parametro di cella, la densità ed il raggio atomico.

Plane Indices	Diffraction Angle	
	(2 theta)	
(110)	20.1°	
(200)	28.5°	
(211)	35.1°	
(220)	40.7°	

[0.2887 nm; 7.18g/cm³; 0.125 nm]

Dato il file di testo HE1 (caricato nella didattica online) determinare il parametro di cella della fase cristallina, sapendo che si tratta di struttura BCC ed i picchi sono nell'ordine riferiti ai piani (110), (200) e (211), la radiazione X utilizzata ha lunghezza d'onda 1.5406 Å. Determinare inoltre la densità sapendo che si tratta di una superlega ad alta entropia di composizione HfTaNbZr.

[0.3433 nm; 11.155 g/cm³]

Dato il pattern di diffrazione del ferro α , sapendo che esso possiede cella cubica, indicizzare i picchi non identificati.

[(2 0 0), (2 1 1), (2 2 0), (3 1 0), (3 2 1)]