Accepted Manuscript

Efficacy of gaseous ozone to counteract postharvest table grape sour rot

L. Pinto, L. Caputo, L. Quintieri, S. de Candia, F. Baruzzi

PII: S0740-0020(16)31111-X DOI: 10.1016/j.fm.2017.05.001

Reference: YFMIC 2787

To appear in: Food Microbiology

Received Date: 28 December 2016

Revised Date: 28 April 2017 Accepted Date: 1 May 2017

Please cite this article as: Pinto, L., Caputo, L., Quintieri, L., de Candia, S., Baruzzi, F., Efficacy of gaseous ozone to counteract postharvest table grape sour rot, *Food Microbiology* (2017), doi: 10.1016/j.fm.2017.05.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Efficacy of gaseous ozone to counteract postharvest table grape sour rot
2	Pinto L., Caputo L., Quintieri L., de Candia S. and Baruzzi F.*
3	
4	Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola
5	122/O, 70126 Bari, Italy
6	
7	
8	
9	*Corresponding author. Institute of Sciences of Food Production, National Research Council of
10	Italy, Via G. Amendola 122/O, 70126 Bari, Italy. Tel.: +39 080 5929319
11	E-mail address: federico.baruzzi@ispa.cnr.it (Baruzzi F.)
12	

This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the
table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts
(NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8
NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days.
Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher
than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations,
the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter
syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro
assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were
stored at 4 °C for ten days under ozone (2.14 mg m ⁻³) or in air. At the end of cold storage, no
berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After
additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored
under ozone or in air accounted for 22.6 ± 3.7 % and 66.7 ± 4.5 %, respectively. Molecular analyses
of dominant AAB and NSY populations of both sound and rotten berries during post-
refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter
albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective
approach to extend the shelf-life of table grapes also after cold storage.

Keywords: grape decay, microbial control, shelf-life, ethanol, acetic acid

1.Introduction

35	Italy is one of the leading grape (Vitis vinifera L.) producers and consumers, and is also among the
36	most important trade markets for this fruit in the world (USDA-FAS, 2014; 2015). The
37	marketability of this product is strongly affected by postharvest microbial tissue decay resulting in
38	undesirable physiological and chemico-physical changes and shelf-life reduction.
39	Sour rot is a grape disease (Guerzoni and Marchetti, 1987; Nigro et al., 2006) caused by
40	opportunistic non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB) (Barata et al., 2008;
41	Barata et al., 2012b, c; Loureiro et al., 2012) mainly affecting late ripening cultivars under
42	postharvest conditions (Hashim-Buckey et al., 2008; Puelles Tamsec and Sepulveda Ramirez,
43	2012). Rotten bunches show a strong and pungent odour of vinegar as the result of the production
44	of microbial metabolites such as acetic acid, glycerol, ethyl acetate, ethanol, galacturonic acid,
45	acetaldehyde and gluconic acid (Marchetti et al., 1984; Zoecklein et al., 2001). In particular, acetic
46	and gluconic acid are usually considered chemical markers of sour rot development (Barata et al.,
47	2012c).
48	The NSY-AAB consortium can be composed of different microbial species such as Acetobacter
49	malorum, A. cibinongensis, Gluconobacter oxydans, Pichia terricola, Hanseniaspora uvarum,
50	Candida zemplinina, and Zygoascus hellenicus as recently reported by Barata et al. (2012c).
51	The severity of grape sour rot is strongly promoted by the action of <i>Drosophila</i> spp. flies, attracted
52	by volatile organic compounds released from sour rotten berries, that contribute to inoculate and
53	disperse sour rot related microorganisms (Barata et al., 2012c).
54	To date, the control of microbial spoilage of table grapes under postharvest conditions is almost
55	exclusively performed by using sulphur dioxide fumigation or applying SO ₂ -releasing pads (Lichter
56	et al., 2006). However, excess of sulphur dioxide induces fruit and stem bleaching (Snowdown,
57	1990; Crisosto and Mitchell, 2002) and may result in sulphite accumulation on table grape;
58	thus, the content of sulphur dioxide residuals is internationally regulated (EPA, 1989; EU
59	directive 2006/52/CE). Therefore, alternative tools for controlling postharvest decays of table

grapes such as natural antimicrobials, decontaminating agents and physical methods have been
recently proposed (Romanazzi et al., 2012). Among alternative postharvest decay control means
(Feliziani et al., 2016; Pinto et al., 2015; 2016), ozone is increasingly gaining success owing to its
broad antimicrobial spectrum and the lack of harmful residues, so as to be a compound generally
recognised as safe (GRAS; Graham et al. 1997; FDA, 2001). High ozone concentrations were
effective in controlling the germination of Botrytis cinerea conidia reducing grey mould
development during grape cold storage (Gabler et al., 2010; Ozkan et al., 2011). Low doses of
gaseous ozone (0.21-0.31 mg m ⁻³) were also successfully used to limit the spread of grey mould on
grape during postharvest refrigerated period (Feliziani et al., 2014). The antimicrobial action of
ozone is generally attributed to its oxidant activity, also sustained by the release of reactive
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic acids damages (Hinze et al., 1987; Khadre et al., 2001).
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic acids damages (Hinze et al., 1987; Khadre et al., 2001). Despite these results, to the best of our knowledge, there are no studies reporting antimicrobial
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic acids damages (Hinze et al., 1987; Khadre et al., 2001). Despite these results, to the best of our knowledge, there are no studies reporting antimicrobial efficacy of ozone treatments against the yeast-bacterium consortium responsible for grape sour
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic acids damages (Hinze et al., 1987; Khadre et al., 2001). Despite these results, to the best of our knowledge, there are no studies reporting antimicrobial efficacy of ozone treatments against the yeast-bacterium consortium responsible for grape sour rot. Thus, in this work one single yeast-bacterium consortium responsible for grape sour rot
oxygen species, causing microbial cell membrane disruption, enzyme inactivation and nucleic acids damages (Hinze et al., 1987; Khadre et al., 2001). Despite these results, to the best of our knowledge, there are no studies reporting antimicrobial efficacy of ozone treatments against the yeast-bacterium consortium responsible for grape sour rot. Thus, in this work one single yeast-bacterium consortium responsible for grape sour rot was selected. Then, ozone treatments were carried out to reduce viable load of selected

2. Materials and Methods

81 The flow chart, describing the experiments carried out in this work, is depicted in Fig. 1.

- 83 2.1 Yeast and bacteria strains and culture conditions
- In this work, eight yeast strains (Candida vanderwaltii CBS 5524, C. zemplinina CBS 9494;
- 85 Hanseniaspora guilliermondii DSM 3432, H. meyerae CBS 8734, H. uvarum CBS 2585,

86	Zygoascus hellenicus CBS 6736, Z. meyerae CBS 4099, Z. meyerae CBS 6173) and seven AAB
87	(Acetobacter aceti LMG 1504, A. malorum LMG 1746, A. orleanensis LMG 1583, A. syzygii LMG
88	21419, Gluconacetobacter intermedius LMG 18909, Gl. saccharivorans LMG 1582 and
89	Gluconobacter oxydans LMG 1408) were chosen as representative strains of species usually
90	identified in rotten berries and putatively involved in sour rot (Barata et al., 2012b; Barata et al.,
91	2012c).
92	They were purchased from BCCM/LMG Bacteria Collection and CBS-KNAW Fungal Biodiversity
93	Centre and Leibniz-Institut DSMZ, German Collection of Microorganisms and Cell Cultures,
94	respectively. Bacteria were grown in YPM broth (D-mannitol 2.5 %; yeast extract 0.5 %; peptone
95	0.3 %) for 72 h at 30 °C in mild stirring whilst yeasts were grown in YPD broth (glucose 2 %; yeast
96	extract 0.5 %; peptone 1%) at 30 °C for 48 h. Gl. intermedius LMG 18909 was grown in 10 mL of
97	AE medium (glucose 1 %; yeast extract 0.2 %; peptone 0.3 %; acetic acid (100%) 1% v/v; ethanol
98	(96%) 2% v/v) for 5 days at 30 °C. All strains were stored in Nutrient Broth (NB; Becton Dickinson
99	Difco) with 20% glycerol at -80 °C in the Agro-Food Microbial Culture Collection (ITEM) at the
100	Institute of Sciences of Food Production of Bari, Italy (http://server.ispa.cnr.it/ITEM/Collection/).
101	
102	2.2 Sour rot development assay
103	The ability of NSY and AAB strains to cause sour rot on berries was evaluated as shown in Fig. 1
104	panel A1. Healthy grape berries of table grape cv. Sublima, received from the packing house
105	Giuliano Srl (Apulia, Turi, Italy), were detached from the bunches, removing the pedicel, surface-
106	sterilized with 2 % sodium hypochlorite for 5 min, rinsed with sterile tap water, air-dried for 30 min
107	under a laminar flow cabinet and then inoculated with 1×10^5 cfu berry ⁻¹ of single NSY strains (8),
108	or AAB strains (7) or their associations (56). Control samples were represented by berries without
109	pedicel amended or not with sterile saline solution, and by intact berries inoculated or not with
110	strains. The preparation of fresh microbial broth cultures for berry inoculation is explained in
111	the supplementary material section (SM 1).

112	Rotten berries, characterized by skin and pulp browning, dehydration, loss of grape juice and
113	vinegar odor, were enumerated after 3 and 6 days of incubation at 25 °C. The assay was performed
114	in triplicate (fifteen berries for each technical replicate; $N=3$), measuring pH, redox potential and
115	colorimetric coordinates as detailed in the supplementary material section (SM 1). At the end of
116	experiments, the yeast-bacterium association showing the highest sour rot incidence was defined
117	as a simplified microbial consortium and subsequently evaluated.
118	
119	2.3 Antimicrobial assays of gaseous ozone
120	Antimicrobial assays were performed, as depicted in Fig. 1 panel A2, in a controlled ozone chamber
121	endowed with 4 compartments with an internal volume of 0.038 m ³ and set at 4 °C. Ozone was
122	generated via cold plasma using an OGS347 apparatus (Pipo 1962, Santa Giustina in Colle, PD,
123	Italy) with a maximum production rate of 2.14 mg m ⁻³ (1 ppm); the ozone emission and its
124	concentration (every 10 minutes) were both monitored by a semiconductor SnO ₂ probe and a
125	specific data logger (Oneset Hobo datalogger, CapeCod, MA, USA). Further details related to the
126	ozone chamber (Fig. 1S) are described in SM 2. Temperature and relative humidity for each
127	compartment were measured every 30 min and recorded on Button® temperature/humidity logger
128	model DS1923 (Maxim Integrated, San Jose, CA, USA).
129	Serial decimal dilutions in sterile saline solution of NSY and AAB strains (described in SM 1) were
130	spread onto YPD or YPM agar in ventilated Petri dishes (Nuova Aptaca Srl, Canelli, Italy; 85 mm
131	of diameter); the initial estimated surface cell density ranged from 1 to 10000 cfu plate ⁻¹ . The
132	inoculated plates were incubated for 10 days at 4 °C in the ozone chamber flowing the gas at 0 or
133	1.07 mg m ⁻³ . Petri dishes were removed after 3, 7 and 10 days of ozone exposure, and incubated at
134	30 °C for 72 h in order to allow microbial colony development and enumeration.
135	The effect of cold ozonation on cell viability for all strains was evaluated calculating the surface
136	cell density, as reported in SM 2.

At the end of the experiments described in section 2.2, and the related supplementary content (SM
2), a single yeast-bacterium association was selected among 56 microbial associations assayed. This
microbial consortium was additionally incubated at 4 °C under ozonation at 2.14 mg m ⁻³ for ten
days. Each assay was performed in triplicate $(N = 3)$.
2.4 Effect of gaseous ozone on contaminated table grape berries
The scheme followed for the evaluation of sour rot development in berries after cold ozone
treatment and during the post-refrigeration period is shown in Fig. 1, panel B.
2.4.1 Sample preparation and incubation conditions
Grape bunches cv. Italia were received from Giuliano Srl immediately after harvesting, stored at 4
°C and processed within 48 h. Berries were inoculated with the selected AAB, or NSY strain
or with their association resulting from the previous sour rot screening, at ca . 10^4 - 10^5 cfu berry ⁻¹ , as
described in section SM 1. The assay was repeated three times $(N = 3)$. After the inoculum, berries
were stored in a climate controlled storage chamber at 25 °C, 95% RH and at ventilation rate of 0.1
L min ⁻¹ for 48 h (sample T48h) in order to allow microbial cells to adapt to the berry environment
and to simulate pre-harvest berry contamination before cold storage. After the adaptation period,
samples were splitted in two groups. The first group of berries (3 replicates composed of 15
berries for each sample and sampling time) was kept in the climate controlled storage chamber for
additional 12 days (samples T7 and T12). Conversely, the second group (3 replicates composed of
15 berries for each sample, sampling time and incubation in air or under ozone) was cold-stored (4
°C). Refrigerated berries were incubated in air or under gaseous ozone (2.14 mg m ⁻³) for ten days
(samples T10). After cold storage, the inoculated and non-inoculated berries, exposed or not
exposed to cold gaseous ozone, were further stored in the climate controlled storage chamber (25
°C, 95% RH) until 12 days in order to simulate sale conditions (samples T17 and T22).

162	2.4.2 Evaluation of sour rot development, microbiological and molecular analyses, HPLC analyses
163	of berry samples
164	The percentage of rotten berries and the disease severity were recorded according to an empirical
165	scale with five degrees (Fig. 2S) at each sampling time. The empirical scale allowed the
166	calculation of the McKinney's index, expressed as the weighted average of the disease on the
167	maximum possible level (McKinney, 1923). AAB and total yeast loads were enumerated
168	immediately after the inoculum (T0), after the adaptation period at 25 °C (T48h), after additional
169	seven days at 25 °C (T7), at the end of cold storage (T10) and, during the post-refrigeration period
170	at day seven (T17), as reported in SM 3.1.
171	Isolates from AAB and yeast populations from berry samples were characterized employing
172	molecular biotyping techniques in order to ascertain their belonging to AAB and NSY strains
173	inoculated in healty berries at T0. The composition of dominant AAB and total yeast populations
174	was defined as reported in SM 3.1.
175	The extraction of sugars (glucose and fructose), organic acids (tartaric acid, malic acid, gluconic
176	acid, acetic acid), ethanol and glycerol from grape samples was adapted from Mikulic-Petkovsek et
177	al., (2012), as detailed in the SM 3.1.
178	
179	2.5 Statistical analysis
180	A square root arcsin transformation (Sokal and Rohlf, 1995) was applied to percentages of spoiled
181	berries and to McKinney's index values before carrying out the analysis of variance. Homogeneity
182	of variance was assessed by Levene's test. The univariate General Linear Model (GLM) procedure,
183	applying one- or two-way ANOVA ($P \le 0.05$) through the SPSS software (SPSS, Inc., Chicago,
184	IL), was used to evaluate the effects of the storage period and ozone treatment on the severity
185	disease index values of berries and microbial cell counts and concentrations of different sugars and
186	organic acids. Multiple comparisons among individual means of the severity index for each sample
187	were made by Fisher's least significant difference (LSD) multiple range test at the 95% confidence

188	interval. Differences among mean values of yeasts and bacteria loads on sound and rotten berries
189	during post-refrigeration (samples T17) were evaluated applying Tukey test ($P < 0.05$).
190	
191	
192	3. Results
193	3.1 Sour rot development assay
194	The development of sour rot in wounded berries inoculated with 8 NSYstrains, or 7 AAB, or
195	56 yeast-bacteria associations was monitored at 25 $^{\circ}\text{C}$ up to six days (Fig. 1, panel A1).
196	A significant ($P < 0.05$) increase in sour rotten berries, regardless microbial species or their
197	associations, was registered for inoculated berries incubated at 25 °C and 95% RH (Table 1S); all
198	control berry samples did not develop any sour rot symptom. NSY-AAB associations usually
199	determined a percentage of sour rot significantly higher than that recorded for berries
200	inoculated only with the NSY strain or the AAB strain (Table 1S). After three days of incubation,
201	a percentage of sour rotten berries higher than 50% was observed only in berries inoculated
202	with associations composed of C. zemplinina CBS 9494 and A. malorum LMG 1746, or A.
203	syzygii LMG 21419 or Gl. saccharivorans LMG 1582. With the extension of the incubation
204	period, also the remaining yeast-bacterium associations were able to develop sour rot in different
205	extent as reported in SR 1. However, among all microbial associations, only those including C .
206	zemplinina CBS 9494 were able to produce high sour rot percentage starting from three days of
207	incubation (Table 1S). At day six, the highest sour rot severity (scored four) was achieved by
208	combining CBS 9494 with LMG 1746 or with LMG 21419 AAB strains. However, the 100% of
209	rotten berries (15 berries for three replicates) was determined only together with the LMG 21419
210	strain.
211	Therefore, based on these results, the association A. syzygii LMG 21419 - C. zemplinina CBS 9494
212	(As-Cz) was selected as a simplified yeast-bacterium consortium for further experiments.

214	3.2 Evaluation of antimicrobial activity of gaseous ozone against yeasts and bacteria
215	The antimicrobial effect of gaseous ozone against 8 NSY and 7 AAB strains was monitored during
216	10 days of incubation (Fig. 1, panel A2).
217	Cold incubation determined a reduction in the surface cell density independently from ozone
218	exposure, depending on the NSY or AAB strain assayed; in addition, the inhibitory effect on cell
219	viability of these strains increased by combining low temperature and ozone treatment (Fig. 4S).
220	The survival of AAB at 1.07 mg m ⁻³ cold ozonation was strain-dependent (Fig. 4S). In fact, A. aceti
221	LMG 1504 cells were not detected already after the third day of incubation, whereas A. malorum
222	LMG 1746 was found to be resistant until the end of cold ozonation period.
223	Conversely, NSY strains were overall found to be more resistant than AAB. After ten days of cold
224	storage, ozone flowed at 1.07 mg m ⁻³ , was more effective against <i>C. zemplinina</i> CBS 9494 (Cz)
225	than A. syzygii LMG 21419 (As). Therefore, in order to reduce viability of both microbial strains, a
226	higher ozone concentration (2.14 mg m ⁻³) was assayed.
227	The surface cell density of Cz at the begin of incubation (15.25 \pm 9.34 cfu cm ⁻²) decreased after 10
228	days to 9.81 ± 4.07 cfu cm ⁻² and to 1.14 ± 0.38 cfu cm ⁻² in air or under ozone, respectively. In the
229	case of As, initial surface cell density at 127.12 ± 28.38 cfu cm ⁻² was reduced to 103.32 ± 23.80 cfu
230	cm ⁻² when Petri dishes were cold incubated without ozone. On the contrary, plates exposed to
231	ozone previously seeded with the lower microbial decimal dilution did not show colonies.
232	Based on these results, the exposure for 10 days at ozone concentration of 2.14 mg m ⁻³ was used in
233	the subsequent experiments for the control of sour rot under postharvest
234	
235	3.3 Effect of cold ozone treatment on berries inoculated with simplified yeast-bacterium association
236	In order to stimulate the onset of sour rot, grape berries, inoculated with As, or Cz, or the As-Cz
237	consortium, were incubated at room temperature for 48 h. After the adaptation period, a group of
238	herries were stored in the climate controlled storage chamber whereas another group of herries

239	were cold-stored (4 °C) with or without ozonation (Fig. 1, panel B); both group of samples were
240	additionally incubated for 12 days (samples T17 and T22)
241	
242	3.3.1 Assessment of microbial viability and table sour rot development
243	At the end of the adaptation period (T48h at 25 °C), no rotten berries were found (herein and
244	subsequently in the paper, when berries were scored with a McKinney's index $\geq 15\%$). Viable
245	cell counts of AAB and total yeast populations are shown in Table 1.
246	At the end of the adaptation period (T48h at 25 °C, Table 1) AAB population reached <i>ca.</i> 6.5 log
247	cfu g^{-1} in sound berries (disease severity = 0) inoculated with As or the As-Cz association whereas
248	AAB were not detected in remaining samples. Natural yeast population showed a moderate
249	increase throughout nine days of incubation at 25 °C (sample SS in Table 1). On the contrary, in
250	berries inoculated with Cz (approximately at 5 log cfu g ⁻¹) total yeast population increased their
251	cell density by ca. two magnitude orders within 48h. In comparison with natural yeast population
252	enumerated in SS samples, berries inoculated with As, but non-amended with Cz, displayed an
253	increase in total yeast population by ca. three magnitude orders at T48h. After nine days of
254	storage at 25 °C (corresponding to T7 samples, Table 1) microbial population of sound berries was
255	characterized by a decrease in AAB population (As and As-Cz samples) and an increase in yeast in
256	SS control berries; samples inoculated with As or Cz showed values of viable yeasts close to those
257	found at T48h. T7 samples displayed sour rot symptoms that, expressed as McKinney's index, were
258	significantly ($P \le 0.05$; LSD ± 13.7 %.) higher in As (23.9 ± 2.6 %) and As-Cz (39.4 ± 13.9 %)
259	inoculated berries than in those with Cz (7.8 \pm 2.1); As, Cz and As-Cz berries showed different
260	disease severities that, according to the 1-4 empirical scale, fell in the 1-2 range for Cz berries, 2
261	for As berries and 3 for As-Cz berries. In SS samples no rotten berries were detected.
262	Rotten berries showed AAB population in As inoculated samples close to 6 log cfu g ⁻¹ , whereas the
263	same population increased to $6.97 \pm 0.29 \log \text{ cfu g}^{-1}$ in As-Cz berries; these values were found
264	significantly different by Tukey test for $P \le 0.05$ with those found in sound As and As-Cz

265	inoculated berries. At the same time, total yeast population, occurring in these fruits, were higher
266	than 7 log cfu g ⁻¹ ; in this case, significant differences were found only in the As inoculated samples.
267	After 14 days of storage at room temperature (corresponding to T12 samples, see Fig. 1), disease
268	severity for rotten berries showed values of 4 with McKinney's index of 37.8 ± 3.9 , 22.2 ± 10.2 ,
269	and 55.6 ± 13.9 (LSD = 13.7 %) for As, Cz and As-Cz inoculated berries, respectively. SS amended
270	berries were still completely sound.
271	At the end of the adaptation period (T48h) a group of berries was incubated at 4 °C in air or
272	under gaseous ozone (2.14 mg m ⁻³ ; Fig. 1, panel B), for ten days (samples T10). Changes in AAB
273	and total yeast populations related to cold storage and gaseous ozone treatment of berries are shown
274	in Table 2. AAB were not found in berries not inoculated with As, as already observed during the
275	adaptation period (48 h at 25 °C). As concerns samples inoculated with As, AAB population of
276	ozonated berries resulted significantly lower in comparison with the samples incubated in air after
277	ten days of cold storage (Table 2, T10). In the case of yeasts, natural population in control (SS) and
278	As samples resulted well controlled by ozone treatment. On the contrary, the same population
279	enumerated in Cz inoculated berries incubated in air and treated with ozone was not significantly
280	different.
281	After the end of cold storage, the additional storage at 25 °C resulted in sound and rotten berries
282	(Table 2, T17). In particular, no sound berries were detected in samples, previously cold-stored in
283	air (Table 2, T17: un = sound berries unavailable). AAB population enumerated in sound berries
284	were found at values still close to 6 log cfu g ⁻¹ only in samples previously exposed to ozone. Sound
285	berries from both air and ozone cold-stored samples, did not show any significant difference
286	in the density of viable yeast cells .
287	The McKinney's index values redorded for T10, T17 and T22 berry samples are shown in Table 3.
288	At the end of cold storage period (T10), no berry with sour rot symptoms was found independently
289	by samples (SS, As, Cz and As-Cz) or storage conditions (Air vs Ozone). In addition, the visual
290	appearance of berries did not show tissue damages potentially related to cold or cold/ozone

291	exposition. McKinney's indexes of SS berries increased significantly only at the end of post-
292	refrigration period (T22) without differences between air or ozone cold-stored berries. McKinney's
293	index of the remaining samples (inoculated berries at T17 and T22) was significantly lower in cold
294	ozonated berries than that recorded for fruits cold-stored in air.
295	Disease severity score of 3-4 was recorded for As and As-Cz inoculated rotten berries after seven
296	days in air at 25 °C, regardless the cold storage conditions previously applied.
297	On the contrary, disease severity of 1-2 or 2-3 distinguished Cz samples in relation to their previous
298	cold storage under ozone or in air, respectively. These results were similar to those previously
299	found at T7 and T12 in non-refrigerated berries stored at 25 °C under air when As inoculated
300	fruits always showed McKinney's indexes higher than Cz inoculated berries.
301	In rotten berries AAB population at T17 ranged from $6.40 \pm 0.20 \log cfu \ g^{-1}$ to $6.90 \pm 0.31 \log cfu$
302	g ⁻¹ for As-Cz (cold-stored in air) and As (cold-stored under ozone), respectively; total yeast
303	population of rotten berries showed average values of $7.37 \pm 0.15 \log cfu g^{-1}$. Tukey test revaled
304	that both microbial loads were significantly different in comparison to those found in sound berries
305	previously reported in Table 2 and subjected to the same treatments.
306	
307	3.3.2 Biotyping and taxonomic identification of microbial colonies isolated from sound and rotten
308	berries
309	A total of 146 bacterial colonies and 175 yeast isolates were clustered by RAPD-PCR fingerprint
310	following the flow chart showed in Fig 1. The results of identification of colonies isolated from
311	sound berries are reported in Table 4. AAB isolates, collected from berries of samples T0, T48, T7,
312	T10 under air and T10 under ozone, generated only the banding pattern of A. syzygii LMG 21419
313	strain. Two new RAPD-PCR profiles from representative isolates of AAB population from T17
314	sound berries belonged to Gluconobacter albidus species. As reported in Tables 3 and 4, no sound
315	berries were found at T17 in samples previously cold-stored in air; for this reason it was possible to
316	characterize AAB dominant populations only in rotten berries. The analysis of isolates from rotten

317	berries of T17 samples showed, in addition to both G. albidus RAPD-PCR profiles, four new
318	patterns belonging to A. syzygii, A. pasteurianus/cerevisiae, G. oxydans, and G. frateurii strains.
319	AAB dominant populations of T17 As and As-Cz rotten berries were represented by new strains
320	accounting, for the 73.2 \pm 2.5 % in air samples and for 86.4 \pm 6.4 % on average , in ozonated
321	samples. The RAPD-PCR pattern of the LMG 21419 strain was identified only in T17 rotten As
322	and As-Cz berries in the range of 9-28% (regardless of previous refrigeration in air or under
323	ozone).
324	Yeast population, naturally occurring in sound berries, was mostly composed of Hanseniaspora
325	uvarum and Metschnikowia pulcherrima strains; these species were found in all control samples
326	and in As inoculated berries. H. uvarum strains dominated many of these samples, whereas the
327	isolation of Aureobasidium pullulans strains was sporadic. Sound berries inoculated with As
328	showed a new <i>C. zemplinina</i> strain at T17 (indicated as Cz* in Table 4). Cz inoculated sound
329	berries (Cz and As-Cz samples, Table 4) always showed dominant population largely represented
330	by CBS 9494, although some samples showed few isolates belonging to <i>H. uvarum</i> .
331	Yeast populations of As and As-Cz rotten berries after 7 days at 25 $^{\circ}$ C (T7) were dominated by C.
332	zemplinina strains.
333	In absence of sound inoculated As and As-Cz berries (Tables 3 and 4), As rotten berries showed
334	only yeasts belonging to H. uvarum; the dominant yeast population of As-Cz rotten berries was
335	instead composed of both <i>H. uvarum</i> (60%) and <i>C. zemplinina</i> species (40%). On the contrary, the
336	dominant population of ozonated rotten berries, for both As and As-Cz samples, was composed
337	only of C. zemplinina strains.
338	
339	3.3.3 Identification and quantification of carbohydrates, alcohols and organic acids
340	Berry samples were analysed for reducing sugars, organic acids and alcohol concentrations
341	(expressed as g per Kg of fresh weight) following the sampling scheme showed in Fig 1. In
342	particular, their content did not show significant ($P < 0.05$) differences beetween sound berries

343	sampled at the end of the adaptation period (148h) and after the additional (17) incubation at
344	25 °C (Table 2S). However, acetic acid and glycerol were detected in As rotten berries
345	(McKinney's index of 23.9 \pm 2.6 %) at 3.84 \pm 0.02 and 2.13 \pm 0.37 g Kg ⁻¹ , on average ,
346	respectively; unexpectedly, these compounds were not detected in the As-Cz inoculated rotten
347	berries that recorded a higher McKinney's index (39.4 \pm 13.9%). No samples, including rotten
348	berries, showed detectable traces of ethanol.
349	The severity of sour rots reached the highest values after 12 days at room temperature
350	(samples T12, see Fig. 1); at the same time, glucose and fructose concentration halved (from
351	44.15 ± 0.73 and 116.65 ± 1.83 g Kg ⁻¹ to 27.47 ± 2.24 and 52.93 ± 5.33 g Kg ⁻¹ , for control and
352	inoculated rotten samples, respectively) showing the appearance of ethanol, acetic acid and glycerol
353	in As, Cz and As-Cz samples.
354	As and As-Cz rotten berries showed average values of 14.11 and 7.05 g Kg ⁻¹ of acid acetic and
355	ethanol (rough ratio 2:1), respectively. On the contrary, the average concentration of
356	these metabolites showed a rough ratio 1:2 (acid acetic 5.04 g $\mathrm{Kg^{\text{-}1}}$; ethanol 11.5 g $\mathrm{Kg^{\text{-}1}}$) in
357	rotten berries inoculated only with C. zemplinina CBS 9494.
358	Malic acid concentration was found to be stable in sound berries of control samples at values close
359	to 5 g $\mathrm{Kg}^{\text{-1}}$. In T12 rotten samples, the estimated gluconic acid concentration, a metabolite we
360	can suppose produced only by AAB population, was significantly higher in As and As-Cz than
361	in Cz samples ranged from 2.5 to 8.8 g Kg ⁻¹ . Glycerol found in the range of 1.7 - 2.3 g Kg ⁻¹ did
362	not seem related to As or Cz inoculum. Carbohydrate and organic acid content in sound berries
363	after cold storage (T10 and T17, Table 3S) showed values similar to the sound berry samples
364	previously analysed (Table 2S).
365	Different concentrations in acetic acid, ethanol and glycerol were found only in rotten berries after
366	post-refrigeration period (T17, Table 5).
367	Rotten berries from As and As-Cz samples after 12 days at room temperature, as well as those from
368	As and As-Cz at T17 refrigerated in air (Table 5), showed higher concentration of acetic acid than

369	ethanol, so their ratio was always higher than 1. In particular, ratios higher than 2 were found in
370	air samples inoculated with A. syzygii LMG 21419 at T17 (Table 5).
371	On the other hand, rotten berries from Cz samples after 12 days and ozonated rotten berries of T17
372	As samples showed higher amounts of ethanol compared to acetic acid, so the ratio of their
373	concentration was less than 1.
374	In these latter samples, gluconic and malic acid concentrations were close to that of malic acid
375	measured in sound samples; therefore the estimation of gluconic acid produced by AAB was
376	considered not feasible.
377	
378	4. Discussion
379	Sour rot is an emergent grape disease distributed in different geographical areas such as USA,
380	Chile, China and Europe (Barata et al., 2012b; Hall et al., 2015; Puelles Tamsec and Sepulveda
381	Ramirez, 2012; Wei et al., 2015). The etiology of this grape rot was attributed to <i>Candida</i> spp.,
382	Hanseniaspora spp., Issatchenkia spp. and Saccharomycopsis spp. yeast species (Blancard et al.,
383	2000; Guerzoni and Marchetti, 1987) or to AAB of the genera Acetobacter, Gluconobacter and
384	Gluconacetobacter (Barata et al., 2012c; Blancard et al., 2000; Oliva et al., 1999). Our results
385	sustain the association between AAB and NSY as the causal agent of grape sour rot development,
386	even though only certain AAB-NSY associations lead to a high percentage of rotten berries.
387	These results are consistent with those of Huber (2016) reporting a strain-dependent Candida
388	zemplinina pathogenicity.
389	Furthermore, sour rot development in vineyard was widely reported associated with Drosophila
390	spp. (Gravot et al., 2001; Marchetti et al., 1984). In particular, Barata et al. (2012c) demonstrated
391	that Drosophila spp. flies are the origin and/or the vector of AAB; likewise, Hall et al. (2015)
392	showed that axenic <i>Drosophila</i> spp. flies were unable to develop sour rot onto wounded
393	berries.

394	Since the aim of this work was to counteract table grape sour rot during postharvest refrigerated
395	storage, we were forced to find a yeast-bacteria association able to spoil berries in absence of flies.
396	Nevertheless, sour rot can also develop during and/or after cold storage thanks to a pre-harvest
397	latent infection. Thus, to simulate a field contamination, an incubation of two days (T48h samples)
398	at 25 °C, was considered useful for microbial adaptation to berry environment before the cold
399	storage.
400	Sour rot development assays allowed to select the A. syzygii LMG 21419 and C. zemplinina CBS
401	9494 as a simplified microbial consortium model useful for carrying out trials on table grape
402	under postharvest conditions. Likewise, in vitro assays informed that strains belonging to this
403	AAB-NSY association were controlled after 10 days of cold incubation under continuous ozone
404	flow at 2.14 mg m ⁻³ . The effect of gaseous ozone treatment against natural yeast population on
405	table grape berry was slightly higher than that recently reported by Cravero et al. (2016) on wine
406	grape berries. Moreover, natural yeast population load in berries inoculated with A. syzygii
406 407	grape berries. Moreover, natural yeast population load in berries inoculated with <i>A. syzygii</i> LMG 21419 increased significantly in comparison with that enumerated in control berries,
407	LMG 21419 increased significantly in comparison with that enumerated in control berries,
407 408	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY.
407 408 409	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect
407 408 409 410	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect against <i>A. syzygii</i> LMG 21419 was recorded under ozone at 2.14 mg m ⁻³ ; however, this strain was
407 408 409 410 411	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect against <i>A. syzygii</i> LMG 21419 was recorded under ozone at 2.14 mg m ⁻³ ; however, this strain was more efficiently controlled when it was seeded onto Petri dishes than when it was inoculated in
407 408 409 410 411 412	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect against <i>A. syzygii</i> LMG 21419 was recorded under ozone at 2.14 mg m ⁻³ ; however, this strain was more efficiently controlled when it was seeded onto Petri dishes than when it was inoculated in healthy berries. The reduction of antibacterial efficacy of ozone treatment could be due to several
407 408 409 410 411 412 413	LMG 21419 increased significantly in comparison with that enumerated in control berries , suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect against <i>A. syzygii</i> LMG 21419 was recorded under ozone at 2.14 mg m ⁻³ ; however, this strain was more efficiently controlled when it was seeded onto Petri dishes than when it was inoculated in healthy berries. The reduction of antibacterial efficacy of ozone treatment could be due to several factors, as the reaction with organic matter (de Candia et al., 2015; Sarig et al., 1996; Segat et al.,
407 408 409 410 411 412 413 414	LMG 21419 increased significantly in comparison with that enumerated in control berries, suggesting a possible role of this bacterial strain in promoting the growth of wild NSY. The use of ozone for controlling both AAB and NSY has been rarely reported. The main effect against <i>A. syzygii</i> LMG 21419 was recorded under ozone at 2.14 mg m ⁻³ ; however, this strain was more efficiently controlled when it was seeded onto Petri dishes than when it was inoculated in healthy berries. The reduction of antibacterial efficacy of ozone treatment could be due to several factors, as the reaction with organic matter (de Candia et al., 2015; Sarig et al., 1996; Segat et al., 2014), the reduced penetration in wounds and the leakage of ozone-reactive substances reducing the

418	As concerns C. zemplinina CBS 9494, the low efficacy of ozonation of inoculated berries is in
419	accordance with the results of Guzzon et al. (2013) who demonstrated the complete inactivation of
420	several NSY strains after ozonated water treatment only at ozone concentration of 2.5 mg L ⁻¹ .
421	However, the exposure to ozone affected both berry microbial composition and sour rot
422	development. After the refrigeration period, cold-stored non-ozonated berries developed sour
423	rot with a higher incidence than that found among ozonated samples. The highest McKinney's
424	index was found in As inoculated berries previously cold-stored in air. On the other hand, A.
425	syzygii LMG 21419 was not detected in AAB dominant population of ozonated As inoculated
426	sound berries.
427	Even though dominant AAB population showed new non-inoculated strains, potentially
428	responsible for an additional tissue decay, A. syzygii LMG 21419 was still found in both As and As-
429	Cz rotten berries. Our results partially reflect changes in microbiota of sour rotten berries evaluated
430	under pre-harvest conditions (Barata et al., 2012b).
431	These results suggest that the survival of A. syzygii LMG 21419 over cold storage, under the
432	experimental conditions here applied, plays a pivotal role for the development of sour rot during
433	the post-refrigeration period.
434	The isolation of both C. zemplinina and H. uvarum strains immediately after cold storage under
435	ozone is in accordance with the survival of these species naturally occurring onto wine grape
436	surface after ozonation in gaseous and water form (Cravero et al., 2016). Thus, the growth of
437	these new strains could be co-responsible for sour rot development together with CBS 9494. The
438	new C. zemplinina strain was isolated only from As rotten berries in which the strain C. zemplinina
439	CBS 9494 was not inoculated. However, slight differences (>95% of similarity) were found
440	between the molecular fingerprints of C. zemplinina isolates and that of the strain CBS 9494,
441	confirming the low level of diversity found among C. zemplinina (synonym of Starmerella
442	bacillaris, Duarte et al., 2012) strains also when different molecular-based methods were applied
443	(Englezos et al., 2015; Masneuf-Pomarede et al., 2015).

Our assays showed that ozonation, thanks to the ozone antimicrobial activity, significantly reduced
the extent of sour rot during the post-refrigeration period. However, other authors reported that
ozone treatments induced a tissue response responsible for delaying or reducing the vegetable decay
(Sarig et al., 1996; Rodoni et al., 2009). For these reasons, ozonation could control the table grape
sour rot also thanks to additional non-antimicrobial effects.
In addition to the microbial composition, changes in main sugars, organic acids and alchohols
during sour rot development were monitored. Reduction in sugar concentration cannot be an
affordable marker for the evaluation of the early phases of sour rot, as significant changes were
evident only in heavily rotten berries.
As concerns acetic acid and ethanol found in rotten berries, their concentration changed
depending on the cold storage conditions applied. Conversely, the acetic acid concentration was
lower in ozonated than in air cold-stored rotten berries of As and As-Cz samples; this result
suggests that the release of acetic acid by microbial populations responsible for sour rot in table
grape berries could be affected by cold ozonation.
In addition, in ozonated sound berries, as well as in Cz samples, ethanol was more concentrated
than acetic acid, suggesting that it was not further oxidized to acetic acid and/or water and carbon
dioxide (Guillamón and Mas, 2011). Conversely, samples cold-stored in air and displaying a high
McKinney's index (>30%) were always characterized by an acetic acid to ethanol ratio higher than
1. Acetic acid, ethanol and glycerol found in berries inoculated only with <i>C. zemplinina</i> CBS 9494,
suggested the ability of this yeast to produce these metabolites. However, we could not ascertain if
the low amount of acetic acid found in Cz rotten berries was released by C. zemplinina CBS
9494, as already reported for this species by Englezos et al. (2015), or, indeed, by the naturally
occurring AAB, mainly composed of Gluconobacter spp This latter bacterial genus was
previously reported to be involved in grape sour rot (Gravot, 2001; Huber, 2016) and able to
convert ethanol and glycerol into acetic acid and dihydroxyacetone, respectively (Guillamón and
Mas, 2011).

470	Gluconic acid, an AAB metabolite (Couto et al., 2003) and a well- known marker of grape sour rot
471	(Zoecklein et al., 2001), was detected only in rotten berries scored with high McKinney's
472	index, as previously reported in wine grapes (Barata et al., 2012c; Zoecklein et al., 2001). In rotten
473	berries, the glycerol to gluconic acid ratio was found to be close to that considered typical of sour
474	rot (Zoecklein et al., 2001) and far from values recorded for B. cinerea "noble rot", characterized
475	by a high level of glycerol and a low concentration of gluconic acid (Hausinger et al., 2015).
476	Since AAB can release acetic and gluconic acids metabolizing ethanol and sugars (Lu et al., 1999;
477	Mamlouk and Gullo, 2013), our findings suggest that the direct oxidation of glucose into gluconic
478	acid, carried out by AAB, is not detectable until distinct and clearly recognizable sour rot
479	symptoms can be observed.
480	In conclusion, ozone treatment, applied under cold storage, controlled sour rot of heavily
481	contaminated berries during the post-refrigeration period and counteracted spoilage activity caused
482	by AAB. Rotten berries, characterized by high viable loads of AAB and NSY populations, usually
483	showed increasing concentrations of a series of microbial metabolites represented by ethanol,
484	then by acetic acid and finally by gluconic acid. This pattern, that needs to be validated after
485	specific trials, reflected the grape sour rot severity and was modified under cold ozonation.
486	Although ozone application needs larger scale trials, cold storage of table grape under low doses of
487	gaseous ozone is a promising method for preventing microbial postharvest decay and for replacing
488	sulphur dioxide-releasing systems.
489	
490	
491	Acknowledgments
492	This work was carried out under research activities of the Project "Development of innovative food
493	products through biotechnological, plant design and technological solutions" (PROINNO_BIT-
494	PON02_00657_00186_3417037) funded by Italian Ministry of Education, University and Research
495	and Ministry of Economic Development. The Authors thank Giuliano Srl (Turi, Apulia, Italy) for

496	the supply of table grape, Mr. Stea Gaetano for its technical help in performing molecular analysis
497	and Dr. Maria Morea for her valuable suggestions for the proofreading of this manuscript.
498	
499	
500	References
501	Bai, J. W., Sun, D. W., Xiao, H. W., Mujumdar, A. S., Gao, Z. J., 2013. Novel high-humidity hot air impingement
502	blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innov. Food
503	Sci. Emerg. Technol., 20, 230-237.
504	Barata, A., González, S., Malfeito-Ferreira, M., Querol, A., Loureiro, V., 2008. Sour rot-damaged grapes are sources of
505	wine spoilage yeasts. FEMS Yeast Res., 8, 1008-1017.
506	Barata, A., Malfeito-Ferreira, M., Loureiro, V., 2012a. The microbial ecology of wine grape berries. Int. J. Food
507	Microbiol., 153, 243-259.
508	Barata, A., Malfeito-Ferreira, M., Loureiro, V., 2012b. Changes in sour rotten grape berry microbiota during ripening
509	and wine fermentation. Int. J. Food Microbiol., 154, 152-161.
510	Barata, A., Santos, S. C., Malfeito-Ferreira, M., and Loureiro, V., 2012c. New insights into the ecological interaction
511	between grape berry microorganisms and Drosophila flies during the development of sour rot. Microbial Ecol.,
512	64, 416-430.
513	Baruzzi, F., Pinto, L., Quintieri, L., Carito, A., Calabrese, N., Caputo, L., 2015. Efficacy of lactoferricin B in
514	controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol., 215, 179-
515	186. doi:10.1016/j.ijfoodmicro.2015.09.017
516	Blancard, D., Gravot, E., Jailloux, F., Fermaud, M., 2000. Etiology of sour rot in vineyards located in south-west of
517	France. IOBC/wprs Bulletin Integrated Control in Viticulture, 23, 51-54.
518	Caputo, L., Quintieri, L., Baruzzi, F., Borcakli, M., Morea, M., 2012. Molecular and phenotypic characterization of
519	Pichia fermentans strains found among Boza yeasts. Food Res. Int., 48, 755-762.
520	Couto, J. A., Graça, A. R., Soares-Franco, J. M., Hogg, T., 2003. The use of gluconic acid level as an indicator of the
521	activity of acetic acid bacteria in grapes. Presented at the VII Symposium International d'Oenologie, Bordeaux,
522	France.
523	Cravero, F., Englezos, V., Rantsiou, K., Torchio, F., Giacosa, S., Segade, S. R., Gerbi, V., Rolle, L., Cocolin, L., 2016.
524	Ozone treatments of post harvested wine grapes: Impact on fermentative yeasts and wine chemical properties.
525	Food Res. Int. 87, 134-141.

	ACCEPTED MANUSCRIPT
526	Crisosto, C., Mitchell, F. G., 2002. Postharvest handling systems: Small fruits. I. Table grapes. In: Kader, A.A. (ed.),
527	Postharvest technology of horticultural crops, Pub. 3311 University of California, ANR Publications, Oakland,
528	CA, pp. 357-363
529	de Candia, S., Morea, M., Baruzzi, F., 2015. Eradication of high viable loads of <i>Listeria monocytogenes</i> contaminating
530	food-contact surfaces. Front. Microbiol., 6, 733-745.
531	Duarte, F. L., Pimentel, N. H., Teixeira, A., Fonseca, A., 2012. Saccharomyces bacillaris is not a synonym of Candida
532	stellata: reinstatement as Starmerella bacillaris comb. nov. A. Van Leeuw., 102, 653-658.
533	Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., Cocolin, L., 2015. Exploitation of the non-Saccharomyces
534	yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular
535	characterizations. Int. J. Food Microbiol., 199, 33-40.
536	EPA (US Environmental Protection Agency), 1989. Pesticide tolerance for sulfur dioxide. Federal Register 54, 384-
537	385.
538	EU Directive 2006/52/CE Official J. Europ. Comm. L. 204, 10-22.
539	FDA, 2001. Hazard analysis and critical control point (HACCP): procedures forthe safe and sanitary processing and
540	importing of juice; final rule, Federal Register, 66, 6137-6202.
541	Feliziani, E., Lichter, A., Smilanick, J. L., Ippolito, A., 2016. Disinfecting agents for controlling fruit and vegetable
542	diseases after harvest. Postharvest Biol. Tec., 122, 53-69.
543	Feliziani, E., Romanazzi, G., Smilanick, J. L., 2014. Application of low concentrations of ozone during the cold storage
544	of table grapes. Postharvest Biol. Tec., 93, 38-48.
545	Gabler, F. M., Smilanick, J. L., Mansour, M. F., Karaca, H., 2010. Influence of fumigation with high concentrations of
546	ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biol. Tec., 55, 85-90.
547	Gabler, F. M., Smilanick, J.L., 2001. Postharvest control of table grape gray mold on detached berries with carbonate
548	and bicarbonate salts and disinfectants. Am. J. Enol. Viticult., 52, 12-20.
549	Graham, D.M., Pariza, M.W., Glaze, W.H., Erdman, J.W., Newell, G.W. Borzelleca, J.F., 1997. Use of ozone for food
550	processing, Food Technol., 51, 72–6.
551	Gravot F. Blancard D. Fermand M. Lonvand A. Joveny A. 2001 La pourriture acide L'Etiologie: recherche de

- Gravot, E., Blancard, D., Fermaud, M., Lonvaud, A., Joyeux, A., 2001. La pourriture acide. I-Etiologie: recherche de 551 causes de cette pourriture dans le vignoble bordelais: Vigne. Phytoma-La Défense des végétaux, 543, 36-39. 552
- 553 Guerzoni, E., Marchetti, R., 1987. Analysis of yeast flora associated with grape sour rot and of the chemical disease 554 markers. Applied Environ. Microbiol., 53, 571-576.
- 555 Guillamón J. M., Mas A., 2011. Acetic Acid Bacteria. In: Carrascosa Santiago, A. V., Munoz, R., Gonzales Garcia, R., (Eds.), Molecular Wine Microbiology, Elsevier B.V., pp. 227-255. 556

- 557 Guzzon, R., Nardin, T., Micheletti, O., Nicolini, G., Larcher, R., 2013. Antimicrobial activity of ozone. Effectiveness
- against the main wine spoilage microorganisms and evaluation of impact on simple phenols in wine. Aust. J.
- 559 Grape Wine Res., 19, 180-188.
- Hall, M. E., Loeb G. M., Wilcox W. F., 2015. Etiology and management strategies for sour rot on grapes. In APS
- Annual Meeting, Pasadena, California (USA), August, 1-5, 2015.
- Hashim-Buckey, J., Gabler, F. M., Mansour, M. F., Schrader, P., Pryor, M., Margosan, D. A., Smilanick, J. L., 2008.
- Effectiveness of preharvest applications of fungicides on preharvest Bunch rot and postharvest Sour Rot of
- 'Redglobe'. In: Grapes Proceedings of the 2nd Annual National ViticultureResearch Conference, University of
- California, Davis, pp. 33-36.
- Hausinger, K., Lipps, M., Raddatz, H., Rosch, A., Scholten, G., Schrenk, D., 2015. Automated optical grape-sorting of
- rotten grapes: effects of rot infections on gluconic acid concentrations and glycerol/gluconic acid ratios in must
- and wine. J. Wine Res. 26, 18-28.
- Hinze, H., Prakash, D., Holzer, H., 1987. Effect of ozone on ATP, cytosolic enzymes and permeability of
- 570 Saccharomyces cerevisiae. Arch. Microbiol., 147, 105-108.
- 571 Huber, C., 2016. Etiology and Management of Grape Sour Rot. PhD thesis available at
- 572 http://dr.library.brocku.ca/handle/10464/9305
- Khadre, M. A., Yousef, A. E., Kim, J. G., 2001. Microbiological aspects of ozone applications in food: a review. J.
- Food Sci., 66, 1242-1253.
- Lichter, A., Gabler, F. M., Smilanick, J. L., 2006. Control of spoilage in table grapes. Stewart Postharvest Rev., 2, 1-10.
- Loureiro, V., Ferreira, M. M., Monteiro, S., Ferreira, R. B., 2012. The microbial community of grape berry. In: Gerós,
- 577 H., Chaves, M., and Delrot, S. (Eds.), The biochemistry of the grape berry. Bentham Science
- Publishers, Sharjah, United Arab Emirates, pp. 241-268.
- 579 Lu, S. F., Lee, F. L., Chen, H. K., 1999. A thermotolerant and high acetic acid-producing bacterium *Acetobacter* sp.
- 580 I14–2. J. Appl. Microbiol., 86, 55-62.
- 581 Mamlouk, D., Gullo, M., 2013. Acetic acid bacteria: physiology and carbon sources oxidation. Ind. J. Microbiol., 53,
- **582** 377-384.
- Marchetti, R., Guerzoni, E., Gentile, M., 1984. Research on the etiology of a new disease of grapes: sour rot. Vitis, 23,
- 584 55–65.
- Masneuf-Pomarede, I., Juquin, E., Miot-Sertier, C., Renault, P., Laizet, Y. H., Salin, F., Alexandre, H., Capozzi, V.,
- Cocolin, L., Colonna-Ceccaldi, B., Englezos, V., Girard, P., Gonzalez, B., Lucas, P., Mas, A., Nisiotou, A.,
- 587 Sipiczki, M., Spano, G., Tassou, C., Bely, M., Albertin, W., 2015. The yeast Starmerella bacillaris (synonym

- Candida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res., 15:
- 589 fov045.
- Mateo, E., Torija, M. J., Mas, A., Bartowsky, E. J., 2014. Acetic acid bacteria isolated from grapes of South Australian
- 591 vineyards. Int. J. Food Microbiol., 178, 98-106.
- 592 McKinney, H.H., 1923. Influence of soil temperature and moisture on infection of wheat seedlings by *Helmintosporium*
- 593 *sativum.* J. Agr. Res., 26, 195–218.
- Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., Veberic, R., 2012. Composition of sugars, organic
- acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci., 77, C1064-C1070.
- Nigro, F., Schena, L., Ligorio, A., Pentimone, I., Ippolito, A., Salerno, M. G., 2006. Control of table grape storage rots
- by pre-harvest applications of salts. Postharvest Biol. Tec., 42, 142-149.
- 598 Oliva, J., Navarro, S., Navarro, G., Camara, M. A., Barba, A., 1999. Integrated control of grape berry moth (Lobesia
- botrana), powdery mildew (Uncinula necator), downy mildew (Plasmopara viticola) and grapevine sour rot
- 600 (*Acetobacter* spp.). Crop Prot., 18, 581-587.
- Ozkan, R., Smilanick, J. L., Karabulut, O. A., 2011. Toxicity of ozone gas to conidia of *Penicillium digitatum*,
- Penicillium italicum, and Botrytis cinerea and control of gray mold on table grapes. Postharvest Biol. Tec., 60,
- 603 47-51.
- Palou, L., Crisosto, C. H., Smilanick, J. L., Adaskaveg, J. E., Zoffoli, J. P., 2002. Effects of continuous 0.3 ppm ozone
- exposure on decay development and physiological responses of peaches and table grapes in cold storage.
- 606 Postharvest Biol. Tec., 24, 39-48.
- 607 Pfliegler, W. P., Horváth, E., Kállai, Z., Sipiczki, M., 2014. Diversity of Candida zemplinina isolates inferred from
- RAPD, micro/minisatellite and physiological analysis. Microbiol. Res., 169, 402-410.
- 609 Pinto, L., Baruzzi, F., Ippolito, A., 2016. Recentadvances to control spoilagemicroorganisms in washing water of fruits
- and vegetables: the use of electrolyzed water. Acta Hortic., 1144, 379-384.
- 611 Pinto, L., Ippolito, A., Baruzzi, F., 2015. Control of spoiler *Pseudomonas* spp. on fresh cut vegetables by neutral
- electrolyzed water. Food Microbiol., 50, 102-108.
- 613 Puelles Tamsec, J., Sepulveda Ramirez, P., 2012. Pudriciónácida- Instituto de Investigaciones Agropecuarias. Chile.
- 614 Cartilla divulgativa 5, 1-4.
- 615 Rodoni, L., Casadei, N., Concellón, A., Chaves Alicia, A. R., Vicente, A. R., 2009. Effect of short-term ozone
- treatments on tomato (*Solanum lycopersicum* L.) fruit quality and cell wall degradation. J. Agr. Food Chem.,
- 617 58, 594-599.

618	Romanazzi, G., Lichter, A., Gabler, F. M., Smilanick, J. L., 2012. Recent advances on the use of natural and safe
619	alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol. Tec.,
620	63, 141-147.
621	Sarig, P., Zahavi, T., Zutkhi, Y., Yannai, S., Lisker, N., Ben-Arie, R., 1996. Ozone for control of post-harvest decay of
622	table grapes caused by <i>Rhizopus stolonifer</i> . Physiol. Mol. Plant P., 48, 403-415.
623	Segat, A., Biasutti, M., Iacumin, L., Comi, G., Baruzzi, F., Carboni, C., Innocente, N., 2014. Use of ozone in production
624	chain of high moisture Mozzarella cheese. LWT- Food Sci. Technol., 55, 513-520.
625	Smilanick, J. L., Crisosto, C., Mlikota, F., 1999. Postharvest use of ozone on fresh fruit. Perishables Handling Q, 99,
626	10-14.
627	Snowdon, A. L., 1990. Grapes. In: A colour post-harvest diseases of disorders of fruits and vegetables. Vol. 1. General
628	introduction and fruits, Wolfe Scientific, London, pp. 255-266.
629	Sokal, R. R., Rohlf, F. J., 1995. Biometry: the principles and practice of statistics in biological research. In
630	SokalBiometry: The Principles and Practice of Statistics in Biological Research. WH. Freeman & Co., San
631	Francisco.
632	USDA FAS, 2014. Fresh Deciduous Fruit Annual 2014. Approved by Christine Sloop; prepared by Ornella Bettini.
633	GAIN Report Number:IT14100. http://gain.fas.usda.gov//2014_Rome_Italy_10-28-2014.pdf
634	USDA FAS, 2015. Fresh Deciduous Fruit Annual 2015. Approved by Christine Sloop; prepared by Ornella Bettini.
635	GAIN Report Number: IT1576.http://gain.fas.usda.gov//2015_Rome_Italy_11-25-2015.pdf
636	Wani, S., Barnes, J., Singleton, I., 2016. Investigation of potential reasons for bacterial survival on 'ready-to-eat'leafy
637	produce during exposure to gaseous ozone. Postharvest Biol. Tec., 111, 185-190.
638	Wei, Y., Wang, C., Zhao, X., Shang, Q., Liu, Z., 2015. Identification and biological characteristics of the pathogenic sf-
639	19 strain of grape sour rot from Beijing.In APS Annual Meeting, Pasadena, California (USA), August, 1-5,
640	2015. Available online at http://www.apsnet.org/
641	Zoecklein, B. W., Williams, J. M., Duncan, S. E., 2001. Effect of sour rot on the composition of White Riesling (Vitis
642	vinifera L.) grapes. Small Fruits Rev., 1, 63-77.

644	Figure Captions
645	
646	
647	Fig. 1 Flow chart of the experiments carried out in this work.
648	

649	SUFFEMENTARY CONTENT
650	
651	
652	Efficacy of gaseous ozone to counteract postharvest table grape sour rot
653	Pinto L., Caputo L., Quintieri L., de Candia S. and Baruzzi F.*
654	
655	Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola
656	122/O, 70126 Bari, Italy
657	
658	
659	
660	*Corresponding author. Institute of Sciences of Food Production, National Research Council of
661	Italy, Via G. Amendola 122/O, 70126 Bari, Italy. Tel.: +39 080 5929319
662	E-mail address: federico.baruzzi@ispa.cnr.it (Baruzzi F.)
663	
664	

Sunn	lementary	Methods	(M2)
2000	ешешагу	vieillous	

_	_	_	

665

6	16	16	

SM 1 - Sour rot development assay 667 Each strain was cultivated inoculating a loopful of fresh yeast or bacterial cultures (24-48 h) in 668 10 mL of YPD or YPM, respectively. All cultures were incubated at 30 °C with mild shaking 669 (120 rpm) for 48 h. Then, microbial pellets were harvested by centrifugation (13000 rpm for 5 670 min), and washed twice in sterile saline solution (0.85% NaCl). The bacterial inoculum was 671 prepared from a cell suspension with an OD_{600} of 0.3 ± 0.05 (corresponding to approximately 1 672 **x10⁸ cfu mL⁻¹**) and diluted with sterile saline solution by reaching 10⁷ cfu mL⁻¹; cellular density of 673 yeasts (10⁷ cfu mL⁻¹) was assessed using a Thoma counting chamber (HGB Henneberg-Sander 674 GmbH, Lutzellinden, Germany). Cell suspension (10 µL) of each **strain** and their combinations 675 were inoculated in the pedicel cavity of 15 sterilized berries for each sampling time (final 676 concentration of 1×10^4 - 10^5 cfu berry⁻¹) in order to minimize the healing effect. Samples were 677 incubated in a climate controlled chamber for 6 days at 25 °C, 95% RH and at a ventilation rate of 678 0.1 L min⁻¹ (Everlasting cabinet model 700 Glass, Everlasting S.r.l., Suzzara, Italy). 679 Color analysis of rotten berries was carried out determining colorimetric CIE (Commission 680 Internationale de l'Eclairage) coordinates L* (lightness), a* (redness) and b* (yellowness) on 3 681 random points of each sample. To this purpose, the ChromaMeter CR-400 (Konica Minolta, Osaka, 682 683 Japan) equipped with a D65 illuminant (6504 K), was used following the manufacturer's instructions. The visible color differences (ΔE) among berries samples, recorded at the sixth day of 684 incubation, were calculated using the equation reported by Bai et al. (2013). The measurements of 685 pH and oxidation reduction potential in grape juice and grape pulp were also determined by a pH 686 meter (Model pH50 Lab pH Meter XS-Instrument, Concordia, Italy). 687 688 At the end of experiments, the **yeast-bacterium** association showing the highest sour rot incidence was defined as a simplified microbial consortium and evaluated in the subsequent experimental 689 activities. 690

SM 2 - Antimicrobial activity of gaseous ozone

The ozone chamber was realised connecting a commercial refrigerator with four independent ozone generators (Fig. 1S, panel A). The refrigerator included four independent airtight compartments, with an approximate volume of 0.04 m³; in each compartment, endowed with an independent probe for monitoring ozone concentration, gas flowed from its own generator (Fig. 1S, panel B). Control (unozonated) Petri dishes or berry samples were incubated in compartments whose generators were switched off.

Fig. 1S: The ozone chamber. Panel A, independent ozone generators connected with the refrigerator. Panel B, a compartment in which the ozone inlet (1) and the probe for monitoring ozone concentration (2) are present.

In order to evaluate the effect of cold ozonation, plates were inoculated with decimal dilutions of broth cultures up to 10.000 times. After ozone exposure, plates seeded with different decimal dilutions were incubated as described in Material and Methods section. Then, the number of cells, occurring on the plate seeded with the broth culture (E), was estimated by enumerating colonies developed. The E value was calculated as reported in the formula:

$$E = \frac{a10^{x1} + b10^{x2} + c10^{x3} + d10^{x4}}{n}$$

where, *a*, *b*, *c*, *d*, are the average number of colonies enumerated onto plates inoculated with different decimal dilutions, *x* is the exponent corresponding to the decimal dilution, and *n* is the number of dilutions showing countable colonies and used for the calculation of *E*.

Once the *E* value was calculated, the surface cell density was obtained dividing it by the plate surface (63.6 cm²).

714

- 715 SM 3 Effect of gaseous ozone on contaminated table grape berries
- 716 SM 3.1 Evaluation of sour rot development, microbiological and molecular analyses, HPLC
- 717 analyses of berry samples
- The empirical scale used for the calculation of incidence and severity, expressed as McKinney's
- 719 index (McKinney 1923), is shown in Fig. 2S.

720

721 722

723

Fig. 2S Empirical scale with five degrees used for severity evaluation of sour rot: sound berries, 0; surface of berries spoiled from 1 to 10%, 1; surface of berries spoiled from 11 to 20%, 2; surface of berries spoiled from 21 to 50%, 3; more than 50% of spoiled surface, 4.

- Microbiological analyses were carried out as follows: berries (15 g) were homogenized in 15 mL of sterile saline solution for 1 min at 11000 rpm using an **Ultra-Turrax T 25 digital** (IKA,
- Wilmington, NC); the slurries were decimal diluted in sterile saline solution and plated on GYC
- 729 (glucose 0.1%; yeast extract 0.1%; calcium carbonate 0.2%; agar 1.6%; pimaricin 100 mg L
- 730 1) or YPDA medium (YPD broth supplemented with agar 1.6% and amended with 100 mg L⁻¹
- of cloramphenicol, Biolife Italiana Srl, Milan, Italy) for enumeration of AAB and total yeasts,
- respectively. Plates were incubated at 30 °C for 72 h for GYC plates and for 48 h for YPDA plates.
- 733 The composition of dominant AAB and total yeast populations was defined by picking up a number
- of microbial colonies representing at least 10% of the colonies enumerated on agar plates from

735	higher decimal dilutions. Following this approach, 146 AAB isolates and 175 yeasts were
736	subjected to molecular typing. DNA from bacterial colonies was extracted according to Barata et
737	al. (2012b), whereas DNA from yeasts was extracted using the Masterpure yeast DNA purification
738	kit (Epicentre Biotechnologies, WI, USA) according to manufacturer's instructions. Bacterial and
739	yeast isolates were typed applying different RAPD-PCR protocols (Baruzzi et al., 2015; Pfliegler et
740	al., 2014). Biotypes, representing different microbial clusters, were identified according to Mateo et
741	al. (2014) and Caputo et al. (2012) for bacteria and yeasts, respectively.
742	The extraction of sugars, organic acids and alcohols from grape samples was carried out as
743	reported by Mikulic-Petkovsek et al. (2012) with minor changes. Briefly, 15 grams of berries,
744	were homogenized with 15 mL of bidistilled water for 1 min at 11000 rpm by using Ultra-
745	Turrax T-25 digital. Then, the homogenate was centrifuged at 14000 rpm for 10 min at 4 °C.
746	Depending on the metabolites (organic acids and alcohols or sugars), supernatant from each sample
747	was appropriately diluted and filtered using 0.45 μm filters before the injection (20 $\mu L)$ in the
748	HPLC system (Jasco Inc., Tokyo, Japan) equipped with a refractive index detector (RI-2031), an
749	UV detector (UV-2077) and an autosampler (AS-2057). JASCO ChromeNAVsoftware (Version
750	1.19.03 Build 6) was used for data acquisition, peak integration and standard calibration. Each
751	sample was analysed in triplicate and concentrations were expressed as g per Kg of fresh weight (g
752	Kg^{-1}).
753	Glucose and fructose were isocratically separated on a Rezex RCM monosaccharide Ca ⁺² column
754	(300 mm x 7.8 mm; 8µm; Phenomenex, Torrance, CA) preceded by a SecurityGuard Cartridge
755	(Carbo-H 4 x 3.0 mm; 8µm; Phenomenex). Elution was performed in MQ water at 0.6 mL min ⁻¹
756	and 75°C. RI detector was set at 25 °C. A glucose and fructose calibration curve was built in the
757	range from 0.03 to 1%.
758	For the determination of organic acids and alcohols (tartaric acid, malic acid, gluconic acid, acetic
759	acid, ethanol and glycerol), the diluted berry supernatants were injected on a RezexROA H ⁺ 8%
760	column (300 mm × 7.8 mmid. 8um; Phenomeney) preceded by a SecurityGuard Cartridge (Carbo-H

4×3.0 mm, $8 \mu m$; Phenomenex). The elution of metabolites was performed isocratically with
sulphuric acid (0.005 N) at the flow rate of 0.6 mL min $^{-1}$ and at 60 °C. RI detector was set at 40 °C.
Malic and gluconic acids (expressed as sum of malic and gluconic acid peak areas) and tartaric acid
were also UV detected at 210 nm after connecting UV and RI detectors in series. Calibration curves
(acetic acid, glycerol and ethanol in the range from 0.0625 to 1%; tartaric acid from 0.0078 to
0.125%; malic and gluconic acids from 0.0078 to 0.5%) were built to correlate the peak area with
each reference concentration. Due to gluconic acid and malic acid coelution in HPLC run, the
calculation of gluconic acid concentration of rotten berries was estimated by subtracting the malic
acid concentration measured in control (sound) berries.

773	Supplementary Results (SR)
774	
775	SR 1 - Sour rot development assay
776	Results of sour rot in berries inoculated with single AAB (7) or NSY (8) strains as well as their
777	associations (56 combinations) are shown in Table 1S.
778	After three days of incubation, only three out of the seven associations including C. zemplinina
779	CBS 9494 promoted a percentage of sour rotten berries higher than 50%. At day six, nine microbial
780	associations were found to be responsible for a significant ($P < 0.05$) increase in the percentage of
781	sour rotten berries in comparison with that recorded at day three. In particular, they were
782	composed of H. meyerae CBS 8734 or C. zemplinina CBS 9494 associated with Gl. saccharivorans
783	LMG 1582 or Gl. intermedius LMG 18909 or A. malorum LMG 1746, and C. zemplinina CBS
784	9494 associated with A. syzygii LMG 21419, and H. guillermondii DSM 3432 together with A.
785	malorum LMG 1746 or Gl. saccharivorans LMG 1582.
786	At day three and six, berries inoculated with G. oxydans LMG 1408 as single culture showed a
787	high percentage of sour rot that was not confirmed when it was associated with NSY strains.
788	Rotten berries underwent grape pulp acidification and increase in the oxidation reduction potential
789	value (data not shown), as well as they drastically turned towards the red-brown with an increase
790	in a* opposed to the luminosity (L*) reduction (data not shown). Examples of sound and rotten
791	berries are showed in Fig. 3S.
792	

793 794

Table 1S Mean values ($N = 3$) of percentages of rotten berries after inoculum with a single acetic acid bacteria (control A), or a
single yeast (control Y), or their associations on grape cv Sublima seedless after 3 and 6 days at 25 °C

Day		Control A	Cv	Cz	Hg	Hm	Hu	Zh	Zm4	Zm6
•	Control Y		6.7 ± 11.5	6.7 ± 11.5	13.3 ± 11.5	6.7 ± 11.5	6.7 ± 11.5	13.3 ± 11.5	0.0 ± 0.0	0.0 ± 0.0
	Aa	20.0 ± 20.0	6.7 ± 11.5	6.7 ± 11.5	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 11.5	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 11.5
	Am	26.7 ± 11.5	6.7 ± 11.5	60.0 ± 20.0	20.0 ± 0.0	26.7 ± 11.5	26.7 ± 11.5	0.0 ± 0.0	13.3 ± 23.1	46.7 ± 11.5
2	Ao	6.7 ± 11.5	13.3 ± 11.5	0.0 ± 0.0	6.7 ± 11.5	6.7 ± 11.5				
3	As	26.7 ± 11.5	13.3 ± 11.5	60.0 ± 0.0	20.0 ± 20.0	33.3 ± 23.1	6.7 ± 11.5	0.0 ± 0.0	0.0 ± 0.0	46.7 ± 11.5
	Gi	20.0 ± 20.0	6.7 ± 11.5	26.7 ± 11.5	26.7 ± 23.1	46.7 ± 23.1	6.7 ± 11.5	6.7 ± 11.5	0.0 ± 0.0	0.0 ± 0.0
	Go	53.3 ± 11.5	6.7 ± 11.5	26.7 ± 23.1	6.7 ± 11.5	13.3 ± 11.5	13.3 ± 11.5	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 11.5
	Gs	20.0 ± 20.0	20.0 ± 20.0	66.7 ± 23.1	46.7 ± 11.5	40.0 ± 20.0	20.0 ± 20.0	0.0 ± 0.0	6.7 ± 11.5	33.3 ± 23.1

Day		Control A	Cv	Cz	Hg	Hm	Hu	Zh	Zm4	Zm6
	Control Y		11.1 ± 3.8	15.5 ± 3.9	17.8 ± 3.9	15.5 ± 3.9	17.8 ± 3.9	17.8 ± 3.9	0.0 ± 0.0	0.0 ± 0.0
	Aa	23.3 ± 15.3	6.7 ± 11.5	20.0 ± 20.0	46.7 ± 11.5	26.7 ± 23.1	20.0 ± 20.0	6.7 ± 11.5	0.0 ± 0.0	6.7 ± 11.5
	Am	26.7 ± 11.5	6.7 ± 11.5	80.0 ± 20.0	66.7 ± 11.5	86.7 ± 11.5	46.7 ± 11.5	0.0 ± 0.0	26.7 ± 23.1	46.7 ± 11.5
6 ¹	Ao	23.3 ± 15.3	6.7 ± 11.5	6.7 ± 11.5	33.3 ± 11.5	6.7 ± 11.5	13.3 ± 11.5	0.0 ± 0.0	6.7 ± 11.5	6.7 ± 11.5
U	As	26.7 ± 11.5	13.3 ± 11.5	100.0 ± 0.0	26.7 ± 11.5	40.0 ± 20.0	40.0 ± 20.0	0.0 ± 0.0	0.0 ± 0.0	53.3 ± 11.5
	Gi	26.7 ± 11.5	6.7 ± 11.5	80.0 ± 20.0	40.0 ± 20.0	86.7 ± 11.5	33.3 ± 11.5	13.3 ± 23.1	0.0 ± 0.0	0.0 ± 0.0
	Go	70.0 ± 10.0	6.7 ± 11.5	53.3 ± 11.5	13.3 ± 11.5	66.6 ± 11.5	26.6 ± 11.5	0.0 ± 0.0	6.7 ± 11.5	6.7 ± 11.5
	Gs	20.0 ± 11.5	20.0 ± 20.0	90.0 ± 10.0	66.7 ± 11.5	86.7 ± 11.5	33.3 ± 11.5	6.7 ± 11.5	6.7 ± 11.5	33.3 ± 23.1

Aa = Acetobacter aceti LMG 1504; Am = A. malorum LMG 1746; Ao = A. orleanensis LMG 1583; As = A. syzygii LMG 21419; Gi = Gluconacetobacter AAB: intermedius LMG 18909; Go = Gluconobacter oxydans LMG 1408; Gs = G. saccharivorans LMG 1582.

Cv = Candida vanderwaltii CBS 5524; Cz = C. zemplinina CBS 9494; Hg = Hanseniaspora guillermondii DSM 3432; Hm = H. meyerae CBS 8734; Hu = NSY: Hanseniaspora uvarum CBS 2585; Zh = Zygoascus hellenicus CBS 6736; Zm4 = Z. meyerae CBS 4099; Zm6 = Z. meyerae CBS 6173

Control A: berries inoculated only with AAB strains; Control Y: berries inoculated only with NSY strains

^{1:} The least significant difference comparison value (LSD, 95% confidence interval) expressed as % was calculated among the samples inoculated with yeasts, or AAB, or their associations: ± 46.22 .

days at 25 °C; 2) **sound** berries; 3) wounded berries amended with sterile saline solution; 4) wounded berries **non-amended** with sterile saline solution; 5-9) berries inoculated with a single strain: 5) *C. zemplinina* CBS 9494; 6) *A. malorum* LMG 1746; 7) *A. syzygii* LMG 21419; 8) *Gl.*

saccharivorans LMG 1582; 9) Gl. intermedius LMG 18909; 10-13) berries inoculated with C. zemplinina CBS 9494 associated with different AAB

strains: 10) A. malorum LMG 1746; 11) A. syzygii LMG 21419; 12) Gl. saccharivorans LMG 1582; 13) G. intermedius LMG 18909.

SR 2 - Antimicrobial activity of gaseous ozone against yeasts and bacteria

In the ozonation chambers temperature was stable at 4.61 \pm 0.47 °C, and the average RH value was

65.24.± 2.15%, as recorded by different data loggers. The ozone concentration was affected by

weak fluctuations in the order of 2 and 7% CV when ozone generator was set at 1.07 mg m⁻³ and

2.14 mg m⁻³, respectively.

805

806

807

808

809

810

811

812

813

814

815

816

The results related to antimicrobial activity of 1.07 mg m⁻³ gaseous ozone against AAB and yeasts

are shown in Fig. 4S. A. malorum LMG 1746 resisted well to cold ozonation whereas A.

orleanensis LMG 1583 was sensitive to ozone but resistant to cold storage conditions (Fig. 4S,

panel A). Surface cell density of **the** remaining AAB strains was significantly ($P \le 0.05$) affected

by both (low temperature and ozone) storage conditions. With regards to yeasts (Fig. 3S, panel B),

H. meyerae CBS 8734, Z. meyerae CBS 6173 and C. vanderwaltii CBS 5524 strains reduced

significantly ($P \le 0.05$) their surface cell density under ozone, whereas the viability of the

remaining strains were mostly affected by the low temperature.

818 819 820

821

822

823

Fig. 4S. Mean values of surface cell density (expressed as cfu cm⁻²) of AAB (A) and NSY (B) strains recorded after 3, 7 and 10 days of ozone exposure (1.07 mg m⁻³) at 4°C (N = 3). LSD *G. oxydans* LMG 1408, 2.36; *Gl. saccharivorans* LMG 1582, 1.59; *A. aceti* LMG 1504, 2.98; *A. syzygii* LMG 21419, 4.84; *A. malorum* LMG 1746, 4.40; *A. orleanensis* LMG 1583, 3.59; *Gl. intermedius* LMG 18909, 2.84; *C. zemplinina* CBS 9494, 8.89; *H. uvarum* CBS 2585, 14.83; *Z. hellenicus* CBS 6736, 13.11; *Z. meyerae* CBS 4099, 8.90; *Z. meyerae* CBS 6173, 9.36; *H. guillermondii* DSM 3432, 4.29; *C. vanderwaltii* CBS 5524, 6.67; *H. meyerae* CBS 8734, 3.36.

827	SR 3 - Effect of cold ozone treatment on berries inoculated with a simplified yeast-bacterium
828	association
829	SR 3.1 Biotyping and taxonomic identification of microbial colonies isolated from sound and
830	rotten berries
831	The seven AAB representative strains were typed, after the application of a rough DNA extraction
832	method from plate colonies (Barata et al., 2012b), by applying a RAPD-PCR protocol originally
833	defined for <i>Pseudomonas</i> spp. (Baruzzi et al., 2015). Electrophoretic patterns were well
834	distinguishable among strains and the molecular fingerprint of A. syzygii LMG 21419 was stable
835	using amounts of template within the range of 10-30 ng per reaction (data not shown). This method
836	was used to estimate the ratio of A. syzygii LMG 21419 strain on AAB population enumerated onto
837	GYC plates after the adaptation period, during storage at 25 °C, after cold storage (in air or
838	ozone) and during the post refrigeration period.
839	As regards molecular analysis of yeast isolates, 1283 and Rf2 primers were used for RAPD-PCR
840	protocols as described by Pfliegler et al., (2014). However, after the analysis of more than 50% of
841	isolates, Rf2 was preferred due to its better electrophoretic fingerprint.
842	

SR 3.2 Identification and quantification of carbohydrates, alcohols and organic acids

The concentrations of sugars, organic acids and alcohols registered in sound berries after the

adaptation period (T48h) and after additional (T7) incubation at 25 °C are showed in Table 2S.

Table 2S Mean concentrations (g Kg⁻¹) of sugars and organic acids detected on berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As), *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz) immediately after the inoculum (T0), after 48 h at 25 °C (adaptation period, T48h) and after seven days at 25 °C (T7).

	Sample	Glucose	Fructose	Tartaric acid	Gluconic/Malic acids
T0	SS	48.57 ± 4.41	117.75 ± 8.83	5.02 ± 0.33	4.79 ± 0.19
	SS	47.83 ± 1.47	117.75 ± 4.41	4.87 ± 0.36	3.87 ± 0.28
T48	As	49.31 ± 5.15	116.28 ± 12.51	4.94 ± 0.21	3.88 ± 0.20
146	Cz	54.46 ± 5.15	124.37 ± 9.56	5.13 ± 0.44	4.47 ± 0.33
	As-Cz	48.94 ± 1.10	117.01 ± 2.20	6.41 ± 0.70	5.24 ± 0.45
	SS	66.60 ± 1.83	153.81 ± 5.88	7.61 ± 0.99	5.95 ± 0.33
T7	As	51.14 ± 7.72	115.54 ± 24.28	6.06 ± 0.54	5.34 ± 0.28
1 /	Cz	60.34 ± 3.68	142.04 ± 11.77	6.29 ± 0.59	5.49 ± 0.25
	As-Cz	66.23 ± 4.41	148.29 ± 9.93	5.84 ± 0.23	5.41 ± 0.17

The least significant difference comparison values (LSD, 95% confidence interval, expressed as g Kg⁻¹) were calculated among the different samples at each sampling time and for each metabolite:

Glucose, T48h = 14.29; T7 = 18.45; Fructose, T48h = 31.07; T7 = 55.27;

Tartaric acid, T48h = 1.75; T7 = 2.44; Gluconic/Malic acids, T48h = 1.74; T7 = 0.99.

In Table 3S the concentrations of carbohydrates and organic acids in sound berries after the cold storage period (T10) and during the post-refrigeration (T17) are reported.

Tab. 3S Mean concentrations (g Kg⁻¹ FW) of sugars, organic acids and alcohols detected on berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As), *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz) at the end of cold storage period (T10) with or without gaseous ozonation (2.04 mg m⁻³) and then incubated under air for seven days at 25 °C (T17).

	Sample		Glucose	Fructose	Tartaric acid	Gluconic/Malic acids
	SS	Air	50.78 ± 2.94	118.85 ± 10.67	4.61 ± 0.29	4.57 ± 0.25
	သ	Ozone	64.02 ± 7.36	152.71 ± 12.87	4.54 ± 0.33	4.10 ± 0.14
	As	Air	57.03 ± 1.83	135.41 ± 7.35	5.99 ± 0.56	5.33 ± 0.27
T10	AS	Ozone	56.30 ± 6.99	121.80 ± 30.54	4.53 ± 0.25	4.17 ± 0.16
110	Cz	Air	55.56 ± 5.52	122.17 ± 21.34	6.59 ± 0.70	5.75 ± 0.41
	CZ	Ozone	78.38 ± 6.25	180.31 ± 11.03	5.66 ± 0.60	5.85 ± 0.33
	As-Cz	Air	68.44 ± 1.47	150.50 ± 9.19	6.07 ± 0.74	4.88 ± 0.28
	AS-CZ	Ozone	51.88 ± 3.31	129.53 ± 2.94	6.53 ± 1.01	5.87 ± 0.35
	SS	Air	44.15 ± 11.03	100.82 ± 25.02	4.88 ± 0.18	4.42 ± 0.19
	သ	Ozone	67.70 ± 3.68	157.12 ± 8.46	6.99 ± 0.55	6.23 ± 0.34
T17	As	Ozone	68.07 ± 8.46	$162.28 \pm 19.50c$	7.15 ± 0.80	4.61 ± 0.26
11/	C-	Air	66.97 ± 3.68	121.43 ± 30.17	6.55 ± 0.57	5.25 ± 0.37
	Cz	Ozone	48.20 ± 4.04	112.97 ± 8.46	6.48 ± 0.14	5.90 ± 0.38
	As-Cz	Ozone	63.66 ± 7.72	116.65 ± 15.82	6.35 ± 0.28	4.53 ± 0.20

The least significant difference comparison values (LSD, 95% confidence interval, expressed as g Kg⁻¹) were calculated among the different samples at each sampling time and for each metabolite:

Glucose T10 = 12.17, T17 = 15.97; Fructose T10 = 38.09; T17 = 44.76;

Tartaric acid T10 = 1.20; T17 = 1.47; Gluconic/Malic acids T10 = 0.69; T17 = 0.67.

Tables

Table 1 Viable cell counts of acetic acid bacteria (AAB) and total yeasts (log cfu $g^{-1} \pm SD$; N = 3) of sound grape berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As). or *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz). immediately after the inoculum (T0), after 48 h a 25 °C (adaptation period, T48h) and after seven days at 25 °C (T7).

Campla		AAB		Total yeasts		
Sample	T0	T48h	T7	T0	T48h	T7
SS	nd	nd	nd	3.15 ± 0.30	3.94 ± 0.08	5.01 ± 0.06
As	4.73 ± 0.31	6.75 ± 0.15	5.35 ± 0.24	3.07 ± 0.22	6.07 ± 0.21	5.96 ± 0.05
Cz	nd	nd	nd	5.24 ± 0.21	7.00 ± 0.15	7.30 ± 0.14
As-Cz	3.43 ± 0.06	6.45 ± 0.06	4.74 ± 0.06	5.20 ± 0.16	6.85 ± 0.18	6.88 ± 0.08

nd = not detected (detection limit 1.30 log cfu g^{-1}). The least significant difference comparison values (LSD, 95% confidence interval, expressed as log cfu g^{-1}) were calculated among the different samples for each sampling time: AAB: T0 = 0.74, T48h = 0.32. T7 = 0.32; Total yeasts: T0 = 0.91, T48h = 0.60. T7 = 1.12.

Table 2 Viable cell counts of acetic acid bacteria (AAB) and total yeasts (log cfu $g^{-1} \pm SD$; N = 3) on sound grape berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As). or *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz) immediately at the end of cold storage period (T10) in air or under ozone (2.14 mg m⁻³) and subsequently incubated in air for seven days at 25 °C (T17).

- I		Т	10			T17			
Sample	A	AAB		Total yeasts		AAB		Total yeasts	
	Air	Ozone	Air	Ozone	Air	Ozone	Air	Ozone	
SS	nd	nd	4.67 ± 0.26	3.80 ± 0.21	nd	nd	5.33 ± 0.23	5.54 ± 0.12	
As	6.96 ± 0.08	6.04 ± 0.06	6.24 ± 0.23	4.35 ± 0.08	un	6.06 ± 0.02	un	6.63 ± 0.24	
Cz	nd	nd	6.89 ± 0.17	6.85 ± 0.12	nd	nd	6.49 ± 0.11	6.63 ± 0.25	
As-Cz	6.02 ± 0.21	5.67 ± 0.04	6.81 ± 0.14	6.63 ± 0.24	un	5.91 ± 0.06	un	6.32 ± 0.16	

nd = not detected (detection limit 1.30 log cfu g⁻¹); **un = unavailable sound berries**.

The least significant difference comparison values (LSD, 95% confidence interval, expressed as log cfu g^{-1}) were calculated among samples at each sampling time. AAB: T10 = 0.14, T17 = 0.34. Total yeasts: T10 = 0.33, T17 = 0.34.

Table 3 McKinney index (mean value \pm SD; n = 3) recorded on grape berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As). or *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz) immediately at the end of cold storage period (T10) in air or under ozone (2.14 mg m⁻³) and then incubated in air for seven and 12 days at 25 °C (T17 and T22).

Sample	T	10	Т	`17	T22	
	Air	Ozone	Air	Ozone	Air	Ozone
SS	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	9.5 ± 4.1	11.9 ± 4.1
As	0.0 ± 0.0	0.0 ± 0.0	62.2 ± 7.5	28.9 ± 11.7	69.1 ± 4.1	29.2 ± 3.7
Cz	0.0 ± 0.0	0.0 ± 0.0	12.2 ± 7.5	5.6 ± 4.8	26.1 ± 12.5	20.2 ± 4.5
As-Cz	0.0 ± 0.0	0.0 ± 0.0	51.1 ± 3.5	18.3 ± 7.6	66.7 ± 4.5	22.6 ± 3.7

The least significant difference comparison values (LSD, 95% confidence interval) were calculated for each type of sample: SS = 3.4%; As = 2.9%; Cz = 5.6%; As - Cz = 1.7%.

At T17 mean values (Air or Ozone) were additionally separated for the least significant difference value (LSD, 95% confidence interval): 7.69%

Tab. 4 Composition of dominant total non-*Saccharomyces* yeasts population (NSY) and acetic acid bacteria (AAB) isolated from sound grape berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As). or *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz).

Sampling time: T0, after the inoculum; T48h, after 48 h a 25 °C (adaptation period); T7, after seven days at 25 °C; T10, at the end of cold storage period; T17, after seven days at 25 °C in air. Samples T10 and T17 were differentiated for cold storage **in air or under ozone** (2.14 mg m⁻³).

Sample	Population	Т0	T48h	T7	T	10		T17
					Air	Ozone	Air	Ozone
SS	NSY	Hu-Mp	Hu	Hu	Hu	Hu-Mp-Ap	Hu-Mp	Hu-Mp
	AAB	nd	nd	nd	nd	nd	nd	nd
A =	NSY	Hu-Mp	Hu	Hu	Hu	Hu-Mp	un	Cz*
As	AAB	As	As	As	As	As	un	Ga
Cz	NSY	Cz	Cz	Cz	Cz-Hu	Cz-Hu	Cz	Cz
	AAB	nd	nd	nd	nd	nd	nd	nd
As-Cz	NSY	Cz	Cz	Cz	Cz-Hu	Cz-Hu	un	Cz
	AAB	As	As	As	As	As	un	Ga

Legend of species:

Hu, Hanseniaspora uvarum; Mp, Metschnikowia pulcherrima; Ap, Aureobasidium pullulans; Cz, Candida zemplinina CBS 9494; Cz*, new C. zemplinina strain

As = Acetobacter syzygii LMG 21419; Ga = Gluconobacter albidus; un = sound berries unavailable;

nd = absence of presumptive AAB strains for undetectable level of AAB population

un = unavailable sound berries.

Tab. 5 Mean concentrations (g Kg⁻¹) of acetic acid and alcohols detected in sound (s) and rotten (r) berries amended with sterile saline solution (SS; control) or inoculated with *A. syzygii* LMG 21419 (As), or *C. zemplinina* CBS 9494 (Cz), or both microorganisms (As-Cz) after seven days of post-refrigeration period (T17) of samples previously cold-stored in air or under ozone (2.14 mg m⁻³).

Sample		Berries	Acetic acid	Ethanol	Glycerol
SS	Air	S	nd	nd	nd
აა	Ozone	S	nd	nd	nd
	Air	r	3.63 ± 0.10	1.58 ± 0.18	1.07 ± 0.10
As	Ozone	S	nd	nd	nd
		r	1.23 ± 0.31	3.64 ± 0.40	2.52 ± 1.46
Cz	Air	S	nd	nd	nd
CZ	Ozone	S	nd	nd	nd
As-Cz	Air	r	2.53 ± 0.17	0.95 ± 0.22	nd
	Ozone	S	nd	nd	nd
	Ozone	r	1.58 ± 0.10	nd	nd

Efficacy of gaseous ozone to counteract postharvest table grape sour rot

Pinto L., Caputo L., Quintieri L., de Candia S. and Baruzzi F.*

Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy

Highlights

- Development of table grape sour rot is specific for different AAB-NSY associations
- A. syzygii LMG 21419 and C. zemplinina CBS 9494 constituted a simplified microbial consortium
- Cold ozonation at 2.14 mg m⁻³ reduced significantly the LMG 21419 viability
- Cold ozonation delayed sour rot development also in post-refrigeration period.