

## Regular Expressions, Grammars and Decidability

#### **Marco Carbone**

IT University of Copenhagen

November 2014



#### **Course Evaluation**

• Do the course evaluation



## Regular Expressions (I)

FA's recognizes sets (languages), but what kind of sets do they recognize? And, what sets don't they recognize?

#### A **regular expression** over an alphabet $\Sigma$ is set defined as:

- a is a regular expression if  $a \in \Sigma$
- ullet is a regular expression
- ∅ is a regular expression
- ullet (A+B) is a regular expression if A and B are regular expressions
- $\bullet$  (AB) is a regular expression if A and B are regular expressions
- ullet  $A^*$  is a regular expression if A is a regular expression

 $A^*$  represents the *Kleene closure* of the set represented by A.



## Regular Expressions (II)

Regular expressions are often used in software dealing with text, like editors when searching for strings matching certain regular patterns.

Sets represented by a regular expression are called **regular sets**.

**Example** Let  $\Sigma = \{0, 1\}$ , then

```
\begin{array}{l} (0+\epsilon)(1+\epsilon) \text{ corresponds to } \{\epsilon,0,1,01\} \\ 01^* \text{ corresponds to } \{0\omega \in \Sigma^* : \omega \in \{1\}^*\} \\ 0^*10^* \text{ corresponds to } \{\omega \in \Sigma^* : \omega \text{ contains exactly a single } 1\} \\ (0+1)^*1(0+1)^* \text{ corresponds to } \{\omega \in \Sigma^* : \omega \text{ contains at least one } 1\} \\ (0+\epsilon)1^* \text{ corresponds to } 01^*+1^* \end{array}
```



#### Regular Expressions (III)

**Exercise** For each of the two following regular expressions, give two strings that are member of the language it represents, and give two that aren't:

$$a^*b^*$$
  $a(ba)^*a$ 

**Exercise** Give regular expressions for the intersection, union, and concatenation respectively of the two languages:

$$A=\{\omega\in\{0,1\}^*:\omega\text{ begins with }11\}\text{ and }B=\{\omega\in\{0,1\}^*:\omega\text{ ends with }00\}.$$

**Exercise** Give a regular expression for decimal digits.

**Exercise** Let R be a regular expression over some set.

Do  $(R+\emptyset)$  and  $(R\epsilon)$  denote the same set? What set does  $(R+\epsilon)$  represent? What set does  $(R\emptyset)$  represent?





FA's and regular expressions are equally expressive:

**Theorem** R is a regular set *if and only if* R = L(M) for some FA M.

**Proof.** Idea: Construct an automaton for each regular expression type (structural induction). Look at the book for details!



#### What are Grammars?

- How may a language be defined?
- A **grammar** is a model for defining languages. I.e. it's a model used to generate the valid strings of a language.
- FA's recognise languages, but how to generate a language? It's generally impossible to list all elements of a language. How to list all possible Java programs?
- A grammar is a model that generates the elements of a language.

**Example** Let  $\{0,1\}$  be *terminal symbols* and let  $\{S,T\}$  be *non-terminals*. The grammar with *productions* 

$$S \to 0S$$
  $S \to 1S$   $S \to 1T$   $T \to 01$   $T \to 1$ 

generates the language  $L=\{\omega\in\{0,1\}^*:\omega \text{ ends with }11 \text{ or }101\}.$ 

E.g.  $010101 \in L$  because of the *derivation* from *start symbol* S

$$S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 0101T \Rightarrow 010101$$



#### **Grammars (II)**

**Example** A sample of the productions from a grammar for a programming language:

```
Program ::= program \ Identifier \ Heading \ ; \ Block
 Heading := \epsilon \mid (IdentifierList)
IdentifierList := Identifier \mid IdentifierList, Identifier
Identifier ::= \dots
Block := \dots
  VarDecl ::= var \ VarIdList : Type \ | \ VarDecl ; VarIdList : Type | \ | VarIdList : Type | \ | VarDecl ; VarIdList : Type | \ | VarIdList
  VarIdList ::= Identifier \mid VarIdList , Identifier
 Type ::= Simple Type \mid Struc Type \mid ^Typeid
StrucType ::= array [IndexList] of Type | file of Type | ...
```



#### **Grammars (III)**

Formally, G = (V, T, S, P) is a grammar where

- $\bullet$  V is a finite set, the **vocabulary**,
- $T \subseteq V$  is a finite set of **terminal** symbols,
- $S \in V$  is the **start symbol**,
- $P \subseteq V^* \times V^*$  is the set of **productions**  $\omega \to \omega'$  with  $\omega$  containing at least on nonterminal.
- $N = V \setminus T$  is the set of **non-terminal** symbols.
- If  $lz_0r, lz_1r \in V^*$  and if  $z_0 \to z_1 \in P$  then  $lz_1r$  is **directly** derivable from  $lz_0r$  denoted by  $lz_0r \Rightarrow lz_1r$ .
- If there exists a **derivation**  $\omega_0 \Rightarrow \omega_1 \Rightarrow \dots \omega_n$  we say that  $\omega_n$  is **derivable** from  $\omega_0$  and write  $\omega_0 \Rightarrow^* \omega_n$ .
- $L(G) = \{\omega \in T^* : S \Rightarrow^* \omega\}$  is the language generated by G.



#### **Grammars (IV)**

**Example** Let  $G_1 = (\{a, b, S, T, U\}, \{a, b\}, S, P)$  where P is defined by

$$S o a \mid b \mid aT \mid aU \mid bT \mid bU \quad T o a \quad U o b \ \{a,b,aa,ab,ba,bb\}$$
 is the language generated by  $G_1$ .

**Example** Let  $G_2$  be  $G_1$  where P is changed to

$$S \to T \mid U \quad T \to aTb \mid \epsilon \quad U \to bUa \mid \epsilon$$

Then 
$$L(G_2) = \{a^n b^n : n \ge 0\} \cup \{b^n a^n : n \ge 0\}.$$

**Exercise** What's the language generated by  $G_1$  if P is altered to:

$$S \to T$$
  $S \to bSb$   $T \to aT$   $T \to \epsilon$ 

**Exercise** Make a grammar generating  $\{a^nb^{2n}: n \geq 0\}$ .



#### **Classifying Grammars**

The grammars we have seen so far belong to two important classes.

G is a **regular grammar** if all productions have one of the forms:

$$S \to \epsilon$$
 ,  $A \to a$  ,  $A \to aB$ 

G is a **context free grammar** if all productions have the form:

$$A \to \omega$$

**Example.** All regular grammars are also context free, but not all grammars are context free:

$$G_3=(\{a,b,c,S,T,U\},\{a,b,c\},S,P)$$
 where  $P$  is defined by 
$$S\to aSTU\mid \epsilon\quad UT\to TU\quad aT\to ab\quad bT\to bb\quad bU\to bc\quad cU\to cc$$

is context sensitive.  $L(G_3) = \{a^nb^nc^n : n \ge 0\}.$ 



# Regular Sets vs. Regular Grammars (I)

**Theorem** R is a regular set if and only if R = L(G) for some regular grammar G.

'if': Suppose a regular grammar G, recall it has productions on the form

$$S \to \epsilon$$
 ,  $A \to a$  ,  $A \to aB$ 

Using Kleene's theorem it's sufficient to build a NFA N recognizing L(G). Create a state,  $q_A$ , for each non-terminal A ( $q_S$  being the initial state) and add a single accepting state  $q_{acc}$ . Add transitions

$$q_B \in \delta(q_A, a) \text{ if } A \to aB$$
  $q_{acc} \in \delta(q_A, a) \text{ if } A \to a$ 

**Exercise** Argue why L(G)=L(N) for the NFA N constructed from G in the proof sketched above.



## Reg Sets vs. Reg Grammars (II)

'only if': Suppose R is a regular set, due to Kleene's theorem there exists an FA M recognizing R. Construct regular grammar G from M.

Assume the initial state  $q_0$  of M has no incomming transitions. Select a non-terminal  $A_q$  for each state q in M. The start symbol is  $A_{q_0}$ . Add productions

$$A_q o a A_{q'} \ \ {
m if} \ q' = \delta(q,a) \ ,$$
  $A_q o a \ \ {
m if} \ q' = \delta(q,a) \ \ {
m and} \ q' \ {
m is accepting}.$ 

**Exercise** Argue why L(M)=L(G) for the regular grammar G constructed from M in the proof sketch above.

**Exercise** Argue that any FA M is equivalent to a NFA where the initial state has no incomming transitions.

#### **Decidability**



- Some languages can't be recognized by FA's (and generated by regular grammars), e.g.  $A=\{0^n1^n:n=0,1,2,\ldots\}$  is *not* regular.
- ullet But, since we can construct a real computer program to recognize A, we need a more powerful computational model than FA's.
- At this point, we should consider the ultimate computational model, called a **Turing Machine**. However, because we do not have enough time to introduce Turing machines, we consider an equivalent computational model:

A standard programming language with basic statements and infinite memory



#### **Church-Turing Thesis**

Every computable function (for which an algorithm exists) can be computed by some Turing Machine





A program P can either **accept** an input  $\omega$  or **reject** it.

The set of strings accepted by P, L(P), is the language **recognized** by P. A language is **Turing recognizable** if there exists some program recognising it.

**Exercise** Is  $B = \{a^nb^nc^n : n = 0, 1, 2, \ldots\}$  Turing recognizable?

#### **Turing Decidable**



A program may *loop*, because either it terminates (accepting or rejecting), or it doesn't terminate.

A program may fail to accept an input by either entering a rejecting configuration or by looping.

A non-looping program is called a **decider**, it always accepts or rejects an input.

A decider that recognises a language L is said to **decide** L. A language is **decidable** if some program decides it.

**Example** Can you write a program that decides  $A = \{0^n1^n : n = 0, 1, 2, \ldots\}$ ...if so A is decidable.



#### The Halting Problem (I)

Not all problems (languages) can be solved (decided) by a program. I.e., by Church-Turing thesis, some problems can't be solved by algorithms running on a computer :-(

Let  $\langle P \rangle$  be a string encoding a program P, e.g., the code saved in a text file. Consider the **Universal Program**:

U= " On input  $\langle P \rangle$  and  $\omega$  where P is a program and  $\omega$  it's input:

- i) simulate P on  $\omega$ .
- ii) if P accepts, accept
- iii) if P rejects, reject '

U can take any P and its input  $\omega$  as input and simulate P on  $\omega$ .

U is a recognizer, but not a decider, for

 $Halt = \{(\langle P \rangle, \omega) : P \text{ is a program and } P \text{ accepts } \omega\}$ 

because U loops if (and only if) P loops on  $\omega$ .



## The Halting Problem (II)

**Theorem**  $Halt = \{(\langle P \rangle, \omega) : P \text{ is a TM and } P \text{ accepts } \omega\}$  is undecidable.

**Proof** (by contradiction) Suppose there is a program H that decides Halt. I.e. H on input  $\langle P \rangle$  and  $\omega$  is defined by:

$$H(\langle P \rangle, \omega) = \left\{ \begin{array}{l} accept, \text{ if } P \text{ accepts } \omega \\ reject, \text{ if } P \text{ doesn't accept } \omega \end{array} \right.$$

If that is the case, construct another program D s.t.

D= " On input  $\langle P \rangle$  where P is a program: i) run H on  $\langle P \rangle$  and  $\langle P \rangle$ . ii) if H accepts, reject iii) if H rejects, accept "



## The Halting Problem (III)

The definition of D can be rewritten as:

$$D(\langle P \rangle) = \left\{ \begin{array}{l} accept, \text{ if } P \text{ doesn't accept } \langle P \rangle \\ reject, \text{ if } P \text{ accepts } \langle P \rangle \end{array} \right.$$

What if we run D with  $\langle D \rangle$  as input?

$$D(\langle D \rangle) = \left\{ \begin{array}{l} accept, \text{ if } D \text{ doesn't accept } \langle D \rangle \\ reject, \text{ if } D \text{ accepts } \langle D \rangle \end{array} \right.$$

I.e.

- ullet if D accepts  $\langle D \rangle$  then D doesn't accept  $\langle D \rangle$ , and
- ullet if D rejects  $\langle D \rangle$  then D accepts  $\langle D \rangle$ .

so we have a contradiction, and hence D and neither H can exist.