群的同态与同构

定义 1 (同态映射). 设群 (G_1, \circ) , $(G_2, *)$ 之间存在映射 $f: G_1 \to G_2$, 若对任意 $g_1, g_2 \in G_1$, 有 $f(g_1 \circ g_2) = f(g_1) * f(g_2)$, 则称 f 为**同态映射**. 符号不至于混淆时,常记作 $f(g_1 g_2) = f(g_1) f(g_2)$.

如果 f 是单射,则称为**单同态**;如果 f 是满射,则称为**满同态**. 若 $f:G_1 \to G_2$ 是满同态,则称 G_1 和 G_2 是**同态的**.

定义 2 (同构). 若同态映射 $f: G_1 \to G_2$ 是双射,则称 f 是**同构映射**, G_1 和 G_2 是**同构的**,记作 $G_1 \cong G_2$.

注. 容易验证, 同构是等价关系.

定义 3 (自然同态). 设 $H \triangleleft G$, 映射 $\pi: G \rightarrow G/H, g \mapsto gH$ 是同态映射, 称为自然同态.

性质 1. 设同态映射 $f: G_1 \to G_2$, $g: G_2 \to G_3$, 则 $gf: G_1 \to G_3$ 也是同态映射.

性质 2. 幺元同态到幺元, 逆元同态到逆元, 子群同态到子群.

定义 4 (核). 设同态映射 $f: G_1 \to G_2$, $e_1 \in G_1$, $e_2 \in G_2$ 是幺元, G_2 的幺元 e_2 的完全原像 $\{a \in G_1 \mid f(a) = e_2\}$ 称为同态映射 f 的**核**,记作 $\ker f$.

例 1. 若 f 是单同态,则 ker $f = \{e_1\}$.

命题 1. 若 $H \triangleleft G$, $\pi : G \rightarrow G/H$, 则 $\ker \pi = H$.

命题 2. 设同态映射 $f: G_1 \to G_2$,则 $\ker f \triangleleft G_1$.

证明. 对任意 $g \in G_1$, $a \in \ker f$,

$$f(gag^{-1}) = f(g)f(a)f(g^{-1}) = f(g)f(g^{-1}) = f(gg^{-1}) = f(e_1) = e_2,$$

于是 $gag^{-1} \in \ker f$. 由正规子群定义得 $\ker f \triangleleft G_1$.

定理 1 (群同态基本定理). 设满同态 $f:G_1\to G_2$,则 $G_1/\ker f\cong G_2$.

证明. 记 $N = \ker f \triangleleft G_1$,设 $\varphi : G_1/N \rightarrow G_2$, $gN \mapsto f(g)$. 若 $g_1N = g_2N$,则 $g_1^{-1}g_2 \in N$, $f(g_1^{-1}g_2) = f(g_1)^{-1}f(g_2) = e_2$,于是 $f(g_1) = f(g_2)$. 这表明 g_N 在 φ 下的像是唯一的,所以 φ 是映射.

若 $f(g_1) = f(g_2)$,则 $e_2 = f(g_1)^{-1} f(g_2) = f(g_1^{-1} g_2)$,于是 $g_1^{-1} g_2 \in N$, $g_1 N = g_2 N$,因此 φ 是单射.

由于 f 是满射,因此 φ 是满射,故 φ 是双射.

对任意 $aN, bN \in G/N$, 由于 f 是同态, 有

$$\varphi(aNbN) = \varphi(abN) = f(ab) = f(a)f(b) = \varphi(aN)\varphi(bN).$$

因此 φ 是同构映射,故 $G_1/\ker f \cong G_2$.

推论 1 (第一同构定理). 设 f 是群 G 的同态,则 $G/\ker f \cong f(G)$.

定理 2 (第二同构定理). 若 H < G, $N \triangleleft G$, 则 $H \cap N \triangleleft H$ 且

$$H/(H \cap N) \cong HN/N$$
.

证明. 令 $\varphi: H \to HN/N$, $h \mapsto hN$, 显然 φ 是映射. 对任意 $hnN \in HN/N$, 由于 hnN = hN, 有

$$\varphi(h) = hN = hnN,$$

故 φ 是满射. 对任意 $h_1, h_2 \in H$,

$$\varphi(h_1h_2) = h_1h_2N = h_1Nh_2N = \varphi(h_1)\varphi(h_2),$$

故 φ 是同态. 而

$$\ker \varphi = \{h \in H \mid \varphi(h) = hN = e_2 = N\} = \{h \in H \mid h \in N\} = H \cap N,$$

由同态基本定理,有

$$H/(H \cap N) \cong HN/N$$
.

定理 3 (第三同构定理). 若 $H \triangleleft G$, $N \triangleleft G$, $N \subset H$, 则

$$G/H \cong (G/N)/(H/N)$$
.

证明. 由 $H \triangleleft G$, $N \triangleleft G$ 以及 $N \subset H$, 有 $N \triangleleft H$, 且 $H/N \triangleleft G/N$.

设 $\pi: G \to G/N, g \mapsto gN$ 以及 $\psi: G/N \to (G/N)/(H/N), gN \mapsto (gN)(H/N),$ 则 $\varphi = \psi \circ \pi: G \to (G/N)/(H/N)$ 是群同态.

由于 π , ψ 是满射, 故 φ 是满射. 又

$$\ker \varphi = \{g \in G \mid \varphi(g) = H/N\},$$

$$\varphi(g) = \psi(\pi(g)) = (gN)(H/N),$$

$$(gN)(H/N) = H/N \iff gN = H/N \iff g \in H,$$

故 $\ker \varphi = G \cap H = H$, 由群同态基本定理,

$$G/H \cong (G/N)/(H/N)$$
.