Digital Design

With an Introduction to the Verilog HDL, VHDL, and SystemVerilog

6th Edition, Global Edition

Chapter 06
Registers and Counters

Four-bit register

Four-bit register with parallel load

Exploiting MUX for Load

Four-bit shift register

Serial transfer from register A to register B.

(a) Block diagram

Serial-Transfer Example.

Timing Pulse	Shift Register A				Shift Register				
Initial value	1	0	1	1	0	0	1	0	
After T_1	1	1	0	1	1	0	0	1	
After T_2	1	1	1	0	1	1	0	0	
After T_3	0	1	1	1	0	1	1	0	
After T_4	1	0	1	1	1	0	1	1	

Serial adder.

State Table for Serial Adder w/ JK FF

Present State Inputs		Next State	Output	Flip-Flop Inputs		
Q	x	y	Q	S	JQ	K _Q
0	0	0	0	0	0	X
0	0	1	0	1	0	X
0	1	0	0	1	0	X
0	1	1	1	0	1	X
1	0	0	0	1	X	1
1	0	1	1	0	X	0
1	1	0	1	0	X	0
1	1	1	1	1	X	0

Second form of serial adder.

Four-bit universal shift register.

Function Table for the Register of Fig. 6.7.

Mode	Control				
s ₁	s ₀	Register Operation			
0	0	No change			
0	1	Shift right			
1	0	Shift left			
1	1	Parallel load			

Four-bit binary ripple counter.

Binary Count Sequence.

A_3	A ₂	A ₁	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

State diagram of a decimal BCD counter.

BCD ripple counter.

Block diagram of a three-decade decimal BCD counter.

Four-bit synchronous binary counter.

Four-bit up-down binary counter.

State Table for BCD Counter.

Present State		Next State			Output	Flip-Flop Inputs						
Q ₈	Q_4	Q ₂	Q_1	Q ₈	Q_4	Q ₂	Q ₁	y	T _{Q8}	T _Q 4	T _{Q2}	<i>T</i> _{Q1}
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

Figure 6.14 Four-bit binary counter with parallel load.

Function Table for the Counter of Fig. 6.14.

Clear_b	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Count next binary state
1	↑	0	0	No change

Two ways to achieve a BCD counter using a counter with parallel load.

(a) Using the load input

(b) Using the clear input