CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

МОДУЛЬНАЯ АРИФМЕТИКА # 1

Множество целых

 \mathbb{Z} - множество целых чисел

$$\dots$$
, -2, -1, 0, 1, 2, 3, \dots

- \mathbb{Z}^+ множество положительных целых чисел 1, 2, 3, ...
- \mathbb{Z}^{\geq} множество неотрицательных целых чисел 0, 1, 2, 3, ...

Бинарные операции: сложение, вычитание, умножение.

Два входа (a, b - операнды) и **ОДИН** выход c – результат операции.

Бинарные операции

Примеры:

Сложение: 5+9=? (-5)+9=? (5)+(-9)=? (-5)+(-9)=?

Вычитание: 5-9=? (-5)-9=? (5)-(-9)=? (-5)-(-9)=?

Умножение: 5*9=?(-5)*9=?(5)*(-9)=?(-5)*(-9)=?

Деление: ДВА входа, ДВА выхода

ВХОД	выход
а - делимое	q - частное (Quotient)
b - делитель	r - остаток (Remainder)

Соотношение:

$$a = b * q + r$$

Деление

$$Z=\{..., -2, -1, 0, 1, 2,\}$$
 $Z=\{..., -2, -1, 0, 1, 2,\}$
 $A=b*q+r$
 $C=\{..., -2, -1, 0, 1, 2,\}$
 $Z=\{..., -2, -1, 0, 1, 2,\}$
 $Z=\{..., -2, -1, 0, 1, 2,\}$

Python → Целочисленное Деление:

$$q = a // b r = a \% b$$

Примеры Деление:

Деление в криптографии

!!! Ограничения:
$$n > 0$$
 $r \ge 0$ $r < n$

Примеры:

Сведения из теории делимости

```
Если (вдруг!) a \neq 0 r = 0

То a = n * q

n делит a НАЦЕЛО! БЕЗ ОСТАТКА!

Обозначается: n \mid a
```

```
Если a \neq 0 r = 1, 2, 3, ....
То a = n * q + r
n НЕ делит a НАЦЕЛО
Обозначается: n \nmid a
```

Примеры:

13 78	7 98	4 44
14 [‡] 78	8‡98	5‡44

Сведения из теории делимости

```
Свойство 1: если a|1, то a = \pm 1
Свойство 2: если a|b и b|a, то a = \pm b
Свойство 3: если a|b и b|c, то a|c
Свойство 4: если a|b и b|c, то a|c
Где m, n - произвольные целые числа
```

Примеры:

```
3|15, 15|45 \rightarrow ???

3|15, 3|9 \rightarrow ????
```

Сведения из теории делимости

Делители: пусть а положительное целое.

Свойство 1: a=1, то только ОДИН делитель = a Свойство 2: a= любое целое положительное, то как минимум два делителя: $a \mid a$

НО! Может и больше

Например a=32 1|32, 2|32, 4|32, 8|32, 16|32, 32|32

Наибольший общий делитель (НОД)

Общий делитель
Пусть **a** , **b** - положительные целые и **c**|**a** и **c**|**b**тогда **c** - общий делитель.

Важное целое \rightarrow НОД!! Обозначается hod(a,b) или gcd(a,b). Максимальное положительное число d=gcd(a,b), $makoe\ umo\ d|a\ u\ d|b\ .$ Исключая gcd(0,0)=0

Примеры:

gcd (6, 15) = ???? gcd (230, 450) = ????

Алгоритм Эвклида [Euclid] (НОД)

Алгоритм Эвклида [Euclid] (НОД) примеры

R1 = a	R2 = b	R
36	10	6
10	6	4
6	4	2
4	2	0
2	0	

R1 = a	R2 = b	R
37	10	7
10	7	3
7	3	1
3	1	0
1	0	

Алгоритм Эвклида [Euclid] (НОД) PYTHON

```
rem_1 = int_num_1
rem_2 = int_num_2
while rem_2 > 0:
    q = rem_1 // rem_2
    r = rem_1 - q * rem_2
    rem_1 = rem_2
    rem_2 = r
```

 $gcd = rem_1$

Расширенный алгоритм Эвклида

Пусть ${\bf a}$, ${\bf b}$ - положительные целые . Найти ${\bf s}$, ${\bf t}$ - такие что

$$s*a+t*b=gcd(a,b)$$

To есть ищутся: gcd(a,b), s, t

Используется «утроение» алгоритма Эвклида.

Расширенный алгоритм Эвклида

Расширенный Алгоритм Эвклида Пример

r1	r2	r	q	s1	s2	S	t1	t2	t
36	10	6	3	1	0	1	0	1	-3
10	6	4	1	0	1	-1	1	-3	4
6	4	2	1	1	-1	2	-3	4	-7
4	2	0	2	-1	2	-5	4	-7	18
2	0		0	2			-7		

$$gcd(36,10) = 2$$
, $s = 2$, $d = -7$

$$s*a+t*b=gcd(a,b)$$

$$2*36 - 7*10 = 72 - 70 = 2$$

Наименьшее общее кратное

Общее кратное
Пусть а, b - положительные целые и a|d и b|d,
тогда d - общее кратное.

Наименьшее общее кратное — наименьшее целое, которое делится на **d** без остатка **Обозначается** hok(a,b) или lcm(a,b).

$$lcm(a,b) = \frac{a * b}{gcd(a,b)}$$

Вопросы:

- Укажите различие между \mathbb{Z} , \mathbb{Z}^+ и \mathbb{Z}^{\geq} .
- Укажите четыре свойства теории делимости целых чисел.
- Определите понятие наибольшего общего делителя двух целых чисел.
- Опишите алгоритм Эвклида определения НОД.
- Опишите расширенный алгоритм Эвклида.
- Определите понятие наименьшего общего кратного.

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END # 2