MULTIPLE LINEAR REGRESSION

Build a model to understand what features of players are influencing their Sold Price or Predict the players auction prices in future

```
In [6]:
```

```
# Importing all required libraries for building the regression model
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
```

In [7]:

```
# Load the dataset into dataframe
ipl_auction_df=pd.read_csv("IPL.csv")
```

In [8]:

```
ipl_auction_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 130 entries, 0 to 129
Data columns (total 26 columns):
 # Column
               Non-Null Count Dtype
 0 Sl.NO.
                   130 non-null int64
 1 PLAYER NAME 130 non-null object
               130 non-null int64
130 non-null objec
    AGE
   COUNTRY
 3
                                     object
                   130 non-null object
   TEAM
 4
 5 PLAYING ROLE 130 non-null object
 6 T-RUNS
                   130 non-null int64
   T-WKTS 130 non-null
ODI-RUNS-S 130 non-null
130 non-null
                   130 non-null int64
 7
 8
                                      int64
 9
                                     float64
 10 ODI-WKTS 130 non-null int64
11 ODI-SR-BL 130 non-null float64
 12 CAPTAINCY EXP 130 non-null int64

      13
      RUNS-S
      130 non-null

      14
      HS
      130 non-null

                                      int64
                                      int64
                   130 non-null float64
 15 AVE
 16 SR-B
                   130 non-null float64
 17 SIXERS
                  130 non-null int64
                   130 non-null int64
130 non-null int64
 18 RUNS-C
 19 WKTS
                    130 non-null
 20 AVE-BL
                                     float64
                 130 non-null float64
 21 ECON
 22 SR-BL
                    130 non-null float64
 23 AUCTION YEAR 130 non-null int64
 24 BASE PRICE 130 non-null int64
25 SOLD PRICE 130 non-null int64
dtypes: float64(7), int64(15), object(4)
memory usage: 26.5+ KB
```

There are 130 observations and 26 columns in the data and there are no missing values

In [9]

```
# iloc() is used to display the subset of the dataset
ipl_auction_df.iloc[0:5,0:10]
```

	SI.NO.	PLAYER NAME	AGE	COUNTRY	TEAM	PLAYING ROLE	T-RUNS	T-WKTS	ODI-RUNS-S	ODI-SR-B
0	1	Abdulla, YA	2	SA	KXIP	Allrounder	0	0	0	0.00
1	2	Abdur Razzak	2	BAN	RCB	Bowler	214	18	657	71.41
2	3	Agarkar, AB	2	IND	KKR	Bowler	571	58	1269	80.62
3	4	Ashwin, R	1	IND	CSK	Bowler	284	31	241	84.56
4	5	Badrinath, S	2	IND	CSK	Batsman	63	0	79	45.93

We will create a variable X_features which will contain the list of features that we will finally use for building the model and ignore rest of the columns of the dataframe

In [10]:

Encoding Categorical Features

There are 4 categorical features - Age, country, Playing role, Captaincy exp

In [11]:

```
ipl_auction_df["PLAYING ROLE"].unique()
pd.get_dummies(ipl_auction_df["PLAYING ROLE"])[0:5]
```

Out[11]:

	Allrounder	Batsman	Bowler	W. Keeper
0	1	0	0	0
1	0	0	1	0
2	0	0	1	0
3	0	0	1	0
4	0	1	0	0

In [12]:

```
categorical_features=["AGE","COUNTRY","PLAYING ROLE","CAPTAINCY EXP"]
```

In [13]:

```
\label{lem:condition} ipl\_auction\_encoded\_df=pd.get\_dummies(ipl\_auction\_df[X\_features], columns=categorical\_features, drop\_first= \columns=categorical\_features)
```

We can reassign the new features to the variable X_features which we created earlier to keep track of all features that will be used to build the model finally

In [14]:

```
X_features=ipl_auction_encoded_df.columns
```

In [15]:

```
# Add constant term of 1 to the dataset
X=sm.add_constant(ipl_auction_encoded_df)
```

```
In [16]:
```

```
Y=ipl_auction_df["SOLD PRICE"]
```

In [17]:

```
# Split dataset into train and test set into 80:20 respectively
train_X,test_X,train_Y,test_Y=train_test_split(X,Y,train_size=0.8,random_state=42)
# Fit the model
ipl_model_1=sm.OLS(train_Y,train_X).fit()
```

In [18]:

```
ipl_model_1.summary2()
```

Out[18]:

OLS	Adj. R-squared:	0.362
SOLD PRICE	AIC:	2965.2841
2020-08-27 17:39	BIC:	3049.9046
104	Log-Likelihood:	-1450.6
31	F-statistic:	2.883
72	Prob (F- statistic):	0.000114
0.554	Scale:	1.1034e+11
	SOLD PRICE 2020-08-27 17:39 104 31 72	SOLD PRICE AIC: 2020-08-27 17:39 BIC: 104 Log-Likelihood: 31 F-statistic: 72 Prob (F-statistic):

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	375827.1991	228849.9306	1.6422	0.1049	-80376.7996	832031.1978
T-RUNS	-53.7890	32.7172	-1.6441	0.1045	-119.0096	11.4316
T-WKTS	-132.5967	609.7525	-0.2175	0.8285	-1348.1162	1082.9228
ODI-RUNS-S	57.9600	31.5071	1.8396	0.0700	-4.8482	120.7681
ODI-SR-B	-524.1450	1576.6368	-0.3324	0.7405	-3667.1130	2618.8231
ODI-WKTS	815.3944	832.3883	0.9796	0.3306	-843.9413	2474.7301
ODI-SR-BL	-773.3092	1536.3334	-0.5033	0.6163	-3835.9338	2289.3154
RUNS-S	114.7205	173.3088	0.6619	0.5101	-230.7643	460.2054
HS	-5516.3354	2586.3277	-2.1329	0.0363	-10672.0855	-360.5853
AVE	21560.2760	7774.2419	2.7733	0.0071	6062.6080	37057.9439
SR-B	-1324.7218	1373.1303	-0.9647	0.3379	-4062.0071	1412.5635
SIXERS	4264.1001	4089.6000	1.0427	0.3006	-3888.3685	12416.5687
RUNS-C	69.8250	297.6697	0.2346	0.8152	-523.5687	663.2187
WKTS	3075.2422	7262.4452	0.4234	0.6732	-11402.1778	17552.6622
AVE-BL	5182.9335	10230.1581	0.5066	0.6140	-15210.5140	25576.3810
ECON	-6820.7781	13109.3693	-0.5203	0.6045	-32953.8282	19312.2721
SR-BL	-7658.8094	14041.8735	-0.5454	0.5871	-35650.7726	20333.1539
AGE_2	-230767.6463	114117.2005	-2.0222	0.0469	-458256.1279	-3279.1648
AGE_3	-216827.0808	152246.6232	-1.4242	0.1587	-520325.1772	86671.0155
COUNTRY_BAN	-122103.5196	438719.2796	-0.2783	0.7816	-996674.4194	752467.3801
COUNTRY_ENG	672410.7654	238386.2220	2.8207	0.0062	197196.5172	1147625.0135
COUNTRY_IND	155306.4011	126316.3449	1.2295	0.2229	-96500.6302	407113.4325
COUNTRY_NZ	194218.9120	173491.9293	1.1195	0.2667	-151630.9280	540068.7521
COUNTRY_PAK	75921.7670	193463.5545	0.3924	0.6959	-309740.7804	461584.3143
COUNTRY_SA	64283.3894	144587.6773	0.4446	0.6579	-223946.8775	352513.6563
COUNTRY_SL	17360.1530	176333.7497	0.0985	0.9218	-334154.7526	368875.0586

```
        COUNTRY_WI
        10607.7792
        230686.7892
        0.0460
        0.9635
        -449257.9303
        470473.4887

        COUNTRY_ZIM
        -145494.4793
        401505.2815
        -0.3624
        0.7181
        -945880.6296
        654891.6710

        PLAYING ROLE_Batsman
        75724.7643
        150250.0240
        0.5040
        0.6158
        -223793.1844
        375242.7130

        PLAYING ROLE_Bowler
        15395.8752
        126308.1272
        0.1219
        0.9033
        -236394.7744
        267186.5249

        PLAYING ROLE_W. Keeper
        -71358.6280
        213585.7444
        -0.3341
        0.7393
        -497134.0278
        354416.7718

        CAPTAINCY EXP_1
        164113.3972
        123430.6353
        1.3296
        0.1878
        -81941.0772
        410167.8716

        Omnibus:
        0.891
        Durbin-Watson:
        2.244

        Prob(Omnibus):
        0.640
        Jarque-Bera (JB):
        0.638

        Skew:
        0.190
        Prob(JB):
        0.727

        Kurtosis:
        3.059
        Condition No.:
        84116
```

As per the p-value, only the features HS,AGE_2,AVE and COUNTRY_ENG have come out significant. The model says that none of the other features are influencing SOLD PRICE. This is not very intuitive and could be a result of multi-collinearity effect of variables

Handling Multi-Collinearity

```
In [19]:
```

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [20]:
```

```
def get_vif_factors(X):
    X_matrix = X.to_numpy()
    vif = [ variance_inflation_factor(X_matrix, i ) for i in range(X_matrix.shape[1] ) ]
    vif_factors = pd.DataFrame()
    vif_factors['column'] = X.columns
    vif_factors['vif'] = vif
    return vif_factors
```

In [21]:

```
vif_factors = get_vif_factors( X[X_features])
vif_factors
```

Out[21]:

	column	vif
0	T-RUNS	12.612694
1	T-WKTS	7.679284
2	ODI-RUNS-S	16.426209
3	ODI-SR-B	13.829376
4	ODI-WKTS	9.951800
5	ODI-SR-BL	4.426818
6	RUNS-S	16.135407
7	HS	22.781017
8	AVE	25.226566
9	SR-B	21.576204
10	SIXERS	9.547268
11	RUNS-C	38.229691
12	WKTS	33.366067
13	AVE-BL	100.198105
14	ECON	7.650140
15	SR-BL	103.723846
40	AOF 0	0.00000

```
16
                     AGE_2
column
                               6.996226
vif
                     AGE S
                                3.855003
             COUNTRY_BAN
18
                               1.469017
19
             COUNTRY ENG
                               1.391524
20
             COUNTRY_IND
                               4.568898
              COUNTRY NZ
                               1.497856
21
22
             COUNTRY_PAK
                               1.796355
              COUNTRY_SA
23
                               1.886555
              COUNTRY_SL
24
                               1.984902
              COUNTRY_WI
                               1 531847
25
26
             COUNTRY ZIM
                               1.312168
27
     PLAYING ROLE_Batsman
                               4.843136
28
       PLAYING ROLE Bowler
                               3.795864
   PLAYING ROLE_W. Keeper
                               3.132044
29
          CAPTAINCY EXP 1
                               4.245128
30
```

VIF value greater than 4 requires further investigation to assess the impact of multi-collinearity

```
In [22]:
```

```
columns_with_large_vif=vif_factors[vif_factors.vif>4].column
```

In [23]:

```
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
```

In [24]:

```
plt.figure(figsize=(12,10))
sn.heatmap(X[columns_with_large_vif].corr(),annot=True);
```

1.0

-08

-06

- 0.4

0.2

- 0.0

- -0.2

```
T-RUNS - 1 0.026 0.89 0.23 0.0460.068 0.41 0.41 0.37 0.11 0.22 0.25 0.28 0.3 0.33 0.31 0.27 0.18 0.38 0.69
                T-WKTS -0.026 1 0.0880.012 0.82 0.061-0.22 -0.27 -0.27 -0.15 -0.2 0.3 0.29 0.16 0.12 0.21 -0.18 -0.15 -0.280.089
            ODI-RUNS-S - 0.89 0.088 1 0.32 0.057 0.13 0.52 0.5 0.45 0.19 0.38 -0.27 -0.3 -0.23 -0.25 -0.24 -0.24 -0.17 0.37 0.71
                         0.23 0.012 0.32 1 0.16 0.28 0.31 0.36 0.34 0.38 0.320.00490.0230.0190.0190.0180.012-0.170.083 0.29
              ODI-SR-B
              ODI-WKTS -0.046 0.82 0.057 0.16 1 0.12 -0.2 -0.21 -0.22 -0.03 -0.15 0.33 0.3 0.22 0.23 0.26 -0.13 -0.19 -0.360.078
                         0.0680.061 0.13 0.28 0.12 1 0.0280.0680.0540.0520.034 0.2 0.15 0.42 0.31 0.4 -0.13-0.0220.015 0.1
                RUNS-S - 0.41 -0.22 0.52 0.31 -0.2-0.028 1 0.83 0.77 0.38 0.87 -0.16 -0.22 -0.1 -0.18 -0.12-0.0860.21 0.42 0.35
                     HS - 0.41 -0.27 0.5 0.36 -0.21-0.068 0.83 1 0.88 0.53 0.79 -0.24 -0.29 -0.18 -0.25 -0.19 -0.0230.034 0.41 0.39
                         0.37 -0.27 <mark>0.45 0.34 -</mark>0.220.054 <mark>0.77 0.88 1 0.58 0.71 -</mark>0.28 -0.34 -0.12 -0.2 -0.14 0.0320.03<mark>8</mark> 0.43 0.38
                   AVE
                         0.11 -0.15 0.19 0.38 -0.030.0520.38 0.53 0.58 1 0.43-0.063-0.07-0.0580.0760.0680.18-0.0490.16 0.18
                 SIXERS - 0.22 - 0.2 0.38 0.32 - 0.150.034 0.87 0.79 0.71 0.43 1 - 0.08 - 0.140.012 - 0.1 - 0.0210.0440.13 0.29 0.25
                RUNS-C -0.25 0.3 -0.270.00490.33 0.2 -0.16-0.24-0.280.063-0.08 1 0.96 0.41 0.41 0.47 0.026 0.27 -0.44-0.28
                  WKTS -0.28 0.29 -0.3 -0.023 0.3 0.15 -0.22 -0.29 -0.34 -0.07 -0.14 0.96 1
                                                                                             0.3 0.37 0.37 0.044 0.22 -0.42 -0.3
                 AVE-BL - -0.3 0.16 -0.23 0.019 0.22 0.42 -0.1 -0.18 -0.12 0.0580.012 0.41 0.3 1 0.72 0.98 0.072 0.15 -0.37 -0.18
                  ECON -0.33 0.12 -0.25-0.019 0.23 0.31 -0.18 -0.25 -0.2 -0.076 -0.1 0.41 0.37 0.72 1 0.73 0.0049.066 -0.29 -0.25
                  SR-BL -0.31 0.21 -0.240.0180.26 0.4 -0.12 -0.19 -0.140.0680.0210.47 0.37 0.98 0.73 1 -0.09 0.13 -0.4 -0.2
                 AGE 2 -0.27 -0.18 -0.24 -0.012-0.13 -0.13-0.0860.0230.032 0.18 -0.0440.0260.0440.0710.00490.09 1
         COUNTRY IND -0.18-0.15-0.17-0.17-0.19-0.022021-0.0340.0380.0490.13 0.27 0.22 0.15 0.066 0.13-0.002 1 0.072-0.19
PLAYING ROLE Batsman - 0.38 -0.28 0.37 0.083-0.360.015 0.42 0.41 0.43 0.16 0.29 -0.44 -0.42 -0.37 -0.29 -0.4 -0.17 0.072 1
      CAPTAINCY EXP 1 - 0.69 0.089 0.71 0.29 0.078 0.1 0.35 0.39 0.38 0.18 0.25 0.28 -0.3 -0.18 0.25 -0.2 -0.11 -0.19 0.31
```

```
T-RUNS-S

ODI-RUNS-S -

ODI-SR-B -

ODI-SR-B -

ODI-SR-B -

RUNS-S -

HS -

AVE -

SR-B -

SR-B -

SR-B -

SR-B L

ECON -

SR-B L

AGE 2 -

COUNTRY_IND -

PLAYING ROLE_Batsman -

CAPTAINCY EXP_1 -
```

```
In [27]:
get_vif_factors(X[X_new_features])
```

Out[27]:

	column	vif
0	PLAYING ROLE_Batsman	2.680207
1	SIXERS	2.397409
2	AGE_3	1.779861
3	COUNTRY_WI	1.194093
4	CAPTAINCY EXP_1	2.458745
5	COUNTRY_ZIM	1.205305
6	WKTS	2.883101
7	COUNTRY_NZ	1.173418
8	COUNTRY_ENG	1.131869
9	ODI-SR-BL	2.822148
10	PLAYING ROLE_Bowler	3.060168
11	COUNTRY_SL	1.519752
12	ODI-WKTS	2.742889
13	COUNTRY_PAK	1.334773
14	COUNTRY_IND	3.144668
15	COUNTRY_SA	1.416657
16	COUNTRY_BAN	1.094293
17	PLAYING ROLE_W. Keeper	1.900941

Building a new model after removing multi-collinearity

```
In [28]:
```

```
train_X=train_X[X_new_features]
ipl_model_2=sm.OLS(train_Y,train_X).fit()
```

```
In [29]:
```

```
ipl_model_2.summary2()
```

Out[29]:

Adi R-squared

Model:	OLS		(uncenter		0.728	
Dependent Variable:	SOLD PRICE		,	•	965.1080	
	20-08-27 17:39				012.7070	
No. Observations:	104	1	.og-Likelih		-1464.6	
Df Model:	18	_	F-stati		16.49	
Df Residuals:	86	Pro	Prob (F-statistic):		1.13e-20	
R-squared (uncentered):	0.775	Scale:		•	2071e+11	
	Coef.	Std.Err.	t	P> t	[0.0]	0.975]
PLAYING ROLE_Batsman	121382.0570	106685.0356	1.1378	0.2584	-90700.77	746 333464.8886
SIXERS	7862.1259	2086.6101	3.7679	0.0003	3714.08	12010.1694
AGE_3	-8950.6659	98041.9325	-0.0913	0.9275	-203851.57	772 185950.2453
COUNTRY_WI	-22234.9315	213050.5847	-0.1044	0.9171	-445765.47	766 401295.6135
CAPTAINCY EXP_1	208376.6957	98128.0284	2.1235	0.0366	13304.63	315 403448.7600
COUNTRY_ZIM	-67977.6781	390859.9289	-0.1739	0.8623	-844981.50	709026.1444
WKTS	2431.8988	2105.3524	1.1551	0.2512	-1753.40	033 6617.2008
COUNTRY_NZ	142968.8843	151841.7382	0.9416	0.3491	-158882.50	009 444820.2695
COUNTRY_ENG	682934.7166	216150.8279	3.1595	0.0022	253241.09	920 1112628.3411
ODI-SR-BL	909.0021	1267.4969	0.7172	0.4752	-1610.69	983 3428.7026
PLAYING ROLE_Bowler	-18315.4968	106035.9664	-0.1727	0.8633	-229108.02	215 192477.0279
COUNTRY_SL	55912.3398	142277.1829	0.3930	0.6953	-226925.33	338750.0184
ODI-WKTS	772.4088	470.6354	1.6412	0.1044	-163.18	1708.0009
COUNTRY_PAK	122810.2480	159600.8063	0.7695	0.4437	-194465.65	440086.1502
COUNTRY_IND	282829.8091	96188.0292	2.9404	0.0042	91614.33	356 474045.2827
COUNTRY_SA	108735.9086	115092.9596	0.9448	0.3474	-120061.32	227 337533.1399
COUNTRY_BAN	-108758.6040	369274.1916	-0.2945	0.7691	-842851.40	010 625334.1930
PLAYING ROLE_W. Keeper	-55121.9240	169922.5271	-0.3244	0.7464	-392916.72	280 282672.8801
Omnibus: 8.635 D	urbin-Watson:	2.252				
Prob(Omnibus): 0.013	Jarque-Bera (JB):	8.345				
Skew: 0.623	Prob(JB):	0.015				
Kurtosis: 3 600	Candition No.	1400				

Kurtosis: 3.609 Condition No.: 1492

Based on the p-values only the variables COUNTRY_IND,COUNTRY_ENG,SIXERS and CAPTAINCY EXP_1 have came out statistically significant.

In [30]:

```
significant_vars = ['COUNTRY_IND', 'COUNTRY_ENG', 'SIXERS', 'CAPTAINCY EXP_1']
train_X = train_X[significant_vars]
ipl_model_3 = sm.OLS(train_Y, train_X).fit()
ipl_model_3 = sm.OLS(train_Y, train_X).fit()
ipl_model_3.summary2()
```

Out[30]:

0.704	Adj. R-squared (uncentered):	OLS	Model:
2961.8089	AIC:	SOLD PRICE	Dependent Variable:
2972.3864	BIC:	2020-08-27 17:39	Date:
-1476.9	Log-Likelihood:	104	No. Observations:
62.77	F-statistic:	4	Df Model:
1.97e-26	Prob (F-statistic):	100	Df Residuals:
1.3164e+11	Scale:	0.715	R-squared (uncentered):

```
Coef.
                                   Std.Err.
                                                    P>|t|
                                                                [0.025
                                                                              0.975]
   COUNTRY_IND 387890.2538
                               63007.1511 6.1563 0.0000 262885.8606
                                                                        512894.6471
   COUNTRY_ENG 731833.6386 214164.4988 3.4172 0.0009 306937.3727
                                                                       1156729.9045
          SIXERS
                    8637.8344
                                1675.1313 5.1565 0.0000
                                                            5314.4216
                                                                         11961.2472
     CAPTAINCY
                  359725.2741 74930.3460 4.8008 0.0000 211065.6018
                                                                        508384.9463
           EXP 1
     Omnibus: 1.130
                      Durbin-Watson: 2.238
                         Jarque-Bera
Prob(Omnibus): 0.568
                                     0.874
                           Prob(JB): 0.646
       Skew: 0.223
     Kurtosis: 3.046
                        Condition No.:
```

Residula Analysis in MLR

Test for Normality of Residuals(P-P Plot)

```
In [31]:
```

```
def draw_pp_plot( model, title ):
    probplot = sm.ProbPlot( model.resid );
    plt.figure( figsize = (8, 6) );
    probplot.ppplot( line='45' );
    plt.title( title );
    plt.show();
```

In [32]:

```
draw_pp_plot(ipl_model_3, "Figure 4.6 - Normal P-P Plot of Regression Standardized Residuals");
```

<Figure size 576x432 with 0 Axes>

Residual Plot for Homoscedasticity and Model Specification

```
In [33]:
```

```
def get_standardized_values(vals):
    return (vals-vals.mean())/vals.std()
```

```
In [34]:
```

```
def plot_resid_fitted( fitted, resid, title):
    plt.scatter( get_standardized_values( fitted ), get_standardized_values( resid ) )
    plt.title( title )
    plt.xlabel( "Standardized predicted values")
    plt.ylabel( "Standardized residual values")
    plt.show()
```


Detecting influencers

In [35]:

```
k = train_X.shape[1]
n = train_X.shape[0]
```

In [36]:

```
print( "Number of variables:", k, " and number of observations:", n)
```

Number of variables: 4 and number of observations: 104

In [37]:

```
leverage_cutoff = 3*((k + 1)/n)
print( "Cutoff for leverage value: ", round(leverage_cutoff, 3) )
```

Cutoff for leverage value: 0.144

In [38]:

```
from statsmodels.graphics.regressionplots import influence_plot
fig, ax = plt.subplots( figsize=(8,6) )
influence_plot( ipl_model_3, ax = ax )
plt.title( "Figure 4.7 - Leverage Value Vs Residuals")
plt.show()
```


Three Observations 23,58,83 have high leverage with residuals.

```
In [39]:
```

```
ipl_auction_df[ipl_auction_df.index.isin( [23, 58, 83] )]
```

Out[39]:

	SI.NO.	PLAYER NAME	AGE	COUNTRY	TEAM	PLAYING ROLE	T- RUNS	T- WKTS	ODI- RUNS- S	ODI- SR-B	 SR-B	SIXERS	RUNS- C	WKTS	AVE- BL
23	24	Flintoff, A	2	ENG	CSK	Allrounder	3845	226	3394	88.82	 116.98	2	105	2	52.50
58	59	Mascarenhas, AD	2	ENG	RR+	Allrounder	0	0	245	95.33	 101.37	1	331	19	17.42
83	84	Pietersen, KP	2	ENG	RCB+	Batsman	6654	5	4184	86.76	 141.20	30	215	7	30.71

3 rows × 26 columns

In [40]:

```
train_X_new = train_X.drop( [23, 58, 83], axis = 0)
train_Y_new = train_Y.drop( [23, 58, 83], axis = 0)
```

In [41]:

```
ipl_model_4 = sm.OLS(train_Y_new, train_X_new).fit()
ipl_model_4.summary2()
```

Out[41]:

0.689	Adj. R-squared (uncentered):	OLS	Model:
2872.3664	AIC:	SOLD PRICE	Dependent Variable:
2880.2117	BIC:	2020-08-27 17:39	Date:
-1433.2	Log-Likelihood:	101	No. Observations:
75.50	F-statistic:	3	Df Model:
2.22e-25	Prob (F-statistic):	98	Df Residuals:
1.2760e+11	Scale:	0.698	R-squared (uncentered):

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
COUNTRY_IND	390069.6377	62096.7593	6.2816	0.0000	266840.6399	513298.6355
COUNTRY_ENG	0.0000	0.0000	6.4881	0.0000	0.0000	0.0000
SIXERS	8790.0052	1656.5116	5.3063	0.0000	5502.7118	12077.2986
CAPTAINCY EXP_1	334569.0056	74599.3795	4.4849	0.0000	186528.9648	482609.0464

2.251	Durbin-Watson:	1.880	Omnibus:
1.497	Jarque-Bera (JB):	0.391	Prob(Omnibus):
0.473	Prob(JB):	0.294	Skew:
165576019774456896	Condition No.:	3.104	Kurtosis:

Transforming Response Variable

In [49]:

```
train_y = np.sqrt( train_Y )
```

In [50]:

```
ipl_model_5 = sm.OLS(train_y, train_X).fit()
ipl_model_5.summary2()
```

Out[50]:

0.741	Adj. R-squared (uncentered):			OLS		Model:	
1527.9999	AIC:			SOLD PRICE		Dependent Variable:	
1538.5775	BIC:		08-27 17:42	2020-0	Date:		
-760.00	Log-Likelihood:			104		No. Observations:	
75.29	F-statistic:			4		Df Model:	
2.63e-29	Prob (F-statistic):			100	siduals:		Df Re
1.3550e+05	Scale:			0.751		squared)	
0.975]	[0.025	P> t	t	Std.Err.	Coef.		
617.5318	363.8860	0.0000	7.6765	63.9238	90.7089	IND 4	COUNTRY_
994.1036	131.9486	0.0110	2.5912	217.2801	63.0261	NG 5	COUNTRY_E
11.9055	5.1620	0.0000	5.0213	1.6995	8.5338	ERS	SIXE
568.5799	266.9352	0.0000	5.4953	76.0204	17.7575	ICY P_1	CAPTAIN EX
			1.879	in-Watson:	Durb	0.017	Omnibus:
			0.145	arque-Bera	Ja	0.992	Prob(Omnibus):
				(JB):			
			0.930	Prob(JB):		0.005	Skew:

The r-squard value of the model has increased to 0.751. And the following P-P plot also shows that the residuals follow a normal distribution.

In [42]:

```
draw_pp_plot( ipl_model_4, "Figure 4.8 - Normal P-P Plot of Regression Standardized Residuals" );
```

<Figure size 576x432 with 0 Axes>

Theoretical Probabilities

Making predictions on validation set

In [51]:

```
pred_y = np.power( ipl_model_5.predict( test_X[train_X.columns] ), 2)
```

```
In [52]:
```

```
from sklearn import metrics
np.sqrt(metrics.mean_squared_error(pred_y, test_Y))

Out[52]:
496151.1812255808

In [53]:
np.round( metrics.r2_score(pred_y, test_Y), 2 )

Out[53]:
0.44
```

The accuracy "R-squared" value on validation set is very low compared to the accuracy reported by the model on training dataset. this could be a sign of model overfitting