

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

UNITED STATES AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Best Available Copy

A TO BE PERSONAL WITH THE PERSON WHEN THE PERS	KEY WORDS		LIN		LIN
	~~~~~~	·	ROLE	WT	ROLE
	•			ĺ	1
Ignition Delay				<u> </u>	
Supersonic Combust	tion				1
	,				
Vitiated Air	•				
Chemical Kiretics					
	~				
		~			
	-	•			
	-	-			
			ľ		
-				1	
		-			
				l 	1
		-			
	=	• * -			İ
					1
				ļ.	ļ
					Ì
			1		1
-					
	•				
	•				
	5	• •			
					1
					1
•	,	•	l		1

AND THE PROPERTY OF THE PROPER

Security Classification

V

THE SECTION OF THE PROPERTY OF

	-			أأعبوب بتشبيب
DOCUMENT CONT				
(Security classification of title, body of abstract and indexing	annetation must be e			
RIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION		
Adm Daving Translation of Marine James	לזות הוד	Unclassi	fied	,
Air Force Institue of Technology (AF	rr⇔m)	2b. GROUP		<del></del>
. Wright Patterson AFB, Ohio 45433				
		L		<u> </u>
3. REPORT TITLE				
A Study of Moneguilibrium Effects on	Ignition Del	ay in a Su	personic	
Airstream			•	
•				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			<del></del>	<del></del>
AFIT Thesis				
S. AUTHOR(S) (First name, middle initial, last name)				
Donald Teesdale				-
1/Lt USAF				
S. REPORT DATE	78. TOTAL NO. O	F PAGES	76. NO. OF REFS	
'farch 1972	57	,	7	-
Se. CONTRACT OR GRANT NO.	Se ORIGINATOR'S	REPORT NUMB		
[			= ====	-
. S. PROJECT NO.		l		ļ
. a. Project No.	GA'1/	':E/72 <b>-1</b>		
c.		RT NO(5) (Any on	her numbers that may	be assigned
	-his report).			
	1			
10. DISTRIBUTION STATEMENT				· · · · · · · · · · · · · · · · · · ·
Approved for public resale, distribut	tion unlimite	ed.		
N. J. T.				್ವಾ
				267
Approved for public release; IAW AFR 196	- Isl sponsouing	MLITARY ACTIV	/ITY	\$ 1
TANK TO THE TOTAL		-		=
Stephen B. Ingrain, Captain, USAF	1			* ,
Director of Information	1			
13. ABSTRACT	<u></u>	<del></del>		
R No. of the control	• •			
The purpose of this study was to dete	armine halyt	ically the	effects of	water
yapor on the ignition delay process in				
supersonic flowing vitiated airstream	1. A low ter	perature (	950 - 1000°K	)
regime was used so the reaction rates	would be do	minate ove	r the diffus	ion
rates. In this study two chemical ki				
analytically predict the ignition del	lar tiran uni	ne the in	DALL ROCK	
minute order in the contract of the contract o	.ಜ. ಆಆರ ಭರ್ವ ಜನಕ್ಕೆ ಜನಕಿಕೆಯ ಎಂ	nity till disji	mis aron sevi	33
vitiated-air heater experimental invi	santanine co	malulons.	The shalyti	certia .
calculated ignition delay times, for	the seven co	mparitive	clean - air	and
vitiated-air cases, were then compare	ed to the exp	crimental	resulve to d	encimine
the effects of water vapor on the ign	nition delay	time. ( ) ==	<u> </u>	
It was found that the water vapor six	ortened the i	mition de	day time in	Line temps
erabure regime of this investigation.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
and the same of th				
:				
· ·				
<b>.</b>			-	
				, ,
			•	
$\sim$				
1				
¥ ,				3

FORM I NOV 65 1473 DD

Secury Classification

The properties of the continues of the c

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

A STUDY OF NONEQUILIBRIUM EFFECTS ON IGNITION DELAY IN A SUPERSONIC AIRSTREAM

GAM/ME/72-1 Donald M. Teasdale Lt USAF



# A STUDY OF NONEQUILIBRIUM EFFECTS ON IGNITION DELAY IN A SUPERSONIC AIRSTREAM

#### THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Haster of Science

by

Domald M. Teasdale

Lieutenant USAF

Graduate Aerospace-Mechanical Engineering
March 1972

Approved for public release; distribution unlimited.

## PREFACE

I would like to thank the wenders of my thesis committee who helped me with the problems I encountered during this study.

I am especially grateful to Major Renaldo M. Jensen who suggested this study and spent many hours giving suggestions and explaining the points that were unfamiliar to me.

Thanks also goes to Mrs. Kelly Stevens who helped type this report. Most of all I would like to thank my wife Sally, son Brandon, and daughter Cheryl for the patience and understanding they gave to me during the course of this study.

## CONTENTS

	Page
Preface	·· ii
List of Figures	• iv
List of Tables	· • •
List of Symbols	• • vi
Abstract	· · vii
I. Introduction	• 1
Scope of Present Investigation	2
Review of Pertinent Literature	
Jensen	
Edelman and Spadaccini	• • 12
Approach	• • 12
Assumptions	• 14
II. Analytical Program	16
Description of Computer Programs	16
Finite Rate Reacting Gas	
One Dimensional Finite Rate Chemistry	• • 17
General Chemical Kinetics	• • 20
Analytical Determination of the Ignition	
Delay Time	• • 22
III. Data Reduction	• • 30
ODFRC Program Results	
GCK Program Results	• 33
IV. Conclusions	• 39
V, Recommendations	• 40
Bibliography	41
Appendix	42
V(+a	110

のは、「「「「「」」」「「」」」というとなっているとなっている。「は、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

## LIST OF FIGURES

Figure		Page
1	*Vitiated-Air Heater With H ₂ Injector (Ref. 6)	4
2	*Vitiated-Air Heater With H ₂ Hamifold Installed (Ref. 6)	6
3	*Ignition Delay Measuring Apparatus (Ref. 6)	7
4	*Ignition Delay Measurement Using High Speed Fastex Camera (Ref. 6)	8
5	*Comparison of Analytical and Experimental Results as a Function of Equivalence Ratio (Ref. 6)	9
6	*Comparison of Analytical and Experimental Results as a Function of H ₂ Temperature (Ref. 6)	10
7	*Effect of Water Vapor on Ignition Delay (Ref. 6)	11
8	*Ign_tion Characteristics of H2-Air Nixtures with Adding Water Vapor and Nitric Oxide (Ref. 8)	13
9	Program Application	24
10	Temperature History During Ignition	26
11	Graphical Representation of Ignition Delay Using Temperature Criterion	27
12	Graphical Representation of Ignition Delay Using OH Criterion	28
13	Graphical Representation of Ignition Delay Using H Criterion	29
14615	ODFRC Ignition Delay History O'. Criterion	31 & 32
16-19	GCK Ignition Delay History Using OH Criterion	35 - 38
20-25	ODFRC Ignition Delay History Using H, 1/2H ₂ , and Temperature Slope Criterion	43 - 48

The second secon

9

# LIST OF TABLES

Table	·	Page
1	Reaction Rates for FRRG Program	18
2	Reaction Rates for ODFRD Program	21
3	Reaction Rates for GCK Program	23

There and or the control of the cont

# LIST OF SYMBOLS

# Symbol

 $au_{ extsf{ID}}$  Ignition Delay Time

• Equivalence Ratio

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

#### ABSTRACT

The purpose of this study was to determine analytically the effects of water vapor on the ignition delay process in the burning of gaseous hydrogen in a supersonic flowing vitiated—airstream. A low temperature (950°K - 1000°K) regime was used so the reaction rates would be dominate over the diffusion rates. In this study two chemical kinetic computer programs were used to analytically predict the ignition delay times using the inputs from seven vitiated—air heater experimental investigative conditions. The analytically calculated ignition delay times, for the seven vitiated—air and seven comparitive clean—air cases, were then compared to the experimental results to determine the effects of vater vapor on the ignition delay process.

It was found that the water vapor shortened the ignition delay time in the temperature regime of this investigation.

# A STUDY OF NONEQUILIBRIUM EFFECTS ON IGNITION DELAY IN A SUPERSONIC AIRSTREAM

## I. INTRODUCTION

Supersonic ramjet engines (SCRAMJETS) require large mass flow rates of air to produce desirable thrust. Ground test facilities which could provide air mass flow rates at temperatures, pressures, and velocities necessary for meaningful engine development are virtually non-existent.

Due to floatation and erosion problems associated with high mass flow rates in clean air heaters, vitiated air heaters may be the only solution to achieving high energy fluids necessary for the ground development of SCRAMJET engines.

Combustion type vitiated air heaters are gas generator and nozzle combinations that produce large mass flow rates with inherent high temperatures and pressures as a result of the combustion of propellants. Careful design of these apparatuses can duplicate flight conditions necessary for hypersonic operation of a SCRAMJET engine in a ground test facility. The working fluid generated which is called vitiated air, has the same molecular weight and oxygen content as clean air. Additional species such as water

#### GAM/ME/72-1

vapor and carbon dioxide may be present due to by-products of the combustion process and are considered contaminants when compared with real air composition. If the effects of these contaminates on the ignition process between fuel and vitiated air could be determined, then the vitiated air heater could be economically used for meaningful engine combustor development in ground test facilities.

The purpose of the study is to determine analytically the effects of water vapor contamination on the ignition process of heated gaseous hydrogen fuel in a Mach 3 vitiated airstream.

## Scope of Present Investigation

This study is an extension of the work performed by Major Renaldo M. Jensen at Purdue University as partial fulfillment of the requirements for the Doctor of rhilosophy Degree (Ref.6).

Jensen's experimental results on the ignition delay phenomenon are included in this thesis as a comparison for the analytical results determined in this study.

The SIL (Simplified Ignition Lag) (Ref. 6) computer program that Jensen used to analytically predict the ignition delay lengths in his experimental cases did not allow for a temperature increase during the ignition delay period.

It was felt that some validity in the comparison of his analytical and experimental & ta was impaired by neglecting this temperature rise. However, in this study the ignition delay lengths of Wensen's experimental cases will be recalculated allowing for

to deimtical
ted
erimental
the igthe temperature increase during the ignition delay period to determine whether the allowance of this temperature increase improves his correlation between the experimental and analytical results. Additional ignition delay lengths will be computed using clean air rather than vitisted air for the same experimental conditions, to determine the effects of the water vapor on the ignition delay process.

## Review of Pertinent Literature

Jensen (Ref. 6). Jensen designed and built a vitiated air heater (Fig. 1, Pg. 4) that reacted a nitrogen  $(N_2)$  diluent, nitrogen tetroxide  $(N_2O_4)$ , and hydrazine  $(N_2H_4)$  to generate the vitiated zir. The use of mitrogen (N2) increased the molecular weight to that of real air. The water vapor inherently produced as a combustion product in the gas generation process (19 percent by weight) replaced an equal amount of nitrogen in the vitiated air.

This system was designed to duplicate the temperature (1000°K), pressure (14.7 PSI $\hat{k}$ ), and velocity conditions (M = 2.9) of air entering the combustor of a SCRAMJET engine operating at a flight mach number of 6 at an altitude of 80,000 teet. This simulation of a SCRAMJET combustion chamber entrance was further enhanced by using an annular injector at the exit of the gas generator nozzle for the introduction of the heated hydrogen gaseous fuel (590° to 750°K) into the vitiated air stream. Injection was parallel to the flow in order to minimize the recirculation effects between the concentric streams of the free jet. (Fig. 2, Fg.6). Once ignition

objected with the control of the con



Figure 1. VITIATED-AIR HEATER WITH H2 INJECTOR REGUVED

4

measure the ignition delay phenomenon captured by a high speed motion picture (Fastex) camera (550 frames a min.). See Fig 3, Pg.7 and Fig. 4, Pg.8.

The SIL computer program supplied by NASA Lewis, was used to analytically predict the ignition delay lengths for his experimental cases. It was found that the ignition delay length decreased with increasing hydrogen inlet temperature and that the ignition delay lengths were comparatively independent of the equivalence ratio (Figs. 5 and 6, Pg.9). The results also showed that the presence of water vapor shortened the ignition delay length (Fig. 7, Pg.11).

## Snyder, Robertson, Zanders, and Skinner (Ref. 8).

In this study the effects of water vapor, nitric oxide, nitrogen dioxide and ammonia on ignition delay were studied using shock tube techniques. The ranges considered were, equivalence ratio .5 to 1.0, temperature from 800°K to 1100°K, and the pressure range from 1.5 PSIA to 130 PSIA.

Their results showed that for an equivalence ratio of 1, pressure of 30 PSIA, and water vapor content of 20 percent, that the water vapor present would shorten the ignition delay if the temperature is higher than 970°K, and would lengthen the ignition delay if the temperature is lower than 970°K (Fig. 8, Pg.13). Their results also showed that nitric oxide (Fig. 8) and nitrogen dioxide had an accelerating effect on the ignition delay. They also indicated that ammonta had very little effect on the ignition delay in this low temperature range.



Figure 2. VITIATED-AIR HEATER WITH H2 MANIFOLD INSALLED

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O









Figure *. Ignition delay measurement using high speed factor camera

如果,我们是一个时间,我们的时候,我们的时候,我们就是我们的时候,我们就是我们的时候,我们的时候,我们的时候,我们就是我们的时候,我们也会会会会会会会会会会会会



To be a second of the contract 
IGNITION DELAY 'ENGTH CINCHES LID



GRAPHICAL COMPARTION OF ARAINTICAL AND EXPERIMENTAL IGNITION DELAY RESULTS AS FURCTION OF  $\mathbf{H}_2$  TEMPERATURE. FIGURE 6



To the contract of the contrac



inter the same with

Edelman and Spadaccini (Ref. 4). This study was accomplished using preheated air. The air was preheated by burning oil and hydrogen gas. By adding make-up oxygen to a combustion heated true air, (revitalized air), it was possible to obtain vitiated air with the correct proportion of atmospheric oxygen. They concluded from their experimental and analytical results that water vapor and carbon dioxide could either increase or decrease the ignition delay time depending on the initial temperature, pressure, and concentration level.

in the contraction of the contra

#### Approach

The ODFRC (One Dimensional Finite Rate Chemistry) computer program will be used to analytically determine the ignition delay lengths for the seven vitiated air experimental cases. (Ref. 3 § 7). This program was developed by GASL and provided for this research program by NASA Lewis Research Center. It differs from the SIL Computer program used by Jensen in that it takes into account the temperature increase during the induction period.

The GCK (General Chemical Kinetics) computer program will also be used to determine the ignition delay lengths for the seven clean and vitiated air cases. This program was developed by NASA Lewis Research Center (Ref. 2). The GCK program is similar but slightly more sophisticated than the ODFRC computer program in that it has the added ability to allow for up to thirty reactions. Also unlike the other computer programs written for combustion studies; this program internally calculates the step size required for the inte-



Figure 8. IGNITION CHARACTERISTICS OF H2-AIR MIXTURES WITH ADDED WATER AND NITRIC OXIDE

gration of the rate equations, which help eliminate the time problem that exists with other integration schemes. Also this program allows for no reactions which are felt to be important in ignition delay calculations.

To determine the nonequilibrium combustor inlet clean and vitiated air species concentration used as the data input to the ODFRC and GCK programs the FRRG (Finite Rate Reacting Gas) computer program will be used. This computer program was developed by TRW Systems for NASA (MSC) under contract NAS-4358 (Ref. 5). It was also used by Jensen to calculate the inlet species concentrations for use in the SIL computer program.

THE SECOND SECON

The results of the clean and vitiated air case will be compared to the experimental results to determine the effects of the water vapor on the ignition delay lengths.

#### Assumptions

In the solution in experimental cases, the clean and vitiated air entering the combustor are assumed to be in chemical nonequilibrium. It is also assumed that the airstream entering the combustor is a homogeneous mixture since the computer programs are not designed to handle mixing phenomena.

The assumptions made for the FRRG, CDFRC and GCK computer programs are as follows:

- 1. The flow is adiabatic.
- 2. The species behave as ideal gases.
- 3. Viscous effects are neglected.

4. All internal modes of energy storage are in equilibrium.

#### II. ANALYTICAL PROGRAM

The author used the FRRG program to analytically determine the nonequilibrium composition, temperature, pressure, and velocity characteristics of the working fluid expanding in the gas generator. The computed outputs were then used as the input data to the ODFRC and GCK programs to analytically predict the ignition delays in the free jet which simulates the ignition process in a SCRAMJET combustor.

#### Description of Computer Programs

The computer programs indicated in the above section are discussed in the following paragraphs under their individual headings. Included in these discussions are:

- 1. Program description
- 2. Input requirements
- 3. Output
- 4. Limitations

Finite Rate Reacting Gas (FRRG) Program. The FRRG program was developed by TRW Systems for NASA (MSC) under contract NAS-4358.

This program solves the equations for invicid one dimensional flow of a reacting gas mixture (Ref. 5). To minimize computer time during the integrations of the chemical relaxation equations, the program

uses an implicit integration scheme for near equilibrium flow, and explicit integration scheme for near equilibrium flow, and explicit integration for flow distant from equilibrium.

Required data inputs are the nozzle geometry, propellant data, and reaction rate information. The reaction rate expressions and rate constants used in this program are listed in Table 1, pg. 18. Only the forward rates are required input since the reverse reaction rates are internally calculated from the forward reaction rate and the equilibrium constant by the following expression:

$$\cdot k_b(J) = k_f(J)/K_c(J)$$

Also when the reaction equations used were the same as in the FRRG, ODFRC, and GCK programs, identical input reaction rate data was used to maintain continuity in the results. Designations of the consultant of the construction of the construc

This program has the option of per. Forming either equilibrium or finite rate calculations. Output from this program are temperature, pressure, mach number, velocity, density, enthalpy, gas molecular weight, heat capacity, ratio of specific heats, and species concentrations. The finite rate calculation was employed since this option more closely duplicated the experimental conditions.

Output species concentrations are printed in mole fractions and mass fractions. Mass fraction units were chosen since the ODFRC program requires that the species concentrations be input in terms of mass fractions.

One Dimensional Finite Rate Chemistry (ODFRC) Program.

The ODFRC program, supplies by NASA Lewis Research Center, solves

のではない。 はなどのではない。 はないではない。 ではないできない。 ではないできない。 ではないできない。 できない。 でもな。 でもな。 でもな。 でもな。 でもな。 でもな。 

TABLE 1

Reproduced from best available copy.

## REACTION RATES FOR FREG PROGRAM

J	Reaction	A(J) (Jr. cm.)	B(J) (kcal/mole)	::(J) ·
ì	H ₂ O + M <=≥ OH + H ÷ X	1.9×10 ¹⁸	119.9	-1.278
2	H ₂ + M <del>==</del> H + H + X	3.2×10 ¹⁶	102.9	-1.5
3	% ₂ + % <del>==</del> % + % + %	1.0×10 ¹⁸	*****	-1.0
4	N + N <del>← N + O + E</del>	5.0×10 ¹⁵	*	-0.5
5	C∺ + M <del>&lt;==</del> O → ∺ ÷ M	2.0×10 ¹⁸		-1.0
δ	0 ₂ + M == 0 + 0 ÷ %	3.59×10 ¹⁷	118.0	-2.5
7	` H ₂ O + H <del>===</del> H ₂ + CH	1.43×1014	20.94	
6	H ₂ O + O <del>&lt;==</del> OH + OH	2.5×10 ¹⁴	18.7	
S	H ₂ ÷ 0 ⇔ 0H ÷ H	4.0×10 ¹³	19.2	<b></b>
10	K ₂ + O ₂ == OH + OH	2.5×10 ¹²	38.9	
1:	N ₂ ÷ 0 ⇌ N0 ÷ N	1.5×10 ¹³		<b></b>
12	N ₂ + O ₂ == NO + NO	1.0×10 ¹³	79.5	-2.5
13	%0 ÷ H == 0H + %	5.8×10 ¹¹	5.62	0.5
14	%0 ÷ 0 ⇒ 0 ₂ ÷ %	- 1.3×10 ⁵	6.0	1.5
15	O ₂ ÷ H ⇌ CH ÷ C	1.0×10 ¹⁴	16	

where

$$k_{\tilde{I}}(J) = A(J) T^{\tilde{N}(J)} \exp[-B(J)/RT]$$

and

$$k_{\tilde{D}}(\tilde{J}) = k_{\tilde{Z}}(\tilde{J})/k_{\tilde{C}}(\tilde{J})$$

for the rate of growth of the free radicals as a function of time by using a standard matrix technique. These rates are then integrated to give the species concentrations at that instant of time. Unlike the SIL program used by Jensen (Ref. 6), this program allows for the temperature increase during the ignition delay period caused by certain reactions being slightly more exothermic than the other reactions are endothermic.

During the development of the ODFRC program, modifications were made by NASA Lewis Research Center to the original program to allow the computation to run though the steep temperature rise following ignition.

The program has the option of using pressure vs. distance, area vs. distance, or radius vs. distance for combustor geometry conditions. The pressure vs. distance option was chosen to duplicate the constant pressure experimental conditions of a free jet burning in the atmosphere. Other inputs include initial temperature, pressure, velocity, area, distance, time, species concentrations, and reaction rate constants. Reactions, rates, and constants used are listed in table 2, page 21. Species considered were H, O, H₂O, H₂, O₂, OH, N₂, HO₂, and H₂O₂.

Output from this program includes time, temperature, density, pressure, enthalpy, velocity, area, distance, and species concentrations for the nine species listed above. The author modified the program to include a calcomp plotting subroutine to plot 0 H concentration vs. time, H concentration vs. time, and temperature vs. time. The plots which are used to determine the ignition delay, will be discussed in a later section.

GAH/HE/72-1

General Chemical Kinetics (GCK) Program. The GCK computer program was supplied by NASA Lewis Research Center for this study. Unlike the ODFRC Program, the GCK program allows for reactions involving NO which possibly could have an accelerating effect on the ignition delay.

The program solves the reaction equations by :ans of an implicit integration technique. This implicit solution scheme was combined with a new step-size optimization method. This new integration technique which is efficient for both very slow and very fast (near-equilibrium) chemical reactions (Ref.2). Step-size control decreases the computation time required.

Input conditions for this program allow for 30 reactions.

The reactions and reaction rate constants used in this program

are listed in table 3, pg.23. Reverse reaction rates are calculated internally from the relation:

Under States of the second of

$$K_b(J) = k_f(J) / K_c(J)$$

In addition to the chemical species which are required by the given reactions, the user can include one or more inert species, but the total number of species considered cannot exceed 25 (Ref.2). For each dissociation-recombination reaction, the user can specify a set of third-body efficiencies (Ref.2). To maintain continuity between the computer programs, the same efficiencies were used in the GCK program as in the ODFRC program where possible. If the third-body efficiencies are not specified they are assumed to have a value of one.

TABLE 2
REACTION RATES FOR CDFRC PROGRAM

100.00.00		Rep	produced from it available copy	0.
J	Reaction	A(J)   (gr. cm.)	P(J) (kcal/mole)	);(J)
1 -1	H + O ₂ ⇒ OH + O	1.0×10 ¹⁴ 4.16×10 ¹²	16.0	0.41
2 -2	0 ÷ H ₂ ⇌ H ÷ CH	4.0×10 ¹³ 1.85×10 ¹³	10.2	
3 -3	i H ₂ + OH ⇌ H ÷ H ₂ O	2.5×19 ¹⁵ 1.43×10 ¹⁴	5.2 20.54	
i 4 i -4	: 0 + H ₂ 0 ⇌ OH + OH	2.03×10 ¹⁴ 2.03×10 ¹³	18.7	0.26
5 -5	H ₂ + M ⇌ 2H + M	3.16×10 ¹⁶ 9.18×10 ¹⁵	102.9 -0.97	-1.5 -1.5
5 -6	H ₂ O + N ⇌ OH + H + N	1.86×10 ¹³ 7.5×10 ¹⁶	119.9	-1.27a -1.0
7 -7	0 ₂ + M ⇌ 20 + M	3.59×10 ¹⁷ 8.9×10 ¹⁵	113.0 -1.57	-2.5 -2.074
S -3	$H + O_2 + M \rightleftharpoons HC_2 + M$	4.3×1015	-1.28 46.12	-0.28
9 -9	E ₂ + HO ₂ ⇌ H ₂ O ₂ + H	2.0×10 ¹³ 1.0×10 ¹⁴	23.72 9.82	
10 -10	H ₂ + G ₂ ⇌ OH + CH	2.5×10 ¹² 4.77×10 ¹³	38.95 19.87	
1: -11	H ₂ O ₂ + M == 20H + M	1.17×10 ¹⁷ 8.4×10 ¹⁴	45.57 -5.31	
12 -12	· н + но ₂ == сн + он	7.0×13 ¹³ 4.37×10 ¹²	39.2	
_3 13	HO ₂ ÷ HO ₂ → H ₂ O ₂ ÷ O ₂	1.8×10 ¹² 5.1×10 ¹²	42.19	
14 -14	H + H ₂ O ₂ ⇒ F ₂ O ÷ OH	3.13×10 ¹⁴ 5.6×10 ¹³	9.0	
15 -15	0H + H ₂ O ₂ == H ₂ O + HO ₂	1.0×10 ¹³ 2.0×10 ¹³	0.597 32.75	:

where  $k(J) = A(J) T^{N(J)} C_{J} J - D(J) / RTJ$ 

### Initial conditions required are:

- 1. Time and axial position.
- 2. Velocity (or mach number).
- 3, Density (or pressure).
- 4. Temperature.
- 5. Species emcentrations

Also pressure or area profile must be input if the problem under consideration is a flow problem. (Ref.2)

Outputs from this program are temperature, time pressure, velocity, mach number and species concentrations. The output can be in CGS, FPS, or SI units. The CGS option was chosen to maintain continuity with the results of the other programs.

### Analytical Determination of the Ignition Delay Time.

The FRRG program was used to calculate the species concentrations, velocity, temperature and pressure conditions at the exit of the vitiated air heater. The exit of the vitiated air heater is considered the inlet of the combustor in this study. The species mass fractions were recalculated allowing for the H₂ gas that is supplied at the combustor inlet. These species mass fractions, mixing sup temperature, and velocity conditions are used as the input to the ODFRC and GCK programs. The CDFRC and GCK calculate the temperature, velocity, and species concentration as a function of time. See Fig. 9, pg. 24.

The end of the ignition delay period is characterized by a rapid increase in termperature (Fig. 10, Pg.26). During the

A CAMPAGE AND A COMPANY AND A

and the same of th

TABLE 3
REACTION RATES FOR GCK PROGRAM

J	REACTION	A (J) (gm.cm)	B(J) (kcal/mole)	N(J) -
1	H + 0 ₂ = OH = 0	1.25 X 10 ¹⁴	16.3	
2	0 + H ₂ = 0H + H	1.7 X 10 ¹³	9.45	
3	H ₂ + OH = H ₂ O+ H	2.19 X 10 ¹³	5.15	
4	$0 + H_2 0 = 0H + 0H$	5.75 X 1013	18.0	
5	$H_2 + HO_2 = H_2O_2 + H$	9.6 X 10 ¹²	24.0	
6	$H_2 + O_2 = OH + OH$	1.0 X 10 ¹³	43.0	
7	H + HO ₂ = OH + Oh .	7:0 X 10 ¹³		
8	2HO ₂ = H ₂ O ₂ + O ₂	1.8 X 10 ¹²	*****	
9	$H + H_2O_2 = H_2O + OH$	3.1 x 10 ¹⁴	9.0	
10	$OH + H_2O_2 = H_2O + HO_2$	1.0 X 10 ¹³	1.8	
11	M + H + OH = H ₂ O + M	7.5 X 10 ¹⁶		-2.6
12	M + K + 0 ₂ = H0 ₂ + M	1.59 X 10 ¹⁵	-1.0	
13	M + H + H = H ₂ + M	1.0 X 10 ¹⁸		-1.0
14	# ÷ 0 ₂ + 0 = 0 + M	2.75 X 10 ¹⁹	118.7	-1.0
15	$M + H_2O_2 = OH + OH$	1.17 X 10 ¹⁷	45.5	
16	M + N + N = N ₂ + M	2.8 X 10 ¹⁷		75
17	M + N + O = NO + M	5.4 X 10 ¹⁶		<b>-,</b> 5



24

ignition delay region the net results of the reactions are slightly exothermic. This accounts for the slight temperature increase during the ignition delay period. At the point where the temperature increases rapidly, the recombination reactions are the controlling reactions. Since the recombination reactions are exothermic, the temperature increases rapidly (Fig. 10, 26).

The following criteria were used to determine the time at which the ignition delay period ended.

- 1. Intersection of the linear slope temperature line in the ignition delay zone, with the linear slope temperature line of the reaction zone. (Fig. 11, Pg. 27)
- 2. Deviation from the linear portion of the OH vs. time curve (Fig. 12, Pg. 28)
- 3. Deviation from the linear portion of the H vs. time curve (Fig. 13, Pg. 29)
- 4. One half of the initial H₂ concentration.

  All four methods yield essentially identical delay times so all methods appear applicable.



Figure 10. TEMPERATURE HISTORY DURING IGNITION



THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O



MAN DESCRIPTION OF STREET, SALES OF 
28

STATE OF THE PROPERTY OF THE P



Figure 13. GRAPHICAL REPRESENTATION OF IGNITION DELAY USING H CRITERIA

ELEMENT OF STREET STREE

## III. DATA REDUCTION

Analytical results were obtained by using the OH concentration, H concentration, H₂ concentration, and the temperature slope criteria as discussed in section II. Due to the data similarity, only the OH concentration criterion results will be discussed at length. Graphical data based on the remaining criteria are given in the appendix. Discussion of OH data results is considered under the following headings:

- 1. ODFRC program results
- 2. GCK program results

#### ODFRC Program Results

The OUFRC results obtained by holding the equivalence ratio constant (1) and varying the inlet hydrogen gas temperature are shown in Fig. 14, Pg. 31. The results obtained by holding the inlet hydrogen temperature constant (710°K) and varying the equivalence ratio are shown in Fig. 15, Pg. 32. Note that the data points for the analytically calculated clean and vitiated-air cases are from 50% to 100% lower than the experimental values. Results for the seven cases were analytically recalculated using a lower temperature to see if the ignition delay times could be increased. All the analytical data failed to indicate ignition at these 1c at temperatures.

HOLDING SERVICE SERVIC



Figure 14. ODTRC IGHITION DELAY HISTORY USING OH CRITERION



Figure 15. ODFRC IGNITION DELAY HISTORY USING OH CRITERION

Results from the ODFRC program, when comparing clean and vitiated-air results, show that the presence of water vapor short-ened the ignition delay time (Figs. 14 and 15). However, due to the deviation between the analytical and experimental data points and the added sophistication, the GCK computer program was used in an attempt to analytically predict a mon: favorable comparison between the analytically calculated vitiated-air and the seven experimental cases.

#### GCK Program Results

Fig. 16, Pg. 35 and Fig. 17, Pg. 36 show the computed results obtained from the GCK program. These values compare favorably with the results of the ODFRC program, but were still much lower than the experimental points. The mixing cun termperature, which simulates the rate of diffusion of the N into the working fluid, was decreased to the value that would compare with the 40% mixing conditions assumed by Jensen (Ref. 6). The results obtained (Fig. 18 and 19) were closer to the experimental results than the values obtained from the ODFRC program, but the slope of the vitiated-air ignition delay curve was much less than the slope of the experimental curve. A possible explanation is that diffusion rates are much slower at low temperatures than at high temperatures (Ref. 1). Decreasing the diffusion rate at the lower temperatures would increase the slope of the vitiated-air ignition delay values on the constant equivalence ratio curve (Fig. 18) and increase the ignition delay values for the vitiated-air cases on the constant temperature

GAM/ME/72-1

curve (Fig. 19). The vitiated-air values would then be closer to the experimental values. These results are essentially the same as the analytic results Jensen (Ref. 6) obtained using the SIL computer program with the 40% mixing assumption.



35

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th



Figure 17. GCK IGNITION DELAY HISTORY USING OH CRITERION

THE THE PROPERTY OF THE PROPER



Figure 18. GCK IGHITION DELAY HISTORY USING OH CRITERION (40% MIXING)

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个



Figure 19. GCK IGHITION DELAY HISTORY USING OH CRITERION (40% MIXING)

The bearing and the contract of the contract o

# IV. CONCLUSIONS

Analytical calculations were made for seven vitiated and clean-air investigative cases. These results were compared to the seven low temperature supersonic experimental data points obtained by Jensen. Based on the results in section III, the following conclusion was made:

Ignition delay time is decreased if water vapor is present at the inlet to the combustor. Water vapor acts as a third body which promotes recombination of the free radical species causing the exothermic termination reactions to become dominent.

## V. RECOMMENDATIONS

As a result of this study, the following recommendations are offered:

- 1. Obtain experimental inputs and results from vitiatedair heater ignition delay studies for a wider temperature
  range and analytically predict the ignition delay times.
  Results of this study would determine the temperature
  regime in which the water vapor shorters 'enition delay
  times.
- 2. Determine the rate at which the into the working fluid for different temperature cas. Results from this study could be used to more accurately predict ignition delay times.
- 3. Develop a kinetic scheme which would allow for more accurate evaluations of the effects of nitric oxide (NO).

#### **BIBLIOGRAPHY**

- 1. Bird, R., W. S. Stewart, and E. Lightfoot. Transport
  Phenomena. paragraph 16.3. John Wiley and Sons Inc.,
  1965.
- 2. Bittker D. A. and V. J. Scullin. General Chemical Kinetics
  Computer Program for Static and Flow Reactions, With
  Application to Combustion and Shock-Tube Kinetics. NASA
  Technical Note D-5586. Washington: National Aeronautics
  and Space Administration, January 1972.
- 3. De Groot J. J. and M. T. Abbett. A Computation of One-Dimensional Combustion of Methane. AIAA J. Vol. 3, no. 2, Feb 1965, pp. 381 - 383.
- 4. Edelman R. B. and Spodaccini. The Effe. of Vitiated Air Contamination on Ground Testing. Al. p , no. 69-456, June 1969.

and some control of the control of t

- 6. Jensen R. F. An Investigation of Monequilibrium Effects on Combustion in Supersonic Streams. Thesis. Purdue University, August 1970.
- 7. Moretti G. A New Technique for the Numerical Analysis of Nonequilibrium Flows. AIAA J., vol. 3, no. 2, Feb 1965, pp. 223-229.
- 8. Snyder A. D., J. Robertson, D. L. Zanders, and G. B. Skinner.
  Shock Tube Studies of Fuel-Air Ignition Characteristics.
  Technical Report AFAPL-TR-65-93, August 1965.

# APPENDIX

Ignition Delay History Curves

The consistence in the consistence of the consisten



**4.3** 



44



Figure 22. ODFIC IGNITION DELAY HISTORY USING TEMPERATURE SLOPE CRITERION







Figure 25. ODFRC IGNITION DELAY HISTORY USING TEMPERATURE SLOPE CRITERION

•

48

Donald Monroe Teasdale was born on 27 December 1943 in

Meadville Pennsylvania. He graduated from Cochranton High School

in June 1961 and entered the USAF. During his assignment at

Vandenberg AFB California he attended Allen Hancock Jr. College

in Santa Maria California, In January 1968 he entered New Mexico

State University at Las Cruces New Mexico under the Airman Education and Commissioning Program. The degree of Bachelor of Science
in Mechanical Engineering was awarded to him in January 1970.

After his commissioning from Officer Training School in May 1970
he attended the Air Force Institute of Technology to pursue a

Master of Science degree in Aerospace-Mechanical Engineering.