Graafien automorfismiryhmä

Juuso Valli

24. 9. 2017

Tiivistelmä

Sisältö

1	Määritelmiä ja merkintöjä	2
2	Automorfismiryhmä	3
3	Fruchtin teoreema	9

1 Määritelmiä ja merkintöjä

Olkoon V äärellinen joukko. Olkoon $E(V)=\{\{u,v\}|u,v\in V,u\neq v\}$ joukon V alijoukkojen joukko, jonka jäsenet sisältävät täsmälleen kaksi eri solmua. Olkoon $graafi\ G=(V,E), E\subseteq E(V)$. Joukkoa V kutsutaan graafin G solmuiksi, ja joukkoa E kutsutaan kaariksi. Annetun graafin solmujoukosta kätetään merkintää G_V , ja kaarijoukosta merkintää G_E . Kaaresta $\{u,v\}$ käytetään merkintää uv. Huomaa että näillä merkinnöillä uv=vu. Yksinkertaisuuden vuoksi solmuista käytetään myös merkintää $v\in G$ merkinnän $v\in G_V$ sijaan.

Olkoon G ja H graafeja. Graafit G ja H ovat isomorfiset $G\cong H$ mikäli on olemassa bijektio $f:V_G\to V_H$ siten, että

$$uv \in E_G \iff f(u)f(v) \in E_H$$

kaikilla $u, v \in G$.

Tällaisia bijektioita kutsutaan isomorfismeiksi.

Graafin *G automorfismit* ovat sen isomorfismeja itsensä kanssa. Triviaalisti nähdään että identiteettikuvaus on kaikkien graafien automorfismi, mutta graafeilla voi olla myös muita automorfismeja.

Esimerkki 1. Olkoon graafi $G = (\{v_1, v_2, v_3, v_4\}, \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}).$

Olkoon kuvaus $f: V_G \to V_G$, $f(v_1) = v_2$, $f(v_2) = v_3$, $f(v_3) = v_4$, $f(v_4) = v_1$. Kuvaus f on selvästi bijektio. Se, että kuvaus f on automorfismi voidaan tarkistaa suoraan määritelmästä.

G_E	f(u)f(v)	$f^{-1}(u)f^{-1}(v)$
v_1v_2	v_2v_3	v_4v_1
v_2v_3	v_3v_4	v_1v_2
v_3v_4	v_4v_1	v_2v_3
v_4v_1	v_1v_2	v_3v_4

2 Automorfismiryhmä

Olkoon G_S graafin G automorfismien joukko.

Lemma 1. Kuvausten kompositio on binäärirelaatio $\circ: G_S \times G_S \to G_S$.

Todistus. Olkoon $u, v \in G$. Olkoon $f, g \in G_S$.

$$uv \in E_G \stackrel{g \in G_S}{\Longleftrightarrow} g(u)g(v) \in E_G \stackrel{f \in G_S}{\Longleftrightarrow} f(g(u))f(g(v)) \in E_G$$
 joten $f \circ g \in G_S$.

Lemma 2. Jokaisella graafilla on identiteettikuvaus, joka on automorfismi.

Todistus. Olkoon $u, v \in G$. Olkoon $id: G_V \to G_V, id(x) = x \forall x \in G_V$.

$$uv \in E_G \stackrel{id(x)=x}{\Longleftrightarrow} id(u)id(v) \in E_G$$

joten $id \in G_S$.

Lemma 3. Automorfismin f käänteiskuvaus f^{-1} on automorfismi.

Todistus. Olkoon $u, v \in G$.

$$f^{-1}(u)f^{-1}(v) \in E_G \stackrel{f \in G_S}{\longleftrightarrow} f(f^{-1}(u))f(f^{-1}(v)) \in E_G \Leftrightarrow uv \in E_G$$
 joten $f^{-1} \in G_S$.

Lause 2. Pari (G_S, \circ) on ryhmä.

Todistus. Lemman 1 mukaan \circ on G_S :n binäärirelaatio. Assosiatiivisuus on selvä kuvausten komposition assosiatiivisuuden perusteella. Lemman 2 mukaan jokainen G_S sisältää identiteettikuvauksen id, joka on ryhmän neutraalialkio. Lemman 3 mukaan jokaisella automorfismilla f on vasta-alkio $f^{-1} \in G_S$ siten, että $f \circ f^{-1} = id$.

Graafin automorfismiryhmää kutsutaan myös graafin symmetriaryhmäksi.

Huomautus 1. Graafien automorfismiryhmät eivät yleisesti ole kommutatiivisia.

Tämä nähdään helposti vastaesimerkin kautta. Tarkastellaan esimerkin 1 mukaista graafia. Olkoon f esimerkissä esitetty automorfismi. Olkoon kuvaus $g:V_G\to V_G, g(v_1)=v_1, g(v_2)=v_4, g(v_3)=v_3, g(v_4)=v_2$. Kuvaus g on selvästi myös graafin G automorfismi. Mikäli automorfismiryhmä olisi kommutatiiviinen, olisi $f\circ g=g\circ f$. Kirjoittamalla kuvaukset auki nähdään että

 $f \circ g(v_1) = f(g(v_1)) = f(v_1) = v_2$, mutta toisaalta $g \circ f(v_1) = g(f(v_1)) = g(v_2) = v_4$, mistä seuraa ristiriita.

Esimerkki 3. Esimerkin 1 mukaisen graafin symmetriaryhmä G_S on isomorfinen diedriryhmän D_4 kanssa. Yleisemmin n:n alkion rengasgraafi on isomorfinen diedriryhmän D_n kanssa. Tämä nähdään helposti tarkastelemalla G_S :n ryhmätaulua. Otetaan G_S :n alkioille käyttöön seuraavat merkinnät: $\alpha_{i,j} \in G_S, 0 < 0i \le n, j \in \{0,1\}$, siten että $\alpha_{i,j}$ kuvaa alkion v_1 alkioksi v_i ja kääntää rengasgraafin suunnan mikäli j=1. Tällä tavoin määriteltyjen isomorfismien lisäksi G_S :llä ei ole muita isomorfismeja.

Näitä merkintöjä käyttäen G_S :n symmeriaryhmän ryhmätaulu on seuraavanlainen tapauksessa n=4:

	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$
$\alpha_{1,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$
$\alpha_{2,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$
$\alpha_{3,0}$	$\alpha_{3,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,1}$
$\alpha_{4,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$
$\alpha_{1,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{1,0}$	$\alpha_{4,0}$	$\alpha_{3,0}$	$\alpha_{2,0}$
$\alpha_{2,1}$	$\alpha_{2,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{1,1}$	$\alpha_{2,0}$	$\alpha_{1,0}$	$\alpha_{4,0}$	$\alpha_{1,0}$
$\alpha_{3,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{1,1}$	$\alpha_{4,1}$	$\alpha_{3,0}$	$\alpha_{2,0}$	$\alpha_{1,0}$	$\alpha_{4,0}$
$\alpha_{4,1}$	$\alpha_{4,1}$	$\alpha_{3,1}$	$\alpha_{2,1}$	$\alpha_{3,1}$	$\alpha_{4,0}$	$\alpha_{3,0}$	$\alpha_{2,0}$	$\alpha_{3,0}$

Esimerkki 4. Suoran graafin symmetriaryhmä on C_2 .

Suoran graafin päädyissä olevilla alkioiden aste on 1, ja kaikkien muiden alkoiden aste on 2. Tästä seuraa se, että graafin päätyalkioit voidaan kuvata vain päätyalkioihin, sillä isomorfismit säilyttävät alkioiden asteen. Yhden päätyalkion kuvan määrääminen riittää määräämään koko graafin kuvan, joten mahdollisia kuvauksia on vain kaksi: id ja kuvaus f, joka vaihtaa päätyalkioit keskenään. Koska $f \circ f = id$, graafin automorfismiryhmä on C_2

Esimerkki 5. Täyden graafin K_n symmetriaryhmä on S_n .

Koska jokainen alkio on kaikkien muiden alkioiden naapuri, jokainen K_n :n bijektio itsensä kanssa on automorfismi. Tästä seuraa se, että K_n :n automorfismiryhmä on $\Sigma(K_n) \simeq S_n$.

Esimerkki 6. Täysin kaksijakoisen graafin $K_{nm}, n \neq m$ symmetriaryhmä on $S_n \times S_m$.

Olkoon $A, B \subset G_v$ graafin ylä- ja alakomponenit. Olkoon $H = \{f \in G_S : f|_B = id\}, K = \{f \in G_S : f|_A = id\}$. Kumpikin osajoukko on selvästi aliryhmä, sillä $(f \circ g)|_X = id$ jos $f|_X = id, g|_X = id$. Lisäksi nähdään että $H \cap K = \{id\}$.

Määritellään funktion jako seuraavasti:

$$f_X(x) = \begin{cases} f(x) & \text{jos } x \in X \\ x & \text{jos } x \notin X \end{cases}$$

Mielivaltainen automorfismi f voidaan jakaa kahteen osaan joukkojen A ja B mukaan, josta saadaan $f=f_A\circ f_B, f_A\in K, f_B\in H$. Tästä seuraa että G=HK.

Olkoon $h \in H, k \in K$. Olkoon $x \in A$.

$$(h \circ k)(x) = (id \circ k)(x) = (k \circ id)(x) = (k \circ h)(x)$$

Toisaalta jos $x \in B$:

$$(h \circ k)(x) = (h \circ id)(x) = (id \circ h)(x) = (k \circ h)(x)$$

Eli hk = kh. Tästä seuraa että $G_S = H \times K$.

Esimerkki 7. Täysin kaksijakoisen graafin K_{nn} symmetriaryhmä on $C_2 \rtimes S_n^2$.

Olkoon $A, B \subset G_v$ graafin ylä- ja alakomponenit, ja olkoon kummassakin komponentissa indeksointi lukujen $1 \dots n$ yli. Tarkastellaan automorfismiryhmän aliryhmää $H = \{f \in G_S : f \text{ säilyttää indeksoinnin} \}$ Olkoon $A, B \subset G_v$ graafin vasen ja oikea puoli. Olkoon $H = \{f \in G_S : f|_B = id\}, K = \{f \in G_S : f|_A = id\}.$ Kumpikin osajoukko on selvästi aliryhmä, sillä $(f \circ g)|_X = id$ jos $f|_X = id, g|_X = id$. Lisäksi nähdään että $H \cap K = \{id\}.$

Määritellään funktion jako seuraavasti:

$$f_X(x) = \begin{cases} f(x) & \text{jos } x \in X \\ x & \text{jos } x \notin X \end{cases}$$

Mielivaltainen automorfismi f voidaan jakaa kahteen osaan joukkojen A ja B mukaan, josta saadaan $f = f_A \circ f_B, f_A \in K, f_B \in H$. Tästä seuraa että G = HK.

Olkoon $h \in H, k \in K$. Olkoon $x \in A$.

$$(h \circ k)(x) = (id \circ k)(x) = (k \circ id)(x) = (k \circ h)(x)$$

Toisaalta jos $x \in B$:

$$(h \circ k)(x) = (h \circ id)(x) = (id \circ h)(x) = (k \circ h)(x)$$

Eli hk = kh. Tästä seuraa että $G_S = H \times K$.

Esimerkki 8. Hamming-graafi on graafi, jonka alkiot vastaavat n:n merkin pituisia binäärijonoja, eli \mathbb{Z}_2^n :n alkioita. Kahden alkion välillä on kaari mikäli alkioita vastaavat binäärijonot poikkeavat yhdellä merkillä. Hamming-graafin voidaan ajatella kuvaavan n-ulotteisen hyperkuution kulmia.

Tutkitaan hamming-graafien automorfismiryhmää. Käytetään tässä seuraavia merkintöjä:

$$u+v=(u_1+v_1,\ldots,u_n+v_n)\in\mathbb{Z}_2^n$$

 $1_i\in\mathbb{Z}_2^n$ missä 1_i :n i :s merkki on 1, muut 0.

Selvästi $u + u = \hat{0} \forall u \in \mathbb{Z}_2^n$.

Olkoon G hamming-graafi ja f sen automorfismi. Olkoon $u \in G$ ja v = f(u). Koska jokainen u:n naapuri kuvatuu v:n naapuriksi, yhden merkin muuttaminen u:ssa muuttaa yhden merkin v:ssä. Automorfismi f ei voi muuttaa samaa v:n merkkiä u:n naapurustossa, koska muuten f kuvaisi kaksi u:n naapuria samaksi alkioksi. Voidaan ajatella, että f permutoi merkkien paikkoja alkion u ympäristössä.

Olkoon $0 < i, j \le n, i \ne j$. Alkiot $u + 1_i$ ja $u + i_j$ ovat u:n naapureita, joiden kuvat poikkeavat v:stä joillakin indekseillä $i' \ne j'$. Koska $v + 1_{i'} + 1_{j'} = v + 1_{j'} + 1_{i'}$ ja $f(u + 1_i + i_j) = v + 1_{i'} + 1_{j'}$ nähdään että $f(u + 1_i + 1_j) + f(u + 1_i) = f(u + i_j) + f(u)$. Tästä seuraa se, että automorfismin f muodostamat merkkipermutaatiot eivät riipu u:n valinnasta. Näin saadaan kuvaus $\phi: G_S \to S_n$, joka kuvaa automorfismit niiden merkkipermutaatioiksi. Kuvaus ϕ on selvästi homomorfismi, sillä kahden automorfismin yhdiste yhdistää myös merkkipermutaatiot luonnollisella tavalla.

Tarkastellaan ϕ :n kerneliä. Symmetrisen ryhmän S_n neutraalialkio on identiteettikuvaus id. Automorfismi f:n kuva $\phi(f)$ on identiteettikuvaus jos ja vain jos $f(u+1_i) = f(u) + 1_i \forall u \in G \forall i$. Toisaalta $u = \Sigma 1_k$ jonkin indeksijoukon yli, joten $f(u) = u + f(\bar{0})$. Alkion $\bar{0}$ mahdolliset kuvat määrävät siis ϕ :n kernelin. Ne muodostavat ryhmän C_2^n . Toisaalta ryhmä S_n muodostava

myös G_S :n aliryhmän, sillä pelkät merkkipermutaatiot ovat myös automorfismeja. Koska S_n ei muuta merkkejä, ja C_n^2 ei permutoi merkkien paikkoja, $S_n \cap C_2^n = \{id\}$. Koska C_2^n on ϕ :n kerneli, $C_2^n \leq G_S$.

Automorfismiryhmä G_S ei sisällä muita aliryhmiä, sillä mielivaltainen automorfismi voidaan esittää edellä mainittujen automorfismien avulla. Tästä seuraa että $G_S = S_n \rtimes C_2^n$.

Esimerkki 9. Olkoon G seuraava graafi:

Käytetään alkiosta 0 termiä runko, alkioista $0\dots 4$ termiä oksa ja muista alkioista termiä lehti. Helposti nähdään, että graafin G:n automorfismit säilyttävät rungon paikallaan, kuvaavat oksat oksiksi ja lehdet lehdiksi. Lisäksi saman oksan lehdet pysyvät yhdessä. Oksat voivat kaikki vaihtaa paikka keskenään, joten kuvaus ϕ Olkoon kuvaus $\phi: G_S \to S_4$ siten että

3 Fruchtin teoreema

Lause 10. Olkoon R äärellinen ryhmä. Silloin on olemassa äärellinen graafi G siten, että graafin G automorfismiryhmä on isomorfinen R:n kanssa.

 \Box

Esimerkki 11. TBW käytetään Fruchtin teoreemaa Klein ryhmään.