		INTERNATIONAL ISLAMIC UNIVERSITY CHITTAGONG	
		Department of Electronic & Telecommunication Engineering	
		B. Sc. In ETE, Final Examination, Spring 2022	
		Course Code: Math-1107 Course Title: Differential & Integral Calculus	
		Time: 2.5 hours Marks: 50	
(A	nswe	er any two from Group-A & any three from Group-B. Separate answer script must for separate group. Figures in the right margin indicates full marks)	be used
		Group A (Answer any 02)	
1.	a)	Discuss critical point and saddle point.	
	ک د	Calculate the maximum and minimum values of the following functions:	5 CO1
		i) $f(x) = 6x^3 - 4x^2 + 5x + 10$ ii) $f(x) = 4x^3 - 15x^2 + 12x - 30$	& CO2
	b)	For the function $f(x, y) = 4x^2 + 9y^2 + 8x - 36y + 24$, find the critical points and classify them as minima, maxima, or saddle points.	5 CO1 & CO2
2.	(a)	Discuss Partial Derivatives. If $U=2x^5-3x^2y^3+7y^5z^3+3z^3+20$, evaluate the	
		followings: $\frac{\delta^2 u}{\delta x^2}$, $\frac{\delta^2 u}{\delta y^2}$, $\frac{\delta^2 u}{\delta z^2}$	5 CO1
	1		& CO2
	(b)	If $Z = x^2 tan^{-1} \left(\frac{y}{x}\right) - y^2 tan^{-1} \left(\frac{x}{y}\right)$ show that $\frac{\partial^2 z}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$	5 CO2
3.	a)	Discuss homogenous function with example. State and prove Euler's theorem on homogeneous function.	4 CO1
	b)	Show that, $u(x,y)=2x^3+5xy^2+4y^3$ is equation of 3^{rd} degree by using Euler's theorem on homogeneous function.	3 CO1
H		A3.,	
	(c)	If $U = e^{xyz}$, then show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = e^{xyz} (1 + 3xyz + x^2y^2z^2)$	3 CO1
	H	Group-B (Answer any 03)	
4.	a)	Discuss Integration with examples. Discuss different types of integral.	2.5 CO1
	b)	Evaluate the following Integrals:	7.5
		(i) $\int ln(x) dx$ (ii) $\int tan^{-1}x dx$ (iii) (iii) $\int x^2 sinx dx$	CO2
5.	a)	Discuss Multiple Integral. Evaluate the double integral $I = \int_2^4 \int_{x^2}^{x^2+1} xy dx dy$	5 CO2
	b)	Evaluate the triple integral, $I = \int_1^3 \int_2^4 \int_0^2 (2xyz + 3y^2z + 5) dz dy dx$	5 CO2
		1.2.0	

2 CO1	(6. a) Discuss Gamma function and Beta function with examples
4x2=8 CO2	b) Evaluate the followings: i) $\int_0^{\alpha} x^5 e^{-6x} dx$ ii) $\int_0^2 x^4 (8 - x^3)^{-1/3} dx$
3x2=6 CO2	7. a) Evaluate the followings:
4 CO2	Evaluate $\int_0^{\pi/2} \sin^7\theta \cos^9\theta d\theta$
4	Evaluate $\int_0^{\pi/2} \sin^7\theta \cos^9\theta d\theta$