Factores con mayor influencia en la aprobación

Evaluación PISA

Desafío IV

Dataset: Evaluación PISA, 2015

Abaroa | Anapolsky | Campisi | Solernó

Construir un Clasificador Método de Exploración

- Carga de los resultados de la evaluación PISA 2015 para Argentina, Albania,
 Malasia, Kazajistán
- 2. Construcción de la variable objetivo
- 3. Análisis Descriptivo: curvas de distribución y matriz de correlación principalmente
- 4. Selección de variables X e y.
- 5. Entrenamiento y testeo de los datos con los modelos K-Nearest Neighbors (KNN), Regresión Logística (LR) y Naive Bayes (NB)
- 6. Matriz de Confusión
- 7. Obtención de Métricas

Desafío III

Nuestros Resultados

	KNN	NAIVE BAYES	REGRESIÓN LOGÍSTICA
Matriz de Confusión	[[198, 216], [87, 1052]]	[[347, 67], [492, 647]]	[[250, 164], [113, 1026]]
Accuracy	80.49%	64.01%	82.16%
Precision	47.83%	83.82%	60.39%
F Recall	69.47%	41.36%	68.87%
F1 Score	56.65%	55.39%	64.35%

Objetivos del Desafío IV

Evaluar técnicas de clasificación, como Decision Trees y Random Forest, Regresión Logística y Métodos de Ensamble (XGBoost, CatBoost)

Dataset: Evaluación PISA 2015, para un grupo de países seleccionados por nosotros.

Comparar la capacidad predictiva de los distintos modelos e identificar los features con mayor influencia

PISA 2015

NUESTRO DATASET

Alumnos, PISA, se ha convertido en el principal baremo mundial para evaluar la calidad, equidad y eficiencia de los sistemas educativos.

Identifica las características de los sistemas educativos de mayor rendimiento.

CIENCIAS

PISA 2015, se centró en la ciencia. La ciencia es algo omnipresente en nuestras vidas: ya se trate de tomar analgésicos, de determinar qué es una dieta «equilibrada», de beber leche pasteurizada o de decidir si se compra o no un coche híbrido.

PISA 2015

Evaluación de Modelos

MODELOS / MEDIDAS	ACCURACY	RECALL	PRECISION	F1Score
TRee	72.56%	61.77%	61.48%	61.62%
Random Forest	77.56%	66.29%	69.40%	67.81%
con GridSearch	82,39%	48,71	77,78%	59,90%
Regresión Logística	82,29%	60,87%	69,04%	64,70%
XGBoost	78,04%	79,81%	78,75%	79,28%
con GridSearch	77,05%	67.83%	74,12%	70,83%
con RandomSearch	81,31%	82,75%	81,92%	82,33%
CatBoost	82,16%	83,57%	82,71%	83,14%

Decision TreesGráficas

Métodos de Ensamble Gráficas

plot_roc(y_test,y_predicted_xgb, plot_micro=False, plot_macro=False)

<matplotlib.axes._subplots.AxesSubplot at 0x1dddf573940>

PISA 2015

Feature ImportanceXGBoost & Permutation Importance

feature_importance

	VAR	FI	NAME
0	HOMEPOS	0.300455	Home possessions (WLE)
1	ESCS	0.148613	Index of economic, social and cultural status
2	ENVAVVARE	0.0689676	Environmental Awareness (VVLE)
3	EPIST	0.0606723	Epistemological beliefs (VVLE)
4	ENVOPT	0.0286626	Environmental optimism (VVLE)
5	SMINS	0.0264218	Learning time (minutes per week) - ≼science>
6	TMINS	0.0242868	Learning time (minutes per week) - in total
7	TDTEACH	0.0233675	Teacher-directed science instruction (VVLE)
8	DISCLISCI	0.0147469	Disciplinary climate in science classes (VVLE)
9	ICTRES	0.0109904	ICT Resources (VVLE)
10	SCIEACT	0.00717134	Index science activities (VVLE)

permutation_importance

	VAR	INDEX	NAME
0	REPEAT1.0	0.8	NaN
1	HOMEPOS	1.6	Home possessions (VVLE)
2	ENVAWARE	2.6	Environmental Awareness (WLE)
3	EPIST	3.5	Epistemological beliefs (VVLE)
4	ESCS	3.5	Index of economic, social and cultural status
5	ENVOPT	4.1	Environmental optimism (VVLE)
6	TMINS	6.2	Learning time (minutes per week) - in total
7	SMINS	7.4	Learning time (minutes per week) - <science></science>
8	IBTEACH	12.1	Inquiry-based science teaching an learning pra
9	SCIEACT	13.6	Index science activities (WLE)
10	PERFEED	15.0	Perceived Feedback (VVLE)

importance_type='weight'

importance_type='gain'

importance_type='cover'

Conclusiones

Utilizando nuevas técnicas pudimos mejorar el poder predictivo e identificar los features con mayor peso en pos de trabjar para mejorar los resultados de la evaluación PISA.

