Natural Language Processing Lab Week #3

Jason S. Chang 張俊盛 jason@nlplab.cc

TAs: Kevin Tuan 段凱文 kevintuan@nlplab.cc

Course Website:

Date:

How to represent the meaning of a word?

- Definition: meaning (Webster dictionary)
 - the idea that is represented by a word, phrase, etc.
 - the idea that a person wants to express by using words, signs, etc.
 - the idea that is expressed in a work of writing, art, etc
- However, definitions are not useful for a computer

Bag of Words

Definition

 The bag-of-words model is a simplifying representation used in natural language processing and information retrieval (IR).

Bag of words (BoW)

Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.


```
('the', 8),
(',', 5),
('very', 4),
('.', 4),
('who', 4),
('and', 3),
('good', 2),
('it', 2),
('to', 2),
('a', 2),
('for', 2),
('can', 2),
('this', 2),
('of', 2),
('drama', 1),
('although', 1),
('appeared', 1),
('have', 1),
('few', 1),
('blank', 1)
. . . . .
```

```
df['SellerG'].value counts()
Nelson
                  1565
Jellis
                  1316
hockingstuart
                  1167
                  1011
Barry
Ray
                   701
Keatings
Aquire
Homes
Prime
Point
Name: SellerG, Length: 268, dtype: int64
```

Representing words as discrete symbols

We can regard words as discrete symbols:

hotel, conference, motel – a localist representation

Means one 1, the rest 0s

Such symbols for words can be represented by one-hot vectors:

What are the problems with one-hot encoding?

Problems with one-hot encoding

- Vector dimension correlate with vocabulary size
 - Curse of Dimensionality
- Vectors are orthogonal to one another
 - Lack of similarity
- Low Information Content

Problems with one-hot encoding

Example: if a user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:

- Could try to rely on WordNet's list of synonyms to get similarity?
- Learn to encode similarity in the vectors themselves

Representing words by their context

Distributional semantics:

- A word's meaning is given by the words that frequently appear close-by
- One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window).
- We use many contexts of w to build up a representation of w

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

Word embedding

In NLP, word embedding is a term used for the representation of words for text analysis, typically in the form of a real-valued vector that encodes the meaning of the word such that the words that are closer in the vector space are expected to be similar in meaning.

Word Vectors

 We can build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts, measuring similarity as the vector dot (scalar) product

word2vec

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:

- We have a large corpus ("body") of text: a long list of words
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

word2vec

Your turn

This week you will build a model to distinguish between good and bad phrases of the word "earn" (e.g., earn money), using word2vec.

Reminder:

- Make an appointment with TA to demo your implementation
- Change the filename to {studentID}.ipynb and submit to elearn
- Deadline: 15:29 p.m. Oct 6 (Thu)

References

Stanford NLP Course Material

- https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture01-wordvecs1.pdf
- https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture02-wordvecs2.pdf

Gensim word2vec documentation

https://radimrehurek.com/gensim/models/word2vec.html

Relevant Researches

- Efficient Estimation of Word Representations in Vector Space
- GloVe: Global Vectors for Word Representation
- Improving Distributional Similarity with Lessons Learned from Word Embeddings