Capitolo 1

Matrici

Una matrice di ordine mxn è una tabella con m righe e n colonne, nel nostro caso contenente numeri reali e si nota come: $M_{mxn}(\mathbf{R})$ e i suoi elementi $A = [a_{ij}]$, con i indice riga e j indice colonna.

Matrice quadrata

Una matrice si dice quadrata se il numero di colonne è uguale a quello delle righe.

Matrice identica

Una matrice quadrata di ordine m si dice identica se i suoi elementi: $I_m = [\delta_i ij]$ se $\delta_i = 1$ se $i=j, \delta_i = 0$, se $i \neq j$.

Trasposta della matrice

Si chiama trasposta della matrice $A \in M_{mxn}(\mathbf{R})$ la matrice A^t in cui le colonne sono le righe di A e le righe sono le colonne di A.

Matrice simmetrica

Se la matrice è quadrata e uguale alla sua trasposta allora si dice simmetrica.

1.1 Operazioni tra matrici

1.1.1 Somma tra matrici

La somma di matrici dello stesso ordine si ottiene sommando i termini delle due matrici nella stessa posizione. È commutativa e associativa, la matrice nulla è l'elemento neutro e la matrice opposta è la matrice i cui elementi sono opposti all'altra matrice.

1.1.2 Prodotto di una matrice per uno scalare

Gli elementi della matrice vengono tutti moltiplicati per il numero.

1.1.3 Prodotto tra matrici

 $A \in M_{mxn}(\mathbf{R}), B \in M_{nxp}(\mathbf{R})$, è possibile definire il prodotto solo se il numero di colonne di A è uguale al numero di righe di B e A si dice conformabile a sinistra a B o B conformabile a destra a A. $AB \in M_{mxp}(\mathbf{R})$, l'elemento di indice ij di AB si ottiene moltiplicando termine a termine la riga i di A e la colonna j di B e sommando i vari prodotti: $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$. Tra le matrici quadrate il prodotto è sempre definito e genera una matrice dello stesso ordine. Non vale la proprietà commutativa, l'elemento neutro è la matrice identica.

1.1.4 Altra forma di operazioni sulle righe delle matrici

Data una matrice $A \in M_{mxn}(\mathbf{R})$ ogni operazione elementare sulle righe può essere realizzata moltiplicando a sinistra per la matrice che si ottiene dalla matrice identica effettuando la stessa operazione elementare.

1.2 La matrice inversa

Data $A \in M_m(\mathbf{R}), \exists B \in M_m(\mathbf{R}) : AB = BA = I_m$. Se B esiste allora si dice matrice inversa di A, $B = A^{-1}$. A è detta matrice invertibile e vale solo per matrici quadrate. La matrice nulla non è invertibile e, più in generale, una matrice non è invertibile se possiede una riga o una colonna di zeri. L'inversa dell'identità è l'identità stessa: $I_m^{-1} = I_m$

1.2.1 Unicità della matrice inversa

Supponiamo che $A \in M_m(\mathbf{R})$ sia invertibile e che possieda due matrici inverse B, B':

$$AB = BA = I \land AB' = B'A = I$$

B = BI = B(AB')

B = (BA)B' = IB' = B'

B = B', che è un assurdo.

1.2.2 Prodotto di matrici invertibili

Se A e B sono invertibili allora è invertibile anche AB e la sua inversa è $B^{-1}A^{-1}$ $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$

1.2.3 Trovare la matrice inversa

Dato $A \in M_m(\mathbf{R})$, rref(A) si ottiene moltiplicando a sinistra A per un'opportuna matrice invertibile quadrata di ordine m. Pertanto $\exists P$ invertibile: PA = rref(A). Per stabilire se A è invertibile devo ottenere rref(A): se rk(rref(A)) è massimo $rref(A) = I_m$, allora rref(A) è invertibile. $rref(A) = n \Rightarrow \exists n$ pivot, unico elemento diverso da zero nella loro colonna, in ogni riga è presente un pivot. Una matrice è invertibile solo se ha rango n massimo.

 $\exists P \in M_n(\mathbf{R})$ invertibile: PA = rref(A). Se A è invertibile allora PA è invertibile, ovvero rref(A) ha rango n e A ha rango n, ovvero rref(A)=I, $P=A^{-1}$. Per trovare la matrice inversa scrivo la matrice $(A|I_n)$, riduco a scalini la parte di A, verifico sia invertibile e la riduco all'identità, in questo modo avrò ottenuto la matrice $(I_n|A^{-1})$

1.3 Matrici e sistemi lineari

Un sistema lineare può essere scritto nella forma $A\underline{x}=\underline{b}$, dove A è la matrice rappresentante i coefficienti, \underline{x} quella rappresentante le incognite e \underline{b} quella rappresentante i termini noti.

- Se <u>b</u>=0 il sistema è chiuso rispetto alle operazioni di somma e prodotto per uno scalare;
- Se $\underline{b} \neq 0$ e x_0 è soluzione del sistema, tutte le soluzioni del sistema sono nella forma $x_0 + v$, dove v è soluzione del sistema omogeneo associato.
- Se la matrice quadrata A è invertibile il sistema ha un'unica soluzione nella forma $x=A^{-1}b$