Symplectic Structure, Geometric Invariant Theory and Scaling Problem

Zhan Zhiyuan

Contents

1	Intro	oduction	2
2	Lie (Groups and Representations	3
	2.1	Lie groups and Lie Algebras	3
		Lie Group Actions	4
		Complex Structure	7
		Complexification of Lie Groups	9
		Roots and Weyl Chambers	11
		Representations	17
3	Sym	plectic Manifolds and Moment Map	20
	3.1	Symplectic Manifolds	20
		Hamiltonian Action and Moment Map	22
		Symplectic Reduction and Projective Space	27
		Convexity Theorems	29
4	Kempf-Ness Theorem and Stability 33		
	4.1	Kempf-Ness Function	33
		More Properties of Moment Map	36
		Stability	38
5	Scaling Problem and Examples 40		
		Invariant Theory	40
		Matrix Scaling	42
		Operator Scaling	44

1 Introduction

Considering a complex reductive Lie group $G = K_{\mathbb{C}}$ acting linearly on a finite-dimensional complex vector space V equipped with a K-invariant inner product, there is a canonical symplectic structure on V such that the induced action of K on V is Hamiltonian.

Moreover, by the symplectic reduction [MW74], the projective space $\mathbb{P}(V)$ can be equipped with a canonical symplectic form ω_{FS} , called the Fubini-Study form. G acting on V induces G acting on $\mathbb{P}(V)$ and the action of K on $\mathbb{P}(V)$ is also a Hamiltonian action with the moment map $\mu \colon \mathbb{P}(V) \to \mathfrak{k}^*$. The image of μ has some convexity properties. If K is commutative, then by the Atiyah–Guillemin–Sternberg convexity theorem [Ati82; GS82], Im μ is a convex polytope in \mathfrak{k}^* . For the noncommutative case, by Guillemin and Sternberg [GS84],

$$\mathcal{P}_v = \mu(\overline{G \cdot [v]}) \cap \mathfrak{t}_+^*$$

is a convex polytope, called the *moment polytope*, where $\mathfrak{t} = \text{Lie}(T)$ for a maximal torus T in K and $\mathfrak{t}_+^* \subset \mathfrak{t}^*$ is a closed positive Weyl chamber.

In the invariant theory, it is important to determine if $0 \in \overline{G \cdot v}$ when giving a $v \in V$ because $0 \in \overline{G \cdot v}$ if and only if all invariant polynomials cannot separate v and v. If $v \in \overline{G \cdot v}$, then v is called in the null cone. By the Hilbert-Mumford criterion [MFK94], v is in the null cone if and only if there is a one-parameter subgroup $v \in V$.

$$\lim_{t \to 0} \lambda(t) \cdot v = 0$$

When considering the symplectic structure on V and $\mathbb{P}(V)$ and G acting on V and $\mathbb{P}(V)$, by the Kempf-Ness theorem [KN79], there is a dual statement of Hilbert-Mumford criterion. For $v \in V \setminus \{0\}$ and let $x = [v] \in \mathbb{P}(V)$,

$$0 \notin \overline{G \cdot v} \iff \overline{G \cdot x} \cap \mu^{-1}(0) \neq \varnothing$$

and such x in $\mathbb{P}(V)$ is called μ -semistable i.e. there exists a $y \in \overline{G \cdot x}$ s.t. $\mu(y) = 0$. Moreover, for the Hamiltonian action $K \curvearrowright \mathbb{P}(V)$ and $x \in \mathbb{P}(V)$, there is a Kempf-Ness function $\Phi_x \colon G/K \to \mathbb{R}$ that has many nice properties. For example, when equipping G/K with a canonical Riemannian metric, Φ_x is geodesically convex. And x is μ -semistable if and only if Φ_x is bounded below. [Bür+19] applied the properties of Φ_x to get an equivalent definition of the moment map and then to obtain two algorithms to solve this problem.

The *Scaling problem* is considering $G \curvearrowright V$ and $G \curvearrowright \mathbb{P}(V)$ with the moment map μ and $v \in V$, determine if there is a $w \in \overline{G \cdot v}$ s.t. $\mu(w) = 0$ (μ can be lifted on V by its definition). For example, if $G = ST(n) \times ST(n)$ acts $V = M(n, \mathbb{C})$ by

$$(A, B) \cdot X := AXB$$

where ST(n) is the set of $n \times n$ diagonal matrices with determinant 1, then the scaling problem is equivalent to the doubly stochastic scaling problem for matrices.

If
$$G = SL(n, \mathbb{C}) \times SL(n, \mathbb{C})$$
 acts $V = M(n, \mathbb{C})^{\oplus m}$ by

$$(A,B)\cdot(X_1,\cdots,X_m):=(AX_1B,\cdots,AX_mB)$$

then the scaling problem is corresponding to the operator scaling problem.

2 Lie Groups and Representations

2.1 Lie groups and Lie Algebras

Definition 1. (1) G is a Lie group if it is a group and a smooth manifold such that the following maps are smooth

$$G \times G \rightarrow G, \qquad G \rightarrow G$$

 $(g,h) \mapsto gh \qquad g \mapsto g^{-1}$

(2) $H \subset G$ is a Lie subgroup if H is a subgroup with smooth structure s.t. the inclusion map $i: H \hookrightarrow G$ is an immersion.

Remark. For $H \subset G$ is a subgroup, then H is closed if and only if H is a (regular) submanifold of G. So any closed subgroup is a Lie subgroup.

Theorem 2. Let G be a connected commutative group. Then there is a Lie group isomorphism

$$G \simeq \mathbb{T}^m \times \mathbb{R}^n$$

where $\mathbb{T}^m = S^1 \times \cdots \times S^1$ is an m-torus.

Corollary 3. Any connected commutative compact group $G \simeq \mathbb{T}^m$ for some $m \in \mathbb{N}$.

Let $X \in \mathfrak{g} := T_eG$. Define the left-invariant vector field $v_X \in \text{Vect}(G)$ as

$$v_X(g) := T_e l_g X \in T_g G$$

where $l_g: G \to G$ as $l_g(h) = gh$. Then for any X, since v_X is left-invariant, there is a unique complete integral curve $\alpha_X: \mathbb{R} \to G$ of v_X through e. Therefore, define the exponential map $\exp: \mathfrak{g} \to G$ as $\exp(X) := \alpha_X(1)$.

Proposition 4. (1) exp is locally diffeomorphic at 0.

- (2) $\alpha_X(t) = \exp(tX)$ for any $X \in \mathfrak{g}$.
- (3) $t \mapsto \exp tX$ is one-parameter group of G for $X \in \mathfrak{g}$. Conversely, any one-parameter subgroup $\alpha(t)$ has the form $\alpha(t) = \exp(tX)$ for some $X \in \mathfrak{g}$.
- (4) If $\varphi \colon G \to H$ is a Lie group homomorphism, then the diagram is commutative

$$G \xrightarrow{\varphi} H$$

$$\exp \uparrow \qquad \uparrow \exp \qquad \varphi \circ \exp = \exp \circ T_e \varphi$$

$$\mathfrak{g} \xrightarrow{T_e \varphi} \mathfrak{h}$$

For $g \in G$, the conjugation $\rho_g \colon G \to G$ is defined as $\rho_g(h) = ghg^{-1}$. Then let $\mathrm{Ad}_g = T_e \rho_g$. So it can get

$$Ad_g \circ Ad_h = Ad_{gh}, \ h \exp(X)h^{-1} = \exp Ad_h X$$

Therefore, Ad: $G \to GL(\mathfrak{g})$ is a Lie group homomorphism. Let

$$ad := T_e Ad : \mathfrak{g} \to End(\mathfrak{g})$$

Then define the Lie bracket on \mathfrak{g} as

$$[\cdot,\cdot]\colon \quad \mathfrak{g} \times \mathfrak{g} \quad \longrightarrow \quad \mathfrak{g}$$
 $(X,Y) \quad \longmapsto \quad [X,Y] := \operatorname{ad}_X(Y)$

 $[\cdot,\cdot]$ is bilinear, anti-symmetry and satisfies the Jacobi identity. So $(\mathfrak{g},[\cdot,\cdot])$ is a Lie algebra.

Example 5. For $G = GL(n, \mathbb{C})$ a Lie group, then $\mathfrak{g} = M(n, \mathbb{C})$ and

$$\exp(X) = e^X = \sum_{k=0}^{\infty} \frac{1}{k!} X^k, \ \forall \ X \in M(n, \mathbb{C})$$

And by definition $Ad_A(X) = AXA^{-1}$ and [X, Y] = XY - YX.

Theorem 6. (1) Suppose H is a Lie subgroup of G. Then the Lie algebra \mathfrak{h} of H can be viewed as a Lie subalgebra of \mathfrak{g} and

$$\mathfrak{h} = \{ X \in \mathfrak{g} \colon \exp(tX) \in H, \ \forall \ t \in \mathbb{R} \}$$

(2) Let G_e be the component of G containing e. Then G_e is generated by $\exp \mathfrak{g}$ i.e.

$$G_e = \{ \exp X_1 \exp X_2 \cdots \exp X_n \colon X_i \in \mathfrak{g}, \ n \in \mathbb{N} \}$$

Example 7. (1) $SL(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) : \det A = 1\}$. Then by $\det (e^A) = e^{\operatorname{tr} A}$, $\mathfrak{sl}(n, \mathbb{C}) = \{X \in M(n, \mathbb{C}) : \operatorname{tr} X = 0\}$

(2)
$$U(n) = \{A \in GL(n, \mathbb{C}) : A^{\dagger}A = I\}$$
. Then by $e^{A+B} = e^A e^B$ for $[A, B] = 0$,
$$\mathfrak{u}(n) = \{X \in M(n, \mathbb{C}) : X^{\dagger} = -X\}$$

2.2 Lie Group Actions

Let G be a Lie group and M be a smooth manifold. Group action $G \curvearrowright M$ is a Lie group action if the map

$$\begin{array}{cccc} ev \colon & G \times M & \longrightarrow & M \\ & (g,m) & \longmapsto & g \cdot m \end{array}$$

is smooth with respect to the product smooth structure on $G \times M$. That induces a group homomorphism

$$\begin{array}{ccc} \tau\colon & G & \longrightarrow & \mathrm{Diff}(M) \\ & g & \longmapsto & \tau(g) \end{array}$$

where $\tau(g)m := g \cdot m$. Let a Lie group act two manifolds M and N smoothly and $f: M \to N$ smooth. f is called G-equivariant if $f(g \cdot m) = g \cdot f(m)$.

Example 1 (Adjoint action). The adjoint action of G on \mathfrak{g} is as,

$$\begin{array}{ccc} \operatorname{Ad} \colon & G & \longrightarrow & \operatorname{Diff}(\mathfrak{g}) \\ & g & \longmapsto & \operatorname{Ad}_q \end{array}$$

where vector space \mathfrak{g} is equipped with the canonical smooth structure. Let \mathfrak{g}^* be the dual vector space of \mathfrak{g} . The coadjoint action of G on \mathfrak{g}^* is as

$$\begin{array}{ccc} \operatorname{Ad}^*\colon & G & \longrightarrow & \operatorname{Diff}(\mathfrak{g}^*) \\ & g & \longmapsto & \operatorname{Ad}_q^* \end{array}$$

where for $\xi \in \mathfrak{g}^*$ and $X \in \mathfrak{g}$,

$$\langle \operatorname{Ad}_q^* \xi, X \rangle := \langle \xi, \operatorname{Ad}_{g^{-1}} X \rangle$$

Also \mathfrak{g} can act on \mathfrak{g} by adjoint action

$$\begin{array}{ccc} \operatorname{ad} \colon & \mathfrak{g} & \longrightarrow & \operatorname{Diff}(\mathfrak{g}) \\ X & \longmapsto & \operatorname{ad}_X \end{array}$$

And \mathfrak{g} acts on \mathfrak{g}^* by coadjoint action

$$\operatorname{ad}^* \colon \quad \mathfrak{g} \quad \longrightarrow \quad \operatorname{Diff}(\mathfrak{g})$$
$$X \quad \longmapsto \quad \operatorname{ad}_X^*$$

where for $\xi \in \mathfrak{g}^*$ and $X, Y \in \mathfrak{g}$,

$$\langle \operatorname{ad}_X^* \xi, Y \rangle := -\langle \xi, \operatorname{ad}_X Y \rangle$$

Remark. If K is a compact Lie group, then there is a Haar measure $d\alpha$ on K. Therefore, for any linear action of K on some vector space V with any inner product $\langle \cdot, \cdot \rangle_K$ on V called K-invariant defined as

$$\langle v, w \rangle_K := \int_K \langle k \cdot v, k \cdot w \rangle \, d\alpha(k)$$

such that the action is unitary i.e $\langle k \cdot v, k \cdot w \rangle_K = \langle v, w \rangle_K$. Therefore, considering the adjoint action of K on \mathfrak{k} , there is a K-invariant inner product on \mathfrak{k} . Then $\mathfrak{k}^* \simeq \mathfrak{k}$ with this inner product. So $\mathrm{Ad}_k^* = \mathrm{Ad}_{k^{-1}}$ and by differentiation $\mathrm{ad}_X^* = -\mathrm{ad}_X$.

Let $G \curvearrowright M$ be a Lie group action. Then there is a map

$$\mathfrak{g} \longrightarrow \operatorname{Vect}(M)$$
 $X \longmapsto X_M$

defined as

$$X_M(m) = \frac{d}{dt}\Big|_{t=0} \exp(tX) \cdot m$$

and $\gamma(t) = \exp(tX) \cdot m$ is the integral curve of X_M starting at m. Moreover, by $[X, Y]_M = -[X_M, Y_M]$, this map is an anti-homomorphism.

Proposition 2. Let $m \in M$. The orbit of G through m is defined as

$$G \cdot m = \{g \cdot m \colon g \in G\}$$

and the isotopic subgroup (stabilizer) of m in G is defined as

$$G_m = \{ g \in G \colon g \cdot m = m \}$$

(1) $G \cdot m$ is an immersed submanifold of M with the tangent space at m is

$$T_m(G \cdot m) = \{X_M(m) \colon X \in \mathfrak{g}\}\$$

(2) G_m is a Lie subgroup of G with the Lie algebra

$$\mathfrak{g}_m = \{ X \in \mathfrak{g} \colon X_M(m) = 0 \}$$

For $G \curvearrowright M$, define the equivalence relation on M as

$$m \sim n \Leftrightarrow n \in G \cdot m$$

Then the quotient set is

$$M/G := M/\sim = \{[m] : m \in M\}$$

The question is about the smooth structure on M/G.

Definition 3. Let G act M smoothly.

(1) The action is called proper if the map

$$\alpha \colon \quad G \times M \quad \longrightarrow \quad M \times M \\ (g, m) \quad \longmapsto \quad (g \cdot m, m)$$

is proper i.e. the pre-image of any compact set is compact.

- (2) The action is called free if $G_m = \{e\}$ for any $m \in M$.
- Remark. (1) If the Lie group action $G \curvearrowright M$ is proper, then, in fact, any orbit $G \cdot m$ is a closed regular submanifold of M so that M/G with the quotient topology is Hausdorff. And if G is compact, any Lie group action of G is proper.
 - (2) Let G be a Lie group and $H \subset G$ be a closed normal subgroup. Then the action $H \curvearrowright G$ is defined as

$$h \cdot g = gh^{-1}, \ \forall \ g \in G, \ \forall \ h \in H$$

is free and proper. Moreover, G/H has the same sense when considering as the quotient group or as the set of orbit classes.

Theorem 4. Suppose the Lie group action $G \curvearrowright M$ is proper and free.

- (1) There is a unique smooth structure on M/G s.t. the quotient map $\pi \colon M \to M/G$ is a submersion. In fact, $(\pi, M, M/G)$ is a G-principle fiber bundle.
- (2) If $G \curvearrowright M$ is transitive, then for any $m \in M$, the map

$$\begin{array}{ccc} G/G_m & \longrightarrow & M \\ [g] & \longmapsto & g \cdot m \end{array}$$

is a diffeomorphism. And such M is called a homogeneous space.

Corollary 5. Let G be a Lie group and H be a closed normal group. Then G/H is a Lie group with the Lie algebra

$$\operatorname{Lie}(G/H) \simeq \mathfrak{g}/\mathfrak{h}$$

Example 6 (Coadjoint orbits). Let G be a Lie group acting \mathfrak{g}^* by coadjoint action. The for $\xi \in \mathfrak{g}^*$,

$$G_{\xi} = \{ g \in G : \operatorname{Ad}_{g}^{*} \xi = \xi \}, \ \mathfrak{g}_{\xi} = \operatorname{Lie}(G_{\xi}) = \{ X \in \mathfrak{g} : \operatorname{ad}_{X}^{*}(\xi) = 0 \}$$

Since G_{ξ} is a closed normal subgroup, there is a homeomorphism

$$M_{\xi} := G/G_{\xi} \simeq G \cdot \xi$$

with the Lie algebra

$$\mathfrak{g}/\mathfrak{g}_{\xi} \simeq T_{\xi}M_{\xi}$$

More generally, since $M_{\xi} = M_{g \cdot \xi}$,

$$T_{g\cdot\xi}M_{\xi} = T_{g\cdot\xi}M_{g\cdot\xi} = \left\{ X_{M_{\xi}}(g\cdot\xi) \colon X \in \mathfrak{g} \right\}$$

Denote $X_{M_{\xi}}(g \cdot \xi)$ by $X_{g \cdot \xi}$, then for any $X_{g \cdot \xi}$,

$$X_{g \cdot \xi} = \frac{d}{dt} \bigg|_{t=0} \exp tX \cdot g \cdot \xi$$

2.3 Complex Structure

Definition 1. (1) Let V be a real vector space. A complex structure on V is a real-linear isomorphism $J: V \to V$ s.t. $J^2 = -id$. So if define

$$(x+iy)v := xv + yJv$$

then V is a complex vector space.

(2) Let M be a smooth manifold. An almost complex structure on M is a smooth map $J: TM \to TM$ s.t. for any $m \in M$, $J_m: T_mM \to T_mM$ is a complex structure on T_mM .

Remark. Note that if a real-vector space can be equipped with a complex structure, it should be even \mathbb{R} -dimensional.

(M,J) is an almost complex manifold. Let $T_{\mathbb{C}}M=TM\otimes\mathbb{C}$ and extending J on $T_{\mathbb{C}}M$ by

$$J(v \otimes z) = Jv \otimes z, \ \forall \ v \in TM$$

Since J has two eigenvalues i and -i, the eigenspace decomposition of $T_{\mathbb{C}}M$ is $T_{\mathbb{C}}M = T_{1,0} \oplus T_{0,1}$,

$$T_{1,0} = \{ w \in T_{\mathbb{C}}M : Jw = iw \}, \ T_{0,1} = \{ w \in T_{\mathbb{C}}M : Jw = -iw \}$$

Any vector in $T_{1,0}$ (or $T_{0,1}$) is called (anti-)holomorphic.

In fact, any holomorphic vector has the form $v \otimes 1 - Jv \otimes i$ for some $v \in TM$, while any anti-holomorphic vector has the form $v \otimes 1 + Jv \otimes i$ for some $v \in TM$. So for any $w \in T_{\mathbb{C}}M$ written as $w = w_{1,0} + w_{0,1}$, then

$$w_{1,0} = \frac{1}{2} (w - iJw), \ w_{0,1} = \frac{1}{2} (w + iJw)$$

Similarly, let $T_{\mathbb{C}}^*M = T^*M \otimes \mathbb{C}$. Then the corresponding decomposition of $T_{\mathbb{C}}M$ is $T_{\mathbb{C}}^*M = T^{1,0} \oplus T^{0,1}$, where

$$\begin{split} T^{1,0} &= T_{1,0}^* = \{ \eta \in T_{\mathbb{C}}^*M \colon \eta(Jw) = i\eta(w), \ \forall \ w \in T_{\mathbb{C}}M \} \\ &= \{ \xi \otimes 1 - (\xi \circ J) \otimes i \colon \xi \in T^*M \} \\ T^{0,1} &= T_{0,1}^* = \{ \eta \in T_{\mathbb{C}}^*M \colon \eta(Jw) = -i\eta(w), \ \forall \ w \in T_{\mathbb{C}}M \} \\ &= \{ \xi \otimes 1 + (\xi \circ J) \otimes i \colon \xi \in T^*M \} \end{split}$$

Then let

$$\Omega^{k}\left(M,\mathbb{C}\right)=\bigoplus_{l+m=k}\Omega^{l,m}\left(M,\mathbb{C}\right)$$

where $\Omega^{l,m}\left(M,\mathbb{C}\right)=\Gamma^{\infty}\left(\Lambda^{l}T^{1,0}\wedge\Lambda^{k}T^{1,0}\right)$. Let $\pi^{l,m}\colon\Omega^{k}\left(M,\mathbb{C}\right)\to\Omega^{l,m}\left(M,\mathbb{C}\right)$ be the projection. For l+m=k,

$$\partial \colon \Omega^{l,m}\left(M,\mathbb{C}\right) \stackrel{d}{\longrightarrow} \Omega^{k+1}\left(M,\mathbb{C}\right) \stackrel{\pi^{l+1,m}}{\longrightarrow} \Omega^{l+1,m}\left(M,\mathbb{C}\right)$$

$$\overline{\partial} \colon \Omega^{l,m}\left(M,\mathbb{C}\right) \stackrel{d}{\longrightarrow} \Omega^{k+1}\left(M,\mathbb{C}\right) \stackrel{\pi^{l,m+1}}{\longrightarrow} \Omega^{l,m+1}\left(M,\mathbb{C}\right)$$

Remark. (1) If $f: M \to \mathbb{C}$, then it can see $df = \partial f + \overline{\partial} f$. But in general, $d \neq \partial + \overline{\partial}$.

- (2) For smooth $f \colon M \to \mathbb{C}$, f is called holomorphic if $(df)_m \in T_m^{1,0}$ for any $m \in M$.
- (3) Let (M, J_M) and (N, J_N) be two almost complex manifolds and $g: M \to N$ be smooth. g is called holomorphic if $Tg(T_{1,0}) \subset T_{1,0}$.

Example 2. Let \mathbb{C}^n be a real manifold with the coordinate $\{x_1, y_1, \dots, x_n, y_n\}$. Let J be an almost complex structure defined as

$$J\frac{\partial}{\partial x_j} = \frac{\partial}{\partial y_j}, \ J\frac{\partial}{\partial y_j} = -\frac{\partial}{\partial x_j}$$

For complex coordinate $\{z_1, \dots, z_n\}$, i.e. $z_j = x_j + iy_j$, let

$$\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right) \in T_{1,0}, \ \frac{\partial}{\partial \overline{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) \in T_{0,1}$$
$$dz_j = dx_j + i dy_j \in \Omega^{1,0}, \ d\overline{z}_j = dx_j - i dy_j \in \Omega^{0,1}$$

Then for $f: \mathbb{C}^n \to \mathbb{C}$, it can see

$$df = \underbrace{\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} dz_{j}}_{=\partial f \in \Omega^{1,0}} + \underbrace{\sum_{j=1}^{n} \frac{\partial f}{\partial \overline{z}_{j}} d\overline{z}_{j}}_{=\overline{\partial} f \in \Omega^{0,1}}$$

f is holomorphic if and only if $\overline{\partial}f=0$ that is the Cauchy-Riemann equation.

Definition 3. An almost complex manifold (M, J) is called a complex manifold of dimension n if, for any $m \in M$, there is a neighborhood U of m s.t. $U \to V \subset \mathbb{C}^n$ is biholomorphic. Then this J is called integrable.

Remark. For a complex manifold (M, J), the tangent space of M at m is

$$T_m M := T_{1,0,m} M = \{ X \in T_{\mathbb{C}} M \colon JX = iX \}$$

i.e. all holomorphic vectors, because as this definition, for any $f: M \to \mathbb{C}$ is holomorphic and smooth vector field $X_M \in TM = \cup T_mM$, X_Mf is holomorphic.

For any real vector fields u, v and a complex structure J, define the Nijenhuis tensor N_J

$$N_J(u, v) = [Ju, Jv] - J[Ju, v] - J[u, Jv] - [u, v]$$

Theorem 4 (Newlander-Nirenberg). For an almost complex manifold (M, J),

$$(M,J)$$
 is complex $\Leftrightarrow N_J = 0 \Leftrightarrow [T_{1,0}, T_{1,0}] \subset T_{1,0} \Leftrightarrow d = \partial + \overline{\partial} \Leftrightarrow \partial^2 = \overline{\partial}^2 = 0$

2.4 Complexification of Lie Groups

Definition 1. A complex Lie group G is a group and also a complex manifold such that

are holomorphic.

Remark. Let $\mathfrak{g} = \operatorname{Lie}(G)$ with the complex structure $\mathfrak{g} \to \mathfrak{g} \colon X \mapsto JX := iX$. $[\cdot, \cdot]$ is complex bilinear by $\operatorname{ad} \circ J = J \circ \operatorname{ad}$. Therefore, \mathfrak{g} is a complex Lie algebra. Conversely, if the Lie algebra \mathfrak{g} is equipped with a complex structure, then there is an integrable complex structure J on G.

Theorem 2. Let K be a compact Lie group with Lie algebra \mathfrak{k} . There is a unique complex Lie group G and a Lie group homomorphism $\iota \colon K \to G$ s.t.

- (1) (G, ι) has the universal property, that is for any complex Lie group H and a Lie group homomorphism $\rho \colon K \to H$, there is unique holomorphic Lie group homomorphism $\rho_{\mathbb{C}} \colon G \to H$ s.t. $\rho = \rho_{\mathbb{C}} \circ \iota$.
- (2) ι is injective, $\iota(K)$ is a maximal compact subgroup of G, $G/\iota(K)$ is connected and $T_e\iota(\mathfrak{k})$ is a totally real subspace of \mathfrak{g} .

Remark. In fact, complexifying a real Lie algebra \mathfrak{k} as $\mathfrak{k}_{\mathbb{C}} = \mathfrak{k} \oplus i\mathfrak{k}$ with the extended Lie bracket defined as

$$[X_1 + iX_2, Y_1 + iY_2] = ([X_1, Y_1] - [X_2, Y_2]) + i([X_1, Y_2] + [X_2, Y_1])$$

 $\mathfrak{t}_{\mathbb{C}}$ is a complex Lie algebra. And $G = K_{\mathbb{C}}$ with the Lie algebra $\mathfrak{t}_{\mathbb{C}}$.

Theorem 3 (Cartan Decomposition). Let K be a compact Lie group with \mathfrak{k} and $G = K_{\mathbb{C}}$ with $\mathfrak{g} = \mathfrak{k} \oplus i\mathfrak{k}$. Then the map is a diffeomorphism.

$$\begin{array}{ccc} K \times \mathfrak{k} & \longrightarrow & G \\ (k,X) & \longmapsto & \exp(iX)k \end{array}$$

Definition 4. A complex Lie group G is called reductive if $G = K_{\mathbb{C}}$ for some compact Lie group K. If G is reductive and the center of \mathfrak{g} is trivial, then \mathfrak{g} is called semisimple.

Example 5. $GL(n,\mathbb{C})$ and $SL(n,\mathbb{C})$ are reductive. And $\mathfrak{sl}(n,\mathbb{C})$ is semisimple but $\mathfrak{gl}(n,\mathbb{C})$ is not.

(1) $GL(n,\mathbb{C}) = U(n)_{\mathbb{C}}$ and $\mathfrak{gl}(n,\mathbb{C}) = \mathfrak{u}(n)_{\mathbb{C}}$. Moreover, the polar decomposition is the Cartan decomposition, that is for $A \in GL(n,\mathbb{C})$,

$$A = e^X U = e^{iY} U$$
, where $U \in U(n)$, $X = iY \in \text{Herm}(n) \implies Y \in \mathfrak{u}(n)$

(2) $SL(n,\mathbb{C}) = SU(n)_{\mathbb{C}}$ and $\mathfrak{sl}(n,\mathbb{C}) = \mathfrak{su}(n)_{\mathbb{C}}$.

Let compact Lie group K act on a complex manifold (M, J) smoothly i.e.

$$\begin{array}{ccc} \tau \colon & K & \longrightarrow & \mathrm{Diff}(M) \\ & g & \longmapsto & \tau(g) \end{array}$$

is a Lie group homomorphism. Then by the above theorem, it can be uniquely extended on $G = K_{\mathbb{C}}$. Therefore, G acts on M holomorphically. And the map is defined as

$$\begin{array}{ccc} \mathfrak{g} = \mathfrak{k} + i\mathfrak{k} & \longrightarrow & \mathrm{Vect}(M) \\ X + iY & \longmapsto & X_M + JY_M \end{array}$$

where Vect(M) is the holomorphic vector field on M. It is well-defined since X_M and Y_M are holomorphic.

Let K be a compact Lie group. Then there is a bi-invariant Riemannian metric $\langle \cdot, \cdot \rangle$ on K and

$$\langle \operatorname{ad}_Z X, Y \rangle_{\mathfrak{k}} = -\langle X, \operatorname{ad}_Z Y \rangle_{\mathfrak{k}}, \ \forall \ X, Y, Z \in \mathfrak{k}$$

Therefore, K is a Riemannian geometry. Moreover, the usual exponential map of the Lie group coincides with the exponential map of Riemannian manifold.

Let $G = K_{\mathbb{C}}$ be the complexified Lie group and define the inner product on \mathfrak{g}

$$\langle X_1 + iY_1, X_2 + iY_2 \rangle_{\mathfrak{g}} := \langle X_1, X_2 \rangle_{\mathfrak{k}} + \langle Y_1, Y_2 \rangle_{\mathfrak{k}}$$

And this metric is K-invariant and $\mathfrak{k} \perp i\mathfrak{k}$. So instead of considering the Riemannian structure on G, defining a metric on N := G/K, the right cosets of G. Let $\pi : G \to N$ be the projection. There is a vector bundle isomorphism

$$\begin{array}{ccc} G \times \mathfrak{k} & \longrightarrow & TN \\ (g,\eta) & \longmapsto & T_e(\pi \circ L_g)(i\eta) \end{array}$$

where $L_g(h) = gh$. Then it can define a Riemannian metric $\langle \cdot, \cdot \rangle$ on N. For $v_1, v_2 \in T_{\pi(g)}M$, there are $\eta_1, \eta_2 \in \mathfrak{k}$ s.t. $v_j = T_e(\pi \circ L_g)(i\eta_j)$.

$$\langle v_1, v_2 \rangle_{\pi(g)} := \langle \eta_1, \eta_2 \rangle_{\mathfrak{k}}$$

Therefore, it is a G-invariant Riemannian metric. And with this Riemannian structure, N is a complete, connected, and simply connected Riemannian metric with nonpositive sectional curvature. Moreover, any geodesic line on N has the form

$$\gamma(t) = \pi(q \exp(tiX)), \text{ for some } q \in G, X \in \mathfrak{k}$$

2.5 Roots and Weyl Chambers

Definition 1. Let K be a compact Lie group with Lie algebra \mathfrak{k} .

- (1) A maximal torus T in K is a maximal connected commutative subgroup of K.
- (2) A Cartan subalgebra of \mathfrak{k} is a maximal commutative subalgebra of \mathfrak{k} .

Remark. (1) If T is a maximal torus, then $\mathfrak{t} = \operatorname{Lie} T$ is a Cartan subalgebra. Conversely, if \mathfrak{t} is a Cartan subalgebra, then $T := \exp \mathfrak{t}$ is a maximal torus.

(2) Let $G = K_{\mathbb{C}}$ with Lie algebra $\mathfrak{g} = \mathfrak{k} + i\mathfrak{k}$. If \mathfrak{t} is a Cartan algebra of \mathfrak{k} , then $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}} = \mathfrak{t} + i\mathfrak{t}$ is a maximal commutative subalgebra of \mathfrak{g} . \mathfrak{h} is called a Cartan subalgebra of \mathfrak{g} .

Theorem 2. Let K be a compact Lie group with Lie algebra \mathfrak{k} . Then

$$\mathfrak{k} = \mathfrak{k}' \oplus \mathfrak{z}(\mathfrak{k})$$

where $\mathfrak{z}(\mathfrak{k})$ is the center of \mathfrak{k} and \mathfrak{k}' is the ideal generated by $[\mathfrak{k},\mathfrak{k}]$, the set of commutators. And \mathfrak{k}' is semisimple i.e. the center of \mathfrak{k}' is trivial.

Remark. (1) For complex reductive Lie group $G = K_{\mathbb{C}}$ with Lie algebra \mathfrak{g} , it is also true

$$\mathfrak{g}=\mathfrak{g}'\oplus\mathfrak{z}(\mathfrak{g})$$

where $\mathfrak{z}(\mathfrak{g}) = \mathfrak{z}(\mathfrak{k})_{\mathbb{C}}$, the center of \mathfrak{g} , and $\mathfrak{g}' = \mathfrak{k}'_{\mathbb{C}}$ that is semisimple.

(2) In fact, \mathfrak{k}' is the Lie algebra of K' which is the closed normal subgroup of K generated by commutators $k_1k_2k_1^{-1}k_2^{-1}$ for $k_1, k_2 \in K$.

Let G act on \mathfrak{g} by adjoint action. Since K is compact, there is a K-invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . Therefore, by differentiating of Ad,

$$\langle \operatorname{ad}_X Y, Z \rangle = -\langle Y, \operatorname{ad}_X Z \rangle, \ \forall \ X \in \mathfrak{k}$$

i.e. ad_X is skew-symmetry for any $X \in \mathfrak{k}$ and so ad_X is diagonalizable. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{k} and $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$. Then for any $H = H_1 + iH_2 \in \mathfrak{h}$, $\operatorname{ad}_H = \operatorname{ad}_{H_1} + i\operatorname{ad}_{H_2}$ is diagonalizable by the commutativity of ad_{H_1} and ad_{H_2} . So $\{\operatorname{ad}_H \colon H \in \mathfrak{h}\}$ is simultaneously diagonalizable. Then for $\alpha \in \mathfrak{h}^*$ i.e. $\alpha \colon \mathfrak{t} \to \mathbb{C}$ is linear, let

$$\mathfrak{g}_{\alpha} := \{ X \in \mathfrak{g} \colon [H, X] = \alpha(H)X, \ \forall \ H \in \mathfrak{h} \}$$

So \mathfrak{g}_{α} is a eigenspace for $\{\mathrm{ad}_{H} \colon H \in \mathfrak{h}\}$ for some $\alpha \in \mathfrak{h}^{*}$. Clearly, $\mathfrak{g}_{0} = \mathfrak{h}$.

Definition 3. The root system of \mathfrak{g} with respect to a Cartan subalgebra \mathfrak{h} is

$$R := \{ \alpha \in \mathfrak{h}^* : \alpha \neq 0, \ \mathfrak{g}_{\alpha} \neq 0 \}$$

Remark. (1) Since V is finite-dimensional, R is finite and the eigenspace decomposition of $\mathfrak g$ is

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in R}\mathfrak{g}_lpha$$

(2) Since ad_X is skew-symmetry for each $X \in \mathfrak{t}$, any root α is pure imaginary on \mathfrak{t} . Therefore, $R \subset (i\mathfrak{t})^*$, where $i\mathfrak{t}$ is viewed as a real vector space.

- (3) For any $\alpha, \beta \in R \cup \{0\}$, $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- (4) If \mathfrak{g} is semisimple i.e. $\mathfrak{z}(\mathfrak{g}) = \{0\}$, then $(i\mathfrak{t})^* = \operatorname{span}_{\mathbb{R}} R$. In general, let $\mathfrak{t}' = \mathfrak{t} \cap \mathfrak{t}'$, then $(i\mathfrak{t}')^* = \operatorname{span}_{\mathbb{R}} R$.
- (5) For any $\alpha \in R$, $-\alpha \in R$. Moreover, $\mathfrak{g}_{-\alpha} = \vartheta \mathfrak{g}_{\alpha}$ where $\vartheta(X + iY) = X iY$ for $X + iY \in \mathfrak{g}$ and $X, Y \in \mathfrak{k}$.

Definition 4 (Killing Form). Let $G = K_{\mathbb{C}}$ be a reductive Lie Group with Lie algebra $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$. The Killing form is a bilinear form

$$B \colon \quad \mathfrak{k} \times \mathfrak{k} \quad \longrightarrow \quad \mathbb{R}$$
$$(X, Y) \quad \longmapsto \quad \operatorname{tr} \left(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y} \right)$$

Moreover, B can be extended to \mathfrak{g} .

Theorem 5. (1) For $k \in K$ and $X, Y, Z \in \mathfrak{g}_{\mathbb{C}}$,

$$B(\operatorname{Ad}_k X, \operatorname{Ad}_k Y) = B(X, Y), \ B(\operatorname{ad}_Z X, Y) = -B(X, \operatorname{ad}_Z Y)$$

- (2) (Cartan's Criterion) $\mathfrak{g}_{\mathbb{C}}$ is semisimple if and only if B is nonsingular on $\mathfrak{g} \times \mathfrak{g}$.
- (3) In general, B is nonsingular on $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}$ for $\alpha \in R$ and is negative definite on $\mathfrak{g}' \times \mathfrak{g}'$. And thus B is an inner product on \mathfrak{it}' .

Definition 6. Let $G = K_{\mathbb{C}}$ with semisimple Lie algebra \mathfrak{g} . Then since B is an inner product on $i\mathfrak{t}$, for any $\alpha \in (i\mathfrak{t})^*$, there is a unique $u_{\alpha} \in i\mathfrak{t}$ s.t.

$$\alpha(H) = B(H, u_{\alpha}), \ \forall \ H \in i\mathfrak{t}$$

If $\alpha \in R$, then let

$$h_{\alpha} := \frac{2u_{\alpha}}{B(u_{\alpha}, u_{\alpha})}$$

called the coroot of α . The coroot system is

$$R^{\vee} := \{h_{\alpha} : \alpha \in R\} \subset i\mathfrak{t}$$

Remark. If \mathfrak{g} is not semisimple, then for general $\alpha \in (i\mathfrak{t})^*$ there may no u_{α} because B is singular on $i\mathfrak{t}$. But if $\alpha \in R$, u_{α} and h_{α} can be also defined. Let $\mathfrak{t}' = \mathfrak{k}' \cap \mathfrak{t}$.

$$\mathfrak{k} = \mathfrak{k}' \oplus \mathfrak{z}(\mathfrak{k}) \implies i\mathfrak{t} = i\mathfrak{t}' \oplus i(\mathfrak{z}(\mathfrak{k}) \cap \mathfrak{t})$$

If $H \in i(\mathfrak{z}(\mathfrak{t}) \cap \mathfrak{t})$, [H, X] = 0 for any $X \in \mathfrak{g}$. So $\alpha(H) = 0$. Therefore, α can be viewed as a linear map on $i\mathfrak{t}'$ i.e. $\alpha \in (i\mathfrak{t}')^*$. By above, since B is nonsingular on $i\mathfrak{t}'$, there is a $u_{\alpha} \in i\mathfrak{t}'$ s.t.

$$\alpha(H) = B(H, u_{\alpha}), \ \forall \ H \in i\mathfrak{t}$$

and thus it can define the coroot h_{α} .

Example 7. Let $G = SL(2,\mathbb{C})$ with $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and K = SU(2) with $\mathfrak{k} = \mathfrak{su}(2)$. Then

$$\mathfrak{t} = \operatorname{span}_{\mathbb{R}} \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right), \ \mathfrak{h} = \operatorname{span}_{\mathbb{C}} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

Let $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then

$$[H, X] = 2X, [H, Y] = -2Y$$

Therefore, the two roots are $\alpha_1, \alpha_2 \colon \mathfrak{h} \to \mathbb{C}$,

$$\alpha_1(H) = 2, \ \alpha_2(H) = -2$$

and $\mathfrak{g}_{\alpha_1} = \operatorname{span}_{\mathbb{C}} X$, $\mathfrak{g}_{\alpha_2} = \operatorname{span}_{\mathbb{C}} Y$. So $\mathfrak{g} = \operatorname{span}_{\mathbb{C}} \{H, X, Y\}$ is the root decomposition.

Theorem 8 ($\mathfrak{sl}(2,\mathbb{C})$ Triple). Let $G = K_{\mathbb{C}}$ be a reductive Lie group with Lie algebra $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$. Let $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$ be a Cartan subalgebra of \mathfrak{g} and R be the corresponding root system. Let $\alpha \in R$. Then there is a $X_{\alpha} \in \mathfrak{g}_{\alpha}$ s.t. let $Y_{\alpha} = -\vartheta X_{\alpha} \in \mathfrak{g}_{-\alpha}$ and $H_{\alpha} = h_{\alpha} \in \mathfrak{h}$,

$$\mathfrak{sl}(2,\mathbb{C}) \simeq \operatorname{span}_{\mathbb{C}} \{ H_{\alpha}, X_{\alpha}, Y_{\alpha} \}$$

Corollary 9. Let G, \mathfrak{t} and R as above and $\alpha \in R$.

- (1) $\mathbb{R}\alpha \cap R = \{\pm \alpha\}.$
- (2) For any $\alpha, \beta \in R$, $\alpha(h_{\beta}) \in \mathbb{Z}$.
- (3) dim $\mathfrak{g}_{\alpha} = 1$.

Let $G = K_{\mathbb{C}}$ be a reductive Lie group with semisimple Lie algebra $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$ and $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$ be a Cartan subalgebra. Then the Killing form B is an inner product on $i\mathfrak{t}$. Transporting B to $(i\mathfrak{t})^*$ as an inner product defined as

$$B(\alpha, \beta) = B(u_{\alpha}, u_{\beta}), \ \forall \ \alpha, \beta \in (i\mathfrak{t})^*$$

With equipped B, $(i\mathfrak{t})^*$ is a Euclidean space. And by above for any $\alpha, \beta \in R$,

$$4\cos^2\theta_{\alpha\beta} = \alpha(H_\beta)\beta(H_\alpha), \ \alpha(H_\beta) = \frac{2\|\alpha\|\cos\theta_{\alpha\beta}}{\|\beta\|}$$

Therefore, there are only finite cases for $\theta_{\alpha\beta}$.

- (1) $\theta_{\alpha\beta} = \frac{\pi}{2}$;
- (2) $\|\alpha\| = \|\beta\|$, then $\theta_{\alpha\beta} = \frac{\pi}{3}$ or $\frac{2\pi}{3}$;
- (3) $\|\alpha\| = \sqrt{2} \|\beta\|$, then $\theta_{\alpha\beta} = \frac{\pi}{4}$ or $\frac{3\pi}{4}$;
- (4) $\|\alpha\| = \sqrt{3} \|\beta\|$, then $\theta_{\alpha\beta} = \frac{\pi}{6}$ or $\frac{5\pi}{6}$.

If it is not semisimple, it can replace $i\mathfrak{t}$ and $(i\mathfrak{t})^*$ by $i\mathfrak{t}'$ and $(i\mathfrak{t}')^*$.

Definition 10. Let $G = K_{\mathbb{C}}$ be a reductive Lie group with semisimple Lie algebra $\mathfrak{g} = \mathfrak{t}_{\mathbb{C}}$ and $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$ be a Cartan subalgebra with the corresponding root system R. (If not semisimple, replacing \mathfrak{t} to \mathfrak{t}' .)

(1) Let
$$\gamma \in (i\mathfrak{t})^*$$
 s.t. $V = \{\alpha \in (i\mathfrak{t})^* : B(\alpha, \gamma) = 0\} \cap R = \emptyset$. Then define

$$R^+ = \{ \alpha \in R : B(\alpha, \gamma) > 0 \}, \ R^- = \{ \alpha \in R : B(\alpha, \gamma) < 0 \}$$

be the positive and negative root system.

(2) A system of simple roots is a subset $\Delta \subset R$ that is a basis of $(i\mathfrak{t})^*$ s.t. for any $\beta \in R$,

$$\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$$

and either $\{k_{\alpha} : \alpha \in \Delta\} \subset \mathbb{Z}_{\geq 0}$ or $\{k_{\alpha} : \alpha \in \Delta\} \subset \mathbb{Z}_{\leq 0}$.

Remark. In fact, for any γ with $V = \{\alpha \in (i\mathfrak{t})^* : B(\alpha, \gamma) = 0\} \cap R = \emptyset$, there is a unique system of simple roots Δ s.t.

$$R^{+} = \left\{ \beta \in R \colon \beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha, \ k_{\alpha} \in \mathbb{Z}_{\geqslant 0} \right\}, \ R^{-} = \left\{ \beta \in R \colon \beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha, \ k_{\alpha} \in \mathbb{Z}_{\leqslant 0} \right\}$$

Therefore, the system of simple roots exists and there is a one-one onto relation of

 $\{Positive root systems\} \sim \{Systems of simple roots\}$

Definition 11. Given the same settings as above, then an open Wely chamber is a connected component of $(i\mathfrak{t})^*\setminus \cup_{\alpha\in\Delta} V_{\alpha}$, where

$$V_{\alpha} = \{ \beta \in (i\mathfrak{t})^* \colon B(\beta, \alpha) = 0 \}$$

If Δ is a system of simple roots, then the open positive Weyl chamber is defined as

$$C(\Delta) = \{ \beta \in (i\mathfrak{t})^* \colon B(\beta, \alpha) > 0, \ \forall \ \alpha \in \Delta \}$$

Remark. Conversely, choose a Weyl chamber C, then there is a unique system of simple roots Δ s.t. $C = C(\Delta)$ is the positive Wey chamber.

Let $G = K_{\mathbb{C}}$ be a reductive Lie group with Lie algebra $\mathfrak{g} = \mathfrak{t}_{\mathbb{C}}$ and T be a maximal torus of K with Lie algebra \mathfrak{t} . Let $N = \{k \in K : kTk^{-1} = T\}$. Then the Weyl group is defined as W = N/T. W acts \mathfrak{t} and \mathfrak{t}^* . For $w := [w] \in W$ and $H \in i\mathfrak{t}$ and $\alpha \in \mathfrak{t}^*$,

$$w \cdot H := \operatorname{Ad}_w H, \ w \cdot \alpha := \operatorname{Ad}_w^* \alpha$$

The actions can be extended on $i\mathfrak{t}$ and $(i\mathfrak{t})^*$. There is a more explicit expression of W. For $\alpha \in \Delta$, the reflection $r_{\alpha} : (i\mathfrak{t}')^* \to (i\mathfrak{t}')^*$ is defined as

$$r_{\alpha}(\beta) := \beta - \frac{2B(\beta, \alpha)}{B(\alpha, \alpha)} \alpha = \beta - \beta(h_{\alpha})\alpha$$

i.e. r_{α} is the reflection about the hyperplane orthogonal to α . Then

$$W =$$
the group generated by $\{r_{\alpha} \colon \alpha \in \Delta\}$

Theorem 12. Let W be the Weyl group acting on $(i\mathfrak{t})^*$ (or $(i\mathfrak{t}')^*$) and C be an open Weyl chamber.

- (1) For any $\alpha \in R$, $w \cdot \alpha \in R$.
- (2) Let W act on the set of Weyl chambers. Then this action is transitive.
- (3) Let $\alpha, \alpha' \in \overline{C}$. If $w \cdot \alpha = \alpha'$ for some $w \in W$, then $\alpha = \alpha'$.
- (4) Let $\alpha \in C$. If $w \cdot \alpha = \alpha$ for some $w \in W$, then w = id.

- (5) If Δ_1 and Δ_2 are two systems of simple roots, then there is a unique $w \in W$ s.t. $w \cdot \Delta_1 = \Delta_2$.
- (6) For any $\beta \in (i\mathfrak{t})^*$, $W \cdot \beta \cap \overline{C}$ contains exact one element.

The general root system is defined as the following.

Definition 13. A root system (E, R) consists a finite-dimensional real Euclidean space E and a finite subset R containing nonzero elements s.t.

- (1) $E = \operatorname{span}_{\mathbb{R}} R$.
- (2) For any $\alpha \in R$, $\mathbb{R}\alpha \cap R = \{\pm \alpha\}$.
- (3) For $\alpha \in R$, $r_{\alpha}(R) \subset R$, where $r_{\alpha} : E \to E$ is defined as

$$r_{\alpha}(\beta) := \beta - \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

(4) For any $\alpha, \beta \in R$,

$$\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$$

Remark. For the semisimple case, $((i\mathfrak{t})^*, R)$ is a root system. For the general case, $((i\mathfrak{t}')^*, R)$ is a root system.

Definition 14. Let $G = K_{\mathbb{C}}$ be a reductive Lie group with Lie algebra $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$. Let $\mathfrak{t} = \text{Lie } T$ be a Cartan subalgebra of \mathfrak{k} with the corresponding root system R and choosing a system of simple roots Δ . Let $\lambda \in (i\mathfrak{t})^*$.

(1) λ is called algebraically integral (in weight lattice) if

$$\lambda(h_{\alpha}) \in \mathbb{Z}, \ \forall \ \alpha \in R$$

(2) λ is called analytically integral if

$$\lambda(H) \in 2\pi i \mathbb{Z}, \ \forall \ H \in \Gamma$$

where $\Gamma = \{ H \in \mathfrak{t} : \exp H = I \}$

(3) λ is called dominant with respect to a system of simple roots Δ if

$$\lambda \in \overline{C(\Delta)}$$

Remark. Let $\chi \colon T \to \mathbb{C}^*$ be a group homomorphism that is called a character of T. Then there is a unique λ that is analytically integral s.t.

$$\chi(\exp H) = e^{\lambda(H)}, \ \forall \ \exp H \in T = \exp \mathfrak{t}$$

Definition 15. Setting as above, for $\lambda, \mu \in (i\mathfrak{t})^*$,

$$\lambda \geqslant \mu \iff \mu - \lambda = \sum_{\alpha \in \Delta} k_{\alpha} \alpha \text{ with } k_{\alpha} \geqslant 0$$

Example 16. (1) Let $G = GL(n, \mathbb{C})$ and K = U(n). Then let the maximal torus and the Cartan subalgebra be

$$T = \left\{ \operatorname{diag} \left(e^{i\theta_1}, \cdots, e^{i\theta_n} \right) : \theta_j \in \mathbb{R} \right\}$$

$$\mathfrak{t} = \left\{ \operatorname{diag} \left(i\theta_1, \cdots, i\theta_n \right) : \theta_j \in \mathbb{R} \right\}$$

$$\mathfrak{h} = \left\{ \operatorname{diag} \left(z_1, \cdots, z_n \right) : z_i \in \mathbb{C} \right\}$$

with the root system

$$R = \{ \pm (\varepsilon_k - \varepsilon_j) \colon 1 \leqslant k < j \leqslant n \}$$

where $\varepsilon_k(E_j) = \delta_{kj}$, where $E_j = \text{diag}(e_j)$, with the root space

$$\mathfrak{g}_{\varepsilon_k-\varepsilon_j}=\mathbb{C}E_{k,j}$$

and the coroot $h_{\varepsilon_k-\varepsilon_j}$ for root $\varepsilon_k-\varepsilon_j$ is

$$h_{\varepsilon_k-\varepsilon_i}=E_k-E_i$$

The system of simple roots can be choosed as

$$\Delta = \{ \varepsilon_k - \varepsilon_{k+1} \colon 1 \leqslant k \leqslant n - 1 \}$$

and the corresponding positive Weyl chamber is

$$C(\Delta) = \{ \operatorname{diag}(\theta_1, \dots, \theta_n) : \theta_k > \theta_{k+1}, \theta_k \in \mathbb{R} \}$$

$$\overline{C(\Delta)} = \{ \operatorname{diag}(\theta_1, \dots, \theta_n) : \theta_k \geqslant \theta_{k+1} \}$$

And the Weyl group $W \simeq S_n$, the symmetry group. Since the orbit of W intersects $\overline{C(\Delta)}$ with a single point and the action can be extended on $\mathfrak{u}(n)^*$, for any $H \in \mathfrak{u}(n)^* \simeq \operatorname{Herm}(n)$, let

$$s(H) = \operatorname{spec}(H) := \operatorname{diag}(\theta_1, \dots, \theta_n) \in \overline{C(\Delta)}$$

where $\theta_1 \geqslant \cdots \geqslant \theta_n$ are all eigenvalues of H.

And the above mention is also true for $G = SL(n, \mathbb{C})$ and K = SU(n).

(2) For a particular case $SL(3,\mathbb{C})$ with SU(3), the Cartan algebra $\mathfrak{t} = \operatorname{span}_{\mathbb{R}} \{iH_1, iH_2\}$ and $\mathfrak{h} = \operatorname{span}_{\mathbb{C}} \{H_1, H_2\}$, where

$$H_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

The root system is $R = \pm \{\alpha_1, \alpha_2, \alpha_3\}$. After equipping with the trace inner product and viewing the root $\alpha = (\alpha(H_1), \alpha(H_2))$, then

$$\alpha_1 = (2, -1), \ \alpha_2 = (1, -2), \ \alpha_3 = (1, 1)$$

with the root space $\mathfrak{g}_{\alpha_j} = \operatorname{span}_{\mathbb{C}} X_j$ and $\mathfrak{g}_{-\alpha_j} = \operatorname{span}_{\mathbb{C}} Y_j$ for j = 1, 2, 3, where

$$X_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ X_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ X_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$Y_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ Y_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ X_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

If let $\Delta = {\alpha_1, \alpha_2}$, then $C = C(\Delta)$ showed in above figure.

2.6 Representations

Let K be a compact Lie group with Lie algebra \mathfrak{k} . Let (Π, V) be a finite-dimensional representation of K i.e. $\Pi \colon K \to GL(V)$ is a Lie group homomorphism. Then let $\pi := T_e \Pi$ as a real linear map,

$$K \xrightarrow{\Pi} GL(V)$$

$$\exp \uparrow \qquad \uparrow e \qquad \Pi(\exp X) = e^{\pi(X)}$$

$$\mathfrak{k} \xrightarrow{\pi} \operatorname{End} V$$

And by the above theorem, (Π, V) and (π, V) can be extended to representations of $G = K_{\mathbb{C}}$ and $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{k} and $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$. Let $\lambda \in \mathfrak{h}^*$.

$$V_{\lambda} = \{ v \in V : \pi(H)v = \lambda(H)v, \ \forall \ H \in \mathfrak{h} \}$$

Similarly as the case of roots, after equipping V with a $\Pi(K)$ -invariant inner product, $\pi(H)$ is skew-symmetric for any $H \in \mathfrak{t}$. Therefore, $\{\pi(H) : H \in \mathfrak{h}\}$ are simultaneously diagonalizable. So V_{λ} is an eigenspace for some λ .

Definition 1. For a representation (π, V) , $\lambda \in \mathfrak{h}^*$ is called a weight if

$$V_{\lambda} \neq \{0\}$$

Let $\Delta(V)$ be the set of all weights.

Remark. Firstly, similar as roots, $\Delta(V) \subset (i\mathfrak{t})^*$ and there is a weight space decomposition of V

$$V = \bigoplus_{\lambda \in \Delta(V)} V_{\lambda}$$

Let R be the root system with respect to \mathfrak{t} . Then for any $\lambda \in \Delta(V)$, λ is algebraically integral i.e. $\lambda(h_{\alpha}) \in \mathbb{Z}$ for any $\alpha \in R$ by setting $\mathfrak{sl}(2,\mathbb{C})$ triples. Moreover, for any $\alpha \in R$ and $\beta \in \Delta(V)$, then

$$\pi(\mathfrak{g}_{\alpha})V_{\beta}=V_{\alpha+\beta}$$

Let R be the root system of \mathfrak{g} with a system of simple roots Δ and

$$\mathfrak{n}^+ = igoplus_{lpha \in R^+} \mathfrak{g}_lpha, \ \mathfrak{n}^- = igoplus_{lpha \in R^-} \mathfrak{g}_lpha$$

Definition 2. For a representation (π, V) , $\lambda_0 \in \Delta(V)$ is called a highest weight if

$$\mathfrak{n}^+V_{\lambda_0}=0$$
, that is equivalent to $\lambda_0+\alpha\notin\Delta(V),\ \forall\ \alpha\in R^+$

Theorem 3. Let $G = K_{\mathbb{C}}$ be a reductive Lie group with Lie algebra $\mathfrak{g} = \mathfrak{k}_{\mathbb{C}}$. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{k} with the corresponding root system R and choosing a system of simple roots Δ . Let (π, V) be an irreducible representation.

- (1) V has a unique highest weight λ_0 with dim $V_{\lambda_0} = 1$.
- (2) λ_0 is dominant.
- (3) With ordering defined on $(i\mathfrak{t})^*$, $\mu \leqslant \lambda_0$ for all $\mu \in \Delta(V)$.
- (4) If (π', V') is another irreducible representation with the same highest weight, then it is isomorphic to (π, V) .

Remark. In fact, for any algebraically integral and dominant λ , there is an irreducible representation $(\pi_{\lambda}, V_{\lambda})$ with the highest weight λ .

Example 4 (Representations of torus). Let $G = (\mathbb{C}^*)^n$. By taking logarithm of complex numbers, it can see $\mathfrak{g} = \mathbb{C}^n$. Clearly

$$\mathfrak{g} = (i\mathbb{R})^n_{\mathbb{C}} \implies \mathfrak{g} = \mathfrak{k}_{\mathbb{C}}, \text{ where } \mathfrak{k} = \{(i\theta_1, \cdots, i\theta_n) \colon \theta_j \in \mathbb{R}\}$$

By $K = (S^1)^n$ with the Lie algebra \mathfrak{k} , $(\mathbb{C}^*)^n = (S^1)^n$. Therefore, $(\mathbb{C}^*)^n$ is a reductive Lie group with Lie algebra \mathbb{C}^n . Let (π, V) be a representation of \mathbb{C}^n with the root system R. And let the (Π, V) be the corresponding representation of $(\mathbb{C}^*)^n$ and $\chi \colon (\mathbb{C}^*)^n \to \mathbb{C}$ defined as $\chi(\exp t) = \exp \alpha(t)$ for $\alpha \in R$, the root space decomposition is

$$V = \bigoplus_{\chi} V_{\chi}$$
, where $V_{\chi} = \{ v \in V : \Pi(\exp t)v = \chi(\exp t)v, \ \forall \ t \in \mathbb{C}^n \}$

By above, for any such χ ,

$$\chi(z_1,\cdots,z_n)=z_1^{k_1}\cdots z_n^{k_n}$$

for some $k_1, \dots, k_n \in \mathbb{Z}$.

Example 5 (Representations of $\mathfrak{sl}(2,\mathbb{C})$). Let (π,V) be a representation of $\mathfrak{sl}(2,\mathbb{C})$. Since $\mathfrak{h} = \operatorname{span}_{\mathbb{C}} H$, any weight $\lambda \in \mathfrak{h}^*$ can be viewed as $\lambda = \lambda(H) \in \mathbb{C}$. If λ is a weight of (π,V) with a $u \in V_{\lambda}$, then by above, $\pi(X)V_{\lambda} \subset V_{\lambda+2}$ with $\pi(X)u \in V_{\lambda+2}$. Since V is finite-dimensional, there is a N s.t. $\pi(X)^{N+1}u = 0$ and $\pi(X)^N u \neq 0$. Let

$$u_0 = \pi(X)^N u, \ \lambda_0 = \lambda + 2N$$

In fact, λ_0 is a highest weight with highest weight vetor u_0 . Then let $u_k = \pi(Y)^k u_0$. Similarly, there is a m s.t. $u_m \neq 0$ and $u_{m+1} = 0$. Since [X, Y] = H, $\pi(H) = [\pi(X), \pi(Y)]$. So by induction,

$$\pi(X)u_k = k(\lambda_0 - (k-1))u_{k-1}, \ k \geqslant 1$$

And

$$0 = \pi(X)u_{m+1} = (m+1)(\lambda_0 - m)u_m, \Rightarrow \lambda_0 = m$$

For vectors $\{u_0, u_1, \cdots, u_m\}$,

$$\pi(H)u_k = (m - 2k)u_k$$

$$\pi(Y)u_k = \begin{cases} u_{k+1}, & k < m \\ 0, & k = m \end{cases}$$

$$\pi(X)u_k = \begin{cases} k(m - (k-1))u_{k-1}, & k > 0 \\ 0, & k = 0 \end{cases}$$

So $W = \operatorname{span}\{u_0, u_1, \cdots, u_m\}$ is invariant for π . Therefore, if (π, V) is an irreducible representation, then V = W. This shows the irreducible representation is uniquely determined by a positive integer m, i.e. the highest weight. Conversely, for any positive integer m, there is an irreducible representation (π, V) with the highest weight m by constructing $\{u_0, u_1, \cdots, u_m\}$. If $k \in \mathbb{Z}$ is a weight of π so are

$$-|k|, -|k|+2, \cdots, |k|-2, |k|$$

3 Symplectic Manifolds and Moment Map

3.1 Symplectic Manifolds

Let V be a finite-dimensional \mathbb{R} -vector space. A bilinear form $\omega \colon V \times V \to \mathbb{R}$ is called skew-symmetric if

$$\omega(u,v) = -\omega(v,u), \ \forall \ u,v \in V$$

If choosing an appropriate basis $\mathcal{B} = \{u_1, \dots, u_k, e_1, \dots, e_n, f_1, \dots, f_n\}$, then the matrix expression of ω is

$$\omega(u, v) = [u]_{\mathcal{B}}^{T} \begin{pmatrix} O & O & O \\ O & O & id \\ O & -id & O \end{pmatrix} [v]_{\mathcal{B}}$$

Let $\ker \omega = \{u \in V : \omega(u, v) = 0, \ \forall \ v \in V\} = \operatorname{span}\{u_1, \dots, u_k\}$. If $\ker \omega = \{0\}$, then ω is called a symplectic form and (V, ω) is called a symplectic vector space. And then

$$\omega^b \colon V \longrightarrow V^* \\
v \longmapsto \omega(v,\cdot)$$

is an isomorphism.

Let (V, ω) be a symplectic vector space. A complex structure $J: V \to V$ is compatible with ω if

$$q(u, v) := \omega(u, Jv), \ \forall \ u, v \in V$$

is an inner product. And then

$$J^*\omega(u,v) = \omega(Ju,Jv) = g(Ju,v) = g(v,Ju) = \omega(v,-u) = \omega(u,v)$$

In fact, any two of g, ω and J can induce the left compatible structure.

Definition 1. Let M be a smooth manifold and $\omega \in \Omega^2(M)$ be a 2-form. ω is called a symplectic form if ω is closed i.e. $d\omega = 0$ and ω_m is symplectic for any $m \in M$. Then (M, ω) is called a symplectic manifold.

Example 2 (Cotangent Bundles). Let N be a smooth manifold with dimension n and $M = T^*N$ be the cotangent bundle with the projection map

The tautological 1-form $\tau \in T^*M$ is defined as

$$\tau_p := T_p \pi^* \xi_x$$
, i.e. $\langle \tau_p, v \rangle = \langle \xi_x, T_p \pi(v) \rangle$, $\forall v \in T_p M$

In fact, for any 1-form $\alpha \in T^*N$, α can be viewed as $\alpha \colon N \to T^*N$ by $x \mapsto q = (x, \alpha_x)$. Then for any $v \in T_xN$,

$$\langle (\alpha^* \tau)_x, v \rangle = \langle \tau_q, T_x \alpha(v) \rangle = \langle \alpha_x, v \rangle \Rightarrow \alpha^* \tau = \alpha$$

Conversely, the τ satisfying this property is unique. Define the canonical 2-form $\omega = -d\tau$ on $M = T^*N$. Locally, let (q_1, \dots, q_n) be a coordinate on an open neighborhood of N. Let p_k be the dual coordinate in T^*N . Then $(q_1, \dots, q_n, p_1, \dots, p_n)$ is a coordinate of M. It can see

$$\tau = \sum_{k=1}^{n} p_k dq_k \implies \omega = \sum_{k=1}^{n} dq_k \wedge dp_k$$

Therefore, (M, ω) is a symplectic manifold.

Remark. (1) A special case is \mathbb{C}^n . For $z_k = x_k + iy_k$, $\mathbb{C}^n \simeq T^*\mathbb{R}^n$ and the canonical symplectic form

$$\omega = \sum_{k=1}^{n} dx_k \wedge dy_k$$

Moreover, by Darboux's theorem, any symplectic manifold is locally symplectomorphic to this structure.

(2) Let \mathbb{C}^n equipped with the standard inner product H.

$$H = \sum_{k=1}^{n} dz_k \otimes d\overline{z}_k$$

$$= \sum_{k=1}^{n} (dx_k + idy_k) \otimes (dx_k - idy_k)$$

$$= \sum_{k=1}^{n} (dx_k \otimes dx_k + dy_k \otimes dy_k) + i (dy_k \otimes dx_k - dx_k \otimes dy_k)$$

$$= \operatorname{Re} H - i\omega$$

Therefore, $\omega = -\operatorname{Im} H$. In general case, if V is a complex vector space with an inner product H, then $\omega = -\operatorname{Im} H$ is a symplectic form on V.

Example 3 (Coadjoint Orbits). Considering the coadjoint action of a Lie group G on \mathfrak{g}^* , the orbit space of $\xi \in \mathfrak{g}^*$ is

$$M_{\xi} = G \cdot \xi \simeq G/G_{\xi}$$

Firstly, for $X, Y \in \mathfrak{g}$, let

$$\omega_{\xi}(X,Y) := \langle \xi, [X,Y] \rangle = \langle -\operatorname{ad}_X^* \xi, Y \rangle$$

Since

$$\ker \omega_{\xi} = \{ X \in \mathfrak{g} \colon \langle -\operatorname{ad}_{X}^{*} \xi, Y \rangle = 0, \ \forall \ Y \in \xi \}$$
$$= \{ X \in \mathfrak{g} \colon \operatorname{ad}_{X}^{*} = 0 \}$$
$$= \mathfrak{g}_{\xi}$$

the induced form of ω_{ξ} also denoted by ω_{ξ} is nondegenerate on $\mathfrak{g}/\mathfrak{g}_{\xi}$. Therefore, ω_{ξ} is nondegenerate on $T_{\xi}M_{\xi} \simeq \mathfrak{g}/\mathfrak{g}_{\xi}$. Applying the isomorphism $G \to G$ by $h \to ghg^{-1}$, $G/G_{g\cdot\xi} \simeq G/G_{\xi}$. Therefore, $T_{g\cdot\xi}M_{\xi} \simeq \mathfrak{g}/\mathfrak{g}_{\xi}$. And thus, ω is well-defined on TM_{ξ} and nondegenerate everywhere. More explicitly, for any $X_{g\cdot\xi}, Y_{g\cdot\xi} \in T_{g\cdot\xi}M_{\xi}$,

$$\omega_{g \cdot \xi} \left(X_{g \cdot \xi}, Y_{g \cdot \xi} \right) := \left\langle g \cdot \xi, [X, Y] \right\rangle$$

The closedness of ω is by applying the global formulas for the Lie and exterior derivatives. So (M_{ξ}, ω) is a symplectic manifold.

On a smooth manifold M, a symplectic form ω and an almost complex structure J are compatible if

$$g_m(X,Y) = \omega_m(X,JY), \ \forall \ X,Y \in T_mM$$

is defined as a Riemannian metric on M. If (M, ω) is a symplectic manifold, then there is a compatible almost complex structure J on M because the Riemannian metric always exists.

Definition 4. A Kähler manifold (M, ω, J) is a complex manifold with a compatible symplectic form. Then ω is called a Kähler form.

If (M, ω, J) is a Kähler manifold and locally

$$\omega = \sum_{k < j} a_{kj} dz_k \wedge dz_j + b_{kj} dz_k \wedge d\overline{z}_j + c_{kj} d\overline{z}_k \wedge d\overline{z}_j$$

then by $J^*\omega = \omega$ and $J^*dz = idz, J^*d\overline{z} = -id\overline{z}$,

$$\omega = \frac{i}{2} \sum_{k,j=1}^{n} h_{kj} dz_k \wedge d\overline{z}_j$$

And by the properties of ω , it can see $H = (h_{kj})$ is Hermitian and positive definite. This property can be applied to define the Kähler form on a complex manifold.

Firstly, for a complex manifold $M, f \in C^{\infty}(M, \mathbb{R})$ is called strictly plurisubharmonic (spsh) if locally, $\left(\frac{\partial^2 f}{\partial z_k \partial \overline{z}_i}\right)$ is positive definite.

Theorem 5. Let M be a complex manifold and $f \in C^{\infty}(M,\mathbb{R})$. f is spsh if and only if

$$\omega = \frac{i}{2} \partial \overline{\partial} f$$

is a Kähler form.

Example 6. For $M = \mathbb{C}^n$ complex manifold, let $f(z) = |z|^2 = \sum_k z_k \overline{z}_k$. Then

$$\frac{\partial^2 f}{\partial z_k \partial \overline{z}_j} = \delta_{kj}$$

that is spsh. And

$$\frac{i}{2}\partial\overline{\partial}f = \frac{i}{2}\partial\sum_{k} z_{k}d\overline{z}_{k} = \frac{i}{2}\sum_{k} dz_{k} \wedge d\overline{z}_{k}$$
$$= \sum_{k} dx_{k} \wedge dy_{k}$$
$$= \omega$$

3.2 Hamiltonian Action and Moment Map

Let (M, ω) be a symplectic manifold. For a smooth function $f: M \to \mathbb{R}$, define $X_f \in \text{Vect}(M)$ as $X_f = (\omega^b)^{-1} (df)$, and so

$$df = \omega^b(X_f) = \omega(X_f, \cdot) = \imath_{X_f}\omega$$

where i_{X_f} is the contraction map. Then X_f is called a Hamiltonian vector field. Let

$$\operatorname{Vect}_{Ham}(M) = \{ X \in \operatorname{Vect}(M) \colon \exists \ f \in C^{\infty}(M), \ X = X_f \}$$

For any Hamiltonian vector field X_f ,

$$\mathcal{L}_{X_f} f = df(X_f) = \omega(X_f, X_f) = 0$$

which means f is perserved along X_f and by the Cartan's formula,

$$\mathcal{L}_{X_f}\omega = \imath_{X_f}d\omega + d\imath_{X_f}\omega = 0$$

which means ω is also preserved along X_f .

Example 1. Let $M = T^*\mathbb{R}^n$ with the coordinate $(q_1, \dots, q_n, p_1, \dots, p_n)$ and the canonical symplectic form $\omega = \sum_k dq_k \wedge dp_k$ be the configuration space. Let $q_k(t)$ be the position coordinates and $p_k(t) = \dot{q}_k(t)$ be the moment coordinate. Let $H: T^*\mathbb{R}^n \to \mathbb{R}$ be the energy function

$$H(q,p) = \frac{1}{2} |p|^2 + V(q)$$

where V(q) is the potential function. Then the corresponding Hamiltonian vector field

$$X_{H} = \sum_{k=1}^{n} \frac{\partial H}{\partial p_{k}} \frac{\partial}{\partial q_{k}} - \frac{\partial H}{\partial q_{k}} \frac{\partial}{\partial p_{k}}$$

Therefore, the flow of X_H satisfies

$$\dot{q}_k(t) = \frac{\partial H}{\partial p_k} = p_k(t), \ \dot{p}_k(t) = -\frac{\partial H}{\partial q_k} = -\frac{\partial V}{\partial q_k}$$

Therefore, it is the Newton's second law

$$\ddot{q}(t) = -\nabla V$$

i.e. the energy is preserved along the flow.

Let G be a Lie group and (M, ω) be a symplectic manifold. The Lie group action $G \curvearrowright M$ is called symplectic if $\tau(g)$ is symplectomorphic, i.e. $\tau(g)^*\omega = \omega$, for any $g \in G$, where $\tau \colon G \to \mathrm{Diff}(M)$.

Definition 2. Let a Lie group action of $G \curvearrowright (M, \omega)$ be symplectic. This action is called a Hamiltonian action if there is a smooth function

$$\mu \colon M \longrightarrow \mathfrak{q}^*$$

- (1) μ is G-equivariant i.e. $\mu(g \cdot m) = \operatorname{Ad}_g^* \mu(m), \ \forall \ r \in G, m \in M$
- (2) for all $X \in \mathfrak{g}$,

$$d\mu_X = i_{X_M}\omega$$

where $\mu_X : M \to \mathbb{R}$ defined as $\mu_X(m) = \langle \mu(m), X \rangle$.

Then $(G \curvearrowright M, \omega, \mu)$ is called a Hamiltonian G-space.

Remark. (1) It is called Hamiltonian because for any $X \in \mathfrak{g}$, $X_M \in \text{Vect}_{Ham}(M)$.

(2) If μ and ν are two moment maps for the same Hamiltonian action, then

$$d(\mu_X - \nu_X) = 0, \ \forall \ X \in \mathfrak{g}$$

So $\mu_X - \nu_X = \xi_X$ where ξ_X is a constant function on M. Moreover, $\xi \colon \mathfrak{g} \to \mathbb{R}$ is linear. So $\xi \in \mathfrak{g}^*$. Then $\mu - \nu = \xi$ and by equivariance of the moment map, ξ is fixed by the coadjoint action.

Example 3 (Operations). (1) Let $(G \curvearrowright M_1, \omega_1, \mu_1)$ and $(G \curvearrowright M_2, \omega_2, \mu_2)$ be two Hamiltonian G-spaces. Then there is a canonical symplectic form $\omega_1 \times \omega_2$ on $M_1 \times M_2$ defined as

$$\omega_1 \times \omega_2 = \pi_1^* \omega_1 + \pi_2^* \omega_2$$

where $\pi_j \colon M_1 \times M_2 \to M_j$ is the projection. Moreover, after considering $G \curvearrowright M_1 \times M_2$ as

$$g \cdot (m_1, m_2) := (g \cdot m_1, g \cdot m_2)$$

This action is Hamiltonian with the moment map defined as

$$\mu_1 \times \mu_2(m_1, m_2) := \mu_1(m_1) + \mu_2(m_2)$$

(2) Let M be a symplectic manifold. Suppose the actions of G_1 and G_2 on M are Hamiltonian with moment maps μ_1 and μ_2 respectively and are commutative. Then $G_1 \times G_2$ acts M is Hamiltonian with the moment map

$$\mu_1 \oplus \mu_2 \colon M \longrightarrow \mathfrak{g}_1^* \oplus \mathfrak{g}_2^*$$

(3) Let $(G \curvearrowright M, \omega, \mu)$ be a Hamiltonian G-space. Suppose H is Lie subgroup of G with Lie algebra \mathfrak{h} and the inclusion map $i \colon \mathfrak{h} \hookrightarrow \mathfrak{g}$. Then H acting on M is also Hamiltonian and the moment map is

$$\mu' \colon M \xrightarrow{\mu} \mathfrak{g}^* \xrightarrow{i^*} \mathfrak{h}^*$$

where $i^* \colon \mathfrak{g}^* \to \mathfrak{h}^*$ be the dual map of i.

(4) Let $(G \curvearrowright M, \omega, \mu)$ be a Hamiltonian G-space and $N \subset M$ be a submanifold s.t. G acts N is invariant and $i^*\omega$ is a symplectic form on N, where $i: N \hookrightarrow M$. Then action of G on N is Hamiltonian with the moment map μ' defined as

$$\mu' \colon N \xrightarrow{i} M \xrightarrow{\mu} \mathfrak{g}^*$$

Example 4 (Cotangent Bundles). Let N be a smooth manifold and $M = T^*N$ with the canonical symplectic form ω . Suppose there is a Lie group action of G on N. The induced action of G on M is defined as

$$g \cdot (n, \eta) := \left(g \cdot n, \left(T_n g^{-1}\right)^* \eta\right), \ \forall \ \eta \in T_n^* N$$

Then this action is Hamiltonian with the moment map

$$\mu_X = i_{X_M} \tau$$
, i.e. $\langle \mu(p), X \rangle = \langle \eta, T_n \pi(X_M(p)) \rangle$, $p = (n, \eta) \in M$

where τ is the tautological 1-form and $\pi: T^*N \to N$.

Proof. Let $p = (n, \eta) \in M$. By definition, $\pi(g \cdot p) = g \cdot \pi(p)$. Therefore,

$$T_{g \cdot p} \circ T_p g = T_n g \circ T_p \pi, \ T_p g^* \circ T_{g \cdot p}^* = T_p \pi^* \circ T_n g^*$$

Since τ is the tautological 1-form, $\tau_p = T_p \pi^* \eta$. So

$$(g^*\tau)_p = T_p g^* \tau_{g \cdot p} = T_p g^* T_{g \cdot p} \pi^* (T_n g^{-1})^* \eta = T_p \pi^* \eta = \tau_p$$

Therefore, τ is invariant for this action. Then by definition, $\mathcal{L}_{X_M}\tau = 0$. And by Cartan's formular,

$$\mathcal{L}_{X_M} \tau = d \imath_{X_M} \tau + \imath_{X_M} \tau \implies d \mu_X = \imath_{X_M} \omega$$

For the equivariance, since

$$(\operatorname{Ad}_{g^{-1}} X)_{M}(p) = \frac{d}{dt} \Big|_{t=0} \exp(t \operatorname{Ad}_{g^{-1}} X) \cdot p$$

$$= \frac{d}{dt} \Big|_{t=0} g^{-1} \exp(tX) g \cdot p$$

$$= T_{p}g^{-1} X_{M}(g \cdot p)$$

$$\langle \mu(g \cdot p), X \rangle = \langle (T_{n}g^{-1})^{*} \eta, T_{g \cdot p} \pi X_{M}(g \cdot p) \rangle$$

$$= \langle \eta, T_{n}g^{-1} T_{g \cdot p} \pi X_{M}(g \cdot p) \rangle$$

$$= \langle \eta, T_{p} \pi T_{p}g^{-1} X_{M}(g \cdot p) \rangle$$

$$= \langle \eta, T_{p} \pi (\operatorname{Ad}_{g^{-1}} X)_{M}(p) \rangle$$

$$= \langle \mu(p), \operatorname{Ad}_{g^{-1}} X \rangle$$

$$= \langle \operatorname{Ad}_{g}^{*} \mu(p), X \rangle$$

Thus, $\mu(g \cdot p) = \operatorname{Ad}_{q}^{*} \mu(p)$.

Example 5 (Coadjoint Orbits). Considering the coadjoint action of a Lie group G on \mathfrak{g}^* , the orbit space $G \cdot \xi$ of $\xi \in \mathfrak{g}^*$ can be equipped with a symplectic form ω . Then the coadjoint action of G on $G \cdot \xi$ is Hamiltonian with the moment map μ that is the inclusion

$$\mu \colon G \cdot \xi \longrightarrow \mathfrak{g}^*$$

Proof. Firstly, for $q \cdot \xi \in G \cdot \xi$ and $h \in G$,

$$\mu(h \cdot (q \cdot \xi)) = h \cdot (q \cdot \xi) = h \cdot \mu(q \cdot \xi)$$

So it is clearly G-equivariant. And for $X, Y \in \mathfrak{g}$

$$\langle (d\mu_X)_{g \cdot \xi}, Y_{g \cdot \xi} \rangle = \frac{d}{dt} \Big|_{t=0} \mu_X \left(\exp tY \cdot g \cdot \xi \right)$$

$$= \frac{d}{dt} \Big|_{t=0} \left\langle g \cdot \xi, \operatorname{Ad}_{\exp(-tY)} X \right\rangle$$

$$= \left\langle g \cdot \xi, [X, Y] \right\rangle$$

$$= \omega_{g \cdot \xi} (X_{g \cdot \xi}, Y_{g \cdot \xi})$$

Therefore, $d\mu_X = i_{X_M}\omega$.

Example 6 (Vector Spaces). Let $M = \mathbb{C}^n$ with the standard inner product H. By above, the canonical symplectic form is given by

$$\omega = -\operatorname{Im} H$$

Let K = U(n) be the Lie group acting on M naturally. This action is Hamiltonian with the moment map $\mu \colon M \to \mathfrak{k}^*$ defined as

$$\mu_X(z) = \langle \mu(z), X \rangle := \frac{iH(Xz, z)}{2}$$

where $\mathfrak{k} = \mathfrak{u}(n)$ acts on M naturally.

Proof. For any $X \in \mathfrak{k}$ and $\xi \in T_z M = \mathbb{C}^n$,

$$\langle (d\mu_X)_z, \xi \rangle = \frac{d}{dt} \Big|_{t=0} \mu_X \left(\exp(t\xi) \cdot z \right)$$
$$= \frac{i}{2} \frac{d}{dt} \Big|_{t=0} H \left(X \exp(t\xi)z, \exp(t\xi)z \right)$$
$$= \frac{i}{2} \left(H(X\xi, z) + H(Xz, \xi) \right)$$

Firstly, $X \in \mathfrak{k} = \mathfrak{u}(n)$ so $X^{\dagger} = -X$.

$$H(X\xi, z) = -H(\xi, Xz) = -\overline{H(Xz, \xi)}$$

Therefore,

$$\langle (d\mu_X)_z, \xi \rangle = \frac{i}{2} \left(H(Xz, \xi) - \overline{H(Xz, \xi)} \right)$$
$$= -\operatorname{Im} H(Xz, \xi)$$
$$= \omega(Xz, \xi)$$

And since K acts M linearly,

$$X_M(z) = \frac{d}{dt}\Big|_{t=0} \exp(tX) \cdot z = \left(\frac{d}{dt}\Big|_{t=0} \exp(tX)\right) z = Xz$$

So $\langle (d\mu_X)_z, \xi \rangle = \omega(X_M(z), \xi)$ that is $d\mu_X = i_{X_M}\omega$. For the equivariance, let $A \in K$,

$$\langle \mu(Az), X \rangle = \frac{iH(XAz, Az)}{2}$$

$$= \frac{iH(A^{-1}XAz, z)}{2}$$

$$= \langle \mu(z), \operatorname{Ad}_{A^{-1}} X \rangle$$

$$= \langle \operatorname{Ad}_{A}^{*} \mu(z), X \rangle$$

Remark. In the general case, let M=V be a complex vector space and K be a compact Lie group. And K acts on V linearly i.e. there is Lie group homomorphism

$$\Pi \colon K \to GL(V)$$

and inducing a Lie group homomorphism

$$\pi \colon \mathfrak{k} \to \mathrm{End}(V)$$

where $\pi = T_e \Pi$. And $\Pi \circ \exp = \exp \circ \pi$. Moreover, there is a K-invariant inner product H on V i.e.

$$H(\Pi(k)v, \Pi(k)w) = H(v, w), \ H(\pi(X)v, w) = -H(v, \pi(X)w)$$

So $\Pi(K) \subset U(n)$ and $\pi(\mathfrak{k}) \subset \mathfrak{u}(n)$. Therefore, when V is equipped with then canonical symplectic form $\omega = -\operatorname{Im} H$, then the action of K on V is Hamiltonian with the moment map

$$\mu_X(v) = \langle \mu(v), X \rangle := \frac{iH(\pi(X)v, v)}{2}, \ \forall \ X \in \mathfrak{k}, v \in V$$

3.3 Symplectic Reduction and Projective Space

Let (M, ω) be a symplectic manifold and the action of G on M be Hamiltonian with the moment map $\mu \colon M \to \mathfrak{g}^*$. A point $m \in M$ of μ is called regular if

$$T_m\mu\colon T_mM\longrightarrow \mathfrak{g}^*$$

is surjective. And an element $\xi \in \mathfrak{g}^*$ is called a regular value if any point in $\mu^{-1}(\xi)$ is regular.

Proposition 1. A point $m \in M$ is regular if and only if $\mathfrak{g}_m = 0$.

Proof. Firstly, $\mathfrak{g}_m = \{X \in \mathfrak{g} \colon X_M(m) = 0\} = 0$ if and only is

$$X_M(m) = 0 \Rightarrow X = 0 \tag{*}$$

Since ω is nondegenerate, $X_M(m) = 0$ if and only if

$$\omega(X_M(m), v) = 0 \ \forall \ v \in T_m M \ \Leftrightarrow \ (d\mu_X)_m = 0$$

Let $i_X : \mathfrak{g}^* \to \mathbb{R}$ by $i_X(\xi) = \langle \xi, X \rangle$. Then

$$(d\mu_X)_m = (d(i_X \circ \mu))_m = i_X \circ T_m \mu$$

So $(d\mu_X)_m = 0$ if and only if $\text{Im } T_m \mu \subset \ker i_X$. Therefore, (*) is true if and only if $T_m \mu$ is surjective.

Then it can consider the quotient symplectic space by applying the moment map.

Theorem 2 (Marsden-Weinstein-Meyer). (M, ω) is a connected symplectic manifold and G is a Lie group and the action of G on M is Hamiltonian with a moment map $\mu \colon M \to \mathfrak{g}^*$. Let $\xi \in \mathfrak{g}^*$ be a regular value of μ and G act \mathfrak{g}^* by adjoint action. Suppose the restricted action of G_{ξ} on $\mu^{-1}(\xi)$ is proper and free so that

$$M^{\xi} = \mu^{-1}(\xi)/G_{\xi}$$

is a smooth manifold. Then there is a unique symplectic manifold ω^{ξ} s.t.

$$\pi^*\omega^\xi = i^*\omega$$

where $\pi \colon \mu^{-1}(\xi) \to M^{\xi}$ projection and $i \colon \mu^{-1}(\xi) \hookrightarrow M$ inclustion.

Remark. (M^{ξ}, ω^{ξ}) is called the symplectic reduction of the Hamiltonian action at ξ . In particular, if $0 \in \mathfrak{g}^*$ satisfies the above conditions, then because $G_0 = G$,

$$M/\!\!/G = \mu^{-1}(0)/G$$

In fact, the general case can be induced from this by applying the shifting trick.

Moreover, on the reduction space, it can also consider the Hamiltonian action. Suppose a Lie group G acts on a symplectic manifold (M, ω) and this action is Hamiltonian with the moment map $\mu \colon M \to \mathfrak{g}^*$. Let \tilde{H} be a closed subgroup of G s.t. the restricted actions of \tilde{H} on M is commutative with the action of G on M. By above example, the action of \tilde{H} on M is also Hamiltonian with the moment map

$$\tilde{\mu} \colon M \xrightarrow{\mu} \mathfrak{g}^* \xrightarrow{\tilde{i}^*} \tilde{\mathfrak{h}}^*$$

where $\tilde{i}: \mathfrak{g} \hookrightarrow \tilde{\mathfrak{h}}$ is the inclusion. Let $\xi \in \tilde{\mathfrak{h}}^*$ be a regular value of $\tilde{\mu}$, which satisfies the above condition. Then considering the symplectic reduction of $\tilde{\mu}$ at ξ , let

$$\tilde{M}^{\xi} = \tilde{\mu}^{-1}(\xi)/\tilde{H}_{\xi}$$

Assume $\tilde{\mu}^{-1}(\xi)$ is G-invariant. It can induce the action of G on $\tilde{\mu}^{-1}(\xi)$. Because the action of \tilde{H} on M is commutative with the action of G on M,

$$[g \cdot h \cdot m] = [g \cdot m], \ \forall \ g \in G, h \in \tilde{H}, m \in M$$

the induced action of G on \tilde{M}^{ξ} is well-defined. Moreover, this action is also Hamiltonian with the moment map $\mu' \colon \tilde{M}^{\xi} \to \mathfrak{g}^*$ induced by

$$\tilde{\mu}^{-1}(\xi) \stackrel{\iota}{\longleftrightarrow} M \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$$

Now, considering a special case, let $M = \mathbb{C}^n$ with the standard inner product H. Thus, $(M, \omega = -\operatorname{Im} H)$ is a symplectic manifold. And let G = U(n) acting on M. By above, it is a Hamiltonian action with the moment map

$$\langle \mu(z), X \rangle = \frac{iH(Xz, z)}{2}$$

Let

$$U(1) = \{z \in \mathbb{C} : |z| = 1\} \simeq \{zI_n : |z| = 1\} \subset U(n)$$

be a subgroup of U(n) and the Lie algebra $\mathfrak{u}(1) \simeq i\mathbb{R}$ and an element $1^* \in \mathfrak{u}(1)^*$ defined as

$$\langle 1^*, i \rangle := 1$$

Let $U(1) = \tilde{H}$ acting on M with the induced moment map $\tilde{\mu}$. Considering $\tilde{\mu}^{-1}(-1^*)$, let $z \in \tilde{\mu}^{-1}(-1^*)$, for any $X = it \in \mathfrak{u}(1) = i\mathbb{R}$,

$$\langle \tilde{\mu}(X), z \rangle = \frac{iH(Xz, z)}{2} = \frac{-tH(z, z)}{2} = \langle -1^*, X \rangle = -t$$

So

$$\tilde{\mu}^{-1}(-1^*) = \{ z \in M : H(z, z) = 2 \}$$

Then for any $z \in \tilde{\mu}^{-1}(-1^*)$, then $z \neq 0$ and thus

$$U(1)_z = \{I\} \implies \mathfrak{u}(1)_z = 0$$

Therefore, by the above proposition, any $z \in \tilde{\mu}^{-1}(-1^*)$ is regular, i.e. -1^* is a regular value. And since

$$\langle \operatorname{Ad}_z^*(-1^*), it \rangle = \langle -1^*, \operatorname{Ad}_{z^{-1}} it \rangle = \langle -1^*, it \rangle$$

 $U(1)_{-1^*} = U(1)$. Then it can see

$$\tilde{\mu}^{-1}(-1^*)/U(1) \simeq \mathbb{C}P^{n-1}$$

So there is a unique symplectic form ω_{FS} on $\mathbb{C}P^{n-1}$ s.t. $\pi^*\omega_{FS}=\tilde{i}^*\omega$, which is called the Fubini-Study form.

And since for any $g \in G = U(n)$ and $z \in \tilde{\mu}^{-1}(-1^*)$

$$H(g \cdot z, g \cdot z) = H(z, z) = 2$$

 $\tilde{\mu}^{-1}(-1^*)$ is G-invariant. And clearly the action of $\tilde{H}=U(1)$ and the action of U(n) on M are commutative. Therefore, the action of U(n) on $\mathbb{C}P^{n-1}$ is Hamiltonian with the moment map $\mu' \colon \mathbb{C}P^{n-1} \to \mathfrak{u}(n)^*$ defined as

$$\langle \mu'([z]), X \rangle = \langle \mu(z), X \rangle = \frac{iH(Xz, z)}{2}$$

for $[z] \in \mathbb{C}P^{n-1}$ i.e. H(z, z) = 2. Therefore,

$$\langle \mu'([z]), X \rangle = \frac{iH(Xz, z)}{H(z, z)}, \ \forall \ z \in \mathbb{C}^n \setminus \{0\}$$

Remark. Let V be an n-dimensional complex vector space and K be a compact Lie group such that K acts V linearly, i.e. there are a Lie group homomorphism and a Lie algebra homomorphism

$$\Pi: K \longrightarrow GL(V), \ \pi = T_e\Pi: \mathfrak{k} \longrightarrow End(V)$$

After equipping V with a K-invariant inner product H,

$$\Pi(K) \subset U(n), \ \pi(\mathfrak{k}) \subset \mathfrak{u}(n)$$

By above, with the symplectic form $\omega = -\operatorname{Im} H$, the action of K on V is Hamiltonian. Similarly, considering the symplectic reduction of U(1) at -1^* , the projective space $\mathbb{P}(V)$ is a symplectic manifold with the Fubini-Study form ω_{FS} . And the induced action of K on $\mathbb{P}(V)$ is Hamiltonian with the moment map $\mu \colon \mathbb{P}(V) \to \mathfrak{k}^*$,

$$\langle \mu([v]), X \rangle = \frac{iH(\pi(X)v, v)}{H(v, v)}, \ \forall \ v \in V \setminus \{0\}, \ X \in \mathfrak{k}$$

In fact, μ can be also viewed as on $V \setminus \{0\}$ for some cases.

3.4 Convexity Theorems

Considering commutative Hamiltonian actions i.e. the Lie group is commutative, the image of the moment map is a convex polytope.

Theorem 1 (Atiyah-Guillemin-Sternberg). Let (M, ω) be a connected and compact symplectic manifold and T be a commutative compact Lie group. Assume the action of T on M is Hamiltonian with the moment map $\mu \colon M \to \mathfrak{t}^*$. Let fixed point set

$$M^T = \{ m \in M : t \cdot m = m, \ \forall \ t \in T \}$$

Then $\mu(M^T)$ is a finite set in \mathfrak{t}^* and

$$\mu(M) = \operatorname{conv} \mu(M^T)$$

Remark. There is a variant version of the above theorem. Let T be a compact commutative and (M, J, ω) be a compact Kähler manifold such that T act M is Hamiltonianian and J-invariant. Let $T_{\mathbb{C}}$ be the complexification of T. Then

$$\mu\left(\overline{T_{\mathbb{C}}\cdot v}\right) = \operatorname{conv}\left\{\overline{T_{\mathbb{C}}\cdot v}\cap M^{T_{\mathbb{C}}}\right\}, \ \forall \ v\in M$$

Example 2. Let $T = (S^1)^n$ act on $\mathbb{C}P^{n-1}$ naturally i.e

$$(e^{i\theta_1}, \cdots, e^{i\theta_n}) \sim \begin{pmatrix} e^{i\theta_1} & & \\ & \ddots & \\ & & e^{i\theta_n} \end{pmatrix} \in U(n)$$

This action is Hamiltonian with the moment map μ as above example. T is a compact connected Lie group and $\mathbb{C}P^{n-1}$ is connected and compact. Therefore, $\mu(\mathbb{C}P^{n-1})$ is convex. Or more explicitly, for $X = (i\theta_1, \dots, i\theta_n) \in \mathfrak{t}$ and $z = (z_1, \dots, z_n) \in \mathbb{C}^n \setminus \{0\}$,

$$\langle \mu([z]), X \rangle = \frac{i \langle Xz, z \rangle}{|z|^2}$$
$$= -\frac{1}{|z|^2} \sum_{i=1}^n \theta_i |z_j|^2$$

Therefore, by equipping U(n) with the trace inner product,

$$\mu([z]) = \frac{i}{|z|^2} (|z_1|^2, \dots, |z_n|^2) \in \mathfrak{t}^*$$

If viewing $\mathfrak{t}^* \simeq \mathbb{R}^n$, then

$$\mu\left(\mathbb{C}P^{n-1}\right) = \left\{ (x_1, \cdots, x_n) \in \mathbb{R}^n \colon x_j \geqslant 0, \ \sum_{j=1}^n x_j = 1 \right\}$$

Example 3 (Horn's Theorem). Let $\operatorname{Herm}(n)$ be the set of all $n \times n$ Hermitian matrices and $\operatorname{Diag}(n)$ be the set of all diagonal matrices and $HD(n) = \operatorname{Diag}(n) \cap \operatorname{Herm}(n)$

$$\pi: \operatorname{Herm}(n) \longrightarrow HD(n) \simeq \mathbb{R}^n$$

$$[a_{ij}] \longmapsto [a_{ii}]$$

Then for $D \in HD(n)$ and $M = \{gDg^{-1} : g \in U(n)\},\$

$$\pi(M) = \operatorname{conv}\left\{\sigma D \sigma^{-1} \colon \sigma \in \mathcal{S}_n\right\}$$

Proof. Let G = U(n) then

$$\operatorname{Lie} U(n) = \mathfrak{u}(n) = i \operatorname{Herm}(n) \implies \mathfrak{u}^*(n) \simeq \operatorname{Herm}(n)$$

Let $T = U(n) \cap \text{Diag}(n)$ then $\mathfrak{t} = iHD(n)$ and $\mathfrak{t}^*(n) \simeq HD(n)$. Since the coadjoint action of U(n) on $\mathfrak{u}(n)^*$ is

$$\operatorname{Ad}_g^* X = gXg^{-1}$$

after viewing D as an element in $\mathfrak{u}^*(n)$, $M = U(n) \cdot D$ is the coadjoint orbit. And the action of U(n) on M is Hamiltonian with the moment map μ that is the inclusion $U(n) \cdot D \hookrightarrow \operatorname{Herm}(n)$. Then considering the restricted action of T on M, it is also Hamiltonian with the moment map $\tilde{\mu}$

$$\tilde{\mu} \colon M \stackrel{\mu}{\longleftarrow} \operatorname{Herm}(n) \stackrel{\pi}{\longrightarrow} HD(n)$$

Therefore, $\tilde{\mu} = \pi|_{M}$. And clearly

$$M^T = \left\{ \sigma D \sigma^{-1} \colon \sigma \in \mathcal{S}_n \right\}$$

Thus by AGS theorem,

$$\tilde{\mu}(M) = \pi(M) = \operatorname{conv}\left\{\sigma D \sigma^{-1} \colon \sigma \in \mathcal{S}_n\right\}$$

For the noncommutative case, it should consider the positive Weyl Chamber. For a compact Lie group K with Lie algebra \mathfrak{k} , if choosing a Cartan algebra \mathfrak{t} and a fundamental system of roots Δ , the closed positive Weyl chamber is in $(i\mathfrak{t})^*$ that does not interset the image of the moment map. Therefore, there are two methods to make them compatible. First, by defining the root space as

$$\mathfrak{t}_{\alpha} = (X \in \mathfrak{t} : [H, X] = i\alpha(H)X, \ \forall \ H \in \mathfrak{t})$$

It is well-defined since all eigenvalues of ad_H is pure imaginary. Then the closed positive Weyl chamber denoted by \mathfrak{t}_+^* is in \mathfrak{t}^* that is compatible with the image of μ . Second, by replacing μ by $i\mu$, then the image of μ is in $(i\mathfrak{t})^*$ that is compatible with the Weyl chamber. For example, considering the moment map on $\mathbb{P}(V)$

$$\langle \mu([v]), X \rangle = \frac{iH(Xv,v)}{H(v,v)} = \frac{H(v,(iX)v)}{H(v,v)} =: \langle i\mu([v]), iX \rangle \,, \,\, \forall \,\, X \in \mathfrak{k}$$

so if $\mu := i\mu$, for all $Y \in i\mathfrak{k}$,

$$\langle \mu([v]), Y \rangle = \frac{H(v, Yv)}{H(v, v)}$$

Theorem 4 (Kirwan). Let (M, ω) be a compact and connected symplectic manifold, K be a compact Lie group. The action of K on M is Hamiltonian with the moment map $\mu \colon M \to \mathfrak{k}^*$. Let \mathfrak{k}_+^* be a closed Weyl chamber of a Cartan subalgebra of \mathfrak{k} in \mathfrak{k} . Then

$$\mu(M) \cap \mathfrak{t}_+^*$$

is a convex polytope, called the moment polytope.

For the projective space, there is another statement by Guillemin and Sternberg in [GS84].

Theorem 5 (Guillemin-Sternberg). Let V be a finite-dimensional \mathbb{C} -vector space with an inner product H s.t. a compact Lie group K act V unitarily, i.e. there is a Lie group homomorphism $\Pi \colon K \to U(V)$. And let $\pi = T_e\Pi$.

Let $L \subset V \setminus \{0\}$ be a complex submanifold that is invariant for the action of K and \mathbb{C}^* . Let $M = L/\mathbb{C}^* \subset \mathbb{P}(V)$. Then the induced action of K on $\mathbb{P}(V)$ is Hamiltonian with the moment map $\mu \colon M \to \mathfrak{k}^*$

$$\langle \mu([v]), X \rangle = \frac{i H(\pi(X)v, v)}{H(v, v)}$$

Suppose M is connected. Then $\mu(M) \cap \mathfrak{t}_+^*$ is a convex polytope for a closed Weyl chamber \mathfrak{t}_+^* of a Cartan subalgebra \mathfrak{t} of \mathfrak{k} .

Remark. For a special case, let $G = K_{\mathbb{C}}$. Then for any $v \in V \setminus \{0\}$, $G \cdot v$ is a complex submanifold of V. Therefore,

$$\mathcal{P}_v = \mu(\overline{G \cdot [v]}) \cap \mathfrak{t}_+^*$$

is a convex polytope. And since $\mu([v]) = \mu(v)$, $\mathcal{P}_v = \mu(\overline{G \cdot v}) \cap \mathfrak{t}_+^*$

Let $G = GL(n, \mathbb{C})$ (or $SL(n, \mathbb{C})$) and K = U(n) (or $SL(n, \mathbb{C})$), so $G = K_{\mathbb{C}}$. And let U(n) act on some vector space linearly (may not be standard) s.t. it is Hamiltonian with moment map $\mu = i\mu$). Choosing the root system and positive Weyl chamber as the above example, then

$$\mathcal{P}_v = \mu(\overline{G \cdot v}) \cap \mathfrak{t}_{\perp}^* = \overline{\{\operatorname{spec}(\mu(w)) : w \in G \cdot v\}}$$

Example 6 (Horn's Problem). Let $G = GL(n, \mathbb{C})^3$ act on $V = M(n, \mathbb{C})^{\oplus 2}$ by

$$(g_1, g_2, g_3) \cdot (X, Y) := (g_1 X g_3^{-1}, g_2 Y g_3^{-1})$$

Then the induced action on the projective space is Hamiltonian with the moment map is

$$\mu(X,Y) = \frac{\left(XX^{\dagger}, YY^{\dagger}, -X^{\dagger}X - Y^{\dagger}Y\right)}{\|X\|^2 + \|Y\|^2} \tag{*}$$

with respect to the trace inner product and the moment polytope is

$$\mathcal{P} = \{(\operatorname{spec}(A), \operatorname{spec}(B), \operatorname{spec}(-A - B)) : A, B \geqslant 0, \operatorname{tr}(A) + \operatorname{tr}(B) = 1\}$$

Proof. Firstly, let U(n) act $M(n, \mathbb{C})$ as $g \cdot A := gA$. Clearly, the trace inner product is U(n)-invariant. Therefore, by above this action is Hamiltonian with the moment map (defined as $i\mu$)

$$\langle \mu'(A), X \rangle = \operatorname{tr}\left(X^{\dagger}\mu'(A)\right) = \frac{\langle A, XA \rangle}{2} = \frac{\operatorname{tr}(A^{\dagger}X^{\dagger}A)}{2} \implies \mu'(A) = \frac{AA^{\dagger}}{2}$$

Similarly, when U(n) act $M(n,\mathbb{C})$ as $g\cdot A:=Ag^{-1}$, the moment map is

$$\mu''(A) = -\frac{A^{\dagger}A}{2}$$

Then by applying the operations of moment maps talked in above,

$$\tilde{\mu}(X,Y) = \frac{\left(XX^{\dagger}, YY^{\dagger}, -X^{\dagger}X - Y^{\dagger}Y\right)}{2}$$

So the moment map of the induced action on the projective space is (*).

4 Kempf-Ness Theorem and Stability

In this section, (M, J, ω) denotes a compact Kähler manifold without boundary, such as $\mathbb{P}(V)$ with the Fubini-Study form and the nature complex structure. K is a compact Lie group acting on M such that this action preserves J and ω , like any compact Lie group acting on $\mathbb{P}(V)$. Moreover, let this action be Hamiltonian with the moment map μ .

Let $G = K_{\mathbb{C}}$ a complexified Lie group of K. So the action of K on M can be extended a holomorphic action of G on M. And for these two actions. define

$$L_m \colon \mathfrak{k} \to T_m M, \ L_m^c \colon \mathfrak{g} \to T_m M$$

as for any $X \in \mathfrak{k}$ and $Z = X + iY \in \mathfrak{g}$,

$$L_m X = X_M(m), \ L_m^c Z = Z_M(m) = L_m X + J L_m Y$$

Equipping K with a bi-invariant Riemannian metric, $\mathfrak{k} \simeq \mathfrak{k}^*$ and so the moment map μ can be viewed as $\mu \colon M \to \mathfrak{k}$. Also equipping M with the compatible Riemannian metric $\langle \cdot, \cdot \rangle = \omega(\cdot, J \cdot)$, $T^*M \simeq TM$. Then it can see for any $m \in M$ and $X \in \mathfrak{k}$,

$$L_m^* = (d\mu)_m J, \ (d\mu)_m^* = JL_m, \ (d\mu)_m L_m X = -[\mu(m), X]$$

where the third equation is by $\langle \mu(m), [X,Y] \rangle = \omega(X_M(m), Y_M(m))$ that is by differentiating the equation

$$\langle \mu(m), \operatorname{Ad}_{-\exp(tX)} Y \rangle = \langle \operatorname{Ad}^*_{\exp(tX)} \mu(m), Y \rangle = \langle \mu(\exp(tX) \cdot m), Y \rangle$$

And by above, let G/K equipped with the G-invariant Riemannian s.t. it becomes a complete, connected, and simply connected Riemannian metric and let ∇ be the Levi-Civita connection.

4.1 Kempf-Ness Function

Lemma 1. Let $x_0, x_1 \in \mu^{-1}(0)$.

$$x_1 \in G \cdot x_0 \implies x_1 \in K \cdot x_0$$

In fact, if $x_1 = \exp(iX)k \cdot x_0$, then $k \cdot x_0 = x_1$ and $X_M(x_1) = 0$.

Proof. Assume $x_1 = \exp(iX)k \cdot x_0$. Let $x(t) = \exp(itX)k \cdot x_0$. Then

$$x(0) = kx_0, \ x(1) = x_1$$

 $\dot{x}(t) = JX_M(x(t)) = JL_xX$

So by above identities

$$\frac{d}{dt} \left| \langle \mu(x(t)), X \rangle = \langle (d\mu)_x \dot{x}, X \rangle = \omega(L_x X, \dot{x}) = \omega(L_x X, J L_x X) = \|L_x X\|^2 \geqslant 0$$

Since $\mu(x_0) = \mu(x_1) = 0$,

$$\frac{d}{dt} \left| \langle \mu(x(t)), X \rangle = \left\| L_{x(t)} X \right\|^2 \equiv 0 \implies \dot{x}(t) \equiv 0$$

Therefore, $X_M(x_1) = L_{x_1}X = 0$ and $kx_0 = x_1$.

Corollary 2. Let $x \in \mu^{-1}(0)$ and $K_x^c = (K_x)_{\mathbb{C}}$ be the complexification of K_x . Then

$$K_x^c = \{\exp(iX)k \colon k \in K_x, \ X \in \ker L_x\}$$

Lemma 3. Let $x \in \mu^{-1}(0)$. The following statements are equivalent.

- (1) $(d\mu)_x \colon T_x M \to \mathfrak{k}$ is surjective.
- (2) $L_x : \mathfrak{k} \to T_x M$ is injective.
- (3) $L_x^c : \mathfrak{g} \to T_x M$ is injective.

Define the moment squared function as

$$\begin{array}{cccc} f \colon & M & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{2} \left\| \mu(x) \right\|^2 \end{array}$$

For any $x \in M$ and $X \in T_xM$,

$$\langle \nabla f, X \rangle = \langle (d\mu)_x X, \mu(x) \rangle = \omega \left(L_x \mu(x), X \right) = \langle J L_x \mu(x), X \rangle$$

Therefore, the gradient of f is $\nabla f = JL_x\mu(x)$.

Then considering the negative gradient flow $x \colon \mathbb{R} \to M$ of f,

$$\dot{x}(t) = -JL_x\mu(x), \ x(0) = x_0 \tag{\diamondsuit}$$

Moreover, if the $g: \mathbb{R} \to G$ satisfies the ODE

$$q(t)^{-1}\dot{q}(t) = i\mu(x(t)), \ q(0) = e$$

then $x(t) = g(t)^{-1} \cdot x_0$ is a solution of \diamondsuit . And thus $x(t) \in G \cdot x_0$.

Theorem 4. Let $x_0 \in M$ and $x : \mathbb{R} \to M$ be a solution of \diamondsuit . Then

$$x_{\infty} = \lim_{t \to \infty} x(t)$$

exists and $L_{x_{\infty}}\mu(x_{\infty})=0$ i.e. x_{∞} is a critical point of f. Moreover, there are positive C, c, T, ε and $\frac{1}{2} < \alpha < 1$ s.t. for all t > T,

$$d(x(t), x_{\infty}) \leqslant \int_{t}^{\infty} |\dot{x}(s)| ds$$

$$\leqslant \frac{C}{1 - \alpha} (f(x(t)) - f(x_{\infty}))^{1 - \alpha}$$

$$\leqslant \frac{c}{(t - T)^{\varepsilon}}$$

Theorem 5 (Kempf-Ness Function). Fix $x \in M$, then there is a unique smooth function $\Phi_x \colon G \to \mathbb{R}$ s.t. for any $g \in G$ and $v \in T_gG$ and $k \in K$,

$$(d\Phi_x)_g(v) = -\left\langle \mu(g^{-1} \cdot x), \operatorname{Im}(T_e L_{g^{-1}} v) \right\rangle, \ \Phi_x(k) = 0$$

and Φ_x is K-invariant.

Remark. This Φ_x is called the lifted Kempf-Ness function. And since it is K-invariant, the induced function

$$\Phi_x \colon G/K \to \mathbb{R}$$

is called the Kempf-Ness function.

Skech of Proof. Define $v_x \in Vect(G)$ and 1-form α_x on G,

$$v_x(g) = -T_e L_q i \mu(g^{-1} \cdot x), \ \alpha_x(g)(v) = -\langle \mu(g^{-1} \cdot x), \operatorname{Im}(T_e L_{q^{-1}} v) \rangle$$

for any $g \in G$ and $v \in T_gG$. And it can see

$$\alpha_x(g)(v) = \langle v_x, v \rangle$$

Let $\psi_x \colon G \to G \cdot x$ by $\psi_x(g) = g^{-1} \cdot x$. Then

$$T_q \psi_x(v_x(g)) = \nabla f(\psi_x(g))$$

There exists a $\Phi_x \colon G \to \mathbb{R}$ s.t.

$$d\Phi_x = \alpha_x, \ \Phi_x|_K = 0$$

and thus $\nabla \Phi_x = v_x$ and $T_g \psi_x(\nabla \Phi_x) = \nabla f(\psi_x(g))$. Moreover, for a fixed $g \in G$, let $\Phi_x|_{Kg} : Kg \to \mathbb{R}$. Since for any $v = T_e L_g X$ where $X \in \mathfrak{k}$,

$$\alpha_x(g)(v) = -\langle \mu(g^{-1} \cdot x), \operatorname{Im}(X) \rangle = 0 \implies d \Phi_x|_{K_g} = 0$$

 Φ_x is invariant on Kg so Φ_x is K-invariant.

Theorem 6 (Properties). Let N = G/K and the Kempf-Ness function $\Phi_x \colon N \to \mathbb{R}$.

- (1) With the Riemannian metric defined as above on N, Φ_x is geodesically convex.
- (2) The critical sets of Φ_x is a closed and connected submanifold of N, given by

$$\operatorname{Crit} \Phi_x = \left\{ [g] \in N \colon \mu \left(g^{-1} \cdot x \right) = 0 \right\}$$

- (3) If Crit $\Phi_x \neq \emptyset$, then $|\Phi_x|$ attaches its minima and every negative gradient flow of Φ_x converges exponentially to a critical point.
- (4) Let $g: \mathbb{R} \to G$ be a smooth curve and $\gamma = \pi \circ g: \mathbb{R} \to N$. Then γ is a negative gradient flow of Φ_x if and only if g(t) satisfies

$$\operatorname{Im}\left(g^{-1}\dot{g}\right) = \mu\left(g^{-1}\cdot x\right)$$

(5) If Crit $\Phi_x \neq \emptyset$ and $\{g_n\} \subset G$ s.t. $\sup_n \Phi_x([g_n]) < \infty$, then there is a sequence (h_n) in the identity component of G_x s.t. $(h_n g_n)$ has a convergent subsequence.

Example 7. Let V be an n-dimensional complex vector space with an inner product s.t. the action of K on V is unitary and let the action of $G = K_{\mathbb{C}}$ on V be the extension. Therefore, assume $K \subset U(n)$ and $G \subset GL(n,\mathbb{C})$. As above, the induced action of K on $\mathbb{P}(V)$ is Hamiltonian with the moment map

$$\langle \mu([v]), X \rangle = \frac{i \langle X \cdot v, v \rangle}{\|v\|^2}, \ \forall \ v \in V \setminus \{0\}, \ X \in \mathfrak{k}$$

also extending the action of G on $\mathbb{P}(V)$. Then the lifted Kempf-Ness function $\Phi_{[v]} \colon G \to \mathbb{R}$ is

$$\Phi_{[v]}(g) = \frac{1}{2} \left(\log \|g^{-1} \cdot v\|^2 - \log \|v\|^2 \right)$$

Proof. Clearly, $\Phi_{[v]}(k) = 0$ for all $k \in K$ and $\Phi_{[v]}$ is K-invariant Let $g \in G$ and $X \in T_gG$. Let $\varphi(t)$ be the integral curve of v starting at g then

$$\frac{d}{dt}\Big|_{t=0} \varphi(t)^{-1} \varphi(t) = 0 \implies \frac{d}{dt}\Big|_{t=0} \varphi(t)^{-1} = -g^{-1} X g^{-1}$$

Therefore,

$$(d\Phi_{[v]})_{g} X = \frac{\langle -g^{-1}Xg^{-1} \cdot v, g^{-1} \cdot v \rangle}{\|g^{-1} \cdot v\|^{2}}$$

$$= -\frac{\langle i \operatorname{Im}(g^{-1}X) g^{-1} \cdot v, g^{-1} \cdot v \rangle}{\|g^{-1} \cdot v\|^{2}} - \frac{\langle \operatorname{Re}(g^{-1}X) g^{-1} \cdot v, g^{-1} \cdot v \rangle}{\|g^{-1} \cdot v\|^{2}}$$

$$= -\frac{\langle i \operatorname{Im}(g^{-1}X) g^{-1} \cdot v, g^{-1} \cdot v \rangle}{\|g^{-1} \cdot v\|^{2}}$$

$$= -\langle \mu(g^{-1} \cdot [v]), \operatorname{Im}(g^{-1}X) \rangle$$

where the third equality is by $\left(d\Phi_{[v]}\right)_g Y = 0$ whenever Y = gZ for some $Z \in \mathfrak{k}$.

Remark. For convenience, let the lifted Kemf-Ness function $F_{[v]}$ be defined as

$$F_{[v]}(g) = \frac{1}{2} \log \|g \cdot v\|^2$$

In fact, $F_{[v]}(g) = \Phi_{[v]}(g^{-1}) + c$. The properties of $\Phi_{[v]}$ are also valid for $F_{[v]}$. Moreover, it can see for $X \in i\mathfrak{k}$,

$$(dF_{[v]})_e X = \langle \mu([v]), X \rangle$$

And if let $F_{[v]}: G/K \to \mathbb{R}$, then the geodesic of X starting at [e] is $\pi(\exp(itX))$.

$$\left. \frac{d}{dt} \right|_{t=0} F_{[v]} \left(\pi(\exp(itX)) \right) = \left. \frac{d}{dt} \right|_{t=0} F_{[v]} \left(\exp(itX) \right) = \left\langle \mu([v]), X \right\rangle$$

If let $\mu = i\mu$ and $H = iX \in i\mathfrak{k}$ and lifting μ from on $\mathbb{P}(V)$ to on V, for $F_v(g) = \frac{1}{2} \log \|g \cdot v\|^2$

$$\frac{d}{dt}\Big|_{t=0} F_v\left(\exp(tH)\right) = \langle \mu(v), H \rangle$$

It is the definition of moment map used in [Bür+19].

4.2 More Properties of Moment Map

In the next subsections, let $K \subset U(n)$ and $G = K_{\mathbb{C}} \subset GL(n,\mathbb{C})$ be matrix groups. Let

$$\mathscr{T}^c := \left\{ \zeta \in \mathfrak{g} \backslash \left\{ 0 \right\} : \ \exists \ g \in G, \ g \zeta g^{-1} \in \mathfrak{k} \right\}$$

Then the μ -weight of $(x,\zeta) \in M \times \mathcal{T}^c$ is

$$w_{\mu}(x,\zeta) := \lim_{t \to \infty} \langle \mu(\exp(it\zeta) \cdot x), \operatorname{Re}(\zeta) \rangle$$

Remark. The existence of w is because for any $x \in M$ and $\zeta \in \mathcal{T}^c$,

$$x^{\pm} = \lim_{t \to \pm \infty} \exp(it\zeta) \cdot x$$

exist by the Morse theory. Moreover, $\zeta_M(x^{\pm})=0$. In particular, if $\zeta=X\in\mathfrak{k}$, then

$$w_{\mu}(x, X) = \lim_{t \to \infty} \frac{\Phi_x(\exp(-itX))}{t}$$

where Φ_x is the lifted Kempf-Ness function.

By applying the properties of μ -weight, it can prove many important results related to the moment map.

Theorem 1. Let $x \in M$ and $\zeta = X + iY \in \mathscr{T}^c$ s.t. $\zeta_M(x) = 0$. Then $\langle \mu(x), Y \rangle = 0$, ||X|| > ||Y|| and

$$\frac{\langle \mu(x), X \rangle^{2}}{\|X\|^{2} - \|Y\|^{2}} \leqslant \|\mu(g \cdot x)\|^{2}, \ \forall \ g \in G$$

Remark. More generally, for any $x \in M$ and $X \in \mathfrak{g} \setminus \{0\}$ and $g \in G$,

$$\frac{-w_{\mu}(x,X)}{\|X\|} \leqslant \|\mu(g \cdot x)\|$$

Corollary 2. Let $x_0 \in M$ be a critical point of the moment squared function f i.e. $L_{x_0}\mu(x_0) = 0$. Then

$$\|\mu(x_0)\| \le \|\mu(g \cdot x_0)\|, \ \forall \ g \in G$$

In the above mention, if $x_0, x_1 \in \mu^{-1}(0)$, then $x_1 \in G \cdot x_0$ implies $x_1 \in K \cdot x_0$. This statement can be more general.

Theorem 3. Let x_0 and x_1 be critical points of the moment squared function f. Then

$$x_1 \in G \cdot x_0 \implies x_1 \in K \cdot x_0$$

Theorem 4. Let $x_0 \in M$ and $x \colon \mathbb{R} \to M$ be the solution of \diamondsuit with $x_\infty = \lim_{t \to \infty} x(t)$. Then

$$\|\mu(x_{\infty})\| = \inf_{g \in G} \|\mu(g \cdot x_0)\|$$

Remark. Note that x_{∞} is a critical point of the moment squared function and $x_{\infty} \in \overline{G \cdot x_0}$. And the G-orbit of x_0 determines the G-orbit of x_{∞} that is, in fact, the K-orbit of x_{∞} .

More generally, the infimum points are in the same K-orbit.

Theorem 5. Let $x_0 \in M$ and $m = \inf_{g \in G} \|\mu(g \cdot x_0)\|$. Then

$$x, y \in \overline{G \cdot x_0} \text{ s.t. } \mu(x) = \mu(y) = m \implies y = K \cdot x$$

Remark. It shows that for any $x \in G \cdot x_0$ s.t. $\|\mu x\| = m$, x is a critical point of the moment squared function f and is a limit point of the negative gradient flow of f starting at some point in $G \cdot x_0$.

The infimum of the norm of moment map along the G-orbits can be characterized. For $x \in \text{Crit}(f)$, let

$$W^s(K \cdot x) = \left\{ y_0 \in M \colon y(t) \text{ of } \diamondsuit \text{ starting at } y_0 \text{ s.t. } \lim_{t \to \infty} y(t) \in K \cdot x \right\}$$

Corollary 6. The following statements holds.

- (1) $M = \bigcup_{x \in Crit(f)} W^s(K \cdot x)$.
- (2) For $x \in Crit(f)$ and $y_0 \in M$,

$$y_0 \in W^s(K \cdot x) \Leftrightarrow x \in \overline{G \cdot y_0}, \|\mu(x)\| = \inf_{g \in G} \|\mu(g \cdot y_0)\|$$

(3) For any $x \in \text{Crit}(f)$, $W^s(K \cdot x)$ is the union of G-orbits.

4.3 Stability

Definition 1. An element $x \in M$ is called

- (1) μ -unstable if $\overline{G \cdot x} \cap \mu^{-1}(0) = \emptyset$.
- (2) μ -semistable if $\overline{G \cdot x} \cap \mu^{-1}(0) \neq \emptyset$.
- (3) μ -polystable if $G \cdot x \cap \mu^{-1}(0) \neq \emptyset$.
- (4) μ -stable if $G \cdot x \cap \mu^{-1}(0) \neq \emptyset$ and G_x is discrete.

And let M^{us} , M^{ss} , M^{ps} and M^{s} be the corresponding sets.

Firstly, these points can be characterized by using the negative gradient flow of moment squared map.

Theorem 2. Let $x_0 \in M$ and x(t) be the solution of \diamondsuit and $x_\infty = \lim_{t \to \infty} x(t)$.

- (1) $x_0 \in M^{ss}$ if and only if $\mu(x_\infty) = 0$.
- (2) $x_0 \in M^{ps}$ if and only if $\mu(x_\infty) = 0$ and $x_\infty \in G \cdot x_0$.
- (3) $x_0 \in M^s$ if and only if G_{x_∞} is discrete.

And M^{ss} and M^{s} are open in M.

Also, the Kempf-Ness function can be applied to characterize the stability.

Theorem 3. Let $x \in M$ and Φ_x be the Kempf-Ness function.

- (1) $x \in M^{ss}$ if and only if Φ_x is bounded below.
- (2) $x \in M^{ps}$ if and only if Φ_x has a critical point.
- (3) $x \in M^s$ if and only if Φ_x is bounded below and proper.

Now considering a special case related to the geometric invariant theory, let $G = K_{\mathbb{C}} \subset GL(n,\mathbb{C})$ act a complex vector space V with a K-invariant inner product. Also, let the induced action of K and G act on $\mathbb{P}(V)$ with the moment map μ as in above mention.

Definition 4. Let $v \in V \setminus \{0\}$.

(1) v is called unstable if $0 \in \overline{G \cdot v}$.

- (2) v is called semistable if $0 \notin \overline{G \cdot v}$.
- (3) v is called polystable if $G \cdot v = \overline{G \cdot v}$.
- (4) v is called stable if $G \cdot v = \overline{G \cdot v}$ and G_v is discrete.

Theorem 5 (Kempf-Ness). Let $x = [v] \in \mathbb{P}(V)$. Considering G acting on V and the Hamiltonian action of K on $\mathbb{P}(V)$ and the induced action of G on $\mathbb{P}(V)$, then

- (1) v is unstable if and only if x = [v] is μ -unstable.
- (2) v is semistable if and only if x = [v] is μ -semistable.
- (3) v is polystable if and only if x = [v] is μ -polystable.
- (4) v is stable if and only if x = [v] is μ -stable.

Remark. Therefore, by applying the above results

$$0 \notin \overline{G \cdot v} \iff 0 \notin \overline{G \cdot x} \iff \mu(x_{\infty}) = 0 \iff \Phi_x \text{ bounded below}$$

5 Scaling Problem and Examples

5.1 Invariant Theory

Let $G = K_{\mathbb{C}}$ be a reductive Lie group acting on an *n*-dimensional complex space V with a K-invariant inner product, and thus assume $K \subset U(n)$ and $G \subset GL(n, \mathbb{C})$.

The invariant theory is to consider the induced action of G on the polynomial ring $\mathbb{C}[x_1,\dots,x_n]$. Let (x_1,\dots,x_n) be the coordinate of V and denote the polynomial ring by $\mathbb{C}[V]$. The action of G on $\mathbb{C}[V]$ is defined as

$$g \cdot f(x_1, \dots, x_n) \mapsto h(x_1, \dots, x_n) := f\left(g^{-1} \cdot (x_1, \dots, x_n)\right)$$

Then the invariant polynomial ring is

$$\mathbb{C}[V]^G = \{ f \in \mathbb{C}[V] \colon g \cdot f = f, \ \forall \ g \in G \}$$

that is a subalgebra of $\mathbb{C}[V]$. Moreover, by Hilbert, $\mathbb{C}[V]^G$ is a finitely generated subalgebra i.e. there are polynomials $f_1, \dots, f_l \in \mathbb{C}[V]$ s.t.

$$\mathbb{C}[V]^G = \mathbb{C}[f_1, \cdots, f_l] := \{ p(f_1, \cdots, f_l) : p \in \mathbb{C}[y_1, \cdots, y_l] \}$$

The invariant polynomials can be used to separate the orbit closure of action fo G on V. In fact, for any $v, w \in V$,

$$\overline{G \cdot v} \cap \overline{G \cdot w} \neq \emptyset \iff f(v) = f(w) \ \forall \ f \in \mathbb{C}[V]^G$$

Let the set, called null cone, be defined as

$$\mathcal{N} := \left\{ v \in V \colon 0 \in \overline{G \cdot v} \right\}$$

i.e. the set of all unstable points. By above,

$$\mathcal{N} = \{ v \in V : f(v) = 0, \ \forall \ f \in \mathbb{C}[V]^G \} = \{ v \in V : f_1(v) = \dots = f_l(v) = 0 \}$$

Theorem 1 (Hilbert-Mumford Criterion). For any $v \in V$,

$$v \in \mathcal{N} \iff \exists \ \lambda \colon \mathbb{C}^* \to G \ algebriac \ homomorphism \ s.t. \ \lim_{t \to \infty} \lambda(t) \cdot v = 0$$

Remark. This λ is called a one-parameter subgroup (PSG). For some special cases, the 1-PSG is explicit.

(1) If $G = (\mathbb{C}^*)^n$, any 1-PSG has the form

$$\lambda(t) = (t^{\alpha_1}, \cdots, t^{\alpha_n})$$

for some $\alpha_1, \dots, \alpha_n \in \mathbb{Z}$.

(2) If $G = GL(n, \mathbb{C})$ or some matrix Lie group, any 1-PSG has the form

$$\lambda(t) = S \operatorname{diag}(t^{\alpha_1}, \cdots, t^{\alpha_n}) S^{-1}$$

for some $\alpha_1, \dots, \alpha_n \in \mathbb{Z}$ and $S \in GL(n, \mathbb{C})$.

Example 2. Let $G = \mathcal{S}_n$ be the symmetry group acting on V. Then

$$\mathbb{C}[V]^{\mathcal{S}_n} = \mathbb{C}[e_1, \cdots, e_n]$$

where e_k is called k-th elementary symmetric polynomials given by

$$e_k(x_1, \cdots, x_n) = \sum_{1 \leqslant i_1 < \cdots i_k \leqslant n} x_{i_1} \cdots x_{i_k}$$

the $\mathcal{N} = \{0\}.$

Example 3. Let $G = GL(n, \mathbb{C})$ act on $V = M(n, \mathbb{C})$ by conjugtion, $g \cdot A = gAg^{-1}$. Considering the 1-PSG

$$\lambda(t) = \left(\begin{array}{ccc} t^{\alpha_1} & & \\ & \ddots & \\ & & t^{\alpha_n} \end{array}\right)$$

with integers $\alpha_1 \ge \cdots \ge \alpha_n$. In fact, any 1-PSG is conjugate to this form. Then for any $A = [a_{kj}] \in V$,

$$\lambda(t) \cdot A = \lambda(t) A \lambda(t)^{-1} = \left[t^{\alpha_k - \alpha_j} a_{kj} \right]$$

Therefore,

$$\lim_{t\to\infty} \lambda(t)\cdot A = 0 \ \Leftrightarrow \ A \text{ is strictly upper triangular}$$

Then by Hilbert-Mumford criterion.

 $A \in \mathcal{N} \Leftrightarrow A$ is conjugate to a strictly upper triangular. $\Leftrightarrow A$ is nilpotent.

Let $X = [x_{ij}]$. Then X is nilpotent if and only if

$$\det(tI - X) = t^n - f_1(\mathbf{x})t^{n-1} + \dots + (-1)^n f_n(\mathbf{x}) = t^n$$

where $\mathbf{x} = (x_{11}, \dots, x_{nn})$. This equivalent to $f_1(\mathbf{x}) = \dots = f_n(\mathbf{x}) = 0$. Therefore,

$$\mathbb{C}[V]^G = \mathbb{C}[f_1, \cdots, f_n]$$

Example 4. Let $G = SL(n, \mathbb{C}) \times SL(n, \mathbb{C})$ act on $V = M(n, \mathbb{C})$ by

$$(A, B) \cdot H := AHB$$

Firstly, if $H \in \mathcal{N}$, then there are $\{A_k\}$ and $\{B_k\}$ in $SL(n,\mathbb{C})$ s.t. $A_kHB_k \to 0$. By the continuity of det,

$$\det(A_k H B_k) = \det(A_k) \det(H) \det(B_k) = \det H \to 0$$

So det H=0 and H is singular. Conversely, if H is singular, then there is a $S\in GL(n,\mathbb{C})$ s.t. the last row of $S^{-1}H$ is 0. So if let the 1-PSG

$$\lambda(t) = \left(S \operatorname{diag}\left(t, \cdots, t, t^{-n-1}\right) S^{-1}, I \right)$$

then $\lambda(t) \cdot H \to 0$. By Hilbert-Mumford criterion, $H \in \mathcal{N}$. Therefore, $H \in \mathcal{N}$ if and only if H is singular. And the invariant polynomial ring is

$$\mathbb{C}[V]^G = \langle \det X \rangle$$

where $X = [x_{ij}]$ are variables.

The null cone problem is given $v \in V$, determine if $0 \in \mathcal{N}$ or if v is unstable for the action of G on V. The dual problem is that given $v \in V$, determine if v is semistable. Then by Kempf-Ness theorem, when considering the Hamiltonian action of K on $\mathbb{P}(V)$ with the moment map μ and the induced action of G on $\mathbb{P}(V)$, it is equivalent to determine if v is μ -semistable, i.e if

$$\exists [w] \in \overline{G \cdot [v]} \text{ s.t. } \mu([w]) = 0$$

or simply, if there is a $w \in \overline{G \cdot v}$ s.t. $\mu(w) = 0$. It is called the scaling problem.

5.2 Matrix Scaling

Let $G = ST(n) \times ST(n)$ act on $V = M(n, \mathbb{C})$ by the left-right action i.e.

$$(A, B) \cdot H = AHB$$

where

$$ST(n) = \left\{ \begin{pmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{pmatrix} : z_1, \dots, z_n \in \mathbb{C}^*, \prod_{j=1}^n z_j = 1 \right\}$$

(1) **Invarian Theory:** Any 1-PSG $\lambda : \mathbb{C}^* \to G$ has the form

$$\lambda(t) = (\operatorname{diag}(t^{\alpha_1}, \dots, t^{\alpha_n}), \operatorname{diag}(t^{\beta_1}, \dots, t^{\beta_n}))$$

where $\alpha_j, \beta_j \in \mathbb{Z}$ for any j and

$$\sum_{j=1}^{n} \alpha_j = \sum_{j=1}^{n} \beta_j = 0$$

For any $H = [h_{kj}],$

$$\lambda(t) \cdot H = \left[t^{\alpha_k + \beta_j} h_{kj} \right]$$

Therefore, by Hilbert-Mumford criterion,

$$H \in \mathcal{N} \iff \exists \alpha_1, \cdots, \alpha_n, \beta_1, \cdots, \beta_n \in \mathbb{Z}$$

$$\sum_{j=1}^n \alpha_j = \sum_{j=1}^n \beta_j = 0$$
s.t. $\alpha_k + \beta_j > 0, \ \forall \ (k, j) \in \text{supp } H$

$$\Leftrightarrow \text{supp } H \text{ has no perfect matching}$$

where the bipartite graph supp $H = \{(k, j) \in [n] \times [n] : h_{kj} \neq 0\}$. And thus

$$\mathbb{C}[V]^G = \langle x_{1\sigma(1)} \cdots x_{n\sigma(n)} \colon \sigma \in \mathcal{S}_n \rangle$$

where $X = [x_{ij}]$ are variables.

(2) **Geometric Invariant Theory:** ST(n) is a commutative Lie group with Lie algebra $\mathfrak{st}(n)$, where

$$\mathfrak{st}(n) = \left\{ \begin{pmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{pmatrix} : z_1, \dots, z_n \in \mathbb{C}, \ \sum_{j=1}^n z_j = 0 \right\}$$

and let

$$\mathfrak{t} = \left\{ \begin{pmatrix} i\theta_1 & & \\ & \ddots & \\ & & i\theta_n \end{pmatrix} : \theta_1, \cdots, \theta_n \in \mathbb{R}, \sum_{j=1}^n \theta_j = 0 \right\}$$

It can see $\mathfrak{st}(n) = \mathfrak{t}_{\mathbb{C}}$. Moreover, if let

$$T(n) = \left\{ \begin{pmatrix} e^{i\theta_1} & & \\ & \ddots & \\ & & e^{i\theta_n} \end{pmatrix} : \theta_1, \dots, \theta_n \in \mathbb{R}, \sum_{j=1}^n \theta_j = 0 \right\}$$

then $\operatorname{Lie} T(n) = \mathfrak{t}$ and T(n) is a compact Lie group. Therefore, $ST(n) = T(n)_{\mathbb{C}}$ is a reductive Lie group. And if let $K = T(n) \times T(n)$ be the compact Lie group with the Lie algebra $\mathfrak{t} = \mathfrak{t} \times \mathfrak{t}$, then $G = K_{\mathbb{C}}$ is a reductive Lie group with Lie algebra $\mathfrak{st}(n) \times \mathfrak{st}(n)$. Moreover, the trace inner product on \mathfrak{t} is a bi-invariant Riemannian metric so it is also valid on $\mathfrak{t} \times \mathfrak{t}$.

Equipping $V = M(n, \mathbb{C})$ with the trace inner product, it is clear that the action of K on V is invriant for this inner product. And thus the action of K on V is Hamiltonian with the moment map $\hat{\mu} \colon V \to (\mathfrak{t} \times \mathfrak{t})^*$. Firstly, considering the action of T(n) on $M(n, \mathbb{C})$ by $A \cdot Z = AZ$ with the moment map $\tilde{\mu}_r$, since $T(n) \subset U(n)$ and the moment map of U(n) on $M(n, \mathbb{C})$ is

$$\tilde{\mu}'_r(A) = \frac{iAA^{\dagger}}{2} \Rightarrow \tilde{\mu}_r(A) = \tilde{\mu}'_r(A)|_{\mathfrak{t}} = \frac{i}{2}\operatorname{diag}(r_1(A), \cdots, r_n(A))$$

where $r_k(A) = \sum_{j=1}^n |a_{kj}|^2$. Similarly, for T(n) acting on $M(n, \mathbb{C})$ by $A \cdot Z = ZA$ with the moment map

$$\tilde{\mu}_l(A) = \frac{i}{2} \operatorname{diag}(l_1(A), \cdots, l_n(A))$$

where $l_j(A) = \sum_{k=1}^n |a_{kj}|^2$. Therefore,

$$\hat{\mu}(A) = \frac{i}{2} \left(\mathbf{r}_A, \mathbf{l}_A \right)$$

where $\mathbf{r}_A = \operatorname{diag}(r_1(A), \dots, r_n(A))$ and $\mathbf{l}_A = \operatorname{diag}(l_1(A), \dots, l_n(A))$. Then the moment map μ of the induced action of K on $\mathbb{P}(V)$ is

$$\mu(A) = \frac{i}{\|A\|^2} \left(\mathbf{r}_A, \mathbf{l}_A \right)$$

Clearly $||A||^2 = \sum_k r_k(A) = \sum_j l_j(A)$, so the image of μ is a convex polytope in \mathfrak{t}^* . If viewing $\mu \in (i\mathfrak{t})^* \simeq i\mathfrak{t}$, then

$$\mu(A) = \frac{1}{\|A\|^2} \left(\mathbf{r}_A - \frac{\|A\|^2}{n} I_n, \mathbf{l}_A - \frac{\|A\|^2}{n} I_n \right)$$

So if $\mu(A) = 0$, then $|A|^2 = [|a_{ij}|^2]$ is doubly stochastic-scalable.

Remark. As above mention, μ also can be calculated by differentiating the Kempf-Ness function along the geodesic (in G/K) i.e.

$$\left. \frac{d}{dt} \right|_{t=0} F_A(e^{tH}) = \left. \frac{d}{dt} \right|_{t=0} \log \left\| e^{tH} \cdot A \right\| = \langle \mu(A), H \rangle$$

5.3 Operator Scaling

Let $G = SL(n, \mathbb{C}) \times SL(n, \mathbb{C})$ acts $V = M(n, \mathbb{C})^{\oplus m}$ by

$$(A, B) \cdot (H_1, \cdots, H_m) := (AH_1B, \cdots, AH_mB)$$

(1) **Invarian Theory:** Any 1-PSG $\lambda : \mathbb{C}^* \to G$ has the form

$$\lambda(t) = \left(S^{-1} \operatorname{diag}\left(t^{\alpha_1}, \cdots, t^{\alpha_n}\right) S, T^{-1} \operatorname{diag}\left(t^{\beta_1}, \cdots, t^{\beta_n}\right) T\right)$$

where $S, T \in SL(n, \mathbb{C})$ and $\alpha_j, \beta_j \in \mathbb{Z}$ for any j s.t.

$$\sum_{j=1}^{n} \alpha_j = \sum_{j=1}^{n} \beta_j = 0$$

Similar as matrix scaling, $(H_1, \dots, H_m) \in \mathcal{N}$ if and only if there are $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n \in \mathbb{Z}$ with

$$\sum_{j=1}^{n} \alpha_j = \sum_{j=1}^{n} \beta_j = 0$$

s.t.

$$\alpha_k + \beta_j > 0, \ \forall \ (k,j) \in \operatorname{supp}(SH_1T^{-1}, \cdots, SH_mT^{-1})$$

where

$$supp(SH_1T^{-1}, \dots, SH_mT^{-1}) = \bigcap_{l=1}^{m} supp(SH_lT^{-1})$$

for some basis change S, T. So it means there is a common Hall's block in H_l 's i.e. there is a subspace U in \mathbb{C}^n s.t.

$$\dim H_l(U) < \dim U, \ \forall \ l = 1, 2, \cdots, m$$

Therefore,

$$H = (H_1, \dots, H_m) \in \mathcal{N} \iff H \text{ is rank-decreasing.}$$

And thus the invariant polynomial ring is

$$\mathbb{C}[V]^G = \left\langle \sum_{l=1}^m X_l \otimes D_l \colon \ \forall \ d \in \mathbb{N}, \ D_l \in M(d, \mathbb{C}) \right\rangle$$

where $X_l = [x_{l,k,j}]$ are variables.

(2) **Geometric Invariant Theory:** By above example, $SL(n, \mathbb{C}) = SU(n)_{\mathbb{C}}$ with a maximal torus $T \subset SU(n)$ with Lie algebra \mathfrak{t} and let the Cartan subalgebra $\mathfrak{h} = \mathfrak{t}_{\mathbb{C}}$, then

$$T = \left\{ \operatorname{diag}\left(e^{i\theta_1}, \cdots, e^{i\theta_n}\right) : \theta_j \in \mathbb{R}, \ \sum_{j=1}^n \theta_j = 0 \right\}$$
$$\mathfrak{t} = \left\{ \operatorname{diag}\left(i\theta_1, \cdots, i\theta_n\right) : \theta_j \in \mathbb{R}, \ \sum_{j=1}^n \theta_j = 0 \right\}$$
$$\mathfrak{h} = \left\{ \operatorname{diag}\left(z_1, \cdots, z_n\right) : z_j \in \mathbb{C}, \ \sum_{j=1}^n z_j = 0 \right\}$$

with the root system as $R = \{\pm(\varepsilon_k - \varepsilon_j) : 1 \leq k < j \leq n\}$. Then the closed Weyl chamber is

$$\overline{C(\Delta)} = \{ \operatorname{diag}(\theta_1, \cdots, \theta_n) : \theta_k \geqslant \theta_{k+1} \}$$

if choosing the fundamental system as $\Delta = \{\varepsilon_k - \varepsilon_{k+1} : 1 \leq k \leq n-1\}$.

Let $K = SU(n) \times SU(n)$. Then $G = K_{\mathbb{C}}$. The corresponding Lie structures are just obtained by the Cartesian product.

Clearly, the trace inner product on V is K-invariant. So similar to the last example talked in section 3.4, the moment map of K acting on $\mathbb{P}(V)$

$$\mu \colon V \to (i\mathfrak{k})^*$$

is, for $H = (H_1, \dots, H_m) \in V$,

$$\mu(H) = \frac{1}{\|H\|^2} \left(\sum_{l} H_l H_l^{\dagger}, \sum_{l} H_l^{\dagger} H_l \right)$$

and the moment polytope is

$$\mathcal{P} = \mu(V) \cap \overline{C(\Delta)} = \{ (\operatorname{spec}(A), \operatorname{spec}(B)) : A, B \geqslant 0, \operatorname{tr}(A) = \operatorname{tr}(B) = 1 \}$$

Also after viewing $(i\mathfrak{k})^* \simeq i\mathfrak{k}$,

$$\mu(H) = \frac{1}{\|H\|^2} \left(\sum_{l} H_l H_l^{\dagger} - \frac{\|H\|^2}{n} I_n, \sum_{l} H_l^{\dagger} H_l - \frac{\|H\|^2}{n} I_n \right)$$

Therefore, $\mu(H) = 0$ means H is scalable.

References

- [Ati82] Michael Francis Atiyah. "Convexity and commuting Hamiltonians". In: Bulletin of the London Mathematical Society 14.1 (1982), pp. 1–15.
- [Ban03] Erik P van den Ban. "Lie groups". In: Lecture Notes in Mathematics, MRI, University of Utrecht, Holland (2003).
- [Bür+19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. "Towards a theory of non-commutative optimization: Geodesic 1st and 2nd order methods for moment maps and polytopes". In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2019, pp. 845–861.
- [DSDS08] Ana Cannas Da Silva and A Cannas Da Salva. Lectures on symplectic geometry. Springer, 2008.
- [DHJH19] Shubham Dwivedi, Jonathan Herman, Lisa C Jeffrey, and Theo Van den Hurk. *Hamiltonian Group Actions and Equivariant Cohomology*. Springer, 2019.
- [GO18] Ankit Garg and Rafael Oliveira. "Recent progress on scaling algorithms and applications". In: arXiv preprint arXiv:1808.09669 (2018).
- [GRS13] Valentina Georgoulas, Joel W Robbin, and Dietmar A Salamon. "The Moment-Weight Inequality and the Hilbert–Mumford Criterion". In: arXiv preprint arXiv:1311.0410 (2013).
- [GS82] Victor Guillemin and Shlomo Sternberg. "Convexity properties of the moment mapping". In: *Inventiones mathematicae* 67.3 (1982), pp. 491–513.
- [GS84] Victor Guillemin and Shlomo Sternberg. "Convexity properties of the moment mapping. II". In: *Inventiones mathematicae* 77.3 (1984), pp. 533–546.
- [Hal15] Brian Hall. Lie groups, Lie algebras, and representations: an elementary introduction. Vol. 222. Springer, 2015.
- [HH12] Gert Heckman and Peter Hochs. "Geometry of the momentum map". In: (2012).
- [KN79] George Kempf and Linda Ness. "The length of vectors in representation spaces". In: *Algebraic geometry*. Springer, 1979, pp. 233–243.
- [Lee01] Dong Hoon Lee. The structure of complex Lie groups. CRC Press, 2001.
- [MW74] Jerrold Marsden and Alan Weinstein. "Reduction of symplectic manifolds with symmetry". In: *Reports on mathematical physics* 5.1 (1974), pp. 121–130.
- [MFK94] David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory. Vol. 34. Springer Science & Business Media, 1994.
- [Sep07] Mark R Sepanski. Compact lie groups. Vol. 235. Springer Science & Business Media, 2007.
- [Tu11] Loring W. Tu. An introduction to manifolds. Springer, 2011.
- [Woo09] Christopher T Woodward. "Moment maps and geometric invariant theory". In: arXiv preprint arXiv:0912.1132 (2009).