PCT/JP99/03929

10.08.99

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1998年 8月 7日

号 顐 番 Application Number:

平成10年特許願第224105号

出 顧 人 Applicant (s):

財団法人相模中央化学研究所 株式会社プロテジーン

> **PRIORITY** DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年10月 8日

特許庁長官 Commissioner

aten.

【書類名】 特許願

【整理番号】 S018162

【提出日】 平成10年 8月 7日

【あて先】 特許庁長官殿

【発明の名称】 疎水性ドメインを有するヒト蛋白質ならびにそれをコー

ドするDNA

【請求項の数】 6

【発明者】

【住所又は居所】 神奈川県相模原市若松3-46-50

【氏名】 加藤 誠志

【発明者】

【住所又は居所】 東京都葛飾区高砂5-13-11

【氏名】 山口 知子

【特許出願人】

【代表出願人】

【識別番号】 000173762

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【代表者】 近藤 聖

【電話番号】 0427(42)4791

【特許出願人】

【識別番号】 596134998

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】 株式会社プロテジーン

【代表者】 棚井 丈雄

【電話番号】 03(3792)1019

【手数料の表示】

【予納台帳番号】 011501

【納付金額】 21,000円

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【発明の名称】 疎水性ドメインを有するヒト蛋白質ならびにそれをコードする DNA

【特許請求の範囲】

【請求項1】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質。

【請求項2】 請求項1記載の蛋白質のいずれかをコードするDNA。

【請求項3】 配列番号11から配列番号20で表される塩基配列のいずれかを含むcDNA。

【請求項4】 配列番号21から配列番号30で表される塩基配列のいずれかからなる、請求項3記載のcDNA。

【請求項5】 請求項2から請求項4のいずれかに記載のDNAをインビトロ 翻訳あるいは真核細胞内で発現しうる発現ベクター。

【請求項6】 請求項2から請求項4のいずれかに記載のDNAを発現し、請求項1記載の蛋白質を生産しうる形質転換真核細胞。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、およびこのDNAを発現させた真核細胞に関する。本発明の蛋白質は、医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のヒトcDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このcDNAがコードしている蛋白質を大量生産するための遺伝子源として用いることができる。これらの遺伝子を導入して分泌蛋白質や膜蛋白質を大量発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0002]

【従来の技術】

[0003]

一方、膜蛋白質は、シグナルレセプター、イオンチャンネル、トランスポーターなどとして、細胞膜を介する物質輸送や情報伝達において重要な役割を担っている。例えば、各種サイトカインに対するレセプター、ナトリウムイオン・カリウムイオン・塩素イオン等に対するイオンチャンネル、糖・アミノ酸等に対するトランスポーターなどが知られており、その多くはすでに遺伝子もクローン化されている。これらの膜蛋白質の異常は、これまで原因不明であった多くの病気と関連していることがわかってきた。従って、新しい膜蛋白質が見い出せれば、多くの病気の原因解明につながるものと期待され、膜蛋白質をコードする新たな遺伝子の単離が望まれている。

[0004]

従来、これらの分泌蛋白質や膜蛋白質は、ヒト細胞から精製することが困難なので、遺伝子の方からのアプローチによって単離されたものが多い。一般的な方法は、cDNAライブラリーを真核細胞に導入して、cDNAを発現させたのち、目的とする活性を有する蛋白質を分泌発現あるいは膜表面上に発現している細胞をスクリーニングする、いわゆる発現クローニング法である。しかしこの方法

一般に分泌蛋白質や膜蛋白質は、蛋白質内部に少なくとも一個所疎水性ドメイ

[0006]

【発明が解決しようとする課題】

本発明の目的は、疎水性ドメインを有する新規のヒト蛋白質、この蛋白質をコードするDNA、このDNAの発現ベクター、およびこのDNAを発現しうる形質転換真核細胞を提供することである。

[0007]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、ヒト完全長cDNAバンクの中から疎水性ドメインを有する蛋白質をコードするcDNAをクローン化し、本発明を完成した。すなわち、本発明は疎水性ドメインを有するヒト蛋白質である、配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質を提供する。また本発明は上記蛋白質をコードするDNA、例えば配列番号11から配列番号30で表される塩基配列のいずれかを含むcDNA、並びにこのDNAをインビトロ翻訳あるいは真核細胞内で発現しうる発現ベクター、及びこのDNAを発現し上記蛋白質を生産しうる形質転換真核細胞を提供する。

[0008]

【発明の実施の形態】

本発明の蛋白質は、ヒトの臓器、細胞株などから単離する方法、本発明のアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは本発明の疎水性ドメインをコードするDNAを用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方法が好ましく用いられる。例えば、本発明のcDNAを有するベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行なうことによりインビトロで蛋白質を発現できる。また翻訳領域を公知の方法により適当な発現ベ

[0009]

本発明の蛋白質を、インビトロ翻訳でDNAを発現させて生産させる場合には、このcDNAの翻訳領域を、RNAポリメラーゼプロモーターを有するベクターに組換え、プロモーターに対応するRNAポリメラーゼを含む、ウサギ網状赤血球溶解物や小麦胚芽抽出物などのインビトロ翻訳系に添加してやれば、本発明の蛋白質をインビトロで生産することができる。RNAポリメラーゼプロモーターとしては、T7、T3、SP6などが例示できる。これらのRNAポリメラーゼプロモーターを含むベクターとしては、pKA1、pCDM8、pT3/T718、pT7/3 19、pB1uescript IIなどが例示できる。また、反応系にイヌ膵臓ミクロソームなどを添加してやれば、本発明の蛋白質を分泌型あるいはミクロソーム膜に組み込まれた形で発現することができる。

[0010]

本発明の蛋白質を、大腸菌などの微生物でDNAを発現させて生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、 c DNAクローニング部位、ターミネーター等を有する発現ベクターに、本発明の c DNAの翻訳領域を組換えた発現ベクターを作成し、この発現ベクターで宿主 細胞を形質転換したのち、得られた形質転換体を培養してやれば、この c DNA がコードしている蛋白質を微生物内で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させてやれば、任意の領域を含む蛋白質断片を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。この融合蛋白質を適当なプロテアーゼで切断することによってこの c DNAがコードする蛋白質部分のみを取得することもできる。大腸菌用発現ベクターとしては、pUC系、pBluescript

本発明の蛋白質を、真核細胞でDNAを発現させて生産させる場合には、この

c D N A の翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細胞用発現ベクターに組換え、真核細胞内に導入してやれば、本発明の蛋白質を分泌生産あるいは膜蛋白質として細胞膜表面上で生産することができる。発現ベクターとしては、p K A 1、p E D 6 d p c 2、p C D M 8、p S V K 3、p M S G、p S V L、p B K - C M V、p B K - R S V、E B V ベクター、p R S、p Y E S 2 などが例示できる。真核細胞としては、サル腎臓細胞C O S 7、チャイニーズハムスター卵巣細胞C H O などの哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、本蛋白質を発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、D E A E デキストラン法など公知の方法を用いることができる。

[0012]

本発明の蛋白質を原核細胞や真核細胞で発現させたのち、培養物から目的蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィーなどがあげられる。【0013】

本発明の蛋白質には、配列番号1から配列番号10で表されるアミノ酸配列のいかなる部分アミノ酸配列を含むペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができる。また、本発明の蛋白質の中でシグナル配列を有するものは、シグナル配列が除去された後、成熟蛋白質の形で分泌される。したがって、これらの成熟蛋白質は本発明の蛋白質の範疇にはいる。成熟蛋白質のN末端アミノ酸配列は、シグナル配列切断部位決定法[特開平8-187100]を用いて容易に求めることができる。また、いくつかの膜蛋白質は、細胞表面でプロセシングを受けて分泌型となる。このような分泌型となった蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。アミノ酸配列の中に糖鎖結合部位が存在すると、適当な真核細胞

[0014]

本発明のDNAには、上記蛋白質をコードするすべてのDNAが含まれる。このDNAは、化学合成による方法、cDNAクローニングによる方法などを用いて取得することができる。

[0015]

本発明のcDNAは、例えばヒト細胞由来cDNAライブラリーからクローン 化することができる。 cDNAはヒト細胞から抽出した ポリ $(A)^{+}RNA$ を鋳 型として合成する。ヒト細胞としては、人体から手術などによって摘出されたも のでも培養細胞でも良い。cDNAは、岡山-Berg法[Okayama, H and Berg, P., Mol. Cell. Biol. 2:161-170 (1982)]、Gubler-Hoffman法[Gubler, U. and Hoffman, J., Gene 25:263-269 (1983)] などいかなる方法を用いて合成してもよいが、完全長クローンを効率的に得る ためには、実施例にあげたようなキャッピング法 [Kato, S. et al ., Gene 150:243-250 (1994)] を用いることが望ましい 。また市販のヒトcDNAライブラリーを用いることもできる。cDNAライブ ラリーから本発明のcDNAをクローン化するには、本発明のcDNAの任意の 部分の塩基配列に基づいてオリゴヌクレオチドを合成し、これをプローブとして 用いて、公知の方法によりコロニーあるいはプラークハイブリダイゼーションに よるスクリーニングを行えばよい。また、目的とするcDNA断片の両末端にハ イブリダイズするオリゴヌクレオチドを合成し、これをプライマーとして用いて 、ヒト細胞から単離したmRNAからRT-PCR法により、本発明のcDNA 断片を調製することもできる。

[0016]

[0017]

【表1】

表 1

配列番号		HP番号	細胞	塩基数	アミノ酸残基数		
1, 11,	2 1	HP01426	胃癌	1065	3 1 3		
2, 12,	2 2	HP02515	Saos-2	937	229		
3, 13,	2 3	HP02575	Saos-2	1678	467		
4, 14,	2 4	HP10357	胃癌	467	9 9		
5, 15,	2 5	HP10447	肝臓	875	189		
6, 16,	2 6	HP10477	肝臓	1256	363		
7, 17,	2 7	HP10513	胃癌	8 8 4	249		
8, 18,	2 8	HP10540	S a o s - 2	5 8 9	98		
9, 19,	2 9	HP10557	胃癌	673	172		
10,20,	3 0	HP10563	S a o s - 2	1 4 2 5	1 2 0		

[0018]

なお、配列番号11から配列番号30のいずれかに記載のcDNAの塩基配列に基づいて合成したオリゴヌクレオチドプローブを用いて、本発明で用いたヒト細胞株やヒト組織から作製したcDNAライブラリーをスクリーニングすることにより、本発明のcDNAと同一のクローンを容易に得ることができる。

[0019]

一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号1 1から配列番号30において、1又は複数個のヌクレオチドの付加、欠失および /又は他のヌクレオチドによる置換がなされているcDNAも本発明の範疇には

[0020]

同様に、これらの変更によって生じる、1又は複数個のアミノ酸の付加、欠失 および/又は他のアミノ酸による置換がなされている蛋白質も、配列番号1から 配列番号9で表されるアミノ酸配列を有するそれぞれの蛋白質の活性を有する限 り、本発明の範疇に入る。

[0021]

本発明のcDNAには、配列番号11から配列番号20で表される塩基配列あるいは配列番号21から配列番号30で表される塩基配列のいかなる部分塩基配列を含むcDNA断片(10bp以上)も含まれる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範疇にはいる。これらのDNA断片は遺伝子診断用のプローブとして用いることができる。

[0022]

【実施例】

次に実施例により発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。DNAの組換えに関する基本的な操作および酵素反応は、文献 ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory、1989]に従った。制限酵素および各種修飾酵素は特に記載の無い場合宝酒造社製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に従った。cDNA合成は文献 [Kato, S. et al., Gene 150:243-250(1994)]に従った。

[0023]

- (1) 疎水性ドメインを有する蛋白質をコードしているcDNAの選別
- cDNAライブラリーとして、骨肉腫細胞株Saos-2cDNAライブラリ
- (WO97/33993)、手術によって摘出された胃癌組織cDNAライブ

c DNAクローンを選択し、その全塩基配列決定を行い、完全長 c DNAクロー

ンからなるホモ・プロテインcDNAバンクを構築した。ホモ・プロテインcDNAバンクに登録された完全長cDNAクローンがコードしている蛋白質について、Kyte-Doolittleの方法 [Kyte, J & Doolittle, R. F., J. Mol. Biol. 157:105-132(1982)]により、疎水性/親水性プロフィールを求め、疎水性ドメインの有無を調べた。コードしている蛋白質のアミノ酸配列中に分泌シグナルや膜貫通ドメインと思われる疎水的な領域があるクローンを候補クローンとして選別した。

[0024]

(2) インビトロ翻訳による蛋白質合成

本発明の c D N A を有するプラスミドベクターを用いて、 T_N T ウサギ網状赤血球溶解物キット(プロメガ社製)によるインビトロ転写/翻訳を行なった。この際 [35 S] メチオニンを添加し、発現産物をラジオアイソトープでラベルした。いずれの反応もキットに付属のプロトコールに従って行なった。プラスミド2μgを、 T_N T ウサギ網状赤血球溶解物 1 2. 5 μ 1 、緩衝液(キットに付属) 0. 5 μ 1 、アミノ酸混合液(Metを含まない) 2 μ 1 、[35 S] メチオニン(アマーシャム社) 2 μ 1 (0. 3 1 MB 1 Mg 1 Mg

[0025]

(3) COS7による発現

本発明の蛋白質の発現ベクターを有する大腸菌を 100μ g/mlアンピシリン含有2xYT培地2m1中で37 $\mathbb{C}2$ 時間培養した後、ヘルパーファージM1 $3KO7(50\mu1)$ を添加し、37 \mathbb{C} で一晩培養した。遠心によって分離した

[0026]

サル腎臓由来培養細胞COS7は、10%ウシ胎児血清を含むダルベッコ改変イーグル (DMEM) 培地中、 $5\%CO_2$ 存在下、37%で培養した。 1×10^5 個のCOS7細胞を6穴プレート(ヌンク社、穴の直径3 cm)に植え、 $5\%CO_2$ 存在下、37%で22時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに50 mMトリス塩酸 (p H 7. 5) を含むDMEM (T DMEM) で再度洗浄した。この細胞に一本鎖ファージ懸濁液 1μ 1、DMEM 培地 0.6 m 1、T R A N S F E C T A M TM (I B F 社) 3μ 1を懸濁したものを添加し、 $5\%CO_2$ 存在下、37%で3時間培養した。サンプル液を除去後、T DMEMで細胞表面を洗浄し、10%ウシ胎児血清含有 DMEMを1 穴あたり2 m 1 加え、 $5\%CO_2$ 存在下、37%にて 2 日間培養した。培地を $[^{35}S]$ システインあるいは $[^{35}S]$ メチオニンを含む培地に交換した後、1 時間培養した。遠心分離によって、培地と細胞を分けたあと、培地画分と細胞膜画分の蛋白質を S D S P A G E C にかけた。

[0027]

(4) クローン例

<HP01426>(配列番号1、11、21)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP01426の c D N A インサートの全塩基配列を決定したところ、1bpの5、非翻訳領域、942 b p の O R F、122bpの3、非翻訳領域からなる構造を有していた。 O R F は313アミノ酸残基からなる蛋白質をコードしており、N 末端に推定分泌シグナルが存在した。図1にK y t e - D o o l i t t l e の方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、O R F から予想

こうに こうこめがする ここ 必後構動がたかになっただった。

の産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレ

-ションが起こる可能性がある部位が1箇所(163番目Asn-Ser-Ser)存在する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は17番目のトリプトファンから始まると予想される。 【0028】

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、アフリカツメガエル皮質顆粒レクチン(EMBLアクセション番号X82626)と類似性を有していた。表2に、本発明のヒト蛋白質(HP)とアフリカツメガエル皮質顆粒レクチン(XL)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。N末端領域を除いて、67.9%の相同性を有していた

[0029]

【表2】

表 2

.*.** ***.**....** *********** ******* * *****

HP REITEAAVLLFYR

XL IEITEAAVLLFYL

[0030]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号RO6009)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0031]

<HP02515>(配列番号2、12、22)

ヒト骨肉腫細胞株Saos-2cDNAライブラリーから得られたクローンHP02515のcDNAインサートの全塩基配列を決定したところ、176bpの5′非翻訳領域、690bpのORF、71bpの3′非翻訳領域からなる構造を有していた。ORFは229アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シグナルが、またC末端に1箇所の推定膜貫通ドメインが存在した。図2にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量26,000とほぼ同じ27kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌シグナルが切断された考えられる25.5kDaの産物が生成した。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は28番目のフェニルアラニンから始まると予想される。

[0032]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 ヒトT1/ST2レセプター結合蛋白質(GenBankアクセション番号U4

ギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と

[0033]

【表3】

表 3

- HP MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLE

 *... ** .*** . *.** *.****.****. * .****

 T1 MMAAGAALALALWLL--MPPVEV-GGAGPPPIQDGEFTFLLPAGRKQCFYQSAPANASLE
- ${\tt T1\ TEYQVIGGAGLDVDFTLESPQGVLLVSESRKADGVHTVEPTEAGDYKLCFDNSFSTISEK}$
- HP VIFFELILDNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLR
- T1 LVFFELIFDSL-QDDEEVEGWAEAVEPEEMLDVKMEDIKESIETMRTRLERSIQMLTLLR
- T1 AFEARDRNLQEGNLERVNFWSAVNVAVLLLVAVLQVCTLKRFFQDKRPVPT

[0034]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA381943)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0035]

<HPO2575>(配列番号3、13、23)

ヒト骨肉腫細胞株Saos-2cDNAライブラリーから得られたクローンHPO2575のcDNAインサートの全塩基配列を決定したところ、55bpの5 非翻訳領域、14O4bpのORF、<math>219bpの3 非翻訳領域からなる

構造を有していた。ORFは467アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シグナルが存在した。図3にKyte-Doolittl
eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量54,065とほぼ同じ52kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌後糖鎖が付加されたと考えられる57kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が3箇所(171番目Asn-Arg-Thr、239番目Asn-Ser-Thr、377番目Asn-Asp-Thr)存在する。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は29番目のヒスチジンから始まると予想される。

[0036]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒトα-L-フコシダーゼ(SWISS-PROTアクセション番号PO4066)と類似性を有していた。表4に、本発明のヒト蛋白質(HP)とヒトα-L-フコシダーゼ(FC)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。全領域にわたって、54.8%の相同性を有していた。

[0037]

【表4】

表 4

FC MRSRPAGPALLLLLLFLGAAESVRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVFI
HP HWGVFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWAD

THEORY OF ANODER CREATER COLORS WINDERS A. STILL COLORS OF A COLOR COLORS COLORS

HP IFQASGAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGL

.***.***.***.***** * * *****. * **..*.* **..*.* * ..*.* FC LFQAAGAKYVVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKR-NIRYGL HP YYSLFEWFHPLFLEDESSSFHKROFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWN FC YHSLLEWFHPLYLLDKKNGFKTQHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPDTYWN HP STGFLAWLYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK FC STNFLSWLYNDSPVKDEVVVNDRWGQNCSCHHGGYYNCEDKFKPQSLPDHKWEMCTSIDK HP LSWGYRREAGISDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQMGSW FC FSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTKDGLIVPIFQERLLAVGKW HP LKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGA FC LSINGEAIYASKPWRVQWEKNTTSVWYTSKGSA--VYAIFLHWPENGVLNLESPITT-ST HP TEVKLLGHGOPLNWISLEONGIMVELPOLTIHOMPCKWGWALALTNVI *.* . ..*...****. ..* ...*.. **.* *...** FC TKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAVPAEFAWTIKLTGVK

[0038]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号N28668)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0039]

<HP10357>(配列番号4、14、24)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP10357の c D N A インサートの全塩基配列を決定したところ、113bpの5′非翻訳領域、300bpのORF、54bpの3′非翻訳領域からなる構造を有していた。ORFは99アミノ酸残基からなる蛋白質をコードしており、2箇所の推定膜貫通ド

[0040]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA477156)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0041]

<HP10447>(配列番号5、15、25)

ヒト肝臓 c D N A ライブラリーから得られたクローンHP10447の c D N A インサートの全塩基配列を決定したところ、271bpの5′非翻訳領域、570bpのORF、34bpの3′非翻訳領域からなる構造を有していた。ORFは189アミノ酸残基からなる蛋白質をコードしており、5箇所の推定膜貫通ドメインが存在した。図5にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、高分子量の翻訳産物が生成した。

[0042]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA296976)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0043]

<HP10477>(配列番号6、16、26)

ヒト肝臓 c D N A ライブラリーから得られたクローン H P 1 0 4 7 7 の c D N A インサートの全塩基配列を決定したところ、1 4 9 b p の 5 , 非翻訳領域、1

スピばった。 、 酸残基がいぶん取け真と… こうしょ へ続い あご

膜貫通ドメインが存在した。図6にΚyte‐Doolittleの方法で汞め

KH.

た本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、OR Fから予想される分子量39,884とほぼ同じ40kDaの翻訳産物が生成した。

[0044]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒトペプチドグリカン認識蛋白質(GenBankアクセション番号AF076483)と類似性を有していた。表5に、本発明のヒト蛋白質(HP)とヒトペプチドグリカン認識蛋白質(PG)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。全領域にわたって、54.8%の相同性を有していた

[0045]

【表5】

表 5

- HP MVDSLLAVTLAGNLGLTFLRGSQTQSHPDLGTEGCWDQLSAPRTFTLLDPKASLLTKAFL
- HP NGALDGVILGDYLSRTPEPRPSLSHLLSQYYGAGVARDPGFRSNFRRQNGAALTSASILA
- HP QQVWGTLVLLQRLEPVHLQLQCMSQEQLAQVAANATKEFTEAFLGCPAIHPRCRWGAAPY

* * * * * * * .

- PG MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALA-
- HP RGRPKLLQLPLGFLYVHHTYVPAPPCTDFTRCAANMRSMQRYHQDTQGWGDIGYSFVVGS
 - * *** .. * ***... *... *... *... *... *... *... *....*.
- PG SECAQHLSLPLRYVVVSHT--AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGE
- HP DGYVYEGRGWHWVGAHTLGH-NSRGFGVAIVGNYTAALPTEAALRTVRDTLPSCAVRAGL
- PG DGLVYEGRGWNFTGAHSGHLWNPMSIGISFMGNYMDRVPTPQAIRAAQGLL-ACGVAQGA
- HP LRPDYALLGHRQLVRTDCPGDALFDLLRTWPHFTATVKPRPARSVSKRSRREPPPRTLPA
- PG LRSNYVLKGHRDVORTLSPGNOLYHLIONWPHYRSP

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA424759)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0047]

<HP10513>(配列番号7、17、27)

ヒト胃癌 c DN Aライブラリーから得られたクローンHP10513の c DN Aインサートの全塩基配列を決定したところ、134bpの5、非翻訳領域、750bpのORF、0bpの3、非翻訳領域からなる構造を有していた。ORFは249アミノ酸残基からなる蛋白質をコードしており、N末端に1箇所の膜質通ドメインが存在した。図7にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量27,373とほぼ同じ29kDaの翻訳産物が生成した。

[0048]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒト仮想蛋白質KIAAO512 (GenBankアクセション番号ABO11084)と類似性を有していた。表6に、本発明のヒト蛋白質(HP)とヒト仮想蛋白質KIAAO512 (KI)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。 C末端領域196アミノ酸残基において、31.6%の相同性を有していた。

[0049]

【表 6】

表 6

[0050]

また、本 c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号N 9 2 2 2 8)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0051]

<HP10540>(配列番号8、18、28)

KI FYLCTTSGVCVKKIRALANHHDLLVKVKVIKLVNKF

ヒト骨肉腫細胞株Saos-2cDNAライブラリーから得られたクローンH P10540のcDNAインサートの全塩基配列を決定したところ、47bpの 5、非翻訳領域、297bpのORF、245bpの3、非翻訳領域からなる構 造を有していた。ORFは98アミノ酸残基からなる蛋白質をコードしており、 2箇所の推定膜貫通ドメインが存在した。図8にKyte-Doolittle の方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳 の結果、高分子量の翻訳産物が生成した。

[0052]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 線虫仮想蛋白質CEF49C12.12(GenBankアクセション番号Z6 8227)と類似性を有していた。表7に、本発明のヒト蛋白質(HP)と線虫 仮想蛋白質CEF49C12.12(CE)のアミノ酸配列の比較を示す。一は ギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と 類似アミノ酸残基をそれぞれ表す。全領域にわたって、36.1%の相同性を有 していた。

[0053]

【表7】

表 7

HP M-ASLLCCGPKLAACGIVLSAWGVIMLIMLGIFFNVHSAVLIEDVPFTEKDFENGPQNIY

CE MGKICPLMGPKMSAFCMVMSVWGVIFLGLLGVFFYIQAVTLFPDLHF-EGHGKVPSSVID

HP NLYEQVSYNCFIAAGLYLLLGGFSFCQVRLNKRKEYMVR

* * ***** * * **

CE AKYNEKATQCWIAAGLYAVTLIAVFWQ---NKYNTAQIF

[0054]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA420715)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0055]

<HP10557>(配列番号9、19、29)

ヒト胃癌cDNAライブラリーから得られたクローンHP10557のcDN

ファンススト・コーニー・アンス 金翻訳領収が、人の傾近と行って、

Fは172アミノ酸残基からなる蛋白質をコードしており、N末端に推定分泌シ

グナルが存在した。図9にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量18,844より大きい32kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、分泌後何らかの修飾を受けたと考えられる39kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位は存在しない。分泌シグナル配列切断部位予測法である(-3、-1)規則を適用すると、成熟蛋白質は32番目のグリシンから始まると予想される。

[0056]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒトプロゲステロン結合蛋白質(EMBLアクセション番号AJ002030)と類似性を有していた。表8に、本発明のヒト蛋白質(HP)とヒトプロゲステロン結合蛋白質(PG)のアミノ酸配列の比較を示す。-はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。C末端領域151アミノ酸残基において、30.5%の相同性を有していた。

[0057]

【表 8】

表 8

HP MVGPAP

PG MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL

HP RRRLRPLAALALVLALAPGLPTARAGQTPRPAERGPPV--RLFTEEELARYGGEEEDQPI

** * * . * * . * . * * . . . * * *

PG VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDG-SRNPRI
HP VLAVKGVVFDVTSGKEFYGRGAPYNALTGKDSTRGVAKMSLDPADLTHDTTGLTAKELEA

.* **.*...**...*...**...** ...**...

PG LLAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQ

HP LDEV--FTKVYKAKYPIVGYTARRILNEDGSPNLDFKPEDQPHFDIKDEF

...**.** .*.. *...*. ... *... . *...

PG MESVREWEMQFKEKY---DYVG-RLLKPGEEPS-EYTDEEDTKDHNKQD

[0058]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA101709)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0059]

<HP10563>(配列番号10、20、30)

ヒト骨肉腫細胞株Saos-2cDNAライブラリーから得られたクローンHP10563のcDNAインサートの全塩基配列を決定したところ、126bpの5′非翻訳領域、363bpのORF、936bpの3′非翻訳領域からなる構造を有していた。ORFは120アミノ酸残基からなる蛋白質をコードしており、2箇所の推定膜貫通ドメインが存在した。図10にKyte-Doolitt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量13,180より大きい18.5kDaの翻訳産物が生成した。

[0060]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、シロイナズナ仮想蛋白質 F 2 7 F 2 3. 15 (GenBankアクセション番号 A C 0 0 3 0 5 8) と類似性を有していた。表 9 に、本発明のヒト蛋白質(H P)とシロイヌナズナ仮想蛋白質 F 2 7 F 2 3. 15 (A T)のアミノ酸配列の比較を示す。一はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。全領域にわたって、3 5. 5

【表9】

HP MMPSRTNLATGIPSSKVKYSRLSSTDDGYIDLQFKKTPPKIPYKAIALATVLFLIGAFLI

. *. * *.** *. . * * . . *

AT MAYVDHAFSISDEDLMIGTSY-TVSNRPPVKEISLAVGLLVFGTLGI

HP IIGSLLLSGYISKGGADRAVPVLIIGILVFLPGFYHLRIAYYASKGYRGYSYDDIPDFDD

AT VLGFFMAYNRVG-GDRGHGIFFIVLGCLLFIPGFYYTRIAYYAYKGYKGFSFSNIPSV

[0062]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AAO83574)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0063]

【発明の効果】

本発明は疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、およびこのDNAを発現させた真核細胞を提供する。本発明の蛋白質は、いずれも分泌されるかあるいは細胞膜に存在するので、細胞の増殖や分化を制御している蛋白質と考えられる。したがって、本発明の蛋白質は、細胞の増殖や分化の制御に関わる制癌剤などの医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このDNAを用いることにより、この蛋白質を大量に発現することができる。これら遺伝子を導入してこの蛋白質を発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0064]

【配列表】

配列番号:1

配列の長さ:313

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01426

配列

Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly

1 5 10 15

Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser

20 25 3

Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys

35 40 45

Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val

50 55 60

lle Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr

65 70 75 80

Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val

85 90 95

Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu

100 105 110

Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala

*ia - hr Ser Asp Asp .vr , ys Ash : 10 01; .3r .3r .asp . 0 010 010

130 135 140

Lys Asp Leu Gly Ile Trp His Val Pro Asn Lys Ser Pro Met Gln His 155 160 150 145 Trp Arg Asn Ser Ser Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu 170 175 165 Gln Thr Leu Gly His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val 190 180 185 Lys Tyr Gly Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro 195 200 205 Val Val Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser 215 220 Pro Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 230 235 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg Val 250 255 245 Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Tyr Phe 260 265 270 Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly Phe Asp Trp 275 280 285 Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser Arg Glu Ile Thr 290 295 300 Glu Ala Ala Val Leu Leu Phe Tyr Arg 305 310

[0065]

配列番号:2

配列の長さ: 229

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

クローン名: HP02515

配列

Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala Ala

1 5 10 15

Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu 20 25 30

Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe
35 40 45

Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val
50 55 60

Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu
65 70 75 80

Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr
85 90 95

Val Glu Thr Glu Val Gly Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe
100 105 110

Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Leu Asp Asn 115 120 125

Met Gly Glu Gln Ala Gln Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr 130 135 140

Gly Thr Asp Ile Leu Asp Met Lys Leu Glu Asp Ile Leu Glu Ser Ile
145 150 155 160

Leu Arg Ala Phe Glu Ala Arg Asp Arg Asn Ile Gln Glu Ser Asn Phe

180

185

190

Asp Arg Val Asn Phe Trp Ser Met Val Asn Leu Val Val Met Val Val

195

200

205

Val Ser Ala Ile Gln Val Tyr Met Leu Lys Ser Leu Phe Glu Asp Lys

210

215

220

Arg Lys Ser Arg Thr

225

[0066]

配列番号:3

配列の長さ:467

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

クローン名: HP02575

配列

Met Arg Pro Gin Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu Leu

1

5

10

15

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr

20

25

30

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala

35

40

45

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe

50

55

60

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys

65					70					7 5					80
Glu	Lys	Ile	Pro	Lys	Tyr	Val	Glu	Phe	Met	Lys	Asp	Asn	Tyr	Pro	Pro
				85					90					95	
Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	Ala	Lys	Phe	Phe
			100					105					110		
Asn	Ala	Asn	Gln	Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr
		115					120					125			
Ile	Val	Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser
	130					135					140				
Glu	Tyr	Ser	Trp	Asn	Trp	Asn	Ala	He	Asp	Glu	Gly	Pro	Lys	Arg	Asp
145					150					155					160
Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg
				165					170					175	
Phe	Gly	Leu	Tyr	Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu
			180					185					190		
Glu	Asp	Glu	Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys
		195					200					205			
Thr	Leu	Pro	Glu	Leu	Tyr	Glu	Leu	Val	Asn	Asn	Tyr	Gln	Pro	Glu	Val
	210					215	ı				220				
Leu	Trp	Ser	Asp	Gly	Asp	Gly	Gly	Ala	Pro	Asp	Gln	Tyr	Trp	Asn	Ser
225					230)				235					240
Thr	Gly	Phe	Let	ı Ala	Trp	Leu	Tyr	Asr	Glu	ser (Pro	Val	Arg	Gly	/ Thr
				245	·				250)				255	j j
Val	Val	Thr	Asr	ı Asp	Arg	g Trp	Gly	, Ala	Gly	y Ser	Ile	Cys	s Lys	s His	s Gly
			260)				265	5				270)	
Gly	/ Phe	Туг	r Thi	Cys	s Sei	r Ası	Arg	у Туі	r Ası	n Pro	Gly	His	s Lei	ı Lei	ı Pro

PIS LYS ATP OTU ASH LYS MET THE LIE ASP LYS TOU LEFT THE MEST OF 300 290 295

Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val 305 310 315 320

Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn 325 330 335

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
340 345 350

Leu Arg Gln Met Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr 355 360 365

Glu Thr His Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
450 455 460

Asn Val Ile

465

[0067]

配列番号:4

配列の長さ:99

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル: No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10357

配列

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser

1 5 10 15

Val Lys Gly His Val Lys Met Leu Arg Leu Asp Ile Ile Asn Ser Leu

20 25 30

Val Thr Thr Val Phe Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro

35 40 45

Glu Thr Thr Thr Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr

50 55 60

85

Ala Val Cys Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu

65 70 75 80

Phe Asn Pro Ser Gly Pro Tyr Gln Gln Lys Pro Val His Glu Lys Lys

90 95

Glu Val Leu

[0068]

配列番号:5

配列の長さ:189

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

亜胞の種類:出版

クローン名:HP10447

配列

Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly

Leu Cys Leu Ala Gly Leu Ala Leu Glu Ile Arg Ser Leu

180 185

[0069]

配列番号:6

配列の長さ:363

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP10477

配列

Met Val Asp Ser Leu Leu Ala Val Thr Leu Ala Gly Asn Leu Gly Leu

1 5 10 15

Thr Phe Leu Arg Gly Ser Gln Thr Gln Ser His Pro Asp Leu Gly Thr

20 25 30

Glu Gly Cys Trp Asp Gln Leu Ser Ala Pro Arg Thr Phe Thr Leu Leu

35 40 45

Asp Pro Lys Ala Ser Leu Leu Thr Lys Ala Phe Leu Asn Gly Ala Leu

50 55 60

85

Asp Gly Val Ile Leu Gly Asp Tyr Leu Ser Arg Thr Pro Glu Pro Arg

65 70 75 80

Pro Ser Leu Ser His Leu Leu Ser Gln Tyr Tyr Gly Ala Gly Val Ala

90 9

Arg Asp Pro Gly Phe Arg Ser Asn Phe Arg Arg Gln Asn Gly Ala Ala

100 105 110

Leu Thr Ser Ala Ser Ile Leu Ala Gln Gln Val Trp Gly Thr Leu Val

115 120 125

Leu Leu Gln Arg Leu Glu Pro Val His Leu Gln Leu Gln Cys Met Ser

130 135 140

Glu Ala Phe Leu Gly Cys Pro Ala Ile His Pro Arg Cys Arg Trp Gly

Ala Ala Pro Tyr Arg Gly Arg Pro Lys Leu Leu Gln Leu Pro Leu Gly Phe Leu Tyr Val His His Thr Tyr Val Pro Ala Pro Pro Cys Thr Asp Phe Thr Arg Cys Ala Ala Asn Met Arg Ser Met Gln Arg Tyr His Gln Asp Thr Gln Gly Trp Gly Asp Ile Gly Tyr Ser Phe Val Val Gly Ser Asp Gly Tyr Val Tyr Glu Gly Arg Gly Trp His Trp Val Gly Ala His Thr Leu Gly His Asn Ser Arg Gly Phe Gly Val Ala Ile Val Gly Asn Tyr Thr Ala Ala Leu Pro Thr Glu Ala Ala Leu Arg Thr Val Arg Asp Thr Leu Pro Ser Cys Ala Val Arg Ala Gly Leu Leu Arg Pro Asp Tyr Ala Leu Leu Gly His Arg Gln Leu Val Arg Thr Asp Cys Pro Gly Asp Ala Leu Phe Asp Leu Leu Arg Thr Trp Pro His Phe Thr Ala Thr Val Lys Pro Arg Pro Ala Arg Ser Val Ser Lys Arg Ser Arg Arg Glu Pro Pro Pro Arg Thr Leu Pro Ala Thr Asp Leu Gln

[0070]

配列番号:7

配列の長さ:249

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10513

配列

1

Met Gly Gly Pro Arg Gly Ala Gly Trp Val Ala Ala Gly Leu Leu Leu

15 5 10

Gly Ala Gly Ala Cys Tyr Cys Ile Tyr Arg Leu Thr Arg Gly Arg Arg

30 25 20

Arg Gly Asp Arg Glu Leu Gly Ile Arg Ser Ser Lys Ser Ala Glu Asp

35 40

Leu Thr Asp Gly Ser Tyr Asp Asp Val Leu Asn Ala Glu Gln Leu Gln

60 55 50

85

Lys Leu Leu Tyr Leu Leu Glu Ser Thr Glu Asp Pro Val Ile Ile Glu

70 75

Arg Ala Leu Ile Thr Leu Gly Asn Asn Ala Ala Phe Ser Val Asn Gln

90

Ala Ile Ile Arg Glu Leu Gly Gly Ile Pro Ile Val Ala Asn Lys Ile

110 105 100

Asn His Ser Asn Gln Ser Ile Lys Glu Lys Ala Leu Asn Ala Leu Asn

120 125 115

Asn Leu Ser Val Asn Val Glu Asn Gln Ile Lys Ile Lys Val Gln Val

140 130 135

Leu Leu Arg Ala Gln Val Asp Ser Ser Phe Leu Ser Leu Tyr Asp Ser

165 170 175

His Val Ala Lys Glu Ile Leu Leu Arg Val Leu Thr Leu Phe Gln Asn

180 185 190

Ile Lys Asn Cys Leu Lys Ile Glu Gly His Leu Ala Val Gln Pro Thr

195 200 205

Phe Thr Glu Gly Ser Leu Phe Phe Leu Leu His Gly Glu Glu Cys Ala

210 215 220

Gln Lys Ile Arg Ala Leu Val Asp His His Asp Ala Glu Val Lys Glu

225 230 235 240

Lys Val Val Thr Ile Ile Pro Lys Ile

245

[0071]

配列番号:8

配列の長さ:98

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモーサピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名: HP10540

配列

Met Ala Ser Leu Leu Cys Cys Gly Pro Lys Leu Ala Ala Cys Gly Ile

1 5 10 15

Val Leu Ser Ala Trp Gly Val Ile Met Leu Ile Met Leu Gly Ile Phe

20 25 30

Phe Asn Val His Ser Ala Val Leu Ile Glu Asp Val Pro Phe Thr Glu

35

40

45

Lys Asp Phe Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Glu Gln
50 55 60

Val Ser Tyr Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Leu Gly
65 70 75 80

Gly Phe Ser Phe Cys Gln Val Arg Leu Asn Lys Arg Lys Glu Tyr Met

85 90 95

Val Arg

[0072]

配列番号:9

配列の長さ:172

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10557

配列

Met Val Gly Pro Ala Pro Arg Arg Leu Arg Pro Leu Ala Ala Leu

1 5 10 15

Ala Leu Val Leu Ala Leu Ala Pro Gly Leu Pro Thr Ala Arg Ala Gly

20 25 30

Gln Thr Pro Arg Pro Ala Glu Arg Gly Pro Pro Val Arg Leu Phe Thr
35 40 45

Tyr Leu Ala Val Lys Gly Val Val Phe Asp Val Thr Ser Gly Lys Glu

75 80 70 65 Phe Tyr Gly Arg Gly Ala Pro Tyr Asn Ala Leu Thr Gly Lys Asp Ser 85 90 95 Thr Arg Gly Val Ala Lys Met Ser Leu Asp Pro Ala Asp Leu Thr His 100 105 110 Asp Thr Thr Gly Leu Thr Ala Lys Glu Leu Glu Ala Leu Asp Glu Val 125 115 120 Phe Thr Lys Val Tyr Lys Ala Lys Tyr Pro Ile Val Gly Tyr Thr Ala 135 140 130 Arg Arg Ile Leu Asn Glu Asp Gly Ser Pro Asn Leu Asp Phe Lys Pro 145 150 155 160 Glu Asp Gln Pro His Phe Asp Ile Lys Asp Glu Phe 165 170 [0073] 配列番号:10 配列の長さ:120

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名:HP10563

配列

Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys

1 5 10 15

Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu

25 20 Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu 45 40 35 Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser 60 55 50 Leu Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val 80 75 70 65 Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His 95 90 85 Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr 110 105 100 Asp Asp Ile Pro Asp Phe Asp Asp 120 115 [0074] 配列番号:11 配列の長さ:939 配列の型:核酸 鎖の数: 二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源: 生物名:ホモーサピエンス 細胞の種類:胃癌 クローン名: HP01426 配列 ATGAACCAAC TCAGCTTCCT GCTGTTTCTC ATAGCGACCA CCAGAGGATG GAGTACAGAT 60

GAGAATGGTG TTATCTACCA GACCTTCTGT GACATGACCT CTGGGGGTGG CGGCTGGACC 240

CTGGTGGCCA	GCGTGCATGA	GAATGACATG	CGTGGGAAGT	GCACGGTGGG	CGATCGCTGG	300
TCCAGTCAGC	AGGGCAGCAA	AGCAGACTAC	CCAGAGGGGG	ACGGCAACTG	GGCCAACTAC	360
AACACCTTTG	GATCTGCAGA	GGCGGCCACG	AGCGATGACT	ACAAGAACCC	TGGCTACTAC	420
GACATCCAGG	CCAAGGACCT	GGGCATCTGG	CACGTGCCCA	ATAAGTCCCC	CATGCAGCAC	480
TGGAGAAACA	GCTCCCTGCT	GAGGTACCGC	ACGGACACTG	GCTTCCTCCA	GACACTGGGA	540
CATAATCTGT	TTGGCATCTA	CCAGAAATAT	CCAGTGAAAT	ATGGAGAAGG	AAAGTGTTGG	600
ACTGACAACG	GCCCGGTGAT	CCCTGTGGTC	TATGATTTTG	GCGACGCCCA	GAAAACAGCA	660
TCTTATTACT	CACCCTATGG	CCAGCGGGAA	TTCACTGCGG	GATTTGTTCA	GTTCAGGGTA	720
TTTAATAACG	AGAGAGCAGC	CAACGCCTTG	TGTGCTGGAA	TGAGGGTCAC	CGGATGTAAC	780
ACTGAGCACC	ACTGCATTGG	TGGAGGAGGA	TACTTTCCAG	AGGCCAGTCC	CCAGCAGTGT	840
GGAGATTTTT	CTGGTTTTGA	TTGGAGTGGA	TATGGAACTC	ATGTTGGTTA	CAGCAGCAGC	900
CGTGAGATAA	CTGAGGCAGC	TGTGCTTCTA	TTCTATCGT			939

[0075]

配列番号:12

配列の長さ:687

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名:HP02515

配列

ATGGGCGACA	AGATCTGGCT	GCCCTTCCCC	GTGCTCCTTC	TGGCCGCTCT	GCCTCCGGTG	60
CTGCTGCCTG	GGGCGGCCGG	CTTCACACCT	TCCCTCGATA	GCGACTTCAC	CTTTACCCTT	120
CCCGCCGGCC	AGAAGGAGTG	CTTCTACCAG	CCCATGCCCC	TGAAGGCCTC	GCTGGAGATC	180
GAGTACCAAG	TTTTAGATGG	AGCAGGATTA	GATATTGATT	TCCATCTTGC	CTCTCCAGAA	240

GGCAAAACCT	TAGTTTTTGA	ACAAAGAAA	TCAGATGGAG	TTCACACTGT	AGAGACTGAA	300
GTTGGTGATT	ACATGTTCTG	CTTTGACAAT	ACATTCAGCA	CCATTTCTGA	GAAGGTGATT	360
TTCTTTGAAT	TAATCCTGGA	TAATATGGGA	GAACAGGCAC	AAGAACAAGA	AGATTGGAAG	420
AAATATATTA	CTGGCACAGA	TATATTGGAT	ATGAAACTGG	AAGACATCCT	GGAATCCATC	480
AACAGCATCA	AGTCCAGACT	AAGCAAAAGT	GGGCACATAC	AAATTCTGCT	TAGAGCATTT	540
GAAGCTCGTG	ATCGAAACAT	ACAAGAAAGC	AACTTTGATA	GAGTCAATTT	CTGGTCTATG	600
GTTAATTTAG	TGGTCATGGT	GGTGGTGTCA	GCCATTCAAG	TTTATATGCT	GAAGAGTCTG	660
TTTGAAGATA	AGAGGAAAAG	TAGAACT				687

[0076]

配列番号:13

配列の長さ:1401

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

クローン名: HP02575

配列

ATGCGGCCCC	AGGAGCTCCC	CAGGCTCGCG	TTCCCGTTGC	TGCTGTTGCT	GTTGCTGCTG	60
CTGCCGCCGC	CGCCGTGCCC	TGCCCACAGC	GCCACGCGCT	TCGACCCCAC	CTGGGAGTCC	120
CTGGACGCCC	GCCAGCTGCC	CGCGTGGTTT	GACCAGGCCA	AGTTCGGCAT	CTTCATCCAC	180
TGGGGAGTGT	TTTCCGTGCC	CAGCTTCGGT	AGCGAGTGGT	TCTGGTGGTA	TTGGCAAAAG	240
GAAAGATAC	CGAAGTATGT	GGAATTTATG	AAAGATAATT	ACCCTCCTAG	TTTCAAATAT	300

TTGTGGGGGT CAGAATATTC GTGGAACTGG AATGCCATAG ATGAGGGGCC CAAGAGGGAC 480

[0077]

配列番号:14

配列の長さ:297

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10357

配列

ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC 60

GTGAAGATGC	TGCGGCTGGA	TATTATCAAC	TCACTGGTAA	CAACAGTATT	CATGCTCATC	120
GTATCTGTGT	TGGCACTGAT	ACCAGAAACC	ACAACATTGA	CAGTTGGTGG	AGGGGTGTTT	180
GCACTTGTGA	CAGCAGTATG	CTGTCTTGCC	GACGGGGCCC	TTATTTACCG	GAAGCTTCTG	240
TTCAATCCCA	GCGGTCCTTA	CCAGCAAAAG	CCTGTGCATG	AAAAAAAAGA	AGTTTTG	297

[0078]

配列番号:15

配列の長さ:567

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名:HP10447

配列

ATGGAGGAAG C	GCGGGAACCT	AGGAGGCCTG	ATTAAGATGG	TCCATCTACT	GGTCTTGTCA	60
GGTGCCTGGG C	GCATGCAAAT	GTGGGTGACC	TTCGTCTCAG	GCTTCCTGCT	TTTCCGAAGC	120
CTTCCCCGAC A	ATACCTTCGG	ACTAGTGCAG	AGCAAACTCT	TCCCCTTCTA	CTTCCACATC	180
TCCATGGGCT C	GTGCCTTCAT	CAACCTCTGC	ATCTTGGCTT	CACAGCATGC	TTGGGCTCAG	240
CTCACATTCT C	GGGAGGCCAG	CCAGCTTTAC	CTGCTGTTCC	TGAGCCTTAC	GCTGGCCACT	300
GTCAACGCCC C	GCTGGCTGGA	ACCCCGCACC	ACAGCTGCCA	TGTGGGCCCT	GCAAACCGTG	360
GAGAAGGAGC (GAGGCCTGGG	TGGGGAGGTA	CCAGGCAGCC	ACCAGGGTCC	CGATCCCTAC	420
CGCCAGCTGC (GAGAGAAGGA	CCCCAAGTAC	AGTGCTCTCC	GCCAGAATTT	CTTCCGCTAC	480
CATGGGCTGT (CCTCTCTTTG	CAATCTGGGC	TGCGTCCTGA	GCAATGGGCT	CTGTCTCGCT	540
GGCCTTGCCC 1	TGGAAATAAG	GAGCCTC				567

能勿备行。

配列の長さ:1089

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP10477

配列

ATGGTGGACA (GCCTCCTGGC	AGTCACCCTG	GCTGGAAACC	TGGGCCTGAC	CTTCCTCCGA	60
GGTTCCCAGA (CCCAGAGCCA	TCCAGACCTG	GGAACTGAGG	GCTGCTGGGA	CCAGCTCTCT	120
GCCCCTCGGA (CCTTTACGCT	TTTGGACCCC	AAGGCATCTC	TGTTAACCAA	GGCCTTCCTC	180
AATGGCGCCC 1	TGGATGGGGT	CATCCTTGGA	GACTACCTGA	GCCGGACTCC	TGAGCCCCGG	240
CCATCCCTCA (GCCACTTGCT	GAGCCAGTAC	TATGGGGCTG	GGGTGGCCAG	AGACCCAGGG	300
TTCCGCAGCA	ACTTCCGACG	GCAGAACGGT	GCTGCTCTGA	CTTCAGCCTC	CATCCTGGCC	360
CAGCAGGTGT (GGGGAACCCT	TGTCCTTCTA	CAGAGGCTGG	AGCCAGTACA	CCTCCAGCTT	420
CAGTGCATGA (GCCAAGAACA	GCTGGCCCAG	GTGGCTGCCA	ATGCTACCAA	GGAATTCACT	480
GAGGCCTTCC	TGGGATGCCC	GGCCATCCAC	CCCCGCTGCC	GCTGGGGAGC	GGCGCCTTAT	540
CGGGGCCGCC (CGAAGCTGCT	GCAGCTGCCG	CTGGGATTCT	TGTACGTGCA	TCACACCTAC	600
GTGCCTGCAC (CACCCTGCAC	GGACTTCACG	CGCTGCGCAG	CCAACATGCG	CTCCATGCAG	660
CGCTACCACC	AGGACACGCA	AGGCTGGGGA	GACATCGGCT	ACAGTTTCGT	GGTGGGCTCG	720
GACGGCTACG	TGTACGAGGG	ACGCGGCTGG	CACTGGGTGG	GCGCCCACAC	GCTCGGCCAC	780
AACTCCCGGG (GCTTCGGCGT	GGCCATAGTG	GGCAACTACA	CCGCGGCGCT	GCCCACCGAG	840
GCCGCTCTGC	GCACGGTGCG	CGACACGCTC	CCGAGTTGTG	CGGTGCGCGC	CGGCCTCCTG	900
CGGCCAGACT .	ACGCGCTGCT	GGGCCACCGC	CAGCTGGTGC	GCACCGACTG	CCCCGGCGAC	960
GCGCTCTTCG .	ACCTGCTGCG	CACCTGGCCG	CACTTCACCG	CGACTGTTAA	GCCAAGACCT	1020
GCCAGGAGTG	TCTCTAAGAG	ATCCAGGAGG	GAGCCACCCC	CAAGGACCCT	GCCAGCCACA	1080
GACCTCCAA						1089

[0080]

配列番号:17

配列の長さ: 747

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10513

配列

ATGGGTGGCC CCCGGGGCGC GGGC	CTGGGTG GCGGCGGGCC	TGCTGCTCGG	CGCGGGCGCC	60
TGCTACTGCA TTTACAGGCT GACC	CCGGGGT CGGCGGCGGG	GCGACCGCGA	GCTCGGGATA	120
CGCTCTTCGA AGTCCGCAGA AGAC	CTTAACT GATGGTTCAT	ATGATGATGT	TCTAAATGCT	180
GAACAACTTC AGAAACTCCT TTAC	CCTGCTG GAGTCAACGG	AGGATCCTGT	AATTATTGAA	240
AGAGCTTTGA TTACTTTGGG TAAC	CAATGCA GCCTTTTCAG	TTAACCAAGC	TATTATTCGT	300
GAATTGGGTG GTATTCCAAT TGTT	TGCAAAC AAAATCAACC	ATTCCAACCA	GAGTATTAAA	360
GAGAAAGCTT TAAATGCACT AAAT	TAACCTG AGTGTGAATG	TTGAAAATCA	AATCAAGATA	420
AAGGTGCAAG TTTTGAAACT GCTT	TTTGAAT TTGTCTGAAA	ATCCAGCCAT	GACAGAAGGA	480
CTTCTCCGTG CCCAAGTGGA TTCA	ATCATTC CTTTCCCTTT	ATGACAGCCA	CGTAGCAAAG	540
GAGATTCTTC TTCGAGTACT TACC	GCTATTT CAGAATATAA	AGAACTGCCT	CAAAATAGAA	600
GGCCATTTAG CTGTGCAGCC TACT	TTTCACT GAAGGTTCAT	TGTTTTTCCT	GTTACATGGA	660
GAAGAATGTG CCCAGAAAAT AAGA	AGCTTTA GTTGATCACC	ATGATGCAGA	GGTGAAGGAA	720
AAGGTTGTAA CAATAATACC CAA	AATC			747

[0081]

配列番号:18

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名:HP10540

配列

ATGGCGTCGC	TCCTGTGCTG	TGGGCCGAAG	CTGGCCGCCT	GCGGCATCGT	CCTCAGCGCC	60
TGGGGAGTGA	TCATGTTGAT	AATGCTCGGA	ATATTTTCA	ATGTCCATTC	CGCTGTGTTG	120
ATTGAGGACG	TTCCCTTCAC	GGAGAAAGAT	TTTGAGAATG	GCCCCCAGAA	CATATACAAC	180
CTTTACGAGC	AAGTCAGCTA	CAACTGTTTC	ATCGCTGCAG	GCCTTTACCT	CCTCCTCGGA	240
GGCTTCTCTT	TCTGCCAAGT	TCGGCTCAAT	AAGCGCAAGG	AATACATGGT	GCGC	294

[0082]

配列番号:19

配列の長さ:516

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10557

配列

60	CCTGGTCCTG	CAGCGCTGGC	CGGCCGCTGG	GCGGCGGCTG	CCGCGCCGCG	ATGGTGGGCC
120	TGCCGAGCGG	CACCGCGCCC	GCCGGGCAGA	CACAGCCCGG	CGGGGCTGCC	GCGCTGGCCC
180	GGAGGAGGAA	GCTATGGCGG	GAGCTGGCCC	CACCGAGGAG	TGCGGCTTTT	GGGCCCCCAG
240	CGGAAAGGAG	ATGTCACCTC	GTGGTGTTTG	AGTGAAGGGA	TCTACTTGGC	GATCAGCCCA

TTTTATGGAC	GAGGAGCCCC	CTACAATGCC	TTGACGGGGA	AGGACTCCAC	TAGAGGGGTA	300
GCCAAGATGT	CCTTGGATCC	TGCAGACCTC	ACCCATGACA	CTACGGGTCT	CACGGCCAAG	360
GAACTGGAGG	CCCTGGATGA	GGTCTTCACC	AAAGTGTACA	AAGCCAAATA	CCCCATCGTC	420
GGCTACACTG	CCCGGAGAAT	TCTCAATGAG	GATGGCAGCC	CTAACCTGGA	CTTCAAGCCT	480
GAAGACCAGC	CCCATTTTGA	CATCAAGGAT	GAGTTC			516

[0083]

配列番号:20

配列の長さ:360

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名: HP10563

配列

ΑT	GATGCCGT	CCCGTACCAA	CCTGGCTACT	GGAATCCCCA	GTAGTAAAGT	GAAATATTCA	60
AG	GCTCTCCA	GCACAGACGA	TGGCTACATT	GACCTTCAGT	TTAAGAAAAC	CCCTCCTAAG	120
ΑT	CCCTTATA	AGGCCATCGC	ACTTGCCACT	GTGCTGTTTT	TGATTGGCGC	CTTTCTCATT	180
ΑT	TATAGGCT	CCCTCCTGCT	GTCAGGCTAC	ATCAGCAAAG	GGGGGGCAGA	CCGGGCCGTT	240
CC	AGTGCTGA	TCATTGGCAT	TCTGGTGTTC	CTACCCGGAT	TTTACCACCT	GCGCATCGCT	300
TA	CTATGCAT	CCAAAGGCTA	CCGTGGTTAC	TCCTATGATG	ACATTCCAGA	CTTTGATGAC	360

[0084]

配列番号:21

配列の架:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HPO1426

配列の特徴:

特徴を表す記号:CDS

存在位置: 2... 943

特徴を決定した方法:E

配列

A ATG AAC CAA CTC AGC TTC CTG CTG TTT CTC ATA GCG ACC ACC AGA GGA 49 Met Asn Gin Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly 1 5 10 15 97 TGG AGT ACA GAT GAG GCT AAT ACT TAC TTC AAG GAA TGG ACC TGT TCT Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser 20 25 30 TCG TCT CCA TCT CTG CCC AGA AGC TGC AAG GAA ATC AAA GAC GAA TGT 145 Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys 45 35 40 CCT AGT GCA TTT GAT GGC CTG TAT TTT CTC CGC ACT GAG AAT GGT GTT 193 Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val 55 60 50 ATC TAC CAG ACC TTC TGT GAC ATG ACC TCT GGG GGT GGC GGC TGG ACC 241 Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr 75 80 70 65 CTG GTG GCC AGC GTG CAT GAG AAT GAC ATG CGT GGG AAG TGC ACG GTG 289 Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val 90 95 85

GGC	GAT	CGC	TGG	TCC	AGT	CAG	CAG	GGC	AGC	AAA	GCA	GAC	TAC	CCA	GAG	337
Gly	Asp	Arg	Trp	Ser	Ser	Gln	Gln	Gly	Ser	Lys	Ala	Asp	Tyr	Pro	Glu	
			100					105					110			
GGG	GAC	GGC	AAC	TGG	GCC	AAC	TAC	AAC	ACC	TTT	GGA	TCT	GCA	GAG	GCG	385
Gly	Asp	Gly	Asn	Trp	Ala	Asn	Tyr	Asn	Thr	Phe	Gly	Ser	Ala	Glu	Ala	
		115					120					125				
GCC	ACG	AGC	GAT	GAC	TAC	AAG	AAC	CCT	GGC	TAC	TAC	GAC	ATC	CAG	GCC	433
Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
	130					135					140					
AAG	GAC	CTG	GGC	ATC	TGG	CAC	GTG	CCC	AAT	AAG	TCC	CCC	ATG	CAG	CAC	481
Lys	Asp	Leu	Gly	Ιίe	Trp	His	Va 1	Pro	Àsn	Lys	Ser	Pro	Met	Gln	His	
145					150					155					160	
TGG	AGA	AAC	AGC	TCC	CTG	CTG	AGG	TAC	CGC	ACG	GAC	ACT	GGC	TTC	CTC	529
Trp	Arg	Asn	Ser	Ser	Leu	Leu	Arg	Tyr	Arg	Thr	Asp	Thr	Gly	Phe	Leu	
				165					170					175		
CAG	ACA	CTG	GGA	CAT	AAT	CTG	TTT	GGC	ATC	TAC	CAG	AAA	TAT	CCA	GTG	577
Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val	
			180					185					190			
AAA	TAT	GGA	GAA	GGA	AAG	TGT	TGG	ACT	GAC	AAC	GGC	CCG	GTG	ATC	CCT	625
Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	He	Pro	
		195					200					205				
GTG	GTC	TAT	GAT	TTT	GGC	GAC	GCC	CAG	AAA	ACA	GCA	TCT	TAT	TAC	TCA	673
Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser	
	210					215					220					
CCC	TAT	GGC	CAG	CGG	GAA	TTC	ACT	GCG	GGA	TTT	GTT	CAG	TTC	AGG	GTA	721
Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val	

Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg Val

245 250 255 ACC GGA TGT AAC ACT GAG CAC CAC TGC ATT GGT GGA GGA GGA TAC TTT 817 Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Tyr Phe 260 265 270 CCA GAG GCC AGT CCC CAG CAG TGT GGA GAT TTT TCT GGT TTT GAT TGG 865 Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly Phe Asp Trp 275 280 285 AGT GGA TAT GGA ACT CAT GTT GGT TAC AGC AGC CGT GAG ATA ACT 913 Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser Arg Glu Ile Thr 290 295 300 GAG GCA GCT GTG CTT CTA TTC TAT CGT TGAGAGTTTT GTGGGAGGGA 960 Glu Ala Ala Val Leu Leu Phe Tyr Arg 305 310 ACCCAGACCT CTCCTCCCAA CCATGAGATC CCAAGGATGG AGAACAACTT ACCCAGTAGC 1020 TAGAATGTTA ATGGCAGAAG AGAAAACAAT AAATCATATT GACTC 1065 [0085]

配列番号:22

配列の長さ:937

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名: HP02515

配列の特徴:

特徴を表す記号:CDS

存在位置:177..866

特徴を決定した方法:E

配列

CTTTTGGAGA A	CTGCGCTTC 7	CTTTCGGA	G GGAGTG	TTCG	CCGCCGC	CGC G	GCCC	GCCACC	60
TGGAGTTTCT T	CAGACTCCA (GATTTCCCT	G TCAACC	ACGA (GGAGTCC	AGA G	GAGGA	AACGC	120
GGAGCGGAGA C	AACAGTACC C	GACGCCTC	T TTCAGC	CCGG	GATCGCC	CCA G	GCAGC	GG	176
ATG GGC GAC	AAG ATC TGO	CTG CCC	TTC CCC	GTG	CTC CTT	CTG	GCC	GCT	224
Met Gly Asp	Lys lle Tr _l	L eu Pro	Phe Pro	Val :	Leu Leu	Leu	Ala	Ala	
1	5		10				15		
CTG CCT CCG	GTG CTG CTC	CCT GGG	GCG GCC	GGC	TTC ACA	CCT	TCC	CTC	272
Leu Pro Pro	Val Leu Leu	Pro Gly	Ala Ala	Gly	Phe Thr	Pro	Ser	Leu	
	20		25			30			
GAT AGC GAC	TTC ACC TT	ACC CTT	CCC GCC	GGC	CAG AAG	GAG	TGC	TTC	320
Asp Ser Asp	Phe Thr Phe	Thr Leu	Pro Ala	Gly	Gln Lys	Glu	Cys	P he	
35		40			45				
TAC CAG CCC	ATG CCC CTC	G AAG GCC	TCG CTG	GAG	ATC GAG	TAC	CAA	GTT	368
Tyr Gln Pro	Met Pro Lei	ı Lys Ala	Ser Leu	Glu	Ile Glu	Tyr	Gln	Val	
50		55			60				
TTA GAT GGA	GCA GGA TTA	GAT ATT	GAT TTC	CAT	CTT GCC	TCT	CCA	GAA	416
Leu Asp Gly	Ala Gly Lei	ı Asp Ile	Asp Phe	His	Leu Ala	Ser	Pro	Glu	
65	70)		75				80	
GGC AAA ACC	TTA GTT TT	GAA CAA	AGA AAA	TCA	GAT GGA	GTT	CAC	ACT	464
Gly Lys Thr	Leu Val Pho	e Glu Gln	Arg Lys	Ser	Asp Gly	Val	His	Thr	
	85		90				95		
GTA GAG ACT	GAA GTT GG	GAT TAC	ATG TTC	TGC	TTT GAC	AAT	ACA	TTC	512
Val Glu Thr	Glu Val Gl	y Asp Tyr	Met Phe	Cys	Phe Asp	Asn	Thr	Phe	

Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Leu Asp Asn

			•														
		115					120					125					
ATG	GGA	GAA	CAG	GCA	CAA	GAA	CAA	GAA	GAT	TGG	AAG	AAA	TAT	ATT	ACT	60	8
Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr		
	130					135					140						
GGC	ACA	GAT	ATA	TTG	GAT	ATG	AAA	CTG	GAA	GAC	ATC	CTG	GAA	TCC	ATC	65	6
Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile		
145					150					155					160		
AAC	AGC	ATC	AAG	TCC	AGA	CTA	AGC	AAA	AGT	GGG	CAC	ATA	CAA	ATT	CTG	70	4
Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu		
				165					170					175			
CTT	AGA	GCA	TTT	GAA	GCT	CGT	GAT	CGA	AAC	ATA	CAA	GAA	AGC	AAC	TTT	75	i2
Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu	Ser	Asn	Phe		
			180					185					190				
GAT	AGA	GTC	AAT	TTC	TGG	TCT	ATG	GTT	AAT	TTA	GTG	GTC	ATG	GTG	GTG	80	0
Asp	Arg	Val	Asn	Phe	Trp	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val		
		195					200					205					
GTG	TCA	GCC	ATT	CAA	GTT	TAT	ATG	CTG	AAG	AGT	CTG	TTT	GAA	GAT	AAG	84	18
Val	Ser	Ala	Ile	Gln	Val	Tyr	Met	Leu	Lys	Ser	Leu	Phe	Glu	Asp	Lys		
	210					215					220						
AGG	AAA	AGT	AGA	ACT	TAAA	AACT	CCA	AACT	AGAG	ra co	GTAA	CATT	G AA	AAAT	G	90)0
Arg	Lys	Ser	Arg	Thr													
225																	
AGG	CATA	AAA	ATGC	AATA	AA C	IGTT.	ACAG	T CA	AGAC	C						93	37
[0	0 8	6]															
配列]番号	; : 2	2 3														
配列	川の長	₹ さ :	1 6	7 8	3												

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名:HP02575

配列の特徴:

特徴を表す記号:CDS

存在位置: 56.. 1459

特徴を決定した方法:E

配列

AGC	CTC	CCG A	AGGC(CGCG	GG AC	GCCT	GCAG	A GAG	GGAC <i>i</i>	AGCC	GGCC	CTGCC	GCC (GGAC	C	55
ATG	CGG	CCC	CAG	GAG	CTC	CCC	AGG	CTC	GCG	TTC	CCG	TTG	CTG	CTG	TTG	103
Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu	
1				5					10					15		
CTG	TTG	CTG	CTG	CTG	CCG	CCG	CCG	CCG	TGC	CCT	GCC	CAC	AGC	GCC	ACG	151
Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr	
			20					25					30			
CGC	TTC	GAC	CCC	ACC	TGG	GAG	TCC	CTG	GAC	GCC	CGC	CAG	CTG	CCC	GCG	199
Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala	
		35					40					45				
TGG	TTT	GAC	CAG	GCC	AAG	TTC	GGC	ATC	TTC	ATC	CAC	TGG	GGA	GTG	TTT	247
Trp	Phe	Asp	Gln	Ala	Lys	Phe	Gly	lle	Phe	Ile	His	Trp	Gly	Val	Phe	
	50					55					60					
TCC	GTG	CCC	AGC	TTC	GGT	AGC	GAG	TGG	TTC	TGG	TGG	TAT	TGG	CAA	AAG	295
Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Trp	Phe	Trp	Trp	Tyr	Trp	Gln	Lys	

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro

	85	90	95	
AGT TTC AAA TAT (GAA GAT TTT GGA	A CCA CTA TTT	ACA GCA AAA TTT	TTT 391
Ser Phe Lys Tyr (Glu Asp Phe Gly	y Pro Leu Phe	Thr Ala Lys Phe	Phe
100		105	110	
AAT GCC AAC CAG	TGG GCA GAT ATT	T TTT CAG GCC	TCT GGT GCC AAA	TAC 439
Asn Ala Asn Gln	Trp Ala Asp Ile	e Phe Gln Ala	Ser Gly Ala Lys	Tyr
115	120	0	125	
ATT GTC TTA ACT	TCC AAA CAT CAT	T GAA GGC TTT	ACC TTG TGG GGG	TCA 487
lle Val Leu Thr	Ser Lys His His	s Glu Gly Phe	Thr Leu Trp Gly	Ser
130	135		140	
GAA TAT TCG TGG	AAC TGG AAT GCC	C ATA GAT GAG	GGG CCC AAG AGG	GAC 535
Glu Tyr Ser Trp	Asn Trp Asn Ala	a Ile Asp Glu	Gly Pro Lys Arg	Asp
145	150	155		160
ATT GTC AAG GAA	CTT GAG GTA GCC	C ATT AGG AAC	AGA ACT GAC CTG	CGT 583
lle Val Lys Glu	Leu Glu Val Ala	a Ile Arg Asn	Arg Thr Asp Leu	Arg
	165	170	175	
TTT GGA CTG TAC	TAT TCC CTT TT	T GAA TGG TTT	CAT CCG CTC TTC	CTT 631
Phe Gly Leu Tyr	Tyr Ser Leu Pho	e Glu Trp Phe	His Pro Leu Phe	Leu
180		185	190	
GAG GAT GAA TCC				
Glu Asp Glu Ser				Lys
195	200		205	
ACA TTG CCA GAG				
Thr Leu Pro Glu		u Val Asn Asn		Val
210	215		220	
CTG TGG TCG GAT				
Leu Trp Ser Asp			Gin Tyr Trp Asn	
225	230	235	aa. amm aaa aa-	240
ACA GGC TTC TTG	GCC TGG TTA TA	T AAT GAA AGC	CCA GTT CGG GGC	ACA 823

Thr	Gly	Phe	Leu	Ala	Trp	Leu	Tyr	Asn	Glu	Ser	Pro	Val	Arg	Gly	Thr	
				245					250					255		
GTA	GTC	ACC	AAT	GAT	CGT	TGG	GGA	GCT	GGT	AGC	ATC	TGT	AAG	CAT	GGT	871
Val	Val	Thr	Asn	Asp	Arg	Trp	Gly	Ala	Gly	Ser	Ile	Cys	Lys	His	Gly	
			260					265					270			
GGC	TTC	TAT	ACC	TGC	AGT	GAT	CGT	TAT	AAC	CCA	GGA	CAT	CTT	TTG	CCA	919
Gly	Phe	Tyr	Thr	Cys	Ser	Asp	Arg	Tyr	Asn	Pro	Gly	His	Leu	Leu	Pro	
		275					280					285				
CAT	AAA	TGG	GAA	AAC	TGC	ATG	ACA	ATA	GAC	AAA	CTG	TCC	TGG	GGC	TAT	967
His	Lys	Trp	Glu	Asn	Cys	Met	Thr	Ile	Asp	Lys	Leu	Ser	Trp	Gly	Tyr	
	290					295					300					
AGG	AGG	GAA	GCT	GGA	ATC	TCT	GAC	TAT	CTT	ACA	ATT	GAA	GAA	TTG	GTG	1015
Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu	Val	
305					310					315					320	
AAG	CAA	CTT	GTA	GAG	ACA	GTT	TCA	TGT	GGA	GGA	AAT	CTT	TTG	ATG	AAT	1063
Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Cys	Gly	Gly	Asn	Leu	Leu	Met	Asn	
				325					330					335		
ATT	GGG	CCC	ACA	CTA	GAT	GGC	ACC	ATT	TCT	GTA	GTT	TTT	GAG	GAG	CGA	1111
Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thr	Ile	Ser	Val	Val	Phe	Glu	Glu	Arg	
			340					345					350			
CTG	AGG	CAA	ATG	GGG	TCC	TGG	CTA	AAA	GTC	AAT	GGA	GAA	GCT	ATT	TAT	1159
Leu	Arg	Gln	Met	Gly	Ser	Trp	Leu	Lys	Va 1	Asn	Gly	Glu	Ala	He	Tyr	
		355					360					365				
GAA	ACC	CAT	ACC	TGG	CGA	TCC	CAG	AAT	GAC	ACT	GTC	ACC	CCA	GAT	GTG	1207
Glu	Thr	His	Thr	Trp	Arg	Ser	Gln	Asn	Asp	Thr	Val	Thr	Pro	Asp	Val	
	370					375					380					

385 390 395 400

AAA TGG CCC ACA TCA GGA CAG CTG TTC CTT GGC CAT CCC AAA GCT	ATT 1303
Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala	Ile
405 410 415	
CTG GGG GCA ACA GAG GTG AAA CTA CTG GGC CAT GGA CAG CCA CTT	AAC 1351
Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu	Asn
420 425 430	
TGG ATT TCT TTG GAG CAA AAT GGC ATT ATG GTA GAA CTG CCA CAG	CTA 1399
Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln	Leu
435 440 445	
ACC ATT CAT CAG ATG CCG TGT AAA TGG GGC TGG GCT CTA GCC CTG	ACT 1447
Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu	Thr
450 455 460	
AAT GTG ATC TAAAGTGCAG CAGAGTGGCT GATGCTGCAA GTTATGTCTA AGGC	C 1500
Asn Val Ile	
465	
TAGGAACTAT CAGGTGTCTA TAATTGTAGC ACATGGAGAA AGCAAATGTA AAACT	TGGATA 1560
AGAAAATTAT TTTGGCAGTT CAGCCCTTTC CCTTTTTCCC ACTAAATTTT TTCT	TAAATT 1620
ACCCATGTAA CCATTTTAAC TCTCCAGTGC ACTTTGCCAT TAAAGTCTCT TCACA	ATTG 1678
[0087]	
起列来長・2/1	

配列番号:24

配列の長さ:467

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10357

配列の特徴:

特徴を表す記号:CDS

存在位置:114..413

特徴を決定した方法:E

配列

AGGC	GGAGC	GGC (GGTG	CTCC	C CC	GCGG1	rggco	G GTT	rgct <i>i</i>	ATCG	CTTC	CGCAC	GAA (CCTAC	CTCAGO	i	60
CAG	CCAGO	CTG A	AGAAG	GAGT	TG AC	GGGA	AAGTO	CTC	GCTGC	CTGG	GTCT	GCAC	GAC (GCG A	TG	1	16
														Ŋ	let		
															1		
GAT	AAC	GTG	CAG	CCG	AAA	ATA	AAA	CAT	CGC	CCC	TTC	TGC	TTC	AGT	GTG	1	64
Asp	Asn	Val	Gln	Pro	Lys	He	Lys	His	Árg	Pro	Phe	Cys	Phe	Ser	Val		
			5					10					15				
AAA	GGC	CAC	GTG	AAG	ATG	CTG	CGG	CTG	GAT	ATT	ATC	AAC	TCA	CTG	GTA	2	12
Lys	Gly	His	Va l	Lys	Met	Leu	Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu	Val		
		20					25					30					
ACA	ACA	GTA	TTC	ATG	CTC	ATC	GTA	TCT	GTG	TTG	GCA	CTG	ATA	CCA	GAA	2	60
Thr	Thr	Val	Phe	Met	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro	Glu		
	35					40					45						
ACC	ACA	ACA	TTG	ACA	GTT	GGT	GGA	GGG	GTG	TTT	GCA	CTT	GTG	ACA	GCA	3	308
Thr	Thr	Thr	Leu	Thr	Val	Gly	Gly	Gly	Val	Phe	Ala	Leu	Va l	Thr	Ala		
50					55					60					65		
GTA	TGC	TGT	CTT	GCC	GAC	GGG	GCC	CTT	ATT	TAC	CGG	AAG	CTT	CTG	TTC	3	356
Val	Cys	Cys	Leu	Ala	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe		
				70					75					80			
AAT	CCC	AGC	GGT	CCT	TAC	CAG	CAA	AAG	CCT	GTG	CAT	GAA	AAA	AAA	GAA	1	104
Asn	Pro	Ser	Gly	Pro	Tyr	Gln	Gln	Lys	Pro	Val	His	Glu	Lys	Lys	Glu		

Val Leu

and the second desires the desired and the second a

CATATTTCTG TATTCTT

467

[0088]

配列番号:25

配列の長さ:875

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名: HP10447

配列の特徴:

特徴を表す記号: CDS

存在位置:272..841

特徴を決定した方法:E

配列

ATTGGTTGGG GGAAACCCAC GAGGGGACGC GGCCGAGGAG GGTCGCTGTC CACCCGGGGG 60
CGTGGGAGTG AGGTACCAGA TTCAGCCCAT TTGGCCCCGA CGCCTCTGTT CTCGGAATCC 120
GGGTGCTGCG GATTGAGGTC CCGGTTCCTA ACGAATCTCT GCTGGATTGG CCGTAACCCT 180
GTCCCCGAGC GGGCTCACAG GGTCTGAAGG CCACGCATGA GGCAAAGGTA AAGTTCTGAG 240
CCACCCGGTG CCTCCTTCCC AGGACTGCAA G ATG GAG GAA GGC GGG AAC CTA 292
Met Glu Glu Gly Gly Asn Leu

1 5

GGA GGC CTG ATT AAG ATG GTC CAT CTA CTG GTC TTG TCA GGT GCC TGG 340

Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp

10 15 20

GGC ATG CAA ATG TGG GTG ACC TTC GTC TCA GGC TTC CTG CTT TTC CGA 388

Gly	Met	Gln	Met	Trp	Val	Thr	Phe	Val	Ser	Gly	Phe	Leu	Leu	Phe	Arg		
	25					30					35						
AGC	CTT	CCC	CGA	CAT	ACC	TTC	GGA	CTA	GTG	CAG	AGC	AAA	CTC	TTC	CCC	4	136
Ser	Leu	Pro	Arg	His	Thr	Phe	Gly	Leu	Val	Gln	Ser	Lys	Leu	Phe	Pro		
40					45					50					55		
TTC	TAC	TTC	CAC	ATC	TCC	ATG	GGC	TGT	GCC	TTC	ATC	AAC	CTC	TGC	ATC	4	184
Phe	Tyr	Phe	His	Ile	Ser	Met	Gly	Cys	Ala	Phe	Ile	Asn	Leu	Cys	Ile		
				60					65					70			
TTG	GCT	TCA	CAG	CAT	GCT	TGG	GCT	CAG	CTC	ACA	TTC	TGG	GAG	GCC	AGC	5	532
Leu	Ala	Ser	Gln	His	Ala	Trp	Ala	Gln	Leu	Thr	Phe	Trp	Glu	Ala	Ser		
			75					80					85				
CAG	CTT	TAC	CTG	CTG	TTC	CTG	AGC	CTT	ACG	CTG	GCC	ACT	GTC	AAC	GCC	5	580
Gln	Leu	Tyr	Leu	Leu	Phe	Leu	Ser	Leu	Thr	Leu	Ala	Thr	Val	Asn	Ala		
		90					95					100					
CGC	TGG	CTG	GAA	CCC	CGC	ACC	ACA	GCT	GCC	ATG	TGG	GCC	CTG	CAA	ACC	6	528
Arg	Trp	Leu	Glu	Pro	Arg	Thr	Thr	Ala	Ala	Met	Trp	Ala	Leu	Gln	Thr		
	105					110					115						
GTG	GAG	AAG	GAG	CGA	GGC	CTG	GGT	GGG	GAG	GTA	CCA	GGC	AGC	CAC	CAG	6	676
Val	Glu	Lys	Glu	Arg	Gly	Leu	Gly	Gly	Glu	Val	Pro	Gly	Ser	His	Gln		
120					125					130					135		
GGT	CCC	GAT	CCC	TAC	CGC	CAG	CTG	CGA	GAG	AAG	GAC	CCC	AAG	TAC	AGT		724
Gly	Pro	Asp	Pro	Tyr	Arg	GIn	Leu	Arg	Glu	Lys	Asp	Pro	Lys	Tyr	Ser		
				140					145					150			
GCT	CTC	CGC	CAG	AAT	TTC	TTC	CGC	TAC	CAT	GGG	CTG	TCC	TCT	CTT	TGC	,	772
Ala	Leu	Arg	Gln	Asn	Phe	Phe	Arg	Tyr	His	Gly	Leu	Ser	Ser	Leu	Cys		
			155					160					165				

ism jeu dły cys var jeu ser gsm dry jeu (VS), cu dia i co jeu dia 180 170

175

し、 とこう おおおり 出土 特殊の ローエー・テン

CTG GAA ATA AGG AGC CTC TAGCATGGGC CCTGCATGCT AATAAATGCT TCTTCAG 875

Leu Glu Ile Arg Ser Leu

185

[0089]

配列番号:26

配列の長さ:1256

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:肝臓

クローン名:HP10477

配列の特徴:

特徴を表す記号:CDS

存在位置:150..1241

特徴を決定した方法:E

配列

ATGTAAGAGC CACCTCCTCC CCAGGACTCA GGGATGGCTC TCCAGATGTC ACCACTGCAG

ATATTGGAGC CAACACTCCA GATGCTACAA AAGGCTGTCC AGATGTCCAA GCTTCCTTGC

120

CAGATGCCAA AGCCAAGTCC CCACCGACC ATG GTG GAC AGC CTC CTG GCA GTC

Met Val Asp Ser Leu Leu Ala Val

1 5

ACC CTG GCT GGA AAC CTG GGC CTG ACC TTC CTC CGA GGT TCC CAG ACC

221

Thr Leu Ala Gly Asn Leu Gly Leu Thr Phe Leu Arg Gly Ser Gln Thr

10 15 20

CAG AGC CAT CCA GAC CTG GGA ACT GAG GGC TGC TGG GAC CAG CTC TCT 269
Gln Ser His Pro Asp Leu Gly Thr Glu Gly Cys Trp Asp Gln Leu Ser

25					30					35					40	
GCC	CCT	CGG	ACC	TTT	ACG	CTT	TTG	GAC	CCC	AAG	GCA	TCT	CTG	TTA	ACC	317
Ala	Pro	Arg	Thr	Phe	Thr	Leu	Leu	Asp	Pro	∟ys	Ala	Ser	Leu	Leu	Thr	
				45					50					55		
AAG	GCC	TTC	CTC	AAT	GGC	GCC	CTG	GAT	GGG	GTC	ATC	CTT	GGA	GAC	TAC	365
Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	
			60					65					70			
CTG	AGC	CGG	ACT	CCT	GAG	CCC	CGG	CCA	TCC	CTC	AGC	CAC	TTG	CTG	AGC	413
Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	
		75					80					85				
CAG	TAC	TAT	GGG	GCT	GGG	GTG	GCC	AGA	GAC	CCA	GGG	TTC	CGC	AGC	AAC	461
Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	
	90					95					100					
TTC	CGA	CGG	CAG	AAC	GGT	GCT	GCT	CTG	ACT	TCA	GCC	TCC	ATC	CTG	GCC	509
Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	
105					110					115					120	
CAG	CAG	GTG	TGG	GGA	ACC	CTT	GTC	CTT	CTA	CAG	AGG	CTG	GAG	CCA	GTA	557
Gln	Gln	Val	Trp	Gly	Thr	Leu	Val	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val	
				125					130					135		
														GTG		605
His	Leu	Gln	Leu	Gln	Cys	Met	Ser	Gln	Glu	Gln	Leu	Ala		Val	Ala	
			140					145					150			
														CCG		653
Ala	Asn	Ala	Thr	Lys	Glu	Phe		Glu	Ala	Phe	Leu			Pro	Ala	
		155					160					165				
ATC	CAC	CCC	CGC	TGC	CGC	TGG	GGA	GCG	GCG	CCT	TAT	CGG	GGC	CGC	CCG	701

	170					175					180						
AAG	CTG	CTG	CAG	CTG	CCG	CTG	GGA	TTC	TTG	TAC	GTG	CAT	CAC	ACC	TAC	749	9
Lys	Leu	Leu	Gln	Leu	Pro	Leu	Gly	Phe	Leu	Tyr	Val	His	His	Thr	Tyr		
185					190					195					200		
GTG	CCT	GCA	CCA	CCC	TGC	ACG	GAC	TTC	ACG	CGC	TGC	GCA	GCC	AAC	ATG	79'	7
Val	Pro	Ala	Pro	Pro	Cys	Thr	Asp	Phe	Thr	Arg	Cys	Ala	Ala	Asn	Met		
				205				-	210					215			
CGC	TCC	ATG	CAG	CGC	TAC	CAC	CAG	GAC	ACG	CAA	GGC	TGG	GGA	GAC	ATC	84	5
Arg	Ser	Met	Gln	Arg	Tyr	His	Gln	Asp	Thr	Gln	Gly	Trp	Gly	Asp	Ile		
			220					225					230				
GGC	TAC	AGT	TTC	GTG	GTG	GGC	TCG	GAC	GGC	TAC	GTG	TAC	GAG	GGA	CGC	89	3
Gly	Tyr	Ser	Phe	Val	Val	Gly	Ser	Asp	Gly	Tyr	Val	Tyr	Glu	Gly	Arg		
		235					240					245					
GGC	TGG	CAC	TGG	GTG	GGC	GCC	CAC	ACG	CTC	GGC	CAC	AAC	TCC	CGG	GGC	94	1
Gly	Trp	His	Trp	Val	Gly	Ala	His	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly		
	250					255					260						
TTC	GGC	GTG	GCC	ATA	GTG	GGC	AAC	TAC	ACC	GCG	GCG	CTG	CCC	ACC	GAG	98	9
Phe	Gly	Val	Ala	Ile	Val	Gly	Asn	Tyr	Thr	Ala	Ala	<u>L</u> eu	Pro	Thr	Glu		
265					270					275					280		
GCC	GCT	CTG	CGC	ACG	GTG	CGC	GAC	ACG	CTC	CCG	AGT	TGT	GCG	GTG	CGC	103	7
Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg		
				285					290					295			
GCC	GGC	CTC	CTG	CGG	CCA	GAC	TAC	GCG	CTG	CTG	GGC	CAC	CGC	CAG	CTG	108	,5
Ala	Gly	Leu	Leu	Arg	Pro	Asp	Tyr	Ala	Leu	Leu	Gly	His		Gln	Leu		
			300					305					310				
														CGC		113	3
Val	Arg	Thr	Asp	Cys	Pro	Gly		Ala	Leu	Phe	Asp			Arg	Thr		
		315					320					325					
TGG	CCG	CAC	TTC	ACC	GCG	ACT	GTT	AAG	CCA	AGA	CCT	GCC	AGG	AGT	GTC	118	31

Trp Pro His Phe Thr Ala Thr Val Lys Pro Arg Pro Ala Arg Ser Val

330

335

340

TCT AAG AGA TCC AGG AGG GAG CCA CCC CCA AGG ACC CTG CCA GCC ACA

1229

Ser Lys Arg Ser Arg Arg Glu Pro Pro Pro Arg Thr Leu Pro Ala Thr

345

350

355

360

GAC CTC CAA TAAAGACAGC ATGGAAAC

1256

Asp Leu Gln

[0090]

配列番号:27

配列の長さ:884

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10513

配列の特徴:

特徴を表す記号:CDS

存在位置:135..884

特徴を決定した方法:E

配列

GGC CTG CTG GCC GCG GCC GCC TGC TAC TGC ATT TAC AGG CTG ACC

218

特平10-2241<u>0</u>5

												_				
Gly	Leu	Leu	Leu	Gly	Ala	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	
		15					20					25				
CGG	GGT	CGG	CGG	CGG	GGC	GAC	CGC	GAG	CTC	GGG	ATA	CGC	TCT	TCG	AAG	266
Arg	Gly	Arg	Arg	Arg	Gly	Asp	Arg	Glu	Leu	Gly	He	Arg	Ser	Ser	Lys	
	30					35					40					
TCC	GCA	GAA	GAC	TTA	ACT	GAT	GGT	TCA	TAT	GAT	GAT	GTT	CTA	AAT	GCT	314
Ser	Ala	Glu	Asp	Leu	Thr	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	
45					50					55					60	
GAA	CAA	CTT	CAG	AAA	CTC	CTT	TAC	CTG	CTG	GAG	TCA	ACG	GAG	GAT	CCT	362
Glu	Gln	Leu	Gln	Lys	Leu	Leu	Tyr	Leu	Leu	Glu	Sen	Thr	Glu	Asp	Pro	
				65					70					75		
GTA	ATT	ATT	GAA	AGA	GCT	TTG	ATT	ACT	TTG	GGT	AAC	AAT	GCA	GCC	TTT	410
Val	He	He	Glu	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	
			80					85					90			
TCA	GTT	AAC	CAA	GCT	ATT	ATT	CGT	GAA	TTG	GGT	GGT	ATT	CCA	ATT	GTT	458
Ser	Val	Asn	Gln	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	He	Val	
		95					100					105				
GCA	AAC	AAA	ATC	AAC	CAT	TCC	AAC	CAG	AGT	ATT	AAA	GAG	AAA	GCT	TTA	506
Ala	Asn	Lys	Ile	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	
	110					115					120					
AAT	GCA	CTA	AAT	AAC	CTG	AGT	GTG	AAT	GTT	GAA	AAT	CAA	ATC	AAG	ATA	554
Asn	Ala	Leu	Asn	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	
125					130					135					140	
										TTG						602
Lys	Val	Gln	Val	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	
				145					150					155		
										GAT						650
Met	Thr	Glu	Gly	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser		Leu	Ser	
			160					165					170			

CTT	TAT	GAC	AGC	CAC	GTA	GCA	AAG	GAG	ATT	CTT	CTT	CGA	GTA	CTT	ACG	698
Leu	Tyr	Asp	Ser	His	Va l	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	
		175					180					185				
CTA	TTT	CAG	AAT	ATA	AAG	AAC	TGC	CTC	AAA	ATA	GAA	GGC	CAT	TTA	GCT	746
Leu	Phe	Gln	Asn	Ile	Lys	Asn	Cys	Leu	Lys	Ile	Glu	Gly	His	Leu	Ala	
	190					195					200					
GTG	CAG	CCT	ACT	TTC	ACT	GAA	GGT	TCA	TTG	TTT	TTC	CTG	TTA	CAT	GGA	794
Val	Gln	Pro	Thr	Phe	Thr	Glu	Gly	Ser	Leu	Phe	Phe	Leu	Leu	His	Gly	
205					210					215					220	
GAA	GAA	TGT	GCC	CAG	AAA	ATA	AGA	GCT	TTA	GTT	GAT	CAC	CAT	GAT	GCA	842
Glu	Glu	Cys	Ala	Gln	Lys	lle	Arg	Ala	Leu	Va l	А́sp	His	His	Asp	Alā	
				225					230					235		
GAG	GTG	AAG	GAA	AAG	GTT	GTA	ACA	ATA	ATA	CCC	AAA	ATC	TGA			884
Glu	Val	Lys	Glu	Lys	Va l	Val	Thr	Ile	He	Pro	Lys	lle				
			240					245								

[0091]

配列番号:28

配列の長さ:589

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

配列の特徴:

特徴を表す記号:CDS

存在位置:48..344

特徴を決定した方法:E

配列

GCTTTCCGAG CCCGCTTGCA CCTCGGCGAT CCCCGACTCC CTTCTTT ATG GCG TCG 5	6										
Met Ala Ser	Ü										
1	1										
CTC CTG TGC TGT GGG CCG AAG CTG GCC GCC TGC GGC ATC GTC CTC AGC 10	4										
Leu Leu Cys Cys Gly Pro Lys Leu Ala Ala Cys Gly Ile Val Leu Ser											
5 10 15											
GCC TGG GGA GTG ATC ATG TTG ATA ATG CTC GGA ATA TTT TTC AAT GTC 15	2										
Ala Trp Gly Val Ile Met Leu Ile Met Leu Gly Ile Phe Phe Asn Val											
20 25 30 35											
CAT TCC GCT GTG TTG ATT GAG GAC GTT CCC TTC ACG GAG AAA GAT TTT 20	0										
His Ser Ala Val Leu Ile Glu Asp Val Pro Phe Thr Glu Lys Asp Phe											
40 45 50											
GAG AAT GGC CCC CAG AAC ATA TAC AAC CTT TAC GAG CAA GTC AGC TAC 24	8:										
Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Glu Gln Val Ser Tyr											
55 60 65											
AAC TGT TTC ATC GCT GCA GGC CTT TAC CTC CTC CTC GGA GGC TTC TCT 29	16										
Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Cly Gly Phe Ser											
70 75 80											
TTC TGC CAA GTT CGG CTC AAT AAG CGC AAG GAA TAC ATG GTG CGC 34	1										
Phe Cys Gln Val Arg Leu Asn Lys Arg Lys Glu Tyr Met Val Arg											
85 90 95											
TAGGGCCCC GGCGCGTTTC CCCGCTCCAG CCCCTCCTCT ATTTAAAGAC TCCCTGCACC 40)0										
GTGTCACCCA GGTCGCGTCC CACCCTTGCC GGCGCCCTCT GTGGGACTGG GTTTCCCGGG 46	30										
CGAGAGACTG AATCCCTTCT CCCATCTCTG GCATCCGGCC CCCGTGGAGA GGGCTGAGGC											
TGGGGGGCTG TTCCGTCTCT CCACCCTTCG CTGTGTCCCG TATCTCAATA AAGAGAATCT 58	30										
GCTCTCTTC 58	39										

[0092]

配列番号:29

配列の長さ:673

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HPI0557

配列の特徴:

特徴を表す記号: CDS

存在位置: 25..543

特徴を決定した方法:E

配列

Met Val Gly Pro Ala Pro Arg Arg Arg

•

CTG CGG CCG CTG GCA GCG CTG GCC CTG GTC CTG GCG CTG GCC CCG GGG 99

Leu Arg Pro Leu Ala Ala Leu Ala Leu Val Leu Ala Leu Ala Pro Gly

10 15 20 25

CTG CCC ACA GCC CGG GCC GGG CAG ACA CCG CGC CCT GCC GAG CGG GGG 147

Leu Pro Thr Ala Arg Ala Gly Gln Thr Pro Arg Pro Ala Glu Arg Gly

30 35 40

CCC CCA GTG CGG CTT TTC ACC GAG GAG CTG GCC CGC TAT GGC GGG 195

GAG GAG GAA GAT CAG CCC ATC TAC TTG GCA GTG AAG GGA GTG GTG TTT 243

G I	u	Glu	Glu	Asp	Gln	Pro	Ile	Tyr	Leu	Ala	Val	Lys	Gly	Val	Val	Phe	
			60					65					70				
G A	TΑ	GTC	ACC	TCC	GGA	AAG	GAG	TTT	TAT	GGA	CGA	GGA	GCC	CCC	TAC	AAT	291
As	sp	Val	Thr	Ser	Gly	Lys	Glu	Phe	Tyr	Gly	Arg	Gly	Ala	Pro	Tyr	Asn	
		75					80					85					
GO	CC	TTG	ACG	GGG	AAG	GAC	TCC	ACT	AGA	GGG	GTA	GCC	AAG	ATG	TCC	TTG	339
A	la	Leu	Thr	Gly	Lys	Asp	Ser	Thr	Arg	Gly	Val	Ala	Lys	Met	Ser	Leu	
(90					95					100					105	
G	ΑT	CCT	GCA	GAC	CTC	ACC	CAT	GAC	ACT	ACG	GGT	CTC	ACG	GCC	AAG	GAA	387
A:	sp	Pro	Ala	Asp	Leu	Thr	His	Asp	Thr	Thr	Gly	Leu	Thr	Ala	Lys	Glu	
					110					115					120		
C.	ΓG	GAG	GCC	CTG	GAT	GAG	GTC	TTC	ACC	AAA	GTG	TAC	AAA	GCC	AAA	TAC	435
L	eu	Glu	Ala	Leu	Asp	Glu	Va l	Phe	Thr	Lys	Val	Tyr	Lys	Ala	Lys	Tyr	
				125					130					135			
									AGA								483
P	ro	Ile	Val	Gly	Tyr	Thr	Ala		Arg	Ile	Leu	Asn		Asp	Gly	Ser	
			140					145					150				
									GAC								531
P	ro		Leu	Asp	Phe	Lys		Glu	Asp	Gln	Pro		Phe	Asp	He	Lys	
		155					160					165					500
				TGA	TGTT	CCC (CCTG	CAGG	AG C	AGGT"	TCTT	G GG.	AGCG	TGAG			580
	•	Glu	Phe														
	70 		a. a		0070	CT C	1 ATC	TCCT	C C1		TCCC	TCC	CTCC	ACC.	СССТ	CACCCA	640
	GCAGGAAGAC ACTAGGTGCT GAATCTCCTG CAAAACTGGC TGCCTGGAGG CCCTGAGCCA											673					
CCCAGATCTG AATAAAACAG ATGCTTACCC TGG											013						
[0093]																	
	-		計:∃			-											
配列の長さ:1425																	

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

クローン名:HP10563

配列の特徴:

特徴を表す記号: CDS

存在位置:127..489

特徴を決定した方法:E

配列

GCCAACCG	TG GGCG	AGCTCT C	GGTGTGCG	G GCGGCC1	rggc gcgg	CGCTCC G	CTGTGTCAG	120
CGTGTT AT	TG ATG	CCG TCC	CGT ACC	AAC CTG (GCT ACT G	GA ATC C	CC AGT	168
Me	et Met	Pro Ser	Arg Thr	Asn Leu <i>I</i>	la Thr G	ly Ile P	ro Ser	
	1		5		10			
AGT AAA (GTG AAA	TAT TCA	AGG CTC	TCC AGC	ACA GAC	GAT GGC	TAC ATT	216
Ser Lys	Val Lys	Tyr Ser	Arg Leu	Ser Ser	Thr Asp	Asp Gly	Tyr Ile	
15		20)		25		30	
GAC CTT (CAG TTI	AAG AA	ACC CCT	CCT AAG	ATC CCT	TAT AAG	GCC ATC	264
Asp Leu (Gln Phe	Lys Lys	s Thr Pro	Pro Lys	Ile Pro	Tyr Lys	Ala Ile	
		35		40			4 5	
GCA CTT	GCC ACT	GTG CTC	G TTT TTG	ATT GGC	GCC TTT	CTC ATT	ATT ATA	312
Ala Leu	Ala Thr	Val Lei	ı Phe Leu	Ile Gly	Ala Phe	Leu Ile	[le [le	

TCCCGCCTGG GGCCGGCTGA GTGGCACTTA AGCGGGCCAT GCCATGCAAC CTTGGGCGCT

Gly Ser Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg

(determined (a) + (a)

60

65 70 75 GCC GTT CCA GTG CTG ATC ATT GGC ATT CTG GTG TTC CTA CCC GGA TTT 408 Ala Val Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe 80 85 90 TAC CAC CTG CGC ATC GCT TAC TAT GCA TCC AAA GGC TAC CGT GGT TAC 456 Tyr His Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr 95 100 105 110 TCC TAT GAT GAC ATT CCA GAC TTT GAT GAC TAGCACCCAC CCCA 500 Ser Tyr Asp Asp Ile Pro Asp Phe Asp Asp 115 120 TAGCTGAGGA GGAGTCACAG TGGAACTGTC CCAGCTTTAA GATATCTAGC AGAAACTATA 560 GCTGAGGACT AAGGAATTCT GCAGCTTGCA GATGTTTAAG AAAATAATGG CCAGATTTTT 620 TGGGTCCTTC CCAAAGATGT TAAGTGAACC TACAGTTAGC TAATTAGGAC AAGCTCTATT 680 TTTCATCCCT GGGCCCTGAC AAGTTTTTCC ACAGGAATAT GTATCATGGA AGAATAGAGG 740 TTATTCTGTA ATGGAAAAGT GTTGCCTGCC ACCACCCTCT GTAGAGCTGA GCATTTCTTT 800 TAAATAGTCT TCATTGCCAA TTTGTTCTTG TAGCAAATGG AACAATGTGG TATGGCTAAT 860 920 TTCTTATTAT TAAGTAGTTT ATTTTAAAAA TATCTGAGTA TATTATCCTG TACACTTATC 980 CCTACCTTCA TGTTCCAGTG GAAGACCTTA GTAAAATCAA AGATCAGTGA GTTCATCTGT AATATTTTT TTACTTGCTT TCTTACTGAC AGCAACCAGG AATTTTTTTA TCCTGCAGAG 1040 CAAGTTTTCA AAATGTAAAT ACTTCCTCTG TTTAACAGTC CTTGGACCAT TCTGATCCAG 1100 TTCACCAGTA GGTTGGACAG CATATAATTT GCATCATTTT GTCCCTTGTA AATCAAGATG 1160 TTCTGCAGAT TATTCCTTTA ACGGCCGGAC TTTTGGCTGT TTCCTAATGA AACATGTAGT 1220 GGTTATTATT TAGAGTTTAT AGCCGTATTG CTAGCACCTT GTAGTATGTC ATCATTCTGC 1280 TCATGATTCC AAGGATCAGC CTGGATGCCT AGAGGACTAG ATCACCTTAG TTTGATTCTA 1340 TTTTTTAGCT TGCAAAAAGT GACTTATATT CCAAAGAAAT TAAAATGTTG AAATCCAAAT 1400 CCTAGAAATA AAATGAGTTA ACTTC 1425

[0094]

【図面の簡単な説明】

【図1】 クローンHP01426がコードする蛋白質の疎水性/親水性プロフ

ィールを示す図である。

【図2】 クローンHPO2515がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図3】 クローンHPO2575がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図4】 クローンHP10357がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図5】 クローンHP10447がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図6】 クローンHP10477がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図7】 クローンHP10513がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図8】 クローンHP10540がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図9】 クローンHP10557がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【図10】 クローンHP10563がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

【図6】

【図9】

【図10】

【要約】

【課題】 疎水性ドメインを有するヒト蛋白質、それをコードしているcDNA、このcDNAの発現ベクター、およびこのcDNAを発現させた真核細胞を提供する。

【解決手段】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質、この蛋白質をコードするDNA、例えば配列番号11から配列番号20で表される塩基配列を含むcDNA、このcDNAの発現ベクター、およびこのcDNAを発現させた真核細胞。疎水性ドメインを有するヒト蛋白質をコードしているcDNAの組換え体を発現させることにより、この蛋白質並びにこの蛋白質を発現する真核細胞を提供することができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000173762

【住所又は居所】

神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【特許出願人】

【識別番号】

596134998

【住所又は居所】

東京都目黒区中町2丁目20番3号

【氏名又は名称】

株式会社プロテジーン

【書類名】 手続補正書

【提出日】 平成10年 9月 4日

【あて先】 特許庁長官殿

【事件の表示】

【出願番号】 平成10年特許願第224105号

【発明の名称】 疎水性ドメインを有するヒト蛋白質ならびにそれをコー

ドするDNA

【補正をする者】

【事件との関係】 代表出願人

【識別番号】 000173762

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【代表者】 近藤 聖

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 提出物件の目録

【補正方法】 追加

【補正の内容】

【提出物件の目録】

【物件名】 代表者選定証 1

19816900015

整理畓号SO18162

代表者選定証

平成10年8月1日

住所 神奈川県相撲原市西大沼4丁目4番1号

名称 时团法人 相模中央化学研究所

代表者 近藤 聖殿

住所 東京都目黒区中町2丁目20番3号

名称 株式会社プロテジーン

代表者 棚井 丈堆

下記の発明に関する手続きについては、貴殿を代表者に選定したことに相違ありません。

1. 事件の表示

平成10年8月 7 日付提出の特許願 整理番号 SO18162

2. 発明の名称

疎水性ドメインを有するヒト蛋白質ならびにそれをコードする DNA

【書類名】

職権訂正データ

【訂正書類】

手続補正書

<認定情報・付加情報>

【補正をする者】

申請人

【識別番号】

000173762

【住所又は居所】

神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【提出された物件の記事】

【提出物件名】

代表者選定証 1

出願人履歴情報

識別番号

[000173762]

1. 変更年月日

1995年 4月14日

[変更理由]

住所変更

住 所

神奈川県相模原市西大沼4丁目4番1号

氏 名

財団法人相模中央化学研究所

出願入履歴情報

識別番号

[596134998]

1. 変更年月日 1996年 9月13日

[変更理由] 新規登録

住 所 東京都目黒区中町2丁目20番3号

氏 名 株式会社プロテジーン