```
In [1]: # Required Libraries
   import pandas as pd
   import numpy as np
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_sc
   from sklearn.metrics import accuracy_score, confusion_matrix, classification_rep
   import seaborn as sns
   import matplotlib.pyplot as plt
```

```
In [2]: # Specify the file path
    file_path = r"D:\CV things\ML projects\parkinsons.data"

# Read the CSV file into a DataFrame
    df = pd.read_csv(file_path)

# Displaying the first five rows as an example
    df
```

Out[2]:		name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter
_	0	phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.
	1	phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.
	2	phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.
	3	phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.
	4	phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.
	190	phon_R01_S50_2	174.188	230.978	94.261	0.00459	0.
	191	phon_R01_S50_3	209.516	253.017	89.488	0.00564	0.
	192	phon_R01_S50_4	174.688	240.005	74.287	0.01360	0.
	193	phon_R01_S50_5	198.764	396.961	74.904	0.00740	0.1
	194	phon_R01_S50_6	214.289	260.277	77.973	0.00567	0.

195 rows × 24 columns

```
In [3]: #Matrix column entries (attributes):

#name - ASCII subject name and recording number

#MDVP:Fo(Hz) - Average vocal fundamental frequency

#MDVP:Fhi(Hz) - Maximum vocal fundamental frequency

#MDVP:Flo(Hz) - Minimum vocal fundamental frequency

#MDVP:Jitter(%),MDVP:Jitter(Abs),MDVP:RAP,MDVP:PPQ,Jitter:DDP - Several

#measures of variation in fundamental frequency

#MDVP:Shimmer,MDVP:Shimmer(dB),Shimmer:APQ3,Shimmer:APQ5,MDVP:APQ,Shimmer:DDA -

#NHR,HNR - Two measures of ratio of noise to tonal components in the voice

#status - Health status of the subject (one) - Parkinson's, (zero) - healthy

#RPDE,D2 - Two nonlinear dynamical complexity measures

#DFA - Signal fractal scaling exponent

#spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variati
```

```
In [4]: # Drop 'name' column
    df.drop(['name'], axis=1, inplace=True)

# Display DataFrame after dropping 'name' column
    df.head()
```

Out[4]:		MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP
	0	119.992	157.302	74.997	0.00784	0.00007	0.00370
	1	122.400	148.650	113.819	0.00968	0.00008	0.00465
	2	116.682	131.111	111.555	0.01050	0.00009	0.00544
	3	116.676	137.871	111.366	0.00997	0.00009	0.00502
	4	116.014	141.781	110.655	0.01284	0.00011	0.00655

5 rows × 23 columns

```
In [5]: # Visualize distribution of 'MDVP:Fo(Hz)'
plt.figure(figsize=(6, 4))
sns.histplot(df['MDVP:Fo(Hz)'], bins=20, kde=True)
plt.title('Distribution of MDVP:Fo(Hz)')
plt.xlabel('MDVP:Fo(Hz)')
plt.ylabel('Frequency')
plt.show()
```



```
In [6]: # Define X (features) and Y (target)
X = df.drop('status', axis=1)
Y = df['status']

# Split data into train and test sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_
```

In [7]: X.head()

Out[7]:		MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP
	0	119.992	157.302	74.997	0.00784	0.00007	0.00370
	1	122.400	148.650	113.819	0.00968	0.00008	0.00465
	2	116.682	131.111	111.555	0.01050	0.00009	0.00544
	3	116.676	137.871	111.366	0.00997	0.00009	0.00502
	4	116.014	141.781	110.655	0.01284	0.00011	0.00655

5 rows × 22 columns

```
Y.head()
In [8]:
             1
Out[8]:
             1
        2
             1
        3
             1
        Name: status, dtype: int64
In [9]: # Visualize distribution of target class (status)
        plt.figure(figsize=(6, 4))
        sns.countplot(x='status', data=df)
        plt.title('Distribution of Target Class (status)')
        plt.xlabel('Status')
        plt.ylabel('Count')
        plt.show()
```



```
In [10]: # Initialize and fit a Random Forest model
         RF = RandomForestClassifier(random state=40)
         RF.fit(X_train, Y_train)
         # Predict on test data
         test_preds_rf = RF.predict(X_test)
         # Model evaluation after hyperparameter tuning
         print("Model accuracy on test data (Before Hyperparameter Tuning):", accuracy_sd
         print("Confusion matrix:\n", confusion_matrix(Y_test, test_preds_rf))
         print("Classification Report:\n", classification_report(Y_test, test_preds_rf))
         Model accuracy on test data (Before Hyperparameter Tuning): 0.8974358974358975
         Confusion matrix:
          [[ 6 2]
          [ 2 29]]
         Classification Report:
                        precision
                                   recall f1-score
                                                         support
                            0.75
                                      0.75
                    0
                                                 0.75
                                                              8
                            0.94
                                      0.94
                                                0.94
                    1
                                                             31
             accuracy
                                                 0.90
                                                             39
                                      0.84
                           0.84
                                                             39
            macro avg
                                                 0.84
                           0.90
                                      0.90
         weighted avg
                                                 0.90
                                                             39
In [11]: # Hyperparameter Tuning
         param_grid = {
              'n_estimators': [100, 200, 300],
             'max_depth': [None, 5, 10, 15],
             'min samples split': [2, 5, 10],
              'min_samples_leaf': [1, 2, 4]
         }
         RF = RandomForestClassifier(random_state=40)
         grid search = GridSearchCV(estimator=RF, param_grid=param_grid, cv=5, scoring='a
         grid_search.fit(X_train, Y_train)
         GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=40), n_jobs=-1,
Out[11]:
                      param_grid={'max_depth': [None, 5, 10, 15],
                                   'min_samples_leaf': [1, 2, 4],
                                   'min_samples_split': [2, 5, 10],
                                   'n_estimators': [100, 200, 300]},
                      scoring='accuracy')
In [12]: | # Get the best parameters
         best_params = grid_search.best_params_
         print("Best parameters found:", best_params)
         # Initialize and fit a Random Forest model with optimized hyperparameters
         best RF = RandomForestClassifier(random state=40, **best params)
         best_RF.fit(X_train, Y_train)
         # Predict on test data
         test_preds_best_RF = best_RF.predict(X_test)
         Best parameters found: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_s
         plit': 2, 'n_estimators': 200}
```

```
In [13]: # Perform cross-validation
         cv_scores = cross_val_score(best_RF, X, Y, cv=5)
         print("Cross-validation scores:", cv_scores)
         print("Mean CV accuracy:", cv_scores.mean())
         Cross-validation scores: [0.76923077 0.82051282 0.92307692 0.74358974 0.7435897
         4]
         Mean CV accuracy: 0.8
In [14]:
        # Model evaluation after hyperparameter tuning
         print("Model accuracy on test data (After Hyperparameter Tuning):", accuracy_sco
         print("Confusion matrix:\n", confusion_matrix(Y_test, test_preds_rf))
         print("Classification Report:\n", classification_report(Y_test, test_preds_rf))
         Model accuracy on test data (After Hyperparameter Tuning): 0.8974358974358975
         Confusion matrix:
          [[62]
          [ 2 29]]
         Classification Report:
                        precision recall f1-score
                                                       support
                                   0.75
                    0
                            0.75
                                               0.75
                                                            8
                           0.94
                                     0.94
                                               0.94
                                                           31
                                               0.90
                                                           39
             accuracy
                          0.84
                                      0.84
                                               0.84
                                                           39
            macro avg
         weighted avg
                           0.90
                                      0.90
                                               0.90
                                                           39
In [15]: # Feature Importance
         feature_importances = best_RF.feature_importances_
         # Create DataFrame for feature importance
         feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': feature
         feature_importance_df = feature_importance_df.sort_values(by='Importance', ascen
In [16]: # Update table after feature importance calculation
         print("\nTable after Feature Importance calculation:")
         feature_importance_df
```

Table after Feature Importance calculation:

Out[16]:		Feature	Importance
	21	PPE	0.142391
	18	spread1	0.126634
	0	MDVP:Fo(Hz)	0.105773
	2	MDVP:Flo(Hz)	0.056965
	1	MDVP:Fhi(Hz)	0.051041
	19	spread2	0.048878
	12	MDVP:APQ	0.043084
	11	Shimmer:APQ5	0.039633
	20	D2	0.034715
	16	RPDE	0.033922
	6	MDVP:PPQ	0.031989
	10	Shimmer:APQ3	0.029326
	9	MDVP:Shimmer(dB)	0.028092
	5	MDVP:RAP	0.027834
	4	MDVP:Jitter(Abs)	0.027726
	13	Shimmer:DDA	0.027513
	8	MDVP:Shimmer	0.027495
	14	NHR	0.027349
	7	Jitter:DDP	0.026149
	15	HNR	0.024834
	17	DFA	0.019929
	3	MDVP:Jitter(%)	0.018731
In [17]:	pli sns pli pli pli	/isualize feature t.figure(figsize= s.barplot(x='Impo t.title('Feature t.xlabel('Importa t.ylabel('Feature t.show()	<pre>(10, 6)) rtance', y= Importance' nce Score')</pre>


```
top_features = feature_importance_df['Feature'][:7].tolist()

# Create new X with selected top features
X_top_features = df[top_features]

# Splitting data with the top selected features
X_train_top, X_test_top, Y_train, Y_test = train_test_split(X_top_features, Y, t)

In [19]: # Create a new DataFrame for feature importance with the top 7 features
top_features_df = feature_importance_df.head(7)

# Visualize feature importance using bar plot
plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=top_features_df, palette='viridis'
plt.title('Top 7 Feature Importance')
plt.xlabel('Importance Score')
```

Select top features based on importance scores (e.g., top 7 features)

In [18]:

plt.ylabel('Features')

plt.show()


```
In [20]: # Create a pivot table for the feature importance data
pivot_df = top_features_df.pivot(index=None, columns='Feature', values='Importan

# Create the heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(pivot_df, cmap='viridis', annot=True, fmt='.3f')
plt.title('Feature Importance Heatmap')
plt.show()
```



```
In [21]: # Initializing and fitting the Random Forest model with the selected features
best_params = {'n_estimators': 200, 'max_depth': None, 'min_samples_leaf': 1, 'm
best_RF_selected = RandomForestClassifier(random_state=40, **best_params)
best_RF_selected.fit(X_train_top, Y_train)

# Predict on test data with selected features
test_preds_rf_selected = best_RF_selected.predict(X_test_top)
```

```
In [22]: #Model evaluation with selected features
    print("\nModel accuracy on test data (After Feature Selection):", accuracy_score
    print("Confusion matrix:\n", confusion_matrix(Y_test, test_preds_rf_selected))
    print("Classification Report:\n", classification_report(Y_test, test_preds_rf_se
```

Model accuracy on test data (After Feature Selection): 0.9230769230769231 Confusion matrix: [[6 2] [1 30]] Classification Report: precision recall f1-score support 0 0.86 0.75 0.80 8 0.94 0.95 1 0.97 31 39 accuracy 0.92 macro avg 0.90 0.86 0.88 39 0.92 0.92 0.92 39 weighted avg

```
In [23]: acc_before_feature_selection = accuracy_score(Y_test, test_preds_rf)*100
    acc_after_feature_selection = accuracy_score(Y_test, test_preds_rf_selected)*100

# Assuming acc_before_feature_selection and acc_after_feature_selection are accu
accuracy_scores = [acc_before_feature_selection, acc_after_feature_selection]
labels = ['Before Selection', 'After Selection']

plt.figure(figsize=(6, 4))
sns.barplot(x=labels, y=accuracy_scores)
plt.title('Model Accuracy Before and After Feature Selection')
plt.xlabel('Model')
plt.ylabel('Accuracy')
plt.ylim(0, 100) # Set the y-axis limits to match accuracy values (0 to 100)
plt.show()
```

