Module 2 – Section 1

Numerical and Graphical Summaries of a Contingency Table

Outline

- Variables, Data, and the Contingency Table
- Marginal Distributions
- Conditional Distributions
- Graphical Summaries

Two Categorical Variables

- Variable 1
 - Categorical with I categories.
- Variable 2
 - Categorical with J categories.

Ex. Data

- Students enrolled in STAT 101 over the course of several semesters responded to a survey. Two of the questions on the survey were:
 - What is your gender?
 - Options given: Male, Female
 - What is your eye color?
 - Options given: Blue, Brown, Green, Hazel, Other

Ex. Data

Gender	Eye Color
Female	Blue
Male	Blue
Male	Blue
Female	Blue
:	•
:	•
Male	Other
Female	Other

Ex. Variables from STAT 101 Students

- Variable 1 Gender
 - Categories (Female, Male)
- Variable 2 Eye Color
 - Categories (Blue, Hazel, Green, Brown, Other)

Contingency Table

- Cross-classify observations according to categories on both variables.
- Y_{ij} = number of observations in the i^{th} category of variable 1 **and** j^{th} category of variable 2.

Contingency Table (3 x 4)

Variable 2								
Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total			
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	Y_1 .			
Cat 2	<i>Y</i> ₂₁	Y_{22}	<i>Y</i> ₂₃	Y_{24}	Y_2 .			
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> ₃ .			
Total	<i>Y</i> .1	<i>Y</i> .2	<i>Y</i> .3	<i>Y</i> .4	n			

Eye Color							
Gender	Blue	Hazel	Green	Brown	Other	Total	
Female	370	187	198	352	18	1125	
Male	359	160	110	290	24	943	
Total	729	347	308	642	42	2068	

Marginal Distributions

- Distribution of one categorical variable, ignoring the other.
 - Variable $1 = Y_i$ for i = 1, ..., I
 - Variable $2 = Y_{.j}$ for j = 1, ..., J

Marginal Distribution: Variable 1

*Y*_{.1}

Total

Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	Y _{1.}
Cat 2	<i>Y</i> ₂₁	Y_{22}	<i>Y</i> ₂₃	Y_{24}	Y ₂ .
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> _{3.}

 $Y_{.2}$

*Y*_{.3}

 $Y_{.4}$

Variable 2

Ex. Marginal Distribution – Gender

Gender	Blue	Hazel	Green	Brown	Other	Total
Female	370	187	198	352	18	1125
Male	359	160	110	290	24	943
Total	729	347	308	642	42	2068

Ex. Marginal Distribution – Gender (with %)

Eye Color							
Gender	Blue	Hazel	Green	Brown	Other	Total	
Female	370	107	187	100	198 352 18	18	1125
i emale	3/0	107	198 352	332	10	(54.40)	
Male	359	160	110	290	24	943	
	339	100	110	290	4 7	(45.60)	
Total	729	347	308	642	42 42	2068	
Total	729	3 1 /	300	042		(100)	

Marginal Distribution: Variable 2

-	7			
		412		
V			U	

Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	$Y_{1.}$
Cat 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	<i>Y</i> ₂₄	<i>Y</i> ₂ .
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> _{3.}
Total	Y _{.1}	Y _{.2}	Y _{.3}	Y _{.4}	n

Ex. Marginal Distribution – Eye Color

Eye Color

Gender	Blue	Hazel	Green	Brown	Other	Total
Female	370	187	198	352	18	1125
Male	359	160	110	290	24	943
Total	729	347	308	642	42	2068

Ex. Marginal Distribution – Eye Color (with %)

Eye Color

Sex	Blue	Hazel	Green	Brown	Other	Total
Female	370	187	198	352	18	1125
Male	359	160	110	290	24	943
Total	729	347	308	642	42	2068
	(35.25)	(16.78)	(14.89)	(31.04)	(2.03)	(100)

Conditional Distributions

- Distribution of Variable 2 given category of Variable 1
 - Y_{ij} , j = 1, ..., J for fixed i
 - I conditional distributions

Conditional Distributions

	Variable 2							
Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total			
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	<i>Y</i> ₁ .			
Cat 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	<i>Y</i> ₂₄	<i>Y</i> ₂ .			
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> ₃ .			
Total	<i>Y</i> .1	<i>Y</i> .2	<i>Y</i> .3	<i>Y</i> .4	n			

Ex. Conditional Distributions – Eye Color given Gender

Eye Color						
Gender	Blue	Hazel	Green	Brown	Other	Total
Female	370	187	198	352	18	1125
Male	359	160	110	290	24	943
Total	729	347	308	642	42	2068

Ex. Conditional Distributions – Eye Color Given Gender (with %)

	Eye Color						
Gender	Blue	Hazel	Green	Brown	Other	Total	
Female	370	187	198	352	18	1125	
	(32.89)	(16.62)	(17.60)	(31.29)	(1.60)	(100)	
Male	359	160	110	290	24	943	
	(38.07)	(16.97)	(11.66)	(30.75)	(2.55)	(100)	
Total	729	347	308	642	42	2068	

Conditional Distributions

- Distribution of Variable 1 given category of Variable 2
 - Y_{ij} , i = 1, ..., I for fixed j
 - J conditional distributions

Conditional Distributions

Variable 2							
Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total		
Cat 1	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>Y</i> ₁₄	Y_1 .		
Cat 2	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂₃	Y_{24}	Y_2 .		
Cat 3	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄	<i>Y</i> _{3.}		
Total	<i>Y</i> .1	<i>Y</i> .2	<i>Y</i> .3	<i>Y</i> .4	n		

Ex. Conditional Distributions of Gender given Eye Color

Eye	Co	lo
Lye	CO	0

Gender	Blue	Hazel	Green	Brown	Other	Total
Female	370	187	198	352	18	1125
Male	359	160	110	290	24	943
Total	729	347	308	642	42	2068

Ex. Conditional Distributions – Gender given Eye Color (with %)

		Eye Color					
Gender	Blue	Hazel	Green	Brown	Other	Total	
Female	370 (50.75)	187 (53.89)	198 (64.29)	352 (54.83)	18 (42.86)	1125	
Male	359 (49.25)	160 (46.11)	110 (35.71)	290 (45.17)	24 (57.14)	943	
Total	729 (100)	347 (100)	308 (100)	642 (100)	42 (100)	2068	

Graphical Summaries

- Segmented Bar Graphs
- Mosaic Plot

Segmented Bar Graph

- Stacked Bar Graphs of one set of Conditional Distributions
 - Ex. Eye Color Given Gender
 - Ex. Gender Given Eye Color
- Same Color for each category in one of the variables
- Each Stack is a category in the other variable

Ex. Eye Color and Gender

Mosaic Plot

- Similar to Segmented Bar Graph
- Width of each stack is based on the variable's marginal distribution

Ex. Eye Color and Gender

