Programação dinâmica

CLRS cap 15

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Números de Fibonacci

Números de Fibonacci

Algoritmo recursivo para F_n :

```
FIBO-REC (n)

1 se n \le 1

2 então devolva n

3 senão a \leftarrow \text{FIBO-REC}(n-1)

4 b \leftarrow \text{FIBO-REC}(n-2)

5 devolva a + b
```

```
FIBO-REC (n)
1 se n \le 1
2 então devolva n
3 senão a \leftarrow \text{FIBO-REC}(n-1)
4 b \leftarrow \text{FIBO-REC}(n-2)
5 devolva a + b
```

Tempo em segundos:

$$F_{47} = 2971215073$$

```
FIBO-REC (n)

1 se n \le 1

2 então devolva n

3 senão a \leftarrow \mathsf{FIBO-REC}(n-1)

4 b \leftarrow \mathsf{FIBO-REC}(n-2)

5 devolva a+b
```

T(n) := número de somas feitas por FIBO-REC(n)

linha	número de somas					
1-2	= 0					
3	= T(n-1)					
4	= T(n-2)					
5	= 1					
$\overline{T(n)}$	= T(n-1) + T(n-2) + 1					

Recorrência

$$T(0) = 0$$
 $T(1) = 0$
 $T(n) = T(n-1) + T(n-2) + 1$ para todo $n \ge 2$

A que classe Ω pertence T(n)?

A que classe \bigcirc pertence T(n)?

Recorrência

$$T(0) = 0$$
 $T(1) = 0$
 $T(n) = T(n-1) + T(n-2) + 1$ para todo $n \ge 2$

A que classe Ω pertence T(n)?

A que classe \bigcirc pertence T(n)?

Solução: $T(n) > (3/2)^n$ para todo $n \ge 6$.

	n	0	1	2	3	4	5	6	7	8	9
-	T_n	0	0	1	2	4	7	12	20	33	54
	$(3/2)^{n}$	1	1.5	2.25	3.38	5.06	7.59	11.39	17.09	25.63	38.44

Recorrência

Prova:
$$T(6) = 12 > 11.40 > (3/2)^6$$
 e $T(7) = 20 > 18 > (3/2)^7$. Se $n \ge 8$, então

Logo,
$$T(n) \in \Omega((3/2)^n)$$
.

Verifique que T(n) é $O(2^n)$.

Consumo de tempo é exponencial.

Algoritmo resolve subproblemas muitas vezes.

Consumo de tempo é exponencial.

Algoritmo resolve subproblemas muitas vezes.

Consumo de tempo é exponencial.

Algoritmo resolve subproblemas muitas vezes.

Resolve subproblemas muitas vezes

```
FIBO-REC(5)
  FIBO-REC(4)
    FIBO-REC(3)
      FIBO-REC(2)
        FIBO-REC(1)
        FIBO-REC(0)
      FIBO-REC(1)
    FIBO-REC(2)
      FIBO-REC(1)
      FIBO-REC(0)
  FIBO-REC(3)
    FIBO-REC(2)
      FIBO-REC(1)
      FIBO-REC(0)
    FIBO-REC(1)
```

$$FIBO-REC(5) = 5$$

Resolve subproblemas muitas vezes

FIBO-REC(8)	FIBO-REC(1)	FIBO-REC(2)
FIBO-REC(7)	FIBO-REC(2)	FIBO-REC(1)
FIBO-REC(6)	FIBO-REC(1)	FIBO-REC(O)
FIBO-REC(5)	FIBO-REC(O)	FIBO-REC(1)
FIBO-REC(4)	FIBO-REC(5)	FIBO-REC(2)
FIBO-REC(3)	FIBO-REC(4)	FIBO-REC(1)
FIBO-REC(2)	FIBO-REC(3)	FIBO-REC(O)
FIBO-REC(1)	FIBO-REC(2)	FIBO-REC(3)
FIBO-REC(O)	FIBO-REC(1)	FIBO-REC(2)
FIBO-REC(1)	FIBO-REC(O)	FIBO-REC(1)
FIBO-REC(2)	FIBO-REC(1)	FIBO-REC(0)
FIBO-REC(1)	FIBO-REC(2)	FIBO-REC(1)
FIBO-REC(O)	FIBO-REC(1)	FIBO-REC(4)
FIBO-REC(3)	FIBO-REC(O)	FIBO-REC(3)
FIBO-REC(2)	FIBO-REC(3)	FIBO-REC(2)
FIBO-REC(1)	FIBO-REC(2)	FIBO-REC(1)
FIBO-REC(O)	FIBO-REC(1)	FIBO-REC(0)
FIBO-REC(1)	FIBO-REC(O)	FIBO-REC(1)
FIBO-REC(4)	FIBO-REC(1)	FIBO-REC(2)
FIBO-REC(3)	FIBO-REC(6)	FIBO-REC(1)
FIBO-REC(2)	FIBO-REC(5)	FIBO-REC(0)
FIBO-REC(1)	FIBO-REC(4)	
FIBO-REC(0)	FIBO-REC(3)	

Programação dinâmica

"Dynamic programming is a fancy name for divide-and-conquer with a table. Instead of solving subproblems recursively, solve them sequentially and store their solutions in a table. The trick is to solve them in the right order so that whenever the solution to a subproblem is needed, it is already available in the table. Dynamic programming is particularly useful on problems for which divide-and-conquer appears to yield an exponential number of subproblems, but there are really only a small number of subproblems repeated exponentially often. In this case, it makes sense to compute each solution the first time and store it away in a table for later use, instead of recomputing it recursively every time it is needed."

I. Parberry, Problems on Algorithms, Prentice Hall, 1995.

Versão recursiva com memoização

```
MEMOIZED-FIBO (f, n)
  para i \leftarrow 0 até n faça
2 f[i] \leftarrow -1
3 devolva LOOKUP-FIBO (f, n)
LOOKUP-FIBO (f, n)
1 se f[n] \ge 0
2 então devolva f[n]
3 se n \leq 1
4 então f[n] \leftarrow n
      senão f[n] \leftarrow LOOKUP-FIBO(f, n-1)
                 + LOOKUP-FIBO(f, n-2)
   devolva f[n]
6
```

Não recalcula valores de f.

Algoritmo de programação dinâmica

Sem recursão:

```
FIBO (n)

1 f[0] \leftarrow 0

2 f[1] \leftarrow 1

3 para i \leftarrow 2 até n faça

4 f[i] \leftarrow f[i-1] + f[i-2]

5 devolva f[n]
```

Note a tabela f[0...n-1].

Consumo de tempo (e de espaço) é $\Theta(n)$.

Algoritmo de programação dinâmica

Versão com economia de espaço.

```
FIBO (n)

0 se n = 0 então devolva 0

1 f_ant \leftarrow 0

2 f_atual \leftarrow 1

3 para i \leftarrow 2 até n faça

4 f_prox \leftarrow f_atual + f_ant

5 f_ant \leftarrow f_atual

6 f_atual \leftarrow f_prox

7 devolva f_atual
```

Algoritmo de programação dinâmica

Versão com economia de espaço.

```
FIBO (n)

0 se n = 0 então devolva 0

1 f_ant \leftarrow 0

2 f_atual \leftarrow 1

3 para i \leftarrow 2 até n faça

4 f_prox \leftarrow f_atual + f_ant

5 f_ant \leftarrow f_atual

6 f_atual \leftarrow f_prox

7 devolva f_atual
```

Consumo de tempo é $\Theta(n)$.

Consumo de espaço é $\Theta(1)$.

Corte de hastes

Hastes de aço são vendidas em pedaços de tamanho inteiro. As usinas produzem hastes longas, e os comerciantes cortam em pedaços para vender.

Corte de hastes

Hastes de aço são vendidas em pedaços de tamanho inteiro. As usinas produzem hastes longas, e os comerciantes cortam em pedaços para vender.

Suponha que o preço de uma haste de tamanho i esteja tabelado como p_i .

Problema: Dada uma haste de tamanho *n* e a tabela *p* de preços, qual a melhor forma de cortar a haste para maximizar o preço de venda total?

Corte de hastes

Hastes de aço são vendidas em pedaços de tamanho inteiro. As usinas produzem hastes longas, e os comerciantes cortam em pedaços para vender.

Suponha que o preço de uma haste de tamanho i esteja tabelado como p_i .

Problema: Dada uma haste de tamanho *n* e a tabela *p* de preços, qual a melhor forma de cortar a haste para maximizar o preço de venda total?

Versão simplificada: qual o maior valor q_n que se pode obter de uma haste de tamanho n?

									9
p_n	1	5	8	9	10	17	17	20	24

Possíveis cortes para n = 4:

Possíveis cortes para n = 4:

n
 1
 2
 3
 4
 5
 6
 7
 8
 9

$$p_n$$
 1
 5
 8
 9
 10
 17
 17
 20
 24

Possíveis cortes para n = 4:

Melhor corte (de maior lucro): ???

n
 1
 2
 3
 4
 5
 6
 7
 8
 9

$$p_n$$
 1
 5
 8
 9
 10
 17
 17
 20
 24

Possíveis cortes para n = 4:

Melhor corte (de maior lucro): o terceiro, com valor 10.

Solução recursiva

Corta-se um primeiro pedaço de tamanho i e o pedaço restante, de tamanho n-i, recursivamente do melhor jeito possível. O valor desse corte é

$$p_i + q_{n-i}$$
.

Solução recursiva

Corta-se um primeiro pedaço de tamanho i e o pedaço restante, de tamanho n-i, recursivamente do melhor jeito possível. O valor desse corte é

$$p_i + q_{n-i}$$
.

A questão é escolher o melhor i; o que maximiza a expressão acima:

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Considere um melhor jeito de cortar uma haste de tamanho n.

Se não são feitos cortes, o lucro q_n é de

$$p_n = p_n + q_{n-n} \le \max_{1 \le i \le n} \{p_i + q_{n-i}\}.$$

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Considere um melhor jeito de cortar uma haste de tamanho n.

Seja i o comprimento do primeiro corte. Temos $1 \le i < n$. O lucro será $p_i + r$, onde r é o lucro obtido com a venda do restante da haste, de comprimento n - i.

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Considere um melhor jeito de cortar uma haste de tamanho n.

Seja i o comprimento do primeiro corte. Temos $1 \le i < n$. O lucro será $p_i + r$, onde r é o lucro obtido com a venda do restante da haste, de comprimento n - i.

Logo, $r \leq q_{n-i}$, e o lucro total é $p_i + r \leq p_i + q_{n-i}$.

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Considere um melhor jeito de cortar uma haste de tamanho n.

Seja i o comprimento do primeiro corte. Temos $1 \le i < n$. O lucro será $p_i + r$, onde r é o lucro obtido com a venda do restante da haste, de comprimento n - i.

Logo, $r \leq q_{n-i}$, e o lucro total é $p_i + r \leq p_i + q_{n-i}$.

Isso conclui a prova de '≤' em

$$q_n = \max_{1 \leq i \leq n} \{p_i + q_{n-i}\}.$$

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Considere um melhor jeito de cortar uma haste de tamanho n.

Seja i o comprimento do primeiro corte. Temos $1 \le i < n$. O lucro será $p_i + r$, onde r é o lucro obtido com a venda do restante da haste, de comprimento n - i.

Logo, $r \leq q_{n-i}$, e o lucro total é $p_i + r \leq p_i + q_{n-i}$.

Isso conclui a prova de '≤' em

$$q_n = \max_{1 \leq i \leq n} \{p_i + q_{n-i}\}.$$

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Seja i um índice que atinge o máximo em

$$\max_{1\leq i\leq n}\{p_i+q_{n-i}\}.$$

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Seja i um índice que atinge o máximo em

$$\max_{1\leq i\leq n}\{p_i+q_{n-i}\}.$$

Se i = n, a venda sem cortes tem preço $p_i - q_{n-i}$.

Prova de corretude da recorrência

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Seja i um índice que atinge o máximo em

$$\max_{1\leq i\leq n}\{p_i+q_{n-i}\}.$$

Se i = n, a venda sem cortes tem preço $p_i - q_{n-i}$.

Se i < n, então um corte de comprimento i produz uma haste vendida por p_i , e o restante da haste, de comprimento n - i, pode ser cortado de modo a ser vendido por q_{n-i} .

Prova de corretude da recorrência

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Seja i um índice que atinge o máximo em

$$\max_{1\leq i\leq n}\{p_i+q_{n-i}\}.$$

Se i = n, a venda sem cortes tem preço $p_i - q_{n-i}$.

Se i < n, então um corte de comprimento i produz uma haste vendida por p_i , e o restante da haste, de comprimento n - i, pode ser cortado de modo a ser vendido por q_{n-i} .

Em ambos os casos, o lucro total é $p_i + q_{n-i}$. Logo, $q_n \ge p_i + q_{n-i}$.

Prova de corretude da recorrência

$$q_n = \max_{1 \le i \le n} \{ p_i + q_{n-i} \}, \quad \text{se } n \ge 1$$

$$q_0 = 0.$$

A fórmula para q_0 está trivialmente correta. Seja $n \ge 1$.

Seja i um índice que atinge o máximo em

$$\max_{1\leq i\leq n}\{p_i+q_{n-i}\}.$$

Se i = n, a venda sem cortes tem preço $p_i - q_{n-i}$.

Se i < n, então um corte de comprimento i produz uma haste vendida por p_i , e o restante da haste, de comprimento n - i, pode ser cortado de modo a ser vendido por q_{n-i} .

Em ambos os casos, o lucro total é $p_i + q_{n-i}$. Logo, $q_n \ge p_i + q_{n-i}$. Isso prova ' \ge ' na recorrência.

```
CORTA-HASTE (p, n)
    se n = 0
    então devolva 0
3 q \leftarrow -\infty
  para i \leftarrow 1 até n
       q \leftarrow \max\{q, p[i] + \text{CORTA-HASTE}(p, n - i)\}
    devolva q
```

```
CORTA-HASTE (p, n)

1 se n = 0

2 então devolva 0

3 q \leftarrow -\infty

4 para i \leftarrow 1 até n

5 q \leftarrow \max\{q, p[i] + \text{CORTA-HASTE}(p, n - i)\}

6 devolva q
```

Consumo de tempo:

$$T(n) = n + \sum_{i=0}^{n-1} T(i)$$

```
CORTA-HASTE (p, n)

1 se n = 0

2 então devolva 0

3 q \leftarrow -\infty

4 para i \leftarrow 1 até n

5 q \leftarrow \max\{q, p[i] + \text{CORTA-HASTE}(p, n - i)\}

6 devolva q
```

Consumo de tempo:

$$T(n) = n + \sum_{i=0}^{n-1} T(i)$$

Para simplificar, subtraia $T(n-1) = n-1 + \sum_{i=0}^{n-2} T(i)$ do acima, obtendo T(n) = 2T(n-1) + 1, que é mais fácil de resolver.

```
CORTA-HASTE (p, n)

1 se n = 0

2 então devolva 0

3 q \leftarrow -\infty

4 para i \leftarrow 1 até n

5 q \leftarrow \max\{q, p[i] + \text{CORTA-HASTE}(p, n - i)\}

6 devolva q
```

Consumo de tempo:

$$T(n) = 2T(n-1) + 1 = 2^{n+1} - 1.$$

Com memoização

Note que *r* funciona como variável global.

```
CORTA-HASTE-MEMOIZADO (p, n)

1 r[0] \leftarrow 0

2 para i \leftarrow 1 até n

3 r[i] \leftarrow -\infty

4 devolva CORTA-HASTE-MEMOIZADO-REC (p, n, r)
```

Com memoização

Note que r funciona como variável global.

```
CORTA-HASTE-MEMOIZADO (p, n)
   r[0] \leftarrow 0
  para i \leftarrow 1 até n
3
       r[i] \leftarrow -\infty
  devolva CORTA-HASTE-MEMOIZADO-REC (p, n, r)
CORTA-HASTE-MEMOIZADO-REC (p, n, r)
   se r[n] \geq 0
       devolva r[n]
3
    senão q \leftarrow -\infty
       para i \leftarrow 1 até n
4
           q \leftarrow \max\{q, p[i] + \text{Corta-Haste-Memoizado-Rec}(p, n-i, r)\}
5
     r[n] \leftarrow q
6
       devolva q
```

Bottom up: Programação Dinâmica

```
CORTA-HASTE-BOTTOM-UP (p, n)

1 r[0] \leftarrow 0

2 para j \leftarrow 1 até n

3 q \leftarrow -\infty

4 para i \leftarrow 1 até j

5 q \leftarrow \max\{q, p[i] + r[j - i]\}

6 r[j] \leftarrow q

7 devolva q
```

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

Recuperando UM melhor corte

```
CORTA-HASTE-BOTTOM-UP-COMPLETO (p, n)

1 r[0] \leftarrow 0

2 para j \leftarrow 1 até n

3 q \leftarrow -\infty

4 para i \leftarrow 1 até j

5 se q < p[i] + r[j - i]

6 q \leftarrow p[i] + r[j - i]

7 d[j] \leftarrow i

8 r[j] \leftarrow q

9 devolva q \in d
```

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1			
d_n		1			

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1	2		
$\overline{d_n}$		1	1		

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1	5		
$\overline{d_n}$		1	2		

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1	5	6	
d_n		1	2	1	

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1	5	8	
d_n		1	2	3	

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r _n	0	1	5	8	9
$\overline{d_n}$		1	2	3	1

$$r_{\mathbf{n}} = \max_{1 \le i \le \mathbf{n}} \{ \mathbf{p}_i + r_{\mathbf{n}-i} \}$$

n	0	1	2	3	4
r_n	0	1	5	8	10
d_{n}		1	2	3	2

Listando os cortes

(usando concatenação de listas, estilo python)

```
LISTA-CORTES(d, n)

1 se n = 0 ou d[n] = n

2 devolva [ ] >  lista vazia

3 senão

4 devolva [d[n]].LISTA-CORTES(d, n - d[n])
```

Listando os cortes

(usando concatenação de listas, estilo python)

```
LISTA-CORTES(d, n)

1 se n = 0 ou d[n] = n

2 devolva [ ] >  lista vazia

3 senão

4 devolva [d[n]].LISTA-CORTES(d, n - d[n])
```

Consumo de tempo: O(n)