

Généralités sur la précontrainte

1. INTRODUCTION

Le béton est un matériau hétérogène qui présente une très bonne résistance à la compression, par contre, il a une très mauvaise résistance à la traction.

C'est ainsi qu'une poutre reposant sur deux appuis, soumise à l'effet de son poids propre (G) et d'une charge d'exploitation (Q), subit des contraintes de flexion qui se traduisent par une zone comprimée en partie supérieure et par une zone tendue en partie inférieure (Figure I.1).

Figure I.1

La poutre subit également des contraintes de cisaillement dues aux efforts tranchants qui se produisent vers les appuis. Ces contraintes occasionnent des fissures à 45° que le béton ne peut reprendre seul.

Dans ce cas de figure, deux solutions sont possibles :

Solution N°1: L'ajout d'une quantité d'armatures capable de reprendre les efforts de traction dans le béton (Principe du béton armé).

Figure I.2

Solution N°2 : L'application d'un effort de compression axial qui s'oppose aux contraintes de traction dues aux chargements (Principe du béton précontraint).

Figure I.3

2. PRINCIPE DE LA PRECONTRAINTE

La précontrainte a pour objectif, en imposant aux éléments un effort de compression axial judicieusement appliqué, de supprimer (ou fortement limiter) les sollicitations de traction dans le béton (Figure I.4).

Effet de la flexion + Effet de la précontrainte = Elément précontraint

■■■■ Compression ■■■ Traction

Figure I.4

Cette précontrainte peut être :

- Une précontrainte partielle : autorisation des contraintes de traction limitées.
- Une précontrainte totale : élimination totale des contraintes de traction.

3. MODE DE PRECONTRAINTE

Pour réaliser l'opération de précontrainte, il existe deux possibilités.

3.1. Précontrainte par pré-tension

Dans ce procédé, les câbles de précontrainte sont tendus entre deux massifs solidement ancrés avant le coulage du béton (Figure I.5). Cette technique est surtout employée sur les bancs de préfabrication, pour réaliser des éléments répétitifs.

Figure I.5

Etapes générales de réalisation

- *Mise en tension des câbles.*
- *Coulage du béton.*
- *La libération des câbles après le durcissement du béton.*
- *Par adhérence, la précontrainte de compression est transmise au béton.*

D'une façon plus détaillée, la méthode de précontrainte par pré-tension suit les cycles suivants :

- *nettoyage des moules ;*
- *mise en place d'huile de décoffrage sur les moules ;*
- *déroulement des armatures actives et blocage aux extrémités dans des plaques ;*
- *mise en place des armatures passives ;*
- *mise en place des moules dans leur position finale;*
- *mise en place des déviateurs éventuels ;*
- *mise en tension des armatures par des vérins ;*
- *mise en place du béton par pont-roulant ou grue ;*
- *lissage de la partie supérieure ;*
- *vibration du béton ;*
- *étuvage ou chauffage du béton ;*
- *décoffrage ;*
- *dé-tension des armatures actives ;*
- *découpage des fils situés entre deux éléments préfabriqués ;*
- *manutention et stockage.*

3.2. Précontrainte par post-tension

Ce procédé consiste à tendre les câbles de précontrainte, après coulage et durcissement du béton, en prenant appui sur la pièce à comprimer (Figure I.6). Cette technique est utilisée pour les ouvrages importants est, généralement, mise en œuvre sur chantier.

La précontrainte par post tension se présente sous deux formes :

- *Une précontrainte par post-tension interne*
- *Une précontrainte par post-tension externe*

Etapes générales de réalisation

- *Placement des gaines dans le coffrage.*
- *Coulage du béton.*

- Après le durcissement du béton, la mise en tension des câbles.
- Le blocage se fait par différents systèmes de cales sur une zone de béton fretté.
- L'injection d'un coulis de ciment.

Figure I.6

La mise en tension peut être faite en tendant l'acier aux deux extrémités de la pièce (actif - actif) ou en tendant une seule extrémité uniquement (actif – passif) (Figure I.7).

Figure I.7

L'injection est une opération extrêmement importante, car elle assure un double rôle :

- 1) La protection des armatures de précontrainte contre la corrosion.
- 2) L'amélioration de l'adhérence entre les armatures et les gaines.

L'opération de l'injection doit être réalisée dès que possible après la mise en tension des armatures. Le produit d'injection doit répondre aux impératifs suivants :

- avoir une assez faible viscosité pour couler facilement et pénétrer dans toutes les ouvertures et entre fils des câbles de précontrainte ;
- conserver cette faible viscosité pendant un délai suffisant pour que l'injection puisse s'effectuer dans de bonnes conditions avant le début de prise ;
- après durcissement, avoir une résistance suffisante pour assurer efficacement l'adhérence de l'armature au béton ;
- présenter un retrait minimal ;
- ne pas être agressif vis-à-vis de l'acier de précontrainte.

Le produit d'injection était autrefois un mortier formé de ciment, de sable et de l'eau ; aujourd'hui le sable est à peu près complètement abandonné, au profit de coulis de ciment CPA, comportant un adjuvant.

L'ensemble d'un procédé de précontrainte comprend, généralement, les éléments suivants :

a)- Dispositif d'ancrage : on distingue, principalement, deux types d'ancrage :

Ancre actif, situé à l'extrémité de la mise en tension.

Ancre passif (ancrage mort), situé à l'extrémité opposée à la mise en tension.

b)- Les coupleurs : dispositif permettant les prolongements des armatures.

c)- Matériels de mise en tension : vérins, pompes d'injection, pompe d'alimentation des vérins etc.

d)- Les accessoires : gaines, tubes d'injection etc.

3.3. Comparaison des deux procédés

Une comparaison entre les deux procédés (post-tension et pré-tension) permet de constater les observations suivantes :

Pré-tension

- 1) *L'économie des gaines, des dispositifs d'ancrage et de l'opération de l'injection.*
- 2) *La nécessite des installations très lourdes ce qui limite, par voie de conséquence, le choix des formes.*
- 3) *La simplicité de la réalisation du procédé.*
- 4) *Une bonne collaboration du béton et des armatures.*
- 5) *La difficulté de réalisation des tracés courbes d'armatures.*
- 6) *L'impossibilité de régler l'effort dans les armatures après la mise en tension.*

Post-tension

- 1) *Ne demande aucune installation fixe puisque ; c'est sur la pièce elle même que s'appuie le vérin de précontrainte.*
- 2) *Elle permet le choix des différentes formes.*
- 3) *La possibilité de régler l'effort de précontrainte, ce qui permet d'adapter le procédé à l'évolution de la masse de l'ouvrage.*
- 4) *La facilité de réalisation des tracés courbes d'armatures de précontrainte.*

A côté de ces procédés classiques, il existe des procédés spéciaux qui sont réservés à certains ouvrages ou qui font appel à d'autres principes pour la mise en tension :

➤ *Précontrainte par enroulement*

- *Précontrainte par compression externe*
- *Mise en tension par dilatation thermique*
- *Mise en tension par expansion du béton*

4. AVANTAGES ET INCONVENIENTS

4.1. Avantages

- 1) *Une compensation partielle ou complète des actions des charges.*
- 2) *Une économie appréciable des matériaux.*
- 3) *Augmentation des portés économiques.*
- 4) *Une réduction des risques de corrosion.*

4.2. Inconvénients

- 1) *La nécessité de matériaux spécifiques.*
- 2) *La nécessité de main d'œuvre qualifié.*
- 3) *La nécessité d'équipements particuliers.*
- 4) *Risque de rupture à vide par excès de compression.*
- 5) *Un calcul relativement complexe.*

5. SYSTEMES DE PRECONTRAINTE

Les systèmes de précontrainte font l'objet de brevet et sont fabriqués par leurs exploitants. Les principaux systèmes sont :

➤ Système Freyssinet :

Ce système utilise des câbles composés de torons T 13, T 13 S, T 15 et T 15 S. La lettre T est remplacée par la lettre K (exemple 12 K 15)

➤ Système PAC :

Ce système utilise des câbles composés de 1 à 37 T 13, T 13 S, T 15 ou T 15 S.

➤ Système CIPEC :

Ce système utilise des câbles 4 T 13 à 19 T 13, 4 T 15 à 27 T 15, normaux et super.

➤ Système VSL :

Ce système utilise des unités 3 T 12 à 55 T 13, 3 T 15 à 37 T 15, normales ou super. Leur dénomination est de la forme 5-n pour n T 13 et 6-n pour n T 15.(exemple :6-37 représente un câble ou un ancrage 37 T 15).

6. DOMAINE D'APPLICATION

L'invention du béton précontraint est due à l'ingénieur français Eugène Freyssinet. Les premières applications pratiques sont tentées en 1933. Dans les années qui suivent, les performances exceptionnelles de ce nouveau concept sont brillamment démontrées.

Grâce à ces avantages le béton précontraint est utilisé dans les ouvrages d'art et les bâtiments de dimensions importantes : il est d'utilisation courante pour les ponts et d'un emploi très répandu pour les poutrelles préfabriquées des planchers de bâtiments.

On le retrouve dans de nombreux autres types d'ouvrages, parmi lesquels nous citerons les réservoirs ,les pieux de fondation et tirants d'ancrage, certains ouvrages maritimes, les barrages, les enceintes de réacteurs nucléaires...

7. REGLEMENTATIONS

IP1 : Instruction Provisoire n°1 du 12 Août 1965

IP2 : Instruction Provisoire n°2 du 13 Août 1973

BPEL 91 : Béton précontraint aux états limites

Euro code 2 : (Béton Armé et Béton précontraint).

8. APPLICATIONS

Application 1

Soit une poutre de section B et avec un moment d'inertie I soumise à un moment fléchissant M et à un effort de précontrainte centré P_1 .

- Déterminer le diagramme des contraintes.
- Déduire l'expression de l'effort de précontrainte P_1 .

Application numérique

Soit la section rectangulaire (50,120) cm soumise à un moment extérieur $M=0.80 \text{ MNm}$.

- Déterminer la valeur de P_1 .
- Schématiser le diagramme des contraintes.

Solution

1. Diagramme des contraintes

2. Valeur de P_1 :

Du diagramme des contraintes, on a :

$$-\frac{MVi}{I} + \frac{P_I}{B} = 0 \Rightarrow P_I = \frac{MVi}{I}B$$

$$AN : P_l = 4MN$$

Application 2

Soit une poutre de section B et avec un moment d'inertie I soumise un moment fléchissant M et un effort de précontrainte P_2 excentré de « e ».

- Déterminer le diagramme des contraintes.
- Déduire l'expression de l'effort de précontrainte P_2 .

Application numérique

Soit la section rectangulaire (50,120) cm soumise à un moment extérieur $M=0.80 \text{ MNm}$.

Dans le deuxième cas de précontrainte excentrée, en supposant que l'on puisse excenter au maximum de $e = -0.45 \text{ m}$ la position du câble.

- Déterminer la valeur de P_1 .
- Schématiser le diagramme des contraintes.

Solution

1. Diagramme des contraintes

Du diagramme des contraintes, on a :

$$-\frac{MVi}{I} + \frac{P_2}{B} + \frac{P_2eVi}{I} = 0 \Rightarrow P_2 = \frac{MVi}{I\left(\frac{1}{B} + \frac{eVi}{I}\right)}$$

AN : $P_2 = 1.231 \text{ MN}$

Constatation :

Il est claire que grâce à l'excentrement de la précontrainte, on a diminué l'effort de précontrainte de 4 à 1.231 MN et la contrainte maximum du béton de 13.34 à 4.1 MPa, d'où une économie substantielle d'acier et de béton.

Application 3

Soit une poutre de section rectangulaire (50x120) cm d'un élément de classe I soumise aux moments $M_{min}=1.25 \text{ MNm}$ et $M_{max}=3.2 \text{ MNm}$.

La valeur de la précontrainte et de son excentricité sont données égales à $P=5.1 \text{ MN}$ et $eo=-0.44 \text{ m}$.

➤ Déterminer le diagramme des contraintes sous moments maximum et minimum.

Solution**Sous moment minimum**

Effort de précontrainte centré = 8.5 MPa

Effort de précontrainte de flexion = (+ ou -) 18.70 MPa

Effort de flexion du moment min = (+ ou -) 10.42 MPa

Sous moment maximum

Effort de précontrainte centré = 8.5 MPa

Effort de précontrainte de flexion = (+ ou -) 18.70 MPa

Effort de flexion du moment max = (+ ou -) 26.67 MPa

Application 4

Soit une poutre de section rectangulaire (100, h) cm soumise à la précontrainte.

- Déterminer la hauteur de la poutre.
- Déterminer la force de précontrainte.
- Déterminer l'excentricité de la force de précontrainte.

Contrainte limite du béton :

- ❖ Traction = 0
- ❖ Compression = 1200 t/m^2

NB : *On néglige le poids propre de la poutre*

