

Track-based alignment of the CMS muon detector

Jim Pivarski, Alexei Safonov Texas A&M University

American Physical Society April Meeting April 12, 2008 (B12.00006)

CMS muon tracking system

Jim Pivarski

Outermost part of the Compact Muon Solenoid (CMS)

- ▶ Typical muon leaves a trail of 24–44 hits in muon system
- A complete tracking system in itself!
- Measure muon momentum by curvature of its 7-meter long track

Independent components

Jim Pivarski

- Built in an assembly hall and lowered, piece by piece, to the interaction point
- Iron disks shift and bend centimeters in CMS's 4-Tesla magnetic field
- ➤ 790 chambers mounted on ball-joints to remain internally rigid

Hit resolution depends on precise knowledge of chambers' position and orientation in space

Does muon alignment matter? Jim Pivarski 4/16

- ▶ Triggering and muon-id are insensitive to misalignment, by design
- ▶ Inner tracker dominates in p_T resolution because hits are \sim 10 times more precise
 - \blacktriangleright Inner tracker: 10–50 $\mu\mathrm{m}$ silicon strip measurements
 - \blacktriangleright Muon chamber: 200 μ m drift tubes and cathode strips

Does muon alignment matter? Jim Pivarski

5/16

- ▶ Inner tracker dominates in p_T resolution because hits are \sim 10 times more precise
 - ▶ Inner tracker: $10-50 \mu m$ silicon strip measurements
 - Muon chamber: 200 μ m drift tubes and cathode strips

... but only below 1 TeV

▶ TeV tracks are so straight that muon system's lever arm contributes significantly to momentum resolution: it matters!

Hardware alignment system Jim Pivarski

System of lasers and calipers mounted on chambers

Measure positions and monitor changes

Track-based alignment

Jim Pivarski

Find corrections to assumed chamber positions by minimizing track-minus-hit residuals

- ▶ Independent alternative to Muon Hardware Alignment System
- ▶ Aligns active sensors directly, rather than the boxes they live in
- ► Parameter resolution is proportional to sensitivity of track-fitting: best resolution on the parameters that matter most

Track-based alignment

Jim Pivarski

Find corrections to assumed chamber positions by minimizing track-minus-hit residuals

- ▶ Independent alternative to Muon Hardware Alignment System
- ▶ Aligns active sensors directly, rather than the boxes they live in
- ► Parameter resolution is proportional to sensitivity of track-fitting: best resolution on the parameters that matter most

Find corrections to assumed chamber positions by minimizing track-minus-hit residuals

- ▶ Independent alternative to Muon Hardware Alignment System
- ▶ Aligns active sensors directly, rather than the boxes they live in
- ► Parameter resolution is proportional to sensitivity of track-fitting: best resolution on the parameters that matter most

Challenges and solutions

- Ordinarily, a chicken-and-egg problem: tracks are fit by minimizing residuals, too!
 - We can use the inner silicon tracker as a reference

Find corrections to assumed chamber positions by minimizing track-minus-hit residuals

- ▶ Independent alternative to Muon Hardware Alignment System
- ▶ Aligns active sensors directly, rather than the boxes they live in
- ► Parameter resolution is proportional to sensitivity of track-fitting: best resolution on the parameters that matter most

Challenges and solutions

- Ordinarily, a chicken-and-egg problem: tracks are fit by minimizing residuals, too!
 - We can use the inner silicon tracker as a reference
- ▶ Muon system has a lot of iron: multiple-scattering distorts track
 - 1. Remove highly scattering tracks from sample
 - 2. Re-fit tracks using local information

Muon Alignment Techniques

Jim Pivarski

- Use redundancy of muon system to identify multiply-scattering tracks
 - Scattered tracks are in tails of the residual distributions
 - Dozens of residual distributions per track: one for each layer hit
- Scattering bias is antisymmetric with charge, only affects low momentum

Muon Alignment Techniques

Jim Pivarski 12/16

 Use redundancy of muon system to identify multiply-scattering tracks

- Scattered tracks are in tails of the residual distributions
- Dozens of residual distributions per track: one for each layer hit
- Scattering bias is antisymmetric with charge, only affects low momentum
- Local track-fitting:
 - Re-fit tracks with all but a few hits deweighted (inflated uncertainty)

Muon Alignment Techniques

Jim Pivarski 13/16

- Use redundancy of muon system to identify multiply-scattering tracks
 - Scattered tracks are in tails of the residual distributions
 - Dozens of residual distributions per track: one for each layer hit
- Scattering bias is antisymmetric with charge, only affects low momentum
- Local track-fitting:
 - Re-fit tracks with all but a few hits deweighted (inflated uncertainty)

- Some chambers overlap without intervening iron layer
 - ▶ local-fit shared track segment
 - align chambers relative to one another

Start-up alignment methods

Jim Pivarski

Beam-halo for endcaps

Strategy:

- Find relative chamber alignments within modular structures (barrel wheels and endcap disks) using cosmics, beam-halo
- 2. Align modular structures to inner tracker with first collisions
 - ► These structures cover large solid angles
 - Not many tracks are needed for a precise alignment

TeV dimuons with misalignment Jim Pivarski 15/16

Simulated Z' peak shape with residual misalignment

Misaligned muon system matters a lot more at 2 TeV, as expected

- ► CMS muon detector is a many-layered tracking system
- ▶ Modular structure requires alignment
- ► Track-based alignment poses a unique set of challenges in this environment
- \triangleright Significant impact on early physics: width of Z' resonance