概率统计 A 作业 Homework_12 (Lecture_PS08_2) 2024.4.19

1、设总体 X 服从 0-1 分布,且 $P\{X=1\}=p$, $P\{X=0\}=1-p$, X_1 , X_2 ,..., X_n 是该总体的一个样本,试验证: $\hat{p}^2=\bar{X}^2-\frac{1}{n-1}B_2$ 是 p^2 的无偏估计量. 其中:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $B_2 = S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$

2、 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 是其一个样本, 试验证

$$\hat{\mu}_1 = \frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3, \qquad \hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3, \qquad \hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3,$$

都是µ的无偏估计量,并分析哪一个更有效。

- 3、设总体 $X \sim N(\mu, \sigma^2)$, 证明: $S \neq \sigma$ 的一致估计量. 其中 S 为样本标准差。
- 4、设总体 $X \sim N(\mu, \sigma^2)$, 今测得一组样本值为: 3.3, -0.3, -0.6, -0.9.
 - 1) 若已知 $\sigma^2 = 9$, 求 μ 的 95%的置信区间;
 - 2) 若 σ^2 未知, 求 μ 的 95%的置信区间;
- 5、为了解灯泡使用寿命的均值 μ 及标准差 σ ,测量 10 个灯泡,得 \bar{x} = 1500 小时,s = 20 小时. 如果已知灯泡的使用寿命服从正态分布,求 μ 及 σ 的 95%的置信区间.
- 6、设总体 $X \sim N(\mu, \sigma^2)$, 如果 σ^2 已知,问杨本容量 n 取多大时,方能保证 μ 的 95%的置信区间的长度不大于 l?
- 7、为了检验一种杂交作物的两种新处理方案,在同一地区随机地各选择 8 块地段,按两种方案处理作物.各地段的单位面积产量如下(单位:公斤)
 - 一号方案: 86, 87, 56, 93, 84, 93, 75, 79;
 - 二号方案: 80, 79, 58, 91, 77, 82, 74, 66;

假设两种方案的产量都分别服从 $N(\mu_1,\sigma^2)$, $N(\mu_2,\sigma^2)$, σ^2 未知. 求 μ_1 - μ_2 的 95%的置信区间。