1. What is the primary challenge addressed by the dual-MAE algorithm in this study?
a) The high cost of pediatric chest X-ray imaging.
b) The lack of skilled radiologists to interpret pediatric chest X-rays.
c) The limited availability of pediatric chest X-ray data.
d) The difficulty in obtaining informed consent from parents of pediatric patients.
Correct Answer: c
2. What is the key innovation introduced in the dual-MAE architecture?
a) A novel convolutional neural network (CNN) architecture.
b) The use of a single encoder and decoder network.
c) The incorporation of online and target networks with encoder and decoder modules.
d) A new method for image segmentation.
Correct Answer: c
3. What datasets were primarily used for pretraining the dual-MAE model?
a) ImageNet and CIFAR-10
b) PediCXR and ChestX-ray14
c) CheXpert and ChestX-ray14
d) MNIST and Fashion-MNIST
Correct Answer: c

4. What is the main performance metric used to evaluate the different models?
a) Accuracy
b) Precision
c) Mean AUC score
d) F1-score
Correct Answer: c
5. Which model achieved the highest mean AUC score in the study?
a) ResNet-34 trained from scratch
b) ViT-S pretrained on ImageNet
c) Vanilla MAE pretrained on adult chest X-rays
d) Dual-MAE pretrained on adult chest X-rays
Correct Answer: d
6. What strategy was employed to mitigate the issue of limited pediatric chest X-ray data?
a) Data augmentation techniques such as rotation and flipping.
b) Using a smaller, more efficient model architecture.
c) Pretraining the model on adult chest X-rays and then fine-tuning on pediatric X-rays.
d) Collecting additional pediatric chest X-ray data from various hospitals.
Correct Answer: c