

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco Coordenação de Química – COOUL

Lista de Exercícios – Eletroquímica – LE-ELT 01

- 01) Observe o esquema e responda:
 - a) Que eletrodo constitui o ânodo?
 - b) Qual a equação da reação global?
 - c) Que solução se concentra?
 - d) Como se indica esta pilha?

- a) a equação da semi reação de oxidação;
- b) a equação da semi reação de redução;
- c) a equação da reação global;
- d) a indicação da pilha;
- e) qual é o pólo positivo da pilha?
- f) qual é o pólo negativo da pilha?

- 03) Escreva as equações das semi reações de oxidação, de redução e da reação global que ocorrem nas pilhas representadas abaixo:
 - a) $Al^0/Al^{+3}//Cu^{+2}/Cu^0$
 - b) Fe⁰/Fe⁺²//Cu⁺²/Cu⁰
 - c) $Co^0/Co^{+2}//Pb^{+2}/Pb^0$
- 04) Analise os eletrodos abaixo e responda:
 - a) O eletrodo Al^0/Al^{+3} apresenta $E^0_{red} = -1,66 \text{ V}$; qual o seu E^0_{oxi} ?
 - b) O eletrodo Ag^0/Ag^+ apresenta $E^0_{oxi} = -0.80 \text{ V}$; qual o seu E^0_{red} ?
- 05) Observe os dados abaixo e responda:

Semi reação	$E_{red}^{0}\left(V\right)$
$Fe^{+2}_{(aq)} + 2 e^{-} \rightarrow Fe^{0}_{(s)}$	-0,44
$Ba^{+2}_{(aq)} + 2e^{-} \rightarrow Ba^{0}_{(s)}$	-2,90
$Pb^{+2}_{(aq)} + 2 e^{-} \rightarrow Pb^{0}_{(s)}$	-0,13

- a) Qual deles perde elétrons mais facilmente?
- b) Qual deles recebe elétrons mais facilmente?
- c) Qual o melhor agente oxidante?
- d) Qual o melhor agente redutor?
- 06) Observe o esquema ao lado e responda:

(Dados:
$$E_{red}^0 Mg^{+2} = -2,36V$$
; $E_{red}^0 Ni^{+2} = -0,25 V$)

- a) Qual o sentido do movimento dos elétrons pelo circuito externo?
- b) Simbolize o eletrodo que constitui o cátodo e o que constitui o ânodo.
- c) Quais as reações que ocorrem no cátodo e no ânodo?
- d) Verifique o que ocorre com as lâminas de Mg⁰ e Ni⁰ e com as concentrações das soluções.
- e) Qual é a equação da reação global da pilha?
- f) Qual é a diferença de potencial da pilha?
- g) Dê a simbologia da pilha.

07) Calcule a força eletromotriz (ΔE) das pilhas formadas pelos eletrodos abaixo, em condições padrão, dados seus respetivos potenciais-padrão de redução. Indique qual eletrodo é o cátodo e qual é o ânodo.

a)
$$Ca_{(s)} \rightarrow Ca^{+2}_{(aq)} + 2 e^{-}$$
 $E^{0}_{red} = -2.87 \text{ V}$
 $Pb_{(s)} \rightarrow Pb^{+2}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -0.13 \text{ V}$
b) $Co^{+2}_{(aq)} \rightarrow Co^{+3}_{(aq)} + 1 e^{-}$ $E^{0}_{red} = +1.84 \text{ V}$
 $Zn_{(s)} \rightarrow Zn^{+2}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -0.76 \text{ V}$
c) $Mn_{(s)} \rightarrow Mn^{+2}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -1.18 \text{ V}$
 $Fe_{(s)} \rightarrow Fe^{+3}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -0.04 \text{ V}$
d) $Sn^{+2}_{(aq)} \rightarrow Sn^{+4}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -0.15 \text{ V}$
 $Cd_{(s)} \rightarrow Cd^{+2}_{(aq)} + 2 e^{-}$ $E^{0}_{red} = -0.40 \text{ V}$

08) Uma indústria que necessita estocar soluções de nitrato de níquel em condições-padrão (E⁰_{red} Ni⁺²/Ni = -0,25 V) dispõe dos tanques I, II, III e IV, relacionados abaixo. Quais dos tanques poderão ser usados para que a solução a ser estocada não se contamine?

Tanque I: construído em ferro	$E_{red}^{0} Fe^{+2}/Fe = -0.44 V$
Tanque II: construído em chumbo	$E_{red}^{0} Pb^{+2}/Pb = -0.13 V$
Tanque III: construído em zinco	$E_{\text{red}}^{0} Zn^{+2}/Zn = -0.76 \text{ V}$
Tanque IV: construído em estanho	$E_{red}^{0} Sn^{+2}/Sn = -0.14 V$

- 09) Considere a eletrólise das soluções aquosas dos compostos abaixo, feitas com eletrodos inertes, e indique em cada caso:
 - a) Os cátions presentes na solução e qual deles se descarrega primeiro;
 - b) Os ânions presentes na solução e qual deles se descarrega primeiro;
 - c) A reação catódica;
 - d) A reação anódica;
 - e) A reação global do processo;
 - f) O nome da substância que permanece na cuba eletrolítica.

Compostos:

I) $MgCl_{2(aq)}$	II) $Ag_2SO_{4(aq)}$
III) $Na_2SO_{4(aq)}$	IV) NiI _{2(aq)}

10) Determine o tempo necessário para que 11,74 g de níquel seja depositado sobre uma peça metálica, num processo de niquelação realizado com corrente de 96,5 A. (Massa molar Ni = 58,7 g/mol).

$$Ni^{+2}_{(aq)} + 2e^{-} \rightarrow Ni_{(s)}$$

11) Uma pilha seca comum é usada para fazer funcionar uma boneca que entoa cantigas de ninar. Quando o brinquedo permanece ligado, a pilha fornece a corrente de 0,100 A. o pólo negativo da pilha (ânodo), que emite elétrons para a parte externa do circuito, é constituído por zinco metálico, que se oxida de acordo com a semi-reação equacionada abaixo. Determine o desgaste sofrido por esse ânodo (ou seja, qual a massa de zinco que sofre oxidação) quando a boneca permanece ligada por uma hora. (Massa molar Zn = 65,4 g/mol).

$$Zn_{(s)} \rightarrow Zn^{+2}_{(aq)} + 2e^{-}$$