Course Code	18MAB204T	Course Name		Y AND QUEUEING HEORY	Course Category	В		Basic Sciences	L T P C
Pre- requisi Cours	ite 18MAB10)2T	Co- requisite Courses	Nil	Progres Cours		Nil		
Course Departn	Offering nent	Mathen	natics	Data Book / Codes/Standards	Statistical	table	S		

	Learning le (CLR):	The purpose of learning this course is to:	3		Pro	gra	m O	utco	me	s (P	O)				
CLR-1:		ability concepts and characteristic of random	Learning	1	2	3	4	5	6	7	8	9	10	11	12
CLR-2:	Gain the know	vledge on discrete and continuous distributions.													
CLR-3:		ow to develop null and alternate hypothesis and and small sample tests.					_			lity					
CLR-4:	and gain know	F test, Chi square test in sampling distributions vledge using Markov queueing models		dge		ent	search			Sustainability		Work		es	=
CLR-5:	Construct Madistributions.	kov chains and analyse stationary state	(1-6)	nowle	sis	lopm	gn, Re	Jsage	ure			eam	c	Finance	Learning
CLR-6:	Interpret rand problems.	om variables and Queuing theory in engineering	Level	ring K	Analy	& Dev	, Desi	Tool [& Culture	nent &		& T	nication	Agt. &	g Lear
Course (CO):	Outcomes	At the end of this course, learners will be able to:	Blooms Level (1-6)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long
CO-1:	engineering pr	cepts of probability and random variables in roblems.	4	3	3	-	-	-	-	-	-		-	-	-
CO-2:	Identify rando distributions.	m variables and model them using various	4	3	3	-	-	-		-	-	-	-	-	-
CO-3:	samples.	y using hypothesis testing on large and small	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-4:	Examine F test the performan	t, Chi Square test in sampling techniques and analyse ce measures of queuing models.	4	3	3	-	-	-		-	-	-	-	-	-
CO-5:	Determine the Markov chain	transition probabilities and classify the states of	4	3	3	-	-	-	-	-	-	-	-	-	-
CO-6:		ility techniques and implement them in the study on ibutions, queueing models and Markov chain.	4	3	3	_			-	-	-	-	-	-	-

Duration (hour)		12	12	12	12	12	
S-		Probability Basic concepts and Axioms	Discrete Probability distribution	Sampling distribution, Null Hypothesis, Alternate Hypothesis	Introduction to F-test	Markov Process and Introduction of a Markov Chain	
1	2	Conditional probability, Multiplication theorem	Introduction to Binomial distribution	One tailed test, two tailed test	Problems on F-test	Past and Future - Step and State	
S- 2	SLO-	Discrete and continuous Random variables	MGF, Mean, Variance of Binomial distribution	Level of significance, Critical region	Chi square test - Goodness of fit	One step Transition Probability N step transition Probability	
2		Probability mass function, cdf	Applications of Binomial distribution	Large samples test	Problems on Chi square test -Goodness of fit	Chapman- Kolmogorov theorem definition	
S- 3	Commence of the second	Continuous Random variables	Fit a Binomial distribution.	Student - t test Single Proportion	Problems on Chi- square test Independent- Attributes	Initial Probability distribution problems Using Markov Chain	
		pdf and cdf applications	Introduction to Poisson Distribution	Two Sample proportions	Problems on Chi- square test	Initial Probability distribution problems	

					Independent- Attributes with standard distributions	Using Markov Chain
S- 4		Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-	SLO-	- Expectation and Variance of Poisson distribution		Large sample test- Single Mean	Introduction to Queueing Theory and Applications. Kendall, notation	Classification of States of a Markov Chain
5	SLO-	Problems on Expectation and Variance	Applications of Poisson Distribution	Difference of Means	Introduction to M/M/1 : infinity/ FIFO	Irreducible, Non irreducible, a period, Persistent, Non null Persistent
5-	SLO-	Moment Generating Function	Fit a Poisson Distribution	Problems on difference of Means	Ls, Lq, Ws,Wq	Problems on Classification of a Markov Chain
5	SLO-	Problems on MGF	Introduction, MGF Mean, Variance of Geometric distribution	Applications of Difference of Means	M/M/1 :Infinity /FIFO problems	Problem on Classification of a Markov Chain
;- 7	SLO-	Functions of Random variables	Applications of Geometric Distribution, problems on Memory less property	Introduction to small samples	M/M/1 :Infinity /FIFO problems	Classification of states of a Markov Chain
	SLO-	Problems on Functions of Random variable	Introduction, MGF, Mean, Variance of Uniform Distribution	Introduction to small Samples	M/M/1 :Infinity /FIFO problems	Stationary and steady state
3		Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
,-)		Tchebycheffs inequality	Applications of Uniform Distribution problems	Problems on single mean -small samples	Single Server Model with Finite System Capacity, Characteristics of the Model (M/M/1): (K/FIFO)	Problems on Classification-State- stationary using Markov Chain
	SLO- 2	distribution	Introduction , MGF, Mean, Variance of Exponential distribution	Problems on single mean -small samples	Effective arrival rate	Problems on Stationary and steady state
S- 0	SLO-	Formula and application of Tchebycheffs inequality	Applications of Exponential distribution problems	Problems on difference of mean- small samples	Problems on Model (M/M/1): (K/FIFO)	Problems on Ergodicity using Markov Chain
U	SLO- 2	inequality	Introduction to Normal distribution	Problems on difference of mean-small samples	Problems on Model (M/M/1): (K/FIFO)	Problems on Ergodicity using Markov Chain
)- 1	SLO-	Applications of Tchebychevs inequality using distribution	Applications of Normal distribution problems	Applications of paired - t test	Problems on Model (M/M/1): (K/FIFO)	Problems on Ergodicity
11	SLO-	Problems practice using Tchebychevs inequality	Practical applications of Normal distribution	Problems of paired - t test.	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodic and Non Ergodic Using Markov chains

		using tutorial sheet 3	using tutorial sheet 6	Froolem solving		Problem solving using tutorial sheet 15
S- 12	2	Applications of	distribution to find the probability using Theoretical	I [*] .	Queueing decision	Applications of constructing chain of decisions from the past situations using Monrovians

	1.	Veerarajan T, Probability, Statistics and Random
		Processes, Tata Mc.Graw Hill, 1st Reprint 2004
Learning	2.	S.C. Gupta, V.K.Kapoor, Fundamentals of
		Mathematical Statistics, 9th ed.,, Sultan Chand &
Resources		Sons, 1999
	3.	Gross. D and Harri.C.M. Fundamentals of
		Queuing theory, John Wiley and Sons, 1985

- 4. Trivedi K S, Probability and Statistics with reliability, Queueing and Computer Science Applications, prentice Hall of India, New Delhi, 1984
- 5. Allen .A.O. , Probability Statistics and Queueing theory, Academic Press

Learning	Assessment												
Bloom'	s Level of	Continuou	s Learning A	Assessment (50% weighta	age)				Final Exa	mination		
Thinking	Thinking				C	LA – 2	C	LA – 3	CI	_A – 4	(50% weightage)		
		(1	0%)	(1	5%)	(1	5%)	5.54	0%)#		,6/		
	100	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20 %		20 %	-	20 %	-	20 %	-	20 %			
Level 2	Understand	20 %	-	20 %	-	20 %	-	20 %	-	20 %			
Level 3	Apply	30 %	-	30 %	-	30 %	-	30 %	-	30 %			
Level 4	Analyze	30 %		30 %	-	30 %	-	30 %	-	30 %			
Level 5	Evaluate		-	-	-	-	-	-	-				
Level 6	Create	-	-	-	-	-	-	-	-	-			
	Total	100 %		100 %		100 %		100 %		100 %			

Course Designers		3		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts		
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST		
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. V. Srinivasan, SRMIST		

H. Merlyn Margaret Course Coordinator V. Sulluding.
HOD/MATHS OSTITZORS