AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (previously presented): A 5-thio- β -D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof or a hydrate thereof:

$$R^4O$$
 S
 Y
 OR^1
 OR^2
(i)

wherein

Y represents -O- or -NH-,

 R^1 , R^2 , R^3 and R^4 , which may be the same or different, each represent a hydrogen atom, a C_{2-10} acyl group, a C_{7-10} aralkyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkoxy- C_{2-10} acyl group or a C_{1-6} alkoxy- C_{2-6} alkoxycarbonyl group,

Ar represents an aryl group substituted with -X-A¹, in which the aryl group may further be substituted with the same or different 1 to 4 substituents selected from:

- a halogen atom;
- a hydroxyl group;
- a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;
 - a group represented by the formula:

$$-(CH_2)m-Q$$

Application No.: 10/518,788

Attorney Docket No.: Q83533

wherein m represents an integer of 0 to 4 and Q represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, a C_{1-6} alkylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group, or an N,N-di(C_{1-6} alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group,

X represents -(CH₂)n-, -CO(CH₂)n-, -CH(OH)(CH₂)n-, -O-(CH₂)n-, -CONH(CH₂)n-, -NHCO(CH₂)n-, wherein n represents an integer of 0 to 3, -COCH=CH-, -S- or -NH-, and

A¹ represents an aryl group, a heteroaryl group or a 4- to 6-membered heterocycloalkyl group, each of which may be substituted with the same or different 1 to 4 substituents selected from:

a halogen atom;

a hydroxyl group;

a C₁₋₆ alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

-(CH₂)m'-Q'

wherein m' represents an integer of 0 to 4 and Q' represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which

may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfinyl group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

2. (previously presented): A 5-thio- β -D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof or a hydrate thereof:

$$R^{8}$$
 R^{7}
 R^{6}
 R^{9}
 R^{5}
 R^{5}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{4}

wherein

Y represents -O- or -NH-,

 R^1 , R^2 , R^3 and R^4 , which may be the same or different, each represent a hydrogen atom, a C_{2-10} acyl group, a C_{7-10} aralkyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkoxy- C_{2-10} acyl group or a C_{1-6} alkoxy- C_{2-6} alkoxycarbonyl group, and

Application No.: 10/518,788

at least one of R⁵, R⁶, R⁷, R⁸ and R⁹ represents -X-A¹ and the other, which may be the same or different, each represent:

Attorney Docket No.: Q83533

- a hydrogen atom;
- a halogen atom;
- a hydroxyl group;
- a C₁₋₆ alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

$$-(CH2)m-Q$$

wherein m represents an integer of 0 to 4 and Q represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C₁₋₆ alkoxy group which may be substituted with 1 to 4 halogen atoms, a C₁₋₆ alkoxy-C₁₋₆ alkoxy group, a C₂₋₁₀ acyloxy group, a C₂₋₁₀ acyl group, a C₂₋₆ alkoxycarbonyl group, a C₁₋₆ alkylthio group, a C₁₋₆ alkylsulfinyl group, a C₁₋₆ alkylsulfonyl group, -NHC(=O)H, a C₂₋₁₀ acylamino group, a C₁₋₆ alkylsulfonylamino group, a C₁₋₆ alkylamino group, an N,N-di(C₁₋₆ alkyl)amino group, a carbamoyl group, an N-(C₁₋₆ alkyl)aminocarbonyl group, or an N,N-di(C₁₋₆ alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group,

X represents -(CH₂)n-, -CO(CH₂)n-, -CH(OH)(CH₂)n-, -O-(CH₂)n-, -CONH(CH₂)n-, -NHCO(CH₂)n-, wherein n represents an integer of 0 to 3, -COCH=CH-, -S- or -NH-, and

Application No.: 10/518,788

A¹ represents an aryl group, a heteroaryl group or a 4- to 6-membered heterocycloalkyl group, each of which may be substituted with the same or different 1 to 4 substituents selected

a halogen atom;

from:

a hydroxyl group;

a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

$$-(CH_2)m'-Q'$$

wherein m' represents an integer of 0 to 4 and Q' represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C₁₋₆ alkoxy group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group, a C₁₋₆ alkoxy-C₁₋₆ alkoxy group, a C₂₋₁₀ acyloxy group, a C₂₋₁₀ acyl group, a C₂₋₆ alkoxycarbonyl group, a C₁₋₆ alkylthio group, a C₁₋₆ alkylsulfinyl group, a C₁₋₆ alkylsulfonyl group, a C₁₋₆ alkylsulfonyl group, a C₁₋₆ alkylsulfonylamino group, a C₁₋₆ alkylsulfonylamino group, an N,N-di(C₁₋₆ alkyl)amino group, a carbamoyl group, an N-(C₁₋₆ alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

3. (original): The 5-thio- β -D-glucopyranoside compound according to claim 2, wherein Y is -O-, or a pharmaceutically acceptable salt thereof or a hydrate thereof.

Application No.: 10/518,788

4. (previously presented): The 5-thio- β -D-glucopyranoside compound according to claim 2, wherein R^5 is -X- A^1 , or a pharmaceutically acceptable salt thereof or a hydrate thereof.

Attorney Docket No.: Q83533

- 5. (previously presented): The 5-thio- β -D-glucopyranoside compound according to claim 4, wherein X is -(CH₂)n-, wherein n represents an integer of 0 to 3, or a pharmaceutically acceptable salt thereof or a hydrate thereof.
- 6. (previously presented): The 5-thio- β -D-glucopyranoside compound according to claim 4, wherein X is -CO(CH₂)n-, wherein n represents an integer of 0 to 3, or a pharmaceutically acceptable salt thereof or a hydrate thereof.
- 7. (previously presented): A 5-thio- β -D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof or a hydrate thereof:

$$R^{8}$$
 R^{9}
 R^{13}
 R^{12}
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^{10}
 R^{11}

wherein

X represents -(CH₂)n-, -CO(CH₂)n-, -CH(OH)(CH₂)n-, -O-(CH₂)n-, -CONH(CH₂)n-, -NHCO(CH₂)n-, wherein n represents an integer of 0 to 3, -COCH=CH-, -S- or -NH-,

Application No.: 10/518,788

Attorney Docket No.: Q83533

 R^1 , R^2 , R^3 and R^4 , which may be the same or different, each represent a hydrogen atom, a C_{2-10} acyl group, a C_{7-10} aralkyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkoxy- C_{2-10} acyl group or a C_{1-6} alkoxy- C_{2-6} alkoxycarbonyl group,

R⁶, R⁷, R⁸ and R⁹, which may be the same or different, each represent:

- a hydrogen atom;
- a halogen atom;
- a hydroxyl group;
- a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

-(CH₂)m-Q

wherein m represents an integer of 0 to 4 and Q represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, a C_{1-6} alkylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group, or an N,N-di(C_{1-6} alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group, and

R¹⁰, R¹¹, R¹², R¹³ and R¹⁴, which may be the same or different, each represent: a hydrogen atom;

Application No.: 10/518,788

a halogen atom;

a hydroxyl group;

a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the

group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

-(CH₂)m'-Q'

wherein m' represents an integer of 0 to 4 and Q' represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfinyl group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, a C_{1-6} alkylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

- 8. (original): The 5-thio- β -D-glucopyranoside compound according to claim 7, wherein X is -CH₂-, or a pharmaceutically acceptable salt thereof or a hydrate thereof.
- 9. (original): The 5-thio- β -D-glucopyranoside compound according to claim 7, wherein X is -O- or -NH-, or a pharmaceutically acceptable salt thereof or a hydrate thereof.

Application No.: 10/518,788

10. (previously presented): A 5-thio-β-D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof:

$$R^{3A}O$$
 $R^{2A}O$
 $R^{3A}O$
 R^{3

wherein R^{6A} to R^{9A} , which may be the same or different, each represent a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group, a C_{1-6} alkoxy group, a C_{1-6} alkoxy group, a C_{1-6} alkoxy group, a hydroxyl group or a hydroxy- C_{1-4} alkyl group, R^C represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group, a hydroxy- C_{1-4} alkyl group, a halogen-substituted C_{1-6} alkyl group or a C_{1-6} alkylthio group, R^{4A} represents a hydrogen atom, a C_{2-6} alkoxycarbonyl group or a C_{2-6} alkanoyl group, and R^{1A} to R^{3A} , which may be the same or different, each represent a hydrogen atom, a C_{2-8} alkanoyl group or a benzoyl group.

11. (previously presented): A 5-thio-β-D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof:

wherein R^D represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group or a hydroxy- C_{1-4} alkyl group, and R^E represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group or a hydroxy- C_{1-4} alkyl group.

12. (previously presented): A 5-thio- β -D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof or a hydrate thereof:

$$R^{8B}$$
 R^{6B}
 R

wherein R^1 , R^2 , R^3 and R^4 , which may be the same or different, each represent a hydrogen atom, a C_{2-10} acyl group, a C_{7-10} aralkyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkoxy- C_{2-10} acyl group or a C_{1-6} alkoxy- C_{2-6} alkoxycarbonyl group, R^{6B} represents a hydrogen atom, a halogen atom, a hydroxyl group, a C_{2-10} acyloxy group, or a C_{1-6} alkyl or C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, and R^{8B} represents a hydrogen atom, a halogen atom or a C_{1-6} alkyl group which may be substituted with 1 to 4 halogen atoms.

- 13. (original): A pharmaceutical preparation, which comprises the 5-thio- β -D-glucopyranoside compound according to any one of claims 1 to 12 or a pharmaceutically acceptable salt thereof or a hydrate thereof as an active ingredient.
- 14. (withdrawn-currently amended): A method of treating a condition treatable by inhibiting sodium-dependent glucose transporter 2 activity said method comprising administering to a subject in need of treatment a pharmaceutically effective amount of the

Application No.: 10/518,788

pharmaceutical preparation according to claim 135-thio-β-D-glucopyranoside compound according to claim 1, a pharmaceutically acceptable salt thereof or a hydrate thereof.

15. (withdrawn): The method according to claim 14, wherein the condition is diabetes, diabetes-related diseases or diabetic complications.

- 16. (original): A pharmaceutical preparation, which comprises the 5-thio-β-D-glucopyranoside compound according to any one of claims 1 to 12 or a pharmaceutically acceptable salt thereof or a hydrate thereof, in combination with at least one drug selected from the group consisting of an insulin sensitizer selected from the group consisting of a PPAR γ agonist; a PPAR α/γ agonist; a PPAR α/γ agonist; and a PPAR $\alpha/\gamma/\delta$ agonist, a glycosidase inhibitor, a biguanide, an insulin secretagogue, an insulin formulation and a dipeptidyl peptidase IV inhibitor.
- 17. (original): A pharmaceutical preparation, which comprises the 5-thio-β-D-glucopyranoside compound according to any one of claims 1 to 12 or a pharmaceutically acceptable salt thereof or a hydrate thereof, in combination with at least one drug selected from the group consisting of a hydroxymethylglutaryl coenzyme A reductase inhibitor, a fibrate, a squalene synthase inhibitor, an acyl-coenzyme A:cholesterol acyltransferase inhibitor, a low-density lipoprotein receptor promoter, a microsomal triglyceride transfer protein inhibitor and an anorectic.
- 18. (currently amended): A 5-thio- β -D-glucopyranoside compound of the following formula or a pharmaceutically acceptable salt thereof or a hydrate thereof:

Application No.: 10/518,788

wherein

 R^{21} , R^{22} , R^{23} and R^{24} , which may be the same or different, each represent a hydrogen atom or a C_{2-10} acyl group,

 R^{25} represents an amino group, a $C_{2\text{-}6}$ alkanoyl group, a carboxyl group, a formyl group, a $C_{2\text{-}6}$ alkoxycarbonyl group or a hydroxyl group, and

 R^{26} and R^{27} , which may be the same or different, each represent a hydrogen atom, a halogen atom, a hydroxyl group, a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group, or a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms.