TEK5010 Multiagent systems

Lecture 8: Non-cooperative game theory

Exercise: Symmetric games 1

Question 1

The following payoff matrix (A) is for the "Prisoner's dilemma".

	$\underline{\hspace{1cm}}$			
		Defect	Coop	
i	Defect	2,2	4,1	
	Coop	1,4	3,3	

The following payoff matrix (B) is for the "Matching pennies".

	\dot{J}		
		Heads	Tail
i	Heads	1,-1	-1,1
	Tails	-1,1	1,-1

The following payoff matrix (C) is for the "Game of chicken".

		j	
		Defect	Coop
i	Defect	1,1	4,2
	Coop	2,4	3,3

- a) For each of these payoff matrices:
 - i. Identify all (pure strategy) Nash equilibria
 - ii. Identify all Pareto optimal outcomes
 - iii. Identify all outcomes that maximize social welfare
- b) "Program equilibria make cooperation possible in the one-shot Prisoner's dilemma". Explain and critically assess this statement.