IPv6 Ready Logo Phase-2 Conformance Test Specification IKEv2 **Technical Document** Revision 1.0.2 http://www.ipv6forum.org/ http://www.ipv6ready.org/ IPv6 Forum IPv6 Ready Logo Committee

MODIFICATION RECORD

Version 1.0.2 Jun. 02, 2009

- Requirements Unsupport send / receive ID_IPV4_ADDR / ID_FQDN / ID_RFC822_ADDR function by mandating to support ID_IPV6_ADDR
- {EN,SGW}.I.1.1.9.1, {EN,SGW}.I.1.1.9.2, {EN,SGW}.R.1.1.9.1, {EN,SGW}.R.1.1.9.2 Remove send / receive ID_IPV4_ADDR / ID_FQDN / ID_RFC822_ADDR test cases by mandating to support ID_IPV6_ADDR
- Function List, {EN,SGW}.I.1.2.5.2 Clarify Additional CHILD_SA function is ADVANCED
- EN.R.1.1.7.2 Fix editorial typo
- {EN,SGW}.R.1.3.1.1 Correct test Purpose
- {EN,SGW}.I.1.2.3.6 Fix editorial typo
- EN.I.2.1.1.1, EN.I.2.1.1.2, EN.R.2.1.1.1, EN.R.2.1.1.2 Fix editorial typo

Version 1.0.1 Apr. 15, 2009

- IKEv2.EN.I.1.1.5.2, IKEv2.SGW.1.1.5.2, IKEv2.EN.R.1.1.5.3, IKEv2.SGW.R.1.1.5.3, IKEv2.EN.R.1.1.5.4, IKEv2.SGW.R.1.1.5.4 Update acceptable packets and check establishment of IKE_SA
- IKEv2.EN.I.1.1.5.3, IKEv2.SGW.I.1.1.5.3 Add new test cases for Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Version 1.0.0 Dec. 11, 2008

• Initial release

ACKNOWLEDGMENTS

The IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test suite.

Authors:

Yokogawa Electric Corporation Nippon Telegraph and Telephone Corporation (NTT)

Commentators:

NTT Advanced Technology Corporation (NTT-AT) University of New Hampshire - InterOperability Lab IRISA-INRIA

Note:

Development of this document was supported in part by a grant from NICT.

INTRODUCTION

Overview

TAHI Project is the joint effort formed with the objective of developing and providing the verification technology for IPv6.

The growth process of IPv4 was the history of encountering various kinds of obstacles and conquering such obstacles. However, once the position as infrastructure was established, it is not allowed to repeat the same history.

This is a reason why the verification technology is essential for IPv6 deployment.

We research and develop conformance tests and interoperability tests for IPv6.

We closely work with the KAME project and USAGI project.

We help activities of these projects in the quality side by offering the verification technology we develop in TAHI project and improve the development efficiency.

We open the results and fruits of the project to the public for FREE.

Any developer concerned with IPv6 can utilize the results and fruits of TAHI project freely. Free software plays an important role in progress of the Internet. We believe that providing the verification technology for FREE contributes to advances of IPv6.

Besides the programs, the specifications and criteria of verification will be included in the Package.

Abbreviations and Acronyms

TN: Testing Node

TH: Testing Host

TR: Testing Router

NUT: Node Under Test

HUT: Host Under Test

RUT: Router Under Test

IKE: Internet Key Exchange (IKEv2) Protocol

EN: End-Node

SGW: Security-Gateway

PSK: Pre-Shared Key

AUTH: Authentication Payload

CERT: Certificate Payload

CERTREQ: Certificate Request Payload

CP: Configuration Payload

D: Delete Payload

E: Encrypted Payload

EAP: Extensible Authentication Payload

HDR: IKE Header

IDi: Identification - Initiator Payload

IDr: Identification - Responder Payload

KE: Key Exchange Payload

Ni: Nonce - Initiator Payload

Nr: Nonce - Responder Payload

N: Notify Payload

SA: Security Association Payload

TSi: Traffic Selector - Initiator Payload

TSr: Traffic Selector - Responder Payload V: Vendor ID Payload

TEST ORGANIZATION

This document organizes tests by Section based on related test methodology or goals. Each group begins with a brief set of comments pertaining to all tests within that group. This is followed by a series of description blocks; each block describes a single test. The format of the description block is as follows:

Test Label: The test label and title comprise the first line of the test block. The test label is

composed by concatenating the short test suite name, the section number, the group number, and the test number within the group. These elements are separated by periods. The Test Number is the section, group and test number, also separated by

periods.

Purpose: The Purpose is a short statement describing what the test attempts to achieve. It is

usually phrased as a simple assertion of the feature or capability to be tested.

References: The References section lists cross-references to the specifications and

documentation that might be helpful in understanding and evaluating the test and

results.

Resource The Resource Requirements section specifies the software, hardware, and test

Requirements: equipment that will be needed to perform the test.

Test Setup: The Test Setup section describes the configuration of all devices prior to the start

of the test. Different parts of the procedure may involve configuration steps that deviate from what is given in the test setup. If a value is not provided for a protocol parameter, then the protocol's default is used for that parameter.

Procedure: This section of the test description contains the step-by-step instructions for

carrying out the test. These steps include such things as enabling interfaces, unplugging devices from the network, or sending packets from a test station. The test procedure also cues the tester to make observations, which are interpreted in

accordance with the observable results given for that test part.

Observable This section lists observable results that can be examined by the tester to verify that the NUT is operating properly. When multiple observable results are possible, this

section provides a short discussion on how to interpret them. The determination of a pass or fail for each test is usually based on how the NUT's behavior compares to

the results described in this section.

Possible Problems: This section contains a description of known issues with the test procedure, which

may affect test results in certain situations.

REFERENCES

The following documents are referenced in this text:

- RFC 4306 Internet Key Exchange (IKEv2) Protocol, December, 2005.
- RFC 4307 Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2), December, 2005
- RFC 4718 IKEv2 Clarifications and Implementation Guidelines, October, 2006

TABLE OF CONTENTS

MODIFICATION RECORD	1
ACKNOWLEDGMENTS	2
INTRODUCTION	3
TEST ORGANIZATION	5
REFERENCES	6
TABLE OF CONTENTS	7
Requirements1	7
EQUIPMENT TYPE	
FUNCTION LIST	
Common Topology	9
COMMON TOPOLOGY FOR END-NODE: END-NODE TO END-NODE	19
COMMON TOPOLOGY FOR END-NODE: END-NODE TO SGW	20
COMMON TOPOLOGY FOR SGW: SGW TO SGW	21
COMMON TOPOLOGY FOR SGW: SGW TO END-NODE	22
Common Configuration for NUT2	3
COMMON CONFIGURATION FOR END-NODE: END-NODE TO END-NODE	23
COMMON CONFIGURATION FOR END-NODE: END-NODE TO SGW	24
COMMON CONFIGURATION FOR SGW: SGW TO SGW	25
COMMON CONFIGURATION FOR SGW: SGW TO END-NODE	26
Common Packets2	7
IKE_SA_INIT MESSAGES	27
Common Packet #1 : IKE_SA_INIT request	
Common Packet #2 : IKE_SA_INIT response	
Common Packet #3: IKE_AUTH request for Transport Mode3	
Common Packet #4: IKE_AUTH response for Transport Mode	
Common Packet #5 : IKE_AUTH request for Tunnel Mode	
CREATE_CHILD_SA Messages for Generating CHILD_SA	
Common Packet #7 : CREATE_CHILD_SA request for Generating CHILD_SA for Transport Mode 4	- 1
Common Packet #8: CREATE_CHILD_SA response for Generating CHILD_SA for Transport Mode 4	-3
Common Packet #9: CREATE_CHILD_SA request for Generating CHILD_SA for Tunnel Mode 4 Common Packet #10: CREATE_CHILD_SA response for Generating CHILD_SA for Tunnel Mode 4	
CREATE_CHILD_SA Messages for Rekeying IKE_SA	
Common Packet #12 : CREATE_CHILD_SA response for Rekeying IKE_SA	1
CREATE_CHILD_SA Messages for Rekeying CHILD_SA	
Common Packet #13: CREATE_CHILD_SA request for Rekeying CHILD_SA for Transport Mode5	
Common Packet #14 : CREATE_CHILD_SA response for Rekeying CHILD_SA for Transport Mode 5 Common Packet #15 : CREATE_CHILD_SA request for Rekeying CHILD_SA for Tunnel Mode	
Common Packet #16: CREATE_CHILD_SA response for Rekeying CHILD_SA for Tunnel Mode5	
INFORMATIONAL MESSAGES	61

Common Packet #17: INFORMATIONAL request	
Common Packet #18 : INFORMATIONAL response	
ICMPv6 Echo Requests	63
Common Packet #19 : ICMPv6 Echo Request for End-Node to End-Node test cases	
Common Packet #20 : ICMPv6 Echo Request for End-Node to SGW test cases	
Common Packet #21 : ICMPv6 Echo Request for SGW to SGW test cases	
Common Packet #22 : ICMPv6 Echo Request for SGW to End-Node test cases	
ICMPv6 Echo Replys	
Common Packet #23 : ICMPv6 Echo Reply for End-Node to End-Node test cases	
Common Packet #24 : ICMPv6 Echo Reply for End-Node to SGW test cases	
Common Packet #25 : ICMPv6 Echo Reply for SGW to SGW test cases	
Common Packet #26 : ICMPv6 Echo Reply for SGW to End-Node test cases	65
Section 1. End Node	66
Section 1.1. Initiator	66
Section 1.1.1. Endpoint-to-Endpoint Transport	66
Group 1. The Initial Exchanges	66
GROUP 1.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.I.1.1.1: Sending IKE_SA_INIT request Test IKEv2.EN.I.1.1.1.2: Sending IKE_AUTH request	
Test IKEv2.EN.I.1.1.1.3: Use of CHILD SA	
GROUP 1.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests	
Test IKEv2.EN.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests	
Test IKEv2.EN.I.1.1.2.3: Retransmissions of IKE_AUTH requests Test IKEv2.EN.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests	
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	94
Test IKEv2.EN.I.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.EN.I.1.1.3.2: State Synchronization with IKE messages	
Test IKEv2.EN.I.1.1.3.3: Close connections when repeated attempts fail	99
Test IKEv2.EN.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT	
Test IKEv2.EN.I.1.1.3.5: Sending Liveness check	
Test IKEv2.EN.I.1.1.3.6: Sending Delete Payload for IKE_SA	
Test IKEv2.EN.I.1.1.3.7: Sending Delete Payload for CHILD_SA	
•	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	
Test IKEv2.EN.I.1.1.4.1: Unrecognized payload types and Critical bit is not set	
Test IKEv2.EN.I.1.1.4.2: Unrecognized payload types and Critical bit is set	119
GROUP 1.5. COOKIES	125
Test IKEv2.EN.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type (
Test IKEv2.EN.I.1.1.5.2: Interaction of COOKIE and INVALID KE PAYLOAD	
Test IKEV2.EN.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with u	
Responder	
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	135
Test IKEv2.EN.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	135
Test IKEv2.EN.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	138
Test IKEv2.EN.I.1.1.6.3: Sending Multiple Transforms for IKE_SA	142
Test IKEv2.EN.I.1.1.6.4: Sending Multiple Proposals for IKE_SA	
Test IKEv2.EN.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA	
Test IKEv2.EN.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA	
Test IKEv2.EN.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD	
Test IKEv2.EN.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN	154

Test IKEv2.EN.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA	
	157
Test IKEv2.EN.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA	159
Test IKEv2.EN.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange	162
Test IKEv2.EN.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA	
G 4 7 7 G N	4.2.
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	
Test IKEv2.EN.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors	166
GROUP 1.8. ERROR HANDLING	
Test IKEv2.EN.I.1.1.8.1: INVALID IKE SPI	
Test IKEv2.EN.I.1.1.8.2: INVALID SELECTORS	
-	
GROUP 1.10 AUTHENTICATION OF THE IKE_SA	
Test IKEv2.EN.I.1.1.10.1: Sending CERT Payload	
Test IKEv2.EN.I.1.1.10.2: Sending CERTREQ Payload	
Test IKEv2.EN.I.1.1.10.3: RSA Digital Signature	180
Test IKEv2.EN.I.1.1.10.4: HEX string PSK	182
GROUP 1.11. INVALID VALUES	10.
Test IKEv2.EN.I.1.11.1: Non zero RESERVED fields in IKE SA INIT response	
Test IKEv2.EN.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response	
Test IKEv2.EN.I.1.1.11.3: Version bit is set	
Test IKEv2.EN.I.1.1.11.4: Unrecognized Notify Message Type of Error	
Test IKEv2.EN.I.1.1.15: Unrecognized Notify Message Type of Status	192
Crosse 2. The CDEATE CHILD SA Erroleman	101
Group 2. The CREATE_CHILD_SA Exchange	194
GROUP 2.1. HEADER AND PAYLOAD FORMATS	194
Test IKEv2.EN.I.1.2.1.1: Sending CREATE_CHILD_SA request	
GROUP 2.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests	
Test IKEv2.EN.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests	211
GROUP 2.3. REKEYING CHILD_SAS USING A CREATE_CHILD_SA EXCHANGE	214
Test IKEv2.EN.I.1.2.3.1: Close the replaced CHILD_SA	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA	
Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires	
Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform	
Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal	
Tact IKEv2 FN I 1 2 3 6. Rakaying Failura	220
Test IKEv2.EN.I.1.2.3.6: Rekeying Failure	
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy	232
	232
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA	232 236
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236 238
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA	232 236 238 241
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires	232 236 238 241 244
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform	232 236 238 241 244 246
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal	232 236 238 241 244 246 250
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA	232 236 238 241 244 246 250 253
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA	232 236 238 241 244 246 250 253 256
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES	232 236 238 241 244 246 250 253 256
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236 238 241 244 246 250 253 256
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES	232 236 238 241 244 246 250 253 256
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236 238 241 244 250 253 256 260 263
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA. GROUP 2.6. EXCHANGE COLLISIONS	232 236 236 238 241 244 250 253 256 260 263
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236 238 241 244 246 250 253 256 260 263
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	232 236 236 238 241 244 246 250 253 256 260 263 268 268
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous IKE_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying	232 236 236 238 241 244 246 250 253 256 260 263 268 268 268
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS. Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying. Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission	232 236 236 238 241 244 246 250 253 256 260 263 268 268 272 275
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission Test IKEv2.EN.I.1.2.6.5: Simultaneous CHILD_SA Rekeying with retransmission	232236236238241244246250253256260263268268272275280284
Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS. Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying. Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission	

Test IKEv2.EN.I.1.2.6.8: Closing a New CHILD_SA	295
Test IKEv2.EN.I.1.2.6.9: Rekeying a New CHILD_SA	
Test IKEv2.EN.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs	
Test IKEv2.EN.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA	
Test IKEv2.EN.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs	
Test IKEv2.EN.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA	
Test IKEv2.EN.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA	
Test IKEv2.EN.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE _SA	315
GROUP 2.7. NON ZERO RESERVED FIELDS	317
Test IKEv2.EN.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response	
Group 3. The INFORMATIONAL Exchange	320
GROUP 3.1. HEADER AND PAYLOAD FORMATS Test IKEv2.EN.I.1.3.1.1: Sending INFORMATIONAL Exchange	
e e	
GROUP 3.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.I.1.3.2.1: Retransmission of INFORMATIONAL request	
Test IKEv2.EN.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request	326
GROUP 3.3. NON ZERO RESERVED FIELDS	328
Test IKEv2.EN.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response	
•	
GROUP 3.4. ERROR HANDLING	331
Test IKEv2.EN.I.1.3.4.1: INVALID_SPI	331
Section 1.1.2. Endpoint to Security Gateway Tunnel	333
Group 1. The Initial Exchanges	333
•	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.I.2.1.1.1: Sending IKE_AUTH request	
Test IKEv2.EN.I.2.1.1.2: Use of CHILD_SA	
GROUP 1.2. REQUESTING AN INTERNAL ADDRESS ON A REMOTE NETWORK	346
Test IKEv2.EN.I.2.1.2.1: Sending CFG_REQUEST	
Test IKEv2.EN.I.2.1.2.2: Receipt of CFG_REPLY	
Test IKEv2.EN.I.2.1.2.3: Non zero RESERVED fields in Configuration Payload	
Test IKEv2.EN.I.2.1.2.4: Receipt of IKE_AUTH response without CFG_REPLY	
Test IKEv2.EN.I.2.1.2.5: Receipt of unrecognized Configuration Attributes	
• 0	
Section 1.2. Responder	361
Section 1.2.1. Endpoint-to-Endpoint Transport	361
Group 1. The Initial Exchanges	261
Group 1. The Thum Exchanges	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	362
Test IKEv2.EN.R.1.1.1: Sending IKE_SA_INIT response	
Test IKEv2.EN.R.1.1.1.2: Sending IKE_AUTH response	368
Test IKEv2.EN.R.1.1.1.3: Use of CHILD_SA	
GROUP 1.2. USE OF RETRANSMISSION TIMERS	201
Test IKEv2.EN.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request	
Test IKEv2.EN.R.1.1.2.1: Receipt of retransmitted IKE_SA_INT1 request Test IKEv2.EN.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request	
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	
Test IKEv2.EN.R.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.EN.R.1.1.3.2: State Synchronization with IKE messages	387
Test IKEv2.EN.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT	390
Test IKEv2.EN.R.1.1.3.4: Receiving Liveness check	394
Test IKEv2.EN.R.1.1.3.5: Receiving Delete Payload for IKE_SA	396
Test IKEv2.EN.R.1.1.3.6: Receiving Delete Payload for CHILD_SA	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	402
Tast IKEV2 FN D 1 1 4 1. Passint of a higher minor version number	

Test IKEv2.EN.R.1.1.4.2: Receipt of a higher major version number	
Test IKEv2.EN.R.1.1.4.3: Unrecognized payload types and critical bit is not set	407
Test IKEv2.EN.R.1.1.4.4: Unrecognized payload types and critical bit is set	
Test IKEv2.EN.R.1.1.4.5: Invalid Order Payloads	415
GROUP 1.5. COOKIES	
Test IKEv2.EN.R.1.1.5.1: Cookies.	
Test IKEv2.EN.R.1.1.5.2: Invalid Cookies	
Test IKEv2.EN.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD	
Test IKEv2.EN.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with	-
Initiator	426
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	430
Test IKEv2.EN.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	430
Test IKEv2.EN.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	
Test IKEv2.EN.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA	
Test IKEv2.EN.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA	
Test IKEv2.EN.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA	
Test IKEv2.EN.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA	
Test IKEv2.EN.R.1.1.6.7: Sending INVALID_KE_PAYLOAD	
Test IKEv2.EN.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange	
Test IKEv2.EN.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA	45 /
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	459
Test IKEv2.EN.R.1.1.7.1: Narrowing Traffic Selectors	459
Test IKEv2.EN.R.1.1.7.2: TS_UNACCEPTABLE	
Test IKEv2.EN.R.1.1.7.3: Narrowing Traffic Selectors from multiple Traffic Selector	
•	
GROUP 1.8. ERROR HANDLING	
Test IKEv2.EN.R.1.1.8.1: INVALID_IKE_SPI	
Test IKEv2.EN.R.1.1.8.2: INVALID_SYNTAX	
Test IKEv2.EN.R.1.1.8.3: INVALID_SELECTORS	474
GROUP 1.10. AUTHENTICATION OF THE IKE_SA	477
Test IKEv2.EN.R.1.1.10.1: Sending Certificate Payload	
Test IKEv2.EN.R.1.1.10.2: Sending Certificate Request Payload	
Test IKEv2.EN.R.1.1.10.3: RSA Digital Signature	480
Test IKEv2.EN.R.1.1.10.4: HEX string PSK	
G	
GROUP 1.11 INVALID VALUES	
Test IKEv2.EN.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request	
Test IKEv2.EN.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request	
Test IKEv2.EN.R.1.1.11.3: Version bit is set	
Test IKEv2.EN.R.1.1.11.4: Response bit is set	489
Test IKEv2.EN.R.1.1.11.5: Unrecognized Notify Message Type	490
Group 2. The CREATE_CHILD_SA Exchange	492
GROUP 2.1. HEADER AND PAYLOAD FORMATS	492
Test IKEv2.EN.R.1.2.1.1: Receipt of CREATE_CHILD_SA request	
GROUP 2.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.R.1.2.2.1: Receipt of retransmitted CREATE_CHILD_SA request	503
GROUP 2.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	505
Test IKEv2.EN.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA	
GROUP 2.4. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	
Test IKEv2.EN.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN	509
GROUP 2.5. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	512
Test IKEv2.EN.R.1.2.5.1: Close the replaced CHILD_SA	
Test IKEv2.EN.R.1.2.5.1: Close the replaced CHILD_SA Test IKEv2.EN.R.1.2.5.2: Use of the new CHILD_SA	
Test IKEv2.EN.R.1.2.5.3: Receiving Multiple Transform	
Test IKEv2.EN.R.1.2.5.4: Receiving Multiple Proposal	322

Test IKEv2.EN.R.1.2.5.5: Perfect Forward Secrecy	526	
Test IKEv2.EN.R.1.2.5.6: Use of the old CHILD_SA		
GROUP 2.6. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE		532
Test IKEv2.EN.R.1.2.6.1: Sending CREATE_CHILD_SA response		
Test IKEv2.EN.R.1.2.6.2: Receipt of cryptographically valid message on the old SA		
Test IKEv2.EN.R.1.2.6.3: Receipt of cryptographically valid message on the new SA		
Test IKEv2.EN.R.1.2.6.4: Close the replaced IKE_SA	538	
Test IKEv2.EN.R.1.2.6.5: Receiving Multiple Transform	541	
Test IKEv2.EN.R.1.2.6.6: Receiving Multiple Proposal		
Test IKEv2.EN.R.1.2.6.7: Changing PRFs when rekeying the IKE_SA	550	
Test IKEv2.EN.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA	553	
GROUP 2.7. CREATING NEW CHILD_SAS USING A CREATE_CHILD_SA EXCHANGE		555
Test IKEv2.EN.R.1.2.7.1: Receipt of cryptographically valid message on the new SA	555	
GROUP 2.8. ERROR HANDLINGTest IKEv2.EN.R.1.2.8.1; AUTHENTICATION_FAILED		560
GROUP 2.9. NON ZERO RESERVED FIELDS Test IKEv2.EN.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request		563
Group 3. The INFORMATIONAL Exchange	565	
•		
GROUP 3.1. HEADER AND PAYLOAD FORMATS Test IKEv2.EN.R.1.3.1.1: Sending INFORMATIONAL response		565
•		
GROUP 3.2. USE OF RETRANSMISSION TIMERS		569
Test IKEv2.EN.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request		
GROUP 3.3. NON ZERO RESERVED FIELDS		572
Test IKEv2.EN.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request	572	
Section 1.2.2. Endpoint to Security Gateway Tunnel	574	
Group 1. The Initial Exchanges	574	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	1	575
Test IKEv2.EN.R.2.1.1.1: Sending IKE_AUTH response		313
Test IKEv2.EN.R.2.1.1.2: Use of CHILD SA.		
Section 2. Security Gateway		
Section 2.1. Initiator	586	
Section 2.1.1. Security Gateway to Security Gateway Tunnel	586	
Group 1. The Initial Exchanges	586	
GROUP 1.1. HEADER AND PAYLOAD FORMATS		587
Test IKEv2.SGW.I.1.1.1: Sending IKE_SA_INIT request		
Test IKEv2.SGW.I.1.1.1.2: Sending IKE_AUTH request	593	
Test IKEv2.SGW.I.1.1.1.3: Use of CHILD_SA	603	
GROUP 1.2. USE OF RETRANSMISSION TIMERS	,	605
Test IKEv2.SGW.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests		002
Test IKEv2.SGW.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests		
Test IKEv2.SGW.I.1.1.2.3: Retransmissions of IKE_AUTH requests		
Test IKEv2.SGW.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests		
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS		613
Test IKEv2.SGW.I.1.1.3.1: State Synchronization with ICMP messages	613	
Test IKEv2.SGW.I.1.1.3.2: State Synchronization with IKE messages	616	
Test IKEv2.SGW.I.1.1.3.3: Close connections when repeated attempts fail	619	
Test IKEv2.SGW.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT		
Test IKEv2.SGW.I.1.1.3.5: Sending Liveness check		
Test IKEv2.SGW.I.1.1.3.6: Sending Delete Payload for IKE SA	(27	

Test IKEv2.SGW.I.1.1.3.7: Sending Delete Payload for CHILD_SA Test IKEv2.SGW.I.1.1.3.8: Sending Liveness check with unprotected messages	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	
Test IKEv2.SGW.I.1.1.4.1: Unrecognized payload types and critical bit is not set	
Test IKEv2.SGW.I.1.1.4.1: Unrecognized payload types and critical bit is not set	
GROUP 1.5. COOKIES	
Test IKEv2.SGW.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type	
Test IKEv2.SGW.I.1.1.5.2: Interaction of COOKIE and INVALID KE PAYLOAD	
	650
Test IKEv2.SGW.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with	651
unoptimized Responder	
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	
Test IKEv2.SGW.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	
Test IKEv2.SGW.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.3: Sending Multiple Transforms for IKE_SA	
Test IKEv2.SGW.I.1.1.6.4: Sending Multiple Proposals for IKE_SA	
Test IKEv2.SGW.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD	
Test IKEv2.SGW.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN	
Test IKEv2.SGW.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA Test IKEv2.SGW.I.1.1.6.10: Response with inconsistent proposal for CHILD SA	
Test IKEV2.SGW.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange	
Test IKEv2.SGW.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	
Test IKEv2.SGW.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors	689
GROUP 1.8. ERROR HANDLING	
Test IKEv2.SGW.I.1.1.8.1: INVALID_IKE_SPI	
Test IKEv2.SGW.I.1.1.8.2: INVALID_SELECTORS	696
GROUP 1.10 AUTHENTICATION OF THE IKE SA	699
Test IKEv2.SGW.I.1.1.10.1: Sending CERT Payload	
Test IKEv2.SGW.I.1.1.10.2: Sending CERTREQ Payload	
Test IKEv2.SGW.I.1.1.10.3: RSA Digital Signature	703
Test IKEv2.SGW.I.1.1.10.4: HEX string PSK	705
GROUP 1.11 INVALID VALUES	707
Test IKEv2.SGW.I.1.1.11.1: Non zero RESERVED fields in IKE SA INIT response	
Test IKEv2.SGW.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response	
Test IKEv2.SGW.I.1.1.11.3: Version bit is set	
Test IKEv2.SGW.I.1.1.11.4: Unrecognized Notify Message Type of Error	
Test IKEv2.SGW.I.1.1.11.5: Unrecognized Notify Message Type of Status	715
Group 2. The CREATE_CHILD_SA Exchange	717
GROUP 2.1. HEADER AND PAYLOAD FORMATS	717
Test IKEv2.SGW.I.1.2.1.1: Sending CREATE_CHILD_SA request	
· · · · · · · · · · · · · · · · · · ·	
GROUP 2.2. USE OF RETRANSMISSION TIMERS Test IKEv2.SGW.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests	
Test IKEV2.SGW.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests Test IKEV2.SGW.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests	
GROUP 2.3. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	
Test IKEv2.SGW.I.1.2.3.1: Close the replaced CHILD_SA	
Test IKEv2.SGW.I.1.2.3.2: Use of the new CHILD_SA	
Test IKEv2.SGW.I.1.2.3.3: Lifetime of CHILD_SA expires	
Test IKEv2.SGW.I.1.2.3.4: Sending Multiple Transform	
Test IKEv2.SGW.I.1.2.3.5: Sending Multiple Proposal	
Test IKEv2.SGW.I.1.2.3.7: Perfect Forward Secrecy	

Test IKEv2.8GW.1.1.2.3.8: Use of the old CHILD_SA	759	
GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE		762
Test IKEv2.SGW.I.1.2.4.1: Close the replaced IKE_SA	762	
Test IKEv2.SGW.I.1.2.4.2: Use of the new IKE_SA		
Test IKEv2.SGW.I.1.2.4.3: Lifetime of IKE_SA expires		
Test IKEv2.SGW.I.1.2.4.4: Sending Multiple Transform		
Test IKEv2.SGW.I.1.2.4.5: Sending Multiple Proposal	775	
Test IKEv2.SGW.I.1.2.4.6: Use of the old IKE_SA		
Test IKEv2.SGW.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA	781	
GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES		785
Test IKEv2.SGW.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request		103
Test IKEv2.SGW.I.1.2.5.1: Create hew CHIED_SH by sending CKEATE_CHIED_SH request		
GROUP 2.6. EXCHANGE COLLISIONS		794
Test IKEv2.SGW.I.1.2.6.1: Simultaneous CHILD_SA Close		
Test IKEv2.SGW.I.1.2.6.2: Simultaneous IKE_SA Close		
Test IKEv2.SGW.I.1.2.6.3: Simultaneous CHILD_SA Rekeying		
Test IKEv2.SGW.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission		
Test IKEv2.SGW.I.1.2.6.5: Simultaneous IKE_SA Rekeying		
Test IKEv2.SGW.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission		
Test IKEv2.SGW.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA		
Test IKEv2.SGW.I.1.2.6.8: Closing a New CHILD_SA		
Test IKEv2.SGW.I.1.2.6.9: Rekeying a New CHILD_SA		
Test IKEv2.SGW.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs		
Test IKEv2.SGW.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs		
Test IKEv2.SGW.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE _SA		
GROUP 2.7. NON ZERO RESERVED FIELDS Test IKEv2.SGW.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response		
Group 3. The INFORMATIONAL Exchange	849	
GROUP 3.1. HEADER AND PAYLOAD FORMATS		849
Test IKEv2.SGW.I.1.3.1.1: Sending INFORMATIONAL Exchange	849	
		0.53
GROUP 3.2. USE OF RETRANSMISSION TIMERS		853
Test IKEV2.SGW.I.1.3.2.1: Retransmission of INFORMATIONAL request Test IKEV2.SGW.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request		
Test TREV2.5G W.1.1.5.2.2: Stop of retransmission of INFORMATIONAL request	833	
GROUP 3.3. NON ZERO RESERVED FIELDS		857
Test IKEv2.SGW.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response	857	
GROUP 3.4. ERROR HANDLING		859
Test IKEv2.SGW.I.1.3.4.1: INVALID_SPI	859	
_		
Vaction 2 L 2 L'admoint to Vaccunity L'atoman Trumpol	861	
Section 2.1.2. Endpoint to Security Gateway Tunnel	861	
Group 1. The Initial Exchanges	001	
Group 1. The Initial Exchanges		861
Group 1. The Initial Exchanges GROUP 1.1. HEADER AND PAYLOAD FORMATS		861
GROUP 1.1. HEADER AND PAYLOAD FORMATS Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request	861	861
GROUP 1.1 HEADER AND PAYLOAD FORMATS Test IKEv2.SGW.I.2.1.1: Sending IKE_AUTH request Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA	861	861
GROUP 1. The Initial Exchanges GROUP 1.1. HEADER AND PAYLOAD FORMATS Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA Section 2.2. Responder.	861 872 874	861
Group 1. The Initial Exchanges Group 1.1. Header and Payload Formats Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA Section 2.2. Responder Section 2.2.1. Security Gateway to Security Gateway Tunnel.	861 872 874	861
GROUP 1. The Initial Exchanges GROUP 1.1. HEADER AND PAYLOAD FORMATS Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA Section 2.2. Responder.	861 872 874 874	

7 000	
Test IKEv2.SGW.R.1.1.1.2: Sending IKE_AUTH response	
Test IKEv2.SGW.R.1.1.1.3: Use of CHILD_SA	891
GROUP 1.2. USE OF RETRANSMISSION TIMERS	892
Test IKEv2.SGW.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request	
Test IKEv2.SGW.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request	
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	
Test IKEv2.SGW.R.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.SGW.R.1.1.3.2: State Synchronization with IKE messages	900
Test IKEv2.SGW.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT	903
Test IKEv2.SGW.R.1.1.3.4: Receiving Liveness check	907
Test IKEv2.SGW.R.1.1.3.5: Receiving Delete Payload for IKE_SA	909
Test IKEv2.SGW.R.1.1.3.6: Receiving Delete Payload for CHILD_SA	
· · · · · · · · · · · · · · · · · · ·	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	913
Test IKEv2.SGW.R.1.1.4.1: Receipt of a higher minor version number	
Test IKEv2.SGW.R.1.1.4.2: Receipt of a higher major version number	
Test IKEv2.SGW.R.1.1.4.3: Unrecognized payload types and critical bit is not set	
Test IKEv2.SGW.R.1.1.4.4: Unrecognized payload types and critical bit is set	921
Test IKEv2.SGW.R.1.1.4.5: Invalid Order Payloads	925
GROUP 1.5. COOKIES	024
Test IKEv2.SGW.R.1.1.5.1: Cookies	
Test IKEv2.SGW.R.1.1.5.2: Invalid Cookies	929
Test IKEv2.SGW.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD	931
Test IKEv2.SGW.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with	
unoptimized Initiator	936
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	940
Test IKEv2.SGW.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	
Test IKEv2.SGW.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	
Test IKEv2.SGW.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA	
Test IKEv2.SGW.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA	
Test IKEv2.SGW.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA	
Test IKEv2.SGW.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA	
Test IKEv2.SGW.R.1.1.6.7: Sending INVALID_KE_PAYLOAD	
Test IKEv2.SGW.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange	
Test IKEv2.SGW.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA	967
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	960
Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors	969
Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE	
Test IKEv2.SGW.R.1.1.7.2: 15_ONACCEI TABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors	
Test IREV2.5G W.R.1.1.7.5; Ival Towning Trainic Sciections	913
GROUP 1.8. ERROR HANDLING	
Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI	979
Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX	982
Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS	
GROUP 1.10 AUTHENTICATION OF THE IKE_SA	
Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload	
Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload	
Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature	
Test IKEv2.EN.R.1.1.10.4: HEX string PSK	991
GROUP 1.11 INVALID VALUES	003
Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request	
Test IKEV2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INT1 request Test IKEV2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request	
Test IKEv2.SGW.R.1.1.11.3: Version bit is set	
Test IKEv2.SGW.R.1.1.11.4: Response bit is set	
Test IKEv2.SGW.R.1.1.11.5: Unrecognized Notify Message Type	999
roup 2. The CREATE CHILD SA Exchange	1001
'I UWU MA I IVU VILLII II VIIILII - WII LINUIWIICO	••• • • • • • •

GROUP 2.1. HEADER AND PAYLOAD FORMATS	1001
Test IKEv2.SGW.R.1.2.1.1: Receipt of CREATE_CHILD_SA request	
GROUP 2.2. USE OF RETRANSMISSION TIMERS	1011
Test IKEv2.SGW.R.1.2.2.1: Receipt of CREATE_CHILD_SA requests	
GROUP 2.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	1013
Test IKEv2.SGW.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA	
• •	
GROUP 2.4. CRYPTOGRAPHIC ALGORITHM NEGOTIATION Test IKEv2.SGW.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN	
6 – –	
GROUP 2.5. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	
Test IKEv2.SGW.R.1.2.5.1: Close the replaced CHILD_SA Test IKEv2.SGW.R.1.2.5.2: Use of the new CHILD SA	
Test IKEv2.SGW.R.1.2.5.3: Receiving Multiple Transform	
Test IKEv2.SGW.R.1.2.5.4: Receiving Multiple Proposal	
Test IKEv2.SGW.R.1.2.5.5: Perfect Forward Secrecy	
Test IKEv2.SGW.R.1.2.5.6: Use of the old CHILD SA	
GROUP 2.6. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.SGW.R.1.2.6.1: Sending CREATE_CHILD_SA response	1041
Test IKEV2.SGW.R.1.2.6.1: Sending CREATE_CHILD_SA response	
Test IKEv2.SGW.R.1.2.6.3: Receipt of cryptographically valid message on the new SA	
Test IKEv2.SGW.R.1.2.6.4: Close the replaced IKE_SA	
Test IKEv2.SGW.R.1.2.6.5: Receiving Multiple Transform	
Test IKEv2.SGW.R.1.2.6.6: Receiving Multiple Proposal	
Test IKEv2.SGW.R.1.2.6.7: Changing RPFs when rekeying the IKE SA	
Test IKEv2.SGW.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA	
• • •	
GROUP 2.7. CREATING NEW CHILD_SA WITH THE CREATE_CHILD_SA EXCHANGE Test IKEv2.SGW.R.1.2.7.1: Receipt of cryptographically protected message on the new SA	
GROUP 2.8. ERROR HANDLING	
Test IKEv2.SGW.R.1.2.8.1: AUTHENTICATION_FAILED	1072
GROUP 2.9. NON ZERO RESERVED FIELDS	
Test IKEv2.SGW.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request	1075
Group 3. The INFORMATIONAL Exchange	1077
-	
GROUP 3.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.SGW.R.1.3.1.1: Sending INFORMATIONAL response	1077
GROUP 3.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.SGW.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request	1081
GROUP 3.3. NON ZERO RESERVED FIELDS	1083
Test IKEv2.SGW.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request	
Service 222 For the sixth Consults Continue Towns 1	1005
Section 2.2.2. Endpoint to Security Gateway Tunnel	1085
Group 1. The Initial Exchanges	1085
GROUP 1.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.SGW.R.2.1.1.1: Sending IKE AUTH response	
Test IKEv2.SGW.R.2.1.1.1: Sending IKE_AUTH Tesponse Test IKEv2.SGW.R.2.1.1.2: Use of CHILD_SA	
_	
GROUP 1.2. REQUESTING AN INTERNAL ADDRESS ON A REMOTE NETWORK	
Test IKEv2.SGW.R.2.1.2.1: Receipt of CFG_REQUEST	
Test IKEv2.SGW.R.2.1.2.2: Use of CHILD_SA	
Test IKEv2.SGW.R.2.1.2.3: Non zero RESERVED fields in Configuration Payload	
Test IKEv2.SGW.R.2.1.2.4: No Configuration payload Test IKEv2.SGW.R.2.1.2.5: Receipt of Multiple CFG_REQUEST	1111
100t IMP12600 tt.M.2.1.2.2. Accept of Planupic CFG_MEQUES1	1111

Requirements

To obtain the IPv6 Ready Logo Phase-2 for IKEv2, the Node Under Test (NUT) must satisfy all of the following requirements.

Equipment Type

There are two possibilities for equipment types:

End-Node:

A node who can use IKEv2 (IPsec) only for itself. Host and Router can be an End-Node.

SGW (Security Gateway):

A node who can provide IKEv2 (IPsec tunnel mode) for nodes behind it. Router can be a SGW.

Function List

Basic/Advanced Functionality table

This conformance test specification consists following BASIC/ADVANCED functions. The tests for ADVANCED functions may be omitted if the NUT does not support the ADVANCED function.

All NUTs are required to support BASIC. ADVANCED is required for all NUTs which support ADVANCED function.

Para	ameter	BASIC	ADVANCED
Exchange Type		Initial Exchanges (IKE_INIT, IKE_AUTH)	-
		CREATE_CHILD_SA INFORMATIONAL	-
	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR
IKE_SA	Pseudo-random Function	PRF_HMAC_SHA1 AUTH_HMAC_SHA1_96	PRF_AES128_XCBC
Algorithm Diffie-Hellman	Algorithm		AUTH_AES_XCBC_96
	Diffie-Hellman Group	2 (1024 MODP Group)	14 (2048 MODP Group)
	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR ENCR_NULL
CHILD_SA	Integrity Algorithm	AUTH_HMAC_SHA1_96 No Extended Sequence Numbers	AUTH_AES_XCBC_96 NONE
	Extended Sequence Numbers		Extended Sequence Numbers
Authentication M	ethod	PSK	-
Security Protocol		ESP	-
Encapsulation	End-Node	Transport	Tunnel
mode	SGW	Tunnel	-

Multiple Proposals	Receiving	Sending
Multiple Transforms	Receiving	Sending
Liveness Check	Support	-
Cookies	-	Support
Rekeying	Support	-
Traffic Selector Negotiation	Support	-
Requesting an Internal Address on a		Support
Remote Network	-	Support
Perfect Forward Secrecy	-	Support
Closing SAs	Support	-
ID Type	ID_IPV6_ADDR	-
Creating additional CHILD_SA	-	Support

Common Topology

Common Topology for End-Node: End-Node to End-Node

The common topology involves End-Nodes and Router device on each link.

The transport mode is used in this topology.

Common Topology for End-Node: End-Node to SGW

The common topology involves End-Node, SGW and Router device on each link.

The tunnel mode is used in this topology.

Common Topology for SGW: SGW to SGW

The common topology involves SGWs, Router and Host device on each link.

The tunnel mode is used in this topology.

Common Topology for SGW: SGW to End-Node

The common topology involves End-Node, SGW, Router and Host device on each link.

The tunnel mode is used in this topology.

Common Configuration for NUT

Common Configuration for End-Node: End-Node to End-Node

IKE Peer

	Address	Address Port		uthentication	ID	
	Address Fort M		Method	Key Value	Type	Data
Local	NUT	500	PSK	IKETEST12345678!	ID_IPV6_ADDR	NUT
Remote	TN1	500	PSK	IKETEST12345678!	ID_IPV6_ADDR	TN1

IKE_SA

	Algorithms									
Encryption	PRF	Integrity	Diffie-Hellman							
ENCR 3DES	PRF HMAC SHA1	AUTH HMAC SHA1 96	2 (1024 MODP Group)							

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Transport	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Transport	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector								
	Source Destination									
	Address	Next Layer	Port	Address	ress Next Layer Port					
	Range	Protocol	Range	Range	Protocol	Range				
Inbound	TN1	ANY	ANY	NUT	ANY	ANY				
Outbound	NUT	ANY	ANY	TN1	ANY	ANY				

Common Configuration for End-Node: End-Node to SGW

IKE Peer

	Address Port		Address Port Authentication		ID	
			Method	Key Value	Type	Data
Local	NUT	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT
Remote	TN1 (Link X)	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1 (LinkX)

IKE_SA

Algorithms									
Encryption	PRF	Integrity	Diffie-Hellman						
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)						

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

		Security	Mode		Algorithms	s
		Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inb	oound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Out	bound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector								
		Source Destination								
	Address	Next Layer	Port	Address	Next Layer Port					
	Range	Protocol	Range	Range	Protocol	Range				
Inbound	Link Y	ANY	ANY	NUT	ANY	ANY				
Outbound	NUT	ANY	ANY	Link Y	ANY	ANY				

Common Configuration for SGW: SGW to SGW

IKE Peer

	Address Por		Auth	nentication	ID	
Address		FOIt	Method	Key Value	Type	Data
Local	NUT (Link A)	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT (Link A)
Remote	TN1 (Link X)	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1 (Link X)

IKE_SA

Algorithms									
Encryption PRF Integrity Diffie-Hellman									
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)						

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector								
		Source Destination								
	Address	Next Layer	Port	Address	ss Next Layer Port					
	Range	Protocol	Range	Range	Protocol	Range				
Inbound	Link Y	ANY	ANY	Link B	ANY	ANY				
Outbound	Link B	ANY	ANY	Link Y	ANY	ANY				

Common Configuration for SGW: SGW to End-Node

IKE Peer

	Address	Port	Autl	nentication	ID	
	Address	FOIT	Method	Key Value	Type	Data
Local	NUT (Link A)	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT (Link A)
Remote	TN1	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1

IKE_SA

Algorithms					
Encryption	Encryption PRF Integrity Diffie-Hellman				
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)		

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector				
	Source			Destination		
	Address Next Layer Port			Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1	ANY	ANY

Common Packets

Common Packets to be transmitted from Tester are defined as the following tables. Tests in this test specification may refer to these common packets.

IKE_SA_INIT Messages

Common Packet #1 : IKE_SA_INIT request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	Any
	IKE_SA Responder's SPI	0
	Next Payload	33 (SA)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	1
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
SA Payload	Next Payload	34 (KE)
-	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Table below
KE Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
Ni, Nr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

• SA Payload

SA Payload	Next Payload				34 (KE)
Bill ayloud	Critical			0	
	Reserved				0
	Payload Leng	yth .			44
	Proposal #1	SA Proposal	Next Payload		0 (last)
	F	arrange and	Reserved		0
			Proposal Length	1	40
			Proposal #	<u>- </u>	1
			Protocol ID		1 (IKE)
			SPI Size		Ó
			# of Transforms	3	4
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8

		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

Common Packet #2 : IKE_SA_INIT response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	Any
	Next Payload	33 (SA)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
SA Payload	Next Payload	34 (KE)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Table below
KE Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
Ni, Nr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

• SA Payload

SA Payload	Next Payload	1			34 (KE)	
	Critical				0	
	Reserved	Reserved				
	Payload Leng	44				
	Proposal #1	SA Proposal	Next Payload		0 (last)	
			Reserved		0	
			Proposal Length	n	40	
			Proposal #		1	
			Protocol ID		1 (IKE)	
			SPI Size		0	
			# of Transforms	3	4	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	
				Transform Length	8	
				Transform Type	1 (ENCR)	
				Reserved	0	
				Transform ID	3 (3DES)	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	
				Transform Length	8	
				Transform Type	2 (PRF)	
				Reserved	0	
				Transform ID	2 (HMAC_SHA1)	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	
				Transform Length	8	
				Transform Type	3 (INTEG)	
				Reserved	0	
				Transform ID	2 (HMAC SHA1 96)	

	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

IKE_AUTH Messages

Common Packet #3 : IKE_AUTH request for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
II vo Header	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
CDI IIcaaci	Destination Port	500
IKEv2 Header	IKE SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
IILEV2 IIcadei	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE AUTH)
	X (bits 0-2 of Flags)	33 (IKE_AUTI) 0
	I (bit 3 of Flags)	1
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
		0
	X (bits 6-7 Flags)	
	Message ID	1
	Length	any
E Payload	Next Payload	35 (IDi)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Procotol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	44 (TSi)
•	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
•	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	10
	Reserved	0
	Traffic Selectors	See TSi Table below
TSr Payload	Next Payload	0
151 1 4,1044	Critical	0
	Reserved	0
	reserved	0

Payload Length	48
Number of TSs	1
Reserved	0
Traffic Selectors	See TSr Table below

• SA Payload

SA Payload	Next Payload				44 (TSi)
Bill ayloud	Critical				0
	Reserved				0
	Payload Leng	40			
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	1	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	}	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

ma n 1 1	1		
TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #4 : IKE_AUTH response for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE_AUTH)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags) Message ID	0
	Length	
E Davilood	Next Payload	any 36 (IDr)
E Payload	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
·	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
N Payload	Authentication Data	any
N Payload	Next Payload Critical	33 (SA)
	Reserved	0
	Payload Length	0 8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391(USE_TRANSPORT_MODE)
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0

Traffic Selectors See Traffic Selector Table below

SA Payload

SA Payload	Next Payload				44 (TSi)
	Critical				0
	Reserved				0
	Payload Leng	40			
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	ı	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	\$	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #5 : IKE_AUTH request for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
ii vo iicadei	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
CDI IIcaaci	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
IKEV2 Header	IKE SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	
	X (bits 0-2 of Flags)	35 (IKE_AUTH) 0
	I (bit 3 of Flags)	1
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	any
E Payload	Next Payload	35 (IDi)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
·	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	33 (SA)
Ĭ	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
1511 0,1000	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	See 1St Paytoad Table below
1 St Payload		-
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

• SA Payload

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40

M		
		7
mΛ		
F	ORU	М

		POROW		
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	}	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

• TSi Payload for End-Node to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for End-Node to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)

Selector Length	40
Start Port	0
End Port	65535
Starting Address	Prefix B:0000:0000:0000:0000
Ending Address	Prefix B:ffff:ffff:ffff

• TSi Payload for SGW to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for SGW to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #6 : IKE_AUTH response for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE_AUTH)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	1 any
E Davilood	Next Payload	any 36 (IDr)
E Payload	Critical	
	Reserved	0
	Payload Length	
	Initialization Vector	any The same value as block length of the underlying energy in a closisting
		The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads Padding	Subsequent payloads encrypted by underlying encryption algorithm Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
TD:D 1 1	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
, 1000	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
	Traffic Sciectors	See 151 rayloau 1able below

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40

DA	
FORU	M

		1 OKOW		
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	Ó
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	Ó
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)
l .			l .	(1 - 1 - 1)

• TSi Payload for End-Node to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)

	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y:0000:0000:0000:0000
	Ending Address	Prefix Y:ffff:ffff:ffff

• TSi Payload for SGW to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

${\bf CREATE_CHILD_SA\ Messages\ for\ Generating\ CHILD_SA}$

Common Packet #7 : CREATE_CHILD_SA request for Generating CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0 (CREATE_CIMED_SA)
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
	Wiessage ID	If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	41 (N)
LTayload	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Dayland	Next Payload	
N Payload	Critical	33 (SA) 0
	Reserved	0
		8
	Payload Length	0
	Protocol ID SPI Size	0
	Notify Message Type	16391(USE_TRANSPORT_MODE)
SA Payload	Next Payload	
SA Fayloau	Critical	40 (Ni, Nr)
	Reserved	0
	Payload Length	40
N: Na Daviland	SA Proposals Next Payload	See SA Payload Table 44 (TSi)
Ni, Nr Payload	Critical	
		0
	Reserved	0
	Payload Length Nonce Data	any
TSi Payload		any
151 Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0 70' D 1 17 11 1 1
ma p : :	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

			FURUM		
SA Payload	Next Payload				44 (TSi)
	Critical	0			
	Reserved				0
	Payload Leng	gth			40
	Proposal #1	SA Proposal	Next Payload		0 (last)
	•	•	Reserved		0
			Proposal Length	n	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	S	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #8 : CREATE_CHILD_SA response for Generating CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
021 1104601	Destination Port	500
IKEv2 Header	IKE SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
TKEV2 Header	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	30 (CREATE_CHIED_SA)
	I (bit 3 of Flags)	
	V (bit 4 of Flags)	any 0
	R (bit 5 of Flags)	1
		0
	X (bits 6-7 Flags)	*
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
*	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
		•

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0

		1 OKOM		
Payload Leng	th			40
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	1	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #9 : CREATE_CHILD_SA request for Generating CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	33 (SA)
•	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
•	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
•	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
·	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
•	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
	•	

SA Payload	Next Payload			44 (TSi)
	Critical Reserved			0
				0
	Payload Length			40
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	36
			Proposal #	1
			Proposal ID	3 (ESP)

	ONOM		
SPI	Size		4
# of	# of Transforms		3
SPI			any
SA	Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	1 (ENCR)
		Reserved	0
		Transform ID	3 (3DES)
SA	Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
SA	Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	5 (ESN)
		Reserved	0
		Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #10 : CREATE_CHILD_SA response for Generating CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	any
	Encrypted IKE Payloads	any
	Padding	any
	Pad Length	any
	Integrity Checksum Data	any
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
TEG D 1 1	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload			44 (TSi)
	Critical Reserved			0
				0
	Payload Leng	gth		40
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	36
			Proposal #	1
			Proposal ID	3 (ESP)
			CDI Ciza	1

# of Transfor	ns	3
SPI		any
SA Transform	n Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	3 (3DES)
SA Transform	n Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	n Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

${\bf CREATE_CHILD_SA\ Messages\ for\ Rekeying\ IKE_SA}$

Common Packet #11 : CREATE_CHILD_SA request for Rekeying IKE_SA

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	44
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

SA Payload	Next Payload				34 (KE)
	Critical				0
	Reserved				0
	Payload Leng	gth			44
	Proposal #1	SA Proposal	Next Payload		0 (last)
		_	Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		1 (IKE)
		SPI Size		0	
		# of Transforms		4	
			SA Transform	Next Payload	3 (more)
		R	Reserved	0	
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
		SA Transform	SA Transform	Next Payload	3 (more)
			Reserved	0	
				Transform Length	8
				Transform Type	2 (PRF)

		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

Common Packet #12 : CREATE_CHILD_SA response for Rekeying IKE_SA

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
·	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	44
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

SA Payload	Next Payload				34 (KE)	
	Critical				0	
	Reserved	0				
	Payload Leng	th			44	
	Proposal #1	SA Proposal	Next Payload		0 (last)	
			Reserved		0	
			Proposal Length	1	40	
			Proposal #		1	
			Protocol ID		1 (IKE)	
			SPI Size		0	
			# of Transforms	3	4	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	
				Transform Length	8	
				Transform Type	1 (ENCR)	
				Reserved	0	
		SA Transform SA Transform	SA Transform		Transform ID	3 (3DES)
				SA Transform	Next Payload	3 (more)
				Reserved	0	
					Transform Length	8
			Transform Type	2 (PRF)		
				Reserved	0	
				Transform ID	2 (HMAC_SHA1)	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	

		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

CREATE_CHILD_SA Messages for Rekeying CHILD_SA

Common Packet #13 : CREATE_CHILD_SA request for Rekeying CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
OBI IIIIIII	Destination Port	500
IKEv2 Header	IKE SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
1112,21104401	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	A (bits 6 / 1 lags)	The value incremented the previous IKE message's Message ID by one.
	Message ID	If this message is first one, this value is set to 0.
	Length	any
E Deader d	Next Payload	41 (N)
E Payload	Critical	41 (11)
	Reserved	0
	Payload Length	
	Initialization Vector	any
		The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	4
	Notify Message Type	16393 (REKEY_SA)
	SPI	any
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
•	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
, 	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
TSr Payload	Traffice Selectors Next Payload	See TSi Payload Table below 0
131 Fayloau		0
	Critical	0

Reserved	0
Payload Length	48
Number of TSs	1
Reserved	0
Traffice Selectors	See TSr Payload Table below

SA Payload

SA Payload	Next Payload				44 (TSi)
	Critical	0			
	Reserved	0			
	Payload Leng	gth			40
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	n	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	S	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #14 : CREATE_CHILD_SA response for Rekeying CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
CD1 11cuaci	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
IIIE v 2 Treater	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	30 (CREATE_CHIED_SA)
	I (bit 3 of Flags)	
	V (bit 4 of Flags)	any 0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
		· ·
	Message ID	The same value as corresponding request's Message ID
ED 1 1	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffice Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffice Selectors	See TSr Payload Table below

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0

		1 OKOM		
Payload Leng	th			40
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	1	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #15 : CREATE_CHILD_SA request for Rekeying CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	41 (N)
Liuyioud	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	
N Payload	Next Payload	The Cryptographic checksum of the entire message 33 (SA)
N Fayload	Critical	
	Reserved	0
	Payload Length	0
	Protocol ID	3 (ESP)
	SPI Size	16202 (DEVEV CA)
CA D11	Notify Message Type	16393 (REKEY_SA)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
	•	y

SA Payload	Next Payload	44 (TSi)
	Critical	0

-			1 OKOW		
	Reserved				
	Payload Leng	gth			40
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	1	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	1	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:ffff:ffff:ffff
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #16 : CREATE_CHILD_SA response for Rekeying CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

	1			
SA Payload	Next Payload			44 (TSi)
	Critical	Critical		
	Reserved			0
	Payload Length			40
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	36
			Proposal #	1
			Proposal ID	3 (ESP)
			SPI Size	4

# of Transfor	ns	3
SPI		any
SA Transform	n Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	3 (3DES)
SA Transform	n Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	n Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff:ffff

INFORMATIONAL Messages

Common Packet #17 : INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message

Common Packet #18 : INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The cryptographic checksum of the entire message

ICMPv6 Echo Requests

Common Packet #19: ICMPv6 Echo Request for End-Node to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address
	Destination Address	NUT's Global Address
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	58 (IPV6-ICMP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
ICMPv6 Header	Туре	128
	Code	0
	Identifier	0
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #20 : ICMPv6 Echo Request for End-Node to SGW test cases

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH1's Global Address
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #21 : ICMPv6 Echo Request for SGW to SGW test cases

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
	Source Address	TH2's Global Address
IPv6 Header	Destination Address	TH1's Global Address
	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
ICMPv6 Header	Payload Data	0x000000000000000000000000000000000000

Common Packet #22 : ICMPv6 Echo Request for SGW to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address

	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	58 (IPV6-ICMP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TN1's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

ICMPv6 Echo Replys

Common Packet #23 : ICMPv6 Echo Reply for End-Node to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address				
	Destination Address	NUT's Global Address				
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message				
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.				
	Payload Data	Subsequent data encrypted by underlying encryption algorithm				
	Padding	Any value which to be a multiple of the encryption block size				
	Pad Length	The length of the Padding				
	Next Header	58 (IPV6-IC				
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.				
ICMPv6 Header	Туре	129				
	Code	0				
	Identifier	any				
	Sequence Number	any				
	Payload Data	0x000000000000000000000000000000000000				

Common Packet #24 : ICMPv6 Echo Reply for End-Node to SGW test cases

IPv6 Header	Source Address	NUT's Global Address on Link A
	Destination Address	TN1's Global Address on Link X
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	NUT's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #25 : ICMPv6 Echo Reply for SGW to SGW test cases

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH2's Global Address
ICMPv6 Header	Type	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x00000000000000000

Common Packet #26 : ICMPv6 Echo Reply for SGW to End-Node test cases

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TN1's Global Address
ICMPv6 Header	Type	129
	Code	0
	Identifier	Any
	Sequence Number	Any
	Payload Data	0x0000000000000000

Section 1. End Node Section 1.1. Initiator Section 1.1.1. Endpoint-to-Endpoint Transport Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.I.1.1.1: Sending IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT request using properly Header and Payloads format.

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

The NUT transmits an IKE_SA_INIT request including properly formatted IKE Header containing following values:

Figure 1 Header format

- An IKE_SA Initiator's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- An IKE_SA Responder's SPI field set to zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_SA_INIT (34).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to zero.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1		2	3	3	
	0 1 2	3 4 5 6	7 8 9 0 1	2 3 4 5	678901234	4567890	1	
	+-+-+-+	-+-+-+	-+-+-+-+	+-+-+	-+-+-+-+-+-+-	-+-+-+-+-	+-+	
	! Next	34			0	44	!	!
	+-+-+-+				-+-+-+-+-+-+ Length	-+-+-+-+-+- 40	+-+	
	: 		! (-+-+-+-+-+-+-		: 	-
	! Numbe		! Prot ID		SPI Size 0 !		. !	
	- +-+-+-+				-+-+-+-+-+-+-		+-+	
Transform	!	3	! (Length	8	! 	I I
	! Type	1 (EN)	! 0) !	Transform ID	3 (3DES	s) !	
!	!	3	! 0)!	-+-+-+-+- Length	8	! j	SA Payload
Transform		2 (PR)			-+-+-+-+-+-+- Transform ID	-+-+-+-+- 2 (SHA1		
 I	- +-+-+-+ !	3	-+-+-+-+ ! C		-+-+-+-+-+-+ Length	-+-+-+-+- 8	+-+ !	
Transform	+-+-+-+	-+-+-+	-+-+-+-+	+-+-+	-+-+-+-+-+-+-	-+-+-+-+-	+-+	İ
į	! Type	3 (IN)	! 0)!	Transform ID	2 (SHA1) !	
	- +-+-+-+				-+-+-+-+-+-+-		+-+	İ
Transform	!	0	! 0		Length	8	!	!
		4 (DH)			-+-+-+-+-+	2 (1024	•	
	- +-+-+-+	-+-+-+	-+-+-+-+	+-+-+	-+-+-+-+-+-+-	-+-+-+-+-	+-+	

Figure 2 SA Payload contents

The NUT transmits an IKE_SA_INIT request including properly formatted SA Payload containing following values (refer following figures):

Figure 3 SA Payload format

- A Next Payload field is set to KE Payload (34).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 4 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field is set to IKE (1).
- A SPI Size field is set to zero.
- A # of Transforms field is set to 4.

A Transform field is set to following (There are 4 Transform Structures).

69

	1		2		3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4	5 6 7	8 9 0 1 2 3 4	5 6 7 8	9 0 1
+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+	-+-+-+-+-	+-+-+-+	-+-+-+
! 0 (last) or 3 !	RESERVED	!	Transform	Length	!
+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+	-+-+-+-+-	+-+-+-+	-+-+-+
!Transform Type !	RESERVED	!	Transfo	rm ID	!
+-+-+-+-+-+-+-		+-+-+-+	-+-+-+-+-	+-+-+-+	-+-+-+
!					!
~ Transform Attributes					~
!					!
+-					

Figure 5 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field is set to PRF (2).
- A RESERVED field is set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #4

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field is set to D-H (4).
- A RESERVED field is set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted KE Payload containing following values:

Figure 6 KE Payload format

- A Next Payload field is set to Nonce Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field is set to Group2 (2).
- A RESERVED field is set to zero.
- A Key Exchange Data field is set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted Nonce Payload containing following values:

Figure 7 Nonce Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT request has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample

[N(COOKIE)],
SA, KE, Ni,
[N(NAT_DETECTION_SOURCE_IP)+,
N(NAT_DETECTION_DESTINATION_IP)],
[V+]

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.

Test IKEv2.EN.I.1.1.1.2: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format.

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.

- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: Notify Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: SA Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 29. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

1 OROM	
1 2 3	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	1
+-	+-+
! IKE_SA Initiator's SPI	!
!	!
+-	+-+
! IKE_SA Responder's SPI	!
!	!
+-	+-+
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags	!
+-	+-+
! Message ID	!
+-	+-+
! Length	!
+-	+-+

Figure 8 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 9 Encrypted payload

- A Next Payload field is set to IDi Payload (35).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 10 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 11 AUTH Payload format

- A Next Payload field is set to Notify Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Notify Payload containing following values:

TOROM	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	9 0 1
+-	+-+-+-
! Next Payload !C! RESERVED ! Payload Length	!
+-	+-+-+-
! Protocol ID ! SPI Size ! Notify Message Type	!
+-	+-+-+-
!	!
~ Security Parameter Index (SPI)	~
!	!
+-	+-+-+-+
!	!
~ Notification Data	~
!	!
+-	+-+-+-+

Figure 12 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT_MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

Figure 13 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 14 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 15 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 16 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR 3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

	1	2	3
0123456789	90123456	78901234567	8 9 0 1
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+
! Next Payload !C!	RESERVED !	Payload Length	!
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+	-+-+-+
! Number of TSs !		RESERVED	!
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+	-+-+-+
!			!
~	<traffic s<="" td=""><td>electors></td><td>~</td></traffic>	electors>	~
!			!
+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+

Figure 17 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 18 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 19 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 20 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to TN1 address.
- An Ending Address field is set to less than or equal to TN1 address.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload

may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Test IKEv2.EN.I.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.

7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Group 1.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device retransmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. TN1 waits for the event of a timeout on NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Step 7: Judgment #3

The NUT never retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.3: Retransmissions of IKE_AUTH requests

Purpose:

To verify an IKEv2 device retransmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
	* wait for the event of a timeout
j	
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	* wait for the event of a timeout
X	never send IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #4)
V	l V
N: USE_TRANSPO	ORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_AUTH response to the NUT.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 9: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.I.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TR1	TN1
(End-Node)	(Router)	(End-Node)
 <	 	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
 		> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
 		IPsec {Echo Request} (Packet #3) > IPsec {Echo Reply} (Judgment #3)
		ICMPv6 Destination Unreachable (No route to destination) (Packet #4)
 < 	 	IPsec {Echo Request} (Packet #5)
	 	> IPsec {Echo Reply} (Judgment #4)
V V	l V	l V
N: USE_TRANSF	PORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Packet #4	See below
Packet #5	See Common Packet #19

Packet #4: ICMPv6 Destination Unreachable

IPv6 Header Source Address TR1's Global Address on Link A
Destination Address NUT's Global Address on Link A
ICMPv6 Header Type 1

Code 0

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. After reception of an Echo Reply from NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT and then TN1 transmits an Echo Request to the NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
l i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
l i i	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2) IPsec {Echo Request} (Packet #2)
i i i i	<pre>IPsec {Echo Reply} (Judgment #3)</pre>
	cryptographically unprotected IKE message (Packet #3) IPsec {Echo Request}
i i	(Packet #4) IPsec {Echo Reply} (Judgment #4)
V V	(00000000000000000000000000000000000000
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below
Packet #4	See Common Packet # 20

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID SPI to the NUT.
- 9. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms

Possible Problems:

None

Test IKEv2.EN.I.1.1.3.3: Close connections when repeated attempts fail

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

 n each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #3)
	* wait for the event of a timeout
X	never send IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #3)
V	V
N: USE_TRANSPO	ORT_MODE

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Step 5 and Step 6 until the NUT's last restransmission comes.

8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 8: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT

Purpose:

To verify an IKEv2 device closes connections when receiving INITIAL_CONTACT.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 7.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	FORUM II
(End-Node) (End-	Node)
j	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
j	(Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
 <	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2) IPsec {Echo Request}</pre>
	(Packet #3) IPsec {Echo Reply} (Judgment #3)
 <	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #4) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #4)
İ	<pre>IKE_AUTH request (HDR, SK {IDi, N(INITIAL_CONTACT), AUTH, N, SAi2, TSi, TSr} (Judgment #5) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #5)</pre>
i	IPsec {Echo Request} (Packet #6)
	<pre>IPsec {Echo Reply} (Judgment #6)</pre>
>	IPsec {Echo Request} (Packet #7) IPsec {Echo Reply}
 	(Judgment #7)
N: USE_TRANSPORT_MODE	<u> </u>

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #2
Packet #5	See Common Packet #4
Packet #6	See Common Packet #19
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 1 to Step 5.
Packet #7	See Common Packet #19
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 9 to Step 13.

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request. If rebooting NUT to start negotiation again is needed, it is possible to reboot NUT.
- 9. NUT transmits IKE_SA_INIT request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE SA INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. After reception of IKE_AUTH Resquest from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 14. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithm.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithm.
- 17. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #5

The NUT transmits IKE_AUTH request with a Notify payload of type INITIAL_CONTACT to the NUT. And the IKE_AUTH request includes "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 15: Judgment #6

The NUT never transmits an Echo Reply.

Step 17: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithm.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.3.5: Sending Liveness check

Purpose:

To verify an IKEv2 device checks whether the other endpoint is alive.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Test IKEv2.EN.I.1.1.3.6: Sending Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Possible Problems:

• At Step 7, NUT can transmit INFORMATIONAL request with a Delete Payload including 2 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete CHILD_SA before transmitting an INFORMATIONAL request to delete IKE_SA.

Test IKEv2.EN.I.1.1.3.7: Sending Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
 < 	(Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 > IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
< 	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
į	* wait until expiring CHILD_SA
	> INFORMATIONAL request (HDR, SK {D})
	(Judgment #3)
V	I V
N: USE_TRANSPO	DRT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT

- 6. TN1 waits until expiring CHILD_SA's lifetime and TN1 does not respond to an INFORMATIONAL reques with an INFORMATIONAL request for liveness check.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Possible Problems:

None

Test IKEv2.EN.I.1.1.3.8: Sending Liveness check with unprotected messages

Purpose:

To verify an IKEv2 device handles cryptographically unprotected Messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration. Configure the timer to consider that the peer is dead to 30 seconds.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	Echo Request (Packet #3)
X	Echo Reply (Judgment #3)
	> INFORMATIONAL request (HDR, SK {}) (Judgment #4)
V	V
N: USE_TRANSPOR	T_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below

Packet #3: Echo Request

IPv6 Header	Source Address	TN1's Global Address
	Destination Address	NUT's Global Address
ICMPv6 Header	Туре	128

Code	0
Identifier	0
Sequence N	Tumber any
Payload Da	ta 0x0000000000000000

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 trasmits a cryptographically unprotected Echo Request to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT never responds with a cryptographically unprotected Echo Reply. The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

• NUT may have the different trigger other than timer to send an INFORMATIONAL request for the liveness check. In that case, TN must be adjusted to support such a trigger.

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.EN.I.1.1.4.1: Unrecognized payload types and Critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	11	
(End-Node) (End-	Node)	
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Judgment #1)	
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})	
! !	(Judgment #2)	
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Packet #2)	
' '		
l 'i' 'i	·	
	IPsec {Echo Request}	
l i i	(Packet #3)	
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired	
	(Judgment #3)	
	OPENTS OUTLD OA	
· '	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})	
	(Judgment #4)	
	CREATE_CHILD_SA response (HDR, SK {P, N+, SA, Nr, TSi, TSr}) (Packet #4)	
	(ו מטונטני דדן	
	IPsec {Echo Request} (new CHILD_SA)	
1 '	(Packet #5)	
1 '	IPsec {Echo Reply} (new CHILD_SA)	
į į	(Judgment #5)	
V		
P: Payload with an invalid payload type		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Pakcet #19

Packet #4: CREATE_CHILD_SA response

"" CIGHTIE_C	" 1. eterrie_erneb_britesponse		
IPv6 Header	All fields are	All fields are same as Common Packet #14 Payload	
UDP Header	All fields are	All fields are same as Common Packet #14 Payload	
IKEv2 Header	All fields are	All fields are same as Common Packet #14 Payload	
E payload	Next Payload	Invalid payload type value	
	Other	Other fields are same as Common Packet #14	
Invalid Payload	Next Payoad	41 (N)	
	Critical	0	
	Reserved	0	
	Payload Length	4	
N Payload	All fields are	e same as Common Packet #14 Payload	
SA Payload	All fields are	e same as Common Packet #14 Payload	
Ni, Nr paylaod	All fields are	e same as Common Packet #14 Payload	
TSi Payload	All fields are	e same as Common Packet #14 Payload	
TSr Payload	All fields are	e same as Common Packet #14 Payload	

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 13. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 14. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an IKE_SA_INIT response to the NUT.
- 17. Observe the messages transmitted on Link A.
- 18. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 19. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 19 and 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 26. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 27. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 28. Observe the messages transmitted on Link A.
- 29. TN1 responds with an IKE_SA_INIT response to the NUT.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 32. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 33. Observe the messages transmitted on Link A.
- 34. Repeat Steps 32 and 33 until lifetime of SA is expired.
- 35. Observe the messages transmitted on Link A.
- 36. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid

- payload's critical flag is not set.
- 37. Observe the messages transmitted on Link A.
- 38. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 40. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 41. Observe the messages transmitted on Link A.
- 42. TN1 responds with an IKE_SA_INIT response to the NUT.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 45. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link A.
- 47. Repeat Steps 45 and 46 until lifetime of SA is expired.
- 48. Observe the messages transmitted on Link A.
- 49. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 52. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 13: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part B

Step 15: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 17: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 20 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 24: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 26: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part C

Step 28: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 30: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 33 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 37: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 39: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part D

Step 41: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 43: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 46 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 50: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 52: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.4.2: Unrecognized payload types and Critical bit is set

Purpose:

To verify an IKEv2 device rejects the messages with invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	11	
(End-Node) (End-Node)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
l i i	(Judgment #1)	
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})	
· ·	(Judgment #2)	
1 '	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Packet #2)	
	IPsec {Echo Request}	
1 '	(Packet #3)	
1 '	IPsec {Echo Reply}	
· ·	(Judgment #3)	
l i		
1 '	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})	
· ·	(Judgment #4)	
	CREATE_CHILD_SA response (HDR, SK {P, N+, SA, Nr, TSi, TSr})	
	(Packet #4)	
	IPsec {Echo Request} (new CHILD_SA)	
1 '	(Packet #5)	
	IPsec {Echo Reply} (new CHILD_SA)	
	(Judgment #5)	
V		
P: Payload with an invalid payload type		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Pakcet #19

Packet #4: CREATE_CHILD_SA response

OTTELTED_O	THEB_BITTESPONSE		
IPv6 Header	All fields are	e same as Common Packet #14 Payload	
UDP Header	All fields are	All fields are same as Common Packet #14 Payload	
IKEv2 Header	All fields are	e same as Common Packet #14 Payload	
E payload	Next Payload	Invalid payload type value	
	Other:	Other fields are same as Common Packet #14	
Invalid Payload	Next Payoad	41 (N)	
	Critical	1	
	Reserved	0	
	Payload Length	4	
N Payload	All fields are	e same as Common Packet #14 Payload	
SA Payload	All fields are	e same as Common Packet #14 Payload	
Ni, Nr paylaod	All fields are	e same as Common Packet #14 Payload	
TSi Payload	All fields are	e same as Common Packet #14 Payload	
TSr Payload	All fields are	e same as Common Packet #14 Payload	

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is set.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 13. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 14. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an IKE_SA_INIT response to the NUT.
- 17. Observe the messages transmitted on Link A.
- 18. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 19. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 19 and 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is set.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NITT
- 26. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 27. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 28. Observe the messages transmitted on Link A.
- 29. TN1 responds with an IKE_SA_INIT response to the NUT.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 32. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 33. Observe the messages transmitted on Link A.
- 34. Repeat Steps 32 and 33 until lifetime of SA is expired.
- 35. Observe the messages transmitted on Link A.
- 36. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid

payload's critical flag is set.

- 37. Observe the messages transmitted on Link A.
- 38. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 40. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 41. Observe the messages transmitted on Link A.
- 42. TN1 responds with an IKE_SA_INIT response to the NUT.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 45. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link A.
- 47. Repeat Steps 45 and 46 until lifetime of SA is expired.
- 48. Observe the messages transmitted on Link A.
- 49. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is set.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 52. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 13: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part B

Step 15: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 17: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 20: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 24: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 26: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part C

Step 28: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 30: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 33: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 37: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 39: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part D

Step 41: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 43: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 46: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 50: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 52: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

None.

Group 1.5. Cookies

Test IKEv2.EN.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type COOKIE

Purpose:

To verify an IKEv2 device retries IKE_SA_INIT request using a Notify payload of type OOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are same as Common Packet #2	
UDP Header		All fields are same as Common Packet #2
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	0
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (hit 4 of Flags)	0

	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Cookie value

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Notify payload of type COOKIE ontaining following values:

Figure 21 Notify Payload Format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A SPI Size field is set to zero.
- A Notify Message Type field is set to COOKIE (16390).
- A Notification Data field is set to the TN1 supplied cookie data.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify ayload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
  NUT
                  TN1
(End-Node)
               (End-Node)
               --->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Judgment #1)
    |<----| IKE_SA_INIT response (HDR, N(COOKIE))
                   | (Packet #1)
         ----->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni)
                   | (Judgment #2)
                 --| IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD))
                   | (Packet #2)
           1----->| IKE_SA_INIT request (HDR, SAi1, KEi , Ni)
                  l or
           *2----->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni)
                   | (Judgment #3)
    *1) If the NUT send IKE_SA_INIT request (HDR, SAi1, KEi , Ni), go to Sequence #2.
    *2) If the NUT send IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni), go to Sequence #3.
   Otherwise, this test is failed.
Sequence #2:
  NUT
                  TN1
(End-Node)
               (End-Node)
    |<----| IKE_SA_INIT response (HDR, N(COOKIE'))
                   | (Packet #3)
        ------| IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni)
                   | (Judgment #4)
   Go to Sequence #3.
Sequence #3:
  NUT
                  TN1
(End-Node)
               (End-Node)
                  -| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Packet #4)
              ----> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                  | (Judgment #5)
N: USE_TRANSPORT_MODE
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT request

Same as the common packet #1		
Same as the common packet #1		
Other fields are same as the common packet #1		
Next Payload	41 (N)	
Next Payload 33 (SA)		
Critical 0		
Reserved 0		
Payload Length	Any	
Protocol ID 0		
SPI Size 0		
Notify Message Type COOKIE (16390)		
Notification Data Cookie valu		
Same as the common packet #1		
Same as the common packet #1		
Same as the common packet #1		
	Same as the Other fields are same as the Next Payload Next Payload Critical Reserved Payload Length Protocol ID SPI Size Notify Message Type Notification Data Same as the Same as the Other Same Same as the Other Same Same as the Other Same Same as the Other Same Same Same as the Other Same Same Same Same Same Same Same Same	

Packet #2: IKE SA INIT request

	- 1		
IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical 0		
	Reserved 0		
	Payload Length 10		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type	INVALID_KE_PAYLOAD (17)	
	Notification Data	The accepted D-H Group # (2)	
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload		Same as the common packet #1	

Packet #3: IKE_SA_INIT request

Same as the common packet #1	
Same as the common packet #1	
Other fields are same as the common packet #1	
Next Payload	41 (N)
Next Payload	33 (SA)
Critical	0
Reserved	0
Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	Different cookie value from Packet #1's cookie value.
	Same as the common packet #1
	Same as the common packet #1
	Same as the common packet #1
	Next Payload Critical Reserved Payload Length Protocol ID SPI Size Notify Message Type

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.

- 7. If the IKE_SA_INIT request from NUT includes a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
 - A) Observe the messages transmitted on Link A.
 - B) TN1 responds with an IKE_SA_INIT response.
- 8. If the IKE_SA_INIT request from NUT does not include a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5. All other payloads are unchanged.

Step 7A: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 9: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify ayload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1	
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
· ·	IKE_SA_INIT response (HDR, N(COOKIE)) (Packet #1)
	<pre>IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Judgment #2)</pre>
	IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD)) (Packet #2)
 	IKE_SA_INIT request (HDR, SAi1, KEi , Ni) or
	<pre>IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni) (Judgment #3)</pre>
 < 	<pre>IKE_SA_INIT response (HDR, N(COOKIE')) (Packet #3)</pre>
'	<pre>IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni) (Judgment #4)</pre>
'	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #4)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #5)
V V	
N: USE_TRANSPORT_MODE	

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical 0		
	Reserved 0		
	Payload Length Any		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type COOKIE (16390)		
	Notification Data Cookie va		
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload	Same as the common packet #1		

Packet #2: IKE_SA_INIT request

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload 33 (SA)		
	Critical 0		
	Reserved 0		
	Payload Length 10		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type INVALID_KE_PAYLOAD (17)		
	Notification Data	The accepted D-H Group # (2)	
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload	Same as the common packet #1		

Packet #3: IKE_SA_INIT request

	_n trequest	
IPv6 Header	Same as the common packet #1	
UDP Header	Same as the common packet #1	
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Different cookie value from Packet #1's cookie value.
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 responds with an IKE_SA_INIT response.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5.

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.EN.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part E, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2	
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14	

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR AES CTR (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: PRF PRF AES128 CBC (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: D-H Group Group 14 (ADVANCED)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 1.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CTR", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 5.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 9.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_AES_XCBC_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 13.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 17.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part F, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_AUTH exchanges Algorithms				
	Encryption	Integrity	Extended Sequence Numbers		
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers		
Part B	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers		
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers		
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers		
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers		
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers		

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	IPsec {Echo Request}
	(Packet #3)> IPsec {Echo Reply}
	(Judgment #3)
V	V
N: USE_TRANSP	ORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Packet #3 See Common Packet #19

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE SA INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 14. Observe the messages transmitted on Link A.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 15. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 responds with an IKE_SA_INIT response to the NUT.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 20. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 21. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 22. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 23. Observe the messages transmitted on Link A.
- 24. TN1 responds with an IKE_SA_INIT response to the NUT.
- 25. Observe the messages transmitted on Link A.
- 26. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 27. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 28. Observe the messages transmitted on Link A.

Part E: Integrity Algorithm NONE (ADVANCED)

- 29. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link A.
- 33. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 34. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 35. Observe the messages transmitted on Link A.

Part F: Extended Sequence Numbers (ADVANCED)

- 36. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 37. Observe the messages transmitted on Link A.
- 38. TN1 responds with an IKE_SA_INIT response to the NUT.
- 39. Observe the messages transmitted on Link A.
- 40. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 41. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 42. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 16: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 18: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_NULL", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 21: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 23: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 25: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 28: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "NONE" and "No xtended Sequence Numbers" as proposed algorithms.

Step 35: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 37: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed lgorithms.

Step 30: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1" and "Extended Sequence Numbers" as proposed algorithms.

Step 42: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.6.3: Sending Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_SA_INIT request with multiple transforms for IKE_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2 Group 14	

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.

6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC"AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H group 2" and "D-H group 14" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.6.4: Sending Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_SA_INIT exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" in SA Proposal #1 (ESP) and "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H group 14" in SA Proposal #2 (ESP) as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple transforms for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 2. Observe the messages transmitted on Link A.
- 3. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.

4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 6. Observe the messages transmitted on Link A.
- 7. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 10. Observe the messages transmitted on Link A.
- 11. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Number" as proposed algorithms.

Possible Problems:

• None.

148

Test IKEv2.EN.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms				
	Proposal Protocol ID		Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
*	

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1	
(End-Node) (End-Node	·)
(Ju < IKE	_SA_INIT request (HDR, SAi1, KEi, Ni) dgment #1) _SA_INIT Response (HDR, SAr1, KEr, Nr) cket #1)
	_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) dgment #2) _AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) cket #2)
	ec {Echo Request} cket #3)
> IPs (Ju	ec {Echo Reply} repeat Echo exchange until lifetime of SA is expired dgment #3)
 I I	
	ATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr})
CRE	dgment #4) ATE_CHILD_SA response (HDR, SK {N(INVALID_KE_PAYLOAD)}) cket #4)
	ATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi , TSi, TSr}) dgment #5)
l V	
N: REKEY_SA	
N+: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: CREATE CHILD SA response

IPv6 Header	•	Same as Common Packet #14
UDP Header		Same as Common Packet #14
IKEv2 Header		Same as Common Packet #14
E Payload		Same as Common Packet #14
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	10
	Protocol ID	0
	SPI Size	0
	Notify Message Type	INVALID_KE_PAYLOAD (17)
	Notification Data	The accepted D-H Group # (2)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed

algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type NO_PROPOSAL_CHOSEN.

References:

- [RFC 4306] Sections 3.10.1
- [RFC 4718] Sections 2.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN (End-Node) (End-	l1 Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>
i i	IPsec {Echo Request} (Packet #3)
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)
	•
>	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr}) (Judgment #4)
<	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Packet #4)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi , TSi, TSr}) (Judgment #5)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	DE .

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: CREATE CHILD SA response

	Same as Common Packet #14
	Same as Common Packet #14
	Same as Common Packet #14
	Same as Common Packet #14
Next Payload	0
Critical	0
Reserved	0
Payload Length	8
Protocol ID	0
SPI Size	0
Notify Message Type	NO_PROPOSAL_CHOSEN (14)
	Critical Reserved Payload Length Protocol ID SPI Size

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed

algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. The new CREATE_CHILD_SA request is not a retransmitted request.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
X 	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
V N: USE_TRANSPO	V DRT_MODE

Packet #1 See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the Common Packet #2
UDP Header	Same as the Common Packet #2
IKEv2 Header	Same as the Common Packet #2
SA Payload	See below
KEi Payload	Same as the Common Packet #2
Ni Payload	Same as the Common Packet #2

SA Payload	Next Payload			34 (KE)
	Critical			0
	Reserved		0	
	Payload Length		44	
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	40
			Proposal #	1
			Protocol ID	1 (IKE)

	SPI Size		0
	# of Transforms		4
	SA Transform		See below
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

SA Transform	Next Payload	Next Payload	
	Reserved		0
	Transform Lengt	h	12
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request.

Possible Problems:

• Step 4
The NUT may transmit or retransmit an IKE_SA_INIT request.

Test IKEv2.EN.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
< 	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
<	IPsec {Echo Request} (Packet #3)
j	, ,
İ	(Judgment #3)
V	V
N: USE_TRAN	ORT_MODE

Packet #1 See Common Packet #2
Packet #2 See below
Packet #3 See Common Packet #19

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #4
UDP Header	Same as the Common Packet #4
IKEv2 Header	Same as the Common Packet #4
E Payload	Same as the Common Packet #4
IDr Payload	Same as the Common Packet #4
AUTH Payload	Same as the Common Packet #4

N Payload	Same as the Common Packet #4
SA Payload	See below
TSi Payload	Same as the Common Packet #4
TSr Payload	Same as the Common Packet #4

SA Payload	Next Payload	[44 (TSi)
	Critical			0	
	Reserved			0	
	Payload Length			44	
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		3 (ESP)
			SPI Size		4
			# of Transforms	3	3
			SA Transform		See below
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (Extended Sequence Number)
				Reserved	0
				Transform ID	0 (No Extended Sequence Number)

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Lengt	th	12
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_AUTH response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 6. TN1 transmits an Echo Request with IPsec ESP using ENCR_AES_CBC and AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never transmits an Echo Reply with IPsec ESP using ENCR_AES_CBC and AUTH_HMAC_SHA1_96.

Possible Problems:

Step 7
 The NUT may transmit or retransmit an IKE_AUTH request. And the NUT may notify INVALID_SPI.

Test IKEv2.EN.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT Response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD))
	(Packet #1)
	·> IKE_SA_INIT request (HDR, SAi1, KEi , Ni) (Judgment #2)
V	V

|--|

Packet #1: IKE_SA_INIT response

1. IICL_5/1_II \1	i i response	
IPv6 Header		Same as Common Packet #2
UDP Header		Same as Common Packet #2
IKEv2 Header		Same as Common Packet #2
	IKE_SA Responder's SPI	See each Part
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	10
	Protocol ID	0
	SPI Size	0
	Notify Message Type	INVALID_KE_PAYLOAD (17)
	Notification Data	The accepted D-H Group # (2)

Part A: IKE_SA Responder's SPI is zero (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

- 3. TN1 responds with an IKE_SA_INIT Response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to zero.
- 4. Observe the messages transmitted on Link A.

Part B: IKE_SA Responder's SPI is not zero (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT Response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to one.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	N1
(End-Node) (End	
(Lina Nodo) (Lina	
1 '	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
1 '	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
<	IKE_AUTH Response (HDR, N(NO_PROPOSAL_CHOSEN)) (Packet #2)
<	INFORMATIONAL request (HDR, SK {}) (Packet #3)
>	INFORMATIONAL response (HDR, SK {})
	(Judgment #3)
V	V
N: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #17

Packet #4: IKE_AUTH response

AC 111 Tesponse		
IPv6 Header		Same as Common Packet #4
UDP Header		Same as Common Packet #4
IKEv2 Header		Same as Common Packet #4
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8

	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 1.7. Traffic Selector Negotiation

Test IKEv2.EN.I.1.7.1: Narrowing the range of members of the set of traffic selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TI	V1
(End-Node) (End-	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
İ	
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
İ	(Judgment #2)
<	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>
İ	(Packet #2)
j	
<	IPsec {TCP SYN}
į	(Packet #3)
ļ>	IPsec {TCP RST}
į	(Judgment #3)
İ	
<	IPsec {ICMPv6 Echo Request}
İ	(Packet #4)
X	IPsec {ICMPv6 Echo Reply}
j	(Judgment #4)
j	
V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See below

Packet #3	See below
Packet #4	See Common Packet #19

Packet #2: IKE_AUTH response

1			
TSi Payload	T 60 0 1 :		0 (50) (0 4000 041005)
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (tcp)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (tcp)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Packet #3: TCP-SYN

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by
		this message
	Sequence Number	The value incremented the
		previous encrypted packet's
		Sequence Number by one.
	Payload Data	Subsequent data encrypted by
		underlying encryption algorithm
	Padding	Any value which to be a multiple
		of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of
		the entire message
TCP Header	Source Port	500
	Destination Port	500
	Flags	SYN (0x02)

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT never transmit an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 1.8. Error Handling

Test IKEv2.EN.I.1.1.8.1: INVALID_IKE_SPI

Purpose:

To verify an IKEv2 device properly handles an unrecognized destination SPI.

References:

- [RFC 4306] Sections 2.21 and 3.10.1
- [RFC 4718] Sections 7.7

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	И	
(End-Node) (End-	Node)	
	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)</pre>	
'	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judament #2)	
<	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>	
'	IPsec {Echo Request} (Packet #3)	
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr}) (Judgment #4)	
<	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr}) (Packet #4)	
	<pre>INFORMATIONAL request (HDR, SK {N(INVALID_IKE_SPI)}) (Judgment #5)</pre>	
V		
N: REKEY_SA N+: USE TRANSPORT MODE		
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2) IPsec {Echo Request}	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below

Part A

Packet #4: CREATE_CHILD_SA response

t 114. CREATEL	4. CREATE_CHIED_SATICSPONSC		
IPv6 Header		Same as Common Packet #14	
UDP Header		Same as Common Packet #14	
IKEv2 Header	IKE_SA Initator's SPI	The IKE_SA Initiator's SPI value	
		used by this IKE message plus 1	
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value	
		used by this IKE message	
	Oth	Other field are same as Common Packet #14	
E Payload		Same as Common Packet #14	
N Payload		Same as Common Packet #14	
SA Payload		Same as Common Packet #14	
Ni, Nr Payload		Same as Common Packet #14	
TSi Payload		Same as Common Packet #14	
TSr Payload		Same as Common Packet #14	

Part B

Packet #4: CREATE_CHILD_SA response

IPv6 Header			Same as Common Packet #14
UDP Header			Same as Common Packet #14
IKFv2 Header	IKF SA Initato	's SPI	

		used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value
		used by this IKE message plus 1
	Othe	er field are same as Common Packet #14
E Payload	Same as Common Packet #14	
N Payload	Same as Common Packet #14	
SA Payload	Same as Common Packet #14	
Ni, Nr Payload	Same as Common Packet #14	
TSi Payload	Same as Common Packet #14	
TSr Payload	Same as Common Packet #14	

Part A: Different IKE_SA Initiator's SPI (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which has an invalid value as IKE_SA Initiator's SPI to the NUT.
- 11. Observe the messages transmitted on Link A.

Part B: Different IKE_SA Responser's SPI (BASIC)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link A.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 18. Observe the messages transmitted on Link A.
- 19. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which has an invalid value as IKE_SA Responder's SPI to the NUT.
- 22. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 11: Judgment #5

NUT does not transmit any packets or may transmit INFORMATIONAL request with a Notify payload of typeINVALID_IKE_SPI.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 18: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 20: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 22: Judgment #5

NUT does not transmit any packets or may transmit INFORMATIONAL request with a Notify payload of typeINVALID IKE SPI.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.8.2: INVALID_SELECTORS

Purpose:

To verify an IKEv2 device properly handles an ESP or AH packet whose selectors do not match those of the CHILD_SA.

References:

- [RFC 4306] Sections 3.10.1
- [RFC 4307] Sections 7.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	TSi	TSr
IP Protocol ID	IPv6-ICMP	IPv6-ICMP
Start Port	0	0
End Port	65535	65535
Starting Address	TH1	NUT
Ending Address	TH1	NUT

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM		
NUT TN	1	
(End-Node) (End-	Node)	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)	
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)</pre>	
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)	
	IPsec {TCP SYN} (Packet #3)	
X	No Packets (Judgment #3)	
	or INFORMATIONAL request (HDR, SK {N(INVALID_SELECTORS)}) (Judgment #3)	
	<pre>IPsec {Echo Request} (Packet #4)</pre>	
>	IPsec {Echo Reply}	
	(Judgment #4)	
V V		
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below
Packet #4	See Common Packet #19

Packet #3: TCP-SYN

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by
		this message
	Sequence Number	The value incremented the
		previous encrypted packet's
		Sequence Number by one.
	Payload Data	Subsequent data encrypted by
		underlying encryption algorithm
	Padding	Any value which to be a multiple
		of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of
		the entire message
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH

response to the NUT

- 6. TN1 transmits a TCP-SYN packet t with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT does not transmit any packets or transmits an INFORMATIONAL request with a Notify of type INVALID_SELECTORS.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

- Notification Type depends on the implementation at Step 7.
- If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 1.10 Authentication of the IKE_SA

Test IKEv2.EN.I.1.1.10.1: Sending CERT Payload

Purpose:

To verify an IKEv2 device handles CERTREQ payload and transmits CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method	
Remote	X.509 Certificate - Signature	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #1	See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the C	Common Packet #2
UDP Header	Same as the C	Common Packet #2
IKEv2 Header	Same as the C	Common Packet #2
SA Payload	Same as the 0	Common Packet #2
KE Payload	Same as the C	Common Packet #2
Nr Payload	Next Payload	38 (CERTREQ)
	Other fields are same as the Common Packet #2	

CERTREQ Payload	See below
-----------------	-----------

CERTREQ Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE_SA_INIT response with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.10.2: Sending CERTREQ Payload

Purpose:

To verify an IKEv2 device transmits CERTREQ payload and handles CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
Packet #2	See below	
Packet #3	See Common Packet #19	

Packet #2: IKE_AUTH response

IPv6 Header	Same as Common Packet #4	
UDP Header	Same as Common Packet #4	

1 0110111		
Same as Common Packet #4		
	Same as Common Packet #4	
Next Payload	37 (CERT)	
Other fields are sa	Other fields are same as the Common Packet #4	
	See below	
	Same as Common Packet #4	
	Same as Common Packet #4	
	Same as Common Packet #4	
	Same as Common Packet #4	
	Same as Common Packet #4	

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	TN1's X.509 Certificate

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including IDr payload as describe above to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value
Remote	0xabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Group 1.11. Invalid values

Test IKEv2.EN.I.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose RESERVED fields are set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #4	
	All RESERVED fields are set to one.	
Packet #3	See Common Packet #19	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response whose RESERVED fields are set to one to the NUT

- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
	Version bit is set to one.	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose Version bit is set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.4: Unrecognized Notify Message Type of Error

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting error.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are same as Commo	on Packet #2	
UDP Header	All fields are same as Common Packet #2		
IKEv2 Header	All fields are same as Common Packet #2		
SA Payload	All fields are same as Common Packet #2		
KE Payload	All fields are same as Common Packet #2		
Ni, Nr paylaod	Next Payload	41 (Notify)	
	Other fields are same as Common Packet #2		
N Payload	Next Payload	0	
	Critical	0	
	Reserved	0	
	Payload Length	8	
	Procotol ID	0	
	SPI Size	0	
	Notify Message Type	16383	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response with a Notify payload of unrecognized Notify Message Type value.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.5: Unrecognized Notify Message Type of Status

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting status.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below	Packet #1	See below
-----------------------	-----------	-----------

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are same as Common Packet #2		
UDP Header	All fields are same as Commo	on Packet #2	
IKEv2 Header	All fields are same as Commo	on Packet #2	
SA Payload	All fields are same as Commo	on Packet #2	
KE Payload	All fields are same as Commo	on Packet #2	
Ni, Nr paylaod	Next Payload	41 (Notify)	
	Other fields are same as Commo	on Packet #2	
N Payload	Next Payload	0	
	Critical	0	
	Reserved	0	
	Payload Length	8	
	Procotol ID	0	
	SPI Size	0	
	Notify Message Type	65535	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response with a Notify payload of unrecognized Notify Message Type value.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.EN.I.1.2.1.1: Sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits CREATE_CHILD_SA request using properly Header and Payloads format.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	TOROM
NUT TI	V1
(End-Node) (End-	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Packet #2)
	••
<	IPsec {Echo Request}
	(Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	Udgment #3)
	 I
	I CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Judgment #4)
	\oddyment n=j
, i	ı V
,	•
N: REKEY_SA	
N+: USE_TRANSPORT_MOI	DE

Packet #1	See Common Packet #2
Packet #2	See Common Packets #4
Packet #3	See Common Packets #19

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 15 and 16 until lifetime of SA is expired for 30 seconds.
- 18. Observe the messages transmitted on Link A.

Part C: Notify Payload (REKEY_SA) Format (BASIC)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 24 and 25 until lifetime of SA is expired for 30 seconds.
- 27. Observe the messages transmitted on Link A.

Part D: Notify Payload (USE_TRANSPORT_MODE) Format (BASIC)

- 28. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 29. Observe the messages transmitted on Link A.
- 30. TN1 responds with an IKE_SA_INIT response to the NUT.
- 31. Observe the messages transmitted on Link A.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 34. Observe the messages transmitted on Link A.
- 35. Repeat Steps 33 and 34 until lifetime of SA is expired for 30 seconds.
- 36. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 37. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link A.
- 39. TN1 responds with an IKE_SA_INIT response to the NUT.
- 40. Observe the messages transmitted on Link A.
- 41. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 42. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 43. Observe the messages transmitted on Link A.
- 44. Repeat Steps 42 and 43 until lifetime of SA is expired for 30 seconds.
- 45. Observe the messages transmitted on Link A.

Part F: Nonce Payload Format (BASIC)

- 46. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 47. Observe the messages transmitted on Link A.
- 48. TN1 responds with an IKE SA INIT response to the NUT.
- 49. Observe the messages transmitted on Link A.
- 50. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 51. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 52. Observe the messages transmitted on Link A.
- 53. Repeat Steps 51 and 52 until lifetime of SA is expired for 30 seconds.
- 54. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 55. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 56. Observe the messages transmitted on Link A.
- 57. TN1 responds with an IKE_SA_INIT response to the NUT.
- 58. Observe the messages transmitted on Link A.

- 59. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 60. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 61. Observe the messages transmitted on Link A.
- 62. Repeat Steps 60 and 61 until lifetime of SA is expired for 30 seconds.
- 63. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 64. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 65. Observe the messages transmitted on Link A.
- 66. TN1 responds with an IKE_SA_INIT response to the NUT.
- 67. Observe the messages transmitted on Link A.
- 68. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 69. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 70. Observe the messages transmitted on Link A.
- 71. Repeat Steps 69 and 70 until lifetime of SA is expired for 30 seconds.
- 72. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted IKE Header containing following values:

Figure 22 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to CREATE_CHILD_SA (36).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to the value incremented the previous IKE message's Message ID by one.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Encrypted Payload containing following values:

, one	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	3 9 0 1
+-	+-+-+
! Next Payload !C! RESERVED ! Payload Length	!
+-	+-+-+
! Initialization Vector	!
! (length is block size for encryption algorithm)	!
+-	+-+-+
~ Encrypted IKE Payloads	~
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	+-+-+
! Padding (0-255 octets)	!
+-+-+-+-+-+-+-+-+-+	+-+-+
! Pad Ler	ngth!
+-	+-+-+
~ Integrity Checksum Data	~
+-	+-+-+-+

Figure 23 Encrypted payload

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

7 01(0)	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1
+-	+-+-+-+-+
! Next Payload !C! RESERVED ! Payload Lengt	th!
+-	+-+-+-+-+
! Protocol ID ! SPI Size ! Notify Message 7	Гуре!
+-	+-+-+-+-+
!	!
~ Security Parameter Index (SPI)	~
!	!
+-	+-+-+-+-+
!	!
~ Notification Data	~
!	!
+-	+-+-+-+-+

Figure 24 Notify Payload format

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 12 bytes for this REKEY SA.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to the size of CHILD_SA Inbound SPI value to be rekeyed. It is 4 bytes for ESP.
- A Notify Message Type field is set to REKEY_SA (16393).
- A Security Parameter Index field is set to SPI value to be rekeyed.
- A Notification Data field is empty.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 36: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

Figure 25 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT_MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part E

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 43: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 45: Judgment #4

					FURUIN				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2 3	4567	8 9 0 1		
	+-+-+-	+-+-+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+ -		
	! Next	. 44 	!0!	0	! Length	40			
		+-+-+)	-+-+-+- 	0	+-+-+-+-+-+-+-+- ! Length	36		. <u></u> . I	
	-	-	· -+-+-+-	-	+-+-+-+-+-+-+-		+-+-+-+	1	
	! Number	1			! SPI Size 4			i	İ
	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+	İ	Ì
	! SPI va	lue					!		
	- +-+-+	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+		
 		3 	!	0	! Length				
Transform	! Type			0	+-+-+-+-+-+-+- ! Transform ID	3	(3DES) !	Proposal	SA Payload
		` '			:		,		l İ
1		3	!	0	! Length	8	!		
Transform	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-	+-+-+-	+-+-+-+	j	j
	! Type :	3 (IN)	!	0	! Transform ID	2	(SHA1) !		
			-+-+-+		+-+-+-+-+-+-+-		+-+-+-+		
- ,	-	0	!	0	! Length	8	!		
Transform					+-+-+-+-+-+-+-+-		+-+-+-+ (No) !		
I	! Type !	•	•	0	! Transform ID +-+-+-+-	0	(No) !	I	1

Figure 26 SA Payload contents

The NUT transmits a CREATE_CHILD_SA request including properly formatted SA Payload containing following values (refer following figures):

Figure 27 SA Payload format

- A Next Payload field is set to Ni Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 28 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 29 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 47: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 49: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 52: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 54: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Nonce Payload containing following values:

Figure 30 Nonce Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part G

Step 56: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 58: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 61: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 63: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSi Payload containing following values:

Figure 31 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 32 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part H

Step 65: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 67: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 70: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 72: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSr Payload containing following values:

Figure 33 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 34 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to TN1 address.
- An Ending Address field is set to less than or equal to TN1 address.

Possible Problems:

- The implementation may use different SA lifetimes by the implementation policy. In that case, the tester must change the expiration time to wait CREATE_CHILD_SA request.
- CREATE_CHILD_SA request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(REKEY_SA)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Ni, [KEi], TSi, TSr
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Group 2.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FOROIM
NUT TN1
(End-Node) (End-Node)
(Judgment #1)
IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
(Judgment #2)
< IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
(Packet #2)
IPsec {Echo Request}
(Packet #3)
(Judgment #3)
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
(Judgment #4)
* wait for the event of a timeout
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #5)
(Judgillett #5)
V
N: REKEY_SA
N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 waits for the event of a timeout on NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 11: Judgment #5

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Test IKEv2.EN.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM
NUT TN	
(End-Node) (End-	Node)
	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)</pre>
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
1 '	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>
1	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>
	IPsec {Echo Request} (Packet #3)
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)
	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)</pre>
	wait for the event of a timeout
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Judgment #5) CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)
*	wait for the event of a timeout
x	<pre>never send CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #6)</pre>
V V	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 waits for the event of a timeout on NUT.
- 11. Observe the messages transmitted on Link A

- 12. TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 waits for the event of a timeout on NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 11: Judgment #5

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 14: Judgment #6

The NUT stops the retransmissions of a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Group 2.3. Rekeying CHILD_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.I.1.2.3.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FOROIN
NUT TN1
(End-Node) (End-Node)
'
(Judgment #3)
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)
CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)
V V
N: REKEY_SA N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN	И
(End-Node) (End-	Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
'	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
'	(Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Packet #2)
	(140101 112)
	•
'	IPsec {Echo Request}
I '	(Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	(Judgment #3)
	
	·•
>	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
l i	(Judgment #4)
<	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Packet #4)
	INFORMATIONAL request (IDD CV (D))
I '	INFORMATIONAL request (HDR, SK {D}) (Judgment #5)
· '	(Judgment #3) INFORMATIONAL response (HDR, SK {D})
	(Packet #5)
i	
	IPsec {Echo Request}
	(Packet #6)
	IPsec {Echo Reply}
· '	(Judgment #6)
\ \	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See below
Packet #6	See Common Packet #19
	This packet is cryptographically protected by
	the new CHILD_SA negotiated at Step 10.

Packet #5: INFORMATIONAL response

racket #.	O. INTOKWIATIONAL I	esponse
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node)	(End-Node)
 	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
 	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	IPsec {Echo Request} (Packet #3)
	> IPsec {Echo Reply} (Judgment #3)
	* wait for the event of a timeout of CHILD_SA
<	IPsec {Echo Request} (Packet #4)
	I IPsec {Echo Reply}
	(Judgment #4)
V	V
N: USE_TRANSPO	DRT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #19

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an Echo Request with IPsec ESP which has expired to the NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT does not transmit an Echo Reply with IPsec ESP using already expired CHILD SA.

Possible Problems:

Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	TOROM
NUT TI	V1
(End-Node) (End-	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Packet #2)
	••
<	IPsec {Echo Request}
	(Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	Udgment #3)
	 I
	I CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Judgment #4)
	\oddyment n=j
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ı V
,	•
N: REKEY_SA	
N+: USE_TRANSPORT_MOI	DE

Packet #1	See Common Packet #2
Packet #2	See Common Packets #4
Packet #3	See Common Packets #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 15 and 16 until lifetime of SA is expired for 30 seconds.
- 18. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 24 and 25 until lifetime of SA is expired for 30 seconds.
- 27. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Possible Problems:

Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposals to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration:

		CREATE_CHILD_SA exchanges Algorithms			
	Proposal	Proposal Protocol Encryption Integrity ESN			
Part A	Proposal #1	Proposal #1 ESP ENCR_3DES AUTH_HMAC_SHA1_96 No ESN		No ESN	
rart A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Packet #1	See Common Packet #2
Packet #2	See Common Packets #4
Packet #3	See Common Packets #19

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.6: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles rekeying failure.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.

In each part, configure the devices according to the Common Configuration.

In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM	
NUT TN1		
(End-Node) (End-Node)		
Judgm	_INIT Response (HDR, SAr1, KEr, Nr)	
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>	
1		
	t #3)	
1		
	_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) ent #4)	
	_CHILD_SA response (HDR, SK(N(NO_PROPOSAL_CHOSEN))	
	_INIT request (HDR, SAi1, KEi, Ni)	
	_INIT Response (HDR, SAr1, KEr, Nr)	
	TH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) ent #6)	
l v v		
,		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #4	
Packet #3	See Common Packet #19	
Packet #4	See Common Packet #14	
Packet #5	See Common Packet #2	

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 reject

the NUT's proposal and responds with a CREATE_CHILD_SA response with a Notify of type NO PROPOSAL CHOSEN.

- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds. Enable PFS.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FORUM		
NUT TN1	1	
(End-Node) (End-Node)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Judgment #1)	
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
	THE WITH STATES (UDD ON CID: WITH N. OA'O TO' TOO)	
1	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})	
	(Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Packet #2)	
	(1 donot #2)	
.''.		
<	IPsec {Echo Request}	
	(Packet #3)	
1	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired	
	(Judgment #3)	
1 1	•	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr})	
	(Judgment #4)	
· '	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr})	
1	(Packet #4)	
į į		
	INFORMATIONAL request (HDR, SK {D})	
	(Judgment #5)	
	INFORMATIONAL response (HDR, SK {D})	
	(Packet #5)	
	IPsec {Echo Request}	
· '	(Packet #6)	
	IPsec {Echo Reply}	
	(Judgment #6)	
V		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See below
Packet #6	See Common Packet #19
	This packet is cryptographically protected by
	the new CHILD_SA negotiated at Step 10.

Packet #4: CREATE_CHILD_SA response

IPv6 Header	Same as the Common F	Packet #14
UDP Header	Same as the Common F	Packet #14
IKEv2 Header	Same as the Common F	Packet #14
E Payload	Same as the Common F	Packet #14
N Payload	Same as the Common F	Packet #14
N Payload	Same as the Common F	Packet #14
SA Payload	Same as the Common F	Packet #14
Nr Payload	Next Payload	34 (KE)
KEr Payload	Next Payload	44 (TSi)

	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi Payload	Same as the Common F	Packet #14
TSr Payload	Same as the Common F	Packet #14

Packet #5: INFORMATIONAL response

IPv6 Header	•	Same as the Common Packet #18
UDP Header	Same as the Common Packet #18	
IKEv2 Header		Same as the Common Packet #18
E Payload	Other fields ar	re same as the Common Packet #18
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN1
(End-Node) (End-Node)
IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
(Packet #4)
< IPsec {Echo Request} (old CHILD_SA)
> IPsec {Echo Reply} (old CHILD_SA)
V
N: REKEY_SA N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See Common Packet #19
	This packet is cryptographically protected by
	the new CHILD_SA negotiated at Step 5.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the first negotiated algorithms.

Possible Problems:

Group 2.4. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FORUM		
NUT TN	1	
(End-Node) (End-	Node)	
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
i i	(Judgment #1)	
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
i i	(Packet #1)	
1	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})</pre>	
	(Judgment #2)	
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})	
	(Packet #2)	
	•	
	IDaga (Feba Daguast)	
· '	IPsec {Echo Request}	
	(Packet #3)	
	IPsec {Echo Reply}	
	(Judgment #3)	
·:· :	•	
>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
	(Judgment #4)	
	CREATE_CHILD_SA response (HDR, SK {SA, Nr})	
i	(Packet #4)	
1 i i		
>	INFORMATIONAL request (HDR, SK {D})	
l i i	(Judgment #5)	
<	INFORMATIONAL response (HDR, SK {})	
1	(Packet #5)	
<	IPsec {Echo Request}	
	(Packet #6)	
	IPsec {Echo Reply}	
· ·	(Judgment #6)	
V		
N 1105 TD ANODODE 1105		
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #4	
Packet #3	See Common Packet #19	
Packet #4	See Common Packet #12	
Packet #5	See Common Packet #18	
Packet #6	See Common Packet #19	

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds

with a CREATE_CHILD_SA response to the NUT.

- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to close the replaced IKE_SA.
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #12
Packet #5	See Common Packet #18
Packet #6	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds

with a CREATE_CHILD_SA response to the NUT.

- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE SA.
- 13. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE SA.

Step 14: Judgment #6

The NUT resopndes with an INFORMATIONAL response with not payloads cryptographically protected by new IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT T	
(End-Node) (End-	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Judgment #1)
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
I .	(Packet #1)
1 ;	(Tablet 11)
1 :	 LVE AUTH request (UDD CV (LD: AUTH N CA:2 TC: TC:)
l '	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
· '	(Judgment #2)
1 '	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2)
<	INFORMATIONAL request (HDR, SK {})
	(Packet #3)
>	INFORMATIONAL response (HDR, SK {})
l i	(Judgment #3)
l i	
l i ,	'wait for the event of a timeout of IKE_SA
l i	
	INFORMATIONAL request (HDR, SK {})
1 '	(Packet #4)
l '	
	INFORMATIONAL response (HDR, SK {})
	(Judgment #4)
] .	
V	I
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an INFORMATIONAL request with no payloads using already expired IKE_SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT responds with an INFORMATIONAL response with no payloads.

Step 10: Judgment #4

The NUT does not respond with an INFORMATIONAL response with no payloads using already expired IKE SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2
Part D	ENCR_3DES	IR SDES - LPRE HMAC SHAL - LAUTH HMAC SHAL 96 - L		Group 2 Group 14

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

FORUM
NUT TN1
(End-Node) (End-Node)
< IPsec {Echo Request}
(Packet #3)
···
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 18. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 28. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 29. Observe the messages transmitted on Link A.
- 30. TN1 responds with an IKE_SA_INIT response to the NUT.
- 31. Observe the messages transmitted on Link A.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 34. Observe the messages transmitted on Link A.
- 35. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 36. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 36: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H group 2" and "D-H group 14" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Possible Problems:

Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN1	
(End-Node) (End-N	ode)
1 '	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1 '	(Judgment #1)
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2)
	IPsec {Echo Request}
II.	(Packet #3)
1 '	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	(Judgment #3)
	CDEATE CHILD CA request (HDD CV (CA Nil))
I :	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #4)
V V	(oddymetre #7)
N: USE_TRANSPORT_MODE	
002	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" in SA Proposal #1 (ESP) and "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H group 14" in SA Proposal #2 (ESP) as proposed algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN (End-Node) (End-	
	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>
>	IPsec {Echo Request} (Packet #3) IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)
	
i i	CREATE_CHILD_SA request (HDR, SK SA, Ni}) (Judgment #4) CREATE_CHILD_SA response (HDR, SK {SA, Nr})
	(Packet #4)
	<pre>INFORMATIONAL request (HDR, SK {}) (old IKE_SA) (Packet #5)</pre>
>	INFORMATIONAL response (HDR, SK {}) (old IKE_SA) (Judgment #5)
V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #12
Packet #5	See Common Packet #17
	(Use old IKE_SA)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is encrypted by the old IKE_SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #5

The NUT transmits an INFORMATIONAL response with no payload to the TN1. THe message is encrypted by the old IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds

Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN	V1
(End-Node) (End-	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2)
· '	IPsec {Echo Request}
	(Packet #3)
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	(Judgment #3)
	
>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	(Judgment #4)
· '	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
li	(Packet #4)
l i	
>	INFORMATIONAL request (HDR, SK {D})
	(Judgment #5)
<	INFORMATIONAL response (HDR, SK {})
	(Packet #5)
· '	INFORMATIONAL request (HDR, SK {})
· ·	(Packet #6)
>	INFORMATIONAL response (HDR, SK {})
	(Judgment #6)
V	
N HOE TRANSPORT HOS	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Packet #18
Packet #6	See Common Packet #17

Packet #4: CREATE_CHILD_SA response

Packet #4 is same as Common Packet #12 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

1	ansironi.		
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE CHILD SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE_SA.
- 13. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 14: Judgment #6

The NUT resopndes with an INFORMATIONAL response with not payloads cryptographically protected by new IKE_SA.

Possible Problems:

Group 2.5. Creating New CHILD_SAs with the CREATE_CHILD_SA Exchanges

Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Packet #1	See below
Packet #2	See Common Packet #4

Packet #2: IKE_AUTH response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN	
(End-Node) (End-	Node)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
i i	(Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2) IPsec {TCP-SYN} (Packet #3)
>	<pre>IPsec {TCP-RST} (Judgment #3) IPsec {Echo Request}</pre>
	(Packet #4) IPsec {Echo Reply} (Judgment #4)
	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr}) (Packet #5)
i i	IPsec {TCP-SYN} (Packet #6)
	<pre>IPsec {TCP-RST} (Judgment #6)</pre>
	<pre>IPsec {Echo Request} (Packet #7) IPsec {Echo Reply}</pre>
	(Judgment #7)
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packets #19
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

• Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #4
UDP Header	Same as the Common Packet #4
IKEv2 Header	Same as the Common Packet #4
E Payload	Same as the Common Packet #4
IDi Payload	Same as the Common Packet #4
AUTH Payload	Same as the Common Packet #4
N Payload	Same as the Common Packet #4
SA Payload	Same as the Common Packet #4

TSi Payload	Other fields are same as the Common Packet #4	
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

• Packet #5: CREATE_CHILD_SA response

IPv6 Header	Same as the	Common Packet #8
UDP Header	Same as the	Common Packet #8
IKEv2 Header	Same as the	Common Packet #8
E Payload	Same as the	Common Packet #8
IDi Payload	Same as the	Common Packet #8
AUTH Payload	Same as the	Common Packet #8
N Payload	Same as the	Common Packet #8
SA Payload	Same as the	Common Packet #8
TSi Payload	Other fields are same as the	Common Packet #8
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #8
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link X
		Ending Address	NUT's Global Address on Link X

TSr Payload Traffic Selector TS	S Type	8 (IPV6_ADDR_RANGE)
-------------------------------------	--------	---------------------

	IP Protocol ID	58 (IPV6-ICMP)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	TN1's Global Address on Link A
	Ending Address	TN1's Global Address on Link A

• Packet #6: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.
- 10. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 11. Observe the messages transmitted on Link A.
- 12. After a reception of CREATE_CHILD_SA request from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #6

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 16: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 2.6. Exchange Collisions

Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA message to close CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	FURUM
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Packet #1)
i i	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)</pre>
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)</pre>
	wait until expiring CHILD_SA
	<pre>INFORMATIONAL request (HDR, SK {D}) (Judgment #3)</pre>
	INFORMATIONAL request (HDR, SK {D}) (Packet #3)
	<pre>INFORMATIONAL response (HDR, SK { }) (Packet #4)</pre>
	<pre>INFORMATIONAL response (HDR, SK { }) (Judgment #4)</pre>
	IPsec {Echo Request}
	(Packet #5) IPsec {Echo Reply}
	(Judgment #5)
V V	· · ·
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below
Packet #4	See Common Packet #17
Packet #5	See Common Packet #19

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0

	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request to close CHILD_SA established at Step 5.
- 9. TN1 responds with an INFROMATIONAL response with no payload to an INFORMATIONAL request received at Step 7.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Step 10: Judgment #4

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close CHILD_SA.

Step 12: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA message to close IKE_SA.

References:

• [RFC 4718] - Sections 5.11.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node)	(End-Node)
1	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
l i	
	I * wait until expiring CHILD_SA
 	INFORMATIONAL request (HDR, SK {D}) (Judgment #3)
 < 	INFORMATIONAL request (HDR, SK {D}) (Packet #3)
 < 	INFORMATIONAL response (HDR, SK { }) (Packet #4)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #4)
l i	 INFORMATIONAL request (HDR, SK { }) (Packet #5)
X 	INFORMATIONAL response (HDR, SK { }) (Judgment #5) V
N: USE_TRANSP	ORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below
Packet #4	See Common Packet #17
Packet #5	See Common Packet #17

Packet #3 INFORMATIONAL request

cket #3 INFO IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	C
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	C
	R (bit 5 of Flags)	C
	X (bits 6-7 Flags)	C
	Message ID	(
	Length	any
E Payload	Next Payload	42 (D
	Critical	(
	Reserved	(
	Payload Length	any
		The same value as block length of the underlying
	Initialization Vector	encryption algorithm
		Subsequent payloads encrypted by underlying
	Encrypted IKE Payloads	encryption algorithm
		Any value which to be a multiple of the encryption
	Padding	block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	C
	Critical	
	Reserved	
	Payload Length	8
	Protocol ID	1 (IKE_SA
	SPI Size	
	# of SPIs	(
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request to close CHILD_SA established at Step 5.
- 9 TN1 responds with an INFROMATIONAL response with no payload to an

INFORMATIONAL response received at Step 7.

- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is cryptographically protected by IKE_SA to be closed.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Step 10: Judgment #4

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close CHILD_SA.

Step 12: Judgment #5

The NUT never transmits an INFORMATIONAL response with no payload.

Possible Problems:

Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN	
End-Node) (End-I	vode)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)
	IPsec {Echo Request} (Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expire (Judgment #3)
· · · · · · · · · · · · · · · · · · ·	-
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)
	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Packet #4)</pre>
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Ni, TSi, TSr}) (Judgment #5)
1 1	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #5)
·	INFORMATIONAL request (HDR, SK {D})
	(Judgment #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)
·	<pre>INFORMATIONAL request (HDR, SK {D}) (Judgment #7)</pre>
	INFORMATIONAL response (HDR, SK {D}) (Packet #7)
· ·	<pre>IPsec {Echo Request} (new CHILD_SA) (Packet #8)</pre>
	IPsec {Echo Reply} (new CHILD_SA) (Judgment #8)
v V	
N: REKEY_SA	
I+: USE_TRANSPORT_MODI	

See Common Packet #2
See Common Packet #4
See Common Packet #19
See Common Packet #13
See Common Packet #14
See below
See below
See Common Packet #19

Packet #6: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
·	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #7: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
·	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size

	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
		NUT's inbound CHILD_SA SPI value of the new CHILD_SA initiated by
	Security Parameter Index	the NUT at Step 9

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with a CREATE_CHILD_SA response to the CRETE_CHILD_SA received at Step 9. The response message includes minimum Nonce Data.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 13.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 15.
- 17. TN1 transmits an Echo Request with IPsec ESP using the existing algorithms to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence

Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the new CHILD_SA initiated by the NUT at Step 9.

Step 18: Judgment #8

The NUT transmits an Echo Reply with IPsec ESP using the existing CHILD_SA initiated by the TN1 at Step 10.

Possible Problems:

Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM	
NUT TN		
(End-Node) (End-	Node)	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)	
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)	
· · ·	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>	
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)	
	IPsec {Echo Request}	
>	(Packet #3) IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
l		
·	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Packet #4)	
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Ni, TSi, TSr}) (Judgment #5)	
	INFORMATIONAL request (HDR, SK {D}) (Packet #5)	
>	INFORMATIONAL response (HDR, SK {D}) (Judgment #6)	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #7)	
<	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)} (Packet #6)	
· ·	IPsec {Echo Request} (Packet #7)	
>	Psec {Echo Reply} (Judgment #8)	
V		
N: REKEY_SA		
N+: USE_TRANSPORT_MOD	F	
552_110.0101.0101_000	-	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

Packet #5: INFORMATIONAL request

IPv6 Header Source Address		TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500

		FOROW
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #6: CREATE_CHILD_SA response

IPv6 Header		Same as Common Packet #14
UDP Header		Same as Common Packet #14
IKEv2 Header		Same as Common Packet #14
E Payload		Same as Common Packet #14
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMAITONAL request with a Delete Payload to close the replaced

CHILD_SA.

- 13. Observe the messages transmitted on Link A.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the retransmitted CREATE_CHILD_SA request.
- 16. TN1 transmits an Echo Request with IPsec ESP using the existing algorithms to the NUT.
- 17. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 14: Judgment #7

The NUT retransmits the same CREATE_CHILD_SA request as the message at Step 11. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 17: Judgment #8

The NUT transmits an Echo Reply with IPsec ESP using the existing CHILD_SA initiated by the TN1 at Step 10.

Possible Problems:

Test IKEv2.EN.I.1.2.6.5: Simultaneous IKE_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	IVE SA INIT request (HDD SAid VE; Ni)	
	· IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)	
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
į	(Packet #1)	
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	(Judgment #2)	
< 	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)	
	·	
	- IPsec {Echo Request}	
	(Packet #3)	
	<pre>> IPsec {Echo Reply}</pre>	
i		
• • •		
	 > CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
	(Judgment #4)	
	 CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
 	(Packet #4) > CREATE_CHILD_SA response (HDR, SK {SA, Nr})	
	(Judgment #5)	
 <	 - CREATE_CHILD_SA response (HDR, SK {SA, Nr})	
į	(Packet #5)	
	 > INFORMATIONAL request (HDR, SK {D})	
j	(Judgment #6)	
<	INFORMATIONAL response (HDR, SK {})	
I I	(Packet #6)	
	 INFORMATIONAL request (HDR, SK {D})	
Ţ	(Judgment #7)	
<	- INFORMATIONAL response (HDR, SK {})	
	(Packet #7)	
<	INFORMATIONAL request (HDR, SK {})	
Ì	(Packet #8)	
	> INFORMATIONAL response (HDR, SK {})	
I	(Judgment #8)	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #18
Packet #8	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with a CREATE_CHILD_SA response to the CREATE_CHILD_SA request received at Step 9. The response message includes minimum Nonce Data to make the NUT send a message to close duplicated IKE_SA.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with no payload.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response with no payload.
- 17. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is cryptographically protected by the new IKE_SA initiated by TN1 at Step 10.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the original IKE_SA, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the original IKE_SA. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the new IKE_SA initiated by the NUT at Step 9, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the new IKE_SA initiated by the NUT at Step 9. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 18: Judgment #8

The NUT transmits an INFOMATIONAL response with no payload.

Possible Problems:

Test IKEv2.EN.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

FORUM			
NUT TN1			
(End-Node) (End-N	ode)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
	(Judgment #1)		
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)		
	(Packet #1)		
· ·	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})		
	(Judgment #2)		
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})		
1 ! !	(Packet #2)		
	IPsec {Echo Request}		
· ·	(Packet #3)		
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired		
· ·	(Judgment #3)		
l i i			
i			
>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})		
	(Judgment #4)		
· ·	CREATE_CHILD_SA request (HDR, SK {SA, Ni})		
· ·	(Packet #4)		
	CREATE_CHILD_SA response (HDR, SK {SA, Nr})		
	(Judgment #4)		
	INFORMATIONAL request (HDR SK /D\)		
· ·	INFORMATIONAL request (HDR, SK {D}) (Packet #5)		
	(racket #3) INFORMATIONAL response (HDR, SK {})		
	(Judgment #5)		
	(
	CREATE_CHILD_SA request (HDR, SK {SA, Ni})		
II.	(Judgment #6)		
V			
N: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0

		1 OKOM
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMATONAL request to close the original IKE_SA. The message has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value
- 13. Observe the messages transmitted on Link A.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds with an INFOMATIONAL response to the INFORMATIONAL request to close the original IKE_SA.

Step 14: Judgment #7

The NUT never retransmits a CREATE_CHILD_SA request transmitted at Step 9.

Possible Problems:

Test IKEv2.EN.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA

Purpose:

To verify an IKEv2 device properly handles simultaneous closing and rekeying a CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1	
(End-Node)	(End-Node)	
į į	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
į į	(Packet #1) > IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Packet #2) * wait until CHILD_SA expires 	
İ	> INFORMATIONAL request (HDR, SK {D})	
	(Packet #3) INFORMATIONAL response (HDR, SK {D}) (Packet #4)	
	(Tacket "4") > CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Judgment #4)	
V N: REKEY SA	V	
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Packet #3	See Common Packet #13
Packet #4	See below

Packet #4: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD SA SPI value of the original CHILD SA

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey a CHILD_SA.
- 8. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close a CHILD_SA.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATONAL request to close a CHILD_SA.

Step 9: Judgment #4

The NUT responds with a CREATE_CHILD_SA response to a CREATE_CHILD_SA reqest to rekey a CHILD_SA. The CREATE_CHILD_SA response includes a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Test IKEv2.EN.I.1.2.6.8: Closing a New CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a request to close nonexistent CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.6

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FOROIM		
NUT TN1		
(End-Node) (End-Node)		
 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) 		
(Googlind R. F.)		
IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) 		
< IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})		
 <		
(Packet #3) > IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)		
 I		
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) 		
X CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)		
INFORMATIONAL response (HDR, SK {})		
(Judgment #5)		
I I V		
•		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any

E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA response to rekey a CHILD_SA to the NUT. But the response does not reach the NUT.
- 11. TN1 transmits an INFORMATIONAL request to close a CHILD_SA which were supposed to be created by rekey.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #5
The NUT responds with an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

Test IKEv2.EN.I.1.2.6.9: Rekeying a New CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a request to rekey nonexistent CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.7

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

	FORUM	
NUT TN1		
(End-Node) (End-Node)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Judgment #1)	
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
l i i		
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})	
l i i	(Judgment #2)	
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Packet #2)	
1	IPsec {Echo Request}	
	(Packet #3)	
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired	
! !	(Judgment #3)	
		
	•	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})	
II .	(Judgment #4)	
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})	
	(Packet #4)	
	(
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})	
	(Packet #5)	
	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)})	
i i	(Judgment #5)	
i i		
V		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See Common Packet #14
	The SPI value in the Delete payload is the same
	value as the SPI value in Packet #4 SA payload.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA response to rekey a CHILD_SA to the NUT. But the

response does not reach the NUT.

- 11. TN1 transmits a CREATE_CHILD_SA request to rekey the CHILD_SA which were supposed to be created by rekey.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #5

The NUT responds with a CREATE_CHILD_SA response with a Notify of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Test IKEv2.EN.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs

Purpose:

To verify an IKEv2 device properly handles a request to rekey an IKE_SA which has CHILD_SAs in half-open state.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN1		
(End-Node) (End-	Node)	
 <	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)	
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>	
	IPsec {Echo Request} (Packet #3)	
	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
	•	
 > 	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
>	(Packet #4) CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Judgment #5)	
 V \		
N: REKEY_SA		
N+: USE_TRANSPORT_MOD	DE Control of the con	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to rekey a CHILD_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common
- Connect the devices according to the Common Topology.

 Configuration
 - In each part, configure the devices according to the Common Configuration.

 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN		
(End-Node) (End-	Node)	
 <	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)	
•	IPsec {Echo Request} (Packet #3)	
•	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
	•	
>	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #4)	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})	
>	(Packet #4) CREATE_CHILD_SA response (HDR, SK {N(NO_ADDITIONAL_SAS)}) (Judgment #5)	
i V		
N: REKEY_SA		
N+: USE_TRANSPORT_MOD	DE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey a CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_ADDTIONAL_SAS to a CREATE_CHILD_SA request to rekey a CHILD_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs

Purpose:

To verify an IKEv2 device properly handles a request to rekey an IKE_SA which has CHILD_SAs in half-closed state.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node)	(End-Node)
İ	
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	* wait until CHILD_SA expires
	> INFORMATIONAL request (HDR, SK {D}) (Judgment #3)
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Judgment #4)
V	l V
N: USE_TRANSP	PORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #11

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA to the NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATIONAL request to close a CHILD_SA to the TN1.

Step 8: Judgment #4

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to close a CHILD_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TI	V1	
(End-Node) (End-	-Node)	
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)	
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2) 	
	IPsec {Echo Request} (Packet #3)	
	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #4)	
· '	 INFORMATIONAL request (HDR, SK {D}) (Packet #4)	
l '	INFORMATIONAL response (HDR, SK {})	
	(Judgment #5)	
V \		
N: USE_TRANSPORT_MODE	<u> </u>	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
		The same value as block length of the underlying
	Initialization Vector	encryption algorithm
		Subsequent payloads encrypted by underlying
	Encrypted IKE Payloads	encryption algorithm
		Any value which to be a multiple of the encryption
	Padding	block size
	Pad Length	The length of the Padding field
		The Cryptographic checksum of
	Integrity Checksum Data	the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits an INFORMATIONAL request to close a CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds with an INFORMATIONAL response with no payload.

Possible Problems:

Test IKEv2.EN.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to close an IKE_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM		
NUT TI	NUT TN1		
(End-Node) (End-	Node)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
	(Judgment #1)		
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)		
	(Packet #1)		
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})		
	(Undgment #2)		
	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})		
	(Packet #2)		
<	IPsec {Echo Request}		
	(Packet #3)		
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired		
	(Judgment #3)		
	 !		
	 CREATE_CHILD_SA request (HDR, SK {SA, Ni})		
	CKLATE_OHTED_OA Tequest (HDK, OK (OA, NT)) (Judgment #4)		
	(oddymont n4)		
	INFORMATIONAL request (HDR, SK {D})		
	(Packet #4)		
<	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)})		
	(Packet #5)		
	(UDD OK (A)		
>	INFORMATIONAL response (HDR, SK {})		
	(Judgment #5)		
, v			
N: USE_TRANSPORT_MODE	<u> </u>		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See below

Packet #4: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0

	1	FOROM
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Packet #5: CREATE_CHILD_SA response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
		The same value as block length of the underlying encryption
	Initialization Vector	algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	14 (NO_PROPOSAL_CHOSEN)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits an INFORMATIONAL request to close an IKE_SA to the NUT.
- 11. TN1 responds with a CREATE_CHILD_SA response which has a Notify payload of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 12: Judgment #5

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close an IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE_SA

Purpose:

To verify an IKEv2 device properly handles simultaneous closing and rekeying an IKE_SA.

References:

• [RFC 4718] - Sections 5.11.10

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

NUT TN	4

(End-Node) (End-	Node)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
i i	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	wait until CHILD_SA expires
	INFORMATIONAL request (HDR, SK {D}) (Judgment #3)
 < 	CREATE_CHILD_SA request (HDR, SK { SA, Ni }) (Packet #3)
	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Judgment #4)
l l V V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #11

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATONAL request to close an IKE_SA.

Step 8: Judgment #4

The NUT responds with a CREATE_CHILD_SA response to a CREATE_CHILD_SA reqest to rekey an IKE_SA. The CREATE_CHILD_SA response includes a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Group 2.7. Non zero RESERVED fields

Test IKEv2.EN.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FOROIN
NUT TN1
(End-Node) (End-Node)
'
(Judgment #3)
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)
CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)
INFORMATIONAL request (HDR, SK {D}) (Judgment #5)
V V
N: REKEY_SA N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT. All RESERVED fields in the message are set to one.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.EN.I.1.3.1.1: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device transmits INFORMATIONAL request using properly Header and Payloads format.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

```
NUT
                   TN1
(End-Node)
                (End-Node)
                  ->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Judgment #1)
                  --| IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
                    | (Packet #1)
                --->| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                    | (Judgment #2)
              ----- IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Packet #2)
                      wait until receiving a liveness check
                   >| INFORMATIONAL request (HDR, SK {})
                    | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE_SA_INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 13. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request including properly formatted IKE Header containing following values:

Figure 35 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE SA Responder's SPI field is set to same as the IKE SA INIT response's

IKE_SA Responder's SPI field value.

- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to INFORMATIONAL (37).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to the value incremented the previous IKE message's Message ID by one.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 1: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL request including properly formatted Encrypted Payload containing following values:

Figure 36 Encrypted payload

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.

- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Possible Problems:

None

Group 3.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.3.2.1: Retransmission of INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly retransmits INFORMATIONAL request

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	
 	-> IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
	-> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Packet #2)
i	
Ì	* wait until receiving liveness check
[INFORMATIONAL TRANSPORT (UDD OV. (1))
	-> INFORMATIONAL request (HDR, SK {}) (Judgment #3)
l I	(Judyment #3)
	* wait for the event of a timeout
İ	
	-> INFORMATIONAL request (HDR, SK {})
	(Judgment #4) V
V	V
N: USE_TRANSPORT_M	ODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. TN1 waits for reception of IKE_AUTH response from the NUT.
- 6. TN1 waits for reception of INFROMATIONAL request for liveness check from the NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it. And the request has the same Message ID value as the Message ID value received at Step 7.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1						
(End-Node) (End-Node)							
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)						
>	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>						
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>						
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)</pre>						
	wait until receiving liveness check						
	<pre>INFORMATIONAL request (HDR, SK {}) (Judgment #3)</pre>						
	wait for the event of a timeout						
	<pre>INFORMATIONAL request (HDR, SK {}) (Judgment #4)</pre>						
<	INFORMATIONAL response (HDR, SK {}) (Packet #3)						
	wait for the event of a timeout						
X	<pre>never send INFORMATIONAL request (HDR, SK {}) (Judgment #5)</pre>						
j j V v							
N: USE_TRANSPORT_MODE							

Packet #2	See Common Packet #4
Packet #3	See Common Packet #18

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. TN1 waits for reception of IKE_AUTH response from the NUT.
- 6. TN1 transmits an Echo Request with invalid SPI.
- 7. Observe the messages transmitted on Link B.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of an INFORMATIONAL request from the NUT, TN1 responds with an INFORMATIONAL response to the NUT.
- 11. TN1 waits for the event of a timeout on NUT.
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it. And the request has the same Message ID value as the request received at Step 7.

Step 12: Judgment #5

The NUT never retransmits an INFORMATIONAL request which has the same Message ID value as the received Step 9.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Group 3.3. Non zero RESERVED fields

Test IKEv2.EN.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime and CHILD_SA Lifetime to more than twice as INFORMATIONAL message retransmission timer as.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(End-Node) (End-	
(Liid-Node) (Liid-	noue)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
j	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2)
<	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>
! !	(Packet #2)
	wait until receiving a liveness check
	wait until receiving a liveness check
>	INFORMATIONAL request (HDR, SK {})
j	(Judgment #3)
<	INFORMATIONAL response (HDR, SK {})
	(Packet #3)
	INFORMATIONAL request (HDR, SK {})
	(Judgment #3)
i	(
V	
N: USE_TRANSPORT_MODE	

1 0110111						
Packet #2	See Common Packet #4					
Packet #3	See Common Packet #18					
	All RESERVED fields are set to one.					

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 responds with an INFORMATIONAL response with no payload to the NUT. All RESERVED fields in the message are set to one.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT never retransmit an INFORMATIONAL request.

Possible Problems:

None

Group 3.4. Error Handling

Test IKEv2.EN.I.1.3.4.1: INVALID_SPI

Purpose:

To verify an IKEv2 device properly handles ESP packet with invalid SPI.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2					
Packet #2	See Common Packet #4					
Packet #3	See Common Packet #19					
	This packet has an invalid SPI value					
	(the properly netotiated value plus 1).					

Part A (ADVANCED)

1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms. The message's SPI is set to the value of the SPI negotiated in the initial exchange plus 1.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Notify payload of type INVALID_SPI. The Notify payload includes the SPI value which is transmitted at Step 6.

Possible Problems:

None.

Section 1.1.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.I.2.1.1.1: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: IKE Header Format (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.

8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

T OROM
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 37 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 38 Encrypted payload

- A Next Payload field is set to IDi Payload (35).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 39 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 40 AUTH Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

1 2 3 4 5 6 7 8 9 0 1 1						FORUM				
Next 44 10! 0 Length 40				1		2		3		
1		0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
1		+-+-+-+	+-+-	-+-+-+	+-+-+-+	+-+-+-+-+-+	-+-+-+-	+-+-+-+ -		
1		! Next	44	!0!	0	! Length	40	!		
Number 1		+-+-+-+	+-+-	-+-+-+	+-+-+-+	+-+-+-+-+-+-+	-+-+-+-	+-+-+-+ -		
Number 1		! 0)	!	0	! Length	36	!		1
SPI value		+-+-+-+								
SPI value		! Number	1	! Prot	ID 3	! SPI Size 4	! Trans	Cnt 3 !		
Transform +-++++++++++++++++++++++++++++++++++				-+-+-+	+-+-+-+	+-+-+-+-+-+	-+-+-+-	+-+-+-+	1	
Transform +-+		! SPI val	ue					!	!	!
Transform +-+		+-+-+-+	+-+-+·	-+-+-+-	+-+-+-+	+-+-+-+-+-+	-+-+-+-	.+-+-+-+	1	
! Type 1 (EN) !	T (!		•	-	!	1	
++++++++++++++++++++++++++++++++++	ranstorm									SA PayToad
! 3 ! 0 ! Length 8 !	I		` '					,	Proposai	
Transform +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+				-+-+-+			_	.+-+-+-+-	1	
! Type 3 (IN) ! 0 ! Transform ID 2 (SHA1) !	Transform			: -4-4-4-1	•	· ·	·	: .4.4.4.4.4	1	1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	Transform							(SHA1) I		1
! 0 ! 0 ! Length 8 !		+-+-+-+	+-+-+					` ,	i	i I
Transform +-+-+-+-+	1	! 0)	!	_		8	!	<u>'</u>	i
· · · · · · · · · · · · · · · · · · ·	Transform			-+-+-+-		•	-+-+-+-	.+-+-+-+	i	i
	i								i	i
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+		+-+-+-+	+-+-+	, -+-+-+-	+-+-+-+	+-+-+-+-+-+	-+-+-+-	.+-+-+-+ -	· 	

Figure 41 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 42 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 43 Proposal sub-structure format

Transform field is set to following (There are 3 Transform Structures).

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 44 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR 3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

Figure 45 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

· orrow							
1 2	3						
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1						
+-	+-+-+-+						
! TS Type !IP Protocol ID* Selector Length							
+-	+-+-+-+						
Start Port* End Port*	1						
+-	+-+-+-+						
!	!						
~ Starting Address* ~							
!	!						
+-							
!	!						
~ Ending Address*	~						
!	!						
+-							

Figure 46 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 47 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 48 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to Prefix Y.
- An Ending Address field is set to less than or equal to Prefix Y.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDi;
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

• Each of transforms can be located in the any order.

Test IKEv2.EN.I.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
(Ena-Node)	(SGW)	(1051)
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1 1	1	(Judgment #1)
<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	i	Packet #1)
l i	i	
	>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l ;	1	(Judgment #2)
1 .	-	, ,
<		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
!!	ļ.	(Packet #2)
	l	
<=====	=====+	IPsec {Echo Request}
1	1	(Packet #3)
======	=====+	> IPsec {Echo Reply}
	I	(Judgment #3)
	1	
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #20

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request and TN1 forwards an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Group 1.2. Requesting an Internal Address on a Remote Network

Test IKEv2.EN.I.2.1.2.1: Sending CFG_REQUEST

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Configuration Payload format

References:

• [RFC 4306] - Sections 3.15

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration
 In each part, configure NUT ad

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for

INTERNAL IP6 ADDRESS. The traffic selector must be configured by the following

table.

	Traffic Selector					
	Source			Destination		
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Configuration Payload containing following values:

	, ,	NOM		
	1	2	3	
01234567	8 9 0 1 2 3 4 5	5 6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1	
+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+	
! Next Payload	!C! RESERVED	! Payload Lengt	th!	
+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+	
! CFG Type	!	RESERVED	!	
+-+-+-+-+-+-	+-			
!			!	
~	Configuratio	on Attributes	~	
!			!	
+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+-+	

Figure 49 Configuration Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A CFG Type field is set to CFG_REQUEST (1).
- A RESERVED field is set to zero.

The following configuration attribute must be included in Configuration Attributes field.

Figure 50 Configuration Attributes format

Configuration Attribute #1

- Reserved field is set to zero.
- Attribute Type field is set to INTERNAL_IP6_ADDRESS (8).
- Length field is set to zero.
- Value field is empty.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Test IKEv2.EN.I.2.1.2.2: Receipt of CFG_REPLY

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic	Selector
Source	Destination

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
	1	
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1		(Judgment #1)
<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
1		(Packet #1)
1		
	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
1		CP(CFG_REQUEST), SAi2, TSi, TSr})
1		(Judgment #2)
<		IKE_AUTH Response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
		(Packet #2)
<=====	======+	IPsec {Echo Request (sent to NUT internal address)}
		(Packet #3)
======	=====+	> IPsec {Echo Reply (sent from NUT internal address)}
		(Judgment #3)
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Below
Packet #3	See Below

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as Common Packet #6				
UDP Header	Same as Common Packet #6				
IKEv2 Header	Same as Common Packet #6				
E Payload	Same as C	ommon Packet #6			
IDr Payload	Same as C	ommon Packet #6			
AUTH Payload	Next Payload	47 (CP)			
	Other fields are same as C	ommon Packet #6			
CP Payload	Next Payload	33 (SA)			
	Critical	0			
	Reserved	0			
	Payload Length	29			
	CFG Type	2 (CFG_REPLY)			
	RESERVED	0			
	Configuration Attributes	See below			
SA Payload	Same as Common Packet #6				
TSi Payload	Other fields are same as Common Packet #6				
	Traffic Selectors	See below			
TSr Payload	Same as Common Packet #6				

Configuration Attributes	Reserved	0
--------------------------	----------	---

Attribute Type	INTERNAL_IP6_ADDRESS	
Length	17	
Value	IPv6 address Prefix Y::1	
	Prefix-length	128

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y::1
	Ending Address	Prefix Y::1

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #20		
ESP	Same as Common Packet #20		
IPv6 Header	Source Address Prefyx Y::f		
	Destination Address	Prefix Y::1	
ICMPv6 Header	Same as Common Packet #20		

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to NUT internal address and TN1 forwards an Echo Request with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96. The inner packet is sent from NUT internal address.

Possible Problems:

• None.

Test IKEv2.EN.I.2.1.2.3: Non zero RESERVED fields in Configuration Payload

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector	
Source	Destination

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
	1	1
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1	(Judgment #1)
<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	1	(Packet #1)
	I	
	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
	I	CP(CFG_REQUEST), SAi2, TSi, TSr})
	I	(Judgment #2)
<		IKE_AUTH Response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	ļ	(Packet #2)
	1	
<======	======+	IPsec {Echo Request (sent to NUT internal address)}
!	I	(Packet #3)
=======	======+	> IPsec {Echo Reply (sent from NUT internal address)}
!	ļ.	(Judgment #3)
	1	<u>.</u>
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Below
Packet #3	See Below

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as C	ommon Packet #6	
UDP Header	Same as Common Packet #6		
IKEv2 Header	Same as C	ommon Packet #6	
E Payload	Same as C	ommon Packet #6	
IDr Payload	Same as C	ommon Packet #6	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as C	ommon Packet #6	
CP Payload	Next Payload	33 (SA)	
	Critical 0		
	Reserved 1		
	Payload Length 29		
	CFG Type 2 (CFG_REPLY)		
	RESERVED 1		
	Configuration Attributes See below		
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Configuration Attributes	Reserved	1
--------------------------	----------	---

Attribute Type	INTERNAL_IP6_ADDRESS	
Length	17	
Value	IPv6 address Prefix Y::1	
	Prefix-length	128

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y::1
	Ending Address	Prefix Y::1

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #20		
ESP	Same as Common Packet #20		
IPv6 Header	Source Address Prefyx Y::f		
	Destination Address	Prefix Y::1	
ICMPv6 Header	Same as Common Packet #20		

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to NUT internal address and TN1 forwards an Echo Request with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96. The inner packet is sent from NUT internal address.

Possible Problems:

• None.

Test IKEv2.EN.I.2.1.2.4: Receipt of IKE_AUTH response without CFG_REPLY

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4718] - Sections 6.8

Test Setup:

• Network Topology

Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector	
Source	Destination

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

N	UT TN	11
(End	-Node) (SC	W)
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Judgment #1)
	<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
		(Packet #1)
	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
		<pre>CP(CFG_REQUEST), SAi2, TSi, TSr})</pre>
		(Judgment #2)
	<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
		(Packet #2)
	<	INFORMATIONAL request (HDR, SK {})
		(Packet #3)
	>	INFORMATIONAL response (HDR, SK {})
		(Judgment #3)
,	V \	

Packet #1	See Common Packet #2	
Packet #2	See Below	
Packet #3	See Common Packet #17	

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as C	ommon Packet #6	
UDP Header	Same as Common Packet #6		
IKEv2 Header	Same as C	ommon Packet #6	
E Payload	Same as C	ommon Packet #6	
IDr Payload	Same as Common Packet #6		
AUTH Payload	Next Payload	33 (SA)	
	Other fields are same as C	ommon Packet #6	
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
Starting Addres		Prefix Y::1
	Ending Address	Prefix Y::1

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT. The message does not include any Configuration payloads.
- 6. TH1 transmits an INFORMATIONAL request with no payload to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

None.

Test IKEv2.EN.I.2.1.2.5: Receipt of unrecognized Configuration Attributes

Purpose:

To verify an IKEv2 device properly handles unrecognized Configuration Attributes.

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector	
Source	Destination

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(SGW)	
	>	KE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(,	Judgment #1)
<		KE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(1	Packet #1)
	>	KE_AUTH request (HDR, SK {IDi, AUTH,
	1	<pre>CP(CFG_REQUEST), SAi2, TSi, TSr})</pre>
	(.	Judgment #2)
<		KE_AUTH Response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	(1	Packet #2)
<	11	NFORMATIONAL request (HDR, SK {})
	(1	Packet #3)
	>	NFORMATIONAL response (HDR, SK {})
	(.	Judgment #3)
V	V	

Packet #1	See Common Packet #2	
Packet #2	See Below	
Packet #3	See Common Packet #17	

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as Common Packet #6		
UDP Header	Same as Common Packet #6		
IKEv2 Header	Same as C	ommon Packet #6	
E Payload	Same as C	ommon Packet #6	
IDr Payload	Same as C	ommon Packet #6	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as C	ommon Packet #6	
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	29	
	CFG Type	2 (CFG_REPLY)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Configuration Attributes	Reserved	0
	Attribute Type	32767

Length		17
Value	IPv6 address	Prefix Y::1
	Prefix-length	128

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address Prefit	
	Ending Address	Prefix Y::1

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT. The message includes a Configuration Attribute of unrecognized Attribute Type.
- 6. TH1 transmits an INFORMATIONAL request with no payload to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

• None.

Section 1.2. Responder

Section 1.2.1. Endpoint-to-Endpoint Transport

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.R.1.1.1.1: Sending IKE_SA_INIT response

Purpose:

To verify an IKEv2 device transmits an IKE_SA_INIT response using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted IKE Header containing following values:

Figure 51 Header format

- An IKE_SA Initiator's SPI field is set to IKE_SA Initiator's SPI field value supplied in the first IKE_SA_INIT request message.
- An IKE_SA Responder's SPI field is set to a 64-bits value chosen by the NUT. It MUST not be zero.
- A Next Payload field is set to SA Payload (33).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_SA_INIT (34).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to zero.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1		2	3		
	0 1 2 3	3 4 5 6	7 8 9 0	1234	567890123	45678901	1	
	! Next	34	!0!	0	! Length	44	!	
	-	0	!	0	+-+-+-+-+-+-+-+ ! Length	40	!	!
	! Number	1	! Prot	ID 1	+-+-+-+-+-+-+-+-+-+- ! SPI Size 0 !	Trans Cnt 4	1	
 	!	3	!	0	+-+-+-+-+-+-+-+ ! Length	8	!	
Transform	! Type	1 (EN)	!	0	+-+-+-+-+-+-+-+-+ ! Transform ID	3 (3DES)	! j	
 !	!	3	!	0	+-+-+-+-+-+-+-+ ! Length	8	!	
Transform	! Type	2 (PR)	!	0	+-+-+-+-+-+-+-+-+ ! Transform ID	2 (SHA1)	1	
1	!	3	!	0	+-+-+-+-+-+-+-+-+ ! Length	8	!	
Transform 	! Type	3 (IN)	!	0	+-+-+-+-+-+-+-+-+ ! Transform ID	2 (SHA1)	!	
1		0	·-+-+- !	0	+-+-+-+-+-+-+-+ ! Length	8	-+ !	
Transform	+-+-+- ! Type				+-+-+-+-+-+-+-+-+ ! Transform ID	2 (1024)	•	

Figure 52 SA Payload contents

The NUT transmits an IKE_SA_INIT response including properly formatted SA Payload containing following values (refer following figures):

Figure 53 SA Payload format

- A Next Payload field is set to KE Payload (34).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 54 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to IKE (1).
- A SPI Size field is set to zero.
- A # of Transforms field is set to 4.

A Transform field is set to following (There are 4 Transform Structures).

Figure 55 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR 3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field is set to PRF (2).
- A RESERVED field is set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #4

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field is set to D-H (4).
- A RESERVED field is set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted KE Payload containing following values:

Figure 56 KE Payload format

- A Next Payload field is set to Nonce Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field is set to Group2 (2).
- A RESERVED field is set to zero.
 - A Key Exchange Data field is set to Diffie-Hellman public value. The length of

the Key Exchange Data field must be equal to 1024bit.

• The length of the Key Exchange Data field must be equal to 1024bit.

Part D

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT response including properly formatted Nonce Payload containing following values:

Figure 57 Nonce Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
SA, KE, Nr,
[N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)],
CERTREQ+],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.EN.R.1.1.1.2: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits an IKE_AUHT response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
1	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
<u> </u>	(Judgment #2)
V	V
N: USE_TRANSP	PORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: Notify Payload Format (BASIC)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: SA Payload Format (BASIC)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 29. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

Figure 58 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

, one	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	3 9 0 1
+-	+-+-+-
! Next Payload !C! RESERVED ! Payload Length	!
+-	+-+-+-
! Initialization Vector	!
! (length is block size for encryption algorithm)	!
+-	+-+-+
~ Encrypted IKE Payloads	~
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	+-+-+
! Padding (0-255 octets)	!
+-+-+-+-+-+-+-+-+-+	+-+-+
! Pad Ler	ngth!
+-	+-+-+
~ Integrity Checksum Data	~
+-	+-+-+-+

Figure 59 Encrypted payload

- A Next Payload field is set to IDr Payload (36).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

	1	2	3
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+
! Next Payload	!C! RESERVED	! Payload Length	!
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-	+-+-+-+
! ID Type	!	RESERVED	1
+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-	+-+-+-+
!			!
~	Identificati	on Data	~
!			!
+-+-+-+-+-+-+	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+

Figure 60 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 61 AUTH Payload format

- A Next Payload field is set to Notify Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Notify Payload containing following values:

Figure 62 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT.
- A Protocol ID field is set to IKE_SA (1).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 24: Judgment #2

					FURUIN				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2 3	4567	8 9 0 1		
	+-+-+-+	+-+-+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+ -		
	! Next	. 44 	!0!	0	! Length	40			
		+-+-+)	-+-+-+- 	0	+-+-+-+-+-+-+-+- ! Length	36		. <u></u> . I	
	-	-	· -+-+-+-	-	+-+-+-+-+-+-+-		+-+-+-+	1	
	! Number	1			! SPI Size 4			i	İ
	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+	İ	Ì
	! SPI va	lue					!		
	- +-+-+	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+		
 		3 	!	0	! Length				
Transform	! Type			0	+-+-+-+-+-+-+- ! Transform ID	3	(3DES) !	Proposal	SA Payload
		` '			:		` ,		l İ
1		3	!	0	! Length	8	!		
Transform	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-	+-+-+-	+-+-+-+	j	j
	! Type :	3 (IN)	!	0	! Transform ID	2	(SHA1) !		
			-+-+-+		+-+-+-+-+-+-+-		+-+-+-+		
- ,	-	0	!	0	! Length	8	!		
Transform					+-+-+-+-+-+-+-+-		+-+-+-+ (No) !		
I	! Type !	•	•	0	! Transform ID +-+-+-+-	0	(No) !	I	1

Figure 63 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 64 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 65 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 66 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 67 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

7 01(0)		
1	2	3
012345678901234567	8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		-+-+-+
! TS Type !IP Protocol ID*	Selector Length	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		-+-+-+
Start Port*	End Port*	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+	-+-+-+
!		!
~ Starting Ad	ddress*	~
!		!
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+	-+-+-+
!		!
~ Ending Add	ess*	~
!		!
+-		-+-+-+

Figure 68 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to TN1 address.
- An Ending Address field is set to TN1 address.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 69 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

Traffic Selectors field is set to following.

Figure 70 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to NUT address.
- An Ending Address field is set to NUT address.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr,
[CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.EN.R.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles CHILD_SA negotiated by the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(End-Node) (End-	Node)
l 1 1	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i i	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i i	(Judgment #1)
l i i	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
l i i	(Packet #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
l i i	(Judgment #2)
l i i	
	IPsec {Echo Request}
l i i	(Packet #3)
	IPsec {Echo Reply}
l i i	(Judgment #3)
l v v	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.

6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 1.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits an IKE_SA_INIT response when the device received a retransmitted IKE_SA_INIT request.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #1	
	(The Message ID is the same as Packet #1)	

Part A: (BASIC)

- 1. TN starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. Observe the messages transmitted on Link A.
- 4. TN1 retransmits same IKE_SA_INIT request as the message transmitted in Step 1 to the

NUT.

5. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 3: Judgment #2

The NUT never retransmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Step 5: Judgment #3

The NUT transmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits an IKE_AUTH response when the device received a retransmitted IKE_AUTH request.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	
(Lilu-Noue) (I I
 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
j 	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
i X 	* wait until retrans timer expires IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #3)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
 	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #4)
l V	l V
N: USE_TRANSPORT_	MODE

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #3	
Packet #3	See Common Packet #3	
	(The Message ID is the same as Packet #1)	

Part A: (BASIC)

1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of an IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. Observe the messages transmitted on Link A.
- 6. TN1 retransmits the same IKE_AUTH request as the request transmitted in Step 3 to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 5: Judgment #3

The NUT never retransmits the same IKE_AUTH response as the response transmitted at Step 4.

Step 7: Judgment #4

The NUT transmits the same IKE_AUTH response as the response transmitted at Step 4.

Possible Problems:

None.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.R.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify that an IKEv2 device doesn't conclude that the other endpoint has faild by receiving ICMP Error messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TR1	TN1
(End-Node)	(Router)	(End-Node)
	1	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
		IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	- 	IPsec {Echo Request} (Packet #3) > IPsec {Echo Reply} (Judgment #3)
	 	Destination Unreachable (No route to destination) (Packet #4)
	 	IPsec {Echo Request} (Packet #5)
V	 	l V
N: USE_TRANSPO	JKI_MODE	

Packet #1	See Common Packet #1
-----------	----------------------

Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Packet #19

• Packet #4: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Туре	1
	Code	0

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Reply from NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify that an IKEv2 device doesn't conclude that the other endpoint has faild by receiving cryptographically unprotected IKE message.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
1 '	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
1 '	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
1 '	<pre>IPsec {Echo Request} (Packet #3)</pre>
	IPsec {Echo Reply} (Judgment #3)
	cryptographically unprotected IKE message (Packet #4)
1 '	<pre>IPsec {Echo Request} (Packet #5)</pre>
	IPsec {Echo Reply} (Judgment #4)
l I V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below

Packet #5 | See Common Packet #19

• Packet #4: cryptographicaly unprotected INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Reply from NUT, TN1 transmits a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID_ SPI to the NUT.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.EN.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT

Purpose:

To verify an IKEv2 device closes connections when receiving INITIAL_CONTACT.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 7.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT End-Node)	TN1 (End-Node)
1	(End Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
 	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 <	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
 	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 <	IPsec {Echo Request} (Packet #3)
 	> IPsec {Echo Reply} (Judgment #3)
 <	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #4)
 	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #4)
 <	IKE_AUTH request (HDR, SK {IDi, N(INITIAL_CONTACT), AUTH, N, SAi2, TSi, TSi (Packet #5)
 	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #5)
 <	IPsec {Echo Request} (old CHILD_SA) (Packet #6)
X	
 <	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (new CHILD_SA) (Packet #7)
j	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #7)
l V	l V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #1
Packet #5	See Common Packet #3
Packet #6	See Common Packet #19
	This packet is cryptographically
	protected by the CHILD_SA
	negotiated at Step 1 to Step 4.
Packet #7	See Common Packet #19
	This packet is cryptographically
	protected by the CHILD_SA
	negotiated at Step 7 to Step 10.

Part A: (ADVANCED)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Reply from NUT, TN1 transmits IKE_SA_INIT request to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH response with a Notify payload of type INITIAL CONTACT to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithm.
- 12. Observe the messages transmitted on Link A.
- 13. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithm.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #6

The NUT never transmits an Echo Reply using the first negotiated algorithms or the second negotiated algorithms.

Step 14: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.3.4: Receiving Liveness check

Purpose:

To verify that an IKEv2 device can respond to INFORMATIONAL request for liveness check.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	l1
(End-Node) (End-Node)	
i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
i	(Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Judgment #2) INFORMATIONAL request (HDR, SK {}) (Packet #3)
	INFORMATIONAL response (HDR, SK {}) (Judgment #3)
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an

INFORMATIONAL request with no payloads.

6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

• None

Test IKEv2.EN.R.1.1.3.5: Receiving Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device can respond to INFORMATIONAL request with a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	ind-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	-> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	-> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
<	INFORMATIONAL request (HDR, SK {D}) (Packet #3)
	-> INFORMATIONAL response (HDR, SK {}) (Judgment #3)
V V	V
N: USE_TRANSPORT_N	ODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE SA Responder's SPI	anv

	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of
		the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payloads.

Possible Problems:

• None

Test IKEv2.EN.R.1.1.3.6: Receiving Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device can respond to INFORMATIONAL request with a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	V1
(End-Node) (End	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
l i	(Judgment #2)
l i	
<	INFORMATIONAL request (HDR, SK {D})
	(Packet #3)
>	, , , , , , , , , , , , , , , , , , , ,
	(Judgment #3)
l v	V
N: USE_TRANSPORT_MOD	.

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE SA Responder's SPI	anv

		1 OKOM
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of
		the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the TN1's inbound SPI value to be deleted as SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Possible Problems:

None

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.EN.R.1.1.4.1: Receipt of a higher minor version number

Purpose:

To verify an IKEv2 device accepts a request with a higher minor version number and respond to the request.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(End-Node)	
	1	
<	IKE_SA	_INIT request (HDR, SAi1, KEi, Ni)
l i	(Packe	t #1)
	> IKE_SA	_INIT response (HDR, SAr1, KEr, Nr)
1	(Judgm	ent #1)
V	V	

Packet #1 S	See below
-------------	-----------

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1	
UDP Header	Same as the Common Packet #1	
IKEv2 Header	Other fields are same as the Common Packet #1	
	Major Version 2	
	Minor Version	1
SA Payload	Same as the Common Packet #1	
KE Payload	Same as the Common Packet #1	
Ni, Nr Payload	Same as the Common Packet #1	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request with a higher minor version number.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.2: Receipt of a higher major version number

Purpose:

To verify an IKEv2 device drops a request with a higher major version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
 <	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 < 	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 < 	INFORMATIONAL request (HDR, SK{}) (Packet #3)
X	No Response
 	> INFORMATIONAL response (HDR, SK{N(INVALID_MAJOR_VERSION)} (Judgment #3)
V	V
N: USE_TRANSPO	RT MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: INFORMATIONAL response packet

IPv6 Header	Same as the common pa	icket #17
UDP Header	Same as the common pa	icket #17
IKEv2 Header	Other fields are same as the common pa	cket #17
	Major Version	3
•	Minor Version	0

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with a higher major version number to the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type INVALID_MAJOR_VERSION containing following values:

Figure 71 Notify Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A SPI Size field is set to zero.
- A Notify Message Type field is set to INVALID MAJOR VERSION (5).
- A Notification Data field is set to the highest version number it supports (2).

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.3: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
               (End-Node)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
           ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
                   | (Packet #2)
             ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
                   | (Judgment #2)
           -----| CREATE_CHILD_SA request (HDR, SK {P, N, N+, SA, Ni, TSi, TSr})
                   | (Packet #3)
               --->| CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
                   | (Judgment #3)
P: Payload with an invalid payload type
N: REKEY SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same a	as Common Packet #13 Payload
UDP Header	All fields are same a	as Common Packet #13 Payload
IKEv2 Header	All fields are same a	as Common Packet #13 Payload
E Dayload	Next Payload	Invalid navlaad tyne value

T OTTOM		
	Other fields ar	e same as Common Packet #13
Invalid Payload	Next Payoad	41 (N)
	Critical	0
	Reserved	0
	Payload Length	4
N Payload	All fields are same a	as Common Packet #13 Payload
N Payload	All fields are same a	as Common Packet #13 Payload
SA Payload	All fields are same a	as Common Packet #13 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #13 Payload
TSi Paylaod	All fields are same a	as Common Packet #13 Payload
TSr Payload	All fields are same a	as Common Packet #13 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE CHILD SA request including a payload with invalid payload

type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.4.4: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device drops invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

WEy2 on the NUT is disabled after.

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1	
(End-Node) (End-	-Node)	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
l i i	(Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
l i	(Judgment #1)	
l i	(g	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})	
	(Packet #2)	
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Judgment #2)	
1 :	(Judgillett #2)	
	CDEATE CHILD CA request (UDD CV (D N N, CA N; TC; TC+))	
	CREATE_CHILD_SA request (HDR, SK {P, N, N+, SA, Ni, TSi, TSr})	
	(Packet #3)	
X	No Response	
!!!	01	
>	CREATE_CHILD_SA response (HDR, SK {N(UNSUPPORTED_CRITICAL_PAYLOAD)})	
	(Judgment #3)	
\ \		
P: Payload with an invalid payload type		
N: REKEY_SA		
N+: USE_TRANSPORT_MOD	DE Company of the com	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same as Common Packet #13 Payload
UDP Header	All fields are same as Common Packet #13 Payload

IKEv2 Header	All fields are same a	as Common Packet #13 Payload
E Payload	Next Payload	Invalid payload type value
	Other fields ar	e same as Common Packet #13
Invalid Payload	Next Payoad	41 (N)
	Critical	1
	Reserved	0
	Payload Length	4
N Payload	All fields are same a	as Common Packet #13 Payload
N Payload	All fields are same a	as Common Packet #13 Payload
SA Payload	All fields are same a	as Common Packet #13 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #13 Payload
TSi Paylaod	All fields are same a	as Common Packet #13 Payload
TSr Payload	All fields are same a	as Common Packet #13 Payload

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 1 and the pointed pyaload's Critical bit is set.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 32 and the pointed pyaload's Critical bit is set.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 49 and the pointed pyaload's Critical bit is set.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.

- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 255 and the pointed pyaload's Critical bit is set.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an CREATE_CHILD_SA response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (1).

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT doest not transmit any packets or transmits an CREATE_CHILD_SA response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (32).

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT doest not transmit any packets or transmits an CREATE_CHILD_SA response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (49).

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT doest not transmit any packets or transmits an CREATE_CHILD_SA response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (255).

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.5: Invalid Order Payloads

Purpose:

To verify an IKEv2 device properly handles IKE message with invalid order payloads.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	KEi payload and Ni payload replace each other.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.EN.R.1.1.5.1: Cookies

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response with a Notify payload of type COOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #2)
 !	> IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #1)
 < 	 IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Packet #3)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #2) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #1
Packet #3	See below

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)

	i ditam
Next Payload	33 (SA)
Critical	0
Reserved	0
Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
	Same as the common packet #1
	Same as the common packet #1
	Same as the common packet #1
	Critical Reserved Payload Length Protocol ID SPI Size Notify Message Type

Part A: Notify payload of type Cookie Format (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE with the cookie data supplied by NUT
- 5. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response including a IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE containing following values:.

Figure 72 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A SPI Size field is set to zero.
- A Notify Message Type field is set to COOKIE (16390).
- A Notification Data field is set to the cookie data.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.5.2: Invalid Cookies

Purpose:

To verify an IKEv2 device handles IKE_SA_INIT request with an invalid cookie data.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	V1
(End-Node) (End-	-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #2)
>	 IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #1)
<	IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Packet #3)
>	IKE_SA_INIT response (HDR, N(COOKIE"))
V	(Judgment #2) /

Packet #1	See Common Packet #1
Packet #2	See Common Packet #1
Packet #3	See below

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0

		7 6716111
	Notify Message Type	COOKIE (16390)
	Notification Data	The difference value than COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE with a cookie data unexpected by NUT.
- 5. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response including an IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response including an IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE with a new cookie data.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device handles interaction of COOKIE and INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
  NUT
                  TN1
(End-Node)
               (End-Node)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Packet #1)
                 | ...
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #2)
           ---->| IKE_SA_INIT response (HDR, N(COOKIE))
                  | (Judgment #1)
           ----- | IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni)
                  | (Packet #3)
               --->| IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD))
                   | (Judgment #2)
          -----| IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni)
                  | (Packet #4)
           "1---->| IKE_SA_INIT response (HDR, N(COOKIE'))
                 or
         --*2---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #3)
   *1) If the NUT send IKE_SA_INIT response (HDR, N(COOKIE')), go to Sequence #2.
   *2) If the NUT send IKE_SA_INIT response (HDR, SAr1, KEr, Nr), go to Sequence #3.
   Otherwise, this test is failed.
Sequence #2:
  NUT
                  TN1
(End-Node)
               (End-Node)
                 -- | IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni)
                 | (Packet #5)
         ----->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #4)
   Go to Sequence #3.
Sequence #3:
  NUT
                  TN1
(End-Node)
               (End-Node)
                 --| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                 | (Packet #6)
                -->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                 | (Judgment #5)
N: USE_TRANSPORT_MODE
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See below
Packet #5	See below
Packet #6	See Common Packet #3

• Packet #1: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	on packet #1
UDP Header	Same as the commo	on packet #1
IKEv2 Header	Same as the commo	on packet #1
SA Payload	Same as the commo	on packet #1
KE Payload	Other fields are same as the commo	on packet #1
	DH Group #	14
Ni, Nr Payload	Same as the commo	on packet #1

• Packet #2: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	n packet #1
UDP Header	Same as the commo	n packet #1
IKEv2 Header	Same as the commo	n packet #1
SA Payload	Same as the commo	n packet #1
KE Payload	Other fields are same as the commo	n packet #1
	DH Group #	14
Ni, Nr Payload	Same as the commo	n packet #1

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet #1	
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload	Other fields are same as the common packet #1	
	DH Group #	14
Ni, Nr Payload		Same as the common packet #1

• Packet #4: IKE_SA_INIT request packet

	1	
IPv6 Header	Same as the common packet #1	
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

• Packet #5: IKE_SA_INIT request packet

IPv6 Header	Same as the common packet #1
UDP Header	Same as the common packet #1

		1 OKOM
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT. The IKE_SA_INIT requests include an invalid KE payload which has different .DH Group # from proposing DH Group #.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT still has an invalid KE payload.
- 5. Observe the messages transmitted on Link A.
- 6. After reception of IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD, TN1 transmits an IKE_SA_INIT request with a valid KE payload.
- 7. Observe the messages transmitted on Link A.
- 8. If the IKE_SA_INIT response includes a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT request has a valid KE payload.
 - A) Observe the messages transmitted on Link A
- 9. TN1 transmits an IKE_AUTH request.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type INVALID_KE_PAYLOAD.

Step 7: Judgment #3

The NUT transmits an IKE_SA_INIT response. The message can contain zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE. The message can containding "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8A: Judgment #4

The message can containding "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Initiator

Purpose:

To verify an IKEv2 device handles interaction of COOKIE and INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TI	l1
(End-Node) (End-	Node)
į	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)</pre>
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #2)
'	<pre>IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #1)</pre>
	<pre>IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Packet #3)</pre>
	IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD)) (Judgment #2)
'	<pre>IKE_SA_INIT request (HDR, SAi1, KEi , Ni) (Packet #4)</pre>
	<pre>IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #3)</pre>
'	<pre>IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KE i, Ni) (Packet #5)</pre>
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #4)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #6)</pre>
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #5)
V	1
N: USE_TRANSPORT_MODE	

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #1
Packet #5	See below
Packet #6	See Common Packet #3

• Packet #1: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	n packet #1
UDP Header	Same as the commo	n packet #1
IKEv2 Header	Same as the commo	n packet #1
SA Payload	Same as the commo	n packet #1
KE Payload	Other fields are same as the commo	n packet #1
	DH Group #	14
Ni, Nr Payload	Same as the commo	n packet #1

• Packet #2: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	on packet #1
UDP Header	Same as the commo	n packet #1
IKEv2 Header	Same as the commo	n packet #1
SA Payload	Same as the commo	n packet #1
KE Payload	Other fields are same as the commo	n packet #1
	DH Group #	14
Ni, Nr Payload	Same as the commo	n packet #1

• Packet #3: IKE_SA_INIT request packet

Same as the common packet #1	
Same as the common packet #1	
	Other fields are same as the common packet #1
Next Payload	41 (N)
Next Payload	33 (SA)
Critical	0
Reserved	0
Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
Same as the common packet #1	
Other fields are same as the common packet #1	
DH Group #	14
	Same as the common packet #1
	Next Payload Critical Reserved Payload Length Protocol ID SPI Size Notify Message Type Notification Data

• Packet #4: IKE_SA_INIT request packet

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	Next Payload 41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	Any	
	Protocol ID	0	
	SPI Size	0	

	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

• Packet #5: IKE_SA_INIT request packet

IPv6 Header	Same as the common packet #1	
UDP Header	Same as the common packet #1	
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT. The IKE_SA_INIT requests include an invalid KE payload which has different .DH Group # from proposing DH Group #.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT still has an invalid KE payload.
- 5. Observe the messages transmitted on Link A.
- 6. After reception of IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD, TN1 transmits an IKE_SA_INIT request with a valid KE payload.
- 7. Observe the messages transmitted on Link A.
- 8. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT still has a valid KE payload.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transtmits an IKE_AUTH request.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type INVALID_KE_PAYLOAD.

Step 7: Judgment #3

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 9: Judgment #4

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 11: Judgment #5

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

None.

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.EN.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles various algorithms for IKE_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part E, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
j	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i	i , ,
V	V
N: USE_TRANSF	PORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3

Packet #1: IKE_SA_INIT requet

Packet #1 is same as Common Packet #1 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Length		8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part B:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Length		8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		13 (AES_CTR)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part C:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (AES128_XCBC)

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

indir Oilli.		
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	5 (AES_XCBC_96)

Part E:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

٠,	distroit.		
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: PRF PRF_AES128_CBC (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: D-H Group Group 14 (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 20. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CTR", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_AES_XCBC_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part G

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles various algorithms for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

From part A to part F, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	Extended Sequence Numbers	
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part B	Part B ENCR_AES_CTR AUTH_HMAC_SHA1_96		No Extended Sequence Numbers	
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part D			No Extended Sequence Numbers	
Part E			No Extended Sequence Numbers	
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers	

Procedure:

```
TN1
  NUT
(End-Node)
                (End-Node)
                    | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                    | (Packet #1)
                  ->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Judgment #1)
             ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                    | (Packet #2)
             ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Judgment #2)
             -----| IPsec {Echo Request}
                     (Packet #3)
                --->| IPsec {Echo Reply}
                   | (Judgment #3)
                   ٧
N: USE_TRANSPORT_MODE
```


Packet #2	See below
Packet #3	See Common Packet #19

Packet #3: IKE_SA_INIT requet

Packet #3 is same as Common Packet #3 except SA Transform proposed in each test.

Part A

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

Transmon.	<u> </u>			
SA Transform	Next Payload	3 (more)		
	Reserved	0		
	Transform Lengt	8		
	Transform Type	1 (ENCR)		
	Reserved	0		
	Transform ID		12 (AES_CBC)	
	SA Attribute Attribute Type		14 (Key Length)	
		Attribute Value	128	

Part B:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	8	
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID		13 (AES_CTR)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part C:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	11 (ENCR_NULL)

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

-	1311 0111.				
	SA Transform Next Payload		3 (more)		
		Reserved	0		
		Transform Length	8		
		Transform Type	3 (INTEG)		
		Reserved	0		
		Transform ID	5 (AES_XCBC_96)		

Part E:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	0 (NONE)

SA Transform of Tranform Type ESN is replaced by the following SA Transfrom.

Transitoin.		
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	1 (Extended Sequence Numbers)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 24. Observe the messages transmitted on Link A.

Part E: Integrity Algorithm NONE (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.

- 28. Observe the messages transmitted on Link A.
- 29. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 30. Observe the messages transmitted on Link A.

Part F: Extended Sequence Numbers (ADVANCED)

- 31. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 32. Observe the messages transmitted on Link A.
- 33. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 36. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CTR", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_NULL", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH AES XCBC 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "Extended Sequence Numbers" as accepted algorithms.

Step 38: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an multiple transforms.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(End-Node)	
<	IKE_SA	_INIT request (HDR, SAi1, KEi, Ni)
	(Packe	t #1)
	> IKE_SA	_INIT response (HDR, SAr1, KEr, Nr)
	(Judgm	ent #1)
V	V	

Packet #1	See below
-----------	-----------

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1	
UDP Header	Same as the Common Packet #1	
IKEv2 Header	Same as the Common Packet #1	
SA Payload	Other fields are same as the common packet #1	
	SA Proposals	See SA Table below

KE Payload	Same as the Common Packet #1
Ni, Nr Payload	Same as the Common Packet #1

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	n	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	5	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
		SA Transform	Transform ID	2 (HMAC_SHA1)
			Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.

8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with multiple proposals.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT (End-Node)	TN1 (End-Node)	
 < 	 IKE_SA_INIT request (HDR, SAi1, (Packet #1)	KEi, Ni)
 	> IKE_SA_INIT response (HDR, SAr1 (Judgment #1) V	, KEr, Nr)

Packet #1	See below
-----------	-----------

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the proposals as follows:

	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
rart A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Fart B	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Fart C	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
rart D	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1
UDP Header	Same as the Common Packet #1
IKEv2 Header	Same as the Common Packet #1
SA Payload	Other fields are same as the common packet #1

	SA Proposals	See SA Table below		
KE Payload	Same as the Common F			
Ni, Nr Payload	Sam	e as the Common Packet #1		

Proposal #1	SA Proposal	Next Payload		2 (more)
Proposal #1	SA Proposal	Reserved		2 (more) 0
		Proposal Length		44
	Proposal #		1	
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms		5
		SA Transform	T	
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8 1 (ENOD)
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
	SA Drangasi		Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		44
		Proposal #		2
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transform	I	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload Reserved	0 (last)

1 01(011)				
	Transform Length	8		
	Transform Type	4 (D-H)		
	Reserved	0		
	Transform ID	2 (1024 MODP Group)		

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles an IKE_AUTH request with multiple transforms.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
 < 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	` <u>´</u>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
> 	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)</pre>
V V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See below

From part A to part C, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms				
	Encryption	Encryption Integrity			
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN		
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN		
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN		

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3		
UDP Header	Same as the Common Packet #3		
IKEv2 Header	Same as the Common Packet #3		
E Payload	Same as the Common Packet #3		
IDi Payload	Same as the Common Packet #3		
AUTH Payload	Same as the Common Packet #3		
N Payload	Same as the Common Packet #3		
SA Payload	Other fields are same as the Common Packet #3		
	SA Proposals See below		
TSi Payload	Same as the Common Packet #3		
TSr Payload	Same as the Common Packet #3		

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles an IKE_AUTH request with multiple proposals.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	nd-Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1) -> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2) -> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i	(Judgment #2)
V	V
N: USE_TRANSPORT_M	ODE

Packet #1 See Common Packet #1

Packet #2 See below

TN1 transmits an IKE_AUTH request including a SA payload which contains the two proposals as follows:

	IKE_AUTH exchanges Algorithms				
Proposal Protocol ID			Encryption	Encryption Integrity	
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part A	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
Falt D	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
rart C	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

IPv6 Header	Same as the Common Packet #3	
UDP Header	Same as the Common Packet #3	
IKEv2 Header	Same as the Common Packet #3	
E Payload	Same as the Common Packet #3	
IDi Payload	Same as the Common Packet #3	
AUTH Payload	Same as the Common Packet #3	
N Payload	Same as the Common Packet #3	
SA Payload	Other fields are same as the Common Packet #3	
	SA Proposals See below	
TSi Payload	Same as the Common Packet #3	
TSr Payload	Same as the Common Packet #3	

Proposal #1	SA Proposal	Next Payload		2 (more)
		Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
		SA Transform	Reserved	3 (more) 0
				8
			Transform Length	_
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengtl	n	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	5	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC SHA1 96)
		SA Transform	Next Payload	0 (last)
		5,	Reserved	0
	1	ı	110301700	ı

	1 01(011)	
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.6.7: Sending INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles an invalid KE payload which has different D-H Group # from proposed D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. Enable PFS.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request for rekeying CHILD_SA

*D 0 11 1	0 11 0 D 1 1 1140
IPv6 Header	Same as the Common Packet #13

UDP Header	Same as the Com	mon Packet #13	
IKEv2 Header	Same as the Common Packet #13		
E Payload	Same as the Com	mon Packet #13	
N Payload	Same as the Com	mon Packet #13	
N Payload	Same as the Com	mon Packet #13	
SA Payload	Same as the Com	mon Packet #13	
Ni, Nr Payload	Other fields are same as the Com	mon Packet #13	
	Next Payload	34 (KE)	
KEi Payload	Next Payload	44 (TSi)	
	Critical	0	
	Reserved C		
	Payload Length	264	
	DH Group #	14	
	Reserved 0		
	Key Exchange Data	any	
TSi Payload	Same as the Common Packet #13		
TSr Payload	Same as the Common Packet #13		

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA contains a D-H Group transform to use D-H Group 2 and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchage Data.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits any packets or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles an invalid KE payload which has different D-H Group # from proposed D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #2	See Common packet #1

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Commo	n Packet #1	
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Same as the Commo	n Packet #1	
SA Payload	Same as the Commo	n Packet #1	
KEi Payload	Next Payload	40 (Ni, Nr)	
	Critical	0	
	Reserved	0	
	Payload Length	264	
	DH Group #	14	
	Reserved	0	
	Key Exchange Data any		
Ni, Nr Payload	Same as the Common Packet #1		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload which contains a D-H Group transform proposes using D-H Group 2 and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchange Data.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data. The message's IKE_SA Responder's SPI value is set to zero.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify that an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
  NUT
(End-Node)
               (End-Node)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
              ----> | IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                   | (Packet #2)
                   | IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Judgment #2)
          ----- INFORMATIONAL request (HDR, SK {})
                   | (Packet #3)
            ---->| INFORMATIONAL response (HDR, SK {})
                   | (Judgment #3)
                   ٧
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	
Packet #3	See Common Packet #17

Packet #2: IKE_AUTH requet

Packet #2 is same as Common Packet #3 except SA Transform proposed in each test.

Part A

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	th	8
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID	12 (AES_CBC)	
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request with unacceptable SA proposal for the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

Step 4
 The NUT can transmits an IKE_AUTH response with a Notify payload of type NO PROPOSAL CHOSEN.

Group 1.7. Traffic Selector Negotiation

Test IKEv2.EN.R.1.1.7.1: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
	Source				Destination	
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FOROM
NUT TN	1
(End-Node) (End-No	de)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> 	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)</pre>
	IPsec {TCP SYN} (Packet #3)
	Psec {TCP RST} (Judgment #3)
	<pre>IPsec {ICMPv6 Echo Request} (Packet #4)</pre>
	IPsec {ICMPv6 Echo Reply}
i i	(Judgment #4)
l v v	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the Common Packet #	
	Traffic Selectors See below	
TSr Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535

Starting Address	NUT's Global Address on Link A
Ending Address	NUT's Global Address on Link A

• Packet #3: TCP SYN packet

r	1	_
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of the entire message
TCP Header	Source Port	500
	Destination Port	500
	Flags	SYN (0x02)

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow only TCP (6) as IP Protocol.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.7.2: TS_UNACCEPTABLE

Purpose:

To verify an IKEv2 device properly handles the Traffice Selector.

References:

• [RFC 4306] - Sections 2.8 and 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
	Source				Destination	
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
               (End-Node)
                 -- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
               ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
         ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                  | (Packet #2)
            ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                   | (Judgment #2)
          -----| CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSr})
                   | (Packet #3)
                   | CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, KEr, TSi, TSr})
               --->| CREATE_CHILD_SA response (HDR, SK {N(TS_UNACCEPTABLE)})
                   | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Pack	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7
UDP Header	Same as the	Common Packet #7
IKEv2 Header	Same as the	Common Packet #7
E Payload	Same as the	Common Packet #7
N Payload	Same as the	Common Packet #7
SA Payload	Same as the	Common Packet #7
Ni, Nr Payload	Same as the	Common Packet #7
TSi Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #7	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A

	Ending Address	NUT's Global Address on Link A	

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request including ICMPv6 (58) as IP Protocol ID value in Traffic Selector Payload to create new CHILD_SA.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type TS_UNACCEPTABLE.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.7.3: Narrowing Traffic Selectors from multiple Traffic Selector

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

- [RFC4306] Section 2.8
- [RFC4718] Section 4.10

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector					
		Source			Destination		
	Address	Address Next Layer Port		Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range	
Inbound	TN1	TCP	ANY	NUT	TCP	ANY	
Outbound	NUT	TCP	ANY	TN1	TCP	ANY	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

		TOROW
NUT	TN1	
(End-Node)	(End-Noc	de)
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!		(Judgment #1)
!	ļ	
<		IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
!	!	(Packet #2)
	>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
		(Judgment #2)
	l I	IPsec {TCP SYN}
		(Packet #3)
		IPsec {TCP RST}
		(Judgment #3)
l ;	i	(dudgmont no)
		<pre>IPsec {ICMPv6 Echo Request}</pre>
l i	i	(Packet #4)
i	х і	IPsec {ICMPv6 Echo Reply}
l i	į	(Judgment #4)
i	į	
V	V	
N: USE_TRANS	PORT_MODE	
·	·	·

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X

Ending Address TN1's Global Add

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X	
	Destination Address	NUT's Global Address on Link A	
ESP	Security Parameter Index	curity Parameter Index CHILD_SA's SPI value used by this mess	
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.	
	Payload Data	Subsequent data encrypted by underlying encryption algorithm	
	Padding	Any value which to be a multiple of the encryption block size	
	Pad Length	The length of the Padding field	
	Next Header	6 (TCP)	
	Integrity Check Value	The cryptographic checksum of the entire message	
TCP Header	Source Port	500	
	Destination Port	500	
	Flags	SYN (0x02)	

Part A (BASIC)

- 1. TN1 sends an IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_AUTH request to the NUT. The message includes two Traffice Selectors. One is set to 6 (TCP) as IP Protocol. Another is set to 58 (IPV6-ICMP).
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector Payload has one Traffic Selector with IP Protocol 6 (TCP) to narrow the proposed Traffic Selectors.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Group 1.8. Error Handling

Test IKEv2.EN.R.1.1.8.1: INVALID_IKE_SPI

Purpose:

To verify an IKEv2 device properly handles IKE messages outside the context of IKE_SA.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
(End-Node)
                (End-Node)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                  ->| IKE_SA_INIT response (HDR, SAr2, KEr, Nr)
                    | (Judgment #1)
               ----| IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
                     (Packet #2)
                 --->| IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
                    | (Judgment #2)
             ----- CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
                    | CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
                  ->| CREATE_CHILD_SA response (HDR, SK {N(INVALID_IKE_SPI)})
                    | (Judgment #3)
N: REKEY_SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request (Part A)

IPv6 Header	Same as the Common Packet #13
-------------	-------------------------------

UDP Header		Same as the Common Packet #13
IKEv2 Header	Other fields are same as the Common Packet #13	
	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message plus 1
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
E Payload		Same as the Common Packet #13
N Payload		Same as the Common Packet #13
N Payload		Same as the Common Packet #13
SA Payload		Same as the Common Packet #13
Ni, Nr Payload		Same as the Common Packet #13
TSi Payload		Same as the Common Packet #13
TSr Payload		Same as the Common Packet #13

• Packet #3: CREATE_CHILD_SA request (Part A)

IPv6 Header		Same as the Common Packet #13	
UDP Header	Same as the Common Packet #13		
IKEv2 Header		Other fields are same as the Common Packet #13	
	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message	
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message plus 1	
E Payload		Same as the Common Packet #13	
N Payload		Same as the Common Packet #13	
N Payload		Same as the Common Packet #13	
SA Payload		Same as the Common Packet #13	
Ni, Nr Payload		Same as the Common Packet #13	
TSi Payload		Same as the Common Packet #13	
TSr Payload		Same as the Common Packet #13	

Part A: Different IKE_SA Initiator's SPI (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which contains different IKE_SA Initiator's SPI value from IKE_SA Initiator's SPI value in the IKE_AUTH request in Step 3.
- 6. Observe the messages transmitted on Link A.

Part B: Different IKE_SA Responder's SPI (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which contains different IKE_SA Responder's SPI value from IKE_SA Responder's SPI value in the IKE_AUTH request in Step 4.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits any packets or may transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_IKE_SPI.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT does not transmits any packets or may transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_IKE_SPI.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.8.2: INVALID_SYNTAX

Purpose:

To verify an IKEv2 device properly handles IKE message with an invalid syntax.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
(End-Node)
                (End-Node)
                  -- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                --->| IKE_SA_INIT response (HDR, SAr2, KEr, Nr)
                    | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
                   | (Packet #2)
                  ->| IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
                    | (Judgment #2)
                ---- CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr})
                    | (Packet #3)
                    | CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr})
                  ->| CREATE_CHILD_SA response (HDR, SK {N(INVALID_SYNTAX)})
                   | (Judgment #3)
N: REKEY_SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13
UDP Header	Same as the Common Packet #13
IKEv2 Header	Same as the Common Packet #13
E Payload	Same as the Common Packet #13
N Payload	Same as the Common Packet #13

N Payload	Same as the Com	mon Packet #13
SA Payload	Same as the Common Packet #13	
Ni, Nr Payload	Other fields are same as the com	mon packet #13
	Payload Length 4	
	Nonce Data empty	
TSi Payload	Same as the Com	mon Packet #13
TSr Payload	Same as the Com	mon Packet #13

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which has no data as Nonce Data as Ni payload.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_SYNTAX.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.8.3: INVALID_SELECTORS

Purpose:

To verify an IKEv2 device properly handles an ESP or AH packet whose selectors do not match those of the CHILD_SA.

References:

- [RFC 4306] Sections 3.10.1
- [RFC 4307] Sections 7.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	Traffic Selector					
	Source				Destination	
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (En	d-Node)
<	- IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Judgment #2)
<	- IPsec {Echo Request}
	(Packet #3)
	> INFORMATIONAL request (HDR, SK {N(INVALID_SELECTORS)}
	(Judgment #3)
V	V
N: USE_TRANSPORT_MO	DE

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as the above table to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATIONAL request with a Notify of type INVALID SELECTORS.

Possible Problems:

Group 1.10. Authentication of the IKE_SA

Test IKEv2.EN.R.1.1.10.1: Sending Certificate Payload

Purpose:

To verify an IKEv2 device handles a CERTREQ payload and transmits a CERT payload propoerly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Remote	X.509 Certificate - Signature

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3
UDP Header	Same as the Common Packet #3
IKEv2 Header	Same as the Common Packet #3
F Payload	Same as the Common Packet #3

IDi Payload	Next Payload	38 (CERTREQ)
	Oter fields are same as the Common Packet #3	
CERTREQ Payload	See below	
AUTH Payload	Same as the Common Packet #3	
N Payload	Same as the Common Packet #3	
SA Payload	Same as the Common Packet #3	
TSi Payload	Same as the Common Packet #3	
TSr Payload	Same as the Common Packet #3	

CERTREQ Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response with a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

Test IKEv2.EN.R.1.1.10.2: Sending Certificate Request Payload

Purpose:

To verify an IKEv2 device properly transmits CERTREQ payload.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.EN.R.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
                (End-Node)
                  -- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
              ----> | IKE_SA_INIT response (HDR, SAr1, KEr, Nr, CERTREQ)
                   | (Judgment #1)
         ----- IKE_AUTH request (HDR, SK {IDi, CERT, AUTH, N, SAi2, TSi, TSr})
                   | (Packet #2)
           ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                   | (Judgment #2)
               ----| IPsec {Echo Request}
                   | (Packet #3)
                  ->| IPsec {Echo Reply}
                   | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1	
Packet #2	See below	
Packet #3	See Common Packet #19	

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3	
UDP Header	Same as the Common Packet #3	

1 0110111			
IKEv2 Header	Same as the Common Packet #3		
E Payload	Same as the Common Packet #3		
IDi Payload	Next Payload 37 (CERT)		
	Oter fields are same as the Common Packet		
CERT Payload	See below		
AUTH Payload	Same as the Common Packet #3		
N Payload	Same as the Common Packet #3		
SA Payload	Same as the Common Packet #3		
TSi Payload	Same as the Common Packet #3		
TSr Payload	Same as the Common Packet #3		

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	any

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERT payload to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Key Value
Loca	ıl	Oxabadcafeabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #2	See Common Packet #3

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Group 1.11 Invalid Values

Test IKEv2.EN.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	All RESERVED fields are set to one.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
	All RESERVED fields are set to one.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	Version bit is set to one.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Version bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.4: Response bit is set

Purpose:

To verify an IKEv2 device ignores an IKE request message whose Response bit is set.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1			
	Response bit is set to one.			

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Response bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never responds with an IKE_SA_INIT response to an IKE_SA_INIT request from the TN1.

Possible Problems:

Test IKEv2.EN.R.1.1.11.5: Unrecognized Notify Message Type

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type in IKE messages.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 S	See below
-------------	-----------

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are sa	me as Common Packet #1				
UDP Header	All fields are same as Common Packet #1					
IKEv2 Header	All fields are sa	me as Common Packet #1				
SA Payload	All fields are sa	me as Common Packet #1				
KE Payload	All fields are sa	me as Common Packet #1				
Ni, Nr paylaod	Next Payload 41 (Notify)					
	Other fields are same as Common Packet #1					
N Payload	Next Payload	0				
	Critical	0				
	Reserved 0					
	Payload Length 8					
	Procotol ID 0					
	SPI Size	0				
	Notify Message Type	See each part description.				

Part A: Unrecognized Notify Message Type of error 16383 (BASIC)

1. TN starts to negotiate with NUT by sending IKE_SA_INIT request with a Notify payload of unrecognized Notify Message Type value.

2. Observe the messages transmitted on Link A.

Part B: Unrecognized Notify Message Type of status 65535 (BASIC)

- 3. TN starts to negotiate with NUT by sending IKE_SA_INIT request with a Notify payload of unrecognized Notify Message Type value.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.EN.R.1.2.1.1: Receipt of CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits a CREATE_CHILD_SA response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.3 and 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)</pre>
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)</pre>
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #3)
V	
N: REKEY_SA N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE CHILD SA request to the NUT to rekey CHILD SAs.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE CHILD SA request to the NUT to rekey CHILD SAs.
- 12. Observe the messages transmitted on Link A.

Part D: Notify Payload (USE_TRANSPORT_MODE) Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 18. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE CHILD SA request to the NUT to rekey CHILD SAs.
- 24. Observe the messages transmitted on Link A.

Part F: Nonce Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.
- 29. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 30. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 31. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 32. Observe the messages transmitted on Link A.

- 33. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 36. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 37. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link A.
- 39. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 40. Observe the messages transmitted on Link A.
- 41. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 42. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted IKE Header containing following values:

Figure 73 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).

- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to CREATE_CHILD_SA (36).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Encrypted Payload containing following values:

Figure 74 Encrypted payload

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire

message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Notify Payload containing following values:

Figure 75 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT_MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

			1		2		3		
	0 1 2 3	3 4 5 6	7 8 9 0	1 2 3	4 5 6 7 8 9 0 1 2	3 4 5 6	7 8 9 0 1		
	+-+-+- ! Next	44	+-+-+- !0!	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 40	-+-+-+-+ - !		
	+-+-+-		+-+-+-		-+-+-+-+-+-+		-+-+-+-+		į
	!	0 ·+-+-+-	! +-+-+-+-	0 +-+-+-	! Length -+-+-+-+-+	36 -+-+-+	.+-+-+-+	 	
	! Number		! Prot		! SPI Size 4			İ	i
	+-+-+-+- ! SPI va		+-+-+-	+-+-+-+	-+-+-+-+-+-+-+	-+-+-+	-+-+-+-+ !	 	
	- +-+-+-	+-+-+-	+-+-+-	+-+-+-+	-+-+-+-+-+-+	-+-+-+	-+-+-+-+	İ	İ
 Transform		3	! 	0	! Length -+-+-+-+-+	8	!		 SA Payload
	! Type					3		Proposal	
 I	- +-+-+-+- !	·+-+-+ 3	+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 8	-+-+-+-+ !	 	
Transform	+-+-+-		+-+-+-	+-+-+-+	-+-+-+-+-+-+	-+-+-+	-+-+-+-+	İ	i
I	! Type	` '			! Transform ID		(SHA1) !		
 I		0	+-+- !	0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 8	-+-+-+-+ !		
Transform				+-+-+-+	-+-+-+-+-+-+-+	-+-+-+		İ	İ
	! Type	5 (ESN	۱)!	0	! Transform ID	0	(No) !		

Figure 76 SA Payload contents

The NUT transmits a CREATE_CHILD_SA response including properly formatted SA Payload containing following values (refer following figures):

Figure 77 SA Payload format

- A Next Payload field is set to Nr Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 78 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 79 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Nonce Payload containing following values:

Figure 80 Nonce Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part F

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 34: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 36: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSi Payload containing following values:

Figure 81 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 82 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.

- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to TN1 address.
- A Ending Address field is set to TN1 address.

Part G

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted lgorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 42: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSr Payload containing following values:

Figure 83 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

7 01(0)		
1	2	3
012345678901234567	8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-		
! TS Type !IP Protocol ID*	Selector Length	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		-+-+-+
Start Port*	End Port*	
+-		
!		!
~ Starting Address*		~
!		!
+-		
!		!
~ Ending Address*		~
!		!
+-		

Figure 84 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to NUT address.
- An Ending Address field is set to NUT address.

Possible Problems:

• CREATE_CHILD_SA response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Nr, [KEr], TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)]
```

• Each of transforms can be located in the any order.

Group 2.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.2.2.1: Receipt of retransmitted CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
- In each part, configure the devices according to the Common Configuration.
 Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
į į	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> 	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
i i	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)
> 	CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #3)
'	<pre>wait until retrans timer expires CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #4)</pre>
 < 	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #4)
>	CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #5)
V V	
N: REKEY_SA N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13
Packet #4	See Common Packet #13

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 retransmits the same message as a CREATE_CHILD_SA request transmitted in Step 5 to the NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #4

The NUT never retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 9: Judgment #5

The NUT retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

Group 2.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TI	
(End-Node) (End-	Node)
j	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 < 	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 <	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
>	CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr}) (Judgment #3)
 <	INFORMATIONAL request (HDR, SK {D}) (Packet #4)
>	INFORMATIONAL request (HDR, SK {D}) (Judgment #4)
,	
N: USE_TRANSPORT_MODE	<u> </u>

Packet #1	See Common Packet #1
Packet #2	See Common below
Packet #3	See Common below
Packet #4	See Common below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7
UDP Header	Same as the	Common Packet #7
IKEv2 Header	Same as the	Common Packet #7
E Payload	Same as the	Common Packet #7
N Payload	Same as the	Common Packet #7
SA Payload	Same as the	Common Packet #7
Ni, Nr Payload	Same as the	Common Packet #7
TSi Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A

	Ending Address NUT's Global Ad	dress on Link A
--	--------------------------------	-----------------

Packet #4: INFORMATIONAL request

T		
IPv6 Header		Same as the Common Packet #17
UDP Header		Same as the Common Packet #17
IKEv2 Header		Same as the Common Packet #17
E Payload		Other fields are same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	16
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	2
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange
		SPI negotiated by CREATE_CHILD_SA exchange

Part A: (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to establish a new CHILD_SA to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with a Delete payload including the first negotiated CHILD_SA's inbound SPI and the second negotiated CHILD_SA's inbound SPI.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 8: Judgment #4

The NUT transmits an INFORMATIONAL response with delete payload for SPIs which are negotiated by Initial Exchange and CREATE_CHILD_SA exchange.

Possible Problems:

• INFORMATIONAL response from NUT may not contain Delete Payload by implementation policy. This behavior is defined at section 1.4 in RFC 4306 as an

exception.

Group 2.4. Cryptographic Algorithm Negotiation

Test IKEv2.EN.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA request with an unacceptable SA payload.

References:

- [RFC 4306] Sections 2.7 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

NUT TN	14
-	
(End-Node) (End-	·Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
l i i	(Packet #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
l i	(Judgment #2)
l i i	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
l i i	(Packet #3)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	or
	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)})
	(Judgment #3)
	(Juaymont #J)
\ \ \	
N. DEKEY CA	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	JE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13
UDP Header	Same as the Common Packet #13
IKEv2 Header	Same as the Common Packet #13
E Payload	Same as the Common Packet #13
N Payload	Same as the Common Packet #13
N Payload	Same as the Common Packet #13
SA Payload	Other fields are same as the Common Packet #13
	SA Proposals See below
Ni, Nr Payload	Same as the Common Packet #13
TSi Payload	Same as the Common Packet #13
TSr Payload	Same as the Common Packet #13

Proposal #1	SA Proposal	Next Payload	0 (last)	
		Reserved Proposal Length		0
				36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	12 (AES_CBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	5 (AES_XCBC_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	1 (ESN)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmit a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

None.

Group 2.5. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.5.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA and INFORMATIONAL Excannges to delete old CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	1
(End-Node) (End-I	Node)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
i i	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})</pre>
	(Judgment #2) IPsec {Echo Request}
>	(Packet #3) IPsec {Echo Reply} (Judgment #3)
į į	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #4)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #4)
1	INFORMATIONAL request (HDR, SK {D}) (Packet #5) INFORMATIONAL response (HDR, SK {D})
	(Judgment #5)
N: REKEY_SA N+: USE TRANSPORT MODI	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17		
UDP Header	Same as the Common Packet #17		
IKEv2 Header		Same as the Common Packet #17	
E Payload	Other fields ar	e same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved 0		
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Possible Problems:

Test IKEv2.EN.R.1.2.5.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly handle old CHILD_SA and new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	l1
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
·	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)</pre>
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)
	IPsec {Echo Request} (Packet #3)
>	iPsec {Echo Reply} (Judgment #3)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #4)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #4)
	INFORMATIONAL request (HDR, SK {D}) (Packet #5)
	INFORMATIONAL response (HDR, SK {D}) (Judgment #5)
	IPsec {Echo Request} (new SA) (Packet #6)
	IPsec {Echo Reply} (new SA) (Judgment #6)
v v	, , ,
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
	(CHILD_SA is negotiated by steps 1 through 4.)
Packet #4	See Common Packet #13
Packet #5	See below
Packet #6	See Common Packet #19
	(CHILD_SA is negotiated by steps 7 through 8.)

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17		
UDP Header	Same as the Common Packet #17		
IKEv2 Header		Same as the Common Packet #17	
E Payload	Other fields ar	re same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved		
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Step 12: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the newly negotiated algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.3: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	
(Lina Node) (Lina	nouc)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i i	(Packet #1)
j>j	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i i	(Judgment #1)
<	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})</pre>
	(Packet #2)
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})</pre>
	(Judgment #2)
<	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
! !	(Packet #3)
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Judgment #3)
V	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

From part A to part C, TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the transforms as follows:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES	AUTH HMAC SHA1 96	No ESN
	ENCR_AES_CBC	AUTI_IIWIAC_SIIAI_50	NO ESIN

Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13			
UDP Header	Same as the Common Packet #13			
IKEv2 Header	Same as the	Common Packet #13		
E Payload	Same as the	e Common Packet #13		
IDi Payload	Same as the	e Common Packet #13		
AUTH Payload	Same as the Common Packet #13			
N Payload	Same as the Common Packet #13			
N Payload	Same as the Common Packet #13			
SA Payload	Other fields are same as the	Common Packet #13		
	SA Proposals	See below		
TSi Payload	Same as the Common Packet #13			
TSr Payload	Same as the Common Packet #13			

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE CHILD SA response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.4: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
. '	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Packet #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
l i i	(Judgment #2)
l i i	
<	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Packet #3)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Judgment #3)
\ \ \ \	
N: REKEY_SA	
_	AC
N+: USE_TRANSPORT_MOD	'L

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	CREATE_CH	CREATE_CHILD_SA exchanges Algorithms					
	Proposal	Protocol ID	Encryption	Integrity	ESN		
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN		
rait A	Proposal #2	ESD	ENCR 3DES	AUTH HMAC SHA1 96	No ESN		

Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
rart	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13			
UDP Header	Same as the Common Packet #13			
IKEv2 Header	Same as the	Common Packet #13		
E Payload	Same as the	e Common Packet #13		
IDi Payload	Same as the	e Common Packet #13		
AUTH Payload	Same as the	Common Packet #13		
N Payload	Same as the	e Common Packet #13		
N Payload	Same as the	e Common Packet #13		
SA Payload	Other fields are same as the	Common Packet #13		
	SA Proposals	See below		
TSi Payload	Same as the	e Common Packet #13		
TSr Payload	Same as the Common Packet #13			

Proposal #1	SA Proposal	Next Payload		2 (more)
T Topoda #1	o, triopodui	Reserved		0
		Proposal Lengt	h	40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	2	4
		SPI	,	Any
		SA Transform	Next Payload	3 (more)
		, , , , , , , , , , , , , , , , , , ,	Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
		G/ 1 1 minor of 1111	Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)

ı		1		TO.	
A	R	F	1		
	Ų	OP	III	,	

	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.5: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA exchange when Perfect Forward Secrecy enabels.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. Enable
 PFS
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN			
(End-Node) (End-	-Node)		
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)		
j>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)		
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)		
j>	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)		
	IPsec {Echo Request} (Packet #3)		
	iPsec {Echo Reply} (Judgment #3)		
·	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr}) (Packet #4)		
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr}) (Judgment #4)		
	INFORMATIONAL request (HDR, SK {D}) (Packet #5)		
j>	INFORMATIONAL response (HDR, SK {D}) (Judgment #5)		
	IPsec {Echo Request} (new SA) (Packet #6)		
j>	IPsec {Echo Reply} (new SA) (Judgment #6)		
V			
N: REKEY_SA	_		
+: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
	(CHILD_SA is negotiated by steps 1 through 4.)
Packet #4	See below
Packet #5	See below
Packet #6	See Common Packet #19
	(CHILD_SA is negotiated by steps 7 through 8.)

• Packet #4: CREATE_CHILD_SA response

IPv6 Header	Same as the Common F	Packet #13
UDP Header	Same as the Common F	Packet #13
IKEv2 Header	Same as the Common F	Packet #13
E Payload	Same as the Common F	Packet #13
N Payload	Same as the Common F	Packet #13
N Payload	Same as the Common F	Packet #13
SA Payload	Same as the Common F	Packet #13
Ni Payload	Next Payload	34 (KE)
KEi Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	136

	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi Payload	Same as the Common F	Packet #13
TSr Payload	Same as the Common F	Packet #13

• Packet #5: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17
UDP Header	Same as the Common Packet #17	
IKEv2 Header		Same as the Common Packet #17
E Payload	Other fields ar	re same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Step 12: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the newly negotiated algorithms.

Possible Problems:

• none

Test IKEv2.EN.R.1.2.5.6: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handle old CHILD_SA and new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
- Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
'	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
'	(Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Judgment #2)
	IPsec {Echo Request}
'	(Packet #3)
'	IPsec {Echo Reply}
	(Judgment #3)
	(Judgillette #0)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
'	(Packet #4)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Judgment #4)
l i i	
<	<pre>IPsec {Echo Request} (old CHILD_SA)</pre>
	(Packet #5)
>	<pre>IPsec {Echo Reply} (old CHILD_SA)</pre>
	(Judgment #5)
V V	
N: REKEY_SA	_
N+: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
	(CHILD SA is negotiated by steps 1 through 4.)

Packet #4	See Common Packet #13
Packet #5	See Common Packet #19
	(CHILD_SA is negotiated by steps 1 through 4.)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the first negotiated algorithms.

Possible Problems:

Group 2.6. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.6.1: Sending CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA Excahnge to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN1	
(End-Node) (End-N	lode)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
l i i	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
l i i	(Packet #2)
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>
	(Judgment #2)
l i i	
<	IPsec {Echo Request}
l i i	(Packet #3)
>	IPsec {Echo Reply}
l i i	(Judgment #3)
l i i	
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
l i i	(Packet #4)
	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
l i i	(Judgment #4)
l i i	
V V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA's initiator's SPI value.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.R.1.2.6.2: Receipt of cryptographically valid message on the old SA

Purpose:

To verify an IKEv2 device properly uses old IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	IPsec {Echo Request} (Packet #3)
	> IPsec {Echo Reply} (Judgment #3)
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)
i	INFORMATIONAL request (HDR, SK {}) (old IKE_SA) (Packet #5)
	> INFORMATIONAL response (HDR, SK {}) (old IKE_SA) (Judgment #5)
N: USE_TRANSPO	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Packet #4	See Common Packet #11
	See Common Packet #17
Packet #5	(CHILD_SA is negotiated by steps 1 through 4.)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with no payloads protected by the old IKE SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads protected by the old IKE_SA.

Possible Problems:

Test IKEv2.EN.R.1.2.6.3: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly uses new IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	1	
(End-Node) (End-	Node)	
i i	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>	
i i	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>	
	(Judgment #2) IPsec {Echo Request}	
· '	(Packet #3) IPsec {Echo Reply} (Judgment #3)	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)	
. '	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)	
į į	INFORMATIONAL request (HDR, SK {}) (Packet #5)	
	INFORMATIONAL response (HDR, SK {}) (Judgment #5)	
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Packet #4	See Common Packet #11
Packet #5	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE SA and the Message ID field in the IKE header is zero.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

Test IKEv2.EN.R.1.2.6.4: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.8 and 5.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	11		
(End-Node) (End-	Node)		
>	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>		
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>		
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)		
· '	<pre>IPsec {Echo Request} (Packet #3)</pre>		
	<pre>IPsec {Echo Reply} (Judgment #3)</pre>		
	<pre>CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)</pre>		
	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)		
l '	<pre>INFORMATIONAL request (HDR, SK {D}) (Packet #5)</pre>		
	<pre>INFORMATIONAL response (HDR, SK {}) (Judgment #5)</pre>		
· '	<pre>IPsec {Echo Request} (Packet #6)</pre>		
l '	<pre>IPsec {Echo Reply} (Judgment #6)</pre>		
N: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See below
Packet #6	See Common Packet #19

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17	
IKEv2 Header	Same as the Common Packet #17	
E Payload	Other fields are same as the Common Packet #17	
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	16
	Procotol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index(es) (SPI)	empty

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with a Delete payload which has 1 (IKE_SA) in the Protocol ID field, zero in the SPI Size field and zero in the # of SPIs field.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

none.

Test IKEv2.EN.R.1.2.6.5: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transform to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

N	UT TN	1
(End	-Node) (End-	Node)
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
	> 	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
	> 	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	< 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
	 > 	CREATE_CHILD_SA response (HDR, SK {SA, Nr }) (Judgment #3)
,	V V	(Gadgiiott, 110)
N: U	SE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms						
	Encryption PRF		Integrity	D-H Group			
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			

Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 Group 2

• Packet #3 CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11		
UDP Header	Same as the Common Packet #11		
IKEv2 Header	Same as the Common Packet #11		
SA Payload	Other fields are same as the common packet #11		
	SA Proposals See SA Table below		
Ni, Nr Payload	Same as the Common Packet #11		

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	S	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
		G/ Transform	Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)
			l .	

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.

6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithm (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2"as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.EN.R.1.2.6.6: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TI	11
(End-Node) (End-	Node)
j	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
j	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 < 	<pre>CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)</pre>
> V	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3)
N: USE_TRANSPORT_MODE	<u>:</u>

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	IKE_SA_INIT e	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group	
Dort A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	

Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Dort D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part D	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11			
UDP Header	Same as the Common Packet #11			
IKEv2 Header	Same as the Common Packet #11			
SA Payload	Other fields are same as the common packet #11			
	SA Proposals See SA Table below			
Ni, Nr Payload	Same as the Common Packet #11			

Proposal #1	SA Proposal	Next Payload		2 (more)
1		Reserved		0
		Proposal Lengt	n	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	n	44
		Proposal #		2
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)

				100
	0		4	
(I		()	J	
	F	OR	ШM	

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	2 (HMAC_SHA1)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Rnadom Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE CHILD SA request including a Notify Payload of type

REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.EN.R.1.2.6.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly uses new IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration. Configure the devices according to the Common Configuration except for *Italic* parameters.

		IKE_SA Rekeying Algorithms			
		Encryption	PRF	Integrity	D-H Group
Ī	Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	nd-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
ļ	(Packet #1)
	-> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	-> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i	(Judgment #2)
i	
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
1	(Packet #3)
	-> CREATE_CHILD_SA response (HDR, SK {SA, Nr})
	(Judgment #3)
!	
<	INFORMATIONAL request (HDR, SK {})
	(Packet #4)
	-> INFORMATIONAL response (HDR, SK {})
l V	(Judgment #4) V
V	Y
N: USE_TRANSPORT_M	ODE

Packet #1	See Common Packet #1
-----------	----------------------

Packet #2	See Common Packet #3		
Packet #3	Seebelow		
Packet #4	See Common Packet #17		

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

anon on.		
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 8: Judgment #4

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

none

Test IKEv2.EN.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles D-H transform NONE when rekeying the IKE_SA.

References:

• [RFC 4718] - Sections 5.12

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
i i	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
į į	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i i	(Judgment #2) CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3) CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #3)
V V N: USE_TRANSPORT_MODE	
I W. OOL_INANOFORI_WODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	Seebelow

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	0 (NONE)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value. The message proposes D-H transform NONE.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

none

Group 2.7. Creating new CHILD_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.7.1: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to create a new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	11	
(End-Node) (End-	Node)	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Judgment #1)	
	HVE AUTH TOTAL (HDD CV (LD: AUTH N. CA:O TC: TC-))	
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>	
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})	
	(Judgment #2)	
l ; ;	(0009::0:11: :::2)	
<	IPsec {TCP-SYN}	
l i i	(Packet #3)	
>	IPsec {TCP-RST}	
	(Judgment #3)	
	IPsec {Echo Request}	
1	(Packet #4)	
	IPsec {Echo Reply}	
	(Judgment #4)	
	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})	
1	(Packet #5)	
	CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr})	
1	(Judgment #5)	
į i		
	IPsec {TCP-SYN}	
	(Packet #6)	
	IPsec {TCP-RST}	
	(Judgment #6)	
	IPsec {Echo Request}	
· '	(Packet #7)	
	IPsec {Echo Reply}	
1	(Judgment #7)	
l i i		
, v		
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3
UDP Header	Same as the Common Packet #3
IKEv2 Header	Same as the Common Packet #3
E Payload	Same as the Common Packet #3
IDi Payload	Same as the Common Packet #3
AUTH Payload	Same as the Common Packet #3
N Payload	Same as the Common Packet #3
SA Payload	Same as the Common Packet #3

TSi Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link A
		Ending Address	TN1's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link X
		Ending Address	NUT's Global Address on Link X

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

• Packet #5: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7
UDP Header	Same as the	Common Packet #7
IKEv2 Header	Same as the	Common Packet #7
E Payload	Same as the	Common Packet #7
IDi Payload	Same as the	Common Packet #7
AUTH Payload	Same as the	Common Packet #7
N Payload	Same as the	Common Packet #7
SA Payload	Same as the	Common Packet #7
TSi Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload Traffic Selector TS Type	8 (IPV6_ADDR_RANGE)
--	---------------------

1 0110111			
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #6: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 14: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 2.8. Error Handling

Test IKEv2.EN.R.1.2.8.1: AUTHENTICATION_FAILED

Purpose:

To verify an IKEv2 device properly handles AUTHENTICATION_FAILED message.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	nd-Node)
l ` l	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Packet #1)
j	-> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	(Judgment #1)
l i	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
l i	(Packet #2)
X	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
ĺ	or
	-> IKE_AUTH response (HDR, N(AUTHENTICATION_FAILED))
ĺ	(Judgment #2)
V	V
N: USE_TRANSPORT_M	ODE
i I V	(Judgment #2)

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2 (Part A): IKE_AUTH request

IPv6 Header	Same as the C	ommon Packet #3
UDP Header	Same as the C	ommon Packet #3
IKEv2 Header	Same as the C	ommon Packet #3
E Payload	Same as the C	ommon Packet #3
IDi Payload	Same as the C	ommon Packet #3
AUTH Payload	Other fields are same as the C	ommon Packet #3
	Payload Length	8

	Auth Method	2 (SK_MIC)
	Authentication Data	empty
N Payload	Same as the C	ommon Packet #3
SA Payload	Same as the C	ommon Packet #3
TSi Payload	Same as the C	ommon Packet #3
TSr Payload	Same as the C	ommon Packet #3

• Packet #2 (Part B): IKE_AUTH request

IPv6 Header		Same as the Common Packet #3
UDP Header	Same as the Common Packet #3	
IKEv2 Header	Same as the Common Packet #3	
E Payload	Same as the Common Packet #3	
IDi Payload	Same as the Common Packet #3	
AUTH Payload	Other field	ds are same as the Common Packet #3
	Payload Length	28
	Auth Method	1 (RSA_DS)
	Authentication Data	Same data as the common packet #3
		(caluculated by using SK_MIC)
N Payload		Same as the Common Packet #3
SA Payload	Same as the Common Packet #3	
TSi Payload		Same as the Common Packet #3
TSr Payload		Same as the Common Packet #3

Part A Invalid Authentication Data (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request which has an invalid Authentication Data in AUTH payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B Invalid Auth method (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request which has an invalid Auth Method in AUTH payload to the NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT does not transmit an IKE_AUTH response or transmits an IKE_AUTH response with Notify payload of type AUTHENTICATION_FAILED without encryption to the TN1.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT does not transmit an IKE_AUTH response or transmits an IKE_AUTH response with Notify payload of type AUTHENTICATION_FAILED without encryption to the TN1.

Possible Problems:

• None.

Group 2.9. Non zero RESERVED fields

Test IKEv2.EN.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(End-Node) (End-	Node)
 < 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> 	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 < 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)</pre>
> 	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
<	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #3)
V	
N: REKEY_SA	
_	
N+: USE_TRANSPORT_MOD	ΣΕ

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13
	All RESERVED fields are set to one.

Part A: (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

none

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.EN.R.1.3.1.1: Sending INFORMATIONAL response

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2, 1.4, 3.1 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
(End-Node)
                (End-Node)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                    | (Packet #1)
                   >| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Judgment #1)
              ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                    | (Packet #2)
           ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Judgment #2)
           ----- INFORMATIONAL request (HDR, SK { })
                   | (Packet #3)
              ---->| INFORMATIONAL response (HDR, SK { })
                   | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17

Part A: IKE Header Format (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT_SA Response from the NUT, TN1 transmits an IKE AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT_SA Response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted IKE Header containing following values:

Figure 85 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.

- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to INFORMATIONAL (37).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted Encrypted Payload containing following values:

Figure 86 Encrypted payload

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.

• An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Possible Problems:

• None.

Group 3.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly handles the retransmission.

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	ΓN1
(End-Node) (En	d-Node)
į į	 - IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) - IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
i i	(Judgment #1) - IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2) > IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	 - INFORMATIONAL request (HDR, SK { }) (Packet #3)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #3)
	* wait until retrans timer expires > INFORMATIONAL response (HDR, SK { }) (Judgment #4)
	INFORMATIONAL request (HDR, SK { }) (Packet #4)
	INFORMATIONAL response (HDR, SK { }) (Judgment #5)
l V	l V
N: USE_TRANSPORT_MO	DE

Packet #1	See Common Packet #1
-----------	----------------------

Packet #2	See Common Packet #3
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17
	(same Message ID as packet #3)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request with no payloads. The Message ID is the same as step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 7: Judgment #4

The NUT never retransmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #5

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

none

Group 3.3. Non zero RESERVED fields

Test IKEv2.EN.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1 (End-Node) (End-Node)
(Packet #1)
(Packet #1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(Judgment #1)
<pre> < IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}</pre>
(Packet #2)
IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr
(Judgment #2)
< INFORMATIONAL request (HDR, SK {})
(Packet #3)
ÎNFORMATIONAL response (HDR, SK {})
(Judgment #3)
, v
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17
	All RESERVED fields are set to one.

Part A: (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads. All RESERVED fields in the message are set to one.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Section 1.2.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.R.2.1.1.1: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUTH response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: IKE Header Format (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (ADVANCED)

- 5. TN1 transmits an IKE_SA_INIT request to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an IKE_SA_INIT request to NUT.

8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (ADVANCED)

- 9. TN1 transmits an IKE SA INIT request to NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an IKE_SA_INIT request to NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (ADVANCED)

- 13. TN1 transmits an IKE SA INIT request to NUT.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 transmits an IKE SA INIT request to NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (ADVANCED)

- 17. TN1 transmits an IKE_SA_INIT request to NUT.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 transmits an IKE_SA_INIT request to NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (ADVANCED)

- 21. TN1 transmits an IKE_SA_INIT request to NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits an IKE_SA_INIT request to NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (ADVANCED)

- 25. TN1 transmits an IKE_SA_INIT request to NUT.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 transmits an IKE_SA_INIT request to NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

T OROM
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 87 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 88 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm.
- An Encrypted IKE Payloads field set to encrypted IKE Payloads
- A Padding field set to any value which to be a multiple of the encryption block size.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. The checksum must be valid.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 89 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 90 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

			1	2		3		
	0 1 2 3 4	5 6 7 8 9	0 1 2 3	4 5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+-	+-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-+-	+-+-+	+-+-+-+ -		
	! Next 4	14 !0!	0	! Length	40	!		
	+-+-+-+-	+-+-+-+-	+-+-+-+		+-+-+	+-+-+-+ -		
	! 0	!	0	! Length	36	!		
	+-+-+-+-	+-+-+-+-		+-+-+-+-+-+-+-		+-+-+-+	1	
	! Number	1 ! Pr	ot ID 3	B ! SPI Size 4	! Trans	Cnt 3 !	1	
	+-+-+-+-		+-+-+-+	+-+-+-+-+-+-+-	+-+-+	+-+-+-+	1	
	! SPI value	Э				!	1	
	+-+-+-+-	+-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-	+-+-+	+-+-+-+	1	
- 1	! 3	!	0	! Length	8	!	1	
Transform	+-+-+-+-	+-+-+-+-			+-+-+	+-+-+-+	1	SA Payload
	! Type 1	(EN) !	0	! Transform ID	3	(3DES) !	Proposal	!
	+-+-+-+-	+-+-+-+-				+-+-+-+	1	1
_ !	! 3	!	0	! Length	8	!	1	1
Transform							1	
	! Type 3	(IN) !	0	! Transform ID	2	(SHA1) !	ļ	ļ
	+-+-+-+-+	+-+-+-+-				+-+-+-+	1	1
	! 0	!	0	! Length	8	!	1	1
Transform	+-+-+-+-	+-+-+-+-		+-+-+-+-+-+-+-+		+-+-+-+	İ	ļ
	! Type 5	(ESN)!	0	! Transform ID	0	(No) !	1	1
	+-+-+-+-	+-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-+-	+-+-+-	+-+-+-+ -		

Figure 91 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 92 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 93 Proposal sub-structure format

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

		ONON		
	1		2	3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4	5 6 7	8 9 0 1 2 3 4 5 6	78901
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-		+-+-+-+-+
! 0 (last) or 3 !	RESERVED	!	Transform Len	gth !
+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-	+-+-+-+-+
!Transform Type !	RESERVED	!	Transform I	D !
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-		+-+-+-+-+
!				!
~	Transfo	rm Attı	ributes	~
!				!
+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-		+-+-+-+-+

Figure 94 Transform sub-structure format

- A 0 or 3 field set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).
- A 0 or 3 field set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).
- A 0 or 3 field set to zero.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

	1	2	3
0123456789	0 1 2 3 4 5 6	$7\ 8\ 9\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7$	8 9 0 1
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+	+-+-+
! Next Payload !C!	RESERVED !	Payload Length	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-		+-+-+
! Number of TSs !	F	RESERVED	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+	+-+-+
!			!
~	<traffic se<="" td=""><td>electors></td><td>~</td></traffic>	electors>	~
!			!
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-	+-+-+

Figure 95 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 96 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to NUT address.
- A Ending Address field set to NUT address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 97 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 98 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to TN1 address.
- An Ending Address field set to TN1 address.

Possible Problems:

• None.

Test IKEv2.EN.R.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #20

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT response to NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH1 transmits an Echo Request and TN1 forwards an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Section 2. Security Gateway Section 2.1. Initiator

Section 2.1.1. Security Gateway to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.I.1.1.1.1: Sending IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted IKE Header containing following values:

Figure 99 Header format

- An IKE_SA Initiator's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- An IKE_SA Responder's SPI field set to zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_SA_INIT (34).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to zero.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1	2		3		
0 1 2 3	3 4 5 6	6 7 8 9	0 1 2 3	4 5 6 7 8 9 0 1	2 3 4 5 6	7 8 9 0 1		
! Next	34	!0!	0	! Length	44			
!	0	!	0	! Length	40	!		
+-+-+-+ !	-+-+-+ 3	·+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+- ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
!	3	!	0	! Length	8	!	 	 SA Payload
						(SHA1) !	Proposal 	
!	3	!	0	! Length	8	!	 	
						(SHA1) !	 	
+-+-+-+ !	-+-+-+ 0	-+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
	+-+-++ ! Next +-+-++ ! Numbe ++-+ ! Type ++- ! Type + ! Type + ! Type + ! Type	! Next 34 +-+	! Next 34 !0! !	! Next 34 !0! 0 +-+	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ! Next 34 !0! 0 ! Length 44 ! ! O ! 0 ! Length 40 ! ! Number 1 ! Prot ID 1 ! SPI Size 0 ! Trans Cnt 4 ! ! 3 ! 0 ! Length 8 ! ! Type 1 (EN)! 0 ! Transform ID 3 (3DES)! ! Type 2 (PR)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)!	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Next

Figure 100 SA Payload contents

The NUT transmits an IKE_SA_INIT request including properly formatted SA Payload containing following values (refer following figures):

Figure 101 SA Payload format

- A Next Payload field set to KE Payload (34).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 102 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field set to IKE (1).
- A SPI Size field set to zero.
- A # of Transforms field set to 4.

A Transform field set to following (There are 4 Transform Structures).

Figure 103 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR 3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field set to PRF (2).
- A RESERVED field set to zero.
- A Transform ID set to PRF HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #4

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field set to D-H (4).
- A RESERVED field set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted KE Payload containing following values:

Figure 104 KE Payload format

- A Next Payload field set to Nonce Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field set to Group2 (2).
- A RESERVED field set to zero.
- A Key Exchange Data field set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted Nonce Payload containing following values:

Figure 105 Nonce Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT request has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(COOKIE)],
SA, KE, Ni,
[N(NAT_DETECTION_SOURCE_IP)+,
N(NAT_DETECTION_DESTINATION_IP)],
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.

Test IKEv2.SGW.I.1.1.1.2: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

Figure 106 Header format

Initiator's SPI field value.

- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 107 Encrypted payload

- A Next Payload field set to IDi Payload (35).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum

must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 108 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

	1	2	3
0 1 2 3 4 5 6 7 8	3 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-	-+-+-+
! Next Payload !(! RESERVED !	Payload Length	!
+-+-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-+-+-+-	-+-+-+
! Auth Method !		RESERVED	!
+-+-+-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-+-+	-+-+-+
!			!
~	Authentica	ition Data	~
!			!
+-+-+-+-+-+-	+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-+-+-+	-+-+-+

Figure 109 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

Figure 110 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 111 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 112 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 113 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

	7 0110	****	
	1	2	3
0123456789	9 0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+
! Next Payload !C!	RESERVED!	Payload Length	!
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+
! Number of TSs !	F	RESERVED	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+
!			!
~	<traffic se<="" td=""><td>electors></td><td>~</td></traffic>	electors>	~
!			!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+

Figure 114 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 115 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 116 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 117 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- An Ending Address field set to less than or equal to Prefix Y.

Possible Problems:

• IKE_AUTH request has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload

may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Test IKEv2.SGW.I.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	ļ	1	L LIVE CA INIT TOTAL (LIDD, CA:4, IVE: N:)
		·> 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
ļ	I	ļ	(Packet #1)
	ļ		I IVE AUTH request (UDD CV (ID; AUTH
		·> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	i	i	(Judgment #2)
ļ ļ	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
!	ļ	ļ	SAr2, TSi, TSr})
	ļ	ļ	(Packet #2)
<	। · +=======	' :======+	IPsec {Echo Request}
İ	1	1	(Packet #3) (Judgment #3)
	· +=======	:======+	> IPsec {Echo Reply}
	ļ	ļ	(Packet #4) (Judgment #4)
l l	I V	I V	l V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT

- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device retransmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. TN1 waits for the event of a timeout on NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Step 7: Judgment #3

The NUT never retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.3: Retransmissions of IKE_AUTH requests

Purpose:

To verify an IKEv2 device retransmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
 <	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr} (Judgment #2)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr} (Judgment #3)
l V	l V

Packet #1 See Common Packet #2

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #3)
	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	l * wait for the event of a timeout
	X never send IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #4)
V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.

- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE AUTH response to the NUT.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 9: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.I.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence

 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
	 	 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	į	İ	į	(Packet #1)
 	 	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH,
			İ	SAr2, TSi, TSr}) (Packet #2)
<	 	======================================	======+ ======+ 	Psec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	 		Destination Unreachable (No route to destination) (Packet #5)
 	· 	 	 	IPsec {Echo Request} (Packet #6) (Judgment #5) IPsec {Echo Reply} (Packet #7) (Judgment #6)
I V	l V	I V	l V	I V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
Packet #7	See Common Packet #25

Packet #5: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Type	1
	Code	0

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of an Echo Reply via NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT and then TH2 transmits an Echo Request to the TH1.
- 11. Observe the messages transmitted on Link B.
- 12. TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	>	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	 < 	 	(Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> >	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	 < 		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 ======+ 	
	 	 	IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 		INFORMATIONAL request (HDR, N(INVALID_SPI)) (Packet #5)
		=====+ 	IPsec {Echo Request} (Packet #6) (Judgment #5)
	 =======	=====+	> IPsec {Echo Reply} (Packet #7) (Judgment #6)
V	I V	l V	I V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common #25
Packet #5	See below
Packet #6	See Common Packet #21

Packet #7 See Common Packet #25

Packet #4: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits INFORMATIONAL request with a Notify payload of type INVALID_ SPI to the NUT.
- 11. TH2 transmits an Echo Request to TH1.
- 12. Observe the messages transmitted on Link B.
- 13. TH1 transmits an Echo Reply to TH2.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 12: Judgment #5

The NUT forwards an Echo Request.

Step 14: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.SGW.I.1.1.3.3: Close connections when repeated attempts fail

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

 n each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2

Part A: (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TN1 waits for the event of a timeout on the NUT.
- 14. Observe the messages transmitted on Link A.
- 15. Repeat Step 5 and Step 6 until the NUT's last restransmission comes.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 8: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT

Purpose:

To verify an IKEv2 device closes connections when receiving INITIAL_CONTACT.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 7.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
(11031)	1	1	
1 i		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	i	(Judgment #1)
l i	 <		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	i i	i	(Packet #1)
l i	i	i	
l i	j	>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l i	į	İ	Judgment #2)
l i	<	j	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l i	j	į	(Packet #2)
1 i	ĺ	Ì	
<		===+	IPsec {Echo Request}
	1		(Packet #3) (Judgment #3)
		===+	> IPsec {Echo Reply}
			(Packet #4) (Judgment #4)
1 !		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	!	ļ	(Judgment #5)
!	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	ļ		(Packet #5)
1 !		- 1	
1 !		>	IKE_AUTH request (HDR, SK {IDi, N(INITIAL_CONTACT),
	l I	l I	AUTH, SAi2, TSi, TSr}) (Judgment #6)
1 1	 		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
1 ;			(Packet #6)
	<u> </u>	i i	(14616)
	 +=========	' :===+	IPsec {Echo Request}
	İ	Ī	(Packet #7) (Judgment #7)
	X	i	IPsec {Echo Request}
I i	1	İ	(Packet #8) (Judgment #8)
l i	į	j	
<	· +==========	:===+	IPsec {Echo Request}
			(Packet #9) (Judgment #9)
		:===+	> IPsec {Echo Reply}
	1		(Packet #10) (Judgment #10)
	1		
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet # 25
Packet #5	See Common Packet #2
Packet #6	See Common Packet #6
Packet #7	See Common Packet #21
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 1 to Step 5.
Packet #8	See Common Packet # 25
Packet #9	See Common Packet #21
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 11 to Step 14.
Packet #10	See Common Packet # 25

Part A: (ADVANCED)

1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. NUT transmits IKE_SA_INIT request to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Request to TH2.
- 18. Observe the messages transmitted on Link A.
- 19. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the second negotiated algorithms.
- 20. Observe the messages transmitted on Link B.
- 21. TH1 transmits an Echo Reply to TH2.
- 22. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an IKE_AUTH request with a Notify payload of type INITIAL CONTACT to the NUT. The IKE AUTH request includes "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #7

The NUT never forwards an Echo Request.

Step 18: Judgment #8

The NUT never forwards an Echo Request with IPsec ESP using the first negotiated algorithms.

Step 20: Judgment #9

The NUT forwards an Echo Request.

Step 22: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

• Step 18:

The NUT can forward an Echo Request to the TH2 with IPsec ESP using the second negotiated algorithms.

Test IKEv2.SGW.I.1.1.3.5: Sending Liveness check

Purpose:

To verify an IKEv2 device checks whether the other endpoint is alive.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(SGW) (SG	
l ` ı ´	,
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
i i	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
! !	(Packet #2)
! !	
] ! ;	wait until receiving a liveness check
	INFORMATIONAL request (UDB SV ())
>	INFORMATIONAL request (HDR, SK {})
	(Judgment #3)
V V	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

• While an INFORMATIONAL request for liveness check is transmitted, NUT needs to keep sending packets like ICMPv6 Echo Request.

Test IKEv2.SGW.I.1.1.3.6: Sending Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.

7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Possible Problems:

• At Step 7, NUT can transmit INFORMATIONAL request with a Delete Payload including 2 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete CHILD_SA before transmitting an INFORMATIONAL request to delete IKE_SA.

Test IKEv2.SGW.I.1.1.3.7: Sending Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(SGW) (SG	
l ` ı ´ ı	,
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
	(Judgment #2)
	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})</pre>
	(Packet #2)
*	wait until expiring CHILD_SA
>	INFORMATIONAL request (HDR, SK {D})
	(Judgment #3)
V	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring CHILD_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.

7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Possible Problems:

None

Test IKEv2.SGW.I.1.1.3.8: Sending Liveness check with unprotected messages

Purpose:

To verify an IKEv2 device handles cryptographically unprotected Messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Configure the timer to consider that the peer is dead to 30 seconds.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
j	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
 	(Packet #2) Echo Request (Packet #3) -X Echo Reply (Judgment #3)
 	 > INFORMATIONAL request (HDR, SK {}) (Judgment #4)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See below

Packet #3: Echo Request

IPv6 Header	Source Address	TN1's Global Address
	Destination Address	NUT's Global Address
ICMPv6 Header	Type	128
	Code	0
	Identifier	0

Part A: (BASIC)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE_SA_INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 13. TN1 trasmits a cryptographically unprotected Echo Request to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT never responds with a cryptographically unprotected Echo Reply. The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

 NUT may have the different trigger other than timer to send an INFORMATIONAL request for the liveness check. In that case, TN must be adjusted to support such a trigger.

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.SGW.I.1.1.4.1: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM				
TH1	NUT	TN1	TH2		
(Host)	(SGW)	(SGW)	(Host)		
	 <		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)		
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)		
	 		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {P, SA, Nr, TSi, TSr}) (Packet #5)		
	 		IPsec {Echo Request} (new CHILD_SA) (Packet #6) (Judgment #6) > IPsec {Echo Request} (new CHILD_SA) (Packet #7) (Judgment #7)		
N: REKEY_SA P: Payload with an invalid payload type					

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #7	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

13. EKERTE_CITIED_STRESPONSE					
IPv6 Header	All fields a	re same as Common Packet #16 Payload			
UDP Header	All fields a	All fields are same as Common Packet #16 Payload			
IKEv2 Header	All fields a	All fields are same as Common Packet #16 Payload			
E payload	Next Payload	Invalid payload type value			
	Othe	Other fields are same as Common Packet #16			
Invalid Payload	Next Payoad	33 (SA)			
	Critical	0			
	Reserved	0			
	Payload Length	4			

SA Payload	All fields are same as Common Packet #16 Payload
Ni, Nr paylaod	All fields are same as Common Packet #16 Payload
TSi Payload	All fields are same as Common Packet #16 Payload
TSr Payload	All fields are same as Common Packet #16 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 22. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 23. Observe the messages transmitted on Link B.
- 24. TH1 transmits an Echo Reply to TH2.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 22 through 25 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.
- 28. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set.
- 29. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 30. Observe the messages transmitted on Link B.
- 31. TH1 transmits an Echo Response to the TH2.
- 32. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 33. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A.
- 35. TN1 responds with an IKE_SA_INIT response to the NUT.
- 36. Observe the messages transmitted on Link A.
- 37. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 38. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link B.
- 40. TH1 transmits an Echo Reply to TH2.
- 41. Observe the messages transmitted on Link A.
- 42. Repeat Steps 38 through 41 until lifetime of SA is expired.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set.
- 45. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link B.
- 47. TH1 transmits an Echo Response to the TH2.
- 48. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 49. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 responds with an IKE_SA_INIT response to the NUT.
- 52. Observe the messages transmitted on Link A.
- 53. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 54. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 55. Observe the messages transmitted on Link B.
- 56. TH1 transmits an Echo Reply to TH2.
- 57. Observe the messages transmitted on Link A.
- 58. Repeat Steps 54 through 57 until lifetime of SA is expired.
- 59. Observe the messages transmitted on Link A.
- 60. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set.
- 61. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 62. Observe the messages transmitted on Link B.
- 63. TH1 transmits an Echo Response to the TH2.
- 64. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 16: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part B

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 23: Judgment #3

The NUT forwards an Echo Request.

Step 25: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 27: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 30: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 32: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part C

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 39: Judgment #3

The NUT forwards an Echo Request.

Step 41: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 43: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 46: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 48: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part D

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 55: Judgment #3

The NUT forwards an Echo Request.

Step 57: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 59: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 62: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 64: Judgment #7The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.4.2: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device rejects the messages with invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM				
TH1	NUT	TN1	TH2		
(Host)	(SGW)	(SGW)	(Host)		
1 1					
l i	j	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
		1	(Judgment #1)		
l i	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)		
i	İ	ĺ	(Packet #1)		
		1			
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})		
		1	(Judgment #2)		
	<		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})		
		1	(Packet #2)		
1		1			
		I			
<		====+	IPsec {Echo Request} repeat Echo exchange		
			(Packet #3) (Judgment #3) until lifetime of SA		
	- -==============================	====+	> IPsec {Echo Reply} is expired		
!	ļ	ļ	(Packet #4) (Judgment #4)		
		I			
			·;·		
!			CDEATE CHILD CA TOTAL (HDD CK (N CA N) TO TOTAL		
		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})		
		!	(Judgment #5)		
		1	CDEATE CHILD CA response (UDD CV (D CA No TO: TO:)		
	<		CREATE_CHILD_SA response (HDR, SK {P, SA, Nr, TSi, TSr})		
		ļ	(Packet #5)		
	 +==========	 t	IPsec {Echo Request} (new CHILD_SA)		
	· + ====================================	==== =+	(Packet #6) (Judgment #6)		
	 X		IPsec {Echo Request} (new CHILD_SA)		
	Ι		(Packet #7) (Judgment #7)		
			(tacket #1) (dadyment #1)		
l V	I V	I V	V		
'	v	•	Ť		
N: REKEY SA	N: REKEY_SA				
_	P: Payload with an invalid payload type				
ayrodd artar dir infarra payrodd typo					

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #7	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

+3. CKLATE_CITED_SATESPORSE			
IPv6 Header	All fields are	same as Common Packet #16 Payload	
UDP Header	All fields are same as Common Packet #16 Payload		
IKEv2 Header	All fields are same as Common Packet #16 Payload		
E payload	Next Payload	Invalid payload type value	
	Other fields are same as Common Packet #16		
Invalid Payload	Next Payoad	33 (SA)	
	Critical	1	
	Reserved	0	
	Payload Length	4	
SA Payload	All fields are same as Common Packet #16 Payload		
Ni Nr navlaod	All fields are same as Common Packet #16 Payload		

TSi Payload	All fields are same as Common Packet #16 Payloa	
TSr Payload	All fields are same as Common Packet #16 Payload	

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is set.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 22. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 23. Observe the messages transmitted on Link B.
- 24. TH1 transmits an Echo Reply to TH2.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 22 through 25 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.
- 28. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is set.
- 29. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 30. Observe the messages transmitted on Link B.
- 31. TH1 transmits an Echo Response to the TH2.
- 32. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 Critical bit is set (BASIC)

- 33. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A.
- 35. TN1 responds with an IKE_SA_INIT response to the NUT.
- 36. Observe the messages transmitted on Link A.
- 37. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 38. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link B.
- 40. TH1 transmits an Echo Reply to TH2.
- 41. Observe the messages transmitted on Link A.
- 42. Repeat Steps 38 through 41 until lifetime of SA is expired.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is set.
- 45. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link B.
- 47. TH1 transmits an Echo Response to the TH2.
- 48. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 Critical bit is set (BASIC)

- 49. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 responds with an IKE_SA_INIT response to the NUT.
- 52. Observe the messages transmitted on Link A.
- 53. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 54. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 55. Observe the messages transmitted on Link B.
- 56. TH1 transmits an Echo Reply to TH2.
- 57. Observe the messages transmitted on Link A.
- 58. Repeat Steps 54 through 57 until lifetime of SA is expired.
- 59. Observe the messages transmitted on Link A.
- 60. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is set.
- 61. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 62. Observe the messages transmitted on Link B.
- 63. TH1 transmits an Echo Response to the TH2.
- 64. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 16: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part B

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 23: Judgment #3

The NUT forwards an Echo Request.

Step 25: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 27: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 30: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 32: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part C

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 39: Judgment #3

The NUT forwards an Echo Request.

Step 41: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 43: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 46: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 48: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part D

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 55: Judgment #3

The NUT forwards an Echo Request.

Step 57: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 59: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 62: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 64: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.SGW.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type COOKIE

Purpose:

To verify an IKEv2 device retries IKE_SA_INIT request using a Notify payload of type COOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

Packet #1: IKE_SA_INIT response

cket "1. IIIL_	JI I II I I Coponic	
IPv6 Header		All fields are same as Common Packet #2
UDP Header		All fields are same as Common Packet #2
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	0
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0

	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Cookie value

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Notify payload of type COOKIE containing following values:

Figure 118 Notify Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A SPI Size field set to zero.
- A Notify Message Type field set to COOKIE (16390).
- A Notification Data field set to the TN1 supplied cookie data.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify payload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
   NUT
                   TN1
  (SGW)
                  (SGW)
                  ->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Judgment #1)
            ----- | IKE_SA_INIT response (HDR, N(COOKIE))
                    | (Packet #1)
             ---->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni)
                    | (Judgment #2)
                   -- | IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD))
                    | (Packet #2)
              ---->| IKE_SA_INIT request (HDR, SAi1, KEi , Ni)
                      or
                  ->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni)
                    | (Judgment #3)
    *1) If the NUT send IKE_SA_INIT request (HDR, SAi1, KEi , Ni), go to Sequence #2.
    *2) If the NUT send IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni), go to Sequence #3.
   Otherwise, this test is failed.
Sequence #2:
  NUT
                  TN1
  (SGW)
                  (SGW)
                  --| IKE_SA_INIT response (HDR, N(COOKIE'))
                    | (Packet #3)
                  ->| IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni)
                    | (Judgment #4)
   Go to Sequence #3.
Sequence #3:
   NUT
                  TN1
  (SGW)
                  (SGW)
                    | IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Packet #4)
                  ->| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                     (Judgment #5)
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT request

IPv6 Header	Same as th	ne common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the	ne common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved 0		
	Payload Length	Any	
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type COOKIE (16390)		
	Notification Data Cookie value		
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload	Same as the common packet #1		

Packet #2: IKE SA INIT request

z_bri_n tri request			
IPv6 Header		Same as the common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are	same as the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved 0		
	Payload Length 10		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type INVALID_KE_PAYLOAD (17)		
	Notification Data	The accepted D-H Group # (2)	
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload	Same as the common packet #1		

Packet #3: IKE_SA_INIT request

t #5. ItE_S/1_Ittl Tequest			
IPv6 Header		Same as the common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header		Other fields are same as the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length		
	Protocol ID		
	SPI Size		
	Notify Message Type COOKIE (1639		
	Notification Data Different cookie value from Packet #1's cookie value		
SA Payload		Same as the common packet #1	
KE Payload		Same as the common packet #1	
Ni, Nr Payload		Same as the common packet #1	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.

- 6. Observe the messages transmitted on Link A.
- 7. If the IKE_SA_INIT request from NUT includes a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
 - A) Observe the messages transmitted on Link A.
 - B) TN1 responds with an IKE SA INIT response.
- 8. If the IKE_SA_INIT request from NUT does not include a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5. All other payloads are unchanged.

Step 7A: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 9: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Test IKEv2.SGW.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify ayload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
i	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, N(COOKIE)) (Packet #1)
	> IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Judgment #2)
<	IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD)) (Packet #2)
	> IKE_SA_INIT request (HDR, SAi1, KEi , Ni) or
	> IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni) (Judgment #3)
<	IKE_SA_INIT response (HDR, N(COOKIE')) (Packet #3)
	> IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni)
<	ÎKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #4)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #5)
V	V

Packet #1	See below
Packet #2	See below

Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT request

IPv6 Header	Same as th	ne common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the	ne common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	Any	
	Protocol ID	0	
	SPI Size		
	Notify Message Type COOKIE (16390)		
	Notification Data Cookie value		
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload	Same as the common packet #1		

Packet #2: IKE_SA_INIT request

IPv6 Header		Same as the common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are	same as the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved 0		
	Payload Length 10		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type INVALID_KE_PAYLOAD (17)		
	Notification Data	The accepted D-H Group # (2)	
SA Payload	Same as the common packet #1		
KE Payload	Same as the common packet #1		
Ni, Nr Payload		Same as the common packet #1	

Packet #3: IKE_SA_INIT request

<u> </u>	1_II vi i request		
IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved		
	Payload Length		
	Protocol ID		
	SPI Size		
	Notify Message Type COOKIE (1639		
	Notification Data Different cookie value from Packet #1's cookie va		
SA Payload		Same as the common packet #1	
KE Payload		Same as the common packet #1	
Ni, Nr Payload		Same as the common packet #1	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 responds with an IKE SA INIT response.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5.

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains a recalculated Key Exchange Data. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part E, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms D-H Group			
Part A	Part A ENCR_AES_CBC PRF_HMAC		AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

1	TN1 SGW)
` ´	' > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) - IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 > IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.

4. Observe the messages transmitted on Link B.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 6. Observe the messages transmitted on Link B.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link B.

Part C: Pseudo-Random Function PRF_AES128_CBC (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 10. Observe the messages transmitted on Link B.
- 11. TN1 responds with an IKE SA INIT response to the NUT.
- 12. Observe the messages transmitted on Link B.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link B.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link B.

Part E: D-H Group Group 14 (ADVANCED)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link B.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 1.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CTR", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 5.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 13.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_AES_XCBC_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 17.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 25.

Possible Problems:

None.

659

Test IKEv2.SGW.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part F, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	Extended Sequence Numbers	
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part B	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers	
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers	
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers	

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1		- 1	
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1			(Judgment #1)
I	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
I			(Packet #1)
		<u>l</u>	
l		>	IKE_AUTH request (HDR, SK {IDi, AUTH,
l			SAi2, TSi, TSr})
I			(Judgment #2)
I	<		IKE_AUTH Response (HDR, SK {IDr, AUTH,
1			SAr2, TSi, TSr})
I			(Packet #2)
1			
<		======+	IPsec {Echo Request}
I			(Packet #3) (Judgment #3)
		======+	> IPsec {Echo Reply}
			(Packet #3) (Judgment #4)
		- 1	
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link B.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TH2 transmits an Echo Request to TH1.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply to TH2.
- 18. Observe the messages transmitted on Link B.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link B.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link B.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TH2 transmits an Echo Request to TH1.
- 25. Observe the messages transmitted on Link A.
- 26. TH1 transmits an Echo Reply to TH2.
- 27. Observe the messages transmitted on Link B.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 28. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 29. Observe the messages transmitted on Link B.
- 30. TN1 responds with an IKE SA INIT response to the NUT.
- 31. Observe the messages transmitted on Link B.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TH2 transmits an Echo Request to TH1.
- 34. Observe the messages transmitted on Link A.
- 35. TH1 transmits an Echo Reply to TH2.
- 36. Observe the messages transmitted on Link B.

Part E: Integrity Algorithm NONE (ADVANCED)

37. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.

- 38. Observe the messages transmitted on Link B.
- 39. TN1 responds with an IKE_SA_INIT response to the NUT.
- 40. Observe the messages transmitted on Link B.
- 41. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 42. TH2 transmits an Echo Request to TH1.
- 43. Observe the messages transmitted on Link A.
- 44. TH1 transmits an Echo Reply to TH2.
- 45. Observe the messages transmitted on Link B.

Part F: Extended Sequence Numbers (ADVANCED)

- 46. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 47. Observe the messages transmitted on Link B.
- 48. TN1 responds with an IKE_SA_INIT response to the NUT.
- 49. Observe the messages transmitted on Link B.
- 50. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 51. TH2 transmits an Echo Request to TH1.
- 52. Observe the messages transmitted on Link A.
- 53. TH1 transmits an Echo Reply to TH2.
- 54. Observe the messages transmitted on Link B.
- 55. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT forwards an Echo Request.

Step 18: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT forwards an Echo Request.

Step 27: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT forwards an Echo Request.

Step 36: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as proposed algorithms.

Step 43: Judgment #3

The NUT forwards an Echo Request.

Step 45: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 47: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 49: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1" and "Extended Sequence Numbers" as proposed algorithms.

Step 52: Judgment #3

The NUT forwards an Echo Request.

Step 54: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.6.3: Sending Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_SA_INIT request with multiple transforms for IKE_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2 Group 14	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link B.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link B.

Part C: Multiple Integrity Algorithms (ADVANCED)

5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.

6. Observe the messages transmitted on Link B.

Part D: Multiple D-H Groups (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC"AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H group 2" and "D-H group 14" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.6.4: Sending Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_SA_INIT exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" in SA Proposal #1 (ESP) and "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H group 14" in SA Proposal #2 (ESP) as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple transforms for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_A	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	ESN		
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN		
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN		
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN		

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 2. Observe the messages transmitted on Link B.
- 3. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 4. Observe the messages transmitted on Link B.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 6. Observe the messages transmitted on Link B.
- 7. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1
- 8. Observe the messages transmitted on Link B.

Part C: Extended Sequecnce Numbers (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 10. Observe the messages transmitted on Link B.
- 11. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Number" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration.

		IKE_AUTH exchanges Algorithms			
	Proposal Protocol Encryption Integr		Integrity	ESN	
Part A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
l i	j	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	i	(Judgment #1)
1 i	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
1			(Packet #1)
	1	I I	(1 401.01 11)
	1	-	IVE AUTH request (UDD CV (ID; AUTH CA; 2 TC; TC;)
1 !		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
!	ļ.	!	(Judgment #2)
	<		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	I		(Packet #2)
	I		
			•••
	1		
<		:=====+	IPsec {Echo Request} repeat Echo Exchange
l i	1	1	(Packet #3) (Judgment #3) until lifetime of
	· +======	:======+	
l i	i	i	(Packet #4) (Judgment #4)
1 ¦	i		
'	ı	ı	
			 I
	ļ		COPEATE CHILD CA request (UDD CV (N CA N: VE: TO:
		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi,
TSr})			
	I		(Judgment #4)
	1 '		CREATE_CHILD_SA response (HDR, SK,
N(INVALID_KE_	_PAYLOAD)})		
	1		(Packet #5)
	1		
l i	j	>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi , TSi,
TSr})	•	,	
] []	1	İ	(Judgment #5)
1 ¦	i		(augan)
\frac{1}{V}	I V	I V	I V
l v	V	V	V
N DEIVEV CA			
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Packet #5: CREATE_CHILD_SA response

IPv6 Header	1	Same as Common Packet #16
UDP Header		Same as Common Packet #16
IKEv2 Header		Same as Common Packet #16
E Payload		Same as Common Packet #16
N Payload	Next Payload	0
	Critical	0
	Reserved (
	Payload Length 10	
	Protocol ID	0
	SPI Size	0
	Notify Message Type	INVALID_KE_PAYLOAD (17)
	Notification Data	The accepted D-H Group # (2)

Part A: (BASIC)

- NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
 Observe the messages transmitted on Link B.

- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT.
- 11. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type NO_PROPOSAL_CHOSEN.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

			FURUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	İ	İ	(Judgment #1)
l i	<	i	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	i	İ	(Packet #1)
l i	i	i	
l i		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l i	i	i	(Judgment #2)
	 <		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	[]	i	(Packet #2)
		 	(.30.00 = 12)
	1	1	1
l	1	 I	 I
	' +===== =	' =======+	IPsec {Echo Request}
		 I	(Packet #3) (Judgment #3) until lifetime of
	' +=======	 =======+	
			(Packet #4) (Judgment #4)
	i i	 	(aono: "+) (oudgmont "+)
'	ı	I	1
		 I	 I
			CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi,
TSr})	1	/	T ONENTE_OHTED_ON TEQUEST (HDN., ON TH, ON, HT, NET, TOT,
1017)	ī	ĺ	(Judgment #4)
			, , ,
	1 '		CREATE_CHILD_SA response (HDR, SK,
I N(INVALID_KE_F	1	ı	(Packet #5)
	l I	 	(Facket #3)
	!		CDEATE CHILD CA request (HDD CV (N CA N: VE: TC:
Terly		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi , TSi,
TSr})	1	ı	(ludament #E)
			(Judgment #5)
	l V	l V	
l v	V	V	V
N DEIGEN OF			
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Packet #5: CREATE_CHILD_SA response

	- · · F · · · · ·			
IPv6 Header		Same as Common Packet #16		
UDP Header		Same as Common Packet #16		
IKEv2 Header		Same as Common Packet #16		
E Payload		Same as Common Packet #16		
N Payload	Next Payload	0		
	Critical	0		
	Reserved	0		
	Payload Length	10		
	Protocol ID	0		
	SPI Size	0		
	Notify Message Type	INVALID_KE_PAYLOAD (17)		
	Notification Data	The accepted D-H Group # (2)		

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.

- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 11. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. The new CREATE CHILD SA request is not a retransmitted request.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the Common Packet #2
UDP Header	Same as the Common Packet #2
IKEv2 Header	Same as the Common Packet #2
SA Payload	See below
KEi Payload	Same as the Common Packet #2
Ni Payload	Same as the Common Packet #2

SA Payload	Next Payload			34 (KE)
	Critical			0
	Reserved		0	
	Payload Leng	gth		44
	Proposal #1 SA Proposal Next Payload		Next Payload	0 (last)
		_	Reserved	0
			Proposal Length	40
			Proposal #	1
			Protocol ID	1 (IKE)
			SPI Size	0
			# of Transforms	4

	SA Transform		See below
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	12	
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID		12 (AES_CBC)
	SA Attribute	14 (Key Length)	
		128	

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request.

Possible Problems:

• Step 4
The NUT may transmit or retransmit an IKE_SA_INIT request.

Test IKEv2.SGW.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 		(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	X 	 	

Packet #1 See Common Packet #2
Packet #2 See below
Packet #3 See Common Packet #19

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #6
UDP Header	Same as the Common Packet #6
IKEv2 Header	Same as the Common Packet #6
E Payload	Same as the Common Packet #6
IDr Payload	Same as the Common Packet #6

AUTH Payload	Same as the Common Packet #6
N Payload	Same as the Common Packet #6
SA Payload	See below
TSi Payload	Same as the Common Packet #6
TSr Payload	Same as the Common Packet #6

SA Payload	Next Payload				44 (TSi)
	Critical		0		
	Reserved		0		
	Payload Leng	th	44		
	Proposal #1	SA Proposal	Next Payload		0 (last)
	1	•	Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		3 (ESP)
			SPI Size # of Transforms		4
					3
			SA Transform		See below
		SA Transfor	SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
			Transform Type	3 (INTEG)	
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (Extended Sequence Number)
				Reserved	0
				Transform ID	0 (No Extended Sequence Number)

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Length		12
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_AUTH response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an unprotected Echo Reply.

Possible Problems:

Step 7
 The NUT may transmit or retransmit an IKE_AUTH request. And the NUT may notify INVALID_SPI.

Test IKEv2.SGW.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT Response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

Packet #1: IKE SA INIT response

i. ii.esponse			
IPv6 Header	Same as Common Packet #2		
UDP Header		Same as Common Packet #2	
IKEv2 Header		Same as Common Packet #2	
	IKE_SA Responder's SPI	See each Part	
N Payload	Next Payload	0	
	Critical	0	
	Reserved 0		
	Payload Length 10		
	Protocol ID 0		
	SPI Size		
	Notify Message Type	INVALID_KE_PAYLOAD (17)	
	Notification Data	The accepted D-H Group # (2)	

Part A: IKE_SA Responder's SPI is zero (BASIC)

9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.

- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT Response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to zero.
- 12. Observe the messages transmitted on Link A.

Part B: IKE_SA Responder's SPI is not zero (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT Response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to one.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT Request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Possible Problems:

Test IKEv2.SGW.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN ²	1
(SGW)	(SG)	W)
	>	
		(Judgment #1)
<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
		(Packet #1)
		<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
		(Judgment #2)
<		<pre>IKE_AUTH Response (HDR, N(NO_PROPOSAL_CHOSEN))</pre>
		(Packet #2)
	1	
<		<pre>INFORMATIONAL request (HDR, SK {})</pre>
	1	(Packet #3)
		<pre>INFORMATIONAL response (HDR, SK {})</pre>
		(Judgment #3)
V	V	

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #17

Packet #4: IKE_AUTH response

Te TITTesponse			
IPv6 Header		Same as Common Packet #6	
UDP Header		Same as Common Packet #6	
IKEv2 Header		Same as Common Packet #6	
N Payload	Next Payload	0	
	Critical	0	
	Reserved	0	
	Payload Length	8	
	Protocol ID	0	
	SPI Size	0	

Notify Message Type NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 1.7. Traffic Selector Negotiation

Test IKEv2.SGW.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
1	1		1	
İ		>	İ	IKE_SA_INIT request (HDR, SAi1,
i	İ	İ	İ	KEi, Ni)
i	i	į	i	(Judgment #1)
i	<	i	i	IKE_SA_INIT Response (HDR, SAr1,
i	i	i	i	KEr, Nr)
i	i	i	i	(Packet #1)
i	i	i	i	,
i	j	>	i	IKE_AUTH request (HDR, SK {IDi, AUTH,
i	i	i	i	SAi2, TSi, TSr})
i	i	i	i	(Judgment #2)
i	<		i	IKE_AUTH Response (HDR, SK {IDr, AUTH
i	i	i	i	SAr2, TSi, TSr})
i	i	i	i	(Packet #2)
i	i	i	i	(
<	, +=======	, ======+		IPsec {Echo Request}
i i	i	İ	i	(Packet #3) (Judgment #3)
	' +======	, ======+	>	IPsec {Echo Reply}
i	i	i	İ	(Packet #4) (Judgment #4)
i	i	i	i	I
X	 +========	' ======+		IPsec {Echo Request}
1 ^	 I	, 	1	(Packet #5) (Judgment #5)
	 	l 	l 	> IPsec {Echo Request}
	1	1	1	(Packet #6) (Judgment #6)
-		 	1	(Tablet #0) (Saagment #0)
I V	I V	I V	I V	1

Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below·

Packet #5: ICMPv6 Echo Request

IPv6 Header	Same as Common Packet #21		
ESP	Same as Common Packet #21		
IPv6 Header	Source Address TH3's Global Address		
	Other fields are same as Common Packet #21		
ICMPv6 Header	Same as Common Packet #21		

Packet #6: ICMPv6 Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH3's Global Address
ICMPv6 Header	Same as Common Packet #25	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TH2 transmits an Echo Request packet to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply packet to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TH3 transmits an Echo Request to TH1.
- 11. Observe the messages transmitted on Link A.
- 12. TH1 transmits an Echo Request to TH3.
- 13. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT never forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

Group 1.8. Error Handling

Test IKEv2.SGW.I.1.1.8.1: INVALID_IKE_SPI

Purpose:

To verify an IKEv2 device properly handles an unrecognized destination SPI.

References:

- [RFC 4306] Sections 2.21 and 3.10.1
- [RFC 4718] Sections 7.7

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
(,		
li	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i i	(Judgment #1)
l i	<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	i i	(Packet #1)
l i	į į	į į
	>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1	(Judgment #2)
1	<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	l l	(Packet #2)
	l l	
		···;
	I I	
<		IPsec {Echo Request} repeat Echo Exchange
		(Packet #3) (Judgment #3) until lifetime of
		1 (
		(Packet #4) (Judgment #4)
'	1 1	
		 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi,
TSr})	1	TORENTE_ONTED_ON TOQUEST (NDN, ON (N, ON, NT, NET, TOT,
',	1 1	(Judgment #4)
		CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr, TSi,
TSr})	, ,	
l ('		(Packet #5)
Li	į i	i · · · · · · · · · · · · · · · · · · ·
l i	>	INFORMATIONAL request (HDR, N(INVALID_IKE_SPI))
	l İ	(Judgment #5)
	I I	
V	V	V
N: REKEY_S	SA	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Part A Packet #5: CREATE_CHILD_SA response

_	======================================			
IPv6 Header		Same as Common Packet #16		
UDP Header		Same as Common Packet #16		
IKEv2 Header	IKE_SA Initator's SPI	The IKE_SA Initiator's SPI value		
		used by this IKE message plus 1		
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value		
		used by this IKE message		
	Oth	er field are same as Common Packet #16		
E Payload		Same as Common Packet #16		
N Payload		Same as Common Packet #16		
SA Payload	Same as Common Packet #16			
Ni, Nr Payload		Same as Common Packet #16		
TSi Payload		Same as Common Packet #16		
TSr Payload		Same as Common Packet #16		

Part B
Packet #5: CREATE_CHILD_SA response

	Same as Common Packet #16	
	Game as Comment acres in to	
Same as Common Packet #16		
IKE_SA Initator's SPI	The IKE_SA Initiator's SPI value	
	used by this IKE message	
IKE_SA Responder's SPI	The IKE_SA Responder's SPI value	
used by this IKE message plus 1		
Othe	er field are same as Common Packet #16	
	Same as Common Packet #16	
	Same as Common Packet #16	
Same as Common Packet #16		
Same as Common Packet #16		
Same as Common Packet #16		
Same as Common Packet #16		
	IKE_SA Responder's SPI	

Part A: Different IKE Initiator's SPI (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which has an invalid value as IKE_SA Initiator's SPI to the NUT.
- 11. Observe the messages transmitted on Link B.

Part B: Different IKE Responder's SPI (BASIC)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with an IKE SA INIT response to the NUT.
- 15. Observe the messages transmitted on Link B.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 18. Observe the messages transmitted on Link B.
- 19. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 20. Observe the messages transmitted on Link B.
- 21. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which has an invalid value as IKE_SA Responder's SPI to the NUT.
- 22. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 11: Judgment #5

NUT does not any packets or may transmit an INFORMATIONAL request with a Notify payload of type INVALID_IKE_SPI.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms and a Key Exchange payload which contains a recalculated Key Exchange Data.

Step 18: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 20: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 22: Judgment #5

NUT does not any packets or may transmit an INFORMATIONAL request with a Notify payload of type INVALID IKE SPI.

Possible Problems:

Test IKEv2.SGW.I.1.1.8.2: INVALID_SELECTORS

Purpose:

To verify an IKEv2 device properly handles an ESP or AH packet whose selectors do not match those of the CHILD_SA.

References:

- [RFC 4306] Sections 2.21
- [RFC 4307] Sections 7.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	TSi	TSr
IP Protocol ID	IPv6-ICMP	IPv6-ICMP
Start Port	0	0
End Port	65535	65535
Starting Address	TH1	NUT
Ending Address	TH1	NUT

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
` ! `	į	į	
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
			(Judgment #1)
	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
			(Packet #1)
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, ,
			SAi2, TSi, TSr})
	ļ	ļ	(Judgment #2)
	<		IKE_AUTH Response (HDR, SK {IDr, AUTH,
			SAi2, TSi, TSr})
!	ļ	!	(Packet #2)
!			
!	X	:=====+	IPsec {TCP SYN}
!		ļ	(Packet #3)
!	X		No packets
!	l or	ļ	
!		>	INFORMATIONAL request (HDR, SK {N(INVALID_SELECTORS)})
!	!	ļ	(Judgment #3)
!			L IDaga (Esta Dagla)
<	· +========	======+	IPsec {Echo Reply}
1 !	!	!	(Packet #4) (Judgment #4)
!	· +========	======+	> IPsec {Echo Reply}
	ļ		(Packet #5) (Judgment #5)
	l V	I V	l V
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #21
Packet #5	See Common Packet #25

Packet #2: IKE_AUTH response

TSi Payload			
	Traffic Selector	IP Protocol ID	58 (IPV6-ICMP)
		Other fields are same	as Common Packet #6

TSr Payload			
	Traffic Selector	IP Protocol ID	58 (IPV6-ICMP)
		Other fields are same as Common Packet #6	

Packet #3: TCP-SYN

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of the entire message
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits a TCP-SYN packet to TH1.
- 7. TN1 encapsulates a TCP-SYN packet with IPsec ESP using algorithms negotiated at between Step 1 and Step 5, though an Echo Request does not match the selector on TN1.
- 8. Observe the messages transmitted on Link B.
- 9. TH2 transmits an Echo Reply to TH1.
- 10. Observe the messages transmitted on Link A.
- 11. TH1 transmits an Echo Reply to TH2.
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 8: Judgment #3

The NUT does not transmit any packets or transmits an INFORMATIONAL request with a Notify of type INVALID SELECTORS.

Step 10: Judgment #4

The NUT forwards an Echo Reply.

Step 12: Judgment #5

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

- Notification Type depends on the implementation at Step 8.
- If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 1.10 Authentication of the IKE_SA

Test IKEv2.SGW.I.1.1.10.1: Sending CERT Payload

Purpose:

To verify an IKEv2 device handles CERTREQ payload and transmits CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method	
Remote	X.509 Certificate - Signature	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Packet #1 See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the C	Common Packet #2
UDP Header	Same as the Common Packet #2	
IKEv2 Header	Same as the Common Packet #2	
SA Payload	Same as the Common Packet #2	
KE Payload	Same as the Common Packet #2	
Nr Payload	Next Payload	38 (CERTREQ)
	Other fields are same as the Common Packet #2	
CERTREQ Payload		See below

CERTREQ Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE_SA_INIT response with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

Test IKEv2.SGW.I.1.1.10.2: Sending CERTREQ Payload

Purpose:

To verify an IKEv2 device transmits CERTREQ payload and handles CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.SGW.I.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method	
Local	X.509 Certificate - Signature	

Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1		(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	Į.	ļ	(Packet #1)
!	ļ	ļ	
!		>	IKE_AUTH request (HDR, SK {IDi, CERTREQ, AUTH,
!	ļ	!	SAi2, TSi, TSr})
!	ļ.	!	(Judgment #2)
!	<		IKE_AUTH response (HDR, SK {IDr, CERT, AUTH,
!	ļ.	!	SAr2, TSi, TSr})
!	ļ	!	(Packet #2)
	l	!	I I I Dane (Faha Danwast)
<		:======+	IPsec {Echo Request}
1 !	I	I	(Packet #3) (Judgment #3)
!	· +========	:======+	> IPsec {Echo Reply}
!	į	ļ.	(Packet #4) (Judgment #4)
	Ţ	1	
V	V	٧	V

Packet #1	See Common Packet #2	
Packet #2	See below	
Packet #3	See Common Packet #19	

Packet #2: IKE_AUTH response

IPv6 Header	Same as Common Packet #6
UDP Header	Same as Common Packet #6

1 OROM			
Same as Common Packet #6			
Same as Common Packet #6			
Next Payload 37 (CERT)			
Other fields are same	as the Common Packet #6		
	See below		
Same as Common Packet #6			
Sa	me as Common Packet #6		
Same as Common Packet #6			
Same as Common Packet #6			
	Sa Next Payload Other fields are same Sa Sa		

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	TN1's X.509 Certificate

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including IDr payload as describe above to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.SGW.I.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value	
Remote	0xabadcafeabadcafeabadcafeabadcafe (128 bit binary string)	

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Group 1.11 Invalid values

Test IKEv2.SGW.I.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose RESERVED fields are set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
!	ļ	ļ	
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		I	(Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
			(Packet #1)
	1	1	
!		>	IKE_AUTH request (HDR, SK {IDi, AUTH,
!	ļ	ļ	SAi2, TSi, TSr})
			(Judgment #2)
	<	· 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	i	i	(Packet #2)
l i	ĺ	ĺ	į
<		======+	IPsec {Echo Request}
	I	1	(Packet #3) (Judgment #3)
		======+	> IPsec {Echo Reply}
!	į.	ļ	(Packet #4) (Judgment #4)
	Ţ	1	<u>.</u>
L V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
	All RESERVED fields are set to one.
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE AUTH request from the NUT. TN1 responds with an IKE AUTH

response whose RESERVED fields are set to one to the NUT

- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
	Version bit is set to one.

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose Version bit is set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.1.11.4: Unrecognized Notify Message Type of Error

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting error.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are same as Common Packet #2		
UDP Header	All fields are same as Common Packet #2		
IKEv2 Header	All fields are same as Common Packet #2		
SA Payload	All fields are same as Common Packet #2		
KE Payload	All fields are same as Common Packet #2		
Ni, Nr paylaod	Next Payload 41 (Notify)		
	Other fields are same as Common Packet #2		
N Payload	Next Payload 0		
	Critical 0		
	Reserved 0		
	Payload Length 8		
	Procotol ID 0		
	SPI Size 0		
	Notify Message Type 16		

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response with a Notify payload of unrecognized Notify Message Type value.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.1.11.5: Unrecognized Notify Message Type of Status

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting status.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are same as Commo	on Packet #2	
UDP Header	All fields are same as Common Packet #2		
IKEv2 Header	All fields are same as Common Packet #2		
SA Payload	All fields are same as Common Packet #2		
KE Payload	All fields are same as Common Packet #2		
Ni, Nr paylaod	Next Payload 41 (Notify)		
	Other fields are same as Commo	on Packet #2	
N Payload	Next Payload 0		
	Critical 0		
	Reserved (
	Payload Length		
	Procotol ID		
	SPI Size		
	Notify Message Type		

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response with a Notify payload of unrecognized Notify Message Type value.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.SGW.I.1.2.1.1: Sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	 	 	
	 		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.

Part B: Encrypted Payload Format (BASIC)

- 12. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link B.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1.
- 18. Observe the messages transmitted on Link A.

- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link B.

Part C: Notify Payload (REKEY_SA) Format (BASIC)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link B.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link B.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1.
- 29. Observe the messages transmitted on Link A.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link B.
- 32. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link B.

Part D: SA Payload Format (BASIC)

- 34. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 35. Observe the messages transmitted on Link B.
- 36. TN1 responds with an IKE_SA_INIT response to the NUT.
- 37. Observe the messages transmitted on Link B.
- 38. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 39. TH2 transmits an Echo Request to TH1.
- 40. Observe the messages transmitted on Link A.
- 41. TH1 transmits an Echo Reply to TH2.
- 42. Observe the messages transmitted on Link B.
- 43. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 44. Observe the messages transmitted on Link B.

Part E: Nonce Payload Format (BASIC)

- 45. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 46. Observe the messages transmitted on Link B.
- 47. TN1 responds with an IKE_SA_INIT response to the NUT.
- 48. Observe the messages transmitted on Link B.
- 49. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 50. TH2 transmits an Echo Request to TH1.
- 51. Observe the messages transmitted on Link A.
- 52. TH1 transmits an Echo Reply to TH2.
- 53. Observe the messages transmitted on Link B.
- 54. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 55. Observe the messages transmitted on Link B.

Part F: TSi Payload Format (BASIC)

- 56. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 57. Observe the messages transmitted on Link B.
- 58. TN1 responds with an IKE SA INIT response to the NUT.
- 59. Observe the messages transmitted on Link B.
- 60. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH

response to the NUT

- 61. TH2 transmits an Echo Request to TH1.
- 62. Observe the messages transmitted on Link A.
- 63. TH1 transmits an Echo Reply to TH2.
- 64. Observe the messages transmitted on Link B.
- 65. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 66. Observe the messages transmitted on Link B.

Part G: TSr Payload Format (BASIC)

- 67. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 68. Observe the messages transmitted on Link B.
- 69. TN1 responds with an IKE_SA_INIT response to the NUT.
- 70. Observe the messages transmitted on Link B.
- 71. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 72. TH2 transmits an Echo Request to TH1.
- 73. Observe the messages transmitted on Link A.
- 74. TH1 transmits an Echo Reply to TH2.
- 75. Observe the messages transmitted on Link B.
- 76. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 77. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted IKE Header containing following values:

Figure 119 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to CREATE_CHILD_SA (36).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to the value incremented the previous IKE message's Message ID by one.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Encrypted Payload containing following values:

1 2	3		
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	0 1		
+-	+-+-+		
! Next Payload !C! RESERVED ! Payload Length	!		
+-	+-+-+		
! Initialization Vector	!		
! (length is block size for encryption algorithm)	!		
+-	+-+-+		
~ Encrypted IKE Payloads	~		
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	+-+-+		
! Padding (0-255 octets)	!		
+-+-+-+-+-+-+-+-+-+	+-+-+		
! Pad Lengt	h !		
+-			
~ Integrity Checksum Data	~		
+-	+-+-+		

Figure 120 Encrypted payload

- A Next Payload field set to N Payload (41).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

Figure 121 Notify Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 12 bytes for this REKEY_SA.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to the size of CHILD_SA Inbound SPI value to be rekeyed. It is 4 bytes for ESP.
- A Notify Message Type field set to REKEY_SA (16393).
- A Security Parameter Index field set to SPI value to be rekeyed.
- A Notification Data field is empty.

Part D

Step 35: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 37: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 40: Judgment #3

The NUT forwards an Echo Request.

Step 42: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 44: Judgment #5

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
I	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 122 SA Payload contents

The NUT transmits a CREATE_CHILD_SA request including properly formatted SA Payload containing following values (refer following figures):

Figure 123 SA Payload format

- A Next Payload field set to Ni Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 124 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 125 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part E

Step 46: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 48: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 51: Judgment #3

The NUT forwards an Echo Request.

Step 53: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 55: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Nonce Payload containing following values:

Figure 126 Nonce Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part F

Step 57: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 59: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 62: Judgment #3

The NUT forwards an Echo Request.

Step 64: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 66: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSi Payload containing following values:

Figure 127 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 128 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 68: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 70: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 73: Judgment #3

The NUT forwards an Echo Request.

Step 75: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 77: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSr Payload containing following values:

	roko	IVI	
	1	2	3
012345678	90123456	7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+
! Next Payload !C!	RESERVED !	Payload Length	!
+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+
! Number of TSs !	R	ESERVED	!
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+
!			!
~	<traffic se<="" td=""><td>lectors></td><td>~</td></traffic>	lectors>	~
!			!
+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+

Figure 129 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 130 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- An Ending Address field set to less than or equal to Prefix Y.

Possible Problems:

- Because the destination address of Echo Request is the TN itself, TN may respond to
 Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of
 sending Echo Request.
- The implementation may use different SA lifetimes by the implementation policy. In

that case, the tester must change the expiration time to wait CREATE_CHILD_SA request.

• CREATE_CHILD_SA request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(REKEY_SA)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Ni, [KEi], TSi, TSr
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Group 2.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA > IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	 > 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
 	 	 > 	<pre>* wait for the event of a timeout CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #6) V</pre>
N: REKEY_SA	ı		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 waits for the event of a timeout on NUT.
- 13. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Test IKEv2.SGW.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TU4	NILIT	TNIA	FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	> 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 <	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) wait for the event of a timeout
	 	 > 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #6)
	 < 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
		-X	* wait for the event of a timeout never send CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
	 V	l I V	(Judgment #7) V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Request to TH2.
- 9. Observe the messages transmitted on Link B

- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 waits for the event of a timeout on NUT.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 15. TN1 waits for the event of a timeout on NUT.
- 16. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 16: Judgment #7

The NUT stops the retransmissions of a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Group 2.3. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.I.1.2.3.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 	> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) V
N: REKEY_SA	ı		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TUA	NUIT	TNIA	FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	1	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
		• • •	•••
		> 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 	 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)
		 =======+ ========+	(Packet #7) (Judgment #7)
V N: REKEY_SA	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See below
Packet #7	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #8	See Common Packet #25

Packet #6: INFORMATIONAL response

1 deket ne	Tueket #6. If the Order ITTO TO IE Tesponse				
IPv6 Header	Source Address	TN1's Global Address on Link X			
	Destination Address	NUT's Global Address on Link A			
UDP Header	Source Port	500			
	Destination Port	500			
IKEv2 Header	IKE_SA Initiator's SPI	any			

		TOROM
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 15. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Response to the TH2.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 16: Judgment #7

The NUT forwards an Echo Request to the TH1.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.3: Lifetime of CHILD_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1		(Judgment #1)
	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
	1		(Packet #1)
	1		
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1		(Judgment #2)
	<		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	1		(Packet #2)
	1		
<		======+	IPsec {Echo Request}
	1		(Packet #3) (Judgment #3)
	+=======	:======+	> IPsec {Echo Reply}
!	ļ	ļ .	(Packet #4) (Judgment #4)
!	!	!	
!	ļ	!	* wait for the event of a timeout of CHILD_SA
	!	ļ	
X-		:======+	IPsec {Echo Request}
	I v		(Packet #5) (Judgment #5)
	X	· [IPsec {Echo Reply}
	Į	ļ	(Packet #6) (Judgment #6)
	l V	I V	
v	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #21

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Request to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TN1 waits for the event of a timeout on the NUT.
- 11. After timeout of CHILD_SA on the NUT, TH2 transmits an Echo Request to the TH1.
- 12. Observe the messages transmitted on Link A.
- 13. TH1 transmits an Echo Request to TH2.
- 14. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 12: Judgment #5

The NUT does not forward an Echo Request.

Step 14: Judgment #6

The NUT does not forward an Echo Reply with IPsec ESP using already expired CHILD_SA.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	 	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 ======= ======== 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	 > 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packets #6
Packet #3	See Common Packets #21
Packet #4	See Common Packet #25

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link B.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP

using the first negotiated algorithms to NUT.

- 18. Observe the messages transmitted on Link A.
- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. Repeat Steps 17 through 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link B.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link B.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link B.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 29. Observe the messages transmitted on Link A.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link B.
- 32. Repeat Steps 28 through 31 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposals to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal	Proposal Protocol Encryption Integrity ESN				
Dowt A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN	
Part A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
 		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) V
N: REKEY_SA		

Packet #1	See Common Packet #2
Packet #2	See Common Packets #6
Packet #3	See Common Packets #21
Packet #4	See Common Packet #25

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.6: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles rekeying failure.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK(N(NO_PROPOSAL_CHOSEN)) (Packet #5)
	 	> 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #6)
	< 		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #6)
		> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #7)
N: REKEY_SA	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See Common Packet #2

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.

- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 reject the NUT's proposal and responds with a CREATE_CHILD_SA response with a Notify of type NO_PROPOSAL_CHOSEN.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #7

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.7: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds. Enable PFS.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	į i	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA
		 > 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 <	 > 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)
	 +=======================	 	IPsec {Echo Request} (Packet #7) (Judgment #7) > IPsec {Echo Request} (Packet #8) (Judgment #8)
V N: REKEY_SA	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #8	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

٠.		1
	IPv6 Header	Same as the Common Packet #16
	UDP Header	Same as the Common Packet #16
	IKEv2 Header	Same as the Common Packet #16
	E Payload	Same as the Common Packet #16
	N Payload	Same as the Common Packet #16

7 0710111		
N	Same as the Common I	Packet #16
SA	Same as the Common I	Packet #16
Nr	Next Payload	34 (KE)
KEr	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi	Same as the Common I	Packet #16
TSr	Same as the Common I	Packet #16

Packet #6: INFORMATIONAL response

TOTAL OTTIM	11101171D Tesponse	
IPv6 Header	Same as the Common Packet #18	
UDP Header		Same as the Common Packet #18
IKEv2 Header		Same as the Common Packet #18
E Payload	Other fields ar	e same as the Common Packet #18
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 15. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Response to the TH2.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 16: Judgment #7

The NUT forwards an Echo Request to the TH1.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.2.3.8: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 		
 	 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
 < 	 	IPsec {Echo Request} (old CHILD_SA) (Packet #6) (Judgment #6) IPsec {Echo Request} (old CHILD_SA) (Packet #7) (Judgment #7)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 5.
Packet #7	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES",

"PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Possible Problems:

Group 2.4. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.I.1.2.4.1: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

seconds.

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
(HOST)	(SGW)	į.	(HOST) IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #5)
	 	> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFROMATIONAL response (HDR, SK { }) (Packet #6)
	 	 	IPsec {Echo Request} (Packet #7) (Judgment #7) > IPsec {Echo Reply} (Packet #8) (Judgment #8)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #21
Packet #8	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.

- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to close the replaced IKE_SA.
- 15. TH2 transmits an Echo Request to TH1. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply to TH2.
- 18. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE SA.

Step 16: Judgment #7

The NUT forwards an Echo Request.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.2: Use of the new IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

THA NUT THA THO	FORUM				
TH1 NUT TN1 TH2					
(Host) (SGW) (SGW) (Host)					
(Judgment #1)					
(Packet #1)					
	2 TSi TSr3)				
	L, 101, 101j/				
	ro TSi TSrll				
	12, 101, 1017)				
(lacter #2)					
	vohongo				
< IPsec {Echo Request} repeat Echo ex	•				
(Packet #3) (Judgment #3) until lifetime	e or SA				
IPsec {Echo Reply} is expired					
(Packet #4) (Judgment #4)					
l iii iii iii iii iii iii iii iii iii i					
)				
(Judgment #5)					
	})				
(Packet #5)					
(Judgment #6)					
(Packet #6)					
(Packet #7)					
(Judgment #7)					
l v v v v					

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.

- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE SA.
- 15. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 16: Judgment #7

The NUT responds with an INFORMATIONAL response with no payloads cryptographically protected by the new IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.3: Lifetime of IKE_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	
(SGW) (SG	W)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)</pre>
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
1 '	<pre>INFORMATION Request (HDR, SK {}) (Packet #3)</pre>
1 '	INFORMATIONAL response (HDR, SK {}) (Judgment #3)
	wait for the event of a timeout of IKE_SA
	<pre>INFORMATION Request (HDR, SK {}) (Packet #4)</pre>
x	INFORMATIONAL response (HDR, SK {}) (Judgment #4)
	(Sudgmont #1)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an INFORMATIONAL request with no payloads using already expired IKE_SA.
- 10. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT responds with an INFORMATIONAL response with no payloads.

Step 10: Judgment #4

The NUT does not respond with an INFORMATIONAL response with no payloads using already expired IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms						
	Encryption PRF		Integrity	D-H Group			
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2			
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2			
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2 Group 14			

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		1	
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		1	(Judgment #1)
	<		IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
!	ļ	ļ	(Packet #1)
!	ļ	ļ	
!		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
!	ļ	ļ	(Judgment #2)
!	<		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	ļ	!	(Packet #2)
'	I	ı	
l			 I
	+=======	 ======+	IPsec {Echo Request}
	İ	i	(Packet #3) (Judgment #3) until lifetime of SA
	+=======	' :=====+	> IPsec {Echo Reply} is expired
li	1	1	(Packet #4) (Judgment #4)
l i	İ	i	
			•
	1	1	
		>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	1	1	(Judgment #5)
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link A.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1.
- 18. Observe the messages transmitted on Link B.
- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 17 through 20 until lifetime of SA is expired.

22. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1.
- 29. Observe the messages transmitted on Link B.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link A.
- 32. Repeat Steps 28 through 31 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 34. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 35. Observe the messages transmitted on Link A.
- 36. TN1 responds with an IKE_SA_INIT response to the NUT.
- 37. Observe the messages transmitted on Link A.
- 38. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 39. TH2 transmits an Echo Request to TH1.
- 40. Observe the messages transmitted on Link B.
- 41. TH1 transmits an Echo Reply to TH2.
- 42. Observe the messages transmitted on Link A.
- 43. Repeat Steps 39 through 42 until lifetime of SA is expired.
- 44. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE SA's SPI value in the SPI field.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part D

Step 35: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 37: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 40: Judgment #3

The NUT forwards an Echo Request.

Step 42: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 44: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H group 2" and "D-H group 14" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	 	 	
 V	 	 > 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" in SA Proposal #1 (ESP) and "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H group 14" in SA Proposal #2 (ESP) as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.6: Use of the old IKE_SA

Purpose:

To verify an IKEv2 device properly handles new IKE_SA and old IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
		> >	(Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
		 	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
		 	IPsec {Echo Request}
	 	> 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	< 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #5)
	< 	 > 	INFORMATIONAL request (HDR, SK {}) (Packet #6) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #17
	(Use old IKE_SA)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request to rekey IKE_SA from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is encrypted by the old IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 14: Judgment #6

The NUT transmits an INFORMATIONAL response with no payload. The message is encrypted by the old IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300

Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms						
	Encryption	Encryption PRF Integrity D-H Group					
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14			

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	 < 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA > IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #5)
	 <	 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFROMATIONAL response (HDR, SK { }) (Packet #6)
	 < 	i	INFORMATIONAL request (HDR, SK {}) (Packet #7) INFORMATIONAL response (HDR, SK {}) (Judgment #7)
l l V	V	l V	l V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #18
Packet #7	See Common Packet #17

Packet #5: CREATE_CHILD_SA response

Packet #5 is same as Common Packet #12 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE_SA.
- 15. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 16: Judgment #7

The NUT responds with an INFORMATIONAL response with no payloads cryptographically protected by the new IKE_SA.

Possible Problems:

Group 2.5. Creating New CHILD_SAs with the CREATE_CHILD_SA Exchanges

Test IKEv2.SGW.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #2	See Common Packet #6

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #6
UDP Header	Same as the Common Packet #6
IKEv2 Header	Same as the Common Packet #6

E Payload	Same as the	Common Packet #6
IDi Payload	Same as the	Common Packet #6
AUTH Payload	Same as the	Common Packet #6
N Payload	Same as the	Common Packet #6
SA Payload	Same as the	Common Packet #6
TSi Payload	Other fields are same as the	Common Packet #6
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #6
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.2.5.2: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to g enerate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

			FURUM	
TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
(,	1	1	(,	()
		>		
	 <			(Judgment #1) IKE_SA_INIT Response (HDR, SAr1,
				KEr, Nr) (Packet #1)
	 	 > 		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
				(Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
				(Packet #2)
<	' 	 ====+ 		IPsec {Echo Request} (Packet #3) (Judgment #3)
	+========= 	====+ 	> 	IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 +=========	 ====+	 	IPsec {Echo Request}
l i	1	İ		(Packet #5) (Judgment #5)
i	X	i	i	IPsec {Echo Request}
				(Packet #6) (Judgment #6)
		>		CREATE_CHILD_SA request (HDR,
		l I	l I	SK{SA, Ni, TSi, TSr}) (Judgment #7)
	 <			CREATE_CHILD_SA response (HDR, SK{SA, Nr, TSi, TSr})
	! 			(Packet #7)
	' +=================================	====+ 		IPsec {Echo Request} (Packet #8) (Judgment #8)
	-	====+	>	IPsec {Echo Reply}
				(Packet #9) (Judgment #9)
<	 	====+	 	IPsec {Echo Request} (Packet #10) (Judgment #10)
	 ================================	====+ 	!	> IPsec {Echo Reply} (Packet #11) (Judgment #11)
V	l V	l V	I V	l V

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 1 to Step 5.
Packet #6	See below
Packet #7	See below
Packet #8	See Common Packet #21
Packet #9	See Common Packet #25
	See below
Packet #10	This packet is cryptographically protected by the

	CHILD_SA negotiated at Step 14 to Step 16.
Packet #11	See below

• Packet #2: IKE_AUTH response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

			1
TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link B
		Ending Address	TH1's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link Y
		Ending Address	TH2's Global Address on Link Y

• Packet #5: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #6: Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	128
	Code	0

Identifier	any
Sequence Number	any
Payload Data	0x0000000000000000

• Packet #7: CREATE_CHILD_SA response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link B
		Ending Address	TH1's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link Y
		Ending Address	TH3's Global Address on Link Y

• Packet #10: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #11: Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	129
	Code	0

1 0110111			
	Identifier	any	
	Sequence Number	any	
	Payload Data	0x0000000000000000	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TH2 transmits an Echo Request packet to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply packet to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TH3 transmits an Echo Request packet to TH1.
- 11. Observe the messages transmitted on Link A.
- 12. TH1 transmits an Echo Request packet to TH3.
- 13. Observe the messages transmitted on Link B.
- 14. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 15. Observe the messages transmitted on Link B.
- 16. After a reception of CREATE_CHILD_SA request from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT with following Traffic Selector
- 17. TH2 transmits an Echo Request packet to TH1.
- 18. Observe the messages transmitted on Link A.
- 19. TH1 transmits an Echo Reply packet to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. TH3 transmits an Echo Request packet to TH1.
- 22. Observe the messages transmitted on Link A.
- 23. TH1 transmits an Echo Reply packet to TH3.
- 24. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT never forwards an Echo Request.

Step 13: Judgment #6

The NUT never forwards an Echo Request.

Step 15: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 2.6. Exchange Collisions

Test IKEv2.SGW.I.1.2.6.1: Simultaneous CHILD_SA Close

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA message to close CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
(11051)	(3011)	(36W)	(1051)
	 	·>	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1 1			(Judgment #1)
l i	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
<u> </u>	į	į	(Packet #1)
		·> ·>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
1 !		ļ	(Judgment #2)
			IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
		 * 	 wait until CHILD_SA expires
İ		>	INFORMATIONAL request (HDR, SK {D})
		ļ	(Judgment #3)
	<		INFORMATIONAL request (HDR, SK {D})
			(Packet #3)
	 <	·	INFORMATIONAL response (HDR, SK { })
	İ	į	(Packet #4)
	 	 ·>	 INFORMATIONAL response (HDR, SK { })
	į	į	(Judgment #4)
	 X	 {======+	IPsec {Echo Request}
			(Packet #5) (Judgment #5)
j	X	· j	IPsec {Echo Reply}
l i		i	(Packet #6) (Judgment #6)
l i	İ	į	, , , , , , , , , , , , , , , , , , , ,
V	v	Ÿ	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See below
Packet #4	See Common Packet #19
Packet #5	See Common Packet #21
Packet #6	See Common Packet #25

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)

		1 01(011)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request to close CHILD_SA established at Step 5.
- 9. TN1 responds with an INFROMATIONAL response with no payload to an INFORMATIONAL resquest received at Step 7.
- 10. Observe the messages transmitted on Link A.
- 11. TH2 transmits an Echo Request to TH1.
- 12. Observe the messages transmitted on Link B.
- 13. TH1 transmits an Echo Reply to TH2.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Step 10: Judgment #4

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close CHILD SA.

Step 12: Judgment #5

The NUT forwards an Echo Request.

Step 14: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.2: Simultaneous IKE_SA Close

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA message to close IKE_SA.

References:

• [RFC 4718] - Sections 5.11.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

(COM)	
(SGW)	(SGW)
İ	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 > IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
< 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr} (Packet #2)
į	* wait until expiring CHILD_SA
	> INFORMATIONAL request (HDR, SK {D}) (Judgment #3)
 <	INFORMATIONAL request (HDR, SK {D}) (Packet #3)
 < 	INFORMATIONAL response (HDR, SK { }) (Packet #4)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #4)
 <	 INFORMATIONAL request (HDR, SK { }) (Packet #5)
X	INFORMATIONAL response (HDR, SK { }) (Judgment #5)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See below
Packet #4	See Common Packet #17
Packet #5	See Common Packet #17

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request to close CHILD_SA established at Step 5.
- 9. TN1 responds with an INFROMATIONAL response with no payload to an INFORMATIONAL response received at Step 7.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is

cryptographically protected by IKE_SA to be closed.

12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inbound SPI value to be deleted as SPI.

Step 10: Judgment #4

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close CHILD_SA.

Step 12: Judgment #5

The NUT never transmits an INFORMATIONAL response with no payload.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.3: Simultaneous CHILD_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	FORUM TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	i	 =======+ =======+	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired
			(Packet #4) (Judgment #4)
		 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 	· 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5)
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #6)
	 < 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #6)
		·> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #7)
	< 	· 	INFORMATIONAL response (HDR, SK {D}) (Packet #7)
 	 	 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #8)
 	< 	· 	INFORMATIONAL response (HDR, SK {D}) (Packet #8)
	 	 =======+ 	IPsec {Echo Request} (new CHILD_SA) (Packet #9) (Judgment #9)
	 ===============================	:======+ 	> IPsec {Echo Reply} (new CHILD_SA) (Packet #10) (Judgment #10)
I V	I V	V	I V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See Common Packet #16
Packet #7	See below

Packet #8	See below
Packet #9	See Common Packet #21
Packet #10	See Common Packet #25

Packet #7: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #8: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0

	Reserved	0
	-	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
		NUT's inbound CHILD_SA SPI value of the new CHILD_SA initiated by
	Security Parameter Index	the NUT at Step 9

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA expires.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with a CREATE_CHILD_SA response to the CRETE_CHILD_SA received at Step 9. The response message includes minimum Nonce Data.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 15.
- 17. Observe the messages transmitted on Link A.
- 18. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 17.
- 19. TH2 transmits an Echo Request to TH1.
- 20. Observe the messages transmitted on Link B.
- 21. TH1 transmits an Echo Reply to TH2.
- 22. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 18: Judgment #8

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the new CHILD_SA initiated by the NUT at Step 11.

Step 20: Judgment #9

The NUT forwards an Echo Request.

Step 22: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM			
TH1	NUT	TN1	TH2	
(Host)	(SGW)	(SGW)	(Host)	
` '			` '	
1		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
1 !	1	l I	(Judgment #1)	
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	l	l	(Packet #1)	
		>	IKE_AUTH request (HDR, SK {IDi, AUTH,	
	1		SAi2, TSi, TSr})	
l i	i	i	(Judgment #2)	
l i	<	i	IKE_AUTH response (HDR, SK {IDr, AUTH,	
1 1	`	 	SAr2, TSi, TSr})	
	ļ	l I	(Packet #2)	
1	I	I	I	
			•••	
	l	I		
<	+======	======+	IPsec {Echo Request} repeat Echo exchange	
		1	(Packet #3) (Judgment #3) until lifetime of SA	
	· +======	· ======+		
l i	1	1	(Packet #4) (Judgment #4)	
		l I	\.\ \document	
'	ı	I		
l				
!	!	!		
		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})	
			(Judgment #5)	
l i	<		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})	
l i	i	i	(Packet #5)	
			CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})	
	1		• • • • • • • • • • • • • • • • • • • •	
1 :	1	l I	(Judgment #6)	
1 !	!	ļ		
	<		INFORMATIONAL request (HDR, SK {D})	
			(Packet #6)	
		>	INFORMATIONAL response (HDR, SK {D})	
l 1		I	(Judgment #7)	
l i	i	i	· · · · · · · · · · · · · · · · · · ·	
Li	İ	>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})	
			(Judgment #8)	
	1	l I	, , ,	
!	<		CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}	
!	ļ	I	(Packet #7)	
	l	I		
<		======+	IPsec {Echo Request} (new CHILD_SA)	
l ı		I	(Packet #8) (Judgment #9)	
j	· · +======	· :======+	> ÎPsec {Echo Reply} (new CHILD_SA)	
l i	i	i I	(Packet #9) (Judgment #10)	
		 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	l V	l V	l V	
V	V	V	V	
N: REKEY_SA				

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #6	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	
Packet #5	See Common Packet #15	
Packet #6	See below	
Packet #7	See below	
Packet #8	See Common Packet #21	
Packet #9	See Common Packet #25	

Packet #6: INFORMATIONAL request

		· ·
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #7: CREATE CHILD SA response

7. CKEATE_CITE	D_SA response	
IPv6 Header		Same as Common Packet #14
UDP Header		Same as Common Packet #14
IKEv2 Header		Same as Common Packet #14
E Payload		Same as Common Packet #14
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	10
	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.

- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 transmits an INFORMAITONAL request with a Delete Payload to close the replaced CHILD SA.
- 15. Observe the messages transmitted on Link A.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the retransmitted CREATE_CHILD_SA request.
- 18. TH2 transmits an Echo Request to TH1.
- 19. Observe the messages transmitted on Link B.
- 20. TH1 transmits an Echo Reply to TH2.
- 21. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL response with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 16: Judgment #8

The NUT retransmits the same CREATE_CHILD_SA request as the message at Step 11. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 19: Judgment #9

The NUT forwards an Echo Request.

Step 21: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.5: Simultaneous IKE_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
(11031)	(5011)	(3011)	(1031)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
		> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 	 	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
l			•
	 		IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
			•••
	 	 > 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	 <	 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
		> 	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #6)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #6)
		 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #7)
	<	 	INFORMATIONAL response (HDR, SK {}) (Packet #7)
		 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #8)
	 	 	INFORMATIONAL response (HDR, SK {}) (Packet #8)
	 <		INFORMATIONAL request (HDR, SK {}) (new IKE_SA) (Packet #9)
 V	 V	> 	INFORMATIONAL response (HDR, SK {}) (new IKE_SA) (Judgment #9) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11
Packet #6	See Common Packet #12
Packet #7	See Common Packet #18
Packet #8	See Common Packet #18
Packet #8	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with a CREATE_CHILD_SA response to the CREATE_CHILD_SA request received at Step 11. The response message includes minimum Nonce Data to make the NUT send a message to close duplicated IKE SA.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response with no payload.
- 17. Observe the messages transmitted on Link A.
- 18. TN1 responds with an INFORMATIONAL response with no payload.
- 19. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is cryptographically protected by the new IKE_SA initiated by TN1 at Step 12.
- 20. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the original IKE_SA, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the original IKE_SA. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 17: Judgment #8

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the new IKE_SA initiated by the NUT at Step 9, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the new IKE_SA initiated by the NUT at Step 9. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 20: Judgment #9

The NUT transmits an INFOMATIONAL response with no payload.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 	 	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	l		I
	 	 > 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	 < 		CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
	 	> 	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #6)
	< 	į	INFORMATIONAL request (HDR, SK {D}) (Packet #6)
	 		INFORMATIONAL response (HDR, SK {}) (Judgment #7)
l I V	X V	 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #8) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11
Packet #6	See below

Packet #6: INFORMATIONAL request

racket #0	5. INFORMATIONAL request	
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	anv

		7 01(0)))
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE CHILD SA request to rekey IKE SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 transmits an INFORMATONAL request to close the original IKE_SA. The message has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 15. Observe the messages transmitted on Link A.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 15: Judgment #7

The NUT responds with an INFOMATIONAL response to the INFORMATIONAL request to close the original IKE_SA.

Step 16: Judgment #8

The NUT never retransmits a CREATE_CHILD_SA request transmitted at Step 11.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA

Purpose:

To verify an IKEv2 device properly handles simultaneous closing and rekeying a CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	11
(SGW) (SG	W)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
į į	(Judgment #1)
	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)</pre>
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
*	wait until CHILD_SA expires
	<pre>INFORMATIONAL request (HDR, SK {D}) (Judgment #3)</pre>
	CREATE_CHILD_SA request (HDR, SK {N, SA, Nr, TSi, TSr}) (Packet #3)
	<pre>INFORMATIONAL response (HDR, SK {D}) (Packet #4)</pre>
>	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}) (Judgment #4)
V V	
N: REKEY_SA	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Packet #3	See Common Packet #15
Packet #4	See below

Packet #4: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD SA SPI value of the original CHILD SA

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey a CHILD_SA.
- 8. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close a CHILD_SA.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATONAL request to close a CHILD_SA.

Step 9: Judgment #4

The NUT responds with a CREATE_CHILD_SA response to a CREATE_CHILD_SA reqest to rekey a CHILD_SA. The CREATE_CHILD_SA response includes a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.8: Closing a New CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a request to close nonexistent CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.6

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
(
l i	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i i	(Judgment #1)
l i	<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	į į	(Packet #1)
ĺ	i i	
1	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
		SAi2, TSi, TSr})
		(Judgment #2)
	<	IKE_AUTH response (HDR, SK {IDr, AUTH,
l		SAr2, TSi, TSr})
		(Packet #2)
	! !	L Dese (Caba Danwart)
<	· - 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA
	 +===========+	
	· · · · · · · · · · · · · · · · · · ·	(Packet #4) (Judgment #4)
		(Tacket #4) (Sudgment #4)
<u> </u>		
l i	1 1	
i	>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
i	i i	(Judgment #5)
l i	X	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
l į	i i	(Packet #5)
l i	i i	i ·
l į	<	INFORMATIONAL request (HDR, SK {D})
İ	i i	(Packet #6)
1	>	INFORMATIONAL response (HDR, SK {})
	I I	(Judgment #6)
V	V	V
N: REKEY_SA		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See below

Packet #6: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0

	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA response to rekey a CHILD_SA to the NUT. But the response does not reach the NUT.
- 13. TN1 transmits an INFORMATIONAL request to close a CHILD_SA which were supposed to be created by rekey.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT responds with an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.9: Rekeying a New CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a request to rekey nonexistent CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.7

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
	į	(Packet #5)
		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #6)
 		 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
 {N(NO_PROPOS		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #6)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See Common Packet #15
	The SPI value in the Delete payload is the same
	value as the SPI value in Packet #5 SA payload.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.

- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA response to rekey a CHILD_SA to the NUT. But the response does not reach the NUT.
- 13. TN1 transmits a CREATE_CHILD_SA request to rekey the CHILD_SA which were supposed to be created by rekey.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT responds with a CREATE_CHILD_SA response with a Notify of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs

Purpose:

To verify an IKEv2 device properly handles a request to rekey an IKE_SA which has CHILD_SAs in half-open state.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

THA	NILIT	TNI4	TIO
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH,
 < 	 	: 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
			•••
	 	>	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
	 	> 	CREATE_CHILD_SA response (HDR, SK{N(NO_PROPOSAL_CHOSEN)}) (Judgment #6)
V N: REKEY_SA	l V	I V	(Juagment #6)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to rekey a CHILD_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 < 	
		IKE_AUTH request (HDR, SK {IDi, AUTH,
	 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr }) (Packet #5) CREATE_CHILD_SA response (HDR, SK{N(NO_ADDITIONAL_SAS)}) (Judgment #6)
N: REKEY_SA	v v	v

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey a CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_ADDTIONAL_SAS to a CREATE_CHILD_SA request to rekey a CHILD_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs

Purpose:

To verify an IKEv2 device properly handles a request to rekey an IKE_SA which has CHILD_SAs in half-closed state.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #11

Part A: (BASIC)

1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA to the NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATIONAL request to close a CHILD_SA to the TN1.

Step 8: Judgment #4

The NUT responds with a CREATE_CHILD_SA response which has a Notify of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to close a CHILD_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 	· 	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	;;;		(Tacket #2)
	 	 -======+ -======+	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	·> 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	 < 	 	 INFORMATIONAL request (HDR, SK {D}) (Packet #5)
l l V	 V	> 	INFORMATIONAL response (HDR, SK{}) (Judgment #6) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMATIONAL request to close a CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds with an INFORMATIONAL response with no payload.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA

Purpose:

To verify an IKEv2 device properly handles a request to close an IKE_SA after IKE_SA rekey has been started.

References:

• [RFC 4718] - Sections 5.11.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

		FORUM
TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
1 1		
l i	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i i	(Judgment #1)
l i	<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1 i	i i	(Packet #1)
1 1	i	(1 46/64 117)
1 ;	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
1 ¦		SAi2, TSi, TSr})
		(Judgment #2)
1 !	<	IKE_AUTH response (HDR, SK {IDr, AUTH,
!	! !	SAr2, TSi, TSr})
!	! !	(Packet #2)
		•••
<		IPsec {Echo Request} repeat Echo exchange
		(Packet #3) (Judgment #3) until lifetime of SA
		> IPsec {Echo Reply}
		(Packet #4) (Judgment #4)
		•••
1 1		
l i	>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
l i	i i	(Judgment #5)
1 i	i i	
1 i	<	INFORMATIONAL request (HDR, SK {D})
1 1		(Packet #5)
1 ¦		(1 401.01 110)
1		CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN})
1		(Packet #6)
1 !	1 1	(Facket #0)
1 !		
1 !	>	INFORMATIONAL response (HDR, SK{})
1 !	Ţ Ţ	(Judgment #6)
V	V V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0

	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
		The same value as block length of the underlying encryption
	Initialization Vector	algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Packet #6: CREATE_CHILD_SA response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	14 (NO_PROPOSAL_CHOSEN)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.

4 Observe the messages transmitted on Link A

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMATIONAL request to close an IKE_SA to the NUT.
- 13. TN1 responds with a CREATE_CHILD_SA response which has a Notify payload of type NO_PROPOSAL_CHOSEN to a CREATE_CHILD_SA request to rekey an IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT responds with an INFORMATIONAL response with no payload to an INFORMATIONAL request to close an IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE_SA

Purpose:

To verify an IKEv2 device properly handles simultaneous closing and rekeying an IKE_SA.

References:

• [RFC 4718] - Sections 5.11.10

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
j	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
li	(Judgment #1)
	, – – , , , , , , , , , , , , , , , , ,
	(Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l i	(Packet #2)
l i	
	* wait until CHILD_SA expires
	I
	INFORMATIONAL results (UDD OK (D))
!	> INFORMATIONAL request (HDR, SK {D})
	(Judgment #3)
<	CREATE_CHILD_SA request (HDR, SK { SA, Ni })
	(Packet #3)
l i	
i	> CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN})
li	(Judgment #4)
	(Gadymorit 117)
V	v

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #11

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey an IKE_SA.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an INFORMATONAL request to close an IKE_SA.

Step 8: Judgment #4

The NUT responds with a CREATE_CHILD_SA response to a CREATE_CHILD_SA reqest to rekey an IKE_SA. The CREATE_CHILD_SA response includes a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

Group 2.7. Non zero RESERVED fields

Test IKEv2.SGW.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 	 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr} (Packet #2)
 < 	 	 	
		> 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr} (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 	> 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #6)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT. All RESERVED fields in the message are set to one.

13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.SGW.I.1.3.1.1: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device transmits an INFORMATIONAL request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE_SA_INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 13. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request including properly formatted IKE Header containing following values:

Figure 131 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.

- A Minor Version field is set to zero.
- An Exchange Type field is set to INFORMATIONAL (37).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to the value incremented the previous IKE message's Message ID by one.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 1: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL request including properly formatted Encrypted Payload containing following values:

Figure 132 Encrypted payload

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR 3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum

must be valid by calculation according to the manner described in RFC.

Possible Problems:

• None

Group 3.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.3.2.1: Retransmission of INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
- In each part, configure the devices according to the Common Configuration. Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

```
NUT
                TN1
                (SGW)
(SGW)
                 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Judgment #1)
                 -| IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
                   (Packet #1)
                ->| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                  | (Judgment #2)
                   IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                   (Packet #2)
                    wait until receiving a liveness check
                >| INFORMATIONAL request (HDR, SK {})
                   (Judgment #3)
                    wait for the event of a timeout
                    INFORMATIONAL request (HDR, SK {})
                    (Judgment #4)
```

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for reception of IKE_AUTH response from the NUT.
- 6. TN1 waits for reception of INFORMATIONAL request for liveness check from the NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it. And the request has the same Message ID value as the request received at Step 7.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN (SGW) (SG	
j i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
į į	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
j i	wait until receiving a liveness check INFORMATIONAL request (HDR, SK {}) (Judgment #3) wait for the event of a timeout
į į	INFORMATIONAL request (HDR, SK {}) (Judgment #4) INFORMATIONAL response (HDR, SK {}) (Packet #3)
	wait for the event of a timeout never send INFORMATIONAL request (HDR, SK {}) (Judgment #5)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. TN1 waits for reception of IKE_AUTH response from the NUT.
- 6. TH2 transmits an Echo Request to TH1, then TN1 forwards an Echo Request with invalid SPI.
- 7. Observe the messages transmitted on Link B.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of an INFORMATIONAL request from the NUT, TN1 responds with an INFORMATIONAL response to the NUT.
- 11. TN1 waits for the event of a timeout on NUT.
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT transmits an INFORMATIONAL request followed by an Encrypted payload with no payloads contained in it. And the request has the same Message ID value as the request received at Step 7.

Step 12: Judgment #5

The NUT never retransmits an INFORMATIONAL request which has the same Message ID value as the received Step 9.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Group 3.3. Non zero RESERVED fields

Test IKEv2.SGW.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime and CHILD_SA Lifetime to more than twice as INFORMATIONAL message retransmission timer as.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

N	UT TI	V1
(S	GGW) (SG	GW)
	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	< 	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Packet #1)
	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	Í I	* wait until receiving a liveness check
	> 	INFORMATIONAL request (HDR, SK {}) (Judgment #3)
	 < 	INFORMATIONAL response (HDR, SK {}) (Packet #3)
	X 	INFORMATIONAL request (HDR, SK {}) (Judgment #3)
	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #18

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 waits for receiving an INFORMATIONAL request with no payloads.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 responds with an INFORMATIONAL response with no payload to the NUT. All RESERVED fields in the message are set to one.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL request followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #4

The NUT never retransmit an INFORMATIONAL request.

Possible Problems:

None

Group 3.4. Error Handling

Test IKEv2.SGW.I.1.3.4.1: INVALID_SPI

Purpose:

To verify an IKEv2 device properly handles ESP packet with invalid SPI.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
			(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
			(Packet #1)
		>	IKE_AUTH request (HDR, SK {IDi, AUTH,
		l	SAi2, TSi, TSr})
			(Judgment #2)
	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
			SAr2, TSi, TSr})
			(Packet #2)
	X	=====+	IPsec {Echo Request}
		l	(Packet #3) (Judgment #3)
		>	INFORMATIONAL request (HDR, SK {N(INVALID_SPI)})
		l	(Judgment #4)
		l	
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #21
	This packet has an invalid SPI value
	(the properly netotiated value plus 1).

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms. The message's SPI is set to the value of the SPI negotiated in the initial exchange plus 1.
- 7. Observe the messages transmitted on Link A.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never forwards an Echo Request.

Step 8: Judgment #3

The NUT transmits an INFORMATIONAL request with a Notify payload of type INVALID_SPI. The Notify payload includes the SPI value which is transmitted at Step 6.

Possible Problems:

None.

Section 2.1.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packets
-----------	--------------------

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link B.
- 7. TN1 responds with an IKE SA INIT response to the NUT.

8. Observe the messages transmitted on Link B.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link B.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link B.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link B.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link B.

Part E: SA Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link B.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link B.

Part F: TSi Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link B.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link B.

Part G: TSr Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link B.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

1 OKOM
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 133 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (1610).
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 134 Encrypted payload

- A Next Payload field set to IDi Payload (35).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 135 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 136 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
I	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 137 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 138 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 139 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 140 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

Figure 141 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

1 Orton	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-	+-+-+
! TS Type !IP Protocol ID* Selector Length	
+-	+-+-+
Start Port* End Port*	
+-	+-+-+
!	!
~ Starting Address*	~
!	!
+-	+-+-+
!	!
~ Ending Address*	~
!	!
+-	+-+-+

Figure 142 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 143 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 144 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to TN1 address.
- An Ending Address field set to less than or equal to TN1 address.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

• Each of transforms can be located in the any order.

Test IKEv2.SGW.I.2.1.1.2: Use of CHILD SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
1 1		
l i		> IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	(Judgment #1)
l i	<	IKE_SA_INIT Response (HDR, SAr1, KEr, Nr)
l i	i	Packet #1)
l i	i	
l i	j	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l i	i	(Judgment #2)
l i	<	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l i	i	(Packet #2)
l i	i	1
<	' +=======	IPsec {Echo Request}
	i	(Judgment #3)
	' +=======	=====> IPsec {Echo Reply}
l i	i	(Judgment #4)
1 i	i	
\(\frac{1}{V} \)	I V	V
, v	v	v

Packet #1	See Common Packets
Packet #2	See Common Packets

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TN1.
- 9. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

Because the destination address of Echo Request is the TN itself, TN may respond to
Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of
sending Echo Request.

Section 2.2. Responder
Section 2.2.1. Security Gateway to Security Gateway Tunnel
Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.R.1.1.1.1: Sending IKE_SA_INIT response

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A..

Part B: SA Payload Format (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A..

Part C: KE Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A..

Part D: Nonce Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted IKE Header containing following values:

Figure 145 Header format

- An IKE_SA Initiator's SPI field set to IKE_SA Initiator's SPI field value supplied in the first IKE_SA_INIT request message.
- An IKE_SA Responder's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_SA_INIT (34).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to zero.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1	2		3		
0 1 2 3	3 4 5 6	6 7 8 9	0 1 2 3	45678901	2 3 4 5 6	7 8 9 0 1		
! Next	34	!0!	0	! Length	44			
!	0	!	0	! Length	40	!		
+-+-+-+ !	-+-+-+ 3	·+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+- ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
!	3	!	0	! Length	8	!	 	 SA Payload
						(SHA1) !	Proposal 	
!	3	!	0	! Length	8	!	 	
						(SHA1) !	 	
+-+-+-+ !	-+-+-+ 0	-+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
	+-+-++ ! Next +-+-++ ! Numbe ++-+ ! Type ++- ! Type + ! Type + ! Type + ! Type + ! Type	! Next 34 +-+	! Next 34 !0! !	! Next 34 !0! 0 +-+	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ! Next 34 !0! 0 ! Length 44 ! ! O ! 0 ! Length 40 ! ! Number 1 ! Prot ID 1 ! SPI Size 0 ! Trans Cnt 4 ! ! 3 ! 0 ! Length 8 ! ! Type 1 (EN)! 0 ! Transform ID 3 (3DES)! ! Type 2 (PR)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)!	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Next

Figure 146 SA Payload contents

The NUT transmits an IKE_SA_INIT response including properly formatted SA Payload containing following values (refer following figures):

Figure 147 SA Payload format

- A Next Payload field set to KE Payload (34).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 148 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to IKE (1).
- A SPI Size field set to zero.
- A # of Transforms field set to 4.

A Transform field set to following (There are 4 Transform Structures).

Figure 149 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.

- A Transform Type field set to PRF (2).
- A RESERVED field set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #4

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field set to D-H (4).
- A RESERVED field set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted KE Payload containing following values:

Figure 150 KE Payload format

- A Next Payload field set to Nonce Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field set to Group2 (2).
- A RESERVED field set to zero.
- A Key Exchange Data field set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Part D

The NUT transmits an IKE_SA_INIT response including properly formatted Nonce Payload containing following values:

Figure 151 Nonce Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
SA, KE, Nr,
[N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.1.1.1.2: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUHT response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 NUT: 1: 11 1 6

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A...
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 8. Observe the messages transmitted on Link A...

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 12. Observe the messages transmitted on Link A..

Part D: AUTH Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A..
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A..

Part E: SA Payload Format (BASIC)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A..
- 19. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 20. Observe the messages transmitted on Link A..

Part F: TSi Payload Format (BASIC)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A..
- 23. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 24. Observe the messages transmitted on Link A..

Part G: TSr Payload Format (BASIC)

- 25. TN1starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A...
- 27. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

T OROM
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 152 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 153 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 154 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 155 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 20: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
ı	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 156 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 157 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 158 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 159 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 160 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

	7 0/10	111	
	1	2	3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5 6 7	8901
+-+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+
! TS Type !IF	Protocol ID*	Selector Length	1
+-+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+
Start F	Port*	End Port*	1
+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+
!			!
~	Starting	Address*	~
!			!
+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+
!			!
~	Ending Ad	ldress*	~
!			!
+-+-+-+-+-+-	+-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-	+-+-+-+

Figure 161 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- A Ending Address field set to greater that or equal to Prefix Y.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 162 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 163 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr, [CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
!	ļ.	!	
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
i	i	i	(Judgment #1)
ļ ļ	Ţ	ļ	
	<		IKE_AUTH request (HDR, SK {IDi, AUTH,
	l I	l I	SAi2, TSi, TSr}) (Packet #2)
		·>	IKE_AUTH response (HDR, SK {IDr, AUTH,
i	į	i	SAr2, TSi, TSr})
	1	1	(Judgment #2)
	ļ	ļ	
<	· +=========================	:======+ 	IPsec {Echo Request} (Packet#3) (Judgment #3)
	(+=======	 =======+	·> IPsec {Echo Reply}
i	1	1	(Packet #4) (Judgment #4)
	1	1	l
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1.

- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response, if a retransmission of the response is triggered.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1			
Packet #2	See Common Packet #1			
	(The Message ID is the same as Packet #1)			

Part A: (BASIC)

- 1. TN1 starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. Observe the messages transmitted on Link A.
- 4. TN1 retransmits the same IKE_SA_INIT request as the message transmitted in Step 1 to the

NUT.

5. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 3: Judgment #2

The NUT never retransmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Step 5: Judgment #3

The NUT transmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH response, if a retransmission of the response is triggered.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	···-> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
li	(Judgment #2)
l i	
	* wait until retrans timer expires
X	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Judgment #3)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #3)
	> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #4)
	\Juagiiion (#4)
ľ	V

Packet #1	See Common Packet #1		
Packet #2	See Common Packet #5		
Packet #3	See Common Packet #5		
	(The Message ID is the same as Packet #2)		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A...
- 3. TN1 transmits an IKE_AUTH request to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. Observe the messages transmitted on Link A.
- 6. TN1 retransmits the same IKE_AUTH request as the request transmitted in Step 3 to the NUT.
- 7. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 5: Judgment #3

The NUT never retransmits the same IKE_AUTH response as the response transmitted at Step 4.

Step 7: Judgment #4

The NUT transmits the same IKE_AUTH response as the response transmitted at Step 4.

Possible Problems:

None.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.R.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
	 < 	 	 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	< 		 	IKE_AUTH request (HDR, SK {IDi, AUTH,SAi2, TSi, TSr}) (Packet #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
 	 	 	====== ======+	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	i 	i i	Destination Unreachable (No route to destination) (Packet #5)
 	 	 	 	IPsec {Echo Request} (Packet #6) (Judgment #5)> IPsec {Echo Reply} (Packet #7) (Judgment #6)
V	V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
Packet #7	See Common Packet #25

• Packet #5: ICMPv6 Destination Unreachable

IPv6 Header	v6 Header Source Address			TR1's Global Address on Link A
Destination Address		NUT's Global Address on Link A		
ICMPv6	Туре			1
	Code			0
	Data	IP Header	Source Address	NUT's Global Address on Link A
			Destination Address	TN1's Global Address on Link X
			Next Header	50 (ESP)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 6. Observe the messages transmitted on Link A...
- 7. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A...
- 9. TR1 transmit an ICMP Destination Unreachable Message to the NUT.
- 10. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 11. Observe the messages transmitted on Link A..
- 12. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
				IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	 	 	 	(Judgment #2) IPsec {Echo Request} (Packet #3) (Judgment #3)> IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	 	 	IKE Message (Packet #5)
	 	 	 	IPsec {Echo Request} (Packet #6) (Judgment #5) > IPsec {Echo Reply} (Packet #7) (Judgment #6)
V	V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

7 01(011)			
Packet #5	See below		
Packet #6	See Common Packet #21		
Packet #7	See Common Packet #25		

Packet #5: cryptographicaly unprotected INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port 50	
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A..
- 9. TR1 transmit a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID_ SPI to the NUT.
- 10. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 11. Observe the messages transmitted on Link A..
- 12. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT

Purpose:

To verify an IKEv2 device closes connections when receiving INITIAL_CONTACT.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 7.9

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

IKEv2 on the NUT is disabled after each part.

- Configuration
- In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence

_

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
(11031)	(0011)	(0011)	(1031)
1 i	 <		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	i	((Packet #1)
l i	j	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	İ	i	(Judgment #1)
l i	į	j	
	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1		(Packet #2)
		>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	I		(Judgment #2)
!	I	l	
<	+======	:======+	IPsec {Echo Request}
	I	 ========+	(Packet #3) (Judgment #3) > IPsec {Echo Reply}
	+ ======	:=======+ I	(Packet #4) (Judgment #4)
			(Tacket #4) (Sudgment #4)
1 1	 <		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	i	(Packet #5)
l i	j	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	i	i	(Judgment #5)
i	ĺ	ĺ	
	<		IKE_AUTH request (HDR, SK {IDi, N(INITIAL_CONTACT),
			AUTH, SAi2, TSi, TSr})
	I	l	(Packet #6)
		>	IKE_AUTH Response (HDR, SK {IDr,
!	!	!	AUTH, SAr2, TSi, TSr})
1 !	ļ	ļ	(Judgment #6)
.	l 	I	
X<		:=======+ 	IPsec {Echo Request}
	 +======	.y I	(Packet #7) (Judgment #7) IPsec {Echo Request}
	 	-^ 	(Packet #8) (Judgment #8)
			(Tacket #0) (Gaagment #0)
<	' +======	' :======+	· IPsec {Echo Request}
1 i	1	I	(Packet #9) (Judgment #9)
j	·+======	:======+	, , ,
1 i	1	1	(Packet #10) (Judgment #10)
	1	1	1
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #1
Packet #6	See below
Packet #7	See Common Packet #21
	This packet is cryptographically
	protected by the CHILD_SA
	negotiated at Step 1 to Step 4.
Packet #8	See Common Packet #25
	This packet is cryptographically
	protected by the CHILD_SA
	negotiated at Step 1 to Step 4.
Packet #9	See Common Packet #21
	This packet is cryptographically

	1 0110111
	protected by the CHILD_SA
	negotiated at Step 9 to Step 12.
Packet #10	
	This packet is cryptographically
	protected by the CHILD_SA
	negotiated at Step 9 to Step 12.

Packet #6: IKE_AUTH request

IPv6 Header	Sar	me as the Common Packet #5	
UDP Header	Same as the Common Packet #5		
IKEv2 Header	Sar	me as the Common Packet #5	
E Payload	Sar	me as the Common Packet #5	
IDi Payload	Next Payload	41 (N)	
	Other fields are sar	me as the Common Packet #5	
N Payload	Next Payload	39 (AUTH)	
	Critical	0	
	Reserved	0	
	Payload Length	8	
	Procotol ID	0 (undefined)	
	SPI Size		
	Notify Message Type 16384 (INITIAL_CONTACT)		
AUTH Payload	Same as the Common Packet #5		
SA Payload	Same as the Common Packet #5		
TSi Payload	Same as the Common Packet #5		
TSr Payload	Same as the Common Packet #5		

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A...
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A...
- 9. After reception of an Echo Reply from NUT, TN1 transmits IKE_SA_INIT request to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request with a Notify payload of type INITIAL_CONTACT to the NUT.
- 12. Observe the messages transmitted on Link A..
- 13. TH2 transmits an Echo Request to TH1. TN1 forwards the Echo Request with IPsec ESP using the first negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link B...
- 15. TH1 transmits an Echo Request to TH1.
- 16. Observe the messages transmitted on Link A..
- 17. TH2 transmits an Echo Request to TH1. TN1 forwards the Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 18. Observe the messages transmitted on Link B...
- 19. TH1 transmits an Echo Request to TH1.
- 20. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #6

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 14: Judgment #7

The NUT never forwards an Echo Request to the TH1.

Step 16: Judgment #8

The NUT never forwards an Echo Request to the TH2 with IPsec ESP using the first negotiated algorithms or the second negotiated algorithms.

Step 18: Judgment #9

The NUT forwards an Echo Request.

Step 20: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using the second algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.3.4: Receiving Liveness check

Purpose:

To verify an IKEv2 device checks whether the other endpoint is alive.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
NUT
(SGW)
                (SGW)
                 - | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
                ->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
                --| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                    (Packet #2)
                    IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                    (Judgment #2)
                    INFORMATIONAL request (HDR, SK {})
                    (Packet #3)
                    INFORMATIONAL response (HDR, SK {})
                    (Judgment #3)
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.5: Receiving Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
NUT
(SGW)
                (SGW)
               --- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Packet #1)
              --->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
           ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                  | (Packet #2)
               -->| IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                  | (Judgment #2)
               ---| INFORMATIONAL request (HDR, SK {D})
                  | (Packet #3)
               -->| INFORMATIONAL response (HDR, SK {})
                  | (Judgment #3)
                 V
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: INFORMATIONAL request

ID CII I	0 411	TNH' OLL LALL LILV
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

		TOROW
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payloads.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.6: Receiving Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
NUT
(SGW)
                (SGW)
               --- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Packet #1)
              --->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                 | (Judgment #1)
           ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                  | (Packet #2)
              -->| IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                  | (Judgment #2)
              ---| INFORMATIONAL request (HDR, SK {D})
                  | (Packet #3)
               ->| INFORMATIONAL response (HDR, SK {D})
                  | (Judgment #3)
                 V
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: INFORMATIONAL request

ID CII I	0 411	TNH' OLL LALL LILV
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

		1 OKOW
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the TN1's inbound SPI value to be deleted as SPI value.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Possible Problems:

None

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.SGW.R.1.1.4.1: Receipt of a higher minor version number

Purpose:

To verify an IKEv2 device drops a message with a higher minor version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 S	See below
-------------	-----------

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common P	acket #1
UDP Header	Same as the Common Packet #1	
IKEv2 Header	Other fields are same as the Common Packet #1	
	Major Version	2
	Minor Version	1
SA Payload	Same as the Common P	acket #1
KE Payload	Same as the Common Packet #1	
Ni, Nr Payload	Same as the Common P	acket #1

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request with a higher minor version number.
- 2. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.2: Receipt of a higher major version number

Purpose:

To verify an IKEv2 device drops a message with a higher major version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
 	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
<	INFORMATIONAL request (HDR, SK{}) (Packet #3)
X 	No Response or
j	> INFORMATIONAL response (HDR, SK{N(INVALID_MAJOR_VERSION (Judgment #3)

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: INFORMATIONAL response packet

IPv6 Header	Same as the common packet #17	
UDP Header	Same as the common packet #17	
IKEv2 Header	Other fields are same as the common packet #17	
	Major Version	3
	Minor Version	0
E Pavload	Same as the common pa	cket #17

Part A: (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A...
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with a higher major version number to the NUT.
- 6. Observe the messages transmitted on Link A...

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type INVALID_MAJOR_VERSION containing following values:

Figure 164 Notify Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A SPI Size field set to zero.
- A Notify Message Type field set to INVALID_MAJOR_VERSION (5).
- A Notification Data field set to the highest version number it supports (2).

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.3: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
  (SGW)
                  (SGW)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                --->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
           ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                   | (Packet #2)
            ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                    | (Judgment #2)
          ----- CREATE_CHILD_SA request (HDR, SK {P, N, SA, Ni, TSi, TSr})
                   | (Packet #3)
                 --->| CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
                   | (Judgment #3)
                   ٧
P: Payload with an invalid payload type
N: REKEY_SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same as Common Packet #15 Payload
UDP Header	All fields are same as Common Packet #15 Payload
IKEv2 Header	All fields are same as Common Packet #15 Payload

	7 0110	***
E Payload	Next Payload	Invalid payload type value
	Other fields are same as Common Packet #15	
Invalid Payload	Next Payoad	41 (N)
	Critical	0
	Reserved	0
	Payload Length	4
N Payload	All fields are same a	as Common Packet #15 Payload
SA Payload	All fields are same a	as Common Packet #15 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #15 Payload
TSi Paylaod	All fields are same a	as Common Packet #15 Payload
TSr Payload	All fields are same a	as Common Packet #15 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE CHILD SA request including a payload with invalid payload

type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.4.4: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
  (SGW)
                 (SGW)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
          ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
         ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                    (Packet #2)
            ----->| IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                    (Judgment #2)
         -----| CREATE_CHILD_SA request (HDR, SK {P, N, SA, Ni, TSi, TSr})
                  | (Packet #3)
                  | No Response
                 ->| CREATE_CHILD_SA response (HDR, SK {N(UNSUPPORTED_CRITICAL_PAYLOAD)})
                   | (Judgment #3)
P: Payload with an invalid payload type
N: REKEY_SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same as Common Packet #15 Payload
UDP Header	All fields are same as Common Packet #15 Payload
IKEv2 Header	All fields are same as Common Packet #15 Payload

	1 0110	***
E Payload	Next Payload	Invalid payload type value
	Other fields ar	e same as Common Packet #15
Invalid Payload	Next Payoad 41 (N)	
	Critical	1
	Reserved 0	
	Payload Length	4
N Payload	All fields are same a	as Common Packet #15 Payload
SA Payload	All fields are same a	as Common Packet #15 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #15 Payload
TSi Paylaod	All fields are same a	as Common Packet #15 Payload
TSr Payload	All fields are same a	as Common Packet #15 Payload

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 1 and the pointed pyaload's Critical bit is set.
- 6. Observe the messages transmitted on Link A..

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A..
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 32 and the pointed pyaload's Critical bit is set.
- 12. Observe the messages transmitted on Link A..

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A..
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A..
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits an CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 49 and the pointed pyaload's Critical bit is set.
- 18. Observe the messages transmitted on Link A..

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A..
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A..
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits an

CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 255 and the pointed pyaload's Critical bit is set.

24. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (1).

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (32).

Part C

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (49).

Part D

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT doest not transmit any packets or transmits an INFORMATIONAL response with a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (255).

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.5: Invalid Order Payloads

Purpose:

To verify an IKEv2 device properly handles IKE message with invalid order payloads.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	KEi payload and Ni payload replace each other.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.SGW.R.1.1.5.1: Cookies

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response with a Notify payload of type COOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #1
Packet #3	See below

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)

	i ditam
Next Payload	33 (SA)
Critical	0
Reserved	0
Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
	Same as the common packet #1
	Same as the common packet #1
	Same as the common packet #1
	Critical Reserved Payload Length Protocol ID SPI Size Notify Message Type

Part A: Notify payload of type Cookie Format (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT.
- 3. Observe the messages transmitted on Link A..
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE with the cookie data supplied by NUT
- 5. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response including a IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE containing following values:.

Figure 165 Notify Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A SPI Size field set to zero.
- A Notify Message Type field set to COOKIE (16390).
- A Notification Data field set to the cookie data.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.5.2: Invalid Cookies

Purpose:

To verify an IKEv2 device handles IKE_SA_INIT request with an invalid cookie data.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #2)
	> IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #1)
	IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Packet #3)
ļ	> IKE_SA_INIT response (HDR, N(COOKIE"))
V	(Judgment #2) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #1
Packet #3	See below

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0

	Notify Message Type	COOKIE (16390)
	Notification Data	The difference value than COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT.
- 3. Observe the messages transmitted on Link A..
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE with a cookie data unexpected by NUT.
- 5. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response including an IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response including an IKE Header which contains zero as IKE_SA Responder's SPI field and a Notify payload of type COOKIE with a new cookie data.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device handles interaction of COOKIE and INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
  NUT
                  TN1
  (SGW)
                 (SGW)
                  -- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #2)
                --->| IKE_SA_INIT response (HDR, N(COOKIE))
                    | (Judgment #1)
             ----- IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni)
                    | (Packet #3)
                --->| IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD))
                    | (Judgment #2)
             ----- IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni)
                   | (Packet #4)
            1---->| IKE_SA_INIT response (HDR, N(COOKIE'))
                     or
           *2----->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #3)
    If the NUT send IKE_SA_INIT response (HDR, N(COOKIE')), go to Sequence #2.
   If the NUT send IKE_SA_INIT response (HDR, SAr1, KEr, Nr), go to Sequence #3.
   Otherwise, this test is failed.
Sequence #2:
  NUT
                  TN1
  (SGW)
                 (SGW)
                   -| IKE_SA_INIT request (HDR, N(COOKIE'), SAi1, KEi , Ni)
                   | (Packet #5)
           ------ | IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #4)
   Go to Sequence #3.
Sequence #3:
  NUT
                  TN1
                  (SGW)
  (SGW)
                  --| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                   | (Packet #6)
                  ->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                   | (Judgment #5)
                   ٧
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See below
Packet #5	See below
Packet #6	See Common Packet #5

Packet #1: IKE_SA_INIT request packet

IPv6 Header	Same as the common packet #1
UDP Header	Same as the common packet #1

IKEv2 Header	Same as the commo	on packet #1
SA Payload	Same as the commo	on packet #1
KE Payload	Other fields are same as the common packet #1	
	DH Group #	14
Ni, Nr Payload	Same as the common packet #1	

• Packet #2: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	n packet #1
UDP Header	Same as the commo	on packet #1
IKEv2 Header	Same as the commo	on packet #1
SA Payload	Same as the commo	on packet #1
KE Payload	Other fields are same as the commo	on packet #1
	DH Group #	14
Ni, Nr Payload	Same as the commo	on packet #1

• Packet #3: IKE_SA_INIT request packet

IPv6 Header	Same as the common packet #1	
UDP Header	Same as the common packet #1	
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload	Other fields are same as the common packet #1	
	DH Group #	14
Ni, Nr Payload		Same as the common packet #1

• Packet #4: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet #1	
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

• Packet #5: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)

	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT. The IKE_SA_INIT requests include an invalid KE payload which has different .DH Group # from proposing DH Group #.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT still has an invalid KE payload.
- 5. Observe the messages transmitted on Link A.
- 6. After reception of IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD, TN1 transmits an IKE_SA_INIT request with a valid KE payload.
- 7. Observe the messages transmitted on Link A.
- 8. If the IKE_SA_INIT response includes a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT request has a valid KE payload.
 - A) Observe the messages transmitted on Link A
- 9. TN1 transmits an IKE_AUTH request.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type INVALID_KE_PAYLOAD.

Step 7: Judgment #3

The NUT transmits an IKE_SA_INIT response. The message can contain zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE. The message can containding "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

934

Step 8A: Judgment #4

The message can containding "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Initiator

Purpose:

To verify an IKEv2 device handles interaction of COOKIE and INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2, 2.4 and 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	N1
(SGW) (S	GW)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
· · · · · · · · · · · · · · · · · · ·	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #2)
>	IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #1)
1 '	IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi, Ni) (Packet #3)
>	IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD)) (Judgment #2)
1	 IKE_SA_INIT request (HDR, SAi1, KEi , Ni) (Packet #4)
1 '	IKE_SA_INIT response (HDR, N(COOKIE)) (Judgment #3)
1 '	IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KE i, Ni) (Packet #5)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #4)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #6)
i	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #5)
V	V

Packet #1	See below
-----------	-----------

Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #1
Packet #5	See below
Packet #6	See Common Packet #5

• Packet #1: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	on packet #1
UDP Header	Same as the commo	on packet #1
IKEv2 Header	Same as the commo	on packet #1
SA Payload	Same as the commo	on packet #1
KE Payload	Other fields are same as the common packet #1	
	DH Group #	14
Ni, Nr Payload	Same as the common packet #1	

• Packet #2: IKE_SA_INIT request packet

IPv6 Header	Same as the commo	on packet #1
UDP Header	Same as the commo	on packet #1
IKEv2 Header	Same as the commo	on packet #1
SA Payload	Same as the commo	on packet #1
KE Payload	Other fields are same as the commo	on packet #1
	DH Group # 14	
Ni, Nr Payload	Same as the commo	on packet #1

• Packet #3: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet #1	
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload	Other fields are same as the common packet #1	
	DH Group #	14
Ni, Nr Payload		Same as the common packet #1

• Packet #4: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet #1	
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)

	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT
SA Payload		Same as the common packet #1
KE Payload		Same as the common packet #1
Ni, Nr Payload		Same as the common packet #1

• Packet #5: IKE_SA_INIT request packet

IPv6 Header		Same as the common packet #1	
UDP Header	Same as the common packet #1		
IKEv2 Header		Other fields are same as the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	Any	
	Protocol ID	0	
	SPI Size	0	
	Notify Message Type	COOKIE (16390)	
	Notification Data	The same value as COOKIE in IKE_SA_INIT response sent by NUT	
SA Payload		Same as the common packet #1	
KE Payload		Same as the common packet #1	
Ni, Nr Payload		Same as the common packet #1	

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. TN1 transmits a large number of IKE_SA_INIT requests to the NUT. The IKE_SA_INIT requests include an invalid KE payload which has different .DH Group # from proposing DH Group #.
- 3. Observe the messages transmitted on Link A.
- 4. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE_SA_INIT still has an invalid KE payload.
- 5. Observe the messages transmitted on Link A.
- 6. After reception of IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD, TN1 transmits an IKE_SA_INIT request with a valid KE payload.
- 7. Observe the messages transmitted on Link A.
- 8. After reception of IKE_SA_INIT response with a Notify payload of type COOKIE, TN1 transmits an IKE_SA_INIT request which includes a Notify payload of type COOKIE. The IKE SA INIT still has a valid KE payload.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transtmits an IKE_AUTH request.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 3: Judgment #1

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 5: Judgment #2

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type INVALID_KE_PAYLOAD.

Step 7: Judgment #3

The NUT transmits an IKE_SA_INIT response. The message contains zero as IKE_SA Responder's SPI field in IKE Header and a Notify payload of type COOKIE.

Step 9: Judgment #4

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 11: Judgment #5

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

- None.
- •

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part E, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14

Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)	
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr (Packet #2)	·})
	> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TS (Judgment #2)	}r})
V	l V	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- as described above.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 4. Observe the messages transmitted on Link A..

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A...
- 7. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 8. Observe the messages transmitted on Link A..

Part C: PRF PRF_AES128_CBC (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 12. Observe the messages transmitted on Link A..

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 14. Observe the messages transmitted on Link A..
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 16. Observe the messages transmitted on Link A..

Part E: D-H Group Group 14 (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 18. Observe the messages transmitted on Link A..
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 20. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CTR", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

From part A to part F, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms				
	Encryption	Integrity	Extended Sequence Numbers		
Part A	ENCR_AES_CBC AUTH_HMAC_SHA1_96		No Extended Sequence Numbers		
Part B	ENCR_AES_CTR AUTH_HMAC_SHA1_96		No Extended Sequence Numbers		
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers		
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers		
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers		
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers		

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
I		1	
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1		1	(Packet #1)
I		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1		1	(Judgment #1)
1		1	
	<		IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2,
I		- 1	TSi, TSr})
		- 1	(Packet #2)
I		>	IKE_AUTH Response (HDR, SK {IDr, AUTH, N, SAr2,
I		- 1	TSi, TSr})
I		- 1	(Judgment #2)
I		1	
<		======+	IPsec {Echo Request}
	l	I	(Packet #3) (Judgment #3)
		======+	> IPsec {Echo Reply}
	l	I	(Packet #4) (Judgment #4)
	l	I	
V	V	V	V

Packet #1 See Common Packet #1

Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Encryption Algorithm ENCR AES CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A...
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B...
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A..

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 12. Observe the messages transmitted on Link A..
- 13. TH2 transmits an Echo Request to TH1.
- 14. Observe the messages transmitted on Link B...
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A..

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 18. Observe the messages transmitted on Link A..
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 20. Observe the messages transmitted on Link A..
- 21. TH2 transmits an Echo Request to TH1.
- 22. Observe the messages transmitted on Link B...
- 23. TH1 transmits an Echo Reply to TH2.
- 24. Observe the messages transmitted on Link A..

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A..
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 28. Observe the messages transmitted on Link A..
- 29. TH2 transmits an Echo Request to TH1.
- 30. Observe the messages transmitted on Link B...
- 31. TH1 transmits an Echo Reply to TH2.
- 32. Observe the messages transmitted on Link A...

Part E: Integrity Algorithm NONE (ADVANCED)

- 33. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A..
- 35. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.

- 36. Observe the messages transmitted on Link A..
- 37. TH2 transmits an Echo Request to TH1.
- 38. Observe the messages transmitted on Link B...
- 39. TH1 transmits an Echo Reply to TH2.
- 40. Observe the messages transmitted on Link A..

Part F: Extended Sequence Numbers (ADVANCED)

- 41. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 42. Observe the messages transmitted on Link A..
- 43. After reception of IKE SA INIT response from the NUT, TN transmits an IKE AUTH request as described above to the NUT.
- 44. Observe the messages transmitted on Link A..
- 45. TH2 transmits an Echo Request to TH1.
- 46. Observe the messages transmitted on Link B...
- 47. TH1 transmits an Echo Reply to TH2.
- 48. Observe the messages transmitted on Link A..

Part G: Security Protocol AH (ADVANCED)

- 49. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 50. Observe the messages transmitted on Link A...
- 51. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 52. Observe the messages transmitted on Link A..
- 53. TH2 transmits an Echo Request to TH1.
- 54. Observe the messages transmitted on Link B...
- 55. TH1 transmits an Echo Reply to TH2.
- 56. Observe the messages transmitted on Link A..

Part H: Security Protocol AH and Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 57. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 58. Observe the messages transmitted on Link A..
- 59. After reception of IKE SA INIT response from the NUT, TN transmits an IKE AUTH request as described above to the NUT.
- 60. Observe the messages transmitted on Link A...
- 61. TH2 transmits an Echo Request to TH1.
- 62. Observe the messages transmitted on Link B...
- 63. TH1 transmits an Echo Reply to TH2.
- 64. Observe the messages transmitted on Link A...

Part I: Security Protocol AH and Extended Sequence Numbers (ADVANCED)

- 65. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 66. Observe the messages transmitted on Link A...
- 67. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.

945

- 68. Observe the messages transmitted on Link A..
- 69. TH2 transmits an Echo Request to TH1.
- 70. Observe the messages transmitted on Link B...
- 71. TH1 transmits an Echo Reply to TH2.
- 72. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 22: Judgment #3

The NUT forwards an Echo Request.

Step 24: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT forwards an Echo Request.

Step 32: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as accepted algorithms.

Step 38: Judgment #3

The NUT forwards an Echo Request.

Step 40: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 42: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 44: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "Extended Sequence Numbers" as accepted algorithms.

Step 46: Judgment #3

The NUT forwards an Echo Request.

Step 48: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part G

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH response including "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 54: Judgment #3

The NUT forwards an Echo Request.

Step 56: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part H

Step 58: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 60: Judgment #2

The NUT transmits an IKE_AUTH response including "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 62: Judgment #3

The NUT forwards an Echo Request.

Step 64: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part I

Step 66: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 68: Judgment #2

The NUT transmits an IKE_AUTH response including "AUTH_HMAC_SHA1_96" and "Extended Sequence Numbers" as accepted algorithms.

Step 70: Judgment #3

The NUT forwards an Echo Request.

Step 72: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an multiple transforms payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 Group 2	

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1			
UDP Header	Same as the Common Packet #1			
IKEv2 Header	Same as the Common Packet #1			
SA Payload	Other fields are same as the common packet			
	SA Proposals	See SA Table below		

KE Payload	Same as the Common Packet #1
Ni, Nr Payload	Same as the Common Packet #1

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengtl	n	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	5	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A...

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A..

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A..

Part D: Multiple D-H Groups (BASIC)

7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.

8. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with multiple proposals.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the proposals as follows:

	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
PartA	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Parto	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part C	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1
UDP Header	Same as the Common Packet #1
IKEv2 Header	Same as the Common Packet #1
SA Payload	Other fields are same as the common packet #1

	SA Proposals	See SA Table below
KE Payload	Same as the Common Packet #1	
Ni, Nr Payload	Same as the Common Packet #	

Proposal #1	SA Proposal	Next Payload		2 (more)
	OA I Toposai	Reserved		2 (11010)
		Proposal Length		44
		Proposal #		1
		Protocol ID SPI Size # of Transforms		1 (IKE)
				. (
				5
		SA Transform	Next Payload	3 (more)
		G/X Trailoronn	Reserved	o (mere)
			Transform Length	8
			Transform Type	1 (ENCR
			Reserved	. (2.10.1)
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
		O/ Transform	Reserved	o (more
			Transform Length	
			Transform Type	2 (PRF
			Reserved	2 (F1(1
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
		5/Citalisioiiii	Reserved	3 (11016
			Transform Length	
			Transform Type	3 (INTEG
			Reserved	3 (111120
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last
		SA Transform	Reserved	U (last
			Transform Length	
			Transform Type	4 (D-H
			Reserved	4 (0-11
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload	Transform 1D	0 (last
rroposai #2	SA Proposal	Reserved		U (last
			h	4-
		Proposal Length Proposal #		4
		Protocol ID		1 (IKE
		SPI Size		T (IRL
		# of Transforms		
		SA Transform	ı	3 (more
		SA Transform	Next Payload Reserved	3 (more
			Transform Length	
				1 (ENCR
			Transform Type Reserved	I (ENCH
			Transform ID	3 (3DES
		SA Transform	Next Payload	3 (More
		JA Transform	Reserved	3 (more
			Transform Length	
			Transform Length Transform Type	
			Reserved	2 (PRF
			Transform ID	
		SA Transform		2 (HMAC_SHA1
		OA Transform	Next Payload	3 (more
			Reserved	
			Transform Length	0 /NITEO
			Transform Type	3 (INTEG
			Reserved	0 (1111 0 0111 1 0
			Transform ID	2 (HMAC_SHA1_96
		SA Transform	Next Payload	0 (last
		i e	Reserved	

 FOROM					
			Transform Length	8	
			Transform Type	4 (D-H)	
			Reserved	0	
			Transform ID	2 (1024 MODP Group)	

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A..

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A..

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A..

Part D: Multiple D-H Groups (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Judgment #2)
V	V

From part A to part D, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_AES_CBC ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN No ESN

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #5
IF VO HEAUER	Same as the Common Facket #3 i

UDP Header	Same as the Common Packet #5
IKEv2 Header	Same as the Common Packet #5
E Payload	Same as the Common Packet #5
IDi Payload	Same as the Common Packet #5
AUTH Payload	Same as the Common Packet #5
SA Payload	Other fields are Same as the Common Packet #5
	SA Proposals See below
TSi Payload	Same as the Common Packet #5
TSr Payload	Same as the Common Packet #5

Proposal #1	SA Proposal	Next Payload		0 (last)					
		Reserved		0					
		Proposal Length		40					
		Proposal #		1					
		Proposal ID		3 (ESP)					
		SPI Size		4					
		# of Transforms	3	4					
		SPI		Any					
		SA Transform	Next Payload	3 (more)					
			Reserved	0					
			Transform Length	8					
			Transform Type	According to above configuration					
			Reserved	0					
			Transform ID	According to above configuration					
		SA Transform	Next Payload	3 (more)					
						Reserved	0		
			Transform Length	8					
				Transform Type	1 (ENCR)				
			Reserved	0					
			Transform ID	3 (3DES)					
		SA Transform	Next Payload	3 (more)					
			Reserved	0					
			Transform Length	8					
			Transform Type	3 (INTEG)					
						Reserved	0		
			Transform ID	2 (HMAC_SHA1_96)					
						SA	SA Transform	Next Payload	0 (last)
				Reserved	0				
			Transform Length	8					
			Transform Type	5 (ESN)					
						Reserved	0		
				Transform ID	0 (No ESN)				

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A..

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A...

Part C: Multiple Extended Sequecnce Numbers (BASIC)

9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles CHILD_SA request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW	
		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	·>	(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	·>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
V	l V	

Packet #1 See Common Packet #1

Packet #2 See below

TN1 transmits an IKE_AUTH request including a SA payload which contains the two proposals as follows:

	IKE_AUTH exchanges Algorithms				
	Proposal	Protocol ID	Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
rart D	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #2: IKE_AUTH request

IPv6 Header	Same as t	ne Common Packet #5
UDP Header	Same as t	ne Common Packet #5
IKEv2 Header	Same as t	ne Common Packet #5
E Payload	Same as t	ne Common Packet #5
IDi Payload	Same as t	ne Common Packet #5
AUTH Payload	Same as t	ne Common Packet #5
SA Payload	Other fields are Same as the	ne Common Packet #5
	SA Proposals	See below
TSi Payload	Same as t	ne Common Packet #5
TSr Payload	Same as t	ne Common Packet #5

Proposal #1	SA Proposal	Next Payload		2 (more)
	C/ () Opcoun	Reserved		0
		Proposal Lengt	n	40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	 S	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
	•	Reserved		0
		Proposal Lengt	n	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
1			Transform Length	8

1 0110111	
Transform Type	5 (ESN)
Reserved	0
Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A..

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A..

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.7: Sending INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an unacceptable SA payload.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 WEst 2 on the NUT is disabled of the sequence.

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
l	
<	1
ļ	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
i	(Guaginette #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
İ	(Packet #2)
	> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
ļ.	(Judgment #2)
l l	CDEATE CHILD CA request (UDD CV (N CA N; VE; TC; TC;)
<	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSr}) (Packet #3)
 X	
	or
j	> CREATE_CHILD_SA response (HDR, SK { N(INVALID_KE_PAYLOAD)})
1	(Judgment #3)
V	V
N. DEKEY CA	
N: REKEY_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request for rekeying CHILD_SA

IPv6 Header	Same as the Common Packet #15
UDP Header	Same as the Common Packet #15
IKEv2 Header	Same as the Common Packet #15
F Payload	Same as the Common Packet #15

N Payload	Same as the Com	mon Packet #15	
SA Payload	Same as the Common Packet #15		
Ni, Nr Payload	Other fields are same as the Com	mon Packet #15	
	Next Payload	34 (KE)	
KEi Payload	Next Payload	44 (TSi)	
	Critical	0	
	Reserved 0		
	Payload Length 264		
	DH Group # 14		
	Reserved 0		
	Key Exchange Data	any	
TSi Payload	Same as the Common Packet #15		
TSr Payload	Same as the Common Packet #15		

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA contains a D-H Group transform to use D-H Group 2 and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchage Data.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits any packets or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles an invalid KE payload which has different D-H Group # from proposed D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #2	See Common packet #1

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Commo	n Packet #1	
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Same as the Commo	n Packet #1	
SA Payload	Same as the Commo	n Packet #1	
KEi Payload	Next Payload	40 (Ni, Nr)	
	Critical	0	
	Reserved	0	
	Payload Length	264	
	DH Group #	14	
	Reserved	0	
	Key Exchange Data any		
Ni, Nr Payload	Same as the Common Packet #1		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload which contains a D-H Group transform proposes using D-H Group 2 and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchange Data
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data. The message's IKE_SA Responder's SPI value is set to zero.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify that an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)
1	1	
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
<		<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
		(Packet #2)
	X	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})</pre>
		(Judgment #2)
<		INFORMATIONAL request (HDR, SK {})
		(Packet #3)
		INFORMATIONAL response (HDR, SK {})
	- 1	(Judgment #3)
	- 1	
V	V	

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #17

Packet #2: IKE_AUTH requet

Packet #2 is same as Common Packet #5 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

Transitoin.		
SA Transform	Next Payload	3 (more)
	Reserved	0

Transform Length		8
Transform Type		1 (ENCR)
Reserved		0
Transform ID		12 (AES_CBC)
SA Attribute Attribute Type		14 (Key Length)
	Attribute Value	128

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request with unacceptable SA proposal for the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

Step 4
 The NUT can transmits an IKE_AUTH response with a Notify payload of type NO_PROPOSAL_CHOSEN.

Group 1.7. Traffic Selector Negotiation

Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	Traffic Selector					
		Source			Destination	
	Address	Address Next Layer Port		Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TH2	ANY	ANY	NUT	ANY	ANY
Outbound	NUT	ANY	ANY	TH2	ANY	ANY

The other packets are allowed to BYPASS IPsec protection.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 < 	 		 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	 	 > 		(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	 	> 		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 		IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	-	 	IPsec {Echo Request} (Packet #5) (Judgment #5) > IPsec {Echo Reply}
l V	 	 	 	(Packet #6) (Judgment #6) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below

• Packet #5: ICMPv6 Echo Request

IPv6 Header	Same as the Common Packet #21	
ESP	Same as the Common Packet #21	
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Same as the Common Packet #21	

• Packet #6: ICMPv6 Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH3's Global Address
ICMPv6 Header	Same as the Common Packet #25	

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. TN1 sends an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link B...
- 7. TH1 transmits an Echo Reply packet to TH2.

- 8. Observe the messages transmitted on Link A..
- 9. TH3 transmits an Echo Request to TH1.
- 10. Observe the messages transmitted on Link B...
- 11. TH1 transmits an Echo Request to TH3.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow only address range of TH2.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

Because the destination address of Echo Request is the TN itself, TN may respond to
Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of
sending Echo Request.

Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE

Purpose:

To verify an IKEv2 device properly handles the Traffice Selector.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

			Traffic	Selector		
	Source			Destination		
	Address Next Layer		Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TH2	ANY	ANY	NUT	ANY	ANY
Outbound	NUT	ANY	ANY	TH2	ANY	ANY

The other packets are allowed to BYPASS IPsec protection.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
  (SGW)
                  (SGW)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                  ->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                     (Judgment #1)
              -----| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                     (Packet #2)
              ---->| IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                   | (Judgment #2)
         -----| CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSr})
                     (Packet #3)
                     CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr, TSi, TSr})
                  ->| CREATE_CHILD_SA response (HDR, SK {N(TS_UNACCEPTABLE)})
                   | (Judgment #3)
N: REKEY SA
```

Packet #1	See Common Packet #1

Packet #2	See below
Packet #3	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5		
UDP Header	Same as the	Common Packet #5		
IKEv2 Header	Same as the	Common Packet #5		
E Payload	Same as the	Common Packet #5		
IDi Payload	Same as the	Common Packet #5		
AUTH Payload	Same as the	Common Packet #5		
N Payload	Same as the Common Packet #5			
SA Payload	Same as the Common Packet #5			
TSi Payload	Other fields are same as the Common Packet #5			
	Traffic Selectors See be			
TSr Payload	Other fields are same as the Common Packet #5			
	Traffic Selectors See b			

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link X
		Ending Address	TH2's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #9		
UDP Header	Same as the Common Packet #9			
IKEv2 Header	Same as the Common Packet #9			
E Payload	Same as the Common Packet #9			
SA Payload	Same as the Common Packet #9			
Ni, Nr Payload	Same as the Common Packet #9			
TSi Payload	Other fields are same as the Common Packet #9			
	Traffic Selectors	See below		
TSr Payload	Other fields are same as the Common Packet #9			
	Traffic Selectors See bel			

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link X
		Ending Address	TH3's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0

		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request including ICMPv6 (58) as IP Protocol ID value in Traffic Selector Payload.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits any packets or transmits a CREATE_CHILD_SA response including a Notify payload of type TS_UNACCEPTABLE.

Possible Problems:

Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

- [RFC4306] Section 2.8
- [RFC4718] Section 4.10

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector					
	Source			Destination			
	Address	Next Layer	Port	Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range	
Inbound	TH2	ANY	ANY	NUT	ANY	ANY	
Outbound	NUT	ANY	ANY	TH2	ANY	ANY	

The other packets are allowed to BYPASS IPsec protection.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 < 	 		 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	 	 > 		(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	 	> 		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 		IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	-	 	IPsec {Echo Request} (Packet #5) (Judgment #5) IPsec {Echo Reply}
l V	 	 	 	(Packet #6) (Judgment #6) V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link X
		Ending Address	TH2's Global Address on Link X
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40

	Start Port	0
	End Port	65535
	Starting Address	TH3's Global Address on Link X
	Ending Address	TH3's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link A
		Ending Address	TH1's Global Address on Link A

• Packet #5: ICMPv6 Echo Request

IPv6 Header	Same as the Common Packet #21		
ESP	Same as the Common Packet #21		
IPv6 Header	Source Address	TH3's Global Address	
	Destination Address	TH1's Global Address	
ICMPv6 Header	Same as the Common Packet #21		

Packet #6: ICMPv6 Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH3's Global Address
ICMPv6 Header	Same as the Common Packet #25	

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. TN1 sends an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link B...
- 7. TH1 transmits an Echo Reply packet to TH2.
- 8. Observe the messages transmitted on Link A..
- 9. TH3 transmits an Echo Request to TH1.
- 10. Observe the messages transmitted on Link B...
- 11. TH1 transmits an Echo Request to TH3.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow the traffic from/to TH2.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.8. Error Handling

Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI

Purpose:

To verify an IKEv2 device properly handles IKE messages outside the context of IKE_SA.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
  (SGW)
                  (SGW)
                   - | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                   ->| IKE_SA_INIT response (HDR, SAr2, KEr, Nr)
                     (Judgment #1)
                ---- IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
                      (Packet #2)
                --->| IKE_AUTH Response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
                   | (Judgment #2)
                     CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSr})
                     (Packet #3)
                    | CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr, TSi, TSr})
                  ->| CREATE_CHILD_SA response (HDR, SK {N(INVALID_IKE_SPI)})
                   | (Judgment #3)
N: REKEY_SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request (Part A)

IPv6 Header	Same as the Common Packet #15
UDP Header	Same as the Common Packet #15

IKEv2 Header		Other fields are same as the Common Packet #15
	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message plus 1
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
E Payload		Same as the Common Packet #15
N Payload		Same as the Common Packet #15
SA Payload		Same as the Common Packet #15
Ni, Nr Payload		Same as the Common Packet #15
TSi Payload		Same as the Common Packet #15
TSr Payload		Same as the Common Packet #15

Packet #3: CREATE_CHILD_SA request (Part A)

IPv6 Header		Same as the Common Packet #15
UDP Header		Same as the Common Packet #15
IKEv2 Header		Other fields are same as the Common Packet #15
	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message plus 1
E Payload		Same as the Common Packet #15
N Payload		Same as the Common Packet #15
SA Payload		Same as the Common Packet #15
Ni, Nr Payload		Same as the Common Packet #15
TSi Payload		Same as the Common Packet #15
TSr Payload		Same as the Common Packet #15

Part A: Different IKE_SA Initiator's SPI (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A...
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which contains different IKE_SA Initiator's SPI value from IKE_SA Initiator's SPI value in the IKE_AUTH request in Step 3.
- 6. Observe the messages transmitted on Link A..

Part B: Different IKE_SA Responder's SPI (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A..
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which contains different IKE_SA Responder's SPI value from IKE_SA Responder's SPI value in the IKE_AUTH request in Step 3.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits any packets or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_IKE_SPI.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT does not transmits any packets or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_IKE_SPI.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an invalid syntax.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
  NUT
  (SGW)
                  (SGW)
                --- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
              ---->| IKE_SA_INIT response (HDR, SAr2, KEr, Nr)
                   | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                   | (Packet #2)
               ---->| IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                   | (Judgment #2)
           ------ CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
                   | (Packet #3)
                   CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
           ----->| CREATE_CHILD_SA response (HDR, SK {N(INVALID_SYNTAX)})
                   | (Judgment #3)
N: REKEY_SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15
UDP Header	Same as the Common Packet #15
IKEv2 Header	Same as the Common Packet #15
E Payload	Same as the Common Packet #15
N Payload	Same as the Common Packet #15
SA Payload	Same as the Common Packet #15

Ni, Nr Payload	Other fields are same as the common packet #15	
	Payload Length	4
	Nonce Data	Empty
TSi Payload	Same as the Com	mon Packet #15
TSr Payload	Same as the Com	mon Packet #15

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A...
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request which has no data as Nonce Data as Ni payload.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmits a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_SYNTAX.

Possible Problems:

Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS

Purpose:

To verify an IKEv2 device properly handles an ESP or AH packet whose selectors do not match those of the CHILD_SA.

References:

- [RFC 4306] Sections 3.10.1
- [RFC 4307] Sections 7.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1	1		(Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1		(Judgment #1)
1	1		
1	<		IKE_AUTH request (HDR, SK {IDi, AUTH, ,
	1		SAi2, TSi, TSr})
	1		(Packet #2)
1		>	IKE_AUTH Response (HDR, SK {IDr, AUTH,
	1		SAi2, TSi, TSr})
	1		(Judgment #2)
	1		
	X+=======	=====+	IPsec {Echo Request}
	1		(Packet #3)
		>	INFORMATIONAL request (HDR, SK {N(INVALID_SELECTORS)}
			(Judgment #3)
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #5
UDP Header	Same as the Common Packet #5
IKEv2 Header	Same as the Common Packet #5
E Payload	Same as the Common Packet #5
IDi Payload	Same as the Common Packet #5
ALITH Payload	Same as the Common Packet #5

N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #5	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link X
		Ending Address	TH3's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request as the above table to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TH2 transmits an Echo Request to TH1
- 6. TN1 encapsulates an Echo Request with IPsec ESP usgin algorithms negotiated at between Step 1 and Step 5, though an Echo Request does not match the selector on TN1.
- 7. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Notify of type INVALID_SELECTORS.

Possible Problems:

Group 1.10 Authentication of the IKE_SA

Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload

Purpose:

To verify an IKEv2 device handles a CERTREQ payload and transmits a CERT payload propoerly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Remote	X.509 Certificate - Signature

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
I		
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
I	(Packet #1)	
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
I	(Judgment #1)	
I		
<	IKE_AUTH request (HDR, SK {IDi, CERTREQ, AUTH, SAi2, TSi, TSr}	})
I	(Packet #2)	
	> IKE_AUTH response (HDR, SK {IDr, CERT, AUTH, SAr2, TSi, TSr})	
1	(Judgment #2)	
I		
V	V	

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #5
UDP Header	Same as the Common Packet #5
IKEv2 Header	Same as the Common Packet #5
E Payload	Same as the Common Packet #5

IDi Payload	Next Payload	38 (CERTREQ)
	Oter fields are same as the C	ommon Packet #5
CERTREQ Payload		See below
AUTH Payload	Same as the C	ommon Packet #5
SA Payload	Same as the C	ommon Packet #5
TSi Payload	Same as the C	ommon Packet #5
TSr Payload	Same as the C	ommon Packet #5

CERTREQ Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response with a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload

Purpose:

To verify an IKEv2 device properly transmits CERTREQ payload.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Method
Local	X.509 Certificate - Signature

Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
			(Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr, CERTREQ)
			(Judgment #1)
I		I	
	<		IKE_AUTH request (HDR, SK {IDi, CERT, AUTH,
			SAi2, TSi, TSr})
			(Packet #2)
		>	IKE_AUTH response (HDR, SK {IDr, AUTH,
			SAr2, TSi, TSr})
			(Judgment #2)
<	+========	======+	IPsec {Echo Request}
			(Packet#3) (Judgment #3)
		======+	> IPsec {Echo Reply}
		I	(Packet #4) (Judgment #4)
		I	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #5
UDP Header	Same as the Common Packet #5

IKEv2 Header	Same as the Cor	nmon Packet #5
E Payload	Same as the Cor	nmon Packet #5
IDi Payload	Next Payload 37 (CERT5	
	Oter fields are same as the Cor	nmon Packet #5
CERT Payload		See below
AUTH Payload	Same as the Cor	nmon Packet #5
N Payload	Same as the Cor	nmon Packet #5
SA Payload	Same as the Cor	nmon Packet #5
TSi Payload	Same as the Cor	nmon Packet #5
TSr Payload	Same as the Cor	nmon Packet #5

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	any

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERT payload to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES an AUTH_HMAC_SHA1_96.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value
Local	0xabadcafeabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #2	See Common Packet #5

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Group 1.11 Invalid values

Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
	All RESERVED fields are set to one.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Version bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Version bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.4: Response bit is set

Purpose:

To verify an IKEv2 device ignores an IKE request message whose Response bit is set.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Response bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Response bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never responds with an IKE_SA_INIT response to an IKE_SA_INIT request from the TN1.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.5: Unrecognized Notify Message Type

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type in IKE messages.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT request

IPv6 Header	All fields are sa	me as Common Packet #1
UDP Header	All fields are same as Common Packet #1	
IKEv2 Header	All fields are same as Common Packet #1	
SA Payload	All fields are same as Common Packet #1	
KE Payload	All fields are same as Common Packet #1	
Ni, Nr paylaod	Next Payload	41 (Notify)
	Other fields are sa	me as Common Packet #1
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Procotol ID	0
	SPI Size	0
	Notify Message Type	See each part description.

Part A: Unrecognized Notify Message Type of error 16383 (BASIC)

5. TN starts to negotiate with NUT by sending IKE_SA_INIT request with a Notify payload of unrecognized Notify Message Type value.

6. Observe the messages transmitted on Link A.

Part B: Unrecognized Notify Message Type of status 65535 (BASIC)

- 7. TN starts to negotiate with NUT by sending IKE_SA_INIT request with a Notify payload of unrecognized Notify Message Type value.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Possible Problems:

None.

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.SGW.R.1.2.1.1: Receipt of CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits a CREATE_CHILD_SA response using properly Header and Payloads format

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #15

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 6. Observe the messages transmitted on Link A..

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A..
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 12. Observe the messages transmitted on Link A..

Part C: SA Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A..
- 15. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A..
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 18. Observe the messages transmitted on Link A..

Part D: Nonce Payload Format (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A..
- 21. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A..
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 24. Observe the messages transmitted on Link A..

Part E: TSi Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A...
- 27. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A..
- 29. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 30. Observe the messages transmitted on Link A..

Part F: TSr Payload Format (BASIC)

- 31. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 32. Observe the messages transmitted on Link A..
- 33. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH

- request to the NUT.
- 34. Observe the messages transmitted on Link A...
- 35. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 36. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted IKE Header containing following values:

Figure 166 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to CREATE_CHILD_SA (36).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Encrypted Payload containing following values:

Figure 167 Encrypted payload

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

Figure 168 SA Payload contents

The NUT transmits a CREATE_CHILD_SA response including properly formatted SA Payload containing following values (refer following figures):

Figure 169 SA Payload format

- A Next Payload field set to Nr Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 170 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 171 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Nonce Payload containing following values:

Figure 172 Nonce Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSi Payload containing following values:

Figure 173 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 174 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- A Ending Address field set to greater that or equal to Prefix Y.

Part G

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 34: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 36: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSr Payload containing following values:

Figure 175 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 176 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.

- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• CREATE_CHILD_SA response has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

[N(IPCOMP_SUPPORTED)], [N(USE_TRANSPORT_MODE)], [N(ESP_TFC_PADDING_NOT_SUPPORTED)], [N(NON_FIRST_FRAGMENTS_ALSO)], SA, Nr, [KEr], TSi, TSr, [N(ADDITIONAL_TS_POSSIBLE)]

• Each of transforms can be located in the any order.

Group 2.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.2.2.1: Receipt of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

NUT TN	11
(SGW) (SG	
i l	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
1 1	(Judgment #2)
<u> </u>	
	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
	(Packet #3) CREATE_CHILD_SA Rsponce Catl (HDR, SK {SA, Nr, TSi, TSr})
	(Judgment #3)
iiii	(caagmont no)
į	wait until retrans timer expires
>	<pre>CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})</pre>
!!!	(Judgment #4)
	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
	(Packet #4)
	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
i i	(Judgment #5)
l Ì	
V	
N. DEVEV CA	
N: REKEY_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #15
Packet #4	See Common Packet #15
	(same Message ID as Pcket #3)

Part A: (BASIC)

- 1. TN1 transmits IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits CREATE CHILD SA request.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A..
- 8. TN1 transmits the same CREATE_CHILD_SA request packet as Step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #4

The NUT never retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 9: Judgment #5

The NUT retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

Group 2.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

• Network Topology
Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	SGW)
<	- IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	<pre>> IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)</pre>
	- CREATE_CHILD_SA request (HDR, SK {SA, Ni, TSi, TSr}) (Packet #3)
j	> CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #3)
	- INFORMATIONAL request (HDR, SK {D}) (Packet #4)
	> INFORMATIONAL request (HDR, SK {D}) (Judgment #4)
V	I V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

-			
TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #9
UDP Header	Same as the	Common Packet #9
IKEv2 Header	Same as the	Common Packet #9
E Payload	Same as the	Common Packet #9
N Payload	Same as the	Common Packet #9
SA Payload	Same as the	Common Packet #9
Ni, Nr Payload	Same as the	Common Packet #9
TSi Payload	Other fields are same as the	Common Packet #9
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #9
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Packet #4: INFORMATIONAL request

T		
IPv6 Header		Same as the Common Packet #17
UDP Header	Same as the Common Packet #17	
IKEv2 Header		Same as the Common Packet #17
E Payload		Other fields are same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload 0 (last)	
	Critical	0
	Reserved	0
	Payload Length	16
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	2
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange
		SPI negotiated by CREATE_CHILD_SA exchange

Part A: (ADVANCED)

- 1. TN starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits a CREATE_CHILD_SA request to establish a new CHILD_SA to the NUT.
- 6. Observe the messages transmitted on Link A..
- 7. TN1 transmits an INFORMATIONAL request with a Delete payload including the first negotiated CHILD_SA's inbound SPI and the second negotiated CHILD_SA's inbound SPI.
- 8. Observe the messages transmitted on Link A...

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 8: Judgment #4

The NUT transmits an INFORMATIONAL response with delete payload for SPIs which are negotiated by Initial Exchange and CREATE_CHILD_SA exchange.

Possible Problems:

• INFORMATIONAL response from NUT may not contain Delete Payload by implementation policy. This behavior is defined at section 1.4 in RFC 4306 as an exception.

Group 2.4. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles an IKE_AUTH request with an unacceptable SA payload.

References:

- [RFC 4306] Sections 2.7 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	T TN	1
1		
(SGW	V) (SG	W)
 < 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
- 	 	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
<	' 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)</pre>
-	 	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)</pre>
	' : 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
j- j	X 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #3) or
-	·> 	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #3)
V	I V	
N: R	REKEY_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #15
UDP Header	Same as the	Common Packet #15
IKEv2 Header	Same as the	Common Packet #15
E Payload	Same as the	Common Packet #15
N Payload	Same as the	Common Packet #15
N Payload	Same as the	Common Packet #15
SA Payload	Other fields are same as the	Common Packet #15
	SA Proposals	See below
Ni, Nr Payload	Same as the	Common Packet #15
TSi Payload	Same as the	Common Packet #15
TSr Payload	Same as the	e Common Packet #15

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	12 (AES_CBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	5 (AES_XCBC_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	1 (ESN)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmit a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

None.

Group 2.5. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.R.1.2.5.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	 >	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	· >	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr} (Judgment #2)
 < 	 	 ===+ ===+	IPsec {Echo Request} (Packet #3) (Judgment #3)
	 < 	 >	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr} (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #5)
	 < 	 >	INFORMATIONAL request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {D}) (Judgment #6)
V N: REKEY_SA	V	V V	V V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See below

• Packet #6: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17
UDP Header		Same as the Common Packet #17
IKEv2 Header		Same as the Common Packet #17
E Payload	Other fields ar	e same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A...
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B...
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A..
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.2.5.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1	(Packet #1)
	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1	(Judgment #1)
		1
	<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
		(Packet #2)
	>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
		(Judgment #2)
<		IPsec {Echo Request}
		(Packet #3) (Judgment #3)
	+===========+	> IPsec {Echo Reply}
	1	(Packet #4) (Judgment #4)
!	<	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
!	!!!	(Packet #5)
!	>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
	!	(Judgment #5)
	1.	I INFORMATIONAL TOTAL (UDD CV (D))
1 !	<	INFORMATIONAL request (HDR, SK {D})
1 !		(Packet #6)
		INFORMATIONAL response (HDR, SK {D})
		(Judgment #6)
		IPsec {Echo Request} (new CHILD_SA)
		(Packet #7) (Judgment #7)
		> IPsec {Echo Reply} (new CHILD_SA)
		(Packet #8) (Judgment #8)
1		(Tablet #0) (Badgillett #0)
v	V	V
*		•
N: REKEY_SA		

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See below
Packet #7	See Common Packet #21
	(encrypted by the new CHILD_SA)
Packet #8	See Common Packet #25

Packet #6: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.

- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TH1. TN1 forwards an Echo Request using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Step 14: Judgment #7

The NUT forwards an Echo Request.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.2.5.3: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	•	(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
j	·>	KE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
		REATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
V	V	(Judgment #3)
N: REKEY_	_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

From part A to part C, TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the transforms as follows:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN

Part C ENCR_3DES AUTH_HMAC_SHA1_96 No ESN ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15		
UDP Header	Same as the Common Packet #15		
IKEv2 Header	Same as the	e Common Packet #15	
E Payload	Same as the	e Common Packet #15	
IDi Payload	Same as the Common Packet #15		
AUTH Payload	Same as the Common Packet #15		
N Payload	Same as the	e Common Packet #15	
SA Payload	Other fields are same as the	e Common Packet #15	
	SA Proposals See below		
TSi Payload	Same as the Common Packet #15		
TSr Payload	Same as the Common Packet #15		

Proposal #1 SA Proposa		Next Payload		0 (last)										
	Reserved		0											
	Proposal Length		40											
		Proposal #		1										
		Proposal ID		3 (ESP)										
		SPI Size		4										
		# of Transforms	3	4										
		SPI		Any										
		SA Transform	Next Payload	3 (more)										
			Reserved	0										
			Transform Length	8										
			Transform Type	According to above configuration										
			Reserved	0										
			Transform ID	According to above configuration										
		SA Transform	Next Payload	3 (more)										
			Reserved	0										
			Transform Length	8										
				Transform Type	1 (ENCR)									
		F	Reserved	0										
			Transform ID	3 (3DES)										
		SA Transform	Next Payload	3 (more)										
			Reserved	0										
			Transform Length	8										
			Transform Type	3 (INTEG)										
													Reserved	0
			Transform ID	2 (HMAC_SHA1_96)										
		SA Transform	Next Payload	0 (last)										
			Reserved	0										
			Transform Length	8										
			Transform Type	5 (ESN)										
			Reserved	0										
			Transform ID	0 (No ESN)										

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES",

"PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.2.5.4: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal Protocol Encryption Integrity ESN					
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN	
Рагі А	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN	
Part B	Proposal #1	ESP	ENCR 3DES	AUTH AES XCBC 96	No ESN	

	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
D C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
Part C	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15		
UDP Header	Same as the Common Packet #15		
IKEv2 Header	Same as the Common Packet #15		
E Payload	Same as the Common Packet #15		
IDi Payload	Same as the Common Packet #15		
AUTH Payload	Same as the Common Packet #15		
N Payload	Same as the Common Packet #15		
SA Payload	Other fields are same as the Common Packet #15		
	SA Proposals See below		
TSi Payload	Same as the Common Packet #15		
TSr Payload	Same as the Common Packet #15		

Proposal #1	SA Proposal	Next Payload		2 (more)
		Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	า	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8

			ap.	
J	P	h		7
Ų	W			
	FC	DRU	M	

	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.2.5.5: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA exchange when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM					
TH1	NUT	TN1	TH2			
(Host)	(SGW)	(SGW)	(Host)			
li	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)			
l i	İ	į	(Packet #1)			
l i	j	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)			
li	i	į	(Judgment #1)			
l i	i	i				
li			IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})			
1 1		i İ	(Packet #2)			
1 ;			IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})			
		/	INC_NOTE RESPONSE (HDIK, SIX (101, NOTE, 101, 101))			
	l I	l I	(Sudgment #2)			
	 	! !				
	- + ======== 		IPsec {Echo Request} (Packet #3) (Judgment #3)			
	!	 =======+	, , , , , , , , , , , , , , , , , , ,			
		======+	7 11 000 (2010 NOP1)			
	ļ		(Packet #4) (Judgment #4)			
!	ļ		LODEATE OLLUD OA mannast (UDD OK (N. OA N. KE' TO'			
TO , ,	<		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi,			
TSr})						
			(Packet #5)			
_		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr, TSi,			
TSr})						
			(Judgment #5)			
	<		INFORMATIONAL request (HDR, SK {D})			
			(Packet #6)			
			INFORMATIONAL response (HDR, SK {D})			
	1		(Judgment #6)			
1 1			1			
<	 =======:	======+	IPsec {Echo Request} (new CHILD_SA)			
l i	1	1	Packet #7) (Judgment #7)			
j	· +=======	======+				
I i	1	I	Packet #8) (Judgment #8)			
l i	i	i				
Ιν̈́	Ÿ	V	V			
· .	·	•	•			
N: REKEY_SA						
KEKET_0A						

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #21
	(encrypted by the new CHILD_SA)
Packet #8	See Common Packet #25

• Packet #5: CREATE_CHILD_SA response

IPv6 Header	Same as the Common F	Packet #15
UDP Header	Same as the Common F	acket #15
IKEv2 Header	Same as the Common F	acket #15
E Payload	Same as the Common F	acket #15
N Payload	Same as the Common F	acket #15
N Payload	Same as the Common F	acket #15
SA Payload	Same as the Common F	Packet #15
Ni Payload	Next Payload	34 (KE)

1035

	1 OKOM	
KEi Payload	Next Payload 44 (T	
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi Payload	Same as the Common F	Packet #15
TSr Payload	Same as the Common F	Packet #15

• Packet #6: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17
UDP Header	Same as the Common Packet #17	
IKEv2 Header		Same as the Common Packet #17
E Payload	Other fields are same as the Common Packet #17	
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Step 14: Judgment #7

The NUT forwards an Echo Request.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.2.5.6: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	 >	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 	 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 	 >	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #5)
	 	 	IPsec {Echo Request} (old CHILD_SA) (Packet #6) (Judgment #6) > IPsec {Echo Reply} (old CHILD_SA) (Packet #7) (Judgment #7)
N: REKEY_SA	v	V	v

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21

Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See Common Packet #21
	(encrypted by the old CHILD_SA)
Packet #7	See Common Packet #25

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms again.
- 12. Observe the messages transmitted on Link B.
- 13. TH1 transmits an Echo Reply to TH2.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT forwards an Echo Request.

Step 14: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Possible Problems:

Group 2.6. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.R.1.2.6.1: Sending CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1	I	
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	ļ	ļ	(Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	!	!	(Judgment #1)
l I		I I	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l I			TKL_NOTH request (HDK, SK {1DT, XOTH, SK12, 1ST, 1ST}) (Packet #2)
i		>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
i	i	i	(Judgment #2)
i	i	i	
<	· +=======	=====+	IPsec {Echo Request}
	1	1	(Packet #3) (Judgment #3)
		=====+	> IPsec {Echo Reply}
	ļ	ļ	(Packet #4) (Judgment #4)
ļ	ļ	ļ	
	<		CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	ļ	1	(Packet #5)
l I		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
I I			(Judymett #J)
I V	I V	I V	I V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B...
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A...
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. The proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE SA Responder's SPI value in the SPI field.

Possible Problems:

Test IKEv2.SGW.R.1.2.6.2: Receipt of cryptographically valid message on the old SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
li	i	i	(Packet #1)
i	ļ	·>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		 	(Judgment #1)
	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	!		(FACKET #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
			(Judgment #2)
	 +=======	 ======+	 IPsec {Echo Request}
l i	1	1	(Packet #3) (Judgment #3)
	· +======	=====+	> IPsec {Echo Reply}
	ļ	ļ	(Packet #4) (Judgment #4)
	 <	·	 CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	1	1	(Packet #5)
1		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
	ļ	ļ	(Judgment #5)
	 <		 INFORMATION Request (HDR, SK {})
l i	į	į	(Packet #6)
i		>	INFORMATIONAL response (HDR, SK {})
	1	1	(Judgment #6)
	1	1	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #5	See Common Packet #11	
Packet #6	See Common Packet #17	
	(encrypted by the old IKE_SA)	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payloads protected by the old IKE SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads protected by the old IKE_SA.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.3: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
		> 	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
		' ====+	IPsec {Echo Request}
l i	1	1	(Packet #3) (Judgment #3)
j		=====+	> IPsec {Echo Reply}
[ļ	ļ	(Packet #4) (Judgment #4)
	 < 		CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
		> 	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
	 <		INFORMATION Request (HDR, SK {}) (Packet #6)
		>	INFORMATIONAL response (HDR, SK {}) (Judgment #6)
V	V	V	l V

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	

Packet #5	See Common Packet #11	
Packet #6	See Common Packet #17	
	(encrypted by the new IKE_SA)	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

Test IKEv2.SGW.R.1.2.6.4: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.8 and 5.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	i	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	i	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
	 < 	· > 	INFORMATION Request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
	 	:====+ 	IPsec {Echo Request} (Packet #7) (Judgment #7) > IPsec {Echo Reply} (Packet #8) (Judgment #8)

Packet #2	See Common Packet #5	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	
Packet #5	See Common Packet #11	
Packet #6	See below	
Packet #7	See Common Packet #21	
Packet #8	See Common Packet #25	

• Packet #6: INFORMATIONAL request

IPv6 Header	Same as the Commo	n Packet #17	
UDP Header	Same as the Common Packet #17		
IKEv2 Header	Same as the Common	n Packet #17	
E Payload	Other fields are same as the Common	n Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length		
	Procotol ID 1 (IKE_SA)		
	SPI Size		
	# of SPIs 0		
	Security Parameter Index(es) (SPI)	empty	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload which has 1 (IKE_SA) in the Protocol ID field, zero in the SPI Size field and zero in the # of SPIs field.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP with corresponding algorithms inherited from the replaced IKE_SA.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.5: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transform to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
	Ĺ
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH SAr2, TSi, TSr})
	(Judgment #2)
<	
	(Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr })
	(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2

Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 Group 2	
--------	-----------	---------------	-------------------	---------------------	--

• Packet #3 CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11		
UDP Header	Same as the Common Packet #11		
IKEv2 Header	Same as the Common Packet #11		
SA Payload	Other fields are same as the common packet #11		
	SA Proposals See SA Table below		
Ni, Nr Payload	Same as the Common Packet #11		

Proposal #1	SA Proposal	Next Payload		0 (last)
	Reserved		0	
		Proposal Length		44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: MultipleIntegrity Algorithm (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.6: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
 	> CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	IKE_SA_INIT e	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group	
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
David B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
Part B	Proposal #2	IKE	ENCR 3DES	PRF HMAC SHA1	AUTH HMAC SHA1 96	Group 2	

Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part C	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part D	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11		
UDP Header	Same as the Common Packet #11		
IKEv2 Header	Same as the Common Packet #11		
SA Payload	Other fields are same as the common packet #11		
	SA Proposals See SA Table below		
Ni, Nr Payload	Same as the Common Packet #11		

Proposal #1	SA Proposal	Next Payload		2 (more)
		Reserved		C
		Proposal Length		44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		C
		# of Transforms	S	Ę
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	8
			Transform Type	1 (ENCR
			Reserved	(
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	
			Transform Type	2 (PRF
			Reserved	(
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
			Reserved	
		Transform Length		
		Transform Type	3 (INTEG	
		Reserved		
		Transform ID	According to above configuration	
		SA Transform	Next Payload	0 (last
			Reserved	
			Transform Length	
			Transform Type	4 (D-H
			Reserved	
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last
		Reserved		
		Proposal Length		4-
		Proposal #		:
		Protocol ID		1 (IKE
		SPI Size		
	# of Transforms	S	Į į	
	SA Transform	Next Payload	3 (more	
			Reserved	
			Transform Length	
			Transform Type	1 (ENCR
			Reserved	
			Transform ID	3 (3DES
		SA Transform	Next Payload	3 (more
			Reserved	(

		7		ija V	
1	K	1)	/	7
1	¥	OR	UN	1	

	1 0110111	
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	2 (HMAC_SHA1)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.7: Changing RPFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms				
	Encryption PRF Integrity D-H Group				
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(SGW) (SG	W)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
<	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)</pre>
>	<pre>IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)</pre>
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3)
	<pre>INFORMATION Request (HDR, SK {}) (Packet #4)</pre>
	<pre>INFORMATIONAL response (HDR, SK {}) (Judgment #4)</pre>
V V	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Packet #3	See Common Packet #11
Packet #4	See Common Packet #17
	(encrypted by the new IKE_SA)

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

union on.		
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 14" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 8: Judgment #4

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles D-H transform NONE when rekeying IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.12

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN	
(SGW)	(SGV	V)
	1	
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1	(Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1	(Judgment #1)
	1	
<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1	(Packet #2)
		IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	1	(Judgment #2)
	1	
<		CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	1	(Packet #3)
	X	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN}))
	1	(Judgment #3)
	1	
V	V	

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
Packet #3	See Common Packet #11	

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0

Transform Length	8
Transform Type	4 (D-H)
Reserved	0
Transform ID	0 (NONE)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value. The message proposes D-H transform NONE.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

none

Group 2.7. Creating New CHILD_SA with the CREATE_CHILD_SA Exchange

Test IKEv2.SGW.R.1.2.7.1: Receipt of cryptographically protected message on the new SA

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

			FORUM	
TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 			IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT Response (HDR, SAr1, KEr, Nr) (Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
		>		(Packet #2) [IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) [(Judgment #2)
<	 		 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 X 	===== 		IPsec {Echo Request} (Packet #5) (Judgment #5) IPsec {Echo Request} (Packet #6) (Judgment #6)
	 < 		 	CREATE_CHILD_SA request (HDR, SK{SA, Ni, TSi, TSr}) (Packet #7) CREATE_CHILD_SA response (HDR, SK{SA, Nr, TSi, TSr}) (Judgment #7)
	 	 =====+ =====+	 	 IPsec {Echo Request} (Packet #8) (Judgment #8) IPsec {Echo Reply} (Packet #9) (Judgment #9)
		 	 	IPsec {Echo Request} (Packet #10) (Judgment #10) > IPsec {Echo Reply} (Packet #11) (Judgment #11)
I A	V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See below
Packet #8	See Common Packet #21
Packet #9	See Common Packet #25
Packet #10	See below
Packet #11	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link B
		Ending Address	TH2's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link Y
		Ending Address	TH1's Global Address on Link Y

• Packet #5: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #6: Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x0000000000000000

• Packet #7: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link B
		Ending Address	TH3's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link Y
		Ending Address	TH1's Global Address on Link Y

• Packet #10: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #11: Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x0000000000000000

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply packet to TH2.
- 8. Observe the messages transmitted on Link B.
- 9. TH3 transmits an Echo Request packet to TH1.
- 10. Observe the messages transmitted on Link A.
- 11. TH1 transmits an Echo Request packet to TH3.
- 12. Observe the messages transmitted on Link B.
- 13. TN1 starts to negotiate new CHILD_SA with the NUT by sending CREATE_CHILD_SA request.
- 14. Observe the messages transmitted on Link B.
- 15. TH2 transmits an Echo Request packet to TH1.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply packet to TH2.
- 18. Observe the messages transmitted on Link B.
- 19. TH3 transmits an Echo Request packet to TH1.
- 20. Observe the messages transmitted on Link A.
- 21. TH1 transmits an Echo Reply packet to TH3.
- 22. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT never forwards an Echo Reequest with IPsec ESP using the first negotiated algorithms.

Step 14: Judgment #7

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #8

The NUT forwards an Echo Request.

Step 18: Judgment #9

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 20: Judgment #10

The NUT forwards an Echo Request.

Step 22: Judgment #11

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

None

Group 2.8. Error Handling

Test IKEv2.SGW.R.1.2.8.1: AUTHENTICATION_FAILED

Purpose:

To verify an IKEv2 device properly handles AUTHENTICATION_FAILED message.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	N1
(SGW) (S	GW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
li	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
li	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
li	(Packet #2)
>	IKE_AUTH Response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l į	or
>	IKE_AUTH Response (HDR, N(AUTHENTICATION_FAILED))
li	(Judgment #2)
V	V

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2 (Part A): IKE_AUTH request

IPv6 Header	Same as the C	ommon Packet #5
UDP Header	Same as the C	ommon Packet #5
IKEv2 Header	Same as the C	ommon Packet #5
E Payload	Same as the C	ommon Packet #5
IDi Payload	Same as the C	ommon Packet #5
AUTH Payload	Other fields are same as the Common Packet #5	
	Payload Length	8
	Auth Method	2 (SK_MIC)
	Authentication Data	empty

N Payload	Same as the Common Packet #5
SA Payload	Same as the Common Packet #5
TSi Payload	Same as the Common Packet #5
TSr Payload	Same as the Common Packet #5

Packet #2 (Part B): IKE_AUTH request

IPv6 Header	Same as the Common Packet #5	
UDP Header	Same as the Common Packet #5	
IKEv2 Header		Same as the Common Packet #5
E Payload		Same as the Common Packet #5
IDi Payload		Same as the Common Packet #5
AUTH Payload	Other field	ds are same as the Common Packet #5
	Payload Length	28
	Auth Method	1 (RSA_DS)
	Authentication Data	Same data as the common packet #5
		(caluculated by using SK_MIC)
N Payload		Same as the Common Packet #5
SA Payload	Same as the Common Packet #5	
TSi Payload		Same as the Common Packet #5
TSr Payload		Same as the Common Packet #5

Part A Invalid Authentication Data (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request which has an invalid Authentication Data in AUTH payload to the NUT.
- 4. Observe the messages transmitted on Link A..

Part B Invalid Auth method (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 6. Observe the messages transmitted on Link A..
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request which has an invalid Auth Method in AUTH payload to the NUT.
- 8. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT does not transmit an IKE_AUTH response or transmits an IKE_AUTH response with Notify payload of type AUTHENTICATION_FAILED without encryption to the TN1.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT does not transmit an IKE_AUTH response or transmits an IKE_AUTH response with Notify payload of type AUTHENTICATION_FAILED without encryption to the TN1.

Possible Problems:

• None.

Group 2.9. Non zero RESERVED fields

Test IKEv2.SGW.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
  (SGW)
                 (SGW)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
         ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
        ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                  | (Packet #2)
          ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                  | (Judgment #2)
       -----| CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
                  | (Packet #3)
             ---->| CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
                  | (Judgment #3)
N: REKEY_SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #5	See Common Packet #15
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT. All RESERVED fields are set to one.
- 6. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.SGW.R.1.3.1.1: Sending INFORMATIONAL response

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2 and 1.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	N1
(SGW) (S	GW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Judgment #2)
	INFORMATION request (HDR, SK { })
	(Packet #3)
>	INFORMATIONAL response (HDR, SK { })
	(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A..
- 3. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an

- IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A..
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 6. Observe the messages transmitted on Link A..

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A..
- 9. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A..
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 12. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted IKE Header containing following values:

Figure 177 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).

- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to INFORMATIONAL (37).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted Encrypted Payload containing following values:

Figure 178 Encrypted payload

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire

message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Possible Problems:

• None.

Group 3.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	ΓN1
(SGW) (SGW)
	LIVE CALINIT PARTICLE (UDD. CA:4 IVE: N:)
<	- IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	(Idoket #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 - IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 - INFORMATIONAL request (HDR, SK { }) (Packet #3)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #3)
	* wait until retrans timer expires
	> INFORMATIONAL response (HDR, SK { })
	(Judgment #4)
	 - INFORMATIONAL request (HDR, SK { })
	(Packet #4)
	> INFORMATIONAL response (HDR, SK { })
	(Judgment #5)
l V	V
·	•

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

	7 OKOM
Packet #4	See Common Packet #17
	(same Message ID as packet #3)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request with no payloads. The Message ID is the same as Step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 7: Judgment #4

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #5

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 3.3. Non zero RESERVED fields

Test IKEv2.SGW.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
	1	
<		SA_INIT request (HDR, SAi1, KEi, Ni)
		cket #1)
	• -	SA_INIT response (HDR, SAr1, KEr, Nr)
	(Jud	lgment #1)
<	• -	AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Pac	cket #2)
	> IKE_	AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Jud	lgment #2)
<	INFO	RMATIONAL request (HDR, SK {})
	(Pad	eket #3)
	> INFO	RMATIONAL response (HDR, SK {})
	(Jud	lgment #3)
V	V	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH

request to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads. All RESERVED fields in the message are set to one.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Section 2.2.2. Endpoint to Security Gateway Tunnel Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.R.2.1.1.1: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: IKE Header Format (BASIC)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A..
- 3. TN1 transmits an IKE_SA_INIT request to NUT.
- 4. Observe the messages transmitted on Link A..

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 transmits an IKE_SA_INIT request to NUT.
- 6. Observe the messages transmitted on Link A..
- 7. TN1 transmits an IKE_SA_INIT request to NUT.

8. Observe the messages transmitted on Link A..

Part C: IDr Payload Format (BASIC)

- 9. TN1 transmits an IKE_SA_INIT request to NUT.
- 10. Observe the messages transmitted on Link A..
- 11. TN1 transmits an IKE_SA_INIT request to NUT.
- 12. Observe the messages transmitted on Link A..

Part D: AUTH Payload Format (BASIC)

- 13. TN1 transmits an IKE SA INIT request to NUT.
- 14. Observe the messages transmitted on Link A..
- 15. TN1 transmits an IKE SA INIT request to NUT.
- 16. Observe the messages transmitted on Link A..

Part E: SA Payload Format (BASIC)

- 17. TN1 transmits an IKE_SA_INIT request to NUT.
- 18. Observe the messages transmitted on Link A..
- 19. TN1 transmits an IKE_SA_INIT request to NUT.
- 20. Observe the messages transmitted on Link A..

Part F: TSi Payload Format (BASIC)

- 21. TN1 transmits an IKE_SA_INIT request to NUT.
- 22. Observe the messages transmitted on Link A..
- 23. TN1 transmits an IKE_SA_INIT request to NUT.
- 24. Observe the messages transmitted on Link A..

Part G: TSr Payload Format (BASIC)

- 25. TN1 transmits an IKE_SA_INIT request to NUT.
- 26. Observe the messages transmitted on Link A..
- 27. TN1 transmits an IKE_SA_INIT request to NUT.
- 28. Observe the messages transmitted on Link A..

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

7 01(011)
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 179 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 180 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 181 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 182 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 20: Judgment #2

					FURUIN				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2 3	4567	8 9 0 1		
	+-+-+-+	+-+-+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+ -		
	! Next	. 44 	!0!	0	! Length	40			
		+-+-+)	-+-+-+- 	0	+-+-+-+-+-+-+-+- ! Length	36		. <u></u> . I	
	-	-	· -+-+-+-	-	+-+-+-+-+-+-+-		+-+-+-+	1	
	! Number	1			! SPI Size 4			i	İ
	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+	İ	Ì
	! SPI va	lue					!		
	- +-+-+	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-+-	+-+-+-	+-+-+-+		
 		3 	!	0	! Length				
Transform	! Type			0	+-+-+-+-+-+-+- ! Transform ID	3	(3DES) !	Proposal	SA Payload
		` '			:		,		l İ
1		3	!	0	! Length	8	!		
Transform	+-+-+-	+-+-+-+	-+-+-+	+-+-	+-+-+-+-+-+-	+-+-+-	+-+-+-+	j	j
	! Type :	3 (IN)	!	0	! Transform ID	2	(SHA1) !		
			-+-+-+		+-+-+-+-+-+-+-		+-+-+-+		
- ,	-	0	!	0	! Length	8	!		
Transform					+-+-+-+-+-+-+-+-		+-+-+-+ (No) !		
I	! Type !	•	•	0	! Transform ID +-+-+-+-	0	(No) !	I	1

Figure 183 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 184 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 185 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 186 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 187 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

1 2 3
01234567890123456789012345678901
+-
! TS Type !IP Protocol ID* Selector Length
+-
Start Port* End Port*
+-
!
~ Starting Address* ~
!
+-
!
~ Ending Address* ~
!
<u> </u>

Figure 188 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to TN1 address.
- A Ending Address field set to greater that or equal to TN1 address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 189 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 190 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr, [CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packets
Packet #2	See Common Packets

Part A (BASIC)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A...
- 3. TN1 transmits an IKE_SA_INIT response to NUT.
- 4. Observe the messages transmitted on Link A..
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 6. Observe the messages transmitted on Link A..
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B...

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8 Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 1.2. Requesting an Internal Address on a Remote Network

Test IKEv2.SGW.R.2.1.2.1: Receipt of CFG_REQUEST

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly eader and Configuration Payload format

References:

• [RFC 4306] - Sections 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration
 In each part, configure NUT according to the Common Configuration except the traffic

selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address range.

	Traffic Selector						
	Source			Destination			
	Address	Next Layer	Port	Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range	
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY	
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY	

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(End-No	ode)
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
] ((Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	[((Judgment #1)
	1	
<		IKE_AUTH request (HDR, SK {IDi, AUTH, CP(CFG_REQUEST), SAi2, TSi, TSr})
	[((Packet #2)
		IKE_AUTH Response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	((Judgment #2)
	1	
V	V	

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet	: #5
UDP Header	Same as Common Packet	: #5
IKEv2 Header	Same as Common Packet	: #5
E Payload	Same as Common Packet	: #5
IDi Payload	Same as Common Packet	: #5
AUTH Payload	Next Payload	47 (CP)
	Other fields are same as	Common Packet #5
CP Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	12
	CFG Type 1 (CFG_REQUEST RESERVED 0	
	Configuration Attributes	See below
SA Payload	Same as Common Packet #5	
TSi Payload	Other fields are same as Common Packet #5	
	Traffic Selectors	See below
TSr Payload	Same as Common Packet #5	

Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	::
	Ending Address	###:###:###:###:###:###:###

Part A: (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A...
- 3. TN1 transmits an IKE SA INIT request to NUT.
- 4. Observe the messages transmitted on Link A...

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 191 Configuration Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A CFG Type field set to CFG_REPLY (2).
- A RESERVED field set to zero.

A Configuration Attributes field set to following.

Figure 192 Configuration Attributes format

Configuration Attribute #1

- Reserved field is set to zero.
- Attribute Type field is set to INTERNAL_IP6_ADDRESS (8).
- Length field is set to 17.
- Value field is set to Prefix B::1 as IPv6 address and 128 as prefix-length.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

1102

	Source			Destination		
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
	<	IKE_AUTH request (HDR, SK {IDi, AUTH,
		CP(CFG_REQUEST), SAi2, TSi, TSr})
		(Packet #2)
		> IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
		(Judgment #2)
<		====== IPsec {Echo Request}
		(Packet #3) (Judgment #3)
		=====> IPsec {Echo Reply}
		(Packet #4) (Judgment #4)
V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See below

• Packet #2: IKE_AUTH request packet

Same as Common Packet	: #5
Same as Common Packet	#5
Same as Common Packet	#5
Same as Common Packet	#5
Same as Common Packet	#5
Next Payload	47 (CP)
Other fields are same as	Common Packet #5
Next Payload	33 (SA)
Critical	0
Reserved	0
Payload Length 12 CFG Type 1 (CFG_REQUEST	
Configuration Attributes See below	
Same as Common Packet #5	
Other fields are same as Common Packet #5	
Traffic Selectors See below	
Same as Common Packet #5	
	Same as Common Packet Same as Common Packet Same as Common Packet Same as Common Packet Next Payload Other fields are same as a Next Payload Critical Reserved Payload Length CFG Type RESERVED Configuration Attributes Same as Common Packet Other fields are same as a Traffic Selectors

Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	::
	Ending Address	###:###:###:###:###:###:###

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #22		
ESP	Same as Common Packet #22		
IPv6 Header	Source Address Prefyx B::1		
	Destination Address		
ICMPv6 Header	Same as Common Packet #22		

• Packet #4: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f	
	Destination Address	Prefix B::1	
ICMPv6 Header	Same as Common Packet #26		

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request to the TH1.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of sending Echo Request.

Test IKEv2.SGW.R.2.1.2.3: Non zero RESERVED fields in Configuration Payload

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector	Traffic Selector				
	Source			Destination		
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
	<	IKE_AUTH request (HDR, SK {IDi, AUTH,
		CP(CFG_REQUEST), SAi2, TSi, TSr})
		(Packet #2)
		> IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
		(Judgment #2)
V	V	V

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet	: #5	
UDP Header	Same as Common Packet #5		
IKEv2 Header	Same as Common Packet		
E Payload	Same as Common Packet		
IDi Payload	Same as Common Packet		
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as		
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	1	
	Payload Length	12	
	CFG Type	1 (CFG_REQUEST)	
	RESERVED	1	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #5		
TSi Payload	Other fields are same as Common Packet #5		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #5		

Configuration Attributes	Reserved	1
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6 ADDR RANGE)

1 01(011)			
	IP Protocol ID	0 (any)	
	Selector Length	40	
	Start Port	0	
	End Port	65535	
	Starting Address	::	
	Ending Address	###:###:###:###:###:###:###	

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.4: No Configuration payload

Purpose:

To verify an IKEv2 device properly handles the message which does not include Configuration payload, when the device expects Configuration payload.

References:

• [RFC 4306] - Sections 2.19 and 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector	Traffic Selector				
	Source			Destination		
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	1
(SGW)	(End-N	Node)
	- 1	
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	- 1	(Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	- 1	(Judgment #1)
1	- 1	
<		<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
1	- 1	(Packet #2)
		<pre>IKE_AUTH response (HDR, SK {N(FAILED_CP_REQUIRED)})</pre>
	- 1	(Judgment #2)
	- 1	
V	V	

Packet #1	See Common Packet #1
Packet #2 See Common Packet #5	
	This packet does not include CP payload.

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response with a Notify payload of type FAILED_CP_REQUIRED.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.5: Receipt of Multiple CFG_REQUEST

Purpose:

To verify an IKEv2 device properly handles multiple CFG_REQUEST.

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector					
	Source			Destination		
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT TI	N1
(Host)	(SGW) (End-	-Node)
1	1	
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	[(Packet #1)
	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	ļ.	(Judgment #1)
!	ļ.	
	<	IKE_AUTH request (HDR, SK {IDi, AUTH,
!	ļ	CP(CFG_REQUEST), SAi2, TSi, TSr})
!	ļ	(Packet #2)
	>	IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	ļ	(Judgment #2)
	l !	 IPsec {Echo Request}
	· T = = = = = = = = = = = = = = = = = = =	Packet #3) (Judgment #3)
	 	IPsec {Echo Reply}
		(Packet #4) (Judgment #4)
1 1	i	(Tacket #4) (Gaagment #4)
	' · +===========================	IPsec {Echo Request}
	Ī	(Packet #5) (Judgment #5)
j	· +========>	IPsec {Echo Reply}
l i	1	(Packet #6) (Judgment #6)
i	j	
V	V	I

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See below
Packet #5	See below
Packet #6	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet	: #5
UDP Header	Same as Common Packet #5	
IKEv2 Header	Same as Common Packet #5	
E Payload	Same as Common Packet #5	
IDi Payload	Same as Common Packet #5	
AUTH Payload	Next Payload	47 (CP)
	Other fields are same as Common Packet #5	
CP Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0

1 OKOM		
	Payload Length	16
	CFG Type	1 (CFG_REQUEST)
	RESERVED	0
	Configuration Attributes	See below
SA Payload	Same as Common Packet #5	
TSi Payload	Other fields are same as Common Packet #5	
	Traffic Selectors	See below
TSr Payload	Same as Common Packet #5	

Configuration Attributes	Reserved	0	
	Attribute Type	INTERNAL_IP6_ADDRESS	
	Length	0	
Configuration Attributes	Reserved	0	
	Attribute Type	INTERNAL_IP6_ADDRESS	
	Length	0	

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)	
	IP Protocol ID	0 (any)	
	Selector Length	40	
	Start Port	0	
	End Port	65535	
	Starting Address	::	
	Ending Address	###:###:###:###:###:###	

• Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #22	
ESP	Same as Common Packet #22	
IPv6 Header	Source Address	Prefyx B::1
	Destination Address	Prefix B::f
ICMPv6 Header	Same as Common Packet #22	

• Packet #4: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f
	Destination Address	Prefix B::1
ICMPv6 Header	Same as Common Packet #26	

• Packet #5: Echo Request packet

IPv6 Header	Same as Common Packet #22	
ESP	Same as Common Packet #22	
IPv6 Header	Source Address	Prefyx B::2
	Destination Address	Prefix B::f
ICMPv6 Header	Same as Common Packet #22	

• Packet #6: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f
	Destination Address	Prefix B::2
ICMPv6 Header	Same as Common Packet #26	

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.

- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B.
- 9. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 10. Observe the messages transmitted on Link A.
- 11. TH1 transmits an Echo Reply to TN1.
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request to the TH1.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT forwards an Echo Request to the TH1.

Step 12: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of sending Echo Request.

All Rights Reserved. Copyright (C) 2008

All Rights Reserved. Copyright (C) 2008

Yokogawa Electric Corporation

Nippon Telegraph and Telephone Corporation (NTT)

No part of this documentation may be reproduced for any purpose without prior permission.