## TP557 - Tópicos avançados em IoT e Machine Learning: *Regressão com DNNs (Parte II)*







Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

## O que vamos ver?

- Anteriormente, vimos através de um exemplo simples como usar a biblioteca TensorFlow para criar uma rede neural e resolver um problema de regressão, ou seja, um problema de ajuste de curva.
- O objetivo era ter um contato inicial com a biblioteca e seus princípios básicos de funcionamento.
- Nesse tópico, vamos estender o que vimos anteriormente para um problema mais prático de regressão usando uma base de dados do mundo real.

$$x = \{-1, 0, 1, 2, 3, 4\}$$
  
 $y = \{-3, -1, 1, 3, 5, 7\}$ 



- Anteriormente, nós resolvemos um problema de regressão bem simples, onde queríamos mapear um único valor de x em um valor de saída, y.
- Fizemos o mapeamento usando uma reta como nossa função hipótese.



$$\hat{y} = b + wx$$

$$x = \{-1, 0, 1, 2, 3, 4\}$$
  
 $y = \{-3, -1, 1, 3, 5, 7\}$ 



- Podemos fazer uma analogia com o problema de predizer o número de picolés que serão vendidos em um dia, y, dado a temperatura média daquele dia, x.
- Esse problema só tem um *atributo* de entrada, a temperatura, x.



$$\hat{y} = b + wx$$

$$x_1 = \{-1, 0, 1, 2, 3, 4\}$$
  
 $x_2 = \{-8, 1, 3, 7, 0, 2\}$   
 $y = \{-8, 0, 7, 1, 2, 3\}$ 



- Mas e se quisermos um modelo que leve em consideração não só a temperatura, mas o mês do ano também?
- O modelo agora terá 2 *atributos* (i.e., entradas).
- A figura ao lado mostra a distribuição dos dados para um problema com dois atributos.
- Vejam que eles formam um plano.
- Portanto, existe uma relação linear entre os atributos e a saída.

$$x_1 = \{-1, 0, 1, 2, 3, 4\}$$
  
 $x_2 = \{-8, 1, 3, 7, 0, 2\}$   
 $y = \{-8, 0, 7, 1, 2, 3\}$ 



 Para aproximar esses dados, podemos usar a equação de um plano (abaixo) como nossa função hipótese.

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2.$$

• Usando *ativações lineares*, a rede neural abaixo representa a *função de um plano*.





- Podemos extrapolar isso pra quantos atributos forem necessários.
- O modelo ao lado tem *K* atributos (i.e., entradas).
- Com *ativações lineares*, a rede neural ao lado representa a *função de um hiperplano*

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_K x_K$$
$$= \sum_{i=0}^{K} a_i x_i,$$

onde  $x_0 = 1$ .

## Aproximação universal de funções



- Com ativações não lineares (sigmóide, relu, etc.) e uma camada oculta, podemos aproximar qualquer tipo de função contínua, incluindo o hiperplano, bastando encontrar o número de neurônios necessários.
- Com duas camadas ocultas, podemos aproximar até funções com descontinuidades.

## Mas como encontramos o número ideal de camadas e neurônios?

## Otimização hiperparamétrica



- É o processo de *encontrar os melhores conjuntos de hiperparâmetros* para um modelo de ML.
- Hiperparâmetros são parâmetros que não são aprendidos durante o treinamento do modelo, mas que afetam seu desempenho e comportamento.

## Otimização hiperparamétrica



- Exemplos de hiperparâmetros incluem a taxa de aprendizagem, número de camadas e neurônios, tamanho do mini-batch, otimizador, e muitos outros.
- Algumas bibliotecas populares são:
  - KerasTuner,
  - Optuna,
  - Scikit-learn,
  - Hyperopt, etc.

### Exemplo

Regressão de preços de residências usando redes neurais densas (DNNs)



```
Coletar
Dados
```

```
data = tf.keras.datasets.boston_housing
(x train, y train), (x test, y test) = data.load data()
```

- O primeiro passo no *fluxo de trabalho* com modelos de ML envolve a *coleta de dados*.
- Podemos coletar dados realmente, por exemplo, gravar sons ou vídeos, tirar fotos, etc. ou reusar um conjunto de dados existente.





 Na sequência, fazemos uma análise exploratória dos dados (exploratory data analysis – EDA), avaliando intervalos dos atributos e buscando valores faltantes, discrepantes, etc.



```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(x_train)

x_train_std = scaler.transform(x_train)
x test std = scaler.transform(x test)
```

- Em seguida, realizamos o *pré-processamento* dos dados.
- Essa tarefa pode envolver a remoção de valores discrepantes, preenchimento ou remoção de exemplos com dados incompletos, escalonamento dos atributos, etc.



- Após, temos a fase de criação do modelo.
- Envolve a *definição da arquitetura*: quantidade de camadas, número de nós por camada, funções de ativação, otimizador, passo de aprendizagem, métricas, etc.



```
history = model.fit(
   x_train_std,
   y_train,
   epochs=1000,
)
```

- O *treinamento* do modelo vem na sequência.
- A entrada desta etapa são os dados já pré-processados.





validation data=(x test std, y test)

- Avaliar o modelo envolver analisar os resultados obtidos após o treinamento.
- Analisar indícios de que o modelo está aprendendo:
  - Curva de erro com caída rápida no início e redução ao longo do treinamento, se tornando praticamente constante (indicação de convergência).
  - Comparar os erros de treinamento e validação, os quais devem ser pequenos e próximos (caso contrário, indicação de sobreajuste).
- Se o modelo não estiver bom, devemos *otimizá-lo, manualmente ou através de técnicas de otimização hiperparamétrica*.



```
xt = np.array([1.1, 0., 9., 0., 0.6, 7., 92., 3.8, 4., 300., 21., 200, 19.5])

xt = np.reshape(xt, (1, 13))

xt_norm = scaler.transform(xt)

yt = model.predict(xt_norm)
```

• Após obtermos um bom modelo, o colocamos em "produção" para lidar com dados do mundo real (inéditos) e oferecer insights ou auxiliar em tomadas de decisão.



- Esse é o fluxo de trabalho que geralmente seguimos para trabalhar com modelos de aprendizado de máquina.
- O fluxo com o tinyML terá uma fase adicional intermediária entre avaliar/otimizar e a inferência, que será a etapa de conversão (i.e., compressão) do modelo para o executarmos em dispositivos embarcados.

#### Atividades

- Quiz: "TP557 Regressão com DNNs (Parte II)".
- Exercício #1: Regressão sem escalonamento
- Exercício #2: Otimização hiperparamétrica

## Perguntas?

# Obrigado!

