

Московский государственный технический университет Факультет ИУ «Информатика и системы управления» Кафедра ИУ-1 «Системы автоматического управления»

ОТЧЕТ

по лабораторной работе №1

«ПИД-регуляторы»

по дисциплине «Основы теории управления»

Выполнили: Мочульский С.А.

Мочульский С.А.

Группа: ПС4-62

Проверил:

Работа выполнена: 01/03/2025

Отчет сдан:

Оценка:

Цель работы

Исследование методов построения систем регулирования с использованием ПИД-регулятора, оценка влияния коэффициента ПИД-регуляторов на динамику системы.

Общий порядок выполнения лабораторной работы

- 1. Создание в Simulink схемы моделирования непрерывной системы с ПИД-регулятором.
- 2. Исследовать влияние коэффициентов ПИД-регуляторов на характеристики качества и динамику системы регулирования.

Теоретическая часть

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) является одним из наиболее распространенных методов управления динамическими системами. Основная задача ПИД-регулятора — минимизировать ошибку регулирования, то есть разницу между заданным значением (уставкой) и текущим состоянием системы.

Структура ПИД-регулятора

ПИД-регулятор формирует управляющее воздействие на объект управления на основе трех компонентов:

- 1. **Пропорциональная составляющая** (**P**) пропорциональна текущей ошибке регулирования. Увеличивая коэффициент пропорциональности K_p , можно ускорить реакцию системы, но чрезмерное увеличение может привести к перерегулированию и неустойчивости.
- 2. **Интегральная составляющая (I)** учитывает накопленную ошибку за время. Коэффициент K_i позволяет устранить статическую ошибку, но слишком большое значение может вызвать колебания и замедлить реакцию системы.
- 3. Дифференциальная составляющая (D) учитывает скорость изменения ошибки. Коэффициент K_d помогает снизить перерегулирование и улучшить стабильность системы, однако чрезмерное увеличение может привести к усилению шумов.

Управляющее воздействие $\mathbf{u}(t)u(t)$ ПИД-регулятора описывается уравнением:

$$u(t) = K_p \cdot e(t) + K_i \cdot \int_0^t e(t)dt + K_d \cdot \frac{de(t)}{dt}$$

где e(t) — ошибка регулирования.

Моделирование непрерывной системы с ПИД-регулятором

Рисунок 1 ПИД-регулятор в Simulink

На рисунке 2 представлена система построенная в Simulink.

Для проверки работоспособности системы, запустив моделирование, при коэффициентах $K_p=1,\ K_i=0,\ K_d=0,$ что по своей сути представляет случай системы регулирования с единичной обратной связи.

Рисунок 2 Сигналы

На основании анализа графиков на рисунке 3 можно заключить, что система является устойчивой, однако наблюдается перерегулирование и колебательность. Кроме того, присутствует статическая ошибка.

Исследования влияния коэффициентов ПИД-регулятора

На рисунке 4 показаны переходные процессы с разными коэффициентами $K_p=\{0,\ 1,\ 5,\ 10,\ 10000\}$ и $K_i=1,\ K_d=1.$

Рисунок 3 Переходной процесс при разных коэффициентах Кр

На рисунке 5 показаны переходные процессы с разными коэффициентами $K_i=\{0,\ 1,\ 5,\ 10,\ 10000\}$ и $K_p=1,\ K_d=1.$

Рисунок 4 Переходной процесс при разных коэффициентах Кі

На рисунке 6 показаны переходные процессы с разными коэффициентами $K_d=\{0,\ 1,\ 5,\ 10,\ 10000\}$ и $K_p=1,\ K_i=1.$

Рисунок 5 Переходной процесс при разных коэффициентах Ка

Таблица 1

	K_p	K_i	K_d
Статическая ошибка	Уменьшается с увеличением коэффициента	Уменьшается с увеличением коэффициента	Увеличивается с увеличением коэффициента
Перерегулирование	Увеличивается с увеличением коэффициента	Увеличивается	Уменьшается с увеличением коэффициента
Время переходного процесса	Значительно уменьшается с увеличением коэффициента	Уменьшается с увеличением коэффициента	Увеличивается с увеличением коэффициента
Колебательность	Увеличивается с увеличением коэффициента	Значительно увеличивается с увеличением коэффициента	Уменьшается с увеличением коэффициента
Характер управления	Физически реализуем	Физически реализуем	-
Устойчивость	Не влияет на устойчивость	Увеличение может привести к потере устойчивости	Не влияет на устойчивость

Из данной таблицы следует, что пропорциональный коэффициент ПИДрегулятора определяет быстродействие системы, интегральный — устраняет статическую ошибку, повышая точность, а дифференциальный стабилизирует переходный процесс, снижая колебательность и обеспечивая плавность. Их совместное влияние требует точной настройки пропорций для баланса между скоростью реакции, устойчивостью и точностью системы.

Вывод

Настройка ПИД-регулятора требует баланса между тремя компонентами:

- **Пропорциональный коэффициент** K_p определяет скорость реакции системы, но чрезмерное увеличение вызывает перерегулирование.
- Интегральный коэффициент K_i устраняет статическую ошибку, однако избыток приводит к колебаниям.
- Дифференциальный коэффициент K_d стабилизирует систему, снижая колебательность и сглаживая переходный процесс.

Оптимальная работа системы достигается только при взаимной компенсации коэффициентов, что позволяет гибко управлять динамикой (в отличие от систем с единичной обратной связью). Ключевая задача — найти пропорции, обеспечивающие минимальное время переходного процесса, отсутствие статической ошибки и устойчивость.

Наилучшие коэффициенты для ПИД-регулятора

1.
$$K_i = 30$$
, $K_p = 30$, $K_d = 1$.

Данная система имеет малое время переходного процесса, и у нее отсутствует перерегулирование и статическая ошибка.

2.
$$K_i = 5$$
, $K_p = 5$, $K_d = 1$.

Данная система имеет более плавный переходной процесс. Статической ошибки нет, небольшое перерегулирование.

Приложение

