第一次作业

计算物理

王潇卫 515072910032

1. Consider the 32-bit single-precision floating-point number A

	s	e	f
Bit position	31	3023	220
value	0	0000 1110	1010 0000 0000 0000 0000 000

Determine the full value of A.

- Sometimes the loss of significance error can be avoided by rearranging terms in the function using a known identity from trigonometry or algebra. Find an equivalent formula for the following functions that avoids a loss of significance.
 - (a) $\ln(x+1) \ln(x)$ for large x
 - (b) $\sqrt{x^2+1} x$ for large x
 - (c) $\cos^2(x) \sin^2(x)$ for $x \approx \pi/4$

(d)
$$\sqrt{\frac{1+\cos(x)}{2}}$$
 for $x \approx \pi$

(a).
$$\ln(x+1) - \ln(x) = \ln(1+\frac{1}{x})$$
 (b). $\sqrt{x^2+1} - x = \frac{1}{\sqrt{x^2+1}+x}$ (c). $\cos^2(x) - \sin^2(x) = \cos(2x)$ (d). $\sqrt{\frac{1+\cos(x)}{2}} = \cos(\frac{x}{2})$

3. Writer a program to determine the underand overflow limits.

over-flow: 8.9885e+307 under-flow: 4.9407e-324

code:

```
%Write a programme to determine the under and over-flow limits.

under = 1;

over = 1;

a = 0;
```

```
a = under;
under = under/2
end
while b~=over
b = over;
over = over*2
end
```

4. Write a program to determine your machine precision and double-precision floats.

single-precision is: 5.9605e-08 double-precision is: 1.1102e-16

code:

```
clear all
one = single(0);
sing_eps = single(1);
while one ~= 1
    sing_eps = single(sing_eps/2);
   one = single(1 + sing_eps);
end
fprintf (1,'single-precision is: \n')
single_eps = sing_eps
dou_one = 0;
dou_eps = 1;
while dou_one ~= 1
   dou_eps = dou_eps/2;
    dou_one = 1 + dou_eps;
fprintf (1,'double-precision is: \n')
double_eps = dou_eps
```

5. The value of π can be calculated with the series:

$$\pi = 4\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)$$

- Describe your algorithm that calculates the value of π by using n terms of the series.
- Write a program to implement your algorithm and calculate the corresponding true relative error.
- Use the program to calculate π and the true relative error for: (a) n = 10, (b) n = 20, (c) n = 40 (d) n > 50 of your choice.
- Comment on your results of relative errors.

(1)

(2)code:

```
clear all
clc
fprintf(1,' 输入级数N: \n ');
N = input('N = ');
a = 0;
if mod(N,2) == 0
    n = N-1;
    while n>=1
        a = a + 2/(4*n^2-1);
        n = n - 2;
    end
else
    n = N-2;
    while n>=1
        a = a + 2/(4*n^2-1);
        n = n - 2;
    end
    a = a + 1/(2*N-1);
end
a = 4*a;
```

(3)

n	π估计值	相对误差
10	3.041840	-3.175238%
20	3.091624	-1.590558%
40	3.116597	-0.795650%
100	3.131593	-0.318302%

(4)

绘制N=10、20、40、50、100、200级数——误差双对数图,可以看到,随着n的增大,相对误差会逐渐减小,双对数图斜率拟合为-0.994,误差主要是approximation errors

