EL PROBLEMA DE CONJUGACIÓN PARA MATRICES ENTERAS

G. A.

El puntapié inicial de las presentes notas es la siguiente pregunta:

¿Dadas dos matrices A, B
$$\in$$
 M_nZ, existe P \in GL_nZ tal que B = PAP⁻¹?

Si la respuesta a la pregunta para determinadas matrices A y B es afirmativa, decimos que son *conjugadas*. Una forma de interpretar la pregunta es la siguiente: el grupo general lineal $GL_n\mathbb{Z}$ actúa en $M_n\mathbb{Z}$ por conjugación, esto es, via $P \cdot A = PAP^{-1}$. Estamos interesados en entender las órbitas de esta acción, i.e. las clases de conjunto cociente $M_n\mathbb{Z}/GL_n\mathbb{Z}$.

Un invariante de la clase de conjugación de una matriz es su polinomio característico: esto se deduce de que

$$\chi_{PAP^{-1}} = \det(X \cdot I - PAP^{-1}) = \det(X \cdot PIP^{-1} - PAP^{-1})$$

$$= \det(P) \det(X \cdot I - A) \det(P)^{-1}$$

$$= \det(X \cdot I - A) = \chi_A.$$

En el caso en el que el polinomio caracterítstico es irreducible, Latimer y MacDuffee parametrizan las clases de conjugación de matrices en términos de ideales fraccionarios:

Teorema 1 ([3, Theorem]). Sea α un entero algebraico y $\mathcal{O} = \mathbb{Z}[\alpha]$. Existe una correspondencia biyectiva entre ideales fraccionarios de \mathcal{O} y clases de conjugación de matrices enteras con polinomio característico $m(\alpha, \mathbb{Q})$.

Para probar el teorema introducimos la noción de orden e ideal fraccionario de un orden en la Sección 1. En la Sección 2 probarmos el Teorema 1 y damos algunos ejemplos breves del algoritmo que ofrece la demostración. Por último, en la Sección 3 tratamos el problema de conjugación por matrices de determinante 1 y lo relacionamos con los elementos de norma positiva, los totalmente positivos y el *narrow-class group*.

1. ÓRDENES E IDEALES FRACCIONARIOS

Sea K una extensión finita de \mathbb{Q} y \mathcal{O}_K su anillo de enteros. Un *orden* de K es un subanillo que como \mathbb{Z} -módulo tiene rango $[K:\mathbb{Q}]$. Notar que $Frac(\mathcal{O}) = K$, ya que el primer cuerpo está contenido en el segundo y ambos tienen la misma \mathbb{Q} -dimensión. Un \mathcal{O} -ideal fraccionario es un \mathcal{O} -módulo $I \subset K$; siempre existe $x \in \mathcal{O}$ y un ideal $J \subseteq \mathcal{O}$ tal que $I = \frac{1}{x}J$.

Ejemplo 1.1. Si α es un entero algebraico y $K = \mathbb{Q}(\alpha)$, entonces $\mathbb{Z}[\alpha]$ es un orden de \mathcal{O}_K . En particular $\mathbb{Z}[\sqrt{-5}]$ es un orden de $\mathbb{Q}(\sqrt{-5})$ que está contenido propiamente en su anillo de enteros $\mathbb{Z}[\frac{1+\sqrt{-5}}{2}]$.

Dos \mathcal{O} -ideales fraccionarios I y J se dicen *equivalentes* si I = xJ para algún $x \in K \setminus \{0\}$. Esta es una relación de equivalencia; notamos ICM(\mathcal{O}) al conjunto de clases de equivalencia de ideales fraccionarios. La multiplicación de ideales define una estructura de monoide en este conjunto; notamos Pic(\mathcal{O}) al grupo de elementos inversibles de ICM(\mathcal{O}). En general, si $\mathcal{O} \neq \mathcal{O}_K$, no todo ideal fraccionario es inversible.

Precisaremos los siguientes lemas sobre ideales fraccionarios más adelante.

Lema 1.2. Sea K una extensión finita de \mathbb{Q} y \mathcal{O} un orden de K. Dos \mathcal{O} -ideales fraccionarios I y J son equivalentes si y sólo si son isomorfos como \mathcal{O} -módulos. Más aún, isomorfismo \mathcal{O} -lineal I \to J está dado por la multiplicación por un elemento de K \ {0}.

1

2 G. A.

Demostración. Si I = xJ para cierto $x \in K \setminus \{o\}$, el morfismo $j \in J \mapsto xj \in I$ resulta un isomorfismo \mathcal{O} -lineal. Recíprocamente, supongamos que tenemos un isomorfismo \mathcal{O} -lineal ϕ : I → J. Por la implicación ya demostrada, podemos suponer que I, J ⊂ \mathcal{O} , es decir que I y J son ideales de \mathcal{O} . Ahora, dado $x \in I$ no nulo, para cada $i \in I$ es

$$\varphi(x)i = \varphi(xi) = x\varphi(i).$$

Esto implica que φ coincide con el morfismo dado por la multiplicación por $\varphi(x)/x$. En particular tomando imágenes es $J = \frac{\varphi(x)}{x}I$.

Lema 1.3. Sea K una extensión finita de \mathbb{Q} . Si \mathcal{O} es un orden de K, todo \mathcal{O} -ideal fraccionario no nulo tiene rango $[K:\mathbb{Q}]$ como \mathbb{Z} -módulo.

Demostración. Sea I un \mathcal{O} -ideal fraccionario, que salvo isomorfismo \mathcal{O} -lineal (en particular, \mathbb{Z} -lineal) podemos suponer contenido en \mathcal{O} . Tensorizando por \mathbb{Q} a la sucesión exacta o → I \hookrightarrow $\mathcal{O} \twoheadrightarrow \mathcal{O}/I \longrightarrow$ o vemos que rk I = rk \mathcal{O} si y sólo si rk \mathcal{O}/I = o. Para ver esto último probaremos que \mathcal{O}/I es finito: dado $x \in I$ no nulo tenemos un epimorfismo $\mathcal{O}/x\mathcal{O} \longrightarrow \mathcal{O}/I$; podemos asumir entonces que I = (x). Finalmente, el mismo argumento que en el caso $\mathcal{O} = \mathcal{O}_K$ prueba que el cociente $\mathcal{O}/x\mathcal{O}$ tiene cardinal $N_{K/\mathcal{O}}(x)$. **

2. EL TEOREMA DE LATIMER-MACDUFFEE

En esta sección probamos el Teorema 1. De aquí en más fijamos α un entero algebraico con polinomio minimal f de grado n y notemos $\mathcal{O} = \mathbb{Z}[\alpha]$ y $K = \mathbb{Q}(\alpha)$.

Observemos que para todo \mathcal{O} -ideal fraccionario I la multiplicación por α define un morfismo \mathbb{Z} -lineal,

$$m_{\rm I} : {\rm I} \to {\rm I}, \qquad x \mapsto \alpha x.$$

Por el Lema 1.3, todo tal ideal I es \mathbb{Z} -libre de rango n; en paticular, dada una \mathbb{Z} -base B de I, podemos considerar la matriz $[L_I]_B \in M_n \mathbb{Z}$ de L_I en base B. Si cambiamos la base por otra, digamos B', entonces $[L_I]_B$ y $[L_I]_{B'}$ son conjugadas con matriz de conjugación la matriz de cambio de base $C_{B,B'}$.

Por otro lado, si J es un \mathcal{O} -ideal fraccionario equivalente a I, por el Lema 1.2 esto equivale a tener un isomorfismo \mathcal{O} -lineal $\varphi \colon I \to J$ dado por la multiplicación por cierto elemento $\beta \in K \setminus \{o\}$. Se sigue de aquí que $\varphi m_I = m_I \varphi$, pues

$$\varphi(m_{\mathsf{I}}(x)) = \varphi(\alpha x) = \beta \alpha x = \alpha \beta x = m_{\mathsf{I}}(\varphi(x))$$

para todo $x \in I$. En particular, dadas \mathbb{Z} -bases B de I y B' de J, las matrices $[L_I]_B$ y $[L_J]_{B'}$ serán conjugadas con matriz de conjugación $[\phi]_{B,B'}$. (También se puede observar que si J = xI para cierto $x \in K \setminus \{o\}$, entonces $[L_I]_{xB} = [L_I]_B$.)

Si I es un \mathcal{O} -ideal fraccionario, vamos a notar $[L_I]$ a la clase de conjugación de las matrices $[L_I]_B$ donde B es una \mathbb{Z} -base de I. El conjunto de matrices de $M_n\mathbb{Z}$ de polinomio característico f será denotado M_f ; recordemos que $GL_n(\mathbb{Z})$ actúa allí por conjugación. La discusión anterior prueba la siguiente proposición.

Proposición 2.1. Se tiene una función bien definida

(2.2)
$$\Lambda \colon \operatorname{ICM}(\mathcal{O}) \to \operatorname{M}_f/\operatorname{GL}_n(\mathbb{Z}), \qquad [I] \mapsto [L_I].$$

*

El Teorema 1 será una consecuencia de que la función Λ es biyectiva, como veremos a continuación.

Proposición 2.3. La función (2.2) es sobreyectiva.

Demostración. Sea $A \in M_f$ y veamos que existe un \mathcal{O} -ideal fraccionario tal que $\Lambda([I]) = A$. Como $\mathcal{O} = \mathbb{Z}[X]/(f)$, y f(A) = o por el teorema de Cayley-Hamilton, la multiplicación por A define una estructura de \mathcal{O} -módulo en A:= \mathbb{Z}^n donde la multiplicación por A: se identifica con la multiplicación por A. Más aún, esta estructura es una restricción de la estructura de A-módulo que A define sobre A:= A:= A:

Observemos que

$$n = \dim_{\mathbb{Q}} M = \dim_{\mathbb{K}} M \cdot \dim_{\mathbb{Q}} K = \dim_{\mathbb{K}} M \cdot n$$

así que $\dim_K M = 1$. En consecuencia, existe un isomorfismo K-lineal $\varphi \colon M \to K$, que se restringe entonces a un isomorfismo \mathcal{O} -lineal $\varphi \colon N \to \varphi(N)$. Por definición $I := \varphi(N)$ es un \mathcal{O} -ideal fraccionario y la multiplicación por α en I tiene matriz A en base $\{\varphi(e_1), \ldots, \varphi(e_n)\}$. En particular $\Lambda([I]) = [A]$.

Proposición 2.4. La función (2.2) es inyectiva.

Demostración. Supogamos que $[L_I] = [L_J]$, de forma que existen una matriz $U ∈ GL_n \mathbb{Z}$ y \mathbb{Z} -bases B de I y B' de J tal que $U[L_I]_B = [L_J]_{B'}U$. La matriz U define un isomorfismo \mathbb{Z} -lineal I → J que, al conmutar con la multiplicación por α , es además \mathcal{O} -lineal. Por el Lema 1.2, se tiene entonces que [I] = [J]. *

2.1. De matrices a ideales. Si \mathcal{O}_K es monogenerado y $Cl(\mathcal{O}_K) = 1$, todo par de matrices con polinomio característico f son conjugadas. Hagamos un ejemplo no trivial.

Consideremos d=-5 y K = $\mathbb{Q}(\sqrt{-5})$, $\mathcal{O}=\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$. Como consecuencia de la cota de Minkowski, el grupo de clases de \mathcal{O} es isomorfo a \mathbb{Z}_2 , generado por I = $(2,1+\sqrt{5})$. Tomemos como \mathbb{Z} -base de (1) a $\{1,\sqrt{-5}\}$. De esta forma, la multiplicación de $\sqrt{-5}$ tiene en esta base matriz $A_0=\begin{pmatrix}0&-5\\1&0\end{pmatrix}$. Para I tomamos la \mathbb{Z} -base $\{2,1+\sqrt{5}\}$; como $2\sqrt{-5}=-2+2(1+\sqrt{-5})$ y $\sqrt{-5}(1+\sqrt{-5})=-5+\sqrt{-5}=-3\cdot 2+(1+\sqrt{-5})$, la multiplicación por $\sqrt{-5}$ en esta base tiene matriz $A_1=\begin{pmatrix}-1&-3\\2&1\end{pmatrix}$.

Por el Teorema 1, toda matriz entera A de 2×2 que satisfaga $A^2 = -5I$ es conjugada a A_0 ó A_1 , y estas dos últimas no son conjugadas.

2.2. De ideales a matrices. Vamos ahora en la dirección opuesta, consideremos la matriz $A = \begin{pmatrix} 2 & 3 \\ -3 & -2 \end{pmatrix}$ que satisface la ecuación $A^2 + 5I = o$. La multiplicación por A define una estructura de $\mathbb{Q}(\sqrt{-5})$ -módulo en \mathbb{Q}^2 y de $\mathbb{Z}[\sqrt{-5}]$ -módulo en \mathbb{Z}^2 . Concretamente

$$(a+b\sqrt{-5})\begin{pmatrix} x \\ y \end{pmatrix} = (a\mathrm{I} + b\mathrm{A})\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} (a+2b)x + 3by \\ -3bx + (a-2b)y \end{pmatrix}.$$

Tomando por ejemplo $v_o = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, tenemos un isomorfismo mandando $\gamma \in K \mapsto \gamma v_o$, i.e.

$$\varphi\colon a+b\sqrt{-5}\in \mathbb{K}\longmapsto \begin{pmatrix} a+2b\\-3b\end{pmatrix}\in\mathbb{Q}^2.$$

Luego la preimagen de \mathbb{Z}^2 son los elementos $a+b\sqrt{-5}$ tales que $a+2b,3b\in\mathbb{Z}$. Si ponemos b=-k/3 para cierto $k\in\mathbb{Z}$, y a=l+2k/3 para cierto $l\in\mathbb{Z}$, entonces $a+b\sqrt{-5}=l+k(2/3-\sqrt{-5}/3)$. Luego

$$I := \varphi^{-1}(\mathbb{Z}^2) = \mathbb{Z} + \left(\frac{2}{3} - \frac{1}{3}\sqrt{-5}\right)$$

Multiplicando por 3 obtenemos la misma clase, así que la matriz A está asociado a la clase del ideal fraccionario $3\mathbb{Z} + (2 - \sqrt{-5})\mathbb{Z} = (3, 2 - \sqrt{-5})$.

Para ver si A es conjugada a A_0 o a A_1 , basta analizar si $(3, 2 - \sqrt{-5})$ es principal. El cociente $\mathbb{Z}[\sqrt{-5}]/(3, 2 - \sqrt{-5})$ es isomorfo a $\mathbb{Z}/3\mathbb{Z}$; de ser princial este ideal existiría $x \in \mathbb{Z}[\sqrt{-5}]$ de norma 3; i.e. enteros a y b tales que $a^2 + 5b^2 = 3$. Sin embargo, para que suceda esto debe ser b = 0 y luego $3 = a^2$, lo cual es absurdo pues 3 no es un cuadrado.

En definitiva, se obtuvo que $(3,2-\sqrt{-5}) \sim (2,1+\sqrt{5})$ y entonces A es conjugada a A_1 . Más todavía, podemos explicitar la matriz de conjugación. En pos de la brevedad, referimos a [1, Example 3.5] para el resto de los cálculos.

4

3. CONJUGACIÓN POR MATRICES DE DETERMINANTE 1

Refinamos ahora nuestra pregunta inicial. Si UA = BU para ciertas matrices A, B \in M_n \mathbb{Z} y U \in GL_n \mathbb{Z} , entonces det U = ± 1 .

¿Cuándo son dos matrices enteras conjugadas por una matriz de determinante 1?

La relación de conjugación por $SL_n\mathbb{Z}$ es igual o más fina que la conjugación por $GL_n\mathbb{Z}$. El siguiente lema muestra que para cada clase de conjugación $GL_n\mathbb{Z}$ hay a lo sumo dos clases de conjugación por $SL_n\mathbb{Z}$.

Lema 3.1. Sea $A \in M_n \mathbb{Z}$ $y D \in GL_n \mathbb{Z}$ tal que $\det D = -1$ (por ejemplo $D = \operatorname{diag}(-1, 1, ..., 1)$).

- (i) Si B es conjugada a A por una matriz de $GL_n\mathbb{Z}$, está en la clase de conjugación por $SL_n\mathbb{Z}$ de A o DAD⁻¹.
- (ii) Existe $U \in SL_n \mathbb{Z}$ tal que $UAU^{-1} = DAD^{-1}$ si y sólo si existe una matriz $C \in GL_n \mathbb{Z}$ que conmuta con A y tiene determinante -1.

Demostración. Si $A = UBU^{-1}$ para cierta U inversible, entonces o bien det U = 1 y entonces B está en la clase de $SL_n\mathbb{Z}$ -conjugación de A o bien det U = -1 y luego det(DU) = 1, $(DU)B(DU)^{-1} = DAD^{-1}$. Esto prueba (i).

Para ver (ii), obserevemos que $DAD^{-1} = U^{-1}AU$ para cierta matriz de determinante 1 si y sólo si $(U^{-1}D)A = A(U^{-1}D)$. La multiplicación a derecha por D establece una biyección entre $SL_n \mathbb{Z}$ y $-SL_n \mathbb{Z}$, por tanto, la ecuación de arriba se satisface sólo si existe $C \in -SL_n \mathbb{Z}$ tal que CA = AC.

Observación 3.2. Como $I_n \in \mathbb{Z}(M_n \mathbb{Z})$ y det $I_n = -1$ si $2 \nmid n$, para n impar el problema de conjugación para $SL_n \mathbb{Z}$ coincide con el problema para $GL_n \mathbb{Z}$.

Podemos caracterizar precisamente cuándo las clases de conjugación de $SL_n\mathbb{Z}$ y $GL_n\mathbb{Z}$ en M_f coinciden.

Proposición 3.3. Las siguientes afirmaciones son equivalentes:

- i) Existe $u \in \mathcal{O}^{\times}$ tal que $N_{K/\mathbb{O}}(u) = -1$.
- ii) Para toda $A \in M_f$, se tiene que $GL_n \mathbb{Z} \cdot A = SL_n \mathbb{Z} \cdot A$.
- iii) Existe $A \in M_f$ tal que $GL_n \mathbb{Z} \cdot A = SL_n \mathbb{Z} \cdot A$.

Demostración. Probemos que (i) implica (ii). Salvo conjugación, el Teorema 1 nos permite tomar A como la matriz de multiplicación por α de un \mathcal{O} -ideal fraccionario I en cierta \mathbb{Z} -base B. Si D es la matriz de multiplicación por u como endomorfismo \mathbb{Z} -lineal de I en base B, se tiene que det(D) = N(u) = -1 y D conmuta con A; resta aplicar el Lema ??.

Para probar que (ii) implica (iii) no hay nada que decir; probemos que (iii) implica (i). Como antes, si (iii) vale para una matriz A arbitraria, vale para cierta matriz de multiplicación por α para determinados \mathcal{O} -ideal fraccionario I en una \mathbb{Z} -base B. Por el lema 3.1, existe D invertible que conmuta con $[L_{\alpha}]_B$ y tiene determinante -1. La condición de conmutar con la multiplicación por α hace que la función $\varphi\colon I\to I$ asociada a D sea \mathcal{O} -lineal; en consecuencia viene de multiplicar por cierto $u\in K^t$ imes. Como $uI=\varphi(I)=I$, es $u\in \mathcal{O}^\times$ y $N_{K/\mathbb{Q}}(u)=\det D=-1$.

3.1. El narrow-class group. Un elemento $x \in K$ se dice positivo si $N_{K/\mathbb{Q}}(x) > 0$ y totalmente positivo si $\sigma(x) > 0$ para todo embedding real $\sigma \colon K \to \mathbb{R}$. Notamos $K^+ \subset K$ al conjunto de elementos totalmente positivos y $\mathcal{O}^+ = \mathcal{O} \cap K^+$. Se define el narrow-class group de \mathcal{O} como el grupo $\mathrm{Cl}^+(\mathcal{O})$ de \mathcal{O} -ideales fraccionarios inversibles módulo la relación de equivalencia $\mathrm{I} \sim \mathrm{J} \iff \mathrm{I} = x\mathrm{J}$ para cierto $x \in K$ totalmente positivo. Decimos en tal caso que I y J son estrechamente equivalentes.

Observación 3.4. Observemos que $N_{K/\mathbb{Q}}(x)$ se puede ver como el producto de las imagenes de x a través de cada embedding $\sigma \colon K \to \mathbb{C}$. Algunos de ellos se pueden correstringir a \mathbb{R} . Si σ es un embedding complejo, también lo es $\overline{\sigma}$, y entonces $\sigma(x)\overline{\sigma}(x) = |\sigma(x)|^2 \geq 0$. El signo de la norma depende

entonces únicamente de los embeddings reales; en particular, un elemento totalmente positivo es positivo.

Proposición 3.5. Se tiene una sucesión exacta corta

$$1 \to \mathcal{O}^{\times}/\mathcal{O}^{+} \to K^{\times}/K^{+} \to Cl^{+}(\mathcal{O}) \to Cl(\mathcal{O}) \to 1.$$

Demostración. Toda clase [I] de ideal fraccionario en Cl(\mathcal{O}) es imagen de la clase de igual representante en Cl⁺(\mathcal{O}); esto define un epimorfismo π: Cl⁺(\mathcal{O}) \rightarrow Cl(\mathcal{O}). El núcleo consiste de las clases [$x\mathcal{O}$] donde $x \in K^{\times}$. En particular se tiene un morfismo $x \in K^{\times}/K^{+} \mapsto [x\mathcal{O}] \in \text{Cl}^{+}(\mathcal{O})$. Su núcleo son las clases [x] ∈ K^{\times}/K^{+} que satisfacen [$x\mathcal{O}$] = [\mathcal{O}], esto es, que existe $y \in K_{+}$ tal que $x\mathcal{O} = y\mathcal{O}$; en particular $x/y \in \mathcal{O}$ y de forma simétrica $y/x \in \mathcal{O}$. Por lo tanto $x = y \cdot z$ con $z \in \mathcal{O}^{\times}$ y la clase de x en K^{\times}/K^{+} pertenece a \mathcal{O}^{\times} . Finalmente el núcleo del morfismo $\mathcal{O}^{\times} \rightarrow K^{\times}/K^{+}$ inducido por la inclusión $\mathcal{O}^{\times} \subset K^{\times}$ es $\mathcal{O}^{\times} \cap K^{+} = \mathcal{O}^{+}$.

Observación 3.6. Observemos que si $x \in K^{\times}$, entonces $x^2 \in K^+$. En particular K^{\times}/K^+ y $\mathcal{O}^{\times}/\mathcal{O}^+$ son 2-grupos.

3.2. El grupo de clases módulo ideales principales de norma positiva. Sea $NP(K) \subset K^{\times}$ el subconjunto de elementos de norma positiva, y $NP(\mathcal{O}) = \mathcal{O} \cap NP(K)$. Consideramos $Cl_{NP}(\mathcal{O})$ al grupo de ideales fraccionarios invesibles módulo los generador por elementos de norma positiva. Un argumento similar al de la Proposición 3.5 prueba que existe una sucesión exacta corta

$$1 \to \operatorname{O}^{\times}/\operatorname{NP}(\mathcal{O}) \to \operatorname{K}^{\times}/\operatorname{NP}(\operatorname{K}) \to \operatorname{Cl}_{\operatorname{NP}}(\mathcal{O}) \to \operatorname{Cl}(\mathcal{O}) \to 1$$

 $y \ NP(K) = ker(K^{\times} \xrightarrow{N} \mathbb{Q}^{\times} \xrightarrow{sgn} \{-1,1\}), \ NP(\mathcal{O}) = ker(O^{\times} \xrightarrow{N} \mathbb{Z}^{\times} \xrightarrow{sgn} \{-1,1\}). \ Se \ tiene \ por \ lo \ tanto \ el \ siguiente \ resultado:$

Proposición 3.7. Se tiene que $|Cl_{NP}(\mathcal{O})|/|Cl(\mathcal{O})| \le 2$. Además, son equivalentes:

- i) La sobreyección canónica $Cl_{NP}(\mathcal{O}) \to Cl(\mathcal{O})$ es un isomorfismo.
- ii) Se tiene que $NP(K) = K^{\times} \delta NP(\mathcal{O}) \neq O^{\times}$.

3.3. Ejemplos en el caso cuadrático. De aquí en más fijamos la siguiente notación: sea d un entero positivo libre de cuadrados y $d \not\equiv 1 \pmod 4$. Tomando $K = \mathbb{Q}(\sqrt{d})$, es $\mathcal{O} = \mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$. Los embedding reales $\sigma_1, \sigma_2 \colon K \to \mathbb{R}$ son

$$\sigma_1(a+b\sqrt{d}) = a+b\sqrt{d}, \qquad \sigma_2(a+b\sqrt{d}) = a-b\sqrt{d}.$$

Por el teorema de unidades de Dirichlet, sabemos que $\mathcal{O}^{\times} = \langle \pm 1 \rangle \times \langle u \rangle$ con u una unidad fundamental. Podemos suponer, cambiando u por -u, que $\sigma_1(u) > 0$; de aquí se seguirá también que $\sigma_1(u)^n > 0$ para todo $n \in \mathbb{Z}$. Observemos que en este caso dos \mathcal{O} -ideales fraccionarios I y J son estrechamente equivalentes si y sólo si I = xJ para un elemento positivo x, ya que si x es positivo entonces x ó -x son totalmente positivos.

Proposición 3.8. El cociente $\mathcal{O}^{\times}/\mathcal{O}^{+}$ es isomorfo a $\mathbb{Z}/2\mathbb{Z}$ si N(u) = 1 e isomorfo a $(\mathbb{Z}/2\mathbb{Z})^{2}$ si N(u) = -1.

Demostración. Notar que N(u) = 1 si y sólo si u es totalmente positiva - es decir, si $\sigma_2(u) > 0$. Observemos que

$$\sigma_i(\pm u^n) = \pm \sigma_i(u)^n$$
.

Si i=1, esta expresión es positiva sólo si $\pm=1$. Para que además la expresión sea positiva si i=2, debe ser o bien $\sigma_2(u)>0$ o bien n par. Si N(u)=1, entonces $\sigma_2(u)>0$ y $\mathcal{O}^+=\langle 1\rangle\times\langle u\rangle$, en cambio si N(u)=-1 entonces $\mathcal{O}^+=\langle 1\rangle\times\langle u^2\rangle$.

Proposición 3.9. El morfismo

$$K^{\times} \xrightarrow{(\sigma_{1},\sigma_{2})} \mathbb{Q}^{\times} \times \mathbb{Q}^{\times} \xrightarrow{sgn \times sgn} \{\pm 1\}^{2}$$

es sobreyectivo y su núcleo es K^+ . En particular $K^\times/K^+ \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

Demostración. Basta notar que las imagenes de \sqrt{d} y $\sqrt{-d}$ son (1,-1) y (1,-1) respectivamente.

*

6 G. A.

Observación 3.10. En general para todo cuerpo de números el cociente K^{\times}/K^{+} es isomorfo a un producto de tantas copias de $\mathbb{Z}/2\mathbb{Z}$ como embeddings $K \to \mathbb{R}$, ver [2, II.2.14].

Recordemos que se definen $h_K = |Cl(\mathcal{O}_K)| y h_K^+ = |Cl^+(\mathcal{O}_K)|$.

Corolario 3.11. Si N(u) = -1, entonces $Cl(\mathcal{O}) = Cl^+(\mathcal{O})$. En caso contrario el subgrupo de $Cl^+(\mathcal{O})$ generado por los ideales fraccionario principales tiene órden 2, $y |CL^+(\mathcal{O})| = 2|Cl(\mathcal{O})|$.

n	unidad fundamental u de $K = \mathbb{Q}(\sqrt{n})$	$N_{K/\mathbb{Q}}(u)$	h_{K}	h_{K}^{+}
2	$1 + \sqrt{2}$	-1	1	1
3	$2 + \sqrt{3}$	-1	1	1
6	$5 + 2\sqrt{6}$	1	1	2
7	$8 + 3\sqrt{7}$	1	1	2
10	$3 + \sqrt{10}$	-1	2	2

3.4. Un refinamiento del teorema de Latimer-MacDuffee. Fijemos un conjunto de representantes $\{I_1, ..., I_k\}$ de elementos de $Cl_{NP}(\mathcal{O})$ por ideales de \mathcal{O} . Todo \mathcal{O} -ideal fraccionario es de la forma rI_j para cierto $r \in K$ $j \in \{1, ..., k\}$.

Para cada j, fijamos dos \mathbb{Z} -bases B_j^+ , B_j^+ tales que la matriz de cambio de base entre estas tenga determinante -1. Dado J un \mathcal{O} -ideal fraccionario equivalente a I_j , fijamos $r_J \in K^\times$ tal que $I_j = rJ$ y $N(r_J) > o$ si I_j y J son estrechamente equivalentes. Vamos a asociarle a J una \mathbb{Z} -base B_J ; si N(r) > o tomamos $B_J = rB_j^+$, en caso contrario $B_J = rB_j^-$.

De esta manera, tenemos una aplicación bien definida

$$(3.12) \Xi \colon \operatorname{Cl}_{\operatorname{NP}}(\mathcal{O}) \to \operatorname{M}_f/\operatorname{SL}_n \mathbb{Z}, [J] \mapsto [\operatorname{L}_J]_{\operatorname{B}_{\operatorname{I}}}.$$

Proposición 3.13. La función (3.12) es inyectiva.

Demostración. Basta ver que si existen r de norma negativa e I_j que no sea estrechamente equivalente a rI_j , entonces $\Xi([I_j]) \neq \Xi([rI_j])$. Por el contrarrecíproco, si Ξ emvía ambas clases a la misma clase de conjugación, existe $U \in SL_n\mathbb{Z}$ y un isomorfismo \mathcal{O} -lineal $\varphi \colon I_j \to rI_j$ que es bases B_j^+ y rB_j^- se representa por U. Recordemos además que φ está dado por la multiplicación por cierto $x \in K^\times$. Se tiene luego el siguiente diagrama

$$I_{j} \xrightarrow{\cdot x} rI_{j} \xrightarrow{\cdot r^{-1}} I_{j}$$

$$B_{j}^{+} \uparrow \qquad rB_{j}^{-} \uparrow \qquad B_{j}^{+} \uparrow$$

$$\mathbb{Z}^{n} \xrightarrow{U} \mathbb{Z}^{n} \xrightarrow{C_{B_{j}^{+}, B_{j}^{-}}} \mathbb{Z}^{n}$$

La composición de la fila superior define el morfismo de multiplicación por x/r de I_j en sí mismo. Como se representa en base B_j^+ , debe ser $N(x/r) = \det \varphi = \det U \det C_{B_j^+, B_j^-} = -1$ y por lo tanto N(x) = -N(r) > o. Esto muestra que I_j y rI_j son estrechamente equivalentes, concluyendo la prueba.

En general (3.12) no es sobreyectiva. Por ejemplo, si $K = \mathbb{Q}(i)$ y $\mathcal{O} = \mathbb{Z}[i]$, como $N_{K/\mathbb{Q}} \ge 0$ se tiene que $Cl_{NP}(\mathcal{O}) = Cl(\mathcal{O}) = 0$. Sin embargo, al no haber enteros de norma -1, no todo par de matrices enteras con polinomio característico es conjugada por una matriz de $SL_n\mathbb{Z}$.

Explícitamente: si tomamos $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, una matriz inversible $D = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ que satisfaga AD = DB debe cumplir b = c, d = -a y entonces $det(D) = -(a^2 + b^2) \le o$.

Proposición 3.14. Si existe $x \in K$ de norma negativa, la función (3.12) es biyectiva.

Demostración. Por el Lema 3.1 y las Proposiciones 3.3 y 3.7, separando en casos según si $\mathcal{O}^{\times} = \text{PN}(\mathcal{O})$, se obtiene que si K ≠ NP(K) entonces $M_f/\text{SL}_n\mathbb{Z}$ y $\text{Cl}_{\text{NP}}(\mathcal{O})$ siempre tienen el mismo carindal. Esto juntocon la inyectividad de Ξ prueban lo pedido. \divideontimes

REFERENCIAS

- [1] K. Conrad, Ideal classes and matrix conjugation over \mathbb{Z} , available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/matrixconj.pdf. \uparrow 3
- [2] A. Fröhlich and M. J. Taylor, *Algebraic number theory*, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. \u00e36
- [3] Claiborne G. Latimer and C. C. MacDuffee, *A correspondence between classes of ideals and classes of matrices*, Ann. of Math. (2) 34 (1933), no. 2, 313–316, DOI 10.2307/1968204. 1