数学分析习题:第2周

梅加强

http://math.nju.edu.cn/~meijq

2007.3

说明: 只有习题是必须写在作业本上上交的, 思考题做好后可以交给我, 但必须是严格独立完成的.

习题:

1. 对公式

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt$$

进行分部积分从而得到 f 的 Taylor 展开余项

$$R_n(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n].$$

- 2. 设 f 在 [a,b] 上 2 阶可微, 且 $f'' \ge 0$. 证明,
 - (1) $f(x) \ge f(x_0) + f'(x_0)(x x_0), \forall x, x_0 \in [a, b];$

3. 将下列函数在 $x_0 = 0$ 处做 Taylor 展开直到 x^4 项:

(a)
$$x \cot x$$
, (b) $e^{\sin x}$, (c) $\frac{\sqrt{\sin x}}{\sqrt{x}}$, (d) $\frac{1+x+x^2}{1-x+x^2}$

4. 将下列函数在 $x_0 = 0$ 处做 Taylor 展开直到 x^6 项:

(a)
$$e^{2x-x^2}$$
, (b) $\ln(\cos x)$, (c) $\frac{1}{\sqrt{1-x^2}}$

5. 将下列函数在 $x_0 = 0$ 处做 Taylor 展开:

(a)
$$\sinh^{-1} x$$
, (b) $\int_0^x e^{-t^2} dt$, (c) $\int_0^x \frac{\sin t}{t} dt$.

- 6. 计算下列极限:
 - (1) $\lim_{x \to +\infty} x[(1+\frac{1}{x})^x e],$
 - (2) $\lim_{x\to 0} (\frac{\sin x}{x})^{1/x^2}$,
 - (3) $\lim_{x \to +\infty} \left\{ \frac{e}{2}x + x^2 \left[(1 + \frac{1}{x})^x e \right] \right\},$
 - $(4) \lim_{x \to +\infty} \left(\frac{\sin x}{x}\right)^{1/x^2}.$
- 7. 计算下列极限:
 - (1) $\lim_{x \to +\infty} x^{\frac{3}{2}} \left[\sqrt{x+1} + \sqrt{x-1} + 2\sqrt{x} \right],$
 - (2) $\lim_{x\to 0} \frac{\cos x e^{-\frac{x^2}{2}}}{x^4}$,
 - (3) $\lim_{x \to +\infty} x [(1 + \frac{1}{x})^x ex \log(1 + \frac{1}{x})],$
 - (4) $\lim_{x \to 0} \frac{1}{x} (\frac{1}{x} \cot x)$.
- 8. 利用 Taylor 公式计算 log 1.2 的近似值, 要求精确到小数点后第三位.

思考题:

1. 设 f 在 $[a, +\infty)$ 上可微, 且

$$f(a) = 0, \quad |f'(x)| \le |f(x)|, \quad \forall \ x \in [a, +\infty).$$

证明 $f \equiv 0$.

2. 设 f 在 \mathbb{R} 上二阶可微, 且

$$M_0 = \sup_{x \in \mathbb{R}} |f(x)| < \infty, \quad M_2 = \sup_{x \in \mathbb{R}} |f''(x)| < \infty.$$

证明
$$M_1 = \sup_{x \in \mathbb{R}} |f'(x)| < \infty$$
, 且

$$M_1^2 \leqslant 2M_0 \cdot M_2$$
.