External Routing (BGP and MP-BGP)

Arquitetura e Gestão de Redes

Border Gateway Protocol (BGP)

- Border Gateway Protocol Version 4 of the protocol (BGP4) was deployed in 1993 and currently is the protocol that assures Internet connectivity
- BGP is mainly used for routing between Autonomous Systems
- Autonomous System (AS) is a network under a single administration
 - Allocated by InterNIC and is globally unique

AS Numbers

- RFC 4271 defines an AS number as 2-bytes
 - Private AS Numbers = 64512 through 65535
 - Public AS Numbers = 1 through 64511
 - 39000+ have already been allocated
 - We will eventually run out of AS numbers
- Need to expand AS size from 2-bytes to 4-bytes
- RFC4893 defines BGP support for 4-bytes AS numbers
 - 4,294,967,295 AS numbers
 - As of January 1, 2009, all new Autonomous System numbers issued will be 4byte by default, unless otherwise requested.
 - The full binary 4-byte AS number is split two words of 16 bits each
 - Notation:
 - <higher2bytes in decimal>.<lower2bytes in decimal>
 - Example1: AS 65546 is represented as "1.10"
 - Example2: AS 50000 is represented as "0.50000"
 - Cannot have a "flag day" solution

BGP Neighbor Relationships

- Often called peering
 - Usually manually configured into routers by the administrator
- Each neighbor session runs over TCP (port 179)
 - Ensures reliable data delivery
- Peers exchange all their routes when the session is first established
- Updates are also sent when there is a topology change in the network or a change in routing policy
- BGP peers exchange session KEEPALIVE messages
 - To avoid extended periods of inactivity.
 - Low keepalive intervals can be set if a fast fail-over is required

Internal BGP (IBGP) & External BGP (EBGP)

- Neighbor relations can be established between
 - Same AS routers (Internal BGP IBGP)
 - Different AS routers (External BGP EBGP)

External and Internal BGP

- External BGP (EBGP) is used between AS
- Internal BGP (IBGP) is used within AS
- A BGP router never forwards a path learned from one IBGP peer to another IBGP peer even if that path is the best path
 - An exception is when a router is configured as route-reflector
- A BGP forward the routes learned from one EBGP peer to both EBGP and IBGP peers
 - Filters can be used to modify this behavior
- IBGP routers in an AS must maintain an IBGP session with all other IBGP routers in the AS (IBGP Mesh)
 - To obtain complete routing information about external networks
 - Most networks also use an IGP, such as OSPF
 - Additional methods can be used to reduce IBGP Mesh complexity
 - Route reflectors, private AS, ...

Single-homed (or Stub) AS

- AS has only one border router (ASBR)
 - Single Internet access
 - Single ISP

Multi-homed Non-transit AS

- AS has more than one border router (ASBR)
 - Multiple Internet accesses
 - Multiple ISP
- Does not transport traffic from other AS

Multi-homed Transit AS

- AS has more than one border router (ASBR)
 - Multiple Internet accesses
 - Multiple ISP
- Transports traffic from other AS

Path-vector

- BGP is a path-vector protocol
- Although it is essentially a distance-vector protocol that carries a list of the AS traversed by the route
 - Provides loop detection
- An EBGP speaker adds its own AS to this list before forwarding a route to another EBGP peer
- An IBGP speaker does not modify the list because it is sending the route to a peer within the same AS
 - AS list cannot be used to detect the IBGP routing loops

Path vectors

- F receives from its neighbors different paths to D:
 - De B: "I use BCD"
 - De G: "I use GCD"
 - De I: "I use IFGCD"
 - De E: "I use EFGCD"

BGP Messages

- OPEN messages are used to establish the BGP session
- UPDATE messages are used to send routing prefixes, along with their associated BGP attributes (such as the AS-PATH)
- NOTIFICATION messages are sent whenever a protocol error is detected, after which the BGP session is closed
- KEEPALIVE messages are exchanged whenever the keepalive period is exceeded, without an update being exchanged

Update Message

- Widrawn routes List of IP networks no longer accessible
- Path attributes parameters used to define routing and routing policies
- Network layer reachability information – List of IP networks with connectivity

Common header

Unfeasible Routes Length (2 bytes)

Withdrawn Routes (variable)

Total Path Attribute Length (2 bytes)

Path Attributes (variable)

Network Layer Reachability Information (variable)

Example

200.80.1.0

- 200.81.3.0/24 is directly connected, Ethernet0
- 0 200.81.2.0/24 [110/20] via 200.81.3.1, 00:01:12
- 200.80.2.0/24 is directly connected, Ethernet1
- 200.80.1.0/24 [20/0] via 200.80.2.1, 00:00:29

Router 2's routing table

- В 200.81.3.0/24 [20/0] via 200.80.2.2, 00:01:58
- В 200.81.2.0/24 [20/0] via 200.80.2.2, 00:01:57
- 200.80.2.0/24 is directly connected, Ethernet1
- 200.80.1.0/24 is directly connected, Ethernet0

Router 1's routing table

Example – BGP networks aggregation

Before aggregation

- 200.81.3.0/24 [20/0] via 200.80.2.2, 00:01:58
- 200.81.2.0/24 [20/0] via 200.80.2.2, 00:01:57
- 200.80.2.0/24 is directly connected, Ethernet1
- 200.80.1.0/24 is directly connected, Ethernet0

Router 1

After aggregation

- 200.81.2.0/23 20/0] via 200.80.2.2, 00:01:06
- 200.80.2.0/24 is directly connected, Ethernet1
- 200.80.1.0/24 is directly connected, Ethernet0

Router 1

BGP Attributes

- A BGP attribute, or path attribute, is a metric used to describe the characteristics of a BGP path.
- Attributes are contained in update messages passed between BGP peers to advertise routes. There are 4+1 categories of BGP attributes.
 - Well-known Mandatory (included in BGP updates)
 - → AS-path, Next-hop, Origin.
 - Well-known Discretionary (may or may not be included in BGP updates)
 - Local Preference, Atomic Aggregate.
 - Optional Transitive (may not be supported by all BGP implementations)
 - Aggregator, Community, AS4_Aggregator, AS4_path.
 - Optional Non-transitive (may not be supported by all BGP implementations)
 - If the neighbor doesn't support that attribute it is deleted
 - Multi-exit-discriminator (MED).
 - Cisco-defined (local to router, not advertised)
 - Weight

AS-path and Origin Attributes

AS-path

When a route advertisement passes through an autonomous system, the AS number is added to an ordered list of AS numbers that the route advertisement has traversed.

Origin

- Indicates how BGP learned about a particular route.
 - → IGP—The route is interior to the originating AS.
 - EGP—The route is learned via the Exterior Border Gateway Protocol (EBGP).
 - Incomplete—The origin of the route is unknown or learned in some other way.

Next-Hop Attribute

- The EBGP next-hop attribute is the IP address that is used to reach the advertising router
- For EBGP, the next-hop address is the IP address of the connection between the peers
- For IBGP, the EBGP next-hop address is carried into the local AS
 - By configuration the AS border router can be the next-hop to IBGP neighbors

Local Preference Attribute

- The local preference attribute is used to choose an exit point from the local autonomous system (AS)
- The local preference attribute is propagated throughout the local AS
- If there are multiple exit points from the AS, the local preference attribute is used to select the exit point for a specific route

Atomic Aggregate and Aggregator Attributes

Atomic Aggregate

- Is used to alert routers that specific routes have been aggregated into a less specific route.
- When aggregation like this occurs, more specific routes are lost.

Aggregator

- Provides information about which AS performed the aggregation.
- And the IP address of the router that originated the aggregate.

Multi-Exit Discriminator Attribute (MED)

- The multi-exit discriminator (MED) or metric attribute is used as a suggestion to an external AS
- The external AS that is receiving the MEDs may be using other BGP attributes for route selection
- The lower value of the metric is preferred
- MED is designed to influence incoming traffic

Weight Attribute

- Weight is a Cisco-defined attribute that is local to a router.
- The weight attribute is not advertised to neighboring routers.
- If the router learns about more than one route to the same destination, the route with the highest weight will be preferred.

Community Attribute

- Used to group routes that share common properties so that policies can be applied at the group level
- Predefined community attributes are:
 - no-export Do not advertise this route to EBGP peers
 - no-advertise Do not advertise this route to any peer
 - internet Advertise this route to the Internet community; all routers in the network belong to it
- General communities format is ASnumber: Cnumber
 - e.g. 300:1, 200:38, etc...

AS4_PATH & AS4_AGGREGATOR

- AS4_PATH attribute has the same semantics as the AS_PATH attribute, except that it is optional. transitive, and it carries 4-bytes AS numbers.
- AS4 AGGREGATOR attribute has the same semantics as the AGGREGATOR attribute, except that it carries a 4-bytes AS number.
- 4-byte AS support is advertised via BGP capability negotiation
 - Speakers who support 4-byte AS are known as NEW BGP speakers
 - Those who do not are known as OLD BGP speakers
- New Reserved AS number
 - ◆ AS TRANS = AS 23456
 - 2-byte placeholder for a 4-byte AS number
 - →Used for backward compatibility between OLD and NEW BGP speakers
- Receiving UPDATEs from a NEW speaker
 - Decode each AS number as 4-bytes
 - AS PATH and AGGREGATOR are effected
- Receiving UPDATEs from an OLD speaker
 - AS4 AGGREGATOR will override AGGREGATOR
 - AS4 PATH and AS PATH must be merged to form the correct as-path
- Merging AS4 PATH and AS PATH
 - ◆ AS PATH 275 250 225 23456 23456 200 **23456** 175
 - ◆ AS4 PATH 100.1 100.2 200 100.3 175
 - ◆ Merged AS-PATH 275 250 225 100.1 100.2 200 100.3 175

4-bytes AS Operational Example

BGP Path Selection

- BGP may receive multiple advertisements for the same route from multiple sources.
- BGP selects only one path as the best path.
- BGP puts the selected path in the IP routing table and propagates the path to its neighbors. BGP uses the following criteria, in the order:
 - Largest weight (Cisco only)
 - Largest local preference
 - Path that was originated locally
 - Shortest path
 - Lowest origin type (IGP lower than EGP, EGP lower than incomplete)
 - Lowest MED attribute
 - Prefer the external path over the internal path
 - Closest IGP neighbor

Advanced BGP

Private BGP AS

- Private autonomous system (AS) numbers range from 64512 to 65535
- When a customer network is large, the ISP may assign an AS number:
 - Permanently assigning a **Public** AS number in the range of 1 to 64511
 - Should have a unique AS number to propagate its BGP routes to Internet
 - Done when a customer network connects to two different ISPs, such as multihoming
 - Assigning a Private AS number in the range of 64512 to 65535.
 - → It is not recommended that you use a private AS number when planning to connect to multiple ISPs in the future

200.10.10.0/24 Path: [65000 i]

200.10.10.0/24 Path: [100 i]

BGP AS Routing Policies

AS15525 aut-num: **PTPRIMENET** as-name: PT Prime Autonomous System descr: **Corporate Data Communications Services** descr: Portugal descr: import: from AS1930 action pref=100; accept AS-RCCN # RCCN from AS3243 action pref=200; import: accept AS-TELEPAC # Telepac from AS5516 action pref=100; import: accept AS5516 # INESC from AS5533 action pref=100; import: accept AS-VIAPT # Via NetWorks Portugal from AS8657 action pref=300; import: accept ANY # CPRM import: from AS12305 action pref=100; accept AS12305 # Nortenet from AS1897 action pref=100; import: accept AS1897 AS9190 AS13134 AS15931 # KPN Qwest from AS13156 action pref=100; import: accept AS13156 # Cabovisao from AS8824 action pref=100; import: accept AS8824 AS15919 # Eastecnica

```
export:
           to AS1897 announce RS-PTPRIME # KPNQwest
           to AS1930 announce RS-PTPRIME # RCCN
export:
export:
           to AS3243 announce RS-PTPRIME # Telepac
           to AS5516 announce {0.0.0.0/0} # INESC
export:
export:
           to AS5533 announce RS-PTPRIME # Via NetWorks Portugal
           to AS8657 announce RS-PTPRIME # CPRM
export:
           to AS8824 announce RS-PTPRIME # Eastecnica
export:
export:
           to AS8826 announce {0.0.0.0/0} # Siemens
export:
           to AS9186 announce RS-PTPRIME # ONL
export:
           to AS12305 announce RS-PTPRIME # Nortenet
           to AS12353 announce RS-PTPRIME # Vodafone Portugal
export:
export:
           to AS13156 announce RS-PTPRIME # Cabovisao
           to AS13910 announce ANY # register.com
export:
           to AS15931 announce ANY # YASP Hiperbit
export:
           to AS24698 announce RS-PTPRIME # Optimus
export:
export:
           to AS25005 announce ANY # Finibanco
export:
           to AS25253 announce {0.0.0.0/0} # CGDNet
export:
           to AS28672 announce ANY # BPN
           to AS31401 announce {0.0.0.0/0} # SICAMSERV
export:
           to AS39088 announce {0.0.0.0/0} # Santander-Totta
export:
           to AS41345 announce RS-PTPRIME # Visabeira
export:
           to AS43064 announce RS-PTPRIME # Teixeira Duarte
export:
           to AS43643 announce ANY # TAP
export:
```

From RIPE database http://www.db.ripe.net

BGP Synchronization

- Synchronization states that, if your AS passes traffic from another AS to a third AS, BGP should not advertise a route before all the routers in your AS have learned about the route via IGP.
- BGP waits until IGP has propagated the route within the AS.
 Then, BGP advertises the route to external peers.

BGP Route Reflectors

- Without a route reflector, the network requires a full IBGP mesh within AS300
- The route reflector and its clients are called a cluster
 - Router A is configured as a route reflector, IBGP peering between Routers B and C (and others) is not required
 - Router D is configured as a route reflector, IBGP peering between Routers E and F (and others) is not required
- Full IBGP mesh between route reflector Routers

Routes Redistribution

- Redistributing IGP routes by BGP will:
 - Simplify BGP configuration (advantage)
 - And BGP will announce only internal networks with connectivity (advantage)
- Redistributing BGP routes by IGP protocols will:
 - Make internal routes know all external routes (disadvantage/advantage?)
 - Increase routing tables size in internal routers (disadvantage)
 - → Decrease routing time, imposes memory requirements, ...
 - Avoid the usage of internal default routes (disadvantage/advantage?)

BGP Neighborhood Resilience

- BGP neighbor relations between physical interfaces are dependent on interface stability/status
- (Virtual) neighbor relations using Loopback interfaces/addresses
 - Loopback interfaces are virtual and software based
 - → If the router is active Loopback interfaces are always active
 - Neighbor relation is active while a path exists between the virtual networks
 - (Alternative) Routing provided by IGPs

BGP and IGP conflicts

- Routing conflicts may arise with
 - Internal routers without BGP
 - No redistribution of BGP routes by IGP
 - IGP default routes
 - BGP preferred routes (with no agreement with IGP default routes)
- Solutions
 - Adjust IGP default routes
 - ◆ Adjust BGP preferred routes (e.g. with local preference)
 - ◆ BGP neighborhood and Internal routing via IP-IP tunnels

BGP over Tunnels (over IGP)

- IP-IP tunnels to solve BGP/IGP routing conflicts
 - Tunnels manually configured
 - →Between physical or Loopback interfaces
 - BGP neighborhood via Tunnel
 - BGP routes learned via Tunnel (next hop is remote Tunnel end-point)
 - Tunnel "network" distributed internally via IGP
- In Router A, to any packet destined to an outside network it's forwarded via Tunnel
 - A new IP header is added, new IP destination address is the remote Tunnel end-point
 - Internally, packet is routed according to the new IP header (Tunnel end-points IP addresses)

BGP Filtering and Route Maps

- Sending and receiving BGP updates can be controlled by using a number of different filtering methods.
- BGP updates can be filtered based on
 - Route information
 - Path information
 - Communities
- Route maps are used with BGP to
 - Control and modify routing information
 - Define the conditions by which routes are redistributed between routing domains

If Community 8657:1 → Local-preference 100 If Community 8657:2 →Local-preference 200

Adds BGP attribute: Community 8657:2

BGP Community Attribute (real data)

TeliaNet Global Network

```
remarks:
             BGP COMMUNITY SUPPORT FOR AS1299 TRANSIT CUSTOMERS:
remarks:
remarks:
             Community Action
remarks:
remarks:
             1299:50 Set local pref 50 within AS1299 (lowest possible)
             1299:150 Set local pref 150 within AS1299 (equal to peer, backup)
remarks:
remarks:
             European peers/ix-points
                                           US peers/ix-points
                                                                      Asia peers/ix-points
remarks:
remarks:
             Community Action
                                         Community Action
                                                                      Community Action
remarks:
             1299:200x All peers Europe incl: 1299:500x All peers US incl:
                                                                            1299:700x All peers Asia incl:
remarks:
remarks:
             1299:250x Sprint/1239
                                          1299:550x Sprint/1239
remarks:
             1299:251x Savvis/3561
                                          1299:551x Savvis/3561
remarks:
             1299:252x Verio/2914
                                         1299:552x Verio/2914
             1299:253x Abovenet/6461
                                            1299:553x Abovenet/6461
remarks:
             1299:254x FT/5511
                                        1299:554x FT/5511
                                                                    1299:754x FT/5511
remarks:
remarks:
             1299:255x GBLX/3549
                                          1299:555x GBLX/3549
                                                                        1299:755x GBLX/3549
             1299:256x Level3/3356
                                          1299:556x Level3/3356
remarks:
             1299:257x UUnet/702
                                          1299:557x UUnet/701
remarks:
            1299:558x AT&T/7018
remarks:
                                          1299:758x AT&T/2687
remarks:
             1299:259x Telefonica/12956
                                            1299:559x Telefonica/12956
             1299:260x BT/Concert/5400
remarks:
            1299:261x Qwest/209
                                          1299:561x Qwest/209
remarks:
remarks:
             1299:263x Teleglobe/6453
                                           1299:563x Teleglobe/6453
remarks:
             1299:264x DTAG/3320
                                           1299:564x DTAG/3320
remarks:
            1299:268x AOL/1668
                                          1299:568x AOL/1668
             1299:269x Tiscali/3257
                                         1299:569x Tiscali/3257
remarks:
                                                                      1299:769x Tiscali/3257
             1299:270x UPC/6830
remarks:
remarks:
             1299:273x Cogent/174
                                          1299:573x Cogent/174
             1299:274x Telecom Italia/6762
                                            1299:574x Telecom Italia/6762
                                                                            1299:774x Telecom Italia/6762
remarks:
remarks:
             1299:275x Tele2/1257
             1299:284x Cable & Wireless DE/1273 1299:584x Cable & Wireless DE/1273 -
remarks:
remarks:
             1299:286x KPN/286
            1299:287x China Netcom/4837
                                             1299:587x China Netcom/4837
                                                                              1299:787x China Netcom/4837
remarks:
             1299:288x China Telecom/4134
                                                                               1299:788x China Telecom/4134
                                              1299:588x China Telecom/4134
remarks:
```

From RIPE database http://www.db.ripe.net

- @Porto, @Lisboa
 - Route-map applied to all external BGP announcements
 - Announce only internal routes/nets
 - Empty path "^\$"

- @Vigo
 - Route-map applied to all external BGP announcements
 - Announce only internal routes/nets
 - Empty path "^\$"

- @Porto, @Lisboa
 - Route-map applied to all BGP announcements received
 - If Path contains "4891" → Local-preference 200
 - If Path does not contain "4891" → Local-preference 100

- @Porto, @Lisboa
 - Route-map applied to all BGP announcements received
 - →E.g. known Spanish operators AS: 4891, 7654, 9876 and 3352
 - If Path starts with "^4891 or ^7654 or ^9876 or ^3352" and ends in "4891\$" → Local-preference 200
 - If Path does not start with "^4891 or ^7654 or ^9876 or ^3352" and ends in "4891\$" → Local-preference 50
 - If Path ends in "4589\$" → Local-preference 100

Multi-Protocol Border Gateway Protocol (MP-BGP)

MP-BGP Description

- Extension to the BGP protocol
- Carries routing information about other protocols:
 - IPv6 Unicast
 - Multicast (IPv4 and IPv6)
 - 6PE IPv6 over IPv4 MPLS backbone
 - Multi-Protocol Label Switching (MPLS) VPN (IPv4 and IPv6)
- Exchange of Multi-Protocol Reachability Information (NLRI)

MP-BGP Attributes

- New non-transitive and optional attributes
 - MP_REACH_NLRI
 - Carry the set of reachable destinations together with the next- hop information to be used for forwarding to these destinations
 - MP_UNREACH_NLRI
 - Carry the set of unreachable destinations
- Attribute contains one or more triples
 - Address Family Information (AFI) with Sub-AFI
 - Identifies protocol information carried in the Network Layer Reachability Information
 - Next-hop information
 - Next-hop address must be of the same family
- Reachability information

MP-BGP Negotiation Capabilities

- MP-BGP routers establish BGP sessions through the OPEN message
 - OPEN message contains optional parameters
 - If OPEN parameters are not recognized, BGP session is terminated
 - A new optional parameter: CAPABILITIES
- OPEN message with CAPABILITIES containing:
 - Multi-Protocol extensions (AFI/SAFI)
 - Route Refresh
 - Outbound Route Filtering

MP-BGP New Features for IPv6

- IPv6 Unicast
 - MP-BGP enables the creation of IPv6 Inter-AS relations
- IPv6 Multicast
 - Unicast prefixes for Reverse Path Forwarding (RPF) checking
 - RPF information is disseminated between autonomous systems
 - Compatible with single domain Rendezvous Points or Protocol Independent Multicast-Source Specific Multicast (PIM-SSM)
 - Topology can be congruent or non-congruent with the unicast one
- IPv6 and label (6PE)
 - IPv6 packet is transported over an IPv4 MPLS backbone
- IPv6 VPN (6VPE)
 - Multiple IPv6 VPNs are created over an IPv4 MPLS backbone