PSET #1

Problem 1. Show that $\sqrt{2}$ is irrational.

Solution. Assume that $\sqrt{2}$ is even. It can therefore be expressed as a rational fraction of the form $\frac{a}{b}$, where a and b are relatively prime integers. It follows that $\frac{a^2}{b^2}=2$, and therefore that $a^2=2b^2$, so a^2 and a are even. Now let a be expressed as 2c. This shows that $b^2=2c^2$, and thus that both b^2 and b are even. However, two relatively prime integers cannot both be even, as they share a common factor of a. Therefore, a must be irrational.

Problem 2 (Extra Note Goes Here). Show that there are infinitely many primes.

Solution. Let \mathbb{U} be the finite set of all primes $\{p_1, p_2, p_3, \dots p_n\}$. Let

$$N = \prod \mathbb{U} + 1 = p_1 p_2 p_3 \cdots p_n + 1.$$

N is not divisible by any element of \mathbb{U} since it will necessarily have a remainder of 1. Therefore, N must be divisible by some prime $p \notin \mathbb{U}$. Thus, for every finite set of prime numbers \mathbb{U} , there will always exist some prime p which is not an element of \mathbb{U} , and therefore there are infinitely many primes.