Module 10.3: Linearity of Variance? MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Variance of Bernoulli r.v.'s

Problem. Let X be a Bernoulli r.v. with parameter Pr[X = 1] = p. Calculate Var[X].

Answer. We have already calculated the expectation of a Bernoulli r.v. as $\mu = E[X] = p$.

To compute the variance we will need the expectation of X^2 . For any outcome w we have:

.
$$X^{2}(w) = 1$$
 iff $X(w) = 1$ and $X^{2}(w) = 0$ iff $X(w) = 0$.

Therefore, X^2 is also Bernoulli, with the same distribution. In fact, X^2 equals X!

We conclude that $Var[X] = E[X^2] - \mu^2 = p - p^2 = p(1 - p)$.

Quiz

Let X be a Bernoulli r.v. with parameter 1/3 and let Y = 1 - X. Then

- (A) X and Y have the **same** expectation and the **same** variance.
- (B) X and Y have the **same** expectation and **different** variances.
- (C) X and Y have **different** expectations and the **same** variance.

Answer

- (A) X and Y have the **same** expectation and the **same** variance. Incorrect. Observe that Y is also Bernoulli but with parameter 1 (1/3) = 2/3. Hence E[X] = 1/3 but E[Y] = 2/3.
- (B) X and Y have the **same** expectation and **different** variances. Incorrect. Expectations are different, see (A).
- (C) X and Y have **different** expectations and the **same** variance. Correct. Observe that Y is also Bernoulli but with parameter 1 (1/3) = 2/3. Therefore Var[X] = (1/3)(1 (1/3)) = (2/3)(1 (2/3)) = Var[Y]

Variance of the sum of two fair dice

Problem. Recall S the r.v. that returns the sum of numbers shown by two fair dice rolled together. Calculate Var[S].

Answer. In an earlier segment we have calculated E[S] = 7. It remains to calculate $E[S^2]$.

Like S, S^2 takes 11 values. Namely, the squares of the 11 values of S with the same probabilities. We show only some of the 11 terms in the variance sum:

$$E[S^2] = 4 \cdot (1/36) + \cdots + 25 \cdot (4/36) + \cdots + 49 \cdot (6/36) + \cdots + 144 \cdot (1/36)$$

Can we avoid this calculation...?

From previous segments, we know that S = G + P and we calculated Var[G] = Var[P] = Var[D] = 35/12. Is there **linearity of variance**?

Linearity of variance?

Proposition. $Var[c X] = c^2 Var[X]$

Proof.
$$Var[c X] = E[(cX)^2] - (E[cX])^2 = E[c^2 X^2] - (c E[X])^2$$

= $c^2 E[X^2] - c^2 (E[X])^2 = c^2 (E[X^2] - (E[X])^2) = c^2 Var[X]$

In general, variance does not distribute over sums. However:

Proposition. if $X \perp Y$ then Var[X + Y] = Var[X] + Var[Y].

Proof. In the segment entitled "Correlated random variables" we define **product** of r.v.'s and show

- 1) Var[X + Y] = Var[X] + Var[Y] iff E[XY] = E[X]E[Y]
- 2) $X \perp Y \Rightarrow E[XY] = E[X]E[Y]$. The proposition follows.

When we roll two fair green-purple dice, we have S = G + P and $G \perp P$.

Therefore, Var[S] = Var[G] + Var[P] = (35/12) + (35/12) = 35/6.

