§2.4 积分

有简单问题入手: 实函数f 在闭区间[a,b] 上连续且非负, 求由曲线y=f(x), 直线x=a, x=b 和x 轴围成的图形的面积, 交待"分割–近似代替–求和–取极限"的思想.

§2.4.1 黎曼和

定义 2.4.1 (闭区间的分割) 设 $n \in \mathbb{N}^*$, 闭区间[a,b] 内有n-1 个点, 依次为

$$a = x_0 < x_1 < \dots < x_n = b.$$

它们把[a,b] 分成n 个小区间 $[x_{i-1},x_i],\ i\in[|1,n|]$. 我们把 $u=(x_i)_{i\in[|0,n|]}$ 称为区间[a,b] 的一个分割,称 $\delta(u)=\max_{i\in[|1,n|]}(x_i-x_{i-1})$ 为分割u 的步长或模.

例子 2.4.1 将区间[a,b] n 等分,即

$$u = \left(a + \frac{b-a}{n}i\right)_{i \in [|0,n|]}.$$

此时, $\delta(u) = \frac{1}{n}$. n 越大 $\delta(u)$ 越小, 即随着n 的增大, 分割越来越细.

注 2.4.1 $\delta(u)$ 反应了分割的细密程度. 给出一个分割u, $\delta(u)$ 就随之确定; 反过来, 具有同一细度的分割却有无限多个.

定义 2.4.2 设f 是定义在[a,b] 上的函数, $u = (x_i)_{i \in [|0,n|]}$ 是[a,b] 的一个分割, 任取 点 $\xi_i \in [x_{i-1},x_i], i \in [|1,n|],$ 称和式

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \tag{2.4.1}$$

为f 在[a,b] 上的一个积分和或黎曼和.

例子 2.4.2 设 $f: x \longmapsto \frac{1}{1+x^2}$,则

2)
$$\sum_{i=0}^{n-1} \frac{n}{n^2 + i^2}$$
 也是 f 在 $[0,1]$ 上的一个黎曼和.

3)
$$\sum_{i=0}^{n-1} \frac{4n}{4n^2 + (2i+1)^2}$$
 也是 f 在 $[0,1]$ 上的一个黎曼和.

注 2.4.2 显然, 黎曼和(2.4.1) 既与分割u 有关, 也与 ξ_i 的选取有关. 随着 $\delta(u)$ 的无限变小, 我们关心黎曼和(2.4.1) 的最终趋势.

定义 2.4.3 设 f 是定义在 [a,b] 上的函数,J 是一个确定的实数. 对于 [a,b] 的任意分割u 及在上面任意选取的点集 $\{\xi_i\}_{i\in[|1,n|]}$,当 $\delta(u)\to 0$ 时,和式 $\sum_{i=1}^n f(\xi_i)(x_i-x_{i-1})\to J$,则称 f 在 [a,b] 上可积,J 称为 f 在 [a,b] 上的积分,记作

$$J = \int_a^b f(x)dx \not \equiv \int_{[a,b]} f.$$

若当 $\delta(u) \to 0$ 时没有极限, 则称f 在[a,b] 上不可积.

注 2.4.3 规定: $\int_a^a f(x)dx = 0$, $\int_a^b f(x)dx = -\int_b^a f(x)dx$.

§2.4.2 积分的性质

命题 2.4.1 设 $f \in [a, b]$ 上的常值函数: $\forall x \in [a, b], f(x) = c, 则 f$ 在 [a, b] 上可积, 且

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} cdx = c(b-a).$$

命题 2.4.2 设f, g 在[a,b] 上可积, $\lambda \in \mathbb{R}$, 则f+g, λf 和[f] 在[a,b] 上可积, 且

- 1) $\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx;$
- 2) $\int_a^b (\lambda f)(x)dx = \lambda \int_a^b f(x)dx$;
- 3) $\left| \int_{a}^{b} f(x)dx \right| = \int_{a}^{b} |f|(x)dx$

命题 2.4.3 (积分区间可加性) 设 $c \in]a,b[$, 若函数f 在[a,c] 和[c,b] 上都可积,则f 在[a,b] 上可积,且

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f_{|[a,c]}(x)dx + \int_{c}^{b} f_{|[c,b]}(x)dx.$$

定理 2.4.1

1) 保号性: 设f 在[a,b] 上可积, 若 $\forall x \in [a,b], f(x) \ge 0$, 则 $\int_a^b f(x)dx \ge 0$;

2) 保序性: 设f 和g 在[a,b] 上可积, 且 $\forall x \in [a,b]$, $f(x) \geq g(x)$, 则 $\int_a^b f(x)dx \geq \int_a^b g(x)dx$.

定理 2.4.2 (有界性) 若函数f 在[a,b] 上可积,则f 在[a,b] 上有界.

注 2.4.4 也就是说, 可积函数必有界, 但有界函数不一定可积, 例如Dirichlet 函数:

$$D(x) = \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, & x \in [0,1] \cap \mathbb{Q}^c \end{cases}$$

推论 2.4.1 若函数 f 在 [a,b] 上可积,则存在M > 0,使得

$$\int_{a}^{b} f(x)dx \le M(b-a).$$

注 2.4.5 并不是所有的函数都可积, 这涉及函数的可积性条件, 在这里不展开讨论. 下面我们只讨论连续函数.

§2.4.3 连续函数的积分

定理 2.4.3 设f 是定义在[a,b] 上的连续函数,则f 在[a,b] 上可积.

例子 2.4.3

- 1) $\Re \int_0^1 x^2 dx$;
- 2) $\int_{-1}^{2} x |x| dx$.

推论 2.4.2 若f 是[a,b] 上的连续函数, 不变号, 且 $\int_{[a,b]} f = 0$, 则f = 0.

定理 2.4.4 (积分中值定理) 设f 在闭区间[a,b] 上连续,则至少存在一点 $c \in [a,b]$,使得

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

积分中值定理的几何意义: 若f 在[a,b] 上非负连续, 则y = f(x) 在[a,b] 上的曲边梯形的面积等于以 $\frac{1}{b-a}\int_a^b f(x)dx$ 为高, [a,b] 为底的矩形的面积. 其中 $\frac{1}{b-a}\int_a^b f(x)dx$ 可理解为f 在[a,b] 上所有函数值的平均值.

例子 2.4.4 求sin 在 $[0,\pi]$ 上的平均值.

§2.4.4 分段连续函数的积分

定义 2.4.4 (分段连续函数) 设 $n \in \mathbb{N}$, $\forall i \in [[0,n]]$, $x_i \in [a,b]$. 若f 限制在] $x_{i-1}, x_i[$, $i \in [[1,n]]$ 上连续,且 $f_{[]x_{i-1},x_i[}$ 在 x_{i-1} 和 x_i 点有有限极限,则称f 在[a,b] 上分段连续.

由定义?? 可知, f 限制在] x_{i-1}, x_i [上可连续延拓到闭区间[x_{i-1}, x_i]上得到 \tilde{f} , 即 \tilde{f} 是闭区间[x_{i-1}, x_i]上的连续函数, 从而可积. 由积分区间的可加性便可得

定理 2.4.5 设 f 是 [a,b] 上的分段连续函数,即存在 $n \in \mathbb{N}$, $\forall i \in [|1,n|]$,f 限制 [a,b] 上可积,且

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} \tilde{f}(x)dx,$$

其中 \tilde{f} 是 $f_{||x_{i-1},x_i|}$ 在 x_{i-1} 和 x_i 上的连续延拓.

例子 2.4.5

1. $\int_{m}^{n} [x] dx$, $m, n \in \mathbb{Z}$, $n \ge m$.

2.
$$f: x \longmapsto \begin{cases} 2x - 1, & -1 \le x < 0, \\ e^{-x}, & 0 \le x \le 1 \end{cases}$$
, $\Re \int_{-1}^{1} f(x) dx$.

对于分段连续函数积分的相关性质均可根据上一节平行推导.

目前我们已经知道:连续函数和分段连续函数是可积的.对于其它函数,大二再学习.

§2.4.5 积分的计算

定义 2.4.5 设f 在[a,b] 上可积, 定义

$$F: [a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_a^x f(t)dt$$

将F 称为变上限积分函数.

命题 **2.4.4** 设f 在[a,b] 上可积,则

1) 变上限积分函数

$$F: [a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_a^x f(t)dt$$

在[a,b]上连续.

2) 进一步, 若f 在[a,b] 上连续, 则F 在[a,b] 上可导, 且F' = f.

定义 2.4.6 设函数f 和F 都在区间I 上有定义. 若F' = f, 则称F 为f 的一个原函数.

例子 2.4.6 $\forall x \in \mathbb{R}$, $\sin' x = \cos x$, 故sin 是cos 的一个原函数. $x \mapsto \sin x + 3$ 也是cos 的一个原函数.

命题 2.4.5

- 1) 设f 在I 上可积, $a \in I$, 则变上限积分函数 $F: x \mapsto \int_a^x f(t)dt$ 是f 在I 上的一个原函数, 且是满足F(a) = 0 的唯一原函数;
- 2) 设G 是f 在区间I 上的一个原函数, 则 $\forall C \in \mathbb{R}$, G + C 都是f 的原函数.

定理 2.4.6 设f 是I 上的连续函数, F 是f 的一个原函数, 则

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

例子 2.4.7 $\int_a^b e^{2x} dx$, $\int_0^\pi \sin x dx$, $\int_a^b (\alpha x + \beta) dx$, $\int_0^1 \frac{1}{1+x^2} dx$, $\int_1^2 \frac{1}{x} dx$.

定理 2.4.7 (分部积分) 设 $u, v \in C^1([a, b])$, 则

$$\int_a^b u(t)v'(t)dt = u(b)v(b) - u(a)v(a) - \int_a^b u'(t)v(t)dt.$$

注 2.4.6 一般地, 为了方便看出 u 和v, 利用下面的形式

$$\int_a^b u(t)dv(t) = u(b)v(b) - u(a)v(a) - \int_a^b u'(t)v(t)dt.$$

例子 2.4.8 $\int_{1}^{2} \ln x dx$; $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$, $n \in \mathbb{N}$; $\int_{0}^{1} x^{2} e^{x} dx$.

注 2.4.7

- 1) 一般地, 下列函数比较适合用分部积分法: $x \mapsto x^k \sin bx, x \mapsto x^k \cos bx, x \mapsto x^k e^{ax}, x \mapsto x^k \ln x, x \mapsto x^k \arcsin x, x \mapsto x^k \arctan x, x \mapsto e^{ax} \sin bx, x \mapsto e^{ax} \cos bx$ 等.
- 2) 当被积函数是 $x \mapsto x^k \sin bx, x \mapsto x^k \cos bx, x \mapsto x^k e^{ax}$ 时, 一般将 $x \mapsto x^k$ 看做u;
- 3) 当被积函数是 $x \mapsto x^k \ln x, x \mapsto x^k \arcsin x, x \mapsto x^k \arctan x$ 时, 一般将 $x \mapsto x^k$ 看做v;
- 3) 当被积函数是 $x \mapsto e^{ax} \sin bx, x \mapsto e^{ax} \cos bx$ 时, 一般将 $x \mapsto e^{ax}$ 看做u.

另外,有些积分在利用分部积分时会出现原来的积分,这时便可通过移项解出,例如: $\int_0^1 e^x \sin x dx$.

定理 2.4.8 (换元法) 设 $f: I \to \mathbb{R}$ 连续, $\phi: J \to I$ 是 C^1 函数, 若 $\alpha, \beta \in J$, 则

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(t)dt = \int_{\alpha}^{\beta} f(\phi(x))\phi'(x)dx.$$

注 2.4.8

- 1) 事实上, 换元法就是反过来利用复合函数求导公式;
- 2) 在做变量替换时, 令 $t = \phi(x)$, 然后用t 去替换 $\phi(x)$, 用dt 去替换 $\phi'(x)dx$;
- 3) 不要忘记变量替换后要改变积分上下限.

例子 2.4.9
$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos x dx$$
, $\int_0^a \frac{1}{a^2 + x^2} dx$.

以上两个例子是从右往左利用换元法, 即发现被积函数是 $f(\phi)\phi'$ 的形式. 另一种情况是, 如果被积函数比较复杂, 看不出是否具有 $f(\phi)\phi'$ 的形式, 则需将其化简, 这时便可从左往右利用换元法.

例子 2.4.10
$$\int_{-1}^{2} \sqrt{4-x^2} dx$$
, $\int_{0}^{1} \frac{1}{\sqrt{x^2+1}} dx$.

注 **2.4.9** 设a > 0.

- 1) 若含有 $\sqrt{a^2-x^2}$ 形式的, 则令 $x=a\sin t$ 或 $a\cos t$;
- 2) 若含有 $\sqrt{a^2 + x^2}$ 形式的, 则令 $x = a \tan t$;
- 3) 若含有 $\sqrt{x^2 a^2}$ 形式的, 则令 $x = a \sec t$.

当然, 有时也需要灵活处理, 例如: $\int_0^a \sqrt{a^2 + x^2} dx$. 另外, 对于某些特殊函数, 有些很显然的特点:

1) 若f 是T-周期函数,则令t = x + T,得

$$\int_{a}^{b} f(x)dx = \int_{a+T}^{b+T} f(t-T)dt = \int_{a+T}^{b+T} f(t)dt;$$

2) 若f 是偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx;$$

3) 若f 是奇函数,则

$$\int_{-a}^{a} f(x)dx = 0.$$

§2.4.6 复函数的积分

定理 2.4.9 设 $f:[a,b]\to\mathbb{C}$,则以下两个结论等价

- 1) f 在[a, b] 上可积;
- 2) Ref 和Imf 在[a,b] 上可积.

并且

$$\int_a^b f(x)dx = \int_a^b \operatorname{Re}(f(x))dx + i \int_a^b \operatorname{Im}(f(x))dx.$$

命题 2.4.6 设 $f:I\to\mathbb{C}$ 连续,则 $F:I\to\mathbb{C}$ 是f 在I 上的原函数当且仅当ReF 和ImF 分别是Ref 和Imf 在I 上的原函数.