CLAIMS

1	1. (original) In a spread-spectrum receiver, a method for processing a received analog
2	spread-spectrum signal, comprising:
3	determining whether to attenuate the received analog spread-spectrum signal;
4	based on the attenuation determination, selectively attenuating the received analog spread-
5	spectrum signal to generate a selectively attenuated analog spread-spectrum signal;
6	digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-
7	spectrum signal;
8	filtering the digital spread-spectrum signal in an attempt to compensate for interference in the
9	received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and
10	de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,
11	wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal
12	prior to the interference-compensation filtering and the de-spreading.
1	2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-
2	channel interference in the received analog spread-spectrum signal.
1	3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-
2	spectrum signal has a negative signal-to-noise ratio (SNR).
1	4. (original) The invention of claim 1, wherein:
2	the received analog spread-spectrum signal is attenuated when the amplitude of the digital
3	spread-spectrum signal is greater than an upper threshold; and
4	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
5	spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the
6	lower threshold.
1	5. (original) The invention of claim 4, wherein the upper threshold is greater than the lower
2	threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the
3	attenuation determination.
1	6. (original) The invention of claim 1, wherein:
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and
3	further comprising:

4	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
5	converting the IF signal to baseband after digitization.
1	7. (original) The invention of claim 6, wherein the filtering and the de-spreading are
2	implemented at baseband.
1	8. (original) The invention of claim 1, wherein:
2	the filtering attempts to compensate for off-channel interference in the received analog spread-
3	spectrum signal;
4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio
5	(SNR);
6	the received analog spread-spectrum signal is attenuated when the amplitude of the digital
7	spread-spectrum signal is greater than an upper threshold;
8	the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
9	spread-spectrum signal is less than a lower threshold;
10	the upper threshold is greater than the lower threshold by an amount greater than the level of
11	selective attenuation in order to provide hysteresis in the attenuation determination;
12	the received analog spread-spectrum signal is a radio frequency (RF) signal;
13	further comprising:
14	converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
15	converting the IF signal to baseband after digitization; and
16	the filtering and the de-spreading are implemented at baseband.
1	9. (original) A spread-spectrum receiver, comprising:
2	a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to
3	generate a selectively attenuated analog spread-spectrum signal;
4	an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spread-
5	spectrum signal to generate a digital spread-spectrum signal;
6	an interference-compensation filter adapted to filter the digital spread-spectrum signal in an
7	attempt to compensate for interference in the received analog spread-spectrum signal to generate a
8	filtered digital spread-spectrum signal;
9	a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a
10	de-spread digital signal; and

11	a controller adapted to control the variable attenuator based on the amplitude of the digital
12	spread-spectrum signal prior to the interference-compensation filter and the digital processor.
1	10. (original) The invention of claim 9, wherein the filter is adapted to attempt to
2	compensate for off-channel interference in the received analog spread-spectrum signal.
1	11. (original) The invention of claim 9, wherein the selectively attenuated analog spread-
2	spectrum signal has a negative signal-to-noise ratio (SNR).
1	12. (original) The invention of claim 9, wherein:
2	the controller is adapted to control the variable attenuator to attenuate the received analog
3	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an uppe
4	threshold; and
5	the controller is adapted to control the variable attenuator not to attenuate the received analog
6	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower
7	threshold, wherein the upper threshold is greater than the lower threshold.
1	13. (original) The invention of claim 12, wherein the upper threshold is greater than the
2	lower threshold by an amount greater than the level of selective attenuation in order to provide hysterest
3	in the attenuation determination.
1	14. (original) The invention of claim 9, wherein:
2	the received analog spread-spectrum signal is a radio frequency (RF) signal; and
3	further comprising:
4	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the
5	digitization; and
6	a digital downconverter adapted to convert the IF signal to baseband after digitization.
1	15. (original) The invention of claim 14, wherein the filter and the digital processor are
2	adapted to operate at baseband.
1	16. (original) The invention of claim 9, wherein:
2	the filter is adapted to attempt to compensate for off-channel interference in the received analog
3	spread-spectrum signal;

4	the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio
5	(SNR);
6	the controller is adapted to control the variable attenuator to attenuate the received analog
7	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper
8	threshold;
9	the controller is adapted to control the variable attenuator not to attenuate the received analog
10	spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower
11	threshold;
12	the upper threshold is greater than the lower threshold by an amount greater than the level of
13	selective attenuation in order to provide hysteresis in the attenuation determination;
14	the received analog spread-spectrum signal is a radio frequency (RF) signal;
15	further comprising:
16	a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the
17	digitization; and
18	a digital downconverter adapted to convert the IF signal to baseband after digitization;
19	and
20	the filter and the digital processor are adapted to operate at baseband.
1	17. (new) The invention of claim 1, wherein the attenuation determination is independent of
2	any determination of bit error rate.
1	18. (new) The invention of claim 1, wherein the attenuation determination is based on the
1	
2	amplitude of the digital spread-spectrum signal in a time domain.
1	19. (new) The invention of claim 6, wherein the attenuation determination is based on the

2

amplitude of the digital IF signal.

Serial No. 10/766,347 -5- Andrew 1168 (1052.045)