2nde

Interrogation – Chapitre 4 Correction

Exercice 1 – Identifier un atome

1. • en vert : neutron

• en orange : proton

• en bleu : électron

• on peut aussi faire figurer : noyau, nucléons, atome

2. Il y a deux protons et deux électrons donc l'ensemble est bien neutre : il s'agit bien d'un atome.

3. Il s'agit d'un atome d'hélium puisqu'il a deux protons (cf. tableau périodique) : ³He.

4. $m_{\text{atome}} = 2 \times m_{\text{p}} + 1 \times m_{\text{n}} + 2 \times m_{\text{e}} \approx 5,02 \times 10^{-27} \text{ kg}.$

Exercice 2 – Écriture conventionnelle

1.	Symbole de l'élément	В	F	Н	Cr
	Nombre de protons	4	9	1	24
	Nombre de neutrons	5	10	2	28
	Écriture conventionnelle du noyau	⁹ ₄ B	¹⁹ F	³ H	⁵² Cr

- 2. L'atome de fluor possède 10 neutrons et 9 protons donc 9 électrons car un atome est toujours neutre (autant de protons que d'électrons). L'ion fluorure a un électron en plus, donc 10 électrons au total. L'ion fluorure possède :
 - 10 neutrons:
 - 9 protons;
 - 10 électrons.
- 3. L'ion fluorure a plus d'électrons que de protons, il est négatif : c'est un anion.
- 4. Il y a un seul électron de plus par rapport au nombre de protons :

F-

Exercice 3 – Comparaison

1. Pour comparer deux grandeurs, il faut qu'elles aient la même unité :

$$r_{\text{atome}} = 110 \,\text{pm} = 110 \times 10^{-12} \,\text{m}.$$

On peut ensuite diviser la grande valeur par la petite :

$$\frac{r_{\text{atome}}}{r_{\text{noyau}}} = \frac{110 \times 10^{-12}}{2.5 \times 10^{-15}} \approx 44\,000.$$

L'atome de béryllium est 44 000 fois plus grand que son noyau.

2. On retrouve bien que le noyau est **beaucoup** plus petit que l'atome (dans le cours on avait trouvé que le noyau était environ 100 000 fois plus petit que l'atome).

2nde

Interrogation – Chapitre 4 Correction

Exercice 1 – Identifier un atome

1. • en vert : neutron

• en orange : proton

• en bleu : électron

• on peut aussi faire figurer : noyau, nucléons, atome

2. Il y a deux protons et deux électrons donc l'ensemble est bien neutre : il s'agit bien d'un atome.

3. Il s'agit d'un atome d'hélium puisqu'il a deux protons (cf. tableau périodique) : ³He.

4. $m_{\text{atome}} = 2 \times m_{\text{p}} + 1 \times m_{\text{n}} + 2 \times m_{\text{e}} \approx 5,02 \times 10^{-27} \text{ kg}.$

Exercice 2 – Écriture conventionnelle

1.	Symbole de l'élément	В	F	Н	Cr
	Nombre de protons	4	9	1	24
	Nombre de neutrons	5	10	2	28
	Écriture conventionnelle du noyau	⁹ ₄ B	¹⁹ F	³ H	⁵² Cr

- 2. L'atome de fluor possède 10 neutrons et 9 protons donc 9 électrons car un atome est toujours neutre (autant de protons que d'électrons). L'ion fluorure a un électron en plus, donc 10 électrons au total. L'ion fluorure possède :
 - 10 neutrons:
 - 9 protons;
 - 10 électrons.
- 3. L'ion fluorure a plus d'électrons que de protons, il est négatif : c'est un anion.
- 4. Il y a un seul électron de plus par rapport au nombre de protons :

F-

Exercice 3 – Comparaison

1. Pour comparer deux grandeurs, il faut qu'elles aient la même unité :

$$r_{\text{atome}} = 110 \,\text{pm} = 110 \times 10^{-12} \,\text{m}.$$

On peut ensuite diviser la grande valeur par la petite :

$$\frac{r_{\text{atome}}}{r_{\text{noyau}}} = \frac{110 \times 10^{-12}}{2.5 \times 10^{-15}} \approx 44\,000.$$

L'atome de béryllium est 44 000 fois plus grand que son noyau.

2. On retrouve bien que le noyau est **beaucoup** plus petit que l'atome (dans le cours on avait trouvé que le noyau était environ 100 000 fois plus petit que l'atome).