CIRCUITOS DIGITAIS

Simplificação empregando mapa de karnaugh

Introdução

Mapa de karnaugh

- Emprega conceitos vistos anteriormente
- Método de simplificação visual
- Permite reduzir
 - O tamanho do circuito (Propriedades da álgebra booleanas)
 - O número de níveis a serem empregados (Soma de produtos e produtos de soma)
- Complexidade é reduzida junto

Um mapa de Karnaugh é a representação gráfica da tabela de verdade de uma função lógica.

			X	(
zw	00	01	11	10	
00	0	4	12	8	
01	1	5	13	9	w
11	3	7	15	11	VV
10	2	6	14	10	•
				,	
	00 01 11	00 0 01 1 11 3 10	00 0 4 01 1 5 11 3 7	xy 00 01 11 00 0 4 12 01 1 5 13 11 3 7 15	00 0 4 12 8 01 1 5 13 9 11 3 7 15 11 10

FIGURE 4-21

A 3-variable Karnaugh map showing product terms.

Como preencher a tabela com a expressão ? a'b'c'+a'b'c+abc'+ab'c'

FIGURE 4-24

Example of mapping a standard SOP expression.

Como preencher a tabela com a expressão?
a'b'c'd+a'b'cd+a'bc'd'+abc'd'+abc'd+abcd+ab'cd'

Tabela Verdade → **Karnaugh**

FIGURE 4-35

Example of mapping directly from a truth table to a Karnaugh map.

Método de Karnaugh (3 variáveis)

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

	Χ	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
2	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1
			<u> </u>	

$$f(x, y, z) = y + z$$

Método de Karnaugh (4 variáveis)

					6/
	Х	У	Z	W	f(x,y,z,w)
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

$$f(x, y, z, w) = \overline{y} \cdot w + x \cdot y \cdot \overline{w} + x \cdot y \cdot \overline{z}$$

Como Agrupar?

1	0	AB
0	1	00
0	1	01
1	1	11
0	1	10
1 0	1	

AB	0	1	
00	1	1	
01	1	0	
11	1	0	
10	1	1	

AB CL	00	01	11	10
00	0	1	1	0
01	0	1	0	0
11	0	1	0	1
10	1	1	1	0

AB CL	00	01	11	10
00	0	0	1	0
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

AB CI	00	01	11	10
00	0	1	0	1
01	0	0	1	1
11	1	0	1	1
10	1	0	0	1

Exercício em aula

- Monte o mapa de Karnaugh para as seguintes expressões
- A'BC + AB'C + AB'C'
- A'BCD' + ABCD' + ABC'D' + ABCD
- -AC(B'+C)

Limites

- Normalmente, não se usa Mapa de Karnaugh para resolução de problemas com mais de 6 variáveis, por ser extremamente difícil sua resolução.
- Entretanto o mapa de Karnaugh ainda é muito utilizado para até 6 variáveis de entrada.
- Para 5 e 6 variáveis, a forma de representação por Mapa de Karnaugh é feita utilizando a teoria da superposição.

Método de Karnaugh (5 variáveis)

$$f(a,b,c,d,e) = \overline{a} \cdot \overline{b} \cdot d \cdot e + \overline{a} \cdot c \cdot d + \overline{a} \cdot b \cdot d \cdot e + a \cdot d \cdot e + a \cdot d \cdot c \cdot \overline{e}$$

- 2 implicantes primos
- 8 células distintas
- 2 implicantes primos essenciais

$$f(a,b,c,d,e) = d \cdot e + c \cdot d$$

Mapa de Karnaugh (5 variáveis)

Figure 2.51 Five-variable K-map and example.

Mapa de Karnaugh (6 variáveis)

Figure 2.52 Sie-variable K-map and example.

Condições irrelevantes (Don't care)

No mapa de Karnaugh as combinações irrelevantes deverão assumir valores que permitem reduzir o número de literais em cada um dos implicantes primos (i.e. permitem aumentar as dimensões de cada conjunto de 2ⁿ células).

	X	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	Х
5	1	0	1	Х
6	1	1	0	X
7	1	1	1	X

$$f(x, y, z) = y$$

Condições irrelevantes (Don't care)

Inputs	Output
ABCD	Y
0000	0
1000	0
0 0 1 0	0
0 0 1 1	0
0100	0
0 1 0 1	0
0110	0
0111	1
1000	1
1001	1
1010	X
1011	X
1100	X
1 1 0 1	X
1 1 1 0	X
1111	X

Don't cares

(a) Truth table

(b) Without "don't cares" $Y = AB\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

Exercícios

- Projetar um circuito simplificado que caracterize um elevador da seguinte forma:
 - M sinaliza que o elevador está em movimento (1) ou parado (0)
 - O prédio possuir 3 andares (A1, A2 e A3)
 - O sistema deve reconhecer reconhecer a presença do elevador no andar (1) ou não (0)
 - A saída P deve indicar que a porta pode ser aberta (1) sempre que elevador estiver parado em um dado andar.
- Tente simplificar os seguintes circuitos aplicando karnaugh

Referências úteis

Limitações de Mapas de Karnaugh

- Difícil lidar com funções com mais de 4 variáveis.
 - 5 e 6 variáveis é factível, mas complexo
- Difícil de automatizar !!!

Outras referências

- https://www.youtube.com/watch?v=73xFPhTsCFk (simplificação booleana)
- https://www.youtube.com/watch?v=luMHYC6UQ1o (Karnaugh português)
- https://www.youtube.com/watch?v=A0XupfXiKlo (Karnaugh em inglês)

Simuladores e Ferramentas Computacionais

- http://goo.gl/sl8s0S (Karma)
- http://sontrak.com/ (Logic Friday Boolean logic optimization)