In-person session (Oral Presentation)

(live presentations at a conference room with live streaming)

9:00 - 9:10 Opening (10 min)

9:10 - 10:30 Block 1 - Deep Learning in Medical Shape Analysis

Time	Tile
9:10 -	Deep Neural Networks To Analyze Deformable
9:40	Shapes From Images (Keynote)
9:40 -	SADIR: Shape-Aware Diffusion Models for 3D Image
9:55	Reconstruction
9:55 -	Anatomy Completor: A Multi-class Completion
10:10	Framework for 3D Anatomy Reconstruction
10:10 -	Anatomy-Aware Masking for Inpainting in Medical
10:25	Imaging

10:30 - 10:45 Coffee break

10:45 - 12:00 Block 2 - Shape Methods

Time	Tile
10:45 - 11:15	Shaping up: Introduction to Shape Analysis (Keynote)
11:15 - 11:30	Particle-Based Shape Modeling for Arbitrary Regions-of-Interest
11:30 - 11:45	Predicting Shape Development: A Riemannian Method
11:45 - 12:00	3D Shape Analysis of Scoliosis

12:00 - 13:00 Adjourn / Lunch

Virtual session (Poster Pitch)

(virtual presentations via ZOOM)

Time	Tile
13:00 -	C3Fusion: Consistent Contrastive Colon Fusion,
13:05	Towards Deep SLAM in Colonoscopy

Time	Tile
13:05 -	Optimal coronary artery segmentation based on
13:10	transfer learning and UNet architecture
13:10 -	Unsupervised Learning of Cortical Surface
13:15	Registration using Spherical Harmonics
13:15 -	Unsupervised correspondence with combined
13:20	geometric learning and imaging for radiotherapy
	applications
13:20 -	ADASSM: Adversarial Data Augmentation in
13:25	Statistical Shape Models From Images
13:25 -	Body Fat Estimation from Surface Meshes using
13:30	Graph Neural Networks
13:30 -	Geometric Learning-Based Transformer Network for
13:35	Estimation of Segmentation Errors
13:35 -	On the Localization of Ultrasound Image Slices within
13:40	Point Distribution Models
13:40 -	FSJP-Net: Foreground and Shape Joint Perception
13:45	Network for Glomerulus Detection
13:45 -	Progressive DeepSSM: Training Methodology for
13:50	Image-To-Shape Deep Models
13:50 -	Muscle volume quantification: guiding transformers
13:55	with anatomical priors
13:55 -	Geodesic Logistic Analysis of Lumbar Spine
14:00	Intervertebral Disc Shapes in Supine and Standing
	Positions
14:00 -	SlicerSALT: From medical images to quantitative
14:05	insights of anatomy
14:05 -	AReg IOS: Automatic Registration on IntraOralScans
14:10	
14:10 -	Modeling Longitudinal Optical Coherence Tomography
14:15	Images for Monitoring and Analysis of Glaucoma
	Progression
14:15 -	IcoConv: Explainable brain cortical surface analysis
14:20	for ASD classification
14:20 -	DeCA: A Dense Correspondence Analysis Toolkit for
14:25	Shape Analysis

Best paper award presentation