

Cálculos Estequiométricos

Tatiane C. Silva Maiolini 2015

Grandeza

• O que é uma grandeza?

- Pode ser definida como tudo aquilo que pode ser medido.
- Por exemplo:
 tempo →
 segundos, minutos, horas, dias.
 volume →
 litros, metros cúbicos, mililitros.
 massa →
 gramas, toneladas, quilogramas.

Conceitos

- Massa Atômica
- Massa Molecular
- Constante de Avogrado.
- Mol
- Massa Molar

000

Átomo de

flúor

19u

Massa Atômica

É a massa de um átomo, expressa por unidade de massa atômica (u.m.a). Exemplo:

Massa atômica do Mg: 24 u.m.a.

Massa atômica do F:

9 u.m.:

Massa Molecular

A massa molecular é igual à soma das massas atômicas dos átomos que formam a molécula (expressa também em *u.m.a.*).

Exemplo:

Massa Molecular H₂O:

18 u.m.a.

Massa Molecular $C_6H_{12}O_6$ 180 u.m.a.

Número de Avogadro

• É o número de átomos (6,02 • 10²³) existentes quando a massa atômica de um elemento é expressa em gramas.

Exemplo:

Há 6,02 • 10²³ átomos de C em 12 g de C.

Há 6,02 • 10²³ átomos de Ca em 40 g de Ca.

americo avogado

Mol

• É a quantidade de 6,02.10²³ partículas quaisquer. Exemplo:

Uma dúzia de esferas.

Uma dúzia de pesos.

Uma dúzia de homens.

- \gg 1 mol de átomos contém \rightarrow 6,02.10²³ átomos;
- >1 mol de moléculas contém \rightarrow 6,02.10²³ moléculas;
- >1 mol de íons contém \rightarrow 6,02.10²³ íons;
- >1 mol de morangos contém →6,02.10²³ morangos.

Massa Molar

- Massa molar é a massa em gramas de um mol de entidades elementares.
- A unidade de massa molar é g/mol.

Exemplo:

>1 mol de oxigênio (MA_O = 16 u) \rightarrow 16g (M_O = 16 g/mol);

Exercícios

- 1. Calcule quantos mols há em 36 g de água.
- 2. Calcule a massa de CO_2 que há em 0,5 mol desta substância. (Dado: C=12, O=16)
- 3. Calcule o número de átomos de ferro que há em 2 mols.
- 4. Calcule o número de mols que há em 3.10²⁴ moléculas de ozônio.
- 5. Calcular a massa de 2,4.10²³ átomos de silício. (Dado: Si=28)
- 6. Calcular o número de átomos que há em 8 kg de cálcio. (Dado: Ca=40)
- 7. Calcular o número de átomos de oxigênio em 3,42 kg de sacarose. (Dado: H=1, C=12 e O=16)

Cálculos Estequiométricos

• É o cálculo que determina as quantidades de reagentes que devem ser utilizados e de produtos que serão obtidos em uma reação química.

- Utilização:
- Pela indústria que deseja saber quanto de matéria-prima (reagentes) deve utilizar para obter uma determinada quantidade de produtos;
- Pelo médico que quer calcular quanto de determinada substância deve ministrar para cada paciente.

Coeficientes Estequiométricos

 Informam a proporção entre as quantidades em mols dos participantes de uma dada reação química, denominada proporção estequiométrica.

Coeficientes Estequiométricos

Os cálculos são baseados nos coeficientes da equação química corretamente balanceada.

2 moléculas de H₂ 2 moléculas de O₂ 2 moléculas de H_O

Para estes cálculos, pode-se seguir alguns passos:

e-se

- 1. Montar a equação química;
- Fazer o balanceamento (acertar os coeficientes estequiométricos);
- 3. Adaptar a proporção em mols às unidades usadas (massa, volume nas CNTP, nº de moléculas/átomos)
- 4. Calcular com regra de três (proporção).

Relação entre as quantidades

Qual a quantidade de matéria de álcool etílico, $C_2H_6O_{(I)}$, que deve reagir para fornecer 12 mol de gás carbônico (Suponha reação de combustão completa)?

$$C_2H_6O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(v)}$$

Qual a massa de $O_{2(g)}$ necessária para queimar completamente 161g de $C_2H_6O_{(I)}$?

$$C_2H_6O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(v)}$$

Quantas moléculas de gás oxigênio são consumidas na combustão de 5 mola de álcool etílico $(C_2H_6O_{(I)})$?

$$C_2H_6O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(v)}$$

Qual o numero de moléculas de álcool etílico, $C_2H_6O_{(I)}$, que, ao sofrer reação de combustão completa com oxigênio suficiente, fornece uma massa de água, $H_2O_{(v)}$, igual a 162g?

$$C_2H_6O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(v)}$$

Qual a quantidade de matéria de $C_2H_6O_{(I)}$, necessária para liberar 112L $CO_{2(g)}$?

$$C_2H_6O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(v)}$$

Exemplo 2:

 Um grupo de engenheiros químicos está projetando uma indústria de amônia, na qual se deseja produzir diariamente 8,5 toneladas desta substância. Desta forma, qual a quantidade de matérias-primas nitrogênio e hidrogênio os engenheiros precisam estimar para atingir a meta desejada?

$$N_2 + H_2 \rightarrow NH_3$$

