Problem Sheet 3 – Subset Simulation, FORM

Autumn School Uncertainty Quantification for High-dimensional Problems

Problem 1 (MH-MCMC in Subset Simulation)

Subset Simulation requires a method for generating samples from the conditional distribution $U|F_{\ell-1}$, $\ell > 1$. In principle this can be done with Metropolis–Hastings Markov chain Monte Carlo (MH-MCMC), where we construct a Markov chain with stationary distribution (target distribution) $U|F_{\ell-1}$.

For Metropolis–Hastings MCMC we require a proposal density $q(\cdot|\boldsymbol{u}^{(k-1)})$, calculate the acceptance probability α , and accept the candidate state as next state in the Markov chain with probability α , see Algorithm 2 in the lecture slides. For specific proposal densities the MH-MCMC algorithm in Subset Simulation simplifies.

Assume that U follows an n-variate standard normal distribution with pdf φ_n . Let $\varphi_n(\cdot|F_{\ell-1})$ denote the pdf of $U|F_{\ell-1}$. Following (Papaioannou, Betz, et al., 2015) we choose as proposal density the n-variate normal density with mean $\rho u^{(k-1)}$ and variance $(1-\rho^2)I_n$, where $\rho \in [0,1]$ denotes a correlation parameter, and $u^{(k-1)}$ is the current state of the Markov chain.

Prove that for this choice of proposal density in MH-MCMC the acceptance probability of the candidate state \boldsymbol{v} is

$$\alpha(\boldsymbol{u}^{(k-1)}, \boldsymbol{v}) = \mathbb{1}_{F_{\ell-1}}(\boldsymbol{v}).$$

Problem 2 (Calculation of most likely failure point in FORM)

Let $G: \mathbb{R}^n \to \mathbb{R}$ denote the limit-state function (LSF) and let $U \sim N(0, I_n)$ follow the standard normal distribution. The so-called *most likely failure point* (MLFP) is defined as

$$\boldsymbol{u}^{MLFP} := \underset{\boldsymbol{u} \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|\boldsymbol{u}\|_2^2, \quad \text{such that} \quad G(\boldsymbol{u}) = 0.$$
(1)

Hasofer and Lind (1974) determine the MLFP in (1) iteratively by a line search of the linearized LSF anchored at the current iterate u_k in the direction of $-\nabla G(u_k)$.

Write down the iterative algorithm to approximate the MLFP according to Hasofer & Lind!