Programming Languages

Datatype-Style Programming With Lists or Structs and more

Jiwon Seo

The Goal

In ML, we often define datatypes and write recursive functions over them – how do we do analogous things in Racket?

- First way: With lists
- Second way: With structs [a new construct]
 - Contrast helps explain advantages of structs

Life without datatypes

Racket has nothing like a datatype binding for one-of types

No need in a dynamically typed language:

- Can just mix values of different types and use primitives like number?, string?, pair?, etc. to "see what you have"
- Can use cons cells to build up any kind of data

Mixed collections

In ML, cannot have a list of "ints or strings," so use a datatype:

In Racket, dynamic typing makes this natural without explicit tags

- Instead, every value has a tag with primitives to check it
- So just check car of list with number? or string?

Recursive structures

More interesting datatype-programming we know:

```
fun eval_exp e =
   case e of
        Constant i => i
        | Negate e2 => ~ (eval_exp e2)
        | Add(e1,e2) => (eval_exp e1) + (eval_exp e2)
        | Multiply(e1,e2) => (eval_exp e1) * (eval_exp e2)
```

Change how we do this

- Previous version of eval_exp has type exp -> int
- From now on will write such functions with type exp -> exp
- Why? Because will be interpreting languages with multiple kinds of results (ints, pairs, functions, ...)
 - Even though much more complicated for example so far
- How? See the ML code file:
 - Base case returns entire expression, e.g., (Const 17)
 - Recursive cases:
 - Check variant (e.g., make sure a Const)
 - Extract data (e.g., the number under the Const)
 - Also return an exp (e.g., create a new Const)

New way in Racket

See the Racket code file for coding up the same new kind of "exp -> exp" interpreter

Using lists where car of list encodes "what kind of exp"

Key points:

- Define our own constructor, test-variant, extract-data functions
 - Just better style than hard-to-read uses of car, cdr
- Same recursive structure without pattern-matching
- With no type system, no notion of "what is an exp" except in documentation
 - But if we use the helper functions correctly, then okay
 - Could add more explicit error-checking if desired

Symbols

Will not focus on Racket symbols like 'foo, but in brief:

- Syntactically start with quote character
- Like strings, can be almost any character sequence
- Unlike strings, compare two symbols with eq? which is fast

New feature

```
(struct foo (bar baz quux) #:transparent)
```

Defines a new kind of thing and introduces several new functions:

- (foo e1 e2 e3) returns "a foo" with bar, baz, quux fields holding results of evaluating e1, e2, and e3
- (foo? e) evaluates e and returns #t if and only if the result is something that was made with the foo function
- (foo-bar e) evaluates e. If result was made with the foo function, return the contents of the bar field, else an error
- (foo-baz e) evaluates e. If result was made with the foo function, return the contents of the baz field, else an error
- (foo-quux e) evaluates e. If result was made with the foo function, return the contents of the quux field, else an error

An idiom

```
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

For "datatypes" like exp, create one struct for each "kind of exp"

- structs are like ML constructors!
- But provide constructor, tester, and extractor functions
 - Instead of patterns
 - E.g., const, const?, const-int
- Dynamic typing means "these are the kinds of exp" is "in comments" rather than a type system
- Dynamic typing means "types" of fields are also "in comments"

All we need

These structs are all we need to:

Build trees representing expressions, e.g.,

Build our eval-exp function (see code):

Attributes

- #:transparent is an optional attribute on struct definitions
 - For us, prints struct values in the REPL rather than hiding them, which is convenient for debugging homework
- #:mutable is another optional attribute on struct definitions
 - Provides more functions, for example:

```
(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!
```

- Can decide if each struct supports mutation, with usual advantages and disadvantages
 - As expected, we will avoid this attribute
- mcons is just a predefined mutable struct

Contrasting Approaches

```
(struct add (e1 e2) #:transparent)
```

Versus

```
(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))
```

This is *not* a case of syntactic sugar

The key difference

```
(struct add (e1 e2) #:transparent)
```

- The result of calling (add x y) is not a list
 - And there is no list for which add? returns #t
- struct makes a new kind of thing: extending Racket with a new kind of data
- So calling car, cdr, or mult-e1 on "an add" is a run-time error

List approach is error-prone

```
(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))
```

- Can break abstraction by using car, cdr, and list-library functions directly on "add expressions"
 - Silent likely error:

```
(define xs (list (add (const 1) (const 4)) ...))
(car (car xs))
```

 Can make data that add? wrongly answers #t to (cons 'add "I am not an add")

Summary of advantages

Struct approach:

- Is better style and more concise for defining data types
- Is about equally convenient for using data types
- But much better at timely errors when misusing data types
 - Cannot use accessor functions on wrong kind of data
 - Cannot confuse tester functions

More with abstraction

Struct approach is even better combined with other Racket features not discussed here:

- The module system lets us hide the constructor function to enforce invariants
 - List-approach cannot hide cons from clients
 - Dynamically-typed languages can have abstract types by letting modules define new types!

See https://docs.racket-lang.org/guide/modules.html

- The contract system lets us check invariants even if constructor is exposed
 - For example, fields of "an add" must also be "expressions"
 See https://docs.racket-lang.org/guide/contracts.html

Struct is special

Often we end up learning that some convenient feature could be coded up with other features

Not so with struct definitions:

- A function cannot introduce multiple bindings
- Neither functions nor macros can create a new kind of data
 - Result of constructor function returns #f for every other tester function: number?, pair?, other structs' tester functions, etc.

Implementing Languages w/ closures

Typical workflow **Possible** errors / concrete syntax (string) warnings "(fn x => x + x)**Parsing** Call abstract syntax (tree) Function Constant **Possible** errors / X warnings Var Var **Type checking?** X X

Rest of implementation

Interpreter or compiler

So "rest of implementation" takes the abstract syntax tree (AST) and "runs the program" to produce a result

Fundamentally, two approaches to implement a PL B:

- Write an interpreter in another language A
 - Better names: evaluator, executor
 - Take a program in B and produce an answer (in B)
- Write a compiler in another language A to a third language C
 - Better name: translator
 - Translation must preserve meaning (equivalence)

We call A the metalanguage

Crucial to keep A and B straight

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options

But in modern practice have both and multiple layers

A plausible example:

- Java compiler to bytecode intermediate language
- Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
- The chip is itself an interpreter for binary
 - Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

Racket uses a similar mix

Sermon

Interpreter versus compiler versus combinations is about a particular language **implementation**, not the language **definition**

So there is no such thing as a "compiled language" or an "interpreted language"

Programs cannot "see" how the implementation works

Unfortunately, you often hear such phrases

- "C is faster because it's compiled and LISP is interpreted"
- This is nonsense; politely correct people
- (Admittedly, languages with "eval" must "ship with some implementation of the language" in each program)

Typical workflow **Possible** errors / concrete syntax (string) warnings "(fn x => x + x)**Parsing** Call abstract syntax (tree) Function Constant **Possible** errors / X warnings Var Var **Type checking?** X X

Interpreter or translater

Skipping parsing

- If implementing PL B in PL A, we can skip parsing
 - Have B programmers write ASTs directly in PL A
 - Not so bad with ML constructors or Racket structs
 - Embeds B programs as trees in A


```
; define B's abstract syntax
(struct call ...)
(struct function ...)
(struct var ...)
...
```

Already did an example!

- Let the metalanguage *A* = Racket
- Let the language-implemented B = "Arithmetic Language"
- Arithmetic programs written with calls to Racket constructors
- The interpreter is eval-exp

What we know

- Define (abstract) syntax of language B with Racket structs
 - B called MUPL in homework
- Write B programs directly in Racket via constructors
- Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:

- Interpreter can assume input is a "legal AST for B"
 - Okay to give wrong answer or inscrutable error otherwise
- Interpreter must check that recursive results are the right kind of value
 - Give a good error message otherwise

Racket Struct

```
(struct foo (bar baz quux) #:transparent)
```

Defines a new kind of thing and introduces several new functions:

- (foo e1 e2 e3)
- (foo? e)
- (foo-bar e)
- (foo-baz e)
- (foo-quux e)

Arithmetic Language Evaluator

```
(struct const (int) #:transparent)
       (struct negate (e) #:transparent)
       (struct add (e1 e2) #:transparent)
       (struct multiply (e1 e2) #:transparent)
                                                     Multiply
(multiply (negate (add (const 2) (const 2)))
                                                  Negate
                                                            Const
          (const 7))
                                                    Add
       (define (eval-exp e)
                                                 Const Const
         (cond [(const? e) e]
               [(negate? e)
                (const (- (const-int
                             (eval-exp (negate-e e)))))]
               [(add? e) ...]
               [(multiply? e) ...]...
```

Legal ASTs

"Trees the interpreter must handle" are a subset of all the trees
 Racket allows as a dynamically typed language

```
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

- Can assume "right types" for struct fields
 - const holds a number
 - negate holds a legal AST
 - add and multiply hold 2 legal ASTs
- Illegal ASTs can "crash the interpreter" this is fine

```
(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)
```

More on Legal ASTs & Illegal ASTs

```
(add 2 2)

(add (const 2) (const 2))

(add (const 2) (bool #t))
```

More on Legal ASTs & Illegal ASTs

Interpreter results

- Our interpreters return expressions, but not any expressions
 - Result should always be a *value*, a kind of expression that evaluates to itself
 - If not, the interpreter has a bug
- So far, only values are from const, e.g., (const 17)
- But a larger language has more values than just numbers
 - Booleans, strings, etc.
 - Pairs of values (definition of value recursive)
 - Closures
 - **—** ...

Example

See code for language that adds booleans, number-comparison, and conditionals:

```
(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)
```

What if the program is a legal AST, but evaluation of it tries to use the wrong kind of value?

- For example, "add a boolean"
- You should detect this and give an error message not in terms of the interpreter implementation
- Means checking a recursive result whenever a particular kind of value is needed
 - No need to check if any kind of value is okay

Dealing with variables

- Interpreters so far have been for languages without variables
 - No let-expressions, functions-with-arguments, etc.
 - Language in homework has all these things
- This lecture describes in English what to do
 - Up to you to translate this to code
- Fortunately, what you have to implement is what we have been stressing since the very, very beginning of the course

Dealing with variables

- An environment is a mapping from variables (Racket strings) to values (as defined by the language)
 - Only ever put pairs of strings and values in the environment
- Evaluation takes place in an environment
 - Environment passed as argument to interpreter helper function
 - A variable expression looks up the variable in the environment
 - Most subexpressions use same environment as outer expression
 - A let-expression evaluates its body in a larger environment

The Set-up

So now a recursive helper function has all the interesting stuff:

```
(define (eval-under-env e env)
  (cond ... ; case for each kind of
    ))    ; expression
```

Recursive calls must "pass down" correct environment

Then eval-exp just calls eval-under-env with same expression and the *empty environment*

On homework, environments themselves are just Racket lists containing Racket pairs of a string (the MUPL variable name, e.g., "x") and a MUPL value (e.g., (int 17))

A grading detail

- Stylistically eval-under-env would be a helper function one could define locally inside eval-exp
- But do not do this on your homework
 - We have grading tests that call eval-under-env directly,
 so we need it at top-level

The best part

- The most interesting and mind-bending part of the homework is that the language being implemented has first-class closures
 - With lexical scope of course
- Fortunately, what you have to implement is what we have been stressing since we first learned about closures...

Higher-order functions

The "magic": How do we use the "right environment" for lexical scope when functions may return other functions, store them in data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with two parts) to keep the environment it will need to use later

```
(struct closure (env fun) #:transparent)
```

Evaluate a function expression:

- A function is not a value; a closure is a value
 - Evaluating a function returns a closure
- Create a closure out of (a) the function and (b) the current environment when the function was evaluated to a closure

Evaluate a function call:

– ...

Function calls

(call e1 e2)

- Use current environment to evaluate e1 to a closure
 - Error if result is a value that is not a closure
- Use current environment to evaluate e2 to a value
- Evaluate closure's function's body in the closure's environment, extended to:
 - Map the function's argument-name to the argument-value
 - And for recursion, map the function's name to the whole closure

This is the same semantics we learned a few weeks ago "coded up"

Given a closure, the code part is *only* ever evaluated using the environment part (extended), *not* the environment at the call-site

Is that expensive?

- Time to build a closure is tiny: a struct with two fields
- Space to store closures might be large if environment is large
 - But environments are immutable, so natural and correct to have lots of sharing, e.g., of list tails
 - Still, end up keeping around bindings that are not needed
- Alternative used in practice: When creating a closure, store a possibly-smaller environment holding only the variables that are free variables in the function body
 - Free variables: Variables that occur, not counting shadowed uses of the same variable name
 - A function body would never need anything else from the environment

Free variables examples

```
(lambda () (+ x y z)) ; \{x, y, z\}
(lambda (x) (+ x y z)) ; {y, z}
(lambda (x) (if x y z)) ; {y, z}
(lambda (x) (let ([y 0]) (+ x y z))) ; {z}
(lambda (x y z) (+ x y z)) ; {}
(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}
```

Computing free variables

- So does the interpreter have to analyze the code body every time it creates a closure?
- No: Before evaluation begins, compute free variables of every function in program and store this information with the function
- Compared to naïve store-entire-environment approach, building a closure now takes more time but less space
 - And time proportional to number of free variables
 - And various optimizations are possible
- [Also use a much better data structure for looking up variables than a list]

Compiling higher-order functions

- If we are compiling to a language without closures (like assembly), cannot rely on there being a "current environment"
- So compile functions by having the translation produce "regular" functions that all take an extra explicit argument called "environment"
- And compiler replaces all uses of free variables with code that looks up the variable using the environment argument
 - Can make these fast operations with some tricks
- Running program still creates closures and every function call passes the closure's environment to the closure's code

Recall...

Our approach to language implementation:

- Implementing language B in language A
- Skipping parsing by writing language B programs directly in terms of language A constructors
- An interpreter written in A recursively evaluates

What we know about macros:

- Extend the syntax of a language
- Use of a macro expands into language syntax before the program is run, i.e., before calling the main interpreter function

Put it together

With our set-up, we can use language A (i.e., Racket) functions that produce language B abstract syntax as language B "macros"

- Language B programs can use the "macros" as though they are part of language B
- No change to the interpreter or struct definitions
- Just a programming idiom enabled by our set-up
 - Helps teach what macros are
- See code for example "macro" definitions and "macro" uses
 - "macro expansion" happens before calling eval-exp

Hygiene issues

- Earlier we had material on hygiene issues with macros
 - (Among other things), problems with shadowing variables when using local variables to avoid evaluating expressions more than once
- The "macro" approach described here does not deal well with this