• crecientes si
$$f(tx) > t f(x)$$
 $\forall t > 1$ return to scale

crecientes si
$$f(tx) > t f(x)$$
 $\forall t > 1$ return to scale)

constantes si $f(tx) = t f(x)$ $\forall t > 0$ (constant returns to scale)

• decrevents s'
$$f(tx) < tf(x)$$
 $\forall t>1$ DRS

ejemplos:

TECNOLO 61A	chequeo los rondimientos a exala	IRS	CRS	DRS
$f(x_1, x_2) = x_1 \cdot x_2^{0.25}$	ftx12x3= fx10のx50。な t(fx14x3)= (fx2)。(fx5)。		V	
f(x1,x2)=x10.5x2				
$f(x_1,x_2)=\min\{2x_1,x_2\}$	$f(tx_1, tx_2) = 0 con (2tx_1 tx_2)$ = $t. min (2x_1, x_2)$ = $t. f(x_1, x_2)$			
$f(x_1, x_2) = 1.8x_1 + 2.7x_2$				
f(x1, x2)=[min(x1, 1.9x2)	$\frac{1}{2} \left(\frac{1}{2} x_1 + \frac{1}{2} x_2 \right) = \left[\frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} x_1 + \frac{1}{2} x_2 \right]^2 + \frac{1}{2} \left[\frac{1}{2} $			
f(x1, x2)=(7x,+x2)113	A.a			

3) G' $f(x_1, x_2) = min | ax_1, |x_2| \Rightarrow$ f exhibe IRS? No f exhibe f5) Si $f(x_1, x_2) = [min (ax_1, bx_2)] \Rightarrow \begin{cases} f \text{ exhibe IRS Si } 8 > 1 \\ f \text{ exhibe CRS Si } 8 = 1 \end{cases}$ Sus isocrantes son $x_2 = \begin{cases} f \text{ exhibe IRS Si } 8 > 1 \\ f \text{ exhibe DRS Si } 8 < 1 \end{cases}$ 6) Si $f(x_1, x_2) = (ax_1 + bx_2)^7 \implies \begin{cases} f \text{ exhibe IRS Si} \\ f \text{ exhibe CRS Si} \\ f \text{ exhibe DRS Si} \end{cases}$

B etas isocracitas son fruciones partidos