

Análise de Algoritmos

Prof. Lilian Berton São José dos Campos, 2018

Baseado no material de Antonio Alfredo Ferreira Loureiro http://www.dcc.ufmg.br/~loureiro

Análise do tempo de execução

- Procedimentos não recursivos:
- Cada um deve ser computado separadamente, iniciando com os que não chamam outros procedimentos.
- Avalia-se então os que chamam os já avaliados (utilizando os tempos desses).
- O processo é repetido até chegar no programa principal.
- Procedimentos recursivos:
- É associada uma função de complexidade f(n) desconhecida, onde n mede o tamanho dos argumentos.

Algoritmos recursivos

- Um objeto é recursivo quando é definido parcialmente em termos de si mesmo.
- Exemplo: Função fatorial

 (a) 0! = 1
 (b) se n > 0 então n! = n · (n 1)!
- Um problema recursivo P pode ser expresso como P ≡ P[Si, P], onde P é a composição de comandos Si e do próprio P.
- Importante: constantes e variáveis locais a P são duplicadas a cada chamada recursiva.

Problema de terminação

- Definir uma condição de terminação.
- Associar um parâmetro, por exemplo n, com P e chamar P recursivamente com n – 1 como parâmetro.
- A condição n > 0 garante a terminação.
 - Exemplo: $P(n) \equiv if n > 0$ then P[Si ; P(n-1)].
- Importante: na prática é necessário mostrar que o nível de recursão é finito, e tem que ser mantido pequeno!

Razões para limitar a recursão

- Memória necessária para acomodar variáveis a cada chamada.
- O estado corrente da computação tem que ser armazenado para permitir a volta da chamada recursiva.

```
function F(i : integer)
begin
  if i > 0
  then F := i * F(i-1)
  else F := 1;
end;
```

Quando não usar recursividade

- Algoritmos recursivos são apropriados quando o problema é definido em termos recursivos.
- Entretanto, uma definição recursiva não implica necessariamente que a implementação recursiva é a melhor solução!
- Casos onde evitar recursividade:
- P ≡ if condição then (Si; P)
- Exemplo: P ≡ if i < n then (i = i + 1; F = i * F; P)

Eliminando a recursão de cauda

```
function Fat : integer;
var F, i : integer;
begin
  i := 0; F := 1;
 while i < n do
 begin
   i := i+1;
    F := F * i;
  end;
 Fat := F;
end
```

- Logo, P ≡ if B then (S; P) deve ser transformado em:
- $P \equiv (x = x0; while B do S)$

Análise de algoritmos recursivos

- Comportamento é descrito por uma equação de recorrência.
- Usar a própria recorrência para substituir para T(m), m < n até que todos os termos tenham sido substituídos por fórmulas envolvendo apenas T(0) ou o caso base.
- Seja a seguinte equação de recorrência para a função fatorial:

$$T(n) = \begin{cases} d & n = 1 \\ c + T(n-1) & n > 1 \end{cases}$$

- Esta equação diz que quando n = 1 o custo para executar fat é igual a d.
- Para valores de n maiores que 1, o custo para executar fat é c mais o custo para executar T(n - 1).

Resolvendo equação de recorrência

$$T(n) = c + T(n-1)$$

$$= c + (c + T(n-2))$$

$$= c + c + (c + T(n-3))$$

$$\vdots = \vdots$$

$$= c + c + \dots + (c + T(1))$$

$$= \underbrace{c + c + \dots + c}_{n-1} + d$$

- Em cada passo, o valor do termo T é substituído pela sua definição (ou seja, esta recorrência está sendo resolvida pelo método da expansão).
- A última equação mostra que depois da expansão existem n – 1 c's, correspondentes aos valores de 2 até n.
- Desta forma, a recorrência pode ser expressa como: T(n) = c(n - 1) + d = O(n)

Exemplo 2 de recorrência

$$T(n) = T(\frac{n}{2}) + 1 \quad (n \ge 2)$$

 $T(1) = 0 \quad (n = 1)$

Vamos supor que:

$$n = 2^k \Rightarrow k = \log n$$

Resolvendo por expansão temos:

$$T(2^{k}) = T(2^{k-1}) + 1$$

$$= (T(2^{k-2}) + 1) + 1$$

$$= (T(2^{k-3}) + 1) + 1 + 1$$

$$\vdots \qquad \vdots$$

$$= (T(2) + 1) + 1 + \dots + 1$$

$$= (T(1) + 1) + 1 + \dots + 1$$

$$= 0 + \underbrace{1 + \dots + 1}_{k}$$

$$= k$$

$$T(n) = \log n$$

$$T(n) = O(\log n)$$

$$T(n) = \log n$$

 $T(n) = O(\log n)$

Indução matemática e algoritmos

- É útil para provar asserções sobre a correção e a eficiência de algoritmos.
- Consiste em inferir uma lei geral a partir de instâncias particulares.
- Seja T um teorema que tenha como parâmetro um número natural n.
- Para provar que T é válido para todos os valores de n, provamos que:
- 1. T é válido para n = 1;

[PASSO BASE]

2. Para todo n > 1,

[PASSO INDUTIVO]

- se T é válido para n,
- então T é válido para n + 1.
- Provar a condição 2 é geralmente mais fácil que provar o teorema diretamente (podemos usar a asserção de que T é válido para n).
- As condições 1 e 2 implicam T válido para n = 2, o que junto com a condição 2 implica T também válido para n = 3, e assim por diante.

Limite superior de equações de recorrência

- A solução de uma equação de recorrência pode ser difícil de ser obtida.
- Nesses casos, pode ser mais fácil tentar adivinhar a solução ou obter um limite superior para a ordem de complexidade.
- Adivinhar a solução funciona bem quando estamos interessados apenas em um limite superior, ao invés da solução exata.
- Mostrar que um certo limite existe é mais fácil do que obter o limite.
- Por exemplo:
- $T(2n) \le 2T(n) + 2n 1$,
- $\bullet \quad \mathsf{T}(2) = 1,$
- definida para valores de n que são potências de 2.
- O objetivo é encontrar um limite superior na notação O, onde o lado direito da desigualdade representa o pior caso.

$$T(2) = 1,$$

 $T(2n) \le 2T(n) + 2n - 1,$

definida para valores de n que são potências de 2.

- Procuramos f(n) tal que T(n) = O(f(n)), mas fazendo com que f(n) seja o mais próximo possível da solução real para T(n) (limite assintótico firme).
- Vamos considerar o palpite $f(n) = n^2$.
- Queremos provar que

$$T(n) \le f(n) = O(f(n))$$

utilizando indução matemática em n.

Prove que
$$T(n) \leq f(n) = O(f(n))$$
, para $f(n) = n^2$, sendo
$$T(2) = 1,$$

$$T(2n) \leq 2T(n) + 2n - 1,$$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = \overline{T}(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 4$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$ (lembre-se que n é uma potência de 2; conseqüentemente o "número seguinte" a n é 2n).

Reescrevendo o passo indutivo temos:

Essa última inequação é o que queremos provar. Logo, $T(n) = O(n^2)$.

Prove que
$$T(n) \leq f(n) = O(f(n))$$
, para $f(n) = cn$, sendo
$$T(2) = 1,$$

$$T(2n) \leq 2T(n) + 2n - 1,$$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = \overline{T}(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 2c$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo indutivo temos:

$$\begin{array}{ccc} \mathsf{Predicado}(n) & \to & \mathsf{Predicado}(2n) \\ (T(n) \leq f(n)) & \to & (T(2n) \leq f(2n)) \\ (T(n) \leq cn)) & \to & (T(2n) \leq 2cn) \end{array}$$

$$\begin{array}{ll} T(2n) & \leq & 2T(n)+2n-1 \\ & \leq & 2cn+2n-1 \\ & \leq & 2cn+(2n-1) \\ & \leq & 2cn+(2n-1) \\ & \leq & 2cn+2n-1 > 2cn \end{array} \quad \text{[Pela hipótese indutiva podemos substituir } T(n)\text{]}$$

۷ ک

Prove que $T(n) \le f(n) = O(f(n))$, para $f(n) = n \log n$, sendo

$$T(2) = 1,$$

 $T(2n) \le 2T(n) + 2n - 1,$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = \overline{T}(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 2 \log 2$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo indutivo temos:

$$(T(n) \leq f(n)) \rightarrow (T(2n) \leq f(2n))$$

$$(T(n) \leq n \log n)) \rightarrow (T(2n) \leq 2n \log 2n)$$

$$T(2n) \leq 2T(n) + 2n - 1$$

$$\leq 2n \log n + 2n - 1 < 2n \log 2n$$

$$\leq 2n \log n + 2n - 1 < 2n \log n$$
[A conclusão é verdadeira?]
$$\leq 2n \log n + 2n - 1 < 2n \log n + 2n$$
[Sim!]

 $Predicado(n) \rightarrow Predicado(2n)$

Considerações sobre indução

- Indução é uma das técnicas mais poderosas da Matemática que pode ser aplicada para provar asserções sobre a correção e a eficiência de algoritmos.
- No caso de correção de algoritmos, é comum tentarmos identificar invariantes para laços.
- Indução pode ser usada para derivar um limite superior para uma equação de recorrência.

Teorema Mestre

Recorrências da forma:

$$T(n) = aT(n/b) + f(n),$$

 onde a ≥ 1 e b > 1 são constantes e f(n) é uma função assintoticamente positiva podem ser resolvidas usando o Teorema Mestre.

 Note que neste caso não estamos achando a forma fechada da recorrência mas sim seu comportamento assintótico.

Teorema Mestre

Sejam as constantes $a \ge 1$ e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n),$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência T(n) pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$.
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$.

 $n^{\log_b a}$ é o número de folhas da árvore de recursão a-ária gerada por T(n) = aT(n/b) + f(n).

Teorema Mestre

Nos três casos estamos comparando a função f(n) com a função $n^{\log_b a}$. Intuitivamente, a solução da recorrência é determinada pela maior das duas funções.

Por exemplo:

- No primeiro caso a função $n^{\log_b a}$ é a maior e a solução para a recorrência é $T(n) = \Theta(n^{\log_b a})$.
- No terceiro caso, a função f(n) é a maior e a solução para a recorrência é $T(n) = \Theta(f(n))$.
- No segundo caso, as duas funções são do mesmo "tamanho." Neste caso, a solução fica multiplicada por um fator logarítmico e fica da forma $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$.

Teorema Mestre

- Teorema não cobre todas as possibilidades para f(n):
 - Entre os casos 1 e 2 existem funções f(n) que são menores que n^{logb a} mas não são polinomialmente menores.
 - Entre os casos 2 e 3 existem funções f(n) que são maiores que n^{logb a} mas não são polinomialmente maiores.

Uma função f(n) é **polinomialmente maior** que outra função g(n) se pudermos achar algum $\epsilon>0$ tal que $\frac{f(n)}{g(n)}=n^\epsilon.$

Exemplo: n^2 é polinomialmente maior que n. No entanto, nlogn e 2n não são polinomialmente maiores que n.

Uma função f(n) é **polinomialmente menor** que outra função g(n) se pudermos achar algum $\epsilon>0$ tal que $\frac{g(n)}{f(n)}=n^\epsilon.$

 Se a função f(n) cai numa dessas condições ou a condição de regularidade do caso 3 é falsa, então não se pode aplicar este teorema para resolver a recorrência.

Exemplo 1 Teorema Mestre

$$T(n) = 9T(n/3) + n$$

Temos que,

$$a = 9, b = 3, f(n) = n$$

Desta forma,

$$n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$$

Como $f(n) = O(n^{\log_3 9 - \epsilon})$, onde $\epsilon = 1$, podemos aplicar o caso 1 do teorema e concluir que a solução da recorrência é

$$T(n) = \Theta(n^2)$$

Exemplo 2 Teorema Mestre

$$T(n) = T(2n/3) + 1$$

Temos que,

$$a = 1, b = 3/2, f(n) = 1$$

Desta forma,

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

O caso 2 se aplica já que $f(n) = \Theta(n^{\log_b a}) = \Theta(1)$. Temos, então, que a solução da recorrência é

$$T(n) = \Theta(\log n)$$

Exemplo 3 Teorema Mestre

$$T(n) = 3T(n/4) + n \log n$$

Temos que,

$$a = 3, b = 4, f(n) = n \log n$$

Desta forma,

$$n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$$

Como $f(n) = \Omega(n^{\log_4 3 + \epsilon})$, onde $\epsilon \approx 0.2$, o caso 3 se aplica se mostrarmos que a condição de regularidade é verdadeira para f(n).

Para um valor suficientemente grande de *n*

$$af(n/b) = 3(n/4)\log(n/4) \le (3/4)n\log n = cf(n)$$

para c=3/4. Conseqüentemente, usando o caso 3, a solução para a recorrência é

$$T(n) = \Theta(n \log n)$$

Exemplo 4 Teorema Mestre

$$T(n) = 2T(n/2) + n \log n$$

Temos que,

$$a = 2, b = 2, f(n) = n \log n$$

Desta forma,

$$n^{\log_b a} = n$$

Aparentemente o caso 3 deveria se aplicar já que $f(n) = n \log n$ é assintoticamente maior que $n^{\log_b a} = n$. Mas no entanto, não é polinomialmente maior. A fração $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ que é assintoticamente menor que n^{ϵ} para toda constante positiva ϵ . Conseqüentemente, a recorrência cai na situação entre os casos 2 e 3 onde o teorema não pode ser aplicado.

Exercícios

Aplique o teorema mestre nas seguintes equações de recorrência:

$$T(n) = 4T(n/2) + n$$

 $T(n) = 4T(n/2) + n^2$
 $T(n) = 4T(n/2) + n^3$

- 2. O Teorema Mestre pode ser aplicado a recorrência $T(n) = 4T(n/2) + n^2 \log n$? Justifique a sua resposta.
- 3. Use indução para resolver a seguinte recorrência:

$$T(n) = 2 + T(n)$$

 $T(1) = 1$

Pense sozinho, pesquise, investigue, leia...

Se você não o fizer, alguém o fará em seu lugar, ensinando o que pensar, dizer e até mesmo sentir.

Lembre-se de que educar não é encher a mente, mas libertá-la de seus vínculos e que, muitas vezes, o aprendizado mais duradouro e profundo são aqueles que fazemos sozinhos.

