

## SÍLABO MATEMÁTICA DISCRETA

## ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

**CICLO I:** Ing. Industrial

**CURSO DE VERANO 2017** 

I: Ing. Electrónica

I: Ing. Civil.

I: Ing. En Ind. Alimentarias

IV: Ing. De Computación y Sistemas

I. CÓDIGO DEL CURSO : 090668

II. CRÉDITOS : 05

III. REQUISITOS : 090663 Geometría Analítica (Ing. De Comp. y Sistemas

Ninguno (Ing. Industrial, Ing. Electrónica, Ing. Civil, Ing. Ind.

Alimentarias)

IV. CONDICIÓN DEL CURSO : Obligatorio

### V. SUMILLA

El curso es de naturaleza teórico práctico en donde desarrolla conceptos básicos de Matemática Discreta orientada para Ingeniería; y permite al alumno operar con ellos en la solución de problemas en el campo de las matemáticas. Los contenidos del curso se desarrollan en siete unidades de aprendizaje: I. Introducción a los sistemas de numeración, II. Lógica Proposicional, III. Conjuntos y relaciones binarias. IV. Algebra Booleana, V. Compuertas lógicas. VI. Teoría de grafos VII. Árboles.

#### VI. FUENTES DE CONSULTA:

### **Bibliográficas**

- Rosen, H. (2004) Matemática Discreta y sus aplicaciones. Quinta edición. Mc Graw Hill.
- · Rosen, H. (2009) Discrete Mathematics and Its Applications. Sexta edición. McGraw-Hill Primis
- · Lipschutz, S. (2009) Matemática Discreta (SCHAUN). Tercera edición. México:McGraw-Hill.
- Lipschutz, Seymour (2004) 2000 Problemas Resueltos de Matemática Discreta, McGraw-Hill.
- · Grimaldi Ralph (1998) Matemáticas discreta y combinatoria. Tercera edición Addison Wesley.
- · Lipschutz, Seymour (1992) Matemáticas para computación. McGraw-HILL.
- Susanna S. Epp (2011) Matemáticas discretas con aplicaciones. Cuarta edición. Cengage Learning.

## VII. UNIDADES DE APRENDIZAJE

### NIDAD I: INTRODUCCIÓN A LOS SISTEMAS DE NUMERACIÓN

### **OBJETIVOS DE APRENDIZAJE:**

- Representar los números decimales en el sistema binario, octal y hexadecimal
- Realizar operaciones aritméticas en los diferentes sistemas de numeración

### **PRIMERA SEMANA**

### Primera sesión:

Introducción. Sistema Decimal - Sistema Binario - Conversión de Decimal a Binario - Conversión de Binario a Decimal.

#### Segunda sesión:

Operaciones en el Sistema Binario: Adición, Sustracción (complementos decimales y binarios), Multiplicación, División.

#### **SEGUNDA SEMANA**

Primera sesión:

Sistemas de numeración: Octal, Hexadecimal, base *n* - Conversiones.

Segunda sesión:

Codificaciones: BCD, ASCII, EBCDIC, UNICODE

### UNIDAD II: LÓGICA

### **OBJETIVOS DE APRENDIZAJE:**

- Probar la validez o invalidez de un razonamiento, utilizando métodos reducidos y formales
- Realizar demostraciones formales, empleando las equivalencias lógicas

### **TERCERA SEMANA**

#### Primera sesión:

Proposiciones - Operaciones proposicionales: negación, conjunción, disyunción inclusiva, disyunción exclusiva, condicional (recíproca, contrarrecíproca e inversa), bicondicional.

### Segunda sesión:

Evaluación de Esquemas moleculares - Equivalencia Lógica - Implicación.

#### **CUARTA SEMANA**

### Primera sesión:

Álgebra de proposiciones (Leyes Lógicas).

## Segunda sesión:

Simplificación de Esquemas Moleculares aplicando Algebra de Proposiciones

#### **QUINTA SEMANA**

#### Primera sesión:

Inferencia Lógica, Validez de la inferencia.

### Segunda sesión:

Inferencia Lógica, Método Abreviado de la validez.

## **UNIDAD III: CONJUNTOS Y RELACIONES BINARIAS**

### **OBJETIVOS DE APRENDIZAJE:**

- Identificar los elementos que pertenecen y los que no pertenecen a un conjunto
- Interpretar correctamente la notación simbólica en la definición de conjuntos.
- Realizar operaciones entre conjuntos (unión, intersección, diferencia y diferencia simétrica)
- Reconocer cuando una relación es de equivalencia o de orden.

### **SEXTA SEMANA**

#### Primera sesión:

Conjuntos - Determinación de conjuntos - Conjuntos Especiales. Relaciones entre conjuntos. Diagrama de Venn.

## Segunda sesión:

Operaciones con Conjuntos: Unión, intersección, diferencia, complemento y diferencia simétrica Conjunto Potencia. Número de Elementos

#### SÉPTIMA SEMANA

#### Primera sesión:

Producto Cartesiano – Relaciones Binarias - Dominio y Rango - Composición de Relaciones **Segunda sesión:** 

Tipos de Relaciones - Relaciones de Equivalencias y de Orden

### **OCTAVA SEMANA**

Examen parcial

## UNIDAD IV: ALGEBRA DE BOOLE Y COMPUERTAS LÓGICAS

## **OBJETIVOS DE APRENDIZAJE:**

- Construir funciones lógicas en un Álgebra de Boole.
- Representar circuitos lógicos mediante puertas lógicas y funciones lógicas

#### **NOVENA SEMANA**

#### Primera sesión:

Algebra de Boole - Definiciones básicas y teoremas - Variables y constantes Booleanas,

Propiedades.

### Segunda sesión

Función Booleana: Función normal disyuntiva, Función normal conjuntiva.

#### **DÉCIMA SEMANA**

### Primera sesión:

Simplificación de expresiones booleanas.

## Segunda sesión:

Mapas de Karnaugh para dos, tres y cuatro variables.

## **UNDÉCIMA SEMANA**

### Primera sesión:

Compuertas Lógicas (AND, OR, NOT, NAND, NOR, XOR, XNOR)

### Segunda sesión:

Circuitos Lógicos. Simplificación de circuitos lógicos

#### **UNIDAD V: GRAFOS**

## **OBJETIVOS DE APRENDIZAJE**

- Identificar las distintas situaciones reales que pueden ser modeladas de forma sencilla a través del concepto de grafo.
- Decidir de forma rigurosa cuando un grafo es Euleriano, grafo Hamiltoniano
- Utilizar adecuadamente un algoritmo para decidir el camino más corto entre dos vértices sobre un grafo.

### **DUODÉCIMA SEMANA**

### Primera sesión:

Grafos: simples, seudográfos, multígrafos. Grado de un vértice. Conexidad. Subgrafos - Componentes conexos.

### Segunda sesión:

Grafos recorribles: Eulerianos y Hamiltoneanos.

### **DECIMOTERCERA SEMANA**

### Primera sesión:

Tipos especiales de grafos: completos, regulares, bipartidos, ciclos, ruedas. Representación de grafos - Matriz de grafos: Matriz de adyacencia. Matriz de Incidencia.

### Segunda sesión:

Grafos Planos - Mapas y Regiones - Grado de una región

### **DECIMOCUARTA SEMANA**

#### Primera sesión:

Coloreado de Grafos - Coloreado de Mapa - Grafo Dual.

### Segunda sesión:

Grafos dirigidos. Definiciones básicas: grados, caminos, conectividad.

### UNIDAD VI: ÁRBOLES

### **OBJETIVOS DE APRENDIZAJE**

Utilizar adecuadamente el algoritmo de Welch y Powel para decidir el camino mínimo sobre un grafo.

### **DECIMOQUINTA SEMANA**

### Primera sesión:

Árboles, bosques. Coloreado de árboles. Árboles de expansión y Árboles de expansión mínima. Algoritmos

### Segunda sesión:

Repaso final del curso

#### **DECIMOSEXTA SEMANA**

Examen final

### **DECIMOSÉPTIMA SEMANA**

Entrega de promedios finales y acta del curso

### VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

### IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo. Disertación docente,
- . Método de Discusión Guiada.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

### X. MEDIOS Y MATERIALES

Equipos: Computadora, ecran, proyector de multimedia.

Materiales: Material del docente. Separatas, Texto base y textos complementarios.

### XI. EVALUACIÓN

$$PF = (2 * PE + EF) / 3$$

$$PE = (P1 + P2 + 2*P3 - MN)/3$$

Donde:

PF : Promedio Final

PE : Promedio de evaluaciones EF : Examen final (escrito)

P1, ..., P4 : Prácticas Calificadas (escrito)

MN : Menor nota entre las Prácticas Calificadas

## XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

**K** = clave **R** = relacionado Recuadro vacío = no aplica (a) Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería K Habilidad para diseñar y conducir experimentos, así como analizar e interpretar (b) los datos obtenidos Habilidad para diseñar sistemas, componentes o procesos que satisfagan las (c) necesidades requeridas (d). Habilidad para trabajar adecuadamente en un equipo multidisciplinario Habilidad para identificar, formular y resolver problemas de ingeniería R (e) (f) Comprensión de lo que es la responsabilidad ética y profesional Habilidad para comunicarse con efectividad (g) Una educación amplia necesaria para entender el impacto que tienen las (h)

|     | soluciones de la ingeniería dentro de un contexto social y global                                        |  |  |
|-----|----------------------------------------------------------------------------------------------------------|--|--|
| (i) | Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida  |  |  |
| (j) | Conocimiento de los principales temas contemporáneos                                                     |  |  |
| (k) | Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería |  |  |

El aporte del curso al logro de los resultados (Outcomes), para la **Escuela Profesional de Ingeniería de Computación y Sistemas**, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

| K = clave K = relac                  | ionado <b>Recuadro vacio</b> = no aplica                                                                                                                                                    |   |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Componente                           | Resultados del Estudiante                                                                                                                                                                   |   |
| Ciencias básicas<br>y de Computación | <ul> <li>a. Habilidad para aplicar conocimientos de computación y<br/>matemáticas apropiadas para los resultados del estudiante y las<br/>disciplinas enseñadas.</li> </ul>                 | K |
| Análisis en<br>Computación           | b. Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.                                                                              | R |
| Diseño en<br>Computación             | <ul> <li>c. Habilidad para diseñar, implementar y evaluar un sistema basado<br/>en computadoras, procesos, componentes o programa que<br/>satisfagan las necesidades requeridas.</li> </ul> |   |
| Práctica de la<br>Computación        | <ul> <li>i. Habilidad para usar técnicas, destrezas, y herramientas modernas<br/>necesarias para la práctica de la computación.</li> </ul>                                                  |   |
|                                      | j. Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.                                    |   |
|                                      | e. Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.                                                                                    |   |
| Habilidades<br>genéricas             | d. Habilidad para trabajar con efectividad en equipos para lograr una meta común.                                                                                                           |   |
|                                      | f. Habilidad para comunicarse con efectividad con un rango de audiencias.                                                                                                                   |   |
|                                      | g. Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.                                                                     |   |
|                                      | h. Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.                                                                                     |   |

Laboratorio

0

# XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica 4 2

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 6 horas académicas de 45 minutos

### XIV. DOCENTE DEL CURSO

Ing. Raúl Mitac Portugal

### XV. FECHA

La Molina, enero de 2016.