Рекомендации по проектированию печатных плат для автоматизированной сборки

- 1. Виды монтажа.
- 2. Критерии выбора компонентов. Требования к расположению, ориентации и расстоянию между компонентами.
- 3. Размеры контактных площадок.
- 4. Элементы печатного рисунка, отверстия.
- 5. Требования к защитной маске, маркировке, финишному покрытию.
- 6. <u>Размеры печатной платы (групповой заготовки).</u> <u>Проектирование групповой заготовки</u>.
- 7. Реперные знаки.
- 8. Документация.

1. Виды монтажа

При проектировании электронных модулей следует стремиться к минимизации числа технологических операций используемых при сборке.

Операции используемые при сборке:

- 1. Нанесение пасты и установка SMT компонентов на верхнюю сторону платы.
- 2. Нанесение пасты и установка SMT компонентов на нижнюю сторону платы.
- 3. Нанесение клея и установка SMT компонентов на нижнюю сторону платы с последующем его высыханием (используется при пайке волной SMT-компонентов)
- 4. Ручная установка ТНТ компонентов (компоненты устанавливаемые в отверстия).
- 5. Пайка оплавлением.
- 6. Пайка волной.
- 7. Ручная пайка.
- 8. Промывка плат.

В Таблице 1 приведены основные типы SMT сборок и соответствующая им технология сборки

Таблица 1

- raosiniqa i	
Основные типы SMT сборок	Порядок операций
	1 - 5 - 8
	2 5 1 5 8
	1 5 4 6 8
	3 1 5 4 6 8
	2 5 1 5 4 7 8

Автоматизированные операции

Ручные операции

Не выполняется при использовании беспромывочных флюсов

2. Критерии выбора компонентов. Требования к расположению, ориентации и расстоянию между компонентами.

- 1. При проектировании стараться минимизировать количество ТНТ компонентов.
 - 2. Плату надо проектировать только под определенный тип компонентов. Нельзя делать универсальные контактные площадки так ,что на одно и тоже место могли устанавливаться, например, компоненты 0805 и 0603.
 - 3. Не рекомендуется применять компоненты в корпусах MELF.
 - 4. Хорошим стилем считается ориентировать по возможности однотипные компоненты в одном направлении.
 - 5. SMT компоненты, паяемые волной, должны распологаться на плате так как показано на рис. 2.1
 - 6. Стандарт IPC-SM-782 дает рекомендации по миниальным расстояниям между контактными площадками различных компонентов (см. рис. 2.2)

Рис. 2.1

3. Размеры контактных площадок

Стандарт IEC 61188 определяет 3 уровня для размеров контактных площадок.

Уровень 1: Махітит – для модулей с низкой плотностью монтажа. **Уровень 2: Median** – для модулей со средней плотностью монтажа. **Уровень 3: Minimum** – для модулей с высокой плотностью монтажа.

Рекомендации стандарта IPC-SM-782 по размерам контактных площадок соответствуют Уровню 2 IEC 61188.

Значения для расчета размеров контактных площадок, мм:

При расчете использовать максимальные размеры вывода компонента.

Таблица 1 - Компоненты с выводами типа "крыло чайки" и шагом > 0,625мм (SOT-23, SOT-223, SOIC, QFP)

Размер	Maximum	Median	Minimum
Jt	0,8	0,5	0,2
Jh	0,5	0,35	0,2
Js	0,05	0,05	0,03

Таблица 2 - Компоненты с выводами типа "крыло чайки" и шагом <= 0,625мм (TSOP, PQFP, TQFP)

Размер	Maximum	Median	Minimum
Jt	0,8	0,5	0,2
Jh	0,2	0,2	0,2
Js	0,0	0,0	0,0

Таблица 3 - Компоненты с выводами J типа (SOJ, PLCC)

Размер	Maximum	Median	Minimum
Jt	0,2	0,2	0,2
Jh	0,8	0,6	0,4
Js	1,2	0,6	0,2

Таблица 4 – ЧИП компоненты (резисторы , керамические конденсаторы, индуктивности)

Размер	Maximum	Median	Minimum
Jt	0,6	0,4	0,2
Jh	0,0	0,0	0,0
Js	0,05	0,0	0,0

Таблица 5 – ЧИП компоненты с L выводами (танталовые конденсаторы, диоды SMA, SMB, SMC)

Размер	Maximum	Median	Minimum
Jt	0,1	0,1	0,0
Jh	1,0	0,5	0,2
Js	0,1	0,1	0,1

Таблица 6 – Рекомендуемые размеры контактных площадок для корпусов BGA

Диаметр шарика, мм	Диаметр контактной площадки, мм	Диаметр защитной маски, мм
0,7	0,65 - 0,75	0,8 - 0,85
0,6	0,55 - 0,6	0,7 - 0,75
0,5	0,45 - 0,5	0,6 - 0,65
0,45	0,4 - 0,45	0,55 - 0,6
0,4	0,35 - 0,4	0,45 - 0,5
0,3	0,25 - 0,28	0,35 - 0,4

4. Элементы печатного рисунка, отверстия.

- 1. Контактные площадки компонентов, находящиеся на больших полигонах, должны быть отделены от полигона перемычками (термобарьерами).
- 2. Рекомендуется использовать узкие проводники, соединяющие непосредственно контактную площадку и широкий проводник.
- 3. Не допускается наличие переходных отверстий диаметром более 0,2 мм на контактных площадках SMD-компонентов или прилегающих непосредственно к площадкам и не закрытых защитной маской.

Рис. 4.1

- 4. Переходные отверстия, используемые в качестве контрольных точек и не закрытые маской не должны распологаться под корпусами компонентов, если при сборке выполняется операция пайки волной.
- 5. Рекомендуется не применять металлизированные крепежные отверстия при использовании в сборке модуля пайки волной.

<u>5. Требования к защитной маске, маркировке, финишному</u> <u>покрытию.</u>

1. Рекомендуется оставлять поясок защитной маски между соседними контактными площадками компонентов с малым шагом.

2. Не допускается совмещение контактных площадок разных компонентов без разделения их площадок слоем защитной маски.

- 3. Рекомендуется защищать переходные отверстия защитной маской.
- 4. Маркировка первого вывода, полярного элемента и позиционного обозначения должна быть видна после установки компонентов на плату.

5. При наличии на плате микросхем в корпусах с шагом выводов 0,5 мм и менее, BGA, Flip Chip желательно в качестве покрытия применять иммерсионное золочение.

6. Размеры печатной платы (групповой заготовки). Проектирование групповой заготовки.

- 1. Минимальный размер печатной платы 50 х 60 мм. В противном случае необходима заготовка с технологическими полями.
- 2. Максимальный размер печатной платы (групповой заготовки) 380 х 400 мм.
- 3. Рекомендуется не проектировать групповые заготовки размером больше 200 x 300 мм.
- 4. Оптимальной является заготовка прямоугольной формы с соотношением сторон не более 3:1 и при необходимости с технологическими полями вдоль длинной стороны.
- 5. Групповая заготовка проектируется при невозможности сборки одиночного модули и\или обеспечения более высокой скорости сборки.
- 6. Для разделения плат между собой должно быть предусмотрено наличие линий скрайбирования или фрезерованных пазов с перфорированными перемычками. Предпочтительнее скрайбирование.
- 7. На рис. 6.1- 6.4 показаны различные варианты групповых заготовок.
- 8. Если по краю модулей распологаются угловые разъемы или другие компоненты, у которых корпус выступает за пределы платы, необходимо спроектировать дополнительное технологическое поле (Рис. 6.4).

Рис. 6.1 Групповая заготовка без технологических полей.

Рис. 6.2 Групповая заготовка с технологическими полями. Реперные знаки расположены на поле платы.

Направление движения платы по конвейеру —

Рис. 6.3 Групповая заготовка с технологическими полями. Реперные знаки и фиксирующие отверстия расположены на технологическом поле.

Рис. 6.4 Групповая заготовка с дополнительными технологическими полями.

7. Реперные знаки.

- 1. Необходимо разместить не менее 2 реперных знаков (оптимально 3) на каждой стороне платы, где есть SMD компоненты.
- 2. Рекомендуемый размер реперного знака приведен на рис. 7.1.
- 3. Реперные точки должны распологаться максимально удаленно друг от друга по краям платы, но не ближе 4 мм от края платы и не ближе 2 мм от края любой контактной площадки.

Рис. 7.1

8. Документация.

Для сборки модуля необходима следующая документация:

1. <u>Спецификация</u> – должна быть выполнена в виде таблицы в формате Excel (предпочтительнее), Word, ASCII.

Обязательно наличие разделов:

- Позиционное обозначение (Reference designator);
- Наименование (Part Number);
- Тип корпуса (Pattern);
- Количество (Count).

Строки в каждом из разделов не должны содержать пробелы.

Раздел *Позиционное обозначение* не должен содержать следующие обозначения:

- FB1, FB2, FB3, FB4;
- CA1, CA2, CA3, CA4;
- HD1,HD2,HD3,HD4;
- FA1,FA2;
- TE1, TE2.

Реперные знаки должны иметь обозначения REP1, REP2, REP3 и т.д.

- 2. Сборочный чертеж в формате AutoCAD, DXF или Adobe PDF.
- 3. Файлы печатной платы (групповой заготовки) в формате Gerber 274-X по которым заказывалось изготовление печатной платы.
- 4. Файл печатной платы в формате GenCAD (предпочтительнее) или файл с центрами установки компонентов. Координаты центров компонентов должны быть заданы относительно левого нижнего угла платы.