Why Computing?

¹ Mohammed VI Polytechnic University (UM6P), Morocco

October 17, 2025

Warm-up: Addition (by hand)

$$27 + 18 = 45$$

Warm-up: Addition (by hand)

$$27 + 18 = 45$$
Easy!

When the numbers blow up...

$$873,942,551 + 6,408,177,903 = ?$$

 $37,941 \times 28,307 = ?$

When the numbers blow up...

$$873,942,551 + 6,408,177,903 = ?$$

 $37,941 \times 28,307 = ?$

Takeaway

Still "just" arithmetic, but now a **calculator** is the right tool.

New task: Do two lists share a number?

List A: [2, 7, 5, 9] List B: [4, 1, 7]

New task: Do two lists share a number?

List A: [2, 7, 5, 9] List B: [4, 1, 7]

Answer: Yes (they both contain 7).

We solved it by inspection, pen & paper is fine here.

What does "big" look like? (snapshot: 50 numbers each)

Each list really has 100,000 numbers. Below is just a tiny snapshot:

List A	A (50	of 10	0,000)	List B (50 of 100,000)
102	745	23	901	66	14 745 990 301 508
118	432	987	54	210	72 463 211 86 593
77	863	44	593	12	640 19 377 258 44
380	259	711	33	642	736 402 55 118 28
508	19	274	826	941	274 903 501 66 839
305	718	660	421	88	702 33 947 284 129
137	999	246	555	802	615 470 12 777 260
319	703	28	474	615	421 137 380 967 777
91	284	736	467	50	259 555 642 901 473
122	803	968	39	702	946 320 802 77 468
and 00 050 more					and 90 950 more

Why we need a computer

You *might* spot a common number here by eye, but at full size (100k vs 100k) we need a precise **procedure**, not a calculator. A computer is **fast but dumb**: it does exactly what we tell it.

A tiny program that answers it (what we'll learn)

```
def share_element(A, B):
    seen = set(A)
    for x in B:
        if x in seen:
            return True
    return False
```

```
print(share_element([2,7,5,9], [4,1,7])) # -> True
```

Over the next weeks we'll practice:

- ullet starting on paper o writing clear steps (pseudocode)
- ullet analyzing cost (time/memory) o picking good data structures
- ullet translating into code o testing on small, then scaling up

Puzzle: The 20 doors

There are **20 closed** doors, numbered 1..20.

For pass p = 1 to 20: **toggle** every door whose number is a multiple of p.

Question: Which doors end up **open**?

Puzzle: The 20 doors

There are **20 closed** doors, numbered 1..20.

For pass p = 1 to 20: **toggle** every door whose number is a multiple of p.

Question: Which doors end up **open**?

Try a smaller case first (by hand), then generalize.

Try a tiny case (by hand): N = 10

Toggle pattern \Rightarrow door d flips once per **divisor** of d. Count divisors for 1..10 and mark odd/even:

```
1: 1 \Rightarrow 1 flip (odd)

2: 1,2 \Rightarrow 2 flips (even)

3: 1,3 \Rightarrow 2 flips (even)

4: 1,2,4 \Rightarrow 3 flips (odd)

5: 1,5 \Rightarrow 2 flips (even)

6: 1,2,3,6 \Rightarrow 4 flips (even)

7: 1,7 \Rightarrow 2 flips (even)

8: 1,2,4,8 \Rightarrow 4 flips (even)

9: 1,3,9 \Rightarrow 3 flips (odd)

10: 1,2,5,10 \Rightarrow 4 flips (even)
```

For N = 10, the open doors are $\{1, 4, 9\}$.

Key insight: Why do some doors flip an odd number of times?

Divisors usually come in **pairs**: if $a \mid d$, then $a \cdot b = d$ with partner $b = \frac{d}{a}$.

Key insight: Why do some doors flip an odd number of times?

Divisors usually come in **pairs**: if $a \mid d$, then $a \cdot b = d$ with partner $b = \frac{d}{a}$.

- Paired divisors contribute *two* flips ⇒ even.
- **Unpaired** divisor happens only when $a = b \Rightarrow a^2 = d$.

Conclusion

A door flips an **odd** number of times \iff its number is a **perfect** square.

Back to 20 doors

Perfect squares \leq 20 are: 1, 4, 9, 16.

So the open doors are [1,4,9,16].

(You can verify quickly: each of these has an odd number of divisors.)

Scaling up: *N* doors

Open doors = all perfect squares $\leq N$. Count = $\lfloor \sqrt{N} \rfloor$.

Examples:

- $N = 20 \Rightarrow \lfloor \sqrt{20} \rfloor = 4$ doors open: $\{1, 4, 9, 16\}$.
- $N = 100 \Rightarrow \lfloor \sqrt{100} \rfloor = 10$ doors open: $\{1^2, \ldots, 10^2\}$.
- $N = 1000 \Rightarrow \lfloor \sqrt{1000} \rfloor = 31$ doors open.

The "calculator way" would toggle door-by-door; the **structure** (divisors) gives a one-line answer.

Why flips follow divisors: example door 12

Only a perfect square has an unpaired divisor (e.g., $4 = 2^2$).

20 doors. Which are open at the end?

Open doors are the perfect squares: $\{1, 4, 9, 16\}$.

Python demo: simulate vs. use the math

```
def open_doors_sim(N):
    state = [False] * (N + 1)
    for p in range(1, N + 1):
        for d in range(p, N + 1, p):
            state[d] = not state[d]
    return [i for i in range(1, N + 1) if state[i]]
def open_doors_math(N):
   k = int(N ** 0.5)
    return [i * i for i in range(1, k + 1)]
print(open_doors_sim(20)) # -> [1, 4, 9, 16]
print(open_doors_math(20)) # -> [1, 4, 9, 16]
```

Takeaways

Computers = calculators on steroids

Fast but not clever. They need clear, step-by-step instructions.

Over the next weeks, we'll solve a lot of problems
and write a lot of Python to do it.

Thank you!

Questions?