Problema A. SimTia, o Retorno

Arquivo de entrada: standard input Arquivo de saída: standard output

Limite de tempo: 1 segundo

Os tempos mudaram na aldeia distante, e a modernização chegou de forma arrasadora! As antigas tradições matemáticas foram atualizadas, e agora, além dos vetores canônicos, os alunos de Corte e Costura se juntam com os de Cílios e Delineado e podem lidar com qualquer conjunto de vetores. Equipados com novas ferramentas e tecnologia de ponta (vulgo numpy), eles estão prontos para desafios ainda maiores, sob a sábia supervisão da Tia, que agora também está mais moderna e ainda mais sábia \implies utiliza Linux.

O objetivo ainda é o mesmo: determinar se um conjunto de d vetores pode gerar todo o espaço \mathbb{R}^d . Mas agora, a liberdade reina: os vetores não precisam mais ser bonitinhos e canônicos. Os alunos podem usar todo o poder da álgebra linear para responder à Tia. "Sim, Tia! O Retorno!" é o grito de guerra, mas apenas se eles conseguirem provar que os vetores formam uma base para o espaço.

Regras do jogo: - A Tia informa a dimensão d do espaço \mathbb{R}^d . - Em seguida, ela fornece d vetores, cada um com d componentes. - Agora, com os novos poderes matemáticos, os jogadores devem verificar se esses vetores geram todo o espaço. Eles podem usar a função np.linalg.det() se acharem necessário, mas o importante é decidir se os vetores formam uma base para \mathbb{R}^d .

Ajude os alunos a decidir se os vetores fornecidos pela Tia ainda conseguem gerar \mathbb{R}^d ou não, pois a modernização trouxe também a responsabilidade de não mais subestimar os desafios!

Entrada

A primeira linha contém um inteiro d ($1 \le d \le 1000$), o número de dimensões do espaço.

Cada uma das próximas d linhas contém d números reais $x_{i1}, x_{i2}, \ldots, x_{id} \ (-10^9 \le x_{ij} \le 10^9)$: os componentes do vetor i no espaço \mathbb{R}^d .

Saída

Imprima "SimTia, o Retorno"se os vetores geram \mathbb{R}^d , e "Não"caso contrário.

Álgebra Linear e Aplicações Universidade de São Paulo, Campus de São Carlos

Exemplos

standard input	standard output
2	SimTia, o Retorno
1 0	
0 1	

standard input	standard output
3	Não
2 0 0	
4 3 0	
1 0 0	

Notas

No primeiro exemplo, os vetores são independentes e geram todo o espaço \mathbb{R}^2 , portanto os jogadores podem orgulhosamente gritar "SimTia, o Retorno".

Já no segundo exemplo, os vetores não geram \mathbb{R}^3 , pois um deles é dependente dos outros. Aqui, a resposta é "Não", e os alunos terão que rever suas estratégias.

JLF