(19) 世界知的所有権機関 国際事務局

T COURT BOUNDED IN COURT HOW COME COME COURT IN IT COME COME COURT COURT COME COME COURT COURT COME

(43) 国際公開日 2004 年9 月10 日 (10.09.2004)

PCT

(10) 国際公開番号 WO 2004/076420 A1

(51) 国際特許分類⁷: C07D 213/75, 213/80, 231/40, 239/42, 241/20, 237/20, 277/46, 285/12, 285/08, 417/12, 401/12, 261/14, 271/07, 249/04, 513/04, A61K 31/415, 31/42, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4402, 31/4439, 31/444, 31/454, 31/4965, 31/505, 31/415, 31/4245, 31/4192, 31/429, 31/455, 31/433, 31/4245, 31/495, A61P 3/04, 3/10, 43/00

(21) 国際出願番号:

PCT/JP2004/002284

(22) 国際出願日:

2004年2月26日(26.02.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(III)

B環

(30) 優先権データ:

3 Tokyo (JP).

特願2003-049466 2003 年2 月26 日 (26.02.2003) JP 特願 2003-400882

2003 年11 月28 日 (28.11.2003) JP 特願2004-031298 2004 年2 月6 日 (06.02.2004) JP

(71) 出願人(米国を除く全ての指定国について): 萬有製薬株式会社 (BANYU PHARMACEUTICAL CO., LTD.)[JP/JP]; 〒1038416 東京都中央区日本橋本町2-2-

(72) 発明者; および

- (75) 発明者/出願人(米国についてのみ): 飯野 智晴 (IINO, Tomoharu) [JP/JP]; 〒3002611 茨城県つくば市大久保 3番地萬有製薬株式会社 つくば研究所 Ibaraki (JP). 橋本 憲明 (HASHIMOTO, Noriaki) [JP/JP]; 〒3002611 茨城県つくば市大久保3番地萬有製薬株式会社 つく ば研究所 Ibaraki (JP). 中嶋弘 (NAKASHIMA, Hiroshi) [JP/JP], 〒3002611 茨城県つくば市大久保3番地萬 有製薬株式会社 つくば研究所 Ibaraki (JP). 高橋 啓 治 (TAKAHASHI, Keiji) [JP/JP]; 〒3002611 茨城県つ くば市大久保3番地萬有製薬株式会社 つくば研 究所 Ibaraki (JP). 西村 輝之 (NISHIMURA, Teruyuki) [JP/JP]; 〒3002611 茨城県つくば市大久保3番地萬 有製薬株式会社 つくば研究所 Ibaraki (JP). 永木 淳一 (EIKI, Jun-ichi) [JP/JP]; 〒3002611 茨城県つくば市大 久保3番地萬有製薬株式会社 つくば研究所 Ibaraki (JP).
- (74) 共通の代表者: 萬有製薬株式会社 (BANYU PHAR-MACEUTICAL CO., LTD.); 〒1038416 東京都中央区日本橋本町2-2-3 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,

/続葉右/

(54) Title: HETEROARYLCARBAMOYLBENZENE DERIVATIVE

(54) 発明の名称: ヘテロアリールカルパモイルベンゼン誘導体

a...RING A c...RING A

A環

(II)

b...RING B d...RING B

(57) Abstract: A compound represented by the following formula (I): (I) [wherein X^1 represents oxygen, etc.; X^2 represents oxygen, etc.; R^1 represents an alkylsulfonyl or another group on the ring Λ ; R^2 represents, e.g., C_{3-7} cyclic alkyl optionally substituted by halogeno, etc.; R^3 represents a substituent on the ring B, e.g., lower alkyl; the formula (II) [Chemical formula 1] (II) represents 6- to 10-membered aryl, etc.; and the formula (III) [Chemical formula 1] (III) represents a mono- or bicyclic heteroaryl which optionally has a substituent represented by the R^3 in the ring B and in which the carbon atom bonded to the nitrogen atom of the amide group in the formula (I) forms C=N in cooperation with the nitrogen atom of the ring] or a pharmaceutically acceptable salt of the compound. The compound and salt function to activate glucokinase and are useful as a therapeutic agent for diabetes.

.)

NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,

SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[続葉有]

(57) 要約:

本発明は、グルコキナーゼ活性化作用を有し、糖尿病の治療剤として有用な下記式(I)

5 (1

(式中、式中、 X^1 は酸素原子等を示し、 X^2 は酸素原子等を示し、 R^1 は、アルキルスルホニル基等のA環上の基を示し、 R^2 はハロゲン原子等で置換されていてもよい、炭素数 3 乃至 7 の環状のアルキル基等を示し、 R^3 は低級アルキル基等のB環上の置換基を示し、式(II)

10 【化1】

は、6乃至10員のアリール基等を示し、式(III)

【化1】

15 は、前記R³で示される置換基をB環内に有していてもよい、式(I)のアミド 基の窒素原子と結合した該B環中の炭素原子が、該環中の窒素原子と共にC=N を形成する、単環の又は双環のヘテロアリール基]で表される化合で表される化 合物又はその薬学的に許容される塩に関する。

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

ヘテロアリールカルバモイルペンゼン誘導体

5 技術分野

本発明は、ヘテロアリールカルバモイルベンゼン誘導体を有効成分として含有 するグルコキナーゼ活性化剤に関する。さらに、新規なヘテロアリールカルバモ イルベンゼン誘導体に関する。

10 背景技術

グルコキナーゼ (GK) (ATP:D-hexose 6-phosphot ransferaze, EC2. 7. 1. 1) は、哺乳類の4種のヘキソキナーゼのうちの一つ (ヘキソキナーゼ IV) である。ヘキソキナーゼは、解糖系の一番はじめの段階の酵素でグルコースからグルコース 6 燐酸への反応を触媒する。

グルコキナーゼは、主に肝臓と膵臓ベータ細胞に発現が限局しており、それらの細胞のグルコース代謝の律速段階を制御することで、体全体の糖代謝に重要な役割を果たしている。肝臓と膵臓ベータ細胞のグルコキナーゼは、それぞれスプライシングの違いによりN末15アミノ酸の配列が異なっているが、酵素学的性質は同一である。グルコキナーゼ以下の3つのヘキソキナーゼ(I, II, III)
 は、1mM以下のグルコース濃度で酵素・活性が飽和してしまうのに対し、グルコキナーゼのグルコースに対するKmは、8mMと生理的な血糖値に近い。従って、正常血糖(5mM)から、食後血糖上昇(10-15mM)の血糖変化に呼応した形でグルコキナーゼを介した細胞内グルコース代謝の亢進が起こる。

10年ほど前から、グルコキナーゼは膵臓ベータ細胞や肝臓のグルコースセン サーとして働くという仮説が提唱された(例えば、ガーフィンケル(Garfinkel D)ら著、「コンピュータ モデリング アイデンティファイズ グルコキナーゼ アズ グルコース センサー オブ パンクレアティック ベータ セルズ (Computer modeling identifies glucokinase as glucose sensor of panc

reatic beta-cells)」、アメリカン ジャーナル フィジオロジー (American Journal Physiology)、第247巻 (3Pt2) 1984年、p527-536)。

最近のグルコキナーゼ遺伝子操作マウスの結果から、実際にグルコキナーゼは 5 全身のグルコース恒常性に重要な役割を担うことが明らかになっている。グルコ キナーゼ遺伝子を破壊したマウスは生後まもなく死亡する (例えば、グルペ (G Tupe A) ら著、「トランスジェニック ノックアウツ リビール ア ク リティカル リクワイヤメント フォー パンクレアティク ベータ セルズ グルコキナーゼ イン メインテイニング グルコース ホメオスタシス (Tr ansgenic knockouts reveal a critical 10 requirement for pancreatic beta cell glucokinase in maintaining glucose h omeostasis)」、セル (Cell)、第83巻、1995年、p69 - 78)が、一方グルコキナーゼを過剰発現させた正常及び糖尿病マウスは血糖 値が低くなる (例えば、フェレ (Ferre T) ら著、「コレクション ディ 15 アベティック アルターネイションズ バイ グルコキナーゼ (Соггес t ion of diabetic alterations by gluco kinase)」、プロシーディングズ オプ ザ ナショナル アカデミー オ ブ サイエンシィズ オブ ザ ユーエスエー (Proceedings of the National Academy of Sciences of 20 the U.S.A.)、第93巻、1996年、p7225-7230)。グ ルコース濃度上昇によって、膵臓ベータ細胞と肝細胞の反応は、異なるがいずれ も血糖を低下させる方向に対応する。膵臓ベータ細胞は、より多くのインスリン を分泌するようになるし、肝臓は糖を取り込みグリコーゲンとして貯蔵すると同 25 時に糖放出も低下させる。

このようにグルコキナーゼ酵素活性の変動は、肝臓および膵臓ベータ細胞を介した哺乳類のグルコースホメオスタシスにおいて重要な役割を果たしている。MODY2 (maturity-onset diabetes of the young) と呼ばれる若年に糖尿病を発症する症例においてグルコキナーゼ遺

伝子の突然変異が発見され、グルコキナーゼ活性の低下が血糖上昇の原因となっている(例えば、ビオンネット(Vionnet N)ら著、「ノンセンス ミューテイション イン ザ グルコキナーゼ ジーン コージィーズ アーリーーオンセット ノンーインシュリンーディペンデント ディアベテス メリィタス (Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus)、ネイチャー ジェネティクス(Nature Genetics)、第356巻、1992年、p721-722)。

一方グルコキナーゼ活性を上昇させる突然変異をもつ家系も見つかっており、このような人たちは低血糖症状を示す(例えば、グレイサー(Glaser B)ら著、「ファミリアル ハイパーインシュリニズム コーズド バイ アン アクティベイティング グルコキナーゼ ミューテイション(Familial hyperinsulinism caused by an activat ing glucokinase mutation)」、ニュー イングランド ジャーナル メディスン(New England Journal Medicine)、第338巻、1998年、p226-230)。

これらのことからグルコキナーゼはヒトでもグルコースセンサーとして働き、 グルコース恒常性に重要な役割を果たしている。一方多くの I I 型糖尿病患者で グルコキナーゼセンサーシステムを利用した血糖調節は可能と考えられる。グル コキナーゼ活性化物質には膵臓ベータ細胞のインスリン分泌促進作用と肝臓の糖 取り込み亢進および糖放出抑制作用が期待できるので、 I I 型糖尿病患者の治療 薬として有用と考えられる。

20

近年、膵臓ベータ細胞型グルコキナーゼがラット脳の、中でも特に摂食中枢(Ventromedial hypothalamus, VMH)に限局して発現していることが明らかにされた。VMHの約2割の神経細胞は、グルコースレスポンシブニューロンと呼ばれ、従来から体重コントロールに重要な役割を果たすと考えられてきた。ラットの脳内へグルコースを投与すると摂食量が低下するのに対して、グルコース類縁体のグルコサミン脳内投与によってグルコース代謝抑

制すると過食となる。電気生理学的実験からグルコースレスポンシブニューロンは生理的なグルコース濃度変化(5-20mM)に呼応して活性化されるがグルコサミン等でグルコース代謝抑制すると活性抑制が認められる。VHMのグルコース濃度感知システムには膵臓ベータ細胞のインスリン分泌と同様なグルコキナーゼを介したメカニズムが想定されている。従って肝臓、膵臓ベータ細胞に加えVHMのグルコキナーゼ活性化を行う物質には血糖是正効果のみならず、多くのII型糖尿病患者で問題となっている肥満をも是正できる可能性がある。

上記の記載から、グルコキナーゼ活性化作用を有する化合物は、糖尿病の治療 剤及び/又は予防剤として、或いは、網膜症、腎症、神経症、虚血性心疾患、動 脈硬化等の糖尿病の慢性合併症の治療及び/又は予防剤として、更には肥満の治 療及び/又は予防剤として有用である。

本発明に係るヘテロアリールカルバモイルベンゼン誘導体(I)と同じベンゼン環の3及び5位の位置に置換基を有する化合物としては、下記(IV)

15

10

20

25

で表される化合物が記載されている。該化合物は、ヘテロアリールカルバモイルベンゼン環の3位及び5位は、共にtertーブチル基であり、本発明に係る化合物が有する3位及び5位にアルキル基を有する場合はない。また、カルバモイル基の窒素原子に結合しているイミダゾー[1,2-a]ピリジンを有しているが、該イミダゾー[1,2-a]ピリジル基のピリジン環に含まれるNの位置とカルバモイル基との相対的な位置関係は、本発明に係る化合物の有するカルバモイル基とヘテロアリール基の有する窒素原子との相対的な位置関係とは異なる(例えば、特表平11-505524号公報)。

さらに、ヘテロアリールカルバモイルベンゼン誘導体のベンゼン環上に2つの置換基を有する化合物としては、下記式 (V)

(V)

で表される化合物が記載されている(例えば、特表2001-526255号公報)。

カルバモイル基の窒素原子と結合するピリジン環中の炭素原子とさらに、炭素原子を1つ介して窒素原子が結合している点において異なり、かつ、メトキシ基の 結合位置が本発明に係る化合物の結合位置とは異なる。

15 式(VI)

で表される化合物が記載されている(例えば、特表2002-509536号公報)。

上記特許文献3に記載されている化合物は、ベンゼン環上の2つの置換基の一方 20 に、2-メチル-4-ヨードーフェニルアミノ基を有し、かつ、カルバモイル基 の窒素原子に結合した炭素原子の隣に窒素原子を有している点で、本発明に係る 化合物の構造と共通するが、該2-メチル-4-ヨードーフェニルアミノ基とカ カルバモイル基との位置関係が本発明に係る化合物の位置関係と異なること、及 び、ベンゼン環上の2つの置換基の他方にフルオロ基を有しているが、本発明に 係る化合物はベンゼン環上の置換基には、ハロゲン原子が含まれていない点で異 なる。

発明の開示

5

10 本発明者らは、上記既存の薬剤とは異なる作用により、既存の糖尿病薬を上回る薬効を有し、かつ、新たな薬効を有する新規糖尿病薬を開発すべく、鋭意研究した結果、式(I)で表される化合物がグルコキナーゼ活性化作用を有することを見出し、本発明を完成するに至った。すなわち、本発明は、

(1)式(I)

15 (I)

20

[式中、 X^1 は酸素原子、硫黄原子又はNHを示し、 X^2 は酸素原子、硫黄原子又は CH_2 を示し、 R^1 は、アルキルスルホニル基、アルカノイル基、低級アルキル基、ヒドロキシアルキル基、ヒドロキシ基、アルキルカルバモイル基、アルキルスルファモイル基、ジアルキルスルファモイル基、アルコキシカルボニルアミノ基、アルコキシカルボニル基、ハロゲン原子、アルカノイルアミノアルキル基、アルコキシカルボニルアミノアルキル基、アルコキシカルボニルアミノアルキル基、アルコキシカルボニルアミノアルキル基、アルコキシカルボニルアミノアルキル基、シアノ基及びトリフルオロメチル基からなる群より選択される1又は2のA環上に有していてもよい置換基を示し、 R^2 はハロゲン原子、カルボキシル基、アルコキシカルボニ

5

ル基、ヒドロキシ基、アミノ基(該アミノ基は、さらに1若しくは2のアルカノ イル基又は低級アルキル基で置換されていてもよい)、アルコキシ基及びN-ア ルキルカルバモイル基からなる群より選択される置換基を有していてもよい、炭 素数3乃至7の環状のアルキル基(該環を構成する炭素原子(該環を構成する炭 素原子のうち、X²と結合する炭素原子を除く)の1つが、酸素原子、NH、N - アルカノイル基又はCONHで置き換わっていてもよい))、直鎖若しくは分 岐の低級アルキル基又は低級アルケニル基を示し、R³は低級アルキル基、アル コキシ基、アルキルアミノ基、低級ジアルキルアミノ基、ハロゲン原子、トリフ ルオロメチル基、ヒドロキシアルキル基(該ヒドロキシアルキル基中のヒドロキ シ基の水素原子は、低級アルキル基で置換されていてもよい)、アミノアルキル 10 基、アルカノイル基、カルボキシル基、アルコキシカルボニル基及びシアノ基か ら選択される1又は2のB環上に有していてもよい置換基を示し、式(II)

は、前記R1で示される置換基を環内に1又は2有していてもよい、6乃至10 15 員のアリール基又は5乃至7員のヘテロアリール基を示し、式(III)

- は、前記R³で示される置換基をB環内に1又は2有していてもよい、式(I) のアミド基の窒素原子と結合した該B環中の炭素原子が、該環中の窒素原子と共 20 にC=Nを形成する、単環の又は双環のヘテロアリール基]で表される化合物又 はその薬学的に許容される塩、
 - (2) X^1 がO又はSであり、かつ、 X^2 がO又は CH_2 である前記(1)記載の 化合物、
- (3) A環がフェニル基又は5乃至6員のヘテロアリール基である前記(2)記 25

載の化合物、

- (4) A環がフェニル基である前記(2)記載の化合物、
- (5) A環が5乃至6員のヘテロアリール基である前記(2)記載の化合物、
- (6) R¹が水素原子、アルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、アルキルカルバモイル基、アルキルスルファモイル基、ジアルキルスルファモイル基、ジアルキルスルファモイル基、ジアルキルカルバモイル基、アルコキシカルボニルアミノ基、ハロゲン原子、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルコキシカルボニルアミノアルキル基である前記(4)又は(5)のいずれかに記載の化合物、
- 10 (7) R¹がアルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルコキシカルボニルアミノアルキル基である前記(4)記載の化合物、
 - (8) R^1 がアルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基である前記(4)記載の化合物、
- 15 (9)前記R³で示されるB環の置換基を該環内に1又は2有していてもよい、前記式(I)のアミド基の窒素原子と結合した該B環中の炭素原子が、該環中の窒素原子と共にC=Nを形成する、単環又は双環のヘテロアリール基(該ヘテロアリール基が、5-アルコキシカルボニルーピリジン-2-イル基又は、5-カルボキシルーピリジン-2-イル基である場合を除く)である前記(3)乃至(8)記載の化合物、
 - (10) B環が、式(I)のアミド基の窒素原子と結合した該環中の炭素原子と 共にC=Nを形成する窒素原子の他に、B環内に窒素原子、硫黄原子及び酸素原 子からなる群より選択されるヘテロ原子を少なくとも1有する、前記(7)に記 載の化合物、
- 25 (11) R²がハロゲン原子、カルボキシル基、アルコキシカルボニル基、ヒドロキシ基、アミノ基(該アミノ基は、さらに1又は2の低級アルキル基で置換されていてもよい)、アルコキシ基、N-アルキルカルバモイル基又はアルカノイルアミノ基で置換されていてもよい、炭素数3乃至7の環状のアルキル基(該環を構成する炭素原子の1つが、酸素原子、NH又はN-アルカノイル基で置換さ

5

10

れていてもよい)、直鎖若しくは分岐の低級アルキル基又は低級アルケニル基である前記(1)乃至(10)のいずれかに記載の化合物、

(12) B環が、チアゾリル基、イミダゾリル基、イソチアゾリル基、チアジア ゾリル基、トリアゾリル基、オキサゾリル基、イソキサゾリル基、ピラジニル基、 ピリダジニル基、ピラゾリル基、ピリミジニル基、ピリドチアゾリル基又はベン ゾチアゾリル基である前記(1)乃至(11)のいずれかに記載の化合物、

(13) R³が低級アルキル基、アルコキシ基、ハロゲン原子、ヒドロキシアルキル基(該ヒドロキシアルキル基中のヒドロキシ基の水素原子は、低級アルキル基で置換されていてもよい)、アミノアルキル基又はアルカノイル基である前記(1) 乃至(12)のいずれかに記載の化合物、

(14) R³が低級アルキル基、ヒドロキシアルキル基(該ヒドロキシアルキル基中のヒドロキシ基の水素原子が、低級アルキル基で置換されていてもよい)である前記(1)乃至(12)のいずれかに記載の化合物、

(15)式(I)

15 (I)

20

[式中、各記号は前記定義に同じ]で表される化合物が、5-イソプロポキシー3-(4-メタンスルホニルフェノキシ)-N-(4-メチルチアゾール-2-イル)-ベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベンズアミド、5-エトキシー3-(4-メタンスルホニルフェノキシ)-N-(4-メトキシメチルーチアゾール-2-イル)ベンズアミド、5-シクロペンチルオキシー3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(テトラヒドロフラ

ン-3-イルオキシ)-N-チアゾール-2-イルーベンズアミド、8-(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メチルーエトキシ) -N-チアゾール-2-イルーベンズアミド、3-(4-メタンスルホニルフェ ノキシ) -5- (2-メトキシ-1-メトキシメチル-エトキシ) -N-チアゾ ールー2ーイルーベンズアミド、3- (2-フルオロー4-メタンスルホニルフ ェノキシ) -5-イソプロポキシ-N-チアゾール-2-イル-ペンズアミド、 3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシメチループロポ キシ) -N-(4-メチルーチアゾール-2-イル)ーベンズアミド、5-イソ プロポキシー3ー (4-メタンスルホニルフェノキシ) -N-ピラゾール-3-イルーベンズアミド、5ーイソプロポキシー3ー(4ーメタンスルホニルフェノ 10 キシ) -N-ピラジン-2-イルーペンズアミド、3-(4-メタンスルホニル フェノキシ) -5-(3-メトキシ-1-メチループロポキシ) -N-チアゾー ルー2-イルーベンズアミド、5-(3-ヒドロキシ-1-メチループロポキシ) -3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベン ズアミド、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N 15 - ピリミジン-4-イルーベンズアミド、5-イソプロポキシ-3-(4-メタ ンスルホニルフェノキシ) - N - (ピリミジン-2-イル) - ベンズアミド、N - (4-ヒドロキシメチルーチアゾールー2-イル)-5-イソプロポキシー3 - (4-メタンスルホニルフェノキシ)-ベンズアミド、N-(イソオキサゾー ルー3-イル)-3-(4-メタンスルホニルフェノキシ)-5-(1-メトキ 20 シメチループロポキシ)ーベンズアミド、3ー(4ーメタンスルホニルフェノキ シ) -5- (1-メトキシメチループロポキシ) -N- [1, 3, 4] チアジア ゾールー2ーイルーベンズアミド、5-(1-ヒドロキシメチループロポキシ) -3-(4-メタンスルホニルフェノキシ)-N-(4-メチルーチアゾールー 2-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾール-2-イ 25 ル) -3-(4-メタンスルホニルフェノキシ) -5-(1-メトキシメチル-プロポキシ)ーベンズアミド、5-(2-アミノ-1-メチルーエトキシ)-3 - (4-メタンスルホニルフェノキシ) -N-チアゾール-2-イルーペンズア ミド、5-(2-ジメチルアミノ-1-メチル-エトキシ)-3-(4-メタン

スルホニルフェノキシ)-N-チアゾール-2-イルーペンズアミド、5-(2)ーヒドロキシープロポキシ) -3-(4-メタンスルホニルフェノキシ) -N-(4-メチルーチアゾールー2-イル)-ベンズアミド、3-(4-メタンスル ホニルフェノキシ)-5-(2-メトキシープロポキシ)-N-(4-メチルー チアゾールー2ーイル)ーベンズアミド、5ーイソプロポキシー3ー(4ーメタ ンスルホニルフェノキシ)-N-(チアゾロ[5.4-b]ピリジン-2-イル) ーベンズアミド、5-(2-ヒドロキシメチル-アリル)-3-(4-メタンス ルホニルフェノキシ)-N-チアゾール-2-イル-ベンズアミド、5- (2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) -N-チアプロ[5,4-b]ピリジン-2-イルーベンズアミド、5-(3-10 ヒドロキシー2ーメチループロピル)-3-(4-メタンスルホニルフェノキシ) -N-チアゾール-2-イルーペンズアミド、3-(4-メタンスルホニルフェ **ノキシ)-N-(4-メチル-チアゾール-2-イル)-5-(ピペリジン-4** ーイルーオキシ)ーベンズアミド塩酸塩、5-(1-アセチルーピペリジン-4 15 ーイルオキシ)ー3ー(4ーメタンスルホニルフェノキシ)ーNー(4ーメチル ーチアゾールー2ーイル)ーベンズアミド、2-[3-(4-メタンスルホニル フェノキシ) -5-(4-メチルーチアゾール-2-イルーカルバモイル) -フ エノキシ]プロピオン酸、5-(3-ヒドロキシ-1-メチル-プロポキシ)-3 - (4 - メタンスルホニルフェノキシ) - N - チアゾール-2 - イルーベンズ アミド、3-(4-メタンスルホニルフェノキシ)-5-(1-メチルカルバモ 20 $(4-x)^2$ $(4-x)^2$ (4-5-(2-アセチルアミノ-1-メチル-エトキシ)-3-(4-メタンスルホ **ニルフェノキシ)-N-チアゾール-2-イル-ペンズアミド、N-「4-(1** ーヒドロキシーエチル) ーチアゾールー2ーイル] -5-イソプロポキシー3-(4-メタンスルホニルフェノキシ)ーベンズアミド、5-(2-ヒドロキシー 25 1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-ピリ ジン-2-イルーペンズアミド、5-(2-ヒドロキシーエトキシ)-3-(4 ーメタンスルホニルフェノキシ) - N - チアゾール - 2 - イルーペンズアミド、 5-(2-ヒドロキシーシクロペンチルオキシ)-3-(4-メタンスルホニル

フェノキシ) - N - チアゾール - 2 - イルーベンズアミド、N - (4 - アセチル ーチアゾールー2ーイル)ー5ー(2-ヒドロキシー1-メチルーエトキシ)ー 3-(4-メタンスルホニルフェノキシ)ーベンズアミド、5-(2-ヒドロキ シー1ーメチルーエトキシ) -N-(4-ヒドロキシメチルーチアゾール-2-イル) -3-(4-メタンスルホニルフェノキシ) -ベンズアミド、N-[4-(1-ヒドロキシーエチル) ーチアゾールー2ーイル] ー5-(2-ヒドロキシ -1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)ーペンズ アミド、3-(3-フルオロー4-メタンスルホニルフェノキシ)-5-(2-ヒドロキシー1ーメチルーエトキシ) -N-チアゾール-2-イル-ベンズアミ ド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホ 10 ニルフェノキシ) -N- (5-メチルーチアゾール-2-イル) ベンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ)-N-([1, 2, 4] チアジアゾール-5-イル) -ベンズアミ ド、N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メタン スルホニルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) -ベン 15 ズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタン スルホニルフェノキシ)-N-(5-メトキシカルボニル-ピリジン-2-イル) ーペンズアミド、6-[5-イソプロポキシ-3-(4-メタンスルホニルフェ ノキシ)-ベンゾイルアミノ]ニコチン酸、5-(2-ヒドロキシ-1-メチル 20 ープロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-N - (イソキサゾール-3-イル)-3-(4-メタンスルホニルフェノキシ)-ベンズアミド、N- (5-ヒドロキシメチル-チアゾール-2-イル) -5-イ ソプロポキシー3-(4-メタンスルホニルフェノキシ)-ベンズアミド、N-25 [4-(1-ヒドロキシーエチル)ーチアゾールー2-イル]-3-(4-メタ ンスルホニルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) -ベ ンズアミド、N-(4-ヒドロキシメチルーチアゾールー2-イル)-3-(4ーメタンスルホニルフェノキシ) -5- (テトラヒドロフラン-3-イルーオキ シ)ーベンズアミド、5ー(2ーヒドロキシー1ーメチルーエトキシ)ー3ー(4

ーメタンスルホニルフェノキシ) -N-(2-メチルチアゾール-4-イル) -ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メ タンスルホニルフェノキシ) -N-(4-メトキシメチルーチアゾール-2-イ ル) ーベンズアミド、N-[4-(1-ヒドロキシーエチル) ーチアゾール-2 - 1 - 3 - (4 - y - y - y - z) - 5 - (2 - y - z - z)ーメチルーエトキシ) ーベンズアミド、N-[4-(1-ヒドロキシーエチル) ーチアゾールー2ーイル]-3-(4-メタンスルホニルフェノキシ)-5-(テ トラヒドロフラン-3-イルーオキシ) -ベンズアミド、N-[4-(1-ヒド ロキシーエチル) ーチアゾールー2ーイル] -3-(4-メタンスルホニルフェ 10 ノキシ) - 5 - (テトラヒドロフラン-3-イルーオキシ) - ペンズアミド、N - (2,5-ジメチルチアゾール-4-イル)-5-(2-ヒドロキシ-1-メ チルーエトキシ) -3-(4-メタンスルホニルフェノキシ) -ペンズアミド、 5-イソプロポキシ-3-(4-メトキシカルボニルアミノメチルフェノキシ) - N-チアゾール-2-イルーペンズアミド、5-イソプロポキシ-3-(4-メチルカルバモイルーフェノキシ)-N-チアゾール-2-イルーベンズアミド、 15 3-(4-ジメチルカルバモイル-フェノキシ)-5-イソプロポキシ-N-チ アゾールー2ーイルーベンズアミド、5ーイソプロポキシー3ー(4ーメチルカ ルボニルアミノメチルーフェノキシ) -N-チアゾール-2-イルーベンズアミ ド、5-イソプロポキシ-3-(4-メタンスルホニルアミノメチル-フェノキ シ) -N-チアゾール-2-イルーペンズアミド、3-[4-(1-ヒドロキシ 20 ープロピル) ーフェノキシ] -5-イソプロポキシ-N-チアゾール-2-イル ーペンズアミド、6-[3-イソプロポキシ-5-(チアゾール-2-イルカル バモイル) - フェノキシ] -ニコチン酸メチルエステル、3-(5-ヒドロキシ メチルーピリジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール -2-イルーペンズアミド、5-イソプロポキシ-3-(5-メタンスルホニル 25 ピリジン-2-イル) -N-チアゾール-2-イル-ベンズアミド、3-(5-アセチルーピリジンー2ーイルーオキシ) -5-イソプロポキシ-N-チアゾー ルー2ーイルーベンズアミド、5ーイソプロポキシー3ー(5ーメトキシカルボ ニルーピラジンー2ーイルーオキシ) -N-チアゾールー2ーイルーベンズアミ

ド、3-(5-シアノーピリジン-2-イルーオキシ)-5-イソプロポキシー N-チアゾール-2-イルーペンズアミド、5-イソプロポキシ-3-(2-オ キソー1, 2-ジヒドローピリジンー4-イルーオキシ)-N-チアゾール-2 ーイルーベンズアミド、5ーイソプロポキシー3ー(2ーオキソー1,2ージヒ ドローピリジン-3-イルーオキシ)-Nーチアゾール-2-イルーベンズアミ ド、5-イソプロポキシ-3-(2-オキソ-1,2-ジヒドローピリジン-3 -イル-オキシ) -N-チアゾロ[5, 4-b] ピリジン-2-イルーベンズア ミド、5-イソプロポキシ-3-([1,3,4]チアジアゾール-2-イルス ルファニル)-N-チアゾロ[5.4-b]-ピリジン-2イルーベンズアミド、 5ーイソプロポキシー3ー(4ーメチルー[1, 2, 4]トリアゾールー3ーイ 1Ó ルスルファニル) - N - チアゾール - 2 - イルーペンズアミド、5 - イソプロポ キシー3-チアゾール-2-イルスルファニル-N-チアゾール-2-イルーベ ンズアミド、5-イソプロポキシ-3-(4H-[1,2,4]トリアゾールー 3-イルスルファニル)-N-チアゾール-2-イル-ベンズアミド、5-イソ プロポキシー3-([1,3,4]チアジアゾール-2-イルスルファニル)-15 N-チアゾール-2-イルーベンズアミド、5-イソプロポキシ-3-(5-メ チルスルファニルー[1,3,4]チアジアゾールー2ーイルスルファニル)ー N-チアゾール-2-イルーベンズアミド、5-イソプロポキシ-3-(5-メ チルー[1, 3, 4] チアジアゾールー2ーイルスルファニル) - Nーチアゾー ルー2ーイルーベンズアミド、5ー(テトラヒドロフランー3ーイルーオキシ) 20 -N-チアゾール-2-イル-3-(4H-[1, 2, 4] トリアゾール-3-イルスルファニル)ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -N- (4-メチル-チアゾール-2-イル) -3- ([1, 3, 4] チ アジアゾール-2-イルスルファニル)ーベンズアミド、5-(3-ヒドロキシ -1-メチループロポキシ)-N-(4-メチルーチアゾール-2-イル)-3 25 - ([1, 3, 4] チアジアゾールー2-イルスルファニル)ーベンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-([1, 3, 4] チアジ アゾールー2ーイルスルファニル)ーNーチアゾールー2ーイルーペンズアミド、 5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル

フェニルスルファニル) - N - チアゾール - 2 - イル - ペンズアミド、3 - (3 ーフルオローフェニルチオ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-チアゾール-2-イルーベンズアミド、5-(2-ヒドロキシ-1-メチ ルーエトキシ) - 3 - (ピリジン-4-イルスルファニル) - N - チアゾールー 2-イルーペンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3 - (6-メチルーピリジン-3-イルスルファニル)-N-チアゾール-2-イ ルーベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4 -メタンスルホニルフェノキシ) -N-(3 -メチルー[1, 2, 4] -チアジ アゾール-5-イル) -ベンズアミド、N-[3-ヒドロキシメチル-1, 2, 4-チアジアゾール-5-イル]-3-(4-メタンスルホニルフェノキシ)-10 5-(2-メトキシ-1-メチルーエトキシ)ベンズアミド、5-(3-ヒドロ キシー1-メチルエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-「5-メチル-1、2、4-チアジアゾール-3-イル] ベンズアミド、5-(ヒ ドロキシー1-メチルエトキシ)-3-(4-メタンスルホニルフェノキシ)-15 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ)-N-(1、2,5-チアジアゾール-3-イル)ペンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ)-N-(4-トリフルオロメチル-チアゾール-2-イル)ベンズ アミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンス 20 ルホニルフェノキシ)-N-(4,5,6,7-テトラヒドロベンゾチアゾール -2-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(ピリダジン-3-イル)-ベ ンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(3-イソ プロピルー[1, 2, 4] -トリアゾールー5-イル) -3-(4-メタンスル 25 ホニルフェノキシ) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキ (3) (4)4] -オキサジアゾール-5-イル) ベンズアミド、5-(2-ヒドロキシ-1

-メチル-エトキシ) -N- [4-(1-ヒドロキシ-1-メチル-エチル) -

チアゾールー2ーイル] -3- (4-メタンスルホニルフェノキシ) ベンズアミ ド、N-(4-シアノーチアゾール-2-イル)-5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ) ペンズアミド、 5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル フェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、 5 5-(1-ヒドロキシメチループロポキシ)-3-(4-メタンスルホニルフェ ノキシ) -N-(ピリジン-2-イル)ペンズアミド、5-(2-ヒドロキシー 1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(5 ーメチルーイソチアゾールー3ーイル)ベンズアミド、5-(3-ヒドロキシー シクロペンチルオキシ)-3-(4-メタンスルホニルフェノキシ)-N-(チ 10 アゾール-2-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -3-(4-メタンスルホニルフェノキシ) -N-(5-メトキシーチア ゾールー2-イル) ベンズアミド、5-(1-ヒドロキシメチル-2-メチル-プロポキシ) -3-(4-メタンスルホニルフェノキシ) -N-(チアゾール-2-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3 15 - (4-メタンスルホニルフェノキシ) -N- (1H- [1, 2, 3] トリアゾ ールー4-イル)ベンズアミド、N-(1-アセチル-1H-ピラゾール-3-イル) -5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(4-メタンス ルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -3-(4-メタンスルホニルフェノキシ) -N-(ピラゾール-3-イ 20 ル) ベンズアミド、N-(5,6-ジヒドロ-4H-シクロペンタチアゾール-2-イル) -5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(4-メタ ンスルホニルフェノキシ)ベンズアミド、5-(1-ヒドロキシメチル-プロポ キシ) -3-(4-メタンスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾールー3-イル)ペンズアミド、5-(2-ヒドロキシー1-メチルーエ 25 トキシ) -3-(4-メタンスルホニルフェノキシ) -N-(チエノ[3, 2d] チアゾールー2ーイル) ベンズアミド、3-(3-フルオロ-4-メタンス ルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(4-メタンス

ルホニルフェノキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N-(ピ ラゾール-3-7ル) ベンズアミド、3-(4-2)アノーフェノキシ)ー5-(2)-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール -3-イル)ベンズアミド、3-(4-エチルスルホニルフェノキシ)-5-(2 -ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール -3-イル) ペンズアミド、3-(6-エタンスルホニルピリジン-3-イルオ キシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(3-ヒドロキシ-1-メチ ループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (1 - メチ ルー1H-ピラゾール-3-イル)ベンズアミド、3-(4-エタンスルホニル 10 フェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(イソキ サゾール-3-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -3-(4-イソプロピルスルホニルフェノキシ)-N-(1-メチル-1 Hーピラゾールー3ーイル) ベンズアミド、5ー(2ーヒドロキシー1ーメチ ルーエトキシ) -N-(4-ヒドロキシ-4-メチル-4, 5, 6, 6a-テト15 ラヒドロー3aH-シクロペンタチアゾールー2ーイル)-3-(4-メタンス ルホニルフェノキシ)ベンズアミド、3-(4-ジメチルカルバモイルーフェノ キシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチルー 1H-ピラゾール-3-イル)ベンズアミド、3-(4-アセチルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-20 ピラゾールー3ーイル) ベンズアミド、5-(2-ヒドロキシー1-メチルーエ トキシ) -N-(1-メチル-1H-ピラゾール-3-イル) -3-(1, 3,4-チアジアゾール-2-イルスルファニル)ベンズアミド、N-(1-エチル -1H-ピラゾール-3-イル)-5-(2-ヒドロキシ-1-メチルーエトキ シ) - 3 - (4 - メタンスルホニルフェノキシ) ベンズアミド、5 - (2 - ヒドロ 25 キシー1-メチルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イ ルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、 5-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メトキシカルボニ ルアミノメチルーフェノキシ)-N-(3-メチル-1, 2, 4-チアジアゾー

ルー5-イル)ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3 - (6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1 H-ピラゾール-3-イル) ベンズアミド、3-(6-メタンスルホニルピリジ ン-3-イルオキシ)-5-(1-メトキシメチループロポキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ペンズアミド、5-イソプロポキシ-3 - (6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1 H-ピラゾール-3-イル) ベンズアミド、5-(2-フルオロ-1-フルオロ メチルーエトキシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) -N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メ 10 チルーエトキシ) - N - (イソキサゾールー3-イル) ペンズアミド、5-(2 ーヒドロキシー1ーメチルーエトキシ) -3-(4-メタンスルホニルフェニル スルファニル)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミ ド、5-シクロプロピルオキシ-3-(4-メタンスルホニルフェノキシ)-N - (1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(6-メタ 15 ンスルホニルピリジン-3-イルオキシ)-5-(1-メトキシメチループロポ キシ) - N - (ピラゾール - 3 - イル) ベンズアミド、5 - (2 - フルオロー1 -フルオロメチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-エタ 20 ンスルホニルピリジン-3-イルオキシ)-5-(1-ヒドロキシメチループロ π ポキシ) -N(1-x チルー 1H- ピラゾールー 3- イル) ベンズアミド、5- (6 -エタンスルホニルピリジン-3-イルオキシ)-3-(2-メトキシ-1-メチ ルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミ ド、2 - [3 - (4 - メタンスルホニルフェノキシ) - 5 - (1 - メチル - 1 H)ピラゾール-3-イルカルバモイル)ーフェノキシ]プロピオン酸ーtert 25 ープチルエステル、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N-(ピラゾール-3-イル) ーベンズアミド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-N - (1-メチル-1H-ピラゾール-3-イル)-5-(テトラヒドロフランー

3-イル) ベンズアミド、N-(1-エチル-1H-ピラゾール-3-イル)-5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メタンスルホニル ピリジン-3-イルオキシ) ベンズアミド、5-(2-フルオロ-1-フルオロ メチルーエトキシ) -3-(6-メタンスルホニルピリジン-3-イルオキシ) N-(ピラゾール-3-イル)ベンズアミド、3-(6-メタンスルホニルピ リジン-3-イルオキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-エタ ンスルホニルピリジンー3ーイルオキシ)ー5ー(2ーフルオロー1ーフルオロメ チルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミ ド、2- [3- (4-メタンスルホニルフェノキシ) -5- (1-メチル-1H 10 ーピラゾール-3-イルカルバモイル)-フェノキシ]プロピオン酸、3-(6 -エタンスルホニルピリジン-3-イルオキシ)-5-イソプロポキシ-N-(ピ ラゾール-3-イル)ベンズアミド、3-(6-エタンスルホニルピリジン-3 ーイルオキシ)-5-イソプロポキシ-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキ 15 シ) -5-(2-ヒドロキシー1-メチルーエトキシ)-N-(ピラゾールー3 ーイル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(ピリジン-2-イル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-チアゾール-2-イルーベン 20 ズアミド5-(2-フルオロ-1-メチル-エトキシ)-3-(6-メタンスル ホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3 ーイル) ペンズアミド、5-(2-クロロ-1-メチルーエトキシ) -3-(6 ーエタンスルホニルピリジンー3ーイルオキシ)ーNー(1ーメチルー1Hーピ ラゾールー3-イル)ペンズアミド、5-(2-フルオロ-1-フルオロメチルー 25 エトキシ)-N-(イソキサゾール-3-イル)-3-(6-メタンスルホニルピ リジン-3-イルオキシ)ペンズアミド、5-(2-フルオロ-1-フルオロメチ ルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピリジン-2-イル) ベンズアミド、5-(2-フルオロ-1-フルオロメチル -エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(3-メチル-[1, 2, 4]-チアジアゾール-5-イル) ベンズアミド、3-(4-ジメチルスルファモイルフェノキシ)-5-(2-ヒドロキシ-1-メチル-

エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、 5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(3-メタンスルホニル

フェノキシ) -N- (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、

5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-イソプロピルスル

ホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3

ーイル)ベンズアミド、3-(3-クロロ-4-メタンスルホニルフェノキシ)

10 -5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチル-1H- ピラゾール-3-イル) ベンズアミド、<math>5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチルー1H-ピラゾール-3-イル)-3-(ピリジン-3-イルオキシ) ベンズアミド、<math>5-(2-フルオロ-1-フルオロメチルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジ

15 $\lambda - 3 - 4 \lambda + 2 \lambda$

25 (16) 5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(4-メタンス ルホニル-フェノキシ) <math>-N-チアゾール-2-イル-ベンズアミドである化合 物又はその薬学的に許容される塩、

(17) N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシメチループロポキシ)-ベ

25

ンズアミドである化合物又はその薬学的に許容される塩、

- (18) 5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンス ルホニルーフェノキシ) -N-ピリジン-2-イルーペンズアミドである化合物 又はその薬学的に許容される塩、
- 5 (19) 5-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルーフェノキシ)-N-(2-メチルチアゾール-4-イル)-ペンズアミドである化合物又はその薬学的に許容される塩、
- (20) 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-([1,3,4]チアジアゾールー2-イルスルファニル)-N-チアゾールー2-イルーベンズ 10 アミドである化合物又はその薬学的に許容される塩、
 - (21) 5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンス ルホニルーフェノキシ) -N-(3-メチルー[1, 2, 4]-チアジアゾール <math>-5-7 ーベンズアミドである化合物又はその薬学的に許容される塩、
- (22) 5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンス15 ルホニルーフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドである化合物又はその薬学的に許容される塩、
 - (23) 3-(3-7)ルオロー4-メタンスルホニルフェノキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミドである化合物又はその薬学的に許容される塩、
- 20 (24) 3-(6-x9)スルホニルピリジン-3-(x) 5-(2-x) ヒドロキシ-1-xチル-xトキシ)-x -
 - (25) 3-(6-エタンスルホニルーピリジン-3-イルオキシ) -5-イソ プロポキシ-<math>N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドで ある化合物又はその薬学的に許容される塩、
 - (26) 5-(2-7)ルオロー1-7ルオロメチルーエトキシ)-3-(6-3)タンスルホニルーピリジン-3-(1)0 -11 -12 -12 -13 -14 -14 -15 -16 -17 -17 -18 -19 -1

ーヒドロキシー1ーメチルーエドキシ) -N- (イソキサゾールー3-イル) ベンズアミドである化合物又はその薬学的に許容される塩、

- (28) 5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メ タンスルホニルーピリジン-3-イルオキシ)-N-(ピラゾール-3-イル) ベンズアミドである化合物又はその薬学的に許容される塩、
 - (29) 2型糖尿病の治療、予防及び/又は発症を遅らせるために用いられる以下の(1)-(3)からなる医薬組成物
 - (1)式(I)で表される化合物、
 - (2) 以下の (a) (g) からなる群より選択される 1 又は 2 以上の化合物
- 10 (a)他のグルコキナーゼ活性化剤
 - (b) ピスーグアニド
 - (c) PPAR アゴニスト
 - (d) インスリン
 - (e) ソマトスタチン
 - (f) α-グルコシダーゼ 阻害剤、及び
 - (g) インスリン

15

- (3)薬学的に許容される担体、
- (30)前記(1)乃至(28)のいずれかに記載の化合物を有効成分とするグルコキナーゼ活性化剤、
- 20 (31)前記(1)乃至(28)のいずれかに記載の化合物を有効成分とする糖 尿病の治療及び/又は予防のための薬剤、及び
 - (32) 前記(1)乃至(28)のいずれかに記載の化合物を有効成分とする肥満の治療及び/又は予防のための薬剤、に関する。
- 25 以下に本明細書において用いられる用語の意味について説明し、本発明に係る 化合物について更に詳細に説明する。

「アリール基」とは、例えばフェニル基、ナフチル基、ピフェニル基、アントリル基等の炭素数6乃至14の炭化水素環アリール基等が挙げられる。

「低級アルキル基」とは、好ましくは炭素数1乃至6の直鎖又は分岐を有する

15

20

25

アルキル基を意味し、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基、tertーブチル基、ペンチル基、イソアミル基、ネオペンチル基、イソペンチル基、1,1ージメチルプロピル基、1ーメチルブチル基、2ーメチルプチル基、1,2ージメチルプロピル基、ヘキシル基、イソヘキシル基、1ーメチルペンチル基、2ーメチルペンチル基、3ーメチルペンチル基、1,1ージメチルブチル基、1,2ージメチルブチル基、2,2ージメチルブチル基、1,3ージメチルブチル基、2,3ージメチルブチル基、3,3ージメチルブチル基、1,2、2ートリメチルプロピル基、1ーエチルブチル基、2ーエチルブチル基、1,2、2ートリメチルプロピル基、1ーエチルー2ーメチルプロピル基等が挙げられる。

10 「低級アルケニル基」とは、炭素数 1 ~ 6 の直鎖状又は分岐状の低級アルケニ ル基をいい、例えばビニル基、アリル基、1 - プテニル基、2 - プテニル基、1 - ペンテニル基等が挙げられる。

「アルコキシ基」とは、水酸基の水素原子を前記低級アルキル基で置換した基を意味し、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、secーブトキシ基、tertーブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基等が挙げられる。

「ヘテロアリール基」とは、酸素原子、硫黄原子及び窒素原子からなる群より、選ばれるヘテロ原子を当該ヘテロアリール基内に、1乃至3有する5乃至7員の単環を意味するか、又は該単環のヘテロアリール基とベンゼン環若しくはピリジン環とが縮合した双環のヘテロアリール基を意味し、例えばフリル基、チエニル基、ピロリル基、イミダゾリル基、トリアゾリル基、チアゾリル基、チアジアゾリル基、イソチアゾリル基、オキサゾリル基、イソキサゾリル基、ピリジル基、ピリジル基、ピリジンニル基、ピラゾリル基、ピラジニル基、キノリル基、イソキノリル基、キナゾリニル基、キノリジニル基、キノリル基、・サフチリジニル基、・オープリンニル基、・カンノリニル基、・インズイミダゾリル基、・イミダゾピリジル基、・ベンゾフラニル基、・インチアゾリル基、・インデアゾリル基、・インチアゾロピリジル基、・インデエニル基等が挙げられる。

「ハロゲン原子」とは、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子 等を意味する。

「ヒドロキシアルキル基」とは、前記低級アルキル基中の水素原子の1つが、 ヒドロキシ基で置換された基を意味し、例えばヒドロキシメチル基、ヒドロキシ エチル基、1-ヒドロキシプロピル基、1-ヒドロキシエチル基、2-ヒドロキ シプロピル基、2-ヒドロキシ-1-メチル-エチル基等が挙げられる。

「アルキルカルバモイル基」とは、前記低級アルキル基でモノ置換されたカルバモイル基を意味し、例えばメチルカルバモイル基、エチルカルバモイル基、プロピルカルバモイル基、イソプロピルカルバモイル基、プチルカルバモイル基、secーブチルカルバモイル基、tertーブチルカルバモイル基等が挙げられる。

10

15

20

「ジアルキルカルバモイル基」とは、同一又は異なる前記低級アルキル基でジ 置換されたカルバモイル基を意味し、「ジアルキルカルバモイル基」としては、 例えばジメチルカルバモイル基、ジエチルカルバモイル基、エチルメチルカルバ モイル基、ジプロピルカルバモイル基、メチルプロピルカルバモイル基、ジイソ プロピルカルバモイル基等が挙げられる。

「アルキルアミノ基」とは、前記低級アルキル基によりモノ置換されたアミノ基を意味し、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、secーブチルアミノ基又はtertーブチルアミノ基等が挙げられる。

「ジアルキルアミノ基」とは、同一又は異なる前記低級アルキル基によりジ置換されたアミノ基を意味し、例えばジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、メチルプロピルアミノ基又はジイソプロピルアミノ基等が挙げられる。

25 「アミノアルキル基」とは、前記アルキル基を構成する水素原子の1つが、アミノ基で置換された基を意味し、例えばアミノメチル基、アミノエチル基、アミノプロピル基等が挙げられる。

「アルカノイル基」とは、前記アルキル基とカルボニル基とが結合した基を意味し、例えばメチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、

25

イソプロピルカルポニル基等が挙げられる。

「アルカノイルアミノ基」とは、前記アルカノイル基とアミノ基とが結合した 基を意味し、例えばメチルカルボニルアミノ基、エチルカルボニルアミノ基、イ ソプロピルカルボニルアミノ基等が挙げられる。

5 「アルカノイルアミノアルキル基」とは、前記アルキル基の水素原子の1つが、 前記アルカノイルアミノ基で置換された基を意味し、例えばアセチルアミノメチ ル基、エチルカルボニルアミノメチル基、メチルカルボニルアミノエチル基、イ ソプロピルカルボニルアミノメチル基等が挙げられる。

「アルキルチオ基」とは、前記アルキル基と硫黄原子とが結合した基を意味し、 10 例えばメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基等が 挙げられる。

「アルキルスルホニル基」とは、前記アルキル基とスルホニル基とが結合した 基を意味し、例えばメチルスルホニル基、エチルスルホニル基、プロピルスルホ ニル基、イソプロピルスルホニル基等が挙げられる。

15 「アルキルスルホニルアミノ基」とは、アミノ基の水素原子が前記アルキルスルホニル基でモノ置換された基を意味し、例えばメチルスルホニルアミノ基、エチルスルホニルアミノ基、プロピルスルホニルアミノ基又はイソプロピルスルホニルアミノ基等が挙げられる。

「アルコキシカルボニル基」とは、カルボキシル基の水素原子を前記アルキル 20 基で置換した基を意味し、例えばメトキシカルボニル基、エトキシカルボニル基、 プロピルカルボニル基、イソプロピルカルボニル基等が挙げられる。

「アルコキシカルボニルアミノ基」とは、アミノ基の水素原子の1つが、前記 アルコキシカルボニル基で置換された基を意味し、例えばメトキシカルボニルア ミノ基、エトキシカルボニルアミノ基、プロピルカルボニルアミノ基、イソプロ ピルカルボニルアミノ基等が挙げられる。

「アルコキシカルボニルアミノアルキル基」とは、前記アルキル基の水素原子の1つが、前記アルコキシカルボニルアミノ基で置換された基を意味し、例えばメトキシカルボニルアミノメチル基、エトキシカルボニルアミノメチル基、イソプロピルカルボニルアミノエチル基等が挙げられる。

「アルキルスルファモイル基」とは、スルファモイル基中の NH_2 の水素原子の1つが前記低級アルキル基で置換された基を意味し、例えば、メチルスルファモイル基、エチルスルファモイル基、イソプロピルスルファモイル基等が挙げられる。

「ジアルキルスルファモイル基」とは、スルファモイル基中のNH₂の2つの水素原子が、同一又は異なる前記低級アルキル基で置換された基を意味し、例えば、ジメチルスルファモイル基、ジエチルスルファモイル基、エチルメチルスルファモイル基、ジイソプロピルスルファモイル基等が挙げられる。

本発明に係る前記式(I)で表される化合物について更に具体的に開示するた 10 めに、式(I)において用いられる各種記号について、具体例を挙げて説明する。 式(II)

5

は、前記R¹で示される置換基を環内に1又は2有していてもよい、6乃至10 員のアリール基又は5乃至7員のヘテロアリール基を示す。

15 A環が示す「6乃至10員のアリール基」としては、例えばフェニル基、ナフ チル基が挙げられ、これらのうち、フェニル基が好ましい。

A環が示す「5乃至7員のヘテロアリール基」としては、前記定義の「ヘテロアリール基」のうち、「5乃至7員のヘテロアリール基」と同義のものが挙げられ、これらのうち、5乃至6員のヘテロアリール基が好ましい。

20 A環が示す「5乃至7員のヘテロアリール基」としては、例えばフリル基、チエニル基、ピロリル基、イミダゾリル基、トリアゾリル基、ピラゾリル基、チアゾリル基、チアジアゾリル基、イソチアゾリル基、オキサゾリル基、イソキサゾリル基、ピリジル基、ピリジニル基が好ましく、中でもトリアゾリル基、チアゾリル基、チアジアゾリル基、ピリジル基、ピラジニル基がより好ましく、トリアゾリル基、チアジアゾリル基、ピリジル基がさらに好ましい。

A環としては、チアジアゾリル基、フェニル基又はピリジル基が好ましく、フ

ェニル基又はピリジル基がより好ましい。

また、A環は、R¹で示される置換基を該環内に1又は2有していてもよい。ここで、R¹は、アルキルスルホニル基、アルカノイル基、アルキル基、ヒドロキシアルキル基、ヒドロキシ基、アルキルカルバモイル基、アルキルスルファモ イル基、ジアルキルスルファモイル基、アルキルチオ基、アルコキシ基、ジアルキルカルバモイル基、アルコキシカルボニルアミノ基、ハロゲン原子、シアノ基、アルコキシカルボニル基、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルコキシカルボニルアミノアルキル基及びトリフルオロメチル基からなる群より選択される基を示し、A環上に該置換基を2有している場 合には、これらの置換基は、同一又は異なっていてもよい。

R¹としては、アルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、アルキルカルバモイル基、アルキルスルファモイル基、ジアルキルスルファモイル基、ジアルキルカルバモイル基、アルコキシカルボニルアミノ基、ハロゲン原子、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基ではアルコキシカルボニルアミノアルキル基が好ましく、アルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、ハロゲン原子、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルキルスルホニルアミノアルキル基がさらに好ましく、アルキルスルホニル基、アルカノイル基、ハロゲン原子又はヒドロキシアルキル基がさらに好ましく、アルキルスルホニル基が20 特に好ましい。

A環が該環内に R^1 を有している場合には、 R^1 が結合するA環上の位置は、特に限定されず、結合可能な位置であればよい。

A環がフェニル基である場合には、R¹のフェニル基上の結合位置は、X¹と該フェニル基との結合に対して、パラ位に位置することが好ましい。

 X^{1} は、O、S又はNHを示し、これらのうち、O又はSが好ましく、Oがより好ましい。

従って、 $-X^1-A$ 環 $-R^1$ としては、 X^1 がOであり、かつ、A環がフェニル基である場合には、具体的には、例えば4-(1-ヒドロキシエチル)-フェノキシ基、4-(1-ヒドロキシプロピル)-フェノキシ基、4-メタンスルホニ

ルフェノキシ基、4-メチルカルボニル-フェノキシ基、4-メチルカルバモイ ルーフェノキシ基、4ーエチルカルポニルーフェノキシ基、4ージメチルカルバ モイルーフェノキシ基、4-メチルカルボニルアミノメチルーフェノキシ基、4 - メタンスルホニルアミノメチル-フェノキシ基、4-メトキシカルポニルアミ ノメチル-フェノキシ基、2-フルオロ-フェノキシ基、4-メトキシカルボニ ルーフェノキシ基、4-ヒドロキシメチルーフェノキシ基、4-メタンスルホニ ルー2-フルオローフェノキシ基、4-シアノーフェノキシ基、4-メチルーフ ェニルオキシ基、4-トリフルオロメチル-フェニルオキシ基、3-フルオロー 4-メタンスルホニルフェノキシ基、4-ジメチルスルファモイルフェノキシ基、 3-クロロ-4-メタンスルホニルフェノキシ基、3-メタンスルホニルフェノ 10 キシ基が挙げられ、これらのうち、4-(1-ヒドロキシエチル)-フェノキシ 基、4-(1-ヒドロキシプロピル)-フェノキシ基、4-メタンスルホニルフ エノキシ基、4-メチルカルボニル-フェノキシ基、4-メチルカルバモイル-フェノキシ基、4-エチルカルボニル-フェノキシ基、4-ジメチルカルバモイ ルーフェノキシ基、4-メチルカルボニルアミノメチルーフェノキシ基、4-メ 15 タンスルホニルアミノメチルーフェノキシ基、4-メトキシカルボニルアミノメ チルーフェノキシ基、4ーヒドロキシメチルーフェノキシ基、4ーメタンスルホ ニル2-フルオロ-フェノキシ基、3-フルオロ-4-メタンスルホニルフェノ キシ基、4-ジメチルスルファモイルフェノキシ基、3-クロロ-4-メタンス ルホニルフェノキシ基が好ましく、4-(1-ヒドロキシエチル)-フェノキシ 20 基、4-(1-ヒドロキシプロピル)-フェノキシ基、4-メタンスルホニルフ ェノキシ基、4-メチルカルボニル-フェノキシ基、4-エチルカルボニル-フ ェノキシ基、4-メチルカルボニルアミノメチル-フェノキシ基、4-メタンス ルホニルアミノメチルーフェノキシ基、4-メトキシカルポニルアミノメチルー フェノキシ基、4-ヒドロキシメチルーフェノキシ基、3-フルオロー4-メタ 25 ンスルホニルフェノキシ基、4-ジメチルスルファモイルフェノキシ基、3-ク ロロー4-メタンスルホニルフェノキシ基がより好ましく、中でも4-(1-ヒ ドロキシエチル) -フェノキシ基、4-(1-ヒドロキシプロピル) -フェノキ シ基、4-メタンスルホニルフェノキシ基、4-メチルカルボニル-フェノキシ 基、4-エチルカルボニル-フェノキシ基又は4-ヒドロキシメチル-フェノキシ基、3-フルオロ-4-メタンスルホニルフェノキシ基がさらに好ましく、中でも4-メタンスルホニルフェノキシ基が特に好ましい。

また、 X^1 がSであり、かつ、A環がフェニル基である場合には、 $-X^1-A$ 環 -R1-としては、具体的には、例えば4-フルオローフェニルスルファニル基、 4-メチル-フェニルスルファニル基、4-トリフルオロメチル-フェニルスル ファニル基、4-(1-ヒドロキシエチル)-フェニルスルファニル基、4-メ タンスルホニルフェニルスルファニル基、4-メチルカルポニル-フェニルスル ファニル基、4-エチルカルボニル-フェニルスルファニル基、4-メチルカル 10 バモイルーフェニルスルファニル基、4-ジメチルカルバモイルーフェニルスル ファニル基、4-メチルカルボニルアミノメチル-フェニルスルファニル基、4 - メチルスルホニルアミノメチル-フェニルスルファニル基、4-メトキシカル ボニル-フェニルスルファニル基、4-メトキシカルボニル-アミノメチル-フ ェニルスルファニル基、4-ヒドロキシメチル-フェニルスルファニル基、4-シアノーフェニルスルファニル基等が挙げられ、これらのうち、4ーフルオロー 15 フェニルスルファニル基、4-(1-ヒドロキシエチル)-フェニルスルファニ ル基、4-メタンスルホニルフェニルスルファニル基、4-メチルカルボニルー フェニルスルファニル基、4-エチルカルポニル-フェニルスルファニル基、4 ーメチルカルバモイルーフェニルスルファニル基、4ージメチルカルバモイルー フェニルスルファニル基、4-メチルカルボニルアミノメチル-フェニルスルフ 20 ァニル基、4-メチルスルホニルアミノメチル-フェニルスルファニル基、4-メトキシカルボニルーアミノメチルーフェニルスルファニル基又は4ーヒドロキ シメチルーフェニルスルファニル基が好ましく、4-(1-ヒドロキシエチル) ーフェニルスルファニル基、4ーメタンスルホニルフェニルスルファニル基、4 -メチルカルボニルーフェニルスルファニル基、4-エチルカルボニルーフェニ 25 ルスルファニル基、4-メチルカルポニルアミノメチルーフェニルスルファニル 基、4-メチルスルホニルアミノメチル-フェニルスルファニル基、4-メトキ シカルボニルーアミノメチルーフェニルスルファニル基又は4ーヒドロキシメチ ルーフェニルスルファニル基がより好ましく、中でも4-(1-ヒドロキシエチ ル) - フェニルスルファニル基、4 - メタンスルホニルフェニルスルファニル基、4 - メチルカルボニル-フェニルスルファニル基、4 - エチルカルボニル-フェニルスルファニル基又は4 - ヒドロキシメチル-フェニルスルファニル基がさらに好ましく、中でも4 - メタンスルホニルフェニルスルファニル基が特に好ましい。

5

X¹がSであり、かつ、A環が5乃至7員のヘテロアリール基である場合には、 -X1-A環-R1-としては、具体的には、例えば5-シアノーピリジン-2-イルスルファニル基、5-プロモーピリジン-2-イルスルファニル基、5-メ トキシカルボニルーピリジン-2-イルスルファニル基、5-ヒドロキシメチル ーピリジン-2-イルスルファニル基、5-メタンスルホニルピリジン-2-イ 10 ルスルファニル基、5-メチルーピリジン-2-イルスルファニル基、5-トリ フルオロメチルーピリジンー2-イルスルファニル基、ピリジンー2イルスルフ ァニル基、ピリジン-4-イルスルファニル基、6-メチルーピリジン-3-イ ルスルファニル基、[1,3,4]チアジアゾール-2-イルスルファニル基、 5-メチルチオー[1,3,4]チアジアゾールー2-イルスルファニル基、5 15 - メタンスルホニル [1, 3, 4] チアジアゾール-2-イルスルファニル基、 「1.2.4]ートリアゾールー3ーイルスルファニル基、フランー3ーイルス ルファニル基、チオフェンー3-イルスルファニル基、ピロールー3-イルスル ファニル基、イミダゾールー2ーイルスルファニル基、チアゾールー2ーイルス ルファニル基、オキサゾールー2ーイルスルファニル基、イソキサゾールー3-20 イルスルファニル基、ピラジン-2-イルスルファニル基、ピリミジン-2-イ ルスルファニル基、ピリダジン-3-イルスルファニル基、3H-ピラゾールー 3-イルスルファニル基等が挙げられ、これらのうち、5-ブロモーピリジン-2-イルスルファニル基、5-ヒドロキシメチルーピリジン-2-イルスルファ ニル基、5-メタンスルホニルピリジン-2-イルスルファニル基、ピリジン-25 2イルスルファニル基、ピリジン-4-イルスルファニル基、[1,3,4]チ アジアゾール-2-イルスルファニル基、5-メタンスルホニル[1,3,4] チアジアゾール-2-イルスルファニル基、[1,2,4]-トリアゾール-3 ーイルスルファニル基、フラン-3-イルスルファニル基、チオフェン-3-イ

ルスルファニル基、ピロールー3ーイルスルファニル基、イミダゾールー2ーイ ルスルファニル基、チアゾールー2ーイルスルファニル基、オキサゾールー2ー イルスルファニル基、イソキサゾールー3-イルスルファニル基、ピラジン-2 ーイルスルファニル基、ピリミジン-2-イルスルファニル基、ピリダジン-3 -イルスルファニル基、3 H - ピラゾール - 3 - イルスルファニル基が好ましく、 5 中でも5-ヒドロキシメチルーピリジン-2-イルスルファニル基、5-メタン スルホニルピリジン-2-イルスルファニル基、ピリジン-2イルスルファニル 基、ピリジンー4ーイルスルファニル基、[1,3,4]チアジアゾールー2ー イルスルファニル基、5-メタンスルホニル[1,3,4]チアジアゾール-2 ーイルスルファニル基、 [1, 2, 4] ートリアゾールー3ーイルスルファニル 10 基、チアゾールー2ーイルスルファニル基又はピラジンー2ーイルスルファニル 基がより好ましく、中でも5-ヒドロキシメチルーピリジン-2-イルスルファ ニル基、5-メタンスルホニルピリジン-2-イルスルファニル基、ピリジン-2イルスルファニル基、ピリジン-4-イルスルファニル基、[1,3,4]チ アジアゾール-2-イルスルファニル基、5-メタンスルホニル [1, 3, 4] 15 チアジアゾール-2-イルスルファニル基、[1,2,4]-トリアゾール-3 ーイルスルファニル基又はチアゾールー2ーイルスルファニル基がさらに好まし く、中でもピリジン-2イルスルファニル基、ピリジン-4-イルスルファニル 基、[1, 3, 4] チアジアゾールー2ーイルスルファニル基、[1, 2, 4] - トリアゾール-3-イルスルファニル基又はチアゾール-2-イルスルファニ 20 ル基が特に好ましい。

X¹がOであり、かつ、A環が5乃至7員のヘテロアリール基である場合には、 -X¹-A環-R¹としては、具体的には、例えばピリミジン-4-イルオキシ基、 ピリダジン-3-イルオキシ基、ピラジン-2-イルオキシ基、ピリジン-2-イルオキシ基、2-ヒドロキシーピリジン-3-イルオキシ基、2-ヒドロキシーピリジン-4-イルオキシ基、5-ヒドロキシメチルーピリジン-2-イルオキシ基、5-メチルカルボニルーピリジン-2-イルオキシ基、5-メトキシカルボニルアミノメチルーピリジン-2-イルオキシ基、5-メタンスルホニルピリジン-2-イ メチルーピリジン-2-イルオキシ基、5-メタンスルホニルピリジン-2-イ

ルオキシ基、5-メトキシカルボニルーピリジン-2-イルオキシ基、5-シア ノーピリジンー2-イルオキシ基、5-プロモーピリジン-2-イルオキシ基、 5-ジメチルカルバモイルーピリジン-2-イルオキシ基、5-メトキシカルボ ニルーピリジンー2ーイルオキシ基、5ーメチルカルボニルアミノメチルーピリ ジン-2-イルオキシ基、5-トリフルオロメチルーピリジン-2-イルオキシ 基、5-メチルカルボニルーイミダゾールー2-イルオキシ基、6-ヒドロキシ メチルーピリミジンー2-イルオキシ基、6-メチルカルボニルーピリミジンー 2-イルオキシ基、6-メタンスルホニルピリミジン-2-イルオキシ基、6-ヒドロキシメチルーピリダジン-3-イルオキシ基、6-メチルカルボニルーピ 10 リダジン-3-イルオキシ基、6-メタンスルホニルピリダジン-3-イルオキ シ基、5-ヒドロキシメチルーピラジン-2-イルオキシ基、5-メチルカルボ ニルーピラジンー 2 ーイルオキシ基、 5 -メタンスルホニルピラジン- 2 -イル オキシ基、6-エタンスルホニルピリジン-3-イルオキシ基、6-メタンスル ホニルピリジンー3ーイルオキシ基、ピリジン-3-イルオキシ基、ピリジンー 4-イルオキシ基、6-イソプロピルスルホニルピリジン-3-イルオキシ基等 15 が挙げられ、これらのうち、ピリミジンー4ーイルオキシ基、ピリダジンー3-イルオキシ基、ピラジン-2-イルオキシ基、ピリジン-2-イルオキシ基、2 ーヒドロキシーピリジンー3ーイルオキシ基、2ーヒドロキシーピリジンー4ー イルオキシ基、5-ヒドロキシメチルーピリジン-2-イルオキシ基、5-メチ ルカルボニルーピリジンー2ーイルオキシ基、5-(1-ヒドロキシエチル)-20 ピリジン-2-イルオキシ基、5-メトキシカルポニルアミノメチル-ピリジン - 2 - イルオキシ基、5 - メタンスルホニルピリジン-2 - イルオキシ基、5 -プロモーピリジンー2―イルオキシ基、5-ジメチルカルバモイルーピリジン-2-イルオキシ基、5-メチルカルボニルアミノメチルーピリジン-2-イルオ 25 キシ基、5-メチルカルボニル-イミダゾール-2-イルオキシ基、6-ヒドロ キシメチルーピリミジンー2-イルオキシ基、6-メチルカルボニルーピリミジ ンー2ーイルオキシ基、6ーメタンスルホニルピリミジンー2ーイルオキシ基、 6-ヒドロキシメチルーピリダジン-3-イルオキシ基、6-メチルカルボニル ーピリダジンー3ーイルオキシ基、6-メタンスルホニルピリダジンー3ーイル

オキシ基、5-ヒドロキシメチルーピラジン-2-イルオキシ基、5-メチルカ ルポニルーピラジン-2-イルオキシ基、5-メタンスルホニルピラジン-2-イルオキシ基、6-エタンスルホニルピリジン-3-イルオキシ基、6-メタン スルホニルピリジン-3-イルオキシ、ピリジン-3-イルオキシ基、ピリジン - 4 - イルオキシ基が好ましく、中でもピラジン-2 - イルオキシ基、ピリジン -2-イルオキシ基、2-ヒドロキシーピリジン-3-イルオキシ基、2-ヒド ロキシーピリジン-4-イルオキシ基、5-ヒドロキシメチルーピリジン-2-イルオキシ基、5-メチルカルボニルーピリジン-2-イルオキシ基、5-(1 --ヒドロキシエチル) --ピリジン-2-イルオキシ基、5-メトキシカルボニル 10 アミノメチルーピリジン-2-イルオキシ基、5-メタンスルホニルピリジン-2-イルオキシ基、5-メチルカルボニルアミノメチルーピリジン-2-イルオ キシ基、5-ヒドロキシメチルーピラジンー2-イルオキシ基、5-メチルカル ボニルーピラジンー2ーイルオキシ基、5ーメタンスルホニルピラジンー2ーイ ルオキシ基、6-エタンスルホニルピリジン-3-イルオキシ基、6-メタンス ルホニルピリジンー3ーイルオキシ基がより好ましく、中でも2ーヒドロキシー 15 ピリジン-3-イルオキシ基、2-ヒドロキシーピリジン-4-イルオキシ基、 5-ヒドロキシメチルーピリジン-2-イルオキシ基、5-メチルカルポニルー ピリジン-2-イルオキシ基、5-(1-ヒドロキシエチル)-ピリジン-2-イルオキシ基又は5-メタンスルホニルピリジン-2-イルオキシ基、6-メタ ンスルホニルピリジン-3-イルオキシ基、6-エタンスルホニルピリジン-3 20 ーイルオキシ基がさらに好ましい。

 X^2 は、O、S又は CH_2 を示し、これらのうち、O又は CH_2 が好ましく、Oがより好ましい。

R²は、ハロゲン原子、カルボキシル基、アルコキシカルボニル基、ヒドロキシ基、アミノ基(該アミノ基は、1若しくは2のアルカノイル基又は低級アルキル基で更に置換されていてもよい)、アルコキシ基及びN-アルキルカルバモイル基からなる群より選択される置換基を1又は2有していてもよい、炭素数3乃至7の環状アルキル基、直鎖若しくは分岐の低級アルキル基又は低級アルケニル基を示す。

R²が示す「ハロゲン原子」とは、前記定義と同様の基が挙げられる。これらのうち、

塩素原子又はフッ素原子が好ましい。

15

20

25

R²が示す「アルコキシカルボニル基」とは、前記定義のアルコキシ基を有するカルボニル基を意味し、例えばメトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、tert-ブチルオキシカルボニル基等が挙げられる。

R²が示す「炭素数 3 乃至 7 の環状アルキル基」としては、例えばシクロプロピル基、シクロプチル基、シクロペンチル基、シクロペキシル基、シクロペプチル基等が挙げられ、これらのうち、シクロペンチル基又はシクロペキシル基が好ましく、シクロペンチル基がより好ましい。

 R^2 が、炭素数 3 乃至 7 の環状アルキル基を構成する場合には、該環を構成する炭素原子であって、 X^2 と結合する炭素原子を除いた任意の炭素原子の 1 つが、酸素原子、NH、N- アルカノイル基又はCONHで置き換わっていてもよい。

R²が示す「炭素数 3 乃至 7 の環状アルキル基を構成する炭素原子(X²と結合する炭素原子を除く)の1つが、酸素原子、NH、N-アルカノイル基又はCONHで置換されている基」としては、該炭素原子が、酸素原子、NH又はN-アルカノイル基で置換されている場合が好ましく、酸素原子又はN-アルカノイル基で置換されている場合がより好ましい。該R²としては、より具体的には、例えばテトラヒドロフラニル基、テトラヒドロピラニル基、ピロリジニル基、ピペリジニル基、N-アセチルピペリジニル基が好ましく、テトラヒドロフラニル基、テトラヒドロピラニル基又はN-アセチルピペリジニル基がより好ましい。

R²が示す「直鎖若しくは分岐の低級アルキル基」としては、前記定義と同意 義の低級アルキル基を示す。該低級アルキル基としては、エチル基、プロピル基、 イソプロピル基、ブチル基、イソブチル基、sec-ブチル基が好ましく、プロ ピル基、イソプロピル基、イソブチル基、sec-ブチル基がより好ましい。

R²が示す「低級アルケニル基」としては、前記定義と同様のものが挙げられ、 これらのうち、プロペニル基、イソプロペニル基、イソプテニル基が好ましく、 イソプロペニル基がより好ましい。 R²としては、炭素数 3 乃至 7 の環状アルキル基、直鎖若しくは分岐の低級アルキル基又は炭素数 3 乃至 7 の環状アルキル基を構成する炭素原子(該環を構成する炭素原子のうち、X²と結合する炭素原子を除く)の1 つが、酸素原子、NH、N-アルカノイル基又はCONHで置換されている基が好ましく、直鎖若しくは分岐の低級アルキル基又は炭素数 3 乃至 7 の環状アルキル基を構成する炭素原子(該環を構成する炭素原子のうち、X²と結合する炭素原子を除く)の1 つが、酸素原子、NH、N-アルカノイル基又はCONHで置換されている基が好ましい。

従って、 $-X^2-R^2$ としては、例えば、プロピル基、イソプチル基、Sec-プチル基、3-メトキシ-2-メチル-プロピル基、2-メトキシメチループチ 10 ル基、4-ヒドロキシー2-メチループチル基、2-ヒドロキシメチループチル 基、3-ヒドロキシーブチル基、3-メトキシブチル基、3-ヒドロキシー2-メチループロピル基、3-ヒドロキシーブチル基、3-メチルカルバモイループ ロピル基、3-アセチルアミノ-2-メチループロピル基、2-ヒドロキシメチ ルー3-プロペニル基、2-メチルー2-プロペニル基、エトキシ基、イソプロ 15 ポキシ基、2-メトキシ-1-メチル-エトキシ基、1-メトキシメチル-プロ ポキシ基、3-ヒドロキシ-1-メチループロポキシ基、1-ヒドロキシメチル プロポキシ基、2-アミノー1-エトキシ基、2-ヒドロキシープロポキシ基、 2-メトキシプロポキシ基、2-ヒドロキシ-1-メチルーエトキシ基、2-ヒ ドロキシーエトキシ基、2-ジメチルアミノ-1-メチルーエトキシ基、1-カ 20 ルボキシーエトキシ基、2-メチルカルバモイルーエトキシ基、2-アセチルア ミノー1-メチルーエトキシ基、シクロペンチルオキシ基、シクロヘキシルオキ シ基、シクロヘプチルオキシ基、2-ヒドロキシーシクロペンチルオキシ基、テ トラヒドロフランー3ーイルオキシ基、テトラヒドロフランー2ーイルオキシ基、 テトラヒドロフランー4ーイルオキシ基、ピペリジンー4ーイルオキシ基、ピペ 25 リジン-3-イルオキシ基、ピロリジン-3-イルオキシ基、ピロリジン-2-イルオキシ基、1-アセチル-ピペリジン-4-イルオキシ基、1-アセチルー ピペリジン-3-イルオキシ基、3-アリルオキシ基、3-イソプロペニルオキ シ基、1-メチル-アリルオキシ基、2-フルオロ-1-フルオロメチル-エト

キシ基、2-フルオロ-1-メチル-エトキシ基、2-クロロ-1-メチル-エ トキシ基等が挙げられ、これらのうち、エトキシ基、イソプロポキシ基、2-メ トキシー1ーメチルーエトキシ基、1ーメトキシメチループロポキシ基、3ーヒ ドロキシー1ーメチループロポキシ基、1-ヒドロキシメチループロポキシ基、 2-ヒドロキシープロポキシ基、2-メトキシプロポキシ基、2-ヒドロキシー 5 1-メチルーエトキシ基、2-ヒドロキシーエトキシ基、2-メチルカルバモイ ルーエトキシ基、2-アセチルアミノ-1-メチルーエトキシ基、シクロペンチ ルオキシ基、シクロヘキシルオキシ基、2-ヒドロキシ-シクロペンチルオキシ 基、テトラヒドロフラン-3-イルオキシ基、テトラヒドロフラン-2-イルオ キシ基、テトラヒドロピラン-3-イルオキシ基、テトラヒドロフラン-4-イ 10 ルオキシ基、ピペリジン-4-イルオキシ基、ピペリジン-3-イルオキシ基、 ピロリジンー3-イルオキシ基、ピロリジン-2-イルオキシ基、1-アセチル - ピペリジン-4-イルオキシ基、1-アセチルーピペリジン-3-イルオキシ 基、3-イソプロペニルオキシ基、1-メチル-アリルオキシ基、プチル基、イ ソブチル基、 s ープチル基、3 - メトキシ-2 - メチループロピル基、2 - メト 15 キシメチループチル基、4ーヒドロキシー2ーメチループチル基、2ーヒドロキ シメチルーブチル基、3-ヒドロキシーブチル基、3-メトキシブチル基、3-ヒドロキシー2-メチループロピル基、3-ヒドロキシープチル基、3-メチル カルバモイループロピル基、3-アセチルアミノ-2-メチループロピル基、2 ーヒドロキシメチルー3ープロペニル基、2ーメチルー2ープロペニル基、2ー 20 フルオロー1-フルオロメチルーエトキシ基、2-フルオロー1-メチルーエト キシ基、2-クロロー1。-メチルーエトキシ基が好ましく、中でも、2-メトキ シ-1-メチルーエトキシ基、1-メトキシメチループロポキシ基、3-ヒドロ キシー1-メチループロポキシ基、1-ヒドロキシメチループロポキシ基、2-ヒドロキシープロポキシ基、2-メトキシプロポキシ基、2-ヒドロキシ-1-25 メチルーエトキシ基、2-ヒドロキシーエトキシ基、2-メチルカルバモイルー エトキシ基、2-アセチルアミノ-1-メチル-エトキシ基、シクロペンチルオ キシ基、シクロヘキシルオキシ基、2-ヒドロキシーシクロペンチルオキシ基、 テトラヒドロフラン-3-イルオキシ基、テトラヒドロピラン-3-イルオキシ

基、1-アセチルーピペリジン-4-イルオキシ基、1-アセチルーピペリジン - 3 - イルオキシ基、3 - イソプロペニルオキシ基、3 - メトキシ-2 - メチル ープロピル基、2-メトキシメチループチル基、4-ヒドロキシー2-メチルー プチル基、2-ヒドロキシメチループチル基、3-ヒドロキシープチル基、3-メトキシブチル基、3-ヒドロキシ-2-メチループロピル基、3-ヒドロキシ ープチル基、3-メチルカルバモイループロピル基、3-アセチルアミノ-2-メチループロピル基、2-ヒドロキシメチル-3-プロペニル基、2-メチルー 2-プロペニル基、2-フルオロ-1-フルオロメチルーエトキシ基、2-フル オロー1-メチルーエトキシ基がさらに好ましく、中でも、2-メトキシー1-10 メチルーエトキシ基、1-メトキシメチループロポキシ基、3-ヒドロキシ-1 - メチループロポキシ基、1ーヒドロキシメチループロポキシ基、2ーヒドロキ シー1ーメチルーエトキシ基、2ーアセチルアミノー1ーメチルーエトキシ基、 2-ヒドロキシーシクロペンチルオキシ基、テトラヒドロフラン-3-イルオキ シ基、1-アセチル-ピペリジン-4-イルオキシ基、3-メトキシ-2-メチ ループロピル基、2-メトキシメチルーブチル基、4-ヒドロキシー2-メチル 15 ープチル基、2-ヒドロキシメチループチル基、3-ヒドロキシー2-メチルー プロピル基、3-アセチルアミノ-2-メチループロピル基、2-ヒドロキシメ チルー3-プロペニル基、2-フルオロ-1-フルオロメチルーエトキシ基が特 に好ましい。

20 B環は、前記式(III)

(III)

で表される基であって、前記式(I)のアミド基の窒素原子と結合した該B環中の炭素原子が、該環中の窒素原子と共にC=Nを形成する、単環の又は双環のヘテロアリール基を示す。

25 ここで、B環が示す「ヘテロアリール基」とは、前記式(I)で表されるアミド結合と結合したB環中の炭素原子が、窒素原子と共にC=Nを形成する式(II)で表される前記定義の「ヘテロアリール基」を意味する。なお、B環内の

WO 2004/076420 PCT/JP2004/002284

C=Nの二重結合の表示は、形式上の表示であって、B環がヘテロアリール基であればよい。

B環としては、該環のヘテロアリール基に 5 - アルコキシカルボニルーピリジン-2-イル基又は 5 - カルボキシルーピリジン-2 - イル基を含まない場合が好ましく、前記式(I)のアミド基の窒素原子と結合した該環中の炭素原子と共にC=Nを形成する窒素原子の他に、B環内に窒素原子、硫黄原子及び酸素原子からなる群より選択されるヘテロ原子を少なくとも1有する単環の又は双環のヘテロアリール基である場合がより好ましい。

さらに、B環としては、前記式(I)のアミド基の窒素原子と結合した該B環中の炭素原子と共にC=Nを形成する窒素原子の他に、B環内に窒素原子、硫黄原子及び酸素原子からなる群より選択されるヘテロ原子を少なくとも1有する単環の又は双環のヘテロアリール基であり、かつ、B環がチアゾール基である場合には、該チアゾール基の5位の置換基がイソプロピル基を含まない場合が特に好ましい。

15 B環が単環である場合には、該単環を構成する原子の数は、5又は6であることが好ましく、5であることがより好ましい。また、B環が双環である場合には、5又は6員の単環とベンゼン環又はピリジン環とが縮合した9乃至10員の双環が好ましく、5員の単環とピリジン環とが縮合した9員の双環がより好ましい。

20

25

B環としては、具体的には、例えば、チアゾリル基、イミダゾリル基、イソキ アゾリル基、チアジアゾリル基、トリアゾリル基、オキサゾリル基、イソキサゾ リル基、ピラジニル基、ピリジル基、ピリダジニル基、ピラゾリル基、ピリミジ ニル基、ピリドチアゾリル基又はベンゾチアゾリル基等が挙げられ、これらのう ち、チアゾリル基、チアジアゾリル基、イソキサゾリル基、ピラジニル基、ピリ ジル基、ピリドチアゾリル基又はピラゾリル基が好ましく、チアゾリル基、チア ジアゾリル基、イソキサゾリル基、ピリドチアゾリル基又はピラゾリル基がより 好ましい。

B環は、R³で示される置換基を該環内に1又は2有していてもよい。 ここでR³は、低級アルキル基、アルコキシ基、アルキルアミノ基、低級ジアル キルアミノ基、ハロゲン原子、トリフルオロメチル基、ヒドロキシアルキル基(該 ヒドロキシアルキル基中のヒドロキシ基の水素原子は、低級アルキル基で置換されていてもよい)、アミノアルキル基、アルカノイル基、カルボキシル基、アルコキシカルボニル基及びシアノ基から選択される基を示す。

B環が上記R³を環内に2有している場合には、これらは同一又は異なってい てもよい。

R³のB環上の結合位置は、B環が5乃至7員の単環のヘテロアリール基又は9乃至11員の双環のヘテロアリール基のいずれの場合であっても、B環上の結合可能な位置であれば、特に限定されることはない。

R³としては、これらのうち、低級アルキル基、アルコキシ基、ハロゲン原子、 10 ヒドロキシアルキル基(該ヒドロキシアルキル基中のヒドロキシ基の水素原子は、 低級アルキル基で置換されていてもよい)、アミノアルキル基又はアルカノイル 基が好ましく、低級アルキル基、ヒドロキシアルキル基(該ヒドロキシアルキル 基中のヒドロキシ基の水素原子は、低級アルキル基で置換されていてもよい)、 アルカノイル基がより好ましい。

R³としては、具体的には、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、塩素原子、フッ素原子、臭素原子、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、エトキシエチル基、メトキシエチル基、メトキシカルボニル基、アミノメチル基、アミノエチル基、アミノプロピル基、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基等が挙げられ、これらのうち、メチル基、エチルカルボニル基、塩素原子、フッ素原子、ヒドロキシメチル基、ヒドロキシエチル基、メトキシメチル基、メトキシカルボニル基、エトキシカルボニル基、アミノメチル基、メトキシカルボニル基、メトキシカルボニル基、エチルカルボニル基、アミノメチル基、アミノエチル基、メチルカルボニル基、エチルカルボニル基等が好ましく、メチル基、ヒドロキシメチル基、メトキシメチル基、メチルカルボニル基がより好ましい。

従って、下記式(VII)

15

20

25

WO 2004/076420 PCT/JP2004/002284

「式中、各記号は前記定義に同じ」で表される基としては、具体的には、例えば チアゾールー2-イル基、4-メチルーチアゾール-2-イル基、4-ヒドロキ シメチルーチアゾールー2ーイル基、4ーメトキシカルボニルーチアゾールー2 - イル基、4-メトキシメチルーチアゾールー2-イル基、4-アミノメチルー チアゾールー2-イル基、4ーシアノーチアゾールー2-イル基、4ーシアノー チアゾールー2-イル基、4-フルオローチアゾールー2-イル基、イミダゾー ルー2ーイル基、4ーメチルーイミダゾールー2ーイル基、4ーメトキシカルボ ニルーイミダゾールー2ーイル基、イソチアゾールー3ーイル基、4ーヒドロキ シメチルーイソチアゾールー3ーイル基、[1,3,4]チアジアゾールー2ー 10 イル基、5-アセチルー[1, 3, 4]チアジアゾールー2-イル基、[1, 2, 1]4] トリアゾール-2-イル基、5-ヒドロキシメチル-[1, 2, 4] トリア ゾールー3-イル基、ピラジンー2-イル基、ピリジンー2-イル基、4-メチ ルーピリジン-2-イル基、4-メトキシメチル-イミダゾール-2-イル基、 4-アセチルーイミダゾールー2-イル基、5-ヒドロキシメチルーイミダゾー 15 ルー2-イル基、5-メチルー[1,3,4]チアジアゾールー2-イル基、5 -フルオロー[1, 3, 4]チアジアゾールー2-イル基、5-メチルー[1,2, 4] トリアゾールー2-イル基、5-アセチルー[1, 2, 4] トリアゾー ルー3-イル基、イソキサゾールー3-イル基、4-メトキシメチルーイソキサ ゾールー2-イル基、5-メチルーイソキサゾールー3-イル基、5-ヒドロキ 20 シメチルーイソキサゾールー3ーイル基、5-メトキシメチルーイソキサゾール -3-イル基、5-メチルカルボニル-イソキサゾール-3-イル基、5-クロ ローイソキサゾールー3-イル基、5-アミノメチル-イソキサゾール-3-イ ル基、ピラゾール-3-イル基、4メチル-1H-ピラゾール-3-イル基、6 ーメチルーピリダジンー3-イル基、チアゾールー4-イル、2-メチル-チア 25 ゾール-4-イル、イソキサゾール-3-イル、チアゾロ [5, 4-6] ピリジ ンー2-イル、3-メチルー[1,2,4]チアジアゾリルー5-イル基、1メチル-1H-ピラゾール-3-イル基、が好ましい。 以上より、本発明に係る式(I)

[式中、各記号は前記定義に同じ]で表される化合物としては、より具体的には、 例えば5-47プロポキシ-3-(4-4)7カンスルホニルフェノキシ-N-(4-4)1 ーメチルチアゾールー2ーイル)ーベンズアミド、5ー(2ーヒドロキシー1ー メチルーエトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - チアゾー ルー2ーイルーベンズアミド、5ーエトキシー3-(4ーメタンスルホニルフェ ノキシ)-N-(4-メトキシメチル-チアゾール-2-イル)ベンズアミド、 5-シクロペンチルオキシ-3-(4-メタンスルホニルフェノキシ)-N-チ 10 アゾールー2-イルーベンズアミド、3-(4-メタンスルホニルフェノキシ) -5-(テトラヒドロフラン-3-イルオキシ)-N-チアゾール-2-イルー ベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(2-メトキシ -1-メチルーエトキシ) -N-チアゾールー2-イルーベンズアミド、3-(4 ーメタンスルホニルフェノキシ) -5-(2-メトキシ-1-メトキシメチルー 15 エトキシ) - N - チアゾール - 2 - イル - ベンズアミド、3 - (2 - フルオロー 4-メタンスルホニルフェノキシ)-5-イソプロポキシ-N-チアゾール-2 ーイルーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシメチループロポキシ) - N - (4 - メチル-チアゾール-2 - イル) -ベンズアミド、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ) 20 -N-ピラゾール-3-イル-ペンズアミド、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ) -N-ピラジン-2-イルーベンズアミド、3-(4-メタンスルホニルフェノキシ) -5-(3-メトキシ-1-メチループロ

42 ポキシ) - N-チアゾール-2-イル-ベンズアミド、5-(3-ヒドロキシー 1 - メチループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - チ アゾール-2-イルーベンズアミド、5-イソプロポキシ-3-(4-メタンス ルホニルフェノキシ) - N - ピリミジン - 4 - イルーベンズアミド、5 - イソプ ロポキシー3-(4-メタンスルホニルフェノキシ)-N-(ピリミジン-2-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾールー2-イル) -5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-ベンズアミ ド、N- (イソオキサゾール-3-イル) -3- (4-メタンスルホニルフェノ キシ) -5-(1-メトキシメチループロポキシ) -ベンズアミド、3-(4-メタンスルホニルフェノキシ) - 5 - (1 - メトキシメチループロポキシ) - N - [1, 3, 4] チアジアゾールー2ーイルーベンズアミド、5ー(1ーヒドロ キシメチループロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4 -メチル-チアゾール-2-イル) -ペンズアミド、N-(4-ヒドロキシメチ ルーチアパールー2ーイル)ー3ー(4ーメタンスルホニルフェノキシ)ー5ー (1-メトキシメチループロポキシ)ーベンズアミド、5-(2-アミノー1-

10

15

メチルーエトキシ) -3-(4-xy)スルホニルフェノキシ) -N-Fアゾール-2-イルーベンズアミド、5-(2-y)メチルアミノー1-xチルーエトキシ) -3-(4-xy)スルホニルフェノキシ) -N-Fアゾール-2-イルーベンズアミド、5-(2-y)0ポキシ) -3-(4-xy)スルホニルフェノキシ) -N-(4-xy)0 ニルフェノキシ) -N-(4-xy)0 ー N-(4-xy)0 ー N-(4-xy)0 ー N-(4-xy)0 ー N-(4-xy)0 ー N-(4-xy)1 ー N-(4-xy)1 ー N-(4-xy)2 ー N-(4-xy)2 ー N-(4-xy)2 ー N-(4-xy)3 ー N-(4-xy)4 ー N-(4-xy)5 ー N-(4-xy)7 ー N-(4-xy)8 ー N-(4-xy)8 ー N-(4-xy)9 ー N-

スルホニルフェノキシ) -N-チアゾロ[5, 4-b] ピリジン-2-イルーベ

ンズアミド、5-(3-ヒドロキシ-2-メチループロピル)-3-(4-メタ

ンスルホニルフェノキシ) - N - チアゾール - 2 - イルーペンズアミド、3 - (4

ーメタンスルホニルフェノキシ) -N-(4-メチルーチアゾールー2ーイル) -5-(ピペリジン-4-イルーオキシ)-ペンズアミド塩酸塩、5-(1-ア セチルーピペリジンー4ーイルオキシ) -3-(4-メタンスルホニルフェノキ シ) - N- (4-メチルーチアゾール-2-イル) - ベンズアミド、2- [3-**(4-メタンスルホニルフェノキシ)-5-(4-メチル-チアゾール-2-イ** ルーカルバモイル) ーフェノキシ] プロピオン酸、5-(3-ヒドロキシ-1-メチループロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾ ールー2ーイルーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5 - (1-メチルカルバモイル-エトキシ)-N- (4-メチル-チアゾール-2 10 ーイル)ーペンズアミド、5ー(2ーアセチルアミノー1ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベン ズアミド、N-[4-(1-ヒドロキシーエチル)-チアゾール-2-イル]-5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-ベンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ) - N - ピリジン - 2 - イルーペンズアミド、5 - (2 - ヒドロキシ 15 ーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2 ーイルーベンズアミド、5- (2-ヒドロキシーシクロペンチルオキシ) -3-**(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イル-ベンズアミ** ド、N-(4-アセチルーチアゾール-2-イル)-5-(2-ヒドロキシ-1 -メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ) -ベンズアミ 20 ド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(4-ヒドロキシメ **チルーチアゾールー2ーイル)-3-(4-メタンスルホニルフェノキシ)-ベ** ンズアミド、N-[4-(1-ヒドロキシーエチル)ーチアゾールー2-イル] -5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニ ルフェノキシ) ーベンズアミド、3-(3-フルオロ-4-メタンスルホニルフ 25 エノキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-チアゾール -2-イルーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(5-メチルーチアゾール-2 ーイル) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -3-

(4-メタンスルホニルフェノキシ)-N-([1, 2, 4] チアジアゾールー 5-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾールー2-イ ル) -3-(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メ チルーエトキシ)ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキ **シ)-3-(4-メタンスルホニルフェノキシ)-N-(5-メトキシカルボニ** ルーピリジンー2ーイル) ーベンズアミド、6 - [5 - イソプロポキシー3 - (4 -メタンスルホニルフェノキシ)-ベンゾイルアミノ]ニコチン酸、5-(2-ヒドロキシー1-メチループロポキシ)-3-(4-メタンスルホニルフェノキ シ) -N-チアゾールー2ーイルーベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ) - N - (イソキサゾール-3-イル) - 3 - (4-メタンス 10 ルホニルフェノキシ) -ベンズアミド、N-(5-ヒドロキシメチルーチアゾー ルー2-イル)-5-イソプロポキシー3-(4-メタンスルホニルフェノキシ) ーベンズアミド、N-「4-(1-ヒドロキシーエチル)ーチアゾールー2ーイ $\mu_1 - 3 - (4 - xyz)$ スルホニルフェノキシ) -5 - (2 - xyz)**チルーエトキシ)-ベンズアミド、N-(4-ヒドロキシメチルーチアゾールー** 15 2-イル)-3-(4-メタンスルホニルフェノキシ)-5-(テトラヒドロフ ラン-3-イルーオキシ)ーベンズアミド、5-(2-ヒドロキシ-1-メチル ーエトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(2-メチルチ アゾール-4-イル) -ベンズアミド、5-(2-ヒドロキシ-1-メチルーエ トキシ) -3-(4-メタンスルホニルフェノキシ)-N-(4-メトキシメチ 20 ルーチアゾールー2-イル) -ベンズアミド、N-[4-(1-ヒドロキシーエ チル) ーチアゾールー2ーイル] ー3ー(4ーメタンスルホニルフェノキシ)ー 5-(2-メトキシ-1-メチル-エトキシ)-ベンズアミド、N-[4-(1 ーヒドロキシーエチル) ーチアゾールー2ーイル] ー3ー(4ーメタンスルホニ ルフェノキシ)-5-(テトラヒドロフラン-3-イル-オキシ)-ベンズアミ 25 ド、N-[4-(1-ヒドロキシーエチル)-チアゾール-2-イル]-3-(4 -メタンスルホニルフェノキシ) -5- (テトラヒドロフラン-3-イルーオキ シ) -ベンズアミド、N-(2, 5-3)メチルチアゾール-4-4ル)-5-(2)ーヒドロキシー1ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキ

シ)ーベンズアミド、5ーイソプロポキシー3ー(4ーメトキシカルボニルアミ ノメチルフェノキシ)-N-チアゾール-2-イル-ベンズアミド、5-イソプ ロポキシー3-(4-メチルカルバモイル-フェノキシ)-N-チアゾール-2 ーイルーベンズアミド、3~(4-ジメチルカルバモイルーフェノキシ)-5-イソプロポキシ-N-チアゾール-2-イル-ペンズアミド、5-イソプロポキ シー3ー(4ーメチルカルボニルアミノメチルーフェノキシ)-Nーチアゾール -2-イルーベンズアミド、5-イソプロポキシー3-(4-メタンスルホニル アミノメチルーフェノキシ) -N-チアゾール-2-イルーベンズアミド、3-[4-(1-ヒドロキシープロピル) -フェノキシ] -5-イソプロポキシーN ーチアゾールー2ーイルーベンズアミド、6~「3ーイソプロポキシー5ー(チ 10 アゾールー2-イルカルバモイル)-フェノキシ]-ニコチン酸メチルエステル、 3-(5-ヒドロキシメチルーピリジン-2-イルーオキシ)-5-イソプロポ キシーNーチアゾールー2ーイルーベンズアミド、5ーイソプロポキシー3ー(5 ーメタンスルホニルピリジンー2ーイル)-N-チアゾール-2ーイルーベンズ アミド、3-(5-アセチルーピリジン-2-イルーオキシ)-5-イソプロポ 15 キシーNーチアゾールー2ーイルーベンズアミド、5ーイソプロポキシー3-(5 ーメトキシカルボニルーピラジン-2-イルーオキシ)-Nーチアゾール-2-イルーベンズアミド、3-(5-シアノーピリジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イル-ベンズアミド、5-イソプロポキ シー3-(2-オキソー1, 2-ジヒドローピリジン-4-イルーオキシ)-N 20 ーチアゾールー2ーイルーベンズアミド、5ーイソプロポキシー3ー(2ーオキ ソー1、2-ジヒドローピリジンー3-イルーオキシ)-N-チアゾール-2-イルーベンズアミド、5ーイソプロポキシー3ー(2ーオキソー1、2ージヒド ローピリジンー3ーイルーオキシ) - N - チアゾロ [5, 4 - b] ピリジン-2 ーイルーベンズアミド、5ーイソプロポキシー3ー([1,3,4]チアジアゾ 25 ールー2ーイルスルファニル) -N-チアゾロ[5.4-b]-ピリジン-2イ ルーベンズアミド、5-イソプロポキシー3-(4-メチルー[1, 2, 4]ト リアゾールー3ーイルスルファニル) - N - チアゾール-2 - イルーベンズアミ ド、5-イソプロポキシ-3-チアゾール-2-イルスルファニル-N-チアゾ

ールー2ーイルーベンズアミド、5ーイソプロポキシー3ー(4H-[1, 2. 4] トリアゾールー3ーイルスルファニル) -N-チアゾール-2ーイルーベン ズアミド、5-イソプロポキシ-3-([1,3,4]チアジアゾール-2-イ ルスルファニル) - N - チアゾール - 2 - イル - ベンズアミド、5 - イソプロポ キシー3-(5-メチルスルファニルー[1,3,4]チアジアゾールー2-イ ルスルファニル) - N - チアゾール - 2 - イルーベンズアミド、5 - イソプロポ キシー3-(5-メチルー[1,3,4]チアジアゾールー2-イルスルファニ ル) - N - チアゾール - 2 - イルーベンズアミド、5 - (テトラヒドロフランー $3-7\mu-7+2$) $-N-7+2-4\mu-3-(4H-[1, 2, 4]$ トリアゾール-3-イルスルファニル)-ベンズアミド、5-(2-ヒドロキシ 10 -1-メチル-エトキシ)-N-(4-メチル-チアゾール-2-イル)-3-(「1、3、4] チアジアゾール-2-イルスルファニル)ーベンズアミド、5 - (3-ヒドロキシ-1-メチループロポキシ)-N-(4-メチルーチアゾー -ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-([1,15 3.4] チアジアゾールー2ーイルスルファニル) -N-チアゾールー2ーイル ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルフェニルスルファニル) - N - チアゾール - 2 - イルーベンズ アミド、3-(3-フルオローフェニルチオ)-5-(2-ヒドロキシー1-メ チルーエトキシ) -N-チアゾール-2-イルーペンズアミド、5-(2-ヒド 20 ロキシー1-メチル-エトキシ)-3-(ピリジン-4-イルスルファニル)-N-チアゾール-2-イル-ベンズアミド、5-(2-ヒドロキシ-1-メチル ーエトキシ) - 3 - (6 - メチルーピリジン-3 - イルスルファニル) - N - チ アゾールー2ーイルーベンズアミド、5-(2-ヒドロキシー1-メチルーエト 25 2、4] -チアジアゾール-5-イル) -ベンズアミド、N-[3-ヒドロキシ x + y + y + 1, 2, 4 - チアジアゾール - 5 - イル] - 3 - (4 - メタンスルホニ ルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) ベンズアミド、 5-(3-ヒドロキシ-1-メチルエトキシ)-3-(4-メタンスルホニルフ

ェノキシ) -N-[5-メチル-1, 2, 4-チアジアゾール-3-イル] ベン ズアミド、5-(ヒドロキシー1-メチルエトキシ)-3-(4-メタンスルホ ニルフェノキシ) -N-(3-メトキシ-1, 2, 4-チアジアゾール-5-イ ル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4 -メタンスルホニルフェノキシ)-N-(1, 2, 5-チアジアゾール-3-イ ル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4 ーメタンスルホニルフェノキシ)ーNー(4ートリフルオロメチルーチアゾール -2-イル)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4, 5, 6, 7-テトラヒド ロベンゾチアゾールー2ーイル)ベンズアミド、5ー(2ーヒドロキシー1ーメ 10 チルーエトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (ピリダジ ン-3-イル)-ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(3-7) -N-(3-7) -N-(3-7) -N-(3-7)(4-x9)ンスルホニルフェノキシ)ペンズアミド、5-(2-x)ロキシー1 - メチル-エトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (3 -15 メチルー「1.2.4]ーオキサジアゾールー5ーイル)ベンズアミド、5ー(2 ーヒドロキシ-1-メチル-エトキシ)-N-[4-(1-ヒドロキシ-1-メ チルーエチル) ーチアゾールー2ーイル] -3-(4-メタンスルホニルフェノ キシ) ベンズアミド、N- (4-シアノーチアゾール-2-イル) -5- (2-ヒドロキシー1ーメチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) 20 ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メ **タンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾール-3-イル)** ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3-(4-メタン スルホニルフェノキシ) - N - (ピリジン-2-イル) ベンズアミド、5 - (2 ーヒドロキシー1ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキ 25 シ) -N-(5-メチルーイソチアゾールー3ーイル)ベンズアミド、5ー(3 ーヒドロキシーシクロペンチルオキシ) -3-(4-メタンスルホニルフェノキ シ) -N-(チアゾール-2-イル)ペンズアミド、5-(2-ヒドロキシ-1 ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(5-

メトキシーチアゾールー2ーイル)ベンズアミド、5ー(1ーヒドロキシメチル - - 2 - メチループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N -(チアゾールー2ーイル) ベンズアミド、5-(2-ヒドロキシ-1-メチルー エトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(1H-[1, 2,3] トリアゾールー4ーイル)ペンズアミド、Nー(1-アセチルー1H-ピラ ゾールー3-イル) -5- (2-ヒドロキシ-1-メチル-エトキシ) -3- (4 ーメタンスルホニルフェノキシ)ベンズアミド、5ー(2ーヒドロキシー1ーメ チルーエトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (ピラゾー ルー3-イル) ベンズアミド、N-(5,6-ジヒドロ-4H-シクロペンタチ アゾール-2-イル)-5-(2-ヒドロキシ-1-メチル-エトキシ)-3-10 (4-メタンスルホニルフェノキシ) ベンズアミド、5-(1-ヒドロキシメチ ループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (1 - メチ ルー1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(チエノ [3.2-d] チアゾール-2-イル) ベンズアミド、3-(3-フルオロ-4 15 -メタンスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキ シ) - N - (1 - メチル - 1 H - ピラゾール - 3 - イル) ベンズアミド、3 - (4 - メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メチル-エトキシ) -N-(ピラゾール-3-イル)ベンズアミド、3-(4-シアノ-フェノキシ) -5 - (2 - E + D + D - 1 - A + D - D + D - C20 ピラゾールー3-イル) ペンズアミド、3-(4-エチルスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾールー3-イル)ベンズアミド、3-(6-エタンスルホニルピリジンー 3-1イルオキシ)-5-(2-1) にいった -1-1 にいった -1 -メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(3-ヒドロキシ 25 -1-メチル-プロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ペンズアミド、3-(4-エタン スルホニルフェノキシ) - 5 - (2 - ヒドロキシ - 1 - メチル - エトキシ) - N ー(イソキサゾールー3ーイル)ペンズアミド、5ー(2ーヒドロキシー1ーメ

チルーエトキシ) -3- (4-イソプロピルスルホニルフェノキシ) -N- (1 - メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-ヒドロキシ -1-メチル-エトキシ) -N-(4-ヒドロキシ-4-メチル-4, 5, 6, 6 a - テトラヒドロ-3 a H - シクロペンタチアゾール-2-イル) - 3- (4 - メタンスルホニルフェノキシ) ベンズアミド、3 - (4 - ジメチルカルバモイ ルーフェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1 -メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(4-アセチルフ ェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1-メチ ルー1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-10 (1, 3, 4-チアジアゾール-2-イルスルファニル) ベンズアミド、N-(1 ーエチル-1H-ピラゾール-3-イル)-5-(2-ヒドロキシ-1-メチルー エトキシ)-3-(4-メタンスルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキシー1ーメチルーエトキシ)-3-(6-メタンスルホニルピリジンー 3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズア 15 ミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メトキシカ ルボニルアミノメチルーフェノキシ) -N-(3-メチル-1,2,4-チアジ アゾール-5-イル)ベンズアミド、5-(1-ヒドロキシメチループロポキシ) -3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル -1H-ピラゾール-3-イル)ベンズアミド、3-(6-メタンスルホニルピ 20 リジン-3-イルオキシ)-5-(1-メトキシメチループロポキシ)-N-(1 ーメチル-1H-ピラゾール-3-イル)ベンズアミド、5-イソプロポキシー 3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-フルオロ-1-フルオ ロメチルーエトキシ) -3-(6-メタンスルホニルピリジン-3-イルオキシ) 25 -N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メ チルーエトキシ) - N - (イソキサゾール - 3 - イル) ベンズアミド、5 - (2 ーヒドロキシー1ーメチルーエトキシ)-3-(4-メタンスルホニルフェニル

スルファニル) -N- (1-メチル-1H-ピラゾール-3-イル) ベンズアミ ド、5-シクロプロピルオキシ-3-(4-メタンスルホニルフェノキシ)-N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-メタ ンスルホニルピリジン-3-イルオキシ)-5-(1-メトキシメチループロポ キシ) -N-(ピラゾール-3-イル)ベンズアミド、5-(2-フルオロ-1 -フルオロメチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N - (1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(6-エタ ンスルホニルピリジン-3-イルオキシ)-5-(1-ヒドロキシメチループロ ポキシ) -N(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(6 - エタンスルホニルピリジン- 3 - イルオキシ)- 3 - (2 - メトキシ- 1 - メチ 10 ルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミ ド、2-[3-(4-メタンスルホニルフェノキシ)-5-(1-メチル-1H -ピラゾール-3-イルカルバモイル)-フェノキシ]プロピオン酸-tert ープチルエステル、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N-(ピラゾール-3-イル) 15 -ベンズアミド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-N - (1-メチル-1H-ピラゾール-3-イル)-5-(テトラヒドロフラン-3-イル) ベンズアミド、N-(1-エチル-1H-ピラゾール-3-イル)-5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メタンスルホニル ピリジン-3-イルオキシ)ベンズアミド、5-(2-フルオロ-1-フルオロ 20 メチルーエトキシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) -N-(ピラゾール-3-イル)ベンズアミド、3-(6-メタンスルホニルピ リジン-3-イルオキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N - (1-メチル-1H-ピラゾール-3-イル) ペンズアミド、3-(6-エタ ンスルホニルピリジン-3-イルオキシ)-5-(2-フルオロ-1-フルオロメ 25 チルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミ - ピラゾール-3-イルカルバモイル)-フェノキシ]プロピオン酸、3-(6 ーエタンスルホニルピリジン-3-イルオキシ)-5-イソプロポキシ-N-(ピ

ラゾールー3ーイル) ベンズアミド、3ー(6-エタンスルホニルピリジン-3 ーイルオキシ) -5-イソプロポキシ-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキ シ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(ピラゾール-3 ーイル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(ピリジン-2-イル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ) -N-チアゾール-2-イルーベン ズアミド5-(2-フルオロ-1-メチルーエトキシ)-3-(6-メタンスル ホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3 10 ーイル) ベンズアミド、5-(2-クロロ-1-メチル-エトキシ) -3-(6 -エタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピ ラゾールー3ーイル) ベンズアミド、5-(2-フルオロ-1-フルオロメチルー エトキシ)-N-(イソキサゾール-3-イル)-3-(6-メタンスルホニルピ リジン-3-イルオキシ) ベンズアミド、5-(2-フルオロ-1-フルオロメチ 15 ルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピリジン-2-イル) ベンズアミド、5-(2-フルオロ-1-フルオロメチル ーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(3 ーメチルー[1,2,4]ーチアジアゾールー5ーイル)ベンズアミド、3-(4 ージメチルスルファモイルフェノキシ) -5-(2-ヒドロキシ-1-メチル-20 エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、 5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(3-メタンスルホニル フェノキシ) - N - (1 - メチル-1 H - ピラゾール-3 - イル) ペンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-イソプロピルスル ホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3 25 ーイル) ベンズアミド、3-(3-クロロ-4-メタンスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾールー3ーイル) ベンズアミド、5-(2-ヒドロキシー1-メチルーエ トキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン

WO 2004/076420 PCT/JP2004/002284

-3-イルオキシ)ベンズアミド、5-(2-フルオロ-1-フルオロメチルー エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) -3-(ピリジ ン-3-イルオキシ)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -N-(1-メチル-1H-ピラゾール-3-イル) -3-(ピリジンー 4-イルオキシ)ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエ トキシ) -N- (1-メチル-1H-ピラゾール-3-イル) -3- (ピリジン -4-イルオキシ)ペンズアミド、2-[3-(6-エタンスルホニルピリジン -3-イルオキシ)-5-(1-メチル-1H-ピラゾール-3-イルカルバモ イル) -フェノキシ] プロピオン酸、5-(2-フルオロ-1-フルオロメチル ーエトキシ) - 3 - (3 - フルオロ-4 - メタンスルホニルフェノキシ) - N -10 (1-メチル-1H-ピラゾール-3-イル)ベンズアミド等である化合物が挙 げられ、これらのうち、例えば5-イソプロポキシ-3-(4-メタンスルホニ ルフェノキシ) -N-(4-メチルチアゾール-2-イル) -ベンズアミド、5 - (2-ヒドロキシ-1-メチルーエトキシ) - 3- (4-メタンスルホニルフ ェノキシ) - N - チアゾール - 2 - イルーベンズアミド、5 - エトキシー 3 - (4 15 - メタンスルホニルフェノキシ) - N - (4 - メトキシメチルーチアゾールー2 ーイル)ベンズアミド、5ーシクロペンチルオキシー3ー(4ーメタンスルホニ ルフェノキシ) - N - チアゾール - 2 - イルーベンズアミド、3 - (4 - メタン スルホニルフェノキシ) -5- (テトラヒドロフラン-3-イルオキシ) -N-**- チアゾールー2-イルーベンズアミド、3-(4-メタンスルホニルフェノキシ)** 20 -5-(2-メトキシ-1-メチルーエトキシ)-N-チアゾール-2-イルー ベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(2-メトキシ -1-メトキシメチル-エトキシ)-N-チアゾール-2-イル-ベンズアミド、 3-(2-フルオロ-4-メタンスルホニルフェノキシ)-5-イソプロポキシ -N-チアゾール-2-イルーベンズアミド、3-(4-メタンスルホニルフェ 25 ノキシ) -5-(1-メトキシメチループロポキシ) -N-(4-メチルーチア ゾールー2ーイル)ーペンズアミド、3-(4-メタンスルホニルフェノキシ) -5-(3-メトキシ-1-メチループロポキシ)-N-チアゾール-2-イル ーベンズアミド、5-(3-ヒドロキシ-1-メチループロポキシ)-3-(4

-メタンスルホニルフェノキシ) -N-チアゾール-2-イルーペンズアミド、 N- (4-ヒドロキシメチルーチアゾール-2-イル)-5-イソプロポキシー 3-(4-メタンスルホニルフェノキシ)-ベンズアミド、N-(イソオキサゾ ールー3ーイル) -3-(4-メタンスルホニルフェノキシ) -5-(1-メト キシメチループロポキシ)ーペンズアミド、3-(4-メタンスルホニルフェノ キシ) - 5 - (1 - メトキシメチループロポキシ) - N - [1, 3, 4] チアジ アゾール-2-イルーベンズアミド、5-(1-ヒドロキシメチループロポキシ) -3-(4-メタンスルホニルフェノキシ)-N-(4-メチルーチアゾールー 2-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾール-2-イ ル) -3-(4-メタンスルホニルフェノキシ) -5-(1-メトキシメチルー 10 プロポキシ) -ベンズアミド、5-(2-アミノ-1-メチルーエトキシ) -3 - (4 - メタンスルホニルフェノキシ) - N - チアゾール - 2 - イルーベンズア ミド、5-(2-ヒドロキシープロポキシ)-3-(4-メタンスルホニルフェ ノキシ)-N-(4-メチル-チアゾール-2-イル)-ベンズアミド、3-(4 15 -メチル-チアゾール-2-イル)-ベンズアミド、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-(チアゾロ[5,4-b]ピリジン -2-イル)-ベンズアミド、5-(2-ヒドロキシメチルーアリル)-3-(4 ーメタンスルホニルフェノキシ)ーNーチアゾールー2ーイルーベンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル 20 フェノキシ)-N-チアゾロ[5,4-b]ピリジン-2-イルーペンズアミド、 5-(3-ヒドロキシ-2-メチループロピル)-3-(4-メタンスルホニル フェノキシ) - N - チアゾール - 2 - イルーベンズアミド、5 - (1 - アセチル ーピペリジン-4-イルオキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4-メチルーチアゾールー2-イル) ーベンズアミド、<math>2-[3-(4-25 メタンスルホニルフェノキシ)-5-(4-メチル-チアゾール-2-イル-カ ルバモイル) -フェノキシ] プロピオン酸、5-(3-ヒドロキシ-1-メチル ープロポキシ) -3-(4-メタンスルホニルフェノキシ) -N-チアゾール-2-イルーベンズアミド、5-(2-アセチルアミノ-1-メチルーエトキシ)

-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーペン ズアミド、N-[4-(1-ヒドロキシーエチル)ーチアゾール-2-イル]-5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)ーベンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ) -N-ピリジン-2-イルーベンズアミド、5-(2-ヒドロキシ -エトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - チアゾール - 2 ーイルーベンズアミド、5-(2-ヒドロキシーシクロペンチルオキシ)-3-(4-メタンスルホニルフェノキシ) - N - チアゾール-2-イル-ベンズアミ ド、N-(4-アセチルーチアゾール-2-イル)-5-(2-ヒドロキシ-1 ーメチルーエトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - ベンズアミ 10 ド、5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(4-ヒドロキシメ チルーチアゾールー2ーイル) -3-(4-メタンスルホニルフェノキシ) ーベ ンズアミド、N-[4-(1-ヒドロキシーエチル)ーチアゾール-2-イル] -5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニ ルフェノキシ) -ベンズアミド、3-(3-フルオロ-4-メタンスルホニルフ 15 ェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-チアゾール -2-イルーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-ーイル)ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-([1, 2, 4] チアジアゾール-20 5-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾールー2-イ ル) -3-(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メ チルーエトキシ)ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキ シ) -3- (4-メタンスルホニルフェノキシ) -N- (5-メトキシカルボニ ルーピリジンー2ーイル) ーベンズアミド、6 - [5-イソプロポキシー3-(4 25 - メタンスルホニルフェノキシ) - ベンゾイルアミノ] ニコチン酸、5 - (2-ヒドロキシー1ーメチループロポキシ)-3-(4-メタンスルホニルフェノキ シ) -N-チアゾール-2-イル-ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -N- (イソキサゾール-3-イル) -3- (4-メタンス

ルホニルフェノキシ) -ベンズアミド、N-(5-ヒドロキシメチルーチアゾー ルー2ーイル)-5-イソプロポキシー3-(4-メタンスルホニルフェノキシ) ーベンズアミド、N-[4-(1-ヒドロキシーエチル)ーチアゾール-2-イ ル] -3-(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メ チルーエトキシ)-ベンズアミド、N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メタンスルホニルフェノキシ)-5-(テトラヒドロフ ラン-3-イル-オキシ) -ベンズアミド、5-(2-ヒドロキシ-1-メチル ーエトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(2-メチルチ アゾールー4-イル)ーペンズアミド、5-(2-ヒドロキシ-1-メチルーエ トキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (4 - メトキシメチ 10 ルーチアゾールー2-イル) -ベンズアミド、N-[4-(1-ヒドロキシーエ チル) -チアゾール-2-イル] -3-(4-メタンスルホニルフェノキシ) -ーヒドロキシーエチル) ーチアゾールー2ーイル] -3-(4-メタンスルホニ ルフェノキシ)-5-(テトラヒドロフラン-3-イル-オキシ)-ベンズアミ 15 ド、N-[4-(1-ヒドロキシーエチル)-チアゾール-2-イル]-3-(4 ーメタンスルホニルフェノキシ) -5-(テトラヒドロフラン-3-イルーオキ シ)ーペンズアミド、N-(2、5-ジメチルチアゾールー4ーイル)-5-(2 ーヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキ シ)ーベンズアミド、5ーイソプロポキシー3ー(4ーメトキシカルボニルアミ 20 ノメチルフェノキシ) - N - チアゾール - 2 - イル - ベンズアミド、5 - イソプ ロポキシー3-(4-メチルカルバモイル-フェノキシ)-N-チアゾール-2 ーイルーペンズアミド、5ーイソプロポキシー3ー(4ーメチルカルボニルアミ ノメチルーフェノキシ)ーNーチアゾールー2ーイルーベンズアミド、5ーイソ プロポキシー3-(4-メタンスルホニルアミノメチルーフェノキシ)-N-チ 25 アゾールー2ーイルーベンズアミド、3- [4-(1-ヒドロキシープロピル) -フェノキシ] -5-イソプロポキシ-N-チアゾール-2-イルーベンズアミ ド、6-[3-イソプロポキシ-5-(チアゾール-2-イルカルバモイル)-フェノキシ] -ニコチン酸メチルエステル、3-(5-ヒドロキシメチルーピリ

ジン-2-イルーオキシ) -5-イソプロポキシ-N-チアゾール-2-イルー ベンズアミド、5-イソプロポキシ-3-(5-メタンスルホニルピリジン-2 --ィル) -N-チアゾール-2-イル-ベンズアミド、3-(5-アセチルーピ リジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イル -ベンズアミド、5-イソプロポキシ-3-(5-メトキシカルボニルーピラジ ン-2-イル-オキシ)-N-チアゾール-2-イル-ベンズアミド、3-(5 -シアノ-ピリジン-2-イル-オキシ)-5-イソプロポキシ-N-チアゾー -ジヒドロ-ピリジン-4-イル-オキシ)-N-チアゾール-2-イル-ベン ズアミド、5-イソプロポキシ-3-(2-オキソ-1,2-ジヒドローピリジ 10 ン-3-イルーオキシ)-N-チアゾール-2-イルーベンズアミド、5-イソ プロポキシー3-(2-オキソー1,2-ジヒドローピリジンー3-イルーオキ シ) -N-チアゾロ [5, 4-b] ピリジン-2-イルーベンズアミド、5-イ ソプロポキシー3-([1,3,4]チアジアゾール-2-イルスルファニル) -N- チアゾロ [5, 4-b] - ピリジン-2 イルーベンズアミド、5 ーイソプ 15 ロポキシー3-(4-メチルー[1, 2, 4]トリアゾール-3-イルスルファ ニル) - N - チアゾール - 2 - イルーベンズアミド、5 - イソプロポキシ - 3 -チアゾール-2-イルスルファニル-N-チアゾール-2-イル-ペンズアミド、 5-イソプロポキシ-3-(4H-[1, 2, 4] トリアゾール-3-イルスル ファニル)-N-チアゾール-2-イル-ベンズアミド、5-イソプロポキシー 20 3-([1, 3, 4] チアジアゾール-2-イルスルファニル)-N-チアゾー ル-2-イル-ベンズアミド、5-イソプロポキシ-3-(5-メチルスルファ ニルー[1, 3, 4] チアジアゾールー2ーイルスルファニル) -N-チアゾー N-2-1ルーベンズアミド、5-1ソプロポキシー3-(5-1)チルー[1, 3, 4] チアジアゾールー2ーイルスルファニル) -N-チアゾールー2ーイル 25 ーベンズアミド、5 - (テトラヒドロフラン-3-イル-オキシ)-N-チアゾ -N-2-4N-3-(4H-[1, 2, 4])ニル) -ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ) -N-

-2-イルスルファニル) -ベンズアミド、5-(3-ヒドロキシ-1-メチル -プロポキシ) -N-(4-メチル-チアゾール-2-イル) -3-([1, 3, 41 チアジアゾール-2-イルスルファニル) -ベンズアミド、5-(2-ヒド ロキシー1-メチルーエトキシ)-3-([1,3,4]チアジアゾールー2-イルスルファニル) - N - チアゾール - 2 - イルーベンズアミド、5 - (2 - ヒ ドロキシー1-メチル-エトキシ)-3-(4-メタンスルホニルフェニルスル ファニル) - N - チアゾール - 2 - イルーベンズアミド、3 - (3 - フルオロー フェニルチオ) - 5 - (2 - ヒドロキシ- 1 - メチルーエトキシ) - N - チアゾ ールー2ーイルーベンズアミド、5ー(2ーヒドロキシー1ーメチルーエトキシ) -3-(ピリジン-4-イルスルファニル)-N-チアゾール-2-イルーベン 10 ズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メチル ーピリジン-3-イルスルファニル)-N-チアゾール-2-イル-ベンズアミ ド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホ ニルフェノキシ) -N-(3-メチル-[1, 2, 4] -チアジアゾール-5-15 ールー5ーイル] -3-(4-メタンスルホニルフェノキシ) -5-(2-メト キシー1-メチル-エトキシ)ベンズアミド、5-(ヒドロキシー1-メチルエ トキシ) -3-(4-x9) スルホニルフェノキシ) -N-(3-x) キシー1. 2, 4-チアジアゾール-5-イル) ベンズアミド、5-(2-ヒドロキシ-1 -メチル-エトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (1.20 2. 5-チアジアゾール-3-イル) ベンズアミド、5-(2-ヒドロキシ-1 ーメチルーエトキシ)-N-(3-イソプロピルー[1, 2, 4]-トリアゾー ルー5ーイル)-3-(4-メタンスルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-[4-(1-ヒドロキシ-1 ーメチルーエチル) ーチアゾールー2ーイル] ー3ー(4ーメタンスルホニルフ 25 ェノキシ) ベンズアミド、N-(4-2)フィーチアゾールー2ーイル) -5-(2)ーヒドロキシー1ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキ シ) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4 ーメタンスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-

イル) ベンズアミド、5-(1-ヒドロキシメチループロポキシ) -3-(4-メタンスルホニルフェノキシ)-N-(ピリジン-2-イル)ベンズアミド、5 - (2-ヒドロキシ-1-メチル-エトキシ) - 3-(4-メタンスルホニルフ ェノキシ)-N-(5-メチル-イソチアゾール-3-イル)ペンズアミド、5 - (3-ヒドロキシーシクロペンチルオキシ) - 3 - (4-メタンスルホニルフ 5 ェノキシ) -N- (チアゾール-2-イル) ベンズアミド、5-(2-ヒドロキ シー1ーメチルーエトキシ) -3- (4-メタンスルホニルフェノキシ) -N-(5-メトキシーチアゾール-2-イル) ベンズアミド、5-(1-ヒドロキシ メチルー2-メチループロポキシ)-3-(4-メタンスルホニルフェノキシ) -N- (チアゾール-2-イル) ベンズアミド、5- (2-ヒドロキシ-1-メ 10 チルーエトキシ) -3-(4-メタンスルホニルフェノキシ)-N-(1H-[1,2, 3] トリアゾールー4ーイル) ベンズアミド、N-(1-アセチルー1H-ピラゾールー3ーイル) -5- (2-ヒドロキシ-1-メチルーエトキシ) -3 - (4-メタンスルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキシー 1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(ピ 15 ラゾール-3-イル) ベンズアミド、N-(5,6-ジヒドロ-4H-シクロペ ンタチアゾールー2ーイル) -5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)ベンズアミド、5-(1-ヒドロキ シメチループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (1 -メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-ヒドロキシ 20 -1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(チ エノ[3, 2-d] チアゾール-2-イル) ベンズアミド、3-(3-フルオロ -4-メタンスルホニルフェノキシ)-5-(2-ヒドロキシ-1-メチルーエ トキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3 -(4-メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メチルーエト 25 キシ) -N-(ピラゾール-3-イル)ベンズアミド、3-(4-シアノーフェノ キシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチル-1 H-ピラゾール-3-イル) ベンズアミド、3-(4-エチルスルホニルフェノ キシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチル- 59

1 H-ピラゾール-3-イル) ベンズアミド、3-(6-エタンスルホニルピリ ジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(3-ヒド ロキシー1ーメチループロポキシ)-3-(4-メタンスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-(4-エタンスルホニルフェノキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ) -N- (イソキサゾール-3-イル) ベンズアミド、5- (2-ヒドロキシ-1 -メチル-エトキシ) -3- (4-イソプロピルスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-ヒドロ 6, 6 a - テトラヒドロ-3 a H - シクロペンタチアゾール-2-イル) - 3 -(4-メタンスルホニルフェノキシ) ベンズアミド、3-(4-アセチルフェノ キシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1-メチルー 1 Hーピラゾールー3ーイル) ベンズアミド、N-(1-エチルー1H-ピラゾ $- \mu - 3 - 4 \mu - 5 - (2 - \xi - \xi - 1 - \xi - 1 - \xi - 1 - \xi - 2 - \xi - 1 - \xi - 2 - \xi - 2$ 15 メタンスルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキシ-1-メチ ルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N - (1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒド ロキシー1-メチルーエトキシ)-3-(4-メトキシカルボニルアミノメチル -7x/+2) - N - (3-x+2) - 1, 2, 4-x+220 ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3-(6-メタン スルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール -3-イル) ベンズアミド、3-(6-メタンスルホニルピリジン-3-イルオ キシ) -5- (1-メトキシメチループロポキシ) -N- (1-メチル-1H-ピラゾールー3ーイル)ベンズアミド、5ーイソプロポキシー3ー(6ーメタン 25 スルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール -3-イル)ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエトキ シ) -3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メ チルー1Hーピラゾールー3ーイル) ベンズアミド、3-(6-エタンスルホニ

ルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(イソキサゾール-3-イル)ベンズアミド、3-(6-メタンスルホニ ルピリジン-3-イルオキシ)-5-(1-メトキシメチル-プロポキシ)-N - (ピラゾールー3-イル) ベンズアミド、5-(2-フルオロ-1-フルオロ メチルーエトキシ) -3- (4-メタンスルホニルフェノキシ) -N- (1-メ チル-1H-ピラゾール-3-イル) ベンズアミド、3-(6-エタンスルホニ ルピリジン-3-イルオキシ)-5-(1-ヒドロキシメチループロポキシ)-N(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(6-エタン スルホニルピリジン-3-イルオキシ)-3-(2-メトキシ-1-メチル-エト キシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-10 (6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1 -メチル-エトキシ)-N-(ピラゾール-3-イル)-ベンズアミド、3-(6 -メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピ ラゾールー3-イル)-5-(テトラヒドロフラン-3-イル)ベンズアミド、 15 ーメチルーエトキシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) ベンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6 **ーメタンスルホニルピリジン-3-イルオキシ)-N-(ピラゾール-3-イル)** ベンズアミド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾー 20 ルー3-イル)ペンズアミド、3-(6-エタンスルホニルピリジン-3-イル オキシ) -5-(2-フルオロ-1-フルオロメチルーエトキシ)-N-(1-メ チル-1H-ピラゾール-3-イル)ベンズアミド、3-(6-エタンスルホニ ルピリジン-3-イルオキシ)-5-イソプロポキシ-N-(ピラゾール-3-イル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ) 25 -5-イソプロポキシ-N-(1-メチル-1H-ピラゾール-3-イル) ベン ズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2 -ヒドロキシ-1-メチル-エトキシ)-N-(ピラゾール-3-イル)ベンズ アミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-

ヒドロキシー1ーメチルーエトキシ)-N-(ピリジン-2-イル)ベンズアミ ド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒド ロキシ-1-メチル-エトキシ)-N-チアゾール-2-イルーベンズアミド5 - (2-フルオロ-1-メチル-エトキシ)-3-(6-メタンスルホニルピリ ジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベ ンズアミド、5-(2-クロロ-1-メチルーエトキシ)-3-(6-エタンス ルホニルピリジンー 3 ーイルオキシ)-N-(1 -メチル-1 H-ピラゾール-3-4ル) ベンズアミド、5-(2-7)ルオロ-1-7ルオロメチルーエトキシ) -N-(イソキサゾール-3-イル)-3-(6-メタンスルホニルピリジン-3-イルオキシ) ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエト 10 キシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピリジ ンー2-イル) ベンズアミド、5-(2-フルオロー1-フルオロメチルーエトキ シ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(3-メチ ルー[1, 2, 4] ーチアジアゾールー5ーイル) ベンズアミド、3ー(4ージ メチルスルファモイルフェノキシ) - 5 - (2 - ヒドロキシ-1 - メチルーエト 15 キシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3-ーメチルーエトキシ) ーNー(1ーメチルー1Hーピラゾールー3ーイル) ベン ズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル -1H-ピラゾール-3-イル)-3-(ピリジン-3-イルオキシ)ベンズア 20 ミド、5-(2-フルオロ-1-フルオロメチルーエトキシ)-N-(1-メチ ルー1H-ピラゾールー3-イル)-3-(ピリジン-3-イルオキシ)ベンズ アミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン-4-イルオキシ)ベンズアミ ド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-N-(1-メチル 25 - 1 H - ピラゾール - 3 - イル) - 3 - (ピリジン - 4 - イルオキシ)ベンズア ミド、5-(2-フルオロ-1-フルオロメチルーエトキシ)-3-(3-フル オロー4ーメタンスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾー ルー3ーイル)ベンズアミド等である化合物が好ましく、中でも例えば5ーイソ

プロポキシー3-(4-メタンスルホニルフェノキシ)-N-(4-メチルチア ゾール-2-イル)-ベンズアミド、5-(2-ヒドロキシ-1-メチルーエト キシ) -3-(4-メタンスルホニルフェノキシ) -N-チアゾール-2-イル ーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(テトラヒド ロフラン-3-イルオキシ)-N-チアゾール-2-イルーベンズアミド、3-(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メチルーエト キシ) - N - チアゾール - 2 - イル - ベンズアミド、3 - (4 - メタンスルホニ ルフェノキシ) -5-(2-メトキシ-1-メトキシメチル-エトキシ) -N-チアゾール-2-イルーベンズアミド、3-(2-フルオロー4-メタンスルホ ニルフェノキシ) -5-イソプロポキシ-N-チアゾール-2-イルーベンズア 10 ミド、3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシメチルー プロポキシ) - N - (4 - メチル-チアゾール - 2 - イル) - ベンズアミド、3 - (4-メタンスルホニルフェノキシ)-5-(3-メトキシ-1-メチループ ロポキシ) - N - チアゾール - 2 - イルーベンズアミド、N - (4 - ヒドロキシ メチルーチアゾールー2ーイル)-5-イソプロポキシー3-(4-メタンスル 15 ホニルフェノキシ) -ペンズアミド、N-(イソオキサゾール-3-イル)-3 - (4-メタンスルホニルフェノキシ)-5-(1-メトキシメチループロポキ シ)ーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(1-メ トキシメチループロポキシ) -N-[1,3,4] チアジアゾールー2-イルー ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3-(4-メタン 20 **スルホニルフェノキシ)-N-(4-メチル-チアゾール-2-イル)-ベンズ** アミド、N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メ タンスルホニルフェノキシ) -5-(1-メトキシメチループロポキシ) -ベン ズアミド、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N - (チアゾロ[5, 4-b] ピリジン-2-イル) -ベンズアミド、5-(2-25 ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) -N-チアゾロ[5, 4-b] ピリジン-2-イル-ベンズアミド、5-(3-4)ヒドロキシー2-メチループロピル)-3-(4-メタンスルホニルフェノキシ) -N-チアゾール-2-イル-ベンズアミド、5-(3-ヒドロキシ-1-メチ PCT/JP2004/002284

ループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - チアゾール -2-イルーベンズアミド、5-(2-アセチルアミノ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーペン ズアミド、N-[4-(1-ヒドロキシーエチル)ーチアゾールー2-イル]-5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)ーベンズアミド、 5 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ) -N-ピリジン-2-イルーベンズアミド、5-(2-ヒドロキシ -エトキシ) -3-(4-メタンスルホニルフェノキシ) -N-チアゾール-2 ーイルーベンズアミド、5-(2-ヒドロキシーシクロペンチルオキシ)-3-**(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベンズアミ** 10 ド、N-(4-アセチルーチアゾール-2-イル)-5-(2-ヒドロキシ-1 ーメチルーエトキシ) -3-(4-メタンスルホニルフェノキシ) -ベンズアミ ド、5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(4-ヒドロキシメ チルーチアゾールー2ーイル)ー3ー(4ーメタンスルホニルフェノキシ)ーベ ンズアミド、N-「4-(1-ヒドロキシーエチル)-チアゾール-2-イル] 15 -5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニ ルフェノキシ) -ベンズアミド、3-(3-フルオロ-4-メタンスルホニルフ ェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) - N-チアゾール -2-イル-ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3- (4-メタンスルホニルフェノキシ) -N- ([1, 2, 4] チアジアゾー 20 ルー5-イル)-ベンズアミド、N-(4-ヒドロキシメチルーチアゾールー2 - (4 - xy) - 3 - (4 - xy) スルホニルフェノキシ) - 5 - (2 - xy) キシー1 ーメチルーエトキシ)ーベンズアミド、6-[5-イソプロポキシー3-(4-メタンスルホニルフェノキシ) -ベンゾイルアミノ] ニコチン酸、5-(2-ヒ ドロキシー1-メチルーエトキシ)-N-(イソキサゾールー3-イル)-3-25 (4-メタンスルホニルフェノキシ) -ベンズアミド、N-(5-ヒドロキシメ チルーチアゾールー2ーイル) -5-イソプロポキシー3-(4-メタンスルホ ニルフェノキシ)-ペンズアミド、N- [4-(1-ヒドロキシ-エチル)-チ アゾールー2ーイル] -3-(4-メタンスルホニルフェノキシ) -5-(25

15

20

25

PCT/JP2004/002284

イル) -5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(4-メタンスルホニルフェノキシ) -ベンズアミド、3-(5-アセチル-ピリジン-2-イルーオキシ) -5-イソプロポキシ-N-チアゾール-2-イルーベンズアミド、5-イソプロポキシ-3-(2-オキソ-1, 2-ジヒドローピリジン-4-イルーオキシ) -N-チアゾール-2-イルーベンズアミド、5-イソプロポキシ

-3-(2-オキソ-1, 2-ジヒドローピリジン-3-イルーオキシ)-N-チアゾール-2-イルーベンズアミド、<math>5-イソプロポキシ-3-(2-オキソ-1, 2-ジヒドローピリジン-3-イルーオキシ)-N-チアゾロ[5, 4-b]ピリジン-2-イルーベンズアミド、<math>5-イソプロポキシ-3-([1, 3, 4] チアジアゾール-2-イルスルファニル)-N-チアゾロ[5, 4-b]-

ピリジン-2イルーベンズアミド、5ーイソプロポキシ-3ーチアゾール-2ーイルスルファニル-Nーチアゾール-2ーイルーベンズアミド、5ーイソプロポキシ-3-([1, 3, 4] チアジアゾール-2-イルスルファニル)-N-チアゾール-2-イルーベンズアミド、5-イソプロポキシ-3-(5-メチルー[1, 3, 4] チアジアゾール-2-イルスルファニル)-N-チアゾール-2

ーイルーベンズアミド、5~(2~ヒドロキシ~1~メチル~エトキシ) ¬N~ (4-メチルーチアゾール-2-イル)-3-([1,3,4] チアジアゾール -2-イルスルファニル)ーペンズアミド、5-(3-ヒドロキシ-1-メチル -プロポキシ) - N - (4 - メチルーチアゾールー2 - イル) - 3 - ([1, 3, 4] チアジアゾールー2ーイルスルファニル)ーベンズアミド、5ー(2ーヒド 5 ロキシー1-メチルーエトキシ)-3-([1,3,4]チアジアゾールー2-イルスルファニル) -N-チアゾール-2-イル-ベンズアミド、5-(2-ヒ ドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェニルスル ファニル) - N - チアゾール - 2 - イルーベンズアミド、3 - (3 - フルオロー フェニルチオ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-チアゾ 10 ールー2ーイルーベンズアミド、5ー(2ーヒドロキシー1ーメチルーエトキシ) -3-(ピリジン-4-イルスルファニル)-N-チアゾール-2-イルーベン ズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メチル ーピリジン-3-イルスルファニル)-N-チアゾール-2-イルーベンズアミ ド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホ 15 ニルフェノキシ) -N-(3-メチル-[1, 2, 4] -チアジアゾール-5-イル) -ペンズアミド、5-(ヒドロキシ-1-メチルエトキシ) -3-(4-メタンスルホニルフェノキシ) - N - (3 - メトキシ - 1, 2, 4 - チアジアゾ ールー5ーイル) ベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ) -N-(3-7)20 (4-メタンスルホニルフェノキシ) ベンズアミド、5-(2-ヒドロキシ-1 -メチル-エトキシ) -N- [4-(1-ヒドロキシ-1-メチル-エチル) -チアゾールー2ーイル] -3-(4-メタンスルホニルフェノキシ) ベンズアミ ド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホ ニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズア 25 ミド、5-(1-ヒドロキシメチループロポキシ)-3-(4-メタンスルホニ ルフェノキシ)-N-(ピリジン-2-イル)ベンズアミド、5-(1-ヒドロ キシメチルー2ーメチループロポキシ)-3-(4-メタンスルホニルフェノキ シ) -N-(チアゾール-2-イル) ベンズアミド、5-(2-ヒドロキシ-1

ーメチルーエトキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (ピラ ゾール-3-イル) ベンズアミド、N-(5,6-ジヒドロ-4H-シクロペン タチアゾールー2ーイル)ー5ー(2ーヒドロキシー1ーメチルーエトキシ)ー 3-(4-メタンスルホニルフェノキシ)ペンズアミド、5-(1-ヒドロキシ メチループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (1 -メチルー1Hーピラゾールー3ーイル)ベンズアミド、3ー(3ーフルオロー4 ーメタンスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキ シ) -N-(1-メチル-1H-ピラゾール-3-イル)ペンズアミド、3-(4 ーメタンスルホニルフェノキシ)ー5-(2-メトキシー1-メチルーエトキシ) 10 - N- (ピラゾール-3-イル) ベンズアミド、3- (4-エチルスルホニルフ ェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1-メチ ルー1 Hーピラゾールー3 ーイル) ペンズアミド、3 ー(6 ーエタンスルホニル ピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(4-エタンスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) 15 -N- (イソキサゾール-3-イル) ベンズアミド、5- (2-ヒドロキシ-1 ーメチルーエトキシ)ー3ー(4ーイソプロピルスルホニルフェノキシ)ーNー (1-x + y + y - 1 +キシー1-メチル-エトキシ)-N-(4-ヒドロキシー4-メチルー4, 5, 6.6a-テトラヒドロ-3aH-シクロペンタチアゾール-2-イル)-3-20 (4-メタンスルホニルフェノキシ) ベンズアミド、3-(4-アセチルフェノ キシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1-メチルー 1 Hーピラゾールー3ーイル)ベンズアミド、5 ー(2 ーヒドロキシー1 ーメチ ルーエトキシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) - N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-ヒド 25 ロキシー1-メチルーエトキシ)-3-(4-メトキシカルボニルアミノメチル -フェノキシ) -N-(3-メチル-1, 2, 4-チアジアゾール-5-イル) ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3-(6-メタン スルホニルピリジンー3-イルオキシ)-N-(1-メチル-1H-ピラゾール 67

-3-イル)ペンズアミド、3-(6-メタンスルホニルピリジン-3-イルオ キシ) -5-(1-メトキシメチループロポキシ) -N-(1-メチルー1H-ピラゾールー3ーイル) ベンズアミド、5ーイソプロポキシー3ー(6ーメタン スルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール -3-イル)ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエトキ シ) -3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メ チル-1H-ピラゾール-3-イル)ペンズアミド、3-(6-エタンスルホニ ルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(イソキサゾール-3-イル)ベンズアミド、3-(6-メタンスルホニ ルピリジン-3-イルオキシ)-5-(1-メトキシメチループロポキシ)-N 10 (ピラゾールー3ーイル)ベンズアミド、3ー(6ーエタンスルホニルピリジ ン-3-イルオキシ)-5-(1-ヒドロキシメチループロポキシ)-N(1-メチルー1H-ピラゾールー3-イル) ベンズアミド、5-(6-エタンスルホニ ルピリジン-3-イルオキシ)-3-(2-メトキシ-1-メチル-エトキシ)-N- (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3- (6-エ 15 タンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1-メチル -エトキシ) -N-(ピラゾール-3-イル) -ベンズアミド、N-(1-エチ キシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) ベンズアミド、 5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メタンスル 20 ホニルピリジン-3-イルオキシ)-N-(ピラゾール-3-イル)ベンズアミ ド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-5-(2-メト キシー1-メチルーエトキシ)-N-(1-メチルー1H-ピラゾールー3-イ ル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-イソプロポキシ-N-(ピラゾール-3-イル)ベンズアミド、3-(6-25 エタンスルホニルピリジン-3-イルオキシ)-5-イソプロポキシ-N-(1 -メチル-1H-ピラゾール-3-イル)ペンズアミド、3-(6-エタンスル ホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエト キシ) - N - (ピラゾール - 3 - イル) ベンズアミド、3 - (6 - エタンスルホ

ニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキ シ) -N-チアゾール-2-イルーベンズアミド5-(2-フルオロ-1-メチ ルーエトキシ) - 3 - (6 - メタンスルホニルピリジン - 3 - イルオキシ) - N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-フルオ ロー1-フルオロメチルーエトキシ)-3-(6-メタンスルホニルピリジン-3 ーイルオキシ) -N- (3-メチル-[1, 2, 4] -チアジアゾール-5-イ ル) ベンズアミド、3-(4-ジメチルスルファモイルフェノキシ)-5-(2 ーヒドロキシー1-メチルーエトキシ)-N-(1-メチル-1H-ピラゾール -3-イル) ベンズアミド、3-(3-クロロ-4-メタンスルホニルフェノキ シ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチルー1 10 H-ピラゾール-3-イル) ベンズアミド等である化合物がより好ましく、例え ば5-(2-ヒドロキシー1-メチル-エトキシ)-3-(4-メタンスルホニ ルフェノキシ) -N-チアゾール-2-イル-ベンズアミド、3-(4-メタン スルホニルフェノキシ) – 5 – (テトラヒドロフラン – 3 – イルオキシ) – N – チアゾールー2ーイルーベンズアミド、3ー(4ーメタンスルホニルフェノキシ) 15 -5-(2-メトキシ-1-メチル-エトキシ)-N-チアゾール-2-イル-ベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシ メチループロポキシ) -N-(4-メチルーチアゾール-2-イル) -ベンズア ミド、N- (4-ヒドロキシメチル-チアゾール-2-イル) -5-イソプロポ キシ-3-(4-メタンスルホニルフェノキシ)-ベンズアミド、N-(イソオ 20 キサゾールー3ーイル) -3-(4-メタンスルホニルフェノキシ) -5-(1 -メトキシメチループロポキシ) -ベンズアミド、3-(4-メタンスルホニル フェノキシ) -5-(1-メトキシメチル-プロポキシ) -N-[1, 3, 4] チアジアゾールー2ーイルーベンズアミド、5-(1-ヒドロキシメチループロ ポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (4 - メチルーチア 25 ゾール-2-イル) -ベンズアミド、N-(4-ヒドロキシメチルーチアゾール -2-イル)-3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシ メチループロポキシ)ーベンズアミド、5-イソプロポキシー3ー(4ーメタン スルホニルフェノキシ)-N-(チアゾロ[5,4-b]ピリジン-2-イル)

ーベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) -N-チアゾロ[5,4-b] ピリジン-2-イ ルーベンズアミド、N- [4-(1-ヒドロキシーエチル) ーチアゾールー2-イル] -5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)ーベン ズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタン スルホニルフェノキシ) -N-ピリジン-2-イルーペンズアミド、5-(2-ヒドロキシーシクロペンチルオキシ) - 3 - (4 - メタンスルホニルフェノキシ) -N-チアゾール-2-イル-ベンズアミド、5-(2-ヒドロキシ-1-メチ ルーエトキシ)-N-(4-ヒドロキシメチルーチアゾールー2-イル)-3-**(4-メタンスルホニルフェノキシ)-ペンズアミド、N-[4-(1-ヒドロ** 10 キシーエチル) ーチアゾールー2ーイル] -5-(2-ヒドロキシー1ーメチル ーエトキシ) -3-(4-メタンスルホニルフェノキシ) -ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェ ノキシ)-N-([1, 2, 4]チアジアゾール-5-1ル)-ペンズアミド、N- (4-ヒドロキシメチルーチアゾール-2-イル)-3- (4-メタンスル 15 ホニルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) ーベンズア **ミド、N-「4-(1-ヒドロキシーエチル)-チアゾール-2-イル]-3-**(4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メチル-エト キシ) - ベンズアミド、N- (4-ヒドロキシメチルーチアゾール-2-イル) -3-(4-メタンスルホニルフェノキシ)-5-(テトラヒドロフラン-3-20 イルーオキシ)ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)-N-(2-メチルチアゾール-4 ーイル)ーベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3 - (4-メタンスルホニルフェノキシ)-N-(4-メトキシメチルーチアゾー ルー2ーイル) -ベンズアミド、N-「4-(1-ヒドロキシーエチル) -チア 25 ゾールー2ーイル]ー3ー(4ーメタンスルホニルフェノキシ)ー5ー(2ーメ トキシー1-メチルーエトキシ) -ベンズアミド、N-[4-(1-ヒドロキシ ーエチル)ーチアゾールー2ーイル]ー3-(4-メタンスルホニルフェノキシ) -5-(テトラヒドロフラン-3-イルーオキシ)ーベンズアミド、N-「4-

(1-ヒドロキシーエチル) -チアゾール-2-イル] -3-(4-メタンスル ホニルフェノキシ) -5- (テトラヒドロフラン-3-イル-オキシ) -ベンズ アミド、N-(2,5-ジメチルチアゾール-4-イル)-5-(2-ヒドロキ シー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)ーペン ズアミド、5-イソプロポキシ-3-([1,3,4]チアジアゾール-2-イ 5 ルスルファニル) -N-チアゾロ[5,4-b] -ピリジン-2イルーベンズア $\xi \ddot{k}$, $5 - (2 - E\ddot{k} \Box + b - 1 - \lambda + b - \Delta + b - \Delta + b) - 3 - ([1, 3, 4])$ チアジアゾール-2-イルスルファニル)-N-チアゾール-2-イルーペンズ アミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンス N ルホニルフェノキシ)-N-(3-メチルー[1, 2, 4] ーチアジアゾールー 10 5-イル) -ペンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾー ルー3-イル) ベンズアミド、5-(1-ヒドロキシメチループロポキシ)-3 - (4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾール -3-イル)ベンズアミド、3-(3-フルオロ-4-メタンスルホニルフェノ 15 キシ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(1-メチルー 1 H-ピラゾール-3-イル)ベンズアミド、3-(6-エタンスルホニルピリ ジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N - (1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒド ロキシー1-メチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-20 イルオキシ) - N - (1 - メチル - 1 H - ピラゾール - 3 - イル) ベンズアミド、 5-(2-フルオロ-1-フルオロメチルーエトキシ)-3-(6-メタンスル ホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3 ーイル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ) -5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(イソキサゾール-3 25 ーイル) ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエトキシ) -3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピラゾール -3-イル)ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオ キシ) -5-イソプロポキシ-N-(1-メチル-1H-ピラゾール-3-イル)

ベンズアミド等である化合物が特に好ましい。

20

25

また、本発明に係るヘテロアリールカルバモイルペンゼン誘導体は、薬学的に 許容される塩として存在することができる。当該塩としては、酸付加塩又は塩基 付加塩を挙げることができる。

5 本発明に係る化合物は、その置換基の態様によって、光学異性体、ジアステレ 才異性体、幾何異性体等の立体異性体又は互変異性体が存在する場合がある。こ れらの異性体は、すべて本発明に係る化合物に包含されることは言うまでもない。 更にこれらの異性体の任意の混合物も本発明に係る化合物に包含されることは言 うまでもない。

10 本発明の化合物はグルコキナーゼ活性化作用を有することから、糖尿病の治療 薬及び/又は予防薬として、さらには糖尿病の合併症の治療薬及び/又は予防薬 として有用である。

ここで、糖尿病の合併症とは、糖尿病を発症することにより併発する疾病のことであり、当該糖尿病の合併症としては、例えば糖尿病性腎症、糖尿病性網膜症、 15 糖尿病性神経症、糖尿病性動脈硬化症等が挙げられる。

本発明に係る化合物は、インスリン依存性糖尿病(IDDM、insulindependent diabetes mellitus)とインスリン非依存性糖尿病(NIDDM、non-insulin dependent diabetes mellitus)のどちらのタイプの糖尿病にも適応可能である。

また、インスリン依存性糖尿病(IDDM、insulin dependent diabetes mellitus)は、遺伝的なインスリン分泌低下と骨格筋でのインスリン抵抗性の素因に、肥満によるインスリン抵抗性が加わることにより発症に至り、おもに成人発症であると考えられている。なお、当該インスリン依存性糖尿病は、その素因により、I型とII型という分類が提唱されている。

本発明に係る化合物は、I型インスリン依存性糖尿病のみならず、従来の糖尿病薬では、十分な血糖値の低下を達成することが不可能であった I I 型糖尿病についても、有用であると考えられる。

また、II型糖尿病においては、摂食後高血糖の程度が健常人に比べて長時間 持続することが顕著であるが、本発明に係る化合物は、このII型糖尿病に対し ても有用である。

【発明の実施の形態】

5 以下に本発明に係る化合物の製造方法について説明する。

本発明に係る化合物(I)は、公知の反応手段を用いるか、或いはそれ自体公知の方法に従って容易に製造することができる。なお、本発明に係る化合物(I)は、通常の液相における合成法のみならず、近年発達の目覚ましい例えばコンピナトリアル合成法やパラレル合成法等の固相を用いた方法によっても製造することができる。

本発明に係る化合物は、好ましくは例えば以下の方法により製造することができる。

HO OR
$$R^2$$
O OR R^2

(I-1)

(6)

[式中、Rは低級アルキル基を示し、Xはハロゲン原子を示し、その他の記号は前記定義に同じ]

(7)

(工程1-1)本工程は、3,5-ジヒドロ安息香酸(1 a)の有するカルボ
 キシル基に保護基を導入することにより、化合物(1)を製造する方法である。
 化合物(1)の有するカルボキシル基の保護基尺は、工程1乃至3において、カ

ルボキシル基の保護基として作用し、かつ、工程4において容易に除去することができるものであれば、いかなるものであってもよいが、例えばメチル基、エチル基、tertーブチル基等の直鎖又は分岐を有する低級アルキル基、2-ヨウ化エチル基、2,2,2-トリクロロエチル基等のハロゲン化低級アルキル基、

5 アリル基、2ープロペニル基、2ーメチルー2ープロペニル基等の低級アルケニル基、ベンジル基、PMB基等のアラルキル基等を挙げることができる。

このようなカルボキシル基の保護基Rの導入及び除去方法については、文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T.W.Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(1)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

15

20

(工程1)本工程は、酢酸銅及び塩基の存在下、化合物(1)とp-メチルチオフェニルホウ酸(2)とを反応させることにより、5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸エステル(3)を製造する方法である。

用いられるp-メチルチオフェニルホウ酸(2)の量は、化合物(1)1当量 に対して、通常1乃至10当量、好ましくは1乃2.5当量である。

酢酸銅の他に硝酸銅を用いることができるが、酢酸銅がより好ましい。

用いられる酢酸銅又は硝酸銅の量は、通常 0.1乃至 5 当量、好ましくは、1 乃至 1.5 当量である。

用いられる塩基としては、例えばトリエチルアミン、ジイソプロピルエチルア 25 ミン等が挙げられ、これらのうち、トリエチルアミンが好ましい。

用いられる塩基の量は、通常 0 乃至 1 0 当量、好ましくは 4 乃至 6 当量である。 反応温度は、通常 0 度乃至反応溶媒の還流温度、好ましくは 1 5 乃至 3 0 度である。

本工程における反応時間は、通常2乃至48時間、好ましくは、12時間であ

、る。

10

本工程において用いられる反応溶媒は、反応に支障をきたさないものでないならばいずれのものを用いてもよいが、例えば塩化メチレン、アセトニトリル、トルエン等が挙げられ、これらのうち、塩化メチレンが好ましい。

5 このようにして得られる化合物(3)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく次工程に付すことができる。

(工程2)本工程は、塩基の存在下、上記工程1で得られた化合物(3)とハロゲン化アルキル(4)とを反応させることにより、化合物(5)を製造する方法である。

用いられる化合物(4)としては、本工程における反応が支障なく進行して、 化合物(5)を製造するものであれば、いかなるものを用いてもよいが、例えば、 ヨウ化エチル、2-臭化プロピル、臭化シクロペンチル、2-プロモエタノール 等が挙げられ、これらのうち、例えば、2-臭化プロピル、臭化シクロペンチル、 15 等が好ましく、2-臭化プロピルがより好ましい。

用いられる化合物(4)の量としては、化合物(3)1当量に対して、通常0. 5万至10当量、好ましくは1万至3当量である。

用いられる塩基としては、例えば炭酸カリウム、ジイソプロピルアミン等が挙 げられ、これらのうち、炭酸カリウムが好ましい。

20 用いられる塩基の量は、通常1乃至10当量、好ましくは1.5乃至3当量である。

反応温度は、通常0度乃至反応溶媒の還流温度、好ましくは25乃至40度である。

反応時間は、通常1乃至12時間、好ましくは4乃至8時間である。

25 本工程において用いられる反応溶媒は、反応に支障をきたさないものでないならばいずれのものを用いてもよいが、N, N-ジメチルホルムアミドが好ましい。このようにして得られる化合物(5)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製するか、又は単離精製することなく次工程に付すことができる。

(工程3)本工程は、上記工程2で得られた化合物(5)とmCPBAとを反応させることにより、化合物(6)を製造する方法である。本工程において用いられる酸化反応は、文献記載の方法(例えばブラウン(Brown. D)ら著、「シンプル ピリミジンズ. X. フォーメーション アンド リアクティビティ オブ 2-, 4-, アンド 5ーピリミジニル スルホンズ アンド スルホキシズ(Simple pyrimidines. X. The formation and reactivity of 2-, 4-, and 5-pyrimidinyl sulfones and sulfoxides)」、ジャーナル オブ ケミカル ソサエティ [セクション] C オーガニック(Journal of the Chemical Society [Section] C: Organic)、第7巻、1967年、p568-572)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。用いられるmCPBAの量は、化合物(5)1当量に対して、通常2乃至10当量、好ましくは3乃至4当量である。

15 反応時間は、通常10分乃至12時間、好ましくは30分乃至1時間である。 反応温度は、通常-78乃至15度、好ましくは0乃至10度である。 用いられる反応溶媒は、反応に支障をきたさないものならばいずれのものを用 いてもよいが、例えば塩化メチレン、クロロホルム等が挙げられ、これらのうち、 クロロホルムが好ましい。

20 このようにして得られる化合物(6)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、再沈殿、溶媒抽出、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程4) 本工程は、上記工程3で得られた化合物(6)の有するカルボキシル基の保護基Rを除去して、化合物(7)を製造する方法である。

25 カルボキシル基の保護基Rの除去方法は、前記文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T.W.Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができ

る。

5

このようにして得られる化合物(7)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

(工程5) 本工程は、上記工程4で得られた化合物(7)と下記式(8)

[式中、各記号は前記定義に同じ]で表されるアミノ化合物とを反応させることにより、本発明に係る化合物(I-1)を製造する方法である。

本反応は文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、 10 丸善、1983年、コンプリヘンシブ オーガニック シンセシス (Compr ehensive Organic Synthesis)、第6巻、Perg amon Press社、1991年、等)、それに準じた方法又はこれらと常 法とを組み合わせることにより、通常のアミド形成反応を行えばよく、即ち、当 業者に周知の縮合剤を用いて行うか、或いは、当業者に利用可能なエステル活性 化方法、混合酸無水物法、酸クロリド法、カルボジイミド法等により行うことが 15 できる。このようなアミド形成試薬としては、例えば塩化チオニル、塩化オキザ リル、N.N-ジシクロヘキシルカルボジイミド、1-メチル-2-ブロモピリ ジニウムアイオダイド、N, N'-カルボニルジイミダゾール、ジフェニルフォ スフォリルクロリド、ジフェニルフォスフォリルアジド、N.N'ージスクシニ 20 ミジルカルボネート、N, N' ージスクシニミジルオキザレート、1 – エチルー 3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、クロロギ酸エチル、 クロロギ酸イソブチル又はペンゾトリアゾー1-イルーオキシートリス(ジメチ ルアミノ)フォスフォニウムヘキサフルオロフォスフェイト等が挙げられ、中で も例えば塩化チオニル、1-エチル-3-(3-ジメチルアミノプロピル)カル ボジイミド塩酸塩、N、Nージシクロヘキシルカルボジイミド又はベンゾトリア 25 ゾー1-イル-オキシートリス(ジメチルアミノ)フォスフォニウムヘキサフル オロフォスフェイト等が好適である。またアミド形成反応においては、上記アミ ド形成試薬と共に塩基、縮合補助剤を用いてもよい。

25

用いられる塩基としては、例えばトリメチルアミン、トリエチルアミン、N, N-ジイソプロピルエチルアミン、N-メチルモルホリン、N-メチルピロリジン、N-メチルピペリジン、N, N-ジメチルアニリン、1, 8-ジアザビシクロ [5.4.0] ウンデカー7-エン(DBU)、1, 5-アザビシクロ [4.

- 5 3.0] ノナー5-エン (DBN) 等の第3級脂肪族アミン;例えばピリジン、 4-ジメチルアミノピリジン、ピコリン、ルチジン、キノリン又はイソキノリン 等の芳香族アミン等が挙げられ、中でも例えば第3級脂肪族アミン等が好ましく、 特に例えばトリエチルアミン又はN, N-ジイソプロピルエチルアミン等が好適 である。
- 10 用いられる縮合補助剤としては、例えばN-ヒドロキシベンゾトリアゾール水和物、N-ヒドロキシスクシンイミド、N-ヒドロキシー5ーノルボルネン-2、3-ジカルボキシイミド又は3-ヒドロキシー3、4-ジヒドロー4-オキソー1、2、3-ベンゾトリアゾール等が挙げられ、中でも例えばN-ヒドロキシベンゾトリアゾール等が好適である。
- 15 用いられる化合物(8)の量は、用いられる化合物及び溶媒の種類、その他の 反応条件により異なるが、カルボン酸誘導体(7)又はその反応性誘導体1当量 に対して、通常0.1乃至10当量、好ましくは0.5乃至3当量である。

用いられるアミド形成試薬の量は、用いられる化合物及び溶媒の種類、その他の反応条件により異なるが、通常カルボン酸化合物 (7) 又はその反応性誘導体1.当量に対して、通常1乃至10当量、好ましくは1乃至3当量である。

用いられる縮合補助剤の量は、用いられる化合物及び溶媒の種類その他の反応 条件により異なるが、カルボン酸化合物(7)又はその反応性誘導体1当量に対 して、通常1乃至10当量、好ましくは1乃至3当量である。

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件に より異なるが、通常1乃至10当量、好ましくは1乃至5当量である。

本工程において用いられる反応溶媒としては、例えば不活性溶媒が挙げられ、 反応に支障のない限り、特に限定されないが、具体的には、例えば塩化メチレン、 クロロホルム、1,2ージクロロエタン、N,Nージメチルホルムアミド、酢酸 エチルエステル、酢酸メチルエステル、アセトニトリル、ペンゼン、キシレン、 トルエン、1,4-ジオキサン、テトラヒドロフラン、ジメトキシエタン又はそれらの混合溶媒が挙げられるが、好適な反応温度確保の点から、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、アセトニトリル又はN,N-ジメチルホルムアミド等が好ましい。

5 本工程における反応温度は、通常-78度乃至溶媒の沸点温度、好ましくは0 乃至30度である。

本工程における反応時間は、通常 0. 5 乃至 9 6 時間、好ましくは 3 乃至 2 4 時間である。

本工程において用いられる塩基、アミド形成試薬、縮合補助剤は、1種又はそ 10 れ以上組み合わせて、使用することができる。

本工程において製造される化合物(I-1)のB環上の置換基 R^3 が保護基を有している場合には、当該保護基を必要に応じて除去することができる。当該保護基の除去は、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる本発明に係る化合物 (I-1) は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製することができる。

また、前記工程3において製造される化合物(5)は、以下の方法によっても製造することができる。

「式中、各記号は前記定義に同じ]

15

20

(工程6) 本工程は、前記工程1において製造された化合物(3)とアルコール化合物(9)とを反応させることにより、化合物(5)を製造する方法である。

本反応は、いわゆる光延反応であり、ホスフィン化合物及びアゾ化合物の存在下、文献記載の方法(例えばミツノブ(Mitsunobu. O)著、「ユース オブ ジエチル アゾジカルボキシレート アンド トリフェニルホスフィン イン シンセシス アンド トランスフォーメーション オブ ナチュラル プロダクツ (The use of diethyl azodicarboxy late and triphenylphosphine in synthesis and transformation of natural products)」、シンセシス(Synthesis)、第1巻、1981年、p1-28))、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

本工程において用いられるアルコール化合物(9)の量は、化合物(3)1当量に対して、通常0.5乃至10当量、好ましくは1乃至3当量である。

15 本工程において用いられるホスフィン化合物としては、通常例えばトリフェニルホスフィン、トリエチルホスフィン等が挙げられる。

用いられるホスフィン化合物の量は、化合物(3)1当量に対して、通常0. 5 乃至10当量であり、好ましくは1乃至3当量である。

用いられるアゾ化合物としては、例えばジエチルアゾジカルボキシレート、ジ 20 イソプロピルアゾジカルボキシレート等が挙げられる。

用いられるアゾ化合物の量は、化合物(3)1当量に対して、通常0.5乃至 10当量、好ましくは1乃至3当量である。

本工程における反応時間は、通常1乃至48時間、好ましくは4乃至12時間である。

25 本工程における反応温度は、通常 0 度乃至反応溶媒の還流温度、好ましくは 1 5 乃至 3 0 度である。

本工程において用いられる反応溶媒としては、反応に支障のないものであれば、 特に限定されないが、具体的には、例えばテトラヒドロフラン、トルエン等が挙 げられる。 このようにして得られる化合物 (I-1) は、公知の分離精製手段、例えば濃縮、減圧濃縮、再沈殿、溶媒抽出、結晶化、クロマトグラフィー等により単離精製するか又は単離精製することなく、次工程に付すことができる。

また、本発明に係る化合物 (I-2) は、下記式の方法によっても製造するこ 5 とができる。

[式中、各記号は前記定義に同じ]

(工程7) 本工程は、前記工程で得られた化合物(1)と化合物(4)とを反応させることにより、化合物(10)を製造する方法である。

10 本反応は、前記工程2と同様の方法で行えばよい。

化合物(1)に対するハロゲンアルキル化合物(4)の当量数、反応温度、反応時間等の反応条件は、前記2と同様の方法又はそれに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

WO 2004/076420 PCT/JP2004/002284

(工程8) 本工程は、前記工程7で得られた化合物(10)と下記式(11)

(11)

5

15

20

[式中、各記号は前記定義に同じ]で表されるホウ酸誘導体とを反応させることより、化合物(12)を製造する方法である。

 R^1 に保護基が必要な場合には、 R^1 の種類に応じて必要な保護基を導入することができる。該 R^1 の保護基は、工程 8 乃至 1 0 において R^1 の保護基として作用し、その後容易に除去され、本発明に係る化合物(I-2)を得ることができるものであれば、いかなる基であってもよい。

該R¹の保護基の導入、除去方法は、文献記載の方法(例えば、プロテクティ 10 プ グループス イン オーガニック シンセシス(Protective G roups in Organic Synthesis)、T. W. Gree n著、第2版、John Wiley&Sons社、1991年等)、それに準 じた方法又はこれらと常法とを組み合わせることにより行うことができる。

また、A環上の置換基R¹¹を変換することによって、R¹とすることもできる。

A環上の置換基R¹¹からR¹への変換は、文献記載の方法(例えば、コンプリヘンシプ オーガニック シンセシス(Comprehensive Organic Synthesis)第6巻、Pergamon Press社、1991年、コンプリヘンシブ オーガニック トランスフォーメーション(Comprehensive Organic Transformations)Richard Lら著、VCH Publishers社、1988年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

R¹¹としては、例えばホルミル基、ハロゲン原子、アルコキシカルボニル基等が挙げられる。

25 R¹¹が、例えばホルミル基である場合には、ホルミル基を還元することによって、ヒドロキシメチル基へと変換することが可能である。ホルミル基から、ヒドロキシメチル基への変換反応は、ホルミル基を有する化合物と水素化ホウ素ナト

25

リウムとを反応させることによって、R1としてヒドロキシメチル基を有する化 合物を製造することができる。

さらに、 R^1 としてヒドロキシメチル基を有する化合物をアジド化それに続く 還元反応によりアミノメチル基へと変換することができる。

5 また、アルコキシカルボニル基からアルキルカルバモイル基への変換反応は、 アルコキシカルボニル基を有する化合物を加水分解した後、アルキルアミンとア ミド形成反応させることによって、R¹としてアルキルカルバモイル基を有する 化合物を製造することができる。

前記式(11)で表されるホウ酸誘導体としては、例えば4-プロモーフェニルホウ酸、4-フルオローフェニルホウ酸、4-メチルーフェニルホウ酸、4-メトキシーフェニルホウ酸、4-トリフルオロメチルーフェニルホウ酸、4-ヒドロキシメチルーフェニルホウ酸、4-アセチルーフェニルホウ酸、4-シアノーフェニルホウ酸、4-メトキシカルボニルーフェニルホウ酸、4-カルボキシーフェニルホウ酸、4-ホルミルーフェニルホウ酸、4-アミノメチルーフェニルホウ酸、4-カルバモイルーフェニルホウ酸等が挙げられる。

前記式(11)で表されるフェニルホウ酸誘導体が、A環上に R^{11} を置換基として有している場合には、 R^{11} は保護基を有していてもよい。

当該保護基の導入方法については、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製するか、 又は単離精製することなく、次工程に付すことができる。

(工程9) 本工程は、前記工程8で得られた化合物(12)の有するカルボキシル基の保護基Rを除去する方法である。本工程は、前記工程4と同様の反応条件により行えばよく、前記文献記載の方法(例えばプロテクティブ グループスイン オーガニック シンセシス(Protective Groups in

Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(13)は、公知の分離精製手段、例えば濃縮、

5 減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく、次工程に付すことができる。

(工程10)本工程は、前記工程9で得られた化合物(13)とアミノ化合物(8)とを反応させることにより、本発明に係る化合物(I-2)を製造する方法である。本反応は、前記工程5と同様の反応条件により行うことができる。

10 このようにして得られる本発明に係る化合物 (I-2) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製することができる。

本発明に係る化合物(I-3)は、以下の方法によっても製造することができる。

[式中、Yはハロゲン原子を示し、その他の記号は前記定義に同じ]

(工程11) 本工程は、化合物(14)と前記化合物(4)とを反応させることにより、化合物(14-1)を製造する方法である。本工程において、フェノール誘導体(14)1当量に対して用いられる化合物(4)の当量数、反応温度、反応溶媒等の反応条件は、前記工程7等と同様である。

このようにして得られる化合物(14-1)は、公知の分離精製手段、例えば 濃縮、減圧濃縮、溶媒抽出、再沈殿、結晶化、クロマトグラフィー等により単離 精製するか又は単離精製することなく次工程に付すことができる。

10 (工程12)本工程は、前記工程11で得られた化合物(14-1)と化合物 (15)とを反応させることにより、化合物を製造する方法である。

本反応は、塩基、ヒドロキノン及び臭化銅の存在下、化合物(14-1)とメルカプト誘導体(15)とを反応させることにより行えばよい。

本反応において用いられる塩基としては、炭酸カリウム、炭酸セシウム、水素

化ナトリウム等が挙げられ、これらのうち、炭酸カリウム、水素化ナトリウムが 好ましい。

本工程において用いられる塩基の量は、化合物(14-1)1当量に対して、 通常0. 5乃至20当量であり、好ましくは3乃至10当量である。

本工程において用いられるヒドロキノンの量は、化合物(14-1)1当量に 対して、通常0.1乃至10当量であり、好ましくは0.2乃至1.5当量であ る。

本工程において用いられる臭化銅の量は、化合物(14-1)1当量に対して、 通常0.1乃至10当量であり、好ましくは0.2乃至2当量である。

反応温度は、通常25度乃至反応溶媒の還流温度であり、好ましくは50度乃 10 至反応溶媒の還流温度である。

反応時間は、通常10分乃至24時間であり、好ましくは15分乃至3時間で ある。

本工程において用いられる反応溶媒としては、反応に支障のないものであれば、 特に限定されないが、具体的には、例えばN,N-ジメチルホルムアミドが好ま 15 しい。

このようにして得られる化合物(16)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく次工程に付すことができる。

(工程13) 本工程は、前記工程12で得られた化合物(16)の有するカル 20 ボキシル基の保護基を除去して、化合物(17)を製造する方法である。

本工程は、前記工程4又は9と同様の方法により行えばよく、文献記載の方法 (例えばプロテクティブ グループス イン オーガニック シンセシス (Pr otective Groups in Organic Synthesi s)、T. W. Green著、第2版、John Wiley&Sons社、1 991年、等)、それに準じた方法又はこれらと常法とを組み合わせることによ り行うことができる。

25

このようにして得られる化合物(17)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製す

15

るか又は単離精製することなく次工程に付すことができる。

(工程 14) 本工程は、前記工程 13 で得られた化合物(17)と化合物(8)とを反応させることにより本発明に係る化合物(I-3)を製造する方法である。

本反応は、アミド結合形成反応であり、反応温度、反応溶媒等の反応条件は、 前記工程5又は10と同様に行えばよい。

このようにして得られる本発明に係る化合物 (I-3) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製することができる。

また、本発明に係る化合物 (I-4) は、以下の方法によっても製造すること 10 ができる。

[式中、各記号は前記定義に同じ]

(工程15) 本工程は、前記工程7で得られた化合物(10)の有するカルボキシル基の保護基を除去する方法である。本工程は、前記工程4と同様の反応条件により行えばよく、前記文献記載の方法(例えばプロテクティブ グループスイン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

20 このようにして得られる化合物(18)は、公知の分離精製手段、例えば濃縮、

減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程16) 本工程は、前記工程15で得られた化合物(18)と化合物(8) とを反応させることにより化合物(19)を製造する方法である。本反応は、ア ミド結合形成反応であり、反応温度、反応溶媒等の反応条件は、前記工程5又は 10と同様に行えばよい。

このようにして得られる本発明に係る化合物(19)は、公知の分離精製手段、 例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等によ り単離精製するか又は単離精製することなく、次工程に付すことができる。

(工程17) 本工程は、塩基の存在下、前記工程16で得られた化合物(19) 10 と下記式(20)

15

「式中、A環はピリジン環、ピラジン環、ピリミジン環又はピリダジン環を示し、 各記号は前記定義に同じ]で表されるハロゲン化合物とを反応させることにより、 本発明に係る化合物 (I-4)を製造する方法である。

本工程において用いられるハロゲン化合物(20)の量は、化合物(19)1 当量に対して、诵常 0. 5 乃至 1 0 当量、好ましくは 1 乃至 3 当量である。

本反応において用いられる塩基としては、炭酸カリウム、炭酸セシウム、水素 化ナトリウム等が挙げられ、これらのうち、炭酸カリウムが好ましい。

本工程において用いられる塩基の量は、化合物(19)1当量に対して、通常 20 0. 5乃至20当量であり、好ましくは1乃至10当量である。

反応温度は、通常25度乃至反応溶媒の還流温度であり、好ましくは50度乃 至反応溶媒の環流温度である。

反応時間は、通常1時間乃至48時間であり、好ましくは1時間乃至24時間 である。 25

本工程において用いられる反応溶媒としては、反応に支障のないものであれば、 特に限定されないが、具体的には、例えばN,N-ジメチルホルムアミドが好ま しい。

5

20

25

R¹に保護基が必要な場合には、R¹の種類に応じて必要な保護基を導入することができる。該R¹の保護基は、工程17においてR¹の保護基として作用し、その後容易に該保護基が除去されるものであればいかなるものであってもよい。

R¹の保護基の導入、除去方法は、文献記載の方法(例えば、プロテクティブ グループス イン オーガニック シンセシス (Protective Gro ups in Organic Synthesis)、T. W. Green著、 第2版、John Wiley&Sons社、1991年等)、それに準じた方 法又はこれらと常法とを組み合わせることにより行うことができる。

また、A環上の置換基R¹¹を変換することによって、R¹とすることもできる。 A環上の置換基R¹¹からR¹への変換は、文献記載の方法(例えば、コンプリ ヘンシブ オーガニック シンセシス(Comprehensive Orga nic Synthesis)第6巻、Pergamon Press社、19 91年、コンプリヘンシブ オーガニック トランスフォーメーション(Com prehensive Organic Transformations)R ichard Lら著、VCH Publishers社、1988年、等)、 それに準じた方法又はこれらと常法とを組み合わせることにより行うことができ る。

R¹¹としては、例えばハロゲン原子、アルコキシカルボニル基等が挙げられる。 R¹¹が、例えばアルコキシカルボニル基である場合には、アルコキシカルボニル基を還元することによって、ヒドロキシメチル基へと変換することが可能である。

アルコキシカルポニル基から、ヒドロキシメチル基への変換反応は、アルコキシカルボニル基を有する化合物と水素化アルミニウムリチウムとを反応させることによって、R¹としてヒドロキシメチル基を有する化合物を製造することができる。

さらに、R¹としてヒドロキシメチル基を有する化合物をアジド化それに続く 還元反応によりアミノメチル基へと変換することができる。

前記式で表されるハロゲン化合物 (20)が、A環上にR11を置換基として有

している場合には、R¹¹は保護基を有していてもよい。

当該保護基の導入方法については、文献記載の方法(プロテクティブ グループス イン オーガニック シンセシス (Protective Groups in Organic Synthesis)、T.W. Green著、第2版、

5 John Wiley&Sons社、1991年、等)、それに準じた方法又は これらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物 (I-4) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製することができる。

10 本発明に係る化合物 (I-5) は、以下の方法によっても製造することができる。

[式中、 R^{22} は、保護基を有していてもよい R^{2} を示し、各記号は前記定義に同じ]

(工程18) 本工程は、塩基の存在下、化合物(21)と前記式(20)

15

20

25

[式中、R⁴はヒドロキシ基の保護基を示し、各記号は前記定義に同じ]で表されるハロゲン化合物とを反応させて、化合物(23)を製造する方法である。

本工程において用いられる化合物(21)の有するヒドロキシ基の保護基R⁴ の導入は、前記記載の文献(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法と を組み合わせることにより行うことができる。

本工程は、前記工程17と同様の方法、これに準じた方法又はこれらと常法と を組み合わせることにより行うことができる。

R⁴としては、より具体的には、例えば、メトキシメチル基、ベンジル基、4 ーメトキシーベンジル基、2-(トリメチルシリル)エトキシメチル基、ter t-ブチルジメチルシリル基、tert-ブチルカルボニル基等が挙げられる。 用いられる化合物(20)の量は、用いられる化合物及び溶媒の種類、その他 の反応条件により異なるが、化合物(21)1当量に対して、通常0.1万至2

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常 0. 1 乃至 2 0 当量、好ましくは 0. 5 乃至 5 当量である。

0 当量、好ましくは0.5乃至5当量である。

用いられる塩基としては、本工程において、化合物(20)と化合物(21) との反応において、化合物(23)を製造するものであれば、いかなるものを用 いてもよいが、例えば、炭酸セシウム、炭酸ナトリウム、炭酸カリウム、リン酸 カリウム、酢酸カリウム、カリウムーtert-ブチラート、トリエチルアミン 等が挙げられる。

用いられる反応溶媒としては、不活性溶媒が挙げられ、反応に支障のない限り 特に限定されないが、具体的には、例えば、ピリジン、トルエン、1,4-ジオ キサン、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、ジメチルスルホキシド、1-メチル-2-ピロリジノン等が挙げられる。

本工程においては、反応系中に、酸化銅(I)、酸化銅(II)又は塩化銅(I)を共存させてもよい。

また本工程においては、反応系中に、酢酸パラジウム(II)又は塩化パラジウム(II)等のパラジウム塩及び2-(ジーtert-ブチルホスフィノ)ピフェニル又はトリフェニルホスフィン等の配位子を共存させてもよい。

さらに、本工程においては、炭酸銀、酢酸銀、酸化銀又はトリフルオロ酢酸銀 等を反応系中に、共存させてもよい。

10 本工程における反応温度は、通常 0 度乃至反応溶媒の還流温度、好ましくは室 温乃至 1 5 0 度である。

本工程における反応時間は、通常0.1時間乃至72時間、好ましくは0.5 時間乃至 5時間である。

このようにして得られる化合物(23)は、公知の分離精製手段、例えば濃縮、

15 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離製精製することなく、次工程に付すことができる。

(工程19) 本工程は、前記工程18で得られた化合物(23)のヒドロキシ基の保護基を除去して、化合物(24)を製造する方法である。

本工程における保護基の除去は、文献記載の方法(例えばプロテクティブ グ
20 ループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T.W.Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができ、R⁴がメトキシメチル基の場合には、該保護基の除去は、例えば、トリフルオロ酢酸(TFA)、塩酸等を用いることにより行うことができる。

R⁴の除去にTFAを用いる場合には、TFAの量は、通常0.5万至100 0当量、好ましくは1万至100当量である。

R⁴の除去に塩酸を用いる場合には、塩酸の量は、通常0.5乃至1000当量、好ましくは1乃至100当量である。

本工程において用いられる反応溶媒は、反応に支障のないものであれば、特に限定されないが、例えば塩化メチレン、クロロホルム、メタノール、1,4ージオキサン等が挙げられる。

反応温度は、通常 0 度乃至反応溶媒の還流温度、好ましくは室温乃至反応溶媒 5 の還流温度である。

反応時間は、通常 0. 1時間乃至 7 2時間、好ましくは 0. 5時間乃至 1 2時間である。

このようにして得られる化合物(24)は、公知の分離精製手段、例えば、濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精 10 製するか又は単離精製することなく、次工程に付すことができる。

(工程 20)本工程は、前記工程で得られた化合物(24)と化合物(25-1) 又は(25-2)とを反応させることにより化合物(26)を製造する方法である。

化合物(24)と化合物(25-1)との反応は、いわゆる光延反応であり、 ホスフィン化合物及びアゾ化合物の存在下、文献記載の方法(例えばミツノブ(Mitsunobu. O)著、「ユース オブ ジエチル アゾジカルボキシレート アンド トリフェニルホスフィン イン シンセシス アンド トランスフォーメーション オブ ナチュラル プロダクツ(The use of diethyl azodicarboxylate and triphenyl phosphine in synthesis and transformation of natural products)」、シンセシス(Synthesis)、第1巻、1981年、p1-28))、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

本工程において用いられるアルコール化合物(25-1)の量は、化合物(2 25 4)1当量に対して、通常0.5乃至10当量、好ましくは1乃至3当量である。 本工程において用いられるホスフィン化合物としては、通常例えばトリフェニル ホスフィン、トリエチルホスフィン等が挙げられる。

用いられるホスフィン化合物の量は、化合物(24)1当量に対して、通常0. 5乃至10当量であり、好ましくは1乃至3当量である。 用いられるアゾ化合物としては、例えばジエチルアゾジカルボキシレート、ジ イソプロピルアゾジカルボキシレート等が挙げられる。

用いられるアゾ化合物の量は、化合物(24)1当量に対して、通常0.5乃至10当量、好ましくは1乃至3当量である。

5 本工程における反応時間は、通常1乃至48時間、好ましくは4乃至12時間 である。

本工程における反応温度は、通常0度乃至反応溶媒の還流温度、好ましくは1 5乃至30度である。

本工程において用いられる反応溶媒としては、反応に支障のないものであれば、 10 特に限定されないが、具体的には、例えばテトラヒドロフラン、トルエン等が挙 げられる。

また、化合物(24)と化合物(25-2)との反応は、前記工程2と同様の 方法で行えばよい。

化合物(24)に対するハロゲン化合物(25-2)の当量数、反応温度、反 15 応時間等の反応条件は、前記2と同様の方法又はそれに準じた方法又はこれらと 常法とを組み合わせることにより行うことができる。

さらに化合物 (26) は化合物 (24) と式 (25-3) R²²-X³ (25-3)

[式中、R²²は、保護基を有していてもよいR²を示し、X³はメシレート又はト 20 シレートなどの脱離基を示す]で表される化合物とを反応させることにより製造 することができる。

化合物(24)に対する化合物(25-3)の当量数、反応温度、反応時間等の反応条件は、前記2と同様の方法又はそれに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

25 このようにして得られる化合物(26)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程21) 本工程は、前記工程で得られた化合物(26) の有するカルボキシル基の保護基Rを除去することにより、化合物(27)を製造する方法である。

本工程は、前記工程4と同様の反応条件により行えばよく、前記文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T.W.Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(27)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

10 (工程22)本工程は、前記工程で得られた化合物(27)とアミノ化合物(II)とを反応させることにより化合物(28)を製造する方法である。

本反応は、アミド結合形成反応であり、反応温度、反応溶媒等の反応条件は、 前記工程 5 、 1 0 等と同様に行えばよい。

このようにして得られる本発明に係る化合物(28)は、公知の分離精製手段、 15 例えば濃縮、減圧濃縮、溶媒抽出、結晶化、再沈殿、クロマトグラフィー等によ り単離精製することができる。

化合物(28)のR²²が保護基を有していない場合には、化合物(28)が本 発明に係る化合物に相当する。

また、化合物(28)の R^{22} 及び/又は R^{3} に保護基を有している場合には、 20 その保護基を除去して、本発明に係る化合物 (I-5)を製造することができる。 保護基の除去は、文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス (Protective Groups in Organic Synthesis)、<math>T.W.Green著、第2版、John Wile 1ey & Sons 社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

例えば、保護基の必要な場合としては、R²上の置換基として、ヒドロキシ基を有する場合には、ヒドロキシ基の保護基としては、例えば、tertープチルジメチルシリル基等が挙げられ、該保護基の除去としては、塩酸、トリフルオロ酢酸、水酸化ナトリウム、テトラブチルアンモニウムフルオライド等が挙げられ

る。

15

なお、工程18において用いられる化合物(20)の1つとしては、例えば、 下記式(22)

5 [式中、各記号は前記定義に同じ]で表される化合物が挙げられ、該化合物は、 下記に示した方法により製造することができる。

「各記号は、前記定義に同じ]

(工程18-1) 本工程は、ジハロピリジン化合物(22-1)とナトリウムチ 10 オアルコキシドとを反応させることにより、アルキルスルファニルピリジン誘導 体 (22-2) を製造する方法である。

本工程において用いられるジハロピリジンとしては、具体的には、例えば、2,5-ジプロモピリジン、2,5-ジクロロピリジン、2,5-ジヨードピリジン、5-ブロモ-2-クロロピリジン、2-クロロ-5-ヨードピリジン、5-ブロモ-2-フルオロピリジン等が挙げられる。

本工程において用いられるナトリウムチオアルコキシドは、通常化合物(22-1)1当量に対して、通常0.1乃至3当量、好ましくは、1乃至2当量である。

用いられるナトリウムチオアルコキシドとしては、具体的には、例えば、ナト 20 リウムチオメトキシド、ナトリウムチオエトキシド等が挙げられる。

本工程において用いられる溶媒としては、例えば不活性溶媒が挙げられ、反応 に支障のない限り、特に限定されないが、具体的には、例えばN, Nージメチル

ホルムアミド、テトラヒドロフラン、1-メチル-2-ピロリジノン、水等が挙 げられる。

本工程の反応時間は、通常 0.5時間乃至 72時間であり、好ましくは、1時間乃至 12時間である。

5 このようにして得られた化合物(22-2)は、公知の分離精製手段、例えば、 濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離 精製するか、又は単離精製することなく、次工程に付すことができる。

(工程18-2)本工程は、前記工程18-1で得られた化合物(22-2)とmCPBAとを反応させることにより化合物(22)を製造する方法である。

10 本工程において用いられる酸化反応は、前記記載の工程3と同様の方法、これ に準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

本工程において用いられるmCPBAの量、反応温度、反応時間、反応溶媒についても、工程3と同様の方法、これに準じた方法で行うことができる。

さらに本工程に用いられる酸化剤としては、過酸化水素水、タングステン酸ナ 15 トリウム、次亜塩素酸ナトリウム等が挙げられる。

本工程において用いられる酸化剤の量としては、通常化合物(22-2)1当量に対して、通常0.1乃至10当量、好ましくは、1乃至5当量である。

本工程において用いられる溶媒としては、反応に支障のない限り、特に限定されないが、具体的には、アセトニトリル、エタノール、メタノール等が挙げられる。

このようにして得られた化合物(22)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製することができる。

本発明に係る化合物(I-6)は、以下の方法によっても製造することができ 25 る。

[式中、各記号は前記定義に同じ]

(工程24) 本工程は、塩基の存在下、化合物(21)と化合物(29) とを反 応させることにより化合物(30)を製造する方法である

本工程において用いられる化合物(29)が有するXとしては、前記定義のハロゲン原子のうち、より具体的には、例えば臭素原子、ヨウ素原子が好ましい。

本工程において用いられる化合物(29)が有するRとしては、前記定義の低級アルキル基のうち、より具体的には、例えばメチル基、エチル基、プロピル基、

5 イソプロピル基等が好ましい。

20

本工程において用いられる塩基としては、リン酸カリウム、酢酸カリウム、カリウム-tert-プチラート、トリエチルアミン等が挙げられる。

本工程において用いられる塩基の量は、化合物(21)1当量に対して、通常 0.01乃至10当量、好ましくは0.1乃至2当量である。

10 また本工程においては、反応系中に、酢酸パラジウム(II)又は塩化パラジウム(II)等のパラジウム塩及び2-(ジーtert-プチルホスフィノ)ビフェニル又はトリフェニルホスフィン等の配位子を共存させてもよい。

本工程において用いられるパラジウム塩の量は、化合物(21)1当量に対して、通常0.01乃至10当量、好ましくは0.1乃至2当量である。

15 本工程において用いられる配位子の量は、化合物(21)に対して、通常0. 1乃至10当量、好ましくは0.5乃至2当量である。

反応温度は、通常室温乃至反応溶媒の還流温度であり、好ましくは50度乃至 反応溶媒の還流温度である。

反応溶媒は、反応に支障のないものであれば、いずれのものを用いてもよいが、 例えば、

反応時間は、通常 0.5 時間乃至 72 時間、好ましくは 1 時間乃至 12 時間である。

25 このようにして得られる化合物(30)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程25)本工程は、前記工程24で得られた化合物(30)のヒドロキシ基の保護基であるR4を除去して化合物(31)を製造する方法である。(30)

15

20

の有するヒドロキシ基の除去反応は、前記文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができ、前記工程19と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより製造することができる。

このようにして得られる化合物(31)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す 10 るか又単離精製することなく、次工程に付すことができる。

(工程26) 本工程は、前記工程25で得られた化合物(31)とR²²OHとを反応させて、化合物(32)を製造する方法である。

本工程において用いられる反応は、いわゆる光延反応であり、ホスフィン化合物及びアゾ化合物の存在下、文献記載の方法(例えばミツノブ(Mitsunobu.O)著、「ユース オブ ジエチル アゾジカルボキシレート アンド トリフェニルホスフィン イン シンセシス アンド トランスフォーメーションオブ ナチュラル プロダクツ(The use of diethyl az odicarboxylate and triphenylphosphine in synthesis and transformation of natural products)」、シンセシス(Synthesis)、第1巻、1981年、p1-28))、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

本工程において用いられるアルコール化合物 (25) の量は、化合物 (31) 1 当量に対して、通常 0.5 乃至 10 当量、好ましくは 1 乃至 3 当量である。

25 本工程において用いられるホスフィン化合物としては、通常例えばトリフェニルホスフィン、トリエチルホスフィン等が挙げられる。

用いられるホスフィン化合物の量は、化合物(31)1当量に対して、通常0. 5万至10当量であり、好ましくは1万至3当量である。

用いられるアゾ化合物としては、例えばジエチルアゾジカルボキシレート、ジ

25

イソプロピルアゾジカルボキシレート等が挙げられる。

用いられるアゾ化合物の量は、化合物(31)1当量に対して、通常0.5乃至10当量、好ましくは1乃至3当量である。

本工程における反応時間は、通常1乃至48時間、好ましくは4乃至12時間 5 である。

本工程における反応温度は、通常0度乃至反応溶媒の還流温度、好ましくは1 5万至30度である。

本工程において用いられる反応溶媒としては、反応に支障のないものであれば、 特に限定されないが、具体的には、例えばテトラヒドロフラン、トルエン等が挙 10 げられる。

このようにして得られる化合物(32)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程27)本工程は、前記化合物(32)の有するカルボキシル基の保護基を除 35 去して、化合物(33)を製造する方法である。本工程は、前記工程21等と同様の方法、それに準じた方法、又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物(33)は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製す るか又は単離精製することなく、次工程に付すことができる。

(工程28) 本工程は、前記工程27において得られた化合物(33)と式(II)で表される化合物とを反応させて、化合物(34)を製造する方法である。

本工程における反応は、いわゆるアミド結合形成反応であり、前記工程22と 同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行 うことができる。

このようにして得られる化合物(34)は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができ。なお、化合物(34)において、R³及び/又はR²²に保護基を有していない場合には、化合物(34)

20

25

は、本発明に係る化合物である。

(工程 29)本工程は、前記工程 28 において得られた化合物(34)の R^3 及び/又は R^{22} に保護基を有している場合には、適宜その保護基を除去することにより本発明に係る化合物(I-5)を製造する方法である。

本工程における反応は、前記文献記載の方法(例えばプロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T.W.Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

10 このようにして得られる化合物 (I-5) は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製することができる。

本発明によって提供されるヘテロアリールカルバモイルベンゼン誘導体は、薬学的に許容される塩として存在することができ、当該塩は、本発明に係る化合物 (I) に包含される上記式 (I-1)、 (I-2)、 (I-3)、 (I-4)、 (I-5) 及び (I-6) を用いて、常法に従って製造することができる。

具体的には、上記(I-1)、(I-2)、(I-3)、(I-4)、(I-5)又は(I-6)の化合物が、当該分子内に例えばアミノ基、ピリジル基等に由来する塩基性基を有している場合には、当該化合物を酸で処理することにより、相当する薬学的に許容される塩に変換することができる。

当該酸付加塩としては、例えば塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩、炭酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の低級アルキルスルホン酸塩;ベンゼンスルホン酸塩、pートルエンスルホン酸塩等のアリールスルホン酸塩;フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及びグルタミン酸塩、アスパラギン酸塩等のアミノ酸等の有機酸である酸付加塩を挙げることができる。また、本発明の化合物が酸性基を当該基内に有している場合、例えばカルボキシル基等を有している場合には、当該化合物を塩基で処理することによっ

20

25

ても、相当する薬学的に許容される塩に変換することができる。当該塩基付加塩としては、例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、グアニジン、トリエチルアミン、ジシクロヘキシルアミン等の有機塩基による塩が挙げられる。さらに本発明の化合物は、遊離化合物又はその塩の任意の水和物又は溶媒和物として存在してもよい。

2型糖尿病或いはそれに関連する疾患若しくは症状の予防又は治療のための薬剤を製造するにあたり、本発明に係る式(I)の化合物は、式(I)の化合物と担体物質とを組み合わせて用いることができる。

10 本発明に係る式(I)の化合物の予防又は治療のための投与量は、もちろん、 治療する症状の性質、選択する特定の化合物及び投与経路により変動する。

また、年齢、体重及び各患者の感受性によっても変動する。一般的に、1日の投与量は、単回又は複数回の量として、体重1kgあたり、約0.001mgから約100mgであり、好ましくは、体重1kgあたり、約0.01mgから約50mgであり、より好ましくは約0.1mgから10mgである。これらの制限を越えた範囲での投与量の使用が必要な場合もありうる。

適切な経口投与量の例としては、単回又は1日あたり、2乃至4回の複数回投与としては、少なくとも約0.01mgから多くとも2.0gである。好ましくは、投与量の範囲は、1日に1回又は2回の投与で、約1.0mgから約200mgである。より好ましくは、投与量の範囲は、1日1回の投与で約10mgから100mgである。

静脈内投与又は経口投与を用いた場合には、代表的な投与範囲は、1日あたり、体重1kgあたり、式(I)の化合物を約0.001mgから約100mg(好ましくは0.01mgから約10mg)であり、より好ましくは1日あたり、体重1kgあたり、式(I)の化合物を約0.1mgから10mgである。

上述したように、医薬組成物は、式(I)の化合物と薬学的に許容される担体を含む。「組成物」という用語は、直接又は間接的に、2又はそれ以上のいかなる成分を組み合わせ、複合させ又は凝集させてできたもの、1又はそれ以上の成分を解離させた結果できたもの、或いは、成分間の他のタイプの作用又は相互作

用の結果によりできたものだけでなく、担体を構成する活性及び不活性成分(薬 学的に許容される賦形剤)も含む。

医薬上許容される担体と組み合わせて、2型糖尿病の治療、予防或いその発症 を遅らせるのに有効な量の式(I)の化合物が含まれる組成物が好ましい。

5 本発明に係る化合物の効果的な量を哺乳類、とりわけヒトに投与するためには、いかなる適切な投与経路でも用いることができる。例えば、経口、直腸、局所、静脈、眼、肺、鼻などを用いることができる。投与形態の例としては、錠剤、トローチ、散剤、懸濁液、溶液、カプセル剤、クリーム、エアロゾールなどがあり、経口用の錠剤が好ましい。

10 発口用の組成物を調製するに際しては、通常の医薬用媒体であれば、いかなるものも用いることができ、そのような例としては、例えば、水、グリコール、オイル、アルコール、香料添加剤、保存料、着色料などであり、経口用の液体組成物を調製する場合には、例えば、懸濁液、エリキシル剤及び溶液が挙げられ、担体としては、例えば、澱粉、砂糖、微結晶性セルロース、希釈剤、造粒剤、潤滑剤、結合剤、崩壊剤などが挙げられ、経口用の固体組成物を調製する場合には、例えば、パウダー、カプセル剤、錠剤などが挙げられ、中でも経口用の固体組成物が好ましい。

投与のしやすさから、錠剤やカプセル剤が最も有利な経口投与形態である。必要ならば、錠剤は、標準の水性又は非水性の技術でコーティングすることができる。

20

上記の通常の投与形態に加えて、式(I)に係る化合物は、例えば、U.S.特許番号3,845,770、3,916,899、3,536,809、3,598,123、3,630,200及び4,008,719に記載の放出制御手段及び/又はデリバリー装置によっても、投与することができる。

25 経口投与に適した本発明に係る医薬組成物は、パウダー又は顆粒として、或いは水溶性の液体、非水溶性の液体、水中油型のエマルジョン又は油中水型のエマルジョンとして、それぞれがあらかじめ決められた量の活性成分を含むカプセル剤、カシュー剤又は錠剤を挙げることができる。そのような組成物は、薬剤学上いかなる方法を用いて調製することができるが、すべての方法は、活性成分と1

又は2以上の必要な成分からなる担体とを一緒にする方法も含まれる。

一般に、活性成分と液体の担体又はよく分離された固体の担体或いは両方とを 均一かつ充分に混合し、次いで、必要ならば、生産物を適当な形にすることによ り、組成物は調製される。例えば、錠剤は、圧縮と成形により、必要に応じて、

5 1又は2以上の副成分と共に調製される。圧縮錠剤は、適当な機械で、必要に応じて、結合剤、潤滑剤、不活性な賦形剤、界面活性剤又は分散剤と混合して、活性成分をパウダーや顆粒などの形に自由自在に圧縮することにより調製される。

成形された錠剤は、パウダー状の湿った化合物と不活性な液体の希釈剤との混合物を適当な機械で成形することにより調製される。

10 好ましくは、各錠剤は、活性成分を約1mg乃至1g含み、各力シュー剤又は カプセル剤は、活性成分を約1mg乃至500mg含む。

式(I)の化合物についての医薬上の投与形態の例は、次の通りである。

(表 1)

注射用懸濁液 (I. M.)

	mg/ml	_
式(Ⅰ)の化合物	10	
メチルセルロース	5.0	
Tween 80	0. 5	
ベンジルアルコール	9. 0	٦
塩化ベンズアルコニウム	1.0	٦

注射用水を加えて、1.0ml とする。

15 (表2)

錠剤

	mg/tablet
式(Ⅰ)の化合物	25
メチルセルロース	415
Tween80	14.0
ペンジルアルコール	43.5
ステアリン酸マグネシウム	2.5

合計 500mg

(表3)

カプセル剤

	mg/capsule
式(I)の化合物	25
ラクトースパウダー	573.5
ステアリン酸マグネシウム	1.5

合計 600mg

(表4)

エアロゾール

	1容器あたり
式(I)の化合物	24mg
レシチン、NF Liq. Conc.	1.2 mg
トリクロロフルオロメタン、NF	4.025g
ジクロロジフルオロメタン、NF	12.15 g

- 5 式(I)の化合物は、2型糖尿病と関連する疾患又は症状だけでなく、2型糖尿病の発症の治療/予防/遅延に用いられる他の薬剤と組み合わせて用いることができる。該他の薬剤は、通常用いられる投与経路又は投与量で、式(I)の化合物と同時に又は別々に投与することができる。
- 式(I)の化合物は、1又は2以上の薬剤と同時に使用する場合には、式(I) の化合物とこれらの他の薬剤とを含んだ医薬組成物が好ましい。従って、本発明に係る医薬組成物は、式(I)の化合物に加えて、1又は2以上の他の活性成分も含む。式(I)の化合物と組み合わせて用いられる活性成分の例としては、別々に投与するか、又は同じ医薬組成物で投与してもよいが、以下のものに限定されることはない。
- 15 (a) ビスーグアニド (例、ブホルミン、メトホルミン、フェンホルミン)
 - (b) PPARアゴニスト (例、トログリタゾン、ピオグリタゾン、ノシグリタゾン)
 - (c) インスリン
 - (d) ソマトスタチン
- 20 (e) α f α f α f α α - α α

5

10

(f) インスリン分泌促進剤(例、アセトヘキサミド、カルブタミド、クロルプロパミド、グリボムリド、グリクラジド、グリメルピリド、グリピジド、グリキジン、グリソキセピド、グリブリド、グリヘキサミド、グリピナミド、フェンブタミド、トラザミド、トルブタミド、トルシクラミド、ナテグリニド、レパグリニド)

2番目の活性成分に対する式(I)の化合物の重量比は、幅広い制限の範囲内で変動し、さらに、各活性成分の有効量に依存する。従って、例えば、式(I)の化合物をPPARアゴニストと組み合わせて用いる場合には、式(I)の化合物のPPARアゴニストに対する重量比は、一般的に、約1000:1乃至1:1000であり、好ましくは、約200:1乃至1:200である。式(I)の化合物と他の活性成分との組み合わせは、前述の範囲内であるが、いずれの場合にも、各活性成分の有効量が用いられるべきである。

次に本発明に係る化合物(I)で表される化合物が示すグルコキナーゼ活性化 能及びその試験方法について示す。

15 前記式(I)で表される化合物の有する優れたグルコキナーゼ活性化作用の測定は、文献記載の方法(例えば、ディアベテス(Diabetes)、第45巻、第1671頁-1677頁、1996年等)又はそれに準じた方法によって行うことができる。

グルコキナーゼ活性は、グルコース-6-リン酸を直接測定するのではなく、 20 リポーターエンザイムであるグルコース-6-リン酸デヒドロゲナーゼがグルコース-6-リン酸からホスホグルコノラクトンを生成する際に、生じるThio-NADHの量を測定することによって、グルコキナーゼの活性化の程度を調べる。

このアッセイで使用するrecombinant human liver 25 GKはFLAG fusion proteinとしてE.coliに発現させ、 ANTIFLAG M2 AFFINITY GEL(Sigma)で精製した。 アッセイは平底96-well plateを用いて30℃で行った。Ass ay buffer (25mM Hepes Buffer:pH=7.2、2 mM MgCl₂、1mM ATP、0.5mM TNAD、1mM dith i o threitol) を 69μ 1分注し、化合物のDMSO溶液またはコントロールとしてDMSOを 1μ 1加えた。次に、氷中で冷やしておいたEnzyme mixture (FLAG-GK、20U/m1G6PDH) 20μ 1を分注した後、基質である25mMグルコースを 10μ 1加え、反応を開始させる(最終グルコース濃度=2.5mM)。

反応開始後、405nmの吸光度の増加を30秒ごとに10分間測定し、最初の5分間の増加分を使用して化合物の評価を行った。FLAG-GKは1%DMSO存在下で5分後の吸光度増加分が0.05から0.1の間になるように加えた。

10 DMSOコントロールでのOD値を100%とし、評価化合物の各濃度におけるOD値を測定した。各濃度のOD値より、Emax(%)及び $EC50(\mu M)$ を算出し、化合物のGK活性化能の指標として用いた。

本方法により本発明に係る化合物のGK活性化能を測定した。その結果を下記表1に示す。

15 (表5)

(本発明化合物の GK 活性化能)

化合物番号	Emax(%)	EC50(μM)
製造例1	957	0.25
製造例2	844	0.08
製造例59	936	0.53

本発明に係る化合物は上記表1に示したように、Emax及びEC50を指標として、優れたGK活性化能を有している。

発明を実施するための最良の形態

以下において、製剤例及び製造例により本発明をさらに具体的に説明するが、 本発明はこれらによって何ら限定されるものではない。

25

製剤例1

製造例1の化合物10部、重質酸化マグネシウム15部及び乳糖75部を均一に

混合して、350μm以下の粉末状又は細粒状の散剤とする。この散剤をカプセル容器に入れてカプセル剤とする。

製剤例2

製造例1の化合物45部、澱粉15部、乳糖16部、結晶性セルロース21部、 ポリビニルアルコール3部及び蒸留水30部を均一に混合した後、破砕造粒して 乾燥し、次いで篩別して直径1410乃至177μmの大きさの顆粒剤とする。 製剤例3

製剤例2と同様の方法で顆粒剤を作製した後、この顆粒剤96部に対してステアリン酸カルシウム3部を加えて圧縮成形し直径10mmの錠剤を作製する。

10 製剤例 4

20

製剤例2の方法で得られた顆粒剤90部に対して結晶性セルロース10部及びステアリン酸カルシウム3部を加えて圧縮成形し、直径8mmの錠剤とした後、これにシロップゼラチン、沈降性炭酸カルシウム混合懸濁液を加えて糖衣錠を作製する。

15 以下において、製剤例、製造例、参考例により本発明をさらに具体的に説明するが、本発明はこれらによって何ら限定されるものではない。

実施例の薄層クロマトグラフは、プレートとしてSilicagel 60F $_{245}$ (Merck) を、検出法としてUV検出器を用いた。カラム用シリカゲルとしては、Wakogel TM C-300 (和光純薬)を、逆相カラム用シリカゲルとしては、LC-SORB TM SP-B-ODS (Chemco) 又はYM C-GEL TM ODS-AQ 120-S50 (山村化学研究所)を用いた。

下記の実施例における略号の意味を以下に示す。

i-Bu:イソプチル基

n-Bu:n-プチル基

25 t-Bu:t-ブチル基

Me:メチル基

Et:エチル基

Ph:フェニル基

i-Pr:イソプロピル基

n-Pr:n-プロピル基

CDC1a:重クロロホルム

CD₃OD: 重メタノール

DMSO-d₆: 重ジメチルスルホキシド

5 下記に核磁気共鳴スペクトルにおける略号の意味を示す。

s :シングレット

d :ダブレット

dd:ダブルダブレット

t : トリプレット

10 m:マルチプレット

br:プロード

q:カルテット

J:カップリング定数

Hz:ヘルツ

15 製造例1

5ーイソプロポキシー3ー(4ーメタンスルホニルフェノキシ)-N-(4ーメ20チルチアゾールー2ーイル)ーベンズアミドの調製

3,5-ジヒドロキシ安息香酸メチルエステル20.0g(0.12mol)の塩化メチレン溶液(1.21)にモレキュラーシープズ4A29.0g、p-メチルチオフェニルホウ酸22.0g(0.13mol)、酢酸銅(II)21.6g(0.13mol)及びトリエチルアミン83.0ml(0.59mol)

25 を加えた後、酸素雰囲気下、室温で一晩攪拌した。反応液を濾過した後、減圧濃

縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エ チルエステル=2:1) により精製し、5-ヒドロキシ-3-(4-メチルチオ フェノキシ)安息香酸メチルエステル12.4g(収率:36%)を黄色固体と して得た。

得られたフェノール体54.4mg(0.19mmol)のN, Nージメチル 5 ホルムアミド溶液 (2.5m1) に炭酸カリウム129mg (0.94mmo1) 及び2-プロモプロパン0.053ml(0.56mmol)を加えた後、反応 液を80度で4時間撹拌した。反応液に水を添加し、酢酸エチルエステルで抽出 し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残 10 査をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル= 2:1)により精製し、5-イソプロポキシ-3-(4-メチルチオフェノキシ) -安息香酸メチルエステル55.4mg(収率:89%)を無色油状物として得 た。得られたエステル体41.0mg(0.12mmol)のクロロホルム溶液 (2.0m1) に氷冷下、m-クロロ過安息香酸64.0mg(0.37mmo 1)を加え、反応液を氷冷下20分間攪拌した。反応液にチオ硫酸ナトリウム水 15 溶液を添加し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水溶液で洗浄 し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラ フィー(ヘキサン:酢酸エチルエステルニ1:1)により精製し、5-イソプロ ポキシー3-(4-メタンスルホニルフェノキシ)-安息香酸メチルエステル4 3. 9mg(収率: 98%) を無色油状物として得た。

得られたスルホン体41.0mg(0.11mmol)のメタノール溶液(1. 0m1) に、2N水酸化ナトリウム水溶液0.28m1 (0.56mmo1) を 加え、反応液を一晩攪拌した。反応液に2N塩酸水溶液を添加し、酢酸エチルエ ステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮し、 カルボキシル体の粗生成物を得た。得られたカルボキシル体12.0mg(0. 25 034mmol) の塩化メチレン溶液(0.5ml) に2-アミノ-4-メチル チアゾール5. 90mg(0.51mol)、1-ヒドロキシベンゾトリアゾール水和物 9. 3 0 m g (0. 0 6 8 m m o 1) 及び 1 - (3 - ジメチルアミノプ ロピル) - 3-エチルカルボジイミド塩酸塩13.0mg(0.068mol)

20

を加えた後、室温で一晩攪拌した。反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:1)により精製し、表題化合物を白色固体として得た。製造例1により得られた化合物の分析データを下記に示す。

5 ¹HNMR (CDCl₃) δ: 1. 34 (6H, d, J=6. 0Hz), 2. 22 (3H, d, J=0. 7Hz), 3. 08 (3H, s), 4. 53-4. 57 (1H, m), 6. 57 (1H, d, J=0. 7Hz), 6. 80 (1H, t, J=2. 0Hz), 7. 11 (1H, d, J=2. 0Hz), 7. 12 (2H, d, J=8. 8Hz), 7. 27 (1H, d, J=2. 0Hz), 7. 92 (2H, d, J=8. 8Hz)

ESI-MS (m/e):447 [M+H] + 製造例2

15

20

25

<u>5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル</u>フェノキシ)-N-チアゾール-2-イルーペンズアミドの調製

製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ) 安息 香酸メチルエステル1.20g(4.13mmol)のテトラヒドロフラン溶液(10ml)に(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン1.40g(7.40mmol)及びトリフェニルホスフィン2.00g(7.40mmol)加えた後、ジエチルアゾジカルボキシレート3.20ml(7.40mmol)を氷冷下加え、室温で2時間攪拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(へ

キサン:酢酸エチルエステル=95:5)により精製し、5-((15)-2-(+-プチルジメチルシロキシ)-1-メチルーエトキシ)-3-(4-メチル チオフェノキシ) - 安息香酸メチルエステル1.63g(収率:95%)を無色 油状物として得た。得られたエステル体1.84g(3.97mmol)のクロ ロホルム溶液 (40ml) に氷冷下、m-クロロ過安息香酸2.06g (12. 0mmo1)を加え、反応液を氷冷下0.5時間攪拌した。反応液にチオ硫酸ナ トリウム水溶液を添加し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水 溶液で洗浄し、乾燥後、減圧下に濃縮し、スルホン体の粗生成物を得た。

5

20

25

得られたスルホン体のメタノール溶液(20ml)に、5N水酸化ナトリウム 水溶液4.00ml(20.0mmol)を加え、反応液を1.5時間攪拌した。 10 反応液に5%クエン酸水溶液(30m1)を添加し、酢酸エチルエステルで抽出 し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮し、カルボキシル 体の粗牛成物を得た。得られたカルボキシル体の塩化メチレン溶液(40m1) (2-7) (1) (2-7) (2) (12.0) (12) (12) (13) (12) (14) (12) (15) (12) (16) (12) (17) (- ゾトリアゾール水和物1.62g(12.0mmo1)及び1--(3-ジメチル 15 アミノプロピル) - 3 - エチルカルボジイミド塩酸塩1. 5 3 g (8. 0 0 mm o 1) を加えた後、室温で一晩攪拌した。反応液を1.5時間攪拌した。反応液 に水を添加し、酢酸エチルエステルで抽出し、有機層を5%クエン酸水溶液、飽 和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮し、アミド体の粗生成物が得られ た。

得られたアミド体の1、4-ジオキサン溶液(60ml)に4N塩酸水溶液2 0mlを加えた後、室温で15分間攪拌した。反応液を減圧下に濃縮後、トリエ チルアミンを添加し、再度反応液を減圧下濃縮した。得られた残渣をシリカゲル カラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:2)により精 製し、表題化合物を白色固体として得た。以下に製造例2により得られた化合物 の分析データを下記に示す。

¹HNMR (CDCl₃) δ : 1. 33 (d, 3H, J=6. 2Hz), 3. 10 (s, 3H), 3.80 (m, 2H), 4.56 (m, 1H), 6.88 (m, 1H), 7. 03 (d, 1H, J=3. 6Hz), 7. 17 (d, 2H, J=8.

 $8\,H\,z$), 7. 22 (m, 1H), 7. 38 (m, 2H), 7. 96 (d, 2H, $J=8.~8\,H\,z$), 10. 8 (br, 1H)

ESI-MS (m/e) : 449 [M+H] +

上記製造例1又は2と同様の方法により、下記製造例3乃至58の化合物を得 5 た。以下にこれらの化合物の構造及び分析データを示す。

製造例3

10 5-エトキシ-3-(4-メタンスルホニルフェノキシ)-N-(4-メトキシ メチル-チアゾール-2-イル) ベンズアミドの調製

製造例3の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチルチオフェノキシ)安息香酸メチルエステル、プロモエタン、2-アミノー4-メトキシメチルーチアゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDCl₃) δ : 1. 45 (1H, t, J=7. 0Hz), 3. 10 (3H, s), 3. 44 (3H, s), 4. 10 (2H, q, J=7. 0Hz), 4. 45 (2H, s), 6. 85 (1H, t, J=2. 0Hz), 6. 92 (1H, s), 7. 14 (1H, s), 7. 15 (2H, d, J=8. 8Hz), 7.

20 29 (1H, s), 7. 94 (2H, d, J=8. 8Hz) ESI-MS (m/e): 463 [M+H] +

製造例4

15

<u>5-シクロペンチルオキシ-3-(4-メタンスルホニルフェノキシ)-N-チ</u>アゾール-2-イル-ベンズアミドの調製

5 製造例4の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチル チオフェノキシ)安息香酸メチルエステル、シクロペンチルブロミド、2-アミ ノーチアゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれら と常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 61-1. 93 (8H, m), 3. 07 (3H, s), 4. 75-4. 79 (1H, m), 6. 81 (1H, d, J=2. 0Hz), 6. 97 (1H, d, J=3. 6Hz), 7. 13 (2H, d, J=8. 6Hz), 7. 20 (1H, s), 7. 21 (1H, d, J=3. 6Hz), 7. 33 (1H, d, J=2. 0Hz), 7. 92 (2H, d, J=8. 6Hz)

ESI-MS (m/e) : 459 [M+H] +

15 製造例 5

20

3- (4-メタンスルホニルフェノキシ) - 5- (テトラヒドロフラン-3-イ ルオキシ) - N-チアゾール-2-イルーベンズアミドの調製 製造例5の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、3-ヒドロキシテトラヒドロフラン、2-アミノーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

5 ¹HNMR (CDCl₃) δ: 2. 14-2. 27 (2H, m), 3. 08 (3H, s), 3. 91-3. 99 (4H, m), 4. 96-4. 97 (1H, m), 6. 82 (1H, d, J=1. 7Hz), 6. 99 (1H, d, J=3. 6Hz), 7. 13 (2H, d, J=8. 9Hz), 7. 18 (1H, d, J=3. 6Hz), 7. 25 (1H, s), 7. 30 (1H, d, J=1. 7Hz), 7. 93 (2H, d, J=8. 9Hz)

ESI-MS (m/e) : 461 [M+H] +

製造例6

15

20

3- (4-メタンスルホニルフェノキシ) -5- (2-メトキシ-1-メチルー エトキシ) -N-チアゾール-2-イルーベンズアミドの調製

製造例6の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-メトキシ-2-ヒドロキシープロパン及び2-アミノーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 31 (d, 3H, J=6. 3Hz), 3. 07 (s, 3H), 3. 38 (s, 3H), 3. 55 (m, 2H), 4. 59 (m,

1H), 6. 89 (m, 1H), 6. 98 (d, 1H, J=3. 6Hz), 7. 13 (d, 2H, J=8. 8Hz), 7. 22 (m, 1H), 7. 25 (d, 1 H, J=3. 6Hz), 7. 38 (m, 1H), 7. 92 (d, 2H, J=8. 8Hz)

5 ESI-MS (m/e):463 [M+H] + 製造例7

15

20

3-(4-メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メトキシ10 メチルーエトキシ)-Nーチアゾールー2-イルーベンズアミドの調製

製造例7の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1,3-ジメトキシ-2-ヒドロキシープロパン及び2-アミノチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 3. 08 (s, 3H), 3. 39 (s, 6H), 3. 63 (d, 4H, J=4. 7Hz), 4. 57 (m, 1H), 6. 98 (m, 2H), 7. 15 (d, 2H, J=8. 9Hz), 7. 27 (m, 2H), 7. 4 5 (m, 1H), 7. 93 (d, 2H, J=8. 9Hz)

ESI-MS (m/e): 493 [M+H] + 製造例8

3- (2-フルオロ-4-メタンスルホニルフェノキシ) -5-イソプロポキシ -N-チアゾール-2-イルーペンズアミドの調製

5 製造例8の化合物は、製造例1と同様の方法により得られた5-ヒドロキシー3-(2-フルオロ-4-メタンスルホニルフェノキシ)安息香酸メチルエステル、2-プロモプロパン、2-アミノーチアゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

10 ¹HNMR (CDC1₃) δ:1. 37 (6H, d, J=6. 1Hz), 3. 11 (3H, s), 4. 60-4. 64 (1H, m), 6. 81 (1H, t, J=2. 2Hz), 7. 02 (1H, d, J=3. 6Hz), 7. 15 (1H, t, J=2. 2Hz), 7. 21 (1H, dd, J=7. 5, 8. 5Hz), 7. 31 (1H, t, J=2. 2Hz), 7. 40 (1H, d, J=3. 6Hz), 7. 72 (1H, ddd, J=1. 2, 2. 2, 7. 5Hz) ESI-MS (m/e):451 [M+H] † 製造例 9

3-(4-メタンスルホニルフェノキシ) <math>-5-(1-メトキシメチループロポキシ) -N-(4-メチルーチアゾール-2-イル) -ベンズアミドの調製

製造例9の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ヒドロキシ-1-メトキシープタン、2-アミノ-4-メチルーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ: 0. 97 (t, 3H, J=7. 3Hz), 1. 71 (quintet, 2H, J=7. 3Hz), 2. 23 (s, 3H), 3. 08 (s, 3H), 3. 36 (s, 3H), 3. 54 (m, 2H), 4. 32 (m, 1H), 6. 56 (s, 1H), 6. 90 (m, 1H), 7. 13 (d, 2H, J=8. 9Hz), 7. 15 (m, 1H), 7. 35 (m, 1H), 7. 92 (d, 2H, J=8. 9Hz), 10. 6 (br, 1H) ESI-MS (m/e): 491 [M+H] ⁺

15 製造例10

20

<u>5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-ピラゾー</u>ル-3-イルーベンズアミドの調製

製造例10の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ブロモプロパン及び3-アミノピラゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 35 (d, 6H, J=6.0Hz), 3. 06 (s, 3H), 4. 58 (septet, 1H, J=6.0Hz), 6. 00 (d, 1H, J=3.0Hz), 6. 78 (m, 1H), 7. 15 (d, 2H, J=8.9Hz), 7. 32 (m, 1H), 7. 41 (m, 1H), 7. 90 (d, 2H, J=8.9Hz), 8. 14 (d, 1H, J=3.0Hz) ESI-MS (m/e): 416 [M+H] +

製造例11

10

15

20

5

<u>5-イソプロポキシー3-(4-メタンスルホニルフェノキシ)-N-ピラジン</u> -2-イルーベンズアミドの調製

製造例11の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-プロモプロパン、2-アミノピラジンを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 39 (d, 6H, J=6.0Hz), 3. 09 (s, 3H), 4. 62 (septet, 1H, J=6.0Hz), 6. 82 (m, 1H), 7. 14 (m, 1H), 7. 17 (d, 2H, J=8.6Hz), 7. 39 (m, 1H), 7. 95 (d, 2H, 8.6Hz), 8. 30 (m, 1H), 8. 41 (m, 2H), 9. 68 (brs, 1H)

ESI-MS (m/e) : 428 [M+H] +

製造例12

3-(4-メタンスルホニルフェノキシ) <math>-5-(3-メトキシ-1-メチル-プロポキシ) -N-チアゾール-2-イル-ベンズアミドの調製

製造例13

<u>5-(3-ヒドロキシ-1-メチループロポキシ)-3-(4-メタンスルホニ</u>ルフェノキシ)-N-チアゾール-2-イルーベンズアミドの調製

製造例13の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-3-ヒドロキシーブタン及び2-アミノーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ: 1. 39 (d, 3H, J=6. 1Hz), 1. 88 (m, 1H), 2. 02 (m, 1H), 3. 10 (s, 3H), 3. 84 (m, 10 2H), 4. 71 (m, 1H), 6. 88 (m, 1H), 7. 01 (d, 1H, J=3. 5Hz), 7. 17 (d, 2H, J=8. 9Hz), 7. 24 (m, 1H), 7. 35 (d, 1H, J=3. 5Hz), 7. 48 (m, 1H), 7. 9 5 (d, 2H, J=8. 9Hz), 11. 0 (br, 1H) ESI-MS (m/e): 463 [M+H] ⁺

15 製造例14

5-イソプロポキシー3-(4-メタンスルホニルフェノキシ)-N-ピリミジ20ン-4-イルーベンズアミドの調製

製造例14の化合物は、製造例1で得られた5ーヒドロキシー3ー(4ーメチルチオフェノキシ)安息香酸メチルエステル、2ーブロモプロパン及び4ーアミノーピラジンを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 38 (d, 6H, J=6. 0Hz), 3. 90 (s, 3H), 4. 63 (septet, 1H, J=6. 0Hz), 6. 83 (m, 1H), 7. 16 (m, 1H), 7. 16 (d, 2H, J=8. 9Hz), 7. 29 (m, 1H), 7. 95 (d, 2H, J=8. 9Hz), 8. 31 (dd, 1H, J=1. 2, 5. 6Hz), 8. 61 (br, 1H), 8. 70 (d, 1H, J=5. 6Hz), 8. 90 (d, 1H, J=1. 2Hz) ESI-MS (m/e): 428 [M+H] +

製造例15

10

<u>5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-(ピリミ</u>ジン-2-イル)-ベンズアミドの調製

製造例15の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチ 15 ルチオフェノキシ)安息香酸メチルエステル、2-プロモプロパン及び2-アミ ノーピラジンを用いて、製造例1と同様の方法、これに準じた方法又はこれらと 常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 37 (d, 6H, J=6. 0Hz), 3. 08 (s, 3H), 4. 62 (septet, 1H, J=6. 0Hz), 6. 79 (t,

20 1H, J=2. 2Hz), 7. 05-7. 20 (m, 4H). 7. 31 (t, 1 H, J=2. 2Hz), 7. 93 (d, 2H, J=8. 8Hz), 8. 60 (b r, 1H), 8. 68 (d, 2H, J=5. 9Hz)

ESI-MS (m/e) : 428 [M+H] +

製造例16

N-(4-ヒドロキシメチルーチアゾールー2-イル)-5-イソプロポキシー 3-(4-メタンスルホニルフェノキシ)-ベンズアミドの調製

製造例16の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-プロモプロパン及び2-アミノ-4-(tertプチルジメチルシロキシメチル)ーチアゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 38 (6H, d, J=6. 0Hz), 3. 08 (3H, s), 4. 61-4. 65 (3H, m), 6. 83 (1H, t, J=2. 2Hz), 6. 87 (1H, s), 7. 17 (2H, d, J=8. 9Hz), 7. 18 (1H, d, J=2. 0Hz), 7. 34 (1H, d, J=2. 0Hz),

15 7. 95 (2H, d, J=8.9Hz) ESI-MS (m/e):463 [M+H] +

製造例17

N-(イソオキサゾール-3-イル)-3-(4-メタンスルホニルフェノキシ) -5-(1-メトキシメチル-プロポキシ)-ベンズアミドの調製

製造例17の化合物は、製造例1で得られた5ーヒドロキシー3ー(4ーメチルチオフェノキシ)安息香酸メチルエステル、2ーヒドロキシー1ーメトキシープタン及び3ーアミノーオキサゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDC1₃) δ : 0. 99 (t, 3H, J=7. 5Hz), 1. 74 10 (quintet, 2H, J=7. 5Hz), 3. 01 (s, 3H), 3. 38 (s, 3H), 3, 57 (m, 2H), 4. 39 (m, 1H), 6. 89 (m, 1H), 7. 16-7. 12 (m, 2H), 7. 14 (d, 2H, J=8. 8H z), 7. 32 (m, 1H), 7. 93 (d, 2H, J=8. 8Hz), 8. 3 3 (s, 1H, J=1. 9Hz), 8. 64 (br, 1H)

15 ESI-MS (m/e):461 [M+H] + 製造例18

20 3-(4-メタンスルホニルフェノキシ)-5-(1-メトキシメチループロポキシ)-N-[1, 3, 4] チアジアゾール-2-イルーベンズアミドの調製

製造例18の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ヒドロキシ-1-メトキシーブタン及び2-アミノ-1,3,4-チアジアゾールを用いて、製造例2と同様

の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油 状物として得られた。

¹HNMR (CDCl₃) δ : 0. 98 (t, 3H, J=7. 5Hz), 1. 75 (quintet, 2H, J=7. 5Hz), 3. 07 (s, 3H), 3. 37 (s, 3H), 3. 56 (m, 2H), 4. 45 (m, 1H), 6. 93 (m, 1H), 7. 14 (d, 2H, J=8. 9Hz), 7. 44 (m, 1H), 7. 53 (m, 1H), 7. 91 (d, 2H, J=8. 9Hz), 8. 73 (s, 1H), 12. 0 (br, 1H)

ESI-MS (m/e) : 478 [M+H] +

10 製造例19

5

15

20

5-(1-ヒドロキシメチループロポキシ) -3-(4-メタンスルホニルフェ 2-1

製造例19の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシーブタン及び2-アミノ-4-メチルーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 0. 99 (t, 3H, J=7. 3Hz), 1. 68 (m, 2H), 2. 28 (d, 3H, J=1. 0Hz), 3. 09 (s, 3H), 3. 82 (m, 2H), 4. 36 (m, 1H), 6. 57 (d, 1H, J=1. 0Hz), 6. 75 (m, 1H), 7. 11 (m, 1H), 7. 13 (d, 2H,

J=8.9Hz), 7. 28 (m, 1H), 7. 93 (d, 2H, J=8.9Hz), 10. 8 (br, 1H)

ESI-MS (m/e) : 477 [M+H] +

製造例20

5

10 の調製

15

20

製造例20の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ヒドロキシ-1-メトキシープタン及び2-アミノ-4-(tertプチルジメチルシロキシメチル)ーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 01 (t, 3H, J=7. 5Hz), 1. 76 (quintet, 2H, J=7. 5Hz), 3. 10 (s, 3H), 3. 40 (s, 3H), 3. 59 (m, 2H), 4. 43 (m, 1H), 4. 64 (s, 2H), 6. 89 (s, 1H), 6. 94 (m, 1H), 7. 18 (d, 2H, J=9. 0Hz), 7. 20 (m, 1H), 7. 40 (m, 1H), 7. 96 (d, 2H, J=9. 0Hz), 10. 0 (br, 1H)

製造例21

ESI-MS (m/e) : 507 [M+H] +

5 製造例21の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブトキシカルボニルアミノ)-2-ヒドロキシープロパン及び2-アミノチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

10 ¹HNMR (CDC1₃) δ: 1. 30 (d, 3H, J=6. 0Hz), 2. 92 (d, 2H, J=6. 0Hz), 3. 09 (s, 3H), 4. 41 (sextet, 1H, J=6. 0Hz), 6. 86 (m, 1H), 6. 98 (d, 1H, J=3. 5Hz), 7. 14 (d, 2H, J=8. 9Hz), 7. 21 (d, 1H, J=3. 5Hz), 7. 25 (m, 1H), 7. 42 (m, 1H) 8. 87 (d,

15 2 H, J = 8. 9 H z)

ESI-MS (m/e) : 448 [M+H] +

製造例22

<u>5-(2-ジメチルアミノ-1-メチル-エトキシ)-3-(4-メタンスルホ</u> ニルフェノキシ)-N-チアゾール-2-イル-ベンズアミドの調製

製造例22の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-ジメチルアミノ-2-ヒドロキシプロパン及び2-アミノ-チアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 28 (d, 3H, J=6. 2Hz), 2. 3 10 0 (s, 6H), 2. 42 (dd, 1H, J=4. 4, 13. 0Hz), 2. 6 8 (dd, 1H, J=6. 2Hz, 13. 0Hz), 3. 09 (s, 3H), 4. 56 (dt, 1H, J=4. 5, 6. 2Hz), 6. 89 (m, 1H), 7. 0 0 (d, 1H, J=3. 6Hz), 7. 15 (d, 2H, J=8. 9Hz), 7. 22 (m, 1H), 7. 28 (d, 1H, 3. 6Hz), 7. 41 (m, 1H), 7. 93 (d, 2H, J=8. 9Hz), 11. 4 (br, 1H) ESI-MS (m/e): 476 [M+H] +

製造例23

20

<u>5-(2-ヒドロキシープロポキシ)-3-(4-メタンスルホニルフェノキシ)</u> -N-(4-メチルーチアゾール-2-イル)-ベンズアミドの調製

製造例 23 の化合物は、製造例 1 で得られた 5- ヒドロキシ-3- (4- メチルチオフェノキシ)安息香酸メチルエステル、 2- (tert-プチルジメチル

シロキシ) -1-ヒドロキシープロパン及び2-アミノー4-メチルチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 28 (d, 3H, J=6. 4Hz), 2. 20 (d, 3H, J=1. 0Hz), 3. 08 (s, 3H), 3. 79 (m, 1H), 3. 93 (m, 1H), 4. 20 (m, 1H), 6. 57 (d, 1H, J=1. 0Hz), 6. 78 (m, 1H), 7. 09 (d, 2H, J=8. 9Hz), 7. 16 (m, 1H), 7. 25 (m, 1H), 7. 92 (d, 2H, J=8. 9Hz), 11. 2 (br, 1H)

10 ESI-MS (m/e):463 [M+H] + 製造例24

20

15 3-(4-メタンスルホニルフェノキシ) -5-(2-メトキシープロポキシ)-N-(4-メチルーチアゾール-2-イル) -ペンズアミドの調製

製造例24の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-ヒドロキシ-2-メトキシープロパン及び2-アミノ-4-メチルチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹NMR (CDCl₃) δ : 1. 26 (d, 3H, J=6. 3Hz), 2. 22 (d, 3H, J=1. 1Hz), 3. 08 (s, 3H), 3. 43 (s, 3H), 3. 72 (m, 1H), 3. 93 (m, 2H), 6. 57 (d, 1H, J=1. 1H

z), 6. 86 (m, 1H), 7. 12 (d, 2H, J=8.6Hz), 7. 1 6 (m, 1H), 7. 29 (m, 1H), 7. 92 (d, 2H, J=8.6Hz), 10. 6 (br, 1H)

ESI-MS (m/e) : 477 [M+H] +

5 製造例25

15

20

5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-(チアゾ 10 ロ[5,4-b]ピリジン-2-イル)-ベンズアミドの調製

製造例25の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ブロモプロパン及び2-アミノーチアゾロ[5,4-b]ピリジンを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色固体として得られた。

¹HNMR (CDC1₃) δ : 1. 37 (6H, d, J=6. 0Hz), 3. 09 (3H, s), 4. 59-4. 63 (1H, m), 6. 84 (1H, t, J=1. 8Hz), 7. 14 (2H, d, J=8. 9Hz), 7. 19 (1H, t, J=1. 8Hz), 7. 34 (1H, t, J=1. 8Hz), 7. 38 (1H, dd, J=4. 7, 8. 1Hz), 7. 92 (1H, dd, J=1. 5, 8. 1Hz), 7. 94 (2H, d, J=8. 9Hz), 8. 53 (1H, dd, J=1. 5, 4. 7Hz)

ESI-MS (m/e) : 484 [M+H] +

WO 2004/076420 PCT/JP2004/002284

製造例26

5 <u>5-(2-ヒドロキシメチル-アリル)-3-(4-メタンスルホニルフェノキ</u>シ)-N-チアゾール-2-イルーベンズアミドの調製

¹HNMR (CDCl₃) δ: 3. 08 (3H, s), 3. 49 (2H, s), 4. 06 (2H, s), 4. 91 (1H, s), 5. 19 (1H, s), 7. 00 (1 H, d, J=3. 3Hz), 7. 11 (2H, d, J=9. 0Hz), 7. 13 (1H, d, J=3. 3Hz), 7. 20 (1H, s), 7. 55 (1H, s), 7. 67 (1H, s), 7. 92 (2H, d, J=9. 0Hz) ESI-MS (m/e): 445 [M+H] ⁺

製造例27

10

15

5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニル フェノキシ) -N-チアゾロ <math>[5, 4-b] ピリジン-2-イル-ベンズアミド の調製

製造例27の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノーチアゾロ[5,4-b]ピリジンを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色固体として得られた。

¹HNMR (CDC1₃) δ : 1. 34 (6H, d, J=6. 2Hz), 3. 11 (3H, s), 3. 74 (2H, d, J=4. 6Hz), 4. 57-4. 62 (1 H, m), 6. 92 (1H, t, J=1. 8Hz), 7. 19 (2H, d, J=8. 9Hz), 7. 36 (1H, t, J=1. 8Hz), 7. 43 (1H, dd, J=4. 7, 8. 2Hz), 7. 49 (1H, t, J=1. 8Hz), 7. 94 (2H, d, J=8. 9Hz), 8. 03 (1H, dd, J=1. 4, 8. 2Hz)

ESI-MS (m/e) : 484 [M+H] +

z). 8. 49 (1H, dd, J=1. 4, 4. 7Hz)

製造例28

15

10

<u>5-(3-ヒドロキシ-2-メチループロピル)-3-(4-メタンスルホニル</u>フェノキシ)-N-チアゾール-2-イルーベンズアミドの調製

¹HNMR (CDC1₃) δ: 0. 94 (6H, d, J=6. 7Hz), 1. 97 -2. 05 (1H, m), 2. 50-2. 94 (2H, m), 3. 08 (3H, s), 3. 50-3. 56 (2H, m), 7. 03 (1H, d, J=3. 5Hz), 7. 13 (2H, d, J=8. 8Hz), 7. 17 (1H, s), 7. 42 (1 H, d, J=3. 5Hz), 7. 52 (1H, s), 7. 63 (1H, s), 7. 93 (2H, d, J=8.8Hz) ESI-MS (m/e):447 [M+H] +

製造例29

5

10

15

20

<u>3-(4-メタンスルホニルフェノキシ)-N-(4-メチルーチアゾール-2</u> -イル)-5-(ピペリジン-4-イルーオキシ)-ペンズアミド塩酸塩の調製

製造例29の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-プトキシカルボニル)-4-ヒドロキシーピペリジン及び2-アミノ-4-メチルーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。

¹HNMR (CD₃OD) δ : 1. 93 (m, 2H), 2. 11 (m, 2H), 2. 31 (s, 3H), 2. 99 (s, 3H), 3. 13 (m, 2H), 3. 30 (m, 2H), 4. 75 (m, 1H), 6. 89 (s, 1H), 7. 11 (m, 2H, J=8. 9Hz), 7. 27 (m, 1H), 7. 52 (m, 1H), 7. 84 (d, 2H, J=8. 9Hz)

製造例30

5-(1-Pセチル-ピペリジン-4-イルオキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4-メチルーチアゾール-2-イル)-ペンズアミドの調製

製造例30の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-アセチル-4-ヒドロキシーピペリジン及び2-アミノ-4-チアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 80 (m, 3H), 2. 20-2. 00 (m, 2H), 2. 14 (s, 3H), 2. 51 (s, 3H), 3. 10 (s, 3H), 3. 50 (m, 1H), 3. 75 (m, 1H), 4. 01 (m, 1H), 4. 84 (m, 1H), 6. 71 (s, 1H), 6. 92 (m, 1H), 7. 18 (d, 2H, J=8. 9Hz), 7. 43 (m, 1H), 7. 76 (m, 1H), 7. 96 (d, 2H, J=8. 9Hz)

15 ESI-MS (m/e):530 [M+H] + 製造例31

20 $2 - [3 - (4 - メタンスルホニルフェノキシ) - 5 - (4 - メチルーチアゾー <math>\nu - 2 - 4\nu - 3\nu = 1$ プロピオン酸の調製

製造例31の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ブロモプロピオン酸tert ブチルエステル及び2-アミノ-4-メチル-チアゾールを用いて、製造例1と 同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。なお、本化合物の製造に際して、カルボキシル基の保護基である tertープチル基の除去は、文献記載の方法(例えばプロテクティブグループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、T. W. Green著、第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

¹HNMR (DMSO-d₆) δ: 1. 53 (d, 3H, J=6.8Hz), 2. 28 (s, 3H), 3. 27 (s, 3H), 5. 03 (septet, 1H, J 10 = 6.8Hz), 6.82 (m, 1H), 6.94 (m, 1H), 7.25 (d, 2H, J=8.8Hz), 7.42 (m, 1H), 7.50 (m, 1H), 7. 95 (d, 2H, J=8.8Hz)

ESI-MS (m/e) : 477 [M+H] +

製造例32

15

<u>5-(3-ヒドロキシ-1-メチル-プロポキシ)-3-(4-メタンスルホニ</u>ルフェノキシ)-N-チアゾール-2-イルーベンズアミドの調製

20 製造例32の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ-3-ヒドロキシブタン及び2-アミノチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 35 (d, 3H, J=6.0Hz), 1. 83 (m, 1H), 2. 00 (m, 1H), 3. 08 (s, 3H), 3. 78 (m, 2H), 4. 65 (m, 1H), 6. 86 (m, 1H), 6. 98 (m, 1H, J=3.5Hz), 7. 13 (d, 2H, J=8.8Hz), 7. 21 (d, 1H, J=3.5Hz), 7. 23 (m, 1H), 7. 45 (m, 1H,), 7. 91 (d, 2H, J=8.8Hz), 12. 1 (br, 1H) ESI-MS (m/e): 463 [M+H] +

H₃C N CH₃

製造例33

10

15

20

 $3 - (4 - \cancel{1} - \cancel{1$

製造例33の化合物は、製造例31で得られた2-[3-(4-メタンスルホニルフェノキシ)-5-(4-メチルーチアゾールー2-イルーカルバモイル)-フェノキシ]プロピオン酸とメチルアミンとを反応させることにより白色アモルファスとして得られた。製造例31で得られた該化合物とメチルアミンとの反応は、アミド結合形成反応であり、文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、丸善、1983年、コンプリヘンシブ オーガニック シンセシス(Comprehensive Organic Synthesis)、第6巻、Pergamon Press社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。 1 HNMR (CDC13) δ : 1.59 (s, 3H), 2.26 (s, 3H), 2.

86 (d, 3H, J=4.7Hz), 3.10 (s, 3H), 4.73 (q, 1)

H, J=6.6Hz), 6.47 (br, 1H), 6.57 (m, 1H), 6.83 (m, 1H), 7.12 (d, 2H, J=8.8Hz), 7.22 (m, 1H), 7.31 (m, 1H), 7.93 (d, 2H, J=8.8Hz), 11.0 (br, 1H)

5 ESI-MS (m/e):490 [M+H] + 製造例34

15

20

10 5-(2-アセチルアミノ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イルーベンズアミドの調製

製造例 34 の化合物は、製造例 2 で得られた 5-(2-Eドロキシー1-Xチルーエトキシ) -3-(4-Xタンスルホニルーフェノキシ) -N-チアゾールー 2- イルーベンズアミドの有するヒドロキシ基をアミノ基に変換することにより得られた 5-(2-アミノー1- メチルーエトキシ) -3-(4- メタンスルホニルーフェノキシ) -N- チアゾールー2- イルーベンズアミドと酢酸とを反応させることにより白色アモルファスとして得られた。

ヒドロキシ基からアミノ基への変換反応は、ヒドロキシ基をメシル基に変換した後、該メシル体とアジ化ナトリウムとを反応させてアジド体とした後に、トリフェニルホスフィン等によりアジド基を還元することにより行うことができる。該変換反応は、コンプリヘンシブ オーガニック トランスフォーメーションズ(Comprehensive Organic Transformations)、Richard C. Larock著 第2版、John Wiley&Sons社、1999年、等)に記載の方法、それに準じた方法又はこれらと常

法とを組み合わせることにより行うことができる。

また、3-(2-アミノ-1-メチル-エトキシ)-5-(4-メタンスルホニル-フェノキシ)-N-チアゾール-2-イルーベンズアミドと酢酸との反応は、アミド結合形成反応であり、工程1や他の工程で用いられるアミド結合形成反応と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

¹HNMR (CDC1₃) δ : 1. 33 (d, 3H, J=6. 0Hz), 2. 03 (s, 3H), 3. 10 (s, 3H), 3. 49 (t, 2H, J=5. 8Hz), 4. 56 (sextet, 1H, J=6. 0Hz), 5. 98 (t, 1H, J=10 5. 8Hz), 6. 87 (m, 1H), 7. 00 (d, 1H, J=3. 6Hz), 7. 15 (d, 2H, J=8. 7Hz), 7. 28 (m, 2H), 7. 54 (m, 1H), 7. 94 (d, 2H, J=8. 7Hz), 11. 9 (br, 1H) ESI-MS (m/e): 490 [M+H] +

製造例35

15

N- [4-(1-ヒドロキシーエチル) -チアゾール-2-イル] -5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ) -ベンズアミドの調製

20 製造例 3 5 の化合物は、製造例 1 で得られた 5 ーヒドロキシー 3 ー (4 ーメチルチオフェノキシ) 安息香酸メチルエステル、2 ープロモプロパン及び2 ーアミノー4 ー (1 ー t e r t プチルジメチルシロキシーエチル) ーチアゾールを用いて、製造例 1 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDCl₃) δ: 1. 38 (6H, d, J=6. 0Hz), 1. 55 -1. 60 (3H, br), 3. 08 (3H, s), 4. 63 (1H, quin t, J=6. 0Hz), 4. 90 (1H, q, J=6. 6Hz), 6. 79-6. 85 (2H, m), 7. 16 (2H, d, J=8. 8Hz), 7. 20 (1H, br), 7. 36 (1H, br), 7. 94 (2H, d, J=8. 8Hz) ESI-MS (m/e): 477 [M+H] ⁺

製造例36

10

15

<u>5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル</u>フェノキシ)-N-ピリジン-2-イル-ベンズアミドの調製

製造例36の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノピリジンを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。

¹HNMR (CDC1₃) δ: 1. 32 (3H, d, J=3. 2Hz), 3. 08 (3H, s), 3. 76-3. 79 (2H, m), 4. 57-4. 63 (1H, m), 6. 48 (1H, t, J=2. 0Hz), 7. 13-7. 17 (1H, m), 7. 15 (2H, d, J=8. 8Hz), 7. 18 (1H, d, J=2. 0Hz), 7. 35 (1H, d, J=2. 0Hz), 7. 76 (1H, ddd, J=1. 6, 5. 1, 8. 4Hz), 7. 93 (2H, d, J=8. 8Hz), 8. 30 (1H, d, J=5. 1Hz), 8. 34 (1H, d, J=8. 4Hz)

ESI-MS (m/e):443 [M+H] + 製造例37

5 <u>5-(2-ヒドロキシーエトキシ)-3-(4-メタンスルホニルフェノキシ)</u>-N-チアゾール-2-イルーベンズアミドの調製

製造例37の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ジメチルブチルシロキシ)-2-ヒドロキシエタン及び2-アミノチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 3. 10 (s, 3H), 4. 01 (t, 2H, J=4.5Hz), 4. 14 (t, 2H, J=4.5Hz), 6. 87 (m, 1H), 7. 02 (d, 1H, J=3.0Hz), 7. 16 (d, 2H, J=8.4Hz), 7. 30 (m, 2H), 7. 38 (m, 1H), 7. 95 (d, 2H, J=8.4Hz), 11. 3 (br, 1H)

ESI-MS (m/e) : 435 [M+H] +

製造例38

10

15

5-(2-ヒドロキシーシクロペンチルオキシ)-3-(4-メタンスルホニル フェノキシ)-N-チアゾール-2-イルーベンズアミドの調製

製造例38の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチ 5 ルチオフェノキシ) 安息香酸メチルエステル、1-(tert-ブチルジフェニ ルシロキシ) -2-ヒドロキシシクロペンタン及び2-アミノチアゾールを用い て、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせ ることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 62-2. 08 (6H, m), 3. 08 (3H, 10 s), 4. 24-4. 30 (1H, m), 4. 55-4. 60 (1H, m), 6. 87 (1H, t, J=2.0Hz), 7.00 (1H, d, J=3.6Hz),7. 14 (2H, d, J=8.8Hz), 7. 25 (1H, t, J=2.0Hz), 7. 25(1H, d, J=3.6Hz), 7. 40(1H, t, J=2.0Hz), 7. 93 (2H, d, J=8.8Hz)

ESI-MS (m/e) : 475 [M+H] +

製造例39

15

N-(4-アセチルーチアゾールー2-イル)-5-(2-ヒドロキシー1-メ チルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-ベンズアミドの調製

5 製造例39の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び4-アセチル-2-アミノーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

10 ¹HNMR (CDCl₃) δ : 1. 32 (3H, d, J=6. 2Hz), 2. 58 (3H, s), 3. 10 (3H, s), 3. 80 (2H, d, J=5. 2Hz), 4. 63 (1H, q, J=5. 6Hz), 6. 81-6. 89 (1H, m), 7. 12-7. 19 (3H, m), 7. 38 (1H, br), 7. 83 (1H, d, J=2. 0Hz), 7. 95 (2H, dd, J=8. 9Hz)

15 ESI-MS (m/e):491 [M+H] + 製造例40

20 5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(4-ヒドロキシメチル-チアゾール-2-イル)-3-(4-メタンスルホニルフェノキシ)-ベンズアミドの調製

製造例40の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-プチルジメチル

シロキシ)-2-ヒドロキシプロパン及び2-アミノ-4-tertプチルジメ チルシロキシメチルチアゾールを用いて、製造例2と同様の方法、これに準じた 方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDC1₃) δ : 1. 31 (3H, d, J=6. 2Hz), 3. 09 (3H, s), 3. 75-3. 80 (2H, m), 4. 55-4. 66 (3H, m), 6. 83-6. 86 (1H, m), 6. 88 (1H, s), 7. 12-7. 20 (3H, m), 7. 33-7. 36 (1H, m), 7. 94 (2H, d, J=8. 6Hz)

ESI-MS (m/e) : 479 [M+H] +

10 製造例41

5

N-[4-(1-ヒドロキシーエチル) -チアゾール-2-イル] -5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)

15 <u>ーペンズアミドの調製</u>

20

25

製造例41の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノ-4-(1-tertブチルジメチルシロキシーエチル)チアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 31 (3H, d, J=6. 2Hz), 1. 49 (3H, d, J=6. 5Hz), 3. 12 (3H, s), 3. 68 (2H, d, J=5. 0Hz), 4. 60 (1H, q, J=6. 2Hz), 4. 80-4. 9 0 (1H, m), 6. 94 (1H, s), 6. 96-6. 99 (1H, m), 7.

23 (2H, d, J=8.9Hz), 7. 29-7. 32 (1H, m), 7. 4 7-7. 50 (1H, m), 7. 89 (1H, s), 7. 96 (2H, d, J=8.9Hz)

ESI-MS (m/e) : 493 [M+H] +

5 製造例42

3-(3-フルオロ-4-メタンスルホニルフェノキシ) -5-(2-ヒドロキシ-1-メチルーエトキシ) -N-チアゾール-2-イルーペンズアミドの調製5-ヒドロキシー3-メトキシメトキシ安息香酸メチルエステル9.00g(0.43mol)のピリジン溶液(50.0ml)に1-ブロモ-2-フルオロー4ーヨードベンゼン20.4g(0.68mol)、炭酸セシウム20.8g(0.64mol)及び酸化銅(II)5.07g(0.64mol)を加えた後、窒素雰囲気下、130度で8時間攪拌した。反応液を濾過した後、減圧濃縮し、得られた残渣に酢酸エチルエステル及び飽和塩化アンモニウム水溶液を添加し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=9:1)により精製し、3-(4-ブロモ-3-フルオローフェノキシ)-5-メトキシメトキシ安息香酸メチルエステル10.6g(収率:65%)を黄色油状物として得た。

得られたエステル体357mg(0.93mmol)のジメチルスルホキシド溶液(6.0ml)にメタンスルフィン酸ナトリウム757mg(7.41mmol)及びヨウ化銅1.41g(7.41mmol)を加えた後、反応液を12

20

25

0度で6時間撹拌した。反応液に塩化ナトリウム水-アンモニア水(9:1)を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=2:1)により精製し、3-(3-フルオロ-4-メタンスルホニル-フェノキシ)-5-メトキシメトキシ安息香酸メチルエステル170mg(収率:48%)を無色油状物として得た。

得られたエステル体 3. 3 4 g (8.69 mm o 1) の塩化メチレン溶液 (6 0.0 m 1) に、トリフルオロ酢酸 3 0.0 m 1 を加え、反応液を室温で 2 時間 攪拌した。反応液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラ フィー (ヘキサン:酢酸エチルエステル=3:7) により精製し、3 - (3-フルオロ-4-メタンスルホニルーフェノキシ) - 5-ヒドロキシ安息香酸メチルエステル 2.59 g (収率:88%) を無色油状物として得た。

得られたフェノール体 7 7. $5 \, \mathrm{mg}$ (0. $2 \, 3 \, \mathrm{mmo}$ 1) のテトラヒドロフラン溶液 (1. $0 \, \mathrm{m}$ 1) に ($2 \, \mathrm{R}$) $-1 - (t - 7 \, \mathrm{J} \, \mathrm{J}$

製造例42の化合物は、得られた5-((1S)-2-(t-ブチルジメチルシロキシ)-1-メチルーエトキシ)-3-(3-フルオロ-4-メタンスルホニルーフェノキシ)-安息香酸メチルエステル及び2-アミノーチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDCl₃) δ : 1. 32 (3H, d, J=6. 3Hz), 3. 23 (3H, s), 3. 78-3. 80 (2H, m), 4. 56-4. 61 (1H,

m), 6. 83-6. 94 (3H, m), 7. 01 (1H, d, J=3. 5Hz), 7. 23 (1H, t, J=1. 8Hz), 7. 37 (1H, d, J=3. 5Hz), 7. 41 (1H, t, J=1. 8Hz), 7. 94 (1H, t, J=8. 2Hz) ESI-MS (m/e) : 467 [M+H] +

5 製造例43

5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル10 フェノキシ)-N-(5-メチル-チアゾール-2-イル)ベンズアミドの調製

製造例43の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノ-5-メチルチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 29 (3H, d, J=6. 2Hz), 2. 37 (3H, s), 3. 08 (2H, s), 3. 69-3. 76 (2H, m), 4. 52-4. 57 (1H, m), 6. 82 (1H, t, J=2. 0Hz), 6. 8 (1H, s), 7. 12 (2H, d, J=8. 8Hz), 7. 20 (1H, d, J=2. 0Hz), 7. 35 (1H, d, J=2. 0Hz), 7. 92 (2H, d, J=8. 8Hz)

ESI-MS (m/e) : 463 [M+H] +

製造例44

20

5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンスルホニル フェノキシ) -N-([1, 2, 4] チアジアゾール-5-イル) -ベンズアミ ドの調製

- 5 製造例44の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び5-アミノ-1,2,4-チアジアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。
- 10 ¹HNMR (CDCl₃) δ: 1. 30 (3H, d, J=6. 2Hz), 3. 12 (3H, s), 3. 68 (2H, d, J=5. 1Hz), 4. 58-4. 85 (1 H, m), 7. 00 (1H, s), 7. 23 (2H, d, J=8. 9Hz), 7. 37 (1H, s), 7. 56 (1H, s), 7. 95 (2H, d, J=8. 9Hz), 8. 37 (1H, s)
- 15 ESI-MS (m/e):450 [M+H] + 製造例45

N-(4-ヒドロキシメチル-チアゾール-2-イル)-3-(4-メタンスル ホニルフェノキシ)-5-(2-メトキシ-1-メチルーエトキシ)-ベンズアミドの調製

製造例45の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-ヒドロキシ-1-メトキシプロパン及び2-アミノ-4-tertブチルジメチルシロキシメチルチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 35 (3H, d, J=6. 3Hz), 3. 0 9 (3H, s), 3. 41 (3H, s), 3. 49-3. 64 (2H, m), 4. 58-4. 67 (3H, m), 6. 87-6. 92 (2H, m), 7. 13-7. 20 (3H, m), 7. 35-7. 38 (1H, br), 7. 94 (2H, d, J=8. 8Hz)

ESI-MS (m/e) : 493 [M+H] +

15 製造例 4 6

5-(2-ヒドロキシー1-メチルーエトキシ) -3-(4-メタンスルホニル20フェノキシ) -N-(5-メトキシカルボニルーピリジン-2-イル) -ベンズアミドの調製

製造例46の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ) 安息香酸メチルエステル、1-(tert-プチルジメチルシロキシ) -2-ヒドロキシプロパン及び2-アミノ-5-メトキシカルボニル

- ピリジンを用いて、製造例 2 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 34 (d, 3H, J=6.0Hz), 3. 10 (s, 3H), 3. 80 (m, 2H), 3. 96 (s, 3H), 4. 61 (m, 1H), 6. 80 (m, 1H), 7. 16 (d, 2H, J=8.8Hz), 7. 20 (m, 1H), 7. 37 (m, 1H), 7. 94 (d, 2H, J=8.8Hz), 8. 33-8. 46 (m, 2H), 8. 80 (br, 1H), 8. 93 (m, 1H)

ESI-MS (m/e) : 501 [M+H] +

10 製造例47

5

20

6-[5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)ーベンゾ 15 イルアミノ]ニコチン酸の調製

製造例47の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び6-アミノーニコチン酸を用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (DMSO-d₆) δ : 1. 29 (d, 6H, J=6.0Hz), 3. 20 (s, 3H), 4. 76 (septet, 1H, J=6.0Hz), 6. 9 4 (m, 1H), 7. 23 (d, 2H, J=8.8Hz), 7. 33 (m, 1H), 7. 49 (m, 1H), 7. 94 (d, 2H, J=8.8Hz), 8. 29 (m, 2H), 8. 87 (m, 1H), 11. 2 (s, 1H) ESI-MS (m/e): 471 [M+H] +

製造例48

5

<u>5-(2-ヒドロキシ-1-メチループロポキシ)-3-(4-メタンスルホニ</u> ルフェノキシ)-N-チアゾール-2-イル-ベンズアミドの調製

- 10 製造例48の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、2-(tert-プチルジメチルシロキシ-3-ヒドロキシ)ブタン及び2-アミノチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。
- 15 ¹HNMR (CDC I₃) δ: 1. 25 (s, 3H, J=6. 2Hz), 1. 28 (s, 3H, J=6. 2Hz), 3. 08 (s, 3H), 3. 87 (m, 1H),
 4. 22 (m, 1H), 6. 85 (m, 1H), 6. 99 (m, 1H), 7. 1
 3 (d, 2H, J=8. 8Hz), 7. 23 (m, 2H), 7. 38 (m, 1H),
 7. 92 (d, 2H, J=8. 8Hz), 12, 0 (br, 1H)
- 20 ESI-MS(m/e):463[M+H] + 製造例49

<u>5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(イソキサゾール-3-</u> イル)-3-(4-メタンスルホニルフェノキシ)-ベンズアミドの調製

- 5 製造例49の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノオキサゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。
- 10 ¹HNMR (CDCl₃) δ: 1. 32 (d, 3H, J=6.0Hz), 2. 04 (br, 1H), 3. 08 (s, 3H), 3. 77 (m, 2H), 4. 60 (m, 1H), 6. 87 (m, 1H), 7. 15 (d, 2H, J=8.8Hz), 7. 19 (m, 2H), 7. 35 (m, 1H), 7. 94 (d, 2H, J=8.8Hz), 8. 30 (d, 1H, J=1.6Hz), 9. 24 (br, 1H)
- 15 ESI-MS (m/e): 433 [M+H] +

製造例50

3-(4-メタンスルホニルフェノキシ)ーペンズアミドの調製

製造例50の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチ ルチオフェノキシ)安息香酸メチルエステル、2-プロモプロパン及び2-アミ ノー5ーホルミルチアゾールを用いて、製造例1と同様の方法、これに準じた方 法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。 ¹HNMR (CDCl₃) δ : 1. 36 (d, 6H, J=6.0Hz), 3. 0 8 (s, 3H), 4.59 (septet, 1H, J=6.0Hz), 4.79(s, 2H), 6.82(s, 1H), 7.14(d, 2H, J=8.4Hz),10 7.13-1.18 (m, 2H), 7.31 (s, 1H), 7.92 (d, 2H, J = 8.4 Hz), 11.2 (br, 1H) ESI-MS (m/e) : 463 [M+H] +製造例51

15

N - [4 - (1 - EFD + EDD + ED<u>メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メチル-エトキシ)</u> ーベンズアミドの調製

製造例51の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチ 20 ルチオフェノキシ) 安息香酸メチルエステル、1-メトキシー2ーヒドロキシー プロパン及び2-アミノー4-(1-tertプチルジメチルシロキシエチル)チアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常 法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 35 (3H, d, J=6. 3Hz). 1. 55 25

(3H, d, J=6.3Hz), 3. 08 (3H, s), 3. 41 (3H, s), 3. 49-3. 64 (2H, m), 4. 59-4. 70 (1H, m), 4. 90 (1H, q, J=6.3Hz), 6. 80 (1H, brs), 6. 90 (1H, br), 7. 16 (2H, d, J=8.9Hz), 7. 23-7. 26 (1H, br), 7. 42 (1H, brs), 7. 94 (2H, d, J=8.9Hz) ESI-MS (m/e):507 [M+H] +

製造例52

10

N-(4-ヒドロキシメチルーチアゾールー2-イル)-3-(4-メタンスル ホニルフェノキシ)-5-(テトラヒドロフランー3-イルーオキシ)-ベンズ アミドの調製

製造例52の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチ ルチオフェノキシ) 安息香酸メチルエステル、3-ヒドロキシーテトラヒドロフ ラン及び2-アミノ-4-tertプチルジメチルシロキシメチルチアゾールを 用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合 わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 2. 10-2. 36 (2H, m), 3. 09 (3H, s), 3. 39-4. 07 (4H, m), 4. 66 (2H, s), 4. 96-5. 05 (1H, m), 6. 84 (1H, t. J=2. 0Hz), 7. 15-7. 2 0 (3H, m), 7. 30 (1H, br), 7. 96 (2H, d, J=8. 8Hz)

ESI-MS (m/e) : 491 [M+H] +

製造例53

55-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(2-メチルチアゾールー4-イル)-ベンズアミドの調製製造例53の化合物は、製造例1で得られた5-ヒドロキシー3-(4-メチ

ルチオフェノキシ)安息香酸メチルエステル、1-(tert-プチルジメチルシロキシ) <math>-2-ヒドロキシプロパン及び4-アミノ-2-メチルチアゾールを

10 用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 32 (d, 3H, J=6.0Hz), 2. 3 1 (br, 1H), 2. 66 (s, 3H), 3. 09 (s, 3H), 3. 78 (m, 2H), 4. 59 (m, 1H), 7. 13-7. 16 (m, 1H), 7. 15 (d,

2H, J=8. 8Hz), 7. 32 (m, 1H), 7. 60 (s, 1H), 7. 94 (d, 2H, J=8. 8Hz), 8. 90 (br, 1H)

ESI-MS (m/e) : 463 [M+H] +

製造例 5 4

15

20

5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニル フェノキシ) -N-(4-メトキシメチルーチアゾールー2-イル) -ペンズア ミドの調製

5 製造例 5 4 の化合物は、製造例 1 で得られた 5 ーヒドロキシー 3 ー (4 ーメチルチオフェノキシ) 安息香酸メチルエステル、1 ー (tertープチルジメチルシロキシ) -2 ーヒドロキシプロパン及び 2 ーアミノー 4 ーメトキシメチルチアゾールを用いて、製造例 2 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

10 ¹HNMR (CDC1₃) δ: 1. 31 (d, 3H, J=6. 0Hz), 3. 0 9 (s, 3H), 3. 42 (s, 3H), 3. 78 (m, 2H), 4. 44 (m, 2H), 4. 57 (m, 1H), 6. 86 (m, 1H), 6, 91 (s, 1H), 7. 10-7. 26 (m, 3H), 7. 31 (m, 1H), 7. 97 (d, 2H, J=8. 9Hz), 9. 67 (br, 1H)

15 ESI-MS (m/e):493 [M+H] + 製造例55

25

20N-[4-(1-ヒドロキシーエチル) -チアゾール-2-イル] -3-(4-
メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メチルーエトキシ)-ベンズアミド(製造例51のジアステレオ異性体)の調製

製造例 5 5 の化合物は、製造例 1 で得られた 5 ーヒドロキシー 3 ー (4 ーメチルチオフェノキシ)安息香酸メチルエステル、 2 ーヒドロキシー 1 ーメトキシプロパン及び 2 ーアミノー 4 ー (1 ー 1 e r 1 プチルジメチルシロキシエチル)チ

アゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法 とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 35 (3H, d, J=6. 3Hz), 1. 55 (3H, d, J=6. 3Hz), 3. 08 (3H, s), 3. 41 (3H, s), 3. 49-3. 64 (2H, m), 4. 59-4. 70 (1H, m), 4. 90 (1H, q, J=6. 3Hz), 6. 80 (1H, brs), 6. 90 (1H, br), 7. 16 (2H, d, J=8. 9Hz), 7. 23-7. 26 (1H, br), 7. 42 (1H, brs), 7. 94 (2H, d, J=8. 9Hz) ESI-MS (m/e): 507 [M+H] +

10 製造例 5 6

15

20

25

N- [4-(1-ヒドロキシーエチル) -チアゾール-2-イル] -3-(4-メタンスルホニルフェノキシ) -5-(テトラヒドロフラン-3-イルーオキシ) -ベンズアミドの調製

製造例56の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ)安息香酸メチルエステル、3-ヒドロキシテトラヒドロフラン及び2-アミノ-4-(1-tertブチルジメチルシロキシエチル)チアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDC1₃) δ : 2. 10-2. 36 (2H, m), 0. 39 (3H, s), 3. 89-4. 07 (4H, m), 4. 85-4. 95 (1H, m), 4. 97-5. 04 (1H, m), 6. 81-6. 85 (2H, m), 7. 16 (2H, d, J=8. 7Hz), 7. 23 (1H, brs), 7. 34 (1H, br

s), 7.96 (2H, d, J=8.7Hz) ESI-MS (m/e):505 [M+H] + 製造例57

N- [4-(1-ヒドロキシーエチル) -チアゾール-2-イル] -3-(4-メタンスルホニルフェノキシ) -5-(テトラヒドロフラン-3-イルーオキシ) ーベンズアミド(製造例56のジアステレオ異性体)の調製

10 製造例57の化合物は、製造例56と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDCl₃) δ : 2. 10-2. 35 (2H, m), 3. 09 (3H, s), 3. 89-4. 06 (4H, m), 4. 86-4. 95 (1H, m), 4. 97-5. 05 (1H, m), 6. 81-6. 85 (2H, m), 7. 16 (2H, d, J=8. 7Hz), 7. 22 (1H, brs), 7. 34 (1H, br

s), 7. 96 (2H, d, J=8. 7Hz)

ESI-MS (m/e):505 [M+H] +

製造例58

15

N-(2, 5-i)メチルチアゾール-4-iル)-5-(2-i)レーローシー1-iメチル-エトキシ)-3-(4-i)タンスルホニルフェノキシ)-ベンズアミド

5 の調製

10

15

製造例58の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メチルチオフェノキシ) 安息香酸メチルエステル、1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び4-アミノ-2,5-ジメチルチアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

¹HNMR (CDC1₃) δ : 1. 28 (d, 3H, J=6. 0Hz), 2. 32 (s, 3H), 2. 56 (s, 3H), 3. 07 (s, 3H), 3. 72 (m, 2H), 4. 53 (m, 1H), 6. 79 (t, 1H, J=2. 0Hz), 7. 08 (dd, 2H, J=2. 0, 6. 8Hz), 7. 18 (s, 1H), 7. 3 2 (s, 1H), 7. 89 (dd, 2H, J=2. 0, 6. 8Hz), 8. 6 7 (br, 1H)

ESI-MS (m/e) : 477 [M+H] +

製造例59

10

15

20

<u>5-イソプロポキシ-3-(4-メトキシカルボニルアミノメチルフェノキシ)</u> -N-チアゾール-2-イルーベンズアミドの調製

3,5-ジヒドロキシ安息香酸メチルエステル25.0g(0.15mol)、のN,N-ジメチルホルムアミド溶液(250ml)に炭酸カリウム41.0g(0.30mmol)及び2-プロモプロパン23.8g(0.19mmol)を加えた後、反応液を80度で4時間撹拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=5:1)により精製し、5-ヒドロキシー3-イソプロポキシ安息香酸メチルエステル12.0g(収率:38%)を無色油状物として得た。

得られたフェノール体700mg(3.30mmo1)の塩化メチレン溶液(30m1)にモレキュラーシーブズ4A1.05g、pーホルミルフェニルホウ酸1.00g(6.70mo1)、酢酸銅(II)605mg(3.30mo1)及びトリエチルアミン2.32ml(16.6mo1)を加えた後、酸素雰囲気下、室温で一晩攪拌した。反応液を濾過した後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=5:1)により精製し、3-(4-ホルミルフェノキシ)-5-イソプロポキシ安息香酸メチルエステル593mg(収率:57%)を無色油状物として得た。

得られたホルミル体590mg (1.88mmol)のメタノール溶液(20ml)に水素化ホウ素ナトリウム85.0mg (2.25mmol)を加えた後、反応液を室温で16時間撹拌した。反応液を濃縮後、飽和炭酸水素ナトリウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮した。得

られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=2:1)により精製し、3-(4-ヒドロキシメチルフェノキシ)-5-4イソプロポキシ安息香酸メチルエステル567mg(収率:95%)を無色油状物として得た。

5 得られたアルコール体 2 0 0 mg (0.63 mm o 1)のクロロホルム溶液(10 ml)に、トリエチルアミン0.18 ml (1.26 mm o 1)及び塩化メタンスルホニル0.073 ml (0.95 mm o 1)を加え、反応液を50度で15分間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣にDMF5.0 mlを加えて溶解し、アジ化ナトリウム123 mg (1.90 mm o 1)を加え、80度で1時間攪拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、有機層を乾燥後、減圧下に濃縮し、アジド体の粗生成物を得た。

得られたアジド体のテトラヒドロフランー水(10:1)溶液(11m1)にトリフェニルホスフィン247mg(1.26mmo1)を加え、反応液を90度で14時間攪拌した。反応液に2N塩酸水溶液を添加し、酸性水溶液とした。酢酸エチルエステルで洗浄後、水層に4N水酸化ナトリウム水溶液を添加し、塩基性水溶液とした後、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮し、アミン体を粗生成物として67.8mg(収率:34%)得た。

得られたアミン体のクロロホルム溶液(5.0m1)にトリエチルアミン(0.20 057m1(0.41mmo1)及びクロロギ酸メチルエステル0.024m1(0.31mmo1)を加え、室温で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を添加後、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮し、メトキシカルボニルアミノメチル体を粗生成物として得た。

得られたメトキシカルボニルアミノメチル体のテトラヒドロフランーメタノー ル (5:3) 溶液 (8.0 m l) に、4 N 水酸化ナトリウム水溶液 1.0 m l (4.0 0 m o l) を加え、反応液を50度で一晩攪拌した。反応液に飽和塩化アンモニウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=30:1)により精製し、5-イソプロポキシ-3-(4-メトキシ

カルボニルアミノメチルフェノキシ)-安息香酸63.1mg (収率:85%) を白色固体として得た。

得られたカルボキシル体のN, N-ジメチルホルムアミド溶液(3.0m1)に2-アミノチアゾール33.0mg(0.33mol)、1-ヒドロキシベンゾトリアゾール水和物76.0mg(0.49mmol)及び1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩63.0mg(0.33mol)を加えた後、室温で一晩攪拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:1)により精製し、表題化合物を白色固体として得た。製造例59により得られた化合物の分析データを下記に示す。

¹HNMR (CDCl₃) δ : 1. 34 (6H, d, J=6. 0Hz), 3. 71 (3H, s), 4. 36 (2H, d, J=5. 5Hz), 4. 57 (1H, m), 4. 99-5. 10 (1H, br), 6. 75 (1H, brs), 6. 96-7. 05 (4H, m), 7. 20 (1H, br), 7. 27-7. 34 (3H, m), 10. 70-10. 88 (1H, br)

ESI-MS (m/e) : 442 [M+H] +

上記製造例59と同様の方法により、製造例60乃至64の化合物を得た。以下にこれらの化合物の構造及び分析データを示す。

20 製造例60

10

15

<u>5ーイソプロポキシー3-(4ーメチルカルバモイルーフェノキシ)~Nーチア</u>

ゾールー2-イルーペンズアミドの調製

製造例60の化合物は、製造例59で得られた3-(4-ホルミルフェノキシ) -5-イソプロポキシ安息香酸メチルエステルのホルミル基を酸化して得られた 3-(4-カルボキシフェノキシ)-5-イソプロポキシ安息香酸メチルエステ ルとメチルアミンとの縮合反応により得られた3-(4-メチルカルバモイルー フェノキシ)-5-イソプロポキシ安息香酸メチルエステル及び2-アミノチア ゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと同様の 方法により無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 36 (6H, d, J=6. 1Hz), 3. 00 10 (3H, d, J=4. 8Hz), 4. 58 (1H, m), 6. 12-6. 21 (1 H, br), 6. 79 (1H, t. J=2. 2Hz), 6. 99-7. 06 (4 H, m), 7. 24-7. 27 (1H, m), 7. 34 (1H, d, J=3. 6 Hz), 7. 72 (2H, m)

ESI-MS (m/e) : 412 [M+H] +

15 製造例 6 1

20

<u>3-(4-ジメチルカルバモイル-フェノキシ)-5-イソプロポキシ-N-チ</u>アゾール-2-イル-ベンズアミドの調製

製造例61の化合物は、製造例60で得られた3-(4-カルボキシルフェノキシ)-5-イソプロポキシ安息香酸メチルエステル、ジメチルアミン及び2-アミノチアゾールを用いて、製造例60と同様の方法、これに準じた方法又はこれらと同様の方法により無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 34 (6H, d, J=6.0Hz), 2. 98 -3. 15 (6H, br), 4. 56 (1H, m), 6. 78 (1H, t, J=2.3Hz), 6. 98 (1H, d, J=3.6Hz), 7. 00-7. 06 (2H, m), 7. 14-7. 17 (1H, m), 7. 24-7. 28 (2H, m),

5 7. 40-7. 47 (2H, m)

ESI-MS (m/e) : 426 [M+H] +

製造例62

$$\begin{array}{c|c} H_3C & O & S \\ \hline CH_3 & N & N \\ \end{array}$$

10

15

5 - イソプロポキシ-3 - (4 - メチルカルボニルアミノメチル-フェノキシ) - N - チアゾール-2 - イルーベンズアミドの調製

製造例59で得られた3-(4-アミノメチルフェノキシ)-5-イソプロポキシ安息香酸メチルエステル、アセチルクロライド及び2-アミノチアゾールを用いて、製造例59と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 35 (6H, d, J=6. 0Hz), 2. 0 5 (3H, s), 4. 40 (2H, d, J=5. 6Hz), 4. 57 (1H, m), 5. 95-6. 07 (1H, br), 6. 78 (1H, t, J=2. 2Hz),

20 6. 93-7. 02 (4H, m), 7. 20-7. 32 (4H, m) ESI-MS (m/e): 426 [M+H] +

製造例63

5 製造例63の化合物は、製造例59で得られた3-(4-アミノメチルフェノキシ)-5-イソプロポキシ安息香酸メチルエステル、メタンスルホニルクロリド及び2-アミノチアゾールを用いて、製造例59と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

10 ¹HNMR (CDCl₃) δ: 1. 36 (6H, d, J=6. 0Hz), 2. 9 4 (3H, s), 4. 32 (2H, d, J=6. 1Hz), 4. 60 (1H, m), 4. 79-4. 88 (1H, m), 6. 77 (1H, m), 6. 98-7. 38 (8H, m)

ESI-MS (m/e) : 462 [M+H] +

15 製造例64

3-[4-(1-ヒドロキシープロピル)-フェノキシ]-5-イソプロポキシ

- N - チアゾール - 2 - イル - ベンズアミドの調製

製造例64の化合物は、製造例59で得られた3-(4-ホルミルフェノキシ) -5-イソプロポキシ安息香酸メチルエステル、エチルマグネシウムプロミド及 び2-アミノチアゾールを用いて、製造例59と同様の方法、これに準じた方法 又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。 なお、3-(4-ホルミルフェノキシ)-5-イソプロポキシ安息香酸メチルエ ステルとエチルマグネシウムブロミドとの反応は、いわゆるグリニャー反応であ りあり、文献記載の方法(例えば、コンプリヘンシブ オーガニック トランス フォーメーション(Comprehensive Organic Trans formations)Richard Lら著、VCH Publisher s社、1988年、等)、それに準じた方法又はこれらと常法とを組み合わせる ことにより行うことができる。

¹HNMR (CDCl₃) δ : 0. 92 (3H, t, J=7. 4Hz), 1. 3 4 (6H, d, J=6. 1Hz), 1. 67-1. 88 (2H, m), 4. 51 -4. 63 (2H, m), 6. 76 (1H, t, J=2. 3Hz), 6. 95-7. 07 (3H, m), 7. 04-7. 07 (1H, m), 7. 20-7. 24 (2H, m), 7. 32 (2H, d, J=8. 5Hz)

ESI-MS (m/e) : 413 [M+H] +

製造例65

20

25

15

10

<u>6-[3-イソプロポキシ-5-(チアゾール-2-イルカルバモイル)-フェ</u> <u>ノキシ]-ニコチン酸メチルエステルの調製</u>

製造例59で得られた5-ヒドロキシー3-イソプロポキシ安息香酸メチルエ

10

15

20

25

ステル3.0g(14.3mmo1)のメタノール溶液(50m1)に4N水酸化ナトリウム水溶液10mlを加え、室温で12時間攪拌した。反応液を減圧濃縮後、飽和塩化アンモニウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=50:1)により精製し、5ーヒドロキシー3ーイソプロポキシ安息香酸2.44g(収率:87%)を白色固体として得た。

得られたカルボン酸 2. 40g(12.2mmol)のクロロホルム溶液(50ml)に、氷冷下、2-アミノチアゾール2. 45g(24.5mmol)、トリエチルアミン3.40ml(24.5mmol)、2-クロロー1,3-ジメチルイミダゾリニウムクロリド4.14g(24.5mmol)を加え、室温で13時間攪拌した。反応液に飽和塩化アンモニウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣のメタノール溶液(40ml)に4N水酸化ナトリウム水溶液10mlを加え、室温で1時間攪拌した。反応液を減圧濃縮後、飽和塩化アンモニウム水溶液を添加し、クロロホルムで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=100:1)により精製し、5-ヒドロキシー3-イソプロポキシーNーチアゾールー2-イルーベンズアミド1.81g(収率:53%)を白色固体として得た。

得られたアミド体100mg(0.36mmol)のN,Nージメチルホルムアミド溶液(10.0ml)に、6-クロロニコチン酸メチルエステル123mg(0.72mmol)、炭酸カリウム199mg(1.44mmol)を加えた後、窒素雰囲気下、80度で18時間攪拌した。反応液に水を添加し、酢酸エチルで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=3:1)により精製し、表題化合物を白色固体として得た。製造例65により得られた化合物の分析データを下記に示す。

¹HNMR (CDC1₃) δ : 1. 36 (6H, d, J=6.0Hz), 3. 9 3 (3H, s), 4. 60 (1H, m), 6. 91-7. 02 (3H, m), 7. 29-7. 40 (3H, m), 8. 31 (1H, dd, J=8.6, 2.4Hz),

8. 81 (1H, d, J=2.4Hz) ESI-MS (m/e):414 [M+H] + 製造例66

<u>3-(5-ヒドロキシメチルーピリジン-2-イルーオキシ)-5-イソプロポ</u> キシ-N-チアゾール-2-イルーベンズアミドの調製

製造例65で得られた6~[3-イソプロポキシ-5-(チアゾール-2-イ10 ルカルバモイル)ーフェノキシ]ーニコチン酸メチルエステル60.0mg(0.15mmol)のテトラヒドロフラン溶液(5.0ml)に氷冷下、水素化アルミニウムリチウム6.0mg(0.16mmol)を加え、0度で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を添加し、酢酸エチルで抽出し、有機層を乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルクロマトグラフィー(クロロホルム:メタノール=30:1)により精製し、表題化合物を白色固体として得た。以下に製造例66により得られた化合物の分析データを下記に示す。

¹HNMR (CDC I₃) δ: 1. 36 (6H, d, J=6. 0Hz), 4. 5 4-4. 64 (1H, m), 4. 68 (2H, s), 6. 90 (1H, t, J= 20 2. 1Hz), 6. 92-6. 98 (2H, m), 7. 22 (1H, t, J=1. 7Hz), 7. 31-7. 37 (2H, m), 7. 77 (1H, dd, J=2. 8, 8. 3Hz), 8. 14 (1H, br) ESI-MS (m/e): 386 [M+H] +

上記製造例 6 5 又は 6 6 と同様の方法により、製造例 6 7 乃至 7 3 の化合物を 25 得た。以下にこれらの化合物の分析データを示す。

製造例67

<u>5-イソプロポキシー3-(5-メタンスルホニルピリジン-2-イル)-N-</u> チアゾール-2-イルーベンズアミドの調製

製造例67の化合物は、製造例65で得られた5-ヒドロキシ-3-イソプロポキシ-N-チアゾール-2-イルーベンズアミド及び2,5-ビスメタンスルホニルピリジンを用いて、製造例65と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色油状物として得られた。

10 なお、2,5-ビスメタンスルホニルピリジンは、2,5-ジプロモピリジンとナトリウムチオメトキシドとを反応させて、2,5-ビス-メチルチオピリジンとした後にメタクロロ過安息香酸で酸化することにより得られた。2,5-ジプロモピリジンとナトリウムメトキシドとの反応、及び2,5-ビス-メチルチオピリジンをメタクロロ過安息香酸

15 で酸化させる反応は常法により行うことができる。

¹HNMR (CDC1₃) δ:1.37 (6H, d, J=6.1Hz), 3.1 1 (3H, s), 4.58-4.66 (1H, m), 6.93 (1H, t, J=1.8Hz), 6.99 (1H, d, J=3.6Hz), 7.12 (1H, d, J=8.7Hz), 7.29 (1H, d, J=1.8Hz), 7.36 (1H, d, J=3.6Hz), 7.40 (1H, d, J=1.8Hz), 8.21 (1H, dd, J=2.6, 8.7Hz), 8.71 (1H, d, J=2.6Hz) ESI-MS (m/e):434 [M+H] * 製造例68

3-(5-アセチルーピリジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イルーベンズアミドの調製

製造例68の化合物は、製造例65と同様の方法により得られた5-ヒドロキシー3-イソプロポキシーNーチアゾールー2ーイルーペンズアミド及び2ークロロー5ーアセチルピリジンを用いて、製造例65と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。¹HNMR(CDC1₃)δ:1.37(6H,d,J=6.0Hz),2.59
 (3H,s),4.61(1H,m),6.93(1H,t,J=2.1Hz),6.98(1H,d,J=3.6Hz),7.04(1H,d,J=8.6Hz),7.29(1H,t,J=2.1Hz),7.38(2H,m),8.30(1H,dd,J=2.5,8.6Hz),8.75(1H,d,J=2.5Hz)ESI-MS(m/e):398[M+H]*

15 製造例69

5-イソプロポキシー3-(5-メトキシカルボニルーピラジン-2-イルーオ

キシ) - N - チアゾール - 2 - イル - ベンズアミドの調製

製造例69の化合物は、製造例65と同様の方法により得られた5-ヒドロキシ-3-イソプロポキシ-N-チアゾール-2-イルーベンズアミド及び2-クロロ-5-メトキシカルボニルピラジンを用いて、製造例65と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 38 (6H, d, J=6. 0Hz), 4. 03 (3H, s), 4. 57-4. 65 (1H, m), 6. 95 (1H, t, J=2. 1Hz), 7. 00 (1H, d, J=3. 6Hz), 7. 33-7. 35 (1H, m), 7. 37-7. 42 (2H, m), 8. 54 (1H, d, J=1. 2Hz), 8. 85 (1H, d, J=1. 2Hz) ESI-MS (m/e): 415 [M+H] +

製造例70

15

3-(5-シアノーピリジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イルーベンズアミドの調製

製造例70の化合物は、製造例65と同様の方法により得られた5-ヒドロキシ20 -3-イソプロポキシ-N-チアゾール-2-イルーベンズアミド及び2,5-ジプロモピリジンを用いて、製造例65と同様の方法により得られた3-(5-プロモーピリジン-2-イルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イルーベンズアミドとシアン化銅(I)とを反応させることにより無色アモルファスとして得られた。

なお、3-(5-プロモーピリジン-2-イルーオキシ)-5-イソプロピルーN-チアゾール-2-イルーベンズアミドとシアン化銅との反応は、文献記載の方法(例えば、コンプリヘンシブ オーガニック トランスフォーメーション (Comprehensive Organic Transformations) Richard Lら著、VCH Publishers社、1988年、等)と同様の方法、これに準じた方法又はこれらと常法とを組み合わせた方法により製造することができる。

¹HNMR (CDC1₃) δ: 1. 37 (6H, d, J=6. 1Hz), 4. 6 1 (1H, m), 6. 89-6. 92 (1H, m), 6. 97-7. 01 (1H, 10 m), 7. 06-7. 09 (1H, m), 7. 26-7. 29 (1H, m), 7. 35-7. 40 (1H, m), 7. 93-7. 98 (1H, m), 8. 47-8. 49 (1H, m)

ESI-MS (m/e) : 381 [M+H] +

製造例71

15

5

<u>5-イソプロポキシー3-(2-オキソー1, 2-ジヒドローピリジン-4-イルーオキシ)-N-チアゾール-2-イルーベンズアミドの調製</u>

20 製造例71の化合物は、製造例59と同様の方法により得られた5-ヒドロキシー3-イソプロポキシ安息香酸メチルエステル、4-ブロモーピリジン塩酸塩及び2-アミノチアゾールを用いて、製造例65と同様の方法、これに準じた方法 又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDC1₃) δ : 1. 31 (6H, d, J=6.0Hz), 4. 73 25 -4. 83 (1H, m), 5. 51 (1H, d, J=2.6Hz), 6. 03 (1 H, dd, J=2. 5, 7. 4Hz), 6. 99 (1H, t, J=2.2Hz), 7. 30 (1H, d, J=3.6Hz), 7. 38-7. 44 (2H, m), 7. 55-7. 59 (2H, m)

ESI-MS (m/e) : 372 [M+H] +

製造例72

5

<u>5-イソプロポキシ-3-(2-オキソ-1, 2-ジヒドローピリジン-3-イ</u>ルーオキシ)-N-チアゾール-2-イルーベンズアミドの調製

- 10 製造例72の化合物は、製造例59と同様の方法により得られた5-ヒドロキシー3-イソプロポキシ安息香酸メチルエステル、3-ブロモ-2-ヒドロキシーピリジン及び2-アミノチアゾールを用いて、製造例65と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。
- ¹HNMR (CDCl₃) δ: 1. 34 (6H, d, J=6.0Hz), 4. 62 -4. 72 (1H, m), 6. 41 (1H, dd, J=6.7, 7.2Hz), 6. 76 (1H, t, J=2.3Hz), 7. 10-7. 13 (1H, dd, J=1.5, 2.2Hz), 7. 14 (1H, d, J=3.6Hz), 7. 27-7. 29 (1H, m), 7. 30-7. 37 (2H, m), 7. 48 (2H, d,
- 20 J = 3.6 Hz)

ESI-MS (m/e) : 372 [M+H] +

製造例73

5 の調製

10

15

製造例73の化合物は、製造例59と同様の方法により得られた5-ヒドロキシー3-イソプロポキシ安息香酸メチルエステル、3-ブロモー2-ヒドロキシーピリジン及び2-アミノーチアゾロ[5,4-b]ピリジンを用いて、製造例65と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDCl₃) δ : 1. 31 (6H, d, J=6.0Hz), 4. 6 8-4.81 (1H, m), 6. 25 (1H, t, J=6.9Hz), 6. 68 -6.72 (1H, m), 7. 13-7.16 (1H, m), 7. 31-7.4 0 (2H, m), 7. 44-7.54 (2H, m), 8. 12 (1H, d, J=7.8Hz), 8. 46-8.52 (1H, m)

ESI-MS (m/e) : 423 [M+H] +

製造例74

25

5-イソプロポキシー3-([1,3,4]チアジアゾールー2-イルスルファニル)-N-チアゾロ[5,4-b]-ピリジン-2イルーベンズアミドの調製3-ヒドロキシ-5-ヨード安息香酸メチルエステル120mg(0.43mo1)、のN,N-ジメチルホルムアミド溶液(4.0m1)に炭酸カリウム298mg(2.16mmo1)及び2-プロモプロパン0.12m1(1.29mmo1)を加えた後、反応液を80度で一晩撹拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=5:1)により精製し、5-ヨード-3-イソプロポキシ安息香酸メチルエステル133mg(収率:96%)を無色油状物として得た。

得られたヨード体132mg(0.41mmo1)のN, N-ジメチルホルム アミド溶液(10ml)に2-メルカプト-1,3,4-チアジアゾール292 mg(2.47mo1)、炭酸カリウム456mg(3.30mo1)、ヒドロ キノン27.0mg(0.25mmo1)及び臭化銅(I)35.0mg(0.

15 25mmo1)を加えた後、窒素雰囲気下、130度で40分間攪拌した。反応液に水を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:1)により精製し、5-イソプロポキシ-3-(1,3,4-チアジアゾール-2-イルーチオ)安息香酸メチル20 エステル8.90mg(収率:7%)を無色油状物として得た。

得られたエステル体のメタノール溶液(1.0ml)に、2N水酸化ナトリウム水溶液0.14ml(0.29mmol)を加え、反応液を室温で5時間攪拌した。反応液に2N塩酸水溶液を添加し、酢酸エチルエステルで抽出し、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮し、カルボキシル体の粗生成物を得た。

得られたカルボキシル体のN, N-ジメチルホルムアミド溶液(1.2ml)に2-アミノーチアゾロ [5,4-b] ーピリジン8.20mg(0.054mol)、1-ヒドロキシベンゾトリアゾール水和物5.00mg(0.037mmol)及び1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド

塩酸塩7.10mg(0.037mo1)を加えた後、室温で一晩攪拌した。反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:1)により精製し、表題化合物を白色固体として得た。製造例74により得られた化合物の分析データを下記に示す。

5 ¹HNMR (CDCl₃) δ: 1. 32 (6H, d, J=6. 0Hz), 4. 5 4-4. 62 (1H, m), 7. 32 (1H, dd, J=4. 6, 8. 2Hz), 7. 37 (1H, t, J=1. 8Hz), 7. 56 (1H, t, J=1. 8Hz), 7. 74 (1H, dd, J=1. 4, 8. 2Hz), 7. 79 (1H, t, J=1. 8Hz), 8 Hz), 8. 52 (1H, dd, J=1. 4, 4. 6Hz), 9. 07 (1 10 H, s)

ESI-MS (m/e) : 430 [M+H] +

上記製造例74と同様の方法により、製造例75乃至製造例88の化合物を得た。以下にこれらの化合物の内、代表例の化合物の分析データを示す。 製造例75

15

 $5- \frac{1}{2} - \frac{1}{2} -$

20 製造例 7 5 の化合物は、製造例 7 4 で得られた 5 ー ヨードー 3 ー イソプロポキシ安息香酸メチルエステル、2 ー アミノチアゾール及び 3 ー メルカプトー 4 ー メチルー [1, 2, 4] トリアゾールを用いて、製造例 7 4 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 31 (6H, d, J=5. 9Hz), 3. 6 5 (3H, s), 4. 53-4. 57 (1H, m), 6. 98 (1H, q, J= 3. 5Hz), 7. 06 (1H, s), 7. 20 (1H, d, J=3. 5Hz), 7. 41 (1H, s), 7. 53 (1H, s), 8. 29 (1H, s)

5 ESI-MS (m/e) : 374 [M-H]

製造例76

10 5 - 4 + 2 - 3 - 4 + 2 -

製造例76の化合物は、製造例75で得られた5-ヨード-3-イソプロポキシ安息香酸メチルエステル、2-アミノチアゾール及び2-メルカプトーチアゾールを用いて、製造例74と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 33 (6H, d, J=6.0Hz), 4. 5 4-4. 62 (1H, m), 6. 95 (1H, d, J=3.6Hz), 7. 15 (1H, d, J=3.6Hz), 7. 29-7. 32 (2H, m), 7. 50 (1 H, dd, J=1.5, 2.2Hz), 7. 69 (1H, d, J=1.5Hz),

20 7. 77 (1H, d, J=3. 4Hz)

製造例77

 $5- \frac{1}{2} - \frac{1}{2} -$

製造例 770化合物は、製造例 74で得られた 5-3ードー 3ーイソプロポキシ安息香酸メチルエステル、2-7ミノチアゾール及び 3ーメルカプトー [1,2,4]トリアゾールを用いて、製造例 74と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。 1 HNMR(CDCl $_3$) δ : 1. 34(6H, d, J=6. 0Hz), 4. 59 10 -4. 63(1H, m), 7. 04(1H, d, J=2. 5Hz), 7. 44(1H, dd, J=1. 0Hz), 7. 49(1H, t, J=1. 0Hz), 7. 49(1H, d, J=2. 5Hz), 7. 4

ESI-MS (m/e) : 362 [M+H] +

15 製造例78

ニル) -N-チアゾール-2-イル-ベンズアミドの調製

製造例 780 の化合物は、製造例 74 で得られた 5-3 ードー3 ーイソプロポキシ安息香酸メチルエステル、2-7 ミノチアゾール及び 2- メルカプトー [1,3,4] チアジアゾールを用いて、製造例 74 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。 1 HNMR (CD $_3$ OD) $\delta:1$. 37 (6H, d, J=6.0Hz), 4.71 ー4.81 (1H, m), 7.14 (1H, d, J=3.7Hz), 7.45 (1H, t, J=1.8Hz), 7.50 (1H, d, J=3.7Hz), 7.68 (1H, t, J=1.8Hz), 7.89 (1H, t, J=1.8Hz), 9.

10 32 (1H, s)

ESI-MS (m/e) : 379 [M+H] +

製造例 7 9

15

20

25

 $5- \frac{1}{2} - \frac{1}{2} -$

製造例 7 9 の化合物は、製造例 7 4 で得られた 5 ーヨードー 3 ーイソプロポキシ安息香酸メチルエステル、2 ーアミノチアゾール及び2 ーメルカプトー 5 ーメチルスルファニルー [1,3,4] チアジアゾールを用いて、製造例 7 4 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDCl₃) δ : 1. 34 (6H, d, J=6.0Hz), 2. 7 5 (3H, s), 4. 55-4. 63 (1H, m), 6. 97 (1H, d, J= 3. 6Hz), 7. 13 (1H, d, J=3.6Hz), 7. 32 (1H, t. J=1.8Hz), 7.53 (1H, t, J=1.8Hz), 7.72 (1H, t, J=1.8Hz)

ESI-MS (m/e) : 425 [M+H] +

製造例80

5

<u>5-イソプロポキシー3-(5-メチルー[1,3,4]チアジアゾールー2-</u> イルスルファニル)-N-チアゾールー2-イルーベンズアミドの調製

製造例80の化合物は、製造例74で得られた5-ヨード-3-イソプロポキシ安息香酸メチルエステル、2-アミノチアゾール及び2-メルカプト-5-メチル-[1,3,4]チアジアゾールを用いて、製造例74と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 35 (6H, d, J=6. 0Hz), 2. 72 15 (3H, s), 4. 56-4. 64 (1H, m), 6. 97 (1H, d, J=3. 6Hz), 7. 17 (1H, d, J=3. 6Hz), 7. 35 (1H, t, J=1. 8Hz), 7. 54 (1H, t, J=1. 8Hz), 7. 73 (1H, t, J=1. 8Hz)

ESI-MS (m/e) : 393 [M+H] +

20 製造例81

5-(テトラヒドロフラン-3-イルーオキシ) -N-チアゾール-2-イルー3-(4H-[1, 2, 4]トリアゾール-3-イルスルファニル) -ベンズア

5 ミドの調製

10

15

20

製造例81の化合物は、2-ブロモプロパンの代わりに、(3R)-3-ブロモプロパンを用いて、製造例74と同様の方法により製造した5-ヨード-3-(テトラヒドロフラン-3-イルオキシ)安息香酸メチルエステル、2-アミノチアゾール及び3-メルカプト-[1, 2, 4]トリアゾールを用いて、製造例74と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDC1₃) δ : 2. 05-2. 24 (2H, m), 3. 89-4. 02 (4H, m), 4. 94-4. 98 (1H, m), 7. 06 (1H, d, J=3. 6Hz), 7. 23 (1H, t, J=1. 8Hz), 7. 40 (1H, d, J=1. 8Hz), 7. 48 (1H, d, J=3. 6Hz), 7. 68 (1H, d, J=1. 8Hz), 8. 32 (1H, s)

製造例82

ESI-MS (m/e) : 390 [M+H] +

5-(2-ヒドロキシ-1-メチル-エトキシ) -N-(4-メチル-チアゾール-2-イル) -3-([1,3,4] チアジアゾール-2-イルスルファニル) -ベンズアミドの調製

製造例82の化合物は、3-ヒドロキシ-5-ヨードー安息香酸メチルエステル、1-tertージメチルシロキシ-2-ヒドロキシプロパン及び2-アミノー4-メチルーチアゾールを用いて製造例65と同様の方法により得られた3ー(2-tertーブチルージメチルシロキシ-1-メチルーエトキシ)-5-ヨードーN-(4-メチルーチアゾール-2-イル)ーベンズアミド、2-メルカプト-[1,3,4]チアジアゾールを用いて、製造例74と同様、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。また、ヒドロキシ基の保護基であるtertーブチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

¹HNMR (CDC1₃) δ : 1. 32 (d, 3H, J=6. 2Hz), 2. 38 15 (s, 3H), 4. 79 (m, 2H), 4. 65 (m, 1H), 6. 63 (s, 1H), 7. 38 (m, 1H), 7. 72 (m, 1H), 7. 82 (m, 1H), 9. 08 (s, 1H)

ESI-MS (m/e) : 409 [M+H] +

製造例83

20

5-(3-ヒドロキシ-1-メチループロポキシ)-N-(4-メチルーチアゾ-ル-2-イル)-3-([1, 3, 4] チアジアゾールー2ーイルスルファニ

25 ル) -ベンズアミドの調製

製造例83の化合物は、3-ヒドロキシ-5-ヨードー安息香酸メチルエステル、5-tertープチルジメチルシロキシーペンタン-2ーオール及び2-アミノー4ーメチルーチアゾールを用いて製造例65と同様の方法により得られた3-(3-tertーブチルジメチルシロキシ-1ーメチループロポキシ)-5-コードーN-(4ーメチルーチアゾール-2ーイル)ーベンズアミド、2ーメルカプト-[1,3,4]チアジアゾールを用いて、製造例74と同様の方法、これに準じた方法又はこれら常法とを組み合わせることにより白色アモルファスとして得られた。また、ヒドロキシ基の保護基であるtertープチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常10 法とを組み合わせることにより行うことができる。

¹HNMR (CDC1₃) δ : 1. 33 (d, 3H, J=6. 1Hz), 2. 10 -1. 75 (m, 4H), 2. 18 (d, 1H, J=1. 0Hz), 3. 78 (m, 2H), 4. 63 (m, 1H), 6. 56 (d, 1H, J=1. 0Hz), 7. 38 (m, 1H), 7. 61 (m, 1H), 7. 73 (m, 1H), 9. 05 (s, 1H), 11. 1 (br, 1H)

ESI-MS (m/e):423 [M+H] + 製造例84

20

15

5-(2-ヒドロキシ-1-メチルーエトキシ)-3-([1, 3, 4] チアジ アゾールー2-イルスルファニル) -N-チアゾールー2-イルーベンズアミド の調製

製造例84の化合物は、3-ヒドロキシ-5-ヨード-安息香酸メチルエステ 25 ル、1-tert-ブトキシ-2-オール及び2-アミノチアゾールを用いて製 造例65と同様の方法により得られた3-(2-tert-ブチルジメチルシロキシ-1-メチループロポキシ)-5-ヨード-N-(チアゾール-2-イル)-ベンズアミド、2-メルカプト-[1,3,4]チアジアゾールを用いて、製造例74と同様の方法、これ準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。また、ヒドロキシ基の保護基であるtert-ブチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより製造することができる。

¹HNMR (CDC1₃) δ : 1. 30 (d, 3H, J=6. 0Hz), 3. 80 (m, 2H), 4. 62 (sextet, 1H, J=6. 0Hz), 7. 00 (d, 1H, J=3. 6Hz), 7. 27 (d, 1H, J=3. 6Hz), 7. 40 (m, 1H), 7. 62 (m, 1H), 7. 81 (m, 1H), 9. 09 (s, 1H) ESI-MS (m/e): 395 [M+H] +

製造例85

10

15

<u>5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル</u>フェニルスルファニル)-N-チアゾール-2-イル-ベンズアミドの調製

製造例85の化合物は、3-ヒドロキシ-5-ヨードー安息香酸メチルエステ 20 ル、1-tertーブチルジメチルシロキシーブタン-2-オール及び2-アミノチアゾールを用いて製造例65と同様の方法により得られた3-(2-tertーブチルジメチルシロキシ-1-メチループロポキシ)-5-ヨードーN-(チアゾール-2-イル)-ベンズアミド、2-メルカプト-[1,3,4]チアジアゾールを用いて、製造例74と同様の方法、これ準じた方法又はこれらと常法

とを組み合わせることにより無色油状物として得られた。また、ヒドロキシ基の 保護基である t e r t ープチルジメチルシロキシ基は、製造例 2 と同様の方法、 それに準じた方法又はこれらと常法とを組み合わせることにより製造することが できる。

 1 HNMR (CDCl₃) δ: 1. 31 (d, 3H, J=6. 2Hz), 3. 07 (s, 3H), 3. 78 (m, 2H), 4. 58 (m, 1H), 7. 01 (d, 1H, J=3. 6Hz), 7. 24 (m, 2H), 7. 37 (d, 2H, J=8. 6Hz), 7. 55 (m, 1H), 7. 61 (m, 1H), 7. 84 (d, 2H, J=8. 6Hz), 11. 3 (br, 1H)

10 ESI-MS (m/e):465 [M+H] + 製造例86

15 3-(3-7)ルオローフェニルチオ)-5-(2-1)ヒドロキシ-1-1メチルーエトキシ)-N-4アゾール-2-1ルーベンズアミドの調製

製造例86の化合物は、3-ヒドロキシ-5-ヨードー安息香酸メチルエステル、1-(tertージメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノチアゾールを用いて製造例65と同様の方法により得られた3-(2-tertーブチルジメチルシロキシ-1-メチルーエトキシ)-5-ヨードーN-(チアゾール-2-イル)-ベンズアミド、3-フルオロチオフェノールを用いて、製造例74と同様の方法、これ準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。また、ヒドロキシ基の保護基であるtertーブチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。

¹HNMR (CDCl₃) δ : 1. 27 (d, 3H, J=6. 2Hz), 3, 7 5 (m, 2H), 4. 54 (m, 1H), 7. 18-6. 95 (m, 4H), 7. 21 (m, 1H), 7. 30 (m, 1H), 7. 52-7. 40 (m, 2H) ESI-MS (m/e): 405 [M+H] ⁺

5 製造例87

5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(ピリジン-4-イルス10 ルファニル)-N-チアゾール-2-イルーベンズアミドの調製

製造例87の化合物は、3-ヒドロキシ-5-ヨードー安息香酸メチルエステル、1-(tertープチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノチアゾールを用いて製造例65と同様の方法により得られた3-(2-tertープチルジメチルシロキシ-1-メチルーエトキシ)-5-ヨードーN-(チアゾール-2-イル)-ベンズアミド、4-メルカプトピリジンを用いて、製造例74と同様の方法、これ準じた方法又はこれらと常法とを組み合わせることにより黄色油状物として得られた。また、ヒドロキシ基の保護基であるtertープチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行った。

¹HNMR (CDC1₃) δ:1. 36 (d, 3H, J=6. 1Hz), 3. 72 (d, 2H, J=6. 1Hz), 4. 68 (sextet, 1H, J=6. 1Hz), 7. 20 (m, 3H), 7. 45 (m, 1H), 7. 54 (m, 1H), 7. 75 (m, 1H), 7. 85 (m, 1H), 8. 36 (m, 2H) ESI-MS (m/e):388 [M+H] +

25 製造例88

<u>5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メチルーピリジン</u> -3-イルスルファニル)-N-チアゾール-2-イルーベンズアミドの調製

製造例88の化合物は、3-ヒドロキシ-5-ヨード-安息香酸メチルエステル、1-(tert-ジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノチアゾールを用いて製造例65と同様の方法により得られた3-(2-tert-ブチルジメチルシロキシ-1-メチル-エトキシ)-5-ヨード-N-(チアゾール-2-イル) -ベンズアミド、3-メルカプト-6-メチル-ピリジンを用いて、製造例74と同様の方法、これ準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。また、ヒドロキシ基の保護基である tert-ブチルジメチルシロキシ基の除去は、製造例2と同様の方法、それに準じた方法又はこれらと常法とを組み合わせることにより行った。 1 HNMR(CDC1 $_3$) $\delta:1.24$ (d,3H,J=6.2Hz),2.54(s、3H),3.72(m,2H),4.52(m,1H),6.97(m,2H),7.16(m,2H),7.33(m,1H),7.59(m,1H),8.52(m,1H),12.0(m,1H),12.00(m,1H),12.00

ESI-MS (m/e):402 [M+H] +

製造例89

20

15

5

5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニル フェノキシ) -N-(3-メチルー<math>[1, 2, 4]-チアジアゾール-5-イル) -ベンズアミドの調製

- 5-ヒドロキシー3-メトキシメトキシ安息香酸メチルエステル25.0g(1 19mmol)のトルエン溶液(375ml)に4-メタンスルホニループロモベンゼン33.4g(142mmol)、酢酸パラジウム2.67g(11.9 mmol)、2-(ジーtert-ブチルホスフィノ)ピフェニル5.31g(17.8mmol)、リン酸カリウム50.3g(237mmol)を加えた後、
- 10 反応容器を封管したのち、130度で6時間攪拌した。反応液に酢酸エチルエステルを加え、濾過した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=2:1)により精製し、3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル31.0g(収率:69%)を白色固体として得た。
- 15 得られた3-(4-メタンスルホニル-フェノキシ)-5-メトキシメトキシー 安息香酸メチルエステル30.9g(84.3mmol)の塩化メチレン溶液(100ml)にトリフルオロ酢酸60mlを氷冷下で加えた後、室温で反応液を4時間攪拌した。反応液を減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:1)により精製し、5-20 ヒドロキシ-3-(4-メタンスルホニル-フェノキシ)安息香酸メチルエステル15.2g(収率:56%)を白色固体として得た。

得られた5-ヒドロキシ-3-(4-メタンスルホニルーフェノキシ) 安息香酸メチルエステル10.0g(31.0mmol)のテトラヒドロフラン溶液(200ml)に(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン11.8g(62.1mmol)及びトリフェニルホスフィン16.3g(62.1mmol)加えた後、ジエチルアゾジカルボキシレートの40%トルエン溶液33.8ml(77.6mmol)を氷冷下で加え、室温で12時間攪拌した。反応液を減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=8:2)により精製し、5-((1

S) -2-(tert-プチルジメチルシロキシ) -1-メチルーエトキシ) -3-(4-メタンスルホニルーフェノキシ) -安息香酸メチルエステルを黄色油状物として得た。

得られた 5-((1S)-2-(t-ブチルジメチルシロキシ)-1-メチル-エトキシ)-3-(4-メタンスルホニルーフェノキシ)-安息香酸メチルエステル <math>200mg(0.40mmo1)及び 5-アミノ-3-メチルー[1,2,4]チアジアゾールを用いて、製造例 2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせた方法により、製造例 89 の化合物を無色アモルファスとして得られた。

¹HNMR (CD₃OD) δ: 1. 30 (d, 6H, J=6. 2Hz), 2. 50 (s, 3H), 3. 12 (s, 3H), 3. 68 (d, 2H, J=5. 0Hz), 4. 58-4. 63 (m, 1H), 7. 01 (s, 1H), 7. 23 (d, 2H, J=8. 8Hz), 7. 36 (s, 1H), 7. 54 (s, 1H), 7. 97 (d, 2H, J=8. 8Hz)

15 ESI-MS(m/e):464 [M+H] * 製造例90

N-[3-ヒドロキシメチル-1, 2, 4-チアジアゾール-5-イル] -3 (4-メタンスルホニルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) ペンズアミドの調製

製造例90の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1

ーメトキシー2ープロパノール及び5ーアミノー3ー(tープチルジメチルシロキシメチル)- [1, 2, 4] チアジアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、無色アモルファスとして得られた。

5 1 HNMR (CDC1₃) δ : 1. 34 (3H, d, J=6. 3Hz), 3. 0 9 (3H, s), 3. 41 (3H, s), 3. 49-3. 64 (2H, m), 4. 60-4. 72 (1H, m), 4. 79 (2H, s), 6. 92 (1H, t, J=2. 0Hz), 7. 16 (2H, d, J=8. 7Hz), 7. 43 (1H, br), 7. 93 (2H, d, J=8. 7Hz)

10 ESI-MS (m/e):494 [M+H] + 製造例91

20

5 $\underline{5-(3-$ ヒドロキシ-1-メチルエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-[5-メチル-1, 2, 4-チアジアゾール-3-イル]ベンズアミドの調製

製造例 9 1 の化合物は、製造例 8 9 で得られた 3 - (4 - メタンスルホニルーフェノキシ) - 5 - メトキシメトキシー安息香酸メチルエステル、(2 R) - 1 - (t - プチルジメチルシロキシ) - 2 - ヒドロキシプロパン及び 3 - アミノー5 - メチルー[1, 2, 4] チアジアゾールを用いて、製造例 8 9 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDCl₃) δ : 1. 29 (d, 3H, J=6. 3Hz), 2. 7

15

6 (s, 3H), 3. 07 (s, 3H), 3. 79 (m, 2H), 4. 57 (m, 1H), 6. 81 (m, 1H), 7. 12 (d, 2H, J=8. 8Hz), 7. 17 (m, 1H), 7. 33 (m1H), 7. 91 (d, 2H, J=8. 8Hz), 9. 27 (br, 1H)

5 ESI+MS(m/e):464 [M+H] + 製造例92

10 <u>5-(ヒドロキシー1-メチルエトキシ)-3-(4-メタンスルホニルフェノ</u> <u>キシ)-N-(3-メトキシー1, 2, 4-チアジアゾール-5-イル)ベンズ</u> アミドの調製

製造例92の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び5-アミノー3-メトキシー[1,2,4]チアジアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ: 1. 32 (d, 3H, J=6. 3Hz), 3. 1 20 2 (s, 3H), 3. 80 (d, 2H, J=5. 5Hz), 3. 99 (s, 3H), 4. 61 (m, 1H), 6. 87 (m, 1H), 7. 17 (d, 2H, J=8. 8Hz), 7. 23 (m, 1H), 7. 35 (m, 1H), 7. 96 (d, 2H, J=8. 8Hz), 11, 2 (br, 1H) ESI-MS (m/e): 480 [M+H] ⁺

製造例93

5 $\frac{5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ)-N-(1, 2, 5-チアジアゾール-3-イル) ベンズアミドの 調製$

製造例93の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-10-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー[1,2,5]チアジアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより淡黄色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 34 (d, 3H, J=6. 3Hz), 1. 9 15 1 (t, 1H, J=5. 7Hz), 3. 09 (s, 3H), 3. 80 (m, 2H), 4. 60 (m, 1H), 6. 89 (m, 1H), 7. 17 (d, 2H), 7. 1 8 (m, 1H), 7. 35 (m, 1H), 7. 96 (d, 2H, J=8. 8Hz), 8. 92 (br, 1H), 9. 32 (s, 1H) ESI-MS (m/e): 450 [M+H] ⁺

20 製造例94

5 アミドの調製

製造例94の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー4-トリフルオロメチルーチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 32 (d, 3H, J=6. 2Hz), 3. 1 1 (s, 3H), 3. 78 (d, 2H, J=5. 1Hz), 4. 57-4. 63 (m, 1H), 6. 91 (s, 1H), 7. 16-7. 17 (m, 1H), 7. 17 (d, 2H, J=8. 8Hz), 7. 34-7. 36 (m, 1H), 7. 4 4-7. 46 (m, 1H), 7. 96 (d, 2H, J=8. 8Hz) ESI-MS (m/e): 517 [M+H] +

製造例 9 5

<u>5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4,5,6,7-テトラヒドロペンゾチアゾール-2-イル)ペンズアミドの調製</u>

製造例95の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー4,5,6,7-テトラヒドロベンゾチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDCl₃) δ: 1. 26-1. 29 (m, 3H), 1. 82-1. 86 (m, 4H), 2. 57-2. 72 (m, 4H), 3. 09 (s, 3H), 3. 73-3. 78 (m, 2H), 4. 54-4. 56 (m, 1H), 6. 78 15 -6. 81 (m, 1H), 7. 09-7. 14 (m, 3H), 7. 22-7. 29 (m, 1H), 7. 90-7. 95 (m, 2H) ESI-MS (m/e): 503 [M+H] * 製造例96

<u>5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル</u> フェノキシ)-N-(ピリダジン-3-イル)-ペンズアミドの調製

5 製造例96の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノーピリダジンを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

ESI-MS(m/e):444 [M+H] +, 442 [M-H] -製造例 9 7

5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(3-イソプロピルー[1,2,4]-トリアゾール-5-イル)-3-(4-メタンスルホニルフェノキシ)

5 ベンズアミドの調製

製造例97の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び5-アミノー3-イソプロピルー[1,2,4]トリアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 33 (d, 6H, J=7. 3Hz), 1. 3 5 (d, 6H, J=7. 0Hz), 3. 10 (s, 3H), 3. 16-3. 21 (m, 1H), 3. 77-3. 79 (m, 2H), 4. 57-4. 62 (m, 1H), 6. 91 (s, 1H), 7. 16 (d, 2H, J=8. 9Hz), 7. 1 7 (d, 1H, J=1. 7Hz), 7. 35 (d, 1H, J=1. 7Hz), 7. 95 (d, 2H, J=8. 9Hz)

ESI-MS (m/e) : 492 [M+H] +

製造例98

15

10

15

5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスルホニル フェノキシ) -N-(3-メチルー <math>[1, 2, 4] -オキサジアゾールー5-1ル) ベンズアミドの調製

製造例98の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び5-アミノー3-メチルー[1,2,4]オキサジアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 28 (d, 3H, J=5. 9Hz), 2. 3 1 (s, 3H), 3. 08 (s, 3H), 3. 75-3. 76 (m, 2H), 4. 57-4. 58 (m, 1H), 5. 60 (brs, 1H), 6. 84 (s, 1H), 7. 09 (d, 2H, J=8. 6Hz), 7. 24 (s, 1H), 7. 35 (s, 1H), 7. 87 (d, 2H, J=8. 6Hz), 10. 52 (brs, 1H) ESI-MS (m/e): 448 [M+H] +, 446 [M-H] -製造例 9 9

5-(2-ヒドロキシ-1-メチルーエトキシ)-N-[4-(1-ヒドロキシ-1-メチルーエチル)-チアゾール-2-イル]-3-(4-メタンスルホニ

5 ルフェノキシ)ベンズアミドの調製

10

製造例99の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー4-(1-ヒドロキシー1-メチルーエチル)-チアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

 1 HNMR(CDCl₃) δ : 1. 33(3H, d, J=6. 2Hz), 1. 6 1(6H, s), 3. 08(3H, s), 3. 75-3. 84(2H, m), 4. 55-4. 65(1H, m), 6. 77(1H, s), 6. 88(1H, t, J=2. 0Hz), 7. 16(2H, d, J=8. 7Hz), 7. 28(1H, br), 7. 45(1H, br), 7. 95(2H, d, J=8. 7Hz) ESI-MS(m/e): 507 [M+H] + 製造例100

5

10

15

N-(4-シアノーチアゾールー2-イル)-5-(2-ヒドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)ベンズアミドの調製

製造例100の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー4-シアノーチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 32 (d, 3H, J=6. 2Hz), 2. 4 8 (brs, 1H), 3. 12 (s, 3H), 3. 75-3. 85 (m, 2H), 4. 59-4. 62 (m, 1H), 6. 88 (s, 1H), 7. 15 (d, 2H, J=8. 8Hz), 7. 22 (s, 1H), 7. 38 (s, 1H), 7. 70 (s, 1H), 7. 94 (d, 2H, J=8. 8Hz), 10. 52 (brs, 1H) ESI-MS (m/e): 474 [M+H] +, 472 [M-H] -製造例101

5-(2-ヒドロキシ-1-メチル-エトキシ) -3-(4-メタンスルホニル フェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド の調製

り 製造例101の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー1-メチル-1H-ピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。

¹HNMR (CDCl₃) δ: 1. 31 (d, 3H, J=6. 3Hz), 3. 0 8 (s, 3H), 3. 77 (m, 2H), 3. 81 (s, 3H), 4. 57 (m, 1H), 6. 78 (m, 1H), 6. 82 (m, 1H), 7. 11 (m, 1H), 7. 15 (d, 2H, J=8. 9Hz), 7. 30 (m, 2H), 7. 93 (d, 2H, J=8. 9Hz), 8. 45 (br, 1H)

15 ESI-MS (m/e):466 [M+H] + 製造例102

20 $\underline{5-(1-ヒドロキシメチループロポキシ)-3-(4-メタンスルホニルフェ}$ $\underline{/+シ)-N-(ピリジン-2-イル)$ ベンズアミドの調製

製造例102の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tert-プチルジメチルシロキシ)-2-ヒドロキシプロパンの代わり

に用いた(2R) -1-(tert-プチルジメチルシロキシ) -2-ヒドロキシブタン及び2-アミノーピリジンを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

5 HNMR (CDC1₃) δ: 1. 01 (t, 3H, J=7. 7Hz), 1. 7
6 (qd, 2H, J=7. 7, 6. 2Hz), 2. 10 (brs, 1H), 3.
09 (s, 3H), 3. 78-3. 88 (m, 2H), 4. 38-4. 44 (m,
1H), 6. 86 (s, 1H), 7. 10 (dd, 1H, J=4. 0, 8. 4Hz), 7. 15 (d, 2H, J=9. 2Hz), 7. 17 (s, 1H), 7. 3
10 7 (s, 1H), 7. 77 (dd, 1H, J=8. 4, 8. 4Hz), 7. 93
(d, 2H, J=9. 2Hz), 8. 29 (d, 1H, J=4. 0Hz), 8.
34 (d, 1H, J=8. 4Hz), 8. 62 (brs, 1H)
ESI-MS (m/e): 457 [M+H] +

製造例103

15

<u>5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル</u>フェノキシ)-N-(5-メチルーイソチアゾール-3-イル)ベンズアミドの

20 調製

製造例103の化合物は、製造例89で得られた3-(4-メタンスルホニル -フェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ -5-メチルーイソチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ: 1. 30 (d, 3H, J=6. 2Hz), 2. 5 8 (s, 3H), 3. 07 (s, 3H), 3. 75 (m, 2H), 4. 57 (m, 1H), 6. 82 (m, 1H), 7. 13 (d, 2H, J=8. 9Hz), 7. 15 (m, 1H), 7. 31 (m, 1H), 7. 73 (m, 1H), 7. 92 (d, 2H, J=8. 9Hz), 9. 12 (br, 1H) ESI-MS (m/e): 463 [M+H] +

10 製造例104

5

<u>5-(3-ヒドロキシーシクロペンチルオキシ)-3-(4-メタンスルホニル</u>フェノキシ)-N-(チアゾール-2-イル)ベンズアミドの調製

15 製造例104の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパンの代わりに3-(tert-ブチルジフェニルシロキシ)シクロペンタノール及び2-アミノーチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 92 (m, 6H), 3. 08 (s, 3H), 4. 39 (s, 1H), 4. 82-4. 84 (s, 1H), 6. 82 (t, 1H, J=1. 9Hz), 7. 00 (d, 1H, J=3. 6Hz), 7. 13 (d, 2 H, J=8. 6Hz), 7. 16 (d, 1H, J=1. 9Hz), 7. 23 (d, 1H, J=3.6Hz), 7. 34 (d, 1H, J=1.9Hz), 7. 92 (d, 2H, J=8.6Hz)

ESI-MS (m/e) : 475 [M+H] +

製造例105

5

<u>5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル</u> フェノキシ)-N-(5-メトキシ-チアゾール-2-イル)ベンズアミドの調

10 製

15

製造例 105 の化合物は、製造例 89 で得られた 3-(4-メタンスルホニル - フェノキシ) - <math>5- メトキシメトキシー安息香酸メチルエステル、(2R) - 1-(t- プチルジメチルシロキシ) -2- ヒドロキシプロパン及び 2- アミノ -5- メトキシーチアゾールを用いて、製造例 89 と同様の方法、これに準じた 方法又はこれらと常法とを組み合わせることにより白色固体として得られた。

¹HNMR (CDCl₃) δ : 1. 28 (d, 3H, J=6. 2Hz), 3. 0 7 (s, 3H), 3. 75 (d, 2H, J=5. 6Hz), 3. 87 (s, 3H), 4. 57 (m, 1H), 6. 52 (s, 1H), 6. 81 (m, 1H), 7. 1 2 (d, 2H, J=8. 8Hz), 7. 17 (m, 1H), 7. 31 (m, 1H),

20 7.90 (d, 2H, J=8.8Hz), 11.5 (br, 1H) ESI-MS (m/e):479 [M+H] + 製造例106

5 製造例106の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパンの代わりに1-(tertープチルジメチルシロキシ)-3-メチループタン-2-オール及び2-アミノーチアゾールを用いて、製造例89と同様の方法、これに準じた方法70 又はこれらと常法とを組み合わせることにより____として白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 0. 97 (m, 6H), 2. 05 (m, 1H), 3. 07 (s, 3H), 3. 83 (m, 2H), 4. 22 (m, 1H), 6. 84 (m, 1H), 6. 96 (d, 1H, J=3. 7Hz), 7. 11 (d, 2H, J=8. 9Hz), 7. 18 (m, 1H), 7. 23 (d, 1H, J=3. 7Hz), 7. 39 (m, 1H), 7. 91 (d, 2H, J=8. 8Hz), 12. 0 (br, 1H)

ESI-MS (m/e) : 477 [M+H] +

製造例107

5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンスルホニル フェノキシ) -N-(1H-[1, 2, 3] トリアゾールー4-イル) ベンズア

5 <u>ミドの調製</u>

10

製造例107の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び4-アミノー1H-[1,2,3]トリアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ:1. 31 (d, 3H, J=6. 2Hz), 3. 11 (s, 3H), 3. 34 (s, 1H), 3. 67-3. 68 (m, 2H), 4. 56-4. 60 (m, 2H), 6. 93 (s, 1H), 7. 21 (d, 2H, J=8. 8Hz), 7. 25 (s, 1H), 7. 43 (s, 1H), 7. 94 (d, 2H, J=8. 8Hz), 8. 08 (brs, 1H) ESI-MS (m/e):433 [M+H] +, 431 [M-H] - 製造例108

N-(1-Pセチル-1H-ピラゾール-3- (2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4- メタンスルホニルフェノキシ) ベンズアミ

5 <u>ドの調製</u>

10

15

製造例108の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tーブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー1-アセチルー1H-ピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 36 (d, 3H, J=6. 3Hz), 2. 6 5 (s, 3H), 3. 12 (s, 3H), 3. 82 (m, 2H), 4. 61 (m, 1H), 6. 89 (m, 1H), 7. 16-7. 22 (m, 4H), 7. 35 (m, 1H), 7. 98 (d, 2H, J=8. 8Hz), 8. 22 (d, 1H, J=3. 0Hz), 8. 46 (br, 1H)

ESI-MS (m/e) : 474 [M+H] +

製造例109

<u>5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル</u>フェノキシ)-N-(ピラゾール-3-イル)ベンズアミドの調製

5 製造例109の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tーブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノーピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより____として白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 26 (d, 3H, J=6. 3Hz), 3. 0 5 (s, 3H), 3. 73 (m, 2H), 4. 52 (m, 1H), 6. 75 (m, 2H), 7. 06 (d, 2H, J=8. 8Hz), 7. 14 (m, 1H), 7. 32 (m, 1H), 7. 46 (m, 1H), 7. 85 (d, 2H, J=8. 8Hz), 9. 72 (br, 1H)

ESI-MS (m/e) : 432 [M+H] +

製造例110

N-(5,6-ジヒドロ-4H-シクロペンタチアゾール-2-イル)-5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキ シ)ベンズアミドの調製

製造例110の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー5,6-ジヒドロ-4H-シクロペンタンチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 28 (d, 3H, J=6. 2Hz), 2. 44 (tt, 2H, J=7. 0, 7. 0Hz), 2. 61 (t, 2H, J=7. 0Hz), 2. 90 (t, 2H, J=7. 0Hz), 3. 08 (s, 3H), 3. 70-3. 76 (m, 2H), 4. 51-4. 55 (m, 1H), 6. 76 (s, 1H), 7. 10 (d, 2H, J=8. 8Hz), 7. 12 (s, 1H), 7. 28 (s, 1H), 7. 90 (d, 2H, J=9. 2Hz) ES I-MS (m/e): 489 [M+H] +, 487 [M-H] - 製造例111

5-(1-ヒドロキシメチループロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-(1-メチルー<math>1H-ピラゾールー3-イル) ベンズアミドの調

5 製

10

製剤例111の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tertープチルジメチルシロキシ)-2-ヒドロキシプロパンの代わりに(2R)-1-(tertープチルジメチルシロキシ)-ブタン-2-オール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 0. 93 (t, 3H, J=7. 5Hz), 1. 6 9 (quintet, 1H, J=7. 5Hz), 2. 75 (t, 1H, J=6. 15 2Hz), 3. 06 (s, 3H), 3. 74 (s, 3H), 3. 70-3. 80 (m, 2H), 4. 33 (m, 1H), 6. 77 (m, 2H), 7. 09 (d, 2H, J=8. 8Hz), 7. 11 (m, 1H), 7. 27 (m, 2H), 7. 99 (d, 2H, J=8. 8Hz), 9. 03 (br, 1H) ESI-MS (m/e): 460 [M+H] +

20 製造例112

5-(2-Eドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(チエノ[3, 2-d] チアゾ-ル-2-イル) ベンズアミ

製造例112の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノーチエノ[3,2-d]チアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ:1.30 (d, 3H, J=6.2Hz), 2.05 (brs, 1H), 3.09 (s, 3H), 3.76-3.78 (m, 2H), 4.55-4.57 (m, 1H), 6.84 (s, 1H), 7.15 11 (d, 2H, J=8.8Hz), 7.11 (s, 1H), 7.19 (s, 1H), 7.36 (s, 1H), 7.38 (s, 1H), 7.92 (d, 2H, J=8.8Hz), 10.42 (brs, 1H) ESI-MS (m/e):505 [M+H] +, 503 [M-H] - 製造例113

3 - (3 - 7)ルオロー4 - 3 - 3 - 3 - 4 - 3 - 4 - 3 - 4 - 4 - 3 - 4 -

5 ベンズアミドの調製

製造例113の化合物は、製造例42と同様の方法により得られた3-(3-フルオロ-4-メタンスルホニルフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色結晶として得られた。

¹HNMR (CDCl₃) δ : 1. 31 (d, 3H, J=6. 3Hz), 2. 2 0 (t, 1H, J=6. 5Hz), 3. 23 (s, 3H), 3. 77 (m, 2H), 3. 80 (s, 3H), 4. 57 (sextet, 1H, J=4. 5Hz), 6. 79-6. 93 (m, 4H), 7. 14 (m, 1H), 7. 30 (m, 1H), 7. 33 (m, 1H), 7. 92 (t, 1H, J=8. 4Hz), 8. 57 (br, 1H)

ESI-MS (m/e) : 464 [M+H] +

製造例114

15

3-(4-メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メチルーエトキシ)-N-(ピラゾール-3-イル)ベンズアミドの調製

- 5 製造例114の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-メトキシ-2-プロパノール及び3-アミノーピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

ESI-MS (m/e) : 446 [M+H] +

製造例115

 $3 - (4 - \nu) - (2 - \nu) - (2 - \nu) - (2 - \nu)$ -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

製造例115の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ 5 チルエステル及びpーシアノフェニルホウ酸を用いて、製造例1と同様の方法で 得られた3-(4-シアノーフェノキシ)-5-メトキシメトキシー安息香酸メ チルエステル、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキ シプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例8 9と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることによ り無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 30 (d, 3H, J=6. 2Hz), 2. 31 (brs, 1H), 3.76-3.79 (m, 2H), 3.79 (s, 3H), 4. 54 (qt, 1H, J=6. 2Hz, 4. 0Hz), 6. 77 (d, 1H, J=2.2Hz), 6.78 (s, 1H), 7.07 (d, 2)H, J = 8.8 Hz), 7.09(s, 1H), 7.27(s, 1H), 7. 28 (d, 1H, J=2.2Hz), 7.63 (d, 2H, 8.8Hz), 8.64 (brs, 1H)

ESI-MS (m/e) : 393 [M+H] +

製造例116

15

5 の調製

製造例117

製造例116の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル及びp-エチルチオフェニルホウ酸を用いて、製造例1と同様の方 法で得られた3-(4-エチルチオーフェノキシ)-5-メトキシメトキシー安 息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-エチ 10 ルチオーフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー1-メチル-1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

15 ¹HNMR (CDCl₃) δ: 1. 32 (d, 3H, J=6. 2Hz), 1. 33 (t, 3H, J=7. 7Hz), 2. 05 (brs, 1H), 3. 14 (q, 2H, J=7. 7Hz), 3. 75-3. 79 (m, 2H), 3. 8 1 (s, 3H), 4. 56 (qt, 1H, J=6. 2, 3. 7Hz), 6. 78 (s, 1H), 6. 81 (d, 1H, J=2. 2Hz), 7. 11 (s, 20 1H), 7. 12 (d, 2H, J=8. 8Hz), 7. 28 (d, 1H, J=2. 2Hz), 7. 28 (s, 1H), 7. 87 (d, 2H, J=8. 8Hz), 8. 41 (brs, 1H) ESI-MS (m/e): 460 [M+H] +, 458 [M-H] -

15

20

3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキ シ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

5ーヒドロキシー3ーメトキシメトキシ安息香酸メチルエステル100mg (0.47mmo1)のN,Nージメチルホルムアミド溶液(1.0m1)に5ープロモー2ーエタンスルホニルピリジン178mg(0.71mmo1)及び炭酸セシウム232mg(0.71mmo1)を加えた後、窒素雰囲気下、100度で2.5時間攪拌した。反応液に酢酸エチルエステル及び塩化アンモニウム水溶液を添加し、水層を酢酸エチルエステルで抽出後、有機層を飽和食塩水溶液で洗浄し、乾燥後、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=1:1)により精製し、3ー(6ーエタンスルホニルーピリジンー3ーイルオキシ)ー5ーメトキシメトキシ安息香酸メチルエステル165mg(収率:91%)を無色油状物として得た。

得られたエステル体 1 1. 8 g (3 0. 9 mm o 1) の塩化メチレン溶液 (5 0. 0 m 1) に、トリフルオロ酢酸 3 0. 0 m 1 を加え、反応液を室温で 5 時間 攪拌した。反応液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=2:1)により精製し、3 - (6 - エタンスルホニルーピリジン-3 - イルオキシ) - 5 - ヒドロキシ安息香酸メチルエステル 8. 8 6 g (収率:85%) を無色油状物として得た。

得られたフェノール体1.00g(2.97mmol)のテトラヒドロフラン溶液(30.0ml)に(2R)-1-(tープチルジメチルシロキシ)-2-

WO 2004/076420 PCT/JP2004/002284 217

ヒドロキシプロパン1、02g(5.34mmo1)及びトリフェニルホスフィン1.40g(5.34mmo1)加えた後、ジエチルアゾジカルボキシレートの40%トルエン溶液2.42m1(5.34mmo1)を氷冷下で加え、室温で1時間攪拌した。反応液を減圧下に濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチルエステル=3:2)により精製し、3-((1S)-2-(t-ブチルジメチルシロキシ)-1-メチルーエトキシ)-5-(6-エタンスルホニルーピリジン-3-イルオキシ)-安息香酸メチルエステル1.31g(収率:87%)を無色油状物として得た。

製造例117の化合物は、得られた3-((1S)-2-(t-ブチルジメチ10 ルシロキシ)-1-メチルーエトキシ)-5-(6-エタンスルホニルーピリジン-3-イルオキシ)-安息香酸メチルエステル及び3-アミノ-1-メチルピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

1 HNMR (CDC1₃) δ:1. 32 (d, 3H, J=6. 2Hz), 1.

15 33 (t, 3H, J=7. 3Hz), 3. 40 (q, 2H, J=7. 3Hz),
3. 75-3. 77 (m, 2H), 3. 81 (s, 3H), 4. 54-4.

59 (m, 1H, J=6. 2, -Hz), 6. 76 (d, 1H, J=2. 2Hz),
2), 6. 81 (dd, 1H, J=2. 2, 2. 2Hz), 7. 14 (dd,
1H, J=2. 2, 1. 7Hz), 7. 28 (d, 1H, J=2. 2Hz),
20 7. 32 (d, 1H, J=2. 2, 1. 7Hz), 7. 43 (dd, 1H, J=8. 8, 2. 6Hz), 8. 05 (d, 1H, J=8. 8Hz), 8. 4

5 (brs, 1H), 8. 47 (d, 1H, J=2. 6Hz)

ESI-MS (m/e): 461 [M+H] +, 459 [M-H]
製造例118

5 ドの調製

3- (4-エタンスルホニルフェノキシ) -5- (2-ヒドロキシ-1-メチル -エトキシ) -N- (イソキサゾール-3-イル) ベンズアミドの調製

5 製造例119の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル及びp-エチルチオフェニルホウ酸を用いて、製造例1と同様の方 法で得られた3-(4-エチルチオ-フェノキシ)-5-メトキシメトキシー安 息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-エチ ルチオ-フェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-

10 1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ -イソキサゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれ らと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 32 (t, 3H, J=7. 4Hz), 1. 32 (d, 3H, J=6. 3Hz), 3. 13 (q, 2H, J=7. 4Hz), 3. 76-3. 79 (m, 2H), 4. 56-4. 62 (m, 1H), 6. 87 (t, 1H, J=1. 8Hz), 7. 14 (d, 2H, J=8. 7Hz), 7. 16 (d, 1H, J=1. 8Hz), 7. 26 (d, 1H, J=1. 8Hz), 7. 31 (s, 1H), 7. 93 (d, 2H, J=8. 7Hz), 8. 34 (s,

20 ESI-MS (m/e):477 [M+H] + 製造例120

15

1H),

5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-イソプロピルスル ホニルフェノキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズ

5 アミドの調製

製造例120の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル及びp-イソプロピルチオフェニルホウ酸を用いて、製造例1と同様の方法で得られた3-(4-イソプロピルチオーフェノキシ)-5-メトキシ メトキシー安息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-イソプロピルチオーフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

製造例121の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノー4-ヒドロキシー4-メチルー4,5,6,6a-テトラヒドロー3aH-シクロペンタチアゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 27-1. 33 (3H, m), 1. 60 (3 H, s), 2. 56 (2H, m), 2. 75-3. 07 (2H, m), 3. 08 (3H, s), 3. 74-3. 82 (2H, m), 4. 53-4. 65 (1H, m), 6. 75-6. 83 (1H, m), 7. 11-7. 20 (3H, m), 7. 29-7. 35 (1H, m), 7. 93 (2H, d, J=8. 9Hz) ESI-MS (m/e): 519 [M+H] +

製造例122

15

3-(4-ジメチルカルバモイル-フェノキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズ

5 アミドの調製

20

製造例122の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル及びpーホルミルフェニルホウ酸を用いて、製造例1と同様の方法で得られた3-(4-ホルミルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステルのホルミル基をカルボキシル基に変換後、ジメチルアミンとの縮合反応により得られた3-(4-ジメチルカルバモイルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-ジメチルカルバモイルーフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 33 (d, 3H, J=6. 2Hz), 2. 11 (brs, 1H), 3. 08 (s, 3H), 3. 13 (s, 3H), 3. 74-3. 81 (m, 2H), 3. 83 (s, 3H), 4. 54-4. 58 (m, 1H), 6. 77 (s, 1H), 6. 80 (s, 1H), 7. 06 (d, 2H, J=7. 7Hz), 7. 10 (s, 1H), 7. 26 (s, 1H), 7. 30 (s, 1H), 7. 46 (d, 2H, J=7. 7Hz), 8. 49 (brs, 1H)

ESI-MS (m/e): 439 [M+H] +, 437 [M-H] -

製造例123

10

15

20

3 - (4 - アセチルフェノキシ) - 5 - (2 - ヒドロキシ-1 - メチル-エトキシ) - N - (1 - メチル-1 H - ピラゾール-3 - イル) ベンズアミドの調製

製造例123の化合物は、製造例122と同様の方法により得られた3-(4ーホルミルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステルのホルミル基をメチルマグネシウムプロミドと反応させ、引き続き酸化反応により得られた3-(4-アセチルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-アセチルーフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(tープチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー1-メチルー1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 30 (d, 3H, J=6. 2Hz), 2. 59 (s, 3H), 3. 75-3. 76 (m, 2H), 3. 79 (s, 3H), 4. 52-4. 56 (m, 1H, J=6. 2, -Hz), 6. 78 (d, 1H, J=2. 2Hz, dd, 1H, J=2. 2, 1. 8Hz), 7. 04 (d, 2H, J=8. 8Hz), 7. 07 (dd, 1H, J=1. 8, 1. 8Hz), 7. 25 (dd, 1H, J=2. 2, 1. 8Hz), 7. 26 (d, 1H, J=2. 2Hz), 7. 95 (d, 2H, J=8. 8Hz), 8. 52 (br s, 1H)

ESI-MS (m/e) : 410 [M+H] +, 408 [M-H] -

製造例124

5 $\frac{5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチルー1H-ピ$ ラゾール-3-イル) -3-(1,3,4-チアジアゾール-2-イルスルファ ニル) ベンズアミドの調製

製造例124の化合物は、3-ヒドロキシ-5-ヨード安息香酸メチルエステル、1-tert-ジメチルシロキシ-2-ヒドロキシプロパン、2-メルカプト-[1,3,4]チアジアゾール及び3-アミノ-1-メチル-1H-ピラゾールを用いて製造例74又は82と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることによりとして無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 31 (3H, d, J=6. 2Hz), 3. 74-3. 79 (2H, m), 3. 82 (3H, s), 4. 54-4. 63 (1H, m), 6. 78 (1H, d, J=2. 2Hz), 7. 30 (1H, d, J=2. 3Hz), 7. 39 (1H, m), 7. 54 (1H, m), 7. 69 (1H, m), 8. 55 (1H, br), 9. 05 (1H, s)

ESI-MS (m/e) : 392 [M+H] +

製造例125

15

5 製

10

製造例125の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、(2R)-1-(tーブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー1-エチルー1H-ピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 30 (d, 3H, J=6. 2Hz), 1. 4 3 (t, 3H, J=7. 3Hz), 3. 07 (s, 3H), 3. 76 (m, 2H), 4. 05 (q, 2H, J=7. 3Hz), 4. 56 (m, 1H), 6. 79 (m, 2H), 7. 12 (d, 2H, J=8. 8Hz), 7. 14 (m, 1H), 7. 30 (m, 1H), 7. 33 (m, 1H), 7. 92 (d, 2H, J=8. 8Hz), 8. 70 (br, 1H) ESI-MS (m/e): 460 [M+H] † 製造例126

5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(6-メタンスルホニル ピリジン-3-イルオキシ) -N-(1-メチル-1H-ピラゾール-3-イル)

5 ベンズアミドの調製

製造例126の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-メタンスルホニルピリジン、(2R)-1-(t ープチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メ チル-1H-ピラゾールを用いて、製造例117と同様の方法、これに準じた方 10 法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られ た。

¹HNMR (CDC1₃) δ: 1. 29 (d, 3H, J=6. 3Hz), 3. 2 2 (s, 3H), 3. 75 (m, 2H), 3. 78 (s, 3H), 4. 55 (m, 1H), 6. 75 (m, 1H), 6. 78 (m, 1H), 7. 11 (m, 1H), 7. 26 (m, 1H), 7. 29 (m, 1H), 7. 42 (dd, 1H, J=2. 9, 8. 5Hz), 8. 03 (d, 1H, J=8. 5Hz), 8. 44 (d, 1 H, J=2. 9Hz), 8. 65 (br, 1H) ESI-MS (m/e): 447 [M+H] ⁺

20 製造例 1 2 7

20

5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メトキシカルボニルアミノメチルーフェノキシ)-N-(3-メチル-1, 2, 4-チアジアゾールー5-イル) ベンズアミドの調製

製造例127の化合物は、5-ヒドロキシ-3-イソプロポキシ安息香酸メチルエステルの代わりに5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステルを用いて製造例59と同様の方法により得られた3-(4-メトキシカルボニルアミノメチルフェノキシ)-5-メトキシメトキシー安息香酸メチルエステルのメトキシメチル基を脱保護して得られた3-(4-メトキシカルボニルアミノメチルフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び5-アミノ-3-メチル-[1, 2, 4]-チアジアゾールを用いて、製造例2と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることによりとして無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 29 (d, 3H, J=6. 2Hz), 2. 45 (s, 3H), 3. 71 (s, 3H), 3. 73-3. 78 (m, 2H), 4. 35 (d, 2H, J=6. 2Hz), 4. 50-4. 57 (m, 1H, J=6. 2Hz, -), 5. 08 (brs, 1H), 6. 76 (s, 1H), 6. 97 (d, 2H, J=8. 3Hz), 7. 01 (s, 1H), 7. 16 (s, 1H), 7. 27 (d, 2H, J=8. 3Hz), 10. 8 (brs, 1H)

ESI-MS (m/e): 495 $[M+Na]^+$, 473 $[M+H]^+$, 471 $[M-H]^-$

製造例128

10

5 5-(1-ヒドロキシメチループロポキシ) -3-(6-メタンスルホニルピリ ジン-3-イルオキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

製造例128の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-ブロモ-2-メタンスルホニルピリジン、(2S)-1-(tert-プチルジメチルシロキシ)-2-ヒドロキシブタン及び3-アミノ-1-メチル-1H-ピラゾールを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 0. 99 (t, 3H, J=7. 5Hz), 1.

15 70-1. 77 (m, 2H), 3. 24 (s, 3H), 3. 79-3. 82 (m, 5H), 4. 36-4. 40 (m, 1H), 6. 78 (d, 1H, J=1. 8Hz), 6. 85 (d, 1H, J=1. 8Hz), 7. 13 (s, 1H), 7. 2 9 (d, 1H, J=2. 3Hz), 7. 34 (d, 1H, J=2. 3Hz), 7. 46 (dd, 1H, J=2. 6, 8. 9Hz), 8. 08 (d, 1H, J=8. 9Hz), 8. 48 (d, 1H, J=2. 6Hz)

ESI-MS (m/e): 461 [M+H] + 製造例129

5 ズアミドの調製

製造例129の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-メタンスルホニルピリジン、(2S)-1-メ トキシ-2-ヒドロキシプタン及び3-アミノ-1-メチル-1H-ピラゾール を用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組 み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 0. 99 (t, 3H, J=7. 4Hz), 1. 74-1. 79 (m, 2H), 3. 24 (s, 3H), 3. 37 (s, 3H), 3. 56-3. 57 (m, 2H), 3. 79 (s, 3H), 4. 37-4. 40 (m, 1H), 6. 79 (s, 1H), 6. 87 (t, 1H, J=1. 2Hz), 7. 14 (s, 1H), 7. 29 (d, 1H, J=1. 2Hz), 7. 34 (d, 1H, J=1. 2Hz), 7. 45 (dd, 1H, J=2. 0, 8. 6Hz), 8. 06 (d, 1H, J=8. 6Hz), 8. 48 (d, 1H, J=2. 0Hz) ESI-MS (m/e): 475 [M+H] ⁺ 製造例130

20

5 製造例130の化合物は、5ーヒドロキシー3ーメトキシメトキシ安息香酸メ チルエステル、5ープロモー2ーメタンスルホニルピリジン、2ーヒドロキシプ ロパン及び3ーアミノー1ーメチルー1Hーピラゾールを用いて製造例117と 同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白 色アモルファスとして得られた。

10 ¹HNMR (CDCl₃) δ: 1. 35 (d, 6H, J=6. 2Hz), 3. 2 2 (s, 3H), 3. 77 (s, 3H), 6. 75 (septe, 1H, J=6. 2Hz), 6. 74 (m, 1H), 6. 76 (m, 1H), 7. 08 (m, 1H), 7. 24 (m, 1H), 7. 26 (m, 1H), 7. 41 (dd, 1H, J=2. 9, 8. 8Hz), 8. 03 (d, 1H, J=8. 8Hz), 8. 44 (d, 1H, J=2. 9Hz), 8. 64 (br, 1H) ESI-MS (m/e): 431 [M+H] †

製造例131

<u>5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3</u> -イル)ベンズアミドの調製

5 製造例131の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-ブロモ-2-メタンスルホニルピリジン、1,3-ジフルオ ロ-2-プロパノール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、 製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせ ることにより、白色アモルファスとして得られた。

10 ¹HNMR (CDC1₃) δ: 3. 23 (s, 3H), 3. 75 (s, 3H), 4. 55-4. 61 (m, 2H), 4. 61-4. 80 (m, 3H), 6. 75 (m, 1H), 6. 88 (m, 1H), 7. 18 (m, 1H), 7. 27 (m, 1H), 7. 34 (m, 1H), 7. 43 (dd, 1H, J=2. 4, 8. 4H z), 8. 04 (d, 1H), 8. 44 (d, 1H, J=2. 4Hz), 8. 8
15 4 (br, 1H)

ESI-MS (m/e):467 [M+H] + 製造例132

20

3-(6-x9)スルホニルピリジン-3-(2-x)1 -3-(2-x)2 -3-(2-x)2 -3-(2-x)3 -3-(2-x)4 -3-(2-x)5 -3-(2-x)6 -3-(2-x)7 -3-(2-x)7 の調製

製造例132の化合物は、5-ヒドロキシー3-メトキシメトキシ安息香酸メ

チルエステル、5 ープロモー2 ーエタンスルホニルピリジン、(2R) ー1 ー $(textit{ert} + -$ プチルジメチルシロキシ) -2 ーヒドロキシプロパン及び3 ーアミノーイソキサゾールを用いて製造例1 1 1 と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

5 HNMR (CDCl₃) δ: 1. 31 (d, 3H, J=6. 2Hz), 1. 3 2 (t, 3H, J=7. 3Hz), 2. 22 (brs, 1H), 3. 40 (q, 2H, J=7. 3Hz), 3. 75-3. 77 (m, 2H), 4. 56-4. 6 1 (m, 1H, J=6. 2, -Hz), 6. 86 (d, 1H, J=2. 2Hz), 7. 17 (d, 1H, J=2. 2Hz), 7. 26 (d, 1H, 0. 7Hz), 7. 40 (d, 1H, J=2. 2Hz), 7. 43 (dd, 1H, J=8. 8, 2. 9Hz), 8. 04 (d, 1H, J=8. 8Hz), 8. 26 (d, 1H, J=0. 7Hz), 8. 46 (d, 1H, J=2. 9Hz), 9. 83 (brs, 1H)

ESI-MS (m/e) : 448 [M+H] +, 446 [M-H] -

15 製造例 1 3 3

5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル 20 フェニルスルファニル)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミドの調製

製造例133の化合物は、3-ヒドロキシ-5-ヨード安息香酸メチルエステル、 (2R)-1- (tert-ブチルジメチルシロキシ) -2-ヒドロキシプロパン、4-メタンスルホニルベンゼンチオール及び3-アミノ-1-メチル-

10 製造例134

15

20

<u>5-シクロプロピルオキシ-3-(4-メタンスルホニルフェノキシ)-N-(1</u> -メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

製造例134の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、テトラピニルすず及び酢酸銅を反応させて得られた5-メトキシメトキシ-3-ビニルオキシー安息香酸メチルエステルを、引き続きジエチル亜鉛及びジヨードメタンと反応させて得られた3-シクロプロピルオキシ-5-メトキシメトキシー安息香酸メチルエステル、p-メチルチオフェニルホウ酸及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDC1₃) δ : 0. 70-0. 85 (m, 4H), 3. 08 (s,

3H), 3. 78 (m, 1H), 3. 79 (s, 3H), 6. 78 (m, 1H), 6. 91 (m, 1H), 7. 10-7. 14 (m, 3H), 7. 27 (m, 1H), 7. 41 (m, 1H), 7. 90 (d, 2H, J=8.8Hz), 8. 52 (br, 1H)

5 ESI-MS (m/e):428 [M+H] + 製造例135

10 <u>3-(6-メタンスルホニルピリジン-3-イルオキシ)-5-(1-メトキシ</u> メチループロポキシ)-N-(ピラゾール-3-イル)ベンズアミドの調製

製造例135の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-メタンスルホニルピリジン、(2R)-1-メトキシ-2-ヒドロキシブタン及び3-アミノーピラゾールを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 0. 98 (t, 3H, J=7. 4Hz), 1. 69-1. 78 (m, 2H), 3. 22 (s, 3H), 3. 38 (s, 3H), 3. 58-3. 59 (m, 2H), 4. 37-4. 43 (m, 1H), 6. 84 20 -6. 85 (m, 2H), 7. 20 (s, 1H), 7. 41-7. 49 (m, 3H), 8. 04 (d, 1H, J=8. 6Hz), 8. 45 (d, 1H, J=2. 6Hz), 9. 92 (brs, 1H)

ESI-MS (m/e) : 461 [M+H] +

製造例136

15

製造例137

製造例136の化合物は、製造例89で得られた3-(4-メタンスルホニルーフェノキシ)-5-メトキシメトキシー安息香酸メチルエステル、1,3-ジフルオロ-2-プロパノール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ: 3. 09 (s, 3H), 3. 77 (s, 3H), 4. 59-4. 76 (m, 5H), 6. 78 (s, 1H), 6. 89 (t, 1H, J=2. 0Hz), 7. 13 (d, 2H, J=8. 6Hz), 7. 18 (s, 1H), 7. 29 (d, 1H, J=2. 0Hz), 7. 33 (d, 1H, J=2. 0Hz), 7. 93 (d, 2H, J=8. 6Hz), 8. 76 (brs, 1H) ESI-MS (m/e): 466 [M+H] ⁺

5 ズアミドの調製

10

15

製造例137の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-エタンスルホニルピリジン、(2R)-1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシブタン及び3-アミノ-1-メチル-1H-ピラゾールルを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 0. 97 (t, 3H, J=7. 4Hz), 1. 32 (t, 3H, J=7. 4Hz), 1. 67-1. 84 (m, 2H), 3. 4 0 (q, 2H, J=7. 4Hz), 3. 74-3. 84 (m, 5H), 4. 33 -4. 40 (m, 1H), 6. 77 (s, 1H), 6. 79 (s, 1H), 7. 15 (s, 1H), 7. 28 (s, 1H), 7. 33 (s, 1H), 7. 43 (d d, 1H, J=2. 6, 8. 8Hz), 8. 05 (d, 1H, J=8. 8Hz), 8. 47 (d, 1H, J=2. 6Hz) ESI-MS (m/e): 475 [M+H] +

5-(6-エタンスルホニルピリジン-3-イルオキシ)-3-(2-メトキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベ

5 ンズアミドの調製

製造例138の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-エタンスルホニルピリジン、(2R)-2-ヒ ドロキシ-1-メトキシプロパン及び3-アミノ-1-メチル-1H-ピラゾー ルを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを 10 組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 1. 34 (t, 3H, J=7. 3Hz), 1.

34 (d, 3H, J=4.0Hz), 3.40 (s, 3H), 3.41 (q, 2H, J=7.3Hz), 3.49-3.60 (m, 2H), 3.80 (s, 3H), 4.60 (qt, 1H, J=4.0, 6.2Hz), 6.78 (s, 1H), 6.83 (d, 1H, J=2.2Hz), 7.14 (s, 1H), 7.28 (d, 1H, J=2.2Hz), 7.31 (s, 1H), 7.42 (dd, 1H, J=8.4, 2.6Hz), 8.05 (d, 1H, J=8.4Hz), 8.48 (d, 1H, J=2.6Hz), 8.49 (brs, 1H) ESI-MS (m/e): 475 [M+H] + 473 [M-H] -

2-[3-(4-メタンスルホニルフェノキシ) -5-(1-メチル-1H-ピラゾール-3-イルカルバモイル) -フェノキシ] プロピオン酸-<math>tert-ブ

5 チルエステルの調製

10

15

製造例139の化合物は、製造例1で得られた5-ヒドロキシ-3-(4-メ チルチオフェノキシ)安息香酸メチルエステル、2-ブロモプロピオン酸 ter tブチルエステル及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製 造例1と同様の方法、これに準じた方法又はこれらと常法とを組み合わせること により無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 44 (9H, s), 1. 60 (3H, d, J=6.8Hz), 3. 07 (3H, s), 3. 81 (3H, s), 4. 69 (1H, q, J=6.8Hz), 6. 77 (1H, br), 7. 10-7. 16 (3H, m), 7. 24 (1H, br), 7. 29 (1H, d, J=2.2Hz), 7. 92 (2H, d, J=8.9Hz), 8. 38 (1H, br)

ESI-MS (m/e) : 516 [M+H] +

3-(6-x9)スルホニルピリジン-3-(x+2) -1-x+2 -1-x+

5 製

10

製造例140の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-エタンスルホニルピリジン、(2R)-2-ヒ ドロキシ-1-メトキシプロパン及び3-アミノ-ピラゾールを用いて製造例1 17と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることに より無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 33 (t, 3H, J=7. 3Hz), 1. 34 (d, 3H, J=6. 2Hz), 3. 40 (q, 2H, J=7. 3Hz), 3. 41 (s, 3H), 3. 52-3. 62 (m, 2H), 4. 60-4. 65 (m, 1H, J=6. 2Hz, -Hz), 6. 83 (d, 1H, J=2. 2Hz), 6. 86 (s, 1H), 7. 20 (s, 1H), 7. 42 (d, 1H, J=2. 2Hz), 7. 42 (dd, 1H, J=8. 8, 2. 6Hz), 7. 49 (s, 1H), 7. 04 (d, 1H, J=8. 8Hz), 8. 47 (d, 1H, J=2. 6Hz), 9. 47 (brs, 1H) ESI-MS (m/e): 461 [M+H] +, 459 [M-H] -

5 アミドの調製

製造例141の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-メタンスルホニルピリジン、(S)-(+)-3-ヒドロキシテトラヒドロフラン及び3-アミノ-1-メチル-1H-ピラゾールを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無色油状物として得られた。

¹HNMR (CDCl₃) δ: 2. 15-2. 26 (m, 1H), 2. 26-2. 30 (m, 1H), 3. 24 (s, 3H), 3. 80 (s, 3H), 3. 88-4. 03 (m, 4H), 4. 97 (m, 1H), 6. 76 (m, 2H), 7. 1 1 (t, 1H, J=2. 2Hz), 7. 24 (d, 1H, J=2. 2Hz) 7. 28 (d, 1H, J=2. 2Hz), 7. 44 (dd, 1H, J=2. 9, 8. 4Hz), 8. 05 (d, 1H, J=8. 4Hz), 8. 44 (br, 1H), 8. 45 (d, 1H, J=2. 9Hz) ESI-MS (m/e): 459 [M+H] * 製造例142

N- (1-エチル-1H-ピラゾール-3-イル) -5- (2-ヒドロキシ-1 -メチル-エトキシ) -3- (6-メタンスルホニルピリジン-3-イルオキシ)

5 ベンズアミドの調製

10

製造例 142 の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-メタンスルホニルピリジン、(2R)-1-(tert-)では、(2R)-(tert-)では、

¹HNMR (CDC1₃) δ: 1. 33 (d, 3H, J=6. 2Hz), 1. 4 7 (t, 3H, J=7. 3Hz), 1. 98 (m, 1H), 3. 24 (s, 3H) 3. 77 (m, 2H), 4. 07 (q, 2H, J=7. 3Hz), 4. 58 (m, 15 1H), 6. 77 (d, 1H, J=2. 6Hz), 6. 82 (t, 1H, J=2. 6Hz), 7. 13 (m, 1H), 7. 32 (m, 2H), 7. 45 (dd, 1 H, J=2. 6, 8. 4Hz), 8. 06 (d, 1H, J=8. 4Hz), 8. 34 (br, 1H), 8. 47 (d, 1H, J=2. 6Hz) ESI-MS (m/e): 461 [M+H] ⁺

5 ドの調製

15

製造例143の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-メタンスルホニルピリジン、1,3-ジフルオ ロ-2-プロパノール及び3-アミノーピラゾールを用いて、製造例117と同 様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、白 10 色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 3. 23 (s, 3H), 4. 55-4. 70 (m, 2H), 4. 70-4. 90 (m, 3H), 6. 79 (m, 1H), 6. 91 (m, 1H), 7. 28 (m, 1H), 7. 42-7. 51 (m, 3H), 8. 04 (d, 1H, J=8. 9Hz), 8. 44 (d, 1H, J=2. 6Hz), 9. 60 (br. 1H)

ESI-MS (m/e):453 [M+H] + 製造例144

3- (6-メタンスルホニルピリジン-3-イルオキシ) -5- (2-メトキシ -1-メチル-エトキシ) -N- (1-メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

- 5 製造例144の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-メタンスルホニルピリジン、(2R)-2-ヒ ドロキシ-1-メトキシプロパン及び3-アミノ-1-メチル-1H-ピラゾー ルを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法と を組み合わせることにより、無色油状物として得られた。
- 10 ¹HNMR (CDCl₃) δ:1.32 (d, 3H, J=6.4Hz), 3.2 (3 (s, 3H), 3.40 (s, 3H), 3.54 (m, 2H), 3.78 (s, 3H), 4.59 (m, 1H), 6.78 (m, 1H), 6.84 (m, 1H), 7.14 (m, 1H), 7.29 (m, 1H), 7.32 (m, 1H), 7.4 (dd, 1H, J=2.6, 8.6Hz), 8.05 (d, 1H, J=8.6Hz), 8.47 (d, 1H, J=2.6Hz), 8.66 (br, 1H) ESI-MS (m/e):461 [M+H] ⁺ 製造例145

20

3-(6-x9ンスルホニルピリジン-3-イルオキシ)-5-(2-フルオロ-1-フルオロメチル-xトキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミドの調製

製造例145の化合物は、5-ヒドロキシー3-メトキシメトキシ安息香酸メ

チルエステル、5-ブロモ-2-エタンスルホニルピリジン、1,3-ジフルオロ-2-プロパノール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、無色アモルファスとして得られた。

5 ¹HNMR (CDCl₃) δ: 1. 33 (t, 3H, J=7. 42Hz), 3. 41 (q, 2H, J=7. 4Hz), 3. 80 (s, 3H), 4. 61-4. 65 (m, 2H), 4. 73-4. 78 (m, 3H), 6. 78 (dd, 1H, J=2. 0, 1. 8Hz), 6. 91 (d, 1H, J=2. 3Hz), 7. 2 3 (dd, 1H, J=1. 8, 1. 6Hz), 7. 30 (d, 1H, J=2. 3 Hz), 7. 16 (dd, 1H, J=8. 6, 2. 7Hz), 8. 08 (d, 1H, J=8. 6Hz), 8. 50 (d, 1H, J=2. 7Hz), 8. 63 (brs, 1H) ESI-MS (m/e): 481 [M+H] +, 479 [M-H] - 製造例146

15

<u>2-[3-(4-メタンスルホニルフェノキシ)-5-(1-メチル-1H-ピ</u>ラゾール-3-イルカルバモイル)-フェノキシ]プロピオン酸の調製

20 製造例146の化合物は、製造例139で得られた2-[3-(4-メタンスルホニルフェノキシ)-5-(1-メチル-1H-ピラゾール-3-イルカルバモイル)-フェノキシ]プロピオン酸-tert-ブチルエステルの有するtert-ブチルエステルをカルボキシル基に変換することによって白色固体として得られた。エステルをカルボキシル基に変換する方法は、コンプリヘンシブオ

ーガニック トランスフォーメーション (Comprehensive Organic Transformations) Richard Lら著、VCH Publishers社、1988年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行った。

5 ¹HNMR (CD₃OD) δ: 1. 60 (3H, d, J=6.8Hz), 3. 11 (3H, s), 3. 82 (3H, s), 6. 54-6.58 (1H, br), 6. 84 (1H, br), 7. 16-7. 28 (3H, m), 7. 34 (1H, br), 7. 49 (1H, d, J=2.1Hz), 7. 95 (2H, d, J=8.9Hz)

10 ESI-MS (m/e):460 [M+H] + 製造例147

15

20

<u>3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-イソプロポキシ</u> -N-(ピラゾール-3-イル)ベンズアミドの調製

製造例147の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-エタンスルホニルピリジン、2-ヒドロキシプ ロパン及び3-アミノーピラゾールを用いて製造例117と同様の方法、これに 準じた方法又はこれらと常法とを組み合わせることにより無色アモルファスとし て得られた。

¹HNMR (CDCl₃) δ : 1. 32 (t, 3H, J=7. 3Hz), 1. 37 (d, 6H, J=5. 9Hz), 3. 39 (q, 2H, J=7. 3Hz), 4. 60 (septet, 1H, J=5. 9Hz), 6. 76 (dd, 1H, J=2. 2, 2. 2Hz), 6. 84 (s, 1H), 7. 16 (s, 1H), 7.

33 (s, 1H), 7. 40 (dd, 1H, J=8. 8, 2. 6Hz), 7. 5 1 (dd, 1H, J=2. 2, 2. 6Hz), 8. 03 (dd, 1H, J=8. 8, 2. 6Hz), 8. 46 (dd, 1H, J=2. 6, 2. 6Hz), 9. 0 3 (brs, 1H)

5 ESI-MS (m/e):431 [M+H] +, 429 [M-H] -製造例148

10 3-(6-x9) 3-(1-x2) 3-(1

製造例148の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-エタンスルホニルピリジン、2-ヒドロキシプ ロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて製造例117と 同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより無 色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 34 (t, 3H, J=7. 3Hz), 1. 3 7 (d, 6H, J=5. 9Hz), 3. 41 (q, 2H, J=7. 3Hz), 3. 81 (s, 3H), 4. 60 (septet, 1H, J=5. 9Hz), 6. 20 75-6. 78 (m, 2H), 7. 11 (s, 1H), 7. 26 (s, 1H), 7. 28 (d, 1H, J=2. 2Hz), 7. 42 (dd, 1H, J=8. 8, 2. 9Hz), 8. 05 (d, 1H, J=8. 8Hz), 8. 36 (brs, 1 H), 8. 48 (d, 1H, J=2. 9Hz) ESI-MS (m/e): 445 [M+H] +, 443 [M-H]

製造例149

10

5 <u>3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(ピラゾール-3-イル)ベンズアミドの調</u>製

製造例149の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-エタンスルホニルピリジン、(2R)-1-(t ert-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノー ピラゾールを用いて製造例117と同様の方法、これに準じた方法又はこれらと 常法とを組み合わせることにより無色アモルファスとして得られた。

¹HNMR (CDCl₃ (one drop of CD₃OD)) δ: 1.
29 (d, 3H, J=6. 3Hz), 1. 31 (t, 3H, J=7. 4Hz),
3. 39 (q, 2H, J=7. 4Hz), 3. 70-3. 76 (m, 2H), 4.
55 (septet, 1H, J=6. 3Hz), 6. 77 (s, 1H), 6. 7
9 (d, 1H, J=2. 3Hz), 7. 20 (s, 1H), 7. 37 (s, 1H),
7. 41 (dd, 1H, J=8. 6, 2. 7Hz), 7. 49 (d, 1H, J=2. 3Hz), 8. 02 (d, 1H, J=8. 6Hz), 8. 44 (d, 1H, J=2. 7Hz), 9. 55 (brs, 1H)

ESI-MS (m/e): 447 [M+H] + 445 [M-H] -

ESI-MS (m/e):447 [M+H] +, 445 [M-H] -製造例150

- 製造例150の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-ブロモ-2-エタンスルホニルピリジン、(2R)-1-(tert-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び2-アミノピリジンを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、無色アモルファスとして得られた。
- 10 ¹HNMR (CDCl₃) δ: 1. 33 (d, 3H, J=6. 1Hz), 1. 33 (t, 3H, J=7. 4Hz), 3. 41 (q, 2H, J=7. 4Hz), 3. 78-3.80 (m, 2H), 4. 62 (dq, 1H, J=4.5, 6.1Hz), 6. 84 (s, 1H), 7. 11 (dd, 1H, J=6.6, 5.1Hz), 7. 22 (s, 1H), 7. 38 (s, 1H), 7. 45 (dd, 1H, J=8.
- 15 8, 2. 5Hz), 7. 78 (dd, 1H, J=8. 4, 6. 6Hz), 8. 0 8 (d, 1H, J=8. 8Hz), 8. 30 (d, 1H, J=5. 1Hz), 8. 34 (d, 1H, J=8. 4Hz), 8. 50 (d, 1H, J=2. 5Hz), 8. 63 (brs, 1H)

ESI-MS (m/e) : 481 [M+H] +

20 製造例151

製造例151の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-エタンスルホニルピリジン、(2R) -1-(tert-ブチルジメチルシロキシ) -2-ヒドロキシプロパン及び2-アミノチアゾールを用いて製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、無色アモルファスとして得られた。

10 ¹HNMR (CDCl₃) δ: 1. 31 (d, 3H, J=6. 3Hz), 1. 33 (t, 3H, J=7. 4Hz), 3. 41 (q, 2H, J=7. 4Hz), 3. 76-3. 78 (m, 2H), 4. 55-4. 60 (m, 1H), 6. 86 (m, 1H), 7. 02 (d, 1H, J=3. 5Hz), 7. 26 (m, 1H), 7. 29 (d, 1H, J=3. 5Hz), 7. 42 (m, 1H), 7. 46 (dd, 1H, J=8. 6, 2. 7Hz), 8. 08 (d, 1H, J=8. 6Hz), 8. 49 (d, 1H, J=2. 7Hz)

ESI-MS (m/e) : 464 [M+H] +, 462 [M-H] -

製造例152

5-(2-7)ルオロー1-メチルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾー)-3-イル)

5 ペンズアミドの調製

製造例152の化合物は、製造例126で得られた5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチルー1H-ピラゾール-3-イル)ベンズアミドの水酸基をトリエチルアミン、メタンスルホニルクロリドによりメシレートに変換した後、テトラプチルアンモニウムフロリドと反応させる方法により、無色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 35 (dd, 3H, J=1. 6, 6. 2Hz), 3. 24 (s, 3H), 3. 77 (s, 3H), 4. 45 (m, 1H), 4. 5 7 (m, 1H), 4. 67 (m, 1H), 6. 79 (d, 1H, J=2. 3Hz), 6. 84 (t, 1H, J=2. 3Hz), 7. 16 (t, 1H, J=2. 3Hz), 7. 30 (d, 1H, J2. 3Hz), 7. 32 (m, 1H), 7. 45 (d, 1H, J=2. 3, 8. 6Hz), 8. 06 (d, 1H, J=8. 6Hz), 8. 47 (d, 1H, J=2. 3Hz), 8. 79 (br, 1H) ESI-MS (M/E): 449 [M+H] ⁺

20

10

5-(2-クロロ-1-メチル-エトキシ)-3-(6-エタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベ

5 ンズアミドの調製

製造例153の化合物は、製造例117で得られた3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチルー1H-ピラゾール-3-イル)ベンズアミドの水酸基をトリエチルアミン、メタンスルホニルクロリドによりメシレートに変換した際に無色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 33 (t, 3H, J=7. 4Hz), 1. 45 (d, 3H, J=6. 2Hz), 3. 41 (q, 2H, J=7. 4Hz), 3. 63 (dd, 1H, J=5. 0, 11. 5hz), 3. 69 (dd, 1H, J=5. 0, 11. 5Hz), 3. 79 (s, 3H), 4. 62 (m, 1H), 6. 79 (d, 1H, J=2. 2Hz), 6. 83 (t, 1H, J=2. 2Hz),

7. 18 (m, 1H), 7. 29-7. 35 (m, 2H), 7. 45 (dd, 1 H, J=2. 7. 8. 6Hz), 8. 07 (d, 1H, J=8. 6Hz), 8. 49 (d, 1H, J=2. 7Hz), 8. 67 (br, 1H) ESI-MS (M/E): 479 [M+H] +

20

15

10

5 ミドの調製

製造例154の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、5-プロモ-2-メタンスルホニルピリジン、1,3-ジフルオ ロ-2-プロパノール及び3-アミノオキサゾールを用いて、製造例117と同 様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、白 色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 3. 24 (s, 3H), 4. 59-4. 70 (m, 2H), 4. 70-4. 90 (m, 3H), 6. 96 (t, 1H, J=2. 3Hz), 7. 19 (m, 1H), 7. 32 (m, 1H), 7. 45 (m, 1H), 7. 48 (dd, 1H, J=2. 7, 8. 5Hz), 8. 09 (d, 1H, J=8. 5Hz), 8. 29 (m, 1H), 8. 49 (d, 1H, J=2. 7Hz),

9. 60 (br, 1H)

ESI-MS (M/E) : 454 [M+H] +

製造例155

10

15

<u>5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピリジン-2-イル)ベンズアミドの</u>

5 調製

10

15

製造例155の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-メタンスルホニルピリジン、1,3-ジフルオロ-2-プロパノール及び2-アミノピリジンを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 3. 24 (s, 3H), 4. 60-4. 70 (m, 2H), 4. 70-4. 90 (m, 3H), 6. 93 (t, 1H, J=2. 1H z), 7. 10 (m, 1H), 7. 26 (m, 1H), 7. 42 (m1H), 7. 48 (dd, 1H, J=2. 1, 8. 2Hz), 7. 78 (dt, 1H, J=), 8. 09 (d, 1H, J=8. 4Hz), 8. 30 (m, 1H), 8. 32 (d,

1 H, J = 8.4 Hz), 8.49 (d, 1 H, J = 2.1 Hz), 8.59 (br, 1 H)

ESI-MS(M/E):464[M+H] +

5-(2-7)ルオロー1-7ルオロメチルーエトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(3-メチルー[1, 2, 4]-チアジアゾール-5-イル)ベンズアミドの調製

製造例156の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-ブロモ-2-メタンスルホニルピリジン、1,3-ジフルオロ-2-プロパノール及び5-アミノ-3-メチルー[1,2,4]チアジアゾールを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより、白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ : 2. 50 (s, 3H), 3. 27 (s, 3H), 4. 57-4. 67 (m, 2H), 4. 67-4. 90 (m, 3H), 7. 01 (t, 1H, J=2. 3Hz), 7. 29 (m, 1H), 7. 45 (m, 1H), 7. 49 (dd, 1H, J=2. 3, 8. 7Hz), 8. 09 (d, 1H, J=8. 7Hz), 8. 47 (d, 1H, J=2. 3Hz)

ESI-MS (M/E) : 485 [M+H] +

製造例157

10

15

5 アミドの調製

製造例157の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、4-ブロモージメチルスルファモイルベンゼン、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1 -メチル-1H-ピラゾールを用いて、製造例42と同様の方法、これに準じた 方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得ら れた。

¹HNMR (CDC1₃) δ : 1. 31 (d, 3H, J=6. 3Hz), 2. 1 9 (brs, 1H), 2. 74 (s, 6H), 3. 76-3. 80 (m, 2 H), 3. 81 (s, 3H), 4. 54-4. 59 (m, 1H, J=6. 3 15 Hz, -Hz), 6. 79 (m, 1H), 6. 81 (m, 1H), 7. 1 1 (d, 2H, J=9. 0Hz), 7. 13 (s, 1H), 7. 29-7. 30 (m, 2H), 7. 77 (d, 2H, J=9. 0Hz), 8. 55 (br, 1H)

ESI-MS (m/e) : 475 [M+H] +, 473 [M-H] -

20

10

5 の調製

10

15

製造例158の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、3-メチルチオーフェニルホウ酸、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1 H-ピラゾールを用いて、製造例1又は製造例89と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 30 (d, 3H, J=6. 2Hz), 2. 0 8 (t, 1H, J=6. 5Hz), 3. 07 (s, 3H), 3. 73-3. 78 (m, 5H), 4. 52-4. 57 (m, 1H), 6. 77-6. 78 (m, 2 H), 7. 08 (d, 1H, J=2. 1Hz), 7. 25-7. 31 (m, 3H), 7. 54 (t, 1H, J=7. 6Hz), 7. 59 (d, 1H, J=2. 1Hz), 7. 70 (d, 1H, J=7. 6Hz), 8. 49 (brs, 1H) ESI-MS (m/e): 446 [M+H] +

5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(6-イソプロピルスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミドの調製

製造例159の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メチルエステル、5-プロモ-2-イソプロピルスルホニルピリジン、(2R)-1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例117と同様の方法、これに 準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDC1₃) δ : 1. 31 (d, 3H, J=5. 9Hz), 1. 3 5 (d, 6H, J=6. 7Hz), 2. 25 (brs, 1H), 3. 72 (s eptet, 1H, J=6. 7Hz), 3. 70-3. 81 (m, 2H), 3. 81 (s, 3H), 4. 53-4. 59 (m, 1H), 6. 78-6. 79 (m, 1H), 6. 80-6. 82 (m, 1H), 7. 17 (m, 1H), 7. 29-7. 31 (m, 1H), 7. 32 (m, 1H), 7. 43 (dd, 1H, J=8. 6, 2. 7Hz), 8. 06 (d, 1H, J=8. 6Hz), 8. 50 (d, 1H, J=2. 7Hz), 8. 60 (brs, 1H)

ESI-MS (m/e): 475 [M+H] +, 473 [M-H] -

製造例160

15

20

5 ペンズアミドの調製

10

15

製造例160の化合物は、5-ヒドロキシー3-メトキシメトキシ安息香酸メ チルエステル、4-プロモー2-クロローメタンスルホニルベンゼン、(2R) -1-(t-プチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミ ノー1-メチルー1H-ピラゾールを用いて、製造例42と同様の方法、これに 準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとし て得られた。

¹HNMR (CDCl₃) δ : 1. 31 (d, 3H, J=6. 1Hz), 3. 2 8 (s, 3H), 3. 76-3. 80 (m, 5H), 4. 54-4. 59 (m, 1H), 6. 80-6. 81 (m, 2H), 7. 02 (dd, 1H, J=2. 3, 8. 8Hz), 7. 14-7. 15 (m, 2H), 7. 30 (d, 1H, J=2. 3Hz), 7. 33 (s, 1H), 8. 11 (d, 1H, J=8. 8Hz), 8.

75 (brs, 1H)

ESI-MS (m/e) : 480 [M+H] +

5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン-3-イルオキシ)ベンズアミドの調製製造例161の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ

チルエステル、3-ヨードピリジン、(2R)-1-(t-ブチルジメチルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

10 ¹HNMR (CDCl₃) δ: 1. 30 (d, 3H, J=6. 3Hz), 2. 2 7 (br, 1H), 3. 72-3. 80 (m, 2H), 3. 80 (s, 3H), 4. 55 (m, 1H), 6. 75 (t, 1H, J=2. 3Hz), 6. 79 (d, 1H, J=2. 3Hz), 7. 05 (m, 1H), 7. 22 (m, 1H), 7. 29 (d, 1H, J=2. 3Hz), 7. 31-7. 38 (m, 2H), 8. 4 15 4 (m, 2H), 8. 62 (br, 1H)

ESI-MS (M/E) : 369 [M+H] +

5-(2-フルオロ-1-フルオロメチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン-3-イルオキシ)ベンズアミドの調製

- 5 製造例162の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ チルエステル、3-ヨードピリジン、1,3-ジフルオロ-2-プロパノール及 び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例117と同様の 方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモ ルファスとして得られた。
- 10 ¹HNMR (CDCl₃) δ: 3. 77 (s, 3H), 4. 55-4. 67 (m, 2H), 4. 67 (m, 3H), 6. 79 (d, 1H, J=2. 3Hz), 6. 82 (t, 1H, J=2. 3Hz), 7. 11 (m, 1H), 7. 26 (m, 1H), 7. 29 (d, 1H, J=2. 3Hz), 7. 30-7. 38 (m, 2H), 8. 45 (m, 2H), 8. 70 (br, 1H)
- 15 ESI-MS (M/E) : 389 [M+H] +

5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピ ラゾール-3-イル) -3-(ピリジン-4-イルオキシ) ペンズアミドの調製

製造例163の化合物は、5-ヒドロキシ-3-メトキシメトキシ安息香酸メ 5 チルエステル、4-クロロピリジン塩酸塩、(2R)-1-(tープチルジメチ ルシロキシ)-2-ヒドロキシプロパン及び3-アミノ-1-メチル-1H-ピ ラゾールを用いて、製造例117と同様の方法、これに準じた方法又はこれらと 常法とを組み合わせることにより白色アモルファスとして得られた。

¹HNMR (CDCl₃) δ: 1. 31 (d, 3H, J=6. 3Hz), 2. 0 10 5 (br, 1H), 3. 77 (m, 2H), 3. 82 (s, 3H), 4. 56 (m, 1H), 6. 79 (d, 1H, J=2. 3Hz), 6. 83 (t, 1H, J=2. 3Hz), 6. 88 (dd, 2H, J=1. 6, 4. 7Hz), 7. 15 (m, 1H), 7. 30 (d, 1H, J=2. 2Hz), 7. 33 (m, 1H), 8. 42 (br, 1H), 8. 51 (dd, 2H, J=1. 6, 4. 7Hz)

製造例164

ESI-MS (M/E) : 369 [M+H] +

20

15

5-(2-7)ルオロー1-7ルオロメチルーエトキシ)-N-(1-X+7)1 H-ピラゾールー3-7(ピリジンー4-7ルオキシ)ベンズアミドの調製

製造例164の化合物は、5ーヒドロキシー3ーメトキシメトキシ安息香酸メ

チルエステル、4-クロロピリジン塩酸塩、1,3-ジフルオロ-2-プロパノール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例117と同様の方法、これに準じた方法又はこれらと常法とを組み合わせることにより白色アモルファスとして得られた。

5 ¹HNMR (CDC1₃) δ: 3. 81 (s, 3H), 4. 58-4. 67 (m, 2H), 4. 67-4. 82 (m, 3H), 6. 79 (d, 1H, J=2. 0H z), 6. 89 (dd, 2H, J=1. 6, 4. 7Hz), 6. 91 (t, 1H, J2. 3Hz), 7. 21 (t, 1H, J=2. 3Hz), 7. 30 (d, 1H, J=2. 0Hz), 7. 38 (t, 1H, J=2. 3Hz), 8. 52 (br, 1H), 8. 52 (dd, 2H, J=1. 6, 4. 7Hz)

ESI-MS (M/E): 389 [M+H] ⁺

製造例165

15

製造例165の化合物は、製造例117で得られた3-(6-x9)スルホニ 20 ルピリジン-3-(1)ルオキシ)-5-(1) と同様の方法により得られた2-(1) と同様の方法により得られた2-(3) (6 ーエタンスルホニルピリジン-3-(1) と同様の方法により得られた2-(3) (6 ーエタンスルホニルピリジン-3-(1) カーシー (1 ーメチル-1 Hーピラゾール-3 ーイルカルバモイル)-1 ーフェノキシ プロピオン酸-1 に -1 で チルエステルの有する -1 は -1 で チルエステルをカルボキシル基に変換するこ

とによって白色固体として得られた。エステルをカルポキシル基に変換する方法は、コンプリヘンシブ オーガニック トランスフォーメーション (Comprehensive Organic Transformations) Richard Lら著、VCH Publishers社、1988年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行った。

¹HNMR (CDCl₃) δ: 1. 24 (3H, t, J=7. 4Hz), 1. 59 (3H, d, J=6. 8Hz), 3. 39 (2H, q, J=7. 4Hz), 3. 81 (3H, s), 4. 69-4. 80 (1H, m), 6. 56 (1H, d, J=2. 3Hz), 6. 90 (1H, t, J=2. 2Hz), 7. 25 (1H, br), 7. 37 (1H, br), 7. 48 (1H, d, J=2. 3Hz), 7. 62 (1H, dd, J=8. 7Hz, 2. 7Hz), 8. 07 (1H, d, J=6. 4Hz), 8. 52 (1H, d, J=2. 7Hz)

15 製造例 1 6 6

20

ESI-MS(M/E):475[M+H] +

5-(2-7)ルオロー1-7ルオロメチルーエトキシ)-3-(3-7)ルオロー 4-メタンスルホニルフェノキシ)-N-(1-メチル-1 H-ピラゾール-3-イル)ベンズアミドの調製

製造例166の化合物は、製造例42と同様の方法により得られた3-(3-フルオロ-4-メタンスルホニルフェノキシ)-5-ヒドロキシー安息香酸メチルエステル、1,3-ジフルオロ-2-プロパノール及び3-アミノ-1-メチル-1H-ピラゾールを用いて、製造例2と同様の方法、これに準じた方法又は

これらと常法とを組み合わせることにより無色アモルファスとして得られた。 1 HNMR(CDCI₃) δ : 3. 23(3H, s), 3. 82(3H, s), 4. 61-4. 78(5H, m), 6. 78(1H, d, J=2. 3Hz), 6. 8 3-6. 94(3H, m), 7. 19(1H, t, J=1. 8Hz), 7. 30(1H, d, J=2. 3Hz), 7. 38(1H, t, J=1. 8Hz), 7. 94(1H, t, J=8. 4Hz), 8. 37(1H, brs) ESI-MS(M/E): 484 [M+H] $^+$

15

5

産業上の利用可能性

式(I)で表される本発明に係るヘテロアリールカルバモイルベンゼン誘導体は優れたグルコキナーゼ活性を示すことから、医薬の分野において糖尿病、糖尿病の合併症若しくは肥満の治療及び/又は予防に有用である。

20

25

30

請求の範囲

1. 式(I)

5

10

15

20

[式中、X¹は酸素原子、硫黄原子又はNHを示し、X²は酸素原子、硫黄原子又 はCH₂を示し、R¹は、アルキルスルホニル基、アルカノイル基、低級アルキル 基、ヒドロキシアルキル基、ヒドロキシ基、アルキルカルバモイル基、アルキル スルファモイル基、ジアルキルスルファモイル基、アルキルチオ基、アルコキシ 基、ジアルキルカルバモイル基、アルコキシカルボニルアミノ基、アルコキシカ ルボニル基、ハロゲン原子、アルカノイルアミノアルキル基、アルコキシカルボ ニルアミノアルキル基、アルキルスルホニルアミノアルキル基、シアノ基及びト リフルオロメチル基からなる群より選択される1又は2のA環上に有していても よい置換基を示し、R²はハロゲン原子、カルボキシル基、アルコキシカルボニ ル基、ヒドロキシ基、アミノ基(該アミノ基は、さらに1若しくは2のアルカノ イル基又は低級アルキル基で置換されていてもよい)、アルコキシ基及びN-ア ルキルカルバモイル基からなる群より選択される置換基を有していてもよい、炭 素数3乃至7の環状のアルキル基(該環を構成する炭素原子(該環を構成する炭 素原子のうち、X²と結合する炭素原子を除く)の1つが、酸素原子、NH、N ーアルカノイル基又はCONHで置き換わっていてもよい)、直鎖若しくは分岐 の低級アルキル基又は低級アルケニル基を示し、R3は低級アルキル基、アルコ キシ基、アルキルアミノ基、低級ジアルキルアミノ基、ハロゲン原子、トリフル オロメチル基、ヒドロキシアルキル基(該ヒドロキシアルキル基中のヒドロキシ 基の水素原子は、低級アルキル基で置換されていてもよい)、アミノアルキル基、

アルカノイル基、カルボキシル基、アルコキシカルボニル基及びシアノ基から選択される1又は2のB環上に有していてもよい置換基を示し、式(II)

は、前記R¹で示される置換基を環内に1又は2有していてもよい、6乃至10 **5** 員のアリール基又は5乃至7員のヘテロアリール基を示し、式(III)

10

20

25

は、前記R³で示される置換基をB環内に1又は2有していてもよい、式(I)のアミド基の窒素原子と結合した該B環中の炭素原子が、該環中の窒素原子と共にC=Nを形成する、 単環の又は双環のヘテロアリール基]で表される化合物又はその薬学的に許容される塩。

 $2. X^1$ がO又はSであり、かつ、 X^2 がO又は CH_2 である請求項1記載の化合

- 3. A環がフェニル基又は5乃至6員のヘテロアリール基である請求項2記載の 15 化合物又はその薬学的に許容される塩。
 - 4. A環がフェニル基である請求項2記載の化合物。

物又はその薬学的に許容される塩。

5. A環が5乃至6員のヘテロアリール基である請求項2記載の化合物。

6. R¹がアルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、アルキルカルバモイル基、アルキルスルファモイル基、ジアルキルスルファモイル基、ジアルキルカルバモイル基、アルコキシカルボニルアミノ基、ハロゲン原子、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルコキシカルボニルアミノアルキル基である請求項4又は5のいずれかに記載の化合

物又はその薬学的に許容される塩。

- 7. R¹がアルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基、アルカノイルアミノアルキル基、アルキルスルホニルアミノアルキル基、アルコキシカルボニルアミノアルキル基である請求項4記載の化合物又はその薬学的に許容される塩。
- 8. R¹がアルキルスルホニル基、アルカノイル基、ヒドロキシアルキル基である請求項4記載の化合物又はその薬学的に許容される塩。

10

15

20

5

- 9. 前記R³で示されるB環の置換基を該環内に1又は2有していてもよい、前記式(I)のアミド基の窒素原子と結合した該B環中の炭素原子が、該B環中の窒素原子と共にC=Nを形成する、単環又は双環のヘテロアリール基(該ヘテロアリール基が、5ーアルコキシカルボニルーピリジン-2ーイル基又は、5ーカルボキシルーピリジン-2ーイル基である場合を除く)である請求項3乃至8のいずれかの請求項に記載の化合物又はその薬学的に許容される塩。
- 10. B環が、前記式(I)のアミド基の窒素原子と結合した該環中の炭素原子と共にC=Nを形成する窒素原子の他に、B環内に窒素原子、硫黄原子及び酸素原子からなる群より選択されるヘテロ原子を少なくとも1有する、請求項7に記載の化合物又はその薬学的に許容される塩。
- 11. R²がハロゲン原子、カルボキシル基、アルコキシカルボニル基、ヒドロキシ基、アミノ基(該アミノ基は、さらに1又は2の低級アルキル基で置換されていてもよい)、アルコキシ基、N-アルキルカルバモイル基又はアルカノイルアミノ基で置換されていてもよい、炭素数3乃至7の環状のアルキル基(該環を構成する炭素原子の1つが、酸素原子、NH又はN-アルカノイル基で置換されていてもよい)、直鎖若しくは分岐の低級アルキル基又は低級アルケニル基である請求項1乃至10のいずれかの請求項に記載の化合物又はその薬学的に許容さ

れる塩。

12. B環が、チアゾリル基、イミダゾリル基、イソチアゾリル基、チアジアゾリル基、トリアゾリル基、オキサゾリル基、イソキサゾリル基、ピラジニル基、ピリダジニル基、ピラゾリル基、ピリミジニル基、ピリドチアゾリル基又はベンゾチアゾリル基である請求項1乃至11のいずれかの請求項に記載の化合物又はその薬学的に許容される塩。

- 13. R³が低級アルキル基、アルコキシ基、ハロゲン原子、ヒドロキシアルキ 10 ル基(該ヒドロキシアルキル基中のヒドロキシ基の水素原子は、低級アルキル基 で置換されていてもよい)、アミノアルキル基又はアルカノイル基である請求項 1万至12のいずれかの請求項に記載の化合物又はその薬学的に許容される塩。
- 14. R³が低級アルキル基、ヒドロキシアルキル基(該ヒドロキシアルキル基 15 中のヒドロキシ基の水素原子が、低級アルキル基で置換されていてもよい)であ る請求項1万至12のいずれかの請求項に記載の化合物

15. 式(I)

20 [式中、各記号は前記に同じ]で表される化合物が、5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-(4-メチルチアゾール-2-イル)-ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イル-ベンズアミド、5

PCT/JP2004/002284

-エトキシ-3- (4-メタンスルホニルフェノキシ) -N- (4-メトキシメ チルーチアゾールー2ーイル)ベンズアミド、5ーシクロペンチルオキシー3ー (4-メタンスルホニルフェノキシ)-N-チアゾール-2-イル-ベンズアミ ド、3-(4-メタンスルホニルフェノキシ)-5-(テトラヒドロフラン-3 ーイルオキシ) -N-チアゾール-2-イル-ベンズアミド、3-(4-メタン 5 スルホニルフェノキシ)-5-(2-メトキシ-1-メチル-エトキシ)-N-**チアゾールー2ーイルーペンズアミド、3-(4-メタンスルホニルフェノキシ)** -5-(2-メトキシ-1-メトキシメチル-エトキシ)-N-チアゾール-2 ーイルーペンズアミド、3-(2-フルオロ-4-メタンスルホニルフェノキシ) -5-イソプロポキシ-N-チアゾール-2-イル-ベンズアミド、3-(4-10 メタンスルホニルフェノキシ) - 5 - (1 - メトキシメチループロポキシ) - N - (4-メチルーチアゾール-2-イル)ーベンズアミド、5-イソプロポキシ -3-(4-メタンスルホニルフェノキシ)-N-ピラゾール-3-イルーベン ズアミド、5ーイソプロポキシー3ー(4ーメタンスルホニルフェノキシ)-N ーピラジンー2ーイルーベンズアミド、3-(4-メタンスルホニルフェノキシ) 15 **-5-(3-メトキシ-1-メチループロポキシ)-N-チアゾール-2-イル** ーベンズアミド、5ー(3ーヒドロキシー1ーメチループロポキシ)-3-(4 ーメタンスルホニルフェノキシ) -N-チアゾール-2-イル-ベンズアミド、 5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ)-N-ピリミジ ン-4-イルーペンズアミド、5-イソプロポキシ-3-(4-メタンスルホニ 20 ルフェノキシ) -N-(ピリミジン-2-イル) -ベンズアミド、N-(4-ヒ ドロキシメチルーチアゾールー2ーイル)-5ーイソプロポキシー3ー(4ーメ タンスルホニルフェノキシ) -ベンズアミド、N-(イソオキサゾール-3-イ ル) -3-(4-メタンスルホニルフェノキシ) -5-(1-メトキシメチル-プロポキシ)ーベンズアミド、3-(4-メタンスルホニルフェノキシ)-5-25 (1-メトキシメチループロポキシ) -N-[1, 3, 4] チアジアゾール-2 ーイルーベンズアミド、5ー(1ーヒドロキシメチループロポキシ)-3-(4 ーメタンスルホニルフェノキシ) -N- (4-メチルーチアパール-2-イル) ーベンズアミド、N-(4-ヒドロキシメチルーチアゾールー2-イル)-3-

(4-メタンスルホニルフェノキシ) - 5 - (1 - メトキシメチループロポキシ) ーペンズアミド、5~(2-アミノー1-メチルーエトキシ)-3-(4-メタ ンスルホニルフェノキシ) - N - チアゾール - 2 - イルーベンズアミド、5 - (2 ージメチルアミノー1ーメチルーエトキシ)ー3-(4-メタンスルホニルフェ ノキシ)-N-チアゾール-2-イル-ベンズアミド、5-(2-ヒドロキシ-プロポキシ)-3-(4-メタンスルホニルフェノキシ)-N-(4-メチル-**チアゾール-2-イル)-ベンズアミド、3-(4-メタンスルホニルフェノキ** シ) -5-(2-メトキシープロポキシ)-N-(4-メチルーチアゾール-2 ーイル) ーベンズアミド、5ーイソプロポキシー3ー(4ーメタンスルホニルフ ェノキシ) -N-(チアゾロ[5, 4-b] ピリジン-2-イル) -ペンズアミ 10 ド、5-(2-ヒドロキシメチル-アリル)-3-(4-メタンスルホニルフェ ノキシ)-N-チアゾール-2-イル-ベンズアミド、5-(2-ヒドロキシー 1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-チア ゾロ[5,4-b] ピリジン-2-イル-ベンズアミド、5-(3-ヒドロキシ 15 -2-メチループロピル)-3-(4-メタンスルホニルフェノキシ)-N-チ アゾール-2-イル-ベンズアミド、3-(4-メタンスルホニルフェノキシ) -N-(4-メチル-チアゾール-2-イル)-5-(ピペリジン-4-イル-オキシ)ーベンズアミド塩酸塩、5-(1-アセチルーピペリジン-4-イルオ キシ) -3-(4-メタンスルホニルフェノキシ) -N-(4-メチルーチアゾ ールー2ーイル)ーベンズアミド、2-[3-(4-メタンスルホニルフェノキ 20 シ) -5-(4-メチルーチアゾール-2-イルーカルバモイル) -フェノキシ] プロピオン酸、5-(3-ヒドロキシ-1-メチル-プロポキシ)-3-(4-メタンスルホニルフェノキシ) - N - チアゾール-2-イル-ベンズアミド、3 - (4-メタンスルホニルフェノキシ)-5-(1-メチルカルバモイル-エト 25 キシ)-N-(4-メチル-チアゾール-2-イル)-ベンズアミド、5-(2 ーアセチルアミノー1ーメチルーエトキシ)-3-(4-メタンスルホニルフェ ノキシ) -N-チアゾール-2-イル-ベンズアミド、N-[4-(1-ヒドロ キシーエチル)ーチアゾールー2ーイル]ー5ーイソプロポキシー3ー(4ーメ タンスルホニルフェノキシ) - ベンズアミド、5 - (2 - ヒドロキシ- 1 - メチ

ルーエトキシ) -3-(4-メタンスルホニルフェノキシ)-N-ピリジン-2 ーイルーベンズアミド、5-(2-ヒドロキシーエトキシ)-3-(4-メタン スルホニルフェノキシ) -N-チアゾール-2-イルーペンズアミド、5-(2 -ヒドロキシーシクロペンチルオキシ)-3-(4-メタンスルホニルフェノキ シ) -N-チアゾール-2-イル-ベンズアミド、N-(4-アセチルーチアゾ 5 ールー2-イル)-5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4 ーメタンスルホニルフェノキシ) -ベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ) -N-(4-ヒドロキシメチルーチアゾール-2-イル) -3- (4-メタンスルホニルフェノキシ) -ベンズアミド、N- [4-(1-ヒ ドロキシーエチル)-チアゾール-2-イル]-5-(2-ヒドロキシ-1-メ 10 チルーエトキシ) -3-(4-メタンスルホニルフェノキシ) ーペンズアミド、 3-(3-フルオロ-4-メタンスルホニルフェノキシ)-5-(2-ヒドロキ シー1ーメチルーエトキシ) - N - チアゾール - 2 - イルーペンズアミド、5 -(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェ ノキシ) -N-(5-メチルーチアゾール-2-イル) ベンズアミド、5-(2 15 ーヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェノキ シ) -N-([1, 2, 4] チアジアゾール-5-イル)ーベンズアミド、N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メタンスルホニ ルフェノキシ) -5-(2-メトキシ-1-メチル-エトキシ) -ペンズアミド、 5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル 20 フェノキシ) -N-(5-メトキシカルボニルーピリジン-2-イル) -ベンズ アミド、6-[5-イソプロポキシ-3-(4-メタンスルホニルフェノキシ) -ベンゾイルアミノ] ニコチン酸、5-(2-ヒドロキシ-1-メチループロポ キシ) -3-(4-メタンスルホニルフェノキシ)-N-チアゾール-2-イル ーベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(イソ 25 キサゾールー3-イル)-3-(4-メタンスルホニルフェノキシ)ーベンズア ミド、N-(5-ヒドロキシメチル-チアゾール-2-イル)-5-イソプロポ キシ-3-(4-メタンスルホニルフェノキシ)-ベンズアミド、N-[4-(1 ーヒドロキシーエチル) ーチアゾールー2ーイル] -3-(4-メタンスルホニ

PCT/JP2004/002284

ルフェノキシ) - 5 - (2 - メトキシ-1 - メチル-エトキシ) - ベンズアミド、 N-(4-ヒドロキシメチルーチアゾール-2-イル)-3-(4-メタンスル ホニルフェノキシ)-5-(テトラヒドロフラン-3-イル-オキシ)-ベンズ アミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンス ルホニルフェノキシ)-N-(2-メチルチアゾール-4-イル)-ベンズアミ ド、5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホ **ニルフェノキシ)-N-(4-メトキシメチル-チアゾール-2-イル)-ベン** ズアミド、N- [4- (1-ヒドロキシーエチル) - チアゾール-2-イル] -3-(4-メタンスルホニルフェノキシ)-5-(2-メトキシ-1-メチルー 10 エトキシ) -ペンズアミド、N- [4-(1-ヒドロキシ-エチル) -チアゾー ルー2ーイル] ー3ー(4ーメタンスルホニルフェノキシ)-5-(テトラヒド ロフラン-3-イルーオキシ) -ベンズアミド、N- [4-(1-ヒドロキシー エチル) ーチアゾールー2ーイル] -3- (4-メタンスルホニルフェノキシ) 5-ジメチルチアゾールー4-イル)-5-(2-ヒドロキシ-1-メチルーエ 15 トキシ)-3-(4-メタンスルホニルフェノキシ)-ベンズアミド、5-イソ プロポキシー3-(4-メトキシカルボニルアミノメチルフェノキシ)-N-チ アゾールー2-イルーベンズアミド、5-イソプロポキシ-3-(4-メチルカ ルバモイルーフェノキシ) - N - チアゾール - 2 - イルーペンズアミド、3 - (4 20 ージメチルカルバモイルーフェノキシ)ー5ーイソプロポキシーNーチアゾール -2-イルーベンズアミド、5-イソプロポキシー3-(4-メチルカルボニル アミノメチルーフェノキシ)-N-チアゾール-2-イル-ベンズアミド、5-**イソプロポキシ-3-(4-メタンスルホニルアミノメチル-フェノキシ)-N** ーチアゾールー2ーイルーベンズアミド、3ー[4ー(1ーヒドロキシープロピ ル) -フェノキシ] - 5 - イソプロポキシ-N-チアゾール-2-イル-ベンズ 25 アミド、6 - [3 - イソプロポキシ-5 - (チアゾール-2 - イルカルバモイル) - フェノキシ] - ニコチン酸メチルエステル、3- (5-ヒドロキシメチル-ピ リジンー2ーイルーオキシ)-5-イソプロポキシ-N-チアゾール-2-イル ーベンズアミド、5ーイソプロポキシー3ー(5ーメタンスルホニルピリジンー

2-イル)-N-チアゾール-2-イルーベンズアミド、3-(5-アセチルー **. ピリジン-2-イル-オキシ)-5-イソプロポキシ-N-チアゾール-2-イ** ルーベンズアミド、5ーイソプロポキシー3ー(5ーメトキシカルボニルーピラ ジン-2-イルーオキシ)-N-チアゾール-2-イルーベンズアミド、3-(5 - -シアノーピリジンー 2 ーイルーオキシ) - 5 ーイソプロポキシー N ーチアゾー ルー2ーイルーベンズアミド、5ーイソプロポキシー3ー(2ーオキソー1,2 -ジヒドロ-ピリジン-4-イル-オキシ)-N-チアゾール-2-イル-ベン ズアミド、5-イソプロポキシー3-(2-オキソー1,2-ジヒドローピリジ ン-3-イル-オキシ)-N-チアゾール-2-イル-ベンズアミド、5-イソ プロポキシー3-(2-オキソー1,2-ジヒドローピリジン-3-イルーオキ 10 シ) -N-チアゾロ[5, 4-b] ピリジン-2-イルーベンズアミド、5-イ ソプロポキシ-3-([1,3,4]チアジアゾール-2-1ルスルファニル) -N-チアゾロ[5, 4-b]-ピリジン-2イルーベンズアミド、5-イソプ ロポキシー3-(4-メチルー[1, 2, 4]トリアゾールー3-イルスルファ 15 ニル) -N-チアゾール-2-イル-ベンズアミド、5-イソプロポキシ-3-チアゾール-2-イルスルファニル-N-チアゾール-2-イル-ベンズアミド、 5-イソプロポキシ-3-(4H-[1, 2, 4] トリアゾール-3-イルスル ファニル) -N-チアゾール-2-イルーペンズアミド、5-イソプロポキシー 3-([1, 3, 4] チアジアゾール-2-イルスルファニル)-N-チアゾー ルー2ーイルーベンズアミド、5ーイソプロポキシー3ー(5ーメチルスルファ 20 ニルー[1,3,4]チアジアゾールー2ーイルスルファニル)-Nーチアゾー N-2-7ルーベンズアミド、5-7ソプロポキシー3-(5-メチルー[1. 4] チアジアゾールー2ーイルスルファニル)ーNーチアゾールー2ーイル ーペンズアミド、5ー(テトラヒドロフラン-3ーイルーオキシ)-Nーチアゾ 25 ニル)-ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(4-メチルーチアゾールー2ーイル)ー3-([1, 3, 4] チアジアゾール **-2-イルスルファニル)-ベンズアミド、5-(3-ヒドロキシ-1-メチル** -プロポキシ) -N-(4-メチル-チアゾール-2-イル) -3-([1, 3,

4] チアジアゾールー2ーイルスルファニル)ーベンズアミド、5ー(2ーヒド ロキシー1-メチル-エトキシ)-3-([1,3,4]チアジアゾール-2-イルスルファニル) - N - チアゾール - 2 - イルーベンズアミド、5 - (2 - ヒ ドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェニルスル ファニル) - N - チアゾールー2 - イルーベンズアミド、3 - (3 - フルオロー フェニルチオ) -5-(2-ヒドロキシ-1-メチル-エトキシ) -N-チアゾ ールー2ーイルーベンズアミド、5-(2-ヒドロキシー1-メチルーエトキシ) -3-(ピリジン-4-イルスルファニル)-N-チアゾール-2-イルーベン ズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(6-メチル **- - ピリジン – 3 – イルスルファニル) – N – チアゾール – 2 – イルーベンズアミ** 10 ド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホ **ニルフェノキシ)-N-(3-メチル-[1,2,4]-チアジアゾール-5-**イル)-ベンズアミド、N-[3-ヒドロキシメチル-1,2,4-チアジアゾ ールー5-イル]-3-(4-メタンスルホニルフェノキシ)-5-(2-メト キシー1-メチルーエトキシ)ペンズアミド、5-(3-ヒドロキシー1-メチ 15 ルエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-[5-メチル-1, 2, 4-チアジアゾール-3-イル] ベンズアミド、5-(ヒドロキシー1 ーメチルエトキシ) -3-(4-メタンスルホニルフェノキシ) -N-(3-メ トキシー1, 2, 4ーチアジアゾールー5ーイル)ベンズアミド、5ー(2ーヒ 20 ドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) -N-(1, 2, 5-チアジアゾール-3-イル) ベンズアミド、5-(2-ヒ ドロキシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ) -N-(4-トリフルオロメチルーチアゾールー2ーイル)ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニルフェ ノキシ)-N-(4,5,6,7-テトラヒドロベンゾチアゾール-2-イル) 25 ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メ タンスルホニルフェノキシ) - N - (ピリダジン-3-イル) - ベンズアミド、 5-(2-1)2,4]-トリアゾール-5-イル)-3-(4-メタンスルホニルフェノキシ)

ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メ タンスルホニルフェノキシ)-N-(3-メチル-[1,2,4]-オキサジア ゾールー5ーイル) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキ シ) -N-[4-(1-ヒドロキシ-1-メチル-エチル) -チアゾール-2-イル] -3-(4-メタンスルホニルフェノキシ) ペンズアミド、N-(4-シ アノーチアゾールー2ーイル)-5-(2-ヒドロキシー1-メチルーエトキシ) -3-(4-メタンスルホニルフェノキシ)ベンズアミド、5-(2-ヒドロキ シー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(1-ヒドロ キシメチループロポキシ) - 3 - (4 - メタンスルホニルフェノキシ) - N - (ピ 10 リジン-2-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキ シ) -3-(4-メタンスルホニルフェノキシ) -N-(5-メチル-イソチア ゾール-3-イル) ベンズアミド、5-(3-ヒドロキシ-シクロペンチルオキ シ) -3-(4-メタンスルホニルフェノキシ) -N-(チアパール-2-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メ 15 タンスルホニルフェノキシ) -N-(5-メトキシーチアゾール-2-イル) ベ ンズアミド、5 - (1-ヒドロキシメチル-2-メチループロポキシ)-3-(4 -メタンスルホニルフェノキシ)-N-(チアゾール-2-イル)ペンズアミド、 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニル フェノキシ)-N-(1H-[1, 2, 3]トリアゾール-4-イル)ベンズア 20 ミド、N-(1-アセチル-1H-ピラゾール-3-イル)-5-(2-ヒドロ キシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)ペン ズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタン スルホニルフェノキシ)-N-(ピラゾール-3-イル)ベンズアミド、N-(5, 6-ジヒドロ-4H-シクロペンタチアゾール-2-イル)-5-(2-ヒドロ 25 キシー1-メチルーエトキシ)-3-(4-メタンスルホニルフェノキシ)ベン ズアミド、5-(1-ヒドロキシメチループロポキシ)-3-(4-メタンスル ホニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズ アミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンス

ルホニルフェノキシ) -N- (チエノ[3, 2-d] チアゾール-2-イル) ベ ンズアミド、3 - (3 - フルオロー4 - メタンスルホニルフェノキシ) - 5 - (2 ーヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール -3 - 1-メトキシ-1-メチル-エトキシ)-N-(ピラゾール-3-イル)ベンズア ミド、3-(4-シアノ-フェノキシ)-5-(2-ヒドロキシ-1-メチルーエ トキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3 - (4-エチルスルホニルフェノキシ)-5-(2-ヒドロキシ-1-メチルー エトキシ) - N - (1 - メチル - 1 H - ピラゾール - 3 - イル) ベンズアミド、 3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキ 10 (2-1-3)ベンズアミド、5-(3-ヒドロキシ-1-メチループロポキシ)-3-(4-メタンスルホニルフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イ ル) ベンズアミド、3-(4-エタンスルホニルフェノキシ) -5-(2-ヒド ロキシー1-メチルーエトキシ)-N-(イソキサゾール-3-イル)ペンズア 15 ミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-イソプロピ ルスルホニルフェノキシ) - N - (1 - メチル - 1 H - ピラゾール - 3 - イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(4-ヒ ドロキシー4ーメチルー4, 5, 6, 6 a ーテトラヒドロー3 a H ーシクロペン 20 タチアゾールー2ーイル)ー3ー(4ーメタンスルホニルフェノキシ)ベンズア ミド、3-(4-ジメチルカルバモイル-フェノキシ)-5-(2-ヒドロキシ -1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、3-(4-アセチルフェノキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズ アミド、5-(2-ヒドロキシー1-メチル-エトキシ)-N-(1-メチル-25 1 H ー ピラゾールー3 ー イル) -3-(1,3,4-チアジアゾール-2-イル スルファニル) ベンズアミド、N ー(1 ーエチルー 1 H ーピラゾールー 3 ーイル) -5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスルホニル フェノキシ)ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-

3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒドロキシ-1-メチ ルーエトキシ) -3-(4-メトキシカルボニルアミノメチル-フェノキシ) -N-(3-x) N-(3-x) N-(- (1-ヒドロキシメチループロポキシ) - 3 - (6-メタンスルホニルピリジ ンー3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベン ズアミド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-5-(1 ーメトキシメチループロポキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-イソプロポキシ-3-(6-メタンスルホニルピリジ ン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベン 10 ズアミド、5-(2-フルオロー1-フルオロメチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(1-メチル-1H-ピラ ゾールー3ーイル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(イソキ サゾール-3-イル)ベンズアミド、5-(2-ヒドロキシ-1-メチル-エト 15 キシ) - 3 - (4 - メタンスルホニルフェニルスルファニル) - N - (1 - メチ ルー1H-ピラゾールー3-イル)ベンズアミド、5-シクロプロピルオキシ-3-(4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾー ルー3ーイル) ベンズアミド、3-(6-メタンスルホニルピリジン-3-イル オキシ) -5-(1-メトキシメチループロポキシ) -N-(ピラゾール-3-20 イル)ベンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(4-メタンスルホニルフェノキシ)-N-(1-メチル-1H-ピラゾー ルー3ーイル) ベンズアミド、3-(6-エタンスルホニルピリジン-3-イル オキシ) -5-(1-ヒドロキシメチループロポキシ) -N(1-メチル-1H ーピラゾールー3ーイル) ベンズアミド、5ー(6ーエタンスルホニルピリジンー 25 チルー1H-ピラゾールー3ーイル)ベンズアミド、2-[3-(4-メタンス ルホニルフェノキシ) -5-(1-メチル-1H-ピラゾール-3-イルカルバ モイル) -フェノキシ] プロピオン酸-tert-プチルエステル、3-(6-

エタンスルホニルピリジン-3-イルオキシ)-5-(2-メトキシ-1-メチ ルーエトキシ) - N - (ピラゾール-3-イル) - ベンズアミド、3 - (6-メ タンスルホニルピリジンー3ーイルオキシ)-N-(1-メチル-1H-ピラゾ ールー3-イル) - 5- (テトラヒドロフラン-3-イル) ベンズアミド、N-5 (1-エチル-1H-ピラゾール-3-イル)-5-(2-ヒドロキシ-1-メ チルーエトキシ) - 3 - (6 - メタンスルホニルピリジン-3 - イルオキシ) ベ ンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6 ーメタンスルホニルピリジンー3ーイルオキシ)ーN-(ピラゾールー3ーイル) ベンズアミド、3-(6-メタンスルホニルピリジン-3-イルオキシ)-5-**(2-メトキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾー** 10 ルー3-イル)ペンズアミド、3-(6-エタンスルホニルピリジン-3-イル オキシ) -5-(2-フルオロ-1-フルオロメチル-エトキシ)-N-(1-メ チルー1Hーピラゾールー3ーイル)ベンズアミド、2-[3-(4-メタンス ルホニルフェノキシ)~5~(1~メチル~1H~ピラゾール~3~イルカルバ モイル) -フェノキシ] プロピオン酸、3-(6-エタンスルホニルピリジン-15 3-イルオキシ)-5-イソプロポキシ-N-(ピラゾール-3-イル)ベンズ アミド、3-(6-エタンスルホニルピリジン-3-イルオキシ)-5-イソプ ロポキシ-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、3 - (6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ -1-メチル-エトキシ)-N-(ピラゾール-3-イル)ベンズアミド、3-20 (6-エタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1ーメチルーエトキシ)-N-(ピリジン-2ーイル)ベンズアミド、3-(6 ーエタンスルホニルピリジン-3-イルオキシ)-5-(2-ヒドロキシ-1-メチルーエトキシ) - N - チアゾールー2 - イルーベンズアミド5 - (2 - フル オロー1ーメチルーエトキシ)ー3ー(6ーメタンスルホニルピリジンー3ーイ 25 ルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、 5-(2-クロロ-1-メチル-エトキシ)-3-(6-エタンスルホニルピリ ジン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベ ンズアミド、5-(2-フルオロー1-フルオロメチル-エトキシ)-N-(イソ

キサゾールー3ーイル) -3-(6-メタンスルホニルピリジン-3-イルオキ シ) ベンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(ピリジン-2-イ ル) ベンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-3-(6-メタンスルホニルピリジン-3-イルオキシ)-N-(3-メチル-[1,5 2. 4] ーチアジアゾールー5ーイル) ベンズアミド、3ー(4ージメチルスル ファモイルフェノキシ) -5- (2-ヒドロキシ-1-メチル-エトキシ) -N - (1-メチル-1H-ピラゾール-3-イル) ベンズアミド、5-(2-ヒド ロキシー1ーメチルーエトキシ)ー3ー(3ーメタンスルホニルフェノキシ)ー N-(1-メチル-1H-ピラゾール-3-イル)ベンズアミド、5-(2-ヒ 10 ドロキシー1-メチルーエトキシ)-3-(6-イソプロピルスルホニルピリジ ン-3-イルオキシ)-N-(1-メチル-1H-ピラゾール-3-イル)ベン ズアミド、3-(3-クロロ-4-メタンスルホニルフェノキシ)-5-(2-ヒドロキシ-1-メチル-エトキシ)-N-(1-メチル-1H-ピラゾールー 3-イル) ベンズアミド、5-(2-ヒドロキシ-1-メチル-エトキシ)-N 15 - (1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン-3-イルオ キシ)ベンズアミド、5-(2-フルオロ-1-フルオロメチルーエトキシ)-N- (1-メチル-1H-ピラゾール-3-イル) -3- (ピリジン-3-イル オキシ) ベンズアミド、5-(2-ヒドロキシ-1-メチルーエトキシ) -N-(1-メチル-1H-ピラゾール-3-イル)-3-(ピリジン-4-イルオキ 20 シ) ベンズアミド、5-(2-フルオロ-1-フルオロメチル-エトキシ)-N - (1-メチル-1H-ピラゾール-3-イル) -3-(ピリジン-4-イルオ キシ) ベンズアミド、2-[3-(6-エタンスルホニルピリジン-3-イルオ キシ) -5-(1-メチル-1H-ピラゾール-3-イルカルバモイル)-フェ ノキシ]プロピオン酸、5-(2-フルオロ-1-フルオロメチル-エトキシ) 25 -3-(3-フルオロ-4-メタンスルホニルフェノキシ)-N-(1-メチル -1H-ピラゾール-3-イル)ペンズアミドである化合物又はその薬学的に許 容される塩。

- 16. 5-(2-ヒドロキシ-1-メチルーエトキシ) <math>-3-(4-メタンス ルホニルーフェノキシ) -N-チアゾール-2-イルーベンズアミドである化合物又はその薬学的に許容される塩。
- 5 17. N-(4-ヒドロキシメチルーチアゾールー2-イル)-3-(4-メタンスルホニルーフェノキシ)-5-(1-メトキシメチループロポキシ)ーベンズアミドである化合物又はその薬学的に許容される塩。
- 18. 5-(2-ヒドロキシ-1-メチル-エトキシ)-3-(4-メタンスル10 ホニルーフェノキシ) -N-ピリジン-2-イルーベンズアミドである化合物又はその薬学的に許容される塩。
- 19.5-(2-ヒドロキシ-1-メチルーエトキシ)-3-(4-メタンスルホニルーフェノキシ)-N-(2-メチルチアゾール-4-イル)-ベンズアミドである化合物又はその薬学的に許容される塩。
 - 20. 5-(2-ヒドロキシ-1-メチルーエトキシ)-3-([1, 3, 4] チアジアゾールー 2- イルスルファニル) N- チアゾールー 2- イルーベンズ アミドである化合物又はその薬学的に許容される塩。
- 20 $21. 5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスル ホニルーフェノキシ) -N-(3-メチルー <math>\begin{bmatrix} 1, 2, 4 \end{bmatrix}$ -チアジアゾールー 5- (1, 2, 4) -ベンズアミドである化合物又はその薬学的に許容される塩。
- 25 22.5-(2-ヒドロキシ-1-メチルーエトキシ) -3-(4-メタンスル ホニルーフェノキシ) -N-(1-メチル-1H-ピラゾール-3-イル) ベン ズアミドである化合物又はその薬学的に許容される塩。
 - 23.3-(3-フルオロ-4-メタンスルホニル-フェノキシ)-5-(2-

ヒドロキシー1-メチルーエトキシ)-N-(1-メチルー1H-ピラゾールー3-イル) ベンズアミドである化合物又はその薬学的に許容される塩。

24.3-(6-x9) スルホニルーピリジン-3-(x) カー (2-x) カー (3-x) カー (3-x

25. 3-(6-x9)スルホニルーピリジンー3-4ルオキシ)-5-4ソプロポキシーNー(1-x+1)-ピラゾールー3-4ル)ベンズアミドである化合物又はその薬学的に許容される塩。

26. 5-(2-7)ルオロー1-7ルオロメチルーエトキシ)-3-(6-1)タンスルホニルーピリジン-3-7ルオキシ)-N-(1-1)・パンズアミドである化合物又はその薬学的に許容される塩。

27. 3-(6-x9)スルホニルーピリジン-3-(x)10 - 5-(2-x)27. 3-(6-x9)27. 3-(6-x9)3 - 3-(x)47. 3-(x)5 - 3-(x)6 - 3-(x)7 - 3-(x)7 - 3-(x)7 - 3-(x)7 - 3-(x)7 - 3-(x)7 - 3-(x)8 - 3-(x)9 - 3-(x)

20 28.5-(2-フルオロ-1-フルオロメチルーエトキシ)-3-(6-メタンスルホニルーピリジン-3-イルオキシ)-N-(ピラゾール-3-イル)ベンズアミドである化合物又はその薬学的に許容される塩。

29. 2型糖尿病の治療、予防及び/又は発症を遅らせるために用いられる以下 25 の(1)乃至(3)からなる医薬組成物。 (1)式(I)

[式中、各記号は前記に同じ] で表される化合物、

- (2) 以下の (a) (g) からなる群より選択される1 又は2 以上の化合物
 - (a) 他のグルコキナーゼ活性化剤

5 (b) ビスーグアニド

- (c) PPAR アゴニスト
- (d) インスリン
- (e) ソマトスタチン
- (f) α-グルコシダーゼ阻害剤、及び
- (g) インスリン分泌促進剤、
- (3) 薬学的に許容される担体

10

15

- 30. 請求項1乃至28のいずれか請求項に記載の化合物を有効成分とするグルコキナーゼ活性化剤。
- 31. 請求項1乃至28のいずれかの請求項に記載の化合物を有効成分とする糖尿病の治療及び/又は予防のための薬剤。
- 32. 請求項1乃至28のいずれかに記載の化合物を有効成分とする肥満の治療 20 及び/又は予防のための薬剤。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/002284

A CLACCIE	CATION OF SUBJECT MATTER		
A. CLASSIF	⁷ C07D213/75, 213/80, 231/40,	220/42 241/20 227/20	277/46
]	285/12, 285/08, 417/12, 401,	/12. 261/14. 271/07. 249	/04.
	513/04, A61K31/415, 31/42,	31/426, 31/427, 31/433,	31/437.
According to In	ternational Patent Classification (IPC) or to both nation	nal classification and IPC	, ,
B. FIELDS S			
Minimum docu	mentation searched (classification system followed by	classification symbols)	
Int.CI	7 C07D213/75, 213/80, 231/40,	239/42, 241/20, 237/20,	277/46,
	285/12, 285/08, 417/12, 401, 513/04, A61K31/415, 31/42, 3	/12, 261/14, 2/1/07, 249	/04, 21/427
			-
Documentation	searched other than minimum documentation to the ex	tent that such documents are included in the	fields searched
Electronic data STN/CA	pase consulted during the international search (name of	f data base and, where practicable, search te	rms used)
5111, 613	,	·	
C DOCUME	TC CONGINEDED TO BE DELEVANT		
	ITS CONSIDERED TO BE RELEVANT	·	
Category*	Citation of document, with indication, where a	<u> </u>	Relevant to claim No.
P,A	WO 03/080585 A1 (Banyu Pharm	maceutical Co., Ltd.),	1-32
	02 October, 2003 (02.10.03), (Family: none)	·	
	(raurry: none)	ĺ	
Х	WO 03/000267 A1 (ASTRAZENECA	A AB.),	1-8,11,30-32
Y	03 January, 2003 (03.01.03),	. ,	9,10,12-15,
	& EP 1404335 A1		16-29
			•
	•		
	•		
<u> </u>			
Further do	cuments are listed in the continuation of Box C.	See patent family annex.	
	ories of cited documents:	"T" later document published after the inter	national filing date or priority
"A" document d to be of part	fining the general state of the art which is not considered cular relevance	date and not in conflict with the application the principle or theory underlying the in-	tion but cited to understand
"E" earlier applie	ation or patent but published on or after the international	"X" document of particular relevance: the cl.	aimed invention cannot be
filing date "L" document w	nich may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken alone	ered to involve an inventive
cited to esta	blish the publication date of another citation or other	"Y" document of particular relevance; the cli	simed invention cannot be
	n (as specified) erring to an oral disclosure, use, exhibition or other means	considered to involve an inventive s combined with one or more other such d	tep when the document is
"P" document pr	blished prior to the international filing date but later than	being obvious to a person skilled in the	art
the priority of	ate claimed	"&" document member of the same patent fa	mily
Date of the actua	completion of the international search	Date of mailing of the international search	h renort
18 May,	2004 (18.05.04)	08 June, 2004 (08.0)	6.04)
			/
Name and mailin	address of the ISA/	Authorized officer	
	e Patent Office		
Faccimile No		Telephone No.	
Facsimile No. orm PCT/ISA/21	(second sheet) (January 2004)	Telephone No.	
· ·			

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2004/002284

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 31/44, 31/4402, 31/4439, 31/444, 31/454, 31/4965, 31/505, 31/415, 31/4245, 31/4192, 31/429, 31/455, 31/433, 31/4245, 31/495, A61P3/04, 3/10, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ 31/44, 31/4402, 31/4439, 31/444, 31/454, 31/4965, 31/505, 31/415, 31/4245, 31/4192, 31/429, 31/455, 31/433, 31/4245, 31/495, A61P3/04, 3/10, 43/00

Minimum documentation searched (classification system followed by classification symbols)

A. 発明の属する分野の分類(国際特許分類(IP	C)	1		•	
--------------------------	----	---	--	---	--

Int. C1 C070213/75, 213/80, 231/40, 239/42, 241/20, 237/20, 277/46, 285/12, 285/08, 417/12, 401/12; 261/14, 271/07, 249/04, 513/04, A61K31/475, 31/42, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4402, 31/4439, 31/444, 31/454, 31/4965, 31/505, 31/415, 31/4245, 31/4192, 31/429, 31/455, 31/433, 31/4245, 31/495, A61P3/04, 3/10, 43/00

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1° C07D213/75, 213/80, 231/40, 239/42, 241/20, 237/20, 277/46, 285/12, 285/08, 417/12, 401/12, 261/14, 271/07, 249/04, 513/04, A61K31/415, 31/42, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4402, 31/4439, 31/444, 31/454, 31/4965, 31/505, 31/415, 31/4245, 31/4192, 31/429, 31/455, 31/433, 31/4245, 31/495, A61P3/04, 3/10, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) STN/CAS

引用文献の	関連する
カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 PA WO 03/080585 A1 (萬有製薬株式会社) 2003. 10. 02	請求の範囲の番号
PA WO 03/080585 A1 (萬有惻変株式会社) 2002 10 02	
(ファミリーなし)	1-32
X	1-8, 11, 30-32
Y WO 03/000267 A1 (ASTRAZENECA AB) 2003.01.03	9, 10, 12-15,
& EP 1404335 A1	16-29

□ C欄の続きにも文献が列挙されている。

」 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

様式PCT/ISA/210 (第2ページ) (2004年1月)