Benchmarking Real-Coded Genetic Algorithm on Noisy Black-Box Optimization Testbed

Thanh-Do Tran

Dept. of Control and Instrumentation Eng.

Korea Maritime University

Busan 606-791, Korea

tdtran@hhu.ac.kr

Gang-Gyoo Jin
Div. of Comp., Control, and Elec. Comm. Eng.
Korea Maritime University
Busan 606-791, Korea
ggjin@hhu.ac.kr

ABSTRACT

Originally, genetic algorithms were developed based on the binary representation of candidate solutions in which each conjectured solution is a fixed-length string of binary numbers; however, real-valued representation scheme is basically superior and frequently utilized in addressing hard optimization tasks, particularly for the optimization in continuous domains under a black-box scenario. In this paper, we implement a generational real-coded genetic algorithm (RCGA)—which is composed of tournament selection, arithmetical crossover, and adaptive-range mutation—with a multiple independent restarts mechanism and benchmark it on the BBOB-2010 noisy testbed. The maximum number of function evaluations for each run is set to 50000 times the search space dimension. For 40-dimensional search space, the algorithm shows promising results with 6 functions being solved up to the precision of 10^{-8} .

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms, Experimentation

Keywords

Benchmarking, Black-box optimization, Evolutionary computation, Real-coded genetic algorithm

1. INTRODUCTION

Real-coded genetic algorithms (RCGAs) have existed in a great deal of variants developed by practitioners of genetic algorithms [2, 5]. Each of which has its own merits accompanied by some specific type of problems. A general

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'10, July 7–11, 2010, Portland, Oregon, USA. Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...\$10.00. implementation of RCGA taking advantages of tournament selection, arithmetical crossover, and non-uniform mutation is in common use. Surprisingly, such an instance of RCGA is rarely come across being fully benchmarked on a set of noisy functions with diverse characteristics to examine when and how it is advantageous. The aim of this paper is to perform such tasks.

Detailed descriptions of the algorithm as well as the implementation of the RCGA in use have been reported in the complement of this paper [6]. In [6], a multiple independent restarts mechanism is incorporated into the RCGA using adaptive-range non-uniform mutation to benchmark the BBOB-2010 noiseless testbed. In the same manner, the exactly identical algorithm and parameter settings are utilized in this paper to tackle the BBOB-2010 noisy testbed. All details regarding the algorithm as well as the settings of parameters can be found in [6].

2. RESULTS AND DISCUSSION

Results from the experiments according to [3] on the benchmark functions given in [1, 4] are presented in Figures 1, 2, 3 and in Tables 1, 2 and 3.

It is observed that performance of the RCGA on the noisy testbed is mediocre and generally of secondary significance. The obtained results from Figure 1 show that the RCGA is able to solve functions f_{101} , f_{102} , f_{103} , f_{107} , f_{109} , f_{130} in 40-D. In case of 20-D, one more function, f_{128} , is solved. In 5-D, almost all functions can be solved with the precision as low as 10^{-2} to 10^{-1} as shown in Table 1 and Table 2. These results are trivial, however the applicability of the RCGA is still promising thanks to the simplicity of the algorithm as well as the ease of implementation. Moreover, there is still enough room for the integration of other enhancement techniques to improve the algorithm's performance. Further investigations such as adaptive adjustment of the control parameters and/or the utilization of hybrid schemes for crossover and mutation may bring better results.

3. REFERENCES

- S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2010.
- [2] M. Gen and R. Cheng. Genetic Algorithms and Engineering Designs. John Wiley and Sons, 1997.
- [3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking

Figure 1: Expected Running Time (ERT, ullet) to reach $f_{\mathrm{opt}}+\Delta f$ and median number of f-evaluations from successful trials (+), for $\Delta f=10^{\{+1,0,-1,-2,-3,-5,-8\}}$ (the exponent is given in the legend of f_{101} and f_{130}) versus dimension in log-log presentation. For each function and dimension, $\mathrm{ERT}(\Delta f)$ equals to $\#\mathrm{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\mathrm{opt}}+\Delta f$ was surpassed. The $\#\mathrm{FEs}(\Delta f)$ are the total number (sum) of f-evaluations while $f_{\mathrm{opt}}+\Delta f$ was not surpassed in the trial, from all (successful and unsuccessful) trials, and f_{opt} is the optimal function value. Crosses (×) indicate the total number of f-evaluations, $\#\mathrm{FEs}(-\infty)$, divided by the number of trials. Numbers above ERT-symbols indicate the number of successful trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results from BBOB-2009 for $\Delta f=10^{-8}$. Additional grid lines show linear and quadratic scaling.

f101 in 5-D, N=15, mFE=30200	f101 in 20-D, N=15, mFE=290700	f102 in 5-D, N=15, mFE=31100	f102 in 20-D, N=15, mFE=293000
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 8.5e1 2.1e1 1.1e2 8.5e1	15 2.3e3 1.5e3 2.7e3 2.3e3	10 15 1.1e2 1.0e0 2.4e2 1.1e2	15 2.4e3 1.6e3 3.1e3 2.4e3
1 15 9.2e2 3.9e2 1.7e3 9.2e2	15 5.7e3 5.0e3 6.9e3 5.7e3	1 15 1.0e3 4.4e2 1.7e3 1.0e3	15 5.9e3 4.9e3 6.7e3 5.9e3
1e-1 15 2.1e3 1.0e3 2.8e3 2.1e3 1e-3 15 7.0e3 5.9e3 8.5e3 7.0e3	15 3.2e4 1.0e4 5.8e4 3.2e4 15 1.7e5 1.6e5 1.8e5 1.7e5	1e-1 15 2.0e3 9.4e2 2.8e3 2.0e3 1e-3 15 6.4e3 4.8e3 8.4e3 6.4e3	15 3.3e4 1.5e4 6.1e4 3.3e4 15 1.6e5 1.5e5 1.8e5 1.6e5
1e-5 15 1.4e4 1.0e4 1.6e4 1.4e4	15 1.7e5 1.6e5 1.8e5 1.7e5 15 2.3e5 2.3e5 2.4e5 2.3e5	1e-3 15 6.4e3 4.8e3 8.4e3 6.4e3 1e-5 15 1.3e4 9.8e3 1.7e4 1.3e4	15 1.0e5 1.5e5 1.8e5 1.0e5 15 2.3e5 2.2e5 2.4e5 2.3e5
1e-8 15 2.5e4 2.1e4 3.0e4 2.5e4	15 2.9e5 2.8e5 2.9e5 2.9e5	1e-8 15 2.5e4 2.1e4 3.1e4 2.5e4	15 2.9e5 2.9e5 2.9e5 2.9e5
f103 in 5-D, N=15, mFE=34500	f103 in 20-D, N=15, mFE=979800	f104 in 5-D, N=15, mFE=250000	f104 in 20-D, N=15, mFE=1.00e6
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 7.8e1 4.0e0 1.2e2 7.8e1	15 2.1e3 1.4e3 2.8e3 2.1e3	10 15 1.8e3 7.6e2 2.5e3 1.8e3	$0 18e + 0 18e + 0 18e + 0 \qquad 2.4e5$
1 15 7.4e2 2.3e2 1.0e3 7.4e2 1e-1 15 1.8e3 8.0e2 2.9e3 1.8e3	15 5.5e3 5.0e3 5.9e3 5.5e3 15 4.5e4 9.9e3 8.1e4 4.5e4	1 7 2.9e5 5.0e3 7.6e5 8.8e3 1e-1 5 5.6e5 1.3e4 1.3e6 5.5e4	
1e-1 15 1.8e5 8.0e2 2.9e5 1.8e5 1e-3 15 7.3e3 5.0e3 9.4e3 7.3e3	15 4.564 9.965 8.164 4.564 15 2.865 1.765 1.965 2.865	1e-1 5 5.6e5 1.3e4 1.3e6 5.3e4 1e-3 2 1.7e6 2.0e5 3.2e6 7.9e4	
1e-5 15 1.5e4 1.2e4 2.0e4 1.5e4	15 3.4e5 2.4e5 9.6e5 3.4e5	1e-5 0 12e-1 29e-5 24e-1 1.1e5	
1e-8 15 2.9e4 2.6e4 3.2e4 2.9e4	15 3.8e5 2.9e5 9.8e5 3.8e5	1e-8	
f105 in 5-D, N=15, mFE=250000	f105 in 20-D, N=15, mFE=1.00e6	f106 in 5-D, N=15, mFE=250000	f106 in 20-D, N=15, mFE=1.00e6
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 2.2e3 7.8e2 5.5e3 2.2e3 1 11 1.5e5 8.8e3 4.6e5 6.2e4	0 $18e+0$ $18e+0$ $18e+0$ $2.2e5$	10 15 2.0e3 7.4e2 4.7e3 2.0e3 1 10 1.9e5 2.9e3 5.0e5 6.7e4	0 $17e+0$ $17e+0$ $17e+0$ 3.3 e5
1e-1 5 6.2e5 1.0e5 1.5e6 1.2e5		1e-1 6 5.0e5 2.8e4 1.2e6 1.3e5	
1e-3 2 1.8e6 2.5e5 4.0e6 2.1e5		1e-3 2 1.8e6 2.5e5 3.4e6 1.4e5	
1e-5 0 $51e-2$ $70e-5$ $17e-1$ $1.1e5$		1e-5 0 $44e-2$ $75e-5$ $22e-1$ 1.3e5	
1e-8		1e-8	
Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RT _{SUCC}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ}
10 15 6.5e1 8.0e0 1.9e2 6.5e1	15 1.5e4 6.8e3 2.4e4 1.5e4	10 15 6.9e1 1.3e1 2.0e2 6.9e1	0 22e+0 14e+0 28e+0 3.1e5
1 15 2.4e3 3.3e2 3.9e3 2.4e3	15 2.6e4 1.9e4 3.7e4 2.6e4	1 14 6.7e4 4.5e3 1.5e5 4.9e4	
1e-1 15 4.7e3 1.8e3 6.4e3 4.7e3	15 7.7e4 6.9e4 8.9e4 7.7e4	1e-1 6 $4.4e5$ $5.4e4$ $9.4e5$ $6.4e4$	
1e-3 15 1.2e4 8.9e3 1.6e4 1.2e4	15 1.9e5 1.8e5 1.9e5 1.9e5	1e-3 0 16e-2 90e-4 91e-2 1.2e5	
1e-5 15 2.3e4 1.8e4 2.5e4 2.3e4 1e-8 12 9.8e4 3.4e4 2.9e5 3.6e4	15 2.5e5 2.4e5 2.5e5 2.5e5 15 3.0e5 2.9e5 3.0e5 3.0e5	1e-5	
f109 in 5-D, N=15, mFE=250000	f109 in 20-D, N=15, mFE=962800	f110 in 5-D, N=15, mFE=250000	f ₁₁₀ in 20-D, N=15, mFE=1.00e6
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 9.9e1 1.4e1 7.2e2 9.9e1	15 2.5e3 1.8e3 3.5e3 2.5e3	10 15 4.6e3 1.0e3 1.5e4 4.6e3	0 20e+0 20e+0 21e+0 1.7e5
1 15 1.1e3 4.3e2 1.7e3 1.1e3	15 6.6e3 5.4e3 7.5e3 6.6e3	1 3 1.2e6 1.5e5 2.3e6 1.6e5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 1.3e5 4.5e4 1.0e5 1.3e5 15 2.5e5 1.9e5 3.8e5 2.5e5	1e-1 1 3.6 e6 4.0 e5 8.9 e6 1.5 e5 1e-3 0 18e-1 12e-2 28e-1 1.8 e5	
1e-5 15 2.2e4 1.6e4 2.7e4 2.2e4	15 2.5e5 1.9e5 5.8e5 2.5e5 15 3.1e5 2.5e5 6.7e5 3.1e5	1e-5	
1e-8 12 9.7e4 3.2e4 2.9e5 3.5e4	15 3.6e5 3.0e5 9.6e5 3.6e5	1e-8	
f111 in 5-D, N=15, mFE=250000	f ₁₁₁ in 20-D, N=15, mFE=1.00e6	f112 in 5-D, N=15, mFE=250000	f112 in 20-D, N=15, mFE=1.00e6
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
10 15 1.6e4 1.7e3 3.6e4 1.6e4	0 $49e+0$ $33e+0$ $85e+0$ 1.2e5	10 15 2.7e3 8.4e2 4.1e3 2.7e3	0 $18e+0$ $17e+0$ $18e+0$ 3.2e5
10 15 1.6e4 1.7e3 3.6e4 1.6e4 1 3.7e6 4.3e5 7.3e6 1.8e5	0 49e+0 33e+0 85e+0 1.2e5 	10 15 2.7e3 8.4e2 4.1e3 2.7e3 1 10 2.2e5 1.9e4 4.7e5 9.3e4	0 18e+0 17e+0 18e+0 3.2e5
10 15 1.6e4 1.7e3 3.6e4 1.6e4	0 49e+0 33e+0 85e+0 1.2e5 	10 15 2.7e3 8.4e2 4.1e3 2.7e3 1 10 2.2e5 1.9e4 4.7e5 9.3e4 1e-1 5 5.9e5 4.0e4 1.4e6 9.5e4	0 18e+0 17e+0 18e+0 3.2e5
10 15 1.6e4 1.7e3 3.6e4 1.6e4 1.6e4 1 1 3.7e6 4.3e5 7.3e6 1.8e5 1e-1 1 0 26e-1 11e-1 33e-1 1.7e5 1e-3	0 49e+0 33e+0 85e+0 1.2e5 	10 15 2.7e3 8.4e2 4.1e3 2.7e3 1 10 2.2e5 1.9e4 4.7e5 9.3e4 1e-1 5 5.9e5 4.0e4 1.4e6 9.5e4	0 18e+0 17e+0 18e+0 3.2e5
10 15 1.6e4 1.7e3 3.6e4 1.6e4 1 1 3.7e6 4.3e5 7.3e6 1.8e5 1e-1 0 26e-1 11e-1 33e-1 1.7e5 1e-3 1e-5	0 49e+0 33e+0 85e+0 1.2e5 	10 15 2.7e3 8.4e2 4.1e3 2.7e3 1 10 2.2e5 1.9e4 4.7e5 9.3e4 1e-1 5 5.9e5 4.0e4 1.4e6 9.5e4 1e-3 0 70e-2 14e-3 21e-1 1.8e5 1e-5	0 18e+0 17e+0 18e+0 3.2e5
10 15 1.6e4 1.7e3 3.6e4 1.6e4 1.7e3 1.6e4 1.3.7e6 4.3e5 7.3e6 1.8e5 1e-1 0 26e-1 11e-1 33e-1 1.7e5 1e-3 1e-5	0 49e+0 33e+0 85e+0 1.2e5 	10 15 2.7e3 8.4e2 4.1e3 2.7e3 1 10 2.2e5 1.9e4 4.7e5 9.3e4 1e-1 5 5.9e5 4.0e4 1.4e6 9.5e4 1e-3 0 70e-2 14e-3 21e-1 1.8e5 1e-5	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 f113 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.9e4 2.4e4 5.8e4 3.9e4 0 23e-1 13e-1 28e-1 1.6e5 f115 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.5e4 1.1e4 4.1e4 3.5e4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 f113 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.9e4 2.4e4 5.8e4 3.9e4 0 23e-1 13e-1 28e-1 1.6e5 f115 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.5e4 1.1e4 4.1e4 3.5e4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 f113 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.9e4 2.4e4 5.8e4 3.9e4 0 23e-1 13e-1 28e-1 1.6e5 f115 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.5e4 1.1e4 4.1e4 3.5e4 4 3.1e6 1.5e5 8.8e6 4.0e5 2 7.1e6 9.6e5 1.5e7 5.5e5 0 11e-1 91e-3 25e-1 3.9e5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5 f114 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 46e+0 24e+0 11e+1 1.6e5 f116 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 22e+1 98e+0 54e+1 2.1e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 f113 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.9e4 2.4e4 5.8e4 3.9e4 0 23e-1 13e-1 28e-1 1.6e5 f115 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.5e4 1.1e4 4.1e4 3.5e4 4 3.1e6 1.5e5 8.8e6 4.0e5 2 7.1e6 9.6e5 1.5e7 5.5e5 0 11e-1 91e-3 25e-1 3.9e5 f117 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 0 14e+2 50e+1 38e+2 3.4e5 f119 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 5.0e3 2.2e3 9.4e3 5.0e3 15 4.8e4 1.9e4 8.3e4 4.8e4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5 f114 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 46e+0 24e+0 11e+1 1.6e5 f116 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 22e+1 98e+0 54e+1 2.1e5 f118 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 10e+1 66e+0 19e+1 3.3e5 f120 in 20-D, N=15, mFE=1.00 e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5 f114 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 46e+0 24e+0 11e+1 1.6e5 f116 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 22e+1 98e+0 54e+1 2.1e5 f118 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 10e+1 66e+0 19e+1 3.3e5 f120 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 15 1.7e5 1.3e4 7.9e5 1.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5 f113 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.9e4 2.4e4 5.8e4 3.9e4 0 23e-1 13e-1 28e-1 1.6e5 f115 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 3.5e4 1.1e4 4.1e4 3.5e4 4 3.1e6 1.5e5 8.8e6 4.0e5 2 7.1e6 9.6e5 1.5e7 5.5e5 0 11e-1 91e-3 25e-1 3.9e5 f117 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 0 14e+2 50e+1 38e+2 3.4e5 f119 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 5.0e3 2.2e3 9.4e3 5.0e3 15 4.8e4 1.9e4 8.3e4 4.8e4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5 f114 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 46e+0 24e+0 11e+1 1.6e5 f116 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 22e+1 98e+0 54e+1 2.1e5 f118 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 0 10e+1 66e+0 19e+1 3.3e5 f120 in 20-D, N=15, mFE=1.00 e6 # ERT 10% 90% RTsucc 15 1.7e5 1.3e4 7.9e5 1.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 49e+0 33e+0 85e+0 1.2e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 18e+0 17e+0 18e+0 3.2e5 f114 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 0 46e+0 24e+0 11e+1 1.6e5 f116 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 0 22e+1 98e+0 54e+1 2.1e5 f118 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 0 10e+1 66e+0 19e+1 3.3e5 f120 in 20-D, N=15, mFE=1.00e6 # ERT 10% 90% RTsucc 15 1.7e5 1.3e4 7.9e5 1.7e5

Table 1: Shown are, for functions f_{101} - f_{120} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 10D... function evaluations (from right to left cycling black-cyan-magenta). The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for target value 10^{-8} of all algorithms benchmarked during BBOB-2009.

Δf # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc 50 15 15 15 15 15 15 15	f121 in 5-D, N=15, mFE=250000	f121 in 20-D, N=15, mFE=1.00e6	f122 in 5-D, N=15, mFE=250000	f122 in 20-D, N=15, mFE=1.00e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
10	1 15 1.3e3 4.2e2 2.9e3 1.3e3	15 8.0e3 6.4e3 1.0e4 8.0e3	1 15 1.4e4 8.4e2 3.8e4 1.4e4	12 3.5e5 6.4e4 1.1e6 9.7e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 3.1e3 1.9e3 3.9e3 3.1e3	15 5.1e4 2.4e4 7.0e4 5.1e4	1e-1 15 3.4e4 1.1e4 5.3e4 3.4e4	8 1.1e6 1.7e5 3.2e6 2.0e5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1e-3 15 4.8e4 8.3e3 1.5e5 4.8e4	0 41e-4 18e-4 53e-4 3.3e5	1e-3 8 $3.1e5$ $5.9e4$ $8.2e5$ $8.7e4$	0 98e-3 18e-4 13e-1 2.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5 0 $22e-5$ $12e-5$ $45e-5$ $5.5e4$		1e-5 0 $72e-5$ $24e-6$ $12e-3$ $7.4e4$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-8		1e-8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f123 in 5-D, N=15, mFE=250000	f123 in 20-D, N=15, mFE=1.00e6	f124 in 5-D, N=15, mFE=250000	f124 in 20-D, N=15, mFE=1.00e6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 15 2.3e1 2.5e0 6.0e1 2.3e1	15 7.4e3 1.9e2 1.6e4 7.4e3		15 4.4e2 1.4e2 8.0e2 4.4e2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 6 4.8e5 6.0e4 8.1e5 1.0e5	0 $48e-1$ $39e-1$ $59e-1$ $5.4e5$	1 15 1.3e4 8.1e2 4.4e4 1.3e4	15 1.6 e4 1.1 e4 2.1 e4 1.6 e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 0 11e-1 41e-2 19e-1 1.5e5		1e-1 15 4.2e4 1.0e4 6.1e4 4.2e4	15 1.5e5 1.4e5 1.6e5 1.5e5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1e-3		1e-3 10 2.2e5 6.9e4 6.2e5 9.1e4	10 7.8e5 2.7e5 2.3e6 2.8e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5		1e-5 0 $55e-5$ $35e-6$ $76e-4$ $8.3e4$	0 39e-5 77e-6 23e-3 3.4e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-8		1e-8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f125 in 5-D, N=15, mFE=250000	f125 in 20-D, N=15, mFE=1.00e6	f126 in 5-D, N=15, mFE=250000	f126 in 20-D, N=15, mFE=1.00e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 15 1.1e0 1.0e0 2.0e0 1.1e0	15 1.1e0 1.0e0 2.0e0 1.1e0	10 15 1.1e0 1.0e0 2.0e0 1.1e0	15 1.1e0 1.0e0 1.0e0 1.1e0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 15 2.6e1 6.0e0 5.1e1 2.6e1	15 3.2e2 2.2e2 3.8e2 3.2e2	1 15 3.3e1 2.0e0 5.9e1 3.3e1	15 3.4e2 2.6e2 4.2e2 3.4e2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 1.6e3 8.8e2 3.2e3 1.6e3	5 2.3e6 1.7e5 4.8e6 3.4e5	1e-1 15 1.4e3 3.5e2 2.1e3 1.4e3	3 4.2e6 7.4e4 9.7e6 1.8e5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1e-3 0 82e-4 30e-4 15e-3 1.2e5	0 33e-2 25e-3 34e-2 3.9e5	1e-3 0 11e-3 35e-4 20e-3 1.4e5	0 32e-2 25e-3 39e-2 4.1e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5		1e-5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-8		1e-8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		f127 in 20-D, N=15, mFE=1.00e6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 15 1.1e0 1.0e0 2.0e0 1.1e0	15 1.0e0 1.0e0 1.0e0 1.0e0	10 15 7.7e1 7.0e0 1.4e2 7.7e1	10 6.7e5 5.9e4 1.4e6 1.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 15 4.1e1 3.0e0 7.9e1 4.1e1	15 3.1e2 2.5e2 3.5e2 3.1e2	1 14 5.6e4 1.1e3 2.0e5 3.8e4	7 1.3e6 1.3e5 3.4e6 2.0e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 9.9e2 5.5e2 1.3e3 9.9e2	9 1.1e6 1.7e3 2.3e6 4.1e5	1e-1 11 1.2e5 6.6e3 3.0e5 3.2e4	6 1.7e6 5.7e4 4.3e6 2.1e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-3 0 95e-4 57e-4 17e-3 1.1e5	0 $59e-3$ $25e-3$ $24e-2$ $9.9e5$		6 1.7e6 1.1e5 4.3e6 2.5e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5		1e-5 8 $2.8e5$ $3.3e4$ $8.0e5$ $6.5e4$	5 2.3e6 1.8e5 5.8e6 3.1e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-8		1e-8 6 $4.5e5$ $5.3e4$ $8.5e5$ $7.2e4$	5 2.4e6 2.4e5 4.6e6 3.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f129 in 5-D, N=15, mFE=250000	f129 in 20-D, N=15, mFE=1.00e6	f ₁₃₀ in 5-D, N=15, mFE=250000	f130 in 20-D, N=15, mFE=1.00e6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 14 9.1e4 5.6e3 2.2e5 7.3e4	$0 34e+0 15e+0 53e+0 \qquad 5.1e5$	1 9 2.0e5 7.0e1 5.7e5 3.6e4	10 8.1e5 1.0e4 2.0e6 3.1e5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1e-1 4 7.6e5 7.4e4 1.6e6 7.1e4		1e-1 9 2.3e5 2.4e3 5.4e5 5.9e4	8 1.3e6 2.0e4 2.8e6 3.9e5
le-8 1 3.7e6 4.5e5 6.7e6 2.0e5	1e-5 1 3.7e6 6.9e5 7.4e6 1.9e5	1	1e-5 8 3.2e5 5.4e4 8.0e5 9.7e4	7 1.8e6 5.5e5 4.6e6 7.0e5
	1e-8 1 3.7e6 4.5e5 6.7e6 2.0e5		le-8 6 4.8e5 6.4e4 8.2e5 1.0e5	6 2.3e6 8.7e5 4.9e6 8.3e5

Table 2: Shown are, for functions f_{121} - f_{130} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Table 3: ERT loss ratio (see Figure 3) compared to the respective best result from BBOB-2009 for budgets given in the first column. The last row $\mathrm{RL_{US}}/\mathrm{D}$ gives the number of function evaluations in unsuccessful runs divided by dimension. Shown are the smallest, 10%-tile, 25%-tile, 50%-tile, 75%-tile and 90%-tile value (smaller values are better).

 f_{101} - f_{130} in 5-D, maxFE/D=50000

	9 10			,	,	
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%
2	0.56	1.0	1.6	2.5	6.3	10
10	0.94	1.1	2.1	4.2	5.8	28
100	2.5	5.1	7.0	9.2	15	2.6e2
1e3	2.4	7.5	12	36	79	2.6e3
1e4	1.8	11	19	43	1.6e2	1.1e4
1e5	0.42	4.9	17	27	2.4e2	3.7e2
RL_{US}/D	5e4	5e4	5e4	5e4	5e4	5e4
_						
	f101	$-f_{130}$	in 20- 1	D, \max	FE/D=	50000
UDD /D		1001	OFOT		~~	0.004
#FEs/D	$_{ m best}$	10%	25%	\mathbf{med}	75%	90%
#FEs/D	1.0	10% 1.0	$\frac{25\%}{1.9}$	med 32	75% 40	90% 40
,						40
2	1.0	1.0	1.9	32	40	40
10	$\frac{1.0}{0.42}$	1.0 1.1	1.9 2.9	32 35	$40 \\ 2.0e2$	40 2.0e2
10 100	1.0 0.42 0.42	1.0 1.1 0.88	1.9 2.9 1.6	$ \begin{array}{r} 32 \\ 35 \\ 7.6 \end{array} $	40 2.0e2 24	40 2.0e2 1.0e3
2 10 100 1e3	1.0 0.42 0.42 0.48	1.0 1.1 0.88 0.83	1.9 2.9 1.6 2.1	32 35 7.6 12	40 2.0e2 24 37	40 2.0e2 1.0e3 2.0e4
2 10 100 1e3 1e4	1.0 0.42 0.42 0.48 0.93	1.0 1.1 0.88 0.83 2.2	1.9 2.9 1.6 2.1 4.4	32 35 7.6 12 36	40 2.0e2 24 37 1.9e2	40 2.0e2 1.0e3 2.0e4 1.0e5 1.0e6
2 10 100 1e3 1e4 1e5	1.0 0.42 0.42 0.48 0.93 0.10	1.0 1.1 0.88 0.83 2.2 4.1	1.9 2.9 1.6 2.1 4.4 10	32 35 7.6 12 36 58	40 2.0e2 24 37 1.9e2 5.4e2	40 2.0e2 1.0e3 2.0e4 1.0e5 1.0e6

- 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.
- [4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009. Updated February 2010.
- [5] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996.
- [6] T.-D. Tran and G.-G. Jin. Real-coded genetic algorithm benchmarked on noiseless black-box optimization testbed. In Workshop Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010), 2010.

Figure 3: ERT loss ratio versus given budget FEvals. The target value f_t for ERT (see Figure 1) is the smallest (best) recorded function value such that ERT $(f_t) \leq$ FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT (f_t) from BBOB-2009 for functions $f_{101}-f_{130}$ in 5-D and 20-D. Each ERT is multiplied by $\exp(\text{CrE})$ correcting for the parameter crafting effort. Line: geometric mean. Box-Whisker error bar: 25-75%-tile with median (box), 10-90%-tile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset.