Mécanique quantique : principe d'indétermination d'Heisenberg

F. Kany. ISEN-Brest & La Croix-Rouge

Présentation

On considère une source de lumière émettant des photons de longueur d'onde λ et d'impulsion $\vec{p} = \hbar . \vec{k}$. Ces photons arrivent sur une plaque opaque possédant une fente de largeur $a = \Delta x$.

Un calcul purement quantique permet de montrer 1 que la probabilité qu'**un** photon soit diffracté dans la direction θ est donnée par :

$$P(\theta) = \frac{a}{2.\pi} \cdot \operatorname{sinc}^2(\alpha)$$

avec $\alpha = p.a.\sin(\theta)/(2.\hbar)$ et $\mathrm{sinc}(x) = \frac{\sin(x)}{x}$.

Questions

1. Représenter la fonction $P(\theta)$ pour $\theta \in [-\pi/2, \pi/2]$.

Le fait d'avoir $P \neq 0$ pour $\theta \neq 0$ s'interprète par les relations d'indétermination d'Heisenberg $\Delta x.\Delta p_x \gtrsim \hbar$: le fait d'imposer à un photon d'avoir une position x, à Δx près, entraı̂ne une indétermination sur la projection de l'impulsion, dans la direction x, de Δp_x .

Rien ne permet de prédire quel sera l'angle θ du photon après le passage par la fente (on peut seulement estimer la probabilité de cet angle).

2. Simuler le passage de 50 000 photons à travers les deux fentes d'Young. On prendra $a=4.\lambda$.

^{1.} https://arxiv.org/ftp/quant-ph/papers/0703/0703126.pdf