

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2017 TINGKAT PROVINSI

BIDANG ASTRONOMI

Waktu: 180 Menit

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH
DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS
TAHUN 2017

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH ATAS

Petunjuk:

- 1. Jawablah seluruh soal hanya di lembar jawaban dan jangan di lembar soal ini!
- Dalam naskah ini ada 15 soal pilihan berganda, 5 soal isian singkat, 5 soal esai, daftar konstanta, dan data astronomi.
- 3. Kalkulator boleh digunakan.
- 4. Tidak ada pengurangan nilai untuk jawaban salah.
- 5. Waktu pengerjaan adalah 180 menit (3 jam).

Soal Pilihan Ganda

- Angin Matahari di dekat orbit Bumi memiliki kecepatan 400 km/detik dan mengandung 10 proton per cm³. Jika dua besaran tersebut dianggap selalu tetap hingga umur Matahari saat ini, yaitu 4,5 milyar tahun, maka massa Matahari yang telah hilang karena angin Matahari adalah sebesar
 - A. 0,285 M_☉
 - B. 0,675 M_☉
 - C. $1{,}34 \times 10^{-4}~M_{\odot}$
 - D. $5,944 \times 10^{-11} M_{\odot}$
 - E. $5,025 \times 10^{-24} M_{\odot}$
- Berapakah periode rotasi ekuator sebuah bintang katai putih yang berukuran sama dengan Planet Bumi dan memiliki massa sama dengan massa Matahari? (Anggaplah momentum sudut sebesar momentum sudut Matahari).
 - A. 33 hari
 - B. 3.3 hari
 - C. 3,3 jam
 - D. 3,3 menit
 - E. 3.3 detik
- 3. Tidak teramatinya aurora di Planet Venus disebabkan oleh
 - A. tidak ada oksigen di atmosfer Venus
 - B. atmosfer Venus terlalu tebal
 - C. medan magnet di Venus sangat lemah
 - D. temperatur permukaan Venus yang tinggi
 - E. jarak Venus terlalu dekat dengan Matahari

- Kita tidak mengharapkan akan dapat mempelajari evolusi kehidupan di planet yang mengelilingi bintang bermassa besar, karena
 - A. bintang bermassa besar luminositasnya amat tinggi
 - B. kala hidup bintang bermassa besar terlalu pendek
 - C. planet pada bintang bermassa besar terlalu panas untuk makhluk hidup
 - D. orbit planet pada bintang bermassa besar tidak akan stabil
 - E. semua alasan diatas benar
- 5. Objek di bawah ini yang dapat digunakan untuk menentukan pusat Galaksi kita adalah
 - A. bintang muda
 - B. awan antar bintang
 - C. gugus bola
 - D. gas Hidrogen dingin
 - E. bintang bermassa $20 M_{\odot}$
- 6. Kurva kecepatan radial dari sebuah sistem bintang ganda diberikan pada gambar di bawah ini (kecepatan radial dari masing-masing bintang dinyatakan terhadap fase orbitnya). Pernyataan manakah di bawah ini yang benar terkait dengan karakteristik dari kecepatan radial (V_A, V_B) , periode orbital (T_A, T_B) , dan massa (M_A, M_B) dari sistem bintang ganda tersebut?

- A. $V_A > V_B$, $T_A > T_B$, $M_A > M_B$
- B. $V_A < V_B$, $T_A = T_B$, $M_A > M_B$
- C. $V_A < V_B$, $T_A < T_B$, $M_A < M_B$
- D. $V_A > V_B$, $T_A = T_B$, $M_A < M_B$
- E. $V_A > V_B$, $T_A = T_B$, $M_A > M_B$
- 7. Adanya zaman es (pleistocene) di Bumi diyakini para ilmuwan disebabkan secara dominan oleh
 - A. adanya perubahan dalam luaran energi dari Matahari
 - B. tingkat aktivitas gunung berapi yang tinggi menyebabkan $\it outgassing$ dari ${\rm CO_2}$ di atmosfer
 - C. pergerakan lempeng benua
 - D. presesi sumbu rotasi Bumi dan perubahan kelonjongan orbit Bumi
 - E. Bumi ditabrak oleh asteroid raksasa

- 8. Diketahui percepatan relatif sebuah wahana antariksa terhadap percepatan gravitasi Bumi adalah sebesar 2 m/detik^2 . Massa wahana itu adalah sebesar 13150 kg. Hitung berapa lama wahana tersebut bisa mencapai kecepatan lepas Bumi jika awalnya wahana berada dalam keadaan diam kemudian bergerak tegak lurus terhadap permukaan Bumi!
 - A. 2 detik
 - B. 250 detik
 - C. 90 menit
 - D. 120 menit
 - E. 120 jam
- 9. Foton dengan panjang gelombang datang sebesar 0.2 Å mengalami kehilangan energi. Panjang gelombang foton setelah kehilangan 73% energi adalah
 - A. $9.9 \times 10^{-11} \text{ m}$
 - B. $7.4 \times 10^{-11} \text{ m}$
 - C. $6.5 \times 10^{-11} \text{ m}$
 - D. $3.4 \times 10^{-11} \text{ m}$
 - E. 2.0×10^{-11} m
- 10. Tabel berikut adalah data untuk Bintang GI 581 yang memiliki sistem keplanetan.

Data GI 581

Kelas spektrum	Magnitudo visual	Magnitudo mutlak bolometrik	Jarak ke Bumi
M3	10,55	9,58	6,21 pc

Beberapa planet di antaranya ditemukan berada pada zona yang dapat dihuni (habitable zone, HZ) dari bintang. Habitable zone adalah zona seputar bintang dengan tekanan atmosfer sedemikian rupa sehingga dapat ditemukan air berwujud cair di permukaan planet. Rumus empirik untuk batas dalam dan batas luar masing-masing adalah

$$HZ_{in} = 0.95 \sqrt{\frac{L_{\star}}{L_{\odot}}}$$
 au

$$\mathrm{HZ}_{\mathrm{out}} \ = \ 1.37 \sqrt{\frac{L_{\star}}{L_{\odot}}} \ \mathrm{au}$$

dengan L_\star dan L_\odot adalah luminositas bintang dan Matahari. Nilai batas dalam dan batas luar untuk GI 581 dalam satuan au masing-masing adalah

- A. 0.1 dan 0.14
- B. 0,044 dan 0,095
- C. 0,054 dan 0,078
- D. 0,09 dan 0,20
- E. 0,95 dan 1,15

- 11. Daya pisah (resolution) suatu teleskop dengan bukaan D dan panjang fokus f dapat ditingkatkan dengan cara
 - A. mengecilkan diameter teleskop
 - B. mengamati objek pada panjang gelombang yang lebih pendek
 - C. mengamati objek pada panjang gelombang yang lebih panjang
 - D. menambah panjang fokus
 - E. memperpendek panjang fokus

Untuk satu soal berikut ini (No. 12), jawablah

- A. jika 1, 2, dan 3 benar
- B. jika 1 dan 3 benar
- C. jika 2 dan 4 benar
- D. jika 4 saja benar
- E. jika semua benar
- 12. Pada bulan Februari tahun 2017, tim astronomi internasional menemukan tujuh eksoplanet yang mengelilingi sebuah bintang bernama TRAPPIST-1. Bintang bermassa $0,080~M_{\odot}$ ini memiliki jarak 39 tahun cahaya dari sistem Tata Surya. Tiga dari tujuh planetnya berada pada HZ (lihat soal 10) dan memiliki periode orbit berturut-turut 1,5,~2,5,~ dan 4~ hari. Asumsikan orbit planet-planet tersebut berbentuk lingkaran dengan Bintang TRAPPIST-1 berada di pusatnya. Manakah pernyataan yang benar?
 - 1. Jarak planet terdekat pertama ke Bintang TRAPPIST-1 adalah 0,026 au.
 - 2. Jarak planet terdekat kedua ke Bintang TRAPPIST-1 adalah 0,084 au.
 - 3. Sudut paralaks Bintang TRAPPIST-1 dari planetnya adalah 0.08 detik busur.
 - 4. Periode sinodis antara planet pertama dan ketiga adalah 2,4 hari.

Gunakan petunjuk ini untuk menjawab tiga soal berikut (No. 13-15):

- A. Pernyataan pertama dan kedua benar serta memiliki hubungan sebab-akibat.
- B. Pernyataan pertama dan kedua benar, tetapi tidak memiliki hubungan sebab-akibat.
- C. Pernyataan pertama benar, sedangkan pernyataan kedua salah.
- D. Pernyataan pertama salah, sedangkan pernyataan kedua benar.
- E. Kedua pernyataan salah.
- Posisi Matahari terbenam tampak lebih rendah daripada posisi sebenarnya.

SEBAB

Cahaya Matahari mengalami refraksi ketika melewati atmosfer Bumi.

14. Light exhibit polarization.

BECAUSE

Light waves oscillate in the direction of their wave propagation.

15. Warna galaksi spiral lebih biru daripada warna galaksi elips.

SEBAB

Adanya garis-garis emisi dalam spektrum galaksi spiral menandakan terjadinya pembentukan bintangbintang.

Soal Isian Singkat

- 16. Materi sebuah bintang bermassa $M=1{,}989\times10^{30}$ kg dan beradius $R=6{,}96\times10^8$ m dianggap memenuhi kondisi gas ideal dan sepenuhnya hanya mengandung hidrogen. Jumlah atom hidrogen di bintang tersebut adalah
- 17. Fluks sebuah bintang bermagnitudo m=0 adalah W/m^2 .
- 18. Dua lokasi di muka Bumi masing-masing berada pada 30° Lintang Selatan (LS) dan 45° Lintang Utara (LU). Kedua lokasi terpisah jarak sejauh 2126π km. Beda bujur (ΔB_j) kedua lokasi tersebut dalam satuan radian adalah
- 19. Saat di perigee (jarak 356800 km), piringan Bulan purnama diamati sebesar 34,2 menit busur. Pada fase Bulan mati/baru di apogee, piringan Bulan diukur sebesar 30,0 menit busur. Sinar Matahari dianggap mengenai Bumi dan Bulan secara sejajar. Jarak Bulan pada fase $\frac{1}{2}$ adalah km.
- 20. Garis spektral H_{α} ($\lambda_0=656,28$ nm) diemisikan dari sebuah galaksi yang mengalami pergeseran merah sebesar z=0,05. Panjang gelombang yang teramati dari Bumi dan kecepatan radial galaksi tersebut masing-masing adalah nm dan km/detik.

Soal Esai

21. Suatu kalender surya akan dihitung ketelitiannya terhadap tahun tropis (sebagai rujukan). Kalender surya tersebut mengikuti aturan kalender setiap 2820 tahun. Satu siklus 2820 tahun tersebut terdiri dari 21 kali subsiklus 128 tahun dan 1 kali subsiklus 132 tahun. Setiap subsiklus 128 tahun terdiri dari 1 kali subsubsiklus 29 tahun dan 3 kali subsubsiklus 33 tahun. Sedangkan setiap subsiklus 132 tahun terdiri dari 1 kali subsubsiklus 29 tahun, 2 kali subsubsiklus 33 tahun, dan 1 kali subsubsiklus 37 tahun. Angka tahun berapapapun akan masuk ke salah satu subsubsiklus 29 tahun, atau 33 tahun, atau 37 tahun sebagai tahun ke-1, ke-2, dan seterusnya hingga ujung subsubsiklus (29, 33, atau 37). Tahun ke-1 di setiap subsubsiklus ditetapkan sebagai tahun normal (yaitu sepanjang 365 hari), sedangkan tahun ke-t di setiap subsubsiklus ditetapkan sebagai tahun kabisat (yaitu sepanjang 366 hari) hanya jika dipenuhi syarat sederhana:

sisa pembagian t dibagi 4 adalah 1

- (a) Hitunglah jumlah tahun kabisat kalender tersebut selama 2820 tahun.
- (b) Hitunglah jumlah hari pada kalender tersebut selama 2820 tahun.
- (c) Hitung selisih dari 2820 tahun tropis dengan 2820 tahun kalender tersebut.
- (d) Berapa lama waktu tunggu agar selisih di soal (21c) menjadi satu hari?

Batuan granit di Bumi mempunyai kerapatan 3000 kg/m³. Air beku mempunyai kerapatan 900 kg/m³. Kerapatan Bulan adalah 3300 kg/m³. Diketahui informasi planet kerdil pada tabel berikut ini

Planet Kerdil	Diameter (Bulan)	Massa (Bulan)	
Ceres	27 %	1,30 %	
Pluto	66 %	17,80 %	
Haumea	36 %	5,50 %	
Makemake	46 %	5,40 %	
Eris	67 %	22,70 %	

Andaikan planet kerdil tersebut hanya mempunyai komposisi granit dan air beku, hitung komposisi perbandingan antara granit dan es untuk planet kerdil tersebut.

23. Suatu sistem eksoplanet memiliki dua planet (planet dalam dan planet luar) dengan orbit lingkaran yang sebidang. Pada saat τ, posisi salah satu planet adalah kuadratur menurut planet lainnya (seperti terlihat dalam gambar), sehingga kedua planet berada pada arah pandang yang sama dari Bumi dan terjadilah peristiwa planet luar terhalangi (okultasi) oleh planet dalam.

Bila rasio radius orbit planet dalam terhadap planet luar adalah 0,39685, hitunglah

- (a) sudut fase dan fase planet luar dilihat dari planet dalam, dan sebaliknya,
- (b) busur sapuan planet dalam dan planet luar (segera setelah τ) ketika okultasi yang sama (bukan pada kuadran lain) kembali terjadi.
- 24. Galaksi Bima Sakti memiliki tiga komponen populasi yaitu piringan, bulge, dan halo. Diketahui massa total komponen piringan, $M_{\rm piringan}=6\times10^{10}~M_{\odot}$, dan luminositas totalnya, $L_{\rm piringan}=1.8\times10^{10}~L_{\odot}$. Hubungan antara luminositas dan massa untuk bintang deret utama mengikuti relasi:

$$\frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{\alpha}$$

dengan nilai parameter $\alpha=4$. Hitunglah massa rata-rata bintang anggota populasi piringan di Bima Sakti.

25. Kecepatan sudut rotasi diferensial Matahari dalam satuan derajat per hari dapat dinyatakan dengan rumus:

$$\Omega = 14.3 - 1.9 \sin^2 \phi - 2.5 \sin^4 \phi$$

dengan ϕ adalah lintang heliografik. Dua kelompok bintik Matahari tersebut teramati berada bersamaan pada meridian tengah. Lintang heliografik kedua kelompok bintik Matahari masing-masing adalah $\phi_1=0^\circ$ dan $\phi_2=+25^\circ$. Keduanya bergerak sesuai dengan rumus kecepatan sudut di atas. Hitung berapa tahun lagikah kedua kelompok bintik Matahari tersebut bertemu kembali di meridian yang sama jika dilihat dari Bumi. Asumsikan gerak bintik Matahari tidak mengalami perubahan lintang heliografik.

- SOAL SELESAI -

Nama konstanta	Simbol	Harga	
Kecepatan cahaya	c	$2,99792458 \times 10^8 \text{ m/s}$	
Konstanta gravitasi	G	$6,\!673\ \times\ 10^{-11}\ \mathrm{m^3/kg/s^2}$	
Konstanta Planck	h	$6,6261~ imes~10^{-34}~{ m J~s}$	
Konstanta Boltzmann	k	$1,3807 \times 10^{-23} \text{ J/K}$	
Konstanta kerapatan radiasi	a	$7,5659 \times 10^{-16} \text{ J/m}^3/\text{K}^4$	
Konstanta Stefan-Boltzmann	σ	$5,6705~\times~10^{-8}~{ m W/m^2/K^4}$	
Muatan elektron	e	$1,6022 \times 10^{-19} \text{ C}$	
Massa elektron	m_{e}	$9{,}1094~\times~10^{-31}~{\rm kg}$	
Massa proton	m_{p}	$1,6726 \times 10^{-27} \text{ kg}$	
Massa neutron	m_{n}	$1,6749 \times 10^{-27} \text{ kg}$	
Massa atom $_1H^1$	m_{H}	$1,6735~\times~10^{-27}~{ m kg}$	
Massa atom ₂ He ⁴	mHe	$6,6465~\times~10^{-27}~{ m kg}$	
Massa inti ₂ He ⁴		$6,6430 \times 10^{-27} \text{ kg}$	
Konstanta gas	R	8,3145 J/K/mol	

Objek	Massa (kg)	Jejari ekuatorial (km)	\mathbf{P}_{rotasi}	P _{sideris} (hari)	Jarak rerata ke Matahari $(10^3 \ { m km})$
Merkurius	$3,30 \times 10^{23}$	2.440	58,646 hari	87,9522	57.910
Venus	$4,87 \times 10^{24}$	6.052	243,019 hari	244,7018	108.200
Bumi	$5,97 \times 10^{24}$	6.378	23 ^j 56 ^m 4 ^d ,1	365,2500	149.600
Mars	$6,42 \times 10^{23}$	3.397	24 ^j 37 ^m 22 ^d ,6	686,9257	227.940
Jupiter	$1,90 \times 10^{27}$	71.492	9j ₅₅ m ₃₀ d	4.330,5866	778.330
Saturnus	$5,69 \times 10^{26}$	60.268	$_{10}$ j $_{39}$ m $_{22}$ d	10.746,9334	1.429.400
Uranus	$8,66 \times 10^{25}$	25.559	$_{17}$ j $_{14}$ m $_{24}$ d	30.588,5918	2.870.990
Neptunus	$1,03 \times 10^{26}$	24.764	16 ^j 6 ^m 36 ^d	59.799,8258	4.504.300

Nama besaran	Notasi	Harga
Satuan astronomi	au	$1,49597870 \times 10^{11} \text{ m}$
Parsek	рс	$3{,}0857~\times~10^{16}~\text{m}$
Tahun cahaya	ly	$0,9461~\times~10^{16}~{\rm m}$
Tahun sideris		365,2564 hari
Tahun tropis		365,242199 hari
Tahun Gregorian		365,2425 hari
Tahun Julian		365,2500 hari
Periode sinodis Bulan (synodic month)		29,5306 hari
Periode sideris Bulan (sidereal month)		27,3217 hari
Hari Matahari rerata (mean solar day)		24 ^j 3 ^m 56 ^d ,56
Hari sideris rerata (mean sidereal day)		23j 56 ^m 4 ^d ,09
Massa Matahari	M_{\odot}	$1{,}989~\times~10^{30}~{\rm kg}$
Jejari Matahari	R_{\odot}	$6,96~\times~10^8~\mathrm{m}$
Temperatur efektif Matahari	$T_{{\sf eff},\odot}$	5.785 K
Luminositas Matahari	L_{\odot}	$3.9 \times 10^{26} \text{ W}$
Periode rotasi Matahari (di ekuator)		27 hari
Magnitudo semu visual Matahari	V	-26,78
Indeks warna Matahari	B-V	0,62
	U-B	0,10
Magnitudo mutlak visual Matahari	M_V	4,79
Magnitudo mutlak biru Matahari	M_B	5,48
Magnitudo mutlak bolometrik Matahari	M_{bol}	4,72
Massa Bulan	$M_{\mathbb{Q}}$	$7,348 \times 10^{22} \text{ kg}$
Jejari Bulan	$R_{\mathbb{Q}}$	1.738.000 m
Jarak rerata Bumi–Bulan	1	384.399.000 m
Konstanta Hubble	H_0	69,3 km/s/Mpc
1 jansky	1 Jy	$1 \times 10^{-26} \ \mathrm{Wm^{-2}Hz^{-1}}$