Presentation Title Presentation Subtitle

F. Author¹ S. Another²

¹Department of Computer Science University of Somewhere

²Department of Theoretical Philosophy University of Elsewhere

Date / Occasion

Outline

Outline

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- ① The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, ..., n\}$.
- 2 The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- 2 The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- **1** The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- 2 The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

Group Actions

Definition

A *(left)* group action of a group G on a set X is a map $\rho \colon G \times X \to X$ (written as $g \cdot a$, for all $g \in G$ and $a \in A$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1.1}$$

$$(gh) \cdot x = g \cdot (h \cdot x) \qquad \forall g, h \in G, x \in X$$
 (1.2)

e could likewise define the concept of a *right* group action, where the set elements would be multiplied by group elements on the right instead of on the left. Throughout we shall use the term *group action* to mean a *left* group action.

The Definition of a Representation

Definition

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V which preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (2.1)

$$g \cdot (kv) = k(g \cdot v)$$
 $\forall g \in G, v \in V, k \in F$ (2.2)

The Definition of a Representation

Definition (Alternative definition)

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism $\rho \colon G \to GL(V)$. If we fix a basis for V, we get a representation in the previous sense.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

Outline

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

