GERMANIUM DIODE

Germanium diode in all glass construction for use in a.m. detector circuits.

Type 2-OA79 consists of 2 diodes OA79 selected for operation in a ratio detector circuit.

MECHANICAL DATA

Dimensions in mm

The white band indicates the cathode side

RATINGS (Limiting values) 1)

Continuous reverse voltage	v_R	max.	30	ν
Repetitive peak reverse voltage	VRRM	max.	45	٧
Forward current (d.c.)	IF	max,	35	mΑ
Repetitive peak forward current	IFRM	max.	100	mΑ
Non repetitive peak forward current (t≤1 s)	IFSM	max.	200	mA
Operating ambient temperature	Tamb	-50 to	+60	°C

CHARACTERISTICS

Forward voltage		T _{amb} = 25°C	T _{amb} = 60 °C	_
I _F = 0.1 mA	$v_{\mathbf{F}}$	typ. 0.23 0.15 to 0.30	typ. 0.16 0.1 to 0.25	v v
IF * 10 mA	$v_{\mathbf{F}}$	typ. 1.5 0.8 to 2.2	typ. 1.4 0.7 to 2.1	V V
IF = 30 mA	$v_{\mathbf{F}}$	typ. 2.8 1.4 to 4.0	typ. 2.6 1.2 to 3.8	v v
Reverse current				
V _R = 0.1 V	$I_{\mathbf{R}}$	typ. 0.35 < 1.0	typ. 4.5 <	μΑ μΑ
V _R = 1.5 V	$1_{\mathbf{R}}$	typ. 0.8 0.1 to 2.8	typ. 6 0.8 to 25	μ A μ A
VR = 10 V	$I_{\mathbf{R}}$	typ. 4.5 0.4 to 18	typ. 16 2.5 to 60	μ Α μ Α
v _R = 30 v	$I_{\mathbb{R}}$	typ. 35 1.5 to 150	typ. 60 60 to 300	μ Α . μ Α
V _R = 45 V	$I_{\mathbf{R}}$	typ. 90 4 to 350	typ. 170 15 to 500	μA μA

¹⁾ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
7Z3 1247

APPLICATION INFORMATION

Measuring circuit at Tamb = 25 °C

$$V_{I(RMS)}$$
 = 3 V η typ. 85 %
f = 10.7 MHz R_{d} typ. 15 kΩ R_{d} 13.5 to 19 kΩ

Diode in an a.m. detector circuit at Tamb = 25 °C

$$V_{I(RMS)} = 0.1 \text{ V} \quad V_{O} \quad \text{typ. 55 mV}$$

 $f = 0.5 \text{ MHz } V_{O(rms)} \quad \text{typ. 4.5 mV}^{1}$
 $R \quad \text{typ. 40 kt.}^{2}$

Matched pair in a ratio detector circuit

$$L_p = 7.4 \mu H$$
 $Q_0 = 80 \text{ unloaded}$
 $R = 40 \text{ k}\Omega \text{ unloaded}$
 $Tap = 0.5$
 $L_s = 4.4 \mu H$
 $Q_0 = 150 \text{ unloaded}$
 $R = 45 \text{ k}\Omega \text{ unloaded}$
 $kQ = 0.83$)
 $f_0 = 10.7 \text{ MHz}$
 $\Delta f = 15 \text{ kHz}$
 $m = 0.3$

a.m. suppression factor at $V_C = 2$ to 20.V

$$f = f_0$$

$$f = f_0 \pm 25 \text{ kHz}$$

$$\alpha \geq 15$$

For optimum a.m. suppression D₁ must be that diode of the matched pair which has the better dynamic forward characteristic.

For new design the successor types AA119; 2-AA119 are recommended

 $[\]frac{1}{2}$) Modulation factor m = 0.3

²⁾ Modulation factor m = 0

³⁾ Measured in the circuit with $V_p = 350 \text{ mV}$