CSPB 3155 - Reckwerdt - Principles of Programming Languages

<u>Dashboard</u> / My courses / <u>2244:CSPB 3155</u> / <u>Week 7: References and Garbage Collection</u> / <u>Spot Exam 3</u>

Started on	Friday, 5 July 2024, 2:33 PM
State	Finished
Completed on	Friday, 5 July 2024, 2:46 PM
Time taken	13 mins 18 secs
Grade	7.75 out of 10.00 (78 %)
Question 1	
Correct	
Mark 2.00 out of 2.0	
What is the value	computed by the following Lettuce program:
	in tt x = 10 in x + 10 in let x = 20 in x + 10 in x
Just type the	number in the box below.
Answer: 10	✓
The correct ans	swer is: 10

Question 2

Correct

Mark 2.00 out of 2.00

Consider the following program in Lettuce:

The comments are written between (* and *) markers.

- (A) Which of the definitions does the x in line 3 refer to?
- Line 4
- O Line 2 ✓ Correct
- It is an undefined usage
- Line 1

Mark 2.00 out of 2.00

The correct answer is: Line 2

- (B) Which of the definitions does the x in line 4 refer to?
- Line 1 ✓ Correct
- Line 4
- Line 2
- It is an undefined usage

Mark 2.00 out of 2.00

The correct answer is: Line 1

Question $\bf 3$

Correct

Mark 3.00 out of 3.00

Consider the lettuce program below:
let y = 10 in (* Program Loc. 0 *)
let x = ((* Program Loc. 1 *)
let x = 10 in (* Program Loc. 2 *)
let y = 20 in (* Program Loc. 3 *)
x + y (* Program Loc. 4 *)
) in
x + y (* Program Loc. 5 *)
Select all the correct statements about how scoping and shadowing work for this particular program. Selecting wrong options or failing to select all options will attract a penalty.
Select one or more:
a. The definition of y at program location 3 shadows that in location 0. ✓
b. The program can be evaluated without an error and yields a number as the result. ✓
c. The definition of y at program location 0 shadows that in location 3.
d. The expression "x+y" at Loc. 5 refers to y defined at location 0 and x at location 1. ✓
e. The definition of x at location 2 shadows that at location 1.
f. The definition of x at location 1 shadows that at location 2.
Your answer is correct.
The correct answers are:
The definition of y at program location 3 shadows that in location 0.,
The program can be evaluated without an error and yields a number as the result., The expression "x+y" at Loc. 5 refers to y defined at location 0 and x at location 1.
The expression xry at 200. Shelels to y defined at location o and x at location 1.

Question 4

Partially correct

Mark 0.75 out of 3.00

Consider Let Bindings in lettuce. Consider the following modified operational semantic rule that modifies how shadowing for let bindings is handled:

$$id \notin \mathbf{domain}(\sigma), \ \mathbf{eval}(e_1, \sigma) = v_1, \ v_1 \neq \mathbf{error}, \ \mathbf{eval}(e_2, \sigma \circ \{id \mapsto v_1\}) = v_2$$

$$\mathbf{eval}(Let(id, e_1, e_2), \sigma) = v_2$$

The rule above says if "an identifier id does not belong to the environment σ , we evaluate e_1 and bind id to the resulting value when evaluating e_2 ".

$$id \in \mathbf{domain}(\sigma), \ \mathbf{eval}(e_2, \sigma) = v_2$$

 $\mathbf{eval}(Let(id, e_1, e_2), \sigma) = v_2$

The rule above says that if "an identifier id **does** already belong to the environment σ , we evaluate e_2 under the environment σ ".

What is the value of the following program under these semantics:

let x = 5 in

x + 20

The remaining semantic rules are recalled here from our notes:

$$\frac{}{eval(Const(v), \sigma) = v} (const-rule)$$

$$\frac{x \in \operatorname{domain}(\sigma)}{eval(\operatorname{Ident}(\mathbf{x}), \sigma) = \sigma(\mathbf{x})} (\operatorname{ident-ok-rule}) \quad \frac{x \notin \operatorname{domain}(\sigma)}{eval(\operatorname{Ident}(\mathbf{x}), \sigma) = \mathbf{error}} (\operatorname{ident-nok-rule})$$

Select one:

a. error

b. 30

o. **25**

d. false

e. true

Your answer is partially correct.

The correct answer is: 30

 \checkmark