Vaja 44 - SILA NA VODNIK V MAGNETNEM POLJU

Jure Kozamernik

17. april 2022

1 Uvod

Na vodnik, ki leži v homogenem magetnem polju pravokotno na smer silnic, deluje sila, ki je sorazmerna s tokom I skozi vodnik in z dolžino l vodnika v polju:

$$F = BIl. (1)$$

Sorazmernostni koeficient B je gostota magnetnega polja. Magnetni pretok ϕ_m okvir, ki je pravokoten na silnicah, je v homogenem polju enak produktu:

$$\phi_m = BS, \tag{2}$$

kjer je S ploščina okvirja. Enota B je $T(esla) = Vs/m^2$, enota ϕ_m pa Vs.

1.1 Potrebščine

- 1. Občutljiva tehtnica z magnetom,
- 2. stojalo s prečko,
- 3. usmernik 20 V, 4 A,
- 4. ampermeter.
- 5. reostat, 6. 4 žice.

1.2 Naloga

- 1. S tehtanjem pokaži, da je sila na vodnik sorazmerna s tokom.
- 2. Določi gostoto magnetnega polja in magnetni pretok med poloma magneta!

1.3 Vprašanja

- 1. Kako je sila na vodnik odvisna od kota, ki ga oklepata smeri polja in toka? Kakšna je smer sile?
- 2. Tehtnica silo preračuna v maso. Kaj bi taka tehtnica pokazala, če bi poskus izvajali npr. na Luni, kjer je g = 1,6 m/ s^2 ?

1.4 Meritve

i	I[mA]	m[g]	-I[mA]	-m[g]
0	1,350	0,99	0,00	-0, 15
1	1,276	0,92	0,043	-0, 18
2	1,129	0,79	0,113	-0,25
3	1,033	0,70	0,220	-0,34
4	0,900	0,58	0,320	-0,42
5	0,817	0,51	0,420	-0,51
6	0,715	0,42	0,510	-0,59
7	0,605	0,33	0,621	-0,68
8	0,497	0, 23	0,716	-0,76
9	0,395	0,15	0,814	-0,85
10	0,313	0,08	0,913	-0,93
11	0,208	0,00	1,058	-01,11
12	/	/	1,121	-1, 2
13	/	/	1,239	-1,32
14	/	/	1,367	-1,45

1.5 Obdelava meritev

Na grafu 1
a so predstavljene meritve iz tabele 1a, skupaj s premico, ki se najbolje prilega meritv
am in ima strmino $k_1 = 9.94 \cdot 10^4$ g/mA. Na grafu 1b pa so predstavljene meritve iz tabele 1b, premica, ki se najbolje prilega tem meritvam pa ima strmino $k_2 = 9.46 \cdot 10^4$ g/mA..

Odvisnost med tokom in maso ustreza tudi enačbi (1) iz česar sledi:

$$m = \frac{BI}{g}l, \qquad k = \frac{BI}{g}l \tag{3}$$

Gostoto magnetnega polja lahko torej izračunamo s pomočjo enačbe (4), pri čemer je $k=\frac{k_1k_2}{2}=9,04610^{4g/mA}.$

$$B = \frac{gk}{l} = (0,44 \pm 0.01)T\tag{4}$$

Magnetni pretok pa izračunamo po enačbi (2) pri čemer je S presek magneta.

$$\phi_m = BS = (8,87 \times 10^{-4} \pm 0.2 \times 10^{-4}) Vs \tag{5}$$

(a) tok v eno smer

(b) tok v drugo smer

Slika 1: grafa mase m v odvisnosti od toka I

2 Analiza rezultatov

S tehtanjem smo uspešno pokazali, da je sila na vodnik v magnetnem polju sorazmerna s tokom, pri čemer zamenjava smeri toka skozi vodnik spremeni smer sile, ki deluje na vodnik v magnetnem polju. Vektorsko povezavo med silo, tokom in gostoto magnetnega polja opisuje enačba (6).

$$F = BIl \tag{6}$$

Enačba (7) pa prikazuje identično odvisnost, le da vektorsko povezavo nadomesti ϕ , ki označuje kot med smerjo toka in smerjo magnetnega polja.

$$F = BIl\sin\phi \tag{7}$$

Če bi poskus izvajali na Luni, bi bili rezultati popolnoma enaki. Tehtnica bi še zmeraj prikazovala enako maso. Kljub temu da je gravitacijski pospešek na Luni manjši bi v enačbi (4) še zmeraj morali vzeti $g = 9.81 \text{ m/s}^2$, saj dejansko ne gre za silo teže ampak samo za faktor, ki ga tehtnica uporabi za preračun iz sile v maso.