

Computer Fundamentals

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 10

> Modern CPUs

Intel 4004

- > The 1st commercially available microprocessor
- Introduced in 1971
- > 4-bit CPU
- > 2250 transistors
- > 740 kHz max clock rate
- Packaged in 16-pin ceramic package
- > As powerful as ENIAC
 - □ Which had 18000 vacuum tubes and occupied a large room
- > Targeted use: Calculators
- > Cost: less than \$100

I

Intel 4004 (cont.)

- > Busicom, Japanese calculator manufacturer
 - □ Demanded from Intel to develop 16 separate IC's
 - ☐ For a line of new calculators
- > Chief designers
 - ☐ Federico Faggin
 - ☐ Ted Hoff
 - Masatoshi Shima
- > Intel known only as memory manufacturer at that time
 - Was quite small
 - ☐ Lacked resources to do all 16 chips
- > Ted Hoff came up with the idea
 - Do all 16 on a single chip
- > Later realized that 4004 could have other uses

Intel Pentium IV

- > Introduced in December 2001
- > Single core CPU
- > 55 million transistors
- ➤ 32-bit processor
- > 2 ALU's
- > 3.8 GHz max clock rate
- > For PC's and low-end workstations
- > Introductory cost: around \$600

Moore's Law

- > Gordon Moore, one of the founders of Intel
 - Predicted that
 - \circ The number of transistors on an IC \overline{OR} the capability of microprocessors
 - Will double every year
 - ☐ Later modified it to 18 months
- > Still holds true
- > In fact, time required for doubling is contracting
 - Closer to a year now

Moore's Law (cont.)

Word Length

- > 4004 dealt with data in chunks (words) of 4-bits at a time
- > Pentium IV deals with data in chunks of 32-bit length
- New processors deal with 64-bit chunks at a time

Clock Frequency

- > 4004 worked at a clock frequency of 740 kHz
- Pentium IV worked at 3.8 GHz
- Latest processors have clock frequencies in GHz
- > Higher clock frequency results in more power
 - ☐ If both processors have same design
 - □ Example: PowerPC & Pentium 4 microprocessors at same frequency
 - o Former performs better due to superior design

Enhancing Performance

- > Computing capability of microprocessor
- > Can be enhanced in different ways
 - By increasing clock frequency
 - □ By having a more effective caching algorithm and the right cache size
 - □ By adding more functional units (e.g. ALU's, FPU's etc.)
 - ☐ Improving architecture (registers, bus etc.)

Looking Inside the Processor

- > Architecture
 - Determines
 - Location of CPU parts
 - Word size
 - Number of registers
 - o Pipelines
 - ☐ Main difference between CPUs

Microcomputer Processors

> Intel

- ☐ Leading manufacturer of processors
- □ Intel 4004 was worlds first commercial microprocessor
- ☐ IBM PC in 80s powered by Intel 8088
- ☐ Well known Intel processors
 - o Centrino
 - o Itanium
 - o Pentium IV
 - Xeon
 - o Core i7

Microcomputer Processors (cont.)

- Advanced Micro Devices (AMD)
 - Main competitor to Intel
 - Originally produced budget products
 - ☐ Current products outperform Intel
 - ☐ Designed processors
 - Sempron
 - o Athlon FX 64
 - o Athlon XP

Microcomputer Processors (cont.)

- > Freescale
 - ☐ A subsidiary of Motorola
 - Apple computers primarily have Freescale
 - Currently focuses on Linux market
- > IBM
 - ☐ Historically manufactured mainframes
 - Series of high performance microprocessor called POWER
 - Performance Optimization With Enhanced RISC (POWER)
 - Named as POWER1, POWER2, up to recent POWER9

Comparing Processors

- > Frequency of processor
- > Size of cache
- Word size
- > Speed of system bus

Advanced Processor Topics

- > RISC processors
 - □ Reduced Instruction Set Computing
 - ☐ Smaller instruction sets
 - May process data faster
 - Processor capable of executing those instructions using fewer cycles
 - ☐ IBM Power, iPhone, iPad and several Android based-systems
- > Parallel Processing
 - Multiple processors in a system
 - Computational task is broken down in several subtasks
 - Processed independently
 - Symmetric Multiple Processing (SMP)
 - o Processors share common memory
 - Number of processors preferably a power of 2 (divide and crush)
 - Massively Parallel Processing
 - Thousands of processors
 - Mainframes and super computers

Extending Processors Power

- > Standard computer ports
 - Keyboard and mouse ports
 - ☐ USB ports
 - □ Parallel
 - □ Network
 - Modem
 - Audio
 - Serial
 - ☐ Video

Extending Processors Power (cont.)

- > Serial and parallel ports
 - ☐ Connect to printers or modems
 - ☐ Parallel ports move bits simultaneously
 - Made of 8 32 wires
 - o Internal busses are parallel
 - Serial ports move one bit
 - Lower data flow than parallel
 - Requires wires for control and ground purposes
 - Universal Asynchronous Receiver/Transmitter (UART)
 - Converts from parallel to serial and vice versa
 - Why USB based on serial architecture?
 - o Serial architecture provides higher clock rate than parallel
 - o Parallel interface support low frequencies
 - Otherwise bits arrive with lag, causing errors

Serial Communications

Parallel Communications

Extending Processors Power (cont.)

- > SCSI
 - □ Small Computer System Interface
 - Set of standards
 - Physical connection between computers and peripheral devices
 - For transferring data
 - ☐ Supports dozens of devices
 - ☐ External devices daisy chain
 - ☐ Fast hard drives and CD-ROMs
- > USB
 - Universal Serial Bus
 - Most popular external bus
 - ☐ Supports up to 127 devices
 - ☐ Hot swappable
- > FireWire
 - ☐ IEEE 1394
 - ☐ Cameras and video equipment
 - ☐ Hot swappable
 - ☐ Port is very expensive

Specialized Expansion Ports

- > Expansion slots and boards
 - ☐ Allows users to configure machine
 - ☐ Slots allow addition of new devices
 - Devices are stored on cards
 - Computer must be off before inserting
- > PC Cards
 - Expansion bus for laptops
 - □ Standardized by PCMCIA
 - o Personal Computer Memory Card International Association
 - ☐ Hot swappable
 - □ Small card size
 - ☐ Three types
 - I for memory
 - II for network adapters
 - o III for hard drives
- Plug and play
 - New hardware detected automatically
 - □ Prompts to install drivers
 - Non-technical users can install devices

Microcontrollers

- > A type of microprocessor systems
- > Not very powerful, not expensive
- > Found embedded in
 - Video games
 - VCRs
 - Microwave ovens
 - Printers
 - ☐ Autos, etc.
- Complete CPU on a chip
- > Direct input/output capability and memory
- > Specialized application-specific components
- > More than 90% of the microprocessors are microcontrollers
 - Manufactured for embedded computing applications
 - ☐ In 2000, 365 million microprocessors and 6.4 billion micro-controllers manufactured

