MarineSDMs

Marine Species Distribution Models

Benjamin D. Best

2023-12-18

Table of contents

1	Intro	oduction	3
	1.1	Background	3
	1.2	Goals	3
	1.3	Motivations	1
	1.4	Process	3
	1.5	Contribute	3
	1.6	Features	3
ı	Pro	epare 8	3
2	Prep	pare 9)
3	Prep	pare 10)
	3.1	Environmental Predictors	l
		3.1.1 Physiographic	l
		3.1.2 Time Varying	L
		3.1.3 Depth & Time Varying	L
4	Осс	urrences 12	2
	4.1	Fetch OBIS	2
	4.2	Filter occurrences	2
5	Pse	udo-absences 14	1
	5.1	All background	1
	5.2	Mask by FAO areas	1
	5.3	Use occurrences from same Family, different species	1
6	Envi	ironment 15	
		6.0.1 Physiographic	
		6.0.2 Time Varying	
		6.0.3 Depth & Time Varying	7

П	Model	18
7	Model	19
8	Split	20
9	Fit	21
10	Calibrate	22
11	Predict	23
12	Evaluate 12.1 More Resources	24 24
Ш	Combine	26
13	Combine	27
14	Ensemble	28
15	Mosaic	29
16	Таха	30
17	Indicators 17.1 Diversity	31 31 32 32 32 32 32 32
IV	Share	33
18	Share	34
19	Metadata	35
20	Portal	36

References	37
Appendices	40
Glossary	40
V Explorations	41
AquaMaps Downscaled	42
AquaMaps Envelope	43
SDM using predicts in R	44
OBIS Top Species by Class	45
Software	46
R	. 46

1 Introduction

1.1 Background

The best available global distributions are presently AquaMaps (Kaschner et al. 2006; Ready et al. 2010) with supplementation by IUCN RedList range maps¹. These have been used to calculate the biodiversity within national waters (Halpern et al. 2012) as well as beyond in the high seas (Visalli et al. 2020).

1.2 Goals

This book aims to capture the overview and details of modeling species distributions in the marine environment for the purposes of advancing the status quo of global and U.S. national species distributions along the following dimensions:

1. Space

The current AquaMaps distributions are $1/2^{\circ}$ (~55 km at equator), whereas the best available global bathymetry is $1/240^{\circ}$ (< 0.5 km).

2. Time

The current AquaMaps distributions are based on static climatic averages over all seasons, which does not capture temporal dynamics: seasonally within a year, nor long-term climate change trends. This will necessitate sampling the environment contemporaneously with species observations before fitting the model and predicting to different environmental snapshots.

3. Environment

Other environmental variables besides the initial physiographic (depth) and oceanographic (temperature, chlorophyll, primary productivity and ice) may elicit an improved statistical fit, related to species' environmental niche. Some candidates include: temperature fronts, eddy kinetic energy, distance from shore, distance from shelf.

4. Biology

Where sufficient observations exist, additional models should be developed highlighting differences between:

¹IUCN RedList range maps: https://www.iucnredlist.org/resources/spatial-data-download

- Life stage, e.g. larval vs adult.
- Gender where varies, such as male sperm whales being more cosmopolitan.
- Subpopulations for understanding metapopulation dynamics
- Behavior, such as migrating, feeding or breeding.

By definition MBONMarine Biodiversity Observation Network; see MarineBON.org is a network, so this is inclusive of and meant for all participants.

1.3 Motivations

• AquaMaps.org

AquaMaps (Kaschner et al. 2006; Ready et al. 2010) represents a massive amount of work to gather parameters for >33.5K marine species, including areas to mask out.

• OBIS.org

The Ocean Biogeographic Information System (Klein et al. 2019; Grassle 2000) is the central portal for continuously added observations with extra flags for quality control, all of which makes marine SDMs possible.

- Modeling methods have dramatically improved over time and are ripe for fresh application. The R package dismo originally came came out with an SDM vignette as a practical supplement to their excellent review of SDMs (Elith and Leathwick 2009) and using the Maxent algorithm (Elith et al. 2011). The raster package furthered that (raster sdm) and now there's terra sdm. Alongside these developments has been a boon of cloud-computing, particularly Google Earth Engine (Gorelick et al. 2017; Campos et al. 2023), allowing for dense global raster processing.
- The world is quickly moving towards a future trying to conserve 30% of the oceans by 2030, so called "30 by 30". In the U.S., this is America the Beautiful initiative (Carroll, Noss, and Stein 2022) for which MBONMarine Biodiversity Observation Network; see MarineBON.org is well poised to inform (Fautin et al. 2010; Muller-Karger et al. 2018). We need biodiversity indicators to track progress. This push for conservation is driven by increasing impacts of climate change, as evidenced by marine heatwaves and shifts in population distributions.

Figure 1.1: Diagram of SDM data preparation and model fitting.

1.4 Process

1.5 Contribute

We very much welcome your feedback, contributions and collaboration. As soon as you contribute, we will add you to to the authors list. Here are a few ways to contribute from least to most involved:

1. Email Ben (ben@ecoquants.com) with any suggestions, including suggested revisions of this online book.

Note

Note that you can download this entire book as:

- Adobe Acrobat pdf to add annotations; or
- Microsoft Word docx to edit with Track Changes on.

These are available in the upper left navigation menu by clicking the download icon .

- 2. Submit a New Issue on Github.
- 3. Click on "Edit this Page" in the upper right. If you have a Github account, then you can fork this repository from owner "marinebon" to your username, edit the page(s) and submit a pull request. See Hello World GitHub Docs.
- 4. If you are a regular contributor, you can be added to the collaborators of this repository to push changes directly (without needing a pull request).

1.6 Features

This Quarto book has a few cool features:

- Multiple formats
 - From the singe set of source Quarto documents (*.qmd), several output formats are rendered: html, pdf, docx. This is particularly helpful when suggesting changes. It also lends itself well to being carved into manuscripts.
- Self-rendering Github hosts the web pages (*.html), which get rendered from the source code (*.qmd) using a Github Action. So edits can be made simply through the web interface and

all outputs get updated (html, pdf, docx). It also ensures the reproducibility of the document with a common setup environment.

- Mermaid diagrams e.g., Figure 1.1, Figure 3.1, Figure 7.1
- Quarto document listings
- References
- Glossary
- Search

Part I Prepare

2 Prepare

Prepare observations and environmental data for modeling

3 Prepare

Figure 3.1: Diagram of SDM data preparation for model fitting.

• obs

observations: occurrences from OBIS; masked by FAO regions defined by AquaMaps (Skyttner 2020)

- presence
 - OBIS: species occurrence
- absence
 - OBIS not-species, but same family
- env
 - environment
- tbl

table of observations (presence and absence) with environmental values

3.1 Environmental Predictors

3.1.1 Physiographic

- depth Bathymetric Depth
- d2coast Distance to Coast
- d2shelf Distance to Shelf

3.1.2 Time Varying

• vgpm Vertically integrated primary Productivity model

3.1.3 Depth & Time Varying

- temp Temperature, either sea-surface temperature (SST) or some modeled product from Hy-COM, ROMS or Copernicus
- salin Salinity

4 Occurrences

Fetch presence observations and filter for quality control

To describe:

- robis
- Filter based on quality flags
- Remove outliers
 - eks

Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations

4.1 Fetch OBIS

4.2 Filter occurrences

Figure 4.1: Source: Kernel density estimates for tidy and geospatial data in the eks package

5 Pseudo-absences

Generate pseudo-absence or background environmental values to compare with occurrence environment

Describe various strategies for generating pseudo-absences.

- Pseudo-absences biomod2
 - (Barbet-Massin et al. 2012)

5.1 All background

A common Maxent strategy is to feed all background points into Maxent, and then to use the resulting distribution as a null model. This is the default strategy in Maxent (Phillips et al. 2017; Phillips, Anderson, and Schapire 2006; Phillips and Dudík 2008).

5.2 Mask by FAO areas

The FAO areas applicable to species are included in the aquamapsdata, presumably from evaluating OBIS observations and the literature.

5.3 Use occurrences from same Family, different species

By using the same family, we can be sure that the pseudo-absences are ecologically similar to the species of interest.

6 Environment

Extract environmental predictors (static and/or dynamic) from various sources for observations (presence and pseudo-absence)

Environmental data are used to fit the model and predict distribution onto the seascape, e.g. Table 6.1.

```
librarian::shelf(
   here, knitr, readr)
library(here)
library(knitr)
library(readr)

d <- read_csv(
   here("data/Roberts-2016_env-predictors.csv"),
   show_col_types = F)

options(knitr.kable.NA = '')
kable(d, format="pipe")</pre>
```

Table 6.1: Example of environmental predictors from Roberts et al. (2016).

$\overline{ ext{Type}}$	Tim	ne				
/Covariates	Resolution	geDescription				
Physiographic						
Depth,	30	Seafloor depth and slope, derived from SRTM30-PLUS global				
Slope	arc	bathymetry20				
	\sec					
DistToShore,	30	Distance to the closest shoreline, excluding Bermuda and Sable				
DistTo125m,	arc	Island, and various ecologically-relevant isobaths20				
DistTo300m,	sec					
DistTo1500m						

$\overline{ ext{Type}}$	Time		
/Covariates	ResolutingeDescription		
DistToCanyon	1,30 Distance to the closest submarine canyon, and to the closest		
DistTo-	arc canyon or seamount21		
Canyon	sec		
OrSeamount			
SST &			
Winds			
SST,	0.2° , 1991-Foundation sea surface temperature (SST), from GHRSST Level 4		
DistToFront	daily 2014 CMC SST22, and distance to the closest SST front identified with the Canny edge detection algorithm23		
WindSpeed	$0.25^\circ, 199130day$ running mean of NOAA NCDC 1/4° Blended Sea Winds 24 daily 2014		
Currents			
TKE, EKE	0.25°, 1993-Total kinetic energy (TKE) and eddy kinetic energy (EKE), from		
	daily 2013 Aviso 1/4° DT-MADT geostrophic currents		
DistToEddy,	0.25°, 1993-Distance to the ring of the closest geostrophic eddy having any		
Dist-	weekly2013 (DistToEddy), anticyclonic (DistToAEddy), or cyclonic		
ToAEddy,	(DistToCEddy) polarity, from Aviso 1/4° DT-MADT using a		
DistTo-	revision of the Chelton et al. algorithm25; we tested eddies at least		
CEddy	9, 4, and 0 weeks old		
Biological			
Chl	9 1997-GSM merged SeaWiFS/Aqua/MERIS/VIIRS chlorophyll (Chl) a		
	km, 2014 concentration 26, smoothed with a 3D Gaussian smoother to reduce		
	daily data loss to $< 10\%$		
VGPM,	9 1997-Net primary production (mg C m-2 day-1) derived from SeaWiFS		
CumVGPM45	,km, 2014 and Aqua using the Vertically Generalized Production Model		
CumVGPM90	8 (VPGM)27; we tested the original 8 day estimates as well as 45		
	days and 90 day running accumulations		
PkPP,	$0.25^{\circ}, 1997\text{-}Zooplankton production (PkPP; g m-2 day-1) and biomass (PkPB;$		
PkPB	weekly 2013 g m-2) from the SEAPODYM ocean model 28 $$		
EpiMnkPP, EpiMnkPB	$0.25^\circ, 1997\text{-Epipelagic}$ micronekton production (EpiMnkPP; g m-2 day-1) and weekly2013 biomass (EpiMnkPB; g m-2) from the SEAPODYM model(28)		

6.0.1 Physiographic

- depth Bathymetric Depth
- d2coast Distance to Coast

• d2shelf Distance to Shelf

6.0.2 Time Varying

• vgpm Vertically integrated primary Productivity model

6.0.3 Depth & Time Varying

• temp Temperature, either sea-surface temperature (SST) or some modeled product from Hy-COM, ROMS or Copernicus

• salin Salinity

Part II

Model

7 Model

Model the distribution of a species

Figure 7.1: Diagram of SDM Modeling processes.

8 Split

Split data into training (to fit) and test (to evaluate prediction)

Data is often split so that $\sim 20\%$ of the observations (presence and absence) are set aside from the model fitting to be used for model evaluation.

The k-fold function is often used to split the data into k groups, and then the model is fit k times, each time using a different group as the test data and the remaining groups as the training data.

9 Fit

Fit environmental relationship distinguishing presence from absence of species

Model fitting in theory is quite complex, but quite simple in practice, with feeding the prepared data into the modeling function.

However there are MANY modeling techniques from which to choose. For instance check out 238 entries in 6 Available Models | The caret Package.

10 Calibrate

Calibrate model fit, i.e., model selection

The process of refining the model to only the most relevant environmental predictor terms is commonly called "Model Selection." One of the most cited scientific paper of all time (Akaike 1974) is based on taking a most parsimonious approach to this process – the so called Akaike Information Criteria (AIC).

It is important to avoid using environmental predictors that are correlated with each other, since the effect of a predictor on the response could be the ecologically inverse, the result of explaining variance on the residuals of the other correlated predictor.

11 Predict

Predict distribution of the species with environmental relationship from fitted model

The prediction step applies the environmental relationships from the fitted model to a new set of data, typically the seascape of interest, and perhaps with some sort of temporal snapshot (e.g., climatic annual or monthly average).

12 Evaluate

Evaluate performance of the predicted model with the test data

Model evaluation uses the set aside test data from the earlier splitting to evaluate how well the model predicts the response of presence or absence. Since the test response data is binary [0,1] and the prediction from the model is continuous [0-1], a threshold needs to be applied to assign to convert the continuous response to binary. This is often performed through a Receiver Operator Characteristic (**ROC**) curve (Figure 12.1), which evaluates at each threshold the **confusion matrix** (Table 12.1).

Table 12.1: Confusion matrix to understand predicted versus observed.

		Predicted	
		0 (absence)	1 (presence)
Observed	0 (absence)	True absence	False presence
	1 (presence)	False absence	True presence

From the ROC curve, the area under the curve (**AUC**) is calculated, which is a measure of the model's ability to distinguish between presence and absence. AUC values range from 0 to 1, with 0.5 being no better than random, and 1 being perfect.

12.1 More Resources

• Classification: ROC Curve and AUC | Machine Learning | Google for Developers

Figure 12.1: ROC curve generated by showing rates of false positive vs false negative as function of changing the threshold value (rainbow colors). Source: ROCR: visualizing classifier performance in ${\bf R}$

Part III

Combine

13 Combine

Combine SDMs from the same or multiple species

We look at combining SDMs to calculate biodiversity based on addressing questions of interest and relevance.

14 Ensemble

• biomod2

Species distribution modeling, calibration and evaluation, ensemble modeling

15 Mosaic

Figure 15.1: Hierarchy of preferred model outputs based on response type and age.

This is illustrated well by Figure 15.1.

16 Taxa

Group SDMs by taxanomy

Taxonomic groups (Tittensor et al. 2010) in the high seas (Visalli et al. 2020) were packaged with simple query statements in the draft R package gmbi (global marine biodiversity indicators).

17 Indicators

Calculate indicators of ecological or management interest beyond taxonomic groupings

17.1 Diversity

Here are the classic diversity indices from the R package vegan:

$$\begin{split} H &= -\sum_{i=1}^S p_i \log_b p_i \quad \text{Shannon-Weaver} \\ D_1 &= 1 - \sum_{i=1}^S p_i^2 \qquad \qquad \text{Simpson} \\ D_2 &= \frac{1}{\sum_{i=1}^S p_i^2} \qquad \qquad \text{inverse Simpson} \end{split}$$

where p_i is the proportion of species i, and S is the number of species so that $\sum_{i=1}^{S} p_i = 1$, and b is the base of the logarithm.

17.2 Endemism

Endemism could be measured as a function of the presence or average of the species range, given by either a global SDM converted to a binary range or using the existing IUCN range maps.

17.3 Extinction Risk

This is provided by IUCN RedList, as well as sometimes at a national level, such as Nature-Serve's Conservation Status Ranks for the U.S.

17.4 Functional Importance

17.5 Habitat Forming

Habitat forming species, such as coral, mangrove, seagrasses and kelp are especially important for biodiversity and ecosystem services.

17.6 Phylogenetic Uniqueness

17.7 Richness

17.8 Sensitivity

Sensitivity to specific human activities, such as shipping or fishing. Some activities may have different stages of development, such as construction versus operation of offshore wind energy.

17.9 Trophic Index

Part IV

Share

18 Share

Metadata standards and portals to share SDMs

19 Metadata

Metadata standards for reproducible and stackable SDMs

What standards (Araújo et al. 2019; Kass et al. 2023; Zurell et al. 2020) are required for models to be hosted?

- input
 - input observations
 - environmental predictors and range of values in original observations
 - model type and object
- outputs
 - model object
 - mean prediction
 - measure(s) of uncertainty
 standard error, standard deviation (sd), confidence intervals (e.g., 5% and 95%),
 coefficient of variation (cv)...

20 Portal

Portal to host and combine for user-specific needs

Can we supplement an existing portal or create a new one to host different types of model outputs and combine them?

What are publishing workflows for existing portals?

- Existing portals used to share SDMs
 - AquaMaps Standardized distribution maps for over 33,500 species of fishes, marine mammals and invertebrates
 - DisMAP
 Distribution Mapping and Analysis Portal
 - OBIS-SEAMAP Model Repository
 World Data Center for Marine Mammal, Seabird, Sea Turtle, Shark & Ray Distributions
 - NCEI

National Centers for Environmental Information (NOAA)

- DataONE
 - Data Observation Network for Earth
- ArcGIS Online

Esri's commercial data sharing platform

• Candidate portal

MarineSpeciesMaps.org

BDB registered the domain. Similar to:

- MarineRegions.org
 spatial authority
- MarineSpecies.org
 taxonomic authority

References

- Akaike, H. 1974. "A New Look at the Statistical Model Identification." *IEEE Transactions on Automatic Control* 19 (6): 716723.
- Araújo, Miguel B., Robert P. Anderson, A. Márcia Barbosa, Colin M. Beale, Carsten F. Dormann, Regan Early, Raquel A. Garcia, et al. 2019. "Standards for Distribution Models in Biodiversity Assessments." *Science Advances* 5 (1): eaat4858. https://doi.org/10.1126/sciadv.aat4858.
- Barbet-Massin, Morgane, Frédéric Jiguet, Cécile Hélène Albert, and Wilfried Thuiller. 2012. "Selecting Pseudo-Absences for Species Distribution Models: How, Where and How Many?" *Methods in Ecology and Evolution* 3 (2): 327–38. https://doi.org/10.1111/j.2041-210X. 2011.00172.x.
- Campos, João C., Nuno Garcia, João Alírio, Salvador Arenas-Castro, Ana C. Teodoro, and Neftalí Sillero. 2023. "Ecological Niche Models Using MaxEnt in Google Earth Engine: Evaluation, Guidelines and Recommendations." *Ecological Informatics* 76 (September): 102147. https://doi.org/10.1016/j.ecoinf.2023.102147.
- Carroll, C., R. F. Noss, and Bruce A. Stein. 2022. "US Conservation Atlas Needs Biodiversity Data." Science 376 (6589): 144–45. https://doi.org/10.1126/science.abo0526.
- Elith, Jane, and John R. Leathwick. 2009. "Species Distribution Models: Ecological Explanation and Prediction Across Space and Time." *Annual Review of Ecology, Evolution, and Systematics* 40 (1): 677–97. https://doi.org/10.1146/annurev.ecolsys.110308.120159.
- Elith, Jane, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee, and Colin J. Yates. 2011. "A Statistical Explanation of MaxEnt for Ecologists." *Diversity and Distributions* 17 (1): 43–57. http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x.
- Fautin, Daphne, Penelope Dalton, Lewis S. Incze, Jo-Ann C. Leong, Clarence Pautzke, Andrew Rosenberg, Paul Sandifer, et al. 2010. "An Overview of Marine Biodiversity in United States Waters." *PLoS ONE* 5 (8): e11914. https://doi.org/10.1371/journal.pone.0011914.
- Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. "Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone." *Remote Sensing of Environment*, Big remotely sensed data: Tools, applications and experiences, 202 (December): 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
- Grassle, J. Frederick. 2000. "The Ocean Biogeographic Information System (OBIS): An on-Line, Worldwide Atlas for Accessing, Modeling and Mapping Marine Biological Data in a Multidimensional Geographic Context." Oceanography 13 (3): 5–7. https://www.jstor.org/stable/43924357.
- Halpern, Benjamin S., Catherine Longo, Darren Hardy, Karen L. McLeod, Jameal F. Samhouri,

- Steven K. Katona, Kristin Kleisner, et al. 2012. "An Index to Assess the Health and Benefits of the Global Ocean." *Nature*. https://doi.org/10.1038/nature11397.
- Kaschner, K., R. Watson, A. W. Trites, and D. Pauly. 2006. "Mapping World-Wide Distributions of Marine Mammal Species Using a Relative Environmental Suitability (RES) Model." Marine Ecology Progress Series 316 (July): 285–310. https://doi.org/10.3354/meps316285.
- Kass, Jamie M., Gonzalo E. Pinilla-Buitrago, Andrea Paz, Bethany A. Johnson, Valentina Grisales-Betancur, Sarah I. Meenan, Dean Attali, et al. 2023. "Wallace 2: A Shiny App for Modeling Species Niches and Distributions Redesigned to Facilitate Expansion via Module Contributions." *Ecography* 2023 (3): e06547. https://doi.org/10.1111/ecog.06547.
- Klein, Eduardo, Ward Appeltans, Pieter Provoost, Hanieh Saeedi, Abigail Benson, Lenore Bajona, Ana Carolina Peralta, and R. Sky Bristol. 2019. "OBIS Infrastructure, Lessons Learned, and Vision for the Future." Frontiers in Marine Science 6. https://www.frontiersin.org/articles/10.3389/fmars.2019.00588.
- Muller-Karger, Frank E., Patricia Miloslavich, Nicholas J. Bax, Samantha Simmons, Mark J. Costello, Isabel Sousa Pinto, Gabrielle Canonico, et al. 2018. "Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks." Frontiers in Marine Science 5. https://doi.org/10.3389/fmars.2018.00211.
- Phillips, Steven J., Robert P. Anderson, Miroslav Dudík, Robert E. Schapire, and Mary E. Blair. 2017. "Opening the Black Box: An Open-Source Release of Maxent." *Ecography* 40 (7): 887–93. https://doi.org/10.1111/ecog.03049.
- Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. "Maximum Entropy Modeling of Species Geographic Distributions." *Ecological Modelling* 190 (3): 231–59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
- Phillips, Steven J., and Miroslav Dudík. 2008. "Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation." *Ecography* 31 (2): 161–75. https://doi.org/10.1111/j.0906-7590.2008.5203.x.
- Ready, Jonathan, Kristin Kaschner, Andy B. South, Paul D. Eastwood, Tony Rees, Josephine Rius, Eli Agbayani, Sven Kullander, and Rainer Froese. 2010. "Predicting the Distributions of Marine Organisms at the Global Scale." *Ecological Modelling* 221 (3): 467–78. https://doi.org/10.1016/j.ecolmodel.2009.10.025.
- Roberts, Jason J., Benjamin D. Best, Laura Mannocci, Ei Fujioka, Patrick N. Halpin, Debra L. Palka, Lance P. Garrison, et al. 2016. "Habitat-Based Cetacean Density Models for the u.s. Atlantic and Gulf of Mexico." *Scientific Reports* 6 (March): 22615. https://doi.org/10.1038/srep22615.
- Skyttner, Markus. 2020. "Aquamapsdata: Curated Data from AquaMaps.org." https://github.com/raquamaps/aquamapsdata.
- Tittensor, Derek P., Camilo Mora, Walter Jetz, Heike K. Lotze, Daniel Ricard, Edward Vanden Berghe, and Boris Worm. 2010. "Global Patterns and Predictors of Marine Biodiversity Across Taxa." *Nature* 466 (7310): 1098–1101. https://doi.org/10.1038/nature09329.
- Visalli, Morgan E., Benjamin D. Best, Reniel B. Cabral, William W. L. Cheung, Nichola A. Clark, Cristina Garilao, Kristin Kaschner, et al. 2020. "Data-Driven Approach for

Highlighting Priority Areas for Protection in Marine Areas Beyond National Jurisdiction." *Marine Policy*, March, 103927. https://doi.org/10.1016/j.marpol.2020.103927.

Zurell, Damaris, Janet Franklin, Christian König, Phil J. Bouchet, Carsten F. Dormann, Jane Elith, Guillermo Fandos, et al. 2020. "A Standard Protocol for Reporting Species Distribution Models." *Ecography* 43 (9): 1261–77. https://doi.org/10.1111/ecog.04960.

Glossary

```
glossary::glossary_table(as_kable=F) |>
  knitr::kable("pipe", escape = F, row.names = F)
```

term	definition
MBON	Marine Biodiversity Observation Network; see MarineBON.org

Part V Explorations

AquaMaps Downscaled

Downscale AquaMaps from $1/2^{\circ}$ to GEBCO $1/240^{\circ}$ using Google Earth Engine and Shiny.

- 😯 code

AquaMaps Envelope

Extract and plot AquaMaps environmental envelope, ramp rasters, using R.

- 🜎 code

blue whale environmental envelope

${\sf SDM}$ using predicts in ${\sf R}$

Predict species distribution of N Atlantic right whale using OBIS occurrences and predicts package in R.

- 🜎 code

OBIS Top Species by Class

Extract the species with the most numerous observations by unique Class from the OBIS parquet archive in R.

- **(b)** website
- 🜎 code

88 (Chordata Chordata Chordata	Aves Teleostei	Larus fuscus Clupea pallasii	137142 151159	1758-07-02	2021-12-31	2
			Clupea pallasii	151159			
05	Chordata			101100	1867-07-21	2022-09-06	1
85 C		Mammalia	Mirounga leonina	231413	1758-07-02	2019-12-02	1
19 A	Arthropoda	Malacostraca	Pandalus jordani	515469	1937-10-28	2022-09-13	
160 N	Mollusca	Cephalopoda	Loligo reynaudii	220316	1960-04-16	2006-05-11	
81 (Chordata	Elasmobranchii	Carcharhinus melanopterus	105795	1824-07-01	2021-09-28	
15 A	Arthropoda	Copepoda	Calanus finmarchicus	104464	1872-09-14	2020-12-14	
90 (Chordata		Chelonia mydas	137206	1758-07-02	2023-06-14	
169 N	Myzozoa	Dinophyceae	Tripos fusus	840626	1834-07- 02	2022-09-08	
187 (Ochrophyta	Phaeophyceae	Macrocystis pyrifera	232231	1885-12-01	2020-10-16	

Software

R

Most packages have not yet migrated from using the deprecated raster R package to the new terra package, except for biomod2 (ref?).

• biomod2
Species distribution modeling, calibration and evaluation, ensemble modeling

- eks
 Tidy and Geospatial Kernel Smoothing for spatially filtering outlier observations
- $\begin{array}{c} \bullet \ \ \mathbf{predicts} \\ New \ R \ library \ using \ terra \ for \ predicting \ from \ fitted \ model \end{array}$

Python

• Xarray

Xarray makes working with labelled multi-dimensional arrays in Python simple, efficient, and fun!

Figure 1: Source: Kernel density estimates for tidy and geospatial data in the eks package

Google Earth Engine

• XEE

XEE is a new Python package for Earth Engine that provides a set of functions to facilitate the use of Earth Engine API. It is designed to be used in Jupyter notebooks and Google Colab. Documentation