中国科学技术大学

2023 ~ 2024 学年第 1 学期期末考试试卷

■A卷

□B卷

课程名称 _	数学分析B1	课程编号	MATH1006			
考试时间 _	2024年1月14日	考试形式	闭卷			
姓名	姓名 学号		学院			

题号	_	=	Ξ	Д	£	六	七	总分
得分								

一、计算下列各题 (每小题 6 分, 共 36 分)(1) 求不定积分∫|x| dx.

(2) 求不定积分 $\int \frac{x+1}{x^2(x-1)} \, \mathrm{d}x.$

(3) 求定积分
$$\int_{-1}^{1} \frac{x^2 + x^3}{1 + \sqrt{1 - x^2}} \, \mathrm{d}x.$$

(4) 求极限
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{\pi}{4n} sec^2\left(\frac{k\pi}{4n}\right)$$
.

(5)
$$\int_0^{+\infty} x^3 e^{-x^2} dx$$
.

(6) 求 $(1+x^2)$ ln $(1+x^2)$ 的Maclaurin级数,并求其收敛半径.

四、
$$(本題 10 分) 求幂级数 \sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$
的收敛域与和函数.

三、(12分) 己知曲线 $y = \frac{e^x + e^{-x}}{2}$ (0 $\leq x \leq$ 1).

- (1)求曲线的长度:
- (2)求由给定曲线和直线 x=0, x=1, y=0围成的平面图形绕X轴旋转一周所得立体的体积。

五、(8 分) 设f(x)在[0,1]上二阶导函数连续,f(0)=f(1)=0. 证明: $\int_0^1 |f''(x)| \, \mathrm{d}x \geq 4 \max_{x \in [0,1]} |f(x)|.$

六、(14分) 设 $u_n = \int_0^1 \frac{\mathrm{d}t}{(1+t^2)^n} (n \ge 1)$.
(1) 证明数列 $\{u_n\}$ 收敛, 并求极限 $\lim_{n\to\infty} u_n$:
(2) 证明级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 条件收敛;

- (3) 证明当 $p \ge 1$ 时级数 $\sum_{n=1}^{\infty} \frac{n}{n}$ 收敛, 并求级数 $\sum_{n=1}^{\infty} \frac{n}{n}$ 的和.

七、 $(10 \, \%)$ 证明: (1) 函数项级数 $\sum_{n=1}^{\infty} \frac{(-x \ln x)^n}{n!}$ 在(0,1]上一致收敛

(2)
$$\int_0^1 x^{-x} dx = \sum_{n=1}^{\infty} \frac{1}{n^n}$$