- 1. (5 points each) Find the requested derivative for each of the following:
 - (a) Find y' for $y = x^2 \tan x$.
 - (b) Find $\frac{dy}{dx}$ at (-1,1) for $(x+y)^3 = x^3 + y^3$.
 - (c) Find $\frac{d^2y}{dx^2}$ for $y = \sin(x^2)$.
 - (d) Find f'(1) for $f(x) = \frac{x^2 4}{x 3}$.

Solution:

(a) $y' = (x^2 \tan x)' = 2x \tan x + x^2 \sec^2 x$

(b)
$$((x+y)^3 = x^3 + y^3)' = 3(x+y)^2(1+y') = 3x^2 + 3y^2y' \Rightarrow y' = \frac{3(x+y)^2 - 3y^2}{3x^2 - 3(x+y)^2} \Rightarrow y'(-1,1) = -1$$

(c) $y' = 2x\cos(x^2)$ and $y'' = 2\cos x^2 - 4x^2\sin x^2$

(d)
$$f' = \left(\frac{x^2 - 4}{x - 3}\right)' = \frac{2x(x - 3) - (x^2 - 4)}{(x - 3)^2} \Rightarrow f'(1) = -\frac{1}{4}$$

2. (20 points) At noon, ship A is 150 km west of ship B. Ship A is sailing east at 35 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 PM?

Solution: Let the east-west distance be designated by the variable x and the north south distance be designated by y. Also, assume ship B is at the origin at noon. The distance between the ships then is given by $d^2 = x^2 + y^2$. It follows 2dd' = 2xx' + 2yy'. By 4:00 PM ship A has traveled 140km and ship B has traveled 100 km. At 4 then, ship A is 150 - 140 = 10km west of the origin and ship B is 100km north of the origin. Thus, $d = \sqrt{10^2 + 100^2} = \sqrt{10100}$ and so

$$d' = \frac{xx' + yy'}{d} = \frac{10 * (-35) + 100 * (25)}{\sqrt{10100}} = \frac{2150}{\sqrt{10100}}$$

- 3. Let f(x) = x|x| and let I = [-2, 2].
 - (a) (6 points) Can you apply the Mean Value Theorem to f on I? Yes or No? Explain
 - (b) (8 points) If part (a) the MVT does apply find all c guaranteed to exist by the Mean Value Theorem on I.

Otherwise, determine an interval where the Mean Value Theorem does apply and find all c guaranteed to exist on this new interval.

(c) (6 points) [Not connected to parts (a) and (b)] Find all points of inflection of f on I.

Solution:

- (a) Yes. From exam 1 we know the function is differentiable everywhere on the real line.
- (b) By the MVT, for a=-2 and b=2 we have $f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{4}=2$. The derivative is defined piecewise as f'=-2x on $(-\infty,0)$ and as f'=2x on $(0,\infty)$. Therefore, f'(c)=2 for $c=\pm 1$.

- (c) The only point of inflection is at x=0 since the function is concave down on $(-\infty,0)$ and concave up on $(0,\infty)$. This is because f''=-2 on $(-\infty,0)$ and f''=2 on $(0,\infty)$.
- 4. Suppose that we do not have a formula for g(x) but we know g(2) = -4 and $g'(x) = \sqrt{x^2 + 5}$ for all x
 - (a) (10 points) Use a linear approximation to estimate g(1.95).
 - (b) (5 points) Is the estimate in part (a) too large or too small. Explain.

Solution:

- (a) $L(x) = g(a) + g'(a)(x a) = g(2) + g'(2)(x 2) = -4 + \sqrt{9}(x 2) = -4 + 3(x 2)$. Therefore, $g(1.95) \approx L(1.95) = -4 + 3(-0.05) = -4 \frac{15}{100} = -\frac{415}{100} = -\frac{83}{20}$
- (b) Since $g'' = \frac{x}{\sqrt{x^2 + 5}}$, which is positive for positive x, the function is concave up on $(0, \infty)$. It must be the case then that the tangent line lay under the graph and so this estimate is too small.
- 5. (5 pts each) In answering the following questions, justify each part.

Given
$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$
 with $f'(x) = \frac{(x^2 + 4)2x - (x^2 - 4)2x}{(x^2 + 4)^2}$ and $f''(x) = \frac{16(4 - 3x^2)}{(x^2 + 4)^3}$,

for f(x):

- (a) Find the vertical and horizontal asymptotes.
- (b) Find the intervals of increase or decrease.
- (c) Find the local maximum and minimum values.
- (d) Find the intervals of concavity and the inflection points.
- (e) Use parts (a) (d) to the sketch the graph of f. LABEL your sketch (Intercepts, asymptotes, etc.).

Solution:

- (a) No VA and x=1 is the HA since $\lim_{x\to\pm\infty}f(x)=1$
- (b) Note that $f'(x) = \frac{(x^2+4)2x (x^2-4)2x}{(x^2+4)^2} = \frac{16x}{(x^2+4)^2}$ and so the function is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$.
- (c) The only critical point is at x = 0 and it is a minimum by the 1st derivative test.
- (d) The inflection points are when $4-3x^2=0$ or for $x=\pm 2/\sqrt{3}$. Taking test values in the three regions $(-\infty,-2/\sqrt{3}),(-2/\sqrt{3},2/\sqrt{3})$ and $(2/\sqrt{3},\infty)$ we find the function is concave down on $(-\infty,-2/\sqrt{3})$ and $(2/\sqrt{3},\infty)$ and concave up on $(-2/\sqrt{3},2/\sqrt{3})$

(e)