Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ»

Институт системной и программной инженерии и информационных технологий (СПИНТех)

Отчёт

по дисциплине «Электроника»

Лабораторная работа №3 «Исследование усилительного каскада с ёмкостной связью»

Руковод	цитель
	Жмылев B. A.
«» _	2023 г.
Студент	г группы ПИН-23
	Исламов P. P.
// \\	2023 г

Москва

2023

Цель работы

Исследование уличительного RC-каскада на биполярном транзисторе с эмиттерной стабилизацией.

N=10 E=6.778 B

Задание 1. Определение режима каскада по постоянному току

$$I$$
к = 0.682 мA = 0,000682 A
 U ю = 1.64
 U θ = 1.023

$$U$$
бэ = $1.64 - 1.023 = 0.617$ В
$$U$$
кэ = $6.778 - 0.000682 * 3300 - 1.023 = 3.5044$ В

R5, %	20	30	40	60	70	80	100
ІК, мА	0.716	0.682	0.643	0.562	0.512	0.463	0.355
UЭ. B	1.065	1.023	0.965	0.861	0.768	0.695	0.533

Задание 2. Исследование усилительного каскада с ёмкостной связью по переменному току

ΕΓ	2	5	10	15	20	30	50	80	100
(амп.),									
мВ									
еГ (действ.), мВ	1.414	3.535	7.071	10.60 7	14.14 2	21.21 3	35.35 5	47.14 4	59.83
UВЫХ (1КОм), мВ	13.04 7	32.55 9	64.69	90.01 7	126.1 81	182.0 51	273.5 51	358.6 5	415.2 5
UВЫХ (10КОм), мВ	40.32 9	100.6 4	200	296.8 4	390.1 6	563.0 3	845.3 45	1135	1274

Kv = 0.1093 Kv = 0.0354 $R_{\rm BX} = 3.611~{\rm KOm}$ $R_{\rm BHX} = 699.1645~{\rm Kom}$

	J2, мкФ	RГ, КОм	RH, КОм	CH = C5, мкФ	FH, KHz	FB, KHz	KV, дБ
1	5	1	1	-	0.014	2260	19.304
2	1	1	1	-	0.038	2162	19.292
3	5	10	1	-	0.009	657.9	9.827
4	5	1	10	-	0.011	895.9	29.105
5	5	1	1	4	0.014	51.066	19.301

Вывод

В ходе выполнения лабораторной работы я проводил исследование усилительного каскада с использованием емкостной связи. Моя работа включала изучение свойств данного каскада, как в режиме переменного, так и постоянного тока.

Также я проводил исследование влияния различных значений величин на частотные характеристики усилителя. Например, при уменьшении разделительной емкости наблюдалось увеличение нижней граничной частоты. Если добавлять емкостную нагрузку, то верхняя граничная частота усилителя уменьшалась. А при увеличении выходного сопротивления или активного сопротивления соответственно, наблюдалось уменьшение верхней и нижней границ частоты.