ПЪРВИ СТЪПКИ С АРДУИНО

ЗАНЯТИЕ №1 ЗАПОЗНАНСТВО С АРДУИНО. БАЗОВИ ПОЗНАНИЯ. ПЪРВА КРАЧКА С АРДУИНО

ВЕНЦИСЛАВ НАЧЕВ

КАКВО ЩЕ ПРАВИМ ДНЕС?

- Какво и как ще учим в курса?
- Какво е Ардуино?
- Какво може да правим с Ардуино?
- Защо Ардуино?
- Какво е микроконтролер?
- Основни елементи на микроконтролера
- Характеристики и параметри
- Понятия и закони от електрониката
- Свързване на електрически вериги
- Първа програма с Ардуино

КАКВО И КАК ЩЕ УЧИМ В КУРСА?

- Основи принципи в електрониката;
- Основи принципи в програмирането;
- Особености на програмирането на Ардуино;
- Създаване на електрически вериги въру прототипна платка;
- Свързване на електронни елементи към Ардуино;
- Създаване и инсталитане на библиотеки към Ардуино;
- Репликиране на Ардуино проекти;
- Създаване на графични приложения свързани с Ардуино
- Учене на теория;
- Пресъздаване на схеми и писане на програми на място;
- Създаване на краен проект за завършване на курса;

КАКВО Е АРДУИНО?

❖ Ардуино (Arduino) е проект с отворен код. Основната цел е проектиране и производнство на електронна платформа с лесен за използване хардуер и софтуер позволяваща използването и в роботиката, мехатрониката, образователни проекти, хоби проекти, полупрофесионални и професионални проекти.

 Ардуино е свързано с Висшето училище за интерактивен дизайн в Иврея, Италия.

Arduino developer team - David Cuartielles, Gianluca Martino, Tom Igoe, David Mellis, and Massimo Banzi. Photo Courtesy - Randi Klett/IEEE Spectrum

КАКВО Е АРДУИНО?

- Ардуино е името на бар в гр. Ивреа, Италия, където изобретателите на Ардуино често се събирали.
- ❖ Arduino d'Ivrea маркграф на Ивреа от 990 до 1015г и крал на Италия от 1002 до 1004г.

Бар Arduino, Ивреа

(Civica raccolta stampe - Milano)

КАКВО Е АРДУИНО?

Ардуино е микроконтролерна програмируема платка с разработена среда за програмиране и множество сензори, изпълнителни механизми, комуникационни модули и софтуерни библиотеки за улеснена работа с тях.

ВИДОВЕ АРДУИНО

Arduino Uno

Arduino Leonardo

Arduino Mega 2560

Arduino LilyPad

Arduino Mega ADK

Arduino Fio

Arduino Ethernet

Arduino Pro

Arduino BT

Arduino Nano

Arduino Mini

Arduino Pro Mini

ЗАЩО АРДУИНО?

- Лесно за научаване и използване;
- Наличие на много и достъпна информация;
- Наличие на много периферни компоненти и библиотеки за работа с тях.
- Научавайки Ардуино е много лесно преминаване към други по-сложни/по-лесни платформи, контролери...

КАКВО МОЖЕ ДА НАПРАВИМ С АРДУИНО?

- Коледни лампи;
- 3D принтер;
- Управление на електроуреди през интернет;
- Охранителни системи;
- Бордови компютър за велосипед/мотоциклет/автомобил самоделка;
- Автоматизирана поливна система...

КАКВО МОЖЕ ДА НАПРАВИМ С АРДУИНО?

Мобилни роботи с дистанционно/автономно управление

ПРИМЕР ЗА МЯСТО НА АРДУИНО В ПРОЕКТ

МОБИЛЕН РОБОТ

КАКВО Е ЕЛЕКТОНИКА?

- Електрониката е инженерна наука, чиято цел е използването за полезни цели на контролирано и регулирано движение на електрони в различна среда;
- За създаване, съхраняване, обработка и пренос на информация – ИКТ;
- За създаване на силови магнитни полета електродвигатели, релета, изпълнителни

механизми...

ОСНОВНИ ЕЛЕМЕНТИ В ЕЛЕКТРОНИКАТА

- Източници генерират електрическа енергия -> акумулатори, батерии, електроцентали...
- Проводници материали, които могат да пренасят електрическа енергия -> мед, алуминий, злато, сребро, стомана..;
- Изолатори(диелектрици) материали, които не могат да пренасят електрическа енергия. Служат за изолация (защита) -> гума, пластмаси, стъкло, дърво, бакелит, порцелан...
- ❖ Консуматори оползотворяват електрическата енергия -> котлон, диспей, електродвигател, лампа, памет, процесор...;
- Допълнителни елементи, схеми и устройства ->
 преобразуват и управляват ел. енергия удобна за
 консуматорите -> токоизправители, диоди, транзистори,
 трансформатори, кондензатори, филтри, усилватели...

ЕЛЕКТРИЧЕСКА ВЕРИГА

ЗАЩО ЛАМПАТА СВЕТИ?

ВОДНА АНАЛОГИЯ

АНАЛОГИЯ - ЕЛЕМЕНТИ

ИЗТОЧНИК НА ЕНЕРГИЯ

УПРАВЛЕНИЕ

КОНСУМАТОР/ ПРЕОБРАЗУВАТЕЛ НА ЕНЕРГИЯ

ПРЕНОСНА СРЕДА

АНАЛОГИЯ – ФИЗИЧНИ ВЕЛИЧИНИ

1. РАЗЛИКА В НАЛЯГАНЕТО - ЕЛЕКТРИЧЕСКО НАПРЕЖЕНИЕ, U

- > Напрежение, Потенциална разлика;
- > Дефинира се между две точки;

$$V = \varphi_2 - \varphi_1 [V];$$

$$\varphi_2$$

$$\varphi_1$$

Мерна единица – ВОЛТ [V];

АНАЛОГИЯ – ФИЗИЧНИ ВЕЛИЧИНИ

2. ВОДЕН ПОТОК(ДЕБИТ) - ЕЛЕКТРИЧЕН ТОК, І

- Ток ;
- > Електричен заряд **q** преминал за единица време **t:**

$$I = dq / dt [A]$$

- Мерна единица АМПЕР [A]
- > ГОЛЕМИНА И ПОСОКА.
- Посоката на тока е от по-висок към по-нисък потенциал (от + към -).

АНАЛОГИЯ – ФИЗИЧНИ ВЕЛИЧНИ

- ❖ СЪПРОТИВЛЕНИЕ ЕЛЕКТРИЧЕСКО СЪПРОТИВЛЕНИЕ, R:
- омично съпротивление;
- противопоставя се на протичането на електричния ток;
- Къде има съпротивления:
 - консуматори;
 - неиделани проводници;
 - източници;

Мерна единица – **ОМ** [Ω]

РЕЗИСТОР

❖ Пасивен електронен елемент, който се характеризира със съпротивление.

 Основно предназначение – да ограничава тока в електрическите вериги или да създава пад на напрежение.

- Основни параметри:
 - електрическо съпротивление **R**;
 - мощност, която може да разсее;
 - клас точност;
 - паразитни параметри.

ЦВЕТЕН КОД ЗА РЕЗИСТОРИ

3AKOH HA OM

Закон на Ом – задава зависимостта между електрическите величини:

НАПРЕЖЕНИЕ U (V), ТОК І И СЪПРОТИВЛЕНИЕ R

ЗАМАСЯВАНЕ/ЗАЗЕМЯВАНЕ – (GND)

СВЕТОДИОДИ

Светодиодът е полупроводников оптоелектронен елемент, който излъчва светлина, когато през него протича електричен ток.

LED – **Light Emitting Diode**

ВОЛТАМПЕРНА ХАРАКТЕРИСТИКА

СПЕКТРАЛНА ХАРАКТЕРИСТИКА

ХАРАКТЕРИСТИКА НА ОСВЕТЕНОСТТА

■ Какъв ток I_г да осигурим, за да получим необходимата осветеност

НАЧИН НА СВЪРЗВАНЕ

МИКРОКОНТРОЛЕР - АРДУИНО

 Микроконтролер (едночипов микрокомпютър) – функционално завършена компютърна система събрана в една интегрална схема (чип).

МИКРОКОНТРОЛЕР

ОСНОВНИ ПАРАМЕТРИ НА МК

Pазредност: [bits]; ❖ Тактова честота: [MHz]; *Производителност:* [MIPS]; ❖ Размер на оперативната памет, RAM: [kB]; Размер на програмната памет, Flash: [kB]; ❖ Размер на постоянната памет, EEPROM: [kB]; Входно-изходни портове: [бр., видове]; Комуникационни интерфейси: [видове]; ❖ Захранващо напрежение: [V]; ❖ Цена: [\$].

ОСНОВНИ ПАРАМЕТРИ НА ATMEGA328P

- Разредност: 8 bits;
- Тактова честота: 0-20 MHz (16MHz);
- Производителност: до 20MIPS (~16MIPS);
- ❖ Размер на оперативната памет, RAM: 2kB;
- ❖ Размер на програмната памет, Flash: 32kB;
- ❖ Размер на постоянната памет, EEPROM: 1kB;
- ❖ Входно-изходни портове: 20 броя, от които:
 - Цифрови портове: до 20 бр.
 - Аналогови входове: до 8 бр.
 - PWM (ШИМ): до 6 бр.;
- ❖ Комуникационни интерфейси: UART, SPI, I2C;
- Захранващо напрежение: 4.5-5.5V (5V);
- Цена: 1.85\$.

БЛОКОВА СХЕМА НА ATMEGA328P

БЛОКОВА СХЕМА НА ATMEGA328P

- ❖ AVR CPU Cental Processing Unit мозъкът на микроконтролера, извършва аритметични и логически операции.
- ❖ SRAM Static Random Access Memory енергозависима памет, която служи за съхраняване на временна информация в процеса на работа на програмата.
- ❖ Flash постоянна(енергонезависима) памет, в която се съхранява програмата, която изпълнява микроконтролера.
- ◆ EEPROM Electrically Erasable Programmable Read Only Memory - постоянна(енергонезависима) програмно достъпна памет.
- ❖ T/C Timer/Counter служи за измерване на времеви интервали / броене на електрически импулси;
- ❖ PORT B/C/D програмно достъпни регистри, които управляват входно-изходните пинове с общо предназначение (GPIO).

БЛОКОВА СХЕМА НА ATMEGA328P

- Oscillator Осцилатор/Генератор служи за генериране на тактови импулси, които синхронизират работата на всички подсистеми в микроконтролера ("диригента на орекестъра");
- ❖ Watchdog стражеви таймер предпазва програмата от забиване, като прави Reset(пускане на програмта отначало).
- ❖ Analog Comp аналогов компаратор сравнява две напрежение.
- ❖ Power Module грижи се за подаване на токозахранване за всички модули в микроконтролера.
- debugWire специален комуникационен протокол на Atmel AVR, за on-chip дебъгване (процес на проследяване изпълнението на програмата, с цел отстраняване на грешки - "бъгове").

БЛОКОВА СХЕМА НА ATMEGA328P

- ❖ USART Universal Synchronous/Asynchronous Receiver Transmitter – Универсален Синхронен/Асинхронен Приемо-Предавател – сериен интерфейс за комуникация на микроконтролера с компютър или други други микроконтролери и елементи;
- ❖ SPI Serial Peripheral Interface комуникационен интерфейс предназначен за комуникация с други интегрални схеми и устройства. Колкото повече устройсва свързваме, толкова повче на брой връзки са необходими;
- ❖ TWI Two Wire Interface (I2C) синхронен комуникационен интерфейс само с 2 връзки(жици) предназначен за комуникация с други интегрални схеми, устройства и системи;

МЯСТО НА МИКРОКОНТРОЛЕРИТЕ В СИСТЕМИТЕ

ПРОГРАМИРАНЕ НА МИКРОКОНТРОЛРИ

ARDUINO - UNO

БРЕДБОРД - BREADBOARD

ARDUINO IDE

ЗАДАЧА №1.1

Свързване на електрически вериги:

CXEMA 1:

CXEMA 1:

CXEMA 2

Свързване на pushbutton:

CXEMA 2:

CXEMA 2:

ЗАДАЧА 1.2

❖ "Hello, world!" с микроконтролерите:

CXEMA

CXEMA:

ПРОГРАМА

ПРОГРАМА

```
// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED BUILTIN as an output.
 pinMode (13, OUTPUT);
// the loop function runs over and over again forever
void loop() {
  digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                     // wait for a second
  digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                                     // wait for a second
```

СТРУКТУРА НА ПРОГРАМАТА

```
void setup(){
   // изпълнва се веднъж
}

void loop(){
   // безкраен цикъл
}
```


основни функции

- ❖ pinMode("номер пин", INPUT / OUTPUT); Конфигурира посочения пин като: цифров вход(INPUT) или цифров изход(OUTPUT).
- ❖ digitalWrite("номер пин", LOW / HIGH);
 Подава на посочения пин 0V (LOW) или 5V (HIGH).
- ❖ delay("милисекуни");

Микроконтролерът изчаква "милисекунди" време, преди да продължи със следващите команди.

```
- едноредов коментар;/* */ - многоредов коментар;
```

ПОЛЕЗНИ ЛИНКОВЕ

- https://www.arduino.cc/
- http://www.electronics-tutorials.ws/
- http://www.tutorialspoint.com/arduino/
- https://www.instructables.com/
- http://www.electronicshub.org/
- http://www.microchip.com/wwwproducts/ en/ATmega328
- https://processing.org/
- http://fritzing.org/home/

БЛАГОДАРЯ ВИЗА ВНИМАНИЕТО!