Package 'REXoplanets'

September 11, 2025

```
Title Creates Interface with NASA 'Exoplanets Archive API'
Version 0.1.2
```

Description Provides a user-friendly interface to NASA 'Exoplanets Archive API'
https://exoplanetarchive.ipac.caltech.
edu/>, enabling retrieval and analysis of exoplanetary and stellar data.
Includes functions for querying, filtering, summarizing, and computing derived parameters from the 'Exoplanets' catalog.

```
License MIT + file LICENSE
```

Depends R (>= 4.1)

Imports dplyr, checkmate, purrr, httr2, readr, utils, ggplot2, isonlite, logger

Suggests testthat (>= 3.0.0), roxygen2, lintr, devtools, spelling, shiny, shinyjs, bslib, shinytest2, bsicons, htmltools

URL https://JKolomanski.github.io/REXoplanets/
https://github.com/JKolomanski/REXoplanets

BugReports https://github.com/JKolomanski/REXoplanets/issues

Encoding UTF-8 **RoxygenNote** 7.3.2

Config/testthat/edition 3

LazyData true

Language en-US

NeedsCompilation no

Author Jakub Kołomański [cre, aut], Mateusz Kołomański [aut]

Maintainer Jakub Kołomański <xqubula@gmail.com>

Repository CRAN

Date/Publication 2025-09-11 09:10:02 UTC

2 app

Contents

	app	2
	calculate_esi	
	calculate_star_habitable_zone	
	calculate_stellar_flux	
	classify_planet_type	
	classify_star_spectral_type	
	closest_50_exoplanets	
	exoplanets_col_labels	
	fetch_table	
	module_planet_details	
	module_search	
	module_star_systems	
	module_system_info	
	module_system_plot_settings	
	module_visualize_star_system	
	plot_star_system	14
	scatterplot_esi	15
	summarize_star_occurrences	16
	trim_ps_table	16
Index		18
арр	Function responsible for initializing and running the REXoplanets	
арр	shiny application.	

Description

Function responsible for initializing and running the REXoplanets shiny application.

Usage

```
app(..., run = TRUE)
```

Arguments

... Additional arguments passed to shiny::runApp().
run If true, runs the application. If false, returns an app object.

Value

App object.

calculate_esi 3

calculate_esi Calculate the Earth Similarity Index (ESI)
--

Description

Calculate the Earth Similarity Index (ESI)

Usage

```
calculate_esi(..., radius_w = 0.57, flux_w = 0.7)
```

Arguments

Any number of numeric parameters representing the planet's characteristics. Parameter names should have corresponding weight names ending in _w (e.g.,

mass, mass_w).

radius_w Numeric. Weight for radius. Default is 0.57. flux_w Numeric. Weight for stellar flux. Default is 0.7.

Details

The function calculates the ESI for any parameter or number of parameters. By default, it uses the weights of 0.57 for radius and 0.7 for stellar flux.

ESI (Earth Similarity Index) is a characterization of how similar a planetary-mass object or natural satellite is to Earth. It is designed to be a scale from zero to one, with Earth having a value of 1.

Value

Numeric. Earth Similarity Index (ESI).

References

Schulze-Makuch, D., Méndez, A., Fairén, A. G., von Paris, P., Turse, C., Boyer, G., Davila, A. F., Resendes de Sousa António, M., Irwin, L. N., and Catling, D. (2011) A Two-Tiered Approach to Assess the Habitability of Exoplanets. Astrobiology 11(10): 1041-1052.

Examples

4 calculate_stellar_flux

```
calculate_star_habitable_zone
```

Calculate star's habitable zone

Description

Calculates star's habitable zone inner and outer radius, based on star's luminosity.

Usage

```
calculate_star_habitable_zone(st_lum, log_lum = TRUE)
```

Arguments

st_lum A numeric Stellar luminosity value (log10(L/Lsun) or linear).

log_lum A logical value. If TRUE assumes st_lum is logarithmic. Defaults to TRUE.

Value

A numeric vector of 2 elements where first is habitable zone inner radius and second is the outer radius.

Examples

```
calculate_star_habitable_zone(0) # habitable zone for sun, with logarithmic units
calculate_star_habitable_zone(1, log_lum = FALSE) # habitable zone for sun, with linear units
```

```
calculate_stellar_flux
```

Calculate stellar flux value

Description

Calculate stellar flux value

Usage

```
calculate_stellar_flux(st_lum, pl_orbsmax, log_lum = TRUE, unit = "relative")
```

Arguments

st_lum Numeric. Stellar luminosity (log10(L/Lsun) or linear).

pl_orbsmax Numeric. Orbital distance in AU.

log_lum Logical. If TRUE, assumes st_lum is in log10(L / Lsun). Defaults to TRUE.

unit Character. Either "relative" (default) or "wm2" to convert to W/m².

classify_planet_type 5

Details

This function calculates the stellar flux based on provided values. It assumes luminosity is either logarithmic (log10 of L/Lsun) or linear, and optionally converts flux to absolute units (W/m²) if requested.

Stellar flux is the amount of energy from a star that reaches a given area per unit time.

Value

Numeric. Stellar flux (relative or in W/m²).

Examples

```
# Solar-type star, Earth-like orbit
calculate_stellar_flux(st_lum = 0, pl_orbsmax = 1)
# Linear luminosity input (not log), 5x Sun at 2 AU
calculate_stellar_flux(st_lum = 5, pl_orbsmax = 2, log_lum = FALSE)
# Output in absolute units (W/m²), Earth-like conditions
calculate_stellar_flux(st_lum = 0, pl_orbsmax = 1, unit = "wm2")
```

```
classify_planet_type Classify Planet Type
```

Description

This function returns a compact four-character code representing the classification of an exoplanet based on its mass, equilibrium temperature, orbital eccentricity, and density.

The classification code is composed of four parts:

1. Mass class:

- M: Mercury-like planets (< 0.22 Earth masses)
- E: Earth-like planets (0.22–2.2 Earth masses)
- S: Super-Earths (2.2–22 Earth masses)
- N: Neptune-like planets (22–127 Earth masses)
- J: Jupiter-like giants (127–4450 Earth masses)
- D: Degenerate-matter/brown dwarf-like objects (>= 4450 Earth masses)

2. Temperature class:

- F: Frozen (T < 250 K)
- W: Temperate/water zone (250–450 K)
- G: Gaseous (450–1000 K)
- R: Roasters (>= 1000 K)

3. Eccentricity:

- First decimal digit of orbital eccentricity. For example, $0.26 \rightarrow 3 \rightarrow$ appended as 3.
- 4. Density-based surface/composition class:

- g: Gas-dominated (< 0.25 g/cm³)
- w: Water/ice-rich (0.25–2 g/cm³)
- t: Terrestrial/rocky (2–6 g/cm³)
- i: Iron-rich (6–13 g/cm³)
- s: Super-dense (>= 13 g/cm^3)

Usage

```
classify_planet_type(pl_bmasse, pl_eqt, pl_orbeccen, pl_dens)
```

Arguments

```
pl_bmasse Numeric. Planetary mass in Earth masses. Must be > 0.

pl_eqt Numeric. Planetary equilibrium temperature in Kelvin. Must be > 0.

pl_orbeccen Numeric. Orbital eccentricity. Must be > 0.

pl_dens Numeric. Planetary density in g/cm<sup>3</sup>. Must be > 0.
```

Value

A character string containing a 4-character planet classification code.

Examples

```
classify_planet_type(1.0, 288, 0.0167, 5.5)  # Earth-like: "EW0t"
classify_planet_type(318, 1300, 0.05, 1.3)  # Hot Jupiter: "JR3w"
classify_planet_type(0.1, 180, 0.2, 0.1)  # Cold, light, low-density: "MF2g"
```

```
classify_star_spectral_type

Classify spectral type of a star
```

Description

The function takes in effective stellar temperature (in K), and return letter for the star's spectral type based on Morgan–Keenan (MK) system.

Usage

```
{\tt classify\_star\_spectral\_type(st\_teff)}
```

Arguments

st_teff Numeric. effective stellar temperature (in K)

closest_50_exoplanets 7

Value

Character. spectral type classification with a letter:

- M: 2,500 3,500
- K: 3,500 5,000
- G: 5,000 6,000
- F: 6,000 7,500
- A: 7,500 10,000
- B: 10,000 28,000
- 0: 28,000 50,000

Examples

```
classify_star_spectral_type(5778)
```

```
closest_50_exoplanets closest_50_exoplanets
```

Description

A sample dataset of 50 exoplanets closest to earth, taken from table Planetary Systems Composite Parameters, including their names, discovery methods, and other relevant information.

Usage

```
closest_50_exoplanets
```

Format

A data frame with 683 columns and 50 rows.

Source

```
https://exoplanetarchive.ipac.caltech.edu/
```

8 fetch_table

```
exoplanets_col_labels exoplanets_col_labels A collection of Exoplanets archive columns names and their respective labels / comments. Currently only supports ps and pscomppars tables
```

Description

exoplanets_col_labels A collection of Exoplanets archive columns names and their respective labels / comments. Currently only supports ps and pscomppars tables

Usage

```
exoplanets_col_labels
```

Format

named vectors nested in a list.

Source

https://exoplanetarchive.ipac.caltech.edu/docs/API_PS_columns.html#columns

Examples

```
exoplanets_col_labels[["ps"]][["Planet Name"]]
```

fetch_table

Fetch Exoplanets table

Description

Fetch Exoplanets table

Usage

```
fetch_table(
  table,
  query_string = NULL,
  pretty_colnames = FALSE,
  format = "csv"
)
```

module_planet_details 9

Arguments

table

A string specifying the table to query. Must be one of:

- ps Planetary Systems table
- pscomppars Planetary Systems Composite Parameters table
- stellarhosts Stellar Hosts table
- keplernames Kepler Confirmed Names

query_string

Optional ADQL WHERE clause as a string, e.g., pl_bmasse > 1 AND st_teff < 6000.

pretty_colnames

Optional bool value. If TRUE replaces database column names with their labels / descriptions. Defaults to FALSE. Currently only tables ps and pscomppars are

supported.

format Optional char value specifying output format. Can be either "csv" for data

frame, or "json" for a named list.

Details

Fetches data from an exoplanets TAP (Table Access Protocol) service and returns it as a data frame or a named list. You can optionally specify WHERE ADQL clause to filter rows based on conditions.

Value

A data frame or named list containing fetched data.

Examples

```
# All entries from Stellar Hosts table
fetch_table("stellarhosts")
# Entries from Planetary Systems table where planetary mass > 3 times the earth mass
fetch_table("ps", query_string = "pl_bmasse > 3")
# Planets orbiting Teegarden's Star with radius > 1 Earth radius
fetch_table("pscomppars", query_string = "hostname = 'Teegarden''s Star' and pl_rade > 1")
```

Description

Module Displaying Planet Details

Usage

```
planet_details_ui(id)
planet_details_server(id, planet_info)
```

10 module_search

Arguments

id A unique identifier for the module.

planet_info A reactive expression returning a data frame with information about the planet.

Details

This module provides a dynamically refreshing table component for displaying basic information about a planet.

Value

A Shiny UI object.

Functions

- planet_details_ui(): UI function for the planet details module.
- planet_details_server(): server function for the planet details module.

module_search Search Module

Description

Search Module

Usage

```
search_ui(id, label = "Search...", multiple = FALSE, random = FALSE)
search_server(id, choices, start_random = FALSE)
```

Arguments

id A unique identifier for the module.label The label text for the select input.

multiple Whether to allow multiple selections (default: FALSE).
random Whether to show a randomize button (default: FALSE).

choices A reactive expression that returns a vector of choices for the select input.

start_random Whether to select a random value when choices are updated.

Details

This module provides a reusable search component with a select input and optional randomize button. It can be used to create searchable drop-downs with support for multiple selection and random choice selection. The module handles updating choices dynamically and provides a reactive value for the selected item(s).

module_star_systems 11

Value

A Shiny UI object.

A reactive expression containing the selected value(s).

Functions

- search_ui(): UI function for the search module.
- search_server(): Server function for the search module.

module_star_systems

Star Systems Module

Description

Star Systems Module

Usage

```
star_systems_ui(id)
star_systems_server(id, data)
```

Arguments

id A unique identifier for the module.

data A reactive expression that returns a data frame containing star system data.

Details

This module provides functionality for exploring star systems and their planets. Provides a handy UI for selecting a star system. The star is visualized alongside its planets and their orbits. The display provides basic information about the system itself, as well as particular planets. A legend is available for the plot.

Value

A Shiny UI object.

A Shiny server module.

Functions

- star_systems_ui(): UI function for the module.
- star_systems_server(): Server function for the module.

module_system_info

Module Displaying Star System Info with Value Boxes (Two Rows)

Description

Module Displaying Star System Info with Value Boxes (Two Rows)

Usage

```
system_info_ui(id)
system_info_server(id, system_info)
```

Arguments

id

A unique identifier for the module.

system_info

A reactive expression returning a data frame with information about the system.

Value

A Shiny UI object.

Functions

- system_info_ui(): UI function for the system info module using value boxes.
- system_info_server(): Server function for the system info module using value boxes.

Description

System Plot Settings Module

Usage

```
system_plot_settings_ui(id)
system_plot_settings_server(id)
```

Arguments

id

A unique identifier for the module.

Details

This module provides a series of controls to customize the visible elements of a star system map

Value

A Shiny UI object.

A reactive list object containing bool value whether to show the habitable zone and plot legend.

Functions

- system_plot_settings_ui(): UI function for the plot settings module.
- system_plot_settings_server(): function for the search module.

```
module_visualize_star_system
```

Module Visualizing Star Systems

Description

Module Visualizing Star Systems

Usage

```
visualize_star_system_ui(id)
visualize_star_system_server(id, plot_data, show_hz, show_legend)
```

Arguments

id A unique identifier for the module.

plot_data A reactive expression returning a data frame with information about the system. show_hz A reactive boolean expression determining whether to show habitable zone. Show_legend A reactive boolean expression determining whether to show plot legend.

Details

This module provides a dynamically refreshing plot component for visualizing star systems based on data provided

Value

A Shiny UI object.

Functions

- visualize_star_system_ui(): UI function for the system mapping module.
- visualize_star_system_server(): server function for the system mapping module.

14 plot_star_system

plot_star_system

Plot a Stylized Star System

Description

Creates a stylized polar plot of a planetary system, displaying planets in circular orbits around a central star. Planet size is scaled by radius, orbit position is randomized for aesthetics, planet color is mapped by density. The star's color is optionally based on spectral type. Optionally, star's habitable zone visualization can be overlayed.

Usage

```
plot_star_system(
  planet_data,
  spectral_type = " ",
  habitable_zone = c(0, 0),
  show_legend = FALSE
)
```

Arguments

planet_data A data fran

A data frame containing planetary system data. Must include:

- pl_orbsmax: semi-major axis (orbital distance),
- pl_rade: planetary radius (in Earth radii),
- pl_dens: planetary density (g/cm³).

spectral_type Optional character string indicating the star's spectral type. Accepted values: 0,

B, A, F, G, K, M.

habitable_zone Optional numeric vector containing 2 values: Inner and outer habitable zone

edges in AU.

show_legend Optional bool value, whether to show plot legend.

Details

The central star is positioned at the origin with planets arranged in orbits of increasing radius. Orbit lines are shown in gray for clarity.

Value

A ggplot2 object representing the planetary system visualization.

Examples

```
# Plot system GJ 682 (with hostid == "2.101289")
data = closest_50_exoplanets |>
    subset(hostid == 2.101289)
spectral_type = classify_star_spectral_type(data$st_teff[1])
```

scatterplot_esi 15

scatterplot_esi

Generate a Scatterplot of the Earth Similarity Index (ESI)

Description

Creates a log-log scatterplot of planetary radius versus stellar flux, colored by the Earth Similarity Index (ESI).

Usage

```
scatterplot_esi(data, plot_limits = c(0.1, 10))
```

Arguments

data

A data frame containing exoplanet data. Must include the columns:

- pl_insol: incident stellar flux (in Earth flux units),
- pl_rade: planetary radius (in Earth radii),
- esi: Earth Similarity Index (numeric).

plot_limits

A numeric vector of length 2 specifying the lower and upper bounds. Default is c(0.1, 10).

Details

Dashed lines at (1,1) indicate Earth's reference values for stellar flux and radius.

Value

A ggplot2 object representing the scatterplot.

Examples

```
closest_50_exoplanets |>
  dplyr::mutate(esi = calculate_esi(radius = pl_rade, flux = pl_insol)) |>
  scatterplot_esi()
```

trim_ps_table

summarize_star_occurrences

Summarize star occurrences

Description

Summarize star occurrences

Usage

```
summarize_star_occurrences(data)
```

Arguments

data

A data frame with KOI data. Must contain kepoi_name column.

Details

The function takes in KOI data frame and summarizes the number of planets that appear in a given dataset for each star.

Value

A data frame containing: - Star column with star ID. - Count column with number of planets.

trim_ps_table

Trim planetary systems table

Description

Trim planetary systems table

Usage

```
trim_ps_table(data)
```

Arguments

data

A data frame with planetary systems data.

Details

The function takes in a planetary systems data frame, and trims it to include only 20 most important columns.

trim_ps_table 17

Value

A data frame containing:

- objectid Object ID
- pl_name Planet name
- hostname Host star name
- sy_dist Distance to the system (parsecs)
- pl_rade Planetary radius (Earth radii)
- pl_bmasse Planetary mass (Earth masses)
- pl_orbper Orbital period (days)
- pl_orbsmax Semi-major axis (AU)
- pl_orbeccen Orbital eccentricity
- pl_insol Incident stellar flux (Earth units)
- st_teff Stellar effective temperature (K)
- st_rad Stellar radius (Solar radii)
- st_mass Stellar mass (Solar masses)
- st_lum Stellar luminosity (log10 L/Lsun)
- pl_eqt Planetary equilibrium temperature (K)
- pl_dens Planetary density
- discoverymethod Discovery method
- disc_year Year of discovery
- sy_snum Number of stars in system
- sy_pnum Number of planets in system

Examples

trim_ps_table(closest_50_exoplanets)

Index

```
* datasets
    closest_50_exoplanets, 7
    exoplanets_col_labels, 8
app, 2
calculate_esi, 3
calculate_star_habitable_zone, 4
calculate_stellar_flux, 4
classify_planet_type, 5
classify_star_spectral_type, 6
closest_50_exoplanets, 7
{\tt exoplanets\_col\_labels, 8}
fetch_table, 8
module_planet_details, 9
module_search, 10
module_star_systems, 11
module_system_info, 12
module_system_plot_settings, 12
module_visualize_star_system, 13
planet_details_server
        (module_planet_details), 9
planet_details_ui
        (module_planet_details), 9
plot_star_system, 14
scatterplot_esi, 15
search_server (module_search), 10
search_ui (module_search), 10
star_systems_server
        (module_star_systems), 11
star_systems_ui (module_star_systems),
        11
summarize_star_occurrences, 16
system_info_server
        (module_system_info), 12
system_info_ui (module_system_info), 12
```