Finding a solution for a CSP

- ▶ The problem : $O(d^n)$ possible assignments.
- Reduce the number of legal values for different variables.
- Achieve node consistencyWA ≠ Green
- Achieve arc consistency

Binary Constraint and Arc consistency

AC-3 Algorithm

c 2c

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise **inputs**: csp, a binary CSP with components (X, D, C) **local variables**: queue, a queue of arcs, initially all the arcs in csp

```
while queue is not empty do
(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
if \text{REVISE}(csp, X_i, X_j) then
if \text{size of } D_i = 0 then return false
for each X_k in X_i. NEIGHBORS - \{X_j\} do
add (X_k, X_i) to queue
return true
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i revised \leftarrow false for each x in D_i do

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i revised \leftarrow true

return revised
```

Binary Constraint and Arc consistency

AC-3 Algorithm Example

AC-3 Algorithm Example

The search space is reduced from $4^3 = 64$ to $2^3 = 8$.

▶ Domain size atmost <u>d</u> and <u>c</u> binary constraints.

- Domain size atmost *d* and *c* binary constraints.
- ▶ Each arc (X_k, X_i) can be inserted into the queue at most d times.

- Domain size atmost *d* and *c* binary constraints.
- ▶ Each arc (X_k, X_i) can be inserted into the queue at most d times.
- Arc consistency can be checked in $O(d^2)$ time.

- Domain size atmost *d* and *c* binary constraints.
- ▶ Each arc (X_k, X_i) can be inserted into the queue at most d times.
- Arc consistency can be checked in $O(d^2)$ time.
- ▶ Worst case time complexity of AC-3 algorithm $O(cd^3)$.

A stronger notion of consistency

Can we use node and arc consistency to detect that the map cannot be coloured using two colors: {red, blue}?

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Path consistency

A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if, for every *consistent* assignment $\{X_i = a, X_j = b\}$, there is a *consistent* assignment to X_m such that the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$ are satisfied.

Path consistency

- A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if, for every *consistent* assignment $\{X_i = a, X_j = b\}$, there is a *consistent* assignment to X_m such that the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$ are satisfied.
- We can detect that the australian map cannot be colored using two colors.

▶ A CSP is k-consistent if, for any consistent assignment to k-1 variables, there is a consistent assignment for the k^{th} variable.

- ▶ A CSP is k-consistent if, for any consistent assignment to k-1 variables, there is a consistent assignment for the k^{th} variable.
- 2-consistency is same as

- ▶ A CSP is k-consistent if, for any consistent assignment to k-1 variables, there is a consistent assignment for the k^{th} variable.
- ▶ 2-consistency is same as arc consistency.

- ▶ A CSP is k-consistent if, for any consistent assignment to k-1 variables, there is a consistent assignment for the k^{th} variable.
- 2-consistency is same as arc consistency.
- 3-consistency is same as

- ▶ A CSP is k-consistent if, for any consistent assignment to k-1 variables, there is a consistent assignment for the k^{th} variable.
- 2-consistency is same as arc consistency.
- 3-consistency is same as path consistency.