

Classification and Retrieval System for Gas Pipe Repairs

CheckPoint #2

Team 1: Michele Panteleo, Minal Jamshed, Prima Acharjee

Outline

Data Preparation

Methodology

Evaluation

What's next?

Problem Description

This project deals with **gas leaks.** Whenever a fault happens, gasfitters are asked to **fix** it by choosing the **best** strategy (welding, substituting, **patching**).

Gas leak

Mission

Our mission is to develop a **chatbot** to help gasfitters about **patching or not**, explaining **why**. Chatbot will answer based on **fault description** and **past interventions**.

Value Proposition

Innovate

Reduce Gas Leaks Impact

Improve Safety

Data Preparation

Data Collection

Data Collection

ID	Repair_ Code	Kit_Size _num	Label	Kit_Complian ce	Damage_Type	Pipe_Exp osure	Severe_C orrosion	Pipe_Cove red	Damaged _Valve	Summary	Summary_1	Kit_Size_ str
ID000001	INT000001	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	TRUE	The aerial	The aerial stee	XL
ID000002	INT000002	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	TRUE	A non-shea	A localized line	XL
ID000003	INT000003	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	FALSE	Aerial stee	Aerial steel pip	XL
ID000004	INT000004	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	FALSE	The aerial	The steel aeria	XL

Collect and Organize in a CSV

Data Collection

ID	Repair_ Code	Kit_Size _num	Label	Kit_Complian ce	Damage_Type	Pipe_Exp osure	Severe_C orrosion	Pipe_Cove red	Damaged _Valve	Summary	Summary_1	Kit_Size_ str
ID000001	NT000001	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	TRUE	The aerial:	The aerial stee	XL
ID000002	NT000002	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	TRUE	A non-shea	A localized line	XL
ID000003	NT000003	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	FALSE	Aerial stee	Aerial steel pir	XL
ID000004	NT000004	5	FALSE	The size and ty	Non-sheared lin	Aerial pipe	TRUE	TRUE	FALSE	The aerial	The steel aeria	XL

Features considered

False: 11.778 (99%) True: 126 (1%)

Two Modalities

Two Modalities

Balanced Split

Balanced Split

Two Modalities

Balanced Split

Two **Modalities**

False: 11.778 True: 126

Test Set

False: .11.778. True: 126

Two Modalities

Dedicated Split

Methodology ***

Generating Embeddings with SBERT/SRoBERTa

The aerial steel pipe has a non-sheared linear....

Steel aerial pipe suffers from a non-sheared l.....

Sample text

Generating Embeddings with SBERT/SRoBERTa

Generating Embeddings with SBERT/SRoBERTa

Organizing Embeddings in DataFrames

Database

Test Query Set

	ID	Embeddings	Successful
		[-0.001362897455692913, 0.9544798135757446,	
	ID000064	0.0]	TRUE
	ID000128	[1.3155205249786377, -0.04855910316109657, 0.0]	FALSE
		[-1.1072819232490674, 0.05280644819140434,	
	ID000192	0.18]	FALSE
	ID000453	[1.0781232490879674, 0.5228344819140434, 0.23]	TRUE
7	ID007895	[-0.023719232490674, 0.01652804819140434, 0.39]	TRUE

Similarity Checking-FAISS

(Unseen Embeddings)

similar 'ID' and 'Label'

(Original Embeddings)

Evaluation

SBERT vs. SRoBERTa Across Modalities

Retrieval of IDs Performance of *Modality-2*: SBERT vs. SRoBERTa

Model	Recall@1	Recall@3	
SBERT	0.61	0.69	
SRoBERTa	0.77	0.84	

Recall@k computation=

Number of recommended relevant items among top k

Number of all relevant items in the system

Retrieval Task through SBERT vs SRoBERTa - Recall@1

Comparison- summarizing key metrics side-by-side

Metric	SBERT	SRoBERTa
True Positive (TP)	7291	9108
False Negative (FN)	4613	2796
Recall@1	61%	77%

SBERT vs. SRoBERTa Across Modalities

Comparative metrics Table for Classification of Labels

	M	11	M2		
Metric (in %)	SBERT	SRoBERTa	SBERT	SRoBERTa	
F1 score	18	13	84	75	
Recall	15	9.5	80	70	
Precision	23	20	88	83	
Accuracy	98	98	99	99	

How are the Metrics computed?

SBERT vs. SRoBERTa Across Modalities

Comparative metrics Graph for Classification of Labels

Modality 1: Balanced Split

SBERT vs. SRoBERTa Across Modalities

Comparative metrics Graph for Classification of Labels

Modality 2: Dedicated Split

Confusion matrix comparison

Modality 1 - Balanced Split

SBERT

SRoBERTa

Confusion matrix comparison

Modality 2 - Dedicated Split

SBERT

SRoBERTa

What's next?

Enhancing Model Performance and Capabilities

Fine-tuning

- Optimize encoder hyperparameters to enhance the text semantics.
- Focus on retrieval tasks to extract the most relevant IDs and improve recall@k.
- Refine performance by TP > FN, for label predictions.

Integrating Large Language Models

- Combine suitable LLM with the existing model pipeline for advance reasoning-based text generation.
- Leverage *contextual understanding* from the encoder to generate *explanations* for classified labels.

THANK YOU!

Grazie!

ধন্যবাদ

شکریہ

