Real Analysis 1

Forrest Kennedy

February 10, 2025

Contents

Lecture 14: 02-10-25 Lecture

Monday 10 February 2025

Theorem 1. The limit of a sequence, when it exists, is unique.

Proof. Let (a_n) be a sequence and assume that $s, t \in \mathbb{R}$ such that $\lim a_n = s$ and $\lim a_n = t$. Let $\varepsilon > 0$ be arbitrary. As $\lim a_n = s$, hence $\exists N_1 \in \mathbb{N}$ such that $\forall n \geq N_1$, we have $|a_n - s| < \frac{\varepsilon}{2}$. Similarly, as $\lim a_n = t$, $\exists N_2 \in \mathbb{N}$ such that $\forall n \geq N_2$, we have $|a_n - t| < \frac{\varepsilon}{2}$. Let

$$N = \max\{N_1, N_2\} \tag{1}$$

hence $|a_N - s| < \frac{\varepsilon}{2}$ and $|a_N - t| < \frac{\varepsilon}{2}$.

$$|s - t| = |(s - a_N) + (a_N - t)| \tag{2}$$

$$\leq |s - a_N| + |a_N - t| \tag{3}$$

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2} \tag{4}$$

$$=\varepsilon$$
 (5)

$$\Rightarrow |s - t| < \varepsilon \tag{6}$$

As $\varepsilon > 0$ is arbitrary, this implies that s = t

Definition 1. A sequence that does not converge is said to diverge.

Example. Prove that the sequence $a_n = (-1)^n$ diverges.

Note. The strategy for these is to assume that it converges, then show that it must converge to two different numbers.

Proof. Suppose by contradiction, let $L \in \mathbb{R}$ be such that $\lim a_n = L$. Therefore, given $\varepsilon = \frac{1}{2}$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$ we have $|a_n - L| < \frac{1}{2}$. Let

 $n_1 \ge N$ be odd $\Rightarrow |a_n - L| < \frac{1}{2} \Rightarrow |(-1)^{n_1} - L| < \frac{1}{2} \Rightarrow |(-1) - L| < \frac{1}{2}$ as $n_1 + 1 \ge N$ and is even.

$$\Rightarrow |a_{n_1+1} - L| < \frac{1}{2} \Rightarrow |1 - L| < \frac{1}{2} \Rightarrow 2 < 1 \tag{7}$$

a contradiction! \Box

Example. Prove that $\lim_{n \to \infty} \left(\frac{1}{n}\right) \neq 1$

Proof. By contradiction, assume that $\lim \frac{1}{n} = 1$. Then for $\varepsilon = \frac{1}{2}$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$

$$\left|\frac{1}{n} - 1\right| < \frac{1}{2} \tag{8}$$

$$\Rightarrow 1 - \frac{1}{2} < \frac{1}{n} < 1 + \frac{1}{2} \tag{9}$$

$$\Rightarrow \forall n \ge N\left(\frac{1}{2} < \frac{1}{n}\right) \tag{10}$$

By the Archimedean property, $\exists m \in \mathbb{N}$ such that

$$m \ge N \text{ and } \frac{1}{m} < \frac{1}{2}$$
 (11)

(12)

This is a contradiction!

Definition 2. A sequence (x_n) is **bounded** if there exists M > 0 such that $|x_n| \leq M \ \forall n \in \mathbb{N}$.

Theorem 2. Every convergent sequence is bounded.

This is a standard kind of argument that we will see again and again:

Proof. Let $L \in \mathbb{R}$ be such that $\lim x_n = L$. Hence for $\varepsilon = 1$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$ we have

$$|x_n - L| < 1 \tag{13}$$

Therefore, $\forall n \geq N$

$$|x_n| = |x_n - L + L| \tag{14}$$

$$\leq |x_n - L| + |L| \tag{15}$$

$$<|L|+1\tag{16}$$

Let $M=\max\{|x_1|,|x_2|,\ldots,|x_{N-1}|,|L|+1\}>0$. We see that $|x_n|\leq M$ $\forall n\in\mathbb{N}$. Hence (x_n) is bounded. \square

ay 10 February 2025

Lecture 15: Homework 4

1. Let $C\subset (0,1]$ be uncountable. Show that there exists $a\in (0,1)$ such that $C\cap [a,1]$ is uncountable.

Proof.

- 2. Prove the following limits:
 - 1. $\lim \frac{2n+1}{5n+4} = \frac{2}{5}$
 - $2. \lim \frac{5n^2}{n^3 + 2n^2 + 3n + 4} = 0$
 - $3. \lim \frac{\sin(n^2)}{\sqrt{n}} = 0$
 - 4. $\lim \frac{1}{n^2 10} = 0$

Proof.

3. Let $(a_n)_{n=1}^{\infty}$ be a sequence and let $L \in \mathbb{R}$. Show that $a_n = L$ if and only if the sequence $(a_n - L)_{n=1}^{\infty}$ converges to zero.

Proof.

4. Prove that $\lim a_n = 0$ if and only if $\lim |a_n| = 0$.

Proof. \Box

5. If |a| < 1, then prove that $\lim a^n = 0$. (Hint: Use the inequality proved in HW1 namely that for x > -1 we have $(1+x)^n \ge 1 + nx$, for a suitable chosen x).

Proof.