多项式 Poisson 代数

戚天成 ⋈

复旦大学 数学科学学院

2023年10月10日

这份笔记主要用于整理关于多项式 Poisson 代数的 Poisson 结构的相关事实. 以下固定域 \mathbb{R} . 如果多项式代数 $\mathbb{R}[x_1,...,x_n]$ 上有 Poisson 结构 $\{-,-\}$, 那么利用多项式代数的导子性质可知

$$\{f,g\} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \{x_i, x_j\}, \forall f, g \in \mathbb{k}[x_1, ..., x_n],$$

即其 Poisson 结构完全由 Poisson 括号在在未定元集 $\{x_1,...,x_n\}$ 上的作用决定. 这一观察表明

Example 1. 多项式代数 $\mathbb{k}[x]$ 上只有平凡的 Poisson 结构.

Proof. 因为 $\{x, x\} = 0$, 所以 $\{f, g\} = 0, \forall f, g \in \mathbb{k}[x]$.

Example 2 (广义 Jacobian Poisson 结构). 设 $R = \mathbb{k}[x_1, ..., x_n] (n \ge 2)$ 是多项式代数, 给定 $f_3, ..., f_n, u \in R$. 对每个 $f, g \in R$, 定义 $\{f, g\} = J(f, g, f_3, ..., f_n)u$, 其中 $J(f, g, f_3, ..., f_n)$ 表示多项式 $f, g, f_3, ..., f_n$ 的 Jacobian 行列式. 那么 $(R, \{-, -\})$ 是 Poisson 代数, 称该 Poisson 结构为由多项式 $f_3, ..., f_n$ 和 u 给出的广义 Jacobian **Poisson 结构** (简称为 GJPS). 当 u = 1 时,称为 Jacobian **Poisson 结构** (简称 JPS).

Proof. 易知 $\{-,-\}$ 是满足交错性双线性映射, 并且固定第一分量上元素可给出 R 上导子. 括号 $\{-,-\}$ 满足 Jacobi 恒等式通过混合导数的对称性直接计算化简得到. □

Example 3. 多项式代数 R = k[x, y] 上的 Poisson 结构都是由某个多项式 $h \in R$ 决定的 GJPS.

Proof. 若 R 上有 Poisson 括号 $\{-,-\}$, 那么对任何 $f,g \in R$ 有

$$\{f,g\} = \frac{\partial f}{\partial x}\frac{\partial g}{\partial y}\{x,y\} + \frac{\partial f}{\partial y}\frac{\partial g}{\partial x}\{y,x\} = \left(\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x}\right)\{x,y\}.$$

若记 $h = \{x, y\}$, 那么该 Poisson 结构就是由 h 决定的 GJPS. 反之, 已说明 GJPS 是 R 上 Poisson 结构. \square

Basic Observation. 设 $R = \mathbb{k}[x_1, ..., x_n] (n \ge 2)$ 是多项式代数, 设 $h_{ij} = \{x_i, x_j\} \in R (1 \le i, j \le n)$. 如下定义双线性映射 $\{-, -\} : R \times R \to R$:

$$\{f,g\} = \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} h_{ij}, \forall f, g \in R.$$

那么 $(R, \{-, -\})$ 是 Poisson 代数的充要条件是 $(h_{ij})_{n \times n}$ 是 $\mathbf{M}_n(R)$ 中反对称阵并且

$$\{\{x_i, x_j\}, x_k\} + \{\{x_j, x_k\}, x_i\} + \{\{x_k, x_i\}, x_j\} = 0, \forall 1 \le i, j, k \le n.$$

Proof. 根据 $\{-,-\}$ 的定义,固定每个分量它给出 R 上导子. $(h_{ij})_{n\times n}$ 是 $M_n(R)$ 中反对称阵等价于要求 $\{-,-\}$ 是交错的. 通过直接计算可验证后一条件等价于要求 $\{-,-\}$ 满足 Jacobi 等式. □

Example 4. 设 $R = \mathbb{k}[x_1, x_2, x_3], h_{ij} = \{x_i, x_j\} \in R(1 \le i, j \le 3).$ 定义 R 上双线性映射 $\{-, -\}$:

$$\{f,g\} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \{x_i, x_j\}, \forall f, g \in R.$$

那么 $\{-,-\}: R \times R \to R$ 给出 R 上 Poisson 结构当且仅当 $(h_{ij})_{3\times 3}$ 是 $\mathrm{M}_3(R)$ 中的反对称矩阵并且

$$\frac{\partial h_{12}}{\partial x_1}h_{13} + \frac{\partial h_{12}}{\partial x_2}h_{23} - \frac{\partial h_{23}}{\partial x_2}h_{12} - \frac{\partial h_{23}}{\partial x_3}h_{13} - \frac{\partial h_{13}}{\partial x_1}h_{12} + \frac{\partial h_{13}}{\partial x_3}h_{23} = 0.$$

Example 5. 设 $R = \mathbb{k}[x_1, x_2, x_3]$, 通过 $\{x_1, x_2\} = 0, \{x_1, x_3\} = x_1, \{x_2, x_3\} = x_2$ 可赋予 R 上 Poisson 结构.

参考文献

[LWW15] J. Luo, S.-Q. Wang, and Q.-S. Wu. Twisted poincaré duality between poisson homology and poisson cohomology. *Journal of Algebra*, 442:484–505, 2015.