13 函数综合'(难题)

高一(6) 班 邵亦成 26 号

2021年12月15日

- 1. 称满足以下条件的函数 f(x) 为 P_k 函数: 从定义域 D 中任取 x, 总存在唯一的 $y_0 \in D$ 满足 $f(x)+f(y_0) = 2k(k \in \mathbb{R})$. 根据该定义,以下命题中所有真命题的序号为?.
 - (1) 若 $f(x), x \in D$ 是 P_0 函数, 则 $\forall x \in D : -x \in D$.

错误. 考虑 $f(x)=0,x\in\{1\}$. 显然 f(x) 是 P_0 函数, 但 $1\in D,-1\notin D$. 事实上, P 性质与定义域 无必然联系, 但和值域 R 有必然联系: $\forall x\in R: 2k-x\in R$ 是函数 $y=f(x),x\in D$ 为 P_k 函数的必要条件.

(2)
$$y = \frac{1-4x}{2x-3}$$
 是 P_{-2} 函数.

正确.

(3)
$$y = \frac{2x^2 + 2x + 1}{x}$$
 是 P_2 函数.

错误. 显然可化简为 $y = 2x + 2 + \frac{1}{x}$,

显然存在一个 y 对应两个 x, 故不存在唯一的 y_0 .

(4)
$$y = |x-2| - |x+2| + 2 \not\equiv P_1$$
 函数.

错误.

显然存在一个 y 对应多个 x, 故不存在唯一的 y_0 .

(5) 若
$$y = x + \frac{3}{x}, x \in (-\infty, -a) \cup (a, +\infty)$$
 为 P_0 函数, 则 $a \ge \sqrt{3}$.

正确.

事实上, 函数 $y = f(x), x \in D$ 为 P_k 函数的充要条件是 f(D) 关于 k 对称且 y = f(x) 在 D 上存在反函数.

2. 已知函数

$$f(x) = \begin{cases} x+2, & x < 0, \\ x^2 + \frac{1}{2}x, & x \ge 0, \end{cases}$$

讨论方程 $f(f(x)) = t(t \in \mathbb{R})$ 的解的个数.

法一: 暴力复合

考虑 x < -2 < 0, 有 f(x) = x + 2 < 0, 故 f(f(x)) = f(x + 2) = x + 4.

考虑
$$-2 \le x < 0$$
, 有 $f(x) = x + 2 \ge 0$, 故 $f(f(x)) = f(x+2) = x^2 + \frac{9}{2}x + 5$.

考虑
$$-2 < 0 \le x$$
, 有 $f(x) = x^2 + \frac{1}{2}x > 0$, 故 $f(f(x)) = f\left(x^2 + \frac{1}{2}x\right) = x^4 + x^3 + \frac{1}{4}x^2 + \frac{1}{2}x^2 + \frac{1}{4}x = x^4 + x^3 + \frac{3}{4}x^2 + \frac{1}{4}x$.

故有

$$f(f(x)) = \begin{cases} x+4, & x < -2, \\ x^2 + \frac{9}{2}x + 5, & -2 \le x < 0, \\ x^4 + x^3 + \frac{3}{4}x^2 + \frac{1}{4}x, & x \ge 0. \end{cases}$$

绘制 y = f(f(x)) 的图像如下图:

故 $t \in (-\infty, 0) \cup [5, +\infty)$, 1 解; $t \in [2, 5)$, 2 解; $t \in [0, 2)$, 3 解.

法二: 先考虑外函数的解, 后考虑内函数的解

考虑外函数 f(g) = t 的解.

- 1° $t \ge 5$, f(g) = t 有唯一解 $g \perp g \ge 2$, 则方程 f(x) = g 同样也具有唯一解.
- 2° $2 \le t < 5$, f(g) = t 有唯一解 $g \perp 0 < g < 2$, 则方程 f(x) = g 有两解.
- 3° $0 \le t < 2$, f(g) = t 有两解 g_1, g_2 且 $0 \le g_1 < 2, -2 \le g_2 < 0$, 则方程 $f(x) = g_1$ 有两解, 方程 $f(x) = g_2$ 有唯一解, 共三解.
- $4^{\circ} t < 0, f(g) = t$ 有唯一解 g 且 g < -2, 则方程 f(x) = g 同样也具有唯一解.

故 $t \in (-\infty, 0) \cup [5, +\infty)$, 1 解; $t \in [2, 5)$, 2 解; $t \in [0, 2)$, 3 解.