Mathematical Statistics2 Tutoring8

Seung Bong Jung

Seoul National University

December 1, 2021

Properties of Normal Distribution

- Suppose that $X \sim N(\mu, \sigma^2 I)$, and let A and B be real symmetric and idempotent matrices. If AB=0, then, X^tAX and X^tBX are independent.
- Suppose that $Z \sim N(0,I)$, and let A and B be real symmetric matrices. Then, Z^tAZ and Z^tBZ are independent if and only if AB=0.

Fisher-Cochran Theorem

Assume that $Z \sim N(0,I).$ Then, the following three conditions are equivalent.

- Z^tAZ and Z^tBZ are independent $\chi^2(r_1)$ and $\chi^2(r_2)$ random variables, respectively.
- $Z^t(A+B)Z \sim \chi^2(r)$ and $r = \operatorname{rank}(A) + \operatorname{rank}(B)$.
- $Z^t(A+B)Z \sim \chi^2(r)$, $z^tAz \sim \chi^2(r_1)$ and B is nonnegative definite.

Noncentral Chi-Square Distributions

Let Y be a random variable. The distribution of Y is called chi-square distribution with degree of freedom k and noncentrality parameter δ , denoted by $\chi^2(k;\delta)$, if one of the following equivalent conditions is met.

- $Y \stackrel{d}{\sim} \sum_{i=1}^k Z_i^2$, where Z_i are i.i.d. $N(\mu_i,1)$ and $\delta = \sum_{i=1}^k \mu_i^2$.
- $\operatorname{mgf}_Y(t) = (1-2t)^{-k/2} \exp(\delta t/(1-2t))$, t < 1/2;
- $\operatorname{cgf}_Y(t) = \sum_{r=1}^{\infty} (t^r/r!) 2^{r-1} (r-1)! (n+r\delta);, \ t < 1/2;$
- $Y\stackrel{d}{=}V+Z^2$, where $V\sim \chi^2(k-1)$ and $Z\sim N(\theta,1)$ are independent and $\theta^2=\delta$;
- $\operatorname{pdf}_Y(y) = \sum_{j=0}^\infty \operatorname{pdf}_{\mathcal{P}(\delta/2)}(j) \cdot \operatorname{pdf}_{\chi^2(k+2j)}(y)$, where $\mathcal{P}(\delta/2)$ denotes the $\operatorname{Poisson}(\delta/2)$ distribution.

Noncentral t and F Distributions

- Noncentral t distribution: The distribution of Y is called noncentral t distribution with degree of freedom k and noncentrality parameter δ , denoted by $t(k;\delta)$, if $Y\stackrel{d}{=} Z/\sqrt{V/k}$, where $Z\sim N(\delta,1)$ and $V\sim \chi^2(k)$ are independent.
- Noncentral F distribution: The distribution of Y is called noncentral F distribution with degrees of freedom k_1 and k_2 and noncentrality parameter $\delta>0$, denoted by $F(k_1,k_2;\delta)$, if $Y\stackrel{d}{=} V_1/k_1/(V_2/k_2)$, where $V_1\sim \chi^2(k_1;\delta)$ and $V_2\sim \chi^2(k_2)$ are independent.

Distribution of Quadratic Forms: $N(\mu, I)$ Case

Suppose that Z is d-variate $N(\mu,I)$ random vector. Let A be a real symmetric matrix. Then, $Z^tAZ \sim \chi^2(r;\delta)$ if and only if $A^2=A$, $r={\rm trace}(A)$ and $\delta=\mu^tA\mu$.

LRT in One-Way Classification Model

Assume that we observe independent $X_{ij} \sim N(\mu_i, \sigma^2)$ for $j = 1, \dots, n_i$; $i = 1, \dots, b$. Let $n = n_1 + \dots + n_b$. We wish to test

$$H_0: \mu_1 = \cdots = \mu_b$$
 versus $H_1:$ not H_0 .

• MLE under the full model:

$$\hat{\mu}_i = \bar{X}_{i\cdot}, \hat{\sigma}^2 = SSW/n,$$

where
$$SSW = \sum_{i,j} (X_{ij} - \bar{X}_{i\cdot})^2$$
.

• MLE under H₀:

$$\hat{\mu}_i \equiv \bar{X}_{...}, \hat{\sigma}^2 = \sum_{i,j} (X_{ij} - \bar{X}_{...})^2 / n = (SSW + SSB) / n,$$

where
$$SSB = \sum_{i,j} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$$
.

LRT in One-Way Classification Model

LRT statistic:

$$2\left(\ell(\hat{\theta}^{\Theta}) - \ell(\hat{\theta}^{\Theta_0})\right) = n\log(1 + SSB/SSW).$$

• Null distribution of LRT statistic: Under H_0 ,

$$\frac{SSB/(b-1)}{SSW/(n-b)} \sim F(b-1, n-b).$$

• The level α LRT rejects H_0 if

$$\frac{SSB/(b-1)}{SSW/(n-b)} > F_{\alpha}(b-1, n-b).$$

LRT in One-Way Classification Model

Reparametrization: Let $\mu_i=\mu+\alpha_i$ in the one-way classification model, where $\mu=\sum_{i=1}^b n_i\mu_i/n$, $\alpha_i=\mu_i-\mu$.

The model is then expressed as

$$X_{ij} = \mu + \alpha_i + e_{ij}, e_{ij}$$
 are i.i.d. $N(0, \sigma^2)$

with α_i satisfying $\sum_{i=1}^b n_i \alpha_i = 0$. The hypothesis $H_0: \mu_1 = \cdots = \mu_b$ is then equivalent to $H_0: \alpha_1 = \cdots = \alpha_b = 0$.

Confidential Region and Simultaneous Confidence Interval in One-Way Classification Model

Suppose C is $k\times r$ (k>r) real matrix with full-rank and denote the column space of C by $\mathcal{C}(C)$. Let $D=\mathrm{Var}_{\mu,\sigma^2}(\hat{\mu})/\sigma^2=\mathrm{diag}(1/n_i)$. Then the followings hold in One-Way Classification Model.

(1)
$$P_{\mu,\sigma^2}\{(C^t\mu - C^t\hat{\mu})^t(C^tDC)^{-1}(C^t\mu - C^t\hat{\mu}) \le p\hat{\sigma}^2F_{\alpha}(r,n-k)\}$$

= $1 - \alpha$

(2)
$$P_{\mu,\sigma^2} \left\{ |c^t \mu - c^t \hat{\mu}| \le \sqrt{\sum_{i=1}^k c_i \hat{\sigma}^2 / n_i} \sqrt{r F_\alpha(r, n-k)}, \forall c \in \mathcal{C}(C) \right\}$$
$$= 1 - \alpha$$

Simultaneous Confidence Interval for the Contrast in One-Way Classification Model

Let $\alpha_i = \mu_i - \bar{\mu}$ and $\alpha^* = \alpha/m$ for m = k(k-1)/2.

(1)
$$P_{\mu,\sigma^2}\{|c^t\alpha - c^t\hat{\alpha}| \le \sqrt{\sum_{i=1}^k c_i^2\hat{\sigma}^2/n_i}\sqrt{(k-1)F_{\alpha}(k-1,n-k)},$$

 $\forall c: c_1 + \dots + c_k = 0\} = 1 - \alpha$

(2)
$$P_{\mu,\sigma^2}\{|(\alpha_i - \alpha_j) - (\hat{\alpha}_i - \hat{\alpha}_j)| \le \sqrt{(n_i^{-1} + n_j^{-1})\hat{\sigma}^2}$$

 $\sqrt{(k-1)F_{\alpha}(k-1,n-k)}, \forall i \ne j\} \ge 1 - \alpha$

(3)
$$P_{\mu,\sigma^2}\{|(\alpha_i - \alpha_j) - (\hat{\alpha}_i - \hat{\alpha}_j)| \le \sqrt{(n_i^{-1} + n_j^{-1})\hat{\sigma}^2} t_{\alpha^*/2}(n - k)$$

, $\forall i \ne j\} \ge 1 - \alpha$

Power of LRT in One-Way Classification Model

Under H_1 , $Z_{ij} \equiv X_{ij}/\sigma \sim N((\mu + \alpha_i)/sigma, 1)$.

- Distribution of SSW: $SSW/\sigma^2 \sim \chi^2(n-b)$.
- Distribution of SSB: $SSB/\sigma^2 \sim \chi^2(b-1;\delta)$.
- ullet Distribution of test statistic: Under H_1 , the test statistic

$$F \equiv \frac{SSB/(b-1)}{SSW/(n-b)} \sim F(b-1, n-b; \delta).$$

• Power function $\gamma(\delta) \equiv P(F \geq F_{\alpha}(b-1,n-b))$. The power function $\gamma(\delta)$ is non-decreasing in δ .

Assume that we observe X_{ij} , $1 \le i \le a$, $1 \le j \le b$ such that

$$X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij},$$

where ϵ_{ij} are i.i.d. $N(0,\sigma^2)$, and α_i and β_j are unknown constants that add up to zero, i.e., $\sum_{i=1}^a \alpha_i = 0 = \sum_{j=1}^b \beta_j$. We wish to test

$$H_0: \alpha_1 = \cdots = \alpha_a = 0$$
 versus $H_1:$ not H_0 .

Log-likelihood:

$$\ell(\theta) = -\frac{1}{2\sigma^2} \sum_{i,j} (x_{ij} - \mu - \alpha_i - \beta_j)^2 - \frac{ab}{2} \log(2\pi\sigma^2).$$

• MLE under the full model:

$$\begin{split} \hat{\mu} &= \bar{X}_{..}, \hat{\alpha}_{i} = \bar{X}_{i.} - \bar{X}_{..}, \hat{\beta}_{j} = \bar{X}_{.j} - \bar{X}_{..}, \\ \hat{\sigma}^{2} &= \sum_{i,j} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^{2} / ab \stackrel{\text{let}}{=} \mathsf{SS}_{AB} / ab. \end{split}$$

• MLE under H₀:

$$\begin{split} \hat{\mu} &= \bar{X}_{...}, \hat{\alpha}_i = 0, \hat{\beta}_j = \bar{X}_{.j} - \bar{X}_{...}, \\ \hat{\sigma}^2 &= \sum_{i,j} (X_{ij} - \bar{X}_{.j})^2 / ab \\ &= \sum_{i,j} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2 / ab + \sum_{i,j} (\bar{X}_{i.} - \bar{X}_{..})^2 / ab \\ &\stackrel{\text{let}}{=} (\mathsf{SS}_{AB} + \mathsf{SS}_A) / ab. \end{split}$$

LRT statistic:

$$2\left(\ell(\hat{\theta}^{\Theta}) - \ell(\hat{\theta}^{\Theta_0})\right) = ab \cdot \log\left(1 + \frac{\mathsf{SS}_A}{\mathsf{SS}_{AB}}\right).$$

ullet Null distribution of LRT statistic: Under H_0

$$\frac{\mathsf{SS}_A/(a-1)}{\mathsf{SS}_{AB}/(a-1)(b-1)} \sim F(a-1,(a-1)(b-1)).$$

• The level α LRT rejects H_0 if

$$\frac{\mathsf{SS}_A/(a-1)}{\mathsf{SS}_{AB}/(a-1)(b-1)} > F_\alpha(a-1,(a-1)(b-1)).$$

Assume that we observe X_{ijk} , $1 \le i \le a$, $1 \le j \le b$, $1 \le k \le r$ such that

$$X_{ijjk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

where ϵ_{ijk} are i.i.d. $N(0,\sigma^2)$, and α_i , β_j and γ_{ij} are unknown constants with $\sum_{i=1}^a \alpha_i = 0 = \sum_{j=1}^b \beta_j$ and $\sum_{i=1}^a \gamma_{ij} = 0 = \sum_{j=1}^b \gamma_{ij}$. We wish to test

$$H_0: \gamma_{ij} \stackrel{i,j}{=} 0$$
 versus $H_1:$ not H_0 .

Log-likelihood:

$$\ell(\theta) = -\frac{1}{2\sigma^2} \sum_{i,j,k} (x_{ijk} - \mu - \alpha_i - \beta_j - \gamma_{ij})^2 - \frac{abr}{2} \log(2\pi\sigma^2).$$

• MLE under the full model:

$$\begin{split} \hat{\mu} &= \bar{X}_{...}, \hat{\alpha}_i = \bar{X}_{i..} - \bar{X}_{...}, \hat{\beta}_j = \bar{X}_{.j.} - \bar{X}_{...}, \\ \hat{\gamma}_{ij} &= \bar{X}_{ij.} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}_{...}, \\ \hat{\sigma}^2 &= \sum_{i,j,k} (X_{ijk} - \bar{X}_{ij.})^2 / (abr) \stackrel{\text{let}}{=} \text{SSW} / (abr). \end{split}$$

• MLE under H_0 :

$$\begin{split} \hat{\mu} &= \bar{X}..., \hat{\alpha}_i = \bar{X}_{i..} - \bar{X}..., \hat{\beta}_j = \bar{X}_{.j.} - \bar{X}..., \\ \hat{\sigma}^2 &= \sum_{i,j,k} (X_{ijk} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}...)^2 / (abr) \\ &= \sum_{i,j,k} (X_{ijk} - \bar{X}_{ij.})^2 / (abr) + \sum_{i,j,k} (\bar{X}_{ij.} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}...)^2 / (abr) \\ &\stackrel{\text{let}}{=} (\text{SSW} + \text{SS}_{AB}) / (abr). \end{split}$$

LRT statistic:

$$2\left(\ell(\hat{\theta}^{\Theta}) - \ell(\hat{\theta}^{\Theta_0})\right) = abr \cdot \log\left(1 + \frac{\mathsf{SS}_{AB}}{\mathsf{SSW}}\right).$$

ullet Null distribution of LRT statistic: Under H_0

$$\frac{\mathsf{SS}_{AB}/(a-1)(b-1)}{\mathsf{SSW}/ab(r-1)} \sim F((a-1)(b-1), ab(r-1)).$$

• The level α LRT rejects H_0 if

$$\frac{\mathsf{SS}_{AB}/(a-1)(b-1)}{\mathsf{SSW}/ab(r-1)} > F_{\alpha}((a-1)(b-1), ab(r-1)).$$

For the hypothesis

$$H_0: \alpha \stackrel{i}{\equiv} 0$$
 versus $H_1:$ not H_0 ,

you may also prove that the level lpha LRT rejects H_0 if

$$\frac{\mathsf{SS}_A/(a-1)}{\mathsf{SSW}/ab(r-1)} > F_{\alpha}(a-1,ab(r-1)),$$

where $\mathsf{SS}_A = \sum_{i,j,k} (\bar{X}_{i\cdots} - \bar{X}_{\cdots})^2$.

ANOVA Table for Two-Way Classification Model

Source	SS	df	MS	F ratio
$A \times B$	SS_{AB}	(a-1)(b-1)	MS_{AB}	MS_{AB}/MSE
A	SS_A	a-1	MS_A	MS_A/MSE
В	SS_B	b-1	MS_B	MS_B/MSE
Error	SSW	ab(r-1)	MSE	
Total	SST	abr-1		

Here, SS and MS (=SS/df) stand for the sum of squares and the mean of squares, respectively, and SST = $\sum_{i,j,k} (X_{ijk} - \bar{X}...)^2$.

Note: The so-called interaction effect $A \times B$ explains the "variation" due to possible non-additivity of the effects A and B.

Power of LRT for Interaction in Two-Way Classification Model

We consider the hypothesis

$$H_0: \gamma_{ij} \stackrel{i,j}{\equiv} 0 \text{ versus } H_1: \text{ not } H_0.$$

Under H_1 , $Z_{ijk} \equiv X_{ijk}/\sigma \sim N((\mu + \alpha_i + \beta_j + \gamma_{ij})/\sigma, 1)$.

- Distribution of SSW: SSW/ $\sigma^2 \sim \chi^2(ab(r-1))$.
- Distribution of SS_{AB}: SS_{AB}/ $\sigma^2 \sim \chi^2((a-1)(b-1);\delta)$.
- ullet Distribution of test statistic: Under H_1 , the test statistic

$$F \equiv \frac{\mathsf{SS}_{AB}/(a-1)(b-1)}{\mathsf{SSW}/ab(r-1)} \sim F((a-1)(b-1), ab(r-1); \delta).$$

• Power function: $\gamma(\delta) \equiv P(F \geq F_{\alpha}((a-1)(b-1), ab(r-1)))$. The power function $\gamma(\delta)$ is non-decreasing in δ .