APPLIED STATISTICAL ANALYSIS I Multiple linear regression

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

November 8, 2023

Today's Agenda

- (1) Lecture recap
- (2) Monte Carlo simulation
- (3) Tutorial exercises: What is the relationship between education and Euroscepticism?

Why do we need multiple linear regression? And what is a multiple linear regression model?

Why do we need multiple linear regression?

```
\begin{array}{ccc} \text{Working} & & + & \\ \text{Hours} & & & \\ \end{array} \xrightarrow{\text{Political}} \text{Knowledge}
```

```
## Call:
## lm(formula = polknow ~ work_hours, data = samp)
## Residuals:
      Min
             10 Median
## -7.686 -1.760 -0.061 1.683 10.385
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.59166    1.09142    13.369    <2e-16 ***
## work hours 0.06791
                          0.02640 2.572
                                            0.0103 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.565 on 998 degrees of freedom
## Multiple R-squared: 0.006585, Adjusted R-squared: 0.00559
## F-statistic: 6.615 on 1 and 998 DF, p-value: 0.01025
```

How convincing is this finding?

Why do we need multiple linear regression?

Figure: Education as confounder—Controlling for education is relevant, because it might drive both working hours and political knowledge. Education is causally prior to working hours.

 \rightarrow Avoid omitted variable bias. Include relevant control variables (Z) which are correlated with both X and Y, and causally prior to X.

Why do we need multiple linear regression?

Figure 9.2. Venn diagram in which *X* and *Z* are correlated with *Y*, but not with each other.

"In that case – which, we have noted, is unlikely in applied research – we can safely omit consideration of Z when considering the effects of X on Y. In that figure, the relationship between X and Y – the area b – is unaffected by the presence (or absence) of Z in the model" (Kellstedt and Whitten 2018, 213).

Why do we need multiple linear regression?

Figure 9.1. Venn diagram in which *X*, *Y*, and *Z* are correlated.

"If, hypothetically, we erased the circle for Z from the figure, we would (incorrectly) attribute all of the area b+d to X, when in fact the d portion of the variation in Y is shared by both X and Z. This is why, when Z is related to both X and Y, if we fail to control for Z, we will end up with a biased estimate of X's effect on Y" (Kellstedt and Whitten 2018, 212).

What is a multiple linear regression model?

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon_i$$

- α (intercept): expected value of Y when $X_1 = 0$, ..., $X_k = 0$.
- β_1 (coefficient): expected change in Y when X_1 increases by one unit, while controlling for the remaining independent variables in the model.
- ...
- β_k (coefficient): expected change in Y when X_k increases by one unit, while controlling for the remaining independent variables in the model.

What is a multiple linear regression model?

```
## Call:
## lm(formula = polknow ~ work_hours + edu, data = samp)
## Residuals:
     Min
              10 Median
                                    Max
## -6.7835 -1.6733 0.0035 1.5941 10.6778
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.854461 1.368601 3.547 0.000408 ***
## work hours 0.006205 0.025623 0.242 0.808714
              0.767650 0.070797 10.843 < 2e-16 ***
## edu
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.427 on 997 degrees of freedom
## Multiple R-squared: 0.1114. Adjusted R-squared: 0.1096
## F-statistic: 62.48 on 2 and 997 DF. p-value: < 2.2e-16
```

The effect of working hours disappears.

→ Controlling for working hours, with every additional year of education, the political knowledge increases by 0.76765 scale points.

What is the reference category?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i$

Dummy variables should take value 0 and 1 for easy interpretation \rightarrow Re-code existing variables.

```
# Import data from Quality of Government dataset
qog_data <- read.csv("qog_bas_cs_jan21.csv")

# Generate dummy variable for regime type as factor variable - democracy
# vdem_polyarchy ranges between 0 and 1; cutoff at 0.7

# Countries with score equal or above 0.7 are democracies, those below autocracies
qog_data$democracy <- factor(ifelse(qog_data$vdem_polyarchy >= 0.7, 1, 0))

# Define levels of democracy in factor variable
levels(qog_data$democracy) <- c("Autocracy", "Democracy")

# Summarize generated dummy variable
summary(qog_data$democracy)</pre>
```

```
## Autocracy Democracy NA's ## 119 54 21
```

```
# Generate dummy variable for regime type as factor variable — autocracy qog_data$autocracy <- factor(ifelse(qog_data$vdem_polyarchy < 0.7, 1, 0))

# Define levels of autocracy in factor variable levels(qog_data$autocracy) <- c("Democracy", "Autocracy")

# Print first 10 rows in dataset head(qog_data[c("democracy", "autocracy")], 10)
```

	democracy	autocracy
1	O Autocracy	1 Autocracy
2	O Autocracy	1 Autocracy
3	O Autocracy	1 Autocracy
4	<na></na>	<na></na>
5	O Autocracy	1 Autocracy
6	<na></na>	<na></na>
7	O Autocracy	1 Autocracy
8	1 Democracy	O Democracy
9	1 Democracy	O Democracy
10	1 Democracy	O Democracy

What happens if we run:

Environmental Performance_i = $\alpha + \beta_1 Democracy_i + \beta_2 Autocracy_i + \epsilon_i$

Environmental Performance_i = $\alpha + \beta_1$ Democracy_i + β_2 Auocracy_i + ϵ_i

```
# Fit regression model
ml_trap <- lm(epi_epi ~ democracy + autocracy, data = qog_data)

# Print results
summary(ml_trap)</pre>
```

```
lm(formula = epi epi ~ democracy + autocracy, data = gog data)
Residuals:
   Min
            10 Median
                                 Max
-34.107 -8.860 -0.610 9.293 26.190
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
             39.610
                        1.138
                             34.80 <2e-16 ***
(Intercept)
democracv1
             22.098
                        2.002
                              11.04 <2e-16 ***
autocracv1
                NΑ
                                  NΑ
                                          NΑ
                           NΑ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Violates assumption of no perfect multicollinearity (essentially a data problem) \rightarrow One category needs to be excluded = reference category. Interpretation of the model is relative to the reference category.

How to include binary independent variables in multiple linear regression?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$

```
## Call:
## lm(epi epi ~ democracy + income, data = gog data)
## Residuals:
      Min
               10 Median
                                     Max
## -53.563 -6.502 0.498 6.773 20.198
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    35.3027
                                 1.1269 31.327 < 2e-16 ***
## democracyDemocracy 16.5270 1.8409 8.978 9.08e-16 ***
## income
                      3.5793 0.4266 8.390 2.92e-14 ***
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' ' 1
## Residual standard error: 9.982 on 154 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6175, Adjusted ## R-squared: 0.6126
## F-statistic: 124.3 on 2 and 154 DF, p-value: < 2.2e-16
```

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

$$\hat{Y}_i = \alpha + \beta_1 * \textit{Regime Type}_i + \beta_2 * \textit{Income}_i$$

Model for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model for Democracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 51.83 + (3.579 * Income_i)$

How to select the reference category?

How to select the reference category?

```
1 # Run regression model with democracy variable
 m1_dem <- Im(epi_epi ~ income + democracy, data = gog_data)
 # Run regression model with autocracy variable
 ml_aut <- Im(epi_epi ~ income + autocracy, data = qog_data)
 # Get regression table with stargazer
8 stargazer(ml_dem, ml_aut)
```

	Depende	ent variable:
	ep	oi_epi
	(1)	(2)
income	3.579***	3.579***
	(0.427)	(0.427)
democracy1		, ,
•		
autocracy1	,	-16.527***
,		(1.841)
Constant	nstant 35.303*** 5	51.830***
(1.1	(1.127)	(1.892)
Observations	157	157
R^2	0.618	0.618
Adjusted R ²	0.613	0.613
F Statistic (df = 2; 154)	124.331***	124.331***
Note:	*p<0.1; **p<	(0.05; ***p<0.01

How to select the reference category?

Model 1 for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model 2 for Autocracies:

$$\hat{Y}_i = 51.830 + (-16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 51.830 + (-16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

→ Mathematically identical models.

How do we select the reference category?

How to select the reference category?

```
1 # Run regression model with democracy variable
2 m1 <- lm(epi_epi ~ income + democracy, data = qog_data)
3
4 # Get regression table with stargazer
5 stargazer(m1)</pre>
```

	Dependent variable:	
	epi_epi	
emocracy1	16.527***	
	(1.841)	
ncome	3.579***	
	(0.427)	
Constant	35.303***	
	(1.127)	
bservations	157	
²	0.618	
Adjusted R ²	0.613	
Statistic (df $= 2$; 154)	124.331***	

Note: *p<0.1; **p<0.05; ***p<0.01

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

How to include categorical independent variables with more than two levels?

School enrollment rate = $\alpha + \beta_1 Democracy_i + \beta_2 Region_{EE} + \beta_3 Region_{LA} + \beta_4 Region_{MENA} + \beta_5 Region_{Sub-Saharan} + \epsilon_i$

- → Include binary/dummy variables for all levels minus (=reference category).
- α (intercept): expected value of Y when $X_k = 0$
- β (coefficient): expected change in Y for X=1, in comparison to reference category

 \rightarrow Convert into factor variable, then R automatically generates dummy variables, with first level as reference category (or change with relevel-function).

```
1 # Code dummy variables on the fly
2 # specify region Sub-Saharan Africa = reference category
3 Im <- Im(primary_ser ~ democracy + relevel(as.factor(region), ref="Sub-Saharan</p>
        Africa"), data = paglayan2021)
4
  # Print model output
6 summary (lm)
  Call:
  lm(formula = primary_ser ~ democracy + relevel(as.factor(region),
      ref = "Sub-Saharan Africa"), data = paglayan2021)
  Coefficients:
                                                           Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                                                            48.060
                                                                        1.796 26.754 < 2e-16 ***
  democracy
                                                            41 291
                                                                        1.351 30.557 < 2e-16 ***
  ref = "Sub-Saharan Africa") Advanced Economies
                                                             3.063
                                                                        2.143 1.429 0.153007
  ref = "Sub-Saharan Africa") Asia and the Pacific
                                                            -9.101
                                                                        2 437 -3 734 0 000192 ***
  ref = "Sub-Saharan Africa")Eastern Europe
                                                            12 991
                                                                        2.825 4.599 4.46e-06 ***
  ref = "Sub-Saharan Africa")Latin America and the Caribbean
                                                           -13.090
                                                                        2.073 -6.315 3.20e-10 ***
  ref = "Sub-Saharan Africa")Middle East and North Africa
                                                             4.389
                                                                        2.695
                                                                               1.629 0.103515
```

Under control of regime type, Eastern Europe has a student enrollment rate of 12.991 percentage points higher than Sub-Saharan Africa.

Education (X)
$$\xrightarrow{-}$$
 Euroscepticism (Y)

*Hypothesis*₁: The higher the years of education, the lower the level of Euroscepticism.

*Hypothesis*₂: The higher the income, the lower the level of Euroscepticism. \rightarrow Economic dimension

*Hypothesis*₃: The higher the trust in politics, the lower the level of Euroscepticism. \rightarrow Political dimension

*Hypothesis*₃: The more positive attitudes towards immigration, the lower the level of Euroscepticism. \rightarrow Cultural dimension

References I

Kellstedt, Paul M., and Guy D. Whitten. 2018. *The fundamentals of political science research*. Cambridge: Cambridge University Press.