Algebraic Structures (11)

- 7.1 Algebraic structures with one binary operation: semigroup, monoids and groups
- 7.2 Cyclic groups, Normal subgroups
- 7.3 Hamming Code , Minimum Distance
- 7.4 Group codes ,encoding-decoding techniques
- 7.5 Parity check Matrix , Maximum Likelihood
- 7.6 Mathematics of Cryptography Modular Arithmetic, Matrices, Linear Congruence, GF Fields, Primes and Related Congruence Equations- Primes, Primality Testing, Factorization, Quadratics Congruence, Chinese reminder theorem, Exponentiation and Logarithm.

Algebraic systems

■ N = $\{1,2,3,4,....\infty\}$ = Set of all natural numbers.

$$Z = \{ 0, \pm 1, \pm 2, \pm 3, \pm 4, \dots, \infty \} = Set of all integers.$$

Q = Set of all rational numbers, R = Set of all real numbers.

Binary Operation: The binary operator * is said to be a binary operation
 (closed operation) on a non empty set A, if

 $a * b \in A$ for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.

Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: (N, +), (Z, +, -), $(R, +, \cdot, -)$ are algebraic systems.

Properties

- Commutative: Let * be a binary operation on a set A.
 - The operation * is said to be commutative in A if
 - a * b= b * a for all a, b in A
- Associativity: Let * be a binary operation on a set A.

The operation * is said to be associative in A if

$$(a * b) * c = a * (b * c)$$
 for all a, b, c in A

(Addition, Subtraction)

- Idempotent: Let * be a binary operation on a set A.
 - The operation * is said to be idempotent in A if
 - a * a = a
- **Identity:** For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if
 - a*e=e*a=a for all $a \in A$.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

Semi group

- **Semi Group:** An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- \blacksquare Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- Ex. (N, −) is not a semi group.
- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- Ex. Show that the set 'N' is a monoid with respect to multiplication.
- <u>Solution</u>: Here, N = {1,2,3,4,.....}
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.
 - i.e., a.b = b.a for all a,b \in N
 - ... Multiplication is a closed operation.
 - 2. Associativity: Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c
$$\in$$
 N

3. Identity: We have, $1 \in \mathbb{N}$ such that

$$a.1 = 1.a = a$$
 for all $a \in N$.

... Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid

Subsemigroup: Let (S, *) be a semigroup and let T be a subset of S.

If T is closed under operation *, then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid : Let (S, *) be a monoid with identity e, and let T be a non-empty subset of S. If T is closed under the operation * and $e \in T$, then (T, *) is called a submonoid of (S, *).

Group

- Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be abelian (or commutative) if a * b = b * a for all a, b belongs to G.

Algebraic systems

Theorems –Self Study

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \implies b = c (left cancellation law)

a * c = b * c \implies a = b (Right cancellation law)

4. (a * b)^{-1} = b^{-1} * a^{-1}
```

- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

Ex. Show that, the set of all integers is a group with respect to **addition**.

■ Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. **Closure property**: We know that, Sum of two integers is again an integer.

i.e.,
$$a + b \in Z$$
 for all $a,b \in Z$

2. Associativity: We know that addition of integers is associative.

i.e.,
$$(a+b)+c = a+(b+c)$$
 for all $a,b,c \in Z$.

3. <u>Identity</u>: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.

.: Identity element exists, and '0' is the identity element.

.

Contd.,

4. <u>Inverse</u>: To each $a \in Z$, we have $-a \in Z$ such that

$$a + (-a) = 0$$

Each element in Z has an inverse

■ 5. **Commutativity:** We know that addition of integers is commutative.

i.e.,
$$a + b = b + a$$
 for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

Ex. Show that set of all non zero real numbers is a group with respect to multiplication.

- Solution: Let R^* = set of all non zero real numbers. Let a, b, c are any three elements of R^* .
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.

i.e., $a \cdot b \in R^*$ for all $a,b \in R^*$.

2. <u>Associativity</u>: We know that multiplication of real numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c $\in R^*$.

- 3. Identity: We have $1 \in R^*$ and a 1 = a for all $a \in R^*$.
 - ... Identity element exists, and '1' is the identity element.
- 4. <u>Inverse</u>: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

Contd.,

5.<u>Commutativity</u>: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
```

Hence, (R*, .) is an abelian group.

- **Ex:** Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Modulo systems

Addition modulo m $(+_m)$

let m be a positive integer. For any two positive integers a and b

$$a +_m b = a + b$$
 if $a + b < m$

$$a +_m b = r$$
 if $a + b \ge m$ where r is the remainder obtained by dividing (a+b) with m.

Ex
$$14 +_6 8 = 22 \% 6 = 4$$
 ; Ex $9 +_{12} 3 = 12 \% 12 = 0$

Multiplication modulo $p (x_p)$

let p be a positive integer. For any two positive integers a and b

$$a \times_{p} b = ab$$
 if $ab < p$

$$a \times_p b = r$$
 if $a b \ge p$ where r is the remainder obtained by dividing (ab) with p.

Ex.
$$3 \times_5 4 = 2$$
 , $5 \times_5 4 = 0$, $2 \times_5 2 = 4$

Ex.The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

+6	0	1	2	3	4	5	
0	0	1	2	3	4	5	
1	1		3	4	5	0	
2	2	3	4	5	0	1	
3	3		5	0	1	2	
4	4	5	0	1	2	3	
5	5	0	1	2	3	4	

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

Contd.,

2. Associativity: The binary operation $+_6$ is associative in G.

for ex.
$$(2 +_6 3) +_6 4 = 5 +_6 4 = 3$$
 and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4, 5 are 0, 5, 4, 3, 2, 1 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.

Hence, $(G, +_6)$ is an abelian group.

Ex.The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

\times_7	1	2	3	4	5	6	
1	1	2	3	4	5	6	
2	2	4	6	1	3	5	
3	3	6	2	5	1	4	
4	4	1	5	2	6	3	
5	5		1				
6	6	5	4	3	2	1	

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

2. Associativity: The binary operation \times_7 is associative in G.

for ex.
$$(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$$
 and $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 1 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 5, 6 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_7 is commutative.

Hence, (G, \times_7) is an abelian group.

Cyclic group

- A **cyclic group** is a group that can be generated by a single element.
- Every element of a cyclic group is a power of some specific element which is called a **generator**.
- A cyclic group can be generated by a generator 'g', such that every other element of the group can be written as a power of the generator 'g'.

CYCLIC GROUPS:

A group (G, *) is said to cyclic group if there exists an element, such that every element of G, can be $a \in G$ expressed as a^n , some integral power of a.

Examples:

(Z,.+) is generated by 1 or -1. Zn, the integers mod n under modular addition, is generated by 1 or by any element k in Zn which is relatively prime to n.

Normal Subgroup

A subgroup is called a **normal subgroup** if for any $a \in G$, aH = Ha.

Note 1:

aH = Ha does not necessarily mean that a * h = h * a for every $h \in H$.

It only means that a * h_i = h_j * a for some h_i , $h_j \in H$.

Note2:

Every subgroup of an abelian group is normal.

Proposition 2.3.1. Hg = gH, for all $g \in G$, if and only if H is a normal subgroup of G.

Let $H=\{[0]_6, [3]_6\}$, Find left and right cosets in group Z_6 is it a normal subgroup

• It is abelian group, $a +_6 b = b +_6 a$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Left coset of H, $\mathbf{a} \mathbf{H} = \{ \mathbf{a} * \mathbf{h} \mid \mathbf{h} \in \mathbf{H} \}$ $0 H = \{ 0 +_{6} 0, 0 +_{6} 3 \} = \{ 0, 3 \}$ $1 H = \{ 1 +_{6} 0, 1 +_{6} 3 \} = \{ 1, 4 \}$ $2H = \{2 +_{6} 0, 2 +_{6} 3\} = \{2, 5\}$ $3H = {3 +₆ 0, 3 +₆ 3} = {3,0}$ $4H = \{4 +_{6} 0, 4 +_{6} 3\} = \{4, 1\}$ $5H = \{5 +_{6} 0, 5 +_{6} 3\} = \{5, 2\}$

Right coset of H, H
$$a=\{h * a \mid h \in H\}$$

H $0=\{0 +_6 0, 3 +_6 0\} = \{0, 3\}$
H1,H2,H3,H4,H5

H is a normal sub group of Z₆

Hamming distance

The Hamming distance d(x, y) between two words x, y is the weight $|x \oplus y|$ of $x \oplus y$, (bits in which they differ)

```
Eg. d(00111, 11001) = 4
```

Find the distance between x and y

```
x= 110110 ; y=000101
```

$$x = 001100$$
; $y = 010110$

$$x = 0100100$$
; $y = 0011010$

Theorems

- The minimum weight of all non zero words in a group code is equal to its minimum distance
- A code can detect all combinations of k or fewer iff
 the minimum distance between any two code words
 is at least k + 1
- A code can correct all combinations of k or fewer errors iff the minimum distance between any two code words is at least 2 k + 1

 Consider the (2,4) encoding function, how many errors will 'e' detect?

Soln: since 2>=k+1

k<=1,Will detect 1 or fewer errors

 Consider the encoding function B²→B⁶ defined as follows

How many errors can it correct and detect?

Error detection 3>=k+1; k <= 2 or fewer errors

Error correction $3 \ge 2k+1; k \le 1$ or fewer errors

Group Codes

An (m,n) encoding function e: $B^m \rightarrow B^n$ is called

a group code if e (B m) = {e(b)|b \in B m }=Ran

(e) is a subgroup of Bⁿ

Subgroup if:

Identity element of B^n is in NIf x and y belong to N, then $x \oplus y \in N$ If x is in N, then its inverse in N

Consider the encoding function B²→B⁵ defined as follows

is a group code

Soln: Let N={ 00000 , 10101, 01110, 11011 } be set of code words

\oplus	00000	01110	10101	11011
00000	00000	01110	10101	11011
01110	01110	00000	11011	10101
10101	10101	11011	00000	01110
11011	11011	10101	01110	00000

 $a \oplus b \in N$ which is closed operation, associative, identity, inverse

- 1. Closed operation : For any $a,b \in N$, $a \oplus b \in N$, So N is closed under \oplus operation
- 2. Identity element of B⁵ i.e 00000 also belongs to N

```
00000 \oplus 00000 = 00000 \oplus 00000
```

$$01110 \oplus 00000 = 00000 \oplus 01110$$

$$10101 \oplus 00000 = 00000 \oplus 10101$$

$$11011 \oplus 00000 = 00000 \oplus 11011$$

3.

Associative operation

$$01110 \oplus (00000 \oplus 10101) = (01110 \oplus 00000) \oplus 10101$$

$$01110 \oplus 10101 = 01110 \oplus 10101$$

4. Inverse

Ex:
$$01110 \oplus 01110 = 01110 \oplus 01110 = 00000$$

Show that (3,5)encoding function e: B³→B ⁶ defined as follows

PARITY CHECK MATRIX

Consider the parity check matrix given by H;

Determine the group code $e_H : B^2 \rightarrow B^5$

```
Soln: B^2 = \{00,01,10,11\}
Then e(00) = 00 x_1 x_2 x_3 = B^5
X_1 = 0 .1 + 0.0 = 0
x_2 = 0.1 + 0.1 = 0
X_3 = 0.0 + 0.1 = 0
e(00) = 00000
Next e(01) = 01 x_1 x_2 x_3 = B^5
x_1 = 0 .1 + 1.0 = 0
x_2 = 0.1 + 1.1 = 1
X_3 = 0.0 + 1.1 = 1
e(01) = 01011
```

```
Next e(10) = 10 x_1 x_2 x_3 = B^5
x_1 = 1.1 + 0.0 = 1
x_2 = 1.1 + 0.1 = 1
X_3 = 1.0 + 0.1 = 0
e (10) = 10110
Next e(11) = 11 x_1 x_2 x_3 = B^5
x_1 = 1.1 + 1.0 = 1
x_2 = 1.1 + 1.1 = 0
X_3 = 1.0 + 1.1 = 1
e (11) = 11101
e_{\perp}: B^2 \rightarrow B^5 is as above for e (00), e (01), e (10), e (11)
```

Problem 1

Consider the parity check matrix given by H;

Determine the group code $e_H : B^2 \rightarrow B^5$

$$e(00) = 00000$$

$$e(01) = 01011$$

$$e(00) = 10011$$

$$e(00) = 11000$$

Problem 2

Consider the parity check matrix given by H;

Determine the group code $e_H : B^3 \rightarrow B^6$

- e(000) = 000000
- e(001) = 001111
- e(010) = 010011
- e(011) = 011100
- e(100) = 100100
- e(101) = 101011
- e(110) = 110111
- e(111) = 111000

MAXIMUM LIKELIHOOD DECODING TECHNIQUE

Consider the encoding function $B^2 \rightarrow B^4$ defined as follows

$$e(00)=0000$$

Decode the foll words relative to MLD function,

Step 1: Construct Decoding Table

	0000	0110	1011	1101
0000	0000	0110	1011	1101
0001	0001	0111	1010	1100
0010	0010	0100	1001	1111
1000	1000	1110	0011	0101

Consider the encoding function B²→B ⁵ defined as follows

$$e(00)=00000$$

Decode the foll words relative to MLD function,

	e (00)	e (01)	e (10)	e (11)
	00000	01110	10101	11011
00000	00000	01110	10101	11011
0000 <u>1</u>	00001	01111	10100	11010
000 <u>1</u> 0	00010	01100	10111	11001
00 <u>1</u> 00	00100	01010	10001	11111
0 <u>1</u> 000	01000	00110	11101	10011
<u>1</u> 0000	10000	<u>11110</u>	00101	01011