Elements of Set Theory 3.1, 3.3, 3.8, 3.11, 3.15, 3.19, 3.25, 3.30

3.1 Suppose that we attempted to generalize the Kuratowski definitions of ordered pairs to ordered triples by defining

$$\langle x, y, z \rangle^* = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

Show that this definition is unsuccessful by giving examples of objects u, v, w, x, y, z with $\langle x, y, z \rangle^* = \langle u, v, w \rangle^*$ but with either $y \neq v$ or $z \neq w$ (or both).

One such ordered pair would be

$$\langle a,b,b \rangle^* = \langle a,a,b \rangle^*$$

Expanded: $\{\{a\},\{a,b\},\{a,b,b\}\} = \{\{a\},\{a,a\},\{a,a,b\}\}$
 $\{\{a\},\{a,b\},\{a,b\}\} = \{\{a\},\{a\},\{a,b\}\}$
 $\{\{a\},\{a,b\}\} = \{\{a\},\{a,b\}\}$

3.3 Show that $A \times \bigcup \mathcal{B} = \bigcup \{A \times X \mid X \in \mathcal{B}\}.$

 (\rightarrow) We want to show that any $t = \langle x, y \rangle \in A \times \bigcup \mathcal{B}$ that $t \in \bigcup \{A \times X \mid X \in \mathcal{B}\}$

$$\langle x, y \rangle \in A \times \bigcup \mathscr{B} \implies x \in A \& y \in \bigcup \mathscr{B}$$

$$y \in \bigcup \mathscr{B} \implies \exists N \in \mathscr{B} \text{ s.t. } (t \in N)$$
So $\exists N \in \mathscr{B} \text{ s.t. } (t \in A \times N)$

Taking X = N, $\exists M \in \{A \times X \mid X \in \mathcal{B}\}$ s.t. $t \in M$ which means that $t \in \bigcup \{A \times X \mid X \in \mathcal{B}\}$

 (\leftarrow) In this direction we start with $t \in \bigcup \{A \times X \mid X \in \mathcal{B}\}$ and show that $t \in A \times \bigcup \mathcal{B}$

$$t \in \bigcup \{A \times X \mid X \in \mathcal{B}\} \implies \exists N \in \{A \times X \mid X \in \mathcal{B}\} \text{ s.t. } t \in N$$
$$\exists X \in \mathcal{B} \text{ s.t. } t \in A \times X$$
$$t \in A \times X \implies x \in A \& y \in X$$
$$y \in X \implies y \in \bigcup \mathcal{B}$$

Therefore $\langle x, y \rangle \in A \times \bigcup \mathcal{B}$.

3.8 Show that for any set \mathscr{A} :

$$\operatorname{dom} \bigcup \mathscr{A} = \bigcup \{\operatorname{dom} R \mid R \in \mathscr{A}\},$$
$$\operatorname{ran} \bigcup \mathscr{A} = \bigcup \{\operatorname{ran} R \mid R \in \mathscr{A}\},$$

Let $\langle x,y\rangle$ be in $\bigcup \mathscr{A}$ so that x is in dom $\bigcup \mathscr{A}$. Then $\exists N \in \mathscr{A}$ such that $\langle x,y\rangle \in N$. Taking this N=R, $x\in \mathrm{dom}\,R$ so $R\in \bigcup \{\mathrm{dom}\,R\mid R\in \mathscr{A}\}$. Conversely if x starts in $\bigcup \{\mathrm{dom}\,R\mid R\in \mathscr{A}\}$, then there is some R such that $x\in \mathrm{dom}\,R$ or $\langle x,y\rangle \in R\in \mathscr{A}$. Therefore $\langle x,y\rangle \in J\mathscr{A}$, and x is in it's domain.

For the second part one can make an identical argument using *y* being in the ran $\langle x, y \rangle$.

3.11 Prove the following: Assume that F and G are functions, dom F = dom G, and F(x) = G(x) for all x in the common domain. Then F = G.

Let $\langle x,y\rangle\in F$. Then because the domains are equal, there exists an $\langle x,t\rangle$ in G. Since F(x)=G(x), there exists a t in G(x) such that y=t. Therefore $\langle x,y\rangle\in G$ and $F\subseteq G$. By making the identical argument swapping F for G, one can see that $G\subseteq F$ so F=G.

3.15 Let \mathscr{A} be a set of functions such that for any f and g in \mathscr{A} , either $f \subseteq g$ or $g \subseteq f$. Show that $\bigcup \mathscr{A}$ is a function.

To show that $\bigcup \mathscr{A}$ is a function it must only contain 2-pairs and $(\langle x,y\rangle \in \bigcup \mathscr{A})$ & $(\langle x,t\rangle \in \bigcup \mathscr{A})$ = $(\langle x,y\rangle \otimes \langle x,t\rangle \in \bigcup \mathscr{A})$ then let $\langle x,y\rangle \in f \in \mathscr{A}$ and $\langle x,t\rangle \in g \in \mathscr{A}$. If f = g then since f is a function g = t. If $f \neq g$ then since $f \subseteq g$ or $g \subseteq f$, either $\langle x,y\rangle \in g$ or $\langle x,t\rangle \in f$. In either case, because f and g are function, one of them will have both $\langle x,y\rangle \otimes \langle x,t\rangle$ in them which means x = t.

3.19 Let

$$A = \{ \langle \varnothing, \{\varnothing, \{\varnothing\}\} \rangle, \langle \{\varnothing\}, \varnothing \rangle \}.$$

Evaluate each of the following: $A(\emptyset)$, $A[\emptyset]$, $A[\{\emptyset\}]$, $A[\{\emptyset, \{\emptyset\}\}]$, A^{-1} , $A \circ A$, $A \upharpoonright \emptyset$, $A \upharpoonright \{\emptyset\}$, $A \upharpoonright \{\emptyset\}$, $\bigcup \bigcup A$.

$$A(\varnothing) = \{\varnothing, \{\varnothing\}\}\}$$

$$A[\varnothing] = \varnothing$$

$$A[\{\varnothing\}] = \{\varnothing, \{\varnothing\}\}\}$$

$$A[\{\varnothing, \{\varnothing\}\}] = \{\varnothing, \{\varnothing, \{\varnothing\}\}\}, \varnothing\rangle, \langle\varnothing, \{\varnothing\}\rangle\}\}$$

$$A^{-1} = \{\langle \{\varnothing, \{\varnothing\}\}, \varnothing\rangle, \langle\varnothing, \{\varnothing\}\rangle\}\}$$

$$A \circ A = \{\langle \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\rangle\}$$

$$A \upharpoonright \varnothing = \varnothing$$

$$A \upharpoonright \{\varnothing\} = \{\langle\varnothing, \{\varnothing, \{\varnothing\}\}\}\rangle\}$$

$$A \upharpoonright \{\varnothing, \{\varnothing\}\} = \varnothing$$

$$\bigcup \bigcup A = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$$

3.25

- 1. Assume that *G* is a one-to-one function. Show that $G \circ G^{-1}$ is $I_{\text{ran }G}$, the identity function on ran *G*.
- 2. Show that the result of part (a) holds for any function *G*, not necessarily one-to-one.

To show that they are equal, assume $\langle x,y\rangle\in G\circ G^{-1}$. This means that: $\exists t(\langle x,t\rangle\in G^{-1}\&\langle t,y\rangle\in G)$. Since $\langle x,t\rangle\in G^{-1}$, it must be that $\langle t,x\rangle\in G$. But since both $\langle t,x\rangle$ and $\langle t,y\rangle$ are in G, a function, x=y. Therefore the only elements in $G\circ G^{-1}$ are of the form $\langle x,x\rangle$ where x is in ran G which is exatly $I_{\operatorname{ran} G}$.

3.30 Assume that $F: \mathcal{P}A \to \mathcal{P}A$ and that F has the monotonicity property:

$$X \subseteq Y \subseteq A \implies F(X) \subseteq F(Y).$$

Define

$$B = \bigcap \{X \subseteq A \mid F(X) \subseteq X\}$$
 and $C = \bigcup \{X \subseteq A \mid X \subseteq F(X)\}.$

- 1. Show that F(B) = B and F(C) = C.
- 2. Show that if F(X) = X, then $B \subseteq X \subseteq C$.

- 1. Pick any $t \in F(B)$. Then its preimage x is in B. Since $x \in B$, every set that contains x is a superset of itself under F. Therefore, B is a superset of F(B) and $t \in B$. On the other hand assume $t \in B$ but $t \notin F(B)$. This is a contradiction because B must be a super set of F(B). Therefore F(B) = B.

 For set C, assume $t \in C$, then $\exists X(t \in X)$ and $X \subseteq F(X)$, which implies $t \in F(X)$ and $t \in F(C)$. Assuming $t \in F(C)$, then since $F(C) \subseteq C$, $F(F(C)) \subseteq F(C)$ so F(C) belongs to the union and anything in C is in F(C).
- 2. If F(X) = X then $F(X) \subseteq X$ so B includes it in it's dijoint which means $B \subseteq X$. On the other hand, $X \subseteq F(X)$ and since C is the union of X and other sets, $X \subseteq C$.