Área de Ciências Exatas e Engenharias Cursos de Informática

Modelagem de Banco de Dados (conceitual)

Daniel L. Notari

Banco de Dados = Dados + Modelo de Dados

- Um banco de dados pode ser definido como um conjunto de dados que segue um determinado modelo de dados. Alguns conceitos relacionados são:
 - Modelo de Dados responsável pela descrição dos dados
 - Esquema do banco de dados é um gráfico ou texto que especifica o modelo de dados (ou seja, descreve faz a descrição dos dados)
 - Dicionário de dados conjunto de arquivos que armazena o modelo de dados

Projeto de um Banco de Dados

- Realizado em duas fases:
 - Modelagem conceitual: necessidades de uma organização em termos de armazenamento de dados (independente da implementação).
 - Projeto lógico: transformação do modelo conceitual em modelo lógico.
- A seguir o modelo lógico é implementado no SGBD específico através de um projeto físico.

Projeto de um Banco de Dados

Modelo de (banco de) dados

Descrição formal da estrutura de um banco de dados (tipos de informações que serão armazenadas)

- descrito através de uma linguagem de modelagem de dados
- descrito em diferentes níveis de abstração, para diferentes usuários (leigo, técnico, etc):

Projeto de um Banco de Dados

Modelo conceitual

==

modelo de dados abstrato, que descreve a estrutura de um banco de dados de forma independente de um SGBD particular

Ex: modelo ER, modelo UML

Modelo lógico

==

modelo de dados que representa a estrutura de dados de um banco de dados conforme vista pelo usuário do SGBD

Ex: modelo relacional, modelo a objetos, modelo hierárquico

Modelo físico

==

contém detalhes sobre a representação interna das informações:

Ex: estruturas de índices, estruturas de arquivos, níveis de isolamento (otimização de performance)

Modelo conceitual

- Independente de implementação e SGBD
- Descrição mais abstrata do banco de dados (BD)
- É o ponto de partida para o projeto de um BD
- Técnica mais difundida é a abordagem entidade-
- relacionamento (Diagrama ER)

- Independente do SGBD
- Descrição do BD no nível dos usuários do BD (programadores, usuários que tem acesso direto aos dados do banco)
- Não apresenta detalhes do armazenamento interno das informações (estruturas de arquivo índices de acesso)

- Tabela
 - linhas (tuplas), colunas (atributos)
- Chaves
 - Primária, estrangeira
- Domínios
 - Faixa de valores que um atributo pode conter
- Valores Nulos
- Restrições de integridade:
 - Integridade de domínio
 - Integridade de vazio
 - Integridade de chave (chave primária única)
 - Integridade referencial (chave estrangeira)

Contexto	Terminologia		
Modelo Relacional (Formal)	Relação	Tupla	Atributo
Modelo Relacional (Informal)	Tabela	Linha	Coluna
Teoria dos Conjuntos	Conjunto	Lista	Nodo
Sistema de Arquivos	Arquivo	Registro	Campo
Orientação a Objetos	Classe	Objeto	Atributo

Notação resumida:

Aluno

CodAluno	Nome	CodCurso
2034	Joaquim	124
3028	Ana	124
1212	Paula	138

Curso

CodCurso	Nome
124	Ciência da Computação
138	Sistemas de Informação

Modelo físico

- Descrição detalhada de como a base de dados está armazenada internamente
- Linguagens e notações para o modelo físico variam de produto a produto (SGBD)
- Produtos escondem o modelo físico

Modelo ER (Entidade-Relacionamento)

Parte 1
(Entidade, Atributo, chave, auto-relacionamento, entidade fraca)

O modelo ER

- A abordagem ER foi criada por Peter Chen, em 1976;
- Modelo baseado na percepção do mundo real, representado através de um conjunto de objetos básicos chamados entidades e nos relacionamentos entre esses objetos;
- Conceitos centrais da abordagem ER:
 - Entidade, relacionamento, atributo (identificador)
 - generalização/especialização, entidade associativa

Diagramas ER

- Um modelo ER é representado graficamente através de um Diagrama ER (DER)
 - Notação utilizada é a introduzida por Peter Chen
- Componentes:
 - Retângulos: representam entidades
 - Losangos: representam relacionamentos
 - Elipses ou pequenos círculos: representam atributos
 - Linhas: ligam atributos a entidades, entidades a relacionamentos e atributos a relacionamentos

Diagramas ER

Código

Nome

Endereço

Nome

Diagramas ER

- Software BrModelo (http://sis4.com/brModelo/)
- Ferramenta freeware
 - voltada para ensino de modelagem em banco de dados relacional
 - com base na metodologia defendida por Carlos A. Heuser no livro "Projeto de Banco de Dados"
- Desenvolvida por Carlos Henrique Cândido
- Faça download da ferramenta
 - Usaremos esta ferramenta para a construção dos Diagramas ER

Entidade

 "Conjunto de objetos da realidade modelada sobre os quais desejá-se manter informações no banco de dados" (Heuser, 2009)

Pessoa

Atributo

 "Dado que é associado a cada ocorrência de uma entidade ou de um relacionamento" (Heuser, 2009)

Identificação de Entidades

Conjunto de um ou mais atributos e relacionamentos cujos valores servem para distinguir uma ocorrência de uma entidade das demais ocorrências da mesma entidade (HEUSER, 2009)

Relacionamento

- "Conjunto de associações entre as entidades" (Heuser, 2009)
- Tipos:
 - Auto-Relacionamento
 - Entidade Fraca
 - Binário
 - Ternário
 - Agregação
 - Generalização-Especialização

Auto-Relacionamento

Papel: função que uma instância da entidade cumpre dentro de uma instância do relacionamento (HEUSER, 2009)

Ocorrência de uma entidade

Simulação através da atribuição de valores

Ocorrência de uma entidade

Disciplinas:

Código (chave)	nome	
FBI4009	Fundamentos de Banco de Dados	
FBI4001	Programação de Computadores I	
FBI4013	Programação de Computadores II	
FBI4014	Programação Orientada a Objetos	
FBI4023	Fundamentos de Sistemas Operacionais	

Pré-Requisitos:

Código Disciplina Libera (chave) Código Disciplina Bloqueia (chave)	
FBI4013	FBI4001
FBI4009	FBI4001, FBI4013
FBI4014	FBI4013
FBI4023	FBI4001, FBI4009

Entidade Fraca

Entidade Fraca

- Alguns autores dizem que a entidade DEPENDENTE é uma entidade fraca.
- O termo "fraca" deriva do fato de a entidade somente existir quando relacionada a outra entidade e usar, como parte do seu identificador, entidades relacionadas.

Chave primária da entidade fraca é composta pela chave estrangeira da entidade principal concatenada a um identificador de si própria.

Ocorrência de uma entidade

Disciplina			
Codigo Nome			
INF0211	Banco de Dados		
INF0231	Modelagem em Banco de Dados		
INF0233	Consultas em Banco de Dados		

Turma				
Codigo Letra Horario Sala				
INF0211	А	28-29	401	
INF0231	D	36-37	402	
INF0233	Α	48-49	401	

Ocorrência de uma entidade

Disciplinas:

Código (chave)	nome	
FBI4009	Fundamentos de Banco de Dados	
FBI4001	Programação de Computadores I	
FBI4013	Programação de Computadores II	
FBI4014	Programação Orientada a Objetos	
FBI4023	Fundamentos de Sistemas Operacionais	

Turmas:

Código (chave)	Letra (chave)	Horário	Semestre (chave)
FBI4009	D (Caxias, Vespertino)	26-27	2020-4
FBI4009	X (Bento, noite)	28-29	2020-4
FBI4009	A (Caxias, noite)	38-39	2020-4
FBI4009	A (Caxias, noite)	38-39	2020-2
FBI4023	A (Caxias, noite)	48-49	2020-2
FBI4023	X	58-59	2020-2
FBI4001	A	58-59	2020-4
FBI4001	X	58-59	2020-4
FBI4013	A	28-29	2020-4
FBI4013	AB (Caxias, noite)	28-29	2020-4
FBI4013	AA (Caxias, noite)	68-69	2020-4
FBI4013	Х	48-49	2020-4
FBI4014	А	68-69	2020-4
FBI4009	V (Vacaria, noite)	58-59	2020-2

Auto-Relacionamento + Entidade Fraca

- Modele os itens de uma nota fiscal usando entidade fraca. Crie o DER.
- Modele os componentes de uma estrutura de produto usando auto-relacionamento. Crie o DER.

 Modele os itens de uma nota fiscal usando entidade fraca. Crie o DER.

) quantidade

Código	Descrição	Unidade	Preço
1	Computador	Unidade	2000,00
2	Tela	Unidade	100,00
3	Teclado	Unidade	100,00
4	Mouse	Unidade	150,00
5	HD	Terabyte	500,00

Gygabyte

Unidade

50,00

1,00

Pentes de Memória

Botões de Letra

Estrutura de Produto:

6

7

Pai Código Produto (Chave)	Filho Código Produto (Chave)	Quantidade
1	2	1
1	3	1
1	4	1
1	5	1
1	6	4
3	7	100

Produto:

Código	Descrição	Unidade	Preço
1	Computador	Unidade	2000,00
2	Tela	Unidade	100,00
3	Teclado	Unidade	100,00
4	Mouse	Unidade	150,00
5	HD	Terabyte	500,00
6	Pentes de Memória	Gygabyte	50,00
7	Botões de Letra	Unidade	1,00

Estrutura de Produto:

Pai Código Produto (Chave)	Filho Código Produto (Chave)	Quantidade
1	2	1
1	3	1
1	4	1
1	5	1
1	6	4
3	7	100

Itens:

1

-							
	Nota	ltem	Código	quantidade	preço	desconto	Imposto
	Fiscal	(sequencial)	Produto				
	(Chave)	(chave)	(Chave)				
	123456	1	1	1	2000,00	15%	22%
	123456	2	6	6	50,00	32%	45%
	123456	3	4	1	150,00	16%	8%

Em resumo

Elemento DER	Semântica	Equivalência
Entidade	Classificar	classe, registro, struct, tabela
Atributo	Caracteristicas e/ou propriedade	Campo, variável
Relacionamento	Relação entre objetos	Associação (OO)
Diagrama de	Teste de mesa	Objeto (OO), conteúdo
Ocorrências		de uma variável

	Gramática	Função	Função	Observação
Entidade	Substantivo	Generalizar	Classificar	
	Objeto / adjetivo / predicado	Caracterizar	Propriedade	
Atributo	Objeto	Identificação	Valor não se	RG não pode
Identificador		única	•	ser, uma ou mais colunas
Relacioname nto	Verbo	Ação	Evento	

Modelo ER (Entidade-Relacionamento)

Parte 2 (cardinalidade, relacionamento binário e ternário)

Relacionamento Binário

Cardinalidades

Cardinalidade (mínima, máxima) de entidade em relacionamento

==

número (mínimo, máximo) de ocorrências de uma entidade que podem estar associadas a uma ocorrência de outra entidade através de um relacionamento

Tipos de cardinalidade:

- 1:1
- 1:n
- n:n

Com (mínimo, máximo):

- (0,1)
- (1,1)
- (0,n)
- (1,n)

Cardinalidades

expressa que a uma ocorrência de EMPREGADO (entidade do lado oposto da anotação) pode estar associada ao máximo uma ("1") ocorrência de DEPARTAMENTO

expressa que a uma ocorrência de DEPARTAMENTO (entidade ao lado oposto da anotação) podem estar associadas muitas ("n") ocorrências de EMPREGADO

Empregado			
Codigo Nome			
123	Daniel		
321	Alberto		
452	Joana		

Mesa			
numero qtde pessoas codemp			
1	4	?	
2	6	?	
3	8	?	
4	12	?	

Empregado:

Código (Chave)	Nome	Setor
1	Daniel	1
2	Luis	2

Setor

Código (Chave)	Nome	Empregado
1	Informática	1
2	Computação	2

Empregado:

Código (Chave)	Nome
1	Daniel
2	Luis
3	Notari

Mesa

Número (Chave)	Quantidade Pessoas	Empregado
1	4	1
2	6	1
3	2	1
4	5	2
5	10	3
6	6	1
7	5	2

Professor:

Cpf (chave)	Nome
1	Daniel Notari
2	Gabriele Dani
3	Helena Ribeiro

Escola:

Código (chave)	Nome
1	Universidade de Caxias do Sul
2	La Salle
3	São Carlos

Trabalhar:

Professor (cpf) (chave)	Escola (código) (chave)
1	1
2	1
3	1
2	2
3	3

Turma

Código	Letra	Horário	Código
Disciplina			Professor
			(CPF)
FBI4009	D	26-27	1
FBI4009	х	28-29	2
FBI4009	Α	38-39	1

Relacionamento ternário

Relacionamento ternário: cardinalidade

Cidade			
Codigo Nome			
1	Caxias do Sul		
2	Bento Gonçalves		
3	Farroupilha		

Produto				
Codigo medida descricao valo				
33	kg	arroz	5	
55	un	pneu	300	
77	gr	queijo	22	

Distribuidor		
Cnpj	Nome	
1111	Naja	
3333	Rápido	
2222	Expresso	

● codigo ○ uf

Cidade

Relacionamento com atributos (identificadores!?)

Um relacionamento é identificado pelas entidades dele participantes, bem como pelos atributos identificadores eventualmente definidos (HEUSER, 2009).

Cidade	
Codigo Nome	
1	Caxias do Sul
2	Bento Gonçalves
3	Farroupilha

Produto			
Codigo	medida	descricao	valor
33	kg	arroz	5
55	un	pneu	300
77	gr	queijo	22

Distribuidor	
Cnpj	Nome
1111	Naja
3333	Rápido
2222	Expresso

● codigo ○ uf

○nome

Cidade

Distribuidor

Cidade	
Codigo Nome	
1	Caxias do Sul
2	Bento Gonçalves
3	Farroupilha

Produto			
Codigo	medida	descricao	valor
33	kg	arroz	5
55	un	pneu	300
77	gr	queijo	22

Cidada

Produto

Quantidada

● codigo ∙ ∩ uf

Cidade

Ciuaue	Floudto	Distributuoi	Quantidade
Caxias do Sul	Pneu	Rápido	1000
Bento			
Gonçalves			
Farroupilha	Arroz	Naja	1000
Farroupilha	Queijo	Expresso	1200
Bento	Arroz		1300
Gonçalves			

Exercício de Modelagem

Deseja-se construir um banco de dados para um sistema de vendas. Em cada venda são vendidos vários produtos e um determinado produto pode aparecer em diferentes vendas. Cada venda é efetuada por um vendedor para um determinado cliente. Um produto está armazenado um uma prateleira. Identifique as possíveis entidades com seus atributos, bem como, os relacionamentos. Faça um desenho do ER e um diagrama de ocorrências. Procure usar relacionamentos binários e ternários, pelo menos um de cada. 50

Exercício de Modelagem

Modelo ER (Entidade-Relacionamento)

Parte 3

(Extensões e variações do modelo ER: agregação e generalização/especialização)

Agregação

- para expressar relacionamentos de relacionamentos: relacionamentos são tratados como entidades de nível superior

Agregação

Agregação (DER Heuser)

- também chamada de entidade associativa
- notação utilizada no BrModelo

Funcionario
(1,n)
Trabalhar Relação_2
(1,1)
Projeto

Funcionario		
Codigo	Nome	codproj
123	Daniel	?
321	Alberto	?
452	Joana	?

Projeto	
Codigo	Nome
1111	ERBD 2015
3333	Portal Bioinfo
2222	BacPP

Entendo a agregação:

1. Relação entre Funcionário X Projeto

Funcionario		
Codigo	Nome	codproj
123	Daniel	?
321	Alberto	?
452	Joana	?

Projeto	
Codigo	Nome
1111	ERBD 2015
3333	Portal Bioinfo
2222	BacPP

Entendo a agregação:

1. Relação entre Funcionário X Projeto

Codigo	Nome	Projeto
123	Daniel	ERBD
321	Alberto	Bacpp
452	Joana	Bioinfo

Generalização/Especialização

- Atribuir propriedades particulares a um subconjunto de ocorrências (especializadas) de uma entidade genérica.
- Herança de propriedades,
 - ou seja, herdar propriedades significa que cada ocorrência da entidade especializada, possui além de suas próprias propriedades (atributos e relacionamentos), também as propriedades da ocorrência da entidade genérica.

(HEUSER, 2009)

Generalização/Especialização

Generalização/Especialização (total)

- Total indica que para cada ocorrência da entidade genérica <u>existe sempre uma ocorrência de uma</u> das entidades especializadas (HEUSER, 2009).
- Especialização exclusiva com criação de entidades.

Generalização/Especialização (parcial)

- Parcial indica que nem toda ocorrência da entidade genérica possui uma ocorrência correspondente de uma entidade especializada (HEUSER, 2009).
- Especialização não-exclusiva com criação de entidades.

 parcial indica que nem todo
 Funcionário é Motorista ou Secretária

Funcionário		
cpf	nome	
cpf 123	daniel	
321	Luis	
452	Alberto	
357	Ana -	

		Motorista		
	cpf	cnh	categoria	
•	123	3333	В	

Secretaria		
cpf	ramal	
357	2889	

Exercício de Modelagem

 Em uma universidade, existem diversos cursos de graduação. Cada curso possui um conjunto de disciplinas. Cada disciplina possui um conjunto de turmas. Para cada turma, há um ou mais professores. Os alunos realizam matriculas nas turmas. Para algumas turmas onde há mais de 30 alunos matriculados, existe um monitor alocado a esta turma. Crie um DER completo. Use a relação de agregação para modelar os monitores. Use a relação de generalização/especialização para modelar entidade em comum para professores e alunos.

Exercício de Modelagem

Modelo ER (Entidade-Relacionamento)

Parte 4
(Regras de verificação para o modelo ER)

- Modelo ER é um modelo formal, preciso e não-ambíguo.
 - → Diferentes leitores sempre devem ter o mesmo entendimento para o mesmo DER.
 - → Sempre que o DER for utilizado por pessoas que não conhecem a modelagem entidade-relacionamento, é recomendado treinar a equipe para a leitura correta do diagrama.
- Modelo ER tem poder de expressão limitado, ou seja, conseguimos modelar somente algumas propriedades de um banco de dados.

- Equivalência entre Modelos:
 - → dois modelos são equivalentes quando expressam o mesmo, ou seja, quando modelam a mesma realidade.
 - → Para fins de projeto de Banco de Dados, dois DER são equivalentes, quando ambos geram o mesmo esquema no banco de dados.
 - → Deve-se conhecer as regras de tradução para os modelos lógicos para isto.
 - → Uma alteração que pode ser feita no DER é transformar todos os relacionamentos n:n em relacionamentos 1:n.

Atributo versus Entidade relacionada:

→ uma questão importante que aparece na modelagem de um sistema é entre modelar um objeto como sendo um atributo de uma entidade ou como sendo uma entidade autônoma relacionada a esta entidade. Por exemplo, a cor de um automóvel é um atributo ou uma entidade relacionada?

Critérios a serem adotados:

- a) Se o conjunto de valores de um atributo é fixo durante toda a existência do sistema, modela-se como atributo visto que o domínio de valores de um atributo é imutável.
- b) Se o conjunto de valores de um atributo for modificado por qualquer transação, este não deve ser modelado como um atributo. Passa-se a modelar como uma entidade. Com isto, é possível modificar os valores sem alteração do esquema do banco de dados.
- c) Se o objeto em discussão estiver vinculado a outros objetos (atributos, relacionamentos, entidades genéricas): modela-se como uma entidade, já que um atributo não pode ter outros atributos, nem estar relacionado a outras entidades, nem ser generalizado ou especializado.

Atributo vesus generalização/especialização:

- → um conflito de modelagem muito comum é modelar um determinado objeto como atributo (exemplo, a categoria funcional de cada empregado em uma empresa) ou como uma especialização (exemplo, categoria funcional corresponde a uma especialização da entidade empregado).
- → Sugestão: uma especialização somente deve ser usada quando sabe-se que as classes especializadas de entidades possuem propriedades particulares, ou seja, as entidades especializadas possuem atributos que a entidade genérica não possui. Se as entidades especializadas não possuírem atributos, sugere-se não modela-las.

Verificação do Modelo ER

a) Modelo deve ser correto:

- Os conceitos de modelagem do ER devem ser empregados corretamente para modelar a realidade em questão.
 - → Erros sintáticos ocorrem quando o modelo não respeita as regras de construção de um modelo ER, por exemplo, associar atributos a atributos, associar relacionamentos a atributos, etc.
 - → Erros semânticos ocorrem quando o modelo, apesar de obedecer as regras de construção de modelos ER (sintaticamente correto) reflete a realidade de forma inconsistente, por exemplo, estabelecer associações incorretas, usar uma entidade do modelo como atributo de outra entidade, usar o número incorreto de entidades em um relacionamento, etc.

b) Modelo deve ser completo:

- → O modelo deve fixar todas as propriedades desejáveis, e isto, obviamente somente pode ser verificado por alguém que conhece profundamente o sistema a ser implementado (analistas de negócio, analista de sistema, usuário especializado).
- → Uma boa maneira de verificar se o modelo é completo é verificar se todos os dados obtidos no banco de dados estão presentes e se todas as transações de modificação do banco de dados podem ser executadas sobre o modelo.

Verificação do Modelo ER

c) Modelo deve ser livre de redundâncias:

- → Relacionamentos redundantes são resultados da combinação de outros relacionamentos entre as mesmas entidades.
- → É possível detectar quando é possível eliminar este relacionamento do DER sem que haja perda de informação no banco de dados.
- → Atributos redundantes são atributos derivados a partir da execução de procedimentos de busca de dados e/ou cálculos sobre o banco de dados, por exemplo, atributos totalizadores (número total de empregados).

d) Entidade Isolada:

→ É uma entidade que não apresenta nenhum relacionamento com outras entidades. Em princípio, entidades isoladas não estão incorretas. Mas deve ser verificada se deve continuar existindo.

e) Entidade sem atributos:

→ Situação que também não está incorreta, mas deve ser investigada.

Verificação do Modelo ER

f) Modelo deve refletir o aspecto temporal:

- → O primeiro modelo tende a refletir um estado momentâneo do banco de dados.
- → Entretanto, é necessário lembrar que assim como as informações são incluídas no banco de dados, elas também podem ser eliminadas do banco de dados.
- → Um banco de dados não pode crescer indefinidamente. Informações desnecessárias ou ultrapassadas podem ser eliminadas.
- → Portanto, é necessário considerar o aspecto temporal na modelagem dos dados. Em especial:
- I) tentar identificar na modelagem atributos cujos valores modificam ao longo do tempo, como por exemplo, o salário de um empregado. Algumas vezes, por questões de necessidades futuras de informações (data warehouse, BI, OLAP), ou até mesmo por questões legais, o banco de dados deve manter o histórico das informações.
- II) relacionamentos que se modificam ao longo do tempo, pode-se ter a necessidade de manter este registro no banco de dados.
- III) Modelagem do aspecto temporal: incluir data e/ou hora na entidade ou no relacionamento.
- IV) Projetar consultas a dados referentes ao passado para dados que estão no banco de dados e são pouco acessados.

1) Administradora de imóveis:

- A administradora trabalha tanto com administração de condomínios, quanto com a administração de aluguéis. Uma entrevista com o gerente da administradora resultou nas seguintes informações:
 - A administradora administra condomínios formados por unidades condominiais.
 - Cada unidade condominial é de propriedade de uma ou mais pessoas. Uma pessoa pode possuir diversas unidades.
 - Cada unidade pode estar alugada para no máximo uma pessoa. Uma pessoa pode alugar diversas unidades.
- Identifique as possíveis entidades com seus atributos, bem como, os relacionamentos.
- Faça um desenho do ER, crie o modelo lógico e o físico.

1) Administradora de imóveis:

- 2) Considere a situação de casamento entre um homem e uma mulher. A entidade Pessoa representa homens e mulheres. Esta entidade possui um auto-relacionamento com cardinalidade 1 em ambos os lados e o nome do relacionamento é casamento, o nomes dos papéis envolvidos é de marido e esposa.
 - Faça um diagrama de ocorrências.
 - Segundo este DER o banco de dados poderia conter um casamento em que uma pessoa está casada consigo mesma?
 - Este DER permite que a mesma pessoa apareça em dois casamentos diferentes, uma vez como marido e outra vez como esposa?
 - Caso uma das situações acima possa ocorrer, como deveria ser modificado o DER para impedi-las?

- 2) Considere a situação de casamento entre um homem e uma mulher. A entidade Pessoa representa homens e mulheres. Esta entidade possui um auto-relacionamento com cardinalidade 1 em ambos os lados e o nome do relacionamento é casamento, o nomes dos papéis envolvidos é de marido e esposa.
 - Faça um diagrama de ocorrências.
 - Segundo este DER o banco de dados poderia conter um casamento em que uma pessoa está casada consigo mesma?
 - Este DER permite que a mesma pessoa apareça em dois casamentos diferentes, uma vez como marido e outra vez como esposa?
 - Caso uma das situações acima possa ocorrer, como deveria ser modificado o DER para impedi-las?

2)

2.2 sim

2.3 sim, por exemplo, para as pessoas: Daniel, Rafaela, Luis, Ana, pode ser feito o casamento de Daniel com Daniel

2.4

3) Considere o DER abaixo com o relacionamento EMPREGADO-DEPENDENTE. Considere que um dependente de um empregado possa também ser empregado. Como o modelo deveria ser modificado para evitar o armazenamento redundante das informações das pessoas que são tanto dependentes quanto empregados?

81

3)

