Computación Geométrica Tema 5: Triangulación de polígonos

Triangulación de polígonos: algoritmos iniciales

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

3

Historia

Triangulación de polígonos

Complejidad	Autor	Año	Técnica
O(n³)	Meisters	1975	Recortado de orejas
O(n log n)	Preparata & Tarjan	1978	Descomposición
O(n log log n)	Tarjan	1987	Estructuras de datos complejas
O(n)	Chazelle	1990	
O(n ²)	ElGindy & Toussaint	1990	Búsqueda de oreja en O(n)
O(kn)	Kong & Toussaint	1990	Scan de Graham

Copyright © 2008-2009 Universidad de Alicante

Índice

- Historia
- Conceptos previos
- Triangulación por recortado de orejas
- Triangulación de polígonos monótonos

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

Vértice convexo y cóncavo

Vértice Cóncavo

Si recorremos los vértices del polígono dejando el interior a nuestra izquierda (polígono antihorario), un vértice Pi será convexo si el punto P_{i+1} está a la izquierda del segmento orientado (P_{i-1},P_i)

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

Diagonal

- ☐ Diagonal: segmento que está totalmente incluido en el polígono y que une dos vértices no consecutivos
- □ ¿Cómo comprobar que un segmento es diagonal? ¿Qué coste tendría el algoritmo?

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

-

Algoritmo de recortado de orejas

Triangular(P)

- 1. Mientras que P tenga más de 3 lados
- 2. Buscar vértice oreja P_i
- 3. Añadir arista (P_{i-1}, P_{i+1}) a la triangulación
- 4. Eliminar P_i de P // Cortar oreja
- Coste total: depende de la búsqueda de vértices orejas (línea 2)

Vértice oreja

Un vértice P_i se denomina oreja si el segmento (P_{i-1},P_{i+1}) es una diagonal del polígono

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

Búsqueda de oreja en O(n2)

BuscarOreja(P)

- 1. Desde i=1 hasta n
- 2. Si (P_{i-1}, P_{i+1}) es una diagonal devolver P_i
- Coste de comprobar si un segmento es diagonal = O(n)
- Coste $O(n)*O(n) = O(n^2)$

Búsqueda de oreja en O(kn)

BuscarOreja(P)

- 1. i := 0
- 2. Mientras que P_i no es una oreja
- 3. Si P_i es convexo
- 4. Desde j=0 hasta k recorremos todos los vértices cóncavos
- 5. Si no hay ningún P_i interior al triángulo $(P_{i-1}, P_{i'}, P_{i+1})$
- 6. P_i es una oreja
- 7. Si P_i no es una oreja
- 8. i := i+1
- k= número de vértices cóncavos, calculados en preproceso

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

Polígono monótono

Un polígono es monótono con respecto a una línea l cuando podemos dividir el polígono en dos cadenas polígonales monótonas con respecto a l.

Cadena monótona

Una cadena C = $v_0v_1 \dots v_{n-1}$ es monótona con respecto a l cuando cualquier perpendicular a l corta a C únicamente en un punto

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

. . .

Triangulación pol. monótonos

- Consideramos polígonos estríctamente monótonos en sentido vertical (no contiene aristas horizontales)
- Algoritmo basado en un barrido de vertical del plano
- Coste lineal O(n)

Algoritmo (pseudocódigo)

TriangularPolígono(P)

// P debe ser monótono con respecto al eje y

- 1. Ordenar los vértices de arriba abajo
- 2. ListaVérticesSuperiores = ∅
- 3. Mientras que queden vértices por tratar
- 4. Sea v el vértice con mayor coordenada y
- Conectar v con todos los vértices de ListaVérticesSuperiores con los que sea posible definir una diagonal interior, y eliminar la parte del polígono triangulada. Si no fuera posible trazar ninguna diagonal, añadir v a ListaVérticesSuperiores.

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante

13

Algoritmo detallado

- 1. Ordenar los vértices de arriba abajo
- 2. Inicializar CadenaCóncava a los dos vértices sup. y v al siguiente
- 3. Mientras que v ≠ vértice inferior
- 4. Caso 1 (v está en la cadena opuesta a la CadenaCóncava)
 Trazar la diagonal de v al segundo vértice de cadena
 Eliminar el cominenzo de la cadena
 Si la cadena tiene 1 elemento añadir v y avanzar v
 - Caso 2 (v es adyacente al último vértice de CadenaCóncava)
- 6. Caso 2a (v+ es convexo)

Trazar la diagonal de v al segundo vértice de cadena Eliminar el final de la cadena

Si la cadena tiene 1 elemento añadir v y avanzar v

7. Caso 2b (v+ es cóncavo)

Añadir v al final de CadenaCóncava y avanzar v

Triangulación de polígonos

5.

Copyright © 2008-2009 Universidad de Alicante

15

Casos a tratar en el paso 5

Triangulación de polígonos

Copyright © 2008-2009 Universidad de Alicante