rui

WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Buro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/00, 15/67, 15/70, 15/81, C12Q 1/68

(11) Internationale Veröffentlichungsnummer: WO 95/20652

(43) Internationales Veröffentlichungsdatum:

3. August 1995 (03.08.95)

(21) Internationales Aktenzeichen:

PCT/EP95/00297

A1

(22) Internationales Anmeldedatum: 27. Januar 1995 (27.01.95)

(30) Prioritätsdaten:

P 44 02 569.6

28. Januar 1994 (28.01.94)

DF

(71) Anmelder (für alle Bestimmungsstaaten ausser US): MEDI-GENE GMBH [DE/DE]; Lochhamer Strasse 11a, D-82152 Martinsried (DE).

(71)(72) Anmelder und Erfinder: ALTMANN, Herbert [DE/DE]; Sternstrasse 7, D-82110 Germering (DE). WENDLER, Wolfgang [DE/DE]; Ringstrasse 25, D-81375 München

(74) Anwälte: DIEHL, Hermann, O., Th. usw.; Flüggenstrasse 13, D-80639 München (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, EE, JP, KR, LT, LV, MX, NZ, PL, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Anderungen eintreffen.

(54) Title: METHOD OF DETERMINING THE ACTIVITY OF A REGULATORY FACTOR, AND USE OF THE METHOD

(54) Bezeichnung: VERFAHREN ZUR BESTIMMUNG DER AKTIVITÄT EINES REGULATORISCHEN FAKTORS SOWIE VER-WENDUNG DIESES VERFAHRENS

(57) Abstract

The invention concerns a method of determining the activity of a regulatory factor, this activity being detected by means of a reporter system. To this end, gene arrays are provided for a first and second regulatory factor and for one or more reporter systems. The active first regulatory factor affects the activity or expression of the second regulatory factor which affects, in turn, the reporter system. Following addition of an inhibitory component, the activation of the reporter system is detected by the interaction between the first and second regulatory factors.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Bestimmung der Aktivität eines regulatorischen Faktors, die über ein Reportersystem nachweisbar ist. Hierzu werden Genanordnungen für einen ersten und zweiten

Repression der Protein-Protein Wechselwirkung zwischen LexA-CTF2 und AD1-TIM im Repressor-abhängigen Verfahren

REPRESSION OF THE PROTEIN-PROTEIN INTERACTION BETWEEN
LOA-CTP2 AND ADI-TIM IN THE REPRESSOR-DEPENDENT PROCESS

regulatorischen Faktor sowie für ein oder mehrere Reportersysteme zur Verfügung gestellt. Der aktive erste regulatorische Faktor wirkt auf die Aktivität oder Expression des zweiten regulatorischen Faktors ein, der letztere wiederum wirkt auf das Reportersystem ein. Nach Zugabe einer inhibitorischen Komponente erfolgt der positive Nachweis der Aktivierung des Reportersystems über das Zusammenwirken der ersten und zweiten regulatorischen Faktoren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Buricina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	TT .	Italien	PT	Portugal
BY	Belanus	JP	Japan	RO	Rumanien
CA	Kanada	KE	Kenya	RU	Russische Foderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	
CN	China	LK	Sri Lanka	TD	Senegal
CS	Tschechoslowakei	LU	Luxemburg	TG	Tschad
CZ	Tschechische Republik	LV	Lettland	TJ	Togo
DE	Deutschland	MC	Monaco	- •	Tadschikistan
DK	Dānemark	MD	Republik Moldau	TT	Trinidad und Tobago
ES	Spanien	MG	•	UA	Ukraine
FI	Finnland	ML	Madagasicar	US	Vereinigte Staaten von Amerika
FR	Frankreich	MN	Mali Mangalai	UZ	Usbekistan
		14714	Mongolei	VN	Vietnam

<u>Verfahren zur Bestimmung der Aktivität ines regulatorischen Faktors sowie</u> <u>Verwendung dieses Verfahrens</u>

Beschreibung

5

30

35

Die Erfindung betrifft ein Verfahren zur Bestimmung dr Aktivität von regulatorischen Faktoren, wobei diese Aktivität über die Aktivität eines Reportersystems nachweisbar ist.

10 lebenden Zellen werden Stoffwechselleistungen entweder kontinuierlich oder aber nur in bestimmten Entwicklungsphasen bzw. auf Grund äußerer Signale hin erbracht. Bei der durch Hormone vermittelten Signalübertragung etwa werden entsprechenden Signale über Wechselwirkungen zwischen Proteinen von der äußeren Zellmembran in das Zellinnere 15 hinein transportiert um dort, beispielsweise im Zellkern, in eine Aufforderung zur Teilung umgesetzt zu werden. Werden diese Wechselwirkungen gestört, kann dies eine gesunde Zelle Gleichgewicht bringen und zu Wachstumsstörungen dem 20 führen. So kann z.B. eine entartete Zelle zu Krebsgeschwür heranwachsen und über die Bildung Metastasen den totbringenden Tumor über den gesamten Körper verteilen. Auch Viren wie HIV (Human Immunodeficiency Virus) oder HPV (Human Papilloma Virus) greifen in die natürlichen Abläufe der Zelle ein und mißbrauchen sie dazu, 25 vervielfätigen um dann weitere Zellen zu infizieren.

ist offensichtlich, daß über solche Wechselwirkungen gezielt in das Geschehen einer Zelle eingegriffen werden kann, sofern die entsprechenden Proteine bekannt und einem einfachen Test zugänglich sind. In den vergangenen Jahren sind derartige Tests entwickelt worden. Sie beruhen letztlich darauf, daß eine einfache biochemische Reaktion, die durch eine Farbreaktion nachweisbar und vieltausendfach gleichzeitig durchführbar ist, von einer solchen Wechselwirkung zwischen Proteinen abhängig gemacht wird. Sogenannte in vivo Assays lassen diese Wechselwirkungen z.B.

in Hef zell n nachweisen, die leicht zu züchten und auch für die Bildung menschlicher Proteine geeignet sind (Brent, R. et al., PCT-Veröffentlichung WO 92/05286; Fields, S. et al., U.S. 5,283,173).

5

Die Transkription proteinkodierender Gene wird von einem Multiproteinkomplex bestehend aus Pol II und einer Reihe spezifischer und genereller Transkriptionsfaktoren initiiert. Eine Vielzahl dieser Faktoren ist in den letzten isoliert und charakterisiert worden, 10 wodurch man Einblicke in die Mechanismen der eukaryontischen Genexpression erhalten hat (Zawel et al., Curr. Opin. Cell. Biol. (1992) 4, S. 488-495; Cortes et al., Mol. Cell. Biol. (1992) 12, S. 413-421; Flores et al., J. Biol. Chem. (1992) 267, S. 2786-2793). 15

Neben der basalen Transkriptionsmaschinerie spielen vor allem die DNA bindenden Transkriptionsfaktoren eine entscheidende Rolle bei der stimulierten Genexpression.

20

Die drei charakteristischen Merkmale von Transkriptionsaktivatoren, wie proto-Onkogene oder Transkriptionsfaktoren und Protein-Protein-Wechselwirkung n in Signalketten oder Multiproteinkomplexen, welche sie zu besonders geeigneten Targets für Untersuchungen machen, sind 25 ihre hohe Diversität, ihre Spezifität sowie Ihre mögliche Rolle bei der Entstehung von Krankheiten. So sind z.B. mehr genspezifische Transkriptionsfaktoren als 300 beschrieben und es wird angenommen, daß ca. 3000 weiter derartige Faktoren vom menschlichen Genom kodiert werden. 30 Ähnlich wie Rezeptoren an der Zelloberfläche praktisch kein Faktor und keine Protein-Protein Wechselwirkung genau der anderen. Jedes Protein bietet eine einzigartige Oberfläche und stellt dadurch ein einzigartiges 35 Targ t dar.

10

DNA-bindende und die stimulierend Die Aktivität jedoch nicht auf einer Polypeptidkette lokalisiert vorliegen (Weston et al., C ll (1989) 58, S. 85-93). Die Teilung dieser beiden Eigenschaften erlaubt zum Beispiel die Untersuchung einer Wechselwirkung zwischen zwei Proteinen X und Y, wobei DNA-bindende Teil auf einem Protein X und transkriptionsaktive Teil auf einem Protein Y lokalisiert sind (Fields et al., Nature (1989) 340, S. 245-246). Die spezifische Inhibierung dieser Interaktion resultiert Verlust der stimulierenden Aktivität dieses Elements.

Bisher sind Verfahren bekannt, um Inhibitoren nachzuweisen. welche die biologische Aktivität von Oncoproteinen hemmen (WO 92/05286). Diese Verfahren werden eingesetzt, 15 inhibitorische Komponenten zu identifizieren und klassifizieren, indem die Fähigkeit einer solchen Komponente untersucht wird, die Expression von Reportergenen beeinflussen. Nach der vorgenannten PCT-Veröffentlichung werden Durchführung zur dieses Verfahrens Fusionsq ne 20 bereitgestellt, welche für Fusionsproteine codieren. Di se Fusionsproteine binden an eine Bindestelle auf der DNA, wobei diese DNA für die Reportergene codiert, und vermitteln so die Expression des Reportergens. Wird die Expression Reportergens untersucht, so ist eine Abnahme der Reportergen-25 Expression indikativ für eine Komponente, die Aktivität der Fusionsproteine hemmt.

Nachweis Inhibitoren erfolgt bei Anwendung von genannten Verfahren ausschließlich über eine Abnahme Expression der betreffenden Reportergene, d.h. es handelt 30 sich um einen Negativnachweis. Das bekannte Nachweissystem ist insofern von Nachteil, da es gegebenenfalls Empfindlichkeit eines Testsystems herabsetzt. Wird Reportergen prinzipiell nur schwach exprimiert, so sind nach Inhibitorzugab und somit noch w iter abn hm nder Expression 35 häufig k ine eindeutigen Aussagen möglich. Diese Nachteile

10

15

20

25

30

35

darauf zurück, daß ein zugesetzte inhibitorische Komponente einen Transkriptionsfaktor hemmt, der Expression von Reportergenen beeinflußt, d.h. es handelt sich um eine direkte funktionelle Verbindung von Inhibitor und Reportergen. Insbesondere ist eine fehlende Expression nach Inhibitorzugabe von Nachteil, da Versuchsdurchführungen häufig auf Selektion von Organismen beruhen, wie im folgenden kurz erläutert. Wird so z.B. das Wachstum von Zellen nach Inhibitorzugabe untersucht. wachsen gerade die zu untersuchenden gehemmten Zellen nicht und müssen über weitere Versuche nachgewiesen werden. Ein Screening verschiedener potentieller Inhibitoren ist daher nicht möglich. Die fehlende Expression von Reportergenen Inhibitorzugabe kann darüber hinaus auch auf die Einflußnahme weiterer Faktoren zurückzuführen sein, beispielsweise Inhibitors auf Faktoren der Translationsund Replikationsmechanismen sowie des Zellzyclus. Somit ist der Wirkungsort des Inhibitors häufig nicht klar zu definieren, woraus eine mangelnde Spezifität der bisherigen Nachweissysteme resultiert.

Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Verfügung zu stellen, das die vorgenannten Nachteile nicht aufweist, das schnelle, eindeutige und spezifizische Aussagen über Testergebnisse ermöglicht sowie die Empfindlichkeit von Testsystemen verbessert.

Die Erfindung löst diese Aufgabe durch das im unabhängigen Patentanspruch 1 angegebene Verfahren und die Verwendung nach Patentanspruch 63. Weitere bevorzugte Ausgestaltungen, Aspekte und Details des erfindungsgemäßen Verfahrens sind in den abhängigen Patentansprüchen 2 bis 62 sowie 64 und 65, den Zeichnungen, Tabellen und den bevorzugten Ausführungsformen dargelegt. Die vorliegende Erfindung stellt ein wesentlich verbessertes Nachweissystem für di Aktivität eines regulatorischen Faktors zur Verfügung. Mit dem ang gebenen Verfahren kann auch im lebenden Organismus eine inhibitorische Komponente durch Expression bzw. v rstärkte Expression ines Reportersystems nachgewiesen werden, ohne daß die Nachteile bekannter Verfahren auftreten.

5

Damit wird die Empfindlichkeit des Testsystems entscheidend erhöht und ermöglicht das Screenen von Inhibitorbibliotheken großer Komplexität (über 10⁹ verschiedene Moleküle).

- Hiermit wird ein neues Prinzip zum Screenen nach Inhibitoren und Chemikalien, die entsprechende Aktivitäten modifizieren, eingesetzt. Der Assay kann auch zur Identifizierung bislang unbekannter Wechselwirkungen verwendet werden.
- 15 für das erfindungsgemäße Verfahren ist Bereitstellen mindestens eines zweiten regulatorisch n Faktors. Das im folgenden beschriebene Verfahren wird bevorzugt in Wirtsorganismen durchgeführt, wodurch jedoch nicht ausgeschlossen werden soll, entsprechende Verfahren 20 auch außerhalb eines Organismus durchzuführen. Als Wirtsorganismen werden Mikroorganismen, insbesondere Bakterien, oder eukaryotische Zellen, insbesondere Hefen, eingesetzt. Besonders bevorzugt sind der Bakterienstamm Escherichia coli oder der Hefestamm Saccharomyces cerevisia.

25

35

Gemäß der vorliegenden Erfindung werden, wie vorstehend erwähnt, bevorzugt in einem Wirtsorganismus, mindestens ein Reportersystem mit mindestens einer ersten Genanordnung, welche mindestens ein Reportergen aufweist, bereitgestellt. Die Expression der Reportergene dient als Weiten

30 Die Expression der Reportergene dient als Nachweissystem.

Des weiteren wird mindestens ein erster regulatorischer Faktor bzw. die entsprechende Genanordnung bereitgestellt. Gemäß der vorliegenden Erfindung be influßt der mindestens eine erste r gulatorische Faktor einen oder mehrere zweite regulatorische Faktoren und nicht direkt die Aktivität des

Reportersystems, wodurch es erstmals ermöglicht wird, die Aktivität eines ersten regulatorischen Faktors durch ein positives Signal nachzuweisen.

5 Der mindestens eine zweite regulatorische Faktor wird durch mindestens eine zweite Genanordnung codiert. Aus Gründen der Vereinfachung wird bei den bereits erwähnten und den folgenden genannten, am Verfahren beteiligten Komponenten nicht immer ausdrücklich erwähnt, daß sowohl eine als auch 10 mehrere Komponenten wie Gene, Genanordnungen, regulatorische Faktoren, Proteine usw., beteiligt sein können. ausgelegt werden, daß diese Möglichkeiten eingeschlossen sind. Bevorzugt wird die Aktivität des zweiten regulatorischen Faktors durch den ersten regulatorischen 15 Faktor beeinflußt. Über eine Wechselwirkung des regulatorischen Faktors mit Komponenten des Reportersystems wird auch Einfluß auf die Aktivität des Reportersystems genommen. Somit wird gemäß der vorliegenden Erfindung die Aktivierung des Reportersystems durch Zugabe einer inhibitorischen Komponente über das Zusammenwirken der ersten 20 und zweiten regulatorischen Faktoren nachgewiesen.

Der erste regulatorische Faktor enthält eine oder mehrere regulierende Komponenten. Enthält der erste regulatorische Faktor mehrere regulierende Komponenten, ist insbesondere die 25 zusammengesetzte Form die aktive Form. Bei den ein oder mehreren regulierenden Komponenten handelt es sich häufig um ein oder mehrere regulierende Proteine. Die regulierenden Proteine sind bevorzugt ein oder mehrere 30 Transkriptionsregulatoren, beispielsweise Transkriptionsfaktoren. In einer bevorzugten Ausführungsform enthält der Transkriptionsfaktor nur ein Protein.

Gemäß einer weiteren, b vorzugten Ausgestaltung des 35 erfindungsgemäßen Verfahrens enthält dr Transkriptionsregulator mindestens zwei Hybridprotein, Ŋ

insbesonder zwei Hybridproteine, welche von einer bereitgestellten dritten G nanordnung codiert werden.

Hybridproteine sind bevorzugt ein erstes Hybridprotein, 5 ein Fusionsprotein aus einer DNA-Bindedomäne und welches einer ersten Proteinkomponente ist, und ein zweites Hybridprotein, welches ein Fusionsprotein aus einer Aktivierungsdomäne Transkriptionsregulators des und einer zweiten Proteinkomponente ist. Durch Bindung zwischen 10 beiden Proteinkomponenten, die auch Targets genannt werden, entsteht der aktive Transkriptionsregulator.

Die regulierenden Komponenten des ersten regulatorischen Faktors sind gemäß dem vorliegenden Verfahren nicht auf regulierende Proteine beschränkt. So kann beispielsweise der erste regulatorische Faktor Nucleinsäuren oder auch weitere Komponenten enthalten.

Die Aktivität des mindestens einen ersten regulatorisch n
Faktors wird durch inhibitorische Komponenten beeinflußt.
Diese inhibitorischen Komponenten sind bevorzugt Naturstoffe
wie Peptide, Nucleinsäuren und Kohlenhydrate oder
niedermolekulare Substanzen oder andere chemische Substanzen
oder auch durch Mutagenese veränderte Bestandteile des ersten
regulatorischen Faktors.

einer weiteren bevorzugten Ausführungsform wird vierte Genanordnung für die Expression von Peptiden bereitgestellt. Diese Peptide weisen insbesondere eine 30 inhibitorische Aktivität auf. So können in vivo synthetisierte Peptidlibraries zur Inhibierung von regulatorischen Faktoren eingesetzt werden. In weiteren bevorzugten Ausgestaltungen werden beliebige Kombination n der genannten Inhibitoren zugesetzt.

Besonders wichtig ist die Einwirkung der inhibitorischen Komponenten auf die Aktivität des ersten regulatorischen Faktors durch Einwirkung auf die Wechselwirkung zwischen zwei r gulatorischen Komponenten, die 5 ersten regulatorischen Faktor enthalten sind. Diese Einwirkung ist bevorzugt eine Hemmung der Wechselwirkung d r regulatorischen Komponenten. Die Aktivität kann auch aufgrund mehrerer Komponenten, z.B. in einem Multiproteinkomplex, reguliert werden. Dieser Komplex ist solange aktiv, 10 einzelne oder mehrere Bausteine diesen Komplex bilden. Erst Inhibierung einer oder mehrerer dieser Komponenten zerstört die Aktivität des gesamten Komplexes. Auch bisher Beschriebenen abweichende Aktivitäten, die in irgendeiner Weise die Expression des zweiten regulatorischen Faktors aktivieren, sind als erster regulatorischer Faktor 15 geeignet. Die Inhibierung des ersten regulatorischen Faktors sowohl die Aktivität des Transkriptionsregulators und/oder Generierung des Transkriptionsregulators betreffen. Insbesondere wird die Wechselwirkung zwischen zwei regulierenden Proteinen des ersten regulatorischen Faktors 20 gehemmt. Wird eine der genannten Wechselwirkungen gehemmt, liegt ein inaktiver oder in seiner Aktivität herabgesetzter erster regulatorischer Faktor vor. Infolgedessen ist Interaktion des ersten regulatorischen Faktors mit dem zweiten regulatorischen Faktor gehemmt oder herabgesetzt. 25 In einer weiteren bevorzugten Ausführungsform Wechselwirkung zwischen dem ersten regulatorischen Faktor und dem zweiten regulatorischen Faktor beeinflußt. Auch diese Einwirkung ist besonders bevorzugt eine Hemmung. In einer 30 besonders vorteilhaften Ausführungsform beeinflußt der Inhibitor die Wechselwirkung des ersten regulatorisch n Faktors mit Genabschnitten der zweiten Genanordnung. In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens modifiziert der mindestens eine erste regulatorische Faktor, 35 der bevorzugt ein oder mehrere Proteine enthält, mindest ns einen zweiten r gulatorischen Faktor,

10

beispi lsweise über Kinasierung, D phosphoryli rung, Spaltung, Umfaltung oder Konformationsänderung.

Wird kein Inhibitor zugesetzt, liegt der erste regulatorische Faktor insbesondere in der aktiven Form vor und wirkt auf die Aktivität des zweiten regulatorischen Faktors ein. Es ist des weiteren bevorzugt, daß der erste regulatorische Faktor mit DNA-Abschnitten der für den zweiten regulatorischen Faktor codierenden zweiten Genanordnung wechselwirkt und somit di Expression des zweiten regulatorischen Faktors beeinflußt.

Die Zugabe einer inhibitorischen Komponente beeinflußt beispielsweise die Wechselwirkung zwischen mindestens zwei Komponenten, welche gemeinsam den ersten regulatorischen Faktor bilden. In einer weiteren Ausführungsform wirkt die 15 Zugabe der inhibitorischen Komponente auf die Aktivität des ersten regulatorischen Faktors ein, unabhängig davon, ob er regulierende Komponenten enthält. mehrere Die Einwirkung auf die Aktivität betrifft beispielsweise transkriptionsaktivierende oder bindende Aktivität des ersten 20 regulatorischen Faktors oder die Interaktion des ersten und zweiten regulatorischen Faktors.

In einer weiteren Ausführungsform beeinflußt die Zugabe einer inhibitorischen Komponente sowohl die genannte Wechselwirkung als auch die genannte Aktivität. Die Einwirkung ist bevorzugt eine Hemmung der Wechselwirkung und/oder der Aktivität.

Durch Zugabe der inhibitorischen Komponente wird bevorzugt 30 die Wechselwirkung zwischen dem ersten regulatorischen Faktor und einem DNA-Abschnitt der zweiten Genanordnung, welche den zweiten regulatorischen Faktor codiert, wobei sich insbesondere um eine Hemmung handelt, beeinflußt. Di Einwirkung bzw. die Hemmung der oben genannten Wechselwirkungen durch inhibitorische Komponent n führt 35 einer Einwirkung auf die Genexpression der zweit n

10

Genanordnung, insbesondere zu einer Hemmung der Genexpression der zweiten Genanordnung. Besonders bevorzugt führt die Zugabe dr inhibitorisch n Komponente über eine Hemmung der Aktivität des regulierenden Proteins zu einer Hemmung der Expression der zweiten Genanordnung.

Gemäß einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird durch die Zugabe einer inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten eingewirkt, wobei eine dieser Komponenten eine regulatorische Komponente ist oder eine regulatorische Komponente enthält.

Vorteilhaft ist, wenn diese regulatorische Komponente eine Proteinkomponente ist oder mindestens eine Proteinkomponente enhält. Bevorzugt sind bei den Proteinkomponenten Fusionsproteine.

Gemäß einer besonders bevorzugten Ausgestaltung ist die regulatorische Komponente eine inhibitorische Komponente.

Die mindestens eine zweite Komponente ist bespielsweise eine Proteinkomponente oder enthält eine Proteinkomponente. Es hat sich als vorteilhaft erwiesen, daß diese Proteinkomponente ein Fusionsprotein ist.

Bei den zweiten Proteinkomponenten handelt es sich insbesondere um Proteinkomponenten, die Verankerungsfunktionen besitzen. Bevorzugt erfolgt die 30 Verankerung der miteinander wechselwirkenden Proteinkomponenten im Cytoplasma. Als vorteilhaft hat sich Verankerung der miteinander in Wechselwirkung stehenden Proteine über die Verankerungsfunktion der zweiten Proteinkomponente in der Membran erwiesen.

25

Gemäß einer weiteren vort ilhaften Ausführungsform erfolgt über die Zugabe ein r inhibitorischen Komponente eine Hemmung d r Wechselwirkung zwischen den mindestens zw i Komponenten Freisetzung der mindestens einen ersten Komponente, welche den inhibitorisch wirksamen Abschnitt enthält. Diese 5 freigesetzte erste Komponente interagiert mit transkriptionsaktivierenden Faktor der Genanordnung für den zweiten regulatorischen Faktor. Besonders bevorzugt wird der transkriptionsaktivierende Faktor durch den freigesetzten 10 inhibitorisch wirkenden Faktor gehemmt, wodurch eine Hemmung der Expression der zweiten Genanordnung erfolgt.

In den bisher und auch im folgenden genannten Ausführungsformen enthalten die regulatorischen bzw. 15 interagierenden Komponenten Abschnitte, die die regulatorische bzw. interagierende Funktionen bedingen. Die entsprechenden Proteinabschnitte können eine oder mehrere Abschnitte oder Domänen beinhalten. Diese Abschnitte oder Domänen können sich in verschiedenen Regionen eines Proteins bzw. auf verschiedenen Proteinen befinden. 20

Vorzugsweise werden die mindestens zwei Proteinkomponenten von einer fünften Genanordnung codiert.

- 25 Es hat sich als besonders vorteilhaft erwiesen, daß die mindestens eine erste Proteinkomponente einen Abschnitt, dr mit der mindestens einen zweiten Proteinkomponente wechselwirkt, einen Abschnitt, der mit ein m Transkriptionsfaktor wechselwirkt sowie einen inhibitorischen 30 Abschnitt enthält, wobei erst nach Hemmung der Wechselwirkung der Bindung zwischen den mindestens zwei Proteinkomponenten inhibitorisch wirkende zweite Proteinkomponente Expression des zweiten regulatorischen Faktors hemmt.
- 35 Gemäß ein r weiter n bevorzugten Ausgestaltung ist die mindestens eine erste regulatorische Komponente in

Transkriptionsregulator oder Transkriptionsfaktor des zweiten regulatorischen Faktors, der nach Inhibi rung Wechselwirkung mit der mindestens einen zweiten Proteinkomponente in seiner Aktivität reduziert oder inaktiviert wird, wodurch eine Inhibierung oder Reduzierung der Aktivität des zweiten regulatorischen Faktors erfolgt.

Bei den zweiten regulatorischen Faktoren handelt es sich insbesondere um Proteine, beispielsweise, je nach 10 Versuchsanordnung, um mindestens einen Repressor oder mindestens eine Rekombinase. Die aktiven regulatorischen Faktoren wirken über eine Wechselwirkung mit Komponenten des Reportersystems auf die Aktivität Reportersystems ein. Der zweite regulatorische Faktor bindet 15 bevorzugt an DNA-Abschnitte des Reportersystems.

Ein Repressor, codiert durch die zweite Genanordnung, ist ein Beispiel für einen zweiten regulatorischen Faktor. Repressor beeinflußt die Expression mindestens eines 20 Reportergens, indem er bevorzugt Komponenten an Reportersystems bindet. Gemäß einer bevorzugten Ausgestaltung erfindungsgemäßen Verfahrens wird die Bindung Repressors an Komponenten des Reportersystems durch weitere Agenzien reguliert. So induziert beispielsweise Antibiotikum Tetrazyklin eine Ablösung eines prokaryotischen 25 Repressors von der DNA. Ein aktiver Repressor hemmt Expression mindestens eines Reportergens. Wird dagegen, Beispiel durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression des Repressor-30 Gens gehemmt, erfolgt die Expression mindestens Reportergens.

Eine Rekombinase, codiert durch die zweite Genanordnung, ist ein weiteres Beispiel für einen zweiten regulatorischen 35 Faktor. In ein r entsprechenden Versuchsanordnung enthalt n die Reportersysteme R kombinationselemente. Liegt ein aktiver

erster regulatorischer Faktor vor, eliminiert oder invertiert die Rekombinase über Rekombinationsprozess mindestens Reportergen. Hierbei interagiert die Rekombinase mit den spezifischen, das Reportergen bzw. die Reportergene 5 flankierende Rekombinationselemente und eliminiert oder invertiert das Reportergen, welches von den Rekombinationselementen flankiert wird. Sowohl nach Elimination als auch nach Invertierung wird das Reportergen nicht exprimiert. Ist also kein Inhibitor dem Versuchsansatz zugesetzt worden, liegt ein aktiver erster regulatorischer 10 Faktor vor, der bevorzugt die für einen zweiten regulatorischen Faktor codierenden Gene aktiviert, insbesondere über Wechselwirkung mit DNA-Abschnitten. zweite aktive Faktor, wie z.B. ein Repressor oder Rekombinase, hemmt die Expression der Reportergene. 15

Durch die Beeinflussung der Wechselwirkung von mindestens zwei regulatorischen Komponenten des Transkriptionsregulators, wobei die regulatorischen Komponenten insbesondere zwei Hybridproteine sind, wird in 20 einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens die Expression mindestens einer Rekombinase gesteuert, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt. Durch Hemmung der Wechselwirkung 25 der Hybridproteine des Transkriptionsregulators (bzw. anderer regulatorischer Faktoren des Transkriptionsregulators) wird die Expression der Rekombinase insbesondere gehemmt und es erfolgt eine Expression des mindestens einen Reportergens.

Besonders bevorzugt ist eine Ausführungsform, bei der durch die Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens eines Repressor-Gens gesteuert wird, wodurch eine Veränderung der Expression des mindestens einen Reportergens erfolgt.

Insbesond re wird durch Hemmung der Wechselwirkung der Proteinkomponenten di Expression des Repressor-Gens gehemmt und eine Expression des mindestens einen Reportergens erfolgt.

5

10

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung wird durch die Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens einer Rekombinase gesteuert, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.

Besonders bevorzugt wird durch Hemmung der Wechselwirkung der Proteinkomponenten die Expression der Rekombinase gehemmt und eine Expression des mindestens einen Reportergens erfolgt.

15

Die Versuche basieren darauf, daß unter den gegebenen Versuchsbedingungen mindestens ein Genprodukt des mindestens einen Reportergens nachweisbar ist.

Gemäß bevorzugter Ausführungsformen wird ein Genprodukt eines Reportergens oder werden mehrere Genprodukte mehrerer Reportergene exprimiert. In einer weiteren Ausgestaltung werden je nach variierenden Versuchsbedingungen ein bis mehrere Reportergene exprimiert.

25

30

35

Der Nachweis des Genprodukts bzw. der Genprodukte erfolgt dann beispielsweise über eine oder mehrere Veränderungen des Phänotyps von Wirtszellen. In einer besonders bevorzugten Ausführungsform ermöglicht das Genprodukt des Reportergens Zellwachstum der Wirtszellen in Mangelmedium. Das Genprodukt z.B. des Reportergens Leu2 ermöglicht Zellwachstum in Leucindefizientem Medium. Bei einer weiteren vorteilhaften Abwandlung des erfindungsgemäßen Verfahrens werden Hefestämme mit chromosomalen Mutationen als Wirtszellen eing setzt, die beispielsweise zu L ucin-Defizienzen bei der Verstoffwechselung Aminosäure der Leucin führ n. Die

chromosomalen Mutationen können auch zu Defizienzen bei der Verstoffw chs lung der Aminosäuren Tryptophan und Histidin führen. Gegebenenfalls ist auch dr Einsatz proteasedefizienter Hefen sinnvoll.

5

10

15

Es ist auch bevorzugt, Genanordnungen bereitzustellen, die für ein oder mehrere Genprodukte codieren, wobei dies Genprodukte Substrate in einer meßbaren Farbreaktion umsetzen können, wie z.B. das Reportersystem LacZ. Das Genprodukt dieses Reportergens, die β -Galactosidase, reagiert mit verschiedenen Substraten in einer sichtbaren Farbreaktion.

Die für das vorliegende Verfahren genannten Genanordnungen können auf verschiedenen Vektoren oder demselben Vektor angeordnet sein. Als Vektoren werden insbesondere Plasmide verwendet. In einer weiteren bevorzugten Ausführungsform sind ein oder mehrere Vektoren mit einer oder mehreren Genanordnungen, oder eine oder mehrere Genanordnungen, ins Wirtsgenom integriert.

20

25

30

35

Gemäß der vorliegenden Erfindung wird also durch Einsatz einer oder mehrerer inhibitorischer Komponenten zunächst die Aktivität des ersten regulatorischen Faktors beeinflußt, wobei dieser wiederum auf die Aktivität des zweit n regulatorischen Faktors einwirkt.

Der zweite regulatorische Faktor wirkt schließlich auf die Expression des Reportergens ein. Bevorzugt wird gemäß dr vorliegenden Erfindung durch Zusatz ein oder mehrerer inhibitorischer Komponenten die Aktivität des ersten regulatorischen Faktors gehemmt, dadurch bedingt wird ebenfalls der zweite regulatorische Faktor gehemmt, wobei gemäß einer bevorzugten Ausführungsform der zweite regulatorische Faktor selbst gehemmt oder in iner weiteren bevorzugten Ausführungsform die Expression des zweiten regulatorischen Faktors gehemmt wird. Da in keinem Fall ein

10

aktiv r zweiter regulatorischer Faktor vorliegt, wird das Reportergen bzw. werden die Report rg ne exprimiert. Erst die Inhibierung des ersten regulatorisch n Faktors bewirkt also Expression von Reportergenen. Der jeweilige Phänotyp hängt davon ab, ob der zweite regulatorische Faktor gebildet wird oder nicht. Besonders hervorgehoben werden soll eine weitere Ausgestaltung der vorliegenden Erfindung, wobei einem Wirtsorganismus zwei Genanordnungen für zwei zweite regulatorische Faktoren, insbesondere Genanordnungen einen Repressor und eine Rekombinase, neben den in z.B. 1 erwähnten übrigen zur Versuchsdurchführung notwendigen Genanordnungen, bereitgestellt werden.

- Je nach Versuchsbedingung wird einer der beiden zweiten regulatorischen Faktoren, d.h. insbesondere Repressor oder Rekombinase, oder werden auch beide gleichzeitig exprimiert. Hierdurch bedingt wird eine erhöhte Spezifität des Verfahrens erreicht.
- Die Inhibierung der Aktivität des Transkriptionsfaktors bzw. des Transkriptionsregulators oder dessen Generierung führt schließlich zur Aktivierung des Reportergens bzw. der Reportergene.
- 25 Gemäß Verfahren der vorliegenden Erfindung ist möglich, hochspezifische Inhibitoren nachzuweisen, Selektivität und Spezifität des Nachweises von Inhibitoren zu erhöhen. Mit dem vorliegenden Verfahren sind so z.B. bei Wachstumsversuchen selektiv die Zellen nachweisbar, auf die 30 der Inhibitor eingewirkt hat, während die "nicht gehemmten" Zellen nicht wachsen, d.h. es ergeben sich keine Probleme wie Überwachsen der interessierenden Zellen. Damit wird Empfindlichkeit des Testsystems entscheidend erhöht und ermöglicht das Screenen von Inhibitorbibliotheken Komplexität (über 10^9 verschiedene Moleküle). Somit ist es 35 mit dem erfindungsgemäßen Verfahren üb rhaupt zum ersten Mal

möglich, nach Inhibitorzugabe eine Identifikation von Zellen, insbesondere auch aufgrund von Wachstum, durchzuführ n. Dies rweist sich als sehr vorteilhaft, wenn z.B. ein ungünstig s Verhältnis von Zellen, auf die der Inhibitor einwirkt (meist sehr geringer Anteil), zu Zellen, auf die der 5 Inhibitor nicht einwirkt, vorliegt. Des weiteren ist möglich, Aussagen bezüglich des spezifischen Wirkungsortes des Inhibitors zu machen, da gezielt auf z.B. regulatorische Faktoren eingewirkt wird und erst nach Hemmung des Faktors 10 Reportergene exprimiert werden. So ermöglicht Verfahren, Signalketten und andere Regulationsmechanismen zu untersuchen und bietet Voraussetzungen für eine spezifische Arzneimittelentwicklung. Das Verfahren dient zur Auffindung Leitstrukturen, bevorzugt die zur Entwicklung 15 Therapeutika eingesetzt werden. Des weiteren das Verfahren bevorzugt zur Ermittlung von inhibierenden Substanzen, die beispielsweise als Leitstrukturen einsetzbar verwendet. Diese inhibierenden Substanzen sind beispielsweise Peptide, Naturstoffe und synthetische Chemikalien. In einer besonders bevorzugten Ausführungsform . 20 werden zur Inhibierung des ersten regulatorischen Faktors in vivo synthetisierte Peptidlibraries bereitgestellt.

folgenden werden bevorzugte Ausführungsformen 25 Verfahrens gemäß der vorliegenden Erfindung dargestellt, wobei die Ausführung jeweils unter Berücksichtigung eines aktiven bzw. inaktiven ersten regulatorischen erläutert wird. Ausgegangen wird bei den Ausführungen von Proteinen als regulatorische Faktoren.

30

35

Als Reportergen dienen z.B. das Leu2-Gen, welches Wachstum auf Leucin-defizientem Medium ermöglicht, und das LacZ-Gen, dessen Genprodukt, die β -Galactosidase, verschiedene Substrate in einer sichtbaren Farbreaktion umsetzt (X-Gal (5-Brom-4-chlor-3-indoxyl- β -D-galactopyranosid) ergibt Blaufärbung, ONPG (o-Nitro-phenyl-galactopyranosid) ergibt

Gelbfärbung). Entsprechend analog zu Leu2 können auch andere Gene, w lche Enzyme aus d r Biosynthese codi ren, wie z.B. Gn URA3, eingesetzt werden, da seine entsprechend defiziente Hefestämme komplementieren und damit Wachstum auf Uracil defizienten Medien 5 ermöglichen kann (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986)). Auch die Aktivität von Luciferase Chloramphenikol-Acetyltransferase kann leicht in enzymatischen Reaktionen nachgewiesen schnell werden (Ibelgaufts, Gentechnologie von A bis Z (1990) VCH-Verlag 10 (Weinheim)).

Die Erfindung wird nachfolgend anhand der beiliegenden Zeichnungen näher erläutert.

15

20

25

Fig. la und 1b zeigen schematisch dargestellte Genanordnungen für einen Repressor sowi für die Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. la) und eines inaktiven (Fig. lb) Transkriptionsfaktors mit der DNA dargestellt ist.

Fig. 2a und 2b

zeigen schematisch dargestellte Genanordnungen für einen Repressor sowie für die Reporterproteine, wobei die Wechselwirkung eines aktiven (Fig. 2a) und eines inaktiven (Fig. 2b) Transkriptionsregulators mit der DNA dargestellt ist.

30 Fig. 3a und 3b

zeigen schematisch dargestellte
Genanordnungen für eine Rekombinase sowie
für Reporterproteine, wobei die
Wechselwirkung eines aktiven (Fig. 3a) und
eines inaktiven (Fig. 3b) Transkriptionsfaktors mit dr DNA dargestellt ist.

. 35

	Fig. 4a und 4b	zeigen schematisch dargestellte
		Genanordnungen für ine Rekombinase sowie
		für Reporterproteine, wobei die
		Wechselwirkung eines aktiven (Fig. 4a) und
5		eines inaktiven (Fig. 4b) Transkriptions-
		regulators mit der DNA dargestellt ist.
	Fig. 5a und 5b	zeigen schematisch dargestellte
		Genanordnungen für einen Repressor sowie
10		für die Reporterproteine, wobei die
		Wechselwirkung eines aktiven (Fig. 5a) und
	•	eines inaktiven (Fig. 5b) Transkriptions-
		regulators mit der DNA dargestellt ist.
15	Fig. 6a und 6b	zeigen schematisch dargestellte
		Genanordnungen für eine Rekombinase sowie
		für Reporterproteine, wobei die
		Wechselwirkung eines aktiven (Fig. 6a) und
•		eines inaktiven (Fig. 6b) Transkriptions-
20		regulators mit der DNA dargestellt ist.
	Fig. 7a und 7b	zeigen schematisch dargestellte
	•	Genanordnungen für einen Repressor sowie
		für die Reporterproteine, wobei die
25	•	Wechselwirkung eines aktiven (Fig. 7a) und
		eines inaktiven (Fig. 7b) Transkriptions-
		regulators mit der DNA dargestellt ist.
		January Control Contro
	Fig. 8a und 8b	zeigen schematisch dargestellte
30		Genanordnungen für eine Rekombinase sowie
		für Reporterproteine, wobei die
		Wechselwirkung eines aktiven (Fig. 8a) und
		eines inaktiven (Fig. 8b) Transkriptions-
		regulators mit der DNA dargestellt ist.
35		- -

Fig. 9a und 9b zeigen schematisch dargestelle Genanordnungen für einen Repressor LexA-GST, wobei di Wechselwirkung eines (Fig. 9a) und eines inaktiven 5 (Fig. 9b) ersten regulatorischen Faktors AD1-Tet mit der DNA dargestellt wird.

Fig. 10a und 10b zeigen schematisch dargestellte Genanordnungen für einen zweiten 10 regulatorischen Faktor Tet-GST, wobei die Wechselwirkung eines aktiven (Fig. 10a) eines inaktiven (Fig. 10b) regulatorischen Faktors LexA-CTF7 mit d r DNA dargestellt wird. 15

Fig. 11a und 11b zeigen schematisch dargestellte Genanordnungen für einen zweiten regulatorischen Faktor Tet-GST, wobei die Wechselwirkung eines aktiven (Fig. 11a) 20 eines inaktiven (Fig. 11b) regulatorischen Faktors LexA-CTF2 - AD1-TIM mit der DNA dargestellt ist.

Bei den in den Fig. 1 und 3 genannten Targets (Zielen) bzw. 25 transkriptionsstimulierenden Targets handelt sich um regulatorische Faktoren, insbesondere um Transkriptionsfaktoren für die Expression der regulatorischen Faktoren, auf die der Inhibitor einwirkt. Die regulatorischen Faktoren sind in den in den Figuren gezeigten Beispielen ein Repressor bzw. eine Rekombinase. 30

Bei den in den Fig. 2 und 4 genannten Targets (Zielen) handelt es sich um die miteinander interagierenden regulatorischen Komponenten des regulatorischen Faktors, wobei Target I die regulatorische Komponente mit der

bindenden Aktivität und Target II die regulatorische Komponente mit d r transkriptionsaktivi renden Aktivität ist.

Bei den in den Fig. 5 und 6 genannten Targets (Zielen) 5 handelt es sich um die miteinander interagierenden Komponenten des ersten regulatorischen Faktors, wobei Target I die regulatorische Komponente mit sowohl der DNA bindenden als auch der transkriptionsaktivierenden Aktivität und Targ t II die Komponente ist, mit der Target I wechselwirkt und ausschließlich bei ungestörter Wechselwirkung in der aktiven 10 Form vorliegt.

Bei den in den Fig. 7 und 8 genannten Targets (Zielen) handelt es sich um miteinander interagierende Komponenten, wobei Target II die regulatorische Komponente mit sowohl einer inhibierenden Aktivität als auch einer bindenden Aktivität, und Target III eine verankerte Komponente ist.

- Die bindende Aktivität des Target II bezieht sich auf die Wechselwirkung des von Target III gelösten Targets II mit der X-Komponente von Target I. Die X-Komponente von Target I wiederum ist ein aktivierender Transkriptionsfaktor des zweiten regulatorischen Faktors.
- 25 Mit der Bezeichnung Aktivität werden insbesondere Proteinabschnitte bezeichnet, die die jeweilige Aktivität bzw. die betreffende Funktion bewirken. Hierbei können eine mehrere Domänen betroffen sein. Die Domänen Proteinabschnitte können in verschiedenen Bereichen eines Proteins oder auf verschiedenen Proteinen lokalisiert sein. 30

Entsprechend sind die Bindestellen dieser Faktoren als Target-Bindestellen bezeichnet.

35 In den Beispielen 1 bis 11 wurde wie folgt vorgegangen:

30

<u>Hefe-Plasmide</u>

Zur Expression der verschiedenen Gene in dem zugrundeliegend n Assay werden sowohl kommerziell erhältliche Plasmide (z.B. pYES2 der Firma Invitrogen, Niederlande), als 5 auch andere Konstrukte (Altmann, H. Dissertation (1994), Altmann H. et al., Proc. Natl. Acad. Sci., USA (1994) 91, S. 3901-3905) eingesetzt. Normalerweise besitzen diese Plasmide einen Replikationsursprungsort zur Vervielfältigung ihrer DNA in Hefen (z.B. "2μm-ori") sowie einen zur Replikation in 10 Bakterien (z.B. "colE1-Ori"). Desweiteren werden Markergene Selektion dieser Plasmide in den beiden Organismen verwendet (z.B. URA3, HIS3, TRP1 oder LEU2 in Hefe sowie Ampr oder Tetr in E. coli) (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986); Ibelgaufts, 15 Gentechnologie von A bis Z (1990) VCH-Verlag (Weinheim)). Beispiele für Hefevektoren sind beschrieben (Winnacker et al., From Genes to Clones (1987) VCH-Verlag (Weinheim); The Molecular and Cellular Biology of the Yeast Saccharomyces 20 (1991) Vol. 1 und 2, Cold Spring Harbor Laboratory Press).

Die Expression von Genen kann über konstitutive (z.B. ADHI-Promotor), induzierbare (z.B. Gall-Promotor) oder eigens konstruierte Target-abhängige Promotoren (NFI, Tet, LexA) erfolgen.

Anstelle in Plasmide kloniert können die einzelnen Elemente des Assays auch in das Genom des verwendeten Hefestamm s integriert werden (Sherman et al., Laboratory Course Manual for Methods, In: Yeast Genetics, (1986)). Derartig in der Hefe lokalisierte Elemente benötigen keinen eigenen Replikationsursprungsort sowie Selektionsmarker.

Folgende Elemente werden im Testsystem verwendet:

a) Promotoren:

ADHI-Promoter: Dieser konstitutiv expremi rende Promotor wird über die Restriktion mit den Enzymen BamHI und HindIII funktionell aus dem Plasmid pAAH5 isoliert (Ammerer et al., Methods in Enzymology (1983) Academic Press, S. 192-201).

- Gall-Promoter: Dieser auf Glukose-haltigen Medien 10 reprimierbare und auf Galaktose-haltigen Medien induzierbare Promotor wird mit Hilfe des Restriktionsenzyms SpeI aus dem Vektor pYES2 der Firma Invitrogen (Niederlande) isoliert.
- 15 inaktiver Gal1/Gal10-Promoter: Dieser ursprünglich über induzierbare Promotor wird auf Galaktose Sequenzebene derart deletiert, daß er in Hefe nur mehr Aktivität besitzt (Yocum et al., Mol. Cell. Biol. (1984) 4, S. 1985-1998; West et al., Mol. Cell. Biol. (1984) 4, S. 2467-2478). Mit Hilfe der Restriktionsenzyme BamHI, 20 EcoRI und HindIII wird dieses Promotorelement aus dem so konstruierten Vektor pLRl Δ l isoliert und für weit re Zwecke verwendet.
- NFI-abhängiger Promoter: Die von Meisterernst et 25 Acid Res. (1988)236, s. 27 - 32) Konsensussequenz als DNA-Bindungsstelle für Mitglieder der NFI-Familie (Nuklear I) Faktor wird Oligonukleotid synthetisiert und für die Konstruktion von NFI-abhängigen Promotoren verwendet (Altmann et 30 Proc. Natl. Acad. Sci. USA (1994) 91, S. 3901-3905).

Sequenz für 6 NFI-Bindestellen konstruiert aus zwei Oligonukleotiden:

1. Oligo:

5'- TCG AGT TTT TGG CAC TGT GCC AAT TCT TTT TGG CAC TGT GCC AAT TCT

3'- CA AAA ACC GTG ACA CGG TTA AGA AAA ACC GTG ACA CGG TTA AGA

TTT TGG CAC TGT GCC AAT TC - 3'

AAA ACC GTG ACA CGG TTA AG - 5'

2. Oligo:

5'- TTT TTG GCA CTG TGC CAA TTC TTT TTG GCA CTG TGC CAA TTC TTT TTG

3'- AAA AAC CGT GAC ACG GTT AAG AAA AAC CGT GAC ACG GTT AAG AAA AAC

10 GCA CTG TGC CAA TTC - 3

CGT GAC ACG GTT AAG AGC T - 5'

Tet-abhängiger Promoter: Die von Hillen et al. (Nature (1982) 297, S. 700-702) gefundene Konsensussequenz als DNA-Bindungsstelle für den Tet-Repressor wird als Oligonukleotid synthetisiert und für die Konstruktion von Tet-abhängigen Promotoren verwendet.

Sequenz für die Tet-Operator-Bindestelle 01/02:

20

15

5

5'- TCG ATC TCT ATC ACT GAT AGG GAG TGG TAA AAT AAC TCT ATC AAT GAT

3'- AG AGA TAG TGA CTA TCC CTC ACC ATT TTA TTG AGA TAG TTA CTA

AGA - 3'

TCT CAG A- 5'

25

30

35

<u>LexA-abhängiger Promoter</u>: Die DNA-Konsensussequenz als Bindungsstelle für den bakteriellen Repressor LexA Oligonukleotid synthetisiert und für Konstruktion von LexA-abhängigen Promotoren verwendet (Altmann et al., Proc. Natl. Acad. Sci. USA (1994) 91, S. 3901-3905; Wendler et al., Nuc. Acid Res. (1994) 22, S. 2601-2603; Brent et al., Cell (1985) 43, S. 729-736). Um die reprimierende Aktivität von LexA-Fusionen auf den Galaktose-induzierten Gall-Promotor nachzuweisen, mit Hilfe des R striktionsenzyms BamHI dieser Promotor aus dem Plasmid JK101 (Gol mis et al., Mol. Cell. Biol.

(1992) 12, S. 3006-3014) isoliert und für weitere Klonierungen eingesetzt.

loxP-abhängiger Promoter: Die von Hoess et al. (Proc. 5 Acad. Sci. USA (1982) 79, S. beschriebenen loxP-Elemente, welche es der Rekombinase Coliphagen P1 ermöglichen zwischen derartigen Elementen liegende Sequenzen zu deletieren oder zu invertieren werden als Oligonukleotid 10 synthetisiert und für die Konstruktion von Cre-abhängigen Promotoren verwendet.

Sequenz für das loxP-Rekombinase Element:

5'- GAG ATC ATA TTC AAT AAC CCT TAA TAT AAC TTC GTA TAA TGT ATG CTA
3'- CTC TAG TAT AAG TTA TTG GGA ATT ATA TTG AAG CAT ATT ACA TAC GAT
TAC GAA GTT ATT AGG TCG - 3'
ATG CTT CAA TAA TCC AGC AGC T - 5'

20 b) Reportergene.

25

30

Lacz-Gen: Das Lacz-Gen wird über die Restriktionsenzyme BamHI und HindIII aus dem Plasmid pMC1871 (Casadaban et al., J. Meth. in Enzy. 100, (1983) 100, S. 293-308) isoliert und für die weiteren Klonierungen eingesetzt.

<u>Leu2-Gen</u>: Das Leu2-Gen wird mittels PCR-Reaktion aus dem Plasmid pAAH5 (Ammerer, Methods in Enzymology (1983), S. 192-201, Academic Press) isoliert und für die weiter n Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Leul: 5'- CGC GGA TCC ATG TCT GCC CCT AAG - 3'

Leulrev: 5'- GCT CTA GAT CTT TTT AAG CAA GGA TTT TC - 3'

. 10

30

35

<u>T t-Gen</u>: Das T t-G n wird mittels der Restriktionsenzyme XbaI und BstEII aus d m Plasmid pWH1950, ein Derivat des Plasmides pRT240 (Wissmann et al., Genetics (1991) 128, S. 225-232) isoliert und für die weiteren Klonierungen eingesetzt.

<u>Crel-Gen</u>: Das Crel-Gen wird mittels PCR-Reaktion aus dem Coliphagen P1 (Hoess et al., J. Mol. Biol. (1985) 181, S. 351-363) isoliert und für die weiteren Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Crel: 5'- GGG GTA CCT ATG TCC AAT TTA CTG AC - 3'

Crelrev:5'- GGG GTA CCG CGG CCG CCT AAT CGC CAT CTT CC - 3'

c) Targetgene

- NFI-Gene: Die verschiedenen NFI-Gene werden kloniert und für die weiteren Klonierungen eingesetzt (Meisterernst et al., Nuc. Acid Res. (1988) 236, S. 27-32; Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).
- LexA-Gen: Das LexA-Gen wird mit Hilfe der Restriktionsenzyme HindIII und EcoRI aus dem Plasmid pEG202, einem Derivat des Vektors LexA202 mit einer zusätzlichen Polylinkersequenz hinter dem LexA-Gen (Ruden et al., Nature (1991) 350, S. 250-252) isoliert und für die weiteren Klonierungen eingesetzt.

NFkB-Gen: Die codierende Sequenz für die transkriptionsaktive Domäne TA₁ (Aminosäure 521-551) des Proteins NFkB wird mit Hilfe des Restriktionsenzyms EcoRI aus dem Plasmid pL xTA₁ (Schmitz et al., J. Biol. Chem. (1994) 269, S. 25613-25620) isoliert und für die witeren Klonierungen eingesetzt.

TIM-Gen: Die codierend Sequenz für d n C-terminalen Teil des TIM-Proteins wird mit CTF2, einem Mitglied der NFI-Familie, im sog. "interaction trap" (Current Protocols in Molecular Biology, 1994; Altmann (1994) Dissertation) isoliert.

GST-Gen: Die kodierende DNA-Sequenz für die 26 kDa-Domäne aus dem GST Protein (Glutathion-S-Transferase) 10 Restriktionsenzymen mittels aus dem kommerziell erhältlichen Plasmid pGEX 3X Firma der Pharmacia (Schweden) isoliert und für weitere Klonierungen eingesetzt.

AD1-Tet: Das Fusionsgen AD1-Tet setzt sich aus der sauren Aktivierungsdomäne AD1, isoliert aus dem Plasmid pJG4-5 (Gyuris et al., Cell (1983) 75, S. 791-803) mit Hilfe der Restriktionsenzyme HindIII und EcoRI, und der kodierenden Sequenz für den Tet-Repressor (siehe oben) zusammen.

20

25

5

d) Inhibitorexpression:

TrxA-Gen: Das TrxA-Gen wird mittels PCR-Reaktion aus dem Plasmid pCJF7 (Lim et al., J. Bact. (1985) 163, S. 31-36) isoliert und für die weiteren Klonierungen eingesetzt.

eingesetzte Sequenzprimer:

Trx1: 5'- GGA ATT CCC CGG GAT GAG CGA TAA AAT TAT TC - 3'

Trx1rev:5'- CGG GAT CCC TCG AGT CAG CTA ATT ACC CGG GTA CCA CTT G -3'

"Random Oligo-Pool": Zur Konstruktion eines "Random Oligo-Pools" wird ein Einzelstrangoligonukleotid-Pool folgender Zusammensetzung synthetisiert:

Sequenz:

N bedeutet, daß an dieser Stelle alle 4 möglichen Bas n (A, G, C und T) bei der Synthese zugegeben wurden (IUPAC-Nomenklatur).

10

15

5

B bedeutet, daß an dieser Stelle die drei Basen G, C und T bei der Synthese zugegeben wurden (IUPAC-Nomenklatur).

Mittels Klenow-Polymerase werden aus den Einzelsträngen Doppelstränge hergestellt.

Diese wurden anschließend nach Inkubation mit dem Restriktionsenzym SapI in die RsrII-Schnittstelle des TrxA-Genes kloniert.

20

Experimentelle Vorgehensweise

Die Kultivierung und Transformation von Bakterien, Hefen und höheren eukaryontischen Zellen erfolgt nach Standardbedingungen (Ausubel et al., Current Protocolls in Molecular Biology (1987), John Wiley & Sons (New York); Miller, Experiments in Molecular Genetics (1972), Cold Spring Harbour, N.Y.; Sambrook et al., Molecular Cloning (1989), Cold Spring Harbour Laboratory Press; Lindl et al., (1987); Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).

Die Bakterienstämme JK101 der Firma Stratagene (Deutschland) und Top10 der Firma Invitrogen (Deutschland), sowie die Hef stämme INVSc1 und INVSc2 der Firma ITC (Deutschland) wurden für die Experimente eingesetzt.

10

20

Die Bestimmung der β -Galaktosidase Aktivität, dem Lacz-Genprodukt, erfolgt in sogenannten β -Galaktosidase Assays (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, S. 3901-3905).

Zur Bestimmung der CAT-Enzym Aktivität in Proteinextrakten nach dem Immunassayprinzip wird beispielsweise der von der Firma Boehringer (Deutschland) kommerziell erhältliche "CAT-ELISA"-Test verwendet.

Beispiel 1

- Dieses Beispiel stellt die in Fig. 1 angegebene 15 Konfiguration dar.
 - 1. Eine Genanordnung wird bereitgestellt, welche für einen Transkriptionsfaktor codiert. Dieser Transkriptionsfaktor bindet an DNA-Bereiche einer DNA (Target-Bindestelle), die für einen zweiten regulatorischen Faktor, in dieser Versuchsanordnung für einen Repressor, codiert.
- 2. Des weiteren wird eine Repressorgenanordnung mit einer Bindestelle auf der DNA (Target-Bindestelle) für den unter 1 genannten Transkriptionsfaktor bereitgestellt.
- Eine Reportergenanordnung mit den Reportergenen Leu2 30 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau den gleichen regulierbaren Promotor besitzen. Dieser Promotor setzt sich aus sogenannten UAS-Elementen (Upstream Activation Sequence), an die 35 b vorzugt ein endogener Aktivator (weiterer Transkriptionsfaktor TF) bindet, aus einer oder

10

15

20

25

30

35

mehreren Repr ssorerkennungssequenzen, an die ein Repressor binden kann, und einer TATA-Box für die basale Transkription zusammen.

- a. Wird der Versuchsanordnung kein Inhibitor zugesetzt, liegt ein aktiver Transkriptionsfaktor vor, der die Expression eines Repressorproteins positiv reguliert. Der aktive Repressor bindet an die oben genannte Repressorerkennungssequenz bzw. Repressorbindestelle und reprimiert die Expression des Reportergens LacZ und/oder Leu2, d.h. es findet kein Wachstum der Wirtsorganismen statt, eine Farbreaktion ist nicht nachzuweisen.
- b. Nach Zugabe eines Inhibitors wird die Aktivität des ersten regulatorischen Faktors, Transkriptionsfaktor, gehemmt. Dies ist auf eine Hemmung der Interaktion des Transkriptionsfaktors mit der entsprechenden Bindestelle auf der DNA auf eine Hemmung der Aktivierungsdomäne zurückzuführen. Es findet keine Expression des Repressorgens statt. Somit steht kein Repressor zur Verfügung, und das dem Promotor nachgeschaltete Reportergen LacZ und/oder Leu2 durch einen induzierbaren endogenen Transkriptionsfaktor stark exprimiert. Infolgedessen wachsen die Hefen in Leucindefizienten Medien, und nach Wachstum in X-Galhaltigem Medium tritt ein Farbumschlag (Blau) auf.

Die Zugabe eines Inhibitors führt also gemäß der vorliegenden Erfindung zu einer Expression des Reportergens/der Reportergene, indem der zweite regulatorische Faktor, hier Repressor, gehemmt wird.

Beispiel 2

Dieses Beispiel stellt die in Fig. 2 dargestellte Konfiguration dar.

5

10

15

20

- Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Hybridproteine des Transkriptionsregulators codieren sowie eine UAS-Sequenz und eine TATA-Box enthalten, wobei eine Anordnung Hybridprotein codiert, welches ein Fusionsprotein aus einer Bindedomäne und einer ersten Proteinkomponente sowie eine weitere Anordnung für ein Hybridprotein codiert, welches ein Fusionsprotein aus einer Aktivierungsdomäne des Transkriptionsregulators und einer zweiten Proteinkomponte ist (Fig. 2a).
- 2. Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsregulator bereitgestellt.
- Eine Reportergenanordnung, wie unter Beispiel 1,
 Punkt 3, beschrieben, wird ebenfalls bereitgestellt.
- 25 Der Transkriptionsregulator setzt sich, wie oben beschrieben, aus zwei Fusionsproteinen zusammen, wobei nur bei ungestörter Protein-Protein-Wechselwirkung der beiden Fusionsproteine aktiver Transkriptionsregulator vorliegt (siehe 30 Fig. 2a). Liegt kein Inhibitor vor, findet eine ungestörte Protein-Protein-Wechselwirkung statt und ein aktiver Transkriptionsregulator vorhanden. Dieser aktive Transkriptionsregulator bindet an seine entsprechende Bindestelle auf der 35 DNA (Target-Bindestelle), welche für das Repressorgen codiert, und b wirkt eine Expression

30

35

des Repressorgens. Der Repressor bindet an die R pressorbindestelle im Promotorb reich Reportergene und reprimiert eine Expression der Reportergene. Da Leu2 und/oder LacZ nicht exprimiert werden, findet weder Wachstum Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.

10 b. Wird der Versuchsanordnung ein Inhibitor die vorstehend zugesetzt, wie z.B. erwähnt n Inhibitoren, beispielsweise Peptide, Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-15 Wechselwirkung der Fusionsproteine des Transkriptionsregulators gehemmt. Es kein aktiver Transkriptionsregulator oder ein in seiner Aktivität verminderter Transkriptionsregulator vor, die 20 Aktivierungsdomäne Transkriptionsregulators des und DNA-Bindedomäne auf verschiedenen Fusionsproteinen lokalisiert sind und demzufolge bei einer Hemmung der Wechselwirkung Hybridproteine diese Domänen nicht oder vermindert 25 miteinander wechselwirken können.

Die DNA-bindende Domäne des einen Fusionsproteins des Transkriptionsregulators kann, je nach Versuchsbedingung und zugesetztem Inhibitor, an den betreffenden DNA-Abschnitt binden oder nicht binden. Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Aufgrund des inaktiven Transkriptionsregulators findet kein Expression des Repressorgens statt.

10

15

20

25

30

35

Da kein Repressor vorliegt, werden, nach Bindung weiteren entsprechenden Transkriptionsfaktors, di und/oder LacZ Report rg ne Leu2 exprimiert. Es findet nun Wachstum der Wirtszellen Leucin-defizientem Medium statt bzw. Farbumschlag (Blaufärbung) nach Wachstum auf X-Gal-haltigem Medium ist nachweisbar. vorliegenden Erfindung führt die Zugabe Inhibitors über Hemmung des zweiten regulatorischen Faktors (Repressor) einer zu Expression der Reportergene.

Weitere bevorzugte Ausführungen ergeben sich aus Abwandlungen der unter den Beispielen 1 und 2 beschriebenen Ausführungsformen.

Beispiel 3

Dieses Beispiel bezieht sich auf die in Fig. 3 gezeigte Konfiguration.

- Eine Genanordnung, welche für einen Transkriptionsfaktor codiert, wird bereitgestellt. Dieser Transkriptionsfaktor bindet an Bereiche einer DNA (Target-Bindestelle), die für eine Rekombinase codiert.
- 2. Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase des Coliphagen P1 codiert.
- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen reguli rbaren Promotor b sitzen. Dieser Promotor enthält UAS-Element, an die bevorzugt ein

10

15

20

25

30

35

b.

endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-S quenz n als Rekombinationselemente auf.

a. Wie bereits unter Beispiel 1 beschrieben, liegt, sofern kein Inhibitor zugesetzt wird, ein aktiver Transkriptionsfaktor vor. Dieser Transkriptionsfaktor reguliert die Expression der Rekombinase Cre positiv. Die Rekombinase interagiert mit den lox P-Sequenzen, welche die Reportergene LacZ/Leu2 flankieren und eliminiert oder invertiert in einem Rekombinationsprozeß die genannten Reportergene.

Entsprechend werden keine funktionellen Reportergene exprimiert, es findet kein Wachstum der Wirtsorganismen statt, und es ist auch keine Farbreaktion nach Wachstum auf X-Gal-haltigem Medium nachweisbar.

Nach Zugabe eines Inhibitors wird die Aktivität

des Transkriptionsfaktors gehemmt, wobei dies auf eine Hemmung der Interaktion des Transkriptionsfaktors mit der entsprechenden Bindestelle auf der DNA oder auf eine Hemmung der Aktivierungsdomäne zurückzuführen ist. Demzufolge findet keine Expression der Rekombinase statt und die dem Promotor nachgeschalteten Reportergene LacZ und/oder Leu2 werden durch einen induzierbaren, bevorzugt endogenen Transkriptionsfaktor stark exprimiert. Die Wirtsorganismen, in

Wachstum in X-Gal-haltigem M dium tritt ein Farbumschlag (Blau) auf.

dieser Versuchsanordnung sind es bevorzugt Hefen, wachsen nun auf Leucin-defizienten Medien und bei

Die Zugab eines Inhibitors führt also wiederum zu einer Expression von Reportergenen.

Beispiel 4

5

Dieses Beispiel bezieht sich auf die in Fig. 4 dargestellte Konfiguration.

- 1. Es werden Genanordnungen, wie unter Beispiel 2
 beschrieben, bereitgestellt, die für wechselwirkende
 Hybridproteine codieren, welche über eine ProteinProtein-Wechselwirkung einen aktiven Transkriptionsregulator bilden.
- Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase Cre d s Coliphagen P1 codiert. Diese Rekombinase entspricht dem zweiten regulatorischen Faktor.
- 20 Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, 25 die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-Sequenzen als Rekombinationselemente auf.
- Wie auch unter Beispiel 2 beschrieben, findet, 30 sofern kein Inhibitor vorliegt, eine ungestörte Protein-Protein-Wechselwirkung zwischen den den Transkriptionsfaktor bildenden Fusionsproteinen womit ein aktiver Transkriptionsfaktor vorliegt. Der aktive Transkriptionsfaktor bindet 35 an eine auf der DNA befindlich n Bindestelle, wob i diese DNA das für die Cre-Rekombinase

b.

codierend cre-Gen enthält. Nach Bindung Transkriptionsfaktors wird die Cre-R kombinase exprimi rt. Diese Rekombinase eliminiert oder invertiert über Rekombinationsprozesse das oder die Reportergene, wobei sie mit den Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion werden funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem Medium statt, ebenso keine Blaufärbung bei Wachstum auf X-Gal-haltigem Medium.

20

. 30

35

5

10

15

Nach Zugabe eines Inhibitors zu dem Versuchsansatz wird die Protein-Protein-Wechselwirkung Fusionsproteine des Transkriptionsregulators gehemmt. Es liegt somit kein aktiver Transkriptionsregulator vor. Die DNA-bindende Domäne des einen Fusionsproteins des Transkriptionsregulators bindet, jе nach Versuchsbedingungen und zugesetztem Inhibitor, an betreffenden den DNA-Abschnitt oder nicht. Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Infolge des fehlenden aktiven Transkriptionsregulators bindet Transkriptionsregulator an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder weder eliminiert noch invertiert. fehlende Rekombinase führt somit einer Expression der Reportergene, wodurch Wachstum der Z llen in Leucin-defizientem Medium ermöglicht

10

15

25

30

wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem loxcre-abhängigen Verfahren nach Zugabe eines Inhibitors die Expression des zweit n regulatorischen Faktors, der Cre-Rekombinase. gehemmt, wodurch eine Expression der Reportergene erst ermöglicht wird. Die Nutzung Rekombinase in dem vorliegenden Verfahren ermöglicht einen Inhibitornachweis nach einem "Alles-oder Nichts"-Prinzip, wobei sich, gemäß der vorliegenden Erfindung, der positive Nachweis von Reportergenen nach Inhibitorzugabe als besonders geeignet erweist und sehr empfindliche Nachweise ermöglicht.

Beispiel 5

- Dieses Beispiel stellt die in Fig. 5 angegebene Konfiguration dar.
 - Es werden Genanordnungen bereitgestellt, die für zwei 1. wechselwirkende Proteine codieren, wobei eine Anordnung für ein Protein codiert, welches eine DNAbindende Domäne, eine Domäne, welche an ein weiteres zweites Protein bindet, und eine aktivierende Domäne enthält. sowie eine weitere Anordnung für ein weiteres zweites Protein, welches mindestens eine mit dem ersten Protein wechselwirkende Domäne (Fig. 5a).
- 2. Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsregulator bereitgestellt.

10

15

20

25

30

- 3. Eine Reportergenanordnung, wi unter Beispiel 1, Punkt 3, beschrieben, wird benfalls bereitgestellt.
- Der Transkriptionsregulator setzt sich aus den beiden oben beschriebenen Proteinen wobei nur bei ungestörter Protein-Protein-Wechselwirkung der beiden Proteine ein aktiver Transkriptionsregulator vorliegt (siehe Fig. 5a). Liegt kein Inhibitor vor, findet eine ungestörte Protein-Protein-Wechselwirkung (Target I - Target II) statt und ein aktiver Transkriptionsregulator liegt vor. Der aktive Transkriptionsregulator bindet an seine entsprechende Bindestelle auf dr I-Bindestelle), (Target welche Repressorgen codiert, und bewirkt eine Expression des Repressorgens. Der Repressor bindet an die Repressorbindestelle im Promotorbereich der Reportergene und reprimiert eine Expression der Reportergene. Da und/oder Leu2 LacZ exprimiert werden, findet weder Wachstum Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.
 - b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. die vorstehend erwähnten Inhibitoren, beispielsweise Peptide, Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-Wechselwirkung der Proteine des Transkriptionsregulators gehemmt. Es liegt kein aktiver Transkriptionsregulator vor, da bei einer Hemmung der Wechselwirkung der Proteine der Transkriptionsregulator nicht in der aktiven Form (Konformation) vorliegt.

DNA-bindende Domäne des einen Prot ins des Transkriptionsregulators kann. ie nach Versuchsbedingung und zugesetztem Inhibitor, den betreffenden DNA-Abschnitt binden oder nicht binden. Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Aufarund inaktiven Transkriptionsregulators findet keine Expression des Repressorgens statt.

Da kein Repressor vorliegt, werden, nach Bindung eines entsprechenden weiteren Transkriptionsfaktors TF, die Reportergene Leu2 und/oder LacZ exprimiert. Es findet nun Wachstum der Wirtszellen auf Leucin-defizientem Medium statt bzw. ein Farbumschlag (Blaufärbung) Wachstum auf X-Gal-haltigem Medium ist nachweisbar. Gemäß der vorliegenden Erfindung führt die Zugabe eines Inhibitors über Hemmung des zweiten regulatorischen Faktors (Repressor) einer Expression der Reportergene.

Beispiel 6

25

30

5

10

15

20

Dieses Beispiel bezieht sich auf die in Fig. 6 dargestellte Konfiguration.

- 1. Es werden Genanordnungen, wie unter Beispiel 5 beschrieben, bereitgestellt, die für wechselwirkende Proteine codieren, welche über eine Protein-Protein-Wechselwirkung einen aktiven Transkriptionsregulator bilden.
- Des weiteren wird eine G nanordnung bereitg stellt,
 w lche für die sequenzspezifische R kombinase Cre des

10

15

20

25

30

35

Coliphagen P1 codi rt. Diese Rekombinase entspricht dem zweit n regulatorischen Faktor.

- 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder Lacz wird ebenfalls bereitgestellt, wob i beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, an die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierende lox P-Sequenzen als Rekombinationselemente auf.
- Wie auch unter Beispiel 5 beschrieben, findet, a. sofern kein Inhibitor vorliegt, eine ungestörte Protein-Protein-Wechselwirkung zwischen den den Transkriptionsregulator bildenden Proteinen statt, womit ein aktiver Transkriptionsregulator vorliegt. Der aktive Transkriptionsregulator bindet an eine auf der DNA befindlichen Bindestelle, wobei diese DNA das für die Cre-Rekombinase codierende Cre-Gen enthält. Bindung des Transkriptionsregulator wird die Cre-Rekombinase exprimiert. Diese Rekombinase eliminiert oder invertiert über Rekombinationsprozesse das oder die Reportergene, wobei sie mit den lox P-Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion werden keine funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem Medium statt, ebenso keine Blaufärbung Wachstum auf X-Gal-haltigem Medium.
 - b. Nach Zugabe ein s Inhibitors zu dem V rsuchsansatz wird die Protein-Protein-Wechs lwirkung der

10

15

20

25

Proteine, z.B. üb r Konfirmationsänderung, Transkriptionsregulators gehemmt. Es liegt somit kein aktiver Transkriptionsregulator vor. Die DNAbindende Domäne des einen Proteins des Transkriptionsregulators bindet, je nach Versuchsbedingungen und zugesetztem Inhibitor, an betreffenden den DNA-Abschnitt oder Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Infolge des fehlend n aktiven Transkriptionsregulators bindet Transkriptionsregulator an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder Lacz weder eliminiert noch invertiert. Eine Rekombinase fehlende führt somit Expression der Reportergene, wodurch Wachstum der Zellen in Leucin-defizientem Medium ermöglicht wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem lox-Cre-abhängigen Verfahren nach Zugabe eines Inhibitors die Expression des zweiten regulatorischen Faktors, der Cre-Rekombinase, gehemmt, wodurch eine Expression der Reportergen erst ermöglicht wird. Die sich ergebenden Vorteile wurden bereits in Beispiel 4b beschrieben.

Beispiel 7

Dieses Beispiel stellt die in Fig. 7 dargestellte Konfiguration dar.

10

15

- Es w rden Genanordnungen bereitgestellt, die für zwei 1. wechselwirkende Proteine Target II und Target III codier n sowie eine UAS-Sequenz und eine enthalten, wobei eine Anordnung für ein Protein Target III codiert, welches ein Protein aus einem verankernden Abschnitt und einer ersten Proteinkomponente ist, und eine weitere Anordnung für Protein Target II codiert, welches Fusionsprotein aus einem inhibierenden Abschnitt und einer zweiten Proteinkomponente ist (Fig. 7a).
- 2. Es wird eine Genanordnung für einen Transkriptionsfaktor Target I bereitgestellt, der inhibiert werden kann.
- Des weiteren wird eine Repressorgenanordnung mit einer oder mehreren Bindestellen auf der DNA (Target-Bindestelle) für den Transkriptionsfaktor bereitgestellt.
- 4. Eine Reportergenanordnung, wie unter Beispiel 1 Punkt 3, beschrieben, wird ebenfalls bereitgestellt.
- Bei ungestörter Protein-Protein-Wechselwirkung d r a. 25 beiden Proteine kann der inhibierende Abschnitt des ersten Proteins nicht mit dem Transkriptionsfaktor wechselwirken, somit liegt ein aktiver Transkriptionsfaktor vor (siehe Fig. Liegt kein Inhibitor vor, findet 30 ungestörte Protein-Protein-Wechselwirkung statt und ein aktiver Transkriptionsfaktor ist vorhanden. Dieser aktive Transkriptionsfaktor bindet an seine entsprechende Bindestelle auf der DNA, welche für das Repressorgen codiert, und 35 bewirkt eine Expression des R pressorgens. Der Repressor bind t an die Repressorbindestelle im

Promotorbereich dr Reporterg ne und reprimiert eine Expression der R port rgene. Da Leu2 und/oder LacZ nicht exprimi rt werden, findet weder Wachstum auf Leucin-defizientem Medium statt, noch findet eine Blaufärbung nach Wachstum auf X-Galhaltigem Medium statt.

b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. die vorstehend erwähnten Inhibitoren. beispielsweise Peptide, Nucleinsäuren, Kohlenhydrate oder andere chemische Substanzen, wird die Protein-Protein-Wechselwirkung der Proteine Target II und Target III gehemmt. Das Protein mit dem inhibierenden Abschnitt Target II wird freigesetzt und bindet an den Transkriptionsfaktor Target I, wodurch dieser inhibiert wird. Es liegt nun kein aktiver Transkriptionsfaktor vor.

Aufgrund der gehemmten Protein-Protein-Wechselwirkung liegt in keinem Fall ein aktiver Transkriptionsregulator vor. Aufgrund des inaktiven Transkriptionsfaktors findet keine Expression des Repressorgens statt.

Da kein Repressor vorliegt, werden, nach Bindung eines entsprechenden weiteren Transkriptionsfaktors TF, die Reportergene Leu2 und/oder LacZ exprimiert. Es findet nun Wachstum der Wirtszellen Leucin-defizientem Medium statt bzw. ein Farbumschlag (Blaufärbung) nach Wachstum auf X-Gal-haltigem Medium ist nachweisbar. vorliegenden Erfindung führt die Zugabe eines Inhibitors über Hemmung des zweiten regulatorischen Faktors (Repressor) zu einer Expression der Report rgene.

25

20

5

10

15

35

Beispiel 8

10

15

20

25

30

35

Dieses Beispiel bezieht sich auf die in Fig. 8 dargestellte Konfiguration.

- Es werden Genanordnungen, wie unter Beispiel 7 beschrieben, bereitgestellt, die für wechselwirkende Proteine codieren.
- 2. Es wird eine Genanordnung für einen Transkriptionsfaktor bereitgestellt (Target I).
 - 3. Des weiteren wird eine Genanordnung bereitgestellt, welche für die sequenzspezifische Rekombinase Cre des Coliphagen Pl codiert. Diese Rekombinase entspricht dem zweiten regulatorischen Faktor.
- 4. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren vom Aufbau her den gleichen regulierbaren Promotor besitzen. Dieser Promotor enthält UAS-Elemente, an die bevorzugt ein endogener Aktivator bindet, und eine TATA-Box. Die Reportergene weisen flankierend lox P-Sequenzen als Rekombinationselemente auf.
- Wie auch unter Beispiel 7 beschrieben, findet, a. sofern kein Inhibitor vorliegt, eine ungestörte Protein-Protein-Wechselwirkung zwischen den Proteinen statt. womit ein aktiver Transkriptionsfaktor vorliegt. Der aktiv Transkriptionsfaktor Target I bindet an eine auf der DNA befindlichen Bindestelle, wobei dies für die Cre-R kombinase codierende Cre-G n enthält. Nach Bindung d s Transkriptionsfaktors

10

15

20

25

30

35

wird die Cre-Rekombinase Diese exprimiert. Rekombinase eliminiert oder inv rtiert über Rekombinationsprozesse das oder die Reportergene, wobei sie mit den lox P-Sequenzen, welche die Reportergene flankieren, interagiert. Sowohl nach einer Elimination als auch nach einer Inversion keine werden funktionellen Reportergene exprimiert. Demzufolge findet ohne Zugabe eines Inhibitors kein Wachstum auf Leucin-defizientem Medium statt. ebenso keine Blaufärbung b i Wachstum auf X-Gal-haltigem Medium.

b. Nach Zugabe eines Inhibitors zu dem Versuchsansatz die Protein-Protein-Wechselwirkung Proteine Target II und Target III gehemmt. Protein mit dem inhibierenden Abschnitt Target II wird freigesetzt und interagiert dem Transkriptionsfaktor, wodurch dieser inhibiert wird. Es liegt somit kein aktiver Transkriptionsfaktor vor. Die DNA-bindende Domäne Transkriptionsfaktors bindet, ie nach Versuchsbedingungen, an den betreffenden DNA-Abschnitt oder nicht. Aufgrund der Protein-Protein-Wechselwirkung liegt in Fall ein aktiver Transkriptionsfaktor vor. Infolge des fehlenden aktiven Transkriptionsfaktors bindet kein Transkriptionsfaktor an die Bindestelle auf der DNA, welche für die Cre-Rekombinase codiert. Die Cre-Rekombinase wird somit nicht exprimiert. Entsprechend werden die Reportergene Leu2 und/oder LacZ weder eliminiert noch invertiert. Eine fehlende Rekombinase führt somit ein r Expression der Reportergene, wodurch Wachstum der Zellen in Leucin-defizientem Medium ermöglicht wird bzw. eine Blaufärbung in X-Gal-haltigem Medium auftritt.

Gemäß der vorliegenden Erfindung wird in dem loxcre-abhängigen Verfahren nach Zugabe Inhibitors die Expression des zweiten Faktors, regulatorischen der Cre-Rekombinase, gehemmt, wodurch eine Expression der Reportergene erst ermöglicht wird.

Beispiel 9

10

20

5

Die Funktionsweise des Verfahrens wird am Beispiel des Tet-Repressors und dessen spezifische Inhibierung durch Tetracyclin näher erläutert.

- Dieses Beispiel stellt die in Fig. 9 angegebene Konfiguration dar.
 - Eine Genanordnung wird bereitgestellt, welche für den ersten regulatorischen Faktor AD1-Tet codiert. Dieser regulatorische Faktor bindet an DNA-Bereiche einer DNA (Tet-Bindungsstelle), die für den zweiten regulatorischen Faktor, den Repressor LexA-GST, codiert.
- 2. Des weiteren wird eine Repressorgenanordnung des Repressors LexA-GST mit einer Bindestelle auf der DNA (Tet-Bindestelle) für den unter 1 genannten ersten regulatorischen Faktor AD1-Tet bereitgestellt.
- 30 Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide im vorliegenden Verfahren Reportergene Aufbau den gleichen regulierbaren besitzen. Dieser Promotor setzt sich aus sogenannten . 35 UAS-Element n (Upstream Activation Sequence), an die bevorzugt ein endog ner Aktivator (weiter r

Transkriptionsfaktor Gal4) bindet, aus einer oder mehreren LexA Bindungsstellen, an die ein LexA-GST binden kann, und einer TATA-Box für die Initiation der basalen Transkription zusammen.

5

10

15

20

Durch die Expression des Fusionsklones AD1-Tet a. regulatorischer Faktor) Expression des Repressors LexA-GST (zweiter regulatorischer Faktor) stimuliert. Dieses Repressorprotein wiederum reprimiert durch die Bindung an die LexA-Bindestelle des in Figur 9 beschriebenen LacZ- bzw. LEU2-Promotors die vom ersten regulatorischen Faktor unabhängige Gal4aktivierte Expression der Reportergene LacZ und Leu2. Gal4-aktivierte Da die Expression der Reportergene durch Glukose inhibiert und erst auf Galaktose stimuliert wird, können diese Hefen auf Leucin-defizienten Medien nicht wachsen bleiben auf X-Gal-haltigem Medium weiß (Tabelle 1). Besitzt das Medium Galaktose als Zuckerquelle, bleibt der Gall-LexA-Promotor durch die AD1-Tet abhängige Expression des LexA-GST Repressors weiter inhibiert: die Hefekolonien bleibt weiß und

25

30

b. In Abhängigkeit steigender Tetracyklinkonzentration (Figur 9 sowie Tabelle 1 und 2) wird die Bindung des AD1-Tet-Proteins an den Tet-abhängigen Promotor des LexA-GST Repressors spezifisch inhibiert. Die hier verwendete, steigende Tetracyklinkonzentration inhibiert das generelle Wachstum der Hefen nicht. Der zweite regulatorische Faktor ist nun nicht mehr in der Lage, die Aktivität Reportersystems zu inhibieren. Die Hefezellen werden nun mit Galaktose als Zuckerquelle und X-

wachsen auf Leucin-defizienten Medien nicht.

Gal als Substrat für das Reportersystem blau und können auf Leucin-defizienten Medien Glukose-haltig s Medium dagegen inhibiert Aktivität des endogenen Transkriptionsfaktors Die Hefen wachsen nicht auf Leucindefizienten Medien und bleiben auf X-Gal-haltigen Medienplatten weiß. Andere Antibiotika wie Ampicillin, Chloramphenicol, Kanamycin und Carbenicillin haben keine derartig reprimierende Wirkung auf den ersten regulatorischen Faktor AD1-Tet (Tabelle 1). Auf Glukose-haltigen Platten wird Gal4 unabhängig vom ersten und zweiten regulatorischen Faktor inhibiert, weswegen derartigen Medien die Hefen nicht wachsen und weiß bleiben.

Tabelle 1:

Tetracyklin- zugabe	Wachstum	auf LEU-	Blaufärbung auf X-Gal		
	Glukose	Galaktose	Glukose	Galaktose	
	• •	• •	weiß	weiß	
++		++	weiß	blau	

5

10

Tabelle 2: (nur die Ergebnisse der Galaktose-haltigen Platten dargestellt)

a)	Eingesetzte Konzentrationen [µg/ml]					
Verwendetes Antibiotikum	0	5	50	250		
Tetracyklin	/ weiß	/weiß	/ weiß	+ + / blau		
Ampicillin	/ weiß	/ weiß	/ weiß	/ weiß		
Kanamycin	/ weiß	/ weiß	/ weiß	/weiß		
Carbenicillin	/ weiß	/ weiß	/ weiß	/ weiß		
Chloramphenicol	/ weiß	/ weiß	/ weiß	/ weiß		

Wachstum auf LEU- / Blaufärbung auf X-Gal

5

10

15

20

b)	Eingesetzte Konzentrationen [μg/ml]							
Verwendetes Antibiotikum	0	5	50	100	150	200	250	300
Tetracyklin	/ weiß	/ weiß	/ weiß	/ weiß	/ weiß	+ + / blau	+ + / blau	+ + / blau

Wachstum auf LEU-/
Blaufärbung auf X-Gal

- c) Nachweis der Funktionsweise der einzelnen Elemente im Assay
 - AD1-Tet als Transkriptionsfaktor:

Um nachzuweisen, daß der Fusionsklon AD1-Tet (erster regulatorischer Faktor) in der Hefe funktionell exprimiert, in den Kern transportiert effizient an die DNA-Konsensussequenz gebunden wird und von dort aus die Transkription eines aktivieren kann, wurde der folgende Assay durchgeführt:

Auf Galaktos -haltigen Medienplatten wird AD1-Tet exprimiert und ist damit in der Lage, an die Tet-Bindestelle eines entsprechenden Promotors vor dem LacZ-Gen zu binden und von dort die Expression des Reportergenes LacZ zu aktivieren. Dieses wiederum kann durch die Umwandlung des im Medium enthaltenen, Substrats farblosen X-Gal in einen Indigofarbstoff nachgewiesen werden. Da Glukose die Expression des AD1-Tet-Proteins inhibiert, auch keine Expression des Reportergenes LacZ statt. Die Kolonien bleiben weiß.

- Tetracyclin als spezifischer Inhibitor des Transkriptionsfaktors Tet-AD

> Um nachzuweisen, daß Tetracyklin die Bindungsaktivität des AD1-Tet-Proteins spezifisch zu inhibieren vermag, wurden zusätzlich steigende Konzentrationen des Antibiotikums auf die Medienplatten gegeben:

Tabelle 3:

25

20

5

10

15

	Eingesetzte Konzentrationen Tetracyklin [µg/ml]							
Blaufärbung auf X-Gal				250 weiß				
Galaktose-haltige Platten mit Leucin im Medium	++	++	++	++	++	++	++	++
Glukose-haltige Platten mit Leucin im Medium	++	++	++	++	++	++	++	++

Wie die experimentellen Daten zeig n, kann in Abhängigkeit steigender Tetracyklinkonzentration (Tab lle 3) die Bindung d s AD1-Tet-Proteins an den Promotor d s R portergenes LacZ spezifisch inhibiert werden. Bei einer Konzentration von 200 μ g/ml Tetracyklin im Medium bleiben die Hefezellen weiß. Das generelle Wachstum der Hefezellen wird dadurch nicht wesentlich beeinflußt, wie die Ergebnisse auf den Glukose- und Galaktose-haltigen Platten zeigen (das Wachstum wird durch "++" dargestellt).

LexA-GST als Repressor

10

15

5

Um nachzuweisen, daß der zweite regulatorische Faktor (LexA-GST) in der Hefe funktionell exprimiert, in d n Kern transportiert und dort effizient an die LexA-Konsensussequenz gebunden wird <u>und</u> von dort aus die Transkription eines Genes inhibieren kann, wurde der folgende Assay durchgeführt.

Im zur Negativkontrolle CTF2 Mitglied der NFI-Familie) bleiben die Hefeklone auf 20 X-Gal- und Galaktose-haltigem Medium weiß. bedeutet, daß der LexA-GST-Fusionsklon zwischen der Gal4-Bindestelle und dem Transkriptionsstart Reportergens bindet und damit die Aktivität des endogenen Hefetranskriptionsfaktors Gal4 inhibiert. 25 dagegen ist nicht in der Lage Bindestellen zu erkennen und kann so die Aktivität von Gal4 nicht reprimieren. Das Reportergen LacZ wird exprimiert und die Kolonien färben sich blau (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905).

30

Beispiel 10

Identifikation spezifischer Peptid-Inhibitoren von CTF7

Um inhibierende P ptidsequenzen gegen den in Hefe transkriptionsaktiven CTF7, einem Mitglied der NFI-

ı

10

15

20

25

30

Familie (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905), zu scre nen, wurde der folg nde Assay (Fig. 10) durchgeführt.

- Dieses Beispiel stellt die in Fig. 10 angegebene Konfiguration dar.
 - 1. Eine Genanordnung wird bereitgestellt, welche für einen ersten regulatorischen Faktor LexA-CTF7 codiert. Das entsprechende Plasmid pEG-CTF7 enthält die Genanordnung für den ersten regulatorischen Faktor LexA-CTF7. Dieser erste regulatorische Faktor LexA-CTF7 bindet an DNA-Bereiche einer DNA (LexA-Bindestelle), die für einen zweiten regulatorischen Faktor Tet-GST codiert.
 - 2. Des weiteren wird eine Genanordnung für den zweiten regulatorischen Faktor Tet-GST mit einer Bindestelle auf der DNA (LexA-Bindestelle) für den unter 1 genannten ersten regulatorischen Faktor LexA-CTF7 bereitgestellt.
 - 3. Eine Reportergenanordnung mit den Reportergenen Leu2 und/oder LacZ wird ebenfalls bereitgestellt, wobei beide Reportergene im vorliegenden Verfahren her den gleichen regulierbaren besitzen. Dieser Promotor setzt sich aus sogenannten UAS-Elementen (Upstream Activation Sequence), an di bevorzugt ein endogener Aktivator (weiterer Transkriptionsfaktor Gal4) bindet, aus einer Tet-Bindungsstelle, an die Tet-GST binden kann, und einer TATA-Box für die Initiation der basalen Transkription zusammen.
- a. Wird der Versuchsanordnung kein Inhibitor zugesetzt, liegt in aktiver erster

J

5

10

15

20

25

30

35

regulatorischer Faktor LexA-CTF7 vor, der die Expression des Tet-GST Gens positiv reguliert. Tet-GST bindet an die oben genannte Tet-GST Bindungsstelle und reprimiert die Expression des Reportergens LacZ und/oder Leu2, d.h. es find t kein Wachstum der Wirtsorganismen statt, eine Farbreaktion ist nicht nachzuweisen.

Nach Zugabe eines Trx-Peptids wird die Aktivität b. ersten regulatorischen Faktors LexA-CTF7 gehemmt. Dies ist auf eine Hemmung der Interaktion von LexA-CTF7 mit der entsprechenden Bindestelle auf der DNA oder auf eine Hemmung Aktivierungsdomäne zurückzuführen. Es findet keine Expression des Tet-GST-Gens statt. Somit steht kein Tet-GST zur Verfügung, und das dem Promotor nachgeschaltete Reportergen LacZ und/oder Leu2 wird durch einen induzierbaren endogen n Transkriptionsfaktor Gal4 stark exprimiert. Infolgedessen wachsen die Hefen in defizienten Medien, und nach Wachstum in X-Galhaltigem Medium tritt ein Farbumschlag (Blau) auf.

Die Zugabe des Trx-Peptids führt also gemäß der vorliegenden Erfindung zu einer Expression des Reportergens/der Reportergene, indem der zweite regulatorische Faktor Tet-GST nicht bzw. vermindert reprimiert wird.

Im Detail wird der Versuch wie folgt durchgeführt:

Der Hefestamm INVSc1 wurde mit den in Fig. 10 dargestellten Plasmiden transformiert und der Transformationsansatz auf einer Glukose-haltigen Minimalmediumplatte (20 x 20 cm; Uracil-,

Tryptophan- und Histidin-defizient zur Selektion auf die Plasmide) ausgestrichen.

Der Vektor pEG-CTF7 (entspricht dem ersten regulatorischen Faktor) und wurde nach Altmann et al. (Proc. Natl. Acad. Sci. (1994) 91, 3901-3905) hergestellt.

pYES-Leu2/34-TetGST (Plasmid, welches den zweiten regulatorischen Faktor TetGST codiert und das Reportersystem beinhaltet).

Als Ausgangsvektor diente das Plasmid pYES2. Die LexA-Bindestellen Oligos wurden in Schnittstelle des inaktiven Gall/GallO Promotors ligiert, der gesamte Promotor mit BamHI isoliert und zusammen mit dem Fusionsklon Tet-GST in den Polylinker des Plasmides pYES2 kloniert. Der Gall-Promotor war zuvor über die Spel-Schnittstellen deletiert worden. In die mit Klenow-Polymerase behandelte NheI-Schnittstelle dieses Konstruktes erfolgte die Klonierung des über BamHI isolierten, ebenfalls mit Klenow behandelten LacZ-, bzw. des über PCR erhaltenen Leu2-Fragments. In die dabei rekonstituierte BamHI-Schnittstelle erfolgte die Ligation des Gal/Tet-Promotors. Dieser wurde durch die Klonierung von Tet-Oligos und anschließende Ligation von Gal4-Bindestellen in die XhoI-Schnittstelle des inaktiven Gal1/10-Promotors erhalten.

pYES2(TRP1)TRX-Oligo-Pool (Peptid-Pool exprimierendes Konstrukt; Komplexität ca. 10⁵)

Durch die Ligation d s Trp1-Gens in den mit ApaI und NheI linearisierten pYES2-Vektor, wurde das

10

5

15

20

25

30

Ura3-Gen zerstört und das Plasmid auf Tryptophandefizienz selektierbar. Anschließend wurde das über PCR isolierte Trx-Gen in den EcoRI, XhoI linearisierten Vektor kloniert. Die Ligation der Pool-Fragmente erfolgte über die Schnittstelle des Trx-Konstruktes.

Die ca. 30.000 Kolonien wurden vereinigt, für 5 Stunden in YPG-Medium (Galaktose-haltiges Vollmedium 10 Hefen) geschüttelt und auf Selektionsplatten ausgestrichen. Die Selektionsplatten besaßen Galaktose als Kohlenstoffquelle waren Leucin-, Uracil-, Tryptophan- und Histidindefizient. Im Zeitraum von 2 bis 5 Tagen waren 8 Kolonien (A, B, C, D, E, F, G, H) gewachsen (Tabelle 4). Aus diesen wurden 15 zur weiteren Spezifizierung die für die inhibierenden Peptide kodierenden Plasmide isoliert und zusammen mit CTF7 und Tet-GST in Hefe exprimiert. Diesmal befand sich anstatt des Leu2 das LacZ-Gen auf dem Reporterplasmid, sodaß die inhibierende Wirkung der Peptide durch die Ausbildung eines 20 Phänotyps untersucht werden konnte (Tabelle 4). Desweiteren wurden die Peptide exprimierenden Plasmide mit den beiden Reportersystemen (LacZ und Leu2) und einem von CTF7 verschiedenen Transkriptionsfaktor LexA-TA1 in Hefen transformiert. Auf diese Weise können CTF7 spezifisch 25 inhibierende Peptide von unspezifischen Inhibitionen unterschieden werden.

Tabelle 4:

Identifizierte Inhibitoren	Wachstum auf Leucin- defizienten Platten	Glukose	Galaktose	Inhibierung von LexA-TA1 auf Galaktose
A	+	-	+	-
В	+	+	+	n.b.
С	+	+	+	n.b.
D	+	-	+	+
E	+	-	+	-
F	+	-	+	-
G	+	•	+	-
Н	+	_	+	+

10

15

Die Inhibitoren B und C färbten sich auch auf Glukose-haltigen Platten, also unabhängig von der Galaktose-induzierten TRX-Peptidexpression, blau. Dies bedeutet, daß in den entsprechenden Klonen keine inhibierenden Peptide exprimiert werden, welche die Blaufärbung verursachen. Von den Peptiden A, D, E, F, G und H stellten sich D und H als unspezifisch heraus, da sie auch in der Lage waren die LexA-TA1 Domäne zu inhibieren. Die Inhibitoren A, E, F und G dagegen waren nur in der Lage die Aktivität von CTF7 zu reprimieren (n.b.: nicht bestimmt).

Beispiel 11

20 Identifikation spezifischer Inhibitoren der Protein-Protein-Wechselwirkung LexA-CTF2/AD1-TIM

Der in Fig. 11 beschriebene Assay wird durchgeführt, um inhibierende Peptidsequenzen gegen die in Hefe aktive Prot in-Protein-Interaktion LexA-CTF2 und TIM-AD (Altmann Disseration) zu screenen. LexA-CTF2 ist Fusionskonstrukt aus dem bakteriellen Repressor LexA und CTF2, einem Mitglied der NFI-Familie. Hierzu wird der Hefestamm INVSc1 mit den in Fig. 11 dargestellten Plasmiden transformiert und der Transformationsansatz auf einer Glukose-haltigen Minimalmediumplatte (20 x 20 cm; Uracil-, Tryptophan- und Histidin-defizient zur Selektion auf die Plasmide) ausgestrichen.

Dieses Beispiel stellt die in Fig. 11 dargestellte Konfiguration dar.

15

20

25

30

10

5

Es werden Genanordnungen bereitgestellt, die für zwei wechselwirkende Hybridproteine des Transkriptionsregulators codieren sowie eine UAS-Sequenz und eine TATA-Box enthalten, wobei Anordnung für ein LexA-CTF2, einem Fusionskonstrukt aus dem bakteriellen Repressor LexA und CTF2, einem Mitglied der NFI-Familie (Altmann et al., Proc. Natl. Acad. Sci. (1994) 91, 3901-3905) codiert, sowie eine Anordnung für ein Hybridprotein (Altmann (1994), Dissertation).

pSH-CTF2/TIM (entspricht dem ersten regulatorischen Faktor) ist das entsprechende Plasmid, welches den ersten regulatorischen Faktor LexA-CTF2/AD1-TIM codiert.

Codieir

 pYES-Leu2/34-TetGST (Plasmid, welches den zweiten regulatorischen Faktor TetGST codiert und das Reportersystem beinhaltet).

- 3. pYES2(TRPI)TRX-Oligo-Pool (Peptid-Pool exprimierendes Konstrukt; Komplexität ca. 10⁵).
 - Der erste regulatorische Faktor LexA-CTF2/AD1-TIM a. sich. wie oben beschrieben, Fusionsproteinen LexA-CTF2 und AD1-TIM zusammen, nur bei ungestörter Protein-Protein-Wechselwirkung der beiden Fusionsproteine ein aktiver erster regulatorischer Faktor pSH-CTF2/TIM vorliegt (siehe Fig. 11a). Liegt kein Inhibitor vor, findet eine ungestörte Protein-Protein-Wechselwirkung statt und ein aktiver Transkriptionsregulator ist vorhanden. Der aktive Transkriptionsregulator LexA-CTF2/AD1-TIM bindet an seine entsprechende Bindestelle auf der DNA (LexA-Bindestelle), welche für das Tet-GST Gen codiert, und bewirkt eine Expression von Tet-GST. Tet-GST bindet an die entsprechende Bindestelle (Tet-GST Bindestelle) im Promotorbereich Reportergene und reprimiert eine Expression der Reprotergene. Da Leu2 und/oder LacZ exprimiert werden, findet weder Wachstum Leucin-defizientem Medium noch eine Blaufärbung nach Wachstum auf X-Gal-haltigem Medium statt.

b. Wird der Versuchsanordnung ein Inhibitor zugesetzt, wie z.B. ein Trx-Peptid, wird die Protein-Protein-Wechselwirkung der Fusionsproteine LexA-CTF2 und AD1-TIM gehemmt. Es liegt nun kein aktiver erster regulatorischer Faktor vor.

Aufgrund des inaktiven ersten regulatorischen Faktors LexA-CTF2/AD1-TIM findet keine Expression des Tet-GST Gens (Repressor-Gen) statt. Da kein R pressor Tet-GST vorliegt, werden, nach Bindung

10

5

15

20

25

30

10

15

20

25

eines weit ren Transkriptionsfaktors Gal4, die Report rg ne L u2 und/oder LacZ exprimiert.

Im Detail wird der Versuch, wie folgt, durchgeführt:

Die ca. 35.000 Kolonien wurden eingesammelt, für 5 Stunden in YPG-Medium (Galaktose-haltiges Vollmedium für Hefen) geschüttelt und auf Selektionsplatten ausgestrichen. Die Selektionsplatten besaßen Galaktose als Kohlenstoffquelle und waren Leucin-, Uracil-, Tryptophanund Histidin-defizient. Zeitraum von 2 bis 5 Tagen sind 6 Kolonien (A, B, C, D, E, F) gewachsen. Aus diesen wurden zur weiteren Spezifizierung die für die inhibierenden Peptide kodierenden Plasmide isoliert und zusammen mit LexA-CTF2, TIM-AD und Tet-GST in Hefe exprimiert. Diesmal befand sich anstatt dem Leu2 das LacZ-Gen auf dem Reporteplasmid, so daß die inhibierende Wirkung der Peptide durch die Ausbildung eines zweiten Phänotyps untersucht werden konnte (Tabelle 5). Des weiteren wurden die Peptide exprimierenden Plasmide mit den beiden Reportersystemen (LacZ und Leu2) und Transkriptionsfaktor LexA-TA1 in Hefen transformiert. Auf diese Weise konnten die TIM-CTF2 Interaktion spezifisch inhibierende Peptide von Unspezifischen abgetrennt werden.

Tabelle 5:

10

Identifizierte Inhibitoren	Wachstum auf Leucin- defizienten Platten	Glukose	Galaktose	Inhibierung von LexA-TA1 auf Galaktose
Α	+	+	+	n.b
В	+	-	+	-
С	+	+	+	n.b.
D	+	-	+	+
E	+	-	+	+
F	+	4	+	-

Die Inhibitoren A und C färbten sich auch auf Glukosehaltigen Platten, also unabhängig von der Galaktoseinduzierten TRX-Peptidexpression, blau. Dies bedeutet, daß in entsprechenden Klonen keine inhibierenden exprimiert werden, welche die Blaufärbung verursachen. Von den Peptiden B, D, E und F stellten sich D und E als unspezifisch heraus, da sie auch in der Lage waren, die LexA-TA₁ Domäne zu inhibieren. Dagegen waren die Inhibitoren B und F nicht in der Lage, AD1-Tet zu reprimieren, sind also Inhibitoren für die CTF2-TIM Protein-Protein Wechselwirkung.

In den dargestellten Versuchen 1 bis 11 ergeben sich bei verschiedenen Inhibitoren qualitative und/oder quantitative Unterschiede bezüglich der inhibitorischen Aktivität, d.h. neben einer vollständigen Hemmung des ersten regulatorischen Faktors sind auch graduelle Abschwächungen der Aktivität des ersten regulatorischen Faktors möglich. Entsprechend sind bei der Expression der Reportergene neben der vollständigen Expression auch graduelle Verstärkungen möglich und nachweisbar.

20

25

30

35

<u>Patentansprüche</u>

- 1. Verfahren zur Bestimmung der Aktivität mindestens
 5 eines ersten regulatorischen Faktors, welche über die
 Aktivität mindestens eines Reportersystems
 nachweisbar ist, gekennzeichnet durch die folgenden
 Schritte:
- a. Bereitstellen mindestens eines Reportersystems mit mindestens einer ersten Genanordnung, welche mindestens ein Reportergen aufweist,
 - b. Bereitstellen mindestens einer zweiten Genanordnung, die für mindestens einen zweiten regulatorischen Faktor codiert, und Wechselwirkung des zweiten regulatorischen Faktors mit Komponenten des Reportersystems, wodurch auf die Aktivität des Reportersystems eingewirkt wird,
 - c. Einwirkung vorzugsweise auf die Aktivität des zweiten regulatorischen Faktors durch d n mindestens einen ersten regulatorischen Faktor, und
 - d. Nachweis der Aktivierung des mindestens einen Reportersystems durch Zugabe mindestens einer inhibitorischen Komponente über das Zusammenwirken der ersten und zweiten regulatorischen Faktoren.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, der erste regulatorische Faktor mit Abschnitten der für den zweiten regulatorischen Faktor codierenden zweiten Genanordnung wechselwirkt, auf die Expression des regulatorischen Faktors eingewirkt wird.

Verfahren nach inem der Ansprüche 1 oder 2, dadurch gekennz ichnet, daß der zweite regulatorische Faktor an DNA-Abschnitte des Reportersystems bindet.

5

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der mindestens eine erste regulatorische Faktor ein oder mehrere regulierende Komponenten enthält.

10

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die eine oder mehrere regulierende Komponenten ein oder mehrere regulierende Proteine sind.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das regulierende Protein oder die regulierenden Proteine ein oder mehrere Transkriptionsregulatoren sind.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Transkriptionsregulator oder die Transkriptionsregulatoren ein oder mehrere Transkriptionsfaktoren sind.
- Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das regulierende Protein oder die regulierenden Proteine den mindestens einen zweiten regulatorischen Faktor modifizieren.
- 30 Verfahren nach einem der vorhergehenden Ansprüche, 9. dadurch gekennzeichnet, daß die Modifikation mindestens einen zweiten regulatorischen Kinasierung, durch Dephosphorylierung, Spaltung, Umfaltung oder Konformationsänderung erfolgt.

15

- 10. Verfahren nach einem der vorhergeh nden Ansprüche, dadurch gekennzeichnet, daß durch Zugabe inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten, gemeinsam den ersten regulatorischen Faktor bilden, und/oder auf die Aktivität des mindestens ersten regulatorischen Faktors eingewirkt wird.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet,
 10 daß durch Zugabe der inhibitorischen Komponente auf
 die Wechselwirkung zwischen mindestens einem ersten
 regulatorischen Faktor und einem DNA-Abschnitt der
 mindestens einen zweiten Genanordnung eingewirkt
 wird.
- 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beeinflussung der genannten Aktivität des ersten regulatorisch n Faktors durch inhibitorische Komponenten zu 20 Einwirkung auf die Genexpression der Genanordnung führt.
- Verfahren nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, daß ein Inhibitor über eine Hemmung der Aktivität des regulierenden Proteins zu einer Hemmung der Expression der zweiten Genanordnung führt.
- 14. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß durch die Zugabe dr inhibitorischen Komponente auf die Wechselwirkung zwischen mindestens zwei Komponenten eingewirkt wird, wobei die mindestens eine erste Komponente eine regulatorische Kompon nt ist oder enthält.

30

- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die r gulatorische Komponente eine Proteinkompon nte ist od r enthält.
- Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die mindestens eine erste Proteinkomponente ein Fusionsprotein ist.
- 17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die regulatorische Komponente eine inhibitorische Komponente ist oder enthält.
- Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß die mindestens eine zweite Komponente mindestens eine Proteinkomponente ist oder enthält.
- Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die mindestens eine zweite Proteinkomponente mindestens ein Fusionsprotein ist.
 - Verfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß die mindestens eine zweite Komponente eine Verankerungsfunktion besitzt.
 - Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß über eine Wechselwirkung der mindestens zwei Proteinkomponenten diese Proteinkomponenten im Cytoplasma lokalisiert sind.
 - Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß über eine Wechselwirkung der mindestens zwei Proteinkomponenten diese Proteinkomponenten an oder in einer Membran lokalisiert sind.

23. Verfahren nach einem der Ansprüche 14 bis 22, dadurch gekennzeichnet, daß durch die Zugabe inhibitorisch n Komponente über eine Hemmung der Wechselwirkung zwischen den mindestens zwei Komponenten die mindestens eine erste Komponente, welche den inhibitorisch wirksamen Abschnitt enthält, freigesetzt wird und mit transkriptionsaktivierenden Faktor der Genanordnung für den zweiten regulatorischen Faktor interagiert.

10

15

20

5

- 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß der transkriptionsaktivierende Faktor durch den freigesetzten inhibitorisch wirkenden Faktor gehemmt wird, wodurch eine Hemmung der Expression der zweiten Genanordnung erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Wirtsorganismen Mikroorganismen, vorzugsweise Bakterien, oder eukaryotische Zellen, vorzugsweise Hefen, eingesetzt werden.
- Verfahren nach Anspruch 25, dadurch gekennzeichnet,
 daß der Bakterienstamm Escherichia coli oder der
 Hefestamm Saccharomyces cerevisiae eingesetzt wird.
 - 27. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Genprodukt des mindestens einen Reportergens nachweisbar ist.

30

Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß der Nachweis des Genproduktes durch eine od r mehrere Veränderungen des Phänotyps des Wirtsorganismus erfolgt.

- 29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß das mindestens eine Genprodukt des R portergens Zellwachstum der Wirtsorganismen in Mangelmedium ermöglicht.
- 30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß das Genprodukt des Reportergens Leu2 ist und Zellwachstum in Leucin-defizientem Medium ermöglicht.
- 10 31. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß das Genprodukt des Reportergens LacZ Substrate in einer meßbaren Farbreaktion umsetzen kann.
- 32. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß die genannten Genanordnungen auf verschiedenen Vektoren angeordnet sind.
- Verfahren nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß die genannten Genanordnungen auf demselben Vektor angeordnet sind.
- 34. Verfahren nach einem der Ansprüche 32 oder 33, dadurch gekennzeichnet, daß die Vektoren Plasmide 25 sind.
- 35. Verfahren nach einem der Ansprüche 32 bis 34, dadurch gekennzeichnet, daß ein oder mehrere Vektoren mit einer oder mehreren Genanordnungen ins Wirtsgenom integriert sind.
 - Werfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Genanordnung für mindestens einen Repressor codiert.

- 37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß der Repressor auf die Expression des mindestens einen Reportergens einwirkt.
- 5 38. Verfahren nach einem der Ansprüche 36 oder 37, dadurch gekennzeichnet, daß der Repressor durch Bindung an Komponenten des Reportersystems wirkt.
- 39. Verfahren nach Anspruch 38, dadurch gekennzeichnet,
 10 daß die Bindung des Repressors an Komponenten des
 Reportersystems durch weitere Agenzien reguliert
 werden kann.
- 40. Verfahren nach einem der Ansprüche 36 bis 39, dadurch gekennzeichnet, daß in ein Reporterplasmid eine LacZ-Leu2 Genanordnung und die Repressor-Genanordnung integriert sind.
- Verfahren nach einem der Ansprüche 1 bis 35, dadurch gekennzeichnet, daß die zweite Genanordnung für mindestens eine Rekombinase codiert und die Reportersysteme Rekombinationselemente enthalten.
- 42. Verfahren nach Anspruch 41, dadurch gekennzeichnet,
 25 daß die Rekombinase über Rekombinationsprozesse
 mindestens ein Reportergen eliminiert oder
 invertiert.
- 43. Verfahren nach einem der Ansprüche 41 42, 30 dadurch gekennzeichnet, daß die Rekombinase die sequenzspezifische Rekombinase Cre des Coliphagen Pl ist und das mindestens eine Reportergen flankierende lox P-Sequenzen als Rekombinationselemente aufweist.
- 35 44. Verfahren nach einem der Ansprüche 6 bis 13 und 25 bis 43, dadurch gekennzeichnet, daß der

Transkriptionsregulator mindest ns zwei Hybridproteine enthält, wob i die Hybridproteine von einer dritten Genanordnung codiert werden.

- 5 45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, daß ein erstes Hybridprotein ein Fusionsprotein aus DNA-Bindedomäne und einer ersten Proteinkomponente und ein zweites Hybridprotein ein Fusionsprodukt aus einer Aktivierungsdomäne des 10 Transkriptionsregulators und einer zweiten Proteinkomponente ist, wobei durch Bindung zwischen den beiden Proteinkomponenten der Transkriptionsregulator entsteht.
- 15 46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß eine Einwirkung auf die Wechselwirkung der Hybridproteine über inhibitorische Komponenten erfolgt.
- 20 47. Verfahren nach einem der Ansprüche 15 bis 24, dadurch gekennzeichnet, daß die mindestens zwei Proteinkomponenten von einer fünften Genanordnung codiert werden.
- 25 48. Verfahren nach einem der Ansprüche 14 bis 24, dadurch gekennzeichnet, daß die mindestens eine erste Proteinkomponente Abschnitt, einen der mit mindestens einen zweiten Proteinkomponente wechselwirkt, einen Abschnitt, der einem mit 30 Transkriptionsfaktor wechselwirkt sowie einen inhibitorischen Abschnitt enthält, wobei erst nach Hemmung der Wechselwirkung der Bindung zwischen den mindestens zwei Proteinkomponenten die inhibitorisch wirkende erste Proteinkomponente die Expression des 35 mindestens ein n zweiten regulatorisch ne Faktors hemmt.

- Verfahren nach einem der Ansprüche 14 bis 16, dadurch 49. gekennzeichnet, daß die mindestens eine regulatorische Komponente ein Transkriptionsregulator 5 oder Transkriptionsfaktor der Genanordnung des zweiten regulatorischen Faktors ist, der nach Inhibierung der Wechselwirkung mit der mindestens einen zweiten Proteinkomponente in seiner Aktivität reduziert oder inaktiviert wird, wodurch 10 Expression zweiten des regulatorischen Faktors gehemmt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß diese inhibitorischen Komponenten Naturstoffe wie Peptide, Nukleinsäuren und Kohlehydrate oder andere chemische Substanzen sind.
- Verfahren nach Anspruch 50, dadurch gekennzeichnet,
 daß die inhibitorischen Komponenten durch Mutagenese
 veränderte Bestandteile des mindestens einen ersten
 regulatorischen Faktors sind.
- 52. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß mindestens eine weitere
 vierte Genanordnung für die Expression von Peptiden
 bereitgestellt wird.
- Verfahren nach einem der Ansprüche 44 bis 46 und 50
 bis 52, dadurch gekennzeichnet, daß durch die
 Einwirkung auf die Wechselwirkung der mindestens zwei
 Hybridproteine des Transkriptionsregulators die
 Expression mindestens eines Repressor-Gens gesteuert
 wird, wodurch eine Veränderung der Expression des
 mindestens inen Reporterg ns rfolgt.

5

10

- Verfahren nach Anspruch 53, dadurch gekennzeichnet, daß durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression des Repressor-Gens gehemmt wird und eine Expression des mindestens einen Reportergens erfolgt.
- 55. Verfahren nach einem der Ansprüche 44 bis 46 und 50 dadurch gekennzeichnet, daß Einwirkung auf die Wechselwirkung der mindestens zwei Hybridproteine des Transkriptionsregulators die Expression mindestens einer Rekombinase gesteuert wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.
- 15 Verfahren nach Anspruch 55, dadurch gekennzeichnet, 56. daß durch Hemmung der Wechselwirkung der Hybridproteine des Transkriptionsregulators die Expression der Rekombinase gehemmt wird und Expression des mindestens einen Reportergens erfolgt. . 20
 - 57. Verfahren nach einem der Ansprüche 14 bis 24 und 47 bis 49, dadurch gekennzeichnet, daß durch Einwirkung auf die Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens Repressor-Gens gesteuert wird. wodurch eine Veränderung der Expression des mindestens einen Reportergens erfolgt.
 - Verfahren nach Anspruch 57, dadurch gekennzeichnet,
 daß durch Hemmung der Wechselwirkung der
 Proteinkomponenten die Expression des Repressor-Gens
 gehemmt wird und eine Expression des mindestens einen
 Reportergens erfolgt.
- 35 59. Verfahren nach einem der Ansprüche 14 bis 24 und 47 bis 49, dadurch gekennzeichnet, daß durch die

Einwirkung auf di Wechselwirkung der mindestens zwei Proteinkomponenten die Expression mindestens einer Rekombinas gesteuert wird, wodurch eine Veränderung der Expression mindestens eines Reportergens erfolgt.

5

10

15

Verfahren nach Anspruch 59, dadurch gekennzeichnet, 60. durch Hemmung der Wechselwirkung der Proteinkomponenten die Expression der Rekombinase gehemmt wird und eine Expression des mindestens einen Reportergens erfolgt.

61. Verfahren nach einem der Ansprüche 41 bis 60, dadurch gekennzeichnet, daß in einem Wirtsorganismus gleichzeitig Genanordnungen für mindestens

> und bereitgestellt werden.

Repressor

mindestens eine Rekombinase

- 62. Verfahren nach Anspruch 61, dadurch gekennzeichnet, je nach eingestellten Versuchsbedingungen der 20 Repressor oder die Rekombinase oder beide exprimiert werden.
- 63. Verwendung eines der Verfahren nach einem Ansprüche 1 bis 62 zur Ermittlung von inhibierenden 25 Substanzen, die bevorzugt als Leitstrukturen einsetzbar sind.
 - Verwendung nach Anspruch 63, dadurch gekennzeichnet, 64. daß die inhibierenden Substanzen Peptide sind.

30

65. Verwendung nach einem der Ansprüche 63 oder dadurch gekennzeichnet, daß die inhibierenden Substanzen und Peptide zur Entwicklung von Therapeutika ingesetzt werden.

Transkriptionsstimulierende Targets im Repressor-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor abhängigen Verfahren

Transkriptionsstimulierende Targets im Rekombinase-abhängigen Verfahren

Protein-Protein Interaktion im Rekombinase-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor-abhängigen Verfahren

Protein-Protein Interaktion im Rekombinase-abhängigen Verfahren

Protein-Protein Interaktionen als Target im Repressor-abhängigen Verfahren

Protein-Protein Interaktion im Rekombinase-abhängigen Verfahren

Repression des transkriptionsstimulierenden Targets AD1-Tet im Repressor-abhängigen Verfahren

Repression des transkriptionsstimulierenden Targets LexA-CTF7 im Repressor-abhängigen Verfahren

LexA-CTF2 und AD1-TIM im Repressor-abhängigen Verfahren Repression der Protein-Protein Wechselwirkung zwischen

INTERNATIONAL SEARCH REFORT

International A :ation No PCT/EP 95/00297

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/00 C12N15/67

67 C12N15/70

C12N15/81

C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	PROC. NATL.ACAD SCI., vol. 89, no. 12, 15 June 1992 NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 5547-5551, M. GOSSEN AND H. BUJARD 'Tight control of gene expression in mammalian cells by	1-5, 10-14, 25-27
Y .	tetracycline-responsive promoters' see page 5548, right column, paragraph 4 - page 5551, left column, paragraph 2	6-9, 29-40, 44-53, 57,58, 63-65
	-/	
•		

X Further documents are listed in the continuation of box C.	Y Patent family members are listed in annex.
* Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 19 June 1995	Date of mailing of the international search report 0 4 -07- 1995
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Facc (+ 31-70) 340-3016	Authorized officer Hornig, H

INTERNATIONAL SEARCH REPORT

International A :ation No
PCT/EP 95/00297

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category *	Cleanon of document, with indication, where appropriate, of the relevant passages	resevant to claim 140.
X	THE PLANT JOURNAL, vol. 2, no. 3, 1992 BLACKWELL, OXFORD, UK, pages 397-404, C. GATZ ET AL. 'Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants'	1-5, 25-28
Y	see page 357, right column, line 36 - page 402, right column, paragraph 2	6-9, 29-40, 44-53, 57,58, 63-65
X	MOLECULAR & GENERAL GENETICS, vol. 227, no. 2, June 1991 SPRINGER INTERNATIONAL, AMSTERDAM, NL, pages 229-237, C. GATZ ET AL. 'Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco'	1-5, 25-28
Y	the whole document	6-9, 29-40, 44-53, 57,58, 63-65
X	WO-A-91 16429 (GEN HOSPITAL CORP) 31 October 1991	1-5,50
Y	see page 6, line 27 - page 26, line 2 the whole document	6-9, 29-40, 44-53, 57,58, 63-65
X	WO-A-91 16456 (GEN HOSPITAL CORP) 31 October 1991	1-5,50
Y	see page 4, line 10 - page 20, line 8; claims 1-8	6-9, 29-40, 44-53, 57,58, 63-65
X	WO-A-92 05286 (BRENT ROGER ;GOLEMIS ERICA (US); LECH KAREN F (US); ANDERSON CATHE) 2 April 1992	1-5,50
Y	cited in the application see page 12, line 1 - page 26, line 9; claims 1-20; examples 1-6	6-9, 29-40, 44-53, 57,58, 63-65
	-/	·
		·

INTERNATIONAL SEARCH REPORT

International A sation No
PCT/EP 95/00297

-(Conunu	non) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PROC. NATL.ACAD SCI., vol. 86, no. 14, July 1989 NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 5473-5477, G.W. BYRNE AND F.H. RUDDLE 'Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	PROC. NATL.ACAD SCI., vol. 88, no. 21, 1 November 1991 NATL. ACAD SCI., WASHINGTON, DC, US;, pages 9578-9582, CT. CHIEN ET AL. 'The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	SCIENCE, vol. 257, 31 July 1992 AAAS,WASHINGTON,DC,US, pages 680-682, X. YANG ET AL. 'A protein kinase substrate identified by the two-hybrid system' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	WO-A-93 10250 (MASSACHUSETTS INST TECHNOLOGY) 27 May 1993 see page 11, line 1 - page 15, line 18 see page 26, line 16 - page 57, line 19 see claims 16-19	6-9, 29-40, 44-53, 57,58, 63-65
Y	WO-A-93 15227 (UNIV DUKE) 5 August 1993 see page 5, line 22 - page 9, line 30; claims 15-35	6-9, 29-40, 44-53, 57,58, 63-65
	BIOL CHEM HOPPE-SEYLER 373 (9). 1992. 857. CODEN: BCHSEI ISSN: 0177-3593, ALTMANN H ET AL. 'Nuclear factor I a DNA-binding protein that can act as a transcriptional activator in yeast' Autumn meeting of the gesellschaft für biologische chemie (German society for biological chemistry), Rostock, Germany, September 24-26, 1992;	1-4, 25-27

INTERNATIONAL SEARCH REPORT

International A :ation No
PCT/EP 95/00297

C.(Continu	DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP 95/00297
Category *		Relevant to claim No.
P,X	WO-A-94 04672 (DNX CORP ;BYRNE GUERARD (US)) 3 March 1994	1-5,10, 11, 14-17, 25-28
	the whole document	25-28
P,X	WO-A-94 09133 (GEN HOSPITAL CORP) 28 April 1994	1-5, 10-19, 23, 25-28, 34, 36-39,50
	see page 5, line 8 - page 26, line 19; claims 1-14	
P,X	WO-A-94 29442 (BASF AG; BUJARD HERMANN (DE); GOSSEN MANFRED (DE); SALFELD JOCHEN) 22 December 1994 the whole document	1-5, 10-14, 33-39
	·	
ľ		
	•	
	•	
	18 (matinuation of second sheet) /July 1009)	

Information on patent family members

International A :ation No PCT/EP 95/00297

		101/21 33/0023/		20,00521
Patent document cited in search report	Publication date	Patent memi		Publication date
WO-A-9116429	31-10-91	AU-A- EP-A- US-A-	7676691 0528827 5322801	11-11-91 03-03-93 21-06-94
WO-A-9116456	31-10-91	AU-A-	7667191	11-11-91
WO-A-9205286	02-04-92	AU-B- AU-A- CA-A- CN-A- CZ-A- EP-A- HU-A- JP-T- ZA-A-	650677 8627291 2092000 1065092 9300496 0550592 66827 6503713 9107616	30-06-94 15-04-92 25-03-92 07-10-92 16-02-94 14-07-93 30-01-95 28-04-94 24-09-93
WO-A-9310250	27-05-93	CA-A- EP-A-	2123906 0614491	27-05-93 14-09-94
WO-A-9315227	05-08-93	AU-B-	3609693	01-09-93
WO-A-9404672	03-03-94	AU-B- CA-A-	5099393 2143326	15-03-94 03-03-94
WO-A-9409133	28-04-94	US-A- AU-B-	5322801 5325594	21-06-94 09-05-94
WO-A-9429442	22-12-94	AU-B-	7108194	03-01-95

INTERNATIONALER RECHERCHENBERICHT internationales nzeichen PCT/EP 95/00297 a. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDE IPK 6 C12N15/00 C12N15/67 C12 C12N15/70 C12N15/81 C12Q1/68 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE echerchierter Mindestprüßtoff (Klassifikationssystem und Klassifikationssymbole) C12N C12Q IPK 6 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X PROC. NATL.ACAD SCI., 1-5, Bd. 89, Nr. 12, 15.Juni 1992 NATL. ACAD 10-14. SCI., WASHINGTON, DC, US;, 25-27 Seiten 5547-5551, M. GOSSEN AND H. BUJARD 'Tight control of gene expression in mammalian cells by tetracycline-responsive promoters' Y siehe Seite 5548, rechte Spalte, Absatz 4 6-9, - Seite 5551, linke Spalte, Absatz 2 29-40. 44-53, 57,58, 63-65

X	Weitere Ve	eröffentlichung	gen sind der	Fortsetzung	von Feld C zu

Siehe Anhang Patentfamilie

Besondere Kategorien von angegebenen Veröffentlichungen

- Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zügrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist.

Veröffentlichung von besonderer Bedeutung die beansprüchte Erfindung.

Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffendichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

- Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 1) 4 -07- 1995 19.Juni 1995 Name und Postanschrift der Internationale Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Hornig, H

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Internationales mzeichen
PCT/EP 95/00297

Kategorie*	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend	
	on and an	en Teile Betr. Anspruch Nr.
X	THE PLANT JOURNAL.	
. 1	Bd. 2, Nr. 3, 1992 BLACKWELL, DXFORD, UK	1-5, 25-28
İ	Seiten 397-404,	25-28
1	C. GATZ ET AL. 'Stringent repression and	
	nomogeneous de-repression by tetracycline	
	of a modified CaMV 35S promoter in intact	
,	transgenic tobacco plants'	
Υ	siehe Seite 357, rechte Spalte. Zeile 36 -	6-9,
1	Seite 402, rechte Spalte, Absatz 2	29-40.
1		44-53,
]		57,58,
[63-65
(MOLECULAR & OFMERAL ACTUENCE	
•	MOLECULAR & GENERAL GENETICS, Rd 227 Nr 2 June 1881 SPRINGER	. 1-5,
ļ	Bd. 227, Nr. 2, Juni 1991 SPRINGER	25-28
1	INTERNATIONAL, AMSTERDAM, NL,	
1	Seiten 229-237, C. GATZ ET Al. 'Pegulation of a modified	
. 4	C. GATZ ET AL. 'Regulation of a modified	I
1	CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco'	
,	the whole document	
	ATTO 16 MODERNETH C	6-9,
		29-40,
ļ		44-53,
		57,58,
1	•==	63-65
:	WO-A-91 16429 (GEN HOSPITAL CORP)	1_E EA
. 1	31.0ktober 1991	1-5,50
	siehe Seite 6, Zeile 27 - Seite 26. Zeile	
	2	
·	the whole document	6-9,
İ		29-40,
		44-53,
].		57,58,
1		63-65
	WO-A-01 16456 /OTH HOODERS	
	WO-A-91 16456 (GEN HOSPITAL CORP)	1-5,50
	31.0ktober 1991	
1	siehe Seite 4, Zeile 10 - Seite 20, Zeile	6-9,
1	8; Ansprüche 1-8	29-40,
- 1		44-53,
-		57,58,
	•••	63-65
1	WO-A-92 05286 (BRENT ROGER ; GOLEMIS ERICA	1 5 50
	(US); LECH KAREN F (US); ANDERSON CATHE)	1-5,50
	2.April 1992	
1	in der Anmeldung erwähnt	
	siehe Seite 12. Zeile 1 - Seite 26. Zeile	6-9,
	9; Ansprüche 1-20; Beispiele 1-6	29-40.
ļ	· · · · · · · · · · · · · · · · · · ·	44-53,
1		57,58,
İ		63-65
	-/	
1		
		Ī

Internationales inzerchen
PCT/EP 95/00297

Kategorie*	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	PROC. NATL.ACAD SCI., Bd. 86, Nr. 14, Juli 1989 NATL. ACAD SCI.,WASHINGTON,DC,US;, Seiten 5473-5477, G.W. BYRNE AND F.H. RUDDLE 'Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	PROC. NATL.ACAD SCI., Bd. 88, Nr. 21, 1.November 1991 NATL. ACAD SCI.,WASHINGTON,DC,US;, Seiten 9578-9582, CT. CHIEN ET AL. 'The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	SCIENCE, Bd. 257, 31.Juli 1992 AAAS,WASHINGTON,DC,US, Seiten 680-682, X. YANG ET AL. 'A protein kinase substrate identified by the two-hybrid system' the whole document	6-9, 29-40, 44-53, 57,58, 63-65
Y	WO-A-93 10250 (MASSACHUSETTS INST TECHNOLOGY) 27.Mai 1993 siehe Seite 11, Zeile 1 - Seite 15, Zeile 18 siehe Seite 26, Zeile 16 - Seite 57, Zeile 19	6-9, 29-40, 44-53, 57,58, 63-65
Y	siehe Ansprüche 16-19 WO-A-93 15227 (UNIV DUKE) 5.August 1993 siehe Seite 5, Zeile 22 - Seite 9, Zeile 30; Ansprüche 15-35	6-9, 29-40, 44-53, 57,58, 63-65
	-/	

INTERNATIONALER RECHERCHENBERICHT

Internationales inzerchen
PCT/EP 95/00297

C.(Fortsetz	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN	/EP 95/00297
Kategorie*		Teile Betr. Anspruch Nr.
A	BIOL CHEM HOPPE-SEYLER 373 (9). 1992. 857. CODEN: BCHSEI ISSN: 0177-3593, ALTMANN H ET AL. 'Nuclear factor I a DNA-binding protein that can act as a transcriptional activator in yeast' Autumn meeting of the gesellschaft für biologische chemie (German society for biological chemistry), Rostock, Germany, September 24-26, 1992;	1-4, 25-27
P,X	WO-A-94 04672 (DNX CORP ;BYRNE GUERARD (US)) 3.März 1994 the whole document	1-5,10, 11, 14-17, 25-28

P,X	WO-A-94 09133 (GEN HOSPITAL CORP) 28.April 1994	1-5, 10-19, 23, 25-28, 34, 36-39,50
	siehe Seite 5, Zeile 8 - Seite 26, Zeile 19; Ansprüche 1-14	30-35,50
P,X	WO-A-94 29442 (BASF AG ;BUJARD HERMANN (DE); GOSSEN MANFRED (DE); SALFELD JOCHEN) 22.Dezember 1994 the whole document	1-5, 10-14, 33-39
·		
	. •	
1		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales nzeichen
PCT/EP 95/00297

				50,0023,
Im Recherchenbericht eführtes Patentdokument	Datum der Veröffentlichung	Mitglied Patent		Datum der Veröffentlichung
WO-A-9116429	31-10-91	AU-A-	7676691	11-11-91
		EP-A-	0528827	03-03-93
		US-A-	5322801	21-06-94
WO-A-9116456	31-10-91	AU-A-	7667191	11-11-91
WO-A-9205286	02-04-92	AU-B-	650677	30-06-94
		AU-A-	8627291	15-04-92
		CA-A-	2092000	25-03-92
	•	CN-A-	1065092	07-10-92
		CZ-A-	9300496	16-02-94
		EP-A-	0550592	14-07-93
		HU-A-	66827	30-01-95
		JP-T-	6503713	28-04-94
		ZA-A-	9107616	24-09-93
WO-A-9310250	27-05-93	CA-A-	2123906	27-05-93
		EP-A-	0614491	14-09-94
WO-A-9315227	05-08-93	AU-B-	3609693	01-09-93
W0-A-9404672	03-03-94	AU-B-	5099393	15-03-94
		CA-A-	2143326	03-03-94
WO-A-9409133	28-04-94	US-A-	5322801	21-06-94
		AU-B-	5325594	09-05-94
WO-A-9429442	22-12-94	AU-B-	7108194	03-01-95