Learn More

×

Feedback — Week 1 Practice Quiz

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Sun 14 Jun 2015 10:33 AM PDT**. You got a score of **12.00** out of **12.00**.

Question 1

Which of the following word pairs are paradigmatically related? (select all that apply)

Your Answer		Score	Explanation
computer, laptop	~	0.25	
car, drive	~	0.25	
	~	0.25	
computer, keyboard	~	0.25	
Total		1.00 / 1.00	

Question Explanation

The correct answer is "car, vehicle" and "computer, laptop" since the word pairs tend to occur in the same context. We would generally not obtain a meaningful sentence by substituting "car" for "drive."

Question 2

Which of the following word pairs are syntagmatically related? (select all that apply)

Your Answer		Score	Explanation
✓ car, drive	~	0.25	
car, vehicle	~	0.25	
computer, laptop	~	0.25	

✓ computer, keyboard	~	0.25
Total		1.00 / 1.00

Question Explanation

The correct answer is "car, drive" and "computer, keyboard" since the words in each pair tend to co-occur in the same sentences.

Question 3

Suppose the pseudo-document representations for the contexts of the terms A and B in the vector space model are given as follows:

$$d_A = (0.30, 0.20, 0.40, 0.05, 0.00, 0.05)$$

$$d_B = (0.40, 0.10, 0.30, 0.00, 0.20, 0.00)$$

What is the EOWC similarity score?

Your Answer		Score	Explanation
0.40			
0.22			
0.32			
0.26	~	1.00	
Total		1.00 / 1.00	

Question Explanation

$$0.3 * 0.4 + 0.2 * 0.1 + 0.4 * 0.3 = 0.26$$

Question 4

EOWC treats words irrespective of their occurrence in the corpus. Adding IDF weighting to the EOWC similarity function will penalize common words in the corpus.

Your Answer		Score	Explanation
True	~	1.00	

Total 1.00 / 1.00

Question 5

The EOWC score is non-negative and cannot exceed 1.

Your Answer		Score	Explanation
True	~	1.00	
False			
Total		1.00 / 1.00	

Question Explanation

The EOWC score is the probability that two randomly selected words from the two pseudo-documents are the same. Since it is a probability, its values range between 0 and 1 (inclusive).

Question 6

A random variable X with P(X=1)=1 achieves the minimum possible entropy.

Your Answer		Score	Explanation
True	~	1.00	
False			
Total		1.00 / 1.00	

Question Explanation

This is a deterministic variable with H(X) = 0, which is the lowest possible value for entropy.

Question 7

The outcome of an unbiased coin is easier to predict than the outcome of a biased coin.

Your Answer		Score	Explanation
O True			
False	~	1.00	
Total		1.00 / 1.00	

Question 8

An unbiased coin has a higher entropy than any biased coin.

Your Answer		Score	Explanation
False			
True	~	1.00	
Total		1.00 / 1.00	

Question Explanation

An unbiased coin has $H(X_{unbiased})$ = 1, which is the maximum possible value of entropy for a binary random variable. Biased coins must have $H(X_{biased}) < 1$.

Question 9

Which of the following is not true?

Your Answer		Score	Explanation
If H(X Y) = H(Y X) then H(X) = H(Y)			
• If $H(X) = H(Y)$ then X and Y follow the same distribution	~	1.00	
Total		1.00 / 1.00	

Question Explanation

Counterexample for "If H(X) = H(Y) then X and Y follow the same distribution": Let P(X=1) = 0.9 and P(Y=1) = 0.1. Clearly, H(X) = H(Y), however, the distributions of the two random variables are different. "If H(X|Y) = H(Y|X) then H(X) = H(Y)" is always true because H(X) = I(X;Y) + H(X|Y), and H(Y) = I(X;Y) + H(Y|X).

Question 10

Let X_{text} , X_{mining} , and X_{the} be binary random variables associated with the words "text", "mining", and "the" respectively. Assume that the probabilities of the random variables are estimated based on a large corpus. Then we should expect $H(X_{text}|X_{mining}) > H(X_{text}|X_{the})$.

Your Answer		Score	Explanation
O True			
False	~	1.00	
Total		1.00 / 1.00	

Question Explanation

Since "mining" usually co-occurs frequently with "text", it is expected to reduce the entropy of "text" more than "the" does.

Question 11

I(X;Y)=0 if and only if X and Y are independent.

Your Answer		Score	Explanation
O False			
True	~	1.00	
Total		1.00 / 1.00	

Question 12

Let w be a word and X_w be a binary random variable that indicates whether w appears in a text document in the corpus. Assume that the probability $P(X_w=1)$ is estimated by Count(w)/N, where Count(w) is the number of documents w appears in and N is the total number of documents in the corpus. You are given that "the" is a very frequent word that appears in 99% of the documents and that "photon" is a very rare word that occurs in 1% of the documents. Which word has a higher entropy?

 $H(X_{photon}) = -0.01*log(0.01) -0.99*log(0.99).$

Your Answer		Score	Explanation
Both words have the same entropy	~	1.00	
○ "the"			
"photon"			
Total		1.00 / 1.00	
Question Explanation			