Problem 1

Let V be a vector space, and let $\vec{u}, \vec{v}, \vec{w} \in V$. Prove that if $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$.

Proof. Consider $\vec{v}, \vec{u}, \vec{w} \in V$, and assume $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$.

$ec{u} \oplus ec{w} = ec{v} \oplus ec{w}$	Assertion
$-\vec{u}\oplus\vec{u}\oplus\vec{w}=-\vec{u}\oplus\vec{v}\oplus\vec{w}$	Axiom 3
$\mathbf{id} \oplus \vec{w} = -\vec{u} \oplus \vec{v} \oplus \vec{w}$	Axiom 5
$ec{w} = (-ec{u} \oplus ec{v}) \oplus ec{w}$	Axiom 4
$\mathbf{id} = -\vec{u} \oplus \vec{v}$	Axiom 4
$ec{v} = -(-ec{u})$	Axiom 5
$\vec{x} : \vec{v} = \vec{u}$	Axiom 5

Problem 2

Prove Theorem B.

Proof.

Problem 3

Prove Theorem D.

Proof.

Problem 4

Prove that there does not exist a real vector space of size 2.

Proof.