Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
_ 00220			dedicadas
12/02/2024	1. Búsqueda de repositorios en línea sobre RL.	 a) Se encontró la librería RL-tools en C++. b) Creación del env para trabajar con C++. c) Ejemplo de implementación de RLtools. 	4 horas
13/02/2024	2. Búsqueda de ejemplos de uso del modelo <i>Mamba</i> .	a) Se encontraron ejemplos de funcionamiento con simple parallel scan implementation. b) Estudio de la comparación entre el entrenamiento Mamba con CUDA, mamba.py y RNN. c) El repositorio mamba.py encontrado ejempifica un uso simple de MAMBA.	5 horas
13/02/2024	3. Trabajo en la tesis del proyecto.	 a) Se adaptó la plantilla para el proyecto. b) Introducción de línea guía de ideas (anteproyecto). c) Introducción de resumen de la bitácora semana 1. 	3 horas

15/02/2024	4. Revisión del fun-	a) Primer proceso de entre-	6 horas
	cionamiento del código	namiento de la versión base.	
	$RNAM_Synthetic.py.$	b) Se verificó el registro con lo	
		expuesto en la tesis de Jorge	
		Brenes.	
		c) Se probó el código de	
		RNAM_Real.py sin exito	
		por la falta del directorio	
		$/Datos_Recolectados/$	
16/02/2024	5. Pruebas de variación de	a) Cambios en el valor del	3 horas
	hiperparámetros al entre-	$learning_rate.$	
	namiento.		
Total de horas de trabajo:			

Contenidos de actividades

Resumen de repositorios encontrados

El ejemplo más completo corresponde a la librería encontrada RLtools [1], la cual cuenta con una descripción muy completa de lo que puede ofrecer al tabular y compartir capturas del entrenamiento de modelos de RL mediante algoritmos como $Twin\ Delayed\ DDPG\ (TD3)$, $Proximal\ Policy\ Optimization\ (PPO)\ y\ Soft\ Actor-Critic\ (SAC)$.

Se muestran ejemplos de implementación con casos como *Pendulum*, *Racing car*, *MujoCo Ant-man* and *Acrobot* [1], similares a las capturas de la Figura 1.

Figure 1: Capturas de implementación con RLtools [1].

De igual forma se encontró el repositorio de la librería *mpcrl* en python 2, para el entrenamiento de RL basado en modelos. La descripción del *README.md* es completa y se acompaña con ejemplos de funcionamiento y la captura facilitada mostrada en la Figura 2.

Figure 2: Capturas de descripción del modelo [].

Para la búsqueda realizada para los repositorios de Mamba, se encontró el caso de [2], donde si se cuenta con implementación de Mamba, pero se trata de una ejemplificación de cálculos sencillos mediante PyTorch y en diferentes métodos para implementación.

Figure 3: Capturas de la descripción del modelo Mamba [2].

Referencias

- [1] J. Eschmann, D. Albani, and G. Loianno, "Rltools: A fast, portable deep reinforcement learning library for continuous control," 2023.
- [2] AlxndrRL, "mamba.py: a simple and efficient mamba implementation," 2023.