ASSIGNMENT 4

Date	25 October 2022
Team ID	PNT2022TMID33893
Project Name	Gas Leakage monitoring and Alerting system for Industries

Project Title: Gas Leakage monitoring & Alerting

system for Industries

Team ID: PNT2022TMID33893

QUESTION:

CODE:

Write code and connections in wokwi for ultrasonic sensor. Whenever distance is less than 100 cms send "alert" to ibm cloud and display in device recent events.

mentioned in ibm watson IOT Platform

```
#include <WiFi.h>
#include <PubSubClient.h>
void callback(char* subscribetopic, byte*
payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "u9pz01"//IBM ORGANITION ID
#define DEVICE_TYPE "ultrasensor"//Device type
```

```
#define DEVICE_ID "123"//Device ID mentioned
in ibm watson IOT Platform
#define TOKEN "12345678" //Token
String data3;
char server[] = ORG
".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-
2/evt/Data/fmt/json";
char subscribetopic[] = "iot-
2/cmd/test/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":"
DEVICE ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, callback
,wifiClient);
const int trigPin = 5;
const int echoPin = 18;
#define SOUND SPEED 0.034
long duration;
float distance;
void setup() {
Serial.begin(115200);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
wificonnect();
mqttconnect();
}
```

```
void loop()
{
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = duration * SOUND_SPEED/2;
Serial.print("Distance (cm): ");
Serial.println(distance);
if(distance<100)</pre>
{
Serial.println("ALERT!!");
delay(1000);
PublishData(distance);
delay(1000);
if (!client.loop()) {
mqttconnect();
}
}
delay(1000);
}
void PublishData(float dist) {
mqttconnect();
String payload = "{\"Distance\":";
payload += dist;
payload += ",\"ALERT!!\":""\"Distance less
than 100cms\"";
```

```
payload += "}";
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*)
payload.c str())) {
Serial.println("Publish ok");
} else {
Serial.println("Publish failed");
}
void mqttconnect() {
if (!client.connected()) {
Serial.print("Reconnecting client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod,
token)) {
Serial.print(".");
delay(500);
}
initManagedDevice();
Serial.println();
}
}
void wificonnect()
{
Serial.println();
Serial.print("Connecting to ");
WiFi.begin("Wokwi-GUEST", "", 6);
```

```
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
void initManagedDevice() {
if (client.subscribe(subscribetopic)) {
Serial.println((subscribetopic));
Serial.println("subscribe to cmd OK");
} else {
Serial.println("subscribe to cmd FAILED");
}
void callback(char* subscribetopic, byte*
payload, unsigned int payloadLength)
{
Serial.print("callback invoked for topic: ");
Serial.println(subscribetopic);
for (int i = 0; i < payloadLength; i++) {</pre>
//Serial.print((char)payload[i]);
data3 += (char)payload[i];
}
Serial.println("data: "+ data3);
data3="";
}
```

SCHEMATIC/CIRCUIT DIAGRAM:

IBM CLOUD OUTPUT:

WOKWI LINK:

https://wokwi.com/projects/346500826401866324