Decisión de Grupo

Diego José Abengózar Vilar, z17m063 Alejandro García Castellanos, z17m008 Modelización, G-MI UPM

Índice

- 1. Introducción
 - a. ¿Qué es?
 - b. Escala de Saaty
- 2. Cómo se modeliza
- 3. Métodos (Qué es, cómo se hace y qué resultados se obtienen)
 - a. Potencia
 - b. Min Cuadrados
 - c. Simplex
 - d. Norma inf (?)
- 4. Conclusión y comparación de los métodos

Introducción

¿Qué es el problema de decisión de grupo?

- El objetivo es ordenar un conjunto de alternativas A₁, ..., A_n atendiendo a las preferencias de uno o varios expertos individuales (E₁,..., E_m).
- Expresan sus preferencias mediante matrices de comparación por pares (Mⁱ).
- Calcularemos un vector de pesos que indique cómo de prioritaria es cada una de las opciones.

Vector de prioridad:

- El w_i indica la prioridad de la alternativa A_i
- A mayor wi mayor prioridad

Escala de Saaty

 Para cuantificar la información vertida por los expertos utilizaremos la <u>Escala de Saaty</u>: los expertos muestran la importancia de una opción frente a otra mediante un entero del 1 al 9.

 Se basa en estudios psicológicos que muestran que un individuo no puede comparar simultáneamente más de 7 objetos.

Thomas L. Saaty

Escala de Saaty

Escala	Definición	Explicación
1	lgual importancia	Los dos elementos contribuyen igualmente al objetivo.
3	Importancia moderada	La experiencia y el juicio están ligeramente a favor de uno de los elementos.
5	Importancia fuerte	La experiencia y el juicio están fuertemente a favor de uno de los elementos.
7	Importancia muy fuerte o demostrable	Un elemento es preferido sobre el otro en un grado muy fuerte y esta preferencia puede demostrarse en la práctica.
9	Importancia absoluta	La evidencia favorece a una alternativa sobre la otra extremadamente.
2, 4, 6, 8	Valores intermedios	Algunas veces se necesita interpolar un juicio, porque no hay una palabra que describa la relación entre los elementos.

Modelización del problema

Matrices de comparación por pares

- Las entrada $m_{i,j}$ de la matriz es una estimación de la proporción de importancia entre la alternativa A_i y A_i .
- Ej: Un valor de 2 en la posición $m_{1,2}$ implica que la opción 2 es el doble de importante que la 1 para el experto.

• Propiedades:

- 1. Son matrices cuadradas de orden n, siendo n el el número de alternativas a comparar
- 2. Todas sus componentes son positivas, $m_{ij} > 0 \forall i,j$.
- 3. **Reciprocidad**: $m_{i,j} * m_{i,j} = 1 \forall i, j$.
- 4. Los elementos de la diagonal son 1, $m_{ii} = 1 \forall i$.
- Si la matriz cumple la **propiedad de consistencia**, m_{i,j} * m_{j,k} = m_{i,k} ∀ i, j, k, decimos que la matriz es libre de errores

Índice de consistencia

La opinión del experto no tiene por qué ser completamente "coherente" por diversos motivos y para medir cómo de consistente es la matriz podemos utilizar un **índice de consistencia**:

$$IC(M) = rac{\lambda_{max} - n}{n-1}$$
 (n es la dimensión de la M)

- Si el valor se aleja mucho del cero nos indica que las decisiones se parecen a juicios tomados al azar
- Matrices con índice de consistencia cercano al cero mejor será la consistencia de la matriz.
- Si M es consistente, su índice de consistencia es 0.

Primeros pasos hacia la solución

Teorema (Saaty): Si M es una matriz consistente, entonces:

- Autovalores de M: 0 y n.
- Existe un vector positivo $w = (w_1, ..., w_n)$ tal que $m_{ij} = w_i / w_j$, que es el vector de pesos que buscamos.

Además w es el único autovalor asociado al autovalor dominante de M(n) y es único si $\sum_{i=1}^n w_i = 1$

- Si M es recíproca,
 - \circ Autovalor dominante de M $\lambda_{max} \geq n$
 - \circ M consistente $\Leftrightarrow \lambda_{max} = n$

Primeros pasos hacia la solución

De forma que si la matriz es consistente se cumple que :
$$M=\begin{pmatrix} \frac{w_1}{w_1} & \frac{w_1}{w_2} & \dots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & \frac{w_2}{w_2} & \dots & \frac{w_2}{w_n} \\ \dots & \dots & \dots & \dots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & \frac{w_n}{w_n} \end{pmatrix}$$

Así que, si la matriz es consistente podemos obtener la solución a través del sistema lineal homogéneo de ecuaciones: $w_i - m_{ij}w_j = 0 \,\, orall i, j$

Y si queremos que la solución sea única podemos normalizar el vector tal que $\sum w_i = 1$

Métodos de ajuste de datos

¿Cómo obtenemos el resultado cuando no es consistente?

Lamentablemente, en la mayoría de los casos la matriz será no libre de error (no consistente)

- Si M no es consistente, entonces tendremos que intentar encontrar el vector w que más se ajuste a m_{ij} ~ w_i / w_j.
- Para ello vamos a intentar minimizar la distancia entre los m_{ij} y los w_i / w_j empleando distintas métricas: la métrica 2 y la métrica 1 (y la métrica infinito??).
- Para casos con 1 sólo experto también se puede emplear el método de la potencia que explicaremos brevemente.

Matrices incompletas

Hay veces que los decisores no saben como contestar o no tienen una opinión sobre alguna de las opciones

Métrica 2

Método de mínimos cuadrados

Métrica 2

Vamos a buscar los w_1 , ..., w_n que mejor ajustan los datos $m_{i,j}$ en el sentido de mínimos cuadrados:

$$Min \sum_{i=1}^{n} \sum_{i=1}^{n} \left(m_{i,j} - \frac{w_i}{w_j} \right)^2$$

No es un problema lineal, por lo que utilizaremos dos técnicas para linealizar el problema:

- Transformación logarítmica
- Método ponderado

Transformación logarítmica

Partiendo de las ecuaciones no lineales: $m_{i,j} - \frac{w_i}{w_j} = 0 \quad \forall i,j=1,...,n$

Tomamos logaritmos: $log(w_i) - log(w_j) = log(m_{i,j}) \quad \forall i, j = 1, ..., n$

Podemos renombrar y reordenar los términos para obtener: $l_{ij}-v_i+v_j \ \ \forall i,j=1,...,n$

Resolvemos el sistema lineal sobredeterminado por el método de mínimos cuadrados:

$$\begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & 0 & \dots & 1 \\ 0 & -1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & -1 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{pmatrix} = \begin{pmatrix} -l_{12} \\ -l_{13} \\ \dots \\ -l_{1n} \\ -l_{23} \\ \dots \\ -l_{2n} \\ \dots \\ -l_{n-1,n} \end{pmatrix}$$

Transformación logarítmica

Deshacemos la transformación logarítmica: $w_i = e^{v_i} \quad \forall i = 1,...,n$

Normalizamos:
$$w_i = \frac{w_i}{\sum_{i=1}^{n} w_i} \quad \forall i = 1, ..., n$$

(En las ecuaciones anteriores podíamos trabajar con los datos para i,j con i distinto de j si la matriz es recíproca)

De esta manera, hemos obtenido en w un vector con las preferencias expresadas por los expertos.

Método Ponderado

Ejemplos..

Métrica 1

Método de minimizar la métrica vectorial 1

Métrica 1

Vamos a buscar los w_1 , ..., w_n que mejor ajustan los datos $m_{i,j}$ en el sentido que minimicen la métrica vectorial 1, que es menos sensible que la métrica 2 a errores grandes:

$$Min \sum_{i=1}^{n} \sum_{j=1}^{n} \left| m_{i,j} - \frac{w_i}{w_j} \right|$$

No es un problema lineal, por lo que utilizaremos dos técnicas para linealizar el problema:

- Transformación logarítmica
- Método ponderado

Tampoco es diferenciable, así que lo transformaremos a un problema de programación lineal introduciendo nuevas variables.

Transformación logarítmica

Aplicando la transformación logarítmica obtenemos:

$$Min \sum_{i=1}^{n} \sum_{j=1}^{n} |l_{ij} - v_i + v_j|$$

Introducimos las variables n_{i,i} y p_{i,i}:

$$n_{ij} = \frac{1}{2} \cdot [|v_i - v_j - l_{ij}| + (v_i - v_j - l_{ij})]$$

$$p_{ij} = \frac{1}{2} \cdot [|v_i - v_j - l_{ij}| - (v_i - v_j - l_{ij})]$$

Se observa que:
$$n_{ij}+p_{ij}=|l_{ij}-v_i+v_j| \qquad n_{ij}\geq 0, \ p_{ij}\geq 0, \ n_{ij}\cdot p_{ij}=0$$

$$n_{ij}-p_{ij}=v_i-v_j-l_{ij}$$

Transformación logarítmica

El problema de programación lineal resultante es:

$$Min \sum_{i=1}^{n} \sum_{j=1}^{n} (n_{ij} + p_{ij})$$

$$l_{ij} - v_i + v_j - n_{ij} - p_{ij} = 0 \quad \forall i, j = 1, ..., n$$

$$n_{ij} \ge 0, p_{ij} \ge 0 \quad \forall i, j = 1, ..., n$$

Tomamos v del vector solución x = [v n p].

Deshacemos la transformación logarítmica: $w_i = e^{v_i} \quad \forall i = 1,...,n$

Normalizamos:
$$w_i = \frac{w_i}{\sum_{1}^{n} w_i} \quad \forall i = 1, ..., n$$

Método Ponderado

Método Ponderado

Ejemplos..

Conclusiones

Bibliografía