L'usage du Mobile et de la Calculatrice est interdit.

N.B.

1- Il sera tenu compte de la présentation de la copie.

2- Les réponses doivent être justifiées.

3- Le barème est approximatif.

Exercice 1: (12 pts)

Soit f_{α} l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique $B=(e_1,e_2,e_3)$ de \mathbb{R}^3 est définie par :

$$A_{\alpha} = \begin{pmatrix} 1+\alpha & 1+\alpha & 1 \\ -\alpha & -\alpha & -1 \\ \alpha & \alpha-1 & 0 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

1/ Montrer que $P_{A_{\alpha}}(X) = -(X-1)^2(X+1)$.

2/ Montrer que : A_{α} est diagonalisable ssi $\alpha = 0$.

3/ On pose $\alpha = 0$.

a/ Déterminer une matrice inversible $P \in M_3(\mathbb{R})$ et une matrice diagonale $D \in M_3(\mathbb{R})$ telles que $D = P^{-1}A_0P$.

b/ En déduire, sans faire de calculs, A_0^n pour tout $n \in \mathbb{N}$ (Indication: Distinguer n = 2k et n = 2k + 1).

4/ On pose $\alpha \neq 0$.

a/ Calculer A_{α}^2 .

b/ Dire pourquoi A_{α} est inversible puis, en utilisant le théorème de Cayley-Hamilton, exprimer A_{α}^{-1} en fonction de A_{α} et I_3 .

c/ Calculer A_{α}^{-1} .

d/ Pour $n \in \mathbb{N}^*$, exprimer, en utilisant le théorème de Cayley-Hamilton, A_{α}^n en fonction de A_{α} et I_3 .

e/Calculer A_{α}^{n} . (Indication: Distinguer n=2k et n=2k+1).

Exercice 2: (8 pts)

Soit, dans \mathbb{R} , le système $(S_{\alpha,\beta})$ d'équations linéaires suivant :

$$\begin{cases}
\alpha x - y + \alpha z = 0 \\
2x + z = \beta \\
x + 3y - z = 0 \\
x - y + \alpha z = \beta
\end{cases}, (S_{\alpha,\beta})$$

1/ Déterminer suivant les paramètres réels α et β le rang du système $(S_{\alpha,\beta})$.

2/ Résoudre suivant les paramètres réels α et β le système $(S_{\alpha,\beta})$. (Indication : Utiliser le théorème de Fontené-Rouché).

Bon courage