

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II Aula 14

Memória Cache: uso da localidade espacial, projeto de um sistema de memória para suportar cache.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Uso da Localidade Espacial

- A execução de um programa exibe localidade espacial
- Para poder tirar proveito da localidade espacial é preciso que a cache seja organizada em blocos com mais de uma palavra cada
- Ao ocorrer uma falta, buscam-se várias palavras adjacentes entre si, as quais têm grande probabilidade de serem necessárias em breve...

Uma Cache de 64KB (blocos de 4 palavras cada)

Uso da Localidade Espacial

Esta cache:

- Favorece a exploração da localidade espacial existente nos programas
- Apresenta um uso mais eficiente do espaço de armazenamento, pois:
 - O número total de bits de flag + bits de validade é menor do que na cache de capacidade equivalente, mas na qual cada bloco tem apenas uma palavra...

Uso da Localidade Espacial

Como encontrar um bloco correspondente a um endereço em particular?

- Usar a fórmula
 (Endereço do bloco) módulo (Número de blocos da cache)
- O endereço do bloco é simplesmente o endereço da palavra dividido pelo número de palavras no bloco (ou equivalentemente, o endereço do byte dividido pelo número de bytes no bloco)

Uso da Localidade Espacial

Exemplo

Considere uma cache com 64 blocos, cada um com 16 bytes. Em qual dos blocos desta cache o endereço 1.200 está mapeado?

Solução:

O bloco é dado por

(Endereço do bloco) módulo (Número de blocos da cache)

onde o endereço do bloco é dado por

(Endereço a byte)/(bytes por bloco)

Considerando a existência de 16 bytes por bloco e uma memória que endereça byte, o endereço 1.200 corresponde ao bloco 1200/16 = 75, o qual é mapeado na cache no bloco (75 módulo 64) = 11

Uso da Localidade Espacial

- As faltas geradas por leitura são processadas da mesma maneira em caches com bloco de uma palavra ou com blocos com mais de uma palavra (porém, uma falta causa a transferência de um bloco inteiro para a cache...)
- No caso de escrita, acertos e faltas precisam ser tratados de maneira diferente do tratamento feito na DECStation 3100
- Considerando o esquema write-through, comparar os rótulos do endereço e da entrada da cache:
 - Se não forem iguais, ocorre uma falta de escrita. Um bloco deverá ser trazido da memória principal e só então a palavra que causou a falta poderá ser escrita na cache.

Uso da Localidade Espacial

O aumento do tamanho do bloco se justifica pela exploração da localidade espacial

- Em geral, a taxa de faltas cai com o aumento do tamanho do bloco
- Supondo memória endereçada a bytes, e cache com blocos de 4 palavras, a falta do endereço 16 vai trazer para a cache o bloco com os endereços 16, 20, 24 e 28. Portanto, será gerada uma única falta para as 4 referências.

Uso da Localidade Espacial

Taxas de Faltas Geradas pela Execução dos Programas gcc e spice

Programa	Tamanho do bloco, em palavras	Taxa de faltas no acesso a instruções	Taxa de faltas no acesso a dados	Taxa de faltas combinada	
gcc	1	6,1%	2,1 %	5,4 %	
gcc	4	2,0%	1,7 %	1,9 %	
spice	1	1,2 %	1,3 %	1,2 %	
spice	pice 4 0,3 %		0,6 %	0,4 %	

- A taxa de faltas da cache de instruções cai a uma razão aproximadamente igual ao acréscimo do tamanho do bloco
- O maior decréscimo na taxa de faltas da cache de instruções (em relação à cache de dados) deve-se à melhor localidade espacial apresentada pelas referências a instruções

Uso da Localidade Espacial

- Mas a taxa de faltas pode aumentar caso o bloco representar uma fração considerável do tamanho total da cache pois
 - O número de blocos que podem ser mantidos na cache será pequeno
 - Um bloco será retirado da cache antes que muitas de suas palavras tenham sido acessadas
- Ver figura 7.12 (página 329 do HW-SW Interface, 2ª Edição)

Penalidade por Falta

- À medida que o tamanho do bloco aumenta, aumenta o custo de uma falta
- A penalidade por falta é determinada pelo tempo necessário à busca de um bloco no nível imediatamente inferior na hierarquia, carregando-o na cache
- O tempo de busca é dividido em duas partes:
 - Latência para a busca da primeira palavra
 - Tempo de transferência do resto do bloco
- O tempo de transferência aumenta com o tamanho do bloco
- Solução: projetar o sistema de memória para que este consiga transferir blocos grandes de maneira mais eficiente...

Projeto de um Sistema de Memória para Suportar Caches

- As faltas no acesso às caches são resolvidas pela memória principal, a qual é construída a partir de DRAMs
- O tempo de acesso nas DRAMs é maior do que nas SRAMs
- Logo, é difícil reduzir a latência da busca da primeira palavra da memória principal
- Mas podemos reduzir a penalidade por falta se aumentarmos a banda passante da memória principal para a cache
- Esta redução no custo da penalidade permite o uso de blocos maiores, a um custo próximo daquele obtido com blocos pequenos

Projeto de um Sistema de Memória para Suportar Caches Três Opções para um Sistema de Memória

Projeto de um Sistema de Memória para Suportar Caches

Custo da Penalidade por Falta versus Banda Passante da Memória

Suponha os seguintes tempos de acesso à memória:

- 1 ciclo de relógio para enviar um endereço
- 15 ciclos de relógio para cada acesso à DRAM (tempo de latência do acesso)
- 1 ciclo de relógio para transferência de uma palavra de dados

Suponha também que a cache possui bloco com 4 palavras

Caso	penalidade por falta	Nº de bytes transferidos/ciclos de relógio
1	$1 + 4 \times 15 + 4 \times 1 = 65$ ciclos de relógio	$(4 \times 4)/65 = 0,25$ byte/ciclo de relógio†
2	$1 + 1 \times 15 + 1 \times 1 = 17$ ciclos de relógio*	$(4 \times 4)/17 = 0,94$ byte/ciclo de relógio
3	$1 + 1 \times 15 + 4 \times 1 = 20$ ciclos de relógio	$(4 \times 4)/20 = 0.80$ byte/ciclo de relógio

^{*} supondo memória com 4 palavras e barrramento com largura de 4 palavras † considerando palavras de 4 bytes, como no caso do MIPS

Projeto de um Sistema de Memória para Suportar Caches

O Tamanho da DRAM Cresce Quatro Vezes a Cada Três Anos

Ano de introdução	capacidade	\$ por MB	Tempo de acesso a uma linha/coluna	Tempo de acesso à coluna para uma linha existente
1980	64 Kbit	1500	250 ns	150 ns
1983	256 Kbit	500	185 ns	100 ns
1985	1 Mbit	200	135 ns	40 ns
1989	4 Mbit	50	110 ns	40 ns
1992	16 Mbit	15	90 ns	30 ns
1996	64 Mbit	10	60 ns	20 ns