Lie Groups

Devesh Rajpal

Contents

1	4th January 23	1
2	9th Jan 2023	2
3	11th Jan 2023	3
4	18 Jan 2023	5
5	23 Jan 2023	8
6	25 Jan 2023	8

1 4th January 23

One can study Lie Groups from several points of view. The course is aimed to understand the structure of Lie Groups.

Definition 1.1. A smooth manifold M is a Hausdorff space which is locally Euclidean with a smooth atlas i.e. (i) given any $x \in M$, \exists a chart (U, ϕ) , $x \in U \subset M$ with $\phi: U \to \phi(U)$ open in \mathbb{R}^m .

(ii) We have collection $\{(U,\phi)\}$ of charts such that

$$\phi(U \cap V) \xrightarrow{\psi \circ \phi^{-1}} \psi(U \cap V)$$

is a diffeomorphism.

Suppose $f:M\to N$ is a continuous map between manifolds. We say that f is smooth if for $(U,\phi)\in \mathrm{II}(M),\ (V,\psi)\in \mathrm{II}(N)$ such that $f(U)\subset V$ and $\psi\circ f\circ \phi^{-1}$ is smooth.

TO DO: Construction of tangent bundle and vector bundle

2 9th Jan 2023

Definition 2.1. G is a Lie group if

- 1. G is a smooth manifold
- 2. G is also a group s.t

$$\mu: G \times G \to G$$
$$(g,h) \mapsto gh$$

and

$$i: G \to G$$

 $q \mapsto q^{-1}$

are smooth maps.

Definition 2.2. A real (or complex) vector space V together with a bilinear map

$$[,]: V \times V \to V$$

is called a Lie Algebra if

- 1. [X, Y] = -[Y, X] skew symmetry
- 2. $\left[[X,Y],Z\right]+\left[[Y,Z],X\right]+\left[[Z,X],Y\right]=0$ Jacobi identity

Example. 1. $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, V any f.d vector space over \mathbb{R} or \mathbb{C} .

- 2. $(\mathbb{R}^{\times}, \cdot), (\mathbb{C}^{\times}, \cdot)$
- 3. $S^1 = \{ z \in \mathbb{C}^\times | |z| = 1 \}$
- 4. $GL_n(\mathbb{R}), GL_n(\mathbb{C})$
- 5. $\mathbb{R}^n/\mathbb{Z}^n \cong (\mathbb{R}^n/\mathbb{Z}^n) \cong (S^1)^n$
- 6. Suppose $\Gamma \subset V$ is a discrete subgroup. Then V/Γ is a Lie group.
- 7. N = unipotent upper triangular matrices, B = upper triangular matrices. As manifolds $N \cong \mathbb{R}^{\binom{n}{2}}$ and $B \cong (\mathbb{R}^{\times})^n \times N$.
- 8. $\operatorname{SL}_n(\mathbb{R}) = \{ X \in \operatorname{GL}_n(\mathbb{R}) | \det X = 1 \}, \operatorname{SL}_n(\mathbb{C}).$
- 9. O(n), SO(n).
- 10. U(n), SU(n).

Devesh Rajpal 11th Jan 2023

- 11. \mathbb{H}^{\times} , S^3 with quaternion multiplication.
- 12. $Sp(n) = \{X \in GL_n(\mathbb{R}) | X \text{ preserves quaternion structure as a subset of } Aut_{\mathbb{H}} \mathbb{H}^n \}$

Problem. $V/\Gamma \cong \mathbb{R}^k \times (S^1)^{n-k}$ for *n*-dimensional vector space V.

Theorem 2.1. Suppose G is a compact, connected, simple Lie group. Then G is locally isomorphic to

- 1. $SU(n), n \geq 2$ denoted by A_{n-1}
- 2. $SO(2n+1), n \geq 2$ denoted by B_n
- 3. $Sp(n), n \ge 1$ denoted by C_n
- 4. $SO(2n), n \geq 2$ denoted by D_n

or one of the following exceptional Lie group G_2, F_4, E_6, E_7, E_8 .

Problem. Prove that $\mathrm{SL}_n(\mathbb{R})$ and O(n) are smooth manifold, hence Lie groups.

Examples of Lie algebra -

1. $(V, [\cdot, \cdot] \equiv 0)$ is called trivial Lie algebra.

- 2. $(\mathfrak{gl}_n(\mathbb{R}), [A, B] = AB BA)$, $\mathfrak{gl}_n(\mathbb{C})$ 3. $\mathfrak{sl}_n(\mathbb{R})$ $(\mathfrak{sl}_n(\mathbb{C}))$ is the Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ $(\mathfrak{gl}_n(\mathbb{C}))$ consisting of trace 0.
- 4. \mathfrak{so}_n is Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ consisting of skew-symmetric matrices.

Definition 2.3. A vector field X on a Lie group G is called left invariant if $(L_q)_*(X_h) =$ X_{gh}

11th Jan 2023 3

 $\text{Recall } \mathbb{H} = \{a+bi+cj+dk: (a,b,c,d) \in \mathbb{R}^4, \ i^2 = -1, j^2 = -1, k^2 = -1, ij = k, jk = l, ki = 1, k$ j} is the quaternion division algebra with the norm

$$||a + bi + cj + dk||^2 = a^2 + b^2 + c^2 + d^2$$

which satisfies $||q_1 \cdot q_2|| = ||q_1|| \cdot ||q_2||$

We can put this multiplication on $S^3 \cong SU(2)$ to get a compact Lie group. To get the

Devesh Rajpal 3 11th Jan 2023

isomorphism $SU(2) \cong S^3$, we define a map

$$\phi: S^3 \to SU(2)$$

$$(a, b, c, d) \mapsto \begin{bmatrix} a + bi & c + di \\ -(c - di) & a - bi \end{bmatrix}$$

which is an algebra isomorphism.

Definition 3.1. The Lie algebra of G is the space of all left-invariant vector fields on G.

We have an isomorphism

$$\mathfrak{g} = \operatorname{Lie}(G) \to T_e G$$

$$X \mapsto X_e$$

Example. Let $G = \mathbb{R}^n$, with identity element $0 \in \mathbb{R}^n$ and left-invariant vector fields $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\}$. Then the Lie bracket is

$$[\cdot,\cdot]\equiv 0$$

Remark. In general for any abelian Lie group G, the Lie bracket is $[\cdot,\cdot] \equiv 0$.

Theorem 3.1. Let G be a connected Lie group. Then

- 1. Lie(G) = \mathfrak{g} is isomorphic as a vector space to $T_e(G)$.
- 2. Left-invariant vector fields are smooth.
- 3. Lie(G) is closed under Lie bracket.

Proof. 1. Let X be a left-invariant vector field on G. We need to show that Xf is smooth for each $f \in C^{\infty}(G)$.

$$(Xf)(g) = X_g f$$

= $(d\lambda_g X_e) f$
= $X_e (f \circ \lambda_g)$

To show that Xf is smooth, it suffices to show that $X_e(f \circ \lambda_g)$ is smooth. We realize $X_e(f \circ \lambda_g)$ as evaluation of a smooth function on a smooth function.

Let Y be a smooth vector field on G such that $Y_e = X_e$

$$Y_e(f \circ \lambda_g) = X_e(f \circ \lambda_g)$$

Devesh Rajpal 4 18 Jan 2023

We look at λ_g as the composition of

$$G \xrightarrow{i_g^2} G \times G \xrightarrow{\mu} G$$

 $x \mapsto (g, x) \mapsto gx$

Regard Y as the vector field (0, Y) on $G \times G$. Now

$$(0,Y)(f \circ \mu) \circ i_e^1(g) = (0,Y)_{(g,e)}(f \circ \mu) = 0_g(f \circ \mu \circ i_g^1) + Y_e(f \circ \mu \circ i_g^2) = Y_e(f \circ \lambda_g)$$

which proves the smoothness.

2. Let X, Y left-invariant vector fields on G. We must show that [X, Y] is a left-invariant vector field.

$$\begin{split} d\lambda_g([X,Y]_e)f &= [X,Y]_g f \\ &= [X,Y]_e (f \circ \lambda_g) \\ &= X_e(Y(f \circ \lambda_g)) - Y_e(X(f \circ \lambda_g)) \\ &= X_e(d\lambda_g(Yf)) - Y_e(d\lambda_g(Yf)) \end{split}$$

4 18 Jan 2023

Lemma 4.1. Suppose $\psi: M \to N$ is a smooth map. Let X_1, X_2 be vector fields on M, Y_1, Y_2 be vector fields on N such that X_i is ψ -related to Y_i . Then $[X_1, X_2]$ is ψ -related to $[Y_1, Y_2]$.

Proof. Notice that

$$d\psi[X_1, X_2](f) = [X_1, X_2](f \circ \psi)$$

$$= X_1(X_2 f \circ \psi) - X_2(X_1 f \circ \psi)$$

$$= X_1(d\psi X_2 f) - X_2(Y_1 f \circ \psi)$$

$$= X_1(Y_2 f \circ \psi) - X_2(Y_1 f \circ \psi)$$

$$= d\psi X_1(Y_2 f) - d\psi X_2(Y_1 f)$$

$$= Y_1 Y_2 f \circ \psi - Y_2 Y_1 f \circ \psi$$

$$= [Y_1, Y_2](f) \circ \psi$$

This lemma proves that the set of left-invariant vector fields forms a Lie algebra.

Devesh Rajpal 4 18 Jan 2023

Consider the Lie group $GL_n(\mathbb{R})$. We want to verify the Lie algebra structure on $\mathfrak{gl}_n(\mathbb{R}) = M_n(\mathbb{R})$ with the isomorphism

$$Lie(\mathrm{GL}_n(\mathbb{R})) \to \mathfrak{gl}_n(\mathbb{R})$$

 $X \stackrel{\beta}{\mapsto} X_e$

Lemma 4.2.

$$\beta([X,Y]) = [\beta(X), \beta(Y)]$$

Proof. Evaluating the bracket on coordinate function x_{ij} .

$$[X,Y]_e(x_{ij}) = X_e(Y(x_{ij})) - Y_e(X(x_{ij}))$$
(1)

Now

$$Y(x_{ij})(g) = d\lambda_g Y_e(x_{ij})$$
$$= Y_e(x_{ij} \circ \lambda_g)$$
$$= \sum_k x_{ik}(g) Y_e(x_{kj})$$

Considering the above as function of g and substituting this in Eq. (1) we get

$$[X, Y]_e(x_{ij}) = X_e Y_e(x_{ij}) - Y_e X_e(x_{ij})$$

$$= \sum_k \{X_e(x_{ik}) Y_e(x_{kj}) - Y_e(x_{ik}) X_e(x_{kj})\}$$

$$= [X_e, Y_e](x_{ij})$$

Definition 4.1. A Lie subgroup H of a Lie group G is a submanifold $H \xrightarrow{\alpha} G$ where α is smooth and a group homomorphism.

We say that H is closed Lie subgroup if it is Lie subgroup such that $H \to \alpha(H)$ is a diffeomorphism.

Example. Consider the map $\mathbb{R} \to S^1 \times S^1$ given by

$$t \mapsto (e^{2\pi i t}, e^{2\pi i \sqrt{2}t})$$

The image is a Lie subgroup of $S^1 \times S^1$ but it is not a closed Lie subgroup. It is also known as "Skew-line" in the torus.

Devesh Rajpal 4 18 Jan 2023

Definition 4.2. Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras and $f : \mathfrak{g} \to \mathfrak{h}$ be a vector space homomorphism. Then we say that f is a Lie algebra homomorphism if

$$f([X,Y]) = [f(X), f(Y)]$$

Theorem 4.3. Suppose that $\psi: G \to H$ is a Lie group homomorphism. Let X be a left-invariant vector field on G. Extend $d\psi(X_e) = Y_e \in T_eH$ to a left-invariant vector field Y on H. Then X and Y are ψ -related. This implies $d\psi_e: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. Consider the commutative diagram

We want to show that $Y \circ \psi = d\psi \circ Y$. Now

$$\lambda_{\psi(g)} \circ \psi = \psi \circ \lambda_g$$

SO

$$Y_{\psi(g)} = d\lambda_{\psi(g)} Y_e$$

$$= d\lambda_{\psi(g)} d\psi X_e$$

$$= d(\lambda_{\psi(g)} \circ \psi)(X_e)$$

$$= d(\psi \circ \lambda_g)(X_e)$$

$$= d\psi d\lambda_g(X_e)$$

$$= d\psi X_g$$

Theorem 4.4. Let G, H be Lie groups with G connected. Let

$$\phi, \psi: G \to H$$

be homomorphism of Lie groups such that

$$d\phi = d\psi : T_eG \to T_eH$$

Devesh Rajpal 6 25 Jan 2023

Then $\phi = \psi$.

5 23 Jan 2023

I missed the class.

6 25 Jan 2023

Theorem 6.1. If $\phi: H \to G$ is a homomorphism of Lie groups and if ω is a left-invariant differential form on G, then $\phi^*(\omega)$ is again a left-invariant form on H.

Suppose that $\phi: H \to G$ is a homomorphism of Lie groups. Let $\omega_1, \ldots, \omega_d$ be a basis for $E^1_{inv}(G)$. Then

$$\mathcal{I}_{\phi} = \langle \{ \pi_1^* \phi^*(\omega_j) - \pi_2^*(\omega_j) \} : 1 \le j \le d \rangle$$

is a left-invariant differential ideal of $H \times G$.

Lemma 6.2. Suppose X_1, \ldots, X_d is a basis of \mathfrak{g} dual to $\omega_1, \ldots, \omega_d$. Suppose the Lie bracket is given by

$$[X_i, X_j] = \sum c_{ij}^k X_k$$

Then the C^{∞} functions c_{ij}^k are constant. Further,

$$d\omega_i = -c_{kj}^i \omega_k \wedge \omega_j$$

Proof. Notice that

$$d\omega_k(X_i, X_j) = -\omega_k([X_i, X_j])$$
$$= -c_{ij}^k$$

which is a constant because a left-invariant 1-form evaluated on a left-invariant vector field is a constant. \Box

Remark. The c_{ij}^k are called the structural constants of G with respect to the basis $\{X_i\}$ of \mathfrak{g} .

Proof. Theorem 4.4. Notice that $\mathcal{I}_{\psi} = \mathcal{I}_{\phi}$ since $d\phi = d\psi$ and these are invariant differential ideals; hence integral manifolds of \mathcal{I}_{ϕ} and \mathcal{I}_{ψ} passing through (e, e) are the same. Thus, $\phi = \psi$.

Devesh Rajpal 6 25 Jan 2023

Lemma 6.3. Suppose G is any Hausdorff topological group which is connected. Suppose $e \in U \subset G$ is any open set. Then

$$G = \bigcup_{n \ge 1} U^n$$

where $U^n = \{x_1 \cdots x_n | x_i \in U\}$

Proof. Since $e \in U$ is open, $U^{-1} = \{x^{-1} | x \in U\}$ is also an open neighborhood of e. Let $V = U \cap U^{-1}$. Note that

$$H\doteqdot\bigcup_{n\geq 1}V^n$$

is a subgroup of G, and it is open. Since the cosets gH are also open it follows that $G = \bigcup_g H$ being connected must be H.

Theorem 6.4. Let G be a Lie group and $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra of \mathfrak{g} . Then there exists connected Lie subgroup H of G such that $T_eH = \mathfrak{h}$.

Proof. Consider the distribution \mathcal{D} defined as

$$\mathcal{D}_q = \{X_q | X \in \mathfrak{h}\}$$

on G. Suppose X_1, \ldots, X_c is a basis of \mathfrak{h} . Then \mathcal{D} is generated by X_1, \ldots, X_c and \mathcal{D} is involutive.

Corollary. (a) There is a one-to-one correspondence between connected Lie subgroups of G and Lie subalgebras of \mathfrak{g} .

(b) Suppose $(H, i) \leftrightarrow \mathfrak{h} \subset \mathfrak{g}$. Then (H, i) is an embedded manifold if and only if H is closed.

Theorem 6.5. Suppose that $A \subset G$ is an abstract subgroup of G and if A has a manifold structure such that $(A, i) \to G$ is a submanifold. Then the manifold structure is unique, A is a Lie group and hence (A, i) is a Lie subgroup of G.

Theorem 6.6. (Adó) Suppose that \mathfrak{g} is a finite dimensional Lie algebra. Then \mathfrak{g} can be realized as a subalgebra of $\mathfrak{gl}(n,\mathbb{R})$.

Given any connected Lie group G, it has a universal cover $\tilde{G} \xrightarrow{\pi} G$. Choose $\tilde{e} \in \pi^{-1}(e) \in \tilde{G}$ such that the following diagram

Devesh Rajpal 6 25 Jan 2023

commutes.