```
In [202]: import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
```

## **Project Overview**

- You are assigned the task of assisting Lending Tree in there decision of approving a client for a loan.
- · You are to create a model that will help Lending Tree in making a decision based on the features of a client
- This will assist Lending Tree to approve loans that will less likely to be Charges off and also if the loan will
  most likely be "Paid Off"

#### **Target Class**

- loan\_status This is the Classification that will be assigned to a loan potential for a clients application
- The model will tell Lending Tree is this loan is approved what status will be assigned to the loan: Fully Paid(1), Charged OFF(0)

#### **Loading Data**

- · Will load data set from local path
- · Because this is a large data file this will avoid all issues with git handling files

## **Feature Description**

This document displays all the details of each column feature

In [204]: pd.read\_csv("resources/lending\_club\_info.csv")

Out[204]:

|    | LoanStatNew          | Description                                    |
|----|----------------------|------------------------------------------------|
| 0  | loan_amnt            | The listed amount of the loan applied for by t |
| 1  | term                 | The number of payments on the loan. Values are |
| 2  | int_rate             | Interest Rate on the loan                      |
| 3  | installment          | The monthly payment owed by the borrower if th |
| 4  | grade                | LC assigned loan grade                         |
| 5  | sub_grade            | LC assigned loan subgrade                      |
| 6  | emp_title            | The job title supplied by the Borrower when ap |
| 7  | emp_length           | Employment length in years. Possible values ar |
| 8  | home_ownership       | The home ownership status provided by the borr |
| 9  | annual_inc           | The self-reported annual income provided by th |
| 10 | verification_status  | Indicates if income was verified by LC, not ve |
| 11 | issue_d              | The month which the loan was funded            |
| 12 | loan_status          | Current status of the loan                     |
| 13 | purpose              | A category provided by the borrower for the lo |
| 14 | title                | The loan title provided by the borrower        |
| 15 | zip_code             | The first 3 numbers of the zip code provided b |
| 16 | addr_state           | The state provided by the borrower in the loan |
| 17 | dti                  | A ratio calculated using the borrower's total  |
| 18 | earliest_cr_line     | The month the borrower's earliest reported cre |
| 19 | open_acc             | The number of open credit lines in the borrowe |
| 20 | pub_rec              | Number of derogatory public records            |
| 21 | revol_bal            | Total credit revolving balance                 |
| 22 | revol_util           | Revolving line utilization rate, or the amount |
| 23 | total_acc            | The total number of credit lines currently in  |
| 24 | initial_list_status  | The initial listing status of the loan. Possib |
| 25 | application_type     | Indicates whether the loan is an individual ap |
| 26 | mort_acc             | Number of mortgage accounts.                   |
| 27 | pub_rec_bankruptcies | Number of public record bankruptcies           |

```
In [205]: df = pd.read_csv(file_path)
```

# **Evaluating the data**

- · appears that we have some data missing in a few columns but we will address them shortly
- There are alot of clients in this data set so our model should be able to get pretty good predictions with the model generated

```
In [206]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 396030 entries, 0 to 396029
Data columns (total 27 columns):

| #    | Column                           | Non-Null Count  |         |
|------|----------------------------------|-----------------|---------|
| 0    | loan amnt                        | 396030 non-null | float64 |
| 1    | term                             | 396030 non-null | object  |
| 2    | int rate                         | 396030 non-null | float64 |
| 3    | installment                      | 396030 non-null | float64 |
| 4    | grade                            | 396030 non-null | object  |
| 5    | sub_grade                        | 396030 non-null | object  |
| 6    | emp_title                        | 373103 non-null | object  |
| 7    | emp_length                       | 377729 non-null | object  |
| 8    | home_ownership                   | 396030 non-null | object  |
| 9    | annual_inc                       | 396030 non-null | float64 |
| 10   | verification_status              | 396030 non-null | object  |
| 11   | issue_d                          | 396030 non-null | object  |
| 12   | loan_status                      | 396030 non-null | object  |
| 13   | purpose                          | 396030 non-null | object  |
| 14   | title                            | 394275 non-null | object  |
| 15   | dti                              | 396030 non-null | float64 |
| 16   | earliest_cr_line                 | 396030 non-null | object  |
| 17   | open_acc                         | 396030 non-null | float64 |
| 18   | pub_rec                          | 396030 non-null | float64 |
| 19   | revol_bal                        | 396030 non-null | float64 |
| 20   | revol_util                       | 395754 non-null | float64 |
| 21   | total_acc                        | 396030 non-null | float64 |
| 22   | initial_list_status              | 396030 non-null | object  |
| 23   | application_type                 | 396030 non-null | object  |
| 24   | mort_acc                         | 358235 non-null | float64 |
| 25   | <pre>pub_rec_bankruptcies</pre>  |                 |         |
| 26   | address                          | 396030 non-null | object  |
| d+vn | $ag \cdot floa + 64/12$ ) object | + (15)          |         |

dtypes: float64(12), object(15)

memory usage: 81.6+ MB

# **Target Class Analysis**

- Loan status
- This is chosen to assist Lending Tree predict is a client will Pay off their loans or if they will be charged off
- · Below visualization tell us that the the data set is not evenly distributed
- Since Lending tree will be more concerned with loan Charge Offs we will need a model that will have a pretty good prediction for Charge Offs, not to say that Fully Paid customers are not valuable but Lending Tree would want to know a charge off potential before assigning a Loan to a client.

```
In [207]: plt.figure(figsize=(16,6))
    sns.countplot(df["loan_status"])
```

Out[207]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7faf85007340>



#### **Missing Data**

- Lets look at whats missing and see if we can find a way to impute these values
- There may be some cases where we will need to drop these values is they are not significant to the target
- Since we do have a large data set of clients there is room to lose a few rows
- · emptitle, emp length, title, and mort account appear to be missing values .
- Will find means of updating these features for better use.

```
In [208]: plt.figure(figsize=(16,6))
                    sns.heatmap(df.isnull())
Out[208]: <matplotlib.axes._subplots.AxesSubplot at 0x7fafc52dfcd0>
                                                                                                                                                         - 1.0
                                                                                                                                                          0.6
                                                                                                                                                          0.4
                                                                                                                  revol_util -
                                                                            issue_d -
                                                                                    purpose
                                                                                        title
                                                                                             늉
                                                                                                                      total acc
                                                                   annual_inc
                                                                        verification_status
                                                                                loan_status
                                                                                                 earliest cr_line
                                                                                                                           initial_list_status
                                                                                                                               application_type
                                                                                                                                        pub rec bankruptcies
                                                               home_ownership
In [209]:
                  df["emp_title"].nunique()
```

#### There are a large number of unique emp\_titles

- · We will drop this column since it is not a strong determinant of the loan status of a client
- Also since there are so many we cannot one hot encode these values

```
In [210]: df.drop("emp_title", axis=1, inplace=True)
```

## Looking at emp\_length

Out[209]: 173105

- There are some values missing here so lets evaluate if there is a way to replace these values
- · lets refactor this column so that we get the numeric values for each client
- Lets create a dictionary to replace the values with the numeric values we want

```
In [211]: df["emp_length"].isnull().sum()
Out[211]: 18301
In [212]: df["emp_length"].nunique()
Out[212]: 11
```

```
emp_length = list(df["emp_length"].unique())
In [213]:
In [214]:
          emp_length
Out[214]: ['10+ years',
            '4 years',
            '< 1 year',
            '6 years',
            '9 years',
            '2 years',
            '3 years',
            '8 years',
            '7 years',
            '5 years',
            '1 year',
           nanl
In [215]:
          num\_Length = [10,4,0,6,9,2,3,8,7,5,1,np.nan]
In [216]:
          num_dictionaty = dict(zip(emp_length, num_Length))
In [217]:
          num_dictionaty
Out[217]: {'10+ years': 10,
            '4 years': 4,
            '< 1 year': 0,
            '6 years': 6,
            '9 years': 9,
            '2 years': 2,
            '3 years': 3,
            '8 years': 8,
            '7 years': 7,
            '5 years': 5,
            '1 year': 1,
           nan: nan}
```

# **Applying Dictionary to the Data Column**

We will replace the original values of the emp\_length with the dictionary values

```
In [218]: df["emp_length"] = df["emp_length"].apply(lambda x: num_dictionaty[x])
In [219]: df["emp_length"].isnull().sum()
Out[219]: 18301
```

#### Replacing the missing values

• Lets use viaualization to get a potential average value for the emp\_length

```
In [220]: df["term"].nunique()
Out[220]: 2
In [221]: df.head(4)
```

Out[221]:

|   | loan_amnt | term         | int_rate | installment | grade | sub_grade | emp_length | home_ownership | anr |
|---|-----------|--------------|----------|-------------|-------|-----------|------------|----------------|-----|
| 0 | 10000.0   | 36<br>months | 11.44    | 329.48      | В     | В4        | 10.0       | RENT           | 1   |
| 1 | 8000.0    | 36<br>months | 11.99    | 265.68      | В     | B5        | 4.0        | MORTGAGE       |     |
| 2 | 15600.0   | 36<br>months | 10.49    | 506.97      | В     | В3        | 0.0        | RENT           |     |
| 3 | 7200.0    | 36<br>months | 6.49     | 220.65      | А     | A2        | 6.0        | RENT           |     |

4 rows × 26 columns

```
In [223]: plt.figure(figsize=(16,6))
sns.boxplot(x = df["home_ownership"], y = df["emp_length"])
```

Out[223]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fafb59d20d0>



# Creating a function to replace missing values

- · Since home ownership has no missing values
- we will replace the missing emp\_length with the average of each type of home ownership

```
def replaceMissingValues(cols):
In [22]:
             home = cols[0]
             length = cols[1]
             if pd.isnull(length):
                  if home == "RENT":
                      return 4.0
                  elif home == "MORTGAGE":
                      return 8.0
                  elif home == "OWN":
                      return 7.0
                  elif home == "OTHER":
                      return 4.0
                  elif home == "NONE":
                      return 7.0
                  else:
                      return 3.0
             else:
                  return length
```

```
In [23]: df[["home_ownership","emp_length"]]
```

#### Out[23]:

|        | home_ownership | emp_length |
|--------|----------------|------------|
| 0      | RENT           | 10.0       |
| 1      | MORTGAGE       | 4.0        |
| 2      | RENT           | 0.0        |
| 3      | RENT           | 6.0        |
| 4      | MORTGAGE       | 9.0        |
|        |                |            |
| 396025 | RENT           | 2.0        |
| 396026 | MORTGAGE       | 5.0        |
| 396027 | RENT           | 10.0       |
| 396028 | MORTGAGE       | 10.0       |
| 396029 | RENT           | 10.0       |
|        |                |            |

396030 rows × 2 columns

```
In [24]: df["emp_length"] = df[["home_ownership","emp_length",]].apply(replaceMis singValues, axis=1)
```

# No missing values

- · Our function worked for this case
- · Since we did not have to drop the column we can use emp length in training our model

```
In [25]: df["emp_length"].isnull().sum()
Out[25]: 0
```

# **Mortgage Account**

· There is a good portion of the clients that have no Mortgage accounts

```
In [26]: plt.figure(figsize=(16,6))
    sns.countplot(df["mort_acc"])
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb0a5c04af0>
```



# **Replacing Data**

- We will use the same imputing process to get the average for the mortgage accounts
- · This time lets take the average of the mort acc values

```
In [27]: df.head(5)
```

#### Out[27]:

|   |   | loan_amnt | term         | int_rate | installment | grade | sub_grade | emp_length | home_ownership | anr |
|---|---|-----------|--------------|----------|-------------|-------|-----------|------------|----------------|-----|
| - | 0 | 10000.0   | 36<br>months | 11.44    | 329.48      | В     | В4        | 10.0       | RENT           | 1   |
|   | 1 | 8000.0    | 36<br>months | 11.99    | 265.68      | В     | B5        | 4.0        | MORTGAGE       |     |
|   | 2 | 15600.0   | 36<br>months | 10.49    | 506.97      | В     | В3        | 0.0        | RENT           |     |
|   | 3 | 7200.0    | 36<br>months | 6.49     | 220.65      | Α     | A2        | 6.0        | RENT           |     |
|   | 4 | 24375.0   | 60<br>months | 17.27    | 609.33      | С     | C5        | 9.0        | MORTGAGE       |     |

#### 5 rows × 26 columns

#### **Title**

- Since there is only a few values missing here
- We will drop the rows that contains the missing values

```
In [32]: df["title"].isnull().sum()
Out[32]: 1755
```

```
In [33]: plt.figure(figsize=(16,6))
    sns.heatmap(df.isnull())
```

Out[33]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fb0a4c86760>



```
In [34]: df.dropna(inplace=True)
```

```
In [35]: plt.figure(figsize=(16,6))
    sns.heatmap(df.isnull(), cmap="viridis")
```

Out[35]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fb0a4ca9ee0>



#### **Visualization**

· We will dive deep into visualization with the DataFrame we have

```
In [36]: plt.figure(figsize=(16,6))
    sns.heatmap(df.corr(), annot=True)
```

Out[36]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fb0c4076520>



In [37]: df.head(4)

#### Out[37]:

|   | loan_amnt | term         | int_rate | installment | grade | sub_grade | emp_length | home_ownership | anr |
|---|-----------|--------------|----------|-------------|-------|-----------|------------|----------------|-----|
| 0 | 10000.0   | 36<br>months | 11.44    | 329.48      | В     | В4        | 10.0       | RENT           | 1   |
| 1 | 8000.0    | 36<br>months | 11.99    | 265.68      | В     | B5        | 4.0        | MORTGAGE       |     |
| 2 | 15600.0   | 36<br>months | 10.49    | 506.97      | В     | В3        | 0.0        | RENT           |     |
| 3 | 7200.0    | 36<br>months | 6.49     | 220.65      | А     | A2        | 6.0        | RENT           |     |

4 rows × 26 columns

#### Installment and loan amount

- There is a strong coorelation between loan amount and installment
- We can also see there is almost a direct indicator that larger the loan the longer the term

```
In [38]: plt.figure(figsize=(16,6))
sns.scatterplot(x = df["installment"], y = df["loan_amnt"], hue=df["ter
m"])
```

Out[38]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fb0c1dea400>



# Taking a look at the Grades and loan status

- Appears the E and F grade loans are the ones to pay close attention to
- · Seems to be there is a close correlation to Paid off and Charged Off

```
In [39]: plt.figure(figsize=(16,6))
    sns.countplot(x = df["grade"], hue=df["loan_status"], palette="magma")
```

Out[39]: <matplotlib.axes. subplots.AxesSubplot at 0x7fb0c3cd9760>



#### **Employment length and Loan status**

· Appears there is no coorelation to emp length and loan Status

```
In [40]: plt.figure(figsize=(16,6))
    sns.countplot(x = df["emp_length"], hue=df["loan_status"], palette="twilight")
```

Out[40]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fb008affeb0>



#### **Converting Values to numeric**

Will need to convert to be read by the model

#### **Term**

· Will use list comprehension to convert these values

```
In [41]: df["term"] = [int(x.split(" ")[1]) for x in df["term"]]
```

#### **Grade**

We will use pandas one hot encoding processing for converting the grades

```
In [42]: grades = pd.get_dummies(df["grade"], drop_first=True)
In [43]: df = pd.concat([df, grades], axis=1)
In [44]: df.drop("grade", axis=1, inplace=True)
```

#### **Sub Grade**

- · We will drop this column since we already have the grade
- Since there are so my sub grades it will be too much to try to one hot encode the values

```
In [45]: df.drop("sub_grade", axis=1, inplace = True)
```

# Home owhership

· We will one hot encode these value

```
In [46]: home_o = pd.get_dummies(df["home_ownership"], drop_first=True)
In [47]: df = pd.concat([df, home_o], axis=1)
In [48]: df.drop("home_ownership", axis=1, inplace=True)
In [49]: df.head(5)
Out[49]:
```

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | verification_status | issue_d      | lo |
|---|-----------|------|----------|-------------|------------|------------|---------------------|--------------|----|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | Not Verified        | Jan-<br>2015 |    |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | Not Verified        | Jan-<br>2015 |    |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | Source Verified     | Jan-<br>2015 |    |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | Not Verified        | Nov-<br>2014 |    |
| 4 | 24375.0   | 60   | 17.27    | 609.33      | 9.0        | 55000.0    | Verified            | Apr-<br>2013 | Cł |

5 rows × 34 columns

# **Verificaiton Status**

```
In [50]: veri = pd.get_dummies(df["verification_status"], drop_first=True)
In [51]: df = pd.concat([df, veri], axis=1)
In [52]: df.drop("verification_status", axis=1, inplace=True)
```

```
In [53]: df.head(5)
```

Out[53]:

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | issue_d      | loan_status |          |
|---|-----------|------|----------|-------------|------------|------------|--------------|-------------|----------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | Jan-<br>2015 | Fully Paid  |          |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | Jan-<br>2015 | Fully Paid  | debt_con |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | Jan-<br>2015 | Fully Paid  | Cr       |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | Nov-<br>2014 | Fully Paid  | Cr       |
| 4 | 24375.0   | 60   | 17.27    | 609.33      | 9.0        | 55000.0    | Apr-<br>2013 | Charged Off | Cr       |

5 rows × 35 columns

#### Issue date

• Will use date time to get the month and year for issue\_date

```
In [54]: df["issue_d"] = [pd.to_datetime(x) for x in df["issue_d"]]
In [55]: df["issue_month"] = df["issue_d"].apply(lambda x: x.month)
In [56]: df["issue_year"] = df["issue_d"].apply(lambda x: x.year)
In [57]: df["issue_day"] = df["issue_d"].apply(lambda x: x.day)
In [58]: df.head(5)
Out[58]:
```

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | issue_d        | loan_status |          |
|---|-----------|------|----------|-------------|------------|------------|----------------|-------------|----------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | 2015-<br>01-01 | Fully Paid  |          |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | 2015-<br>01-01 | Fully Paid  | debt_con |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | 2015-<br>01-01 | Fully Paid  | Cr       |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | 2014-<br>11-01 | Fully Paid  | Cr       |
| 4 | 24375.0   | 60   | 17.27    | 609.33      | 9.0        | 55000.0    | 2013-<br>04-01 | Charged Off | Cľ       |

5 rows × 38 columns

```
In [59]: df.drop("issue_d", axis=1, inplace=True)
In [60]: df.head(2)
Out[60]:
```

| purpose            | loan_status | annual_inc | emp_length | installment | int_rate | term | loan_amnt |   |
|--------------------|-------------|------------|------------|-------------|----------|------|-----------|---|
| vacation           | Fully Paid  | 117000.0   | 10.0       | 329.48      | 11.44    | 36   | 10000.0   | 0 |
| debt_consolidation | Fully Paid  | 65000.0    | 4.0        | 265.68      | 11.99    | 36   | 8000.0    | 1 |

2 rows × 37 columns

# Target | Ioan Status

```
In [61]: df["loan_status"] = pd.get_dummies(df["loan_status"], drop_first=True)
In [62]: df.head(4)
```

| $\sim$ |     |   |    | $\sim$ |  |
|--------|-----|---|----|--------|--|
| ( )    | 11: | _ | Ιh |        |  |
| $\sim$ | u   | _ | ıv | _      |  |
|        |     |   |    |        |  |

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | loan_status | purpose            |
|---|-----------|------|----------|-------------|------------|------------|-------------|--------------------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | 1           | vacation           |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | 1           | debt_consolidation |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | 1           | credit_card        |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | 1           | credit_card        |

<sup>4</sup> rows × 37 columns

## **Purpose**

one hot encoding the differet purpose for the loans

```
In [63]: purp = pd.get_dummies(df["purpose"], drop_first=True)
In [64]: df = pd.concat([df, purp], axis=1)
In [65]: df.drop("purpose", axis=1, inplace=True)
```

```
In [66]: df.head(4)
```

Out[66]:

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | loan_status | title                   | ď    |
|---|-----------|------|----------|-------------|------------|------------|-------------|-------------------------|------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | 1           | Vacation                | 26.2 |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | 1           | Debt consolidation      | 22.0 |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | 1           | Credit card refinancing | 12.7 |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | 1           | Credit card refinancing | 2.6  |

4 rows × 49 columns

#### **Title**

- Dropping since we have so many value
- With so many different job title is would be very difficult to one hot encode with our expanding the features
  of our data dramatically.

```
In [67]: df["title"].nunique()
Out[67]: 48472
In [68]: df.drop("title", axis=1, inplace=True)
```

#### **Earliest cr Line**

```
In [69]: df["earliest_cr_line"] = pd.to_datetime(df["earliest_cr_line"])
In [70]: df["earliest_cr_line_month"] = df["earliest_cr_line"].apply(lambda x: x. month)
In [71]: df["earliest_cr_line_year"] = df["earliest_cr_line"].apply(lambda x: x.y ear)
In [72]: df.drop("earliest_cr_line", inplace=True, axis =1)
```

In [73]: df.head()

Out[73]:

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | loan_status | dti   | open_acc |
|---|-----------|------|----------|-------------|------------|------------|-------------|-------|----------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | 1           | 26.24 | 16.0     |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | 1           | 22.05 | 17.0     |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | 1           | 12.79 | 13.0     |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | 1           | 2.60  | 6.0      |
| 4 | 24375.0   | 60   | 17.27    | 609.33      | 9.0        | 55000.0    | 0           | 33.95 | 13.0     |

5 rows × 49 columns

#### **Values Check**

- · Since we have converted and one hot encoded a lot of values
- · let make sure we did not leave out any features that need to be converted
- · Appears we missed a few so lets settle up with those

In [74]: df.select\_dtypes(exclude="int")

Out[74]:

|        | loan_amnt | int_rate | installment | emp_length | annual_inc | loan_status | dti   | open_acc |
|--------|-----------|----------|-------------|------------|------------|-------------|-------|----------|
| 0      | 10000.0   | 11.44    | 329.48      | 10.0       | 117000.0   | 1           | 26.24 | 16.0     |
| 1      | 8000.0    | 11.99    | 265.68      | 4.0        | 65000.0    | 1           | 22.05 | 17.0     |
| 2      | 15600.0   | 10.49    | 506.97      | 0.0        | 43057.0    | 1           | 12.79 | 13.0     |
| 3      | 7200.0    | 6.49     | 220.65      | 6.0        | 54000.0    | 1           | 2.60  | 6.0      |
| 4      | 24375.0   | 17.27    | 609.33      | 9.0        | 55000.0    | 0           | 33.95 | 13.0     |
|        |           |          |             |            |            |             |       |          |
| 396025 | 10000.0   | 10.99    | 217.38      | 2.0        | 40000.0    | 1           | 15.63 | 6.0      |
| 396026 | 21000.0   | 12.29    | 700.42      | 5.0        | 110000.0   | 1           | 21.45 | 6.0      |
| 396027 | 5000.0    | 9.99     | 161.32      | 10.0       | 56500.0    | 1           | 17.56 | 15.0     |
| 396028 | 21000.0   | 15.31    | 503.02      | 10.0       | 64000.0    | 1           | 15.88 | 9.0      |
| 396029 | 2000.0    | 13.61    | 67.98       | 10.0       | 42996.0    | 1           | 8.32  | 3.0      |

393465 rows × 43 columns

In [75]: df.select\_dtypes(exclude="float")

Out[75]:

|        | term | loan_status | initial_list_status | application_type | address                                                 | В | С | D |
|--------|------|-------------|---------------------|------------------|---------------------------------------------------------|---|---|---|
| 0      | 36   | 1           | w                   | INDIVIDUAL       | 0174 Michelle<br>Gateway\r\nMendozaberg,<br>OK 22690    | 1 | 0 | 0 |
| 1      | 36   | 1           | f                   | INDIVIDUAL       | 1076 Carney Fort Apt.<br>347\r\nLoganmouth, SD<br>05113 | 1 | 0 | 0 |
| 2      | 36   | 1           | f                   | INDIVIDUAL       | 87025 Mark Dale Apt.<br>269\r\nNew Sabrina, WV<br>05113 | 1 | 0 | 0 |
| 3      | 36   | 1           | f                   | INDIVIDUAL       | 823 Reid<br>Ford\r\nDelacruzside, MA<br>00813           | 0 | 0 | 0 |
| 4      | 60   | 0           | f                   | INDIVIDUAL       | 679 Luna<br>Roads\r\nGreggshire, VA<br>11650            | 0 | 1 | 0 |
|        |      |             |                     |                  |                                                         |   |   |   |
| 396025 | 60   | 1           | w                   | INDIVIDUAL       | 12951 Williams<br>Crossing\r\nJohnnyville,<br>DC 30723  | 1 | 0 | 0 |
| 396026 | 36   | 1           | f                   | INDIVIDUAL       | 0114 Fowler Field Suite 028\r\nRachelborough,           | 0 | 1 | 0 |
| 396027 | 36   | 1           | f                   | INDIVIDUAL       | 953 Matthew Points Suite 414\r\nReedfort, NY 7          | 1 | 0 | 0 |
| 396028 | 60   | 1           | f                   | INDIVIDUAL       | 7843 Blake Freeway Apt. 229\r\nNew Michael, FL          | 0 | 1 | 0 |
| 396029 | 36   | 1           | f                   | INDIVIDUAL       | 787 Michelle<br>Causeway\r\nBriannaton,<br>AR 48052     | 0 | 1 | 0 |

393465 rows × 36 columns

## **Applicaiton Type**

```
In [76]: app_type = pd.get_dummies(df["application_type"], drop_first=True )
In [77]: df = pd.concat([df, app_type], axis=1)
In [78]: df.drop("application_type", axis=1, inplace=True)
```

# **Initial list Status**

· one hot encoding

```
In [79]: df["initial_list_status"] = pd.get_dummies(df["initial_list_status"], dr
```

# **Getting zip codes**

- Since we cannot use the full address lets usr the zip code
- Since these are numeric values

```
In [80]: | df["address"] = [int(x.split(" ")[-1]) for x in df["address"]]
In [81]: df.select_dtypes(include="float")
```

| $\sim$ |    |    | . 0 | -   |     |   |
|--------|----|----|-----|-----|-----|---|
| $\cap$ | ш. | ГΙ | ×   | - 1 | - 1 | • |
|        |    |    |     |     |     |   |

|        | loan_amnt | int_rate | installment | emp_length | annual_inc | dti   | open_acc | pub_rec | revo |
|--------|-----------|----------|-------------|------------|------------|-------|----------|---------|------|
| 0      | 10000.0   | 11.44    | 329.48      | 10.0       | 117000.0   | 26.24 | 16.0     | 0.0     | 36   |
| 1      | 8000.0    | 11.99    | 265.68      | 4.0        | 65000.0    | 22.05 | 17.0     | 0.0     | 20   |
| 2      | 15600.0   | 10.49    | 506.97      | 0.0        | 43057.0    | 12.79 | 13.0     | 0.0     | 11   |
| 3      | 7200.0    | 6.49     | 220.65      | 6.0        | 54000.0    | 2.60  | 6.0      | 0.0     | 5    |
| 4      | 24375.0   | 17.27    | 609.33      | 9.0        | 55000.0    | 33.95 | 13.0     | 0.0     | 24   |
|        |           |          |             |            |            |       |          |         |      |
| 396025 | 10000.0   | 10.99    | 217.38      | 2.0        | 40000.0    | 15.63 | 6.0      | 0.0     | 1    |
| 396026 | 21000.0   | 12.29    | 700.42      | 5.0        | 110000.0   | 21.45 | 6.0      | 0.0     | 43   |
| 396027 | 5000.0    | 9.99     | 161.32      | 10.0       | 56500.0    | 17.56 | 15.0     | 0.0     | 32   |
| 396028 | 21000.0   | 15.31    | 503.02      | 10.0       | 64000.0    | 15.88 | 9.0      | 0.0     | 15   |
| 396029 | 2000.0    | 13.61    | 67.98       | 10.0       | 42996.0    | 8.32  | 3.0      | 0.0     | 4    |

393465 rows × 13 columns

## Dropping issue\_day feature | mentioned below

```
In [101]: df.drop("issue day", axis=1, inplace=True)
```

## Appears that our data is prepared

- We have all numeric and values that the model can read
- · lets set the data and begin to train the model below

```
from sklearn.linear model import LogisticRegression
In [175]:
```

```
In [176]: model = LogisticRegression(max_iter= 5000)
```

#### **Training testing and Splitting data**

• 80 training and 20 testing

```
In [177]: from sklearn.model_selection import train_test_split
In [178]: X = df.drop("loan_status",axis=1)
    y = df["loan_status"]
In [179]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20
    , random_state=42)
```

#### Normalize the data

· will use the MinMaxScalar to normalize the data

```
In [180]: from sklearn.preprocessing import MinMaxScaler
In [181]: scalar = MinMaxScaler()
In [182]: X_train = scalar.fit_transform(X_train)
In [183]: X_test = scalar.transform(X_test)
```

## Fitting Data to model

Because the data set is so large the Max Iterations for the fitting for the Logistic model must be expanded

```
In [184]: model.fit(X_train,y_train)
Out[184]: LogisticRegression(max_iter=5000)
```

# Making predicitons

- · making prediciton on the the testing values
- Because the model was not trained on these values it a perfect test for the classification ability of our new model

```
In [198]: predictions = model.predict(X_test)
In [186]: predictions
Out[186]: array([1, 1, 1, ..., 1, 1, 1], dtype=uint8)
```

#### **Metrics**

```
In [187]: from sklearn.metrics import confusion_matrix, classification_report, exp
           lained variance score
In [188]: | print(confusion_matrix(y_test,predictions))
          [[ 4646 11078]
           [ 2003 60966]]
In [189]:
          df.head(5)
Out[189]:
```

|   | loan_amnt | term | int_rate | installment | emp_length | annual_inc | loan_status | dti   | open_acc |
|---|-----------|------|----------|-------------|------------|------------|-------------|-------|----------|
| 0 | 10000.0   | 36   | 11.44    | 329.48      | 10.0       | 117000.0   | 1           | 26.24 | 16.0     |
| 1 | 8000.0    | 36   | 11.99    | 265.68      | 4.0        | 65000.0    | 1           | 22.05 | 17.0     |
| 2 | 15600.0   | 36   | 10.49    | 506.97      | 0.0        | 43057.0    | 1           | 12.79 | 13.0     |
| 3 | 7200.0    | 36   | 6.49     | 220.65      | 6.0        | 54000.0    | 1           | 2.60  | 6.0      |
| 4 | 24375.0   | 60   | 17.27    | 609.33      | 9.0        | 55000.0    | 0           | 33.95 | 13.0     |

5 rows × 49 columns

## Model Accuracy (0: Charged off,1: fully Paid)

- Model predicts at a 83% accuracy
- Precision or Charged off is lower since we have ar less data points for this classification, but a 70% preciaion is a good value for a prediction we had no guidence with originally

| <pre>In [190]: print(classification_report(y_test, predictions))</pre> |             |           |        |          |         |  |  |  |
|------------------------------------------------------------------------|-------------|-----------|--------|----------|---------|--|--|--|
|                                                                        |             | precision | recall | f1-score | support |  |  |  |
|                                                                        | 1           | 0 0.70    | 0.30   | 0.42     | 15724   |  |  |  |
|                                                                        |             | 1 0.85    | 0.97   | 0.90     | 62969   |  |  |  |
|                                                                        | accurac     | У         |        | 0.83     | 78693   |  |  |  |
|                                                                        | macro av    | g 0.77    | 0.63   | 0.66     | 78693   |  |  |  |
|                                                                        | weighted av | g 0.82    | 0.83   | 0.81     | 78693   |  |  |  |

#### **Saving Model**

- · The performance is satisfying
- · Lets store the Sklern Model using the Joblib library

```
In [192]: import joblib
In [193]: #path_to_save = "model/lengingTreeLogRegression.pkl"
In [194]: #joblib.dump(model, path_to_save)
Out[194]: ['model/lengingTreeLogRegression.pkl']
```

```
df.corrwith(df["loan_status"]).sort_values(ascending=False)
                                      1.000000
Out[191]: loan status
                                      0.114238
           mort_acc
                                      0.069904
           MORTGAGE
                                      0.066855
           annual inc
                                      0.053458
           credit_card
                                      0.037622
           total_acc
                                      0.017689
           home improvement
                                      0.016644
           issue_month
                                      0.016287
           emp length
                                      0.014690
           wedding
                                      0.012821
           major purchase
                                      0.011978
           revol_bal
                                      0.010771
           JOINT
                                      0.005714
           earliest cr line month
                                      0.003726
           OTHER
                                      0.002136
           educational
                                      0.002023
           INDIVIDUAL
                                      0.001800
           vacation
                                      0.001302
                                     -0.000374
           house
           NONE
                                     -0.000977
           renewable energy
                                     -0.002679
           medical
                                     -0.005538
           moving
                                     -0.008384
                                     -0.008616
           OWN
           pub rec bankruptcies
                                     -0.009570
           other
                                     -0.009735
           initial list status
                                     -0.009960
                                     -0.019984
           pub rec
           С
                                     -0.024151
           open acc
                                     -0.028373
           small business
                                     -0.029757
           Source Verified
                                     -0.033425
           debt consolidation
                                     -0.034196
           earliest cr line year
                                     -0.038941
           installment
                                     -0.041085
           Verified
                                     -0.050096
           loan amnt
                                     -0.060055
           issue year
                                     -0.061532
           dti
                                     -0.062186
           G
                                     -0.062444
           RENT
                                     -0.063045
           revol util
                                     -0.081931
           D
                                     -0.102108
           F
                                     -0.102144
           Ε
                                     -0.131501
           term
                                     -0.174051
                                     -0.247960
           int rate
           address
                                     -0.346973
           dtype: float64
```

#### Appears that we have an issue with the issue\_day feature

- · lets go back and drop this feature
- since this was a generated feature we will keep the year and month

# **Deep Learning**

let try to use a deep learning model to try to improve our predicton on the target class: loan\_Status

```
In [119]: X = df.drop("loan_status", axis=1).values
    y = df["loan_status"].values

In [121]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
    0, random_state=42)

In [122]: scaler = MinMaxScaler()

In [123]: X_train = scaler.fit_transform(X_train)

In [124]: X_test = scaler.transform(X_test)
```

#### Importing Keras Libaries for model creation

- Model will be a Sequential model with approximately 6 Hidden layers
- · Dense layer will consist of units close to the count of the feature list
- Consideration for a dropout layer to assist with preventing over training
- · A Early Stopping callback wil be integrate to prevent overtraining

```
In [125]: from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout
    from tensorflow.keras.callbacks import EarlyStopping
In [126]: stop = EarlyStopping(monitor="val_loss", mode="min", patience=15)
In [127]: X_train.shape
Out[127]: (314772, 48)
```

```
In [128]: model = Sequential()
    model.add(Dense(units = 50, activation = "relu"))
    model.add(Dense(units = 50, activation = "relu"))
    model.add(Dense(units = 50, activation = "relu"))
    model.add(Dense(units = 25, activation = "relu"))
    model.add(Dense(units = 25, activation = "relu"))
    model.add(Dense(units = 10, activation = "relu"))
    model.add(Dense(units = 10, activation = "relu"))
    model.add(Dense(units = 1, activation = "sigmoid"))
    model.compile(loss = "binary_crossentropy", optimizer = "adam")
```

```
Epoch 1/120
6 - val loss: 0.2856
Epoch 2/120
9 - val loss: 0.2816
Epoch 3/120
6 - val loss: 0.2825
Epoch 4/120
4 - val loss: 0.2832
Epoch 5/120
9 - val loss: 0.2833
Epoch 6/120
6 - val loss: 0.2790
Epoch 7/120
5 - val loss: 0.2774
Epoch 8/120
9837/9837 [=============] - 18s 2ms/step - loss: 0.273
8 - val loss: 0.2765
Epoch 9/120
0 - val loss: 0.2759
Epoch 10/120
9 - val loss: 0.2702
Epoch 11/120
8 - val loss: 0.2744
Epoch 12/120
5 - val loss: 0.2803
Epoch 13/120
9837/9837 [============== ] - 19s 2ms/step - loss: 0.274
3 - val loss: 0.2765
Epoch 14/120
4 - val loss: 0.2691
Epoch 15/120
6 - val loss: 0.2682
Epoch 16/120
4 - val loss: 0.2675
Epoch 17/120
9837/9837 [=============== ] - 19s 2ms/step - loss: 0.264
9 - val loss: 0.2667
Epoch 18/120
0 - val loss: 0.2684
Epoch 19/120
5 - val loss: 0.2737
```

```
Epoch 20/120
1 - val loss: 0.2797
Epoch 21/120
7 - val loss: 0.2656
Epoch 22/120
9 - val loss: 0.2825
Epoch 23/120
9 - val loss: 0.2709
Epoch 24/120
6 - val loss: 0.2629
Epoch 25/120
9 - val loss: 0.2643
Epoch 26/120
6 - val loss: 0.2636
Epoch 27/120
8 - val loss: 0.2635
Epoch 28/120
1 - val loss: 0.2624
Epoch 29/120
2 - val loss: 0.2675
Epoch 30/120
1 - val loss: 0.2615
Epoch 31/120
2 - val loss: 0.2627
Epoch 32/120
6 - val loss: 0.2641
Epoch 33/120
5 - val loss: 0.2842
Epoch 34/120
7 - val loss: 0.2802
Epoch 35/120
5 - val loss: 0.2651
Epoch 36/120
7 - val loss: 0.2799
Epoch 37/120
8 - val loss: 0.2752
Epoch 38/120
7 - val loss: 0.2753
```

```
Epoch 39/120
6 - val loss: 0.2640
Epoch 40/120
2 - val loss: 0.2693
Epoch 41/120
2 - val loss: 0.2652
Epoch 42/120
1 - val_loss: 0.2644
Epoch 43/120
9 - val loss: 0.2622
Epoch 44/120
0 - val loss: 0.2649
Epoch 45/120
1 - val loss: 0.2676
```

Out[129]: <tensorflow.python.keras.callbacks.History at 0x7fafb31224f0>

#### **Model History**

- Model performance was satisfying with overtraining beginning to occur around 31 epochs
- over all the training data fit well to the Validation data
- Displaying strong prediction potential for the classification

```
In [132]: pd.DataFrame(model.history.history).plot(marker = "o", figsize = (16,6))

Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0x7fafb3a7bd00>

034

032

036

028

028

026

026

027

039

030

040
```

#pd.DataFrame(model.history.history).to csv("model/history v1.csv")

#### **Model Predicitons**

- Making Predictions on the testing data using the new model
- The hope is the there is some improvment in prediciton for mthe Logistic Regression Model

#### **Classification Report**

- · Taking a look at the performance of the new model
- It can be said that the model has a saisfying accuracy with a higher precision for Charged off but a higher recall and Fscore for Paid Off

```
In [139]:
          print(classification_report(y_test, predictions))
                         precision
                                       recall f1-score
                                                           support
                                         0.47
                      0
                              0.93
                                                    0.62
                                                             15724
                              0.88
                                         0.99
                                                    0.93
                                                             62969
               accuracy
                                                    0.89
                                                             78693
                                                    0.78
                                                             78693
             macro avg
                              0.91
                                         0.73
                              0.89
                                         0.89
                                                    0.87
          weighted avg
                                                             78693
          print(confusion matrix(y test, predictions))
In [140]:
           [[ 7350 8374]
              556 62413]]
```

## **Passing in Random Clients**

- Since we currently do not have new clients to make prediction on, we will randomly select a client from our already established data set. Though our model was trained on this data, it is safe to say the any new clients passed will share the same features.
- This is simply another way to evaluate the models prediction capabilities

```
In [158]: from random import randint
    random_index= randint(1, len(df))
    random_client = df.drop("loan_status", axis=1).iloc[random_index].values
```

#### **Random Client**

- We will need to reshape this client to the dimension our model was trained on.
- · we can find this bu looking at the shape of the training data
- · we will also need to scale the values to the scale of the training data

```
In [159]: X_train.shape
Out[159]: (314772, 48)
In [160]: random_client = scaler.transform(random_client.reshape(1,48))
In [161]: random_client.shape
Out[161]: (1, 48)
```

## **Passing Random Client**

· Passing client to the model to make a prediction

```
In [162]: (model.predict(random_client) > 0.5).astype("int32")
Out[162]: array([[0]], dtype=int32)
```

## **Checking True Value**

- Getting the loan\_status from the data from at selected index
- Model will predict the loan class at the above accuracy

```
In [163]: df.iloc[random_index]["loan_status"]
Out[163]: 0.0
```

## Saving model

- · We are satisfied with the model performance
- · Saving for future uses

```
In [164]: ##model.save("model/lendingTree_89_acc_v1.h5")
In []:
```