Federated Conformal Prediction General

Min, Xia

May 4, 2024

1 Conformal Prediction General[1]

Definition 1.1 (Exchangebility). [2] For any r.v. x_1, \dots, x_k , we say they are exchangeable if for any permutation $\sigma: [k] \to [k]$ (bijection), $(x_1, \dots, x_k) \stackrel{d.}{=} (x_{\sigma(1)}, \dots, x_{\sigma(k)})$.

For conformal prediction two classes of targets are studied.

Definition 1.2 (Marginal Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^{n+1}$.

Definition 1.3 (Conditional Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1}) | X_{n+1} = x) \ge 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^n$ and Y_{n+1} .

REFERENCES 2

References

[1] Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction. Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.

[2] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(3), 2008.