

The Foundations: Logic and Proofs

Chapter 1

Edited by: Dr. Meshal Alfarhood

Predicates and Quantifiers

Section 1.4

Section Summary

Predicates

Quantifiers

- Universal Quantifier
- Existential Quantifier

Negating Quantifiers

De Morgan's Laws for Quantifiers

Propositional Logic Not Enough

- We cannot express the following using propositions:
 - "X is greater than -1".

- Propositional functions are a generalization of propositions.
 - We define propositional function as P(x)="x is greater than -1"

- Propositional functions become propositions by:
 - 1. assigning values.
 - 2. using quantifiers.

Propositional Functions

- Example 1: Let P(x) = x < 5. Find the truth value of:
 - P(x) has no truth value (not proposition)
 - *P(1)* true
 - *P*(10) false
- Example 2: Let P(x,y,z)="x+y=z". Find the truth value of:
 - *P*(2,-1,5) false
 - P(3,4,7) true
 - P(x, 3, z) has no truth value (not proposition)

Quantifiers

We need *quantifiers* to express the meaning of English words including *all* and *some*:

- "All computers in CS department is protected by intrusion detection system."
- "There exists at least one student who has a brown hair."

The two most important quantifiers are:

- Universal Quantifier, "For all," symbol: ∀
 - $\forall x P(x)$ means "for all values of x, P(x) is true in a particular domain (U)"
- Existential Quantifier, "There exists," symbol: ∃
 - $\exists x P(x)$ means "for at least one value of x, P(x) is true in a particular domain (U)"
 - $\exists x P(x)$ means "There exists an x such that P(x) is true in a particular domain (U)"

U → domain (universe of discourse)

Universal Quantifier

Assume $U=\{x_1,x_2,...,x_n\}$.. The Universal quantifier, $\forall x P(x)$, implies:

$$P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n)$$

Examples:

P(x)	Domain	Truth value of $\forall x P(x)$
x > 0	\mathbb{Z} (all integers)	False Counterexample: x=0
x > 0	\mathbb{Z}^+ (positive integers)	True
x is even	\mathbb{Z} (all integers)	False Counterexample: x=1
x ² > 0	\mathbb{Z} (all integers)	False Counterexample: x=0
$3x \leq 4x$	\mathbb{Z} (all integers)	False Counterexample: x=-1

Existential Quantifier

Assume $U=\{x_1,x_2,...,x_n\}$.. The Existential quantifier, $\exists x P(x)$, implies:

$$P(x_1) \vee P(x_2) \vee ... \vee P(x_n)$$

Examples:

P(x)	Domain	Truth value of $\exists x P(x)$
x > 0	\mathbb{Z} (all integers)	True
		Example: x=1
x < 0	\mathbb{Z}^+ (positive integers)	False
x is even	\mathbb{Z} (all integers)	True Example: x=2
$x^4 < x^2$	\mathbb{Z} (all integers)	False
$x^4 < x^2$	R (Real numbers)	True Example: x=0.5

Negating Quantifiers

Let's define J(x) as "x has taken a course in Java"

- "Every student in your class has taken a course in Java." $\forall x J(x)$
- Negation: "It is not the case that every student in your class has taken a course in Java."
 - This implies that "There is a student in your class who has not taken Java."
- $\neg \forall x J(x) \equiv \exists x \neg J(x)$
- "There is a student in this class who has taken a course in Java." $\exists x J(x)$
- Negation: "It is not the case that there is a student in this class who has taken Java."
 - This implies that "Every student in this class has not taken Java."
- $\neg \exists x J(x) \equiv \forall x \neg J(x)$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Exercise

Let's define: T(x,y)="x has taken subject y" and S(x)="person x is in this class". Assume the domain all students. Express the following statements using predicates and quantifiers:

- 1. Fahad has taken CSC281.
 - T(Fahad, CSC281)
- 2. Every student has taken CSC111.
 - \rightarrow \forall x T(x, CSC111)
- 3. Every student in this class has taken CSC111.
 - \rightarrow $\forall x (S(x) \rightarrow T(x, CSC111))$
- 4. There is a student in this class who has taken CSC111.
 - \rightarrow $\exists x (S(x) \land T(x, CSC111))$
- 5. There is a student in this class who has not taken CSC111.
 - (Negating #3)
 - \rightarrow $\exists x (S(x) \land \neg T(x, CSC111))$

Nested Quantifiers

Section 1.5

Section Summary

Nested Quantifiers

Order of Quantifiers

Translating English into Nested Quantifiers

Nested Quantifiers

Example 1: "Every real number has an additive inverse."

$$\forall x \exists y (x + y = 0)$$

Example 2: "Every real number except zero has a multiplicative inverse."

$$\forall x \exists y ((x \neq 0) \rightarrow (xy = 1))$$

Example 3: "The product of a positive real number and a negative real number is always a negative real number."

$$\forall x \forall y ((x>0) \land (y<0) \rightarrow (xy<0))$$

Order of Quantifiers₁

Statement	When True?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x , y .
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.

When quantifiers are of <u>different types</u>, their <u>order matters</u>.

Order of Quantifiers₂

Examples:

- 1. Let P(x,y)="x+y=y+x". Assume the domain is \mathbb{R} (real numbers).
 - $\forall x \forall y P(x,y)$ true
 - $\forall y \ \forall x \ P(x,y)$ true

- 2. Let Q(x,y)="x+y=0". Assume the domain is \mathbb{R} (real numbers).
 - $\forall x \exists y Q(x,y)$ true
 - $\exists y \ \forall x \ Q(x,y)$ false

Order of Quantifiers,

Example:

Let P(x,y)=" $x \cdot y = 0$ ". Assume the domain is \mathbb{R} (real numbers). Find the truth value of:

1.
$$\forall x \forall y P(x, y)$$

Answer:False

2.
$$\forall x \exists y P(x, y)$$

Answer:True

3.
$$\exists x \forall y P(x, y)$$

Answer:True

4.
$$\exists x \exists y P(x, y)$$

Answer:True

Translating English Sentences into Nested Quantifiers

Example: Let F(x,y)="y is the father of x"

M(x,y)="y is the mother of x"

Express the following statements:

- 1. "Ali is the father of Bilal".
 - F(Bilal, Ali)
- 2. "Everyone has a father".
 - ∀x ∃y F(x,y)
- 3. "Everyone has a father and a mother".
 - $\forall x \exists y \exists z F(x,y) \land M(x,z)$
- 4. "Everyone has a single father".
 - $\forall x \exists y \forall z F(x,y) \land ((y!=z) \rightarrow \neg F(x,z))$