Homework 6 (Slides: Ch4 - Part 1) 3/1/17, 10:22 AM

□ http://www.na.edu

E-mail: moodle@na.edu

Dashboard > My courses > COMP > COMP 3320.Programming Languages.2017SPR.s1 > 20 February - 26 February > Homework 6 (Slides: Ch4 - Part 1)

Started on	Wednesday, 22 February 2017, 10:58 PM
State	Finished
Completed on	Wednesday, 22 February 2017, 11:01 PM
Time taken	3 mins 44 secs
Marks	4.00/4.00
Grade	100.00 out of 100.00

Question 1 Correct Mark 1.00 out of 1.00

A recursive-descent parser is a coded version of a syntax analyzer based directly on the BNF description of the syntax of language.

Select one:

True •

False

The correct answer is 'True'.

Homework 6 (Slides: Ch4 - Part 1) 3/1/17, 10:22 AM

Question 2 Correct Mark 1.00 out of 1.00
What is the front end of a syntax analyzer?
Select one:
a. Semantic Analyzer
 b. Attribute Grammars
o c. Lexical analyzer ✓
O d. Context-free grammars
Your answer is correct.
The correct answer is: Lexical analyzer
Question 3 Correct Mark 1.00 out of 1.00
Syntax analysis is often called parsing.
Select one:
● True
O False
The correct answer is 'True'.

Homework 6 (Slides: Ch4 - Part 1) 3/1/17, 10:22 AM

Question 4 Correct Mark 1.00 out of 1.00

Parsing algorithms that work for any unambigious grammar are complicated and inefficient. The complexity of those algorithms is _____.

Select one:

- a. O(N)
- b. O(N³)
- c. O(N²)
- d. O(log N)

Your answer is correct.

The correct answer is: $O(N^3)$