TensorFlow Tutorial

Chia-Po Wei

Department of Electrical Engineering National Sun Yat-sen University

Outline

- Deep Learning Framework
- TensorFlow Core Walkthrough
 - Tensor, Graph, Session
 - tf.data.Dataset
 - Symbolic Execution vs. Eager Execution
- Fitting a Linear Model

What is TensorFlow?

- TensorFlow is an end-to-end open source machine learning platform.
- Tensorflow helps you develop and train Machine Learning models.

TensorFlow

Tensorflow 2.0 (Conceptual Diagram)

Deep Learning Frameworks

 Tensorflow (Google), Pytorch (Facebook), Caffe2 (Facebook), mxnet (Apache), CNTK (Microsoft)

ONNX (Open Neural Network Exchange)

- ONNX is a open format to represent deep learning models.
- ONNX allows you to switch between deep learning frameworks.
- Facebook, Microsoft, Amazon announced support for ONNX, but Google hasn't.

TensorFlow vs. Numpy

- Both TensorFlow and Numpy provide support for large multi-dimensional (N-d) arrays with a collection of mathematical functions.
- But Numpy cannot automatically compute derivatives and cannot take advantage of GPU.

Numpy and TensorFlow Comparison

Numpy	TensorFlow
a = np.zeros((2,2)); b = np.ones((2,2))	a = tf.zeros((2,2)); b = tf.ones((2,2))
np.sum(b, axis=1)	tf.reduce_sum(b, axis=1)
a.shape	a.get_shape() or tf.shape(a)
np.reshape(a, (1,5))	tf.reshape(a, (1,5))
a * 7 + 1	a * 7 + 1
np.dot(a, b)	tf.matmul(a, b)
a[0, 1], a[:, 1], a[0,:]	a[0, 1], a[:, 1], a[0,:]

How to install TensorFlow?

- After installing anaconda (Python 3.7)
 - CPU version: conda install tensorflow
 - GPU version: conda install tensorflow-gpu
 - Prefer conda install to pip install if you want to install the GPU version.
 - Because you don't have to struggle to find the compatible NVIDIA GPU drivers and CUDA Toolkits. conda will do the job for you.
- It is recommended that you learn to setup a virtual environment using conda.
- This allows you to switch between DL frameworks easily.

Anaconda

Setup your Python environment

```
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

print(tf.__version__) # print the version of TensorFlow
```

Tensor: rank, shape

- The central unit of data in TensorFlow is called the tensor.
- A tensor's rank is its number of dimensions.
- A tensor's shape is a tuple of integers specifying the array's length along each dimension.

```
3. # rank 0 tensor; a scalar with shape []
[1., 2., 3.] # a rank 1 tensor; a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
[[1., 2., 3.]], [[2., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]
```

Quiz 1

Determine the rank and shape of the following Tensors.

- **1**. [[[1, 2, 3], [4, 5, 6]]]
- **2**. [[[1], [3], [5]], [[2], [4], [6]]]

Tensor Examples

- A tensor has a data type (float32, int32, string, etc.) and a shape.
- Each element in a tensor has **the same** data type, and the data type is known.

Four types of tensors:

- tf.Variable
- tf.constant
- tf.placeholder
- tf.SparseTensor

Rank 0 examples:

- mammal = tf.Variable("Elephant", tf.string)
- ignition = tf.Variable(451, tf.int16)
- floating = tf.Variable(3.14159265359, tf.float64)
- complicated = tf.Variable(12.3 4.85j, tf.complex64)

Rank 1 examples:

- mammal = tf.Variable(["Elephant"], tf.string)
- ignition = tf.Variable([123, 456], tf.int16)

TensorFlow Core Walkthrough

- A typical TensorFlow program consists of two discrete sections:
 - Building the computational graph (tf.Graph)
 - Running the computational graph (using tf.Session)
- A graph is composed of
 - tf.Operation (the nodes): Operations that consume and produce tensors.
 - tf.Tensor (the edges): Represent the values that will flow through the graph.

★ tf.Tensors do not have values, they are just handles to elements in the graph.

Simple Graph

```
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0) # also tf.float32 implicitly
total = a + b
print(a)
print(b)
print(total)
```


Output:

Tensor("Const:0", shape=(), dtype=float32)
Tensor("Const_1:0", shape=(), dtype=float32)
Tensor("add:0", shape=(), dtype=float32)

Session

- To evaluate tensors, a tf.Session object is instantiated.
- If a tf.Graph is like a .py file, a tf.Session is like the python executable.

```
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0)
total = a + b
sess = tf.Session()
print(sess.run(total))
print(sess.run({'ab': (a, b), 'total': total}))
```

Output:

7.0 {'total': 7.0, 'ab': (3.0, 4.0)}

Placeholder for Feeding Data

- A graph can be parameterized to accept external inputs, known as placeholders.
- A placeholder is a promise to provide a value later.

```
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y
sess = tf.Session()
print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))
```

Output:

7.5

[3. 7.]

tf.data.Dataset

- Placeholders work for simple experiments, but tf.data are the preferred method of streaming data into a model.
- To get a runnable tf.Tensor from a Dataset you must first convert it to a tf.data.Iterator, and then call the Iterator's tf.data.Iterator.get_next method.

```
my_data = [[0, 1,], [2, 3,], [4, 5,], [6, 7,]]
slices = tf.data.Dataset.from_tensor_slices(my_data)
next_item =
slices.make_one_shot_iterator().get_next()
```

```
sess = tf.Session()
while True:
    try:
    print(sess.run(next_item))
    except tf.errors.OutOfRangeError:
    break
```

tf.data.Dataset (cont.)

```
# Read records from a list of files.

dataset = TFRecordDataset(["file1.tfrecord", "file2.tfrecord", ...])

# Parse string values into tensors.

dataset = dataset.map(lambda record: tf.parse_single_example(record, ...))

# Randomly shuffle using a buffer of 10000 examples.

dataset = dataset.shuffle(10000)

# Repeat for 100 epochs.

dataset = dataset.repeat(100)

# Combine 128 consecutive elements into a batch.

dataset = dataset.batch(128)
```

tf.data.Dataset has been introduced since the release of TensorFlow 1.4.

Queue-based Pipelines (DEPRECATED)

- tf.train.string_input_producer outputs strings to a queue for an input pipeline.
- Queue-based input pipelines have been replaced by tf.data.

How are Machine Learning Models represented?

Model is a **Data Structure** (e.g. a Graph)

aka

- Symbolic
- Deferred Execution
- Defined-and-run

Model is a **Program** (e.g. Python Code)

aka

- Imperative
- Eager Execution
- Defined-by-run

Why Symbolic Execution?

Pros (Makes (de)serialization easier)

- Parallelism
- Distributed execution (CPUs, GPUs, TPUs)
- Compilation (XLA compiler)
- Portability (language independent)

Cons (Less intuitive)

- Harder to debug
- Harder to write control flow structures
- Harder to write dynamic models

Why Eager Execution?

• Eager execution evaluates operations immediately, without building graphs: operations return concrete values instead of constructing a graph to run later.

Advantages

- An intuitive interface—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data.
- Easier debugging—Call ops directly to inspect running models and test changes. Use standard Python debugging tools for immediate error reporting.
- Natural control flow—Use Python control flow instead of graph control flow, simplifying the specification of dynamic models.

Eager Execution (cont.)

```
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0)
total = a + b
print(total)
```

Output:

Tensor("add:0", shape=(), dtype=float32)

```
tf.enable_eager_execution()
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0)
total = a + b
print(total)

Output:
tf.Tensor(7.0, shape=(), dtype=float32)
```

try print(total.numpy())

Static Model Structures

- Model structure is fixed regardless of input data
- The majority of DL models for image, audio and numerical data

Dynamic Model Structures

Traditional RNN

Tree RNN (Dynamic Models)

- Structures that change a lot with input data
- Can deal with hierarchical structures in natural language
- Difficult to write in the symbolic way (using tf.cond and tf.while_loop)
- Straightforward with Eager (Using the native Python control flow)

Fitting a Linear Model

- We will walk through the example of a simple linear model $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$, which has two variables \mathbf{W} and \mathbf{b} .
- 1. Obtain training data
- 2. Define the model
- 3. Define a loss function
- 4. Run through the training data

Step 1. Obtaining Training Data

• Synthesize data such that a well trained model would have W = 3.0 and b = 2.0


```
TRUE_W = 3.0

TRUE_b = 2.0

NUM_EXAMPLES = 1000

inputs = tf.random_normal(shape=[NUM_EXAMPLES])

noise = tf.random_normal(shape=[NUM_EXAMPLES])

outputs = inputs * TRUE_W + TRUE_b + noise
```

 Given inputs and outputs, our goal is to learn W and b such that f(inputs) = outputs.

Step 2. Define the Model

Step 3. Define the Loss Function

```
def loss(predicted y, desired y):
  return tf.reduce_mean(tf.square(predicted_y - desired_y))
def train(model, inputs, outputs, learning rate):
  with tf.GradientTape() as tape:
    current loss = loss(model(inputs), outputs)
  dW, db = tape.gradient(current_loss, [model.W, model.b])
  model.W.assign sub(learning_rate * dW) # W -= learning_rate * dW
  model.b.assign sub(learning rate * db) # b -= learning rate * db
  return current_loss
```

Step 4. Run Through the Training Data

```
model = Model()
Ws, bs = [], []
epochs = range(10)
for epoch in epochs:
    current_loss = train(model, inputs, outputs, learning_rate=0.1)
    Ws.append(model.W.numpy())
    bs.append(model.b.numpy())
    print(epoch, Ws[-1], bs[-1], current_loss)
```

Simulation Results

```
Epoch 0: W=-1.00 b=1.00, loss=18.29831

Epoch 1: W=-0.19 b=1.18, loss=12.15019

Epoch 2: W=0.45 b=1.33, loss=8.18830

Epoch 3: W=0.97 b=1.45, loss=5.63520

Epoch 4: W=1.39 b=1.55, loss=3.98991

Epoch 5: W=1.72 b=1.63, loss=2.92962

Epoch 6: W=1.99 b=1.69, loss=2.24632

Epoch 7: W=2.20 b=1.74, loss=1.80596

Epoch 8: W=2.37 b=1.79, loss=1.52217

Epoch 9: W=2.51 b=1.82, loss=1.33927

:

Epoch 29: W=3.07 b=1.96, loss=1.00772
```


- Blue dots are training data
- Red dots are prediction results

References

- TensorFlow Introduction (https://www.tensorflow.org/guide/low_level_intro)
- Tensors (https://www.tensorflow.org/guide/tensors)
- Graphs and Sessions (https://www.tensorflow.org/guide/graphs)
- Eager Execution (https://www.tensorflow.org/guide/eager)
- Fitting a Linear Model (https://www.tensorflow.org/tutorials/eager/custom_training)