

CSE5014 CRYPTOGRAPHY AND NETWORK SECURITY

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Private-key schemes

- We have seen how to construct schemes based on various lower-level primitives
 - Stream ciphers / PRGs
 - Block ciphers / PRFs
 - Hash functions
- How do we construct these primitives?

Hash functions

- Main goal is collision resistance
 - Want *optimal* birthday security

Hash functions

- Main goal is collision resistance
 - Want optimal birthday security
- Also want preimage resistance, 2nd-preimage resistance
 - Want optimal security here as well

- "Optimal" measured relative to a random function
 - Why not design H to be a "random function"?

Hash functions

- Main goal is collision resistance
 - Want optimal birthday security
- Also want preimage resistance, 2nd-preimage resistance
 - Want optimal security here as well

- "Optimal" measured
 - Why not design h

- Treat *H* as a public, *random* function
- Then H(x) is uniform for any x
 - Unless the attacker computes H(x) explicitly

- Treat H as a public, random function
- Then H(x) is uniform for any x
 - Unless the attacker computes H(x) explicitly
- Intuitively
 - Assume the hash function "is random"
 - Models attacks that are agnostic to the specific hash function being used
 - Security in the real world as long as "no weaknesses found" in the hash function

Formally

- Choose a uniform hash function as part of the security experiment
- Attacker can only evaluate H via explicit queries to an oracle
- Simulate H for the attacker as part of the security proof/reduction

Formally

- Choose a uniform hash function as part of the security experiment
- Attacker can only evaluate H via explicit queries to an oracle
- Simulate H for the attacker as part of the security proof/reduction

In practice

- Prove security in the RO model
- Instantiate the RO with a "good" hash function
- Hope for the best

Pros and cons of the RO model

Cons

- There is no such a thing as a public hash function that "is random"
 - Not even clear what this means formally
- Known counterexamples
 - There are (contrived) schemes secure in the RO model,
 but insecure when using any real-world hash function
- Sometimes over-abused (arguably)

Pros and cons of the RO model

Pros

- No known example of "natural" scheme secure in the RO model being attacked in the real world
- If an attack is found, just replace the hash
- Proof in the RO model better than no proof at all
 - Evidence that the basic design principles are sound

- A group is a set G and a binary operation defined on G such that:
 - (*Closure*) For all $g, h \in G$, $g \circ h$ is in G
 - (*Identity*) There is a unique element $e \in G$ such that $g \circ e = g$ for all $g \in G$
 - (*Inverse*) Every element $g \in G$ has an *inverse* $h \in G$ such that $g \circ h = e$
 - (Associativity) For all $f, g, h \in G$, $f \circ (g \circ h) = (f \circ g) \circ h$

- A group is a set G and a binary operation defined on G such that:
 - (*Closure*) For all $g, h \in G$, $g \circ h$ is in G
 - (*Identity*) There is a unique element $e \in G$ such that $g \circ e = g$ for all $g \in G$
 - (*Inverse*) Every element $g \in G$ has an *inverse* $h \in G$ such that $g \circ h = e$
 - (Associativity) For all $f, g, h \in G$, $f \circ (g \circ h) = (f \circ g) \circ h$
- A group is called abelian if the further property holds.
 - (Commutativity) For all $g, g \in G$, $g \circ h = h \circ g$

- A group is a set G and a binary operation defined on G such that:
 - (*Closure*) For all $g, h \in G$, $g \circ h$ is in G
 - (*Identity*) There is a unique element $e \in G$ such that $g \circ e = g$ for all $g \in G$
 - (*Inverse*) Every element $g \in G$ has an *inverse* $h \in G$ such that $g \circ h = e$
 - (Associativity) For all $f, g, h \in G$, $f \circ (g \circ h) = (f \circ g) \circ h$
- A group is called abelian if the further property holds.
 - (Commutativity) For all $g, g \in G$, $g \circ h = h \circ g$
- The *order* of a finite group G is # of elements in G.

Examples

- lacksquare $\mathbb Z$ under addition
 - $\mathbb{Z} \setminus \{0\}$ under multiplication
 - Q under addition
 - $\mathbb{Q} \setminus \{0\}$ under multiplication
 - \mathbb{R} under addition
 - $\mathbb{R} \setminus \{0\}$ under multiplication
 - $\{0,1\}^*$ under concantenation
 - $\{0,1\}^n$ under bitwise XOR
 - 2×2 real matrices under addition
 - 2×2 invertible, real matrices under multiplication

- The group operation can be written additively or multiplicatively
 - I.e., instead of $g \circ h$, write g + h or gh
 - Does not mean that the group operation corresponds to (integer) addition or multiplication

- The group operation can be written additively or multiplicatively
 - I.e., instead of $g \circ h$, write g + h or gh
 - Does not mean that the group operation corresponds to (integer) addition or multiplication
- Identity denoted by 0 or 1, respectively
- Inverse of g denoted by -g or g^{-1} , respectively
- Group exponentiation: $m \cdot a$ or a^m , respectively

Useful example

- $\blacksquare \mathbb{Z}_N = \{0, 1, \dots, N-1\}$ under addition modulo n
 - Identity is 0
 - Inverse of a is −a mod N
 - Associativity, commutativity obvious
 - Order N

Useful example

- $\blacksquare \mathbb{Z}_N = \{0, 1, \dots, N-1\}$ under addition modulo n
 - Identity is 0
 - Inverse of a is −a mod N
 - Associativity, commutativity obvious
 - Order N
- What happens if we consider *multiplication* modulo *N*?

Useful example

- lacksquare $\mathbb{Z}_{\mathcal{N}} = \{0, 1, \dots, \mathcal{N} 1\}$ under addition modulo n
 - Identity is 0
 - Inverse of a is −a mod N
 - Associativity, commutativity obvious
 - Order N
- What happens if we consider *multiplication* modulo *N*?
- \blacksquare \mathbb{Z}_N is **not** a group under this operation!
 - 0 has no inverse
 - Even if we exclude 0, there is, e.g., no inverse of 2 modulo 4

Example

- What happens if we consider multiplication modulo N?
- Consider instead the invertible elements modulo N, under multiplication modulo N

Example

- What happens if we consider multiplication modulo N?
- Consider instead the invertible elements modulo N, under multiplication modulo N
- $\mathbb{Z}_{N}^{*} = \{0 < x < N : \gcd(x, N) = 1\}$
 - Closure
 - Identity is 1
 - Inverse of a is $a^{-1} \mod N$
 - Associativity, commutativity obvious

Example

- What happens if we consider multiplication modulo N?
- Consider instead the invertible elements modulo N, under multiplication modulo N
- $lacksquare \mathbb{Z}_N^* = \{0 < x < N : \gcd(x, N) = 1\}$
 - Closure
 - *Identity* is 1
 - Inverse of a is $a^{-1} \mod N$
 - Associativity, commutativity obvious
- If p is prime, then $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ - \mathbb{Z}_p is a (prime) *field*

Let $s_n = <1, 2, ..., n >$ denote a *sequence* of integers 1 through n. Denote by P_n the set of all *permutations* of the sequence s_n .

Let $s_n = <1, 2, ..., n >$ denote a *sequence* of integers 1 through n. Denote by P_n the set of all *permutations* of the sequence s_n .

```
For example, s_3 = <1, 2, 3 >

P_3 = \{<1, 2, 3>, <1, 3, 2>, <2, 1, 3>, <2, 3, 1>, <3, 1, 2>,

<3, 2, 1>\}
```


Let $s_n = <1, 2, ..., n >$ denote a *sequence* of integers 1 through n. Denote by P_n the set of all *permutations* of the sequence s_n .

```
For example, s_3 = <1, 2, 3>

P_3 = \{<1, 2, 3>, <1, 3, 2>, <2, 1, 3>, <2, 3, 1>, <3, 1, 2>,

<3, 2, 1>\}
```

■ Define a binary operation \circ on the elements of P_n : for $\rho, \pi \in P_n$, $\pi \circ \rho$ denotes a *re-permutation* of the elements of ρ according to the elements of π .

• Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$

- Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$
- $\blacksquare \pi = <3,2,1>$, $\rho = <1,3,2>$, what is $\pi \circ \rho$?

- Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$
- $\pi = <3, 2, 1>$, $\rho = <1, 3, 2>$, what is $\pi \circ \rho$? $\pi \circ \rho = <2, 3, 1> \in P_3$

- Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$
- $\pi=<3,2,1>$, ho=<1,3,2>, what is $\pi\circ
 ho$? $\pi\circ
 ho=<2,3,1>\in P_3$
- We can verify the other three properties.

$$\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$$
 $< 1, 2, 3 > \circ \rho = \rho \circ < 1, 2, 3 > = \rho$

For each $\rho \in P_3$, there exists another unique $\pi \in P_3$ such that $\rho \circ \pi = \pi \circ \rho = <1,2,3>$

- Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$
- $\pi=<3,2,1>$, ho=<1,3,2>, what is $\pi\circ
 ho$? $\pi\circ
 ho=<2,3,1>\in P_3$
- We can verify the other three properties.

$$\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$$
 $< 1, 2, 3 > \circ \rho = \rho \circ < 1, 2, 3 > = \rho$

For each $\rho \in P_3$, there exists another unique $\pi \in P_3$ such that $\rho \circ \pi = \pi \circ \rho = <1,2,3>$

 (P_n, \circ) is called a *permutation group*.

- Consider $s_3 = <1, 2, 3>$, and $P_3 = \{< p_1, p_2, p_3> | p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3\}.$
- $\pi=<3,2,1>$, ho=<1,3,2>, what is $\pi\circ
 ho$? $\pi\circ
 ho=<2,3,1>\in P_3$
- We can verify the other three properties.

$$\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$$
 $< 1, 2, 3 > \circ \rho = \rho \circ < 1, 2, 3 > = \rho$

For each $\rho \in P_3$, there exists another unique $\pi \in P_3$ such that $\rho \circ \pi = \pi \circ \rho = <1,2,3>$

 (P_n, \circ) is called a *permutation group*. (P_n, \circ) is not abelian.

Ring

If (R, +) is an *abelian group*, we define one more operation (denoted as *multiplication* \times for convenience) to have a *ring* $(R, +, \times)$ satisfying the following properties.

Ring

If (R, +) is an *abelian group*, we define one more operation (denoted as *multiplication* \times for convenience) to have a *ring* $(R, +, \times)$ satisfying the following properties.

Closure: R must be closed w.r.t. \times

Associativity: $(a \times b) \times c = a \times (b \times c)$

Distributivity: $a \times (b + c) = a \times b + a \times c$ $(a + b) \times c = a \times c + b \times c$

Ring

If (R, +) is an *abelian group*, we define one more operation (denoted as *multiplication* \times for convenience) to have a *ring* $(R, +, \times)$ satisfying the following properties.

Closure: R must be closed w.r.t. \times

Associativity: $(a \times b) \times c = a \times (b \times c)$

Distributivity: $a \times (b + c) = a \times b + a \times c$ $(a + b) \times c = a \times c + b \times c$

Example:

$$(\mathbb{Z},+, imes)$$
, $(\mathbb{Q},+, imes)$, $(\mathbb{R},+, imes)$, $(\mathbb{M}_{n imes n},+,\cdot)$?

Commutative Ring, Integral Domain

A ring is commutative if the multiplication operation is commutative for all elements in the ring. (ab = ba)

Commutative Ring, Integral Domain

- A ring is commutative if the multiplication operation is commutative for all elements in the ring. (ab = ba)
- An integral domain $(R, +, \times)$ is a commutative ring that satisfies the following two additional properties.

```
Identity element for multiplication: a1 = 1a = a

Nonzero product for any two nonzero elements: if ab = 0, then either a or b must be 0.
```


Commutative Ring, Integral Domain

- A ring is commutative if the multiplication operation is commutative for all elements in the ring. (ab = ba)
- An integral domain $(R, +, \times)$ is a commutative ring that satisfies the following two additional properties.

Identity element for multiplication: a1 = 1a = a**Nonzero product** for any two nonzero elements: if ab = 0, then either a or b must be 0.

Example:

$$(\mathbb{Z},+,\times)$$
, $(\mathbb{Q},+,\times)$, $(\mathbb{R},+,\times)$? $(\mathbb{Z}_m,+,\times)$, $(\mathbb{M}_{n\times n},+,\cdot)$?

A *field*, denoted by $(F, +, \times)$, is an *integral domain* whose elements satisfy the following additional property.

Inverse for multiplication: For every $a \in F$, there exists an element b, denoted by a^{-1} , such that ab = ba = 1.

A *field*, denoted by $(F, +, \times)$, is an *integral domain* whose elements satisfy the following additional property.

Inverse for multiplication: For every $a \in F$, there exists an element b, denoted by a^{-1} , such that ab = ba = 1.

Example:

$$(\mathbb{Z},+, imes)$$
, $(\mathbb{Q},+, imes)$, $(\mathbb{R},+, imes)$? $(\mathbb{Z}_p,+, imes)$?

A *field*, denoted by $(F, +, \times)$, is an *integral domain* whose elements satisfy the following additional property.

Inverse for multiplication: For every $a \in F$, there exists an element b, denoted by a^{-1} , such that ab = ba = 1.

Example:

$$(\mathbb{Z},+, imes)$$
, $(\mathbb{Q},+, imes)$, $(\mathbb{R},+, imes)$? $(\mathbb{Z}_p,+, imes)$?

• If \mathbb{F} is finite, \mathbb{F} is called a *finite field*.

A *field*, denoted by $(F, +, \times)$, is an *integral domain* whose elements satisfy the following additional property.

Inverse for multiplication: For every $a \in F$, there exists an element b, denoted by a^{-1} , such that ab = ba = 1.

Example:

$$(\mathbb{Z},+, imes)$$
, $(\mathbb{Q},+, imes)$, $(\mathbb{R},+, imes)$? $(\mathbb{Z}_p,+, imes)$?

- If \mathbb{F} is finite, \mathbb{F} is called a *finite field*.
- $\mathbb{F}_q = \mathbb{Z}_p = \{0, 1, \dots, p-1\}$ with the operations addition, multiplication of integers modulo p, is called a prime field
 - The properties can be verified

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p = 0$. If such a p exists, it must be prime

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .
- The subset $\{0, S_1, S_2, \dots, S_{p-1}\} \subseteq \mathbb{F}$ is *isomorphic* to \mathbb{F} (prime field)

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .
- The subset $\{0, S_1, S_2, \dots, S_{p-1}\} \subseteq \mathbb{F}$ is *isomorphic* to \mathbb{F} (prime field)
- Any finite field \mathbb{F} is a *finite dimensional vector space* over \mathbb{F}_p , with $n = \dim_{\mathbb{F}_p}(\mathbb{F})$, $|\mathbb{F}| = p^n$, i.e., the cardinality of \mathbb{F} must be a prime power

Finite fields

• For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different

Finite fields

- For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different
- Binary field characteristic-2 finite fields \mathbb{F}_{2^m}
 - Elements are polynomials over \mathbb{F}_2 of degree $\leq m-1$

$$-\mathbb{F}_{2^m} := \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_2x^2 + a_1x + a_0 : a_i \in \mathbb{F}_2\}$$

Finite fields

- For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different
- Binary field characteristic-2 finite fields \mathbb{F}_{2^m}
 - Elements are polynomials over \mathbb{F}_2 of degree $\leq m-1$

$$-\mathbb{F}_{2^m} := \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_2x^2 + a_1x + a_0 : a_i \in \mathbb{F}_2\}$$

- An *irreducible polynomial* f(x) of degree m is chosen: f(x) cannot be factered as a product of binary polynomials each of degree less than m
 - Addition: usual
 - Multiplication: modulo f(x)

Hard problems

- So far, we have only discussed number-theoretic problem that are easy
 - E.g., addition, multiplication, modular arithmetic, exponentiation

Hard problems

- So far, we have only discussed number-theoretic problem that are easy
 - E.g., addition, multiplication, modular arithmetic, exponentiation
- Some problems are (conjectured to be) hard

- Multiplying two numbers is easy; factoring a number hard
 - Given x, y, easy to compute $x \cdot y$
 - Given N, hard (in general) to find x, y > 1 such that $x \cdot y = N$

- Multiplying two numbers is easy; factoring a number hard
 - Given x, y, easy to compute $x \cdot y$
 - Given N, hard (in general) to find x, y > 1 such that $x \cdot y = N$
- Compare:
 - Multiply 10101023 and 29100257
 - Find the factors of 293942365262911

- It is not hard to factor most numbers
 - 50% of the time, random number is even
 - -1/3 of the time, random number is divisible by 3

- It is not hard to factor most numbers
 - 50% of the time, random number is even
 - -1/3 of the time, random number is divisible by 3
- The hardest numbers to factor are those that are the product of two, equal-length primes

- It is not hard to factor most numbers
 - 50% of the time, random number is even
 - -1/3 of the time, random number is divisible by 3
- The hardest numbers to factor are those that are the product of two, equal-length primes
- The *RSA problem* is related to *factoring*

- Let N = pq with p and q distinct, odd primes
- $\blacksquare \mathbb{Z}_N^* = invertiable$ elements under multiplication modulo N
 - The order of \mathbb{Z}_N^* is $\phi(N) = (p-1) \cdot (q-1)$
 - $-\phi(N)$ is easy to compute if p, q are known
 - $-\phi(N)$ is *hard* to compute if p, q are not known
 - Equivalent (believed) to factoring N

- Let N = pq with p and q distinct, odd primes
- $\blacksquare \mathbb{Z}_N^* = invertiable$ elements under multiplication modulo N
 - The order of \mathbb{Z}_N^* is $\phi(N) = (p-1) \cdot (q-1)$
 - $-\phi(N)$ is easy to compute if p, q are known
 - $-\phi(N)$ is *hard* to compute if p, q are not known
 - Equivalent (believed) to factoring N
- Fix e with $gcd(e, \phi(N)) = 1$
 - Raising to the *e*-th power is a permutation of \mathbb{Z}_N^*

- Let N = pq with p and q distinct, odd primes
- $\blacksquare \mathbb{Z}_N^* = invertiable$ elements under multiplication modulo N
 - The order of \mathbb{Z}_N^* is $\phi(N) = (p-1) \cdot (q-1)$
 - $-\phi(N)$ is easy to compute if p, q are known
 - $-\phi(N)$ is *hard* to compute if p, q are not known
 - Equivalent (believed) to factoring N
- Fix e with $gcd(e, \phi(N)) = 1$
 - Raising to the *e*-th power is a permutation of \mathbb{Z}_N^*
- If $ed \equiv 1 \mod \phi(N)$, raising to the d-th power is the *inverse* of raising to the e-th power
 - I.e., $(x^e)^d \equiv x \mod N$
 - $-x^d$ is the e-th root of x modulo N

• If p, q are known:

- $\Rightarrow \phi(N)$ can be computed
- $\Rightarrow d = e^{-1} \mod \phi(N)$ can be computed
- \Rightarrow possible to compute *e*-th roots modulo *N*

- If p, q are known:
 - $\Rightarrow \phi(N)$ can be computed
 - $\Rightarrow d = e^{-1} \mod \phi(N)$ can be computed
 - \Rightarrow possible to compute *e*-th roots modulo *N*
- If p, q are not known:
 - \Rightarrow computing $\phi(N)$ is as hard as factoring N
 - \Rightarrow computing d is as hard as factoring N

- If p, q are known:
 - $\Rightarrow \phi(N)$ can be computed
 - $\Rightarrow d = e^{-1} \mod \phi(N)$ can be computed
 - \Rightarrow possible to compute *e*-th roots modulo *N*
- If p, q are not known:
 - \Rightarrow computing $\phi(N)$ is as hard as factoring N
 - \Rightarrow computing d is as hard as factoring N
 - Q: Given d and e, can we factor N?

- If p, q are known:
 - $\Rightarrow \phi(N)$ can be computed
 - $\Rightarrow d = e^{-1} \mod \phi(N)$ can be computed
 - \Rightarrow possible to compute *e*-th roots modulo *N*
- If p, q are not known:
 - \Rightarrow computing $\phi(N)$ is as hard as factoring N
 - \Rightarrow computing d is as hard as factoring N
 - Q: Given d and e, can we factor N?
- Very useful for public-key cryptography

■ Informally: given N, e, and uniform element $y \in \mathbb{Z}_N^*$, compute the e-th root of y

- Informally: given N, e, and uniform element $y \in \mathbb{Z}_N^*$, compute the e-th root of y
- RSA assumption: this is a hard problem!

- Informally: given N, e, and uniform element $y \in \mathbb{Z}_N^*$, compute the e-th root of y
- RSA assumption: this is a hard problem!
- Formally:
- GenRSA: on input 1^n , outputs (N, e, d) with N = pq a product of two distinct n-bit primes, with $ed = 1 \mod \phi(N)$

- Informally: given N, e, and uniform element $y \in \mathbb{Z}_N^*$, compute the e-th root of y
- RSA assumption: this is a hard problem!
- Formally:
- GenRSA: on input 1^n , outputs (N, e, d) with N = pq a product of two distinct n-bit primes, with $ed = 1 \mod \phi(N)$
- **Experiment** RSA-inv_{A, GenRSA}(n):
 - Compute $(N, e, d) \leftarrow GenRSA(1^n)$
 - Choose uniform $y \in \mathbb{Z}_N^*$
 - Run A(N, e, y) to get x
 - Experiment evaluates to 1 if $x^e = y \mod N$

The RSA assumption (formal)

- GenRSA: on input 1^n , outputs (N, e, d) with N = pq a product of two distinct n-bit primes, with $ed = 1 \mod \phi(N)$
- **Experiment** RSA-inv_{A, GenRSA}(n):
 - Compute $(N, e, d) \leftarrow GenRSA(1^n)$
 - Choose uniform $y \in \mathbb{Z}_N^*$
 - Run A(N, e, y) to get x
 - Experiment evaluates to 1 if $x^e = y \mod N$

The RSA assumption (formal)

- GenRSA: on input 1^n , outputs (N, e, d) with N = pq a product of two distinct n-bit primes, with $ed = 1 \mod \phi(N)$
- **Experiment** RSA-inv_{A, GenRSA}(n):
 - Compute $(N, e, d) \leftarrow GenRSA(1^n)$
 - Choose uniform $y \in \mathbb{Z}_N^*$
 - Run A(N, e, y) to get x
 - Experiment evaluates to 1 if $x^e = y \mod N$
 - The RSA problem is hard relative to GenRSA if for all PPT algorithms A,

$$Pr[RSA-inv_{A,GenRSA}(n) = 1] < negl(n)$$

Implementing GenRSA

- One way to implement GenRSA:
 - Generate uniform n-bit primes p, q
 - $\operatorname{Set} N := pq$
 - Choose arbitrary e with $gcd(e, \phi(N)) = 1$
 - Compute $d := e^{-1} \mod \phi(N)$
 - Output (N, e, d)

Implementing GenRSA

- One way to implement GenRSA:
 - Generate uniform n-bit primes p, q
 - $\operatorname{Set} N := pq$
 - Choose arbitrary e with $gcd(e, \phi(N)) = 1$
 - Compute $d := e^{-1} \mod \phi(N)$
 - Output (*N*, *e*, *d*)
- Choice of e?
 - Does not seem to affect hardness of the RSA problem
 - -e=3 or $e=2^{16}+1$ for *efficient* exponentiation

RSA and factoring

- If factoring moduli output by GenRSA is easy, then the RSA problem is easy relative to GenRSA
 - Factoring is easy \Rightarrow RSA problem is easy

RSA and factoring

- If factoring moduli output by GenRSA is easy, then the RSA problem is easy relative to GenRSA
 - Factoring is easy \Rightarrow RSA problem is easy
- Hardness of the RSA problem is not known to be implied by hardness of factoring
 - Possible factoring is hard but RSA problem is easy
 - Possible both are hard but RSA problem is "easier"
 - Currently, RSA is believed to be as hard as factoring

Trapdoor functions

- **Definition 10.1** (*Trapdoor functions*) A *trapdoor function collection* is a collection \mathcal{F} of finite functions such that every $f \in \mathcal{F}$ is a one-to-one function from some set S_f to a set T_f . The following properties are requried.
 - Efficient generation, computation and inversion There is a PPT algorithm G that on input 1^n outputs a pair (f, f^{-1}) , where these are two poly(n) size strings that describe the functions f, f^{-1}
 - Efficient sampling There is a PPT algorithm that given f can output a random element of S_f
 - One-wayness The function f is hard to invert without knowing the invertion key. For all PPT A there is a negligible function ϵ s.t.

$$\Pr_{(f,f^{-1})\leftarrow_R G(1^n),\ x\leftarrow_R S_f}[A(1^n,f,f(x))=x]<\epsilon(n)$$

RSA trapdoor function

Keys: choose P,Q as random primes of length $n,N=P\cdot Q$. Choose e at random from $\{1,\ldots,\phi(N)-1\}$ with $\gcd(e,\phi(N))=1$

Forward **Key**: *N*, *e*

Backward **Key**: d with $ed \equiv 1 \mod \phi(N)$

Function: $RSA_{N,e}(X) = X^e \pmod{N}$

Inverse: If $Y = RSA_{N,e}(X) = X^e \mod N$, then $Y^d \mod N = X$.

RSA trapdoor function

Keys: choose P,Q as random primes of length $n,N=P\cdot Q$. Choose e at random from $\{1,\ldots,\phi(N)-1\}$ with $\gcd(e,\phi(N))=1$

Forward **Key**: *N*, *e*

Backward **Key**: d with $ed \equiv 1 \mod \phi(N)$

Function: $RSA_{N,e}(X) = X^e \pmod{N}$

Inverse: If $Y = RSA_{N,e}(X) = X^e \mod N$, then $Y^d \mod N = X$.

- **RSA Assumption**: the RSA function is indeed a *trapdoor* function
 - This is stronger than the assumption that factoring is hard

Assume that *factoring* random *Blum integers* is hard. A *Blum integer* is a number n = pq where $p, q \equiv 3 \pmod{4}$.

- Assume that *factoring* random *Blum integers* is hard. A *Blum integer* is a number n = pq where $p, q \equiv 3 \pmod{4}$.
- Define $\mathcal{B}_n := \{P \in [1 \dots 2^n] : P \text{ prime and } P \equiv 3 \text{ mod } 4\}$

The Factoring Axiom For every PPT algorithm A there is a negligible function ϵ s.t.

$$\Pr_{P,Q\leftarrow_R\mathcal{B}_n}[A(P\cdot Q)=\{P,Q\}]<\epsilon(n)$$

■ Keys: choose P, Q as random primes of length n with $P, Q \equiv 3 \mod 4$, $N = P \cdot Q$.

Forward **Key**: *N*

Backward **Key**: *P*, *Q*

Function: $Y = RABIN_N(X) = X^2 \mod N$, which is a permutation on QR_N , where QR_N denotes the set of quadratic residues modulo N

■ Keys: choose P, Q as random primes of length n with $P, Q \equiv 3 \mod 4$, $N = P \cdot Q$.

Forward **Key**: *N*

Backward **Key**: P, Q

Function: $Y = RABIN_N(X) = X^2 \mod N$, which is a permutation on QR_N , where QR_N denotes the set of quadratic residues modulo N

Inverse: Compute $A = Y \mod P$ and $B = Y \mod Q$. Since $P, Q \equiv 3 \mod 4$, let P = 4t + 3 and Q = 4t' + 3.

■ Keys: choose P, Q as random primes of length n with $P, Q \equiv 3 \mod 4$, $N = P \cdot Q$.

Forward **Key**: *N*

Backward **Key**: P, Q

Function: $Y = RABIN_N(X) = X^2 \mod N$, which is a permutation on QR_N , where QR_N denotes the set of quadratic residues modulo N

Inverse: Compute $A = Y \mod P$ and $B = Y \mod Q$. Since $P, Q \equiv 3 \mod 4$, let P = 4t + 3 and Q = 4t' + 3.

Compute $X_1 = A^{t+1} \mod P$ and $X_2 = B^{t'+1} \mod Q$. Using CRT, we find X.

■ Keys: choose P, Q as random primes of length n with $P, Q \equiv 3 \mod 4$, $N = P \cdot Q$.

Forward **Key**: *N*

Backward **Key**: P, Q

Function: $Y = RABIN_N(X) = X^2 \mod N$, which is a permutation on QR_N , where QR_N denotes the set of quadratic residues modulo N

Inverse: Compute $A = Y \mod P$ and $B = Y \mod Q$. Since $P, Q \equiv 3 \mod 4$, let P = 4t + 3 and Q = 4t' + 3.

Compute $X_1 = A^{t+1} \mod P$ and $X_2 = B^{t'+1} \mod Q$. Using CRT, we find X.

We know that $X = S^2 \mod P$, then

$$X_1 = (X^2)^{t+1} = S^{4(t+1)} = S^{P-1+2} = S^2 = X \mod P.$$

Similarly, $X_2 = S^2 = X \mod Q$.

Lemma 10.2 Let X, Y be such that $X \not\equiv \pm Y \pmod{N}$ but $X^2 \equiv Y^2 \pmod{N}$. Then $gcd(X - Y, N) \not\in \{1, N\}$. **Proof.** easy.

■ **Lemma 10.2** Let X, Y be such that $X \not\equiv \pm Y \pmod{N}$ but $X^2 \equiv Y^2 \pmod{N}$. Then $\gcd(X - Y, N) \not\in \{1, N\}$. **Proof.** easy.

Theorem 10.3 (*One-wayness of Rabin's function*)
Rabin's function is a *trapdoor function* under the factoring axiom.

Lemma 10.2 Let X, Y be such that $X \not\equiv \pm Y \pmod{N}$ but $X^2 \equiv Y^2 \pmod{N}$. Then $\gcd(X - Y, N) \not\in \{1, N\}$. **Proof.** easy.

Theorem 10.3 (*One-wayness of Rabin's function*)
Rabin's function is a *trapdoor function* under the factoring axiom. **Proof.** By contradiction. (see blackboard)

Next Lecture

public key encryption ...

