BLM 4811 MESLEKI TERMINOLOJI – II

Ders 3:

Yazılım ve Programlama Dillerinin Gelişimi

Herşey Nasıl Başladı? Dokuma Tezgahı – Joseph Marie Jacquard (1804)

- İlk tam otomatik ve PROGRAMLANABİLİR dokuma tezgahı
- Kumaş olarak dokunacak deseni delikli kartlar ile programlayabiliyordu.
- Jacquard'ın keşfi, elektro-mekanik ve elektronik hesaplamada veri girdi/çıktısı için uygun bir model oluşturdu, IBM temel olarak kullandı.

Analitik Makine

- Charles Babbage 1837'de başladı, 1871'de ölene kadar üzerinde çalıştı
- Delikli kartlarla sıralı kontrol, döngü, koşullu dallanma özelliklerini sağlıyordu.
- Kartlarda hem veri, hem de komut taşıyabiliyordu.
 - İki ana parça: Store (Hafıza) ve Mill (işlemci) Hafızada numaralar saklanıyor, işlemcide yeni sonuçlara "dokunuyordu".
 - Modern bilgisayarlarda: Hafıza ve işlem ünitesi (Memory CPU)

Augusta Ada Byron King, Lovelace Kontesi (1815-1852)

- Romantik şair Lord Byron'un kızı
- "Üretilmemiş" Analitik makine için Bernoulli sayılarını hesaplayan ilk "bilgisayar programını" 1843 yılında yazdı.
- Aslında ilk algoritmayı tasarlamıştı.
- İlk alt programı ve ilk döngüyü yarattı.
- Babbage'ın aksine, tüm çalışmalarını belgeyerek kayıt altına aldı.

				Data	Data Working Variables.								Result Variables.									
Number of Operation Nature of Operation.	Variable acted upon.		Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	2000-	Y,0000 m	\$3000 + R		£00000 [\$0000	\$.0000 []	\$0000	£00000 [\$ 0000 C	**************************************	\$12 00 00 0	Y ₁₁	B, le a decimalO≤ fraction.	F decimalOg	B ₂ in a decimal O 5 fraction.	\$10000 B
1 × 2 - 3 + 4 + 5 + 6 - 7 -	1 1 1 1 1 1	$V_4 = {}^{1}V_1$ $V_4 + {}^{1}V_1$ $V_5 + {}^{2}V_4$ $V_{12} = {}^{1}V_2$ $V_{23} = {}^{2}V_{13}$ $V_4 = {}^{1}V_1$	2V ₄ , 1V ₄ , 1V ₄ 2V ₁ ,	(A. m. 1.)		1	2		2n 2n-1 0 	2 n + 1 0	2a		1 1 1		 	$ \begin{array}{r} \frac{2n-1}{2n+1} \\ \frac{1}{2}, \frac{2n-1}{2n+1} \\ 0 \end{array} $		$=\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\lambda_{d}$				
8 + 9 + 10 × 11 + 12 -	17	r ₁₂ +1V ₁₃	IV ₁₂	$\begin{cases} \frac{3V_2 - 3V_2}{6V_2 - 4V_2} \\ \frac{3V_1^2 - 4V_2^2}{6V_{12} - 3V_{13}^2} \\ \frac{3V_{12} - 4V_{23}}{6V_{13} - 3V_{13}} \\ \frac{3V_{13} - 4V_{23}}{3V_{13} - 2V_{23}} \\ \frac{3V_{12} - 6V_{23}}{4V_{13} - 4V_{13}} \\ \frac{3V_{13} - 2V_{13}}{4V_{13} - 4V_{13}} \end{cases}$			9 				2n	2 2 1 1			 n - 2	$\frac{2n}{2} = A_1$ $\frac{2n}{2} = A_2$	B_3 , $\frac{2\pi}{2}$ = $B_3 \Lambda$	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + 8_1, \frac{2n}{2}\right\}$	B _i			
14 4 15 16 17 18 19 19 19 19 19 19 19	+ " " + + X X	V ₁ + 3 V ₂ V ₆ + 3 V ₃ V ₈ × 3 V ₁₃ V ₈ - 1 V ₁ V ₁ + 2 V ₂ V ₆ + 3 V ₇ V ₈ × 4 V ₁₁ V ₈ × 4 V ₁₁	1V ₇ 1V ₉ 4V ₁₁	10' 10'	$= 2n - 1$ $= 2 + 1 = 3$ $= \frac{2n - 1}{3}$ $= \frac{2n - 1}{3}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{2}$ $= \frac{2n - 2}{3}$ $= 2$	1 1					2 n - 1 2 n - 1 2 n - 2 	4 4		2n - 2 4 0 	 	50.87A	Β ₂ λ ₂	$\left\{ \Lambda_2 + B_1 \Lambda_1 + B_2 \Lambda_2 \right\}$		B ₃		
100		annual to	V ₃₄	$\begin{cases} {}^{4}V_{13} = {}^{6}V_{23} \\ {}^{6}V_{23} = {}^{4}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{2} \\ {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{4}V_{4} = {}^{6}V_{5} \\ {}^{4}V_{7} = {}^{6}V_{7} \end{cases}$	= B ₇	liezen.		 		 	 0	of Oper	utions t	hirteen 	to twent	ty-three.			Plat			8,

John von Neumann

- Bilgisayarın hafıza biriminin bir kısmını programı depolamak için kullanmayı tasarladı.
 - Paylaşılan program tekniği
- Böylece bilgisayar komutları kendi hafızasından alabilecekti.
 Dış kablolama ihtiyacını ortadan kaldırdı: EDVAC
- Şartlı kontrol transferi: alt programlara olanak verdi.
 - Bilgisayar mantıksal karşılaştırma sonucuna göre farklı kod çalıştırabilir, bir kodu tekrar tekrar çalıştırabilir.
 - Kod blokları tekrar tekrar kullanılabilir.

Claude Shannon (1916-2001)

- Information Theory'nin babası
 - Matematiksel kuramlarla Mühendislik İlkelerini bir araya getirerek sayısal bilgisayarların üretilebilmesini sağladı.
 - A Mathematical Theory of Communication
- Short Code dili: 1949
 - 0-1 değişimleri elle yapılıyor.

Grace Hopper

- Mark I içinde bir ölü güve bularak, tarihteki ilk bug'ı buldu!
- 1951'de ilk derleyici olan A-0'l geliştirdi.
 - Dilin ifadelerini bilgisayar diline çeviriyordu.
- Sonra COBOL'u oluşturan ekipte yer aldı.

0800 andam started {1.2700 9.037 847 025 1000 stopped - arctan 9.037 846 995 const 13'00 (032) MP-MC 2.130476415 (3) 4.615925059(-2) (033) PRO 2 2.130476415 cond 2.130676415 Relays 6-2 in 033 failed spiral speed test 100 Started Cosine Tape (Sine check)
1525 Storted Mult + Adder Test. 1545 Relay #70 Panel F (moth) in relay. 145/600 anchangent started. case of bug being found. 1700 closed dom.

İşletim Sistemleri 1960'lar

- Merkezi bilgisayarların gelişmesi ile birlikte programların bilgisayarda çalıştırılmalarını yönetmek gerekiyordu
 - İşletim sistemi, çevre birimleri ve diğer kaynakların yönetilmesini ve kullanılmasını sağlayan uygulamalar bütünüdür
 - Zaman paylaşımı ve düzenlemesi özelliği ile kullanıcılar, farklı işlemlerde bilgisayarı paylaşabiliyordu
 - Bilgisayarlar küçük boyutlu işletmelerce ulaşılabilr olduklça, özelleşmiş programlama dilleri ortaya çıktı
 - Pascal (1971, Wirth), C (1972, Ritchie)

İlk Bilgisayar Oyunu, İlk kelime işlemci -

1962

DEC PDP-1üzerindeMIT'den SteveRussell"Spacewar"

- TECO (Text Editor and Corrector)
- İlk kelime işlemci programı, Steve Piner ve Peter Deutsch, MIT

Kişisel hesaplama – 1970 sonları

- Gates & Allen Microsoft'u 1975'te kurdu
 - Gates kişisel bilgisayar için BASIC derleyicisini yazdı
 - Dünya yazılım devine dönüştü, Gates dünyanın en zengin insanı
 - http://evan.quuxuum.org/bgnw.html
- Wozniak & Jobs Apple'ı 1977'de kurdu
 - 1980'de bir garajdan 120 milyon dolarlık satışa ulaştı
- IBM 1980'de PC'yi tanıttı
 - Apple Macintosh ile 1984'de yanıt verdi
- Stroustrup 1980'lerde C++'ı geliştirdi
 - C dilinin nesneye dayalı uzantısı

İlk kişisel üretkenlik yazılımları –

1978/1979

- Wordstar
- VisiCalc

Yazılım Kuşakları

- 1. Jenerasyon:
 - Programlama fiziksel olarak kablolarla, sonralarda da makine dili ile
- 2. jenerasyon:
 - Kullanıcı dostu olmayan ilk kuşak "diller": assembly
- 3. jenerasyon:
 - Yüksek seviyeli diller, sembolik kullanımına gerek kalmadı
 - ForTran: 1952 (IBM 704 için), COBOL 1959, BASIC, PASCAL, C, ...
- 4. jenerasyon:
 - Genel programlama dili kullanmadan uygulama geliştirme imkanı
 - Veritabanı programlama ortamları
- 5. jenerasyon ??
 - Kimine göre şu anda kullandığımız IDE'ler!!
 - Olması gereken: Doğal dil kullanımı ile sezgisel yaklaşımla geliştirilen programlar
 - Kendi kodunu değiştirebilen otonom yazılımlar?

Programlamanın Evrimi: Makine Dili

- ■Geç 1940 Erken 1950'lerde programcılar kodu makineye direk olarak veriyordu
- ■Her makinenin kendi komut seti (0-1 dizisi) vardı
- Emek yoğun ve hataya açık

Programlamanın Evrimi: Assembly dili

- ■1950'lerin ortalarında nümerik kodları hatırlanabilir isimlerle değiştiren assembly dilleri ortaya çıktı
- ■Assembler, assembly kodunu makine koduna dönüştüren bir programdır
 - -Input: Assembly dilindeki program
 - -Output: Makine dilindeki komutlar dizisi
- ■Hala alt seviyeli ve makineye özel, ancak programlama daha kolay

```
gcc2 compiled.:
        .global Q qtod
                ".rodata"
        .align 8
.LLCO: .asciz "Hello world!"
                ".text"
        .align 4
        .qlobal main
                main, #function
        .proc 04
        !#PROLOGUE# 0
main:
        save %sp,-112,%sp
        sethi %hi(cout),%ol
        or %o1,%lo(cout),%o0
        sethi %hi(.LLCO),%o2
        or %o2,%lo(.LLC0),%o1
        call ls 7ostreamPCc,0
        nop
        mov %00,%10
        mov %10,%00
        sethi %hi(endl FR7ostream),%o2
        or %o2,%lo(endl FR7ostream),%o1
       call ls 7ostreamPFR7ostream R7ostream, 0
        mov 0,%i0
        b .LL230
        nop
.LL230: ret
        restore
.LLfe1: .size
                main, .LLfe1-main
        .ident "GCC: (GNU) 2.7.2"
```

İlk Assembler: Initial Orders, 1949

■ EDSAC (Electronic Delay Storage Automatic Calculator) için

Order bit pattern	Loc	Order	Meaning	Comment
00101 0 0000000000 0	0:	TOS	m[0]=A; ABC=0	
10101 0 0000000010 0	1:	H2S	R=m[2]	Put 10<<11 in R
00101 0 0000000000 0	2: 3:	TOS	m[0]=A; ABC=0	
00011 0 0000000110 0	3:	E6S	goto 6	Jump to main loop
00000 0 0000000001 0	4:	P1S	data 2	The constant 2
00000 0 0000000101 0	5:	P5S	data 10	The constant 10
00101 0 0000000000 0	6:	TOS	m[0]=A; ABC=0	Start of the main loop
01000 0 0000000000 0	7:	IOS	m[0] = rdch()	Get operation code
11100 0 0000000000 0	8: 9:	AOS	A+=m[0]	Put it in A
00100 0 0000010000 0	9:	R16S	ABC>>=6	Shift and store it
00101 0 0000000000 1	10:	TOL	w[0]=AB; ABC=0	so that it becomes the senior 5 bits of $m[0]$ $m[1]$ is now zero

Programlamanın evrimi: Yüksek seviyeli diller

- ■1950'lerin sonlarından günümüze:
- ■Yüksek seviyeli programlama dilleri, programcının daha yüksek bir soyutlama ile düşünmesine olanak tanır.
- ■Derleyici, yüksek seviyeli dille yazılmış kodu makine koduna çevirir.
 - -Input: c++dilinde program kodu
 - -Output: Makine kodunda komut dizisi
 - -Assembler'a benzer ancak daha karmaşık şekilde
- ■Yorumlayıcı, programda programlama dili ile yazılmış her bir ifadeyi sıralı olarak okuyup işleten aracı programdır
 - -Java programları önce sanal Java makinesi koduna derlenir (Java byte code)
 - -Sonra bir yorumlayıcı (Java Sanal Makinesi) ile işletilir.

```
/**
 * This class can print "Hello world!"
 * @author Dave Reed
 * @version 8/20/04
 **/

class Greeter
{
   public Greeter() { }

   public void SayHello() {
      System.out.println("Hello world!");
   }
}
```

İlk yüksek seviyeli dil: Plankalkül (1948)

- Konrad Zuse, Z2-Z3 için
- 30 yıl sonar, Joachim Hohmann tezinde Plankalkül için derleyiciyi yarattı.

Die Punkte sind benachbart
$$\begin{vmatrix} V & \# & V \land |V - V| \le L \land |V - V| \le L \Rightarrow R \triangle .17 \\ V & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

İlk Derleyici: A-0 (1952) İlk açık kaynak kodlu yazılım:A-2

- UNIVAC için, Grace Hopper tarfından
- A-O, sonra A-2'ye dönüştü.
- Müşterilere kaynak kodu ile birlikte veriliyordu
 - İlk açık kaynak kodlu yazılım!

İlk Yaygın kullanılan yüksek seviyeli Programlama Dili: Fortran

- 1963'te 40'dan fazla FORTRAN derleyicisi vardı.
- Her işlemci için ayrı derleyici üretilmeliydi.

İlk Nesneye Dayalı Dil: Simula (1967)

```
Begin
   Class Glyph;
      Virtual: Procedure print Is Procedure print;
   Begin
   End;
   Glyph Class Char (c);
      Character c;
   Begin
      Procedure print;
        OutChar(c);
   End;
   Ref (Glyph) rg;
   rg :- New Char ('A');
   rg.print;
End;
```

Mutlak adresleme

1010010101110101011

Panel	1	function: enter house
Switch 0	1	open the door
Switch 1	1	put the lights on
Switch 2	0	close the door (please)

Makine Dili

Label	Opcode	Register
CALC:	STO	R1, HELPO
	STO	R2, HELP2
	LD	R3, HELP1
	ADD	R3, HELP2
	LD	R4, HELP1
	SUB	R4, HELP2
	RSR	SP, 0
HELP1:	DS	2
HELP2:	DS	2

Alt programlar

Start of program Begin program; the main "menu" Main; Printf ("Hello World"); DoSomethingElse() Printf ("Hello World"); first subroutine (end of program) back to the main menu Function **DoSomethingElse**; second subroutine Add two numbers; Return OK with a parameter (contents of what to print) Function Printf(what_to_print) Open channel to printer interface; back to procedure: main Initialize printer; Send "what_to_print" to printer; Send page feed to printer; Close printer interface; Return OK

Yüksek Seviyeli Programlama Dilleri

human	computer
Add 2 and 2	answer := 2+2;
Show me the answer	printf ("%d\n", answer);

Yapay Zeka Dilleri

```
■ LISP 1958

;;; HWorld.lsp

(DEFUN HELLO ()
"HELLO WORLD"
)

■ Prolog 1970

Hello:-
nl,
write('Hello world!').
}

■ Smalltalk 1979

■ Algol 1960
```

Simula 1967

Nesneye Dayalı Diller

- İlk nesne dili :SIMULA ~1970
- İlk nesneye dayalı dil: SmallTalk 1979
- C++: 1980'lerin ortaları
- JAVA: 1990'lar
- C#: 2000'ler
- OOP-Procedural hibrit diller: Python, Ruby, ...

Gelecek?

- Yapay Zeka
- Kendini Değiştiren nesneler
- Uygulama yaratma arayüzleri
- **...**

Gelecek Ders

Olasılıksal Robotik Çalışma Grubu Sunumu