### Stochastic Modeling of Oil and Gas Production

Aiden Huffman, Ben Sloman, Jinniao Qiu, Syeda Ali, Tony Ware, Wenning Wei, Zuming Sun and Yilan Luo (Project Coordinator: Michael Morgan)

August 25, 2018

1.Introduction

2. Modeling and Estimation

3. Summary

## Introduction Montney Wells

#### Formation

- Most of reserves are in British Columbia and Alberta.
- Covers a geographical region of approximately 130,000km, with thickness between 100m-300m.
- Siltstone of Montney holds approximately 449 Tcf of marketable natural gas.
- Multiple stack reserves.



Figure: Montney Major Rock Types.

# Introduction Background

Many Challenges of the oil and gas industry subject to production uncertainty are as follows:

- Finding oil and gas reserves is highly unpredictable.
- Productivity of an individual well change in random ways.
- Very noisy data.
- Market moves unexpectedly.
- Future prices and interest rates are unknown.

## Introduction Motivation

- In Industries we are interested in the mechanism of how uncertainties are treated as workload moves to reserves production development.
- Basic ODE's cannot capture these uncertainties very well.
- Stochastic models offers a methodology to better capture the uncertainties of the process. by treating some unknown parameters as random variables.

## Introduction Goal

- To model the unknown parameters as stochastic processes.
- Solve the resulting stochastic differential equations.
- Comparing our results with data from actual well to witness the performance.

## Introduction Basic Definitions

- Flow rate (q): The mount of gas produced per time unit for several consecutive period.
- Cumulative gas production (Q):  $\int_0^T q dt$
- Decline rate(D):  $D = -\frac{1}{q} \frac{\Delta q}{\Delta t}$

## Introduction Decline Curve Analysis

- Use to estimate the production of a well, while original data is given.
- Use to forecast the future performance of wells.
- Production trends can be estimated using different differential equations, for example, Hyperbolic, Exponential etc.

#### Introduction

#### Production Delcine Curve



#### Data Description

| X_UWI_DISPLAY       | PROD_DATE <sup>‡</sup> | GAS <sup>‡</sup> |
|---------------------|------------------------|------------------|
| 00/01-01-059-21W5/4 | 2011-12-01             | 288.3            |
| 00/01-01-059-21W5/4 | 2012-01-01             | 2080.3           |
| 00/01-01-059-21W5/4 | 2012-03-01             | 4320.6           |
| 00/01-01-059-21W5/4 | 2012-04-01             | 3744.2           |
| 00/01-01-059-21W5/4 | 2012-05-01             | 3190.2           |
| 00/01-01-059-21W5/4 | 2012-06-01             | 1478.6           |
| 00/01-01-059-21W5/4 | 2012-07-01             | 2569.7           |
| 00/01-01-059-21W5/4 | 2012-08-01             | 2301.8           |
| 00/01-01-059-21W5/4 | 2012-09-01             | 2010.4           |
| 00/01-01-059-21W5/4 | 2012-10-01             | 1626.7           |
| 00/01-01-059-21W5/4 | 2012-11-01             | 1558.5           |
|                     |                        |                  |

Figure: An snapshot of dataset.

#### Common PDE models in Delcine Analysis

Arps:

$$\frac{dq}{dt} = -\left(\frac{D_i}{q_1^b}\right)q^{b+1}$$

Power Law Exponential:

$$\frac{dq}{dt} = -\left(D_{\infty} + D_1 t^{-(1-n)}\right) q$$

Stretched Exponential:

$$\frac{dq}{dt} = -\left(\frac{n}{t}\left(\frac{t}{\tau}\right)^n\right)q$$

Logistic Growth:

$$\frac{dq}{dt} = -\left(\frac{a - an + (1+n)t^n}{t(a+t^n)}\right)q$$

Duong:

$$\frac{dq}{dt} = -\left(mt^{-1} - at^{-m}\right)q$$

Parameter Estimation of Classic PDE Models by LS



Improved Power Law Exponential Model NO.1

Power law exponential model:

$$log(q) = log(q_0) - D_{\infty}t - Dt^n$$
 (1)

- First, we assume  $log(q_0) \sim m + \varepsilon N(0,1)$
- To generate the uncertainty in the model, we also add a Brownian Motion item with a scale parameter  $\lambda$ :  $\lambda B_t$
- Therefore, the proposed model is:

$$log(q) = m + \varepsilon N(0,1) - D_{\infty} - Dt^{n} + \lambda B_{t}$$
 (2)

- Since the  $B_t \sim N(0, \sqrt{t})$  and the well is always run for a long time, the fluctuation of model NO.1 is too large at the late time of well.
- We weight  $B_t$  with  $\frac{1}{1+t}$
- Therefore, the model change to:

$$log(q) = m + \varepsilon N(0,1) - D_{\infty} - Dt^{n} + \frac{\lambda B_{t}}{1+t}$$
 (3)

Estimation of Model NO.2

• Then we estimate the parameters  $(m, \varepsilon, D_{\infty}, D, n, \lambda)$  in the model (by Maximum Likelihood) minimizing

$$\begin{split} &\frac{1}{2}log(\varepsilon^{2}2\pi) + \frac{(log(q_{0}) - m_{0})^{2}}{2\pi\varepsilon^{2}} \\ &+ \sum_{i=1}^{N} \left( \frac{1}{2}log\left(\frac{\lambda^{2}2\pi}{(1+t_{i-1})^{2}}\right) + \frac{(log(q_{t_{i}}) - log(q_{t_{i-1}}) + D_{\infty} + Dt_{i}^{n})^{2}}{2\pi\lambda^{2}} \right) \end{split}$$

#### Estimation Result



- We improve the model
- Then the log-likelihood: find  $(m_0, \varepsilon, \lambda, m, D, D_{\infty})$  minimizing

$$\begin{split} &\frac{1}{2}log(\varepsilon^2 2\pi) + \frac{(log(q_0) - m_0)^2}{2\pi\varepsilon^2} \\ + &\sum_{i=1}^{N} \left( \frac{1}{2}log(\frac{\lambda^2 2\pi}{(1 + t_{i-1}^m)^2}) + \frac{(log(q_{t_i}) - log(q_{t_{i-1}}) + D_{\infty} + Dt_{i-1}^n)^2}{2\pi\lambda^2} \right) \end{split}$$



- Improve the model
- Modify the log-likelihood: find  $(m_0, \varepsilon = 0, \lambda, m, D, D_{\infty})$  minimizing

$$\begin{split} & \sum_{i=1}^{N} log(\frac{2\pi\lambda^{2}}{(1+t_{i}^{m})^{2}}) \\ & + \sum_{i=1}^{N} (log(q_{t_{i}} - log(q_{t_{i-1}}) + D_{\infty} + Dnt_{i}^{n-1})^{2} \frac{(1+t_{i-1}^{m})^{2}}{2\pi\lambda^{2}} \\ & + \kappa \sum_{i=1}^{N} |m_{0} - D_{\infty}t_{i} - Dt_{i}^{n} - log(q_{i}^{obs})| \end{split}$$



#### Improved Power Law Exponential Model NO.4

- Except Brownian Motion, we also consider the Poisson process to describe the uncertainty in the reality.
- Simply, we replace the Brownian Motion by a Poisson Process  $N_{\tau}^{\alpha}$ :

$$log(q) = m + \varepsilon N(0,1) - D_{\infty} - Dt^{n} + \lambda N_{t}^{\alpha}$$
 (4)

• Then the least square norm:  $(\varepsilon = 0)$ : find  $(m_0, \lambda, m, D, D_{\infty}, \alpha)$  minimizing

$$E\sum_{i=1}^{N} \left(\Delta log(q_{t_i}^{mod}) - \Delta log(q_{t_i}^{obs})\right)^2 + \kappa \sum_{i=0}^{N} \left(Elog(q_{t_i}^{mod}) - log(q_{t_i}^{obs})\right)^2$$

















#### Summary Future Work

- Improve the fit of uncertainty in the model for instance by combining Poisson and Brownian Motions.
- Find the spatial correlation between the gas production of wells in a region of interest, and use the correlation to forecast the performance of a new site based on the old wells around it.
- Relate the gas production forecast to the energy market forecast to calculate the profit in the future.

## Thank You!