CPEN75: Logic Circuit and Designs

LABORATORY EXERCISE NO. 6: KARNAUGH MAP

Name: Keemchard D. Tamio Student No.: 201811555

Course/Year/Section: BSCpE 402-B Instructor: Engr. Diane S. Puspos-Arayata

Objective/s:

After performing the exercises, the student should be able to:

- 1. understand the concepts and rule of K-Mapping; and
- 2. apply the concepts and rule of K-Map.

Discussion:

Karnaugh Map (K-map) Simplification

- > a graphical device used to simplify logic expressions or to convert truth table to its corresponding logic circuits in a simple orderly process.
 - > provides a simple straight forward method for simplifying Boolean Algebra or functions.
 - > a diagram made up of squares and each squares represents one minterms or maxterms.
 - Although the k-map method can be used for problem solving, it is limited to only six variables.

Format:

2 Literals:

3 Literals:

\	0	1
AB `	m ₀	m1
01	m ₂	m ₃
11	m ₆	m ₇
10	m ₄	m ₅

4 Literals:

5 Literals:

0	m ₁₆	m ₁₇	m ₁₉	m ₁₈
1	m ₂₀	m ₂₁	m ₂₃	m ₂₂
	m ₂₈	m ₂₉	m ₃₁	m ₃₀
)	m ₂₄	m ₂₅	m ₂₇	m ₂₆

6 Literals:

Rules of Simplification

- 1. No zeros allowed.
- 2. No diagonals
- 3. Only power of 2 number of cells in each group.
- 4. Groups should be as large as possible.
- 5. Everyone must be in at least one group.
- 6. Overlapping is allowed
- 7. Wrap around is allowed
- 8. Fewest number of groups possible.

PROCEDURE

1. Get the simplified function using K-Map of the following truth table:

Input			Output	
а	b	С	d	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Table 1. Given Truth Table

Solution:

- 2. Design the logic circuit of the simplified function.
- 3. Attach logic circuit diagram you designed.

Figure 1. Logic circuit for the given function

CPEN75: Logic Circuit and Designs

- 4. Construct the circuit on www.tinkercad.com .
- 5. Attach the screen capture of the logic circuit.

Figure 2. Circuit for the given function

6. Complete the table below by simulating the circuit of the given function:

Input			Output	
а	b	С	d	Qs
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0

CPEN75: Logic Circuit and Designs

1	1	1	0	0
1	1	1	1	1

Table 2. Truth Table for the simplified function

CONCLUSION

Make a conclusion of the exercises.

As a conclusion, I was able to satisfy the objectives stated above. I have understood and applied the K mapping concepts in this activity. I was able also to create and simulate a logic circuit based on my simplified function.