

Aprendizaje por refuerzo aplicado a tareas de control

Titulación: Máster de Inteligencia

Artificial

Curso académico 2021-2022

Alumno/a: Werner Seoane

Lucas Ezequiel D.N.I: 39459365J

Director/a de TFM: Gabriel Enrique Muñoz Convocatoria:

Tercera

Escribe aquí tu frase favorita.

E indica aquí su autor

Agradecimientos

Me gustaría agradecer...

También quiero destacar...

Por último...

Índice general

ĺnd	lice de figuras	П
ĺnd	lice de tablas	ш
ĺnd	lice de algoritmos	IV
Re	sumen	1
1.	Introducción	3
	1.2.2. Una subsubsección	
2.	Objetivos	7
3.	Metodología	9
4.	Resultados y Discusión	11
5.	Conclusiones	12
6.	Limitaciones y Perspectivas de Futuro	13
Lis	ta de Acrónimos	15
Α.	Apéndize A	16
В.	Apéndize B	17
Dih	slicarofía	10

Índice de figuras

	T*																		
1.1.	Tipos de grafos									 									

Índice de tablas

11	Ejemplo de tabla																		_
1.1.	Liempio de tabla																		

Índice de algoritmos

Algoritmo Hill-Climbing	(HC)													
AIGOHUHO I IIII-OIIIIIOIIIG	11101.						 							

Resumen

Introducción

1

Escribe aquí la introducción de tu Trabajo Fin de Máster, utilizando tantas secciones, subsecciones y subsubsecciones como estimes necesarias.

1.1. Mi primera sección

Esta palabra está en negrita. Esta palabra está en cursiva. Esta palabra se destaca en púrpura.

1.2. Mi segunda sección

En la sección 1.1 se muestran ejemplos de palabras en negrita, cursiva y destacadas en púrpura.

Una Red Generativa Antagónica o *Generative Adversarial Network* (GAN) es... (Goodfellow et al., 2014).

Goodfellow et al. (2014) diseñaron las redes generativas antagónicas como...

Listado:

- Item 1.
- Item 2.
- Item 3.

Enumeración:

- 1. Item 1.
- 2. Item 2.
- 3. Item 3.

Figura 1.1: Tipos de grafos.

Columna 1	Columna 2	Columna 3	Columna 4	Columna 5
Fila 1	А	В	С	D
Fila 2	E	F	G	Н
Fila 3	I	J	K	L

Tabla 1.1: Ejemplo de tabla.

1.2.1. Una subsección

La figura 1.1 muestra...
La tabla 1.1 muestra...

1.2.2. Una subsubsección

El algoritmo 1 muestra...

Algoritmo 1: Algoritmo Hill-Climbing (HC)

- 1. Elegir una estructura de red \mathcal{G} sobre \mathbf{V} , normalmente vacía. Establecer la puntuación máxima inicial: $Score_{max} = Score_{\mathcal{G}}$.
- 2. Repetir los siguientes pasos mientras $Score_{max}$ siga aumentando:
 - a) Calcular las puntuaciones para todas las posibles redes modificadas \mathcal{G}^* que se pueden obtener añadiendo, eliminando o reorientando un solo eje de \mathcal{G} sin que se producan ciclos.
 - b) Si para alguna de las redes modificadas \mathcal{G}^* se cumple que $Score_{G^*} > Score_{\mathcal{G}}$, establecer $G = G^*$ y $Score_{max} = Score_{G^*}$.
- 3. Devolver el DAG G.

Ejemplo de fórmula:

$$N_k(\mu, \mathbf{\Sigma}) = \frac{1}{\sqrt{2\pi \det(\mathbf{\Sigma})}} \exp\left\{-\frac{1}{2}(\mathbf{X} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{X} - \mu)\right\} \quad \mathbf{X}, \mu \in \mathbb{R}^k$$

Otro ejemplo de fórmula:

$$\underbrace{P(\mathcal{B}|\mathcal{D}) = P(\mathcal{G}, \Theta|\mathcal{D})}_{\text{Aprendizaje}} = \underbrace{P(\mathcal{G}|\mathcal{D})}_{\text{Aprendizaje estructural Aprendizaje paramétrico}} \cdot \underbrace{P(\Theta|\mathcal{G}, \mathcal{D})}_{\text{Aprendizaje paramétrico}}$$

Objetivos

Describe aquí el objetivo general de tu Trabajo Fin de Máster y, a continuación, define los objetivos parciales:

- 1. Objetivo parcial 1.
- 2. Objetivo parcial 2.
- 3. Objetivo parcial 3.

Metodología

Resultados y Discusión

Conclusiones

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

Limitaciones y Perspectivas de Futuro

Lista de Acrónimos

GAN Red Generativa Antagónica o *Generative Adversarial Network*.

Apéndize A

Apéndize B

B

Bibliografía

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., y Bengio, Y. (2014). Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680.