

School of Engineering

Institut für angewandte Informationstechnologie InIT

Information Engineering 1: Information Retrieval

Praktikum 4b: Rangierung

Relevanz-Rangierung

(Beispiel von Elke Mittendorf)

Es seien die folgenden Dokumente und Anfragen gegeben:

- q =, Terrorismus, bekämpfen" = $\Phi 1 \Phi 2$
- D1 = "Gegenmassnahmen gegen Terrorismus" = Φ 3 Φ 1
- D2 = "Kampf gegen den Terror" = Φ 2 Φ 1
- D3 = "Sicherheit bei asymmetrischer Bedrohung und asymmetrische Sicherheit" = Φ 5 Φ 6 Φ 7 Φ 6 Φ 5
- D4 = "Terror bekämpfen" = Φ 1 Φ 2
- D5 = "Extremismus und Gewalt" = $\Phi 8 \Phi 9$
- D6 = "Terrorismus und innere Sicherheit" = Φ 1 Φ 10 Φ 5

Relevant erwiesen sich $R(q) = \{D1, D2, D3, D6\}$

 Rangieren Sie die Informationsobjekte aus unserem Beispiel mit dem BIR (RSJ-Gewichtung). Diese Rangierung ist a posteriori (weiss zum Zeitpunkt des Vergleichs, welche Dokumente relevant sind).

$$RSV(q, d_j) := \sum_{\phi_i \in \Phi(q) \cap \Phi(d_j)} \log \frac{p_i(1 - q_i)}{q_i(1 - p_i)}$$

(zur Berechnung der pi und qi siehe BIR.pdf)

Vergleichen Sie mit probabilistischer idf-Gewichtung

$$RSV(q, d_j) := \sum_{\varphi_i \in \Phi(q) \cap \Phi(d_j)} idf(\varphi_i)$$
, mit

$$idf(\varphi_i) := \log\left(\frac{1+n}{1+df(\varphi_i)}\right)$$

• Vergleichen Sie mit tf.idf-Cosinus (siehe Folie 72)

School of Engineering

Institut für angewandte Informationstechnologie InIT

Ein paar Anregungen zur Diskussion:

- Bleibt die Reihenfolge gleich?
- Ist immer das gleiche Dokument der beste Match?
- Was ist der fundamentale Unterschied zwischen BIR/RSJ und der probabilistischen idf-Gewichtung/tf.idf-Cosinus?
- Was ist mit D2 gegenüber D4?
- Was ist mit D1 gegenüber D6?
- Bonus-Verständnisfrage: was wäre die optimale Rangierung für das Beispiel?