Bases

Def.: (X,τ) esp. top. Dizemos que $\mathcal{B} \subset \tau$ é uma base $p/(X,\tau)$ se p/ todo aberto não vazio $A \in \tau$, existe uma família $\mathcal{A} \subset \mathcal{B}$ de elementos da base t.q. $A = \bigcup_{B \in \mathcal{A}} B$. **Prop.**: Uma família \mathcal{B} de elementos de τ é uma base $p/(X,\tau) \iff p/\text{ todo aberto não vazio } A \in \tau \text{ e todo}$ $x \in A, \exists B \in \mathcal{B} \text{ de forma que } x \in B \subset A.$

Def.: Dizemos que um esp. top. $(X,\tau) \notin T_0 \quad y \notin A$. (os abertos "diferenciam" pontos) se para quaisquer **Prop.** : (X, τ) é $T_1 \iff \forall x \in X, \{x\}$ é fechado. $x,y \in X$ distintos existir um aberto A tal que $(x \in A \text{ e } \mathbf{Def.})$: Dizemos que um esp. top. (X,τ) é T_2 (de Haus $y \notin A$) ou $(x \notin A \in y \in A)$.

Prop.: Um esp. top. $(X, \tau) \notin T_0 \iff \forall x, y \in X$ distintos e para quaisquer bases locais $\mathcal{B}_x, \mathcal{B}_y$, para $x \in y$, respectivamente, tivermos que $\mathcal{B}_x \neq \mathcal{B}_y$.

Def: Dizemos que um esp. top. (X, τ) é $T_1 \iff$ $\forall x,y \in X$ distintos, existir A aberto tal que $x \in A$ e

Def.: Dizemos que (X,τ) satisfaz 1° axioma de enumerabilidade se $\forall x \in X$, existe s.f.v. enumerável. Dizemos que (X,τ) tem bases locais enumeráveis.

Def.: (X,τ) esp. top. Seja $(x_n)_{n\in\mathbb{N}}$ uma seq. de pontos de X. $(x_n)_{n\in\mathbb{N}}$ converge para $x\in X$ se, $\forall V$ vizinhança de x, existe $n_0 \in \mathbb{N}$ t.q. $\forall n \geq n_0, x_n \in V$. Notação: $x_n \to x$.

Prop.: (X,τ) esp. top. e $x_n \to x$. Então. $x \in \{x_n : n \in \mathbb{N}\}.$

Cor: (X,τ) esp. top. $Y \subset X$. Sejam $x \in X$ e $(y_n)_{n \in \mathbb{N}}$ seq. de pontos de Y. Se $y_n \to x$, então $x \in \overline{Y}$. Prop.:

vizinhança de x tq $f[B] \subset A$.

Def: (X,τ) e (Y,ρ) esp's top's e $f:X\to Y$. $f\notin Y$. contínua se, $\forall A \subset Y$ aberto, temos $f^{-1}[A]$ aberto em X Cor: Imagem contínua de um esp. separável é separável (i.e., $\forall A \in \rho$, $f^{-1}[A] \in \tau$).

Exemplo: $\mathcal{B} = \{ [a, b] : a, b \in \mathbb{Q} \}$ é uma base p/a topologia usual de \mathbb{R} .

Exemplo: Seja X um conjunto qualquer. $\mathcal{B} = \{\{x\}:$ $x \in X$ } é uma base p/ a topologia discreta sobre X. **Def.**: (X,τ) esp. top. $x \in X$. Dizemos que \mathcal{V} é um sistema fundamental de vizinhanças (s.f.v) de x se: a) $\forall V \in \mathcal{V}, V$ é vizinhança de x;

b) $\forall A \subset X$ aberto t.q. $x \in A, \exists V \in \mathcal{V}$ t.q. $x \in V \subset A$.

Obs.: No caso em que os elementos de \mathcal{V} são abertos, chamamos \mathcal{V} de base local p/x.

Exemplo: Na reta de Sorgenfrey, $\mathcal{V} = \{[x, x + \frac{1}{n}]: n \in$ $\mathbb{N}_{>0}$ } é um sistema fundamental de vizinhanças de x.

Prop.: Se \mathcal{B} é uma base p/ (X,τ) , então $\mathcal{B}' = \{B \cap Y : A \cap$ $B \in \mathcal{B}'$ é uma base p/ $Y \subset X$ com a topologia usual de subespaço.

Axiomas de separação

dorff) se, $\forall x, y \in X$ distintos, existem A, B abertos tais que $x \in A, y \in B$ e $A \cap B = \emptyset$. (Todo espaço métrico é de Hausdorff.)

Def Dizemos que um esp. top. (X, τ) é T_3 se, para quaisquer $x \in X$ e $F \subset X$ fechado tais que $x \notin F$ existirem A, B abertos tais que $x \in A, F \subset B$ e $A \cap B = \emptyset$.

Dizemos que um espaço é regular se ele é T_3 e T_1

Prop.: $(X,\tau) \notin T_3 \iff \forall x \in X \in \forall V \text{ aberto t.q.}$ $x \in V$, existe A aberto t.q. $x \in A \subset \bar{A} \subset V$.

Cor: (X,τ) é $T_3 \iff \forall x \in X$, existe um sistema fundamental de vizinhanças fechadas para x.

Def Dizemos que um esp. top. (X, τ) é T_4 se, para quaisquer $F, G \subset X$ fechados disjuntos, existirem A, Babertos disjuntos t.q. $F \subset A, G \subset B$. Dizemos que um espaço é normal se ele é T_4 e T_1 .

Prop.: Todo espaço enumerável e regular é normal.

Axiomas de enumerabilidade

 (X,τ) esp. top. com bases locais enum. Sejam $Y\subset X$ e $x \in X$. Então, $x \in \overline{Y} \iff \exists (y_n)_{n \in \mathbb{N}}$ seq. de pts. de Y t.q. $y_n \to x$. Espaços onde isso ocorre são conhecidos como Frechét-Urysohn (seq. conv. caracterizam pontos aderentes).

Prop.: Seja (X,τ) esp. top. Hausdorff. Se $x_n \to x$ e $x_n \to y$, então x = y.

Def. : (X,d) métrico. Dizemos que $(x_n)_{n\in\mathbb{N}}$ de pts. de X é seq. de Cauchy se $\forall \epsilon \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}$ t.q. para $n,m \geq n_0, d(x_n,x_m) < \epsilon$. Toda seq. convergente é de Cauchy. Dizemos que um esp. métrico é completo se toda seq. de Cauchy é convergente.

Def. : (X, τ) satisfaz o 2° axioma de enumerabilidade se admite uma base enumerável. (Se satisfaz o 2° axioma, também satisfaz o 1º)

Def.: (X,τ) esp. top. $D \subset X$ é denso em X se $\overline{D} = X$.

Def. : (X, τ) satisfaz o 3° axioma de enumerabilidade se admite um subconjunto denso enumerável. Dizemos que (X,τ) é espaço separável . Prop. : Se (X,τ) satisfaz o 2º axioma de enum., então ele é separável. (No caso de métricos, vale a volta)

Def. : (X, τ) é espaço metrizável se existe uma métrica sobre X que induz a topologia τ . (Reta de Sorgenfrey não é metrizável).

Funções contínuas

Def: (X, τ) e (Y, ρ) esp's top's, $f: X \to Y$ e $x \in X$. **Proposição:** X, Y e Z esp's top's, e $f: X \to Y$, **Prop:** Seja $f: \mathbb{N} \cup \{\infty\} \to X$. Então f é contínua \Leftrightarrow a f é contínua no ponto x se, $\forall A$ vizinhança de f(x), $\exists B \quad q: Y \to Z$ contínuas. Então $q \circ f: X \to Z$ é contínua. **Prop:** Se $D \subset X$ é denso em X, então f[D] é denso em **Prop:** Se a seq. $(x_n)_{n\in\mathbb{N}} \to x \in X$, então $f(x_n) \to f(x)$.

 $(3^{\underline{o}} \text{ ax.}).$

sequência $(f(n))_{n\in\mathbb{N}}\to f(\infty)$.

Prop: Se (X,τ) tem bases locais enu's, então dada $f: X \to Y$, $f \in \text{continua} \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ em } X \text{ com } x_n \to x$, temos $f(x_n) \to f(x)$.

Extensão de Funções

Def: (X,τ) e (Y,ρ) esp's top's, $f:A\subset X\to Y$ e $g: X \to Y$ contínuas. g é uma extensão (contínua) de fse $f(a) = g(a), \forall a \in A$.

Prop: Se (Y, ρ) é Hausdorff (T_2) , $D \subset X$ é denso e $f, g: X \to Y$ são contínuas to f(d) = g(d), então f = g. **Lema:** $\exists (F_s)_{s \in \mathbb{Q}}$ família de fechados tq:

• $F_r \subset \operatorname{Int}(F_s)$ se r < s;

Def. Sejam (X, τ) e (Y, σ) espaços topológicos. Dizemos que uma função $f: X \to Y$ é um homeomorfismo se f é bijetora, contínua e f^{-1} é contínua.

Def. Chamamos uma propriedade P de um invariante topológico se ela é preservada por homeomorfismos (isto é, se (X,τ) e (Y,σ) são homo, então (X,τ) possui $P \iff (Y, \sigma) \text{ possui } P.$

Obs: Todos os axiomas de separação e de enumerabilidade são invariantes topológicos.

Obs 2: Ser sequência convergente é um invariante topológico, mas ser sequência de Cauchy não!

Def Seja (X, <) um conjunto ordenado. Dizemos que \leq é uma ordem total se, para quaisquer $x, y \in X$, vale

Def: Sejam (X, τ) e (Y, σ) esp. top. A topologia $\pi_{\alpha}((x_{\beta})_{\beta \in A}) = x_{\alpha}$ (Topologia produto). produto sobre $X \times Y$ é a gerada pelos conjuntos $A \times B$, onde $A \in \tau$ e $B \in \sigma$.

Prop: (X,τ) e (Y,σ) são espaços de Hausdorff $\implies \Pi_{\alpha\in A}V_{\alpha}$ é um aberto básico e $\{\alpha\in A:V_{\alpha}\neq X_{\alpha}\}$ é um **Definição** Sejam $((X_{\alpha},\tau_{\alpha}))_{\alpha\in A}$ uma família de espaços $X \times Y$ também é.

Prop: Sejam (X,τ) e (Y,σ) esp. top., sendo (Y,σ) espaço de Hausdorff e $f: X \to Y$ contínua. Então, o gráfico de $f(G = \{(x, f(x)) : x \in X\})$ é fechado em $X \times Y$.

Def: Seja \mathcal{F} uma família de funções da forma $f_{\alpha}: X \to \mathbf{i} \in \{0, 1, 2, 3\}$ $Y_{\alpha}, \alpha \in A$, em que X é um conjunto e cada $(Y_{\alpha}, \tau_{\alpha})$ esp. top. A topologia fraca induzida por \mathcal{F} é a topologia sobre X gerada pelos conj. $f_{\alpha}[V]$, onde $\alpha \in A$ e $V \in \tau_{\alpha}$. Assim, cada f_{α} é contínua.

Def: Seja $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ uma família de esp. top. O produto de $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ será $\Pi_{\alpha \in A} X_{\alpha} = \{(x_{\alpha})_{\alpha \in A}\}$ $x_{\alpha} \in X_{\alpha}$ com a topologia fraca induzida por $(\pi_{\alpha})_{\alpha \in A}$ onde cada $\pi_{\alpha}: \Pi_{\beta \in A} X_{\beta} \to X_{\alpha}$ é dada por

- $\bigcup_{s \in \mathbb{N}} F_s = X;$
- $\bigcap_{s\in\mathbb{O}} F_s = \emptyset$.

Então a função $\varphi: X \to \mathbb{R}$ definida por $\varphi(x) := \inf\{r \in \mathbb{R} \mid x \in \mathbb{R} \}$ $\mathbb{Q}: x \in F_r$ } é contínua.

Prop: Se (X,τ) é T_4 , $F \subset X$ é fechado e $f: F \to \mathbb{R}$ é contínua, então $\exists q: X \to \mathbb{R}$ ext. contínua de f.

Lema de Urysohn: (X,τ) é $T_4 \Leftrightarrow \forall F,G \subset X$ fechados disjuntos, $\exists f: X \to [0,1]$ contínua to $f[F] = \{0\}$ e $f[G] = \{1\}.$

Teorema de Tietze: Se (X,τ) é T_4 , $F \subset X$ fechado e $f: F \to \mathbb{R}$ é contínua, então $\exists g: X \to \mathbb{R}$ extensão contínua de f.

Def: (X,τ) é $T_{3\frac{1}{2}}$ se, $\forall x \in X \in F \subset X \text{ tq } x \notin F$, $\exists f: X \to [0,1]$ continua tal que f(x) = 0 e $f[F] = \{1\}$. Esp. de Tychonoff: Se (X,τ) é $T_{3\frac{1}{2}}$ e T_1 , então X é um esp. completamente regular

Homeomorfismos

 $x \leq y$ ou $y \leq x$.

Def Seja (X, \leq) um conjunto totalmente ordenado. A **Lema**: Seja $\{a_0, ..., a_{n+1}\}$ tot. ordenado e seja Y um topologia da ordem sobre (X, \leq) será a gerada por: \forall $a, b \in X$.

- (a) $]a, +\infty[= \{x \in X : a < x\};$
- (b) $]-\infty, b[=\{x \in X : x < b\}.$

Def. Sejam (X, <) e (Y, \prec) conjuntos ordenados. Uma função $f:X\to Y$ é um isomorfismo de ordem se f é bijetora e, $\forall a, b \in X, a < b \Leftrightarrow f(a) < f(b)$.

Seja (X, <) um conjunto ordenado, < é ordem densa se $\forall x, y \in X$, com $x \leq y$, $\exists z \in X$ tal

que $x \leq z \leq y$.

conjunto de ordem densa e sem extremos. Se f: $\{a_0,...,a_n\} \to Y$ função injetora que preserva ordem, então $\exists f : \{a_0, ..., a_{n+1}\} \to Y$ extensão de f que é injetora e que preserva a ordem.

Teorema: Todo conjunto enumerável, tot. ord. com uma ordem densa e sem extremos é isomorfo (e homeo)

Teorema: Todo espaço tot. ord., com ordem densa, sem extremos, completo e separável é homeomorfo a \mathbb{R} .

Cor: Sejam $a, b \in \mathbb{R}$, com a < b. Então $a, b \in \mathbb{R}$ homeo a \mathbb{R} , assim como $a, +\infty$ e $-\infty, b$.

Produto

Uma base para tal espaço é a $\Pi_{\alpha \in A} V_{\alpha}$ onde $\{\alpha \in A : A \in A : A \in A : A \in A \}$ $V_{\alpha} \neq X_{\alpha}$ é finito e cada V_{α} é aberto em X_{α} .

suporte.

Obs.: Em geral, produto de aberto NÃO é aberto.

Prop: Se $(F_{\alpha})_{\alpha \in A}$ é uma família t.q. cada F_{α} é fechado em X_{α} , então $\Pi_{\alpha \in A} F_{\alpha}$ é fechado em $\Pi_{\alpha \in A} X_{\alpha}$.

Prop: Se cada X_{α} é T_i , então $\Pi_{\alpha \in A} X_{\alpha}$ é T_i , para

Propriedades de produtos

Pro: Se cada (X_n, τ_n) satisfaz o *i*-ésimo axioma de enumerabilidade. Então, $\prod_{n\in\mathbb{N}}X_n$ também satisfaz

Prop Produto de espaços normais (T_4+T_1) não é necessariamente normal. Exemplo: a reta de Sorgenfrey (\mathbb{R}_S) é normal, mas $\mathbb{R}_S \times \mathbb{R}_S$ não é T_4 .

separável. Se existe $D \subset X$ discreto fechado tal que $|D| = \mathfrak{c}$ (cardinalidade do contínuo), então (X, τ) não é

topológicos, (X, τ) um espaço topológico e $(f_{\alpha})_{\alpha \in A}$ uma família de funções da forma $f_{\alpha}: X \to X_{\alpha}$. Chamamos de **função diagonal** a função

$$\Delta_{\alpha \in A} f_{\alpha} : \begin{array}{ccc} X & \to & \prod_{\alpha \in A} X_{\alpha} \\ x & \mapsto & (f_{\alpha}(x))_{\alpha \in A} \end{array}$$

Definição 4.2.7. Dizemos que $f: X \to Y$ é uma **imersão** se $f: X \to f[X]$ é um homeomorfismo. Dizemos neste caso que Y contém uma **cópia** de X.

Definição 4.2.8. Seja $\mathcal{F} = \{f_{\alpha} : X \to X_{\alpha} \mid \alpha \in A\}.$ Dizemos que \mathcal{F} separa pontos se para todo $x, y \in X$ com $x \neq y$, existe $f \in \mathcal{F}$ tal que $f(x) \neq f(y)$. E \mathcal{F} separa pontos de fechados se, para todo $x \in X$ e $F \subset X$ fechado tal que $x \notin F$, existe $f \in \mathcal{F}$ tal que $f(x) \notin f[F]$.

Lema de Jones: Seja (X,τ) espaço topológico Teorema da imersão. Seja $\mathcal{F}=\{f_\alpha:X\to X_\alpha\mid$

disso, \mathcal{F} separa pontos de fechados, então $\Delta_{\alpha \in A} f_{\alpha}$ é uma tinua imersão.

Proposição 4.2.10. Seja (X, τ) um espaço completamente regular. Então $\mathcal{F} = \{f : X \rightarrow [0,1] \mid$ f é contínua} separa pontos de fechados.

Cor 4.2.11. Seja (X, τ) espaço topológico. Então (X, τ) é completamente regular \Leftrightarrow existe A tal que (X,τ) é homeomorfo a um subespaço de $\prod_{\alpha \in A} [0, 1]$.

Quociente

Def: $\exists f_i: Y_i \to X$, onde (Y_i, τ_i) - esp top, então: τ é **topologia Forte** de X se é maior topologia to $\forall i \ f_i$ é

Prop: equivalente: $\tau = \{V \subset X | f_i^{-1}[V] \in \tau_i, \forall i \in I\}$ é Forte

 $\alpha \in A$ família de funções contínuas. Se \mathcal{F} separa pon- **Prop:** equivalente: τ - top Forte induzida sse: dado **Prop:** Dado $(X,\tau), (Y,\rho)$ e $f:X\to Y$ - sobrejetora Se

$$Y_i \xrightarrow{f_i} (X, \tau)$$

$$\downarrow^g$$

$$Z$$

Def: Dado (X, τ) e \sim - relação de equiv **top Quo**ciente sobre X/\sim é: top Forte induzida pelo $\{\pi\}$ π : $X \to X/\sim$ - projeção $\pi(x) = \tilde{x}$ onde $\tilde{x} = \{y \in X | x \sim y\}$ Cor: equivalente: $\{V \subset X/\sim |\pi^{-1}[V] \in \tau\}$ - é Quociente

Cor: equivalente: τ - top Forte induzida sse: dado $q: X/\sim \to Z$ (Z-esp top), q continua \Leftrightarrow cada $q\circ \pi$ é continua

tos, então $\Delta_{\alpha \in A} f_{\alpha} : X \to \prod_{\alpha \in A} X_{\alpha}$ é injetora. Se, além $g : X \to Z$ (Z-esp top), g continua \Leftrightarrow cada $g \circ f_i$ é con- $X \in \varphi: Y \to X/\sim$ - homeomorfismo to $\pi = \varphi \circ f$

União Disjunta

Ideia: $((X_i, \tau_i))_{i \in I}$ - família, Queremos novo esp top tq: X_i - subespaço $\forall i$ Para isso: todos X_i dois a dois disjuntos: $\tau = \bigcup_{i \in I} \tau_i$ em $\bigcup_{i \in I} X_i$ Então em vez de trabalhar com cada X_i vamos usar cópias: $\{i\} \times X_i$ Assim temos espaços dois a dois disjuntos

Notação: $\prod_{i \in I} X_i$

Def. e propriedades básicas

Def. Seja (X,τ) . Dizemos que \mathcal{A} é uma cobertura de X se $\bigcup_{A \in \mathcal{A}} A = X$. Uma cobertura aberta é tal que cada $A \in \mathcal{A}$ é aberto

Def. Dizemos que o espaço topológico (X, τ) é um espaço compacto se para toda cobertura aberta \mathcal{A} de X existe uma subcobertura \mathcal{A}' finita.

Exemplo. Qualquer espaco finito é compacto.

Def. Seja (X,τ) um espaço topológico. Dizemos que \mathcal{B} é uma sub-base para X se $\{B_1 \cap \cdots \cap B_n : B_1, ..., B_n \in \mathcal{B}\}$ $\mathcal{B}, n \in \mathbb{N}$ é uma base para X.

Prop. (Lema da sub-base de Alexander). Se $jam(X,\tau)$ um espaço topológico e \mathcal{B} uma sub-base para X. Se toda cobertura para X feita por elementos de \mathcal{B} admite subcobertura finita, então X é compacto.

Prop. Seja (X,τ) espaço compacto e seja $F\subset X$ fechado. Então F é compacto.

Resultados com espaços Hausdorff

Um espaço Hausdorff separa pontos de fechados

Seja (X,τ) um espaço de Hausdorff. Sejam $x \in X$ e $K \subset X$ compacto tal que $x \notin K$. Então existem $A \ e \ B \ abertos \ tais \ que \ x \in A, \ K \subset B \ e \ A \cap B = \emptyset.$

Compactos

Prop. Sejam (X, τ) espaço de Hausdorff e $F \subset X$ compacto. Então F é fechado.

Demonstração. Pelo resultado anterior, temos em particular que se $x \notin F$, existe A aberto tal que $x \in A \subset$ $X \setminus F$.

Em compactos de Hausdorff, os fechados são exatamente os compactos

Cor. Sejam (X,τ) um espaço compacto de Hausdorff e $F \subset X$ um conjunto. Então, F é fechado se, e somente se, F é compacto.

Espaços de Hausdorff, separam compactos disjuntos **Prop.** Seja (X,τ) espaço Hausdorff. Sejam $F,G\subset X$ compactos disjuntos. Então existem A, B abertos disjuntos tais que $F \subset A$ e $G \subset B$.

Para espaços Hausdorff, compacidade implica normalidade.

Prop. Todo espaço compacto de Hausdorff é normal. Demonstração. Basta notar que fechados são compactos e aplicar o resultado anterior.

Resultados com funções contínuas

Prop. Sejam (X,τ) , (Y,σ) espaços topológicos onde $X \in compacto \ e \ f : X \rightarrow Y \ uma \ função \ contínua \ e$ sobrejetora. Então Y é compacto.

Cor. Sejam (X,τ) e (Y,σ) espaços topológicos, sendo Y espaço de Hausdorff, e seja $f: X \to Y$ uma função contínua. Se $F \subset X$ é compacto, então f[F] é fechado.

Demonstração. Segue imediatamente do resultado anterior e da Prop. 5.1.10.

Cor. Sejam (X,τ) e (Y,τ) espaços de Hausdorff, sendo X compacto, e seja $f: X \to Y$ uma função contínua e bijetora. Então, f é um homeomorfismo.

Compacidade local

Def. Dizemos que o espaço topológico (X,τ) é localmente compacto se todo $x \in X$ admite um sistema fundamental de vizinhanças compactas.

Para Hausdorff, a propriedade global implica na local

Prop. Se (X, τ) é um espaço compacto de Hausdorff, então X é localmente compacto.

Demonstração. Note que X é regular. Portanto, todo $x \in X$ admite um sistema fundamental de vizinhanças fechadas, logo, compactas.

Já a propriedade local não implica na global:

Exemplo Com a topologia usual, \mathbb{R} é localmente compacto, pois cada [a,b] é compacto. Mas \mathbb{R} não é compacto.

Para Hausdorff, a localmente compacto implica completamente regular

Hausdorff. Então (X,τ) é completamente regular.

Teorema de Tychonoff

Teorema 5.2.1 (de Tychonoff). Seja $((X_{\alpha}, \tau_{\alpha}))_{\alpha \in A}$ família de espaços compactos. Então $\prod_{\alpha \in A} X_{\alpha}$ é compacto.

Caracterizações da topologia produto

Prop. Seja (X,τ) um espaço compacto de Hausdorff. Seja, também, $\sigma \supseteq \tau$ uma topologia sobre X. Então, (X, σ) não é compacto.

Demonstração. Seja $A \in \sigma \setminus \tau$. Então, $X \setminus A$ não é fechado em (X,τ) . Logo, $X \setminus A$ não é compacto em (X,τ) . Seja \mathcal{C} cobertura aberta (em τ) para $X \setminus A$ que não admite subcobertura finita.

Então, $\mathcal{C} \cup \{A\}$ é uma cobertura (em σ) sem subcobertura finita. Logo, (X, σ) não é compacto.

Teorema. A topologia produto é a única que faz com que as projeções sejam contínuas e o produto de compactos de Hausdorff seja compacto.

Prop. Seja (X, τ) um espaço topológico. Então (X,τ) é completamente regular se, e somente se, existe (Y, σ) compacto de Hausdorff tal que $X \subseteq Y$.

Algumas Caracterizações

Def. Seja (X,τ) um espaço topológico. Dizemos que $x \in X$ é um ponto de acumulação de $A \subset X$ se para todo V aberto com $x \in V$ temos que $V \cap (A \setminus \{x\}) \neq \emptyset$ (ou seja, se $x \in \overline{A \setminus \{x\}}$).

Prop. Seja (X, τ) espaço T_1 . Então $x \in X$ é ponto de acumulação de $A \subset X \Leftrightarrow para\ todo\ V$ aberto tal que $x \in V$ temos que $V \cap A$ é infinito.

Compacidade implica na existência de pontos de acumulação para conjuntos infinitos

Prop. Seja (X,τ) um espaço localmente compacto de **Prop.** Seja (X,τ) compacto. Então todo subconjunto infinito admite ponto de acumulação.

> **Def.** Seja (X,τ) espaço topológico. Dizemos que $x \in X$ é um ponto de acumulação completo de $A \subset X$ se, para todo V aberto tal que $x \in V$, temos que $|V \cap A| = |A|$.

> **Prop.** Seja (X,τ) um espaco compacto. Então todo subconjunto infinito de X admite ponto de acumulação completo.

> Caracterização de compacidade por pontos de acumulação

> **Prop.** Seja (X,τ) espaço tal que todo subconjunto infinito admite ponto de acumulação completo. Então X

> **Prop.** Seja (X,τ) com base locais enumeráveis, T_1 e compacto. Então toda sequência admite subsequência convergente.

Resultados para espaços métricos

Prop. Seja (X,d) espaço métrico. Suponha que toda Caracterização para os espaços completamente regulares , Russia de pontos de X admite subsequência convergente. Então dada C cobertura aberta para X, existe r > 0 tal que, para todo $x \in X$, existe $C \in \mathcal{C}$ tal que $B_r(x) \subset C$.

> **Prop.** Seja (X,d) métrico tal que toda seguência admite subsequência convergente. Então X é compacto.

Cor. Seja (X, d) espaço métrico. São equivalentes:

- 1. (X,d) é compacto;
- 2. Todo subconjunto infinito de X admite ponto de acumulação em X:
- 3. Toda seguência de pontos de X admite subsequência convergente.

Cor. Todo métrico compacto é completo.

Demonstração. Basta notar que se (X, d) é compacto, toda sequência de Cauchy em X admite subsequência convergente. Logo, toda sequência é convergente em X.

Def. Seja (X, d) um espaço métrico. Dizemos que $A \subset X$ é totalmente limitado se, para todo $\varepsilon > 0$, existe $F \subset A$ finito tal que

$$\bigcup_{x \in F} B_{\varepsilon}(x) \supset A$$

Lema 5.3.16. Seja (X, d) espaço métrico totalmente limitado. Se $Y \subset X$, então Y é totalmente limitado.

Prop. Seja (X,d) espaço métrico. Então (X,d) é compacto se, e somente se, (X,d) é completo e totalmente limitado.

Cor. Seja (X,d) espaço métrico completo. Então $A \subset X$ é compacto se, e somente se A é fechado e totalmente limitado.

O totalmente limitado é necessário de fato:

Exemplo 5.3.19. Considere N com a métrica discreta. Note que, com tal métrica, N é completo. Note também que N é limitado (basta, por exemplo, tomar a bola $B_2(0)$). Mas não é compacto.

7.4 Algumas Aplicações

Prop. Seja $f: K \to \mathbb{R}$ contínua, onde K é um espaço compacto. Então f atinge seu máximo e mínimo (isto \acute{e} , existem $a,b \in K$ tais que, para qualquer $x \in K$, $f(a) \le f(x) \le f(b)$.

(Bolzano-Weierstrass). Prop. Dada $(x_n)_{n\in\mathbb{N}}$ sequência limitada de pontos em \mathbb{R}^n , ela admite subsequência convergente.

Teorema 5.4.3. Todas as normas sobre \mathbb{R}^n são equivalentes.

Conexos

Def. e propriedades básicas

Def. Seja (X,τ) espaço topológico. Dizemos que X é conexo se, dados quaisquer abertos $A \in B$ de X disjuntos tais que $A \cup B = X$, temos que $A = \emptyset$ ou $B = \emptyset$.

Na reta, os conexos são os intervalos:

Prop. $A \subset \mathbb{R}$ é conexo se, e somente se, A é um intervalo.

Exemplo. A reta de Sorgenfrey não é conexa. Basta notar que

$$]-\infty,0[\cup]0,+\infty[=\mathbb{R}$$

e] $-\infty$, 0[e]0, $+\infty$ [são abertos disjuntos não vazios da reta de Sorgenfrey.

Conexidade é preservada por funções contínuas:

Prop. Sejam (X,τ) , (Y,σ) espaços topológicos e $f: X \to Y$ contínua e sobrejetora. Se X é conexo, então Y é conexo.

Cor. Seja (X,τ) espaço topológico completamente regular, conexo e com mais de um ponto. Então $|X| \geq |\mathbb{R}|$.

Um outro jeito de caracterizar conjuntos conexos é em termos de conjuntos mutuamente separados

Def. Seja (X, τ) espaço topológico. Dizemos que $A, B \subset X$ são mutuamente separados se $A \cap \overline{B} = \emptyset$ e $\overline{A} \cap B = \emptyset$

Exemplo. $]-\infty,0[$ e $]0,+\infty[$ são mutuamente sep-Neste caso, dizemos que f é um caminho de x a y. arados em \mathbb{R} .

Prop. Seja (X, τ) espaço topológico. Então $Y \subset X$ é conexo se, e somente se, não existem $A, B \neq \emptyset$ mutu- é conexo. amente separados tais que $Y = A \cup B$.

Cor. Sejam (X,τ) um espaço topológico e $Y\subset X$ conexo. Se $A, B \subset X$ são mutuamente separados e $Y \subset A \cup B$, então $Y \subset A$ ou $Y \subset B$.

Prop. Seja (X, τ) espaço topológico.

- $X_{\alpha} \cap X_{\beta} \neq \emptyset$ para quaisquer $\alpha, \beta \in I$ distintos, inhos. então X é conexo.
- 2. Se para quaisquer $x, y \in X$ existir $A \subset X$ conexo tal que $x, y \in A$, então X é conexo.

8.2 Componentes e conexidade por caminhos

Def. Sejam (X,τ) espaço topológico e $x \in X$. Definimos a componente conexa de x como $\bigcup_{x \in A} A$ onde $A = \{A \subset X : x \in A \in A \text{ \'e conexo}\}.$

Prop. Componentes conexas são fechadas.

Def. Seja (X, τ) um espaço topológico. Dizemos que (X,τ) é conexo por caminhos se, dados $x,y\in X$, existe $f:[0,1]\to X$ contínua tal que f(0)=x e f(1)=y.

Homotopia

Exemplo. Sejam $A \subset \mathbb{R}^n$ um conjunto convexo e **Def.** (X,τ) é dito contrátil se $\mathrm{Id}_X: X \to X$ ($\mathrm{Id}_X(x) =$ (X,τ) espaço topológico. Então quaisquer $f,g:X\to A$ x, para $x\in X$) é homotópica a alguma função constante. funções contínuas são homotópicas. Basta tomar H(x,t) = tq(x) + (1-t)f(x).

Prop. \simeq é uma relação de equivalência.

Def. As classes de equivalência da relação \simeq são chamadas de classes de homotopia.

Prop. Composição de funções homotópicas é uma homotopia Importante variante topológico.

Conexo por caminhos implica conexo:

Prop. Se (X,τ) é conexo por caminhos, então (X,τ)

A volta do resultado anterior não vale em geral:

Exemplo. Espaço Pente: Espaço conexo que não é conexo por caminhos.

Prop. Sejam $(X,\tau),(Y,\sigma)$ espaços topológicos e $f: X \to Y$ função contínua e sobrejetora. Se (X, τ) 1. Se $X = \bigcup_{\alpha \in I} X_{\alpha}$, onde cada X_{α} é conexo e é conexo por caminhos, então (Y, σ) é conexo por cam-

Propriedades locais de conexidade

Def. espaço topológico (X, τ) é localmente conexo por caminhos se todo ponto de X admite uma base local conexa por caminhos.

Conexidade local é suficiente para fazer um espaço conexo, conexo por caminhos

Prop. Se (X,τ) é um espaço conexo e localmente conexo por caminhos então X é conexo por caminhos.

Def. X
in localmente conexo se todo ponto de <math>Xadmite base local conexa.

Prop. Se X é localmente conexo, então todo ponto de X tem componente conexa aberta.

Algumas aplicações

Exemplo. Qualquer conjunto convexo $A \subset \mathbb{R}^n$ é contrátil.

Prop. Se X é contrátil, X é conexo por caminhos.

Prop. X é contrátil \Leftrightarrow para todo espaço topológico (T,σ) e para todas as funções $f,g:T\to X$ contínuas temos que $f \simeq g$.

Def. (X,τ) (Y,σ) ditos homotopicamente equivalentes se existem funções

9.1Def. e resultados básicos

Sejam (X,τ) e (Y,σ) espaços topológicos e $f,g:X\to Y$ funções contínuas. Dizemos que f é homotópica a g se existe uma função contínua $H: X \times [0,1] \rightarrow Y \text{ tal que } H(x,0) = f(x) \text{ e}$ H(x,1) = g(x), para todo $x \in X$. Neste caso, dizemos que H é uma homotopia entre f e q. Notação: $f \simeq q$.

Num espaço convexo, quaisquer duas funções contínuas são homotópicas

 $f \circ g \simeq \operatorname{Id}_Y = g \circ f \simeq \operatorname{Id}_X$. Neste caso, $g \notin \operatorname{dita}$ uma inversa homotópica de f (e vice-versa).

Note que, espaços homeomorfos são homotopicamente equivalentes. Mas a recíproca não é verdadeira

Prop. (X,τ) é contrátil \Leftrightarrow (X,τ) é homotopicamente equivalente a um ponto.

Def. Dizemos que o conjunto $A \subset X$ é um retrato de X se existe uma função contínua $r: X \to A$ (chamada de retração tal que r(a) = a, para todo $a \in A$. Se $r \simeq$ Id_X , chamamos a retração de retração de deformação. A ideia do retrato é que todos os caras que estavam em A ficam parados, e aqueles que não estavam, entram em A. Isso acontece com a função constante (todos entram no conjunto unitário e, no caso, a constante fica parada)

Prop. Seja (X,τ) um espaço topológico. Se o conjunto $A \subset X$ é uma retração de deformação, então A e X são homotopicamente equivalentes.

Formalização de deformação entre caminhos

Def. Seja (X,τ) espaço topológico. Sejam f,g: $[0,1] \rightarrow X$ dois caminhos. Dizemos que f e g são caminhos homotópicos se existe $H:[0,1]\times[0,1]\to X$

Def Seja (X,τ) um espaço topológico. Dizemos que (X,τ) é completamente metrizável se existe um espaço métrico completo (Y, d) tal que X seja homeomorfo a Y. Cor Existe uma métrica completa sobre $[0,1]^{\mathbb{N}} = \prod_{n \in \mathbb{N}} [0,1]$ que induz a topologia produto deste espaço. **Teorema** Seja (X, τ) um espaço T_1 . São equivalentes:

- (a) $X \notin T_3$ e tem base enumerável;
- (b) X é separável e metrizável;
- (c) X é homeomorfo a um subespaço de $[0,1]^{\mathbb{N}}$.

Proposição. Sejam (X, d) um espaço métrico completo e $A \subset X$ aberto. Então A é completamente metrizável.

Teorema. Todo G_{δ} em um espaço métrico completo é completamente metrizável.

 G_{δ} é uma interseção numerável de conjuntos abertos. Cor Existe uma métrica completa equivalente à

contínuas $f:X\to Y$ e $g:Y\to X$ tais que homotopia entre f e g tal que $H(0,\cdot)$ e $H(1,\cdot)$ são funções constantes. Precisamos de essa última condição para que os caminhos sempre comecem e terminem nos mesmos

9.2Grupo Fundamental

Def. Seja X um espaco topológico e $x_0 \in X$. Chamamos de laço no ponto x_0 uma função $f:[0,1]\to X$ contínua tal que $f(0) = f(1) = x_0$.

Def. Sejam $f,g:[0,1]\to X$ laços no ponto x_0 . Dizemos que eles são laços homotópicos se f e q são caminhos homotópicos. Notação $f \simeq_{x_0} g$.

Obs 1. \simeq_{x_0} é uma relação de equivalência. Denotamos a classe de equivalência de f por [f] e o conjunto das classes por $\pi_1(X, x_0)$.

Obs 2. Podemos "concatenar" dois laços

$$(f * g)(t) = \begin{cases} f(2t), & \text{se } 0 \le t \le \frac{1}{2} \\ g(2t - 1), & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (1)

Métricos disfaçados 10

usual sobre $\mathbb{R} \setminus \mathbb{Q}$.

Demonstração. Note que $\mathbb{R} \setminus \mathbb{Q} = \bigcap_{q \in \mathbb{Q}} (\mathbb{R} \setminus \{q\})$ é um G_{δ} e, portanto o resultado segue pelo teorema anterior.

Teorema Sejam X e Y dois espaços T_0 , sem pontos isolados, zero-dimensionais e com base enumerável. Sejam $A \subset X$ e $B \subset Y$ subconjuntos densos e enumeráveis em X e Y, respectivamente. Então existe um homeomorfismo

$$f: A \longrightarrow B$$
.

Além disso, f admite uma (única) extensão injetora $\tilde{f}: X \longrightarrow Y$. Finalmente, se X também for compacto, então f é um homeomorfismo.

Uma condição é uma tripla (P, Q, f) satisfazendo:

- 1. P é uma partição finita de X feita por abertos fechados de \mathcal{B} :
- 2. Q é uma partição finita de Y feita por abertos fechados de C;
- 3. f é uma função finita com domínio contido em Ae contradomínio B;

Prop. Sejam (X,τ) espaço topológico e $x_0 \in X$. Definition $*: \pi_1(X,x_0) \times \pi_1(X,x_0) \rightarrow \pi_1(X,x_0)$ por [f] * [g] = [f * g]. Tal operação está bem definida.

Prop. Sejam X espaço topológico e $x_0 \in X$. Então $(\pi_1(X,x_0),*)$ é um grupo.

Def. (X, x_0) é dito um espaço com ponto base se X é um espaço topológico e $x_0 \in X$. Denotamos por f: $(X,x_0) \to (Y,y_0)$ se $f: X \to Y$ e $f(x_0) = y_0$. Dizemos que (X, x_0) e (Y, y_0) são homotopicamente equivalentes se existem $f:(X,x_0) \to (Y,y_0)$ e $g:(Y,y_0) \to (X,x_0)$ contínuas tais que $f \circ g \simeq Id_Y$ relativamente a $\{y_0\}$ e $g \circ f \simeq Id_X$ relativamente a $\{x_0\}$.

Funções contínuas com um ponto base conversam bem com homomorfismos nos grupos:

Prop. Toda $f:(X,x_0)\to (Y,y_0)$ continua induz um homomorfismo $f_{\#}: \pi_1(X, x_0) \to \pi_1(Y, y_0)$.

Prop. Se (X, x_0) e (Y, y_0) são homotopicamente equivalentes, então $\pi_1(X,x_0)$ e $\pi_1(Y,y_0)$ são isomorfos.

Cor. Se (X,τ) e (Y,σ) são tais que $\pi_1(X,x_0)$ e $\pi_1(Y, y_0)$ não são isomorfos, então não existe homeomorfismo $f: X \to Y$ tal que $f(x) = y_0$.

- 4. dom(f) é uma escolha para P:
- 5. $\Im(f)$ é uma escolha para Q.

Lema. Dada uma condição (P_1, Q_1, f_1) , podemos fazer as seguintes extensões:

- 1. Dado $a \in A$, existe uma condição (P_2, Q_2, f_2) tal que $a \in dom(f_2)$;
- 2. Dado $b \in B$, existe uma condição (P_2, Q_2, f_2) tal que $b \in \Im(f_2)$;
- 3. Dado $B \in \mathcal{B}$, existe uma condição (P_2, Q_2, f_2) tal que B é união de elementos de P_2 ;
- 4. Dado $C \in \mathcal{C}$, existe uma condição (P_2, Q_2, f_2) tal que C é união de elementos de Q_2 .

Cor A menos de homeomorfismos, existe um único espaço métrico enumerável sem pontos isolados.

Def Dizemos que (X, τ) é um espaço zero-dimensional se possui uma base formada por abertos fechados.

11 Espaços de Baire

Definição e resultados básicos

Def. Dizemos que (X, τ) é um espaço de Baire se, para toda família $\{A_n\}_{n\in\mathbb{N}}$ de abertos densos em X, a interseção $\bigcap_{n\in\mathbb{N}} A_n$ é densa em X.

(Teorema de Baire, para compactos). Seja (X,τ) um compacto de Hausdorff. Então (X,τ) é um espaco de Baire.

(Teorema de Baire, para métricos completos). Seja (X,d) um espaco métrico completo. Então (X,d) é um espaço de Baire.

Cor. $\mathbb{R} \setminus \mathbb{Q}$ é um espaço de Baire.

Demonstração. Segue de $\mathbb{R} \setminus \mathbb{Q}$ ser completamente metrizável e do fato de "ser de Baire" ser uma propriedade invariante por homeomorfismo.

Cor \mathbb{Q} não é completamente metrizável.

Def Seja (X, τ) completamente regular. Chamamos de

$$\beta X = \left\{ (f(x))_{f \in \mathcal{F}} : x \in X \right\} \subset [0, 1]^{\mathcal{F}},$$

onde \mathcal{F} é o conjunto de todas as funções contínuas $f: X \to [0,1]$. βX é a compactificação de Stone-Čech de X. A menos de homeomorfismos, podemos considerar $X \subset \beta X$ (pelo Teorema da Imersão).

Teorema Seja (X, τ) completamente regular. Então:

(a) βX é um compacto de Hausdorff tal que $\overline{X} = \beta X$.

aberto denso em \mathbb{Q} . Contudo, $\bigcap_{q\in\mathbb{Q}}A_q=\emptyset$, que não é joga um aberto não vazio $B_n\subset A_n$. Depois de todas as denso. Logo Q não é um espaço de Baire e, portanto, rodadas, Alice é declarada vencedora se não pode ser completamente metrizável.

Contraexemplo. A reta de Sorgenfrey \mathbb{R}_S é um espaco de Baire, mas não é localmente compacto nem completamente metrizável.

Prop Se A é um aberto denso em \mathbb{R}_S , então A contém um aberto denso em \mathbb{R} .

O jogo de Banach-Mazur

Def Dado um espaço topológico (X, τ) , vamos chamar de jogo de Banach-Mazur o jogo entre dois jogadores, Alice e Beto, definido da seguinte forma: Na rodada 0, Alice joga um aberto não vazio $A_0 \subset X$. Em seguida, Beto joga um aberto não vazio $B_0 \subset A_0$. Numa rodada

Demonstração. Para cada $q \in \mathbb{Q}$, $A_q = \mathbb{Q} \setminus \{q\}$ é um $n \geq 1$, Alice joga um aberto não vazio $A_n \subset B_{n-1}$ e Beto

$$\bigcap_{n\in\mathbb{N}}A_n\neq\varnothing,$$

caso contrário, o vencedor é Beto.

Prop. Seja (X,τ) um espaço compacto de Hausdorff. Então Beto tem estratégia vencedora no jogo de Banach-Mazur.

Prop. Se Alice não tem estratégia vencedora no jogo de Banach-Mazur, então (X, τ) é um espaço de Baire.

Prop. Se (X,τ) é um espaço de Baire, então Alice não tem estratégia vencedora no jogo de Banach-Mazur.

Cor. O espaço ser de Baire é equivalente a Alice não ter estratégia vencedora no jogo de Banach-Mazur.

Compactificação de Stone-Cech

(b) Para toda $f \colon X \to [0,1]$ contínua existe uma extensão contínua $\tilde{f}: \beta X \to [0, 1].$

 βX é o único espaço que satisfaz as condições (a) e (b) (a menos de homeomorfismo).

Prop. Sejam (X,τ) um espaço completamente regular e Y um compacto de Hausdorff tais que X = Y. Para qualquer função $f: X \to [0,1]$ contínua, existe $q: Y \to [0,1]$ extensão contínua de f. Então, dada $K \subset X$ compacto em X, existe $h: Y \to K$ extensão contínua de f.

Prop. Seja $F \subset \beta \mathbb{N}$ fechado e infinito. Então F contém um subespaço homeomorfo a $\beta \mathbb{N}$.

Cor Seja $F \subset \beta \mathbb{N}$ fechado e infinito. Então |F| = $|\beta\mathbb{N}|$.

Cor. $\beta \mathbb{N}$ é um compacto em que nenhuma sequência não trivial converge.

Seja F um compacto infinito Hausdroff Note que existe $x \in F$ ponto de acumulação de F. Note que existe $y \in F$, distinto de x, e existem A, B abertos disjuntos tais que $x \in A$ e $y \in B$.

Espaços	T_1	Hausdorff	Normal	Regular	Compl. Reg.	Conexo	Loc. Conexo	Compacto	Loc. Compacto	Metrizável	2º Axioma
Reta de Sorgenfrey	√	✓	√	✓	✓	×	×	×	×	×	×
Reta de Sorgenfrey ²	\checkmark	\checkmark	×	\checkmark	\checkmark	×	×	×	×	×	×
Espaço pente	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Racionais	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	\checkmark	\checkmark
Reais	\checkmark	×	\checkmark	\checkmark	\checkmark						
Topologia cofinita	\checkmark	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×
Naturais (subespaço usual)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark
etaN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	×	×
Discreta	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×

Propriedade	Subespaço	Produto	Quociente	Imagem Contínua	Homeomorfismo
Hausdorff	√	✓	×	×	✓
Compacidade	✓ (fechado)	\checkmark	\checkmark	\checkmark	\checkmark
Normalidade	✓ (fechado)	×	×	×	\checkmark
Conectividade	×	\checkmark	\checkmark	\checkmark	\checkmark
Regularidade	✓ (fechado)	\checkmark	×	×	\checkmark
Compl. Regularidade	✓ (fechado)	\checkmark	×	×	\checkmark
Metrizável	√	✓ (se finito)	×	×	\checkmark
Baire	✓ (aberto)	✓ (se finito)	×	×	\checkmark
1º Axioma	√	✓ (se finito)	×	×	✓
$2^{\underline{o}}$ Axioma	√	×	×	×	\checkmark
3º Axioma	×	×	×	\checkmark	\checkmark

 ${f 1}$ axioma bases locais enumeráveis ${f 2}$ axioma base enumerável ${f 3}$ axioma denso enumerável

Regular =
$$T_3 + T_1$$

$$T_{3.5}$$

$$f(F) = 1$$

Completamente Regular =
$$T_{3.5} + T_1$$

$$Normal = T_4 + T_1$$