

William Stallings
Computer Organization
and Architecture
9th Edition

+ Chapter 3

A Top-Level View of Computer Function and Interconnection

I/O Function

- I/O module can exchange data directly with the processor
- Processor can read data from or write data to an I/O module
 - Processor identifies a specific device that is controlled by a particular I/O module
 - I/O instructions rather than memory referencing instructions
- In some cases it is desirable to allow I/O exchanges to occur directly with memory
 - The processor grants to an I/O module the authority to read from or write to memory so that the I/O memory transfer can occur without tying up the processor
 - The I/O module issues read or write commands to memory relieving the processor of responsibility for the exchange
 - This operation is known as direct memory access (DMA)

Computer Modules

Figure 3.15 Computer Modules

The interconnection structure must support the following types of transfers:

Memory to processor

Processor reads an instruction or a unit of data from memory

Processor to memory

Processor writes a unit of data to memory

I/O to processor

Processor reads data from an I/O device via an I/O module Processor to I/O

Processor sends data to the I/O device I/O to or from memory

An I/O
module is
allowed to
exchange
data
directly
with
memory
without
going
through the
processor
using direct
memory
access

A communication pathway connecting two or more devices

• Key characteristic is that it is a shared transmission medium

Signals transmitted by any one device are available for reception by all other devices attached to the bus

 If two devices transmit during the same time period their signals will overlap and become garbled

Typically consists of multiple communication lines

 Each line is capable of transmitting signals representing binary 1 and binary 0 Computer systems contain a number of different buses that provide pathways between components at various levels of the computer system hierarchy

System bus

 A bus that connects major computer components (processor, memory, I/O)

The most common computer interconnection structures are based on the use of one or more system buses

Data Bus

- Data lines that provide a path for moving data among system modules
- May consist of 32, 64, 128, or more separate lines
- The number of lines is referred to as the width of the data bus
- The number of lines determines how many bits can be transferred at a time
- The width of the data bus is a key factor in determining overall system performance

Address Bus

- Used to designate the source or destination of the data on the data bus
 - If the processor wishes to read a word of data from memory it puts the address of the desired word on the address lines
- Width determines the maximum possible memory capacity of the system
- Also used to address I/O ports
 - The higher order bits are used to select a particular module on the bus and the lower order bits select a memory location or I/O port within the module

Control Bus

- Used to control the access and the use of the data and address lines
- Because the data and address lines are shared by all components there must be a means of controlling their use
- Control signals transmit both command and timing information among system modules
- Timing signals indicate the validity of data and address information
- Command signals specify operations to be performed

Bus Interconnection Scheme

Figure 3.16 Bus Interconnection Scheme

Figure 3.17 Example Bus Configurations

Elements of Bus Design

Type Bus Width

Dedicated Address

Multiplexed Data

Method of Arbitration Data Transfer Type

Centralized Read

Distributed Write

Timing Read-modify-write

Synchronous Read-after-write

Asynchronous Block