TFmini Plus 使用说明书

激光雷达模组

www.benewake.com Benewake (Beijing) Co., Ltd.

所述产品

产品型号: TFmini Plus

产品名称: TFmini Plus 激光雷达模组

制造商

公司: 北醒 (北京) 光子科技有限公司

地址: 中国 北京 海淀区 信息路 28 号

版权声明

本文档受版权保护。其中涉及到的一切权利归北醒公司所有。只允许在版权法的范围内复制本文档的 全部或部分内容。未经北醒公司的官方书面许可,不允许对文档进行修改、删减或翻译。

© 北醒公司版权所有

产品认证

前言

尊敬的用户:

您好。感谢您选择北醒光子科技的产品,我们很荣幸参与您解决问题的过程。

为了让产品的使用体验更好,我们特此制定产品使用说明书,帮助您更加便捷的使用产品, 从而更好的帮您解决问题。

本说明书中已涵盖常见情况下的使用说明及问题处理措施,但仍不能保证可完全解决您的问 题。如果您在使用产品的过程中遇到其他问题,欢迎您咨询我们的技术支持人员 (support@benewake.com),我们竭诚为您解决产品使用中的任何问题。您在使用产品过程中有任 何意见或建议,可以到官网的留言咨询版块 (http://www.benewake.com/contact_us) 反馈给我们,我 们期待您的参与。

我们是北醒,我们立志做最好的机器人眼睛!

目录

1	注意	事项	6
	1.1	关于文档	6
	1.2	产品使用	6
	1.3	产品失效情况	6
2	功能	及关键参数	6
	2.1	产品功能	6
	2.2	测距原理	6
	2.3	关键特性参数	7
	2.4	重复精度	7
	2.5	测距特性	8
3	外观	与结构	10
	3.1	产品外观	10
4	电气	特性	10
5	线序	与数据通信协议	11
	5.1	线序说明	11
	5.2	串口数据通信	11
	5.3	串口数据输出格式及编码	11
	5.4	输出数据说明	12
	5.5	I2C 数据通信	12
	5.6	I ² C 模式数据时序说明	13
	5.7	I/O 模式说明	13
6	快速	测试步骤	14
	6.1	产品测试所需工具	14
	6.2	测试步骤	14
7	自定	义参数配置说明	15

	7.1	功能简介	15
	7.2	配置指令通信约定	16
	7.3	帧定义	16
	7.4	一般参数配置及说明	16
8	远程升	十级	18
9	故障-/	原因和处理措施	19
10	常见	问题及解答	21
附長] —	TF 系列上位机使用说明	22

1 注意事项

1.1关于文档

- 本说明书提供产品使用过程中必需的各项信息。
- 请在使用本产品前认真阅读本说明书,并确保您已完全理解说明书内容。

1.2产品使用

- 本产品只能由合格的专业人员维修,且只能使用原厂备件,以保证产品的性能和安全性。
- 产品本身无极性保护和过电压保护,请按说明书内容正确接线和供电。
- 产品的工作温度为 -20° C \sim 60 $^{\circ}$ C,请勿在此温度范围外使用,以免产生风险。
- 产品的存储温度为 -20℃~75℃, 请勿在此温度范围外存储, 以免产生风险。
- 请勿打开外壳进行本使用说明以外的装配或保养,以免影响产品防护性能,造成产品失效。

1.3产品失效情况

- 产品在探测高反射率物体,如镜面、光滑地砖、平静的牛奶液面时,会有失效的风险。
- 当产品与被测目标之间有透明物体,如玻璃、水时,会有失效的风险。
- 当产品发射接收窗口被污物覆盖时,会有失效的风险,请保持窗口干净。发射接收窗口为 红透亚克力材质,请勿让产品接触酒精,会导致产品损坏。
- 本产品线缆较细,请在使用时不要用力拉拽线缆,会导致产品损坏。

2 功能及关键参数

2.1产品功能

TFmini Plus 是基于 TFmini 的升级项目,它是一款小型化,单点测距的产品,基于 ToF(飞行 时间)原理,配合独特的光学、电学、算法设计,主要实现稳定、精准、高灵敏度和高速的距离测 量的功能。产品本身除了具有 TFmini 的低成本、小体积、测距远等特点外,还增加了 IP65 等级防 护,测距精度更高,对于室外强光、不同温度、不同反射率等不同环境下适应性更强,更低功耗, 探测频率也更加灵活。产品同时兼容 UART 和 I²C 通信接口,可通过指令进行切换。

2.2测距原理

TFmini Plus 基于 ToF(Time of Flight)即飞行时间原理。具体为产品周期性的向外发出近红外 光调制波,调制波遇物体后反射。产品通过测量调制波往返相位差,得到飞行时间,再计算出产品 与被测目标之间的相对距离,如图 1 所示。

图 1 飞行时间原理示意图

2.3 关键特性参数

表 1 TFmini Plus 关键特性参数指标

参数名称	参数值
测量范围	0.1m~12m ^①
光 场府	±5cm@ (0.1-5m) ^②
准确度	±1%@ (5m-12m)
默认距离单位	cm
距离分辨率	1cm
信号接收角	$3.6^{\circ^{\circledR}}$
输出频率	1~1000Hz(可调) ^④

- ① 室内标准白板(90%反射率)条件下所能达到的测距范围。
- ② 此处测距绝对精度,具体重复精度见下一节 2.4 描述。
- ③ 该角度为理论值,实际角度值存在一定偏差。信号发射角理论值为6°。
- ④ 输出帧率默认值为 100Hz, 支持自定义配置, 可配置值为 1000/n (n 为正整数)。

2.4重复精度

TFmini Plus 的测距重复精度与测量时的信号强度值(Strength)及输出帧率(Frequence)直接相 关,以测距标准差表征测距重复精度,可通过如下公式估算 TFmini Plus 的平均测距精度:

Distance_STD[cm] =
$$p00 + p10 * x + p01 * y + p20 * x^2 + p11 * x * y$$

式中, x 为log₁₀ Strength, y 为log₁₀ Frequence[Hz], p00、p01、p10、p20 和 p11 为常系数, 值如下:

$$p00 = 0.9758$$

$$p01 = 1.175$$

$$p10 = -0.6072$$

$$p20 = 0.09501$$

p11 = -0.2904

上述公式计算出的仅为平均参考值,因各产品存在一定差异性,实际结果会存在一定差异。为 方便使用,此处添加简易统计表以供查询,如下:

AMP Freq	120	200	500	1000	5000	10000
25	1.1	1.2	0.7	0.3	0.1	0.0
50	0.6	1.3	0.9	0.5	0.2	0.0
100	0.9	1.3	0.9	0.6	0.5	0.0
125	1.0	1.1	1.0	0.7	0.5	0.0
250	1.4	0.9	1.0	0.7	0.5	0.0
500	1.8	1.3	0.9	0.7	0.5	0.2
1000	2.6	1.8	0.7	0.7	0.5	0.0

表 2 TFmini Plus 距离标准差统计表

注: AMP 单位 a.u., Freq 单位 Hz, 距离标准差单位 cm

2.5测距特性

图 2 产品测距范围及有效性示意图

TFmini Plus 产品经过光路与算法优化,已最大程度减小外界环境对测距性能的影响。但限于 工作原理,测距范围仍会受到环境光照强度和被测目标反射率不同程度的影响。 如图 2 所示:

序号①:代表 TFmini Plus 的测距盲区,为 0-10cm,该范围内的数据不可信。

序号②: 代表 TFmini Plus 对黑色(10%反射率)目标的探测能力,测量范围为 0.1-4m。

序号③: 代表 TFmini Plus 对白色(90%反射率)目标的探测能力,测量范围为 0.1-12m。

纵坐标:代表不同距离下 TFmini Plus 的有效测距边长,只有当『被测目标边长』大于等于『有 效测距边长』时,数据才稳定可靠。该『有效测距边长』由 TFmini Plus 的视场角决定(视场角一 般是指接收角和发射角中的较小者), 计算公式为:

 $d = 2 * D \cdot tan\beta$

其中, d表示有效测距边长, D表示探测距离, β为 TFmini Plus 的接收半角 1.8°, 一般的有效 测距边长与探测距离的对应关系, 见表 3

表	3	测距距离对应的被测目标有效边长
---	---	-----------------

探测距离	1m	2m	3m	4m	5m	6m	7m	8m	9m	10m	11m	12m
有效 边长	6cm	12cm	19cm	25cm	31cm	38cm	44cm	50cm	57cm	62cm	69cm	76cm

当被测物体边长不满足有效测距边长时,如图 3 所示, TFmini Plus 输出测量值 (Dist) 会出 现异常。使用过程中如果要求精度较高,应尽量避免此类情况,减小测量误差。

www.benewake.com

3 外观与结构

3.1产品外观

图 4 TFmini Plus 产品外观及尺寸图

固定螺钉为 M2 机牙螺钉,具体长度根据安装板厚度而定。

4 电气特性

表 4 TFmini Plus 主要电气参数

参数名称	参数值
输入电压	5V±0.5V
平均电流	≤110mA
峰值电流	140mA
功耗	550mW
通信电平	LVTTL (3.3V)

本产品无过压保护或者极性保护,请确保接线和供电正常,供电电压允许±0.5V的波动。

平均电流有两种情况, 根据产品的工作档位不同而变化, 近距离档位平均电流 50mA 左右, 远距离档位平均电流 140mA 左右。

5 线序与数据通信协议

5.1线序说明

表 5 引脚功能及连接说明

编号	颜色	对应 PIN 脚	功能	说明
1)	红	PIN-1	+5V	电源正极
2	白	PIN-2	RXD/SDA	接收/数据
3	绿	PIN-3	TXD/SCL	发送/时钟
4	黑	PIN-4	GND	电源地

产品连接线长 30cm, 连接器为普通 GH1.25-4p (Molex51021-0400)。客户可自行延长连接线, 为保证数据的有效传输,建议自行焊接的连接线长度不大于 1m。线缆功用以上图中颜色信息为准。

5.2 串口数据通信

TFmini Plus 串口数据通信,详见表 6 错误!未找到引用源。。

通信接口 UART 默认波特率 115200 数据位 停止位 1 奇偶校验 None

表 6 TFmini Plus 数据通信协议——UART

5.3 串口数据输出格式及编码

TFmini Plus 有两种数据输出格式,标准数据输出格式和字符串数据格式,两种格式可通过指 令代码相互切换。

● 标准数据输出格式 (默认):

数据结构:数据帧长度为9字节。包含距离信息(Distance)、信号强度信息(Strength)、温度 (Temp)、数据校验字节 (Checksum) 等。数据格式为 16 进制 (HEX)。具体数据编码详见表 7。

表 7 数据格式及编码解释

Byte0 -1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8				
0x59 59	Dist_L	Dist_H	Strength_L	Strength_H	Temp_L	Temp_H	Checksum				
Byte0 0x59, 帧头, 每一帧都相同											
Byte1	0x59,帧	头,每一帧	占都相同								
Byte2	Dist_L 距	离值低八位	Ż								
Byte3	Dist_H 距	离值高八倍	立								
Byte4	Strength_	L低八位									
Byte5	Strength_	H 高八位									
Byte6	Temp_L {	氐八位									
Byte7	Temp_H -	Temp_H 高八位									
Byte8	Checksun	n 为前 8 字	节数据的累加	1和,取累加和	口的低8位						

● 字符串数据格式

以字符串形式输出,单位为 m,比如测距为 1.21m,则输出字符串 1.21,后跟转义字符\r\n。

5.4输出数据说明

Dist(Distance): 代表 TFmini Plus 测量输出的距离值,默认单位为 cm,解析为十进制的值范围为 0-1200。实际使用过程中,当信号强度值 Strength<100 或等于 65535 (信号过曝)时,Dist 的测量值被认为不可信,默认输出 0。

Strength: 指信号强度,默认输出值会在 0-65535 之间。当测距档位一定时,测距越远,信号强度越低;目标物反射率越低,信号强度越低。当 Strength 大于 100 且不等于 65535 时,认为 Dist 的测量值可信,客户可以根据使用场景自行调整。

Temp(Temperature): 表征芯片内部温度值。摄氏度 = Temp / 8 - 256

5.5 I2C 数据通信

TFmini Plus 同时支持 I²C 数据通信接口,见下表:

表 8 TFmini Plus 数据通信协议——I2C

通信接口	I ² C
最大传输速率	400kbps
主从模式	从机模式
默认地址	0x10
地址范围	0x01~0x7F

5.6 I²C 模式数据时序说明

与串口通信不同, I2C 通信由主机发起, 雷达作为从机只能被动收发数据。主机向雷达写入配 置指令帧后, 需要等待足够长的时间, 等待处理完该指令后, 再进行读取反馈操作, 建议等待时间 为 100ms。为保证测距状态下的实时性,"获取测距结果"数据帧无需设置等待时间, 主机发送下行 帧后,可以立即读取上行帧。详见下表:

表 9 TFmini Plus I2C 模式通信时序

																		1
Start	Addr	W	Α	Byte0	Α	 ByteN	Α	Stop	Wait 100ms	Start	Addr	R	Α	Byte0	Α	 ByteN	Α	Stop
				J		J								J		J		

5.7 I/O 模式说明

本产品增加 I/O 输出模式支持, 可通过相关指令使能该模式。详见 7.4。指令开放模式 (Mode), 临界距离值(Dist)及滞回区间(Zone)三个可配置参数:

Mode: 0 (数据输出模式), 1 (开关量模式, 近高远低), 2 (开关量模式, 近低远高); 默认值 为 0

Dist: 临界值, 滞回区间的近端点值, 单位 cm; 默认值为 0

Zone: 滞回区间大小, 单位 cm; 默认值为 0 (无滞回区间)

通过该指令设置开关临界区的滞回区间, 当输出为近区电平时, 测量值大干滞回区间的远端点 后,输出切换为远区电平; 当输出为远区电平时,测量值小于滞回区间的近端点时,输出切换为近 区电平。(高电平: 3.3V, 低电平: 0V)

注:使用 I/O 模式前,请将低阈值默认输出值修改为 1200 (发送指令: 5A 07 22 0A B0 04 00 5A 04 11 6F),可以避免远距离误报的问题。

6 快速测试步骤

6.1产品测试所需工具

6.2测试步骤

(1) 上位机测试软件下载

请到北醒官网(http://www.benewake.com/download)下载 TFmini Plus 上位机软件。

注意:解压上位机软件前请关闭杀毒软件,避免上位机软件中的文件被当成病毒删除,上位机 目前仅支持在 Windows 系统上运行。详见附录一:《TF 上位机使用说明》。

(2) 设备连接

图 5 正确连接示意图

如上图所示,连接『TFmini Plus』、『TTL-USB 转接板』和『USB 线』,确保无松动,再将『USB 线』与『电脑』连接。

(3) 上位机连接与读数

如图 , 打开 TF 上位机,选择『① TFmini Plus』,并选择自动识别的占用串口(这里是『② COM571).

然后,点击『CONNECT』进行上位机连接。连接成功后,右侧『④ TIME LINE CHART』区 域会出现连续输出的数据图像,下方『⑥ REAL TIME DATA』区实时显示当前测试距离(Dist)、 每秒有效数据量(Effective Points)和信号强度(Strength)。

图 6 上位机界面及显示

说明:

- 如果『④ TIME LINE CHART』区没有数据,请检查连接和线序,TFmini Plus 上电成功,正面看 发射透镜内会有微弱的红光。
- b) 如果 TFmini Plus 是 Pixhawk 格式输出,需先勾选『③ Pix Mode』,『④ TIME LINE CHART』区 才会正常输出数据图像。勾选 Pix Mode 后, 距离单位变为 m。
- 距离输出 Dist 值,跟据输出单位不同会有所区别,默认单位为 cm。如果通过指令修改 TFmini Plus 的距离单位为 mm,上位机并不能区分,『④ TIME LINE CHART』单位仍为 cm。例如,TFmini Plus 实际测量距离为 1m,以 mm 为单位则输出 1000,通过该上位机读取的数值为 1000,但上位 机上的单位不会变化,仍显示 cm。

7 自定义参数配置说明

7.1 功能简介

为了让 TFmini Plus 可以更灵活的解决您的问题,特开放用户自定义配置产品参数的功能。用

户可通过发送相关指令来修改产品的原有参数,如输出数据格式、输出帧率等。

请根据需求修改产品配置,切勿频繁尝试不相关指令,以免指令发送错误造成不必要的损失;请务必按照本说明书所列指令进行产品配置,切勿发送未声明的指令。

7.2配置指令通信约定

多字节数据采用小端模式传输,即数据的低字节保存在数据帧的低地址中

如,十进制数 1000 对应十六进制为 0x03E8,则在数据帧保存为

0x5A 0x06 0x03 **0xE8 0x03** 0x4E

7.3帧定义

注意: 所有配置指令均为 16 进制数 (HEX) 发送。

ByteN-1 Byte3 ~ ByteN-2 Byte0 Byte1 Byte2 Head Len ID Payload Checksum 指令编码解释 Head: 指令帧的帧头(固定值, 0x5A) Byte0 Byte1 Len: 指令帧总长度(包含 Head 和 Checksum, 单位为字节) Byte2 ID: 代表不同功能指令的解析方式 Data: 数据段, 根据 ID 进行解析, 数据为小端格式, Byte3-N-2

表 10 指令编码格式及详细描述

7.4一般参数配置及说明

ByteN-1

设置 TFmini Plus 的相关参数,请先将 TFmini Plus 与 PC 建立连接,连接方式参考 6.2,通过 TF 上位机或者其他串口调试软件,给产品发送相关配置指令;客户也可以通过自己的串口工具发 送相关指令。所有指令在 UART 及 IIC 模式下通用。重要:在发送完参数配置指令后,请务必发送 '保存配置'指令,否则再次连接产品时,参数将重置。

Checksum: 对从 Head 到 Payload 的所有字节进行求和计算, 取低 8 位

表 11 一般参数配置指令列表

可配置项	下行指令	上行指令	说明	出厂配置
获取固件版本	5A 04 01 5F	5A 07 01 V1 V2 V3 <mark>SU</mark>	版本 V3.V2.V1	
系统复位	5A 04 02 60 [©]	5A 05 02 00 60	配置成功	/
		5A 05 02 01 61	配置失败	/
输出帧率	5A 06 03 LL HH <mark>SU</mark>	5A 06 03 LL HH <mark>SU</mark>	1-1000Hz 设置 ^①	100Hz
单次触发指令	5A 04 04 62	数据帧	将输出帧率设置为 0	
			后,可通过本指令出发	

			测试	
输出模式	5A 05 05 01 65	5A 05 05 01 65	标准 9 字节(cm)	$\sqrt{}$
	5A 05 05 02 66	5A 05 05 02 66	字符串格式(m)	/
	5A 05 05 06 6A	5A 05 05 06 6A	标准 9 字节(mm)	/
波特率	5A 08 06 H1 H2 H3 H4 <mark>SU</mark>	5A 08 06 H1 H2 H3 H4 SU	设置波特率 ^② 例: 256000(DEC)=3E800(HE X), H1=00,H2=E8,H3=03,H4 =00	115200
输出开关	5A 05 07 00 66	5A 05 07 00 66	关闭数据输出	/
	5A 05 07 01 67	5A 05 07 01 67	使能数据输出	\checkmark
通信接口设置	5A 05 0A MODE <mark>SU</mark>	/	0 (UART) 1 (I ² C)	UART
修改 I2 C 从机 地址	5A 05 0B ADDR SU	原指令	修改 I2c_slave_addr	0x10
获取测距结果	5A 05 00 01 60	数据帧(标准9字节(cm))	仅 IIC 模式下可用	/
	5A 05 00 06 65	数据帧(标准9字节(mm))		
I/O(开关 量)模式使能	5A 09 3B MODE DL DH ZoneL ZoneH <mark>SU</mark>		开启/关闭 I/O(开关量) 输出模式 MODE: 0 – 标准数据模式 1 – I/O,近高远低 2 – I/O,近低远高 Zone: 滞回区间	0 (标准数据模式)
信号强度低阈值和低阈值输出值 ^③	5A 07 22 XX LL HH 00	5A 07 22 XX LL HH <mark>SU</mark>	修改示例:Strength ≤ 100 后, Dist 输出值修改为 1200。 XX=100/10=10(DEC)=0 A(HEX) 1200(DEC)=4B0(HEX) LL=B0, HH=04	Strength≤ 100 后, Dist 输出 值为 0
低功耗模式使 能	5A 06 35 0X 00 <mark>SU</mark>	5A 06 35 0X 00 <mark>SU</mark>	X (HEX) 取值范围 0~A, 低功耗模式下输出频率 不支持超过 10Hz; X>0 时, 低功耗模式使 能; X=0 时, 低功耗模式关闭 ⑥	/

恢复出厂设置	5A 04 10 6E	5A 05 10 00 6F	配置成功
		5A 05 10 01 70	配置失败
保存设置	5A 04 11 6F ^④	5A 05 11 00 70	配置成功
		5A 05 11 01 71	配置失败

解释说明: 黄色背景色'SU'代表校验和

- ① 该配置项主要用于调整产品的输出频率。输出频率默认值为 100Hz, 支持自定义配置, 可 配置值满足 1000/n (n 为正整数); 随着频率提高,数据输出稳定性会降低。
- ② 须使用常用波特率 (9600/14400/19200/56000/115200/460800/921600)。 当输出帧率较高时 ,建议使用高波特率以确保数据传输稳定。发送修改波特率指令后,需要保持通电,切换 为目标波特率下,发送保存设置指令才能是更改生效。
- ③ 信号强度低阈值设置为小于 100 的数值后,当信号强度低于 100 时,测距值的波动性会变 大。
- ④ 在发送完相关参数配置指令后,请务必发生'保存设置'指令,否则重新上电后设置将无法 牛效。
- ⑤ 系统复位指令发送后,请保持通电并等待 1s, 否则有可能导致无法复位。
- ⑥ 从低功耗模式切换为正常功耗模式后,输出频率将于低功耗模式下一致,若仍需要 100Hz 输出,需要在关闭低功耗模式后,手动设置输出频率为100Hz。

8远程升级

TFmini Plus 支持远程升级,当用户产品不能满足当前的使用需求,且北醒官方有相应的固件 更新后,用户可通过"TFmini Plus 远程升级上位机"更新产品固件。请联系技术支持人员获取远程升 级上位机。

↓ Updater BENEWAKE Disconnect 3 Bin Fil _plus_bootloader_main_v_1_2_0.bin Open Bin 4 Download Bin 0%

图 7 TFmini Plus 固件升级上位机

TFmini Plus 固件升级所需要的工具与

注:使用 I/O 模式前,请将低阈值默认输出值修改为 1200(发送指令:5A 07 22 0A B0 04 00 5A 04 11 6F),可以避免远距离误报的问题。

快速测试步骤中描述的基本一致,同样需要 TTL-USB 板建立 TFmini Plus 与电脑的连接。

连接好后,打开TFmini Plus 远程升级上位机,选择合适的端口,此处为『① COM8』。在『② 115200』处输入正确的波特率,点击『③ CONNECT』,建立 TFmini Plus 与上位机通信;点击『④ Open Bin』选择需要更新的固件文件,上方文本框中会显示该固件文件地址。然后点击『⑤ Download Bin』即可完成更新。『⑥』会显示固件更新信息。

注意:上位机和固件需要放在纯英文路径的文件夹下,否则升级会失败。

9 故障-原因和处理措施

(1) 正常使用 TFmini Plus 情况下,有时距离值会跳变为 0。

原因:由于测试环境不同(被测目标的反射率和环境光干扰等),TFmini Plus 探测的信号强度 会受到不同程度的影响。为保证测量数据的可靠性和稳定性,TFmini Plus 内部做了算法剔除,当 信号强度不足或过曝时,默认状态下 TFmini Plus 的距离值会反馈为 0, 仅用于提示用户该数据不 可信。

处理措施:请您将此类数值当作触发信号,以保证在 TFmini Plus 输出不可信数据时,您的系 统可采用其他可信数据做下一步判断决策。

(2) 雷达输出距离值与实际距离误差较大。

原因①: TFmini Plus 数据通信协议解析错误。

处理措施:检查数据通信解析方式,如错误,请查看数据格式,调整解析方式。

原因②: 限于 TFmini Plus 的物理原理,被测目标为高反射率(镜面、光滑瓷砖等)或透明(玻 璃、水等)物质时,可能出现所述现象。

处理措施: 请尽量避免在此种情况下使用。

原因③:产品透镜处有杂物遮盖。

处理措施: 请用干燥的无尘布轻轻将杂物擦除。

(3) TFmini Plus 没有数据输出。

原因:产品出厂前会经过严格的审检,以保证出厂的产品都可正常使用。因此可能是运输或者 使用过程中的意外情况导致工作异常。

处理措施: 检查供电是否正常, 电压是否在额定电压范围内。如供电正常, TFmini Plus 发射 镜头内会有微弱红光。

检查 TFmini Plus 接线顺序是否正确,连接是否可靠。

检查数据解析是否正确,请按照说明书说明的数据格式进行解析。

如仍未解决问题, 请联系技术支持。

(4) 雷达连接上位机后, 无数据输出。

原因①:目前上位机仅支持 Windows 操作系统,其他系统暂不支持。

处理措施: 更换为 Windows 操作系统的 PC。

原因②: TTL-USB 板连接不良。

处理措施: 检查 TTL -USB 板与 TFmini Plus 和 PC 的连接是否正确可靠。

原因③: 串口驱动未正确安装。

处理措施: 重新插拔 USB 连接线, 尝试重新安装驱动, 或去网上直接搜索驱动程序下载安装。

如果仍不能正常使用上位机,请联系我司技术支持。

10 常见问题及解答

Q1:请问 TFmini Plus 是否支持 3.3V 或其他电压供电?

A1: 您好,目前不支持。TFmini Plus 标准供电 5V±0.5V。如您有其他需求,可联系销售人员 咨询定制事宜。

Q2: 请问 TFmini Plus 工作一段时间后会发热,是坏了吗?

A2: 您好, 这是产品正常工作状态。芯片与电路板持续工作后, 轻微发热属于正常现象。

Q3: 请问 TFmini Plus 可以与 Arduino 或树莓派连接使用吗?

A3: 您好,可以。TFmini Plus 使用串口通信协议,只要是支持串口通信的控制板即可通信使 用。

Q4:请问2台TFminiPlus同时工作会相互干扰吗?

A4: 您好, 当2台 TFmini Plus 同向摆放、光斑打在同一被测物上且重合的时候,不会互相干 扰; 当 2 台以上的 TFmini Plus 同向摆放且光斑重合的时候,相互之间会有干扰; 当 2 台 TFmini Plus 面对面工作的时候, 会产生严重的干扰。

总部:

电话: 010-57456983

邮箱: bw@benewake.com

销售合作:

邮箱: sales@benewake.com

技术支持:

邮箱: support@benewake.com

附录 — TF 系列上位机使用说明

该上位机目前仅支持在 windows 系统下使用,适用于北醒光子科技有限公司的 TF 系列产品, 但仅限于按照串口通信协议输出的产品,TFmini Plus 具体操作细节见下列说明。

图 1 TF 系列上位机界面

1 产品型号/串口控制区【SETTINGS】

Product Type 产品型号选择:在电脑端通过 TTL-USB 转接板连接相应的雷达型号,如 图 使 用的是本公司产品 TFmini Plus,选择 TFmini Plus 即可。

COM 串口通信的端口:选择电脑端识别雷达相应的端口号。TF 系列产品默认波特率为 115200, 上位机中默认使用该波特率进行连接。

CONNECT/DISCONNECT:点击【CONNECT】按钮,建立与雷达的连接;当点击 【DISCONNECT】按钮,取消连接。

2 功能区【FUNCTION】

Pix Mode 模式选择:如果是 Pixhawk 版本,勾选之后开启 PIX 模式;取消勾选,恢复 默 认 输出格式。请注意,因 Pix 模式输出格式特殊,此时上位机统计的实时帧率不可信。

Frame Rate 更改帧率:点击下拉框,选择所需帧率,即时生效;可在【5】中有效点(Effective

Points)处查看帧率变化。需注意,因数据传输问题,实际帧率会与理论帧率存在一定差别。

FREEZE/CLEAR 暂停/取消按钮:点击【FREEZE】之后,可以使上位机暂停,便于分析【4】 中的图像;点击【CLEAR】之后,会清除【4】内的绘图曲线,重新开始绘图。

Drawing/Pt 数据总计平均: 默认是 10, 即上位机每接收 10 个数据, 把 10 个点的数值取平均 后在【4】内绘制一个点。可按需修改(为防止上位机卡顿,数值最好≥10),输入数值后,通过 键盘回车键使能。

Device Command 串口指令发送区:可通过此窗口对TFmini Plus 进行16进制串口指令的发送。 需要注意的是输入指令完成后点击回车键,然后再点击上方的【SEND】按钮。

3 数据录制区【DATA RECORDING】

Record 数据录制栏:在文本窗口给要保存的数据命名,输入完毕后敲下回车键,通过【RECORD】 按钮录取 TF 数据,数据会保存在命名的文本文件中,再次点击该按钮【FINISHED】,数据录制结 束。

FOLDER 打开文件夹: 通过【FOLDER】打开数据保存的文件夹。

注: 当雷达输出帧率较高时, 如 1000Hz, 因数据量较大上位机添加的时间戳存在不均匀现象

4 数据图像显示区【TIME LINE CHART】

上位机根据接收到的数据绘制连续的测距图像,纵坐标表示当前测距,横坐标表示有效点计数。

5 实时数据显示区【REAL-TIME DATA】

Dist 测距值:默认单位 cm。

Dist (Echo): 此项为 TF03 产品参数, TFmini Plus 默认为 0。

Effective Points (per sec): 表示 TF 每秒刷新的有效数据。

Strength 信号强度:在 pix 模式下,由于没有强度输入 Strength 默认为 0。

6 使用环境及注意事项

使用环境: 本上位机需求 Windows 操作系统 Win7 以上版本, 同时 PC 中须安装.Net Framework 4.5.2

注意事项: 请勿将输出帧率大于 500Hz 的产品直接与上位机连接, 会导致上位机界面卡死。