Professor: Denis Vogel Tutor: Marina Savarino

Aufgabe 8

- (a) Sei $x \in (I(J+K))$. Dann gibt es Elemente $a_1, \ldots, a_n \in I$, $b_1, \ldots, b_n \in J$ und $c_1, \ldots, c_n \in K$, sodass $x = \sum_{i=1}^n a_i(b_i + c_i) = \sum_{i=1}^n \underbrace{a_ib_i}_{\in IJ} + \sum_{i=1}^n \underbrace{a_ic_i}_{\in IK}$. Da IJ und IK wieder Ideale sind, gilt also auch $\sum_{i=1}^n a_ib_i \in IJ$ und $\sum_{i=1}^n a_ic_i \in IK$ und damit $x \in IJ + IK$. Sei nun $x \in IJ + IK$. Dann existieren $a_1, \ldots a_{2n} \in I$, $b_1, \ldots b_{2n} \in J$ und $c_1, \ldots c_{2n} \in K$ mit $b_{n+i} = c_i = 0 \forall 1 \leq i \leq n$, sodass $x = \sum_{i=1}^n a_ib_i + \sum_{i=n+1}^{2n} a_ic_i = \sum_{i=1}^{2n} a_i(b_i + c_i) \in I(J+K)$. Also erhalten wir insgesamt $I(J+K) \subseteq IJ + JK$ und $IJ + JK \subseteq I(J+K)$, woraus IJ + IK = I(J+K) folgt.
- (b) Sei $x \in (I \cap J)(I + J)$. Dann existieren $a_1, \ldots, a_n \in I \cap J$, $b_1, \ldots, b_n \in I$ und $c_1, \ldots, c_n \in J$, sodass $x = \sum_{i=1}^n a_i (b_i + c_i) \stackrel{a_i \in I, \ a_i \in J}{=} \sum_{i=1}^n \underbrace{a_i b_i}_{i \in IJ} + \sum_{i=1}^n \underbrace{a_i c_i}_{i \in IJ}$. Da IJ = JI ein Ideal ist, gilt auch $\sum_{i=1}^n a_i b_i \in IJ$ und $\sum_{i=1}^n a_i c_i \in IJ$ und damit $x \in IJ$. Sei nun $x \in IJ$. Dann existieren $a_1, \ldots, a_n \in I$ und $b_1, \ldots, b_n \in J$, sodass $x = \sum_{i=1}^n a_i b_i$. Da I ein Ideal ist, liegen auch alle Vielfachen von a_i , also insbesondere auch $b_i \cdot a_i$ in I. Analog folgt: $a_i \cdot b_i \in J$. Da IJ ein Ideal ist, liegt auch die Summe $\sum_{i=1}^n a_i b_i \in I$ und $\sum_{i=1}^n a_i b_i \in J$, also $\sum_{i=1}^n a_i b_i \in I \cap J$.
- (c) Setzt man in der b (I+J)=(1) erhält man $(I\cap J)(1)\subseteq IJ\subseteq I\cap J$. Da $I\cap J$ ein Ideal ist, liegen alle Vielfachen von Elementen wieder in $I\cap J$. Also gilt $(I\cap J)(1)=I\cap J$. Damit erhalten wir $I\cap J\subseteq IJ\subseteq I\cap J\Leftrightarrow IJ=I\cap J$.

Aufgabe 9

Am Mittwoch, den 13. Mai, wird die Python sowohl gebadet als auch gefüttert, da 7 Tage seit dem Mittwoch, an dem sie gebadet wurde vergangen sind und $8=2\cdot 4$ Tage seit dem Dienstag, an dem sie gefüttert wurde, vergangen sind. Die Menge aller Tage ist offensichtlich isomorph zum Ring der ganzen Zahlen , wobei Mittwoch, der 13. Mai 2020 auf die 0 abgebildet werde. Alle Tage, an denen die Python dann gebadet wird, werden dann auf $7\mathbb{Z}$ abgebildet, alle Tage, an denen die Python gefüttert wird, werden auf $4\mathbb{Z}$ abgebildet. Die Abbildung $\phi: \mathbb{Z} \to (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/7\mathbb{Z}), r \to (r+4\mathbb{Z},r+7\mathbb{Z})$ ist nach dem chinesischen Restsatz ein Ringhomomorphismus mit dem Kern $\ker \phi = 4\mathbb{Z} \cap 7\mathbb{Z} = 28\mathbb{Z}$. Der Kern von ϕ ist isomorph zur Menge aller Tage, an denen die Python sowohl gebadet als auch gefüttert wird. Diese ist also gleich $\{13. \text{ Mai } 2020 + k \cdot 28d | k \in \mathbb{Z}\}$.

Aufgabe 10

- (a) Es gilt $1 = 1 + 0 \cdot \sqrt{-33}$ und daher $\delta(1) = 1^2 = 1$. Sei $x = a + b \cdot \sqrt{-3}$ und $y = c + d \cdot \sqrt{-3}$. Dann ist $\delta(x \cdot y) = \delta(ac 3bd + \sqrt{-3} \cdot (bc + ad)) = (ac 3bd)^2 + 3(bc + ad)^2 = a^2c^2 6abcd + 9b^2d^2 + 3b^2c^2 + 6abcd + 3a^2d^2 = (a^2 + 3b^2) \cdot (c^2 + 3d^2) = \delta(x) \cdot \delta(y)$.
- (b) $\delta(0+0\sqrt{-3}) = 0$. $\forall x = a + b\sqrt{-3} \in Z[\sqrt{-3}] \setminus \{0\} : \delta(x) = a^2 + b^2 \ge 1$. Ist also $\delta(x) > 1$ und $x \cdot y = 1$, dann muss $\delta(x) \cdot \delta(y) = 1$ gelten. Da $\delta(x) > 1$, muss $\delta(y) < 1$ sein, also y = 0. Dann ist aber $x \cdot y = 0 \nleq$. Folglich ist $Z[\sqrt{-3}]^{\times} = \{x \in \mathbb{Z}[\sqrt{-3}] | \delta(x) = 1\}$. Mit $a, b \in \mathbb{Z}$ folgt aus $a^2 + 3b^2 = 1$ sofort $b = 0, a = \pm 1$. Folglich ist $Z[\sqrt{-3}]^{\times} = \{x \in \mathbb{Z}[\sqrt{-3}] | \delta(x) = 1\} = \{\pm 1\}$.
- (c) $2+\sqrt{-3}$ ist irreduzibel. Seien nämlich $a,b\in Z[\sqrt{-3}]$ mit $ab=2+\sqrt{-3}$, so ist $\delta(a)\cdot\delta(b)=\delta(a\cdot b)=\delta(2+\sqrt{-3})=5$ \Longrightarrow $\delta(a)\in\{\pm 1\}$ \vee $\delta(b)\in\{\pm 1\}$. Nun ist $(9+\sqrt{-3})\cdot(3+\sqrt{-3})=27-3+\sqrt{-3}(9+3)=12(2+\sqrt{-3})$. Allerdings ist $\delta(9+\sqrt{-3})=81+3=84$ und $\delta(3+\sqrt{-3})=9+3=12$. Angenommen, es gäbe nun ein b mit $(2+\sqrt{-3})\cdot b=9+\sqrt{-3}$, dann gilt auch $5\cdot\delta(b)=84$. Da $\delta(b)$ eine ganze Zahl ist, existiert kein solches b. Analog zeigt man auch das $2+\sqrt{-3}$ //3 + $\sqrt{-3}$. Also ist $2+\sqrt{-3}$ nicht prim.
- (d) Die Menge aller Teiler von 4 bzw. $2+2\sqrt{-3}$ sei A bzw. B. Es gilt $\delta(4)=\delta(2+2\sqrt{-3})=16$, $\delta(x)>1\forall x\in Z[\sqrt{-3}]$, $\delta(a+b\sqrt{-3})=a^2+3b^2\neq 2$, $x\cdot y=4\implies \delta(x)\delta(y)=16$ und $x\cdot y=2+2\sqrt{-3}\implies \delta(x)\delta(y)=16$. Also gilt $\forall x\in A\cup B: \delta(x)\in\{1,4,16\}$. Wir betrachten zunächst $x\in A\cup B: \delta(x)=4$. Sei $x=a+b\sqrt{-3}$. Dann gilt $\delta(x)=a^2+3b^2=4\implies b\leq 1$. Sei also $b^2=1$. Dann muss auch $a^2=1$ sein und wir erhalten die Lösungen $\pm(1+\sqrt{-3})$ und $\pm(1-\sqrt{-3})$. Im Fall $b^2=0$ erhalten wir die Lösungen ± 2 . Nach (b) sind $x=\pm 1$

die einzigen Teiler mit $\delta(x)=1$, also muss für $x\in A, \delta(x)=16$ gelten: $x\cdot\pm 1=4\implies x=\pm 4$. Außerdem gilt $\pm 2\cdot\pm 2=\pm (1+\sqrt{-3})\cdot\pm (1-\sqrt{-3})=4$. Also ist $A=\{\pm 1,\pm 2,\pm (1+\sqrt{-3}),\pm (1-\sqrt{-3}),\pm 4\}$. Es gilt $\pm 2\cdot\pm (1+\sqrt{-3})=2+2\sqrt{-3}$, also $\pm 2,\pm (1+\sqrt{-3})\in B$. Allerdings gilt $\pm (1-\sqrt{3})$ $/(2+2\sqrt{-3})$, sonst gäbe es ein $a+b\sqrt{-3}$ mit $(1-\sqrt{-3})\cdot(a+b\sqrt{-3})=a+3b+\sqrt{-3}(b-a)=2+2\sqrt{-3}\implies 2-3b=a=b-2\implies b=0\implies a=2=-a\frac{1}{2}$. Analog zu A erhalten wir also $B=\{\pm 1,\pm 2,\pm (1+\sqrt{-3}),\pm (2+2\sqrt{-3})\}$. Die gemeinsamen Teiler von 4 und $2+2\sqrt{-3}$ sind also $\{\pm 1,\pm 2,\pm (1+\sqrt{-3})\}$. Annahme: $\pm 1\in \mathrm{GGT}(4,2+2\sqrt{-3})$. Dann gilt $\forall x\in\{\pm 2,\pm (1+\sqrt{-3})\}:x|1$. Da aber ± 2 und $\pm (1+\sqrt{-3})$ keine Einheiten sind, erhalten wir einen Widerspruch. Wäre $\pm 2\in \mathrm{GGT}(4,2+2\sqrt{-3})$, so müsste gelten $1+\sqrt{-3}|2$. Da aber $\delta\pm (1+\sqrt{-3}=\delta(\pm 2))$ müsste $(1+\sqrt{-3})=\pm 2$ gelten, was offensichtlich nicht der Fall ist. Den Fall $\pm (1+\sqrt{-3})\in \mathrm{GGT}(4,2+2\sqrt{-3})$ können wir völlig analog ausschließen. Also ist $\mathrm{GGT}(4,2+2\sqrt{-3})=\emptyset$

(e) Es gilt $4 = 2 \cdot 2 = (1 + \sqrt{-3}) \cdot (1 - \sqrt{-3})$. Wie bereits gezeigt, sind dies alle echten Teiler von 4 (bis auf Assoziiertheit) und es gilt 2 $/(1 + \sqrt{-3})$, 2 $/(1 - \sqrt{-3})$ genauso wie $(1 + \sqrt{-3})|2$ und $(1 - \sqrt{-3})|2$. Also ist $Z[\sqrt{-3}]$ nicht faktoriell.

Aufgabe 11

• (i) \Rightarrow (ii): Sei R noethersch und $I \in R$ ein Ideal, das nicht endlich erzeugt ist. Behauptung: Dann kann man eine aufsteigende Kette von Idealen konstruieren, die nicht stationär wird.

Beweis.

Induktionsanfang: $I_0 = (0)$ ist eine Kette der Länge 0.

Induktionsvoraussetzung: Sei eine Kette $I_0 \subseteq \cdots \subseteq I_n$ gegeben mit $I_n = (a_1, \dots, a_n)$

Induktionsschluss: Setze dann $I_{n+1}=(a_1,\ldots,a_n,a_{n+1})$ mit $a_{n+1}\in I\setminus (a_1,\ldots,a_n)$. Ein solches a_{n+1} existiert stets, da sonst eine endliches Erzeugendensystem für I gegeben wäre. Außerdem ist $I_{n+1}\neq I_n$, da sonst $a_{n+1}\in I_n$ enthalten wäre.

Also gibt es für alle $n \in \mathbb{N}$ eine aufsteigende Kette von Idealen, die nicht stationär wird. Das steht im Widerspruch dazu, dass der Ring noethersch sein soll. Also ist jedes Ideal $I \in R$ endlich erzeugt.

- (ii) \Leftarrow (i): Sei R endlich erzeugt. Sei $I_1 \subseteq I_2 \subseteq ...$ eine aufsteigende Kette von Idealen in R. Setze $I := \bigcup_{k \geq 1} I_k$. I ist ein Ideal, da
 - (J1) $0 \in I_k, \forall k \ge 1 \implies 0 \in I$
 - $(\mathrm{J2}) \ \mathrm{Seien} \ a,b \in J \implies \exists k,l \in \mathbb{N} \ \mathrm{mit} \ a \in I_k, b \in I_l. \ \mathrm{Mit} \ \mathrm{max}\{k,l\} \ \mathrm{ist} \ a,b \in I_m \implies a+b \in I_m \subseteq I.$
 - (J3) Seien $a \in I, r \in R \implies \exists k \in \mathbb{N} \text{ mit } a \in I_k \implies ra \in I_k \subseteq I$

Da R endlich erzeugt ist, existieren $a_1,\ldots,a_n\in R$ mit $I=(a_1,\ldots,a_n)=\bigcup_{k\geq 1}I_k$. Somit gilt $\{a_1,\ldots,a_n\}\subseteq I$, insbesondere $\exists N\in\mathbb{N}$ so dass $(a_1,\ldots,a_n)\subseteq I_N\subseteq J=(a_1,\ldots,a_n)\implies I_N=J\implies I_k=I_N\forall k\geq N\implies R$ noethersch.