线性代数				
• 第一部分)矩阵运算			
o —	矩阵乘法性质			
	■ 1. 矩阵乘法性质			
	○ (1) 重要性质			
	○ (2) 非交换性			
o <u> </u>	转置矩阵性质			
 	· (1) 基本性质			
• 第二部分	7 行列式			
o —	行列式定义			
o <u>_</u> _	行列式性质			
	■ (1) 基本性质			
- I I I I I I I I I I I I I I I I I I I	· (2) 重要公式			
	• (3) 计算公式			
	伴随矩阵			
)线性方程组			
	齐次方程组解构			
	基础解系			
	非齐次方程组求解			
	克拉默法则			
)向量空间与正交性			
	正交矩阵			
	Schmidt正交化			
	↑ 特征值与特征向量 			
	特征值重数			
	特征向量线性无关性			
	个相似矩阵与对角化			
	相似矩阵			
	矩阵对角化			
	实对称矩阵			
) 特殊矩阵类型 ····································			
	对称矩阵			
o <u> </u>	可逆矩阵			
• 第八部分) 典型例题			
0 —	矩阵秩的计算			

- 。 二、线性方程组求解
- 。 三、三阶行列式计算
- 四、可逆矩阵求逆
- 五、相似矩阵参数求解
- 六、实对称矩阵特征向量求解
- 七、范德蒙德行列式
- 。八、分块矩阵运算
- 第九部分 几何应用
 - 。 一、 向量叉积
 - 。 二、平行六面体体积
- 第十部分 核心公式总结
- 第十一部分 注意事项

第一部分 矩阵运算

一、矩阵乘法性质

1. 矩阵乘法性质

印矩阵乘法

设 A 为 $m \times s$ 矩阵,B 为 $s \times n$ 矩阵,则矩阵乘积 C = AB 为 $m \times n$ 矩阵,其元素

$$c_{ij} = \sum_{k=1}^s a_{ik} b_{kj}$$

(1) 重要性质

♀ 结合律

$$(AB)C = A(BC)$$

☑ 证明

设
$$A=(a_{ik})_{m imes s}$$
, $B=(b_{kj})_{s imes n}$, $C=(c_{ij})_{n imes p}$

左边 (AB)C 的第 i 行第 j 列元素为:

$$\sum_{j=1}^n \left(\sum_{k=1}^s a_{ik}b_{kj}
ight)\!c_{jl} = \sum_{k=1}^s a_{ik}\left(\sum_{j=1}^n b_{kj}c_{jl}
ight) = 右边A(BC)$$
元素

(2) 非交换性

△ 矩阵乘法不满足交换律

反例:

$$A=egin{pmatrix}1&1\1&1\end{pmatrix}, B=egin{pmatrix}1&2\3&4\end{pmatrix}$$

$$AB = egin{pmatrix} 4 & 6 \ 4 & 6 \end{pmatrix}
eq BA = egin{pmatrix} 3 & 3 \ 7 & 7 \end{pmatrix}$$

二、转置矩阵性质

□ 转置矩阵

对于矩阵 A, 其转置矩阵 A^T 定义为将 A 的行列互换得到的新矩阵

(1) 基本性质

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- $3. (kA)^T = kA^T$
- 4. 重要性质:

$$oxed{(AB)^T = B^T A^T}$$

第二部分 行列式

一、行列式定义

□ n阶行列式

设 $A = (a_{ij})_{n \times n}$ 为 n 阶方阵, 其行列式定义为:

$$|A| = \sum_{\sigma \in S_n} (-1)^{\operatorname{sgn}(\sigma)} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

其中 S_n 为 n 元排列全体, $sgn(\sigma)$ 表示排列 σ 的逆序数

二、行列式性质

(1) 基本性质

1. 转置不变性: $|A^T| = |A|$

2. 行交换变号:交换两行(列),行列式变号

3. 倍数可提取:某行 (列) 乘 k, 行列式变为 k|A|

4. 行加性: 某行 (列) 加上另一行 (列) 的 k 倍, 行列式不变

(2) 重要公式

♀ 行列式乘法性质

$$|AB|=|A||B|$$

$$|kA| = k^n |A|$$

$$|A^T|=|A|$$

(3) 计算公式

展开式:

$$|A|=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}$$
 (按第 i 行展开)

其中 A_{ij} 为 a_{ij} 的代数余子式

三、伴随矩阵

□ 伴随矩阵

方阵 A 的伴随矩阵 A* 定义为:

$$A^* = egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ dots & dots & \ddots & dots \ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

性质:

$$AA^* = A^*A = |A|E$$

第三部分 线性方程组

一、齐次方程组解构

□ 齐次线性方程组

形如 $A_{m \times n} X = 0$ 的方程组称为齐次线性方程组

? 齐次方程组解的存在性

AX = 0有非零解 $\Leftrightarrow r(A) < n \Leftrightarrow$ 列向量线性相关

基础解系

♀ 解空间维数

若 r(A) = r, 则齐次方程组的基础解系含 n - r 个线性无关解向量

□ 解空间

$$S=\{X\mid AX=0\},\quad \dim S=n-r(A)$$

二、非齐次方程组求解

♀非齐次方程组解的存在性

 $AX = b (b \neq 0)$ 有解 $\Leftrightarrow r(A) = r(\bar{A}) \Leftrightarrow b$ 可由列向量线性表示

♀ 非齐次方程组通解结构

设 AX=b 的一个特解为 η ,对应的齐次方程组基础解系为 $\xi_1,\xi_2,\ldots,\xi_{n-r}$,则 通解为:

$$X = \eta + k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r}$$

_	克拉默法则
	プロリエボハノムスリ

♀ 克拉默法则

对于 n 元线性方程组 AX = b, 若 $|A| \neq 0$, 则方程组有唯一解:

$$x_j = rac{|A_j|}{|A|} \quad (j=1,2,\ldots,n)$$

其中 A_j 是将 A 的第 j 列替换为后项的矩阵

第四部分 向量空间与正交性

一、向量正交

中向量正交

若 $\langle \alpha, \beta \rangle = 0$,称 α 与 β 正交。零向量与任何向量正交,两两正交的非零向量组称为正交向量组

♀ 正交向量组线性无关性

n 维正交向量组 $\alpha_1, \dots, \alpha_s$ 必线性无关

二、正交矩阵

□ 正交矩阵

实矩阵 A 满足 $A^TA = I_n$ 时称为正交矩阵

性质:

- 1. $A^{-1} = A^T$
- 2. $|A| = \pm 1$
- 3. 行列式值为 ±1

三、Schmidt正交化

对线性无关向量组 $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$:

$$\gamma_1 = rac{lpha_1}{|lpha_1|}, \quad \gamma_k = rac{lpha_k - \sum_{i=1}^{k-1} rac{lpha_k \cdot \gamma_i}{\gamma_i \cdot \gamma_i} \gamma_i}{\left|lpha_k - \sum_{i=1}^{k-1} rac{lpha_k \cdot \gamma_i}{\gamma_i \cdot \gamma_i} \gamma_i
ight|}$$

第五部分 特征值与特征向量

一、特征值重数

甲重数定义

设 λ_i 是 A 的特征值:

• 代数重数 n_0 : 特征方程的重根数

• 几何重数 k_0 : 线性无关特征向量个数

满足 $k_0 \leq n_0$, $k_0 = \dim\{X \mid (\lambda_0 I_n - A)X = 0\}$

♀ 迹定理

$$\mathrm{tr}(A) = \sum \lambda_i
onumber \ |A| = \prod \lambda_i$$

二、特征向量线性无关性

♀ 不同特征值对应特征向量线性无关

设 $\lambda_1,\lambda_2,\dots,\lambda_m$ 是 n 阶方阵 A 的 m 个互异特征值, p_1,p_2,\dots,p_m 是对应的特征向量,则 p_1,p_2,\dots,p_m 线性无关

第六部分 相似矩阵与对角化

一、相似矩阵

□相似矩阵

设 A 和 B 是 n 阶方阵,若存在可逆阵 P 使 $P^{-1}AP=B$,则称 A 与 B 相似,记作 $A\sim B$

♀ 相似性质

若 $A \sim B$, 则:

- 1. $f_A(\lambda) = f_B(\lambda)$
- 2. |A| = |B|
- 3. $\operatorname{tr}(A) = \operatorname{tr}(B)$

二、矩阵对角化

♀ 对角化充要条件

n 阶方阵 A 可对角化 \Leftrightarrow 对每个 n_j 重特征值 λ_j ,有 $r(\lambda_j I - A) = n - n_j$

» 推论

若 A 有 n 个互异特征值,则 A 必可对角化

三、实对称矩阵

♀实对称矩阵特性

- 1. 不同特征值对应特征向量正交
- 2. k 重特征值恰有 k 个线性无关特征向量
- 3. 必可对角化,且存在正交矩阵 Q 使 $Q^{-1}AQ=\Lambda$

华上立7八	从土工 什么口	7左 꽃 푸니
第七部分	1寸7不入上	许尖尘

一、对称矩阵

□ 对称矩阵

若 $A^T = A$, 则称 A 为对称矩阵; 若 $A^T = -A$, 则称 A 为反对称矩阵

二、可逆矩阵

♀可逆矩阵判定定理

方阵可逆的充要条件是 $|A| \neq 0$,且逆矩阵唯一,记作 A^{-1}

♀ 逆矩阵性质

1.
$$(A^{-1})^{-1} = A$$

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$

3.
$$(A^T)^{-1} = (A^{-1})^T$$

4.
$$|A^{-1}| = |A|^{-1}$$

第八部分 典型例题

一、矩阵秩的计算

淀 矩阵秩计算

问题:求矩阵 $A=\begin{pmatrix}1&1\\2&2\end{pmatrix}$ 的秩

解:

$$A = egin{pmatrix} 1 & 1 \ 2 & 2 \end{pmatrix} extstyle rac{R_2 - 2R_1}{} egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}$$

$$\therefore r(A) = 1$$

二、线性方程组求解

※ 基础解系构造

已知 $A=(lpha_1,lpha_2,lpha_3,lpha_4)$, $lpha_2,lpha_3,lpha_4$ 线性无关, $lpha_1=2lpha_2-lpha_3$, $eta=\sumlpha_i$

解: $\beta=3\alpha_2+\alpha_4$,特解 $\eta^*=(0,3,0,1)^T$,基础解系 $\xi=(2,-1,-1,0)^T$,通解 $X=\eta^*+k\xi$

三、三阶行列式计算

⊱ 行列式计算

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 0$$

四、可逆矩阵求逆

注 逆矩阵计算

设 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,验证 A 可逆并求逆:

$$|A|=-2
eq 0\Rightarrow A^{-1}=rac{1}{|A|}A^*=-rac{1}{2}inom{4}{-3} 1$$

五、相似矩阵参数求解

注 相似矩阵求参数

已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,求 x, y

解: 由相似性质得:

•
$$\operatorname{tr}(A) = 2 + x = \operatorname{tr}(B) = 2 + y - 1$$

•
$$|A| = -2 = |B| = -2y$$

解得
$$x = 0, y = 1$$

六、实对称矩阵特征向量求解

淀 实对称矩阵特征向量求解

设 3 阶实对称矩阵 A 各行元素之和均为 3, $\alpha_1=(-1,2,-1)^T$, $\alpha_2=(0,-1,1)^T$ 是 AX=0 的解

解:

• 由各行和为 3,得
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- α_1, α_2 是 $\lambda = 0$ 的特征向量
- 特征值: $\lambda_1 = 3, \lambda_2 = \lambda_3 = 0$
- 特征向量: $p_1 = (1,1,1)^T, p_2 = \alpha_1, p_3 = \alpha_2$

七、范德蒙德行列式

☆ 范德蒙德行列式

$$V_n = egin{bmatrix} 1 & 1 & \cdots & 1 \ x_1 & x_2 & \cdots & x_n \ x_1^2 & x_2^2 & \cdots & x_n^2 \ dots & dots & \ddots & dots \ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \ \end{pmatrix} = \prod_{1 \leq i < j \leq n} (x_j - x_i)$$

八、分块矩阵运算

注 分块矩阵计算示例

$$P = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, D = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$$

通过分块矩阵快速计算 A²⁰²³:

$$A = PDP^{-1} \Rightarrow A^{2023} = PD^{2023}P^{-1}$$

第九部分 几何应用

一、向量叉积

Ф

$$oldsymbol{lpha} imesoldsymbol{eta}=egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k}\ a_1 & a_2 & a_3 \end{bmatrix}=(a_2b_3-a_3b_2)\mathbf{i}+(a_3b_1-a_1b_3)\mathbf{j}+(a_1b_2-a_2b_1)\mathbf{k}$$

二、平行六面体体积

♀ 体积公式

$$V = |oldsymbol{lpha} \cdot (oldsymbol{eta} imes oldsymbol{\gamma})| = egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \ \end{bmatrix}$$

第十部分 核心公式总结

① 矩阵运算公式

$$(AB)^T = B^T A^T$$

 $|AB| = |A||B|$
 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

① 行列式公式

$$|AB| = |A||B|$$
 $|kA| = k^n|A|$
 $|A^T| = |A|$
 $|-I| = (-1)^n$

① 线性方程组解的判定

$$AX = b$$
有解 $\Leftrightarrow r(A) = r(A|b)$

① 柯西不等式

$$\left(\sum x_i y_i
ight)^2 \leq \left(\sum x_i^2
ight) \left(\sum y_i^2
ight)$$

① 相似矩阵性质

$$A \sim B \Rightarrow egin{cases} f_A(\lambda) = f_B(\lambda) \ |A| = |B| \ \operatorname{tr}(A) = \operatorname{tr}(B) \end{cases}$$

第十一部分 注意事项

△常见误区

- 1. 矩阵乘法不满足交换律,但满足结合律和分配律
- 2. 齐次方程组必有零解,非零解存在当且仅当 r(A) < n
- 3. 非齐次方程组特解的选取不影响通解结构
- 4. 行列式与矩阵的区别: 行列式是标量值, 矩阵是数表

- 5. 特征向量无关性: 不同特征值对应特征向量线性无关
- 6. 对角化条件:几何重数 = 代数重数

△ 重要提醒

- 1. 可逆矩阵必须为方阵,且行列式非零
- 2. 分块矩阵运算时需保证分块方式合理
- 3. 转置运算 $(AB)^T = B^T A^T$, 注意顺序变化
- 4. 行列式为零的矩阵不可逆
- 5. 伴随矩阵仅对方阵有定义
- 6. $|kA| \neq k|A|$,正确公式为 $|kA| = k^n|A|$
- 7. 实对称矩阵特征值均为实数,不同特征值特征向量正交
- 8. 实对称矩阵必可正交对角化