

Distributed Optimization for Networks of Battery Energy Storage Systems in Energy Communities with Shared Energy Incentives

A.Mohamed Messilem[†], D. Deplano[‡], M. Franceschelli[‡], E. Usai[‡], R. Carli[†]

[†]Department of Information Engineering, University of Padova, Italy [‡] Department of Electrical and Electronic Engineering, University of Cagliari, Italy

IEEE 20th International Conference on Automation Science and Engineering (CASE), August 2024

- 1 The problem of interest
- 2 Distributed optimization problem formulation
- 3 Results and discussion

- 1 The problem of interest
- ② Distributed optimization problem formulation
- Results and discussion

Cooperative energy management in renewable energy communities (CER)

- The set-up: Each member of the community may:
 - Consume energy
 - Produce energy (e.g., solar panels)
 - Store energy (e.g., battery energy systems)
- The objective: cooperation among members to minimize the cost by maximizing the shared energy
- The strategy: control the charge/discharge behavior of the batteries
- The challenge: absence of global information of the community generation and the only exploitation of local information exchanged between neighbors

Diego Deplano

University of Cagliari, Italy

Energy flow model of a member within the energy community

Model of the (dis)charging behavior of the battery:

$$e_i^{ ext{MAX}} rac{d}{dt} arepsilon_i(t) = \eta_i r_i(t) - d_i(t),$$
 (1)

where:

- $e_i^{\text{MAX}} \in \mathbb{R}_{\geq 0}$ is the maximum energy capacity.
- $\varepsilon_i(t) \in [0,1]$ is state of charge (SoC).
- $\eta_i \in [0,1]$ is the efficiency

Given a continuous-time signal $x(t) \in \mathbb{R}$ with $t \in \mathbb{R}$ and a sampling time $\Delta \in \mathbb{N}_+$, we denote by $t_k = \Delta k$ with $k \in \mathbb{N}$ the discrete times at which the signal is sampled, yielding the discrete time signal $x(t_k) \in \mathbb{R}$. We also denote by $[x]_k^T$, where $k, T \in \mathbb{N}$ the vector collecting T samples of the continuous time signal starting from t_k and use the slender notation x when clear from the context:

$$\mathbf{x} = [x]_k^T = [x(t_k), \dots, x(t_{k+T-1})]^{\mathsf{T}}.$$
 (2)

Diego Deplano University of Cagliari, Italy

The concept of shared energy (Italian regulation)

Definition

The shared energy is the minimum between the energy fed into the network and the energy consumed by the community members in a given time period window of time $W = \Upsilon \Delta$ with $\Upsilon \in \mathbb{N}$:

$$E_{sh}(oldsymbol{b}, oldsymbol{s}, \Upsilon) = \min \left\{ \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon), \sum_{i \in \mathcal{V}} g(oldsymbol{s}_i, \Upsilon)
ight\} \in \mathbb{R}^{\lceil k, \Upsilon
ceil},$$

where, given the horizon $H = h\Upsilon\Delta$ with $h \in \mathbb{N}$, the function g is defined as follows:

$$g(\boldsymbol{x},\Upsilon) = \Delta \begin{bmatrix} \mathbf{1}^{\top}[x]_{K}^{\Upsilon-\mathsf{mod}(k,\Upsilon)} \\ I_{h-1} \otimes \mathbf{1}_{\Upsilon}^{\top}[x]_{\lceil (k+1)/\Upsilon \rceil \Upsilon}^{(h-1)\Upsilon} \\ \mathbf{1}^{\top}[x]_{\lceil (k/\Upsilon)+h-1)\Upsilon}^{\mathsf{mod}(k,\Upsilon)} \end{bmatrix}.$$

Problem of interest

In the scenario of an energy community operating under an incentive scheme based on the self-consumption realized by the whole community, **the objective is to** minimize the costs for the whole community by maximizing the shared energy over the horizon H.

- The problem of interest
- 2 Distributed optimization problem formulation
- Results and discussion

Optimization problem formulation: objective function and constraints

The objective function we aim to minimize is

$$f(\boldsymbol{v}) = p_e^{\mathsf{T}} \sum_{i \in \mathcal{V}} g(\boldsymbol{b}_i, \Upsilon) - p_{sh}^{\mathsf{T}} \underline{E_{sh}}(\boldsymbol{b}, \boldsymbol{s}, \Upsilon), \qquad \boldsymbol{v} = \begin{bmatrix} \boldsymbol{v}_1^{\mathsf{T}}, \cdots, \boldsymbol{v}_n^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}. \quad \text{and} \quad \boldsymbol{v}_i = \begin{bmatrix} \boldsymbol{r}_i^{\mathsf{T}}, \boldsymbol{d}_i^{\mathsf{T}}, \boldsymbol{d}_i^{\mathsf{CT}}, \boldsymbol{g}_i^{\mathsf{CT}} \end{bmatrix}^{\mathsf{T}}.$$

The local constraints are:

$$egin{array}{lll} \mathbf{0} & \leq & m{r}_i & \leq & m{r}_i^{ ext{MAX}} \mathbf{1}, \ \mathbf{0} & \leq & m{d}_i & \leq & m{d}_i^{ ext{MAX}} \mathbf{1}, \ \mathbf{0} & \leq & m{d}_i/m{d}_i^{ ext{MAX}} + m{r}_i/m{r}_i^{ ext{MAX}} & \leq & m{1}, \ \mathbf{0} & \leq & m{d}_i^c & \leq & m{d}_i, \ \mathbf{0} & \leq & m{g}_i^c & \leq & m{g}_i, \ \mathbf{0} & \leq & m{b}_i & \leq & m{b}_i^{ ext{MAX}} \mathbf{1}, \ \mathbf{0} & \leq & m{s}_i & \leq & m{s}_i^{ ext{MAX}} \mathbf{1}, \ \end{array}$$

together with those related to the (dis)charge dynamics of the battery:

$$\varepsilon_{i}^{\text{MIN}}\mathbf{1} \leq D^{-1} \begin{bmatrix} e_{i}^{\text{MAX}} \\ \overline{\Delta} \end{bmatrix} (\eta_{i} \boldsymbol{r}_{i} - \boldsymbol{d}_{i}) + \boldsymbol{e}_{1} \varepsilon_{i} (t_{k-1}) \leq \varepsilon_{i}^{\text{MAX}}\mathbf{1}, \quad \text{where} \quad \boldsymbol{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$

Diego Deplano

University of Cagliari, Italy

Optimization problem formulation: LP transformation

We compactly write the optimization problem as follows:

$$\min_{oldsymbol{v},oldsymbol{ heta}} \quad p_e^{\scriptscriptstyle au} \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon) - p_{sh}^{\scriptscriptstyle au} E_{sh}(oldsymbol{b}, oldsymbol{s}, \Upsilon),$$

s.t. Local constraints $\forall i \in \mathcal{V}$.

By using the standard trick $z = \min\{x, y\} \Rightarrow z \le x$ and $z \le y$, we obtain an LP formulation:

$$\min_{oldsymbol{v},oldsymbol{ heta}} \quad p_e^{\intercal} \sum_{i \in \mathcal{V}} g(oldsymbol{b}_i, \Upsilon) - p_{sh}^{\intercal} oldsymbol{ heta},$$

s.t. Local constraints $\forall i \in \mathcal{V}$,

$$\theta - \sum_{i \in \mathcal{V}} g(\boldsymbol{b}_i, \Upsilon) \leq \mathbf{0},$$

$$\theta - \sum_{i \in \mathcal{V}} g(s_i, \Upsilon) \leq 0.$$

Diego Deplano University of Cagliari, Italy

A distributed formulation: the objective function

The term θ associated with the shared energy is replaced by introducing local variables ϑ_i representing a fraction of the shared energy, i.e., $\theta = \sum_{i=1}^{n} \vartheta_i$, yielding:

$$f(\boldsymbol{v}, \boldsymbol{\theta}) = \sum_{i \in \mathcal{V}} f_i(\boldsymbol{v}_i, \boldsymbol{\vartheta}_i), \quad \text{where}$$
 (3a)

$$f_i(\boldsymbol{v}_i, \boldsymbol{\vartheta}_i) = p_e^{\mathsf{T}} g(\boldsymbol{b}_i, \Upsilon) - p_{sh}^{\mathsf{T}} \boldsymbol{\vartheta}_i. \tag{3b}$$

By noticing that variables v_i satisfy box constraints of the kind $v_i^{\text{MIN}} \le v_i \le v_i^{\text{MAX}}$, denoting $\overline{v}_i = \frac{1}{2}(v_i^{\text{MIN}} + v_i^{\text{MAX}})$ we force strong convexity by regularizing the local objective functions as follows:

$$\widetilde{f}_i(\boldsymbol{v}_i,\boldsymbol{\vartheta}_i) = f_i(\boldsymbol{v}_i,\boldsymbol{\vartheta}_i) + \sigma \|\boldsymbol{v}_i - \overline{\boldsymbol{v}}_i\|_2^2 + \varsigma \|\boldsymbol{\vartheta}_i\|_2^2, \quad \sigma,\varsigma \in \mathbb{R}_{\geq 0},$$

Diego Deplano University of Cagliari, Italy

A distributed formulation: the constraints

As a last step, we introduce local variables

$$\alpha_i \geq 0, \quad \beta_i \geq 0, \quad \forall i \in \mathcal{V},$$

to transform the inequality constraints into equality constraints:

$$\min_{\{oldsymbol{v}_i,oldsymbol{artheta}_i,oldsymbol{lpha}_i,oldsymbol{eta}_i\}_{i\in\mathcal{V}}} \quad \sum_{i\in\mathcal{V}} \widetilde{f_i}(oldsymbol{v}_i,oldsymbol{artheta}_i),$$

s.t. Local. constraint
$$\forall i \in \mathcal{V}$$
,

$$\sum_{i \in \mathcal{V}} (\boldsymbol{\vartheta}_i - g(\boldsymbol{b}_i, \Upsilon) + \boldsymbol{\alpha}_i) = \mathbf{0}, \tag{5}$$

$$\sum_{i \in \mathcal{V}} (\vartheta_i - g(s_i, \Upsilon) + \beta_i) = 0.$$
 (6)

Diego Deplano

University of Cagliari, Italy

(4)

Algorithm 1 DC-ADMM applied to the distributed optimization problem

to minimize costs of an energy community

Require: Arbitrary initial values $v_i(0)$, $\vartheta_i(0)$, $\alpha_i(0)$, $\beta_i(0)$, $p_i(0)$ for $i \in \mathcal{V}$ and the parameter $\rho > 0$

- 1: for k=1,2,3,... (until a stopping criterion is satisfied) do
- 2: for each prosumer $i \in \mathcal{V}$ (in parallel) do

$$\begin{bmatrix} \boldsymbol{v}_i(k) \\ \boldsymbol{\vartheta}_i(k) \\ \boldsymbol{\alpha}_i(k) \\ \boldsymbol{\beta}_i(k) \end{bmatrix} = \underset{\boldsymbol{v}_i, \boldsymbol{\vartheta}_i, \boldsymbol{\alpha}_i, \boldsymbol{\beta}_i}{\operatorname{argmin}} \left\{ \widetilde{f}_i(\boldsymbol{v}_i, \boldsymbol{\vartheta}_i) + \frac{\rho}{4|\mathcal{N}_i|} \left\| \begin{bmatrix} (\boldsymbol{\vartheta}_i - g(\boldsymbol{b}_i, \boldsymbol{\Upsilon}) + \boldsymbol{\alpha}_i)/\rho \\ (\boldsymbol{\vartheta}_i - g(\boldsymbol{s}_i, \boldsymbol{\Upsilon}) + \boldsymbol{\beta}_i)/\rho \end{bmatrix} - \frac{1}{\rho} \boldsymbol{p}_i(k-1) + \sum_{j \in \mathcal{N}_i} (\boldsymbol{y}_i(k-1) + \boldsymbol{y}_j(k-1)) \right\|_2^2 \right\}$$

s.t. Loc. const.
$$\forall i \in \mathcal{V}$$
,

$$\begin{aligned} & \boldsymbol{y}_{i}(k) \! = \! \frac{1}{2|\mathcal{N}_{i}|} \left(\begin{bmatrix} (\boldsymbol{\vartheta}_{i}(k) \! - \! g(\boldsymbol{b}_{i}(k), \Upsilon) \! + \! \boldsymbol{\alpha}_{i}(k))/\rho \\ (\boldsymbol{\vartheta}_{i}(k) \! - \! g(\boldsymbol{s}_{i}(k), \Upsilon) \! + \! \boldsymbol{\beta}_{i}(k))/\rho \end{bmatrix} \! - \frac{1}{\rho} \boldsymbol{p}_{i}(k-1) \! + \! \sum_{j \in \mathcal{N}_{i}} \left(\boldsymbol{y}_{i}(k-1) \! + \! \boldsymbol{y}_{j}(k-1) \right) \right) \\ & \boldsymbol{p}_{i}(k) \! = \! \boldsymbol{p}_{i}(k-1) \! + \! \rho \sum_{i \in \mathcal{N}_{i}} \left(\boldsymbol{y}_{i}(k) \! - \! \boldsymbol{y}_{j}(k) \right) \end{aligned}$$

- 3: end for
- 4: end for

T.H. Chang, M. Hong, and X. Wang, "Multi-agent distributed optimization via inexact consensus ADMM", IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, 2014.

Diego Deplano

University of Cagliari, Italy

- 1 The problem of interest
- ② Distributed optimization problem formulation
- 3 Results and discussion

Results and discussion: profiles of consumption, generation and storage

Results and discussion: shared energy

Distributed Optimization for Networks of Battery Energy Storage Systems in Energy Communities with Shared Energy Incentives

Thank you for your attention!

Diego Deplano

Email: diego.deplano@unica.it Webpage: https://diegodeplano.github.io/

