Exploratory Analysis of Rain Fall Data in India for Agriculture PNT2022TMID30162

Pre – Requisite

Packages

Package	Version
certifi	2022.9.24
charset-normalizer	
click	8.1.3
colorama	0.4.6
cycler	0.11.0
Flask	2.2.2
fonttools	4.38.0
ibm-db	3.1.3
idna	3.4
importlib-metadata	5.0.0
itsdangerous	2.1.2
Jinja2	3.1.2
joblib	1.2.0
kiwisolver	1.4.4
MarkupSafe	2.1.1
matplotlib	3.5.3
numpy	1.21.6
packaging	21.3
pandas	1.3.5
pickle5	0.0.12
Pillow	9.3.0
pip	22.3.1
pyparsing	3.0.9
python-dateutil	2.8.2
pytz	2022.6
requests	2.28.1
scikit-learn	1.0.2
scipy	1.7.3
setuptools	40.8.0
six	1.16.0
threadpoolctl	3.1.0
typing_extensions	4.4.0
urllib3	1.26.12
Werkzeug	2.2.2
zipp	3.10.0

Anaconda

Pre Process the Data

1. Import Required Libraries

```
import numpy as np
import pandas as pd
import sklearn
```

2. Read the Dataset

3. Check Null Values

```
data.isnull().any()

Location False
MinTemp False
MaxTemp False
WindDirection False
RainToday False
RainTomorrow False
dtype: bool
```

Model Building

1. Splitting the Data and Train and Test

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=1)
```

2. Applying Random Forest

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(x_train, y_train)
```

RandomForestClassifier()