Summarizer 0010

•••

Part I - Digital Electronics
Part II - Computer Architecture

Code Cadet Luis Lopes <A/C_>

Digital electronics

Electronics that operate on digital signals.

We can do lot's of cool things with them!

Digital electronics perform highly complex operations

But... how do they work?

Boolean Logic

A form of algebra in which all values are reduced to Either TRUE or FALSE.

Transistor Switches

Fits with binary numbering system: 0 and 1,

ON or OFF

Boolean algebra

Boolean Operations

AND

OR

XOR

NAND

NXOR

Logic Gates

Name	g. Expr. \overline{A}		1.0	ANI)	ı	IAN	D	OR		NOR			XOR			XNOR			
Alg. Expr.			<i>AB</i> <u>A</u> <u>B</u> <u>x</u>		\overline{AB}		A+B		$\overline{A+B}$			A⊕ B		$\overline{A \oplus B}$		3				
Symbol																				
Truth Table	A 0 1	1 0	B 0 0 1	A 0 1 0 1	X 0 0 0 1	B 0 0 1	A 0 1 0 1	1 1 1 0	B 0 0 1	A 0 1 0 1	X 0 1 1 1	B 0 0 1	A 0 1 0 1	1 0 0 0	B 0 0 1 1	A 0 1 0 1 1	X 0 1 1 0	B 0 0 1	A 0 1 0 1	1 0 0

Implementing Logic gates

Relays (electromagnets), valves (vacuum tubes)

and transistors can be used to create logic gates

Digital Circuits

Logic gates can be combined to produce complex circuits and logic

Ex: 1-bit adder

Controlling a Calculator display with Logic Gates

The display is switched on and off by a series of logical gates

By feeding number 7

Binary number 0111

the gate will turn on

the segment

Part II - Computer Architecture

Modern computers: How are they built ???

Definition of a computer

Word "Computer" first recorded as being used
In 1613 and originally was used to describe a human
Who performed calculations or computations.

It is an electronic device, composed of any digital circuits that stores and

processes data according to instructions given to it by a program stored in memory.

Principle for modern computers

Controlling the machine's operations by means of a program of coded instructions stored in the computer memory.

In 1936 Alan Turing creates The Turing machine.

A device that prints symbols on paper emulating a person following a series of logical instructions.

Electromechanical Computers - Earliest computers

Switches were opened and closed by magnetic fields produced by relays.

Example: IBM ASCC aka Harvard Mark I

Right end with data and program readers

And automatic typewriters

The Von Neumann Architecture

One of the first programs to run on

the Mark I was initiated on 1944

By John Von Neumann.

Nowadays, modern computers still use...

The Von Neumann Architecture!!

A design architecture for an electronic digital computer

Memory - Subsystems

How to store memory - The basic SR Flip-flop Circuit

Connecting a pair of cross-coupled

2- input NAND gates we get a SR Flip-flop, or latch.

With 2 stable outputs, it's possible to store 1-bit!

Ī	R	Q	State
1	1	Previous State	No change
1	0	0	Reset
0	1	1	Set
0	0	?	Forbidden

Travels destinations

RAM Vs ROM

Character encoding schemes

It's possible to store numbers and characters!

ASCII, ANSI, UNICODE UTF-8, UTF-16, UTF-32

ASCII - American Standart Code for Information Interchange

Table of ASCII characters 0-127 (x0000-x007f)																	
000	0	1	2	3	4	5	6	7	010	0	1	2	3	4	5	6	7
00-	N _U L	SO _H	S _T X	E _{TX}	E _O T	E _{NQ}	^A c _K	B _E L	10-	@	Α	В	С	D	Е	F	G
01-	B _S	нт	L _F	v _T	F _F	CR	s _o	s _I	11-	Н	Ι	J	K	L	M	N	0
02-	D _L E	D _C 1	D _{C2}	D _{C3}	D _{C4}	N _{AK}	SYN	E _{TB}	12-	Р	Q	R	S	Т	U	٧	W
03-	C _{AN}	EM	SUB	esc	Fs	GS	R _S	U _S	13-	Χ	Υ	Z	[\]	^	
04-		!	"	#	\$	%	&	'	14-	`	a	b	С	d	е	f	g
05-	()	*	+	,	-		/	15-	h	i	j	k		m	n	o
06-	0	1	2	3	4	5	6	7	16-	p	q	r	S	t	u	٧	w
07-	8	9	:	;	<	=	>	?	17-	X	y	z	{	1	}	~	DEL

We can be very creative with ASCII!

Thanks for watching and happy learnings! Special thanks to Enuminatti for the visit!!

