Sobre la homología persistente en redes neuronales

José Manuel Ros Rodrigo

Facultad de Ciencia y Tecnología Universidad de La Rioja

Marzo 2022

Resumen

TODO

${\bf \acute{I}ndice}$

1.	Introducción	4
2.	Preeliminares 2.1. Complejos simpliciales	
	2.2. Homología. Homología persistente	6
3.	Nociones teóricas previas	6
	3.1. Homología	6
	3.2. Aplicaciones entre complejos simpliciales	7
	3.3. Homología persistente	7
4.	Homología peristente en redes neuronales	8
	4.1. Construcción de un complejo simplicial a partir de una red neuronal .	8
5 .	Experimentos	15

1. Introducción

TODO

2. Preeliminares

A lo largo de este capítulo vamos a ver todas las nociones teóricas necesarias para el uso de la homología persistente en redes neuronales.

2.1. Complejos simpliciales

Comenzamos con el primer concepto fundamental de todo el trabajo, los complejos simpliciales. Esta noción admite dos enfoques diferentes, por lo que debemos dintinguir entre dos definiciones equivalentes: los complejos simpliciales abstractos y los complejos simpliciales geométricos.

Siguiendo el enfoque combinatorio, comenzamos definiendo los complejos simpliciales abstractos y algunas nociones relacionadas.

Definición 1. Un complejo simplicial abstracto es una colección, \mathcal{V} , de subconjuntos no vacíos de un conjunto, \mathcal{V}_0 , tal que verifica las siguientes propiedades:

1.
$$v \in \mathcal{V}_0 \implies \{v\} \in \mathcal{V}$$

2.
$$\sigma \in \mathcal{V} \ v \ \tau \subset \sigma \implies \tau \in \mathcal{V}$$

A los elementos de ν los llamaremos símplices, más concretamente: dado $\sigma \in \nu$, diremos que σ tiene dimensión p, y que σ es un p-símplice, si $|\sigma| = p+1$. Asimismo, definimos la dimensión de ν como el máximo de las dimensiones de sus símplices y denotaremos por ν_p a la colección de los p-símplices de ν .

En relación con el concepto de símplice y de dimensión surge la siguiente noción:

Definición 2. Sean σ y τ dos símplices de ν tales que $\tau \subset \sigma$. Entonces diremos que τ es una cara de σ , y si las dimensiones de σ y τ difieren por a, diremos que τ es una cara de σ de codimensión a.

Ahora que hemos definido los complejos simpliciales abstractos veamos un pequeño ejemplo para fijar ideas.

Ejemplo 1. Supongamos el siguiente complejo simplicial abstracto:

$$\nu = \{ \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \\ \{a, c, d\}, \{a, b, c, d\} \}$$

Definición 3. Una aplicación entre complejos simpliciales, $f: \mathcal{K} \to \mathcal{L}$, es una aplicación $f: \mathcal{V}_0 \to \mathcal{L}_0$ tal que $f(\sigma) \in \mathcal{L} \ \forall \sigma \in \mathcal{K}$.

2.2. Homología. Homología persistente

3. Nociones teóricas previas

Comenzamos dando algunas nociones básicas que nos serán muy útiles a lo largo del trabajo.

3.1. Homología

Habiendo interiorizado los conceptos previos, vamos a usarlos en nuestros siguientes propósitos. Así pues, consideremos \mathbb{F}_2 el cuerpo de dos elementos. Dado un complejo simplicial \mathcal{V} , denotaremos por $C_p(\mathcal{K})$ al \mathbb{F}_2 -espacio vectorial cuya base viene dada por los p-símplices de \mathcal{V} . Ahora, para cualquier $p \in \{1, 2, ...\}$ definimos la siguiente aplicación:

$$\partial_p: C_p(\mathcal{K}) \to C_{p-1}(\mathcal{K})$$

$$\sigma \mapsto \sum_{\tau \subset \sigma, \tau \in \mathcal{K}_{p-1}} \tau$$

Si p=0 entonces definimos $\partial_0=0$. Observemos que ∂_p le asigna a cada p-símplice su borde, esto es, la suma de sus caras de codimensión 1. Adicionalmente, podemos observar que $\forall p \in \{0,1,2,..\}, \ \partial_p \circ \partial_{p+1}=0$. De manera informal decimos que el borde del borde es vacío. Veamos un ejemplo para clarificar esta noción.

Ejemplo 2. Ejemplo conveniente de "el borde del borde es vacío". (En construcción).

De la observación anterior se desprende que $Im(\partial_{p+1}) \subset Ker(\partial_p)$. Esta propiedad motiva la siguiente definición.

Definición 4. Sea $p \in \{0, 1, ...\}$. Definimos la p-ésima homología de un complejo simplicial \mathcal{V} como el espacio vectorial cociente:

$$H_p(\mathcal{K}) := Ker(\partial_p)/Im(\partial_{p+1})$$

Nota. A la dimensión de $H_p(\mathcal{K})$ la denotaremos por $B_p(\mathcal{K}) := dim H_p(\mathcal{K}) = dim Ker(\partial_p) - dim Im(\partial_{p+1})$ y la llamaremos p-ésimo número de Betti.

A los elementos de $Im(\partial_{p+1})$ los llamaremos p-bordes, y a los de $Ker(\partial_p)$ p-ciclos.

De la anterior consideración, deducimos que el p-ésimo número de Betti representa el número de agujeros p-dimensionales de K. Además, si ν es un complejo simplicial de dimensión n, entonces $\forall p > n$, $H_p(\mathcal{K}) = 0$ ya que $\mathcal{K}_p = \emptyset$. Esto nos lleva a la construcción de la siguiente cadena de espacios vectoriales:

$$\begin{array}{ccccc} \partial_{n+1} & \partial_n & \partial_{n-1} & \partial_2 & \partial_1 & \partial_0 \\ 0 \to C_n(\mathcal{K}) \to C_{n-1}(\mathcal{K}) \to & \dots & \to C_1(\mathcal{K}) \to C_0(\mathcal{K}) \to 0 \end{array}$$

Ejemplo 3. Ejemplo conveniente de homología simplicial. (En construcción).

3.2. Aplicaciones entre complejos simpliciales

Consideremos una aplicación entre complejos simpliciales, $f: \mathcal{K} \to \mathcal{K}'$. Tal aplicación induce una aplicación lineal en \mathbb{F}_2 :

$$\overline{f_p}: C_p(\mathcal{K}) \to C_p(\mathcal{K}')
\sum_{\sigma \in \mathcal{K}_p} a_{\sigma} \sigma \mapsto \sum_{f(\sigma) \in \mathcal{K}'} a_{\sigma} f(\sigma) ; a_{\sigma} \in \mathbb{F}_2$$

Observamos también que $\overline{f_p} \circ \partial_{p+1} = \partial'_{p+1} \circ \overline{f_{p+1}}$, y en consecuencia, $\overline{f_p}$ induce una aplicación lineal entre espacios vectoriales de homología:

$$f_p: H_p(\mathcal{K}) \to H_p(\mathcal{K}')$$

 $[x] \mapsto [\overline{f_p(x)}]$

Concluimos que, dada una aplicación f entre complejos simpliciales, siempre es posible asociarle una aplicación f_p entre espacios vectoriales de homología.

3.3. Homología persistente

Tras todos los conceptos previos, ya estamos en una buena posición para definir el concepto central del trabajo: la homología persistente. Sin embargo, aún vamos a necesitar una definición más.

Definición 5. Sea \mathcal{V} un complejo simplicial finito y $\mathcal{K}_1 \subset \mathcal{K}_2 \subset ... \subset \mathcal{K}_{n-1} \subset \mathcal{K}_n = \mathcal{K}$ una cadena de subcomplejos simpliciales de \mathcal{V} . Al complejo simplicial \mathcal{V} y a su cadena asociada los llamaremos complejo simplicial filtrado.

Ahora, y sin más dilación, introducimos el concepto que da nombre a este trabajo.

Definición 6. Sea $\mathcal{K}_1 \subset \mathcal{K}_2 \subset ... \subset \mathcal{K}_{n-1} \subset \mathcal{K}_n = \mathcal{K}$ un complejo simplicial filtrado. La *p-ésima homología persistente* de \mathcal{V} es el par:

$$(\lbrace H_p(\mathcal{K}_i)\rbrace_{1\leq i\leq r}, \lbrace f_{i,j}\rbrace_{1\leq i\leq j\leq r})$$

Donde $\forall i, j \in \{1, 2, ..., r\}$ con $i \leq j$, las aplicaciones lineales $f_{i,j} : H_p(\mathcal{K}_i) \to H_p(\mathcal{K}_j)$ son las inducidas por las inclusiones $\mathcal{K}_i \hookrightarrow \mathcal{K}_j$.

De la definición anterior, observamos que el concepto de homología persistente es más "rico" que el de homología, ya que, la homología peristente nos ofrece más información acerca de un complejo simplicial filtrado que la consideración de la homología de los subcomplejos simpliciales. Para visualizar la homolgía persistente nos serán de mucha utilidad los diagramas de persistencia, así como los códigos de barras

Veamos un ejemplo que ilustre lo que hemos definido.

Ejemplo 4. Ejemplo adecuado de complejo simplicial filtrado + código de barras + diagrama de persistencia. (En construcción). ◀

4. Homología peristente en redes neuronales

En la sección anterior hemos discutido todas las cuestiones acerca de la homología persistente en complejos simpliciales. Pero, ¿Cómo aplica toda esta teoría a las redes neuronales?

Para responder a esta cuestión debemos pensar en las redes neuronales como si fueran grafos, cuyos nodos serán las neuronas de la red, y las aristas, las relaciones entre las neuronas.De este modo podremos construir complejos simpliciales asociados al grafo y aplicarles toda la teoría que ya conocemos.

A lo largo de esta sección veremos con detalle como hacer esta correspondencia, así como algunos ejemplos ilustrativos de los conceptos que irán apareciendo.

(En el futuro habrá que añadir alguna disquisición previa sobre redes neuronales a la sección anterior).

4.1. Construcción de un complejo simplicial a partir de una red neuronal

Consideraremos el conjunto de las neuronas como el conjunto de vértices, es decir, $\nu_0 = \{k_0, ..., k_n\}$ con n+1 el número de neuronas. Pensando de esta manera, vemos las redes neuronales como grafos dirigidos con pesos ω_{ij} , con ω_{ij} el peso entre k_i y k_j . Notemos que $\omega_{ij} = 0$ si y sólo si k_i y k_j no están conectadas. Con esto en mente, definimos la importancia de k_i (salida) para k_j (llegada) como:

$$R_{ij} = \begin{cases} 1 & \text{si } i = j \\ \omega_{ij}^+ / \sum_{k,k \neq j} \omega_{kj}^+ & \text{si } i \neq j \end{cases}$$
 (4.1)

Donde ω_{ij}^+ es la parte positiva del peso ω_{ij} , esto es, $\omega_{ij}^+ := \max\{0, \omega_{ij}\}.$

Observamos que la importancia de una neurona para sí misma es de 1, y la importancia entre neuronas distintas es la proporción del peso entre ellas con respecto al resto de pesos de la neurona de llegada.

(La elección de ω_{ij}^+ se toma motivada por la regla- z^+ definida en la "descomposición profunda de Taylor".Preguntar).

Para poder definir los complejos simpliciales tenemos que extender la definición de la importancia entre neuronas, para aquellas que no estén directamente conectadas. Consideremos las neuronas k_0 y k_2 conectadas por el camino: $k_2 \to k_1 \to k_0$, la importancia de k_2 para k_0 es, según el camino entre ellas, $R_{21} \cdot R_{10}$. Por lo tanto, definimos:

$$\overline{R_{ij}} = \max\{R_{k_i k_{m_1}} \cdots R_{k_{m_n} k_j} \mid (k_i, k_{m_1}, ..., k_{m_n}, k_j) \in C_{ij}\}$$
(4.2)

Donde C_{ij} denota el conjunto de todos los posibles caminos de k_i a k_j . (Se puede definir $\overline{R_{ij}}$ considerando varios caminos en C_{ij} . Elegimos el máximo por eficiencia computacional. Preguntar).

De aquí en adelante, numeraremos las neuronas de una red neuronal en orden ascendente, desde las neuronas de llegada hasta las de salida.

Veamos un ejemplo sencillo para interiorizar estas definiciones que serán clave a lo largo de esta sección.

Ejemplo 5. Supongamos la siguiente representación de una red neuronal con sus correspondientes pesos:

Figura 1: Representación de una red neuronal de 4 neuronas y 1 capa.

Tal y como vemos, las neuronas ya han sido ordenadas de manera correcta. Además en este caso todos los pesos son positivos, por lo que no nos tenemos que preocupar escoger la parte positiva. Vamos a calcular algunas importancias entre neuronas:

$$\begin{split} R_{31} &= \frac{6.9}{6.9} = 1 \quad R_{32} = \frac{5.8}{5.8} = 1 \\ R_{10} &= \frac{2.6}{6.5} = 0.4 \quad R_{20} = \frac{3.9}{6.5} = 0.6 \\ \overline{R_{30}} &= \max\{R_{31} \cdot R_{10}, R_{32} \cdot R_{20}\} = R_{32} \cdot R_{20} = 0.6 \end{split}$$

Este ejemplo pone de manifiesto la intuición detrás de la definición de la importancia entre neuronas. Lo que hace es medir la aportación de la neurona emisora, k_i , con respecto al resto de neuronas emisoras de k_i .

Teninedo en cuenta la definición de $\overline{R_{ij}}$, y el orden en una red, ya podemos construir un complejo simplicial filtrado. En primer lugar, definimos los p-símplices a partir de ν_0 como sigue:

$$\mathcal{K}_{p}^{t} = \begin{cases}
\nu_{0} & \text{si } p = 0 \\
\{(k_{a_{0}}, ..., k_{a_{p}}) \mid k_{a_{s}} \in \nu_{0}, \overline{R_{a_{s}a_{r}}} \geq t, \forall a_{s} > a_{r}\} & \text{si } p \geq 1
\end{cases}$$
(4.3)

Donde $0 \le t \le 1$ es un parámetro.

Notemos que de la construcción que hemos hecho de los complejos simpliciales caben dos interpretaciones: la primera consite en tomar un símplice si la importancia entre dos vértices calculada localmente pasa el filtro t; la segunda se distingue de la primera en que la importancia entre dos vértices se calcula globalmente.

Veamos la diferencia entre ambas interpretaciones con el siguiente ejemplo.

Ejemplo 6. Supongamos la siguiente representación de una red neuronal con las importancias entre nueronas ya calculadas:

Figura 2: Representación de una red neuronal de 5 neuronas y 1 capa.

Vamos calcular $\mathcal{K}_2^{0.4}$ para ver las diferencias entre las interpretaciones. En primer lugar, listamos los posibles 2-símplices:

$${4,2,0},{4,1,0},{3,1,0}$$

Interpretación local
 Como la importancia entre 4-2, 2-0 y 4-0 es mayor que 0.4 ⇒ {4, 2, 0} ∈ K₂^{0.4}, donde importancia entre 4-0 viene dada por:

$$\overline{R_{40}} = \max\{R_{42} \cdot R_{20}\} = R_{42} \cdot R_{20} = 0.6$$

Siguiendo la misma regla tenemos que $\{4,1,0\},\{3,1,0\}\notin\mathcal{K}_2^{0.4}$. Por lo tanto, $\mathcal{K}_2^{0.4}=\{\{4,2,0\}\}.$

■ Interpretación global Razonando igual que antes, $\{4, 2, 0\} \in \mathcal{K}_2^{0.4}$. Ahora bien, como la importancia entre 4-1 y 1-0 es mayor o igual que 0.4, y

$$\overline{R_{40}} = \max\{R_{42} \cdot R_{20}, R_{41} \cdot R_{10}\} = R_{42} \cdot R_{20} = 0.6$$

Entonces
$$\{4,1,0\} \in \mathcal{K}_2^{0.4}$$
. Sin embargo, $\{3,2,0\} \notin \mathcal{K}_2^{0.4}$ y así, $\mathcal{K}_2^{0.4} = \{\{4,2,0\},\{4,1,0\}\}$

El ejemplo pone de manifiesto la principal diferencia entre ambas interpretaciones: en la primera, el máximo se calcula sobre los caminos que aparecen en el p-símplice; en la segunda, el máximo se calcula sobre los caminos que aparecen en todos los p-símplices.

Nota. Mientras que la interpretación global es consistente para los 1-símplices, la interpretación local no lo es. Para el cálculo de los 1-símplices en la interpretación local se toma el máximo entre todos los posibles caminos.

Ahora que ya tenemos definidos los p-símplices, vamos con la construcción del complejo simplicial abstracto. Para ello damos el siguiente resultado:

Proposición 1. Sea $\nu_0 = \{k_0, ..., k_n\}$ un conjunto finito, $y \{\omega_{ij}\}_{0 \le j \le i \le n}$ un conjunto de números reales. Sea $\overline{R_{ij}}$ la importancia entre neuronas definida en (4.2), $y \mathcal{K}_p^t$ los p-símplices definidos en (4.3) con t parámetro real entre 0 y 1. Entonces, $\mathcal{K}^t = \bigcup_{s=0}^{s=n} \mathcal{K}_s^t$ es un complejo simplicial.

Demostración. Supongamos hipótesis generales.

Para probar que \mathcal{K}^t es un complejo simplicial debemos ver:

1.
$$v \in \nu_0 \implies \{v\} \in \mathcal{K}^t$$

2.
$$\sigma \in \mathcal{K}^t \wedge \tau \subset \sigma \implies \tau \in \mathcal{K}^t$$

Notemos que la primera propiedad se deduce inmediatamente de (4.3) y de la definición de \mathcal{K}^t .

Así pues, vamos a probar la segunda.

$$\sigma = (k_{m_0}, ..., k_{m_p}) \in \mathcal{K}^t \implies \overline{R_{m_i m_j}} \geq t \ \forall m_i \geq m_j$$
. Ahora sea $\tau \subset \sigma$, entonces, $\tau = (k_{n_0}, ..., k_{n_q})$, y como $\{n_0, ..., n_q\} \subset \{m_0, ..., m_p\}$, se tendrá que $\overline{R_{n_i n_j}} \geq t$, $\forall n_i \geq n_j$. El resultado se sigue inmediatamente.

Ahora que ya tenemos construido nuestro complejo simplicial vamos a proceder a su filtración. Para ello será necesario el siguiente resultado:

Proposición 2. Sea $(t_i)_{i=1}^n$ una sucesión, monótona decreciente, de números reales entre 1 y 0. Entonces, $\nu_0 = \emptyset$ y $\mathcal{K}_i = \mathcal{K}^{t_i}$ con $1 \leq i \leq n$, es un complejo simplicial filtrado.

Demostración. Supongamos hipótesis generales.

Por la proposición anterior, sabemos que \mathcal{K}^{t_n} es un complejo simplicial. Ahora bien, $t_i > t_j \implies \mathcal{K}_p^{t_i} \subset \mathcal{K}_p^{t_j}$ por la definición (4.3). Entonces, $\emptyset = \nu_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_n = \mathcal{K}^{t_n}$. Se sigue inmediatamente el resultado.

Ahora que ya contamos con todas las herramientas necesarias, veamos un ejemplo completo en el que calculemos los números de Betti y los diagramas correspondientes. Haremos el desarrollo del ejemplo siguiendo las dos interpretaciones vistas en el ejemplo 6.

Ejemplo 7. Supongamos la siguiente representación de una red neuronal con las importancias entre neuronas ya calculadas:

Figura 3: Representación de una red neuronal de 12 neuronas y 2 capas.

Vamos a calcularle el complejo simplicial filtrado asociado. Para ello vamos a ilustrar unos cuantos pasos en la filtración con los correspondientes números de Betti asociados. También añadimos los correspondientes diagramas de persistencia y de barras realizados con GUDHI y Dionysus.

Interpretación local

• Interpretación global

Nota. Para una mayor claridad, en los dibujos de las filtraciones se han omitido algunas aristas.

Del ejemplo anterior podemos extraer unas conclusiones muy importantes. Por una parte, observamos que si las neuronas de entrada se conectan directamente a las de salida, el conocimiento de la red será "pobre" ya que será equivalente a la detección de patrones. Por otra parte, el incremento del número de Betti β_1 indica que la red determina la neurona de llegada por combinación de las neuronas de salida. De este modo, podemos suponer que el aumento de β_1 releja la complejidad del conocimiento adquirido por la red. Por lo tanto, mediante el uso de la homología persistente seremos capaces de medir la complejidad del conocimiento adquirido por la red.

5. Experimentos

(En construcción.)