Contents

Preface				ix	
Ι	Ва	asics			
1	Introduction to Bayesian Networks			3	
	1.1	Basics	s of Probability Theory	5	
		1.1.1	Probability Functions and Spaces	6	
		1.1.2	Conditional Probability and Independence	9	
		1.1.3	Bayes' Theorem	12	
		1.1.4	Random Variables and Joint Probability Distributions	13	
	1.2	Bayes	ian Inference	20	
		1.2.1	Random Variables and Probabilities in Bayesian Applica-		
			tions	20	
		1.2.2	A Definition of Random Variables and Joint Probability		
			Distributions for Bayesian Inference	24	
		1.2.3	A Classical Example of Bayesian Inference	27	
	1.3	Large	Instances / Bayesian Networks	29	
		1.3.1	The Difficulties Inherent in Large Instances	29	
		1.3.2	The Markov Condition	31	
		1.3.3	Bayesian Networks	40	
		1.3.4	A Large Bayesian Network	43	
			ing Bayesian Networks Using Causal Edges	43	
		1.4.1	Ascertaining Causal Influences Using Manipulation	44	
		1.4.2	Causation and the Markov Condition	51	
2	More DAG/Probability Relationships				
	2.1	Entail	ed Conditional Independencies	66	
		2.1.1	Examples of Entailed Conditional Independencies	66	
		2.1.2	d-Separation	70	
		2.1.3	Finding d-Separations	76	
	2.2		ov Equivalence	84	
	2.3	Entail	ing Dependencies with a DAG	92	
		2.3.1	Faithfulness	95	

iv CONTENTS

		2.3.2	Embedded Faithfulness	99
	2.4	Minim	nality	104
	2.5	Marko	ov Blankets and Boundaries	108
	2.6	More of	on Causal DAGs	110
		2.6.1	The Causal Minimality Assumption	110
		2.6.2	The Causal Faithfulness Assumption	111
		2.6.3	The Causal Embedded Faithfulness Assumption 1	112
II	Ir	nferen	ice 1	21
3	Infe	erence:	Discrete Variables 1	23
	3.1	Examp	ples of Inference	124
	3.2	Pearl's	s Message-Passing Algorithm	126
		3.2.1	Inference in Trees	127
		3.2.2	Inference in Singly-Connected Networks	142
		3.2.3	Inference in Multiply-Connected Networks	153
		3.2.4	Complexity of the Algorithm	155
	3.3	The N	Ioisy OR-Gate Model	156
		3.3.1	The Model	156
		3.3.2	Doing Inference With the Model	160
		3.3.3	Further Models	161
	3.4	Other	Algorithms that Employ the DAG	161
	3.5	The S	PI Algorithm	162
		3.5.1	The Optimal Factoring Problem	163
		3.5.2	Application to Probabilistic Inference	168
	3.6	Comp	lexity of Inference	170
	3.7	Relation	onship to Human Reasoning	171
		3.7.1	The Causal Network Model	171
		3.7.2	Studies Testing the Causal Network Model	173
4	Mo	re Infe	erence Algorithms 1	81
	4.1	Contin	nuous Variable Inference	181
		4.1.1	The Normal Distribution	182
		4.1.2	An Example Concerning Continuous Variables 1	
		4.1.3	An Algorithm for Continuous Variables	185
	4.2	Appro	oximate Inference	205
		4.2.1	A Brief Review of Sampling	205
		4.2.2	Logic Sampling	211
		4.2.3	Likelihood Weighting	217
	4.3	Abduc	ctive Inference	221
		4.3.1	•	221
		4.3.2	A Best-First Search Algorithm for Abductive Inference 2	224

CONTENTS

5	Influence Diagrams 239			
	5.1	Decisio	on Trees	39
		5.1.1	Simple Examples	39
		5.1.2	Probabilities, Time, and Risk Attitudes 24	12
		5.1.3	Solving Decision Trees	15
		5.1.4	More Examples	
	5.2	Influer	nce Diagrams	
		5.2.1	Representing with Influence Diagrams	
		5.2.2	Solving Influence Diagrams	
	5.3	Dynan	nic Networks	
		5.3.1	Dynamic Bayesian Networks	
		5.3.2	Dynamic Influence Diagrams	
II	I]	Learni	ing 29	1
6	Par	ameter	Learning: Binary Variables 29	3
	6.1	Learni	ng a Single Parameter)4
		6.1.1	Probability Distributions of Relative Frequencies 29)4
		6.1.2	Learning a Relative Frequency	
	6.2	More of	on the Beta Density Function	.0
		6.2.1	Non-integral Values of a and b	1
		6.2.2	Assessing the Values of a and b	3
		6.2.3	Why the Beta Density Function?	5
	6.3	Comp	uting a Probability Interval	9
	6.4	Learni	ng Parameters in a Bayesian Network	23
		6.4.1	Urn Examples	23
		6.4.2	Augmented Bayesian Networks	31
		6.4.3	Learning Using an Augmented Bayesian Network 33	36
		6.4.4	A Problem with Updating; Using an Equivalent Sample	
			Size	18
	6.5	Learni	ng with Missing Data Items	57
		6.5.1	Data Items Missing at Random	58
		6.5.2	Data Items Missing Not at Random	3
	6.6	Varian	ces in Computed Relative Frequencies	34
		6.6.1	A Simple Variance Determination	
		6.6.2	The Variance and Equivalent Sample Size	66
		6.6.3	Computing Variances in Larger Networks	72
		6.6.4	When Do Variances Become Large?	
7	Mo		ameter Learning 38	
	7.1		nomial Variables	
		7.1.1	Learning a Single Parameter	
		7.1.2	More on the Dirichlet Density Function	
		7.1.3	Computing Probability Intervals and Regions 38	
		7.1.4	Learning Parameters in a Bayesian Network)2

vi CONTENTS

		7.1.5	Learning with Missing Data Items
		7.1.6	Variances in Computed Relative Frequencies 398
	7.2	Contin	nuous Variables
		7.2.1	Normally Distributed Variable
		7.2.2	Multivariate Normally Distributed Variables 413
		7.2.3	Gaussian Bayesian Networks
8	Bay	esian	Structure Learning 441
	8.1	Learn	ing Structure: Discrete Variables
		8.1.1	Schema for Learning Structure
		8.1.2	Procedure for Learning Structure
		8.1.3	Learning From a Mixture of Observational and Experimental Data
		8.1.4	Complexity of Structure Learning
	8.2		l Averaging
	8.3		ing Structure with Missing Data
	0.0	8.3.1	Monte Carlo Methods
		8.3.2	Large-Sample Approximations
	8.4		bilistic Model Selection
	0.1	8.4.1	Probabilistic Models
		8.4.2	The Model Selection Problem
		8.4.3	Using the Bayesian Scoring Criterion for Model Selection 473
	8.5		n Variable DAG Models
		8.5.1	Models Containing More Conditional Independencies than
			DAG Models
		8.5.2	Models Containing the Same Conditional Independencies
			as DAG Models
		8.5.3	Dimension of Hidden Variable DAG Models 484
		8.5.4	Number of Models and Hidden Variables 486
		8.5.5	Efficient Model Scoring
	8.6	Learn	ing Structure: Continuous Variables 491
		8.6.1	The Density Function of D
		8.6.2	The Density function of D Given a DAG pattern 495
	8.7	Learn	ing Dynamic Bayesian Networks 505
9	App	proxim	ate Bayesian Structure Learning 511
	9.1	Appro	eximate Model Selection
		9.1.1	Algorithms that Search over DAGs 513
		9.1.2	Algorithms that Search over DAG Patterns 518
		9.1.3	An Algorithm Assuming Missing Data or Hidden Variables 529
	9.2	Appro	oximate Model Averaging
		9.2.1	A Model Averaging Example
		9.2.2	Approximate Model Averaging Using MCMC 533

CONTENTS vii

10	Con	straint	t-Based Learning	541	
	10.1	Algoria	thms Assuming Faithfulness	542	
			Simple Examples		
			Algorithms for Determining DAG patterns		
			Determining if a Set Admits a Faithful DAG Representation		
			Application to Probability		
	10.2		ing Only Embedded Faithfulness		
			Inducing Chains		
			A Basic Algorithm		
			Application to Probability		
			Application to Learning Causal Influences ¹		
	10.3		ning the d-separations		
			Discrete Bayesian Networks		
			Gaussian Bayesian Networks		
	10.4		onship to Human Reasoning		
			Background Theory		
			A Statistical Notion of Causality		
11	More Structure Learning				
			aring the Methods	617 617	
			A Simple Example		
			Learning College Attendance Influences		
			Conclusions		
	11.2		Compression Scoring Criteria		
			el Learning of Bayesian Networks		
			oles		
		_	Structure Learning		
			Inferring Causal Relationships		
TX:	r A	1.	, •	C 45	
IV	P	ppiic	eations	647	
12		licatio		649	
12.1 Applications Based on Bayesian Networks			-		
	12.2	Beyone	d Bayesian networks	655	
Bil	bliog	raphy		657	
Inc	dex			686	

¹The relationships in the examples in this section are largely fictitious.