5.3 The Parabolic Elevator

Theorem 5.8. The domain $\operatorname{Exterior}(\mathcal{J})$ is quasiconvex with the itineraries η_{z_1,z_2} as certificates.

Proof. (Parabolic Conformal Elevator on \mathcal{J}). Let $d \gg 1$ be a sufficiently large integer and let $z_1, z_2 \in \mathcal{J}$ be a pair of points. Repeatedly apply f on z_1, z_2 until one of the following two stopping conditions happens:

(i)
$$|f^{\circ N}(z_1) - f^{\circ N}(z_2)| > \epsilon$$
, where $\epsilon = \epsilon(d) > 0$ is a constant; or

(ii)
$$f^{\circ N}(z_1) \in I_n$$
 and $f^{\circ N}(z_2) \in I_m$ with $|m-n| \ge d$.

Denote $w_i = f^{\circ N}(z_i)$. We already proved that the itinerary η_{w_1,w_2} satisfies

$$Length(\eta_{w_1,w_2}) \le A|w_1 - w_2|$$

for some A > 0. We now deduce that the original points z_1, z_2 enjoy a similar estimate,

$$Length(\eta_{z_1,z_2}) \le C|z_1 - z_2|,$$

where C depends only on A. This follows from Koebe's distortion theorem applied N times on the univalent function f^{-1} , but some care is due in constructing the inverse branches in a neighborhood of the itineraries.

Fix a small ball $B = B(\frac{1}{2}, 0.1)$ around the main cusp. Its preimages are topological balls centered at cusps q of \mathcal{J} , and we index them by B_{ζ} where $\zeta = \frac{q}{|q|}$.

Each ball B_{ζ} has a *level*, which is the first iterate k for which $f^{\circ k}(B_{\zeta}) = B$. Repeatedly applying f^{-1} on the pair (w_1, w_2) until we reach (z_1, z_2) , we get two sequences of balls $B = B_1^1, B_2^1, \ldots$ and $B = B_1^2, B_2^2, \ldots$. We now consider several cases.

Case (i). Suppose stopping criterion (i) occured. We choose a neighborhood N_1 of w_1, w_2 disjoint from the post-critical set \wp and from B on which f is univalent. Next choose a neighborhood $N_2 \subset N_1$ such that for every $w_1, w_2 \in N_2$ we have $\eta_{w_1,w_2} \subset N_1$. Finally choose a neighborhood $N_3 \supset N_1$ disjoint from \wp on which f is univalent such that there is a definite modulus to the annulus $N_3 \setminus N_1$.

Choosing a branch of $f^{\circ -N}$ in N_3 that sends η_{w_1,w_2} to η_{z_1,z_2} , Koebe's distortion theorem gives

 $\frac{\text{Length}(\eta_{z_1, z_2})}{|z_1 - z_2|} \approx \frac{\text{Length}(\eta_{w_1, w_2})}{|w_1 - w_2|}.$ (5.9)

By compactness of $\mathcal{J} \setminus B$, these neighborhoods can be chosen from a finite collection, hence the constant is uniform in the points z_1, z_2 and we obtain quasiconvexity of η_{z_1,z_2} in case (i).

Case (ii). Suppose that stopping criterion (ii) occured. We first claim that the two sequences of balls (B_k^1) , (B_k^2) coincide. Indeed, suppose otherwise and let j be the first index for which $B_j^1 \neq B_j^2$. The two points $f^{-j}(z_1)$, $f^{-j}(z_2)$ belong to two distinct preimages of the same ball $B_{j-1}^1 = B_{j-1}^2$, hence they are a positive distance apart and stopping criterion i applies. This is a contradiction, hence the two sequences coincide.

There is thus a branch of $f^{\circ -N}$ sending (w_1, w_2) to (z_1, z_2) , and the necessary bound on η_{z_1, z_2} follows from applying Koebe's distortion theorem on this branch as in case (i).

References

- [1] CARLESON, L., JONES, P. W., AND YOCCOZ, J.-C. Julia and John. *Bol. Soc. Bras. Mat* 25, 1 (Mar. 1994), 1–30.
- [2] HAKOBYAN, H., AND HERRON, D. Euclidean quasiconvexity. *Annales Academiae Scientiarum Fennicae Mathematica 33* (Jan. 2008).
- [3] Koskela, P., Miranda, M., and Shanmugalingam, N. Geometric Properties of Planar BV -Extension Domains. In *Around the Research of Vladimir Maz'ya I: Function Spaces*, A. Laptev, Ed., International Mathematical Series. Springer, New York, NY, 2010, pp. 255–272.