Addressing the Under-translation Problem from the Entropy Perspective

Yang Zhao, Jiajun Zhang, Chengqing Zong, Zhongjun He, and Hua Wu

{yang.zhao, jjzhang, cqzong}@nlpr.ia.ac.cn, {hezhongjun,wu_hua}@baidu.com

Introduction

- Under-translation: some source words are mistakenly dropped by the neural machine translation (NMT) model.
- The current methods study the problem in the model level.
- Our Contributions
- We find that source words with larger translation entropy are more likely to be dropped by the neural model.
- We propose a coarse-to-fine framework to address the under-translation problem of high-entropy words.

Observation and Motivation

• Definition (translation entropy):

Assume a word S contains K candidate translations, each of which has a probability P_k , the translation entropy for this word can be calculated by $E(s) = -\sum_{k=1}^{\infty} p_k \log p_k$

• Example. For the following three words, the translation entropy can be ranked by $E(s_1) > E(s_2) > E(s_3)$

Observation: For a source word s, the larger its translation entropy is, the more likely this word is to be ignored by the neural model.

High-entropy Words

- If the translation entropy exceeds the predefined threshold, we treat this word as a high-entropy word.
- Our goal is to reduce the under-translation cases of these high-entropy words.

Method Description

We propose a **coarse-to-fine framework** to address this problem

Coarse-grained Phase

- > we construct the **pseudo target sentences** to reduce the entropy.
- > construction method:

replacing the candidate translations of each high-entropy word with its respective special pseudo token.

Training data will change by

$$D_{xy} = \{X^{(n)}, Y^{(n)}\}_{n=1}^{N}$$

- $D_{xyz} = \{X^{(n)}, Y^{(n)}, Z^{(n)}\}_{n=1}^{N}$
- Z is the derived pseudo target sentence

Disambiguation

step

attention

encoder | decoder

(c) Two-pass method

Translation

(b) Probability Distribution Changing

• Fine-grained Phase

the derived pseudo sentences are utilized to improve the neural model.

Pre-training

 $X \rightarrow NMT \text{ model} \rightarrow Z$

 $X \longrightarrow NMT \mod P$

Task: X to Z

(a) Pre-training method

Decoder

Encoder

(b) Multitask method

Fine-tuning

Task: X to Y

> Pre-training method

> Multitask method

train neural model through two translation tasks:

- X to Y and X to Z
- > Two-pass Method
- Translation step:

Translate X to Z with the standard NMT model

• Disambiguation step:

Transform the special token in Z to real target word in Y with a network

Experiments

#	Model	Units	03	04	05	06	08	Avg.
1	RNMT	word	41.01	42.94	40.31	40.57	30.96	39.16
2	RNMT+pre_train	word	41.53 [†]	43.46*	40.41*	41.35 [†]	31.17*	39.58
3	RNMT+multitask	word	41.99 [†]	43.95 [†]	40.84^{\dagger}	41.57 [†]	31.42*	39.95
_ 4	RNMT+two_pass	word	42.37 [†]	44.27 [†]	41.58 [†]	41.72 [†]	31.91 [†]	40.37
5	RNMT	sub-word	43.96	44.74	42.46	43.01	32.53	41.34
6	RNMT+pre_train	sub-word	44.13	44.96*	42.61*	43.31*	32.77*	41.56
7	RNMT+multitask	sub-word	44.53 [†]	45.17*	43.39 [†]	43.85 [†]	32.97*	41.98
8	RNMT+two_pass	sub-word	44.86 [†]	45.64 [†]	43.36 [†]	44.17 [†]	33.44 [†]	42.29
9	RNMT+coverage	word	41.75	43.79	41.44	41.24	31.46	39.94
10	RNMT+coverage+multitask	word	42.66 [†]	44.54 [†]	42.07 [†]	41.77†	32.03 [†]	40.61
11	RNMT+coverage+two_pass	word	42.94 [†]	44.52 [†]	42.53 [†]	42.12 [†]	32.23 [†]	40.87
12	Transformer	sub-word	45.80	47.77	46.90	46.90	34.61	44.40
13	Transformer+multitask	sub-word	46.71 [†]	48.13*	47.41 [†]	47.44 [†]	34.98*	44.93
14	Transformer+two_pass	sub-word	46.64 [†]	48.29 [†]	47.63 [†]	47.51 [†]	35.13 [†]	45.04

The BLEU points of CH-EN translation

Model	All	High-Entropy	Other	Model
RNMT	5.02%(207)	8.05%(91)	3.88%(116)	RNMT
+two_pass	4.10%(169)	4.86%(55)	3.81%(114)	RNMT+ multitask
Coverage	4.32%(178)	7.07%(80)	3.28%(98)	RNMT+ two_pass
+two_pass	3.59%(148)	4.77%(54)	3.14%(94)	Transformer
Transformer	4.63%(191)	7.60%(86)	3.51%(105)	Transformer +multitask
+two_pass	3.78%(156)	4.69%(53)	3.44%(103)	Transformer +two_pass

The under-translation ratio (number) of different methods.

The alignment error rate of different methods.

45.54

43.39

40.22

High-Entropy

45.11

44.02

Conclusion

- 1.We find that source words with larger translation entropy are more likely to be dropped.
- 2. We propose a coarse-to-fine framework to address this problem.
- 3. The experiments demonstrate that our method can sharply reduces the under-translation cases of these high-entropy words.

