Factorisation

$\mathrm{May}\ 4,\ 2022$

Contents

	1 Factor Bases	•
	1.1 Question 1	 ٠
2	2 Continued Fractions	•
	2.1 Question 2	
	2.2 Question 3	 ļ
3	3 Code	7
	3.1 Question 1	 7
	3.2 Question 2	 7
	3.3 Question 6	 8

Preface

This is my CATAM project, 15.10 for part II. The code for each question can be found in section 3.

1 Factor Bases

1.1 Question 1

See below for a table of estimates for the probability that a d-digit number is B-smooth for $2 \le d \le 10$, with B the set of primes less than 50.

Number of Digits	Probability
2	8.7×10^{-1}
3	4.7×10^{-1}
4	2.0×10^{-1}
5	7.2×10^{-2}
6	2.2×10^{-2}
7	6.3×10^{-3}
8	1.6×10^{-3}
9	3.9×10^{-4}
10	1.0×10^{-4}

Table 1: Probabilities for a d-digit number being B-smooth

2 Continued Fractions

2.1 Question 2

We show by induction that the continued fraction of $x = \sqrt{N}$ has each x_n of the form $\frac{r_n + \sqrt{N}}{s_n}$ with $s \mid (r^2 - N)$. Indeed for n = 0 this holds with $r_0 = 0$, $s_0 = 1$. Then suppose it holds for n, then we have

$$x_{n+1} = \frac{1}{x_n - a_n}$$

$$= \frac{s_n}{r_n + \sqrt{N} - a_n s_n}$$

$$= \frac{s_n (r_n - s_n a_n - \sqrt{N}}{(r_n - s_n a_n)^2 - N}$$

$$= \frac{(s_n a_n - r_n) + \sqrt{N}}{2r_n a_n - s_n a_n^2 + \frac{N - r_n^2}{s_n}}.$$

Then set

$$r_{n+1} = s_n a_n - r_n$$

 $s_{n+1} = 2r_n a_n - s_n a_n^2 + \frac{N - r_n^2}{s_n}.$

This completes the induction since $(s_n a_n - r_n)^2 - N = s_n s_{n+1}$ and so $s_{n+1} \mid (r_{n+1}^2 - N)$.

See below a table of the first 10 partial quotients of the continued fraction expansion of \sqrt{N} for $1 \le N \le 50$.

N	Partial Quotients									
1	1	-	-	-	-	-	-	-	-	-
2	1	2	2	2	2	2	2	2	2	2
3	1	1	2	1	2	1	2	1	2	1
4	2	-	_	-	_	-	-	_	-	_
5	2	4	4	4	4	4	4	4	4	4
6	2	2	4	2	4	2	4	2	4	2
7	2	1	1	1	4	1	1	1	4	1
8	2	1	4	1	4	1	4	1	4	1
9	3	_	_	_	_	-	_	_	_	-
10	3	6	6	6	6	6	6	6	6	6
11	3	3	6	3	6	3	6	3	6	3
12	3	2	6	2	6	2	6	2	6	2
13	3	1	1	1	1	6	1	1	1	1
14	3	1	2	1	6	1	2	1	6	1
15	3	1	6	1	6	1	6	1	6	1
16	4	_	_	_	_	_	_	_	_	_
17	4	8	8	8	8	8	8	8	8	8
18	4	4	8	4	8	4	8	4	8	4
19	4	2	1	3	1	2	8	2	1	3
20	4	2	8	2	8	2	8	2	8	2
21	4	1	1	$\overline{2}$	1	1	8	1	1	$\overline{2}$
22	4	1	$\overline{2}$	$\overline{4}$	2	1	8	1	$\overline{2}$	$\overline{4}$
23	4	1	3	1	8	1	3	1	8	1
24	4	1	8	1	8	1	8	1	8	1
25	5	_	-	_	_	_	-	_	-	_
26	5	10	10	10	10	10	10	10	10	10
27	5	5	10	5	10	5	10	5	10	5
28	5	3	2	3	10	3	2	3	10	3
29	5	2	1	1	2	10	2	1	1	2
30	5	2	10	2	10	2	10	2	10	2
31	5	1	1	3	5	3	1	1	10	1
32	5	1	1	1	10	1	1	1	10	1
33	5	1	2	1	10	1	2	1	10	1
34	5	1	4	1	10	1	4	1	10	1
35	5	1	10	1	10	1	10	1	10	1
36	6	-	-	-	-	-	-	-	-	-
37	6	12	12	12	12	12	12	12	12	12
38	6	6	12	6	12	6	12	6	12	6
39	6	4	12	4	12	4	12	4	12	4
40	6	3	12	3	12	3	12	3	12	3
41	6	2	2	12	2	2	12	2	2	12
42	6	2	12	2	12	2	12	2	12	2
43	6	1	1	3	1	5	1	3	1	1
44	6	1	1	1	2	1	1	1	12	1
45	6	1	2	$\overline{2}$	$\overline{2}$	1	12	1	2	$\overline{2}$
46	6	1	3	1	1	$\overline{2}$	6	2	1	1
47	6	1	5	1	12	1	5	1	12	1
48	6	1	12	1	12	1	12	1	12	1
49	7	_	-	_	-	_	-	_	_	-
50	7	14	14	14	14	14	14	14	14	14

Table 2: Partial Quotients of CF Expansion of various \sqrt{N}

2.2 Question 3

See below a table of the $P_n^2-NQ_n^2$ for $1\geq n\geq 10$, and N ranging over non-square integers in [1,50]. Note that the equation $x^2-Ny^2=-1$ has no solution for $N\leq 0$ since then $x^2-Ny^2\geq 0>-1$ for $x,y\in\mathbb{Z}$.

We can see from the table of $P_n^2 - NQ_n^2$ that we can generate many solutions of $x^2 - Ny^2 = \pm 1$ by finding P_n, Q_n and checking if $P_n^2 - NQ_n^2 = \pm 1$. In fact it is a general fact of number theory (proved in the part II C course Number Theory) that (P_{kn-1}, Q_{kn-1}) is a solution of $x^2 - Ny^2$ for all k such that kn is even. So we can be sure this a good way of generating solutions to Pell's Equation.

$N \setminus n$	$P_n^2 - NQ_n^2$									
10 \11	1	2	3	4	5	6	7	8	9	10
2	-1	1	-1	1	-1	1	-1	1	-1	1
3	-2	1	-2	1	-2	1	-2	1	-2	1
5	-1	1	-1	1	-1	1	-1	1	-1	1
6	-2	1	-2	1	-2	1	-2	1	-2	1
7	-3	2	-3	1	-3	2	-3	1	-3	2
8	-4	1	-4	1	-4	1	-4	1	-4	1
10	-1	1	-1	1	-1	1	-1	1	-1	1
11	-2	1	-2	1	-2	1	-2	1	-2	1
12	-3	1	-3	1	-3	1	-3	1	-3	1
13	-4	3	-3	4	-1	4	-3	3	-4	1
14	-5	2	-5	1	-5	2	-5	1	-5	2
15	-6	1	-6	1	-6	1	-6	1	-6	1
17	-1	1	-1	1	-1	1	-1	1	-1	-
18	-2	1	-2	1	-2	1	-2	1	-2	1
19	-3	5	-2	5	-3	1	-3	5	-2	5
20	-4	1	-4	1	-4	1	-4	1	-4	1
21	-5	4	-3	4	-5	1	-5	4	-3	4
22	-6	3	-2	3	-6	1	-6	3	-2	3
23	-7	2	-7	1	-7	2	-7	1	-7	2
24	-8	1	-8	1	-8	1	-8	1	-8	1
26	-1	1	-1	1	-1	1	-1	1	0	0
27	-2	1	-2	1	-2	1	-2	1	-2	0
28	-3	4	-3	1	-3	4	-3	1	-3	4
29	-4	5	-5	4	-1	4	-5	5	-4	1
30	-5	1	-5	1	-5	1	-5	1	-5	1
31	-6	5	-3	2	-3	5	-6	1	-6	5
32	-7	4	-7	1	-7	4	-7	1	-7	4
33	-8	3	-8	1	-8	3	-8	1	-8	3
34	-9	2 1	-9	1	-9	2	-9	1 1	-9	2
35 37	-10 -1	1	-10 -1	1 1	-10 -1	1 1	-10 -1	0	-10 0	$1 \\ 131072$
38	-1 -2	1	-1 -2	1	-1 -2	1	-1 -2	1	-4	131072
39	-3	1	-2 -3	1	-2 -3	1	-2 -3	1	-4 -3	0
40	-4	1	-3 -4	1	-3 -4	1	-3 -4	1	-3 -4	1
41	- 4 -5	5	-4 -1	5	-4 -5	1	-4 -5	5	-4 -1	5
42	-6	1	-6	1	-6	1	-6	1	-1 -6	1
43	-7	6	-3	9	-0 -2	9	-3	6	-0 -7	1
44	-8	5	-3 -7	4	-2 -7	5	-8	1	-8	5
45	-9	4	-5	4	-9	1	-9	4	-5	$\frac{3}{4}$
46	-10	3	-7	6	-5 -5	2	-5 -5	6	-3 -7	3
47	-11	2	-11	1	-11	$\frac{2}{2}$	-11	1	-11	$\frac{3}{2}$
48	-12	1	-12	1	-12	1	-12	1	-12	1
50	-1	1	-1	1	-1	1	-1	0	0	0
	-т		-т	1	-1	1	-1	U	U	U

Table 3: Values of $P_n^2 - NQ_n^2$ for various n, N

3 Code

3.1 Question 1

```
function [outputArg1,outputArg2] = Bsmooth(N,B)
 3
   k=zeros(size(B,2),2);
 4
   while i <= size(B,2)
 5
        p=B(i);
 6
        if mod(N,p) == 0
 7
            k(i)=k(i)+1;
 8
            N=N/p;
9
        else
10
            i=i+1;
11
        end
12
   end
13
   i=1;
14
  while i<= size(B,2)</pre>
15 | NN=prod(B(i)^k(i));
16 | i=i+1;
17
   end
18 diff=N-NN;
   if diff ==0
19
20
        disp(['N is B smooth'])
21
   else
22
        disp(['N is not B smooth'])
23
   end
24
25
26
27
   end
```

3.2 Question 2

```
function [outputArg1,outputArg2] = cfsqrt(N,max)
2
   x(1) = sqrt(N);
3
   a(1)=floor(x(1));
4
   r(1) = 0;
5
6
   s(1)=1;
8
   i=2;
9
10
   while i<= max</pre>
11
        r(i)=-(r(i-1)-(s(i-1)*a(i-1)));
12
        s(i) = -(((r(i-1)^2-N)/s(i-1)) - (2*r(i-1)*a(i-1)) + (s(i-1)*(a(i-1)^2)));
13
        x(i)=(r(i)+sqrt(N))/s(i);
        a(i)=floor(x(i));
14
15
        i=i+1;
16
   end
17
   a
18
19
```

3.3 Question 6

```
function [outputArg1,outputArg2] = F2Gauss(A)
2
3
   length=size(A,1);
 4
   width=size(A,2);
 5
6
 7
   i=1;
8
   j=1;
   while i<= length && j<= width
10
11
   finish =0;
12
13
   while finish ==0
14
        if norm(A([i:length],j))==0
15
16
                 j=j+1;
17
                 if j> width
18
                      finish=1;
19
                 end
20
        else
21
                     A(i,j);
22
                 %Rearrange rows
23
                     if A(i,j) == 1
24
25
                      else
26
27
                          k=i+1;
28
                          fin=0;
29
                          while fin == 0 && k <= length
                              if A(k,j) == 1
30
31
                                   hold=A(i,:);
32
                                   A(i,:) = A(k,:);
33
                                   A(k,:)=hold;
34
                                   fin=1;
35
                              else
36
                                   k=k+1;
37
                              end
38
                          end
39
                     end
40
                     i;
41
                     j;
42
                     A;
43
```

```
44
                      %subtract away bad rows
45
46
                      k=i+1;
47
                      while k<= length</pre>
48
                          if A(k,j) == 0
49
50
                          else
51
                               A(k,:) = mod(A(k,:) - A(i,:),2);
52
                          end
53
                          k=k+1;
54
                      end
55
                      finish=1;
56
                      A;
57
        end
58
   end
59
   i=i+1;
60 |j=j+1;
61
   end
62 A;
63
   decided=zeros(width,1);
64
65
   if width <= length && A(width, width) == 1</pre>
66
        disp(['Kernel is trivial'])
        v=zeros(width,1);
67
68
   elseif norm(A) == 0
69
        v=ones(width,1);
70
   else
71
        v=zeros(width,1);
72
        %find first row not all zero
73
        term=0;
74
        i=length;
        while term==0
75
76
             if norm(A(i,:))==0
77
                 i=i-1;
78
             else
79
                 st=i;
80
                 term=1;
81
             end
82
        end
83
        %sort out any relationship on first row
84
85
86
        while i >= 1
87
             j=1;
88
             term=0;
89
             while term ==0
90
                 if A(i,j) == 1
91
                      term=1;
92
                 else
93
                      j = j + 1;
94
                 end
95
             end
96
              jj=j+1;
97
            while jj <= width
```

```
98
                  if decided(jj)==0
99
                  v(jj)=1;
100
                  decided(jj)=1;
101
                  end
102
                  jj=jj+1;
103
             end
104
             if j == width || norm(A(i,[j+1:width])) == 0
105
                  v(j)=0;
106
                  decided(j)=1;
107
             else
                  x=A(i,[j+1:width]).';
108
109
                  y=v([j+1:width]);
110
                  z=x.*y;
                  v(j)=mod(-sum(z),2);
111
                  decided(j)=1;
112
113
             end
114
             i=i-1;
115
116
         end
117
   end
118
    Α
119
120
    mod(A*v,2)
121
122
123
124
125
126
127
128
129
    end
```