Dados do Plano de Trabalho							
	Desenvolvimento de sensor fototeletroquímico baseado em TiO ₂ sensitizado com ftalocianinas metálicas						
Modalidade de bolsa solicitada:							
Projeto de Pesquisa vinculado:	SÍNTESE E CARACTERIZAÇÃO DE SEMICONDUTO- RES PARA APLICAÇÃO COMO SENSORES E BIOS- SENSORES FOTOELETROQUÍMICOS						

1. OBJETIVOS

O objetivo geral do projeto é desenvolver um sensor fotoeletroquímico baseado em TiO₂ e ftalocianinas metálicas (FcM) para determinação de fármacos em amostras reais. Como objetivos específicos, destacam-se: 1) Preparar os filmes de TiO₂ sensitizado com ftalocianinas metálicas; 2) Avaliar o efeito do tipo de ftalocianina (Fe, Co e Ni) na resposta fotoeletroquímica do TiO₂-FcM; 3) Caracterizar os filmes de TiO₂-FcM por voltametria linear, espesctroscopia de impedância eletroquímica, microscopia eletrônica de varredura e espectrofotometria na região do UV-Vis; 4) Otimizar os parâmetros experimentais (eletrólito e pH) e voltamétricos (potencial) para determinação do fármaco cloridrato de prometazina (PMZ); 5) Construir curvas de calibração para obtenção dos parâmetros analíticos (faixa de trabalho, limite de detecção, limite de quantificação e sensibilidade; 6) Aplicar o sensor fotoeletroquímico (TiO₂-FcM) para determinação do fármaco PMZ em amostras reais.

2. METODOLOGIA

Os experimentos voltamétricos serão realizados em célula eletroquímica convencional em vidro, com janela de guartzo e com tampa em Teflon[®]. O eletrodo de trabalho consistirá nas placas de FTO (1,5 cm²) modificado com TiO₂, FcM e TiO₂-FcM. O eletrodo auxiliar será uma placa de platina embutida em tubo de vidro e fixada com resina Araldite[®]. Por último, eletrodo de Ag/AgCl/Cl⁻ em meio de KCl saturado será utilizado como referência. Nesse contexto, os ensaios eletroquímicos serão feitos empregando potenciostato/galvanostato PGSTAT 204 (Autolab®) acoplado com o módulo de impedância FRA32M, controlado por computador aliado ao programa NOVA 2.0. As respostas fotoeletroquímicas (fotocorrente) para fins analíticos serão obtidas por meio de experimentos de voltametria linear e cronoamperometria em condições com e sem iluminação sobre o fotoeletrodo. A fonte de radiação consistirá da utilização de LED azul (Thorlabs[®]) para promover a fotogeração do par elétron/lacuna na superfície do semicondutor. Serão utilizadas as FcM, M = Co, Ni e Fe, e TiO₂ comerciais (Sigma-Aldrich[®]) para a construção dos sensores. O preparo da suspensão de TiO₂-FcMO consistirá em misturar 10 mg de TiO₂ + 3 mg FcM em 500 μL de dimetilsufóxido. Para auxiliar a formação de suspensão homogênea, a mistura será posta em banho de ultrassom por 30 minutos. Para preparar o sensor fotoeletroquímico, será feita adição de uma alíquota equivalente a 10 μL/cm² na superfície do FTO. Em seguida, a evaporação do solvente se dará a 50 °C. Os filmes serão caracterizados por voltametria linear, espectroscopia de impedância eletroquímica, espectrofotometria na região do ultravioleta e do visível (UV-Vis) e microscopia eletrônica de varredura (MEV). A solução de cloridrato de prometazina (PMZ) será preparada em meio aquoso para as concentrações de 1,0x10⁻³ mol L⁻¹ e 1,0x10⁻⁴ mol L⁻¹. Serão realizados experimentos para otimização do eletrólito, pH e potencial a ser aplicado para análise do analito de interesse. Após essa otimização, as curvas analíticas serão levantadas e os parâmetros analíticos serão calculados de acordo com o indicado pela IUPAC (do inglês, *International Union of Pure and Applied Chemistry*). Os experimentos de recuperação serão realizados em amostras reais (*e.g.* águas naturais e/ou produtos farmacêuticos) empregando o método de adição de padrão.

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

- AT1. Treinamento básico para desenvolvimento de trabalhos na área de eletroquímica;
- AT2. Obtenção e otimimização do preparo dos filmes de TiO₂-FcM depositados sobre FTO;
- AT3. Caracteriação dos filmes de TiO₂-FcM pelas técnicas de voltametria linear, espesctroscopia de impedância eletroquímica, MEV e UV-Vis ;
- AT4. Otimização dos parâmetros experimentais e voltamétricos da metodologia fotoeletroanalítica:
- AT5. Construção das curvas analíticas e obtenção das figuras de mérito (faixa de trabalho, limite de detecção, limite de quantificação e sensibilidade);
- AT6. Aplicação do sensor fotoeletroquímico (TiO₂-FcM) para determinação de cloridrato de prometazina (PMZ);
- AT7. Eleboração de artigo;
- AT8. Revisão bibliográfica;
- AT9. Elaboração do relatório.

N°	2019				2020							
	08	09	10	11	12	01	02	03	04	05	06	07
AT1	X	X										
AT2		X	X	X	X							
AT3			X	X	X	X	X	X				
AT4					X	X	X					
AT5							X	X	X	X		
AT6									X	X	X	
AT7											X	X
AT8	X	X	X	X	X	X	X	X	X	X	X	X
AT9											X	X