Lab 1 - The basic elements of digital logic circuits

Logic circuits are built with transistors. The most popular type of transistor for implementing a simple switch is the metal oxide semiconductor field-effect transistor (MOSFET). There are two different types of MOSFETs, known as n-channel (NMOS) and p-channel (PMOS).

NMOS Logic gates

1. Implement NMOS logic gate circuits in Figure 1-5, change the values of V_{x1} and $V_{x2\;according}$ to the table and observe the output V_f .

Figure 1

V _{x1} (volt)	V _f (volt)
0	5
5	0

Figure 2

V _{x1} (volt)	V _{x2} (volt)	V _f (volt)
0	0	5
0	5	5
5	0	5
5	5	0

Figure 3

V_{x1} (volt)	$V_{x2}(volt)$	V _f (volt)
0	0	5
0	5	0
5	0	0
5	5	0

62070501056 กิพัคณี อิ่มใจ 62070501064 อรวิกา ดูเจริญไพศาล

V _{x1} (volt)	V _{x2} (volt)	V _y (volt)
0	0	0
0	5	0
5	0	0
5	5	5

Figure 4

V _{x1} (volt)	V _{x2} (volt)	V _y (volt)
0	0	0
0	5	5
5	0	5
5	5	5

Figure 5

2. Specify the logic gate for circuit 1-5

- 1) NOT gate
- 2) NAND gate
- 3) NOR gate
- 4) AND gate
- 5) OR gate

PMOS Logic gates

1. Implement PMOS logic gate circuits in Figure 6-10, change the values of V_{x1} and $V_{x2\,according}$ to the table and observe the output V_f .

$V_{x1}(volt)$	V _y (volt)
0	5
5	0

Figure. 6

$V_{x1}(volt)$	$V_{x2}(volt)$	V _y (volt)
0	0	5
0	5	0
5	0	0
5	5	O

Figure 7

62070501056 ก็พืคณี อิ่มใจ 62070501064 อรวิภา ดูเจริญไพศาล

V _{x1} (volt)	V _{x2} (volt)	V _y (volt)
0	0	5
0	5	5
5	0	5
5	5	0

Figure 8

V_{x1} (volt)	$V_{x2}(volt)$	$V_y(volt)$
0	0	Ð
0	5	0
5	0	0
5	5	5

Figure 9

62070501056 24en 5jl ดูเจริญไพศาล อรวิภา 62070501064

$V_{x1}(volt)$	$V_{x2}(volt)$	V _y (volt)
0	0	0
0	5	5
5	0	5
5	5	5

Figure 10

- 2. Specify the logic gate for circuit 6-10
 - NOT
 - NOR gate

 - 8) NAND gate
- AND
- OR gate

CMOS Logic gates

1. Implement PMOS logic gate circuits in Figure 11-13, change the values of V_{x1} and $V_{x2\;according}$ to the table and observe the output V_{f} .

V _{x1} (volt)	V _f (volt)
0	0
5	5

Figure 11

62070501056 ลิฟัลณี อิ่มใจ 62070501064 อรวิภา ดูเจริญไพศาล

$V_{x1}(volt)$	V _{x2} (volt)	V _y (volt)
0	0	5
0	5	5
5	0	5
5	5	0

Figure 12

V _{x1} (volt)	V _{x2} (volt)	V _y (volt)
0	0	5
0	5	D
5	0	0
5	5	0

Figure 13

- 2. Specify the logic gate for circuit 11-13
 - 11) NOT gate
 - 12) NAND gate
 - 13) NOR gate