

Logika Proposisi (1)

Tabel Kebenaran (Truth Table)

- Baris sejumlah setiap kombinasi nilai yang memungkinkan untuk setiap proposisi.
 - o 2 nilai yaitu: T dan F
 - Maka, banyaknya kombinasi dari n proposisi adalah 2ⁿ
 - Jika ada 3 proposisi (p, q, r), maka ada berapa baris?
- Kolom sejumlah ekspresi yang muncul dari proposisi majemuk, termasuk proposisi atomiknya.

• Contoh: $p \lor q \to \neg r$

p	q	r	$p \lor q$	$\neg r$	$p \lor q \to \neg r$
T	Т	Т			
T	Т	F			
T	F	Т			
T	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

Memeriksa Ekuivalensi dengan Truth Table

- Dua proposisi adalah ekuivalen jika memiliki nilai kebenaran yang sama.
- Contoh: kontrapositif dari implikasi

р	q	¬p	¬q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	F	F		
Т	F	F	Т		
F	Т	Т	F		
F	F	Т	Т		

○ Jadi, apakah $p \rightarrow q$ ekuivalen dengan $\neg q \rightarrow \neg p$?

Latihan: Ekuivalensi

• apakah $p \rightarrow q$ ekuivalen dengan $q \rightarrow p$?

	<u> </u>		
р	q	p o q	$q \rightarrow p$
Т	Т		
Т	F		
F	Т		
F	F		

• Lalu, apakah $p \rightarrow q$ ekuivalen dengan $\neg p \rightarrow \neg q$?

р	q	¬p	¬q	$p \rightarrow q$	$\neg p \rightarrow \neg q$
Т	Т	F	F		
Т	F	F	Т		
F	Т	Т	F		
F	F	Т	Т		

Interpretasi

- Suatu interpretasi (interpretation) I adalah suatu pemberian nilai T atau F pada setiap proposisi yang terpakai.
- Contoh: $(p \land q) \rightarrow (\neg p \lor q)$ memiliki 4 interpretasi.
 - o I₁: p bernilai T, q bernilai T
 - I₂: p bernilai T, q bernilai F
 - I₃: p bernilai F, q bernilai T
 - I₄: p bernilai F, q bernilai F

Kalimat (Formula) Logika Proposisi

- FLP dibentuk dari konstanta proposisi atau variabel proposisi, menggunakan operator logika, dan mengikuti aturan:
 - Setiap proposisi merupakan sebuah FLP
 - Jika p dan q merupakan sebuah FLP maka $\neg p$, $\neg q$, $p \land q$, $p \lor q$, $p \oplus q$, $p \to q$, $p \leftrightarrow q$ masing-masing juga merupakan sebuah FLP.
- Jika FLP p dan q membentuk FLP r yang lebih kompleks, maka p dan q disebut anak kalimat dari r.
- FLP r juga merupakan anak kalimat dari r.
 - Anak kalimat dari r yang bukan r disebut anak kalimat sejati dari r.

Anak Kalimat FLP

Contoh: F dan G membentuk H, maka F dan G adalah anak kalimat sejati dari H.

- F: p
- *G*: *q* ∨ ¬*r*
- $H: p \wedge (q \vee \neg r)$
- Maka dari pernyataan berikut yang benar?
 - H adalah anak kalimat dari H
 - F dan G adalah anak kalimat sejati dari H
 - H adalah anak kalimat sejati dari H
 - \circ G memiliki anak kalimat q dan G_1 : $\neg r$ dan G sendiri
 - G₁ memiliki anak kalimat r dan G₁ sendiri

Presedensi Operator Logika

Bagaimana memeriksa kebenaran FLP berikut?

$$p \land q \rightarrow \neg r \lor s$$

 Jika tidak menggunakan tanda kurung, operasi FLP akan diproses dengan urutan ini:

Operator	Urutan
¬	1
^	2
V	3
\rightarrow	4
\leftrightarrow	5

$$p \wedge q \rightarrow \neg r \vee s$$

Latihan: Presedensi

Manakah FLP di bawah ini yang ekuivalen dengan $p \land q \rightarrow \neg r \lor s$?

A.
$$p \land ((q \rightarrow \neg r) \lor s)$$

B.
$$(p \land q) \rightarrow \neg (r \lor s)$$

C.
$$(p \land q) \rightarrow (\neg r \lor s)$$

D.
$$(p \land (q \rightarrow \neg r)) \lor s$$

Apa yang sudah kita pelajari...

Logika Proposisi

- Proposisi
- Operator Logika
- Tabel Kebenaran
- FLP

Topik selanjutnya: Aplikasi dari Logika Proposisi