РЕАКЦИЯ $\pi^+ + d \stackrel{>}{\sim} p + p$ И СПИН π -МЕЗОНОВ

Изучение реакций т-мезонов с ядрами водорода и дейтерия привело к получению ряда интересных выводов, перечисленных ниже: 1. Спин п-мезонов является целочисленным. Этот вывод был сделан на основании данных об образовании звёзд при захвате я-мезонов ядрами в фотоэмульсиях, а также из условия сохранения моментов количества движения в реакциях $p+p \rightarrow \pi^+ + d$ и $p+h_V \rightarrow \pi^+ + n$. 2. Нейтральный π^0 -мезон не может иметь спин, равный единице, ибо он распадается на два ү-кванта, а такой распад запрещён для системы с моментом количества движения ф. Надо отметить, что ещё в 1948 г. Л. Д. Ландау 1 указал, что из наличия реакции $\pi^0 \rightarrow 2 \gamma$ следует, что спин π^0 -мезона равен нулю. 3. Ввиду близости масс и сечений образования нейтральных и заряженных т-мезонов, а также исходя из независимости ядерных сил от заряда, естественно было предположить, что свойства π^0 - и π^{\pm} -мезонов близки и что, в частности, спин заряженных т-мезонов тоже не может равняться единице. 4. п-мезоны не являются скалярными частицами. Этот вывод следовал из данных о захвате π^- -мезонов ядрами дейтерия, а также из опытов по образованию заряженных и нейтральных п-мезонов у-квантами высокой энергии. Так, ещё в 1941 г. Е. Л. Фейнбергом ² было указано, что если π⁻-мезон захватывается ял-

ром дейтерия с S-уровня, то реакция $\pi^- + d \rightarrow n + n$ для скалярного мезона запрещена. На основании новых экспериментальных данных в ряде работ советских учёных были сделаны выводы о псевдоскалярности заряженных и нейтральных π -мезонов 3 , 4 , 5 .

До сих пор, однако, не был экспериментально определён спин заряженных π-мезонов и не было убедительного опровержения того, что этот спин равен или больше двух. Такое экспериментальное определение

Рис. 1.

спина π^+ -мезонов было выполнено в этом году 6 , 7 на основании исследований дифференциальных угловых сечений реакции $\pi^++d\to p+p$. В «Успехах физических наук» уже сообщалось 8 о работах, посвящённых обратной реакции $p+p\to\pi^++d$, причём указывалось, что ведостаточная определённость спектра образующихся π^+ -мезонов вблизи максимальных значений энергии препятствовала однозначному доказательству того факта, что эта реакция идёт именно по записанной выше схеме, а не по схеме: $p+p\to\pi^++p+n$. При образовании наряду с π^+ -мезоном дейтерона мезоны, движущиеся в направлении первичного протонного пучка, должны иметь в лабораторной системе энергию на 4 M3 σ 8 выше, чем при образовании протона и нейтрона, и в спектре мезонов должен наблюдаться резкий пик соответственно при 70 или 66 M3 σ 8, а верхняя граница спектра должна располагаться при 74 или 70 M3 σ 8. Использование магнитного анализатора с лучшими разрешающими свойствами, а также тщательная монохроматизация исходных

протонов привели к уточнению данных об образовании π^+ -мезонов при pp-взаимодействии, причём был получен изображённый на puc. 1 спектр π^+ -мезонов, свидетельствующий о том, что реакция идёт по схеме $p+p \to \pi^+ + d$ 9.

Спин π^+ -мезона может быть определён из данных о «равновесии» прямой и обратной реакций $\pi^++d \rightleftarrows p+p$, ибо, согласно теории 10 , соотношение дифференциальных угловых сечений прямой и обратной реакций равно:

$$\frac{\frac{d\sigma^{\pi+d}}{d\Omega}}{\frac{d\sigma_{\rm pp}}{d\Omega}} = \frac{4}{3} \cdot \frac{p^2}{q^2(s+1)},$$

где дифференциальные угловые сечения и импульсы протона (p) и мезона (q) отсчитываются в системе центра тяжести, а s — спин мезона. Приведённое соотношение совершенно независимо от мезонной теории ядерных сил, и в этом состоит большое преимущество определения спина π^+ -мезона из этого соотношения.

Дифференциальные угловые сечения реакции $p+p \to \pi^+ + d$ были определены ранее ^{8,9}. Экспериментальное определение дифференциальных угловых сечений реакции $\pi^+ + d \to p + p$ было выполнено почти одновременно и близкими способами в двух работах ^{6,7}.

Принципиальная схема установки 7 изображена на рис. 2. Пучок мезонов с энергией 60—75 *Мэв* 6 или 40 *Мэв* 7 образовывался при бомбардировке протонами с энергией 380 6 или 240 *Мэв* 7 бериллиевой 6 или алюминиевой мишени 7. При этом с помощью магнитного анализатора выделялись мезоны в определённом энергетическом интервале. Как повазали специальные опыты 7, разброс исходных мезонов по энергии мало влиял на величину дифференциального углового сечения реакции, ибо эта величина слабо зависела от энергии π^+ -мезонов. Число мезонов определялось с помощью двух кристаллических счётчиков сцинтилляций

(1 и 2 на рис. 2). Для уменьшения энергии мезонов использовался углеродный поглотитель. Мишень из тяжёлой воды была толщиной 2,5 г/см², причём для проверки фона, вызванного наличием примеси водорода, проводились опыты при замене тяжёлой воды на обычную. Образующиеся при реакции два протона, разлетающихся под углом 180° в системе центра тяжести $\pi^+ + \mathrm{d}$, регистрировались по счёту совпадений между двумя жидкостными счётчиками сцинтилляций 6 или двумя кристаллическими счётчиками 7 из NaJ. Перед одним из счётчиков сцин-

тилляций (на рис. 2 — перед счётчиком 4) размещался алюминиевый поглотитель, толщина которого была достаточной, чтобы затормозить рассеянные протоны и дейтероны, но в то же время прозрачный для протонов от реакции π^+ — d.

Средняя энергия π^+ -мезонов, взаимодействовавших с ядрами дейтерия, в основных опытах была 28^6 или около 23 *Мэв* 7. Эта энергия в системе центра тяжести соответ-

ствует энергии протонов 340 Мэв в обратной реакции.

После внесения поправок на геометрическую эффективность счётной системы, на примесь и-мезонов в исходном пучке (около 10%), на ядерное поглошение мезонов и протонов в мишени (около 7%) в работе 6 были получены результаты, представленные на рис. 3.

На этом же рисунке отмечены дифференциальные угловые сечения для реакции $\pi^+ + d \rightarrow p + p$, рассчитанные из экспериментальных данных для обратной реакции, в двух предположениях относительно спина π^+ -мезонов (s=0 и s=1). Очевидно, что результаты исследований прямой и обратной реакций согласуются только при спине π^+ -мезона, равном нулю. К аналогичным выводам пришли и авторы 7 , которые

Рис. 3.

Сечение реакции $\pi^+ + d \rightarrow p + p$ из опыта. Сечение реакций $\pi^+ + d \rightarrow p + p$, рассчитанное из данных для обратной реакции при спине 0. Сечение реакции $\pi^+ + d \rightarrow p - p$, рассчитанное из даноров.

Сечение реакции $\pi^+ + d \rightarrow p + p$, рассчитанное из данных для обратной реакции при спине 1.

вычислили из своих измерений при разных углах полное сечение реакции $\pi^+ + d \rightarrow p + p$ и сравнивали это сечение с сечением, полученным из величины $1,3 \cdot 10^{-28}$ $cm^3/с$ терадиан для обратной реакции при угле 0° . Сравнение сечений, полученных прямо из опыта и расчётом данных для реакции $p + p \rightarrow \pi^+ + d$, в разных предположениях об угловом распределении продуктов реакции в системе центра тяжести и о спине π^+ -мезона, приводится в таблице (см. стр. 124).

Очевидно, что и при расчёте полных сечений данные для прямой и обратной реакций согласуются только при спине π^+ -мезона, равном нулю.

Авторы 6 и 7 указывают, что если спин π^+ -мезона не равен нулю, то данные для прямой и обратной реакций могут согласоваться указанным

Рассчитанные и измеренные сечения реакции $\pi^+ + d \rightarrow p + p$

Угловое распределение	Рассчитанные сечения (в 10 ⁻²⁷ см²)		Измеренные полные сече-
	спин $\pi^+ = 0$	спин π ⁺ = 1	ния (в 10 ⁻²⁷ см ²)
$ \begin{array}{c} \cos^2 \theta \\ 0,1 + \cos^2 \theta \\ 0,5 \pm \cos^2 \theta \\ 0,2 \pm 0,1 + \cos^2 \theta \end{array} $	$2,55 \pm 0,6$ $3,0 \pm 0,7$ $4,2 \pm 1,0$ $3,4 \pm 0,9$	0.85 ± 0.2 1.0 ± 0.24 1.4 ± 0.35 1.1 ± 0.3	$5,0 \pm 0,9$ $4,7 \pm 0,9$ $4,2 \pm 0,8$ $4,5 \pm 0,8$

выше способом лишь в том случае, если как п+-мезоны, образующиеся при бомбардировке протонами мишеней из бериллия или алюминия, так и π^+ -мезоны, образующиеся при реакции $p + p \rightarrow \pi^+ + d$, являются полностью поляризованными. Однако такое объяснение является крайне маловероятным. Поэтому следует считать, что спин заряженных π -мезонов, подобно спину нейтральных π-мезонов, равен нулю.

Г. И

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Л. Д. Ландау, ДАН 60, 207 (1948).

- 2. Е. Л. Фейнберг, Journ. of Phys. (URSS) 5, 177 (1941). 3. А. М. Балдини В. В. Михайлов, ЖЭТФ 20, 1057 (1950). 4. Б. Иоффе, А. Рудик и И. Шмушкевич, ДАН 77, 403 (1951).
- В. Б. Берестецкий и И. Я. Померанчук, ДАН 77, 803 (1951).
- 6. R. Durbin, H. Loar, J. Steinberger, Phys. Rev. 83, 646 (1951). 7. D. Clark, A. Roberts, R. Wilson, Phys. Rev. 83, 649 (1951).

- 8. УФН 42, 571 (1950). 9. W. Cartwright, C. Richman и др., Phys. Rev. 81, 652 (1951).
- 10. R. Marshak, Phys. Rev. 82, 313 (1951).