

AHB-Lite Memory

Data sheet

HTTP://ROALOGIC.GITHUB.IO/PLIC

1st October, 2017

Contents

1	Intr	oducti	on	1
	1.1	Featur	res	1
2	Fun	ctiona	l Description	2
	2.1	AHB-	Lite Bus Locking Support	2
3	Con	ıfigura	tions	3
	3.1	Introd	uction	3
	3.2	Core I	Parameters	3
		3.2.1	MEM_DEPTH	3
		3.2.2	HADDR_SIZE	3
		3.2.3	HDATA_SIZE	3
		3.2.4	TECHNOLOGY	3
		3.2.5	REGISTERED_OUTPUT	4
4	Inte	erfaces		5
	4.1	AHB-	Lite Interface	5
		4.1.1	HRESETn	5
		4.1.2	HCLK	5
		4.1.3	HSEL	5
		4.1.4	HTRANS	5
		4.1.5	HADDR	6
		4.1.6	HWDATA	6
		4.1.7	HRDATA	6
		4.1.8	HWRITE	6
		4.1.9	HSIZE	6
		4.1.10	HBURST	6
		4.1.11	HPROT	7
		4.1.12	HREADYOUT	7
		4.1.13	HREADY	7
		4.1.14	HRESP	7
5	Res	ources		8
6	Tec	hnolog	y Support	9

8	Rev	vision 1	History	11
7	Ref	erence	s	10
		6.2.2	Nextreme-3S Implementation (N3XS)	9
		6.2.1	Nextreme-3 Implementation (N3X)	9
	6.2	eASIC	C Structured ASIC Support	9
	6.1	GENE	ERIC Implementation	9

Todo list

1. Introduction

The Roa Logic AHB-Lite Memory IP is a fully parameterized soft IP implementing onchip memory for access by an AHB-Lite based Master. All signals defined in the AMBA3 AHB-Lite v1.0 specifications are fully supported.

The IP supports a single AHB-Lite based host connection and enables address & data widths, memory depth & target technology to be specified via parameters. An option to register the memory output is also provided.

Figure 1.1: AHB-Lite Memory System

1.1 Features

- Full support for AMBA 3 AHB-Lite protocol
- Fully parameterized
- User-defined address and byte-aligned data widths supported
- Configurable memory depth, limited only by target technology capability
- Technology-specific memory cells instantiated automatically
- Combinatorial or registered data output

2. Functional Description

The AHB-Lite Memory IP is a flexible, fully configurable, IP that enables designers to attach internal device memory to AHB-Lite based host. The width and depth of the memory, together with an optional registered output stage, are specified via parameters.

Figure 2.1: AHB-Lite Memory Signalling

The IP is designed to easily support a wide range of target technologies, automatically implementing technology-specific memory cells according to the chosen target. A generic behavioural implementation is also supported.

2.1 AHB-Lite Bus Locking Support

The AMBA 3 AHB-Lite v1.0 protocol supports bus locking. Typically a locked transfer is used to ensure that a slave does not perform other operations between the read and write phases of a transaction. Given the AHB-Lite Memory IP performs no such operations, bus locking is not supported and does not provide the HMASTLOCK input associated with this capability

3. Configurations

3.1 Introduction

The size and implementation style of the memory is defined via HDL parameters. These are specified in the following section.

3.2 Core Parameters

Parameter	Type	Default	Description
MEM_DEPTH	Integer	256	Memory Depth (Words)
HADDR_SIZE	Integer	32	Address Bus Size (Bits)
HDATA_SIZE	Integer	32	Data Bus Size (Bits)
TECHNOLOGY	String	GENERIC	Implementation Technology
${\tt REGISTERED_OUTPUT}$	String	NO	Is output registered?

Table 3.1: AHB-Lite Memory Parameters

3.2.1 MEM_DEPTH

MEM_DEPTH defines the depth of the memory - i.e. number of HDATA_SIZE words to be stored. The maximum depth supported is dependent upon the target technology chosen.

3.2.2 HADDR_SIZE

The HADDR_SIZE parameter specifies the address bus size to connect to the AHB-Lite based host. The maximum size supported is 32 bits.

3.2.3 HDATA_SIZE

The HDATA_SIZE parameter specifies the data bus size to connect to the AHB-Lite based host. The maximum size supported is 32 bits.

3.2.4 TECHNOLOGY

The TECHNOLOGY parameter defines the target silicon technology and may be one of the following values:

Parameter Value	Description
GENERIC	Behavioural Implementation
N3X	eASIC Nextreme-3 Structured ASIC
N3XS	eASIC Nextreme-3S Structured ASIC

Table 3.2: Supported Technology Targets

Details of the implementations corresponding to these parameter values can be found in Section 6, Technology Support

3.2.5 REGISTERED_OUTPUT

The REGISTERED_OUTPUT parameter defines if the output of the memory is registered on assertion of the HREADY signal. It is specified as 'YES' or 'NO' (default).

4. Interfaces

4.1 AHB-Lite Interface

The AHB-Lite interface is a regular AHB-Lite slave port. All signals are supported. See the AMBA 3 AHB-Lite Specification for a complete description of the signals.

Port	Size	Direction	Description
HRESETn	1	Input	Asynchronous active low reset
HCLK	1	Input	Clock Input
HSEL	1	Input	Bus Select
HTRANS	2	Input	Transfer Type
HADDR	HADDR_SIZE	Input	Address Bus
HWDATA	HDATA_SIZE	Input	Write Data Bus
HRDATA	HDATA_SIZE	Output	Read Data Bus
HWRITE	1	Input	Write Select
HSIZE	3	Input	Transfer Size
HBURST	3	Input	Transfer Burst Size
HPROT	4	Input	Transfer Protection Level
HREADYOUT	1	Output	Transfer Ready Output
HREADY	1	Input	Transfer Ready Input
HRESP	1	Input	Transfer Response

Table 4.1: AHB-Lite Interface Ports

4.1.1 HRESETn

When the active low asynchronous HRESETn input is asserted ('0'), the interface is put into its initial reset state.

4.1.2 HCLK

HCLK is the interface system clock. All internal logic for the AMB3-Lite interface operates at the rising edge of this system clock and AHB bus timings are related to the rising edge of HCLK.

4.1.3 **HSEL**

The AHB-Lite interface only responds to other signals on its bus when HSEL is asserted ('1'). When HSEL is negated ('0') the interface considers the bus IDLE and negates HREADYOUT ('0').

4.1.4 HTRANS

HTRANS indicates the type of the current transfer.

HTRANS	Type	Description
00	IDLE	No transfer required

AHB-Lite Memory 6

HTRANS	Type	Description
01	BUSY	Connected master is not ready to accept data, but intents to con-
		tinue the current burst.
10	NONSEQ	First transfer of a burst or a single transfer
11	SEQ	Remaining transfers of a burst

Table 4.2: AHB-Lite Transfer Type (HTRANS)

4.1.5 **HADDR**

HADDR is the address bus. Its size is determined by the HADDR_SIZE parameter and is driven to the connected peripheral.

4.1.6 HWDATA

HWDATA is the write data bus. Its size is determined by the HDATA_SIZE parameter and is driven to the connected peripheral.

4.1.7 HRDATA

HRDATA is the read data bus. Its size is determined by HDATA_SIZE parameter and is sourced by the APB4 peripheral.

4.1.8 HWRITE

HWRITE is the read/write signal. HWRITE asserted ('1') indicates a write transfer.

4.1.9 HSIZE

HSIZE indicates the size of the current transfer.

HSIZE	Size	Description
000	8bit	Byte
001	16bit	Half Word
010	32bit	Word
011	64bits	Double Word
100	128bit	
101	256 bit	
110	512 bit	
111	1024 bit	

Table 4.3: HSIZE Values

4.1.10 HBURST

HBURST indicates the transaction burst type – a single transfer or part of a burst.

AHB-Lite Memory 7

HBURST	Type	Description
000	SINGLE	Single access
001	INCR	Continuous incremental burst
010	WRAP4	4-beat wrapping burst
011	INCR4	4-beat incrementing burst
100	WRAP8	8-beat wrapping burst
101	INCR8	8-beat incrementing burst
110	WRAP16	16-beat wrapping burst
111	INCR16	16-beat incrementing burst

Table 4.4: AHB-Lite Burst Types (HBURST)

4.1.11 HPROT

The HPROT signals provide additional information about the bus transfer and are intended to implement a level of protection.

Bit#	Value	Description
3	1	Cacheable region addressed
	0	Non-cacheable region addressed
2	1	Bufferable
	0	Non-bufferable
1	1	Privileged Access
	0	User Access
0	1	Data Access
	0	Opcode fetch

Table 4.5: AHB-Lite Protection Signals (HPROT)

4.1.12 HREADYOUT

HREADYOUT indicates that the current transfer has finished.

4.1.13 HREADY

HREADY indicates whether or not the addressed peripheral is ready to transfer data. When HREADY is negated ('0') the peripheral is not ready, forcing wait states. When HREADY is asserted ('1') the peripheral is ready and the transfer completed.

4.1.14 HRESP

HRESP is the instruction transfer response and indicates OKAY ('0') or ERROR ('1'). An error response causes an Instruction Bus Error Interrupt.

5. Resources

Below are some example implementations for various platforms.

All implementations are push button, no effort has been undertaken to reduce area or improve performance.

Platform DFF Logic Cells Memory Performance (MHz)

Table 5.1: Resource Utilization Examples

6. Technology Support

Physical memory implementation in silicon depends on the target technology chosen. The AHB-Lite Memory IP allows a designer to specify either a generic (i.e. behavioural) implementation or one of multiple technology-specific implementations via the TECHNOLOGY parameter. This section provides details of these implementations

6.1 **GENERIC Implementation**

The GENERIC option is used to implement regular behavioural HDL allowing both the physical implementation to be controlled during hardware synthesis and full behavioural simulation to be performed.

6.2 eASIC Structured ASIC Support

The IP supports the Nextreme-3 and Nextreme-3S families as described below. Please refer to the relevant technology datasheets for complete details of the memory structures referenced.

6.2.1 Nextreme-3 Implementation (N3X)

The Nextreme-3 family of devices features 9Kbit memory blocks, referred to as 'bRAM'. When the TECHNOLOGY parameter is defined as 'N3X', all memory will be implemented using 9Kbit bRAM cells.

6.2.2 Nextreme-3S Implementation (N3XS)

The Nextreme-3S series of devices features separate 2Kbit and 18Kbit memory blocks, referred to as 'bRAM2K' and 'bRAM18K' respectively. The choice of which of these blocks are implemented when the TECHNOLOGY parameter is defined as 'N3XS' is as follows:

TECHNOLOGY	Memory Size	Implementation
N3XS N3XS	≤ 4096 bits > 4096 bits	bRAM2K blocks only bRAM18K blocks only

Table 6.1: Nextreme-3S Memory Implementation Styles

7. References

8. Revision History

Date	Rev.	Comments
01-Feb-2017	1.0	

Table 8.1: Revision History