Álgebra I Práctica 6 - Números complejos

1. Para los siguientes $z \in \mathbb{C}$, hallar $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, |z|, $\operatorname{Re}(z^{-1})$, $\operatorname{Im}(z^{-1})$, $\operatorname{Re}(-i \cdot z)$ e $\operatorname{Im}(i \cdot z)$.

i)
$$z = (2+i)(1+3i)$$
.

iv)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$
.

$$\begin{array}{ll} \text{i)} & z=(2+i)(1+3\,i). \\ \text{ii)} & z=5\,i(1+i)^4. \\ \text{iii)} & z=(\sqrt{2}+\sqrt{3}\,i)^2(\overline{1-3\,i}). \end{array} \qquad \text{iv)} & z=i^{17}+\frac{1}{2}\,i(1-i)^3. \\ \text{v)} & z=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\,i\right)^{-1}. \\ \text{vi)} & z=\overline{1-3\,i}^{-1}. \end{array}$$

ii)
$$z = 5i(1+i)^4$$

iii)
$$z = (\sqrt{2} + \sqrt{3}i)^2 (\overline{1 - 3i}).$$

v)
$$z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{17}$$

vii)
$$z = \overline{1 - 3i}^{-1}$$

2. Dados z = 1 + 3i y w = 4 + 2i, representar en el plano complejo los siguientes números

v)
$$-z$$
.

ix)
$$\overline{z}$$
.

xiii)
$$|2z|$$
.

ii)
$$w$$
.

vi)
$$2z$$
.

x)
$$\overline{3z+2w}$$
.

$$xiv) |z+w|.$$

iii)
$$z + w$$
.

vii)
$$\frac{1}{2}w$$
.

xi)
$$\overline{iz}$$
.

$$xv) |z-w|.$$

iv)
$$z - w$$
.

viii)
$$iz$$
.

xii)
$$|z|$$
.

xvi)
$$|\overline{w-z}|$$
.

3. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} / 3 \operatorname{Re}(z) - 1 = 2 \operatorname{Im}(z) \}$$

i)
$$\{z \in \mathbb{C} / 3 \operatorname{Re}(z) - 1 = 2 \operatorname{Im}(z)\}$$
 ii) $\{z \in \mathbb{C} / -1 \le \operatorname{Re}(z) \le 1 \text{ y } |z| \le 2\}$

iii)
$$\{z \in \mathbb{C} / 2 \le |z - 1 + i| \le 3\}$$

iii)
$$\{z \in \mathbb{C} / 2 \le |z - 1 + i| \le 3\}$$
 iv) $\{z \in \mathbb{C} / z$. $Im(z) \cdot (1 - i) = |z|^2\}$

v)
$$\{z \in \mathbb{C} / |z - 2| = |z - 1 - i|\}$$

4. Probar que

i)
$$\overline{z+w} = \overline{z} + \overline{w} \quad \forall z, w \in \mathbb{C}$$

$$(z) \quad z = \overline{z} \quad \Longleftrightarrow z \in \mathbb{R}$$

$$i) \quad \overline{z+w} = \overline{z} + \overline{w} \quad \forall z, w \in \mathbb{C} \quad \text{ v)} \quad z = \overline{z} \quad \Longleftrightarrow z \in \mathbb{R} \\ \qquad \qquad ix) \quad |z+w| \leq |z| + |w| \quad \forall z, w \in \mathbb{C}$$

ii)
$$\overline{z.w} = \overline{z}.\overline{w} \quad \forall z.w \in \mathbb{C}$$

vi)
$$z.\overline{z} = |z|^2 \quad \forall z \in \mathbb{C}$$

ii)
$$\overline{z.w} = \overline{z}.\overline{w} \quad \forall z, w \in \mathbb{C}$$
 vi) $z.\overline{z} = |z|^2 \quad \forall z \in \mathbb{C}$ x) $||z| - |w|| \le |z - w| \quad \forall z, w \in \mathbb{C}$

iii)
$$\overline{z} = z \quad \forall z \in \mathbb{C}$$

$$xi$$
) $|\operatorname{Re}(z)| < |z| \quad \forall z \in \mathbb{C}$

iv)
$$\overline{z^{-1}} = \overline{z}^{-1} \quad \forall z \in \mathbb{C}$$

$$|z^{-1}| = |z|^{-1} \quad \forall z \in \mathbb{C}$$

xii)
$$|\operatorname{Im}(z)| < |z| \quad \forall z \in \mathbb{C}$$

5. Hallar todos los $z \in \mathbb{C}$ que satisfacen

i)
$$z \neq 0$$
 v $z = \overline{z}^{-1}$

$$v) z^2 + |z^2| = i.\overline{z}$$

ix)
$$z \neq 0$$
 v $z - 1 = z^{-1}$

ii)
$$Re(z^2) = 0$$

vi)
$$|z - \overline{z}| = \operatorname{Re}(z)$$

$$x) z^2 + (1+2i)z + 2i = 0$$

$$\begin{array}{lll} \text{ii)} & \operatorname{Re}(z^2) = 0 & \text{vi)} & |z - \overline{z}| = \operatorname{Re}(z) \\ \text{iii)} & z \neq 0 \text{ y } z + z^{-1} \in \mathbb{R} & \text{vii)} & i(z^2 + 4) = z. \operatorname{Im}(z) \\ \text{iv)} & |z|^2 = (z + \overline{z}). \operatorname{Im}(z) & \text{viii)} & z^2 = 3 + 4i \end{array}$$

viii)
$$z^2 = 3 + 4$$

6. Calcular las raíces cuadradas de los siguientes números complejos z

i)
$$z = -36$$

ii)
$$z = i$$

iii)
$$z = -3 - 4i$$

iii)
$$z = -3 - 4i$$
 iv) $z = -15 + 8i$

7. Calcular los módulos y los argumentos de los siguientes números complejos

i)
$$3 + \sqrt{3}i$$
.

iii)
$$(-1-i)^{-1}$$
.

v)
$$(-1+\sqrt{3}i)^{-5}$$
.

ii)
$$(2+2i)(\sqrt{3}-i)$$
. iv) $(-1+\sqrt{3}i)^5$.

iv)
$$(-1 + \sqrt{3}i)^5$$
.

vi)
$$\frac{1+\sqrt{3}i}{1-i}$$
.

8. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} - \{0\} / |z| \ge 2 \text{ y } \frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3} \}.$$

ii)
$$\{z \in \mathbb{C} - \{0\} / \arg(-iz) > \frac{\pi}{4}\}.$$

iii)
$$\{z \in \mathbb{C} - \{0\} / |z| < 3 \text{ y } \arg(z^4) \le \pi\}.$$

- i) Determinar la forma binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
 - ii) Determinar la forma binomial de $(-1+\sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.
 - iii) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} i)^n = 2^{n-1}(-1 + \sqrt{3}i)$.
- 10. Hallar en cada caso las raíces n-avas de $z \in \mathbb{C}$:

i)
$$z = 8, n = 6$$

iv)
$$z = 2i(\sqrt{2} - \sqrt{6}i)^{-1}, n = 11$$

ii)
$$z = -4, \ n = 3$$

v)
$$z = (2 - 2i)^{12}$$
, $n = 6$

iii)
$$z = -1 + i$$
, $n = 7$

vi)
$$z = 1, n = 8.$$

- i) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$. 11.
 - ii) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
 - iii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.
 - iv) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$.
- 12. Probar que $\prod_{\omega \in G_n} \omega = (-1)^{n-1}, \, \forall \, n \in \mathbb{N}.$
- 13. Determinar las raíces n-ésimas primitivas de la unidad para n=2,3,4,5,6 y 12.
- 14. Sea w una raíz quinceava primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$\sum_{i=0}^{n-1} w^{5i} = 0$$
.

ii)
$$\sum_{i=2}^{n-1} w^{3i} = 0.$$

- 15. Dado un número primo p, probar que:
 - i) la suma de las raíces p-ésimas primitivas de la unidad es -1.
 - ii) la suma de las raíces p^2 -ésimas primitivas de la unidad es 0.
 - iii) Si q es un número primo distinto de p, entonces la suma de las raíces pq-ésimas primitivas de la unidad es 1.
 - iv) ¿Cuánto da la suma de las raíces n-ésimas primitivas de la unidad si n es un producto de primos distintos?

- 16. Sea $m \in \mathbb{Z}$ un entero par y $\omega \in \mathbb{C}$ una raíz primitiva 2m-ésima de la unidad. Probar que $(\omega 1)^m$ es imaginario puro.
- 17. Sea $\omega_{23} \in \mathbb{C}$ una raíz primitiva de la unidad de orden 23. Hallar la parte real de $\sum_{k=1}^{11} \omega_{23}^{k^2}$.
- **18**. Probar que si $w \in G_7$ entonces $Re((w^{31} + 1)(w^{18} 1)) = 0$.
- 19. Sea w una raíz cúbica primitiva de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida por

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}, \ \forall n \in \mathbb{N}.$

Probar que z_n es una raíz sexta primitiva de la unidad para todo $n\in\mathbb{N}$

- **20**. Probar que $w \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si y solo si \overline{w} lo es.
- **21**. Sea w una raíz novena primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que $w^{5n} = w^3$.
- **22**. Sea $w \in G_{35}$ una raíz 35-ava primitiva de la unidad. Hallar todos los $n \in \mathbb{Z}$ tales que

$$\begin{cases} w^{15n} &= w^5 \\ w^{14n} &= w^{21} \end{cases}$$

23. Sea G_{20} el conjunto de raíces 20-avas de la unidad y G_4 el conjunto de raíces cuartas de la unidad. Sea \sim la relación en G_{20} definida por

$$a \sim b \iff a = \omega b$$
, para algún $\omega \in G_4$,

o sea dos elementos están relacionados si uno es un múltiplo del otro por una raíz cuarta de la unidad.

- i) Probar que \sim es una relación de equivalencia.
- ii) ¿Cuántas clases de equivalencia hay en total?
- 24. Probar que no es posible hallar tres puntos del plano con coordenadas enteras que sean los vértices de un triángulo equilátero.
- 25. Sobre los lados del cuadrilátero ABCD se dibujan exteriormente los cuadrados BAB_1A_2 , CBC_1B_2 , DCD_1C_2 y ADA_1D_2 de centros O_{AB} , O_{BC} , O_{CD} y O_{DA} respectivamente. Probar que los segmentos $O_{AB}O_{CD}$ y $O_{BC}O_{DA}$ son perpendiculares y de la misma longitud.
- **26**. Sea $\omega \in G_k$ una raíz k-ésima primitiva de la unidad. Hallar $\sum_{i=0}^{k-1} \omega^{in}$ en función de $n \in \mathbb{N}$.
- 27. Hallar $\sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k}$ en función de $n \in \mathbb{N}$.