МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Лабораторная работа №1
«Оптимумы линейных систем»
по дисциплине «Компьютерное управление мехатронными системами»

Выполнил: студент гр. R3425 Борисов М. В. Преподаватель: Ловлин С. Ю.

1 Цель работы

- 1. Исследовать характеристики системы настроенной на линейный, технический, симметричный, биномиальный оптимумы и астатизм третьего порядка.
- 2. Исследовать реакцию системы на константное, линейное и квадратичное воздействие при разных оптимумах.
- 3. Определить порядок астатизма системы настроенной на разные оптимумыю.

2 Дано

Для всех оптимумов заданы параметры $T_1=0.1, T_2=T_\mu=0.005, K_{\rm of}=10$ Входные воздействия:

$$y=A$$
 $y=vt$ $y=rac{at^2}{2},$ где $A=7, v=5, a=10$

3 Выполнение работы

Рис. 1: Модель simulink

3.1 Линейный оптимум

3.1.1 Переходная функция

$$W(s) = \frac{1}{Ts + 1}$$

Рис. 2: Реакция на единичное воздействие

Время переходного процесса $t_{\mbox{\scriptsize пп}}=3T_{\mu}=0.015\,c$ и перерегулирование $\Delta h=0\%$

3.1.2 Диаграммы Боде

Рис. 3: Диаграммы Боде линейного оптимума

3.1.3 Реакции на входное воздействие

Рис. 4: Реакция на различные воздействия

3.2 Технический оптимум

3.2.1 Переходная функция

$$W(s) = \frac{1}{2T_{\mu}^2 s^2 + 2T_{\mu}s + 1}$$

Рис. 5: Реакция на единичное воздействие

Время переходного процесса $t_{\pi\pi}=4.1T_{\mu}=0.021\,c$ и перерегулирование $\Delta h=4.3\%$

3.2.2 Диаграммы Боде

Рис. 6: Диаграммы Боде технического оптимума

3.2.3 Реакции на входное воздействие

Рис. 7: Реакция на различные воздействия

3.3 Симметричный оптимум

3.3.1 Переходная функция

$$W(s) = \frac{4T_{\mu}s + 1}{8T_{\mu}^{3}s^{3} + 8T_{\mu}^{2}s^{2} + 4T_{\mu}s + 1}$$

Рис. 8: Реакция на единичное воздействие

Время переходного процесса $t_{\rm nn}=14.7T_{\mu}=0.073\,c$ и перерегулирование $\Delta h=43.39\%$

3.3.2 Диаграммы Боде

Рис. 9: Диаграммы Боде технического оптимума

3.3.3 Реакции на входное воздействие

Рис. 10: Реакция на различные воздействия

3.4 Биномиальный оптимум

3.4.1 Переходная функция

$$W(s) = \frac{1}{3T_{\mu}^2 s^2 + 3T_{\mu}s + 1}$$

Рис. 11: Реакция на единичное воздействие

Время переходного процесса $t_{\rm nn}=6.6T_{\mu}=0.033\,c$ и перерегулирование $\Delta h=0.43\%$

3.4.2 Диаграммы Боде

Рис. 12: Диаграммы Боде биномиального оптимума

3.4.3 Реакции на входное воздействие

Рис. 13: Реакция на различные воздействия

3.5 Астатизм третьего порядка

3.5.1 Переходная функция

$$W(s) = \frac{(16T_{\mu}s + 1)(4T_{\mu}s + 1)}{128T_{\mu}^{4}s^{4} + 128T_{\mu}^{3}s^{3} + 64T_{\mu}^{2}s^{2} + 20T_{\mu}s + 1}$$

Рис. 14: Реакция на единичное воздействие

Время переходного процесса $t_{\rm nn}=14.7T_{\mu}=0.073\,c$ и перерегулирование $\Delta h=56.13\%$

3.5.2 Диаграммы Боде

Рис. 15: Диаграммы Боде астатизма третьего порядка

3.5.3 Реакции на входное воздействие

Рис. 16: Реакция на различные воздействия

3.6 Сравнение характеристик оптимумов

В ходе работы получены следующие величины времени переходного процесса $t_{\rm nn}$ и перерегулирования Δh .

	Линейный	Технический	Симметричный	Биномиальный	Астатизм
$t_{\scriptscriptstyle \Pi\Pi}$	$3T_{\mu} = 0.015 c$	$4.1T_{\mu} = 0.021 c$	$14.7T_{\mu} = 0.073 c$	$6.6T_{\mu} = 0.033 c$	$16.35T_{\mu} = 0.082 c$
Δh	0%	4.3%	43.39%	0.43%	56.13%

3.7 Порядок астатизма оптимумов

Для определения порядка астатизма приведем графики ошибок систем при постоянном воздействии.

Рис. 17: Сравнение ошибок систем при разных воздействиях

Если ошибка по окончанию переходных процессов для воздействия n-го порядка равна нулю, то система имеет астатизм как минимумм (n+1)-го порядка. Если ошибка имеет постоянное ненулевое значение, тогда система имеет астатизм n-го порядка.

Таким образом на основании полученных данных:

	Линейный	Технический	Симметричный	Биномиальный	Астатизм
Порядок астатизма	1	1	2	1	≥ 3

4 Вывод

В ходе моделирования систем были эксперементально получены значения перерегулирования и времени переходных процессов для данных оптимумов. Получены ЛАЧХ и ФЧХ для систем различной настройки, а также определён порядок астатизма, получающийся в результате настройки системы.

Очевидно, что при увеличении порядка астатизма реакция системы становится более «колебательной» — растёт перерегулирование и время переходного процесса. При этом системы с бо́льшим порядком астатизма отрабатывают воздействия с установившейся ошибкой, чем системы с меньшим порядком.