List of Figures

axles 4 ft apa	art), and design lane load (0.64 kips/ft longitudinally	8
Figure 1.2	Fatigue live loading	9
	Shear and moment diagrams for controlling design truck load position	. 14
	Shear and moment diagrams for the design truck (HS-20) at midspan	. 15
Figure 2.1	T-beam design example	. 18
Figure 2.2	Interior T-beam section	. 20
Figure 2.3a	Influence lines for moment at midspan	. 21
Figure 2.3b	Influence lines for shear at support	. 21
Figure 2.4	Design truck (HS-20) position for moment at midspan	.22
Figure 2.5	Design tandem load position for moment at midspan	.22
Figure 2.6	Design truck (HS-20) position for shear at support	.22
Figure 2.7	Design tandem load position for shear at support	.22
Figure 2.8 moment in e	Lever rule for determination of distribution factor for exterior beam, one lane loaded	. 25
Figure 2.9	Moment distribution for deck slab and wearing surface loads	.32
	Moment distribution for curb and parapet loads girder	.33
Figure 2.11	T-beam section and reinforcement in T-beam stem	.36
Figure 2.12	Critical shear section at support	41
Figure 2.13 section	Lane load position for maximum shear at critical shear	.43
Figure 2.14 position per	Fatigue truck loading and maximum moment at 32 kips lane due to fatigue loading	. 51
Figure 2.15	Cracked section determination of T-beam	.54
Figure 2.16	T-beam bridge cross section	. 62

Figure 2.17	T-beam section	. 62
Figure 2.18 resistance	Interior T-beam section for determination of flexural	. 67
Figure 2.19	Critical section for shear at support	.69
Figure 2.20	Live load shear at critical shear section due to lane load	. 70
Figure 2.21	Composite steel-concrete bridge example	.75
Figure 2.22	Steel section	.75
Figure 2.23	Composite steel section	. 76
Figure 2.24	Composite section for stiffness parameter, \boldsymbol{K}_g	.79
Figure 2.25 for moment i	Lever rule for determination of distribution factor nexterior beam, one lane loaded	. 81
Figure 2.26 load (HS-20).	Load position for moment at midspan for design truck	.83
Figure 2.27 tandem load	Load position for moment at midspan for design	.84
Figure 2.28	Load position for moment at midspan for design lane load.	.84
Figure 2.29 (HS-20)	Load position for shear at support for design truck load	.85
Figure 2.30	Load position for shear at support design tandem load	.85
Figure 2.31	Load position for shear at support for design lane load	.86
Figure 2.32 capacity calcu	Composite steel–concrete section for shear and moment ulation	.88
Figure 2.33 moment capa	Section and cross section of interior girder for plastic acity	. 91
Figure 2.34	Composite cross section for exterior beam	.92
Figure 2.35 moment capa	Section and cross section of exterior girder for plastic acity	. 95
Figure 2.36	Interior girder section prior to transformed area	100
Figure 2.37	Interior girder section after transformed area	101
Figure 2.38	Dimensions for transformed interior beam section	101
Figure 2.39	Exterior girder section prior to transformed area	106
Figure 2.40	Exterior girder section after transformed area	106
Figure 2.41	Dimensions for transformed exterior beam section	107

Figure 2.42 Single lane fatigue load placement with one design truck load for maximum moment at midspan	. 112
Figure 2.43 Single lane fatigue load placement with one design truck load for maximum shear at support	. 116
Figure 2.44 Steel girder bridge, 40 ft span	. 118
Figure 2.45a Influence line for maximum moment at midspan	. 121
Figure 2.45b Controlling load position for moment at midspan for design truck load (HS-20)	. 121
Figure 2.45c Controlling load position for moment at midspan for design tandem load	. 121
Figure 2.45d Controlling load position for moment at midspan for design lane load	. 121
Figure 2.45e Single lane fatigue load placement with one design truck load for maximum moment at midspan	. 122
Figure 2.46 Noncomposite steel section at midspan	. 123
Figure 2.47 Lever rule for determination of distribution factor for moment in exterior beam, one lane loaded	. 125
Figure 2.48a Maximum live load shears; influence line for maximum shear at support	. 127
Figure 2.48b Controlling load position for shear at support for design truck load (HS-20)	. 127
Figure 2.48c Controlling load position for shear at support for design tandem load	. 127
Figure 2.48d Controlling load position for shear at support for design lane load	. 127
Figure 2.48e Single lane fatigue load placement with one design truck load for maximum shear at support	. 128
Figure 2.49 Position of design truck loading (HS-20) for deflection at midspan	. 137
Figure 2.50 Concrete deck slab design example	. 145
Figure 2.51 Locations in slab strips for maximum reactions and moments due to dead loads	. 146
Figure 2.52 Moments and reactions for deck slab dead load excluding deck cantilever	. 147
Figure 2.53 Moments and reaction for deck slab dead load in deck cantilever	. 147

Figure 2.54	Moments and reaction for curb and parapet loads1	48
Figure 2.55	Moments and reaction for wearing surface loads1	48
Figure 2.56	Live load placement for maximum negative moment 1	49
Figure 2.57 one lane load	Live load placement for maximum negative moment, led1	50
	Live load placement for maximum positive moment or span, one lane loaded1	51
	Live load placement for maximum positive moment, oaded1	52
	Live load placement for maximum negative moment or span, one lane loaded1	53
Figure 2.61	Live load placement for maximum reaction at first support 1	54
Figure 2.62	Deck slab section for reinforcement placement1	58
Figure 2.63	Prestressed concrete interior girder design example1	65
Figure 2.64	Cross section of girder with composite deck1	66
Figure 2.65	Area transformed section of girder section1	68
Figure 2.66	Bending moments at midspan due to HL-93 loading 1	71
Figure 2.67	Girder I-beam section	76
Figure 2.68 for girder I-be	Concrete stresses at midspan at release of prestress eam	79
Figure 2.69	Final concrete stresses at midspan after losses 1	83
Figure 2.70	Reinforced concrete girder design example1	84
Figure 2.71	Girder section with area transformed deck slab1	86
0	Lever rule for distribution factor for exterior girder one lane loaded1	90
_	Design truck (HS-20) load position for the maximum idspan	92
Figure 2.74	Design lane load moment at midspan	93
Figure 2.75 maximum sh	Design truck load (HS-20) load position for the lear at support1	93
	Design lane load position for the maximum shear	94
Figure 2.77	Reinforcement details	96

Figure 2.78	Review of shear reinforcement	. 199
Figure 2.79	Abutment structure 16 ft in height and 29.5 ft in width	202
Figure 2.80 beams at 29.5	Two-lane bridge supported by seven W30 × 108 steel 5 ft wide abutment	. 202
Figure 2.81	Steel beams at abutment and away from abutment	203
Figure 2.82	Wind loads on abutment transmitted from superstructure	205
Figure 2.83 live load	Wind loads on abutments transmitted from vehicle	206
Figure 2.84	Forces on abutment from braking	208
Figure 2.85 braking force	Summary of forces on abutment due to wind loads, es, temperature changes, and earthquake loads	. 214
Figure 3.1	Cross section of noncomposite steel beam bridge	216
Figure 3.2	W40 × 249 properties	216
Figure 3.3	Dead loads for interior girder	217
Figure 3.4	Dead loads for exterior girder	220
T:	Section for longitudinal stiffness parameter, K_{g}	223
Figure 3.5	Section for longitudinal stiffless parameter, \mathbf{K}_{g}	
Figure 3.6	Lever rule for the distribution factor for moments girder	
Figure 3.6 for exterior g	Lever rule for the distribution factor for moments	.225
Figure 3.6 for exterior g Figure 3.7	Lever rule for the distribution factor for moments girder	. 225 . 227
Figure 3.6 for exterior g Figure 3.7 Figure 3.8	Lever rule for the distribution factor for moments girder	.225 .227 .227
Figure 3.6 for exterior g Figure 3.7 Figure 3.8	Lever rule for the distribution factor for moments girder Design truck (HS-20) load moment at midspan Design tandem load moment at midspan	. 225 . 227 . 227 . 228
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9	Lever rule for the distribution factor for moments girder	. 225 . 227 . 227 . 228 . 228
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10	Lever rule for the distribution factor for moments girder	. 225 . 227 . 227 . 228 . 228
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11	Lever rule for the distribution factor for moments girder	. 225 . 227 . 227 . 228 . 228 . 229
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11	Lever rule for the distribution factor for moments girder	225 227 227 228 228 229 229 234
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12	Lever rule for the distribution factor for moments girder	225 227 227 228 228 229 229 234 234
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 Figure 3.13 Figure 3.14	Lever rule for the distribution factor for moments girder	225 227 227 228 228 229 229 234 234 235
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15	Lever rule for the distribution factor for moments girder	225 227 227 228 228 229 229 234 234 235 240
Figure 3.6 for exterior g Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15 Figure 3.16	Lever rule for the distribution factor for moments girder	225 227 228 228 229 234 234 235 240

Figure 3.20 to dead loads	Cross-section properties for shears and moments due	. 246
Figure 3.21	Design truck load (HS-20) position for maximum shear	. 250
Figure 3.22	Design tandem load position for maximum shear	. 250
Figure 3.23	Design lane load position for maximum shear	. 251
Figure 3.24	Design truck load (HS-20) position for maximum moment $\!$. 251
Figure 3.25	Design tandem load position for maximum moment	. 252
Figure 3.26	Design lane load position for maximum moment	. 252
Figure 3.27 for exterior g	Lever rule for the distribution factor for moments irder	. 255
Figure 3.28	Fatigue load position for maximum moment at midspan	. 260
Figure 3.29	Prestressed concrete I-beam	. 264
Figure 3.30	Deck and I-beam	.264
Figure 3.31	Curb and parapet	. 265
Figure 3.32	Composite section	. 267
Figure 3.33	Influence line diagram for maximum moment at midspan $\! \!$. 272
Figure 3.34	Design truck (HS-20) position for moment at midspan	. 272
Figure 3.35	Design tandem load position for moment at midspan	. 273
Figure 3.36	Design lane load for moment at midspan	. 273
Figure 3.37	Influence line diagram for maximum shear at support	. 274
Figure 3.38	Design truck position for shear at support	. 274
Figure 3.39	Design tandem load position for shear at support	. 274
Figure 3.40	Design lane load for shear at support	. 274
Figure 3.41	Prestressed I-beam with 30, ½ in strands	. 279