Reciprocal Multifactorial Constants

Perfect matchings for K_ 6 and K_8

ln[@]:= 16 = Length[FindIndependentEdgeSet[k6]]
18 = Length[FindIndependentEdgeSet[k8]]

Out[•]= 3

Out[•]= **4**

```
m_{\parallel} = \text{es16} = \text{Select[Subsets[EdgeList[k6], \{16\}], IndependentEdgeSetQ[k6, #] \&]}
                               es18 = Select[Subsets[EdgeList[k8], {18}], IndependentEdgeSetQ[k8, #] &]
Out_{0} = \{\{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 5, 4 \leftrightarrow 6\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 6, 4 \leftrightarrow 5\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 4, 5 \leftrightarrow 6\}, 
                                        \{1 \leftrightarrow 3, 2 \leftrightarrow 5, 4 \leftrightarrow 6\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 6, 4 \leftrightarrow 5\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 3, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 5, 3 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 4, 2 \leftrightarrow 6, 3 \leftrightarrow 5\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 3, 4 \leftrightarrow 6\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 4, 3 \leftrightarrow 6\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 4\},
                                       \{1 \leftarrow 6, 2 \leftarrow 3, 4 \leftarrow 5\}, \{1 \leftarrow 6, 2 \leftarrow 4, 3 \leftarrow 5\}, \{1 \leftarrow 6, 2 \leftarrow 5, 3 \leftarrow 4\}\}
Out = \{\{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8\}, \{1
                                      \{1 \leftrightarrow 2, 3 \leftrightarrow 5, 4 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 5, 4 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 5, 4 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 2, 3 \leftrightarrow 6, 4 \leftrightarrow 5, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 6, 4 \leftrightarrow 7, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 6, 4 \leftrightarrow 8, 5 \leftrightarrow 7\},
                                       \{1 \leftrightarrow 2, 3 \leftrightarrow 7, 4 \leftrightarrow 5, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 7, 4 \leftrightarrow 6, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 7, 4 \leftrightarrow 8, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 4 \leftrightarrow 5, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 4 \leftrightarrow 6, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 2, 3 \leftrightarrow 8, 4 \leftrightarrow 7, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 4, 5 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                       \{1 \leftrightarrow 3, 2 \leftrightarrow 5, 4 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 5, 4 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 5, 4 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 3, 2 \leftrightarrow 6, 4 \leftrightarrow 5, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 6, 4 \leftrightarrow 7, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 6, 4 \leftrightarrow 8, 5 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 3, 2 \leftrightarrow 7, 4 \leftrightarrow 5, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 7, 4 \leftrightarrow 6, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 7, 4 \leftrightarrow 8, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 3, 2 \leftrightarrow 8, 4 \leftrightarrow 5, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 8, 4 \leftrightarrow 6, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 3, 2 \leftrightarrow 8, 4 \leftrightarrow 7, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 4, 2 \leftrightarrow 3, 5 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 3, 5 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 3, 5 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                        \{1 \leftrightarrow 4, 2 \leftrightarrow 5, 3 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 5, 3 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 5, 3 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 4, 2 \leftrightarrow 6, 3 \leftrightarrow 5, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 6, 3 \leftrightarrow 8, 5 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 4, 2 \leftrightarrow 7, 3 \leftrightarrow 5, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 7, 3 \leftrightarrow 6, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 7, 3 \leftrightarrow 8, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 4, 2 \leftrightarrow 8, 3 \leftrightarrow 5, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 8, 3 \leftrightarrow 6, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 4, 2 \leftrightarrow 8, 3 \leftrightarrow 7, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 5, 2 \leftrightarrow 3, 4 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 3, 4 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 3, 4 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                       \{1 \leftrightarrow 5, 2 \leftrightarrow 4, 3 \leftrightarrow 6, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 4, 3 \leftrightarrow 7, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 4, 3 \leftrightarrow 8, 6 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 4, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 7, 4 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 6, 3 \leftrightarrow 8, 4 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 5, 2 \leftrightarrow 7, 3 \leftrightarrow 4, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 7, 3 \leftrightarrow 6, 4 \leftrightarrow 8\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 7, 3 \leftrightarrow 8, 4 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 5, 2 \leftrightarrow 8, 3 \leftrightarrow 4, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 8, 3 \leftrightarrow 6, 4 \leftrightarrow 7\}, \{1 \leftrightarrow 5, 2 \leftrightarrow 8, 3 \leftrightarrow 7, 4 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 6, 2 \leftrightarrow 3, 4 \leftrightarrow 5, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 3, 4 \leftrightarrow 7, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 3, 4 \leftrightarrow 8, 5 \leftrightarrow 7\},
                                      \{1 \leftrightarrow 6, 2 \leftrightarrow 4, 3 \leftrightarrow 5, 7 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 4, 3 \leftrightarrow 7, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 4, 3 \leftrightarrow 8, 5 \leftrightarrow 7\},
                                        \{1 \leftarrow 6, 2 \leftarrow 5, 3 \leftarrow 4, 7 \leftarrow 8\}, \{1 \leftarrow 6, 2 \leftarrow 5, 3 \leftarrow 7, 4 \leftarrow 8\}, \{1 \leftarrow 6, 2 \leftarrow 5, 3 \leftarrow 8, 4 \leftarrow 7\},
                                      \{1 \leftrightarrow 6, 2 \leftrightarrow 7, 3 \leftrightarrow 4, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 7, 3 \leftrightarrow 5, 4 \leftrightarrow 8\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 7, 3 \leftrightarrow 8, 4 \leftrightarrow 5\},
                                      \{1 \leftrightarrow 6, 2 \leftrightarrow 8, 3 \leftrightarrow 4, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 8, 3 \leftrightarrow 5, 4 \leftrightarrow 7\}, \{1 \leftrightarrow 6, 2 \leftrightarrow 8, 3 \leftrightarrow 7, 4 \leftrightarrow 5\},
                                       \{1 \leftrightarrow 7, 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 3, 4 \leftrightarrow 6, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 3, 4 \leftrightarrow 8, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 7, 2 \leftrightarrow 4, 3 \leftrightarrow 5, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 4, 3 \leftrightarrow 6, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 4, 3 \leftrightarrow 8, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 7, 2 \leftrightarrow 5, 3 \leftrightarrow 4, 6 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 5, 3 \leftrightarrow 6, 4 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 5, 3 \leftrightarrow 8, 4 \leftrightarrow 6\},
                                      \{1 \leftrightarrow 7, 2 \leftrightarrow 6, 3 \leftrightarrow 4, 5 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 6, 3 \leftrightarrow 5, 4 \leftrightarrow 8\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 6, 3 \leftrightarrow 8, 4 \leftrightarrow 5\},
                                      \{1 \leftrightarrow 7, 2 \leftrightarrow 8, 3 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 8, 3 \leftrightarrow 5, 4 \leftrightarrow 6\}, \{1 \leftrightarrow 7, 2 \leftrightarrow 8, 3 \leftrightarrow 6, 4 \leftrightarrow 5\},
                                       \{1 \leftrightarrow 8, 2 \leftrightarrow 3, 4 \leftrightarrow 5, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 3, 4 \leftrightarrow 6, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 3, 4 \leftrightarrow 7, 5 \leftrightarrow 6\},
                                       \{1 \leftrightarrow 8, 2 \leftrightarrow 4, 3 \leftrightarrow 5, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 4, 3 \leftrightarrow 6, 5 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 4, 3 \leftrightarrow 7, 5 \leftrightarrow 6\},
                                      \{1 \leftrightarrow 8, 2 \leftrightarrow 5, 3 \leftrightarrow 4, 6 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 5, 3 \leftrightarrow 6, 4 \leftrightarrow 7\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 5, 3 \leftrightarrow 7, 4 \leftrightarrow 6\},
                                       \{1 \leftarrow 8, 2 \leftarrow 6, 3 \leftarrow 4, 5 \leftarrow 7\}, \{1 \leftarrow 8, 2 \leftarrow 6, 3 \leftarrow 5, 4 \leftarrow 7\}, \{1 \leftarrow 8, 2 \leftarrow 6, 3 \leftarrow 7, 4 \leftarrow 5\},
                                       \{1 \leftrightarrow 8, 2 \leftrightarrow 7, 3 \leftrightarrow 4, 5 \leftrightarrow 6\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 7, 3 \leftrightarrow 5, 4 \leftrightarrow 6\}, \{1 \leftrightarrow 8, 2 \leftrightarrow 7, 3 \leftrightarrow 6, 4 \leftrightarrow 5\}\}
```

In[•]:=

In[@]:= Table[HighlightGraph[k6, h, GraphHighlightStyle → "Thick"], {h, esl6}]

 $\textit{ln[@]} := \texttt{Table[HighlightGraph[k8, h, GraphHighlightStyle} \rightarrow \texttt{"Thick"], \{h, esl8}]$

Stirling Permutations

```
In[@]:= ClearAll[strlngPermutations]
      strlngPermutations[1] = {{1, 1}};
      strlngPermutations[k_] := Join@@
         \left( \text{Function}[x, \text{Flatten}[\text{Insert}[x, \{k, k\}, \#]] \& /@ \, \text{Range}[2\,k-1]] \, /@ \, \text{strlngPermutations}[k-1] \right)
```

$l_{n/\theta} = Multicolumn[Sort@strlngPermutations@4, 5, Appearance <math>\rightarrow$ "Horizontal"] {1, 1, 2, 2, {1, 1, 2, 2, $\{1, 1, 2, 3,$ $\{1, 1, 2, 3,$ $\{1, 1, 2, 2,$ 3, 3, 4, 4} **3, 4, 4, 3**} **4, 4, 3, 3**} **3, 2, 4, 4**} **3, 4, 4, 2**} $\{1, 1, 2, 3,$ $\{1, 1, 2, 4,$ $\{1, 1, 2, 4,$ {1, 1, 3, 3, {1, 1, 3, 3, **4, 4, 3, 2**} **4, 2, 3, 3**} **4**, **3**, **3**, **2**} 2, 2, 4, 4} 2, 4, 4, 2} {1, 1, 3, 3, {1, 1, 3, 4, {1, 1, 4, 4, {1, 1, 4, 4, {1, 1, 4, 4, **4, 4, 2, 2**} **4, 3, 2, 2**} 2, 2, 3, 3} 2, 3, 3, 2} **3, 3, 2, 2**} {1, 2, 2, 1, {1, 2, 2, 1, {1, 2, 2, 3, {1, 2, 2, 3, {1, 2, 2, 1, 3, 3, 4, 4} **3, 4, 4, 3**} **3, 4, 4, 1**} 4, 4, 3, 3} **3, 1, 4, 4**} $\{1, 2, 2, 3,$ $\{1, 2, 2, 4,$ $\{1, 2, 2, 4,$ $\{1, 2, 3, 3,$ $\{1, 2, 3, 3,$ **4, 4, 3, 1**} **4, 1, 3, 3**} **4, 3, 3, 1**} 2, 1, 4, 4} 2, 4, 4, 1} $\{1, 2, 3, 4,$ {1, 2, 4, 4, $\{1, 2, 4, 4,$ $\{1, 2, 4, 4,$ **4, 4, 2, 1**} **4, 3, 2, 1**} **2, 1, 3, 3**} **3, 3, 2, 1**} **2**, **3**, **3**, **1**} **{1, 3, 3, 1,** {1, 3, 3, 1, {1, 3, 3, 1, $\{1, 3, 3, 2,$ {1, 3, 3, 2, 2, 2, 4, 4} 2, 4, 4, 2} **4, 4, 2, 2**} 2, 1, 4, 4} 2, 4, 4, 1} {1, 3, 3, 2, **{1, 3, 3, 4,** {1, 3, 3, 4, {1, 3, 4, 4, {1, 3, 4, 4, **4, 4, 2, 1**} **4, 1, 2, 2**} **4, 2, 2, 1**} **3, 1, 2, 2**} **3, 2, 2, 1**} $\{1, 4, 4, 1,$ {1, 4, 4, 1, {1, 4, 4, 1, {1, 4, 4, 2, $\{1, 4, 4, 2,$ 2, 2, 3, 3} 2, 3, 3, 2} **3, 3, 2, 2**} 2, 1, 3, 3} **2**, **3**, **3**, **1**} {1, 4, 4, 2, {1, 4, 4, 3, {1, 4, 4, 3, {2, 2, 1, 1, {2, 2, 1, 1, **3, 3, 2, 1**} **3, 1, 2, 2**} **3, 2, 2, 1**} 3, 4, 4, 3} **3, 3, 4, 4**} {2, 2, 1, 3, {2, 2, 1, 3, {2, 2, 1, 3, {2, 2, 1, 4, {2, 2, 1, 1, **4, 4, 3, 3**} **3, 1, 4, 4**} **3, 4, 4, 1**} **4, 4, 3, 1**} **4, 1, 3, 3**} {2, 2, 3, 4, {2, 2, 1, 4, {2, 2, 3, 3, {2, 2, 3, 3, {2, 2, 3, 3, **4, 3, 3, 1**} **1, 1, 4, 4**} **1, 4, 4, 1**} **4, 4, 1, 1**} **4, 3, 1, 1**} $\{2, 3, 3, 2, \dots, 2, \dots,$ $\{2, 3, 3, 2,$ **1, 1, 3, 3**} **1, 4, 4, 1**} **1**, 3, 3, 1} 3, 3, 1, 1_} **1, 1, 4, 4**} {2, 3, 3, 2, {2, 3, 3, 4, {2, 3, 4, 4, {2, 4, 4, 2, {2, 4, 4, 2, **4, 4, 1, 1**} **4, 2, 1, 1**} **3, 2, 1, 1**} **1, 1, 3, 3**} **1**, 3, 3, 1} $\{2, 4, 4, 2,$ $\{2, 4, 4, 3,$ **3, 3, 1, 1**} **3, 2, 1, 1**} 2, 2, 4, 4} 2, 4, 4, 2} **4, 4, 2, 2**} {3, 3, 1, 2, {3, 3, 1, 2, {3, 3, 1, 2, {3, 3, 1, 4, {3, 3, 1, 4, **2, 1, 4, 4**} **2, 4, 4, 1**} **4**, **4**, **2**, **1**} **4, 1, 2, 2**} **4**, **2**, **2**, **1**} {3, 3, 2, 2, {3, 3, 2, 2, ${3, 3, 2, 2,}$ ${3, 3, 2, 4,}$ {3, 3, 4, 4, **1, 1, 4, 4**} **1, 4, 4, 1**} **4, 4, 1, 1**} **4, 2, 1, 1**} **1, 1, 2, 2**} {3, 3, 4, 4, {3, 3, 4, 4, {3, 4, 4, 3, {3, 4, 4, 3, {3, 4, 4, 3, **1, 2, 2, 1**} **2, 2, 1, 1**} **1, 1, 2, 2**} **1, 2, 2, 1**} **2, 2, 1, 1**} {4, 4, 1, 1, {4, 4, 1, 1, {4, 4, 1, 1, {4, 4, 1, 2, {4, 4, 1, 2, 2, 2, 3, 3} 2, 3, 3, 2} 3, 3, 2, 2} 2, 1, 3, 3} **2, 3, 3, 1**} {4, 4, 1, 3, ${4, 4, 1, 2,}$ {4, 4, 1, 3, ${4, 4, 2, 2,}$ ${4, 4, 2, 2,}$ **3, 3, 2, 1**} **3, 1, 2, 2**} **3, 2, 2, 1**} **1, 1, 3, 3**} **1**, 3, 3, 1} $\{4, 4, 2, 3,$ $\{4, 4, 3, 3, 3,$ $\{4, 4, 3, 3, 3,$ $\{4, 4, 3, 3, 3,$

1, 1, 2, 2}

1, 2, 2, 1}

2, 2, 1, 1}

3, 3, 1, 1}

3, 2, 1, 1}

```
In[*]:= ClearAll[strlngPermGraph]
    strlngPermGraph[sp_, opts:OptionsPattern[]] :=
     Module[{vl = DeleteDuplicates@sp, pos = PositionIndex@sp,
        eL = EdgeList@*TransitiveReductionGraph@*GraphUnion},
       Graph[Prepend[vl, 0], eL[Graph@Thread[0 \rightarrow vl],
         SimpleGraph@RelationGraph[And @@ Between[pos@#] /@ pos[#2] &, v1]],
        GraphLayout \rightarrow {"LayeredEmbedding", "RootVertex" \rightarrow 0},
        EdgeLabels → {e_ :> Placed[Last@e, {Left, "Middle"}]}, opts]]
```

 $log[*] := Grid[Partition[strlngPermGraph[#, PlotLabel <math>\rightarrow$ #, EdgeShapeFunction \rightarrow "Line", EdgeStyle \rightarrow Thick, EdgeLabelStyle \rightarrow 16, VertexSize \rightarrow Medium] & /@ $strIngPermutations[3], 5], Dividers \rightarrow All, Spacings \rightarrow \{4, 4\}]$

 $log_{[n]} = Grid[Partition[strlngPermGraph[#, PlotLabel <math>\rightarrow$ #, EdgeShapeFunction \rightarrow "Line", EdgeStyle → Thick, EdgeLabelStyle → 16, VertexSize → Medium] & /@ strlngPermutations[4], 10], Dividers \rightarrow All, Spacings \rightarrow {1, 1}]

X

Limits for Ratio test in m(2)

```
Out[*]=
ln[@]:= limitm2case1 = Limit[case1, n \rightarrow Infinity]
    limitm2case2 = Limit[case2, n → Infinity]
Out[•]= 0
Out[*]= 0
```

Computing m(1) to m(10) from n=0 to n=2000

```
ln[\cdot]:= Multifactorial[n_, k_] := Abs[Apply[Times, Range[-n, -1, k]]]
location [i = 1, i < 11, i++, Print[N[Sum[1/Multifactorial[n, i], {n, 0, 150}], 20]]]
```

- 2.7182818284590452354
- 3.0594074053425761445
- 3.2989135380884190034
- 3.4859449774535577452
- 3.6402244677338097342
- 3.7719023962117584357
- 3.8869596537408434954
- 3.9892412126901365441
- 4.0813755201688985441
- 4.1652437655583845908

Plot of m (1) to m (1) superimposed on each other from n = 0 to n = 2000

ListPlot[Table[Sum[1/Multifactorial[n, j], {n, 1, i}], {j, 1, 10}, {i, 1, 20}], PlotLegends → PointLegend[Automatic, PromptForm[k, #] & /@ Range[10], LegendMarkers → {Graphics[Disk[]], 6}]]

3.0 2.5 2.0 1.5 1.0 -0.5 • k = 10

```
ListPlot[Table[Sum[1/Multifactorial[n, j], {n, 1, i}], {j, 1, 10}, {i, 1, 50}],
      PlotLegends → PointLegend[Automatic,
         PromptForm[k, \#] & /@ Range[10], LegendMarkers \rightarrow {Graphics[Disk[]], 6}]
     3.0
     2.5
     2.0
Out[●]= 1.5
     1.0
     0.5
                                                                    k = 9
                                                                   k = 10
```

Computation of RMFCs using the closed form formula

15

```
\ln[\pi] := 1 + \frac{1}{n} \exp[1/n] \operatorname{Sum}[n^{k/n} \operatorname{Gamma}[\frac{k}{n}, 0, \frac{1}{n}], \{k, n\}]
log[\bullet]:= For [i = 1, i < 11, i++, Print [N[ClosedFormRMFC[i], 20]]]
     2.7182818284590452354
     3.0594074053425761445
     3.2989135380884190034
     3.4859449774535577452
     3.6402244677338097342
     3.7719023962117584357
     3.8869596537408434954
     3.9892412126901365441
     4.0813755201688985441
     4.1652437655583845908
```

10

Analysing efficiency of the two RMFC calculation methods

```
[For[i = 1, i < xx, i++, Print[N[Sum[1/Multifactorial[n, i], {n, 0, 250}], 50]] //
          Inactive // RepeatedTiming) [[1]]
    test2[xx_] := (For[i = 1, i < xx, i++, Print[N[ClosedFormRMFC[i], 50]] // Inactive] //
        RepeatedTiming) [[1]]
```

```
In[@]:= list1 =
        ListPlot[Table[\{xx, test1[xx]\}, \{xx, 1, 100\}], PlotRange \rightarrow All, PlotLegends \rightarrow {Automatic},
         AxesLabel → {"m(k)", "time in sec"}, PlotStyle → {Red, Thick}];
     list2 = ListPlot[Table[{xx, test2[xx]}, {xx, 1, 100}], PlotRange → All, PlotLegends →
           {Automatic}, AxesLabel \rightarrow {"m(k)", "time in sec"}, PlotStyle \rightarrow {Blue, Thick}];
In[@]:= Show[list1, list2, ImageSize → Large]
       time in sec
     0.00010
     0.00008
                                                                                                           Series
     0.00006
                                                                                                             Closec
     0.00004
     0.00002
                            20
                                             40
                                                              60
In[●]:= list3 =
        ListPlot[Table[\{xx, test1[xx]\}, \{xx, 1, 200\}], PlotRange \rightarrow All, PlotLegends \rightarrow {Automatic},
         AxesLabel → {"m(k)", "time in sec"}, PlotStyle → {Red, Thick}];
     list4 = ListPlot[Table[\{xx, test2[xx]\}, \{xx, 1, 200\}], PlotRange \rightarrow All, PlotLegends \rightarrow
           {Automatic}, AxesLabel \rightarrow {"m(k)", "time in sec"}, PlotStyle \rightarrow {Blue, Thick}];
In[@]:= Show[list3, list4, ImageSize → Large]
```


ln[●]:= **list7 =** $ListPlot[Table[\{xx, test3[xx]\}, \{xx, 1, 200\}], PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow \{Automatic\}, \{xx, 1, 200\}, PlotRange \rightarrow All, PlotLegends \rightarrow All, PlotLegends \rightarrow All, PlotRange \rightarrow All$ AxesLabel → {"Digit Accuracy", "time in sec"}, PlotStyle → {Red, Thick}]; *In[●]:=* list8 = ListPlot[Table[$\{xx, test4[xx]\}, \{xx, 1, 200\}$], PlotRange \rightarrow All, PlotLegends \rightarrow {Automatic}, AxesLabel → {"Digit Accuracy", "time in sec"}, PlotStyle → {Blue, Thick}];

Asymptotics of Reciprocal Multifactorial Series

Simple Graph

Detailed asymptotics

$$\label{eq:asymptotic} Asymptotic $ [\lambda \, Integrate \, [\, (\, (1-t) \, \, (1-E^{\, (-(\lambda t))}) \,) \,/ \, (t \, (E^{\, (-(\lambda \, Log[t])) \, -1)}) \,, \, \{t, \, \emptyset, \, 1\} \,] \,, \\ \lambda \to \emptyset \,, \, \, Series Term Goal \to 2 \,]$$

$$\textit{Out[$^{\, 0}$]$=} \, -\frac{\lambda^2}{4} - \frac{1}{2} \, \lambda^2 \, Log[3] \, + \frac{1}{2} \, \lambda \, Log[4] \, + \, \frac{1}{12} \, \lambda^2 \, Log[64] \, \\ \textit{In[$^{\, 0}$]$=} \, \, Closed Form RMFC[n_] \, := \, 1 + \, \frac{1}{n} \, Exp[1/n] \, Sum[n^{k/n} \, Gamma[\frac{k}{n}, \, \emptyset, \, \frac{1}{n}] \,, \, \{k, \, n\} \,] \, \\ \textit{In[$^{\, 0}$]$=} \, \, RMFC Approximation[k_] \, := \, \\ 1 + \, \frac{\left(1 + 2 \, k \, \left(1 + k\right)\right) \, \left(1 + Log\left[\frac{27}{8}\right] + k \, \left(3 + 6 \, Euler Gamma \, k - Log[64]\right) + 6 \, k^2 \, Log[k] \,) }{12 \, k^4} \, \\$$

In[@]:= N[RMFCApproximation[15]]

Outf = 4.49958

In[*]:= N[ClosedFormRMFC[15]]

Out[*]= 4.49969

listaprx = ListPlot[Table[{x, RMFCApproximation[x]}, {x, 1, 10}], PlotRange → All,
 PlotLegends → {Automatic}, AxesLabel → {"k", "m(k)"}, PlotStyle → {Blue}];
listexact = ListPlot[Table[{x, ClosedFormRMFC[x]}, {x, 1, 10}], PlotRange → All,
 PlotLegends → {Automatic}, AxesLabel → {"k", "m(k)"}, PlotStyle → {Red}];

In[@]:= Show[listaprx, listexact, ImageSize → Large]


```
log_{in[\bullet]:} Table[{x, N[RMFCApproximation[10^x], 50]}, {x, 0, 5}]
Out[@] = \{ \{0, 2.8836692626558410221123829825576677447983026999440 \}, \}
                   {1, 4.1649189354117046099965674566757558205746873600579},
                   {2, 6.2325552567621081237809508324268568037822079589510},
                   \{3, 8.4922666866575160699533708545283873810253799369197\},
                   {4, 10.788515528463920803804219311415785943169176345868},
                   {5, 13.090260100433386932193328011615118199331396176765}
 log[\cdot]:= Table[{x, N[ClosedFormRMFC[10^x], 50]}, {x, 0, 5}]
Out[@] = \{ \{0, 2.7182818284590452353602874713526624977572470937000 \}, \}
                   {1, 4.1652437655583845907872624104455607382280307953708},
                   {2, 6.2325559690048781755948333144748471914777217107326},
                  {3, 8.4922666877530555546922513543645116307527055440479},
                   \{4, 10.788515528465399974853138837254851897589458808237\}
                   {5, 13.090260100433388795106669060937341380984702346850}
 location = Table[\{x, 100 (N[ClosedFormRMFC[10^x]] - N[RMFCApproximation[10^x]]) / In[the content of the conte
                            N[ClosedFormRMFC[10^x], 50], {x, 0, 5}]
Out[@] = \{ \{0, -6.08426\}, \{1, 0.00779859\}, \{2, 0.0000114278\}, \}
                  \left\{3, 1.29004 \times 10^{-8}\right\}, \left\{4, 1.37156 \times 10^{-11}\right\}, \left\{5, 0.\right\}\right\}
```