Pflichtenheft zum Projekt Nr. 2 der Gruppe 7 (ss11-g07)

Tutor: Steffen Bauereiss

- <u>Aufgabenverteilung</u>
- Aufgabenkurzbeschreibung
- <u>Hilfsmittel</u>
- Black-Box-Sicht
- Zeitplanung
- Projektverpflichtungen

Aufgabenverteilung

Maximilian Staab - Projektmanagement Orest Tarasiuk - Vortrag Lukas Märdian - Dokumentation

Aufgabenkurzbeschreibung

Es ist eine Funktion DGBMV zu entwickeln, welche Matrix-Vektor-Operationen nach einer der folgenden Formeln durchführt.

ALPHA, BETA seien Skalare; X, Y seien Vektoren; A sei eine Matrix; A' sei transponiertes A.

Hilfsmittel

- Das Buch
- Unterlagen der ETI-Vorlesung
- Assemblerdokumentation
- PCs, Jasmin

Black-Box-Sicht

Die Funktion DGBMV hat 13 Argumente und liefert eine Ausgabe Y.

Argumente:

Skalar, Double: ALPHA, BETA

Skalar, Integer: INCX, INCY, KL, KU, LDA, M, N

Skalar, Char: TRANS

Array, Double: A(LDA, *), X(*), Y(*)

TRANS spezifiziert, welche Formel verwendet wird:

bei einer Eingabe von N oder n wird Y := ALPHA*A*Y + BETA*Y berechnet; bei einer Eingabe von T, t, C oder c wird Y := ALPHA*A*Y + BETA*Y berechnet.

Sein Inhalt wird nicht modifiziert.

M gibt die Anzahl der Zeilen von A an; es beträgt mindestens 0; sein Inhalt wird nicht modifiziert.

N gibt die Anzahl der Spalten von A an; es beträgt mindestens 0; sein Inhalt wird nicht modifiziert.

1 of 3 23/05/11 14:06

KL gibt die Anzahl der Subdiagonalen von A an; es beträgt mindestens 0; sein Inhalt wird nicht modifiziert.

KU gibt die Anzahl der Superdiagonalen von A an; es beträgt mindestens 0; sein Inhalt wird nicht modifiziert.

ALPHA spezifiziert den Wert des Skalars ALPHA; sein Inhalt wird nicht modifiziert.

A ist ein Array der Dimension (LDA, N); anfänglich beinhaltet der führende (KL+KU+1)-mal-N-Teil die Matrixkoeffizienten, spaltenweise, mit der führenden Diagonale der Matrix in der Zeile KU+1 des Arrays, der ersten Superdiagonale beginnend an Stelle 1 der Zeile KU+2 des Arrays usw.

Elemente des Arrays A, die mit den Elementen der Bandmatrix nicht korrespondieren (z. B. das oben-linke KU-mal-KU-Dreieck), werden nicht referenziert.

Der folgende Programmabschnitt konvertiert eine Bandmatrix von der konventinellen Matrixlagerung in eine Bandmatrixlagerung.

```
DO 20, J = 1, N

K = KU + 1 - J

DO 10, I = MAX(1, J - KU), MIN(M, J + KL)

A(K + I, J) = matrix(I, J)

10 CONTINUE

20 CONTINUE
```

Der Inhalt von A wird nicht modifiziert.

LDA gibt die erste Dimension von A an (wie im Subprogramm deklariert); es beträgt mindestens KL + KU + 1; sein Inhalt wird nicht modifiziert.

X ist ein Array einer Dimension von mindestens (1 + (N - 1)*abs(INCX)), falls TRANS 'N' oder 'n' ist; anderenfalls ist X ein Array einer Dimension von mindestens (1 + (M - 1)*abs(INCX)). Zu Beginn beinhaltet das inkrementierte Array X den Vektor X; sein Inhalt wird nicht modifiziert.

INCX gibt das Inkrement für die Elemente von X an; es darf nicht 0 betragen; sein Inhalt wird nicht modifiziert.

BETA spezifiziert den Wert des Skalars BETA; wenn es 0 beträgt, muss Y nicht als Eingabewert spezifiziert werden. Der Inhalt von BETA wird nicht modifiziert.

Y ist ein Array einer Dimension von mindestens (1 + (M - 1)*abs(INCY)), falls TRANS 'N' oder 'n' ist; anderenfalls ist Y ein Array einer Dimension von mindestens (1 + (N - 1)*abs(INCY)). Zu Beginn beinhaltet das inkrementierte Array Y den Vektor Y, bei Beendingung wird Y mit dem aktualisierten Vektor Y überschrieben.

INCY gibt das Inkrement für die Elemente von Y an; es darf nicht 0 betragen; sein Inhalt wird nicht modifiziert.

Ausgabe:

Array, Double: Y(*)

Nach Beendingung der Funktionsausführung wird Y mit dem errechneten Vektor Y belegt.

Zeitplanung

Die folgende Vorgehensweise wurde geplant.

Teilaufgabe	Maximilian Staab (Projektmanagement)	Orest Tarasiuk (Vortrag)	Lukas Märdian (Dokumentation)	Gesam	t Milestone Termin
Besprechungen	3 h	3 h	3 h	9 h	wöchentlich
Aufgabenanalyse	1 h	1 h	1 h	3 h	10.05.2011
Suche nach zwei Lösungen	2 h	2 h	2 h	6 h	30.05.2011
Lösungsbewertung und Entscheidung für eine Lösung	1 h	1 h	1 h	3 h	06.06.2011
Implementierung	6 h	5 h	5 h	16 h	04.07.2011
Systemtests	2 h	2 h	1 h	5 h	08.07.2011
Übersicht über den Projektverlauf	4 h	0 h	0 h	4 h	11.07.2011

2 of 3 23/05/11 14:06

Gesamt	19 h	19 h	19 h	57 h	15.07.2011
Vortrag	0 h	5 h	0 h	5 h	15.07.2011
Dokumentation	0 h	0 h	6 h	6 h	11.07.2011

Projektverpflichtungen

- Pflichtenheft
- Spezifikation
- Implementierung
- Ausarbeitung bzw. Anwender- und Entwicklerdokumentation
 Projektvortrag
 Übersicht über den Projektverlauf

3 of 3 23/05/11 14:06