

WHAT IS CLAIMED IS:

1 1. An estimator for estimating a modulation index and frequency offset of a
2 received continuous-phase-modulated (CPM) signal, the estimator comprising:
3 at least two filters for filtering the received CPM signal;
4 a calculator for calculating an α value and a β value;
5 a processor for receiving a signal output by each of the at least two filters, the

6 α

7 value, and the β value; and

8 wherein the processor is adapted to calculate estimates of the modulation
9 index and frequency offset from the signals received by the processor and the received α
10 value and β value.

1 2. The estimator of claim 1, further comprising a postprocessor for removing bias
2 from the estimation of the modulation index.

1 3. The estimator of claim 2, wherein the postprocessor receives information
2 relating to the frequency offset and manipulates the modulation index to form a compensated
3 modulation index.

1 4. The estimator of claim 1, wherein the at least two filters are finite impulse
2 response (FIR) filters.

1 5. The estimator of claim 1, wherein the estimator is implemented in a
2 BLUETOOTH device.

- 1 6. A method of estimating a modulation index and frequency offset of a
- 2 received continuous-phase-modulated (CPM) signal, the method comprising:
 - 3 filtering the received CPM signal via at least two filters;
 - 4 calculating an α value and a β value;
 - 5 receiving a signal output by each of the at least two filters, the α value, and the
 - 6 β value; and
 - 7 calculating estimates of the modulation index and frequency offset from the
 - 8 received signals and the received α value and β value.
- 1 7. The method of claim 6, further comprising removing bias from the estimation
- 2 of the modulation index.
- 1 8. The method of claim 7, wherein the step of removing bias comprises receiving
- 2 information relating to the frequency offset and manipulating the modulation index to form a
- 3 compensated modulation index.
- 1 9. The method of claim 6, wherein the steps are performed in the order listed.
- 1 10. The method of claim 6, wherein the at least two filters are finite impulse
- 2 response (FIR) filters.
- 1 11. The method of claim 6, wherein the method is implemented in a
- 2 BLUETOOTH device.

1 12. An estimator for estimating a modulation index and frequency offset of a
2 received continuous-phase-modulated (CPM) signal, the estimator comprising:
3 a noise whitener for whitening noise of the received CPM signal;
4 at least two filters for filtering the noise-whitened CPM signal;
5 an initializer for processing a training sequence;
6 a processor for receiving a signal output by each of the at least two filters and
7 the processed training sequence; and
8 wherein the processor is adapted to calculate estimates of the modulation
9 index and frequency offset from the signals received by the processor and the processed
10 training sequence.

1 13. The estimator of claim 12, wherein the at least two filters are finite impulse
2 response (FIR) filters.

1 14. The estimator of claim 12, wherein the estimator is implemented in a
2 BLUETOOTH device.

1 15. The estimator of claim 12, wherein the noise whitener whitens the noise prior
2 to the at least two filters.

1 16. The estimator of claim 12, wherein at least one of the at least two filters
2 comprises the noise whitener.

1 17. A method of estimating a modulation index and frequency offset of a received
2 continuous-phase-modulated (CPM) signal, the method comprising:
3 whitening noise of the received CPM signal;
4 filtering the noise-whitened CPM signal via at least two filters;
5 processing a training sequence;
6 receiving a signal output by each of the at least two filters and the processed
7 training sequence; and
8 calculating estimates of the modulation index and frequency offset from the
9 received signals and the processed training sequence.

1 18. The method of claim 17, wherein the steps are performed in the order listed.

1 19. The method of claim 17, wherein the at least two filters are finite impulse
2 response (FIR) filters.

1 20. The method of claim 17, wherein the method is implemented in a
2 BLUETOOTH device.

1 21. The method of claim 17, wherein the step of whitening is performed before the
2 step of filtering.

1 22. The method of claim 17, wherein the step of whitening is performed by at
2 least one of the at least two filters.

- 1 23. An estimator for estimating a modulation index and frequency offset of a
- 2 received continuous-phase-modulated (CPM) signal, the estimator comprising:
- 3 at least two filters for filtering the received CPM signal;
- 4 a noise whitener for whitening noise of a signal output by the at least two
- 5 filters;
- 6 an initializer for processing a training sequence;
- 7 a processor for receiving signals output by the noise whitener and the
- 8 processed training sequence; and
- 9 wherein the processor is adapted to calculate an estimate of the modulation
- 10 index and the frequency offset from the received signals and the processed training sequence.

1 24. An estimator for estimating a modulation index and frequency offset of a
2 a received continuous-phase-modulated (CPM) signal, the estimator comprising:
3 a receiver for receiving the CPM signal; and
4 a processor for estimating the modulation index and frequency offset
5 according to the following equation:

6 $v = (B^T C^{-1} B)^{-1} B^T C^{-1} \phi$

7 wherein v represents a vector;

8 wherein the vector includes elements representing scaled versions of estimates
9 of the modulation index and the frequency offset;

10 wherein C represents a noise covariance matrix;

11 wherein B represents a data model matrix; and

12 wherein ϕ is an observation vector that represents a phase of the CPM signal.

1 25. The estimator of claim 24, wherein the data model matrix is modeled by the
2 following equation:

3
$$B = \begin{bmatrix} b_1 & 1 \\ b_2 & 1 \\ b_3 & 1 \\ \vdots & \vdots \\ b_N & 1 \end{bmatrix}$$

4 wherein $b_1, b_2, b_3, \dots, b_N$ represent bits of a training sequence.

1 26. The estimator of claim 24, wherein the data model matrix is modeled by the
2 following equation:

3

$$B = \begin{bmatrix} b_2 & c_2 & 1 \\ b_3 & c_3 & 1 \\ b_4 & c_4 & 1 \\ \vdots & \vdots & \vdots \\ b_{N-1} & c_{N-1} & 1 \end{bmatrix}$$

4 wherein $b_2, b_3, b_4, \dots, b_{N-1}$, represent bits of a training sequence; and
5 wherein $c_2, c_3, c_4, \dots, c_{N-1}$, represent filter coefficients.

1 27. The estimator of claim 26, wherein a relationship between the bits of the
2 training sequence and the filter coefficients is defined by the following equation:

3

$$c_k = (b_{k-1} - 2b_k + b_{k+1})$$

1 28. The estimator of claim 24, wherein the data model matrix is modeled by the
2 following equation:

3

$$B = \begin{bmatrix} d_2 & 1 \\ d_3 & 1 \\ d_4 & 1 \\ \vdots & \vdots \\ d_{N-1} & 1 \end{bmatrix}$$

4 wherein $d_2, d_3, d_4, \dots, d_{N-1}$, represent filter coefficients.

1 29. The estimator of claim 28, wherein a relationship between the bits of the
2 training sequence and the filter coefficients is defined by the following equation:

3 $d_k = (\varepsilon b_{k-1} + (1 - 2\varepsilon)b_k + \varepsilon b_{k+1}),$

4 wherein ε is a parameter indicating an amount of Inter-Symbol Interference present.

1 30. The estimator of claim 24, wherein the estimator is implemented in a
2 BLUETOOTH device.