## Dataset

#### **Dataset**

- Scraped using Tweepy API for the purpose of working on the idea of tracking Mental Health from Social Media.
- Labeled based on expert studies in the mental health domain.
- Contained from 4 features: stress, lonely, anxiety, and normal.
- Found as cleaned dataset on:

https://www.kaggle.com/datasets/arshkandroo/behavioural-tweets, but after contacting "Arsh Kandroo", he sent me the dataset before cleaning.

## Use case

#### Use case

 Classify the input text into its class from the 4 classes we have to know the sentiment of the input.



- Visualize the percentage of each class in the dataset using pie chart
- Visualize the distribution of the classes vs the frequency of them
- Visualize the most important words in each class using Word Cloud library
- Visualize the top countries that have mental health problems
- Visualize the days of the week to show when people suffer from mental health problems.

Percentage of each class



The percentage of each class





The most important words in the lonely class



The most important words in the normal class



The most important words in the anxiety class

#### stress sleep disinformation father likely end little mother feeling awake amp wasnt didnt right sick bad

The most important words in the stress class

The top countries that have mental health problems



Days of the week that people suffer from mental health problems



# Data Preprocessing

### **Data Preprocessing**



## Data Modelling

## **Data Modeling**



miro 18

## Results

## Results (Machine Learning)

#### **Logistic Regression**

Accuracy: 74.98%

Classification report:

|                                       | precision                    | recall                       | f1-score                     | support                      |
|---------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| anxiety<br>lonely<br>normal<br>stress | 0.72<br>0.46<br>0.77<br>0.93 | 0.72<br>0.34<br>0.90<br>0.88 | 0.72<br>0.39<br>0.83<br>0.91 | 3260<br>1495<br>3045<br>1801 |
| accuracy<br>macro avg<br>weighted avg | 0.72<br>0.74                 | 0.71<br>0.75                 | 0.75<br>0.71<br>0.74         | 9601<br>9601<br>9601         |

#### **Linear SVC**

Accuracy: 73.81%

Classification report:

|                                       | precision                    | recall                       | f1-score                     | support                      |
|---------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| anxiety<br>lonely<br>normal<br>stress | 0.69<br>0.44<br>0.81<br>0.91 | 0.71<br>0.37<br>0.86<br>0.90 | 0.70<br>0.40<br>0.83<br>0.91 | 3260<br>1495<br>3045<br>1801 |
| accuracy<br>macro avg<br>weighted avg | 0.71<br>0.73                 | 0.71<br>0.74                 | 0.74<br>0.71<br>0.73         | 9601<br>9601<br>9601         |

#### **Random Forest**

Accuracy: 76.29%

Classification report:

|                                       | precision                    | recall                       | f1-score                     | support                      |
|---------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| anxiety<br>lonely<br>normal<br>stress | 0.70<br>0.43<br>0.87<br>0.94 | 0.74<br>0.37<br>0.90<br>0.91 | 0.72<br>0.40<br>0.88<br>0.93 | 3260<br>1495<br>3045<br>1801 |
| accuracy<br>macro avg<br>weighted avg | 0.74<br>0.76                 | 0.73<br>0.76                 | 0.76<br>0.73<br>0.76         | 9601<br>9601<br>9601         |



## Results (ML - tuning)

In the logistic regression: tune the C value, and the solver using Gridsearch method.

Accuracy: 74.89%

Classification report:

|                       | precision    | recall       | f1-score     | support      |  |
|-----------------------|--------------|--------------|--------------|--------------|--|
| anxiety<br>lonely     | 0.72<br>0.46 | 0.72<br>0.34 | 0.72<br>0.39 | 3260<br>1495 |  |
| normal<br>stress      | 0.77<br>0.93 | 0.90<br>0.88 | 0.83<br>0.90 | 3045<br>1801 |  |
| accuracy<br>macro avg | 0.72         | 0.71         | 0.75<br>0.71 | 9601<br>9601 |  |
| weighted avg          | 0.74         | 0.75         | 0.71         | 9601         |  |

In the linear SVC: tune the C value using Gridsearch method.

Accuracy: 75.29%

Classification report:

|                                       | precision            | recall               | f1-score             | support              |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|
| anxiety<br>lonely<br>normal           | 0.72<br>0.51<br>0.76 | 0.75<br>0.29<br>0.90 | 0.74<br>0.37<br>0.82 | 3260<br>1495<br>3045 |
| stress                                | 0.93                 | 0.88                 | 0.91                 | 1801                 |
| accuracy<br>macro avg<br>weighted avg | 0.73<br>0.74         | 0.71<br>0.75         | 0.75<br>0.71<br>0.74 | 9601<br>9601<br>9601 |

## Results (Deep Learning)

- First trial using: 1 LSTM layer with training the model on batch size = 64
   Accuracy: 76.1%, Loss: 0.686
- Second trial using: 2 LSTM layers with training the model on batch size = 64
   Accuracy: 74.4%, Loss: 1.150
- Third trial using: 1 GRU layer with training the model on batch size = 64 Accuracy: 74.9%, Loss: 1.124
- Fourth trial using: 2 GRU layers with training the model on batch size = 64 Accuracy: 73.5%, Loss: 1.314
- Fifth trial using: 1 GRU layer, 1 LSTM layer with training the model on batch size = 64 Accuracy: 74.4%, Loss: 1.331



# Findings

## **Findings**

- Data exploration helps in understanding the dataset more.
- Cleaning the text helps in reducing the dimensionality of the features, and helps in getting better performance with the machine learning models and the deep learning models.
- Tuning the hyperparameters helps the models to achieve better results.
- In my case training the model on batch size = 64 gave better results than training the model on batch size = 128

# Thank you

