Direccionamiento: Libro de Stallings

- Inmediato
- Directo
- Indirecto
- Registro
- Indirecto por registro
- Con desplazamiento
- Pila

Notación:

A = Contenido de un campo de dirección en la instrucción

 ${\bf R}={\bf Contenido}$ de un campo de dirección en la instrucción que referencia un registro.

EA = Dirección Real (efectiva) de la posición que contiene el operando que se referencia

(X) = Contenido de la posición X

Aclaraciones:

- 1) Todas las computadoras ofrecen más de un modo de los anteriores de direccionamiento. La unidad de control define cual emplea en cada instrucción.
- 2) Dirección efectiva (EA, effective address): En un sistema sin memoria virtual, la dirección efectiva será o una dirección de memoria principal o un registro. En un sistema con memoria virtual, la dirección efectiva es una dirección virtual o un registro. La correspondencia real con una dirección física dependerá del mecanismo de paginación y no esta visible al programador.

Tabla: Indica el cálculo de la dirección realizado para cada modo de direccionamiento.

Tabla 10.1. Modos de direccionamiento básicos

Modo	Algoritmo	Principal ventaja	Principal desventaja
Inmediato Directo	Operando = A EA = A	No referencia a memoria Es sencillo	Operando de magnitud limitada Espacio de direcciones limitado
Indirecto	EA = (A)	Espacio de direcciones grande	Referencias a memoria múltiples
Registro Indirecto con	EA = R	No referencia a memoria	Número limitado de registros
registro Con despla-	EA = (R)	Espacio de direcciones grande	Referencia extra a memoria
zamiento	EA = A + (R)	Flexibilidad	Complejidad
Pila	EA = cabecera de la pila	No referencia a memoria	Aplicabilidad limitada

Direccionamiento inmediato:

- El operando está en realidad presente en la propia instrucción.
- Operando = A
- Este modo puede utilizarse para definir y utilizar constantes, o para fijar valores iniciales de variables. Normalmente el número se almacena en complemento a dos. El bit de la izquierda es el signo.
- Ventaja: Una vez capturada la instrucción no se requiere una referencia a memoria para obtener el operando, ahorrándose 1 ciclo de memoria o de cache en el ciclo de instrucción.
- Desventaja: El tamaño del numero esta restringido a la longitud del campo de direcciones, que en la mayoría de los repertorios de instrucciones, es pequeño comparado con la longitud de palabra.

Direccionamiento directo:

El campo de direcciones contiene la dirección efectiva del operando.

EA = A

Solo requiere una referencia a memoria y no necesita ningún cálculo especial.

Fue común en las primeras generaciones de computadoras y se encuentra aun en diversos sistemas.

Limitación: Proporciona un espacio de direcciones restringido.

Direccionamiento indirecto

El campo de direcciones referencia la dirección de una palabra de memoria que contenga la dirección completa del operando.

 $\mathbf{E}\mathbf{A} = (\mathbf{A})$

Ventaja: para una longitud de palabra de N bits se dispone ahora de un espacio de direcciones de 2 ^N.

Desventaja: La ejecución de la instrucción requiere dos referencias a memoria para captar el operando: una para captar su dirección y otra para obtener su valor.

Dir dato es la dirección en memoria del dato (una referencia a memoria). Ésta es a su vez una referencia a otro lado de la memoria que tiene el dato.

Direccionamiento de registros

Este direccionamiento es similar al directo. La única diferencia es que el campo de direcciones referencia un registro, en lugar de una dirección de memoria principal:

EA = R

Normalmente un campo de direcciones que referencia a registros consta de 3 o 4 bits, de manera que pueden reverenciarse un total de 8 o 16 registros de uso general.

Ventajas: 1) Solo es necesario un campo pequeño de direcciones en la instrucción

2) no se requieren referencias a memoria.

El tiempo de acceso a un registro interno a la CPU es mucho menor que para la memoria principal.

Desventaja: Es que el espacio de direcciones es muy limitado.

Direccionamiento indirecto con registro

Es análogo al direccionamiento indirecto. La diferencia esta en si el campo de direcciones hace referencia a una posición de memoria o a un registro.

Para direccionamiento indirecto con registro tenemos

$$EA = (R)$$

Ventajas: Idem direccionamiento indirecto.

Emplea una referencia menos a memoria que el direccionamiento indirecto.

Direccionamiento con desplazamiento

Un modo muy potente de almacenamiento combina direccionamiento directo e indirecto con registro.

$$EA = A + (R)$$

Requiere que las instrucciones tengan dos campos de direcciones, al menos uno de ellos explícito. El valor contenido en uno de los campos de direcciones (valor = A) se utiliza directamente, el otro campo de direcciones, o una referencia implícita definida por el código de operación, se refiere a un registro cuyo contenido se suma a A para generar la dirección efectiva.

Tres de sus usos más comunes son:

- a) **Direccionamiento relativo**: La dirección de instrucción actual se suma al campo de direcciones para producir el valor EA. El campo de direcciones es un número con complemento a 2. La dirección efectiva es un desplazamiento relativo a la dirección de la instrucción.
- b) **Direccionamiento con registro base**: El registro referenciado contiene una dirección de memoria, y el campo de dirección contiene un desplazamiento (normalmente una representación entera sin signo) desde dicha dirección. La referencia a registro puede ser explicita o implícita.
- c) **Indexado**: el campo de dirección referencia una dirección de memoria principal, y el registro referenciado contiene un desplazamiento positivo desde esa dirección. Es lo opuesto a direccionamiento con registro base.

Direccionamiento de Pila

- Una pila es una matriz lineal de posiciones.
- Es un bloque de posiciones reservado.
- La pila tiene asociado un puntero que es el tope de la pila.
- En este caso las instrucciones no incluyen una referencia a memoria sino que operan con la cabecera de la pila.
- Las pilas son comunes con microprocesadores.

Figura 10.1. Modos de direccionamiento.