# Gibbs sampling for Bayesian Networks

#### Modo de funcionamento

O presente projeto em Python implementa o algoritmo de Gibbs sampling para redes Bayesianas utilizando um sistema de comandos da seguinte forma:

```
python3.6 main.py -t TARGET -u UNIVERSE -b BIF FILE [-r] [-c] [-i]
```

- -t: Define qual a variável sobre o qual queremos inferir uma probabilidade.
- -u: Define o "universo" conhecido.
- -b: Qual a rede bayesiana a carregar (redes enviadas com o projeto encontram-se explicadas na próxima secção)
- -r: Quantas vezes queremos inferir a probabilidade. Valor default: 1
- -c: Qual o fator que permite detetar convergência, isto é, o programa deteta convergência quando após 5000 iterações, a variação do valor da probabilidade é menor que -c. Valor default: 0.001
- -i: Número de iterações máximas. Valor default: 25000

#### Exemplos de comandos:

1. Pr( JohnCalls=True | Burglary=True, Earthquake=True)

```
python3.7 main.py -t JohnCalls=True -u Burglary=True Earthquake=True Alarm=True -r 5 -b earthquake.bif
```

2. Pr(JohnCalls=True | Burglary=False, Earthquake=True)

python3.7 main.py -t JohnCalls=True -u Burglary=False Earthquake=True -r 5 -b
earthquake.bif

3. Pr(MaryCalls=True | Burglary=False, Earthquake=False)

```
python3.7 main.py -t MaryCalls=True -u Burglary=False Earthquake=False -r 5 - c 0.001 -i 25000 -r 3 -b earthquake.bif
```

4. Pr(Cancer=positive | Pollution=high, Smoker=True)

```
python3.7 main.py -t Xray=positive -u Pollution=high Smoker=True -r 5 -c 0.001 -i 25000 -b cancer.bif
```

5. Pr(Cancer=True | Pollution=high, Xray=positive)

```
python3.7 main.py -t Cancer=True -u Pollution=high Xray=positive -r 10 -c 0.001 -i 25000 -b cancer.bif
```

6.  $Pr(T=car \mid A=young, S=F)$ 

```
python3.7 main.py -t T=car -u A=young S=F -r 10 -c 0.001 -i 25000 -b survey.bif
```

7. Pr(T=train | A=young)

```
python3.7 main.py -t T=train -u A=young -r 10 -c 0.001 -i 25000 -b survey.bif
```

8. Pr(Accident=None | RiskAversion=Cautious, Age=Adult)

## ATENÇÃO: Os nomes e valores das variáveis são case sensitive!!!

## Redes bayesians testadas

Durante o desenvolvimento foram utilizadas 4 redes bayesianas: earthquake, cancer, survey e asia.

## Earthquake



Nesta rede, todos os campos têm valores True ou False.

#### Cancer



Nesta rede, a dificuldade aumenta pois existem nós que não têm valores True ou False, como é o caso da variável Pollution (high ou low) e Xray (positive ou negative).

Dito isto, agora passou a ser necessário alguma forma de *encoding* de variáveis categóricas.

#### Survey



A -> "Idade": (young, adult ou old)

S -> "Sexo": (M ou F)

E -> "Educação": (high ou uni)

O -> (desconhecido): (*emp* ou *self*)

R -> "Salário": (high ou low)

T -> "Transporte": (*train*, *car* ou *other*)

Agora, para além de termos vários valores categóricos diferentes na rede, as variáveis deixam de ser binárias, passado a poder assumir mais que dois valores.

#### **Insurance**



Desta vez, observamos uma rede muito mais complexa com um elevado número de dependências.

# Alguns resultados obtidos

# Cancer





# Earthquake







# Survey



# Insurance



Como se pode observar, em todos os casos a probabilidade obtida está sempre num intervalo de cerca de 1%, podendo assim ser assumido que o algoritmo está a convergir.