

Изменение пластового давления в скважинах

Зависимость полудлины трещины от объема закачки

Отчет по модулю: phase_permeability

Модель успешно оптимизирована.

Параметры относительных фазовых проницаемостей:

- Остаточная водонасыщенность (Swo): 0.4200
- Водонасыщенность при остаточной нефтенасыщенности (Swk): 0.6770
- Конечное значение относительной водопронецаемости (krwk): 0.1350
- Конечное значение относительной нефтепронецаемости (krok): 1.0000
- Показатель степени для воды (nw): 1.0000
- Показатель степени для нефти (no): 0.1000

Отчет по модулю: regression_model

Результаты итеративного подбора регрессионной моделью:

- Среднеквадратичная ошибка (RMSE): 0.305487
- Достигнута требуемая точность (<0.001): Нет

Адаптация на историю добычи не выполнена.

Оптимальные параметры:

- Srw: 0.236075

- krw_max: 0.065264

- Sro: 0.186455

kro_max: 0.501617

Отчет по модулю: pressure calculation

Результаты расчета пластовых давлений с учетом граничных условий:

Общая статистика:

- Количество скважин: 10
- Среднее начальное давление: 223.51 атм
- Среднее рассчитанное давление: 198.61 атм
- Среднее скорректированное давление: 211.29 атм

- Количество скважин с примененными граничными условиями: 8

Пример результатов (первые 5 скважин):

	Well Initia	al_Pressure Ca	alculated_Pressure	Difference	Adjusted_Pressure	Boundary_Applied	Diffusivity_Pr
(0 Well_1	246.764970	181.515045	65.249925	231.764970	True	248.3497
-	1 Well_2	217.033645	199.192069	17.841577	202.033645	True	248.3497
2	2 Well_3	219.593318	191.116602	28.476715	204.593318	True	248.3497
3	3 Well_4	206.492900	201.170848	5.322052	201.170848	False	248.3497
4	4 Well_5	209.046486	180.024181	29.022306	194.046486	True	248.3497

Отчет по модулю: pressure_recovery

Результаты расчета времени восстановления давления:

Общая статистика:

- Количество скважин: 10
- Минимальное время восстановления: 0.00 сут.
- Максимальное время восстановления: 0.00 сут.
- Среднее время восстановления: 0.00 сут.

Пример результатов (первые 5 скважин):

	Well Pei	rmeability P	orosity Vis	cosity Skin_	_Factor Recov	ery_Time
0	Well_1	35.479772	0.214186	3.198007	4.908257	0.000100
1	Well_2	38.503548	0.110354	8.411463	3.012862	0.000092
2	Well_3	87.001270	0.207884	7.571355	4.125931	0.000090
3	Well_4	83.666701	0.196733	4.998922	3.694608	0.000069
4	Well 5	57.559228	0.236032	2.994633	-1.818095	NaN

Интерпретация результатов:

- Время восстановления давления зависит от проницаемости, пористости, вязкости флюида и скин-фа
- Скважины с высоким скин-фактором требуют больше времени для восстановления давления.
- Скважины с низкой проницаемостью также требуют больше времени для восстановления давления.

Отчет по модулю: skin_curve

Результаты подбора кривой увеличения SKIN после ГРП:

Оптимальные параметры модели:

- Начальный скин-фактор: -2.9295

- Максимальный скин-фактор: 0.0773

- Скорость роста скин-фактора: 0.009715

Прогноз изменения скин-фактора:

- Через 0 дней: -2.9295

- Через 30 дней: -2.1693

- Через 90 дней: -1.1770

- Через 180 дней: -0.4459

- Через 365 дней: -0.0094

- Через 730 дней: 0.0748

Отчет по модулю: filter reduction

Результаты подбора коэффициента уменьшения работающей части фильтра:

Оптимальные параметры модели:

- Начальный коэффициент: 1.0081

- Минимальный коэффициент: 0.5343

- Скорость уменьшения: 0.003707

Прогноз изменения коэффициента работающей части фильтра:

- Через 0 дней: 1.0081

- Через 90 дней: 0.8737

- Через 180 дней: 0.7774

- Через 365 дней: 0.6567

- Через 730 дней: 0.5659

- Через 1095 дней: 0.5424

- Через 1825 дней: 0.5348

Физическая интерпретация:

- Начальное значение коэффициента близко к 1.0, что соответствует полностью работающему фильтр
- Минимальное значение 0.53 означает, что со временем эффективная длина фильтра уменьшается до 53.4% от начальной длины.

- При текущей скорости уменьшения через 1 год коэффициент составит 0.66, а через 5 лет - 0.53.

Отчет по модулю: fracture_length

Результаты подбора коэффициентов для расчета полудлин трещин:

Оптимальные коэффициенты модели:

- Коэффициент a: 3.8460 ± 0.6376

- Коэффициент b: 0.3181 ± 0.0269

Формула для расчета полудлины трещины:

 $L = 3.8460 * V^0.3181$

где L - полудлина трещины [м], V - объем закачки воды [м³]

Прогноз полудлин трещин для различных объемов закачки:

- Объем 100 м³: полудлина 16.6 м

- Объем 200 м³: полудлина 20.7 м

- Объем 500 м³: полудлина 27.8 м

- Объем 1000 м³: полудлина 34.6 м

- Объем 2000 м³: полудлина 43.2 м

- Объем 5000 м³: полудлина 57.8 м

Примечание:

Трещина авто ГРП имеет иную физику формирования -- описанная методика может использоваться для приблизительного подсчёта эффекта, но будет иметь отклонения для низкодебитных скважин.

Отчет по модулю: production_wells

Результаты расчета добывающих скважин:

Общая статистика по скважинам:

- Количество скважин: 10

- Средний начальный дебит: 59.34 м³/сут

- Средний текущий дебит: 54.12 м³/сут

- Средняя обводненность: 23.43 %

- Среднее пластовое давление: 214.88 атм - Среднее забойное давление: 174.10 атм

- Средний скин-фактор: -1.31

- Средняя эффективность фильтра: 0.80

Пример результатов расчета (первые 5 скважин):

Well Initial_Flow_Rate Current_Flow_Rate Water_Cut Reservoir_Pressure Bottomhole_Pressure Skin_Fact 0 Well 1 53.420587 48.211344 15.864964 215.113686 185.664593 -2.128363 1 Well 2 32.576067 21.629766 93.926346 217.941686 177.767483 0.026654 2 Well 3 42.078725 55.778754 13.756656 212.404225 165.993099 0.660601 3 Well 4 25.132069 53.954427 23.371748 220.725890 168.860612 -2.455548 4 Well 5 87.835183 60.852616 42.917258 209.009110 169.776529 -0.269027

Прогноз добычи на 365 дней:

Средний дебит жидкости: 36.37 м³/сут
Средний дебит нефти: 25.95 м³/сут
Средняя обводненность: 27.08 %

- Накопленная добыча жидкости: 163860 м³ - Накопленная добыча нефти: 121256 м³

Выводы и рекомендации:

- 1. Результаты расчета показывают текущее состояние добывающих скважин.
- 2. Для оптимизации добычи рекомендуется обратить внимание на скважины с высоким скин-фактором
- 3. Скважины с низкой эффективностью фильтра могут требовать проведения ремонтных работ.
- 4. Прогнозные данные позволяют оценить динамику изменения добычи и обводненности.
