Отчёт по практической работе \mathbb{N}^2 «Проблема собственных значений матрицы»

Студенты: Московкин А.Н. (ИСУ 472264)

Бабич А.П. (ИСУ 412882)

Группа: Ј3112

Преподаватель: Иванов И.И.

Введение

В работе исследуется сингулярное разложение (SVD) матриц цветовых каналов изображения. Цели:

- Реализация степенного метода и метода Якоби для SVD
- Анализ влияния числа сингулярных чисел на качество восстановления
- Сравнение вычислительной эффективности методов

Большинство теории и выводов и так есть в блокноте, это скорее просто сбор картинов

1. Преобразование изображения

Исходное изображение 1280×960 пикселей (рис. 1) разложено на каналы R, G, B с использованием PIL:

Рис. 1. Исходное изображение

Рис. 2. Исходное изображение в RGB

2. Степенной метод

Результаты для канала R:

Итерации	Норма ошибки
10	186
50	186
100	186

Таблица 1. Нормы $\|R-R_{\rm rec}\|_F$ Это дает нам вывод, что степенной метод даже при малом количетсве итераций дает хороший результат

3. Анализ сингулярных чисел

Рис. 3. Распределение сингулярных чисел (для всех каналов)

4. Восстановленная картинка

Рис. 4. Восстановленная картинка

5. Метод Якоби и сравнение с остальными

Метод	Средняя ошибка (10 чисел)	Норма разности (10 чисел)
Степенной (100 итер)	3.61×10^{-3}	7.04×10^{-2}
Якоби (tol=1e-6)	6.46	1.42×10^2

Таблица 2. Сравнение методов для первых 10 сингулярных чисел

Рис. 5. Распределение интенсивности пикселей

6. Гистограммы цветов

Рис. 6. Распределение интенсивности пикселей

Приложение

Полный код доступен по ссылке: https://github.com/Sanchell1o/Numerical-methods-of-analysisblob/main/lab_2/notebooks/lab-2.ipynb