Лабораторная работа 1.3

Изучение колебаний на примере физического маятника

Зотов Алексей 496 гр.

4 апреля 2016 г.

Цель работы: исследовать физический и математический маятники как колебательные системы, измерить зависимость периода колебаний физического маятника от его момента инерции.

В работе используются: физический маятник (однородный стальной стержень), опорная призма, математический маятник, счётчик числа колебаний, линейка, секундомер.

Рис. 1: физический маятник.

Экспериментальная установка. В данной работе в качестве физического маятника используется однородный стальной стержень длиной l На стержне закрепляется опорная призма, острое ребро которой является осью качания маятника. Призму можно перемещать вдоль стержня, меняя расстояние a от точки опоры (точки подвеса) маятника до его центра масс. Используя теорему Гюйгенса-Штейнера и считая стержень тонким (его радиус много меньше длины), вычислим его момент инерции:

$$I = \frac{ml^2}{12} + ma^2 \tag{1}$$

Ход работы

- 1. Проведем n=6 экспериментов, в каждом измерим время $N_T=20$ полных колебаний маятников.
 - (а) <u>Физический маятник.</u> Среднее значение периода $T_{avg} = t_{avg}/20 = 1.578$ [с]. Среднее значение $\sigma = \sqrt{\frac{\Sigma(t_i t_{avg})^2}{n-1}} \approx 0.102$

Таблица 1: Время 20-ти полных колебаний физического маятника

i	1	2	3	4	5	6	
$t_{20},(c)$	31.43	31.72	31.56	31.62	31.49	31.53	

Относительная погрешность измерения периода: $\varepsilon = \frac{\sigma}{N*T_{avg}} \approx 0.0032$

(b) Математический маятник.

Таблица 2: Время 20-ти полных колебаний математического маятника

i 1		2	3	4	5	6	
$t_{20}, [c]$	31.56	31.34	31.6	31.62	31.63	31.54	

Среднее значение $t_{avg} = 31.55$ [c]. Среднее значение периода $T_{avg} = t_{avg}/20 = 1.577$ [c].

Среднеквадратичное отклонение измерения: $\sigma = \sqrt{\frac{\sum (t_i - t_{avg})^2}{n-1}} \approx 0.108$ Относительная погрешность периода: $\varepsilon = \frac{\sigma}{N*T_{avg}} \approx 0.0034$

2. Возбудим малые колебания физического маятника, отклонив на угол $A_0=10^o$. Измерим время t затухания в ≈ 1.3 раза по достижении маятником значения амплитуды $A_1 \approx 7.5^{\circ}$. $t \approx 5$ мин 30 с = 330 (с).

Количество колебаний N=209.

Добротность $Q=\frac{\pi}{\gamma_e T}$, где $\gamma_e=1/\tau_e$ - величина обратная времени убавыния амплитуды A в e раз. Ее вычислим из закона убывания амплитуды: $\gamma_e=\gamma_{1.3}\ln 1.3$, тогда :

$$Q = \frac{\pi \tau_{1.3}}{T \ln(1.3)} \approx 2504.2 \tag{2}$$

3. Найдем зависимость периода колебаний T от расстояния a между точкой опоры и центром масс.

Таблица 3: Время 20-ти полных колебаний и периода физического маятника

a, [cm]		8.0	12.0		20.0			32.0			44.0	48.0
$t_{20}, [c]$	53.87	43.19	36.68	33.28	31.69	30.9	30.57	30.68	31.13	31.31	31.85	32.69
T,[c]	2.693	2.159	1.834	1.664	1.585	1.545	1.528	1.534	1.556	1.565	1.593	1.634

Таблица 4: Зависимость $[T^2a](a^2)$

$a^2, [m^2]$	0.002	0.006	0.014	0.026	0.04	0.058	0.078	0.102	0.13	0.16	0.194	0.23
$T^2a, [c^2m]$	0.29	0.373	0.404	0.443	0.502	0.573	0.654	0.753	0.872	0.98	1.116	1.282

Рис. 2: график $[T^2a](a^2)$.

Аппроксимирующая по методу наименьших квадратов прямая y=kx+b , где k=4.11, b=0.33.

Подставляя в формулу для рассчета периода колебания маятника формулу момента инерции тонкого стержня получим:

$$T = 2\pi \sqrt{\frac{a^2 + \frac{l^2}{12}}{ag}} \tag{3}$$

отсюда:

$$T^2 a = \frac{4\pi^2}{g} a^2 + \frac{\pi^2 l^2}{3g} \tag{4}$$

$$\Longrightarrow \frac{g}{4\pi^2} = \frac{1}{k} \approx 0.243 \implies g \approx 9.6 \left[\frac{m}{c^2}\right]$$

$$l = \sqrt{\frac{12b}{k}} \approx 0.98 [m]$$

Рассчет погрешности:

$$\sigma_k \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0.0626$$
 (5)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \approx 0.0046$$
 (6)

Учитывая $g=4\pi^2/k$ и $l=\sqrt{\frac{12b}{k}}$ получим формулы для рассчета погрешностей :

$$\sigma_g = 4\pi^2 \frac{\sigma_k}{k^2} \approx 0.15 \tag{7}$$

$$\sigma_l = 0.5 * \sqrt{\frac{k}{12b}} \frac{12k\sigma_b + 12b\sigma_k}{k^2} \approx 0.014$$
 (8)

Табличное значение ускорения свободного падения $g_{tab} = 9.81 [m/c^2]$, длина маятника l = 1.0 [m]. С учетом погрешности полученные значения близки к табличным.

4. Приведенная длина маятника.

Длину математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, называют *приведенной длиной*:

$$l_{pr} = \frac{I}{ma} = a + \frac{l^2}{12a} \tag{9}$$

Зафиксируем точку опоры маятника так, что расстояние до центра масс до этой точки $a_1=21.0~\mathrm{[cm]}$, $T_{a_1}\approx 1.58~\mathrm{[c]}$, $l_{pr}=21+\frac{(100)^2}{21*12)}\approx 60.7\mathrm{[c]}$

Найдем длину математического маятника с таким периодом: $l_{mat}\approx 61.0~{\rm [c]}$, разность ожидаемой и полученной величин $\Delta l=|l_{mat}-l_{pr}|=0.3$ укладывается в погрешность измерений.

5. Обратимость точки подвеса.

Теперь аналогично зафиксируем $a_2 = l_{pr} - a_1 = 40.0$ [cm] , $T_{a_2} \approx 1.57$ [c] $\Longrightarrow \Delta T = |T_{a_2} - T_{a_1}| = 0.01$ [c]. Заметим, что в проведенном эксперименте $a_1 \neq a_2$, а значит, с учетом погрешности измерений, можно говорить о подтверждении закона обратимости точки подвеса и центра качания физического маятника.