

Interrogación 1

23 de Septiembre de 2022 Profesores: Nicolás Alvarado - Sebastián Bugedo - Fernando Suárez

Instrucciones

- La duración de la interrogación es de 2 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Relaciones de equivalencia

Sea \sim es una relación de equivalencia sobre un conjunto A, demuestre que A/\sim es una partición de A.

Solución

Debemos demostrar que $A/\sim = \{[x] \mid x \in A\}$ es una partición de A. Para esto demostraremos las tres propiedades que debe cumplir según la definición de partición:

- 1. $\forall X \in A/\sim$, $X \neq \varnothing$: En clases vimos que toda relación de equivalencia es refleja y por ende que $\forall x \in A, x \in [x]$. Como todos los elementos de A/\sim son clases de equivalencia, es claro que todos son no vacíos.
- 2. $\bigcup A/\sim = A$: demostramos subconjunto hacia ambos lados.
 - $\bigcup A/\sim \subseteq A$: dado un elemento $x \in \bigcup A/\sim$, por definición de unión generalizada y de conjunto cuociente, tenemos que $x \in [y]$ para algún $y \in A$. Las clases de equivalencia de una relación sólo tienen elementos del conjunto donde están definidas, por lo que $x \in A$.
 - $A \subseteq \bigcup A/\sim$: dado un elemento $x \in A$, por teorema anterior sabemos que $x \in [x]$. Dado que [x] es una clase de equivalencia, tenemos que $[x] \in A/\sim$, y por lo tanto $x \in \bigcup A/\sim$.
- 3. $\forall X, Y \in A/\sim$, si $X \neq Y$ entonces $X \cap Y = \emptyset$: Todos los conjuntos en A/\sim son clases de equivalencia, y por el teorema visto en clases, sabemos que dos clases de equivalencia distintas deben tener intersección vacía.

Pauta (6 pts.)

- 1.0 pts por demostrar 1).
- 2.0 pts por cada dirección de 2).
- 1.0 pts por 3).

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 2 - Inducción

Dada una fórmula φ en lógica en lógica proposicional. La lista de sub-fórmulas de φ se define como la lista de strings (posiblemente repetidos) ψ tal que: ψ es una fórmula y ψ es un substring de φ .

Por ejemplo, la siguiente es la lista de subfórmulas de $\neg \neg p \rightarrow (\neg p \land q)$:

$$\neg\neg p \to (\neg p \land q)
\neg\neg p
\neg p
p
\neg p \land q
\neg p
p
p
q$$

Definimos el árbol de parseo de una fórmula φ como un grafo tal que en sus nodos se ubican las subfórmulas de φ , empezando por φ en la raíz hasta llegar a las proposiciones atómicas en las hojas del árbol.

Por ejemplo, el siguiente es el árbol de parseo de $\neg \neg p \rightarrow (\neg p \land q)$

Finalmente, definimos la profundidad de φ como la máxima distancia entre la raíz del árbol y sus hojas. Es decir, la máxima cantidad de aristas para llegar desde la fórmula φ hasta la proposición más lejana. Por ejemplo, la profundidad de $\neg\neg p \to (\neg p \land q)$ es 3.

- a) (1 pts) Defina la función inductiva $NSF(\varphi)$ que retorna la cantidad de elementos en la lista de subfórmulas de φ .
- b) (1 pts) Defina la función inductiva PROF(φ) que retorna la profundidad de φ .
- c) (4 pts) Demuestre que para todo $\varphi \in L(P)$ se cumple que

$$NSF(\varphi) \le 2^{PROF(\varphi)+1} - 1$$

Solución

- a) Definimos el operador NSF(): $L(P) \to \mathbb{N}$ inductivamente como:
 - 1. NSF(p) = 1, con $p \in P$.
 - 2. $NSF(\neg \varphi) = NSF(\varphi) + 1$, con $\varphi \in L(P)$.
 - 3. $NSF(\varphi * \psi) = NSF(\varphi) + NSF(\psi) + 1$, con $\varphi, \psi \in L(P)$ y $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.
- b) Definimos el operador PROF() : $L(P) \to \mathbb{N}$ inductivamente como:
 - 1. PROF(p) = 0, con $p \in P$.
 - 2. $PROF(\neg \varphi) = 1 + PROF(\varphi)$, con $\varphi \in L(P)$.
 - $3. \ \operatorname{PROF}(\varphi * \psi) = 1 + \max(\operatorname{PROF}(\varphi), \operatorname{PROF}(\psi)), \ \operatorname{con} \ \varphi, \psi \in L(P) \ \mathbf{y} * \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$
- c) Por inducción estructural sobre $\varphi \in L(P)$:

BI: Si $\varphi = p$ con $p \in P$, tenemos que $NSF(\varphi) = 1 = 2^{0+1} - 1 = 2^{PROF(\varphi)+1} - 1$

HI: Sea $\alpha, \beta \in L(P)$ tales que

$$NSF(\alpha) \le 2^{PROF(\alpha)+1} - 1$$

$$NSF(\beta) \le 2^{PROF(\beta)+1} - 1$$

TI: Mostraremos los pasos inductivos correspondientes a la negación y a los conectivos binarios por separado:

• Si
$$\varphi = \neg \alpha$$
, debemos mostrar que NSF $(\neg \alpha) \le 2^{\text{PROF}(\neg \alpha)+1} - 1$

Por definición de NSF() tenemos

$$\begin{split} \operatorname{NSF}(\neg \alpha) &= 1 + \operatorname{NSF}(\alpha) \\ &\leq 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 \\ &\leq 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 \\ &\leq 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 \\ &\leq 2 \cdot 2^{\operatorname{PROF}(\alpha)+1} - 1 \\ &\leq 2^{(\operatorname{PROF}(\alpha)+1)+1} - 1 \\ &\leq 2^{\operatorname{PROF}(\neg \alpha)+1} - 1 \end{split} \qquad \text{(por definición de PROF())}$$

$$NSF(\alpha * \beta) < 2^{PROF(\alpha * \beta) + 1} - 1$$

Sin pérdida de generalidad, asumiremos que $PROF(\alpha) > PROF(\beta)^1$. Luego,

por definición de NSF() tenemos

$$\begin{split} \operatorname{NSF}(\alpha * \beta) &= 1 + \operatorname{NSF}(\alpha) + \operatorname{NSF}(\beta) \\ &\leq 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 + 2^{\operatorname{PROF}(\beta)+1} - 1 \quad (\text{por hipótesis de inducción}) \\ &\leq 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 + 2^{\operatorname{PROF}(\alpha)+1} - 1 \quad \quad \text{por } \operatorname{PROF}(\alpha) > \operatorname{PROF}(\beta)) \\ &\leq 2 \cdot 2^{\operatorname{PROF}(\alpha)+1} - 1 \\ &\leq 2^{(\operatorname{PROF}(\alpha)+1)+1} - 1 \\ &\leq 2^{(\operatorname{máx}(\operatorname{PROF}(\alpha),\operatorname{PROF}(\beta))+1)+1} - 1 \\ &\leq 2^{\operatorname{PROF}(\alpha * \beta)+1} - 1 \quad \quad (\text{por definición de } \operatorname{PROF}()) \end{split}$$

Pauta (6 pts.)

- a) 0.2 pts por caso base.
 - 0.4 pts por paso inductivo negación.
 - 0.4 pts por paso inductivo conectivos binarios.
- b) 0.2 pts por caso base.
 - 0.4 pts por paso inductivo negación.
 - 0.4 pts por paso inductivo conectivos binarios.
- c) 0.5 pts por caso base.
 - 0.5 pts por hipótesis de inducción.
 - 1.5 pts por paso inductivo negación.
 - 1.5 pts por paso inductivo conectivos binarios.

Puntajes parciales y soluciones alternativas a criterio del corrector.

¹La demostración funciona de igual manera si PROF(β) > PROF(α)

Pregunta 3 - Lógica

a) Considere el conectivo unario ∇ :

p	∇p
0	0
1	0

Demuestre que $\{\rightarrow, \nabla\}$ es funcionalmente completo.

b) Demuestre que el siguiente razonamiento es correcto.

Los gatos que están sucios, nadie los lame.

Los gatos que se lamen a si mismos y no están sucios, son siempre persas.

Hay un gato que se lame a si mismo.

Por lo tanto, hay un gato persa.

Solución

a) En primer lugar, observemos que podemos construir la tabla de verdad de la negación sólo utilizando \neg y ∇ de la siguiente manera:

φ	$\neg \varphi$	$\varphi \to \nabla \varphi$
0	1	1
1	0	0

con $\varphi \in L(P)$. Como sus tablas de verdad son iguales, con esto concluimos que

$$\neg \varphi \equiv \varphi \to \nabla \varphi(*)$$

Ahora demostraremos que $\{\rightarrow, \triangledown\}$ es funcionalmente completo.

Como sabemos que $C = \{\neg, \rightarrow\}$ es funcionalmente completo, demostraremos por inducción estructural que toda fórmula construida usando sólo los conectivos anteriores es lógicamente equivalente a otra fórmula que solo usa \neg y ∇ . Con esto, queda demostrado que $C' = \{\nabla, \rightarrow\}$ es funcionalmente completo.

BI: Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.

HI: Supongamos que $\varphi, \psi \in L(P)$, que sólo usan conectivos en C, son tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$, donde φ', ψ' sólo usan conectivos en C'.

TI: Consideraremos una fórmula θ construida con los pasos inductivos para los operadores en C:

- i) $\theta = (\varphi \to \psi) \stackrel{HI}{\equiv} (\varphi' \to \psi')$, y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.
- ii) $\theta = (\neg \varphi) \stackrel{HI}{\equiv} (\neg \varphi') \stackrel{*}{\equiv} (\varphi' \to \nabla \varphi')$, y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

Por inducción estructural, concluimos que cualquier fórmula construida utilizando los conectivos de C es equivalente a otra que sólo utiliza conectivos de C', y por ende, C' es funcionalmente completo.

b) Definimos primero los siguientes predicados:

$$S(x)$$
: x está sucio. $P(x)$: x es persa. $L(x,y)$: y lame a x.

Podemos modelar el problema de la siguiente forma:

$$\frac{\forall x(S(x) \to \forall y(\neg(L(x,y))) \qquad (\varphi_1)}{\forall x((L(x,x) \land \neg S(x)) \to P(x)) \qquad (\varphi_2)} \\
\frac{\exists xL(x,x) \qquad (\varphi_3)}{\exists xP(x) \quad (\psi)}$$

Podemos reescribir las fórmulas como un conjunto de cláusulas aplicando la regla de implicancia y De Morgan de la siguiente manera:

$$\forall x \forall y (\neg S(x) \lor \neg L(x,y)) \qquad (\varphi_1)$$

$$\forall x (\neg L(x,x) \lor S(x) \lor P(x)) \qquad (\varphi_2)$$

$$\exists x L(x,x) \qquad (\varphi_3)$$

$$\exists x P(x) \quad (\psi)$$

Queremos demostrar entonces que $\{\varphi_1, \varphi_2, \varphi_3\} \models \psi$. Lo haremos demostrando que el conjunto $\Sigma = \{\varphi_1, \varphi_2, \varphi_3, \neg \psi\}$ es inconsistente usando resolución.

(1)	$\exists x L(x,x)$	$\varphi_3 \in \Sigma$
(2)	L(a,a)	especificación existencial de (1)
(3)	$\forall x(\neg L(x,x) \lor S(x) \lor P(x))$	$\varphi_2 \in \Sigma$
(4)	$\neg L(a, a) \lor S(a) \lor P(a)$	especificación universal de (3)
(5)	$S(a) \vee P(a)$	resolución de (2) y (4)
(6)	$\forall x \forall y (\neg S(x) \lor \neg L(x,y))$	$\varphi_1 \in \Sigma$
(7)	$\neg S(a) \lor \neg L(a,a)$	especificación universal de (6)
(8)	$P(a) \vee \neg L(a, a)$	resolución de (5) y (7)
(9)	P(a)	resolución de (2) y (8)
(10)	$\forall x \neg P(x)$	$\neg \psi \in \Sigma$
(11)	$\neg P(a)$	especificación universal de (10)
(12)		resolución de (9) y (11)

Pauta (6 pts.)

- a) 0.5 pts por caso base.
 - 0.5 pts por hipótesis de inducción.
 - 0.5 pts por paso inductivo conectivo binario.
 - 1.5 pts por paso inductivo negación (incluye equivalencia lógica).
- b) 0.5 pts por plantear predicados.
 - 1.0 pts por plantear conjunto de fórmulas inconsistente.
 - 1.5 por resolución.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 4 - Conjuntos

Sea A un conjunto y $\mathcal{T} \subseteq \mathcal{P}(A)$, decimos que \mathcal{T} es una topología sobre A si cumple lo siguiente:

- \bullet $\varnothing, A \in \mathcal{T}$
- Si $S \subseteq \mathcal{T}$ entonces $\bigcup S \in \mathcal{T}$
- Si $X, Y \in \mathcal{T}$ entonces $X \cap Y \in \mathcal{T}$
- a) (1 pts) De un ejemplo de una topología sobre $A = \mathbb{N}$.
- b) (5 pts) Sea A un conjunto, considere la siguiente colección de conjuntos:

$$\mathcal{T} = \{X \subseteq A \mid X = \emptyset \text{ o } X^c \text{ tiene una cantidad finita de elementos}\}$$

Muestre que \mathcal{T} es una topología sobre A^2 .

Solución

a) Podemos elegir la topología $\mathcal{T} = \{\varnothing, \mathbb{P}, \mathbb{I}, \mathbb{N}\}$, donde \mathbb{P}, \mathbb{I} corresponden al conjunto de los números pares e impares respectivamente.

Notar que también se podían elegir topologías triviales como $\mathcal{P}(A)$ o $\{\varnothing, \mathbb{N}\}$.

- b) Mostraremos que \mathcal{T} cumple las 4 propiedades necesarias para ser topología.
 - i) $\varnothing \in \mathcal{T}$ se cumple de manera trivial por la definición de $\mathcal{T}.$

 $^{^2}$ Puede considerar que A es un conjunto universal sano. Además, considere que la unión de conjuntos finitos resulta en un conjunto finito.

- ii) $A \in \mathcal{T}$: Notemos que A es un conjunto universal sano y por lo tanto $A^c = \emptyset$, como el conjunto vacío no tiene elementos, cumple con tener una cantidad finita de ellos y por ende obtenemos que $A \in \mathcal{T}$.
- iii) Sea $S \subseteq \mathcal{T}$ arbitrario, mostraremos que $\bigcup S \in \mathcal{T}$. Utilizando la notación alternativa $\bigcup S = \bigcup_{X \in S} X$, notemos que

$$\bigcup_{X \in S} X = \{x \mid \exists X \in \mathcal{S} \text{ tal que } x \in X\}$$

Aplicando complemento sobre la definición del conjunto obtenemos

$$\left(\bigcup_{X \in S} X\right)^c = \{x \mid \forall X \in \mathcal{S} \text{ tal que } x \notin X\}$$
$$= \bigcap_{X \in S} X^c$$

Por definición de intersección, cualquier $X' \in S$ arbitrario es tal que:

$$\bigcap_{X \in S} X^c \subseteq X'^c$$

Como $X' \in \mathcal{T}$, X'^c tiene una cantidad finita de elementos. Luego $\bigcap_{X \in S} X^c$ también debe tener una cantidad finita de elementos (ya que es subconjunto de X'^c). Finalmente, como $\bigcap_{X \in S} X^c = \left(\bigcup_{X \in S} X\right)^c$ es finito, concluimos que $\bigcup_{X \in S} X \in \mathcal{T}$.

iv) Sean $X,Y\in\mathcal{T}$ arbitrarios, mostraremos que $X\cap Y\in\mathcal{T}$. Aplicando la ley de De Morgan:

$$(X \cap Y)^c = X^c \cup Y^c$$

Dado que $X,Y \in \mathcal{T}$, se debe tener que X^c e Y^c tienen finitos elementos y por ende $X^c \cup Y^c$ también es finito. Como $(X \cap Y)^c = X^c \cup Y^c$ es finito concluímos que $X \cap Y \in \mathcal{T}$.

Pauta (6 pts.)

- a) 1 pts. por dar ejemplo de topología en \mathbb{N} .
- b) 0.5 pto por i)
 - 1.0 pto por ii)
 - 2.0 pto por iii)
 - 1.5 pto por iv)

Puntajes parciales y soluciones alternativas a criterio del corrector.