

Inverse Reinforcement Learning Applied to Guidance and Control of Small Unmanned Aerial Vehicles

Akshay Sarvesh, Kishan P. Badrinath, Vinicius G. Goecks ECEN 689-602, Dr. Dileep Kalathil December 5, 2018

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Why Previous Approaches Fail
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Introduction

Goal:

 Train a policy initially based on human demonstration which is able to match or surpass human performance.

Applications:

- Robotics applications where machines are currently being teleoperated or entirely controlled by humans.
- UAV Landing task:
 - Continuous states and actions
 - Unknown dynamics
 - Safety is critical

Introduction

• Example of UAV data:

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Why Previous Approaches Fail
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

IRL and Why IRL?

- Determine the optimal reward function with:
 - Measurements (both inputs and outputs) of expert's behaviour
 - Should adapt even if expert is suboptimal
 - Model of environment
 - Unknown dynamics
- Why?
 - Handcrafted reward functions in RL might not be the best
 - Eg: Driving in Weather Conditions, driving in complex environments, etc
 - Moreover, RL is built upon deriving a policy from a reward function.
 So mimicking expert behaviour is better.

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Why Previous Approaches Fail

- (Abbeel and Ng '04)
 - Non-linear space of reward's exploration
 - Ill-posed problem to find exact reward function
- (Ziebart et al. '08)
 - Takes care of above challenges
 - Unknown dynamics in the MDP
 - Solving MDP in each loop

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Guided Cost Learning (GCL) (Finn et al. ICML '16)

- Handling unknown dynamics Using sample distribution to estimate Z
- Avoid solving MDP in inner loop One step (lazy) update of the policy

Inverted Pendulum (GCL)

Average Return using GCL for different number "n" of expert trajectories

States (continuous, dim = 3): $cos(\theta)$, $sin(\theta)$, θ_{dot} Actions (continuous, dim = 1): torque on joint

Reward(Cost): minimize θ , θ _dot, and

torque

Guided Cost Learning

 Reward model for "n" = 10, evaluated for 1000 iterations (theta_dot = 0, torque = 0)

GCL Reward/Energy Model (normalized)

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Generative Adversarial Imitation Learning (GAIL)

Figure from Goodfellow et al, 2014

Generative Adversarial Imitation Learning (GAIL)

Figure from Ho et al, 2016

GCL ~ GAIL

(Goodfellow et al. '14)

Connection to Generative Adversarial Networks

trajectory $\tau \iff$ sample x
policy $\pi \sim q(\tau) \iff$ generator G
reward r \implies discriminator D

data distribution p

Reward/discriminator optimization:

Inverse RL

GCL:
$$D^*(\tau) = \frac{p(\tau)}{p(\tau) + q(\tau)}$$
 GAIL:
$$D_{\psi}(\tau) = \frac{\frac{1}{Z} \exp(R_{\psi})}{\frac{1}{Z} \exp(R_{\psi}) + q(\tau)}$$

Both:

$$\mathcal{L}_{\text{discriminator}}(\psi) = \mathbb{E}_{\tau \sim p}[-\log D_{\psi}(\tau)] + \mathbb{E}_{\tau \sim q}[-\log(1 - D_{\psi}(\tau))]$$
(Finn*, Christiano*, et al. '16)

Slides taken from Deep RL Bootcamp at UCB

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

States (discrete + continuous, dim = 8):
 position, velocities, leg contact
Actions (continuous, dim = 2):
 main and side engines

Take away 1: GAIL is sample efficient in terms of number of expert trajectories.

Reward: landing position and fuel usage

TRPO Hyperparameters				
Hyperparameter	Expert			
Policy NN Architecture	20, 20			
Batch Size	7000			
Max Path Length	200			
Discount	0.99			

GAIL Hyperparameters					
No. of expert trajectories	- 25	125	1250	2505	10035
Hyperparamet er		123	1230	2303	10000
Policy NN Architecture	20, 20	30, 30	50, 50, 10	100, 100, 20	200, 200, 20
Batch Size	4000	7000	7000	7000	7000
Max Path Length	200	200	200	200	200
Discriminator Train Iters	100	100	100	100	100
Discount	0.99	0.99	0.99	0.99	0.99

Expert Trajectories

GAIL Performance (Initial and after 50 and 300 iterations)

Take away 2: But not sample efficient in terms of environment interactions.

Expert Trajectories

GAIL Performance (after 600 iterations)

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Microsoft AirSim: Unmanned Aerial Vehicles Simulation

States (continuous, dim = 15):
 positions, velocities, visual features

Actions (continuous, dim = 2):
 roll and pitch rates

Reward: distance to landing pad

Data Collection - AirSim GAIL

Human (expert) Collecting Trajectories

Sample of Expert Trajectories

Challenges:

- Training agent in real clock-time, as if it was in hardware.
- Extended training time delays hyperparameter tuning.
- Complex dynamics, observation and action-space.

Additional Challenge:

 Narrow region of convergence, which sometimes can be overlooked if only checks convergence based on reward values.

AirSim GAIL - Untrained

AirSim GAIL - Trained

GAIL Hyperparameters				
Hyperparameter	v1	v2	v3	
Policy NN Architecture	50, 50, 10	32, 32	32, 32	
Batch Size	60	60	1200	
Max Path Length	60	60	60	
Discriminator Train Iters	100	100	100	
Discount	0.99	0.99	0.99	

Final Training Numbers		
Training Time	48.12 hours	
Trajectories Generated	10429	
GAIL Iterations	489 iterations	
Time/GAIL Iterations	~6 minutes	
Time/Trajectory (average)	16.61 sec	
Human Trajectories	100	
Human Time	27.68 min (0.46 hours)	

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Future work: Inverse RL to drive a Autonomous Car a comparison with Behavioural Cloning

Step 1: Behavioural Cloning result

- The 1st 3 layers are convolutional Neural Networks. (Kernel-3)
- The convolutional layers are followed by 3 fully connected layers(100 and 50 neurons).

Future work

Turn GAIL into a mixed-initiative approach (that is, interact with expert in the iterations)

- Introduction
 - Robotics task based on human demonstration
- IRL, and why IRL?
- Previous Approaches and why they fail?
- Guided Cost Learning (GCL)
 - Study case: Inverted Pendulum
- Generative Adversarial Imitation Learning (GAIL)
 - Study case: Lunar Lander Continuous
 - Study case: Unmanned Aerial Vehicle
- Future work
- Conclusions

Conclusions

- Inverse Reinforcement Learning (IRL) is a viable alternative to learn behavior from expert demonstration.
- For **high-dimensional continuous observation and action-space** environments, limit the application of more traditional IRL approaches.
- For these complex cases, we have demonstrated the application of Guided Cost Learning (GCL) and Generative Adversarial Imitation Learning (GAIL) solving:
 - Inverted Pendulum after about 125 iterations,
 - Lunar Lander Continuous after about 160 iterations, and
 - Landing an UAV in a high-fidelity simulated environment and consistently surpassing mean human performance after about 100 iterations.

Backup - GCL with Lunar Lander

Need to adjust hyperparameter

Backup - Guided Policy Search (Levine & Abbeel '14)

$$\min_{p(\tau)} \sum_{t=1}^{T} E_{p(\mathbf{x}_{t}, \mathbf{u}_{t})} [c(\mathbf{x}_{t}, \mathbf{u}_{t}) + \mathbf{u}_{t}^{T} \lambda_{t} + \rho_{t} D_{KL}(p(\mathbf{u}_{t} | \mathbf{x}_{t}) | | \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t}))]$$
s.t.
$$D_{KL}(p(\tau) | | \bar{p}(\tau)) \leq \epsilon$$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t}, \mathbf{u}_{t})} [c(\mathbf{x}_{t}, \mathbf{u}_{t}) + \mathbf{u}_{t}^{T} \lambda_{t} + \rho_{t} D_{KL}(p(\mathbf{u}_{t} | \mathbf{x}_{t}) | | \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t})) + \eta D_{KL}(p(\mathbf{u}_{t} | \mathbf{x}_{t} | | \bar{p}(\mathbf{u}_{t}, \mathbf{x}_{t})))]$$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)}[c(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{u}_t^T \lambda_t - \rho_t \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) - \eta \bar{p}(\mathbf{u}_t, \mathbf{x}_t)] - (\rho_t + \eta) \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))$$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_{t}, \mathbf{u}_{t})} [\tilde{c}(\mathbf{x}_{t}, \mathbf{u}_{t})] - \nu_{t} \mathcal{H}(p(\mathbf{u}_{t} | \mathbf{x}_{t}))$$

maximum entropy objective

Slides taken from Prof. Abbeel's website

Backup - Guided Policy Search (Levine & Abbeel '14)

Backup - GCL == GAIL

Connection to Generative Adversarial Networks

(Goodfellow et al. '14)

Policy/generator optimization:

$$\mathcal{L}_{\text{generator}}(\theta) = \mathbb{E}_{\tau \sim q}[\log(1 - D_{\psi}(\tau)) - \log D_{\psi}(\tau)]$$
$$= \mathbb{E}_{\tau \sim q}[\log q(\tau) + \log Z - R_{\psi}(\tau)]$$

entropy-regularized RL

Unknown dynamics: train generator/policy with RL

Baram et al. ICML '17: use learned dynamics model to backdrop through discriminator

(Finn*, Christiano*, et al. '16)

Slides taken from Deep RL Bootcamp at UCB