Lecture 01

Tom Cheung

October 2018

Machine Learning

1 Definition

- 1. Arthur Samuel
- 2. Tom M. Mitchell

2 Parts

- supervised learning
 - Regression
 - Classification
- learning theory
- unsupervised learning
 - ICA algorithm ___

stay tuned

• reinforcement learning

Supervised learning

feature	target
$x^{(0)}$	$y^{(0)}$
$x^{(1)}$	$y^{(1)}$
:	:
$x^{(i)}$	$y^{(i)}$

• training example: $(x^{(i)}, y^{(i)})$

• training set: $\left\{(x^{(i)},\ y^{(i)}); i=1,\cdots,m\right\}$

• space of input and output \mathcal{X}, \mathcal{Y}

• hypothesis: $h: \mathcal{X} \mapsto \mathcal{Y}$

REGRESSION continuous

CLASSIFICATION discrete

3 Linear Regression

feature selection!?

stay tuned

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \tag{1}$$

 θ_i : parameter or weight

 $x_0 = 1$: intercept term

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^{\mathrm{T}} x \tag{2}$$

cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
(3)

The ordinary least squares regression model !?

see ☞: Approximate solutions

 $^{^{1}}$ The method of ordinary least squares can be used to find an approximate solution to overdetermined systems.