		rsity

CS-314/PHYS 300: Quantum Computing [Quiz 03] Solution

Fall Semester 2024

Name:			
maine.			

ID: _____ Section:

<u>L1</u>

This quiz is based on multiple choice questions as well as 1 problem solving questions.

For the MCQs, state the correct answer option for each question in the space provided.

Q.1: [15 marks] Consider the situation where we have two items indexed by $|0\rangle$ and $|1\rangle$. Let us suppose that we are "searching" for our required element (indexed by $|1\rangle$) within these two elements only and apply Grover's Search Algorithm.

(a) [3 marks] State what will be the Grover's Diffusion Operator as a 2x2 matrix.

It will be the X operator, i.e. $X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 0 .

(b) [3 marks] Starting with a uniform superposition, write the result of applying the oracle and the Grover Diffusion Operator on the qubit in the following table:

Input Qubit	Iteration	Operation	Resultant Qubit
$\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$	1	Oracle 'O' (reverses sign of the required qubit)	$\frac{1}{\sqrt{2}}\left(\left \left.0\right.\right\rangle - \left \left.1\right\rangle\right.\right)$
$\frac{1}{\sqrt{2}}\left(\left \left.0\right.\right\rangle -\left \left.1\right\rangle \right.\right)$	1	Grover Diffusion Operator found in (a)	$\frac{1}{\sqrt{2}}(1\rangle - 0\rangle) = -\frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
$-rac{1}{\sqrt{2}}\left(\mid 0 \mid -\mid 1 \rangle\right)$	2	Oracle 'O' (reverses sign of the required qubit)	$-\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ (Note: The global phase can be ignored, its not necessary)
$-\frac{1}{\sqrt{2}}\left(\left 0\right\rangle + \left 1\right\rangle\right)$	2	Grover Diffusion Operator found in (a)	$-rac{1}{\sqrt{2}}\left(\left \left.0\right. ight angle -\left \left.1\right. ight angle ight)$

(c) [3 marks] What are the probabilities of measuring the required state at the end of each iteration? State the probabilities here:

At the end of iteration	1	2	
Probability of measuring $ 1\rangle$ is:	1/2	1/2	

For MCQs, Write your answers here clearly.

1. C 2. A 3. E 4. B 5. D

ID: Section: Name:

L1

- 1. Grover's Search Algorithm for *n* elements has time complexity (in terms of number of queries to the Oracle):
 - A. $O(n^2)$
- B. O(*n*)
- C. $O(\sqrt{n})$
- D. $O(\log_2 n)$
- E. O(1)
- 2. In Grover's Search Algorithm we used the operator $2 | s \rangle \langle s | -I_n$, where $| s \rangle$ is the uniform superposition over all n qubits and I_n is the identity. Consider the following statements:

First, let us use the following notation:

- $|0^n\rangle = |00000...0\rangle$ (a qubit with n zeros tensored),
- H^{\otimes_n} is the repeated application of the H (Hadamard) operator on n qubits.

Since $H^{\otimes_n} \mid 0^n \rangle = |s\rangle$, (i.e. uniform superposition of n qubits) therefore,

$$H^{\otimes_n}(2 \mid 0^n \rangle \langle 0^n \mid -I_n) H^{\otimes_n} = 2 (H^{\otimes_n} \mid 0^n \rangle \langle 0^n \mid H^{\otimes_n} - H^{\otimes_n} I_n H^{\otimes_n})$$

= $2 (\mid s \rangle \langle s \mid -H^{\otimes_n} I_n H^{\otimes_n})$

To complete the argument, what is equivalent to $H^{\otimes n}$ I_n $H^{\otimes n}$?

- A. $H^{\otimes n} I_n H^{\otimes n} = I_n$
- B. $H^{\otimes_n} I_n H^{\otimes_n}$ is the uniform superposition over n states.
- C. $H^{\otimes_n} I_n H^{\otimes_n}$ is the quantum fourier transform over n states.
- D. $H^{\otimes_n} I_n H^{\otimes_n} = Z^{\otimes_n}$
- E. $H^{\otimes_n} I_n H^{\otimes_n} = H^{\otimes_{2n}}$
- 3. Consider the following QFT matrix:

$$F_4 = rac{1}{2} egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & i & -1 & -i \ 1 & -1 & 1 & -1 \ 1 & -i & -1 & i \end{bmatrix}$$

Which of the following is **not** a correct pair of eigenvalue and eigenvector for the F_4 ? (Note that these are *not* qubits, hence their norm may not be 1)

A. $\lambda_1 = -1$, $v_1 = (-1, 1, 1, 1)$

B. $\lambda_2 = i$, $v_2 = (0, -1, 0, 1)$

C. $\lambda_3 = 1$, $v_3 = (2, 1, 0, 1)$

- D. $\lambda_4 = 1$, $v_1 = (1, 0, 1, 0)$
- E. None of these. [All of the above are correct eigenvalue/eigenvector pairs].

Question 4 refers to the following circuit:

- 4. Let the operator U act on the qubit $|u\rangle$ (which is its eigenvector) with the eigenvalue -1, i.e. $U|u\rangle = -|u\rangle$. What is the qubit "|output⟩" in the above circuit?
 - A. |0 >
 - B. |1 >
 - C. $\frac{1}{\sqrt{2}}$ ($|0\rangle + |1\rangle$)
 - D. $|u\rangle$
 - E. $-|u\rangle$
- 5. Which of the following statements is correct.
 - A. The quantum fourier transform for a single qubit is the Z gate.
 - B. The quantum fourier transform for a single qubit is the S gate.
 - C. The quantum fourier transform for a single qubit is the *X* gate.
 - D. The quantum fourier transform for a single qubit is the H gate.
 - E. The quantum fourier transform for a single qubit is the T gate.

Quantum Gates Reference:

