Corso di Architettura degli Elaboratori - A a.a. 2021/2022

Codifica dell'informazione: Numeri a Virgola Mobile

In un calcolo *astronomico* è necessario esprimere:

la massa dell'elettrone: 9 × 10⁻²⁸ grammi

la massa del sole: 2 × 10³³ grammi

Quante cifre occorre usare?

62 cifre: 34 alla sinistra della virgola e 28 a destra

Problema: anche se la gamma dei numeri necessari è molto grande, i numeri significativi sono pochi.....

Soluzione: notazione scientifica

 La notazione scientifica è un tipo di rappresentazione in cui la "gamma" dei numeri esprimibili è indipendente dal numero delle cifre significative.

 la versione informatica di questa notazione è la rappresentazione in virgola mobile o floating point

Esempi:

$$3,14$$
 = 0,314 × 10¹ = 3,14 × 10⁰ = 314 × 10⁻²
- 0,0000005 = -5 × 10⁻⁷ = -0,5 × 10⁻⁶
127000000 = 127 × 10⁶ = 1,27 × 10⁸

La rappresentazione non è unica; esistono convenzioni che permettono di ottenere una rappresentazione unica, ad es. imponendo che la prima cifra significativa della mantissa si trovi immediatamente a destra della virgola; queste forme si dicono *rappresentazioni normalizzate*:

$$3,14$$
 = $0,314 \times 10^{1}$
- $0,0000005$ = $-0,5 \times 10^{-6}$
 127000000 = $0,127 \times 10^{9}$

Pensando ad una utilizzazione per il calcolatore si possono stabilire ulteriori convenzioni:

- fissare la lunghezza della mantissa ad un valore costante
- limitare l'esponente ad opportuni intervalli
- utilizzare un esponente convenzionale che lo renda sempre positivo (notazione in eccesso)
- disporre i tre elementi: <segno, esponente, mantissa> in un ordine stabilito

segno	esponente	mantissa
-------	-----------	----------

Esempio

- lunghezza mantissa: 8 cifre
- valore effettivo esponente: da -50 a +49
- in notazione eccesso 50 l'esponente e' sempre positivo (0 99)

i numeri – 0,0000005 e 127000000 si scrivono nel seguente modo:

	segno	esponente	mantissa
- 0,5 × 10 ⁻⁶	-	44	50 000 000
0,127 × 10 ⁹	+	59	12 700 000

Esempio di rappresentazione floating point binaria su 32 bit

- il primo bit rappresenta il segno della mantissa (0 per +, 1 per -)
- 7 bit successivi rappresentano l'esponente (espresso in base 2) in notazione eccesso 64 (esponente effettivo tra -64 e +63)
- gli ultimi 24 bit rappresentano la mantissa normalizzata

Esempio: 204,17437

rappresentazione binaria: $11001100,00101100100001110 \times 2^{0}$

rappresentazione normalizzata 0,110011000010110010000111 x 2⁸

bit di segno: 0

esponente eccesso 64: 1001000

. mantissa: 110011000010110010000111

Spostando la virgola a sinistra (dividere per la base) si aumenta di 1 l'esponente (si moltiplica per la base) mantenendo l'uguaglianza

0 1001000 110011000

110011000010110010000111

 La gamma (range) è determinata dal numero di cifre dell'esponente e la precisione dal numero di cifre della mantissa.

ATTENZIONE!!

 Con i numeri floating-point si può "simulare" il sistema dei numeri reali, pur con grandi differenze:

i numeri reali hanno la potenza del continuo i numeri floating point sono in numero finito

 Per esempio, consideriamo rappresentazioni (espresse in base 10) con una mantissa di tre cifre con segno nella gamma 0,1 ≤ | m | < 1 piu zero ed esponente di due cifre (con segno).

minimo numero negativo: -0,999 x 10⁹⁹

massimo numero negativo: -0,100 x 10⁻⁹⁹

minimo numero positivo: +0,100 x 10⁻⁹⁹

massimo numero positivo: +0,999 x 10⁹⁹

 Si rappresentano un numero finito di numeri negativi e numeri positivi, oltre allo zero, che ha tante rappresentazioni.

- "Spazio" tra numeri adiacenti non costante
- Arrotondamento
- Il numero di cifre della mantissa determina la densità dei punti, cioè la precisione delle approssimazioni
- Il numero di cifre dell'esponente determina la dimensione degli intervalli dei numeri rappresentabili

- Ogni produttore aveva un suo formato floating-point
- Fine anni '70 la IEEE costituisce un comitato al fine di standardizzare l'aritmetica floating-point
- Diversi Formati:
 - «half precision» (16 bit), «single precision» (32 bit),
 «double precision» (64 bit), «quad precision» (128 bit)
- Base 2 per mantissa, notazione in eccesso per esponente
- Mantissa normalizzata: la parte intera è sempre 1, questo bit è nascosto quindi la mantissa si compone della sola parte frazionaria

Semplice precisione: 32 bit

Max numero rappresentabile: appr. 2 128 (1038)

Doppia precisione: 64 bit

```
52
      (-1022;1023)
                                           mantissa
                               Min numero rappresentabile > 0: 2^{-1022} (10<sup>-308</sup>)
            esponente
segno
                               Max numero rappresentabile: appr. 21024 (10308)
            eccesso 1023
```

IEEE Half-, Single-, Double-, and Quad-Precision Formats:

		_					
S	Expo	nent	Frac	etion			
15	14	10	9		0	•	
S	Е	xponent				Fraction	
31	30		23	22		0	
S		Exponent Fraction					
63	62	52 51			0_		
S		Ex	ponent			Fraction	
127	126			11	12	111	

- Numeri normalizzati e denormalizzati
- Formati speciali per identificare infinito e NaN (Not a Number, esempio se dividiamo infinito per infinito)

	esp	mantissa M	valore v
Numero normalizzato	0 < esp < 255	qualunque	$V = (-1)^{s}(1, M)2^{esp-127}$
Numero denormalizzato	esp = 0	<i>M</i> ≠ 0	$v = (-1)^{s}(0, M)2^{-126}$
Zero	esp = 0	M = 0	v = (-1) ^s 0
Infinito	esp = 255	M = 0	v = (-1) ^s ∝
NaN	esp = 255	<i>M</i> ≠ 0	v = NaN

Virgola mobile nel RISC-V

Nome	Esempio	Commenti
32 registri virgola mobile	f0, f1, f2, f31	I registri in virgola mobile del RISC-V possono contenere un numero in virgola mobile in precisione singola o in doppia precisione
2 ⁶¹ parole doppie di memoria	Memoria[0], Memoria[8],, Memoria[18 446 744 073 709 551 608]	Si accede solo tramite le istruzioni di trasferimento dati. Il RISC-V utilizza l'indirizzamento al byte, per cui gli indirizzi sequenziali delle parole doppie differiscono di 8. La memoria mantiene le strutture dati, come i vettori, e il contenuto scaricato dai registri

Convenzioni di chiamata

f0-f7	ft0-ft7	FP Temporaries	Caller
f8-f9	fs0-fs1	FP Saved registers	Callee
f10-f11	fa0-fa1	FP Function arguments/Return values	Caller
f12-f17	fa2-fa7	FP Function arguments	Caller
f18-f27	fs2-fs11	FP Saved registers	Callee
f28-f31	ft8-ft11	R[rd] = R[rs1] + R[rs2]	Caller

Virgola mobile nel RISC-V

Categoria	Istruzione	Esempio	Significato	Commenti
Aritmetica	Somma VM singola prec.	fadd.s f0,f1,f2	f0 = f1 + f2	somma VM (singola precisione)
	Sottrazione VM singola prec.	fsub.s f0,f1,f2	f0 = f1 - f2	sottraz VM (singola precisione)
	Moltiplicaz VM singola prec.	fmul.s f0,f1,f2	$f0 = f1 \times f2$	moltiplicaz VM (singola precisione)
	Divisione VM singola prec.	fdiv.s f0,f1,f2	f0 = f1 / f2	divisione VM (singola precisione)
	Radice quadrata VM singola prec.	fsqrt.s f0,f1	f0 = √f1	Radice quadrata VM (singola precisione)
	Somma VM doppia prec.	fadd.d f0,f1,f2	f0 = f1 + f2	somma VM (doppia precisione)
	Sottrazione VM doppia prec.	fsub.d f0,f1,f2	f0 = f1 - f2	sottraz VM (doppia precisione)
	Moltiplicaz VM doppia prec.	fmul.d f0,f1,f2	$f0 = f1 \times f2$	moltiplicaz VM (doppia precisione)
	Divisione VM doppia prec.	fdiv.d f0,f1,f2	f0 = f1 / f2	divisione VM (doppia precisione)
	Radice quadrata VM doppia prec.	fsqrt.d f0,f1	f0 = √f1	radice quadrata VM (doppia precisione)

Virgola mobile nel RISC-V

Categoria	Istruzione	Esempio	Significato	Commenti
Confronto	Uguaglianza VM singola prec.	feq.s x5,f0,f1	x5 = 1 if (f0 == f1), else x5 = 0	Confronto in VM (precisione singola)
	Test di minoranza VM singola prec.	flt.s x5,f0,f1	x5 = 1 if (f0 < f1), else x5 = 0	Confronto in VM (precisione singola)
	Test di minore uguale VM singola prec.	fle.s x5,f0,f1	$x5 = 1 \text{ if } (f0 \le f1), \text{ else } x5 = 0$	Confronto in VM (precisione singola)
	Uguaglianza VM doppia prec.	feq.d x5,f0,f1	x5 = 1 if (f0 == f1), else x5 = 0	Confronto in VM (doppia precisione)
	Test di minoranza VM doppia prec.	flt.d x5,f0,f1	x5 = 1 if (f0 < f1), else x5 = 0	Confronto in VM (doppia precisione)
	Test di minore uguale VM doppia prec.	fle.d x5,f0,f1	$x5 = 1 \text{ if } (f0 \le f1), \text{ else } x5 = 0$	Confronto in VM (doppia precisione)
Trasferimento dati	Lettura di una parola in VM	flw f0,4(x5)	<pre>f0 = Memoria[x5+4]</pre>	Leggi da memoria dato in singola precisione
	Lettura di una parola doppia in VM	fld f0,8(x5)	<pre>f0 = Memoria[x5+8]</pre>	Leggi da memoria dato in doppia precisione
	Scrittura di una parola in VM	fsw f0,4(x5)	Memoria[x5+4] = f0	Trasferisci in memoria dato in singola precisione
	Scrittura di una parola doppia in VM	fsd f0,8(x5)	Memoria[x5+8] = f0	Trasferisci in memoria dato in doppia precisione

Ricapitolando

- Una sequenza di N bit da sola non rappresenta nulla: si deve sempre specificare il contesto (la codifica) nella quale deve avvenire la sua interpretazione (decodifica)
- Per cui, cosa rappresenta la sequenza che segue?

1110000010101111110101011

- il carattere
 ⑥ in codifica UTF-8 (è il 5 della lingua Tamil)
- Il colore (224,239,171) in RGB
- 375 µs di voce umana
- il numero 14725035 se in binario puro (divisioni successive per 2)
- il numero -2052181 in complemento a 2 su 24 bit
- Il numero -6336427 in modulo e segno su 24 bit
- continuate voi

Ricapitolando

- Un informatico deve saper:
 - Cos'è la notazione scientifica per un numero
 - Cos'è una rappresentazione normalizzata e perché se ne ha bisogno
 - Essere consapevole dei limiti di rappresentazione rispetto all'insieme dei numeri reali
 - Conoscere i vari formati dello standard IEEE 754
 - Saper codificare un numero reale in uno degli standard IEEE 754
 - Saper decodificare una sequenza di bit in uno degli standard IEEE
 754 nel corrispondente numero reale

Qualche problema

- Problema 1: Ipotizziamo l'esistenza del formato IEEE 754 in precisione scarsa su 8 bit con 1 bit di segno, 4 bit di esponente e 3 bit di mantissa (nell'ordine). Esso condivide tutte le caratteristiche dei formati a precisione singola e doppia dello standard IEEE 754, ovvero, la codifica dei numeri normalizzati, denormalizzati, dello zero, dell'infinito, del NaN, con le stesse convenzioni di codifica. Dire:
 - In eccesso a quale valore sarebbe codificato l'esponente?
 - Che numero sarebbe rappresentato dalla sequenza 11011100?
- Problema 2: Descrivere la notazione standard IEEE 754 in semplice precisione, specificando i campi che la compongono e descrivendo i passi da eseguire per codificare il numero 13,75.
- Problema 3: Decodificare la sequenza
 1 10000011 111000000000000000000
 assumendo che rappresenti un numero in formato IEEE 754 in precisione singola