### Logistic Regression

데이터 분석 모델링반 (ML1)

#### 로지스틱회귀



선형회귀분석과 유사하지만 종속변수가 양적척도가 아닌 질적척도

특정 수치를 예측하는 것이 아니라 어떤 카테고리에 들어갈지 분류하는 모델

기본 모형은 종속변수가 0과 1이라는 이항으로 이루어짐 (구매/미구매, 성공/실패)



- 선형회귀의 사상은 그대로 유지하되 종속변수가 1이될 확률로 변환, 그 확률에 따라 0과 1의 여부를 예측한다.
- 이를 위해서는 오즈(Odds)와 로짓변환을 이용 (S자 커브로 변하는 것 오즈, 로짓변환 표현)
- 확률을 표현하기 위해서는 선형회귀가 아닌 S자 모형으로 변환,

# 오즈값이란? (Odds Ratio)

: 오즈(Odds)는 어떤 사건이 일어날 가능성으로 P/(1-P)으로 표현됨

\*오즈(Odds) = 성공확률/실패확률

: 위험인자에 노출된 사람 중에서 암환자인 오즈값 = a/b = Odds1

: 위험인자에 노출되지 않은 사람 중에서 암환자인 오즈값 = c/d = Odds2

▶Odds Ratio(오즈비;교차비;승산비) = Odds1/Odds2 = 'a/b' / 'c/d'



- 사건이 발생할 가능성이 사건이 발생하지 않을 가능성보다 어느정도 큰지 나타내는 값
- 분모는 사건이 발생하지 않을 확률 분자는 사건이 발생할 확률
- Odds = p(사건이 발생할 확률)/ 1-p(사건이 발생하지 않을 확률)
- 먄약 발생 활률이 60% 발생하지 않을 확률 40% 오즈비는 1.5

→ 위험인자에 노출된 사람은 노출되지 않은 사람에 비해 4.32배 정도로 더 암에 걸리는 경향을 보임

### 오조값의 문제



- 오즈값은 발생확률이 1에 가까워질수록 기하급수적으로 커지고, 최솟값은 0이 된다.
- 따라서 균형을 잡지 못하는 형태

# 로짓logit = log(오즈비)



- 오즈에 log를 취하여 0<p<1 & 0<1-p<1
- p가 0에 가까울수록 오즈비는 0
- p가 1에 가까울수록 오즈비는 무한대
- 결국 -무한대 < 로짓 < + 무한대
- 하지만 여전히 0과 1 사이에서 범위 나타내지 못하므로
- 이 것을 치환해 주는 변환식

# 시그모이드 함수(Sigmoid)함수

종속변수가 여러 개인 경우는 하나를 잡고 나머지 다른 범주랑 비교해서 계산하는 것 모든 확률의 합은 1이니깐

선형회귀 계산 방식 - 최소제곱법 계산해서 진행 로지스틱 계산 방식 - 최대우도법 MLE



• 로그를 취한 오즈에 시그모이드 함수를 적용한 최종의 로지스틱 회귀식

• 
$$-\infty < x < \infty$$

• 
$$sigmoid(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x}$$
  
•  $\frac{dsigmoid(x)}{dx} = sigmoid(x)(1-sigmoid(x))$ 

# 비용함수(Cost Function)



- 로지스틱회귀는 평균제곱오차를 사용하지 않음 (로컬미니멈 이슈)
- 시그모이드 함수는 0과 1사이의 값
- 0일 때 y값이 1에 가까워지면 오차가 커지며 실제값이 1일 때 y값이 0에 가까워지면 오차카 커짐
- 크로스 엔트로피 함수라고도 함 (Cross Entropy)함수, 가중치를 찾기 위해 크로스 엔트로피 함수의 평균을 취한 함수 사용

#### 로지스틱회귀 모델 MLE

- 선형 회귀 분석과는 다르게 로지스틱 회귀분석은 직선으로 회귀계수 추정이 어려운 상황 따라서 로지스틱 회귀분 석은 Maximum Likelihood Estimation 회귀 계수 구하기!
- MLE 주어진 데이터를 이용해 가능도를 최대화하는 파라미터를 찾는 통계기법, 가중치와 절편을 추정

$$\begin{aligned} & \underset{\mathbf{w}}{\operatorname{arg\,max}} \left( \prod_{x_i \text{ is RED}} P(\operatorname{Red} \mid \mathbf{x}_i, \mathbf{w}) \right) \left( \prod_{x_i \text{ is BLUE}} P(\operatorname{Blue} \mid \mathbf{x}_i, \mathbf{w}) \right) \\ &= \underset{\mathbf{w}}{\operatorname{arg\,max}} \log \left( \prod_{i \in \{i|y_i = 1\}} h(\mathbf{x}_i) \right) \left( \prod_{i \in \{i|y_i = 0\}} 1 - h(\mathbf{x}_i) \right) \\ &= \underset{\mathbf{w}}{\operatorname{arg\,max}} \left( \sum_{i \in \{i|y_i = 1\}} \log h(\mathbf{x}_i) + \sum_{i \in \{i|y_i = 0\}} \log (1 - h(\mathbf{x}_i)) \right) \\ &= \underset{\mathbf{w}}{\operatorname{arg\,max}} \left( \sum_{i \in \{i|y_i = 1\}} \log h(\mathbf{x}_i) + \sum_{i \in \{i|y_i = 0\}} \log (1 - h(\mathbf{x}_i)) \right) \\ &= \underset{\mathbf{w}}{\operatorname{arg\,max}} \left( \sum_{i \in \{i|y_i = 1\}} (y_i \log h(\mathbf{x}_i) + (1 - y_i) \log (1 - h(\mathbf{x}_i))) + \sum_{i \in \{i|y_i = 0\}} (y_i \log h(\mathbf{x}_i) + (1 - y_i) \log (1 - h(\mathbf{x}_i))) \right) \\ &= \underset{\mathbf{w}}{\operatorname{arg\,max}} \left( \sum_{i \in \{i|y_i = 1\}} (y_i \log h(\mathbf{x}_i) + (1 - y_i) \log (1 - h(\mathbf{x}_i))) \right) \end{aligned}$$

특정 모수 집합 하에 관측될 확률

$$f_{i}(y_{i}) = \pi(x_{i})^{y_{i}}(1 - \pi(x_{i}))^{1-y_{i}}, i = 1, 2, \cdots, n \qquad P(y_{i} = 1) = \pi_{i}$$

$$P(y_{i} = 0) = 1 - \pi_{i}$$

$$L = \prod_{i} f_{i}(y_{i}) = \prod_{i} \pi(x_{i})^{y_{i}}(1 - \pi(x_{i}))^{1-y_{i}}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{1 + \exp(-f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x))} = \frac{1}{h(x) - g(f(x))}$$

$$\lim_{w \to \infty} \frac{1}{h(x) - g(f(x$$

$$\log h_{ heta}(x^i) = \log rac{1}{1+e^{- heta x^i}} = -\log(1+e^{- heta x^i}),$$

$$\log(1-h_{ heta}(x^i)) = \log(1-rac{1}{1+e^{- heta x^i}}) = \log(e^{- heta x^i}) - \log(1+e^{- heta x^i}) = - heta x^i - \log(1+e^{- heta x^i}),$$

[ this used:  $1=rac{(1+e^{- heta x^i})}{(1+e^{- heta x^i})}$ , the 1's in numerator cancel, then we used:  $\log(x/y)=\log(x)-\log(y)$  ]

Since our original cost function is the form of:

$$J( heta) = -rac{1}{m} \sum_{i=1}^m y^i \log(h_ heta(x^i)) + (1-y^i) \log(1-h_ heta(x^i))$$

Plugging in the two simplified expressions above, we obtain

$$J( heta) = -rac{1}{m} \sum_{i=1}^m \left[ -y^i (\log(1+e^{- heta x^i})) + (1-y^i)(- heta x^i - \log(1+e^{- heta x^i})) 
ight]$$

, which can be simplified to:

$$J( heta) = -rac{1}{m} \sum_{i=1}^m \left[ y_i heta x^i - heta x^i - \log(1 + e^{- heta x^i}) 
ight] = -rac{1}{m} \sum_{i=1}^m \left[ y_i heta x^i - \log(1 + e^{ heta x^i}) 
ight], ~~(*)$$

where the second equality follows from

$$- heta x^i - \log(1+e^{- heta x^i}) = -\left[\log e^{ heta x^i} + \log(1+e^{- heta x^i})
ight] = -\log(1+e^{ heta x^i}).$$

[ we used  $\log(x) + \log(y) = \log(xy)$  ]

All you need now is to compute the partial derivatives of (\*) w.r.t.  $\theta_j$ . As

$$rac{\partial}{\partial heta_j} y_i heta x^i = y_i x^i_j,$$

$$rac{\partial}{\partial heta_{i}} ext{log}(1+e^{ heta x^{i}}) = rac{x_{j}^{i}e^{ heta x^{i}}}{1+e^{ heta x^{i}}} = x_{j}^{i}h_{ heta}(x^{i}),$$

the thesis follows.

경사하강법, 미니 배치, 뉴턴방법 sklearn 제공하는 패키지에서는 계산하는 방식이나, 메서드에 대한 선택을 다할 수 있다.

실제 직접 구현하는 경우는 이런 부분을 생각해야 한다. 코드로 비용함수, 예측하는 것들 한 번 코드로 구현해서 어떤식으로 되는지

#### https://youtu.be/het9HFqo1TQ