# **Formelpapper**

SH1010 - Fysik för den byggda miljön. Av Oscar Lindgren

| Linjära rörelser                                                                                    | Cirkulära rörelser                                                               |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| x (sträcka)                                                                                         | $\theta$ (vinkel)                                                                |
| v (hastighet)                                                                                       | $\omega$ (vinkelhastighet)<br>$\omega = \Delta\theta/\Delta t \ \omega = 2\pi/T$ |
| v tangential: $v_t = r \omega$                                                                      |                                                                                  |
| a (acc)                                                                                             | $\alpha(\mathrm{acc}) = \Delta\omega/\Delta t$                                   |
| a tangential: $a_t = r lpha$<br>a centripetal: $a_{cp} = r \omega^2$                                |                                                                                  |
| $x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$                                                             | $\theta = \theta_0 + \omega t + \frac{1}{2} \alpha t^2$                          |
| $\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}}\mathbf{t}$            | $\omega = \omega_0 + \alpha t$                                                   |
| $\mathbf{v}_{\mathbf{x}}^2 = \mathbf{v}_{0\mathbf{x}}^2 + 2\mathbf{a}_{\mathbf{x}}\Delta\mathbf{x}$ | $\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$                                    |
| p = mv                                                                                              | $L = I\omega$                                                                    |





Kap 11 

Vridmoment vridmoment: au

$$\tau = rF = I\alpha$$
$$\tau = rFsin\theta$$

Arbete:  $= \tau \Delta \theta$ 

Masscentrum: 
$$x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

Kapitel 4 □ Rörelse i två dimensioner

Sträcka:

$$x = \left(\frac{v_0^2}{g}\right) \sin 2\theta$$

$$y_{max} = \frac{v_0^2 sin^2 \theta}{2q}$$

Paraboliskbana:

$$y = h - \frac{g}{2v_0^2}x^2$$

Vid horisontell vinkel:

Energiprincipen

E = U + K

 $E_f = E_i$ 

$$x = v_0 \sqrt{\frac{2h}{g}}$$

## Kapitel 5,6 ☐ Newtons lagar

Kraft: = ma

Vikt: W = mg

Friktionskraft:  $f_k = \mu_k N$ 

Där N är normalkraften (vanligen cos-komposanten)

Fjäderkraft: F = -kx

Centripetal acc:

 $f_{cp} = ma_{cp} = m\frac{v^2}{r}$ 

Centripetal acc är riktad mot centrum.

## Kap 12 ☐ Gravitation

(obs: glöm inte radien på objekten)

Kraft mellan två punktmassor:  $F = G \frac{m_1 m_2}{r^2}$ 

Jordens acceleration:  $g = \frac{GM_E}{R^2}$ 

Omloppstid runt solen:  $T = \left(\frac{2\pi}{\sqrt{GM_S}}\right)r^{3/2} = (konstant)r^{3/2}$ 

Kapitel 8 🗆 Lägesenergi

Kapitel 7 Arbete och rörelseenergi

 $W_c = U_i - U_f = -(U_f - U_i) = -\Delta U$ 

 $K = \frac{1}{2}mv^2$ 

W = Fd (d är distans)

 $W = \frac{1}{2}kx^2 \quad \sqrt{\frac{2w}{k}} = x$ 

 $W_{total} = \Delta K = K_f - K_i$ 

Lägesenergi: = mgh

W är arbetet

Potentiell energi mellan två pkt massor:  $U = -G \frac{m_1 m_2}{r}$ 

Escape speed:  $v = \sqrt{\frac{2GM_E}{R_E}}$ 

G är en konstant  $6.67 * 10^{-11} \text{N} \cdot \text{m}^2/\text{kg}^2$ 

## Kapitel 9 Rörelsemängd och krockar

Rörelsemängd:  $\vec{p} = m\vec{v}$ 

$$p_i = p_f$$

Puls:

$$\vec{I} = \vec{F}_{av} \Delta t = \Delta \vec{p}$$

Elastiskkrock:

 $m_{1i}v_{1i} + m_{2i}v_{2i} = m_{1f}v_{1f} + m_{2f}v_{2f}$ 

Oelastiskkrock:

 $m_{1i}v_{1i} + m_{2i}v_{2i} = (m_1 + m_2)v_f$ 







solid cylinder  $I = \frac{1}{2}MR^2$ 



Disk or solid cylinder (axis at rim)  $I = \frac{3}{2} MR^2$ 

cylindrical shell  $I = MR^2$ 





Solid sphere (axis at rim)  $I = \frac{7}{5}MR^2$ 

## Kap 10 □ Roterande rörelseenergi

Effekt:

Arbete:

Arbete fjäder:

Rörelseernrgi:

Arbete-energi:

K för rullande föremål:  $K = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}mv^2\left(1 + \frac{I}{mr^2}\right)$ 

Där I är tröghetsmoment, (se vänster)

Centripetal acc:  $a_{cp} = r$ 



Mär massa Rär radien

# Kap 13 □ Svängningar och jämvikt

Period: T

Frekvens 
$$f = \frac{1}{T}$$

Vinkelfrekvens: 
$$\omega = 2\pi f = \frac{2\pi}{T}$$

 $\underline{Harmoniska\ sv\"{a}ngning};\ (A=ampilituden)$ 

position:  $x = A\cos(\omega t)$ 

hastighet (1:a deri):  $= -A\omega \sin(\omega t)$ 

Acc (2.a deri):  $a = -A\omega^2 \cos(\omega t)$ 

$$v_{max} = A\omega$$
  $a_{max} = A\omega^2$  Fjäder:

$$T=2\pi\sqrt{\frac{m}{k}}\,\,\,$$
 Där k är fjäderkonstanten

Total energi: 
$$E = \frac{1}{2}kA^2$$

Potential energi: 
$$U = \frac{1}{2}kA^2\cos^2(\omega t)$$

Rörelseenergi:  $K = \frac{1}{2}kA^2sin^2(\omega t)$ 

#### Pendel:

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 (L är längden på pendeln)

### Kap 14 □ Vågor och ljud

 $(\lambda \text{ v\"{a}gl\"{a}ngd, f frekvens, v hastighet})$ 

$$v = \lambda f$$

Hastighet i en sträng. 
$$v = \sqrt{\frac{F}{m/L}}$$

(F är spänning, m/L är massa per längd) ljudets hastighet:  $343~\mathrm{m/s}$ 

## <u>Ljud:</u>

Intensistet: 
$$I = \frac{P}{A}$$

(p är effekt, A är arean vanligen  $4\pi r^2$ )

decibel: 
$$\beta = 10 \log \left(\frac{I}{I_0}\right)$$

$$I_0 = 10^{-12} W/m^2$$

Ståendevåg: 
$$f_1 = \frac{v}{2L}$$

## Dopplereffekten:

- v :Ljudvågornas hastighet
- $u_o$ : Betraktarens hastighet
- $u_s$ : Ljudkällans hastighet
- f :Ljudets frekvens
- f': Uppfattade frekvens

$$f' = \left(\frac{1 \pm u_o/v}{1 \mp u_s/v}\right) f$$

(Övre tecken när ljudkälla och betraktare

## Kap 16 🗆 Värme

## Expansion

$$\Delta L = \alpha L_0 \Delta T$$

$$\Delta V = \beta V \Delta T$$

$$\beta = 3\alpha$$

Värmekapacitivitet (c) (så mycket energi det går åt att värma ett kg material en grad)

$$c = \frac{Q}{m\Delta T}$$

Smältning/avdunsting:  $L = \frac{Q}{m}$ 

#### Värme överförning:

Q är värmeström, mäts i Joule. k är materialets ledningsförmåga

Ledning: 
$$Q = kA\left(\frac{\Delta T}{L}\right)t$$

Strålning: 
$$P = e\sigma AT^4$$

## Kap 15 🗆 Vätskor

 $\rho$  är densiteten

Densitet:  $\rho = \frac{M}{V}$ 

Tryck:  $P = \frac{F}{A}$  och  $= \rho g h$  h är djupet

Lyftkraft (när något flyter gäller):  $V_{v "atska} =$ 

$$V_{f\"{o}rem\^{a}l}\left(rac{
ho_{f\"{o}rem\^{a}l}}{
ho_{v\"{a}tska}}
ight)$$

#### Kontinuitet ekv:

 $\mbox{ Med kompression: } p_1A_1v_1=p_2A_2v_2 \\$ 

Utan kompression:  $A_1v_1 = A_2v_2$ 

## Bernoulli's ekv:

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_{2+} \frac{1}{2}\rho v_2^2 + \rho g y_2$$

# Torricellis lag: $v = \sqrt{2gh}$



#### Konstanter:

$$I_0 = 10^{-12} W/m^2$$

 $R(gaskonstan) = 8,314472 \text{ J mol}^{-1} \text{ K}^{-1}$ 

K (boltzman) =  $1.38 \times 10^{-23}$ 

G är en konstant 6.67 \*  $10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$ 

## Kap 18 🗆 Thermodynamic

Q är värmeflöden.

T är temperaturer (obs i Kelvin)

#### Värmemotor

$$e = \frac{E}{Q_{varmt}} = \frac{Q_{varmt} - Q_{kalt}}{Q_{varmt}}$$

$$e_{max} = 1 - \frac{T_{varmt}}{T_{kalt}}$$

#### Värmpumpar:

$$W = Q_{varmt} - Q_{kalt} =$$

$$=Q_{varmt}\left(1 - \frac{T_{kalt}}{T_{vamrt}}\right)$$

Entropi: 
$$\Delta S = \frac{Q}{T}$$

Molär värmekapacitet: C,

 $Q = nC\Delta T$ 

Konstant volym:  $C_v = \frac{3}{2}R$ 

Konstant tryck:  $C_P = \frac{5}{2}R$ 

där R är gas konstanten =

8,314472 J mol<sup>-1</sup> K<sup>-1</sup> Arbete i termiska processer:

Vid konstant tryck:  $W = P\Delta V$ 

Vid konstant volym: W = 0

Aircondition:  $COP = \frac{Q_c}{W}$ 

Värmepump:  $COP = \frac{Q_h}{W}$ 

# Kap 17- Faser och fasövergångar

$$PV = NkT$$

$$PV = nRT \leftarrow Viktig$$

N är antal molekyler, k är  $1.38 \times$ 

 $10^{-23}$ (boltzman)

n är antalet mol, R är 8.31, T är temperaturen

Mär mol/massa

Molekylär massa:  $M = N_A m$ 

där  $N_A$ är 6.022 × 10<sup>23</sup> (avogadros)

Isoterm (konstant temperatur): PV = konstant

Konstant tryck:  $\frac{V}{T} = konstant$ 

Energi i gaser  $K = \frac{3}{2}$  eller  $= \frac{3}{2}NkT = \frac{3}{2}nRT$ 

kraft för ändring i längd  $F = \Upsilon\left(\frac{\Delta L}{L}\right)A$ 

rms rot med speed:  $v = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{m}}$