With a 10,000 bit number this is what we have:

	Expected	Actual
Number of 0's	10000*(.5) = 5000	5034
Number of 1's	10000*(.5) = 5000	4966
Longest Run of 0's	$\log_2(10000) = 13.29$	12
Longest Run of 1's	$\log_2(10000) = 13.29$	14
Number of 4 Runs of 0's	$10000*(.5^6) = 156.25$	172
Number of 4 Runs of 1's	$10000*(.5^6) = 156.25$	130
Number of 5 Runs of 0's	$10000*(.5^7) = 78.125$	71
Number of 5 Runs of 1's	$10000*(.5^7) = 78.125$	82
Number of 6 Runs of 0's	$10000*(.5^8) = 39.0625$	31
Number of 6 Runs of 1's	10000*(.58) = 39.0625	36

All of the numbers obtained from the program are all close to the value we expect to see. All of these values we obtained through the program are within 1 standard deviation of the expected value distribution respectively.