PDE'S - EXERCISES 32-35

ALEXANDER ZAHRER

In all these exercises we use the abbreviations $H^s \coloneqq H^s(\mathbb{R}^d)$, $\dot{H}^s \coloneqq \dot{H}^s(\mathbb{R}^d)$, $\mathscr{S} \coloneqq \mathscr{S}(\mathbb{R}^d)$, $\mathscr{S}' \coloneqq \mathscr{S}_b(\mathbb{R}^d)$, $\mathscr{S}_b^k \coloneqq \mathscr{C}_b^k(\mathbb{R}^d)$ and $\mathscr{C}_c^\infty \coloneqq \mathscr{C}_c^\infty(\mathbb{R}^d)$. Moreover, for r > 0 we define $B_r \coloneqq \{x \in \mathbb{R}^d \mid |x| < r\}$ and $S^{d-1} \coloneqq \{x \in \mathbb{R}^d \mid |x| = 1\}$.

1 EXERCISE 32:

Let $p \in [1, \infty)$ and suppose we are given a sequence $(f_l) \subset \mathscr{S}$ which converges uniformly to $f \in \mathscr{C}$ and which is Cauchy in L^p . We are asked to show that $||f||_p \lesssim 1$ and $||f - f_l||_p \to 0$. As $(f_l) \subset \mathscr{S}$ is Cauchy in L^p this sequence defines an element $F \in L^p$. Applying Fatou's lemma we obtain

$$\int |f|^p = \int \liminf_{f \in Fatou} |f_f|^p \le \liminf_{f \in Fatou} \int |f_f|^p = ||F||_p < \infty \tag{1}$$

Let $\varepsilon > 0$. As (f_l) is both Cauchy in L^p and converges uniformly to $f \in \mathcal{C}$, we know that there exists a natural number $K \in \mathbb{N}$ such that for all $k, l \geq K$

$$||f_k - f_l||_{L^p(\mathbb{R}^d)} < \varepsilon$$
 $||f_k - f||_{\infty} < \varepsilon$ (2)

However, as $|f - f_K|^p$ is integrable there also has to exist a positive number R > 0 such that

$$||f_{K} - f||_{L^{p}(\mathbb{R}^{d} \setminus B_{R})} < \varepsilon \tag{3}$$

This yields that for all $k \ge K$ we have

$$||f_{k} - f||_{L^{p}(\mathbb{R}^{d})} \leq ||f_{k} - f_{K}||_{L^{p}(\mathbb{R}^{d})} + ||f_{K} - f||_{L^{p}(\mathbb{R}^{d})} < \varepsilon + ||f_{K} - f||_{L^{p}(B_{R})} + ||f_{K} - f||_{L^{p}(B_{R})}$$

$$< 2\varepsilon + ||f_{K} - f_{l}||_{L^{p}(B_{R})} + ||f_{l} - f||_{L^{p}(B_{R})} < 3\varepsilon + ||f_{l} - f||_{L^{p}(B_{R})}$$

$$(4)$$

As $||f_l - f||_{L^p(B_R)} \to 0$ by uniform convergence (since we only integrate over B_R) we infer that our final inequality (4) turns into (for $l \to \infty$)

$$\forall k \ge K \colon \|f_k - f\|_{L^p(\mathbb{R}^d)} < 3\varepsilon \tag{5}$$

This proves the statement.

2 EXERCISE 33:

We are given the function

$$h_k(x) := \int f(y) [g(x - k^{-1}y) - g(x)] dy$$
 (6)

and we are asked to prove that for all natural numbers $k, M \in \mathbb{N}$ (where $k \ge 1$) we have $|h_k| \le k^{-1} \langle . \rangle^{-M}$. Note that we have the equality

$$g(x-k^{-1}y) - g(x) = \int_{0}^{1} \partial_{t}g(x-tk^{-1}y) dt = k^{-1}y^{j} \int_{0}^{1} \partial_{j}g(x-tk^{-1}y) dt$$
 (7)

Now we introduce:

Lemma 1 (Stephie's Lemma). If $M \in \mathbb{N}$ then

$$\langle x \rangle \le \langle x - y \rangle \langle y \rangle \tag{8}$$

Proof.

$$\langle x \rangle^2 = 1 + |x|^2 \le 1 + (|x - y| + |y|)^2 \simeq 1 + |x - y|^2 + |y|^2 \tag{9}$$

$$\leq 1 + |x - y|^2 + |y|^2 + |x - y|^2 |y|^2 = \langle x - y \rangle^2 \langle y \rangle^2 \tag{10}$$

Using the Schwarz properties of f, g and both Stephie's 1 lemma and equation (7) we estimate

$$\langle x \rangle^{M} | f(y) \left[g(x - k^{-1}y) - g(x) \right] | \lesssim \underset{\text{Schwarz property of } f}{\lesssim} k^{-1} \langle y \rangle^{-L} \int_{0}^{1} \langle x \rangle^{M} | \partial_{j} g(x - tk^{-1}y) | dt$$
 (11)

$$\lesssim \underset{\text{Stephan's Lemma}}{\lesssim} k^{-1} \langle y \rangle^{-L} \int_{0}^{1} \langle x - tk^{-1}y \rangle^{M} \langle tk^{-1}y \rangle^{M} \Big| \partial_{j} g(x - tk^{-1}y) \Big| dt$$
 (12)

$$\lesssim \underset{\text{Schwarz property of } g}{\lesssim} k^{-1} \langle y \rangle^{-L} \int_{0}^{1} \underbrace{\langle t k^{-1} y \rangle^{M}}_{\leq \langle y \rangle^{M}} dt \leq k^{-1} \langle y \rangle^{M-L}$$
 (13)

and therefore, by choosing L large enough, we obtain

$$|h_k(x)\langle x\rangle^M| \le k^{-1} \int \langle y\rangle^{M-L} dy \lesssim k^{-1}$$
 (14)

for all $x \in \mathbb{R}^d$.

3 EXERCISE 34:

Fix $p \in [1,\infty)$. We are given a sequence $(f_l) \subset \mathscr{C}^{\infty}$ which is Cauchy with respect to the L^p -norm. Furthermore, suppose we have a smooth cutoff function $\chi \in \mathscr{C}^{\infty}_c$ with $0 \le \chi \le 1$ and $\chi \upharpoonright_{\overline{B_1}} \equiv 1, \chi \upharpoonright_{B_2^c} \equiv 0$. Set $\widehat{f_k}(x) := \chi(x/k)f(x)$ for all $k \in \mathbb{N}$. We shall now prove that $\widehat{f_k} \in \mathscr{S}$ and $\|\widehat{f_k} - f_k\|_{L^p(\mathbb{R}^d)} \to 0$: For every $k \ge 1$ we certainly have that the functions $\chi_k \colon (x \mapsto \chi(x/k))$ have their support in $\overline{B_{2k}}$. This immediately implies $\widehat{f_k} \in \mathscr{C}^{\infty}_c \subset \mathscr{S}$. We now introduce another gem of newfound mathematical knowledge:

Lemma 2 (Dave's Lemma). For a sequence (f_l) that is Cauchy in $L^p(\mathbb{R}^d)$ we have that for all $\varepsilon > 0$ there exists an R > 0 and $K \in \mathbb{N}$ such that for all $k \geq K$ we have

$$||f_k||_{L^p(\mathbb{R}^d \setminus B_p)} < \varepsilon \tag{15}$$

Proof. For given $\varepsilon > 0$ we have that by the Cauchy property there has to exist a natural number $K \in \mathbb{N}$ such that $\|f_k - f_l\|_{L^p(\mathbb{R}^d)} < \varepsilon$ for all $k, l \ge K$. Now as $f_K \in L^p$ there exists R > 0 such that $\|f_K\|_{L^p(\mathbb{R}^d \setminus B_R)} < \varepsilon$. This yields

$$||f_k||_{L^p(\mathbb{R}^d \setminus B_R)} \le ||f_K||_{L^p(\mathbb{R}^d \setminus B_R)} + ||f_k - f_K||_{L^p(\mathbb{R}^d \setminus B_R)} < 2\varepsilon \tag{16}$$

for all
$$k \ge K$$
, as wanted.

Thus, for $\varepsilon > 0$, we may apply Dave's Lemma 2 to our sequence to obtain R > 0 and $K \in \mathbb{N}$ such that for all $k, l \geq K$ we have

$$||f_k||_{L^p(\mathbb{R}^d \setminus B_R)} < \varepsilon \qquad ||f_k - f_l||_{L^p(\mathbb{R}^d)} < \varepsilon \tag{17}$$

П

Using this we estimate that for all $l \ge k \ge N := \max(K, \lceil R \rceil)$ we have

$$\|\widehat{f}_{k} - \widehat{f}_{l}\|_{L^{p}(\mathbb{R}^{d})} = \|\chi_{k} f_{k} - \chi_{l} f_{l}\|_{L^{p}(\mathbb{R}^{d})} \le \|\chi_{k} (f_{k} - f_{l})\|_{L^{p}(\mathbb{R}^{d})} + \|(\chi_{k} - \chi_{l}) f_{l}\|_{L^{p}(\mathbb{R}^{d})}$$
(18)

$$\leq \|f_k - f_l\|_{L^p(\mathbb{R}^d)} + \|f_k - f_l\|_{L^p(B_k)} + \|(\chi_k - \chi_l)f_l\|_{L^p(\mathbb{R}^d \setminus B_k)} \tag{19}$$

$$\leq 2\varepsilon + \|\underbrace{(\chi_k - \chi_l)f_l}_{\leq |f_l|}\|_{L^p(\mathbb{R}^d \setminus B_R)} \leq 2\varepsilon + \|f_l\|_{L^p(\mathbb{R}^d \setminus B_R)} < 3\varepsilon \tag{20}$$

By using the inequality (20) (and some arbitrary $l \in \mathbb{N}$ large enough) and equation (17) we again estimate for all k > N that

$$\|\widehat{f}_{k} - f_{k}\|_{L^{p}(\mathbb{R}^{d})} \le \|\widehat{f}_{k} - \widehat{f}_{l}\|_{L^{p}(\mathbb{R}^{d})} + \|\widehat{f}_{l} - f_{K}\|_{L^{p}(\mathbb{R}^{d})} + \|f_{K} - f_{k}\|_{L^{p}(\mathbb{R}^{d})}$$
(21)

$$<4\varepsilon + \|\widehat{f}_l - f_K\|_{L^p(\mathbb{R}^d)} \le 4\varepsilon + \|f_l - f_K\|_{L^p(B_R)} + \|\widehat{f}_l - f_K\|_{L^p(\mathbb{R}^d \setminus B_R)}$$
(22)

$$\leq 5\varepsilon + \|f_l\|_{L^p(\mathbb{R}^d \setminus B_R)} + \|f_K\|_{L^p(\mathbb{R}^d \setminus B_R)} < 7\varepsilon \tag{23}$$

which concludes the argument.

4 EXERCISE 35:

We are given a sequence $(f_l) \subset \mathscr{C}^{\infty}$ which is Cauchy with respect to the H^1 norm. As in exercise 34 we set $\widehat{f}_k := \chi_k f_k$. We shall now prove that $(\widehat{f}_k) \subset \mathscr{C}^{\infty}$ is Cauchy in H^1 . Note that exercise 9 also holds for $f \in \mathscr{C}^{\infty} \cap H^k$ in the measure theoretic framework, that is, we know that in our case for k = 1 we have

$$||f||_{H^1} \simeq \sum_{|\alpha| \le 1} ||\partial^{\alpha} f||_{L^2}$$
 (24)

(the proof is the same as for exercise 9 with the difference being that the Fourier transform is an automorphism on the measure theoretic L^2 -space). Before using this we collect some helpful side facts. First note that

$$\partial_{j}\widehat{f}_{k} = \frac{1}{k}\partial_{j}\chi_{k}f_{k} + \chi_{k}\partial_{j}f_{k} = \frac{1}{k}\partial_{j}\chi_{k}f_{k} + \widehat{\partial_{j}f_{k}}$$
(25)

Moreover, as $(f_k) \subset \mathscr{C}^{\infty}$ is Cauchy in H^1 we have by the equivalence of the norms in (24) that $(f_k) \subset \mathscr{C}^{\infty}$ and all $(\partial_j f_k) \subset \mathscr{C}^{\infty}$ for $1 \leq j \leq d$ are Cauchy in L^2 . Hence by exercise 34 we have that $(\widehat{f_k}) \subset \mathscr{S}$ and all $(\widehat{\partial_j f_k}) \subset \mathscr{S}$ for $1 \leq j \leq d$ are Cauchy in L^2 . By considering

$$\|\widehat{f}_{k} - \widehat{f}_{l}\|_{H^{1}} \simeq \|\widehat{f}_{k} - \widehat{f}_{l}\|_{L^{2}} + \sum_{j=0}^{d} \|\partial_{j}\widehat{f}_{k} - \partial_{j}\widehat{f}_{l}\|_{L^{2}}$$
(26)

we infer that it is thus sufficient to show that $\|\partial_j \widehat{f}_k - \partial_j \widehat{f}_l\|_{L^2} \to 0$ for every $1 \le j \le d$, since it was already noted that $\|\widehat{f}_k - \widehat{f}_l\|_{L^2}$ tends to 0. Unpacking this expression leads to

$$\|\partial_{j}\widehat{f}_{k} - \partial_{j}\widehat{f}_{l}\|_{L^{2}} = \left\|\frac{1}{k}\partial_{j}\chi_{k}f_{k} - \frac{1}{l}\partial_{j}\chi_{l}f_{l} + \widehat{\partial_{j}f_{k}} - \widehat{\partial_{j}f_{l}}\right\|_{L^{2}}$$
(27)

$$\leq \left\| \frac{1}{\iota} \partial_j \chi_k f_k - \frac{1}{\iota} \partial_j \chi_l f_l \right\|_{L^2} + \left\| \widehat{\partial_j f_k} - \widehat{\partial_j f_l} \right\|_{L^2} \tag{28}$$

Again we have already noted that the second summand in the final inequality (28) tends to 0 and therefore it is only left to show that the second summand also tends to 0. In order to do that we first define

$$M := \max_{j=1}^{d} \max_{x \in \text{supp}(\chi)} |\partial_j \chi(x)| < \infty$$
 (29)

We finish the proof by estimating

$$\left\|\frac{1}{k}\partial_{j}\chi_{k}f_{k} - \frac{1}{l}\partial_{j}\chi_{l}f_{l}\right\|_{L^{2}} \leq \left\|\frac{1}{k}\partial_{j}\chi_{k}f_{k} - \frac{1}{k}\partial_{j}\chi_{l}f_{l}\right\|_{L^{2}} + \left|\frac{1}{k} - \frac{1}{l}\right| \left\|\partial_{j}\chi_{l}f_{l}\right\|_{L^{2}} \tag{30}$$

$$\leq \frac{M}{k} \left(\|f_k\|_{L^2} + \|f_l\|_{L^2} \right) + M \left| \frac{1}{k} - \frac{1}{l} \right| \|f_l\|_{L^2} \to 0 \tag{31}$$