Binary Linear Codes

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes allow for more efficient encoding and decoding algorithms than other codes such as syndrome decoding.

A subset C of \mathbb{K}^n is called a *linear code*, if C is a subspace of \mathbb{K}^n (i.e., C is closed under addition). A linear code of dimension k contains precisely 2^k codewords.

- 1) The fact that the zero vector is a member of any subspace of a vector space, the zero vector is always a codeword.
- 2) The fact that any subspace of a vector space is closed under addition, the sum of two codewords is another codeword.
- 3) The number of codewords in a linear code C is 2^k .

Proposition 1. In a linear code C, the minimum distance is equal to the minimal weight among all non-zero codewords.

Proof. Let x and y be codewords in C, then $x - y \in C$. We then have d(x, y) = d(x - y, 0) which is the weight of x - y.

<u>♠ Generator Matrix.</u> In coding theory, a generator matrix is a matrix whose rows form a basis for a linear code. The codewords are all of the linear combinations of the rows of this matrix, that is, the linear code is the row space of its generator matrix.

A $k \times n$ matrix G is a generator matrix for some linear code C, if the rows of G are linearly independent; that is if the rank of G equals k. A linear code generated by a $k \times n$ generator matrix G is called a [n, k] code. An [n, k] code with distance d is said to be an [n, k, d] code. If G_1 is row equivalent to G, then G_1 also generates the same linear code G. If G_2 is column equivalent to G, then the linear code G_2 generated by G_2 is not equal to G, but equivalent to G.

Consider the 3×5 generator matrix

$$G = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

of rank 3. By interchanging the first row and the third row, we obtain another generator matrix

$$G_1 = egin{pmatrix} 1 & 0 & 0 & dots & 1 & 0 \ 0 & 1 & 0 & dots & 1 & 0 \ 0 & 0 & 1 & dots & 1 & 0 \end{pmatrix} = egin{bmatrix} I_3 & B \end{bmatrix}$$

for the same linear code. Note that G and G_1 are in reduced row echelon form (\mathcal{RREF}) . This linear code has an information rate of 3/5 (i.e., G and G_1 accept all the messages in \mathbb{K}^3 and change them into words of length 5). The generator matrix $G_1 = [I_3 \quad B]$ is said to be in standard form, and the code C generated by G is called a systematic code. Not all linear codes have a generator matrix in standard form. For example, the linear code $C = \{000, 100, 001, 101\}$ has six generator matrices

$$G_1 = \begin{pmatrix} 100 \\ 001 \end{pmatrix} , \ G_2 = \begin{pmatrix} 001 \\ 100 \end{pmatrix} , \ G_3 = \begin{pmatrix} 100 \\ 101 \end{pmatrix} , \ G_4 = \begin{pmatrix} 001 \\ 101 \end{pmatrix} , \ G_5 = \begin{pmatrix} 101 \\ 100 \end{pmatrix} , \ \text{and} \ G_6 = \begin{pmatrix} 101 \\ 001 \end{pmatrix}.$$

None of these matrices are in standard form. Note that the matrix $G' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ in standard form generates the code $C' = \{000, 100, 010, 110\}$ which is equivalent to C. If G is in \mathcal{RREF} , then any column of G which is equal to the vector e_i is called a *leading column*. If $\mathbf{m} \in \mathbb{K}^k$ is the message and $v = \mathbf{m}G \in \mathbb{K}^n$ is the codeword of a systematic code, then the first k digits of v which represent the message \mathbf{m} are called *information digits*, while the last n-k digits are called *redundancy* or *parity-check* digits. If C is not a systematic code, then to recover the message from a codeword we select the digits corresponding to the leading columns e_1, e_2, \dots, e_k . For example, if $G = \begin{pmatrix} 001 \\ 100 \end{pmatrix} = \begin{bmatrix} e_2 & \theta & e_1 \end{bmatrix}$ and v = 001, then we recover the message $\mathbf{m} = \mathbf{10}$ from the last digit and the first digit of v respectively.

Let S be a subset of \mathbb{K}^n . The set of all vectors orthogonal to S is denoted by S^{\perp} and called the *orthogonal complement* of S. It can readily be shown that S^{\perp} is a linear code. If $C = \langle S \rangle$, then $C^{\perp} = \langle S^{\perp} \rangle$ which is also a linear code is called the *dual code* of C.

Parity-Check Matrix. A matrix H is called a *parity-check matrix* for a linear code C of length n generated by the matrix G, if the columns of H form a basis for the dual code C^{\perp} . If v is a word in C, then $vH = \theta$.

The parity check matrix for a given binary linear code can be derived from its generator matrix (and vice versa). If the generator matrix for an [n,k]-code is in standard form

 $G = (I_k|P)$, then the parity check matrix is given by

$$H = \begin{bmatrix} P \\ I_{n-k} \end{bmatrix}$$
, because $GH = P + P = Z_{k,n-k}$.

For example, if a binary code has the generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \text{ then its parity check matrix is } H = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

A code C is called *self-dual* if $C = C^{\perp}$. In this case n must be even and C must be an (n, n/2) code. If G is a generator matrix of a self-dual code, then $H = G^t$. Both the generator matrices

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad G_1 = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

generate self-dual codes but only G_1 is in \mathcal{RREF} . If $G = [I \ B]$ is a generator of a self-dual code, then $B^2 = I$.

Theorem 1. Let H be a parity-check matrix for a linear code C generated by the $k \times n$ matrix G. Then

- (i) the rows of G are linearly independent;
- (ii) the columns of H are linearly independent;
- (iii) $GH = Z_k$, where Z_k is the $k \times k$ zero matrix;
- (iv) by permuting columns of H, we obtain another parity-check matrix corresponding to G,
- (v) $\dim(C) = \operatorname{rank}(G)$, $\dim(C^{\perp}) = \operatorname{rank}(H)$, and $\dim(C) + \dim(C^{\perp}) = n$;
- (vi) H^t is a generator matrix for C^{\perp} with G^t its parity-check matrix;
- (vii) if C is self-dual with $G = [I_k \ B]$ its generator, then $G_1 = [B \ I_k]$ also generates C;
- (viii) C has distance d if and only if any set of d-1 rows of H is linearly independent, and at least one set of d rows of H is linearly dependent.

Algorithms for Finding Generator and Parity-Check Matrices.

Example 1. Let $S = \{01100, 01010, 11100, 00110\}$ be a subset of \mathbb{K}^5 generating the linear code C. By using the words in S, we define the matrix

$$M = \begin{bmatrix} M_1 \\ M_2 \\ M_3 \\ M_4 \end{bmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

Note that

$$M_1 + M_2 = 0 \ 1 \ 1 \ 0 \ 0 + 0 \ 1 \ 0 \ 1 \ 0 = 0 \ 0 \ 1 \ 1 \ 0 = M_4.$$

Thus the linear binary code C generated by S has dimension 3; so the matrix

$$G = \begin{bmatrix} M_1 \\ M_2 \\ M_3 \end{bmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

is a generator matrix.

Now we use some row operations on G, to obtain a generator matrix in standard form. Let

$$E_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad and \quad E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

be elementary matrices, then

$$G_{1} = E_{3} E_{2} E_{1} G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 1 & 0 & \vdots & 1 & 0 \\ 0 & 0 & 1 & \vdots & 1 & 0 \end{pmatrix}.$$

is a generator matrix in standard form.

To obtain a parity-check matrix of the linear code C, we form the matrix

$$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$$

from the last two columns of G_1 ; the matrix

$$H_1 = \begin{bmatrix} B \\ I_2 \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ \cdots & \cdots \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

will be a parity-check matrix associated to the generator matrix G_1 .

$$G = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

is in RREF but not in standard form.

We permute the columns of G into order 1, 4, 5, 7, 9, 2, 3, 6, 8, 10 to form the matrix

Then we form the matrix H_1 and finally rearrange the rows of H_1 into their natural order to form the parity-check matrix H.

$$H_{1} = \begin{bmatrix} B \\ I_{5} \end{bmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 5 \\ 7 \\ 3 \\ 6 \\ 8 \\ 0 & 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 1 \\ 0 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 & 0 \\ 1 \\ 0 \\ 0 & 0 & 0 \\ 0$$

The columns of H form a basis for C^{\perp} .

 \bigcirc Matlab. To permute the columns of G into order 1, 4, 5, 7, 9, 2, 3, 6, 8, 10 to form the matrix G_1 , first we define the permutation matrix P as follows:

Finally H is obtained as follows:

♠ Maximum Likelihood Decoding (MLD) for Linear Codes. We will describe a procedure for either CMLD, Complete Maximum Likelihood Decoding (no need for a retransmission) or IMLD, Incomplete Maximum Likelihood Decoding (ask for a retransmission) for a linear code.

If $C \in \mathbb{K}^n$ is a linear code of dimension k, and if $u \in \mathbb{K}^n$, we define the coset of C determined by u denoted \hat{u} as follows:

$$\widehat{u} = C + u = \{v + u : v \in C\}.$$

There are as many as 2^{n-k} distinct cosets of C in \mathbb{K}^n of order 2^k , where every word in \mathbb{K}^n is contained in one of the cosets.

Note. A coset leader is a member of the coset with minimum weight. If a coset contains more than one coset leader and if the received word is in that coset, then a retransmission is required.

Theorem 2. Let C be a linear code. Then

- (i) $\widehat{\theta} = C$:
- (ii) if $v \in \widehat{u} = C + u$, then $\widehat{v} = \widehat{u}$;
- (iii) $u + v \in C$ if and only if u and v are in the same coset.

The parity-check matrix and cosets of the code play fundamental roles in the decoding process.

Let C be a linear code. Assume the codeword v in C is transmitted and the word w is received, resulting in the error pattern u = v + w. Then w + u = v is in C, so the error pattern \mathbf{u} and the received word \mathbf{w} are in the same coset of \mathbf{C} . Since error patterns of small weight are the most likely to occur, we choose a word u of least weight in the coset \hat{u} (which must contain w) and conclude that v = w + u was the word sent.

Let $C \in I\!\!K^n$ be a linear code of dimension k and let H be a parity-check matrix. For any word $w \in I\!\!K^n$, the syndrome of w is the word s(w) = wH in $I\!\!K^{n-k}$.

Theorem 3. Let H be a parity-check matrix for a linear code C. Then

- (i) $wH = \theta$ if and only if w is a codeword in C.
- (ii) $w_1H = w_2H$ if and only if w_1 and w_2 lie in the same coset of C.
- (iii) If u is the error pattern in a received word w, then uH is the sum of the rows of H that correspond to the positions in which errors occurred in transmission.

A table which matches each syndrome with its coset leader, is called a *standard decoding array*, or SDA. To construct an SDA, first list all the cosets for the code, and choose from each coset word of least weight as coset leader u. Then find a parity-check matrix for the code and, for each coset leader u, calculate its syndrome uH.

Example. Consider the code $C = \{0000, \ 1011, \ 0101, \ 1110\}$ generated by the generator matrix $G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ with a parity-check matrix $H = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$. Here are members of $I\!\!K^4$ which are not in C:

$$I\!\!K^4-C=\{1000,\ 0100,\ 0010,\ 0001,\ 1100,\ 0110,\ 0011,\ 1001,\ 1101,\ 1101,\ 0111,\ 1111\}$$

From the fact that 16/4 = 4, we conclude that there are 4 cosets associated to the code C. We need the word 0000 and 3 members of $\mathbb{K}^4 - C$ with least weights as our coset leaders. We choose 1000, 0100, and 0010. Here are our cosets:

$$\begin{array}{l}
\widehat{0000} = \{0000, 1011, 0101, 1110\} \\
\widehat{1000} = \{1000, 0011, 1101, 0110\} \\
\widehat{0100} = \{0100, 1111, 0001, 1010\} \\
\widehat{0010} = \{0010, 1001, 0111, 1100\}
\end{array}$$

Notice that $0001 \in \widehat{0010}$. Thus

$$\widehat{0100} = \{0100, 1111, 0001, 1010\} = \widehat{0001}.$$

Here is the \mathcal{SDA} for the code:

Coset leader u	Syndrome uH
0000	00
1000	11
0100 or 0001	01*
0010	10

The syndrome with a * indicates a retransmission in the case of \mathcal{IMLD} . Notice that the set of error patterns that can be corrected using \mathcal{IMLD} is equal to the set of unique coset leaders.

If w = 1101 is received, then the syndrome of w is s(w) = wH = 11. Notice that the word of least weight in the coset \widehat{w} is u = 1000 and the syndrome of u is s(u) = uH = 11 = wH. Furthermore, \mathcal{CMLD} concludes v = w + u = 1101 + 1000 = 0101 was sent, so there was an error in the first digit. Notice also that s(w) = 11 picks up the first row of H corresponding to the location of the most likely error; also the coset leader in the \mathcal{SDA} is 1000. The calculations

$$d(0000, 1101) = 3$$
 $d(0101, 1101) = 1$
 $d(1011, 1101) = 2$ $d(1110, 1101) = 2$

which give the distances between w and each codeword in C, show that indeed v = 0101 is the closest word in C to w.

For the received w = 1111, however, the same calculations

$$d(0000, 1111) = 4$$
 $d(0101, 1111) = 2$
 $d(1011, 1111) = 1$ $d(1110, 1111) = 1$

reveal a tie for the closest word in C to w. This is not surprising, since there was a choice for a coset leader for the syndrome 1111H = 01. In the case of \mathcal{CLMD} , we arbitrarily choose a coset leader, which in effect arbitrary selects one codeword in C closest to w. Using \mathcal{IMLD} , we ask for retransmission.

Here is a binary table for the characters in the English language:

Character	Number	Message	Character	Number	Message
b (space)	0	0 0 0 0 0	\mathcal{P}	16	0 0 0 0 1
\mathcal{A}	1	10000	Q	17	1 0 0 0 1
\mathcal{B}	2	01000	\mathcal{R}	18	0 1 0 0 1
С	3	11000	\mathcal{S}	19	1 1 0 0 1
\mathcal{D}	4	0 0 1 0 0	\mathcal{T}	20	0 0 1 0 1
\mathcal{E}	5	10100	\mathcal{U}	21	10101
\mathcal{F}	6	0 1 1 0 0	\mathcal{V}	22	0 1 1 0 1
\mathcal{G}	7	11100	\mathcal{W}	23	1 1 1 0 1
\mathcal{H}	8	0 0 0 1 0	\mathcal{X}	24	0 0 0 1 1
\mathcal{I}	9	10010	\mathcal{Y}	25	1 0 0 1 1
\mathcal{J}	10	01010	\mathcal{Z}	26	0 1 0 1 1
\mathcal{K}	11	11010		27	1 1 0 1 1
\mathcal{L}	12	0 0 1 1 0	,	28	0 0 1 1 1
\mathcal{M}	13	10110	;	29	1 0 1 1 1
\mathcal{N}	14	01110	?	30	0 1 1 1 1
O	15	11110	!	31	11111

Example. Let C be a binary linear code defined by the following generator matrix G with the parity-check matrix H:

$$\mathcal{G} = \begin{bmatrix} \mathcal{G}_1 \\ \mathcal{G}_2 \\ \mathcal{G}_3 \\ \mathcal{G}_4 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \mathcal{H} = \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \\ \mathcal{H}_5 \\ \mathcal{H}_6 \\ \mathcal{H}_7 \\ \mathcal{H}_8 \\ \mathcal{H}_9 \end{bmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note. The code $\mathcal{C} \subset I\!\!K^9$ is generated by the matrix \mathcal{G} of rank 5 with $2^5=32$ words; and there are exactly

$$\frac{|I\!\!K^9|}{|\mathcal{C}|} = \frac{2^9}{2^5} = 2^4 = 16 \text{ cosets.}$$

Also, it is not difficult to see that C is a (9,5,3) code.

The generator matrix \mathcal{G} encodes any binary message associated with an English character in the above Alphabet table, into a codeword of length 9.

Notice that the product of $e_k \in I\!\!K^9$ by the parity-check matrix \mathcal{H} is \mathcal{H}_k , the k-th row of \mathcal{H} . Any transmission error involving the last 4 digits of the codeword will not alter the meaning of the original message. Thus any syndrome that is a linear combination of the last four columns of \mathcal{H} will be ignored. The fact that \mathcal{C} is a (9,5,3) code, implies that any received word with a syndrome equal to one of the first five rows of \mathcal{H} will be corrected without involving any coset. Therefore there will be fewer number of cosets involved in our error-correcting schemes.

Suppose now, we need to encode and transmit the message \mathcal{M} \mathcal{A} \mathcal{T} \mathcal{H} with the above generator matrix \mathcal{G} .

Step 1. First we change our message into a binary message matrix

$$\mathcal{M} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Step 2. Next, we encode the matrix \mathcal{M} with \mathcal{G} to obtain the codeword matrix \mathcal{V} :

$$\mathcal{V} = \mathcal{M} * \mathcal{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}.$$

Step 3. Suppose after the transmission, the message is received as:

$$\mathcal{W} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Step 4. Since \mathcal{G} is in standard form, the received binary message matrix \mathcal{N} will be obtained from the first five columns of \mathcal{W} :

$$\mathcal{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Step 5. The Alphabet table produces the message $\mathcal{O} \mathcal{A} \mathcal{T} \flat$.

Step 6. The syndrome matrix:

$$\mathcal{S} = \mathcal{W} * \mathcal{H} = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \end{bmatrix}$$

indicates that the first and last characters were not transmitted correctly.

Step 7. Suppose both cosets leaders u_1 and u_4 associated with the syndromes $s_1 = 1 \ 0 \ 1 \ 0$ and $s_4 = 0 \ 1 \ 1 \ 0$, respectively are unique, then $w_1 + u_1$ and $w_4 + u_4$ will produce the correct characters and the message $\mathcal{O} \ \mathcal{A} \ \mathcal{T} \ \flat$ will be changed into the message $\mathcal{M} \ \mathcal{A} \ \mathcal{T} \ \mathcal{H}$.

Step 8. Suppose conditions in Step 7 are not met. In the case of \mathcal{CMLD} , an arbitrary coset leader is selected in order to rectify the error. In the case of \mathcal{IMLD} , a retransmission of any character with a non-zero syndrome, associated with the coset with multiple leaders will be needed.

Note. The fact that our code C has a weight of 3 and $s_1 = 1 \ 0 \ 1 \ 0 = \mathcal{H}_2$ and $s_4 = 0 \ 1 \ 1 \ 0 = \mathcal{H}_4$, we conclude that

which produces the message $\mathcal{M} \mathcal{A} \mathcal{T} \mathcal{H}$.