

Облегчение моделей by design

Елена Тутубалина

Научный сотрудник НИУ ВШЭ, исполнительный директор по исследованию данных, Sber Al

Александр Петюшко

Директор ключевых исследовательских программ, AIRI

AGENDA

Machine Reading Comprehension

Retrieval to the rescue

O3 Entity Linking

01

Machine Reading Comprehension

Machine Reading Comprehension (MRC) as Explainability by initio

- Question Answering (QA): standard NLP task
- Now most of the best QA-systems are generation-based:
 - Means that only large (or even HUGE) decoder is used
 - All the information needed to answer the question is stored inside decoder weights
 - But the output is unexplainable: the model just knows (or not!) the answer
- What we'd like to have: the explainability WHY the system provides this answer
- In terms of MRC it means that the system can provide the relevant text passage (or passages), containing the correct answer
 - And the human can understand whether the system was right about it's guessing
 - At the same time, it can lead to decreasing the model size (usage of a number of small models
 is still more efficient than one huge decoder)

Machine Reading Comprehension: common paradigms

Extraction of knowledge from relevant passage Not possible in real-world

Generation of knowledge^{1,2}
Not scalable, all information
is stored inside MRC
model weights (like T5/GPT-3)

2-stage: <u>first</u> to <u>retrieve</u> the relevant model from outer text corpus, <u>then extract</u> knowledge from this passage

Realistic, explainable and scalable approach

02

Retrieval to the rescue!

Retriever ≠ Reader¹

(a) End-to-end QA accuracy (Exact Match, y-axis on the left) of DPR reader and the retrieval recall rate (y-axis on the right) of DPR retriever.

$$p_{\eta}(z|x) \propto \exp\left(\mathbf{d}(z)^{\top}\mathbf{q}(x)\right)$$

 $\mathbf{d}(z) = \mathsf{BERT}_d(z), \ \mathbf{q}(x) = \mathsf{BERT}_q(x)$

BERT as a Retriever (DPR)

Main idea:

- Retriever is not approx. of Reader: having more data helps a little for the Reader, but then drops quickly
- Retriever is a sort of <u>representational bottleneck</u>
- Can improve Retriever by KD from Reader: helps significantly for retrieval, but not so much for MRC
 - RDR: Reader-distilled Retriever
- KD by aligning similarities doc <> query

Retriever improvement after KD

Dataset	NQ-dev			NQ-test				TriviaQA-test				
Top-k	1	20	50	100	1	20	50	100	1	20	50	100
DPR-Single	44.2 [‡] 54.1 (+9.9)	76.9 [‡] 80.7 (+3.8)	84.1	84.2 85.8 (+1.6)	54.2	78.4 [†] 82.8 (+4.4)	86.3	85.4 [†] 88.2 (+2.8)	62.5	79.4 [†] 82.5 (+3.1)	82.9 85.7 (+2.8)	85.0 [†] 87.3 (+2.3)
SOTA	51.7‡	79.2 [‡]	83.0 [‡]	-	-	79.4 [†]	-1	86.0^{\dagger}	-	79.9 [†]	1-	85.0 [†]

Reader improvement after KD

Dataset		NQ-test		TriviaQA-test			
	Top-1	Report	ed	Top-1	Reported		
<u>-</u>	EM	EM	Top-k	EM	EM	Top-k	
DPR-Single	32.3 37.3 (+5.0)	41.5 42.1 (+0.6)	50 10	44.5 49.1 (+4.6)	56.8 57.0 (+0.2)	50 50	
RAG-Token	39.4 40.9 (+1.5)	44.1 44.5 (+0.4)	15 15	-	55.2	-	

Fusion-in-Decoder (FiD)¹: RB model for MRC

Main idea:

- Retriever: DPR (BERT-doc + BERT-query)
- Reader is seq2seq T5, having query + retrieved doc as an input
 - added special tokens question:, title: and context:
 before the question, title and text of each passage
- Fusion-in-Decoder: output based on N > 1 passages

Retrieval-Augmented Generation (RAG)¹: RB model for MRC

RAG = usual retriever + generator as reader

Main idea:

- End-to-end backprop through retriever AND reader
- **Retriever** is initialized from **DPR**² approach
- Reader is seq2seq BART, having query + retrieved doc as an input
- Generator can provide the output based on 1 passage (Sequence-based) or k > 1 passages (Token-based)
- Better than BERT-based reader, but more heavy (400M vs 110M)

Seq2seq generator (BART) As a Reader

1 passage:
$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) \prod_{i}^{N} p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

k passages:
$$p_{\text{RAG-Token}}(y|x) \approx \prod_{i}^{N} \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

03

Entity Linking

Biomedical Entity Linking

Clinical Trials.gov

Our approach DILBERT

Drug and Disease Interpretation Learning with Biomedical Entity Representation Transformer

Zulfat Miftahutdinov, Artur Kadurin, Roman Kudrin, Elena Tutubalina

DILBERT - Design

- Most of the best biomedical entity linking systems:
 - are trained & evaluated in the single-terminology setting
 - use classification type losses and online processing (a.k.a. readers)
- We focus on cross-terminology mapping of entity mentions to a given lexicon without additional re-training
- Fast, real-time inference -- all concept names from a terminology are cached

DILBERT - Training

 We use triplets of free-form entity mention, positive and negative concept names

Disease mention

Condition or disease 1	Phase 1
NSCLC Non-small Cell Lung Cancer	Phase 2

Positive concept names

Carcinoma, Non-Small-Cell Lung
Non-Small Cell Lung Cancer
Non-Small Cell Lung Carcinoma

The rest of the MeSH dictionary for negative sampling

Carcinoma, Bronchogenic

Lung Neoplasms

Cancer of the Lung

Rhinitis

Let's remove bias!

Fair Evaluation in Concept Normalization: a Large-scale Comparative Analysis for BERT-based Models

Elena Tutubalina, Artur Kadurin, Zulfat Miftahutdinov

- Evaluation of benchmarks: BioCreative V CDR,
 BioCreative II GN, NCBI Disease, and TAC 2017 ADR
- App. 80% entity mentions in the test set are textual duplicates of other entities presented in the test set or train+dev sets
- Divergence in performance between these the original and refined test sets (app. 15%)
- Propose cross-terminology evaluation

https://www.aclweb.org/anthology/2020.coling-main.588.pdf

Experiments

Fusion Brain: Effective Multi-modal Multi-task model

https://github.com/sberbank-ai/fusion_brain_aij2021

