Equilibrium Practice

$$P_4(s) + 5 O_2(g) \rightleftharpoons P_4O_{10}(s)$$

- 1. What is the equilibrium expression for this reaction?
 - (A) $K_c = [P_4O_{10}] / [P_4] [O_2]^5$ (B) $K_c = [P_4O_{10}] / 5 [P_4] [O_2]$ (C) $K_c = [O_2]^5$ (D) $K_c = 1 / [O_2]^5$

$$\begin{aligned} Fe_3O_4(s) + 4 &H_2(g) \rightleftharpoons 3 &Fe(s) + 4 &H_2O(g) \\ \Delta H > 0 &\text{Today} \end{aligned}$$

- 2. For this reaction at equilibrium, which changes will increase the quantity of Fe(s)?
 - 1. increasing temperature YES
 - 2. decreasing temperature No
 - 3. adding Fe₃O₄(s) No
 - (A) 1 only
 - (B) 1 and 2 only
 - (C) 2 and 3 only
 - (D) 1,2, and 3
- 3. Which reaction characteristics are changing by the addition of a catalyst to a reaction to a reaction at constant temperature?
- 1. activation energy
- 2. equilibrium concentrations No
- △H3. reaction enthalpy №°

 - (A) 1 only (B) 3 only
 - (C) 1 and 2 only
 - (D) 1, 2, and 3
 - 4. Which reaction characteristics will be affected by a change in temperature?
 - 1. value of equilibrium constant

2. equilibrium concentrations

- Both.
- (A) 1 only
 - (B) 2 only
 - (C))1 and 2 only
 - (D) neither 1 nor 2

5. What is the relationship between the equilibrium constant (K_c) of a reaction and the rate constants for the foward (kf) and backward Rateronstants (k_b) steps?

$$(A) K_c = k_f k_b$$

(B)
$$K_c = k_b / k_f$$

$$K_c = k_f / k_b$$

(D) $K_c = 1 / (k_f k_b)$

$$(D) K_c = 1 / (k_f k_b)$$

6. Xenon tetrafluoride, XeF₄, can be prepared by heating Xe and F₂ together according to this equation.

$$Xe(g) + 2F_2(g) \rightleftharpoons XeF_4(g)$$

What is the equilibrium expression for this reaction? [Reactorits

(A)
$$K = [XeF_4] / ([Xe][F_2])$$

(B) $K = [XeF_4] / ([Xe][F_2])$

(B)
$$K = [XeF_4] / (2[Xe] [F_2])$$

(C) $K = [XeF_4] / ([Xe] [F_2]^2)$
(D) $K = ([Xe] [F_2]) / [XeF_4]$

7. What is the equilibrium expression for the decomposition of ammonium carbamate, NH₄CO₂NH₂, that occurs according to this equation:

$$NH_4CO_2NH_2(\underline{s}) \rightleftharpoons 2\ NH_3(g) + CO_2(g)$$

- (A) K = [NH₃][CO₂]
- **(B)** $K = [NH_3]^2 [CO_2]$
- (C) $K = [NH_3][CO_2] / [NH_4CO_2NH_2]$
- (D) $K = [NH_3]^2[CO_2] / [NH_4CO_2NH_2]$

8. Which factors will affect both the position of equilibrium and the value of the equilibrium constant for this reaction? The $\Delta H = -92 \text{ kJ}$

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
(A) increasing the volume of the

- container
- (B) adding N₂
- (C) removing NH₃
- D lowering the temperature

Ch 13 Chemical Equilibrium

1. Consider the reaction system, $CoO(s) + H_2(g) \rightleftharpoons Co(s) + H_2O(g)$.

The equilibrium constant expression is

- c)
- Given the equilibrium, 2. $2SO_2(g) + O_2(g) \rightleftarrows 2SO_3(g)$, if this need equilibrium is established by beginning with equal number of moles of SO₂ and O₂ in a 1.0 Liter bulb, then the following *must* be true at equilibrium:
 - (d) $[SO_2] < [O_2]$ a) $[SO_2] = [SO_3]$
 - b) $2[SO_2] = 2[SO_3]$ e) $[SO_2] > [O_2]$
 - c) $[SO_2] = [O_2]$

Questions 3 & 4 refer to the following:

At a given temperature, 0.300 mole NO, 0.200 mol Cl₂ and 0.500 mol ClNO were placed in a 25.0 Liter container. The following equilibrium is established: $2CINO(g) \rightleftarrows 2NO(g) + Cl_2(g)$

At equilibrium, 0.600 mol of ClNO was present. The number of moles of Cl₂ present at equilibrium is

- a) 0.050
- d) 0.200
- b) 0.100
- e) 0.250
- 0.150

PRACTICE

- The equilibrium constant, K_c, is:
 - a) 4.45×10^{-4}
- d) 0.167
- **(b)** 6.67 x 10⁻⁴
- c) 0.111
- At 985°C, the equilibrium constant for the reaction.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

is 1.63. What is the equilibrium constant for the reverse reaction? $K' = \frac{1}{Kc} = \frac{1}{1.63}$

- a) 1.63
- (d) 0.613
- b) 0.815
- e) 1.00
- c) 2.66
- 6. What is the relationship between K_p and K_c for the reaction, $2ICl(g) \rightleftarrows I_2(g) + Cl_2(g)$?

- a) $K_p = K_c(RT)^{-1}$ (d) $K_p = K_c$ b) $K_p = K_c(RT)$ e) $K_p = K_c(2RT)$ c) $K_p = K_c(RT)^2$ $K_p = K_c(RT)^2$

- For the reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$, K_p at 25°C is 7.3, when all partial pressures are expressed in atmospheres. What is K_c for this reaction? [R=0.0821 L·atm·mol⁻¹·K⁻¹]
 - a) 4270
- b) 0.0119
- c) 0.291
- Kp=Ke(RT)an Ke 7.3 [(0,082)(298)]-T

8. 0.200 mol NO is placed in a one liter flask at 2273 K. After equilibrium is attained, 0.0863 mol N₂ and 0.0863 mol O₂ are present. What is K. for this reaction?

is K_c for this reaction? $2NO \supseteq N_2 + O_2$ core $2NO(g) \rightleftarrows N_2(g) + O_2(g)$ $O(g) \rightleftharpoons O(g) + O(g)$ be

- (a) 9.92
- d) 39.7
- b) 3.15

c) 0.0372

- e) 0.576
- [N2][O2] [NO]E
- 9. $N_2O_4(g) \rightleftarrows 2 \ NO_2(g)$ At 25°C, 0.11 mole of N_2O_4 reacts to form 0.10 mol of N_2O_4 and 0.02 mole of NO_2 . At O_4 forms 0.050 mole O_4 of O_4 and 0.12 mole of O_4 . From these data we can conclude
 - M_2O_4 molecules react by a second order rate law.
 - b) N_2O_4 molecules react by a first order rate law.
 - c) the reaction is exothermic.
 - d) N_2O_4 molecules react faster at 25°C than at 90°C.
 - the equilibrium constant for the reaction above increases with an increase in temperature.
 - 10. For the equilibrium system

$$H_2O(g) + CO(g) \rightleftarrows H_2(g) + CO_2(g) + heat$$

increase

 $\Delta H = -42 \text{ kJ/mol}$

Exo

 K_c equals 0.62 at 1260 K. If 0.10 mole each of H_2O , CO, H_2 and CO_2 (each at 1260 K) were placed in a 1.0-Liter flask at 1260 K, when the system came to equilibrium...

	The temperature	The mass of CO
	would	would
(a) /	decrease	increase
b)	decrease	decrease
c)	remain constant	increase
d)	increase	decrease

 $Q = \frac{(.10)(.10)}{(.10)(.10)} = 1$

increase

Q>K will shelf (make readouts) to left (make readouts)

- 11. For the reaction system, $N_2(g) + 3H_2(g) \rightleftarrows 2NH_3(g) + \text{heat}$ the conditions that would favor maximum conversion of the reactants to products would
 - a) high temperature and high pressure
 - b) high temperature, pressure unimportant
 - c) high temperature and low pressure
 - d) low temperature and high pressure
 - e) low temperature and low pressure
- 12. Solid HgO, liquid Hg, and gaseous O₂ are placed in a glass bulb and are allowed to reach equilibrium at a given temperature.

2HgO(s) \rightleftharpoons 2Hg(l) + O₂(g) \triangle H = +43.4 kcal The mass of HgO in the bulb could be increased by

- a) adding more Hg. No effect b) removing some O₂. No shift right
- (c) reducing the volume of the bulb.
- d) increasing the temperature.
- e) removing some Hg. No spect

Answers: (Please use CAPITAL letters)

1.	E	7.	Δ
2.	D	8.	A
3.	\mathcal{C}	9.	E
4.	B	10.	A
5.	D	11.	D
6.	۵	12.	C

Answers: 1E 2D 3C 4B 5D 6D 7D 8A 9E 10A 11D 12C

AP Chemistry	AP	Cher	nistry
--------------	----	------	--------

Name					
Period	Date	1	1		*

Ch 13 Chemical Equilibria

PROBLEM SET

 $K_c = 4.36 \ M^{-1}$ 1. Consider the equilibrium: $2 SO_2(g) + O_2(g) = 2 SO_3(g)$ Calculate the value of "Q" for a situation in which the concentrations are $[SO_2] = 2.00 \, \text{M}$, $[O_2] = 1.50 \, \text{M}$, and $Q = \frac{[50_3]^2}{[50_2]^2[0_2]} = \frac{(1.25 \text{ m})^2}{(2.00\text{m})^2(1.50\text{m})} = 0.260$ $[SO_3] = 1.25 \text{ M}.$

Does this mixture shift toward the reactants or products to reach equilibrium? Toward Products QLK: shifts toward products - numerator increase and 2. Study the discussion in your textbook about converting K_c and K_p. Write the K_p expression for the reaction in

question 1 and calculate its value at 0°C. Remember, R = 0.0821 L atm/mol·K.

Kp = Kc (RT) An $\Delta n = 2 - 3 = -1$ = (4.36)[(0.0821)(273)]-1 = 0.1945

- 3. Consider the equilibrium $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$. How would the following changes affect the partial pressures of each gas at equilibrium? $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$
 - a) addition of PCl₃ b) removal of Cl₂ c) removal of PCl₅ d) decrease in the volume of the container
 - addition of He without change in volume inert gas no effect
- 4. How will each of the changes in question 3 affect the K_{eq} ? (\uparrow =increase; \downarrow =decrease; —= unchanged)

The only thing that changes the K is change in Temp.

5. Indicate how each of the following changes affects the amount of each gas in the system below, for which $\Delta H_{\text{reaction}} = +9.9 \text{ kcal.}$ $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$

a) addition of CO₂ addition of H₂O No sheft

No sheft

Same moles of

gas on both addition of a catalyst increase in temperature decrease in the volume of the container

6. How will each of the changes in question 5 affect the equilibrium constant? a -

> only changed by changes un Transporation 6/ Endotherme AT 1K

7. Consider the equilibrium: $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$ How will the amount of chemicals at equilibrium be affected by

$$2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$$

- a) adding N₂O
- b) removing O₂
- c) increasing the volume of the container
- d) adding a catalyst

1	<u>\</u>		1
1	$\underline{\Psi}$	\leftarrow	V
<u> </u>	1	- >	1

No shift

8. For the reaction,

How will the concentration of each chemical be affected by

- a) adding O₂ to the system
- b) adding N₂ to the system
- c) removing H₂O from the system
- d) decreasing the volume of the container

- $4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(1)$ $\frac{\checkmark}{\uparrow} \qquad \frac{\uparrow}{\uparrow} \qquad \frac{\uparrow}{\uparrow} \qquad \cdots$
- V V > 1
- 9. Consider the equilibrium: $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$ 3.00 moles of NO(g) are introduced into a 1.00-Liter evacuated flask. When the system comes to equilibrium, 1.00 mole of $N_2O(g)$ has formed. Determine the equilibrium concentrations of each substance. Calculate the K_c for the reaction based on these data.

	2 N ₂ O	O_2	4 NO
initial	0	0	3,00 M
change	+1.00 M	+ 0.5M	-2,00M
equilibrium	1.00M	O.SM	1,00 M

Remember: The "ice" box may be used with moles, molarity, or Liters (for gaseous equilibria)... never grams.

$$K_c = \frac{[N_0]^4}{[N_20]^2[O_2]} = \frac{(1.00m)^4}{(1.00)^2(0.5)} = 2.00 M$$