Baze podataka

Predavanja

6. Oblikovanje sheme relacijske baze podataka (1. dio)

Ožujak, 2021.

Oblikovanje sheme baze podataka

- cilj: oblikovati shemu baze podataka s dobrim svojstvima
- karakteristike loše koncipirane sheme baze podataka:
 - redundancija (čije su posljedice):
 - anomalija unosa
 - anomalija izmjene
 - anomalija brisanja
 - pojava lažnih n-torki

Primjer loše koncipirane sheme baze podataka

Prodavaonice šalju svoje narudžbe proizvođaču:

Konzum-7 Ilica 20 10 000 Zagreb

Kraš Ravnice bb 10 000 Zagreb

Narudžba

br. 13/25

datum: 1.5.2018

Molimo isporučite nam 1200 komada proizvoda Napolitanke (šifra 129) i 2000 komada proizvoda Petit beurre (šifra 139)

Spar-28 Bolska 7 21 000 Split

Kraš Ravnice bb 10 000 Zagre

Narudžba

br. **43-21**

datum: 7.2.2018

Molimo isporučite nam 1200 komada proizvoda Napolitanke (šifra 129) i 1800 komada proizvoda Domaćica (šifra 221) Konzum-7 Ilica 20

10 000 Zagreb

Kraš Ravnice bb 10 000 Zagreb

Narudžba

br. **41/56**

datum: 4.2.2019

Molimo isporučite nam 1100 komada proizvoda Napolitanke (šifra 129)

proizvođač želi pohraniti podatke o narudžbama u svoju bazu podataka.
 Svi podaci se pohranjuju u relaciju narudzbaArtikla

narudzbaArtikla

nazProd pbr nazMjesto adresa brNar datNar sifArtikl nazArtikl kolicina

Neracionalno korištenje prostora za pohranu

Sadržaj relacije nakon unosa podataka iz prispjelih narudžbi:

narudzbaArtikla

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100

- na više mjesta se ponavlja isti (redundantan) podatak:
 - Konzum-7 je prodavaonica u Zagrebu
 - adresa prodavaonice Konzum-7 je Ilica 20
 - naziv artikla sa šifrom 129 je Napolitanke
 - naziv mjesta s poštanskim brojem 10000 je Zagreb
 - datum narudžbe s brojem 13/25 je 1.5.2018
 - itd.

Anomalija unosa

narudzbaArtikla

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100

- ne mogu se unijeti podaci o artiklima koje nitko nije naručio
- ne mogu se unijeti podaci o prodavaonicama koje ništa nisu naručile
- svaki put kad se unosi novi podatak o narudžbi nekog artikla, mora se ponovno upisivati i naziv i mjesto i adresa prodavaonice koja taj artikl naručuje
 - pri tome treba paziti da se podaci za istu prodavaonicu uvijek jednako unesu da bi se zadržala konzistentnost podataka

Anomalija izmjena

 ako neka prodavaonica promijeni adresu, promjenu adrese potrebno je obaviti na više mjesta da bi se zadržala konzistentnost podataka

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100

npr. prodavaonica Konzum-7 se preseli jedan kućni broj dalje od centra

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 22	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 22	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 22	41/56	4.2.2019	129	Napolitanke	1100

Anomalija brisanja

brisanjem svih narudžbi za neki artikl gube se podaci o artiklu

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100

 npr. ako se obriše posljednja n-torka o narudžbama artikla Domaćica, podatke o tom artiklu više nećemo imati u bazi podataka

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100

Pokušaj (neuspješni) popravka sheme baze podataka

Podaci o narudžbama će se pohranjivati u dvije relacije

narudzba = $\pi_{\text{nazProd, pbr, nazMjesto, adresa, brNar, datNar, sifArtikl}}$ (narudzbaArtikla) artikl = $\pi_{\text{sifArtikl, nazArtikl, kolicina}}$ (narudzbaArtikla)

narudzba

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129

artikl

sifArtikl	nazArtikl	kolicina
129	Napolitanke	1200
139	Petit beurre	2000
221	Domaćica	1800
129	Napolitanke	1100

- Ovakva shema baze podataka uzrokovat će pojavu lažnih (spurious) n-torki
- dolazi do gubitka informacije!

Pojava lažnih n-torki

 Obavljanjem operacije narudzba ⊳⊲ artikl dobije se više n-torki nego ih je bilo u relaciji narudzbaArtikla (neke n-torke u rezultatu su "lažne" - označene su zvjezdicom)

narudzbaArtikla₂

narudzbaArtikla₂ = narudzba ⊳⊲ artikl ≠ narudzbaArtikla

nazProd	pbr	nazMjesto	adresa	brNar	datNar	sifArtikl	nazArtikl	kolicina
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1200
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	129	Napolitanke	1100
Konzum-7	10000	Zagreb	Ilica 20	13/25	1.5.2018	139	Petit beurre	2000
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1200
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	129	Napolitanke	1100
Spar-28	21000	Split	Bolska 7	43-21	7.2.2018	221	Domaćica	1800
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1100
Konzum-7	10000	Zagreb	Ilica 20	41/56	4.2.2019	129	Napolitanke	1200

 Što bi se dogodilo ako se na temelju relacija narudzba i artikl pokuša izračunati ukupni broj naručenih proizvoda Napolitanke

```
SELECT SUM(kolicina)
FROM narudzba, artikl
WHERE narudzba.sifArtikl = artikl.sifArtikl
AND nazArtikl = 'Napolitanke';
```

Ispravna shema baze podataka

mjesto

pbr	nazMjesto
10000	Zagreb
21000	Split

prodavaonica

nazProd	pbr	adresa
Konzum-7	10000	Ilica 20
Spar-28	21000	Bolska 7

artikl

sifArtikl	nazArtikl
129	Napolitanke
139	Petit beurre
221	Domaćica

narudzba

brNar	nazProd	datNar
13/25	Konzum-7	1.5.2018
43-21	Spar-28	7.2.2018
41/56	Konzum-7	4.2.2019

stavkaNarudzbe

brNar	sifArtikl	kolicina
13/25	129	1200
13/25	139	2000
43-21	129	1200
43-21	221	1800
41/56	129	1100

- Za vježbu provjerite
 - postoji li redundancija u ovoj bazi podataka ?
 - je li moguća pojava lažnih n-torki ?

Kako odrediti zamjenu za loše koncipiranu relacijsku shemu?

- proučavanjem značenja podataka (semantike)
- proučavanjem zavisnosti među podacima
- uvođenjem ograničenja koja su ovisna o semantici podataka

najvažnije su FUNKCIJSKE ZAVISNOSTI

Funkcija

Preslikavanje kod kojeg vrijedi:

svakom članu skupa Ime pridružen je jedan i samo jedan član skupa Dob

Ponavljanje: X-vrijednost n-torke

- Neka je X ⊆ R. n-torka t reducirana na skup atributa X naziva se X-vrijednost n-torke t i označava s t(X)
- Primjer:

```
t = { matBr:102, prez:Novak, ime: Marko }
X = { matBr, prez } X ⊆ R
t(X) = t( { matBr, prez } ) = { matBr:102, prez:Novak }
```

osoba	matBr	prez	ime
_	101	Kolar	Josip
	102	Novak	Marko
t		•	t(X)

Funkcijske zavisnosti - definicija

 Neka je r relacija sa shemom R i neka su X i Y skupovi atributa, X ⊆ R, Y ⊆ R

Funkcijska zavisnost X → Y vrijedi na shemi R ukoliko

u svim dopuštenim stanjima relacije r(R) svaki par n-torki t₁ i t₂ koje imaju jednake X-vrijednosti, također imaju jednake Y-vrijednosti, odnosno:

$$t_1(X) = t_2(X) \Rightarrow t_1(Y) = t_2(Y)$$

Kratica za funkcijsku zavisnost je FZ.

Funkcijske zavisnosti - primjer

relacija osoba(OSOBA)

matBr	prezime	ime	postBr	grad
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
22211	Kolar	Ante	21000	Split
33345	Ban	Tomo	31000	Osijek
23456	Kolar	Ana	31000	Osijek

- Funkcijska zavisnost postBr → grad vrijedi na shemi OSOBA jer svaki par n-torki koje imaju jednake vrijednosti atributa postBr također imaju jednake vrijednosti atributa grad (i to vrijedi ne samo za trenutačno stanje relacije, nego za sva dopuštena stanja relacije)
- Vrijedi li funkcijska zavisnost prezime → postBr?

Funkcijske zavisnosti

- Funkcijske zavisnosti proizlaze iz značenja podataka (semantike), a ne iz trenutačnog stanja relacije!
- Primjer: relacija osoba(OSOBA)

osoba	matBr	prezime	ime	pbr
	11234	Kolar	Ante	21000
	22211	Kolar	Ante	31000
	33345	Ban	Tomo	10000

- promatranjem samo trenutačnog stanja relacije mogli bismo (pogrešno!) zaključiti da vrijedi FZ prezime → ime
- međutim, poznavanjem značenja podataka u relaciji možemo zaključiti da je u gore prikazanu relaciju dopušteno unijeti n-torku < 76555, Kolar, Zrinka, 51000 >
- ⇒ FZ prezime → ime ne vrijedi na shemi OSOBA

Priroda funkcijskih zavisnosti

 Postojanje funkcijske zavisnosti ne može se dokazati na temelju postojećih podataka u relaciji.

 Analizom postojećih podataka u relaciji moguće je tek pretpostaviti da bi funkcijska zavisnost mogla vrijediti.

 Dokaz za postojanje FZ treba tražiti u značenju pojedinih atributa.

Priroda funkcijskih zavisnosti

$$R = \{A, B, C\}$$

r(R)

Α	В	С
а	α	1
b	γ	1
b	α	1
С	α	3
а	α	1

r(R)

А	В	С
а	α	1
b	γ	1
b	α	1
С	α	3
а	α	1

Vrijedi li FZ AB \rightarrow C na shemi R?

- moguće je da vrijedi, ali to ne možemo sa sigurnošću tvrditi
- bez poznavanja značenja atributa A,
 B i C, ne možemo zaključiti koje funkcijske zavisnosti zaista vrijede na shemi R

Vrijedi li FZ BC \rightarrow A na shemi R?

Sa sigurnošću možemo tvrditi: NE

Priroda funkcijskih zavisnosti

- Ako u relacijskoj shemi R vrijedi FZ X → Y, relacija r(R) ne može sadržavati dvije n-torke koje imaju jednake X-vrijednosti i različite Y-vrijednosti
- Primjer: ako u relacijskoj shemi

```
R = { matBr, prezime, grad, telefon }
```

vrijedi FZ matBr → prezime tada relacija r(R) ne smije sadržavati dvije n-torke s istim matičnim brojem i različitim prezimenom

Priroda funkcijskih zavisnosti - primjer

ispit

studenta mbr je na ispitu iz predmeta sifPred na datum datIspit nastavnik sifNast ocijenio ocjenom ocjena

mbr	sifPred	datIspit	sifNast	ocjena
101	10	30.1.2018	1003	1
101	10	15.1.2019	1002	4
102	10	30.1.2018	1001	3
102	11	15.1.2018	1002	5

- vrijedi li FZ mbr sifNast → ocjena
 - ne, jer bi to značilo da nastavnik x studentu y uvijek mora dati istu ocjenu
- vrijedi li FZ mbr sifPred → ocjena
 - ne, jer bi to značilo da student x iz predmeta y mora dobiti uvijek istu ocjenu
- vrijedi li FZ mbr datlspit → ocjena
 - ne, jer bi to značilo da student x na datum y uvijek mora dobiti sve jednake ocjene
- vrijedi li FZ mbr sifPred sifNast → ocjena NE (Zašto?)
- vrijedi li FZ mbr sifPred datIspit → ocjena DA (Zašto?)

Funkcijske zavisnosti - SQL primjer

 pomoću SELECT naredbe ispitati bi li u relaciji ispit eventualno mogla vrijediti FZ
 mbr sifNast → ocjena datIspit

mbr	sifPred	datIspit	sifNast	ocjena
101	10	30.1.2018	1003	1
101	10	15.1.2019	1002	4
102	10	30.1.2018	1001	3
102	11	15.1.2018	1002	5

ispituju se svi parovi n-torki t₁, t₂ koje imaju jednake X-vrijednosti (u primjeru X = { mbr, sifNast })

ispit

 ako postoji par n-torki t₁ i t₂ koje imaju iste X-vrijednosti, a različite Y-vrijednosti (u primjeru Y = { ocjena, datlspit }), tada FZ <u>sigurno ne vrijedi</u>

ako takve n-torke ne postoje, onda FZ možda vrijedi

 Projektant sheme baze podataka specificira FZ koje su mu semantički očite, no obično vrijede i brojne druge FZ koje mogu biti izvedene iz početnih FZ. Korištenjem Armstrongovih aksioma izvode se nove FZ.

ARMSTRONGOVI AKSIOMI

Neka je R relacijska shema, neka su X, Y, Z skupovi atributa i neka vrijedi: $X \subset R, Y \subset R, Z \subset R$

A-1 REFLEKSIVNOST

Ako je Y ⊆ X, tada vrijedi X → Y

A-2 UVEĆANJE

Ako u shemi R vrijedi X → Y, tada vrijedi i XZ → Y

A-3 TRANZITIVNOST

Ako u shemi R vrijedi X → Y i Y → Z, tada vrijedi i X → Z

A-1 REFLEKSIVNOST

- Ako je $Y \subseteq X$, tada vrijedi $X \to Y$
 - uvijek vrijedi $X \rightarrow X$

PRIMJER:	osoba(OSOBA)	matBr	prezime	ime	postBr	grad
		11234	Novak	Josip	21000	Split
		12345	Horvat	Ivan	10000	Zagreb
		23456	Kolar	Ana	31000	Osijek
		34567	Novak	Josip	31000	Osijek

X = { prezime, ime } Y = { prezime }

 $Y \subseteq X \Rightarrow$ u relaciji osoba vrijedi i FZ prezime ime \rightarrow prezime

 $X \subseteq X \Rightarrow$ u relaciji osoba vrijedi i FZ prezime ime \rightarrow prezime ime

A-2 UVEĆANJE

- Ako u shemi R vrijedi $X \rightarrow Y$, tada vrijedi i $XZ \rightarrow Y$
 - možemo uvećati lijevu stranu funkcijske zavisnosti

PRIMJER:

osoba(OSOBA)

matBr	prezime	ime	postBr	grad
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	31000	Osijek

U relaciji osoba vrijedi FZ matBr → ime

- ⇒ u relaciji osoba vrijedi i FZ matBr prezime → ime
- ⇒ u relaciji osoba vrijedi i FZ matBr prezime grad → ime

A-3 TRANZITIVNOST

- Ako u shemi R vrijedi X → Y i Y → Z, tada vrijedi i X → Z
 - X → Z je tranzitivna zavisnost

PRIMJER:

osoba(OSOBA)

matBr	prezime	ime	postBr	grad
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	31000	Osijek

U relaciji osoba vrijede FZ matBr → postBr i postBr → grad

⇒ u relaciji osoba vrijedi i FZ matBr → grad

Neka je R relacijska shema, neka su X, Y, Z, V skupovi atributa i neka vrijedi: $X \subseteq R$, $Y \subseteq R$, $Z \subseteq R$, $V \subseteq R$

P-1 PRAVILO UNIJE (pravilo o aditivnosti)

■ Ako u shemi R vrijedi $X \rightarrow Y$ i $X \rightarrow Z$, tada vrijedi i $X \rightarrow YZ$

P-2 PRAVILO DEKOMPOZICIJE (pravilo o projektivnosti)

Ako u shemi R vrijedi X → YZ, tada vrijedi i X → Y

P-3 PRAVILO O PSEUDOTRANZITIVNOSTI

■ Ako u shemi R vrijedi $X \to Y$ i $VY \to Z$, tada vrijedi i $XV \to Z$

P-1 PRAVILO UNIJE (pravilo o aditivnosti)

Ako u shemi R vrijedi X → Y i X → Z, tada vrijedi i X → YZ

PRIMJER:

osoba(OSOBA)

matBr	prezime	ime	postBr	grad
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	31000	Osijek

U relaciji osoba vrijede FZ matBr → ime i matBr → prezime

⇒ u relaciji *osoba* vrijedi i FZ matBr→ ime prezime

P-2 PRAVILO DEKOMPOZICIJE (pravilo o projektivnosti)

Ako u shemi R vrijedi X → YZ, tada vrijedi i X → Y

PRIMJER:	osoba(OSOBA)	matBr	prezime	ime	postBr	grad
		11234	Novak	Josip	21000	Split
		12345	Horvat	Ivan	10000	Zagreb
		23456	Kolar	Ana	31000	Osijek
		34567	Novak	Josip	31000	Osijek

U relaciji osoba vrijedi FZ matBr → ime prezime

- ⇒ u relaciji *osoba* vrijedi i FZ **matBr**→ **ime**
- ⇒ u relaciji osoba vrijedi i FZ matBr→ prezime

P-3 PRAVILO PSEUDOTRANZITIVNOSTI

Ako u shemi R vrijedi X → Y i VY → Z, tada vrijedi i XV → Z

PRIMJER: zaposlenje(ZAPOSLENJE)

matbr	strSprema	funkcija	zaposlOd	zaposlDo	placa
101	VSS	direktor	1.1.2006	31.12.2007	10000
101	VSS	tajnik	1.1.2008	31.12.2008	8000
102	VŠS	direktor	1.1.2009	31.12.2009	9000
102	VŠS	tajnik	1.1.2006	31.12.2007	7000
103	VSS	direktor	1.1.2010	31.12.2010	10000
101	VSS	direktor	1.1.2011	31.12.2011	10000

U relaciji *zaposlenje* vrijede FZ matbr → strSprema i funkcija strSprema → placa

⇒ u relaciji *zaposlenje* vrijedi i FZ matbr funkcija → placa

Primjer korištenja aksioma i pravila

Uz pretpostavku da na relacijskoj shemi R = { A, B, C, D, E } vrijedi skup funkcijskih zavisnosti F = { A \rightarrow BD, B \rightarrow C, D \rightarrow E }, dokazati da vrijedi FZ AE \rightarrow AC.

Dokaz:

- $A \rightarrow BD$ (P2: dekompozicija) $\Rightarrow A \rightarrow B$
- $A \rightarrow B \land B \rightarrow C$ (A3: tranzitivnost) $\Rightarrow A \rightarrow C$
- (A1: refleksivnost) ⇒ A → A
- $A \rightarrow A \land A \rightarrow C$ (P1: unija) $\Rightarrow A \rightarrow AC$
- A → AC (A2: uvećanje) ⇒ AE → AC

Pravilo o akumulaciji

Sljedeće dodatno pravilo omogućuje "algoritamski" pristup rješavanju sličnih zadataka

PRAVILO O AKUMULACIJI

- Ako u shemi R vrijedi
 - $X \rightarrow VZ$ i $Z \rightarrow W$, tada vrijedi i $X \rightarrow VZW$

Primjer korištenja pravila o akumulaciji

Uz pretpostavku da na relacijskoj shemi R = { A, B, C, D, E } vrijedi skup funkcijskih zavisnosti $F = \{A \rightarrow BD, B \rightarrow C, D \rightarrow E\}$, dokazati da vrijedi FZ $AE \rightarrow AC$.

Označimo lijevu stranu FZ s X (X=AE), a desnu stranu FZ s Y (Y=AC). Dokaz (primjenom A-1, pravila o akumulaciji i P-2):

- 1. korak: $X \rightarrow X$
 - (A1: refleksivnost) ⇒ AE → AE

u sljedećim koracima pomoću pravila akumulacije "uvećavati desnu stranu FZ" sve dok desna strana ne sadrži Y

- 2. $\left\{ \bullet AE \rightarrow AE \land A \rightarrow BD \text{ (akumulacija)} \Rightarrow AE \rightarrow AEBD \right\}$
- 3. $\left\{ \bullet AE \rightarrow AEBD \land B \rightarrow C \text{ (akumulacija)} \Rightarrow AE \rightarrow AEBDC \right\}$

u zadnjem koraku, kad (i ako) desna strana FZ sadrži Y
 4. { ■ AE → AEBDC (P2: dekompozicija) ⇒ AE → AC

Primjer korištenja pravila o akumulaciji (za vježbu 1)

R = { L, M, N, P, Q, R }, F = { Q \rightarrow R, M \rightarrow PQ, PQL \rightarrow N } dokazati da vrijedi FZ MLR \rightarrow QN.

- (A1: refleksivnost) ⇒ MLR → MLR
- MLR → MLR ∧ M → PQ (akumulacija) ⇒ MLR → MLRPQ
- MLR → MLRPQ ∧ PQL → N (akumulacija) ⇒ MLR → MLRPQN
- MLR → MLRPQN (P2: dekompozicija) ⇒ MLR → QN

Primjer korištenja pravila o akumulaciji (za vježbu 2)

R = { L, M, N, P, Q, R }, F = { Q \rightarrow R, M \rightarrow PQ, PQL \rightarrow N } dokazati da vrijedi FZ MQ \rightarrow LN.

- (A1: refleksivnost) ⇒ MQ → MQ
- MQ → MQ ∧ Q → R (akumulacija) ⇒ MQ → MQR
- MQ → MQR ∧ M → PQ (akumulacija) ⇒ MQ → MQRP
- ne postoji FZ kojom bi se moglo nastaviti "uvećavati desnu stranu"
- \Rightarrow MQ \rightarrow LN ne vrijedi

Ključ entiteta, ključ relacije

- entitet je bilo što, što ima suštinu ili bit i posjeduje značajke s pomoću kojih se može razlučiti od svoje okoline
- ključ entiteta sadrži one atribute koji omogućuju da se pojedini entiteti mogu razlučiti od okoline
- relacijom se opisuje skup entiteta

Ključ relacije je skup atributa koji nedvosmisleno određuje n-torke relacije.

 Ključ relacije ima svojstvo da funkcijski određuje atribute u preostalom dijelu relacije

Ključ relacije

- Image: ključ relacijske sheme R je skup atributa K, K ⊆ R, koji image: sljedeća svojstva:
 - 1. $K \rightarrow (R \setminus K)$ (također vrijedi i $K \rightarrow R$)
 - ključ funkcijski određuje atribute u preostalom dijelu relacijske sheme
 - 2. ne postoji K' \subset K za kojeg vrijedi K' \rightarrow R
 - ključ je <u>minimalan</u> skup atributa koji funkcijski određuje atribute u preostalom dijelu relacijske sheme

Ključ relacije - primjer

matBr	prezime	ime	postBr	grad
11234	Novak	Josip	21000	Split
12345	Horvat	Ivan	10000	Zagreb
23456	Kolar	Ana	31000	Osijek
34567	Novak	Josip	10000	Zagreb

```
\begin{split} \text{Ključ: } \mathsf{K}_{\mathsf{OSOBA}} = \{ \text{ matBr} \} \\ \\ \text{matBr} \to \mathsf{prezime} \\ \text{matBr} \to \mathsf{ime} \\ \text{matBr} \to \mathsf{postBr} \\ \text{matBr} \to \mathsf{grad} \\ \\ & \mathsf{Za} \ \mathsf{K} = \{ \text{ matBr, prezime} \} \ \mathsf{također} \ \mathsf{vrijedi} \\ & \mathsf{K} \to \{ \text{ ime, postBr, grad} \}, \\ & \mathsf{ali} \ \mathsf{K} \ \mathsf{nije} \ \mathsf{ključ} \ \mathsf{jer} \ \mathsf{postoji} \ \mathsf{K'} = \{ \text{ matBr} \}, \ \mathsf{K'} \subset \mathsf{K}, \\ & \mathsf{za} \ \mathsf{kojeg} \ \mathsf{vrijedi} \\ & \mathsf{K'} \to \{ \text{ prezime, ime, postBr, grad} \} \end{split}
```

Ključevi relacije

- mogući ključevi (candidate key)
- primarni ključ (primary key)
 odabire se jedan od mogućih ključeva
- alternativni ključevi (alternate key) ostali mogući ključevi

PRIMJER:

djelatnik

matBr	prezime	ime	OIB
11234	Novak	Josip	15707332975
12345	Horvat	Ivan	69435151530
23456	Kolar	Ana	59351332978
34567	Novak	Josip	42794313596

- mogući ključevi:
 - { matBr }
 - { OIB }
- primarni ključ: { matBr }
- alternativni ključ: { OIB }

Struktura relacije

- Relacijska shema sastoji se od:
 - atributa koji su dio ključa (ključni atributi, ključni dio relacije)
 - atributa iz zavisnog dijela relacije (neključni atributi, neključni dio relacije)

PRIMJER:

djelatnik

primarni ključ: { matBr }

alternativni ključ: { OIB }

matBr	prezime	ime	OIB
11234	Novak	Josip	15707332975
12345	Horvat	Ivan	69435151530
23456	Kolar	Ana	59351332978
34567	Novak	Josip	42794313596

- ključni atributi, ključni dio relacije:
 - matBr
 - OIB
- neključni atributi, neključni dio relacije:
 - prezime
 - ime

Zadatak:

- Odrediti moguće ključeve, primarni ključ, alternativne ključeve, ključni dio relacije, neključni dio relacije
 - uzeti u obzir da klub tijekom istog dana može igrati najviše jednu utakmicu

utakmicaPrvenstva

domaci	gosti	datum	rezultat
Arsenal	Liverpool	12.06.2018	2:1
Arsenal	Liverpool	08.03.2019	2:1
Newcastle	Everton	08.03.2019	3:3
Everton	Liverpool	22.03.2019	4:0
Liverpool	Everton	05.04.2019	5:2