- 1. Определить длину диагоналей параллелограмма, построенного на векторах a = p 3 q, b = 5p + 2 q, если известно, что $p = 2\sqrt{2}$, $q = 3 u \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \pi/4$
- 3. Найти взаимное расположение прямых I_1 : $\frac{x-1}{-2} = \frac{y}{1}$ и $I_2 = \frac{x+2}{1} = \frac{y}{0}$. При этом, если $I_1 \parallel I_2$ найти расстояние $\rho(I_1,I_2)$ между прямыми, а если прямые пересекаются, то найти косинус угла между ними и точку M_0 пересечения прямых.
- 4. Исследуйте взаимное расположение плоскостей P_1 : -x + 2y z + 1 = 0 и P_2 : y + 3z 1 = 0. При этом, если $P_1 \parallel P_2$, найти расстояние $\rho(P_1, P_2)$ между плоскостями, а если плоскости пересекаются, то найти косинус угла между ними.
- 5. Записать каноническое уравнение эллипса, если эксцентриситет $e = \frac{1}{2}$ и расстояние между директрисами равняется 32.

- 1. Задан вектор $\vec{a} = (-1,2,0)$. Вычислите \vec{a} и координаты орта \vec{a} вектора \vec{a}
- 2. Найти вектор \dot{x} , коллинеарный вектору $\dot{a}=\dot{i}-2\dot{j}-2\dot{k}$ и такой, который образует с ортом \dot{j} острый угол и имеет длину $\dot{x}=15$
- 3. Прямая І задана точкой $M_0(-1,2) \in I$ и вектором нормали n=(2,2). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Вычислите объем пирамиды, ограниченной плоскостью Р:

- 2x 3y + 6z 12 = 0 и координатными плоскостями.
- 5. Постройте гиперболу $16x^2 9y^2 = -144$. Найдите полуоси, координаты фокусов, эксцентриситет, уравнения директрис.

- 1. Задан вектор a = (-1,2,0). Вычислите cos (a, j)
- 2. Найти вектор x , который образует с ортом j угол 60° , с ортом k 120° , при условии, что $\left|x\right| = 5\sqrt{2}$
- 3. Прямая І задана точкой $M_0(2,1) \in I$ и вектором нормали n=(2,0). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Исследуйте взаимное расположение плоскостей P_1 : 2x y + z 1 = 0 и P_2 : -4x + 2y 2z 1 = 0. При этом, если $P_1 \parallel P_2$, найти расстояние $\rho(P_1,P_2)$ между плоскостями, а если плоскости пересекаются, то найти косинус угла между ними.
- 5. Напишите каноническое уравнение гиперболы, если c=10 и уравнения асимптот у = $\pm \frac{4}{3}$ х.

- 1. Заданы вектора $a_1 = (-1,2,0)$, $a_2 = (3,1,1)$, $a_3 = (2,0,1)$. Вычислите координату х вектора a , если $a = a_1 2$ $a_2 + \frac{1}{3}$ a_3 .
- 2. При каких значениях α и β вектора $a = -2i + 3j + \alpha k$ и $b = \beta i 6j + 2k$ коллинеарные

- 3. Прямая І задана точкой $M_0(1,1) \in I$ и вектором нормали n=(2,-1). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Составить уравнение плоскости P, которая проходит через точку A(1, 1, -1) и перпендикулярна к плоскостям P_1 : 2x y + 5z + 3 = 0 и P_2 : x + 3y z 7 = 0.
- 5. Напишите каноническое уравнение гиперболы, если эксцентриситет равен $\frac{3}{2}$ и расстояние между директрисами равно $\frac{8}{3}$.

- 1. Заданы вектора $a_1 = (-1,2,0)$, $a_2 = (3,1,1)$, $a_3 = (2,0,1)$. Вычислите $\pi p_{_j}$ a, если $a_1 = a_1 2 a_2 + \frac{1}{3} a_3$.
- 2. Заданы три вершины A(3,-4,7), B(-5,3,-2) иC(1,2,-3) параллелограмма ABCD. Найти его четвертую вершину D, противолежащую B.
- 3. Прямая I задана точкой M₀(-1,2) ∈ I и направляющим вектором s = (3,-1). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Прямая L задана общими уравнениями. Написать для этой прямой каноническое уравнение и уравнение в отрезках. L: $\begin{cases} 2x-y+2z-3=0 \\ x+2y-z-1=0 \end{cases}$
- 5. Докажите, что $16x^2 9y^2 64x 54y 161 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

прямой.

- 1. Заданы вектора a = 2 i + 3 j. Найти координаты орта a_0
- 2. Заданы две смежные вершины параллелограмма A(-2,6), B(2,8) и точка пересечения их диагоналей M(2,2). Найти две другие вершины.
- 3. Прямая I задана точкой M₀(1,1) ∈ I и направляющим вектором s = (0, -1). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до
- 4. Прямая L задана общими уравнениями. Написать для этой прямой каноническое уравнение и уравнение в отрезках. L: $\begin{cases} x+2y-3z-5=0 \\ 2x-y+z+2=0 \end{cases}$
- 5. Докажите, что $16x^2 9y^2 64x 54y 161 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

- 1. Заданы вектора a=2i+3j, b=-3i-2k, c=i+j-k. Найти координаты вектора $d=a-\frac{1}{2}b+c$
- 2. Определите координаты вершин треугольника, если известны середины его сторон: K(2,-4), M(6,1), N(-2,3)
- Прямая I задана точкой M₀(-1,1) ∈ I и направляющим вектором s = (2,0). Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Написать каноническое уравнение прямой L, которая проходит через точку $M_0(2,0,-3)$ параллельно прямой L_1 : $\begin{cases} 3x-y+2z-7=0\\ x+3y-2z-3=0 \end{cases}$.
- 5. Докажите, что $16x^2 9y^2 64x 54y 161 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

- 1. Заданы вектора $a=2\ i\ +3\ j$, $b=-3\ i\ -2\ k$. Найти $\pi p_{_{i}}$ (a-b)
- 2. На оси абсцисс найти точку M, расстояние от которой до точки A(3,3) равно 5.
- 3. Найти взаимное расположение прямых I_1 : x + y 1 = 0 и I_2 : $\frac{x}{2} = \frac{y+1}{-2}$. При этом, если $I_1 \parallel I_2$ найти расстояние $\rho(I_1,I_2)$ между прямыми, а если прямые пересекаются, то найти косинус угла между ними и точку M_0 пересечения прямых.
- 4. Задана прямая L: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ и точка M(0, 1, 2) ∉ L (проверить). Необходимо написать уравнение плоскости P, которая проходит через прямую L и точку M.
- 5. Докажите, что $16x^2 9y^2 64x 54y 161 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

<mark>Вариант 9</mark>

- 1. Найти координаты орта а $_{0}$, если а = (6,7,-6)
- 2. На оси ординат найти точку M, равноудаленную от точек A (1,-4,7) и B(5,6,-5)
- 3. Прямая I задана двумя точками $M_1(1,2)$ и $M_2(-1,0)$. Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Задана прямая L: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ и точка M(0, 1, 2) \notin L (проверить). Необходимо написать уравнение плоскости P, которая проходит точку M перпендикулярно прямой L.

5. Напишите каноническое уравнение гиперболы, если эксцентриситет равен $\frac{3}{2}$ и расстояние между директрисами равно

Вариант 10

- 1. Вектор a = 2i + 3j + zk. Найти z, если a = 12
- 2. Заданы вершины треугольника A(3,-1,5), B(4,2,-5) $\,_{
 m HC}$ (4,0,3). Найти длину медианы, проведенной из вершины A.
- 3. Найти взаимное расположение прямых I_1 $_{11}I_2$. При этом, если I_1 $_{12}I_2$ найти расстояние $\rho(I_1,I_2)$ между прямыми, а если прямые пересекаются, то найти косинус угла между ними и точку M_0 пересечения прямых.

$$I_1: x - y + 1 = 0$$
 $I_2: 2x - 2y + 1 = 0$

- 4. Задана прямая L: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ и точка M(0, 1, 2) \notin L (проверить). Необходимо написать уравнение перпендикуляра, опущенного с точки M на прямую L.
- 5. Напишите каноническое уравнение гиперболы, если c=10 и уравнения асимптот у = $\pm \frac{4}{3}$ х.

- 1. Найти длину вектора p = 3 a 5 b + c, если a = 4 i + 7 j + 3 k, b = i + 2 j + k, c = 2 i - 3 j - k.
- 2. Отрезок с концами в точках A(3,-2) иB(6,4) разделен на три равные части. Найти координаты точек деления.

- 3. Найти взаимное расположение прямых I_1 : -2x + y 1 = 0 и I_2 : 2y + 1 = 0. При этом, если $I_1 \parallel I_2$ найти расстояние $\rho(I_1,I_2)$ между прямыми, а если прямые пересекаются, то найти косинус угла между ними и точку M_0 пересечения прямых.
- 4. Задана прямая L: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ и точка M(0, 1, 2) ∉ L (проверить). Необходимо найти расстояние от точки M до прямой L.
- 5. Постройте гиперболу $16x^2 9y^2 = -144$. Найдите полуоси, координаты фокусов, эксцентриситет, уравнения директрис.

1. Заданы вектора a=2i+3j, b=-3i-2k, c=i+j-k. Найти координаты вектора $d=a+b-\frac{1}{2}c$

- 2. Определить координаты концов отрезка AB, который точками C(2,0,2) $_{\rm M}B(5,-2,0)$ разделен на три равные части.
- 3. Задана прямая I: x + y + 1 = 0 и точка M(0, -1). Необходимо вычислить расстояние $\rho(M, I)$ от точки M до прямой I, написать уравнение прямой I', которая проходит через точку M параллельно заданной прямой I.
- 4. Задана поверхность P:x + y-z = 0 и прямая L: $\frac{x-1}{0} = \frac{y}{2} = \frac{z+1}{1}$,

причем $L \notin P$ (проверить). Необходимо вычислить $\sin (P,L)$ и координаты точки пересечения прямой и плоскости.

5. Докажите, что $4x^2 + 3y^2 - 8x + 12y - 32 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

1. Вектор a = i + z j + k. Найти z, если a = 9

- 2. Отрезок с концами в точках A(1,5) иB(-2,3) разделен на три равные части. Найти координаты точек деления.
- 3. Прямая І задана двумя точками $M_1(1, 1)$ и $M_2(1, -2)$. Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Задана поверхность P:x + y-z = 0 и прямая L: $\frac{x-1}{0} = \frac{y}{2} = \frac{z+1}{1}$, причем L \notin P (проверить). Необходимо написать уравнения плоскости Q, которая проходит через прямую L перпендикулярно плоскости P.
- 5. Докажите, что $16x^2 + 25y^2 + 32x 100y 284 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

- 1. Найти координаты орта а ₀, если а = (2,5, 2)
- 2. Известны вершины треугольника *ABC*: A(1,5), B(2,3) ${}_{\rm H}C(3,6)$. Определить координаты точки пересечения медиан.
- 3. Прямая I задана двумя точками $M_1(2,2)$ и $M_2(0,2)$. Написать уравнение прямой, свести его к общему виду, построить график прямой, найти расстояние от начала координат до прямой.
- 4. Задана поверхность P:x + y-z = 0 и прямая L: $\frac{x-1}{0} = \frac{y}{2} = \frac{z+1}{1}$, причем L \notin P (проверить). Необходимо написать уравнение проекции прямой на плоскость P.
- 5. Докажите, что $5x^2 + 9y^2 30x + 18y + 9 = 0$ эллипс. Для него найти полуоси, эксцентриситет, уравнения директрис.

1. Задан вектор a = (3,1,1). Вычислите $\cos (a,j)$

- 2. Известны вершины треугольника *ABC*: A(-1,-2), B(0,3) ${}_{1}C(3,0)$. Определить координаты точки пересечения медиан.
- 3. Задана прямая I: -2x + y 1 = 0 и точка M(-1, 2). Необходимо вычислить расстояние $\rho(M, I)$ от точки M до прямой I, написать уравнение прямой I', которая проходит через точку M перпендикулярно заданной прямой I.
- 4. Найти расстояние между параллельными прямыми L₁:

$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z}{2} \text{ M L}_2: \frac{x-7}{3} = \frac{y-1}{4} = \frac{z-3}{2}$$

5. Напишите каноническое уравнение эллипса, если *c*=2 и расстояние между директрисами равно 5.

- 1. Найти направляющие косинусы вектора p = 3 a 5 b + c, если a = 4 i + 7 j + 3 k, b = i + 2 j + k, c = 2 i 3 j k.
- 2. Найти координаты четвертой вершины квадрата *ABCD*, если известны координаты вершин A(-5,3,4), B(-1,-7,5), C(6,-5,-3).
- 3. Задана прямая I: 2y + 1 = 0 и точка M(1,0). Необходимо вычислить расстояние $\rho(M,I)$ от точки M до прямой I, написать уравнение прямой I', которая проходит через точку M перпендикулярно заданной прямой I.
- 4. Для какого значения λ плоскость P:5x 3y + λ z + 1 = 0 будет параллельна прямой L: $\begin{cases} x-4z-1=0 \\ y-3z+2=0 \end{cases}$.
- 5. Постройте эллипс $9x^2 + 25y^2 = 225$. Найдите полуоси, координаты фокусов, эксцентриситет, уравнения директрис.