Query Planning: Part 1

Basic Architecture

- * Application Layer what most users see, talks SQL
- Parsing/Planning Layers the intelligence NEXT
- * Runtime or execution
 Layer the brawn
- Storage Layer where data resides, may include simple access layer

Applications

Parsing

Planning

Processing

Data Access

Data in SSD/FIDD

Simple Example

* SELECT last_name, first_name FROM presidents
WHERE num = 42;

Step 1: Parsing

SELECT last_name, first_name
FROM presidents
WHERE num = 42;

- * The SQL is given to a parser that makes a parse tree
- * simple syntax errors

Step 2: Resolving the references

- The references are looked up in the catalog a.k.a.
 (data dictionary)
- errors if things are not found
- * E.g.
 - presidents table/view must exist
 - * last_name, first_name, num have to be columns from presidents table/ view

SELECT last_name, first_name FROM presidents WHERE num = 42; select db1.presidents.last_name db1.presidents.first_name db1.presidents Equal db1.presidents.num 42 (int)

System Catalog

- * Set of tables that maintain metadata
 - * Users/Databases/Schemas
 - Tables, Views (names, # columns, view_def/pointer to file)
 - Indexes (name, table(s), columns, kind)
 - Attributes (name, type, nullability)
 - Access Rights
 - * Statistics
 - User defined functions
 - *****

Resolution Process

- * The Planner has to issue (highly optimized) queries against the catalog to get all the needed information
- * Multiple iterations (e.g. once we get a view, we need to get all the view references resolved)
- * At the end: no views etc.
 - * all references are to base tables and their columns

SQL-ParseTree-RA Operator Tree

SELECT last_name, first_name
FROM presidents
WHERE num = 42;

The Optimization Process

- * Goal: To generate a query execution plan that is as optimal as practicable
- * Both rules-based and cost-based
- * Rules-based where the more optimal option is clear
- Cost-based where the options have to be compared
- * Think of it as transformation of "original RA" tree to an augmented (and hopefully optimal)RA tree

Basic SPJ Query

- * This query has the three basic relational algebra operations
- * select i.e. condition
- project i.e. choosing a subset of columns and keeping distinct values
- * join (equi-join) on FK-PK relationship

An SPJ Query

Query Optimization

- * Goal: to find equivalent relational operator tree that would produce the desired result using least resources and/or most quickly
- * If the equivalent transformation is "obvious" then we can create a rule, e.g. "push selections to the table"
- * If the equivalent transformations are not obvious we need to compare costs of different ways of doing things

Cost Estimation

- * Cost: number of I/O's + CPU + messaging
 - * I/O costs dominate
 - * All proportional to size of input being processed
 - * Row size (easy!) x number of rows (hard)
- * Estimate I/O cost for performing operation given the input estimates, but CPU cost are usually estimated too
- * Then produce the output size estimate (cardinality + row size) and whether it's sorted (and the sort key)
- * Pipelining can affect the I/O cost

Result Size Estimation - Single Table

- * Est. Result Size = # Rows * Estimated Reduction Factor
- * WHERE column = value
 - Estimate: #Rows * (1/#unique values)
 - #unique values estimated from statistics
 - * statistics on the column would normally keep number of unique values, min, max and possibly a histogram
 - could sample a page
 - * else default to something, say #Rows * (1/10)

Result Size Estimation - contd.

- * WHERE column > value
 - * Estimate: #Rows * [(max value) / (max min)]
 - * needs with basic statistics or histogram
- * WHERE column IN (v1, v2)
 - * same as column = v1 OR column = v2
 - * Add up the equality estimates
 - heuristic: limit to #Rows/2

Data Distribution

- Basic Statistics
 - * min = 0
 - * max = 14
 - * #unique = 14
 - * #rows = 45

Using Statistics

- * Basic Statistics
 - * min = 0
 - * max = 14
 - * #unique = 14
 - * #rows = 45

- * Estimate # rows
 - * value = 7
 - * value > 12
 - * value in (5,11)

(Equi-width) Histogram

- Basic Statistics
 - * min = 0
 - * max = 14
 - * #unique = 14
 - * # rows = 45

(Equi-height) Histogram

- Basic Statistics
 - * min = 0
 - * max = 14
 - * #unique = 14
 - * #rows = 45

Join Size Estimation

- * Cross Join of R, S, #rows = #rows(R) * #rows(S)
- * WHERE R.column1 = S.column2
 - Assuming PK-FK join
 - * i.e. joining columns are a key to one of the tables
 - * #rows in result = min(#rows(R), #rows(S))

Join Size Estimation - General

- Assume A is the joining attribute
 - * n_A(R) and n_A(S) are number of unique values of A in R and S respectively
- * For a row r in R, it would join with $\#rows(S)/n_A(S)$
 - * => total row estimate is #rows(R)*#rows(S)/n_A(S)
 - * By symmetry it's also #rows(R)*#rows(S)/n_A(R)
- * Normally we expect $n_A(S)=n_A(R)$, but if there are non-joining values, one would use the smaller of the two estimates
- Note that this gives the same estimate for FK-PK case
- Non-equijoins are estimated cross joins followed by estimate for the individual conditions

Join Size Estimation and Histograms

* Histograms make the estimates more accurate

$$Estimate = \sum_{bucket=1}^{n} n(R) * n(S) / max(n_A(R), n_A(S))$$

* No Histogram Estimate = 144, Actual Value = 223

Equi-width Histogram Estimate

Bucket	Freq	Estimate
0-2	8	21.3
3-5	4	5.3
6-8	15	75.0
9-11	3	3.0
12-14	15	75.0
	45	179.7

Equi-depth Histogram Estimate

Bucket	Freq	Estimate
0-3	9	20.3
4-6	6	12.0
7-7	8	64.0
8-13	13	28.2
14-14	9	81.0
	45	205.4

Other Estimates

- Projection/Group By estimate
 - Very hard unless there is direct statistics available for the group by/projected columns, sampling is of limited help
- Set operations fairly approximate
 - * UNION: #rows(R) + #rows(S)
 - * INTERSECT: min(#rows(R), #rows(S))
 - * EXCEPT: #rows(R)
- Outer joins upper bounds
 - * R left outer join S: estimate(R join S) + #rows(R), ROJ is symmetric
 - * FULL OJ: estimate(R join S) + #rows(R) + #rows(S)

Histograms

- * Besides nRows, min, max, unique count, capture the distribution of data
- * For each bucket
 - frequency for range of values
 - * number of unique values in bucket
- * equi-depth vs. equi-width
- equi-depth usually captures more information by keeping more details about frequent values
- * Some databases may even keep separate info for modal value

Transformations

- * Two expressions are equivalent if and only if they produce the same result on every legal instance
- * The goal is to find the least costly but equivalent expression for evaluating the query
- * Most are intuitive

Selections & Projections

- * $\sigma_{c1^{c2}}(R) = \sigma_{c1}(\sigma_{c2}(\sigma_{c3}(R)))$
- * since \land is commutative $\sigma_{c1} \circ c2(R) = \sigma_{c2} \circ c1(R)$
 - $* => \sigma_{c1}(\sigma_{c2}(R)) = \sigma_{c2}(\sigma_{c1}(R))$
- reason why we convert conditions to CNF
- * A sequence of projections can be reduced to final one
 - * $\pi_{L1}(\pi_{L2}(\pi_{L3}(R))) = \pi_{L1}(R)$

Joins and Cross Products

- * Cross product and natural (equi-) join are commutative $R \times S = S \times R$ and $R \bowtie S = S \bowtie R$
- * They are also associative $R \times (S \times T) = (R \times S) \times T$ and $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$
- * Together, we can join them in any order we choose

Other SPJ Equivalences

- * $\sigma_{c1}(\pi_{L1}(R)) = \pi_{L1}(\sigma_{c1}(R))$ if selection only needs attributes retained by projection
- * $\sigma_c(R \bowtie S) = \sigma_c(R) \bowtie S$ if c contains attributes from R only
- * Generalizing the above pushing conditions through joins
 - * $\sigma_{c1^{c}2^{c}3}(R \bowtie S) = \sigma_{c1}(\sigma_{c2}(R) \bowtie \sigma_{c2}(S))$
 - * where c2 contains attributes only from R
 - * c3 contains attributes only from S
 - * c1 contains attributes from both

Other SPJ Equivalences

- Pushing Projections
 - * $\pi_L(R \bowtie_c S) = \pi_{L1}(R) \bowtie_c \pi_{L2}(S)$ where
 - * L1 is subset of attributes of R that are in L
 - * L2 is subset of attributes of S that are in L
 - * All attributes in C must be there in L
- Generalizes to
 - * $\pi_L(R \bowtie_c S) = \pi_L(\pi_{L1}(R) \bowtie_c \pi_{L2}(S))$ where
 - * L1 is subset of attributes of R that are in L or C
 - * L2 is subset of attributes in S that are in L or C

Basic Optimization Strategy

- Enumerate alternative plans
- Pick the best (least estimated cost)
- * Equivalences are the basis for alternate plans. This is combined with alternative operator algorithms and alternate ways to access a single table

Single Table Access

- Enumerate all ways to evaluate a single table access
 - * Scan and evaluate condition
 - * Use the primary (clustered) index if applicable
 - * Use one secondary index if applicable
 - * Use multiple secondary indices if applicable
 - * Use other structures (e.g. materialized views) if applicable

Joins

- left right asymmetry in hash and nested loop
- * Assume hash and sort-merge
- * 2 table joins => $R \bowtie S$ (hash), $S \bowtie R$ (hash), $R \bowtie S$ (SM)
- * 3 tables just one algorithm, ignore asymmetry
 - * $R \bowtie (S \bowtie T), (R \bowtie S) \bowtie T, (R \times T) \bowtie S$