ACM Symposium on Parallel in Algorithms and Architectures CONFERENCE SPAA 2020

Sara Bizjak | Bor Brecelj | Zala Erič | Laura Guzelj Blatnik

Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Marec 2021

O KONFERENCA SPAA

Tema: hkratno izvajanje operacij računalniškega sistema.

Nameni in cilji:

- interes in obiskovanost,
- poglobiti razumevanje paralelne izračunljivosti.

Tematike člankov: teorija in praksa

- paralelni in porazdeljeni algoritmi ter podatkovne strukture,
- energetsko učinkoviti modeli,
- upravljanje množičnih podatkovnih nizov,
- vzporedna teorija zapletenosti,
- večjedrni sistemi,
- ...

SPAA 2020

Termin: 14. - 16. julij 2020, 32. izvedba, prvič virtualna.

Članki:

- prijavljeni: 127,
- sprejeti: 41 običajnih + 27 prispevkov.

Urnik in potek:

- prvi dan: delavnice in vaje,
- drugi in tretji dan: 12 sej s predstavitvami člankov.

Nagrajen članek:

Sublinear Algorithms in T-interval Dynamic Networks, Irvana Jahja in Haifeng Yuja.

OPTIMAL PARALLEL ALGORITHMS IN THE

BINARY-FORKING MODEL

Avtorji: G. E. Blelloch, J. T. Fineman, Y. Gu in Y. Sun.

Opažanje: vzporedne algoritme ponavadi analiziramo v modelu

PRAM.

Problem: model PRAM ni realističen.

Rešitev: optimalni algoritmi za nekaj problemov v

binary-forking modelu.

Problem		Work	Span
List Contraction	Sec 3	O(n)	$O(\log n)^*$
Sorting	Sec 4	$O(n \log n)^{\dagger}$	$O(\log n)^*$
Semisorting	Sec 4	$O(n)^{\dagger}$	$O(\log n)^*$
Random Permutation	Sec 6	$O(n)^{\dagger}$	$O(\log n)^*$
Range Minimum Query	Sec 7	O(n)	$O(\log n)$
Tree Contraction	Sec 8	O(n)	$O(\log n)^*$
Ordered-Set Operations	Sec 5	$O(m\log(\frac{n}{m}+1))$	$O(\log n)$
(Union, Intersect, Diff.)			

OPTIMAL RESOURCE ALLOCATION FOR ELASTIC AND INELASTIC JOBS

Avtorji: B. Berg, M. Harchol-Balter, B. Moseley, W. Wang in J. Whitehouse.

Problem: slabo izkoriščeni resursi v podatkovnih centrih.

Ideja: najti optimalno strategijo za dodeljevanje opravil, če jih ločimo na elastična in neelastična.

Rešitev:

- velikost neelastičnih opravil enaka kot elastičnih ⇒ Neelastična-prvo je optimalna strategija.
- ullet velikost neelastičnih opravil $ve\check{c}ja$ kot elastičnih \Rightarrow Neelastična-prvo je boljša strategija
- velikost elastičnih opravil večja kot elastičnih ⇒
 Elastično-prvo je boljša strategija.

RANDOMIZED INCREMENTAL CONVEX HULL IS HIGHLY PARALLEL

Avtorji: G. E. Blelloch, Y. Gu, J. Shun in Y. Sun.

Problem: paralelizacija algoritma za reševanje problema inkrementalne konveksne lupine točk.

Ideja: dva neodvisna robova lahko v množico dodamo istočasno.

Rešitev: predstavljen algoritem za reševanje problema in dokaz, da je algoritem paralelen z globinsko odvisnostjo $\mathcal{O}(\log n)$.

SLIKA: Dodajanje robov pri reševanju problema konveksne lupine.