

Simulating Dead-End State Distributions for Microbial Metabolism

"Microbial ecology ... and other rabbit holes"

Nathan Malamud¹, Dr. Stilianos Louca^{1,2}
¹University of Oregon, ²Department of Biology

Background

• Microbial metabolic chemistry can be represented using the following equation:

$$\frac{dC}{dt} = \mathbb{S} \cdot \boldsymbol{H} \tag{Eq. 1}$$

 \boldsymbol{C}_m – concentration of metabolite m

 \mathbb{S}_{mn} - stoichiometric coefficient of metabolite m in reaction n

 \boldsymbol{H}_n - kinetic rate of metabolic reaction n

<u>Dead-End State</u>: a set of metabolite concentrations that makes all reactions energetically unfavorable.

$$\boldsymbol{C}^*$$
 such that $\Delta \boldsymbol{G}_n \ge 0$ for $1 \le n \le N$ (Eq. 2)

 \boldsymbol{c}^* – a dead-end state of **Eq. 1**

 ΔG_n – Gibbs Free Energy yield of reaction n

N – total number of chemical reactions

Figure 1: Finding a dead-end state for **Eq. 1** is analogous to finding an exit point through a complex energetic maze.

Solving The Maze: A Computer-Based Approach

• **Central Question**: what can these deadend states tell us about the ecosystem being modelled by **Eq. 1**?

Our Approach:

- 1. Run *a lot* of random-walk simulations
- 2. View graph of possible outcomes

Figure 2: A reaction-centric model consisting of 6 metabolites and 6 chemical reactions.

Figure 3: Bifurcation diagram of possible end states for the model presented in **Figure 2.** The end-states were plotted with respect to varying initial oxygen (O_2) concentrations.

Primary References:

- Louca, Scranton, Taylor., Astor., Crowe, & Doebeli (2019). Circumventing kinetics in biogeochemical modeling. PNAS 116: 11329-11338
- Louca, & Doebeli (2016). Reaction-centric modeling of microbial ecosystems. *Ecological Modelling* 335: 74-86
- 3. Press, Teukolsky, Vetterling &, Flannery (2007). Integration of Ordinary Differential Equations: Runge-Kutta Method. *Numerical Recipes: The Art of Scientific Computing* (pp. 907-910). Cambridge University Press.

Acknowledgements:

U of O Center for Undergraduate Research
and Engagement - SURF fellowship 2021
U of O Office of the Vice President for Research and

Innovation - UROP Grant for Talapas Supercomputer (Unutilized)

Professors: Stilianos Louca, Mike Harms, and Samantha Hopkins