COMP1694
Artificial Intelligence

Lecture 9: Machine Learning an introduction

Agents that Plan

Reflex Agents

Reflex agents:

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Consider how the world IS

Can a reflex agent be rational?

Planning Agents

Planning agents:

- Ask "what if"
- Decisions based on (hypothesised) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE
- Optimal vs. complete planning
- Planning vs. replanning

Alone in the world!

The Crawler!

Big Data

Data ≠ Knowledge

What is Machine Learning?

Learning Algorithm

Knowledge

Machine Learning principle

Study (design and analysis) of algorithms that

improve their performance P

at some task T

with experience *E*

well-defined learning task: <P,T,E>

Learning Algorithm

Knowledge Performance on task

Human Learning spot the Tufas

Tufa Experience Josh Tenenbaum 2010

Performance

Human Learning what's the animal?

Learning is...

- Memorising something.
- Learning facts through observation and exploration.
- Improving motor and/or cognitive skills through practice.
- Organising new knowledge into general, effective representations

Learning denotes changes in a system that enable the system to do task(s) from the same projection more efficiently next time.

Herbert Simon, 1983

Machine Learning in Action

Can criminal behaviour be predicted using

brain scans? University of New Mexico and Mind Research Network

Machine Learning principle

Study (design and analysis) of algorithms that

improve their performance P

at some task T

with experience *E*

well-defined learning task: <P,T,E>

Learning Algorithm

Knowledge Performance on task

Machine Learning

Tasks – Experience – Performance

Supervised learning

- given a set of example input/output pairs, find a rule that does a good job of predicting the output associated with a new input
- training data includes both the input and desired results

Unsupervised learning

- given a set of examples, but no labelling of them, group them into clusters
- no output datasets are provided, instead the data is clustered into different classes

Reinforcement learning

- agents interacting with the world make observations, take actions and are
 rewarded/punished goal is to take actions to obtain maximum reward
- learning from actions/reactions

Supervised Learning

Feature Space X

Label Space Y

"Sports"
"News"
"Science"
"Technology"

Share Price "£ 28.4"

Discrete Labels
Classification

Continuous Labels
Regression

Task: Given $X \in X$, predict $Y \in Y$

Unsupervised Learning

AKA "learning without a teacher"

Feature Space X

Word distribution (probability of a word)

Task: Given $X \in X$, learn f(X)

Unsupervised learning

• Clustering – group similar things eg. images [Gong, Y, et al (2015)]

Unsupervised learning

Dimensionality Reduction / Embedding

Reinforcement Learning

Reinforcement Learning

• Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Reinforcement Learning

- Assume a Markov Decision Process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')

• Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Online Learning

Model-Based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a $\widehat{T}(s, a, s')$
- Normalize to give an estimate of
- Discover each $\widehat{R}(s,a,s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$

T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

$\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10 ...

Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Machine Learning

Tasks – Experience – Performance

Training Data vs Test Data

Training Data

- Footballer
- Not
- O Test Data

- A good ML algorithm:
 - does not overfit training data (classifier2)
 - generalises well to test data

Machine Learning

Tasks – Experience – Performance

Performance Measures

- For a random test data, measure the closeness between true label Y and prediction f(X)
 - Binary classification :

Loss(Y,
$$f(X)$$
) = 1 { $f(X)$) \neq Y}

0 or 1 loss

Loss
$$(Y, f(X)) = (f(X)) - Y)^2$$

Square loss

Recap

 Machine learning deals with the problem of extracting features from data so as to solve many different predictive tasks:

INBOX

- Decision making (e.g. robotics, games, compiler tuning, trading)
- Forecasting (e.g. Energy demand prediction, finance)
- Imputing missing data (e.g. Netflix recommendations)
- Detecting anomalies (e.g. Security, fraud, virus mutations)
- Classifying (e.g. Credit risk assessment, cancer diagnosis)
- Ranking (e.g. Google search, personalization)
- Summarizing (e.g. News zeitgeist, social media sentiment)

When to apply machine learning

- Human expertise is absent (e.g. Navigating on Mars)
- Creating rational NPCs and agents (e.g. virtual reality games)
- Humans are unable to explain their expertise (e.g. Speech recognition, vision, language)
- Solution changes with time (e.g. Tracking, temperature control, preferences)
- Solution needs to be adapted to particular cases (e.g. Biometrics, personalisation)
- The problem size is to vast for our limited reasoning capabilities (e.g. Calculating webpage ranks, matching ads to facebook pages)

Further Reading and interesting resources

Learning

- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig,
 3rd Edition, Chapter 5, Section 18
- eBook available here: http://cessa.khu.ac.ir/wpcontent/uploads/2015/12/Artificial-Intelligence-A-Modern-Approach-3rd-Edition.pdf

Reinforcement learning

- Russell and Norvig, Chapter 5 section 21
- https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

Further Reading and interesting resources

- Tom Mitchell's book on Machine Learning 1997
 - (things have moved on since then, but a good read)
 http://personal.disco.unimib.it/Vanneschi/McGrawHill_-_Machine_Learning_ Tom_Mitchell.pdf
- Machine learning in action
 - DeepMind: https://www.youtube.com/watch?v=TnUYcTuZJpM
 - AlphaGo, Mastering the game of Go with Deep Neural Networks & Tree Search:
 https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
 - Google DeepMind playing <u>Breakout</u>, <u>Pac-Man</u>
- AiGameDev Community of game developers focusing on Al http://aigamedev.com/

Further Reading useful APIs

WEKA

 Weka is a collection of machine learning algorithms for data mining tasks http://www.cs.waikato.ac.nz/ml/weka/

