Задание №2.3. Ядерный персептрон

Рассмотрим задачу бинарной классификации с метками классов $y \in \{0,1\}$. Персептрон использует гипотезу вида $h_{\theta}(x) = g(\theta^T x)$, где g(z) = sign(z). Напомним, что sign(z) = 1, если $z \geq 0$, и ноль в противном случае. В данном упражнении мы рассмотрим алгоритм обучения персептрона, похожий на стохастический градиентный спуск, когда градиент для обновления веса θ вычисляется на основе всего лишь одного примера из обучающей выборки. Разница будет заключаться в том, что наш алгоритм обучения будет делать всего лишь один проход по всей обучающей выборке. Правило обновления весов для указанной версии алгоритма обучения персептрона выглядит следующим образом:

$$\theta^{(i+1)} \coloneqq \theta^{(i)} + \alpha \left(y^{(i+1)} - h_{\theta} \left(x^{(i+1)} \right) \right) x^{(i+1)},$$

где $\theta^{(i)}$ — это значение параметров после того, как алгоритм обработал первые i примеров из обучающей выборки. В самом начале мы инициализируем $\theta^{(0)}$ нулями.

Вопрос №1 [1 балл]

Пусть K- это ядро Мерсера, соответствующее какой-либо трансформации ϕ очень высокой размерности. Предположим, что размерность ϕ настолько высока (может даже равна ∞), что явно вычислять и работать с вектором значений $\phi(x)$ не представляется возможным. Опишите, как бы вы использовали «трюк с ядром», чтобы заставить персептрон работать с вашим пространством признаков, задаваемым трансформацией ϕ , без явного вычисления ϕ .

Замечание: Можете не беспокоиться о свободном члене. Можете считать, что $\phi(x)_0 = 1$.

Ваше описание должно включать следующие пункты.

- 1. Каким образом вы будете (неявно) представлять вектор параметров $\theta^{(i)}$, в том числе и его изначальное значение $\theta^{(0)}$. Заметьте, что теперь $\theta^{(i)}$ является вектором той же размерности, что и вектор признаков $\phi(x)$.
- 2. Как можно эффективно делать прогноз на новом значении x. То есть как вы будете вычислять $h_{\theta^{(i)}}(x) = g\left(\theta^{(i)}{}^T\phi(x)\right)$, используя ваше представление $\theta^{(i)}$.
- 3. Как нужно модифицировать правило обновления весов θ , приведенное выше, чтобы обновлять эти веса, получив очередной пример обучающей выборки $(x^{(i+1)}, y^{(i+1)})$.

Вопрос №2 [3 балла]

Peaлизуйте свои идеи в коде с помощью функций initial_state, predict и update_state, шаблоны которых приведены в файле perceptron.py.

Мы предоставили два ядра – линейное и гауссово. Запустите perceptron.py, чтобы обучить свой «ядерный» персептрон на выборке train.csv. Скрипт после этого протестирует полученную модель на выборке test.csv и сохранит результаты в файл (в том числе и графики). Добавьте оба графика в файл-отчет, подписав, какой график какому ядру соответствует.

Вопрос №3 [1 балл]

Одно из данных вам ядер показывает очень плохую точность классификации. Какое именно и почему, как вы думаете, это происходит?