Analysis of covariance

- ANOVA: explanatory variables categorical (divide data into groups)
- lacktriangle traditionally, analysis of covariance has categorical x's plus one numerical x ("covariate") to be adjusted for.
- PROC GLM handles this too.
- Simple example: two treatments (drugs) (a and b), with before and after scores.
 - Does knowing before score and/or treatment help to predict after score?
 - Is after score different by treatment/before score?

Data

Treatment, before, after:

- a 5 20
- a 10 23
- a 12 30
- a 9 25
- a 23 34
- a 21 40
- a 14 27
- a 18 38
- a 6 24
- a 13 31
- b 7 19
- b 12 26
- b 27 33
- b 24 35
- b 18 30
- b 22 31
- b 26 34
- b 21 28
- b 14 23
- b 9 22

SAS code

```
options linesize=75;

data drugs;
  infile "ancova.dat";
  input drug $ before after;

proc means;
  class drug;

proc glm;
  class drug;
  model after = drug before drug*before;
```

- Get means of before and after scores for each treatment.
- Make sure drug treated as categorical ("class")
- Before score treated as numeric by default
- Interaction means "effect of before score on after score is different for each treatment". Fit this first.

The means

The MEANS Procedure

drug	N Obs	Variable	N	Mean	Std Dev
a	10	before after	10	13.1000000 29.2000000	6.0452001 6.6131183
b	10	before after	10 10	18.0000000 28.1000000	7.1492035 5.4660569

- Mean "after" score slightly higher for treatment A.
- Mean "before" score much higher for treatment B.
- Greater *improvement* on treatment A.

Testing for interaction

Dependent Variable:	after	The GLM	Procedure		
Dependent variable	ar cer		Sum of		
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	558.5668744	186.1889581	27.09	<.0001
Error	16	109.9831256	6.8739453		
Corrected Total	19	668.5500000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
drug	1	6.0500000	6.0500000	0.88	0.3621
before	1	540.1797947	540.1797947	78.58	<.0001
before*drug	1	12.3370798	12.3370798	1.79	0.1991
Source	DF	Type III SS	Mean Square	F Value	Pr > F
drug	1	1.2105592	1.2105592	0.18	0.6803
before	1	552.3578682	552.3578682	80.36	<.0001
before*drug	1	12.3370798	12.3370798	1.79	0.1991

Taking out interaction

- Take out non-significant interaction.
- Assuming linear dependence of after score on before score has same slope for both treatments (though possibly different intercept).
- Get predicted means for "after" score depending on drug and before.
- Also get means for treatments "adjusted" for before score.
- Code:

```
proc glm;
  class drug;
  model after = drug before;
  output out=z predict=pred;
  lsmeans drug;

proc print data=z;
```

Results

Dependent Variable: after					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	2	546.2297947	273.1148973	37.96	<.0001
Error	17	122.3202053	7.1953062		
Corrected Total	19	668.5500000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
drug	1	6.0500000	6.0500000	0.84	0.3720
before	1	540.1797947	540.1797947	75.07	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
drug	1	115.3059567	115.3059567	16.03	0.0009
before	1	540.1797947	540.1797947	75.07	<.0001

Interpreting the output

- Requires care!
- Model as a whole is significant.
- Type I SS says "is each variable significant when added in order: that is:
 - drug added to a model containing nothing (not sig)
 - before added to model containing only drug (sig)
- Not really what we want to know.
- Type III SS: "can I take this variable out of a model containing everything?" Answer in both cases no. Interpretation: once you allow for before score, there is a significant difference between treatments. (But if you don't allow for before score, there isn't.)

LS-means

Sample means for each treatment close:

drug	N Obs	Variable	N	Mean	Std Dev
a	10	after	10	29.2000000	6.6131183
b	10	after	10		5.4660569

"Least squares means": mean score for each treatment, after allowing for difference in before scores:

The GLM Procedure
Least Squares Means
drug after LSMEAN
a 31 2273292

a 31.2273292 b 26.0726708

Treatment A noticeably (significantly) better than B, once you allow for before score.

Looking at the predictions

Some of them, arranged in before score order:

Obs	drug	before	pred
4	a	9	25.8073
3	a	12	28.2898
7	a	14	29.9447
8	a	18	33.2547
6	a	21	35.7371
20	b	9	20.6527
12	b	12	23.1351
19	b	14	24.7901
15	b	18	28.1000
18	b	21	30.5824

- Prediction for treatment A about 5 units higher than for treatment B at the same before score same difference as between LSMEANS.
- Consistent because no interaction.
- If interaction had been included, A might be higher for some before scores and B higher for others: clouds interpretation.