Total No.	of (Questions	:	6	
-----------	------	-----------	---	---	--

SEAT No:	

P183

APR -17/ TE/Insem.-19 T.E. (E & TC)

[Total No. of Pages :2

INFORMATION THEORY & CODING TECHNIQUES (2012 Course) (Semester - II)

Time: 1 Hour | [Max. Marks: 30]

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Use of calculator is allowed.
- 3) Assume suitable data if necessary.
- **Q1)** a) Find entropy H(x), H(y) and Mutual information of channel where channel matrix is given as

$$P(y/x) = \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}$$

Take
$$P(x_1) = 0.4$$
, $P(x_2) = 0.6$. [6]

b) Why we need source coding techniques explain with example. [4]

OR

- **Q2)** a) Derive channel capacity of binary symmetric channel and find capacity of channel if $P(y_1/x_1) = 0.5$. [5]
 - b) Encode the following source using Huffman coding techniques & calculate code efficiency.

Probability of symbols =
$$\begin{bmatrix} 1/4, & 1/8, & 1/16, & 1/16, & 1/16, & 1/16, & 1/16, & 1/16, & 1/16 \end{bmatrix}$$
.[5]

Q3) a) A Gaussian channel has 2MHz bandwidth. Calculate the channel capacity if the signal power to noise spectral density ratio is 10⁻⁵ Hz. Also find the maximum information rate at which information can be transmitted. [4]

b) For a (6,3) LBC, following generator matrix is used

[6]

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- i) Find error correction & detection capability of the code.
- ii) Is this a perfect code? Justify.

OR

Q4) a) Explain information capacity theorem.

[4]

b) For a systematic LBC, the three parity check digits C_4 , C_5 and C_6 are given by **[6]**

$$C_4 = d_1 \oplus d_2 \oplus d_3$$

$$C_5 = d_1 \oplus d_2$$

$$C_6 = d_1 \oplus d_3$$

- i) Construct generator matrix.
- ii) Construct code generated by this matrix.
- iii) Determine error correcting capability.
- **Q5)** a) Find primitive elements using primitive polynomial $f(x) = x^4 + x + 1$ which defines a finite field GF(2⁴). [6]
 - b) Draw the encoder for a (7, 4) cyclic Hamming code generated by the generator polynomial $G(x) = 1 + x + x^3$. [4]

OR

- **Q6)** a) Find minimal polynomial of GF(8) whose trans field is GF(2) with primitive polynomial $x^3 + x + 1$.
 - b) For a (7, 4) cyclic code find out the generator matrix if $G(x) = 1 + x + x^3$.

