Research for IncRNA Library Generation kits TaKaRa _ SMARTer pico

Hu Xi 2018-12-28 Mechanism of remove ribosomal cDNA(SMARTer pico kit)

- Removal of ribosomal cDNA after cDNA synthesis using probes specific to mammalian rRNA.
- These R-Probes hybridize to ribosomal RNA and mitochondrial rRNA sequences
- The ribosomal cDNA is then cleaved by ZapR in the presence of the mammalian-specific R-Probes

Contents

- 1. Summary of current methods for removing rRNA (principle)
- With Hongke Wang

- 2. Summary and comparison with SMARTer pico kit
- 3. Compare the principle of the two methods in the cDNA phase (PDD&DSN / DASH&Cas9)
- 4. Probe design method for PDD&DSN
- 5. Probe design & generation method for DASH&Cas9
- 6. Compare the differences between the two methods
- 7. Designed a feasible test method

1.Summary of current methods for removing rRNA (principle)

Depletion of abundant sequences

Summary from papers

Biotinylated capture probe —— rRNA

RNase H & DNase I digestion — rRNA

Commercial kits

Illumina' s RiboZero/Qiagen GeneRead rRNA depletion /Lexogen RiboCop /NEBNext rRNA depletion /Roche /Kapa RiboErase /Takara/Clontech' s RiboGone

Probe-Directed Degradation (PDD)&Duplex-specific nuclease(DSN)

Depletion of Abundant Sequences by Hybridization (DASH)& CRISPR/Cas9

Biotinylated capture probe

Thermo RiboMinus:

Step 1

Step 2

Step 3

RNase H & DNase I digestion

Vazyme Ribo-off rRNA Depletion Kit

 RNase H is an endoribonuclease that specifically hydrolyzes the phosphodiester bonds of RNA which is hybridized to DNA. This enzyme does not digest single or double-stranded DNA.

Probe-Directed Degradation (PDD)&Duplex-specific nuclease

Archer et al. BMC Genomics 2014

DSN(Duplex-specific nuclease)shows a strong preference for cleaving double-stranded **(ds) DNA** and **DNA** in **DNA-RNA** hybrid duplexes, and is practically inactive towards single-stranded (ss) DNA or single or double-stranded RNA.

Depletion of abundant sequences _ CRISPR/Cas9

Gu et al. Genome Biology 2016

2. Summary and comparison with SMARTer pico kit

Method	Stage	Input	Performance	<u></u>	lote
Biotinylated capture probe	RNA	>100ng	~ 87%	Biotinylated probe : rRNA / Streptavidin Beads	Ribo-Zero™ Magnetic Gold Kit(Human/Mouse/Rat), 24 Rxns
RNase H & DNase I digestion	RNA	5ng to 1ug	~ 99%	Probes : rRNA / RNase H	NEBNext rRNA Depletion Kit (Human/Mouse/Rat) 6 Rxns
PDD & DSN (2014)	ssDNA	500ng (start)	~ 94%	Probes: cDNA / DSN;	Incubation temperature: 75°C—48°C(Gradient cooling),1h Termination condition: stop solution
DASH&Cas9 *	dsDNA	<10ng	~ 99%	sgRNA: cDNA / "NGG" PAM motif: Cas9	Incubation temperature : 37°C , 2h ; Termination condition : heat or stop solution
TaKaRa/Clontech SMARTer pico*	dsDNA	250 pg to 10 ng	~ 95%	R-Probes : cDNA / ZapR	Incubation temperature : 37°C , 1h ; Termination condition : heat

*samples from plasma ** E-mail consultation

100 ng RNA 1 ng RNA **RNA input** Depletion RiboZero **SMARTer** NEBNext Ultra II KAPA. Library Directional Directional Directional Total RNA kit RNA Ubrary kit RNA kit Kit abbreviations: RZ = RiboZero Gold, LX = Lexogen RiboCop, Q = Diagen GeneRead rRNA Depletion, NE = NEBNext rRNA Depletion, K=Kapa RiboErase, CR = Clontech Ribogone, CZ = SMARTer Pico total RNA

Zachary T. Herbert et al. BMC Genomics 2018

Wenying Pan, et al. Clinical chemistry. 2017

3.Compare the principle of the two methods in the cDNA phase (PDD&DSN / DASH&Cas9)

OUTPUT

PCR Amplification selection wanted size sequence

4.PDD&DSN Probes design

NCBI BLAST ApE (A Plasmid Editor, v2.0.47)/Biopython (www.biopython.org)

Define number of PDD probes

Calculate optimal probe density

The maximum inter-probe distance=the minimum library insert size - 20 nt

The period (distance from the start of one probe to the start of the next) = this distance + the minimum probe length

Allow coverage of nearly 10 kb of target sequence using 50 probes

Identify regions of cross-homology in the target transcript

Enter the target sequence

Choose the species

"Optimize for" → "somewhat similar sequences (blastn)"

Database:refseg rna

Algorithm parameters:

"Max target sequences" to 10000;

"Expect threshold" to 100000;

"word size" to 7;

"match/mismatch scores" to 1/-4;

"Gap costs" to "existence: 5 extension: 2"

Results export as an "XML"

BLAST

find short stretches of high homology to other transcripts in the target RNA

Highlight cross-homology in ApE

Python script: blast2ape.py

https://github.com/stu2/xml2ape

In ApE:

Download the BLAST hit table text file

Paste the target RNA sequence → save it

Add the xml2ape.Py script

Execute the script

Produce an ApE file

Select probes in ApE

5.DASH&Cas9 sgRNAs design & generation

https://zlab.bio/guide-design-resources

6. Compare the differences between the two methods

CONTENT	PDD&DSN	DASH &Cas9	
Probes types	DNA, ~15nt	RNA,~20nt (targets sequences)	
Probes preparation method	Company synthesis	Company synthesis & Self preparation	
Probe storage condition	-20C°, 12 months	-80°°, 6 months	
Target sequence sequence condition	>35nt, Suitable for IncRNA-seq	no request, Suitable for IncRNA-seq & smRNA-seq	
Ability to remove Adapter dimer**	YES	YES	
Key reagents	DSN(Evrogen,EA003-10U):¥1820/10 reactions HEPES-KOH (Sigma, H0527-25G):¥644.67	MEGAscript™ T7 Transcription Kit (Invitrogen, AM1333):¥3122/25 reactions TURBO™ DNase (Invitrogen, AM2238):¥1805/500 reactions MEGAclear™ Transcription Clean-Up Kit (Invitrogen, AM1908):¥1720/50 reactions S. pyogenes Cas9(PNABio,CPO2-250ug):¥2540.27/50 reactions NEBuffer™ 3.1(B7203S):¥235.2/2500 reactions	

**Adapter dimer vs Primer dimer

7. Designed a feasible test method

Samples: Standard RNA, such as Spike In

Methods: Choose two RNA sequences

