Ivan Wand

Please show all your work! Answers without supporting work will not be given credit. Clearly label your problems on separate paper.

 25^{1} . (28 points) Given the matrices A, B, and C:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ -4 & 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 3 & 2 & -2 & 3 \\ -1 & 0 & 3 & 3 \\ 2 & 1 & 2 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 & 1 & 2 & 7 \\ 0 & 3 & 1 & -3 & 6 \\ 0 & 0 & 4 & 2 & 1 \\ 0 & 0 & 0 & -2 & 11 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Compute the following determinants.

b) det(B) c) det(C) d) $det(A^2)$ e) det(2B) f) det(A) + det(C)a) det(A)

dp+(x)=

2. (16 points) Consider the following vectors in \mathbb{R}^3 :

$$ec{b_1} = \left[egin{array}{c} 1 \ 4 \ 1 \end{array}
ight], \quad ec{b_2} = \left[egin{array}{c} 1 \ -1 \ 0 \end{array}
ight], \quad ec{b_3} = \left[egin{array}{c} -1 \ 0 \ 1 \end{array}
ight], \quad ec{u} = \left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight]$$

The set $\beta = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ is a basis for \mathbb{R}^3 .

(a) Compute $[\vec{u}]_{\beta}$, the coordinate vector of \vec{u} relative to the basis β .

(b) Let
$$\vec{w} \in \mathbb{R}^3$$
 be a vector such that $[\vec{w}]_{\beta} = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$. Compute the vector \vec{w} .

3. (16 points) Decide which of the following sets of vectors are subspaces of \mathbb{R}^3 . Justify your answers.

- (a) The set V_2 consisting of all vectors such that $a_1 \geq a_2$.
- such that $a_1^2 + a_2^2 + a_3^2 = 9$. (b) The set V_3 consisting of all vectors
- a_1 such that $a_1 = a_3 = 0$. (c) The set V_1 consisting of all vectors a_3

4. (20 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false explain why or give a counterexample.

- (a) If a square matrix A has the property that $A^TA = I$, then the only possibility is $\det(A)=1$.
- (b) No set of 4 vectors spans \mathbb{R}^5 .
- (c) If $\beta = \{\vec{b}_1, \vec{b}_2, \cdots \vec{b}_n\}$ is a basis for a vector space V, then the equation $c_1\vec{b}_1 + c_2\vec{b}_2 + \cdots + \vec{b}_n = \vec{0}$ has an infinite number of solutions.
- (d) The set of vectors $\{x+1, x^2+2, -1-x\}$ from \mathbb{P}_2 is a linearly dependent set.

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 2 \\ -4 & 1 & 2 \end{bmatrix}$$

$$Jet(A) = I \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} - 2 \begin{bmatrix} 2 & 2 \\ -4 & 2 \end{bmatrix} + I \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix}$$

$$6 - 2 - 2(4 + 8) + (2 + 12)$$

$$6 - 2 - 8 - 16 + 14$$

$$6 - 2 - 8 - 16 + 14$$

$$6 - 2 - 8 - 2 = -4 + 2 - 6$$

$$B = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 2 & 2 \\ 4 - 8 - 2 = -4 + 2 - 6 \end{bmatrix}$$

$$Jet(B) = -1 \cdot (3 + 0) \cdot (3 + 3 \cdot (4 + 3 \cdot ($$

$$4 \begin{bmatrix} 2 & 3 \\ 2 & -2 \end{bmatrix} - 1 \begin{bmatrix} 1 & -2 \end{bmatrix} + 2 \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}$$

$$4 (4 - 6) - 1 (-4 - 3) + 2 (4 - 2)$$

$$16 - 2 + 4 (4 + 3 + 8 - 4)$$

$$- -8 + 3 + 8 = 3$$

$$-1 \cdot 3 = -3$$

$$2 \cdot 1 \cdot 5 \begin{bmatrix} 1 & +1 \\ 2 & 1 - 2 \end{bmatrix} - 4 \begin{bmatrix} 2 & 3 \\ 2 & 1 - 2 \end{bmatrix} + 2 \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

$$- 4 + 3 - 4 (-6 - 6) + 2 (3 - 4)$$

$$3 \cdot 39 = 117$$

$$- 4 \cdot 3 + 2 \cdot 4 + 2 \cdot 4 + 6 - 8$$

$$- 4 \cdot 3 + 2 \cdot 4 + 6 - 8$$

$$- 4 \cdot 3 + 2 \cdot 4 + 6 - 8$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$- 4 \cdot 5 \cdot 1 - 8 = 47 - 8 = 39$$

$$-$$

€ V2 - CS/AS - closed by addition U, V, 7 EV2, U+V+ñ €V2 - Closed by scylor mutiplication THEV2, CTHEV2 $-1\begin{bmatrix} 3\\ -2 \end{bmatrix} = 7\begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix}$ OZO V Ot Of O EV2 $V_2 \neq \mathbb{R}^3$ because if we let $q_1 = 3$ and $q_2 = -2$ and multiply it by the scalar -1. It will make 92791. b) { a1 + a2 + a3 = 9 | only if there's there's the an = 3 or -3 V3 E R3 because re cont use D in V3 Not in $a_1^2 + a_2^2 + a_3^2 = 0$ has to equal 0. all vectors in a so can hard. it want forfull $\vec{O} \in V_2$

Test cases $(4) a) \begin{bmatrix} 10 \\ 01 \end{bmatrix} -7 det = 10$ TUR, be cause -2 | -1=1 A=[01] adde1(A)=1 000] 7det=1 001] try [-10] and AT-A = [01] I = [61] $I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ det = -1.[-100]-7det=1 b) Ps true becare Rs can be spon by 5 vectors. c) It B= { bil bz ... bn} , then equation (1 bit + (2 b) ti. has infile number of solutions false because the equation equals of which news it's theaty independent (No infinite number of solutions) $\frac{d}{d} = \frac{1}{2} = \frac{1}$ no pruot Fatse, because those's no solution (free variable in country be linearly dependent,