Curious transition learning facilitates subsequent planning

Effie Li | EDUC234 pre-report

World 1

15 states, connected by 4 actions

Question

Does learning step-level transitions facilitate subsequent multi-step planning?

Transition learning:

(s1, s2) —> a where s1, s2 are adjacent

Multi-step planning:

(s, g) —> (a1, a2,...) where s, g are non-adjacent

Model

Transition learning:

3-layer MLP

Multi-step planning:

actor-critic agent + weights from the transition learning model

Performance on multi-step planning

Baseline 1 (random): random walk agent

Baseline 2 (ac_scratch): actor-critic trained from scratch

Baseline 3 (ac_curious_hid): actor_critic + transition learning hidden layer

Model (ac_curious): actor_critic + transition learning hidden layer & output layer

Performance on multi-step planning

Action optimal rate in 2-step problems

World 2

15 states, connected by 2 actions

Question

Does learning step-level transitions facilitate subsequent multi-step planning?

Transition learning:

(s1, s2) —> a where s1, s2 are adjacent

Multi-step planning:

(s, g) —> (a1, a2,...) where s, g are non-adjacent

Performance on multi-step planning

Baseline 1 (random): random walk agent

Baseline 2 (ac_scratch): actor-critic trained from scratch

Baseline 3 (ac_curious_hid): actor_critic + transition learning hidden layer

Model (ac_curious): actor_critic + transition learning hidden layer & output layer

Next steps

- 1. Adjust model for better performance.
- 2. Systematically vary the transitions exposed to the transition learning model.
- 3. Test robustness to randomized state labels.