- Offenlegungsschrift
- ® DE 195 36 394 A 1

PATENTAMT

Aktenzeichen: Anmeldetag:

Offenlegungstag:

195 36 394.9 29. 9.95 3. 4.97

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Zeidler, Jürgen, Dr., 69124 Heidelberg, DE: Rosenberg, Jörg, Dr., 67158 Ellerstadt, DE: Breitenbach, Jörg, Dr., 68199 Mannheim, DE; Neumann, Jörg, Dr., 67117 Limburgerhof, DE

(A) Feste Arzneiformen, erhältlich durch Extrusion einer Isomalt enthaltenden Polymer-Wirkstoff-Schmelze

Die Erfindung betrifft feste Arzneiformen, erhältlich duch Extrusion mit anschließender Formgebung einer lösungsmittelfreien Schmelze, enthaltend neben einem oder mehreren Wirkstoffen

A) 10 bis 90 Gew.-% eines thermoplastisch verarbeitbaren,

wasserlöslichen Polymers.

B) 5 bis 85 Gew.-96 Isomalt, und

C) 0 bis 5 Gew.-% Lecithin,

wobei die Summe aller Inhaltsstoffe gleich 100 Gew.-% sein soil.

DE 19536394 A

Beschreibung

Die vorliegende Erfindung betrifft feste Arzneiformen, erhältlich durch Extrusion und anschließender Formgebung einer lösungsmittelfreien Schmelze, enthaltend neben einem oder mehreren Wirkstoffen

- A) 10 bis 90 Gew.-% eines thermoplastisch verarbeitbaren Polymers,
- B) 5 bis 89,9 Gew.-% Isomalt, und
- C) 0 bis 5 Gew.-% Lecithin,

5

wobei die angegebenen Mengen auf das Gesamtgewicht der Arzneiform bezogen sind.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung solcher Arzneiformen.

Wirkstoffhaltige Zubereitungen, die durch Schmelzextrusion hergestellt werden, sind allgemein bekannt. Das Extrudieren von wirkstoffhaltigen Schmelzen wasserföslicher Polymeren, vorzugsweise von Copolymeren des Vintylpyrolidons, ist despielsweise in der EP-A 240 90 dund der EP-A 240 906 beschrieben.

ren des Vinylpyrrolidons, ist despieseweise in der Er-A 240 500 mit der

Will man schnell freisetzende, feste Arzneiformen herstellen, so muß man Hilfsstoffe mit großer Lösegeschwindigkeit nach entsprechend hoher Wasserlöslichkeit verwenden, die zudem die thermoplastische Verarbeitbarkeit der wirkstoffhaltigen Polymerschmelze nicht beeinträchtigen dürfen. Bisher wurden dazu im allgemeinen Zuckeralkohole wie Mannitol oder Sorbitol oder Zucker wie beispielsweise Lactose eingesetzt.

Nachteilig an bekannten Zusammensetzungen ist aber, daß diese teilweise eine schlechte Verarbeitbarkeit, verursacht durch eine starke Klebeneigung bei der Formgebung, vor allem bei der Kalandrierung aufweisen. Außerdem lassen diese Zusammensetzungen häufig noch hinsichtlich der Freisetzungsgeschwindigkeit zu wünsischen übrig. Hinzu kommt, daß auch die mangelinde mechanische Belastbarkeit der Tabletten wegen starker Versprödung und damit auftretender Rißbildung noch Anlaß zu Ferbesserungen gibt.

Aufgabe der vorliegenden Erfindung war es, Arzneiformen zu finden, die eine schnelle Wirkstoff-Freisetzung bei gleichzeitig sehr guter Verarbeitbarkeit und guter Stabilität der Arzneiform aufweisen.

Demgemäß wurden die eingangs definierten Arzneiformen gefunden.
Als Wirkstoffe kommen erfindungsgemäß alle solchen in Betracht, die unter den Verarbeitungsbedingungen
der Schmelzextrusion eine ausreichende thermische Stabilität aufweisen.
Geeignete Wirkstoffe sind beispielsweisen.

Acebuciol, Acetyloysteine, Acetylsalieytšaure, Aciclovir, Albrazolam, Alfacalcidol, Allantoin, Allopurinol, Amicool, Amikacin, Amiloride, Aminioacetic Acid, Amiodarone, Amitrijine, Amlodijine, Amotdilin, Ampicillin, Ascorbic Acid, Aspartam, Astemizole, Atenolol, Beclometasone, Benserazide, Benzakonium Hydrodrochiorid, Benzocaine, Benzocaine, Betametasone, Bezafibrate, Biotia, Biperden, Bisoprolol, Bromacepam, Bromhexine, Bromocripitine, Budesonide, Bufexamae, Buffomedil, Buspirone, Caffeine, Camphor, Capiopril, Carbamazepine, Carbidopa, Carboplatin, Cefacior, Cefalexin, Cefatroxil, Cefazolin, Cefizime, Colorustine, Carbidopa, Carboplatin, Cofacolor, Cefalexin, Cartivatorine, Cefacolor, Colorustine, Carbidopa, Carboplatin, Cibramazolor, Capiolor, Capiolor, Capiolor, Colorustine, Capiolorustine, Cibramazolor, Capiolorustine, Capida, Caritaromycin, Clavulanic Acid, Clomibramine, Cionezpam, Clonidine, Clotimazolo, Codeine, Colocytynamine, Cromoglicinsture, Cyanocobalamin, Cyproterone, Desogestrel, Dexamethasone, Dexpanthenol, Dexthromethorphan, Dextropropoxiphene, Diazepam, Diclofenac, Digoxon, Diliydvorcodeine, Diliydvorergotamine, Dipydrorgotxin, Dilitazem, Diphenhydramine, Dipydrorgotxine, Diliydvoregotxin, Dilitazem, Diphenhydramine, Dipydrorgotxine, Characoxin, Dilitazem, Capida, Ca

ridamole, Dipyrone, Disopyramide, Domperidone, Dopamine, Doxocyclin, Enalapril, Ephedrine, Epinephrine, Ergocalciferol, Frogotamine, Erythromycin, Estradiol, Ethinylestradinol, Etoposide, Eucalpytus Globulus, Famotidine, Felodipine, Fenolibrate, Fenoterol, Fentanyl, Flavin Mononucleotide, Fluconazole, Flunarizine, Fluorouracil, Fluoxetine, Flurbjørofen, Furosemide, Gallopamil, Gemilibrozil, Gentamincin, Ginkgo Biloba, Gibenclamid, Glipizide, Glozapine, Glycyrrhiza Glabra, Griscofluvin, Gualfenesin, Haloperidol, Heparin, Hyaluronsture, Hydrochlorothizaide, Hydrocodone, Hydrocortisone, Hydromorphon, Ibratropium Hydroxide, Ibuprofen, Imipenem, Indomethacin, Johexol, Jopamidol, Isosorbide Dinitrate, Isosorbide Mononitrate, Isotretionin, Ketouffen, Ketoconazole, Ketoprofen, Ketorolac, Labatalon, Lactulose, Lecithin, Levocarnitine, Levodopa, Levoglutamide, Levonorgestrel, Levothyroxine, Lidocaine, Lipase, Lipramin, Lisinopril, Loperamide, Lorazepam, Lovastatin,

Medroxyprogesterone, Menthol, Methotrexate, Methyldopa, Methylprednisolone, Metoclopramide, Metoprolol, Miconazole, Midazolam, Minocycline, Minoxkil, Misoprotol, Morphine, Multivitanin and Minerals, N-Methylpederine, Naftidrofuril, Naproxen, Neomycin, Nicardipine, Nicergoline, Nicotinamide, Nicotine, Nicotine Acid, Nifedipine, Nimodipine, Nitrazopam, Nitruendipine, Nizatidine, Norethisterone, Norfloxacin, Norgestrel, Nortripyline, Nystatin, Oftoxacin, Omeprazole, Ondansetron, Paneratin, Pamthenol, Pamtothenic Acid, Paracetamol, Penicillin G, Penicillin V, Phenobarbital, Phenoxifylline, Phenoxynethylpenicillin, Phenylephrine, Phenylpropanolamin, Phenytoin, Piroxicam, Polymyxin B, Povdone-Iod, Pravastatin, Prazepam, Prazosin, Predissolone, Predissolone, Promocriptine, Propatenone, Propranolol, Proxyphyllin, Pseudoephedrine, Pyridoxine, Quinidine, Ramipril, Rantiddine, Reseprine, Retinol, Riboflavin, Ridampicin, Rutoside, Saccharin, Salbutamol, Salexonin, Salicyl Acid, Simvastatin, Somatropin, Sotalol, Spironolactone, Sucraliate, Sulbactam, Sulfamethoxazole, Suffasalazin, Sulpride, Tamoxicher, Tegafur, Teprenone, Terazosin, Terbutaline, Terfenadine, Tetrazokin, Theophylli-

ne, Thiamine, Ticlopidine, Timolol, Tranexamsäure, Tretinoin, Triamcinolone Acetonide, Triamterene, Trimethoprim, Troxerutin, Uracil, Valproic Acid, Vancomycin, Verapamil, Vitamine E, Volinic Acid, Zidovudine. Bevorzugter Wirkstoff ist Verapamil oder dessen physiologisch vertragliche Salze, besonders bevorzugt Verapamil-Hydrochlorid.

Als thermoplastisch verarbeitbare, wasserlosliche Polymerkomponenten A) seien genannt:

- Alkylcellulosen wie Methylcellulose,

- Hydroxyalkylcellulosen wie Hydroxymethyl-, Hydroxyethyl-, Hydroxypropyl- und Hydroxybutylcellulo-
- Hydroxyalkylcellulosen wie Hydroxyethylmethyl- und Hydroxypropylmethylcellulose,
- Polyvinylpyrrolidon,
- Copolymere aus N-Vinylpyrrolidon und Vinylacetat mit bis zu 50 Gew.-% Vinylacetat,
 Carboxvalkylcellulosen wie Carboxymethylcellulosen.
- Polysaccharide wie Alginsäure und deren Alkali- und Ammoniumsalze,
- Polyethylenglykole

sowie Gemische solcher wasserlöslichen Polymeren.

Die Komponente A) soll in der Gesamtmischung aller Komponenten im Bereich von 50 bis 180°C, vorzugsweise 80 bis 140°C erweichen oder schmelzen, so daß die Masse extrudierbar ist. Gegebenenfalls kann eine Verarbeitbarkeit bei diesen Temperaturen durch Zuzabe von Weichmachen erzielt werden.

10

65

"Wasserlöslich" bedeutet, daß sich in 100 g Wasser von 20°C mindestens 0,5 g, vorzugsweise mindestens 2 g 15 des Polymeren lösen, gegebenenfalls auch kolloidal.

Bevorzugte Polymerkomponenten A) sind neben Polyvinylpyrrolidon die Polyethylenglykole und besonders bevorzugt ein Copolymer, welches durch radikalische Polymerisation von 60 Gew. % N-Vinylpyrrolidon und 40 Gew. % Vinylacetat erhalten wird.

Als Hillsstoff enthalten die Arzneiformen Isomalt, das auch unter dem Markennamen Palatinit[®] bekannt ist. 20 Isomalt ist eine hydrierte Isomaltulose, die in etwa aus gleichen Teilen der Isomeren 1-O-α-D-Glucopyranosyl-D-mannit Dihydrat (1,1-GPM Dihydrat) und 6-O-α-D-flucopyranosyl-D-Sorbit (1,6-GPS) besteht.

Die Korngröße des Isomalts kann in weiten Bereichen variieren, bevorzugt sind Korngrößen im Bereich von 0,1 bis 0,8 mm.

Das kommerziell erhältliche Isomalt wird hergestellt, indem in einem ersten Schritt Saccharose enzymatisch 25 zu Isomaltulose (6-O-a-D-Glucopyranosyl-D-Fructose) umgelagert wird und anschließend diese Isomaltulose mit Wasserstoff/Raney-Nickel hydriert wird.

Die erfindungsgemaßen Arzneiformen enthalten die Polymerkomponenten A) in Mengen von 10 bis 90 Gew.-%, bevorzugt 10 bis 70 Gew.-%, bevorzugt 10 bis 70 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-%, berogesetzt.

Die Menge des Wirkstoffs richtet sich auch nach der therapeutischen Wirksamkeit. Er kann in Mengen von 0,1 bis 70, bevorzugt 10 bis 60 Gew.-%, besonders bevorzugt 20 bis 50 Gew.-% eingearbeitet werden.

Die Mengenangaben beziehen sich jeweils auf das Gesamtgewicht der Arzneiform (= 100 Gew.-%).

Zur weiteren Verbesserung der Verarbeitungseigenschaften können die Arzneiformen noch bis zu 5 Gew.-%, bevorzugt 2 bis 5 Gew.-% Lecithin enthalten.

Die erfindungsgemäßen Zubereitungen können weiterhin die üblichen pharmazeutischen Hilfsstoffe wie Füllsoffe, Schniermittet, Formentennmittet, FileBregulierungsmittet, Weichmacher, Farbstoffe und Stabilisatoren in Mengen bis zu ca. 50 Gew.-% enthalten.

Um die erfindungsgemäßen Arzneiformen herzustellen, kann die Wirkstoffkomponente entweder direkt in Form einer physikalischen Mischung mit den Polymeren A) verschmolzen werden oder mit der bereits vorliesenden Polymerschmelze gemischt werden.

Im übrigen erfolgt die Vermischung der Wirkstoffe mit der Schmelze in an sich bekannter Weise in Extrudern, vorzugsweise in Ein- oder Doppelschneckenextrudern in einem Temperaturbereich zwischen 50 und 180°C, bevorzugt 80 bis 140°C. Die Formgebung der wirkstoffhaltigen Polymerschmelze zu den erfindungsgemäßen Zubereitungen kann beispielsweise durch Kalandrierung des Extrudates nach der in der EF-A 240 996 beschrie54 benen Methode sowie nach dem aus der DE-A 38 30 3355 bekannten Verarbeitungswerfahren durch Zerkleinerung des Extrudates mit rotierenden Messern in volumengleiche – noch verformbare – Stücke mit erstarrter Oberfläche und ansschließendes Verpressen zu Tabletten in den blibichen Tabletterinanschinen erfolgen.

Es ist möglich, die Hilfsstoffe in die Schmelze oder Lösung aus Wirkstoffen und Polymeren A) zu mischen. Ferner können die Hilfsstoffe zusammen mit dem Wirkstoff in die Polymerschmelze eingearbeitet werden. Außerdem können Gemische aus Hilfsstoffen, dem Wirkstoff und den Polymeren direkt verschmolzen werden. Im allgemeinen ist es üblich, eine physikalische Mischung aus Hilfsstoffen, Wirkstoffen und den Polymeren gemeinsam zu verschmelzen.

Die erfindungsgemäßen Zubereitungen werden als Arzneimittel verwendet und in Form von Tabletten, Pellets, Granulaten oder Kapseln oder anderen oral applizierbaren Arzneiformen eingesetzt. Vorzugsweise 55 werden mit dem erfindungsgemäßen Zubereitungen Arzneiformen mit schneller Wirkstofffreisetzung hergestellt.

Falls gewünscht, kann die feste pharmazeutische Form auch mit einem üblichen Überzug zur Verbesserung des Aussehens und/oder des Geschmacks (Dragee) versehen werden.

Durch die Zusammensetzung der erfindungsgemäßen Arzneiformen kann nicht nur eine schnelle Freisetzung 60 des Wirkstoffs erzielt werden, sondern auch eine hervorragende Verarbeitbarkeit.

Die besonders bei zum Kleben neigenden Wirkstoffen, wie beispielsweise dem Verapainil-Hydrochlorid auftretenden Probleme bei der Handlabung der Schmelze und bei der Formgebung werden durch die erfindungsgemäßen Zubereitungen vermieden.

Beispiele

Extrudertyp: Zweischneckenextruder

Anzahl der Schüsse: 4 + Kopf

3 Tablettenformen: rund, Linsenform, ca. 300 mg schwer

Massenfluß: 20-25 kg/h

15

20

25

45

50

55

60

5 Bestimmung der Wirkstoff-Freisetzung

Paddle-Methode — USP XXIII (Verapamil-HCI tablets) Seite 1625 Drehzahl: 50 upm

Paddle-Medium: 0,1 mol HCI.

Als Polymer A) wurde ein Copolymerisat hergestellt aus 60 Gew.-% N-Vinylpyrrolidon und 40 Gew.-%
Vinylacetat ("Copolyvidon" nach DAB) verwendet.

Beispiel 1 (Vergleichsbeispiel)

Verapamil-HCI	26,67 %
Copolyvidon	40,00 %
Mannitol	28,33 %
Lecithin	5,00 %
Gesamtmasse	363 mg

Extrusionsbedingungen

	Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
Temp. (°C)	80	100	115	115	115

Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 30 min 52,4% des Wirkstoffs freigesetzt war.

Beispiel 2

Verapamil-HCI	26,67 %
Copolyvidon	40,00 %
Isomalt	28,33 %
Lecithin	5,00 %
Gesamtmasse	368 mg

Extrusionsbedingungen

	Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
Temp. (°C)	100	120	130	130	130

Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 30 min 91,5% des Wirkstoffs freigesetzt war.

Beispiel 3

	22.22.6			
Verapamil-HCI	33,33 %			
Copolyvidon	31,67 %			
Isomalt	32,00 %			
Lecithin	3,00 %			
Gesamtmasse	242 mg			

Extrusionsbedingungen

	Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
Temp. (°C)	80	100	110	110	110

Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 20 min 65,4% des Wirkstoffs freigesetzt war.

Beispiel 4

Verapamil-HCI	33,33 %
Copolyvidon	23,67 %
Isomalt ·	40,00 %
Lecithin	3,00 %
Gesamtmasse	246 mg

Extrusionsbedingungen

	Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
Temp. (°C)	80	100	110	110	110

Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 20 min 77,0% des Wirkstoffs freigesetzt war.

Beispiel 5

Verapamil-HCI	33,33 %
Copolyvidon	13,67 %
Isomalt	50,00 %
Lecithin	3,00 %
Gesamtmasse	252 mg

50

55

10

25

Extrusionsbedingungen

	Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
Temp. (°C)	80	100	110	110	110

10 Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 20 min 85,8% des Wirkstoffs freigesetzt war.

Beispiel 6

Verapamil-HCI	33,33 %
Copolyvidon	13,67 %
Isomalt	50,00 %
Lecithin	3,00 %
Gesamtmasse	252 mg

Extrusionsbedingungen

0		Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
•	Temp. (°C)	80	100	110	110	110

35 Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 30 min 93,2% des Wirkstoffs freigesetzt war.

Beispiel 7 (Vergleichsbeispiel)

Verapamil-HCI	30,00 %
Copolyvidon	70,00 %

Extrusionsbedingungen

n		Schuß 1	Schuß 2	Schuß 3	Schuß 4	Kopf
•	Temp. (°C)	90	130	130	140	140

55 Die Prüfung der Wirkstoff-Freisetzung ergab, daß nach 30 min 93,7% des Wirkstoffs freigesetzt war.

Patentansprüche

- Feste Arzneiformen, erhältlich durch Extrusion mit anschließender Formgebung einer lösungsmittelfreien Schmelze, enthaltend neben einem oder mehreren Wirkstoffen
 - A) 10 bis 90 Gew.-% eines thermoplastisch verarbeitbaren, wasserlöslichen Polymers,
 - B) 5 bis 89,9 Gew .- % Isomalt, und
 - C) 0 bis 5 Gew.-% Lecithin,

15

- wobei die Summe aller Inhaltsstoffe gleich 100 Gew.-% sein soll.
- Feste Arzneiformen nach Anspruch 1, enthaltend als Polymer A) ein Homo- oder Copolymer eines N-Vinyllactams.
 - 3. Feste Arzneiformen nach Anspruch 2, enthaltend ein Copolymer aus N-Vinylpyrrolidon und Vinylacetat.
 - 4. Feste Arzneiform nach einem der Ansprüche 1 bis 3, enthaltend als Wirkstoff Verapamil oder dessen

physiologisch verträgliche Salze. 5. Feste Arzneiform nach einem der Ansprüche 1 bis 4 enthaltend zusätzlich übliche pharmazeutische Hilfsstoffe.

6. Verfahren zur Herstellung von Arzneiformen gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Komponenten bei Temperaturen von 50 bis 180°C zu einer Schmelze verarbeitet.