Note: There are 6 problems with a total of 100 points. You are required to do all the problems.

- 1. (15 points) In the Selection algorithm discussed in class, we partition elements into groups of size 5 each. Is it possible to achieve an O(n)-time algorithm by partitioning elements into groups of size 3, 4, 6, 7, 9, and 11? Justify your answer by giving a detailed analysis of the running time of the selection algorithm for each of the 6 different sizes.
- 2. (20 points) Let $P = \{p_1, p_2, \dots, p_n\}$ be n points on a 2D plane with each $p_i = (x_i, y_i)$ for $i = 1, \dots, n$. We say that point p_i dominates p_j if $x_i \geq x_j$ and $y_i \geq y_j$. A point p_i is called a maximum point if it is not dominated by any other point in P. Design an $O(n \log n)$ -time algorithm to find all maximum points. If the points in P are in 3D space (i.e., each point $p_i = (x_i, y_i, z_i)$), extend your algorithm to solve the same maximum point problem in 3D space (where a maximum point should also not be dominated by any other point in the z direction). You should make your algorithm run as fast as possible.
- 3. (20 points) Let a_1, \dots, a_n be n distinct real numbers, and w_1, \dots, w_n be a set of n positive weights with $w_1 + \dots + w_n = 1$. The weighted median of the set $\{a_1, \dots, a_n\}$ is the number a_k for which $\sum_{i:a_i < a_k} w_i < \frac{1}{2}$ and $\sum_{i:a_i > a_k} w_i \leq \frac{1}{2}$. (a) Prove that such an a_k always exists. (b) Give a $\Theta(n)$ worst-case running time algorithm computing the weighted median.
- 4. (15 points) Given a set $S = \{a_1, \dots, a_n\}$ of n unsorted real numbers and a real value B, design an $O(n^2)$ -time algorithm to determine whether there exist three distinct numbers a_i , a_j and a_k in S such that $a_i + a_j + a_k = B$.
- 5. (15 points) Given an array $A = \{a_1, \dots, a_n\}$ of n unsorted numbers, design an $O(n \log n)$ -time algorithm for reporting the number of inversions in A. An inversion in A is a pair of numbers a_i and a_j such that i < j but $a_i \ge a_j$.
- 6. (15 points) In the Strassen's matrix multiplication algorithm, we have

$$p_{1} = (a - c)(s + t) = as + at - cs - ct$$

$$p_{2} = (b - d)(u + v) = bu + bv - du - dv$$

$$p_{3} = (a + d)(s + v) = as + dv + av + ds$$

$$p_{4} = a(t - v) = at - av$$

$$p_{5} = (a + b)v = av + bv$$

$$p_{6} = (c + d)s = cs + ds$$

$$p_{7} = d(u - s) = du - ds$$

Write the followings in terms of p_i 's:

$$as + bu = ????$$

 $at + bv = ????$
 $cs + du = ????$
 $ct + dv = ????$