Data Structures & Algorithms

Algorithms Design and Algorithm Analysis

- Introduction
- Fibonacci Number
- Maximum Sum Subarray
- Asymptotic Order of Growth
- A Survey of Common Running Times

Problem Solving

Algorithmic Paradigms

Design and analysis of computer algorithms.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomized algorithms.

Applications

Wide range of applications.

- Caching.
- Compilers.
- Databases.
- Scheduling.
- Networking.
- Data analysis.
- Signal processing.
- Computer graphics.
- Scientific computing.
- Operations research.
- Artificial intelligence.
- Computational biology.

• . .

Algorithm Analysis

Analysis refers to mathematical techniques for establishing both the correctness and efficiency of algorithms.

Efficiency: Given an algorithm A, we want to know how efficient it is. This includes several possible criteria:

- What is the running time of algorithm A?
- Is A the most efficient algorithm to solve the given problem? (For example, can we find a lower bound on the running time of any algorithm to solve the given problem?)

Running Time Analysis

The followings affect the running time:

- Hardware
- Compiler
- Input size
- Input arrangement

...

T(n): the running time when the input size is n

The running time may depend on several variables Example: T(n, m) for A graph with m edges and n vertices

How Analyze Algorithms?

First option is to compute the execution time for different input sizes

 Not good: times are specific to a particular computer or compiler and not applicable to any input size

Second option is to count the number of primitive operations

• good: but there are several primitive operations and each has its own running time: Add (A=B+C), Multiply (A=B*C), Increment (A=A+1), Assignment (A=B), Comparision (A<B), Logic (A or B), ...

We select the second option with the following assumption to make life easier

Assumption: all primitive operations cost 1 unit.

Eliminates dependence on the speed of our computer,
 otherwise impossible to verify and to compare

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Insertion sort

Kinds of analyses

Worst-case: (usually)

 T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) = expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (NEVER)

 Cheat with a slow algorithm that works fast on some input.

Insertion sort analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} j = n^2$$

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} j/2 = n^2$$

Best case: Input sorted.

$$T(n) = \sum_{j=2}^{n} 1 = n$$

Comparing Functions Using Rate of Growth = Asymptotic Analysis

- Using rate of growth as a measure to compare different functions implies comparing them asymptotically.
- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit (for large enough values of x).

Example

- Suppose you are designing a web site to process user data (e.g., financial records).
- Suppose program A takes $f_A(n)=30n+8$ microseconds to process any n records, while program B takes $f_B(n)=n^2+1$ microseconds to process the n records.
- Which program would you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

On a graph a faster growing function eventually becomes larger...

Big-O Notation

- We say $f_A(n)=30n+8$ is order n, or O(n).
 - It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, an $O(n^2)$ algorithm will be slower than O(n) algorithm.
- Note: an $O(n^2)$ function will grow <u>faster</u> than an O(n) function.

Big-O Visualization

Running time of various statements

Polynomial-Time Algorithm

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- Typically takes 2^N time or worse for inputs of size N.
- Unacceptable in practice.

Def. An algorithm is poly-time if the below property holds.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by $c N^d$ steps or simply the running time is $O(N^d)$

Worst-Case Polynomial-Time

Def. An algorithm is practical if its running time is polynomial.

Justification: It really works in practice!

- \blacksquare Although 6.02 \times 10^{23} \times N^{20} is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.

Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Fibonacci Number

Definition and Problem

$$F_{\rm n} = F_{n-1} + F_{n-2}, F_1 = F_2 = 1$$

Problem: Compute F_n for given n.

Example: n = 10

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Algorithm 1

```
F(n):
if n \le 2
    return 1
else
    return F(n-1)+F(n-2)
```

$$T(n) = T(n-1) + T(n-2)$$

$$T(n) = O(\varphi^n), \varphi = (1 + \sqrt{5})/2$$

Algorithm 2

```
F(n):
    a=b=1
    for i = 3 to n {
        b=a+b
        a=b-a
    }
    return b
```

$$T(n) = O(n)$$

Algorithm 3

Use the following observations:

$$\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}. \text{ So, } \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_2 \\ F_1 \end{bmatrix}$$

To compute a^n , we can compute only $a, a^2, a^4, a^8, ...$

Running time: $T(n) = O(\log n)$

Running Time

n	10	20	30	40	50	100
Alg1	44µs	5300µs	0.5s	64s	2.2h	7myrs
Alg2	4µs	7µs	10µs	14µs	18µs	45µs
Alg3	11µs	12µs	13µs	15µs	17µs	21µs

Remark: Assume a computer does 10^8 operations per second. Then, alg1 takes $\frac{\phi^{100}}{10^8}s=7myrs$. Note that $\phi=(1+\sqrt{5})/2$.

Maximum Sum Subarray

Maximum Sum Subarray

Problem: Given a one dimensional array A[1..n] of numbers. Find a contiguous subarray with largest sum within A.

Assume an empty subarray has sum 0.

Example:

Algorithm 1 (brute-force)

```
sol = 0
for i = 1 to n do
  for j = i to n do
    sum = 0
    for k = i to j do
        sum = sum + a[k]
    if sum > sol then
        sol = sum
return sol
```

Running time: $T(n) = O(n^3)$

Algorithm 2 (brute-force)

Observation: Let S[i] = A[1] + ... + A[i]. We have A[i] + ... + A[j] = S[j] - S[i-1]

```
Pre-Processing
S[0] = 0
for i = 1 to n do
    S[i] = S[i-1]+A[i]
```

Running time of pre-processing: T(n) = O(n)

```
sol = 0
for i = 1 to n do
    for j = i to n do
        if S[j]-S[i-1] > sol then
            sol = S[j]-S[i-1]
return sol
```

Running time: $T(n) = O(n^2)$

Asymptotic Order of Growth

Asymptotic Order of Growth

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $f(n) \le c \cdot g(n)$.

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $f(n) \ge c \cdot g(n)$.

Tight bounds. f(n) is $\Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$.

Ex: $f(n) = 32n^2 + 17n + 32$.

- f(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- f(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Big-O Visualization

g(n) is an *asymptotic upper bound* for f(n).

g(n) is an *asymptotic lower bound* for f(n).

Big- Θ Visualization

g(n) is an *asymptotically tight bound* for f(n).

Notation

Slight abuse of notation. f(n) = O(g(n)).

Not transitive:

-
$$f(n) = 5n^3$$
; $g(n) = 3n^2$

- $f(n) = O(n^3) = g(n)$
- but $f(n) \neq g(n)$.
- Better notation: $f(n) \in O(g(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.

• Use Ω for lower bounds.

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials.
$$a_0 + a_1 n + ... + a_d n^d$$
 is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms.
$$O(\log_a n) = O(\log_b n)$$
 for any constants $a, b > 0$.

can avoid specifying the base

Logarithms. For every x > 0, $\log n = O(n^x)$.

log grows slower than every polynomial

Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial

A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
max ← a₁
for i = 2 to n {
   if (aᵢ > max)
      max ← aᵢ
}
```

Linear Time: O(n)

Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ into sorted whole.


```
\label{eq:continuous_problem} \begin{split} &i=1, \ j=1 \\ &\text{while (both lists are nonempty) } \{ \\ &\quad \text{if } (a_i \leq b_j) \text{ append } a_i \text{ to output list and increment i} \\ &\quad \text{else} \qquad \text{append } b_j \text{ to output list and increment j} \\ &\} \\ &\text{append remainder of nonempty list to output list} \end{split}
```

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform $O(n \log n)$ comparisons.

Largest empty interval. Given n time-stamps x_1 , ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x_1, y_1) , ..., (x_n, y_n) , find the pair that is closest.

 $O(n^2)$ solution. Try all pairs of points.

```
 \begin{aligned} & \min \leftarrow (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 \\ & \text{for } i = 1 \text{ to n } \{ \\ & \text{ don't need to} \\ & \text{ d} \leftarrow (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2 \\ & \text{ if } (\mathbf{d} < \min) \\ & \text{ min } \leftarrow \mathbf{d} \\ & \} \end{aligned}
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: O(n³)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

 $O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

 $O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

• Check whether S is an independent set = $O(k^2)$.

Number of k element subsets =
$$O(k^2 n^k / k!) = O(n^k).$$

$$poly-time for k=17, but not practical$$

$$n = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$$

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

 $O(n^2 2^n)$ solution. Enumerate all subsets.

```
S* \( \phi \)
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* \( \times \) S
   }
}
```

References

- Section 5.8 of the text book "introduction to algorithms: a creative approach" by Udi Manber, 1989.
- Section 4.1 of the text book "introduction to algorithms" by CLRS,
 3rd edition.
- The <u>original slides</u> were prepared by Kevin Wayne. The slides are distributed by <u>Pearson Addison-Wesley</u>.