

# **Regular Grammars**

A regular grammar G is a quadruple  $(V, \Sigma, R, S)$ , where:

- *V* is the rule alphabet, which contains nonterminals and terminals,
- $\Sigma$  (the set of terminals) is a subset of V,
- R is a finite set of rules of the form:

$$X \rightarrow Y$$

•  $S \in V - \Sigma$  -- the start symbol

# **Regular Grammars**

In a regular grammar, all rules in R must:

- have a left hand side that is a single nonterminal
- have a right hand side that is:
- ε, or
- a single terminal, or
- a single terminal followed by a single nonterminal.

Legal:  $S \rightarrow a$ ,  $S \rightarrow \epsilon$ , and  $T \rightarrow aS$ Not legal:  $S \rightarrow aSa$  and  $aSa \rightarrow T$ 

The language defined by a grammar: all terminal strings that can be obtained starting from S and applying the rules

# **Regular Grammar Example**

 $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$   $((aa) \cup (ab) \cup (ba) \cup (bb))^*$ 



# **Regular Grammar Example**

 $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$  ((aa)  $\cup$  (ab)  $\cup$  (ba)  $\cup$  (bb))\*



Grammar:

$$S \rightarrow \varepsilon$$
  
 $S \rightarrow aT$   $S \rightarrow bT \rightarrow bb$   
 $S \rightarrow bT$   $S \rightarrow aT \rightarrow abS \rightarrow abbT$   
 $T \rightarrow a$   $\rightarrow abbaS \rightarrow abba$   
 $T \rightarrow b$   $S \rightarrow \varepsilon$   
 $T \rightarrow bS$ 

#### **Regular Languages and Regular Grammars**

**Theorem:** The class of languages that can be defined with regular grammars is exactly the regular languages.

**Proof:** By two constructions.

### **Regular Languages and Regular Grammars**

#### Regular grammar → FSM:

 $grammartofsm(G = (V, \Sigma, R, S)) =$ 

- 1. Create in *M* a separate state for each nonterminal in *V*.
- 2. Start state is the state corresponding to  ${\cal S}$  .
- 3. If there are any rules in R of the form  $X \rightarrow w$ , for some  $w \in \Sigma$ , create a new state labeled #.
- 4. For each rule of the form  $X \rightarrow w Y$ , add a transition from X to Y labeled w.
- 5. For each rule of the form  $X \rightarrow w$ , add a transition from X to # labeled w.
- 6. For each rule of the form  $X \to \varepsilon$ , mark state X as accepting.
- 7. Mark state # as accepting.

**FSM** → **Regular grammar:** Similarly.

### Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$ 

 $S \rightarrow aS$ 

 $S \rightarrow bS$ 

 $S \rightarrow aB$ 

 $B \rightarrow aC$ 

 $C \rightarrow aD$ 

 $D \rightarrow a$ 

# Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$ 

 $S \rightarrow aS$  $S \rightarrow bS$ 

 $S \rightarrow aB$ 

 $B \rightarrow aC$ 

 $C \rightarrow aD$ 

 $D \rightarrow a$ 



# **Example 2 – One Character Missing**

 $S \rightarrow \epsilon$ 

 $S \rightarrow aB$  $S \rightarrow aC$ 

 $S \rightarrow bA$ 

 $S \rightarrow bC$  $S \rightarrow cA$ 

 $S \rightarrow cB$ 

 $A\to \mathrm{b}A$ 

 $A \rightarrow cA$  $A \rightarrow \epsilon$ 

*B* → a*B* 

 $B \rightarrow cB$ 

 $B \rightarrow \varepsilon$ 



 $C \rightarrow aC$ 

 $C \rightarrow bC$ 

 $C \rightarrow \epsilon$ 

# Regular Languages

