ILLINOIS INSTITUTE OF TECHNOLOGY

Introduction to 1st Order and 2nd Order Optimization Methods

Nathan Cao (MSC-514) Professor Priyanka Sharma April 8th, 2021

Firstly, review of optimization knowledge learnt from last semester – Gradient Vector

Gradient Vector

All the partial derivatives of a function $y = f(x_1, x_2, ..., x_n)$ can be collected under a single mathematical entity called the *gradient vector*, or simply the *gradient*, of function f.

Gradient Vector

$$gradf(x_1,x_2,..x_n)=(f_1,f_2,...f_n)=\nabla f(x_1,x_2,..x_n)$$
 where $f_i=\frac{\partial f}{\partial x_i}$.

• The mathematical symbol ∇ is the inverted version of the Greek letter Δ and is read as: "del".

Firstly, review of optimization knowledge learnt from last semester

- Higher Order derivatives

Higher order partial derivatives

Second partial derivatives

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$$

Mixed partial derivatives

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

for $i \neq j$.

Firstly, review of optimization knowledge learnt from last semester

- Extreme value: optimal maximizer, minimizer or inflection point

Finding extreme values of functions of two variables

Consider z = f(x, y).

The first order optimization condition requires

 $dz = f_x dx + f_y dy = 0$ for arbitrary value of dx and dy, not both zero

Then the first order optimization condition can be expressed as:

$$f_x = f_y = 0$$

- Through some additional work, it can be shown that
 - $d^2z < 0$ iff $f_{xx} < 0$; $f_{yy} < 0$; and $f_{xx}f_{yy} > f_{xy}^2$. $d^2z > 0$ iff $f_{xx} > 0$; $f_{yy} > 0$; and $f_{xx}f_{yy} > f_{xy}^2$.

In practical operation use cases, we usually ask how to calculate minimum or maximum value given a series of inputs, these inputs can be serial and/or stochastic

Problem 1: Composite Optimization Problem

$$\min_{\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d} F(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$$

- f: Convex and Smooth
- h: Convex and (Non-)Smooth

Problem 2: Minimizing Finite Sum Problem

$$\min_{\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$$

- f_i: (Non-)Convex and Smooth
- $n\gg 1$

To solve optimization question, start with <u>first order and second order</u> optimization technologies are good options.

FIRST ORDER METHODS

 E.g.: SAG, SDCA, SVRG, Prox-SVRG, Acc-Prox-SVRG, Acc-Prox-SDCA, S2GD, mS2GD, MISO, SAGA, AMSVRG, ...

- Variants of Gradient Descent (GD):
 - Reduce the per-iteration cost of GD ⇒ Efficiency
 - Achieve the convergence rate of the GD ⇒ Effectiveness

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \nabla F(\mathbf{x}^{(k)})$$

Q: Why do we use (stochastic) 1st order method?

• Cheaper Iterations? i.e., $n \gg 1$ and/or $d \gg 1$

• Avoids Over-fitting?

1st Order method & Pseudo algorithm

There are several methods:

- Plain gradient descent with adaptive step size
- Steepest descent
- Conjugate gradient
- Rprop (heuristic)

In this project submission, using plain gradient descent as example

Gradient descent with stepsize adaptation

```
Input: initial x \in \mathbb{R}^n, functions f(x) and \nabla f(x), initial stepsize \alpha, tolerance \theta

Output: x

1: repeat

2: y \leftarrow x - \alpha \, \frac{\nabla f(x)}{|\nabla f(x)|}

3: if [ thenstep is accepted] f(y) \leq f(x)

4: x \leftarrow y

5: \alpha \leftarrow 1.2\alpha // increase stepsize

6: else[step is rejected]

7: \alpha \leftarrow 0.5\alpha // decrease stepsize

8: end if

9: until |y - x| < \theta [perhaps for 10 iterations in sequence]
```

("magic numbers")

 α determins the absolute stepsize stepsize is automatically adapted

1st Order method and Overfitting

In designing optimization algorithm, we do pursue a goodness of fit so that a set of observations are fitted

But simple 1st order method can not achieve when having following challenges

Challenges with "simple" 1st order method for "over-fitting":

- Highly sensitive to ill-conditioning
- Very difficult to tune (many) hyper-parameters

"Over-fitting" is difficult with "simple" 1st order method!

There are several 2nd order methods:

- Newton
- Gauss-newton
- Quasi-Newton

Remedy?

"Not-So-Simple" 1st order method, e.g., accelerated and adaptive

2nd order methods, e.g.,

methods

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [\nabla^2 F(\mathbf{x}^{(k)})]^{-1} \nabla F(\mathbf{x}^{(k)})$$

2nd order algorithm advantage

Better direction:

Better stepsize:

- a full step jumps directly to the minimum of the local squared approx.
- often this is already a good heuristic
- additional stepsize reduction and dampening are straight-forward

Before 2nd order optimization methods, Let's review the constrained optimization (Lagrangian we already familiar with)

• General constrained optimization problem:

Let
$$x\in\mathbb{R}^n$$
, $f:\mathbb{R}^n\to\mathbb{R}$, $g:\mathbb{R}^n\to\mathbb{R}^m$, $h:\mathbb{R}^n\to\mathbb{R}^l$ find
$$\min_x\ f(x)\quad \text{s.t.}\quad g(x)\leq 0,\ h(x)=0$$

The Lagrangian

· Given a constraint problem

$$\min_{x} f(x) \quad \text{s.t.} \quad g(x) \le 0$$

we define the Lagrangian as

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

• The $\lambda_i \geq 0$ are called **dual variables** or Lagrange multipliers

What's the point of this definition?

- The Lagrangian is useful to compute optima analytically, on paper that's why physicist learn it early on
- The Lagrangian implies the KKT conditions of optimality
- Optima are necessarily at saddle points of the Lagrangian
- The Lagrangian implies a dual problem, which is sometimes easier to solve than the primal

Before deep dive into 2nd order optimization methods Let's recap constrained optimization (Lagrangian we are familiar with)

The Lagrange dual problem

We define the Lagrange dual function as

$$l(\lambda) = \min_{x} L(x, \lambda)$$

• This implies two problems

$$\min_{x} f(x)$$
 s.t. $g(x) \leq 0$ primal problem $\max_{\lambda} l(\lambda)$ s.t. $\lambda \geq 0$ dual problem

The dual problem is convex, even if the primal is non-convex!

• Written more symmetric:

$$\min_{x} \max_{l \geq 0} L(x, \lambda) \qquad \qquad \text{primal problem}$$

$$\max_{\lambda > 0} \min_{x} L(x, \lambda) \qquad \qquad \text{dual problem}$$

because the $\max_{\lambda \geq 0} L(x,\lambda)$ ensures the constraints (previous slide).

• The dual function is always a lower bound (for any $\lambda_i \geq 0$)

$$l(\lambda) = \min_{x} L(x, \lambda) \le \begin{bmatrix} \min_{x} f(x) & \text{s.t.} & g(x) \le 0 \end{bmatrix}$$

And consequently

$$\max_{\lambda > 0} \min_{x} L(x, \lambda) \le \min_{x} \max_{l > 0} L(x, \lambda)$$

· We say strong duality holds iff

$$\max_{\lambda \ge 0} \min_{x} L(x, \lambda) = \min_{x} \max_{l \ge 0} L(x, \lambda)$$

. If the primal is convex, and there exist an interior point

$$\exists_x : \forall_i : q_i(x) < 0$$

(which is called **Slater condition**), then we have strong duality

2nd order optimization methods features:

- Use both gradient and Hessian information
- Fast convergence rate
- Resilient to ill-conditioning
- They "over-fit" nicely!
- However, per-iteration cost is high!

2nd order optimization methods features:

Notation:

objective function: $f: \mathbb{R}^n \to \mathbb{R}$

gradient vector: $\nabla f(x) = \left[\frac{\partial}{\partial x} f(x)\right]^{\top} \in \mathbb{R}^n$

Hessian (symmetric matrix):

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2}{\partial_{x_1} \partial_{x_1}} f(x) & \frac{\partial^2}{\partial_{x_1} \partial_{x_2}} f(x) & \cdots & \frac{\partial^2}{\partial_{x_1} \partial_{x_n}} f(x) \\ \frac{\partial^2}{\partial_{x_1} \partial_{x_2}} f(x) & & & \vdots \\ \vdots & & & & \vdots \\ \frac{\partial^2}{\partial_{x_n} \partial_{x_1}} f(x) & \cdots & \cdots & \frac{\partial^2}{\partial_{x_n} \partial_{x_n}} f(x) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Taylor expansion:

$$f(x') = f(x) + (x' - x)^{\top} \nabla f(x) + \frac{1}{2} (x' - x)^{\top} \nabla^2 f(x) (x' - x)$$

Problem:

$$\min_{x} f(x)$$

where we can evaluate f(x), $\nabla f(x)$ and $\nabla^2 f(x)$ for any $x \in \mathbb{R}^n$

First order and second order optimization application **2**nd **order optimization methods**

- Newton method & Pseudo algorithm

Newton method

• For finding roots (zero points) of f(x)

$$x \leftarrow x - \frac{f(x)}{f'(x)}$$

• For finding optima of f(x) in 1D:

$$x \leftarrow x - \frac{f'(x)}{f''(x)}$$

For $x \in \mathbb{R}^n$:

$$x \leftarrow x - \nabla^2 f(x)^{-1} \nabla f(x)$$

• Often, $\nabla^2 f(x)$ is banded (non-zero around diagonal only) $\rightarrow Ax = b$ becomes super fast using dpbsv (Dynamic Programming)

Newton method with adaptive stepsize α

```
Input: initial x \in \mathbb{R}^n, functions f(x), \nabla f(x), \nabla^2 f(x), toler-
     ance \theta
Output: x
 1: initialize stepsize \alpha = 1 and damping \lambda = 10^{-10}
 2: repeat
         compute \Delta to solve (\nabla^2 f(x) + \lambda \mathbf{I}) \Delta = -\nabla f(x)
                                                               // "line search"
         repeat
             y \leftarrow x + \alpha \Delta
              if f(y) \leq f(x) then
                                                         // step is accepted
                   x \leftarrow y
                   \alpha \leftarrow \alpha^{0.5} // increase stepsize towards \alpha = 1
              else
                                                           // step is rejected
                   \alpha \leftarrow 0.1\alpha
                                                        // decrease stepsize
              end if
11:
         until step accepted or (in bad case) \alpha \|\Delta\|_{\infty} < \theta/1000
13: until \|\Delta\|_{\infty} < \theta
```

Notes:

- Line 3 computes the Newton step $\Delta = \nabla^2 f(x)^{-1} \nabla f(x)$, use special Lapack routine dposy to solve Ax = b (using Cholesky decomposition)
- λ is called **damping**, makes the parabola more "steep" around current x for $\lambda \to \infty$: Δ becomes colinear with $-\nabla f(x)$ but $|\Delta| = 0$

First order and second order optimization application 2nd order optimization methods To be coontinued