Construção de Compiladores

Prof. Dr. Daniel Lucrédio

DC - Departamento de Computação

UFSCar - Universidade Federal de São Carlos

Tópico 05 - Análise Sintática LR

Referências bibliográficas

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compiladores: Princípios, Técnicas e Ferramentas (2a. edição). Pearson, 2008.

Kenneth C. Louden. Compiladores: Princípios E Práticas (1a. edição). Cengage Learning, 2004.

Terence Parr. The Definitive Antlr 4 Reference (2a. edição). Pragmatic Bookshelf, 2013.

- Vimos que existem duas formas de se reconhecer uma linguagem através de uma gramática
 - Inferência recursiva
 - Derivação
- Ex: Gramática para expressões aritméticas
 - $V = \{E,I\}$
 - $T = \{+,*,(,),a,b,0,1\}$
 - P = conjunto de regras ao lado
 - \cdot S = E

 $I \rightarrow a$

d |

Ia

Ib

ΙO

I1

- Inferência recursiva
 - Dada uma cadeia (conjunto de símbolos terminais)
 - Do corpo para a cabeça
 - Ex: a*(a+b00)
 - a*(a+b00) ← a*(a+l00) ← a*(a+l0) ← a*(a+l) ← a*(a+E) ← a*(I+E) ← a*(E+E) ← a*(E) ← a*E
 ← I*E ← E*E ← E
- Derivação
 - Dada uma cadeia (conjunto de símbolos terminais)
 - Da cabeça para o corpo
 - Ex: a*(a+b00)
 - $E \Rightarrow E^*E \Rightarrow I^*E \Rightarrow a^*E \Rightarrow a^*(E) \Rightarrow a^*(E+E) \Rightarrow a^*(I+E) \Rightarrow a^*(a+E) \Rightarrow a^*(a+I) \Rightarrow a^*(a+I0) \Rightarrow a^*(a+I00) \Rightarrow a^$

- Análise sintática descendente
 - Fazer o processo de derivação
 Ou
 - Criar a árvore de análise sintática "de cima para baixo"
 - Análise top-down
- Análise sintática ascendente
 - Fazer o processo de inferência
 Ou
 - Criar a árvore de análise sintática "de baixo para cima"
 - Análise bottom-up

Exemplo

$$\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E} \mid \mathbf{T}$$
 $\mathbf{T} \rightarrow \mathbf{F} * \mathbf{T} \mid \mathbf{F}$
 $\mathbf{F} \rightarrow \mathbf{a} \mid \mathbf{b} \mid (\mathbf{E})$
Cadeia = $\mathbf{a} * \mathbf{b}$

- De acordo com a teoria
 - Analisador sintático = autômato de pilha
 - Portanto, para ambos os casos, um autômato de pilha deve ser suficiente
- Na análise sintática descendente, já vimos como fazer
 - A pilha armazena os símbolos a serem substituídos
 - Quando a pilha esvaziar, acabou
- Na análise sintática ascendente
 - A pilha vai armazenar os símbolos aguardando "redução"
 - Quando sobrar só o símbolo inicial na pilha, acabou

- Análise sintática descendente = método (algoritmo) que produz uma derivação mais à esquerda para uma cadeia da entrada
- O problema principal em cada passo é determinar qual produção aplicar
- Sendo que os tokens são lidos da esquerda para a direita
- Ex:
 - Entrada: a + b * c
 Token atual = a
 Símbolo inicial: E
 Possíveis produções de E:
 E + I
 E + I
 E * I

Exemplo: análise sintática descendente

• Gramática: $S \rightarrow n + S \mid n$

Cadeia: n + n

Casamento	Pilha	Entrada	Ação
	<u>s</u> \$	<u>n</u> +n\$	S→n+S
<u>n</u>	<u>n</u> +S\$	<u>n</u> +n\$	match
n <u>+</u>	<u>+</u> S\$	<u>+</u> n\$	match
	<u>s</u> \$	<u>n</u> \$	S→n
n+ <u>n</u>	<u>n</u> \$	<u>n</u> \$	match
	<u>\$</u>	<u>\$</u>	aceita

Escolha é guiada pela tabela LL

- Na análise sintática ascendente, temos um processo diferente
- Para reconhecer uma cadeia de entrada:
 - Empilha
 - Os símbolos da cadeia de entrada
 - Reduz
 - O lado direito de uma produção no topo da pilha, substituindo-o pelo lado esquerdo da produção
- Os passos 1 e 2 são repetidos até que
 - ACEITA os símbolos da cadeia de entrada foram consumidos e a pilha possui apenas o símbolo inicial da gramática
 - ERRO o processo foi interrompido antes de chegar ao final

- . Empilhamento
 - . Consiste em remover um símbolo da entrada e adicioná-lo ao topo da pilha
- . Ex:
 - . Gramática = $S \rightarrow S + n \mid n$
 - . Entrada = n + n

- Redução
 - Consiste em substituir símbolos no topo da pilha por um único símbolo
 - Não consome a entrada
- Ex:
 - Gramática = S → S + n | n
 - Entrada = n + n

- Redução
 - Consiste em substituir símbolos no topo da pilha por um único símbolo
 - Não consome a entrada
- Ex:
 - Gramática = S → S + n | n
 - Entrada = n + n

- Quando empilhar/reduzir?
- Conceito de "gancho" (handle)
 - Para cada produção A → α
 - α é um "gancho"
 - Quando α aparecer no topo da pilha, posso substituir por A
 - Ex: A \rightarrow aZHb
 - $\alpha = aZHb$

- Aceita
 - Quando consumir toda a entrada
 - Pilha contém somente o símbolo inicial
- Ex:
 - Gramática = $S \rightarrow S + n \mid n$
 - Entrada = n + n

- Exemplo
 - . Gramática: S → S + n | n
 - Entrada: n + n

Agora escrevemos a pilha da esquerda para a direita, para facilitar

Apareceu um "gancho" aqui

Pilha	Entrada	Ação
\$	<u>n</u> +n\$	empilha n
\$ <u>n</u>	<u>+</u> n\$	reduz S→n
\$S	<u>+</u> n\$	empilha +
\$S+	<u>n</u> \$	empilha n
\$ <u>S+n</u>	<u>\$</u>	reduz S→S+n
\$S	<u>\$</u>	aceita

E aqui também

- Desafio
 - Detectar o aparecimento do "gancho" na pilha
 - Exige olhar um ou mais símbolos da pilha
 - E também olhar símbolos à frente na entrada
 - Normalmente, busca-se olhar somente um símbolo à frente, por uma questão de eficiência

ASALR

- Analisador LR (k)
 - Left to right with Rightmost derivation
 - Lê a sentença em análise da esquerda para a direita
 - Produz uma derivação mais à direita ao reverso
 - Inferência recursiva
 - Considerando-se k símbolos na cadeia de entrada

Tabela de análise LR

- Existem diferentes tipos de tabelas LR
 - Cada uma com vantagens/desvantagens (veremos depois)
- A tabela LR é dividida em duas
 - Ação
 - Transição
- A tabela é construída diretamente a partir da gramática
- Estados = armazenam a situação atual de leitura
 - Permitem detectar o aparecimento de um "gancho"

Exemplo de tabela de análise LR

1.	$E \rightarrow$	E +	Ί
2.	$E \rightarrow$	T	
3.	$T \rightarrow$	T *	F
4.	$T \rightarrow$	F	
5.	$F \rightarrow$	(E)	
6.	$F \rightarrow$	id	

Fatadaa			Αç		T	ransiçõe	s		
Estados	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				OK			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Tabela de análise LR

- Os códigos para as ações são:
 - si = *shift* i
 - "avança na entrada e empilha o estado i na pilha"
 - rj = reduce j
 - "reduz segundo a produção de número j"
 - OK
 - "aceita a entrada"
 - Entrada em branco
 - Erro sintático

Algoritmo de análise LR

- ENTRADA: uma cadeia de entrada w e uma tabela de análise LR com as ações e transições definidas para uma gramática G
- SAÍDA: se w está em L(G), os passos de inferência recursiva (análise ascendente para w). Caso contrário, uma indicação de erro
- CONDIÇÕES INICIAIS:
 - w\$ no buffer de entrada
 - s0 na pilha (estado inicial)

Algoritmo de análise LR

```
a := primeiro símbolo de w$;
while(1) { /* repita indefinidamente */
   s := estado no topo da pilha;
   if(ACAO[s,a] = "shift t") {
      empilha t;
      a := próximo símbolo da entrada;
   } else if (ACAO[s,a] = "reduce A --> \beta") {
      desempilha |β| símbolos;
      t := topo da pilha;
      empilha TRANSICAO[t,A];
      imprima "A --> β"
   } else if (ACAO[s,a] = "OK") pare; /* fim */
   else erro;
```

1. $E \rightarrow E + T$ 2. $E \rightarrow T$ 3. $T \rightarrow T * F$ 4. $T \rightarrow F$

Exemplo

Entrada = id * id + id

6. F										Pilha	Símbolos	Entrada	Ação
Estados	Ações						Transições						
Estados	id	+	*	()	\$	Ε	T	F				
0	s5			s4			1	2	3				
1		s6				OK							
2		r2	s7		r2	r2							
3		r4	r4		r4	r4							
4	s5			s4			8	2	3				
5		r6	r6		r6	r6							
6	s5			s4				9	3				
7	s5			s4					10				
8		s6			s11								
9		r1	s7		r1	r1							
10		r3	r3		r3	r3							
11		r5	r5		r5	r5							

1. $E \rightarrow E +$ 2. $E \rightarrow T$ 3. $T \rightarrow T *$ 4. $T \rightarrow F$ 5. $F \rightarrow (E)$

Exemplo

Entrada = id * id + id

6. F -	→ id										Símbolos	Entrada	Ação
Estados	Ações							ransiçõe	es				_
LStados	id	+	*	()	\$	E	T	F	0		id*id+id\$	s5
0	s5			s4			1	2	3	0 5	id	*id+id\$	r6
1		s6				ОК				0 3	F	*id+id\$	r4
2		r2	s7		r2	r2				0 2	Т	*id+id\$	s7
3		r4	r4		r4	r4				027	T *	id+id\$	s5
										0275	T * id	+id\$	r6
4	s5			s4			8	2	3	0 2 7 10	T*F	+id\$	r3
5		r6	r6		r6	r6				0 2	Т	+id\$	r2
6	s5			s4				9	3	0 1	Е	+id\$	s6
7	s5			s4					10	016	E+	id\$	s5
8		s6			s11					0 1 6 5	E + id	\$	r6
9		r1	s7		r1	r1				0163	E+F	\$	r4
10		r3	r3		r3	r3				0169	E+T	\$	r1
11		r5	r5		r5	r5				0 1	E	\$	ОК

2. E - 3. T -	Exemplo									Er	ntrada = id	* (id + i	d)
	→ F → (E)									Pilha	Símbolos	Entrada	Ação
	→ (b) → id												
Fatarian			Aç	ões			T	ransiçõ	es				
Estados	id	+	*	()	\$	E	T	F				
0	s5			s4			1	2	3				
1		s6				ОК							
2		r2	s7		r2	r2							
3		r4	r4		r4	r4							
4	s5			s4			8	2	3				
5		r6	r6		r6	r6							
6	s5			s4				9	3				
7	s5			s4					10				
8		s6			s11								
9		r1	s7		r1	r1							
10		r3	r3		r3	r3							
11		r5	r5		r5	r5							

- $T \rightarrow T * F$
- $T \rightarrow F$

	$F \rightarrow (E)$ $F \rightarrow id$	
Estados	id	+
0	s5	
1		s6
2		r2
3		r4
4	s5	
5		r6
6	s5	
7	s5	

8

9

10

11

Ações

s6

r1

r3

r5

s7

r4

r6

s7

r3

r5

s4

s4

s4

s4

r2

r6

s11

r1

r3

r5

- r4
 - OK r2 r4

r6

r1

r3

r5

- - 8

Transições

2

2	3
9	3
	10

Exemplo Entrada = id * (id + id)

	Pilha	Símbolos	Entrada	Ação
_	0		id*(id+id)\$	s5
4	0 5	id	*(id+id)\$	r6
4	0 3	F	*(id+id)\$	r4
	0 2	Т	*(id+id)\$	s7
	027	T *	(id+id)\$	s4
4	0274	T * (id+id)\$	s5
	02745	T * (id	+id)\$	r6
	02743	T*(F	+id)\$	r4
4	02742	T*(T	+id)\$	r2
	02748	T*(E	+id)\$	s6
	027486	T*(E+	id)\$	s5
-	0274865	T * (E + id)\$	r6
	0274863	T*(E+F)\$	r4
	0274869	T*(E+T)\$	r1
4	02748	T*(E)\$	s11
	0274811	T*(E)	\$	r5
	0 2 7 10	T * F	\$	r3
	0 2	Т	\$	r2
	0 1	Е	\$	OK

xe	m	ìΓ

-xempl	(

=xe	m	p

3	. T	\rightarrow	T. ^	F.				
4	. Т	\rightarrow	F					
5	. F	\rightarrow	(E)					
_	_							

6.	F	\rightarrow	id

Estados		Ações Transições						es	
Estados	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				OK			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Entrada = id * (id

	<u> </u>	<u> </u>	
Pilha	Símbolos	Entrada	Ação

- $E \rightarrow E + T$

Estados

id

Exemplo

•	Entrada = i	d *	(id
			ш

Pilha Sín 0 id 0 5 id 0 3 F	nbolos	Entrada id*(id\$ *(id\$	Ação s5 r6
0 5 id		*(id\$	
			r6
0.3 E			
		*(id\$	r4
0 2 T		*(id\$	s7
027 T*		(id\$	s4
0274 T*	(id\$	s5
02745 T*	(id	\$	r6
02743 T*	(F	\$	r4
02742 T*	(T	\$	r2
02748 T*	(E	\$	erro

	T	ransiçõe	es
\$	E	T	F
	1	2	3
OK			
r2			
r4			
	8	2	3

0	s5			s4			1	2	3
1		s6				OK			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Ações

• Conflito empilha-reduz

• Na gramática acima, haverá um conflito na transição a partir das seguintes possibilidades para o mesmo gancho (obs: o ponto ... indica o momento atual da leitura):

```
[decl-if → 'if' '(' exp ')' decl]
[decl-if → 'if' '(' exp ')' decl 'else' decl]
```

- Trata-se de um conflito empilha-reduz, já que
 - A primeira possibilidade indica que deve haver uma redução
 - Enquanto a segunda indica que o 'else' deve ser empilhado

Conflito reduz-reduz

```
decl → ativa-decl | atrib-decl
ativa-decl → ID
atrib-decl → var ':=' exp
var → ID
exp → var | NUM
```

Na gramática acima, há uma situação com duas possibilidades para um mesmo gancho

```
[ativa-decl→ID.]
[var→ID.]
```

- Ocorre um conflito reduz-reduz, já que, no aparecimento do gancho "ID" na pilha, há duas possíveis reduções:
 - ativa-decl→ID
 - var→ID

- Resolução de conflitos
 - . Empilha-reduz
 - . Opção default (sempre empilhar)
 - Resolve a ambiguidade do "else sobrando", pois um else deve sempre ser agrupado com o if mais próximo
 - . Ex:

```
if (1) then if (2) then outra else outra
```

Decisão errada:

Pilha	Entrada	Ação
if (exp) then if(exp) then outra	else outra \$	reduce
if (exp) then decl-if	else outra \$	shift
if (exp) then decl-if else	outra \$	shift
if (exp) then decl-if else outra	\$	reduce
decl-if	\$	

- Resolução de conflitos
 - . Empilha-reduz
 - . Opção default (sempre empilhar)
 - Resolve a ambiguidade do "else sobrando", pois um else deve sempre ser agrupado com o if mais próximo
 - . Ex:

```
if (1) then if (2) then outra else outra
```

Decisão certa:

Pilha	Entrada	Ação
if (exp) then if(exp) then outra	else outra \$	shift
if (exp) then if(exp) then outra else	outra \$	shift
if (exp) then if(exp) then outra else outra	\$	reduce
if (exp) then decl-if	\$	reduce
decl-if	\$	

- Resolução de conflitos
 - Empilha-reduz
 - . Associatividade/precedência
 - Resolve ambiguidades de expressões
- Consiste em definir explicitamente (fora da gramática) a relação de precedência/associatividade entre os terminais
 - Ex: * > +, + > +, etc
- No momento da dúvida:
 - a = o terminal mais à direita na pilha
 - b = a entrada atual
 - Se a>b, reduz
 - Se a<b, empilha

• Ex:

id+id*id

Momento de dúvida, pois existe
um estado com as seguintes
opções:

[E \rightarrow E+E.] reduz? [E \rightarrow E.*E] ou empilha?

Pilha	Entrada	Ação
E+E	* id \$	shift
E+E*	id \$	shift
E + E * id	\$	reduce
E+E*E	\$	reduce
E+E	\$	reduce
Е	\$	

Neste exemplo

+ < *, portanto empilha

Regras de associação/precedência:

• Ex:

id+id+id

Momento de dúvida, pois existe
um estado com os seguintes
itens:

$$[E \rightarrow E + E.]$$

$$[E \rightarrow E + E]$$

e + está em seguidores(E)

Pilha	Entrada	Ação
E+E	+ id \$	reduce
Е	+ id \$	shift
E+	id \$	shift
E + id	\$	reduce
E+E	\$	reduce
Е	\$	

Neste exemplo

$$a = +$$

$$b = +$$

+ > +, portanto reduz

Regras de associação/precedência:

- Normalmente indicam ambiguidade ou outro problema no projeto da gramática
- Precisa re-escrever a gramática
 - Não existe regra para isso
 - Ou alterar diretamente a tabela LR

Tipos de tabelas LR - complexidade na construção

- SLR(1): Simple LR
 - Simples de construir
- LR(1) canônica
 - Média complexidade para construir
- LALR(1): LookAhead LR
 - Alta complexidade para construir
- Porém existem algoritmos automatizados, portanto essa complexidade não é um fator preponderante

Tipos de tabelas LR - conflitos

- SLR(1): Simple LR
 - Muitos conflitos
- LR(1) canônica
 - Menos conflitos que SLR
- LALR(1): LookAhead LR
 - Menos conflitos que SLR
- Pelo quesito de conflitos, SLR pode ser descartada

Tipos de tabelas LR - eficiência

- SLR(1): Simple LR
 - Tamanho pequeno
- LR(1) canônica
 - Tamanho grande / pouca eficiência
- LALR(1): LookAhead LR
 - Tamanho pequeno
- Pelo quesito de eficiência, resta a LALR como a mais indicada

Fim