Algebra/Geometrie II, Übungsblatt 6

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 25.5. oder am 27.5. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Sei $f: V \to V$ eine diagonalisierbare lineare Abbildung, $V \cong \mathbb{K}^n$, $n < \infty$, und sei $W \subseteq V$ ein f-stabiler Unterraum (also $f(W) \subseteq W$). Beweisen Sie, dass

$$f(W) = W \cap f(V).$$

Geben Sie weiter ein Gegenbeispiel für allgemeine f.

Aufgabe 2. Beweisen Sie die folgende Aussage. Für jede nichtleere Menge von paarweise kommutierenden triagonalisierbaren linearen Abbildungen eines Vektorraums V von Dimension n, wo $1 \le n < \infty$, gibt es mindestens einen simultanen Eigenvektor.

Aufgabe 3. Sei $f: V \to V$ eine lineare Abbildung mit $\chi_f(x) = \prod_{i=1}^r (x - \lambda_i)^{\alpha_i}$, wo $\lambda_i \neq \lambda_j$ für $i \neq j$, und sei $f = f_s + f_{nl}$ die Jordan-Zerlegung von f. Zeigen Sie, dass $\mathrm{Im} f_s \subseteq \mathrm{Im} f$.

Aufgabe 4. Finden Sie eine Jordan-Basis für $f: \mathbb{R}^5 \to \mathbb{R}^5$, wenn f durch die Matrix A gegeben ist.