Data Analysis Tools and Practice(Using R)

R数据可视化手册

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

- 使用ggplot2里的画图函数完成以下的练习:
 - * I、将数据集Big_Mart_Dataset.csv,加载到R空间,将数据框命名为mart,查看mart的维度和基本结构。
 - * 2、画Item_MRP和Item_Visibility的关系图,要求: (I)指定颜色属性为 Item_Type; (2)设置x轴的标度(scale), x轴名字为Item Visibility", x轴刻 度为0-0.35以0.05为间隔的数值序列;设置y轴的标度(scale), y轴名字 为Item MRP, y轴刻度为0-270以30为间隔的数值序列; (3)设置图形主 题为theme_bw, 图形标题为Scatterplot。
 - * 3、在2基础上,根据因子类型的列Item_Type进行分面。
 - * 4、画列变量Item_MRP的直方图,要求: (I)每个小圆柱体的宽度为2, (2)设置x轴的标度(scale), x轴名字为Item MRP, x轴刻度为0-270以30为间隔的数值序列;设置y轴的标度(scale), y轴名字为Count, y轴刻度为0-200以20为间隔的数值序列;(3)设置标题为"Histogram"

- 使用ggplot2里的画图函数完成以下的练习:
 - * 5、画出列变量Outlet_Establishment_Year的条形图,要求(I): 填充色为"red"; (2): 主题为theme_bw和theme_gray;(3): 设置x轴的标度(scale), x轴名字为 Establishment_Year, x轴刻度为I985-20I0为间隔的数值序列; 设置y轴的标度 (scale), y轴名字为Count, y轴刻度为0-I500以I50为间隔的数值序列; (4): 设置标题为Bar Chart, 翻转坐标轴
 - * 6、画出Outlet_Location_Type堆叠的条形图 (I): 使用 Outlet_Type设置填充色; (2): 设置图形的标题为Stacked Bar Chart, x轴的名称为Outlet Location Type", y轴的名称为Count of Outlets
 - * 7、画Outlet_Identifier以Item_Outlet_Sales为分类变量的箱型图;(I): 填充色为红色; (2): y轴名称为"Item Outlet Sales", 坐标为0-I5000以I50为间隔的数值序列; (3): 设置标题为"Box Plot", x 轴坐标为"Outlet Identifier
 - * 8、画列变量Item_Outlet_Sales面积图表 要求: (I)统计变换为 "bin", bin的宽度为30, 填充色为"steelblue";(2)x轴的标度为0-I I000以I000间隔的数值序列;(3)图形标题为"Area Chart", x 轴命名为 "Item Outlet Sales", y轴命名为 "Count"。

上次课程内容回顾

- ggplot(), 图层
 - * data; mapping; geom; stat; position; aes(); layer();
- geom_xxx:
 - * point; path; bar; histogram; smooth; density; jitter; tile; area; polygon;
 - * line; vline; hline; abline; rect; text; arrow;
- stat_xxx:
 - * identity; smooth; function; boxplot; density; quantile; sum; unique;
 - * stat_bin; stat_bin2d; stat_binhex; stat_density2d; stat_summary;
- 其余:
 - * fill; bins; colour; group; labs; binwidth; shape; alpha; maps;

参考图书

O'REILLY®

[美] Winston Chang 著 肖楠 邓一碩 魏太云 译 邱怡轩 审校


```
library(gcookbook) # For the data set
library(ggplot2)
```

```
csub <- subset(climate, Source=="Berkeley" & Year >= 1900)
csub$pos <- csub$Anomaly10y >= 0
```

csub

Source	Year	Anomaly1y	Anomaly5y	Anomaly10y	Unc10y	
Berkeley	1900	NA	NA	-0.171	0.108	FALSE
Berkeley	1901	NA	NA	-0.162	0.109	FALSE
Berkeley	1902	NA	NA	-0.177	0.108	FALSE
Berkeley	2002	NA	NA	0.856	0.028	TRUE
Berkeley	2003	NA	NA	0.869	0.028	TRUE
Berkeley	2004	NA	NA	0.884	0.029	TRUE

```
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
  geom_bar(stat="identity", position="identity")
```



```
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
    geom_bar(stat="identity", position="identity", colour="black", size=0.25) +
    scale_fill_manual(values=c("#CCEEFF", "#FFDDDD"), guide=FALSE)
```



```
library(gcookbook) # For the data set
tophit <- tophitters2001[1:25, ] # Take the top 25
ggplot(tophit, aes(x=avg, y=name)) + geom_point()</pre>
```



```
tophit[, c("name", "lg", "avg")]

name lg avg
Larry Walker NL 0.3501
Ichiro Suzuki AL 0.3497
Jason Giambi AL 0.3423
...

Jeff Conine AL 0.3111
Derek Jeter AL 0.3111
```


克利夫兰(Cleveland)点图

```
ggplot(tophit, aes(x=reorder(name, avg), y=avg)) +
    geom_point(size=3) +  # Use a larger dot
    theme_bw() +
    theme(axis.text.x = element_text(angle=60, hjust=1),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.major.x = element_line(colour="grey60", linetype="dashed"))
```


RGCook

克利夫兰(Cleveland)点图

```
# Get the names, sorted first by lg, then by avg
nameorder <- tophit$name[order(tophit$lg, tophit$avg)]

# Turn name into a factor, with levels in the order of nameorder
tophit$name <- factor(tophit$name, levels=nameorder)

ggplot(tophit, aes(x=avg, y=name)) +
    geom_segment(aes(yend=name), xend=0, colour="grey50") +
    geom_point(size=3, aes(colour=lg)) +
    scale_colour_brewer(palette="Set1", limits=c("NL","AL")) +
    theme_bw() +
    theme(panel.grid.major.y = element_blank(),  # No horizontal grid
        legend.position=c(1, 0.55),  # Put legend inside pagend.justification=c(1, 0.5))</pre>
```


克利夫兰(Cleveland)点图

```
ggplot(tophit, aes(x=avg, y=name)) +
                                                                                Suzuki
    geom_segment(aes(yend=name), xend=0, colour="grey50") +
                                                                                3iambi
    geom_point(size=3, aes(colour=lg)) +
                                                                                Vlomar ·
    scale_colour_brewer(palette="Set1", limits=c("NL","AL"), guide=FALSE) +
                                                                                Boone -
   theme_bw() +
                                                                                anotto
    theme(panel.grid.major.y = element_blank()) +
                                                                                nzalez
    facet_grid(lg ~ ., scales="free_y", space="free_y")
                                                                                riguez
                                                                      Shannon Stewart
                                                                           Derek Jeter ·
                                                                           Jeff Conine
                                                                          Larry Walker
                                                                          Todd Helton
                                                                          Moises Alou
                                                                       Lance Berkman ·
                                                                        Chipper Jones ·
                                                                          Albert Pujols
                                                                          Barry Bonds
                                                                         Sammy Sosa ·
                                                                           Juan Pierre ·
                                                                        Luis Gonzalez ·
                                                                           Rich Aurilia
                                                                         Paul Lo Duca
                                                                            Jose Vidro
                                                                            Cliff Floyd
                                                                            Jeff Cirillo
                                                                                     0.310.320.330.340.35
                                                                                             avg
```

cdat

Name	Code	Year	GDP	laborrate	healthexp	infmortality
Canada	CAN	2009	39599.04	67.8	4379.761	5.2
Iceland	ISL	2009	37972.24	77.5	3130.391	1.7
Ireland	IRL	2009	49737.93	63.6	4951.845	3.4
Japan	JPN	2009	39456.44	59.5	3321.466	2.4
Luxembourg	LUX	2009	106252.24	55.5	8182.855	2.2
Netherlands	NLD	2009	48068.35	66.1	5163.740	3.8
New Zealand	NZL	2009	29352.45	68.6	2633.625	4.9
Switzerland	CHE	2009	63524.65	66.9	7140.729	4.1
United Kingdom	GBR	2009	35163.41	62.2	3285.050	4.7
United States	USA	2009	45744.56	65.0	7410.163	6.6

绘制气泡图

p <- ggplot(cdat, aes(x=healthexp, y=infmortality, size=GDP)) +
 geom_point(shape=21, colour="black", fill="cornsilk")</pre>

p <- ggplot(faithful, aes(x=eruptions, y=waiting))</pre>

p + geom_point() + stat_density2d()

eruptions

p + stat_density2d(aes(colour=..level..))

5-10

10-15

15-20

>20

library(gcookbook) # For the data set

wind

TimeUTC	Temp	WindAvg	${\tt WindMax}$	WindDir	${\sf SpeedCat}$	DirCat
0	3.54	9.52	10.39	89	10-15	90
5	3.52	9.10	9.90	92	5-10	90
10	3.53	8.73	9.51	92	5-10	90
2335	6.74	18.98	23.81	250	>20	255
2340	6.62	17.68	22.05	252	>20	255
	6.22	18.54	23.91	259	>20	255

mcor <- cor(mtcars)
Print mcor and round to 2 digits
round(mcor, digits=2)</pre>

```
cyl disp
                        hp drat
                                   wt qsec
      mpa
                                               vs
     1.00 -0.85 -0.85 -0.78
                            0.68 -0.87 0.42 0.66
                                                  0.60
mpg
                0.90 0.83 -0.70
                                 0.78 -0.59 -0.81 -0.52 -0.49
disp -0.85 0.90 1.00 0.79 -0.71
                                 0.89 -0.43 -0.71 -0.59 -0.56
    -0.78 0.83 0.79 1.00 -0.45 0.66 -0.71 -0.72 -0.24 -0.13
drat 0.68 -0.70 -0.71 -0.45 1.00 -0.71 0.09
                                            0.44 0.71 0.70 -0.09
    -0.87 0.78 0.89 0.66 -0.71 1.00 -0.17 -0.55 -0.69 -0.58 0.43
asec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 1.00 0.74 -0.23 -0.21 -0.66
     0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74 1.00
                                                  0.17
     0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17
                                                 1.00
gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21 0.21
                                                 0.79
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06
                                                       0.27
```

```
cyl disp
                        hp drat
                                   wt
                                      qsec
                                                        gear carb
      mpg
                                               ٧S
                                                     am
                                             0.66
     1.00 -0.85 -0.85 -0.78 0.68 -0.87 0.42
                                                   0.60 0.48 -0.55
mpg
          1.00 0.90 0.83 -0.70 0.78 -0.59 -0.81 -0.52 -0.49 0.53
disp - 0.85 0.90
                1.00 0.79 -0.71 0.89 -0.43 -0.71 -0.59 -0.56
    -0.78 0.83 0.79
                      1.00 -0.45 0.66 -0.71 -0.72 -0.24 -0.13
hp
    0.68 -0.70 -0.71 -0.45
                           1.00 -0.71 0.09
                                             0.44 0.71
    -0.87 0.78 0.89
                      0.66 -0.71 1.00 -0.17 -0.55 -0.69 -0.58 0.43
wt
qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17
                                       1.00
                                             0.74 -0.23 -0.21 -0.66
     0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74
                                             1.00
                                                   0.17 0.21 -0.57
VS
     0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23
                                             0.17
                                                   1.00
am
gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21
                                             0.21
                                                   0.79
                                                         1.00
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57
                                                   0.06
```

绘制相关矩阵图

corrplot(mcor)

corrplot(mcor, method="shade", shade.col=NA, tl.col="black", tl.srt=45)

绘制相关矩阵图

col <colorRampPalette(c("#BB 4444", "#EE9988", "#FFFFF", "#77AADD", "#4477AA"))

corrplot(mcor, method="shade", shade.col=NA, tl.col="black", tl.srt=45, col=col(200), addCoef.col="black", addcolorlabel="no", order="AOE")


```
p <- ggplot(data.frame(x=c(-3,3)), aes(x=x))
p + stat_function(fun = dnorm)</pre>
```



```
myfun <- function(xvar) {
    1/(1 + exp(-xvar + 10))
}
```

ggplot(data.frame(x=c(0, 20)), aes(x=x)) + stat_function(fun=myfun)

```
# Return dnorm(x) for 0 < x < 2, and NA for all other x
dnorm_limit <- function(x) {
   y <- dnorm(x)
   y[x < 0 | x > 2] <- NA  # ggplot() with dummy
   return(y) data</pre>
```


data
p <ggplot(data.frame(x=c(-3, 3)), aes(x=x))

p +
stat_function(fun=dnor
m_limit, geom="area",
fill="blue", alpha=0.2) +

stat_function(fun=dnor
m)

library(igraph)
Specify edges for a directed graph
gd <- graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6))
plot(gd)

For an undirected graph gu <- graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6), directed=FALSE) # No labels plot(gu, vertex.label=NA)

RGCook

绘制网络图

library(gcookbook)

g <- graph.data.frame(madmen2, directed=TRUE)

par(mar=c(0,0,0,0))

plot(g, layout=layout.fruchterman.reingold, vertex.size=8, edge.arrow.size=0.5, vertex.label=NA)

Name1 Abe Drexler Allison Arthur Case

Name2 Peggy Olson

Don Draper Betty Draper

g <- graph.data.frame(madmen, directed=FALSE) par(mar=c(0,0,0,0))# Remove unnecessary margins plot(g, layout=layout.circle, vertex.size=8, vertex.label=NA)

练习

练习-0029

O'REILLY®

[美] Winston Chang 著 肖楠 邓一碩 魏太云 译 邱怡轩 审校

阅读所有章 节,运行所有 代码

注解 小提琴图

坐标系 热图

图例 三维图

分面 谱系图

颜色 向量图

输出 马赛克图

提交方式和上节课一样!

https://www.datacamp.com/courses

谢谢!

孙惠平 sunhp@ss.pku.edu.cn