Hex Schmitt-Trigger Inverter

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

LOGIC DIAGRAM

PIN $14 = V_{CC}$ PIN 7 = GND

PIN ASSIGNMENT

AI [14	v_{cc}
Yı 🛚		13	A6
A2 [3	12	¥6
Y2 [4	ш	A5
A3 [5	Ki.	Y5
¥3 🛚	ń	9	A4
CINID [7	δ	¥4

FUNCTION TABLE

Inputs	Output
A	Y
L	Н
Н	L

$\mathbf{MAXIMUM\ RATINGS}^*$

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
$V_{\rm IN}$	Input Voltage	7.0	V
V_{OUT}	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V_{CC}	Supply Voltage	4.75	5.25	V
I_{OH}	High Level Output Current		-15	mA
I_{OL}	Low Level Output Current		24	mA
T_{A}	Ambient Temperature Range	0	+70	°C

DC ELECTRICAL CHARACTERISTICS over full operating conditions

				Guaranteed Limit		
Symbol	l Parameter		Test Conditions	Min	Max	Unit
V_{T+} .	Positive-Going Input Threshold Voltage		$V_{CC} = 5 \text{ V}$	0.5	1	V
V _T	Negative-Going In Voltage	nput Threshold	$V_{CC} = 5 \text{ V}$	1.4	1.9	V
V_{T+} - V_{T-}	Hysteresis		$V_{CC} = 5 \text{ V}$	0.4		V
V_{IK}	Input Clamp Volta	ge	$V_{CC} = min$, $I_{IN} = -18 \text{ mA}$		-1.5	V
V_{OH}	High Level Output Voltage		$V_{CC} = min$, $I_{OH} = -0.4 \text{ mA}$, $V_I = 0.5 \text{ V}$	2.7		V
V _{OL}	Low Level Output Voltage		$V_{CC} = min, I_{OL} = 4 mA$ $V_I = 1.9 V$		0.4	V
			$V_{CC} = min, I_{OL} = 8 \text{ mA}$ V_I =1.9 V		0.5	
I_{IH}	High Level Input Current		$V_{CC} = \text{max}, V_{IN} = 2.7 \text{ V}$		20	μΑ
			$V_{CC} = \text{max}, V_{IN} = 7.0 \text{ V}$		0.1	mA
$I_{\rm IL}$	Low Level Input Current		$V_{CC} = \text{max}, V_{IN} = 0.4 \text{ V}$		-0.4	mA
I_{O}	Output Short Circuit Current		$V_{CC} = max$, $V_{O} = 0$ V (Note 1)	-20	-100	mA
I_{CC}	Supply Current	Total with outputs high	$V_{CC} = max$		16	mA
		Total with outputs low			21	

AC ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$, $C_L = 15 \text{ pF}$,

 $R_L=2~k\Omega$, $t_{\rm r}=15~ns,\,t_{\rm f}=6.0~ns)$

5	Symbol	Parameter		Max	Unit
	t_{PLH}	Propagation Delay, Input A to Output Y		22	ns
	t_{PHL}	Propagation Delay, Input A to Output Y		22	ns

Figure 1. Switching Waveforms

NOTES A. C_L includes probe and jig capacitance. B. All diodes are 1N916 or 1N3064.

Figure 2. Test Circuit