

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ГРАФОВ

Лекция 7. GraphBLAS. Алгоритмы на графах и линейная алгебра

Пирова А.Ю. Кафедра ВВиСП

Содержание

- □ Графы и линейная алгебра
- □ Мотивация
- □ Математические основы
- □ Основные операции
- □ Примеры
 - Поиск в ширину
 - Поиск кратчайших путей (алгоритм Беллмана-Форда)
 - Вычисление числа треугольников в графе
 - Вычисление локального коэффициента кластеризации
- □ Результаты вычислительных экспериментов
- □ Заключение

Особенности алгоритмов на графах

- □ Зависимость вычислений от данных
 - Вычислительная нагрузка неизвестна заранее
 - Алгоритмы часто сформулированы итеративно
- □ Неструктурированность задач
 - Статическое распределение данных может привести к дисбалансу вычислительной нагрузки
 - Отсутствует векторизация
- □ Низкая локальность
 - Нерегулярный доступ к памяти, кэш-промахи, ошибки предсказания ветвлений
- □ Низкая арифметическая интенсивность
 - Число операций обращения к памяти значительно превышает число арифметических операций над данными

Графы и линейная алгебра

- □ Алгоритмы на графах можно преобразовать к последовательности матрично-векторных операций
- □ Аналогия:
 - матрица смежности ~ разреженная матрица
 - выбранная вершина графа ~ единичный вектор

матрица смежности

	1	1				
			1	1		1
	1			1	1	
				1		
			1			
1						1
1						

Мотивация

□ GraphBLAS – подход к реализации алгоритмов на графах, при котором весь алгоритм на графе представляется в виде операций над векторами и матрицами

Проблема	Решение
Библиотеки для обработки графов имеют большой объем кода, оптимизацию и распараллеливание каждого алгоритма надо выполнять отдельно	Построение алгоритма из ограниченного числа блоков упрощает разработку и оптимизацию кода.
Для графов различной структуры / в разных базах данных / в разных библиотеках / используются различные внутренние форматы хранения	Унифицированное хранение графов в виде разреженной матрицы подходит для графов разной структуры (однако можно применять разные форматы)
Параллельные алгоритмы на графах нетривиально оптимизировать	Достаточно применить эффективные реализации матрично-векторных операций и коммуникаций между процессами

Мотивация

Проблема	Решение
Существующие реализации сложно переносить на другие или новые вычислительные архитектуры.	Переносимость обеспечивается за счет переноса и оптимизации базовых матрично-векторных операций
Производительность ограничена пропускной способностью и латентностью вычислительного устройства	Производительность ограничивается пропускной способностью вычислительного устройства

- □ O стандарте: http://graphblas.org
- □ Коллекция ссылок:

https://github.com/GraphBLAS/GraphBLAS-Pointers/tree/master

История

- □ 2011 г. сборник Кепнера, Гильберта по алгоритмам на графах в терминах линейной алгебры
- □ 2013 г. стандартизация примитивов линейной алгебры, используемых для графовых задач GraphBLAS
- □ 2017 г. стандарт GraphBLAS для языка С
- □ 2019 г. проект LAGraph библиотека алгоритмов, использующих стандарт GraphBLAS
- □ 2020 г. анонс разработки стандарта GraphBLAS для языка С++ и для распределенных систем (еще в разработке)

Реализации стандарта GraphBLAS

- □ Реализации стандарта:
 - SuiteSparse:GraphBLAS (C)
 https://github.com/DrTimothyAldenDavis/GraphBLAS
 - CombinatorialBLAS, CombBLAS (C++)
 https://github.com/PASSIONLab/CombBLAS
 - IBM GraphBLAS https://github.com/IBM/ibmgraphblas
 - GraphBLAS Template Library (C++) https://github.com/cmu-sei/gbtl/
 - Graphulo (Java): http://graphulo.mit.edu/
 - GraphBLAST (C++, CUDA) https://github.com/gunrock/graphblast
 - LAGraph (C++) https://github.com/GraphBLAS/LAGraph библиотека алгоритмов на графах, использующая GraphBLAS
 - Python GraphBLAS https://github.com/python-graphblas/graphblas-algorithms

Параллелизм

Библиотека	Технология	Целевое устройство	Основной формат хранения матриц		
SuiteSparse:G raphBLAS	OpenMP	Multicore CPU	CRS		
CombBLAS	MPI + OpenMP	CPU, GPU	CSC, DCSC		
GraphBLAST	CUDA	CPU, GPU	CRS, CSC		

- □ Все операции в GraphBLAS выполняются над объектами полукольца $\langle D, \otimes, \oplus, 0 \rangle$, которое задается набором операторов и множеством значений аргументов D
- \square Множества допустимых значений элементов матрицы: R, C, Z, N
- □ Операторы:
 - Оператор сложения \bigoplus : $D \times D \to D$, $\langle D, \bigoplus, 0 \rangle$ коммутативный моноид
 - Оператор умножения $\bigotimes: D \times D \to D$ закрытый бинарный оператор

- \square Пусть a,b,c матрицы смежности (инцидентности) размера $n \times m$
- □ Свойства операторов:
 - Оператор сложения \bigoplus : $c = a \bigoplus b$
 - ассоциативный $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - коммутативный $a \oplus b = b \oplus a$
 - существует нейтральный элемент $a \oplus 0 = a$
 - Оператор умножения \otimes : $c = a \otimes b$
 - ассоциативный $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - коммутативный $a \otimes b = b \otimes a$
 - дистрибутивный $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
- \square В терминах матриц C = AB

$$C_{ij} = A_{i1} \otimes B_{1j} \oplus A_{i2} \otimes B_{2j} \oplus ... \oplus A_{i,n} \otimes B_{nj}$$

□ Примеры полуколец:

Название	Ф	8	Множество значений	Нулевой элемент	Смысл операции
стандартная арифметика	+	×	R	0	Произведение всех путей
целочисленная арифметика	+	×	N	0	Число всех путей
max-plus алгебра	Max	+	$\{-\infty, R\}$	-∞	Паросочетание
min-plus алгебра	Min	+	$\{R, +\infty\}$	+∞	Кратчайшие пути
Булева алгебра	xor	and	[0, 1]	0	достижимость
Алгебра множеств	U	Λ	Z	Ø	

□ Подробнее:

Kepner J. GraphBLAS Mathematics-Provisional Release 1.0 //GraphBLAS. org, Tech. Rep. – 2017.

□ Пример:

Kepner J. GraphBLAS Mathematics-Provisional Release 1.0 //GraphBLAS. org, Tech. Rep. – 2017.

Маски

- □ Стандарт учитывает наличие вектора-маски или матрицымаски при выполнении операций умножения, сложения
 - Сокращение числа вычислительных операций
 - Способ задания подмножества вершин
 - Способ комбинирования матрично-векторных операций и поэлементных операций

□ Обозначения:

- A, B, C, M матрицы
- u, v, w, m вектора
- $\langle m \rangle, \langle M \rangle$ маска
- *i, j* индексы
- s, k скаляры
- ⊕ сложение
- ⊗ умножение
- ⊙ аккумулятор

function name	description	GraphBLAS notation
GrB_mxm	matrix-matrix multiplication	$C\langle M \rangle = C \odot AB$
GrB_vxm	vector-matrix multiplication	$\mathbf{w}'\langle\mathbf{m}'\rangle = \mathbf{w}'\odot\mathbf{u}'\mathbf{A}$
GrB_mxv	matrix-vector multiplication	$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot\mathbf{A}\mathbf{u}$
GrB_eWiseMult	element-wise,	$C\langle M \rangle = C \odot (A \otimes B)$
	set-union	$w\langle m\rangle = w\odot (u\otimes v)$
GrB_eWiseAdd	element-wise,	$C\langle M \rangle = C \odot (A \oplus B)$
	set-intersection	$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot(\mathbf{u}\oplus\mathbf{v})$
GrB_extract	extract submatrix	$C\langle M \rangle = C \odot A(i,j)$
		$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot\mathbf{u}(\mathbf{i})$
GrB_assign	assign submatrix	$C(M)(i,j) = C(i,j) \odot A$
		$w\langle m \rangle(i) = w(i) \odot u$
GxB_subassign	assign submatrix	$C(i,j)\langle M \rangle = C(i,j) \odot A$
		$w(i)\langle m \rangle = w(i) \odot u$
GrB_apply	apply unary operation	$C\langle M \rangle = C \odot f(A)$
		$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot f(\mathbf{u})$
GxB_select	apply select operation	$C\langle M \rangle = C \odot f(A, k)$
		$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot f(\mathbf{u}, \mathbf{k})$
GrB_reduce	reduce to vector	$\mathbf{w}\langle\mathbf{m}\rangle = \mathbf{w}\odot[\oplus_{j}\mathbf{A}(:,j)]$
	reduce to scalar	$s = s \odot [\bigoplus_{ij} \mathbf{A}(i,j)]$
GrB_transpose	transpose	$C\langle M \rangle = C \odot A'$
GxB_kron	Kronecker product	$\mathbf{C}\langle \mathbf{M} \rangle = \mathbf{C} \odot \operatorname{kron}(\mathbf{A}, \mathbf{B})$

Element-wise addition: union of non-zero elements

Element-wise multiplication: intersection of non-zero elements

Sparse matrix times sparse vector: process incoming edges

Sparse vector times sparse matrix: process outgoing edges

Slide from: Introduction to GraphBLAS: A linear algebraic approach for concise, portable, and high-performance graph algorithms by Gábor Szárnyas [pdf]

Sparse matrix times sparse matrix: process connecting outgoing edges

Matrix transpose: reverse edges

Reduction: aggregate values in each row

Apply: apply unary operator on all values

1		2		3		1		4		9
					$f(x) = x^2$					
3	2					9	4			
			1						1	

Slide from: Introduction to GraphBLAS: A linear algebraic approach for concise, portable, and high-performance graph algorithms by Gábor Szárnyas [pdf]

GraphBLAS primitives in increasing arithmetic intensity

A. Buluç: Graph algorithms, computational motifs, and GraphBLAS, ECP Meeting 2018

Алгоритмы в терминах линейной алгебры

Алгоритм на графах	Алгоритм в терминах линейной алгебры
Инверсия ребер графа	Транспонирование матрицы
Обход графа	Умножение матрицы на вектор
Объединение графов	Сложение матриц
Пересечение графов	Умножение матриц
Выбор подграфа	Выбор подматрицы
Поиск кратчайших путей	Умножение матрицы на вектор
Нахождение паросочетания	Умножение матрицы на вектор
Подсчет числа треугольников	Умножение матриц

Алгоритмы в терминах линейной алгебры

problem	algorithm	canonical complexity Θ	LA-based complexity Θ
breadth-first search		m	m
single source shortest paths	Dijkstra	$m + n \log n$	n^2
single-source shortest paths	Bellman-Ford	mn	mn
all-pairs shortest paths	Floyd-Warshall	n^3	n^3
minimum channing tree	Prim	$m + n \log n$	n^2
minimum spanning tree	Borůvka	$m \log n$	$m \log n$
maximum flow	Edmonds-Karp	m^2n	m^2n
maximal independent set	greedy	$m + n \log n$	$mn + n^2$
maximai muepenuent set	Luby	$m + n \log n$	$m \log n$

Slide from: Introduction to GraphBLAS: A linear algebraic approach for concise, portable, high-performance graph algorithms by Gábor Szárnyas [pdf]

АЛГОРИТМЫ

Поиск в ширину

□ Задача: в ненаправленном графе найти все вершины, достижимые из заданной вершины-источника, в порядке увеличения расстояния от источника

□ Алгоритм:

Переменные: q — очередь из вершин текущего уровня (вектормаска), v — вектор с номерами уровней

- 1. Инициализация. q[s] = 1, level = 1
- 2. Пока q не пусто:
 - 1. v(q) = level (GrB_assign(v, q, level))
 - 2. $q\langle v\rangle = A^T q$ (GrB_vxm(q, A))
 - 3. Переход на новый уровень? (GrB_Vector_reduce(q))
- \square Основная операция умножение матрицы на вектор A^Tq
- \square Полукольцо: $\bigoplus -OR$, $\otimes -AND$, значения $\{0, 1\}$, «нуль» 0.

Поиск в ширину. Пример

Шаг 1

Поиск в ширину. Пример

$$mask = \neg v$$

$$A^T$$

7

$$q_{new}$$

v

Поиск в ширину. Пример

υ

0 1 1 2 2 1 3 3

Поиск в ширину. Код (из спецификации v. 2.0)

```
1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <stdint.h>
 4 #include <stdbool.h>
 5 #include "GraphBLAS.h"
    * Given a boolean n x n adjacency matrix A and a source vertex s, performs a BFS traversal
    * of the graph and sets v[i] to the level in which vertex i is visited (v[s] == 1).
    * If i is not reacheable from s, then v[i] = 0. (Vector v should be empty on input.)
11
     */
    GrB Info BFS(GrB Vector *v, GrB Matrix A, GrB Index s)
12
13
14
      GrB_Index n;
                                                       // n = \# of rows of A
15
      GrB\_Matrix\_nrows(\&n,A);
16
17
                                                       // Vector < int32_t > v(n)
      GrB_Vector_new(v, GrB_INT32, n);
18
19
      GrB_Vector q;
                                                      // vertices visited in each level
20
      GrB_Vector_new(&q,GrB_BOOL,n);
                                                      // Vector < bool > q(n)
                                                      // q[s] = true, false everywhere else
^{21}
      GrB_Vector_setElement(q,(bool)true,s);
22
23
^{24}
       * BFS traversal and label the vertices.
25
^{26}
      int32_t d = 0;
                                                       // d = level in BFS traversal
                                                      // succ == true when some successor found
27
      bool succ = false;
28
      do {
                                                       // next level (start with 1)
^{29}
       ++d;
        GrB_assign(*v,q,GrB_NULL,d,GrB_ALL,n,GrB_NULL); // v[q] = d
30
        GrB_vxm(q, *v, GrB_NULL, GrB_LOR_LAND_SEMIRING_BOOL,
31
                                                       //q[!v] = q /|.\mathscr{B}\mathscr{B} A ; finds all the
32
                q,A,GrB DESC RC);
                                                       // unvisited successors from current q
33
34
        GrB_reduce(&succ, GrB_NULL, GrB_LOR_MONOID_BOOL,
                    q, GrB NULL);
35
                                                       // succ = //(q)
                                                       // if there is no successor in q, we are done.
36
      } while (succ);
37
                                                       // q vector no longer needed
38
      GrB_free(&q);
39
```


40

41

return GrB SUCCESS:

Поиск в ширину с хранением родителя

□ Алгоритм

Переменные: p – вектор родителей, idx - вектор индексов, v – вектор с номерами уровней

- 1. Инициализация. q[s] = 1, level = 1, p[s] = s
- 2. Пока *q* не пусто:

1.
$$q\langle p\rangle = qA$$
 (GrB_vxm(q, A))

- 2. $p\langle q \rangle = q$
- 3. $v\langle v\rangle = idx$
- 4. Переход на новый уровень? ($GrB_Vector_reduce(q)$)
- \square Полукольцо: $\bigoplus -min$, $\otimes -first$, значения \emph{N} , «нуль» 0.

BFS - PARENTS

semiring	domain	Ф	8	0
min-first	N	min	first	0

first(x, y) = x

4

5 6 7

 $f(\neg p) = f \min . \text{ first } A$

$$p\langle f\rangle = f \qquad \qquad \mathbf{I}$$

3

BFS - PARENTS

first(x, y) = x

$$f(\neg p) = f \min . first A$$

$$p\langle f\rangle = f \qquad \qquad \iint f\langle f\rangle = ic$$

BFS – PARENTS

first(x, y) = x

3

(2)

❸

4

6

6

4

5 6 7

 $f\langle \neg p \rangle = f \min . \text{ first } A$

BFS - PARENTS

first(x, y) = x

 $f\langle \neg p \rangle = f \min. \text{ first } A$

- f is empty
- → terminate

Поиск в ширину с родителем. Код

```
* Given a binary n x n adjacency matrix A and a source vertex s, performs a BFS
     * traversal of the graph and sets parents[i] to the index of vertex i's parent.
     * The parent of the root vertex, s, will be set to itself (parents[s] == s). If
     * vertex i is not reachable from s, parents[i] will not contain a stored value.
12
   GrB_Info BFS(GrB_Vector *parents, const GrB_Matrix A, GrB_Index s)
13
14
15
      GrB Index N:
16
      GrB Matrix nrows(&N, A):
                                                      //N = \# vertices
17
18
      GrB_Vector_new(parents, GrB_UINT64, N);
19
      GrB_Vector_setElement(*parents, s, s);
                                                      // parents[s] = s
20
21
      GrB_Vector wavefront;
22
      GrB_Vector_new(&wavefront, GrB_UINT64, N);
      GrB_Vector_setElement(wavefront, 1UL, s);
                                                      // wavefront[s] = 1
^{23}
^{24}
25
^{26}
      * BFS traversal and label the vertices.
27
28
      GrB Index nvals:
^{29}
      GrB_Vector_nvals(&nvals, wavefront);
30
31
      while (nvals > 0)
32
        // convert all stored values in wavefront to their 0-based index
33
        GrB_apply (wavefront, GrB_NULL, GrB_NULL, GrB_ROWINDEX_INT64,
34
35
                  wavefront, OUL, GrB NULL);
36
37
        // "FIRST" because left-multiplying wavefront rows. Masking out the parent
38
        // list ensures wavefront values do not overwrite parents already stored.
39
        GrB_vxm(wavefront, *parents, GrB_NULL, GrB_MIN_FIRST_SEMIRING_UINT64,
40
                wavefront, A, GrB_DESC_RSC);
41
42
        // Don't need to mask here since we did it in mm. Merges new parents in
43
        // current wavefront with existing parents: parents += wavefront
44
        GrB_apply(*parents, GrB_NULL, GrB_PLUS_UINT64,
45
                  GrB IDENTITY UINT64, wavefront, GrB NULL);
46
47
        GrB Vector nvals(&nvals, wavefront);
48
49
      GrB free(&wavefront);
50
51
52
      return GrB SUCCESS:
```


53

Поиск в ширину. Модификации

□ Комбинированный алгоритм (обход сверху вниз + обход снизу вверх)

https://github.com/GraphBLAS/LAGraph/blob/stable/src/algorithm/LG_BreadthFirstSearch_SSGrB.c

- Обход сверху вниз: $q^T \langle ! v \rangle = q^T A$
- Обход снизу вверх: $q\langle v\rangle = A^Tq$
- □ Yang C., Buluç A., Owens J. D. Implementing push-pull efficiently in GraphBLAS //Proceedings of the 47th International Conference on Parallel Processing. 2018. C. 1-11. [pdf]

Результаты экспериментов

- □ Источник: Yang C., Buluç A., Owens J. D. Implementing push-pull efficiently in GraphBLAS //Proceedings of the 47th International Conference on Parallel Processing. 2018. C. 1-11.
- □ HW: a Linux workstation with 2×3.50 GHz Intel 4-core E5-2637v2 Xeon CPUs, 556 GB of main memory, and an NVIDIA K40c GPU with 12 GB on-board memory.

	Runtime (ms) [lower is better]							ughput (N	ATEPS) [hig	her is be	tter]	
Dataset	SuiteSparse	CuSha	Baseline	Ligra	Gunrock	This Work	SuiteSparse	CuSha	Baseline	Ligra	Gunrock	This Work
soc-ork	2165	244.9	122.4	26.1	5.573	7.280	98.24	868.3	1722	8149	38165	29217
soc-lj	1483	263.6	51.32	42.4	14.05	14.16	57.76	519.5	1669	2021	6097	6049
h09	596.7	855.2	23.39	12.8	5.835	7.138	188.7	131.8	4814	8798	19299	15775
i04	1866	17609	71.81	157	77.21	80.37	159.8	22.45	4151	1899	3861	3709
kron	1694	237.9	108.7	18.5	4.546	4.088	107.5	765.5	1675	9844	40061	44550
rmat-22	4226	1354	OOM	22.6	3.943	4.781	114.3	369.1	OOM	21374	122516	101038
rmat-23	6033	1423	OOM	45.6	7.997	8.655	83.81	362.7	OOM	11089	63227	58417
rmat-24	8193	1234	OOM	89.6	16.74	16.59	63.42	426.4	OOM	5800	31042	31327
rgg	230602	68202	9147	918	593.9	2991	1.201	3.887	30.28	288.8	466.4	92.59
roadnet	342	288.5	284.9	82.1	130.9	214.4	16.14	14.99	19.38	67.25	42.18	25.75
road_usa	9413	36194	26594	978	676.2	7155	6.131	7.944	2.17	59.01	85.34	8.065

Результаты экспериментов

- □ Источник: Yang C., Buluç A., Owens J. D. Implementing push-pull efficiently in GraphBLAS //Proceedings of the 47th International Conference on Parallel Processing. 2018. C. 1-11.
- □ HW: a Linux workstation with 2×3.50 GHz Intel 4-core E5-2637v2 Xeon CPUs, 556 GB of main memory, and an NVIDIA K40c GPU with 12 GB on-board memory.

Алгоритм Беллмана-Форда

- □ Задача: в направленном взвешенном графе найти кратчайшие пути из вершины-источника ко всем остальным вершинам
- □ Алгоритм базовый:

```
Пусть d — вектор расстояний, A — матрица расстояний Для i=0,\dots,n-1: Для всех (v,u)\in E d(v)=\min\{d(v),d(u)+A_{u,v}\}
```

□ Алгоритм в терминах линейной алгебры:

```
Для i=0,\ldots,n-1: d=A^Td (GrB_mxv(A^T,d))
```

- □ Основная операция умножение матрицы на вектор GrB vxm(d, A) или GrB mxv(B,d)
- □ Полукольцо: R, \oplus min, \otimes +, нулевой элемент $+\infty$.

Пример

_											
						5	4		0		0
	8		2								8
	5							+			5
		1			1			+ ⊗		=	
Ī		5	1	2							
Ī			3								
		8				2					
	A^{T}							•	\overline{d}		\overline{d}

Пример

					5	4			
8		2							
5									
	1			1			\otimes		
	5	1	2						
		3							
	8				2				
A^T									

0		0
8		7
5		5
	=	9
		6
		8
		16
_		_

Пример

					5	4			
8		2							
5									
	1			1			\otimes		
	5	1	2						
		3							
	8				2				
A^T									

0		0	
7		7	
5		5	
9	=	7	
6		6	
8		8	
16		10	
d		d	

Min(8, 7)
Min(12, 6, 11)
Min(15, 10)

Примеры. Подсчет числа треугольников

□ Задача: найти в графе все клики размера 3.

□ Алгоритм Коэна:

- 1. Разделить матрицу A на верхний U и нижний L треугольник, U и L (GxB_select)
- 2. Найти $C\langle L\rangle = LU^T$ (GrB_mxm)
- 3. $k = \frac{1}{2} \sum_{i} \sum_{j} C_{ij}$ число треугольников (GrB_reduce)
- □ Основная операция матричное умножение
- \square Полукольцо: \mathbf{R} , $\oplus -+$, $\otimes -\times$, нулевой элемент 0.

Подсчет числа треугольников

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$L = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad U = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$k = 1$$

Подсчет числа треугольников. Код

```
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <stdint.h>
4 #include <stdbool.h>
   #include "GraphBLAS.h"
   /*
    * Given an n x n boolean adjacency matrix, A, of an undirected graph, computes
     * the number of triangles in the graph.
10
   uint64_t triangle_count(GrB_Matrix A)
11
12
13
     GrB Index n;
     GrB_Matrix_nrows(&n, A);
                                                       // n = \# of vertices
14
15
16
     // L: NxN, lower-triangular, bool
17
     GrB_Matrix L;
     GrB_Matrix_new(&L, GrB_BOOL, n, n);
18
      GrB_select(L, GrB_NULL, GrB_NULL, GrB_TRIL, A, OUL, GrB_NULL);
19
20
21
     GrB_Matrix C;
22
     GrB Matrix new(&C, GrB UINT64, n, n);
23
^{24}
     GrB_mxm(C, L, GrB_NULL, GrB_PLUS_TIMES_SEMIRING_UINT64, L, L, GrB_NULL); // C<L> = L +.* L
25
^{26}
      uint64_t count;
27
      GrB_reduce(&count, GrB_NULL, GrB_PLUS_MONOID_UINT64, C, GrB_NULL);
                                                                               // 1-norm of C
28
^{29}
      GrB_free(&C);
30
      GrB_free(&L);
31
32
      return count;
33
```


Локальный коэффициент кластеризации

 \square Задача: для каждой вершины v найти характеристику $LLC(v) = \frac{\text{число треугольников, в которые входит } v}{\text{число возможных ребер между соседями } v}$

□ Алгоритм:

- Пусть A матрица смежности, C симметризованная матрица смежности (C = A или $C = A \lor A^T$)
- 1. $T\langle C \rangle = CC$ (GrB_mxm) матрица числа треугольников
- 2. $t = [\bigoplus A[:,j]]$ число треугольников в каждой строке
- 3. $deg = [\bigoplus C[:,j]]$ вектор степеней вершин
- 4. $w = \deg(\deg 1)$ вектор
- 5. LLC = t/w
- □ Основная операция матричное умножение
- Полукольцо: $\mathbf{\mathit{R}}, \;\; \oplus -+, \otimes -\times$, нулевой элемент 0.

Локальный коэффициент кластеризации. Пример

	1	1			1	1				
1		1	1	1		1				
1	1			1	1					
	1			1						
	1	1	1							
1		1				1				
1	1				1					

W

0,67

0,40

0.50

1,00

0,67

0,67

0,67

LLC

k-Truss

- □ Задача: найти k-truss графа A подграф с тем же числом вершин, что и A, в котором каждое ребро входит по крайней мере в k 2 треугольников в A.
- □ Алгоритм итерационный:

Пусть C_{ij} – поддержка ребра (i,j) – число треугольников, содержащих ребро (i,j).

- 1. На каждом шаге:
 - 1. Haйти $C(C) = C^2 = CC^T$ (Gr_mxm)
 - 2. Удалить ребра с поддержкой менее k-2 (GxB_select).
 - 3. Продолжить, если граф изменился
- □ Основная операция матричное умножение

Вычислительные эксперименты SuiteSparse:GraphBLAS

- □ Источник: Aznaveh M. et al. Parallel GraphBLAS with OpenMP∗ //2020 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing. Society for Industrial and Applied Mathematics, 2020. C. 138-148.
- □ Тестовая инфраструктура: Intel® Xeon® E5- 2698 v4 CPU system with 20 cores running at 2.2 Ghz, 256 GB of RAM and the Intel® icc compiler (19.0.3.199).
- □ Тестовые матрицы:

Matrix Name	Nodes	Edges	Description
datagen-8_9-fb	10,572,901	848,681,908	LDBC Datagen
datagen-9_2-zf	12,857,671	1,049,527,225	LDBC Datagen
cit-Patents	3,774,768	33,037,894	Citation network among US patents
g-1073643522-268435456	1,073,643,522	268,435,456	Synthetic image grid benchmark matrix
graph500-scale25-ef16	33,554,432	536,870,912	Synthetic graph500 network of scale 25
MAWI/201512020330	226,196,185	480,047,894	Packet trace from WIDE internet backbone

Вычислительные эксперименты SuiteSparse:GraphBLAS

□ Задачи:

- Подсчет числа треугольников
- 4-Truss поиск мостов графа
- Поиск в ширину
- Алгоритм Беллмана-Форда
- LCC подсчет локального коэффициента кластеризации

	40-Th	read Spee	dup Rela	tive to 1 Th	read	40-Thread Edge Computation Rate (10 ⁶ edges/s				edges/s)
Matrix	Triangle Counting	4-Truss	BFS	Bellman- Ford	LCC	Triangle Counting	4-Truss	BFS	Bellman- Ford	LCC
datagen-8_9-fb	26.6	27.7	3.5	11.6	25.8	15.3	0.6	285.0	114.1	6.7
$datagen-9_2-zf$	16.9	19.6	*	*	7.9	63.0	3.2	*	*	12.5
cit-Patents	16.1	19.7	2.6	9.1	11.7	87.8	11.7	25.4	23.8	23.0
$\operatorname{g-}1073643522\text{-}268435456$	11.2	16.6	3.6	5.2	8.4	268.3	252.4	10.5	0.04	86.0
graph500-scale25-ef16	30.5	*	3.9	9.5	30.2	1.8	0.1	186.6	98.6	0.6
MAWI/201512020330	5.8	13.4	9.7	2.4	5.7	104.5	86.2	48.7	21.7	23.4

Вычислительные эксперименты SuiteSparse:GraphBLAS

□ Выводы:

- Лучшее масштабирование у алгоритмов подсчета треугольников и k-truss, в которых использовано умножение матриц.
- Ускорение алгоритмов BFS и Беллмана-Форда в 2-4 раза меньше, чем подсчета треугольников. Они используют умножение матрицы на вектор
- Масштабируемость алгоритма LCC близка к алгоритму подсчета треугольников, но MTEPS меньше, т.к. в алгоритме выполняется больше вычислительных операций.

Заключение

- □ Большинство алгоритмов на графах можно представить в виде последовательности матрично-векторных операций.
- □ GraphBLAS набор стандартных операций над матрицами и векторами, используемый для реализации задач на графах.
- □ Использование ограниченного набора операций позволяет упростить реализацию новых алгоритмов, облегчить перенос существующих реализаций на новые вычислительные архитектуры, увеличить масштабируемость приложений за счет использования оптимизированных базовых операций.
- □ Среди реализации стандарта GraphBLAS отметим SuiteSparse::GraphBLAS (параллелизм с технологией OpenMP), CombinatorialBLAS (MPI + OpenMP), GraphBLAST (CUDA).

Заключение

- □ Для реализации подхода необходимо задать операции умножения и сложения над элементами разреженной матрицы (матрицы смежности графа).
- □ В число базовых операций, используемых для алгоритмов на графах, входят умножение разреженной матрицы на плотный или разреженный вектор, умножение двух разреженных матриц, поэлементное сложение и умножение, наложение маски.
- □ Результаты вычислительных экспериментов показывают, что алгоритмы, реализованные с использованием умножения двух матриц масштабируются лучше, чем алгоритмы, реализованные с помощью умножения матрицы на вектор.

Литература

- 1. Kepner J., Gilbert J. (ed.). Graph algorithms in the language of linear algebra. Society for Industrial and Applied Mathematics, 2011.
- 2. Kepner J. et al. Graphs, matrices, and the GraphBLAS: Seven good reasons //Procedia Computer Science. 2015. T. 51. C. 2453-2462. [pdf]
- 3. Kepner J. et al. Mathematical foundations of the GraphBLAS //2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2016. C. 1-9. [pdf]
- Kepner J. GraphBLAS Mathematics-Provisional Release 1.0 //GraphBLAS. org, Tech. Rep. – 2017. [pdf]
- Davis T. A. Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra //ACM Trans. on Math. Software (TOMS). 2019.
 T. 45. №. 4. C. 1-25.
- Aznaveh M. et al. Parallel GraphBLAS with OpenMP // 2020 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing. – Soc. for Industrial and Applied Mathematics, 2020. – C. 138-148. [pdf]

Литература

- Szarnyas G. GraphBLAS: A linear algebraic approach for high-performance graph algorithms // FOSDEM, 2020. [pdf]
- 8. Mattson T. et al. LAGraph: A community effort to collect graph algorithms built on top of the GraphBLAS //2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2019. C. 276-284. [pdf]
- 9. Yang C., Buluc A., Owens J. D. GraphBLAST: A high-performance linear algebra-based graph framework on the GPU //arXiv preprint arXiv:1908.01407. 2019. [pdf]

Максимальное независимое множество

- □ Задача: найти в графе множество максимального размера, в котором никакие две вершины не смежны.
- □ Основные операции: умножение матрицы на вектор, объединение и пересечение множеств
- \square Полукольцо: $\mathbf{R} \cup \{+\infty\}$, \oplus -min, \otimes selectFirst, нулевой элемент $+\infty$.
- □ Код:

https://github.com/DrTimothyAldenDavis/GraphBLAS/blob/stable/Demo/Source/mis.c

Максимальное независимое множество

□ Алгоритм Луби:

- Множество независимых вершин $I=\emptyset$, множество вершин-кандидатов $C=\{0,1,...n\}$ (вектор-маска)
- Пока есть вершины-кандидаты:
- 1. Найти вектор случайных чисел $P = rand() \odot C$, отмасштабировать по обратной степени (GrB apply)
- 2. Вычислить максимальную вероятность для всех соседей $C\ N_{max} = C\odot(A\otimes P)$ (Grb mxv)
- 3. Выбрать вершины *New_mem* с вероятностью большей, чем у соседей. (GrB_eWiseAdd)
- 4. Добавить New_mem в $I: I = I \oplus New_mem$ (GrB_eWiseAdd)
- 5. Удалить New_mem из множества кандидатов: $C = C \& !New_mem$ (GrB_eWiseMult)
- 6. Удалить соседей New_mem из множества кандидатов $New_{neigb} = C \odot A \otimes New_mem$, $C = C \& ! New_neib$ (GrB mxv, GrB eWiseMult)

