RWTH Aachen University

Instructor: Prof. Dr. Semih Çaycı

Teaching Assistant: Johannes Müller, M.Sc.

Mathematical Foundations of Deep Learning (11.80020) Assignment 4

Due: Tue., Jan. 9th, till 2pm as PDF via Moodle upload, TeX submission are encouraged Each problem is worth 4 points, there are 20 points on this sheet. Submission in pairs is possible.

Q1. (Uniform convergence via empirical Rademacher complexity) Let \mathcal{H} be a class of functions from \mathcal{Z} to [0,1] and fix $\delta \in (0,1)$ and consider a probability measure P on \mathcal{Z} . Further, we consider a sequence $S = (z_1, \ldots, z_n) \in \mathcal{Z}^n$ consisting of independent samples distributed according to P. Show that

$$\sup_{h \in \mathcal{H}} \left\{ \mathbb{E}[h(z)] - \frac{1}{n} \sum_{j=1}^{n} h(z_j) \right\} \le 2\widehat{\text{Rad}}_S(\mathcal{H}) + 3\sqrt{\frac{\log(\frac{2}{\delta})}{2n}}$$

with probability at least $1 - \delta$.

Hint. Use the uniform convergence based on the Rademacher complexity from the lecture and bound the difference of \widehat{Rad}_S and Rad_n using a suitable concentration inequality.

Solution: By the generalization result from the lecture, it holds that

$$\sup_{h \in \mathcal{H}} \left\{ \mathbb{E}[h(z)] - \frac{1}{n} \sum_{j=1}^{n} h(z_j) \right\} \le 2 \operatorname{Rad}_n(\mathcal{H}) + \sqrt{\frac{\log(\frac{2}{\delta})}{2n}}$$
 (1)

with probability at least $1 - \delta/2$. Further, by Hoeffding's inequality we have with probability at least $1 - \delta/2$ that

$$\left|\widehat{\operatorname{Rad}}_{S}(\mathcal{H}) - \operatorname{Rad}_{n}(\mathcal{H})\right| \leq \sqrt{\frac{\log(\frac{2}{\delta})}{2n}}.$$
 (2)

Combining (1) and (2) yields the claim.

- **Q2.** (Rademacher calculus) Let $\mathcal{H}, \mathcal{H}_1, \mathcal{H}_2 \subseteq \{f : \mathcal{Z} \to \mathbb{R} \text{ measurable}\}\$ be classes of real-valued functions on \mathcal{Z} and consider $S = (z_i)_{i=1,\dots,n} \subseteq \mathcal{Z}$. Show the following properties:
 - (a) If $c \in \mathbb{R}$, then $\widehat{Rad}_S(c\mathcal{H}) = |c| \cdot \widehat{Rad}_S(\mathcal{H})$.
 - (b) If $\mathcal{H}_1 \subseteq \mathcal{H}_2$, then $\widehat{\text{Rad}}_S(\mathcal{H}_1) \leq \widehat{\text{Rad}}_S(\mathcal{H}_2)$.
 - (c) It holds that $\widehat{Rad}_S(\mathcal{H}_1 + \mathcal{H}_2) = \widehat{Rad}_S(\mathcal{H}_1) + \widehat{Rad}_S(\mathcal{H}_2)$.
 - (d) If holds that $\widehat{Rad}_S(\mathcal{H}) = \widehat{Rad}_S(\operatorname{conv}(\mathcal{H}))$, where

$$conv(\mathcal{H}) = \left\{ \sum_{i=1}^{m} \lambda_i h_i : \lambda_i \ge 0, \sum_{i} \lambda_i = 1, h_i \in \mathcal{H}, m \in \mathbb{N} \right\}$$

denote the *convex hull* of \mathcal{H} .

Remark. All of the above remarks directly generalize to the Rademacher complexity Rad_n . Solution: The properties (a)-(c) are immediate from the definition. For (d) we refer to [2].

Q3. (Bounding the smallest eigenvalue of the NTK) Let us consider a shallow network

$$F(x; w, c) := \frac{1}{\sqrt{m}} \sum_{i=1}^{m} c_i \sigma(w_i^\top x) \quad \text{for } w \in \mathbb{R}^{md}, c \in \mathbb{R}^m, x \in \mathbb{R}^d,$$

where we assume $\sigma \colon \mathbb{R} \to \mathbb{R}$ to be L-Lipschitz for some $L \geq 0$. We denote the linearized network by

$$F_0(x; w) := F(x; w_0, c) + \nabla_w F(x; w_0, c)^\top (w - w_0),$$

where for symmetric initialization we have $F(x; w_0, c) = 0$. Hence, the linearized network falls under the setting of **Q4** with $\Phi(x) = \nabla_w F(x; w_0, c)$ and $\theta = (w - w_0)$. Finally, we denote the finite and infinite width NTKs by

$$K^{(m)}(x,x') \coloneqq \frac{1}{m} \sum_{k=1}^m x^\top x' \sigma'(w_k^\top x) \sigma'(w_k^\top x') \text{ and } K^{(\infty)}(x,x') \coloneqq \mathbb{E}_w \left[x^\top x' \sigma'(w^\top x) \sigma'(w^\top x') \right].$$

(a) Consider the matrix $H = \Phi(X)\Phi(X)^{\top}$ introduced in **Q4**. Show that $H_{ij} = K^{(m)}(x_i, x_j)$. Remark. This justifies the name NTK matrix used in **Q4** and we set $H^{(m)} := H$. Solution: First we compute the feature map

$$\Phi(x) = \nabla_w F(x; w, c) = \frac{1}{\sqrt{m}} \sum_{k=1}^{m} c_k x \sigma'(w_k^\top x).$$

This implies

$$H_{ij} = \Phi(x_i)\Phi(x_j) = \frac{1}{m} \sum_{k=1}^{m} x_i^{\top} x_j \sigma'(w_k^{\top} x_i) \sigma'(w_k^{\top} x_j) = K^{(m)}(x_i, x_j).$$

(b) Assume that $H^{(\infty)} \in \mathbb{R}^{n \times n}$ defined by $H_{ij}^{(\infty)} := K^{(\infty)}(x_i, x_j)$ with $||x_i||_2 \le 1$ has full rank or equivalently $\lambda_{\min}(H^{(\infty)}) > 0$ and fix $\delta \in (0, 1)$. Show that

$$||H^{(m)} - H^{(\infty)}||_{2,2} = ||H^{(m)} - H^{(\infty)}||_F \le \frac{\lambda_{\min}(H^{(\infty)})}{4}$$

and hence $\lambda_{\min}(H^{(m)}) \geq \frac{3\lambda_{\min}(H^{(\infty)})}{4} > 0$ with probability at least $1 - 2\delta$ if

$$m \ge \frac{64L^4 \log\left(\frac{n}{\delta}\right)}{\lambda_{\min}(H^{(\infty)})^2} \cdot n^2.$$

Hint. You can use **Q2** of Assignment 3. Be careful, the notation is slightly different here. **Solution:** By **Q2** of Assignment 3 we have

$$\mathbb{P}\left(\|H - H^{(m)}\|_{2,2} > t\right) \le 2n^2 \exp\left(-\frac{t^2 m}{2n^2 L^4}\right) =: 2\delta.$$

Setting $t \coloneqq \frac{\lambda_{\min}(H^{(\infty)})}{4}$ and solving for m we obtain

$$m \ge \frac{32L^4 \log(\frac{n^2}{\delta})}{\lambda_{\min}(H^{(\infty)})} \cdot n^2.$$

Note now that $\delta^2 \leq \delta$ and hence

$$\log\left(\frac{n^2}{\delta}\right) \le \log\left(\frac{n^2}{\delta^2}\right) = 2\log\left(\frac{n}{\delta}\right).$$

Remark. In combination with **Q4** this shows that the linearized network with (up to log factors) quadratic overparametrization $m = O(\frac{n^2 \log n}{\lambda_{\min}})$ converges linearly. By showing that the optimization of the linearized and the original network stay close (on a scale of $O(\frac{1}{\sqrt{m}})$) one can generalize the linear convergence result to the full model, see [1].

Q4. (Linear convergence of GD for a linear model) Consider a linear model, i.e., $f_{\theta}(x) = \theta^{\top} \Phi(x)$ for a fixed feature function $\Phi \colon \mathbb{X} \to \mathbb{R}^{d_f}$, where $\theta \in \mathbb{R}^{d_f}$. Further, we consider the l^2 sample loss $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$, which leads to the empirical risk

$$L(\theta) = \hat{\mathcal{R}}_S(f_{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(\theta^{\top} \Phi(x_i) - y_i \right)^2 = \frac{1}{2n} \|\Phi(X)\theta - Y\|_2^2,$$

where $\Phi(X)_{ij} := \Phi(x_i)_j$ and $Y_i = y_i$. We consider the Gramian matrix $G = \Phi(X)^{\top}\Phi(X)$ as well as the NTK matrix $H = \Phi(X)\Phi(X)^{\top}$, i.e., $H_{ij} = \Phi(x_i)^{\top}\Phi(x_j)$, and set $f_{\theta}(X) := \Phi(X)\theta$.

- (a) Let us denote the spectrum, i.e., the set of eigenvalues of a matrix A by $\sigma(A)$. Show that $\sigma(G), \sigma(H) \subseteq \mathbb{R}_{\geq 0}$ and $\sigma(G) \setminus \{0\} = \sigma(H) \setminus \{0\}$.
 - **Solution:** Fix an eigenvalue $\lambda \in \sigma(A^{\top}A)$ with eigenvector $x \neq 0$. Then $0 \leq (Ax)^{\top}Ax = x^{\top}A^{\top}Ax = \lambda x^{\top}x > 0$. This yields $\lambda \geq 0$. Further, if $\lambda > 0$, for $y \coloneqq Ax$ we have $AA^{\top}y = AA^{\top}Ax = \lambda x = \lambda y$ and hence $\lambda \in \sigma(AA^{\top})$.
- (b) We consider gradient descent $\theta_{t+1} = \theta_t \eta \nabla L(\theta_t)$ with step size $\eta > 0$ and denote the residuum by $r_t = f_{\theta_t}(X) Y$. Show that

$$r_t = (I - \eta H)^t r_0$$
 for all $t \ge 0$.

Solution: Recall from **Q5** of Assignment 2 that $\nabla L(\theta) = \Phi(X)^{\top} \Phi(X) \theta - \Phi(X)^{\top} Y$. Consequently, we compute

$$f_{\theta_{t+1}}(X) = \Phi(X)\theta_{t+1} = \Phi(X)\theta_t - \eta\Phi(X)\nabla L(\theta_t) = f_{\theta_t}(X) - \eta H(f_{\theta_t}(X) - Y).$$

Substracting Y on both sides and iterating over t yields the claim.

(c) We set $f_t(X) := f_{\theta_t}(X)$ and assume that $\operatorname{rank}(H) = n$ or equivalently $\lambda_{\min}(H) > 0$. Show that with step size $\eta = 1/\lambda_{\max}(H)$ it holds that

$$||f_t - Y||_2 \le \left(1 - \frac{\lambda_{\min}(H)}{\lambda_{\max}(H)}\right)^t ||f_0 - Y||_2 \le e^{-\frac{\lambda_{\min}(H)}{\lambda_{\max}(H)} \cdot t} ||f_0 - Y||_2.$$

Hint: Expand r_0 in a suitable eigenbasis.

Solution: Let $(v_i)_{i=1,\dots,n}$ be an orthonormal eigenbasis of H with eigenvalues $\lambda_1 \leq \dots \leq \lambda_n$. Consider the decomposition $r_0 = \sum_{i=1}^n \alpha_i v_i$. Then by the Pythagorean theorem we have

$$||r_t||_2^2 = \left\| \sum_{i=1}^n (1 - \eta \lambda_i)^t \alpha_i v_i \right\|_2^2$$

$$= \sum_{i=1}^n (1 - \eta \lambda_i)^t \alpha_i^2$$

$$\leq \left(1 - \frac{\lambda_{\min}(H)}{\lambda_{\max}(H)} \right)^t \sum_{i=1}^n \alpha_i^2$$

$$= \left(1 - \frac{\lambda_{\min}(H)}{\lambda_{\max}(H)} \right)^t ||r_0||_2^2.$$

Finally, we can use $(1-s)^t \leq (e^{-s})^t = e^{-st}$ for $s \in \mathbb{R}, t \in \mathbb{N}$.

(d) **Bonus** (1 point): Consider the function space $F := \{f_{\theta}(X) : \theta \in \mathbb{R}^{d_f}\} \subseteq \mathbb{R}^n$. Show that

$$F = \text{range}(H) = \{Hy : y \in \mathbb{R}^n\}.$$

Further, show that there is a (not necessarily unique) minimizer θ^* of L and that $f_{\theta^*} = f^* := \Pi_F Y$, where Π_F denotes the Euclidean projection onto F.

Hint: The closed range theorem range $(A^{\top}) = \ker(A)^{\perp}$ for a matrix A might be helpful.

Solution: It is clear that $\operatorname{range}(AA^{\top}) \subseteq \operatorname{range}(A)$. Fix now $y \in \operatorname{range}(A)$ and $x \in \ker(A)^{\perp}$ with Ax = y (if $x \notin \ker(A)^{\perp}$, then deompose x = v + w with $v \in \ker(A)^{\perp}$ and $w \in \ker(A)$; surely Ax = Av = y). Then by the closed range theorem we can pick z such that $A^{\top}z = x$. Now we have $AA^{\top}z = y$ and hence have shown $y \in \operatorname{range}(AA^{\top})$.

There is a unique minimizer f^* of $||f - Y||_2^2$ over F. Now we can take any θ^* with $f_{\theta^*} = f^*$.

(e) **Bonus (1 point):** Without assuming rank(H) = n, show that

$$||f_t - f^*||_2 \le \left(1 - \frac{\lambda_{\min}}{\lambda_{\max}(H)}\right)^t ||f_0 - f^*||_2,$$

where $\lambda_{\min} := \min(\sigma(H) \setminus \{0\})$ denotes the largest non zero eigenvalue of H.

Solution: Note that the iteration from b) didn't use any assumption on the rank of H and therefore remains valid here. Hence, we can conclude just like in c) with the only difference that we expand $f_0 - f^*$ in the eigenbasis instead of $f_0 - Y$.

Remark: In Assignment 2 you showed linear convergence under the assumption that G was full rank, which requires $p \leq n$ which we call the problem underparametrized. Here, we show linear convergence with essentially the same rate if the NTK matrix H is full rank, which requires $p \geq n$, i.e., overparametrization. Note that we study the functions f_t rather than the parameters θ_t , where the optimization dynamics are described by the NTK.

Q5. (A generalization bound for constrained linear regression) Consider the constrained linear model

$$\mathcal{F}_{\rho} := \left\{ x \mapsto \theta^{\top} x : \|\theta\|_2 \le \rho \right\}$$

for some $\rho > 0$ and consider a training set $S = \{(x_i, y_i) : i = 1, ..., n\}$ that we assume to consist of iid samples from some data distribution P on $\mathbb{R}^d \times \mathbb{R}$ and we assume that $||x||_2 \le 1$ and $|y| \le 1$ almost surely with respect to P. Further, we consider the l^2 -sample loss $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$ and denote the empirical and population risk by $\hat{\mathcal{R}}_S$ and \mathcal{R} , respectively. Show that

$$\sup_{f \in \mathcal{F}_{\rho}} \mathcal{R}(f) - \hat{\mathcal{R}}_{S}(f) \le \frac{2\rho(1+\rho)}{\sqrt{n}} + 2(\rho^{2}+1) \cdot \sqrt{\frac{\log(\frac{2}{\delta})}{2n}}$$

with probability at least $1 - \delta$.

Solution: First, recall from the lecture that for a bounded function class \mathcal{H} , i.e., if $||h||_{\infty} \leq R$ it holds that

$$\sup_{h \in \mathcal{H}} \left\{ \mathbb{E}[h(z)] - \frac{1}{n} \sum_{j=1}^{n} h(z_j) \right\} \le 2 \operatorname{Rad}_n(\mathcal{H}) + R \sqrt{\frac{\log(\frac{1}{\delta})}{2n}}, \tag{3}$$

where we consider the function class

$$\mathcal{H} = \left\{ (x, y) \mapsto \ell(\theta^{\top} x, y) : ||\theta|_2 \le \rho \right\}.$$

Note that this function class is bounded as

$$|\ell(\theta^{\top}x, y)| = \frac{1}{2}(\theta^{\top}x - y)^2 \le \frac{1}{2}(\|\theta\|_2 \|x\|_2 + |y|)^2 \le \frac{(\rho + 1)^2}{2}$$

almost surely with resepect to P and hence we can choose $R = \frac{(\rho+1)^2}{2}$. Hence, it remains to bound the Rademacher complexity of \mathcal{H} . First, we use the Talagrand-contraction principle, which implies

$$\operatorname{Rad}_n(\mathcal{H}) \leq L \operatorname{Rad}_n(\mathcal{F}_{\rho}),$$

where L denotes the Lipschitz constant of $\phi = (\hat{y} \mapsto \ell(\hat{y}, y))$, where $|\hat{y}| \leq \rho$ and $|y| \leq 1$. Note that

$$|\phi'(\hat{y})| = |\hat{y} - y| \le |\hat{y}| + |y| \le \rho + 1$$

and thus $L \leq \rho + 1$ and consequently

$$\operatorname{Rad}_n(\mathcal{H}) \le (\rho + 1)\operatorname{Rad}_n(\mathcal{F}_\rho).$$
 (4)

Hence, it remains to estimate the Rademacher complexity of the linear function class \mathcal{F}_{ρ} . We begin to compute

$$n \operatorname{Rad}_{n}(\mathcal{F}_{\rho}) = \mathbb{E}_{\varepsilon,S} \left[\sup_{\|\theta\|_{2} \leq \rho} \sum_{i=1}^{n} \varepsilon_{i} \theta^{\top} x_{i} \right]$$

$$= \mathbb{E}_{\varepsilon,S} \left[\sup_{\|\theta\|_{2} \leq \rho} \theta^{\top} \sum_{i=1}^{n} \varepsilon_{i} x_{i} \right]$$

$$= \rho \mathbb{E}_{\varepsilon,S} \left[\left\| \sum_{i=1}^{n} \varepsilon_{i} x_{i} \right\|_{2} \right].$$

$$\leq \mathbb{E}_{\varepsilon} \left[\left\| \sum_{i=1}^{n} \varepsilon_{i} x_{i} \right\|_{2}^{2} \right]^{\frac{1}{2}},$$

$$(5)$$

where we used Jensen's inequality. Further, using the independence of the Rademacher variables ε_i we obtain

$$\mathbb{E}_{\varepsilon} \left[\left\| \sum_{i=1}^{n} \varepsilon_{i} x_{i} \right\|_{2}^{2} \right] = \sum_{i,j=1}^{n} x_{i}^{\top} x_{j} \mathbb{E}[\varepsilon_{i} \varepsilon_{j}] = \sum_{i=1}^{n} \|x_{i}\|_{2} \leq n.$$

Combining this with (5) we obtain

$$\operatorname{Rad}_n(\mathcal{F}_{\rho}) \leq \frac{\rho}{\sqrt{n}}$$

and thus $\operatorname{Rad}_n(\mathcal{H}) \leq \frac{\rho(\rho+1)}{\sqrt{n}}$. Putting everything together, the bound (3) takes the form

$$\sup_{h \in \mathcal{H}} \left\{ \mathbb{E}[h(z)] - \frac{1}{n} \sum_{j=1}^{n} h(z_j) \right\} \le \frac{2\rho(\rho+1)}{\sqrt{n}} + \frac{(\rho+1)^2}{2} \sqrt{\frac{\log(\frac{1}{\delta})}{2n}}.$$

Finally, we can estimate

$$\frac{(\rho+1)^2}{2} = \frac{\rho^2+2\rho+1}{2} \leq \frac{\rho^2+\frac{1}{2}(2^2+\rho^2)+1}{2} \leq \frac{2\rho^2+4}{2} \leq 2(\rho^2+1).$$

Note: The following are bonus problems worth 4 points per problem.

Q6. (Massart's finite class lemma) Consider $\mathcal{H} \subseteq \{f : \mathcal{Z} \to \mathbb{R} \text{ measurable}\}$ and a training set $S = (z_i)_{i=1,\dots,n} \subseteq \mathcal{Z}$ that is iid with respect to some probability measure P on \mathcal{Z} . Show that

$$\widehat{\mathrm{Rad}}_S(\mathcal{H}) \leq \frac{R}{n} \cdot \sqrt{2 \log |\mathcal{H}|}$$
 and $\mathrm{Rad}_n(\mathcal{H}) \leq \frac{R}{n} \cdot \sqrt{2 \log |\mathcal{H}|}$,

where $|\mathcal{H}|$ denotes the cardinality of \mathcal{H} and where $R := \max\{\|h\|_{\infty} : h \in \mathcal{H}\}$.

Solution: See for example [2].

Q7. (Bounding the Rademacher complexity by the RKHS norm) Let \mathcal{Z} be an arbitrary set and let $K: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ be a Mercer kernel with corresponding RKHS \mathcal{H} and consider

$$\mathcal{H}_{\rho} \coloneqq \{ h \in \mathcal{H} : ||h||_{\mathcal{H}} \le \rho \}$$

for some $\rho > 0$. Show that

$$\operatorname{Rad}_n(\mathcal{H}_{\rho}) \leq \frac{\rho \sqrt{\mathbb{E}[K(z,z)]}}{\sqrt{n}}.$$

Solution: Using the reproducing property of K, we estimate

$$\operatorname{Rad}_{n}(\mathcal{H}_{\rho}) = \mathbb{E}_{S,\epsilon} \left[\sup_{h \in \mathcal{H}_{\rho}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(z_{i}) \right]$$

$$= \mathbb{E}_{S,\epsilon} \left[\sup_{h \in \mathcal{H}_{\rho}} \left\langle \frac{1}{n} f, \sum_{i=1}^{n} \epsilon_{i} K(z_{i}, \cdot) \right\rangle_{\mathcal{H}} \right]$$

$$\leq \mathbb{E}_{S,\epsilon} \left[\sup_{h \in \mathcal{H}_{\rho}} \frac{\|f\|_{\mathcal{H}}}{n} \cdot \left\| \sum_{i=1}^{n} \epsilon_{i} K(z_{i}, \cdot) \right\|_{\mathcal{H}} \right]$$

$$= \frac{\rho}{n} \cdot \mathbb{E}_{S,\epsilon} \left[\left\| \sum_{i=1}^{n} \epsilon_{i} K(z_{i}, \cdot) \right\|_{\mathcal{H}} \right],$$

$$6$$

$$(6)$$

where we used Cauchy-Schwarz. By Jensen's inequality and $\langle K(z_i,\cdot), K(z_j,\cdot)\rangle_{\mathcal{H}} = K(z_i,z_j)$, we estimate further

$$\mathbb{E}_{S,\epsilon} \left[\left\| \sum_{i=1}^{n} K(z_{i}, \cdot) \right\|_{\mathcal{H}} \right] \leq \sqrt{\mathbb{E}_{S,\epsilon} \left[\left\| \sum_{i=1}^{n} K(z_{i}, \cdot) \right\|_{\mathcal{H}}^{2} \right]}$$

$$= \sqrt{\mathbb{E}_{S,\epsilon} \left[\sum_{i,j=1}^{n} \epsilon_{i} \epsilon_{j} K(z_{i}, z_{j}) \right]}$$

$$= \sqrt{\mathbb{E}_{S} \left[\sum_{i,j=1}^{n} \mathbb{E}_{\epsilon} [\epsilon_{i} \epsilon_{j}] K(z_{i}, z_{j}) \right]}$$

$$= \sqrt{\mathbb{E}_{S} \left[\sum_{i=1}^{n} K(z_{i}, z_{i}) \right]}$$

$$= \sqrt{n} \cdot \sqrt{\mathbb{E} [K(z, z)]},$$

$$(7)$$

where we also used the Rademacher property $\mathbb{E}_{\epsilon}[\epsilon_i \epsilon_j] = \delta_{ij}$. Note that (6) and (7) together yield the result.

Q8. (Sublinear convergence under a generalized PL condition) Consider a function $g: \mathbb{R}^d \to \mathbb{R}$ that is bounded from below, i.e., $g^* := \inf_{\theta \in \mathbb{R}^d} g(\theta) > -\infty$ and satisfies the following p-PL inequality

$$\|\nabla g(\theta)\|_2^p \ge 2\mu(g(\theta) - g^*) \quad \text{for all } \theta \in \mathbb{R}^d,$$
 (8)

where $\mu > 0$ and $p \in [1, 2)$. Assume that g is β -smooth and consider the gradient descent iterates

$$\theta_{k+1} \coloneqq \theta_k - \frac{1}{\beta} \nabla g(\theta_k)$$

with step size $\frac{1}{\beta}$. Show that for any $\varepsilon > 0$ it holds that

$$g(\theta_k) - g^* \le \max \left\{ \varepsilon, \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot \varepsilon^{\frac{2}{p} - 1} \right)^k (g(\theta_0) - g^*) \right\} \text{ for all } k \in \mathbb{N}.$$

Use this to show gradient descent achieves $g(\theta_k) - g^* \leq \varepsilon$ if

$$k \ge c \cdot \frac{\log(\varepsilon^{-1})}{\varepsilon^{\frac{2}{p}-1}}$$

for $\varepsilon \to 0$ for a suitable constant c > 0.

Additional reflection question (2 points). What happens if p > 2?

Solution: By the descent lemma for β -smooth functions and the p-PL inequality, we have

$$g(\theta_{k+1}) - g^* \leq g(\theta_k) - g^* - \frac{1}{2\beta} \|\nabla g(\theta_k)\|_2^2$$

$$\leq g(\theta_k) - g^* - \frac{1}{2\beta} \cdot (2\mu(g(\theta_k) - g^*))^{\frac{2}{p}}$$

$$= \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot (g(\theta_k) - g^*)^{\frac{2}{p} - 1}\right) \cdot (g(\theta_k) - g^*).$$

We set $T_{\varepsilon} := \inf\{k \in \mathbb{N} : g(\theta_k) - g^* \le \varepsilon\}$. For $k \ge T_{\varepsilon}$ we have $g(\theta_k) - g^* \le \varepsilon$ and for $k < T_{\varepsilon}$

$$g(\theta_{k+1}) - g^* \le \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot \varepsilon^{\frac{2}{p} - 1}\right) \cdot (g(\theta_k) - g^*) \le \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot \varepsilon^{\frac{2}{p} - 1}\right)^{k+1} (g(\theta_0) - g^*).$$

Hence, for all $k \in \mathbb{N}$ we have

$$g(\theta_k) - g^* \le \max \left\{ \varepsilon, \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot \varepsilon^{\frac{2}{p} - 1} \right)^k (g(\theta_0) - g^*) \right\}.$$

Note that this implies that $g(\theta_k) - g^* \leq \varepsilon$ if

$$\varepsilon \ge \left(1 - \frac{(2\mu)^{\frac{2}{p}}}{2\beta} \cdot \varepsilon^{\frac{2}{p}-1}\right)^k (g(\theta_0) - g^*). \tag{9}$$

For notational simplicity, set $c_1 := \frac{(2\mu)^{\frac{2}{p}}}{2\beta}$ and $c_2 := g(\theta_0) - g^*$. We start solving the inequality (9) for k and take the logarithm which yields

$$\log(c_2^{-1}\varepsilon) \ge k \log(1 - c_1 \varepsilon^{\frac{2}{p} - 1}),$$

which is well defined if $c_1 \varepsilon^{\frac{2}{p}-1} < 1$ or equivalently $\varepsilon < c_1^{-\frac{2-p}{p}}$. Note that $\log(1-c_1 \varepsilon^{\frac{2}{p}-1}) < 0$ and hence, we obtain

$$k \ge \frac{\log(c_2^{-1}\varepsilon)}{\log(1 - c_1\varepsilon^{\frac{2}{p}-1})}. (10)$$

Next, we use $\log(1-t) \le -t$ for $t \in (0,1)$ as well as $\log(c_2^{-1}\varepsilon) < 0$ for $\varepsilon < c_2^{-1}$ small, which implies that (10) is satisfied if

$$k \ge \frac{\log(c_2 \varepsilon^{-1})}{c_1 \varepsilon^{\frac{2}{p} - 1}} = \frac{\log(\varepsilon^{-1}) + \log(c_2)}{c_1 \varepsilon^{\frac{2}{p} - 1}}.$$
(11)

Finally, for $\varepsilon < c_2^{-1}$ we have $\log(\varepsilon^{-1}) + \log(c_2) \le 2\log(\varepsilon^{-1})$ and hence inequality (11) is satisfied if

$$k \ge \frac{2}{c_2} \cdot \frac{\log(\varepsilon^{-1})}{\varepsilon^{\frac{2}{p}-1}}.$$
 (12)

Overall, we have shown (12) under the assumption that

$$\varepsilon < \min \left\{ c_1^{-\frac{2-p}{p}}, c_2^{-1} \right\}.$$

References

- [1] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.
- [2] Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.