



# FRAUD DETECTION BY A MULTINOMIAL MODEL: SEPARATING HONESTY FROM UNOBSERVED FRAUD

ANDREAS OLDEN\*

JOINT WITH
JONAS ANDERSSON\*
AND AIJA POLAKOVA\*







## Overview

Fraud is often detected through audits. We then use this information to predict which new claims, tax returns etc. are fraudulent.

However, an audit process (almost) never has a perfect detection rate. This implies that a group of cheaters are (mis)classified as honest.

Hausman, Abrevaya, and Scott-Morton (1998) analyses misclassification in a survey setting and show that with misclassification of only 2 percent, parameters in a probit model are biased by 15 percent to 25 percent, which reduces predictive power + cheaters get away with it!





#### Literature

Much work on fraud, but not that much on misclassification

Hausman, Abrevaya and Scott-Morton (1998) runs a simulation study similar to ours based on a known issue of misclassification in surveys

Artís, Ayuso and Guillén (2002) shows that the method of HAS-M can be used in an insurance fraud setting, but no evaluation of performance

Caudill, Ayuso and Guillén (2005) introduces a new model based on the EM-algorithm, again without evaluation

The two latter articles shows that these methods can be used in setting close to tax fraud, but has nothing to say on whether we should do so.





#### **火** 点 山 ∺

If we observe all three categories, the estimation is straight forward

$$p_k = \frac{e^{\alpha_k + \beta_k x}}{1 + e^{\alpha_2 + \beta_2 x} + e^{\alpha_3 + \beta_3 x}},$$

for 
$$k = 1, 2, 3$$
 and  $\alpha_1 = \beta_1 = 0$ .

$$\ln L(\alpha_2, \alpha_3, \beta_2, \beta_3) = \sum_{i=1}^{n} (Y_{1i} \ln p_1 + Y_{2i} \ln p_2 + Y_{3i} \ln p_3)$$

NHH

However, since we do not observe  $Y_1$  and  $Y_2$ , we have to consider them as latent variables. We now call

$$\ln L(\alpha_2, \alpha_3, \beta_2, \beta_3) = \sum_{i=1}^{n} (Y_{1i} \ln p_1 + Y_{2i} \ln p_2 + Y_{3i} \ln p_3)$$

the log-likelihood function for the *full data* (which is not completely observed).

The identifying assumption for the model is  $\beta_2 = \beta_3$ , meaning that the "HF" and the FF" have similar characteristics.

This is what we simulate.

But we do not get any further with the standard multinomial model without full data.





# The EM-algorithm

- 1. Select starting values for  $\alpha_2, \alpha_3, \beta_2$
- 2. E-step: Compute the expectation of  $\ln L(\alpha_2, \alpha_3, \beta_2)$  given the observed data.  $Q(\alpha_2, \alpha_3, \beta_2) = E(\ln L(\alpha_2, \alpha_3, \beta_2|Y, X)$
- 3. M-step: Maximize Q to obtain new parameters
- 4. Use new parameters as new starting values, repeat until convergence.

In step 2 of the algorithm above we need to compute the following conditional expectations and use instead of  $Y_1$  and  $Y_2$ 

$$Y_1^* = E(Y_1|Y_3 = 0) = \frac{1}{1 + e^{\alpha_2 + \beta_2 x}}$$

and

$$Y_2^* = E(Y_2|Y_3 = 0) = \frac{e^{\alpha_2 + \beta_2 x}}{1 + e^{\alpha_2 + \beta_2 x}}$$

### What we do



We simulate data with parameters and standard deviations from Caudill, Ayuso, and Guillén (2005)

We pretend not to observe all three categories and try different models to see how close to the true values they come

By manipulating several conditions we can compare a naive binomial approach to that of the EM-algorithm and how they perform



| Variable   | Mean  | Std dev | Coeff  |  |  |
|------------|-------|---------|--------|--|--|
| CONSTANT   | -     | -       | -1.440 |  |  |
| AGE        | 38.02 | 12.32   | -0.021 |  |  |
| LICENSE    | 14.23 | 9.09    | 0.003  |  |  |
| RECORDS    | 1.42  | 1.80    | 0.177  |  |  |
| COVERAGE   | 0.91  | 0.29    | 0.795  |  |  |
| DEDUCTIBLE | 0.03  | 0.16    | -0.303 |  |  |
| ACCESORI   | 0.07  | 0.25    | -0.350 |  |  |
| VEHUSE     | 0.88  | 0.32    | -0.507 |  |  |
| VEHAGE     | 6.17  | 4.48    | 0.012  |  |  |
| FAULT      | 0.32  | 0.47    | 1.388  |  |  |
| NONURBAN   | 0.07  | 0.26    | 0.559  |  |  |
| NIGHT      | 0.13  | 0.34    | 1.488  |  |  |
| WEEKEND    | 0.27  | 0.44    | 0.274  |  |  |
| WITNESS    | 0.01  | 0.08    | 1.140  |  |  |
| POLICE     | 0.11  | 0.31    | -1.805 |  |  |
| ZONE1      | 0.14  | 0.34    | 0.320  |  |  |
| ZONE3      | 0.49  | 0.50    | 0.642  |  |  |
| REPORT     | 0.59  | 0.49    | 0.562  |  |  |
| NAMES      | 0.06  | 0.24    | 1.172  |  |  |
| PROXIM     | 0.02  | 0.13    | 1.716  |  |  |
| DELAY      | 0.24  | 0.43    | 1.212  |  |  |





| Statistic | N     | Mean      | St. Dev. | Min    | Max    |
|-----------|-------|-----------|----------|--------|--------|
| n         | 1,000 | 1,000.000 | 0.000    | 1,000  | 1,000  |
| px        | 1,000 | 2.000     | 0.000    | 2      | 2      |
| iter      | 1,000 | 13.918    | 25.704   | 3      | 100    |
| nrepl     | 1,000 | 1,000.000 | 0.000    | 1,000  | 1,000  |
| ad        | 1,000 | 0.167     | 0.000    | 0.167  | 0.167  |
| y1        | 1,000 | 712.710   | 14.123   | 674    | 758    |
| y2        | 1,000 | 122.105   | 10.528   | 81     | 161    |
| у3        | 1,000 | 165.185   | 12.045   | 129    | 200    |
| ta1       | 1,000 | -1.800    | 0.000    | -1.800 | -1.800 |
| ta2       | 1,000 | -1.500    | 0.000    | -1.500 | -1.500 |
| tb1       | 1,000 | -0.020    | 0.000    | -0.020 | -0.020 |
| tb2       | 1,000 | 0.200     | 0.000    | 0.200  | 0.200  |
| EMa1      | 1,000 | -1.694    | 0.173    | -2.551 | -0.951 |
| EMa2      | 1,000 | -1.488    | 0.109    | -1.800 | -1.110 |
| EMb1      | 1,000 | -0.020    | 0.009    | -0.068 | 0.008  |
| EMb2      | 1,000 | 0.207     | 0.062    | 0.019  | 0.446  |
| Bla       | 1,000 | -1.672    | 0.091    | -1.941 | -1.412 |
| Blb1      | 1,000 | -0.016    | 0.007    | -0.047 | 0.007  |
| Blb2      | 1,000 | 0.172     | 0.048    | 0.018  | 0.331  |
| Pla1      | 1,000 | -1.810    | 0.102    | -2.259 | -1.508 |
| Pla2      | 1,000 | -1.507    | 0.090    | -1.799 | -1.258 |
| Plb1      | 1,000 | -0.020    | 0.006    | -0.042 | 0.003  |
| PIb2      | 1,000 | 0.203     | 0.040    | 0.053  | 0.334  |







## Some more results

|                  |        |        |        |       |        |        |       | BI          | ВІ          | EM          | EM          |     |     |     |
|------------------|--------|--------|--------|-------|--------|--------|-------|-------------|-------------|-------------|-------------|-----|-----|-----|
|                  | EM a1  | EM a2  | EM b1  | EM b2 | BI a   | BI b1  | BI b2 | $b1/\beta1$ | $b2/\beta2$ | $b1/\beta1$ | $b2/\beta2$ | y1  | y2  | y3  |
| 2 var            |        |        |        |       |        |        |       |             |             |             |             |     |     |     |
| 0 Corr           | -1.694 | -1.488 | -0.02  | 0.207 | -1.672 | -0.016 | 0.172 | 0.8         | 0.86        | 1           | 1.035       | 713 | 122 | 165 |
| 0.5 corr         | -1.673 | -1.48  | -0.02  | 0.203 | -1.661 | -0.017 | 0.17  | 0.85        | 0.85        | 1           | 1.015       | 715 | 121 | 164 |
| 0.9 corr         | -1.668 | -1.484 | -0.021 | 0.205 | -1.661 | -0.018 | 0.174 | 0.9         | 0.87        | 1.05        | 1.025       | 719 | 120 | 162 |
| 0 corr x-sd*10   | -1.851 | -1.527 | -0.02  | 0.204 | -1.63  | -0.007 | 0.072 | 0.35        | 0.36        | 1           | 1.02        | 579 | 179 | 241 |
| 0.9 corr x-sd*10 | -1.904 | -1.517 | -0.02  | 0.203 | -1.72  | -0.013 | 0.13  | 0.65        | 0.65        | 1           | 1.015       | 651 | 149 | 201 |
| 1 var            |        |        |        |       |        |        |       |             |             |             |             |     |     |     |
| Base             | -1.665 | -1.477 | -0.02  |       | -1.657 | -0.017 |       | 0.85        |             | 1           |             | 717 | 121 | 163 |
| a-dev            | -1.567 | -1.356 | -0.022 |       | -1.554 | -0.019 |       | 0.95        |             | 1.1         |             | 783 | 40  | 178 |



# Summary

EM does better than a naive binomial model in most cases

Particularly in cases with large misclassification and lots of variation in the data

with low misclassification the naive binomial case is slightly better

The EM-algorithm has higher standard deviation and more uncertainty (partly because more parameters are estimated).

Starting-values matter, but our suggested solution of using the numbers from the binomial logit works well

The EM-algorithm does not always converge to our criteria

The EM-algorithm is slow

## Next steps



Add variables

Move to predictions- here the additional uncertainty with the EM-algorithm will matter

Try other estimation techniques- omission errors that do not explicitly model HF

Apply to data



# Possible real-life testing

The ideal would be an RCT with tax audits

One alternative would be to look at data for known evaders

If we for instance have data on foreign evaded income in Denmark and Sweden, we could pretend not to observe both and use the one to estimate the other.



## References

Artís, M., Ayuso, M., & Guillén, M. (2002). Detection of automobile insurance fraud with discrete choice models and misclassified claims. Journal of Risk and Insurance, 69(3), 325-340.

Caudill, S. B., Ayuso, M., & Guillén, M. (2005). Fraud detection using a multinomial logit model with missing information. Journal of Risk and Insurance, 72(4), 539-550.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society. Series B (methodological), 1-38.

Hausman, J. A., Abrevaya, J., & Scott-Morton, F. M. (1998). Misclassification of the dependent variable in a discrete-response setting. Journal of Econometrics, 87(2), 239-269.