

Master 1^{ère} année Dév. GPGPU

TD n°2

Programmation GPGPU

Structures de données et GPGPU

1 - Soit le programme suivant :

```
1 #include <stdio.h>
 2.
  #include <cuda.h>
  #define TAILLE 32
5
  float tree[2*TAILLE];
 6
    _global___ void mon_noyau(float *t, int r)
 8
9
    int position = threadIdx.x + r;
10
11
12
     if ((position %2) == 0)
13
14
       t[position/2] = t[position] * t[position+1];
15
16
17
18 int main (void)
19 {
20
     float *gpu_tree;
   int t = TAILLE;
21
22
   cudaMalloc((void **)&gpu_tree, TAILLE*2*sizeof(float));
23
    for(int i=TAILLE;i<TAILLE*2;i++)</pre>
24
      tree[i] = float(2);
25
26
     for (int i=0; i<TAILLE*2; i++)
27
      printf("%4.0f", tree[i]);
28
29
30
    printf("\n\n");
   cudaMemcpy(gpu_tree, tree, 2*TAILLE*sizeof(float), cudaMemcpyHostToDevice);
31
32
33
    while(t>1)
34
     {
35
       mon_noyau<<<1, TAILLE>>> (gpu_tree, t);
36
       t=t/2;
37
    cudaMemcpy(tree, gpu_tree, 2*TAILLE*sizeof(float), cudaMemcpyDeviceToHost);
38
39
     for(int i=0;i<TAILLE*2;i++)</pre>
40
      printf("[%4.0f]",tree[i]);
41
42
    printf("\n");
```

- 1. Analysez et décrivez son fonctionnement.
- 2. Soit la trace d'exécution:

	<u> </u>	xter	m —																
	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	
	2	2 2	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	2	2	
1	۷.	2 2	۷																
	[0][429						256]	[25		256][256		16][16][16][
	16] 4][[16] 4][[16] 4][16][4][16][4][4] 4][[4]] [4][4][4] 2][2	4][][4] 2][L 2	4][4] 2][L	
	2][2][2][2][2][2][2][2][2][2][2][2][2] 21		2][2][2][2][2		2][2][2		2][2][2	, I
	-)[١ ١ ٢	١ ٢		١ ١ ١	١ [۵	١ [٢	ر ک		-] [ا [۵	2	J L	١ ١ ١		.] [١ [٢	_	. 1

Vérifiez qu'elle est correcte.

3. Donnez une version améliorée.

■■■ Utilisation de printf

```
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
#define printf(f, ...) ((void)(f, __VA_ARGS__),0)
#endif
__global__ void helloCUDA(float f)
{
    printf("Hello thread %d, f=%f\n", threadIdx.x, f);
}
int main()
{
    helloCUDA<<<1, 5>>> (1.2345f);
    cudaDeviceReset();
}
```

Ce qui donne:

```
Hello thread 0, f=1.234500
Hello thread 1, f=1.234500
Hello thread 2, f=1.234500
Hello thread 3, f=1.234500
Hello thread 4, f=1.234500
```