11. előadás A határozott integrál 5.

Emlékeztető:

- Az integrál kiszámítása: a Newton–Leibniz-tétel.
- Az integrálfüggvény fogalma és tulajdonságai.
- Parciális integrálás.
- Helyettesítéssel való integrálás.
- Síkidom területe.

A határozott integrál 5.

- Síkbeli görbe ívhossza
- Porgástest térfogata
- Forgástest felszíne
- További alkalmazások

A határozott integrál 5.

- Síkbeli görbe ívhossza
- Porgástest térfogata
- 3 Forgástest felszíne
- 1 További alkalmazások

1. Síkbeli görbe ívhossza

Megjegyzés. Az ívhossz problémájánál a terület definíciója során megismert gondolatmenetet követjük. Nevezetesen, a görbét egy felosztáshoz tartozó töröttvonallal közelítjük. Azt várjuk, hogy egy "elég finom" beírt töröttvonal annyira megközelíti a görbét, hogy a hosszúsága is közel lesz a görbe "hosszához". Figyelembe véve, hogy két pontot öszekötő görbe közül a szakasz a legrövidebb, azt szűrhetjük le, hogy a görbe ívhossza egyenlő a beírt töröttvonal hosszainak a szuprémumával. Ez a megállapítás szolgál a definíció alapjául.

A továbbiakban csak speciális görbékkel, **függvénygrafikonokkal** foglalkozunk.

Legyen $a,b\in\mathbb{R},\ a< b$ és $f:[a,b]\to\mathbb{R}.$ Emlékeztetünk arra, hogy a $\Gamma_f:=\left\{\left(x,f(x)\right)\mid x\in[a,b]\right\}$

síkbeli halmazt (görbét) az f grafikonjának nevezzük.

Tetszőleges $\tau = \{a = x_0 < x_1 < \dots < x_n = b\} \in \mathcal{F}[a,b]$ felosztás esetén (alkalmas $n \in \mathbb{N}$ mellett) tekintsük az

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$$

pontokat összekötő szakaszokat; ezt nevezzük az f függvénygrafikon τ felosztáshoz tartozó **beírt töröttvonalának**.

Ezt szemlélteti a következő ábra:

Világos, hogy ennek hossza a következő összeg:

$$\ell_f(\tau) = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}.$$

Az előzőek alapján elég természetes a következő definíció.

Definíció. Legyen $a, b \in \mathbb{R}$, a < b és $f : [a, b] \to \mathbb{R}$. Azt mondjuk, hogy a

$$\Gamma_f := \{ (x, f(x)) \mid x \in [a, b] \}$$

függvénygrafikon **rektifikálható**, ha

$$\ell(\Gamma_f) := \sup \{\ell_f(\tau) \mid \tau \in \mathcal{F}[a, b]\} < +\infty.$$

Megjegyzés. Meg fogjuk mutatni, hogy ha $f:[a,b] \to \mathbb{R}$ folytonosan differenciálható, akkor a függvény grafikonja rektifikálható.

Emlékeztetünk arra, hogy az $f:[a,b]\to\mathbb{R}$ függvény folytonosan differenciálható azt jelenti, hogy $f\in D[a,b]$ és $f'\in C[a,b]$, ahol a végpontokban a megfelelő egyoldali deriváltakat vesszük.

Jelölés: $f \in C^1[a,b]$. Az ilyen függvények
et szokás sima függvényeknek is nevezni.

Ezek után definiáljuk az ívhossz fogalmát folytonosan differenciálható függ-

Definíció. Legyen $a, b \in \mathbb{R}$, a < b, és tegyük fel, hogy az $f : [a, b] \to \mathbb{R}$ függvény folytonosan differenciáható. Ekkor az

$$\ell(\Gamma_f) := \sup\{\ell_f(\tau) \mid \tau \in \mathcal{F}[a,b]\} < +\infty$$

számot az f függvénygrafikon **ívhosszának** nevezzük.

Most egy kiszámítási módszert igazolunk az ívhosszra.

Tétel. Legyen $a, b \in \mathbb{R}$, a < b, és tegyük fel, hogy az $f : [a, b] \to \mathbb{R}$ függvény folytonosan deriválható.

Ekkor az f függvény grafikonjának ívhossza

(*)
$$\ell(\Gamma_f) = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx < +\infty.$$

Bizonyítás. (i) Először azt mutatjuk meg, hogy a Γ_f függvénygrafikon rektifikálható, azaz $\ell(\Gamma_f) < +\infty$.

Legyen $\tau = \{a = x_0 < \dots < x_n = b\} \in \mathcal{F}[a, b]$ tetszőleges. Tekintsük az $\ell_f(\tau)$ összeg *i*-edik $(i = 1, \dots, n)$ tagját:

$$\ell_i = \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2} =$$

$$= (x_i - x_{i-1})\sqrt{1 + (\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}})^2}.$$

A Lagrange-féle középértéktétel szerint van olyan $\xi_i \in (x_{i-1}, x_i)$, amelyre $f(x_i) - f(x_{i-1}) = f'(\xi_i)(x_i - x_{i-1})$ teljesül, ezért

$$\ell_i = (x_i - x_{i-1})\sqrt{1 + [f'(\xi_i)]^2}.$$

Így az f függvény grafikonjához közel eső töröttvonal hossza

$$\ell_f(\tau) = \sum_{i=1}^n \ell_i = \sum_{i=1}^n \sqrt{1 + [f'(\xi_i)]^2} \cdot (x_i - x_{i-1}).$$

Vegyük észre, hogy a jobb oldal a $g(x) := \sqrt{1 + [f'(x)]^2}$ $(x \in [a, b])$ folytonos függvény τ felosztáshoz és a (ξ_i) közbülső értékekhez tartozó Riemann-féle közelítő összege. Következésképpen

$$s(g,\tau) \le \ell_f(\tau) \le S(g,\tau).$$

Mivel g folytonos, ezért korlátos $\Longrightarrow \exists M: |g| \leq M$. Így minden $\tau \in \mathcal{F}[a,b]$ felosztás esetén

$$S(g,\tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} g \right) \cdot (x_i - x_{i-1}) \le$$

$$\le \sum_{i=1}^{n} M \cdot (x_i - x_{i-1}) = M \cdot (b - a).$$

Tehát $\forall \tau \in \mathcal{F}[a, b]$ felosztásra $\ell_f(\tau) \leq M \cdot (b - a)$. Így

$$\ell(\Gamma_f) \le M \cdot (b-a),$$

azaz a Γ_f függvénygrafikon rektifikálható.

(ii) Most igazoljuk a (*) képletet.

Nézzük először a felosztás finomításának a hatását $\ell_f(\tau)$ -ra. A háromszög oldalaira vonatkozó elemi háromszög-egyenlőtlenségből következik, hogy egy osztópont hozzávételével a töröttvonal hossza nem csökken. Ennek felhasználásával igazolható az, hogy ha τ_2 tetszőleges finomítása τ_1 -nek (azaz $\tau_1 \subset \tau_2$), akkor

$$\ell_f(\tau_1) \le \ell_f(\tau_2).$$

Legyen $\varepsilon > 0$ tetszőleges. A sup definíciójából \Longrightarrow

$$\exists \tau_1 \in \mathcal{F}[a,b]: \ \ell(\Gamma_f) - \varepsilon < \ell_f(\tau_1) \ (\leq \ell(\Gamma_f)).$$

Mivel $g \in R[a, b]$, ezért $\exists \tau_2 \in \mathcal{F}[a, b]$:

$$\int_{a}^{b} g - \varepsilon = I_{*}(g) - \varepsilon < s(f, \tau_{2}) \le S(g, \tau_{2}) < I^{*}(g) + \varepsilon = \int_{a}^{b} g + \varepsilon.$$

Legyen $\tau := \tau_1 \cup \tau_2 \in \mathcal{F}[a,b]$. Ekkor az előzőek alapján

$$\ell(\Gamma_f) - \varepsilon < \ell_f(\tau_1) \le \ell_f(\tau) \le S(g, \tau) \le S(g, \tau_2) \le \int_a^b g + \varepsilon, \text{ azaz}$$
$$\ell_f(\Gamma_f) < \int_a^b g + 2\varepsilon.$$

Másrészt $\int_{a}^{b} g - \varepsilon < s(f, \tau_2) \le \ell_f(\tau_2) \le \ell(\Gamma_f)$, azaz

$$\int_{a}^{b} g - \varepsilon < \ell(\Gamma_f) < \int_{a}^{b} g + 2\varepsilon.$$

Ez $\forall \varepsilon > 0$ -ra teljesül, ezért

$$\ell(\Gamma_f) = \int_a^b g(x) dx = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} dx. \quad \blacksquare$$

Példa: A kör kerülete.

Az alábbi ábrán jelzett negyedkör ívhosszát fogjuk

kiszámolni. Legyen

$$f(x) := \sqrt{R^2 - x^2} (|x| \le R/\sqrt{2}).$$

Világos, hogy $f \in C^1[-R/\sqrt{2}, R/\sqrt{2}]$ és

$$f'(x) = \frac{1}{2\sqrt{R^2 - x^2}} \cdot (-2x) \quad (|x| \le R/\sqrt{2}).$$

$$y = \sqrt{R^2 - x^2}$$

$$-R - \frac{4}{\sqrt{2}}$$

$$R \rightarrow x$$

Így
$$\sqrt{1+\left[f'(x)\right]^2} = \sqrt{1+\frac{x^2}{R^2-x^2}} = \frac{R}{\sqrt{R^2-x^2}} = \frac{1}{\sqrt{1-\left(\frac{x}{R}\right)^2}}$$
. Az előző tétel

szerint a Γ görbének van ívhossza és

$$\ell(\Gamma) = \int_{-R/\sqrt{2}}^{R/\sqrt{2}} \sqrt{1 + \left[f'(x)\right]^2} dx = \int_{-R/\sqrt{2}}^{R/\sqrt{2}} \frac{1}{\sqrt{1 - \left(\frac{x}{R}\right)^2}} =$$

$$= \left[R \arcsin \frac{x}{R}\right]_{-R/\sqrt{2}}^{R/\sqrt{2}} = R \left(\arcsin \frac{1}{\sqrt{2}} - \arcsin \left(-\frac{1}{\sqrt{2}}\right)\right) =$$

$$= R \left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = R \cdot \frac{\pi}{2}.$$

Az R sugarú kör kerülete tehát $4 \cdot R \cdot \frac{\pi}{2} = 2R\pi$.

Megjegyzések.

1º Ha $g(x) := \sqrt{R^2 - x^2} \ (|x| \le R)$, akkor $g \notin C^1[-R, R]$, ezért az előző tétel erre a függvényre **nem** alkalmazható.

 ${\bf 2^o}$ A középiskolában a π számot az egységsugarú kör kerületének a felével értelmeztük.

Az Analízis I. tantárgy 8. előadásán hatványsor összegfüggvényeként definiáltuk a sin és a cos függvényt. A 13. előadáson a cos függvény első pozitív zérushelyének a kétszeresével definiáltuk a π számot.

Az előzőzőekben a kör kerületét is **definiáltuk**, és megmutattuk azt, hogy az egységsugarú kör kerülete az általunk bevezetett π szám kétszerese. Ebből, valamint a sin és a cos függvényre igazolt korábbi eredményekből már következik, hogy a középiskolában bevezett sin, illetve cos függvény valóban egyenlő az Analízis I. tantárgyban definiált sin, illetve cos függvénnyel.

A határozott integrál 5.

- Síkbeli görbe ívhossza
- Porgástest térfogata
- 3 Forgástest felszíne
- További alkalmazások

2. Forgástest térfogata

A Riemann-integrál eszköztárát a térfogat problémájának a vizsgálatánál is felhasználhatjuk. A továbbiakban csak forgástesteket (vagyis olyan térrészt amelyet egy függvénygrafikon alatti tartomány x tengely körüli megforgatásával kapunk) fogunk csak vizsgálni. A terület és az ívhossz problémájánál alkalmazott gondolatmenetet követjük: a forgástestet beírt és körülírt hengerekkel (ezek térfogatát ismertnek tekintjük) közelítjük.

Legyen $f \in R[a,b]$, és t.f.h. $f \geq 0$ az [a,b] intervallumon. Az f grafikonjának x tengely körüli megforgatásával adódó

$$H_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f^2(x) \ (y, z \in \mathbb{R}) \}$$

forgástest térfogatának a definíciójához tekintsük az [a,b] intervallum egy $\tau = \{a = x_0 < x_1 < \cdots < x_n = b\}$ felosztást, és vezessük be a következő jelöléseket: legyen $i = 1, \ldots, n$, továbbá

$$m_i := \inf_{x \in [x_{i-1}, x_i]} f(x), \quad M_i := \sup_{x \in [x_{i-1}, x_i]} f(x),$$

$$h_i = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x_i \le x \le x_{i+1}, \ y^2 + z^2 \le m_i^2 \right\},$$

$$H_i = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x_i \le x \le x_{i+1}, \ y^2 + z^2 \le M_i^2 \right\}.$$

Ekkor a h_i és H_i hengerek egyesítésével adódó halmazokra nyilván

$$\bigcup_{i=1}^{n} h_i \subset H_f \subset \bigcup_{i=1}^{n} H_i$$

is teljesül, és a szóban forgó hengerek térfogatainak az összege

$$\sum_{i=1}^{n} \pi \, m_i^2 \cdot (x_i - x_{i-1}) = s(\pi \, f^2, \tau),$$

$$\sum_{i=1}^{n} \pi \, M_i^2 \cdot (x_i - x_{i-1}) = s(\pi \, f^2, \tau).$$

Mivel $\pi f^2 \in R[a,b]$, ezért $\int\limits_{-b}^{b} \pi f^2$ az egyetlen olyan szám, amely minden $\tau \in \mathcal{F}[a,b]$ esetén $s(\pi f^2, \tau)$ és $S(\pi f^2, \tau)$ közé esik. Ezek alapján kézenfekvő a H_f forgástest $(V(H_f)$ -fel jelölt) térfogatát így értelmezni:

$$V(H_f):=\pi\int\limits_a^bf^2.$$

Definíció. Legyen $0 \le f \in R[a,b]$. Ekkor f grafikonjának az x tengely körüli megforgatásával adódó

$$H_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f^2(x) \ (y, z \in \mathbb{R}) \}$$

forgástestnek van térfogata, és az egyenlő a

$$\pi \int_{a}^{b} f^{2}(x) dx$$

intergrállal.

Példa: A gömb térfogata. A (0,0,0) középpontú R sugarú gömb az $f(x) := \sqrt{R^2 - x^2} \quad (x \in [-R,R])$ függvény grafikonjának az x tengely körüli megforgatásával adódó térrész.

E gömb térfogata:

$$\pi \int_{-R}^{R} (R^2 - x^2) dx = \pi \left[R^2 x - \frac{x^3}{3} \right]_{-R}^{R} = \frac{4R^3 \pi}{3}. \blacksquare$$

A határozott integrál 5.

- Síkbeli görbe ívhossza
- Porgástest térfogata
- Forgástest felszíne
- További alkalmazások

3. Forgástest felszíne

Felületek felszínének a problémája (még forgásfelület esetén is) jóval bonyolultabb, mint a terület vagy a térfogat problémája. A továbbiakban az alkalmazások szempontjából jól használható képletet fogunk ismertetni.

Legyen $f\geq 0$ függvény az [a,b] intervallumon. Jelöljük \mathcal{A}_f -fel f grafikonjának az x tengely körüli megforgatásával kapott halmazt:

$$\mathcal{A}_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 = f^2(x) \ (y, z \in \mathbb{R})\},\$$

amit az f függvény által meghatározott forgásfelületnek nevezünk.

Kézenfekvő az a feltételezés, hogy \mathcal{A}_f felszínét megközelítik az f grafikonjába beírt töröttvonalak megforgatásával kapott halmazok (ezek csonkakúp palástok egyesítései) felszínei.

Legyen $\tau \in \mathcal{F}[a,b]$ tetszőleges, és jelöljük $\Phi_{\tau}\text{-val}$ a szóban forgó csonkakúp palástok felszíneinek (ezt ismertnek tekintjük) az összegét. Mivel f grafikonjának ívhossza (ha létezik) egyenlő kell hogy legyen a beírt töröttvonalak ívhosszai halmazának a szuprémumával, ezért első gondolatunk az lehetne, hogy az \mathcal{A}_f halmaz felszíne egyenlő kell hogy legyen a Φ_{τ} értékek $(\tau \in \mathcal{F}[a,b])$ szuprémumával. Ez azonban már egészen egyszerű függvények esetében sem igaz. Tekintsük például az |x| függvényt a [-1,1] intervallumon. Ekkor \mathcal{A}_f két egybevágó kúppalást egyesítése, ezért a felszíne $2\cdot(2\,\pi\cdot\sqrt{2}/2)=2\,\sqrt{2}\,\pi.$ Ha azonban a τ felosztás csupán a -1 és 1 osztópontokból áll, akkor $\Phi_{\tau} = 2\pi \cdot 2 = 4\pi$, ami nagyobb, mint \mathcal{A}_f felszíne.

Ez a példa a helyes definíciót is sugallja. A technikai nehézségeket elkerülendő azt az egyszerűbb utat választjuk, hogy az imént jelzett okoskodás végeredményeképpen kapott integrállal definiáljuk a felszínt.

Definíció. Legyen $-\infty < a < b < +\infty$, és t.f.h. $0 \le f \in C^1[a, b]$.

Ekkor f grafikonjának az x tengely körüli forgatásával adódó

$$\mathcal{A}_f = \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 = f^2(x) \ (y, z \in \mathbb{R}) \}$$

forgásfelületnek van felszíne, és értéke

$$2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + \left[f'(x)\right]^2} dx.$$

Példa: A gömb felszíne. Az origó középpontú és R sugarú gömbfelületet az $f(x) = \sqrt{R^2 - x^2}$ $\left(x \in [-R, R]\right)$ függvény grafikonjának az x tengely körüli megforgatásával kapjuk. Legyen 0 < r < R és tekintsük az

$$f_r(x) = \sqrt{R^2 - x^2} \quad (x \in [-r, r]).$$

függvényt. Ekkor $f_r \in C^1[-r,r]$ és $f'_r(x) = -\frac{x}{\sqrt{R^2 - x^2}}$ $(x \in [-r,r])$, továbbá

$$1 + \left[f'(x)\right]^2 = 1 + \frac{x^2}{R^2 - x^2} = \frac{R^2}{R^2 - x^2} \quad (x \in [-r, r]).$$

Ezért az f_r által a fentiekben meghatározott és \mathcal{A}_r -rel jelölt forgásfelület felszíne

$$F_r := 2\pi \int_{-r}^{r} \sqrt{R^2 - x^2} \cdot \sqrt{\frac{R^2}{R^2 - x^2}} \, dx = 2\pi R \int_{-r}^{r} 1 \, dx = 4Rr \, \pi.$$

A "szemlélet alapján" könnyen elfogadható (az egzakt meggondolásokat nem részletezve), hogy az $r \to R$ határátmenettel $\mathcal{A}_r \to \mathcal{A}_R$, ahol \mathcal{A}_R az R sugarú gömb felülete. Ugyanakkor

$$\lim_{r \to R} F_r = \lim_{r \to R} 4 R r \pi = 4 R^2 \pi,$$

ami valóban nem más, mint az R sugarú gömb felszíne. lacktriangle

A határozott integrál 5.

- Síkbeli görbe ívhossza
- Porgástest térfogata
- 3 Forgástest felszíne
- További alkalmazások

4. További alkalmazások

Osszegek határértékének kiszámolása

A határozott integrál fogalmának felhasználásával bizonyos összegek határértékét tudjuk könnyen kiszámolni.

Tétel. Ha $f \in R[a,b]$, akkor

$$\lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx.$$

Bizonyítás. Legyen $n \in \mathbb{N}^+$, $\tau_n := \left\{ \frac{k}{n} \mid k = 0, \dots, n \right\} \in \mathcal{F}[0, 1]$

és $\xi_n := (\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n})$. Ekkor minden $n \in \mathbb{N}^+$ -re

$$\sigma(f, \tau_n, \xi_n) = \frac{1}{n} \cdot \sum_{k=1}^n f(\frac{k}{n}).$$

Mivel $\|\tau_n\| = \frac{1}{n} \to 0$, ha $n \to +\infty$, ezért

$$\lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) \, dx. \blacksquare$$

Példa. Legyen $\alpha > 0$. Számítsuk ki a

$$\lim_{n \to +\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}$$

határértéket!

Megoldás. Legyen $f(x) := x^{\alpha} \ (x \in [0,1])$. Ekkor $f \in R[0,1]$, és

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} x^{\alpha} dx = \left[\frac{x^{\alpha+1}}{\alpha+1} \right]_{0}^{1} = \frac{1}{\alpha+1}.$$

Ugyanakkor

$$\frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \frac{1}{n} \cdot \left(\left(\frac{1}{n} \right)^{\alpha} + \left(\frac{2}{n} \right)^{\alpha} + \dots + \left(\frac{n}{n} \right)^{\alpha} \right) = \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n} \right).$$

Az előző tétel szerint tehát

$$\lim_{n \to +\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n}\right) =$$
$$= \int_{0}^{1} f(x) dx = \frac{1}{\alpha+1}. \blacksquare$$

Megjegyzés. Ez az eredmény azt jelenti, hogy minden $\varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N} : \forall n \geq n_0$ -re

$$(1-\varepsilon)\frac{n^{\alpha+1}}{\alpha+1} \le 1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha} \le (1+\varepsilon)\frac{n^{\alpha+1}}{\alpha+1}$$

Nagy n-ekre tehát az $1^{\alpha}+2^{\alpha}+\cdots+n^{\alpha}$ összeg az $\frac{1}{\alpha+1}n^{\alpha+1}$ számmal jól közelíthető. Ezt úgy is ki szoktuk fejezni, hogy $1^{\alpha}+2^{\alpha}+\cdots+n^{\alpha}$ aszimptotikusan egyenlő $\frac{1}{\alpha+1}n^{\alpha+1}$ -gyel, ha $n\to+\infty$, és ezt röviden így szokás jelölni:

$$1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha} \sim \frac{1}{\alpha+1} n^{\alpha+1} \quad (n \to +\infty).$$

Vagy azt mondjuk, hogy az $1^{\alpha} + 2^{\alpha} + \cdots + n^{\alpha}$ összeg $n^{\alpha+1}$ nagyságrendű. Ha $\alpha = 1,2$ vagy 3, akkor a szóban forgó összegeket zárt alakban is fel tudjuk írni, és ebből kaphatunk információt az összeg nagyságrendjére. Más α -kra (pl. $\alpha = \frac{1}{2}$) zárt alak vagy nincs vagy pedig nehezen adható meg. A példában mutatott egyszerű eszközökkel tehát minden $\alpha > 0$ valós szám esetén a zárt alak ismerete nélkül kaptunk információt az összeg nagy n-ekre való viselkedéséről.

• Összegek becslése

Az Analízis I. kurzus 6. előadásán megmutattuk azt, hogy a $\sum \frac{1}{n}$ harmonikus sor divergens, de van összege, és $\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$. Ez azt jelenti, hogy

$$H_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \to +\infty, \text{ ha } n \to +\infty.$$

Most azt a kérdést vizsgáljuk meg, hogy a (H_n) sorozat "milyen gyorsan" tart $+\infty$ -hez.

Példa. Bizonyítsuk be, hogy

$$\ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n + 1 \quad (2 \le n \in \mathbb{N}).$$

Megoldás. Ha $f(x) := \frac{1}{x} (x \ge 1)$, akkor $f(k) = \frac{1}{k} (k \in \mathbb{N}^+)$.

Az alsó becslés. Mivel $f \downarrow [1, +\infty)$ -en, ezért

$$f(x) < f(k) = \frac{1}{k}$$
 $(x \in (k, k+1), k = 1, 2, ..., n)$:

$$\implies 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{1}^{n+1} \frac{1}{x} dx = \left[\ln x\right]_{1}^{n+1} = \ln(n+1) - \ln 1 = \ln(n+1) > \ln n. \checkmark$$

A felső becslés. Mivel $f \downarrow [1, +\infty)$ -en, ezért

$$\frac{1}{k} = f(k) < f(x) \quad (x \in (k, k+1), \ k = 1, 2, \dots, n-1)$$
:

$$\implies 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{1}{x} dx = 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln x. \quad \checkmark \quad \blacksquare$$

Megjegyzés. A harmonikus sor részletösszegeire az előzőnél pontosabb becslés is igaz.

Könnyű meggondolni, hogy az

$$0 < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \quad (2 \le n \in \mathbb{N})$$

sorozat \downarrow , tehát konvergens. A sorozat határértéke a nevezetes matematikai állandók egyike, az ún. **Euler-állandó** (l. Wikipédia)

$$\gamma := \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \approx 0,577\dots$$

(Régóta megoldatlan probléma, hogy γ racionális-e vagy sem.)

A fentiek alapján

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \ln n + \gamma + \varepsilon_n \quad (2 \le n \in \mathbb{N}),$$

ahol $\varepsilon_n \searrow 0$, ha $n \to +\infty$. Ezt a képletet másképpen úgy fejezzük ki, hogy az $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ összeg aszimptotikusan ln n-nel egyenlő; jelben:

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \sim \ln n \quad (n \to +\infty).$$