COL 765: Introduction to Logic and Functional Programming Quiz 0, 22.07.2024 (Direct proofs from definitions)

Name:	Entry No
Q1 [5] From the definition (of set equality), show that the <u>transitive</u> . That is, if $S_1 = S_2$ and $S_2 = S_3$ then $S_1 = S_3$.	notion of set equality is
Proof Let $S_1 = S_2$ (i) and $S_2 = S_3$ (ii). So, by Def of set equality, $x \in S_1$ if and only if $x \in S_2$ from (i), and $x \in S_2$ if and only if $x \in S_3$ from (ii) Therefore, $x \in S_1$ if and only if $x \in S_3$ i.e., by Def of set equality, $S_1 = S_3$.	

Q2 [5] From the definition (of subset), show the subset relationship is <u>anti-symmetric</u>. That is, if $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$ then $S_1 = S_2$.

```
Proof Let S_1 \subseteq S_2 (i) and S_2 \subseteq S_1 (ii). So, by Def of subset, if x \in S_1 then x \in S_2 from (i), and if x \in S_2 then x \in S_1 from (ii). Therefore, x \in S_1 if and only if x \in S_1 i.e., by Def of set equality, S_1 = S_3.
```