# Class Topics (클래스 홈페이지 참조)

- □ Part 1: Fundamental concepts and principles
- □ Part 2: 빠른 컴퓨터를 위한 ISA design
  - Topic 1 Computer performance and ISA design (Ch. 1)
  - Topic 2 RISC (MIPS) instruction set (Chapter 2)
    - 2-1 ALU and data transfer instructions
    - 2-2 Branch instructions
    - 2-3 Supporting program execution
  - Topic 3 Computer arithmetic and ALU (Chapter 3)
- □ Part 3: ISA 의 효율적인 구현 (pipelining, cache memory)



#### COMPUTER ORGANIZATION AND DE

The Hardware/Software Interface



# **Chapter 3**

# Arithmetic for Computers (ALU)

Some of authors' slides are modified

# **Arithmetic for Computers**

- ☐ We have build a 32-bit ALU in "Part 1" (concept only)
- □ Can you imagine many algorithms for addition?
  - Multiplication, division, FP operations as well
- ☐ Focus of designing computers in 1950s
  - Algorithms and implementation for faster ALU
- ☐ Field of "Computer Arithmetic"
  - Matured in 1950s and 1960s; improved since then
- □ Today, can buy ALU as IP (Intellectual Property)
- We do not study the design of fast ALU in detail



#### Instead, we focus on

- 1) Operations on integers (concept only, skip performance)
  - Addition and subtraction
    - Dealing with overflow
  - Multiplication and division
- 2) Floating-point real numbers
  - Representation and operations
- 3) Arithmetic for multimedia
- Impact of these operations on ISA
  - This is why Chapter 3 belongs to "Part 2"



# 1) Integer Addition & Subtraction

Overflow (표현범위 벗어남), Issue of Finite Precision

# Representation of Integers

Unsigned integers

$$000 = +0$$

$$001 = +1$$

$$010 = +2$$

$$011 = +3$$

$$100 = +4$$

$$101 = +5$$

$$110 = +6$$

$$111 = +7$$

# Representing Signed Integers

#### Sign Magnitude One's Complement Two's Complement

| 000 = +0 | 000 = +0 | 000 = +0 |
|----------|----------|----------|
| 001 = +1 | 001 = +1 | 001 = +1 |
| 010 = +2 | 010 = +2 | 010 = +2 |
| 011 = +3 | 011 = +3 | 011 = +3 |
| 100 = -0 | 100 = -3 | 100 = -4 |
| 101 = -1 | 101 = -2 | 101 = -3 |
| 110 = -2 | 110 = -1 | 110 = -2 |
| 1113     | 1110     | 1111     |

- ☐ Issues: balance, number of zeros, ease of operations
- ☐ Which one is best? Why?

# Representing Signed Integers

#### **Biased Notation**: Biased Notation:

$$000 = -3$$

$$001 = -2$$

$$010 = -1$$

$$011 = 0$$

$$100 = +1$$

$$101 = +2$$

$$110 = +3$$

$$111 = +4$$

$$000 = -4$$

$$001 = -3$$

$$010 = -2$$

$$011 = -1$$

$$100 = 0$$

$$101 = +1$$

$$110 = +2$$

$$111 = +3$$

# **Integer Addition**

- □ Addition (unsigned and signed)
  - Example: 9 + 12

$$9_{10} = 000100001$$

$$12_{10} = 00001100$$

$$00010100$$

$$00010101 = 21_{10}$$

- Subtraction for signed integers (add 2's complement)
- Subtraction for unsigned integers

au = bu + cu // au, bu, cu are unsigned number

□ Carry and borrow (표현범위 벗어남)

- □ Programmers are entirely responsible (processor 개입 불가)
  - · If problem, add correctional code or use long data type
    - If (carry bit), then ... // error handling
  - Otherwise, ignore (e.g., address arithmetic by compiler)



$$a = b + c$$

// a, b, c are signed numbers

- □ (2's complement) arithmetic overflow (표현범위 벗어남)
  - Two patterns: can detect using a single XOR gate

| carry: 0 1 |                   | carry: 1 0 |      |      |
|------------|-------------------|------------|------|------|
| 70         | 0100 0110         | -70        | 1011 | 1010 |
| + 80       | 0101 0000         | 80         | 1011 | 0000 |
| 150(?)     | <b>1</b> 001 0110 | -150(?)    | 0110 | 1010 |

- Overflow occur when adding two positives yields a negative
  - Or, adding two negatives gives a positive



- ☐ If problem, add correctional code or use long data type
  - If (overflow), then ... // error handling
- Otherwise, ignore
  - But 2's C. arithmetic overflow almost always a problem!
    - Processor 개입 여지 (should it detect overflow?)

- ❖ If we ignore 2's complement arithmetic overflow
  - Programmers responsible for everything
    - Consistent with the case of unsigned arithmetic



- ☐ Clanguage: leave all to programmers
  - · Compilers use "addu, addiu, subu, ..."
- ☐ Fortran (& Ada): catch 2's complement overflow (exception)
  - Use "add, addi, sub, ..." for signed numbers
  - Use "addu, addiu, subu, ..." for unsigned numbers
- ☐ MIPS solution: two kinds of arithmetic instructions

```
addu, addiu, subu, ... // ignore overflow
```

// "u" in "addu" does not mean unsigned

add, addi, sub, ... // detect overflow (exception)



- Detecting overflow means invoking exception handler
  - Save PC in exception program counter (EPC) register
  - Jump to predefined handler address
- What can an exception handler do?



32 bit signed numbers:

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ _{two} = 0_{ten}
0000 0000 0000 0000 0000 0000 0001<sub>two</sub> = + 1_{ten}
0000 0000 0000 0000 0000 0000 0010_{two} = + 2_{ten}
1000 0000 0000 0000 0000 0000 0000 0000_{two} = -2,147,483,648_{ten}
1000 0000 0000 0000 0000 0000 0000 0001_{two} = -2,147,483,647_{ten} \sim minint
1000 0000 0000 0000 0000 0000 0000 0010_{two} = -2,147,483,646_{ten}
1111 1111 1111 1111 1111 1111 1111 1101_{two} = -3_{ten}
1111 1111 1111 1111 1111 1111 1111 1111_{two} = -1_{ten}
```

- ☐ Finite precision; how can we represent big numbers?
  - Double precision, floating point





#### **Arithmetic for Multimedia**

- Saturating operations
  - On overflow, result is largest (or smallest) representable value
    - e.g., clipping in audio, saturation in video





# Integer Multiplication & Division

(가볍게) (concept only; not for performance)

#### Multiplication



Length of product is the sum of operand lengths

- More complicated than addition
  - Accomplished via shifting and addition
- More time and more area
- ☐ Negative numbers: convert and multiply
  - There are better techniques



#### Multiplication Hardware (참고)



# Optimized Multiplier (참고)

□ Perform steps in parallel: add/shift



- One cycle per partial-product addition
  - That's ok, if frequency of multiplications is low

#### Faster Multiplier (참고)

- ☐ Uses multiple adders (Moore's law)
  - Cost/performance tradeoff



- Can be pipelined
  - Several multiplication performed in parallel

#### **MIPS Multiplication**

- □ Two 32-bit registers for product
  - HI: most-significant 32 bits
  - LO: least-significant 32-bits
- □ Instructions
  - mult rs, rt / multu rs, rt
    - 64-bit product in HI/LO
  - mfhi rd / mflo rd
    - Move from HI/LO to rd
  - mul rd, rs, rt
    - Least-significant 32 bits of product -> rd

# Division (slower than mult)



*n*-bit operands yield *n*-bit quotient and remainder

- ☐ Check for 0 divisor
- ☐ Long division approach
  - If divisor ≤ dividend bits
    - 1 bit in quotient, subtract
  - Otherwise
    - 0 bit in quotient, bring down next dividend bit
- □ Restoring division
  - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
  - Divide using absolute values
  - Adjust sign of quotient and remainder as required

Chapter 3 — Arithmetic for Computers — 23



#### **MIPS Division**

- ☐ Use HI/LO registers for result
  - HI: 32-bit remainder
  - LO: 32-bit quotient
- Instructions
  - div rs, rt / divu rs, rt
  - Use mfhi, mflo to access result
  - No overflow or divide-by-0 checking
    - Software must perform checks if required

# 2) Floating-Point Real Numbers

# **Floating Point**

- Representation for non-integral numbers
  - Including very small and very big numbers
- □ Scientific numbers

$$-2.34 \times 10^{56}$$

$$+0.002 \times 10^{-94}$$

+9.5

// small numbers, no problem

- □ 지수표현
  - Significand and exponent

56

32-bit



# **Floating Point**

- ☐ Floating point Representation not unique
  - Use normalized form

$$\begin{array}{c}
-2.34 \times 10^{56} & \\
-0.234 \times 10^{57} & \\
-23.4 \times 10^{55}
\end{array}$$
normalized
not normalized

□ In binary

•  $\pm 1.xxxxxxx_2 \times 2^{yyyy}$ 

Implicit 1 and fraction



## Floating Point Standard

- ☐ Defined by IEEE Std 754-1985 ☐
- Developed in response to divergence of representations
  - Portability issues for scientific code
- Now almost universally adopted
- ☐ Two representations
  - Single precision (32-bit): type float in C
  - Double precision (64-bit): type double in C

# **IEEE Floating-Point Format**



1 bit 8 bits 23 bits



1 bit 11 bits 20 bits

fraction (continued)

32 bits

# Floating-Point Example

☐ Represent –0.75

float x = -0.75; double x = -0.75;

- $-0.75 = -0.11_2 = (-1)^1 \times 1.1_2 \times 2^{-1}$
- S = 1
- Fraction =  $1000...00_2$
- Exponent = -1 + Bias

// bias 127 or 1023

- Single:  $-1 + 127 = 126 = 011111110_2$
- Double:  $-1 + 1023 = 1022 = 0111111111110_2$
- ☐ Single: 10111111 01000000 00000000 00000000
- □ Double: 10111111 11101000 00000000 000000000 ...00

# Floating-Point Example

☐ What number is represented by the single-precision float

11000000 10100000 00000000 00000000

- S = 1
- Fraction =  $01000...00_2$
- Exponent =  $10000001_2 = 129$

#### IEEE Floating-Point Format (부연)

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- $\square$  S: sign bit (0  $\Rightarrow$  non-negative, 1  $\Rightarrow$  negative)
- □ Normalize significand: 1.0 ≤ |significand| < 2.0</p>
  - Implicit 1; Significand is Fraction + 1
- ☐ Exponent: excess representation: actual exponent + Bias
  - Ensures exponent is unsigned

Single: Bias = 127; Double: Bias = 1023

Chapter 3 — Arithmetic for Computers — 32

# Single-Precision Range

- ☐ Exponents 00000000 and 11111111 reserved
- ☐ Smallest value
  - Exponent: 00000001
    - $\Rightarrow$  actual exponent = 1 127 = -126
  - Fraction:  $000...00 \Rightarrow significand = 1.0$
  - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- □ Largest value
  - exponent: 11111110
    - $\Rightarrow$  actual exponent = 254 127 = +127
  - Fraction: 111...11 ⇒ significand ≈ 2.0
  - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

# **Double-Precision Range**

- ☐ Exponents 0000...00 and 1111...11 reserved
- Smallest value
  - Exponent: 0000000001
     ⇒ actual exponent = 1 1023 = -1022
  - Fraction:  $000...00 \Rightarrow significand = 1.0$
  - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- □ Largest value
  - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
  - Fraction: 111...11 ⇒ significand ≈ 2.0

$$\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$$

# Floating Point Standard

- Members of the committee
  - 과학 계산 전문가
  - Computer arithmetic (ALU 설계/구현) 전문가
- □ 과학계산 issues (표현 범위, 유효숫자)
  - Total number of bits
  - Number of bits for significand/exponent
    - More bits for significand gives more accuracy
    - More bits for exponent increases range
- ☐ The rest are determined by ALU specialists
  - For efficient implementation



## Floating Point Standard

- When you do C, Java programming
  - When do you use float?
  - When do you use double?
- ☐ FP numbers and FP ALU (or FP coprocessor)
  - 근사계산
    - Too many bits for fraction: rounded
  - No beauty of integers
    - Not accurate from mathematics perspective
  - Think about overflow, underflow

# Floating Point Standard

☐ How do we represent 0?

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- □ Exponents 0000...00 and 1111...11 reserved
  - Exp = 255, sig != 0
- → NaN (not a number)

• Exp = 255, sig = 0

 $\rightarrow$  +, - infinity

• Exp = 0, sig = 0

 $\rightarrow 0$ 

• Exp = 0, sig != 0

→ even smaller numbers

- ☐ IEEE 754-2008
  - Binary 32, 64, 128, (16, 256)

# **Associativity**

 $\Box$  Order of computation in "x + y + z" (problem?)

|   |           | (x+y)+z  | X+ <mark>(y+z)</mark> |
|---|-----------|----------|-----------------------|
| X | -1.50E+38 |          | -1.50E+38             |
| У | 1.50E+38  | 0.00E+00 |                       |
| Z | 1.0       | 1.0      | 1.50E+38              |
|   |           | 1.00E+00 | 0.00E+00              |

Y: 1.50 E+38

// too many bits in fraction: rounded

$$Y+Z = 1.50 E38$$



# Floating Point Comparison

☐ Floating-point "beq"? What will happen? Why?

```
float x, y;

x = 1.5; y = 2.0;

if ((x * y) == 3.0) printf("equal\n");

x = 0.1; y = 10.0; // no. of fraction bits

if ((x * y) == 1.0) printf("equal\n");
```

□ Floating point equality check: use " $|x - constant| < \epsilon$ "

# Floating-Point Addition

■ Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$$
 //  $0.5 + -0.4375$ 

- 1. Align binary points
  - Shift number with smaller exponent

• 
$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

2. Add significands

• 
$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
  - $1.000_2 \times 2^{-4}$ , with no over/underflow
- 4. Round and renormalize if necessary
  - $1.000_2 \times 2^{-4}$  (no change) = 0.0625

## FP Adder Hardware (참고)



#### **FP Adder Hardware**

- Much more complex than integer adder
- □ Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - Slower clock would penalize all instructions
- ☐ FP adder usually takes several cycles
  - Can be pipelined

#### **FP Arithmetic Hardware**

- ☐ FP multiplier is of similar complexity to FP adder
- ☐ FP arithmetic hardware usually does
  - Addition, subtraction, multiplication, division, reciprocal, square-root
  - FP ↔ integer conversion
- Operations usually takes several cycles
  - Can be pipelined

#### **FP Instructions in MIPS**

- ☐ FP hardware is adjunct processor that extends the ISA
- □ Separate FP registers
  - 32 single-precision: \$f0, \$f1, ... \$f31
  - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- ☐ FP instructions operate only on FP registers
  - Generally no integer ops on FP data, or vice versa
  - More registers with minimal code-size impact
- □ FP load and store instructions
  - lwc1, ldc1, swc1, sdc1
    - e.g., ldc1 \$f8, 32(\$sp)



#### **FP Instructions in MIPS**

- ☐ Single-precision arithmetic: add.s, sub.s, mul.s, div.s
  - e.g., add.s \$f0, \$f1, \$f6
- □ Double-precision arithmetic: add.d, sub.d, mul.d, div.d
  - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
  - c.xx.s, c.xx.d (xx is lt, le, ...)
  - Sets or clears FP condition-code bit
    - e.g. c.lt.s \$f3, \$f4
- ☐ Branch on FP condition code true or false: bc1t, bc1f
  - e.g., bc1t TargetLabel



# 3) Arithmetic for Multimedia (and Scientific Computing)

(Textbook Sections 3.6 – 3.8)

#### **Arithmetic for Multimedia**

- ☐ Graphics and media processing operates on vectors of 8-bit and 16-bit data
  - Use 64-bit adder, with partitioned carry chain
    - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors



64-bit adder

| $\leftrightarrow$ | <del>\</del> | <del>(</del> | ×      |
|-------------------|--------------|--------------|--------|
| 16-bit            | 16-bit       | 16-bit       | 16-bit |

64-bit adder

| <del>&lt;&gt;</del> | $\leftarrow$ $\leftrightarrow$ | <del>&lt;</del> |
|---------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------|
| 8                   | 8                              | 8                              | 8                              | 8                              | 8                              | 8                              | 8               |

#### **Subword Parallellism**

- Also called data-level parallelism (DLP), vector parallelism, or Single Instruction Multiple Data (SIMD)
  - Instructions operate on them simultaneously
- Moore's law for graphics and audio applications
  - 128-bit adder and wide registers
    - $16\times8$ -bit adds,  $8\times16$ -bit adds,  $4\times32$ -bit adds

#### MMX and SSE (Intel 사례)

- ☐ MMX (1993) // multimedia
  - Use (64 bits of) existing FP registers
  - Small integer data types (8bit color, 16bit audio)
    - (8×8), (4×16), (2×32), (1×64)
- □ SSE (1999) // scientific computing (Moore's law)
  - Add new 8×128-bit FP registers (XMM0-XMM7)

Packed single precision FP (4×32) with more FP units

## SSE2, ..., AVX (Intel 사례)

- □ SSE2 (2001)
  - Generalize SSE (8 × 128-bit registers)
  - Can be used for multiple FP/INT operands
    - 2 × 64-bit FP (addpd %xmm0, %xmm4)
    - $-4 \times 32$ -bit FP (addps %xmm0, %xmm4)
    - 2 × 64-bit, 4 × 32-bit, 8 × 16-bit, 16 × 8-bit INT
- AVX (advanced vector extension; 2008)
  - Double the width of registers
    - e.g., 4 × 64-bit double precision FP

# **Going Faster**

- □ DGEMM (Double Precision General Matrix Multiply) with Intel Core i7
  - AVX version 3.85 times fast
    - 4 double precision FP operations in parallel
- Matrix computation (과학 계산)
  - Differential equations
  - Deep learning (vectorization with GPU)

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots \end{bmatrix} \begin{bmatrix} b_{11} & \cdots \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots \end{bmatrix} = \begin{bmatrix} * & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & \end{bmatrix}$$

#### ☐ Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```



#### □ x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add r9, rcx # register rcx = rcx + rcx
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
  element of A
7. add \$0x1, \%rax  # register \%rax = \%rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

#### ☐ Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
     m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
7.
  for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add pd(}c0, /* c0 += A[i][k]*B[k][j] */
                _{mm256}mul_{pd}(mm256 load pd(A+i+k*n),
9.
10.
                mm256 broadcast sd(B+k+j*n)));
     mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```

☐ Optimized x86 assembly code:

```
1. vmovapd (%r11), %ymm0  # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx
                        # register %rcx = %rbx
3. xor %eax, %eax
                 # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8, %rax
                 # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                    # register %rcx = %rcx + %r9
                      # compare %r10 to %rax
8. cmp %r10,%rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dqemm+0x50> # jump if not %r10 != %rax
11. add $0x1, %esi
                          # register % esi = % esi + 1
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```



#### **C** Intrinsics

- Intrinsic functions
  - Functions available for use in a given programming language whose implementation is specially handled by compiler
  - Often used to explicitly implement vectorization and parallelization in languages which do not address such constructs
    - e.g., MMX, SSE, OpenMP
- Compiler target?
- Cost-performance-energy tradeoff



#### **SIMD Parallelism**

- ☐ Three variations (Chapter 6) of DLP
  - SIMD extensions
  - Vector architectures
  - Graphics Processing Units (GPUs)
    - 3D video games since 2000, extensive parallelism
    - Also used by scientific computing
- Deep learning and GPU computing



# 4) Summary of MIPS ISA

(Textbook section 3.10)

# **Concluding Remarks**

- ☐ ISAs support arithmetic
  - Signed and unsigned integers
  - Floating-point approximation to reals
- Bounded range and precision
  - Operations can overflow and underflow
- ☐ MIPS ISA
  - Core instructions: 56 most frequently used
    - 100% of SPECINT, 97% of SPECFP
  - Other instructions: less frequent

#### MIPS Core, MIPS-32, Pseudo MIPS

| MIPS core instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name  | Format | MIPS arithmetic core                | Name  | Format |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------------------------------------|-------|--------|
| add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | add   | R      | multiply                            | mult  | R      |
| add immediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | addi  | 1      | multiply unsigned                   | multu | R      |
| add unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | addu  | R      | divide                              | div   | R      |
| add immediate unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | addiu | I      | divide unsigned                     | divu  | R      |
| subtract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sub   | R      | move from Hi                        | mfhi  | R      |
| subtract unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | subu  | R      | move from Lo                        | mflo  | R      |
| AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND   | R      | move from system control (EPC)      | mfc0  | R      |
| AND immediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANDi  | I      | floating-point add single           | add.s | R      |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OR    | R      | floating-point add single           | add.d | R      |
| OR immediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORi   | 501    | 9,                                  | -     | 0.0    |
| The control of the co |       | I      | floating-point subtract single      | sub.s | R      |
| NOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOR   | R      | floating-point subtract double      | sub.d | R      |
| shift left logical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s11   | R      | floating-point multiply single      | mul.s | R      |
| shift right logical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | srl   | R      | floating-point multiply double      | mul.d | R      |
| load upper immediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lui   | I      | floating-point divide single        | div.s | R      |
| load word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 w   | I      | floating-point divide double        | div.d | R      |
| store word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SW    | 1      | load word to floating-point single  | 1wc1  | I      |
| load halfword unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lhu   | 1      | store word to floating-point single | swc1  | 1      |
| store halfword                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sh    | I      | load word to floating-point double  | 1dc1  | 1      |
| load byte unsigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 bu  | 1      | store word to floating-point double | sdc1  | 1      |
| store byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sb    | 1      | branch on floating-point true       | bc1t  | 1      |
| load linked (atomic update)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11    | I      | branch on floating-point false      | bc1f  | 1      |
| store cond. (atomic update)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC    | I      | floating-point compare single       | C.X.S | R      |
| branch on equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | beq   | I      | (x = eq, neq, lt, le, gt, ge)       |       |        |
| branch on not equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bne   | 1      | floating-point compare double       | c.x.d | R      |
| jump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | j     | J      | (x = eq, neq, lt, le, gt, ge)       |       |        |
| jump and link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | jal   | J      |                                     |       |        |
| jump register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | jr    | R      |                                     |       |        |
| set less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slt   | R      |                                     | *     | ·      |
| set less than immediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | slti  | 1      |                                     |       |        |

R

sltu

sltiu

Figure 3.26



set less than unsigned

set less than immediate unsigned

#### MIPS Core, MIPS-32, **Pseudo MIPS**

Figure 3.27

| Remaining MIPS-32                                | Name    | Format | Pseudo MIPS                                        |
|--------------------------------------------------|---------|--------|----------------------------------------------------|
| exclusive or $(rs \oplus rt)$                    | xor     | R      | absolute value                                     |
| exclusive or immediate                           | xori    | 1      | negate (signed or <u>u</u> nsigned)                |
| shift right arithmetic                           | sra     | R      | rotate left                                        |
| shift left logical variable                      | sllv    | R      | rotate right                                       |
| shift right logical variable                     | srlv    | R      | multiply and don't check oflw (signed or uns.)     |
| shift right arithmetic variable                  | srav    | R      | multiply and check oflw (signed or uns.)           |
| move to Hi                                       | mthi    | R      | divide and check overflow                          |
| move to Lo                                       | mtlo    | R      | divide and don't check overflow                    |
| load halfword                                    | 1h      | 1      | remainder (signed or <u>u</u> nsigned)             |
| load byte                                        | 1 b     | 1      | load immediate                                     |
| load word left (unaligned)                       | 1w1     | 1      | load address                                       |
| load word right (unaligned)                      | 1wr     | 1      | load double                                        |
| store word left (unaligned)                      | swl     | 1      | store double                                       |
| store word right (unaligned)                     | swr     | 1      | unaligned load word                                |
| load linked (atomic update)                      | 11      | 1      | unaligned store word                               |
| store cond. (atomic update)                      | SC      | 1      | unaligned load halfword (signed or <u>u</u> ns.)   |
| move if zero                                     | movz    | R      | unaligned store halfword                           |
| move if not zero                                 | movn    | R      | branch                                             |
| multiply and add (S or <u>u</u> ns.)             | madds   | R      | branch on equal zero                               |
| multiply and subtract (S or uns.)                | msubs   | 1      | branch on compare (signed or unsigned)             |
| branch on ≥ zero and link                        | bgezal  | 1      | (x = lt, le, gt, ge)                               |
| branch on < zero and link                        | bltzal  | 1      | set equal                                          |
| jump and link register                           | jalr    | R      | set not equal                                      |
| branch compare to zero                           | bxz     | 1      | set on compare (signed or unsigned)                |
| branch compare to zero likely                    | bxzl    | 1      | (x = lt, le, gt, ge)                               |
| (x = lt, le, gt, ge)                             |         |        | load to floating point (s or d)                    |
| branch compare reg likely                        | bxl     | 1      | store from floating point ( <u>s</u> or <u>d</u> ) |
| trap if compare reg                              | tx      | R      |                                                    |
| trap if compare immediate                        | txi     | 1      |                                                    |
| (x = eq, neq, lt, le, gt, ge)                    |         |        |                                                    |
| return from exception                            | rfe     | R      |                                                    |
| system call                                      | syscall | 1      |                                                    |
| break (cause exception)                          | break   | 1      |                                                    |
| move from FP to integer                          | mfc1    | R      |                                                    |
| move to FP from integer                          | mtc1    | R      |                                                    |
| FP move (s or d)                                 | mov.f   | R      |                                                    |
| FP move if zero (s or d)                         | movz.f  | R      |                                                    |
| FP move if not zero (s or d)                     | movn.f  | R      | -                                                  |
| FP square root ( <u>s</u> or <u>d</u> )          | sqrt.f  | R      | -                                                  |
| FP absolute value ( <u>s</u> or <u>d</u> )       | abs.f   | R      | -                                                  |
|                                                  | neg.f   |        | -                                                  |
| FP negate (s or d)                               | cvt.f.f | R      | -                                                  |
| FP convert ( <u>w</u> , <u>s</u> , or <u>d</u> ) |         | R      | -                                                  |
| FP compare un (s or d)                           | c.xn.f  | R      |                                                    |

Name

abs

negs

rol

ror

muls

div

divu

rems

li

1 a

1d

sd

ulw

USW

ulhs

begz

bxs

seq

sne

SX5

1.

S.

ush

mulos

**Format** 

rd,rs

rd,rs

rd,rs,rt

rd.rs.rt

rd.rs.rt

rd.rs.rt

rd,rs,rt

rd,rs,rt

rd,rs,rt

rd,imm

rd,addr

rd,addr

rd,addr

rd,addr

rd,addr

rd,addr

rd,addr

Label

rs,L

rs,rt,L

rd,rs,rt

rd,rs,rt

rd,rs,rt

rd,addr

rd,addr



#### MIPS Core, MIPS-32, Pseudo MIPS

☐ Frequency of use in SPEC CPU2006 benchmark

| Instruction subset   | Integer | Fl. pt. |
|----------------------|---------|---------|
| MIPS core            | 98%     | 31%     |
| MIPS arithmetic core | 2%      | 66%     |
| Remaining MIPS-32    | 0%      | 3%      |

- ☐ For the rest of book, focus on MIPS core (integer instruction set excluding multiply and divide)
  - To make the explanation of computer design easier

# Homework #10 (see Class Homepage)

- 1) Write a report summarizing the materials discussed in Topic 3
- 2) Write a report summarizing the materials discussed in Topic 4-1 (이번 주 수업에서 공부하는 부분만 요약함)
- \*\* 문장으로 써도 좋고 파워포인트 형태의 개조식 정리도 좋음

- Due: see Blackboard
  - Submit electronically to Blackboard

# Class Topics (클래스 홈페이지 참조)

- □ Part 1: Fundamental concepts and principles
- □ Part 2: 빠른 컴퓨터를 위한 ISA design
  - Topic 1 Computer performance and ISA design (Ch. 1)
  - Topic 2 RISC (MIPS) instruction set (Chapter 2)
    - 2-1 ALU and data transfer instructions
    - 2-2 Branch instructions
    - 2-3 Supporting program execution
  - Topic 3 Computer arithmetic and ALU (Chapter 3)
- □ Part 3: ISA 의 효율적인 구현 (pipelining, cache memory)