Physicochemical Similarity Networks: a new approach to build protein similarity networks

Renan dos Reis and Luciano da F. Costa

São Carlos Institute of Physics - DFCM University of São Paulo P.O. Box 369, São Carlos, S.P. 13560-970 Brazil

4th April, 2022

Supplementary Material 1

Table 1: The 120 enzymes from Glycoside Hydrolase Family 13 (GH13) adopted in the present work. Data were collected from the CAZy database (http://www.cazy.org/GH13_structure.html) [1].

Uniprot Accession Number	Species	EC Number Catalytic Group
Q9AJN7	Arthrobacter ramosus	5.4.99
I3NX86	$Deinococcus\ radiodurans$	5.4.99
D9MPF2	Erwinia rhapontici	5.4.99
Q8KR84	Klebsiella sp.	5.4.99

P9WQ19	$Mycobacterium\ tuberculosis$	5.4.99
A0R6E0	$My colicibacterium\ smegmatis$	5.4.99
Q2PS28	Burkholderia ubonensis subsp. mesacidophila	5.4.99
Q7LYV2	$Saccharolobus\ shibatae$	5.4.99
D0VX20	Serratia plymuthica	5.4.99
Q53688	$Sulfolobus\ acidocaldarius$	5.4.99
D1CE96	Thermobaculum terrenum	5.4.99
Q6L2Z7	Picrophilus torridus	5.4.99
P95869	$Saccharolobus\ sol fataricus$	5.4.99
Q44315	$Arthrobacter\ sp.$	5.4.99
O52519	$Brevibacterium\ helvolum$	5.4.99
Q8NNR9	$Coryne bacterium\ glutamicum$	5.4.99
C1D169	Deinococcus deserti	5.4.99
B5ABD8	$Enterobacter\ sp.$	5.4.99
Q6XNK5	$Erwinia\ rhapontici$	5.4.99
Q4L2Q1	$Klebsiella\ sp.$	5.4.99
B1PK99	Meiothermus ruber	5.4.99
B6ZIV0	$No stoc\ punctiforme$	5.4.99
B8YM30	Paenarthrobacter aurescens	5.4.99
Q6XNK6	Pantoea dispersa	5.4.99
S5YEW8	$Pectobacterium\ carotovorum$	5.4.99
P72235	$Pimelobacter\ sp.$	5.4.99
A1XGB1	Propionibacterium freudenreichii subsp. shermanii	5.4.99
Q9LAS5	$Pseudomonas\ stutzeri$	5.4.99
Q6XKX6	$Raoultella\ planticola$	5.4.99
C1AZS6	Rhodococcus opacus	5.4.99
F2R410	$Streptomyces\ venezuelae$	5.4.99
Q47SE5	Thermobifida fusca	5.4.99
O06458	Thermus thermophilus	5.4.99
Q9RA59	$Thermus\ caldophilus$	5.4.99

D9TT09	$Thermoan aero bacterium\ thermosaccharolyticum$	2.4.1
P26827	$Thermoan aero bacterium\ thermosulfurigenes$	2.4.1
P80099	Thermotoga maritima	2.4.1
Q76LB0	$X anthomonas\ campestris$	2.4.1
O66936	Aquifex aeolicus	2.4.1
P14014	Bacillus licheniformis	2.4.1
P27036	Bacillus ohbensis	2.4.1
P30921	Bacillus sp.	2.4.1
P09121	Bacillus sp.	2.4.1
O82984	$Bacillus\ sp.$	2.4.1
O30565	Brevibacillus brevis	2.4.1
P76041	Escherichia coli	2.4.1
P30538	$Geobacillus\ stear other mophilus$	2.4.1
Q9ZAQ0	$Geobacillus\ stear other mophilus$	2.4.1
P08704	$Klebsiella\ oxytoca$	2.4.1
Q59495	$Leuconostoc\ mesenteroides$	2.4.1
D7BAR0	Meiothermus silvanus	2.4.1
B2D1U4	Paenibacillus sp.	2.4.1
Q9XBR0	Pelomonas saccharophila	2.4.1
G0GBS4	$Spirochaeta\ thermophila$	2.4.1
P16954	$Synechococcus\ elongatus$	2.4.1
Q9ZTB7	Hordeum vulgare	2.4.1
Q9ZTB6	Hordeum vulgare	2.4.1
Q08130	Manihot esculenta	2.4.1
Q40663	Oryza sativa	2.4.1
Q8ZA75	Yersinia pestis	2.4.1

References

[1] E. Drula, M. Garron, S. Dogan, V. Lombard, B. Henrissat, and N. Terrapon. The carbohydrate-active enzyme database: functions and literature. *Nucleic Acids Res.*, 50(D1):D571–D577, January 2022.