

2.5 節末問題 2.5 の解答

問題 2.5.1

この問題は、シグマ記号(→**2.5.9項**)の理解を問う問題です。 答えは以下の通りになります。

$$\sum_{i=1}^{100} i = (1+2+3+\dots+100) = 5050$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} ij = (1+2+3+2+4+6+3+6+9) = 36$$

なお、1 から 100 までの総和は 1.1 節にも記されていますが、和の公式(\rightarrow **2.5.10** 項)を用いて $100 \times 101 \div 2 = 5050$ と計算することもできます。

問題 2.5.2

集合の基本 (→2.5.5項) の理解を問う問題です。答えは以下のようになります。

- 1. |S| = 3, |T| = 4
- 2. $S \cup T = \{2,3,4,7,8,9\}$ (一方に含まれる部分)
- 3. $S \cap T = \{2\}$ (両方に含まれる部分)
- 4. 空でない部分集合は {2},{4},{7},{2,4},{2,7},{4,7},{2,4,7} の 7 つ

分からない人は、58ページに戻って確認しましょう。

問題 2.5.3

階乗 $N!=1\times2\times3\times\cdots\times N$ であるため、for 文を用いて掛け算を行うプログラムを書けば良いです。なお、N=20 のとき $N!=2.4\times10^{18}$ 程度となり、int 型などの 32 ビット整数ではオーバーフローを起こすことに注意してください。(次のソースコードでは、代わりに long long 型を使っています)

#include <iostream>
using namespace std;

```
int main() {
    long long N;
    long long Answer = 1;
    cin >> N;
    for (int i = 2; i <= N; i++) Answer *= i; // Answer に i を掛ける
    cout << Answer << endl;
    return 0;
}</pre>
```

※ Python などのソースコードは GitHub の codes フォルダをご覧ください。

問題 2.5.4

以下のようなプログラムを書くと正解が得られます。なお、関数 isprime(x) は 2 以上の整数 x が素数であるかどうかを判定する関数であり、素数の場合 true、そうでない場合 false を返します。また、

- x は 2 で割り切れますか?
- x は 3 で割り切れますか?

:

• x は N-1 で割り切れますか?

といった感じで1つずつ調べていくことで、素数判定を行っています。

```
#include <iostream>
using namespace std;
bool isprime(int x) {
   for (int i = 2; i <= x - 1; i++) {
       // x を i で割った余りが 0 のとき、x は i で割り切れる
       if (x % i == 0) return false;
   }
    return true;
}
int main() {
   int N, Answer = 0;
    cin >> N;
   for (int i = 2; i <= N; i++) {
       if (isprime(i) == true) cout << i << endl;</pre>
    }
   return 0;
}
```

※ Python などのソースコードは GitHub の codes フォルダをご覧ください。

問題 2.5.5

この問題の答えは 1000 です。

最も単純な方法として、 $1 \le a \le 4, 1 \le b \le 4, 1 \le c \le 4$ に含まれる整数の組 (a,b,c) すべてについて計算する方法がありますが、これでは面倒です。

a = 1 · 合計			
1	2	3	4
2	4	6	8
3	6	9	12
4	8	12	16

a = 2 · 合計			
2	4	6	8
4	8	12	16
6	12	18	24
8	16	24	32

a = 3 · 合計			
3	6	9	12
6	12	18	24
9	18	27	36
12	24	36	48

a = 4 のとき 合計 400				
	4	8	12	16
	8	16	24	32
	12	24	36	48
	16	32	48	64

そこで、以下の二重シグマの値を考えましょう。合計は100です。

$$\sum_{b=1}^{4} \sum_{c=1}^{4} bc = 100$$

各 α における αbc の合計を考えると、以下のようになります。

- a = 1 のときの abc (= $1 \times bc$) の合計: $1 \times 100 = 100$
- a = 2 のときの abc (= $2 \times bc$) の合計: $2 \times 100 = 200$
- a = 3 のときの abc (= $3 \times bc$) の合計: $3 \times 100 = 300$
- a = 4 のときの abc (= $4 \times bc$) の合計: $4 \times 100 = 400$

求める三重シグマは、上の4つをすべて足した値1000となります。

問題 2.5.6

共通部分を持つことの必要十分条件は、 $\max(a,c) < \min(b,d)$ を満たすことです。 \max 関数、 \min 関数が分からない人は、2.3.2 項に戻って確認しましょう。

問題 2.5.7

それぞれのiの値における「cnt が増える回数」は以下の通りです。

• i=1 のとき: $2 \le j \le N$ なので N-1 回

• i=2 のとき: $3 \le j \le N$ なので N-2 回

:

• i=N-1 のとき:1回

i=Nのとき:0回

よって、実行終了時の cnt の値は、和の公式 (\rightarrow 2.5.10項) より、

$$(N-1) + (N-2) + \dots + 1 + 0 = \frac{(N-1) \times N}{2} \left(= \frac{1}{2}N^2 - \frac{1}{2}N \right)$$

となります。cnt の値の中で最も重要な項は $(1/2) \times N^2$ であるため、このプログラムの計算量は $O(N^2)$ です。 $(\rightarrow 2.4.8 \, \overline{q})$