The metric topology

2016-03-14 09:00 -0500

Definition (Metric)

Let X be a set. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ such that:

Definition (Metric)

Let X be a set. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ such that:

• $d(x,y) \ge 0$ for $x,y \in X$, d(x,y) = 0 if and only if x = y.

Definition (Metric)

Let X be a set. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for $x, y \in X$, d(x, y) = 0 if and only if x = y.
- d(x, y) = d(y, x) for all $x, y \in X$.

Definition (Metric)

Let X be a set. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for $x, y \in X$, d(x, y) = 0 if and only if x = y.
- d(x, y) = d(y, x) for all $x, y \in X$.
- $d(x, y) + d(y, z) \ge d(x, z)$ for all $x, y, z \in X$.

Definition (Metric)

Let X be a set. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for $x, y \in X$, d(x, y) = 0 if and only if x = y.
- d(x, y) = d(y, x) for all $x, y \in X$.
- d(x, y) + d(y, z) > d(x, z) for all $x, y, z \in X$.

Metric space

If d is a metric on X, we say that the pair (X, d) is a *metric space*.

Definition (Ball)

If (X, d) is a metric space and $\epsilon > 0$, we call

$$B_d(x, \epsilon) = \{ y \in X \mid d(x, y) < \epsilon \},$$

the ϵ -ball centered on x.

Definition (Ball)

If (X, d) is a metric space and $\epsilon > 0$, we call

$$B_d(x, \epsilon) = \{ y \in X \mid d(x, y) < \epsilon \},$$

the ϵ -ball centered on x.

Theorem

If (X, d) is a metric space, the collection

$$\mathcal{B} = \{B_d(x, \epsilon) \mid x \in X, \epsilon > 0\}$$

is a basis for a topology on X

Definition (Metric topology)

The topology generated by the balls, is called the *metric* topology on X. We also say that the metric d induces the topology τ_d .

Definition (Metric topology)

The topology generated by the balls, is called the *metric* topology on X. We also say that the metric d induces the topology τ_d .

Examples

Definition (Metric topology)

The topology generated by the balls, is called the *metric* topology on X. We also say that the metric d induces the topology τ_d .

Examples

Discrete metric

Definition (Metric topology)

The topology generated by the balls, is called the *metric* topology on X. We also say that the metric d induces the topology τ_d .

Examples

- Discrete metric
- Usual metric on \mathbb{R}^n .

Definition (Metric topology)

The topology generated by the balls, is called the *metric* topology on X. We also say that the metric d induces the topology τ_d .

Examples

- Discrete metric
- Usual metric on \mathbb{R}^n .

Remark

One can prove that $U \subseteq X$ is open in τ_d if and only if for all $x \in U$ there is $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq U$ (that is, the ball can be chosen with x as center)

Metrizable spaces

Definition (Metrizable space)

We say that the topological space (X, τ) is *metrizable* if there is a metric d on X such that $\tau_d = \tau$.

Bounded metrics

Definition (Bounded set)

Let (X, d) be a metric space. We say that $A \subseteq X$ is bounded if there is M such that $d(x, y) \le M$ for all $x, y \in A$.

Bounded metrics

Definition (Bounded set)

Let (X, d) be a metric space. We say that $A \subseteq X$ is bounded if there is M such that $d(x, y) \leq M$ for all $x, y \in A$.

Theorem (Bounded metric)

Let (X, d) be a metric space. If we define \overline{d} as:

$$\overline{d}(x,y) = \min\{d(x,y), 1\},\$$

then \overline{d} is a metric on X, and $au_d = au_{\overline{d}}$.

Two metrics in \mathbb{R}^n

There are two metrics that we can define on \mathbb{R}^n :

Two metrics in \mathbb{R}^n

There are two metrics that we can define on \mathbb{R}^n :

• d(x, y) = ||x - y||,

Two metrics in \mathbb{R}^n

There are two metrics that we can define on \mathbb{R}^n :

- d(x, y) = ||x y||,
- $\rho(x, y) = \max\{|x_1 y_1|, \dots, |x_n y_n|\}.$

Two metrics in \mathbb{R}^n

There are two metrics that we can define on \mathbb{R}^n :

- d(x, y) = ||x y||,
- $\rho(x, y) = \max\{|x_1 y_1|, \dots, |x_n y_n|\}.$

Theorem

The product topology on \mathbb{R}^n is the same as τ_d and the same as τ_{ρ} .

Uniform metric

Definition (Uniform metric)

If I is a set, and $\overline{d}(x,y) = \min\{|x-y|, 1\}$ for $x,y \in \mathbb{R}$, we can define the metric $\overline{\rho}$ on $\mathbb{R}^I = \prod_{i \in I} \mathbb{R}$ by:

$$\overline{\rho}(x,y) = \sup{\overline{d}(x_i,y_i) \mid i \in I}.$$

This is called the *uniform metric*, and the induced topology is the *uniform topology*.

Uniform metric

Definition (Uniform metric)

If I is a set, and $\overline{d}(x,y) = \min\{|x-y|, 1\}$ for $x, y \in \mathbb{R}$, we can define the metric $\overline{\rho}$ on $\mathbb{R}^I = \prod_{i \in I} \mathbb{R}$ by:

$$\overline{\rho}(x, y) = \sup{\overline{d}(x_i, y_i) \mid i \in I}.$$

This is called the *uniform metric*, and the induced topology is the *uniform topology*.

Exercise

Show that if I is infinite, the uniform topology is different from both the product and the box topology on \mathbb{R}^I

Metric in $\mathbb{R}^{\mathbb{N}}$

Definition (The function D)

For $x, y \in \mathbb{R}^{\mathbb{N}}$, we define:

$$D(x,y) = \sup\{\frac{\overline{d}(x_i,y_i)}{i} \mid i \in \mathbb{N}\}$$

Metric in $\mathbb{R}^{\mathbb{N}}$

Definition (The function D)

For $x, y \in \mathbb{R}^{\mathbb{N}}$, we define:

$$D(x,y) = \sup\{\frac{\overline{d}(x_i,y_i)}{i} \mid i \in \mathbb{N}\}\$$

Lemma (D is metric)

D defines a metric on $\mathbb{R}^{\mathbb{N}}$.

Theorem

Theorem

 τ_D is the same as the product topology on $\mathbb{R}^{\mathbb{N}}$.

• We know that D is a metric. Let τ the product topology on $X = \mathbb{R}^{\mathbb{N}}$. We prove that $\tau_D \subseteq \tau$.

Theorem

- We know that D is a metric. Let τ the product topology on $X = \mathbb{R}^{\mathbb{N}}$. We prove that $\tau_D \subseteq \tau$.
- Let $U \in \tau_D$, $x \in U$, we will show that there is $V \in \tau$ with $x \in V \subset U$.

Theorem

- We know that D is a metric. Let τ the product topology on $X = \mathbb{R}^{\mathbb{N}}$. We prove that $\tau_D \subseteq \tau$.
- Let $U \in \tau_D$, $x \in U$, we will show that there is $V \in \tau$ with $x \in V \subseteq U$.
- Let $\epsilon > 0$ be such that $B_D(x, \epsilon) \subseteq U$. Let N such that $\frac{1}{N} < \epsilon$.

Theorem

- We know that D is a metric. Let τ the product topology on $X = \mathbb{R}^{\mathbb{N}}$. We prove that $\tau_D \subseteq \tau$.
- Let $U \in \tau_D$, $x \in U$, we will show that there is $V \in \tau$ with $x \in V \subseteq U$.
- Let $\epsilon > 0$ be such that $B_D(x, \epsilon) \subseteq U$. Let N such that $\frac{1}{N} < \epsilon$.
- Let

$$V = (x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Theorem

 au_D is the same as the product topology on $\mathbb{R}^{\mathbb{N}}$.

- We know that D is a metric. Let τ the product topology on $X=\mathbb{R}^{\mathbb{N}}$. We prove that $\tau_D\subseteq \tau$.
- Let $U \in \tau_D$, $x \in U$, we will show that there is $V \in \tau$ with $x \in V \subseteq U$.
- Let $\epsilon > 0$ be such that $B_D(x, \epsilon) \subseteq U$. Let N such that $\frac{1}{N} < \epsilon$.
- Let

$$V = (x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

• We have $x \in V$ and $V \in \tau$, we will show $V \subseteq U$.

• To prove that $V \subseteq U$, it is enough to show that $V \subseteq B_D(x, \epsilon)$.

- To prove that $V \subseteq U$, it is enough to show that $V \subseteq B_D(x, \epsilon)$.
- First, note that if $i \geq N$, $y \in \mathbb{R}^{\mathbb{N}}$, then $\overline{d}(x_i, y_i) \leq 1$ and

- To prove that $V \subseteq U$, it is enough to show that $V \subseteq B_D(x, \epsilon)$.
- First, note that if $i \ge N$, $y \in \mathbb{R}^{\mathbb{N}}$, then $\overline{d}(x_i, y_i) \le 1$ and $\frac{1}{i} \le \frac{1}{N}$, hence $\frac{\overline{d}(x_i, y_i)}{i} \le \frac{1}{N}$.
- Now, let $y \in V$. We have that $|x_i y_i| < \epsilon$ for i = 1, 2, ..., N, and so for such values of i we have:

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \overline{d}(x_i, y_i) \leq d(x_i, y_i) = |x_i - y_i| < \epsilon,$$

- To prove that $V \subseteq U$, it is enough to show that $V \subseteq B_D(x, \epsilon)$.
- First, note that if $i \ge N$, $y \in \mathbb{R}^{\mathbb{N}}$, then $\overline{d}(x_i, y_i) \le 1$ and $\frac{1}{i} \le \frac{1}{N}$, hence $\frac{\overline{d}(x_i, y_i)}{i} \le \frac{1}{N}$.
- Now, let $y \in V$. We have that $|x_i y_i| < \epsilon$ for i = 1, 2, ..., N, and so for such values of i we have:

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \overline{d}(x_i, y_i) \leq d(x_i, y_i) = |x_i - y_i| < \epsilon,$$

• Finally:

$$D(x, y) = \sup \{ \frac{\overline{d}(x_i, y_i)}{i} \mid i \in \mathbb{N} \}$$

$$\leq \max \{ \frac{\overline{d}(x_1, y_1)}{1}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \} < \epsilon$$

- To prove that $V \subseteq U$, it is enough to show that $V \subseteq B_D(x, \epsilon)$.
- First, note that if $i \ge N$, $y \in \mathbb{R}^{\mathbb{N}}$, then $\overline{d}(x_i, y_i) \le 1$ and $\frac{1}{i} \le \frac{1}{N}$, hence $\frac{\overline{d}(x_i, y_i)}{i} \le \frac{1}{N}$.
- Now, let $y \in V$. We have that $|x_i y_i| < \epsilon$ for i = 1, 2, ..., N, and so for such values of i we have:

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \overline{d}(x_i, y_i) \leq d(x_i, y_i) = |x_i - y_i| < \epsilon,$$

Finally:

$$D(x, y) = \sup\{\frac{\overline{d}(x_i, y_i)}{i} \mid i \in \mathbb{N}\}$$

$$\leq \max\{\frac{\overline{d}(x_1, y_1)}{1}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N}\} < \epsilon$$

• Hence: $y \in B_D(x, \epsilon) \subseteq U$.

• We will show now that $\tau \subseteq \tau_D$.

- We will show now that $\tau \subseteq \tau_D$.
- Let U an element of the base of τ and $x \in U$. We will see that there is $V \in \tau_D$ such that $x \in V \subseteq U$.

- We will show now that $\tau \subseteq \tau_D$.
- Let U an element of the base of τ and $x \in U$. We will see that there is $V \in \tau_D$ such that $x \in V \subseteq U$.
- Let $U = \prod U_i$, with U_i open in \mathbb{R} . Suppose that $U_i = \mathbb{R}$ if $i \notin \{\alpha_1, \ldots, \alpha_n\}$. Let ϵ_i such that $(x_i \epsilon_i, x_i + \epsilon_i) \subseteq U_i$ for $i \in \{\alpha_1, \ldots, \alpha_n\}$. Without loss we can assume $\epsilon_i < 1$.

- We will show now that $\tau \subseteq \tau_D$.
- Let U an element of the base of τ and $x \in U$. We will see that there is $V \in \tau_D$ such that $x \in V \subseteq U$.
- Let $U = \prod U_i$, with U_i open in \mathbb{R} . Suppose that $U_i = \mathbb{R}$ if $i \notin \{\alpha_1, \ldots, \alpha_n\}$. Let ϵ_i such that $(x_i \epsilon_i, x_i + \epsilon_i) \subseteq U_i$ for $i \in \{\alpha_1, \ldots, \alpha_n\}$. Without loss we can assume $\epsilon_i \leq 1$.
- Let $\epsilon = \min\{\frac{\epsilon_i}{i} \mid i = \alpha_1, \dots, \alpha_n\}$. We claim that $B_D(x, \epsilon) \subseteq U$. Let $y \in B_D(x, \epsilon)$.

- We will show now that $\tau \subseteq \tau_D$.
- Let U an element of the base of τ and $x \in U$. We will see that there is $V \in \tau_D$ such that $x \in V \subseteq U$.
- Let $U = \prod U_i$, with U_i open in \mathbb{R} . Suppose that $U_i = \mathbb{R}$ if $i \not\in \{\alpha_1, \ldots, \alpha_n\}$. Let ϵ_i such that $(x_i \epsilon_i, x_i + \epsilon_i) \subseteq U_i$ for $i \in \{\alpha_1, \ldots, \alpha_n\}$. Without loss we can assume $\epsilon_i \leq 1$.
- Let $\epsilon = \min\{\frac{\epsilon_i}{i} \mid i = \alpha_1, \dots, \alpha_n\}$. We claim that $B_D(x, \epsilon) \subseteq U$. Let $y \in B_D(x, \epsilon)$.
- For $i \in \{\alpha_1, \ldots, \alpha_n\}$ we have that:

$$\frac{\overline{d}(x_i, y_i)}{i} \le D(x, y) < \epsilon \le \frac{\epsilon_i}{i}$$

and so: $\overline{d}(x_i, y_i) < \epsilon_i \le 1$.

- We will show now that $\tau \subseteq \tau_D$.
- Let U an element of the base of τ and $x \in U$. We will see that there is $V \in \tau_D$ such that $x \in V \subseteq U$.
- Let $U = \prod U_i$, with U_i open in \mathbb{R} . Suppose that $U_i = \mathbb{R}$ if $i \not\in \{\alpha_1, \ldots, \alpha_n\}$. Let ϵ_i such that $(x_i \epsilon_i, x_i + \epsilon_i) \subseteq U_i$ for $i \in \{\alpha_1, \ldots, \alpha_n\}$. Without loss we can assume $\epsilon_i \leq 1$.
- Let $\epsilon = \min\{\frac{\epsilon_i}{i} \mid i = \alpha_1, \dots, \alpha_n\}$. We claim that $B_D(x, \epsilon) \subseteq U$. Let $y \in B_D(x, \epsilon)$.
- For $i \in \{\alpha_1, \ldots, \alpha_n\}$ we have that:

$$\frac{\overline{d}(x_i, y_i)}{i} \le D(x, y) < \epsilon \le \frac{\epsilon_i}{i}$$

- and so: $\overline{d}(x_i, y_i) < \epsilon_i \le 1$.
- It follows that if $i \in \{\alpha_1, \ldots, \alpha_n\}$, then $d(x_i, y_i) = \overline{d}(x_i, y_i) < \epsilon_i$. Hence $y \in \prod U_i$.

1. Show that $\mathbb{R} \times \mathbb{R}$ with the dictionary order is metrizable.

- 1. Show that $\mathbb{R}\times\mathbb{R}$ with the dictionary order is metrizable.
- 2. Let (X, d) be a metric space.

- 1. Show that $\mathbb{R} \times \mathbb{R}$ with the dictionary order is metrizable.
- 2. Let (X, d) be a metric space.
 - Show that $d: X \times X \to \mathbb{R}$ is continuous, where $X \times X$ has the product topology of metric topologies.

- 1. Show that $\mathbb{R} \times \mathbb{R}$ with the dictionary order is metrizable.
- 2. Let (X, d) be a metric space.
 - Show that $d: X \times X \to \mathbb{R}$ is continuous, where $X \times X$ has the product topology of metric topologies.
 - Show that if X has a topology τ such that $d: X \times X \to \mathbb{R}$ is continuous, then $\tau_d \subset \tau$.

- 1. Show that $\mathbb{R} \times \mathbb{R}$ with the dictionary order is metrizable.
- 2. Let (X, d) be a metric space.
 - Show that $d: X \times X \to \mathbb{R}$ is continuous, where $X \times X$ has the product topology of metric topologies.
 - Show that if X has a topology τ such that $d: X \times X \to \mathbb{R}$ is continuous, then $\tau_d \subseteq \tau$.
- 3. Let $A \subseteq \mathbb{R}^{\mathbb{N}}$ to consist on all sequences that are eventually zero. What is \overline{A} ? (where $\mathbb{R}^{\mathbb{N}}$ has the uniform topology).