Deep Learning for Image Classification

CS6420

Wei Ji

Problem Definition

Input: image

Output: image label among a fixed set of categories

Cat

Dog

Boat

Horse

Car

• • • • • •

Core tasks in Computer Vision

What animal in the picture?

image classification

What animals in the picture and where?

object detection

Which pixels belong to which object?

image segmentation

Problem: Semantic Gap

Film "The Matrix"

An image is a big grid of numbers between [0,255]:

e.g. 400 *400*3 (3 channels RGB)

Challenge: Illumination Changes

Challenge: Viewpoint Variation

Challenge: Fine-Grained Categories

Applications:

Face recognition

Galaxy Classification

• Traffic Sign

•

Image Classification: Data-Driven Approach

• 1. Collect a dataset of images and labels

• 2. Use NN to train a classifier

• 3. Evaluate the classifier on new images

Image Classification: Data-Driven Approach

• 1. Collect a dataset of images and labels

• 2. Use NN to train a classifier

• 3. Evaluate the classifier on new images

Image Classification Dataset: MNIST

10 classes: Digits 0 to 9

28*28 grayscale images

60k training images

10k test images

Image Classification Dataset: CIFAR-10

10 classes

50k training images (5k per class)

10k testing images (1k per class)

32*32 RGB images

Image Classification Dataset: CIFAR-100

100 classes

50k training images (500 per class)

10k testing images (100 per class)

32*32 RGB images

Image Classification Dataset: ImageNet

1000 classes

~1.3M training images (~1.3K per class)

50K validation images (50 per class)

100K testing images (100 per class)

Performance metric: Top 5 accuracy Algorithm predicts 5 labels for each image; One of them needs to be right

Images have variable size, but often resized to 256*256 for training

Image Classification: Data-Driven Approach

- 1. Collect a dataset of images and labels MNIST; CIFAR; ImageNet
- 2. Use NN to train a classifier

• 3. Evaluate the classifier on new images

Image Classification: Data-Driven Approach

- 1. Collect a dataset of images and labels MNIST; CIFAR; ImageNet
- 2. Use NN to train a classifier

• 3. Evaluate the classifier on new images

Background: AlexNet & VGG & GoogLeNet

AlexNet, 8 layers
(ILSVRC 2012)

| 11x11 conv, 96, /4, pool/2 |
| 5x5 conv, 256, pool/2 |
| 3x3 conv, 384 |
| 3x3 conv, 256, pool/2 |
| fc, 4096 |
| fc, 1000

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

AlexNet: Group Convolution for 6G GPU memory constraint

VGG: Same blocks in all layers

GoogleNet: Concatenate multi-branch for multi-scale

information

ResNet

H(x) = F(x) + x

- "Overly deep" plain nets have higher training error (not caused by overfitting).
- Problem is caused by optimization issues, instead of representational abilities.
- Residual Learning: add identity mapping (a deeper model should produce no higher training error than its shallower counterpart).

ResNet

•A practical design of going deeper

why directly **identity shortcuts** instead of projection shortcuts?

model	top-1 err.	top-5 err.	
VGG-16 [41]	28.07	9.33	
GoogLeNet [44]	1=1	9.15	
PReLU-net [13]	24.27	7.38	
plain-34	28.54	10.02	
ResNet-34 A	25.03	7.76	
ResNet-34 B	24.52	7.46	
ResNet-34 C	24.19	7.40	
ResNet-50	22.85	6.71	
ResNet-101	21.75	6.05	
ResNet-152	21.43	5.71	

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.

- A: zero-padding for increase dims
- B: projection shortcuts for increase dims, identity for others
- C: all shortcuts are projection shortcuts

Shortcuts choices

Table 1. Classification error on the CIFAR-10 test set using ResNet-110 [1], with different types of shortcut connections applied to all Residual Units. We report "fail" when the test error is higher than 20%.

case	Fig.	on shortcut	on \mathcal{F}	error (%)	remark
original [1]	Fig. 2(a)	1	1	6.61	
constant scaling	Fig. 2(b)	0	1	fail	This is a plain net
		0.5	1	fail	71110
		0.5	0.5	12.35	frozen gating
exclusive gating	Fig. 2(c)	$1 - g(\mathbf{x})$	$g(\mathbf{x})$	fail	init $b_g=0$ to -5
		$1-g(\mathbf{x})$	$g(\mathbf{x})$	8.70	init $b_g = -6$
		$1-g(\mathbf{x})$	$g(\mathbf{x})$	9.81	init b_g =-7
shortcut-only gating	Fig. 2(d)	$1-g(\mathbf{x})$	1	12.86	init $b_g = 0$
		$1-g(\mathbf{x})$	1	6.91	init $b_g = -6$
1×1 conv shortcut	Fig. 2(e)	1×1 conv	1	12.22	
dropout shortcut	Fig. 2(f)	dropout 0.5	1	fail	

Identity shortcuts is the best choices!

(a) is a special case of (d) and (e), results shows there is still optimization issues in other choices.

Activation function choices

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. 4(a)	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. 4(c)	7.84	6.14
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91
full pre-activation	Fig. 4(e)	6.37	5.46

DenseNet

ResNet

DenseNet

Size: DenseNet-121 < ResNet-50

- •ResNet: combines features through summation of identity shortcuts and residual block, which may impede the information flow.
- •DenseNet: directly passes each feature maps to all preceding layers.
 - Alleviate the vanishing-gradient problem
 - Strengthen feature propagation
 - Substantially reduce the number of parameters

SENet

•Squeeze: global information embedding (global average pooling)

•Excitation: Adaptive Recalibration

Figure 1: A Squeeze-and-Excitation block.

•Squeeze:

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{i=1}^{W} u_c(i,j).$$

•Excitation:

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})),$$

ViT (Vision Transformer)

Patch number is fixed due to Position Embedding.

Swin transformer: Hierarchical vision transformer using shifted windows (*CNN-like ViT*)

- Hierarchical representation by starting from small-sized patches (outlined in gray) and gradually merging neighboring patches in deeper Transformer layers.
- The linear computational complexity is achieved by computing self-attention locally within non-overlapping windows that partition an image (outlined in red).

Swin transformer: Hierarchical vision transformer using shifted windows

(a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks. W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Swin transformer: Hierarchical vision transformer using shifted windows

Illustration of an efficient batch computation approach for selfattention in shifted window partitioning.

(a) Regu	(a) Regular ImageNet-1K trained models						
		#param.		throughput (image / s)	ImageNet		
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0		
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7		
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9		
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6		
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9		
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6		
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0		
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3		
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9		
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5		
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8		
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8		
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1		
Swin-T	224 ²	29M	4.5G	755.2	81.3		
Swin-S	224 ²	50M	8.7G	436.9	83.0		
Swin-B	224 ²	88M	15.4G	278.1	83.5		
Swin-B	384 ²	88M	47.0G	84.7	84.5		
(b) ImageNet-22K pre-trained models							
method	image size #param.	FI ODe	throughput	ImageNet			
		mparain.	LOIS	(image / s)	top-1 acc.		
R-101x3 [38]	384 ²	388M	204.6G	-	84.4		
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4		
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0		
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2		
Swin-B	224 ²	88M	15.4G	278.1	85.2		
Swin-B	384 ²	88M	47.0G	84.7	86.4		
Swin-L	384 ²	197M	103.9G	42.1	87.3		

Comparison of different backbones on ImageNet-1K classification.

Image Classification: Data-Driven Approach

- 1. Collect a dataset of images and labels MNIST; CIFAR; ImageNet
- 2. Use NN to train a classifier
 ResNet; DenseNet; SENet;
- 3. Evaluate the classifier on new images

Image Classification: Data-Driven Approach

- 1. Collect a dataset of images and labels MNIST; CIFAR; ImageNet
- 2. Use NN to train a classifier ResNet; DenseNet; SENet;
- 3. Evaluate the classifier on new images

Evaluation

Dog <-> Cat <-> Plane

https://paperswithcode.com/task/image-classification

Thank you!