Y=
$$\times \beta + Zr + \epsilon$$

 $r \sim N(0, G)$
 $E \sim N(0, R)$
 $Y \mid r \sim N(X\beta + Zr, R)$
 $E(Y \mid r) = E(X\beta + Zr + \epsilon \mid r)$
 $given = X\beta + Zr + \epsilon(\epsilon \mid r)$
 $= X\beta + Zr + \epsilon(\epsilon \mid r)$

Real! $f(y) = \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{(y-My)^{2}}{26^{2}} \right\}$ $y \sim N(My, 6^{2}) \propto \exp \left\{ -\frac{(y-My)^{2}}{26^{2}} \right\}$ $f(y|x) = \exp \left\{ -\frac{1}{2}(y-x)\beta - 2x \right\} R(y-x)\beta - 2x$ Irkelihood $f(x) = \exp \left\{ -\frac{1}{2}(x-0)\beta - \frac{1}{2}(x-0)\beta \right\}$ $exp \left\{ -\frac{1}{2}(x-0)\beta - \frac{1}{2}(x-0)\beta - \frac{1}{2}(x-0)\beta \right\}$ $exp \left\{ -\frac{1}{2}(x-0)\beta - \frac{1}{2}(x-0)\beta - \frac{1}{2}(x-0)\beta \right\}$

Recall:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$f(Y,Y) = f(Y|Y) \cdot f(Y)$$
probability density function
$$exp\{-\frac{1}{2}(Y+x\beta-zr)R^{-1}(Y+x\beta-zr)\}\chi$$

$$exp\{-\frac{1}{2}(Y-0)^{2}G^{-1}(Y-0)\}$$

2005(4, t)x - \(\frac{1}{2}(4-\frac{1}{2}) \)
-\(\frac{1}{2}(4-\frac{1}{2}) \)
-\(\frac{1}{2}(4-\frac{1}{2}) \)

a
loga< logb

Q(3,r) = -(4 + (3 - 2r) R(4 - 2r) R(4 - 2r) R(4 - 2r) - (4 + (3 - 2r) R(4 - 2r) R(4 - 2r) R(4 - 2r)

Recall: $Y = \beta' X + \epsilon, \epsilon \sim N(0, \delta')$ $\hat{\beta} = (X'X)'X'Y, var(\hat{\beta}) = (X'X)'S^2$ $M = \delta \times N(0, \delta')$ Weighted mean reg Recall neighted least squares $\hat{\beta} = (x'V'X)' \times V' Y$ There variance weighting (IVW) $Var(\hat{\beta}) = (x'V'X)'$ (x'V'X)'