PART-III: MATHEMATICS

SECTION - 1 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which

are correct;

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct

option;

Zero Marks : 0 If unanswered; Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get "2 marks.

1. Let
$$S_1 = \{(i, j, k) : i, j, k \in \{1, 2, ..., 10\}\}$$

$$S_2 = \{(i,j): 1 \le i < j+2 \le 10, i,j \in \{1,2,...,10\}\},\$$

$$S_3 = \{(i, j, k, l) : 1 \le i < j < k < l, i, j, k, l \in \{1, 2, ..., 10\} \},$$

and $S_4 = \{(i, j, k, l) : i, j, k \text{ and } l \text{ are distinct elements in } \{1, 2, ..., 10\}\}.$

If the total number of elements in the set S_r is n_r , r = 1, 2,3,4, then which of the following statements is (are) TRUE?

(A)
$$n_1 = 1000$$

(B)
$$n_2 = 44$$

(C)
$$n_3 = 220$$

(D)
$$\frac{n_4}{12} = 420$$

Answer (A,B,D)

Sol. Number of elements in $S_1 = 10 \times 10 \times 10 = 1000$

Number of elements in $S_2 = 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 = 44$

Number of elements in $S_3 = {}^{10}C_4 = 210$

Number of elements in $S_4 = {}^{10}P_4 = 210 \times 4! = 5040$

2. Consider a triangle PQR having sides of lengths p,q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) TRUE ?

(A)
$$\cos P \ge 1 - \frac{p^2}{2qr}$$

(B)
$$\cos R \ge \left(\frac{q-r}{p+q}\right)\cos P + \left(\frac{p-r}{p+q}\right)\cos Q$$

(C)
$$\frac{q+r}{p} < 2 \frac{\sqrt{\sin Q \sin R}}{\sin P}$$

(D) If p < q and p < r, then $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$

Answer (A,B)

Sol.

$$Q \qquad p \qquad R$$

$$\cos P = \frac{q^2 + r^2 - P^2}{2qr}$$
 and $\frac{q^2 + r^2}{2} \ge \sqrt{q^2 \cdot r^2}$ (AM \ge GM)

$$\Rightarrow q^2 + r^2 \ge 2qr$$

So,
$$\cos P \ge \frac{2qr - p^2}{2qr}$$

$$\cos P \ge 1 - \frac{p^2}{2qr} \tag{A}$$

(B)
$$\frac{(q-r)\cos P + (p-r)\cos Q}{p+q} = \frac{(q\cos P + p\cos Q) - r(\cos P + \cos Q)}{p+q}$$

$$= \frac{r(1 - \cos P - \cos Q)}{p + q} = \frac{r(q - p\cos R) - (p - q\cos R)}{p + q} = \frac{(r - p - q) + (p + q)\cos R}{p + q}$$

$$= \cos R + \frac{r - q - p}{p + q} \le \cos R \ (\because r$$

(C)
$$\frac{q+r}{p} = \frac{\sin Q + \sin R}{\sin P} \ge \frac{2\sqrt{\sin Q \cdot \sin R}}{\sin P}$$

(D) If p < q and q < r

So, p is the smallest side, therefore one of Q or R can be obtuse So, one of $\cos Q$ or $\cos R$ can be negative

Therefore $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$ cannot hold always.

3. Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be a continuous function such that f(0) = 1 and $\int_0^{\frac{\pi}{3}} f(t) dt = 0$

Then which of the following statements is (are) TRUE?

- (A) The equation $f(x) 3\cos 3x = 0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
- (B) The equation $f(x) 3 \sin 3x = -\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

(C)
$$\lim_{x\to 0} \frac{x \int_0^x f(t)dt}{1-e^{x^2}} = -1$$

(D)
$$\lim_{x\to 0} \frac{\sin x \int_0^x f(t)dt}{x^2} = -1$$

Answer (A,B,C)

Sol.
$$f(0) = 1$$
, $\int_0^{\frac{\pi}{3}} f(t)dt = 0$

- (A) Consider a function $g(x) = \int_0^x f(t)dt \sin 3x$
 - g(x) is continuous and differentiable function

and
$$g(0) = 0$$

$$g\left(\frac{\pi}{3}\right)=0$$

By Rolle's theorem g'(x) = 0 has at least one solution in $\left(0, \frac{\pi}{3}\right)$

$$f(x) - 3\cos 3x = 0$$
 for some $x \in \left(0, \frac{\pi}{3}\right)$

(B) Consider a function

$$h(x) = \int_0^x f(t)dt + \cos 3x + \frac{6}{\pi}x$$

h(x) is continuous and differentiable function

and
$$h(0) = 1$$

$$h\left(\frac{\pi}{3}\right)=1$$

By Rolle's theorem h'(x) = 0 for at least one $x \in \left(0, \frac{\pi}{3}\right)$

$$f(x) - 3\sin 3x + \frac{6}{\pi} = 0$$
 for some $x \in \left(0, \frac{\pi}{3}\right)$

(C)
$$\lim_{x\to 0} \frac{x \int_0^x f(t)dt}{1-e^{x^2}} , \left(\frac{0}{0} \text{ form}\right)$$

$$\lim_{x \to 0} \frac{xf(x) + \int_0^x f(t)dt}{-2xe^{x^2}}, \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{xf'(x) + f(x) + f(x)}{-4x^2e^{x^2} - 2e^{x^2}} = \frac{0 + 2f(0)}{-0 - 2} = -1$$

(D)
$$\lim_{x \to 0} \frac{\sin x \int_0^x f(t)dt}{x^2}, \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{\sin x \cdot f(x) + \cos x \int_0^x f(t)dt}{2x}$$

$$= \lim_{x \to 0} \frac{\left(\cos x \cdot f(x) + \sin x \cdot f'(x) + \cos x \cdot f(x) - \sin x \cdot \int_0^x f(t)dt\right)}{2}$$

$$= \lim_{x \to 0} \frac{2}{2}$$

$$= \frac{1+0+1-0}{2}$$

$$= 1$$

4. For any real numbers α and β , let $y_{\alpha,\beta}(x)$, $x \in \mathbb{R}$, be the solution of the differential equation $\frac{dy}{dx} + \alpha y = xe^{\beta x}$, y(1) = 1

Let $S = \{y_{\alpha,\beta}(x) : \alpha,\beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + \left(e + \frac{1}{2}\right)e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + \left(e - \frac{e^2}{4} \right) e^{-x}$$

(D)
$$f(x) = \frac{e^x}{2} \left(\frac{1}{2} - x \right) + \left(e + \frac{e^2}{4} \right) e^{-x}$$

Answer (A, C)

Sol.
$$\frac{dy}{dx} + \alpha y = xe^{\beta x}$$

Integrating factor (I.F.) = $e^{\int \alpha dx} = e^{\alpha x}$

So, the solution is $y \cdot e^{\alpha x} = \int xe^{\beta x} \cdot e^{\alpha x} dx$

$$ye^{\alpha x} = \int xe^{(\alpha+\beta)x} dx$$

If
$$\alpha + \beta \neq 0$$

$$ye^{\alpha x} = x \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)} - \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)^2} + C$$

$$y = \frac{xe^{\beta x}}{(\alpha + \beta)} - \frac{e^{\beta x}}{(\alpha + \beta)^2} + Ce^{-\alpha x}$$

$$y = \frac{e^{\beta x}}{(\alpha + \beta)} \left(x - \frac{1}{\alpha + \beta} \right) + Ce^{-\alpha x}$$

... (i)

Put
$$\alpha = \beta = 1$$
 in (i)

$$y = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + Ce^{-x}$$

$$y(1) = 1$$

$$1 = \frac{e}{2} \times \frac{1}{2} + \frac{C}{e} \Rightarrow C = e - \frac{e^2}{4}$$

So,
$$y = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + \left(e - \frac{e^2}{4} \right) e^{-x}$$

If
$$\alpha + \beta = 0 \& \alpha = 1$$

$$\frac{dy}{dx} + y = xe^{-x}$$

I.F. =
$$e^x$$

$$ye^{x} = \int xdx$$

$$ye^{x} = \frac{x^2}{2} + C$$

$$y = \frac{x^2}{2}e^{-x} + Ce^{-x}$$

$$y(1) = 1$$

$$1 = \frac{1}{2e} + \frac{C}{e} \Rightarrow C = e - \frac{1}{2}$$

$$y = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

5. Let O be the origin and $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}$, $\overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda \overrightarrow{OA})$ for some $\lambda > 0$. If

 $\left| \overrightarrow{OB} \times \overrightarrow{OC} \right| = \frac{9}{2}$, then which of the following statements is (are) TRUE ?

- (A) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $-\frac{3}{2}$
- (B) Area of the triangle *OAB* is $\frac{9}{2}$
- (C) Area of the triangle ABC is $\frac{9}{2}$
- (D) The acute angle between the diagonals of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is $\frac{\pi}{3}$

Sol.
$$OA = 2\hat{i} + 2\hat{j} + \hat{k}$$

$$\overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$$

$$\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda \overrightarrow{OA})$$

$$\overrightarrow{OB} \times \overrightarrow{OC} = \overrightarrow{OB} \times \frac{1}{2} (\overrightarrow{OB} - \lambda \overrightarrow{OA}) = -\frac{\lambda}{2} \overrightarrow{OB} \times \overrightarrow{OA} = \frac{\lambda}{2} (\overrightarrow{OA} \times \overrightarrow{OB})$$

Now,
$$\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{vmatrix} = 6\hat{i} - 3\hat{j} - 6\hat{k}$$

So,
$$\overrightarrow{OB} \times \overrightarrow{OC} = \frac{3\lambda}{2} (2\hat{i} - \hat{j} - 2\hat{k})$$

$$\left| \overrightarrow{OB} \times \overrightarrow{OC} \right| = \left| \frac{9\lambda}{2} \right| = \frac{9}{2}$$

So,
$$\lambda = 1$$
 $(:: \lambda > 0)$

$$\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \overrightarrow{OA})$$

$$\overrightarrow{OC} = \frac{1}{2}(-\hat{i} - 4\hat{j} + \hat{k})$$

(A) Projection of
$$\overrightarrow{OC}$$
 on $\overrightarrow{OA} = \frac{\overrightarrow{OC} \cdot \overrightarrow{OA}}{|\overrightarrow{OA}|} = \frac{\frac{1}{2}(-2-8+1)}{3} = -\frac{3}{2}$

(B) Area of the triangle
$$OAB = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}| = \frac{9}{2}$$

(C) Area of the triangle *ABC* is
$$=\frac{1}{2}|\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2}\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -4 & 1 \\ -\frac{5}{2} & -4 & -\frac{1}{2} \end{vmatrix} = \frac{1}{2}|6\hat{i} - 3\hat{j} - 6\hat{k}| = \frac{9}{2}$$

(D) Acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{\textit{OA}}$ and $\overrightarrow{\textit{OC}} = \theta$

$$\frac{(\overrightarrow{OA} + \overrightarrow{OC}) \cdot (\overrightarrow{OA} - \overrightarrow{OC})}{\left| \overrightarrow{OA} + \overrightarrow{OC} \right| \left| \overrightarrow{OA} - \overrightarrow{OC} \right|} = \cos \theta$$

$$\cos\theta = \frac{\left(\frac{3}{2}\hat{i} + \frac{3}{2}\hat{k}\right)\left(\frac{5}{2}\hat{i} + 4\hat{j} + \frac{1}{2}\hat{k}\right)}{\frac{3}{2}\sqrt{2}\times\sqrt{\frac{90}{4}}} = \frac{18}{3\sqrt{2}\sqrt{90}}$$

$$\theta \neq \frac{\pi}{3}$$

- 6. Let E denote the parabola $y^2 = 8x$. Let P = (-2, 4), and let Q and Q' be two distinct points on E such that the lines PQ and PQ' are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE?
 - (A) The triangle PFQ is a right-angled triangle
 - (B) The triangle QPQ' is a right-angled triangle
 - (C) The distance between P and F is $5\sqrt{2}$
 - (D) F lies on the line joining Q and Q'

Answer (A,B,D)

Sol. $E: y^2 = 8x$

P: (-2, 4)

Point P(-2, 4) lies on directrix (x = -2) of parabola $y^2 = 8x$

So, $\angle QPQ' = \frac{\pi}{2}$ and chord QQ' is a focal chord and segment PQ subtends right angle at the focus.

Slope of
$$QQ' = \frac{2}{t_1 + t_2} = 1$$

Slope of PF = -1

 $PF = 4\sqrt{2}$

SECTION - 2 (Maximum Marks : 12)

- This section contains **THREE (03)** question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered.

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Consider the region $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let F be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$.

7. The radius of the circle C is _____.

Answer (1.50)

8. The value of α is _____.

Answer (2.00)

Sol. For comprehension Q7 & Q8

Let the circle be,

$$(x-a)^2 + y^2 = r^2$$

Solving it with parabola

$$y^2 = 4 - x$$
 we get

$$(x-a)^2 + 4 - x = r^2$$

$$\Rightarrow x^2 - x(2a + 1) + (a^2 + 4 - r^2) = 0$$
 ...(1)

D = 0

$$\Rightarrow 4r^2 + 4a - 15 = 0$$

Clearly $a \ge r$

So
$$4r^2 + 4r - 15 \le 0$$

$$\Rightarrow r_{\text{max}} = \frac{3}{2} = a$$

Radius of circle C is $\frac{3}{2}$

From (1)
$$x^2 - 4x + 4 = 0$$

$$\Rightarrow x = 2 = \alpha$$

Question Stem for Question Nos. 9 and 10

Let
$$f_1:(0,\infty)\to \mathbb{R}$$
 and $f_2:(0,\infty)\to R$ be defined by $f_1(x)=\int\limits_0^x\prod\limits_{j=1}^{21}\left(t-j\right)^jdt,\,x>0$

and $f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$, x > 0, where, for any positive integer n and real number a_1 , a_2 ,... a_n , $\prod_{i=1}^n a_i \text{ denotes the product of } a_1, \ a_2,...a_n. \text{ Let } m_i \text{ and } n_i, \text{ respectively, denote the number of points of local minima and the number of points of local maxima of function <math>f_i$, i = 1, 2, in the interval $(0, \infty)$.

Solution for Q9 and 10

$$f_1'(x) = \prod_{j=1}^{21} (x-j)^j$$

$$f_1'(x) = (x-1)(x-2)^2(x-3)^3,...,(x-20)^{20}(x-21)^{21}$$

Checking the sign scheme of $f_1(x)$ at x = 1, 2, 3, ..., 21, we get

 $f_1(x)$ has local minima at x = 1, 5, 9, 13, 17, 21 and local maxima at x = 3, 7, 11, 15, 19

$$\Rightarrow$$
 $m_1 = 6$, $n_1 = 5$

$$f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$$

$$f_2'(x) = 98 \times 50(x-1)^{49} - 600 \times 49 \times (x-1)^{48}$$

$$= 98 \times 50 \times (x-1)^{48} (x-7)$$

 $f_2(x)$ has local minimum at x = 7 and no local maximum.

$$\Rightarrow$$
 $m_2 = 1$, $n_2 = 0$

9. The value of $2m_1 + 3n_1 + m_1n_1$ is _____.

Answer (57.00)

Sol.
$$2m_1 + 3n_1 + m_1n_1$$

= 2 × 6 + 3 × 5 + 6 × 5
= 57

10. The value of $6m_2 + 4n_2 + 8m_2n_2$ is _____.

Answer (06.00)

Sol.
$$6m_2 + 4n_2 + 8m_2n_2$$

= $6 \times 1 + 4 \times 0 + 8 \times 1 \times 0 = 6$

Question Stem for Question Nos. 11 and 12

Let $g_i : \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}$, i = 1, 2, and $f : \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}$ be functions such that $g_1(x) = 1$, $g_2(x) = |4x - \pi|$ and $f(x) = 3\pi$

$$\sin^2 x$$
, for all $x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right]$. Define $S_i = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_i(x) dx$, $i = 1, 2$

11. The value of
$$\frac{16S_1}{\pi}$$
 is _____.

Answer (02.00)

Sol.
$$S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x.1 dx$$

$$=\frac{1}{2}\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}}(1-\cos 2x)dx$$

$$= \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) \frac{3\pi}{8}$$

$$S_1 = \frac{1}{2} \left(\frac{\pi}{4} - 0 \right) = \frac{\pi}{8}$$

$$\Rightarrow \frac{16S_1}{\pi} = 2$$

12. The value of $\frac{48S_2}{\pi^2}$ is _____.

Answer (01.50)

Sol.
$$S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x . |4x - \pi| dx$$

= $\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 4 \sin^2 x \left| x - \frac{\pi}{4} \right| dx$

Let
$$x - \frac{\pi}{4} = t \implies dx = dt$$

$$S_2 = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 4\sin^2\left(\frac{\pi}{4} + t\right) |t| dt$$
$$= \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 2(1 - \cos2\left(\frac{\pi}{4} + t\right)) |t| dt$$

$$=\int\limits_{-\frac{\pi}{8}}^{\frac{\pi}{8}}(2+2\sin 2t)|t|dt$$

$$=2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}|t|\,dt+2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}|t|\sin(2t)dt$$

$$=4\int\limits_{0}^{\frac{\pi}{8}}tdt+0$$

$$S_2 = 2t^2\Big]_0^{\frac{\pi}{8}} = \frac{\pi^2}{32}$$

$$\Rightarrow \frac{48S_2}{\pi^2} = \frac{3}{2}$$

SECTION - 3 (Maximum Marks: 12)

• This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.

• Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.

• For each question, choose the option corresponding to the correct answer.

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Paragraph

Let $M = \{(x, y) \in R \times R : x^2 + y^2 \le r^2\}$, where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, n = 1,

2, 3, Let $S_0 = 0$ and, for $n \ge 1$, let S_n denote the sum of the first n terms of this progression. For $n \ge 1$,

let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

13. Consider *M* with $r = \frac{1025}{513}$. Let *k* be the number of all those circles C_n that are inside *M*. Let *l* be the maximum

possible number of circles among these k circles such that no two circles intersect. Then

(A)
$$k + 2l = 22$$

(B)
$$2k + l = 26$$

(C)
$$2k + 3l = 34$$

(D)
$$3k + 2l = 40$$

Answer (D)

Sol. :
$$a_n = \frac{1}{2^{n-1}}$$
 and $S_n = 2\left(1 - \frac{1}{2^n}\right)$

For circles C_n to be inside M.

$$S_{n-1} + a_n < \frac{1025}{513}$$

$$\Rightarrow$$
 $S_n < \frac{1025}{513}$

$$\Rightarrow \quad 1 - \frac{1}{2^n} < \frac{1025}{1026} = 1 - \frac{1}{1026}$$

$$\Rightarrow$$
 2ⁿ < 1026

$$\Rightarrow n \leq 10$$

 \therefore Number of circles inside be 10 = K

Clearly alternate circles do not intersect each other *i.e.*, C_1 , C_3 , C_5 , C_7 , C_9 do not intersect each other as well as C_2 , C_4 , C_6 , C_8 and C_{10} do not intersect each other hence maximum 5 set of circles do not intersect each other.

$$\therefore$$
 3K + 2I = 40

.. Option (D) is correct

- 14. Consider M with $r = \frac{(2^{199} 1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside M is
 - (A) 198

(B) 199

(C) 200

(D) 201

Answer (B)

Sol. :
$$r = \frac{(2^{199} - 1)\sqrt{2}}{2^{198}}$$

Now,
$$\sqrt{2} S_{n-1} + a_n < \left(\frac{2^{199} - 1}{2^{198}}\right) \sqrt{2}$$

$$2 \cdot \sqrt{2} \left(1 - \frac{1}{2^{n-1}} \right) + \frac{1}{2^{n-1}} < \left(\frac{2^{199} - 1}{2^{198}} \right) \cdot$$

$$\therefore \quad 2\sqrt{2} - \frac{\sqrt{2}}{2^{n-2}} + \frac{1}{2^{n-1}} < 2\sqrt{2} - \frac{\sqrt{2}}{2^{198}}$$

$$\frac{1}{2^{n-2}} \left(\frac{1}{2} - \sqrt{2} \right) < -\frac{\sqrt{2}}{2^{198}}$$

$$\frac{2\sqrt{2}-1}{2\cdot 2^{n-2}} > \frac{\sqrt{2}}{2^{198}}$$

$$2^{n-2} < \! \left(2 - \frac{1}{\sqrt{2}}\right) \! 2^{197}$$

- ∴ *n* ≤ 199
- .. Number of circles = 199

Option (B) is correct.

Paragraph

Let $\psi_1:[0,\infty)\to\mathbb{R},\ \psi_2:[0,\infty)\to\mathbb{R},\ f:[0,\infty)\to\mathbb{R}$ and $g:[0,\infty)\to\mathbb{R}$ be functions such that f(0)=g(0)=0,

$$\psi_1(x)=e^{-x}+x,\,x\geq 0,$$

$$\psi_2(x) = x^2 - 2x - 2e^{-x} + 2, x \ge 0$$

$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt, x > 0$$

and
$$g(x) = \int_0^{x^2} \sqrt{t} e^{-t} dt, x > 0$$
.

- 15. Which of the following statements is TRUE?
 - (A) $f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{3}$
 - (B) For every x > 1, there exists an $\alpha \in (1, x)$ such that $\Psi_1(x) = 1 + \alpha x$
 - (C) For every x > 0, there exists a $\beta \in (0, x)$ such that $\Psi_2(x) = 2x (\Psi_1(\beta) 1)$
 - (D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Sol. :
$$g(x) = \int_0^{x^2} \sqrt{t} e^{-t} dt$$
, $x > 0$

Let $t = u^2 \Rightarrow dt = 2u \ du$

$$g(x) = \int_0^x u e^{-u^2} \cdot 2u du$$

$$= 2 \int_0^x t^2 e^{-t^2} dt \qquad ...(i)$$

and
$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt, x > 0$$

:.
$$f(x) = 2 \int_0^x (t - t^2) e^{-t^2} dt$$
 ...(ii)

From equation (i) + (ii) : $f(x) + g(x) = \int_0^x 2te^{-t^2} dt$

Let
$$t^2 = P$$
 \Rightarrow 2t $dt = dP$

$$f(x) + g(x) = \int_0^{x^2} e^{-P} dP = \left[-e^{-P} \right]_0^{x^2}$$

$$f(x) + g(x) = 1 - e^{-x^2} \qquad \dots (iii)$$

$$\therefore f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = 1 - e^{-\ln 3} = 1 - \frac{1}{3} = \frac{2}{3}$$

.. Option (A) is incorrect.

From equation (ii) : $f'(x) = 2(x-x^2)e^{-x^2} = 2x(1-x)e^{-x^2}$

f(x) is increasing in (0, 1)

.. Option (D) is incorrect

$$\Psi_1(x) = e^{-x} + x$$

$$\Rightarrow \Psi'_{1}(x) = 1 - e^{-x} < 1 \text{ for } x > 1$$

Then for $\alpha \in (1, x)$, $\Psi_1(x) = 1 + \alpha x$ does not true for $\alpha > 1$.

.. Option (B) is incorrect

Now
$$\psi_2(x) = x^2 - 2x - 2e^{-x} + 2$$

$$\Rightarrow \psi_2'(x) = 2x - 2 + 2e^{-x}$$

$$\psi_2'(x) = 2\psi_1(x) - 2$$

From LMVT

$$\frac{\psi_2(x) - \psi_2(0)}{x - 0} = \psi_2'(\beta) \text{ for } \beta \in (\infty, x)$$

$$\Rightarrow \psi_2(x) = 2x(\psi_1(\beta) - 1)$$

.. Option (C) is correct.

16. Which of the following statements is TRUE?

(A)
$$\Psi_1(x) \le 1$$
, for all $x > 0$

(B)
$$\Psi_2(x) \le 0$$
, for all $x > 0$

(C)
$$f(x) \ge 1 - e^{-x^2} - \frac{2}{3}x^3 + \frac{2}{5}x^5$$
, for all $x \in \left(0, \frac{1}{2}\right)$ (D) $g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$, for all $x \in \left(0, \frac{1}{2}\right)$

Answer (D)

Sol.
$$\Psi_1(x) = e^{-x} + x$$

and for all
$$x > 0$$
, $\Psi_1(x) > 1$

$$\Psi_1(x) = x^2 + 2 - 2 (e^{-x} + x) > 0 \text{ for } x > 0$$

Now,
$$\sqrt{t} e^{-t} = \sqrt{t} \left(1 - \frac{t}{1!} + \frac{t^2}{2!} - \frac{t^3}{3!} + \dots \infty \right)$$

and
$$\sqrt{t} e^{-t} \le t^{\frac{1}{2}} - t^{\frac{3}{2}} + \frac{1}{2}t^{\frac{5}{2}}$$

$$\therefore \int_0^{x^2} \sqrt{t} \ e^{-t} \ dt \le \int_0^{x^2} \left(t^{\frac{1}{2}} - t^{\frac{3}{2}} + \frac{1}{2} t^{\frac{5}{2}} \right) dt$$

$$=\frac{2}{3}x^3-\frac{2}{3}x^5+\frac{1}{7}+\frac{1}{7}x^7$$

.. Option (D) is correct

and
$$f(x) = \int_{-x}^{x} (|t| - t^2)e^{-t^2} dt$$

$$=2\int_0^x (t-t^2)e^{-t^2}dt$$

$$= \int_0^x 2t e^{-t^2} dt - 2 \int_0^x t^2 e^{-t^2} dt$$

$$= 1 - e^{-x^2} - 2 \int_0^x t^2 e^{-t^2} dt$$

$$f(x) \le 1 - e^{-x^2} - 2 \int_0^x t^2 (1 - t^2) dt$$

$$=1-e^{-x^2}-2\frac{x^3}{3}+\frac{2}{5}x^5$$
 for all $x\left(0,\frac{1}{2}\right)$

.. Option (C) is incorrect.

SECTION - 4 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

17. A number is chosen at random from the set {1, 2, 3....., 2000}. Let *p* be the probability that the number is a multiple of 3 or a multiple of 7. Then the value of 500*p* is _____.

Answer (214)

Sol. E = a number which is multiple of 3 or multiple of 7

$$n(E) = (3, 6, 9, \dots, 1998) + (7, 14, 21, \dots, 1995) - (21, 42, 63, \dots, 1995)$$

$$n(E) = 666 + 285 - 95$$

$$n(E) = 856$$

$$n(E) = 2000$$

$$P(E) = \frac{856}{2000}$$

$$P(E) \times 500 = \frac{856}{4} = 214$$

18. Let E be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points P, Q and Q' on E, let M (P, Q) be the mid-point

of the line segment joining P and Q, and M(P, Q') be the mid-point of the line segment joining P and Q'. Then the maximum possible value of the distance between M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is _____.

Answer (4)

Sol. Let $P(\alpha)$, $Q(\theta)$, $Q'(\theta')$

$$M = \frac{1}{2} (4\cos\alpha + 4\cos\theta), \ \frac{1}{2} (3\sin\alpha + 3\sin\theta)$$

$$M' = \frac{1}{2} \left(4\cos\alpha + 4\cos\theta' \right), \ \frac{1}{2} \left(3\sin\alpha + 3\sin\theta' \right)$$

$$MM' = \frac{1}{2}\sqrt{\left(4\cos\theta - 4\cos\theta'\right)^2 + \left(3\sin\theta - 3\sin\theta'\right)^2}$$

$$MM' = \frac{1}{2}$$
 distance between Q and Q'

MM' is not depending on P

Maximum of QQ' is possible when QQ' = major axis

$$QQ' = 2(4) = 8$$

$$MM' = \frac{1}{2} \cdot (QQ')$$

$$MM' = 4$$

19. For any real number x, let [x] denote the largest integer less than or equal to x. If $I = \int_{1}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx$, then the

value of 9*l* is _____.
Answer (182.00)

Sol.
$$I = \int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx$$

$$y = \frac{10x}{x+1} \qquad , \qquad 0 \le x \le 10$$

$$xy + y = 10x$$

$$x = \frac{y}{10 - y}$$

$$0 \le \frac{y}{10 - y} \le 10$$

$$\frac{y}{10-y} \ge 0 \qquad \text{and} \qquad \frac{y}{10-y} - 10 \le 0$$

$$\frac{y}{y-10} \le 0 \qquad \text{and} \qquad \frac{11y-100}{y-10} \ge 0$$

$$\frac{+ - - +}{0 \quad 10} \qquad \text{and} \qquad \frac{+ - - +}{100 \quad 10}$$

$$y \in [0, 10)$$
 and $y \in \left(-\infty, \frac{100}{11}\right] \cup (10, \infty)$

$$y \in \left[0, \frac{100}{11}\right]$$

$$\sqrt{y} \in \left[0, \frac{10}{\sqrt{11}}\right] \qquad \Rightarrow \quad \left[\sqrt{y}\right] = \{0, 1, 2, 3\}$$

Cose I: $0 \le \frac{10x}{x+1} < 1$

$$\frac{10x}{x+1} \ge 0 \qquad \text{and} \qquad \frac{10x}{x+1} - 1 < 0$$

$$\frac{+}{-1}$$
 and $\frac{9x-1}{x+1} < 0$

$$x \in (-\infty, -1) \cup [0, \infty)$$
 and $x \in (-1, \frac{1}{9})$

$$x \in \left[0, \frac{1}{9}\right)$$
 then $\left[\sqrt{\frac{10x}{x+1}}\right] = 0$

Case II :
$$1 \le \frac{10x}{x+1} < 4$$

$$\frac{10x}{x+1} - 1 \ge 0 \quad \text{and} \quad \frac{10x}{x+1} - 4 < 0$$

$$\frac{9x-1}{x+1} \ge 0 \quad \text{and} \quad \frac{6x-4}{x+1} < 0$$

$$\frac{+ - - +}{-1} \quad \frac{1}{9} \quad \text{and} \quad \frac{+ - - +}{-1} \quad \frac{2}{3}$$

$$x \in (-\infty, -1) \cup \left[\frac{1}{9}, \infty\right)$$
 and $x \in \left(-1, \frac{2}{3}\right)$

$$x \in \left[\frac{1}{9}, \frac{2}{3}\right)$$
 , $\left[\sqrt{\frac{10x}{x+1}}\right] = 1$

Case III :
$$4 \le \frac{10x}{x+1} < 9$$

$$\frac{10x}{x+1} - 4 \ge 0 \qquad \text{and} \qquad \frac{10x}{x+1} < 9$$

$$\frac{6x-4}{x+1} \ge 0 \qquad \text{and} \qquad \frac{x-9}{x+1} < 0$$

$$x \in (-\infty, -1) \cup \left[\frac{2}{3}, \infty\right]$$
 $x \in (-1, 9)$

$$x \in \left[\frac{2}{3}, 9\right)$$
 ; $\left[\sqrt{\frac{10x}{x+1}}\right] = 2$

Case IV:
$$x \in [9, 10]$$
 $\Rightarrow \left[\sqrt{\frac{10x}{x+1}}\right] = 3$

$$I = \int_{0}^{\frac{1}{9}} 0 \cdot dx + \int_{\frac{1}{9}}^{\frac{2}{3}} 1 \cdot dx + \int_{\frac{2}{3}}^{9} 2 \cdot dx + \int_{\frac{9}{9}}^{10} 3 \cdot dx$$

$$I = \left(\frac{2}{3} - \frac{1}{9}\right) + 2\left(9 - \frac{2}{3}\right) + 3(10 - 9)$$

$$I = \frac{5}{9} + \frac{50}{3} + 3$$