Math~342W/642/742W

Recitation – Day #5 (2.13.25)

I. Multinomial Classification			
(i) What is the output space, \mathcal{Y} , for the response variable in the context of multinomial classification problems?			
(ii) What is the <i>null model</i> , g_0 , in the context of <i>multinomial classification</i> problem?			
(iii) What is the $L1 \ loss? \ L2 \ loss?$			
II. Regression			

- (ii) What is the *null model*, g_0 , in the context of regression?
- (iii) What is the candidate set of functions, \mathcal{H} , in the context of regression?
- (iv) Define the following errors:
 - Sum of Absolute Errors (SAE):
 - Sum of Squared Errors (SSE):

	III.	Simple	Linear	Regression
--	------	--------	--------	------------

(i) Suppose $p = 1$ for linear regression, define the following	wing:
• <i>H</i> :	
$ullet$ \hat{y} :	
• Objective function:	
• A:	
(ii) Derive the bias term b_0 in simple OLS:	
(iii) Derive the weight b_1 in simple OLS:	