a)
$$\frac{\sqrt{3}}{2}$$
; b) $\frac{1}{2}$; c) 0; d) $\sqrt{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.

Soluție. Din teorema cosinusului aplicată pentru unghiul \hat{A} , avem $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos \hat{A}$, deci $\cos \hat{A} = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC}$. Prin urmare

$$\cos \hat{A} = \frac{2 + (1 + \sqrt{3})^2 - 4}{2\sqrt{2}(1 + \sqrt{3})} = \frac{2 + 2\sqrt{3}}{2\sqrt{2}(1 + \sqrt{3})} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

2. Dacă z = 2 + i atunci $z + \bar{z}$ este: (5 pct.)

a) 3; b) 6; c)
$$1 + i$$
; d) 5; e) $7i$; f) 4.

Solutie. Obtinem $z + \bar{z} = (2 + i) + (2 - i) = 4$.

3. Se dau vectorii $\vec{u} = 3\vec{i} + (\lambda - 4)\vec{j}$ şi $\vec{v} = \lambda \vec{i} + \vec{j}$. Să se determine $\lambda \in \mathbb{R}$ astfel încât vectorii \vec{u} și \vec{v} să fie perpendiculari. (5 pct.)

a)
$$\lambda = -1$$
; b) $\lambda = 2$; c) $\lambda = 1$; d) $\lambda = \frac{1}{2}$; e) $\lambda = -\frac{3}{2}$; f) $\lambda = 0$.

Soluție. Avem $\bar{u} \perp \bar{v} \Leftrightarrow \bar{u} \cdot \bar{v} = 0 \Leftrightarrow 3\lambda + (\lambda - 4) \cdot 1 = 0 \Leftrightarrow \lambda = 1$.

4. Soluția ecuației $2\sin x - 1 = 0$, $x \in \left[0, \frac{\pi}{2}\right]$ este: (5 pct.)

a)
$$\frac{\pi}{10}$$
; b) $\frac{\pi}{6}$; c) $\frac{2\pi}{5}$; d) 0; e) $\frac{\pi}{7}$; f) $\frac{\pi}{4}$.

Soluție. Din $2\sin x = 1$ rezultă $\sin x = \frac{1}{2}$. Deoarece $x \in [0, \frac{\pi}{2}]$, obținem $x = \frac{\pi}{6}$.

5. Fie $\vec{w}=2\vec{u}+3\vec{v}$, unde $\vec{u}=2\vec{i}+3\vec{j}$ și $\vec{v}=\vec{i}-2\vec{j}$. Atunci $||\vec{w}||$ este: (5 pct.)

a) 6; b) 2; c) 0; d) 7; e)
$$\sqrt{5}$$
; f) -2.

Soluție. Prin calcul direct, rezultă $\vec{w} = 2\vec{u} + 3\vec{v} = 2(2\vec{i} + 3\vec{j}) + 3(\vec{i} - 2\vec{j}) = 7\vec{i}$. Deci $||\vec{w}|| = ||7\vec{i}|| = |7| ||\vec{i}|| = 7 \cdot 1 = 7$.

6. Să se calculeze produsul $P = \sin 30^{\circ} \cdot \operatorname{tg} 45^{\circ} \cdot \cos 60^{\circ}$. (5 pct.)

a) 2; b) 0; c)
$$\sqrt{3}$$
; d) $\frac{\sqrt{2}}{2}$; e) $\frac{1}{4}$; f) 1.

Soluție. Înlocuind în expresie valorile funcțiilor trigonometrice, rezultă $P = \sin 30^\circ$ tg 45° cos 60° = $\frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4}$.

7. Dacă $\cos x = \frac{3}{5}$, atunci $\sin^2 x$ este: (5 pct.)

a) 0; b) 1; c)
$$\frac{3}{2}$$
; d) $\frac{2}{5}$; e) $-\frac{16}{25}$; f) $\frac{16}{25}$.

Soluţie. Deoarece $\sin^2 x = 1 - \cos^2 x$, obţinem $\sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}$

8. Să se scrie ecuația dreptei ce trece prin punctele A(1,2), B(2,1). (5 pct.)

a)
$$x - y + 3 = 0$$
; b) $x + y - 3 = 0$; c) $2x + 3y - 5 = 0$; d) $x = y$; e) $3x + 5y = 2$; f) $x - 4y - 5 = 0$.

Soluție. Ecuația dreptei este dată de formula $\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A}$, deci $\frac{x-1}{2-1} = \frac{y-2}{1-2}$. Rezultă -(x-1) = y-2, deci x+y-3=0.

9. Să se calculeze tg x știind că $\sin x - \sqrt{3}\cos x = 0$. (5 pct.)

a)
$$\frac{\sqrt{3}}{2}$$
; b) -1; c) $\sqrt{2}$; d) 1; e) 2; f) $\sqrt{3}$.

Soluție. Din $\sin x - \sqrt{3}\cos x = 0$, rezultă $\sin x = \sqrt{3}\cos x$. Dar $\cos x$ este nenul, deoarece anularea lui ar conduce la $\sin x \in \{\pm 1\}$ iar prin înlocuire în ecuație la $\sin x = 0$, contradicție. Prin urmare putem împărți ambii membri ai ecuației la $\cos x \neq 0$. Obținem $\frac{\sin x}{\cos x} = \sqrt{3}$, adică $\operatorname{tg} x = \sqrt{3}$.

- 10. Expresia $(\sin x + \cos x)^2 \sin 2x$ este egală cu: (5 pct.)
 - a) 1; b) 3; c) $\sin x$; d) 2; e) -1; f) $\cos x$.

Soluție. Ridicând la pătrat binomul, folosind formula triginometrică fundamentală și formula sinusului de arc dublu, rezultă

$$(\sin x + \cos x)^2 - \sin 2x = \sin^2 x + \cos^2 x + 2\sin x \cos x - \sin 2x = 1 + \sin 2x - \sin 2x = 1.$$

- 11. Într-un triunghi ABC se dau $\hat{B}=60^{\circ},\,\hat{C}=30^{\circ}.$ Atunci sin $\frac{\hat{A}}{2}$ are valoarea: (5 pct.)
 - a) 0; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{2}}{2}$; d) $\frac{\sqrt{3}}{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.

Soluţie. Deoarece $\hat{B}=60^{\circ}$ şi $\hat{C}=30^{\circ}$, folosind egalitatea $\hat{A}+\hat{B}+\hat{C}=180^{\circ}$, rezultă $\hat{A}=180^{\circ}-(\hat{B}+\hat{C})=90^{\circ}$. Deci sin $\frac{\hat{A}}{2}=\sin 45^{\circ}=\frac{\sqrt{2}}{2}$.

- 12. Pentru $z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ calculați |z|. (5 pct.)
 - a) $\frac{1}{3}$; b) 2; c) $\frac{1}{4}$; d) -1; e) 0; f) 1.

Soluție. Folosind regula de calcul a modulului unui număr complex scris în formă algebrică, obținem

$$|z| = \left| \frac{1}{2} + i \frac{\sqrt{3}}{2} \right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1.$$

- 13. Să se determine $m \in \mathbb{R}$ astfel încât dreapta mx + 4y + 2 = 0 să fie paralelă cu dreapta 3x 6y + 1 = 0. (5 pct.)
 - a) $m = \frac{1}{2}$; b) m = 2; c) $m = \frac{1}{3}$; d) m = -2; e) $m = \frac{2}{3}$; f) m = 1.

Soluție. Fie d_1 : mx + 4y + 2 = 0 și d_2 : 3x - 6y + 1 = 0 dreptele date și m_1 , m_2 respectiv pantele acestora. Condiția de paralelism se scrie:

$$|d_1||d_2 \Leftrightarrow m_{d_1} = m_{d_2} \Leftrightarrow \frac{-m}{4} = \frac{-3}{-6} \Leftrightarrow \frac{-m}{4} = \frac{1}{2} \Leftrightarrow m = -2.$$

- 14. Fie A(-3,0), B(3,0), C(0,4) şi fie S aria triunghiului ABC. Atunci: (5 pct.)
 - a) S = 15; b) S = 6; c) S = 16; d) S = 8; e) S = 12; f) S = 20.

Soluţie. Folosim formula $S = \mathcal{A}_{\Delta ABC} = \frac{1}{2} |\Delta|$, unde $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$. Avem $\Delta = \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 12 + 12 = 24$, deci $S = \frac{1}{2} \cdot |24| = 12$.

- 15. Dacă punctele A(2,3), B(-1,4), C(m,m+3) sunt coliniare, atunci: (5 pct.)
 - a) $m = \frac{1}{3}$; b) $m = \frac{2}{3}$; c) $m = -\frac{1}{3}$; d) $m = -\frac{1}{2}$; e) $m = \frac{1}{2}$; f) m = 4.

- 16. Să se precizeze $m \in \mathbb{R}$ astfel încât dreapta de ecuație 2x my + 3 = 0 să treacă prin punctul M(1,2). (5 pct.)
 - a) $m = \frac{1}{3}$; b) $m = -\frac{3}{4}$; c) $m = \frac{1}{2}$; d) $m = \frac{2}{5}$; e) m = 0; f) $m = \frac{5}{2}$.

Soluţie. Deoarece punctul M(1,2) aparţine dreptei d: 2x - my + 3 = 0, coordonatele acestuia trebuie să satisfacă ecuaţia dreptei. Înlocuind, obţinem $2 \cdot 1 - m \cdot 2 + 3 = 0$, de unde $m = \frac{5}{2}$.

17. Dacă $E = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$, atunci valoarea $a = E^3$ este: (5 pct.)

a)
$$a = -1$$
; b) $a = 1 + i$; c) $a = 3i$; d) $a = 1$; e) $a = i$; f) $a = -1$.

Soluţie. Notăm $a = E^3 = \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3$. Folosind formula lui Moivre, obţinem

$$a = \cos \frac{3\pi}{6} + i \sin \frac{3\pi}{6} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = 0 + i \cdot 1 = i.$$

18. Să se determine vârful D al paralelogramului ABCD, cunoscându-se A(0,0), B(0,3), C(2,5). **(5 pct.)** a) D(-1,1); b) D(1,3); c) D(2,2); d) D(-2,2); e) D(3,3); f) D(2,1).

Soluţie. Deoarece ABCD este paralelogram, rezultă $AB \mid\mid DC$ și AB = DC, adică $\overline{AB} = \overline{DC}$. Dar $\overline{AB} = (x_B - x_A)\overline{i} + (y_B - y_A)\overline{j}$ și $\overline{DC} = (x_C - x_D)\overline{i} + (y_C - y_D)\overline{j}$, deci

$$\overline{AB} = \overline{DC} \Leftrightarrow \left\{ \begin{array}{l} x_B - x_A = x_C - x_D \\ y_B - y_A = y_C - y_D \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 0 - 0 = 2 - x_D \\ 3 - 0 = 5 - y_D \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x_D = 2 \\ y_D = 2 \end{array} \right. \Leftrightarrow D(2,2).$$