02441 Applied Statistics and Statistical Software

Exercise 4D - KFM

The dataset kfm contains measurements of the newborn babies, their mother and milk consumption

Variable name	Description
dl.milk sex weight ml.suppl mat.weight mat.height	amount of breast milk (dl) gender of body baby weight (kg) amount of milk supplement (ml) mothers weight (kg) mothers height (cm)

1. Make appropriate plots of the birthweight in order to check wether the weight is normally distributed

```
# Read data
df <- read.table("kfm.txt", header=TRUE, row.names=1)</pre>
df < - df[,-1]
head(df)
     dl.milk sex weight ml.suppl mat.weight mat.height
##
## 1
        8.42 boy 5.002
                              250
                                          65
                                                     173
## 2
        8.44 boy 5.128
                               0
                                          48
                                                     158
        8.41 boy 5.445
## 3
                                          62
                               40
                                                     160
## 4
        9.65 boy 5.106
                               60
                                          55
                                                     162
## 5
        6.44 boy 5.196
                              240
                                          58
                                                     170
## 6
        6.29 boy 5.526
                                0
                                          56
                                                     153
# Visual comparison of histogram with normal pdf
par(mfrow=c(1,2))
hist1 <- hist(df$weight, freq = FALSE, main="Histogram of birthweight", xlab="Birthweight (kg)")
x_range <- seq(min(df$weight), max(df$weight), by = 0.01)</pre>
lines(x_range, dnorm(x_range, mean(df$weight), sd(df$weight)), lw = 3, col = "red")
color1 \leftarrow rgb(1,0,0, alpha = 0.5)
\# polygon(c(seq(3.5,4,0.05),4,3.5), c(dnorm(seq(3.5,4,0.05), mean(x), sd(x)),0,0), col = color1, border
# Visual comparison of ecdf with normal cdf
plot(ecdf(df$weight), main="ECDF vs. CDF of birthweight")
lines(x_range, pnorm(x_range, mean(df$weight), sd(df$weight)), lw = 3, col = "red")
abline(v=hist1$breaks)
```

Histogram of birthweight

ECDF vs. CDF of birthweight

From the visual inspection it seems that birthweight is normally distributed.

2. Make a χ^2 -test to test if the birthweights for the babies can be assumed normally distributed

```
shapiro.test(df$weight)

##

## Shapiro-Wilk normality test

##

## data: df$weight

## W = 0.98976, p-value = 0.9405

# Get expected counts for all histogram bins
breaks <- hist1$breaks
prob <- pnorm(c(-Inf, breaks[-c(1, length(breaks))], Inf), mean(df$weight), sd(df$weight))
prob <- diff(prob)
expected <- length(df$weight)*prob

# Chi Square test for goodness-of-fit
counts <- hist1$counts
chi_obs <- sum((counts - expected)^2 / expected)
p_value <- 1 - pchisq(chi_obs, df = length(hist1$mids) - 3)</pre>
```

Birthweight is normally distributed since p-value is greather than α , i.e. we fail to reject H_0 since 0.500576 > 0.05 .	8