ISTANBUL TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

EXPERIMENT NO : 2

EXPERIMENT DATE : 31.03.2023

LAB SESSION : FRIDAY - 10.30

GROUP NO : G3

GROUP MEMBERS:

150200010: Ahmet Emre Buz

150200097 : Mustafa Can Çalışkan

SPRING 2023

Contents

1	INTRODUCTION	1
2	PRELIMINARY	1
	2.1	1
	2.2 TRUTH TABLE	3
3	EXPERIMENT	4
	3.1	4
	3.2	4
4	DISCUSSION	4

1 INTRODUCTION

In this experiment, we implemented and simulated desired designs using Verilog.

2 PRELIMINARY

2.1

		X_1X_0			
		00	01	11	10
	00	θ	1	0	θ
V. V.	01	1	0	0	1
X_3X_2	11	0	0	θ	θ
	10	θ	θ	1	0

min terms and their binary representations

$\underline{}$	Binary representation
0	0000
1	0001
4	0100
2	0010
8	1000
6	0110
9	1001
11	1011
14	1110
15	1111

merging of min term

Minterm	Binary representation
0,1	000-
0,4	0-00
0,2	00-0
0,8	-000
1,9	-001
4,6	01-0
2,6	0-10
8,9	100-
6,14	-110
$\boxed{9,11}$	10 - 1
11, 15	1 - 11
14, 15	111-

merging of min term pairs

Minterm	Binary representation
0, 2, 4, 6	00
0, 1, 8, 9	-00-

	minterms			
	1	4	6	11
-110			X	
10-1				X
1-11				X
111-				
0-0		X	X	
-00-	X			

All extracted essential prime implicants: -00-,0-0,1-11 Minimal Quine-McCluskey Expression = b'c' + a'd' + acd

2.2 TRUTH TABLE

A	В	C	D	Result
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

3 EXPERIMENT

3.1

3.2

4 DISCUSSION

Don't cares are often used in logic design because they allow for simplification of the design by ignoring certain input or output states that are not relevant to the overall function. This can reduce the number of gates required and improve the efficiency of the circuit.