The Winding Number

Sébastien Boisgérault, MINES ParisTech, under CC BY-NC-SA 4.0

September 30, 2019

Contents

Exercises	1
Star-Shaped Sets	1
Question	1
Answer	1
The Argument Principle for Polynomials	2
Questions	2
Answers	4
Set Operations & Simply Connected Sets	5
Questions	5
Answers	6

Exercises

Star-Shaped Sets

Question

Prove that every open star-shaped subset of $\mathbb C$ is simply connected.

Answer

Let Ω be an open star-shaped subset of $\mathbb C$ with a center c.

For any $z \in \mathbb{C} \setminus \Omega$ and any $s \geq 0$, the point w = z + s(z - c) belongs to $\mathbb{C} \setminus \Omega$. The ray of all such points w is unbounded and connected, thus it is included in an unbounded component of $\mathbb{C} \setminus \Omega$. All components of $\mathbb{C} \setminus \Omega$ are therefore unbounded: Ω is simply connected.

Alternatively, let γ be a closed path of Ω and let $z = c + re^{i\alpha} \in \mathbb{C} \setminus \Omega$. Since the ray $\{z + se^{i\alpha} \mid s \geq 0\}$ does not intersect Ω , for any $t \in [0, 1]$ and any $s \geq 0$,

 $\gamma(t)-z\neq se^{i\alpha}$. Thus $e^{-i(\pi+\alpha)}(\gamma(t)-z)\in\mathbb{C}\setminus\mathbb{R}_-$ and the function

$$\phi: t \in [0,1] \mapsto e^{i(\pi+\alpha)} \arg(e^{-i(\pi+\alpha)}(\gamma(t)-z))$$

is defined; since it is a continuous choice of the argument $w\mapsto \operatorname{Arg}(w-z)$ along $\gamma,$

$$\operatorname{ind}(\gamma, z) = \frac{1}{2\pi} [\phi(1) - \phi(0)] = 0.$$

Therefore, Ω is simply connected.

The Argument Principle for Polynomials

Questions

Let p be the polynomial

$$p(z) = \lambda \times (z - a_1)^{n_1} \times \dots \times (z - a_m)^{n_m}$$

where λ is a nonzero complex number, a_1, \ldots, a_m are distinct complex numbers (the zeros or roots of the polynomial) and n_1, \ldots, n_m are positive natural numbers (the roots orders or multiplicities). Let γ be a closed path whose image contains no root of p:

$$\forall\,t\in[0,1],\;p(\gamma(t))\neq0.$$

The argument principle then states that

$$\operatorname{ind}(p \circ \gamma, 0) = \sum_{k=1}^{m} \operatorname{ind}(\gamma, a_k) \times n_k.$$

1. Application: Finding the Roots of a Polynomial.

Use the figures below to determine – according to the argument principle – the number of roots z of the polynomial $p(z) = z^3 + z + 1$ in the open unit disk centered on the origin.

- 2. Argument Principle Proof (Elementary). For any $k \in \{1, ..., m\}$, we denote θ_k a continuous choice of $z \mapsto \operatorname{Arg}(z a_k)$ on γ . Use the functions θ_k to build a continuous choice of $z \mapsto \operatorname{Arg} z$ on $p \circ \gamma$; then, prove the argument principle.
- 3. Argument Principle Proof (Complex Analysis). Assume that γ is rectifiable; write the winding number $\operatorname{ind}(p \circ \gamma, 0)$ as a line integral, then find another way to prove the argument principle in this context.

Figure 1: Graph of $t \in [0,1] \mapsto \arg\left[(e^{i2\pi t})^3 + (e^{i2\pi t}) + 1\right]$; this function has a jump of -2π at t=0.5 (where it is undefined). The dashed line represents a continuous choice of the argument of $t \in [0,1] \mapsto (e^{i2\pi t})^3 + (e^{i2\pi t}) + 1$.

Figure 2: Graph of $t \in [0,1] \mapsto |(e^{i2\pi t})^3 + (e^{i2\pi t}) + 1|$.

Answers

1. Let $\gamma: t \in [0,1] \mapsto e^{i2\pi t}$; we have $(p \circ \gamma)(t) = (e^{i2\pi t})^3 + (e^{i2\pi t}) + 1$. The second figure shows that the graph of $t \mapsto |(p \circ \gamma)(t)|$ does not vanish on [0,1], hence the image of γ contains no root of p. The second figure shows that the variation of the argument of z on the path $p \circ \gamma$ is 2π (a variation of π between t=0 and t=0.5 and also a variation of π between t=0.5 and t=0.5.

$$\operatorname{ind}(p \circ \gamma, 0) = 1.$$

On the other hand, every zero z of p such that |z| < 1 satisfies $\operatorname{ind}(\gamma, z) = 1$ and every zero z of p such that |z| > 1 satisfies $\operatorname{ind}(\gamma, z) = 0$. Consequently, the expression

$$\sum_{k=1}^{m} \operatorname{ind}(\gamma, a_k) \times n_k$$

provides the number of roots of p – counted with their multiplicity – within the unit circle. By the argument principle, there is a unique root of p within the unit circle.

2. If θ_0 is an argument of λ , the sum

$$\theta: t \in [0,1] \mapsto \theta_0 + n_1 \theta_1(t) \times \dots + n_m \theta_m(t)$$

is continuous and

$$\begin{split} e^{i\theta(t)} &= e^{i\theta_0} \times e^{in_1\theta_1(t)} \times \dots \times e^{in_m\theta_m(t)} \\ &= \frac{\lambda}{|\lambda|} \times \frac{(\gamma(t) - a_1)^{n_1}}{|\gamma(t) - a_1|^{n_1}} \times \dots \times \frac{(\gamma(t) - a_m)^{n_m}}{|\gamma(t) - a_m|^{n_m}} \\ &= \frac{(p \circ \gamma)(t)}{|(p \circ \gamma)(t)|}, \end{split}$$

therefore θ is a choice of the argument of $z \mapsto z$ on $p \circ \gamma$. Consequently,

$$[z \mapsto \operatorname{Arg} z]_{p \circ \gamma} = \theta(1) - \theta(0)$$

$$= \theta_0 - \theta_0 + \sum_{k=1}^m n_k (\theta_k(1) - \theta_k(0))$$

$$= \sum_{k=1}^m n_k \times [z \mapsto \operatorname{Arg}(z - a_k)]_{\gamma}.$$

A division of both sides of this equation by 2π concludes the proof.

3. The integral expression of the winding number is

$$\operatorname{ind}(p \circ \gamma, 0) = \frac{1}{i2\pi} \int_{p \circ \gamma} \frac{dz}{z}.$$

The polynomial p is holomorphic on \mathbb{C} , hence we can perform the change of variable z = p(w), which yields

$$\operatorname{ind}(p \circ \gamma, 0) = \frac{1}{i2\pi} \int_{\gamma} \frac{p'(w)}{p(w)} dw.$$

If we factor p(w) as $(w - a_k)^{n_k} q(w)$, we see that

$$\frac{p'(w)}{p(w)} = \frac{n_k}{w - a_k} + \frac{q'(w)}{q(w)};$$

applying this process repeatedly for every $k \in \{1, ..., m\}$, until q is a constant, provides

$$\frac{p'(w)}{p(w)} = \sum_{k=1}^{m} \frac{n_k}{w - a_k}$$

and consequently

$$\operatorname{ind}(p \circ \gamma, 0) = \frac{1}{i2\pi} \int_{\gamma} \left[\sum_{k=1}^{m} \frac{n_k}{w - a_k} \right] dw$$
$$= \sum_{k=1}^{m} \left[\frac{1}{i2\pi} \int_{\gamma} \frac{dw}{w - a_k} \right] \times n_k$$
$$= \sum_{k=1}^{m} \operatorname{ind}(\gamma, a_k) \times n_k.$$

Set Operations & Simply Connected Sets

Questions

Suppose that A, B and $\mathbb{C} \setminus C$ are open subsets of \mathbb{C} . For each of the three statements below,

- determine whether or not the statement is true (either prove it or provide a counter-example);
- if the statement is false, find a sensible assumption that makes the new statement true (and provide a proof).

The statements are:

- 1. **Intersection.** The intersection $A \cap B$ of two simply connected sets A and B is simply connected.
- 2. **Complement.** The relative complement $A \setminus C$ of a connected set C in a simply connected set A is simply connected.
- 3. **Union.** The union $A \cup B$ of two connected and simply connected sets A and B is simply connected.

Answers

1. **Intersection.** The statement holds true. Indeed, let γ be a closed path of $A \cap B$; it is a path of A and a path of B. As both sets are simply connected, the interior of γ is included in A and in B, that is in $A \cap B$: this intersection is simply connected.

Alternatively, let C be a component of

$$\mathbb{C}\setminus (A\cap B)=(\mathbb{C}\setminus A)\cup (\mathbb{C}\setminus B),$$

and let $z \in C$; we have $z \in \mathbb{C} \setminus A$ or $z \in \mathbb{C} \setminus B$. If $z \in \mathbb{C} \setminus A$, the component of $\mathbb{C} \setminus A$ that contains z is unbounded; it is a connected set that contains z and is included in $\mathbb{C} \setminus (A \cap B)$, hence, it is also included in C. Consequently, C is unbounded. If instead $z \in \mathbb{C} \setminus B$, a similar argument provides the same result. Consequently, all components of $\mathbb{C} \setminus (A \cap B)$ are unbounded: $A \cap B$ is simply connected.

2. Complement. The statement does not hold: consider A = D(0,3) and $C = \overline{D(0,1)}$. The set A is open and simply connected and the set C is closed and connected. The set C is actually a component of $A \setminus C$: it is included in $A \setminus C$, connected and maximal.

However, the statement holds if additionally the set $C \setminus A$ is not empty. Let γ be a closed path of $A \setminus C$ and let $z \in \mathbb{C} \setminus (A \setminus C)$. If $z \in \mathbb{C} \setminus A$, as A is simply connected, z belongs to the exterior of γ . Otherwise, $z \in A \cap C$; as C is a connected subset that does not intersect the image of γ , the function $w \in C \mapsto \operatorname{ind}(\gamma, w)$ is constant. There is a $w \in C \setminus A$ and $\operatorname{ind}(\gamma, z) = \operatorname{ind}(\gamma, w) = 0$. Therefore z also belongs to the exterior of γ : $A \setminus C$ is simply connected.

Alternatively, let D be a component of

$$\mathbb{C} \setminus (A \setminus C) = (\mathbb{C} \setminus A) \cup C.$$

Some of its elements are in $\mathbb{C} \setminus A$: otherwise, C would be a connected superset of D that is included in $\mathbb{C} \setminus (A \setminus C)$; we would have C = D and therefore $C \setminus A$ would be empty. Now, as D contains at least a point z of $\mathbb{C} \setminus A$, it contains the component of $\mathbb{C} \setminus A$ that contains z; therefore D is unbounded. Consequently, $A \setminus C$ is simply connected.

3. Union. The statement doesn't hold: consider

$$A_s = \{2e^{i2\pi t} \mid t \in [0, 1/2]\}, \ B_s = \{2e^{i2\pi t} \mid t \in [1/2, 1]\}.$$

and the associated dilations

$$A = \{z \in \mathbb{C} \mid d(z, A_s) < 1\}, B = \{z \in \mathbb{C} \mid d(z, B_s) < 1\}.$$

They are both open, connected and simply connected (their complement in the plane has a single path-connected component and it is unbounded) but their union $A \cup B$ is the annulus $D(0,3) \setminus D(0,1)$. We already considered this set in question 2: it is not simply connected.

However, the statement holds if additionally, the intersection $A \cap B$ is connected. Let γ be a closed path of $A \cup B$ and let $z \in \mathbb{C} \setminus (A \cap B)$. We have to prove that $\operatorname{ind}(\gamma, z) = 0$.

There exist¹ a sequence $(\gamma_1, \ldots, \gamma_n)$ of consecutive paths of $A \cup B$ whose concatenation is γ and such that for any $k \in \{1, \ldots, n\}$, $\gamma_k([0, 1]) \subset A$ or $\gamma_k([0, 1]) \subset B$.

Let a_k be the initial point of γ_k and let $w \in A \cap B$. As A, B and $A \cap B$ are connected, for any $k \in \{1, \ldots, n\}$, there is a path β_k from w to a_k such that $\beta_k([0,1]) \subset A$ if $a_k \in A$ and $\beta_k([0,1]) \subset B$ if $a_k \in B$. We denote $\beta_{n+1} = \beta_1$ for convenience; define the paths α_k as the concatenations

$$\alpha_k = \beta_k \,|\, \gamma_k \,|\, \beta_{k+1}.$$

By construction

$$[x \mapsto \operatorname{Arg}(x-z)]_{\gamma} = \sum_{k=1}^{n} [x \mapsto \operatorname{Arg}(x-z)]_{\alpha_k}.$$

Every path α_k is closed, hence this is equivalent to

$$\operatorname{ind}(\gamma, z) = \sum_{k=1}^{n} \operatorname{ind}(\alpha_k, z),$$

but every α_k belongs either to A or B, which are simply connected, hence the right-hand-side is equal to zero. (This proof was adapted from Ronnie Brown's argument on Math Stack Exchange)

$$\gamma_k^n(t) = \gamma((k-1+t)/n).$$

By uniform continuity of γ , the diameters of the γ_k^n tends uniformly to zero when n tends to $+\infty$. The conclusion follows from Lebesgue's Number Lemma.

¹The collection $\{A,B\}$ is an open cover of $\gamma([0,1])$ which is compact. Now, for any positive integer n, consider the sequence $(\gamma_1^n,\ldots,\gamma_n^n)$ where