DP-Shield: Face Obfuscation with Differential Privacy

Muhammad Saleem
Department of Computer Science, UNC Charlotte

msaleem2@uncc.edu

Saleem, Reilly and Fan. "DP-Shield: Face Obfuscation with Differential Privacy". In EDBT'22.

Motivation

- Immense amount of image data gathered from various sources
 - Surveillance cameras, social media, sensors, ...
- Various research investigations have been made possible by image data e.g., Computer Vision, Social Science, ...
- Images may reveal sensitive information about:
 - Individuality
 - Lifestyle
- Standard approaches to obfuscating images
 - For example, pixelization, gaussian noise, blurring, GAN inpainting, mosaiced, redaction etc.
 - Visually hide sensitive information
 - Do not provide quantifiable privacy guarantees
 - Prone to re-identification attacks
 - CNN model re-identify up to 96% obfuscated faces [McPherson et al. 2016]

DP-SHIELD Interactive Framework

• Differential privacy (DP) [Dwork et al. 2006] is the state-of-the-art notion for sanitizing aggregate

databases queries.

- Provides protection to Indvidual's data
- Quantifying privacy leakage and privacy to be bounded
- Robust against inference attacks [Fan 2018] [Fan 2019]

Individuals Data Aggregate Statistics

Attacker

Trusted Data

Aggretator

Evaluation Methodology

- Face Datasets
 - VGGFace2 [Cao et al. 2018]
 - CASIA-WEBFACE [Yi et al. 2014]
- Image Quality Measures
 - Structural Similarity (SSIM) [Wang et al. 2004] and Mean Squared Error
- Empirical Privacy Protection
 - FaceNet with Inception ResNet (V1) network [Schroff et al. 2016]
 - Train SVC classifier on the FaceNet embeddings to re-identify obfuscated image

VGGFace2

CASIA-WEBFACE

Saleem - EDBT 2022

Evaluation

- ϵ and δ indicate level of privacy protection, and lower values indicate stronger privacy protection
 - Strong DP protection may lead to low image quality (low SSIM and high MSE)
- Privacy protection (Re-identification Rate)
 - Weaker DP protection means higher privacy risks and obfuscated image may disclose identity of individual.
 - Method design also matters in providing privacy protection

Figure 2: Mean Squared Error (MSE), Structural Similarity (SSIM) and Re-Identification Rate results on VGGFace2 dataset.

Figure 3: Mean Squared Error (MSE), Structural Similarity (SSIM) and Re-Identification Rate results on CASIA-WebFace dataset.

Questions? Contact Muhammad (msaleem2@uncc.edu)