Polynomial Factoring solution (version 13)

1. The quadratic formula says if $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Use the quadratic formula to solve the following equation.

$$x^2 - 4x + 22 = 0$$

Simplify your answer(s) as much as possible.

Solution

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(22)}}{2(1)}$$

$$x = \frac{-(-4) \pm \sqrt{16 - 88}}{2(1)}$$

$$x = \frac{4 \pm \sqrt{-72}}{2}$$

$$x = \frac{4 \pm \sqrt{-36 \cdot 2}}{2}$$

$$x = \frac{4 \pm 6\sqrt{2}i}{2}$$

$$x = 2 \pm 3\sqrt{2}i$$

Notice that *i* in NOT under the square-root radical symbol!!

2. Express the product of 5-2i and 4-9i in standard form (a+bi).

Solution

$$(5-2i) \cdot (4-9i)$$

$$20-45i-8i+18i^{2}$$

$$20-45i-8i-18$$

$$20-18-45i-8i$$

$$2-53i$$

Polynomial Factoring solution (version 13)

3. Write function $f(x) = x^3 + x^2 - 22x - 40$ in factored form. I'll give you a hint: one factor is (x+2).

Solution

$$f(x) = (x+2)(x^2 - x - 20)$$

$$f(x) = (x+2)(x+4)(x-5)$$

4. Polynomial p is defined below in factored form.

$$p(x) = (x+3) \cdot (x-2) \cdot (x-6)^2$$

Sketch a graph of polynomial y = p(x).

