MA557 Problem Set 5

Carlos Salinas

October 12, 2015

Problem 5.1

For I an R-ideal consider the multiplicatively closed set S=1+I. Show that

- (a) $\widetilde{S}=R\smallsetminus\bigcup\mathfrak{m},$ where the union is taken over all $\mathfrak{m}\in\mathfrak{m}\operatorname{-Spec}(R)\cap V(I).$ (b) $\mathfrak{m}\operatorname{-Spec}(R/I)$ are homeomorphic.

Proof. (a) We will show double containment. Suppose $x \in A$, but

(b)

PROBLEM 5.2

Show that the following are equivalent for a ring R:

- (a) there exist rings $R_1 \neq 0$ and $R_2 \neq 0$ so that $R \cong R_1 \times R_2$;
- (b) there exist an idempotent $e \in R$ with $e \neq 0$ and $e \neq 1$;
- (c) $\operatorname{Spec}(R)$ is disconnected.

Proof.

Problem 5.3

A topological space is called *Noetherian* if the set of closed sets satisfies the dcc. Show that if a ring R is Noetherian then so is $\operatorname{Spec}(R)$, but that the converse does not hold.

Proof.

Problem 5.4

A nonempty closed subset V of a topological space is called *irreducible* if $V=V_1\cup V_2,\ V_1$ and V_2 closed subset, implies $V_1=V$ or $V_2=V$.

(a) Show that in a Noetherian topological space every nonempty closed subset is a finite union of irreducible closed subsets.

(b) Show that $V(\mathfrak{p}), \mathfrak{p} \in \operatorname{Spec}(R)$, are exactly the irreducible closed subsets of $\operatorname{Spec}(R)$.

Proof.

PROBLEM 5.5

Show that a Noetherian ring has only finitely many minimal prime ideals.

Proof.

PROBLEM 5.6

Show that a nonzero ring has at least one minimal prime ideal.

Proof.