Analysis - PMA 6 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 20, 2021

Overview

Numerical Sequences and Series

Sequences

Series

The Number e

The Root and Ratio Tests

Exercises

Definition

Let $\{p_n\}$ be a sequence in a metric space X and $p \in X$. We say $\{p_n\}$ converges if there is $p \in X$, and for every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies $d(p_n, p) < \epsilon$. In this sace, we say p_n converges to p and write $p_n \to p$ or

$$\lim_{n\to\infty} p_n = p.$$

If $\{p_n\}$ does not converge, it is said to diverge.

Remark

The "convergent sequence" depends not only on $\{p_n\}$ but also on X (and topology of X).

Example

In \mathbb{R} , consider two metric

$$d_1(p,q) = |p-q|$$

$$d_2(p,q) = \begin{cases} 1 & p=q\\ 0 & p \neq q \end{cases}.$$

- ▶ Then $\{1/n\}$ converges to 0 in d_1
- ▶ but diverges in d_2 . In fact, a sequence $\{p_n\}$ converges with d_2 if and only if there is $p \in \mathbb{R}$ and N such that $p_n = p$ for all $n \ge N$ (we say $\{p_n\}$ eventually constant).
- ▶ In \mathbb{R}^+ with d_1 , $\{1/n\}$ diverges.

Definition

- ▶ The range of $\{p_n\}$ is the set of all p_n .
- ightharpoonup A sequence $\{p_n\}$ is bounded if its range is bounded.

Example

In \mathbb{C} (as \mathbb{R}^2),

- (a) $s_n = 1/n$.
- (b) $s_n = n^2$.
- (c) $s_n = 1 + [(-1)^n/n]$.
- (d) $s_n = i^n$.
- (e) $s_n = 1$.

Theorem

Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ iff every neighborhood of p contains p_n for all but finitely many n.
- (b) If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to p and to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Theorem

Suppose $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. Then

- (a) $\lim_{n\to\infty} (s_n + t_n) = s + t$.
- (b) $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$ for any number c.
- (c) $\lim_{n\to\infty} s_n t_n = st$.
- (d) $\lim_{n\to\infty} \frac{1}{s_n} = \frac{1}{s}$ if $s_n \neq 0$ and $s \neq 0$.

Sequences

Convergent Sequences

Theorem

(a) Suppose $\mathbf{x}_n \in \mathbb{R}^k$ and $\mathbf{x}_n = (\alpha_{1,n}, \cdots, \alpha_{k,n})$. Then $\{\mathbf{x}_n\}$ converges to $\mathbf{x} = (\alpha_1, \cdots, \alpha_k)$ if and only if

$$\lim_{n\to\infty}\alpha_{j,n}=\alpha_j,\ j=1,2,\cdots,k.$$

(b) Suppose $\{\mathbf{x}_n\}$, $\{\mathbf{y}_n\}$ are sequences in \mathbb{R}^k , $\{\beta_n\}$ is a sequence of real numbers, and $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$, $\beta_n \to \beta$. Then

$$\lim_{n\to\infty}(\mathbf{x}_n+\mathbf{y}_n)=\mathbf{x}+\mathbf{y},\ \lim_{n\to\infty}\mathbf{x}_n\cdot\mathbf{y}_n=\mathbf{x}\cdot\mathbf{y},\ \lim_{n\to\infty}\beta_n\mathbf{x}_n=\beta\mathbf{x}$$

Subsequences

Definition

Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < \cdots$.

- ▶ Then the sequence $\{p_{n_i}\}$ is called a subsequence of $\{p_n\}$.
- ▶ If $\{p_{n_i}\}$ converges, its limit is called a subsequential limit of $\{p_n\}$.

Subsequences

Theorem

- (a) If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X. (i.e., a compact space is sequentially compact.)
- (b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Sequences
Series
The Number e
The Root and Ratio Tests
Exercises

Subsequences

Theorem

The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

Cauchy Sequences

Definition

A sequence $\{p_n\}$ in a metric space X is said to be a Cauchy sequence if for every $\epsilon > 0$ there is an integer N such that $d(p_n, p_m) < \epsilon$ if $n, m \ge N$.

Definition

Let E be a nonempty subset of a metric space X, and let S be the set of all real numbers of the form d(p,q), with $p,q \in E$. The sup of S is called the diameter of E.

Remark

If $\{p_n\}$ is a sequence in X and if $E_N = \{p_N, p_{N+1}, \cdots, \}$,

▶ $\{p_n\}$ is a Cauchy sequence if and only if $\lim_{N\to\infty} \operatorname{diam} E_N = 0$.

Cauchy Sequences

Theorem

(a) If \overline{E} is the closure of a set E in a metric space X, then

$$\dim \overline{E} = \dim E.$$

(b) If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ and if

$$\lim_{n\to\infty} \operatorname{diam} K_n = 0,$$

then $\bigcap_{1}^{\infty} K_n$ consists of exactly one point.

Cauchy Sequences

Theorem

- (a) In any metric space X, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if $\{p_n\}$ is a Cauchy sequence in X, then $\{p_n\}$ converges to some point of X.
- (c) In \mathbb{R}^k , every Cauchy sequence converges.

Definition

A metric space in which every Cauchy sequence converges is said to be complete.

Sequences

Cauchy Sequences

Definition

A sequence $\{s_n\}$ of real numbers is said to be

- (a) monotonically increasing if $s_n \leq s_{n+1}$ for all n;
- (b) monotonically decreasing if $s_n \geq s_{n+1}$ for all n;

Theorem

Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Definition

Let $\{s_n\}$ be a sequence of real numbers with the following property:

▶ For every real M, there is an integer N such that $n \ge N$ implies $s_n \ge M$. We then write

$$s_n \to +\infty$$
.

▶ Similarly, if for every real M, there is an integer N such that $n \ge N$ implies $s_n \le M$. We then write

$$s_n \to -\infty$$
.

Definition

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers x (in the extended real number system) such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. Define

$$s^* = \sup E, \ s_* = \inf E.$$

 s^* is called the upper limit and s_* is called the lower limit of $\{s_n\}$; we use the notation

$$\limsup_{n\to\infty} s_n = s^*, \ \liminf_{n\to\infty} s_n = s_*.$$

Remark

 $\limsup \text{ and } \liminf \text{ always exist.}$

Theorem

Let $\{s_n\}$ be a sequence of real numbers. Let E and s^* have the same meaning as in the above definition. Then s^* has the following two properties:

- (a) $s^* \in E$.
- (b) If $x > s^*$, there is an integer N such that $n \ge N$ implies $s_n < x$.

Moreover, s^* is the only number with the properties (a) and (b).

Sequences

Upper and Lower Limits

Example

(a) Let $\{s_n\}$ be a sequence containing all rationals. Then every real number is a subsequential limit, and

$$\limsup_{n\to\infty} s_n = +\infty, \ \liminf_{n\to\infty} s_n = -\infty$$

(b) Let $s_n = (-1)^n/[1+(1/n)]$. Then

$$\limsup_{n \to \infty} s_n = 1, \ \liminf_{n \to \infty} s_n = -1.$$

(c) For a real-valued sequence $\{s_n\}$, $\lim_{n\to\infty} s_n = s$ if and only if

$$\limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s.$$

Theorem

If $s_n \leq t_n$ for all $n \geq N$, where N is fixed, then

$$\liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} t_n,
\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n,$$

Some Special Sequences

Remark

If $0 \le x_n \le s_n$ for $n \ge N$, where N is some fixed number, and if $s_n \to 0$, then $x_n \to 0$.

Theorem

- (a) If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- (b) If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.
- (c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- (d) If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (e) If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Series

Definition

Given a sequence $\{a_n\}$, we use the notation

$$\sum_{n=p}^{q} a_n = a_p + a_{p+1} + \dots + a_q \quad (p \le q).$$

Consider a sequence $\{s_n\}$ where

$$s_n = \sum_{k=1}^n a_k.$$

Write

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots.$$

We call $\sum_{1}^{\infty} a_n$ a series, and $\sum_{1}^{n} a_k$ the partial sums of the series. If $\{s_n\}$ converges to s, we say the series converges and write

$$\sum_{n=1}^{\infty} a_n = s.$$

Series

Theorem

 $\sum a_n$ converges if and only if for every $\varepsilon > 0$, there is an integer N such that

$$\left| \sum_{k=n}^{m} a_k \right| \le \varepsilon$$

if $m \ge n \ge N$.

Theorem

If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem

A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

Series

Theorem (Comparison Test)

- (a) If $|a_n| \le c_n$ for $n \ge N_0$, where N_0 is some fixed integer, and if $\sum c_n$ converges, then $\sum a_n$ converges.
- (b) If $a_n \ge d_n \ge 0$ for $n \ge N_0$, and if $\sum d_n$ diverges, then $\sum a_n$ diverges.

Sequences

Series of Nonnegative Terms

Theorem

If $0 \le x < 1$, then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

If $x \ge 1$, then the series diverges.

Series of Nonnegative Terms

Theorem

Suppose $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots$$

converges.

Sequences

Series of Nonnegative Terms

Theorem

 $\sum \frac{1}{n^p}$ converges if p>1 and diverges if $p\leq 1$.

Theorem

If p > 1,

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

converges; if $p \leq 1$, the series diverges.

The Number e

Definition

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

 $n! = 1 \cdot 2 \cdot 3 \cdots n$ if $n \ge 1$, and 0! = 1.

Remark

$$s_n = 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot \dots n}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3.$$

The Number e

Theorem

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Series The No

The Number e

The Root and Ratio Tests
Exercises

The Number e

Theorem

e is irrational.

Series The N

The Number e

The Root and Ratio Tests
Exercises

The Number e

Theorem

e is not algebraic.

The Root and Ratio Tests

Theorem (Root Test)

Given
$$\sum a_n$$
, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then

- (a) if $\alpha < 1$, $\sum a_n$ converges;
- (b) if $\alpha > 1$, $\sum a_n$ diverges;
- (c) if $\alpha = 1$, the test gives no information.

Sequences

The Root and Ratio Tests

Theorem (Ratio Test)

The series $\sum a_n$

- (a) converges if $\limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1$,
- (b) diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$, where n_0 is some fixed integer.

The Root and Ratio Tests

Theorem

For any sequence $\{c_n\}$ of positive numbers,

$$\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \le \liminf_{n \to \infty} \sqrt[n]{c_n}$$

$$\limsup_{n \to \infty} \sqrt[n]{c_n} \le \limsup_{n \to \infty} \frac{c_{n+1}}{c_n}$$

Series
The Number e
The Root and Ratio Tests
Exercises

Exercises

Ex 3.1

If $\{s_n\}$ converges, so does $\{|s_n|\}$. Is the converse true?

Let
$$s_1 = \sqrt{2}$$
 and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}}.$$

Show that s_n converges and $s_n < 2$ for all n.

Ex 3.4

Find \limsup and \liminf of the following sequence:

$$s_1 = 0; \ s_{2m} = \frac{s_{2m-1}}{2}; \ s_{2m+1} = \frac{1}{2} + s_{2m}.$$

Ex 3.5

For any sequences $\{a_n\}$, $\{b_n\}$, show that

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$$

where the sum on the right is not of the form $\infty - \infty$.

Series
The Number e
The Root and Ratio Tests
Exercises

Exercises

Ex 3.7

If $a_n > 0$ and $\sum a_n$ converges, then $\sum \frac{\sqrt{a_n}}{n}$ converges.

Ex 3.11

Suppose $a_n > 0$ and $s_n = a_1 + \cdots + a_n$, and $\sum a_n$ diverges.

(a)
$$\sum \frac{a_n}{1+a_n}$$
 diverges.

Ex 3.11

Suppose $a_n > 0$ and $s_n = a_1 + \cdots + a_n$, and $\sum a_n$ diverges.

(b) Show that

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}},$$

and deduce that $\sum \frac{a_n}{s_n}$ diverges.

Ex 3.11

Suppose $a_n > 0$ and $s_n = a_1 + \cdots + a_n$, and $\sum a_n$ diverges.

(c) Show that

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n},$$

and deduce that $\sum \frac{a_n}{s_n^2}$ converges.

Ex 3.11

Suppose $a_n > 0$ and $s_n = a_1 + \cdots + a_n$, and $\sum a_n$ diverges.

(d) What can we said about

$$\sum \frac{a_n}{1 + na_n}, \ \sum \frac{a_n}{1 + n^2 a_n}?$$

Ex 3.12

Suppose $a_n > 0$ and $\sum a_n$ converges. Put $r_n = \sum_{m=n}^{\infty} a_m$.

(a) Prove that

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > 1 - \frac{r_n}{r_m}$$

if m < n, and deduce that $\sum \frac{a_n}{r_n}$ diverges.

Ex 3.12

Suppose $a_n > 0$ and $\sum a_n$ converges. Put $r_n = \sum_{m=n}^{\infty} a_m$.

(b) Prove that

$$\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

and deduce that $\sum \frac{a_n}{\sqrt{r_n}}$ converges.

Sequences

The End