

UM10375 LPC1311/13/42/43 User manual

Rev. 2 — 7 July 2010

User manual

Document information

Info	Content
Keywords	ARM Cortex-M3, microcontroller, USB, LPC1311, LPC1313, LPC1342, LPC1343
Abstract	LPC1311/13/42/43 user manual

LPC13xx User manual

Revision history

Rev	Date	Description
2	20100707	LPC1311/13/42/43 user manual
		Modifications:
		 Interrupt handling registers added to NVIC chapter.
		 Description of bootloader revisions added in <u>Section 19.2</u>.
		 Description of power management updated in <u>Section 3.8 "Power management"</u>.
		 Description of register PDSLEEPCFG updated in <u>Table 50 "Deep-sleep configuration</u> register (PDSLEEPCFG, address 0x4004 8230) bit description".
		 Editorial updates throughout the manual.
		 Handling of clock switching updated in <u>Chapter 3</u>.
		 Description of Systick timer and register names updated in <u>Chapter 16</u>.
		 Reset value of the PRESETCTRL register corrected (<u>Table 7</u>).
		 Bit 8 added to PCON register (<u>Table 58</u>).
		 Pin functions TRST, TDO, TMS, TDI changed to R (Reserved) throughout the document.
		 Description of GPIOnDATA register updated (<u>Section 8.4.1</u>).
		 SSP time-out value added in <u>Chapter 13</u>.
		 Description of flash content protection added (<u>Section 19.6</u>).
		 U0FIFOLVL register removed in <u>Chapter 11</u>.
		 V_{DD(3V3)} and V_{DD(IO)} combined to V_{DD} throughout the user manual.
		 PLL configuration examples added (<u>Table 55</u>).
		 Document template updated.
		 Basic configuration sections added.
		 Watchdog oscillator frequency spread changed to ± 40% over processing and temperature (<u>Section 3.5.8</u>).
		 Inputs to the system oscillator changed (watchdog oscillator removed) in the system control block,.
		 Remove PLL modes "direct CCO mode", "bypass mode", and "direct bypass mode" in the system control block.
		Editorial updates to the GPIO chapter.
		 Editorial updates to the I²C chapter.
		Editorial updates to the System control chapter.
		 Reset values of SYSAHBCTRL register updated.
1	20091106	LPC1311/13/42/43 user manual

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10375

Chapter 1: LPC13xx Introductory information

Rev. 2 — 7 July 2010

User manual

1.1 Introduction

The LPC13xx are ARM Cortex-M3 based microcontrollers for embedded applications featuring a high level of integration and low power consumption. The ARM Cortex-M3 is a next generation core that offers system enhancements such as enhanced debug features and a higher level of support block integration.

The LPC13xx operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with separate local instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3 CPU also includes an internal prefetch unit that supports speculative branching.

The peripheral complement of the LPC13xx series includes up to 32 kB of flash memory, up to 8 kB of data memory, USB Device, one Fast-mode Plus (FM+) I²C interface, one UART, four general purpose timers, and up to 42 general purpose I/O pins.

1.2 How to read this manual

This user manual describes parts LPC1311, LPC1313, LPC1342, LPC1343. Part-specific features and registers are listed at the beginning of each chapter.

1.3 Features

- ARM Cortex-M3 processor, running at frequencies of up to 72 MHz.
- ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).
- Serial Wire Debug and Serial Wire Trace port.
- 32 kB (LPC1343/13)/16 kB (LPC1342)/8 kB (LPC1311) on-chip flash programming memory.
- 8 kB (LPC1343/13)/4 kB (LPC1342/11) SRAM.
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.
- Code Read Protection (CRP) with different security levels.
- Selectable boot-up: UART or USB (USB on LPC134x only).
- On-chip drivers for MSC and HID (LPC134x only).
- Serial interfaces:
 - USB 2.0 full-speed device controller with on-chip PHY for device (LPC1342/43 only).
 - UART with fractional baud rate generation, modem, internal FIFO, and RS-485/EIA-485 support.
 - SSP controller with FIFO and multi-protocol capabilities.
 - I²C-bus interface supporting full I²C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode.

Chapter 1: LPC13xx Introductory information

Other peripherals:

- Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors.
- GPIO pins can be used as edge and level sensitive interrupt sources.
- High-current output driver (20 mA) on one pin.
- High-current sink drivers (20 mA) on two I²C-bus pins in Fast-mode Plus.
- Four general purpose counter/timers with a total of four capture inputs and 13 match outputs.
- Programmable WatchDog Timer (WDT).
- System tick timer.
- Analog peripherals
 - 10-bit ADC with input multiplexing among 8 pins.

Clocking

- Integrated oscillator with an operating range of 1 MHz to 25 MHz.
- 12 MHz internal RC oscillator trimmed to 1% accuracy over the entire temperature and voltage range that can optionally be used as a system clock.
- Programmable WatchDog Oscillator (WDO) with a frequency range of 7.8 kHz to 1.8 MHz.
- System PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator or the internal RC oscillator.
- For USB (LPC1342/43), a second, dedicated PLL is provided.
- Clock output function with divider that can reflect the system oscillator clock, IRC clock, CPU clock, or the watchdog clock.

Power management

- Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, and Deep power-down modes.
- Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.
- Processor wake-up from Deep-sleep mode via a dedicated start logic using up to 40 of the functional pins.
- Single power supply (2.0 V to 3.6 V).
- Brownout detect with four separate thresholds for interrupt and one threshold for forced reset.
- Power-On Reset (POR).
- Unique device serial number for identification.
- Available as 48-pin LQFP package and 33-pin HVQFN package.

Chapter 1: LPC13xx Introductory information

1.4 Ordering options

Table 1. Ordering options for the LPC13xx parts

	.								
Type number	Flash	Total SRAM	USB	UART RS-485	I ² C/ Fast+	SSP	ADC channels	Pins	Package
LPC1311FHN33	8 kB	4 kB	-	1	1	1	8	33	HVQFN33
LPC1313FBD48	32 kB	8 kB	-	1	1	1	8	48	LQFP48
LPC1313FHN33	32 kB	8 kB	-	1	1	1	8	33	HVQFN33
LPC1342FHN33	16 kB	4 kB	Device	1	1	1	8	33	HVQFN33
LPC1343FBD48	32 kB	8 kB	Device	1	1	1	8	48	LQFP48
LPC1343FHN33	32 kB	8 kB	Device	1	1	1	8	33	HVQFN33

Chapter 1: LPC13xx Introductory information

1.5 Block diagram

UM10375

Chapter 2: LPC13xx Memory mapping

Rev. 2 — 7 July 2010

User manual

2.1 How to read this chapter

See Table 2 for LPC13xx memory configurations:

Table 2. LPC13xx memory configuration

		_		
Part	Flash	Address range	SRAM	Address range
LPC1311	8 kB	0x0000 0000 - 0x0000 1FFF	4 kB	0x1000 0000 - 0x1000 0FFF
LPC1313	32 kB	0x0000 0000 - 0x0000 7FFF	8 kB	0x1000 0000 - 0x1000 1FFF
LPC1342	16 kB	0x0000 0000 - 0x0000 3FFF	4 kB	0x1000 0000 - 0x1000 0FFF
LPC1343	32 kB	0x0000 0000 - 0x0000 7FFF	8 kB	0x1000 0000 - 0x1000 1FFF

2.2 Memory map

Figure 2 shows the memory and peripheral address space of the LPC13xx.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. On the LPC13xx, the GPIO ports are the only AHB peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

All peripheral register addresses are 32-bit word aligned regardless of their size. An implication of this is that word and half-word registers must be accessed all at once. For example, it is not possible to read or write the upper byte of a word register separately.

Chapter 2: LPC13xx Memory mapping

2.3 Memory remapping

For details, see Table 6.

UM10375

Chapter 3: LPC13xx System configuration

Rev. 2 — 7 July 2010

User manual

3.1 How to read this chapter

The system configuration registers apply to all LPC13xx parts with the following exceptions:

Input pins to the start logic

For HVQFN packages, the start logic control bits (see <u>Table 41</u> to <u>Table 48</u>) are reserved for port pins PIO2_1 to PIO2_11 and PIO3_0, PIO3_1, and PIO3_3.

PIO reset status registers

For HVQFN packages, the reset status bits (see <u>Table 37</u> and <u>Table 38</u>) are reserved for port pins PIO2_1 to PIO2_11 and PIO3_0 and PIO3_1, and PIO3_3.

USB clocking and power control

Since the USB block is available on the LPC1342 and LPC1343 only, the registers and register bits listed in <u>Table 3</u> are reserved for parts LPC1311 and LPC1313:

Table 3. USB related registers and register bits reserved for LPC1311/13

Name	Access	Address offset	Description	Register bits reserved for LPC1311/13
USBPLLCTRL	R/W	0x010	USB PLL control	all
USBPLLSTAT	R	0x014	USB PLL status	all
USBPLLCLKSEL	R/W	0x048	USB PLL clock source select	all
USBPLLCLKUEN	R/W	0x04C	USB PLL clock source update enable	all
SYSAHBCLKCTRL	R/W	0x080	System AHB clock control	bit 14
USBCLKSEL	R/W	0x0C0	USB clock source select	all
USBCLKUEN	R/W	0x0C4	USB clock source update enable	all
USBCLKDIV	R/W	0x0C8	USB clock source divider	all
PDSLEEPCFG	R/W	0x230	Power-down states in Deep-sleep mode	bits 8 and 10
PDAWAKECFG	R/W	0x234	Power-down states after wake-up from Deep-sleep mode	bits 8 and 10
PDRUNCFG	R/W	0x238	Power-down configuration register	bits 8 and 10

Chapter 3: LPC13xx System configuration

3.2 Introduction

The system configuration block controls oscillators, the power management unit, and clock generation of the LPC13xx. Also included in this block are registers for setting the priority for AHB access and a register for remapping flash, SRAM, and ROM memory areas.

3.3 Pin description

Table 4 shows pins that are associated with system control block functions.

Table 4. Pin summary

Pin name	Pin direction	Pin description
CLKOUT	0	Clockout pin
PIO0_0 to PIO0_11	I	Wake-up pins port 0
PIO1_0 to PIO1_11	I	Wake-up pins port 1
PIO2_0 to PIO2_11[1]	I	Wake-up pins port 2
PIO3_0 to PIO3_3[1]	I	Wake-up pins port 3

^[1] For HVQFN packages, applies to P2_0, P3_2, and P3_3 only.

Chapter 3: LPC13xx System configuration

3.4 Clocking and power control

See Figure 3 for an overview of the LPC13xx Clock Generation Unit (CGU).

The LPC131x include three independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application.

Following reset, the LPC131x will operate from the Internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency.

The SYSAHBCLKCTRL register gates the system clock to the various peripherals and memories. UART, SSP0/1, the SysTick timer, and the ARM trace clock have individual clock dividers to derive peripheral clocks from the main clock.

The USB clock, if available, and the watchdog clock, can be derived from the oscillator output or the main clock.

The main clock, and the clock outputs from the IRC, the system oscillator, and the watchdog oscillator can be observed directly on the CLKOUT pin.

User manual

Chapter 3: LPC13xx System configuration

3.5 Register description

All registers, regardless of size, are on word address boundaries. Details of the registers appear in the description of each function.

See <u>Section 3.11</u> for the flash access timing register, which can be re-configured as part the system setup. This register is not part of the system configuration block.

13 of 333

Chapter 3: LPC13xx System configuration

Table 5. Register overview: system control block (base address 0x4004 8000)

Name	Access	Address offset	Description	Reset value	Reference
SYSMEMREMAP	R/W	0x000	System memory remap	0x0000 0002	Table 6
PRESETCTRL	R/W	0x004	Peripheral reset control	0x0000 0000	Table 7
SYSPLLCTRL	R/W	0x008	System PLL control	0x0000 0000	Table 8
SYSPLLSTAT	R	0x00C	System PLL status	0x0000 0000	Table 9
USBPLLCTRL	R/W	0x010	USB PLL control	0x0000 0000	Table 10
USBPLLSTAT	R	0x014	USB PLL status	0x0000 00000	Table 11
-	-	0x018 - 0x01C	Reserved	-	-
SYSOSCCTRL	R/W	0x020	System oscillator control	0x0000 00000	Table 12
WDTOSCCTRL	R/W	0x024	Watchdog oscillator control	0x0000 00000	Table 13
IRCCTRL	R/W	0x028	IRC control	0x0000 0080	Table 14
-	-	0x02C	Reserved	-	-
SYSRESSTAT	R	0x030	System reset status register	0x0000 00000	Table 15
-	-	0x034 - 0x03C	Reserved	-	-
SYSPLLCLKSEL	R/W	0x040	System PLL clock source select	0x0000 00000	Table 16
SYSPLLCLKUEN	R/W	0x044	System PLL clock source update enable	0x0000 00000	Table 17
USBPLLCLKSEL	R/W	0x048	USB PLL clock source select	0x0000 0000	Table 18
USBPLLCLKUEN	R/W	0x04C	USB PLL clock source update enable	0x0000 0000	Table 19
-	-	0x050 - 0x06C	Reserved	-	-
MAINCLKSEL	R/W	0x070	Main clock source select	0x0000 00000	Table 20
MAINCLKUEN	R/W	0x074	Main clock source update enable	0x0000 00000	Table 21
SYSAHBCLKDIV	R/W	0x078	System AHB clock divider	0x0000 0001	Table 22
-	-	0x07C	Reserved	-	-
SYSAHBCLKCTRL	R/W	0x080	System AHB clock control	0x0000 485F	Table 23
-	-	0x084 - 0x090	Reserved	-	-
SSPCLKDIV	R/W	0x094	SSP clock divder	0x0000 0001	Table 24
UARTCLKDIV	R/W	0x098	UART clock divder	0x0000 00000	Table 25
-	-	0x09C - 0x0A8	Reserved	-	-
TRACECLKDIV	R/W	0x0AC	ARM trace clock divider	0x0000 00000	Table 26
SYSTICKCLKDIV	R/W	0x0B0	SYSTICK clock divder	0x0000 00000	Table 27
-	-	0x0B4 - 0x0BC	Reserved	-	-
USBCLKSEL	R/W	0x0C0	USB clock source select	0x0000 00000	Table 28
USBCLKUEN	R/W	0x0C4	USB clock source update enable	0x0000 00000	Table 29
USBCLKDIV	R/W	0x0C8	USB clock source divider	0x0000 0001	Table 30
-	-	0x0CC	Reserved	-	-
WDTCLKSEL	R/W	0x0D0	WDT clock source select	0x0000 0000	Table 31
WDTCLKUEN	R/W	0x0D4	WDT clock source update enable	0x0000 0000	Table 32
WDTCLKDIV	R/W	0x0D8	WDT clock divider	0x0000 0000	Table 33
-	-	0x0DC	Reserved	-	-
CLKOUTCLKSEL	R/W	0x0E0	CLKOUT clock source select	0x0000 0000	Table 34
	R/W	0x0E4	CLKOUT clock source update enable	0x0000 0000	Table 35
CLKOUTUEN	IX/VV	UNULT	ozitoo i dicak cource apaate chable		

Chapter 3: LPC13xx System configuration

Table 5. Register overview: system control block (base address 0x4004 8000) ...continued

Name	Access	Address offset	Description	Reset value	Reference
-	-	0x0EC - 0x0FC	Reserved	-	-
PIOPORCAP0	R	0x100	POR captured PIO status 0	User dependent	Table 37
PIOPORCAP1	R	0x104	POR captured PIO status 1	User dependent	Table 37
-	-	0x108 - 0x14C	Reserved	0x0000 0000	-
BODCTRL	R/W	0x150	BOD control	0x0000 0000	Table 39
-	-	0x154	Reserved	-	-
SYSTCKCAL	R/W	0x158	System tick counter calibration	0x0000 0004	Table 40
-	-	0x15C - 0x1FC	Reserved	-	-
STARTAPRP0	R/W	0x200	Start logic edge control register 0; bottom 32 interrupts	n/a	Table 41
STARTERP0	R/W	0x204	Start logic signal enable register 0; bottom 32 interrupts	n/a	Table 42
STARTRSRP0CLR	W	0x208	Start logic reset register 0; bottom 32 interrupts	n/a	Table 43
STARTSRP0	R	0x20C	Start logic status register 0; bottom 32 interrupts	n/a	Table 44
STARTAPRP1	R/W	0x210	Start logic edge control register 1; top 8 interrupts	n/a	Table 45
STARTERP1	R/W	0x214	Start logic signal enable register 1; top 8 interrupts	n/a	Table 46
STARTRSRP1CLR	W	0x218	Start logic reset register 1; top 8 interrupts	n/a	Table 47
STARTSRP1	R	0x21C	Start logic status register 1; top 8 interrupts	n/a	Table 48
-	-	0x220 - 0x22C	Reserved	-	-
PDSLEEPCFG	R/W	0x230	Power-down states in Deep-sleep mode	0x0000 0000	Table 50
PDAWAKECFG	R/W	0x234	Power-down states after wake-up from Deep-sleep mode	0x0000 FDF0	Table 51
PDRUNCFG	R/W	0x238	Power-down configuration register	0x0000 FDF0	Table 52
-	-	0x23C - 0x3F0	Reserved		_
DEVICE_ID	R	0x3F4	Device ID	part dependent	Table 53

3.5.1 System memory remap register

The system memory remap register selects whether the ARM interrupt vectors are read from the boot ROM, the flash, or the SRAM.

Chapter 3: LPC13xx System configuration

Table 6. System memory remap register (SYSMEMREMAP, address 0x4004 8000) bit description

Bit	Symbol	Value	Description	Reset value
1:0	MAP		System memory remap	10
		00	Boot Loader Mode. Interrupt vectors are re-mapped to Boot ROM.	
		01	User RAM Mode. Interrupt vectors are re-mapped to Static RAM.	
		10 or 11	User Flash Mode. Interrupt vectors are not re-mapped and reside in Flash.	
31:2	-	-	Reserved	0x00

3.5.2 Peripheral reset control register

This register allows software to reset the SSP and I2C peripherals. Writing a 0 to the SSP_RST_N or I2C_RST_N bits resets the SSP or I2C peripheral. Writing a 1 de-asserts the reset.

Remark: Before accessing the SSP and I2C peripherals, write a 1 to this register to ensure that the reset signals to the SSP and I2C are de-asserted.

Table 7. Peripheral reset control register (PRESETCTRL, address 0x4004 8004) bit description

Bit	Symbol	Value	Description	Reset value
0	SSP_RST_N		SSP reset control	0
		0	SSP reset enabled	
		1	SSP reset de-asserted	
1	1 I2C_RST_N		I2C reset control	0
			I2C reset enabled	
		1	I2C reset de-asserted	
31:2	-	-	Reserved	0x00

3.5.3 System PLL control register

This register connects and enables the system PLL and configures the PLL multiplier and divider values. The PLL accepts an input frequency from 10 MHz to 25 MHz from various clock sources. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock used by the CPU, peripherals, and optionally the USB subsystem. Note that the USB subsystem has its own dedicated PLL. The PLL can produce a clock up to the maximum allowed for the CPU, which is 72 MHz.

Chapter 3: LPC13xx System configuration

Table 8. System PLL control register (SYSPLLCTRL, address 0x4004 8008) bit description

Bit	Symbol	Value	Description	Reset value
4:0	MSEL		Feedback divider value. The division value M is the programmed MSEL value + 1.	0x000
		00000	Division ratio M = 1	
		11111	Division ration M = 32	
6:5	PSEL		Post divider ratio P. The division ratio is $2 \times P$.	0x00
		00	P = 1	
		01	P = 2	
		10	P = 4	
		11	P = 8	
31:7	-	-	Reserved. Do not write ones to reserved bits.	0x00

3.5.4 System PLL status register

This register is a Read-only register and supplies the PLL lock status (see Section 3.10.1).

Table 9. System PLL status register (SYSPLLSTAT, address 0x4004 800C) bit description

Bit	Symbol	Value	Description	Reset value
0	LOCK		PLL lock status	0x0
		0	PLL not locked	
		1	PLL locked	
31:1	-	-	Reserved	0x00

3.5.5 USB PLL control register

The USB PLL is identical to the system PLL and is used to provide a dedicated clock to the USB block if available (see Section 3.1).

This register connects and enables the USB PLL and configures the PLL multiplier and divider values. The PLL accepts an input frequency from 10 MHz to 25 MHz from various clock sources. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock 48 MHz clock used by the USB subsystem.

Remark: The USB PLL must be connected to the system oscillator for correct USB operation (see Table 18).

Table 10. USB PLL control register (USBPLLCTRL, address 0x4004 8010) bit description

Bit	Symbol	Value	Description	Reset value
4:0	MSEL		Feedback divider value. The division value M is the programmed MSEL value + 1.	0x000
		00000	Division ratio M = 1	
		11111	Division ration M = 32	

UM10375

Chapter 3: LPC13xx System configuration

Table 10. USB PLL control register (USBPLLCTRL, address 0x4004 8010) bit description

Bit	Symbol	Value	Description	Reset value
6:5 PS	PSEL		Post divider ratio P. The division ratio is $2 \times P$.	0x00
		00	P = 1	
		01	P = 2	
		10	P = 4	
		11	P = 8	
31:7	-	-	Reserved. Do not write ones to reserved bits.	0x00

3.5.6 USB PLL status register

This register is a Read-only register and supplies the PLL lock status (see Section 3.10.1).

Table 11. USB PLL status register (USBPLLSTAT, address 0x4004 8014) bit description

Bit	Symbol	Value	Description	Reset value
0	LOCK		PLL lock status	0x0
		0	PLL not locked	
		1	PLL locked	
31:1	-	-	Reserved	0x00

Chapter 3: LPC13xx System configuration

3.5.7 System oscillator control register

This register configures the frequency range for the system oscillator.

Table 12. System oscillator control register (SYSOSCCTRL, address 0x4004 8020) bit description

Bit	Symbol	Value	Description	Reset value
0	BYPASS		Bypass system oscillator	0x0
		0	Oscillator is not bypassed.	
		1	Bypass enabled. PLL input (sys_osc_clk) is fed directly from the XTALIN and XTALOUT pins.	
1	FREQRANGE		Determines frequency range for Low-power oscillator.	0x0
		0	1 - 20 MHz frequency range.	
		1	15 - 25 MHz frequency range	
31:2	-	-	Reserved	0x00

3.5.8 Watchdog oscillator control register

This register configures the watchdog oscillator. The oscillator consists of an analog and a digital part. The analog part contains the oscillator function and generates an analog clock (Fclkana). With the digital part, the analog output clock (Fclkana) can be divided to the required output clock frequency wdt_osc_clk. The analog output frequency (Fclkana) can be adjusted with the FREQSEL bits between 500 kHz and 3.4 MHz. With the digital part Fclkana will be divided (divider ratios = 2, 4,...,64) to wdt_osc_clk using the DIVSEL bits.

The output clock frequency of the watchdog oscillator can be calculated as $wdt_osc_clk = \frac{Fclkana}{(2 \times (1 + DIVSEL))} = 7.8 \text{ kHz}$ to 1.7 MHz (nominal values).

Remark: Any setting of the FREQSEL bits will yield a Fclkana value within \pm 40% of the listed frequency value. The watchdog oscillator is the clock source with the lowest power consumption. If accurate timing is required, use the IRC or system clock.

Remark: The frequency of the watchdog oscillator is undefined after reset. The watchdog oscillator frequency must be programmed by writing to the WDTOSCCTRL register before using the watchdog oscillator.

Table 13. Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description

Bit	Symbol	Value	Description	Reset value
4:0	DIVSEL		Select divider for Fclkana. wdt_osc_clk = $\frac{\text{Fclkana}}{(2 \times (1 + \text{DIVSEL}))}$.	0x0
		00000	2 × (1 + DIVSEL) = 2	
		00001	2 × (1 + DIVSEL) = 4	
		00010	2 × (1 + DIVSEL) = 6	
		11111	2 × (1 + DIVSEL) = 64	

Chapter 3: LPC13xx System configuration

Table 13. Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description

Bit	Symbol	Value	Description	Reset value
8:5 FRE	FREQSEL		Select watchdog oscillator analog output frequency (Fclkana).	0x00
		0001	0.5 MHz	
		0010	0.8 MHz	
		0011	1.1 MHz	
		0100	1.4 MHz	
		0101	1.6 MHz	
		0110	1.8 MHz	
		0111	2.0 MHz	
		1000	2.2 MHz	
		1001	2.4 MHz	
		1010	2.6 MHz	
		1011	2.7 MHz	
		1100	2.9 MHz	
		1101	3.1 MHz	
		1110	3.2 MHz	
		1111	3.4 MHz	
31:9	-	-	Reserved	0x00

3.5.9 Internal resonant crystal control register

This register is used to trim the on-chip 12 MHz oscillator. The trim value is factory-preset and written by the boot code on start-up.

Table 14. Internal resonant crystal control register (IRCCTRL, address 0x4004 8028) bit description

Bit	Symbol	Value	Description	Reset value
7:0	TRIM		Trim value	0x1000 0000, then flash will reprogram
31:8	-	-	Reserved	0x00

Chapter 3: LPC13xx System configuration

3.5.10 System reset status register

The SYSRSTSTAT register shows the source of the latest reset event. The bits are cleared by writing a one to any of the bits. The POR event clears all other bits in this register, but if another reset signal (e.g., EXTRST) remains asserted after the POR signal is negated, then its bit is set to detected.

Table 15. System reset status register (SYSRESSTAT, address 0x4004 8030) bit description

Bit	Symbol	Value	Description	Reset value
0	POR		POR reset status	0x0
		0	No POR detected	
		1	POR detected	
1	EXTRST		Status of the external RESET pin	0x0
		0	No RESET event detected	
		1	RESET detected	
2	WDT		Status of the Watchdog reset	0x0
		0	No WDT reset detected	
		1	WDT reset detected	
3	BOD		Status of the Brown-out detect reset	0x0
		0	No BOD reset detected	
		1	BOD reset detected	
4	SYSRST		Status of the software system reset. The ARM software reset has the same effect as the hardware reset using the RESET pin.	0x0
		0	No System reset detected	
		1	System reset detected	
31:5	-	-	Reserved	0x00

3.5.11 System PLL clock source select register

This register selects the clock source for the system PLL. The SYSPLLCLKUEN register (see Section 3.5.12) must be toggled from LOW to HIGH for the update to take effect.

Remark: The system oscillator must be selected if the system PLL is used to generate a 48 MHz clock to the USB block.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

21 of 333

Chapter 3: LPC13xx System configuration

Table 16. System PLL clock source select register (SYSPLLCLKSEL, address 0x4004 8040) bit description

Bit	Symbol	Value	Description	Reset value
1:0 SEL	SEL		System PLL clock source	0x00
		00	IRC oscillator	
		01	System oscillator	
		10	Reserved	
		11	Reserved	
31:2	-	-	Reserved	0x00

3.5.12 System PLL clock source update enable register

This register updates the clock source of the system PLL with the new input clock after the SYSPLLCLKSEL register has been written to. In order for the update to take effect, first write a zero to the SYSPLLUEN register and then write a one to SYSPLLUEN.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 17. System PLL clock source update enable register (SYSPLLCLKUEN, address 0x4004 8044) bit description

Bit	Symbol	Value	Description	Reset value
0 E	ENA		Enable system PLL clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.13 USB PLL clock source select register

This register selects the clock source for the dedicated USB PLL. The USBPLLCLKUEN register (see Section 3.5.14) must be toggled from LOW to HIGH for the update to take effect.

Remark: When switching clock sources, both clocks must be running before the clock source is updated in the USBPLLCLKUEN register. For USB operation, the clock source must be switched from IRC to system oscillator with both the IRC and the system oscillator running. After the switch, the IRC can be turned off.

Table 18. USB PLL clock source select register (USBPLLCLKSEL, address 0x4004 8048) bit description

Bit	Symbol	Value	Description	Reset value
1:0 SEL		USB PLL clock source	0x00	
		00	IRC. The USB PLL clock source must be switched to system oscillator for correct USB operation.	
		01	System oscillator	
		10	Reserved	
		11	Reserved	
31:2	-	-	Reserved	0x00

Chapter 3: LPC13xx System configuration

3.5.14 USB PLL clock source update enable register

This register updates the clock source of the USB PLL with the new input clock after the USBPLLCLKSEL register has been written to. In order for the update to take effect at the USB PLL input, first write a zero to the USBPLLUEN register and then write a one to USBPLLUEN.

Remark: The system oscillator must be selected in the USBPLLCLKSEL register in order to use the USB PLL, and this register must be toggled to update the USB PLL clock with the system oscillator.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 19. USB PLL clock source update enable register (USBPLLCLKLUEN, address 0x4004 804C) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable USB PLL clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.15 Main clock source select register

This register selects the main system clock which can be either any input to the system PLL, the output from the system PLL (sys_pllclkout), or the watchdog or IRC oscillators directly. The main system clock clocks the core, the peripherals and memories, and optionally the USB block.

The MAINCLKUEN register (see Section 3.5.16) must be toggled from LOW to HIGH for the update to take effect.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 20. Main clock source select register (MAINCLKSEL, address 0x4004 8070) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		Cock source for main clock	0x00
		00	IRC oscillator	
		01	Input clock to system PLL	
		10	WDT oscillator	
		11	System PLL clock out	
31:2	-	-	Reserved	0x00

3.5.16 Main clock source update enable register

This register updates the clock source of the main clock with the new input clock after the MAINCLKSEL register has been written to. In order for the update to take effect, first write a zero to the MAINCLKUEN register and then write a one to MAINCLKUEN.

23 of 333

Chapter 3: LPC13xx System configuration

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 21. Main clock source update enable register (MAINCLKUEN, address 0x4004 8074) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable main clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.17 System AHB clock divider register

This register divides the main clock to provide the system clock to the core, memories, and the peripherals. The system clock can be shut down completely by setting the DIV bits to 0x0.

Table 22. System AHB clock divider register (SYSAHBCLKDIV, address 0x4004 8078) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		System AHB clock divider values	0x01
		0	System clock disabled.	
		1	Divide by 1	
		to		
		255	Divide by 255	
31:8	-	-	Reserved	0x00

3.5.18 System AHB clock control register

The SYSAHBCLKCTRL register enables the clocks to individual system and peripheral blocks. The system clock (sys_ahb_clk[0], bit 0 in the SYSAHBCLKCTRL register) provides the clock for the AHB to APB bridge, the AHB matrix, the ARM Cortex-M3, the Syscon block, and the PMU. This clock cannot be disabled.

Table 23. System AHB clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description

Bit	Symbol	Value	Description	Reset value
0	SYS		Enables clock for AHB to APB bridge, to the AHB matrix, to the Cortex-M3 FCLK and HCLK, to the SysCon, and to the PMU. This bit is read only.	1
		0	Reserved	
		1	Enabled	
1	ROM		Enables clock for ROM.	1
		0	Disabled	
		1	Enabled	

User manual

24 of 333

Chapter 3: LPC13xx System configuration

Table 23. System AHB clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description ...continued

Bit	Symbol	Value	Description	Reset value
2	RAM		Enables clock for RAM.	1
		0	Disabled	
		1	Enabled	
3	3 FLASHREG		Enables clock for flash register interface.	1
		0	Disabled	
	1	Enabled		
4	FLASHARRAY		Enables clock for flash array access.	1
		0	Disabled	
		1	Enabled	
5	I2C		Enables clock for I2C.	0
		0	Disabled	
		1	Enabled	
6	GPIO		Enables clock for GPIO.	1
		0	Disabled	
		1	Enabled	
7	CT16B0		Enables clock for 16-bit counter/timer 0.	0
		0	Disabled	
		1	Enabled	
8	CT16B1		Enables clock for 16-bit counter/timer 1.	0
		0	Disabled	
		1	Enabled	
9	CT32B0		Enables clock for 32-bit counter/timer 0.	0
		0	Disabled	
		1	Enabled	
10	CT32B1		Enables clock for 32-bit counter/timer 1.	0
		0	Disabled	
		1	Enabled	
11	SSP		Enables clock for SSP.	_1
		0	Disabled	
		1	Enabled	
12	UART		Enables clock for UART. Note that the UART pins must be configured in the IOCON block before the UART clock can be enabled.	0
		0	Disabled	
		1	Enabled	
13	ADC		Enables clock for ADC.	0
		0	Disabled	
		1	Enabled	

Chapter 3: LPC13xx System configuration

Table 23. System AHB clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description ...continued

Bit	Symbol	Value	Description	Reset value
14	USB_REG		Enables clock for USB_REG.	1
			Disabled	
		1	Enabled	
15 WDT	WDT		Enables clock for WDT.	0
		0	Disabled	
		1	Enabled	
16	IOCON		Enables clock for IO configuration block.	0
		0	Disabled	
		1	Enabled	
31:17	-	-	Reserved	0x00

3.5.19 SSP clock divider register

This register configures the SSP peripheral clock SSP_PCLK. The SSP_PCLK can be shut down by setting the DIV bits to 0x0.

Table 24. SSP clock divider register (SSPCLKDIV, address 0x4004 8094) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		SSP_PCLK clock divider values	0x01
		0	Disable SSP_PCLK.	
		1	Divide by 1.	
		to		
		255	Divide by 255.	
31:8	-	-	Reserved	0x00

3.5.20 UART clock divider register

This register configures the UART peripheral clock UART_PCLK. The UART_PCLK can be shut down by setting the DIV bits to 0x0.

Remark: Note that the UART pins must be configured in the IOCON block before the UART clock can be enabled.

Table 25. UART clock divider register (UARTCLKDIV, address 0x4004 8098) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		UART_PCLK clock divider values	0x00
		0	Disable UART_PCLK.	
		1	Divide by 1.	
		to		
		255	Divide by 255.	
31:8	-	-	Reserved	0x00

Chapter 3: LPC13xx System configuration

3.5.21 Trace clock divider register

This register configures the ARM trace clock. The trace clock can be shut down by setting the DIV bits to 0x0.

TRACECLKDIV clock divider register (TRACECLKDIV, address 0x4004 80AC) bit Table 26. description

Bit	Symbol	Value	Description	Reset value
7:0 DIV	DIV		ARM trace clock divider values	0x00
		0	Disable trace clock.	
		1	Divide by 1.	
		to		
		255	Divide by 255.	
31:8	-	-	Reserved	0x00

3.5.22 SYSTICK clock divider register

This register configures the SYSTICK peripheral clock. The SYSTICK timer clock can be shut down by setting the DIV bits to 0x0.

Table 27. SYSTICK clock divider register (SYSTICKCLKDIV, address 0x4004 80B0) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		SYSTICK clock divider values	0x00
		0	Disable SYSTICK timer clock.	
		1	Divide by 1.	
		to		
		255	Divide by 255.	
31:8	-	-	Reserved	0x00

3.5.23 USB clock source select register

This register selects the clock source for the USB usb clk. The clock source can be either the USB PLL output or the main clock, and the clock can be further divided by the USBCLKDIV register (see Table 30) to obtain a 48 MHz clock.

The USBCLKUEN register (see Section 3.5.24) must be toggled from LOW to HIGH for the update to take effect.

Remark: When switching clock sources, both clocks must be running before the clock source is updated. The default clock source for the USB controller is the USB PLL output. For switching the clock source to the main clock, ensure that the system PLL and the USB PLL are running to make both clock sources available for switching. The main clock must be set to 48 MHz and configured with the main PLL and the system oscillator. After the switch, the USB PLL can be turned off.

Chapter 3: LPC13xx System configuration

Table 28. USB clock source select register (USBCLKSEL, address 0x4004 80C0) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		USB clock source	0x00
		00	USB PLL out	
		01	Main clock	
		10	Reserved	
		11	Reserved	
31:2	-	-	Reserved	0x00

3.5.24 USB clock source update enable register

This register updates the clock source of the USB with the new input clock after the USBCLKSEL register has been written to. In order for the update to take effect, first write a zero to the USBCLKUEN register and then write a one to USBCLKUEN.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 29. USB clock source update enable register (USBCLKUEN, address 0x4004 80C4) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable USB clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.25 USB clock divider register

This register allows the USB clock usb_clk to be divided to 48 MHz. The usb_clk can be shut down by setting the DIV bits to 0x0.

Table 30. USB clock divider register (USBCLKDIV, address 0x4004 80C8) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		USB clock divider values	0x01
		0	Disable	
		1	Divide by 1	
		to		
		255	Divide by 255	
31:8	-	-	Reserved	0x00

3.5.26 WDT clock source select register

This register selects the clock source for the watchdog timer. The WDTCLKUEN register (see Section 3.5.27) must be toggled from LOW to HIGH for the update to take effect.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

UM10375

Chapter 3: LPC13xx System configuration

Table 31. WDT clock source select register (WDTCLKSEL, address 0x4004 80D0) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		WDT clock source	0x00
		00	IRC oscillator	
		01	Main clock	
		10	Watchdog oscillator	
		11	Reserved	
31:2	-	-	Reserved	0x00

3.5.27 WDT clock source update enable register

This register updates the clock source of the watchdog timer with the new input clock after the WDTCLKSEL register has been written to. In order for the update to take effect at the input of the watchdog timer, first write a zero to the WDTCLKUEN register and then write a one to WDTCLKUEN.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 32. WDT clock source update enable register (WDTCLKUEN, address 0x4004 80D4) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable WDT clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.28 WDT clock divider register

This register determines the divider values for the watchdog clock wdt_clk.

Table 33. WDT clock divider register (WDTCLKDIV, address 0x4004 80D8) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		WDT clock divider values	0x00
		0	Disable	
		1	Divide by 1	
		to		
		255	Divide by 255	
31:8	-	-	Reserved	0x00

3.5.29 CLKOUT clock source select register

This register configures the clkout_clk signal to be output on the CLKOUT pin. All three oscillators and the main clock can be selected for the clkout_clk clock.

The CLKOUTCLKUEN register (see <u>Section 3.5.30</u>) must be toggled from LOW to HIGH for the update to take effect.

UM10375

Chapter 3: LPC13xx System configuration

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 34. CLKOUT clock source select register (CLKOUTCLKSEL, address 0x4004 80E0) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		CLKOUT clock source	0x00
		00	IRC oscillator	
		01	System oscillator	
		10	Watchdog oscillator	
		11	Main clock	
31:2	-	-	Reserved	0x00

3.5.30 CLKOUT clock source update enable register

This register updates the clock source of the CLKOUT pin with the new clock after the CLKOUTCLKSEL register has been written to. In order for the update to take effect at the input of the CLKOUT pin, first write a zero to the CLKCLKUEN register and then write a one to CLKCLKUEN.

Remark: When switching clock sources, both clocks must be running before the clock source is updated.

Table 35. CLKOUT clock source update enable register (CLKOUTUEN, address 0x4004 80E4) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable CLKOUT clock source update	0x0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	0x00

3.5.31 CLKOUT clock divider register

This register determines the divider value for the clkout_clk signal on the CLKOUT pin.

Table 36. CLKOUT clock divider registers (CLKOUTDIV, address 0x4004 80E8) bit description

Bit	Symbol	Value	Description	Reset value
7:0	DIV		Clock divider values	0x00
		0	Disable	
		1	Divide by 1	
		to		
		255	Divide by 255	
31:8	-	-	Reserved	0x00

Chapter 3: LPC13xx System configuration

3.5.32 POR captured PIO status register 0

The PIOPORCAP0 register captures the state (HIGH or LOW) of the PIO pins of ports 0,1, and 2 (pins PIO2_0 to PIO2_7) at power-on-reset. Each bit represents the reset state of one GPIO pin. This register is a read-only status register.

Table 37. POR captured PIO status registers 0 (PIOPORCAP0, address 0x4004 8100) bit description

Bit	Symbol	Description	Reset value
11:0	CAPPIO0_11 to CAPPIO0_0	Raw reset status input PIO0_11 to PIO0_0	User implementation dependent
23:12	CAPPIO1_11 to CAPPIO1_0	Raw reset status input PIO1_11 to PIO1_0	User implementation dependent
31:24	CAPPIO2_7 to CAPPIO2_0	Raw reset status input PIO2_7 to PIO2_0	User implementation dependent

3.5.33 POR captured PIO status register 1

The PIOPORCAP1 register captures the state (HIGH or LOW) of the PIO pins of port 2 (PIO2_8 to PIO2_11) and port 3 at power-on-reset. Each bit represents the reset state of one PIO pin. This register is a read-only status register.

Table 38. POR captured PIO status registers 1 (PIOPORCAP1, address 0x4004 8104) bit description

Bit	Symbol	Description	Reset value
0	CAPPIO2_8	Raw reset status input PIO2_8	User implementation dependent
1	CAPPIO2_9	Raw reset status input PIO2_9	User implementation dependent
2	CAPPIO2_10	Raw reset status input PIO2_10	User implementation dependent
3	CAPPIO2_11	Raw reset status input PIO2_11	User implementation dependent
4	CAPPIO3_0	Raw reset status input PIO3_0	User implementation dependent
5	CAPPIO3_1	Raw reset status input PIO3_1	User implementation dependent
6	CAPPIO3_2	Raw reset status input PIO3_2	User implementation dependent
7	CAPPIO3_3	Raw reset status input PIO3_3	User implementation dependent
8	CAPPIO3_4	Raw reset status input PIO3_4	User implementation dependent
9	CAPPIO3_5	Raw reset status input PIO3_5	User implementation dependent
31:10	-	Reserved	-

3.5.34 BOD control register

The BOD control register selects four separate threshold values for sending a BOD interrupt to the NVIC. Only one level is allowed for forced reset.

Table 39. BOD control register (BODCTRL, address 0x4004 8150) bit description

Bit	Symbol	Value	Description	Reset value	
1:0	BODRSTLEV		BOD reset level	0x00	
				The reset assertion threshold voltage is 1.49 V; the reset de-assertion threshold voltage is 1.64 V.	
		01 -11	Reserved		

UM10375

Chapter 3: LPC13xx System configuration

Bit	Symbol	Value	Description	Reset value
3:2	BODINTVAL		BOD interrupt level	0x00
	00	The interrupt assertion threshold voltage is 1.69 V; the interrupt de-assertion threshold voltage is 1.84 V.		
		01	The interrupt assertion threshold voltage is 2.29 V; the interrupt de-assertion threshold voltage is 2.44 V.	
		10	The interrupt assertion threshold voltage is 2.59 V; the interrupt de-assertion threshold voltage is 2.74 V.	
		11	The interrupt assertion threshold voltage is 2.87 V; the interrupt de-assertion threshold voltage is 2.98 V.	
4	BODRSTENA		BOD reset enable	0x0
		0	Disable reset function.	
		1	Enable reset function.	

BOD control register (BODCTRL address 0x4004 8150) bit description Tahla 30

3.5.35 System tick counter calibration register

31:5

Table 40. System tick timer calibration register (SYSTCKCAL, address 0x4004 8158) bit description

Reserved

Bit	Symbol	Value	Description	Reset value
25:0	CAL		System tick timer calibration value	<tbd></tbd>
31:26	-	-	Reserved	0x00

3.5.36 Start logic edge control register 0

The STARTAPRP0 register controls the start logic inputs of ports 0 (PIO0 0 to PIO0 11) and 1 (PIO1 0 to PIO1 11) and the lower 8 inputs of port 2 (PIO2 0 to PIO2 7). This register selects a falling or rising edge on the corresponding PIO input to produce a falling or rising clock edge, respectively, for the start logic (see Section 3.9.2).

Every bit in the STARTAPRP0 register controls one port input and is connected to one wake-up interrupt in the NVIC. Bit 0 in the STARTAPRP0 register corresponds to interrupt 0, bit 1 to interrupt 1, etc. (see Table 61). The bottom 32 interrupts are contained this register, the top 8 interrupts are contained in the STARTAPRP1 register for total of 40 wake-up interrupts.

Remark: Each interrupt connected to a start logic input must be enabled in the NVIC if the corresponding PIO pin is used to wake up the chip from Deep-sleep mode.

Start logic edge control register 0 (STARTAPRP0, address 0x4004 8200) bit description

Bit	Symbol	Value	Description	Reset value
0	APRPIO0_0		Edge select for start logic input PIO0_0	0
		0	Falling edge	
		1	Rising edge	

UM10375

0x00

Chapter 3: LPC13xx System configuration

Table 41. Start logic edge control register 0 (STARTAPRP0, address 0x4004 8200) bit description ...continued

Bit	Symbol	Value	Description	Reset value
11:1	APRPIO0_11		Edge select for start logic input PIO0_11 to PIO0_1	0
	to APRPIO0_1	0	Falling edge	
	AI 100_1	1	Rising edge	
12	APRPIO1_0		Edge select for start logic input PIO1_0	0
		0	Falling edge	
		1	Rising edge	
23:13	APRPIO1_11 to APRPIO1_1		Edge select for start logic input PIO1_11 to PIO1_1	0
		0	Falling edge	
		1	Rising edge	
24	APRPIO2_0		Edge select for start logic input PIO2_0	0
		0	Falling edge	
		1	Rising edge	
31:25	APRPIO2_7		Edge select for start logic input PIO2_7 to PIO2_1	0
	to APRPIO2 1	0	Falling edge	
	AI NI 102_1	1	Rising edge	

3.5.37 Start logic signal enable register 0

This STARTERP0 register enables or disables the start signal bits in the start logic. The bit assignment is identical to <u>Table 41</u>.

Table 42. Start logic signal enable register 0 (STARTERP0, address 0x4004 8204) bit description

Bit	Symbol	Value	Description	Reset value
0	ERPIO0_0		Enable start signal for start logic input PIO0_0	0
		0	Disabled	
		1	Enabled	
11:1	ERPIO0_11 to ERPIO_0_1		Enable start signal for start logic input PIO0_11 to PIO0_1	0
		0	Disabled	
		1	Enabled	
12	ERPIO1_0		Enable start signal for start logic input PIO1_0	0
			0 Disabled	Disabled
		1	Enabled	
23:13	ERPIO1_11 to ERPIO1_1		Enable start signal for start logic input PIO1_11 to PIO1_1	0
		0	Disabled	
		1	Enabled	
24	ERPIO2_0		Enable start signal for start logic input PIO2_0	0
		0	Disabled	
		1	Enabled	

Chapter 3: LPC13xx System configuration

Table 42. Start logic signal enable register 0 (STARTERP0, address 0x4004 8204) bit description ...continued

Bit	Symbol	Value	Description	Reset value
31:25	ERPIO2_7 to ERPIO2_1		Enable start signal for start logic input PIO2_7 to PIO2_1	0
		0	Disabled	
		1	Enabled	

3.5.38 Start logic reset register 0

Writing a one to a bit in the STARTRSRPOCLR register resets the start logic state. The bit assignment is identical to <u>Table 41</u>. The start-up logic uses the input signals to generate a clock edge for registering a start signal. This clock edge (falling or rising) sets the interrupt for waking up from Deep-sleep mode. Therefore, the start-up logic states must be cleared before being used.

Table 43. Start logic reset register 0 (STARTRSRP0CLR, address 0x4004 8208) bit description

Bit	Symbol	Value	Description	Reset value	
0	RSRPIO0_0		Start signal reset for start logic input PIO0_0	n/a	
		0	-		
		1	Write: reset start signal		
11:1	RSRPIO0_11 to		Start signal reset for start logic input PIO0_11 to PIO0_1	n/a	
	RSRPIO0_1	0	-		
		1	Write: reset start signal		
12	RSRPIO1_0	RSRPIO1_0		Start signal reset for start logic input PIO1_0	n/a
		0	-		
		1	Write: reset start signal		
23:13	RSRPIO1_11 to		Start signal reset for start logic input PIO1_11 to PIO1_1	n/a	
	RSRPIO1_1	0	-		
		1	Write: reset start signal		
24	RSRPIO2_0		Start signal reset for start logic input PIO2_0	n/a	
		0	-		
		1	Write: reset start signal		
31:25	RSRPIO2_7 to		Start signal reset for start logic input PIO2_7 to PIO2_1	n/a	
	RSRPIO2_1	0	-		
		1	Write: reset start signal		

3.5.39 Start logic status register 0

This register reflects the status of the enabled start signal bits. The bit assignment is identical to <u>Table 41</u>. Each bit (if enabled) reflects the state of the start logic, i.e. whether or not a wake-up signal has been received for a given pin.

Chapter 3: LPC13xx System configuration

Table 44. Start logic status register 0 (STARTSRP0, address 0x4004 820C) bit description

Bit	Symbol	Value	Description	Reset value			
0	SRPIO0_0		Start signal status for start logic input PIO0_0	n/a			
		0	No start signal received				
		1	Start signal pending				
11:1	SRPIO0_11 to SRPIO0_1		Start signal status for start logic input PIO0_11 to PIO0_1	n/a			
		0	No start signal received				
	1	Start signal pending					
12	SRPIO1_0	SRPIO1_0	SRPIO1_0	SRPIO1_0		Start signal status for start logic input PIO1_0	n/a
		0	No start signal received				
		1	Start signal pending				
23:13	SRPIO1_11 to SRPIO1_1		Start signal status for start logic input PIO1_11 to PIO1_1	n/a			
		0	No start signal received				
		1	Start signal pending				
24	SRPIO2_0		Start signal status for start logic input PIO2_0	n/a			
		0	No start signal received				
		1	Start signal pending				
31:25	SRPIO2_7 to SRPIO2_1		Start signal status for start logic input PIO2_7 to PIO2_1	n/a			
		0	No start signal received				
		1	Start signal pending				

3.5.40 Start logic edge control register 1

The STARTAPRP1 register controls the start logic inputs of ports 2 (PIO2_8 to PIO2_11) and 3 (PIO3_0 to PIO3_3). This register selects a falling or rising edge on the corresponding PIO input to produce a falling or rising clock edge, respectively, for the start-up logic.

Every bit in the STARTAPRP1 register controls one port input and is connected to one wake-up interrupt in the NVIC. Bit 0 in the STARTAPRP1 register corresponds to interrupt 32, bit 1 to interrupt 33, up to bit 7 corresponding to interrupt 39 (see Table 61).

Remark: Each interrupt connected to a start logic input must be enabled in the NVIC if the corresponding PIO pin is used to wake up the chip from Deep-sleep mode.

Table 45. Start logic edge control register 1 (STARTAPRP1, address 0x4004 8210) bit description

Bit	Symbol	Value	Description	Reset value	
0	APRPIO2_8	APRPIO2_8		Edge select for start logic input PIO2_8	0
		0	Falling edge		
		1	Rising edge		

35 of 333

Chapter 3: LPC13xx System configuration

Table 45. Start logic edge control register 1 (STARTAPRP1, address 0x4004 8210) bit description ...continued

Bit	Symbol	Value	Description	Reset value	
3:1	APRPIO2_11		Edge select for start logic input PIO2_11 to PIO2_9	0	
	to APRPIO2_9	0	Falling edge		
	AI IXI 102_9	1	Rising edge		
4	APRPIO3_0		Edge select for start logic input PIO3_0	0	
		0	Falling edge		
		1	Rising edge		
7:5	APRPIO3_3 to APRPIO3_1	APRPIO3_3		Edge select for start logic input PIO3_3 to PIO3_1	0
		0	Falling edge		
	AI III 105_1	1	Rising edge		
31:8	-	-	Reserved	0	

3.5.41 Start logic signal enable register 1

This STARTERP1 register enables or disables the start signal bits in the start logic. The bit assignment is identical to Table 45.

Table 46. Start logic signal enable register 1 (STARTERP1, address 0x4004 8214) bit description

	accompanient and a second a second and a second a second and a second a second and a second and a second and a second a second a second a second and a second a second a second a second a second a seco					
Bit	Symbol	Value	Description	Reset value		
0	ERPIO2_8		Enable start signal for start logic input PIO2_8	0		
		0	Disabled			
		1	Enabled			
	ERPIO2_11 to ERPIO2_9		Enable start signal for start logic input PIO2_11 to PIO2_9	0		
		0	Disabled			
		1	Enabled			
4	ERPIO3_0	ERPIO3_0	ERPIO3_0		Enable start signal for start logic input PIO3_0	0
		0	Disabled			
		1	Enabled			
7:5	ERPIO3_3 to ERPIO3_1		Enable start signal for start logic input PIO3_3 to PIO1_1	0		
		0	Disabled			
		1	Enabled			
31:8	-	-	Reserved	0		

3.5.42 Start logic reset register 1

Writing a one to a bit in the STARTRSRP1CLR register resets the start logic state. The bit assignment is identical to <u>Table 45</u>. The start-up logic uses the input signals to generate a clock edge for registering a start signal. This clock edge (falling or rising) sets the interrupt for waking up from Deep-sleep mode. Therefore, the start-up logic states must be cleared before being used.

Chapter 3: LPC13xx System configuration

Table 47. Start logic reset register 1 (STARTRSRP1CLR, address 0x4004 8218) bit description

Bit	Symbol	Value	Description	Reset value	
0	RSRPIO2_8		Start signal reset for start logic input PIO2_8	n/a	
		0	-		
		1	Write: reset start signal		
3:1	3:1 RSRPIO2_11 to RSPIO2_9		Start signal reset for start logic input PIO2_11 to PIO2_9	n/a	
		0	-		
		1	Write: reset start signal		
4	RSRPIO3_0	RSRPIO3_0		Start signal reset for start logic input PIO3_0	n/a
		0	-		
		1	Write: reset start signal		
7:5	RSRPIO3_3		Start signal reset for start logic input PIO3_3 to PIO3_1	n/a	
	to RSRPIO3 1	0	-		
	1.01(1 100_1	1	Write: reset start signal		
31:8	-	-	Reserved	n/a	

3.5.43 Start logic status register 1

This register reflects the status of the enabled start signals. The bit assignment is identical to Table 45.

Table 48. Start logic signal status register 1 (STARTSRP1, address 0x4004 821C) bit description

Bit	Symbol	Value	Description	Reset value		
0	SRPIO2_8		Start signal status for start logic input PIO2_8	n/a		
		0	No start signal received			
		1	Start signal pending			
3:1	SRPIO2_11 to SRPIO2_7		Start signal status for start logic input PIO2_11 to PIO2_7	n/a		
		0	No start signal received			
		1	Start signal pending			
4	SRPIO3_0	SRPIO3_0	SRPIO3_0		Start signal status for start logic input PIO3_0	n/a
		0	No start signal received			
		1	Start signal pending			
7:5	SRPIO3_3 to SRPIO3_1		Start signal status for start logic input PIO3_3 to PIO3_1	n/a		
		0	No start signal received			
		1	Start signal pending			
31:8	-	-	Reserved	n/a		

Chapter 3: LPC13xx System configuration

3.5.44 Deep-sleep mode configuration register

This register controls the behavior of the WatchDog (WD) oscillator and the BOD circuit when the device enters Deep-sleep mode.

This register **must be initialized at least once before entering Deep-sleep mode** with one of the four values shown in Table 49:

Table 49. Allowed values for PDSLEEPCFG register

Configuration	WD oscillator on	WD oscillator off
BOD on	PDSLEEPCFG = 0x0000 0FB7	PDSLEEPCFG = 0x0000 0FF7
BOD off	PDSLEEPCFG = 0x0000 0FBF	PDSLEEPCFG = 0x0000 0FFF

Remark: Failure to initialize and program this register correctly may result in undefined behavior of the microcontroller. The values listed in <u>Table 49</u> are the only values allowed for PDSLEEPCFG register.

To select the appropriate power configuration for Deep-sleep mode, consider the following:

- BOD: Leaving the BOD circuit enabled will protect the part from a low voltage event occurring while the part is in Deep-sleep mode. However, the BOD circuit causes an additional current drain in Deep-sleep mode.
- WD oscillator: The watchdog oscillator can be left running in Deep-sleep mode to provide a clock for the watchdog timer or a general purpose timer if they are needed for timing a wake-up event (see Section 3.9.3 for details). In this case, the watchdog oscillator analog output frequency must be set to its lowest value (bits FREQSEL in the WDTOSCCTRL = 0001, see Table 13) and all peripheral clocks other than the timer clock must be disabled in the SYSAHBCLKCTRL register (see Table 23) before entering Deep-sleep mode.

The watchdog oscillator, if running, contributes an additional current drain in Deep-sleep mode.

Remark: Reserved bits in this register must always be written as indicated. This register must be initialized correctly before entering Deep-sleep mode.

Table 50. Deep-sleep configuration register (PDSLEEPCFG, address 0x4004 8230) bit description

Bit	Symbol	Value	Description	Reset value
2:0	-	111	Reserved. Always write these bits as 111.	0
3	BOD_PD		BOD power-down control in Deep-sleep mode, see <u>Table 49</u> .	0
		0	Powered	
		1	Powered down	
5:4	-	11	Reserved. Always write these bits as 11.	0

38 of 333

Chapter 3: LPC13xx System configuration

Table 50. Deep-sleep configuration register (PDSLEEPCFG, address 0x4004 8230) bit description ...continued

Bit	Symbol	Value	Description	Reset value
6	WDTOSC_PD		Watchdog oscillator power control in Deep-sleep mode, see <u>Table 49</u> .	0
		0	Powered	
		1	Powered down	
11:7	-	11111	Reserved. Always write these bits as 11111.	0
31:12	-	0	Reserved	0

3.5.45 Wake-up configuration register

The bits in this register can be programmed to determine the state the chip must enter when it is waking up from Deep-sleep mode.

Remark: Reserved bits in this register must always be written as indicated. This register must be initialized correctly before entering Deep-sleep mode.

Table 51. Wake-up configuration register (PDAWAKECFG, address 0x4004 8234) bit description

Bit	Symbol Value		Description	Reset value
0	IRCOUT_PD		IRC oscillator output wake-up configuration	0
		0	Powered	
			Powered down	
1	IRC_PD		IRC oscillator power-down wake-up configuration	0
		0	Powered	
	1	Powered down		
2 FLASH_PD		Flash wake-up configuration	0	
		0	Powered	
			Powered down	
3 BOD_PD		BOD wake-up configuration	0	
		0	Powered	
		1	Powered down	
4	ADC_PD		ADC wake-up configuration	1
		0	Powered	
		1	Powered down	
5	SYSOSC_PD		System oscillator wake-up configuration	1
		0	Powered	
		1	Powered down	
6	WDTOSC_PD		Watchdog oscillator wake-up configuration	1
		0	Powered	
		1	Powered down	

Chapter 3: LPC13xx System configuration

Table 51. Wake-up configuration register (PDAWAKECFG, address 0x4004 8234) bit description ...continued

Bit	Symbol	Value	Description	Reset value
7	7 SYSPLL_PD		System PLL wake-up configuration	1
		0	Powered	
		1	Powered down	
8 USBPLL_PD			USB PLL wake-up configuration	1
		0	Powered	
		1	Powered down	
9	-	0	Reserved. Always write this bit as 0.	0
10	USBPAD_PD		USB pad wake-up configuration	1
		0	USB PHY powered	
		1	USB PHY powered down	
11	-	1	Reserved. Always write this bit as 1.	1
31:12	-	-	Reserved	0

3.5.46 Power-down configuration register

The bits in the PDRUNCFG register control the power to the various analog blocks. This register can be written to at any time while the chip is running, and a write will take effect immediately with the exception of the power-down signal to the IRC.

To avoid glitches when powering down the IRC, the IRC clock is automatically switched off at a clean point. Therefore, for the IRC a delay is possible before the power-down state takes effect.

Remark: Reserved bits in this register must always be written as indicated. This register must be initialized correctly before entering Deep-sleep mode.

Table 52. Power-down configuration register (PDRUNCFG, address 0x4004 8238) bit description

Bit	Symbol	Value	Description	Reset value
0	IRCOUT_PD		IRC oscillator output power-down	0
		0	Powered	
		1	Powered down	
1 IRC_PD		IRC oscillator power-down	0	
		0	Powered	
		1	Powered down	
2	FLASH_PD		Flash power-down	0
		0	Powered	
		1	Powered down	
3	BOD_PD		BOD power-down	0
		0	Powered	
		1	Powered down	

Chapter 3: LPC13xx System configuration

Table 52. Power-down configuration register (PDRUNCFG, address 0x4004 8238) bit description ...continued

Bit	Symbol	Value	Description	Reset value
4	ADC_PD		ADC power-down	1
		0	Powered	
		1	Powered down	
5	SYSOSC_PD[1]		System oscillator power-down	1
	0	Powered		
	1	Powered down		
6 WDTOSC_PD		Watchdog oscillator power-down	1	
	0	Powered		
		1	Powered down	
7 SYSPLL_PD	SYSPLL_PD		System PLL power-down	1
		0	Powered	
		1	Powered down	
8	USBPLL_PD		USB PLL power-down	1
		0	Powered	
		1	Powered down	
9	-	0	Reserved. Always write this bit as 0.	0
10	USBPAD_PD		USB pad power-down configuration	1
		0	USB PHY powered	
		1	USB PHY powered down (suspend mode)	
11	-	1	Reserved. Always write this bit as 1.	1
31:12	-	-	Reserved	0

^[1] The system oscillator must be powered up and selected for the USB PLL to create a stable USB clock (see Table 18).

3.5.47 Device ID register

This device ID register is a read-only register and contains the device ID for each LPC13xx part. This register is also read by the ISP/IAP commands (see <u>Section 19.13.11</u> and <u>Section 19.13.11</u>).

Table 53. Device ID register (DEVICE_ID, address 0x4004 83F4) bit description

Symbol	Value	Description	Reset value
DEVICEID	Device ID for LPC13xx parts		part-dependent
	0x2C42 502B	LPC1311FHN33	
	0x2C40 102B	LPC1313FHN33	
	0x2C40 102B	LPC1313FBD48	
	0x3D01 402B	LPC1342FHN33	
	0x3D00 002B	LPC1343FHN33	
	0x3D00 002B	LPC1343FBD48	
	•	DEVICEID Device ID for LPC13xx parts 0x2C42 502B 0x2C40 102B 0x2C40 102B 0x3D01 402B 0x3D00 002B	DEVICEID Device ID for LPC13xx parts 0x2C42 502B

Chapter 3: LPC13xx System configuration

3.6 Reset

Reset has four sources on the LPC13xx: the RESET pin, Watchdog Reset, Power-On Reset (POR), and Brown Out Detect (BOD). In addition, there is a software reset.

The RESET pin is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating voltage attains a usable level, starts the IRC causing reset to remain asserted until the external Reset is de-asserted, the oscillator is running, and the flash controller has completed its initialization.

On the assertion of a reset source external to the Cortex-M3 CPU (POR, BOD reset, External reset, and Watchdog reset), following processes are initiated:

- 1. The IRC starts up. After the IRC-start-up time (maximum of 6 μ s on power-up), the IRC provides a stable clock output.
- 2. The boot code in the ROM starts. The boot code performs the boot tasks and may jump to the flash.
- 3. The flash is powered up. This takes approximately 100 μ s. Then the flash initialization sequence is started, which takes about 250 cycles.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

3.7 Brown-out detection

The LPC13xx includes four levels for monitoring the voltage on the V_{DD} pin. If this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. An additional threshold level can be selected to cause a forced reset of the chip.

3.8 Power management

The LPC13xx support a variety of power control features. In Active mode, when the chip is running, power and clocks to selected peripherals can be optimized for power consumption. In addition, there are three special modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down mode.

Remark: The Debug mode is not supported in Sleep, Deep-sleep, or Deep power-down modes.

3.8.1 Active mode

In Active mode, the ARM Cortex-M0 core and memories are clocked by the system clock, and peripherals are clocked by the system clock or a dedicated peripheral clock.

The chip is in Active mode after reset and the default power configuration is determined by the reset values of the PDRUNCFG and SYSAHBCLKCTRL registers. The power configuration can be changed during run time.

UM10375

Chapter 3: LPC13xx System configuration

3.8.1.1 Power configuration in Active mode

Power consumption in Active mode is determined by the following configuration choices:

- The SYSAHBCLKCTRL register controls which memories and peripherals are running (Table 23).
- The power to various analog blocks (USB, PLL, oscillators, the ADC, the BOD circuit, and the flash block) can be controlled at any time individually through the PDRUNCFG register (Table 52).
- The clock source for the system clock can be selected from the IRC (default), the system oscillator, or the watchdog oscillator (see Figure 3 and related registers).
- The system clock frequency can be selected by the SYSPLLCTRL (<u>Table 8</u>) and the SYSAHBCLKDIV register (<u>Table 22</u>).
- Selected peripherals (UART, SSP0/1, WDT) use individual peripheral clocks with their own clock dividers. The peripheral clocks can be shut down through the corresponding clock divider registers (Table 24 to Table 27).

3.8.2 Sleep mode

In Sleep mode, the system clock to the ARM Cortex-M0 core is stopped, and execution of instructions is suspended until either a reset or an interrupt occurs.

Peripheral functions, if selected to be clocked in the SYSAHBCLKCTRL register, continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses. The processor state and registers, peripheral registers, and internal SRAM values are maintained, and the logic levels of the pins remain static.

3.8.2.1 Power configuration in Sleep mode

Power consumption in Sleep mode is configured by the same settings as in Active mode:

- The clock remains running.
- The system clock frequency remains the same as in Active mode, but the processor is not clocked.
- Analog and digital peripherals are selected as in Active mode.

3.8.2.2 Programming Sleep mode

The following steps must be performed to enter Sleep mode:

- 1. The DPDEN bit in the PCON register must be set to zero (Table 58).
- 2. The SLEEPDEEP bit in the ARM Cortex-M3 SCR register must be set to zero.
- 3. Use the ARM Cortex-M0 Wait-For-Interrupt (WFI) instruction.

3.8.2.3 Wake-up from Sleep mode

Sleep mode is exited automatically when an interrupt enabled by the NVIC arrives at the processor or a reset occurs. After wake-up due to an interrupt, the microcontroller returns to its original power configuration defined by the contents of the PDRUNCFG and the SYSAHBCLKDIV registers. If a reset occurs, the microcontroller enters the default configuration in Active mode.

UM10375

User manual

Chapter 3: LPC13xx System configuration

3.8.3 Deep-sleep mode

In Deep-sleep mode, the system clock to the processor is disabled as in Sleep mode. All analog blocks are powered down, except for the BOD circuit and the watchdog oscillator, which must be selected or deselected during Deep-sleep mode in the PDSLEEPCFG register.

Deep-sleep mode eliminates all power used by the flash and analog peripherals and all dynamic power used by the processor itself, memory systems and related controllers, and internal buses. The processor state and registers, peripheral registers, and internal SRAM values are maintained, and the logic levels of the pins remain static.

3.8.3.1 Power configuration in Deep-sleep mode

Power consumption in Deep-sleep mode is determined by the Deep-sleep power configuration setting in the PDSLEEPCFG (Table 50) register:

- The only clock source available in Deep-sleep mode is the watchdog oscillator. The watchdog oscillator can be left running in Deep-sleep mode if required for timer-controlled wake-up (see <u>Section 3.9.3</u>). All other clock sources (the IRC and system oscillator) and the system PLL are shut down. The watchdog oscillator analog output frequency must be set to the lowest value of its analog cock output (bits FREQSEL in the WDTOSCCTRL = 0001, see <u>Table 13</u>).
- The BOD circuit can be left running in Deep-sleep mode if required by the application.
- If the watchdog oscillator is running in Deep-sleep mode, only the watchdog timer or one of the general-purpose timers should be enabled in SYSAHBCLKCTRL register to minimize power consumption.

3.8.3.2 Programming Deep-sleep mode

The following steps must be performed to enter Deep-sleep mode:

- 1. The DPDEN bit in the PCON register must be set to zero (Table 58).
- Select the power configuration in Deep-sleep mode in the PDSLEEPCFG (<u>Table 50</u>) register.
 - a. If a timer-controlled wake-up is needed, ensure that the watchdog oscillator is powered in the PDRUNCFG register and switch the clock source to WD oscillator in the MAINCLKSEL register (Table 20).
 - b. If no timer-controlled wake-up is needed and the watchdog oscillator is shut down, ensure that the IRC is powered in the PDRUNCFG register and switch the clock source to IRC in the MAINCLKSEL register (<u>Table 20</u>). This ensures that the system clock is shut down glitch-free.
- 3. Select the power configuration after wake-up in the PDAWAKECFG (<u>Table 51</u>) register.
- 4. If an external pin is used for wake-up, enable and clear the wake-up pin in the start logic registers (<u>Table 41</u> to <u>Table 48</u>), and enable the start logic interrupt in the NVIC.
- 5. In the SYSAHBCLKCTRL register (<u>Table 23</u>), disable all peripherals except counter/timer or WDT if needed.
- 6. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 7. Use the ARM WFI instruction.

UM10375

Chapter 3: LPC13xx System configuration

3.8.3.3 Wake-up from Deep-sleep mode

The microcontroller can wake up from Deep-sleep mode in the following ways:

- Signal on an external pin. For this purpose, pins PIO0_0 to PIO0_11 and PIO1_0 can
 be enabled as inputs to the start logic. The start logic does not require any clocks and
 generates the interrupt if enabled in the NVIC to wake up from Deep-sleep mode.
- Input signal to the start logic created by a match event on one of the general purpose
 timer match outputs. The pin holding the timer match function must be enabled as
 start logic input in the NVIC, the corresponding timer must be enabled in the
 SYSAHBCLKCTRL register, and the watchdog oscillator must be running in
 Deep-sleep mode (for details see Section 3.9.3).
- Reset from the BOD circuit. In this case, the BOD circuit must be enabled in the PDSLEEPCFG register, and the BOD reset must be enabled in the BODCTRL register (Table 39).
- Reset from the watchdog timer. In this case, the watchdog oscillator must be running in Deep-sleep mode (see PDSLEEPCFG register), and the WDT must be enabled in the SYSAHBCLKCTRL register.

Remark: If the watchdog oscillator is running in Deep-sleep mode, its frequency determines the wake-up time causing the wake-up time to be longer than waking up with the IRC.

3.8.4 Deep power-down mode

In Deep power-down mode, power and clocks are shut off to the entire chip with the exception of the WAKEUP pin. The Deep power-down mode is controlled by the PMU (see <u>Chapter 4</u>).

During Deep power-down mode, the contents of the SRAM and registers are not retained except for a small amount of data which can be stored in the general purpose registers of the PMU block.

All functional pins are tri-stated in Deep power-down mode except for the WAKEUP pin.

3.8.4.1 Power configuration in Deep power-down mode

Deep power-down mode has no configuration options. All clocks, the core, and all peripherals are powered down. Only the WAKEUP pin is powered.

3.8.4.2 Programming Deep power-down mode

The following steps must be performed to enter Deep power-down mode:

- 1. Pull the WAKEUP pin externally HIGH.
- Write one to the DPDEN bit in the PCON register (see Table 58).
- 3. Store data to be retained in the general purpose registers (Table 59).
- 4. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 5. Ensure that the IRC is powered by setting bits IRCOUT_PD and IRC_PD to zero in the PDRUNCFG register before entering Deep power-down mode.
- 6. Use the ARM WFI instruction.

Chapter 3: LPC13xx System configuration

3.8.4.3 Wake-up from Deep power-down mode

Pulling the WAKEUP pin LOW wakes up the LPC13xx from Deep power-down, and the chip goes through the entire reset process (Section 3.6).

- 1. On the WAKEUP pin, transition from HIGH to LOW.
 - The PMU will turn on the on-chip voltage regulator. When the core voltage reaches
 the power-on-reset (POR) trip point, a system reset will be triggered and the chip
 re-boots.
 - All registers except the GPREG0 to GPREG4and PCON will be in their reset state.
- Once the chip has booted, read the deep power-down flag in the PCON register (<u>Table 58</u>) to verify that the reset was caused by a wake-up event from Deep power-down and was not a cold reset.
- Clear the deep power-down flag in the PCON register (Table 58).
- (Optional) Read the stored data in the general purpose registers (<u>Table 59</u> and <u>Table 60</u>).
- 5. Set up the PMU for the next Deep power-down cycle.

Remark: The RESET pin has no functionality in Deep power-down mode.

3.9 Deep-sleep mode details

3.9.1 IRC oscillator

The IRC is the only oscillator on the LPC13xx that can always shut down glitch-free. Therefore it is recommended that the user switches the clock source to IRC before the chip enters Deep-sleep mode.

3.9.2 Start logic

The Deep-sleep mode is exited when the start logic indicates an interrupt to the ARM core. The various port pins (see <u>Table 4</u>) are connected to the start logic and serve as wake-up pins. The user must program the start logic registers for each input to set the appropriate edge polarity for the corresponding wake-up event. Furthermore, the interrupts corresponding to each input must be enabled in the NVIC. Interrupts 0 to 39 in the NVIC correspond to 40 PIO pins (see <u>Section 3.5.36</u> and <u>Section 3.5.40</u>).

The start logic does not require a clock to run because it uses the input signals on the enabled pins to generate a clock edge when enabled. Therefore, the start logic signals should be cleared (see Table 43 and Table 47) before use.

The start logic can also be used in Active mode to provide a vectored interrupt using the LPC13xx's input pins.

3.9.3 Using the general purpose counter/timers to create a self-wake-up event

If enabled in Deep-sleep mode through the SYSAHBCLKCFG register, the counter/timers can count clock cycles of the watchdog oscillator and create a match event when the number of cycles equals a preset match value. The match event causes the corresponding match output pin to go HIGH, LOW, or toggle. The state of the match

UM10375

Chapter 3: LPC13xx System configuration

output pin is also monitored by the start logic and can trigger a wake-up interrupt if that pin is enabled in the NVIC and the start logic trigger is configured accordingly in the start logic edge control register (see Table 41 and Table 45).

The following steps must be performed to configure the counter/timer and create a timed Deep-sleep self-wake-up event:

- 1. Configure the port pin as match output in the IOCONFIG block. All pins with a match function are also inputs to the start logic.
- 2. In the corresponding counter/timer, set the match value, and configure the match output for the selected pin.
- Select the watchdog oscillator to run in Deep-sleep mode in the PDSLEEPCFG register.
- 4. Switch the clock source to the watchdog oscillator in the MAINCLKSEL register (Table 20) and ensure the watchdog oscillator is powered in the PDRUNCFG register.
- 5. Enable the pin, configure its edge detect function, and reset the start logic in the start logic registers (<u>Table 41</u> to <u>Table 48</u>), and enable the interrupt in the NVIC.
- 6. Disable all other peripherals in the SYSAHBCLKCTRL register.
- 7. Ensure that the DPDEN bit in the PCON register is set to zero (Table 58).
- 8. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 9. Start the counter/timer.
- 10. Use the ARM WFI instruction to enter Deep-sleep mode.

3.10 PLL (System PLL and USB PLL) functional description

The LPC13xx uses the system PLL to create the clocks for the core and peripherals. On the LPC134x parts, there is a second, identical PLL to create the USB clock.

UM10375

Chapter 3: LPC13xx System configuration

The block diagram of this PLL is shown in Figure 4. The input frequency range is 10 MHz to 25 MHz. The input clock is fed directly to the Phase-Frequency Detector (PFD). This block compares the phase and frequency of its inputs, and generates a control signal when phase and/ or frequency do not match. The loop filter filters these control signals and drives the current controlled oscillator (CCO), which generates the main clock and optionally two additional phases. The CCO frequency range is 156 MHz to 320 MHz. These clocks are either divided by 2×P by the programmable post divider to create the output clock(s), or are sent directly to the output(s). The main output clock is then divided by M by the programmable feedback divider to generate the feedback clock. The output signal of the phase-frequency detector is also monitored by the lock detector, to signal when the PLL has locked on to the input clock.

3.10.1 Lock detector

The lock detector measures the phase difference between the rising edges of the input and feedback clocks. Only when this difference is smaller than the so called "lock criterion" for more than eight consecutive input clock periods, the lock output switches from low to high. A single too large phase difference immediately resets the counter and causes the lock signal to drop (if it was high). Requiring eight phase measurements in a row to be below a certain figure ensures that the lock detector will not indicate lock until both the phase and frequency of the input and feedback clocks are very well aligned. This effectively prevents false lock indications, and thus ensures a glitch free lock signal.

3.10.2 Power-down control

To reduce the power consumption when the PLL clock is not needed, a Power-down mode has been incorporated. This mode is enabled by setting the SYSPLL_PD (or USBPLL_PD) bits to one in the Power-down configuration register (Table 52). In this mode, the internal current reference will be turned off, the oscillator and the phase-frequency detector will be stopped and the dividers will enter a reset state. While in Power-down mode, the lock output will be low to indicate that the PLL is not in lock. When the Power-down mode is terminated by setting the SYSPLL_PD (or USBPLL_PD) bits to zero, the PLL will resume its normal operation and will make the lock signal high once it has regained lock on the input clock.

3.10.3 Divider ratio programming

Post divider

The division ratio of the post divider is controlled by the PSEL bits. The division ratio is two times the value of P selected by PSEL bits as shown in <u>Table 8</u> and <u>Table 10</u>. This guarantees an output clock with a 50% duty cycle.

Feedback divider

The feedback divider's division ratio is controlled by the MSEL bits. The division ratio between the PLL's output clock and the input clock is the decimal value on MSEL bits plus one, as specified in Table 8 and Table 10.

Changing the divider values

Changing the divider ratio while the PLL is running is not recommended. As there is no way to synchronize the change of the MSEL and PSEL values with the dividers, the risk exists that the counter will read in an undefined value, which could lead to unwanted

Chapter 3: LPC13xx System configuration

spikes or drops in the frequency of the output clock. The recommended way of changing between divider settings is to power down the PLL, adjust the divider settings and then let the PLL start up again.

3.10.4 Frequency selection

The PLL frequency equations use the following parameters (also see Figure 3):

Table 54. PLL frequency parameters

Parameter	System PLL	USB PLL
FCLKIN	Frequency of sys_pllclkin (input clock to the system PLL) from the SYSPLLCLKSEL multiplexer (see Section 3.5.11).	Frequency of usb_pllclkin (input clock to the USB PLL) from the USBPLLCLKSEL multiplexer (see Section 3.5.23).
FCCO	Frequency of the Current Controlled Oscillator (CCO); 156 to 320 MHz.	Frequency of the Current Controlled Oscillator (CCO); 156 to 320 MHz.
FCLKOUT	Frequency of sys_pllclkout	Frequency of usb_pllclkout
P	System PLL post divider ratio; PSEL bits in SYSPLLCTRL (see Section 3.5.3).	USB PLL post divider ratio; PSEL bits in USBPLLCTRL (see Section 3.5.5).
M	System PLL feedback divider register; MSEL bits in SYSPLLCTRL (see Section 3.5.3).	USB PLL feedback divider register; MSEL bits in USBPLLCTRL (see Section 3.5.5).

3.10.4.1 Normal mode

In this mode the post divider is enabled, giving a 50% duty cycle clock with the following frequency relations:

(1)

$$Fclkout = M \times Fclkin = (FCCO)/(2 \times P)$$

To select the appropriate values for M and P, it is recommended to follow these steps:

- 1. Specify the input clock frequency Fclkin.
- 2. Calculate M to obtain the desired output frequency Fclkout with $M = F_{clkout} / F_{clkin}$.
- 3. Find a value so that FCCO = $2 \times P \times F_{clkout}$.
- 4. Verify that all frequencies and divider values conform to the limits specified in <u>Table 8</u> and <u>Table 10</u>.

<u>Table 55</u> shows how to configure the PLL for a 12 MHz crystal oscillator using the SYSPLLCTRL or USBPLLCTRL registers (<u>Table 8</u> or <u>Table 9</u>). The main clock is equivalent to the system clock if the system clock divider SYSAHBCLKDIV is set to one (see <u>Table 22</u>).

Chapter 3: LPC13xx System configuration

Table 55. PLL configuration examples

PLL input clock sys_pllclkin (Fclkin)	Main clock (Fclkout)	MSEL bits Table 8	M divider value	PSEL bits Table 8	P divider value	FCCO frequency
12 MHz	72 MHz	00101	6	01	2	288 MHz
12 MHz	48 MHz	00011	4	01	2	192 MHz
12 MHz	36 MHz	00010	3	10	4	288 MHz
12 MHz	24 MHz	00001	2	10	4	192 MHz

3.10.4.2 Power-down mode

In this mode, the internal current reference will be turned off, the oscillator and the phase-frequency detector will be stopped and the dividers will enter a reset state. While in Power-down mode, the lock output will be low, to indicate that the PLL is not in lock. When the Power-down mode is terminated by SYSPLL PD (or USBPLL PD) bits to zero in the Power-down configuration register (Table 52), the PLL will resume its normal operation and will make the lock signal high once it has regained lock on the input clock.

3.11 Flash memory access

Depending on the system clock frequency, access to the flash memory can be configured with various access times by writing to the FLASHCFG register at address 0x4003 C010. This register is part of the flash controller block (see Figure 2).

Remark: Improper setting of this register may result in incorrect operation of the LPC13xx flash memory.

Table 56. Flash configuration register (FLASHCFG, address 0x4003 C010) bit description

Bit	Symbol	Value	Description	Reset value
1:0 FLASHTIM			Flash memory access time. FLASHTIM +1 is equal to the number of system clocks used for flash access.	10
		00	1 system clock flash access time (for system clock frequencies of up to 20 MHz).	
		01	2 system clocks flash access time (for system clock frequencies of up to 40 MHz).	
		10	3 system clocks flash access time (for system clock frequencies of up to 72 MHz).	
		11	Reserved.	
31:2	-	-	Reserved. User software must not change the value of these bits. Bits 31:2 must be written back exactly as read.	<tbd></tbd>

UM10375

Chapter 4: LPC13xx Power Management Unit (PMU)

Rev. 2 — 7 July 2010

User manual

4.1 Introduction

The PMU controls the Deep power-down mode. Four general purpose register in the PMU can be used to retain data during Deep power-down mode.

4.2 Register description

Table 57. Register overview: PMU (base address 0x4003 8000)

Name	Access	Address offset	Description	Reset value
PCON	R/W	0x000	Power control register	0x0
GPREG0	R/W	0x004	General purpose register 0	0x0
GPREG1	R/W	800x0	General purpose register 1	0x0
GPREG2	R/W	0x00C	General purpose register 2	0x0
GPREG3	R/W	0x010	General purpose register 3	0x0
GPREG4	R/W	0x014	General purpose register 4	0x0

4.2.1 Power control register

The power control register selects whether one of the ARM Cortex-M3 controlled power-down modes (Sleep mode or Deep-sleep mode) or the Deep power-down mode is entered and provides the flags for Sleep or Deep-sleep modes and Deep power-down modes respectively. See <u>Section 3.8</u> for details on how to enter the power-down modes.

Table 58. Power control register (PCON, address 0x4003 8000) bit description

Bit	Symbol	Value	Description	Reset value	
0	-	-	Reserved. Do not write 1 to this bit.	0x0	
1	DPDEN		Deep power-down mode enable	0	
		0	ARM WFI will enter Sleep or Deep-sleep mode (clock to ARM Cortex-M3 core turned off).		
			-	1 ARM WFI will enter Deep-power down Cortex-M3 core powered-down).	ARM WFI will enter Deep-power down mode (ARM Cortex-M3 core powered-down).
7:2	-	-	Reserved. Do not write ones to this bit.	0x0	
8	SLEEPFLAG	SLEEPFLAG		Sleep mode flag	0
		0	Read: No power-down mode entered. LPC13xx is in Run mode. Write: No effect.		
		1	Read: Sleep/Deep-sleep or Deep power-down mode entered. Write: Writing a 1 clears the SLEEPFLAG bit to 0.		
10:9	-	-	Reserved. Do not write ones to this bit.	0x0	

Chapter 4: LPC13xx Power Management Unit (PMU)

Table 58. Power control register (PCON, address 0x4003 8000) bit description ...continued

Bit	Symbol	Value	Description	Reset value
11	DPDFLAG		Deep power-down flag	0x0
		0	Read: Deep power-down mode not entered. Write: No effect.	0x0
		1	Read: Deep power-down mode entered. Write: Clear the Deep power-down flag.	0x0
31:12	-	-	Reserved. Do not write ones to this bit.	0x0

4.2.2 General purpose registers 0 to 3

The general purpose registers retain data through the Deep power-down mode when power is still applied to the V_{DD} pin but the chip has entered Deep power-down mode. Only a "cold" boot when all power has been completely removed from the chip will reset the general purpose registers.

Table 59. General purpose registers 0 to 3 (GPREG0 - GPREG3, address 0x4003 8004 to 0x4003 8010) bit description

Bit	Symbol	Description	Reset value
31:0	GPDATA	Data retained during Deep power-down mode.	0x0

4.2.3 General purpose register 4

The general purpose register 4 retains data through the Deep power-down mode when power is still applied to the V_{DD} pin but the chip has entered Deep power-down mode. Only a "cold" boot, when all power has been completely removed from the chip, will reset the general purpose registers.

The hysteresis of the WAKEUP pin in Deep power-down mode can be controlled by bit 10 of this register.

Remark: If there is a possibility that the external voltage applied on pin V_{DD} drops below 2.2 V during Deep power-down, the hysteresis of the WAKEUP input pin has to be disabled in this register before entering Deep power-down mode in order for the chip to wake up.

Table 60. General purpose register 4 (GPREG4, address 0x4003 8014) bit description

Bit	Symbol	Value	Description	Reset value
9:0	-	-	Reserved. Do not write ones to this bit.	0x0
10	WAKEUPHYS		WAKEUP pin hysteresis enable	0x0
		1	Hysteresis for WAKEUP pin enabled.	
		0	Hysteresis for WAKUP pin disabled.	
31:11	GPDATA		Data retained during Deep power-down mode.	0x0

4.3 Functional description

See Section 3.8 for details on power management and the Deep power-down mode.

UM10375

Chapter 5: LPC13xx Interrupt controller

Rev. 2 — 7 July 2010

User manual

5.1 How to read this chapter

Interrupts 47 and 48 in <u>Table 61</u> are available on parts LPC1342/43 with USB only. These interrupts are reserved on parts LPC1311/13.

The implementation of start logic wake-up interrupts depends on how many PIO port pins are available (see <u>Section 3.1</u>). For HVQFN packages only wake-up interrupts 0 to 24 and interrupt 38 are available.

5.2 Introduction

The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

Refer to the Cortex-M3 Technical Reference Manual for details of NVIC operation.

5.3 Features

- Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3.
- Tightly coupled interrupt controller provides low interrupt latency.
- Controls system exceptions and peripheral interrupts.
- In the LPC13xx, the NVIC supports up to 56 vectored interrupts.
- 8 programmable interrupt priority levels with hardware priority level masking.
- Relocatable vector table.
- Software interrupt generation.

5.4 Interrupt sources

<u>Table 61</u> lists the interrupt sources for each peripheral function. Each peripheral device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent more than one interrupt source. There is no significance or priority about what line is connected where except for certain standards from ARM.

Chapter 5: LPC13xx Interrupt controller

Table 61. Connection of interrupt sources to the Vectored Interrupt Controller

Exception Number	Vector Offset	Function	Flag(s)
39 to 0		start logic wake-up interrupts	Each interrupt is connected to a PIO input pin serving as wake-up pin from Deep-sleep mode (see Section 3.5.36 and Section 3.5.40). Interrupts 0 to 11 are connected to PIO0_0 to PIO0_11; interrupts 12 to 23 are connected to PIO1_0 to PIO1_11; interrupts 24 to 35 are connected to PIO2_0 to PIO2_11; interrupts 36 to 39 are connected to PIO3_0 to PIO3_3.11
40	0xA0	I2C0	SI (state change)
41	0xA4	CT16B0	Match 0 - 2 Capture 0
42	0xA8	CT16B1	Match 0 - 1
	070 10	011001	Capture 0
43	0xAC	CT32B0	Match 0 - 3
			Capture 0
44	0xB0	CT32B1	Match 0 - 3
			Capture 0
45	0xB4	SSP	Tx FIFO half empty
			Rx FIFO half full
			Rx Timeout
			Rx Overrun
46	0xB8	UART	Rx Line Status (RLS)
			Transmit Holding Register Empty (THRE)
			Rx Data Available (RDA)
			Character Time-out Indicator (CTI)
			Modem Control Change End of Auto-Baud (ABEO)
			Auto-Baud Time-Out (ABTO)
47	0xBC	USB IRQ interrupt	USB low-priority interrupt
48	0xC0	USB FIQ interrupt	USB high-priority interrupt
49	0xC4	ADC	A/D Converter end of conversion
50	0xC8	WDT	Watchdog interrupt (WDINT)
51	0xCC	BOD	Brown-out detect
52	-	-	Reserved
53	0xD4	PIO_3	GPIO interrupt status of port 3
54	0xD8	PIO_2	GPIO interrupt status of port 2
55	0xDC	PIO_1	GPIO interrupt status of port 1
56	0xE0	PIO_0	GPIO interrupt status of port 0

^[1] See Section 3.1 for wake-up pins not used in the HVQFN package.

Chapter 5: LPC13xx Interrupt controller

5.5 Vector table remapping

The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register (VTOR) contained in the Cortex-M3.

The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address space. The vector table should be located on a 256 word (1024 byte) boundary to insure alignment on LPC13xx family devices. Refer to the ARM Cortex-M3 User Guide for details of the Vector Table Offset feature.

ARM describes bit 29 of the VTOR (TBLOFF) as selecting a memory region, either code or SRAM. For simplicity, this bit can be thought as simply part of the address offset since the split between the "code" space and the "SRAM" space occurs at the location corresponding to bit 29 in a memory address.

Example:

To place the vector table at the beginning of the static RAM, starting at address 0x1000 0000, place the value 0x1000 0000 in the VTOR register. This indicates address 0x1000 0000 in the code space, since bit 29 of the VTOR equals 0.

Chapter 5: LPC13xx Interrupt controller

5.6 Register description

The following table summarizes the registers in the NVIC as implemented in the LPC13xx. The Cortex-M3 User Guide provides a functional description of the NVIC.

Table 62. Register overview: NVIC (base address 0xE000 E000)

Name	Access	Address offset	Description	Reset value
ISER0	RW	0x100	Interrupt Set-Enable Register 0. This register allows enabling interrupts and reading back the interrupt enables for specific peripheral functions.	0
ISER1	RW	0x104	Interrupt Set-Enable Register 1. This register allows enabling interrupts and reading back the interrupt enables for specific peripheral functions.	0
ICER0	RW	0x180	Interrupt Clear-Enable Register 0. This register allows disabling interrupts and reading back the interrupt enables for specific peripheral functions.	0
ICER1	RW	0x184	Interrupt Clear-Enable Register 1. This register allows disabling interrupts and reading back the interrupt enables for specific peripheral functions.	0
ISPR0	RW	0x200	Interrupt Set-Pending Register 0. This register allows changing the interrupt state to pending and reading back the interrupt pending state for specific peripheral functions.	0
ISPR1	RW	0x204	Interrupt Set-Pending Register 1. This register allows changing the interrupt state to pending and reading back the interrupt pending state for specific peripheral functions.	0
ICPR0	RW	0x280	Interrupt Clear-Pending Register 0. This register allows changing the interrupt state to not pending and reading back the interrupt pending state for specific peripheral functions.	0
ICPR1	RW	0x284	Interrupt Clear-Pending Register 1. This register allows changing the interrupt state to not pending and reading back the interrupt pending state for specific peripheral functions.	0
IABR0	RO	0x300	Interrupt Active Bit Register 0. This register allows reading the current interrupt active state for specific peripheral functions.	0
IABR1	RO	0x304	Interrupt Active Bit Register 1. This register allows reading the current interrupt active state for specific peripheral functions.	0
IPR0	RW	0x400	Interrupt Priority Registers 0. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR1	RW	0x404	Interrupt Priority Registers 1 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR2	RW	0x408	Interrupt Priority Registers 2. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR3	RW	0x40C	Interrupt Priority Registers 3. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR4	RW	0x410	Interrupt Priority Registers 4. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR5	RW	0x414	Interrupt Priority Registers 5. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR6	RW	0x418	Interrupt Priority Registers 6. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR7	RW	0x41C	Interrupt Priority Registers 7. This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR8	RW	0x420	Interrupt Priority Registers 8 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0

Chapter 5: LPC13xx Interrupt controller

Table 62. Register overview: NVIC (base address 0xE000 E000) ...continued

Name	Access	Address offset	Description	Reset value
IPR9	RW	0x424	Interrupt Priority Registers 9 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR10	RW	0x428	Interrupt Priority Registers 10 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR11	RW	0x42C	Interrupt Priority Registers 11 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR12	RW	0x430	Interrupt Priority Registers 12 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR13	RW	0x434	Interrupt Priority Registers 13 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
IPR14	RW	0x438	Interrupt Priority Registers 14 This register allows assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	0
STIR	WO	0xF00	Software Trigger Interrupt Register. This register allows software to generate an interrupt.	0

5.6.1 Interrupt Set-Enable Register 0 register

The ISER0 register allows enabling the first 32 peripheral interrupts, or for reading the enabled state of those interrupts. The remaining interrupts are enabled via the ISER1 register (Section 5.6.2). Disabling interrupts is done through the ICER0 and ICER1 registers (Section 5.6.3 and Section 5.6.4).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 enables the interrupt.

Read — 0 indicates that the interrupt is disabled, 1 indicates that the interrupt is enabled.

Table 63. Interrupt Set-Enable Register 0 register (ISER0 - address 0xE000 E100) bit description

Bit	Name	Description
0	ISE_PIO0_0	PIO0_0 start logic input interrupt enable.
1	ISE_PIO0_1	PIO0_1 start logic input interrupt enable.
2	ISE_PIO0_2	PIO0_2 start logic input interrupt enable.
3	ISE_PIO0_3	PIO0_3 start logic input interrupt enable.
4	ISE_PIO0_4	PIO0_4 start logic input interrupt enable.
5	ISE_PIO0_5	PIO0_5 start logic input interrupt enable.
6	ISE_PIO0_6	PIO0_6 start logic input interrupt enable.
7	ISE_PIO0_7	PIO0_7 start logic input interrupt enable.
8	ISE_PIO0_8	PIO0_8 start logic input interrupt enable.
9	ISE_PIO0_9	PIO0_9 start logic input interrupt enable.
10	ISE_PIO0_10	PIO0_10 start logic input interrupt enable.
11	ISE_PIO0_11	PIO0_11 start logic input interrupt enable.
12	ISE_PIO1_0	PIO1_0 start logic input interrupt enable.
13	ISE_PIO1_1	PIO1_1 start logic input interrupt enable.
14	ISE_PIO1_2	PIO1_2 start logic input interrupt enable.

Chapter 5: LPC13xx Interrupt controller

Table 63. Interrupt Set-Enable Register 0 register (ISER0 - address 0xE000 E100) bit description ...continued

Bit	Name	Description
15	ISE_PIO1_3	PIO1_3 start logic input interrupt enable.
16	ISE_PIO1_4	PIO1_4 start logic input interrupt enable.
17	ISE_PIO1_5	PIO1_5 start logic input interrupt enable.
18	ISE_PIO1_6	PIO1_6 start logic input interrupt enable.
19	ISE_PIO1_7	PIO1_7 start logic input interrupt enable.
20	ISE_PIO1_8	PIO1_8 start logic input interrupt enable.
21	ISE_PIO1_9	PIO1_9 start logic input interrupt enable.
22	ISE_PIO1_10	PIO1_10 start logic input interrupt enable.
23	ISE_PIO1_11	PIO1_11 start logic input interrupt enable.
24	ISE_PIO2_0	PIO2_0 start logic input interrupt enable.
25	ISE_PIO2_1	PIO2_1 start logic input interrupt enable.
26	ISE_PIO2_2	PIO2_2 start logic input interrupt enable.
27	ISE_PIO2_3	PIO2_3 start logic input interrupt enable.
28	ISE_PIO2_4	PIO2_4 start logic input interrupt enable.
29	ISE_PIO2_5	PIO2_5 start logic input interrupt enable.
30	ISE_PIO2_6	PIO2_6 start logic input interrupt enable.
31	ISE_PIO2_7	PIO2_7 start logic input interrupt enable.

5.6.2 Interrupt Set-Enable Register 1

The ISER1 register allows enabling the second group of peripheral interrupts, or for reading the enabled state of those interrupts. Disabling interrupts is done through the ICER0 and ICER1 registers (Section 5.6.3 and Section 5.6.4).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 enables the interrupt.

Read — 0 indicates that the interrupt is disabled, 1 indicates that the interrupt is enabled.

Table 64. Interrupt Set-Enable Register 1 register (ISER1 - address 0xE000 E104) bit description

Bit	Name	Description
0	ISE_PIO2_8	PIO0_0 start logic input interrupt enable.
1	ISE_PIO2_9	PIO2_9 start logic input interrupt enable.
2	ISE_PIO2_10	PIO2_10 start logic input interrupt enable.
3	ISE_PIO2_11	PIO2_11 start logic input interrupt enable.
4	ISE_PIO3_0	PIO3_0 start logic input interrupt enable.
5	ISE_PIO3_1	PIO3_0 start logic input interrupt enable.
6	ISE_PIO3_2	PIO3_0 start logic input interrupt enable.
7	ISE_PIO3_3	PIO3_0 start logic input interrupt enable.
8	ISE_I2C0	I ² C0 interrupt enable.
9	ISE_CT16B0	Timer CT16B0 interrupt enable.
10	ISE_CT16B1	Timer CT16B1 interrupt enable.

Chapter 5: LPC13xx Interrupt controller

Table 64. Interrupt Set-Enable Register 1 register (ISER1 - address 0xE000 E104) bit description ...continued

Bit	Name	Description
11	ISE_CT32B0	Timer CT32B0 interrupt enable.
12	ISE_CT32B1	Timer CT32B1 interrupt enable.
13	ISE_SSP	SSP interrupt enable.
14	ISE_UART	UART interrupt enable.
15	ISE_USBIRQ	USB IRQ interrupt enable.
16	ISE_USBFRQ	USB FRQ interrupt enable.
17	ISE_ADC	ADC interrupt enable.
18	ISE_WDT	WDT interrupt enable.
19	ISE_BOD	BOD interrupt enable.
20	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.
21	ISE_PIO_3	GPIO port 3 interrupt enable.
22	ISE_PIO_2	GPIO port 2 interrupt enable.
23	ISE_PIO_1	GPIO port 1 interrupt enable.
24	ISE_PIO_0	GPIO port 0 interrupt enable.
31:25	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

5.6.3 Interrupt Clear-Enable Register 0

The ICER0 register allows disabling the first 32 peripheral interrupts, or for reading the enabled state of those interrupts. The remaining interrupts are disabled via the ICER1 register (Section 5.6.4). Enabling interrupts is done through the ISER0 and ISER1 registers (Section 5.6.1 and Section 5.6.2).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 disables the interrupt.

Read — 0 indicates that the interrupt is disabled, 1 indicates that the interrupt is enabled.

Table 65. Interrupt Clear-Enable Register 0

Bit	Name	Description
0	ICE_PIO0_0	PIO0_0 start logic input interrupt disable.
1	ICE_PIO0_1	PIO0_1 start logic input interrupt disable.
2	ICE_PIO0_2	PIO0_2 start logic input interrupt disable.
3	ICE_PIO0_3	PIO0_3 start logic input interrupt disable.
4	ICE_PIO0_4	PIO0_4 start logic input interrupt disable.
5	ICE_PIO0_5	PIO0_5 start logic input interrupt disable.
6	ICE_PIO0_6	PIO0_6 start logic input interrupt disable.
7	ICE_PIO0_7	PIO0_7 start logic input interrupt disable.
8	ICE_PIO0_8	PIO0_8 start logic input interrupt disable.
9	ICE_PIO0_9	PIO0_9 start logic input interrupt disable.
10	ICE_PIO0_10	PIO0_10 start logic input interrupt disable.
11	ICE_PIO0_11	PIO0_11 start logic input interrupt disable.

Chapter 5: LPC13xx Interrupt controller

Table 65. Interrupt Clear-Enable Register 0 ... continued

Bit	Name	Description
12	ICE_PIO1_0	PIO1_0 start logic input interrupt disable.
13	ICE_PIO1_1	PIO1_1 start logic input interrupt disable.
14	ICE_PIO1_2	PIO1_2 start logic input interrupt disable.
15	ICE_PIO1_3	PIO1_3 start logic input interrupt disable.
16	ICE_PIO1_4	PIO1_4 start logic input interrupt disable.
17	ICE_PIO1_5	PIO1_5 start logic input interrupt disable.
18	ICE_PIO1_6	PIO1_6 start logic input interrupt disable.
19	ICE_PIO1_7	PIO1_7 start logic input interrupt disable.
20	ICE_PIO1_8	PIO1_8 start logic input interrupt disable.
21	ICE_PIO1_9	PIO1_9 start logic input interrupt disable.
22	ICE_PIO1_10	PIO1_10 start logic input interrupt disable.
23	ICE_PIO1_11	PIO1_11 start logic input interrupt disable.
24	ICE_PIO2_0	PIO2_0 start logic input interrupt disable.
25	ICE_PIO2_1	PIO2_1 start logic input interrupt disable.
26	ICE_PIO2_2	PIO2_2 start logic input interrupt disable.
27	ICE_PIO2_3	PIO2_3 start logic input interrupt disable.
28	ICE_PIO2_4	PIO2_4 start logic input interrupt disable.
29	ICE_PIO2_5	PIO2_5 start logic input interrupt disable.
30	ICE_PIO2_6	PIO2_6 start logic input interrupt disable.
31	ICE_PIO2_7	PIO2_7 start logic input interrupt disable.

5.6.4 Interrupt Clear-Enable Register 1 register

The ICER1 register allows disabling the second group of peripheral interrupts, or for reading the enabled state of those interrupts. Enabling interrupts is done through the ISER0 and ISER1 registers (Section 5.6.1 and Section 5.6.2).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 disables the interrupt.

Read — 0 indicates that the interrupt is disabled, 1 indicates that the interrupt is enabled.

Table 66. Interrupt Clear-Enable Register 1 register (ICER1 - address 0xE000 E184) bit description

Bit	Name	Description
0	ICE_PIO2_8	PIO0_0 start logic input interrupt disable.
1	ICE_PIO2_9	PIO2_9 start logic input interrupt disable.
2	ICE_PIO2_10	PIO2_10 start logic input interrupt disable.
3	ICE_PIO2_11	PIO2_11 start logic input interrupt disable.
4	ICE_PIO3_0	PIO3_0 start logic input interrupt disable.
5	ICE_PIO3_1	PIO3_0 start logic input interrupt disable.
6	ICE_PIO3_2	PIO3_0 start logic input interrupt disable.
7	ICE_PIO3_3	PIO3_0 start logic input interrupt disable.
8	ICE_I2C0	I ² C0 interrupt disable.

60 of 333

Chapter 5: LPC13xx Interrupt controller

Table 66. Interrupt Clear-Enable Register 1 register (ICER1 - address 0xE000 E184) bit description ...continued

Bit	Name	Description
9	ICE_CT16B0	Timer CT16B0 interrupt disable.
10	ICE_CT16B1	Timer CT16B1 interrupt disable.
11	ICE_CT32B0	Timer CT32B0 interrupt disable.
12	ICE_CT32B1	Timer CT32B1 interrupt disable.
13	ICE_SSP	SSP interrupt disable.
14	ICE_UART	UART interrupt disable.
15	ICE_USBIRQ	USB IRQ interrupt disable.
16	ICE_USBFRQ	USB FRQ interrupt disable.
17	ICE_ADC	ADC interrupt disable.
18	ICE_WDT	WDT interrupt disable.
19	ICE_BOD	BOD interrupt disable.
20	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.
21	ICE_PIO_3	GPIO port 3 interrupt disable.
22	ICE_PIO_2	GPIO port 2 interrupt disable.
23	ICE_PIO_1	GPIO port 1 interrupt disable.
24	ICE_PIO_0	GPIO port 0 interrupt disable.
31:25	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

5.6.5 Interrupt Set-Pending Register 0 register

The ISPR0 register allows setting the pending state of the first 32 peripheral interrupts, or for reading the pending state of those interrupts. The remaining interrupts can have their pending state set via the ISPR1 register (Section 5.6.6). Clearing the pending state of interrupts is done through the ICPR0 and ICPR1 registers (Section 5.6.7 and Section 5.6.8).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 changes the interrupt state to pending.

Read — 0 indicates that the interrupt is not pending, 1 indicates that the interrupt is pending.

Table 67. Interrupt Set-Pending Register 0 register (ISPR0 - address 0xE000 E200) bit description

Bit	Name	Description
0	ISP_PIO0_0	PIO0_0 start logic input interrupt pending set.
1	ISP_PIO0_1	PIO0_1 start logic input interrupt pending set.
2	ISP_PIO0_2	PIO0_2 start logic input interrupt pending set.
3	ISP_PIO0_3	PIO0_3 start logic input interrupt pending set.
4	ISP_PIO0_4	PIO0_4 start logic input interrupt pending set.
5	ISP_PIO0_5	PIO0_5 start logic input interrupt pending set.
6	ISP_PIO0_6	PIO0_6 start logic input interrupt pending set.

61 of 333

Chapter 5: LPC13xx Interrupt controller

Table 67. Interrupt Set-Pending Register 0 register (ISPR0 - address 0xE000 E200) bit description ...continued

Bit	Name	Description
7	ISP_PIO0_7	PIO0_7 start logic input interrupt pending set.
8	ISP_PIO0_8	PIO0_8 start logic input interrupt pending set.
9	ISP_PIO0_9	PIO0_9 start logic input interrupt pending set.
10	ISP_PIO0_10	PIO0_10 start logic input interrupt pending set.
11	ISP_PIO0_11	PIO0_11 start logic input interrupt pending set.
12	ISP_PIO1_0	PIO1_0 start logic input interrupt pending set.
13	ISP_PIO1_1	PIO1_1 start logic input interrupt pending set.
14	ISP_PIO1_2	PIO1_2 start logic input interrupt pending set.
15	ISP_PIO1_3	PIO1_3 start logic input interrupt pending set.
16	ISP_PIO1_4	PIO1_4 start logic input interrupt pending set.
17	ISP_PIO1_5	PIO1_5 start logic input interrupt pending set.
18	ISP_PIO1_6	PIO1_6 start logic input interrupt pending set.
19	ISP_PIO1_7	PIO1_7 start logic input interrupt pending set.
20	ISP_PIO1_8	PIO1_8 start logic input interrupt pending set.
21	ISP_PIO1_9	PIO1_9 start logic input interrupt pending set.
22	ISP_PIO1_10	PIO1_10 start logic input interrupt pending set.
23	ISP_PIO1_11	PIO1_11 start logic input interrupt pending set.
24	ISP_PIO2_0	PIO2_0 start logic input interrupt pending set.
25	ISP_PIO2_1	PIO2_1 start logic input interrupt pending set.
26	ISP_PIO2_2	PIO2_2 start logic input interrupt pending set.
27	ISP_PIO2_3	PIO2_3 start logic input interrupt pending set.
28	ISP_PIO2_4	PIO2_4 start logic input interrupt pending set.
29	ISP_PIO2_5	PIO2_5 start logic input interrupt pending set.
30	ISP_PIO2_6	PIO2_6 start logic input interrupt pending set.
31	ISP_PIO2_7	PIO2_7 start logic input interrupt pending set.

5.6.6 Interrupt Set-Pending Register 1 register

The ISPR1 register allows setting the pending state of the second group of peripheral interrupts, or for reading the pending state of those interrupts. Clearing the pending state of interrupts is done through the ICPR0 and ICPR1 registers (Section 5.6.7 and Section 5.6.8).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 changes the interrupt state to pending.

Read — 0 indicates that the interrupt is not pending, 1 indicates that the interrupt is pending.

Chapter 5: LPC13xx Interrupt controller

Table 68. Interrupt Set-Pending Register 1 register (ISPR1 - address 0xE000 E204) bit description

Bit	Name	Description
0	ISP_PIO2_8	PIO0_0 start logic input interrupt pending set.
1	ISP_PIO2_9	PIO2_9 start logic input interrupt pending set.
2	ISP_PIO2_10	PIO2_10 start logic input interrupt pending set.
3	ISP_PIO2_11	PIO2_11 start logic input interrupt pending set.
4	ISP_PIO3_0	PIO3_0 start logic input interrupt pending set.
5	ISP_PIO3_1	PIO3_0 start logic input interrupt pending set.
6	ISP_PIO3_2	PIO3_0 start logic input interrupt pending set.
7	ISP_PIO3_3	PIO3_0 start logic input interrupt pending set.
8	ISP_I2C0	I ² C0 interrupt pending set.
9	ISP_CT16B0	Timer CT16B0 interrupt pending set.
10	ISP_CT16B1	Timer CT16B1 interrupt pending set.
11	ISP_CT32B0	Timer CT32B0 interrupt pending set.
12	ISP_CT32B1	Timer CT32B1 interrupt pending set.
13	ISP_SSP	SSP interrupt pending set.
14	ISP_UART	UART interrupt pending set.
15	ISP_USBIRQ	USB IRQ interrupt pending set.
16	ISP_USBFRQ	USB FRQ interrupt pending set.
17	ISP_ADC	ADC interrupt pending set.
18	ISP_WDT	WDT interrupt pending set.
19	ISP_BOD	BOD interrupt pending set.
20	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.
21	ISP_PIO_3	GPIO port 3 interrupt pending set.
22	ISP_PIO_2	GPIO port 2 interrupt pending set.
23	ISP_PIO_1	GPIO port 1 interrupt pending set.
24	ISP_PIO_0	GPIO port 0 interrupt pending set.
31:25	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

5.6.7 Interrupt Clear-Pending Register 0 register

The ICPR0 register allows clearing the pending state of the first 32 peripheral interrupts, or for reading the pending state of those interrupts. The remaining interrupts can have their pending state cleared via the ICPR1 register (Section 5.6.8). Setting the pending state of interrupts is done through the ISPR0 and ISPR1 registers (Section 5.6.5 and Section 5.6.6).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 changes the interrupt state to not pending.

 ${f Read}$ — 0 indicates that the interrupt is not pending, 1 indicates that the interrupt is pending.

Chapter 5: LPC13xx Interrupt controller

Table 69. Interrupt Clear-Pending Register 0 register (ICPR0 - address 0xE000 E280) bit description

	descriptio	••
Bit	Name	Function
0	ICP_PIO0_0	PIO0_0 start logic input interrupt pending clear.
1	ICP_PIO0_1	PIO0_1 start logic input interrupt pending clear.
2	ICP_PIO0_2	PIO0_2 start logic input interrupt pending clear.
3	ICP_PIO0_3	PIO0_3 start logic input interrupt pending clear.
4	ICP_PIO0_4	PIO0_4 start logic input interrupt pending clear.
5	ICP_PIO0_5	PIO0_5 start logic input interrupt pending clear.
6	ICP_PIO0_6	PIO0_6 start logic input interrupt pending clear.
7	ICP_PIO0_7	PIO0_7 start logic input interrupt pending clear.
8	ICP_PIO0_8	PIO0_8 start logic input interrupt pending clear.
9	ICP_PIO0_9	PIO0_9 start logic input interrupt pending clear.
10	ICP_PIO0_10	PIO0_10 start logic input interrupt pending clear.
11	ICP_PIO0_11	PIO0_11 start logic input interrupt pending clear.
12	ICP_PIO1_0	PIO1_0 start logic input interrupt pending clear.
13	ICP_PIO1_1	PIO1_1 start logic input interrupt pending clear.
14	ICP_PIO1_2	PIO1_2 start logic input interrupt pending clear.
15	ICP_PIO1_3	PIO1_3 start logic input interrupt pending clear.
16	ICP_PIO1_4	PIO1_4 start logic input interrupt pending clear.
17	ICP_PIO1_5	PIO1_5 start logic input interrupt pending clear.
18	ICP_PIO1_6	PIO1_6 start logic input interrupt pending clear.
19	ICP_PIO1_7	PIO1_7 start logic input interrupt pending clear.
20	ICP_PIO1_8	PIO1_8 start logic input interrupt pending clear.
21	ICP_PIO1_9	PIO1_9 start logic input interrupt pending clear.
22	ICP_PIO1_10	PIO1_10 start logic input interrupt pending clear.
23	ICP_PIO1_11	PIO1_11 start logic input interrupt pending clear.
24	ICP_PIO2_0	PIO2_0 start logic input interrupt pending clear.
25	ICP_PIO2_1	PIO2_1 start logic input interrupt pending clear.
26	ICP_PIO2_2	PIO2_2 start logic input interrupt pending clear.
27	ICP_PIO2_3	PIO2_3 start logic input interrupt pending clear.
28	ICP_PIO2_4	PIO2_4 start logic input interrupt pending clear.
29	ICP_PIO2_5	PIO2_5 start logic input interrupt pending clear.
30	ICP_PIO2_6	PIO2_6 start logic input interrupt pending clear.
31	ICP_PIO2_7	PIO2_7 start logic input interrupt pending clear.

Chapter 5: LPC13xx Interrupt controller

5.6.8 Interrupt Clear-Pending Register 1 register

The ICPR1 register allows clearing the pending state of the second group of peripheral interrupts, or for reading the pending state of those interrupts. Setting the pending state of interrupts is done through the ISPR0 and ISPR1 registers (<u>Section 5.6.5</u> and <u>Section 5.6.6</u>).

The bit description is as follows for all bits in this register:

Write — Writing 0 has no effect, writing 1 changes the interrupt state to not pending.

Read — 0 indicates that the interrupt is not pending, 1 indicates that the interrupt is pending.

Table 70. Interrupt Set-Pending Register 1 register (ISPR1 - address 0xE000 E204) bit description

Bit	Name	Description
0	ICP_PIO2_8	PIO0_0 start logic input interrupt pending clear.
1	ICP_PIO2_9	PIO2_9 start logic input interrupt pending clear.
2	ICP_PIO2_10	PIO2_10 start logic input interrupt pending clear.
3	ICP_PIO2_11	PIO2_11 start logic input interrupt pending clear.
4	ICP_PIO3_0	PIO3_0 start logic input interrupt pending clear.
5	ICP_PIO3_1	PIO3_0 start logic input interrupt pending clear.
6	ICP_PIO3_2	PIO3_0 start logic input interrupt pending clear.
7	ICP_PIO3_3	PIO3_0 start logic input interrupt pending clear.
8	ICP_I2C0	I ² C0 interrupt pending clear.
9	ICP_CT16B0	Timer CT16B0 interrupt pending clear.
10	ICP_CT16B1	Timer CT16B1 interrupt pending clear.
11	ICP_CT32B0	Timer CT32B0 interrupt pending clear.
12	ICP_CT32B1	Timer CT32B1 interrupt pending clear.
13	ICP_SSP	SSP interrupt pending clear.
14	ICP_UART	UART interrupt pending clear.
15	ICP_USBIRQ	USB IRQ interrupt pending clear.
16	ICP_USBFRQ	USB FRQ interrupt pending clear.
17	ICP_ADC	ADC interrupt pending clear.
18	ICP_WDT	WDT interrupt pending clear.
19	ICP_BOD	BOD interrupt pending clear.
20	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.
21	ICP_PIO_3	GPIO port 3 interrupt pending clear.
22	ICP_PIO_2	GPIO port 2 interrupt pending clear.
23	ICP_PIO_1	GPIO port 1 interrupt pending clear.
24	ICP_PIO_0	GPIO port 0 interrupt pending clear.
31:25	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

Chapter 5: LPC13xx Interrupt controller

5.6.9 Interrupt Active Bit Register 0

The IABR0 register is a read-only register that allows reading the active state of the first 32 peripheral interrupts. This allows determining which peripherals are asserting an interrupt to the NVIC, and may also be pending if there are enabled. The remaining interrupts can have their active state read via the IABR1 register (Section 5.6.10).

The bit description is as follows for all bits in this register:

Write — n/a.

Read — 0 indicates that the interrupt is not active, 1 indicates that the interrupt is active.

Table 71. Interrupt Active Bit Register 0 (IABR0 - address 0xE000 E300) bit description

Bit	Name	Function
0	IAB_PIO0_0	PIO0_0 start logic input interrupt active.
1	IAB_PIO0_1	PIO0_1 start logic input interrupt active.
2	IAB_PIO0_2	PIO0_2 start logic input interrupt active.
3	IAB_PIO0_3	PIO0_3 start logic input interrupt active.
4	IAB_PIO0_4	PIO0_4 start logic input interrupt active.
5	IAB_PIO0_5	PIO0_5 start logic input interrupt active.
6	IAB_PIO0_6	PIO0_6 start logic input interrupt active.
7	IAB_PIO0_7	PIO0_7 start logic input interrupt active.
8	IAB_PIO0_8	PIO0_8 start logic input interrupt active.
9	IAB_PIO0_9	PIO0_9 start logic input interrupt active.
10	IAB_PIO0_10	PIO0_10 start logic input interrupt active.
11	IAB_PIO0_11	PIO0_11 start logic input interrupt active.
12	IAB_PIO1_0	PIO1_0 start logic input interrupt active.
13	IAB_PIO1_1	PIO1_1 start logic input interrupt active.
14	IAB_PIO1_2	PIO1_2 start logic input interrupt active.
15	IAB_PIO1_3	PIO1_3 start logic input interrupt active.
16	IAB_PIO1_4	PIO1_4 start logic input interrupt active.
17	IAB_PIO1_5	PIO1_5 start logic input interrupt active.
18	IAB_PIO1_6	PIO1_6 start logic input interrupt active.
19	IAB_PIO1_7	PIO1_7 start logic input interrupt active.
20	IAB_PIO1_8	PIO1_8 start logic input interrupt active.
21	IAB_PIO1_9	PIO1_9 start logic input interrupt active.
22	IAB_PIO1_10	PIO1_10 start logic input interrupt active.
23	IAB_PIO1_11	PIO1_11 start logic input interrupt active.
24	IAB_PIO2_0	PIO2_0 start logic input interrupt active.
25	IAB_PIO2_1	PIO2_1 start logic input interrupt active.
26	IAB_PIO2_2	PIO2_2 start logic input interrupt active.
27	IAB_PIO2_3	PIO2_3 start logic input interrupt active.
28	IAB_PIO2_4	PIO2_4 start logic input interrupt active.
29	IAB_PIO2_5	PIO2_5 start logic input interrupt active.
30	IAB_PIO2_6	PIO2_6 start logic input interrupt active.
31	IAB_PIO2_7	PIO2_7 start logic input interrupt active.

Chapter 5: LPC13xx Interrupt controller

5.6.10 Interrupt Active Bit Register 1

The IABR1 register is a read-only register that allows reading the active state of the second group of peripheral interrupts. This allows determining which peripherals are asserting an interrupt to the NVIC, and may also be pending if there are enabled.

The bit description is as follows for all bits in this register:

Write — n/a.

Read — 0 indicates that the interrupt is not active, 1 indicates that the interrupt is active.

Table 72. Interrupt Active Bit Register 1 (IABR1 - address 0xE000 E304) bit description

Bit	Name	Description
0	IAB_PIO2_8	PIO0_0 start logic input interrupt active.
1	IAB_PIO2_9	PIO2_9 start logic input interrupt active.
2	IAB_PIO2_10	PIO2_10 start logic input interrupt active.
3	IAB_PIO2_11	PIO2_11 start logic input interrupt active.
4	IAB_PIO3_0	PIO3_0 start logic input interrupt active.
5	IAB_PIO3_1	PIO3_0 start logic input interrupt active.
6	IAB_PIO3_2	PIO3_0 start logic input interrupt active.
7	IAB_PIO3_3	PIO3_0 start logic input interrupt active.
8	IAB_I2C0	I ² C0 interrupt active.
9	IAB_CT16B0	Timer CT16B0 interrupt active.
10	IAB_CT16B1	Timer CT16B1 interrupt active.
11	IAB_CT32B0	Timer CT32B0 interrupt active.
12	IAB_CT32B1	Timer CT32B1 interrupt active.
13	IAB_SSP	SSP interrupt active.
14	IAB_UART	UART interrupt active.
15	IAB_USBIRQ	USB IRQ interrupt active.
16	IAB_USBFRQ	USB FRQ interrupt active.
17	IAB_ADC	ADC interrupt active.
18	IAB_WDT	WDT interrupt active.
19	IAB_BOD	BOD interrupt active.
20	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.
21	IAB_PIO_3	GPIO port 3 interrupt active.
22	IAB_PIO_2	GPIO port 2 interrupt active.
23	IAB_PIO_1	GPIO port 1 interrupt active.
24	IAB_PIO_0	GPIO port 0 interrupt active.
31:25	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

Chapter 5: LPC13xx Interrupt controller

5.6.11 Interrupt Priority Register 0

The IPR0 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 73. Interrupt Priority Register 0 (IPR0 - address 0xE000 E400) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO0_0	PIO0_0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO0_1	PIO0_1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO0_2	PIO0_2 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO0_3	PIO0_3 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.12 Interrupt Priority Register 1

The IPR1 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 74. Interrupt Priority Register 1 (IPR1 - address 0xE000 E404) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO0_4	PIO0_4 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO0_5	PIO0_5 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO0_6	PIO0_6 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO0_7	PIO0_7 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.13 Interrupt Priority Register 2

The IPR2 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 75. Interrupt Priority Register 2 (IPR2 - address 0xE000 E408) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO0_8	PIO0_8 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO0_9	PIO0_9 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO0_10	PIO0_10 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO0_11	PIO0_11 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.14 Interrupt Priority Register 3

The IPR3 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 76. Interrupt Priority Register 3 (IPR3 - address 0xE000 E40C) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO1_0	PIO1_0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO1_1	PIO1_1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO1_2	PIO1_2 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO1_3	PIO1_3 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.15 Interrupt Priority Register 4

The IPR4 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 77. Interrupt Priority Register 4 (IPR4 - address 0xE000 E410) bit description

Bit	Name	Description
Dit	Hairie	υσουτιριίοτι
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO1_4	PIO0_4 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO1_5	PIO0_5 Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO1_6	PIO0_6 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO1_7	PIO0_7 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.16 Interrupt Priority Register 5

The IPR5 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 78. Interrupt Priority Register 5 (IPR5 - address 0xE000 E414) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO1_8	PIO1_8 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO1_9	PIO1_9 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO1_10	PIO1_10 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO1_11	PIO1_11 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.17 Interrupt Priority Register 6

The IPR6 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 79. Interrupt Priority Register 60 (IPR6 - address 0xE000 E418) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO2_0	PIO2_0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO2_1	PIO2_1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO2_2	PIO2_2 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO2_3	PIO2_3 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.18 Interrupt Priority Register 7

The IPR7 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 80. Interrupt Priority Register 7 (IPR7 - address 0xE000 E41C) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO2_4	PIO2_4 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO2_5	PIO2_5 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO2_6	PIO2_6 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO2_7	PIO2_7 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.19 Interrupt Priority Register 8

The IPR8 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 81. Interrupt Priority Register 8 (IPR8 - address 0xE000 E420) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO2_8	PIO0_8 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO2_9	PIO0_9 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO2_10	PIO0_10 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO2_11	PIO0_11 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.20 Interrupt Priority Register 9

The IPR9 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 82. Interrupt Priority Register 9 (IPR9 - address 0xE000 E424) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO3_0	PIO3_0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO3_1	PIO3_1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO3_2	PIO3_2 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO3_3	PIO3_3 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.21 Interrupt Priority Register 10

The IPR10 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 83. Interrupt Priority Register 10 (IPR10 - address 0xE000 E428) bit description

	-	
Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_I2C	I2C Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_CT16B0	CT16B0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_CT16B1	CT16B1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_CT32B0	CT32B0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

5.6.22 Interrupt Priority Register 11

The IPR11 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 84. Interrupt Priority Register 11 (IPR11 - address 0xE000 E42C) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_CT32B1	CT32B1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_SSP	SSP Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_UART	UART Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_USBIRQ	USBIRQ Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$

Chapter 5: LPC13xx Interrupt controller

5.6.23 Interrupt Priority Register 12

The IPR12 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 85. Interrupt Priority Register 12 (IPR12 - address 0xE000 E430) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_USNFIQ	USBFIQ Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_ADC	ADC Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_WDT	WDT Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_BOD	BOD Interrupt Priority. $0 = \text{highest priority.}$ 31 $(0x1F) = \text{lowest priority.}$

5.6.24 Interrupt Priority Register 13

The IPR13 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 86. Interrupt Priority Register 13 (IPR13 - address 0xE000 E434) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	-	Reserved.
10:8	Unimplemented	These bits ignore writes, and read as 0.
15:11	IP_PIO3	PIO3 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
18:16	Unimplemented	These bits ignore writes, and read as 0.
23:19	IP_PIO2	PIO2 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
26:24	Unimplemented	These bits ignore writes, and read as 0.
31:27	IP_PIO1	PIO1 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.

Chapter 5: LPC13xx Interrupt controller

5.6.25 Interrupt Priority Register 14

The IPR14 register controls the priority of four peripheral interrupts. Each interrupt can have one of 32 priorities, where 0 is the highest priority.

Table 87. Interrupt Priority Register 14 (IPR14 - address 0xE000 E438) bit description

Bit	Name	Description
2:0	Unimplemented	These bits ignore writes, and read as 0.
7:3	IP_PIO0	PIO0 Interrupt Priority. 0 = highest priority. 31 (0x1F) = lowest priority.
31:10	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

5.6.26 Software Trigger Interrupt Register

The STIR register provides an alternate way for software to generate an interrupt, in addition to using the ISPR registers. This mechanism can only be used to generate peripheral interrupts, not system exceptions.

By default, only privileged software can write to the STIR register. Unprivileged software can be given this ability if privileged software sets the USERSETMPEND bit in the ARM Cortex-M3 CCR register.

Table 88. Software Trigger Interrupt Register (STIR - address 0xE000 EF00) bit description

Bit	Name	Description
8:0	INTID	Writing a value to this field generates an interrupt for the specified the interrupt number (see <u>Table 61</u>). The range allowed for the LPC13xx is 0 to 56.
31:9	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.

UM10375

Chapter 6: LPC13xx I/O configuration

Rev. 2 — 7 July 2010

User manual

6.1 How to read this chapter

The implementation of the I/O configuration registers varies for different LPC13xx parts and packages. See <u>Table 89</u> and <u>Table 91</u> for IOCON registers and register bits which are not used in all parts or packages.

Table 89. I/O register configuration (unused registers and functions)

Part	USB specific functions/pins	HVQFN33 package (reduced pinout)
LPC1311, LPC1313	USB function in IOCON_PIO0_1, IOCON_PIO0_3, IOCON_PIO0_6 not used. Corresponding register bits are reserved.	IOCON_PIO2_1 to IOCON_PIO2_11, IOCON_PIO3_0, IOCON_PIO3_1, IOCON_PIO3_3 not used.
LPC1342, LPC1343	IOCON_PIO3_4 and IOCON_PIO3_5 not used (pins used for USB_D+/-).	IOCON_PIO2_1 to IOCON_PIO2_11, IOCON_PIO3_0, IOCON_PIO3_1, IOCON_PIO3_3 not used.

6.2 Introduction

The I/O configuration registers control the electrical characteristics of the pins. The following characteristics are configurable:

- pin function
- internal pull-up/pull-down or Repeater mode function
- hysteresis
- analog input or digital mode for pins hosting the ADC inputs
- I²C mode for pins hosting the I²C-bus function

6.3 General description

The IOCON registers control the function (GPIO or peripheral function), the input mode, and the hysteresis of all PIO pins. In addition, the I^2C -bus pins can be configured for different I^2C -bus modes. If a pin is used as input pin for the ADC, an analog input mode can be selected.

77 of 333

Chapter 6: LPC13xx I/O configuration

6.3.1 Pin function

The FUNC bits in the IOCON registers can be set to GPIO (FUNC = 000) or to a peripheral function. If the pins are GPIO pins, the GPIOnDIR registers determine whether the pin is configured as an input or output (see $\underline{\text{Table 142}}$). For any peripheral function, the pin direction is controlled automatically depending on the pin's functionality. The GPIOnDIR registers have no effect for peripheral functions.

6.3.2 Pin mode

The MODE bits in the IOCON register allow the selection of on-chip pull-up or pull-down resistors for each pin or select the repeater mode.

The possible on-chip resistor configurations are pull-up enabled, pull-down enabled, or no pull-up/pull-down. The default value is pull-up enabled.

The repeater mode enables the pull-up resistor if the pin is at a logic HIGH and enables the pull-down resistor if the pin is at a logic LOW. This causes the pin to retain its last known state if it is configured as an input and is not driven externally. The state retention is not applicable to the Deep power-down mode. Repeater mode may typically be used to prevent a pin from floating (and potentially using significant power if it floats to an indeterminate state) if it is temporarily not driven.

Chapter 6: LPC13xx I/O configuration

6.3.3 Hysteresis

The input buffer for digital functions can be configured with hysteresis or as plain buffer through the IOCON registers (see the *LPC1311/13/43/44 data sheet* for details).

If the external pad supply voltage V_{DD} is between 2.5 V and 3.6 V, the hysteresis buffer can be enabled or disabled. If V_{DD} is below 2.5 V, the hysteresis buffer must be **disabled** to use the pin in input mode.

6.3.4 A/D-mode

In A/D-mode, the digital receiver is disconnected to obtain an accurate input voltage for analog-to-digital conversions. This mode is available in those IOCON registers that control pins which can function as ADC inputs. If A/D mode is selected, Hysteresis and Pin mode settings have no effect.

6.3.5 I²C mode

If the I²C function is selected by the FUNC bits of registers IOCON_PIO0_4 (<u>Table 102</u>) and IOCON_PIO0_5 (<u>Table 103</u>), then the I²C-bus pins can be configured for different I²C-modes:

- Standard mode/Fast-mode I²C with input glitch filter (this includes an open-drain output according to the I²C-bus specification).
- Fast-mode Plus with input glitch filter (this includes an open-drain output according to the I²C-bus specification). In this mode, the pins function as high-current sinks.
- Standard, open-drain I/O functionality without input filter.

Remark: Either Standard mode/Fast-mode I²C or Standard I/O functionality should be selected if the pin is used as GPIO pin.

6.4 Register description

The I/O configuration registers control the following pins: PIO ports, the I²C-bus pins, and the ADC input pins.

The pin functions selectable in each IOCON register are listed in order (function 0/function 1/function 2/...) in the description column in Table 90.

Remark: The IOCON registers are listed in order of their memory locations in <u>Table 90</u> which correspond to the order of their physical pin numbers in the LQFP48 package starting at the upper left corner with pin 1 (PIO2_6). See <u>Table 91</u> for a listing of IOCON registers ordered by port number.

Table 90. Register overview: I/O configuration block (base address 0x4004 4000)

Name	Access	Address offset	Description	Reset value
IOCON_PIO2_6	R/W	0x000	I/O configuration for pin PIO2_6	0xD0
-	R/W	0x004	Reserved	-
IOCON_PIO2_0	R/W	0x008	I/O configuration for pin PIO2_0/DTR	0xD0
IOCON_RESET_PIO0_0	R/W	0x00C	I/O configuration for pin RESET/PIO0_0	0xD0

UM10375

Chapter 6: LPC13xx I/O configuration

Table 90. Register overview: I/O configuration block (base address 0x4004 4000) ...continued

Name	Access	Address offset	Description	Reset value
IOCON_PIO0_1	R/W	0x010	I/O configuration for pin PIO0_1/CLKOUT/ CT32B0_MAT2/USB_FTOGGLE	0xD0
IOCON_PIO1_8	R/W	0x014	I/O configuration for pin PIO1_8/CT16B1_CAP0	0xD0
-	R/W	0x018	Reserved	-
IOCON_PIO0_2	R/W	0x01C	I/O configuration for pin PIO0_2/SSEL/ CT16B0_CAP0	0xD0
IOCON_PIO2_7	R/W	0x020	I/O configuration for pin PIO2_7	0xD0
IOCON_PIO2_8	R/W	0x024	I/O configuration for pin PIO2_8	0xD0
IOCON_PIO2_1	R/W	0x028	I/O configuration for pin PIO2_1/DSR	0xD0
IOCON_PIO0_3	R/W	0x02C	I/O configuration for pin PIO0_3/USB_VBUS	0xD0
IOCON_PIO0_4	R/W	0x030	I/O configuration for pin PIO0_4/SCL	0x00
IOCON_PIO0_5	R/W	0x034	I/O configuration for pin PIO0_5/SDA	0x00
IOCON_PIO1_9	R/W	0x038	I/O configuration for pin PIO1_9/CT16B1_MAT0	0xD0
IOCON_PIO3_4	R/W	0x03C	I/O configuration for pin PIO3_4	0xD0
IOCON_PIO2_4	R/W	0x040	I/O configuration for pin PIO2_4	0xD0
IOCON_PIO2_5	R/W	0x044	I/O configuration for pin PIO2_5	0xD0
IOCON_PIO3_5	R/W	0x048	I/O configuration for pin PIO3_5	0xD0
IOCON_PIO0_6	R/W	0x04C	I/O configuration for pin PIO0_6/USB_CONNECT/SCK	0xD0
IOCON_PIO0_7	R/W	0x050	I/O configuration for pin PIO0_7/CTS	0xD0
IOCON_PIO2_9	R/W	0x054	I/O configuration for pin PIO2_9	0xD0
IOCON_PIO2_10	R/W	0x058	I/O configuration for pin PIO2_10	0xD0
IOCON_PIO2_2	R/W	0x05C	I/O configuration for pin PIO2_2/DCD	0xD0
IOCON_PIO0_8	R/W	0x060	I/O configuration for pin PIO0_8/MISO/CT16B0_MAT0	0xD0
IOCON_PIO0_9	R/W	0x064	I/O configuration for pin PIO0_9/MOSI/ CT16B0_MAT1/SWO	0xD0
IOCON_SWCLK_PIO0_10	R/W	0x068	I/O configuration for pin SWCLK/PIO0_10/ SCK/CT16B0_MAT2	0xD0
IOCON_PIO1_10	R/W	0x06C	I/O configuration for pin PIO1_10/AD6/ CT16B1_MAT1	0xD0
IOCON_PIO2_11	R/W	0x070	I/O configuration for pin PIO2_11/SCK	0xD0
IOCON_R_PIO0_11	R/W	0x074	I/O configuration for pin R/PIO0_11/AD0/CT32B0_MAT3	0xD0
IOCON_R_PIO1_0	R/W	0x078	I/O configuration for pin R/PIO1_0/AD1/ CT32B1_CAP0	0xD0
IOCON_R_PIO1_1	R/W	0x07C	I/O configuration for pin R/PIO1_1/AD2/CT32B1_MAT0	0xD0
IOCON_R_PIO1_2	R/W	0x080	I/O configuration for pin R/PIO1_2/AD3/ CT32B1_MAT1	0xD0
IOCON_PIO3_0	R/W	0x084	I/O configuration for pin PIO3_0	0xD0
IOCON_PIO3_1	R/W	0x088	I/O configuration for pin PIO3_1	0xD0
IOCON_PIO2_3	R/W	0x08C	I/O configuration for pin PIO2_3/RI	0xD0
IOCON_SWDIO_PIO1_3	R/W	0x090	I/O configuration for pin SWDIO/PIO1_3/AD4/ CT32B1_MAT2	0xD0
IOCON_PIO1_4	R/W	0x094	I/O configuration for pin PIO1_4/AD5/CT32B1_MAT3	0xD0

User manual

Table 90. Register overview: I/O configuration block (base address 0x4004 4000) ...continued

Name	Access	Address offset	Description	Reset value
IOCON_PIO1_11	R/W	0x098	I/O configuration for pin PIO1_11/AD7	0xD0
IOCON_PIO3_2	R/W	0x09C	I/O configuration for pin PIO3_2	0xD0
IOCON_PIO1_5	R/W	0x0A0	I/O configuration for pin PIO1_5/RTS/CT32B0_CAP0	0xD0
IOCON_PIO1_6	R/W	0x0A4	I/O configuration for pin PIO1_6/RXD/CT32B0_MAT0	0xD0
IOCON_PIO1_7	R/W	0x0A8	I/O configuration for pin PIO1_7/TXD/CT32B0_MAT1	0xD0
IOCON_PIO3_3	R/W	0x0AC	I/O configuration for pin PIO3_3	0xD0
IOCON_SCKLOC	R/W	0x0B0	SCK pin location select register	0x00

Table 91. I/O configuration registers ordered by port number

10010 011	Wo comigaration registers eracio	a by port name		
Port pin	Pin name	LQFP48	HVQFN33	Reference
PIO0_0	IOCON_RESET_PIO0_0	yes	yes	Table 94
PIO0_1	IOCON_PIO0_1	yes	yes	Table 95
PIO0_2	IOCON_PIO0_2	yes	yes	Table 97
PIO0_3	IOCON_PIO0_3	yes	yes	Table 101
PIO0_4	IOCON_PIO0_4	yes	yes	Table 102
PIO0_5	IOCON_PIO0_5	yes	yes	Table 103
PIO0_6	IOCON_PIO0_6	yes	yes	Table 109
PIO0_7	IOCON_PIO0_7	yes	yes	Table 110
PIO0_8	IOCON_PIO0_8	yes	yes	Table 114
PIO0_9	IOCON_PIO0_9	yes	yes	Table 115
IPIO0_10	IOCON_SWCLK_PIO0_10	yes	yes	Table 116
PIO0_11	IOCON_R_PIO0_11	yes	yes	Table 119
PIO1_0	IOCON_R_PIO1_0	yes	yes	Table 120
IPIO1_1	IOCON_R_PIO1_1	yes	yes	Table 121
IPIO1_2	IOCON_R_PIO1_2	yes	yes	Table 122
PIO1_3	IOCON_SWDIO_PIO1_3	yes	yes	Table 126
PIO1_4	IOCON_PIO1_4	yes	yes	Table 127
PIO1_5	IOCON_PIO1_5	yes	yes	Table 130
PIO1_6	IOCON_PIO1_6	yes	yes	Table 131
PIO1_7	IOCON_PIO1_7	yes	yes	Table 132
PIO1_8	IOCON_PIO1_8	yes	yes	Table 96
PIO1_9	IOCON_PIO1_9	yes	yes	Table 104
PIO1_10	IOCON_PIO1_10	yes	yes	Table 117
PIO1_11	IOCON_PIO1_11	yes	yes	Table 128
PIO2_0	IOCON_PIO2_0	yes	yes	Table 93
PIO2_1	IOCON_PIO2_1	yes	no	Table 100
PIO2_2	IOCON_PIO2_2	yes	no	Table 113
PIO2_3	IOCON_PIO2_3	yes	no	Table 125
IPIO2_4	IOCON_PIO2_4	yes	no	Table 106
PIO2_5	IOCON_PIO2_5	yes	no	Table 107

Chapter 6: LPC13xx I/O configuration

Table 91. I/O configuration registers ordered by port number ...continued

Port pin	Pin name	LQFP48	HVQFN33	Reference
PIO2_6	IOCON_PIO2_6	yes	no	Table 92
PIO2_7	IOCON_PIO2_7	yes	no	Table 98
PIO2_8	IOCON_PIO2_8	yes	no	Table 99
PIO2_9	IOCON_PIO2_9	yes	no	<u>Table 111</u>
PIO2_10	IOCON_PIO2_10	yes	no	Table 112
PIO2_11	IOCON_PIO2_11	yes	no	Table 118
PIO3_0	IOCON_PIO3_0	yes	no	Table 123
PIO3_1	IOCON_PIO3_1	yes	no	Table 124
PIO3_2	IOCON_PIO3_2	yes	yes	<u>Table 129</u>
PIO3_3	IOCON_PIO3_3	yes	no	Table 133
PIO3_4	IOCON_PIO3_4	yes, on LPC1311/13[1]	yes, on LPC1311/13[1]	Table 105
PIO3_5	IOCON_PIO3_5	yes, on LPC1311/13[1]	yes, on LPC1311/13[1]	Table 108

^[1] On LPC134x, PIO3_4 and PIO3_5 are not available. The corresponding pins are used for the USB D+ and D- functions.

6.4.1 I/O configuration registers IOCON_PIOn

For details on the I/O configuration settings, see Section 6.3.

Table 92. IOCON_PIO2_6 register (IOCON_PIO2_6, address 0x4004 4000) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_6	
		001 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 93. IOCON_PIO2_0 register (IOCON_PIO2_0, address 0x4004 4008) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function.	000
		000	Selects function PIO2_0	
		001	Selects function DTR	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 94. IOCON_nRESET_PIO0_0 register (IOCON_nRESET_PIO0_0, address 0x4004 400C) bit description

Bit	Symbol	Value	Description	Reset
2:0	FUNC		Selects pin function	000
		000	Selects function RESET	
		001	Selects function PIO0_0	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	value 000
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 95. IOCON_PIO0_1 register (IOCON_PIO0_1, address 0x4004 4010) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_1	
		001	Selects function CLKOUT	
		010	Selects function CT32B0_MAT2	
		011	Selects function USB_FTOGGLE	
		100 to	Reserved	10
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	10
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	value 000
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 96. IOCON_PIO1_8 register (IOCON_PIO1_8, address 0x4004 4014) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO1_8	
		001	Selects function CT16B1_CAP0	
		010 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 97. IOCON_PIO0_2 register (IOCON_PIO0_2, address 0x4004 401C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_2	
		001	Selects function SSEL	
		010	Selects function CT16B0_CAP0	
		011 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	10
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	value 000
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 98. IOCON_PIO2_7 register (IOCON_PIO2_7, address 0x4004 4020) bit description

Bit	Symbol	Value	Description	Reset value
2:0 F	2:0 FUNC		Selects pin function	000
		000	Selects function PIO2_7	
		001 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 99. IOCON_PIO2_8 register (IOCON_PIO2_8, address 0x4004 4024) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	2:0 F	FUNC		Selects pin function	000
		000	Selects function PIO2_8		
		001 to	Reserved		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10	
	00 Inactive (no pull-down/pull-up resistor enabled)				
		01 Pull-down resistor enabled			
		10	Pull-up resistor enabled		
		11	Repeater mode		
5	HYS		Hysteresis	0	
		0	Disable		
		1	Enable		
6	-	-	Reserved	1	
31:7	-	-	Reserved	-	

Table 100. IOCON_PIO2_1 register (IOCON_PIO2_1, address 0x4004 4028) bit description

Bit	Symbol	Value	Description	Reset value
2:0 F	FUNC		Selects pin function	000
		000	Selects function PIO2_1	
		001	Selects function DSR	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11 Repeater mode	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 101. IOCON_PIO0_3 register (IOCON_PIO0_3, address 0x4004 402C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_3	
		001	Selects function USB_VBUS	
		010 to	Reserved	
		111		
4:3	control)		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	10
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 102. IOCON_PIO0_4 register (IOCON_PIO0_4, address 0x4004 4030) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_4 (pin is open-drain)	
		001	Selects I2C function SCL (pin is open-drain)	
		010 to	Reserved	
		111		
7:3	-	-	Reserved	00000
9:8	12CMODE		Selects I2C mode	00
		00[1]	Standard mode/ Fast-mode I2C	
		01[1]	Standard I/O functionality	
		10	Fast-mode Plus I2C	
		11	Reserved	
31:10	-	-	Reserved	-

^[1] Select Standard mode (I2CMODE = 00, default) or Standard I/O functionality (I2CMODE = 01) if the pin function is GPIO (FUNC = 000).

Table 103. IOCON_PIO0_5 register (IOCON_PIO0_5, address 0x4004 4034) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_5 (pin is open-drain)	
		001	Selects I2C function SDA (pin is open-drain)	
		010 to	Reserved	
		111		
7:3	-	-	Reserved	00000
9:8	I2CMODE		Selects I2C mode	00
		00[1]	Standard mode/ Fast-mode I2C	
		01[1]	Standard I/O functionality	
		10	Fast-mode Plus I2C	
		11	Reserved	
31:10	-	-	Reserved	-

^[1] Select Standard mode (I2CMODE = 00, default) or Standard I/O functionality (I2CMODE = 01) if the pin function is GPIO (FUNC = 000).

Table 104. IOCON_PIO1_9 register (IOCON_PIO1_9 address 0x4004 4038) bit description

Bit	Symbol	Value	Description	Reset value
2:0 FUNG	FUNC		Selects pin function	000
		000	Selects function PIO1_9	
		001	Selects function CT16B1_MAT0	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00 Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	000
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 105. IOCON_PIO3_4 register (IOCON_PIO3_4, address 0x4004 403C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO3_4	
		001 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 106. IOCON_PIO2_4 register (IOCON_PIO2_4, address 0x4004 4040) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	10
		000	Selects function PIO2_4	
		001 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
	00 Inactive (no pull-down/pull-up resistor enabled	Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 107. IOCON_PIO2_5 register (IOCON_PIO2_5, address 0x4004 4044) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_5	value
		001 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Chapter 6: LPC13xx I/O configuration

Table 108. IOCON_PIO3_5 register (IOCON_PIO3_5, address 0x4004 4048) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO3_5	
		001 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01 Pull-down resistor enabled		
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 109. IOCON_PIO0_6 register (IOCON_PIO0_6, address 0x4004 404C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_6	
		001	Selects function USB_CONNECT	
		010	Selects function SCK (only if pin PIO0_6/USB_CONNECT/	
	SCK selected in Table 134)			
		011 to	Reserved	
		111		
4:3	MODE Selects function mode (on-chip pull-up/pull-down control) 00 Inactive (no pull-down/pull-up resistor enabled) 01 Pull-down resistor enabled		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 110. IOCON_PIO0_7 register (IOCON_PIO0_7, address 0x4004 4050) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_7	
		001	Selects function CTS	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 111. IOCON_PIO2_9 register (IOCON_PIO2_9, address 0x4004 4054) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_9	
		001 to	Reserved	
4:3	MODE	ODE Selects function mode (on-chip pull-up/pull-down resistor control)	Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		Pull-down resistor enabled		
		10 Pull-up resistor enabled		
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 112. IOCON_PIO2_10 register (IOCON_PIO2_10, address 0x4004 4058) bit description

				•
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_10	
		001 to 111	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
	00 Inactive (no pull-down/pull-up resistor enabled) 01 Pull-down resistor enabled 10 Pull-up resistor enabled 11 Repeater mode	00	Inactive (no pull-down/pull-up resistor enabled)	
		Pull-up resistor enabled		
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 113. IOCON_PIO2_2 register (IOCON_PIO2_2, address 0x4004 405C) bit description

Bit	Symbol	Value	Description	Reset value				
2:0	FUNC		Selects pin function	000				
		000	Selects function PIO2_2					
		001	Selects function DCD					
		010 to	Reserved					
		111						
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10				
		00	Inactive (no pull-down/pull-up resistor enabled)					
		01	Pull-down resistor enabled					
		10	Pull-up resistor enabled					
		11	Repeater mode					
5	HYS	HYS	HYS	HYS	HYS		Hysteresis	0
		0	Disable					
		1	Enable					
6	-	-	Reserved	1				
31:7	-	-	Reserved	-				

Table 114. IOCON_PIO0_8 register (IOCON_PIO0_8, address 0x4004 4060) bit description

Bit	Symbol	Value	Description	Reset value				
2:0	FUNC		Selects pin function	000				
		000	Selects function PIO0_8					
		001	Selects function MISO	value				
		010	Selects function CT16B0_MAT0					
		011 Reserved						
		100 to	Reserved					
		111						
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10				
		00	Inactive (no pull-down/pull-up resistor enabled)					
		01	Pull-down resistor enabled					
		10	Pull-up resistor enabled					
		11	Repeater mode	10				
5	HYS	HYS	HYS	HYS	HYS	HYS H	Hysteresis	0
		0	Disable					
		1	Enable					
6	-	-	Reserved	1				
31:7	-	-	Reserved	-				

Table 115. IOCON_PIO0_9 register (IOCON_PIO0_9, address 0x4004 4064) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO0_9	
		001	Selects function MOSI	
		010	Selects function CT16B0_MAT1	
		011 Selects function SWO100 to Reserved111		
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00 Inactive (no pull-down/pull-u	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 116. IOCON_SWCLK_PIO0_10 register (IOCON_SWCLK_PIO0_10, address 0x4004 4068) bit description

	700	o, bit ac	sscription	
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function SWCLK	
		001	Selects function PIO0_10	
		010	Selects function SCK (only if pin	
			SWCLK/PIO0_10/SCK/CT16B0_MAT2 selected in Table 134)	
		011	Selects function CT16B0_MAT2	
		100 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 117. IOCON_PIO1_10 register (IOCON_PIO1_10, address 0x4004 406C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO1_10	
		001	Selects function AD6	
		010	Selects function CT16B1_MAT1	
		011 to 111	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Table 118. IOCON_PIO2_11 register (IOCON_PIO2_11, address 0x4004 4070) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_11	
		001	Selects function SCK (only if pin PIO2_11/SCK selected in Table 134)	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 119. IOCON_R_PIO0_11 register (IOCON_R_PIO0_11, address 0x4004 4074) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function R. This function is reserved. Select one of the alternate functions below.	
		001	Selects function PIO0_11	
		010	Selects function AD0	
		011	Selects function CT32B0_MAT3	
		100 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Table 120. IOCON_R_PIO1_0 register (IOCON_R_PIO1_0, address 0x4004 4078) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function	000	
		000	Selects function R. This function is reserved. Select one of the alternate functions below.		
		001	Selects function PIO1_0		
		010	Selects function AD1		
		011	Selects function CT32B1_CAP0		
		100 to	Reserved		
		111			
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10	
			00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled		
		10 Pull-up resistor enabled	Pull-up resistor enabled		
		11	Repeater mode		
5	HYS		Hysteresis	0	
		0	Disable		
		1	Enable		
6	-	-	Reserved	1	
7	ADMODE		Selects Analog/Digital mode	1	
		0	Analog input mode		
		1	Digital functional mode		
31:8	-	-	Reserved	-	

Table 121. IOCON_R_PIO1_1 register (IOCON_R_PIO1_1, address 0x4004 407C) bit description

acscription				
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function R. This function is reserved. Select one of the alternate functions below.	
		001	Selects function PIO1_1	
		010	Selects function AD2	
		011	Selects function CT32B1_MAT0	
		100 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Chapter 6: LPC13xx I/O configuration

Table 122. IOCON_R_PIO1_2 register (IOCON_R_PIO1_2, address 0x4004 4080) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function R. This function is reserved. Select one of the alternate functions below.	
		001	Selects function PIO1_2	
		010	Selects function AD3	
		011	Selects function CT32B1_MAT1	
		100 to	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Table 123. IOCON_PIO3_0 register (IOCON_PIO3_0, address 0x4004 4084) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO3_0	
		001 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 124. IOCON_PIO3_1 register (IOCON_PIO3_1, address 0x4004 4088) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	10
		000	Selects function PIO3_1	
		001 to 111	Reserved	
4:3	4:3 MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00 Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 125. IOCON_PIO2_3 register (IOCON_PIO2_3, address 0x4004 408C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO2_3	
		001	Selects function RI	
		010 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 126. IOCON_SWDIO_PIO1_3 register (IOCON_SWDIO_PIO1_3, address 0x4004 4090) bit description

		•		
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function SWDIO	
		001	Selects function PIO1_3	
		010	Selects function AD4	
		011	Selects function CT32B1_MAT2	
		100 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01 Pull-down resistor enabled	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Table 127. IOCON_PIO1_4 register (IOCON_PIO1_4, address 0x4004 4094) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC[1]		Selects pin function	000
		000	Selects function PIO1_4	
		001	Selects function AD5	
		010	Selects function CT32B1_MAT3	
		100 to 011	Reserved	
4:3 N	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

^[1] This pin functions as WAKEUP pin if the LPC13xx is in Deep power-down mode regardless of the value of FUNC.

Table 128. IOCON_PIO1_11 register (IOCON_PIO1_11, address 0x4004 4098) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000 Selects function PIO1_11		
		001	Selects function AD7	
		010 to 111	Reserved	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10 Pull-up resistor enabled	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
7	ADMODE		Selects Analog/Digital mode	1
		0	Analog input mode	
		1	Digital functional mode	
31:8	-	-	Reserved	-

Table 129. IOCON_PIO3_2 register (IOCON_PIO3_2, address 0x4004 409C) bit description

Bit	Symbol	Value	Description	Reset value		
2:0	FUNC		Selects pin function	000		
		000	Selects function PIO3_2			
		001 to	Reserved			
		111				
4:3	MODE	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10	
		00	Inactive (no pull-down/pull-up resistor enabled)			
		01	Pull-down resistor enabled			
		10	Pull-up resistor enabled			
	11 Repeater mode	Repeater mode				
5	HYS	HYS	HYS		Hysteresis	0
		0	Disable			
		1	Enable			
6	-	-	Reserved	1		
31:7	-	-	Reserved	-		

Table 130. IOCON_PIO1_5 register (IOCON_PIO1_5, address 0x4004 40A0) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO1_5	
		001	Selects function RTS	
		010	Selects function CT32B0_CAP0	
		011 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 131. IOCON_PIO1_6 register (IOCON_PIO1_6, address 0x4004 40A4) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function	000	
		000	Selects function PIO1_6		
		001	Selects function UART_RXD		
		010	Selects function CT32B0_MAT0		
		011 to	Reserved		
		111			
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10	
		00	Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled		
		10	Pull-up resistor enabled		
		11	Repeater mode		
5	HYS		Hysteresis	0	
		0	Disable		
		1	Enable		
6	-	-	Reserved	1	
31:7	-	-	Reserved	-	

Chapter 6: LPC13xx I/O configuration

Table 132. IOCON_PIO1_7 register (IOCON_PIO1_7, address 0x4004 40A8) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function	000
		000	Selects function PIO1_7	
		001	Selects function UART_TXD	
		010	Selects function CT32B0_MAT1	
		011 to	Reserved	
		111		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10
		00	Inactive (no pull-down/pull-up resistor enabled)	
		01	Pull-down resistor enabled	
		10	Pull-up resistor enabled	
		11	Repeater mode	
5	HYS		Hysteresis	0
		0	Disable	
		1	Enable	
6	-	-	Reserved	1
31:7	-	-	Reserved	-

Table 133. IOCON_PIO3_3 register (IOCON_PIO3_3, address 0x4004 40AC) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function	000	
		000	Selects function PIO3_3		
		001 to 111	Reserved		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control)	10	
		00	Inactive (no pull-down/pull-up resistor enabled)		
		01	Pull-down resistor enabled		
		10	Pull-up resistor enabled		
		11	Repeater mode		
5	HYS		Hysteresis	0	
		0	0	Disable	
		1	Enable		
6	-	-	Reserved	1	
31:7	-	-	Reserved	-	

6.4.1.1 IOCON SCK location register

This register is used to select a pin among three possible choices for the SSP SCK function.

Chapter 6: LPC13xx I/O configuration

Remark: Note that once the pin location has been selected, the function still must be set to SCK in the corresponding IOCONF registers for the SCK to be usable on that pin.

Table 134. IOCON SCK location register (IOCON_SCKLOC, address 0x4004 40B0) bit description

		•		
Bit	Symbol	Value	Description	Reset value
1:0	SCKLOC		Selects pin location for SCK pin.	000
		00	Selects SCK function for pin SWCLK/PIO0_10/SCK/CT16B0_MAT2 (see Table 116).	
		01	Selects SCK function for pin PIO2_11/SCK (see <u>Table 118</u>	
		10	Selects SCK function for pin PIO0_6/USB_CONNECT/SCK (see Table 109).	
		11	Reserved.	
31:2	-	-	Reserved	-

UM10375

Chapter 7: LPC13xx Pin configuration

Rev. 2 — 7 July 2010

User manual

7.1 How to read this chapter

The LPC13xx parts are available in LQFP48 and HVQFN33 packages. The LPC1342/43 parts have dedicated USB pins and additional USB functions on some pins.

Table 135. LPC13xx pin configuration overview

Part	HVQFN33 package	Pin description	LQFP48 package	Pin description
LPC1311	Figure 9	<u>Table 137</u>	-	-
LPC1313	Figure 9	Table 137	Figure 8	Table 136
LPC1342	Figure 7	Table 137	-	-
LPC1343	Figure 7	Table 137	Figure 6	Table 136

Chapter 7: LPC13xx Pin configuration

7.2 LPC134x pin configuration

Chapter 7: LPC13xx Pin configuration

UM10375 NXP Semiconductors

Chapter 7: LPC13xx Pin configuration

7.3 LPC131x pin configuration

Chapter 7: LPC13xx Pin configuration

7.4 Pin description

In <u>Table 136</u> and <u>Table 137</u>, the pins are listed in order of their port number. Supply pins and special function pins appear at the end.

The default function of each pin is always the first function listed in the description column or the first function of each pin symbol. Each pin function can be set through the corresponding IOCON register (see Table 91).

Chapter 7: LPC13xx Pin configuration

7.4.1 LQFP48 packages

Table 136. LPC1313/43 LQFP48 pin description table

Symbol	Pin	Туре	Description	
RESET/PIO0_0	3[1]	I	RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0.	
		I/O	PIO0_0 — General purpose digital input/output pin.	
PIO0_1/CLKOUT/ CT32B0_MAT2/ USB_FTOGGLE	4 <u>[2]</u>	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler or the USB device enumeration (USB on LPC1343 only, see description of PIO0_3).	
		0	CLKOUT — Clockout pin.	
		0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.	
		0	USB_FTOGGLE — USB 1 ms Start-of-Frame signal (LPC1343 only).	
PIO0_2/SSEL/	10[2]	I/O	PIO0_2 — General purpose digital input/output pin.	
CT16B0_CAP0		0	SSEL — Slave select for SSP.	
		I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.	
PIO0_3/USB_VBUS	14[2]	I/O	PIO0_3 — General purpose digital input/output pin. LPC1343 only: A level on this pin during reset starts the ISP command handler, a HIG starts the USB device enumeration.	
		I	USB_VBUS — Monitors the presence of USB bus power (LPC1343 only).	
PIO0_4/SCL	15 <mark>[3]</mark>	I/O	PIO0_4 — General purpose digital input/output pin (open-drain).	
		I/O	SCL — I^2C -bus clock input/output (open-drain). High-current sink only if I^2C Fast-mode Plus is selected in the I/O configuration register.	
PIO0_5/SDA	16 ^[3]	I/O	PIO0_5 — General purpose digital input/output pin (open-drain).	
		I/O	SDA — I ² C-bus data input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.	
PIO0_6/USB_CONNECT/	22[2]	I/O	PIO0_6 — General purpose digital input/output pin.	
SCK		0	USB_CONNECT — Signal used to switch an external 1.5 kΩ resistor under software control. Used with the SoftConnect USB feature (LPC1343 only).	
		I/O	SCK — Serial clock for SSP.	
PIO0_7/CTS	23[2]	I/O	PIO0_7 — General purpose digital input/output pin (high-current output driver).	
		I	CTS — Clear To Send input for UART.	
PIO0_8/MISO/	27 <mark>[2]</mark>	I/O	PIO0_8 — General purpose digital input/output pin.	
CT16B0_MAT0		I/O	MISO — Master In Slave Out for SSP.	
		О	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.	
PIO0_9/MOSI/	28[2]	I/O	PIO0_9 — General purpose digital input/output pin.	
CT16B0_MAT1/ SWO		I/O	MOSI — Master Out Slave In for SSP.	
		0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.	
		0	SWO — Serial wire trace output.	
SWCLK/PIO0_10/	29[2]	I	SWCLK — Serial wire clock.	
SCK/CT16B0_MAT2		I/O	PIO0_10 — General purpose digital input/output pin.	
		0	SCK — Serial clock for SSP.	
		0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.	

Chapter 7: LPC13xx Pin configuration

Table 136. LPC1313/43 LQFP48 pin description table ...continued

Symbol	Pin	Type	Description
R/PIO0_11/	32[4]	-	R — Reserved. Configure for an alternate function in the IOCONFIG block.
AD0/CT32B0_MAT3		I/O	PIO0_11 — General purpose digital input/output pin.
		I	AD0 — A/D converter, input 0.
		0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
R/PIO1_0/	33[4]	-	R — Reserved. Configure for an alternate function in the IOCONFIG block.
AD1/CT32B1_CAP0		I/O	PIO1_0 — General purpose digital input/output pin.
		I	AD1 — A/D converter, input 1.
		I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
R/PIO1_1/	34 <mark>[4]</mark>	I	R — Reserved. Configure for an alternate function in the IOCONFIG block.
AD2/CT32B1_MAT0		I/O	PIO1_1 — General purpose digital input/output pin.
		I	AD2 — A/D converter, input 2.
		0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
R/PIO1_2/ AD3/CT32B1_MAT1	35 <mark>[4]</mark>	I	R — Reserved. Configure for an alternate function in the IOCONFIG block.
		I/O	PIO1_2 — General purpose digital input/output pin.
		I	AD3 — A/D converter, input 3.
		0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
SWDIO/PIO1_3/AD4/	39 <u>[4]</u>	I/O	SWDIO — Serial wire debug input/output.
CT32B1_MAT2		I/O	PIO1_3 — General purpose digital input/output pin.
		I	AD4 — A/D converter, input 4.
		0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO1_4/AD5/	40[4]	I/O	PIO1_4 — General purpose digital input/output pin.
CT32B1_MAT3/WAKEUP		I	AD5 — A/D converter, input 5.
		0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
		I	WAKEUP — Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode.
PIO1_5/RTS/	45 <mark>[2]</mark>	I/O	PIO1_5 — General purpose digital input/output pin.
CT32B0_CAP0		0	RTS — Request To Send output for UART.
		I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
PIO1_6/RXD/	46 <mark>[2]</mark>	I/O	PIO1_6 — General purpose digital input/output pin.
CT32B0_MAT0		I	RXD — Receiver input for UART.
		0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO1_7/TXD/	47 <mark>[2]</mark>	I/O	PIO1_7 — General purpose digital input/output pin.
CT32B0_MAT1		0	TXD — Transmitter output for UART.
		0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_8/CT16B1_CAP0	9[2]	I/O	PIO1_8 — General purpose digital input/output pin.
		I	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
	47[2]		
PIO1_9/CT16B1_MAT0	17[2]	I/O	PIO1_9 — General purpose digital input/output pin.

UM10375 NXP Semiconductors

Chapter 7: LPC13xx Pin configuration

© NXP B.V. 2010. All rights reserved.

Table 136. LPC1313/43 LQFP48 pin description table ...continued

Symbol	Pin	Type	Description
PIO1_10/AD6/	30[4]	I/O	PIO1_10 — General purpose digital input/output pin.
CT16B1_MAT1		I	AD6 — A/D converter, input 6.
		0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO1_11/AD7	42 <mark>[4]</mark>	I/O	PIO1_11 — General purpose digital input/output pin.
		I	AD7 — A/D converter, input 7.
PIO2_0/DTR	2[2]	I/O	PIO2_0 — General purpose digital input/output pin.
		0	DTR — Data Terminal Ready output for UART.
PIO2_1/DSR	13[2]	I/O	PIO2_1 — General purpose digital input/output pin.
		I	DSR — Data Set Ready input for UART.
PIO2_2/DCD	26[2]	I/O	PIO2_2 — General purpose digital input/output pin.
		I	DCD — Data Carrier Detect input for UART.
PIO2_3/RI	38[2]	I/O	PIO2_3 — General purpose digital input/output pin.
		I	RI — Ring Indicator input for UART.
PIO2_4	18 <mark>[2]</mark>	I/O	PIO2_4 — General purpose digital input/output pin (LPC1343 only).
PIO2_4	19[2]	I/O	PIO2_4 — General purpose digital input/output pin (LPC1313 only).
PIO2_5	212	I/O	PIO2_5 — General purpose digital input/output pin (LPC1343 only).
PIO2_5	20[2]	I/O	PIO2_5 — General purpose digital input/output pin (LPC1313 only).
PIO2_6	1[2]	I/O	PIO2_6 — General purpose digital input/output pin.
PIO2_7	11[2]	I/O	PIO2_7 — General purpose digital input/output pin.
PIO2_8	12[2]	I/O	PIO2_8 — General purpose digital input/output pin.
PIO2_9	24[2]	I/O	PIO2_9 — General purpose digital input/output pin.
PIO2_10	25 ^[2]	I/O	PIO2_10 — General purpose digital input/output pin.
PIO2_11/SCK	31[2]	I/O	PIO2_11 — General purpose digital input/output pin.
		I/O	SCK — Serial clock for SSP.
PIO3_0	36[2]	I/O	PIO3_0 — General purpose digital input/output pin.
PIO3_1	37[2]	I/O	PIO3_1 — General purpose digital input/output pin.
PIO3_2	43[2]	I/O	PIO3_2 — General purpose digital input/output pin.
PIO3_3	48[2]	I/O	PIO3_3 — General purpose digital input/output pin.
PIO3_4	18 <mark>[2]</mark>	I/O	PIO3_4 — General purpose digital input/output pin (LPC1313 only).
PIO3_5	21[2]	I/O	PIO3_5 — General purpose digital input/output pin (LPC1313 only).
USB_DM	19 ^[5]	I/O	USB_DM — USB bidirectional D- line (LPC1343 only).
USB_DP	20[5]	I/O	USB_DP — USB bidirectional D+ line (LPC1343 only).
V_{DD}	8; 44	I	3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
V _{SSIO}	5	I	Ground.
XTALIN	6 <u>6</u>	1	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	7 <u>[6]</u>	0	Output from the oscillator amplifier.
	41	ı	Ground.

^[1] RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode.

UM10375

^{[2] 5} V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.

Chapter 7: LPC13xx Pin configuration

- [3] I²C-bus pads compliant with the I²C-bus specification for I²C standard mode and I²C Fast-mode Plus.
- [4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant.
- [5] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only).
- [6] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

7.4.2 HVQFN33 packages

Table 137. LPC1311/13/42/43 HVQFN33 pin description table

Symbol	Pin	Type	Description
RESET/PIO0_0	2[1]	I	RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0.
		I/O	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2/ USB_FTOGGLE	3[2]	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler or the USB device enumeration (USB on LPC1342/43 only, see description of PIO0_3).
		0	CLKOUT — Clock out pin.
		0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
		0	USB_FTOGGLE — USB 1 ms Start-of-Frame signal (LPC1342/43 only).
PIO0_2/SSEL/	8[2]	I/O	PIO0_2 — General purpose digital input/output pin.
CT16B0_CAP0		0	SSEL — Slave select for SSP.
		I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO0_3/USB_VBUS	9[2]	I/O	PIO0_3 — General purpose digital input/output pin. LPC1342/43 only: A LOW level on this pin during reset starts the ISP command handler, a HIGH level starts the USB device enumeration.
		I	USB_VBUS — Monitors the presence of USB bus power (LPC1342/43 only).
PIO0_4/SCL	10 <mark>[3]</mark>	I/O	PIO0_4 — General purpose digital input/output pin (open-drain).
		I/O	SCL — I ² C-bus clock input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_5/SDA	11[3]	I/O	PIO0_5 — General purpose digital input/output pin (open-drain).
		I/O	SDA — I^2C -bus data input/output (open-drain). High-current sink only if I^2C Fast-mode Plus is selected in the I/O configuration register.
PIO0_6/USB_CONNECT/	15 <mark>2</mark>	I/O	PIO0_6 — General purpose digital input/output pin.
SCK		0	USB_CONNECT — Signal used to switch an external 1.5 kΩ resistor under software control. Used with the SoftConnect USB feature (LPC1342/43 only).
		I/O	SCK — Serial clock for SSP.
PIO0_7/CTS	16[2]	I/O	PIO0_7 — General purpose digital input/output pin (high-current output driver).
		I	CTS — Clear To Send input for UART.
PIO0_8/MISO/	17 <mark>2</mark>	I/O	PIO0_8 — General purpose digital input/output pin.
CT16B0_MAT0		I/O	MISO — Master In Slave Out for SSP.
		0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.

Chapter 7: LPC13xx Pin configuration

Table 137. LPC1311/13/42/43 HVQFN33 pin description table ...continued

Symbol	Pin	Туре	Description
PIO0_9/MOSI/	18 <mark>2</mark>	I/O	PIO0_9 — General purpose digital input/output pin.
CT16B0_MAT1/ SWO		I/O	MOSI — Master Out Slave In for SSP.
300		0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
		0	SWO — Serial wire trace output.
SWCLK/PIO0_10/SCK/	19 <mark>2</mark>	I	SWCLK — Serial wire clock.
CT16B0_MAT2		I/O	PIO0_10 — General purpose digital input/output pin.
		0	SCK — Serial clock for SSP.
		0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
R/PIO0_11/AD0/	21 <mark>4</mark>	I	R — Reserved. Configure for an alternate function in the IOCONFIG block.
CT32B0_MAT3		I/O	PIO0_11 — General purpose digital input/output pin.
		I	AD0 — A/D converter, input 0.
		0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
R/PIO1_0/AD1/	22[4]	I	R — Reserved. Configure for an alternate function in the IOCONFIG block.
CT32B1_CAP0		I/O	PIO1_0 — General purpose digital input/output pin.
		1	AD1 — A/D converter, input 1.
		1	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
R/PIO1_1/AD2/	23 <mark>[4]</mark>	I	R — Reserved. Configure for an alternate function in the IOCONFIG block.
CT32B1_MAT0		I/O	PIO1_1 — General purpose digital input/output pin.
		ī	AD2 — A/D converter, input 2.
		0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
R/PIO1_2/AD3/	24[4]	ı	R — Reserved. Configure for an alternate function in the IOCONFIG block.
CT32B1_MAT1		I/O	PIO1_2 — General purpose digital input/output pin.
		I	AD3 — A/D converter, input 3.
		0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
SWDIO/PIO1_3/AD4/	25 <mark>[4]</mark>	I/O	SWDIO — Serial wire debug input/output.
CT32B1_MAT2		I/O	PIO1_3 — General purpose digital input/output pin.
		ī	AD4 — A/D converter, input 4.
		0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO1_4/AD5/	26 <mark>[4]</mark>	I/O	PIO1_4 — General purpose digital input/output pin.
CT32B1_MAT3/WAKEUP		ī	AD5 — A/D converter, input 5.
		0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
		I	WAKEUP — Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode.
	20[2]	1/0	PIO1_5 — General purpose digital input/output pin.
PIO1 5/RTS/	30[2]	1/0	
PIO1_5/RTS/ CT32B0_CAP0	30[2]	I/O O	
	30[2]	0	RTS — Request To Send output for UART.
CT32B0_CAP0		<u>О</u>	RTS — Request To Send output for UART. CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
	30[2]	0	RTS — Request To Send output for UART.

User manual

Chapter 7: LPC13xx Pin configuration

Table 137. LPC1311/13/42/43 HVQFN33 pin description table ...continued

Symbol	Pin	Туре	Description
PIO1_7/TXD/	32 <mark>[2]</mark>	I/O	PIO1_7 — General purpose digital input/output pin.
CT32B0_MAT1		0	TXD — Transmitter output for UART.
		0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_8/CT16B1_CAP0	7[2]	I/O	PIO1_8 — General purpose digital input/output pin.
		I	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO1_9/CT16B1_MAT0	12[2]	I/O	PIO1_9 — General purpose digital input/output pin.
		0	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
PIO1_10/AD6/	20[4]	I/O	PIO1_10 — General purpose digital input/output pin.
CT16B1_MAT1		I	AD6 — A/D converter, input 6.
		0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO1_11/AD7	27 <mark>4</mark>	I/O	PIO1_11 — General purpose digital input/output pin.
		I	AD7 — A/D converter, input 7.
PIO2_0/DTR	1[2]	I/O	PIO2_0 — General purpose digital input/output pin.
		0	DTR — Data Terminal Ready output for UART.
PIO3_2	28[2]	I/O	PIO3_2 — General purpose digital input/output pin.
PIO3_4	13 <mark>2</mark>	I/O	PIO3_4 — General purpose digital input/output pin (LPC1311/13 only).
PIO3_5	14[2]	I/O	PIO3_5 — General purpose digital input/output pin (LPC1311/13 only).
USB_DM	13 <mark>5</mark>	I/O	USB_DM — USB bidirectional D- line (LPC1342/43 only).
USB_DP	14 <mark>5</mark>	I/O	USB_DP — USB bidirectional D+ line (LPC1342/43 only).
V_{DD}	6; 29	I	3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
XTALIN	4 <u>[6]</u>	I	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	5 <mark>[6]</mark>	0	Output from the oscillator amplifier.
V _{SS}	33	-	Thermal pad. Connect to ground.

^[1] RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode.

^{[2] 5} V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.

^[3] I²C-bus pads compliant with the I²C-bus specification for I²C standard mode and I²C Fast-mode Plus.

⁵ V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled, and the pin is not 5 V tolerant.

Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only).

When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

UM10375

Chapter 8: LPC13xx General Purpose I/O (GPIO)

Rev. 2 — 7 July 2010

User manual

8.1 How to read this chapter

The number of GPIO pins available on each port depends on the LPC13xx part and the package. See <u>Table 138</u> for available GPIO pins:

Table 138. GPIO configuration

Part	Package	GPIO port 0	GPIO port 1	GPIO port 2	GPIO port 3	Total GPIO pins
LPC1311	HVQFN33	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
LPC1313	LQFP48	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0 to PIO2_11	PIO3_0 to PIO3_5	42
LPC1313	HVQFN33	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0	PIO3_2; PIO3_4; PIO3_5	28
LPC1342	HVQFN33	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0	PIO3_2	26
LPC1343	LQFP48	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0 to PIO2_11	PIO3_0 to PIO3_3	40
	HVQFN33	PIO0_0 to PIO0_11	PIO1_0 to PIO1_11	PIO2_0	PIO3_2	26

8.2 Features

- GPIO pins can be configured as input or output by software.
- Each individual port pin can serve as an edge- or level-sensitive interrupt request.
- Interrupts can be configured on single falling or rising edges and on both edges.
- Level-sensitive interrupt pins can be HIGH- or LOW-active.
- All GPIO pins are inputs by default.
- Reading and writing of data registers are masked by address bits 13:2.

8.3 Pin description

Table 139. GPIO pin description[1]

Type	Description
I/O	GPIO port 0 input/output pins.
I/O	GPIO port 1 input/output pins.
I/O	GPIO port 2 input/output pins.
I/O	GPIO port 3 input/output pins.
	I/O I/O

^[1] The pin configuration depends on the LPC13xx package (see Table 138).

8.4 Register description

Each GPIO register can be up to 12 bits wide and can be read or written using word or half-word operations at word addresses.

Chapter 8: LPC13xx General Purpose I/O (GPIO)

Table 140. Register overview: GPIO (base address port 0: 0x5000 0000; port 1: 0x5001 0000, port 2: 0x5002 0000; port 3: 0x5003 0000)

NameAccessAddress offsetDescriptionReset valueGPIOnDATAR/W0x0000 to 0x3FF8Port n data address masking register locations for pins PIOn_0 to PIOn_11 (see Section 8.5.1)n/aGPIOnDATAR/W0x3FFCPort n data register for pins PIOn_0 to PIOn_11 (see Section 8.5.1)n/a0x4000 to 0x7FFCReserved-GPIOnDIRR/W0x8000Data direction register for port n0x00GPIOnISR/W0x8004Interrupt sense register for port n0x00GPIOnIBER/W0x8008Interrupt both edges register for port n0x00GPIOnIEVR/W0x800CInterrupt event register for port n0x00GPIONIER/W0x8010Interrupt mask register for port n0x00GPIONRISR0x8014Raw interrupt status register for port n0x00GPIONIISR0x8018Masked interrupt status register for port n0x00GPIONICW0x801CInterrupt clear register for port n0x00-0x8020 - 0xFFFFReserved0x00	•	•			
Coations for pins PIOn_0 to PIOn_11 (see Section 8.5.1) GPIOnDATA	Name	Access	Address offset	Description	
PIOn_11 - 0x4000 to 0x7FFC Reserved - GPIOnDIR R/W 0x8000 Data direction register for port n 0x00 GPIOnIS R/W 0x8004 Interrupt sense register for port n 0x00 GPIOnIBE R/W 0x8008 Interrupt both edges register for port n 0x00 GPIOnIEV R/W 0x800C Interrupt event register for port n 0x00 GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnDATA	R/W	0x0000 to 0x3FF8	locations for pins PIOn_0 to PIOn_11 (see	n/a
GPIOnDIR R/W 0x8000 Data direction register for port n 0x00 GPIOnIS R/W 0x8004 Interrupt sense register for port n 0x00 GPIOnIBE R/W 0x8008 Interrupt both edges register for port n 0x00 GPIOnIEV R/W 0x800C Interrupt event register for port n 0x00 GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnDATA	R/W	0x3FFC	• . –	n/a
GPIOnIS R/W 0x8004 Interrupt sense register for port n 0x00 GPIOnIBE R/W 0x8008 Interrupt both edges register for port n 0x00 GPIOnIEV R/W 0x800C Interrupt event register for port n 0x00 GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	-	-	0x4000 to 0x7FFC	Reserved	-
GPIOnIBE R/W 0x8008 Interrupt both edges register for port n 0x00 GPIOnIEV R/W 0x800C Interrupt event register for port n 0x00 GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnDIR	R/W	0x8000	Data direction register for port n	0x00
GPIOnIEV R/W 0x800C Interrupt event register for port n 0x00 GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnIS	R/W	0x8004	Interrupt sense register for port n	0x00
GPIOnIE R/W 0x8010 Interrupt mask register for port n 0x00 GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnIBE	R/W	0x8008	Interrupt both edges register for port n	0x00
GPIOnRIS R 0x8014 Raw interrupt status register for port n 0x00 GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnIEV	R/W	0x800C	Interrupt event register for port n	0x00
GPIOnMIS R 0x8018 Masked interrupt status register for port n 0x00 GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnIE	R/W	0x8010	Interrupt mask register for port n	0x00
GPIOnIC W 0x801C Interrupt clear register for port n 0x00	GPIOnRIS	R	0x8014	Raw interrupt status register for port n	0x00
The state of the s	GPIOnMIS	R	0x8018	Masked interrupt status register for port n	0x00
- 0x8020 - 0xFFFF Reserved 0x00	GPIOnIC	W	0x801C	Interrupt clear register for port n	0x00
	-	-	0x8020 - 0xFFFF	Reserved	0x00

8.4.1 GPIO data register

The GPIOnDATA register holds the current state of the pin (HIGH or LOW), independently of whether the pin is configured as an GPIO input or output or as another digital function. If the pin is configured as GPIO output, the current value of the GPIOnDATA register is driven to the pin.

Table 141. GPIOnDATA register (GPIO0DATA, address 0x5000 3FFC; GPIO1DATA, address 0x5001 3FFC; GPIO2DATA, address 0x5002 3FFC; GPIO3DATA, address 0x5003 3FFC) bit description

Bit	Symbol	Description	Reset value	Access
11:0	DATA	Logic levels for pins PIOn_0 to PIOn_11. HIGH = 1, LOW = 0.	n/a	R/W
31:12	-	Reserved	0x00	-

A read of the GPIOnDATA register always returns the current logic level (state) of the pin independently of its configuration. Because there is a single data register for both the value of the output driver and the state of the pin's input, write operations have different effects depending on the pin's configuration:

- If a pin is configured as GPIO input, a write to the GPIOnDATA register has no effect on the pin level. A read returns the current state of the pin.
- If a pin is configured as GPIO output, the current value of GPIOnDATA register is
 driven to the pin. This value can be a result of writing to the GPIOnDATA register, or it
 can reflect the previous state of the pin if the pin is switched to GPIO output from
 GPIO input or another digital function. A read returns the current state of the pin.

Chapter 8: LPC13xx General Purpose I/O (GPIO)

 If a pin is configured as another digital function (input or output), a write to the GPIOnDATA register has no effect on the pin level. A read returns the current state of the pin even if it is configured as an output. This means that by reading the GPIOnDATA register, the digital output or input value of a function other than GPIO on that pin can be observed.

The following rules apply when the pins are switched from input to output:

- Pin is configured as input with a HIGH level applied:
 - Change pin to output: pin drives HIGH level.
- Pin is configured as input with a LOW level applied:
 - Change pin to output: pin drives LOW level.

The rules show that the pins mirror the current logic level. Therefore floating pins may drive an unpredictable level when switched from input to output.

8.4.2 GPIO data direction register

Table 142. GPIOnDIR register (GPIO0DIR, address 0x5000 8000 to GPIO3DIR, address 0x5003 8000) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	Ю		Selects pin x as input or output $(x = 0 \text{ to } 11)$.	0x00	R/W
		0	Pin PIOn_x is configured as input.		
		1	Pin PIOn_x is configured as output.		
31:12	-	-	Reserved	-	-

8.4.3 GPIO interrupt sense register

Table 143. GPIOnIS register (GPIO0IS, address 0x5000 8004 to GPIO3IS, address 0x5003 8004) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	ISENSE		Selects interrupt on pin x as level or edge sensitive $(x = 0 \text{ to } 11)$.	0x00	R/W
		0	Interrupt on pin PIOn_x is configured as edge sensitive.		
		1	Interrupt on pin PIOn_x is configured as level sensitive.		
31:12	-	-	Reserved	-	-

Chapter 8: LPC13xx General Purpose I/O (GPIO)

8.4.4 GPIO interrupt both edges sense register

Table 144. GPIOnIBE register (GPIO0IBE, address 0x5000 8008 to GPIO3IBE, address 0x5003 8008) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	IBE		Selects interrupt on pin x to be triggered on both edges ($x = 0$ to 11).	0x00	R/W
		0	Interrupt on pin PIOn_x is controlled through register GPIOnIEV.		
		1	Both edges on pin PIOn_x trigger an interrupt.		
31:12	-	-	Reserved	-	-

8.4.5 GPIO interrupt event register

Table 145. GPIOnIEV register (GPIO0IEV, address 0x5000 800C to GPIO3IEV, address 0x5003 800C) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	IEV		Selects interrupt on pin x to be triggered rising or falling edges ($x = 0$ to 11).	0x00	R/W
		0	Depending on setting in register GPIOnIS (see Table 143), falling edges or LOW level on pin PIOn_x trigger an interrupt.		
		1	Depending on setting in register GPIOnIS (see Table 143), rising edges or HIGH level on pin PIOn_x trigger an interrupt.		
31:12	-	-	Reserved	-	-

8.4.6 GPIO interrupt mask register

Bits set to HIGH in the GPIOnIE register allow the corresponding pins to trigger their individual interrupts and the combined GPIOnINTR line. Clearing a bit disables interrupt triggering on that pin.

Table 146. GPIOnIE register (GPIO0IE, address 0x5000 8010 to GPIO3IE, address 0x5003 8010) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	MASK		Selects interrupt on pin x to be masked ($x = 0$ to 11).	0x00	R/W
		0	Interrupt on pin PIOn_x is masked.		
		1	Interrupt on pin PIOn_x is not masked.		
31:12	-	-	Reserved	-	-

8.4.7 **GPIO** raw interrupt status register

Bits read HIGH in the GPIOnIRS register reflect the raw (prior to masking) interrupt status of the corresponding pins indicating that all the requirements have been met before they are allowed to trigger the GPIOIE. Bits read as zero indicate that the corresponding input pins have not initiated an interrupt. The register is read-only.

Chapter 8: LPC13xx General Purpose I/O (GPIO)

Table 147. GPIOnIRS register (GPIO0IRS, address 0x5000 8014 to GPIO3IRS, address 0x5003 8014) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	RAWST		Raw interrupt status ($x = 0$ to 11).	0x00	R
		0	No interrupt on pin PIOn_x.		
		1	Interrupt requirements met on PIOn_x.		
31:12	-	-	Reserved	-	-

8.4.8 GPIO masked interrupt status register

Bits read HIGH in the GPIOnMIS register reflect the status of the input lines triggering an interrupt. Bits read as LOW indicate that either no interrupt on the corresponding input pins has been generated or that the interrupt is masked. GPIOMIS is the state of the interrupt after masking. The register is read-only.

Table 148. GPIOnMIS register (GPIO0MIS, address 0x5000 8018 to GPIO3MIS, address 0x5003 8018) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	MASK		Selects interrupt on pin x to be masked ($x = 0$ to 11).	0x00	R
		0	No interrupt or interrupt masked on pin PIOn_x.		
		1	Interrupt on PIOn_x.		
31:12	-	-	Reserved	-	-

8.4.9 GPIO interrupt clear register

This register allows software to clear edge detection for port bits that are identified as edge-sensitive in the Interrupt Sense register. This register has no effect on port bits identified as level-sensitive.

Table 149. GPIOnIC register (GPIO0IC, address 0x5000 801C to GPIO3IC, address 0x5003 801C) bit description

Bit	Symbol	Value	Description	Reset value	Access
11:0	CLR		Selects interrupt on pin x to be cleared ($x = 0$ to 11). Clears the interrupt edge detection logic. This register is write-only.	0x00	W
			Remark: The synchronizer between the GPIO and the NVIC blocks causes a delay of 2 clocks. It is recommended to add two NOPs after the clear of the interrupt edge detection logic, before the exit of the interrupt service routine.		
		0	No effect.		
		1	Clears edge detection logic for pin PIOn_x.		
31:12	-	-	Reserved	-	-

Chapter 8: LPC13xx General Purpose I/O (GPIO)

8.5 Functional description

8.5.1 Write/read data operations

In order for software to be able to set GPIO bits without affecting any other pins in a single write operation, bits [13:2] of a 14-bit wide address bus are used to create a 12-bit wide mask for write and read operations on the 12 GPIO pins for each port. Only GPIOnDATA bits masked by 1 are affected by read and write operations. The masked GPIOnDATA register can be located anywhere between address offsets 0x0000 to 0x3FFC in the GPIOn address space. Reading and writing to the GPIOnDATA register at address 0x3FFC sets all masking bits to 1.

Write operation

If the address bit (i+2) associated with the GPIO port bit i (i = 0 to 11) to be written is HIGH, the value of the GPIODATA register bit i is updated. If the address bit (i+2) is LOW, the corresponding GPIODATA register bit i is left unchanged.

Chapter 8: LPC13xx General Purpose I/O (GPIO)

Read operation

If the address bit associated with the GPIO data bit is HIGH, the value is read. If the address bit is LOW, the GPIO data bit is read as 0: Reading a port DATA register yields the state of port pins 11:0 ANDed with address bits 13:2.

UM10375

Chapter 9: LPC13xx USB device controller

Rev. 2 — 7 July 2010

User manual

9.1 How to read this chapter

The USB device controller is available on parts LPC1342 and LPC1343 only.

9.2 Basic configuration

The USB device is configured using the following registers:

- 1. Pins: The USB pins must be configured in the IOCONFIG register block (Section 6.4.1).
- Power: In the SYSAHBCLKCTRL register, set bit 14 (<u>Table 23</u>) for the USB register interface. The USB PHY must be powered through the PDRUNCFG register (<u>Table 52</u>)
- Clock: Enable the USB clock by writing to the USBCLKDIV register (<u>Table 30</u>). The USB clock can be selected from the dedicated USB PLL or the main clock (<u>Table 28</u>). For details see <u>Section 9.12.2</u>.

9.3 Introduction

The Universal Serial Bus (USB) is a four-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The host schedules transactions in 1 ms frames. Each frame contains a Start-Of-Frame (SOF) marker and transactions that transfer data to or from device endpoints. Each device can have a maximum of 5 logical or 10 physical endpoints. There are four types of transfers defined for the endpoints. Control transfers are used to configure the device. Interrupt transfers are used for periodic data transfer. Bulk transfers are used when the rate of transfer is not critical. Isochronous transfers have guaranteed delivery time but no error correction.

For more information on the Universal Serial Bus, see the USB Implementers Forum website.

The USB device controller on the LPC134x enables full-speed (12 Mb/s) data exchange with a USB host controller.

Table 150. USB related acronyms, abbreviations, and definitions used in this chapter

Acronym/abbreviation	Description
AHB	Advanced High-performance bus
ATLE	Auto Transfer Length Extraction
ATX	Analog Transceiver
EOP	End-Of-Packet
EP	Endpoint

Chapter 9: LPC13xx USB device controller

Table 150. USB related acronyms, abbreviations, and definitions used in this chapter

Acronym/abbreviation	Description
EP_RAM	Endpoint RAM
FS	Full-speed
LED	Light Emitting Diode
LS	Low Speed
MPS	Maximum Packet Size
NAK	Negative Acknowledge
PLL	Phase Locked Loop
RAM	Random Access Memory
SOF	Start-Of-Frame
SIE	Serial Interface Engine
SRAM	Synchronous RAM
UDCA	USB Device Communication Area
USB	Universal Serial Bus

9.4 Features

- Fully compliant with the USB 2.0 specification (full-speed).
- Supports 10 physical (5 logical) endpoints.
- Supports Control, Bulk, Interrupt and Isochronous endpoints.
- Supports SoftConnect feature.
- Double-buffer implementation for one Bulk and one Isochronous endpoint.

9.5 Fixed endpoint configuration

<u>Table 151</u> shows the supported endpoint configurations. The packet size is fixed for each type of end point.

Table 151. Fixed endpoint configuration

endpoint er	endpoint			(byte)	Double-buffer
0 0)	Control	Out	64	No
0 1		Control	In	64	No
1 2)	Interrupt/Bulk	Out	64	No
1 3	3	Interrupt/Bulk	In	64	No
2 4	ļ	Interrupt/Bulk	Out	64	No
2 5	5	Interrupt/Bulk	In	64	No
3 6	3	Interrupt/Bulk	Out	64	Yes
3 7	7	Interrupt/Bulk	In	64	Yes
4 8	3	Isochronous	Out	512	Yes
4 9)	Isochronous	In	512	Yes

Chapter 9: LPC13xx USB device controller

9.6 General description

The architecture of the USB device controller is shown below in Figure 12.

9.6.1 Analog transceiver

The USB Device Controller has a built-in analog transceiver (ATX). The USB ATX sends/receives the bi-directional USB_DP and USB_DM signals of the USB bus.

9.6.2 Serial Interface Engine (SIE)

The SIE implements the full USB protocol layer. It is completely hardwired for speed and needs no firmware intervention. It handles transfer of data between the endpoint buffers in EP_RAM and the USB bus. The functions of this block include: synchronization pattern recognition, parallel/serial conversion, bit stuffing/de-stuffing, CRC checking/generation, PID verification/generation, address recognition, and handshake evaluation/generation.

9.6.3 Endpoint RAM (EP_RAM)

Each endpoint buffer is implemented as an SRAM based FIFO. The SRAM dedicated for this purpose is called the EP_RAM. Each endpoint has a reserved space in the EP_RAM. The total EP_RAM space is fixed. All endpoints are realized automatically.

9.6.4 EP_RAM access control

The EP_RAM Access Control logic handles transfer of data from/to the EP_RAM and the sources that can access it: the CPU (via the Register Interface) and the SIE.

Chapter 9: LPC13xx USB device controller

9.6.5 Register interface

The Register Interface allows the CPU to control the operation of the USB Device Controller. It also provides a way to write transmit data to the controller and read receive data from the controller.

9.6.6 SoftConnect

The connection to the USB is accomplished by bringing USB_DP (for a full-speed device) HIGH through a 1.5 kOhm pull-up resistor. The SoftConnect feature can be used to allow software to finish its initialization sequence before deciding to establish connection to the USB. Re-initialization of the USB bus connection can also be performed without having to unplug the cable.

To use the SoftConnect feature, the USB_CONNECT signal should control an external switch that connects the 1.5 kOhm resistor between USB_DP and 3.3 V. Software can then control the USB_CONNECT signal by writing to the CON bit using the SIE Set Device Status command.

9.7 Operational overview

Transactions on the USB bus transfer data between device endpoints and the host. The direction of a transaction is defined with respect to the host. OUT transactions transfer data from the host to the device. IN transactions transfer data from the device to the host. All transactions are initiated by the host controller.

Chapter 9: LPC13xx USB device controller

For an OUT transaction, the USB ATX receives the bi-directional USB_DP and USB_DM signals of the USB bus. The Serial Interface Engine (SIE) receives the serial data from the ATX and converts it into a parallel data stream. The parallel data is written to the corresponding endpoint buffer.

For IN transactions, the SIE reads the parallel data from the endpoint buffer in EP_RAM, converts it into serial data, and transmits it onto the USB bus using the USB ATX.

Once data has been received or sent, the endpoint buffer can be read or written. The CPU transfers data between RAM and the endpoint buffer using the register interface. See Section 9.13 "Functional description" for a detailed description.

9.8 Pin description

The device controller can access one USB port.

Table 152. USB device pin description

	=	
Name	Direction	Description
V _{BUS}	I	V_{BUS} status input. When this function is not enabled via its corresponding IOCONFIG register, it is driven HIGH internally.
USB_CONNECT	0	SoftConnect control signal.
USB_FTOGGLE	0	USB 1 ms SoF signal.
USB_DP	I/O	Positive differential data.
USB_DM	I/O	Negative differential data.

9.9 Clocking and power control

This section describes the clocking and power management features of the USB Device Controller.

9.9.1 Power requirements

The USB protocol insists on power management by the device. This becomes very critical if the device draws power from the bus (bus-powered device). The following constraints should be met by a bus-powered device:

- 1. A device in the non-configured state should draw a maximum of 100 mA from the bus.
- 2. A configured device can draw only up to what is specified in the Max Power field of the configuration descriptor. The maximum value is 500 mA.
- 3. A suspended device can draw a maximum of 500 μ A.

9.9.2 Clocks

The USB device controller clocks are shown in Table 153

Chapter 9: LPC13xx USB device controller

Table 153. USB device controller clock sources

Source	Clock name	Description
ahb_sys_clk	PCLK	This is the system clock. Minimum frequency of this clock is 16 MHz.
usb_clk (see Table 10)	USB_MainClk	USB_MainClk is the 48 MHz \pm 500 ppm input clock. This clock does not need to be synchronized with the system clock (PCLK). Gating of this clock is possible by an external control block using the USB_NeedClk signal. This clock will be used to recover the 12 MHz clock from the USB bus

The usb_clk clock can be either provided by the main clock or a dedicated USB PLL (see <u>Figure 3</u>). The USB PLL can be powered down if it is not used for the usb_clk in the PDRUNCFG register (<u>Table 52</u>) to conserve power.

9.9.3 Power management support

To help conserve power, the USB device controller automatically disables PCLK and USB_MainClk when not in use.

The assertion of USB_Suspend(_N) signal indicates that there was no activity on the USB bus for the last 3 ms. At this time an interrupt is sent to the processor on which the software can start preparing the device for suspend.

If there is no activity again for the next 2 ms, the USB_NeedClk signal will go low. This shuts off the USB_MainClk automatically. Once the USB_MainClk is switched off, internal registers in the USB clock domain will not be visible to the software.

When the activity is detected on the bus, USB_Suspend(_N) is deactivated and USB_NeedClk signal is activated. This process is fully combinatorial and hence no USB_MainClk is required to activate the USB_NeedClk signal.

The usb_clk_enable signal is provided by the SYSAHBCLK bit 14 (see <u>Table 23</u>) which enables the clock to the USB register block.

In addition, the on-chip device PHY can be powered down in the PDRUNCFG register (Table 52) if the USB device function is not needed.

Chapter 9: LPC13xx USB device controller

9.9.4 Remote wake-up

The USB block supports software initiated remote wake-up. Remote wake-up involves a resume signal initiated from the device. This is done by resetting the suspend bit in the Device Status register. Before writing into the register, both the USB_MainClk and PCLK need to be enabled in the system control block.

Before the device is suspended, it is important that the AP_CLK bit in the Set Mode register is set. The USB PHY should not be disabled while the device is suspended so it can continue to respond to USB bus events.

9.9.5 Interrupts

The external interrupt generation takes place only if the necessary 'enable' bits are set in the Device Interrupt Enable register. The raw interrupt status will be registered in the status register. The interrupt has to be cleared by writing '1' into the interrupt clear register.

9.10 Register description

<u>Table 154</u> shows the USB Device Controller registers directly accessible by the CPU. The Serial Interface Engine (SIE) has other registers that are indirectly accessible via the SIE command registers. See <u>Section 9.11 "Serial interface engine command description"</u> for more information.

Chapter 9: LPC13xx USB device controller

Table 154. Register overview: USB device (base address 0x4002 0000)

			• •	
Name	Access	Address offset	Description	Reset value[1]
Device interrupt regis	sters			
USBDevIntSt	RO	0x00	USB Device Interrupt Status	0x0000 0010
USBDevIntEn	R/W	0x04	USB Device Interrupt Enable	0x0000 0000
USBDevIntClr	WO[2]	80x0	USB Device Interrupt Clear	0x0000 0000
USBDevIntSet	WO[2]	0x0C	USB Device Interrupt Set	0x0000 0000
SIE command registe	ers			
USBCmdCode	WO[2]	0x10	USB Command Code	0x0000 0000
USBCmdData	RO	0x14	USB Command Data	0x0000 0000
USB data transfer reg	gisters			
USBRxData	RO	0x18	USB Receive Data	0x0000 0000
USBTxData	WO[2]	0x1C	USB Transmit Data	0x0000 0000
USBRxPLen	RO	0x20	USB Receive Packet Length	0x0000 0000
USBTxPLen	WO[2]	0x24	USB Transmit Packet Length	0x0000 0000
USBCtrl	R/W	0x28	USB Control	0x0000 0000
Miscellaneous regist	ers			
USBDevFlQSel	WO[2]	0x2C	USB Device FIQ select	0x00

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

9.10.1 Device interrupt registers

<u>Table 155</u> shows the bit allocation for the device interrupt registers USBDevIntSt, USBDevIntEn, and USBDevIntClr.

Table 155. USB Device Interrupt registers bit allocation

Bit	31	30	29	28	27	26	25	24
Symbol	-	-	-	-	-	-	-	-
Bit	23	22	21	20	19	18	17	16
Symbol	-	-	-	-	-	-	-	-
Bit	15	14	13	12	11	10	9	8
Symbol	-	- Txl	ENDPKT	RxENDPKT	CD_FULL	CC_EMPTY	DEV_STAT	EP7
Bit	7	6	5	4	3	2	1	0
Symbol	EP6	EP5	EP4	EP3	EP2	EP1	EP0	FRAME

9.10.1.1 USB Device Interrupt Status register (USBDevIntSt - 0x4002 0000)

The USBDevIntSt register holds the status of each interrupt whether it is enabled or not. A 0 indicates no interrupt and 1 indicates the presence of the interrupt. USBDevIntSt is a read only register.

^[2] Reading WO register will return an invalid value.

Chapter 9: LPC13xx USB device controller

Table 156. USB Device Interrupt Status register (USBDevIntSt - address 0x4002 0000) bit description

Bit	Symbol	Description	Reset value
0	FRAME	The frame interrupt occurs every 1 ms. This is used in isochronous packet transfers.	0
1	EP0	USB core interrupt for physical endpoint 0.	
2	EP1	USB core interrupt for physical endpoint 1.	
3	EP2	USB core interrupt for physical endpoint 2.	
4	EP3	USB core interrupt for physical endpoint 3.	
5	EP4	USB core interrupt for physical endpoint 4.	
6	EP5	USB core interrupt for physical endpoint 5.	
7	EP6	USB core interrupt for physical endpoint 6.	
8	EP7	USB core interrupt for physical endpoint 7.	
9	DEV_STAT	Set when USB Bus reset, USB suspend change, or Connect change event occurs. Refer to Section 9.11.7 "Set Device Status (Command: 0xFE, Data: write 1 byte)" on page 144.	0
10	CC_EMPTY	The command code register (USBCmdCode) is empty (New command can be written).	1
11	CD_FULL	Command data register (USBCmdData) is full (Data can be read now).	0
12	RxENDPKT	The current packet in the endpoint buffer is transferred to the CPU.	0
13	TxENDPKT	The number of data bytes transferred to the endpoint buffer equals the number of bytes programmed in the TxPacket length register (USBTxPLen).	0
31:14	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.1.2 USB Device Interrupt Enable register (USBDevIntEn - 0x4002 0004)

Writing a one to a bit in this register enables the corresponding bit in USBDevIntSt to generate an external interrupt when set. If it's not set, no external interrupt is generated, but the interrupt will still be held in the Device Interrupt Status register.

Table 157. USB Device Interrupt Enable register (USBDevIntEn - address 0x4002 0004) bit description

Bit	Symbol	Value	Description	Reset value
31:0	See <u>Table 155</u>	0	No interrupt is generated.	0
31.0		1	An interrupt will be generated when the corresponding bit in the Device Interrupt Status (USBDevIntSt) register (Table 155) is set.	

9.10.1.3 USB Device Interrupt Clear register (USBDevIntClr - 0x4002 0008)

Writing one to a bit in this register clears the corresponding bit in USBDevIntSt. Writing a zero has no effect.

USBDevIntClr is a write only register.

User manual

Chapter 9: LPC13xx USB device controller

Table 158. USB Device Interrupt Clear register (USBDevIntClr - address 0x4002 0008) bit description

Bit	Symbol	Value	Description	Reset value
31:0	See <u>Table 155</u>	0	No effect.	0
		1	The corresponding bit in USBDevIntSt (Table 156) is cleared.	

9.10.1.4 USB Device Interrupt Set register (USBDevIntSet - 0x4002 000C)

Writing one to a bit in this register sets the corresponding bit in the USBDevIntSt. Writing a zero has no effect

USBDevIntSet is a write only register.

Table 159. USB Device Interrupt Set register (USBDevIntSet - address 0x4002 000C) bit description

Bit	Symbol	Value	Description	Reset value
31:0	See <u>Table 155</u>	0	No effect.	0
		1	The corresponding bit in USBDevIntSt (Table 156) is set.	

9.10.2 SIE command code registers

The SIE command code registers are used for communicating with the Serial Interface Engine. See <u>Section 9.11 "Serial interface engine command description"</u> for more information.

9.10.2.1 USB Command Code register (USBCmdCode - 0x4001 8010)

This register is used for sending the command and write data to the SIE. The commands written here are propagated to the SIE and executed there. After executing the command, the register is empty, and the CCEMPTY bit of USBDevIntSt register is set. See Section 9.11 for details. USBCmdCode is a write only register.

Table 160. USB Command Code register (USBCmdCode - address 0x4002 0010) bit description

Bit	Symbol	Value	Description	Reset value
7:0	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
15:8	CMD_PHASE		The command phase:	0x00

Chapter 9: LPC13xx USB device controller

Table 160. USB Command Code register (USBCmdCode - address 0x4002 0010) bit description

Bit	Symbol	Value	Description	Reset value
		0x01	Write	
		0x02	Read	
		0x05	Command	
23:16	CMD_CODE/ CMD_WDATA		This is a multi-purpose field. When CMD_PHASE is Command or Read, this field contains the code for the command (CMD_CODE). When CMD_PHASE is Write, this field contains the command write data (CMD_WDATA).	0x00
31:24	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.2.2 USB Command Data register (USBCmdData - 0x4002 0014)

This register contains the data retrieved after executing a SIE command. When the data is ready to be read, the CD_FULL bit of the USBDevIntSt register is set. See <u>Table 155</u> for details. USBCmdData is a read only register.

Table 161. USB Command Data register (USBCmdData - address 0x4002 0014) bit description

Bit	Symbol	Description	Reset value
7:0	CMD_RDATA	Command Read Data.	0x00
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.3 USB data transfer registers

The registers in this group are used for transferring data between endpoint buffers and RAM in Slave mode operation. See <u>Section 9.13 "Functional description"</u>.

9.10.3.1 USB Receive Data register (USBRxData - 0x4002 0018)

For an OUT transaction, the CPU reads the endpoint buffer data from this register. Before reading this register, the RD_EN bit and LOG_ENDPOINT field of the USBCtrl register should be set appropriately. On reading this register, data from the selected endpoint buffer is fetched. The data is in little endian format: the first byte received from the USB bus will be available in the least significant byte of USBRxData. USBRxData is a read only register.

Table 162. USB Receive Data register (USBRxData - address 0x4002 0018) bit description

Bit	Symbol	Description	Reset value
31:0	RX_DATA	Data received.	0x0000 0000

9.10.3.2 USB Transmit Data register (USBTxData - 0x4002 021C)

For an IN transaction, the CPU writes the endpoint data into this register. Before writing to this register, the WR_EN bit and LOG_ENDPOINT field of the USBCtrl register should be set appropriately, and the packet length should be written to the USBTxPlen register. On

Chapter 9: LPC13xx USB device controller

writing this register, the data is written to the selected endpoint buffer. The data is in little endian format: the first byte sent on the USB bus will be the least significant byte of USBTxData. USBTxData is a write only register.

Table 163. USB Transmit Data register (USBTxData - address 0x4002 001C) bit description

Bit	Symbol	Description	Reset value
31:0	TX_DATA	Transmit Data.	0x0000 0000

9.10.3.3 USB Receive Packet Length register (USBRxPLen - 0x4002 0020)

This gives the number of bytes remaining in the RAM for the current packet being transferred and whether the packet is valid or not. This register will get updated at every word that gets transferred to the system. The processor can use this register to get the number of bytes to be transferred. When the number of bytes reaches zero, an end of packet interrupt is generated.

Table 164. USB Receive Packet Length register (USBRxPlen - address 0x4002 0020) bit description

Bit	Symbol	Value	Description	Reset value
9:0	PKT_LNGTH	-	The remaining number of bytes to be read from the currently selected endpoint's buffer. When this field decrements to 0, the RxENDPKT bit will be set in USBDevIntSt.	0
10	DV		Data valid. This bit is useful for isochronous endpoints. Non-isochronous endpoints do not raise an interrupt when an erroneous data packet is received. But invalid data packet can be produced with a bus reset. For isochronous endpoints, data transfer will happen even if an erroneous packet is received. In this case DV bit will not be set for the packet.	0
		0	Data is invalid.	
		1	Data is valid.	
31:11	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.3.4 USB Transmit Packet Length register (USBTxPLen - 0x4002 0024)

This indicates the number of bytes still to be transferred from the processor to the RAM. The processor has to program this register with the byte length of the packet to be sent, before writing to the Transmit Data Register. The processor can read this register to determine the number of bytes it has transferred to the memory.

Remark: To transfer an empty packet, this register has to be set to 0x00 and a single write operation has to be performed on the Transmit Data Register.

Chapter 9: LPC13xx USB device controller

Table 165. USB Transmit Packet Length register (USBTxPLen - address 0x4002 0024) bit description

Bit	Symbol	Value	Description	Reset value
9:0	PKT_LNGTH	-	The remaining number of bytes to be written to the selected endpoint buffer. This field is decremented by 4 by hardware after each write to USBTxData. When this field decrements to 0, the TxENDPKT bit will be set in USBDevIntSt.	0x000
31:10	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.3.5 USB Control register (USBCtrl - 0x4002 0028)

This register controls the data transfer operation of the USB device. It selects the endpoint buffer that is accessed by the USBRxData and USBTxData registers and enables reading and writing them. USBCtrl is a read/write register.

Table 166. USB Control register (USBCtrl - address 0x4002 0028) bit description

			, , , , , , , , , , , , , , , , , , , ,	
Bit	Symbol	Value	Description	Reset value
0	RD_EN		Read mode control. Enables reading data from the OUT endpoint buffer for the endpoint specified in the LOG_ENDPOINT field using the USBRxData register. This bit is cleared by hardware when the last word of the current packet is read from USBRxData.	0
		0	Read mode is disabled.	
		1	Read mode is enabled.	
1	WR_EN		Write mode control. Enables writing data to the IN endpoint buffer for the endpoint specified in the LOG_ENDPOINT field using the USBTxData register. This bit is cleared by hardware when the number of bytes in USBTxLen have been sent.	0
		0	Write mode is disabled.	
		1	Write mode is enabled.	
5:2	LOG_ENDPOINT	-	Logical Endpoint number.	0x0
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.10.3.5.1 Data transfer

When the software wants to read the data from an endpoint buffer it should make the Read Enable bit high and should program the logical endpoint number. The control logic will first fetch the packet length to the receive packet length register. Also the hardware fills the receive data register with the first word of the packet.

The software can now start reading the receive data register. When the end of packet is reached the Read Enable bit will be disabled by the control logic and RxENDPKT bit is set in the Device interrupt status register.

Chapter 9: LPC13xx USB device controller

If the software makes the Read Enable bit low midway, the reading will be terminated. In this case the data will remain in the RAM. When the Read Enable signal is made high again for this endpoint, data will be read from the beginning.

For writing data to an endpoint buffer, the Write Enable bit should be made high and software should write to the Tx Packet Length register the number of bytes it is going to send in the packet. It can then write data continuously in the Transmit Data register. When the control logic receives the number of bytes programmed in the Tx Packet length register, it will reset the Write Enable bit. If the software resets this bit midway, writing will start again from the beginning.

Both Read Enable and Write Enable bits can be high at the same time for the same logical endpoint. The interleaved read and write operation is possible.

Remark: It takes 3 clock cycle to fetch the packet length from the RAM after programming the USB control register. There can be a corruption on the packet length value read if the reading of the packet length occurs immediately (in the very next clock cycle) after the programming of USB control register. To avoid this problem, a NOP instruction has to be inserted in between the programming of USBCtrl registers and reading of packet length registers.

For example, follow these steps:

- 1. USBCtrl = 0x01
- 2. delay(0) -- generate 1 clock cycle delay
- 3. pkt_length = USBTxPLen or USBRxPlen

9.10.4 Miscellaneous registers

9.10.4.1 USB Device FIQ Select register (USBDevFIQSel - 0x4002 002C)

When a bit is set '1', the corresponding interrupt will be routed to the high priority interrupt line. Setting all bits to '1' at the same time is not allowed. If the software attempts to set all the bits to '1', none of them will be routed to the high priority interrupt line.

Table 167. USB Device FIQ Select register (USBDevFIQSel - address 0x4002 002C) bit description

Bit	Symbol	Value	Description	Reset value
0	FRAME		This interrupt comes from a 1 KHz free running clock resynchronized on the incoming SoF tokens. This is to be used for isochronous packet transfer.	0
		0	FRAME interrupt will be routed to the low-priority interrupt line IRQ.	
		1	FRAME interrupt will be routed to the high-priority interrupt line FIQ.	

Chapter 9: LPC13xx USB device controller

Table 167. USB Device FIQ Select register (USBDevFIQSel - address 0x4002 002C) bit description

Bit	Symbol	Value	Description	Reset value
1	BULKOUT		Interrupt routing for bulk out endpoints [1]	0
		0	BULKOUT interrupt will be routed to the low-priority interrupt line IRQ.	
		1	BULKOUT interrupt will be routed to the high-priority interrupt line FIQ.	
2	BULKIN		Interrupt routing for bulk in endpoints [1]	0
		0	BULKIN interrupt will be routed to the low-priority interrupt line IRQ.	
		1	BULKIN interrupt will be routed to the high-priority interrupt line FIQ.	
31:3	-	-	Reserved	-

^[1] Remark: For logical endpoint 3 (physical endpoints 6 and 7) only.

9.11 Serial interface engine command description

The functions and registers of the Serial Interface Engine (SIE) are accessed using commands, which consist of a command code followed by optional data bytes (read or write action). The USBCmdCode (Table 160) and USBCmdData (Table 161) registers are used for these accesses.

A complete access consists of two phases:

- Command phase: the USBCmdCode register is written with the CMD_PHASE field set to the value 0x05 (Command), and the CMD_CODE field set to the desired command code. On completion of the command, the CCEMPTY bit of USBDevIntSt is set.
- 2. Data phase (optional): for writes, the USBCmdCode register is written with the CMD_PHASE field set to the value 0x01 (Write), and the CMD_WDATA field set with the desired write data. On completion of the write, the CCEMPTY bit of USBDevIntSt is set. For reads, USBCmdCode register is written with the CMD_PHASE field set to the value 0x02 (Read), and the CMD_CODE field set with command code the read corresponds to. On completion of the read, the CDFULL bit of USBDevInSt will be set, indicating the data is available for reading in the USBCmdData register. In the case of multi-byte registers, the least significant byte is accessed first.

An overview of the available commands is given in <u>Table 168</u>.

Here is an example of the Read Current Frame Number command (reading 2 bytes):

UM10375

Chapter 9: LPC13xx USB device controller

while (!(USBDevIntSt & 0x10)); // Wait for CCEMPTY.
USBDevIntClr = 0x10; // Clear CCEMPTY.

Table 168. SIE command code table

Command name	Recipient	Code (Hex)	Data phase
Device commands			
Set Address	Device	D0	Write 1 byte
Configure Device	Device	D8	Write 1 byte
Set Mode	Device	F3	Write 1 byte
Read Interrupt Status	Device	F4	Read 1 or 2 bytes
Read Current Frame Number	Device	F5	Read 1 or 2 bytes
Read Chip ID	Device	FD	Read 2 bytes
Set Device Status	Device	FE	Write 1 byte
Get Device Status	Device	FE	Read 1 byte
Get Error Code	Device	FF	Read 1 byte
Endpoint Commands			
Select Endpoint	Endpoint 0	00	Read 1 byte (optional)
	Endpoint 1	01	Read 1 byte (optional)
	Endpoint xx	XX	Read 1 byte (optional)
Select Endpoint/Clear Interrupt	Endpoint 0	40	Read 1 byte
	Endpoint 1	41	Read 1 byte
	Endpoint xx	xx + 40	Read 1 byte
Set Endpoint Status	Endpoint 0	40	Write 1 byte
	Endpoint 1	41	Write 1 byte
	Endpoint xx	xx + 40	Write 1 byte
Clear Buffer	Selected Endpoint	F2	Read 1 byte (optional)
Validate Buffer	Selected Endpoint	FA	None

Chapter 9: LPC13xx USB device controller

9.11.1 Set Address (Command: 0xD0, Data: write 1 byte)

The Set Address command is used to set the USB assigned address and enable the (embedded) function. The address set in the device will take effect after the status stage of the control transaction. After a bus reset, DEV_ADDR is set to 0x00, and DEV_EN is set to 1. The device will respond to packets for function address 0x00, endpoint 0 (default endpoint).

Table 169. Device Set Address command description

Bit	Symbol	Description	Reset value
6:0	DEV_ADDR	Device address set by the software. After a bus reset this field is set to $0x00$.	0x00
7	DEV_EN	Device Enable. After a bus reset this bit is set to 1. 0: Device will not respond to any packets. 1: Device will respond to packets for function address	0
		DEV_ADDR.	

9.11.2 Configure Device (Command: 0xD8, Data: write 1 byte)

A value of 1 written to the register indicates that the device is configured and all the enabled non-control endpoints will respond. Control endpoints are always enabled and respond even if the device is not configured, in the default state.

Table 170. Configure Device command description

Bit	Symbol	Description	Reset value
0	CONF_DEVICE	Device is configured. All enabled non-control endpoints will respond. This bit is cleared by hardware when a bus reset occurs. When set, the UP_LED signal is driven LOW if the device is not in the suspended state (SUS=0).	
7:1	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.3 Set Mode (Command: 0xF3, Data: write 1 byte)

Table 171. Set Mode command description

Bit	Symbol	Value	Description	Reset value
0	AP_CLK		Always PLL Clock.	0
		0	USB_NEED_CLK is functional; the 48 MHz clock can be stopped when the device enters suspend state.	
		1	USB_NEED_CLK is fixed to 1; the 48 MHz clock cannot be stopped when the device enters suspend state.	
1	INAK_CI		Interrupt on NAK for Control IN endpoint.	0
		0	Only successful transactions generate an interrupt.	
		1	Both successful and NAKed IN transactions generate interrupts.	

Chapter 9: LPC13xx USB device controller

Table 171. Set Mode command description

Bit	Symbol	Value	Description	Reset value
2	INAK_CO		Interrupt on NAK for Control OUT endpoint.	0
		0	Only successful transactions generate an interrupt.	
		1	Both successful and NAKed OUT transactions generate interrupts.	
3	INAK_AI		Interrupt on NAK for Interrupt or bulk IN endpoint.	0
		0	Only successful transactions generate an interrupt.	
		1	Both successful and NAKed IN transactions generate interrupts.	
4	INAK_AO		Interrupt on NAK for Interrupt or bulk OUT endpoints.	0
		0	Only successful transactions generate an interrupt.	
		1	Both successful and NAKed OUT transactions generate interrupts.	
7:5	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.4 Read Interrupt Status (Command: 0xF4, Data: read 2 bytes)

Table 172. Read interrupt Status byte 1 command description

Bit	Symbol	Description	Reset value
0	EP0	EP0 interrupt	0
1	EP1	EP1 interrupt	0
2	EP2	EP2 interrupt	0
3	EP3	EP3 interrupt	0
4	EP4	EP4 interrupt	0
7:5	-	reserved	-

Table 173. Read interrupt Status byte 2 command description

Bit	Symbol	Value	Description	Reset value
1:0	-		reserved	-
2	D_ST		Device Status change interrupt	0
7:3	-		reserved	-

The device status change is cleared by issuing the Get device status command. All other endpoint interrupts are cleared by issuing select endpoint/clear interrupt command.

9.11.5 Read Current Frame Number (Command: 0xF5, Data: read 1 or 2 bytes)

Returns the frame number of the last successfully received SOF. The frame number is eleven bits wide. The frame number returns least significant byte first. In case the user is only interested in the lower 8 bits of the frame number, only the first byte needs to be read.

 In case no SOF was received by the device at the beginning of a frame, the frame number returned is that of the last successfully received SOF.

Chapter 9: LPC13xx USB device controller

 In case the SOF frame number contained a CRC error, the frame number returned will be the corrupted frame number as received by the device.

9.11.6 Read Chip ID (Command: 0xFD, Data: read 2 bytes)

The Chip ID is 16-bit wide. It returns the value the chip ID (LSB first).

9.11.7 Set Device Status (Command: 0xFE, Data: write 1 byte)

The Set Device Status command sets bits in the Device Status Register.

Table 174. Set Device Status command description

Bit	Symbol	Value	Description	Reset value
0	CON		The Connect bit indicates the current connect status of the device. It controls the CONNECT output pin, used for SoftConnect. Reading the connect bit returns the current connect status. This bit is cleared by hardware when the V_{BUS} status input is LOW for more than 3 ms. The 3 ms delay filters out temporary dips in the V_{BUS} voltage.	0
		0	Writing a 0 will make the CONNECT pin go HIGH.	
		1	Writing a 1 will make the CONNECT pin go LOW.	
1	CON_CH		Connect Change.	0
		0	This bit is cleared when read.	
		1	This bit is set when the device's pull-up resistor is disconnected because V_{BUS} disappeared. The DEV_STAT interrupt is generated when this bit is 1.	
2	SUS		Suspend: The Suspend bit represents the current suspend state. When the device is suspended (SUS = 1) and the CPU writes a 0 into it, the device will generate a remote wake-up. This will only happen when the device is connected (CON = 1). When the device is not connected or not suspended, writing a 0 has no effect. Writing a 1 to this bit has no effect.	0
		0	This bit is reset to 0 on any activity.	
		1	This bit is set to 1 when the device hasn't seen any activity on its upstream port for more than 3 ms.	
3	SUS_CH	0	Suspend (SUS) bit change indicator. The SUS bit can toggle because: • The device goes into the suspended state. • The device is disconnected. • The device receives resume signalling on its upstream port. This bit is cleared when read. SUS bit not changed. SUS bit changed. At the same time a DEV_STAT interrupt is	0
		1	generated.	

Chapter 9: LPC13xx USB device controller

Table 174. Set Device Status command description

Bit	Symbol	Value	Description	Reset value
4	RST		Bus Reset bit. On a bus reset, the device will automatically go to the default state. In the default state:	0
			 Device is unconfigured. 	
			 Will respond to address 0. 	
			 Control endpoint will be in the Stalled state. 	
			 Data toggling is reset for all endpoints. 	
			 All buffers are cleared. 	
			 There is no change to the endpoint interrupt status. 	
			 DEV_STAT interrupt is generated. 	
			Note: Bus resets are ignored when the device is not connected (CON=0).	
		0	This bit is cleared when read.	
		1	This bit is set when the device receives a bus reset. A DEV_STAT interrupt is generated.	
7:5	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.8 Get Device Status (Command: 0xFE, Data: read 1 byte)

The Get Device Status command returns the Device Status Register. Reading the device status returns 1 byte of data. The bit field definition is same as the Set Device Status Register as shown in <u>Table 174</u>.

Remark: To ensure correct operation, the DEV_STAT bit of USBDevIntSt must be cleared before executing the Get Device Status command.

9.11.9 Get Error Code (Command: 0xFF, Data: read 1 byte)

Different error conditions can arise inside the SIE. The Get Error Code command returns the last error code that occurred. The 4 least significant bits form the error code.

Chapter 9: LPC13xx USB device controller

Table 175. Get Error Code command description

Bit	Symbol	Value	Description	Reset value
3:0	EC		Error Code.	0x0
		0000	No Error.	
		0001	PID Encoding Error.	
		0010	Unknown PID.	
		0011	Unexpected Packet - any packet sequence violation from the specification.	
		0100	Error in Token CRC.	
		0101	Error in Data CRC.	
		0110	Time Out Error.	
		0111	Babble.	
		1000	Error in End of Packet.	
		1001	Sent/Received NAK.	
		1010	Sent Stall.	
		1011	Buffer Overrun Error.	
		1100	Sent Empty Packet (ISO Endpoints only).	
		1101	Bitstuff Error.	
		1110	Error in Sync.	
		1111	Wrong Toggle Bit in Data PID, ignored data.	
4	EA	-	The Error Active bit will be reset once this register is read.	
7:5	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.10 Select Endpoint (Command: 0x00 - 0x09 Data: read 1 byte (optional))

The Select Endpoint command initializes an internal pointer to the start of the selected buffer in EP_RAM. Optionally, this command can be followed by a data read, which returns some additional information on the packet(s) in the endpoint buffer(s). The command code of the Select Endpoint command is equal to the physical endpoint number. In the case of a single buffered endpoint the B_2_FULL bit is not valid.

Table 176. Select Endpoint command description

Bit	Symbol	Value	Description	Reset value
0	FE		Full/Empty. This bit indicates the full or empty status of the endpoint buffer(s). For IN endpoints, the FE bit gives the ANDed result of the B_1_FULL and B_2_FULL bits. For OUT endpoints, the FE bit gives ORed result of the B_1_FULL and B_2_FULL bits. For single buffered endpoints, this bit simply reflects the status of B_1_FULL.	0
		0	For an IN endpoint, at least one write endpoint buffer is empty.	
		1	For an OUT endpoint, at least one endpoint read buffer is full.	
1	ST		Stalled endpoint indicator.	0
		0	The selected endpoint is not stalled.	
		1	The selected endpoint is stalled.	

Chapter 9: LPC13xx USB device controller

Table 176. Select Endpoint command description

Bit	Symbol	Value	Description	Reset value
2	STP		SETUP bit: the value of this bit is updated after each successfully received packet (i.e. an ACKed package on that particular physical endpoint).	0
		0	The STP bit is cleared by doing a Select Endpoint/Clear Interrupt on this endpoint.	
		1	The last received packet for the selected endpoint was a SETUP packet.	
3	РО		Packet over-written bit.	0
		0	The PO bit is cleared by the 'Select Endpoint/Clear Interrupt' command.	
		1	The previously received packet was over-written by a SETUP packet.	
4	EPN		EP NAKed bit indicates sending of a NAK. If the host sends an OUT packet to a filled OUT buffer, the device returns NAK. If the host sends an IN token packet to an empty IN buffer, the device returns NAK.	0
		0	The EPN bit is reset after the device has sent an ACK after an OUT packet or when the device has seen an ACK after sending an IN packet.	
		1	The EPN bit is set when a NAK is sent and the interrupt on NAK feature is enabled.	
5	B_1_FULL		The buffer 1 status.	0
		0	Buffer 1 is empty.	
		1	Buffer 1 is full.	
6	B_2_FULL		The buffer 2 status.	0
		0	Buffer 2 is empty.	
		1	Buffer 2 is full.	
7	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.11 Select Endpoint/Clear Interrupt (Command: 0x40 - 0x47, Data: read 1 byte)

Commands 0x40 to 0x47 are identical to their Select Endpoint equivalents, with the following differences:

- They clear the bit corresponding to the endpoint in the USBEpIntSt register.
- In case of a control OUT endpoint, they clear the STP and PO bits in the corresponding Select Endpoint Register.
- Reading one byte is obligatory.

9.11.12 Set Endpoint Status (Command: 0x40 - 0x49, Data: write 1 byte (optional))

The Set Endpoint Status command sets status bits 7:5 and 0 of the endpoint. The Command Code of Set Endpoint Status is equal to the sum of 0x40 and the physical endpoint number in hex. Not all bits can be set for all types of endpoints.

Chapter 9: LPC13xx USB device controller

Table 177. Set Endpoint Status command description

Bit	Symbol	Value	Description	
0 ST			Stalled endpoint bit. A Stalled control endpoint is automatically unstalled when it receives a SETUP token, regardless of the content of the packet. If the endpoint should stay in its stalled state, the CPU can stall it again by setting this bit. When a stalled endpoint is unstalled - either by the Set Endpoint Status command or by receiving a SETUP token - it is also re-initialized. This flushes the buffer: in case of an OUT buffer it waits for a DATA 0 PID; in case of an IN buffer it writes a DATA 0 PID. There is no change of the interrupt status of the endpoint. When already unstalled, writing a zero to this bit initializes the endpoint. When an endpoint is stalled by the Set Endpoint Status command, it is also re-initialized.	
		0	The endpoint is unstalled.	
		1	The endpoint is stalled.	
4:1	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
5	DA		Disabled endpoint bit.	0
		0	The endpoint is enabled.	
		1	The endpoint is disabled.	
6	RF_MO		Rate Feedback Mode.	0
		0	Interrupt endpoint is in the Toggle mode.	
		1	Interrupt endpoint is in the Rate Feedback mode. This means that transfer takes place without data toggle bit.	
7	CND_ST		Conditional Stall bit.	0
		0	Unstalls both control endpoints.	
		1	Stall both control endpoints, unless the STP bit is set in the Select Endpoint register. It is defined only for control OUT endpoints.	

9.11.13 Clear Buffer (Command: 0xF2, Data: read 1 byte (optional))

When an OUT packet sent by the host has been received successfully, an internal hardware FIFO status Buffer_Full flag is set. All subsequent packets will be refused by returning a NAK. When the device software has read the data, it should free the buffer by issuing the Clear Buffer command. This clears the internal Buffer_Full flag. When the buffer is cleared, new packets will be accepted.

When bit 0 of the optional data byte is 1, the previously received packet was over-written by a SETUP packet. The Packet over-written bit is used only in control transfers. According to the USB specification, a SETUP packet should be accepted irrespective of the buffer status. The software should always check the status of the PO bit after reading the SETUP data. If it is set then it should discard the previously read data, clear the PO bit by issuing a Select Endpoint/Clear Interrupt command, read the new SETUP data and again check the status of the PO bit.

See Section 9.13 "Functional description" for a description of when this command is used.

Chapter 9: LPC13xx USB device controller

Table 178. Clear Buffer command description

Bit	Symbol	Value	Description	Reset value
0	РО	Packet over-written bit. This bit is only applicable to the control endpoint EP0.		0
		0	The previously received packet is intact.	
		1	The previously received packet was over-written by a later SETUP packet.	
7:1	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

9.11.14 Validate Buffer (Command: 0xFA, Data: none)

When the CPU has written data into an IN buffer, software should issue a Validate Buffer command. This tells hardware that the buffer is ready for sending on the USB bus. Hardware will send the contents of the buffer when the next IN token packet is received.

Internally, there is a hardware FIFO status flag called Buffer_Full. This flag is set by the Validate Buffer command and cleared when the data has been sent on the USB bus and the buffer is empty.

A control IN buffer cannot be validated when its corresponding OUT buffer has the Packet Over-written (PO) bit (see the Clear Buffer Register) set or contains a pending SETUP packet. For the control endpoint the validated buffer will be invalidated when a SETUP packet is received.

See Section 9.13 "Functional description" for a description of when this command is used.

Remark: For sending an empty packet, the Validate Buffer command should also be used.

9.12 USB device controller initialization

The LPC134x USB device controller initialization includes initialization of the USB clock and the device controller.

9.12.1 USB clock configuration

- 1. Enable the PLL for USB clock if the PLL is used.
- 2. Set the system oscillator control register SYSOSCCTRL (see <u>Table 12</u>) to 0.
- 3. Enable the system oscillator by clearing bit 5 in the PDAWAKECFG register (see Table 51), then wait 200 μs for system oscillator to stabilize.
- 4. Select the system clock source by setting 0x01 (use system oscillator) in SYSPLLCLKSEL register (see Table 16).
- 5. Update the clock source by setting 1 in SYSPLLUEN register (see <u>Table 17</u>) register, and wait until clock source is updated.
- 6. Boost system PLL to 192 MHz and then divide by 4 (M=4, P=2) to obtain the 48 MHz main clock. If the main clock is not 48 MHz then the USB PLL has to be used as USB clock.

UM10375

Chapter 9: LPC13xx USB device controller

- 7. Enable the main system PLL by clearing bit 7 in PDAWAKECFG (see <u>Table 51</u>), then wait until the PLL clock is locked.
- If the USB PLL is used as the USB clock, do the following extra step:
 Configure USB PLL identically to the System PLL and select system clock source by setting 0x01 (use system oscillator) in USBPLLCLKSEL (see Table 28) register.
- 9. Enable USB clock by clearing bit 8 in PDCTRL.
- 10. Set USB clock by setting USBCLKSEL (see Table 28) to:
 - a. 0x0 if USB PLL is used.
 - b. 0x1 if main clock is used.
- Update clock source by setting 1 in USBPLLUEN (see <u>Table 19</u>) register and wait until USB clock source is updated.
- 12. Set USB clock divider register (see <u>Table 30</u>) to 1, meaning the USB clock is divided by 1, as the input is 48 MHz already.

9.12.2 USB device controller initialization

- Set bits 14 and 16 in the AHBCLKCTRL register (see <u>Table 23</u>) to enable USB and IOConfig blocks. The IOConfig is needed to configure IO pin multiplexing.
- 2. In the IOConfig block, set Port0[3] (see <u>Table 101</u>) and Port0[6] (see <u>Table 109</u>) to USB VBUS and USB CONNECT respectively.
- 3. Clear any device interrupts using USBDevIntClr (<u>Table 158</u>), then enable the desired endpoints by setting the corresponding bits in USBDevIntEn (<u>Table 157</u>).
- 4. Install the USB interrupt handler in the NVIC.
- 5. Set the default USB address to 0x0 and DEV_EN to 1 using the SIE Set Address command.
- Set CON bit to 1 to make CONNECT active using the SIE Set Device Status command.

9.13 Functional description

9.13.1 Data flow from the Host to the Device

The USB ATX receives the bi-directional USB_DP and USB_DM lines of the USB bus. It will put this data in the unidirectional interface between ATX and USB block.

The SIE protocol engine receives this serial data and converts it into a parallel data stream. The parallel data is sent to the RAM interface which in turn will transfer the data to the endpoint buffer. The endpoint buffer is implemented as an SRAM based FIFO. Data is written to the buffers with the header showing how many bytes are valid in the buffer.

For non-isochronous endpoints when a full data packet is received without any errors, the endpoint generates a request for data transfer from its FIFO by generating an interrupt to the system.

Chapter 9: LPC13xx USB device controller

Isochronous endpoint will have one packet of data to be transferred in every frame. This requires the data transfer has to be synchronized to the USB frame rather than packet arrival. The 1 KHz free running clock re synchronized on the incoming SoF tokens will generate an interrupt every millisecond.

The data transfer follows the little endian format. The first byte received from the USB bus will be available in the LS byte of the receive data register.

9.13.2 Data flow from the Device to the Host

For data transfer from an endpoint to the host, the host will send an IN token to that endpoint. If the FIFO corresponding to the endpoint is empty, the device will return a NAK and will generate an interrupt (assuming the interrupt on NAK is enabled). On this interrupt the processor fills a packet of data in the endpoint FIFO. The next IN token that comes--after filling this packet--will transfer this packet to the host.

The data transfer follows the little endian format. The first byte sent on the USB bus will be the LS byte of the transmit data register.

Remark: USB is a host controlled protocol, i.e., irrespective of whether the data transfer is from the host to the device or from the device to the host, the transfer sequence is always initiated by the host. During data transfer from the device to the host, the host sends an IN token to the device, following which the device responds with the data.

9.13.3 Interrupt based transfer

Interrupt based data transfer is done through the interrupt issued from the USB core to the processor.

Reception of a valid (error-free) data packet in any of the OUT non-isochronous endpoint buffer generates an interrupt. Upon receiving the interrupt, the software can read the data using receive length and data registers. When there is no empty buffer (for a given non-isochronous OUT endpoint), any data arrival generates an interrupt only if Interrupt On NAK feature for that endpoint type is enabled and existing interrupt is cleared.

Similarly, when a packet is successfully transferred to the host from any IN non-isochronous endpoint buffer, an interrupt is generated. When there is no data available in any of the buffers (for a given non-isochronous IN endpoint), a data request generates an interrupt only if Interrupt On NAK feature for that endpoint type is enabled and existing interrupt is cleared. Upon receiving the interrupt, the software can load any data to be sent using transmit length and data registers.

9.13.4 Isochronous transfer

Isochronous endpoints are double-buffered and the buffer toggling will happen only on frame boundaries i.e., at every 1 ms. 'Clear Buffer' and 'Validate Buffer' do not cause the buffer to toggle.

For OUT isochronous endpoints, the data will always be written irrespective of the buffer status. For IN isochronous endpoints, the data available in the buffer will be sent only if the buffer is validated; otherwise, an empty packet will be sent.

There will not be any interrupt generated specific to isochronous endpoints other than the frame interrupt.

Chapter 9: LPC13xx USB device controller

It is assumed that the Isochronous pipe is open at the reception of a request "Set Interface (alternate setting > 0)". This request is sent to the interface to which the isochronous endpoint belongs.

This means that the device is expecting the first isochronous transfer within the millisecond

9.13.5 Automatic stall feature

The USB block includes a Hardware STALL mechanism. H/W STALL will occur in the following control transactions:

- Data stage consists of INs, the status is a single OUT transaction with an empty packet sent by the host.
- Data stage consists of OUTs, the status is a single IN transaction, for which the device respond with an empty packet.
- Setup stage followed by a Status stage consisting of an IN transaction, for which the device respond with empty packet.

A STALL will **not** occur in the following situations:

- Data stage consists of OUTs, the status is a single IN transaction, for which the device respond with a non-empty packet.
- Setup stage followed by a Status stage consisting of an IN transaction, for which the device respond with a non-empty packet.

9.14 Double-buffered endpoint operation

The Bulk and Isochronous endpoints of the USB Device Controller are double-buffered to increase data throughput.

For the following discussion, the endpoint buffer currently accessible to the CPU for reading or writing is said to be the active buffer.

9.14.1 Bulk endpoints

For Bulk endpoints, the active endpoint buffer is switched by the SIE Clear Buffer or Validate Buffer commands.

The following example illustrates how double-buffering works for a Bulk OUT endpoint in Slave mode:

Assume that both buffer 1 (B_1) and buffer 2 (B_2) are empty, and that the active buffer is B 1.

- 1. The host sends a data packet to the endpoint. The device hardware puts the packet into B_1, and generates an endpoint interrupt.
- 2. Software clears the endpoint interrupt and begins reading the packet data from B_1. While B_1 is still being read, the host sends a second packet, which device hardware places in B_2, and generates an endpoint interrupt.

UM10375

Chapter 9: LPC13xx USB device controller

- 3. Software is still reading from B_1 when the host attempts to send a third packet. Since both B_1 and B_2 are full, the device hardware responds with a NAK.
- Software finishes reading the first packet from B_1 and sends a SIE Clear Buffer command to free B_1 to receive another packet. B_2 becomes the active buffer.
- Software sends the SIE Select Endpoint command to read the Select Endpoint Register and test the FE bit. Software finds that the active buffer (B_2) has data (FE=1). Software clears the endpoint interrupt and begins reading the contents of B 2.
- 6. The host resends the third packet which device hardware places in B_1. An endpoint interrupt is generated.
- 7. Software finishes reading the second packet from B_2 and sends a SIE Clear Buffer command to free B_2 to receive another packet. B_1 becomes the active buffer. Software waits for the next endpoint interrupt to occur (it already has been generated back in step 6).
- 8. Software responds to the endpoint interrupt by clearing it and begins reading the third packet from B_1.
- 9. Software finishes reading the third packet from B_1 and sends a SIE Clear Buffer command to free B_1 to receive another packet. B_2 becomes the active buffer.
- 10. Software tests the FE bit and finds that the active buffer (B_2) is empty (FE=0).
- 11. Both B_1 and B_2 are empty. Software waits for the next endpoint interrupt to occur. The active buffer is now B_2. The next data packet sent by the host will be placed in B_2.

The following example illustrates how double-buffering works for a Bulk IN endpoint in Slave mode:

Assume that both buffer 1 (B_1) and buffer 2 (B_2) are empty and that the active buffer is B_1. The interrupt on NAK feature is enabled.

- 1. The host requests a data packet by sending an IN token packet. The device responds with a NAK and generates an endpoint interrupt.
- Software clears the endpoint interrupt. The device has three packets to send.
 Software fills B_1 with the first packet and sends a SIE Validate Buffer command. The active buffer is switched to B 2.
- Software sends the SIE Select Endpoint command to read the Select Endpoint
 Register and test the FE bit. It finds that B_2 is empty (FE=0) and fills B_2 with the
 second packet. Software sends a SIE Validate Buffer command, and the active buffer
 is switched to B 1.
- Software waits for the endpoint interrupt to occur.
- 5. The device successfully sends the packet in B_1 and clears the buffer. An endpoint interrupt occurs.
- 6. Software clears the endpoint interrupt. Software fills B_1 with the third packet and validates it using the SIE Validate Buffer command. The active buffer is switched to B_2.
- 7. The device successfully sends the second packet from B_2 and generates an endpoint interrupt.
- 8. Software has no more packets to send, so it simply clears the interrupt.

UM10375

Chapter 9: LPC13xx USB device controller

- 9. The device successfully sends the third packet from B_1 and generates an endpoint interrupt.
- 10. Software has no more packets to send, so it simply clears the interrupt.
- 11. Both B_1 and B_2 are empty, and the active buffer is B_2. The next packet written by software will go into B 2.

9.14.2 Isochronous endpoints

For isochronous endpoints, the active data buffer is switched by hardware when the FRAME interrupt occurs. The SIE Clear Buffer and Validate Buffer commands do not cause the active buffer to be switched.

Double-buffering allows the software to make full use of the frame interval writing or reading a packet to or from the active buffer, while the packet in the other buffer is being sent or received on the bus.

For an OUT isochronous endpoint, any data not read from the active buffer before the end of the frame is lost when it switches.

For an IN isochronous endpoint, if the active buffer is not validated before the end of the frame, an empty packet is sent on the bus when the active buffer is switched, and its contents will be overwritten when it becomes active again.

UM10375

Chapter 10: LPC13xx USB on-chip drivers

Rev. 2 — 7 July 2010

User manual

10.1 How to read this chapter

The USB device controller is available on parts LPC1342 and LPC1343 only.

10.2 Introduction

The boot ROM contains a USB driver to simplify the USB application development. The USB driver implements the Human Interface Device (HID) and the Mass Storage Device (MSC) device class. Only one device function, either HID or MSC, can be used by the application software. The USB enumeration and commands are handled by the boot ROM code. The application software only needs to provide the callback functions to handle the data sent or requested by the host.

10.3 USB driver functions

The following four functions of the USB driver software are exposed to the user application:

- 1. Clock and pin initialization
- 2. USB initialization
- 3. USB connect
- 4. USB interrupt handler

10.3.1 Clock and pin initialization

This function configures the LPC134x assuming an external crystal with 12 MHz clock frequency:

- The system PLL is configured to output a 48 MHz clock.
- The main clock is connected to the system PLL output, and the input to the USB clock divider is connected to the main clock.
- The USB bit in the AHB clock divider is set to 1.
- The USB pins are connected to the USB block, and the USB PHY is enabled.
- The USB clock divider is set to 1.
- The USB PLL is enabled.

Calling this function is optional if application software implements an equivalent initialization routine which includes setting up the USB clock to 48 MHz and connecting USB_DM and USB_DP pins to the USB peripheral. After reset the USB_DM and USB_DP pins are connected to the GPIO peripheral.

Chapter 10: LPC13xx USB on-chip drivers

10.3.2 USB initialization

This function must be called by the application software after the clock and pin initialization. A pointer to the structure describing the USB device type is passed as a parameter to this function. The USB device type can be HID or MSC. The pointer is stored for future reference. The USB device controller is initialized and the corresponding USB interrupt channel is enabled in the NVIC.

10.3.3 USB connect

This function is called after the USB initialization. This function uses the soft connect feature to make the device visible on the USB bus. This function is called only after the application is ready to handle the USB data. The enumeration process is started by the host after the device detection. The driver handles the enumeration process according to the USB device type pointer passed in the USB initialization function.

10.3.4 USB interrupt handler

When the user application is active the interrupt handlers are mapped in the user flash space. The user application must provide an interrupt handler for the USB interrupt and call this function in the interrupt handler routine. The driver interrupt handler takes appropriate action according to the data received on the USB bus and the configured device type (HID or MSC).

10.4 Calling the USB device driver

A fixed location in ROM contains a pointer to the ROM driver table i.e. 0x1FFF 1FF8. This location is kept the same for a device family. The ROM driver table contains a pointer to the USB driver table. Pointers to the various USB driver functions are stored in this table. USB driver functions can be called by using a C structure. Figure 15 illustrates the pointer mechanism used to access the on-chip USB driver.

On-chip RAM from address 0x1000 0050 to 0x1000 0180 is used by the USB driver. This address range should not be used by the application. For applications using the on-chip USB driver, the linker control file should be modified appropriately to prevent usage of this area for the application's variable storage

Chapter 10: LPC13xx USB on-chip drivers

10.4.1 USB mass storage driver

The following steps illustrate the USB mass storage driver usage. A complete example is available in the LPC13xx code bundle.

1. Map the pointer to the on chip driver table:

```
ROM ** rom = (ROM **) 0x1fff1ff8;
```

2. Enable 32-bit timer 1 (CT32B1) and IOCONFIG block:

```
LPC SYSCON->SYSAHBCLKCTRL |= (EN TIMER32 1 | EN IOCON);
```

3. Initialize USB clock and pins:

```
(*rom)->pUSBD->init_clk_pins();
```

4. Set up device type and information:

```
USB_DEV_INFO DeviceInfo;
MSC_DEVICE_INFO MscDevInfo;
MscDevInfo.idVendor = USB_VENDOR_ID;
MscDevInfo.idProduct = USB_PROD_ID;
MscDevInfo.bcdDevice = USB_DEVICE;
MscDevInfo.StrDescPtr = (uint32_t)&USB_StringDescriptor[0];
MscDevInfo.MSCInquiryStr = (uint32_t)&InquiryStr[0];
MscDevInfo.BlockSize = MSC_BlockSize;
MscDevInfo.BlockCount = MSC_BlockCount;
MscDevInfo.MemorySize = MSC_MemorySize;
MscDevInfo.MSC Read = MSC_MemoryRead;
```

Chapter 10: LPC13xx USB on-chip drivers

```
MscDevInfo.MSC_Write = MSC_MemoryWrite;
```

5. Initialize the USB:

```
DeviceInfo.DevType = USB_DEVICE_CLASS_STORAGE;
DeviceInfo.DevDetailPtr = (uint32_t)&MscDevInfo;
(*rom)->pUSBD->init(&DeviceInfo);
```

6. Initialize the mass storage state machine:

```
(uint32_t *) BulkStage = 0x10000054;
*BulkStage = 0x0;
```

7. Add the USB interrupt handler to your project:

```
USB_IRQHandler(void)
{
   (*rom)->pUSBD->isr();
}
```

8. Call USB connect:

```
(*rom)->pUSBD->connect(TRUE);
```

10.4.2 USB human interface driver

The following steps show how to use the USB human interface driver. A complete example is available in the LPC13xx code bundle.

1. Map the pointer to the on chip driver table:

```
ROM ** rom = (ROM **)0x1fff1ff8;
```

2. Enable 32-bit timer 1 (CT32B1) and IOCONFIG block:

```
LPC SYSCON->SYSAHBCLKCTRL |= (EN TIMER32 1 | EN IOCON);
```

3. Initialize USB clock and pins:

```
(*rom)->pUSBD->init_clk_pins();
```

4. Set up device type and information:

```
USB_DEV_INFO DeviceInfo;
HID_DEVICE_INFO HidDevInfo;
HidDevInfo.idVendor = USB_VENDOR_ID;
HidDevInfo.idProduct = USB_PROD_ID;
HidDevInfo.bcdDevice = USB_DEVICE;
HidDevInfo.StrDescPtr = (uint32_t)&USB_StringDescriptor[0];
HidDevInfo.InReportCount = 1;
HidDevInfo.OutReportCount = 1;
HidDevInfo.SampleInterval = 0x20;
HidDevInfo.InReport = GetInReport;
HidDevInfo.OutReport = SetOutReport;
```

5. Initialize the USB:

```
DeviceInfo.DevType = USB_DEVICE_CLASS_HUMAN_INTERFACE;
```

Chapter 10: LPC13xx USB on-chip drivers

```
DeviceInfo.DevDetailPtr = (uint32_t)&HidDevInfo;
  (*rom)->pUSBD->init(&DeviceInfo);

6. Add the USB interrupt handler to your project:
   USB_IRQHandler(void)
  {
      (*rom)->pUSBD->isr();
   }

7. Call USB connect:
```

(*rom)->pUSBD->connect(TRUE);

10.5 USB driver structure definitions

USB Connect

10.5.1 ROM driver table

The following structure is used to access the USB driver table stored in ROM:

```
typedefstruct _ROM {
   const USBD * pUSBD;
} ROM;
```

10.5.2 USB driver table

The following structure is used to access the functions exposed by the USB driver:

```
typedefstruct _USBD {
  void (*init_clk_pins)(void);
  void (*isr)(void);
  void (*init)( USB_DEV_INFO * DevInfoPtr );
  void (*connect)(uint32_t con);
} USBD;
```

10.5.3 USB device information

The following structure is used to pass the USB device type and information:

```
typedef struct _USB_DEVICE_INFO {
  uint16_t DevType;
  uint32_t DevDetailPtr;
} USB_DEV_INFO;
```

Chapter 10: LPC13xx USB on-chip drivers

Table 179. USB device information class structure

Member	Description
DevType	USB device class type USB_DEVICE_CLASS_HUMAN_INTERFACE(0x03) USB_DEVICE_CLASS_STORAGE(0x08)
DevDetailPtr	Pointer to the device information structure

10.5.4 Mass storage device information

The following structure is used to pass the MSC device information:

```
typedefstruct _MSC_DEVICE_INFO {
   uint16_t idVendor;
   uint16_t idProduct;
   uint16_t bcdDevice;
   uint32_t StrDescPtr;
   uint32_t MSCInquiryStr;
   uint32_t BlockCount;
   uint32_t BlockSize;
   uint32_t wemorySize;
   void (*MSC_Write)( uint32_t offset, uint8_t src[], uint32_t length);
   void (*MSC_Read)( uint32_t offset, uint8_t dst[], uint32_t length);
} MSC_DEVICE_INFO;
```

Table 180. Mass storage device information class structure

Member	Description
idVendor	Vendor ID
idProduct	Product ID
bcdDevice	Device release number
StrDescPtr	Pointer to the String Describing the Manufacturer, Product and Serial number. Refer to Section 10.6.4 for an example.
MSCInquiryStr	Pointer to the 28 character string. This string is sent in response to the SCSI Inquiry command
BlockCount Number of blocks present in the mass storage device	
BlockSize	Block size in number of bytes

Chapter 10: LPC13xx USB on-chip drivers

Table 180. Mass storage device information class structure

Member	Description		
MemorySize	Memory size in number of bytes		
MSC_Write	Write call back function. This function is provided by the application software. This function gets called when host sends a write command. Input Parameters: Offset – Destination start address Source Pointer – Pointer to the source of data Length – Number of bytes to be written		
MSC_Read	Read call back function. This function is provided by the application software. This function gets called when host sends a read command. Input Parameters: Offset – Destination start address Destination Pointer – Pointer to the destination of data Length – Number of bytes to be read		

10.5.5 Human interface device information

The following structure is used to pass the HID device information:

```
typedefstruct _HID_DEVICE_INFO {
  uint16_t idVendor;
  uint16_t idProduct;
  uint16_t bcdDevice;
  uint32_t StrDescPtr;
  uint8_t InReportCount;
  uint8_t OutReportCount;
  uint8_t SampleInterval;
  void (*InReport)( uint8_t src[], uint32_t length);
  void (*OutReport)(uint8_t dst[], uint32_t length);
}
```

Table 181. Human interface device information class structure

Member	Description	
idVendor Vendor ID		
idProduct	Product ID	
bcdDevice	Device release number	
StrDescPtr	Pointer to the String Describing the Manufacturer, Product and Serial number. Refer to Section 10.6.4 for an example.	
InReportCount	Number of bytes in InReport	
OutReportCount	Number of bytes in OutReport	

Chapter 10: LPC13xx USB on-chip drivers

Table 181. Human interface device information class structure

Member	Description		
SampleInterval	Interrupt endpoint (IN and OUT) sample interval in ms.		
InReport	InReport call back function. This function is provided by the application software. This function gets called when host sends a InReport command. Input Parameters: Source Pointer – Pointer to the destination of data Length – Number of bytes to be read		
OutReport	OutReport call back function. This function is provided by the application software. This function gets called when host sends a OutReport command. Input Parameters: Source Pointer – Pointer to the source of data Length – Number of bytes to be written		

10.6 USB descriptors

The USB driver reports several predefined descriptors during enumeration of the HID or MSC device types. Certain fields of the descriptor are user-defined.

10.6.1 Standard descriptor

The USB driver reports the following predefined descriptor during enumeration of the HID or MSC device. Fields in bold are user-defined.

Standard descriptors are combined in one string and the offset is fixed. iManufacture, iProduct, and iSerialNumber strings must be of fixed size. See Section 10.6.4 for HID and MSC descriptor examples.

Table 182. Standard descriptor

Field	Value	Description
bLength	0x12	Descriptor size in bytes
bDescriptorType	0x01	The constant Device (01h)
bcdUSB	0x0200	USB Specification release number (BCD)
bDeviceClass	0x00	Class Code
bDeviceSubClass	0x00	Subclass code
bDeviceProtocol	0x00	Protocol Code
bMaxPacketSize0	0x40	Maximum Packet size for endpoint 0
idVendor	User Defined	Vendor ID (Provided by the Application Software)
idProduct	User Defined	Product ID (Provided by the Application Software)
bcdDevice	User Defined	Device Release number
iManufacturer	0x04	Index of string descriptor for the manufacturer (fixed size)
iProduct	0x20	Index of string descriptor for the product (fixed size)
iSerialNumber	0x48	Index of string descriptor containing the serial number (fixed size)
bNumConfigurations	0x01	Number of possible configurations

Chapter 10: LPC13xx USB on-chip drivers

10.6.2 Mass storage configuration, interface, and endpoint descriptors

The USB driver reports the following descriptors during the enumeration process for a MSC device:

Table 183. Mass storage descriptors

	Table 183. Mass storage descriptors				
Field	Value	Description			
Mass storage config	<u> </u>				
bLength	0x09	Descriptor size in bytes			
bDescriptorType	0x02	The constant Configuration (0x02)			
wTotalLength	0x0020	Size of all data returned for this configuration in bytes			
bNumInterfaces	0x01	Number of interfaces the configuration supports			
bConfigurationValue	0x01	Identifier for Set_Configuration and Get_Configuration requests			
iConfiguration	0x00	Index of string descriptor for the configuration			
bmAttributes	0xc0	Self/Bus power, Remote wakeup			
bMaxPower	0x32	Bus Power required, expressed as (max mA/2)			
Mass storage interfa	ace descriptor				
bLength	0x09	Descriptor size in bytes			
bDescriptorType	0x04	The constant Interface (0x04)			
bInterfaceNumber	0x00	Number identifying this interface			
bAlternateSetting	0x00	Value used to select an alternate setting			
bNumEndpoints	0x02	Number of endpoints supported			
bInterfaceClass	0x08	Class code, Storage			
bInterfaceSubClass	0x06	SubClass code, SCSI			
bInterfaceProtocol	0x50	Protocol code, Bulk only			
iInterface	0x62	Index of string descriptor for the interface			
Mass storage bulk I	N endpoint descrip	otor			
bLength	0x07	Descriptor size in bytes			
bDescriptorType	0x05	The constant Endpoint (0x05)			
bEndpointAddress	0x82	Endpoint number and direction			
bmAttributes	0x02	Transfer type supported, Bulk			
wMaxPacketSize	0x0040	Maximum packet size supported			
bInterval	0x00	Maximum latency/polling interval/NAK rate			
Mass storage bulk 0	OUT endpoint desc	riptor			
bLength	0x07	Descriptor size in bytes			
bDescriptorType	0x05	The constant Endpoint (0x05)			
bEndpointAddress	0x02	Endpoint number and direction			
bmAttributes	0x02	Transfer type supported, Bulk			
wMaxPacketSize	0x0040	Maximum packet size supported			
bInterval	0x00	Maximum latency/polling interval/NAK rate			

10.6.3 HID configuration, interface, class, endpoint, and report descriptor

The USB driver reports the following descriptors during the enumeration process for an HID device:

Chapter 10: LPC13xx USB on-chip drivers

Table 184. HID descriptors

Table 184. HID desc	-			
Field	Value	Description		
HID configuration descriptor				
bLength	0x09	Descriptor size in bytes		
bDescriptorType	0x02	The constant Configuration (0x02)		
wTotalLength	0x0029	Size of all data returned for this configuration in bytes		
bNumInterfaces	0x01	Number of interfaces the configuration supports		
bConfigurationValue	0x01	Identifier for Set_Configuration and Get_Configuration requests		
iConfiguration	0x00	Index of string descriptor for the configuration		
bmAttributes	0xc0	Self/Bus power, Remote wakeup		
bMaxPower	0x32	Bus Power required, expressed as (max mA/2)		
HID interface descri	ptor			
bLength	0x09	Descriptor size in bytes		
bDescriptorType	0x04	The constant Interface (0x04)		
bInterfaceNumber	0x00	Number identifying this interface		
bAlternateSetting	0x00	Value used to select an alternate setting		
bNumEndpoints	0x02	Number of endpoints supported		
bInterfaceClass	0x03	Class code, Human Interface		
bInterfaceSubClass	0x00	Sublass code, None		
bInterfaceProtocol	0x00	Protocol code, None		
iInterface	0x62	Index of string descriptor for the interface		
HID class descripto	r			
bLength	0x09	Descriptor size in bytes		
bDescriptorType	0x21	The constant HID class (0x21)		
bcdHID	0x0100	HID specification release number (BCD)		
bCountryCode	0x00	Country identifier		
bNumDescriptors	0x01	Number of subordinate class descriptors supported		
bDescriptorType	0x22	The type of class descriptor, HID Report		
wDescriptorLength	0x001b	Total length of report descriptor		
HID interrupt IN des	criptor			
bLength	0x07	Descriptor size in bytes		
bDescriptorType	0x05	The constant Endpoint (0x05)		
bEndpointAddress	0x81	Endpoint number and direction		
bmAttributes	0x03	Transfer type supported, Interrupt		
wMaxPacketSize	0x0040	Maximum packet size supported		
bInterval	User Defined	Polling interval (Provided by the Application Software)		
HID interrupt OUT descriptor				
bLength	0x07	Descriptor size in bytes		
bDescriptorType	0x05	The constant Endpoint (0x05)		
bEndpointAddress	0x01	Endpoint number and direction		
bmAttributes	0x03	Transfer type supported, Interrupt		
wMaxPacketSize	0x0040	Maximum packet size supported		

Chapter 10: LPC13xx USB on-chip drivers

Table 184. HID descriptors

Field	Value	Description
bInterval	User Defined	Polling interval (Provided by the Application Software)
HID report descript	or	
Usage Page	0x06 01 00	Generic Desktop
Usage	0x09 01	Vendor Usage 1
Collection	0xA1 01	Start of Collection, Application
Logical Minimum	0x15 00	Minimum value 0x00
Logical Maximum	0x26 FF 00	Maximum Value 0xFF
Report Size	0x75 08	Number of bits, 8
Report Count	0x95 xx	Provided by the application software
Usage	0x09 01	Vendor usage 1
Input	0x81 02	Data, Variable, Absolute
Report Count	0x95 xx	Provided by the application software
Usage	0x09 01	Vendor usage 1
Output	0x91 02	Data, Variable, Absolute
End Collection	0xC0	End of collection

10.6.4 Example descriptors

Example HID descriptor

```
/* Index 0x04: Manufacturer */
 0x1C, USB STRING DESCRIPTOR TYPE,
 'N',0, 'X',0, 'P',0,' ',0,'S',0, 'E',0, 'M',0,'I',0, 'C',0,'0',0,'N',0,'D',0,' ',0,
/* Index 0x20: Product */
 0x28, USB STRING DESCRIPTOR TYPE,
                                 /* bDescriptorType */
 'N',0, 'X',0, 'P',0, '',0, 'L',0, 'P',0, 'C',0, '1',0, '3',0, 'X',0,
    'X',0, '',0, 'H',0, 'I',0, 'D',0, '',0, '',0, '',0, '',0,
/* Index 0x48: Serial Number */
 0x1A, USB_STRING_DESCRIPTOR_TYPE, /* bDescriptorType */
 'D',0, 'E',0, 'M',0, 'O',0, 'O',0, 'O',0, 'O',0, 'O',0, 'O',0, 'O',0,
    '0',0, '0',0,
/* Index 0x62: Interface 0, Alternate Setting 0 */
 0x0E, USB_STRING_DESCRIPTOR_TYPE, /* bDescriptorType */
 'H',0, 'I',0, 'D',0, '',0, '',0, '',0,
};
```

Chapter 10: LPC13xx USB on-chip drivers

Example MSC descriptor

```
USB_ISP_StringDescriptor[] = {0x04, USB_STRING_DESCRIPTOR_TYPE, 0x0409,
/* Index 0x04: Manufacturer */
 0x1C,USB_STRING_DESCRIPTOR_TYPE,
 'N',0,'X',0,'P',0,' ',0,'S',0,'e',0,'m',0,'i',0,'c',0,'o',0,'n',0,'d',0,'',0,
/* Index 0x20: Product */
 0x28, USB_STRING_DESCRIPTOR_TYPE,
 'N',0,'X',0,'P',0,' ',0,'L',0,'P',0,'C',0,'1',0,'3',0,'X',0,'X',0,''',0,'I',0,
     'F',0, 'L',0, 'A',0, 'S',0,'H',0,' ',0,
/* Index 0x48: Serial Number */
 0x1A,USB_STRING_DESCRIPTOR_TYPE,
 'I',0,'S',0,'P',0,'0',0,'0',0,'0',0,'0',0,'0',0,'0',0,'0',0,'0',0,'0',0,
/* Index 0x62: Interface 0, Alternate Setting 0 */
 0x0E,USB_STRING_DESCRIPTOR_TYPE,
 'M',0,
 'e',0,
  'm',0,
  '0',0,
 'r',0,
 'y',0,
};
```

UM10375

Chapter 11: LPC13xx UART

Rev. 2 — 7 July 2010

User manual

11.1 How to read this chapter

The UART block is identical for all LPC13xx parts. The DSR, DCD, and RI modem signals are pinned out for the LQFP48 packages only.

11.2 Basic configuration

The UART is configured using the following registers:

- 1. Pins: The UART pins must be configured in the IOCONFIG register block (Section 6.4.1) before the UART clocks can be enabled.
- 2. Power: In the SYSAHBCLKCTRL register, set bit 12 (Table 23).
- 3. Peripheral clock: Enable the UART peripheral clock by writing to the UARTCLKDIV register (<u>Table 25</u>).

11.3 Features

- 16-byte receive and transmit FIFOs.
- Register locations conform to '550 industry standard.
- Receiver FIFO trigger points at 1, 4, 8, and 14 bytes.
- Built-in baud rate generator.
- UART allows for implementation of either software or hardware flow control.
- RS-485/EIA-485 9-bit mode support with output enable.
- Modem control.

11.4 Pin description

Table 185. UART pin description

Pin	Type	Description
RXD	Input	Serial Input. Serial receive data.
TXD	Output	Serial Output. Serial transmit data.
RTS	Output	Request To Send. RS-485 direction control pin.
DTR	Output	Data Terminal Ready.
DSR[1]	Input	Data Set Ready.
CTS	Input	Clear To Send.
DCD[1]	Input	Data Carrier Detect.
RI ^{L1}	Input	Ring Indicator.

[1] LQFP48 packages only.

Chapter 11: LPC13xx UART

11.5 Clocking and power control

The clocks and power to the UART block are controlled by two registers:

- 1. The UART block can be enabled or disabled through the System AHB clock control register bit 12 (see Table 23).
- 2. The UART peripheral clock UART_PCLK is enabled in the UART clock divider register (see <u>Table 25</u>). This clock is used by the UART baud rate generator.

Remark: The UART pins must be configured in the corresponding IOCON registers **before** the UART clocks are enabled.

11.6 Register description

The UART contains registers organized as shown in <u>Table 186</u>. The Divisor Latch Access Bit (DLAB) is contained in U0LCR[7] and enables access to the Divisor Latches.

Chapter 11: LPC13xx UART

Table 186. Register overview: UART (base address: 0x4000 8000)

			()		
Name	Access	Address offset	Description	Reset Value ^[1]	Notes
U0RBR	RO	0x000	Receiver Buffer Register. Contains the next received character to be read.	NA	when DLAB=0
U0THR	WO	0x000	Transmit Holding Register. The next character to be transmitted is written here.	NA	when DLAB=0
U0DLL	R/W	0x000	Divisor Latch LSB. Least significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider.	0x01	when DLAB=1
U0DLM	R/W	0x004	Divisor Latch MSB. Most significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider.	0x00	when DLAB=1
U0IER	R/W	0x004	Interrupt Enable Register. Contains individual interrupt enable bits for the 7 potential UART interrupts.	0x00	when DLAB=0
U0IIR	RO	800x0	Interrupt ID Register. Identifies which interrupt(s) are pending.	0x01	-
U0FCR	WO	800x0	FIFO Control Register. Controls UART FIFO usage and modes.	0x00	-
U0LCR	R/W	0x00C	Line Control Register. Contains controls for frame formatting and break generation.	0x00	-
U0MCR	R/W	0x010	Modem control register	0x00	-
U0LSR	RO	0x014	Line Status Register. Contains flags for transmit and receive status, including line errors.	0x60	-
U0MSR	RO	0x018	Modem status register	0x00	-
U0SCR	R/W	0x01C	Scratch Pad Register. Eight-bit temporary storage for software.	0x00	-
U0ACR	R/W	0x020	Auto-baud Control Register. Contains controls for the auto-baud feature.	0x00	-
-	-	0x024	Reserved	-	-
U0FDR	R/W	0x028	Fractional Divider Register. Generates a clock input for the baud rate divider.	0x10	-
-	-	0x02C	Reserved	-	-
U0TER	R/W	0x030	Transmit Enable Register. Turns off UART transmitter for use with software flow control.	0x80	-
-	-	0x034 - 0x048	Reserved	-	-
U0RS485CTRL	R/W	0x04C	RS-485/EIA-485 Control. Contains controls to configure various aspects of RS-485/EIA-485 modes.	0x00	-
U0ADRMATCH	R/W	0x050	RS-485/EIA-485 address match. Contains the address match value for RS-485/EIA-485 mode.	0x00	-
U0RS485DLY	R/W	0x054	RS-485/EIA-485 direction control delay.	0x00	-
-					

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 11: LPC13xx UART

11.6.1 UART Receiver Buffer Register (U0RBR - 0x4000 8000, when DLAB = 0, Read Only)

The U0RBR is the top byte of the UART RX FIFO. The top byte of the RX FIFO contains the oldest character received and can be read via the bus interface. The LSB (bit 0) represents the "oldest" received data bit. If the character received is less than 8 bits, the unused MSBs are padded with zeroes.

The Divisor Latch Access Bit (DLAB) in U0LCR must be zero in order to access the U0RBR. The U0RBR is always Read Only.

Since PE, FE and BI bits (see <u>Table 198</u>) correspond to the byte sitting on the top of the RBR FIFO (i.e. the one that will be read in the next read from the RBR), the right approach for fetching the valid pair of received byte and its status bits is first to read the content of the U0LSR register, and then to read a byte from the U0RBR.

Table 187. UART Receiver Buffer Register (U0RBR - address 0x4000 8000 when DLAB = 0, Read Only) bit description

Bit	Symbol	Description	Reset Value
7:0	RBR	The UART Receiver Buffer Register contains the oldest received byte in the UART RX FIFO.	undefined
31:8	-	Reserved	-

11.6.2 UART Transmitter Holding Register (U0THR - 0x4000 8000 when DLAB = 0, Write Only)

The U0THR is the top byte of the UART TX FIFO. The top byte is the newest character in the TX FIFO and can be written via the bus interface. The LSB represents the first bit to transmit.

The Divisor Latch Access Bit (DLAB) in U0LCR must be zero in order to access the U0THR. The U0THR is always Write Only.

Table 188. UART Transmitter Holding Register (U0THR - address $0x4000\ 8000$ when DLAB = 0, Write Only) bit description

Bit	Symbol	Description	Reset Value
7:0	THR	Writing to the UART Transmit Holding Register causes the data to be stored in the UART transmit FIFO. The byte will be sent when it reaches the bottom of the FIFO and the transmitter is available.	NA
31:8	-	Reserved	-

11.6.3 UART Divisor Latch LSB and MSB Registers (U0DLL - 0x4000 8000 and U0DLM - 0x4000 8004, when DLAB = 1)

The UART Divisor Latch is part of the UART Baud Rate Generator and holds the value used, along with the Fractional Divider, to divide the UART_PCLK clock in order to produce the baud rate clock, which must be 16x the desired baud rate. The U0DLL and U0DLM registers together form a 16-bit divisor where U0DLL contains the lower 8 bits of the divisor and U0DLM contains the higher 8 bits of the divisor. A 0x0000 value is treated like a 0x0001 value as division by zero is not allowed. The Divisor Latch Access Bit (DLAB) in U0LCR must be one in order to access the UART Divisor Latches. Details on how to select the right value for U0DLL and U0DLM can be found in Section 11.6.15.

Chapter 11: LPC13xx UART

Table 189. UART Divisor Latch LSB Register (U0DLL - address 0x4000 8000 when DLAB = 1) bit description

Bit	Symbol	Description	Reset value
7:0	DLLSB	The UART Divisor Latch LSB Register, along with the U0DLM register, determines the baud rate of the UART.	0x01
31:8	-	Reserved	-

Table 190. UART Divisor Latch MSB Register (U0DLM - address 0x4000 8004 when DLAB = 1) bit description

Bit	Symbol	Description	Reset value
7:0	DLMSB	The UART Divisor Latch MSB Register, along with the U0DLL register, determines the baud rate of the UART.	0x00
31:8	-	Reserved	-

11.6.4 UART Interrupt Enable Register (U0IER - 0x4000 8004, when DLAB = 0)

The U0IER is used to enable the four UART interrupt sources.

Table 191. UART Interrupt Enable Register (U0IER - address 0x4000 8004 when DLAB = 0) bit description

Bit	Symbol	Value	Description	Reset value	
0	RBR Interrupt		Enables the Receive Data Available interrupt for UART. It also controls the Character Receive Time-out interrupt.	0	
	Enable	0	Disable the RDA interrupt.		
		1	Enable the RDA interrupt.		
1	THRE Interrupt		Enables the THRE interrupt for UART. The status of this interrupt can be read from U0LSR[5].	0	
	Enable	0	Disable the THRE interrupt.		
		1	Enable the THRE interrupt.		
2	RX Line Interrupt		Enables the UART RX line status interrupts. The status of this interrupt can be read from U0LSR[4:1].	0	
	Enable	0	Disable the RX line status interrupts.		
		1	Enable the RX line status interrupts.		
3	-	-	Reserved	-	
6:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	
7	-	-	Reserved	0	
8	ABEOIntEn		Enables the end of auto-baud interrupt.	0	
		0	Disable end of auto-baud Interrupt.		
		1	Enable end of auto-baud Interrupt.		
9	ABTOIntEn		Enables the auto-baud time-out interrupt.	0	
		0	Disable auto-baud time-out Interrupt.		
		1	Enable auto-baud time-out Interrupt.		
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

Chapter 11: LPC13xx UART

11.6.5 UART Interrupt Identification Register (U0IIR - 0x4004 8008, Read Only)

U0IIR provides a status code that denotes the priority and source of a pending interrupt. The interrupts are frozen during a U0IIR access. If an interrupt occurs during a U0IIR access, the interrupt is recorded for the next U0IIR access.

Table 192. UART Interrupt Identification Register (U0IIR - address 0x4004 8008, Read Only) bit description

	•			
Bit	Symbol	Value	Description	Reset value
0	IntStatus		Interrupt status. Note that U0IIR[0] is active low. The pending interrupt can be determined by evaluating U0IIR[3:1].	1
		0	At least one interrupt is pending.	
		1	No interrupt is pending.	
3:1	Intld		Interrupt identification. U0IER[3:1] identifies an interrupt corresponding to the UART Rx FIFO. All other combinations of U0IER[3:1] not listed below are reserved (100,101,111).	0
		011	1 - Receive Line Status (RLS).	
		010	2a - Receive Data Available (RDA).	
		110	2b - Character Time-out Indicator (CTI).	
		001	3 - THRE Interrupt.	
		000	4 - Modem interrupt.	
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
7:6	FIFO Enable		These bits are equivalent to U0FCR[0].	0
8	ABEOInt		End of auto-baud interrupt. True if auto-baud has finished successfully and interrupt is enabled.	0
9	ABTOInt		Auto-baud time-out interrupt. True if auto-baud has timed out and interrupt is enabled.	0
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Bits U0IIR[9:8] are set by the auto-baud function and signal a time-out or end of auto-baud condition. The auto-baud interrupt conditions are cleared by setting the corresponding Clear bits in the Auto-baud Control Register.

If the IntStatus bit is one and no interrupt is pending and the IntId bits will be zero. If the IntStatus is 0, a non auto-baud interrupt is pending in which case the IntId bits identify the type of interrupt and handling as described in <u>Table 193</u>. Given the status of U0IIR[3:0], an interrupt handler routine can determine the cause of the interrupt and how to clear the active interrupt. The U0IIR must be read in order to clear the interrupt prior to exiting the Interrupt Service Routine.

The UART RLS interrupt (U0IIR[3:1] = 011) is the highest priority interrupt and is set whenever any one of four error conditions occur on the UART RX input: overrun error (OE), parity error (PE), framing error (FE) and break interrupt (BI). The UART Rx error condition that set the interrupt can be observed via U0LSR[4:1]. The interrupt is cleared upon a U0LSR read.

Chapter 11: LPC13xx UART

The UART RDA interrupt (U0IIR[3:1] = 010) shares the second level priority with the CTI interrupt (U0IIR[3:1] = 110). The RDA is activated when the UART Rx FIFO reaches the trigger level defined in U0FCR7:6 and is reset when the UART Rx FIFO depth falls below the trigger level. When the RDA interrupt goes active, the CPU can read a block of data defined by the trigger level.

The CTI interrupt (U0IIR[3:1] = 110) is a second level interrupt and is set when the UART Rx FIFO contains at least one character and no UART Rx FIFO activity has occurred in 3.5 to 4.5 character times. Any UART Rx FIFO activity (read or write of UART RSR) will clear the interrupt. This interrupt is intended to flush the UART RBR after a message has been received that is not a multiple of the trigger level size. For example, if a peripheral wished to send a 105 character message and the trigger level was 10 characters, the CPU would receive 10 RDA interrupts resulting in the transfer of 100 characters and 1 to 5 CTI interrupts (depending on the service routine) resulting in the transfer of the remaining 5 characters.

Table 193. UART Interrupt Handling

U0IIR[3:0] value[1]	Priority	Interrupt type	Interrupt source	Interrupt reset
0001	-	None	None	-
0110	Highest	RX Line Status / Error	OE ^[2] or PE ^[2] or BI ^[2]	U0LSR Read ^[2]
0100	Second	RX Data Available	Rx data available or trigger level reached in FIFO (U0FCR0=1)	U0RBR Read[3] or UART FIFO drops below trigger level
1100	Second	Character Time-out indication	Minimum of one character in the RX FIFO and no character input or removed during a time period depending on how many characters are in FIFO and what the trigger level is set at (3.5 to 4.5 character times).	U0RBR Read ^[3]
			The exact time will be:	
			[(word length) \times 7 - 2] \times 8 + [(trigger level - number of characters) \times 8 + 1] RCLKs	
0010	Third	THRE	THRE[2]	U0IIR Read ^[4] (if source of interrupt) or THR write

^[1] Values "0000", "0011", "0101", "0111", "1000", "1001", "1010", "1011","1101","1111" are reserved.

The UART THRE interrupt (U0IIR[3:1] = 001) is a third level interrupt and is activated when the UART THR FIFO is empty provided certain initialization conditions have been met. These initialization conditions are intended to give the UART THR FIFO a chance to fill up with data to eliminate many THRE interrupts from occurring at system start-up. The

^[2] For details see Section 11.6.9 "UART Line Status Register (U0LSR - 0x4000 8014, Read Only)"

^[3] For details see Section 11.6.1 "UART Receiver Buffer Register (U0RBR - 0x4000 8000, when DLAB = 0, Read Only)"

^[4] For details see Section 11.6.5 "UART Interrupt Identification Register (U0IIR - 0x4004 8008, Read Only)" and Section 11.6.2 "UART Transmitter Holding Register (U0THR - 0x4000 8000 when DLAB = 0, Write Only)"

Chapter 11: LPC13xx UART

initialization conditions implement a one character delay minus the stop bit whenever THRE = 1 and there have not been at least two characters in the U0THR at one time since the last THRE = 1 event. This delay is provided to give the CPU time to write data to U0THR without a THRE interrupt to decode and service. A THRE interrupt is set immediately if the UART THR FIFO has held two or more characters at one time and currently, the U0THR is empty. The THRE interrupt is reset when a U0THR write occurs or a read of the U0IIR occurs and the THRE is the highest interrupt (U0IIR[3:1] = 001).

11.6.6 UART FIFO Control Register (U0FCR - 0x4000 8008, Write Only)

The U0FCR controls the operation of the UART RX and TX FIFOs.

Table 194. UART FIFO Control Register (U0FCR - address 0x4000 8008, Write Only) bit description

	description					
Bit	Symbol	Value	Description	Reset value		
0	FIFO	0	UART FIFOs are disabled. Must not be used in the application.	0		
	Enable	1	Active high enable for both UART Rx and TX FIFOs and U0FCR[7:1] access. This bit must be set for proper UART operation. Any transition on this bit will automatically clear the UART FIFOs.			
1	RX FIFO	0	No impact on either of UART FIFOs.	0		
	Reset	1	Writing a logic 1 to U0FCR[1] will clear all bytes in UART Rx FIFO, reset the pointer logic. This bit is self-clearing.			
2	TX FIFO	0	No impact on either of UART FIFOs.	0		
	Reset	1	Writing a logic 1 to U0FCR[2] will clear all bytes in UART TX FIFO, reset the pointer logic. This bit is self-clearing.			
3	-	-	Reserved	0		
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA		
7:6	RX Trigger		These two bits determine how many receiver UART FIFO characters must be written before an interrupt is activated.	0		
	Level	00	Trigger level 0 (1 character or 0x01).			
		01	Trigger level 1 (4 characters or 0x04).			
		10	Trigger level 2 (8 characters or 0x08).			
		11	Trigger level 3 (14 characters or 0x0E).			
31:8	-	-	Reserved	-		

11.6.7 UART Line Control Register (U0LCR - 0x4000 800C)

The U0LCR determines the format of the data character that is to be transmitted or received.

Table 195. UART Line Control Register (U0LCR - address 0x4000 800C) bit description

Bit	Symbol	Value	Description		Reset Value
1:0	Word	00	5-bit character length.		0
	Length Select	01	6-bit character length.		
	Ocieci	10	7-bit character length.		
		11	8-bit character length.		
		All informa	tion provided in this document is subject to legal disclaimers.	© NXP B.V. 2010. All ri	ghts reserved.

User manual Rev. 2 — 7 July 2010 174 of 333

UM10375

Chapter 11: LPC13xx UART

Table 195. UART Line Control Register (U0LCR - address 0x4000 800C) bit description

Bit	Symbol	Value	Description	Reset Value
2	Stop Bit	0	1 stop bit.	0
	Select	1	2 stop bits (1.5 if U0LCR[1:0]=00).	
3	Parity	0	Disable parity generation and checking.	0
	Enable	1	Enable parity generation and checking.	
5:4	Parity Select	00	Odd parity. Number of 1s in the transmitted character and the attached parity bit will be odd.	0
		01	Even Parity. Number of 1s in the transmitted character and the attached parity bit will be even.	
		10	Forced "1" stick parity.	
		11	Forced "0" stick parity.	
6	Break	0	Disable break transmission.	0
	Control	1	Enable break transmission. Output pin UART TXD is forced to logic 0 when U0LCR[6] is active high.	
7	Divisor	0	Disable access to Divisor Latches.	0
	Latch Access Bit (DLAB)	1	Enable access to Divisor Latches.	
31: 8	-	-	Reserved	-

11.6.8 UART Modem Control Register

The U0MCR enables the modem loopback mode and controls the modem output signals.

Table 196. UART0 Modem Control Register (U0MCR - address 0x4000 8010) bit description

Bit	Symbol	Value	Description	Reset value
0	DTR Control		Source for modem output pin, DTR. This bit reads as 0 when modem loopback mode is active.	0
1	RTS Control		Source for modem output pin $\overline{\text{RTS}}$. This bit reads as 0 when modem loopback mode is active.	0
3-2	-	NA	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

Chapter 11: LPC13xx UART

Table 196. UART0 Modem Control Register (U0MCR - address 0x4000 8010) bit description

The modem loopback mode provides a mechanism to perform diagnostic loopback testing. Serial data from the transmitter is connected internally to serial input of the receiver. Input pin, RXD, has no effect on loopback and output pin, TXD is held in marking state. The four modem inputs (CTS, DSR, RI and DCD) are disconnected externally. Externally, the modem outputs (RTS, DTR) are set inactive. Internally, the four modem outputs are connected to the four modem inputs. As a result of these connections, the upper four bits of the U0MSR will be driven by the lower four bits of the U0MCR rather than the four modem inputs in normal mode. This permits modem status interrupts to be generated in loopback mode by writing the lower four bits of U0MCR. Disable modem loopback mode. Enable modem loopback mode. Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined. RTSen Disable auto-rts flow control. Tenable auto-cts flow control. Enable auto-cts flow control.	Bit	Symbol	Value	Description	Reset value		
1 Enable modem loopback mode. 5 - NA Reserved, user software should not write ones to reserved bits. 0 The value read from a reserved bit is not defined. 6 RTSen 0 Disable auto-rts flow control. 0 1 Enable auto-rts flow control. 0 7 CTSen 0 Disable auto-cts flow control. 0	4	Mode		diagnostic loopback testing. Serial data from the transmitter is connected internally to serial input of the receiver. Input pin, RXD, has no effect on loopback and output pin, TXD is held in marking state. The four modem inputs (CTS, DSR, RI and DCD) are disconnected externally. Externally, the modem outputs (RTS, DTR) are set inactive. Internally, the four modem outputs are connected to the four modem inputs. As a result of these connections, the upper four bits of the U0MSR will be driven by the lower four bits of the U0MCR rather than the four modem inputs in normal mode. This permits modem status interrupts to be generated in loopback mode by writing the lower four bits of	0		
5 - NA Reserved, user software should not write ones to reserved bits. 0 The value read from a reserved bit is not defined. 6 RTSen 0 Disable auto-rts flow control. 1 Enable auto-rts flow control. 7 CTSen 0 Disable auto-cts flow control.			0	Disable modem loopback mode.			
The value read from a reserved bit is not defined. 6 RTSen 0 Disable auto-rts flow control. 1 Enable auto-rts flow control. 7 CTSen 0 Disable auto-cts flow control. 0			1	Enable modem loopback mode.			
1 Enable auto-rts flow control. 7 CTSen 0 Disable auto-cts flow control. 0	5	-	NA	•	0		
7 CTSen 0 Disable auto-cts flow control. 0	6		0	Disable auto-rts flow control.	0		
			1	Enable auto-rts flow control.			
1 Enable auto-cts flow control.	7	CTSen	CTSen	CTSen	0	Disable auto-cts flow control.	0
			1	Enable auto-cts flow control.	_		

11.6.8.1 Auto-flow control

If auto-RTS mode is enabled the UART's receiver FIFO hardware controls the $\overline{\text{RTS}}$ output of the UART. If the auto-CTS mode is enabled the UART's U0TSR hardware will only start transmitting if the $\overline{\text{CTS}}$ input signal is asserted.

11.6.8.1.1 Auto-RTS

The auto-RTS function is enabled by setting the RTSen bit. Auto-RTS data flow control originates in the U0RBR module and is linked to the programmed receiver FIFO trigger level. If auto-RTS is enabled, the data-flow is controlled as follows:

When the receiver FIFO level reaches the programmed trigger level, RTS is de-asserted (to a high value). It is possible that the sending UART sends an additional byte after the trigger level is reached (assuming the sending UART has another byte to send) because it might not recognize the de-assertion of $\overline{\text{RTS}}$ until after it has begun sending the additional byte. $\overline{\text{RTS}}$ is automatically reasserted (to a low value) once the receiver FIFO has reached the previous trigger level. The reassertion of $\overline{\text{RTS}}$ signals the sending UART to continue transmitting data.

If Auto-RTS mode is disabled, the RTSen bit controls the RTS output of the UART. If Auto-RTS mode is enabled, hardware controls the RTS output, and the actual value of RTS will be copied in the RTS Control bit of the UART. As long as Auto-RTS is enabled, the value of the RTS Control bit is read-only for software.

Example: Suppose the UART operating in type '550 mode has the trigger level in U0FCR set to 0x2, then, if Auto-RTS is enabled, the UART will de-assert the RTS output as soon as the receive FIFO contains 8 bytes (<u>Table 194 on page 174</u>). The RTS output will be reasserted as soon as the receive FIFO hits the previous trigger level: 4 bytes.

Chapter 11: LPC13xx UART

11.6.8.1.2 Auto-CTS

The Auto-CTS function is enabled by setting the CTSen bit. If Auto-CTS is enabled, the transmitter circuitry in the U0TSR module checks CTS input before sending the next data byte. When CTS is active (low), the transmitter sends the next byte. To stop the transmitter from sending the following byte, CTS must be released before the middle of the last stop bit that is currently being sent. In Auto-CTS mode, a change of the CTS signal does not trigger a modem status interrupt unless the CTS Interrupt Enable bit is set, Delta CTS bit in the U0MSR will be set though. Table 197 lists the conditions for generating a Modem Status interrupt.

Table 197. Modem status interrupt generation

Enable modem status interrupt (U0ER[3])	CTSen (U0MCR[7])	CTS interrupt enable (U0IER[7])	Delta CTS (U0MSR[0])	Delta DCD or trailing edge RI or Delta DSR (U0MSR[3] or U0MSR[2] or U0MSR[1])	Modem status interrupt
0	X	X	X	X	No
1	0	Х	0	0	No
1	0	Х	1	Х	Yes
1	0	Х	Х	1	Yes
1	1	0	Х	0	No
1	1	0	Х	1	Yes
1	1	1	0	0	No
1	1	1	1	Х	Yes
1	1	1	Х	1	Yes

The auto-CTS function reduces interrupts to the host system. When flow control is enabled, a CTS state change does not trigger host interrupts because the device automatically controls its own transmitter. Without Auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error can result. Figure 17 illustrates the Auto-CTS functional timing.

Chapter 11: LPC13xx UART

While starting transmission of the initial character, the $\overline{\text{CTS}}$ signal is asserted. Transmission will stall as soon as the pending transmission has completed. The UART will continue transmitting a 1 bit as long as $\overline{\text{CTS}}$ is de-asserted (high). As soon as $\overline{\text{CTS}}$ gets de-asserted, transmission resumes and a start bit is sent followed by the data bits of the next character.

11.6.9 UART Line Status Register (U0LSR - 0x4000 8014, Read Only)

The U0LSR is a Read Only register that provides status information on the UART TX and RX blocks.

Table 198. UART Line Status Register (U0LSR - address 0x4000 8014, Read Only) bit description

Bit	Symbol	Value	Description	Reset Value
0	Receiver Data		U0LSR[0] is set when the U0RBR holds an unread character and is cleared when the UART RBR FIFO is empty.	0
	Ready (RDR)	0	U0RBR is empty.	
	(RDIV)	1	U0RBR contains valid data.	
1	Overrun Error (OE)		The overrun error condition is set as soon as it occurs. A UOLSR read clears UOLSR[1]. UOLSR[1] is set when UART RSR has a new character assembled and the UART RBR FIFO is full. In this case, the UART RBR FIFO will not be overwritten and the character in the UART RSR will be lost.	0
		0	Overrun error status is inactive.	
			1	Overrun error status is active.
2	Parity Error (PE)	Error parity error occurs. A U0LSR read clears U0LSR[2]. Time of	When the parity bit of a received character is in the wrong state, a parity error occurs. A U0LSR read clears U0LSR[2]. Time of parity error detection is dependent on U0FCR[0].	0
	Note: A parity error is associated with the character at the the UART RBR FIFO. O Parity error status is inactive.	Note: A parity error is associated with the character at the top of the UART RBR FIFO.		
		0	Parity error status is inactive.	
		1	Parity error status is active.	

UM10375 NXP Semiconductors

Chapter 11: LPC13xx UART

Table 198. UART Line Status Register (U0LSR - address 0x4000 8014, Read Only) bit description ...continued

	description				
Bit	Symbol	Value	Description	Reset Value	
3	Framing Error (FE)		When the stop bit of a received character is a logic 0, a framing error occurs. A U0LSR read clears U0LSR[3]. The time of the framing error detection is dependent on U0FCR0. Upon detection of a framing error, the RX will attempt to re-synchronize to the data and assume that the bad stop bit is actually an early start bit. However, it cannot be assumed that the next received byte will be correct even if there is no Framing Error.	0	
			Note: A framing error is associated with the character at the top of the UART RBR FIFO.		
		0	Framing error status is inactive.		
		1	Framing error status is active.		
4	Break Interrupt (BI)		When RXD1 is held in the spacing state (all zeros) for one full character transmission (start, data, parity, stop), a break interrupt occurs. Once the break condition has been detected, the receiver goes idle until RXD1 goes to marking state (all ones). A U0LSR read clears this status bit. The time of break detection is dependent on U0FCR[0].	0	
			Note: The break interrupt is associated with the character at the top of the UART RBR FIFO.		
		0	Break interrupt status is inactive.		
		1	Break interrupt status is active.		
5	Transmitte r Holding Register Empty		THRE is set immediately upon detection of an empty UART THR and is cleared on a U0THR write.	1	
		0	U0THR contains valid data.		
	(THRE)	1	U0THR is empty.		
6	Transmitte r Empty		TEMT is set when both U0THR and U0TSR are empty; TEMT is cleared when either the U0TSR or the U0THR contain valid data.	1	
	(TEMT)	TEMT) 0 UC	U0THR and/or the U0TSR contains valid data.		
		1	U0THR and the U0TSR are empty.		
7	Error in RX FIFO (RXFE)		U0LSR[7] is set when a character with a RX error such as framing error, parity error or break interrupt, is loaded into the U0RBR. This bit is cleared when the U0LSR register is read and there are no subsequent errors in the UART FIFO.	0	
		0 U0RBR contains no UART RX errors or U0FCR[0]=0.1 UART RBR contains at least one UART RX error.	U0RBR contains no UART RX errors or U0FCR[0]=0.		
			UART RBR contains at least one UART RX error.		
31: 8	-	-	Reserved	-	

11.6.10 UART Modem Status Register

The U0MSR is a read-only register that provides status information on the modem input signals. U0MSR[3:0] is cleared on U0MSR read. Note that modem signals have no direct effect on the UART operation. They facilitate the software implementation of modem signal operations.

Chapter 11: LPC13xx UART

Table 199. UART Modem Status Register (U0MSR - address 0x4000 8018) bit description

Bit	Symbol	Value	Description	Reset Value			
0	Delta		Set upon state change of input $\overline{\text{CTS}}$. Cleared on a U0MSR read.	0			
	CTS	0	No change detected on modem input CTS.				
		1	State change detected on modem input $\overline{\text{CTS}}$.				
1	Delta		Set upon state change of input DSR. Cleared on a U0MSR read.	0			
	DSR	0	No change detected on modem input DSR.				
		1	State change detected on modem input DSR.				
2	Trailing Edge RI	•		Set upon low to high transition of input $\overline{\text{RI}}$. Cleared on a U0MSR read.	0		
		0	No change detected on modem input, RI.				
		1	Low-to-high transition detected on RI.				
3	Delta DCD		Set upon state change of input $\overline{\text{DCD}}$. Cleared on a U0MSR read.	0			
		DCD	DCD	DCD	0	No change detected on modem input DCD.	
			1	State change detected on modem input DCD.			
4	CTS		Clear To Send State. Complement of input signal CTS. This bit is connected to U0MCR[1] in modern loopback mode.	0			
5	DSR		Data Set Ready State. Complement of input signal \overline{DSR} . This bit is connected to U0MCR[0] in modem loopback mode.	0			
6	RI		Ring Indicator State. Complement of input $\overline{\text{RI}}$. This bit is connected to U0MCR[2] in modem loopback mode.	0			
7	DCD		Data Carrier Detect State. Complement of input DCD. This bit is connected to U0MCR[3] in modern loopback mode.	0			
31: 8	-	-	Reserved	-			

11.6.11 UART Scratch Pad Register (U0SCR - 0x4000 801C)

The UOSCR has no effect on the UART operation. This register can be written and/or read at user's discretion. There is no provision in the interrupt interface that would indicate to the host that a read or write of the UOSCR has occurred.

Table 200. UART Scratch Pad Register (U0SCR - address 0x4000 8014) bit description

Bit	Symbol	Description	Reset Value
7:0	Pad	A readable, writable byte.	0x00
31: 8	-	Reserved	-

11.6.12 UART Auto-baud Control Register (U0ACR - 0x4000 8020)

The UART Auto-baud Control Register (U0ACR) controls the process of measuring the incoming clock/data rate for the baud rate generation and can be read and written at user's discretion.

User manual

Chapter 11: LPC13xx UART

Table 201. Auto-baud Control Register (U0ACR - address 0x4000 8020) bit description

Bit	Symbol	Value	Description	Reset value	
0	Start		This bit is automatically cleared after auto-baud completion.	0	
		0	Auto-baud stop (auto-baud is not running).		
		1	Auto-baud start (auto-baud is running). Auto-baud run bit. This bit is automatically cleared after auto-baud completion.		
1	Mode		Auto-baud mode select bit.	0	
		0	Mode 0.		
		1	Mode 1.		
2	AutoRestart	0	No restart	0	
		1	Restart in case of time-out (counter restarts at next UART Rx falling edge)	0	
7:3	-	NA	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0	
8	ABEOIntClr		End of auto-baud interrupt clear bit (write only accessible).	0	
			0 Writing a 0 has no impact.	Writing a 0 has no impact.	
		1	Writing a 1 will clear the corresponding interrupt in the UOIIR.		
9	ABTOIntClr	Auto-baud time-out interraccessible).	Auto-baud time-out interrupt clear bit (write only accessible).	0	
		0	Writing a 0 has no impact.		
		1	Writing a 1 will clear the corresponding interrupt in the UOIIR.		
31:10	-	NA	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0	

11.6.13 Auto-baud

The UART auto-baud function can be used to measure the incoming baud rate based on the "AT" protocol (Hayes command). If enabled the auto-baud feature will measure the bit time of the receive data stream and set the divisor latch registers U0DLM and U0DLL accordingly.

Auto-baud is started by setting the U0ACR Start bit. Auto-baud can be stopped by clearing the U0ACR Start bit. The Start bit will clear once auto-baud has finished and reading the bit will return the status of auto-baud (pending/finished).

Two auto-baud measuring modes are available which can be selected by the U0ACR Mode bit. In Mode 0 the baud rate is measured on two subsequent falling edges of the UART Rx pin (the falling edge of the start bit and the falling edge of the least significant bit). In Mode 1 the baud rate is measured between the falling edge and the subsequent rising edge of the UART Rx pin (the length of the start bit).

User manual

Chapter 11: LPC13xx UART

The U0ACR AutoRestart bit can be used to automatically restart baud rate measurement if a time-out occurs (the rate measurement counter overflows). If this bit is set, the rate measurement will restart at the next falling edge of the UART Rx pin.

The auto-baud function can generate two interrupts.

- The U0IIR ABTOInt interrupt will get set if the interrupt is enabled (U0IER ABToIntEn is set and the auto-baud rate measurement counter overflows).
- The U0IIR ABEOInt interrupt will get set if the interrupt is enabled (U0IER ABEOIntEn is set and the auto-baud has completed successfully).

The auto-baud interrupts have to be cleared by setting the corresponding U0ACR ABTOIntClr and ABEOIntEn bits.

The fractional baud rate generator must be disabled (DIVADDVAL = 0) during auto-baud. Also, when auto-baud is used, any write to U0DLM and U0DLL registers should be done before U0ACR register write. The minimum and the maximum baud rates supported by UART are function of UART_PCLK, number of data bits, stop bits and parity bits.

(2)

$$ratemin = \frac{2 \times PCLK}{16 \times 2^{15}} \le UART_{baudrate} \le \frac{PCLK}{16 \times (2 + databits + paritybits + stopbits)} = ratemax$$

11.6.14 Auto-baud modes

When the software is expecting an "AT" command, it configures the UART with the expected character format and sets the U0ACR Start bit. The initial values in the divisor latches U0DLM and U0DLM don't care. Because of the "A" or "a" ASCII coding ("A" = 0x41, "a" = 0x61), the UART Rx pin sensed start bit and the LSB of the expected character are delimited by two falling edges. When the U0ACR Start bit is set, the auto-baud protocol will execute the following phases:

- 1. On U0ACR Start bit setting, the baud rate measurement counter is reset and the UART U0RSR is reset. The U0RSR baud rate is switched to the highest rate.
- 2. A falling edge on UART Rx pin triggers the beginning of the start bit. The rate measuring counter will start counting UART_PCLK cycles.
- 3. During the receipt of the start bit, 16 pulses are generated on the RSR baud input with the frequency of the UART input clock, guaranteeing the start bit is stored in the U0RSR.
- During the receipt of the start bit (and the character LSB for Mode = 0), the rate counter will continue incrementing with the pre-scaled UART input clock (UART PCLK).
- 5. If Mode = 0, the rate counter will stop on next falling edge of the UART Rx pin. If Mode = 1, the rate counter will stop on the next rising edge of the UART Rx pin.

Chapter 11: LPC13xx UART

6. The rate counter is loaded into U0DLM/U0DLL and the baud rate will be switched to normal operation. After setting the U0DLM/U0DLL, the end of auto-baud interrupt U0IIR ABEOInt will be set, if enabled. The U0RSR will now continue receiving the remaining bits of the "A/a" character.

11.6.15 UART Fractional Divider Register (U0FDR - 0x4000 8028)

The UART Fractional Divider Register (U0FDR) controls the clock pre-scaler for the baud rate generation and can be read and written at the user's discretion. This pre-scaler takes the APB clock and generates an output clock according to the specified fractional requirements.

Important: If the fractional divider is active (DIVADDVAL > 0) and DLM = 0, the value of the DLL register must be 3 or greater.

Chapter 11: LPC13xx UART

Table 202. UART Fractional Divider Register (U0FDR - address 0x4000 8028) bit description

Bit	Function	Value	Description	Reset value
3:0	DIVADDVAL	0	Baud rate generation pre-scaler divisor value. If this field is 0, fractional baud rate generator will not impact the UART baud rate.	0
7:4	MULVAL	1	Baud rate pre-scaler multiplier value. This field must be greater or equal 1 for UART to operate properly, regardless of whether the fractional baud rate generator is used or not.	1
31:8	-	NA	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

This register controls the clock pre-scaler for the baud rate generation. The reset value of the register keeps the fractional capabilities of UART disabled making sure that UART is fully software and hardware compatible with UARTs not equipped with this feature.

The UART baud rate can be calculated as:

(3)

$$UART_{baudrate} = \frac{PCLK}{16 \times (256 \times U0DLM + U0DLL) \times \left(1 + \frac{DivAddVal}{MulVal}\right)}$$

Where UART_PCLK is the peripheral clock, U0DLM and U0DLL are the standard UART baud rate divider registers, and DIVADDVAL and MULVAL are UART fractional baud rate generator specific parameters.

The value of MULVAL and DIVADDVAL should comply to the following conditions:

- 1. $1 \le MULVAL \le 15$
- 2. $0 \le DIVADDVAL \le 14$
- 3. DIVADDVAL< MULVAL

The value of the U0FDR should not be modified while transmitting/receiving data or data may be lost or corrupted.

If the U0FDR register value does not comply to these two requests, then the fractional divider output is undefined. If DIVADDVAL is zero then the fractional divider is disabled, and the clock will not be divided.

11.6.15.1 Baud rate calculation

UART can operate with or without using the Fractional Divider. In real-life applications it is likely that the desired baud rate can be achieved using several different Fractional Divider settings. The following algorithm illustrates one way of finding a set of DLM, DLL, MULVAL, and DIVADDVAL values. Such set of parameters yields a baud rate with a relative error of less than 1.1% from the desired one.

Chapter 11: LPC13xx UART

Chapter 11: LPC13xx UART

FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal
1.000	0/1	1.250	1/4	1.500	1/2	1.750	3/4
1.067	1/15	1.267	4/15	1.533	8/15	1.769	10/13
1.071	1/14	1.273	3/11	1.538	7/13	1.778	7/9
1.077	1/13	1.286	2/7	1.545	6/11	1.786	11/14
1.083	1/12	1.300	3/10	1.556	5/9	1.800	4/5
1.091	1/11	1.308	4/13	1.571	4/7	1.818	9/11
1.100	1/10	1.333	1/3	1.583	7/12	1.833	5/6
1.111	1/9	1.357	5/14	1.600	3/5	1.846	11/13
1.125	1/8	1.364	4/11	1.615	8/13	1.857	6/7
1.133	2/15	1.375	3/8	1.625	5/8	1.867	13/15
1.143	1/7	1.385	5/13	1.636	7/11	1.875	7/8
1.154	2/13	1.400	2/5	1.643	9/14	1.889	8/9
1.167	1/6	1.417	5/12	1.667	2/3	1.900	9/10
1.182	2/11	1.429	3/7	1.692	9/13	1.909	10/11
1.200	1/5	1.444	4/9	1.700	7/10	1.917	11/12
1.214	3/14	1.455	5/11	1.714	5/7	1.923	12/13
1.222	2/9	1.462	6/13	1.727	8/11	1.929	13/14
1.231	3/13	1.467	7/15	1.733	11/15	1.933	14/15

Table 203. Fractional Divider setting look-up table

11.6.15.1.1 Example 1: UART PCLK = 14.7456 MHz, BR = 9600

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 14.7456 \text{ MHz} / (16 \text{ x } 9600) = 96$. Since this DL_{est} is an integer number, DIVADDVAL = 0, MULVAL = 1, DLM = 0, and DLL = 96.

11.6.15.1.2 Example 2: UART_PCLK = 12 MHz, BR = 115200

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 12 \text{ MHz} / (16 \text{ x } 115200) = 6.51$. This DL_{est} is not an integer number and the next step is to estimate the FR parameter. Using an initial estimate of $FR_{est} = 1.5$ a new $DL_{est} = 4$ is calculated and FR_{est} is recalculated as $FR_{est} = 1.628$. Since FRest = 1.628 is within the specified range of 1.1 and 1.9, DIVADDVAL and MULVAL values can be obtained from the attached look-up table.

The closest value for FRest = 1.628 in the look-up <u>Table 203</u> is FR = 1.625. It is equivalent to DIVADDVAL = 5 and MULVAL = 8.

Based on these findings, the suggested UART setup would be: DLM = 0, DLL = 4, DIVADDVAL = 5, and MULVAL = 8. According to Equation 3, the UART's baud rate is 115384. This rate has a relative error of 0.16% from the originally specified 115200.

11.6.16 UART Transmit Enable Register (U0TER - 0x4000 8030)

In addition to being equipped with full hardware flow control (auto-cts and auto-rts mechanisms described above), U0TER enables implementation of software flow control. When TxEn = 1, UART transmitter will keep sending data as long as they are available. As soon as TxEn becomes 0, UART transmission will stop.

Chapter 11: LPC13xx UART

Although <u>Table 204</u> describes how to use TxEn bit in order to achieve hardware flow control, it is strongly suggested to let UART hardware implemented auto flow control features take care of this, and limit the scope of TxEn to software flow control.

Table 204 describes how to use TXEn bit in order to achieve software flow control.

Table 204. UART Transmit Enable Register (U0TER - address 0x4000 8030) bit description

Bit	Symbol	Description	Reset Value
6:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
7	TXEN	When this bit is 1, as it is after a Reset, data written to the THR is output on the TXD pin as soon as any preceding data has been sent. If this bit cleared to 0 while a character is being sent, the transmission of that character is completed, but no further characters are sent until this bit is set again. In other words, a 0 in this bit blocks the transfer of characters from the THR or TX FIFO into the transmit shift register. Software can clear this bit when it detects that the a hardware-handshaking TX-permit signal $(\overline{\text{CTS}})$ has gone false, or with software handshaking, when it receives an XOFF character (DC3). Software can set this bit again when it detects that the TX-permit signal has gone true, or when it receives an XON (DC1) character.	1
31:8	-	Reserved	-

11.6.17 UART RS485 Control register (U0RS485CTRL - 0x4000 804C)

The U0RS485CTRL register controls the configuration of the UART in RS-485/EIA-485 mode.

Table 205. UART RS485 Control register (U0RS485CTRL - address 0x4000 804C) bit description

Bit	Symbol	Value	Description	Reset value	
0	NMMEN	0	RS-485/EIA-485 Normal Multidrop Mode (NMM) is disabled.	0	
		1	RS-485/EIA-485 Normal Multidrop Mode (NMM) is enabled. In this mode, an address is detected when a received byte causes the UART to set the parity error and generate an interrupt.		
1	RXDIS	0	The receiver is enabled.	0	
		1	The receiver is disabled.		
2	AADEN	0	Auto Address Detect (AAD) is disabled.	0	
		1	Auto Address Detect (AAD) is enabled.		
3	SEL	SEL	0	If direction control is enabled (bit DCTRL = 1), pin RTS is used for direction control.	0
		1	If direction control is enabled (bit DCTRL = 1), pin $\overline{\text{DTR}}$ is used for direction control.		
4	DCTRL	0	Disable Auto Direction Control.	0	
		1	Enable Auto Direction Control.		
5	OINV		This bit reverses the <u>polarity of the</u> direction control signal on the $\overline{\text{RTS}}$ (or $\overline{\text{DTR}}$) pin.	0	

Chapter 11: LPC13xx UART

Table 205. UART RS485 Control register (U0RS485CTRL - address 0x4000 804C) bit description ...continued

Bit	Symbol	Value	Description	Reset value
		0	The direction control pin will be driven to logic '0' when the transmitter has data to be sent. It will be driven to logic '1' after the last bit of data has been transmitted.	
		1	The direction control pin will be driven to logic '1' when the transmitter has data to be sent. It will be driven to logic '0' after the last bit of data has been transmitted.	
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

11.6.18 UART RS-485 Address Match register (U0RS485ADRMATCH - 0x4000 8050)

The U0RS485ADRMATCH register contains the address match value for RS-485/EIA-485 mode.

Table 206. UART RS-485 Address Match register (U0RS485ADRMATCH - address 0x4000 8050) bit description

Bit	Symbol	Description	Reset value
7:0	ADRMATCH	Contains the address match value.	0x00
31:8	-	Reserved	-

11.6.19 UART1 RS-485 Delay value register (U0RS485DLY - 0x4000 8054)

The user may program the 8-bit RS485DLY register with a delay between the last stop bit leaving the TXFIFO and the de-assertion of RTS (or DTR). This delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be programmed.

Table 207. UART RS-485 Delay value register (U0RS485DLY - address 0x4000 8054) bit description

Bit	Symbol	Description	Reset value
7:0	DLY	Contains the direction control (RTS or DTR) delay value. This register works in conjunction with an 8-bit counter.	0x00
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

11.6.20 RS-485/EIA-485 modes of operation

The RS-485/EIA-485 feature allows the UART to be configured as an addressable slave. The addressable slave is one of multiple slaves controlled by a single master.

The UART master transmitter will identify an address character by setting the parity (9th) bit to '1'. For data characters, the parity bit is set to '0'.

Each UART slave receiver can be assigned a unique address. The slave can be programmed to either manually or automatically reject data following an address which is not theirs.

User manual

Chapter 11: LPC13xx UART

RS-485/EIA-485 Normal Multidrop Mode (NMM)

Setting the RS485CTRL bit 0 enables this mode. In this mode, an address is detected when a received byte causes the UART to set the parity error and generate an interrupt.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received data bytes will be ignored and will not be stored in the RXFIFO. When an address byte is detected (parity bit = '1') it will be placed into the RXFIFO and an Rx Data Ready Interrupt will be generated. The processor can then read the address byte and decide whether or not to enable the receiver to accept the following data.

While the receiver is enabled (RS485CTRL bit 1 ='0'), all received bytes will be accepted and stored in the RXFIFO regardless of whether they are data or address. When an address character is received a parity error interrupt will be generated and the processor can decide whether or not to disable the receiver.

RS-485/EIA-485 Auto Address Detection (AAD) mode

When both RS485CTRL register bits 0 (9-bit mode enable) and 2 (AAD mode enable) are set, the UART is in auto address detect mode.

In this mode, the receiver will compare any address byte received (parity = '1') to the 8-bit value programmed into the RS485ADRMATCH register.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received byte will be discarded if it is either a data byte OR an address byte which fails to match the RS485ADRMATCH value.

When a matching address character is detected it will be pushed onto the RXFIFO along with the parity bit, and the receiver will be automatically enabled (RS485CTRL bit 1 will be cleared by hardware). The receiver will also generate an Rx Data Ready Interrupt.

While the receiver is enabled (RS485CTRL bit 1 = '0'), all bytes received will be accepted and stored in the RXFIFO until an address byte which does not match the RS485ADRMATCH value is received. When this occurs, the receiver will be automatically disabled in hardware (RS485CTRL bit 1 will be set), The received non-matching address character will not be stored in the RXFIFO.

RS-485/EIA-485 Auto Direction Control

RS485/EIA-485 mode includes the option of allowing the transmitter to automatically control the state of the DIR pin as a direction control output signal.

Setting RS485CTRL bit 4 = '1' enables this feature.

Direction control, if enabled, will use the RTS pin when RS485CTRL bit 3 = 0. It will use the \overline{DTR} pin when RS485CTRL bit 3 = 1.

When Auto Direction Control is enabled, the selected pin will be asserted (driven LOW) when the CPU writes data into the TXFIFO. The pin will be de-asserted (driven HIGH) once the last bit of data has been transmitted. See bits 4 and 5 in the RS485CTRL register.

The RS485CTRL bit 4 takes precedence over all other mechanisms controlling the direction control pin with the exception of loopback mode.

RS485/EIA-485 driver delay time

User manual

Chapter 11: LPC13xx UART

The driver delay time is the delay between the last stop bit leaving the TXFIFO and the de-assertion of RTS. This delay time can be programmed in the 8-bit RS485DLY register. The delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be used.

RS485/EIA-485 output inversion

The polarity of the direction control signal on the \overline{RTS} (or \overline{DTR}) pins can be reversed by programming bit 5 in the U0RS485CTRL register. When this bit is set, the direction control pin will be driven to logic 1 when the transmitter has data waiting to be sent. The direction control pin will be driven to logic 0 after the last bit of data has been transmitted.

11.7 Architecture

The architecture of the UART is shown below in the block diagram.

The APB interface provides a communications link between the CPU or host and the UART.

The UART receiver block, U0RX, monitors the serial input line, RXD, for valid input. The UART RX Shift Register (U0RSR) accepts valid characters via RXD. After a valid character is assembled in the U0RSR, it is passed to the UART RX Buffer Register FIFO to await access by the CPU or host via the generic host interface.

The UART transmitter block, U0TX, accepts data written by the CPU or host and buffers the data in the UART TX Holding Register FIFO (U0THR). The UART TX Shift Register (U0TSR) reads the data stored in the U0THR and assembles the data to transmit via the serial output pin, TXD1.

The UART Baud Rate Generator block, U0BRG, generates the timing enables used by the UART TX block. The U0BRG clock input source is UART_PCLK. The main clock is divided down per the divisor specified in the U0DLL and U0DLM registers. This divided down clock is a 16x oversample clock, NBAUDOUT.

The interrupt interface contains registers U0IER and U0IIR. The interrupt interface receives several one clock wide enables from the U0TX and U0RX blocks.

Status information from the U0TX and U0RX is stored in the U0LSR. Control information for the U0TX and U0RX is stored in the U0LCR.

Chapter 11: LPC13xx UART

UM10375

Chapter 12: LPC13xx I2C-bus controller

Rev. 2 — 7 July 2010

User manual

12.1 How to read this chapter

The I²C-bus block is identical for all LPC13xx parts.

12.2 Basic configuration

The I²C-bus interface is configured using the following registers:

- 1. Pins: The I2C pin functions and the I2C mode are configured in the IOCONFIG register block (Table 102 and Table 103).
- 2. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 5 (Table 23).
- Reset: Before accessing the I2C block, ensure that the I2C_RST_N bit (bit 1) in the PRESETCTRL register (<u>Table 7</u>) is set to 1. This de-asserts the reset signal to the I2C block.

12.3 Features

- Standard I²C-compliant bus interfaces may be configured as Master, Slave, or Master/Slave.
- Arbitration is handled between simultaneously transmitting masters without corruption of serial data on the bus.
- Programmable clock allows adjustment of I²C transfer rates.
- Data transfer is bidirectional between masters and slaves.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization is used as a handshake mechanism to suspend and resume serial transfer.
- Supports Fast-mode Plus.
- Optional recognition of up to four distinct slave addresses.
- Monitor mode allows observing all I²C-bus traffic, regardless of slave address.
- I²C-bus can be used for test and diagnostic purposes.
- The I²C-bus contains a standard I²C-compliant bus interface with two pins.

12.4 Applications

Interfaces to external I²C standard parts, such as serial RAMs, LCDs, tone generators, other microcontrollers, etc.

12.5 General description

A typical I²C-bus configuration is shown in <u>Figure 21</u>. Depending on the state of the direction bit (R/W), two types of data transfers are possible on the I²C-bus:

UM10375

Chapter 12: LPC13xx I2C-bus controller

- Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.
- Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. Next follows the data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since a Repeated START condition is also the beginning of the next serial transfer, the I²C bus will not be released.

The I²C interface is byte oriented and has four operating modes: master transmitter mode, master receiver mode, slave transmitter mode and slave receiver mode.

The I²C interface complies with the entire I²C specification, supporting the ability to turn power off to the ARM Cortex-M3 without interfering with other devices on the same I²C-bus.

12.5.1 I²C Fast-mode Plus

Fast-Mode Plus supports a 1 Mbit/sec transfer rate to communicate with the I²C-bus products which NXP Semiconductors is now providing.

In order to use Fast-Mode Plus, the I^2C pins must be properly configured in the IOCONFIG register block, see <u>Table 102</u> and <u>Table 103</u>. In Fast-mode Plus, rates above 400 kHz and up to 1 MHz may be selected.

Chapter 12: LPC13xx I2C-bus controller

12.6 Pin description

Table 208. I²C-bus pin description

Pin	Туре	Description
SDA	Input/Output	I ² C-bus Serial Data
SCL	Input/Output	I ² C-bus Serial Clock

The I^2C -bus pins must be configured through the IOCON_PIO0_4 (<u>Table 102</u>) and IOCON_PIO0_5 (<u>Table 103</u>) registers for Standard/ Fast-mode or Fast-mode Plus. In these modes, the I^2C -bus pins are open-drain outputs and fully compatible with the I^2C -bus specification.

12.7 Clocking and power control

The clock to the I²C-bus interface (PCLK_I2C) is provided by the system clock (see <u>Figure 3</u>). This clock can be disabled through bit 5 in the SYSAHBCLKCTRL register (<u>Table 23</u>) for power savings.

Remark: Before accessing the I2C block, ensure that the I2C_RST_N bit (bit 1) in the PRESETCTRL register (<u>Table 7</u>) is set to 1. This de-asserts the reset signal to the I2C block.

12.8 Register description

Table 209. Register overview: I²C (base address 0x4000 0000)

Name	Access	Address offset	Description	Reset value[1]
I2C0CONSET	R/W	0x000	I2C Control Set Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is set. Writing a zero has no effect on the corresponding bit in the I ² C control register.	0x00
I2C0STAT	RO	0x004	I2C Status Register. During I^2C operation, this register provides detailed status codes that allow software to determine the next action needed.	0xF8
I2C0DAT	R/W	0x008	I2C Data Register. During master or slave transmit mode, data to be transmitted is written to this register. During master or slave receive mode, data that has been received may be read from this register.	0x00
I2C0ADR0	R/W	0x00C	I2C Slave Address Register 0. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00
I2C0SCLH	R/W	0x010	SCH Duty Cycle Register High Half Word. Determines the high time of the I ² C clock.	0x04
I2C0SCLL	R/W	0x014	SCL Duty Cycle Register Low Half Word. Determines the low time of the I ² C clock. I2nSCLL and I2nSCLH together determine the clock frequency generated by an I ² C master and certain times used in slave mode.	0x04
I2C0CONCLR	WO	0x018	I2C Control Clear Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is cleared. Writing a zero has no effect on the corresponding bit in the I ² C control register.	NA
I2C0MMCTRL	R/W	0x01C	Monitor mode control register.	0x00

Chapter 12: LPC13xx I2C-bus controller

Table 209. Register overview: I²C (base address 0x4000 0000) ...continued

Name	Access	Address offset	Description	Reset value ^[1]
I2C0ADR1	R/W	0x020	I2C Slave Address Register 1. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00
I2C0ADR2	R/W	0x024	I2C Slave Address Register 2. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00
I2C0ADR3	R/W	0x028	I2C Slave Address Register 3. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00
I2C0DATA_ BUFFER	RO	0x02C	Data buffer register. The contents of the 8 MSBs of the I2DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus.	0x00
I2C0MASK0	R/W	0x030	I2C Slave address mask register 0 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00
I2C0MASK1	R/W	0x034	I2C Slave address mask register 1 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00
I2C0MASK2	R/W	0x038	I2C Slave address mask register 2 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00
I2C0MASK3	R/W	0x03C	I2C Slave address mask register 3 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

12.8.1 I²C Control Set register (I2C0CONSET - 0x4000 0000)

The I2CONSET registers control setting of bits in the I2CON register that controls operation of the I²C interface. Writing a one to a bit of this register causes the corresponding bit in the I²C control register to be set. Writing a zero has no effect.

Table 210. I²C Control Set register (I2C0CONSET - address 0x4000 0000) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AA	Assert acknowledge flag.	
3	SI	I ² C interrupt flag.	0
4	STO	STOP flag.	0
5	STA	START flag.	0
6	I2EN	I ² C interface enable.	0
31:7	-	Reserved. The value read from a reserved bit is not defined.	-

Chapter 12: LPC13xx I2C-bus controller

I2EN I²C Interface Enable. When I2EN is 1, the I²C interface is enabled. I2EN can be cleared by writing 1 to the I2ENC bit in the I2CONCLR register. When I2EN is 0, the I²C interface is disabled.

When I2EN is "0", the SDA and SCL input signals are ignored, the I²C block is in the "not addressed" slave state, and the STO bit is forced to "0".

I2EN should not be used to temporarily release the I^2C -bus since, when I2EN is reset, the I^2C -bus status is lost. The AA flag should be used instead.

STA is the START flag. Setting this bit causes the I²C interface to enter master mode and transmit a START condition or transmit a Repeated START condition if it is already in master mode.

When STA is 1 and the I²C interface is not already in master mode, it enters master mode, checks the bus and generates a START condition if the bus is free. If the bus is not free, it waits for a STOP condition (which will free the bus) and generates a START condition after a delay of a half clock period of the internal clock generator. If the I²C interface is already in master mode and data has been transmitted or received, it transmits a Repeated START condition. STA may be set at any time, including when the I²C interface is in an addressed slave mode.

STA can be cleared by writing 1 to the STAC bit in the I2CONCLR register. When STA is 0, no START condition or Repeated START condition will be generated.

If STA and STO are both set, then a STOP condition is transmitted on the I^2C -bus if it the interface is in master mode, and transmits a START condition thereafter. If the I^2C interface is in slave mode, an internal STOP condition is generated, but is not transmitted on the bus.

STO is the STOP flag. Setting this bit causes the I²C interface to transmit a STOP condition in master mode, or recover from an error condition in slave mode. When STO is 1 in master mode, a STOP condition is transmitted on the I²C-bus. When the bus detects the STOP condition, STO is cleared automatically.

In slave mode, setting this bit can recover from an error condition. In this case, no STOP condition is transmitted to the bus. The hardware behaves as if a STOP condition has been received and it switches to "not addressed" slave receiver mode. The STO flag is cleared by hardware automatically.

SI is the I²C Interrupt Flag. This bit is set when the I²C state changes. However, entering state F8 does not set SI since there is nothing for an interrupt service routine to do in that case.

While SI is set, the low period of the serial clock on the SCL line is stretched, and the serial transfer is suspended. When SCL is HIGH, it is unaffected by the state of the SI flag. SI must be reset by software, by writing a 1 to the SIC bit in I2CONCLR register.

AA is the Assert Acknowledge Flag. When set to 1, an acknowledge (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

1. The address in the Slave Address Register has been received.

Chapter 12: LPC13xx I2C-bus controller

- 2. The General Call address has been received while the General Call bit (GC) in I2ADR is set.
- 3. A data byte has been received while the I²C is in the master receiver mode.
- 4. A data byte has been received while the I²C is in the addressed slave receiver mode

The AA bit can be cleared by writing 1 to the AAC bit in the I2CONCLR register. When AA is 0, a not acknowledge (HIGH level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

- 1. A data byte has been received while the I²C is in the master receiver mode.
- 2. A data byte has been received while the I²C is in the addressed slave receiver mode.

12.8.2 I²C Status register (I2C0STAT - 0x4000 0004)

Each I²C Status register reflects the condition of the corresponding I²C interface. The I²C Status register is Read-Only.

Table 211. I²C Status register (I2C0STAT - 0x4000 0004) bit description

Bit	Symbol	Description	Reset value
2:0	-	These bits are unused and are always 0.	0
7:3	Status	These bits give the actual status information about the I ² C interface.	0x1F
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

The three least significant bits are always 0. Taken as a byte, the status register contents represent a status code. There are 26 possible status codes. When the status code is 0xF8, there is no relevant information available and the SI bit is not set. All other 25 status codes correspond to defined I²C states. When any of these states entered, the SI bit will be set. For a complete list of status codes, refer to tables from Table 228 to Table 231.

12.8.3 I²C Data register (I2C0DAT - 0x4000 0008)

This register contains the data to be transmitted or the data just received. The CPU can read and write to this register only while it is not in the process of shifting a byte, when the SI bit is set. Data in I2DAT remains stable as long as the SI bit is set. Data in I2DAT is always shifted from right to left: the first bit to be transmitted is the MSB (bit 7), and after a byte has been received, the first bit of received data is located at the MSB of I2DAT.

Table 212. I²C Data register (I2C0DAT - 0x4000 0008) bit description

Bit	Symbol	Description	Reset value
7:0	Data	This register holds data values that have been received or are to be transmitted.	0
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

12.8.4 I²C Slave Address register 0 (I2C0ADR0- 0x4000 000C)

This register is readable and writable and are only used when an I²C interface is set to slave mode. In master mode, this register has no effect. The LSB of I2ADR is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

Chapter 12: LPC13xx I2C-bus controller

Any of these registers which contain the bit 00x will be disabled and will not match any address on the bus. The slave address register will be cleared to this disabled state on reset. See also Table 219.

Table 213. I²C Slave Address register 0 (I2C0ADR0- 0x4000 000C) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

12.8.5 I²C SCL HIGH and LOW duty cycle registers (I2C0SCLH - 0x4000 0010 and I2C0SCLL- 0x4000 0014)

Table 214. I²C SCL HIGH Duty Cycle register (I2C0SCLH - address 0x4000 0010) bit description

Bit	Symbol	Description	Reset value
15:0	SCLH	Count for SCL HIGH time period selection.	0x0004
31:16	-	Reserved. The value read from a reserved bit is not defined.	-

Table 215. I²C SCL Low duty cycle register (I2C0SCLL - 0x4000 0014) bit description

Bit	Symbol	Description	Reset value
15:0	SCLL	Count for SCL low time period selection.	0x0004
31:16	-	Reserved. The value read from a reserved bit is not defined.	-

12.8.5.1 Selecting the appropriate I²C data rate and duty cycle

Software must set values for the registers I2SCLH and I2SCLL to select the appropriate data rate and duty cycle. I2SCLH defines the number of I2C_PCLK cycles for the SCL HIGH time, I2SCLL defines the number of I2C_PCLK cycles for the SCL low time. The frequency is determined by the following formula (I2C_PCLK is the frequency of the peripheral I2C clock):

(4)

$$I^2C_{bitfrequency} = \frac{I2CPCLK}{I2CSCLH + I2CSCLL}$$

The values for I2SCLL and I2SCLH must ensure that the data rate is in the appropriate I²C data rate range. Each register value must be greater than or equal to 4. <u>Table 216</u> gives some examples of I²C-bus rates based on I2C_PCLK frequency and I2SCLL and I2SCLH values.

Chapter 12: LPC13xx I2C-bus controller

Table 216. I2SCLL + I2SCLH values for selected I ² C clock value	Table 216. I	2SCLL + 125	SCLH values	for selected I20	C clock values
---	---------------------	-------------	-------------	------------------	----------------

I ² C mode	I ² C bit	PCLK_I2C (MHz)										
	frequency	6	8	10	12	16	20	30	40	50	60	70
		I2SCLH + I2SCLL										
Standard mode	100 kHz	60	80	100	120	160	200	300	400	500	600	700
Fast-mode	400 kHz	15	20	25	30	40	50	75	100	125	150	175
Fast-mode Plus	1 MHz	-	8	10	12	16	20	30	40	50	60	70

I2SCLL and I2SCLH values should not necessarily be the same. Software can set different duty cycles on SCL by setting these two registers. For example, the I²C-bus specification defines the SCL low time and high time at different values for a Fast-mode and Fast-mode Plus I²C.

12.8.6 I²C Control Clear register (I2C0CONCLR - 0x4000 0018)

The I2CONCLR registers control clearing of bits in the I2CON register that controls operation of the I²C interface. Writing a one to a bit of this register causes the corresponding bit in the I²C control register to be cleared. Writing a zero has no effect.

Table 217. I²C Control Clear register (I2C0CONCLR - 0x4000 0018) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AAC	Assert acknowledge Clear bit.	
3	SIC	I ² C interrupt Clear bit.	0
4	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
5	STAC	START flag Clear bit.	0
6	I2ENC	I ² C interface Disable bit.	0
7	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

AAC is the Assert Acknowledge Clear bit. Writing a 1 to this bit clears the AA bit in the I2CONSET register. Writing 0 has no effect.

SIC is the I²C Interrupt Clear bit. Writing a 1 to this bit clears the SI bit in the I2CONSET register. Writing 0 has no effect.

STAC is the START flag Clear bit. Writing a 1 to this bit clears the STA bit in the I2CONSET register. Writing 0 has no effect.

I2ENC is the I^2C Interface Disable bit. Writing a 1 to this bit clears the I2EN bit in the I2CONSET register. Writing 0 has no effect.

12.8.7 I²C Monitor mode control register (I2C0MMCTRL - 0x4000 001C)

This register controls the Monitor mode which allows the I²C module to monitor traffic on the I²C bus without actually participating in traffic or interfering with the I²C bus.

Chapter 12: LPC13xx I2C-bus controller

Table 218. I²C Monitor mode control register (I2C0MMCTRL - 0x4000 001C) bit description

Bit	Symbol	Value	Description	Reset value			
0	MM_ENA		Monitor mode enable.				
		0	Monitor mode disabled.				
		1	The I ² C module will enter monitor mode. In this mode the SDA output will be forced high. This will prevent the I ² C module from outputting data of any kind (including ACK) onto the I ² C data bus.				
			Depending on the state of the ENA_SCL bit, the output may be also forced high, preventing the module from having control over the I^2C clock line.				
1	ENA_SCL		SCL output enable.	0			
		0	When this bit is cleared to '0', the SCL output will be forced high when the module is in monitor mode. As described above, this will prevent the module from having any control over the I ² C clock line.				
		1	When this bit is set, the I ² C module may exercise the same control over the clock line that it would in normal operation. This means that, acting as a slave peripheral, the I ² C module can "stretch" the clock line (hold it low) until it has had time to respond to an I ² C interrupt.[1]				
2	MATCH_ALL		Select interrupt register match.	0			
		0	When this bit is cleared, an interrupt will only be generated when a match occurs to one of the (up-to) four address registers described above. That is, the module will respond as a normal slave as far as address-recognition is concerned.				
		1	When this bit is set to '1' and the I ² C is in monitor mode, an interrupt will be generated on ANY address received. This will enable the part to monitor all traffic on the bus.				
31:3	-	-	Reserved. The value read from reserved bits is not defined.				

^[1] When the ENA_SCL bit is cleared and the I²C no longer has the ability to stall the bus, interrupt response time becomes important. To give the part more time to respond to an I²C interrupt under these conditions, a DATA_BUFFER register is used (Section 12.8.9) to hold received data for a full 9-bit word transmission time.

Remark: The ENA_SCL and MATCH_ALL bits have no effect if the MM_ENA is '0' (i.e. if the module is NOT in monitor mode).

12.8.7.1 Interrupt in Monitor mode

All interrupts will occur as normal when the module is in monitor mode. This means that the first interrupt will occur when an address-match is detected (any address received if the MATCH_ALL bit is set, otherwise an address matching one of the four address registers).

Chapter 12: LPC13xx I2C-bus controller

Subsequent to an address-match detection, interrupts will be generated after each data byte is received for a slave-write transfer, or after each byte that the module "thinks" it has transmitted for a slave-read transfer. In this second case, the data register will actually contain data transmitted by some other slave on the bus which was actually addressed by the master.

Following all of these interrupts, the processor may read the data register to see what was actually transmitted on the bus.

12.8.7.2 Loss of arbitration in Monitor mode

In monitor mode, the I²C module will not be able to respond to a request for information by the bus master or issue an ACK). Some other slave on the bus will respond instead. This will most probably result in a lost-arbitration state as far as our module is concerned.

Software should be aware of the fact that the module is in monitor mode and should not respond to any loss of arbitration state that is detected. In addition, hardware may be designed into the module to block some/all loss of arbitration states from occurring if those state would either prevent a desired interrupt from occurring or cause an unwanted interrupt to occur. Whether any such hardware will be added is still to be determined.

12.8.8 I²C Slave Address registers (I2C0ADR[1, 2, 3]- 0x4000 00[20, 24, 28])

These registers are readable and writable and are only used when an I²C interface is set to slave mode. In master mode, this register has no effect. The LSB of I2ADR is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

Any of these registers which contain the bit 00x will be disabled and will not match any address on the bus. All four registers will be cleared to this disabled state on reset.

Table 219. I²C Slave Address registers (I2C0ADR[1, 2, 3]- 0x4000 00[20, 24, 28]) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00
31:8	-	Reserved. The value read from a reserved bit is not defined.	0

12.8.9 I²C Data buffer register (I2C0DATA_BUFFER - 0x4000 002C)

In monitor mode, the I²C module may lose the ability to stretch the clock (stall the bus) if the ENA_SCL bit is not set. This means that the processor will have a limited amount of time to read the contents of the data received on the bus. If the processor reads the I2DAT shift register, as it ordinarily would, it could have only one bit-time to respond to the interrupt before the received data is overwritten by new data.

To give the processor more time to respond, a new 8-bit, read-only DATA_BUFFER register will be added. The contents of the 8 MSBs of the I2DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus. This means that the processor will have nine bit transmission times to respond to the interrupt and read the data before it is overwritten.

The processor will still have the ability to read I2DAT directly, as usual, and the behavior of I2DAT will not be altered in any way.

Chapter 12: LPC13xx I2C-bus controller

Although the DATA_BUFFER register is primarily intended for use in monitor mode with the ENA_SCL bit = '0', it will be available for reading at any time under any mode of operation.

Table 220. I²C Data buffer register (I2C0DATA_BUFFER - 0x4000 002C) bit description

Bit	Symbol	Description	Reset value
7:0	Data	This register holds contents of the 8 MSBs of the I2DAT shift register.	0
31:8	-	Reserved. The value read from a reserved bit is not defined.	0

12.8.10 I²C Mask registers (I2C0MASK[0, 1, 2, 3] - 0x4000 00[30, 34, 38, 3C])

The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the I2ADDRn register associated with that mask register. In other words, bits in an I2ADDRn register which are masked are not taken into account in determining an address match.

On reset, all mask register bits are cleared to '0'.

The mask register has no effect on comparison to the General Call address ("0000000").

Bits(31:8) and bit(0) of the mask registers are unused and should not be written to. These bits will always read back as zeros.

When an address-match interrupt occurs, the processor will have to read the data register (I2DAT) to determine what the received address was that actually caused the match.

Table 221. I²C Mask registers (I2C0MASK[0, 1, 2, 3] - 0x4000 00[30, 34, 38, 3C]) bit description

Bit	Symbol	Description	Reset value
0	-	Reserved. User software should not write ones to reserved bits. This bit reads always back as 0.	0
7:1	MASK	Mask bits.	0x00
31:8	-	Reserved. The value read from reserved bits is undefined.	0

12.9 I²C operating modes

In a given application, the I²C block may operate as a master, a slave, or both. In the slave mode, the I²C hardware looks for any one of its four slave addresses and the General Call address. If one of these addresses is detected, an interrupt is requested. If the processor wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave operation is not interrupted. If bus arbitration is lost in the master mode, the I²C block switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

12.9.1 Master Transmitter mode

In this mode data is transmitted from master to slave. Before the master transmitter mode can be entered, the I2CONSET register must be initialized as shown in <u>Table 222</u>. I2EN must be set to 1 to enable the I²C function. If the AA bit is 0, the I²C interface will not acknowledge any address when another device is master of the bus, so it can not enter

User manual

Chapter 12: LPC13xx I2C-bus controller

slave mode. The STA, STO and SI bits must be 0. The SI Bit is cleared by writing 1 to the SIC bit in the I2CONCLR register. THe STA bit should be cleared after writing the slave address.

Table 222. I2C0CONSET and I2C1CONSET used to configure Master mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	0	-	-

The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this mode the data direction bit (R/W) should be 0 which means Write. The first byte transmitted contains the slave address and Write bit. Data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

The I²C interface will enter master transmitter mode when software sets the STA bit. The I²C logic will send the START condition as soon as the bus is free. After the START condition is transmitted, the SI bit is set, and the status code in the I2STAT register is 0x08. This status code is used to vector to a state service routine which will load the slave address and Write bit to the I2DAT register, and then clear the SI bit. SI is cleared by writing a 1 to the SIC bit in the I2CONCLR register.

When the slave address and R/W bit have been transmitted and an acknowledgment bit has been received, the SI bit is set again, and the possible status codes now are 0x18, 0x20, or 0x38 for the master mode, or 0x68, 0x78, or 0xB0 if the slave mode was enabled (by setting AA to 1). The appropriate actions to be taken for each of these status codes are shown in Table 228 to Table 231.

12.9.2 Master Receiver mode

In the master receiver mode, data is received from a slave transmitter. The transfer is initiated in the same way as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load the slave address and the data direction bit to the I²C Data register (I2DAT), and then clear the SI bit. In this case, the data direction bit (R/W) should be 1 to indicate a read.

Chapter 12: LPC13xx I2C-bus controller

When the slave address and data direction bit have been transmitted and an acknowledge bit has been received, the SI bit is set, and the Status Register will show the status code. For master mode, the possible status codes are 0x40, 0x48, or 0x38. For slave mode, the possible status codes are 0x68, 0x78, or 0xB0. For details, refer to Table 229.

After a Repeated START condition, I²C may switch to the master transmitter mode.

12.9.3 Slave Receiver mode

In the slave receiver mode, data bytes are received from a master transmitter. To initialize the slave receiver mode, write any of the Slave Address registers (I2ADR0-3) and write the I²C Control Set register (I2CONSET) as shown in Table 223.

Table 223. I2C0CONSET and I2C1CONSET used to configure Slave mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

I2EN must be set to 1 to enable the I²C function. AA bit must be set to 1 to acknowledge its own slave address or the General Call address. The STA, STO and SI bits are set to 0.

After I2ADR and I2CONSET are initialized, the I²C interface waits until it is addressed by its own address or general address followed by the data direction bit. If the direction bit is 0 (W), it enters slave receiver mode. If the direction bit is 1 (R), it enters slave transmitter

Chapter 12: LPC13xx I2C-bus controller

mode. After the address and direction bit have been received, the SI bit is set and a valid status code can be read from the Status register (I2STAT). Refer to <u>Table 230</u> for the status codes and actions.

12.9.4 Slave Transmitter mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will be 1, indicating a read operation. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer. In a given application, I²C may operate as a master and as a slave. In the slave mode, the I²C hardware looks for its own slave address and the General Call address. If one of these addresses is detected, an interrupt is requested. When the microcontrollers wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in the master mode, the I²C interface switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

12.10 I²C implementation and operation

<u>Figure 27</u> shows how the on-chip I²C-bus interface is implemented, and the following text describes the individual blocks.

UM10375

User manual

Chapter 12: LPC13xx I2C-bus controller

12.10.1 Input filters and output stages

Input signals are synchronized with the internal clock, and spikes shorter than three clocks are filtered out.

The output for I²C is a special pad designed to conform to the I²C specification.

Chapter 12: LPC13xx I2C-bus controller

12.10.2 Address Registers, I2ADDR0 to I2ADDR3

These registers may be loaded with the 7-bit slave address (7 most significant bits) to which the I²C block will respond when programmed as a slave transmitter or receiver. The LSB (GC) is used to enable General Call address (0x00) recognition. When multiple slave addresses are enabled, the actual address received may be read from the I2DAT register at the state where the own slave address has been received.

12.10.3 Address mask registers, I2MASK0 to I2MASK3

The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the I2ADDRn register associated with that mask register. In other words, bits in an I2ADDRn register which are masked are not taken into account in determining an address match.

If the I2ADDRn bit 0 (GC enable bit) is as set and bits(7:1) are all zeroes, then the part will respond to a received address = "0000000" regardless of the state of the associated mask register.

When an address-match interrupt occurs, the processor will have to read the data register (I2DAT) to determine what the received address was that actually caused the match.

12.10.4 Comparator

The comparator compares the received 7-bit slave address with its own slave address (7 most significant bits in I2ADR). It also compares the first received 8-bit byte with the General Call address (0x00). If an equality is found, the appropriate status bits are set and an interrupt is requested.

12.10.5 Shift register, I2DAT

This 8-bit register contains a byte of serial data to be transmitted or a byte which has just been received. Data in I2DAT is always shifted from right to left; the first bit to be transmitted is the MSB (bit 7) and, after a byte has been received, the first bit of received data is located at the MSB of I2DAT. While data is being shifted out, data on the bus is simultaneously being shifted in; I2DAT always contains the last byte present on the bus. Thus, in the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in I2DAT.

12.10.6 Arbitration and synchronization logic

In the master transmitter mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the I²C-bus. If another device on the bus overrules a logic 1 and pulls the SDA line low, arbitration is lost, and the I²C block immediately changes from master transmitter to slave receiver. The I²C block will continue to output clock pulses (on SCL) until transmission of the current serial byte is complete.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode can only occur while the I²C block is returning a "not acknowledge: (logic 1) to the bus. Arbitration is lost when another device on the bus pulls this signal low. Since this can occur only at the end of a serial byte, the I²C block generates no further clock pulses. Figure 28 shows the arbitration procedure.

User manual

Chapter 12: LPC13xx I2C-bus controller

- (1) Another device transmits serial data.
- (2) Another device overrules a logic (dotted line) transmitted this I²C master by pulling the SDA line low. Arbitration is lost, and this I²C enters Slave Receiver mode.
- (3) This I²C is in Slave Receiver mode but still generates clock pulses until the current byte has been transmitted. This I²C will not generate clock pulses for the next byte. Data on SDA originates from the new master once it has won arbitration.

Fig 28. Arbitration procedure

The synchronization logic will synchronize the serial clock generator with the clock pulses on the SCL line from another device. If two or more master devices generate clock pulses, the "mark" duration is determined by the device that generates the shortest "marks," and the "space" duration is determined by the device that generates the longest "spaces". Figure 29 shows the synchronization procedure.

- (1) Another device pulls the SCL line low before this I²C has timed a complete high time. The other device effectively determines the (shorter) HIGH period.
- (2) Another device continues to pull the SCL line low after this I²C has timed a complete low time and released SCL. The I²C clock generator is forced to wait until SCL goes HIGH. The other device effectively determines the (longer) LOW period.
- (3) The SCL line is released, and the clock generator begins timing the HIGH time.

Fig 29. Serial clock synchronization

A slave may stretch the space duration to slow down the bus master. The space duration may also be stretched for handshaking purposes. This can be done after each bit or after a complete byte transfer. the I²C block will stretch the SCL space duration after a byte has been transmitted or received and the acknowledge bit has been transferred. The serial interrupt flag (SI) is set, and the stretching continues until the serial interrupt flag is cleared.

12.10.7 Serial clock generator

This programmable clock pulse generator provides the SCL clock pulses when the I²C block is in the master transmitter or master receiver mode. It is switched off when the I²C block is in a slave mode. The I²C output clock frequency and duty cycle is programmable

Chapter 12: LPC13xx I2C-bus controller

via the I²C Clock Control Registers. See the description of the I2CSCLL and I2CSCLH registers for details. The output clock pulses have a duty cycle as programmed unless the bus is synchronizing with other SCL clock sources as described above.

12.10.8 Timing and control

The timing and control logic generates the timing and control signals for serial byte handling. This logic block provides the shift pulses for I2DAT, enables the comparator, generates and detects START and STOP conditions, receives and transmits acknowledge bits, controls the master and slave modes, contains interrupt request logic, and monitors the I²C-bus status.

12.10.9 Control register, I2CONSET and I2CONCLR

The I^2C control register contains bits used to control the following I^2C block functions: start and restart of a serial transfer, termination of a serial transfer, bit rate, address recognition, and acknowledgment.

The contents of the I²C control register may be read as I2CONSET. Writing to I2CONSET will set bits in the I²C control register that correspond to ones in the value written. Conversely, writing to I2CONCLR will clear bits in the I²C control register that correspond to ones in the value written.

12.10.10 Status decoder and status register

The status decoder takes all of the internal status bits and compresses them into a 5-bit code. This code is unique for each I²C-bus status. The 5-bit code may be used to generate vector addresses for fast processing of the various service routines. Each service routine processes a particular bus status. There are 26 possible bus states if all four modes of the I²C block are used. The 5-bit status code is latched into the five most significant bits of the status register when the serial interrupt flag is set (by hardware) and remains stable until the interrupt flag is cleared by software. The three least significant bits of the status register are always zero. If the status code is used as a vector to service routines, then the routines are displaced by eight address locations. Eight bytes of code is sufficient for most of the service routines (see the software example in this section).

12.11 Details of I²C operating modes

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave Receiver
- Slave Transmitter

Data transfers in each mode of operation are shown in <u>Figure 30</u>, <u>Figure 31</u>, <u>Figure 32</u>, <u>Figure 33</u>, and <u>Figure 34</u>. <u>Table 224</u> lists abbreviations used in these figures when describing the I²C operating modes.

Chapter 12: LPC13xx I2C-bus controller

Table 224. Abbreviations used to describe an I²C operation

Abbreviation	Explanation
S	START Condition
SLA	7-bit slave address
R	Read bit (HIGH level at SDA)
W	Write bit (LOW level at SDA)
A	Acknowledge bit (LOW level at SDA)
Ā	Not acknowledge bit (HIGH level at SDA)
Data	8-bit data byte
Р	STOP condition

In <u>Figure 30</u> to <u>Figure 34</u>, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in the I2STAT register. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.

When a serial interrupt routine is entered, the status code in I2STAT is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in tables from <u>Table 228</u> to <u>Table 232</u>.

12.11.1 Master Transmitter mode

In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see <u>Figure 30</u>). Before the master transmitter mode can be entered, I2CON must be initialized as follows:

Table 225. I2CONSET used to initialize Master Transmitter mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	х	-	-

The I²C rate must also be configured in the I2SCLL and I2SCLH registers. I2EN must be set to logic 1 to enable the I²C block. If the AA bit is reset, the I²C block will not acknowledge its own slave address or the General Call address in the event of another device becoming master of the bus. In other words, if AA is reset, the I²C interface cannot enter a slave mode. STA, STO, and SI must be reset.

Chapter 12: LPC13xx I2C-bus controller

The master transmitter mode may now be entered by setting the STA bit. The I²C logic will now test the I²C-bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI) is set, and the status code in the status register (I2STAT) will be 0x08. This status code is used by the interrupt service routine to enter the appropriate state service routine that loads I2DAT with the slave address and the data direction bit (SLA+W). The SI bit in I2CON must then be reset before the serial transfer can continue.

When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in I2STAT are possible. There are 0x18, 0x20, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = logic 1). The appropriate action to be taken for each of these status codes is detailed in <u>Table 228</u>. After a Repeated START condition (state 0x10). The I²C block may switch to the master receiver mode by loading I2DAT with SLA+R).

Chapter 12: LPC13xx I2C-bus controller

Table 226. Master Transmitter mode

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (I2CSTAT)	and hardware	To/From I2DAT	To I2	CON			
(IZOOTAT)			STA	STO	SI	AA	
0x08	A START condition has been transmitted.	Load SLA+W; clear STA	X	0	0	Х	SLA+W will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+W or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+R; Clear STA	X	0	0	Х	SLA+W will be transmitted; the I ² C block will be switched to MST/REC mode.
0x18	SLA+W has been transmitted; ACK has	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	been received.	No I2DAT action or	1	0	0	Х	Repeated START will be transmitted.
		No I2DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No I2DAT action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x20	SLA+W has been transmitted; NOT ACK	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	has been received.	No I2DAT action or	1	0	0	Х	Repeated START will be transmitted.
		No I2DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No I2DAT action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x28	Data byte in I2DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	ACK has been received.	No I2DAT action or	1	0	0	Х	Repeated START will be transmitted.
		No I2DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No I2DAT action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x30	Data byte in I2DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	NOT ACK has been received.	No I2DAT action or	1	0	0	Х	Repeated START will be transmitted.
		No I2DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No I2DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x38	Arbitration lost in SLA+R/W or Data	No I2DAT action or	0	0	0	Х	I ² C-bus will be released; not addressed slave will be entered.
	bytes.	No I2DAT action	1	0	0	Х	A START condition will be transmitted when the bus becomes free.

Chapter 12: LPC13xx I2C-bus controller

Chapter 12: LPC13xx I2C-bus controller

12.11.2 Master Receiver mode

In the master receiver mode, a number of data bytes are received from a slave transmitter (see <u>Figure 31</u>). The transfer is initialized as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load I2DAT with the 7-bit slave address and the data direction bit (SLA+R). The SI bit in I2CON must then be cleared before the serial transfer can continue.

When the slave address and the data direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in I2STAT are possible. These are 0x40, 0x48, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = 1). The appropriate action to be taken for each of these status codes is detailed in <u>Table 229</u>. After a Repeated START condition (state 0x10), the I²C block may switch to the master transmitter mode by loading I2DAT with SLA+W.

Chapter 12: LPC13xx I2C-bus controller

Table 227. Master Receiver mode

Status	Status of the I ² C-bus	Application softwa	are re	spons	е	Next action taken by I ² C hardware	
Code (I2CSTAT)	and hardware	To/From I2DAT	To I2	CON			
(IZCSTAT)			STA	STO	SI	AA	
80x0	A START condition has been transmitted.	Load SLA+R	Χ	0	0	Χ	SLA+R will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+R or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+W	Χ	0	0	Χ	SLA+W will be transmitted; the I ² C block will be switched to MST/TRX mode.
0x38	Arbitration lost in NOT ACK bit.	No I2DAT action or	0	0	0	Χ	I ² C-bus will be released; the I ² C block wi enter a slave mode.
		No I2DAT action	1	0	0	Χ	A START condition will be transmitted when the bus becomes free.
0x40	SLA+R has been transmitted; ACK has	No I2DAT action or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been received.	No I2DAT action	0	0	0	1	Data byte will be received; ACK bit will b returned.
0x48	SLA+R has been transmitted; NOT ACK	No I2DAT action or	1	0	0	X	Repeated START condition will be transmitted.
	has been received.	No I2DAT action or	0	1	0	X	STOP condition will be transmitted; STO flag will be reset.
		No I2DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag wibe reset.
0x50	Data byte has been received; ACK has	Read data byte or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been returned.	Read data byte	0	0	0	1	Data byte will be received; ACK bit will b returned.
0x58	Data byte has been received; NOT ACK	Read data byte or	1	0	0	X	Repeated START condition will be transmitted.
	has been returned.	Read data byte or	0	1	0	X	STOP condition will be transmitted; STO flag will be reset.
		Read data byte	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag w be reset.

Chapter 12: LPC13xx I2C-bus controller

Chapter 12: LPC13xx I2C-bus controller

12.11.3 Slave Receiver mode

In the slave receiver mode, a number of data bytes are received from a master transmitter (see <u>Figure 32</u>). To initiate the slave receiver mode, I2ADR and I2CON must be loaded as follows:

Table 228. I2C0ADR and I2C1ADR usage in Slave Receiver mode

Bit	7	6	5	4	3	2	1	0	
Symbol			OW	vn slave 7-b	oit address		GC		

The upper 7 bits are the address to which the I²C block will respond when addressed by a master. If the LSB (GC) is set, the I²C block will respond to the General Call address (0x00); otherwise it ignores the General Call address.

Table 229. I2C0CONSET and I2C1CONSET used to initialize Slave Receiver mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

The I²C-bus rate settings do not affect the I²C block in the slave mode. I2EN must be set to logic 1 to enable the I²C block. The AA bit must be set to enable the I²C block to acknowledge its own slave address or the General Call address. STA, STO, and SI must be reset.

When I2ADR and I2CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "0" (W) for the I²C block to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from I2STAT. This status code is used to vector to a state service routine. The appropriate action to be taken for each of these status codes is detailed in Table 230. The slave receiver mode may also be entered if arbitration is lost while the I²C block is in the master mode (see status 0x68 and 0x78).

If the AA bit is reset during a transfer, the I²C block will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

Chapter 12: LPC13xx I2C-bus controller

Table 230. Slave Receiver mode

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (I2CSTAT)	and hardware	To/From I2DAT	To I2	CON			
(IZCOTAT)			STA	STO	SI	AA	
0x60	Own SLA+W has been received; ACK	No I2DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	has been returned.	No I2DAT action	Χ	0	0	1	Data byte will be received and ACK will be returned.
0x68	Arbitration lost in SLA+R/W as master;	No I2DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	Own SLA+W has been received, ACK returned.	No I2DAT action	Х	0	0	1	Data byte will be received and ACK will be returned.
0x70	General call address (0x00) has been	No I2DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	received; ACK has been returned.	No I2DAT action	Χ	0	0	1	Data byte will be received and ACK will be returned.
0x78	Arbitration lost in SLA+R/W as master;	No I2DAT action or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
	General call address has been received, ACK has been returned.	No I2DAT action	X	0	0	1	Data byte will be received and ACK will be returned.
	Previously addressed with own SLV	Read data byte or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	address; DATA has been received; ACK has been returned.	Read data byte	X	0	0	1	Data byte will be received and ACK will be returned.
0x88	Previously addressed with own SLA; DATA byte has been	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
	received; NOT ACK has been returned.	Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General cal address will be recognized if I2ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General cal address will be recognized if I2ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0x90	Previously addressed with General Call;	Read data byte or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
	DATA byte has been received; ACK has been returned.	Read data byte	X	0	0	1	Data byte will be received and ACK will be returned.

Chapter 12: LPC13xx I2C-bus controller

Table 230. Slave Receiver mode ...continued

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (I2CSTAT)	and hardware	To/From I2DAT	To I2	CON			
(IZCOTAT)			STA	STO	SI	AA	
0x98	Previously addressed with General Call; DATA byte has been	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
	received; NOT ACK has been returned.	Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if I2ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if I2ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0xA0	A STOP condition or Repeated START condition has been received while still addressed as SLV/REC or SLV/TRX.	No STDAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No STDAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if I2ADR[0] = logic 1.
		No STDAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No STDAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if I2ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.

Chapter 12: LPC13xx I2C-bus controller

Chapter 12: LPC13xx I2C-bus controller

12.11.4 Slave Transmitter mode

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 33). Data transfer is initialized as in the slave receiver mode. When I2ADR and I2CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "1" (R) for the I²C block to operate in the slave transmitter mode. After its own slave address and the R bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from I2STAT. This status code is used to vector to a state service routine, and the appropriate action to be taken for each of these status codes is detailed in Table 231. The slave transmitter mode may also be entered if arbitration is lost while the I²C block is in the master mode (see state 0xB0).

If the AA bit is reset during a transfer, the I²C block will transmit the last byte of the transfer and enter state 0xC0 or 0xC8. The I²C block is switched to the not addressed slave mode and will ignore the master receiver if it continues the transfer. Thus the master receiver receives all 1s as serial data. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored, and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

Chapter 12: LPC13xx I2C-bus controller

Table 231. Slave Transmitter mode

Status Code	Status of the I ² C-bus and hardware	Application softw	are re	spons	Next action taken by I ² C hardware		
(I2CSTAT)	and nardware	To/From I2DAT		CON			
0xA8	Own SLA+R has been	Load data byte or	X	STO 0	0	AA 0	Last data byte will be transmitted and
	received; ACK has been returned.	Load data byte	X	0	0	1	ACK bit will be received. Data byte will be transmitted; ACK will be
0xB0	Arbitration lost in	Load data byte or	X	0	0	0	received. Last data byte will be transmitted and
)XD0	SLA+R/W as master; Own SLA+R has been						ACK bit will be received.
	received, ACK has been returned.	Load data byte	X	0	0	1	Data byte will be transmitted; ACK bit wil be received.
OxB8	Data byte in I2DAT has been transmitted;	Load data byte or	X	0	0	0	Last data byte will be transmitted and ACK bit will be received.
	ACK has been received.	Load data byte	Х	0	0	1	Data byte will be transmitted; ACK bit will be received.
0xC0	Data byte in I2DAT has been transmitted; NOT ACK has been received.	No I2DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No I2DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General cal address will be recognized if I2ADR[0] = logic 1.
		No I2DAT action or	1	0	0	0	Switched to not addressed SLV mode; not recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No I2DAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General ca address will be recognized if I2ADR[0] = logic 1. A START condition will be transmitted when the bus become free.
0xC8	Last data byte in I2DAT has been transmitted (AA = 0);	No I2DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
	ACK has been received.	No I2DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General ca address will be recognized if I2ADR[0] = logic 1.
		No I2DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No I2DAT action	1	0	0	01	Switched to not addressed SLV mode; Own SLA will be recognized; General ca address will be recognized if I2ADR.0 = logic 1. A START condition wi be transmitted when the bus becomes free.

Chapter 12: LPC13xx I2C-bus controller

12.11.5 Miscellaneous states

There are two I2STAT codes that do not correspond to a defined I²C hardware state (see Table 232). These are discussed below.

12.11.5.1 I2STAT = 0xF8

This status code indicates that no relevant information is available because the serial interrupt flag, SI, is not yet set. This occurs between other states and when the I²C block is not involved in a serial transfer.

12.11.5.2 I2STAT = 0x00

This status code indicates that a bus error has occurred during an I²C serial transfer. A bus error is caused when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. A bus error may also be caused when external interference disturbs the internal I²C block signals. When a bus error occurs, SI is set. To recover from a bus error, the STO flag must be set and SI must be cleared. This

Chapter 12: LPC13xx I2C-bus controller

causes the I²C block to enter the "not addressed" slave mode (a defined state) and to clear the STO flag (no other bits in I2CON are affected). The SDA and SCL lines are released (a STOP condition is not transmitted).

Table 232. Miscellaneous States

Status Code (I2CSTAT)	Status of the I ² C-bus and hardware	Application softw To/From I2DAT	are response To I2CON STA STO SI AA		AA	Next action taken by I ² C hardware	
0xF8	No relevant state information available; SI = 0.	No I2DAT action	N	o I2CC	N acti	on	Wait or proceed current transfer.
0x00	Bus error during MST or selected slave modes, due to an illegal START or STOP condition. State 0x00 can also occur when interference causes the I ² C block to enter an undefined state.	No I2DAT action	0	1	0	X	Only the internal hardware is affected in the MST or addressed SLV modes. In all cases, the bus is released and the I ² C block is switched to the not addressed SLV mode. STO is reset.

12.11.6 Some special cases

The I²C hardware has facilities to handle the following special cases that may occur during a serial transfer:

- Simultaneous Repeated START conditions from two masters
- · Data transfer after loss of arbitration
- Forced access to the I²C-bus
- I²C-bus obstructed by a LOW level on SCL or SDA
- Bus error

12.11.6.1 Simultaneous Repeated START conditions from two masters

A Repeated START condition may be generated in the master transmitter or master receiver modes. A special case occurs if another master simultaneously generates a Repeated START condition (see <u>Figure 34</u>). Until this occurs, arbitration is not lost by either master since they were both transmitting the same data.

If the I^2C hardware detects a Repeated START condition on the I^2C -bus before generating a Repeated START condition itself, it will release the bus, and no interrupt request is generated. If another master frees the bus by generating a STOP condition, the I^2C block will transmit a normal START condition (state 0x08), and a retry of the total serial data transfer can commence.

Chapter 12: LPC13xx I2C-bus controller

12.11.6.2 Data transfer after loss of arbitration

Arbitration may be lost in the master transmitter and master receiver modes (see <u>Figure 28</u>). Loss of arbitration is indicated by the following states in I2STAT; 0x38, 0x68, 0x78, and 0xB0 (see <u>Figure 30</u> and <u>Figure 31</u>).

If the STA flag in I2CON is set by the routines which service these states, then, if the bus is free again, a START condition (state 0x08) is transmitted without intervention by the CPU, and a retry of the total serial transfer can commence.

12.11.6.3 Forced access to the I²C-bus

In some applications, it may be possible for an uncontrolled source to cause a bus hang-up. In such situations, the problem may be caused by interference, temporary interruption of the bus or a temporary short-circuit between SDA and SCL.

If an uncontrolled source generates a superfluous START or masks a STOP condition, then the I²C-bus stays busy indefinitely. If the STA flag is set and bus access is not obtained within a reasonable amount of time, then a forced access to the I²C-bus is possible. This is achieved by setting the STO flag while the STA flag is still set. No STOP condition is transmitted. The I²C hardware behaves as if a STOP condition was received and is able to transmit a START condition. The STO flag is cleared by hardware (see Figure 35).

12.11.6.4 I²C-bus obstructed by a LOW level on SCL or SDA

An I²C-bus hang-up can occur if either the SDA or SCL line is held LOW by any device on the bus. If the SCL line is obstructed (pulled LOW) by a device on the bus, no further serial transfer is possible, and the problem must be resolved by the device that is pulling the SCL bus line LOW.

Typically, the SDA line may be obstructed by another device on the bus that has become out of synchronization with the current bus master by either missing a clock, or by sensing a noise pulse as a clock. In this case, the problem can be solved by transmitting additional clock pulses on the SCL line (see Figure 36). The I²C interface does not include a dedicated time-out timer to detect an obstructed bus, but this can be implemented using another timer in the system. When detected, software can force clocks (up to 9 may be required) on SCL until SDA is released by the offending device. At that point, the slave may still be out of synchronization, so a START should be generated to insure that all I²C peripherals are synchronized.

12.11.6.5 Bus error

A bus error occurs when a START or STOP condition is detected at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data bit, or an acknowledge bit.

The I²C hardware only reacts to a bus error when it is involved in a serial transfer either as a master or an addressed slave. When a bus error is detected, the I²C block immediately switches to the not addressed slave mode, releases the SDA and SCL lines, sets the interrupt flag, and loads the status register with 0x00. This status code may be used to vector to a state service routine which either attempts the aborted serial transfer again or simply recovers from the error condition as shown in Table 232.

12.11.7 I²C state service routines

This section provides examples of operations that must be performed by various I²C state service routines. This includes:

- Initialization of the I²C block after a Reset.
- I²C Interrupt Service
- The 26 state service routines providing support for all four I²C operating modes.

UM10375

Chapter 12: LPC13xx I2C-bus controller

12.11.8 Initialization

In the initialization example, the I²C block is enabled for both master and slave modes. For each mode, a buffer is used for transmission and reception. The initialization routine performs the following functions:

- I2ADR is loaded with the part's own slave address and the General Call bit (GC)
- The I²C interrupt enable and interrupt priority bits are set
- The slave mode is enabled by simultaneously setting the I2EN and AA bits in I2CON and the serial clock frequency (for master modes) is defined by is defined by loading the I2SCLH and I2SCLL registers. The master routines must be started in the main program.

The I²C hardware now begins checking the I²C-bus for its own slave address and General Call. If the General Call or the own slave address is detected, an interrupt is requested and I2STAT is loaded with the appropriate state information.

12.11.9 I²C interrupt service

When the I²C interrupt is entered, I2STAT contains a status code which identifies one of the 26 state services to be executed.

12.11.10 The state service routines

Each state routine is part of the I²C interrupt routine and handles one of the 26 states.

12.11.11 Adapting state services to an application

The state service examples show the typical actions that must be performed in response to the 26 I²C state codes. If one or more of the four I²C operating modes are not used, the associated state services can be omitted, as long as care is taken that the those states can never occur.

In an application, it may be desirable to implement some kind of timeout during I²C operations, in order to trap an inoperative bus or a lost service routine.

12.12 Software example

12.12.1 Initialization routine

Example to initialize I²C Interface as a Slave and/or Master.

- 1. Load I2ADR with own Slave Address, enable General Call recognition if needed.
- 2. Enable I²C interrupt.
- Write 0x44 to I2CONSET to set the I2EN and AA bits, enabling Slave functions. For Master only functions, write 0x40 to I2CONSET.

12.12.2 Start Master Transmit function

Begin a Master Transmit operation by setting up the buffer, pointer, and data count, then initiating a START.

1. Initialize Master data counter.

UM10375

Chapter 12: LPC13xx I2C-bus controller

- 2. Set up the Slave Address to which data will be transmitted, and add the Write bit.
- 3. Write 0x20 to I2CONSET to set the STA bit.
- 4. Set up data to be transmitted in Master Transmit buffer.
- 5. Initialize the Master data counter to match the length of the message being sent.
- 6. Exit

12.12.3 Start Master Receive function

Begin a Master Receive operation by setting up the buffer, pointer, and data count, then initiating a START.

- 1. Initialize Master data counter.
- 2. Set up the Slave Address to which data will be transmitted, and add the Read bit.
- Write 0x20 to I2CONSET to set the STA bit.
- 4. Set up the Master Receive buffer.
- 5. Initialize the Master data counter to match the length of the message to be received.
- 6. Exit

12.12.4 I²C interrupt routine

Determine the I²C state and which state routine will be used to handle it.

- 1. Read the I²C status from I2STA.
- 2. Use the status value to branch to one of 26 possible state routines.

12.12.5 Non mode specific states

12.12.5.1 State: 0x00

Bus Error. Enter not addressed Slave mode and release bus.

- 1. Write 0x14 to I2CONSET to set the STO and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.5.2 Master States

State 08 and State 10 are for both Master Transmit and Master Receive modes. The R/W bit decides whether the next state is within Master Transmit mode or Master Receive mode.

12.12.5.3 State: 0x08

A START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to I2DAT.
- 2. Write 0x04 to I2CONSET to set the AA bit.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Set up Master Transmit mode data buffer.

UM10375

User manual

Chapter 12: LPC13xx I2C-bus controller

- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

12.12.5.4 State: 0x10

A Repeated START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to I2DAT.
- 2. Write 0x04 to I2CONSET to set the AA bit.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Set up Master Transmit mode data buffer.
- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

12.12.6 Master Transmitter states

12.12.6.1 State: 0x18

Previous state was State 8 or State 10, Slave Address + Write has been transmitted, ACK has been received. The first data byte will be transmitted, an ACK bit will be received.

- 1. Load I2DAT with first data byte from Master Transmit buffer.
- 2. Write 0x04 to I2CONSET to set the AA bit.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Increment Master Transmit buffer pointer.
- 5. Exit

12.12.6.2 State: 0x20

Slave Address + Write has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to I2CONSET to set the STO and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.6.3 State: 0x28

Data has been transmitted, ACK has been received. If the transmitted data was the last data byte then transmit a STOP condition, otherwise transmit the next data byte.

- 1. Decrement the Master data counter, skip to step 5 if not the last data byte.
- 2. Write 0x14 to I2CONSET to set the STO and AA bits.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Exit
- 5. Load I2DAT with next data byte from Master Transmit buffer.

UM10375

Chapter 12: LPC13xx I2C-bus controller

- 6. Write 0x04 to I2CONSET to set the AA bit.
- 7. Write 0x08 to I2CONCLR to clear the SI flag.
- 8. Increment Master Transmit buffer pointer
- 9. Exit

12.12.6.4 State: 0x30

Data has been transmitted. NOT ACK received. A STOP condition will be transmitted.

- 1. Write 0x14 to I2CONSET to set the STO and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.6.5 State: 0x38

Arbitration has been lost during Slave Address + Write or data. The bus has been released and not addressed Slave mode is entered. A new START condition will be transmitted when the bus is free again.

- 1. Write 0x24 to I2CONSET to set the STA and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.7 Master Receive states

12.12.7.1 State: 0x40

Previous state was State 08 or State 10. Slave Address + Read has been transmitted, ACK has been received. Data will be received and ACK returned.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.7.2 State: 0x48

Slave Address + Read has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to I2CONSET to set the STO and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.7.3 State: 0x50

Data has been received, ACK has been returned. Data will be read from I2DAT. Additional data will be received. If this is the last data byte then NOT ACK will be returned, otherwise ACK will be returned.

- 1. Read data byte from I2DAT into Master Receive buffer.
- 2. Decrement the Master data counter, skip to step 5 if not the last data byte.
- 3. Write 0x0C to I2CONCLR to clear the SI flag and the AA bit.

UM10375

Chapter 12: LPC13xx I2C-bus controller

- 4. Exit
- 5. Write 0x04 to I2CONSET to set the AA bit.
- 6. Write 0x08 to I2CONCLR to clear the SI flag.
- 7. Increment Master Receive buffer pointer
- 8. Exit

12.12.7.4 State: 0x58

Data has been received, NOT ACK has been returned. Data will be read from I2DAT. A STOP condition will be transmitted.

- 1. Read data byte from I2DAT into Master Receive buffer.
- 2. Write 0x14 to I2CONSET to set the STO and AA bits.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Exit

12.12.8 Slave Receiver states

12.12.8.1 State: 0x60

Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

12.12.8.2 State: 0x68

Arbitration has been lost in Slave Address and R/W bit as bus Master. Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK will be returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to I2CONSET to set the STA and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit.

12.12.8.3 State: 0x70

General call has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.

UM10375

Chapter 12: LPC13xx I2C-bus controller

- 4. Initialize Slave data counter.
- 5. Exit

12.12.8.4 State: 0x78

Arbitration has been lost in Slave Address + R/W bit as bus Master. General call has been received and ACK has been returned. Data will be received and ACK returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to I2CONSET to set the STA and AA bits.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

12.12.8.5 State: 0x80

Previously addressed with own Slave Address. Data has been received and ACK has been returned. Additional data will be read.

- 1. Read data byte from I2DAT into the Slave Receive buffer.
- 2. Decrement the Slave data counter, skip to step 5 if not the last data byte.
- 3. Write 0x0C to I2CONCLR to clear the SI flag and the AA bit.
- 4. Exit.
- 5. Write 0x04 to I2CONSET to set the AA bit.
- 6. Write 0x08 to I2CONCLR to clear the SI flag.
- 7. Increment Slave Receive buffer pointer.
- 8. Exit

12.12.8.6 State: 0x88

Previously addressed with own Slave Address. Data has been received and NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.8.7 State: 0x90

Previously addressed with General Call. Data has been received, ACK has been returned. Received data will be saved. Only the first data byte will be received with ACK. Additional data will be received with NOT ACK.

- 1. Read data byte from I2DAT into the Slave Receive buffer.
- 2. Write 0x0C to I2CONCLR to clear the SI flag and the AA bit.
- 3. Exit

Chapter 12: LPC13xx I2C-bus controller

12.12.8.8 State: 0x98

Previously addressed with General Call. Data has been received, NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.8.9 State: 0xA0

A STOP condition or Repeated START has been received, while still addressed as a Slave. Data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

12.12.9 Slave Transmitter states

12.12.9.1 State: 0xA8

Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received.

- 1. Load I2DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x04 to I2CONSET to set the AA bit.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

12.12.9.2 State: 0xB0

Arbitration lost in Slave Address and R/W bit as bus Master. Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received. STA is set to restart Master mode after the bus is free again.

- 1. Load I2DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x24 to I2CONSET to set the STA and AA bits.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

12.12.9.3 State: 0xB8

Data has been transmitted, ACK has been received. Data will be transmitted, ACK bit will be received.

1. Load I2DAT from Slave Transmit buffer with data byte.

UM10375

Chapter 12: LPC13xx I2C-bus controller

- 2. Write 0x04 to I2CONSET to set the AA bit.
- 3. Write 0x08 to I2CONCLR to clear the SI flag.
- 4. Increment Slave Transmit buffer pointer.
- 5. Exit

12.12.9.4 State: 0xC0

Data has been transmitted, NOT ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit.

12.12.9.5 State: 0xC8

The last data byte has been transmitted, ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to I2CONSET to set the AA bit.
- 2. Write 0x08 to I2CONCLR to clear the SI flag.
- 3. Exit

UM10375

Chapter 13: LPC13xx SSP

Rev. 2 — 7 July 2010

User manual

13.1 How to read this chapter

The SSP block is identical for all LPC13xx parts.

13.2 Basic configuration

The SSP is configured using the following registers:

- 1. Pins: The SSP pins must be configured in the IOCONFIG register block (Section 6.4.1).
- 2. Power: In the SYSAHBCLKCTRL register, set bit 11 (Table 23).
- Peripheral clock: Enable the SSP peripheral clock by writing to the SSP0CLKDIV register (<u>Table 24</u>).
- Reset: Before accessing the SSP block, ensure that the SSP_RST_N bit (bit 0) in the PRESETCTRL register (<u>Table 7</u>) is set to 1. This de-asserts the reset signal to the SSP block.

13.3 Features

- Compatible with Motorola SPI, 4-wire TI SSI, and National Semiconductor Microwire buses.
- Synchronous Serial Communication.
- Supports master or slave operation.
- Eight frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.

13.4 General description

The SSP is a Synchronous Serial Port (SSP) controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice it is often the case that only one of these data flows carries meaningful data.

The LPC13xx has one Synchronous Serial Port controller.

Chapter 13: LPC13xx SSP

13.5 Pin description

Table 233. SSP pin descriptions

Pin	Туре		ce pin function	1	Pin description
name	.,,,,	SPI	SSI	Microwire	docon pust.
SCK	I/O	SCK	CLK	SK	Serial Clock. SCK/CLK/SK is a clock signal used to synchronize the transfer of data. It is driven by the master and received by the slave. When SPI interface is used, the clock is programmable to be active-high or active-low, otherwise it is always active-high. SCK only switches during a data transfer. Any other time, the SSP interface either holds it in its inactive state or does not drive it (leaves it in high-impedance state).
SSEL	I/O	SSEL	FS	CS	Frame Sync/Slave Select. When the SSP interface is a bus master, it drives this signal to an active state before the start of serial data and then releases it to an inactive state after the data has been sent. The active state of this signal can be high or low depending upon the selected bus and mode. When the SSP interface is a bus slave, this signal qualifies the presence of data from the Master according to the protocol in use. When there is just one bus master and one bus slave, the Frame Sync or Slave Select signal from the Master can be connected directly to the slave's corresponding input. When there is more than one slave on the bus, further qualification of their Frame Select/Slave Select inputs will typically be necessary to prevent more than one slave from responding to a transfer.
MISO	I/O	MISO	DR(M) DX(S)	SI(M) SO(S)	Master In Slave Out. The MISO signal transfers serial data from the slave to the master. When the SSP0 is a slave, serial data is output on this signal. When the SSP0 is a master, it clocks in serial data from this signal. When the SSP0 is a slave and is not selected by FS/SSEL, it does not drive this signal (leaves it in high-impedance state).
MOSI	I/O	MOSI	DX(M) DR(S)	SO(M) SI(S)	Master Out Slave In. The MOSI signal transfers serial data from the master to the slave. When the SSP0 is a master, it outputs serial data on this signal. When the SSP0 is a slave, it clocks in serial data from this signal.

Chapter 13: LPC13xx SSP

13.6 Clocking and power control

The clocks and power to the SSP block are controlled by two registers:

- The SSP block can be enabled or disabled through the SYSAHBCLKCTRL register (see Table 23).
- 2. The SSP_PCLK is enabled in the SSP clock divider register (see <u>Table 24</u>). This clock is used by the SSP clock prescaler (<u>Table 239</u>).

Remark: Before accessing the SSP block, ensure that the SSP_RST_N bit (bit 0) in the PRESETCTRL register (<u>Table 7</u>) is set to 1. This de-asserts the reset signal to the SSP block.

13.7 Register description

The register addresses of the SSP controller are shown in Table 234.

Table 234. Register overview: SSP (base address 0x4004 0000)

Name	Access	Address offset	Description	Reset value[1]
SSP0CR0	R/W	0x000	Control Register 0. Selects the serial clock rate, bus type, and data size.	0
SSP0CR1	R/W	0x004	Control Register 1. Selects master/slave and other modes.	0
SSP0DR	R/W	0x008	Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO.	0
SSP0SR	RO	0x00C	Status Register.	0x0000 0003
SSP0CPSR	R/W	0x010	Clock Prescale Register.	0
SSP0IMSC	R/W	0x014	Interrupt Mask Set and Clear Register.	0
SSP0RIS	RO	0x018	Raw Interrupt Status Register.	0x0000 0008
SSP0MIS	RO	0x01C	Masked Interrupt Status Register.	0
SSP0ICR	WO	0x020	SSPICR Interrupt Clear Register.	NA

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 13: LPC13xx SSP

13.7.1 SSP0 Control Register 0 (SSP0CR0 - 0x4004 0000)

This register controls the basic operation of the SSP controller.

Table 235: SSP0 Control Register 0 (SSP0CR0 - address 0x4004 0000) bit description

Bit	Symbol	Value	Description	Reset value	
3:0 DSS	DSS		Data Size Select. This field controls the number of bits transferred in each frame. Values 0000-0010 are not supported and should not be used.	0000	
		0011	4-bit transfer		
		0100	5-bit transfer		
		0101	6-bit transfer		
		0110	7-bit transfer		
		0111	8-bit transfer		
		1000	9-bit transfer		
		1001	10-bit transfer		
		1010	11-bit transfer		
		1011	12-bit transfer		
		1100	13-bit transfer		
		1101	14-bit transfer		
		1110	15-bit transfer		
		1111	16-bit transfer		
5:4	FRF		Frame Format.	00	
		00	SPI		
		01	TI		
		10	Microwire		
		11	This combination is not supported and should not be used.		
3	CPOL	CPOL		Clock Out Polarity. This bit is only used in SPI mode.	0
		0	SSP controller maintains the bus clock low between frames.		
		1	SSP controller maintains the bus clock high between frames.		
7	CPHA		Clock Out Phase. This bit is only used in SPI mode.	0	
		0	SSP controller captures serial data on the first clock transition of the frame, that is, the transition away from the inter-frame state of the clock line.		
		1	SSP controller captures serial data on the second clock transition of the frame, that is, the transition back to the inter-frame state of the clock line.		
15:8	SCR		Serial Clock Rate. The number of prescaler-output clocks per bit on the bus, minus one. Given that CPSDVSR is the prescale divider, and the APB clock PCLK clocks the prescaler, the bit frequency is PCLK / (CPSDVSR \times [SCR+1]).	0x00	
31:16	-	-	Reserved.	-	

13.7.2 SSP0 Control Register 1 (SSP0CR1 - 0x4004 0004)

This register controls certain aspects of the operation of the SSP controller.

User manual

Chapter 13: LPC13xx SSP

© NXP B.V. 2010. All rights reserved.

Table 236: SSP0 Control Register 1 (SSP0CR1 - address 0x4004 0004) bit description

Bit	Symbol	Value	Description	Reset value
0	LBM Loop Back Mode.		0	
		0	During normal operation.	
		1	Serial input is taken from the serial output (MOSI or MISO) rather than the serial input pin (MISO or MOSI respectively).	
1	SSE		SSP Enable.	0
		0	The SSP controller is disabled.	
		1	The SSP controller will interact with other devices on the serial bus. Software should write the appropriate control information to the other SSP registers and interrupt controller registers, before setting this bit.	
2	MS		Master/Slave Mode.This bit can only be written when the SSE bit is 0.	0
		0	The SSP controller acts as a master on the bus, driving the SCLK, MOSI, and SSEL lines and receiving the MISO line.	
		1	The SSP controller acts as a slave on the bus, driving MISO line and receiving SCLK, MOSI, and SSEL lines.	
3	SOD		Slave Output Disable. This bit is relevant only in slave mode (MS = 1). If it is 1, this blocks this SSP controller from driving the transmit data line (MISO).	0
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.7.3 SSP0 Data Register (SSP0DR - 0x4004 0008)

Software can write data to be transmitted to this register, and read data that has been received.

Table 237: SSP0 Data Register (SSP0DR - address 0x4004 0008) bit description

Bit	Symbol	Description	Reset value
15:0	DATA	Write: software can write data to be sent in a future frame to this register whenever the TNF bit in the Status register is 1, indicating that the Tx FIFO is not full. If the Tx FIFO was previously empty and the SSP controller is not busy on the bus, transmission of the data will begin immediately. Otherwise the data written to this register will be sent as soon as all previous data has been sent (and received). If the data length is less than 16 bit, software must right-justify the data written to this register.	0x0000
		Read: software can read data from this register whenever the RNE bit in the Status register is 1, indicating that the Rx FIFO is not empty. When software reads this register, the SSP controller returns data from the least recent frame in the Rx FIFO. If the data length is less than 16 bit, the data is right-justified in this field with higher order bits filled with 0s.	
31:16	-	Reserved.	-

13.7.4 SSP0 Status Register (SSP0SR - 0x4004 000C)

UM10375

This read-only register reflects the current status of the SSP controller.

Chapter 13: LPC13xx SSP

Table 238: SSP0 Status Register (SSP0SR - address 0x4004 000C bit description

Bit	Symbol	Description	Reset value
0	TFE	Transmit FIFO Empty. This bit is 1 is the Transmit FIFO is empty, 0 if not.	1
1	TNF	Transmit FIFO Not Full. This bit is 0 if the Tx FIFO is full, 1 if not.	1
2	RNE	Receive FIFO Not Empty. This bit is 0 if the Receive FIFO is empty, 1 if not.	0
3	RFF	Receive FIFO Full. This bit is 1 if the Receive FIFO is full, 0 if not.	0
4	BSY	Busy. This bit is 0 if the SSP0 controller is idle, or 1 if it is currently sending/receiving a frame and/or the Tx FIFO is not empty.	0
31:5	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.7.5 SSP0 Clock Prescale Register (SSP0CPSR - 0x4004 0010)

This register controls the factor by which the Prescaler divides the SSP peripheral clock SSP_PCLK to yield the prescaler clock that is, in turn, divided by the SCR factor in SSP0CR0, to determine the bit clock.

Table 239: SSP0 Clock Prescale Register (SSP0CPSR - address 0x4004 0010) bit description

Bit	Symbol	Description	Reset value
7:0	CPSDVSR	This even value between 2 and 254, by which SSP_PCLK is divided to yield the prescaler output clock. Bit 0 always reads as 0.	0
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Important: the SSP0CPSR value must be properly initialized or the SSP controller will not be able to transmit data correctly.

In Slave mode, the SSP clock rate provided by the master must not exceed 1/12 of the SSP peripheral clock selected in <u>Table 24</u>. The content of the SSP0CPSR register is not relevant.

In master mode, CPSDVSR_{min} = 2 or larger (even numbers only).

13.7.6 SSP0 Interrupt Mask Set/Clear Register (SSP0IMSC - 0x4004 0014)

This register controls whether each of the four possible interrupt conditions in the SSP controller are enabled. Note that ARM uses the word "masked" in the opposite sense from classic computer terminology, in which "masked" meant "disabled". ARM uses the word "masked" to mean "enabled". To avoid confusion we will not use the word "masked".

Chapter 13: LPC13xx SSP

Table 240: SSP0 Interrupt Mask Set/Clear register (SSP0IMSC - address 0x4004 0014) bit description

	<u> </u>				
Bit	Symbol	Description	Reset value		
0	RORIM	Software should set this bit to enable interrupt when a Receive Overrun occurs, that is, when the Rx FIFO is full and another frame is completely received. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0		
1	RTIM	Software should set this bit to enable interrupt when a Receive Time-out condition occurs. A Receive Time-out occurs when the Rx FIFO is not empty, and no has not been read for a time-out period. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR × [SCR+1]).	0		
2	RXIM	Software should set this bit to enable interrupt when the Rx FIFO is at least half full.	0		
3	TXIM	Software should set this bit to enable interrupt when the Tx FIFO is at least half empty.	0		
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA		

13.7.7 SSP0 Raw Interrupt Status Register (SSP0RIS - 0x4004 0018)

This read-only register contains a 1 for each interrupt condition that is asserted, regardless of whether or not the interrupt is enabled in the SSP0IMSC.

Table 241: SSP0 Raw Interrupt Status register (SSP0RIS - address 0x4004 0018) bit description

Bit	Symbol	Description	Reset value
0	RORRIS	This bit is 1 if another frame was completely received while the RxFIFO was full. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0
1	RTRIS	This bit is 1 if the Rx FIFO is not empty, and has not been read for a time-out period. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	0
2	RXRIS	This bit is 1 if the Rx FIFO is at least half full.	0
3	TXRIS	This bit is 1 if the Tx FIFO is at least half empty.	1
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.7.8 SSP0 Masked Interrupt Status Register (SSP0MIS - 0x4004 001C)

This read-only register contains a 1 for each interrupt condition that is asserted and enabled in the SSP0IMSC. When an SSP interrupt occurs, the interrupt service routine should read this register to determine the cause(s) of the interrupt.

Chapter 13: LPC13xx SSP

Table 242: SSP0 Masked Interrupt Status register (SSP0MIS -address 0x4004 001C) bit description

Bit	Symbol	Description	Reset value
0	RORMIS	This bit is 1 if another frame was completely received while the RxFIFO was full, and this interrupt is enabled.	0
1	RTMIS	This bit is 1 if the Rx FIFO is not empty, has not been read for a time-out period, and this interrupt is enabled. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	0
2	RXMIS	This bit is 1 if the Rx FIFO is at least half full, and this interrupt is enabled.	0
3	TXMIS	This bit is 1 if the Tx FIFO is at least half empty, and this interrupt is enabled.	0
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.7.9 SSP0 Interrupt Clear Register (SSP0ICR - 0x4004 0020)

Software can write one or more one(s) to this write-only register, to clear the corresponding interrupt condition(s) in the SSP controller. Note that the other two interrupt conditions can be cleared by writing or reading the appropriate FIFO, or disabled by clearing the corresponding bit in SSP0IMSC.

Table 243: SSP0 interrupt Clear Register (SSP0ICR - address 0x4004 0020) bit description

Bit	Symbol	Description	Reset value
0	RORIC	Writing a 1 to this bit clears the "frame was received when RxFIFO was full" interrupt.	NA
1	RTIC	Writing a 1 to this bit clears the Rx FIFO was not empty and has not been read-bit for a time-out period interrupt. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	NA
31:2	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.8 Functional description

13.8.1 Texas Instruments synchronous serial frame format

<u>Figure 37</u> shows the 4-wire Texas Instruments synchronous serial frame format supported by the SSP module.

Chapter 13: LPC13xx SSP

Fig 37. Texas Instruments Synchronous Serial Frame Format: a) Single and b) Continuous/back-to-back Two Frames Transfer

For device configured as a master in this mode, CLK and FS are forced LOW, and the transmit data line DX is in 3-state mode whenever the SSP is idle. Once the bottom entry of the transmit FIFO contains data, FS is pulsed HIGH for one CLK period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of CLK, the MSB of the 4-bit to 16-bit data frame is shifted out on the DX pin. Likewise, the MSB of the received data is shifted onto the DR pin by the off-chip serial slave device.

Both the SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each CLK. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of CLK after the LSB has been latched.

13.8.2 SPI frame format

b. Continuous/back-to-back frames transfer

The SPI interface is a four-wire interface where the SSEL signal behaves as a slave select. The main feature of the SPI format is that the inactive state and phase of the SCK signal are programmable through the CPOL and CPHA bits within the SSPCR0 control register.

13.8.2.1 Clock Polarity (CPOL) and Phase (CPHA) control

When the CPOL clock polarity control bit is LOW, it produces a steady state low value on the SCK pin. If the CPOL clock polarity control bit is HIGH, a steady state high value is placed on the CLK pin when data is not being transferred.

Chapter 13: LPC13xx SSP

The CPHA control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the CPHA phase control bit is LOW, data is captured on the first clock edge transition. If the CPHA clock phase control bit is HIGH, data is captured on the second clock edge transition.

13.8.2.2 SPI format with CPOL=0,CPHA=0

Single and continuous transmission signal sequences for SPI format with CPOL = 0, CPHA = 0 are shown in Figure 38.

In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. This causes slave data to be enabled onto the MISO input line of the master. Master's MOSI is enabled.

One half SCK period later, valid master data is transferred to the MOSI pin. Now that both the master and slave data have been set, the SCK master clock pin goes HIGH after one further half SCK period.

The data is captured on the rising and propagated on the falling edges of the SCK signal.

Chapter 13: LPC13xx SSP

In the case of a single word transmission, after all bits of the data word have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

13.8.2.3 SPI format with CPOL=0,CPHA=1

The transfer signal sequence for SPI format with CPOL = 0, CPHA = 1 is shown in Figure 39, which covers both single and continuous transfers.

In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI pin is enabled. After a further one half SCK period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SCK is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SCK signal.

In the case of a single word transfer, after all bits have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

For continuous back-to-back transfers, the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

13.8.2.4 SPI format with CPOL = 1,CPHA = 0

Single and continuous transmission signal sequences for SPI format with CPOL=1, CPHA=0 are shown in Figure 40.

UM10375

Chapter 13: LPC13xx SSP

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW, which causes slave data to be immediately transferred onto the MISO line of the master. Master's MOSI pin is enabled.

One half period later, valid master data is transferred to the MOSI line. Now that both the master and slave data have been set, the SCK master clock pin becomes LOW after one further half SCK period. This means that data is captured on the falling edges and be propagated on the rising edges of the SCK signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

Chapter 13: LPC13xx SSP

13.8.2.5 SPI format with CPOL = 1,CPHA = 1

The transfer signal sequence for SPI format with CPOL = 1, CPHA = 1 is shown in Figure 41, which covers both single and continuous transfers.

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI is enabled. After a further one half SCK period, both master and slave data are enabled onto their respective transmission lines. At the same time, the SCK is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SCK signal.

After all bits have been transferred, in the case of a single word transmission, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured. For continuous back-to-back transmissions, the SSEL pins remains in its active LOW state, until the final bit of the last word has been captured, and then returns to its idle state as described above. In general, for continuous back-to-back transfers the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

13.8.3 Semiconductor Microwire frame format

<u>Figure 42</u> shows the Microwire frame format for a single frame. <u>Figure 43</u> shows the same format when back-to-back frames are transmitted.

Chapter 13: LPC13xx SSP

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSP to the off-chip slave device. During this transmission, no incoming data is received by the SSP. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bit in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

- The SK signal is forced LOW.
- CS is forced HIGH.
- The transmit data line SO is arbitrarily forced LOW.

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of CS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SO pin. CS remains LOW for the duration of the frame transmission. The SI pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SK. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSP. Each bit is driven onto SI line on the falling edge of SK. The SSP in turn

Chapter 13: LPC13xx SSP

latches each bit on the rising edge of SK. At the end of the frame, for single transfers, the CS signal is pulled HIGH one clock period after the last bit has been latched in the receive serial shifter, that causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SK after the LSB has been latched by the receive shiftier, or when the CS pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the CS line is continuously asserted (held LOW) and transmission of data occurs back to back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge SK, after the LSB of the frame has been latched into the SSP.

13.8.3.1 Setup and hold time requirements on CS with respect to SK in Microwire mode

In the Microwire mode, the SSP slave samples the first bit of receive data on the rising edge of SK after CS has gone LOW. Masters that drive a free-running SK must ensure that the CS signal has sufficient setup and hold margins with respect to the rising edge of SK.

<u>Figure 44</u> illustrates these setup and hold time requirements. With respect to the SK rising edge on which the first bit of receive data is to be sampled by the SSP slave, CS must have a setup of at least two times the period of SK on which the SSP operates. With respect to the SK rising edge previous to this edge, CS must have a hold of at least one SK period.

UM10375

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Rev. 2 — 7 July 2010

User manual

14.1 How to read this chapter

The 16-bit timer blocks are identical for all LPC13xx parts.

14.2 Basic configuration

The CT16B0/1 are configured using the following registers:

- 1. Pins: The CT16B0/1 pins must be configured in the IOCONFIG register block (Section 6.4.1).
- Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 7 and bit 8 (Table 23).

14.3 Features

- Two 16-bit counter/timers with a programmable 16-bit prescaler.
- Counter or timer operation.
- One 16-bit capture channel that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- Four 16-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Up to three (CT16B0) or two (CT16B1) external outputs corresponding to match registers with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- For each timer, up to four match registers can be configured as PWM allowing to use up to three match outputs as single edge controlled PWM outputs.

14.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- Free-running timer
- Pulse Width Modulator via match outputs

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

14.5 Description

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, three match registers on CT16B0 and two match registers on CT16B1 can be used to provide a single-edge controlled PWM output on the match output pins. It is recommended to use the match registers that are not pinned out to control the PWM cycle length.

Remark: The 16-bit counter/timer0 (CT16B0) and the 16-bit counter/timer1 (CT16B1) are functionally identical except for the peripheral base address.

14.6 Pin description

Table 244 gives a brief summary of each of the counter/timer related pins.

Table 244. Counter/timer pin description

Pin	Type	Description
CT16B0_CAP0 CT16B1_CAP0	Input	Capture Signal: A transition on a capture pin can be configured to load the Capture Register with the value in the counter/timer and optionally generate an interrupt.
		Counter/Timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see <u>Section 14.8.11</u> .
CT16B0_MAT[2:0] CT16B1_MAT[1:0]	Output	External Match Outputs of CT16B0/1: When a match register of CT16B0/1 (MR3:0) equals the timer counter (TC), this output can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control Register (PWMCON) control the functionality of this output.

14.7 Clocking and power control

The peripheral clocks (PCLK) to the 16-bit timers are provided by the system clock (see <u>Figure 3</u>). These clocks can be disabled through bit 7 and 8 in the SYSAHBCLKCTRL register (Table 23) for power savings.

14.8 Register description

The 16-bit counter/timer0 contains the registers shown in <u>Table 245</u> and the 16-bit counter/timer1 contains the registers shown in <u>Table 246</u>. More detailed descriptions follow.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Table 245. Register overview: 16-bit counter/timer 0 CT16B0 (base address 0x4000 C000)

Name	Access	Address offset	Description	Reset value[1]
TMR16B0IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TMR16B0TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TMR16B0TC	R/W	0x008	Timer Counter (TC). The 16-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
TMR16B0PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
TMR16B0PC	R/W	0x010	Prescale Counter (PC). The 16-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
TMR16B0MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
TMR16B0MR0	R/W	0x018	Match Register 0 (MR0). MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0
TMR16B0MR1	R/W	0x01C	Match Register 1 (MR1). See MR0 description.	0
TMR16B0MR2	R/W	0x020	Match Register 2 (MR2). See MR0 description.	0
TMR16B0MR3	R/W	0x024	Match Register 3 (MR3). See MR0 description.	0
TMR16B0CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
TMR16B0CR0	RO	0x02C	Capture Register 0 (CR0). CR0 is loaded with the value of TC when there is an event on the CT16B0_CAP0 input.	0
TMR16B0EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT16B0_MAT[2:0].	0
-	-	0x040 - 0x06C	reserved	-
TMR16B0CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
TMR16B0PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT16B0_MAT[2:0].	0

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Table 246. Register overview: 16-bit counter/timer 1 CT16B1 (base address 0x4001 0000)

Name	Access	Address offset	Description	Reset value[1]
TMR16B1IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TMR16B1TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TMR16B1TC	R/W	0x008	Timer Counter (TC). The 16-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
TMR16B1PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
TMR16B1PC	R/W	0x010	Prescale Counter (PC). The 16-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
TMR16B1MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
TMR16B1MR0	R/W	0x018	Match Register 0 (MR0). MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0
TMR16B1MR1	R/W	0x01C	Match Register 1 (MR1). See MR0 description.	0
TMR16B1MR2	R/W	0x020	Match Register 2 (MR2). See MR0 description.	0
TMR16B1MR3	R/W	0x024	Match Register 3 (MR3). See MR0 description.	0
TMR16B1CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
TMR16B1CR0	RO	0x02C	Capture Register 0 (CR0). CR0 is loaded with the value of TC when there is an event on the CT16B1_CAP0 input.	0
TMR16B1EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT16B1_MAT[1:0].	0
-	-	0x040 - 0x06C	reserved	-
TMR16B1CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
TMR16B1PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT16B1_MAT[1:0].	0

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

14.8.1 Interrupt Register (TMR16B0IR and TMR16B1IR)

The Interrupt Register (IR) consists of four bits for the match interrupts and one bit for the capture interrupt. If an interrupt is generated then the corresponding bit in the IR will be HIGH. Otherwise, the bit will be LOW. Writing a logic one to the corresponding IR bit will reset the interrupt. Writing a zero has no effect.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Table 247. Interrupt Register (TMR16B0IR - address 0x4000 C000 and TMR16B1IR - address 0x4001 0000) bit description

Bit	Symbol	Description	Reset value
0	MR0 Interrupt	Interrupt flag for match channel 0.	0
1	MR1 Interrupt	Interrupt flag for match channel 1.	0
2	MR2 Interrupt	Interrupt flag for match channel 2.	0
3	MR3 Interrupt	Interrupt flag for match channel 3.	0
4	CR0 Interrupt	Interrupt flag for capture channel 0 event.	0
31:5	-	Reserved	-

14.8.2 Timer Control Register (TMR16B0TCR and TMR16B1TCR)

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 248. Timer Control Register (TMR16B0TCR - address 0x4000 C004 and TMR16B1TCR - address 0x4001 0004) bit description

Bit	Symbol	Description	Reset value
0	Counter Enable	When one, the Timer Counter and Prescale Counter are enabled for counting. When zero, the counters are disabled.	0
1	Counter Reset	When one, the Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	0
31:2	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.8.3 Timer Counter (TMR16B0TC - address 0x4000 C008 and TMR16B1TC - address 0x4001 0008)

The 16-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count. Unless it is reset before reaching its upper limit, the TC will count up through the value 0x0000 FFFF and then wrap back to the value 0x0000 0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

14.8.4 Prescale Register (TMR16B0PR - address 0x4000 C00C and TMR16B1PR - address 0x4001 000C)

The 16-bit Prescale Register specifies the maximum value for the Prescale Counter.

14.8.5 Prescale Counter register (TMR16B0PC - address 0x4000 C010 and TMR16B1PC - address 0x4001 0010)

The 16-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

User manual

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

14.8.6 Match Control Register (TMR16B0MCR and TMR16B1MCR)

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in Table 249.

Table 249. Match Control Register (TMR16B0MCR - address 0x4000 C014 and TMR16B1MCR - address 0x4001 0014) bit description

Bit	Symbol	Value	Description	Reset value
0	MR0I	1	Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		0	This interrupt is disabled	
1	MR0R	1	Reset on MR0: the TC will be reset if MR0 matches it.	0
		0	Feature disabled.	
2	MR0S	1	Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		0	Feature disabled.	
3	MR1I	1	Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		0	This interrupt is disabled	
4	MR1R	1	Reset on MR1: the TC will be reset if MR1 matches it.	0
		0	Feature disabled.	
5 MR1S	MR1S	1	Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		0	Feature disabled.	
6	MR2I	1	Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		0	This interrupt is disabled	
7	MR2R	1	Reset on MR2: the TC will be reset if MR2 matches it.	0
		0	Feature disabled.	
8	MR2S	1	Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		0	Feature disabled.	
9	MR3I	1	Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		0	This interrupt is disabled	
10	MR3R	1	Reset on MR3: the TC will be reset if MR3 matches it.	0
		0	Feature disabled.	
11	MR3S	1	Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		0	Feature disabled.	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

14.8.7 Match Registers (TMR16B0MR0/1/2/3 - addresses 0x4000 C018/1C/20/24 and TMR16B1MR0/1/2/3 - addresses 0x4001 0018/1C/20/24)

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

14.8.8 Capture Control Register (TMR16B0CCR and TMR16B1CCR)

The Capture Control Register is used to control whether the Capture Register is loaded with the value in the Counter/timer when the capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the description below, "n" represents the Timer number, 0 or 1.

Table 250. Capture Control Register (TMR16B0CCR - address 0x4000 C028 and TMR16B1CCR - address 0x4001 0028) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE	1	Capture on CT16Bn_CAP0 rising edge: a sequence of 0 then 1 on CT16Bn_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		0	This feature is disabled.	
1	CAP0FE	1	Capture on CT16Bn_CAP0 falling edge: a sequence of 1 then 0 on CT16Bn_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		0	This feature is disabled.	
2	CAP0I	1	Interrupt on CT16Bn_CAP0 event: a CR0 load due to a CT16Bn_CAP0 event will generate an interrupt.	0
		0	This feature is disabled.	
31:3	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.8.9 Capture Register (CT16B0CR0 - address 0x4000 C02C and CT16B1CR0 - address 0x4001 002C)

Each Capture register is associated with a device pin and may be loaded with the counter/timer value when a specified event occurs on that pin. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

14.8.10 External Match Register (TMR16B0EMR and TMR16B1EMR)

The External Match Register provides both control and status of the external match channels and external match pins CT16B0_MAT[2:0] and CT16B1_MAT[1:0].

If the match outputs are configured as PWM output in the PWMCON registers (Section 14.8.12), the function of the external match registers is determined by the PWM rules (Section 14.8.13 "Rules for single edge controlled PWM outputs" on page 259).

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Table 251. External Match Register (TMR16B0EMR - address 0x4000 C03C and TMR16B1EMR - address 0x4001 003C) bit description

Bit	Symbol	Description	Reset value
0	EM0	External Match 0. This bit reflects the state of output CT16B0_MAT0/CT16B1_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT16B0_MAT0/CT16B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
1	EM1	External Match 1. This bit reflects the state of output CT16B0_MAT1/CT16B1_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT16B0_MAT1/CT16B1_MAT1 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
2	EM2	External Match 2. This bit reflects the state of output CT16B0_MAT2 or match channel 2, whether or not this output is connected to its pin. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output. This bit is driven to the CT16B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH). Note that on counter/timer 0 this match channel is not pinned out.	0
3	EM3	External Match 3. This bit reflects the state of output of match channel 3. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output. There is no output pin available for this channel on either of the 16-bit timers.	0
5:4	EMC0	External Match Control 0. Determines the functionality of External Match 0. <u>Table 252</u> shows the encoding of these bits.	00
7:6	EMC1	External Match Control 1. Determines the functionality of External Match 1. <u>Table 252</u> shows the encoding of these bits.	00
9:8	EMC2	External Match Control 2. Determines the functionality of External Match 2. <u>Table 252</u> shows the encoding of these bits.	00
11:10	EMC3	External Match Control 3. Determines the functionality of External Match 3. <u>Table 252</u> shows the encoding of these bits.	00
31:12	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 252. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
00	Do Nothing.
01	Clear the corresponding External Match bit/output to 0 (CT16Bn_MATm pin is LOW if pinned out).
10	Set the corresponding External Match bit/output to 1 (CT16Bn_MATm pin is HIGH if pinned out).
11	Toggle the corresponding External Match bit/output.

14.8.11 Count Control Register (TMR16B0CTCR and TMR16B1CTCR)

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the pin and edge(s) for counting.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

When Counter Mode is chosen as a mode of operation, the CAP input (selected by the CTCR bits 3:2) is sampled on every rising edge of the PCLK clock. After comparing two consecutive samples of this CAP input, one of the following four events is recognized: rising edge, falling edge, either of edges or no changes in the level of the selected CAP input. Only if the identified event occurs, and the event corresponds to the one selected by bits 1:0 in the CTCR register, will the Timer Counter register be incremented.

Effective processing of the externally supplied clock to the counter has some limitations. Since two successive rising edges of the PCLK clock are used to identify only one edge on the CAP selected input, the frequency of the CAP input can not exceed one half of the PCLK clock. Consequently, duration of the HIGH/LOW levels on the same CAP input in this case can not be shorter than $1/(2 \times PCLK)$.

Table 253. Count Control Register (TMR16B0CTCR - address 0x4000 C070 and TMR16B1CTCR - address 0x4001 0070) bit description

Bit	Symbol	Value	Description	Reset value		
1:0	Counter/ Timer Mode		This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	00		
		00	Timer Mode: every rising PCLK edge			
		01	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.			
			10	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.		
		11	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.			
3:2	Count Input Select				In counter mode (when bits 1:0 in this register are not 00), select pin CT16Bn_CAP0 to be sampled for clocking:	00
		00	Note: If Counter mode is selected in the CTCR register, bits 2:0 in the Capture Control Register (CCR) must be programmed as 000.			
		01	Reserved.			
		10	Reserved.			
		11	Reserved.			
31:4	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA		

14.8.12 PWM Control register (TMR16B0PWMC and TMR16B1PWMC)

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

For timer 0, three single-edge controlled PWM outputs can be selected on the CT16B0_MAT[2:0] outputs. For timer 1, two single-edged PWM outputs can be selected on the CT16B1_Mat[1:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Table 254. PWM Control Register (TMR16B0PWMC - address 0x4000 C074 and TMR16B1PWMC- address 0x4001 0074) bit description

		<u> </u>	
Bit	Symbol	Description	Reset value
0	PWM enable	When one, PWM mode is enabled for CT16Bn_MAT0. When zero, CT16Bn_MAT0 is controlled by EM0.	0
1	PWM enable	When one, PWM mode is enabled for CT16Bn_MAT1. When zero, CT16Bn_MAT1 is controlled by EM1.	0
2	PWM enable	When one, PWM mode is enabled for match channel 2 or pin CT16B0_MAT2. When zero, match channel 2 or pin CT16B0_MAT2 is controlled by EM2. Match channel 2 is not pinned out on timer 1.	0
3	PWM enable	When one, PWM mode is enabled for match channel 3match channel 3. When zero, match channel 3 is controlled by EM3. Match channel 3 is not pinned out on timer 1.	0
		Note: It is recommended to use this channel match channel 3 to set the PWM cycle because it is not pinned out.	
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.8.13 Rules for single edge controlled PWM outputs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared on the next start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick. Therefore, the PWM output will always consist of a one clock tick wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to serve as PWM outputs, the timer reset (MRnR) and timer stop (MRnS) bits in the Match Control Register MCR must be set to 0 except for the match register setting the PWM cycle length. For this register, set the MRnR bit to 1 to enable the timer reset when the timer value matches the value of the corresponding match register.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

Fig 45. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR3) and MAT3:0 enabled as PWM outputs by the PWCON register.

14.9 Example timer operation

<u>Figure 46</u> shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

<u>Figure 47</u> shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.

Chapter 14: LPC13xx 16-bit timer/counters (CT16B0/1)

14.10 Architecture

The block diagram for counter/timer0 and counter/timer1 is shown in Figure 48.

UM10375

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Rev. 2 — 7 July 2010

User manual

15.1 How to read this chapter

The 32-bit timer blocks are identical for all LPC13xx parts.

15.2 Basic configuration

The CT32B0/1 are configured using the following registers:

- 1. Pins: The CT32B0/1 pins must be configured in the IOCONFIG register block (Section 6.4.1).
- 2. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 9 and bit 10 (Table 23).

15.3 Features

- Two 32-bit counter/timers with a programmable 32-bit prescaler.
- Counter or Timer operation.
- One 32-bit capture channel that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- Four 32-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Four external outputs corresponding to match registers with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- For each timer, up to four match registers can be configured as PWM allowing to use up to three match outputs as single edge controlled PWM outputs.

15.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- · Free running timer
- Pulse Width Modulator via match outputs

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

15.5 Description

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, three match registers can be used to provide a single-edge controlled PWM output on the match output pins. One match register is used to control the PWM cycle length.

Remark: 32-bit counter/timer0 (CT32B0) and 32-bit counter/timer1 (CT32B1) are functionally identical except for the peripheral base address.

15.6 Pin description

Table 255 gives a brief summary of each of the counter/timer related pins.

Table 255. Counter/timer pin description

Pin	Туре	Description
CT32B0_CAP0 CT32B1_CAP0	Input	Capture Signals: A transition on a capture pin can be configured to load one of the Capture Registers with the value in the Timer Counter and optionally generate an interrupt.
		The counter/timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see Section 15.8.11 "Count Control Register (TMR32B0CTCR and TMR32B1TCR)" on page 269.
CT32B0_MAT[3:0] CT32B1_MAT[3:0]	Output	External Match Output of CT32B0/1: When a match register TMR32B0/1MR3:0 equals the timer counter (TC), this output can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control register (PWMCON) control the functionality of this output.

15.7 Clocking and power control

The peripheral clocks (PCLK) to the 32-bit timers are provided by the system clock (see <u>Figure 3</u>). These clocks can be disabled through bits 9 and 10 in the SYSAHBCLKCTRL register (<u>Table 23</u>) for power savings.

15.8 Register description

32-bit counter/timer0 contains the registers shown in <u>Table 256</u> and 32-bit counter/timer1 contains the registers shown in <u>Table 257</u>. More detailed descriptions follow.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Table 256. Register overview: 32-bit counter/timer 0 CT32B0 (base address 0x4001 4000)

Name	Access	Address offset	Description	Reset value[1]
TMR32B0IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TMR32B0TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TMR32B0TC	R/W	0x008	Timer Counter (TC). The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
TMR32B0PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
TMR32B0PC	R/W	0x010	Prescale Counter (PC). The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
TMR32B0MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
TMR32B0MR0	R/W	0x018	Match Register 0 (MR0). MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0
TMR32B0MR1	R/W	0x01C	Match Register 1 (MR1). See MR0 description.	0
TMR32B0MR2	R/W	0x020	Match Register 2 (MR2). See MR0 description.	0
TMR32B0MR3	R/W	0x024	Match Register 3 (MR3). See MR0 description.	0
TMR32B0CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
TMR32B0CR0	RO	0x02C	Capture Register 0 (CR0). CR0 is loaded with the value of TC when there is an event on the CT32B0_CAP0 input.	0
TMR32B0EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT32B0_MAT[3:0].	0
-	-	0x040 - 0x06C	reserved	-
TMR32B0CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
TMR32B0PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT32B0_MAT[3:0].	0

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Table 257. Register overview: 32-bit counter/timer 1 CT32B1 (base address 0x4001 8000)

Name	Access	Address offset	Description	Reset value[1]
TMR32B1IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TMR32B1TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TMR32B1TC	R/W	0x008	Timer Counter (TC). The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
TMR32B1PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
TMR32B1PC	R/W	0x010	Prescale Counter (PC). The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
TMR32B1MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
TMR32B1MR0	R/W	0x018	Match Register 0 (MR0). MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0
TMR32B1MR1	R/W	0x01C	Match Register 1 (MR1). See MR0 description.	0
TMR32B1MR2	R/W	0x020	Match Register 2 (MR2). See MR0 description.	0
TMR32B1MR3	R/W	0x024	Match Register 3 (MR3). See MR0 description.	0
TMR32B1CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
TMR32B1CR0	RO	0x02C	Capture Register 0 (CR0). CR0 is loaded with the value of TC when there is an event on the CT32B1_CAP0 input.	0
TMR32B1EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT32B1_MAT[3:0].	0
-	-	0x040 - 0x06C	reserved	-
TMR32B1CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
TMR32B1PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT32B1_MAT[3:0].	0

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

15.8.1 Interrupt Register (TMR32B0IR and TMR32B1IR)

The Interrupt Register consists of four bits for the match interrupts and one bit for the capture interrupts. If an interrupt is generated then the corresponding bit in the IR will be HIGH. Otherwise, the bit will be LOW. Writing a logic one to the corresponding IR bit will reset the interrupt. Writing a zero has no effect.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Table 258: Interrupt Register (TMR32B0IR - address 0x4001 4000 and TMR32B1IR - address 0x4001 8000) bit description

Bit	Symbol	Description	Reset value
0	MR0 Interrupt	Interrupt flag for match channel 0.	0
1	MR1 Interrupt	Interrupt flag for match channel 1.	0
2	MR2 Interrupt	Interrupt flag for match channel 2.	0
3	MR3 Interrupt	Interrupt flag for match channel 3.	0
4	CR0 Interrupt	Interrupt flag for capture channel 0 event.	0
31:5	-	Reserved	-

15.8.2 Timer Control Register (TMR32B0TCR and TMR32B1TCR)

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 259: Timer Control Register (TMR32B0TCR - address 0x4001 4004 and TMR32B1TCR - address 0x4001 8004) bit description

Bit	Symbol	Description	Reset value
0	Counter Enable	When one, the Timer Counter and Prescale Counter are enabled for counting. When zero, the counters are disabled.	0
1	Counter Reset	When one, the Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	0
31:2	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.3 Timer Counter (TMR32B0TC - address 0x4001 4008 and TMR32B1TC - address 0x4001 8008)

The 32-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count. Unless it is reset before reaching its upper limit, the TC will count up through the value 0xFFFF FFFF and then wrap back to the value 0x0000 0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

15.8.4 Prescale Register (TMR32B0PR - address 0x4001 400C and TMR32B1PR - address 0x4001 800C)

The 32-bit Prescale Register specifies the maximum value for the Prescale Counter.

15.8.5 Prescale Counter Register (TMR32B0PC - address 0x4001 4010 and TMR32B1PC - address 0x4001 8010)

The 32-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

15.8.6 Match Control Register (TMR32B0MCR and TMR32B1MCR)

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in Table 260.

Table 260: Match Control Register (TMR32B0MCR - address 0x4001 4014 and TMR32B1MCR - address 0x4001 8014) bit description

Bit	Symbol	Value	Description	Reset value
0	MR0I	1	Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		0	This interrupt is disabled	
1	MR0R	1	Reset on MR0: the TC will be reset if MR0 matches it.	0
		0	Feature disabled.	
2	MR0S	1	Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		0	Feature disabled.	
3	MR1I	1	Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		0	This interrupt is disabled	
4	MR1R	1	Reset on MR1: the TC will be reset if MR1 matches it.	0
		0	Feature disabled.	
5 MR1S	MR1S	1	Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		0	Feature disabled.	
6	MR2I	1	Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		0	This interrupt is disabled	
7	MR2R	1	Reset on MR2: the TC will be reset if MR2 matches it.	0
		0	Feature disabled.	
8	MR2S	1	Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		0	Feature disabled.	
9	MR3I	1	Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		0	This interrupt is disabled	
10	MR3R	1	Reset on MR3: the TC will be reset if MR3 matches it.	0
		0	Feature disabled.	
11	MR3S	1	Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		0	Feature disabled.	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

15.8.7 Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

15.8.8 Capture Control Register (TMR32B0CCR and TMR32B1CCR)

The Capture Control Register is used to control whether the Capture Register is loaded with the value in the Timer Counter when the capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the description below, "n" represents the Timer number, 0 or 1.

Table 261: Capture Control Register (TMR32B0CCR - address 0x4001 4028 and TMR32B1CCR - address 0x4001 8028) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE	1	Capture on CT32Bn_CAP0 rising edge: a sequence of 0 then 1 on CT32Bn_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		0	This feature is disabled.	
1	CAP0FE	1	Capture on CT32Bn_CAP0 falling edge: a sequence of 1 then 0 on CT32Bn_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		0	This feature is disabled.	
2	CAP0I	1	Interrupt on CT32Bn_CAP0 event: a CR0 load due to a CT32Bn_CAP0 event will generate an interrupt.	0
		0	This feature is disabled.	
31:3	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.9 Capture Register (TMR32B0CR0 - address 0x4001 402C and TMR32B1CR0 - address 0x4001 802C)

Each Capture register is associated with a device pin and may be loaded with the Timer Counter value when a specified event occurs on that pin. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

15.8.10 External Match Register (TMR32B0EMR and TMR32B1EMR)

The External Match Register provides both control and status of the external match pins CAP32Bn_MAT[3:0].

If the match outputs are configured as PWM output, the function of the external match registers is determined by the PWM rules (Section 15.8.13 "Rules for single edge controlled PWM outputs" on page 271).

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Table 262: External Match Register (TMR32B0EMR - address 0x4001 403C and TMR32B1EMR - address0x4001 803C) bit description

Bit	Symbol Description		
	Cy	2000p	Reset value
0	EM0	External Match 0. This bit reflects the state of output CT32Bn_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT32B0_MAT0/CT32B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
1	EM1	External Match 1. This bit reflects the state of output CT32Bn_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT32B0_MAT1/CT32B1_MAT1 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
2	EM2	External Match 2. This bit reflects the state of output CT32Bn_MAT2, whether or not this output is connected to its pin. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output. This bit is driven to the CT32B0_MAT2/CT32B1_MAT2 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
3	EM3	External Match 3. This bit reflects the state of output CT32Bn_MAT3, whether or not this output is connected to its pin. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output. This bit is driven to the CT32B0_MAT3/CT32B1_MAT3 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
5:4	EMC0	External Match Control 0. Determines the functionality of External Match 0. <u>Table 263</u> shows the encoding of these bits.	00
7:6	EMC1	External Match Control 1. Determines the functionality of External Match 1. <u>Table 263</u> shows the encoding of these bits.	00
9:8	EMC2	External Match Control 2. Determines the functionality of External Match 2. <u>Table 263</u> shows the encoding of these bits.	00
11:10	EMC3	External Match Control 3. Determines the functionality of External Match 3. <u>Table 263</u> shows the encoding of these bits.	00
31:12	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 263. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
00	Do Nothing.
01	Clear the corresponding External Match bit/output to 0 (CT32Bn_MATm pin is LOW if pinned out).
10	Set the corresponding External Match bit/output to 1 (CT32Bn_MATm pin is HIGH if pinned out).
11	Toggle the corresponding External Match bit/output.

15.8.11 Count Control Register (TMR32B0CTCR and TMR32B1TCR)

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the pin and edge(s) for counting.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

When Counter Mode is chosen as a mode of operation, the CAP input (selected by the CTCR bits 3:2) is sampled on every rising edge of the PCLK clock. After comparing two consecutive samples of this CAP input, one of the following four events is recognized: rising edge, falling edge, either of edges or no changes in the level of the selected CAP input. Only if the identified event occurs, and the event corresponds to the one selected by bits 1:0 in the CTCR register, will the Timer Counter register be incremented.

Effective processing of the externally supplied clock to the counter has some limitations. Since two successive rising edges of the PCLK clock are used to identify only one edge on the CAP selected input, the frequency of the CAP input can not exceed one half of the PCLK clock. Consequently, duration of the HIGH/LOW levels on the same CAP input in this case can not be shorter than $1/(2 \times PCLK)$.

Table 264: Count Control Register (TMR32B0CTCR - address 0x4001 4070 and TMR32B1TCR - address 0x4001 8070) bit description

			or of our of bit description	
Bit	Symbol	Value	Description	Reset value
1:0	Counter/ Timer Mode		This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	00
		00	Timer Mode: every rising PCLK edge	
		01	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.	
		10	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.	
		11	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.	
3:2	Count Input		When bits 1:0 in this register are not 00, these bits select which CAP pin is sampled for clocking:	00
	Select		CT32Bn_	
		00	CAP0	
		01	Reserved	
		10	Reserved	
		11	Reserved	
			Note: If Counter mode is selected in the TnCTCR, the 3 bits for that input in the Capture Control Register (TnCCR) must be programmed as 000.	
31:4	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.12 PWM Control Register (TMR32B0PWMC and TMR32B1PWMC)

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

For each timer, a maximum of three-single edge controlled PWM outputs can be selected on the MATn[2:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to

User manual

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Table 265: PWM Control Register (TMR32B0PWMC - 0x4001 4074 and TMR32B1PWMC - 0x4001 8074) bit description

Bit	Symbol	Description	Reset value
0	PWM enable	When one, PWM mode is enabled for CT32Bn_MAT0. When zero, CT32Bn_MAT0 is controlled by EM0.	0
1	PWM enable	When one, PWM mode is enabled for CT32Bn_MAT1. When zero, CT32Bn_MAT1 is controlled by EM1.	0
2	PWM enable	When one, PWM mode is enabled for CT32Bn_MAT2. When zero, CT32Bn_MAT2 is controlled by EM2.	0
3	PWM enable	When one, PWM mode is enabled for CT32Bn_MAT3. When zero, CT32Bn_MAT3 is controlled by EM3.	0
		Note: It is recommended to use match channel 3 to set the PWM cycle.	
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.13 Rules for single edge controlled PWM outputs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared with the start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick after the timer reaches the match value. Therefore, the PWM output will always consist of a one clock tick wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to function as PWM outputs, the timer reset (MRnR) and timer stop (MRnS) bits in the Match Control Register MCR must be set to 0 except for the match register setting the PWM cycle length. For this register, set the MRnR bit to 1 to enable the timer reset when the timer value matches the value of the corresponding match register.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

Fig 49. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR3) and MAT3:0 enabled as PWM outputs by the PWCON register.

15.9 Example timer operation

<u>Figure 50</u> shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

<u>Figure 51</u> shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.

Chapter 15: LPC13xx 32-bit timer/counters (CT32B0/1)

15.10 Architecture

The block diagram for 32-bit counter/timer0 and 32-bit counter/timer1 is shown in Figure 52.

UM10375

Chapter 16: LPC13xx System tick timer

Rev. 2 — 7 July 2010

User manual

16.1 How to read this chapter

The system tick timer (SysTick timer) is part of the ARM Cortex-M3 core and is identical for all LPC13xx parts.

16.2 Basic configuration

The system tick timer is configured using the following registers:

- 1. Pins: The system tick timer uses no external pins.
- 2. Power and peripheral clock: The system tick timer is enabled through the SysTick control register (<u>Table 267</u>). The system tick timer clock can be selected from the Systick timer clock divider in the system configuration block (<u>Table 27</u>) or the system clock (see <u>Table 267</u>).

16.3 Features

- 24-bit timer.
- Intended to time intervals of 10 ms.
- Uses dedicated exception vector.
- Clocked internally by the CPU system clock or dedicated system tick timer clock.

16.4 Description

The System Tick Timer is an integral part of the Cortex-M3. The System Tick Timer is intended to generate a fixed 10 millisecond interrupt for use by an operating system or other system management software.

Since the System Tick Timer is a part of the Cortex-M3, it facilitates porting of software by providing a standard timer that is available on Cortex-M3 based devices.

Refer to the Cortex-M3 User Guide for details.

Chapter 16: LPC13xx System tick timer

16.5 Operation

The System Tick Timer is a 24-bit timer that counts down to zero and generates an interrupt. The intent is to provide a fixed 10 millisecond time interval between interrupts. The System Tick Timer is clocked from the CPU clock. In order to generate recurring interrupts at a specific interval, the LOAD register must be initialized with the correct value for the desired interval.

The block diagram of the System Tick Timer is shown below in the Figure 53.

Fig 53. System tick timer block diagram

16.6 Register description

Table 266. Register overview: system tick timer (base address 0xE000 E000)

Name	Access	Address offset	Description	Reset value[1]
CTRL	R/W	0x010	System Timer Control and status register	0x0
LOAD	R/W	0x014	System Timer Reload value register	0x0
VAL	R/W	0x018	System Timer Current value register	0x0
CALIB	RO	0x01C	System Timer Calibration value register	0x0000 0004

^[1] Reset Value reflects the data stored in used bits only. It does not include content of reserved bits.

Chapter 16: LPC13xx System tick timer

16.6.1 System Timer Control and status register (CTRL - 0xE000 E010)

The CTRL register contains control information for the System Tick Timer, and provides a status flag.

Table 267. System Timer Control and status register (CTRL - 0xE000 E010) bit description

Bit	Symbol	Description	Reset value
0	ENABLE	System Tick counter enable. When 1, the counter is enabled. When 0, the counter is disabled.	0
1	TICKINT	System Tick interrupt enable. When 1, the System Tick interrupt is enabled. When 0, the System Tick interrupt is disabled. When enabled, the interrupt is generated when the System Tick counter counts down to 0.	0
2	CLKSOURCE	System Tick clock source selection. When 1, the system clock (CPU) clock is selected. When 0, the output clock from the system tick clock divider (SYSTICKDIV) is selected as the reference clock. In this case, the core clock must be at least 2.5 times faster than the reference clock otherwise the count values are unpredictable.	0
15:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
16	COUNTFLAG	System Tick counter flag. This flag is set when the System Tick counter counts down to 0, and is cleared by reading this register.	0
31:17	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

16.6.2 System Timer Reload value register (LOAD - 0xE000 E014)

The LOAD register is set to the value that will be loaded into the System Tick Timer whenever it counts down to zero. This register is loaded by software as part of timer initialization. The CALIB register may be read and used as the value for LOAD if the CPU or external clock is running at the frequency intended for use with the CALIB value.

Table 268. System Timer Reload value register (LOAD - 0xE000 E014) bit description

Bit	Symbol	Description	Reset value
23:0	RELOAD	This is the value that is loaded into the System Tick counter when it counts down to 0.	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

16.6.3 System Timer Current value register (VAL - 0xE000 E018)

The VAL register returns the current count from the System Tick counter when it is read by software.

Chapter 16: LPC13xx System tick timer

Table 269. System Timer Current value register (VAL - 0xE000 E018) bit description

Bit	Symbol	Description	Reset value
23:0	CURRENT	Reading this register returns the current value of the System Tick counter. Writing any value clears the System Tick counter and the COUNTFLAG bit in STCTRL.	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

16.6.4 System Timer Calibration value register (CALIB - 0xE000 E01C)

Table 270. System Timer Calibration value register (CALIB - 0xE000 E01C) bit description

Bit	Symbol	Value	Description	Reset value
23:0	TENMS		Factory preset	0x4
29:24	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
30	SKEW		Indicates whether the value of TENMS is precise. This can affect the suitability of SysTick as a software real time clock.	0
31	NOREF		Indicates whether a separate reference clock is available. This value is factory preset.	0

Chapter 16: LPC13xx System tick timer

16.7 Example timer calculations

To use the system tick timer, do the following:

- Program the LOAD register with the reload value RELOAD to obtain the desired time interval.
- 2. Clear the VAL register by writing to it. This ensures that the timer will count from the LOAD value rather than an arbitrary value when the timer is enabled.

The following examples illustrate selecting SysTick timer reload values for different system configurations. All of the examples calculate an interrupt interval of 10 milliseconds, as the SysTick timer is intended to be used, and there are no rounding errors.

System clock = 72 MHz

Program the CTRL register with the value 0x7 which selects the system clock as the clock source and enables the SysTick timer and the SysTick timer interrupt.

RELOAD = (system clock frequency \times 10 ms) -1 = (72 MHz \times 10 ms) -1 = 720000 -1 = 719999 = 0x000A FC7F

System tick timer clock = 24 MHz

Program the CTRL register with the value 0x3 which selects the clock from the system tick clock divider (use DIV = 3) as the clock source and enables the SysTick timer and the SysTick timer interrupt.

RELOAD = (system tick timer clock frequency \times 10 ms) -1 = (24 MHz \times 10 ms) -1 = 240000 -1 = 239999 = 0x0003A97F

System clock = 12 MHz

Program the CTRL register with the value 0x7 which selects the system clock as the clock source and enables the SysTick timer and the SysTick timer interrupt.

In this case the system clock is derived from the IRC clock.

RELOAD = (system clock frequency \times 10 ms) -1 = (12 MHz \times 10 ms) -1 = 120000 -1 = 119999 = 0x0001 D4BF

UM10375

Chapter 17: LPC13xx WatchDog Timer (WDT)

Rev. 2 — 7 July 2010

User manual

17.1 How to read this chapter

The WDT block is identical for all LPC13xx parts.

17.2 Basic configuration

The WDT is configured using the following registers:

- 1. Pins: The WDT uses no external pins.
- 2. Power: In the SYSAHBCLKCTRL register, set bit 15 (Table 23).
- Peripheral clock: Select the WDT clock source (<u>Table 31</u>) and enable the WDT peripheral clock by writing to the WDTCLKDIV register (<u>Table 33</u>).

Remark: The frequency of the watchdog oscillator is undefined after reset. The watchdog oscillator frequency must be programmed by writing to the WDTOSCCTRL register (see Table 13) before using the watchdog oscillator for the WDT.

17.3 Features

- · Internally resets chip if not periodically reloaded.
- · Debug mode.
- Enabled by software but requires a hardware reset or a Watchdog reset/interrupt to be disabled.
- Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
- Flag to indicate Watchdog reset.
- Programmable 32 bit timer with internal pre-scaler.
- Selectable time period from (T_{WDCLK} \times 256 \times 4) to (T_{WDCLK} \times 2³² \times 4) in multiples of T_{WDCLK} \times 4.
- The Watchdog clock (WDCLK) source is selected in the syscon block from the Internal RC oscillator (IRC), the main clock, or the Watchdog oscillator, see <u>Table 13</u>. This gives a wide range of potential timing choices for Watchdog operation under different power reduction conditions. For increased reliability, it also provides the ability to run the Watchdog timer from an entirely internal source that is not dependent on an external crystal and its associated components and wiring.

17.4 Applications

The purpose of the Watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the Watchdog will generate a system reset if the user program fails to "feed" (or reload) the Watchdog within a predetermined amount of time.

Chapter 17: LPC13xx WatchDog Timer (WDT)

17.5 Description

The Watchdog consists of a divide by 4 fixed pre-scaler and a 32-bit counter. The clock is fed to the timer via a pre-scaler. The timer decrements when clocked. The minimum value from which the counter decrements is 0xFF. Setting a value lower than 0xFF causes 0xFF to be loaded in the counter. Hence the minimum Watchdog interval is $(T_{WDCLK} \times 256 \times 4)$ and the maximum Watchdog interval is $(T_{WDCLK} \times 2^{32} \times 4)$ in multiples of $(T_{WDCLK} \times 4)$. The Watchdog should be used in the following manner:

- 1. Set the Watchdog timer constant reload value in WDTC register.
- 2. Setup the Watchdog timer operating mode in WDMOD register.
- 3. Enable the Watchdog by writing 0xAA followed by 0x55 to the WDFEED register.
- 4. The Watchdog should be fed again before the Watchdog counter underflows to prevent reset/interrupt.

When the Watchdog is in the reset mode and the counter underflows, the CPU will be reset, loading the stack pointer and program counter from the vector table as in the case of external reset. The Watchdog time-out flag (WDTOF) can be examined to determine if the Watchdog has caused the reset condition. The WDTOF flag must be cleared by software.

17.6 Clocking and power control

The watchdog timer block uses two clocks: PCLK and WDCLK. PCLK is used for the APB accesses to the watchdog registers and is derived from the system clock (see <u>Figure 3</u>). The WDCLK is used for the watchdog timer counting and is derived from the wdt_clk in <u>Figure 3</u>. Several clocks can be used as a clock source for wdt_clk clock: the IRC, the watchdog oscillator, and the main clock. The clock source is selected in the syscon block (see <u>Table 31</u>). The WDCLK has its own clock divider (<u>Table 33</u>) which can also disable this clock.

There is some synchronization logic between these two clock domains. When the WDMOD and WDTC registers are updated by APB operations, the new value will take effect in 3 WDCLK cycles on the logic in the WDCLK clock domain. When the watchdog timer is counting on WDCLK, the synchronization logic will first lock the value of the counter on WDCLK and then synchronize it with the PCLK for reading as the WDTV register by the CPU.

The watchdog oscillator can be powered down in the PDRUNCFG register (<u>Table 52</u>) if it is not used. The clock to the watchdog register block (PCLK) can be disabled in the SYSAHBCLKCTRL register (<u>Table 23</u>) for power savings.

Remark: The frequency of the watchdog oscillator is undefined after reset. The watchdog oscillator frequency must be programmed by writing to the WDTOSCCTRL register (see Table 13) before using the watchdog oscillator for the WDT.

17.7 Register description

The Watchdog contains four registers as shown in Table 271 below.

UM10375

User manual

Chapter 17: LPC13xx WatchDog Timer (WDT)

Table 271. Register overview: Watchdog timer (base address 0x4000 4000)

Name	Access	Address offset	Description	Reset Value[1]
WDMOD	R/W	0x000	Watchdog mode register. This register contains the basic mode and status of the Watchdog Timer.	0
WDTC	R/W	0x004	Watchdog timer constant register. This register determines the time-out value.	0xFF
WDFEED	WO	0x008	Watchdog feed sequence register. Writing 0xAA followed by 0x55 to this register reloads the Watchdog timer with the value contained in WDTC.	NA
WDTV	RO	0x00C	Watchdog timer value register. This register reads out the current value of the Watchdog timer.	0xFF

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

17.7.1 Watchdog Mode register (WDMOD - 0x4000 0000)

The WDMOD register controls the operation of the Watchdog through the combination of WDEN and RESET bits. Note that a watchdog feed must be performed before any changes to the WDMOD register take effect.

Table 272. Watchdog Mode register (WDMOD - address 0x4000 4000) bit description

Bit	Symbol	Description	Reset Value
0	WDEN	WDEN Watchdog enable bit (Set Only). When 1, the watchdog timer is running.	0
1	WDRESET	WDRESET Watchdog reset enable bit (Set Only). When 1, a watchdog time-out will cause a chip reset.	0
2	WDTOF	WDTOF Watchdog time-out flag. Set when the watchdog timer times out, cleared by software.	0 (After any reset except WDT)
3	WDINT	WDINT Watchdog interrupt flag (Read Only, not clearable by software).	0
7:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31:8	-	reserved	-

Once the **WDEN** and/or **WDRESET** bits are set they can not be cleared by software. Both flags are cleared by reset or a Watchdog timer underflow.

WDTOF The Watchdog time-out flag is set when the Watchdog times out. This flag is cleared by software or any reset except the WDT reset.

WDINT The Watchdog interrupt flag is set when the Watchdog times out. This flag is cleared when any reset occurs. Once the watchdog interrupt is serviced, it can be disabled in the NVIC or the watchdog interrupt request will be generated indefinitely. the intent of the watchdog interrupt is to allow debugging watchdog activity without resetting the device when the watchdog overflows.

Watchdog reset or interrupt will occur any time the watchdog is running and has an operating clock source. Any clock source works in Sleep mode, and if a watchdog interrupt occurs in Sleep mode, it will wake up the device.

Chapter 17: LPC13xx WatchDog Timer (WDT)

Table 273. Watchdog operating modes selection

WDEN	WDRESET	Mode of Operation
0	X (0 or 1)	Debug/Operate without the Watchdog running.
1	0	Watchdog interrupt mode: debug with the Watchdog interrupt but no WDRESET enabled.
		When this mode is selected, a watchdog counter underflow will set the WDINT flag and the Watchdog interrupt request will be generated.
1	1	Watchdog reset mode: operate with the Watchdog interrupt and WDRESET enabled.
		When this mode is selected, a watchdog counter underflow will reset the microcontroller. Although the Watchdog interrupt is also enabled in this case (WDEN = 1) it will not be recognized since the watchdog reset will clear the WDINT flag.

17.7.2 Watchdog Timer Constant register (WDTC - 0x4000 4004)

The WDTC register determines the time-out value. Every time a feed sequence occurs the WDTC content is reloaded in to the Watchdog timer. It's a 32-bit register with 8 LSB set to 1 on reset. Writing values below 0xFF will cause 0x0000 00FF to be loaded to the WDTC. Thus the minimum time-out interval is $T_{WDCLK} \times 256 \times 4$.

Table 274. Watchdog Constant register (WDTC - address 0x4000 4004) bit description

Bit	Symbol	Description	Reset Value
31:0	Count	Watchdog time-out interval.	0x0000 00FF

17.7.3 Watchdog Feed register (WDFEED - 0x4000 4008)

Writing 0xAA followed by 0x55 to this register will reload the Watchdog timer with the WDTC value. This operation will also start the Watchdog if it is enabled via the WDMOD register. Setting the WDEN bit in the WDMOD register is not sufficient to enable the Watchdog. A valid feed sequence must be completed after setting WDEN before the Watchdog is capable of generating a reset. Until then, the Watchdog will ignore feed errors. After writing 0xAA to WDFEED, access to any Watchdog register other than writing 0x55 to WDFEED causes an immediate reset/interrupt when the Watchdog is enabled. The reset will be generated during the second PCLK following an incorrect access to a Watchdog register during a feed sequence.

Interrupts should be disabled during the feed sequence. An abort condition will occur if an interrupt happens during the feed sequence.

Table 275. Watchdog Feed register (WDFEED - address 0x4000 4008) bit description

Bit	Symbol	Description	Reset Value
7:0	Feed	Feed value should be 0xAA followed by 0x55.	NA
31:8	-	reserved	-

17.7.4 Watchdog Timer Value register (WDTV - 0x4000 400C)

The WDTV register is used to read the current value of Watchdog timer.

When reading the value of the 32-bit timer, the lock and synchronization procedure takes up to 6 WDCLK cycles plus 6 PCLK cycles, so the value of WDTV is older than the actual value of the timer when it's being read by the CPU.

Chapter 17: LPC13xx WatchDog Timer (WDT)

Table 276. Watchdog Timer Value register (WDTV - address 0x4000 000C) bit description

Bit	Symbol	Description	Reset Value
31:0	Count	Counter timer value.	0x0000 00FF

17.8 Block diagram

The block diagram of the Watchdog is shown below in the <u>Figure 54</u>. The synchronization logic (PCLK - WDCLK) is not shown in the block diagram.

UM10375

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

Rev. 2 — 7 July 2010

User manual

18.1 How to read this chapter

The ADC block is identical for all LPC13xx parts.

18.2 Basic configuration

The ADC is configured using the following registers:

- 1. Pins: The ADC pin functions are configured in the IOCONFIG register block (Section 6.4.1).
- Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 13 (<u>Table 23</u>). Power to the ADC at run-time is controlled through the PDRUNCFG register (<u>Table 52</u>).

18.3 Features

- 10-bit successive approximation Analog-to-Digital Converter (ADC).
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 to 3.6 V. Do not exceed the V_{DD} voltage level.
- 10-bit conversion time ≥ 2.44 μs.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition on input pin or Timer Match signal.
- Individual result registers for each A/D channel to reduce interrupt overhead.

18.4 Pin description

Table 277 gives a brief summary of the ADC related pins.

Table 277. ADC pin description

Pin	Type	Description
AD[7:0]	Input	Analog Inputs. The A/D converter cell can measure the voltage on any of these input signals.
		Remark: While the pins are 5 V tolerant in digital mode, the maximum input voltage must not exceed V_{DD} when the pins are configured as analog inputs.
V_{DD}	Input	V _{REF} ; Reference voltage.

The ADC function must be selected via the IOCON registers in order to get accurate voltage readings on the monitored pin. For a pin hosting an ADC input, it is not possible to have a have a digital function selected and yet get valid ADC readings. An inside circuit disconnects ADC hardware from the associated pin whenever a digital function is selected on that pin.

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

18.5 Clocking and power control

The peripheral clock to the ADC (PCLK) is provided by the system clock (see <u>Figure 3</u>). This clock can be disabled through bit 13 in the SYSAHBCLKCTRL register (<u>Table 23</u>) for power savings.

The ADC can be powered down at run-time using the PDRUNCFG register (Table 52).

Basic clocking for the A/D converters is determined by the peripheral ADC clock PCLK. A programmable divider is included in each converter to scale this clock to the 4.5 MHz (max) clock needed by the successive approximation process. An accurate conversion requires 11 clock cycles.

18.6 Register description

The ADC contains registers organized as shown in Table 278.

Table 278. Register overview: ADC (base address 0x4001 C000)

	_			
Name	Access	Address offset	Description	Reset Value[1]
AD0CR	R/W	0x000	A/D Control Register. The ADOCR register must be written to select the operating mode before A/D conversion can occur.	0x0000 0000
AD0GDR	R/W	0x004	A/D Global Data Register. Contains the result of the most recent A/D conversion.	NA
-	-	800x0	Reserved.	-
AD0INTEN	R/W	0x00C	A/D Interrupt Enable Register. This register contains enable bits that allow the DONE flag of each A/D channel to be included or excluded from contributing to the generation of an A/D interrupt.	0x0000 0100
AD0DR0	R/W	0x010	A/D Channel 0 Data Register. This register contains the result of the most recent conversion completed on channel 0	NA
AD0DR1	R/W	0x014	A/D Channel 1 Data Register. This register contains the result of the most recent conversion completed on channel 1.	NA
AD0DR2	R/W	0x018	A/D Channel 2 Data Register. This register contains the result of the most recent conversion completed on channel 2.	NA
AD0DR3	R/W	0x01C	A/D Channel 3 Data Register. This register contains the result of the most recent conversion completed on channel 3.	NA
AD0DR4	R/W	0x020	A/D Channel 4 Data Register. This register contains the result of the most recent conversion completed on channel 4.	NA
AD0DR5	R/W	0x024	A/D Channel 5 Data Register. This register contains the result of the most recent conversion completed on channel 5.	NA
AD0DR6	R/W	0x028	A/D Channel 6 Data Register. This register contains the result of the most recent conversion completed on channel 6.	NA
AD0DR7	R/W	0x02C	A/D Channel 7 Data Register. This register contains the result of the most recent conversion completed on channel 7.	NA
AD0STAT	RO	0x030	A/D Status Register. This register contains DONE and OVERRUN flags for all of the A/D channels, as well as the A/D interrupt flag.	0

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

18.6.1 A/D Control Register (AD0CR - 0x4001 C000)

The A/D Control Register provides bits to select A/D channels to be converted, A/D timing, A/D modes, and the A/D start trigger.

Table 279: A/D Control Register (AD0CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Reset Value
7:0	SEL		Selects which of the AD7:0 pins is (are) to be sampled and converted. Bit 0 selects Pin AD0, bit 1 selects pin AD1,, and bit 7 selects pin AD7. In software-controlled mode (BURST = 0), only one channel can be selected, i.e. only one of these bits should be 1. In hardware scan mode (BURST = 1), any numbers of channels can be selected, i.e any or all bits can be set to 1. If all bits are set to 0, channel 0 is selected automatically (SEL = $0x01$).	0x00
15:8	CLKDIV		The APB clock (PCLK) is divided by CLKDIV +1 to produce the clock for the ADC, which should be less than or equal to 4.5 MHz. Typically, software should program the smallest value in this field that yields a clock of 4.5 MHz or slightly less, but in certain cases (such as a high-impedance analog source) a slower clock may be desirable.	0
16	BURST	0	Software-controlled mode: Conversions are software-controlled and require 11 clocks.	0
		1	Hardware scan mode: The AD converter does repeated conversions at the rate selected by the CLKS field, scanning (if necessary) through the pins selected by 1s in the SEL field. The first conversion after the start corresponds to the least-significant bit set to 1 in the SEL field, then the next higher bits (pins) set to 1 are scanned if applicable. Repeated conversions can be terminated by clearing this bit, but the conversion in progress when this bit is cleared will be completed.	
			Important: START bits must be 000 when BURST = 1 or conversions will not start.	
19:17	CLKS		This field selects the number of clocks used for each conversion in Burst mode, and the number of bits of accuracy of the result in the LS bits of ADDR, between 11 clocks (10 bits) and 4 clocks (3 bits).	000
		000	11 clocks / 10 bits	
		001	10 clocks / 9 bits	
		010	9 clocks / 8 bits	
		011	8 clocks / 7 bits	
		100	7 clocks / 6 bits	
		101	6 clocks / 5 bits	
		110	5 clocks / 4 bits	
		111	4 clocks / 3 bits	
23:20	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

UM10375 NXP Semiconductors

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

Table 279: A/D Control Register (AD0CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Reset Value
26:24	START		When the BURST bit is 0, these bits control whether and when an A/D conversion is started:	0
		000	No start (this value should be used when clearing PDN to 0).	
		001	Start conversion now.	
		010	Start conversion when the edge selected by bit 27 occurs on PIO0_2/SSEL/CT16B0_CAP0.	
		011	Start conversion when the edge selected by bit 27 occurs on PIO1_5/DIR/CT32B0_CAP0.	
		100	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT0.	
		101	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT1.	
		110	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT0.	
		111	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT1.	
27	EDGE		This bit is significant only when the START field contains 010-111. In these cases:	0
		1	Start conversion on a falling edge on the selected CAP/MAT signal.	
		0	Start conversion on a rising edge on the selected CAP/MAT signal.	
31:28	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

18.6.2 A/D Global Data Register (AD0GDR - 0x4001 C004)

The A/D Global Data Register contains the result of the most recent A/D conversion. This includes the data, DONE, and Overrun flags, and the number of the A/D channel to which the data relates.

Table 280: A/D Global Data Register (AD0GDR - address 0x4001 C004) bit description

Bit	Symbol	Description	Reset Value
5:0	-	Reserved.	0
15:6	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin selected by the SEL field, divided by the voltage on the V_{DD} pin. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on $V_{SS},$ while $0x3FF$ indicates that the voltage on ADn was close to, equal to, or greater than that on $V_{REF}.$	X
23:16	-	Reserved.	0
26:24	CHN	These bits contain the channel from which the V_VRE bits were converted.	X
29:27	-	Reserved.	0
30	OVERR UN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the V_VREF bits.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read and when the ADCR is written. If the ADCR is written while a conversion is still in progress, this bit is set and a new conversion is started.	0

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

18.6.3 A/D Status Register (AD0STAT - 0x4001 C030)

The A/D Status register allows checking the status of all A/D channels simultaneously. The DONE and OVERRUN flags appearing in the ADDRn register for each A/D channel are mirrored in ADSTAT. The interrupt flag (the logical OR of all DONE flags) is also found in ADSTAT.

Table 281: A/D Status Register (AD0STAT - address 0x4001 C030) bit description

Bit	Symbol	Description	Reset Value
7:0	Done7:0	These bits mirror the DONE status flags that appear in the result register for each A/D channel.	0
15:8	Overrun7:0	These bits mirror the OVERRRUN status flags that appear in the result register for each A/D channel. Reading ADSTAT allows checking the status of all A/D channels simultaneously.	0
16	ADINT	This bit is the A/D interrupt flag. It is one when any of the individual A/D channel Done flags is asserted and enabled to contribute to the A/D interrupt via the ADINTEN register.	0
31:17	-	Reserved.	0

18.6.4 A/D Interrupt Enable Register (AD0INTEN - 0x4001 C00C)

This register allows control over which A/D channels generate an interrupt when a conversion is complete. For example, it may be desirable to use some A/D channels to monitor sensors by continuously performing conversions on them. The most recent results are read by the application program whenever they are needed. In this case, an interrupt is not desirable at the end of each conversion for some A/D channels.

Table 282: A/D Interrupt Enable Register (AD0INTEN - address 0x4001 C00C) bit description

Bit	Symbol	Description	Reset Value
7:0	ADINTEN 7:0	These bits allow control over which A/D channels generate interrupts for conversion completion. When bit 0 is one, completion of a conversion on A/D channel 0 will generate an interrupt, when bit 1 is one, completion of a conversion on A/D channel 1 will generate an interrupt, etc.	0x00
8	ADGINTEN	When 1, enables the global DONE flag in ADDR to generate an interrupt. When 0, only the individual A/D channels enabled by ADINTEN 7:0 will generate interrupts.	1
31:9	-	Reserved.	0

18.6.5 A/D Data Registers (AD0DR0 to AD0DR7 - 0x4001 C010 to 0x4001 C02C)

The A/D Data Register hold the result when an A/D conversion is complete, and also include the flags that indicate when a conversion has been completed and when a conversion overrun has occurred.

Chapter 18: LPC13xx Analog-to-Digital Converter (ADC)

Table 283: A/D Data Registers (AD0DR0 to AD0DR7 - addresses 0x4001 C010 to 0x4001 C02C) bit description

Bit	Symbol	Description	Reset Value
5:0	-	Reserved.	0
15:6	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin, divided by the voltage on the V_{REF} pin. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on V_{REF} , while 0x3FF indicates that the voltage on AD input was close to, equal to, or greater than that on V_{REF} .	NA
29:16	-	Reserved.	0
30	OVERRUN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the V_VREF bits. This bit is cleared by reading this register.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read.	0

18.7 Operation

18.7.1 Hardware-triggered conversion

If the BURST bit in the ADCR0 is 0 and the START field contains 010-111, the A/D converter will start a conversion when a transition occurs on a selected pin or timer match signal.

18.7.2 Interrupts

An interrupt is requested to the interrupt controller when the ADINT bit in the ADSTAT register is 1. The ADINT bit is one when any of the DONE bits of A/D channels that are enabled for interrupts (via the ADINTEN register) are one. Software can use the Interrupt Enable bit in the interrupt controller that corresponds to the ADC to control whether this results in an interrupt. The result register for an A/D channel that is generating an interrupt must be read in order to clear the corresponding DONE flag.

UM10375

Chapter 19: LPC13xx Flash memory programming firmware

Rev. 2 — 7 July 2010

User manual

19.1 How to read this chapter

See <u>Table 284</u> for different flash configurations and functionality. The LPC131x parts do not have an USB interface and only the UART ISP option is supported.

Table 284. LPC13xx flash configurations

Type number	Flash	ISP via USB	ISP via UART
LPC1311FHN33	8 kB	no	yes
LPC1313FBD48	32 kB	no	yes
LPC1313FHN33	32 kB	no	yes
LPC1342FHN33	16 kB	yes	yes
LPC1343FBD48	32 kB	yes	yes
LPC1343FHN33	32 kB	yes	yes

Remark: In addition to the ISP and IAP commands, a register can be accessed in the flash controller block to configure flash memory access times, see Section 19.16.

19.2 Bootloader

The bootloader controls initial operation after reset and also provides the means to program the flash memory. This could be initial programming of a blank device, erasure and re-programming of a previously programmed device, or programming of the flash memory by the application program in a running system.

The bootloader version can be read by ISP/IAP calls (see <u>Section 19.13.12</u> or <u>Section 19.14.6</u>) and is part of the chip marking for some LPC13xx parts (see <u>Table 285</u>).

Table 285. Bootloader versions

Part	Bootloader version read by ISP/IAP	Top-side marking ^[1]	Notes
LPC1311	5.1	no marking	-
LPC1313	5.1	no marking	-
LPC1342	5.2	1	See Section 19.2.1.
LPC1343	5.2	1	See Section 19.2.1.

^[1] Typical LPC134x devices have the following top-side marking: LPC1343x

XXXXXXX

xxYYWW<bootloader version>R[x]

19.2.1 Bootloader code version 5.2 notes

In bootloader version 5.2 (LPC134x parts), the mass storage device state machine uses an uninitialized variable. This has two consequences:

Chapter 19: LPC13xx Flash memory programming firmware

1. In the user code, the memory location must be initialized as follows to create a work-around for this issue:

```
*((unit32_t *)(0x1000 0054)) = 0x0;
```

2. If the USB ISP mode is entered on power-up (see <u>Section 19.3</u>), the memory is not initialized, and no user code is executed which could write to this memory location. Therefore the device times out when first connected to the Windows operating system, and the MSD disk only appears after a time-out and retry, which takes 45 sec or longer. A work-around for the time-out issue is not available.

19.3 Features

- In-System Programming: In-System programming (ISP) is programming or reprogramming the on-chip flash memory, using the bootloader software and UART serial port or the USB interface. This can be done when the part resides in the end-user board.
- In Application Programming: In-Application (IAP) programming is performing erase and write operation on the on-chip flash memory, as directed by the end-user application code.
- The LPC134x supports ISP from the USB port through enumeration as a Mass Storage Class (MSC) Device when connected to a USB host interface (Windows operating system only).
- Flash access times can be configured through a register in the flash controller block.
- Erase time for one sector is 100 ms \pm 5%. Programming time for one block of 256 bytes is 1 ms \pm 5%.

19.4 Description

The bootloader code is executed every time the part is powered on or reset (see Figure 55). The loader can either execute the ISP command handler or the user application code, or it can obtain the boot image as an attached MSC device through USB. A LOW level during reset at the PIOO_1 pin is considered an external hardware request to start the ISP command handler or the USB device enumeration without checking for a valid user code first. The state of PIOO_3 determines whether the UART or USB interface will be used:

- If PIO0_3 is sampled HIGH, the bootloader connects the LPC134x as a MSC USB device to a PC host. The LPC134x flash memory space is represented as a drive in the host's Windows operating system.
- If PIO0_3 is sampled LOW, the bootloader configures the UART serial port and calls the ISP command handler.

Remark: On the LPC131x parts (no USB), the state of pin PIO0_3 does not matter.

Assuming that power supply pins are at their nominal levels when the rising edge on RESET pin is generated, it may take up to 3 ms before PIO0_1 is sampled and the decision whether to continue with user code or ISP handler/USB is made. If PIO0_1 is sampled low and the watchdog overflow flag is set, the external hardware request to start the ISP command handler is ignored. If there is no request for the ISP command handler

Chapter 19: LPC13xx Flash memory programming firmware

execution (PIO0_1 is sampled HIGH after reset), a search is made for a valid user program. If a valid user program is found then the execution control is transferred to it. If a valid user program is not found, the auto-baud routine is invoked.

Remark: The sampling of pin PIOO_1 can be disabled through programming flash location 0x0000 02FC (see Section 19.12.1).

19.5 Memory map after any reset

The boot block is 16 kB in size and is located in the memory region starting from the address 0x1FFF 0000. The bootloader is designed to run from this memory area, but both the ISP and IAP software use parts of the on-chip RAM. The RAM usage is described later in this chapter. The interrupt vectors residing in the boot block of the on-chip flash memory also become active after reset, i.e., the bottom 512 bytes of the boot block are also visible in the memory region starting from the address 0x0000 0000.

19.6 Flash content protection mechanism

The LPC13xx is equipped with the Error Correction Code (ECC) capable Flash memory. The purpose of an error correction module is twofold. Firstly, it decodes data words read from the memory into output data words. Secondly, it encodes data words to be written to the memory. The error correction capability consists of single bit error correction with Hamming code.

The operation of ECC is transparent to the running application. The ECC content itself is stored in a flash memory not accessible by user's code to either read from it or write into it on its own. A byte of ECC corresponds to every consecutive 128 bits of the user accessible Flash. Consequently, Flash bytes from 0x0000 0000 to 0x0000 000F are protected by the first ECC byte, Flash bytes from 0x0000 0010 to 0x0000 001F are protected by the second ECC byte, etc.

Whenever the CPU requests a read from user's Flash, both 128 bits of raw data containing the specified memory location and the matching ECC byte are evaluated. If the ECC mechanism detects a single error in the fetched data, a correction will be applied before data are provided to the CPU. When a write request into the user's Flash is made, write of user specified content is accompanied by a matching ECC value calculated and stored in the ECC memory.

When a sector of Flash memory is erased, the corresponding ECC bytes are also erased. Once an ECC byte is written, it can not be updated unless it is erased first. Therefore, for the implemented ECC mechanism to perform properly, data must be written into the flash memory in groups of 16 bytes (or multiples of 16), aligned as described above.

19.7 Criterion for Valid User Code

The reserved ARM Cortex-M3 exception vector location 7 (offset 0x0000 001C in the vector table) should contain the 2's complement of the check-sum of table entries 0 through 6. This causes the checksum of the first 8 table entries to be 0. The bootloader code checksums the first 8 locations in sector 0 of the flash. If the result is 0, then execution control is transferred to the user code.

Chapter 19: LPC13xx Flash memory programming firmware

If the signature is not valid, the auto-baud routine synchronizes with the host via the serial port (UART) or boots from the USB port (PIO0_3 is sampled HIGH).

If the UART is selected, the host should send a '?' (0x3F) as a synchronization character and wait for a response. The host side serial port settings should be 8 data bits, 1 stop bit and no parity. The auto-baud routine measures the bit time of the received synchronization character in terms of its own frequency and programs the baud rate generator of the serial port. It also sends an ASCII string ("Synchronized<CR><LF>") to the host. In response to this host should send the same string ("Synchronized<CR><LF>"). The auto-baud routine looks at the received characters to verify synchronization. If synchronization is verified then "OK<CR><LF>" string is sent to the host. Host should respond by sending the crystal frequency (in kHz) at which the part is running. For example, if the part is running at 10 MHz, the response from the host should be "10000<CR><LF>". "OK<CR><LF>" string is sent to the host after receiving the crystal frequency. If synchronization is not verified then the auto-baud routine waits again for a synchronization character. For auto-baud to work correctly in case of user invoked ISP, the CCLK frequency should be greater than or equal to 10 MHz. In UART ISP mode, the LPC13xx is clocked by the IRC and the crystal frequency is ignored.

For more details on Reset, PLL and startup/boot code interaction see Section 3.6.

Once the crystal frequency is received the part is initialized and the ISP command handler is invoked. For safety reasons an "Unlock" command is required before executing the commands resulting in flash erase/write operations and the "Go" command. The rest of the commands can be executed without the unlock command. The Unlock command is required to be executed once per ISP session. The Unlock command is explained in Section 19.13 "ISP commands" on page 300.

19.8 ISP/IAP communication protocol

All ISP commands should be sent as single ASCII strings. Strings should be terminated with Carriage Return (CR) and/or Line Feed (LF) control characters. Extra <CR> and <LF> characters are ignored. All ISP responses are sent as <CR><LF> terminated ASCII strings. Data is sent and received in UU-encoded format.

19.8.1 ISP command format

"Command Parameter_0 Parameter_1 ... Parameter_n<CR><LF>" "Data" (Data only for Write commands).

19.8.2 ISP response format

"Return_Code<CR><LF>Response_0<CR><LF>Response_1<CR><LF>... Response_n<CR><LF>" "Data" (Data only for Read commands).

19.8.3 ISP data format

The data stream is in UU-encoded format. The UU-encode algorithm converts 3 bytes of binary data in to 4 bytes of printable ASCII character set. It is more efficient than Hex format which converts 1 byte of binary data in to 2 bytes of ASCII hex. The sender should send the check-sum after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes.

Chapter 19: LPC13xx Flash memory programming firmware

The receiver should compare it with the check-sum of the received bytes. If the check-sum matches then the receiver should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match the receiver should respond with "RESEND<CR><LF>". In response the sender should retransmit the bytes.

19.8.4 ISP flow control

A software XON/XOFF flow control scheme is used to prevent data loss due to buffer overrun. When the data arrives rapidly, the ASCII control character DC3 (stop) is sent to stop the flow of data. Data flow is resumed by sending the ASCII control character DC1 (start). The host should also support the same flow control scheme.

19.8.5 ISP command abort

Commands can be aborted by sending the ASCII control character "ESC". This feature is not documented as a command under "ISP Commands" section. Once the escape code is received the ISP command handler waits for a new command.

19.8.6 Interrupts during ISP

The boot block interrupt vectors located in the boot block of the flash are active after any reset.

19.8.7 Interrupts during IAP

The on-chip flash memory is not accessible during erase/write operations. When the user application code starts executing, the interrupt vectors from the user flash area are active. The user should either disable interrupts, or ensure that user interrupt vectors are active in RAM and that the interrupt handlers reside in RAM, before making a flash erase/write IAP call. The IAP code does not use or disable interrupts.

19.8.8 RAM used by ISP command handler

ISP commands use on-chip RAM from $0x1000\ 017C$ to $0x1000\ 025B$. The user could use this area, but the contents may be lost upon reset. Flash programming commands use the top 32 bytes of on-chip RAM. The stack is located at RAM top - 32 bytes. The maximum stack usage is 256 bytes and grows downwards.

19.8.9 RAM used by IAP command handler

Flash programming commands use the top 32 bytes of on-chip RAM. The maximum stack usage in the user allocated stack space is 128 bytes and grows downwards.

19.9 USB communication protocol

The LPC134x is enumerated as a Mass Storage Class (MSC) device to a PC or another embedded system. In order to connect via the USB interface, the LPC134x must use the external crystal at a frequency of 12 MHz. The MSC device presents an easy integration with the PC's Windows operating system. The LPC134x flash memory space is represented as a drive in the host file system. The entire available user flash is mapped to a file of the size of the LPC134x flash in the host's folder with the default name 'firmware.bin'. The 'firmware.bin' file can be deleted and a new file can be copied into the

294 of 333

Chapter 19: LPC13xx Flash memory programming firmware

directory, thereby updating the user code in flash. Note that the filename of the new flash image file is not important. After a reset or a power cycle, the new file is visible in the host's file system under it's default name 'firmware.bin'.

Remark: USB ISP commands are supported for Windows operating system only.

The code read protection (CRP, see <u>Table 286</u>) level determines how the flash is reprogrammed:

If CRP2 or CRP3 is enabled, the user flash is erased when the file is deleted.

If CRP1 is enabled or no CRP is selected, the user flash is erased and reprogrammed when the new file is copied. However, only the area occupied by the new file is erased and reprogrammed.

Remark: The only Windows commands supported for the LPC134x flash image folder are copy and delete.

Three Code Read Protection (CRP) levels can be enabled for flash images updated through USB (see <u>Section 19.12</u> for details). The volume label on the MSCD indicates the CRP status.

Table 286. CRP levels for USB boot images

	-
Volume label	Description
CRP DISABLD	The user flash can be read or written.
CRP1 ENABLD	The user flash content cannot be read but can be updated. The flash memory sectors are updated depending on the new firmware image.
CRP2 ENABLD	The user flash content cannot be read but can be updated. The entire user flash memory is erased before writing the new firmware image.
CRP3 ENABLD	The user flash content cannot be read or updated. The bootloader always executes the user application if valid.
	CRP DISABLD CRP1 ENABLD CRP2 ENABLD

19.9.1 Usage note

When programming flash images via Flash Magic or Serial Wire Debugger (SWD), the user code valid signature is automatically inserted by the programming utility. When using USB ISP, the user code valid signature must be either part of the vector table, or the axf or binary file must be post-processed to insert the checksum.

Chapter 19: LPC13xx Flash memory programming firmware

19.10 Boot process flowchart

Chapter 19: LPC13xx Flash memory programming firmware

19.11 Sector numbers

Some IAP and ISP commands operate on sectors and specify sector numbers. The following table shows the correspondence between sector numbers and memory addresses for LPC13xx devices.

Table 287. LPC13xx flash sectors

Sector number	Sector size [kB]	Address range	LPC1311	LPC1313	LPC1342	LPC1343
0	4	0x0000 0000 - 0x0000 0FFF	yes	yes	yes	yes
1	4	0x0000 1000 - 0x0000 1FFF	yes	yes	yes	yes
2	4	0x0000 2000 - 0x0000 2FFF	-	yes	yes	yes
3	4	0x0000 3000 - 0x0000 3FFF	-	yes	yes	yes
4	4	0x0000 4000 - 0x0000 4FFF	-	yes	-	yes
5	4	0x0000 5000 - 0x0000 5FFF	-	yes	-	yes
6	4	0x0000 6000 - 0x0000 6FFF	-	yes	-	yes
7	4	0x0000 7000 - 0x0000 7FFF	-	yes	-	yes

19.12 Code Read Protection (CRP)

Code Read Protection is a mechanism that allows the user to enable different levels of security in the system so that access to the on-chip flash and use of the ISP can be restricted. When needed, CRP is invoked by programming a specific pattern in flash location at 0x0000 02FC. IAP commands are not affected by the code read protection.

Important: any CRP change becomes effective only after the device has gone through a power cycle.

Chapter 19: LPC13xx Flash memory programming firmware

Table 288. Code Read Protection (CRP) options

Name	Pattern programmed in 0x0000 02FC	Description
NO_ISP	0x4E69 7370	Prevents sampling of pin PIO0_1 for entering ISP mode. PIO0_1 is available for other uses.
CRP1	0x12345678	Access to chip via the SWD pins is disabled. This mode allows partial flash update using the following ISP commands and restrictions:
		 Write to RAM command cannot access RAM below 0x1000 0300.
		 Copy RAM to flash command can not write to Sector 0.
		 Erase command can erase Sector 0 only when all sectors are selected for erase.
		Compare command is disabled.
		 Read Memory command is disabled.
		This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. Since compare command is disabled in case of partial updates the secondary loader should implement checksum mechanism to verify the integrity of the flash.
CRP2	0x87654321	Access to chip via the SWD pins is disabled. The following ISP commands are disabled:
		Read Memory
		Write to RAM
		• Go
		 Copy RAM to flash
		Compare
		When CRP2 is enabled the ISP erase command only allows erasure of all user sectors.
CRP3	0x43218765	Access to chip via the SWD pins is disabled. ISP entry by pulling PIO0_1 LOW is disabled if a valid user code is present in flash sector 0.
		This mode effectively disables ISP override using PIO0_1 pin. It is up to the user's application to provide a flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.
		Caution: If CRP3 is selected, no future factory testing can be performed on the device.

Table 289. Code Read Protection hardware/software interaction

CRP option	User Code Valid	PIO0_1 pin at reset	SWD enabled	LPC13xx enters ISP mode	partial flash Update in ISP mode
None	No	X	Yes	Yes	Yes
None	Yes	High	Yes	No	NA
None	Yes	Low	Yes	Yes	Yes
CRP1	Yes	High	No	No	NA
CRP1	Yes	Low	No	Yes	Yes

Chapter 19: LPC13xx Flash memory programming firmware

Table 289.	Code Read	Protection	hardware	leoftware in	teraction	continued
Table 209.	Code Read	Protection	naruware	Sonware in	nerachon	communea

CRP option	User Code Valid	PIO0_1 pin at reset	SWD enabled	LPC13xx enters ISP mode	partial flash Update in ISP mode
CRP2	Yes	High	No	No	NA
CRP2	Yes	Low	No	Yes	No
CRP3	Yes	Х	No	No	NA
CRP1	No	х	No	Yes	Yes
CRP2	No	Х	No	Yes	No
CRP3	No	х	No	Yes	No

Table 290. ISP commands allowed for different CRP levels

ISP command	CRP1	CRP2	CRP3 (no entry in ISP mode allowed)
Unlock	yes	yes	n/a
Set Baud Rate	yes	yes	n/a
Echo	yes	yes	n/a
Write to RAM	yes; above 0x1000 0300 only	no	n/a
Read Memory	no	no	n/a
Prepare sector(s) for write operation	yes	yes	n/a
Copy RAM to flash	yes; not to sector 0	no	n/a
Go	no	no	n/a
Erase sector(s)	yes; sector 0 can only be erased when all sectors are erased.	yes; all sectors only	n/a
Blank check sector(s)	no	no	n/a
Read Part ID	yes	yes	n/a
Read Boot code version	yes	yes	n/a
Compare	no	no	n/a
ReadUID	yes	yes	n/a

In case a CRP mode is enabled and access to the chip is allowed via the ISP, an unsupported or restricted ISP command will be terminated with return code CODE_READ_PROTECTION_ENABLED.

19.12.1 ISP entry protection

In addition to the three CRP modes, the user can prevent the sampling of pin PIO0_1 for entering ISP mode and thereby release pin PIO0_1 for other uses. This is called the NO_ISP mode. The NO_ISP mode can be entered by programming the pattern 0x4E69 7370 at location 0x0000 02FC.

The NO_ISP mode is identical to the CRP3 mode except for SWD access, which is allowed in NO_ISP mode but disabled in CRP3 mode. The NO_ISP mode does not offer any code protection.

Chapter 19: LPC13xx Flash memory programming firmware

19.13 ISP commands

The following commands are accepted by the ISP command handler. Detailed status codes are supported for each command. The command handler sends the return code INVALID_COMMAND when an undefined command is received. Commands and return codes are in ASCII format.

CMD_SUCCESS is sent by ISP command handler only when received ISP command has been completely executed and the new ISP command can be given by the host. Exceptions from this rule are "Set Baud Rate", "Write to RAM", "Read Memory", and "Go" commands.

Table 291. ISP command summary

Table 2011 for Communic Cammary			
ISP Command	Usage	Described in	
Unlock	U <unlock code=""></unlock>	Table 292	
Set Baud Rate	B <baud rate=""> <stop bit=""></stop></baud>	Table 293	
Echo	A <setting></setting>	Table 294	
Write to RAM	W <start address=""> <number bytes="" of=""></number></start>	Table 295	
Read Memory	R <address> <number bytes="" of=""></number></address>	Table 296	
Prepare sector(s) for write operation	P <start number="" sector=""> <end number="" sector=""></end></start>	Table 297	
Copy RAM to flash	C <flash address=""> <ram address=""> <number bytes="" of=""></number></ram></flash>	Table 298	
Go	G <address> <mode></mode></address>	Table 299	
Erase sector(s)	E <start number="" sector=""> <end number="" sector=""></end></start>	Table 300	
Blank check sector(s)	I <start number="" sector=""> <end number="" sector=""></end></start>	Table 301	
Read Part ID	J	Table 302	
Read Boot code version	К	Table 304	
Compare	M <address1> <address2> <number bytes="" of=""></number></address2></address1>	Table 305	
ReadUID	N	Table 306	

19.13.1 Unlock < Unlock code>

Table 292. ISP Unlock command

U
Unlock code: 23130 ₁₀
CMD_SUCCESS
INVALID_CODE
PARAM_ERROR
This command is used to unlock Flash Write, Erase, and Go commands.
"U 23130 <cr><lf>" unlocks the Flash Write/Erase & Go commands.</lf></cr>

Chapter 19: LPC13xx Flash memory programming firmware

19.13.2 Set Baud Rate <Baud Rate > <stop bit>

Table 293. ISP Set Baud Rate command

Command	В
Input	Baud Rate: 9600 19200 38400 57600 115200 230400
	Stop bit: 1 2
Return Code	CMD_SUCCESS
	INVALID_BAUD_RATE
	INVALID_STOP_BIT
	PARAM_ERROR
Description	This command is used to change the baud rate. The new baud rate is effective after the command handler sends the CMD_SUCCESS return code.
Example	"B 57600 1 <cr><lf>" sets the serial port to baud rate 57600 bps and 1 stop bit.</lf></cr>

19.13.3 Echo <setting>

Table 294. ISP Echo command

Command	A
Input	Setting: ON = 1 OFF = 0
Return Code	CMD_SUCCESS
	PARAM_ERROR
Description	The default setting for echo command is ON. When ON the ISP command handler sends the received serial data back to the host.
Example	"A 0 <cr><lf>" turns echo off.</lf></cr>

19.13.4 Write to RAM <start address> <number of bytes>

The host should send the data only after receiving the CMD_SUCCESS return code. The host should send the check-sum after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less then 20 UU-encoded lines then the check-sum should be of the actual number of bytes sent. The ISP command handler compares it with the check-sum of the received bytes. If the check-sum matches, the ISP command handler responds with "OK<CR><LF>" to continue further transmission. If the check-sum does not match, the ISP command handler responds with "RESEND<CR><LF>". In response the host should retransmit the bytes.

Chapter 19: LPC13xx Flash memory programming firmware

Table 295. ISP Write to RAM command

Command	W
Input	Start Address: RAM address where data bytes are to be written. This address should be a word boundary.
	Number of Bytes: Number of bytes to be written. Count should be a multiple of 4
Return Code	CMD_SUCCESS
	ADDR_ERROR (Address not on word boundary)
	ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not multiple of 4)
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to download data to RAM. Data should be in UU-encoded format. This command is blocked when code read protection is enabled.
Example	"W 268436224 4 <cr><lf>" writes 4 bytes of data to address 0x1000 0300.</lf></cr>

19.13.5 Read Memory <address> <no. of bytes>

The data stream is followed by the command success return code. The check-sum is sent after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less then 20 UU-encoded lines then the check-sum is of actual number of bytes sent. The host should compare it with the checksum of the received bytes. If the check-sum matches then the host should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match then the host should respond with "RESEND<CR><LF>". In response the ISP command handler sends the data again.

Table 296. ISP Read Memory command

Table 290. 13F Read Memory Command		
Command	R	
Input	Start Address: Address from where data bytes are to be read. This address should be a word boundary.	
	Number of Bytes: Number of bytes to be read. Count should be a multiple of 4.	
Return Code	CMD_SUCCESS followed by <actual (uu-encoded)="" data=""> </actual>	
	ADDR_ERROR (Address not on word boundary)	
	ADDR_NOT_MAPPED	
	COUNT_ERROR (Byte count is not a multiple of 4)	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to read data from RAM or flash memory. This command is blocked when code read protection is enabled.	
Example	"R 268435456 4 <cr><lf>" reads 4 bytes of data from address 0x1000 0000.</lf></cr>	

19.13.6 Prepare sector(s) for write operation <start sector number> <end sector number>

This command makes flash write/erase operation a two step process.

Chapter 19: LPC13xx Flash memory programming firmware

Table 297. ISP Prepare sector(s) for write operation command

Command	Р	
Input	Start Sector Number	
	End Sector Number: Should be greater than or equal to start sector number.	
Return Code	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	PARAM_ERROR	
Description	This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot block can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.	
Example	"P 0 0 <cr><lf>" prepares the flash sector 0.</lf></cr>	

19.13.7 Copy RAM to flash <Flash address> <RAM address> <no of bytes>

Table 298. ISP Copy command

Command	C
Input	Flash Address(DST): Destination flash address where data bytes are to be written. The destination address should be a 256 byte boundary.
	RAM Address(SRC): Source RAM address from where data bytes are to be read.
	Number of Bytes: Number of bytes to be written. Should be 256 512 1024 4096.
Return Code	CMD_SUCCESS
	SRC_ADDR_ERROR (Address not on word boundary)
	DST_ADDR_ERROR (Address not on correct boundary)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR WRITE_OPERATION
	BUSY
	CMD_LOCKED
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to program the flash memory. The "Prepare Sector(s) for Write Operation" command should precede this command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot block cannot be written by this command. This command is blocked when code read protection is enabled. Also see Section 19.6 for the number of bytes that can be written.
Example	"C 0 268467504 512 <cr><lf>" copies 512 bytes from the RAM address 0x1000 0800 to the flash address 0.</lf></cr>

Chapter 19: LPC13xx Flash memory programming firmware

19.13.8 Go <address> <mode>

Table 299. ISP Go command

Command	G	
Input	Address: Flash or RAM address from which the code execution is to be started. This address should be on a word boundary.	
	Mode: T (Execute program in Thumb Mode) A (Execute program in ARM mode).	
Return Code	CMD_SUCCESS	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
	CMD_LOCKED	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to execute a program residing in RAM or flash memory. It may not be possible to return to the ISP command handler once this command is successfully executed. This command is blocked when code read protection is enabled.	
Example	"G 0 A <cr><lf>" branches to address 0x0000 0000 in ARM mode.</lf></cr>	

19.13.9 Erase sector(s) <start sector number> <end sector number>

Table 300. ISP Erase sector command

Command	E	
Input	Start Sector Number	
	End Sector Number: Should be greater than or equal to start sector number.	
Return Code	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	CMD_LOCKED	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to erase one or more sector(s) of on-chip flash memory. The boot block can not be erased using this command. This command only allows erasure of all user sectors when the code read protection is enabled.	
Example	"E 2 3 <cr><lf>" erases the flash sectors 2 and 3.</lf></cr>	

Chapter 19: LPC13xx Flash memory programming firmware

19.13.10 Blank check sector(s) < sector number> < end sector number>

Table 301. ISP Blank check sector command

I	
Start Sector Number:	
End Sector Number: Should be greater than or equal to start sector number.	
CMD_SUCCESS	
SECTOR_NOT_BLANK (followed by <offset blank="" first="" location="" non="" of="" the="" word=""> <contents blank="" location="" non="" of="" word="">) </contents></offset>	
INVALID_SECTOR	
PARAM_ERROR	
This command is used to blank check one or more sectors of on-chip flash memory.	
Blank check on sector 0 always fails as first 64 bytes are re-mapped to flash boot block.	
"I 2 3 <cr><lf>" blank checks the flash sectors 2 and 3.</lf></cr>	

19.13.11 Read Part Identification number

Table 302. ISP Read Part Identification command

Command	J	
Input	None.	
Return Code	c CMD_SUCCESS followed by part identification number in ASCII (see <u>Table 303</u> "LPC13xx part identification numbers").	
Description	This command is used to read the part identification number.	

Table 303. LPC13xx part identification numbers

Device	ASCII/dec coding	Hex coding
LPC1311FHN33	742543403	0x2C42 502B
LPC1313FHN33	742395947	0x2C40 102B
LPC1313FBD48	742395947	0x2C40 102B
LPC1342FHN33	1023492139	0x3D01 402B
LPC1343FHN33	1023410219	0x3D00 002B
LPC1343FBD48	1023410219	0x3D00 002B

19.13.12 Read Boot code version number

Table 304. ISP Read Boot Code version number command

Command	К	
Input	None	
Return Code	e CMD_SUCCESS followed by 2 bytes of boot code version number in ASCII format. It is to be interpreted as <byte1(major)>.<byte0(minor)>.</byte0(minor)></byte1(major)>	
Description	This command is used to read the boot code version number.	

305 of 333

Chapter 19: LPC13xx Flash memory programming firmware

19.13.13 Compare <address1> <address2> <no of bytes>

Table 305. ISP Compare command

Command	M	
Input	Address1 (DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.	
	Address2 (SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.	
	Number of Bytes: Number of bytes to be compared; should be a multiple of 4.	
Return Code	CMD_SUCCESS (Source and destination data are equal)	
	COMPARE_ERROR (Followed by the offset of first mismatch)	
	COUNT_ERROR (Byte count is not a multiple of 4)	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
	PARAM_ERROR	
Description	This command is used to compare the memory contents at two locations.	
	Compare result may not be correct when source or destination address contains any of the first 512 bytes starting from address zero. First 512 bytes are re-mapped to boot ROM	
Example	"M 8192 268468224 4 <cr><lf>" compares 4 bytes from the RAM address 0x1000 8000 to the 4 bytes from the flash address 0x2000.</lf></cr>	

19.13.14 ReadUID

Table 306. ReadUID command

Command	N	
Input	None	
Return Code	CMD_SUCCESS followed by four 32-bit words of a unique serial number in ASCII format. The word sent at the lowest address is sent first.	
Description	This command is used to read the unique ID.	

19.13.15 ISP Return Codes

Table 307. ISP Return Codes Summary

Return Code	Mnemonic	Description
0	CMD_SUCCESS	Command is executed successfully. Sent by ISP handler only when command given by the host has been completely and successfully executed.
1	INVALID_COMMAND	Invalid command.
2	SRC_ADDR_ERROR	Source address is not on word boundary.
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.

Chapter 19: LPC13xx Flash memory programming firmware

Table 307. ISP Return Codes Summary

Return	Mnemonic	Description
Code		
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.
7	INVALID_SECTOR	Sector number is invalid or end sector number is greater than start sector number.
8	SECTOR_NOT_BLANK	Sector is not blank.
9	SECTOR_NOT_PREPARED_FOR_ WRITE_OPERATION	Command to prepare sector for write operation was not executed.
10	COMPARE_ERROR	Source and destination data not equal.
11	BUSY	Flash programming hardware interface is busy.
12	PARAM_ERROR	Insufficient number of parameters or invalid parameter.
13	ADDR_ERROR	Address is not on word boundary.
14	ADDR_NOT_MAPPED	Address is not mapped in the memory map. Count value is taken in to consideration where applicable.
15	CMD_LOCKED	Command is locked.
16	INVALID_CODE	Unlock code is invalid.
17	INVALID_BAUD_RATE	Invalid baud rate setting.
18	INVALID_STOP_BIT	Invalid stop bit setting.
19	CODE_READ_PROTECTION_ ENABLED	Code read protection enabled.

19.14 IAP commands

For in application programming the IAP routine should be called with a word pointer in register r0 pointing to memory (RAM) containing command code and parameters. Result of the IAP command is returned in the result table pointed to by register r1. The user can reuse the command table for result by passing the same pointer in registers r0 and r1. The parameter table should be big enough to hold all the results in case the number of results are more than number of parameters. Parameter passing is illustrated in the Figure 56. The number of parameters and results vary according to the IAP command. The maximum number of parameters is 5, passed to the "Copy RAM to FLASH" command. The maximum number of results is 4, returned by the "ReadUID" command. The command handler sends the status code INVALID_COMMAND when an undefined command is received. The IAP routine resides at 0x1FFF 1FF0 location and it is thumb code.

The IAP function could be called in the following way using C.

Define the IAP location entry point. Since the 0th bit of the IAP location is set there will be a change to Thumb instruction set when the program counter branches to this address.

#define IAP_LOCATION 0x1fff1ff1

Define data structure or pointers to pass IAP command table and result table to the IAP function:

unsigned long command[5];

Chapter 19: LPC13xx Flash memory programming firmware

```
unsigned long result[4];

or

unsigned long * command;
unsigned long * result;
command=(unsigned long *) 0x......
result= (unsigned long *) 0x.....
```

Define pointer to function type, which takes two parameters and returns void. Note the IAP returns the result with the base address of the table residing in R1.

```
typedef void (*IAP)(unsigned int [],unsigned int[]);
IAP iap_entry;
```

Setting function pointer:

```
iap_entry=(IAP) IAP_LOCATION;
```

Whenever you wish to call IAP you could use the following statement.

```
iap_entry (command, result);
```

As per the ARM specification (The ARM Thumb Procedure Call Standard SWS ESPC 0002 A-05) up to 4 parameters can be passed in the r0, r1, r2 and r3 registers respectively. Additional parameters are passed on the stack. Up to 4 parameters can be returned in the r0, r1, r2 and r3 registers respectively. Additional parameters are returned indirectly via memory. Some of the IAP calls require more than 4 parameters. If the ARM suggested scheme is used for the parameter passing/returning then it might create problems due to difference in the C compiler implementation from different vendors. The suggested parameter passing scheme reduces such risk.

The flash memory is not accessible during a write or erase operation. IAP commands, which results in a flash write/erase operation, use 32 bytes of space in the top portion of the on-chip RAM for execution. The user program should not be use this space if IAP flash programming is permitted in the application.

Table 308. IAP Command Summary

IAP Command	Command Code	Described in
Prepare sector(s) for write operation	50 ₁₀	Table 309
Copy RAM to flash	51 ₁₀	<u>Table 310</u>
Erase sector(s)	52 ₁₀	<u>Table 311</u>
Blank check sector(s)	53 ₁₀	Table 312
Read Part ID	54 ₁₀	Table 313
Read Boot code version	55 ₁₀	Table 314
Compare	56 ₁₀	<u>Table 315</u>
Reinvoke ISP	57 ₁₀	<u>Table 316</u>
Read UID	58 ₁₀	Table 317

Chapter 19: LPC13xx Flash memory programming firmware

19.14.1 Prepare sector(s) for write operation

This command makes flash write/erase operation a two step process.

Table 309. IAP Prepare sector(s) for write operation command

Prepare sector(s) for write operation	
Command code: 5010	
Param0: Start Sector Number	
Param1: End Sector Number (should be greater than or equal to start sector number).	
CMD_SUCCESS	
BUSY	
INVALID_SECTOR	
None	
This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot sector can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.	

Chapter 19: LPC13xx Flash memory programming firmware

19.14.2 Copy RAM to flash

Table 310. IAP Copy RAM to flash command

Command	Copy RAM to flash
Input	Command code: 5110
	Param0(DST): Destination flash address where data bytes are to be written. This address should be a 256 byte boundary.
	Param1(SRC): Source RAM address from which data bytes are to be read. This address should be a word boundary.
	Param2: Number of bytes to be written. Should be 256 512 1024 4096.
	Param3: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS
	SRC_ADDR_ERROR (Address not a word boundary)
	DST_ADDR_ERROR (Address not on correct boundary)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	BUSY
Result	None
Description	This command is used to program the flash memory. The affected sectors should be prepared first by calling "Prepare Sector for Write Operation" command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot sector can not be written by this command. Also see Section 19.6 for the number of bytes that can be written.

19.14.3 Erase Sector(s)

Table 311. IAP Erase Sector(s) command

Command	Erase Sector(s)	
Input	Command code: 5210	
	Param0: Start Sector Number	
	Param1: End Sector Number (should be greater than or equal to start sector number).	
	Param2: System Clock Frequency (CCLK) in kHz.	
Return Code	CMD_SUCCESS	
	BUSY	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	INVALID_SECTOR	
Result	None	
Description	Description This command is used to erase a sector or multiple sectors of on-chip flash memory. The boot sector can not be erased by this command. To erase a sin sector use the same "Start" and "End" sector numbers.	

310 of 333

Chapter 19: LPC13xx Flash memory programming firmware

19.14.4 Blank check sector(s)

Table 312. IAP Blank check sector(s) command

Command	Blank check sector(s)	
Input	Command code: 5310	
	Param0: Start Sector Number	
	Param1: End Sector Number (should be greater than or equal to start sector number).	
Return Code	CMD_SUCCESS	
	BUSY	
	SECTOR_NOT_BLANK	
	INVALID_SECTOR	
Result	Result0: Offset of the first non blank word location if the Status Code is SECTOR_NOT_BLANK.	
	Result1: Contents of non blank word location.	
Description This command is used to blank check a sector or multiple sectors of on-chip memory. To blank check a single sector use the same "Start" and "End" sec numbers.		

19.14.5 Read Part Identification number

Table 313. IAP Read Part Identification command

Read part identification number	
Command code: 5410	
Parameters: None	
CMD_SUCCESS	
Result0: Part Identification Number.	
on This command is used to read the part identification number.	

19.14.6 Read Boot code version number

Table 314. IAP Read Boot Code version number command

Command	Read boot code version number	
Input	Command code: 5510	
	Parameters: None	
Return Code	CMD_SUCCESS	
Result	Result0: 2 bytes of boot code version number in ASCII format. It is to be interpreted as byte1(Major)>. byte0(Minor)>	
Description	This command is used to read the boot code version number.	

Chapter 19: LPC13xx Flash memory programming firmware

19.14.7 Compare <address1> <address2> <no of bytes>

Table 315. IAP Compare command

Command	Compare	
Input	Command code: 5610	
	Param0(DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.	
	Param1(SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.	
	Param2: Number of bytes to be compared; should be a multiple of 4.	
Return Code	CMD_SUCCESS	
	COMPARE_ERROR	
	COUNT_ERROR (Byte count is not a multiple of 4)	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
Result	Result0: Offset of the first mismatch if the Status Code is COMPARE_ERROR.	
Description	This command is used to compare the memory contents at two locations.	
	The result may not be correct when the source or destination includes any of the first 512 bytes starting from address zero. The first 512 bytes can be re-mapped to RAM.	

19.14.8 Reinvoke ISP

Table 316. Reinvoke ISP

Command	Compare		
Input	Command code: 5710		
Return Code	None		
Result	None.		
Description	This command is used to invoke the bootloader in ISP mode. It maps boot vectors, sets PCLK = CCLK, configures UART pins RXD and TXD, resets counter/timer CT32B1 and resets the U0FDR (see <u>Table 202</u>). This command may be used when a valid user program is present in the internal flash memory and the PIO0_1 pin is not accessible to force the ISP mode.		

19.14.9 ReadUID

Table 317. IAP ReadUID command

Command	Compare	
Input	Command code: 5810	
Return Code	CMD_SUCCESS	
Result	Result0: The first 32-bit word (at the lowest address). Result1: The second 32-bit word. Result2: The third 32-bit word. Result3: The fourth 32-bit word.	
Description	This command is used to read the unique ID.	

Chapter 19: LPC13xx Flash memory programming firmware

19.14.10 IAP Status Codes

Table 318. IAP Status Codes Summary

Status Code	Mnemonic	Description
0	CMD_SUCCESS	Command is executed successfully.
1	INVALID_COMMAND	Invalid command.
2	SRC_ADDR_ERROR	Source address is not on a word boundary.
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.
7	INVALID_SECTOR	Sector number is invalid.
8	SECTOR_NOT_BLANK	Sector is not blank.
9	SECTOR_NOT_PREPARED_ FOR_WRITE_OPERATION	Command to prepare sector for write operation was not executed.
10	COMPARE_ERROR	Source and destination data is not same.
11	BUSY	flash programming hardware interface is busy.

19.15 Debug notes

19.15.1 Comparing flash images

Depending on the debugger used and the IDE debug settings, the memory that is visible when the debugger connects might be the boot ROM, the internal SRAM, or the flash. To help determine which memory is present in the current debug environment, check the value contained at flash address 0x0000 0004. This address contains the entry point to the code in the ARM Cortex-M3 vector table, which is the bottom of the boot ROM, the internal SRAM, or the flash memory respectively.

Table 319. Memory mapping in debug mode

Memory mapping mode	Memory start address visible at 0x0000 0004
Bootloader mode	0x1FFF 0000
User flash mode	0x0000 0000
User SRAM mode	0x1000 0000

19.15.2 Serial Wire Debug (SWD) flash programming interface

Debug tools can write parts of the flash image to RAM and then execute the IAP call "Copy RAM to flash" repeatedly with proper offset.

Chapter 19: LPC13xx Flash memory programming firmware

19.16 Flash memory access

Depending on the system clock frequency, access to the flash memory can be configured with various access times by writing to the FLASHCFG register at address 0x4003 C010.

Remark: Improper setting of this register may result in incorrect operation of the LPC13xx flash memory.

Table 320. Flash configuration register (FLASHCFG, address 0x4003 C010) bit description

Bit	Symbol	Value	Description	Reset value
1:0 FLASHTI	FLASHTIM		Flash memory access time. FLASHTIM +1 is equal to the number of system clocks used for flash access.	10
		00	1 system clock flash access time (for system clock frequencies of up to 20 MHz).	
		01	2 system clocks flash access time (for system clock frequencies of up to 40 MHz).	
		10	3 system clocks flash access time (for system clock frequencies of up to 72 MHz).	
		11	Reserved.	
31:2	-	-	Reserved. User software must not change the value of these bits. Bits 31:2 must be written back exactly as read.	<tbd></tbd>

UM10375

Chapter 20: LPC13xx Serial Wire Debug (SWD)

Rev. 2 — 7 July 2010

User manual

20.1 How to read this chapter

The debug functionality is identical for all LPC13xx parts.

20.2 Features

- Supports ARM Serial Wire Debug mode.
- Direct debug access to all memories, registers, and peripherals.
- No target resources are required for the debugging session.
- Trace port provides CPU instruction trace capability. Output via a Serial Wire Viewer.
- Eight breakpoints. Six instruction breakpoints that can also be used to remap instruction addresses for code patches. Two data comparators that can be used to remap addresses for patches to literal values.
- Four data watchpoints that can also be used as trace triggers.
- Instrumentation Trace Macrocell allows additional software controlled trace.

20.3 Introduction

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are supported. The ARM Cortex-M3 is configured to support up to eight breakpoints and four watchpoints.

20.4 Description

Debugging with the LPC13xx uses the Serial Wire Debug mode.

Trace can be done using the Serial Wire Output. When the Serial Wire Output is used, less data can be traced, but it uses no application related pins. Note that the trace function available for the ARM Cortex-M3 is functionally very different than the trace that was available for previous ARM7 based devices.

20.5 Pin description

The tables below indicate the various pin functions related to debug and trace. Some of these functions share pins with other functions which therefore may not be used at the same time. Trace using the Serial Wire Output has limited bandwidth.

Chapter 20: LPC13xx Serial Wire Debug (SWD)

Table 321. Serial Wire Debug pin description

Pin Name	Type	Description
SWCLK	Input	Serial Wire Clock. This pin is the clock for debug logic when in the Serial Wire Debug mode (SWDCLK).
SWDIO	Input / Output	Serial wire debug data input/output. The SWDIO pin is used by an external debug tool to communicate with and control the LPC13xx.
SWO	Output	Serial Wire Output. The SWO pin optionally provides data from the ITM and/or the ETM for an external debug tool to evaluate.

20.6 Debug notes

Important: The user should be aware of certain limitations during debugging. The most important is that, due to limitations of the ARM Cortex-M3 integration, the LPC13xx cannot wake up in the usual manner from Deep-sleep mode. It is recommended not to use this mode during debug.

Another issue is that debug mode changes the way in which reduced power modes work internal to the ARM Cortex-M3 CPU, and this ripples through the entire system. These differences mean that power measurements should not be made while debugging, the results will be higher than during normal operation in an application.

During a debugging session, the System Tick Timer is automatically stopped whenever the CPU is stopped. Other peripherals are not affected.

Remark: Note that the debug mode is not supported in any of the reduced power modes.

UM10375

Chapter 21: LPC13xx Supplementary information Rev. 2 — 7 July 2010

User manual

21.1 Abbreviations

Table 322. Abbreviations

Acronym	Description
A/D	Analog-to-Digital
AHB	Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
DCC	Debug Communication Channel
DSP	Digital Signal Processing
EOP	End Of Packet
ETM	Embedded Trace Macrocell
GPIO	General Purpose Input/Output
I/O	Input/Output
MSC	Mass Storage Class
PHY	Physical Layer
PLL	Phase-Locked Loop
SE0	Single Ended Zero
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SoF	Start-of-Frame
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus

Chapter 21: LPC13xx Supplementary information

21.2 Legal information

21.2.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

21.2.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

21.2.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

Chapter 21: LPC13xx Supplementary information

21.3 Tables

Table 1. Table 2.	Ordering options for the LPC13xx parts 6 LPC13xx memory configuration	Table 26.	address 0x4004 8098) bit description 26 TRACECLKDIV clock divider register
Table 3.	USB related registers and register bits reserved for LPC1311/1310		(TRACECLKDIV, address 0x4004 80AC) bit description
Table 4.	Pin summary11	Table 27.	SYSTICK clock divider register
Table 5.	Register overview: system control block (base address 0x4004 8000)		(SYSTICKCLKDIV, address 0x4004 80B0) bit description
Table 6.	System memory remap register (SYSMEMREMAP, address 0x4004 8000) bit	Table 28.	USB clock source select register (USBCLKSEL, address 0x4004 80C0) bit description 28
Table 7.	description	Table 29.	USB clock source update enable register (USBCLKUEN, address 0x4004 80C4) bit
Table 8.	address 0x4004 8004) bit description 16 System PLL control register (SYSPLLCTRL,	Table 30	description
Table 0.	address 0x4004 8008) bit description17		0x4004 80C8) bit description 28
Table 9.	System PLL status register (SYSPLLSTAT, address 0x4004 800C) bit description 17	Table 31.	WDT clock source select register (WDTCLKSEL, address 0x4004 80D0) bit description 29
Table 10.	USB PLL control register (USBPLLCTRL, address 0x4004 8010) bit description	Table 32.	WDT clock source update enable register (WDTCLKUEN, address 0x4004 80D4) bit
Table 11.	USB PLL status register (USBPLLSTAT, address	Table 22	description
Table 12.	0x4004 8014) bit description	Table 33.	WDT clock divider register (WDTCLKDIV, address 0x4004 80D8) bit description
	address 0x4004 8020) bit description 19	Table 34.	CLKOUT clock source select register
Table 13.	Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit		(CLKOUTCLKSEL, address 0x4004 80E0) bit description
Toblo 14	description	Table 35.	CLKOUT clock source update enable register (CLKOUTUEN, address 0x4004 80E4) bit
Table 14.	(IRCCTRL, address 0x4004 8028) bit		description
Toble 15	description	Table 36.	CLKOUT clock divider registers (CLKOUTDIV,
Table 15.	System reset status register (SYSRESSTAT, address 0x4004 8030) bit description 21	Table 37.	address 0x4004 80E8) bit description 30 POR captured PIO status registers 0
Table 16.	System PLL clock source select register (SYSPLLCLKSEL, address 0x4004 8040) bit		(PIOPORCAP0, address 0x4004 8100) bit description
	description	Table 38.	POR captured PIO status registers 1
Table 17.	System PLL clock source update enable register (SYSPLLCLKUEN, address 0x4004 8044) bit		(PIOPORCAP1, address 0x4004 8104) bit description
Tahle 18	description	Table 39.	BOD control register (BODCTRL, address 0x4004 8150) bit description
Table 10.	(USBPLLCLKSEL, address 0x4004 8048) bit	Table 40.	System tick timer calibration register
Table 19.	description		(SYSTCKCAL, address 0x4004 8158) bit description
	(USBPLLCLKLUEN, address 0x4004 804C) bit	Table 41.	Start logic edge control register 0 (STARTAPRP0,
Table 20.	description	Table 42.	address 0x4004 8200) bit description 32 Start logic signal enable register 0 (STARTERPO,
	address 0x4004 8070) bit description23		address 0x4004 8204) bit description 33
Table 21.	Main clock source update enable register (MAINCLKUEN, address 0x4004 8074) bit	Table 43.	Start logic reset register 0 (STARTRSRPOCLR, address 0x4004 8208) bit description34
Toble 22	description	Table 44.	Start logic status register 0 (STARTSRP0,
Table 22.	System AHB clock divider register (SYSAHBCLKDIV, address 0x4004 8078) bit	Table 45.	address 0x4004 820C) bit description 35 Start logic edge control register 1 (STARTAPRP1,
Table 23.	description	Table 46.	address 0x4004 8210) bit description 35 Start logic signal enable register 1 (STARTERP1,
	(SYSAHBCLKCTRL, address 0x4004 8080) bit description24	Table 47.	address 0x4004 8214) bit description 36 Start logic reset register 1 (STARTRSRP1CLR,
Table 24.	SSP clock divider register (SSPCLKDIV, address 0x4004 8094) bit description		address 0x4004 8218) bit description37 Start logic signal status register 1 (STARTSRP1,
Table 25.	UART clock divider register (UARTCLKDIV,	10010 40.	address 0x4004 821C) bit description 37

Table 49.	Allowed values for PDSLEEPCFG register 38		0xE000 E414) bit description71
Table 50.	Deep-sleep configuration register	Table 79.	Interrupt Priority Register 60 (IPR6 - address
	(PDSLEEPCFG, address 0x4004 8230) bit		0xE000 E418) bit description
	description	Table 80.	Interrupt Priority Register 7 (IPR7 - address
Table 51.	Wake-up configuration register (PDAWAKECFG,		0xE000 E41C) bit description72
	address 0x4004 8234) bit description39	Table 81.	Interrupt Priority Register 8 (IPR8 - address
Table 52.	Power-down configuration register (PDRUNCFG,		0xE000 E420) bit description
	address 0x4004 8238) bit description40	Table 82.	Interrupt Priority Register 9 (IPR9 - address
Table 53.	Device ID register (DEVICE_ID, address 0x4004		0xE000 E424) bit description
	83F4) bit description	Table 83.	Interrupt Priority Register 10 (IPR10 - address
Table 54.	PLL frequency parameters		0xE000 E428) bit description
Table 55.	PLL configuration examples 50	Table 84.	Interrupt Priority Register 11 (IPR11 - address
Table 56.	Flash configuration register (FLASHCFG, address		0xE000 E42C) bit description
	0x4003 C010) bit description	Table 85.	Interrupt Priority Register 12 (IPR12 - address
Table 57.	Register overview: PMU (base address 0x4003		0xE000 E430) bit description
	8000)51	Table 86.	Interrupt Priority Register 13 (IPR13 - address
Table 58.	Power control register (PCON, address 0x4003		0xE000 E434) bit description
	8000) bit description	Table 87.	Interrupt Priority Register 14 (IPR14 - address
Table 59.	General purpose registers 0 to 3 (GPREG0 -		0xE000 E438) bit description
	GPREG3, address 0x4003 8004 to 0x4003 8010)	Table 88.	Software Trigger Interrupt Register (STIR -
	bit description52		address 0xE000 EF00) bit description 76
Table 60.	General purpose register 4 (GPREG4, address	Table 89.	I/O register configuration (unused registers and
	0x4003 8014) bit description52		functions)
Table 61.	Connection of interrupt sources to the Vectored	Table 90.	Register overview: I/O configuration block (base
	Interrupt Controller		address 0x4004 4000)79
Table 62.	Register overview: NVICV (base address 0xE000	Table 91.	I/O configuration registers ordered by port number
	E000)		
Table 63.	Interrupt Set-Enable Register 0 register (ISER0 -	Table 92.	IOCON_PIO2_6 register (IOCON_PIO2_6,
	address 0xE000 E100) bit description58		address 0x4004 4000) bit description 82
Table 64.	Interrupt Set-Enable Register 1 register (ISER1 -	Table 93.	IOCON_PIO2_0 register (IOCON_PIO2_0,
	address 0xE000 E104) bit description 59		address 0x4004 4008) bit description83
Table 65.	Interrupt Clear-Enable Register 060	Table 94.	IOCON_nRESET_PIO0_0 register
	Interrupt Clear-Enable Register 1 register (ICER1		(IOCON_nRESET_PIO0_0, address 0x4004
	- address 0xE000 E184) bit description61		400C) bit description
Table 67.	Interrupt Set-Pending Register 0 register (ISPR0 -	Table 95.	IOCON_PIO0_1 register (IOCON_PIO0_1,
	address 0xE000 E200) bit description 62		address 0x4004 4010) bit description 84
Table 68.	Interrupt Set-Pending Register 1 register (ISPR1 -	Table 96.	IOCON_PIO1_8 register (IOCON_PIO1_8,
	address 0xE000 E204) bit description 63		address 0x4004 4014) bit description84
Table 69.	Interrupt Clear-Pending Register 0 register	Table 97.	IOCON_PIO0_2 register (IOCON_PIO0_2,
	(ICPR0 - address 0xE000 E280) bit		address 0x4004 401C) bit description85
	description	Table 98.	IOCON_PIO2_7 register (IOCON_PIO2_7,
Table 70.	Interrupt Set-Pending Register 1 register (ISPR1 -		address 0x4004 4020) bit description 85
	address 0xE000 E204) bit description 66	Table 99.	IOCON_PIO2_8 register (IOCON_PIO2_8,
Table 71.	Interrupt Active Bit Register 0 (IABR0 - address		address 0x4004 4024) bit description 86
	0xE000 E300) bit description	Table 100	. IOCON_PIO2_1 register (IOCON_PIO2_1,
Table 72.	Interrupt Active Bit Register 1 (IABR1 - address		address 0x4004 4028) bit description 87
	0xE000 E304) bit description	Table 101	. IOCON_PIO0_3 register (IOCON_PIO0_3,
Table 73.	Interrupt Priority Register 0 (IPR0 - address		address 0x4004 402C) bit description87
	0xE000 E400) bit description	Table 102	. IOCON_PIO0_4 register (IOCON_PIO0_4,
Table 74.	Interrupt Priority Register 1 (IPR1 - address		address 0x4004 4030) bit description 88
	0xE000 E404) bit description	Table 103	. IOCON_PIO0_5 register (IOCON_PIO0_5,
Table 75.	Interrupt Priority Register 2 (IPR2 - address		address 0x4004 4034) bit description 88
	0xE000 E408) bit description	Table 104	. IOCON_PIO1_9 register (IOCON_PIO1_9
Table 76	Interrupt Priority Register 3 (IPR3 - address		address 0x4004 4038) bit description 89
	0xE000 E40C) bit description70	Table 105	. IOCON_PIO3_4 register (IOCON_PIO3_4,
Table 77	Interrupt Priority Register 4 (IPR4 - address		address 0x4004 403C) bit description89
	0xE000 E410) bit description	Table 106	. IOCON_PIO2_4 register (IOCON_PIO2_4,
Table 78.	Interrupt Priority Register 5 (IPR5 - address		address 0x4004 4040) bit description 90
	, , , , , , , , , , , , , , , , , , , ,		

	N_PIO2_5 register (IOCON_PIO2_5,	address 0x4004 40B0) bit description 107
addres	ss 0x4004 4044) bit description90	Table 135. LPC13xx pin configuration overview 108
Table 108. IOCO	N_PIO3_5 register (IOCON_PIO3_5,	Table 136. LPC1313/43 LQFP48 pin description table . 113
addres	ss 0x4004 4048) bit description 91	Table 137. LPC1311/13/42/43 HVQFN33 pin description
Table 109. IOCO	N_PIO0_6 register (IOCON_PIO0_6,	table116
	ss 0x4004 404C) bit description 91	Table 138. GPIO configuration
	N_PIO0_7 register (IOCON_PIO0_7,	Table 139. GPIO pin description 11
	ss 0x4004 4050) bit description92	Table 140. Register overview: GPIO (base address port 0:
	N_PIO2_9 register (IOCON_PIO2_9,	0x5000 0000; port 1: 0x5001 0000, port 2: 0x5002
	ss 0x4004 4054) bit description92	0000; port 3: 0x5003 0000)
	N_PIO2_10 register (IOCON_PIO2_10,	Table 141. GPIOnDATA register (GPIO0DATA, address
	ss 0x4004 4058) bit description 93	0x5000 3FFC; GPIO1DATA, address 0x5001
	N_PIO2_2 register (IOCON_PIO2_2,	3FFC; GPIO2DATA, address 0x5002 3FFC;
	ss 0x4004 405C) bit description 93	GPIO3DATA, address 0x5003 3FFC) bit
	N_PIO0_8 register (IOCON_PIO0_8,	description
	ss 0x4004 4060) bit description94	Table 142. GPIOnDIR register (GPIO0DIR, address 0x5000
	N_PIO0_9 register (IOCON_PIO0_9,	8000 to GPIO3DIR, address 0x5003 8000) bit
	ss 0x4004 4064) bit description94	description
	N_SWCLK_PIO0_10 register	Table 143. GPIOnIS register (GPIO0IS, address 0x5000
	N_SWCLK_PIO0_10, address 0x4004	8004 to GPIO3IS, address 0x5003 8004) bit
-	bit description95	description
	N_PIO1_10 register (IOCON_PIO1_10,	Table 144. GPIOnIBE register (GPIO0IBE, address 0x5000
	ss 0x4004 406C) bit description	8008 to GPIO3IBE, address 0x5003 8008) bit
	N_PIO2_11 register (IOCON_PIO2_11,	description
	ss 0x4004 4070) bit description96	Table 145. GPIOnIEV register (GPIO0IEV, address 0x5000
	N_R_PIO0_11 register	800C to GPIO3IEV, address 0x5003 800C) bit
	N_R_PIO0_11, address 0x4004 4074) bit	description
	ption	Table 146. GPIOnIE register (GPIO0IE, address 0x5000
	N_R_PIO1_0 register (IOCON_R_PIO1_0,	8010 to GPIO3IE, address 0x5003 8010) bit
	ss 0x4004 4078) bit description	description
	N_R_PIO1_1 register (IOCON_R_PIO1_1,	Table 147. GPIOnIRS register (GPIO0IRS, address 0x5000
	ss 0x4004 407C) bit description	8014 to GPIO3IRS, address 0x5003 8014) bit
	N_R_PIO1_2 register (IOCON_R_PIO1_2,	description
	ss 0x4004 4080) bit description 100	Table 148. GPIOnMIS register (GPIO0MIS, address 0x5000
	N_PIO3_0 register (IOCON_PIO3_0,	8018 to GPIO3MIS, address 0x5003 8018) bit
	ss 0x4004 4084) bit description 100	description
	N_PIO3_1 register (IOCON_PIO3_1,	Table 149. GPIOnIC register (GPIO0IC, address 0x5000
	ss 0x4004 4088) bit description101	801C to GPIO3IC, address 0x5003 801C) bit
	N_PIO2_3 register (IOCON_PIO2_3,	description
	ss 0x4004 408C) bit description 101	Table 150. USB related acronyms, abbreviations, and
	N_SWDIO_PIO1_3 register	definitions used in this chapter 126
(IOCO	N_SWDIO_PIO1_3, address 0x4004 4090)	Table 151. Fixed endpoint configuration 127
bit des	scription102	Table 152. USB device pin description 130
Table 127. IOCO	N_PIO1_4 register (IOCON_PIO1_4,	Table 153. USB device controller clock sources131
addres	ss 0x4004 4094) bit description 103	Table 154. Register overview: USB device (base address
Table 128. IOCO	N_PIO1_11 register (IOCON_PIO1_11,	0x4002 0000)
addres	ss 0x4004 4098) bit description 104	Table 155. USB Device Interrupt registers bit allocation. 133
Table 129. IOCO	N_PIO3_2 register (IOCON_PIO3_2,	Table 156. USB Device Interrupt Status register
addres	ss 0x4004 409C) bit description104	(USBDevIntSt - address 0x4002 0000) bit
	N_PIO1_5 register (IOCON_PIO1_5,	description134
	ss 0x4004 40A0) bit description 105	Table 157. USB Device Interrupt Enable register
	N_PIO1_6 register (IOCON_PIO1_6,	(USBDevIntEn - address 0x4002 0004) bit
	ss 0x4004 40A4) bit description 105	description
	N_PIO1_7 register (IOCON_PIO1_7,	Table 158. USB Device Interrupt Clear register
	ss 0x4004 40A8) bit description 106	(USBDevIntCIr - address 0x4002 0008) bit
	N_PIO3_3 register (IOCON_PIO3_3,	description
	ss 0x4004 40AC) bit description 106	Table 159. USB Device Interrupt Set register (USBDevIntSet
	N SCK location register (IOCON_SCKLOC,	- address 0x4002 000C) bit description 135
10 1. 1000		add. 000 07 1002 0000) Dit doodingtion 1 100

Table 160. USB Command Code register (USBCmdCode -	address 0x4004 8008, Read Only) bit
address 0x4002 0010) bit description 135	description172
Table 161. USB Command Data register (USBCmdData -	Table 193. UART Interrupt Handling173
address 0x4002 0014) bit description 136	Table 194. UART FIFO Control Register (U0FCR - address
Table 162. USB Receive Data register (USBRxData -	0x4000 8008, Write Only) bit description 174
address 0x4002 0018) bit description 136	Table 195. UART Line Control Register (U0LCR - address
Table 163. USB Transmit Data register (USBTxData -	0x4000 800C) bit description
address 0x4002 001C) bit description 137	Table 196. UART0 Modem Control Register (U0MCR -
Table 164. USB Receive Packet Length register	address 0x4000 8010) bit description 175
(USBRxPlen - address 0x4002 0020) bit	Table 197. Modem status interrupt generation 177
description	Table 198. UART Line Status Register (U0LSR - address
Table 165. USB Transmit Packet Length register	0x4000 8014, Read Only) bit description178
(USBTxPLen - address 0x4002 0024) bit	Table 199. UART Modem Status Register (U0MSR - address
description138	0x4000 8018) bit description 180
Table 166. USB Control register (USBCtrl - address 0x4002	Table 200. UART Scratch Pad Register (U0SCR - address
0028) bit description	0x4000 8014) bit description 180
Table 167. USB Device FIQ Select register (USBDevFIQSel	Table 201. Auto-baud Control Register (U0ACR - address
- address 0x4002 002C) bit description 139	0x4000 8020) bit description 181
Table 168. SIE command code table141	Table 202. UART Fractional Divider Register (U0FDR -
Table 169. Device Set Address command description142	address 0x4000 8028) bit description 184
Table 170. Configure Device command description 142	Table 203. Fractional Divider setting look-up table 186
Table 171. Set Mode command description	Table 204. UART Transmit Enable Register (U0TER -
Table 172. Read interrupt Status byte 1 command	address 0x4000 8030) bit description 187
description	Table 205. UART RS485 Control register (U0RS485CTRL -
Table 173. Read interrupt Status byte 2 command	address 0x4000 804C) bit description 187
description	Table 206. UART RS-485 Address Match register
Table 174. Set Device Status command description 144	(U0RS485ADRMATCH - address 0x4000 8050)
Table 175. Get Error Code command description 146	bit description
Table 176. Select Endpoint command description 146	Table 207. UART RS-485 Delay value register
Table 177. Set Endpoint Status command description	(U0RS485DLY - address 0x4000 8054) bit
Table 178. Clear Buffer command description	description
Table 180. Mass storage device information class	Table 209. Register overview: I ² C (base address 0x4000
structure	0000)194
Table 181. Human interface device information class	Table 210. I ² C Control Set register (I2C0CONSET - address
structure	0x4000 0000) bit description
Table 182. Standard descriptor	Table 211. I ² C Status register (I2C0STAT - 0x4000 0004) bit
Table 183. Mass storage descriptors	description
Table 184. HID descriptors	Table 212. I ² C Data register (I2C0DAT - 0x4000 0008) bit
Table 185. UART pin description	description
Table 186. Register overview: UART (base address: 0x4000	Table 213. I ² C Slave Address register 0 (I2C0ADR0-
8000)	0x4000 000C) bit description
Table 187. UART Receiver Buffer Register (U0RBR -	Table 214. I ² C SCL HIGH Duty Cycle register (I2C0SCLH -
address 0x4000 8000 when DLAB = 0, Read	address 0x4000 0010) bit description 198
Only) bit description	Table 215. I ² C SCL Low duty cycle register (I2C0SCLL -
Table 188. UART Transmitter Holding Register (U0THR -	0x4000 0014) bit description
address 0x4000 8000 when DLAB = 0, Write	Table 216. I2SCLL + I2SCLH values for selected I ² C clock
Only) bit description	values199
Table 189. UART Divisor Latch LSB Register (U0DLL -	Table 217. I ² C Control Clear register (I2C0CONCLR -
address 0x4000 8000 when DLAB = 1) bit	0x4000 0018) bit description 199
description171	Table 218. I ² C Monitor mode control register (I2C0MMCTRL
Table 190. UART Divisor Latch MSB Register (U0DLM -	- 0x4000 001C) bit description 200
address 0x4000 8004 when DLAB = 1) bit	Table 219. I ² C Slave Address registers (I2C0ADR[1, 2, 3]-
description171	0x4000 00[20, 24, 28]) bit description 201
Table 191. UART Interrupt Enable Register (U0IER -	Table 220. I ² C Data buffer register (I2C0DATA_BUFFER -
address 0x4000 8004 when DLAB = 0) bit	0x4000 002C) bit description 202
description171	Table 221. I ² C Mask registers (I2C0MASK[0, 1, 2, 3] -
Table 192. UART Interrupt Identification Register (U0IIR -	0x4000 00[30, 34, 38, 3C]) bit description 202

Table 222.	I2C0CONSET and I2C1CONSET used to	address 0x4001 003C) bit description 257
	configure Master mode203	Table 252. External match control 257
Table 223.	I2C0CONSET and I2C1CONSET used to	Table 253. Count Control Register (TMR16B0CTCR -
	configure Slave mode204	address 0x4000 C070 and TMR16B1CTCR -
Table 224.	Abbreviations used to describe an I ² C	address 0x4001 0070) bit description 258
	operation210	Table 254. PWM Control Register (TMR16B0PWMC -
Table 225.	I2CONSET used to initialize Master Transmitter	address 0x4000 C074 and TMR16B1PWMC-
	mode210	address 0x4001 0074) bit description 259
Table 226.	Master Transmitter mode212	Table 255. Counter/timer pin description 263
Table 227.	Master Receiver mode215	Table 256. Register overview: 32-bit counter/timer 0 CT32B0
	I2C0ADR and I2C1ADR usage in Slave Receiver	(base address 0x4001 4000)264
	mode217	Table 257. Register overview: 32-bit counter/timer 1 CT32B1
	I2C0CONSET and I2C1CONSET used to	(base address 0x4001 8000)
	initialize Slave Receiver mode	Table 258: Interrupt Register (TMR32B0IR - address
	Slave Receiver mode218	0x4001 4000 and TMR32B1IR - address
	Slave Transmitter mode222	0x4001 8000) bit description 266
	Miscellaneous States	Table 259: Timer Control Register (TMR32B0TCR - address
	SSP pin descriptions	0x4001 4004 and TMR32B1TCR - address
	Register overview: SSP (base address 0x4004	0x4001 8004) bit description 266
	0000)	Table 260: Match Control Register (TMR32B0MCR -
	SSP0 Control Register 0 (SSP0CR0 - address	address 0x4001 4014 and TMR32B1MCR -
	0x4004 0000) bit description	address 0x4001 8014) bit description 267
	SSP0 Control Register 1 (SSP0CR1 - address	Table 261: Capture Control Register (TMR32B0CCR -
	0x4004 0004) bit description	address 0x4001 4028 and TMR32B1CCR -
	SSP0 Data Register (SSP0DR - address	address 0x4001 8028) bit description 268
	0x4004 0008) bit description	Table 262: External Match Register (TMR32B0EMR -
	SSP0 Status Register (SSP0SR - address	address 0x4001 403C and TMR32B1EMR -
	0x4004 000C bit description	address0x4001 803C) bit description 269
	SSP0 Clock Prescale Register (SSP0CPSR -	Table 263. External match control
	address 0x4004 0010) bit description 240	Table 264: Count Control Register (TMR32B0CTCR -
	SSP0 Interrupt Mask Set/Clear register	address 0x4001 4070 and TMR32B1TCR -
	(SSP0IMSC - address 0x4004 0014) bit	address 0x4001 8070) bit description270
	description241	Table 265: PWM Control Register (TMR32B0PWMC -
	SSP0 Raw Interrupt Status register (SSP0RIS -	0x4001 4074 and TMR32B1PWMC - 0x4001
	address 0x4004 0018) bit description 241	8074) bit description
	SSP0 Masked Interrupt Status register (SSP0MIS	Table 266. Register overview: system tick timer (base
	-address 0x4004 001C) bit description 242	address 0xE000 E000)
	SSP0 interrupt Clear Register (SSP0ICR -	Table 267. System Timer Control and status register (CTRL
	address 0x4004 0020) bit description 242	- 0xE000 E010) bit description
	Counter/timer pin description251 Register overview: 16-bit counter/timer 0 CT16B0	Table 268. System Timer Reload value register (LOAD -
	•	0xE000 E014) bit description
	(base address 0x4000 C000)252 Register overview: 16-bit counter/timer 1 CT16B1	Table 269. System Timer Current value register (VAL - 0xE000 E018) bit description
	(base address 0x4001 0000)253	Table 270. System Timer Calibration value register (CALIB -
	Interrupt Register (TMR16B0IR - address	· · · · · · · · · · · · · · · · · · ·
	0x4000 C000 and TMR16B1IR - address	0xE000 E01C) bit description
	0x4001 0000) bit description254	address 0x4000 4000)
	Timer Control Register (TMR16B0TCR - address	Table 272. Watchdog Mode register (WDMOD - address
	0x4000 C004 and TMR16B1TCR - address	0x4000 4000) bit description
	0x4001 0004 and Hill Hob Front - address 0x4001 0004) bit description	Table 273. Watchdog operating modes selection 282
	Match Control Register (TMR16B0MCR -	Table 274. Watchdog Constant register (WDTC - address
	address 0x4000 C014 and TMR16B1MCR -	0x4000 4004) bit description
	address 0x4001 0014) bit description255	Table 275. Watchdog Feed register (WDFEED - address
	Capture Control Register (TMR16B0CCR -	0x4000 4008) bit description
	address 0x4000 C028 and TMR16B1CCR -	Table 276. Watchdog Timer Value register (WDTV - address
	address 0x4001 0028) bit description 256	0x4000 000C) bit description
	External Match Register (TMR16B0EMR -	Table 277. ADC pin description
	address 0x4000 C03C and TMR16B1EMR -	Table 278. Register overview: ADC (base address 0x4001
		•

	C000)	.285
Table 27	'9: A/D Control Register (AD0CR - address	
	0x4001 C000) bit description	.286
Table 28	0: A/D Global Data Register (AD0GDR - addres	
	0x4001 C004) bit description	
Table 28	1: A/D Status Register (AD0STAT - address	_
10010 20	0x4001 C030) bit description	288
Table 28	2: A/D Interrupt Enable Register (AD0INTEN -	.200
Table 20	address 0x4001 C00C) bit description	200
Table 20		.200
Table 26	33: A/D Data Registers (AD0DR0 to AD0DR7 -	_
	addresses 0x4001 C010 to 0x4001 C02C) bit	
T	description	
	4. LPC13xx flash configurations	
	5. Bootloader versions	
	6. CRP levels for USB boot images	
	37. LPC13xx flash sectors	
	8. Code Read Protection (CRP) options	.298
Table 28	9. Code Read Protection hardware/software	
	interaction	.298
Table 29	0. ISP commands allowed for different CRP	
	levels	.299
Table 29	11. ISP command summary	300
	2. ISP Unlock command	
	3. ISP Set Baud Rate command	
	4. ISP Echo command	
	5. ISP Write to RAM command	
	6. ISP Read Memory command	
	77. ISP Prepare sector(s) for write operation	
10010 20	command	303
Table 20	8. ISP Copy command	
	9. ISP Go command	
	0. ISP Erase sector command	
	11. ISP Blank check sector command	
	2. ISP Read Part Identification command	
	3. LPC13xx part identification numbers	
	14. ISP Read Boot Code version number	. 500
Table 30	command	205
Toble 20	95. ISP Compare command	
	6. ReadUID command	
	77. ISP Return Codes Summary	
Table 30	8. IAP Command Summary	.306
Table 30	9. IAP Prepare sector(s) for write operation	000
T	command	
	0. IAP Copy RAM to flash command	
	1. IAP Erase Sector(s) command	
	2. IAP Blank check sector(s) command	
	3. IAP Read Part Identification command	. 311
Table 31	4. IAP Read Boot Code version number	
	command	
	5. IAP Compare command	
	6. Reinvoke ISP	
	7. IAP ReadUID command	
	8. IAP Status Codes Summary	
Table 31	9. Memory mapping in debug mode	.313
	0. Flash configuration register (FLASHCFG,	
	address 0x4003 C010) bit description	.314
Table 32	1. Serial Wire Debug pin description	
	2. Abbreviations	

Chapter 21: LPC13xx Supplementary information

21.4 Figures

Fig 1.	LPC13xx block diagram	7
Fig 2.	LPC13xx memory map	
Fig 3.	LPC13xx CGU block diagram	
Fig 4.	System and USB PLL block diagram	
-		
Fig 5.	Standard I/O pin configuration	
Fig 6.	LPC1343 LQFP48 package	
Fig 7.	LPC1342/43 HVQFN33 package	
Fig 8.	LPC1313 LQFP48 package	
Fig 9.	LPC1311/13 HVQFN33 package	. 112
Fig 10.	Masked write operation to the GPIODATA	
	register	
Fig 11.	Masked read operation	
Fig 12.	USB device controller block diagram	
Fig 13.	USB SoftConnect interfacing	.129
Fig 14.	USB clocking	.132
Fig 15.	USB device driver pointer structure	
Fig 16.	Auto-RTS Functional Timing	
Fig 17.	Auto-CTS Functional Timing	
Fig 18.	Auto-baud a) mode 0 and b) mode 1 waveform	
Fig 19.	Algorithm for setting UART dividers	185
Fig 20.	UART block diagram	
Fig 21.	I ² C-bus configuration	
Fig 22.	Format in the Master Transmitter mode	
Fig 23.	Format of Master Receiver mode	
Fig 24.	A Master Receiver switches to Master Transmi	
riy 24.	after sending Repeated START	
Fig 2F		
Fig 25.	Format of Slave Receiver mode	
Fig 26.	Format of Slave Transmitter mode	
Fig 27.	I ² C serial interface block diagram	
Fig 28.	Arbitration procedure	
Fig 29.	Serial clock synchronization	.208
Fig 30.	Format and states in the Master Transmitter	
	mode	.213
Fig 31.	Format and states in the Master Receiver	
	mode	
Fig 32.	Format and states in the Slave Receiver mode	.220
Fig 33.	Format and states in the Slave Transmitter	
	mode	
Fig 34.	Simultaneous Repeated START conditions from	two
	masters	.225
Fig 35.	Forced access to a busy I ² C-bus	.225
Fig 36.	Recovering from a bus obstruction caused by a	a
Ū	LOW level on SDA	
Fig 37.	Texas Instruments Synchronous Serial Frame	
3 -	Format: a) Single and b) Continuous/back-to-ba	ack
	Two Frames Transfer	.243
Fig 38.	SPI frame format with CPOL=0 and CPHA=0 (a	
g .c	Single and b) Continuous Transfer)	
Fig 39.	SPI frame format with CPOL=0 and CPHA=1.	
Fig 40.	SPI frame format with CPOL = 1 and CPHA = 0	
Fig 40.		
Eig 44	Single and b) Continuous Transfer) SPI Frame Format with CPOL = 1 and	. ∠40
Fig 41.		0.45
F:= 40	CPHA = 1	
Fig 42.	Microwire frame format (single transfer)	
Fig 43.	Microwire frame format (continuos transfers) .	
Fig 44.	Microwire frame format setup and hold details	.249

Fig 45.	Sample PWM waveforms with a PWM cycle length
	of 100 (selected by MR3) and MAT3:0 enabled as
	PWM outputs by the PWCON register 260
Fig 46.	A timer cycle in which PR=2, MRx=6, and both
	interrupt and reset on match are enabled 260
Fig 47.	A timer cycle in which PR=2, MRx=6, and both
	interrupt and stop on match are enabled 260
Fig 48.	16-bit counter/timer block diagram 261
Fig 49.	Sample PWM waveforms with a PWM cycle length
	of 100 (selected by MR3) and MAT3:0 enabled as
	PWM outputs by the PWCON register 272
Fig 50.	A timer cycle in which PR=2, MRx=6, and both
	interrupt and reset on match are enabled 272
Fig 51.	A timer cycle in which PR=2, MRx=6, and both
	interrupt and stop on match are enabled 272
	32-bit counter/timer block diagram 273
	System tick timer block diagram 275
Fig 54.	Watchdog block diagram283
Fig 55.	Boot process flowchart 296
Fia 56.	IAP parameter passing

Chapter 21: LPC13xx Supplementary information

21.5 Contents

Chap	ter 1: LPC13xx Introductory information	on			
1.1 1.2 1.3	Introduction	. 4	1.4 1.5	Ordering options	
Chap	ter 2: LPC13xx Memory mapping				
2.1 2.2	How to read this chapter		2.3	Memory remapping	9
Chap	ter 3: LPC13xx System configuration				
3.1	How to read this chapter	10	3.5.34	BOD control register	31
	Input pins to the start logic	.10 .10	3.5.35 3.5.36 3.5.37	System tick counter calibration register Start logic edge control register 0 Start logic signal enable register 0	32 32
3.2 3.3	Introduction	11	3.5.38 3.5.39	Start logic reset register 0	
3.4	Clocking and power control		3.5.40	Start logic edge control register 1	
3.5	Register description		3.5.41 3.5.42	Start logic signal enable register 1 Start logic reset register 1	
3.5.1	System memory remap register		3.5.42	Start logic status register 1	
3.5.2	Peripheral reset control register		3.5.44	Deep-sleep mode configuration register	
3.5.3	System PLL control register		3.5.45	Wake-up configuration register	
3.5.4	System PLL status register		3.5.46	Power-down configuration register	
3.5.5	USB PLL control register		3.5.47	Device ID register	41
3.5.6	USB PLL status register		3.6	Reset	42
3.5.7	System oscillator control register		3.7	Brown-out detection	42
3.5.8	Watchdog oscillator control register		3.8	Power management	
3.5.9	Internal resonant crystal control register		3.8.1	Active mode	
3.5.10	System reset status register		3.8.1.1	Power configuration in Active mode	
3.5.11 3.5.12	System PLL clock source select register System PLL clock source update enable	21	3.8.2	Sleep mode	
3.3.12	register	22	3.8.2.1	Power configuration in Sleep mode	
3.5.13	USB PLL clock source select register	22	3.8.2.2	Programming Sleep mode	
3.5.14	USB PLL clock source update enable register		3.8.2.3	Wake-up from Sleep mode	
3.5.15	Main clock source select register	23	3.8.3	Deep-sleep mode	
3.5.16	Main clock source update enable register	23	3.8.3.1	Power configuration in Deep-sleep mode	
3.5.17	System AHB clock divider register	24	3.8.3.2	Programming Deep-sleep mode	
3.5.18	System AHB clock control register		3.8.3.3	Wake-up from Deep-sleep mode	
3.5.19	SSP clock divider register		3.8.4 3.8.4.1	Deep power-down mode	45
3.5.20	UART clock divider register		3.0.4.1	Power configuration in Deep power-down mode	15
3.5.21	Trace clock divider register		3.8.4.2	Programming Deep power-down mode	
3.5.22	SYSTICK clock divider register		3.8.4.3	- · · · · · · · · · · · · · · · · · · ·	
3.5.23	USB clock source select register USB clock source update enable register		3.9	Deep-sleep mode details	
3.5.24 3.5.25	USB clock divider register	28	3.9.1	IRC oscillator	
3.5.26	WDT clock source select register		3.9.2	Start logic	
3.5.27	WDT clock source update enable register		3.9.3	Using the general purpose counter/timers to	70
3.5.28	WDT clock divider register		0.0.0	create a self-wake-up event	46
3.5.29	CLKOUT clock source select register	29	3.10	PLL (System PLL and USB PLL) functional	
3.5.30	CLKOUT clock source update enable register		5.10	description	47
3.5.31	CLKOUT clock divider register		3.10.1	Lock detector	
3.5.32	POR captured PIO status register 0	31	3.10.2	Power-down control	
3.5.33	POR captured PIO status register 1	31	3.10.3	Divider ratio programming	

Chapter 21: LPC13xx Supplementary information

3.10.4 Chan t	Post divider	3.10.4.1 3.10.4.2 3.11		50
4.1 4.2	Introduction	4.2.2 4.2.3	General purpose registers 0 to 3	52
4.2.1	Power control register	4.3	Functional description	52
	ter 5: LPC13xx Interrupt controller	= 0.40		_
5.1 5.2 5.3 5.4 5.5	How to read this chapter	5.6.10 5.6.11 5.6.12 5.6.13 5.6.14 5.6.15	Interrupt Active Bit Register 1 Interrupt Priority Register 0 Interrupt Priority Register 1 Interrupt Priority Register 2 Interrupt Priority Register 3 Interrupt Priority Register 4	69 69 70 70
5.6 5.6.1	Example:	5.6.16 5.6.17 5.6.18	Interrupt Priority Register 5 Interrupt Priority Register 6	71 72 72
5.6.2 5.6.3 5.6.4 5.6.5 5.6.6 5.6.7 5.6.8 5.6.9	Interrupt Set-Enable Register 1 59 Interrupt Clear-Enable Register 0	5.6.19 5.6.20 5.6.21 5.6.22 5.6.23 5.6.24 5.6.25 5.6.26	Interrupt Priority Register 8 Interrupt Priority Register 9 Interrupt Priority Register 10 Interrupt Priority Register 11 Interrupt Priority Register 12 Interrupt Priority Register 13 Interrupt Priority Register 14 Software Trigger Interrupt Register	73 74 74 75 75 76
	ter 6: LPC13xx I/O configuration			
6.1 6.2 6.3 6.3.1 6.3.2 6.3.3	How to read this chapter 77 Introduction 77 General description 77 Pin function 78 Pin mode 78 Hysteresis 79	6.3.4 6.3.5 6.4 6.4.1 6.4.1.1	A/D-mode	79 79
Chapt	ter 7: LPC13xx Pin configuration			
7.1 7.2 7.3 Chapt	How to read this chapter	7.4 7.4.1 7.4.2	Pin description1LQFP48 packages1HVQFN33 packages1	13
8.1 8.2 8.3 8.4 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6	How to read this chapter	8.4.7 8.4.8 8.4.9 8.5 8.5.1	GPIO masked interrupt status register 1: GPIO interrupt clear register	24

UM10375

Chapter 21: LPC13xx Supplementary information

Chapter 9: LPC13xx USB device controller

9.1	How to read this chapter	126	9.10.3.5.	1 Data transfer
9.2	Basic configuration	126	9.10.4	Miscellaneous registers
9.3	Introduction	126	9.10.4.1	
9.4	Features	127		- 0x4002 002C)
9.5	Fixed endpoint configuration			Serial interface engine command description
9.6	General description			140
9.6.1	Analog transceiver		9.11.1	Set Address (Command: 0xD0, Data: write
9.6.2	Serial Interface Engine (SIE)		9.11.2	1 byte)
9.6.3	Endpoint RAM (EP_RAM)		9.11.2	Configure Device (Command: 0xD8, Data: write 1 byte)
9.6.4	EP_RAM access control		9.11.3	Set Mode (Command: 0xF3, Data: write
9.6.5	Register interface		5.11.5	1 byte)
9.6.6	SoftConnect	129	9.11.4	Read Interrupt Status (Command: 0xF4, Data:
9.7	Operational overview	129	• • • • • • • • • • • • • • • • • • • •	read 2 bytes)
9.8	Pin description		9.11.5	Read Current Frame Number (Command: 0xF5,
9.9	Clocking and power control			Data: read 1 or 2 bytes)
9.9.1	Power requirements		9.11.6	Read Chip ID (Command: 0xFD, Data: read 2
9.9.2	Clocks			bytes)
9.9.3	Power management support		9.11.7	Set Device Status (Command: 0xFE, Data: write 1
9.9.4	Remote wake-up			byte)
9.9.5	Interrupts		9.11.8	Get Device Status (Command: 0xFE, Data: read 1
9.10	Register description		0.44.0	byte)
9.10.1	Device interrupt registers		9.11.9	Get Error Code (Command: 0xFF, Data: read 1
9.10.1.1	. •		9.11.10	byte)
	(USBDevIntSt - 0x4002 0000)	133	9.11.10	read 1 byte (optional))
9.10.1.2	USB Device Interrupt Enable register		9.11.11	Select Endpoint/Clear Interrupt (Command:
	(USBDevIntEn - 0x4002 0004)	134	0	0x40 - 0x47, Data: read 1 byte)
9.10.1.3	1 9		9.11.12	Set Endpoint Status (Command: 0x40 - 0x49,
	(USBDevIntClr - 0x4002 0008)		******	Data: write 1 byte (optional)) 147
9.10.1.4	1 0 1		9.11.13	Clear Buffer (Command: 0xF2, Data: read 1 byte
	- 0x4002 000C)			(optional))
9.10.2	SIE command code registers		9.11.14	Validate Buffer (Command: 0xFA, Data:
9.10.2.1	USB Command Code register (USBCmdCod 0x4001 8010)			none)
9.10.2.2	· · · · · · · · · · · · · · · · · · ·		9.12	USB device controller initialization 149
3.10.2.2	0x4002 0014)		9.12.1	USB clock configuration 149
9.10.3	USB data transfer registers		9.12.2	USB device controller initialization 150
9.10.3.1	USB Receive Data register (USBRxData - 0x4		9.13	Functional description 150
	0018)		9.13.1	Data flow from the Host to the Device 150
9.10.3.2	USB Transmit Data register (USBTxData - 0x4	002	9.13.2	Data flow from the Device to the Host 151
	021C)		9.13.3	Interrupt based transfer 151
9.10.3.3	USB Receive Packet Length register		9.13.4	Isochronous transfer
	(USBRxPLen - 0x4002 0020)	137	9.13.5	Automatic stall feature
9.10.3.4	9 9		9.14	Double-buffered endpoint operation 152
	(USBTxPLen - 0x4002 0024)	137	9.14.1	Bulk endpoints
9.10.3.5	- · · · · · · · · · · · · · · · · · · ·	400	9.14.2	Isochronous endpoints
	0028)	138		
Chapt	er 10: LPC13xx USB on-chip drivers			
10.1	How to read this chapter	155	10.3.3	USB connect
10.2	Introduction	155	10.3.4	USB interrupt handler
10.3	USB driver functions	155	10.4	Calling the USB device driver 156
10.3.1	Clock and pin initialization	155	10.4.1	USB mass storage driver 157
10.3.2	USB initialization		10.4.2	USB human interface driver 158

10.5 10.5.1	USB driver structure definitions		10.6.1 10.6.2	Standard descriptor
10.5.2	USB driver table			endpoint descriptors
10.5.3	USB device information		10.6.3	HID configuration, interface, class, endpoint, and
10.5.4	Mass storage device information			report descriptor
10.5.5	Human interface device information		10.6.4	Example descriptors
10.6	USB descriptors			Example HID descriptor
Chapt	er 11: LPC13xx UART			
 11.1	How to read this chapter	167	11.6.11	UART Scratch Pad Register (U0SCR -
11.2	Basic configuration			0x4000 801C)
11.3	Features		11.6.12	UART Auto-baud Control Register (U0ACR -
11.4	Pin description			0x4000 8020)
11.5	Clocking and power control		11.6.13	Auto-baud
	-		11.6.14	Auto-baud modes
11.6	Register description	168	11.6.15	UART Fractional Divider Register (U0FDR -
11.6.1	UART Receiver Buffer Register (U0RBR -	170	11 6 15 1	0x4000 8028)
11.6.2	0x4000 8000, when DLAB = 0, Read Only) . UART Transmitter Holding Register (U0THR			Baud rate calculation
11.0.2	0x4000 8000 when DLAB = 0, Write Only)		11.0.13.1.	9600
11.6.3	UART Divisor Latch LSB and MSB Registers		11.6.15.1.	.2 Example 2: UART_PCLK = 12 MHz, BR =
	(U0DLL - 0x4000 8000 and U0DLM -			115200
	0x4000 8004, when DLAB = 1)	170	11.6.16	UART Transmit Enable Register (U0TER -
11.6.4	UART Interrupt Enable Register (U0IER -			0x4000 8030)
	0x4000 8004, when DLAB = 0)		11.6.17	UART RS485 Control register (U0RS485CTRL -
11.6.5	UART Interrupt Identification Register (U0IIR			0x4000 804C)
	0x4004 8008, Read Only)	172	11.6.18	UART RS-485 Address Match register
11.6.6	UART FIFO Control Register (U0FCR -	174	11 6 10	(U0RS485ADRMATCH - 0x4000 8050) 188
11.6.7	0x4000 8008, Write Only)	1/4	11.6.19	UART1 RS-485 Delay value register (U0RS485DLY - 0x4000 8054)
11.0.7	0x4000 800C)	174	11.6.20	RS-485/EIA-485 modes of operation 188
11.6.8	UART Modem Control Register		11.0.20	RS-485/EIA-485 Normal Multidrop Mode
11.6.8.1	Auto-flow control			(NMM)
11.6.8.1	.1 Auto-RTS			RS-485/EIA-485 Auto Address Detection (AAD)
11.6.8.1	.2 Auto-CTS	177		mode
11.6.9	UART Line Status Register (U0LSR -			RS-485/EIA-485 Auto Direction Control 189
	0x4000 8014, Read Only)			RS485/EIA-485 driver delay time 189
11.6.10	UART Modem Status Register	179		RS485/EIA-485 output inversion 190
			11.7 A	Architecture
Chapt	er 12: LPC13xx I2C-bus controller			
12.1	How to read this chapter	192	12.8.3	I ² C Data register (I2C0DAT - 0x4000 0008) 197
12.2	Basic configuration	192	12.8.4	I ² C Slave Address register 0 (I2C0ADR0-
12.3	Features			0x4000 000C)
12.4	Applications	192	12.8.5	I ² C SCL HIGH and LOW duty cycle registers
12.5	General description			(I2C0SCLH - 0x4000 0010 and I2C0SCLL-
12.5.1	I ² C Fast-mode Plus		12.8.5.1	0x4000 0014)
12.6	Pin description		12.0.3.1	Selecting the appropriate I ² C data rate and duty cycle
12.0	Clocking and power control		12.8.6	I ² C Control Clear register (I2C0CONCLR -
12.7	Register description			0x4000 0018)
1 2.8 12.8.1	I ² C Control Set register (I2C0CONSET -	134	12.8.7	I ² C Monitor mode control register (I2C0MMCTRL
12.0.1	0x4000 0000)	195		- 0x4000 001C)
12.8.2	I ² C Status register (I2C0STAT - 0x4000 0004		12.8.7.1	Interrupt in Monitor mode
	197	,	12.8.7.2	Loss of arbitration in Monitor mode 201

12.8.8	I ² C Slave Address registers (I2C0ADR[1, 2, 0x4000 00[20, 24, 28])		12.11.9 12.11.10	I ² C interrupt service	
12.8.9	I ² C Data buffer register (I2C0DATA_BUFFEF	₹ -	12.11.11	Adapting state services to an application	227
12.8.10	0x4000 002C)	201		Software example	
12.0.10	0x4000 00[30, 34, 38, 3C])	202	12.12.1	Initialization routine	
12.0	I ² C operating modes		12.12.2	Start Master Transmit function	
	•		12.12.3	Start Master Receive function	
12.9.1	Master Transmitter mode		12.12.4	I ² C interrupt routine	
12.9.2	Master Receiver mode		12.12.5	Non mode specific states	
12.9.3 12.9.4	Slave Receiver mode			State: 0x00	
				State: 0x08	
	I ² C implementation and operation			State: 0x10	
12.10.1	Input filters and output stages		12.12.6	Master Transmitter states	
12.10.2	Address Registers, I2ADDR0 to I2ADDR3	207	_	State: 0x18	
12.10.3	Address mask registers, I2MASK0 to I2MASK3	207		State: 0x20	
12.10.4	Comparator			State: 0x28	
12.10.4	Shift register, I2DAT			State: 0x30	
12.10.5	Arbitration and synchronization logic			State: 0x38	
12.10.7	Serial clock generator		12.12.7		
12.10.7	Timing and control		12.12.7.1	State: 0x40	
12.10.9	Control register, I2CONSET and I2CONCLR			State: 0x48	
12.10.3 12.10.10			12.12.7.3	State: 0x50	230
	Details of I ² C operating modes		12.12.7.4	State: 0x58	231
12.11	Master Transmitter mode		12.12.8		
12.11.1	Master Receiver mode			State: 0x60	
12.11.3	Slave Receiver mode			State: 0x68	
12.11.4	Slave Transmitter mode			State: 0x70	
12.11.4	Miscellaneous states			State: 0x78	
_	1 I2STAT = 0xF8			State: 0x80	
	2 I2STAT = 0x00			State: 0x88	
12.11.6 12.11.6	Some special cases			State: 0x90	
_	1 Simultaneous Repeated START conditions fr			State: 0x98	
	two masters			State: 0xA0	
12.11.6.	2 Data transfer after loss of arbitration			Slave Transmitter states	
	3 Forced access to the I ² C-bus			State: 0xA8	
12.11.6.	4 I ² C-bus obstructed by a LOW level on SCL of	r		State: 0xB0.	
	SDA	226		State: 0xB8	
12.11.6.	5 Bus error	226		State: 0xC0	
12.11.7	I ² C state service routines	226	12.12.9.3	State. 0xCo	234
12.11.8	Initialization	227			
Chapte	er 13: LPC13xx SSP				
13.1	How to read this chapter	235	13.7.4	SSP0 Status Register (SSP0SR - 0x4004	
13.2	Basic configuration	235			239
13.3	Features	235	13.7.5	SSP0 Clock Prescale Register (SSP0CPSR -	
	General description			0x4004 0010)	240
	Pin description		13.7.6	SSP0 Interrupt Mask Set/Clear Register	0.40
	Clocking and power control		13.7.7	(SSP0IMSC - 0x4004 0014)	240
	•		13.7.7	SSP0 Raw Interrupt Status Register (SSP0RI	
	Register description	231	13.7.8	0x4004 0018)SSP0 Masked Interrupt Status Register	241
13.7.1	SSP0 Control Register 0 (SSP0CR0 -	220	10.7.0		241
1270	0x4004 0000)	23 8	13.7.9	SSP0 Interrupt Clear Register (SSP0ICR -	∠ † I
13.7.2	SSP0 Control Register 1 (SSP0CR1 -	220	10.1.0		242
13.7.3	0x4004 0004)		13.8 F	functional description	
. 0.7 .0	0008)		10.0 F	αποτιστίαι ασσοπραστί	_ 42

Chapter 21: LPC13xx Supplementary information

13.8.2 13.8.2.1 13.8.2.2	SPI frame format	243	13.8.2.3 13.8.2.4 13.8.2.5 13.8.3 13.8.3.1	SPI format with CPOL = 1,CPHA = 0 24 SPI format with CPOL = 1,CPHA = 1 24 Semiconductor Microwire frame format 24 Setup and hold time requirements on CS with	45 47
Chapt	er 14: LPC13xx 16-bit timer/counters	(CT16	B0/1)		
14.1 14.2 14.3 14.4 14.5	How to read this chapter Basic configuration Features Applications Description	250 250 250	14.8.6 14.8.7	Match Registers (TMR16B0MR0/1/2/3 - addresses 0x4000 C018/1C/20/24 and TMR16B1MR0/1/2/3 - addresses 0x4001	55
14.6 14.7	Pin description	251 251	14.8.8 14.8.9	,	56
14.8 14.8.1	Register description			,	:56
14.8.2	Timer Control Register (TMR16B0TCR and TMR16B1TCR)		14.8.10	,	56
14.8.3	Timer Counter (TMR16B0TC - address 0x400 C008 and TMR16B1TC - address 0x4001 0008)		14.8.1114.8.12	Count Control Register (TMR16B0CTCR and TMR16B1CTCR)	57
14.8.4	Prescale Register (TMR16B0PR - address 0x4000 C00C and TMR16B1PR - address		14.8.13	TMR16B1PWMC)	.58 .59
14.8.5	0x4001 000C)Prescale Counter register (TMR16B0PC -	254	14.9	Example timer operation 20	60
	address 0x4000 C010 and TMR16B1PC - address 0x4001 0010)	254	14.10	Architecture 20	61
				Architecture 20	61
Chapte 15.1 15.2 15.3	address 0x4001 0010)er 15: LPC13xx 32-bit timer/counters How to read this chapter	(CT32 262 262 262	2 B0/1) 15.8.7	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	
Chapte 15.1 15.2 15.3 15.4 15.5	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter	(CT32 262 262 262 262 263	15.8.7 15.8.8	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	
Chapte 15.1 15.2 15.3 15.4 15.5 15.6 15.7	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter Basic configuration Features Applications Description Pin description Clocking and power control	(CT32 262 262 262 262 263 263 263	2 B0/1) 15.8.7	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	68
Chapte 15.1 15.2 15.3 15.4 15.5 15.6	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter	(CT32 262 262 262 262 263 263 263 263	15.8.7 15.8.8	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	68
Chapte 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter	(CT32 262 262 262 262 263 263 263 263	15.8.7 15.8.8 15.8.9	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	68 68 68
Chapte 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.8.1	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter. Basic configuration. Features. Applications. Description. Pin description. Clocking and power control. Register description Interrupt Register (TMR32B0IR and TMR32B1IR). Timer Control Register (TMR32B0TCR and TMR32B1TCR). Timer Counter (TMR32B0TC - address 0x4001 4008 and TMR32B1TC - address	(CT32 262 262 262 263 263 263 263 265 266	15.8.7 15.8.8 15.8.9 15.8.10 15.8.11 15.8.12	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	68 68 68 68
Chapte 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.8.1	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter. Basic configuration. Features. Applications. Description. Pin description. Clocking and power control. Register description Interrupt Register (TMR32B0IR and TMR32B1IR). Timer Control Register (TMR32B0TCR and TMR32B1TCR). Timer Counter (TMR32B0TC - address 0x4001 4008 and TMR32B0TC - address 0x4001 400C and TMR32B0PR - address 0x4001 400C and TMR32B1PR - address	(CT32 262 262 262 263 263 263 263 265 266	15.8.7 15.8.8 15.8.9 15.8.10 15.8.11 15.8.12 15.8.13	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	68 68 68 69 70
Chapte 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.8.1 15.8.2	address 0x4001 0010) er 15: LPC13xx 32-bit timer/counters How to read this chapter. Basic configuration. Features Applications. Description. Clocking and power control. Register description. Interrupt Register (TMR32B0IR and TMR32B1IR). Timer Control Register (TMR32B0TCR and TMR32B1TCR). Timer Counter (TMR32B0TC - address 0x4001 4008 and TMR32B1TC - address 0x4001 8008). Prescale Register (TMR32B0PR - address 0x4001 800C). Prescale Counter Register (TMR32B0PC - address 0x4001 4010 and TMR32B1PC - address 0x4001 4010	(CT32 262 262 262 263 263 263 263 265 266	15.8.7 15.8.8 15.8.9 15.8.10 15.8.11 15.8.12 15.8.13	Match Registers (TMR32B0MR0/1/2/3 - addresses 0x4001 4018/1C/20/24 and TMR32B1MR0/1/2/3 addresses 0x4001 8018/1C/20/24)	

331 of 333

UM10375 NXP Semiconductors

Chapter 21: LPC13xx Supplementary information

Chapt	ter 16: LPC13xx System tick timer				
16.1 16.2	How to read this chapter		16.6.2	System Timer Reload value register (LOAD - 0xE000 E014)	'6
16.3	Features	274	16.6.3	System Timer Current value register (VAL -	•
16.4 16.5	Description Operation		16.6.4	0xE000 E018) 27 System Timer Calibration value register (CALIB 0xE000 E01C) 27	-
16.6 16.6.1	Register description System Timer Control and status register (CT 0xE000 E010)	RL -	16.7	Example timer calculations 27 System clock = 72 MHz 27 System tick timer clock = 24 MHz 27 System clock = 12 MHz 27	78 78 78
Chapt	ter 17: LPC13xx WatchDog Timer (WI	OT)			
17.1	How to read this chapter	279	17.7.1	Watchdog Mode register (WDMOD -	
17.2 17.3	Basic configuration	279	17.7.2	0x4000 0000)	
17.4 17.5	Applications		17.7.3	Watchdog Feed register (WDFEED - 0x4000 4008)	
17.6 17.7	Clocking and power control		17.7.4	Watchdog Timer Value register (WDTV - 0x4000 400C)	32
			17.8	Block diagram 28	
Chapt	ter 18: LPC13xx Analog-to-Digital Co	nverte	(ADC)	
18.1	How to read this chapter	284	18.6.3	A/D Status Register (AD0STAT - 0x4001 C030)	
18.2	Basic configuration	284		288	
18.3	Features	284	18.6.4	A/D Interrupt Enable Register (AD0INTEN -	
18.4	Pin description	284	1065	0x4001 C00C)	88
18.5	Clocking and power control	285	18.6.5	A/D Data Registers (AD0DR0 to AD0DR7 - 0x4001 C010 to 0x4001 C02C) 28	ιΩ
18.6	Register description		18.7	Operation	
18.6.1	A/D Control Register (AD0CR - 0x4001		18.7.1	Hardware-triggered conversion	
18.6.2	C000)		18.7.2	Interrupts	
Chapt	0x4001 C004)ter 19: LPC13xx Flash memory progr		g firm	ware	
19.1	How to read this chapter	290	19.8.9	RAM used by IAP command handler 29	-
19.2	Bootloader	290	19.9	USB communication protocol 29)4
19.2.1	Bootloader code version 5.2 notes		19.9.1	Usage note	
19.3	Features		19.10	Boot process flowchart 29	
19.4	Description		19.11	Sector numbers	
19.5	Memory map after any reset		19.12	Code Read Protection (CRP)	
19.6	Flash content protection mechanism		19.12.1	ISP entry protection	
			19.13	ISP commands 30	
19.7	Criterion for Valid User Code		19.13.1	Unlock <unlock code=""></unlock>	
19.8	ISP/IAP communication protocol		19.13.1		
19.8.1 19.8.2	ISP command format	293 293	19.13.3	· · · · · · · · · · · · · · · · · · ·	
19.8.3	ISP data format		19.13.4	•	
19.8.4	ISP flow control			<number bytes="" of=""></number>	
19.8.5	ISP command abort		19.13.5	,	
19.8.6	Interrupts during ISP		19.13.6	1	
19.8.7	Interrupts during IAP			number> <end number="" sector=""> 30</end>)2
19.8.8	RAM used by ISP command handler				

© NXP B.V. 2010. All rights reserved.

UM10375

Chapter 21: LPC13xx Supplementary information

19.13.7	Copy RAM to flash <flash address=""> <ram address=""> <no bytes="" of=""></no></ram></flash>	19.14.2 3 19.14.3	Copy RAM to flash 3 Erase Sector(s) 3	
19.13.8	Go <address> <mode></mode></address>	19.14.4	Blank check sector(s)	
19.13.9	Erase sector(s) <start number="" sector=""> <end< th=""><th>19.14.5</th><th>Read Part Identification number 3</th><th>311</th></end<></start>	19.14.5	Read Part Identification number 3	311
	sector number>	19.14.6	Read Boot code version number 3	311
19.13.10	D Blank check sector(s) < sector number > < end	19.14.7	Compare <address1> <address2></address2></address1>	
	sector number>		<no bytes="" of=""></no>	
19.13.11	Read Part Identification number 305	19.14.8	Reinvoke ISP	12
19.13.12	Read Boot code version number 305	19.14.9	ReadUID	12
19.13.13		19.14.10	IAP Status Codes	13
	<no bytes="" of=""></no>	19.15	Debug notes 3	13
	4 ReadUID 306		Comparing flash images 3	313
19.13.15	5 ISP Return Codes	³ 19.15.2	Serial Wire Debug (SWD) flash programming	
19.14	IAP commands 307	7		313
19.14.1	Prepare sector(s) for write operation 309	19.16	Flash memory access	14
Chapt	er 20: LPC13xx Serial Wire Debug (SWD	D)		
20.1	How to read this chapter 315	5 20.4	Description 3	15
20.2	Features	20.5	Pin description 3	15
20.3	Introduction		Debug notes	
Chapt	er 21: LPC13xx Supplementary informa	tion		
21.1	Abbreviations	7 21.3	Tables	19
21.2	Legal information	3 21.4	Figures	25
21.2.1	Definitions		Contents	
21.2.2	Disclaimers			_
21.2.3	Trademarks	3		

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 July 2010 Document identifier: UM10375