Lab Report 781

Introduction

The analysis of natural oil-based mixtures is pivotal in understanding the formulation and enhancement of cosmetic and

pharmaceutical products. This report delves into the intricate characterization of various oil mixtures using advanced

analytical techniques.

Test Samples

The samples contain combinations of ingredients that merit in-depth analysis for their potential applications.

Methods and Instrumentation

Fourier Transform Infrared (FTIR) Spectroscopy

Instrument: FTIR Spectrometer FTIR-8400

Sample Composition: Jojoba Oil, Beeswax, Vitamin E

Measurement: Specific peak observed at 3423 1/cm

Observations

The distinct infrared absorption peak signifies the presence of hydroxyl functionalities, potentially attributed to the

alcohol groups in vitamin E and beeswax.

High-Performance Liquid Chromatography (HPLC)

Instrument: HPLC System HPLC-9000

Sample Composition: Coconut Oil, Gum

Measurement: Detected at a concentration of 250 mg/L

Observations

The chromatogram revealed a sharp peak at the mentioned concentration, indicating the presence and concentration of polysaccharides within the gum material.

pH Measurement

Instrument: pH Meter PH-700

Sample Composition: Jojoba Oil, Cetyl Alcohol, Glycerin

Measurement: pH level of 7

Observations

A neutral pH was detected, suitable for skin application formulations, ensuring compatibility and reduced irritation potential.

Results

Below is a table illustrating the results for the FTIR, HPLC, and pH measurements:

Instrument	Sample Composition	Measurement	Unit
FTIR Spectrometer FTIR-8400	Jojoba Oil, Beeswax, Vitamin E	3423	1/cm
HPLC System HPLC-9000	Coconut Oil, Gum	250	mg/L
pH Meter PH-700 Jo	pjoba Oil, Cetyl Alcohol, Glycer	in 7	рН

Additional Data and Irrelevant Details

Further Analysis

X-Ray Diffractometry (XRD)

Instrument: X-Ray Diffractometer XRD-6000

Sample Composition: Coconut Oil
Measurement: Peak detected at 120°C
Observations
The thermal analysis highlighted potential phase transitions, relevant for product stability in diverse conditions.
Ion Chromatography (IC)
Instrument: Ion Chromatograph IC-2100
Sample Composition: Jojoba Oil, Vitamin E
Measurement: 8.5 mM
Observations
lonic species analysis permits the understanding of charge-balancing components, crucial for emulsification processes
in oil-based products.
Gas Chromatography (GC)
Instrument: Gas Chromatograph GC-2010
Sample Composition: Almond Oil, Glycerin
Measurement: 150 ppm
Observations
GC analysis provided insights into volatile profiles and potential fragrance inconsistencies.
Additional Complex Data Presentations

Instrument	Sample Composition	Measurement	Unit
XRD-6000	Coconut Oil	120.0	°C
IC-2100	Jojoba Oil, Vitamin E	8.5	mM
GC-2010	Almond Oil, Glycerin	150.0	ppm

Miscellaneous Observations and Anomalous Information:

Viscosity and Molecular Characterization

Nuclear Magnetic Resonance (NMR)

Instrument: NMR Spectrometer NMR-500

Sample Composition: Jojoba Oil, Beeswax, Vitamin E

Measurement: Peak at 10 ppm

Viscometry

Instrument: Viscometer VS-300

Sample Composition:

- Jojoba Oil, Gum, Vitamin E: 2014.59 cP

- Almond Oil, Gum: 7618.33 cP

Observations

NMR provided molecular insights into hydrogen environments. Viscosity measurements indicate flow dynamics crucial for application texture and consistency.

Instrument	Sample Composition	Measurement	Unit
NMR-500	Jojoba Oil, Beeswax, Vitamin E	10.0	ppm
VS-300	Jojoba Oil, Gum, Vitamin E	2014.59	сР

VS-300	Almond Oil, Gum	7618.33	cP

Conclusions

The comprehensive analysis presented offers valuable insights into the composition, stability, and application suitability of oil-based mixtures. Each method provided pivotal data shaping the functionality of these compounds in practical implementations.

Subsequent investigative efforts should aim at the synergy of components contributing to overall efficacy and user sensory perception. Further studies with expanded sample matrices can further elucidate compositional nuances.