Constrains on the top quark width from cross section and branching ratio measurements using EFTfitter

Salvatore La Cagnina

Technische Universität Dortmund, Lehrstuhl EIV

October 13, 2016

Content

- The Standard Model
- Top quark measurements at LHC
- Inference of model parameters in Bayesian analysis
- Implementation of Bayesian analysis in EFTfitter
- Combination of measurements with the BLUE method and the EFTfitter
- Constraining the top quark width using EFTfitter
- Conclusion and Outlook

The Standard Model

Fermions (Spin 1/2)		Bosons		
Leptons	$\begin{pmatrix} \mathbf{e} \\ \nu_{\mathbf{e}} \end{pmatrix} \begin{pmatrix} \mu \\ \nu_{\mu} \end{pmatrix} \begin{pmatrix} \tau \\ \nu_{\tau} \end{pmatrix}$	Vector bosons (spin 1)	$W^{\pm} Z^0 \gamma g$	
Quarks	$\binom{u}{d}\binom{c}{s}\binom{t}{b}$	Scalar bosons (spin 0)	Н	

- Vector bosons as mediators of fundamental forces
- Fermion mass increases per generation
- Gravitation is not included

The Top Quark

Figure: Example process for $t\bar{t}$ production at the LHC.

Figure: Example process for single top production at the LHC.

- Up-type quark of third generation
- Charge of Q = 2/3 e
- Lager mass then every other particle
- Decays before hadronization
- Can either be produced in pairs (strong interaction) or single (weak interaction)

Inference of model parameters

- A function $g(\vec{x}|\vec{\lambda}, M)$ describes physical quantity \vec{x} with parameters $\vec{\lambda}$ in a model M
- Based on Bayes Theorem

$$P(\vec{\lambda}, M | \vec{D}) = \frac{P(\vec{D} | \vec{\lambda}, M) P(\vec{\lambda}, M)}{\int g(\vec{x} = \vec{D} | \vec{\lambda}, M) P_i(\vec{\lambda}, M) d\vec{\lambda}}.$$

- $P(\vec{\lambda}, M)$ prior probability distribution
- Distribution of single parameter $\vec{\lambda}_i$ with

$$P(\lambda_i|\vec{D}) = \int \prod_{i \neq i} P(\vec{\lambda}|\vec{D}) d\lambda_j.$$

The EFTfitter

- Based on BAT (Bayesian Analysis Toolkit) [1]
- Individual model implementation
- Generic tool for interpretation of measurements in context of EFT
- Combines measurements comparable to BLUE method

Combination of measurements

- Observables \vec{y} = Parameters $\vec{\lambda}$
- N number of measurements, n number of observables, \vec{D}_i single measurement
- U_{ik} unity if measurement matches with observable

$$-2\ln(P(\vec{D}|\vec{\lambda})) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{N} \sum_{l=1}^{N} [D_i - U_{ik}\lambda_k] M_{ij}^{-1} [D_j - U_{il}\lambda_l],$$

[1] Caldwell, Kollár, Kröninger 2009

Combination of measurements

- BLUE = Best Linear Unbiassed Estimator Method (Lyons, Gibaut, Clifford 1988)
- Build linear combination of single measurements y_i
- Minimize variance by minimizing weighted sum S

$$\hat{y} = \sum_{i} \alpha_i y_i$$
 $S = \sum_{i} \sum_{j} (y' - y_i) E_{ij}^{-1} (y' - y_j)$

- E_{ii} = Error matrix, S follows χ^2 distribution
- In case of no correlation (E_{ij} is diagonal)

$$\hat{y} = \left(\sum_{i} \frac{y_i}{\sigma_i^2}\right) / \left(\sum_{i} \frac{1}{\sigma_i^2}\right) \qquad \frac{1}{\sigma^2} = \sum_{i} \frac{1}{\sigma_i^2}$$

The example: Single top + W boson cross section

Figure: Example process for single top + W boson production.

- Example for BLUE for a combination of measurements
- Combination of measurements for the production of a top quark and a W boson in pp collisions at $\sqrt{s} = 8 \text{ TeV}$
- Features two measurements, one from ATLAS and one from CMS
- Combines roughly 20 uncertainties
- From ATLAS-CONF-2014-052

The measured cross sections

- **ATLAS** : $\sigma_{tW} = (27.20 \pm 6.35) \, \text{pb}$
- \blacksquare CMS : $\sigma_{tW} = (23.40 \pm 5.07) \, \mathrm{pb}$
- First comparison only statistical uncertainties
- Tables with uncertainties (values in pb):

Category	ATLAS [pb]	CMS [pb]	Cor.	Category	ATLAS [pb]	CMS [pb]	Cor.
Data statistics	1.93	1.90	0	Z + jets backgound norm.	0.00	0.60	0
Simulation statistics	0.76	0.56	0	JES common	2.72	0.89	0
Luminosity	1.00	0.70	0.31	JES flavour	1.36	0.00	0
ISR/FSR	1.60	2.90	0.95	Jet identification	0.05	0.00	0
tW generator	3.00	0.00	0	Jet resolution	0.19	0.21	0
$t\bar{t}$ generator	2.04	3.30	1	Lepton modeling	0.65	0.42	0
PDF	0.68	0.40	1	MET scale	1.12	0.09	0
tW / $t\bar{t}$ overlap mod.	0.38	0.49	1	MET resolution	1.22	0.00	0
Top pt reweighting	0.00	0.09	0	b-tagging	2.28	0.21	0.5
Background mod.	0.98	0.40	0	Pileup	0.00	0.09	0

Figure: Combined measurement using EFTfitter. Corresponding value: $\sigma_{tW} = (25.26 \pm 1.35) \text{ pb}$

Figure: Combined measurement using BLUE. Corresponding value: $\sigma_{tW} = (25.26 \pm 1.35) \, \text{pb}$

- No correlation between statistical uncertainties
- Same result for both methods

Figure: Combined measurement using EFTfitter. Corresponding value: $\sigma_{tW} = (24.59 \pm 1.89) \, \text{pb}$

Figure: Combined measurement using BLUE. Corresponding value: $\sigma_{tW} = (24.59 \pm 1.89) \, \text{pb}$

- High positive correlation between statistical uncertainties
- Both methods behave the same/intended way, uncertainty grows with higher positive correlation

Figure: Combined measurement using EFTfitter. Corresponding value: $\sigma_{tW} = (25.28 \pm 0.30) \, \mathrm{pb}$

Figure: Combined measurement using BLUE. Corresponding value: $\sigma_{tW} = (25.28 \pm 0.30) \, \text{pb}$

- High negative correlation between statistical uncertainties
- Both methods behave the same/intended way, uncertainty lowers with higher negative correlation

Figure: Combined measurement using EFTfitter. Corresponding value: $\sigma_{tW} = (24.64 \pm 4.61) \, \text{pb}$

Figure: Combined measurement using BLUE. Corresponding value: $\sigma_{tW} = (24.64 \pm 4.61) \, \text{pb}$

- All 20 uncertainties included with according correlations
- Equal result for both methods even with multiple uncertainties
- High confidence in the EFTfitter as tool for combination of measurements

Procedure for constraining the top quark width

- Main objective: calculate a pdf for the top quark width
- Build a model with observables, measurements and parameters
- Implement dependencies of the observables from the parameters
- Include measurements
- EFTfitter is used in order to implement that model and perform the calculation

The observables

- Cross section of t̄t̄ production σ_{t̄t̄}
- Cross section of single top production in the t channel σ_{st}
- Branching ratio $BR(t \rightarrow W + b)$

Figure: Example processes for *tt* production.

Figure: Single top production in the t-channel.

Overview of the model

Parameter	Observables	Parameters of the observables	Measurement
	$\sigma_{tar{t}}$	m_t	available
m_t	$\sigma_{\sf st}$	m_t, V_{tb}	available
V _{tb}	BR(t o W+b)	V_{tb}	available
	Γ_t	m_t	not available

- Γ_t is added as observable even though no direct measurement will be included
- Relation of Γ_t and the top quark pole mass m_t :

$$\Gamma = \frac{G_F \, m_t^3}{8 \, \pi \, \sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2} \right)^2 \left(1 + 2 \frac{M_W^2}{m_t^2} \right) \left[1 - \frac{2 \, \alpha_s}{3 \, \pi} \left(\frac{2 \, \pi^2}{3} - \frac{5}{2} \right) \right]$$

The measurements

■ Measurement for $\sigma_{t\bar{t}}$ from an ATLAS measurement at $\sqrt{s}=8\,\text{TeV}$:

$$\sigma_{t\bar{t}} =$$
 242.4 \pm 1.7 (stat) \pm 10.2 (syst) pb

The measurement of the inclusive single top quark production cross section in the t-channel from a CMS measurement:

$$\sigma_{\it st} = 83.6 \pm 2.3 \, ({
m stat}) \, \pm 7.4 \, ({
m syst}) \, {
m pb}$$

■ The measurement of BR ($t \rightarrow W+b$) from a CMS measurement:

$$BR(t \to W+b) = 1.014 \pm 0.003 \text{ (stat) } \pm 0.032 \text{ (syst)}$$

■ Due to $|V_{tb}|$ < 1 an upper limit from that measurement is used:

$$BR(t \rightarrow W+b) = 1.0 + 0.0 - 0.025$$

Implementation to EFTfitter

■ Calculation of $BR(t \rightarrow W+b)$ straightforward:

$$BR(t \rightarrow W+b) = \frac{\Gamma(t \rightarrow W+b)}{\Gamma(t \rightarrow W+q)} = |V_{tb}|^2$$

- Calculation of the cross sections with HATHOR (tool to calculate cross section of top quark processes)
- HATHOR used with CT10NLO PDF and $\sqrt{s} = 8 \text{ TeV}$
- Parameters set to

150 GeV
$$< m_t <$$
 200 GeV and $|V_{tb}| = 0.55, 0.77, 0.99$

Extract dependency of $|V_{tb}|$ from σ_{st} by analyzing σ_{st} for the three $|V_{tb}|$ values

HATHOR implementation

Due to computation time HATHOR included as polynomial fit

$|V_{tb}|$ extraction

Assuming the dependency of $|V_{tb}|$ is quadratic the following extraction is useful

$$\sigma_{st}(m_t, |V_{tb}|) = |V_{tb}|^2 \, \sigma_{st}(m_t)$$

 $\sigma_{st}(m_t)$ follows from mean of "nomalized" distributions (normalized to $|V_{tb}|=1$)

The results

 Providing the model and measurements to the EFTfitter it provides the posterior probabilities

Comparison between global mode (GM) and world combination (WC) values of the top quark width

$$\Gamma_t^{GM} = (1.335 \pm 0.040) \, \text{GeV}$$
 with $m_t^{GM} = (172.707 \pm 1.554) \, \text{GeV}$
 $\Gamma_t^{WC} = (1.352 \pm 0.020) \, \text{GeV}$ with $m_t^{WC} = (173.34 \pm 0.76) \, \text{GeV}$

- 2D distribution of the parameters
- Top quark width PDF can be calculated from m_t PDF

- Similarity in shape of m_t and Γ_t PDF
- Follows from linear dependency visible in plot below

Conclusions

- Combination of measurements works reliably
- Global mode values agree within one standard deviation
- Resulting plots fit expectations
- Possible next steps
 - Expand the model with more observables
 - Add more (also multiple of the same) measurements
 - Create a "global fit" on physical quantities that cannot be measured directly
- Thanks for your attention

Observables

Observables

Observables

Single top measurement correlation

