Spring 2021, EE 357: Computer Networks

Homework 4

Problem 1 Consider a datagram network using 32-bit host addresses. Suppose a router has four links, numbered 0 through 3, and packets are to be forwarded to the link interfaces as follows: (20 points)

Destination Address Range	Link Interface
11100000 00000000 00000000 000000000 through 11100000 00111111 11111111 11111111	0
11100000 01000000 00000000 00000000 through 11100000 01000000 11111111 11111111	1
11100000 01000001 00000000 00000000 through 11100001 01111111 11111111 11111111	2
otherwise	3

- 1. Provide a forwarding table that has four entries, uses longest prefix matching, and forwards packets to the correct link interfaces. (5 points)
- 2. Rewrite this forwarding table using the a.b.c.d/x notation instead of the binary string notation. (5 points)
- 3. Describe how your forwarding table determines the appropriate link interface for datagrams with destination addresses: (10 points)

Problem 2 Consider the topology shown below. (20 points)

1. Assign network addresses to each of these six subnets, with the following constraints: All addresses must be allocated from 214.97.254/23; Subnet A should have enough

addresses to support 250 interfaces; Subnet B should have enough addresses to support 120 interfaces; and Subnet C should have enough addresses to support 120 interfaces. Of course, subnets D, E and F should each be able to support two interfaces. For each subnet, the assignment should take the form a.b. c.d/x or a. b. c.d/x - e. f. g. h/y. (10 points)

2. Using your answer to part 1, provide the forwarding tables (using longest prefix matching) for each of the three routers. (10 points)

Figure 1: The topology in P2

Problem 3 Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z. (20 points)

Figure 2: The network in P3

Problem 4 Please compare LSR and DVR, and explain each suitable usage scenarios. How Internet routing protocols deal with DVR count-to-infinity problem? (15 points)

Problem 5 What's the difference between Intra-AS Routing and Inter-AS Routing? (15 points)

Problem 6 Please explain methods to reduce the size of routing table. (15 points)

Problem 7 Please explain why we need IPv6 to replace IPv4. (15 points)

Problem 8 Company A needs 1024 IP addresses from an ISP who owns network prefix 206.0.64.0/18. (30 points)

Company A has 4 departments: Department1 requires 510 addresses which is further divided into 4 LANs(LAN1 LAN4); Department2 requires 256 addresses which is further divided into 4 LANs(LAN5 LAN8); Department3 requires 128 addresses which is further divided into 2 LANs(LAN9 LAN10); Department4 requires 128 addresses which is further divided into 2 LANs(LAN11 LAN12). Another subnet LAN0 only needs 1 public IP address which uses NAT. please assign IP prefix to these 13 subnets with CIDR (Classless Inter-Domain Routing) technology. Please fill in the routing tables for RA, R1 and R3. Please aggregate entries if possible

network	network prefix	network mask	network	network prefix	network mask
LAN0			LAN7		
LAN1			LAN8		
LAN2			LAN9		
LAN3			LAN10		
LAN4			LAN11		
LAN5			LAN12		
LAN6					

R1					
Prefix	Mask	Interface			
R3					

RA				
Prefix	Mask	Interface		