LNT-SPV-06

In a multi-specialty hospital located at Vellore (Tamil Nadu), with various loads under operation as shown in the table. And 5% of daily energy requirements need to be catered from Solar PV System. For this building, design a grid-connected Solar PV System. The building has got sufficient area to install the panels.

S.No	Area	Load (kW)	Duration(hrs)
1	Medical Equipment	1000	6
2	Lighting	600	12
3	HVAC Loads	2000	12
4	Elevator, Escalator	200	6
5	Other Equipment	400	5

[Assume 15% losses in Solar PV System and 20% safety margin for Inverter]

For the same, design an off-grid system with an autonomy of 2 days.

[Assume 15% losses in battery with 80% deep discharge factor].

Note: Any missing data can be assumed with relevance.

Task-1:

Selected PV module of 400Wp JA Solar JAM72-S10-400-PR make.

Build a suitable MATLAB/Simulink block diagram and examine its characteristics under:

- i) Constant Temperature and Variable Irradiance
- ii) Constant Irradiance and Variable Temperature

Task-2:

Compute the manual calculations for the given demand in on-grid system and estimate

- i) number of PV modules
- ii) Peak Sun Hours
- iii) Inverter Sizing (Central Inverter)
- iv) Number panels in series
- v) Number of strings

Compute the manual calculations for the given demand in off-grid system and estimate

- i) number of PV modules
- ii) Inverter Sizing (Central Inverter)
- iii) Battery Capacity
- iv) Number panels in series
- v) Number of Strings
- vi) Number of batteries in series and parallel

Considering PV module of **400Wp JA Solar JAM72-S10-400-PR** make, Central Inverter of **Ingeteam Sun Power 500 M275 Indoor** make, charge controller of 48V and battery 12V, 200Ah.

Task-3:

Design an on-grid PV system using SAM Software for the given power demand choosing PV Module 400Wp JA Solar JAM72-S10-400-PR and Central Inverter of Ingeteam Sun Power 500 M275 Indoor.

Obtain a detailed report with

- i) Number of PV Modules
- ii) Inverter Selection
- iii) Number of Strings
- iv) Annual Energy Yield

Task-4:

Design an on-grid PV system using PVSyst Software for the given power demand choosing PV Module 400Wp JA Solar JAM72-S10-400-PR and Central Inverter of Ingeteam Sun Power 500 M275 Indoor.

Obtain a detailed report with

- i) Number of PV Modules
- ii) Inverter Selection
- iii) Number of Strings
- iv) Annual Energy Yield
- v) Area Required
- vi) Also examine with near shading analysis with scene construction (consider Few Trees, Transmission line tower etc.,)

Task-5:

Design a PV system with a Boost Converter using MATLAB/Simulink and examine its performance. For the PV make **400Wp JA Solar JAM72-S10-400-PR**, choose the number of parallel strings and number of series connected modules as calculated in Task-2 (on-grid system). Design a boost converter with a duty ratio of 50% for the PV system and hence determine the following for constant and varying irradiation. [Assume a switching frequency of 25kHz and load resistance of 10 ohm]

- i) PV Voltage
- ii) PV Current
- iii) PV Power
- iv) Load Voltage
- v) Load Current
- vi) Output Power

LNT-SPV-06-Task 1

Solar PV Module Make:

400Wp JA Solar JAM72-S10-400-PR make.

Solar PV Array Configuration:

1 Parallel string with 1 Series connected modules per string.

Load Resistance, R = 10 ohm

a) MATLAB Model for a single PV Cell Simulation

Current Versus Voltage (IV) Characteristics

Power Versus Voltage (PV) Characteristics

a) MATLAB Model for PV Array Simulation

PV Cell Characteristics (IV Curves and PV Curves)

a) Constant Temperature of 25^0C and Varying Irradiance of 1000 W/m², 750 W/m², 500 W/m², 250 W/m², 100 W/m²

b) Constant Irradiance of 1000 W/m2 with Varying Temperature of 60° C, 45° C, 35° C, 25° C, 10° C

TASK -2

	Load(kV	') Hours(Hrs)	Energy(kWh)
Medical Equipment	1000	6	6000
Lighting	600	12	7200
HVAC Loads	2000	12	24000
Elevator, Escalator	200	6	1200
Other Equipment	400	5	2000
Total Energy Consumed in a day			40400

Solar PV System can Cater	0.05	
Total Energy consumed in day	40400	kWh
Solar PV is capable of supplying 5% of total connected load power requirement	2020	kWh
Number of Peak Sun Hours (location: Vellore) ref: Weather forecasting portal	5.31	h/day
Solar Panel Power Capacity	380	kW
By Considering 15% losses in the solar PV System	447	kW
Required Solar Panel Power Capacity	447	kW

Design of on-grid Solar PV System

S.No	Description	Value	Units
	Total Energy consumed in day	40400	kWh
	Solar PV is capable of supplying 5% of total connected load power requirement	2020	kWh
i	Peak Sun Hours		
	Number of Peak Sun Hours (location: Vellore) ref: Weather forecasting portal	5.31	h/day
	www.footprinthero.com		
	Solar Panel Power Capacity	380	kWp
	By Considering 15% losses in the solar PV System	447	kWp
	Target Solar Capacity	447	kWp
ii	Number of PV Modules Required		
	Selected PV Panel Make	JA solar JAM72-	
		S10-400-PR	
	Maximum Power(Pmax)	400	Wp
	Maximum Voltage(Vmp)	41.17	V
	Open Circuit Voltage(Voc)	49.5	V
	Maximum Current(Imp)	9.72	А
	Short Circuit Current(Isc)	10.26	Α
	Total Number of Panels	1118	panels
iii	Inverter Sizing		
	Solar Panel Power Capacity	380	kWp
	Inverter Capacity with safety margin of 1.2	456	kW
	Inverter Make	Ingeteam 500	
		M275 Indoor	
		(Pg. 45 refer)	
	Inverter Power	519	kW
	Inverter Minimum Voltage	443	V
	Inverter Maximum Voltage	820	V
	Maximum Current	1200	Α
	Number of Inverters required	1	
iv	Number panels in series		
	Operating Voltage	820	V
	Number of Series Panels(Operating voltage/Voc)	17	
	Number of panels in a string	17	
V	Number of strings		
	Number of parallel strings(total panels/no of panels in string)	66	
	Sum of the short circuit currents from all the parallel strings	677	Α
	(Number of Parllel strings*Isc)		

Design of off-grid Solar PV System

S.No	Description	Value	Units
	Energy consumed by all the critical loads in a day	40400	kWh/day
	Solar PV is capable of supplying 5% of total connected load power requirement	2020	kWh
i	Battery Sizing Calculation		
	Battery Voltage	12	V
	Battery Rating	200	Ah
	Battery Losses	15	%
	Depth of Discharge(DoD)	80	%
	By accounting for 15% losses in battery, and 80% deep discharge factor, power required by battery	2971	kWh
	Number of days of Autonomy	2	days
	total energy to be delivered by battery pack	5942	kWh
	Battery Capacity(Total Energy/Battery Voltage)	495	kAh
	Number of Batteries required	2475	
ii	Peak Sun Hours		
	Number of Peak Sun Hours (location: Vellore) ref: Weather forecasting portal	5.31	h/day
	www.footprinthero.com		
	Solar Panel Power Capacity	1119	kWp
	By Considering 15% losses in the solar PV System	1316	kWp
	Target Solar Capacity	1316	kWp
iii	Number of PV Modules Required		
	Selected PV Panel Make	JA solar JAM72- S10-400-PR	
	Maximum Power(Pmax)	400	Wp
	Maximum Voltage(Vmp)	41.17	V
	Open Circuit Voltage(Voc)	49.5	V
	Maximum Current(Imp)	9.72	Α
	Short Circuit Current(Isc)	10.26	Α
	Total Number of Panels	3290	panels
iv	Inverter Sizing		
10	Solar Panel Power Capacity	1119	kWp
	Inverter Capacity with safety margin of 1.2	1343	kW
	inverter capacity with safety margin of 1.2	13 13	KVV
		ABB PVS800	
		MWS 1 to	
	Inverter Make	1.25MW inverter	
	Inverter Power	1250	kW
	Inverter Minimum Voltage	525	V
	Inverter Maximum Voltage	825	V
	Maximum Current	2290	А
	Number of Inverters required	1	
v	Number panels in series		
V	Optimised Voltage	825	V
	Topullised voltage	OZJ	V

	Number of Series Panels(Operating voltage/Voc)	17	
	Number of panels in a string	17	
vi	Number of strings		
Vi	Number of parallel strings(total panels/no of panels in string)	194	
	Sum of the short circuit currents from all the parallel strings (Number of Parllel strings*Isc)	1990	,
vii	Number of batteries in series		
	Battery Control Voltage	48	'
	Number of batteries in series	4	
	Number of batteries in parallel strings	619	

System Advisor Model Report

Detailed Photovoltaic Commercial 445 DC kW Nameplate \$1.72/W Installed Cost 12.89, 79.14 UTC +5

Perform	nance Model	Financial Model		
Modules		Project Costs		
JA Solar JAM72S10-400/	PR PR	Total installed cost	\$764,233	
Cell material	Mono-c-Si	Salvage value	\$0	
Module area	1.95 m ²	Analysis Parameters		
Module capacity	400.46 DC Watts	Project life	25 years	
Quantity	1,110	Inflation rate	2.5%	
Total capacity	444.52 DC kW	Real discount rate Project Debt Parameters	6.4%	
Total area	2,164 m²	Debt fraction	100%	
Custom (Inverter Datashe	eet Model)	Amount	\$764,233	
Unit capacity	519 AC kW	Term	25 years	
Input voltage	820 DC V	Rate	4%	
Quantity	1		470	
Total capacity	519 AC kW	Tax and Insurance Rates		
DC to AC Capacity Ratio	0.86	Federal income tax	21 %/year	
AC losses (%)	0.00	State income tax	7 %/year	
		Sales tax (% of indirect cost basis)		
Array		Insurance (% of installed cost)	0 %/year	
Strings	74	Property tax (% of assessed val.)	0 %/year	
Modules per string	15	Incentives		
String Voc (DC V)	742.50	Federal ITC 26%		
Tilt (deg from horizontal)	12.89	Electricity Demand and Rate Su	mmarv	
Azimuth (deg E of N)	180	Annual peak demand 274.2 kW	······································	
Tracking	no	Annual total demand 726,208 kWh		
Backtracking	-	Generic Commercial		
Self shading	no	Fixed charge: \$30/month		
Rotation limit (deg)	-	Monthly excess with kWh rollover		
Shading	no	Tiered TOU energy rates: 4 period	ls, 1 tier	
Snow	no	Monthly TOU demand rates with ti		
Soiling	yes	Results		
Performance Adjustmer	nts.4.44	Nominal LCOE	2.5 cents/kWh	
Availability/Curtailment	none	Net present value	\$253,100	
Degradation	none	Payback period	11.6 years	
Hourly or custom losses	none			

Annual Results (in Y	ear 1)	
GHI kWh/m²/day	5.31	
POA kWh/m²/day	127.00	
Net to inverter	727,000 DC kWh	
Net to grid	691,000 AC kWh	
Capacity factor	17.7	
Performance ratio	0.78	

Year 1 Monthly Generation and Load Summary Electricity from System

Year 1 Monthly Electric Bill and Savings (\$)

Month	Without System	With System	Savings
Jan	7,515	4,776	2,739
Feb	6,751	4,071	2,680
Mar	7,337	3,714	3,623
Apr	7,555	3,617	3,938
May	9,090	4,264	4,826
Jun	10,654	5,797	4,856
Jul	11,875	6,524	5,350
Aug	11,578	6,154	5,423
Sep	9,727	5,051	4,676
Oct	8,756	4,812	3,944
Nov	6,793	4,369	2,423
Dec	6,977	4,457	2,520
Annual	104,614	57,611	47,003

NPV Approximation using Annuities

Annuities, Cap	Annuities, Capital Recovery Factor (CRF) = 0.1023					
Investment	\$-0	Sum:				
Expenses	\$-57,600	\$25,800				
Savings	\$41,300	NPV = Sum / CRF:				
Energy value	\$42,100	\$253,000				

Investment = Installed Cost - Debt Principal - IBI - CBI Expenses = Operating Costs + Debt Payments Savings = Tax Deductions + PBI Energy value = Tax Adjusted Net Savings

Nominal discount rate = 9.06%

Payback Cash Flow (Payback Period = 11.6 years)

PVsyst - Simulation report

Grid-Connected System

Project: New Project

Variant: New simulation variant
No 3D scene defined, no shadings
System power: 1058 kWp

Chennai - India

PVsyst TRIAL

PVsyst TRIAL

Author

PVsyst V7.4.6

VC0, Simulation date: 25/03/24 11:31 with V7.4.6

Project: New Project

Variant: New simulation variant

Project summary

Geographical Site Situation

Chennai India Latitude 13.09 °N
Longitude 80.28 °E
Altitude 33 m
Time zone UTC+5.5

Project settings

Albedo 0.20

Weather data

Chennai

Tilt/Azimuth

Meteonorm 8.1 (1996-2015) - Synthetic

System summary

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation Near Shadings
Fixed plane No Shadings

13.8 / 0°

Near ShadingsUser's needsNo ShadingsUnlimited load (grid)

System information

PV Array Inverters

 Nb. of modules
 2646 units
 Nb. of units
 1 unit

 Pnom total
 1058 kWp
 Pnom total
 982 kWac

 Pnom ratio
 1.078

Results summary

Produced Energy 1656634 kWh/year Specific production 1565 kWh/kWp/year Perf. Ratio PR 82.85 %

PVsyst V7.4.6

Project: New Project Variant: New simulation variant

VC0, Simulation date: 25/03/24 11:31 with V7.4.6

General parameters

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation

Sheds configuration Models used Orientation

Fixed plane No 3D scene defined Transposition Perez Tilt/Azimuth 13.8 / 0° Diffuse Perez, Meteonorm

Circumsolar separate

Horizon **Near Shadings** User's needs Free Horizon No Shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Generic Manufacturer Generic

Model JAM72-S10-400-PR Model Ingecon Sun 1070TL B385 IP54 H1000

(Original PVsyst database) (Original PVsyst database)

Unit Nom. Power 400 Wp Unit Nom. Power 982 kWac Number of PV modules 2646 units Number of inverters 1 unit Nominal (STC) 1058 kWp Total power 982 kWac Modules 147 string x 18 In series Operating voltage 552-820 V

At operating cond. (50°C) Max. power (=>35°C) 1067 kWac

966 kWp Pmpp Pnom ratio (DC:AC) 1.08

671 V U mpp I mpp 1438 A

Total PV power Total inverter power

Nominal (STC) 1058 kWp Total power 982 kWac Total 2646 modules Max. power 1067 kWac 5310 m² 1 unit Module area Number of inverters

Pnom ratio 1.08

Array losses

Thermal Loss factor DC wiring losses **Module Quality Loss**

Module temperature according to irradiance Global array res. 7.7 mΩ Loss Fraction -0.8 %

Uc (const) 20.0 W/m2K Loss Fraction 1.5 % at STC

0.0 W/m2K/m/s Uv (wind)

Module mismatch losses Strings Mismatch loss

0.2 % Loss Fraction 2.0 % at MPP Loss Fraction

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

Project: New Project

Variant: New simulation variant

PVsyst V7.4.6

VC0, Simulation date: 25/03/24 11:31 with V7.4.6

Main results

System Production

Produced Energy

1656634 kWh/year

Specific production Perf. Ratio PR

1565 kWh/kWp/year 82.85 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	144.2	66.34	25.11	162.1	157.6	146936	144758	0.844
February	156.4	60.48	26.21	171.3	167.0	153026	150818	0.832
March	189.7	74.75	28.44	197.0	192.0	173780	171261	0.822
April	184.7	81.63	30.16	181.6	176.5	159818	157490	0.819
May	182.6	91.28	32.17	173.2	167.7	151654	149441	0.815
June	162.3	84.47	31.21	151.2	146.0	133191	131164	0.820
July	158.0	91.47	30.64	148.5	143.3	131614	129553	0.824
August	157.1	89.71	29.68	152.8	148.2	135941	133832	0.827
September	153.7	78.01	28.85	155.7	151.2	138146	136026	0.826
October	135.0	74.43	27.86	142.3	138.4	127657	125615	0.834
November	112.4	62.00	25.92	122.5	119.0	111093	109271	0.843
December	117.7	64.21	25.22	131.1	127.4	119297	117405	0.846
Year	1853.9	918.79	28.47	1889.3	1834.3	1682153	1656634	0.828

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation

T_Amb **Ambient Temperature** GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Project: New Project

Variant: New simulation variant

PVsyst V7.4.6 VC0, Simulation date: 25/03/24 11:31

Project: New Project

Variant: New simulation variant

Useful out system energy [kW]

LNT-SPV-06-Task 5

Solar PV Module Make:

400Wp JA Solar JAM72-S10-400-PR make

Solar PV Array Configuration:

66 Parallel string with 17 Series connected modules per string.

Design of Boost Converter

Duty Ratio =
$$50\% = 0.5$$

Switching Frequency = 25kHz

Load Resistance = 10 ohm

Lmin =
$$D(1-D)^2R / 2fs = 0.5(1-0.5)^2 10 / 2 \times 25k = 25 \mu H$$

Assume 25% safety margin for L (for inductor current to be continuous)

Lactual = 1.25 x Lmin = 1.25 x
$$25\mu H = 31.3 \mu H$$

$$C = D / R$$
 (Ripple Factor) fs = 0.5 / (10 x (0.05) (25x10³)) = **40**µ**F**

Capacitance connected across PV array = $100\mu F$ (to suppress input voltage ripple and filter ripple current).

a) MATLAB Model for PV Array with Boost Converter (for Constant Irradiation)

PV Output Voltage for Constant Irradiation of 1000 W/m2

Boost Converter Output Voltage for Constant Irradiation of 1000 W/m2

b) MATLAB Model for PV Array with Boost Converter (for Varying Irradiation)

PV Output Voltage for Varying Irradiation

Boost Converter Output Voltage for Varying Irradiation