MAE 221 - Probabilidade - 2022/01

Aline Duarte Lista de Exercícios 7

Ex 1. Considere as v.a.'s $X \sim N(0,1)$ e $Y \sim N(1,1)$. Suponha que E(XY) = 1/2.

- (a) X e Y são correlacionadas?
- (b) Determine a f.d.p. conjunta de (X, Y).
- (c) Determine a f.d.p. de $f_{X|Y}$ e $f_{Y|X}$. Você conhece essas distribuições?

 \mathbf{Ex} 2. Sejam X e Y v.a. com f.d.p conjunta dada por

$$f(x,y) = \begin{cases} \frac{1}{x}, & 0 < y \le x < 1\\ 0, & c.c. \end{cases}$$

Verifique que f é f.d.p e determine

- (a) As f.d.p marginais de X e Y.
- (b) A função densidade de Y dado que X = x.
- (c) A função densidade de X dado que Y = y.
- (d) Determine $E(Y \mid X = 2)$

Ex 3. * Sejam X e Y v.a. com f.d.p conjunta dada por

$$f(x,y) = \begin{cases} xe^{-x(y+1)}, & x > 0, y > 0\\ 0, & c.c. \end{cases}$$

Verifique que f é f.d.p e determine

- (a) As f.d.p marginais de X e Y.
- (b) A função densidade de Y dado que X = x.
- (c) A função densidade de X dado que Y = y.
- (d) Determine $E(X \mid Y = 1/3)$

 \mathbf{Ex} 4. Sejam X e Y v.a. com f.d.p conjunta dada por

$$f(x,y) = \begin{cases} \lambda^2 e^{-\lambda y}, & 0 \le x < y < \infty \\ 0, & c.c. \end{cases}$$

Verifique que f é f.d.p e determine

- (a) As f.d.p marginais de X e Y.
- (b) A função densidade de Y dado que X = x.
- (c) A função densidade de X dado que Y = y.
- (d) Determine $E(Y \mid X = 1)$.
- (e) Determine $E(X \mid Y = 5)$

Ex 5. Sejam X_1, X_2, X_3 v.a. independentes e com distribuição Exp(1). Determine a variância de $Y = (X_1 + X_2)X_3$

- Ex 6. Uma apostadora joga simultaneamente uma moeda e um dado honestos. Se a moeda der cara, ela então ganha o dobro do valor que aparecer no dado; se der coroa, ela ganha a metade. Determine seus ganhos esperados.
- Ex 7. Se X e Y são v.a. independentes e identicamente distribuídas com média μ e variância σ^2 , determine $E[(X-Y)^2]$.
- **Ex 8.** Se EX = 1 e Var(X) = 5, determine $E[(2+X)^2]$ e Var(4+3X).
- **Ex 9.** Um dado é rolado duas vezes. Suponha que X seja igual à soma das faces e que Y seja a diferença entre a primeira face e segunda. Determine Cov(X,Y).
- Ex 10. Um professor sabe que a nota de um estudante na prova final é uma variável aleatória com média 75.
 - (a) Forneça um limite superior para a probabilidade de que a nota de um estudante exceda 85.
 - (b) Suponha, além disso, que o professor saiba que a variância da nota de um estudante é igual a 25. O que se pode dizer sobre a probabilidade de que a nota de um estudante esteja entre 65 e 85?
- **Ex 11.** Seja X uma v.a. qualquer e g uma função não negativa tal que $E[g(X)] < \infty$. Se $g(x) \ge b > 0$ sempre que $X \ge a$, mostre que $P(X \ge a) \le E[g(X)]/b$.
- **Ex 12.** * Sejam a e b números reais. Mostre que se $P(a \le X \le b) = 1$ então $a \le EX \le b$
- Ex 13. Determine a covariância das v.a X e Y cuja f.d.p conjunta é dada por

$$f(x,y) = \begin{cases} \frac{1}{2x} & se \ 0 < y \le x < 2\\ 0 & c.c. \end{cases}$$

- **Ex 14.** * Sejam X_1, \ldots, X_n v.a. independentes, com mesma distribuição e com média e variância finitas. Defina $\bar{X} = 1/n \sum_{i=1}^n X_i$ e mostre que $Cov(X_i \bar{X}, \bar{X}) = 0$, para qualquer $i = 1, \ldots, n$.
- \mathbf{Ex} 15. Um dado honesto é jogado sucessivamente. Suponha que X e Y representem, respectivamente, o número de jogadas necessárias para se obter um 6 e um 5. Determine
 - (a) EX
 - (b) $E(X \mid Y = 1)$
 - (c) $E(X \mid Y = 5)$
- Ex 16. Um prisioneiro está em uma cela com 3 portas. A primeira porta leva a um túnel que faz com que ele volte à sua cela após dois dias de viagem. A segunda leva a um túnel que faz com que ele volte à sua cela após 4 dias de viagem. A terceira porta o leva à liberdade após um dia de viagem. Se se supõe que o prisioneiro sempre selecione as portas 1,2 e 3 com probabilidades 0,5,0,3 e 0,2, qual é o número esperado de dias até que ele alcance a liberdade?
- Ex 17. Lâmpadas do tipo i funcionam uma quantidade de tempo aleatória com média μ_i ; e desvio padrão $\sigma_1, i = 1, 2$. Suponha que uma lâmpada do tipo 1 é aleatoriamente escolhida de uma cesta p (e do tipo 2 com probabilidade 1 -p). Seja X a v.a. que represente o tempo de vida desta lâmpada. Determine (Dica: use o condicionamento no tipo da lâmpada)
 - (a) EX;
 - (b) Var(X).
- Ex 18. * O número de tempestades de inverno em um ano bom é uma variável aleatória de Poisson com média 3, enquanto o número em um ano ruim é uma variável de Poisson com média 5. Se o próximo ano tem probabilidades 0,4 de ser um ano bom e 0,6 de ser um ano ruim, determine o valor esperado e a variância do número de tempestades no próximo ano.

- Ex 19. O número de acidentes que uma pessoa sofre em um ano é uma variável aleatória de Poisson com média λ . Entretanto, suponha que o valor de λ mude de pessoa para pessoa, sendo igual a 2 em 60% da população e 3 nos 40% restantes. Se uma pessoa é escolhida aleatoriamente, qual é a probabilidade de que ela sofra
 - (a) 0 acidentes;
 - (b) exatamente 3 acidentes em um ano?
 - (c) Qual é a probabilidade condicional de que ela sofra 3 acidentes em certo ano, dado que não tenha sofrido acidentes no ano anterior?
- Ex 20. * Admita que o processo (aleatório) de chegada dos clientes que entram em uma loja segue um modelo de Poisson com média de 20 clientes por hora. A probabilidade de que uma dessas pessoas faça uma compra é 0,75, e é a mesma para qualquer cliente que entra. Determine valor esperado e o desvio padrão do número de clientes que realizam compras no período de uma hora. Dica: use o condicionamento no número de pessoas que chegam.
- Ex 21. Suponha que, a cada ano na época de reprodução, cada tartaruga marinha coloque uma quantidades de ovos que segue uma distribuição Poisson de média 120. Sabe-se que cada ovo tem 3/4 de chance de vir a eclodir e gerar uma nova tartaruga. Determine a número esperado de descendentes por ano de uma tartaruga marinha.