Exercice 1 : Complexes de l'argent

Le cation argent I Ag⁺ forme avec les ions thiosulfates $S_2O_3^{2-}$ un complexe selon la réaction :

$$Ag^{+} + S_{2}O_{3}^{2-} \Longrightarrow [Ag(S_{2}O_{3})]^{-} \qquad K_{1} = 10^{8,3}$$
 (1)

Données : concentration en ions argent $c_{A\sigma} = 0.10 \,\text{mol} \cdot \text{L}^{-1}$, volume $V_0 = 100 \,\text{mL}$.

- 1. On mélange un volume $V_0 = 100 \,\text{mL}$ d'une solution d'argent à la concentration $c_{\text{Ag}} = 0,10 \,\text{mol} \cdot \text{L}^{-1}$ et un même volume V_0 de $S_2O_3^{-2}$ à une concentration notée $c_{1/2}$.
 - (a) Quelle doit être la valeur de $c_{1/2}$ pour transformer la moitié des ions Ag^+ en complexe $[Ag(S_2O_3)]^-$?
 - (**b**) Quelle sera alors la valeur de $\log([S_2O_3]^{2-})$ à l'équilibre?
 - (c) À l'issue de cette réaction on fait disparaître (par précipitation et filtration) la moitié des ions Ag⁺ qui restaient présents à l'équilibre précédent. Déterminer la nouvelle composition du système à l'équilibre.
- En présence d'un excès d'ions thiosulfates, on peut envisager la formation du complexe [Ag(S₂O₃)₂]³⁻ selon la réaction :

$$[Ag(S_2O_3)]^- + S_2O_3^{2-} \Longrightarrow [Ag(S_2O_3)_2]^{3-} \qquad K_2 = 10^{5,1}$$
 (2)

- (a) On a une solution d'ions $[Ag(S_2O_3)_2]^{3-}$ à la concentration c_{Ag} . Déterminer la concentration en ions Ag^+ à l'équilibre.
- (**b**) On souhaite dissocier le complexe $[\mathrm{Ag}(\mathrm{S}_2\mathrm{O}_3)_2]^{3-}$ en ions argent en utilisant la réaction :

$$I_{2(aq)} + 2S_2O_3^{2-} \implies 2I^- + S_4O_6^{2-} \qquad K_3 = 10^{15,2}.$$
 (3)

Déterminer par le calcul (on utilisera une approximation dont on vérifiera la validité) le taux d'avancement de la réaction entre $[Ag(S_2O_3)_2]^{3-}$ et $I_{2(aq)}$ et en déduire son taux d'avancement à l'équilibre pour un mélange stœchiométrique avec $c_{[Ag(S_2O_2)_2]^{3-}} = 1 \cdot 10^{-2} \, \text{mol} \cdot \text{L}^{-1}$.

 $\textbf{3.} \quad \textbf{(a)} \ \ \text{V\'erifier la pertinence de cette approximation en utilisant le code python pr\'esent\'e dans l'activit\'e}$

- (code 6fb6-178358) sur capytale.
- (b) Calculer également l'avancement quand les concentrations initiales en I^- et $[Ag(S_2O_3)^-]$ sont égales à $c = 1 \cdot 10^{-1} \text{ mol} \cdot \text{L}^{-1}$.

Exercice 2: Saponification d'un ester

On cherche à déterminer les ordres partiels, par rapport à chacun de ses réactifs, de la réaction de saponification de l'acétate d'éthyle (de formule brute $CH_3CO_2C_2H_3$), d'équation bilan :

$$CH_3CO_2C_2H_{5(aq)} + OH^- \longrightarrow CH_3CO_2^- + C_2H_5OH_{(aq)}$$

La réaction s'effectue en phase aqueuse. On mélange une solution de soude (Na^+,OH^-) et d'acétate d'éthyle (noté E par la suite), et on désigne par $[OH^-]$ et [E] les concentrations en ions hydroxydes (OH^-) et en acétate d'éthyle.

1. Le suivi de la réaction par spectrophotométrie permet d'obtenir l'évolution de la concentration [E]. Dans une première expérience, où les concentrations initiales des réactifs sont respectivement $[E]_0 = 5,00 \cdot 10^{-3} \, \text{mol} \cdot \text{L}^{-1}$ et $[OH^-]_0 = 4,50 \cdot 10^{-2} \, \text{mol} \cdot \text{L}^{-1}$, on obtient les résultats suivants :

t(s)	0	20	40	60	80	100	120	140	160	180	200
$[E](1 \cdot 10^{-3} \text{mol} \cdot L^{-1})$	5,00	4,58	4,19	3,84	3,51	3,21	2,94	2,69	2,47	2,26	2,07

On cherche à vérifier que la concentration [E] suit dans ces conditions une cinétique d'ordre 1, ie que sa vitesse volumique de disparition, notée $v_d(E)$ se met sous la forme $v_d(E) = -\frac{d[E]}{dt} = k_1[E]$, avec k_1 une constante.

- (a) Établir, dans ces conditions, l'expression de [E](t). En déduire une fonction de [E](t) qui varie linéairement avec le temps.
- (b) Tracer les valeurs de cette fonction pour les données du tableau. Vérifier que la cinétique est bien d'ordre 1 et donner la valeur de k₁.
- 2. Dans une deuxième expérience, les concentrations initiales des réactifs sont identiques : [E]₀ = [OH-]₀ = 2,50 · 10⁻² mol·L⁻¹. À partir des mesures de [E](t), on détermine cette fois la vitesse volumique de disparition de [E], notée v_d(E), en fonction de la concentration [E](t). On obtient les valeurs suivantes :

$[E](1 \cdot 10^{-2} mol \cdot L^{-1})$	2,20	1,72	1,40	1,18	1,03	0,91	0,81
$v_d(1\cdot 10^{-3}\mathrm{mol}\cdot\mathrm{L}^{-1}\cdot\mathrm{min}^{-1})$	2,99	1,84	1,32	0,87	0,69	0,52	0,45

Utiliser ces données pour déterminer graphiquement (sur le deuxième graphe de la dernière page) l'ordre de la loi de vitesse régissant l'évolution de [E] dans ces conditions.

3. En supposant que la réaction de saponification admet des ordres par rapport à chacun des réactifs, notés respectivement α_E et α_{OH}⁻, déduire des résultats précédents les valeurs de α_E et α_{OH}⁻, ainsi que la valeur de la constante de vitesse, notée k.

Correction de l'exercice 1

- (a) La constante K₁ est très élevée, on suppose la réaction totale et il faudra donc introduire les ions thiosulfates à c_{1/2} = c_{Ag}/2 pour transformer la moitié des ions Ag⁺.
 - (**b**) Les ions thiosulfates seront quasi-totalement consommés, on doit utiliser la valeur de la constante *K*₁ pour déterminer précisément leur valeur. Le tableau d'avancement est donc :

$$\begin{array}{ccc} Ag^+ + S_2O_3^{2-} & \longrightarrow & [Ag(S_2O_3)]^- \\ \hline c_{Ag} & c_{Ag} & 0 \\ c_{Ag}/2 & x \ll c_{Ag} & c_{Ag}/2 \end{array}$$

À l'équilibre, on aura :

$$K_1 = \frac{c_{\text{Ag}}/2}{xc_{\text{Ag}}/2} \rightarrow x = \frac{1}{K_1} \rightarrow \log[S_2O_3^{2-}] = -8,3.$$

(c) On doit reprendre le tableau d'avancement avec de nouvelles valeurs initiales. On peut repartir de l'état d'équilibre précédent ou considérer de manière équivalente qu'on repart «du début» mais en n'ayant intro-

$$K_1 = \frac{c_{\text{Ag}}/4}{xc_{\text{Ag}}/2} \rightarrow x = 2\frac{1}{K_1} = 2 \times 10^{-8,3} = 6 \cdot 10^{-9}.$$

2. (a) Une double dissociation du complexe [Ag(S₂O₃)₂]³⁻ peut conduire à la formation de Ag⁺ selon les deux réactions :

$$[Ag(S_2O_3)_2]^{3-} \Longrightarrow [Ag(S_2O_3)]^- + S_2O_3^{2-}$$
 1/ K_2

$$[Ag(S_2O_3)]^- \iff Ag^+ + S_2O_3^{2-}$$
 1/K₁

Comme toutes ces constantes sont faibles, on peut supposer les réactions peu avancées et donc : $[Ag(S_2O_3)_2^{3-}] \gg [Ag(S_2O_3)^-] = [S_2O_3^{2-}]$ d'une part et $[Ag(S_2O_3)^-] \gg [Ag\equiv]$ et $[S_2O_3^{2-}]$ d'autre part. On aura donc $[Ag(S_2O_3)_2^{3-}] \simeq c_{Ag}$. De plus, le faible avancement de la réaction de constante $1/K_2$ assurera que $[S_2O_3^{2-}] \simeq [Ag(S_2O_3)^-]$. On a alors :

$$\frac{1}{K_1} = \frac{[Ag^+][S_2O_3^{2-}]}{[Ag(S_2O_3)^-]} \simeq \frac{1}{K_1} = [Ag^+] = 10^{-8.3}.$$

On vérifie alors que les hypothèses précédentes sont valables. Le premier équilibre donne $[Ag(S_2O_3)^-]^2/c_{Ag}=1/K_2$, soit $[Ag(S_2O_3)^-]=[S_2O_3^{2-}]=\sqrt{c_{Ag}/K_2}=6,3\cdot 10^{-4}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$, qui est bien à la fois petit devant c_{Ag} et grand devant la concentration $[Ag^+]$ calculée.

(**b**) On a:

(A)
$$[Ag(S_2O_3)]^{2-} \iff Ag^+ + S_2O_3^{2-}$$
 1/ K_1

(B)
$$I_{2(aq)} + 2S_2O_3^- \Longrightarrow 2\Gamma + S_4O_6^{2-}$$

$$\widehat{(A)} + \frac{\widehat{(B)}}{2} \quad [\mathrm{Ag}(\mathrm{S}_2\mathrm{O}_3)]^{2-} + \frac{1}{2}\,\mathrm{I}_{2(\mathrm{aq})} \iff \mathrm{Ag}^+ + \frac{1}{2}\,\mathrm{S}_4\mathrm{O}_6^{2-} + \mathrm{I}^- \qquad \qquad \frac{\sqrt{K_3}}{K_1} = 2,0 \cdot 10^{-1}.$$

On suppose cette fois-ci que tous les $[S_2O_3]^{2-}$ produits par la première seront consommés par la seconde, soit $[S_2O_3^{2-}] \ll [Ag^{\dagger}]$. Il suffit alors de ne considérer que la réaction somme.

$[Ag(S_2O_3)]^{2-}$ +	$\frac{1}{2} I_{2(aq)} =$	Ag ⁺ +	$\frac{1}{2} S_4 O_6^{2-} +$	I ⁻
c	c/2	0	0	0
$c(1-\tau)$	$c(1-\tau)/2$	$c\tau$	$c\tau/2$	$c\tau$

On aura à l'équilibre :

$$\frac{\sqrt{K_3}}{K_1} = \frac{c^2 \tau^2 \sqrt{c\tau/2}}{c(1-\tau)\sqrt{c(1-\tau)/2}} \to \frac{\tau^{5/2}}{(1-\tau)^{3/2}} = \frac{\sqrt{K_3}}{K_1 c} = 2,0 \cdot 10^1$$

On suppose $\tau \simeq 1$, on calcule alors :

$$1 - \tau = \left(\frac{\sqrt{K_3}}{K_1 c}\right)^{2/3} = 13\%$$
 soit: $\tau = 87\%$.

L'hypothèse n'est donc pas très légitime. On utilise une résolution numérique.

3. (a) et (b) On adapte le code proposé (voir le notebook d51d-187663 sur capytale)

```
def equation3(x):
    return x**5 - np.sqrt(K3)/(c*K1)*(1-x)**(3/2)

root = fsolve(equation3,.87)
print(f'Pour c = {c}, la solution est du 3a est: tau={root}')

c = 1e-1 # en mol.L
root = fsolve(equation3,.87)
print(f'Pour c = {c}, la solution est du 3a est: tau={root}')
```

On obtient $\tau = 0.90$ pour $c_1 = 1 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1}$ et $\tau = 0.75$ pour $c = 1 \cdot 10^{-1} \text{ mol} \cdot \text{L}^{-1}$.

Correction de l'exercice 2

 On a dans ce cas un grand excès de OH⁻. On se trouve en dégénérescence d'ordre et seul l'ordre partiel par rapport à E intervient.

- (a) Si la cinétique est bien d'ordre 1, la concentration vérifie l'équation différentielle : $-\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{d}t}=k_1[\mathrm{E}],$ dont la solution vérifiant $[\mathrm{E}](t=0)=[\mathrm{E}]_0$ est $[\mathrm{E}]=[\mathrm{E}]_0e^{-k_1t}$. La courbe représentative de $\ln\frac{[\mathrm{E}]_0}{\mathrm{E}}$ en fonction du temps sera donc une droite de pente k_1 .
- (**b**) On obtient bien une droite, de pente $k_1 = 4.4 \cdot 10^{-3} \, \mathrm{s}^{-1}$.

2. On utilise cette fois-ci la méthode différentielle.

Comme on est en proportions stechiométriques, on a $v_d = -\frac{\mathrm{d}[E]}{\mathrm{d}t} = k[\mathrm{OH}-]^{\mathrm{ul}}[\mathrm{E}]^{\mathrm{u2}} = [\mathrm{E}]^{\mathrm{u}}$, avec $u = u_1 + u_2$ l'ordre global de la réaction. En traçant $\ln \frac{v_d}{v_{d0}}$ en fonction de $\ln \frac{[\mathrm{E}]}{[\mathrm{E}]_0}$, on doit obtenir une droite de pente u. Les données expérimentales donnent ici une pente de u = 2.

- 3. Les conditions expérimentales de la première expérience ([OH−] ≫ [E]) assurent qu'il y a dégénérescence d'ordre : l'ordre apparent mesuré, 1 est donc celui de E. La deuxième expérience, en proportions stœchiométriques, montre quant à elle que l'ordre global, somme des ordres partiels par rapport à E et OH⁻, est 2. On en déduit que l'ordre partiel par rapport à OH⁻ est lui aussi 1. Finalement αOH⁻ = αE = 1.
 - En dégénérescence d'ordre, on a $-\frac{d[E]}{dt} = -k[E][OH-]_0$. La constante apparente k' précédemment déterminée est don $k' = k[OH-]_0$. On obtient finalement $k = k_1/[OH-]_0 = 9.8 \cdot 10^{-2} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1} = 5.87 \text{ L} \cdot \text{mol}^{-1} \cdot \text{min}^{-1}$.