	المملكة المغربية	/
الام	وزارة التربية الوطنية	- /.
	والتعليم العالي	C"A
	والبحث العلمي	
	AND CANAL CAMP OF MARK MARK	

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2009
الموضوع

C:RS22

والامتحاتات	للتعويم	الوطني	المركز

7	المعامل:	الرياضيات	المـــادة:
3	مدة الإنجاز:	شعبة الطوم التجريبية بمسالكها وشعبة الطوم والتكنولوجيات بمسلكيها	الشعب (ة) أو المسلك:

يسمم باستعمال الآلة للحاسبة غير القابلة للبرمجة .

التمرين الأول (3ن)

نعتبر، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $(O,\vec{i},\vec{j},\vec{k})$ ،النقطة A(2,2,-1) و المستوى . 3 الذي معادلته هي $\Omega(1,0,1)$ وشعاعها $\Omega(1,0,1)$ الذي معادلته هي $\Omega(1,0,1)$ وشعاعها $\Omega(1,0,1)$

 \cdot (P) المستقيم المار من النقطة A والعمودي على المستوى (D) ليكن

 $\overrightarrow{\Omega A} \wedge \overrightarrow{u}$ متجهة موجهة للمستقيم (D) و أن (B, -6, -3) هو مثلوث إحداثيات المتجهة $\overrightarrow{u}(2,1,2)$ ا

 \cdot A في (S) مماس للفلكة (D) مماس للفلكة (S) في (D) مماس للفلكة (S) في (D)

التمرين الثانب (3 ن)

0.75

0.75

1

0.5

0.5

1

0.5

1

 $z^2 - 6z + 25 = 0$: المعادلة : © المعادلة الأعداد العقدية

D و C و B و A النقط A النقط A و B و C و B و C

ا - احسب $\frac{d-c}{a-c}$ ثم استنتج أن النقط A و C و C مستقيمية .

 $\frac{3}{2}$ بين أن العدد p=3+8i هو لحق النقطة P صورة النقطة A بالتحاكي h الذي مركزه p=3+8i

 $(\overrightarrow{\overrightarrow{PA}},\overrightarrow{\overrightarrow{PD}})$ ج- اكتب على الشكل المثلثي العدد العقدي $(\overrightarrow{a-p})$ ثم استنتج أن $(\overrightarrow{a-p})$ قياس للزاوية

• $PA = \sqrt{2} PD$ وان

التمرين الثالث (3 ن)

يحتوي صندوق على سبع كرات سوداء و كرتين بيضاوين. (لا يمكن التمييز بين الكرات باللمس) نسحب عشوائيا بالتتابع وبدون إحلال كرتين من الصندوق .

ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات البيضاء المتبقية في الصندوق بعد سحب الكرتين.

X حدد القيم التي يأخذها المتغير العشوائي X

• $P(X=1) = \frac{7}{18}$ و $P(X=0) = \frac{1}{36}$: بين أن (2 1.5

• E(X) أعط قانون احتمال المتغير العشوائي X و احسب الأمل الرياضي (3

التمرين الرابع (30)

1

0.5

1

1

0.5

1

. IN نكن
$$u_{n+1} = \frac{1+4u_n}{7-2u_n}$$
 و $u_0 = 0$ د كن u_{n+1} لكل u_{n+1} نكن u_n د كن المتتالية العددية المعرفة بما يلي $u_0 = 0$

. IN نضع :
$$v_n = \frac{2u_n - 1}{u_n - 1}$$
 : نضع (2

.
$$n$$
 بين ان (v_n) متتالية هندسية اساسها $\frac{5}{6}$ ثم اكتب v_n بدلالة v_n

$$u_n = \frac{\left(\frac{5}{6}\right)^n - 1}{\left(\frac{5}{6}\right)^n - 2}$$
 بـ بين ان : $u_n = \frac{\left(\frac{5}{6}\right)^n - 1}{\left(\frac{5}{6}\right)^n - 2}$

التمرين الخامس (2ن)

$$\int_{1}^{\sqrt{2}} 2x(x^2-1)^{2009} dx = \frac{1}{2010}$$
: على R وتحقق من أن $x \mapsto 2x(x^2-1)^{2009}$ للدالة للدالة $x \mapsto 2x(x^2-1)^{2009}$

•
$$\int_0^2 (2x+1)\ln(x+1)dx = 6\ln 3 - 2$$
: باستعمال مكاملة بالأجزاء بين أن (2)

للتمرين للسلام (60 ن)

$$f(x) = x \left(\frac{e^{2x} - 1}{e^{2x} + 1} \right)$$
: يتكن f بما يلي بالمعرفة على f بالمعرفة على الدالة العددية للمتغير الحقيقي بالمعرفة على الدالة العددية المتغير الحقيقي

 \cdot $(O, \overrightarrow{i}, \overrightarrow{f})$ المنحنى الممثل للدالة f في معلم متعامد ممنظم (C) المنحنى الممثل الدالة والم

$$f(x) = x \left(\frac{1 - e^{-2x}}{1 + e^{-2x}} \right)$$
: نکل $f(x) = x \left(\frac{1 - e^{-2x}}{1 + e^{-2x}} \right)$

. IR نم
$$x$$
 لكل $f(x)-x=\frac{-2xe^{-2x}}{1+e^{-2x}}$ وأن الدالة $f(x)$ دوجية وأن $f(x)$

ج – بین أن :
$$0 = \lim_{x \to +\infty} \frac{-2xe^{-2x}}{1+e^{-2x}}$$
 و أن $\lim_{x \to +\infty} \frac{-2xe^{-2x}}{1+e^{-2x}}$ ثم استنتج أن المستقيم (D) الذي معادلته $y = x$ مقارب للمنحنى (C) بجوار $y = x$

$$\cdot [0,+\infty[$$
 يوجد تحت المستقيم (D) على المجال يوجد (C) على المجال (2

$$f'(0) = 0$$
 : نكل $f'(x) = \frac{e^{4x} - 1 + 4xe^{2x}}{(e^{2x} + 1)^2}$: نكل $f'(x) = \frac{e^{4x} - 1 + 4xe^{2x}}{(e^{2x} + 1)^2}$: 1

$$e^{4x} - 1 + 4xe^{2x} \ge 0$$
 . $e^{4x} - 1 + 4xe^{2x} \ge 0$ ثم استنتج أن $e^{4x} - 1 \ge 0$. ككل $e^{4x} - 1 \ge 0$. ككل $e^{4x} - 1 \ge 0$. e^{4x}

$$(C)$$
 نقطتي العطاف تحديدهما غير مطلوب (C) انشئ المنحنى (C) نقطتي العطاف تحديدهما غير مطلوب (C)

C:RR22

المركز الوطنى للتفويم والامتحانات

7	المعامل:	الرياضيات	المادة:
3	مدة الإنجاز:	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب (ة) أو المسلك:

التمرين الأول (3ن)

(S) لمعادلة الفلكة (S) و (S) للتحقق من أن (S) تنتمي إلى (S) . (1 1.5 لحساب المسافة و (S) للاستنتاج .

 $\overrightarrow{\Omega A} \wedge \overrightarrow{u}$ ا- 0.25 ل \overrightarrow{u} موجهة ل (D) و 0.5 لتحديد إحداثيات \overrightarrow{u} (2 م

. ب- 0.25 لحساب $\frac{\left\| \overrightarrow{\Omega A} \wedge \overrightarrow{u} \right\|}{\left\| \overrightarrow{u} \right\|}$ و 0.25 ل 0.25 ل مماس ل 0.25 و 0.25 لحساب 0.25

التمرين الثاني (3 ن)

1 (1

0.5 -ب $\frac{d-c}{a-c}$ و 0.25 و 0.25

. $PA=\sqrt{2}\;PD$ ل 0.25 و $\widehat{PA},\widehat{PD}$ و 0.25 ح

التمرين الثالث (3ن)

 $\begin{array}{c|cccc}
0.5 & (1 & 0.5 \\
= 0) & 0.5 & (2 & 1.5)
\end{array}$

E(X) و 0.25 و القانون احتمال X و 0.75 (3)

التمرين الرابع (30)

2×0.5 1

1

 2×0.5 - ب v_n بدلالة v_n و 0.25 و $\frac{5}{6}$ المناسة هندسية أساسها v_n بدلالة v_n بدلالة (v_n) عتتالية هندسية أساسها (2

التمرين الخامس (2ن)

2×0.5 (1

1 (2

التمرين السادس (6ن)

و 0.25 يا $\lim_{x \to +\infty} \frac{-2xe^{-2x}}{1+e^{-2x}}$ و 0.5 يا $\lim_{x \to +\infty} f(x)$ يا 0.25 يا $\lim_{x \to +\infty} f(x)$ يا 0.25 يا 0.5 يا 0.5

0.5 -

0.5 (2 0.5

(3

2

1

 2×0.25 ب f'(x) و 0.25 ل f'(x) ب 0.75

 $]-\infty,0]$ على $]0.+\infty[$ و 0.5 لجزء (C) على $[0,+\infty[$ على (C) على $[0,+\infty[$