Ejercicio 8:

Un código Gray es una secuencia de números binarios con la propiedad de que el salto de un elemento de la secuencia al siguiente es de un solo bit. Por ejemplo, un código Gray binario de 3 bits: 000, 001, 011, 010, 110, 111, 101 y 100.

Utilizando 3 Flip-flops tipo D y compuertas lógicas, construir un contador de código Gray con una entrada inc que hace que el contador pase a la próxima secuencia. Notar que el código es cíclico.

Realizar dos implementaciones de dicho contador a partir de los diagramas propuestos en las figuras y luego comparar los resultados obtenidos.

Combinacional de estados:

Estedo	ace	ual	Enerada	Escado siguient
Oz	Q٨	Q,	Inc	Dz D4 D6
0	0	0	0	000
0	0	0	1	001
0	0	1	0	001
0	0	1	1	010
0	1	0	0	010
0	1	0	1	011
0	1	4	0	0 1 1
0	1	4	1	100
1	0	0	0	100
1	0	0	1	101
1	0	1	0	101
1	0	1	1	110
1	1	0	0	110
1	Λ	0	1	111
1	1	1	0	1 1 1
			1 .	l

O. Inc Q. Inc Q. Inc Q. Inc					
$\overline{Q}_{z}\overline{Q}_{A}$	0	0	0	0	
$\overline{Q}_{2}Q_{1}$	0	0	1	0	
Q_2Q_4	1	1	0	1	
$Q_2 \overline{Q_4}$	1	1	1	1	

_	Os Inc Qs Inc Qs Inc Qs Inc				
$\overline{Q}_{2}\overline{Q}_{4}$	0	0	1	0	
$\overline{Q}_{2}Q_{4}$	1	۲	Q	1	
Q_2Q_4	1	7	0	1	
$Q_z \overline{Q_\lambda}$	0	0	1	0	
$D_{a} = \overline{Q}_{1}Q_{0} \operatorname{Inc} + Q_{1}\overline{Q}_{0} + Q_{1}\overline{\operatorname{Inc}}$					

0	1	0	1
0	1	0	1
0	1	0	1
0	1	0	1
	0	0 1	0 1 0

Do = Qo Inc + Qo Inc

1

0

Combinacional de salidas:

 Q_2

 Q_z

 Q_z

 $\overline{Q}_{i}\overline{Q}_{i}$

0

Q.Q.

0

luego, la implementación es la siguiente:

Os Inc Qs Inc Qs Inc

Estado accual Enerada Estado siguente

Combinacional de estados:

	0	0	1	1	0		0	0	1	
	0	0	1		1		0	1	1	
	0	1	0		2		0	1	0	
	0	1	0	,	1		1	1	0	
	0	А	4	(2		0	1	1	
	0	1	4	,	1		0	1	0	
	1	0	O		9		1	0	0	
	1	0	0		1		0	0	0	
	1	0	1	(2		1	0	1	
	A	0	1		1		/	0	0	
	1	А	0	(2		1	1	0	
	1	Λ	0	/	1		1	1	1	
	1	1	1	()		1	1	1	
	1	1	1	1	ı		1	0	1	
Inc	ā.	Inc	Q,	Inc	Q.i	Inc				
0	•	- 2		1	С)				ć
										_

$\overline{Q_2}Q_4$	0	1	0	0		
Q2 Q1	1	1	1	1		
$Q_2\overline{Q_2}$	1	0	1	1		
$D_z = Q_z \overline{I_{nc}} + Q_z Q_o + Q_a \overline{Q}_o I_{nc}$						
Combinacional de sulidas:						
Eseado acual Salida						

Q _z G	24	1	1	0	1
Q _z ā	2₁	0	0	0	0
		D ₄ = Q ₂ (Qo Inc+	Q,Q,	+ Q1 In
			_		
<u>، ۵،۵</u>	<u>)</u>	Q,Qo	<u> </u>	1	

					••	
	Q_2Q_4	0	1	1	1	
	$Q_2 \overline{Q_4}$	0	0	0	1	
	D,	, =Q2 G	Inc +	$\overline{\mathbb{Q}}_{2}\overline{\mathbb{Q}}_{1}I$	nc+Qe	Ī
_	_					
6	Q,Q.	Q.Q.	<u> </u>	1		
				I		

Os Inc Qs Inc Qs Inc Qs Inc

Estado actua	Salida	مي ري
God. Qz Q. Q.		$\overline{\mathbb{Q}}_{\mathbf{z}}$ \mathcal{O}
E0 0 0 0	000	
E1 001		Q ₂ 1
E 0 1 0	010	72
Es 0 1 1 E4 1 0 0 E5 1 0 1 E6 1 1 0 E7 1 1 1	011	
E4 100	100	
Es 101	101	
E6 1 1 0	110	
E, (1 1	111	
Luego, la im	plementación es la	siguiente:
0	•	_

	5 ₂ :	Q _z		
			<u>Q</u> , Q.	
		\overline{Q}_{2}	0	
		Qz	0	

Puede verse que la segunda implementación no requiere compuertas lógicas en el combinacional de salida, esto se debe a que hicimos que la salida coincidiera con la cadificación de estados. Esto hace que el número de compuertas utilizadas sea menor en ésta segunda implementación.