Winter 2024-2025 CSSE 386

CSSE 386 – Data Mining with Programming Rose-Hulman Institute of Technology

Worksheet 11

ame (Print):			Section:
1. Fill in the co	rresponding formulas:		
Metric	Formula		Description
Recall			Fraction of actual positives that are correctly identified.
Precision			Fraction of positive predictions that are correct.
Accuracy			Fraction of all predictions (positive and negative) that are correct.
$\overline{ ext{Acti}}$	Pre	edicted: Not S	pam Predicted: Spam 10
Actual: Spam		5	45
Fill in the fol	lowing values based or	the table:	
(a) True Po	sitives (TP):		
(b) True Ne	gatives (TN):		
(c) False Po	ositives (FP):		
(d) False Ne	egatives (FN):		
3. True/False Accuracy is a	llways the best metric	in imbalanced d	atasets
4. The goal of SVM is to find the			that separates data points from differen
5. True/False SVMs can on	ly be used for linearly	separable data	

CSSE 386 Winter 2024-2025

6.	What does the margin in SVM represent?
	(a) The distance between two data points(b) The distance between the hyperplane and the nearest data points
	(c) The width of the dataset
7.	True/False SVM is effective for high-dimensional datasets
8.	The k-Nearest Neighbors algorithm predicts the target value for a given query point based on the of the k neighbors
9.	Why do you choose an odd number for k?
10.	Why is it important to use feature scaling (e.g., normalization or standardization) when using k-NN?
11.	Which method is often used to determine the optimal k?
	(a) Elbow
	(b) Euclidean distance(c) Cross-validation
12.	In K-fold cross-validation, the dataset is split into (hint: how many) equal-sized subsets called folds
13.	True/False LOOCV is computationally efficient for large datasets
14.	True/False In K-fold cross-validation, the number of training samples is reduced by the size of one fold

ge $\left\langle 2\right\rangle$ 16 January 2025

in each iteration