Семинар 29 (10.05.2023)

Краткое содержание

Начали семинар с теоремы о приведении квадратичной формы к главным осям:

Для всякой квадратичной формы Q в евклидовом пространстве существует ортонормированный базис, в котором Q имеет канонический вид $Q(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_n x_n^2$; причём числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ определены однозначно с точностью до перестановки (они являются собственными значениями самосопряжённого линейного оператора, который в ортонормированном базисе имеет такую же матрицу, как и данная квадратичная форма).

Проговорили, что задача приведения квадратичной формы к главным осям эквивалентна задаче диагонализации (в ортонормированном базисе) самосопряжённого оператора и потому решается так же (а это мы разбирали на прошлом семинаре). Подробно разобрали номер П1251.

Новая тема: ортогональные операторы. Сформулировали определение и упомянули ещё 5 эквивалентных условий. Вывели, что среди действительных собственных значений ортогонального оператора могут быть только 1 или -1. Обсудили, какие бывают линейные операторы, которые одновременно являются ортогональными и самосопряжёнными.

Дальше проговорили теорему о каноническом виде ортогонального оператора. Важный частный случай этой теоремы — описание всех ортогональных операторов в трёхмерном евклидовом пространстве: всякий такой оператор — это либо поворот вокруг некоторой прямой, либо «зеркальный поворот» вокруг некоторой прямой. Обсудили алгоритм нахождения ортонормированного базиса, в котором матрица ортогонального оператора φ в \mathbb{R}^3 имеет канонический вид. Если A — матрица данного линейного оператора в исходном ортонормированном базисе, то поступать можно так:

- (I) Если $A = A^T$, то оператор самосопряжён, и к нему можно применить известный алгоритм для самосопряжённого оператора. (Единственный нюанс тут не надо считать характеристический многочлен, поскольку его корни мы и так знаем: это 1 и -1.)
- (II) Если $A \neq A^T$, то оператор не самосопряжён, поэтому в каноническом виде один из блоков обязательно будет матрицей $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ поворота на угол α , не кратный πk . Вторым из блоков будет ± 1 , поэтому одно из чисел 1 или -1 будет собственным значением для φ . Дальше делаем следующее.
- 1) Рассматривая матрицу $A \lambda E$ при $\lambda = 1, -1$, находим то значение $\lambda = \lambda_0 \in \{\pm 1\}$, которое будет собственным для φ , а также соответствующий собственный вектор e_3 единичной длины.
- 2) Выбираем любой ортонормированный базис (e_1,e_2) в e_3^{\perp} , тогда (e_1,e_2,e_3) будет ортонормированным базисом, в котором φ имеет канонический вид. Осталось только найти этот вид.
- 3) Если α угол поворота для φ , то $\varphi(e_1) = \cos \alpha \cdot e_1 + \sin \alpha \cdot e_2$ и тогда $\cos \alpha$ и $\sin \alpha$ находятся по формулам $\cos \alpha = (\varphi(e_1), e_1)$ и $\sin \alpha = (\varphi(e_1), e_2)$.

Полностью осуществили данный алгоритм для линейного оператора из номера П1574.

0

Домашнее задание к семинару 30. Дедлайн 16.05.2023

Номера с пометкой Π даны по задачнику Π роскурякова, с пометкой K- Кострикина, с пометкой KK- Ким-Крицкова.

1. $\Pi 1243$

В следующих трёх заданиях явно выписывайте искомую ортогональную замену координат (выражение старых координат через новые).

- 2. Π1248
- 3. П1254
- 4. $\Pi 1259$
- 5. П1564

- 6. $\Pi 1571$
- 7. Π1572
- 8. K46.6(K)
- 9. Ортогональный линейный оператор $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ имеет в стандартном базисе матрицу

$$\frac{1}{3} \begin{pmatrix} -2 & -2 & 1 \\ -2 & 1 & -2 \\ -1 & 2 & 2 \end{pmatrix}.$$

Найдите ортонормированный базис, в котором матрица оператора φ имеет каноничесакий вид, и выпишите эту матрицу. Укажите ось и угол поворота, определяемого оператором φ .