$$y_t = \alpha_1 + \alpha_2 \ln(x_t) + \alpha_3 k_t + \alpha_4 a_t + e_t$$

yt = weekly expenditure on transport.

 x_t = weekly income.

 k_t = number of children.

 a_t = number of adults.

 $ln(x_t) = lnx = log(x_t)$.

- A) $\delta y/\delta a = \alpha_4 = \alpha_t = 10$
- B) $\delta y/\delta k = \alpha_3 = \alpha_k = 2$
- C) $\delta y/\delta (\ln x) = (\delta y/\delta \ln x) * (\delta \ln x/\delta x) = \alpha_{\ln x} * 1/x = 0.03$ (from 3 cent). Since x = 800; $\alpha_{\ln x} * 1/800 = 0.03$; $\Rightarrow \delta y/(\ln x) = \alpha_2 = \alpha_{\ln(x)} = 24$.

Three alternative variance assumptions:

- (I) $Var(e_t) = \sigma^2$ (Homoscedastic) (Run regression without transforming variables).
- (II) $Var(e_t) = \sigma^2 \ln(x_t)^2$ (Heteroscedastic) (Transform data by dividing all variables by $\ln x$).
- (III) $Var(e_t) = \sigma^2 \ln(x_t)^4$ (Heteroscedastic) (Transform data by dividing all variables by $\ln x^2$).

(a).

Null and Alternative Hypothesis under three different conditions:

- (A) H_0 : $\alpha_a = 10$; H_a : $\alpha_a \neq 10$.
- (B) H_0 : $\alpha_k = 2$; H_a : $\alpha_k \neq 2$.
- (c) H_0 : $\alpha_{\ln(x)} = 24$; H_a : $\alpha_{\ln(x)} \neq 24$.

Data Management Process:

```
PROC IMPORT OUT= WORK.bm
           DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 4\HW4-DATA.xls"
           DBMS=EXCEL REPLACE;
    RANGE="hw9$";
    GETNAMES=YES;
    MIXED=NO;
    SCANTEXT=YES;
    USEDATE=YES;
    SCANTIME=YES;
RUN;
data bm; set bm;
/* Condition I */
y = trport;
a = a;
k = k;
x = x;
lnx = log(x);
/* White Test */
a2 = a**2;
k2 = k**2;
lnx2 = lnx**2;
/* Condition II */
ylnx = trport/lnx;
intlnx = 1/lnx;
alnx = a/lnx;
klnx = k/lnx;
/* Condition III */
ylnx2 = trport/lnx2;
intlnx2 = 1/lnx2;
alnx2 = a/lnx2;
klnx2 = k/lnx2;
run;
proc print;
run;
```

(b). Under Condition (I): $Var(e_t) = \sigma^2$

```
SAS Code:
proc reg data = bm;
model y = lnx a k;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read	1000
Number of Observations Used	1000

Analysis of Variance							
Source Sum of Square F Value							
Model	3	604009	201336	26.21	<.0001		
Error	996	7652096	7682.82710				
Corrected Total	999	8256105					

Root MSE	87.65174	R-Square	0.0732
Dependent Mean	79.41434	Adj R-Sq	0.0704
Coeff Var	110.37268		

	Parameter Estimates						
Variable	t Value	Pr > t					
Intercept	Intercept	1	-127.86034	26.45058	-4.83	<.0001	
Inx		1	28.35994	4.74543	5.98	<.0001	
a	а	1	14.41463	5.29148	2.72	0.0066	
k	k	1	0.71358	2.68037	0.27	0.7901	

(b): Under Condition (II): $Var(e_t) = \sigma^2 \ln(x_t)^2$

```
proc reg data = bm;
model ylnx = intlnx alnx klnx; /* Condition II */
test alnx = 10;
test klnx = 2;
test intlnx = 24;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: ylnx

Number of Observations Read	1000
Number of Observations Used	1000

Analysis of Variance							
Source	F Value	Pr > F					
Model	3	6663.53464	2221.17821	11.82	<.0001		
Error	996	187222	187.97420				
Corrected Total	999	193886					

Root MSE	13.71037	R-Square	0.0344
Dependent Mean	12.35960	Adj R-Sq	0.0315
Coeff Var	110.92886		

Parameter Estimates									
Variable	DF	Parameter Estimate	t Value	Pr > t					
Intercept	1	22.67467	4.37849	5.18	<.0001				
intlnx	1	-97.81402	23.33645	-4.19	<.0001				
alnx	1	16.75278	5.14438	3.26	0.0012				
klnx	1	1.91415	2.66594	0.72	0.4729				

(b): Under condition (III): $Var(e_t) = \sigma^2 \ln(x_t)^4$

```
proc reg data = bm;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */
test alnx2 = 10;
test klnx2 = 2;
test intlnx = 24;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: ylnx2

Number of Observations Read	1000
Number of Observations Used	1000

Note: No intercept in model. R-Square is redefined.

Analysis of Variance							
Source Sum of Squares Square F Value P							
Model	4	3859.82811	964.95703	196.95	<.0001		
Error	996	4879.99931	4.89960				
Uncorrected Total	1000	8739.82742					

Root MSE	2.21350	R-Square	0.4416
Dependent Mean	1.94759	Adj R-Sq	0.4394
Coeff Var	113.65365		

Parameter Estimates									
Variable			Standard Error	t Value	Pr > t				
intlnx	1	14.01011	4.06656	3.45	0.0006				
intlnx2	1	-54.66333	20.61977	-2.65	0.0082				
alnx2	1	21.10203	5.03075	4.19	<.0001				
klnx2	1	3.81634	2.69098	1.42	0.1564				

Sensitivity Analysis:

Under first condition (homoscedasticity), the intercept is negative i.e. opposite to other model and variable related to weekly income is positive in first model and negative in other two models (heteroscedasticity). Other variables are consistently positive in all three models. In rest two cases corrected log (x) for heteroscedasticity has negative sign and other variables have positive sign. The significance of variables at 1% is consistent for all variables in all three models. Magnitude wise, the weekly income, number of children and number of adults are consistent in all three models. Income has highest coefficient and number of children has lowest.

(c). Condition I: $Var(e_t) = \sigma^2$ (Homoscedastic).

```
/*GO Test Data Preparation */
data bm;
set bm;
proc sort;
by descending x;
run:
data bm1; set bm; /* Newly created data = bm1 and bm1 contains first 500
cases */
if x le 610;
data bm2; set bm; /* Newly created data = bm1 and bm1 contains last 500
cases */
if x ge 611;
run;
proc reg data = bm1;
model \ y = lnx \ a \ k; \ /* \ Condition \ I \ */ \ /* \ Change this model for different
conditions */
output out = out1 r = ehat1;
run;
proc reg data = bm2;
model y = lnx4 k a; /* Change this model for different conditions */
output out = out2 r = ehat2;
run;
/* G-Q Test */
data bmout;
merge out1 out2;
keep ehat1 ehat2;
proc means uss data = bmout;
var ehat1 ehat2;
output out = out3 uss = sse1 sse2;
run;
data bmout1; set out3;
x1 = 500; x2 = 500; k = 4;
sig1sq = sse1/(x1-k); sig2sq = sse2/(x2-k);
GQ = siq1sq/siq2sq;
run;
proc print;
run;
```

Null Hypothesis: Heteroscedasticity does not exist i.e. homoscedastic variance.

Alternative hypothesis: Heteroscedasticity does exist.

GQ = 1/0.53605 = 1.8655.

 F_{cric} (496, 496) $\alpha = 0.05 = 1.233$ (Excel: =F.INV.RT(0.01,496, 496)]

Since $GQ > F_{cric}$, We reject null hypothesis that there is no heteroscedasticity. There might be problem of heteroscedasticity. This is due to weekly income.

(c). Condition II: $Var(e_t) = \sigma^2 \ln(x_t)^2$

```
/*GQ Test Data Preparation */
data bm;
set bm;
proc sort;
by descending x;
data bm1; set bm; /* Newly created data = bm1 and bm1 contains first 500
cases */
if x le 610;
run;
data bm2; set bm; /* Newly created data = bm1 and bm1 contains last 500
cases */
if x ge 611;
run;
proc reg data = bm1;
model ylnx = intlnx alnx klnx; /* Condition II */ /* Change this model for
different conditions */
output out = out1 r = ehat1;
run;
proc reg data = bm2;
model ylnx = intlnx alnx klnx; /* Condition II */ /* Change this model for
different conditions */
output out = out2 r = ehat2;
run;
/* G-Q Test */
data bmout;
merge out1 out2;
keep ehat1 ehat2;
run;
proc means uss data = bmout;
var ehat1 ehat2;
output out = out3 uss = sse1 sse2;
run;
data bmout1; set out3;
x1 = 500; x2 = 500; k = 4;
sig1sq = sse1/(x1-k); sig2sq = sse2/(x2-k);
GQ = siq1sq/siq2sq;
run;
proc print;
run;
```


$$GQ = 1/0.76205 = 1.312$$

 F_{cric} (496, 496) $\alpha = 0.05 = 1.233$ (Excel: =F.INV.RT(0.01,496, 496)]

Since $GQ > F_{cric}$, We reject null hypothesis that there is no heteroscedasticity. There might be problem of heteroscedasticity. This is due to weekly income.

(c). Condition III: $Var(e_t) = \sigma^2 \ln(x_t)^4$

```
/*GQ Test Data Preparation */
data bm;
set bm;
proc sort;
by descending x;
data bm1; set bm; /* Newly created data = bm1 and bm1 contains first 500
cases */
if x le 610;
run;
data bm2; set bm; /* Newly created data = bm1 and bm1 contains last 500
cases */
if x ge 611;
run;
proc reg data = bm1;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */ /*
Change this model for different conditions */
output out = out1 r = ehat1;
run;
proc reg data = bm2;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */ /*
Change this model for different conditions */
output out = out2 r = ehat2;
run;
/* G-Q Test */
data bmout;
merge out1 out2;
keep ehat1 ehat2;
run;
proc means uss data = bmout;
var ehat1 ehat2;
output out = out3 uss = sse1 sse2;
run;
data bmout1; set out3;
x1 = 500; x2 = 500; k = 4;
sig1sq = sse1/(x1-k); sig2sq = sse2/(x2-k);
GQ = siq1sq/siq2sq;
run;
proc print;
run;
```


	The MEANS Procedure									
		١	Variable Label Uncorrected SS					ISS		
	ehat1 Residual 2528.68 ehat2 Residual 2239.15									
	The SAS System									
Obs	_TYPE_	_FREQ_	sse1	sse2	x1	x2	k	sig1sq	sig2sq	GQ
1	0	500	2528.68	2239.15	500	500	4	5.09814	4.51441	1.12930

GQ = 1.12930

 F_{cric} (496, 496) $\alpha = 0.05 = 1.233$ (Excel: =F.INV.RT(0.01,496, 496)]

Since $GQ < F_{cric}$, We fail to reject null hypothesis. Thus, there is no heteroscedasticity i.e. homoscedasticity. The heteroscedasticity problem still appears in equations under first and second conditions.

(d): Under Condition (II): $Var(e_t) = \sigma^2 \ln(x_t)^2$

```
proc reg data = bm;
model ylnx = intlnx alnx klnx; /* Condition II */
test alnx = 10;
test klnx = 2;
test intlnx = 24;
run;
```

The REG Procedure Model: MODEL1							
Test 1 Results for Dependent Variable yInx							
Source	DF	Mean Square	F Value	Pr > F			
Numerator	1	323.89011	1.72	0.1896			
Denominator	996	187.97420					

Since p value is above 0.05, we fail to reject null hypothesis that adding an adult to a household increases household expenditure on transport by \$10 per week.

The REG Procedure Model: MODEL1							
Test 2 Resu	Test 2 Results for Dependent Variable ylnx						
Source	DF	Mean Square	F Value	Pr > F			
Numerator	1	0.19495	0.00	0.9743			
Denominator	996	187.97420					

Since p value is above 0.05, we fail to reject null hypothesis that adding a child to a household increases household expenditure on transport by \$2 per week.

The REG Procedure Model: MODEL1							
Test 3 Results for Dependent Variable ylnx							
Source	DF	Mean Square	F Value	Pr > F			
Numerator	1	5121.80865	27.25	<.0001			
Denominator	996	187.97420					

Since p value is below 0.05, we reject null hypothesis that for a household with a weekly income of \$800, an incremental increase in income increases household expenditure on transport by 3 cents per one dollar.

Under condition (III): $Var(e_t) = \sigma^2 \ln(x_t)^4$

```
proc reg data = bm;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */
test alnx2 = 10;
test klnx2 = 2;
test intlnx = 24;
run;
```

The REG Procedure Model: MODEL1						
Test 1 Result	Test 1 Results for Dependent Variable ylnx2					
Source	DF	Mean Square	F Value	Pr > F		
Numerator	1	23.86157	4.87	0.0276		
Denominator	996	4.89960				

Since p value is below 0.05, we reject null hypothesis that adding an adult to a household increases household expenditure on transport by \$10 per week.

The REG Procedure Model: MODEL1							
Test 2 Results	for [Depender	nt Variable	e ylnx2			
Source	DF	Mean Square	F Value	Pr > F			
Numerator	1	2.23221	0.46	0.4998			
Denominator	996	4.89960					

Since p value is above 0.05, we fail to reject null hypothesis that adding a child to a household increases household expenditure on transport by \$2 per week.

The REG Procedure Model: MODEL1							
Test 3 Results for Dependent Variable ylnx2							
Source	DF	Mean Square	F Value	Pr > F			
Numerator	1	29.56832	6.03	0.0142			
Denominator	996	4.89960					

Since p value is below 0.05, we reject null hypothesis that for a household with a weekly income of \$800, an incremental increase in income increases household expenditure on transport by 3 cents per one dollar.

(e).

```
/* White Heteroscedasticity Test */
proc reg data = bm;
model y = lnx a k; /* Condition I */
output out = white
p = whyhatt /* Predicted Value of dependent Variable y */
r = whyresid; /*Residual values of y */
run;

data white; set white;
whyressq = whyresid**2;
run;

proc reg data = white;
model whyressq = lnx k a lnx2 k2 a2;
test lnx = k = a = lnx2 = k2 = a2 = 0;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: whyressq

Number of Observations Read	1000	
Number of Observations Used	1000	

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	6	8684393294	1447398882	3.21	0.0039			
Error	993	4.472699E11	450422857					
Corrected Total	999	4.559543E11						

Root MSE	21223	R-Square	0.0190
Dependent Mean	7652.09580	Adj R-Sq	0.0131
Coeff Var	277.35105		

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	64006	41740	1.53	0.1255	
Inx		1	-22846	13887	-1.65	0.1003	
k	k	1	-2545.14494	1952.06276	-1.30	0.1926	
a	a	1	658.66767	5959.47096	0.11	0.9120	
Inx2		1	2156.63361	1130.88558	1.91	0.0568	
k2		1	1019.96103	681.56325	1.50	0.1348	
a2		1	-4.97433	1467.47957	-0.00	0.9973	

Test 1 Results for Dependent Variable whyressq								
Source	DF	Mean Square	F Value	Pr > F				
Numerator	6	1447398882	3.21	0.0039				
Denominator	993	450422857						

Null Hypothesis: Homoscedasticity or No Heteroscedasticity.

Alternative Hypothesis: Heteroscedasticity.

Conclusion: Since p value is below 0.05, we reject the null hypothesis that there is no homoscedasticity.

(f).

```
/*Variance condition = Linear; Test = Lagrange Multiplier*/
proc autoreg data = bm;
model y = lnx k a;
hetero lnx / link = linear test = lm;
run;
```


				• • • • • • • • • • • • • • • • • • • •	CAUTORE	o i loccui				
	Linea				Heterosced	lasticity Es	stimate	s		
	SSI	SSE			7653037.9	Observat	ions	1000		
	MS	MSE			7653	Root MSE		87.48164		
	Log	Log Likelihood			5876.4972	Total R-Square		0.0730		
	SBC		1	11794.441	AIC		11764.9945	1764.9945		
	MA	MAE		60	0.0205571	AICC		11765.0791	1765.0791	
	MA	MAPE		59	95.002348	HQC		11776.1862		
	Het	Hetero Test			56.7206	Normality Test		2166.3300		
	Pr	Pr > ChiSq			<.0001	Pr > ChiSq		<.0001		
Parameter Estimates										
Variable		DF	Estima	te	Standard Error		Appro Pr >		Labe	
Intercept		1	-124.661	17	48.3539	-2.58	0.009	9		
Inx		1	27.275	50	7.8573	3.47	0.000	15		
k		1	0.807	77	2.4408	0.33	0.740	7 k		
a		1	16.215	1	5.1102	3.17	0.001	5 a		
HET0		1	13.650)1	102.8520	0.13	0.894	4		
HET1		1	6.232	24	96.2576	0.06	0.948	34		

The AUTOREG Procedure

Null Hypothesis: Homoscedasticity.

Alternative Hypothesis: Heteroscedasticity.

Conclusion: Reject null hypothesis. (Looking at the p value)

```
/*Variance condition = Linear; Test = GLS */
proc autoreg data = bm;
model y = lnx k a /method = ml maxiter = 1000; /* */
hetero lnx / link = linear test = lm; /*Variance condition = Linear */
run;
```

Ordinary Least Squares Estimates					
SSE	7652095.8	DFE	996		
MSE	7683	Root MSE	87.65174		
SBC	11808.2429	AIC	11788.6119		
MAE	60.0316125	AICC	11788.6521		
MAPE	596.935203	HQC	11796.0731		
Durbin-Watson	1.9444	Total R-Square	0.0732		

			Parameter	Estimates	S	
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	Variable Label
Intercept	1	-127.8603	26.4506	-4.83	<.0001	
Inx	1	28.3599	4.7454	5.98	<.0001	
k	1	0.7136	2.6804	0.27	0.7901	k
a	1	14.4146	5.2915	2.72	0.0066	a

Linear Heteroscedasticity Estimates						
SSE	7654497.23	Observations	1000			
MSE	7654	Root MSE	87.48998			
Log Likelihood	-5876.221	Total R-Square	0.0729			
SBC	11793.8885	AIC	11764.442			
MAE	60.094395	AICC	11764.5266			
MAPE	599.673265	HQC	11775.6337			
Hetero Test	56.7206	Normality Test	2175.5853			
Pr > ChiSq	<.0001	Pr > ChiSq	<.0001			

Parameter Estimates								
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	Variable Label		
Intercept	1	-113.5852	48.9430	-2.32	0.0203			
Inx	1	25.8140	7.9501	3.25	0.0012			
k	1	1.2568	2.4383	0.52	0.6062	k		
a	1	15.0833	5.0978	2.96	0.0031	a		
HET0	1	8.1348	175.3593	0.05	0.9630			
HET1	1	17.8081	774.4448	0.02	0.9817			

Null Hypothesis: Homoscedasticity.

Alternative Hypothesis: Heteroscedasticity.

Conclusion: Reject null hypothesis. (Looking at the p value).

```
Complete Code Compilation: Heteroscedasticity:
PROC IMPORT OUT= WORK.bm
            DATAFILE= "C:\Users\bmishra\Dropbox\Ph.D. Courseworks\Semest
er II, Spring 2019\Econometric Methods\Homeworks\Homework 4\HW4-DATA.xls"
            DBMS=EXCEL REPLACE;
     RANGE="hw9$";
     GETNAMES=YES;
     MIXED=NO;
     SCANTEXT=YES;
     USEDATE=YES;
     SCANTIME=YES;
RUN;
data bm; set bm;
/* Condition I */
y = trport;
a = a;
k = k;
x = x;
lnx = log(x);
/* White Test */
a2 = a**2;
k2 = k**2;
lnx2 = lnx**2;
/* Condition II */
ylnx = trport/lnx;
intlnx = 1/lnx;
alnx = a/lnx;
klnx = k/lnx;
/* Condition III */
ylnx2 = trport/lnx2;
intlnx2 = 1/lnx2;
alnx2 = a/lnx2;
klnx2 = k/lnx2;
run;
proc print;
run;
proc reg data = bm;
model y = lnx a k; /* Condition I */
test a = 10;
test k = 2;
test lnx = 24;
run;
proc reg data = bm;
model ylnx = intlnx alnx klnx; /* Condition II */
test alnx = 10;
test klnx = 2;
test intlnx = 24;
run;
proc reg data = bm;
```

```
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */
test alnx2 = 10;
test klnx2 = 2;
test intlnx = 24;
run;
/*GQ Test Data Preparation */
data bm;
set bm;
proc sort;
by descending x;
run;
data bm1; set bm;/* Newly created data = bm1 and bm1 contains first 500
cases */
if x le 610;
run;
data bm2; set bm; /* Newly created data = bm1 and bm1 contains last 500
cases */
if x ge 611;
run;
proc reg data = bm1;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */ /*
Change this model for different conditions */
output out = out1 r = ehat1;
run;
proc reg data = bm2;
model ylnx2 = intlnx intlnx2 alnx2 klnx2 /noint; /* Condition III */ /*
Change this model for different conditions */
output out = out2 r = ehat2;
run;
/* G-Q Test */
data bmout;
merge out1 out2;
keep ehat1 ehat2;
run;
proc means uss data = bmout;
var ehat1 ehat2;
output out = out3 uss = sse1 sse2;
run;
data bmout1; set out3;
x1 = 500; x2 = 500; k = 4;
sig1sq = sse1/(x1-k); sig2sq = sse2/(x2-k);
GQ = sig1sq/sig2sq;
run;
proc print;
run;
/* E */ /* White Heteroscedasticity Test */
proc reg data = bm;
model y = lnx a k; /* Condition I */
output out = white
p = whyhatt /* Predicted Value of dependent Variable y */
r = whyresid; /*Residual values of y */
run;
data white; set white;
whyressq = whyresid**2;
```

```
run;
proc reg data = white;
model whyressq = lnx k a lnx2 k2 a2;
test lnx = k = a = lnx2 = k2 = a2 = 0;
proc print;
run;
/* F */
/*Variance condition = Linear; Test = Lagrange Multiplier*/
proc autoreg data = bm;
model y = lnx k a;
hetero lnx / link = linear test = lm;
run;
/*Variance condition = Linear; Test = GLS */
proc autoreg data = bm;
model y = lnx k a /method = ml maxiter = 1000; /* */
hetero lnx / link = linear test = lm; /*Variance condition = Linear */
run;
```

AGEC5213: ECONOMETRIC METHODS Spring 2019

PROBLEM SET NO. 4 - due on April \$\mu_{\text{\mathcal{B}}}\tag{7}, 2019

Question: Test three hypothesis listed in (A) (B) and (C) under three different conditions of variances (a) Homo. Var. (b) Hetero Var. and (c) Hetero Var.

Heteroskedasticity test and GLS

Oklahoma State is considering several policy changes in public transportation. Before approving any changes in transportation policy Governor Stitt wants to assess whether weekly expenditure figures provided by the Department of Transportation are realistic. For expenditure on transport, the Department believes that: $\frac{1}{2} \frac{1}{2} \frac{1$

- believes that: $A_0: Q_q = 10$. $A_0: Q_q = 10$ $A_0: Q_q \neq 10$ $A_0: Q_q \neq 10$ (A) Adding an adult to a household increases household expenditure on transport by \$10 per week.
- (B) Adding a child to a household increases household expenditure on transport by \$2 per week. 2 Ho: α3 = 2 Ho: α3 ≠ 2
 (C) For a household with a weekly income of \$800, an incremental increase in income increases

(C) For a household with a weekly income of \$800, an incremental increase in income increases household expenditure on transport by 3 cents per one dollar increase. However, $\alpha_1 = \alpha_2 + \alpha_3 = \alpha_4 + \alpha_5 = \alpha_5 + \alpha_5 = \alpha_5$

Your task is to provide the Governor helpful advice related to these issues. You have been retained to see if each of these rules of thumb are consistent with observed data. You decide to use data from the household expenditure survey that was conducted by the Department of Transportation of Oklahoma State. These data are stored in the file HW4-DATA.xls. You decide to set up the model.

$$y_{t} = \alpha_{1} + \alpha_{2} \ln(x_{t}) + \alpha_{3}k_{t} + \alpha_{4}a_{t} + e_{t}$$

where y_i represents weekly expenditure on transport, x_i represents weekly income and k_i and a_i represent the number of children and the number of adults in the household, respectively. Conscious of the fact that error terms in expenditure functions often have variances that depend on income, you decide to estimate the transport-expenditure function using three alternative variance assumptions, namely,

$$\begin{aligned}
&\text{flows} \\
(i) \, \text{var}(e_t) = \sigma^2 \quad (ii) \, \text{var}(e_t) = \sigma^2 [\ln(x_t)]^2 \quad (iii) \, \text{var}(e_t) = \sigma^2 [\ln(x_t)]^4
\end{aligned}$$

- (a) Express each of the rules of thumb in terms of a null hypothesis that involves the parameters of the expenditure function. Specify the corresponding alternative hypotheses.
- (b) Report the parameter estimates obtained under each error variance assumption and discuss the sensitivity of the estimates to this assumption (**Hint**: see GLS procedures in the lecture note). Key GLS Sensitivity of the estimates: How sign, magnitude and significance of estimates differs in these three cases?
 - (c) For each of the equation estimates in part (b), use the Goldfeld-Quandt test to test for the existence of heteroskedasticity, where the heteroskedasticity is assumed to depend on x_i . Use a 1% level of significance with a one-tailed test for assumption that the variance of residuals increases with weekly income. In what equation(s) does heteroscedasticity still appear to be a problem based on the Goldfeld-Quandt test?

Quandt test? Specify how you transform data

Ho: $G_t^2 = G^2$; $H_A: G_t^2 = G^2 \times_L \# Split data ** test for each of three cases.

(d) Using each of the estimated equations under ii) and iii) and a 5% significance level, test the$

- (d) Using each of the estimated equations under ii) and iii) and a 5% significance level, test the hypotheses specified in part (a). Comment on the results under the assumption that GLS has successfully removed heteroskedasticity. Question: Test above hypothesis using the regression equation assuming there is no heteroskedasticity in the model though model (ii) still has heteroskedasticity.
- (e) Redo the White heteroskedasticity test at the 5% significance level for the equation estimates in Inchede all variables a their permultations

part (b) with

$$(i) \operatorname{var}(e_i) = \sigma^2$$

(Hint: include independent variables and square of these variables in the variance equation). (No riferactive)

Using PROC AUTOREG procedure, test heteroskedasticity with LM test at the 5% level and find GLS and ML estimates. Your variance equation is assumed as: $\sigma_t^2 = \sigma^2 (1 + \gamma \ln x_t)$, where γ is the parameter of the variable $\ln x_t$.

In 5725

hetero LNX

Question: The given condition of variance has is for linear variance as symbolized by the equation. Use method (1) under heading "How to do GLS/MLE in SAS" in sas code page. Other two conditions not mentioned here has non-linear variance.