Chapter 1

Rings

Example 1.0.1. 1. $(\mathbb{Z}, +, \cdot)$

- 2. All fields, such as $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$, are rings.
- 3. Let R be a commutative ring, then R[X], the set of polynomials with coefficients in R, is again a ring, e.g. $\mathbb{Z}[X]$, $\mathbb{Q}[X]$, and $\mathbb{R}[X]$.
- 4. For any ring R and for any $n \in \mathbb{N}$, the set of all square n-by-n matricies with entries from R, forms a ring with matrix addition and matrix multiplication as operations. If n=1, this matrix ring is isomorphic to R itself. For n>1 (and R not a zero ring), this matrix is noncommutative. More concretely, $\operatorname{Mat}_{3\times 3}(\mathbb{R})$ is a noncommutative ring.

1.1 No idea yet

Definition 1.1 (Fractional Ideal). Let A be an integral domain.

- 1. A fractional ideal of A is an A-submodule $I \subset \text{Quot}(A)$ such that $dI \subset A$ for some denominator $d \in A \setminus \{0\}$.
- 2. A principal fractional ideal is a fractional ideal of the form $(r) = rA = \{ar \mid a \in A\}$

Example 1.1.1. • The subset

$$\frac{3}{25}\mathbb{Z} = \left\{ \left. \frac{3n}{25} \in \mathbb{Q} \,\middle|\, n \in \mathbb{Z} \right. \right\} \subset \mathbb{Q} \tag{1.1}$$

is a principal fractional ideal of \mathbb{Z}