Modellazione di un generatore sincrono e controllo della tensione in una rete elettrica di potenza multi-macchina

Introduzione

Passi fondamentali

- Si procederà con la modellazione della macchina sincrona in un contesto isolato per comprendere le leggi fisiche che ne permettono il funzionamento
- Si inserirà la macchina in una rete elettrica di potenza e se ne deriverà un modello adatto per la Small Signal Analysis
- Ci si concentrerà su un controllo della tensione effettuato attraverso un controllore classico

Prerequisiti matematici

La trasformata di Park

- Tre assi d,q,o che ruotano a velocità angolare omega
- Trasforma grandezze di un sistema trifase dipendenti dal tempo in valori costanti rispetto al nuovo riferimento

$$P = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos(\omega t) & \cos(\omega t - \frac{2}{3}\pi) & \cos(\omega t + \frac{2}{3}\pi) \\ \sin(\omega t) & \sin(\omega t - \frac{2}{3}\pi) & \sin(\omega t + \frac{2}{3}\pi) \end{bmatrix}$$

La struttura della macchina: il rotore e lo statore

- Viene fatto ruotare dall' azione di una coppia motrice generata da una turbina
- Viene modellato elettricamente da due circuiti
- Un circuito di field (f) in diretta, uno di damping (Q) in quadratura

- Vengono alloggiati i circuiti in direzione longitudinale, a formare tre fasi sfasate di 120° fra loro
- Sono la sede delle forze elettromotrici che generano la corrente elettrica

Derivazione del modello con lo spazio di stato Modello a due assi

- Vengono trascurati i fenomeni non lineari delle parti magnetiche (saturazioni, isteresi)
- Viene assunto che la macchina lavori su carico bilanciato
- Le variabili del sistema si intendono normalizzate rispetto a delle variabili di base

$$\begin{cases} \tau'_{q0} \dot{E}'_{d} = -E'_{d} - (x_{q} - x'_{q})I_{q} \\ \tau'_{d0} \dot{E}'_{q} = E_{FD} - E'_{q} + (x_{d} - x'_{d})I_{d} \\ \tau_{j} \dot{\omega} = C_{m} - D\omega - E'_{d}I_{d} + E'_{q}I_{q} - (x'_{q} - x'_{d})I_{q}I_{d} \\ \dot{\delta} = \omega - 1 \end{cases}$$

Inserimento nella rete WSCC-9

-1.1458-1.0288-0.8347 $I_{q1\Delta}$ $I_{d1\Delta}$ 1.0288 -1.14580.9216 $I_{q2\Delta}$ 2.7239 -1.05410.42000.3434-1.14840.5805 $I_{d2\Delta}$ -2.72390.42001.0541 0.34342.4914 -0.9666-1.10580.27702.3681 0.8160 $I_{q3\Delta}$ 0.0800 $\delta_{12\Delta}$ -2.36810.2770 -0.83051.1058

- La power flow analysis studia i flussi di potenza nei nodi quando la rete è a regime, al fine di soddisfare le domande di potenza dei carichi
- Serve a determinare quindi il punto di lavoro intorno al quale verrà linearizzato il sistema

$$\begin{cases} \tau'_{q0} \dot{E}'_{d} = -E'_{d} - (x_{q} - x'_{q})I_{q} \\ \tau'_{d0} \dot{E}'_{q} = E_{FD} - E'_{q} + (x_{d} - x'_{d})I_{d} \\ \tau_{j} \dot{\omega} = C_{m} - D\omega - I_{d0}E'_{d} - I_{q0}E'_{q} - E'_{d0}I_{d} - E'_{q0}I_{q} \\ \dot{\delta} = \omega \end{cases}$$

Modello con lo spazio di stato

- La macchina 1 è presa come slack, quindi come riferimento ed è rappresentata in maniera classica
- Gli sfasamenti dei load angle delle altre macchine sono riferiti ad essa

$$+10^{-4} \begin{bmatrix} 0.5610C_{m1} \\ 4.4210E_{FD2} \\ 0 \\ 2.0723C_{m2} \\ 4.5035E_{FD3} \\ 0 \\ 4.4063C_{m3} \\ 0 \\ 0 \end{bmatrix}$$

$$u = \begin{bmatrix} C_{m1} & E_{fd2} & C_{m2} & E_{fd3} & C_{m3} \end{bmatrix}$$

Vettore di stato

$$x = [\omega_1 \quad E'_{q2} \quad E'_{d2} \quad \omega_2 \quad E'_{q3} \quad E'_{d3} \quad \omega_3 \quad \delta_{12} \quad \delta_{13}]$$

Individuazione del contesto di controllo

- In un power system vi sono molti livelli di controllo
- Approcci moderni al tuning del controllore prevedono l' uso di benchmark per l' apprendimento da parte di algoritmi intelligenti o reti neurali
- Controllo di un sistema MIMO attraverso un approccio SISO
- Catena aperta composta da un blocco di compensazione (PID), da un amplificatore, il sistema d' eccitazione e il plant

Il sistema non controllato

	Macchina 2	Macchina3
Rise Time	3290.5 pu = 8.72 s	2061.7 pu = 5.47 s
Settling Time	21323 pu = 56.55 s	22836 pu = 60.57 s
Overshoot	16.31	43.88
Undershoot	0	0
Peak	0.0607	0.0441
Peak Time	8831.5 pu = 23.42 s	7229.5 pu = 19.18 s

- Diminuire il tempo d' assestamento
- Mantenere una sovraelongazione limitata
- Margine di fase maggiore di 40°

- Stima del processo e identificazione
- Viene stimato come un sistema con un polo e un ritardo
- Scelta del metodo di tuning migliore
- Il PID tarato con le regole di Cohen-Coon presenta un tempo d' assestamento minore

	Macchina 2	Macchina3
Rise Time	735.0136 pu = 1.94 s	569.5282 pu = 1.5 s
Settling Time	3703 pu = 9.82 s	4012.7 pu = 10.64 s
Overshoot	17.9591	31.4618
Undershoot	0	0
Peak	0.0826	0.0657
Peak Time	1775 pu = 4.7 s	1483 pu = 3.93 s

- Simulazione del sistema multimacchina dopo l' inserimento dei PID nel sistema di controllo delle macchine 2 e 3
- Sovraelongazione ancora elevata
- E' possibile una migliore disposizione dei poli?

Il sistema controllato

	Macchina 2	Macchina3
Rise Time	819.9211 pu = 2.17 s	620.4016 pu = 1.6 s
Settling Time	2650.9 pu = 7 s	2640 pu = 7 s
Overshoot	7.5534	19.46
Undershoot	0	0
Peak	0.0753	0.0597
Peak Time	1792.5 pu = 4.75 s	1485.5 pu = 3.9 s

- Tempo d' assestamento diminuito di circa due secondi
- Sovraelongazione diminuita di circa il 10 percento

Conclusioni

- Il problema di un approccio di tipo SISO a un sistema MIMO
- L' effetto che hanno le variabili lasciate incontrollate sui tempi di assestamento
- I problemi principali sono la mancanza di comunicazione tra i controllori (si pensi all' introduzione del PSS) e la mancanza di previsione

Grazie dell' attenzione!