

Segundo examen parcial

Fundamentos de lenguajes de programación

Duración: 2 horas

Carlos Andres Delgado S, Ing *

19 de Febrero 2015

Nombre:	
Código:	_

1. Paso de Parámetros por Referencia [12 pts.]

1	let
2	x = 3
3	y = 4
4	z = 8
5	
6	m = proc(s j k)
7	begin
7 8	set s = +(j,k);
9	+(s,2)
10	end
11	
12	n = proc(a b c f)
13	begin
14	set a = (f a b c);
15	set b = (f b c a);
16	set c = (f c b a);
17	+(a, *(b,c))
18	end
19	
20	in
21	begin
22	set z = (n x y z m);
23	+(z, y)
24	end

Si el paso de parámetros es por referencia:

- a) (6 pts) Dibuje el ambiente en el cual se evalúa la expresión.
- b) (6 pts) Indique el valor de la expresión e indique los valores que toman x, y y z en los llamados:

•	b =	= (f b c a);
	x:	
	y:	
	· ·	

- valor de la expresión:

2. Inferencia de Tipos [16 pts.]

En clase se describió el proceso formal de inferencia del tipo de una expresión y su implementación. En este ejercicio se pretende comprobar su asimilación del proceso (no de la implementación).

Para la expresión a continuación y las variables de tipo introducidas describa las ecuaciones de tipo generadas entre ellas. Acto seguido resuelva el sistema para encontrar el tipo de la expresión:

1	let
2	x = 3
3	y = 4
4	
5	f1 = proc(a b c d)
6	if b then (a c d)
7	else $proc(t w) *(t,w)$
8	
9	f2 = proc(n m)
10	proc(g h) + (*(g,m), *(h,n))
11	
12	$f3 = \operatorname{proc}(i \ j) > (i, j)$
13	
14	in
15	
16	$((f1 \ f2 \ (f3 \ x \ y) \ +(y,3) \ *(x,2)) \ x \ +(y,3))$

es:

^{*}carlos.andres.delgado@correounivalle.edu.co

Expresión o	Variable
Variable ligada	de tipo
f1	t_{f_1}
f^2	t_{f_2}
f^{-}	t_{f_3}
X	t_x
У	t_y
a	t_a
b	t_b
С	t_c
d	t_d
t	t_t
W	t_w
n	t_n
m	t_m
g	t_g
h	t_h
i	t_i
j	t_j
(a c d)	t_1
proc(t w) *(t,w)	t_2
*(t,w)	t_3
proc(g h) + (*(g,m), *(h,n))	t_5
+(*(g,m), *(h,n))	t_6
*(g,m)	t_7
*(h,n)	t_8
>(i,j)	t_9
(f1 f2 (f3 x y) +(y,3) *(x,2))	t_8
+(y,3)	t_9
*(x,2)	t_{10}
(f3 x y)	t_{11}
((f1 f2 (f3 x y) + (y,3) *(x,2)) x + (y,3))	t_{total}

Expresión	Ecuacion(es) de tipo aso-
	ciadas
(f3 x y)	
(f1 f2 (f3 x y) +(y,3) *(x,2))	
$((f1 \ f2 \ (f3 \ x \ y) \ +(y,3))$ $*(x,2)) \ x \ +(y,3))$	

Expresión	Ecuacion(es) de tipo asociadas
f1 = proc(a b c d) if b then (a c d) else proc(t w) *(t,w)	asociacias
f2 = proc(n m) proc(g h) +(*(g,m), *(h,n))	
f3 = proc(i j) >(i,j)	

3. Claridad Operativa POO [16 pts.]

Considere el siguiente programa en nuestro lenguaje OO:

```
1 class c1 extends object
     field a
 3
     field b
 4
5
     method initialize() 0
 6
7
     method \ setup \, (\,u\,,v\,)
 8
       begin
9
         set a = +(u, v);
         set b = *(u,3);
10
11
         +(a,b)
12
       end
13
     method\ m1(x\,,y)
14
15
       send self m2(+(x,b),-(y,a))
16
17
     method m2(w,z)
18
       +(w,+(z,a))
19
20 class c2 extends c1
     field a
21
22
     field b
23
     field c
24
25
     method initialize() 0
26
     method setup(u,v)
27
28
       begin
29
         set a = -(u,3);
30
         set b = +(v,3);
31
         set c = +(u,v);
32
         super setup(+(a,b),+(b,c))
33
       end
34
35
     method m1(x,y)
36
       super m1(x,y)
37
     method m2(w,z)
38
       *(+(-(w,b),c),+(z,a))
39
40 let
41
     o1 = new c1()
42
     o2 = new c2()
43
44
     in
45
       let
46
         x = send ol setup(1,4)
47
         y = \text{send o2 setup}(3,4)
48
         i = send ol m1(4,5)
49
         j = send \ o1 \ m2(3,4)
50
         k = send o2 m1(1,3)
51
         l = send o2 m2(1,2)
52
53
            +(+(i\;,j\;)\;,-(k\;,l\;)\;)
```

- a) [6 pts.] Muestre la representación de los objetos o1 y o2 después de la ejecución de:
 - send of setup(1,4)
 - send o2 setup(3,4)

Usted es libre de usar la representación de objetos simples o planos.

b) [10 pts.] Complete en la siguiente tabla, los valores asociados a las variables indicadas

en **después** de los momentos de evaluación señalados, **Importante:** En esta tabla sólo se le van a preguntar valores de campos de la clase o variables declaradas en el let, no se va preguntar el estado de variables dentro de los métodos.

Variable	Valor	Al evaluar la expresión
x		x = send o1 setup(1,4)
y		y = send o2 setup(3,4)
a de c1		i = send ol m1(4,5)
<i>b</i> de c1		i = send o1 m1(4,5)
i		i = send o1 m1(4,5)
a de c1		j = send o1 m2(3,4)
<i>b</i> de c1		j = send o1 m2(3,4)
j		j = send o1 m2(3,4)
a de c1		k = send o2 m1(1,3)
<i>b</i> de c1		k = send o2 m1(1,3))
$a ext{ de c2}$		k = send o2 m1(1,3)
b de c2		k = send o2 m1(1,3))
$c ext{ de c2}$		k = send o2 m1(1,3)
k		k = send o2 m1(1,3)

Variable	Valor	Al evaluar la expresión
a de c1		l = send o2 m2(1,2)
<i>b</i> de c1		l = send o2 m2(1,2)
$a ext{ de c2}$		l = send o2 m2(1,2)
<i>b</i> de c2		l = send o2 m2(1,2)
$c ext{ de c1}$		l = send o2 m2(1,2)
l		l = send o2 m2(1,2)
+(+(i,j),-(k,l))		in + (+(i,j),-(k,l))