Amplicon Bioinformatic Analysis: DADA2

Josh Granek

September 13, 2019

Outline

Bioinformatic Goals

Get Data (pre-DADA2)
Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)
Filter and Trim

Learn Error Rates

Dereplication Dereplication

Sample Inference
Merge Paired Reads

Merge Paired Reads
Construct Sequence Table

Remove Chimeras

Assign Taxonomy
Generate Phyloseq Object

Save Phyloseg as RDS

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Merge Paired Read

Construct Sequence Tabl

Pomovo Chimoros

Remove Chimera

Generate Phyloseq Objec

Save Phyloseq as RDS

Bioinformatic Analysis

Input: Raw FASTQ File(s)

M00698:36:000000000-AFBEL:1:1101:14738:1412 1:N:0:0

ABBBABBAFFFGGGGGGGGGGGGGGGCGCGF3FFGHHHHHHGGFGHEHHGGGEHHHHAGGHHGHHFFDHFHHHGEGGGG@F@H?GHH @MO0698:36:000000000-AFBEL:1:1101:16483:1412 1:N:0:0

Output: Count Table

	Sample 1	Sample 2	 Sample N
Bacteria 1			
Bacteria 2			
Bacteria N			

Naive Approach: Assumptions

- ► Library Prep is Perfect
- Sequencing is Perfect

1. Make an empty count table

- 1. Make an empty count table
- 2. For each read in the FASTQ:

- 1. Make an empty count table
- 2. For each read in the FASTQ:
 - 2.1 If read sequence is already in count table, add 1 to that row

- 1. Make an empty count table
- 2. For each read in the FASTQ:
 - 2.1 If read sequence is already in count table, add 1 to that row
 - 2.2 Otherwise add a new row for the sequence and set its count to 1

Sequence	Count	1.	CAGCT
		2.	TATAA
		3.	TATAA
		4.	TGCGC
		5.	CGGGC
		6.	TGCGC
		7.	TGCGC
		8.	CAGCT
		9.	CGGGC
		10.	TGCGC
		-	

Naive Assumptions

- Library Prep is Perfect
- Sequencing is Perfect

Tools for Bioinformatic Analysis

- ▶ "Clustering"
 - Mothur
 - UCLUST
 - ▶ UPARSE
- ▶ "Denoising"
 - ► DADA2
 - **▶** UNOISE3
 - Deblur

а

^aDADA2 Website

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Morgo Paired Roads

Canadana Canadana Ta

Construct Sequence Table

Remove Chimeras

Generate Phyloseg Object

Save Phyloseq as RDS

Get Data: Sources

- Sequence Read Archive (SRA)
- MG-RAST (Metagenomic Rapid Annotations using Subsystems Technology)
- Sequencing Facility

Get Data: Tools

- curl
- ► wget
- ncftp
- rsync
- ▶ sftp
- ▶ SRA Toolkit

Get Data: Result

- FASTQ(s) (gzip'ed)
 - Undetermined_S0_L001_I1_001.fastq.gz
 - Undetermined_S0_L001_R1_001.fastq.gz
 - Undetermined_S0_L001_R2_001.fastq.gz
- Map File*
 - mydata_map.txt
- ► Checksum*
 - md5sum.txt

Topic

Bioinformatic Goals

Validate Data (pre-DADA2)

Assemble Metadata Table

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Merge Paired Read

Construct Sequence Table

Construct Sequence Tabl

Remove Chimeras

Generate Phyloseq Object

Save Phyloseg as RDS

Validate Data: Input

- FASTQ(s) (gzip'ed)
 - Undetermined S0 L001 I1 001.fastq.gz
 - Undetermined S0 L001 R1 001.fastq.gz
 - Undetermined_S0_L001_R2_001.fastq.gz
- ► Checksum*
 - md5sum.txt
- Map File*
 - mydata_map.txt

Validate Data: Output

```
$ md5sum -c md5sum.txt
mydata_map.txt: OK
Undetermined_SO_L001_I1_001.fastq.gz: OK
Undetermined_SO_L001_R1_001.fastq.gz: OK
Undetermined_SO_L001_R2_001.fastq.gz: OK
```

Validate Data: Tools

▶ md5sum

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Marga Paired Read

Construct Sequence Table

Construct Sequence Tabl

Remove Chimeras

Generate Phyloseq Object

Save Phyloseq as RDS

Assemble Metadata Table: Why?

Associate barcode with Sample

- Label
- Animal
- ► Site
- Phenotype
- Treatment
- Date
- . . .

Assemble Metadata Table: Input

- Existing Map
- Publication
- Notes

Assemble Metadata Table: Output Metadata Table (Mapping File)

#Sample	ID Barc	odeSequence LinkerPrimerSequ	ence	Treatment
PC.354	AGCACGAGCCTA	YATGCTGCCTCCCGTAGGAGT	Control	20061218
PC.355	AACTCGTCGATG	YATGCTGCCTCCCGTAGGAGT	Control	20061218
PC.356	ACAGACCACTCA	YATGCTGCCTCCCGTAGGAGT	Control	20061126
PC.481	ACCAGCGACTAG	YATGCTGCCTCCCGTAGGAGT	Control	20070314
PC.593	AGCAGCACTTGT	YATGCTGCCTCCCGTAGGAGT	Control	20071210
PC.607	AACTGTGCGTAC	YATGCTGCCTCCCGTAGGAGT	Fast	20071112
PC.634	ACAGAGTCGGCT	YATGCTGCCTCCCGTAGGAGT	Fast	20080116
PC.635	ACCGCAGAGTCA	YATGCTGCCTCCCGTAGGAGT	Fast	20080116
PC.636	ACGGTGAGTGTC	YATGCTGCCTCCCGTAGGAGT	Fast	20080116

DOB Description
Control_mouse__I.D._354
Control_mouse__I.D._355
Control_mouse__I.D._356
Control_mouse__I.D._481
Control_mouse__I.D._693
Fasting_mouse__I.D._607
Fasting_mouse__I.D._635
Fasting_mouse__I.D._635
Fasting_mouse__I.D._636

Assemble Metadata Table: Tools

- Excel
- ► Text Editor
- Script

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Interence

Construct Sequence Table

Construct Sequence Table

Remove Chimeras

Generate Phylosed Object

Generate Phyloseq Object

Save Phyloseq as RDS

Demultiplex: Why?

Split FASTQ File(s) by sample ¹

¹Some data comes demultiplexed

Demultiplex: Input

- Sequence FASTQ(s)
 - Undetermined_S0_L001_I1_001.fastq.gz
 - Undetermined S0 L001 R1 001.fastq.gz
- ▶ Barcode FASTQ or Trimmed Versions ²
 - Undetermined S0 L001 R2 001.fastq.gz
- Map File
 - mydata_map.txt

²Some facilities incorporate barcodes in the sequence FASTQ, these will need to be extracted

Demultiplex: Output

Demultiplexed FASTQs

- sampleA_R1.fastq.gz
- sampleB_R1.fastq.gz
- sampleC_R1.fastq.gz
- **.** . . .
- sampleA_R2.fastq.gz
- sampleB_R2.fastq.gz
- sampleC_R2.fastq.gz
- **.** . . .

Demultiplex: Tools

- split_libraries_fastq.py + split_sequence_file_on_sample_ids.py
- fastq_multx

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Merge Paired Read

Construct Sequence Tabl

Construct Sequence Tabl

Remove Chimeras

Generate Phyloseq Objec

Save Phyloseq as RDS

Adapter Trimming: Why?

Remove adapter contamination

Necessary for amplicons with large variation in length (e.g. ITS)

•

Adapter Trimming: Input

Adapter Sequence

 $my_adapter.fasta$

Demultiplexed FASTQs

- sampleA_R1.fastq.gz
 - sampleB_R1.fastq.gz
- ► sampleC_R1.fastq.gz
- ▶ sampleA_R2.fastq.gz
- sampleB_R2.fastq.gz
- ▶ sampleC_R2.fastq.gz
- **>**

Adapter Trimming: Output

Trimmed FASTQs

- sampleA_R1.trim.fastq.gz
- ► sampleB R1.trim.fastq.gz
- sampleC_R1.trim.fastq.gz
- **.** . . .
- sampleA_R2.trim.fastq.gz
- sampleB_R2.trim.fastq.gz
- sampleC_R2.trim.fastq.gz
- •

Synchronized Trimming

Depending on settings, some reads may be thrown out during trimming. It is essential that if a read is thrown out, its paired read is thrown out too. Most trimming software will do this for you if you input R1 and R2 files when you run.

Adapter Trimming: Tools

- fastq_mcf
- ► Trimmomatic
- cutadapt
- seqtk
- ► etc

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Interence

Construct Sequence Tak

Construct Sequence Table

Remove Chimeras

Generate Phylosea Obiec

Save Phyloseq as RDS

Filter and Trim: Why?

- Remove low quality parts of reads
- Remove reads that are low quality overall

R1 Read Quality

R2 Read Quality

Filter and Trim: Input

Trimmed FASTQs (or Demultiplexed)

- sampleA_R1.trim.fastq.gz
- sampleB_R1.trim.fastq.gz
- sampleC_R1.trim.fastq.gz
- **•** . . .
- sampleA_R2.trim.fastq.gz
- sampleB_R2.trim.fastq.gz
- sampleC_R2.trim.fastq.gz
- **.** . . .

Filter and Trim: Output

Trimmed and filtered FASTQs

Filter and Trim: Tools

dada2::filterAndTrim()

▶ truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.

- truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.
- truncLen: Truncate reads after truncLen bases. Don't use for ITS

- truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.
- truncLen: Truncate reads after truncLen bases. Don't use for ITS
- trimLeft: The number of nucleotides to remove from the start of each read.

- truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.
- truncLen: Truncate reads after truncLen bases. Don't use for ITS
- trimLeft: The number of nucleotides to remove from the start of each read.
- minQ: After truncation, reads contain a quality score less than minQ will be discarded.

- truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.
- truncLen: Truncate reads after truncLen bases. Don't use for ITS
- trimLeft: The number of nucleotides to remove from the start of each read.
- minQ: After truncation, reads contain a quality score less than minQ will be discarded.
- maxEE: After truncation, reads with higher than maxEE "expected errors" will be discarded.

```
EE = sum(10^{(-Q/10)})
```

- truncQ: Truncate reads at the first instance of a quality score less than or equal to truncQ.
- truncLen: Truncate reads after truncLen bases. Don't use for ITS
- trimLeft: The number of nucleotides to remove from the start of each read.
- minQ: After truncation, reads contain a quality score less than minQ will be discarded.
- ► maxEE: After truncation, reads with higher than maxEE "expected errors" will be discarded.
 FE = gym(10°(0/10))
 - $EE = sum(10^(-Q/10))$
- rm.phix: Discard reads that match against the phiX genome

Filter and Trim: Notes

Paired-End Reads need to be run simultaneously to keep them in sync

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Interence

Merge Paired Reads

Construct Sequence Tabl

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Learn Error Rates: Why?

Build an error model from data

Phred	A:A	A:T	A:C	A:G	C:A		G:G
1							
2							
3							
40							

Learn Error Rates: Input

Filtered and Trimmed FASTQs

Learn Error Rates: Output

error model

Phred	A:A	A:T	A:C	A:G	C:A		G:G
1							
2							
3							
40							

Learn Error Rates: Tools

dada2::learnErrors()

Learn Error Rates: Notes

Separate error models need to be built for R1 and R2

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Inference

Merge Paired Reads

Construct Sequence Table

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Dereplication: Why?

Summarize reads into unique observed reads, with quality summary and count

- 1. CAGCT
- 2. TATAA
- 3. TATAA
- 4. TGCGC
- 5. CGGGC
- 6. TGCcC
- 7. TGCGC
- 8. CAGCT
- CGGGa
- 10. TGCGC

Sequence	Count	Quality	
CAGCT	2	99989	
TATAA	2	99998	
TGCGC	3	99988	
CGGGC	1	99999	
TGCcC	1	99948	
CGGGa	1	99993	

Dereplication: Input

Filtered and Trimmed FASTQs

Dereplication: Output

Unique reads with summarized quality and counts

Dereplication: Tools

dada2::derepFastq()

Dereplication: Notes

Dereplication is done separately for R1 and R2

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Inference

Merge Paired Read

Construct Sequence Table

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Sample Inference: Why?

Attempt to determine the true sequences from which reads were derived

Sequence	Count	Quality
CAGCT	2	99989
TATAA	2	99998
TGCGC	3	99988
CGGGC	1	99999
TGCcC	1	99948
CGGGa	1	99993

Sequence	Count
CAGCT	2
TATAA	2
TGCGC	4
CGGGC	2

Sample Inference: Input

- ► Dereplicated Reads
- ► Error Model

Sample Inference: Output

Inferred read sequences with counts

Sample Inference: Tools

dada2::dada()

Sample Inference: Notes

Sample Inference is done separately for R1 and R2

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Adapter Trimming (pro DAI

Adapter Hilling (pre-DADA2)

Learn Error Rates

Lealli Filoi Mates

Sample Inference

Merge Paired Reads

Construct Sequence Table

Damaya Chimaga

A - : ... T-...

Generate Phyloseq Object

Save Phyloseg as RDS

Merge Paired Reads: Why?

Collapse read pairs into a single sequence for each inferred amplicon

R1: ATACCCTAGTGC

R2: CCCTAGTGCCGT

Merged: ATACCCTAGTGCCGT

Merge Paired Reads: Input

- ▶ R1
 - Inferred Sequences
 - Dereplicated Sequences
- ► R2
 - Inferred Sequences
 - Dereplicated Sequences

Merge Paired Reads: Output

Inferred amplicon sequences

Merge Paired Reads: Tools

dada2::mergePairs()

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Domultipley (pro DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Loorn Error Dotos

Learn Error Rates

Dereplication

Merge Paired Reads

Construct Sequence Table

Remove Chimeras

A · T

Generate Phyloseq Object

Save Phyloseq as RDS

Construct Sequence Table: Why?

Generate count table

	Sample 1	Sample 2	 Sample N
Bacteria 1			
Bacteria 2			
Bacteria N			

Construct Sequence Table: Input

Merged sequences

Construct Sequence Table: Output

Count table

Construct Sequence Table: Tools

dada2::makeSequenceTable()

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Merge Paired Read

Construct Sequence Table

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Remove Chimeras: Why?

Library preparation is imperfect, so it generates chimeric amplicons

Remove Chimeras: Input

Count Table

Remove Chimeras: Output

Count table without chimeras

Remove Chimeras: Tools

dada2::removeBimeraDenovo()

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Marga Daired Daad

Merge Paired Reads

Construct Sequence Table

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Assign Taxonomy: Why?

Relate sequences in our count table to specific bacteria

Assign Taxonomy: Input

Chimera-free merged sequences

Assign Taxonomy: Output

Mapping from sequences to specific bacteria

Assign Taxonomy: Tools

dada2::assignTaxonomy()

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2

Domultipley (pro DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Interence

Construct Sequence Tab

Construct Sequence Tabl

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Generate Phyloseq Object: Why?

Phyloseq objects organize multiple aspects of our results and ease downstream analysis and visualization

Generate Phyloseq Object: Input

- Count Table
- Metadata Table
- ► Taxonomic Assignment
- Phylogenetic Tree (optional)

Generate Phyloseq Object: Output

Phyloseq Object

Generate Phyloseq Object: Tools

phyloseq::phyloseq()

Topic

Bioinformatic Goals

Get Data (pre-DADA2)

Validate Data (pre-DADA2)

Assemble Metadata Table (pre-DADA2)

Demultiplex (pre-DADA2)

Adapter Trimming (pre-DADA2)

Filter and Trim

Learn Error Rates

Dereplication

Sample Interence

Merge Paired Reads

Construct Sequence Table

Remove Chimeras

Assign Taxonomy

Generate Phyloseq Object

Save Phyloseq as RDS

Save Phyloseq as RDS: Why?

- Generating the final phyloseq object from raw FASTQs is time consuming, we would prefer to not repeat it everytime we want to play with the results
- ► The Phyloseq object is a very space efficient representation of the processed data

Save Phyloseq as RDS: Input

- Phyloseq object
- ▶ Name for RDS file

Save Phyloseq as RDS: Output RDS file

Save Phyloseq as RDS: Tools

readr::write_rds()