Esercitazione Algebra lineare – Corso di laurea in Informatica

Nome:	Cognome:	Matricola:

- N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).
- N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.
- N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.
- N.B.4 Gli esercizi A e B (nonostante valgano zero punti) sono necessari per passare la prova scritta.

Esercizio A [0 PUNTI]

Trovare i cateti di un triangolo rettangolo che ha un'ipotenusa che misura 10 metri e un angolo di $\frac{\pi}{3}$.

Esercizio B [0 punti] Dare la definizione di funzione iniettiva tra due insiemi A e B e dimostrare che la funzione $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^{10}$ non è iniettiva.

Esercizio 1

1. [4 PUNTI] Scrivere la formula delle radici n-esime di un numero complesso.

Risposta:

2. [4 punti] Trovare i numeri complessi z che soddisfano l'equazione $(z-1)^3=125.$

Risposta:

Esercizio 2

1. [4 PUNTI] Scrivere la formula dell'angolo tra due vettori non nulli di \mathbb{R}^n . Risposta:

2. [4 PUNTI] Dire se esistono e in caso affermativo trovare due vettori u e v di \mathbb{R}^5 tali che $\|u\|=\sqrt{2}$, $\|v\|=\sqrt{\pi}$, $u\cdot v=\sqrt{\frac{5}{2}}+\sqrt{\pi}$.

Risposta:

Esercizio 3

1. [4 PUNTI] Siano $A \in M_m, n \in B \in M_{n,p}$ due matrici. Dimostrare che $(AB)^T = B^T A^T$. Risposta:

2. [4 PUNTI] Dire se la matrice $A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$ una matrice invertibile. Scrivere la formula per A^{-1} e verificarla.

Risposta:

Esercizio 4

1. [4 PUNTI] Sia $A \in M_n$. Sotto quali condizioni il sistema omogeno Ax = 0 ha solo la soluzione banale.

Risposta:

2. [4 PUNTI] Discutere le soluzioni dei seguenti sistemi lineari al variare del parametro reale k.

$$\left\{ \begin{array}{l} x+y-kz=2\\ x+z=0\\ kx-y+z=1 \end{array} \right. \left\{ \begin{array}{l} x+y+z=k\\ x+2y=-k\\ 2x+kz=k \end{array} \right.$$

Risposta: