

July 1992

DM5490/DM7490A, DM7493A Decade and Binary Counters

General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 90A and divideby-eight for the 93A.

All of these counters have a gated zero reset and the 90A also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four-bit binary), the B input is connected to the ${\sf Q}_{\sf A}$ output. The input count pulses are applied to input A and the outputs are as

described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 90A counters by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output $Q_A. \\$

Features

- Typical power dissipation
 - 90A 145 mW
- 93A 130 mW
- Count frequency 42 MHz

Connection Diagrams

Dual-In-Line Package

TL/F/6533-1

Order Number DM5490J, DM5490W or DM7490AN See NS Package Number J14A, N14A or W14B

Dual-In-Line Package

TL/F/6533-2

Order Number DM7493AN See NS Package Number N14A

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			DM5490			DM7490	4	Units
oyboi			Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	Supply Voltage		5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Volta	ge	2			2			V
V _{IL}	Low Level Input Volta	Low Level Input Voltage			0.8			0.8	V
loh	High Level Output Current				-0.8			-0.8	mA
loL	Low Level Output Cur	rent			16			16	mA
f _{CLK}	Clock Frequency	A	0		32	0		32	MHz
	(Note 5)	В	0		16	0		16	1 1411 12
t _W	Pulse Width	A	15			15			
	(Note 5)	В	30			30			ns
		Reset	15			15			
t _{REL}	Reset Release Time (Note 5)	25			25			ns
T _A	Free Air Operating Te	mperature	-55		125	0		70	°C

'90A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$	$V_{CC} = Min, I_I = -12 \text{ mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max (N$	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max (Note 4)$		0.2	0.4	V
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	High Level Input	V _{CC} = Max	Α			80	
	Current	$V_{\parallel} = 2.7V$	Reset			40	μΑ
			В			120	
I _{IL}	Low Level Input	V _{CC} = Max	Α			-3.2	
	Current	$V_{l} = 0.4V$	Reset			-1.6	mA
			В			-4.8	
los	Short Circuit	V _{CC} = Max	DM54	-20		-57	mA
	Output Current	(Note 2)	DM74	-18		-57	11171
Icc	Supply Current	V _{CC} = Max (Note 3)			29	42	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

Note 4: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'90A Switching Characteristics at $V_{CC}=5V$ and $T_A=25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)		= 400Ω = 15 pF	Units
		το (σαιραί)	Min	Max	l
f _{MAX}	Maximum Clock	A to Q _A	32		MHz
	Frequency	B to Q _B	16		
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		16	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		18	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _D		48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _D	A to Q _D		ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B	3 to Q _B		ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B	B to Q _B		ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		32	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		32	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D	o Q _D		ns
t _{PLH}	Propagation Delay Time Low to High Level Output	SET-9 to Q _A , Q _D		30	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-9 to Q _B , Q _C		40	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-0 Any Q		40	ns

Recomn	Recommended Operating Conditions					
Symbol	Pal	rameter				
Voc	Supply Voltage					

Symbol	Parameter			DM7493A			
Cymbol	1 41	ameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	High Level Input Voltage		2			V	
V _{IL}	Low Level Input Voltage				0.8	V	
I _{OH}	High Level Output Current				-0.8	mA	
l _{OL}	Low Level Output Current				16	mA	
f _{CLK}	Clock Frequency	A	0		32	MHz	
	(Note 5)	В	0		16	101112	
t _W	Pulse Width	A	15				
	(Note 5)	В	30			ns	
		Reset	15				
t _{REL}	Reset Release Time (Not	e 5)	25			ns	
T _A	Free Air Operating Tempe	erature	0		70	°C	

'93A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max (Note 4)$			0.2	0.4	V
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	High Level Input	V _{CC} = Max	Reset			40	
	Current	$V_{\parallel} = 2.4V$	Α			80	μΑ
			В			80	
I _{IL}	Low Level Input	V _{CC} = Max	Reset			-1.6	
	Current	$V_{l} = 0.4V$	Α			-3.2	mA
			В			-3.2	
los	Short Circuit Output Current	V _{CC} = Max (Note 2)		-18		-57	mA
Icc	Supply Current	V _{CC} = Max (Note 3)			26	39	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with all outputs open, both R0 inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 4: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'93A Switching Characteristics

at $V_{CC}=5V$ and $T_A=25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	_	400Ω 15 pF	Units
		To (Output)	Min	Max	1
f _{MAX}	Maximum Clock	A to Q _A	32		MHz
	Frequency	B to Q _B	16		
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		16	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		18	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _D		70	ns
t _{PHL}	Propagation Delay Time High to Low Level Output			70	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B		16	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		32	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		51	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D		51	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40	ns

Function Tables (Note D)

90A BCD Count Sequence (See Note A)

	(000 11010 71)								
Count	Outputs								
Joann	Q_D	Q_{C}	Q_{B}	Q_A					
0	L	L	L	Г					
1	L	L	L	Н					
2	L	L	Н	L					
3	L	L	Н	Н					
4	L	Н	L	L					
5	L	Н	L	Н					
6	L	Н	Н	L					
7	L	Н	Н	Н					
8	Н	L	L	L					
9	Н	L	L	Н					

90A BCD Bi-Quinary (5-2) (See Note B)

(OCC NOTE B)								
Count	Outputs							
o o u	Q_A	Q_D	Q_{C}	Q_{B}				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
3	L	L	Н	Н				
4	L	Н	L	L				
5	Н	L	L	L				
6	Н	L	L	Н				
7	Н	L	Н	L				
8	Н	L	Н	Н				
9	Н	Н	L	L				

93A Count Sequence (See Note C)

Count		Out	puts	
	Q_D	Q_{C}	Q_{B}	Q_{A}
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4		Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н	L	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	Н	Н	Н	Н

90A Reset/Count Function Table

Reset Inputs					Out	puts	
R0(1)	R0(2)	R9(1)	R9(2)	Q_D	Q_{C}	Q_{B}	Q_{A}
Н	Н	L	Х	L	L	L	L
Н	Н	Χ	L	L	L	L	L
X	X	Н	Н	Н	L	L	Н
X	L	Χ	L		COL	JNT	
L	X	L	Χ	COUNT			
L	X	X	L	COUNT			
Х	L	L	Х		COL	JNT	

93A Reset/Count Function Table

Reset Inputs		Outputs				
R0(1)	R0(2)	Q_D	Q_{C}	Q_{B}	Q_{A}	
Н	Н	L	L	L	L	
L	X	COUNT				
Х	L	COUNT				

Note A: Output Q_A is connected to input B for BCD count.

Note B: Output Q_D is connected to input A for bi-quinary count.

Note C: Output QA is connected to input B.

Note D: H = High Level, L = Low Level, X = Don't Care.

Logic Diagrams 90A 93A (12) QA INPUT A (14) CLOCK (12) Q_A INPUT A (14) (9) QB INPUT B (1) >CLOCK (9) QB INPUT B (1) > CLOCK (8) QC CLOCK (8) QC (11) Q_D CLOCK RO(1) (2) RO(2) (3) TL/F/6533-4 (11) QD TL/F/6533-3 The J and K inputs shown without connection are for reference only and are functionally at a high level.

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408