Detect hate speech in tweets

Safaa Alraddadi

problem and objective

- Messages posted in social media may contain heat message
 - Target individual and group
- aims to automate content moderation to identify hate speech using machine learning binary

Data and method

- The dataset is provided as a .csv file with 24,802 text posts from Twitter where 6% of the tweets were labeled as hate speech.
- **Class Imbalance**

Prepressing Text data

cleaning step:

- Reassigning labels
- Lowercasing tweet text
- Removing hashtags, mentions, quotes and punctuation from tweet text
- checking for missing value
- Tokenization & removing stop word
- Lemmatization

Feature Engineering

TF-IDF Vectorization

Count Vectorization

Baseline Random Forest

Testing Set Evaluation Metrics:

Precision: 0.4128

Recall: 0.1613

F1 Score: 0.232

Weighted F1 Score: 0.9272

These scores are not ideal because the F1 is being brought down on how the model predicts the "Hate Speech" label.

Baseline Logistic Regression

Testing Set Evaluation Metrics:

Precision: 0.2939

Recall: 0.5699

F1 Score: 0.3878

Weighted F1 Score: 0.9134

Compared the first Random Forest baseline, the Logistic Regression baseline performed much better. The F1 score increased from 0.232 to 0.3878.

Baseline Naive Bayes

Testing Set Evaluation Metrics:

Precision: 0.4118

Recall: 0.1254 F1 Score: 0.1923

Weighted F1 Score: 0.9255

The F1 score dropped down to .1923. So, this model performed worse than both the Random Forest and Logistic Regression models.

Baseline Support Vector Machine

Testing Set Evaluation Metrics:

Precision: 0.3609

Recall: 0.4373

F1 Score: 0.3955

Weighted F1 Score: 0.9281

This model produced the highest F1 so far, with a score of .3955.

Evaluation Metrics for All Baseline Models

	precision	recall	f1_score
Baseline Random Forest - TFIDF	0.412844	0.161290	0.231959
Baseline Log Reg - TFIDF	0.293900	0.569892	0.387805
Baseline Naive Bayes - TFIDF	0.411765	0.125448	0.192308
Baseline SVM - TFIDF	0.360947	0.437276	0.395462

Modeling process-Count vectorization

Baseline Linear SVM with Count Vectorization

```
Testing Set Evaluation Metrics:
```

Precision: 0.2712

Recall: 0.5365

F1 Score: 0.3603

Weighted F1 Score: 0.9104

■ Unfortunately, this model did not achieve a higher F1 than the TF-IDF version of the SVM model.

Modeling process-Count vectorization

Baseline Logistic Regression with Count Vectorization

Testing Set Evaluation Metrics:

Precision: 0.2898

Recall: 0.6241

F1 Score: 0.3958

Weighted F1 Score: 0.9121

■ Using Count Vectorization on the Logistic Regression baseline actually produced the highest F1 and Recall out of all the other models.

Dealing with class imbalance

Over sampling with smooth

■ This method over-samples the minority class, "Hate Speech".

Testing Set Evaluation Metrics:

Precision: 0.2326

Recall: 0.4745

F1 Score: 0.3121

Weighted F1 Score: 0.9024

Seems that the uniform F1 score went down with SMOTE, from 0.3958 to 0.3121. It also had a lower Recall score.

Dealing with class imbalance

Under-Sampling with Tomek Links

■ This method under-samples the majority class, "Not Hate Speech."

Testing Set Evaluation Metrics:

Precision: 0.5702

Recall: 0.2372

F1 Score: 0.3351

Weighted F1 Score: 0.9377

Although using Tomek Links performed better than using SMOTE, the resulting F1 still isn't as good as the initial Logistic Regression model's F1 score of 0.3958.

Final model Analysis-Logistic regression with count Vectorize

Evaluation Metrics for Testing Set

Testing Set Evaluation Metrics:

Precision: 0.2898

Recall: 0.6241 F1 Score: 0.3958

Weighted F1 Score: 0.9121

Ultimately, the uniform F1 score of .3958 is so low because it is brought down by the poor predicting ability for the "Hate Speech" label.

Final model Analysis

Confusion matrix

From this confusion matrix, we can see that the True Negative rate is high, but the True Positive rate is much lower.

Final model Analysis

Confusion matrix

The final model has a True Negative Rate of 91% and a True Positive Rate of 62%.

Thank You