

Agenda

Introduction Techniques Examples

Introduction

Dynamic programming

- A mathematical optimization method
- A computer programming method.
- solving a complex problem by breaking it down into a collection of simpler sub-problems
- solving each of those sub-problems just once, and storing their solutions using a memory-based data structure
- Dynamic programming paradigm is similar to divide and conquer paradigm but it avoids recursion.

D&Q vs DP

Prerequisites

 In order that the dynamic programming paradigm can be applicable, a divide and conquer problem should have both of the following attributes:

Overlapping sub-problems

- Found solutions of sub-problems involves solving the same sub-problem multiple times.
- Binary search vs <u>Fibonacci numbers</u>

Optimal substructures

- its overall optimal solution can be constructed from the optimal solutions of its sub-problems.
- https://youtu.be/JWTqsNvtwP4

Techniques

Tabulation vs Memoization

- Two patterns
 - Tabulation
 - Bottom Up
 - Base case \rightarrow n
 - Memoization
 - Top Down
 - speed up computer programs by storing the results of expensive function calls and returning the cached result

Bottom up approach

```
public static long bottomUp(int n) {
    for (int i = lastFibIndex+1; i <= n; i++)
        fib[i] = fib[i-1] + fib[i-2];
    if (n > lastFibIndex) lastFibIndex = n;
    return fib[n];
}
```

Top down approach

```
public static long topDown(int n) {
    if (n < lastFibIndex) return fib[n];
    fib[n]=topDown(n-2)+topDown(n-1);
    lastFibIndex =n;
    return fib[n];
}</pre>
```

Tabulation vs Memoization

	Tabulation	Memoization
State	State Transition relation is difficult to think	State transition relation is easy to think
Code	Code gets complicated when lot of conditions are required	Code is easy and less complicated
Speed	Fast, as we directly access previous states from the table	Slow due to lot of recursive calls and return statements
Subproblem	If all subproblems must be solved at	If some subproblems in the subproblem
solving	least once, a bottom-up dynamic-	space need not be solved at all, the
	programming algorithm usually	memoized solution has the advantage of
	outperforms a top-down memoized	solving only those subproblems that are
	algorithm by a constant factor	definitely required
Table Entries	In Tabulated version, starting from the	Unlike the Tabulated version, all entries of
	first entry, all entries are filled one by	the lookup table are not necessarily filled
	one	in Memoized version. The table is filled on
		demand.

Steps to solve a DP

- 1. Identify if it is a DP problem
- 2. Decide a state expression with least parameters
- 3. Formulate state relationship
- 4. Do tabulation (or add memoization)

Example: Fibonacci number

$$Fib(n) = Fib(n-1) + Fib(n-2)$$
, for $n > 1$

Step1: classify a problem

- Optimization
 - Minimize or maximize certain quantity
- Counting problem
 - count the arrangements under certain condition
- the overlapping sub-problems property

Fib(n) = Fib(n-1) + Fib(n-2), for n > 1
$$Fib(3)$$

$$Fib(2)$$

$$Fib(1)$$

$$Fib(1)$$

$$Fib(0)$$

Step2: decide the state

- Decide states and their transitions
 - State:
 - the set parameters identified uniquely
 - As small as possible
 - Transition
 - It causes state changes
 - It usually means your choice.
- Fib(n) = Fib(n-1) + Fib(n-2), for n > 1
 - State: n
 - Transition:
 - n-> n-1 and n-2

Step3: Formulating a relation among the states

- Hardest part
- For example, formulating mathematics induction

- Fib(n) = Fib(n-1) + Fib(n-2), for n > 1
 - the expression itself

Step4: bottom up or top down

- Declare an array for tabulation or memoization
- Another way is to add tabulation and make solution iterative.

```
public static long bottomUp(int n) {
public static long topDown(int n) {
                                                     for (int i = lastFibIndex+1; i <= n; i++)
   if (n < lastFibIndex) return fib[n];</pre>
                                                        fib[n] = fib[n-1] + fib[n-2];
    fib[n]=topDown(n-2)+topDown(n-1);
                                                     if (n > lastFibIndex) lastFibIndex = n;
    lastFibIndex =n;
                                                     return fib[n];
   return fib[n];
              public static long iteration(int n) {
                        if (n<2) return n;
                         long f0=0, f1=1, f2=1;
                        for (int i=2; i<n; i++)
                                   f0 = f1; f1 = f2; f2 = f1 + f0;
                        return f2;
```


Examples

Fibonacci numbers
Shortest path: Floyd Warshall algorithm

Subset sum problem O-1 knapsack problem

• Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.

- Step1: Counting problem(count the arrangements under certain <u>condition</u>)
- Step2:
 - State: a subset of something.
 - Transition: an element is included in addition

- Step3:
 - Base case:
 - sum = 0: return true
 - n = 0 but sum!= 0: return false
 - Set[n-1] > sum:
 - Ignore
 - return isSubsetSum(set, n-1, sum);
 - isSubsetSum(set, n, sum) =
 isSubsetSum(set, n-1, sum) || // element is not included
 isSubsetSum(set, n-1, sum-set[n-1])//element is included

• Step4:tabulation

- $set[] = \{4, 12, 5, 2\}, sum = 9$
 - Base case:
 - sum = 0: return true
 - n = 0 but sum!= 0: return false
 - Set[n-1] > sum:
 - Ignore
 - return isSubsetSum(set, n-1, sum);

	0	1	2	3	4	5	6	7	8	9
0	true	false	false	false	false	false	false	false	false	false
4	true	false	false	false	- true	false	false	false	false	false
12	true	false	false	false	true	false	false	false	false	false
5	true	false	false	false	true	true	false	false	false	true
2	true	false	true	false	true	true	true	true	false	true

- Given a knapsack weight W and a set of n items with certain value v_i and weight w_i , we need to pack items whose sum of weights is less than W and whose sum of values is maximum. We allow to use unlimited number of instances of an item.'
- Step1: Optimization(Minimize or maximize certain quantity)
- Step2:
 - State: the value of selected items
 - Transition: change the number of items

Optimum output of a combination of items 1 to i
with a cumulated weight of w or less.

- knapsack 10kg capacity
- Item 1: \$5 (3kg)
- Item 2: \$7 (4kg)
- Item 3: \$8 (5kg)

f(i,w)

Table

	1	2	3	4	5	6	7	8	9	10	
1		U	sing	only	/ iter	n 1				V	V
2											
3											

Table

	1	2	3	4	5	6	7	8	9	10
1										
2		Usi	ng c	nly	item	1&2				
3										

Table

	1	2	3	4	5	6	7	8	9	10
1										
2										
3	ι	Jsing	g onl	y ite	m 1,	2 &	3		4	

0 items n°1

1 items $n^{\circ}1$ w1 = 3 •Item 1: v1=\$5; w1=3kg

•Item 2: v2=\$7; w2=4kg

•Item 3: v3=\$8; w3=5kg

•Item 1: v1=\$5; w1=3kg

•Item 2: v2=\$7; w2=4kg

Table

•Item 3: v3=\$8; w3=5kg

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	Q	0	5	7	7					
3										

f(i,w)=Max[xi + f(i,w-wi); f(i-1,w)]

•Item 1: v1=\$5; w1=3kg

•Item 2: v2=\$7; w2=4kg

Table

•Item 3: v3=\$8; w3=5kg

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	d	0	5	7	7	10		•		
3					7					γ

f(i,w)=Max[xi + (i-1,w); f(i-1,w)]

	1	60	MI	PÉE	ΤΈ	D ⁶ T/	ABL	മ്പ	9	10
1	0	0	5	5	5	10	10	10	15	15
2	0	0	5	7	7	10	12	14	15	17
3	0	0	5	7	8	10	12	14	15	17

