

- Where did the animal prefer to go?
- Resources
- Environmental pre-conditions
- Social interaction

Prediction of habitat selection

Manly's resource selection ratio

	Α	В	С	D	Е
1	Habitat	Proportion of habitat used	Proportion of habitat available	Wi + SE	Bi
2	Bulrush	0.613	0.149	4.12 ± 0.17*	0.139
3	Salt grass	0.029	0.720	0.04 + 0.01*	0.000
4	Rushes	0.016	0.020	0.80 +0.33	0.027
5	Bulrush-Rushes	0.241	0.010	23.61 + 2.15 [*]	0.797
6	Bulrush-Salt grass	0.000	0.005	0.00 + 0.00*	0.000
7	Mix Herb	0.102	0.097	1.05 + 0.16	0.036

An index of >1 indicates that the habitat is used according to availability, while an index of <1 indicates avoidance.

López-Pérez AM, et al. 2019 PlosOne

- Where did it prefer to go?
- What is available?
- What resources are selected resource selection
- "selective if components are used disproportionately to their availability"
- Different scales of selection -Johnson 1980
 - First → fourth order of selection

First-order selection

- Where did it prefer to go?
- What is available?
- What resources are selected resource selection
- "selective if components are used disproportionately to their availability"
- Different scales of selection -Johnson 1980
 - First → fourth order of selection

- Where did it prefer to go?
- What is available?
- What resources are selected resource selection
- "selective if components are used disproportionately to their availability"
- Different scales of selection -Johnson 1980
 - First → fourth order of selection

Third-order selection

- Where did it prefer to go?
- What is available?
- What resources are selected resource selection
- "selective if components are used disproportionately to their availability"
- Different scales of selection -Johnson 1980
 - First → fourth order of selection

Fourth-order selection

Habitat selection functions (HSF)

Some kind of logistic regression

$$W(x) = \ln[p|p-1] = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n + \varepsilon$$

were w(x) is the log odds ratio estimated from the linear model, p is, in the context of resource selection functions, the probability of selection ranging from 0 to 1.

Explanatory variables – what is relevant?

Foraging theories

- Optimal foraging theories
- Marginal value theorem when should you leave a patch?
- Hierarchical theory of habitat selection - Senft 1987
 - The number of decisions taken for a specific process defines the scale of selection
 - Boundaries between units at each scale are defined by animal behaviour

Figure 1. An ecological hierarchy encountered by large herbivores while foraging. Scales are defined by rates of foraging processes and ecosystem processes. Boundaries between units at each scale are defined by animal behavior.

Table 1. from Senft et al. 1987 explaining the conceptual model of herbivore foraging in an ecological hierarchy

	Scale in ecological hierarchy			
Foraging component	Plant communities	Landscape	Region	
Units of selection	Plants, feeding stations	Communities or large patches	Landscape	
Foraging behaviour	Diet selection	Feeding-area selection	Migration Nomadism Transhumance Home range	
Behaviour frequency (decisions/yr)	107	104	10 ⁻¹ -10 ¹	
Interactive factors	Forage biomass Nutritive quality	Forage biomass Nutritive quality	Forage biomass	
Non-interactive factors	Microsite variables	Substrate Topography Water location Microclimate	Geomorphology Regional climate Physical barriers Water location	

Integrating habitat selection and foraging theories

What factors are relevant to relate to the animals' locations at what scale?

	Scale in ecological hierarchy			
Foraging component	Plant communities	Landscape	Region	
Units of selection	Plants, feeding stations	Communities or large patches	Landscape	
Foraging behaviour	Diet selection	Feeding-area selection	Migration Nomadism Transhumance Home range	
Behaviour frequency (decisions/yr)	10 ⁷	104	10 ⁻¹ -10 ¹	
Interactive factors	Forage biomass Nutritive quality	Forage biomass Nutritive quality	Forage biomass	
Non-interactive factors	Microsite variables	Substrate Topography Water location Microclimate	Geomorphology Regional climate Physical barriers Water location	

Integrating habitat selection and foraging theories

How can expert knowledge be included? **Quantitative data GPS-data** 2014 **Qualitative data** Predicted probability of use and predicted movement rate Resource selection models Interpretation of results at 2nd and 3rd order together with herders Analysis of movement rate Skarin et al. 2021 -Vindval report no. 7011

Is HSF always appropriate?

- Independence between observations?
- What is available group living animal?

Resource utilisation function (RUF)

- Marzluff et al. 2004
- Use the estimated utilisation distribution in a home range and relate to environmental factors
- → 3rd order selection
- Linear regression with estimated probability of used area as dependent variable

Ecological niche models

Ecological niche models

- BAM
 - Biotic
 - Abiotic
 - Movement

Ecological niche models

