Unbalanced designs and polynomial regression

Session 8

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Unbalanced designs

Polynomial regression

Unbalanced designs

Premise

So far, we have exclusively considered balanced samples

balanced = same number of observational units in each subgroup

Most experiments (even planned) end up with unequal sample sizes.

Noninformative drop-out

Unbalanced samples may be due to many causes, including randomization (need not balance) and loss-to-follow up (dropout)

If dropout is random, not a problem

• Example of Baumannn, Seifert-Kessel, Jones (1992):

Because of illness and transfer to another school, incomplete data were obtained for one subject each from the TA and DRTA group

Problematic drop-out or exclusion

If loss of units due to treatment or underlying conditions, problematic!

Rosensaal (2021) rebuking a study on the effectiveness of hydrochloriquine as treatment for Covid19 and reviewing allocation:

Of these 26, six were excluded (and incorrectly labelled as lost to follow-up): three were transferred to the ICU, one died, and two terminated treatment or were discharged

Sick people excluded from the treatment group! then claim it is better.

Worst: "The index [treatment] group and control group were drawn from different centres."

Why seek balance?

Two main reasons

- 1. Power considerations: with equal variance in each group, balanced samples gives the best allocation
- 2. Simplicity of interpretation and calculations: the interpretation of the *F* test in a linear regression is unambiguous

Finding power in balance

Consider a t-test for assessing the difference between treatments A and B with equal variability

$$t = rac{ ext{estimated difference}}{ ext{estimated variability}} = rac{(\widehat{\mu}_A - \widehat{\mu}_B) - 0}{ ext{se}(\widehat{\mu}_A - \widehat{\mu}_B)}.$$

The standard error of the average difference is

$$\sqrt{rac{ ext{variance}_A}{ ext{nb of obs. in }A} + rac{ ext{variance}_B}{ ext{nb of obs. in }B}} = \sqrt{rac{\sigma^2}{n_A} + rac{\sigma^2}{n_B}}$$

Optimal allocation of ressources

The allocation of $n = n_A + n_B$ units that minimizes the std error is $n_A = n_B = n/2$.

Example: tempting fate

We consider data from Multi Lab 2, a replication study that examined Risen and Gilovich (2008) who

explored the belief that tempting fate increases bad outcomes. They tested whether people judge the likelihood of a negative outcome to be higher when they have imagined themselves [...] tempting fate [...] (by not reading before class) or not [tempting] fate (by coming to class prepared). Participants then estimated how likely it was that [they] would be called on by the professor (scale from 1, not at all likely, to 10, extremely likely).

The replication data gathered in 37 different labs focuses on a 2 by 2 factorial design with gender (male vs female) and condition (prepared vs unprepared) administered to undergraduates.

Load data Check balance Marginal means

```
# This is a 2x2 factorial design
# The response is 'likelihod'
# the explanatories are 'condition' and 'gender'
library(tidyverse)
url1 <- "https://edsm.rbind.io/data/RG08rep.csv"</pre>
RS_unb <- read_csv(url1, col_types = c("iiff"))
# Data artificially balanced for the sake
# of illustration purposes
url2 <- "https://edsm.rbind.io/data/RG08rep_bal.csv"</pre>
RS_bal <- read_csv(url2, col_types = c("iiff"))
```

Load data

Check balance

Marginal means

Summary statistics

condition	nobs	mean
unprepared	2192	4.606
prepared	2241	4.060

Load data Check balance

Marginal means

```
options(contrasts = c("contr.sum",
                        "contr.poly"))
model <- lm(likelihood ~ gender*conditior</pre>
             data = RS_unb)
library(emmeans)
emm <- emmeans(model,</pre>
                specs = "condition")
```

Marginal means for condition

condition	emmean	SE
unprepared	4.504	0.0540
prepared	4.022	0.0535

Note unequal standard errors.

Explaining the discrepancies

Estimated marginal means are based on equiweighted groups:

$$\widehat{\mu}=rac{1}{4}(\widehat{\mu}_{11}+\widehat{\mu}_{12}+\widehat{\mu}_{21}+\widehat{\mu}_{22})$$

where $\widehat{\mu}_{ij} = n_{ij}^{-1} \sum_{r=1}^{n_{ij}} y_{ijr}$.

The sample mean is the sum of observations divided by the sample size.

The two coincide when $n_{11} = \cdots = n_{22}$.

Why equal weight?

- The ANOVA and contrast analyses, in the case of unequal sample sizes, are generally based on marginal means (same weight for each subgroup)
- This choice is justified because research questions generally concern comparisons of means across experimental groups.

Revisiting the F statistic

Statistical tests contrast competing **nested** models:

- an alternative (full) model
- a null model, which imposes restrictions (a simplification of the alternative models)

The numerator of the *F*-statistic compares the sum of square of a model with (given) main effect, etc. to a model without.

What is explained by condition?

Consider the 2×2 factorial design with factors A: gender and B: condition (prepared vs unprepared) without interaction.

What is the share of variability (sum of squares) explained by the experimental condition?

Comparing differences in sum of squares (1)

Consider a balanced sample

The difference in sum of squares is 141.86 in both cases.

Comparing differences in sum of squares (2)

Consider an unbalanced sample

The differences of sum of squares are respectively 330.95 and 332.34.

Orthogonality

Balanced designs yield orthogonal factors: the improvement in the goodness of fit (characterized by change in sum of squares) is the same regardless of other factors.

So effect of B and $B \mid A$ (read B given A) is the same.

- test for $B \mid A$ compares SS(A, B) SS(A)
- for balanced design, SS(A, B) = SS(A) + SS(B) (factorization).

We lose this property with unbalanced samples: there are distinct formulations of ANOVA.

Analysis of variance - Type I (sequential)

The default method in \mathbf{R} with anova is the sequential decomposition: in the order of the variables A, B in the formula

- So F tests are for tests of effect of
 - \circ *A*, based on ss(A)
 - \circ $B \mid A$, based on SS(A, B) SS(A)
 - \circ $AB \mid A, B$ based on SS(A, B, AB) SS(A, B)

Ordering matters

Since the order in which we list the variable is **arbitrary**, these *F* tests are not of interest.

Analysis of variance - Type II

Impact of

- $A \mid B$ based on ss(A, B) ss(B)
- $B \mid A$ based on SS(A, B) SS(A)
- $AB \mid A, B$ based on SS(A, B, AB) SS(A, B)
- tests invalid if there is an interaction.
- In R, use car::Anova(model, type = 2)

Analysis of variance - Type III

Most commonly used approach

- Improvement due to $A \mid B, AB, B \mid A, AB$ and $AB \mid A, B$
- What is improved by adding a factor, interaction, etc. given the rest
- may require imposing equal mean for rows for $A \mid B, AB$, etc.
 - (requires sum-to-zero parametrization)
- valid in the presence of interaction
- but *F*-tests for main effects are not of interest
- In R, use car::Anova(model, type = 3)

ANOVA for unbalanced data

```
model <-
   lm(likelihood ~ condition*gender,
        data = RS_unb)
# Three distinct decompositions
anova(model) #type 1
car::Anova(model, type = 2)
car::Anova(model, type = 3)</pre>
```

ANOVA (type I)

	Df	Sum Sq	F value
gender	1	164.94	29.1
condition	1	332.34	58.7
gender:condition	1	36.55	6.5
Residuals	4429	25086.33	

ANOVA (type II)

	Df	Sum Sq	F value		
gender	1	166.33	29.4		
condition	1	332.34	58.7		
gender:condition	1	36.55	6.5		
Residuals	4429	25086.33			
ANOVA (type III)					
	Df	Sum Sq	F value		
gender	1	167.71	29.6		
condition	1	227.88	40.2		
gender:condition	1	36.55	6.5		
Residuals	4429	25086.33			

ANOVA for balanced data

```
model2 <-
  lm(likelihood ~ condition*gender,
      data = RS_bal)
anova(model2) #type 1
car::Anova(model2, type = 2)
car::Anova(model2, type = 3)
# Same answer - orthogonal!</pre>
```

ANOVA (type I)

	Df	Sum Sq	F value
condition	1	141.86	24.1
gender	1	121.69	20.6
condition:gender	1	37.88	6.4
Residuals	2500	14733.84	

ANOVA (type II)

	Df	Sum Sq	F value		
condition	1	141.86	24.1		
gender	1	121.69	20.6		
condition:gender	1	37.88	6.4		
Residuals	2500	14733.84			
ANOVA (type III)					
	Df	Sum Sq	F value		
condition	1	141.86	24.1		
condition gender	1	141.86 121.69	24.1 20.6		
	•				

Recap

- If each observation has the same variability, a balanced sample maximizes power.
- Balanced designs have interesting properties:
 - estimated marginal means coincide with (sub)samples averages
 - the tests of effects are unambiguous
 - o for unbalanced samples, we work with marginal means and type 3 ANOVA
 - if empty cells (no one assigned to a combination of treatment), cannot estimate corresponding coefficients (typically higher order interactions)

Practice

From the OSC psychology replication

People can be influenced by the prior consideration of a numerical anchor when forming numerical judgments. [...] The anchor provides an initial starting point from which estimates are adjusted, and a large body of research demonstrates that adjustment is usually insufficient, leading estimates to be biased towards the initial anchor.

Replication of Study 4a of Janiszewski & Uy (2008, Psychological Science) by J. Chandler

Polynomial regression

IJLR: It's Just a Linear Regression...

All ANOVA models we covered so fall (t-tests, factorial designs, latin squares) are all special instances of the linear regression model.

The latter says that

$$\mathsf{E}(Y_i) = eta_0 + eta_1 \mathrm{X}_{1i} + \dots + eta_p \mathrm{X}_{pi}$$
average response linear (i.e., additive) combination of explanatories

What about factors?

The software eats **numbers**, not labels.

What happens under the hood with the sum-to-zero constraint?

Assuming that level a of factor A does not appear in the coefficient table, including A requires adding (a-1) vectors \mathbf{x}_j where

$$\mathbf{X}_{ij} = \left\{egin{array}{ll} 1 & A=j, \ -1 & A=a, \ 0 & ext{otherwise}. \end{array}
ight.$$

Check model.matrix() on a linear model object in R.

Beyond ANOVA

Consider linear model with a single **continuous** explanatory, where \mathbf{x} is an experimental factor.

We assume that $Y_i \sim \mathsf{No}\{\mathsf{smooth}\;\mathsf{function}(\mathsf{X}_i),\sigma^2\}$.

Approximate the smooth function of x by a pth order polynomial,

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 \mathrm{X}_i + \dots + \beta_p \mathrm{X}_i^p$$

Example: Bean soaking

Example 8.8 of Dean, Voss and Draguljić

What is the optimal soaking time of beans prior to planting?

Experimental factor: time (in hours), either 12, 18, 24 and 30 hours (equally spaced).

Beans data

Trend model or ANOVA?

Fitting the cubic model is equivalent to a one-way ANOVA with time (four levels) with r = 17 replications.

In each case, there are four parameters. For time $time \in \{12, 18, 24, 30\}$ hours associated to level j of the categorical variable:

$$\mathsf{E}(\mathtt{length}) = \mu + lpha_j = eta_0 + eta_1 \mathtt{time} + eta_2 \mathtt{time}^2 + eta_3 \mathtt{time}^3.$$

The difference is that we cannot interpolate with the one-way ANOVA for times between 12 and 30.

Testing for higher-order terms

Test nested models using F tests: null C alternative In the model

$$\mathsf{E}(\mathtt{length}) = eta_0 + eta_1 \mathtt{time} + eta_2 \mathtt{time}^2 + eta_3 \mathtt{time}^3$$

- $\mathcal{H}_0: \beta_3 = 0$, the coefficient associated to the cubic term time³.
- $\mathcal{H}_0: \beta_2 = \beta_3 = 0$, compare cubic vs linear model.

Fitting polynomials in R

The function poly uses orthogonal polynomial (more stable numerically).

Model comparisons (F tests)

```
# Model 3 is equivalent to ANOVA
anova(model3, model_anov)
# drop cubic term?
anova(model2, model3) #H0: beta3=0
# drop quadratic + cubic?
anova(model1, model3) #H0: beta2 = beta3=0
```

We cannot simplify the cubic model: p-value less than 0.001407.

Fitted model

Pairwise comparisons

Compute pairwise differences with Tukey's method

Pairwise differences with 99% CI (Tukey's method)

contrast	difference	lower CI	upper CI
12 - 18	-12.47	-16.15	-8.79
12 - 24	-13.59	-17.27	-9.91
12 - 30	-15.35	-19.04	-11.67
18 - 24	-1.12	-4.80	2.57
18 - 30	-2.88	-6.57	0.80
24 - 30	-1.76	-5.45	1.92

Every soaking time is significantly better than 12 hours