BioTech 76

Creating Plots, Graph and Maps using R

Xin Tian, Ph.D., Mathematical Statistician

Office of Biostatistics Research National Heart, lung and Blood Institute, NIH Email: <u>tianx@nhlbi.nih.gov</u>

GitHub: https://github.com/npmldabook/rplots

Agenda (break 15 mins *2, lunch 12-1 PM)

- > A : R basics
- ➤ B: Graphics systems in R
- C: Using color in R
- > D: R Graphics Devices Static display
- **E:** R Graphics Devices Interactive display
- **F**: Working with Maps
- > H: Specialty Figures
- **→ G**: Network plots
- > Q & A, hands on your own research data

htmlwidgets for R

https://www.htmlwidgets.org/

Dygraphs: provides rich facilities for charting time-series data in R and includes support for many interactive features including series/point highlighting, zooming, etc.

Plotly, ggplotly, heatmaply: allows you to easily translate your ggplot2 graphics to an interactive web-based version.

https://images.plot.ly/plotly-documentation/images/r cheat sheet.pdf

Image can save as webpage (html) format to open from browser

Websites: https://www.r-graph-gallery.com/ (browse and try the code)

F.

- <u>Leaflet</u> is one of the most popular open-source JavaScript libraries for interactive maps. It's used by websites ranging from <u>The New York Times</u> and <u>The Washington Post</u> to <u>GitHub</u> and <u>Flickr</u>
- This R package makes it easy to integrate and control Leaflet maps in R.
- •Features (layers): Interactive panning/zooming
- A) leaflet() returns a Leaflet map widget,
- **B)** Compose maps using arbitrary combinations of: %>% (pipe operator)
 - Map tiles
- Markers
- Polygons
- Lines
- Popups, etc

Create maps right from the R console or Rstudio, Embed maps in R Markdown docs and Shiny apps

See website for lots of examples: https://rstudio.github.io/leaflet/

H. Specialty Figures: Word Cloud

1. **Word Cloud**: text mining that highlights the most frequently used words in a text as a visual representation of text data.

The text mining package (tm) and the word cloud generator package (wordcloud)

http://www.sthda.com/english/wiki/text-mining-and-word-cloud-fundamentals-in-r-5-simple-steps-you-should-know

The 5 main steps to create word clouds in R

- Step 1: Create a text file
- Step 2 : Install and load the required packages
- Step 3 : Text mining
- Step 4 : Build a term-document matrix for frequency table of words
- Step 5 : Generate the Word cloud

Principal Component Analysis (PCA)

Dimensionality reduction $p \rightarrow q$ (2-3 dim) for visualization, clustering (unknown class) and linear discriminative analysis (when the class is known).

https://tgmstat.wordpress.com/2013/11/21/introduction-to-principal-component-analysis-pca/

Assume you have n observations of p different variables. Define X to be a $(n \times p)$ matrix where the i-th column of X contains the observations of the i-th variable, i = 1, ..., p. Each row x_i of X can be represented as a point in a p-dimensional space. Therefore, X contains n points in a p-dimensional space.

PCA projects p-dimensional data into a q-dimensional sub-space $(q \le p)$ in a way that If we pick the first q principal components, we have projected our p-dimensional data into a q-dimensional sub-space. We can define R^2 in this context to be the fraction of the original variance kept by the projected points,

$$R^2 = \frac{\sum_{i=1}^{q} \lambda_i}{\sum_{j=1}^{p} \lambda_j}$$

Genomic plots -ggbio

-Bioconductor packages, not from CRAN

http://bioconductor.org/packages/release/bioc/html/ggbio.html

install.packages("BiocManager")
BiocManager::install("ggbio")

-Read pdf plot manual in Github: page 32-41 for circular plot

The ggbio package

- Build on ggplot2: Extends and specializes the grammar of graphics for biological data.
- A programmable genome browser environment: Visualization tool for plotting different types of genomic data in separate tracks along chromosomes
- The graphics are designed to answer common genomics data questions. Most core Bioconductor data structures are supported; work well with Granges object.
- Circular genome plots: 1) Visualize somatic mutation 2) Visualize inter, intra-chromosome rearrangement; 3) Visualize mutation score as point tracks; 4) add scales/ticks/labels; 5) comparison of multiple samples. Add them one by one, it will be automatically created from inner circle to outside.

Goal

ggbio is to make it easy to make the common genomic plots once you have your data in GRanges objects and other objects from GenomicRanges.

Some plots

- Manhattan plot (SNPs)
- Ideograms
- Tracks (emulate a genome browser)
- Circular: good for re-arrangements

How it works

- The syntax is similar to ggplot2 as ggbio builds on top of it.
- Plotting functions return ggplot2 objects which you can then modify using ggplot2 code.
- ggbio figures out how to align all your data in the genome axis for you.

Manhattan plot

A **Manhattan plot** is a type of <u>scatter plot</u>, usually used to display data with a large number of data-points - many of non-zero amplitude, and with a distribution of higher-magnitude values, for instance in <u>genome-wide association studies</u> (GWAS). In GWAS Manhattan plots, genomic coordinates are displayed along the X-axis, Y-axis= -log10(P-value), for each <u>single nucleotide</u> <u>polymorphism</u> (SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP.

It gains its name from the similarity of such a plot to the <u>Manhattan skyline</u>: a profile of <u>skyscrapers</u> towering above the lower level "buildings" which vary around a lower height.

Network plots

(http://kateto.net/networks-r-igraph)

Undirected network

Directed network

