ALUMNI MALL WALKWAY AND AREAS IN FRONT OF ADJACENT BUILDINGS

Figure 1: Map of Alumni Mall on LMU's campus

Capturing Runoff in Alumni Mall

By Mike Hennessy, Antonio Garcia, Tyler Reavis, Nico Meiswinkel, Jack Michaelis

Background Information

- Westchester average annual rain totals (2010-present)
 - 13.3 inches / year
 - 36 rainy days / year
 - Single rain-day rainfall: 0.37 inches
- Approximated C-Coefficient
 - Adopting model for High-Density neighborhood development with 70% impervious cover
 - C ~= 0.69
- Peak Discharge
 - $Q = C^*I^*A$
 - Estimate I = 0.03 in/hour (0.37 inch of rain in 12 hours)
 - A = 0.045 acres = 2100 square feet
 - Calculated Q = 1.6 cubic inches / second

Surface Type / Material			$R_{\rm v}$	R_v*Ppt_j	Citation
			0.87		
Impervious	Highways	(0.35-0.95)	0.783	38	
	Asphalt, concrete		0.8	0.72	45
	Brick, cobblestone		0.77	0.693	45
Impervious- Pervious	High-density neighbourhood commercial development (70% impervious)		0.69	0.621	21
	Low-density neighbourhood commercial development (50% impervious)		0.55	0.495	21
	(3070 Impervio	Unpaved parking, driveway, road	0.55	0.473	21
Pervious	Highly compacted	shoulder; high automobile & human disturbance, poor drainage Medium density single family	0.50	0.45	45
	Mid-High Compaction	development (~26 units/ha) (35% impervious) Low density single family urban	0.45	0.405	21
	Moderate compaction	development (~ 13 units/ha)(26% impervious) Unmaintained sports field, park or	0.38	0.342	21
	Compacted	playground surface; high human disturbance & poor drainage Moderate foot traffic & some	0.35	0.315	45
	Unmaintained	compaction; foot paths, moderate to poor drainage Maintained lawn w/ high foot traffic	0.30	0.27	45
	Turf	(e.g., golf course, park, lawn, ballfield) Landscaped/natural vegetated w/ low	0.25	0.225	45
	Maintained	foot disturbance/foot traffic	0.20	0.18	45
	Undeveloped	Relatively low foot traffic	0.15	0.135	45
	Drainage feature				
	material; porous	0.10			
	subsurface stone reservoir; well-drained sandy soil			0.09	45

Figure 2: C- Coefficients chart

Background Information

- Location: part of the Ballona Creek Watershed
- The Ballona Creek Watershed can be classified as urban runoff
- Higher levels of contaminants
- Nearly twice as much e-coli, enterococci, and general coliforms
- Common contaminants
 - DDT's: disrupts hormones important to good health
 - PCB's: harmful industrial chemicals that cause birth defects
 - Trash and debris: cigarette butts and other contaminants from foot traffic

FIGURE: 3 Ballona Creek Contaminates

FIGURE 4: Los Angeles Watersheds

Filtration options

- Bio–Filtration
 - Natural alternative to filtration
 - Use biological agent present in soil to filter ground water
 - Effective against bio-degradable carbon based contaminates
 - Less impact to C-coefficient
- In-line filtration
 - Higher impact form (increases C-coefficient)
 - Can support higher levels of discharge
 - More Maintenace and easily clogged
- Campus application
 - Both techniques are viable for projected peak discharge
 - •Bio–filtrations is lower impact that meets our needs

Figure 5: Bio-Filtration

Figure 6: In-Line Filtration Grate

Figure 7: Alumni Mall North end

Figure 8: Alumni Mall South end

Alumni Mall

- Area to the west of Seaver Science Hall and east of Charles Van der Ahe building
- South border: flag poles
- North border: palm walk
- Main thorough-fare on campus
- High levels of foot traffic
- Not much vehicle traffic, aside for few food trucks
- Location for various campus events

Figure 9: Concrete Area in Alumni Mall

Figure 10: Clogged Tubes in Alumni Mall

The Problem

- Excess concrete
- Insufficient drainage system
- Certain areas are "trapped" by benches
- Perfect subject for Low Impact Development to control run-off
- Clogged drainage tubes randomly dispersed along walk

Figure 11: Target Area

Target Area

- Two identical spots along Alumni Mall
- This area: minimal attention to runoff
- Benches create enclosed area trapping water
- Minimal filtration through the non-porous concrete
- Concrete is sloped towards the sides
- Diverts water to the grass banks on each side
- Captures water alongside the benches

Plan

- Trench system like that on LMUs campus
- Focus on "trapped" area that prevents infiltration
- Create slight slope pointing inward
- Water is diverted to soil
- Runoff is captured and infiltrated into ground
- Clean water added back to ground water

Figure 12: Target Area for infiltration

Figure 13: LMU trench system

Trench Design

Native plant life on surface: Coast Live
 Oak, CA Sagebrush, Apricot Mallow

Soil underneath plant life

 Sand layer underneath soil for extra filtration

Figure 14: Trench Design for Infiltration

Leads to ground water

Project Design

- ▼ ~4 degree incline from far ends
 - ~6 degree incline near center

Figure 15: Diverting Runoff With Slopped Concrete Design

Construction Details and Schedule

Materials Needed

- ~2,000 square feet of concrete
- a dozen small shrubs, 1 2 gallons in size
- CA Sagebrush and Apricot Mallow

Figure 16: Sagebrush

Figure 17: Apricot Mallow

Construction Details & Schedule Breakdown

- Hire crew to remove concrete surrounding plantation box
- Hire someone to create surrounding sloped concrete boundary
- Insert trench system
 - Sand underneath soil and native plantation to infiltrate contaminated particles
 - Seeps to ground water system

Figure 18: Construction Area

Schedule

Assuming Project starts June 1st and 8 hours are spent each weekday working

Dates	Time	Simple Description	Reasoning
June 1st – June 10th	Takes 60 hours 1 week and 3 days	Concrete Removal	~0.03 hours = 1 square foot of concrete ~60 hours = 2000 square feet of concrete
June 13th – June 24th	2 weeks	Concrete Insulation	Sloped concrete insulation takes about 2 weeks
June 27th – July 1st	Estimate: 2 week	Trench System	Creating trench system to reaches ground water in LA may range from days to weeks
July 5th	1 day	Inserting native plants	Inserting native plants takes about a day

Operation and Maintenance

- Minimum maintenance required
- Weekly watering of plants
- Every 10 years
 - Reinstallation to maintain effective filtration
 - Replace soil and sand

Figure 19: Trench Design

Budget

Titles	Cost	Description
Concrete Removal	\$3,000 - \$8,000	\$2 - \$6 per square foot removed. (Around 2,000 ft^2) How Much Does Concrete Removal Cost, Jane Purnell
Concrete Insulation	\$8,000 - \$16,000	\$4 - \$8 per square foot (Around 2,000 ft^2) How Much Does a Concrete Slab Cost, Jane Purnell
Reaching Ground water	\$700	~\$70 per foot In LA (closer to ocean), it is easier to reach ground water - Estimation: 10 feet
Plants	\$5 - \$20	Small shrub 1–2 gallons in size (CA sagebrush and apricot mallow) Landscape Network, Maureen Gilmer
Total Cost	\$10,705 - \$24,720	(x2 \$21,410 - \$49,440)

Summary and questions

- Bio-filtrations use plants and soil to drain runoff
- Target area is two concrete areas surrounded by brick walls in alumni mall
- Replace target area with trench bio-filter system
- Target area is around square feet 2,000
- Only maintenance needed is gardener and custodian for occasional cleaning
- Project cost between \$20,000 and \$50,000 for both areas to be replaced

References

- Gilmer, B. M. (2016, August 31). Landscape cost saving money. Landscaping Ideas. Retrieved April 27, 2022, from https://www.landscapingnetwork.com/landscape-design/money-saving-tips.html
- Purnell, J. (2021, May 23). Pricing guide: How much does concrete removal cost? Lawnstarter. Retrieved April 27, 2022, from https://www.lawnstarter.com/blog/cost/concrete-removal-price/
- (2020, June 18). Cost to remove a concrete slab 2022 price guide. Inch Calculator. Retrieved April 27, 2022 from https://www.inchcalculator.com/cost-to-remove-concrete-slab/
- (2020, August 28) How to Install Concrete Floors. ConcreteNetwork.com. Retrieved April 27, 2022 from https://www.concretenetwork.com/concrete/interiorfloors/installation.html#:~:text=HOW%20LONG%20DOES%20IT%20 TAKE,to%20five%20or%20six%20days
- "Biofiltration in Action." Australian Government Murray-Darling Basin Authority, 1 Apr. 2019, https://www.mdba.gov.au/education/resources/biofiltration-in-action.
- "Long-Lasting Health Impacts of DDT Highlighted in New Study." Sierra Club, 24 Apr. 2021, https://www.sierraclub.org/sierra/long-lasting-health-impacts-ddt-highlighted-new-study.
- "PCBS in Fish and Shellfish." Seafood Selector, 19 Feb. 2013, https://seafood.edf.org/pcbs-fish-and-shellfish.
- "Preparing Storm Drains & Catch Basins for a Hurricane." Raider Rooter, 22 July 2019, https://www.raiderrooter.com/preparing-storm-drains-catch-basins-for-a-hurricane/.
- "Westchest RainFall." WillyWeather, https://rainfall.willyweather.com/ca/los-angeles-county/westchester.html%E2%80%8B.

Image Sources

- https://grist.org/Array/a-penny-for-your-trees/
- https://www.lawnstarter.com/blog/cost/concrete-removal-price/
- https://www.lenntech.com/biofilter.htm
- https://en.wikipedia.org/wiki/Loyola_Marymount_University