

AZ1117

General Description

The AZ1117 is a series of low dropout three-terminal regulators with a dropout of 1.15V at 1A output current.

The AZ1117 series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandgap reference to assure output voltage accuracy to be within 1% for 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V and adjustable versions or 2% for 1.2V version. Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.

The AZ1117 has an adjustable version, that can provide the output voltage from 1.25V to 12V with only 2 external resistors.

The AZ1117 series is available in the industry standard SOT-223, SOT-89, TO-220-3, TO-252-2 (1), TO-252-2 (3) and TO-263-3 power packages.

Features

- Low Dropout Voltage: 1.15V at 1A Output Current
- Trimmed Current Limit
- On-chip Thermal Shutdown
- Three-terminal Adjustable or Fixed 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V
- Operation Junction Temperature: -40 to 125°C

Applications

- · PC Motherboard
- LCD Monitor
- · Graphic Card
- DVD-video Player
- NIC/Switch
- Telecom Equipment
- ADSL Modem
- Printer and other Peripheral Equipment

Figure 1. Package Types of AZ1117

Pin Configuration

Figure 2. Pin Configuration of AZ1117

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ1117

AZ1117

Ordering Information

Daglage	Tompovotuvo Dongo	Part Number	Marking ID	Packing Type
Package	Temperature Range	Lead Free	Lead Free	- Facking Type
		AZ1117H-ADJTRE1	EH11A	Tape & Reel
		AZ1117H-1.2TRE1	EH18A	Tape & Reel
		AZ1117H-1.5TRE1	EH12A	Tape & Reel
SOT-223	40 4 12500	AZ1117H-1.8TRE1	EH13A	Tape & Reel
301-223	-40 to 125°C	AZ1117H-2.5TRE1	EH14A	Tape & Reel
		AZ1117H-2.85TRE1	EH15A	Tape & Reel
		AZ1117H-3.3TRE1	EH16A	Tape & Reel
		AZ1117H-5.0TRE1	EH17A	Tape & Reel
		AZ1117R-ADJTRE1	E17A	Tape & Reel
		AZ1117R-1.2TRE1	E17G	Tape & Reel
		AZ1117R-1.5TRE1	E17B	Tape & Reel
SOT-89	40 + 12500	AZ1117R-1.8TRE1	E17C	Tape & Reel
301-69	-40 to 125°C	AZ1117R-2.5TRE1	E17D	Tape & Reel
		AZ1117R-2.85TRE1	E17H	Tape & Reel
		AZ1117R-3.3TRE1	E17E	Tape & Reel
		AZ1117R-5.0TRE1	E17F	Tape & Reel
		AZ1117T-ADJE1	AZ1117T-ADJE1	Tube
		AZ1117T-1.2E1	AZ1117T-1.2E1	Tube
		AZ1117T-1.5E1	AZ1117T-1.5E1	Tube
TO-220-3	40 4 12500	AZ1117T-1.8E1	AZ1117T-1.8E1	Tube
10-220-3	-40 to 125°C	AZ1117T-2.5E1	AZ1117T-2.5E1	Tube
		AZ1117T-2.85E1	AZ1117T-2.85E1	Tube
		AZ1117T-3.3E1	AZ1117T-3.3E1	Tube
		AZ1117T-5.0E1	AZ1117T-5.0E1	Tube

AZ1117

Ordering Information (Continued)

Package	Temperature Range	Part Number	Marking ID	Packing Type
		AZ1117D-ADJE1	AZ1117D-ADJE1	Tube
		AZ1117D-ADJTRE1	AZ1117D-ADJE1	Tape & Reel
		AZ1117D-1.2E1	AZ1117D-1.2E1	Tube
		AZ1117D-1.2TRE1	AZ1117D-1.2E1	Tape & Reel
		AZ1117D-1.5E1	AZ1117D-1.5E1	Tube
		AZ1117D-1.5TRE1	AZ1117D-1.5E1	Tape & Reel
		AZ1117D-1.8E1	AZ1117D-1.8E1	Tube
TO-252-2 (1)/	-40 to 125°C	AZ1117D-1.8TRE1	AZ1117D-1.8E1	Tape & Reel
TO-252-2 (3)		AZ1117D-2.5E1	AZ1117D-2.5E1	Tube
		AZ1117D-2.5TRE1	AZ1117D-2.5E1	Tape & Reel
		AZ1117D-2.85E1	AZ1117D-2.85E1	Tube
		AZ1117D-2.85TRE1	AZ1117D-2.85E1	Tape & Reel
	1 40 to 125°C	AZ1117D-3.3E1	AZ1117D-3.3E1	Tube
		AZ1117D-3.3TRE1	AZ1117D-3.3E1	Tape & Reel
		AZ1117D-5.0E1	AZ1117D-5.0E1	Tube
		AZ1117D-5.0TRE1	AZ1117D-5.0E1	Tape & Reel
		AZ1117S-ADJE1	AZ1117S-ADJE1	Tube
		AZ1117S-ADJTRE1	AZ1117S-ADJE1	Tape & Reel
		AZ1117S-1.2E1	AZ1117S-1.2E1	Tube
		AZ1117S-1.2TRE1	AZ1117S-1.2E1	Tape & Reel
		AZ1117S-1.5E1	AZ1117S-1.5E1	Tube
		AZ1117S-1.5TRE1	AZ1117S-1.5E1	Tape & Reel
		AZ1117S-1.8E1	AZ1117S-1.8E1	Tube
TO-263-3	40 + 1250G	AZ1117S-1.8TRE1	AZ1117S-1.8E1	Tape & Reel
10-203-3	-40 to 125°C	AZ1117S-2.5E1	AZ1117S-2.5E1	Tube
		AZ1117S-2.5TRE1	AZ1117S-2.5E1	Tape & Reel
		AZ1117S-2.85E1	AZ1117S-2.85E1	Tube
		AZ1117S-2.85TRE1	AZ1117S-2.85E1	Tape & Reel
		AZ1117S-3.3E1	AZ1117S-3.3E1	Tube
		AZ1117S-3.3TRE1	AZ1117S-3.3E1	Tape & Reel
		AZ1117S-5.0E1	AZ1117S-5.0E1	Tube
		AZ1117S-5.0TRE1	AZ1117S-5.0E1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

AZ1117

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Input Voltage	V _{IN}	20		V
Operating Junction Temperature	T_{J}	150		°C
Storage Temperature	T_S	-65 to 1	150	°C
Lead Temperature (Soldering, 10sec)	T _{LEAD}	260		°C
		SOT-223	120	
		SOT-89	165	
Thermal Resistance (No Heatsink, Note 2)	$\theta_{ m JA}$	TO-220-3	60	°C/W
		TO-252-2 (1)	100	
		TO-252-2 (3)	100	
		TO-263-3	60	
ESD (Human Body Model)	ESD	2000		V
ESD (Machine Model)	ESD	250		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (T_{J(max)} - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}		15	V
Operating Junction Temperature Range	T_{J}	-40	125	°C

AZ1117

Electrical Characteristics AZ1117-ADJ Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reference Voltage	V _{REF}	$\begin{split} &I_{OUT} = 10\text{mA}, V_{\text{IN}}\text{-}V_{OUT} = 2V\\ &10\text{mA} \leq I_{OUT} \leq 1\text{A}, 1.4\text{V} \leq V_{\text{IN}}\text{-}V_{OUT} \leq 8\text{V},\\ &P \leq \text{Maximum Power Dissipation} \end{split}$	1.238 1.225	1.250 1.250	1.262 1.270	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		0.035	0.2	%
Load Regulation	$\Delta V_{ m OUT}$	V_{IN} - V_{OUT} =2V, 10 mA $\leq I_{OUT} \leq 1$ A		0.2	0.4	%
		ΔV_{REF} =1%, I_{OUT} =0.1A		1.00	1.1	V
Dropout Voltage	V_{DROP}	$\Delta V_{REF} = 1\%$, $I_{OUT} = 0.5A$		1.08	1.18	V
		ΔV_{REF} =1%, I_{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		Α
Adjust Pin Current	I_{ADJ}			60	120	μΑ
Adjust Pin Current Change	$\Delta I_{ ext{ADJ}}$	$1.4V \le V_{\text{IN}} - V_{\text{OUT}} \le 10V, 10\text{mA} \le I_{\text{OUT}} \le 1A$		0.2	5	μА
Minimum Load Current (ADJ)	I _{LOAD} (MIN)	1.5V≤V _{IN} -V _{OUT} ≤10V (ADJ only)		1.7	5	mA
Quiescent Current	I_Q	$V_{IN}=V_{OUT}+1.25V$		5	10	mA
Ripple Rejection	PSRR	f=120Hz, C _{OUT} =22μF Tantalum, V _{IN} -V _{OUT} =3V, I _{OUT} =1A	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°C
Thermal Shutdown Hysteresis				25		°C
		SOT-223		25		
		SOT-89		30		
Thermal Resistance	$\theta_{ m JC}$	TO-220-3		10		°C/W
	J.C.	TO-252-2 (1)		17		C/W
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-1.2 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$ I_{OUT} = 10 \text{mA}, V_{IN} = 3.2 \text{V} $ $ 10 \text{mA} \le I_{OUT} \le 1 \text{A}, 3.0 \text{V} \le V_{IN} \le 10 \text{V} $	1.176 1.152	1.2 1.2	1.224 1.248	V
Line Regulation	$\Delta V_{ m OUT}$	I_{OUT} =10mA, 1.5V \leq V _{IN} -V _{OUT} \leq 10V		1	6	mV
Load Regulation	$\Delta V_{ m OUT}$	V_{IN} - V_{OUT} =2V, 10 mA $\leq I_{OUT}\leq 1$ A		1	10	mV
		ΔV_{OUT} =1%, I_{OUT} =0.1A		1.00	1.1	V
Dropout Voltage	V_{DROP}	ΔV_{OUT} =1%, I_{OUT} =0.5A		1.08	1.18	V
		ΔV_{OUT} =1%, I_{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	f =120Hz, C_{OUT} =22 μ F Tantalum, V_{IN} - V_{OUT} =3 V , I_{OUT} =1 A	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤ f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°C
Thermal Shutdown Hysteresis				25		°C
		SOT-223		25		
		SOT-89		30		
Thermal Resistance	$\theta_{ m JC}$	TO-220-3		10		00/11
Thermal Resistance	ojc	TO-252-2 (1)		17		°C/W
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-1.5 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =3.5V 10mA $\leq I_{OUT} \leq$ 1A, 3.0V $\leq V_{IN} \leq$ 10V	1.485 1.470	1.5 1.5	1.515 1.530	V
Line Regulation	$\Delta V_{ m OUT}$	$I_{OUT}=10 \text{mA}, 1.5 \text{V} \le V_{IN}-V_{OUT} \le 10 \text{V}$		1	6	mV
Load Regulation	ΔV_{OUT}	V_{IN} - V_{OUT} =2V, $10\text{mA} \le I_{\text{OUT}} \le 1\text{A}$		1	10	mV
		ΔV _{OUT} =1%, I _{OUT} =0.1A		1.00	1.1	V
Dropout Voltage	V_{DROP}	ΔV _{OUT} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV_{OUT} =1%, I_{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	f=120Hz, C_{OUT} =22 μ F Tantalum, V_{IN} - V_{OUT} =3V, I_{OUT} =1A	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°C
Thermal Shutdown Hysteresis				25		°С
		SOT-223		25		
		SOT-89		30		
	Α	TO-220-3		10		°C/W
Thermal Resistance	$\theta_{ m JC}$	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-1.8 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =3.8V 10mA≤ I_{OUT} ≤1A, 3.2V≤ V_{IN} ≤10V	1.782 1.746	1.8 1.8	1.818 1.854	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		1	6	mV
Load Regulation	$\Delta V_{ m OUT}$	V_{IN} - V_{OUT} =2 V , 10 m $A \le I_{OUT} \le 1$ A		1	10	mV
		ΔV _{OUT} =1%, I _{OUT} =0.1A		1.00	1.1	V
Dropout Voltage	V_{DROP}	ΔV _{OUT} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV _{OUT} =1%, I _{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	f=120Hz, C _{OUT} =22μF Tantalum, V _{IN} -V _{OUT} =3V, I _{OUT} =1A	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		$T_A=25^{o}C, 10Hz \le f \le 10kHz$		0.003		%
Thermal Shutdown		Junction Temperature		150		°С
Thermal Shutdown Hysteresis				25		°C
		SOT-223		25		
		SOT-89		30		
Thermal Desistance	$\theta_{ m JC}$	TO-220-3		10		°C/W
Thermal Resistance	ojc	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-2.5 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =4.5V 10mA≤ I_{OUT} ≤1A, 3.9V≤ V_{IN} ≤10V	2.475 2.450	2.5 2.5	2.525 2.550	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		1	6	mV
Load Regulation	ΔV_{OUT}	V_{IN} - V_{OUT} = 2V, $10\text{mA} \le I_{\text{OUT}} \le 1\text{A}$		1	10	mV
Dropout Voltage V		ΔV _{OUT} =1%, I _{OUT} =0.1A		1.00	1.1	V
	V_{DROP}	ΔV _{OUT} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV _{OUT} =1%, I _{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	$\begin{split} f = &120 Hz, C_{OUT} = &22 \mu F Tantalum, \\ &V_{IN} - &V_{OUT} = &3 V, I_{OUT} = &1 A \end{split}$	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°C
Thermal Shutdown Hysteresis				25		°С
		SOT-223		25		
		SOT-89		30		
	Α	TO-220-3		10		°C/W
Thermal Resistance	$\theta_{ m JC}$	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3	,	10		

AZ1117

Electrical Characteristics (Continued) AZ1117-2.85 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =4.85V 10mA $\leq I_{OUT} \leq$ 1A, 4.25V $\leq V_{IN} \leq$ 10V	2.822 2.793	2.85 2.85	2.878 2.907	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		1	6	mV
Load Regulation	ΔV_{OUT}	V_{IN} - V_{OUT} =2 V , 10 m $A \le I_{OUT} \le 1$ A		1	10	mV
Dropout Voltage		ΔV_{REF} =1%, I_{OUT} =0.1A		1.00	1.1	V
	V_{DROP}	ΔV _{REF} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV _{REF} =1%, I _{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		Α
Quiescent Current	I_Q	$V_{IN}=V_{OUT}+1.25V$		5	10	mA
Ripple Rejection	PSRR	f =120Hz, C_{OUT} =22 μ F Tantalum, V_{IN} - V_{OUT} =3 V_{IOUT} =1 V_{IO	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°C
Thermal Shutdown Hysteresis				25		°С
		SOT-223		25		
		SOT-89		30		
	0	TO-220-3		10		°C/W
Thermal Resistance	$\theta_{ m JC}$	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-3.3 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =5.0V 10mA≤ I_{OUT} ≤1A, 4.75V≤ V_{IN} ≤10V	3.267 3.235	3.3 3.3	3.333 3.365	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		1	6	mV
Load Regulation	$\Delta V_{ m OUT}$	V_{IN} - V_{OUT} =2V, $10mA \le I_{OUT} \le 1A$		1	10	mV
		$\Delta V_{OUT}=1\%$, $I_{OUT}=0.1A$		1.00	1.1	V
Dropout Voltage	V_{DROP}	ΔV _{OUT} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV _{OUT} =1%, I _{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	f=120Hz, C_{OUT} =22 μ F Tantalum, V_{IN} - V_{OUT} =3V, I_{OUT} =1A	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°С
Thermal Shutdown Hysteresis				25		°C
		SOT-223		25		
		SOT-89		30		
The same 1 Decimals	$\theta_{ m JC}$	TO-220-3		10		°C/W
Thermal Resistance	ojc	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3		10		

AZ1117

Electrical Characteristics (Continued) AZ1117-5.0 Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	I_{OUT} =10mA, V_{IN} =7.0V 10mA $\leq I_{OUT}\leq$ 1A, 6.5V $\leq V_{IN}\leq$ 12V	4.950 4.900	5.0 5.0	5.050 5.100	V
Line Regulation	$\Delta V_{ m OUT}$	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10V		1	10	mV
Load Regulation	$\Delta V_{ m OUT}$	V_{IN} - V_{OUT} =2V, 10 mA $\leq I_{OUT}\leq 1$ A		1	15	mV
		$\Delta V_{OUT}=1\%$, $I_{OUT}=0.1A$		1.00	1.1	V
Dropout Voltage	V_{DROP}	ΔV _{OUT} =1%, I _{OUT} =0.5A		1.08	1.18	V
		ΔV _{OUT} =1%, I _{OUT} =1.0A		1.15	1.25	V
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =2V	1.25	1.35		A
Quiescent Current	I_Q	V _{IN} =V _{OUT} +1.25V		5	10	mA
Ripple Rejection	PSRR	$\begin{split} f = &120 \text{Hz, } C_{OUT} = &22 \mu \text{F Tantalum,} \\ V_{IN} - &V_{OUT} = &3 \text{V, } I_{OUT} = &1 \text{A} \end{split}$	60	75		dB
Temperature Stability				0.5		%
Long-term Stability		T _A =125°C, 1000hrs		0.3		%
RMS Output Noise (% of V _{OUT})		T _A =25°C, 10Hz≤f≤10kHz		0.003		%
Thermal Shutdown		Junction Temperature		150		°С
Thermal Shutdown Hysteresis				25		°C
		SOT-223		25		
		SOT-89		30		
TI ID :	$\theta_{ m JC}$	TO-220-3		10		°C/W
Thermal Resistance	JC	TO-252-2 (1)		17		
		TO-252-2 (3)		17		
		TO-263-3		10		

Typical Performance Characteristics

Figure 4. Dropout Voltage vs. Output Current

Figure 5. Dropout Voltage vs. Junction Temperature

Figure 6. Load Regulation vs. Junction Temperature

Figure 7. Reference Voltage vs. Junction Temperature

Typical Performance Characteristics (Continued)

Figure 8. Output Voltage vs. Junction Temperature

Figure 9. Minimum Load Current vs. Junction Temperature

Figure 10. Adjust Pin Current vs. Junction Temperature

Figure 11. Short-circuit Current vs. Junction Temperature

Typical Performance Characteristics (Continued)

Figure 12. Maximum Power Dissipation

Figure 13. Ripple Rejection vs. Frequency

Figure 14. Line Transient Response (Conditions: V_{IN} =4.8 to 5.8V, V_{OUT} =3.33V, I_{OUT} =0.1A, C_{IN} =1 μ F, C_{OUT} =10 μ F)

Figure 15. Load Transient Response (Conditions: V_{IN} =4.8V, V_{OUT} =3.33V, I_{OUT} =0.1 to 0.5A, C_{IN} = C_{OUT} =10 μ F)

AZ1117

1A LOW DROPOUT LINEAR REGULATOR

Typical Applications

Figure 16. Typical Applications of AZ1117

AZ1117

Mechanical Dimensions

SOT-223 Unit: mm(inch)

AZ1117

Unit: mm(inch)

Mechanical Dimensions (Continued)

SOT-89

AZ1117

Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-252-2 (1)

AZ1117

Mechanical Dimensions (Continued)

TO-252-2 (3)

Unit: mm(inch)

AZ1117

Mechanical Dimensions (Continued)

TO-220-3 Unit: mm(inch)

AZ1117

Mechanical Dimensions (Continued)

TO-263-3 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788