# Theo 1 Abgabe 2

### Nick Daiber

#### November 12, 2024

### 1

mit  $q_1$  als start und  $q_F$  als Fangzustand:

- $\bullet \ \delta(q_0, a) = q_{24}$
- $\delta(q_0, b) = q_{15}$
- $\delta(q_7, a) = q_{89}$
- $\delta(q_7, b) = q_F$
- $\bullet \ \delta(q_{24},a) = q_7$
- $\delta(q_{24}, b) = q_{15}$
- $\delta(q_{15}, a) = q_{24}$
- $\delta(q_{15}, b) = q_{89}$
- $\delta(q_{89}, a) = q_F$
- $\delta(q_{89}, b) = q_{56}$
- $\bullet \ \delta(q_{56},a) = q_F$
- $\delta(q_{56}, b) = q_{89}$



## 2

#### a

Es wird angenommen, dass ein DFA A mit  $L(A) = \Lambda$  existiert. Da A nur einen Endzustand hat gilt |F| = 1. Da  $\varepsilon \in \Lambda$  ist  $F = \{q_0\}$ .

Endzustand hat gilt 
$$|F| = 1$$
. Da  $\varepsilon \in \Lambda$  ist  
Da  $a \in \Lambda$  ist  $\delta(q_0, a) \in F \Rightarrow \delta(q_0, a) = q_0$   
Da  $b \in \Lambda$  ist  $\delta(q_0, b) \in F \Rightarrow \delta(q_0, b) = q_0$   
 $\Rightarrow \underbrace{\delta(\delta(q_0, a), b)}_{=q_0} \in L(A) \Rightarrow ab \in L(A)$   
Dies ist ein Widerspruch zur Annahme d

Dies ist ein Widerspruch zur Annahme, da  $ab\notin \Lambda$  gibt es keinen DFA mit nur einem Endzustand zur Sprache  $\Lambda$ 

#### b

