Derin Öğrenmede Dikkat Mekanizması

Betül Yalçın Bilgisayar Mühendisliği 4. Sınıf Öğrencisi 16.05.2024

İçindekiler

Giriş

Dikkat Algoritmaları Nedir?

- Dikkat algoritmaları, makine öğrenimi ve yapay zeka alanında kullanılan ve modelin belirli bilgilere odaklanmasını sağlayan algoritmalardır.
- Bu algoritmalar, verinin önemli ve gerekli kısımlarını seçip işleyerek daha verimli ve doğru sonuçlar elde etmeye yardımcı olur.

Giriş

Dikkat Algoritmaları Neden Önemlidir?

Verimlilik:

Büyük veri setleriyle çalışırken, tüm veriyi işlemek yerine sadece önemli kısımlara odaklanarak hesaplama verimliliğini artırır.

Performans:

Doğal dil işleme (NLP), görüntü işleme ve ses tanıma gibi alanlarda dikkat algoritmaları model performansını önemli ölçüde artırır.

Başlangıç Noktası

- Dikkat mekanizmalarının kökeni, sinir ağları ve makine öğrenimi modellerinin gelişimine dayanır.
- 2014 yılında, Bahdanau, Cho ve Bengio'nun "Neural Machine Translation by Jointly Learning to Align and Translate" adlı makalesi, dikkat mekanizmasını ilk kez tanıttı.

Bahdanau'nun Dikkat Mekanizması (2014)

- Bu çalışma, geleneksel sekans-sekans (sequence-to-sequence)
 modellerin eksikliklerini gidermek amacıyla geliştirildi.
- Dikkat mekanizması, giriş dizisindeki her öğenin çıkış dizisindeki her öğe ile nasıl ilişkili olduğunu hesapladı.

Luong'un Dikkat Mekanizması (2015)

- Minh-Thang Luong ve arkadaşlarının çalışması, dikkat mekanizmasını daha da geliştirdi ve çeşitlendirdi.
- Global ve local dikkat mekanizmalarını tanıttı.

Transformer Modeli (2017)

- Vaswani ve arkadaşlarının "Attention is All You Need" adlı makalesi, tamamen dikkat mekanizmalarına dayalı Transformer modelini tanıttı.
- Bu model, RNN ve LSTM gibi geleneksel yöntemlerden çok daha verimli ve ölçeklenebilir bir yapı sundu.

Temel Bileşenler

- Query (Sorgu): Modelin aradığı bilgiyi temsil eder. Sorgular, genellikle metin veya dizinin bir parçasıdır ve belirli bir bilginin aranmasını sağlar.
- Key (Anahtar):Girdi verisinin her bir parçasının ne hakkında olduğunu ifade eder. Anahtarlar, sorgularla karşılaştırılır ve ilgili bilginin bulunmasına yardımcı olur.
- Value (Değer):Girdi verisinin kendisini veya içerdiği bilgiyi temsil eder.Değerler,
 sorgularla eşleştirilen bilgiyi sağlar.

Dikkat Skorları ve Ağırlıklar

- Skor Hesaplama: Dikkat mekanizması, sorgu ve anahtar arasında bir benzerlik skoru hesaplar. Bu skor, sorgu ve anahtar arasındaki ilişkilerin ne kadar güçlü olduğunu gösterir.
- Softmax Fonksiyonu: Hesaplanan skorlar, softmax fonksiyonu kullanılarak normalize edilir. Bu işlem, skorların toplamının 1 olmasını sağlar ve böylece dikkat dağılımı elde edilir.
- **Ağırlıklı Toplama:** Normalize edilmiş skorlar, ilgili değerlerle çarpılır ve ağırlıklı bir toplam elde edilir.Bu toplam, modelin nihai çıktısını oluşturur.

Self-Attention ve Multi-Head Attention

- Self-Attention (Kendi Üzerinde Dikkat): Model, bir girdi dizisinin her öğesinin diğer tüm öğelerle olan ilişkisini hesaplar. Bu mekanizma, modelin daha iyi içsel temsil öğrenmesini sağlar.
- Multi-Head Attention (Çoklu Başlık Dikkati):Birden fazla dikkat
 mekanizmasının paralel olarak çalışmasını sağlar.Farklı başlıklar, farklı bilgi
 bölümlerine odaklanarak daha zengin ve çeşitli temsil öğrenir.

Transformer Modeli

- Transformer: Dikkat mekanizmasını temel alan ve tamamen dikkat
 mekanizmaları üzerine kurulu bir modeldir. Encoder ve decoder
 katmanlarından oluşur ve her bir katmanda dikkat mekanizmaları kullanılır.
- Encoder: Girdi verisini işler ve dikkat mekanizmaları kullanarak zengin bir temsil oluşturur.
- Decoder: Encoder tarafından oluşturulan temsil üzerinden çalışarak çıktı
 verisini üretir.

Çalışma Prensibi

Dikkat Skorlarının Hesaplanması

- Adım 1: Sorgu, Anahtar ve Değer Matriksleri
- Girdi verisi üç matrise dönüştürülür: Query (Sorgu), Key (Anahtar) ve Value (Değer). Bu matrisler, genellikle aynı boyutlara sahiptir ve girdi verisinin farklı dönüşümleridir.
- Adım 2: Sorgu ve Anahtar Arasındaki Skor Hesaplama
- Dikkat skorları, sorgu ve anahtar matrisleri arasındaki dot product ile hesaplanır.Bu skorlar, sorgunun her bir anahtara ne kadar dikkat etmesi gerektiğini belirler.

Çalışma Prensibi

Skorların Normalize Edilmesi

- Adım 3: Skorların Normalize Edilmesi
- Hesaplanan skorlar, softmax fonksiyonu kullanılarak normalize edilir.
 Bu işlem, skorların toplamının 1 olmasını sağlar ve böylece dikkat dağılımı elde edilir.Normalize edilmiş skorlar, dikkat ağırlıkları olarak adlandırılır.

Çalışma Prensibi

Ağırlıklı Değerlerin Hesaplanması

- Adım 4: Ağırlıklı Değerlerin Hesaplanması
- Normalize edilmiş skorlar, değer matrisleri ile çarpılır.Bu çarpım sonucunda, her değerin dikkate alınma oranına göre ağırlıklı toplamı elde edilir.Sonuç, modelin dikkate aldığı önemli bilgilerin toplamıdır.

Uygulama Alanları

Öneri Sistemleri

Tıbbi Uygulamalar

Uygulama

Derin öğrenme
algoritmalarında dikkat
mekanizmasının nasıl
kullanıldığını birlikte
inceleyelim. İşte basit bir
örnek kod:

Figure 1: The Transformer - model architecture.

. . . . 17/21.

- - - - - -

Özet

Özetle, dikkat algoritmaları yapay zeka ve makine öğrenimi alanında devrim niteliğinde gelişmelere yol açmıştır. Günümüzde birçok uygulamada kullanılan bu algoritmalar, gelecekte de önemini koruyacaktır

Kaynakça

- https://tr.d2l.ai/chapter_attention-mechanisms/index.html
- https://medium.com/bir-ba%C5%9Fka-d%C3%BCnya/transformer-modelleri-ve-attention-mekanizmas%C4%B1
- https://medium.com/machine-learning-t%C3%BCrkiye/attention-mekanizmasi-6d3566c0518e
- https://medium.com/@batincangurbuz/dikkat-a%C4%9F%C4%B1attention-network-an-592240340768
- https://www.youtube.com/watch?v=0hZT4_fHfNQ
- https://www.youtube.com/watch?v=FEVCmJXc7eI

SORULAR?

Beni Dinlediğiniz için Teşekkür Ederim 21/21