Table of Contents

A۱	bstrac	tii	ĺ							
Pr	eface	···· iv	7							
Ta	ble of	Contents	7							
List of Tables										
Li	st of l	Figures ix	Ĺ							
A	cknow	ledgments	i							
1	Introduction									
	1.1	Motivation								
	1.2	The state of the art)							
	1.3	Research objectives	į							
2	Pote	ntial Fields	,							
	2.1	Discrete linear equations)							
		2.1.1 Synthetic example								
	2.2	Large scale problems	,							
		2.2.1 Parallel out-of-core computing	į							
3	Inve	rse Problem	,							
	3.1	General ℓ_p -norm regularization								
		3.1.1 Synthetic 1D problem	,							

		3.1.2	Iterative Re-weighted Least Squares algorithm 25								
		3.1.3	Case 1: ℓ_1 -norm $(p_s = p_x = 1)$								
		3.1.4	Case 2: ℓ_0 -norm $(p_s = p_x = 0)$								
	3.2	Mixed	norm regularization								
		3.2.1	Scaled-IRLS steps								
		3.2.2	Threshold ε -parameter								
		3.2.3	Summary								
4	Advanced Magnetic Vector Inversion										
	4.1	Suscep	ptibility Inversion								
	4.2	Magne	etic Vector Inversion - Cartesian parameters								
	4.3	Magne	etic Vector Inversion - Spherical parameters 50								
		4.3.1	Iterative sensitivity re-weighting								
		4.3.2	Scaled MVI-S algorithm								
	4.4	Synthe	esis								
5	Rota	ated Gr	adient Norms								
	5.1	Rotate	ed objective function 61								
	5.2	Synthe	etic fold model								
		5.2.1	Smooth ℓ_2 -norm solution 64								
		5.2.2	Sparse ℓ_p -norm solution 66								
		5.2.3	Directional ℓ_p -norms								
6	Auto	omated	mixed-norm modeling								
		6.0.1	Synthetic 2D example								
6.1		Explo	ring the model space								
		6.1.1	Average PCA model								
		6.1.2	Parameters extraction								
	6.2	Dip/st	rike estimation								
7	Case	e Study	- Kevitsa Ni-Cu-PGE								
		7.0.1	Geological setting								
		7.0.2	Geophysical data								
		7.0.3	Modeling objectives								

Bibliography									
8	Con	clusion		98					
	7.3	Interpr	retation	93					
		7.2.2	Magnetization vector model	88					
		7.2.1	Magnetic susceptibility model	86					
	7.2	Kevitsa	a: Magnetic inversion	86					
		7.1.1	Structurally constrained density	86					
	7.1	Kevitsa	a: Gravity inversion	85					