Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:	$\int X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt$
	$ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	sgn(t)	$\frac{1}{j\pi f}$
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(\frac{t}{T}\right)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta (f - f_o) - \delta (f + f_o) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	X(t)	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$
		$\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

Unilateral Laplace Transform: $X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$

LAPLACE TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(s)
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	1/ <i>s</i>
Ramp	tu(t)	$1/s^2$
n th order Ramp	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
Damped Ramp	$t\exp(-\alpha t)u(t)$	$1/(s+\alpha)^2$
Exponential	$\exp(-\alpha t)u(t)$	$1/(s+\alpha)$
Cosine	$\cos(\omega_o t)u(t)$	$s/(s^2+\omega_o^2)$
Sine	$\sin(\omega_o t)u(t)$	$\omega_o/(s^2+\omega_o^2)$
Damped Cosine	$\exp(-\alpha t)\cos(\omega_o t)u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$
Damped Sine	$\exp(-\alpha t)\sin(\omega_o t)u(t)$	$\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$

LAPLACE TRANSFORM PROPERTIES		
	Time-domain	s-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$
Time shifting	$x(t-t_o)$	$\exp(-st_o)X(s)$
Shifting in the s-domain	$\exp(s_o t)x(t)$	$X(s-s_o)$
Time scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$
Integration in the time-domain	$\int_{0^{-}}^{t} x(\zeta) d\zeta$	$\frac{1}{s}X(s)$
Differentiation in the	$\frac{dx(t)}{dt}$	$sX(s)-x(0^-)$
time-domain	$\frac{d^n x(t)}{dt^n}$	$s^{n}X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^{k}x(t)}{dt^{k}} \bigg _{t=0^{-}}$
Differentiation in the	-tx(t)	$\frac{dX(s)}{ds}$
s-domain	$\left(-t\right)^{n}x(t)$	$\frac{d^{n}X(s)}{ds^{n}}$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$	$X_1(s)X_2(s)$
Initial value theorem	$x\left(0^{+}\right) = \lim_{s \to \infty} sX\left(s\right)$	
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	

	$y_{step}\left(t\right)$	$Y_{step}(s)$	SYSTEM PARAMETERS
Step response of 1 st order system	$K\bigg[1-\exp\bigg(-\frac{t}{T}\bigg)\bigg]u(t)$	$\frac{1}{s} \cdot \frac{K}{(sT+1)}$	(T: System Time-constantK: System Steady-state (or DC) Gain
Step response of 2^{nd} order <u>underdamped</u> system: $\left(0 < \zeta < 1\right)$	$K \left[1 - \frac{\exp(-\omega_n \zeta t)}{\left(1 - \zeta^2\right)^{0.5}} \sin\left(\omega_n \left(1 - \zeta^2\right)^{0.5} t + \phi\right) \right] u(t)$ $K \left[1 - \left(\frac{\sigma^2 + \omega_d^2}{\omega_d^2}\right)^{0.5} \exp(-\sigma t) \sin(\omega_d t + \phi) \right] u(t)$		ζ : System Damping Factor $\omega_d - \omega_n (1 - \zeta)$
$\begin{array}{c} \mathbf{2^{nd} \ order \ system} \\ \textbf{- RESONANCE -} \\ \left(0 \leq \boldsymbol{\zeta} < 1 \middle/ \sqrt{2} \right) \end{array}$	RESONANCE FREQUENCY: $\omega_r = \omega_n (1 - 2\zeta^2)^{0.5}$		RESONANCE PEAK: $M_r = \left H(j\omega_r) \right = \frac{K}{2\zeta (1-\zeta^2)^{0.5}}$

TRIGONOMETRIC IDENTITIES	
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
$\sin^2(\theta) + \cos^2(\theta) = 1$	$1 \mp \tan(\alpha) \tan(\beta)$
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$
$\cos^2(\theta) = \frac{1}{2} \left[1 + \cos(2\theta) \right]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$