

Provably Safe Neural Network Controllers via Differential Dynamic Logic

Symposium on Al Verification 2024

Samuel Teuber, Stefan Mitsch, André Platzer | 2024

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

$$p_{rel}'=v_{\rm rel}\\ v_{rel}'=-a_{rel}=-g\left(p_{rel},v_{rel}\right)\\ \mbox{How can we prove the safety of a strategy g?}$$

$$p_{rel}'=v_{rel}$$
 $v_{rel}'=-a_{rel}=-g\left(p_{rel},v_{rel}
ight)$ How can we prove the safety of a strategy g ?

$$g\left(p_{rel},v_{rel}
ight)=-B<0$$

Safe if cars start far enough apart (depends on *B*).

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

$$p_{rel}'=v_{\rm rel}\\ v_{rel}'=-a_{rel}=-g\left(p_{rel},v_{rel}\right)\\ \mbox{How can we prove the safety of a strategy g?}$$

 $g\left(p_{\mathsf{rel}}, v_{\mathsf{rel}}\right) = -B < 0$ Seco

Safe if cars start far enough apart (depends on *B*).

Secondary objectives

- Follow front car
- Passenger comfort/Energy efficiency

Motivation ●○ Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

Objective

Given:

- lacktriangle A safe differential dynamic logic model of the system with a controller $lpha_{
 m ctrl}$
- A neural network controller g

Objective

Given:

- A safe differential dynamic logic model of the system with a controller α_{ctrl}
- A neural network controller g

Question:

If we **replace** the control envelope α_{ctrl} by the NN g, does the resulting system retain the same safety guarantees?

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

[Platzer 2008]

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

VerSAILLE

Mosaic

Evaluation 000

[Platzer 2008]

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

$$a_{rel} := -B; t := 0;$$
 $\{p'_{rel} = v_{rel}, v'_{rel} = -a_{rel}, t' = 1 \& t \le T\}$ discrete continuous

hybrid program

[Platzer 2008]

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

$$\left(\begin{array}{c} a_{\rm rel}:=-B; t:=0; \quad \{p'_{\rm rel}=v_{\rm rel}, v'_{\rm rel}=-a_{\rm rel}, t'=1\&t\leq T\} \right)^*$$
 discrete continuous loop

hybrid program

[Platzer 2008]

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation


```
\left[\begin{array}{c|c} (a_{rel}:=-B;t:=0;), & \{p'_{rel}=v_{rel},v'_{rel}=-a_{rel},t'=1\&t\leq T\},\\ & \text{discrete} & \text{continuous} \\ & & \text{loop} \\ & & \text{hybrid program} \end{array}\right]
```

after every program run

[Platzer 2008]

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

after every program run

[Platzer 2008]

after every program run

We can prove safety through a proof calculus.

[Platzer 2008]

 Motivation oo
 Preliminaries oo
 Contribution oo
 VerSAILLE oo
 Mosaic oo
 Evaluation ooo
 Summary oo

Input: Safe Control Envelope in $d\mathcal{L}$

$$p_{\text{rel}} > \frac{v_{\text{rel}}^2}{2B} \rightarrow \left[\left(a_{\text{rel}} := -B; t := 0; \left\{ p_{\text{rel}}' = 0, v_{\text{rel}}' = 0, t' = 1 \& t \le T \right\} \right)^* \right] p_{\text{rel}} > 0$$

Motivation

Preliminaries 0

Contribution

VerSAILLE

Mosaic

Evaluation

Input: Safe Control Envelope in $d\mathcal{L}$

Controller/Envelope

$$p_{\text{rel}} > \frac{v_{\text{rel}}^2}{2B} \rightarrow \left[\left(a_{\text{rel}} := -B; t := 0; \left\{ p'_{\text{rel}} = 0, v'_{\text{rel}} = 0, t' = 1 \& t \le T \right\} \right)^* \right] p_{\text{rel}} > 0$$

Input: Safe Control Envelope in $d\mathcal{L}$

Controller/Envelope

Plant

$$p_{\text{rel}} > \frac{v_{\text{rel}}^2}{2B} \rightarrow \left[\left(a_{\text{rel}} := -B; t := 0; \left\{ p_{\text{rel}}' = 0, v_{\text{rel}}' = 0, t' = 1 \& t \le T \right\} \right)^* \right] p_{\text{rel}} > 0$$

ModelPlex creates a controller monitor formula:

$$a_{\rm rel}^+ = -B$$

Satisfaction during concrete run implies correct controller behavior. Equally applicable for more complicated controllers (nondeterminism, conditions, ...)

[Mitsch and Platzer 2016]

Motivation

Preliminaries ○● Contribution

VerSAILLE

Mosaic

Evaluation 000

Input: Safe Control Envelope in $d\mathcal{L}$

$$p_{\text{rel}} > \frac{v_{\text{rel}}^2}{2B} \rightarrow \left[\left(a_{\text{rel}} \coloneqq -B \cup \left(a_{\text{rel}} \coloneqq *;? \left(|a_{\text{rel}}| \le B \wedge p_{\text{rel}} > 10^3 \right) \right); \dots \right)^* \right] p_{\text{rel}} > 0$$

ModelPlex creates a controller monitor formula:

Satisfaction during concrete run implies correct controller behavior. Equally applicable for more complicated controllers (nondeterminism, conditions, ...)

[Mitsch and Platzer 2016]

Motivation Preliminaries Contribution VerSAILLE **Evaluation** Mosaic Summary

Input: Safe Control Envelope in $d\mathcal{L}$

$$p_{\text{rel}} > \frac{v_{\text{rel}}^2}{2B} \rightarrow \left[\left(a_{\text{rel}} \coloneqq -B \cup \left(a_{\text{rel}} \coloneqq *;? \left(|a_{\text{rel}}| \le B \land p_{\text{rel}} > 10^3 \right) \right); \dots \right)^* \right] p_{\text{rel}} > 0$$

ModelPlex creates a controller monitor formula:

$$a_{\rm rel}^+ = -B \lor \left| a_{\rm rel}^+ \right| \le B \land p_{\rm rel} > 10^3$$

Satisfaction during concrete run implies correct controller behavior. Equally applicable for more complicated controllers (nondeterminism, conditions, ...)

[Mitsch and Platzer 2016]

Motivation Preliminaries Contribution VerSAILLE **Evaluation** Mosaic

Motivation 00

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

VerSAILLE

Rigorous infinite-time horizon safety for continuous-time NNCS via $d\mathcal{L}$ & NN verification

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

VerSAILLE

Rigorous infinite-time horizon safety for **continuous-time** NNCS via $d\mathcal{L}$ & NN verification

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

VerSAILLE

Rigorous infinite-time horizon safety for **continuous-time** NNCS via $d\mathcal{L}$ & NN verification

Mosaic

Sound, complete and efficient NN verification for polynomial constraints with arbitrary propositional structure.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

VerSAILLE

Rigorous infinite-time horizon safety for continuous-time NNCS via $d\mathcal{L}$ & NN verification

Mosaic

Sound, complete and efficient NN verification for **polynomial** constraints with **arbitrary propositional structure**.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

VerSAILLE

Rigorous infinite-time horizon safety for continuous-time NNCS via $d\mathcal{L}$ & NN verification

Mosaic

Sound, complete and efficient NN verification for **polynomial** constraints with **arbitrary propositional structure**.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

VerSAILLE

Rigorous infinite-time horizon safety for continuous-time NNCS via $d\mathcal{L}$ & NN verification

Mosaic

Sound, complete and efficient NN verification for **polynomial** constraints with **arbitrary propositional structure**.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

VerSAILLE

Rigorous infinite-time horizon safety for continuous-time NNCS via $d\mathcal{L}$ & NN verification

Mosaic

Sound, complete and efficient NN verification for **polynomial** constraints with **arbitrary propositional structure**.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

$$(\alpha_{\mathsf{ctrl}} \; ; \alpha_{\mathsf{plant}})^* \mathsf{Safe}$$

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

$$(\alpha_{\mathsf{ctrl}} \; ; \alpha_{\mathsf{plant}})^* \mathsf{Safe}$$

Motivation 00

Preliminaries

Contribution

 $\alpha_{q} := \operatorname{mirror}(q)$

VerSAILLE

Mosaic

Evaluation

invariant $\land \neg monitor \leftarrow VerSAILLE$ $(\alpha_{ctrl}; \alpha_{plant})^*$ Safe

Motivation 00

Preliminaries

Contribution

 $\alpha_{q} := \operatorname{mirror}(q)$

VerSAILLE

Mosaic

Evaluation

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Assume:

- g is a (piece-wise Noetherian) neural network
- $C \equiv (\phi \rightarrow [(\alpha_{ctrl}; \alpha_{ctrl})^*] \psi)$ is a valid $d\mathcal{L}$ contract
- controller is a controller monitor (ModelPlex)
- invariant is an inductive invariant

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Assume:

- g is a (piece-wise Noetherian) neural network
- $C \equiv (\phi \rightarrow [(\alpha_{\textit{ctrl}}; \alpha_{\textit{ctrl}})^*] \psi)$ is a valid $d\mathcal{L}$ contract
- controller is a controller monitor (ModelPlex)
- invariant is an inductive invariant

If an NN Verifier returns unsat for the query $p \equiv (invariant \land \neg controller)$ on g

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Assume:

- g is a (piece-wise Noetherian) neural network
- $C \equiv (\phi \rightarrow [(\alpha_{\textit{ctrl}}; \alpha_{\textit{ctrl}})^*] \psi)$ is a valid $d\mathcal{L}$ contract
- controller is a controller monitor (ModelPlex)
- invariant is an inductive invariant

If an NN Verifier returns unsat for the query $p \equiv \text{(invariant } \land \neg \text{controller)}$ on gThen $\phi \rightarrow \left[(\alpha_g; \alpha_{ctrl})^* \right] \psi$ is valid.

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Assume:

- g is a (piece-wise Noetherian) neural network
- $C \equiv (\phi \rightarrow [(\alpha_{\textit{ctrl}}; \alpha_{\textit{ctrl}})^*] \psi)$ is a valid $d\mathcal{L}$ contract
- controller is a controller monitor (ModelPlex)
- invariant is an inductive invariant

If an NN Verifier returns unsat for the query $p \equiv \text{(invariant} \land \neg \text{controller)}$ on gThen $\phi \rightarrow \left[\left(\alpha_{g}; \alpha_{ctrl}\right)^{*}\right] \psi$ is valid.

How can we verify the property invariant $\land \neg$ controller in practice?

Mot	ivatio
00	

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Evaluation: Overview

 Implementation of Mosaic for ReLU NNs in Julia Uses NNEnum. PicoSAT and Z3 Bak and Tran 2022 Biere 2008 Jovanovic and Moura 2012

- Application of VerSAILLE & Mosaic to multiple case studies:
 - Adaptive Cruise Control and Zeppelin steering
 - Vertical Airborne Collision Avoidance
- Comparison to State of the Art tools

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation •oo

Evaluation: Overview

 Implementation of Mosaic for ReLU NNs in Julia Uses NNEnum, PicoSAT and Z3 Bak and Tran 2022 Biere 2008 Jovanovic and Moura 2012

- Application of VerSAILLE & Mosaic to multiple case studies:
 - Adaptive Cruise Control and Zeppelin steering
 - Vertical Airborne Collision Avoidance
- Comparison to State of the Art tools

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation •oo

Evaluation: Overview

 Implementation of Mosaic for ReLU NNs in Julia Uses NNEnum, PicoSAT and Z3 Bak and Tran 2022 Biere 2008 Jovanovic and Moura 2012

- Application of VerSAILLE & Mosaic to multiple case studies:
 - Adaptive Cruise Control and Zeppelin steering
 - Vertical Airborne Collision Avoidance
- Comparison to State of the Art tools

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation •oo

Evaluation: Vertical Airborne Collision Avoidance

- NNs by Julian and Kochenderfer 2019
- $d\mathcal{L}$ formalization by Jeannin et al. 2017: Control Envelope and Loop Invariants
- This Analysis:
 - Exclude Clear-of-Conflict
 - Intruder in Level Flight
- Choice of NN dependent on prior state
 - ⇒ specialize invariant to current advisory

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation

Evaluation: Vertical Airborne Collision Avoidance

- NNs by Julian and Kochenderfer 2019
- $d\mathcal{L}$ formalization by Jeannin et al. 2017: Control Envelope and Loop Invariants
- This Analysis:

in unsafe areas

Exclude Clear-of-Conflict	Prev. Adv.	Status	Time	CE regions	First CE
 Intruder in Level Flight 	DNC	safe	0.35 h	_	_
■ Choice of NN dependent on prior state	DND	safe	0.28 h	-	_
·	DES1500	unsafe	5.45 h	49,428	0.04 h
\Rightarrow specialize invariant to current advisory	CL1500	unsafe	5.18 h	34,658	0.08 h
	SDES1500	unsafe	4.05 h	5,360	0.97 h
Exhaustive characterization of unsafe	SCL1500	unsafe	4.89 h	11,323	0.36 h
areas	SDES2500	unsafe	3.66 h	5,259	1.39 h
Heuristic search for unsafe trajectories	SCL2500	unsafe	4.45 h	7,846	0.53 h

1	Notiv	vati	10
(00		

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation ○●○

Vertical Airborne Collision Avoidance: Trajectories

Summary

VerSAILLE

Infinite-time safety based on $d\mathcal{L}$ control envelopes

Mosaic

Nonlinear Properties with Arbitrary Propositional Structure

Case Study: Vertical CAS

Exhaustive characterization of unsafe regions

Future Work

- Further Case Studies
- Proof Certificates
- Further Engineering

Paper arXiv:2402.10998

GitHub (Tool) samysweb/NCubeV

Motivation

Preliminaries

Contribution

VerSAILLE

Mosaic

Evaluation 000

References I

- [1] Stanley Bak and Hoang-Dung Tran. "Neural Network Compression of ACAS Xu Early Prototype Is Unsafe: Closed-Loop Verification Through Quantized State Backreachability". In: NASA Formal Methods 14th International Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings. Ed. by Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez. Vol. 13260. LNCS. Springer, 2022, pp. 280–298. DOI: 10.1007/978-3-031-06773-0_15.
- [2] Armin Biere. "PicoSAT Essentials". In: *J. Satisf. Boolean Model. Comput.* 4.2-4 (2008), pp. 75–97. DOI: 10.3233/sat190039.
- [3] Jean-Baptiste Jeannin et al. "A formally verified hybrid system for safe advisories in the next-generation airborne collision avoidance system". In: *Int. J. Softw. Tools Technol. Transf.* 19.6 (2017), pp. 717–741. DOI: 10.1007/s10009-016-0434-1.
- [4] Dejan Jovanovic and Leonardo de Moura. "Solving non-linear arithmetic". In: *ACM Commun. Comput. Algebra* 46.3/4 (2012), pp. 104–105. DOI: 10.1145/2429135.2429155.

References

Backup ooooooo

References II

- [5] Kyle D. Julian and Mykel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). 2019, pp. 1–10. DOI: 10.1109/DASC43569.2019.9081748.
- [6] Stefan Mitsch and André Platzer. "ModelPlex: verified runtime validation of verified cyber-physical system models". In: Formal Methods Syst. Des. 49.1-2 (2016), pp. 33–74. DOI: 10.1007/s10703-016-0241-z. URL: https://doi.org/10.1007/s10703-016-0241-z.
- [7] André Platzer. "Differential Dynamic Logic for Hybrid Systems". In: J. Autom. Reason. 41.2 (2008), pp. 143–189. DOI: 10.1007/s10817-008-9103-8. URL: https://doi.org/10.1007/s10817-008-9103-8.
- [8] Chelsea Sidrane et al. "OVERT: An algorithm for safety verification of neural network control policies for nonlinear systems". In: *Journal of Machine Learning Research* 23.117 (2022), pp. 1–45.

References III

[9] Samuel Teuber, Stefan Mitsch, and André Platzer. Provably Safe Neural Network Controllers via Differential Dynamic Logic. 2024. arXiv: 2402.10998 [eess.SY]. URL: https://arxiv.org/abs/2402.10998.

Backup

References

Backup •000000

Complexity of Mosaic

We assume:

- An NN with N ReLU nodes
- A property with M atomic constraints and I input variables

Then we get the following complexities:

- M atomic constraints: O (2^M) NNV queries
- Naive encoding via SMT for N ReLU nodes: $\mathcal{O}\left(2^{2^{N+I}}\right)$
- With Mosaic: $\mathcal{O}\left(2^{N+2^{l}}\right)$

Overall:

$$\mathcal{O}\left(2^{M+2^{N+1}}\right)$$
 vs. $\mathcal{O}\left(2^{M+N+2^{1}}\right)$

Karlsruhe Institute of Technolog

Evaluation: Vertical Airborne Collision Avoidance

Prev. Adv.	Status	Time	CE regions	First CE
DNC	safe	0.35 h	_	_
DND	safe	0.28 h		
DES1500	unsafe	5.45 h	49,428	0.04 h
CL1500	unsafe	5.18 h	34,658	0.08 h
SDES1500	unsafe	4.05 h	5,360	0.97 h
SCL1500	unsafe	4.89 h	11,323	0.36 h
SDES2500	unsafe	3.66 h	5,259	1.39 h
SCL2500	unsafe	4.45 h	7,846	0.53 h

Evaluated on two Adaptive Cruise Control properties (one satisfiable, one unsatisfiable). NNs with 256 ReLU nodes.

Tool	ACC_Large		ACC_Large retrained	
	Status	Time	Status	Time
Mathematica	MO	_	MO	_
dReal	TO	_	TO	_
Z3	unknown	510s	unknown	1793s
Z3++	unknown	2550s	unknown	2269s
cvc5	TO	_	TO	_
MathSAT	TO	_	TO	_
ours	sat	87s	unsat	124s

Evaluation: Comparison with Closed-Loop Techniques

Attempt to prove bounded safety on part of Adaptive Cruise Control NN:

Tool	Nonlinearities	Evaluated	Time (s)	Share of	Result
		Configurations		State Space	
NNV	no	4	711	0.009%	safe for 0.1s
JuliaReach	no	4	_	0.009%	unknown
CORA	yes	10	_	0.009%	unknown
POLAR	poly. Zono.	12	_	0.009%	unknown
ours	polynomial	1	124	100.000%	safe for ∞

Attempt to prove bounded safety on part of Adaptive Cruise Control NN:

Tool	Nonlinearities	Evaluated	Time (s)	Share of	Result
		Configurations		State Space	
NNV	no	4	711	0.009%	safe for 0.1s
JuliaReach	no	4	_	0.009%	unknown
CORA	yes	10	_	0.009%	unknown
POLAR	poly. Zono.	12	_	0.009%	unknown
ours	polynomial	1	124	100.000%	safe for ∞

Infinte-time horizon: k-induction?

Conceptual comparison to NNV

- Attempted to show invariance w.r.t. nonlinear loop invariant
- Overapproximation can lead to wrong results!

References

Backup oooo●oo

- DNNV: No support for nonlinear properties
- Comparing total/feasible propositional conjunctions

Property	# Conjunctions	# Queries	# Feasible Conjunctions	# SMT calls
ACC	2.4k	20	86	261
ACC (Fallback)	5.1k	15	72	235
ACAS (DNC)	117.5M	1.7k	9.9k	11.4k
ACAS (DND)	88.9M	1.8k	10.4k	12.0k
ACAS (DES1500)	451.3B	12.5k	58.8k	66.4k
ACAS (CLI1500)	374.4B	13.1k	62.5k	70.4k
ACAS (SDES1500)	9.1T	18.6k	64.1k	75.8k
ACAS (SCLI1500)	18.2T	21.8k	76.0k	88.5k
ACAS (SDES2500)	39.0T	19.0k	66.7k	78.5k
ACAS (SCLI2500)	19.4T	18.6k	67.7k	79.8k

References

Backup ooooo•o

Evaluation: Adaptive Cruise Control

References

Backup 000000