Nombre: Natalia Opazo

1er Control MGR 622. "Evaluación de recursos acuáticos" Diplomado en Evaluación de Recursos Pesqueros

Considerando el archivo de datos asignado en:

https://docs.google.com/spreadsheets/d/1aBkFS65_B4dH50NYrVMyAwPoXqbZFr7F/edit?usp=sharing&ouid=111551428972597948077&rtpof=true&sd=true, ajuste el modelo de biomasa dinámica de Pella y Tomlinson considerando valores de p=1e-3, 1.0 y 3.0. Complete la tabla

p	1e-3	1	3
K	2732.97	2594.131	2479.113
r	0.3228347	0.5661019	1.081457
Sigma	0.4520446	0.4568287	0.4992885
RMS	324.4169	367.1356	422.2393
Brms	1005.906	1297.065	1561.743
Frms	0.3225122	0.283051	0.2703641
Log-verosimilitud	26.35727	26.62028	27.96508

Preguntas:

1. ¿Son los tres modelos igualmente probables? Justifique su elección del mejor modelo.

Considerando el mejor modelo:

2. Comente brevemente respecto del ajuste del modelo y de sus residuales. Considere las gráficas apropiadas.

Figura 1: Caption

Figura 2: Caption

Figura 3: Caption

3. Explique las causas de los cambios registrados en la población y establezca su diagnóstico. Considere solo las figuras necesarias.

Figura 4: Caption

B/Bmsy= 0.64 F/Fmsy= 1.41

Figura 5: Caption

Figura 6: Caption

B/Bmsy= 0.48 F/Fmsy= 1.66

Figura 7: Caption

Figura 8: Caption

B/Bmsy= 0.4 F/Fmsy= 1.71

Figura 9: Caption

4. Calcule el nivel de captura que permitiría mantener una biomasa del $40\,\%$ de la biomasa virginal en el largo plazo. Explique el procedimiento de cálculo y señale dicho valor en la gráfica respectiva.

Figura 10: Caption

$$G1 = r/p * B1 * (1 - (B1/K1)^p)$$
(1)

$$40\%B0 = 0.4 * K1 \tag{2}$$

$$RMS40\%B0 = r/p * Brms1_1 * (1 - (Brms1_1/K1)^p)$$
(3)

- p=1e-3 RMS40 %B0=323.2283
- p=1 RMS40 %B0=352.4502
- p=3 RMS40 %B0=334.5956

5. Proyecte la biomasa al año 21 y calcule la captura que permitiría mantener a la población estable en este valor de biomasa. Compare con la Captura Biológicamente Aceptable que permitiría llevar a la biomasa al Brms (CBA = Frms*B). Comente sobre las implicancias para la pesquería establecer dicha CBA.

$$Biom[21] = max(c(Biom[20] + r/rho * Biom[20] * (1 - (Biom[20]/K)^rho) - Y[20], 0, 1))$$
(4)

Figura 11: Caption

■ p=1e-3 Biom[21]=648.6148 RMSB[21]=300.958

- p=1 Biom[21]=593.8721 RMSB[21]=259.228
- p=3 Biom[21]=559.1106 RMSB[21]=199.2393
- 6. Calcule el nivel de reducción del esfuerzo de pesca que permita recuperar a la población al valor Brms. Explique su procedimiento y comente respecto de lo obtenido en 5.

Anexos

Cuadro 1: Caption

	Año	CPUEobs	CPUEpred	Capturas	Biomasa	F	Produccion	B_Bmsy	F_Fmsy
1	1	2.42	2.63	0	2733	0	0	2.72	0
2	2	3.66	2.63	86.14021	2733	0.03	0	2.72	0.1
3	3	3.88	2.55	242.64	2647	0.09	27	2.63	0.28
4	4	1.52	2.34	258.11201	2432	0.11	92	2.42	0.33
5	5	1.84	2.18	999.86165	2265	0.44	137	2.25	1.37
6	6	0.8	1.35	760.42097	1403	0.54	302	1.39	1.68
7	7	0.7	0.91	468.50413	944	0.5	324	0.94	1.54
8	8	1.2	0.77	425.35434	799	0.53	317	0.79	1.65
9	9	0.59	0.66	378.27127	691	0.55	307	0.69	1.7
10	10	0.55	0.6	178.79097	619	0.29	297	0.62	0.9
11	11	0.71	0.71	376.66054	737	0.51	312	0.73	1.58
12	12	0.99	0.65	227.23875	672	0.34	304	0.67	1.05
13	13	1.23	0.72	401.44091	749	0.54	313	0.74	1.66
14	14	0.47	0.64	424.64304	660	0.64	303	0.66	1.99
15	15	0.5	0.52	273.72956	538	0.51	282	0.54	1.58
16	16	0.36	0.53	281.94292	547	0.52	284	0.54	1.6
17	17	0.45	0.53	181.80895	549	0.33	284	0.55	1.03
18	18	1.02	0.63	312.78066	651	0.48	301	0.65	1.49
19	19	0.56	0.62	300.11431	640	0.47	300	0.64	1.46
20	20	0.59	0.61	290	639	0.45	300	0.64	1.41

Cuadro 2: Caption

Año	CPUEobs	CPUEpred	Capturas	Biomasa	\mathbf{F}	Produccion	B_Bmsy	F_Fmsy
1	2.42	2.39	0	2594	0	0	2	0
2	3.66	2.39	86.14021	2594	0.03	0	2	0.12
3	3.88	2.31	242.64	2508	0.1	47	1.93	0.34
4	1.52	2.13	258.11201	2312	0.11	142	1.78	0.39
5	1.84	2.02	999.86165	2197	0.46	191	1.69	1.61
6	0.8	1.28	760.42097	1387	0.55	365	1.07	1.94
7	0.7	0.91	468.50413	992	0.47	347	0.76	1.67
8	1.2	0.8	425.35434	871	0.49	327	0.67	1.73
9	0.59	0.71	378.27127	773	0.49	307	0.6	1.73
10	0.55	0.65	178.79097	701	0.25	290	0.54	0.9
11	0.71	0.75	376.66054	812	0.46	316	0.63	1.64
12	0.99	0.69	227.23875	752	0.3	302	0.58	1.07
13	1.23	0.76	401.44091	827	0.49	319	0.64	1.72
14	0.47	0.68	424.64304	744	0.57	300	0.57	2.02
15	0.5	0.57	273.72956	620	0.44	267	0.48	1.56
16	0.36	0.56	281.94292	613	0.46	265	0.47	1.63
17	0.45	0.55	181.80895	596	0.31	260	0.46	1.08
18	1.02	0.62	312.78066	674	0.46	282	0.52	1.64
19	0.56	0.59	300.11431	644	0.47	274	0.5	1.65
20	0.59	0.57	290	618	0.47	266	0.48	1.66

Cuadro 3: Caption

	Año	CPUEobs	CPUEpred	Capturas	Biomasa	F	Produccion	B_Bmsy	F_Fmsy
1	1	2.42	2.11	0	2479	0	0	1.59	0
2	2	3.66	2.11	86.14021	2479	0.03	0	1.59	0.13
3	3	3.88	2.04	242.64	2393	0.1	87	1.53	0.38
4	4	1.52	1.91	258.11201	2237	0.12	214	1.43	0.43
5	5	1.84	1.87	999.86165	2193	0.46	243	1.4	1.69
6	6	0.8	1.22	760.42097	1436	0.53	417	0.92	1.96
7	7	0.7	0.93	468.50413	1093	0.43	360	0.7	1.59
8	8	1.2	0.84	425.35434	985	0.43	333	0.63	1.6
9	9	0.59	0.76	378.27127	892	0.42	307	0.57	1.57
10	10	0.55	0.7	178.79097	821	0.22	285	0.53	0.81
11	11	0.71	0.79	376.66054	927	0.41	317	0.59	1.5
12	12	0.99	0.74	227.23875	867	0.26	299	0.56	0.97
13	13	1.23	0.8	401.44091	939	0.43	320	0.6	1.58
14	14	0.47	0.73	424.64304	858	0.5	296	0.55	1.83
15	15	0.5	0.62	273.72956	729	0.38	256	0.47	1.39
16	16	0.36	0.61	281.94292	712	0.4	251	0.46	1.47
17	17	0.45	0.58	181.80895	680	0.27	240	0.44	0.99
18	18	1.02	0.63	312.78066	739	0.42	259	0.47	1.57
19	19	0.56	0.58	300.11431	685	0.44	242	0.44	1.62
20	20	0.59	0.53	290	627	0.46	222	0.4	1.71