

20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea

🛮 (+82) 10-4073-3022 | 🗷 yjeong@changwon.ac.kr | 🏕 youngung.github.io | 🖸 youngung | 😾 youngung.jeong

Education

POSTECH, Graduate Institute of Ferrous Technology

Pohang, Republic of Korea

РнD

Mar. 2010 - Feb. 2014

POSTECH, Graduate Institute of Ferrous Technology

Pohang, Republic of Korea

MS

Mar. 2008 - Feb. 2010

Hanyang University, Materials Science and Engineering

Seoul, Republic of Korea

B2

Mar. 2001 - Feb. 2008

Experience

Changwon National University

Changwon, Republic of Korea

Assistant professor Mar. 2017, - present

POSTECH Pohana, Republic of Korea

POST DOCTORATE RESEARCHER

Dec. 2016, - Feb. 2017

• Crystal plasticity modeling and simulations to predict bauschinger effects

Clemson University

Greenville, SC, USA Mar. 2016, - Nov. 2016

RESEARCH SCIENTIST

- Formability predictions using VPSC-FLD
- Abaqus UMAT development

Gaithersburg, MD, USA

POST DOCTORATE RESEARCHER

Jan. 2014, - Feb. 2016

- · Conducted a series of experiments to obtain multiaxial constitutive behavior of an interstitial-free steel
- Measured multiaxial flow stress using X-ray diffraction for metal sheets subjected to various multiaxial loading conditions (DiffStress package)
- Performed the strain analysis using digital image correlation technique to determine the forming limit diagram of the IF steel
- · Developed the VPSC-FLD model to predict forming limit diagram of engineering metal sheets (VPSC-FLD package)
- Developed VPSC-based model to link with continuum-scale phenomenological model (VPSC-RGVB-YLD forked from VPSC-FLD)

Los Alamos National Laboratory

Los Alamos, NM, USA

RESEARCH AFFILIATE

Apr. 2012, - Sep. 2012

Leading role in implementing a phase transformation kinetics model into Elasto-ViscoPlastic Self-Consistent crystal plasticity model

National Institute of Standards and Technology

National Institute of Standards and Technology

Gaithersburg, MD, USA

GUEST RESEARCHER

June. 2011, - Dec. 2011

 $Conducted\ experiments\ to\ obtain\ multiaxial\ stress-strain\ measurements\ using\ digital\ image\ correlation\ and\ in-situ\ X-ray\ technique$

Skills_

Programming Python, Fortran, Bash script, C/C++, LaTeX, Matlab

Languages Korean, English

Experimental Mechanics Uniaxial tension, shear, hydraulic bulge test, biaxial tests using cruciform piece and Marciniak

Digital Image Correlation (DIC) VIC3D, DICE

Diffraction experiments Pole figure, crystallographic texture, phase fraction, residual stress measurements

Computer skills Linux, Git, Abagus (UMAT and Python script), Parallel computation

Constutitive modelling Macro-mechanical description for anisotropic metals using anisotropic yield functions

Crystal plasticity Viscoplastic self-consistent (VPSC) and Elasto-viscoplastic self-consistent crystal plasticity models

Journal Articles_

An efficient elasto-visco-plastic self-consistent formulation: Application to steel subjected to loading path changes

Y. <u>Jeong</u>*, C N. Tomé

Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading

Y. Jeong*, D Steglich

Extension of the VPSC model to account for elasto-visco-plastic behavior using a perturbed viscoplastic approach

Y. JEONG*, C. N. TOMÉ

Superior tensile fracture strength of hot isostatically pressed TiC-steel metallic composite fabricated by a novel infiltration

S. J. Park, Y. Jeong, C. W. Kim, J. H. Lee, S. C. Cho, S. B. Lee, S. K. Lee, D. H. Kim, H. U. Hong*

Enhancement in viscoplastic self-consistent FLD prediction model and its application for austenitic and ferritic stainless steels

Y. JEONG*, TIMO MANNINEN

A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes

H. Kim, F Barlat, Y. Lee, S. Zaman, CS Lee, Y. Jeong*

A comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios

Y. Jeong*, F. Barlat, C. Tomé, W. Wen

Uncertainty in flow stress measurements using X-ray diffraction for sheet metals subjected to large plastic deformations

Y. Jeong*, T. Gnäupel-Herold, M. Iadicola, A. Creuziger

Texture-based forming limit prediction for Mg sheet alloys ZE10 and AZ31

D. Steglich, <u>Y. Jeong</u>*

Forming limit prediction using a self-consistent crystal plasticity framework: a case study for BCC fiber textures

Multiaxial constitutive behavior of an interstitial-free steel: measurements through

Y. Jeong*, M.-S. Pham, M. Iadicola, A. Creuziger, T. Foecke

X-ray and digital image correlation

Y. Jeong*, M. Iadicola, T. Gnäupel-Herold, A. Creuziger

Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

H. Wang*, <u>Y. Jeong</u>, B. Clausen, Y. Liu, R. J. McCabe, F. Barlat, C. N. Tomé

Evaluation of biaxial flow stress based on Elasto-Viscoplastic Self-Consistent analysis of X-ray Diffraction Measurements

Y. Jeong, T. Gnäupel-Herold, F. Barlat, M. Iadicola, A. Creuziger, M.-G. Lee*

International Journal of Mechanical
Sciences

Accepted for publication

Modelling and Simulation in Materials Science and Engineering

Vol. 27(8) 085013, 2019

Materials Science and Engineering:

Vol. 764(9), 2019

Metals and Materials International

Vol. 25(6) pp1548-1563, 2019

International Journal of Plasticity

Vol. 111 p85-106, 2018

International Journal of Plasticity

Vol. 93 p212-228, 2017

Journal of Applied Crystallography

Vol. 49 p1991-2004, 2016

International Journal of Mechanical Sciences

Vol. 117 p102-114, 2016

Modelling and Simulation in Materials Science and Engineering

Vol. 24(5), 055002 (21 pp), 2016

Acta Materialia

Vol. 112 p84-93, 2016

Materials Science and Engineering A

Vol. 649 p174-183, 2016

International Journal of Plasticity

Vol. 66 p103-118, 2015

Application of crystal plasticity to an austenitic stainless steel

Y. Jeong*, F. Barlat, M.-G. Lee

Modelling and Simulation in Materials Science and Engineering Vol. 20 p024009, 2012

Biaxial Deformation Behavior of AZ31 Magnesium Alloy: Crystal-Plasticity-Based Prediction and Experimental Validation

D. Steglich*, Y. Jeong, M. O. Andar, T. Kuwabara

International Journal of Solids and Structure

Vol. 49(25) p3551-3561, 2012

Conference proceedings_

Formability predictions and measurement of 316L stainless steel using self-consistent crystal plasticity

Y. JEONG*, TIMO MANNINEN

Series Vol. 150673, 2018

Forming limits of dual phase steels using crystal plasticity in conjunction with MK approach

Y. JEONG*, S. PANICH

Procedia Manufacturing

Vol. 15, 2018

Texture-based formability prediction for Mg wrought alloys ZE10 and AZ31 D. Steglich Y. Jeong

D. STEGLICH I. SEONG

AIP Conference Proceedings Vol. 1896, 020001, 2017

Journal of Physics: Conference

Advances in Constitutive Modeling of Plasticity for Forming Applications

F. Barlat, <u>Y. Jeong</u>, J. Ha, C Tomé, Myoung-Gyu Lee, W. Wen

Key Engineering Materials

Vol. 725, p3-14, 2017

Validation of Homogeneous Anisotropic Hardening Approach Based on Crystal Plasticity

<u>Y. Jeong</u>, F. Barlat, C. Tomé, W. Wen

AIP Conference Proceedings Vol. 1769, 160001, 2016

Forming limit predictions using a self-consistent crystal plasticity model: a parametric study

Y. JEONG, M.-S. PHAM, M. IADICOLA, A. CREUZIGER

Key Engineering Materials

Vol. 651 p193-198, 2015

Microstructural and crystallographic aspects of yield surface evolution

Y. JEONG, F. BARLAT, M.-G. LEE

Materials Science Forum Vol. 702 p224-228, 2011

Crystal Plasticity Predictions of Forward-Reverse Simple Shear Flow Stress

Y. JEONG, F. BARLAT, M.-G. LEE

Materials Science Forum

Vol. 702 p204-207, 2011

Synergestic Activities _____

2018- **Editorial board**, Korean J. Met. Mater.

S.Korea

Review services, IJP, JALCOM, MMI, JOM, MMTA, MST, IJFO, MSEA ...