Siliciclastic sedimentary rocks

Diagenesis

Introduction

- Diagenesis: All the <u>chemical</u>, <u>physical</u>, and <u>biologic changes</u> undergone by a sediment after initial deposition, and during and after its <u>lithification</u>
 - Exclusive of weathering and metamorphism

Burial diagenesis

Stages of diagenesis

- Early (shallow) diagenesis (Eogenesis)
 - Near-surface environment (1 -100 m)
 - Under the conditions of the depositional env.
 - -0.1-1 Ma
- Deep burial diagenesis (Mesogenesis)
 - Increasing temp. and pressure
 - Changed pore-water chemistry
- Uplift diagenesis (Telogenesis)
 - Bring back the rocks into contact with meteoric waters

Controlling factors

- Initial controls:
 - The depositional environment
 - Climate
 - Composition and texture
- Pore-fluid chemistry and migrations
 - Salinity, pH, Eh, and hydraulic conductivity
- Burial history
 - Depth of burial
 - Timing of uplift

Near-surface (eogenetic) environment

Marine

- Begins when pore waters are modified
 - Organic matters: bacterial oxydation (dissolution)
 - Clay minerals, quartz and feldspar overgrowths
 - Carbonate cement
 - Pyrite cement (under reducing, low-oxygen, conditions)
 - Iron oxides in oxygenated pore waters (e.g. red clays on the deep ocean floor)

Continental hot and humid

- Pore waters are acidic (bacterial breakdown of organic matter)
 - Quartz overgrowths and kaolinite
 - Feldspar is dissolved

Continental semi-arid/arid

- Pore waters are often oxidizing and leaching is less important
 - Formation of red beds (from dissolution of mafic minerals) and calcretes
- Gypsum cementation (desert roses)
- Alteration of volcanic grains to zeolites

Silica cementation

Quartz overgrowth

Origin of silica:

- 1) Pressure solution
- 2) Upward migration of SiO₂-rich solutions
- 3) Dissolution of silica dust, other silicates, biogenic silica Siliciceous skeletons → higher solubility than Qtz

4) Groundwater

Opal-cemented sandstone

Under light microscope

Cathodoluminescence microscope

Megaquartz

Carbonate cementation

- Poikilotopic crystals (commonly the 1st cement)
 - Evaporation of vadose gw
- Sparry calcite cement
- Can postdate quartz overgrowths and authigenic kaolinite
 - As a result of increase pH and/or Temp.

Poikilotopic calcite cement Large crystals enclosing grains

Sparry calcite cement Crystal >10 microns

Partially cemented sediments

Glacial sediments (e.g. till, glacifluvial gravel) In Canada locally show evidence of early diagenesis (e.g. vadose zone carbonate cementation)

Feldspar authigenesis

- Feldspar overgrowths
 - Alkaline pore waters rich in Na⁺ or K⁺, Al³⁺ and Si⁴⁺
 - Shallow depths of burial

Clay mineral authigenesis

Kaolinite cemented sandstone

Hematite cementation (red beds)

Hydrated iron oxide which "ages" to hematite

Early pigmentation

Red beds...

Îles-de-la-Madeleine

Mesogenetic environment

- Increasing pressure and temperature
 - Silicate minerals dissolve
 - Carbonates precipitate (if pH is not too low)
- Pore waters become more saline
 - High pore-fluid pressures
- Many grains become unstable
- Changes in clay mineralogy
 - − Smectite \rightarrow illite (55-200 $^{\circ}$ C) (shale dewatering)
- Pressure dissolution
- Mineral replacement
- Secondary porosity
 - Quartz and feldspars by carbonate minerals
 - Feldspars by clay minerals

Compaction and pressure dissolution

Compaction

- Dewatering
- Closer packing of grains (↓ porosity)
- Bending of weak grain + plastic deformation
- Pressure dissolution at points of contact

Bended micas and concavo-convex contacts

Deformed shale clasts

Stylolite in a sandstone

Compaction,
Pressure-solution texture

Fractures due to compaction

Burial compaction and cementation

Telogenetic environment

- Climate is again important
 - Semi-arid → oxydation of sulphides and iron carbonates (lead to goethite-limonite)
 - More humid → leaching of feldspars, carbonates and heavy minerals
- Porosity 1