Chapter 14-Big-O

Saturday, January 7, 2023 10:35 PM

Program Runtime and Asymptotic Relationships:

To determine the efficiency of a program, we need to model the runtime of the program. However, we are lazy, so we just chuck a big value at it and see its behavior.

To compare 2 function's efficiency, we take the ratio of the 2 functions.

Asymptotically similar: $f(n) \approx g(n)$ if and only if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, where c is a real number.

Asymptotically smaller:
$$f(n) \ll g(n)$$
 if and only if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

(Note that not all functions can be evaluated this way, since some functions will oscillate and others just don't exist when put into a ratio, for those there are other methods)

Primitive Functions Growth Rate:

Higher-order polynomials grow faster than lower-order ones:

$$n^2 \ll n^5$$

Exponentials grow faster than normal high order polynomials:

$$n^k \ll 2^n$$

The base of the exponent also matters:

$$2^n \ll 3^n$$

A tricky one that's not too obvious:

$$2^n \ll n!$$

(since they both have n terms, but n! have bigger terms multiplied together)

Slow growing functions are better for computer programs. (The log function, for example)

Algorithms for sorting a list of numbers have running times that grow like $n \log n$. We know from the above that $1 \ll \log n \ll n$. We can multiply this equation by n because factors common to f and g cancel out in our definition of \ll . So we have $n \ll n \log n \ll n^2$.

Dominant Term Method:

Most of the time we can just manipulate relationships at a high level and look at the primitive functions (the dominant expressions), and ignore the parts that grow slower.

(Note that a constant multiple difference matters)

Big-O:

For messy functions, we use big O to compare their running times. Instead of a simple ratio, we say that a function f(n) is O(g(n)) iff

There are positive real numbers c and k such that $0 \le f(n) \le cg(n)$ for every $n \ge k$.

In most cases, g(n) is a simple reference function, and this helps us understand how slow/fast the function in question f(n) runs.

(Note that the function f can have the same/similar dominant term, regardless of a constant multiple difference, and the big o relationship still holds)

The Equivalence Relationship:

When g(n) is O(f(n)) and f(n) is O(g(n)), then f(n) and g(n) are forced to remain close together as n goes to infinity. In this case, we say that f(n) is $\Theta(g(n))$ (and also g(n) is $\Theta(f(n))$). The Θ relationship is an equivalence relation on this same set of functions. So, for example, the equivalence class $[n^2]$ contains functions such as n^2 , $57n^2 - 301$, $2n^2 + n + 2$, and so forth.

Showing the Big-O Relationship:

To show that a big-O relationship holds, we just need to find an n and k that work for the 2 functions.

(Note that you can pick **any** *n* and *k*, as long as it works)

For example, to show that 3n is $O(n^2)$, we can pick c=3 and k=1. Then $3n \le cn^2$ for every $n \ge k$ translates into $3n \le 3n^2$ for every $n \ge 1$, which is clearly true. But we could have also picked c=100 and k=100.

(if you don't want to use overkill values every time, or if you don't know if a value is overkill enough, then pick a c value first, then plug it into the inequality. Then you can simplify the equation and start plugging and chugging)

Proving a Primitive Function Relationship:

Claim 50 For every positive integer $n \geq 4$, $\frac{2^n}{n!} < (\frac{1}{2})^{n-4}$

Proof: Suppose that n is an integer and $n \ge 4$. We'll prove that $\frac{2^n}{n!} < (\frac{1}{2})^{n-4}$ using induction on n.

Base: n = 4. [show that the formula works for n = 4]

Induction: Suppose that $\frac{2^n}{n!} < (\frac{1}{2})^{n-4}$ holds for $n = 4, 5, \dots, k$. And, in particular, $\frac{2^k}{k!} < (\frac{1}{2})^{k-4}$

We need to show that the claim holds for n=k+1, i.e. that $\frac{2^{k+1}}{(k+1)!} < (\frac{1}{2})^{k-3}$

(Note that when it comes to proving inequalities, you should write out <u>explicitly</u> the full inductive hypothesis and conclusion, like how both the assumed inequality and inequality to be proved are written out above)

Induction: Suppose that $\frac{2^n}{n!} < (\frac{1}{2})^{n-4}$ holds for $n = 4, 5, \dots, k$.

Since $k \ge 4$, $\frac{2}{k+1} < \frac{1}{2}$. So $\frac{2^{k+1}}{(k+1)!} < \frac{1}{2} \cdot \frac{2^k}{k!}$.

By our inductive hypothesis $\frac{2^k}{k!} < (\frac{1}{2})^{k-4}$. So $\frac{1}{2} \cdot \frac{2^k}{k!} < (\frac{1}{2})^{k-3}$.

So then we have $\frac{2^{k+1}}{(k+1)!} < \frac{1}{2} \cdot \frac{2^k}{k!} < (\frac{1}{2})^{k-3}$ which is what we needed to show.