Characterizing Errors and Uncertainties in NEMD Simulations of Phonon Transport

Manav Vohra[†], Sankaran Mahadevan[†]

Collaborators: Seungha Shin§, Ali Y. Nobakht§

†Vanderbilt University §University of Tennessee, Knoxville

April 10, 2018

Non-Equilibrium MD

- Widely used to study thermal (phonon) transport in non-metallic systems (C,Si,Ge).
- System subjected to a temperature gradient using thermostats.
- Steady-state thermal energy exchange between the thermostats is used in Fourier's law to estimate bulk thermal conductivity (κ).
- Estimates are uncertain and severely under-predicted.
 - ► Simulation length-scales ≪ phonon mean free path.
 - ► Thermostats reduce correlation b/w vibration modes.

Sources of Uncertainty

- Bulk thermal conductivity is size-dependent.
- Variability in applied thermal gradient (Kapitza effect).
- Choice of the inter-atomic potential.
- Nominal estimates of the potential parameters.

SPECIFIC RESEARCH GOALS

- Quantify discrepancy in κ between predictions and data.
 - ▶ Construct a response surface for $\kappa(s, \frac{d\theta}{dx})$.
- Perform sensitivity analysis of the potential parameters.
 - ► Estimate derivative-based sensitivity measures (DGSM).
- Construct a reduced order surrogate for κ using sparse NEMD predictions.
 - ► Use the surrogate for forward propagation of uncertainty, and global sensitivity analysis.
- Calibrate the important parameters in a Bayesian setting.

PROBLEM SET-UP

Lattice Constant, a (Å)	5.43
Width, Height (Å)	22 <i>a</i>
Δt (ps)	0.0005
Boundary Condition	Periodic
Lattice Structure	Diamond
Inter-atomic Potential	Stillinger-Weber

STAGES:

- OBSERVABLE: Avg. energy exchange b/w thermostats (q)
- QoI: Bulk thermal conductivity (κ)

$$\kappa = \frac{q}{\left|\frac{dT}{dx}\right|}$$

 Appropriate selection of width, height, and simulation-time was ensured.

RESPONSE SURFACE: DISCREPANCY

■ PC representation of the discrepancy, ϵ_d :

$$\epsilon_{ extsf{d}} pprox \epsilon_{ extsf{d}}^{ extsf{PCE}} = \sum_{m{k} \in \mathcal{I}} c_{m{k}}(T) \Psi_{m{k}}(m{\xi}(m{ heta}))$$

