7. Лема за разрастването

Теорема. Нека L е регулярен език в азбуката Σ . Тогава съществува естествено число $n \ge 1$, такова, че за всяко $w \in L$ и $|w| \ge n$

съществуват x, y, z — думи в азбуката Σ : $w = xyz, y \neq \varepsilon, |xy| \leq n$ и за всяко естествено i е изпълнено, че $xy^iz \in L$.

Доказателство.

Нека $M = \langle K, \Sigma, \delta, s, F \rangle$ е краен детерминиран автомат, който разпознава езика L. |K| = n

Нека
$$w \in L$$
,
$$|w| \ge n$$
,
$$w = a_1 \dots a_n \dots a_m$$
,
$$m = |w| \ge n$$

$$(s,w) \vdash_M (q_1, a_2 \dots a_m) \vdash_M \dots \vdash_M (q_n, a_n \dots a_m) \vdash_M^* (f, \varepsilon), f \in F.$$

 $s, q_1, \dots, q_n = n + 1$

 $\xrightarrow{\text{Дирихле}}$ \exists поне 2 състояния от s,q_1,\ldots,q_n , които съвпадат.

С q_i и q_j означаваме тези две състояния в редицата, които съвпадат, като i < j. И те са първите две с това свойство.

$$(s,w) \vdash_{M}^{*} (q_{i},a_{i+1} \dots a_{j}) \vdash_{M}^{*} (q_{j},a_{j+1} \dots a_{m}) \vdash_{M}^{*} (f,\varepsilon)$$

$$x = a_1 \dots a_i$$

$$y = a_{i+1} \dots a_j$$

$$z = a_{j+1} \dots a_m$$

$$|xy| \le n, \quad y \ne \varepsilon$$

$$xy^0z \in L?$$
$$(xy^0z) = xz$$

$$(s, xz) \vdash_{M}^{*} (q_i = q_j, z = a_{j+1} \dots a_m) \vdash_{M}^{*} (f, \varepsilon), f \in F.$$

$$\left(s,xy^iz\right) \vdash_{M}^* \left(q_i,y^iz\right) \vdash_{M}^* \left(q_i,y^{i-1}z\right) \vdash_{M}^* \left(q_i,y^{i-2}z\right) \vdash_{M}^* \ldots \vdash_{M}^* \left(q_i,z\right) \vdash_{M}^* (f,\varepsilon), \\ x,y^i \in L.$$