1 Convergence in Euclidian Space

1.1 Convergence of v_t

Boyd's theorem shows that \mathcal{T} defines a contraction mapping in a \mathcal{F} -bounded space. We now show that \mathcal{T} also defines a contraction mapping in Euclidian space.

Calling v* the unique fixed point of the operator \mathcal{T} , since v*(m) = \mathcal{T} v*(m),

$$\|\mathbf{v}_{T-n+1} - \mathbf{v}^*\|_{_{F}} \le \alpha^{n-1} \|\mathbf{v}_T - \mathbf{v}^*\|_{_{F}}.$$
 (1)

On the other hand, $\mathbf{v}_T - \mathbf{v}^* \in \mathcal{C}_{_{\mathcal{F}}}(\mathcal{A}, \mathcal{B})$ and $\kappa = \|\mathbf{v}_T - \mathbf{v}^*\|_{_{\mathcal{F}}} < \infty$ because \mathbf{v}_T and \mathbf{v}^* are in $\mathcal{C}_{_{\mathcal{F}}}(\mathcal{A}, \mathcal{B})$. It follows that

$$\left| \mathbf{v}_{T-n+1}(m) - \mathbf{v}^*(m) \right| \le \kappa \alpha^{n-1} \left| \mathcal{F}(m) \right|. \tag{2}$$

Then we obtain

$$\lim_{n\to\infty} \mathbf{v}_{T-n+1}(m) = \mathbf{v}^*(m). \tag{3}$$

Since $\mathbf{v}_T(m) = \frac{m^{1-\rho}}{1-\rho}, \, \mathbf{v}_{T-1}(m) \leq \frac{(\bar{\kappa}m)^{1-\rho}}{1-\rho} < \mathbf{v}_T(m)$. On the other hand, $\mathbf{v}_{T-1} \leq \mathbf{v}_T$ means $\Im \mathbf{v}_{T-1} \leq \Im \mathbf{v}_T$, in other words, $\mathbf{v}_{T-2}(m) \leq \mathbf{v}_{T-1}(m)$. Inductively one gets $\mathbf{v}_{T-n}(m) \geq \mathbf{v}_{T-n-1}(m)$. This means that $\{\mathbf{v}_{T-n+1}(m)\}_{n=1}^{\infty}$ is a decreasing sequence, bounded below by \mathbf{v}^* .

1.2 Convergence of c_t

Given the proof that the value functions converge, we now show the pointwise convergence of consumption functions $\{c_{T-n+1}(m)\}_{n=1}^{\infty}$.

Consider any convergent subsequence $\{c_{T-n(i)}(m)\}$ of $\{c_{T-n+1}(m)\}_{n=1}^{\infty}$ converging to c^* . By the definition of $c_{T-n}(m)$, we have

$$u(c_{T-n(i)}(m)) + \beta \mathbb{E}_{T-n(i)}[\Gamma_{T-n(i)+1}^{1-\rho} \mathbf{v}_{T-n(i)+1}(m)] \ge u(c_{T-n(i)}) + \beta \mathbb{E}_{T-n(i)}[\Gamma_{T-n(i)+1}^{1-\rho} \mathbf{v}_{T-n(i)+1}(m)],$$
(4)

for any $c_{T-n(i)} \in [\underline{\kappa}m, \bar{\kappa}m]$. Now letting n(i) go to infinity, it follows that the left hand side converges to $\mathbf{u}(c^*) + \beta \mathbb{E}_t[\Gamma_t^{1-\rho}\mathbf{v}(m)]$, and the right hand side converges to $\mathbf{u}(c_{T-n(i)}) + \beta \mathbb{E}_t[\Gamma_t^{1-\rho}\mathbf{v}(m)]$. So the limit of the preceding inequality as n(i) approaches infinity implies

$$u(c^*) + \beta \mathbb{E}_t[\Gamma_{t+1}^{1-\rho}v(m)] \ge u(c_{T-n(i)}) + \beta \mathbb{E}_t[\Gamma_{t+1}^{1-\rho}v(m)].$$
 (5)

Hence, $c^* \in \underset{c_{T-n(i)} \in [\underline{\kappa}m, \bar{\kappa}m]}{\arg \max} \left\{ u(c_{T-n(i)}) + \beta \mathbb{E}_t[\Gamma_{t+1}^{1-\rho}v(m)] \right\}$. By the uniqueness of c(m), $c^* = c(m)$.