Bezmemorijski sustav

ima svojstvo da odziv sustava ovisisamo o trenutnoj vrijednosti ulaznog signala, a ne onjihovim prethodnim ili buducim vrijednostima.

Memorijski signal

oznakau(-inf;t]kazuje kako je u odredivanju odziva y, utrenutku t, potrebno poznavati ulazni signal, ne samo utrenutku t, vec i na cijelom intervalu (-inf;t]

Nekauzualni sustav

trenutni odziv sustava je bio posljedica trenutne i proslih vrijednosti ulaznog signala.

Vremenski stalan sustav

su sustavi koji nemijenjaju parametre tijekom vremena.

Linearan sustav

linearne sustave obiljezava i vazno svojstvo po kojem je zaulaz jednak nula i izlaz jednak nula

$$y1=S(u1);$$
 $y2=S(u2)$

$$S(a*u1) + S(b*u2) = a*v1+b*v2$$

BIBO stabilnost

sustav je BIBO stabilan ako je za svaki omedeni ulaz njegov odziv također omeden.

$$|u(t)| = \langle M_u \langle inf \rangle - \langle y(t)| = \langle M_y \langle inf \rangle$$

$$|u(n)| = \langle M_u \langle \inf \rangle$$
 $|y(n)| = \langle M_v \langle \inf \rangle$

Konvolucijski zbroj

$$\frac{1}{Y(n)=(u^*h)(n)=\sum_{m=-\infty}^{\infty}u(m)h(n-m)}$$

-svojstva: 1)
$$y(n)=(u^*(h1+h2))(n)=(u^*h1)(n)+(u^*h2)(n)$$

- 2) komutativnost (x1*x2)(n)=(x2*x1)(n)
- 3) komutativnost (x1*(x2*x3))(n)=((x1*x2)*x3)(n)

4)
$$(E^{-p}(x1)^*E^{-q}(x2))(n)=y(n-p-q)=\sum_{j=-\infty}^{\infty}x1(j)x2(n-p-q-j)$$

5)
$$(x*\delta)(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m) = x(n)$$

Konvolucijski integral

$$y(t) = (u * h)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

-svojstva: 1)komutativnost (x1*x2)(t)=(x2*x1)(t)

2) distributivnost (x1*(x2+x3))(t)=(x1*x2)(t)+(x1*x3)(t)

3)asocijativnost (x1*(x2*x3))(t)=((x1*x2)*x3)(t)

4) pomak $(E^{-1}_{t1}(x1)^*E^{-1}_{t2}(x2))(t)=y(t-t1-t2)$

5)

$$(f * \delta)(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t - \tau)d\tau = f(t)$$

Jednadžba diferencije(diskretni)

Nepobuđeni sustav-> je komponenta totalnog odziva koja je posljedica samo djelovanja pocetnih uvjeta $y_0(n) = y_h(n)$

Mirni sustav-> je komponenta odziva koja je posljedica djelovanja pobude uz pocetne uvjete jednake nuli $y_m(n)=y_h(n)+y_p(n)$

Prirrodni sustav-> $y_{prirodni}(n)=y(n)-y_p(n)$

Prislini-> $y_{prisilni}(n)=y_p(n)$

Totalni odaziv:

- 1) odaziv nepobuđenog sustava +odaziv mirnog sustava $[y(n)=y_0(n)+y_m(n)]$
- 2) homogeno + partikularno $[Y(n)=y_h(n)+y_p(n)]$

-partikularno riješenje:

u(n)	y(n)
A (konst)	K
Ar ⁿ	Kr ⁿ
Ar ⁿ , r=q _i	Knr ⁿ
An ^M	K₀+nK₁++n ^M K _M
r ⁿ n ^M	r ⁿ (K₀+nK₁++n ^M K _M)
Acos(ω ₀ n)	$K_1 \cos(\omega_0 n) + K_2 \sin(\omega_0 n)$
Asin(ω ₀ n)	$K_1 \cos(\omega_0 n) + K_2 \sin(\omega_0 n)$

Dif jedn.(kontinuirani)

Nepobuđeni sustav-> je komponenta totalnog odziva koja je posljedica samo djelovanja pocetnih uvjeta $y_0(t) = y_h(t)$

Mirni sustav-> je komponenta odziva koja je posljedica djelovanja pobude uz pocetne uvjete jednake nuli $y_m(t) = y_h(t) + y_p(t)$

Prirrodni sustav-> $y_{prirodni}(t)=y(t)-y_p(t)$

Prislini-> $y_{prisilni}(t)=y_p(t)$

Totalni odaziv:

- 1) odaziv nepobuđenog sustava +odaziv mirnog sustava $[y(t)=y_0(t)+y_m(t)]$
- 2) homogeno + partikularno $[Y(t)=y_h(t)+y_p(t)]$

-partikularno riješenje:

u(t)	y(t)
A (konst)	K
Ar ^t	Kr ^t
Ar ^t , r=q _i	Knr ^t
At ^M	K₀+tK₁++t ^m K _M
r ^t t ^M	$r^{t}(K_0+tK_1++t^{M}K_{M})$
Acos(ω ₀ t)	$K_1 \cos(\omega_0 t) + K_2 \sin(\omega_0 t)$
Asin(ω ₀ t)	$K_1 \cos(\omega_0 t) + K_2 \sin(\omega_0 t)$

⁻početni uvjeti su objašnjeni na službenom šalabahteru

Frekvencijska karakteristika sustava(kontinuirani)

$$u(t)=Ue^{st}=U(\cos(\omega t)+\sin(\omega t))$$

$$y_p(t)=Ye^{st}=H(j\omega)Ue^{j\omega t}$$

$$H(-j\omega) = H^*(j\omega)$$

 $s=j\omega$

- -amplitudna frekvencijska karakteristika : $|H(j\omega)| = \sqrt{(Re[H(j\omega)])^2 + (Im[H(j\omega)])^2}$
- -fazna frekvencijska karakteristika : $kut[H(j\omega)] = arctg(\frac{(Re[H(j\omega)])}{(Im[H(j\omega)])})$
 - 1) $\operatorname{arctg}(\frac{a}{b})$
 - 2) $\operatorname{arctg}(\frac{-a}{b}) = -\operatorname{arctg}(\frac{a}{b})$

3)
$$\operatorname{arctg}(\frac{a}{-b}) = \pi - \operatorname{arctg}(\frac{a}{b})$$

4)
$$\operatorname{arctg}(\frac{-a}{-b}) = \pi + \operatorname{arctg}(\frac{a}{b})$$

-prisilni odaziv: $y_p(t) = |H(j\omega)||Ucos(\omega_0 n + \text{kut}[H(j\omega)]) \quad \text{-> umjesto cos moze biti sin}$ ako je je on na ulazu, a cos je ako njega imamo na ulazu

- -sustav je stabilan ako je realni dio pola negativan
- -Re[H(j ω)] parna funkcija od ω
- -lm[H(jω)] neparna funkcija od ω
- -| H(jω))| parna funkcija od ω
- $kut[H(j\omega)]$ neparna funkcija od ω

Frekvencijska karakteristika sustava(diskretni)

$$u(n)=Uz^n$$

$$y(n)=H(z)Uz^n$$

$$H(z)=\sum_{m=-inf}^{inf}h(m)z^{-m}$$

$$z=e^{j\Omega}$$

-amplitudna frekvencijska karakteristika : $|H(e^{j\Omega})| = \sqrt{(Re[H(e^{j\Omega})])^2 + (Im[H(e^{j\Omega})])^2}$

- -fazna frekvencijska karakteristika : $kut[H(e^{j\Omega})] = arctg(\frac{(Re[H(e^{j\Omega})])}{(Im[H(e^{j\Omega})])})$
 - 1) $\operatorname{arctg}(\frac{a}{b})$
 - 2) $\operatorname{arctg}(\frac{-a}{b}) = -\operatorname{arctg}(\frac{a}{b})$
 - 3) $\operatorname{arctg}(\frac{a}{-b}) = \pi \operatorname{arctg}(\frac{a}{b})$
 - 4) $\operatorname{arctg}(\frac{-a}{-b}) = \pi + \operatorname{arctg}(\frac{a}{b})$

-prisilni odaziv: $y_p(n) = \mid H(e^{j\Omega})) \mid Ucos(\Omega_0 n + \ kut[H(e^{j\Omega})]) \quad \text{-> umjesto cos moze biti sin}$ ako je je on na ulazu, a cos je ako njega imamo na ulazu

-sustav je stabilan ako su realni dio polova negativan

-Re[H(e $^{\mathrm{j}\Omega}$)] parna funkcija od Ω

-lm[H(e $^{\mathrm{j}\Omega}$)] neparna funkcija od Ω

-| $H(e^{j\Omega})$)| parna funkcija od Ω

- $kut[H(e^{j\Omega})]$ neparna funkcija od Ω

Z transformacija

$$\overline{\mathbf{X}(\mathbf{z}) = \sum_{n=0}^{inf} x(n) z^{-n}}$$

 $z=re^{j\Omega}$

-apsolutna konvergencija sume garantira i konvergenciju X(z)

-osnovne z transformacije:

x(n)	X(z)
δ(n)	1
δ(n-m)	z ^{-m}
μ(n)	$\frac{z}{z-1}$
n μ(n)	
n² μ(n)	$\frac{z(z+1)}{(z-1)^3}$
n³ μ(n)	$ \frac{z(z+1)^2}{z(z+1)} $ $ \frac{z(z+1)}{(z-1)^3} $ $ \frac{z(z^2+4z+1)}{(z-1)^4} $ $ \frac{z}{z-a} $
a ⁿ μ(n)	$\frac{z}{z-a}$
na ⁿ μ(n)	$\frac{az}{(z-a)^2}$
n² a ⁿ μ(n)	$\frac{\overline{(z-a)^2}}{\frac{az(z+a)}{(z-a)^3}}$
n(n-1)(n-2)(n-m+1)	
$a^m m!$	$\overline{(z-a)^{m+1}}$
$\cos(\Omega_0 n)\mu(n)$	$\frac{z(z-\cos(\Omega_0))}{z^2-2\cos(\Omega_0)z+1}$
$sin(\Omega_0 n)$ μ(n)	$\frac{\sin(\Omega_0) z}{z^2 - 2\cos(\Omega_0) z + 1}$
$a^n \cos(\Omega_0 n) \mu(n)$	$\frac{z(z-a\cos(\Omega_0))}{z^2-2\cos(\Omega_0)z+a^2}$
a^n sin(Ω_0 n) μ(n)	$\frac{a\sin(\Omega_0)z}{z^2 - 2a\cos(\Omega_0)z + a^2}$

-svojstva: 1)linearnost w(n)=a x(n)+b y(n) -> w(z)=a x(z)+b y(z)

2)pomak
$$Z\{x(n+p)\}=z^{p}[X(z)-\sum_{m=0}^{p-1}x(m)z^{-m}]$$

3)
$$Z\{x(n-p)\}=z^{-p}[X(z)-\sum_{m=-p}^{-1}x(m)z^{-m}]$$

4)konvolucijski zbroj $h(n)*u(n)<-z^->H(z)U(z)$

5)množenje s 'aⁿ'
$$Y(z)=Z\{y(n)\}=Z\{a^nx(n)\}=X(\frac{z}{a})$$

Npr.
$$y(n)=x(n)\cos(\Omega_0 n)=x(n)0.5[e^{-j\Omega n}+e^{j\Omega n}]$$

$$Z\{x(n)\cos(\Omega_0 n)\}=0.5[X(ze^{j\Omega})+X(ze^{-j\Omega})]$$

6)množenje s 'n'
$$Y(z)=Z\{n^p x(n)\}=(-z\frac{d}{dz})^p X(z)$$

7) početna vrijednost niza $x(0) = \lim_{z \to \infty} X(z)$

8)konačna vrijednost niza
$$\lim_{z\to 1} (1-z^{-1})X(z) = \lim_{N\to\infty} x(N)$$

-inverzna z transformacija:

1)razvoj u red
$$X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} + ... ->$$

-> $x(n) = x(0)\delta(n) + x(1)\delta(n 1) + x(2)\delta(n 2) + x(3)\delta(n - 3) + ...$

- razvoj u red za X(z) postizemo dijeljenjem brojnika s nazivnikom

2)rastavom na parcijalne razlomke

- -brojnik treba biti polinom veceg reda nego nazivnik, ako nije tako onda se mora dijelit brojnik s nazivnikom
- -rastavimo na parcijalne razlomke(postupak ima objasnjen u 14. cijelini 52. slajd) i prepoznamo oblik te ga pretvorimo iz frekvencijske domene u vremensku

Laplaceova transformacija

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st} dt$$

$$s = \sigma + i\omega$$

- L transformacija postoji za sve signale koji ne rastu brze od nekog eksponencijalnog signala Ceat i vrijedi : $\int_{0^{-}}^{\infty} |x(t)e^{-\sigma t}| dt < \infty; \qquad |x(t)| \leq Ce^{at}; \quad \sigma > a$

-osnovne L transformacije:

x(t)	X(s)
δ(t)	1
δ(t-τ)	e ^{-st}

(1)	1
μ(t)	<u> </u>
	S
tμ(t)	1
	$\overline{s^2}$
t ^j μ(t)	j!
10	$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{j!}{s^{j+1}} $ 1
e ^{at} μ(t)	1
5 1.(6)	${c-a}$
teatµ(t)	$\frac{\overline{s-a}}{1}$
τε μ(ι)	$\frac{1}{(a-a)^2}$
1 1 (1)	$(s-a)^2$
t ^j e ^{at} μ(t)	
	$\frac{\overline{(s-a)^2}}{\frac{j!}{(s-a)^{j+1}}}$
cos(bt)μ(t)	<u> </u>
. ,, ,,	$\frac{\overline{s^2 + b^2}}{b}$
sin(bt)μ(t)	
	$\overline{s^2+b^2}$
e ^{-at} cos(bt)μ(t)	$\frac{\overline{s^2 + b^2}}{s + a}$
	$\sqrt{(s+a)^2 + h^2}$
e ^{-at} sin(bt)μ(t)	$\frac{\overline{(s+a)^2+b^2}}{b}$
ε επίστημες	
	$(s+a)^2 + b^2$
$re^{-at}sin(bt+\theta)\mu(t)$	$\underline{(rcos(\theta)s + (ar cos(\theta) - br sin(\theta))}$
	$s^2 + 2as + (a^2 + b^2)$
re ^{-at} sin(bt+θ)μ(t)	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
	$\frac{1}{a + a + ih} + \frac{1}{a + ih}$
	s + u - jv

-svojstva: 1) linearnost
$$w(t)=a x(t)+b y(t)$$
 -> $W(s)=a X(s)+b Y(s)$

2)vremenski pomak $L\{x(t-\tau)\mu(t-\tau)\}=e^{-s\tau}X(s)$

3)fazni pomak
$$L\{x(t)e^{at}\}=X(s-a)$$

4)
$$L\{x(at)\} = \frac{1}{a}x(\frac{s}{a})$$

5)konvolucija
$$L\{[x1(t)\mu(t)*x2(t)\mu(t)]\}=X1(s)X2(s)$$

6)vremenska derivacija
$$L\left\{\frac{d^{j}x(t)}{dt^{j}}\right\} = s^{j}X(s) - \sum_{m=1}^{j} s^{j-m}x^{m-1}(0^{-})$$

7)integracija u vremenu
$$L\{\int_{0^{-}}^{t} x(\tau)d\tau\} = \frac{1}{s}X(s)$$

8)frekvencijska derivacija L{(-t)^jx(t)}=
$$\int_{0^{-}}^{\infty} [(-t)^{j} x(t)e^{-st}dt = \frac{d^{j}}{ds^{j}}(X(s))$$

-inverzna L transformacija:

-rastavom na parcijalne razlomke:

- nazivnik treba biti polinom veceg reda nego brojnik, ako nije tako onda se mora dijelit brojnik s nazivnikom
- -rastavimo na parcijalne razlomke(postupak ima objasnjen u 15. cijelini 34. slajd) i prepoznamo oblik te ga pretvorimo iz frekvencijske domene u vremensku