

Replacing SHA-2 with SHA-3 Enhances Generic Security of HMAC

Yusuke Naito

Mitsubishi Electric Corporation

Lei Wang

Shanghai Jiao Tong University

- FIPS 180-4
- Inputs: arbitrary length
- Outputs: 224 bit, 256 bit, 384 bit, 512 bit
- Use Merkle-Damgard (MD) construction
 - ullet Iterates a compression function h

- Hash functions with MD are vulnerable to the length extension attack
- HMAC was designed to convert the hash function with MD into a secure keyed hash function

- FIPS standard keyed hash (FIPS 198-1)
- Call a hash function two times
- Used as
 - Key derivation function (KDF)
 - Message authentication code (MAC)
- Widely used in e.g.,
 - SSL, SSH, IPSec, TLS, IKE, etc

Secret key $K_{\rm I} = K \oplus \text{ipad} \quad K_{\rm O} = K \oplus \text{opad}$

- Standardized at FIPS 202 (Aug. 2015)
- Same interface as SHA-2
 - Inputs: arbitrary length
 - Outputs: 224-bit, 256-bit, 384-bit, 512-bit
- Use the sponge construction
 - Iterate a permutation $P:\{0,1\}^{r+c} \rightarrow \{0,1\}^{r+c}$

Motivation

■ FIPS 202 page 22

SHA3-224, SHA3-256, SHA3-384, and SHA3-512 are approved cryptographic hash functions. One of the approved uses of cryptographic hash functions occurs within the Keyed-Hash Message Authentication Code (HMAC). The input block size in bytes, denoted by *B* in the HMAC specification [10], is given in Table 3 below for the SHA-3 hash functions⁵:

page 24

The four SHA-3 hash functions are alternatives to the SHA-2 functions, and they are designed to

■ SHA-2 may be replaced with SHA-3 in HMAC

Is there an advantage of replacing SHA-2 with SHA-3 in HMAC?

Security

- PRF-security
- MAC-security (Unforgeability)

Generic Security

Assume that the underlying primitive has no structural fraw, i.e.,

- SHA-2 Case
- \rightarrow HMAC-MD using random oracle h
- SHA-3 Case
- \rightarrow HMAC-Sponge using random permutation P

- \blacksquare Security of HMAC-MD (using random oracle h)
 - Proven in previous works
- Security of HMAC-Sponge (using random permutation P)
 - Not proven
- This paper
 - ✓ Prove the PRF- and MAC-security of HMAC-Sponge
 - ✓ Compare HMAC-Sponge with HMAC-MD
 in terms of the PRF- and MAC-security
 - ✓ Conclude that replacing SHA-2 with SHA-3 enhances the generic security of HMAC

PRF-Security

- Indistinguishability between the real world and the ideal world
- ullet A distinguisher ${\mathcal D}$ interacts with
 - \triangleright (F_{K} , U) in the real world
 - \triangleright (\mathcal{R} , U) in the ideal world
- The advantage function is defined as

$$Adv_{_{HMAC}}^{PRF}(\mathcal{D}) := Pr[\mathcal{D}=1 \text{ in the real world}]$$

$$- Pr[\mathcal{D}=1 \text{ in the ideal world}]$$

MAC-Security

- ullet An adversary ${\mathcal A}$ can interacts with (F_K, V_K, U)
- ullet Verification function V_K
 - \triangleright accept a pair (M, tag)
 - \triangleright check the equality $F_K(M) = tag$
 - return accept if the equality holds, and return reject otherwise
- ullet ${\cal A}$ cannot make a trivial query (M, tag) to V_K ,

that is, ${\cal M}$ has not been queried to ${\cal F}_{\cal K}$

• The advantage function is defined as $Adv_{HMAC}^{mac}(A) := Pr[A \text{ makes a query to } V_K \text{ s.t. } accept \text{ is returned}]$

Security Parameters

Security Parameters

- n: hash size
- \bullet Q: number of offline queries (primitive queries)
- q: number of online queries (construction queries)
- \(\ell \): maximum input length in blocks to HMAC

PRF- and MAC-Security of HMAC-MD

HMAC-MD

- The following bounds were proven.
 - $\forall \mathcal{D}$: $\mathsf{Adv}^{\mathsf{PRF}}_{\mathsf{HMAC-M}}(\mathcal{D}) \leq O(\ell q^2/2^n)$
 - ullet $\forall \mathcal{A}$: $\mathsf{Adv}^{\mathsf{mac}}_{\mathsf{HMAC-MD}}(\mathcal{A}) \leqq O(\ell q^2/2^n)$

 $\ell \times q^2/2^n$ Collision in
n-bit internal states

■ HMAC-MD is PRF- and MAC-secure up to $q = O(2^{n/2}/\ell^{1/2})$

PRF- and MAC-Security of HMAC-Sponge

■ HMAC-Sponge

■ We prove that

ullet $\forall \mathcal{A}$: $\mathsf{Adv}^{\mathsf{mac}}_{\mathsf{HMAC-Spong}}(\mathcal{A}) \leq O(nq/2^n + (\ell q)^2/2^{r+c} + \ell q Q/2^{r+c})$

Step 1: Ind. of HMAC-Sponge from HMAC-RF

Step 1

- The outputs of Sponge in HMAC are randomly drawn if the inputs are new
- If the inputs are not new then one of the following events occurs
 - Collision in inputs to P in HMAC-Sponge : $O((\ell q)^2/2^{r+c})$
 - Collision in inputs to P between online and offline queries: $O(lqQ/2^{r+c})$
- Indistinguisiable prob.: $O((\ell q)^2/2^{r+c} + \ell q Q/2^{r+c})$

We can analyze the security of HMAC-Sponge by using HMAC-RF with the security loss $O((\ell q)^2/2^{r+c} + \ell q Q/2^{r+c})$

Step 2: The PRF- and MAC- Security of HMAC-RF

Step 2

PRF-Security of HMAC-RF

- If no collision occurs in ** then all outputs of HMAC-RF are randomly drawn
- PRF-adv≤collision prob. $O(q^2/2^n)$

MAC-Security of HMAC-RF

- By an n-multi-collision analysis in \Re needs to guess an output of HMAC-RF from at least $2^n/n$ output candidates
- MAC-adv $\leq O(q \times n/2^n)$

Step 3: Combining Step 1 and Step 2

Step 3

PRF-Security of HMAC-Sponge

HMAC-Sponge is PRF-secure up to $q = O(2^{n/2})$

MAC-Security of HMAC-Sponge

In SHA-3,
$$2^n << 2^{r+c}$$

$$\forall \mathcal{D}: \mathsf{Adv}^{\mathsf{MAC}}_{\mathsf{HMAC-Spongle}}(\mathcal{D}) \leq O((\ell q)^{2/2^{r+c}} + \ell q Q/2^{r+c} + n q/2^n) = O(nq/2^n)$$
from Step 1 from Step 2

HMAC-Sponge is MAC-secure up to $q = O(2^n/n)$

Conclusion

- HMAC-MD is PRF- and MAC-secure up to $q = O(2^{n/2}/\ell^{1/2})$
- HMAC-Sponge is
 - PRF-secure up to $q = O(2^{n/2})$
 - MAC-secure up to $q = O(2^n/n)$
- HMAC-SHA-2 vs. HMAC-SHA-3

PRF-Security

HMAC-SHA-2 HMAC-SHA-3 Size n $O(lq^2/2^n)$ $O(q^2/2^n)$ $\min\{2^{112}, 2^{128}/\ell^{1/2}\}$ 2112 224 $2^{128}/\ell^{1/2}$ 2128 256 $\min\{2^{192}, 2^{128}/\ell^{1/2}\}$ 2192 384 $2256/e^{1/2}$ 2256 512

MAC-Security (Unforgeability)

Size n	HMAC-SHA-2 $O(\ell q^2/2^n)$	HMAC-SHA-3 $O(nq/2^n)$
224	$\min\{2^{112},2^{128}/\ell^{1/2}\}$	2 ² 16.192
256	$2^{128}/\ell^{1/2}$	2 ²⁴⁸
384	$\min\{2^{192},2^{128}/\ell^{1/2}\}$	2375.415
512	$2^{256}/\ell^{1/2}$	2 ⁵⁰³

Replacing SHA-2 with SHA-3 enhances generic security of HMAC!

Thank You!

Constrained PRFs for Unbounded Inputs

Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak

RSA Conference, 2016

Outline

- 1. Constrained Pseudorandom Functions (CPRFs)
- 2. Identity-Based Non-interactive Key Exchange
- 3. Unbounded-Input CPRFs

Pseudorandom Functions (PRFs) [GGM86]

Pseudorandom Functions (PRFs) [GGM86]

Pseudorandom Functions (PRFs) [GGM86]

Unbounded-input PRFs [Goldreich04]: supports $x \in \{0, 1\}^*$

ullet Polynomial S: Any PRF F is a CPRF

$$S = \{x_1, \dots, x_p\}, \qquad k_S = \{F_k(x_1), \dots, F_k(x_p)\}$$

ullet Polynomial S: Any PRF F is a CPRF

$$S = \{x_1, \dots, x_p\}, \qquad k_S = \{F_k(x_1), \dots, F_k(x_p)\}$$

Superpolynomial S with short description?

1. Puncturable [SW14]. S: x'

$$k_S \Rightarrow F_k(x) \text{ if } x \neq x'$$

1. Puncturable [SW14]. S: x'

$$k_S \Rightarrow F_k(x) \text{ if } x \neq x'$$

2. Prefix-fixing [BW13]. $S: v \in \{0,1\}^m \|?^*$, e,g., v = 101???

$$k_S \Rightarrow F_k(x) \text{ if } x = 101 || x'$$

1. Puncturable [SW14]. S: x'

$$k_S \Rightarrow F_k(x) \text{ if } x \neq x'$$

- 2. Prefix-fixing [BW13]. $S: v \in \{0, 1\}^m || ?^*$, e,g., v = 101??? $k_S \Rightarrow F_k(x)$ if x = 101 || x'
- 3. Bit-fixing [BW13]. $S: v \in \{0, 1, ?\}^n$, e.g., v = 1?010? $k_S \Rightarrow F_k(x)$ if x agrees with v on 0/1

1. Puncturable [SW14]. S: x'

$$k_S \Rightarrow F_k(x) \text{ if } x \neq x'$$

- 2. Prefix-fixing [BW13]. $S: v \in \{0, 1\}^m || ?^*$, e,g., v = 101??? $k_S \Rightarrow F_k(x)$ if x = 101 || x'
- 3. Bit-fixing [BW13]. $S: v \in \{0, 1, ?\}^n$, e.g., v = 1?010? $k_S \Rightarrow F_k(x)$ if x agrees with v on 0/1
- 4. Circuit [BW13]. S: a circuit C

$$k_S \Rightarrow F_k(x) \text{ if } C(x) = 1$$

1. Puncturable [SW14]. S: x'

$$k_S \Rightarrow F_k(x) \text{ if } x \neq x'$$

2. Prefix-fixing [BW13]. $S: v \in \{0, 1\}^m \| ?^*$, e,g., v = 101??? $k_S \Rightarrow F_k(x)$ if $x = 101 \| x'$

- 3. Bit-fixing [BW13]. $S: v \in \{0, 1, ?\}^n$, e.g., v = 1?010? $k_S \Rightarrow F_k(x)$ if x agrees with v on 0/1
- 4. Circuit [BW13]. S: a circuit C

$$k_S \Rightarrow F_k(x) \text{ if } C(x) = 1$$

5. This work: Turing Machine (TM). S: a TM M

$$k_S \Rightarrow F_k(x) \text{ if } M(x) = 1$$

Accepts unbounded inputs $x \in \{0, 1\}^*$

k

a@mail

 $\mathsf{F}_{\pmb{k}}: \{0,1\}^* \to \{0,1\}^m$

b@mail

c@mail

d@mail

$$\mathsf{F}_{\pmb{k}}: \{0,1\}^* \to \{0,1\}^m$$

b@mail

b@mail

c@mail

 $M_{\mbox{b@mail}}(x) =$

$$\left\{ \begin{array}{ll} 1 & \text{if } x = x' \| \text{ b@mail } \|x'' \\ 0 & \text{otherwise} \end{array} \right.$$

d@mail

 $egin{aligned} k_{\mathsf{abe}} := \\ \mathsf{F}_k(\mathsf{a@mail} \| \mathsf{b@mail} \| \mathsf{e@mail}) \end{aligned}$

 $rac{k_{
m abe}}{
m k}_{
m abe}:= \
m F}_k(
m a@mail\|
m b@mail\|
m e@mail)$

 $k_{\mathsf{abe}} :=$ $F_k(a@mail||b@mail||e@mail)$

TM CPRFs

- 1) A warm-up: a simple circuit CPRF assuming
 - Puncturable PRFs
 - Indistinguishability obfuscation

TM CPRFs

- 1) A warm-up: a simple circuit CPRF assuming
 - Puncturable PRFs
 - Indistinguishability obfuscation
- 2) A TM CPRF assuming
 - Punctured PRFs
 - Public coin differing input obfuscation
 - Succinct non-interactive arguments of knowledge (SNARKs)
 - Collision resistant hashing

Program Obfuscation [BGI+01]

Virtual Black Box [BGI⁺01]

Differing Input [BGI+01],[BCP14]

Public Coin Differing Input [ISP15]

Indistinguishability [BGI⁺01], [GGH⁺13]

Program Obfuscation [BGI+01]

Virtual Black Box [BGI⁺01]

Differing Input [BGI+01],[BCP14]

Public Coin Differing Input [ISP15]

Indistinguishability [BGI⁺01], [GGH⁺13]

Impossible [BGI⁺01]

Implausible TM-impossible [GGH⁺14] [BSW16]

Program Obfuscation (1)

1) Functionality:

Program Obfuscation (1)

1) Functionality:

2) Indistinguishability obfuscation:

$$b? \qquad \frac{P_0, P_1}{P_0 \equiv P_1} \qquad \qquad |P_0| = |P_1|$$

Program Obfuscation (1)

1) Functionality:

2) Indistinguishability obfuscation: hard to guess b

Program Obfuscation (2)

1) Functionality:

2) Differing input obfuscation:

Program Obfuscation (2)

1) Functionality:

2) Differing input obfuscation: hard to guess b if it's hard to find x, s.t. $P_0(x) \neq P_1(x)$

Program Obfuscation (3)

1) Functionality:

2) Public coin differing input obfuscation: hard to guess b if it's hard to find x, s.t. $P_0(x) \neq P_1(x)$

- ullet $\operatorname{PF}_k:\{0,1\}^n o \{0,1\}^m$ a puncturable PRF
- iO an indistinguishibility obfuscator

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- iO an indistinguishibility obfuscator

Define a circuit CPRF F as:

$$\mathsf{F}_k(x) := \mathsf{PF}_k(x)$$

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- iO an indistinguishibility obfuscator

Define a circuit CPRF F as:

$$\mathsf{F}_k(x) := \mathsf{PF}_k(x)$$

 $\mathsf{Constr}(k,C) \to k_C$:

$$P_{k,C}(x) := \left\{ egin{array}{ll} \mathsf{PF}_k(x) & \text{if } C(x) = 1 \\ \bot & \text{otherwise} \end{array} \right.$$

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- iO an indistinguishibility obfuscator

Define a circuit CPRF F as:

$$\mathsf{F}_k(x) := \mathsf{PF}_k(x)$$

 $\mathsf{Constr}(k,C) \to k_C$:

$$k_C \leftarrow \mathsf{iO}\left(P_{k,C}(x) := \left\{ \begin{array}{ll} \mathsf{PF}_k(x) & \mathsf{if} \ C(x) = 1 \\ \bot & \mathsf{otherwise} \end{array} \right)$$

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- iO an indistinguishibility obfuscator

Define a circuit CPRF F as:

$$\mathsf{F}_k(x) := \mathsf{PF}_k(x)$$

 $\mathsf{Constr}(k,C) \to k_C$:

$$k_C \leftarrow \mathrm{iO}\left(P_{k,C}(x) := \left\{ \begin{array}{ll} \mathsf{PF}_k(x) & \mathrm{if} \ C(x) = 1 \\ \bot & \mathrm{otherwise} \end{array} \right)$$

Thm 1. F is a secure circuit CPRF.

Constrained keys $k_{\mathbf{C}}$:

$$\mathsf{iO}\left(P_{k,\pmb{C}}(x) := \left\{ \begin{array}{ccc} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\pmb{C}(x)} = 1 \\ & & \mathsf{Input Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

•

Constrained keys k_{M} :

$$\mathsf{iO}\left(P_{k,\pmb{M}}(x) := \left\{ \begin{array}{ccc} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\pmb{M}(x) = 1} \\ & & \mathsf{Input Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

•

Constrained keys k_{M} :

$$\mathsf{iO}\left(P_{k,\boldsymbol{M}}(x) := \left\{ \begin{array}{ll} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\boldsymbol{M}(x) = 1} \\ & \mathsf{Input\ Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

iO for Turing machines [KLW15]

Constrained keys k_{M} :

$$\mathsf{iO}\left(P_{k,\pmb{M}}(x) := \left\{ \begin{array}{ccc} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\pmb{M}(x)} = 1 \\ & & \mathsf{Input Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

iO for Turing machines [KLW15]

Security Proof: $iO(P_{k,M}) \approx_c iO(P_{k_{x'},M})$ where $k_{x'}$ evaluaes PF on all $x \neq x'$

Constrained keys k_{M} :

$$\mathsf{iO}\left(P_{k,\pmb{M}}(x) := \left\{ \begin{array}{ccc} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\pmb{M}(x)} = 1 \\ & & \mathsf{Input Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

iO for Turing machines [KLW15]

Security Proof: $iO(P_{k,M}) \approx_c iO(P_{k_{x'},M})$ where $k_{x'}$ evaluaes PF on all $x \neq x'$

1)
$$P_{k,M} \equiv P_{\mathbf{k}_{x'},M}$$

Constrained keys k_{M} :

$$\mathsf{iO}\left(P_{k,\boldsymbol{M}}(x) := \left\{ \begin{array}{ccc} \mathsf{PF}_k(x) & \mathsf{if} & \underline{\boldsymbol{M}(x)} = 1 \\ & & \mathsf{Input Consistency} \\ \bot & \mathsf{otherwise} \end{array} \right)$$

iO for Turing machines [KLW15]

Security Proof: $iO(P_{k,M}) \approx_c iO(P_{k_{x'},M})$ where $k_{x'}$ evaluaes PF on all $x \neq x'$

1)
$$P_{k,M} \equiv P_{\mathbf{k}_{x'},M}$$

2)
$$|P_{k,M}| \stackrel{?}{=} |P_{k_{x'},M}|$$
: For $x' \in \{0,1\}^*$, $k_{x'}$ unbounded

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\boldsymbol{M}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(x) & \text{if} & \underline{\boldsymbol{M}(x) = 1} \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right.$$

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\pmb{M}}(x) := \left\{ egin{array}{ll} {\sf PF}_k(\pmb{H}(\pmb{x})) & {\sf if} & \underline{\pmb{M}(\pmb{x}) = 1} \\ & & {\sf Input Consistency} \\ \bot & {\sf otherwise} \end{array}
ight.$$

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\boldsymbol{M}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(\boldsymbol{H}(x)) & \text{if} & \underline{\boldsymbol{M}(x) = 1} \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right.$$

1) $|P_{k_{H(x')}}|$ bounded: $k_{H(x')}$ is bounded even for $x' \in \{0,1\}^*$

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\textbf{\textit{M}}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(\textbf{\textit{H}}(x)) & \text{if} & \underline{\textbf{\textit{M}}(x)} = 1 \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right.$$

- 1) $|P_{k_{H(x')}}|$ bounded: $k_{H(x')}$ is bounded even for $x' \in \{0,1\}^*$
- 2) $P_{k,M} \not\equiv P_{k_{H(x')},M}$

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\pmb{M}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(\pmb{H}(x)) & \text{if} & \underline{\pmb{M}(x) = 1} \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right.$$

- 1) $|P_{k_{H(x')}}|$ bounded: $k_{H(x')}$ is bounded even for $x' \in \{0,1\}^*$
- 2) $P_{k,M} \neq P_{k_{H(x')},M}$

Differing inputs: $x \neq x'$ s.t. H(x) = H(x') := h'

$$P_{k,M}(x,\pi) = \mathsf{PF}_k(h') \neq P_{k_{h'},M}(x) = \bot$$

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a hash function.

$$P_{k,\textbf{\textit{M}}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(\textbf{\textit{H}}(x)) & \text{if} & \underline{\textbf{\textit{M}}(x)} = 1 \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right.$$

- 1) $|P_{k_{H(x')}}|$ bounded: $k_{H(x')}$ is bounded even for $x' \in \{0,1\}^*$
- 2) $P_{k,M} \neq P_{k_{H(x')},M}$

Differing inputs: $x \neq x'$ s.t. H(x) = H(x') := h'

$$P_{k,M}(x,\pi) = \mathsf{PF}_k(h') \neq P_{k_{h'},M}(x) = \bot$$

Security proof: Public-coin diO for Turing machines [ISP15]

Instead of:

$$k_M \leftarrow \operatorname{diO}\left(P_{k, \mathbf{M}}(x) := \left\{ \begin{array}{cc} \operatorname{PF}_k(\mathbf{H}(x)) & \text{if} & \underline{M}(x) = 1 \\ & & \operatorname{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right)$$

Instead of:

$$k_M \leftarrow \operatorname{diO} \left(P_{k,\mathbf{M}}(x) := \left\{ \begin{array}{ll} \operatorname{PF}_k(H(x)) & \text{if} & \underline{M(x) = 1} \\ & & \operatorname{Input Consistency} \\ \bot & \text{otherwise} \end{array} \right)$$

$$P_k(h,\pi) := \left\{ egin{array}{ll} \operatorname{PF}_k(h) & \text{if π proves $h = H(x) \land $M(x) = 1$} \\ \bot & \text{otherwise} \end{array} \right.$$

Instead of:

$$k_M \leftarrow \operatorname{diO} \left(P_{k, \mathbf{M}}(x) := \left\{ egin{array}{ll} \operatorname{PF}_k(\mathbf{H}(x)) & \text{if} & \underline{M}(x) = 1 \\ & & \text{Input Consistency} \\ \bot & \text{otherwise} \end{array}
ight)$$

$$P_k(h,\pi) := \left\{ egin{array}{ll} \operatorname{PF}_k(h) & \text{if π proves $h = H(x) \land $M(x) = 1$} \\ \bot & \text{otherwise} \end{array} \right.$$

If π is a Succinct Non-interactive Argument of Knowledge (SNARK):

Security proof: Public-coin diO for circuits [ISP15]

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- $H: \{0,1\}^* \to \{0,1\}^n$ a collision resistant hash
- SNARKs
- A public-coin diO for circuits

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- $H: \{0,1\}^* \to \{0,1\}^n$ a collision resistant hash
- SNARKs
- A public-coin diO for circuits

Define a TM CPRF F as:

$$\mathsf{F}_k(x) := \mathsf{PF}_k(H(x))$$

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- $H:\{0,1\}^* \to \{0,1\}^n$ a collision resistant hash
- SNARKs
- A public-coin diO for circuits

Define a TM CPRF F as:

$$F_k(x) := PF_k(H(x))$$

 $\mathsf{Constr}(k,M) \to k_M$:

$$P(h,\pi) := \left\{ \begin{array}{ll} \mathsf{PF}_k(h) & \text{if π SNARK: } H(x) = h \land M(x) = 1 \\ \bot & \text{otherwise} \end{array} \right.$$

- $\mathsf{PF}_k:\{0,1\}^n \to \{0,1\}^m$ a puncturable PRF
- $H:\{0,1\}^* \to \{0,1\}^n$ a collision resistant hash
- SNARKs
- A public-coin diO for circuits

Define a TM CPRF F as:

$$F_k(x) := PF_k(H(x))$$

 $\mathsf{Constr}(k,M) \to k_M$:

$$P(h,\pi) := \left\{ \begin{array}{ll} \mathsf{PF}_k(h) & \text{if π SNARK: } H(x) = h \land M(x) = 1 \\ \bot & \text{otherwise} \end{array} \right.$$

$$k_M = \tilde{P} \leftarrow \mathsf{diO}(P)$$