Chapter 5 Properties of a Random Sample

Contents

- Basic Concepts of Random samples
- Sums of Random Variables from a Random Sample
- Sampling from the Normal Distribution
- Order Statistics
- Convergence Concepts
- Generating a Random Sample

5.1 Basic Concepts of Random Samples

Definition 5.1.1 The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are mutually independent random variables and the marginal pdf or pmf of each X_i is the same function f(x). Alternatively, X_1, \ldots, X_n are called independent and identically distributed random variables with pdf or pmf f(x). This is commonly abbreviated to iid random variables.

iid=independent and identically distributed

then the joint pdf or pmf is

(5.1.2)
$$f(x_1, \ldots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta),$$

5.2 Sums of Random Variables from a Random Sample

- Some basic concepts
- Some basic definitions
- Some basic tools

Basic concept

Definition 5.2.1

Let X_1 X_n be a random sample of size n from a population and let $T(x_1....x_n)$ be a real-valued or vector-valued or function whose domain includes the sample space of $(X_1,...,X_n)$. Then $Y=T(X_1,...,X_n)$ is called a **statistic**. The probability distribution of a statistic Y is called the **sampling distribution of Y**.

The only restriction:

Statistic cannot be a function of a parameter.

Basic Definitions

Definition 5.2.2

The sample mean is the arithmetic average of the value in a random sample. It is usually denoted by

$$\overline{X} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Definition 5.2.3

The sample variance is the statistic defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Sample standard deviation

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Basic tools

• Theorem 5.2.4 Let $x_1, \dots x_n$ be any numbers and $\overline{x} = (x_1 + \dots + x_n)/n$. Then

a.
$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

b.
$$(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2$$

Proof:

a. To prove part(a), just add and subtract \overline{x} to get

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x} + \overline{x} - a)^2$$

$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + 2 \sum_{i=1}^{n} (x_i - \overline{x})(\overline{x} - a) + \sum_{i=1}^{n} (\overline{x} - a)^2$$

$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (\overline{x} - a)^2$$

$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - a)^2$$

 b. To prove part(b), just take a=0 in the above equation:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - a)^2$$

✓ One of this equation's significance is that we can get a more simple method to calculate the sample variance S^2

Three useful tools for studying the distributional properties of statistics.

• Theorem 5.2.6 Let $X_1,...,X_n$ be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

a.
$$E\overline{X} = \mu$$
, b. $var(\overline{X}) = \frac{\sigma^2}{n}$, c. $ES^2 = \sigma^2$.

Proof: a.

$$E\overline{X} = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}nEX_{1} = \mu.$$

*b. To prove part(b), similar to above, we have

$$Van(\overline{X}) = Van(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}Van(\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}nVan(X_{1}) = \frac{\sigma^{2}}{n}$$

c. we can use Theorem 5.2.4, we have

$$ES^{2} = E\left(\frac{1}{n-1}\left[\sum_{i=1}^{n}X_{i}^{2} - n\overline{X}^{2}\right]\right) = \frac{1}{n-1}(nEX_{1}^{2} - nE\overline{X}^{2})$$
$$= \frac{1}{n-1}\left(n(\sigma^{2} + \mu^{2}) - n\left(\frac{\sigma^{2}}{n} + \mu^{2}\right)\right) = \sigma^{2}.$$

5.3 Sampling from the Normal Distribution

- 5.3.1
 Properties of the Sample Mean and Variance
- 5.3.2

The Derived Distributions: Student's t and Snedecor's F

5.3.1 Properties of the Sample Mean and Variance

- Theorem 5.3.1. Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Then
 - (a) \overline{X} and S^2 are independent rv's,
 - (b) \overline{X} has a $N(\mu, \sigma^2/n)$ distribution,

(c).
$$(n-1)S^2/\sigma^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$$

• Proof:

(b) is obvious so we focus on (a) and (c). We first prove (a). Write:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \qquad \sum_{i=2}^{n} (X_{i} - \overline{X}) = -(X_{1} - \overline{X})^{2}$$

$$= \frac{1}{n-1} \left((X_{1} - \overline{X})^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left(\sum_{i=2}^{n} (X_{i} - \overline{X}) \right)^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} \right)$$

Thus S^2 can be written as a function only of $(X_2 - \overline{X}, \dots, X_n - \overline{X})$.

If we can show that these rv's are joint Independent of $\overline{\chi}$ then we are done.

$$cov(\overline{X}, X_i - \overline{X}) = cov(\overline{X}, X_i) - var(\overline{X}) = \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0$$

$$(\overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X}) \sim MultiNormal,$$

如果 (X_1, X_2, \dots, X_n) '服从n维正态分布,那 么 X_1, X_2, \dots, X_n 相互独立等价于它们两两不相关.

$$\overline{X} \perp (X_2 - \overline{X}, \dots, X_n - \overline{X})$$

- **★**In order to prove part (c), we introduce the Lemma 5.3.2
- (1) If Z is a n(0,1) random variable, then $Z^2 \sim \chi^2(1)$ (p52: 2.1.7)
- (2) If $X_1,...X_n$ are independent and $X_i \sim \chi^2(v_i)$, then $X_1 + ... + X_n \sim \chi^2(v_1 + \cdots + v_n)$ (p183: 4.6.8)
- If $X_1,...X_n$ are independent and $X_i \sim n(0,1)$, then $X_1^2 + ... + X_n^2 \sim \chi^2(n)$

$$(k+1)\bar{X}_{k+1} = k\bar{X}_k + X_{k+1};$$

$$\sum_{i=1}^{k+1} (X_i - \overline{X}_k)^2 = \sum_{i=1}^{k+1} (X_i - \overline{X}_{k+1})^2 + (k+1)(\overline{X}_{k+1} - \overline{X}_k)^2$$

$$\Longrightarrow kS_{k+1}^2 = (k-1)S_k^2 + \frac{k}{k+1}(X_{k+1} - \bar{X}_k)^2$$

Now consider n=2, $X_2 - X_1 \sim N(0.2\sigma^2)$,

$$\frac{S_2^2}{\sigma^2} = \frac{(X_1 - \bar{X}_2)^2 + (X_2 - \bar{X}_2)^2}{\sigma^2} = \left(\frac{X_2 - X_1}{\sqrt{2}\sigma}\right)^2 \sim \chi^2(1)$$

According to the induction hypothesis,

$$\frac{(k-1)S_k^2}{\sigma^2} \sim \chi^2(k-1)$$

Now consider n=k+1, $S_k^2 \perp (X_{k+1} - \overline{X}_k)$

$$X_{k+1} - \overline{X}_k \sim N\left(0, \frac{k+1}{k}\sigma^2\right)$$

$$\frac{k}{k+1} \cdot \frac{(X_{k+1} - \bar{X}_k)^2}{\sigma^2} = \left(\frac{X_{k+1} - \bar{X}_k}{\sigma \sqrt{(k+1)/k}}\right)^2 \sim \chi^2(1)$$

$$\therefore \frac{kS_{k+1}^2}{\sigma^2} = \frac{(k-1)S_k^2}{\sigma^2} + \frac{k}{k+1} \frac{(X_{k+1} - \overline{X}_k)^2}{\sigma^2} \sim \chi^2(k)$$

5.3.2 The Distributions: Student's t and Snedecor's F

• In particular, in most practical cases the variance, σ^2 , is unknown. Thus , to get any idea of the variability of $\overline{\chi}$ (as an estimate of μ), it is necessary to estimate this variance.

Considering the quantity:
$$\frac{\overline{X} - \mu}{S / \sqrt{n}}$$

Which we can use to inference about μ when σ is unknown.

Structure of t distribution

Suppose $W \sim N(0, 1)$, $V \sim \chi^2(r)$, W, V are independent, then

$$T = \frac{W}{\sqrt{V/r}} \sim t(r).$$

t(r) is called t-distribution with degree freedom r.

The p.d.f.

$$f(t) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{r\pi}\Gamma(\frac{r}{2})} (1 + \frac{t^2}{r})^{-\frac{r+1}{2}}, \quad -\infty < t < \infty$$

r=1: Cauchy distribution

The figure of f(t) looks like the figure of pdf of N(0, 1).

But its tail is thicker.

$$E[t(n)] = 0, \quad n > 1$$

$$Var[t(n)] = \frac{n}{n-2}, \ n > 2$$

只有当 $r < n \ (n > 1)$ 时,r阶矩才存在.

We have

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} = \frac{(\overline{X} - \mu) / (\sigma / \sqrt{n})}{\sqrt{S^2 / \sigma^2}}$$

So, we can easily derive the distribution of the quantity

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(p223: Definition 5.3.4)

Structure of F-distribution

Suppose U $\sim \chi^2(\mathbf{r}_1)$, V $\sim \chi^2(\mathbf{r}_2)$, U, V are independent. Then

$$F = \frac{U/r_1}{V/r_2} \sim F(r_1, r_2).$$

 $F(r_1, r_2)$ is called an F-distribution with degrees of freedom r_1 and r_2 . Its pdf is

$$h(y) = \begin{cases} \frac{\Gamma(\frac{r_1 + r_2}{2})(r_1 / r_2)^{r_1/2} y^{\frac{r_1}{2} - 1}}{2}, & y > 0\\ \frac{\Gamma(\frac{r_1}{2})\Gamma(\frac{r_2}{2})(1 + \frac{r_1}{r_2} y)^{(r_1 + r_2)/2}}{0,} & y \le 0 \end{cases}$$

Let $X_1,...,X_n$ be a random sample from a $n(\mu_x,\sigma_x^2)$ Population, and let $Y_1,...,Y_m$ be a random sample From an independent $n(\mu_y,\sigma_y^2)$ population. The random variance

$$F = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2} \sim F(n-1, m-1)$$

(P224: Definition 5.3.6)

5.4 Order Statistics

★Definition 5.4.1

The order statistics of a random sample $X_1,...X_n$ are the sample values placed in ascending order, They are denoted by $X_{(1)},...,X_{(n)}$.

Certain functions of order statistics, $X_{(1)},...,X_{(n)}$ are important statistics themselves. A few of these are:

- $(a)X_{(n)}-X_{(1)}$, which is called the *sample range*;
- (b) $(X_{(n)} + X_{(1)}) / 2$, which is called the *sample midrange*;
- (c) $X_{((n+1)/2)}$ if n is odd, or $X_{(n/2)} + X_{(n/2+1)}$, which is called the *median* of the r. s.

The difference between sample median and sample mean.

- Theorem 5.4.3 Let $X_1,...X_n$ be a random sample from a discrete distribution with pmf $f_x(x_i)=p_i$, where $x_1< x_2<...$ are the possible values of X in ascending order, Define
- $P_0=0$, $P_1=p_1$, $P_2=p_1+p_2$, $P_i=p_1+p_2+...+p_i$,
- Then $P(X_{(j)} \le x_i) = \sum_{k=j}^{n} \binom{n}{k} P_i^k (1 P_i)^{n-k}$

$$P(X_{(j)} = x_i) = \sum_{k=j}^{n} {n \choose k} \left[P_i^k (1 - P_i)^{n-k} - P_{i-1}^{k} (1 - P_{i-1})^{n-k} \right]$$

• Theorem 5.4.4 Let $X_{(1)},...,X_{(n)}$ denote the order statistics of a random sample, $X_1,...,X_n$, from a continuous population with cdf $F_x(x)$ and pdf $f_x(x)$. Then the pdf of $X_{(i)}$ is

$$f_{X(j)}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$$

• The distribution of $X_{(1)}$ and $X_{(n)}$ may be obtained directly.

$$F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(X_i \le x \text{ for all i}) = [F_X(x)]^n$$
Thus $f_{X_{(n)}}(x) = n[F_X(x)]^{n-1} f_X(x)$

$$1 - F_{X_{(1)}}(x) = P(X_{(1)} > x) = P(X_i > x \text{ for all i}) = [1 - F_X(x)]^n$$
Thus $f_{X_{(1)}}(x) = n[1 - F_X(x)]^{n-1} f_X(x)$.

• Theorem 5.4.6 (Still for continuous case) The joint pdf of $X_{(i)}$ and $X_{(i)}$, 1<=i<j<=n, is

$$f_{X(i),X(j)}(y,z) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(y) f_X(z) [F_X(y)]^{i-1} \times [F_X(z) - F_X(y)]^{j-1-i} [1 - F_X(z)]^{n-j} \text{ for } -\infty < \mu < \nu < \infty$$

$$\therefore f_{ij}(y,z)\Delta y\Delta z = P(y < X_{(i)} \le y + \Delta y, z < X_{(j)} \le z + \Delta z)
= \binom{n}{i-1,1,j-i-1,1,n-j} [F(y)]^{i-1} f(y)\Delta y [F(z)-F(y)]^{j-i-1} f(z)\Delta z [1-F(z)]^{n-j}$$

5.5 Convergence Concepts

- Convergence of random variables
 - Convergence in Distribution
 - Convergence in Probability
 - Convergence in r-order mean
 - Almost sure convergence
- Law of Large Numbers
- Central Limit Theorem

Convergences

Def. Let $\{X_n\}$ be a sequence of r. vs. We say

(1) X_n convergence in distribution, (or converge weakly) to X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x),$$

$$\lim_{n\to\infty} P[|X_n - X| \ge \varepsilon] = 0,$$

a.s.

(4) X_n converges almost surely, or almost everywhere, or

with probability 1, or strongly towards X if

$$P[\lim_{n\to\infty}X_n=X]=1.$$

Properties

- (1) If b is constant, $X_n \xrightarrow{D} b \Leftrightarrow X_n \xrightarrow{P} b$.
- (2) $X_n \xrightarrow{P} X$, and $Y_n \xrightarrow{P} Y$. Then $X_n \pm (\times) Y_n \xrightarrow{P} X \pm (\times) Y$.
- (3) $X_n \xrightarrow{P} X$, and the real function g is continuous. Then $g(X_n) \xrightarrow{P} g(X)$. (p233 Theorem 5.5.4)
 - (4) (p239 Theorem 5.5.17: Slutsky's Theorem)

If
$$X_n \xrightarrow{D} X$$
, $Y_n \xrightarrow{P} a$, then $X_n Y_n \xrightarrow{D} aX$, $X_n + Y_n \xrightarrow{D} X + a$.

Law of large numbers (L.L.N)

• Let $\{X_n\}$ be a sequence of i.i.d. rvs with finite mean $\mu < \infty$. Then the sample mean converges to μ

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n} \longrightarrow \mu, \ n \longrightarrow \infty$$

- Weak L.L.N: $\bar{X}_n \xrightarrow{P} \mu$.
- Strong L.L.N $\bar{X}_n \xrightarrow{a.s.} \mu$.
- Remark: (1) for i.i.d. case, assumption of finite variance $\sigma^2 < \infty$ is **not necessary**. Large or infinite variance will make the convergence slower, but the weak or strong LLN holds anyway.
- (2) for not i.i.d. case, under Markovian assumption,

$$\operatorname{var} \bar{X}_n \to 0 \Longrightarrow \bar{X}_n \stackrel{P}{\to} \mu.$$

Examples

If $X_1, \dots, X_n \stackrel{\text{\tiny ind}}{\sim} X, E(X) = \mu < \infty$, then, from LLN,

- $(1) \quad \bar{X} \stackrel{P}{\rightarrow} \mu;$
- (2) if furthermore $var(X) = \sigma^2 < \infty$, then $S^2 \xrightarrow{P} \sigma^2; S \xrightarrow{P} \sigma.$

In fact, $E(X^2) = \mu^2 + \sigma^2 < \infty$, from LLN,

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2}=\frac{1}{n}\left(\sum_{i=1}^{n}X_{i}^{2}-n\bar{X}_{n}^{2}\right) \xrightarrow{p} E[X_{1}^{2}]-\mu^{2}=\sigma^{2}.$$

$$S^{2} = \frac{n}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2} \xrightarrow{p} \sigma^{2}$$

$$S \xrightarrow{p} \sigma$$

Central limit theorem

Central Limit Theorem (C.C.L.)

Let $\{X_n\}$ be a sequence of i.i.d. rvs with a finite mean μ and a finite positive variance σ^2 . Then

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} N(0, 1), (n \to \infty)$$

According to Slutsky's Theorem,

$$\frac{\overline{X}_n - \mu}{S / \sqrt{n}} \xrightarrow{D} N(0, 1), (n \to \infty)$$

consistency

 Definition: Any statistic that converges in probability to a parameter is called a consistent estimator of that parameter.

- S^2 is consistent estimator of σ^2 ;
- S is consistent estimator of σ

Delta Method

• The *r*th-order Taylor series expansion of g(x) about a

$$T_r(x) = \sum_{i=0}^r \frac{g^{(i)}(a)}{i!} (x-a)^i + \text{Remainder.}$$

• T is a r.v with $E(T) = \theta$.

$$g(T)=g(\theta)+g'(\theta)(T-\theta)+$$
Remainder

$$g(T) \approx g(\theta) + g'(\theta)(T - \theta) + \frac{g''(\theta)}{2}(T - \theta)^2 + \text{Remainder}$$

• Example 5.5.23 An iid sample $\{X_i\}$ with $EX_i = \mu \neq 0$, and $var(X_i) = \sigma^2$.

$$\frac{1}{\bar{X}} = \frac{1}{\mu} - \frac{1}{\mu^2} (\bar{X} - \mu) + \frac{1}{\mu^3} (\bar{X} - \mu)^2 + \text{Remainder}$$

When n is large,

$$E\left(\frac{1}{\bar{X}}\right) \approx \frac{1}{\mu}$$
 $or: E\left(\frac{1}{\bar{X}}\right) \approx \frac{1}{\mu} + \frac{\sigma^2}{n\mu^3}$

$$\operatorname{var}\left(\frac{1}{\overline{X}}\right) \approx \frac{1}{\mu^4} \operatorname{var}(\overline{X}) = \frac{\sigma^2}{n\mu^4}$$

Delta Method

Theorem 5.5.24 (Delta method) Let Y_n be a sequence of rvs that satisfies $\sqrt{n}(Y_n - \theta) \xrightarrow{D} N(0, \sigma^2), (n \to \infty)$

For a given function g, a specific value θ , suppose that g' (θ) exists and is not 0, then

$$\sqrt{n}\left\{g(Y_n)-g(\theta)\right\} \xrightarrow{D} N(0, g'(\theta)^2 \sigma^2), (n \to \infty)$$

Corollary The often-used special case of the Theorem is $Y_n = \overline{X}_n$ in which $\{X_n\}$ be i.i.d. rvs, by C.C.L.

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{D} N(0, \sigma^2), (n \to \infty)$$
 (C.C.L.)

thus

$$\sqrt{n}\left\{g(\overline{X}_n)-g(\mu)\right\} \xrightarrow{D} N(0, g'(\mu)^2\sigma^2), (n \to \infty)$$

• Example 5.5.25 X with $EX=\mu\neq 0$,

$$\sqrt{n} \left(\frac{1}{\bar{X}} - \frac{1}{\mu} \right) \to n \left(0, \left(\frac{1}{\mu} \right)^4 \operatorname{Var}_{\mu} X_1 \right)$$

$$\frac{\sqrt{n} \left(\frac{1}{\bar{X}} - \frac{1}{\mu} \right)}{\left(\frac{1}{\bar{Y}} \right)^2 S} \to n(0, 1)$$

Theorem 5.5.26 (Second-order Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta) = 0$ and $g''(\theta)$ exists and is not 0. Then

(5.5.13)
$$n[g(Y_n) - g(\theta)] \to \sigma^2 \frac{g''(\theta)}{2} \chi_1^2 \text{ in distribution.}$$

Let T_1, \ldots, T_k be random variables with means $\theta_1, \ldots, \theta_k$, and define $\mathbf{T} = (T_1, \ldots, T_k)$ and $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_k)$. $g(\mathbf{t}) = g(\boldsymbol{\theta}) + \sum_i g_i'(\boldsymbol{\theta})(t_i - \theta_i) + \text{Remainder.}$

 $\mathbf{\widetilde{E}}_{\boldsymbol{\theta}}g(\mathbf{T}) \approx g(\boldsymbol{\theta})$

 $\operatorname{Var}_{\boldsymbol{\theta}} g(\mathbf{T}) \approx \operatorname{E}_{\boldsymbol{\theta}} ([g(\mathbf{T}) - g(\boldsymbol{\theta})]^2)$

$$pprox \mathrm{E}_{m{ heta}} \left(\left(\sum_{i=1}^k g_i'(m{ heta}) (T_i - heta_i) \right)^2 \right)$$

 $= \sum_{i=1}^{n} [g_i'(\boldsymbol{\theta})]^2 \operatorname{Var}_{\boldsymbol{\theta}} T_i + 2 \sum_{i>j} g_i'(\boldsymbol{\theta}) g_j'(\boldsymbol{\theta}) \operatorname{Cov}_{\boldsymbol{\theta}} (T_i, T_j),$

$$= \sum_{i=1}^{k} g'_i(\theta)g'_j(\theta)\operatorname{Cov}(T_i, T_j)$$

Theorem 5.5.28 (Multivariate Delta Method) Let X_1, \ldots, X_n be a random sample with $E(X_{ij}) = \mu_i$ and $Cov(X_{ik}, X_{jk}) = \sigma_{ij}$. For a given function g with continuous first partial derivatives and a specific value of $\mu = (\mu_1, \ldots, \mu_p)$ for which $\tau^2 = \sum \sum \sigma_{ij} \frac{\partial g(\mu)}{\partial \mu_i} \cdot \frac{\partial g(\mu)}{\partial \mu_j} > 0$,

$$\sqrt{n}[g(\bar{X}_1,\ldots,\bar{X}_s)-g(\mu_1,\ldots,\mu_p)]\to n(0,\tau^2)$$
 in distribution.

Homework: P257~263

• 5.11, 5.13, 5.16, 5.17, 5.21, 5.22, 5.44