

Intel® Pentium® and Celeron® Processor N- and J- Series (Formerly Apollo Lake)

External Design Specification - Volume 1 of 4

Intel Confidential

Revision 2.3

March 2017

Document Number: 557555

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel® Pentium®, Intel® Celeron®, Intel® Thermal Monitor, and Intel® Display Power Saving Technology (Intel® DPST) are trademarks of Intel Corporation in the U.S. and/or other countries.

 $\ensuremath{^{*}\text{O}}$ ther names and brands may be claimed as the property of others.

Copyright $\ensuremath{\text{@}}$ 2017, Intel Corporation. All Rights Reserved.

Contents

1	Intro	duction	15
_	1.1	SoC Features	
	1.1	Terminology	
	1.3	SKU Information	
2	Physi	ical Interfaces	
	2.1	PCI Device ID	
	2.2	Port ID on IOSF interface	24
	2.3	Buffer Type Definitions	
	2.4	Power Well Definitions	25
	2.5	Memory Interface Signals	
		2.5.1 DDR3L Interface Signals	
		2.5.2 LPDDR3 Interface Signals	
		2.5.3 LPDDR4 Interface Signals	
	2.6	Digital Display Interface (DDI) Signals	
	2.7	MIPI*-DSI Interface Signals	
	2.8	MIPI*-CSI2 (DPHY1.1) Signals	
	2.9	MIPI*-CSI2 (DPHY1.2) Signals	
	2.10	MIPI* Camera Sideband Signals	
	2.11	SVID Signals	
	2.12	eMMC* Signals	
	2.13	SD Card Signals	
	2.14	System Management Bus (SMBus)	
	2.15	USB 2.0 Interface Signals	
	2.16	USB 3.0 Interface Signals	
	2.17		
	2.18	SATA Interface Signals	
	2.19	FAST SPI Interface	
		2.19.1 Fast Serial Peripheral Interface (SPI) Signals	
	2.20	SIO (LPSS) Serial Peripheral Interface (SPI) Signals	
	2.21	JTAG Interface Signals	
	2.22		
	2.23	High Speed UART Interface Signals	
	2.24	I ² C Interface Signals	
	2.25	Power Management Signals	
	2.26	Real Time Clock (RTC) Interface Signals	
	2.27	Integrated Clock Interface Signals	
	2.28	Integrated Sensor Hub Interface Signals	
	2.29	Low Pin Count (LPC) Bus	
	2.30	Miscellaneous Signals	
	2.31 2.32	Hardware StrapsGPIO Multiplexing	
	2.32	Wake Events	
3	Funct	tional Description	
	3.1	Processor Core Overview	
	3.2	System Memory Controller	
		3.2.1 Supported Memory Overview	
		3.2.2 Memory Configurations	
	3.3	Display Controller	70
		3.3.1 Features of Display Controller	70

	3.4	Graphics and Media Engine	. 71
	3.5	Imaging	
		3.5.1 Camera Configurations	
	3.6	Audio Controller	. 74
	3.7	Power Management	. 74
	3.8	USB Controller	
	3.9	PCI Express*	
		3.9.1 PCIE* Port Mapping	
	3.10	Serial ATA (SATA)	
	3.11	Storage	
	3.12	Serial I/O (SIO) (LPSS)	
	3.13	Fast SPI	
	3.14	Power Management Controller (PMC)	
	3.15	IntelTM Legacy Block	
	3.16	Integrated Sensor Hub	
	3.17	SMBus	
	3.18	Security Architecture	
	3.19	Thermal Management	
		3.19.1 SoC Features	
		3.19.2 Thermal Sensors	
	3.20	Clocking	. 87
4	Reset	t and Power Sequences	. 90
	4.1	Reset Flows	. 90
		4.1.1 System Sleeping States Control (S-States)	
	4.2	SoC Power-Up/Down Sequences	
		4.2.1 RTC Power Well Transition (G5 to G3 States Transition)	. 91
		4.2.2 Cold Boot [G3 Mechanical Off]	
		4.2.3 Cold Boot [G2]	
		4.2.4 Cold Off [S4/S5 Without Wakes]	
		4.2.5 G3->S5	
	4.3	Reset Sequences	
		4.3.1 Cold Reset	
		4.3.2 Warm Reset	
		4.3.3 Sx Reset	
		4.3.4 Platform Initiated Shutdown	
		4.3.5 Emergency Shutdown (Global Reset)	
	4.4	Timing Requirements	105
5	Elect	rical Specifications	108
	5.1	Absolute Maximum and Minimum Specifications	108
	5.2	Thermal Specifications	
		5.2.1 Temperature Requirements	
	5.3	Storage Conditions	
	5.4	Post Board-Attach	
	5.5	Voltage, Current, and Crystal Specifications	110
		5.5.1 Voltage and Current Specifications	110
		5.5.2 Crystal Specifications	
	5.6	AC and DC Specifications	112
		5.6.1 DISPLAY	113
		5.6.2 MIPI*-CSI	
		5.6.3 Memory Specifications	130
		5.6.4 SD Card	
		5.6.5 eMMC*	143
		5.6.6 JTAG	
		5.6.7 USB	147

	5.6.8	SPI	154
	5.6.9		
	5.6.10) LPSS UART	
	5.6.11	I ² S (Audio)	162
	5.6.12	2 AVS DMIC	164
	5.6.13	³ I ² C	165
		ł HDA	
		5 LPC	
		5 Platform Clock	
		PCIe* Specification	
		B SATA Specification	
		SMBus Specification	
		PMU (Power Management Signals)	
	5.6.21	ISH GPIO/PROCHOT_N/PCIe Wake/PCIe CLKREQ/GPIO/THERM	TRIP_N
	5 6 8 8	Specification	181
		2 RTC Signal Specification	
	5.6.23	B PWM Signal Specification	183
6	Ball Map and	d SoC Pin Locations	185
	6.1 SoC Ba	all Map DDR3L	185
	6.2 SoC Ba	all Map—LPDDR3	189
		all Map—LPDDR4	
	6.4 SoC Pi	in List Numbers and Locations—DDR3L, LPDDR3, LPDDR4	195
	6.5 SoC X	and Y Pin List	231
7	Package Inf	formation	26'
•		ge Attributes	
		ge Diagrams	
	7.2 Tuckug	ge Diagrams	200
Fi	igures		
-		Diagram	18
		Y 1.1/1.2 Sensor Configurations	
		*/SATA Port Mapping	
		USB3 Port Mapping	
		Mapping	
		ld Boot Power-Up	
		ld Boot Power-Up No Coin Cell	
		ld Boot Power-Up	
		ld Boot Power-Up VDDQ V1P24 Rail Merge	
	4-5 SoC S4/S5	Cold Off	96
	4-6 G3 -> S5 S	SequencingSequencing	97
	4-7 SoC Cold Re	eset	98
		Reset	
		ver Sequencing (S0-S3-S0)	
		wer Sequencing (S0-S4-S0)	
		Power Sequencing (S0-S0Ix)	
		nitiated Graceful Shutdown While in S0	
		nitiated Graceful Shutdown While in S3	
		P Sequencing	
		of Differential Voltage and Differential Voltage Peak-to-Peak	
		of Pre-Emphasis	
		m Mask for HDMI*	
		to Data Clock Timings	
	b b lurnaround	1 Procedure	17/

		40-
	Input Glitch Rejection of Low-Power Receivers	
	MIPI*-CSI Clock Definition	
	MIPI*-CSI Camera Side Band Signals	
5-9	DDR3L DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)	131
	ODDR3L DQ Valid Before and After DQSP/DQSN (Write Operation)	
	1DDR3L Write Preamble Duration	
	2DDR3L Write Postamble Duration	
	3DDR3L Command Signals Valid Before and After CLK Rising Edge	
	4DDR3L CLKE Valid Before and After CLK Rising Edge	
	5DDR3L CS_N Valid Before and After CLK Rising Edge	
	6DDR3L ODT Valid Before CLK Rising Edge	
	7DDR3L Clock Cycle Time	
	8DDR3L Skew Between System Memory Differential Clock Pairs (CLKP/CLKN)	
	9DDR3L CLK High Time	
	0DDR3L CLK Low Time	
	1DDR3L DQS Falling Edge Output Access Time to CLK Rising Edge	
	2DDR3L DQS Falling Edge Output Access Time from CLK Rising Edge	
	3DDR3L CLK Rising Edge Output Access Time to the First DQS Rising Edge	
5-24	4LPDDR3 DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)	136
5-2!	5LPDDR3 DQ Valid Before and After DQSP/DQSN (Write Operation)	137
	6LPDDR4 DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)	
5-27	7LPDDR4 DQ Valid Before and After DQSP/DQSN (Write Operation)	139
	8TCO Timing Definition	
	9Setup and Hold Timing Definition Diagrams	
	0 eMMC DC Bus Signal Level	
	1USB Rise and Fall Times	
	2USB Full-Speed Load	
	3USB Differential Data Jitter for Low/Full-Speed	
5-34	4USB Differential-to-EOP Transition Skew and EOP Width for Low/Full-Speed	121
5-3	5Definition of Timing for F/S-Mode Devices on I ² C Bus	168
	6Definition of Timing for High-Speed Mode Devices on I ² C Bus	
5-37	7PWM AC Specification	184
6-1	Ball Map DDR3L—Left (63–42)	186
6-2	Ball Map DDR3L—Center (41–20)	187
	Ball Map DDR3L—Right (19–1)	
	Ball Map LPDDR3—Left (63–42)	
	Ball Map LPDDR3—Middle (41–20)	
6-6	Ball Map LPDDR3—Right (19–1)	191
6-7	Ball Map LPDDR4—Left (63-42)	192
6-8	Ball Map LPDDR4—Middle (41–20)	193
6-9	Ball Map LPDDR4—Right (19–1)	194
	Package Mechanical Drawing—Part 1 of 3	
	Package Mechanical Drawing—Part 2 of 3	
	Package Mechanical Drawing—Part 3 of 3	
, 5	rackage recolumed Planning Falls 5 of 5 minimum.	
Table	es e	
1-1	SoC Features	. 15
	SoC SKU List	
	PCI Configuration Matrix	
	PORT IDs.	
	Buffer Type Definitions	
	Platform Power Well Definitions	
	DDR3L System Memory Signals	
	LPDDR3 System Memory Signals	
2-0	בי סאסעם אוויוייוו איז פאסע פאסע ביוער אוייייי איז פאסע איז פאסע אויייייי איז פאסע אוייייייייייייייייייייייייי	. 4/

2-7 LPDDR4 System Memory Signals	28
2-8 Digital Display Interface Signals	28
2-9 MIPI*-DSI Interface Signals	29
2-10MIPI*-CSI2 (DPHY1.1) Interface Signals	30
2-11SoC MIPI*-CSI2 (DPHY1.2) Interface Signals	30
2-12SoC Camera Sideband Signals	
2-13SVID Interface Signals	31
2-14SoC eMMC* Interface Signals	32
2-15 SoC SD Card Interface Signals	32
2-16SoC SMBus Interface Signals	33
2-17USB 2.0 Interface Signals	33
2-18SoC USB 3.0 Signals	
2-19SoC PCIE*2 Signals	35
2-20SoC SATA3 Signals	
2-21Fast Serial Peripheral Interface (SPI) Signals	
2-22SIO (LPSS) Serial Peripheral Interface (SPI) Signals	
2-23JTAG Interface Signals	
2-24SoC Audio Interface Signals	
2-25SoC HDA Interface Signals	
2-26SoC UART Interface Signals	
2-27SoC I ² C Interface Signals	
2-28SoC PM Interface Signals	
2-29SoC RTC Interface	
2-30Integrated Clock Interface Signals	.44
2-31SoC Integrated Sensor Hub Interface Signals	46
2-32SoC LPC Interface	
2-33Miscellaneous Signals	
2-34Hardware Straps	
2-35SoC GPIO Multiplexing	
2-36Wake Events	
3-1 Processor Core Overview	
3-2 Specifics of Supported Memory Technologies	
3-3 Supported Memory Technologies	
3-4 Channel Operating Rules	
3-5 DDR3L Channel Configuration Support	
3-6 LPDDR3 Memory Configurations	69
3-8 LPDDR4 x32 Configuration Support	
3-7 LPDDR4 Memory Configurations	70
3-9 Display Features	71
3-10Hardware Accelerated Video Decode/Encode Codec Support	
3-11Audio Controller Features	
3-12Power Management Supported Features	7/
3-13USB xHCI Controller Features	
3-14Port Assignment for USB	
3-15PCIe* Features	
3-16PCIe* Port Mapping	
3-17Supported Configurations for x4 Root Port	
3-18Supported Configuration for x2 Root Port	
3-20SATA Non Supported Features	
3-21SATA Non-Supported Features	
3-22Storage Interface Usage	
3-23SD Card Features	
3-27UFS Features	/9 คก
SEZADIVIVO TEDALLICACI	יוא

3-25SD Card Working Modes	
3-26eMMC* Working Modes	80
3-28SoC Serial I/O Supported Interfaces	
3-29SIO—I2C Features	
3-30SIO—HSUART Features	
3-31SIO—SPI Features	
3-32iLB Features	
3-33Integrated Sensor Hub Supported Functions and Components	
3-34SoC TXE 3.0 Interaction	
3-35Temperature Reading Based on DTS	
3-36Summary of Clock Signals	87
4-1 Timing Requirements During Reset Flows	
5-1 Absolute Max and Min values	
5-2 SoC Base Frequencies and Thermal Specifications	
5-3 Storage Conditions Prior to Board Attach	
5-4 Apollo Lake SoC Power Rail DC Specification and Iccmax	
5-5 Integrated Clock Crystal Specification	.11
5-6 Integrated Clock Oscillation Specification	
5-7 ILB RTC Crystal Specification	
5-8 Display Port* DC Specification	
5-9 Display Port* Transmitter AC Specification	
5-10HDMI* DC Specification	
5-11HDMI* AC Specification	.1/
5-12Embedded Display Port* DC Specification	.18
5-13Embedded Display Port* AC Specification	.18
5-14DDI AUX Channel DC Specification	.19
5-15Display Port* AUX Channel AC Specification	
5-16Embedded Display Port* AUX Channel DC Specification	.20
5-17Embedded Display Port* AUX Channel AC Specification	
5-18DDI Panel GPIO Signals DC Specification	.21
5-19DDI Panel GPIO Signals DC Specification	
5-20MIPI*-DSI DC Specification	
5-21MIPI*-DSI AC Characteristics	
5-22MIPI*-DSI GPIO Signals DC Specification	
5-23MIPI*-DSI GPIO Signals AC Specification	
5-24MIPI HS-RX/MIPI LP-RX Minimum, Nominal, and Maximum Voltage Parameters	
5-26MIPI*-CSI Clock Signal Specification	
5-28DDR3L DC Specification	
5-29DDR3L Interface Timing Specification	
5-30LPDDR3 DC Specifications	
5-31LPDDR3 AC Specifications	
5-32LPDDR4 DC Specifications	
5-33SD Card Signal Group DC Specification	
5-34SD Card Signal Group AC Specification	
5-35eMMC* Signal Group DC Specification	
5-36eMMC* Signal Group AC Specification	
5-37JTAG DC Specification	
5-38JTAG AC Specification	
5-39JTAG DC Specification	
5-40JTAG AC Specification	
5-41USB 2.0 Host DC Specification	
5-42USB 2.0 AC Specification (High-Speed)	
5-43USB 2.0 AC Specification (Full-Speed)	

5-44USB 2.0 AC Specification (Low-Speed)149
5-45USB 3.0 Interface DC Specification
5-46USB 3.0 Signals AC Specification152
5-47USB GPIO Signals DC Specification153
5-48USB GPIO Signals AC Specification154
5-49SIO SPI Signal Group DC Specification154
5-50SIO SPI Signal Group AC Specification155
5-51PMC SPI Signal Group DC Specification156
5-52PMC SPI Signal Group AC Specification157
5-53FAST SPI Signal Group DC Specification157
5-54FAST SPI Signal Group AC Specification158
5-55SVID Signal Group DC Specification (SVID_DATA, SVID_CLK, SVID_ALERT_N)159
5-56SVID Signal Group AC Specification (SVID_DATA, SVID_CLK, SVID_ALERT_N)160
5-57LPSS UART Signals DC Specification161
5-58LPSS UART Signals AC Specification162
5-59I2S Signal Group AC Specification163
5-60AVS DMIC Signals DC Specification164
5-61AVS DMIC Signals AC Specification165
5-62I2C SIO/PMIC/ISH/MIPI/DDI_DDC Signals DC Specification
5-63I ² C Fast/Standard Mode AC Specifications166
5-64AC Specification for High Speed Mode I ² C—Bus Devices169
5-65HDA Signal Group DC Specification171
5-66HDA Signal Group AC Specification172
5-67LPC Signals DC Specification172
5-68LPC Signals AC Specification173
5-69Platform Clock GPIO174
5-70Platform Clock AC Specification176
5-712G PCIe* DC Specification
5-72General Specifications176
5-73Transmitted Signal Requirements
5-74SMBus AC Specification
5-75PMU Signals DC Specification181
5-76LPC Signals AC Specification181
5-77DC Specification
5-78RTC Specification
5-79PWM DC Specification
6-1 SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4195
6-2 SoC X and Y Pin List
7-1 Package Attributes

Revision History

Document Number	Revision	Description	Date
557555	0.51	Initial release	March 2015
		General updates to overall document to correct typographic and content errors.	
		Chapter 1—Introduction	
		Table 1-2 New Terminologies updates	
		Chapter 2—Physical Interfaces	
l		Added PCI Device ID	
		Added Hardware Straps table	
		Added Platform Wake Events	
		Updated Table 2-2 with Buffer Type Definitions	
		Updated Table 2-4 signals names and added Reset and RCOMP signal	
		Updated Table 2-5 signal names and added Reset signal	
		Updated Table 2-20 - signal names	
		Updated Table 2-24 - signal name from GP_SSP to SIO_SPI.	
		Updated Table 2-37 - voltage level for SVID signals fixed and general updates	
		Chapter 3—Functional Description	
		General Updates to overall document to correct content errors	
		Updated Memory Subsystem details.	
		Added table for supported Memory Configurations	
		Table 3-3 updated with corrections	
		Theoretical Maximum specification replaced with Peak Bandwidth	
557555	0.7	CMD/Address pins per channel for DDr3L changed from 11 to 16	May 2015
		Table 3-8 updated to reflect platform support for Windows.	
		Figure 3-2 - PCIe* Root Ports updated from 0-5 to 1-6 to align with SoC nomen- clature.	
		Table 3-13 Updated to align with SoC features	
		Table 3-19 - Updated feature list to align with SoC features	
		Table 3-25 and 30 - Updated table with corrections and align with SoC features	
		Fixed Figure 3-2 with PCIE Ports from 1-6 instead of 0-5 to align with other collaterals	
		Chapter 4—Reset and Power Sequence	
		General updates to align with SoC and platform features	
		Updated Table 3-7 with latest supported list	
		Chapter 5—Electrical Specification	
		Updated Thermal Specification to align with SoC	
		General updates/corrections to the electrical specifications	
		Added AC specifications for multiple interfaces	
		Chapter 6—Ballout and Ball Map	
		Updates to the pin list:	
		GP_SSP_XX changed to SIO_SPI to better reflect the technology	
		MEM_CHx_CLKxA/B changed to MEM_CHx_CLK_A/B for LPDDR3 signals	
		PCH_PWROK changed to SOC_PWROK	

Document Number	Revision	Description	Date
		Chapter 1—Introduction	
	Revision	Chapter 1—Introduction General updates done through the document to align with platform POR (Plan Of Record). Added details about LPDDR4 Memory Technology Update memory speeds and memory capacity details for all memory type. Updated Block Diagram to align with platform POR. Updated eDP1.4 to eDP1.3 Updated DP1.2a to DP1.2 Chapter 2—Physical Interfaces Updated Power well definitions to highlight rail isolation Added details for LPDDR4 signal description Remove dedicated SPI_Touch interface. Updated Hardware Straps related to eMMC and SPI boot options Adding clarification notes about termination for PCIE-CLKREQ signals in native and GPIO mode. Added details about CLKREQ and REF_CLKS pairing Removed PMIC_PWRGOOD signal from GPIO Muxing table Added new eMMC related signals - EMMC_RST_N and EMMC_PWR_EN_N General update made to the Wake Event table	Date
	0.9	 Chapter 3—Functional Description Updated details about supported memory Configurations Add MBO (Media Buffer Optimization) to Display section as feature. Added note for DCI (Direct Connect Interface) support for USB chapter. Added PCIe Port Mapping and supporting configuration details. Chapter 4—Reset and Power Sequence General updates to align timing sequences with SoC requirements Updated timing requirements for "1.05V Ramp to SOC_PWROK assertion" to Minimum = 5mS. Removed the max timing requirement. 	November 2015
557555		 Add t0 measurement point requirement. Updated t0 timing spec to 18-25ms. Add more Notes to describe each sections. Update voltage rail names according to latest EDS pin list. Update Table 4-1 timing table. Remove platform level timing diagram Update S3, S4/S5 and S0Ix timing diagram. Add G3 -> S5 timing diagram. Add Cold Off timing diagram. Add G2 cold boot with VDDQ/VDD2_1P24_GLM timing diagram. Add note to indicate specific VNN_SVID rail requirement Chapter 5—Electrical Specification Updated Table 5-1 with added SoC SKU data Updated Table 5-3 with Iccmax data Added AC Specification numbers for all interfaces Updated DC Specification numbers for all interfaces 	
	1.0	Updated the Pin List Added LPDDR4 signal names Removed ECC related signals for Memory interface Pin H48 was changed to NCTF Added SoC Ball Map details Added SoC X-Y location Alignment with other Apollo Lake Collaterals	

Document Number	Revision	Description	Date
		General updates to overall document to correct typographic and content errors	
		Chapter 1—Introduction	
		Updated Table 1-1, Apollo Lake SoC Features, to support CSI interface.	
		Updated Table 1-1, Apollo Lake SoC Features, to support USB OTG as USB Dual Role	
		Deleted touch information in Table 1-1, Apollo Lake SoC Features.	
		Chapter 2—Physical Interfaces	
		Updated Table 2-35, Hardware Straps	
		Removed "Asserted in G3 state", from PMU_SLP_S0_N row. Located in Table 2-29, Apollo Lake PM Interface Signals	
		Updated Table 2-37, Wake Events, Wired LAN to be "Y"	
		Removed traces of touch and ISH SPI from document as it is not POR	
		Removed ISH SPI 1.35V operational content from Table 2-3, Platform Power Well Definition as it is not POR	
		Chapter 3—Functional Description	
		Updated Figure 3-1, CSI2 D-PHY 1.1/1.2 Sensor Configurations	
		Updated Table 3-2, Specifics of Supported Memory Technologies, supported memory overview	April 2016
	- 1.5	Updated Table 3-12, USB xHCI Controller Features, to support USB OTG as USB Dual Role	
		Updated Table 3-15, PCIe* Port Mapping under PCIe*	
557555	1.3	Added additional Thermal Sensor information to section 3.18.2	
		Added temperature reading information to Table 3-34, Temperature Reading Based on DTS	
		Added Note to Section 3.8, USB Controller, that "USB 2.0 ports can be mixed with USB 3.0 ports except for DNX support which requires device mode.	
		Chapter 4—Reset and Power Sequence	
		Updated Figure 4-11, Apollo Lake S0Ix Power Sequencing (S0-S0Ix-S0) for minimum timing requirements	
		Added Figure 4-12, THERMTRIP Sequencing	
		Chapter 5—Electrical Specification	
		Updated Table 5-3, Apollo Lake SoC Power Rail DC Specification and Iccmax to match POR	
		Removed ISH SPI 1.35V content from Table 5-3, Apollo Lake SoC Power Rail DC Specification and Iccmax as it is not POR	
		Updated Electrical Specifications in chapter	
		Added to Table 5-3, Apollo Lake SoC Power Rail DC Specification and Iccmax, value 7 μA for RTC rail	
		Added Tj SDP value to Section 5-2	
		Added definition for S, Sr, and P in Note for Figure 5-32, Definition of Timing for F/S-Mode Devices on I2C Bus	
		Removed ISH SPI Table content in Chapter 5 on ISH SPI DC and AC Specifications	

Document Number	Revision	Description	Date
557555	2.0	Chapter 1 - Introduction Added ULFM frequency Updated Imaging Details Updated Block Diagram Chapter 2 - Physical Interfaces Added 0x5A85 Device ID in Table 2-1 Updated Voltage range for VCC/VNN/VCCIOA to 0.5-1.45V in Table 2-3 Updated notes for Section 2.33 Updated GPIO_40 and GPIO_111 in Table 2-34 Removed boot by eMMC information from EDS as it is a Non POR Removed EMMC_RST_N from EDS and was given signal as GPIO_219 Removed VDD2_1P24_MPHY from EDS as MPHY is not a POR Added a Note in Table 2-34 Chapter 3 - Functional Description Updated Processor Core Overview with dual core information Changed voltage rail to 1.1v for LPDRR4 Corrected typos for CH4 to CH2 Removed 16gb support from Table 3-5 Added LPDDR4 x32 Configuration Support Updated USB3/PCIe*/SATA Port Mapping figure Updated Others category in Table 3-23 Added SATA Electrical Specification Chapter 5 - Electrical Specifications Updated Voltage range for VCC/VNN/VCCIOA to 0.5-1.45V in Table 5-3 V1p24 rail updated to be 1.3A Imax value Added Temperature Requirements for the SoC Added tolerance for I2C Clock frequency in Table 5-62 Tco, Tsu and Thd were updated for all interfaces having the value.	July 2016
557555	2.1	Chapter 1 - Introduction Updated SD Card Frequency to 200 MHz. Chapter 2 - Physical Interface Updated Info on GPIO_43 and GPIO_111 in GPIO table Removed EMMC_RST_N from EDS and was given signal as RSVD Chapter 3 - Functional Description Removed Ch2 and Ch3 mixed support from LPDDR4 config support table Changed Clock Frequency support for FST SPI Chapter 5 - Electrical Specification Updated Duty Cycle , TCO/TSU and THD for all timings Interfaces	August 2016
557555	2.2	Chapter 2 - Physical Interface Removed OSC_CLK_OUT4 Chapter 3 - Functional Description Changed OSC_CLK_OUT[0:3] Clock frequency support. Chapter 5 - Electrical Specification Change SoC VID range as 450mV to 1.3V Removed AC timings Specification for eMMC and SD card.	September 2016

Document Number	Revision	Description	Date
557555	2.3	 Chapter 1 - Introduction Updated CSI D-PHY1.2 speed to 1.5Gb/s. Chapter 2 - Physical Interface Added PORT ID on IOSF Interface table Added DEBUG_PORT description Updated RTX_X1 Vih max value to 1.5V Chapter 3 - Functional Description Updated DMIC Clock Frequency Chapter 4—Reset and Power Sequence Added Platform Initiated Shutdown section Updated THERMTRIP Sequencing figure Chapter 5 - Electrical Specification Added Table with Absolute Max and min Values Updated USB2 High-speed squelch detection threshold to 200mV 	March 2017

(This page intentionally left blank.)

1 Introduction

Intel® Pentium® and Celeron® Processor N- and J- Series is the Intel Architecture (IA) SoC that integrates the next generation Intel processor Core, Graphics, Memory Controller, and I/O interfaces into a single System-on-Chip (SoC) solution.

Table 1-1 shows the system level features supported on SoC.

Refer to the subsequent chapters for detailed information on the functionality of the different interface blocks.

1.1 SoC Features

Table 1-1. SoC Features (Sheet 1 of 3)

Interface	Category	SoC
CPU	Number of Cores	4
	Burst Speed	Up to 2.6 GHz
	ULFM/LFM/HFM	800 MHz/800 MHz/Up to 2.0 GHz
Package	Туре	31x24 mm ² Type-3
	I/O count	682
	Ball count	1296
	Minimum Ball pitch	0.593 mm
	Z-height	1.318 mm +/-0.092
Graphics	Gen	Gen9-LP
	Frequency	Up to 800 MHz
	Execution Units	Up to 18
Display	MIPI*-DSI ports	1x4 and 2x4 supported (D-PHY 1.1)
	Maximum MIPI*-DSI Resolution	1920x1080 @ 60 Hz (1x4) (No Compression) 2560x1600 @ 60 Hz (2 x4) (No compression)
	Maximum DSI Data rate	1.0 Gb/s
	DDI ports (external)	2x (DP 1.2 and HDMI 1.4b)
	Maximum DDI (external) Resolution	DP 1.2: Upto 4096×2160 @ 60 Hz HDMI 1.4b: Upto 3840x2160 @ 30 Hz
	eDP ports	1 (x4 eDP 1.3)
	Maximum eDP Resolution	Up to 3840x2160 @ 60 Hz
	Maximum DDI Data Rate	5.4 Gb/s (DP/eDP) 2.9Gb/s (HDMI)
Memory	Interface	2x64 DDR3L (non ECC) 4x32 LPDDR3 and LPDDR4 (non ECC)
	Supported transfer data rates (MT/s)	DDR3L and LPDDR3: 1333, 1600, and 1866 LPDDR4: 1600, 2133, 2400

Table 1-1. SoC Features (Sheet 2 of 3)

Interface	Category	SoC
Imaging	Number of lanes	4
[CSI D-PHY 1.1]	Speed	Up to 1.5Gb/s
D-FIII 1.1]	Still Capture	13MP @ 30fps
	Video Capture	1920x1080 @ 60fps
	Video HDR	1920x1080 @ 30fps
	Maximum Vector Unit	4
Imaging	Number of Lanes	4
[CSI D-PHY1.2]	Speed	Up to 1.5Gb/s
D 11111.2j	Still Capture	13MP @ 30fps
	Video Capture	1920x1080 @ 60fps
	Video HDR	1920x1080 @ 30fps
	Maximum Vector Unit	4
Audio	Number of Ports	2x I ² S 4x DMIC 1x HD Audio (HDA/mHDA Codec)
	Maximum I ² S Speed	Master Clock: 19.2 MHz, Bit Clock: 12.28 MHz
USB	USB 3.0 Port	6 (1x USB Dual Role, 1 dedicated port, 3x multiplex with PCIe* 2.0, 1x multiplexed with SATA 3.0) Note: All Ports are backward compatible with USB 2.0
	Maximum USB 3.0 Speed	5Gb/s
	USB 2.0 Ports	2
	Maximum USB 2.0 Speed	480Mb/s
PCIe* Gen2	Ports	Up to 4 ports 6 Lanes (3x dedicated lanes and 3x multiplexed with USB 3.0)
	Maximum Speed	5 GT/s
SATA Gen3	Ports	2
	Maximum Speed	Gen 3 (6.0Gb/s)
Storage	SD Card	1x Port (SD3.01, SDR104/50/25/12 and DDR50)
	Maximum SD Card speed	Default Speed Mode=2.5MB/s High Speed Mode=25MB/s SDR50/DDR50 = 50MB/s SDR104 = 104MB/s
	еммс	5.0 (HS400 DDR Mode) 4.5 (HS200 SDR Mode)
	Maximum eMMC speed	HS400 @ 400MB/s HS200 @ 200MB/s

Table 1-1. SoC Features (Sheet 3 of 3)

Interface	Category	SoC
LPSS	I ² C Ports	8 3rd Party NFC is supported on this interface
	Maximum I ² C Maximum Speed	3.1 MHz
	HSUART	3 [1x Discrete GNSS(UART1), 1x Host OS Debug (UART2) and 1XGPIO(UART0))]
	Maximum HSUART speed	115.200kb/s (standard-speed 16550) 3.6864Mb/s (high-speed 16750)
	SPI	Controller: 1 Device supported: 1
	Maximum SPI Speed	25Mb/s
ISH	I ² C	3 (Sensors)
	Maximum I ² C Speed	1.7 MHz
	GPIO	16
iLB	Fast SPI	Controller: 1 Devices supported: 3 (FST_SPI supports upto 3 loads)
	Maximum Fast SPI Frequency	FST SPI = 50 MHz
PMC	I ² C (PMIC)	1
	Maximum I ² C speed	1.7 MHz
LPC	Ports	Devices Supported: 2
	Maximum Speed	25 MHz
SMBus	Ports	1
	Maximum Speed	100 KHz

Figure 1-1. SoC Block Diagram

1.2 Terminology

Term	Description
AHCI	Advanced Host Controller Interface
ACPI	Advanced Configuration and Power Interface
ССМ	Closely Coupled Memory
CCI	Camera Control Interface
CRU	Clock Reset Unit
CSI	Camera Serial Interface
CMOS	Complementary MOS
CSE	Converged Security Engine Note: This is the same as TXE3.0 - Trusted Execution Technology
DP*	DisplayPort*
DTS	Digital Thermal Sensor
DVS	Descriptive Video Services
DMIC	Digital Microphone
DnX	Download and Execute
EIOB	Electronic In/Out Board
EMI	Electro Magnetic Interference
еММС	embedded Multi Media Card
eDP*	embedded DisplayPort*
HDCP	High-Bandwidth Digital Content Protection
HDMI	High Definition Multimedia Interface. HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable. HDMI transmits all Advanced Television Systems Committee (ATSC) HDTV standards and supports 8-channel digital audio, with bandwidth to spare for future requirements and enhancements (additional details available at http://www.hdmi.org/).
HPET	High Precision Event Timer
HSMV	High Speed Medium Voltage
IGD	Internal Graphics Unit
Intel® TXE	Intel® Trusted Execution Engine 3.0 Note: This is also called CSE - Converged Security Engine
IPC	Inter-Processor Communication
ISH	Integrated Sensor Hub
ISP	Image Signal Processor
LCD	Liquid Crystal Display
LPC	Low Pin Count
LPDDR	Low Power Dual Data Rate memory technology
LPE	Low Power Engine
LSMV	Low Speed Medium Voltage
MIPI*-CSI	MIPI*-Camera Serial Interface
MIPI*-DSI	MIPI*-Display Serial Interface
МРО	Multi Plane Overlay
MPEG	Motion Picture Experts Group

Term	Description
MSI	Message Signaled Interrupt. MSI is a transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.
MSR	Model Specific Register, as the name implies, is model-specific and may change from processor model number (n) to processor model number (n+1). An MSR is accessed by setting ECX to the register number and executing either the RDMSR or WRMSR instruction. The RDMSR instruction will place the 64-bits of the MSR in the EDX: EAX register pair. The WRMSR writes the contents of the EDX: EAX register pair into the MSR.
MSHV	Medium Speed High Voltage
OS/US	Overshoot/Undershoot
PCIe*	PCI Express*
PMC	Power Management Controller
PMU	Power Management Unit
POR	Plan of Record
PSP	Programmable Serial Protocol
Rank	A unit of DRAM corresponding to the set of SDRAM devices that are accessed in parallel for a given transaction. For a 64-bit wide data bus using 8-bit (x8) wide SDRAM devices, a rank would be eight devices. Multiple ranks can be added to increase capacity without widening the data bus, at the cost of additional electrical loading.
RTC	Real Time Clock
SATA	Serial ATA
SCI	System Control Interrupt—SCI is used in the ACPI protocol.
SDRAM	Synchronous Dynamic Random Access Memory
SERR	System Error. SERR is an indication that an unrecoverable error has occurred on an I/O bus.
SIO (LPSS)	Serial I/O (also called LPSS—Low Power Sub System)
SMBus	System Management Bus
SMC	System Management Controller or External Controller refers to a separate system management controller that handles reset sequences, sleep state transitions, and other system management tasks.
SMI	System Management Interrupt is used to indicate any of several system conditions (such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity).
SPI	Serial Peripheral Interface
SSP	Synchronous Serial Protocol
TMDS	Transition-Minimized Differential Signaling. TMDS is a serial signaling interface used in HDMI to send visual data to a display. TMDS is based on low-voltage differential signaling with 8/10b encoding for DC balancing.
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

1.3 SKU Information

Table 1-2. SoC SKU List

S-Spec Mi	MM# Stepping				Core Speed		Integrated Graphics Core Speed		
			Functional Core	Burst Frequency Mode (BFM) 2C/1C	High Frequency Mode (HFM)	Burst Frequency	Base Frequency	TDP (W)	
R2Y9	951483	B-0	Pentium® N4200	4	2.4 GHz/2.5 GHz	1.1 GHz	750 MHz	200 MHz	6
R2YA	951484	B-0	Celeron® N3450	4	2.1 GHz/2.2 GHz	1.1 GHz	700 MHz	200 MHz	6
R2YB	951485	B-0	Celeron® N3350	2	2.3 GHz/2.4 GHz	1.1 GHz	650 MHz	200 MHz	6
R2ZA	951843	B-1	Pentium® J4205	4	2.5 GHz/2.6 GHz	1.5 GHz	800 MHz	250 MHz	10
R2Z9	951842	B-1	Celeron® J3455	4	2.2 GHz/2.3 GHz	1.5 GHz	750 MHz	250 MHz	10
R2Z8	951841	B-1	Celeron® J3355	2	2.4 GHz/2.5 GHz	2.0 GHz	700 MHz	250 MHz	10
R2Z5	951830	B-1	Pentium® N4200	4	2.4 GHz/2.5 GHz	1.1 GHz	750 MHz	200 MHz	6
R2Z6	951833	B-1	Celeron® N3450	4	2.1 GHz/2.2 GHz	1.1 GHz	700 MHz	200 MHz	6
R2Z7	951834	B-1	Celeron® N3350	2	2.3 GHz/2.4 GHz	1.1 GHz	650 MHz	200 MHz	6

2 Physical Interfaces

Many interfaces contain physical pins. These groups of pins make up the physical interfaces. Because of the large number of interfaces and the small size of the package, some interfaces share their pins with GPIOs, while others use dedicated physical pins. This chapter summarizes the physical interfaces, including the diversity in GPIO multiplexing options.

2.1 PCI Device ID

Table 2-1. PCI Configuration Matrix (Sheet 1 of 2)

Device ID	Device Description	Device	Function	Comments
0x5AF0	Host Bridge	0	0	
0x5A8C	DPTF	0	1	
0x5A84	Graphics and Display controller [18 EU]	2	0	
0x5A85	Graphics and Display controller [12 EU]	2	0	
0x5A88	Imagining Control Unit	3	0	
0x5A92	Primary to SideBand Bridge	13	0	
0x5A94	PMC (Power Management Controller)	13	1	
0x5A96	Fast SPI	13	2	
0x5AEC	Shared SRAM	13	3	
0x5A98	High Definition Audio	14	0	
0x5AA2	Integrated Sensor Hub (ISH)	17	0	
0x5AE0	SATA	18	0	
0x5AD8	PCIe*-A 0	19	0	
0x5AD9	PCIe*-A 1	19	1	
0x5ADA	PCIe*-A 2	19	2	
0x5ADB	PCIe*-A 3	19	3	
0x5AD6	PCIe*-B 0	20	0	
0x5AD7	PCIe*-B 1	20	1	
0x5AA8	USB-Host (xHCI)	21	0	
0x5AAA	USB-Device (xDCI)	21	1	
0x5AAC	I ² C 0	22	0	SIO/LPSS
0x5AAE	I ² C 1	22	1	SIO/LPSS
0x5AB0	I ² C 2	22	2	SIO/LPSS
0x5AB2	I ² C 3	22	3	SIO/LPSS
0x5AB4	I ² C 4	23	0	SIO/LPSS
0x5AB6	I ² C 5	23	1	SIO/LPSS
0x5AB8	I ² C 6	23	2	SIO/LPSS

Table 2-1. PCI Configuration Matrix (Sheet 2 of 2)

Device ID	Device Description	Device	Function	Comments
0x5ABA	I ² C 7	23	3	SIO/LPSS
0x5ABE	UART 1	24	1	SIO/LPSS
0x5AC0	UART 2	24	2	SIO/LPSS
0x5AC2	SPI 0	25	0	SIO/LPSS
0x5ACA	SD Card	27	0	
0x5ACC	eMMC*	28	0	
0x5AE8	LPC	31	0	
0x5AD4	SMBus	31	1	

2.2 Port ID on IOSF interface

Table 2-2. PORT IDs

PURT IDS	
PortID	Function
8'h30	Gen
8'h32	Iunit
8'h46	DPTF
8'h82	PMC
8'h90	SIO
8'h92	Audio
8'h93	SPI
8'h94	ISH
8'h95	PMC IOSF
8'h97	TXE
8'h98	ISH
8'hA2	USB-Host (xHCI)
8'hA4	USB-Device (xDCI)
8'hA5	USB3 MODPHY
8'hA7	USB2 PHY
8'hA8	EXI
8'hB3	PCIE0
8'hB4	PCIE1
8'hB6	PCIe Clocks
8'hC0	GPIO Southwest Community
8'hC4	GPIO Northwest Community
8'hC5	GPIO North Community
8'hC7	GPIO West Community
8'hCD	SMBus
8'hD0	ITSS
8'hD1	RTC
8'hD2	LPC
8'hD4	P2SB
8'hD6	Storage

2.3 **Buffer Type Definitions**

Table 2-3. Buffer Type Definitions (Sheet 1 of 2)

Buffer Type	Buffer Description
MIPI-PHY	1.05V tolerant buffer type
MOD PHY	1.24V tolerant buffer type (USB3, PCIe* and SATA)
Display PHY	1.05V tolerant buffer type
MIPI-DPHY	1.24V tolerant buffer type
USB2 PHY	3.3V tolerant buffer type

Table 2-3. Buffer Type Definitions (Sheet 2 of 2)

Buffer Type	Buffer Description
PCIe* PHY	1.0V tolerant PCIe* PHY buffer type
RTC PHY	3.3V tolerant RTC PHY buffer type
DDR3L PHY	1.35V tolerant buffer type
LPDDR3	1.2V tolerant buffer type
CLK PHY	1.0V tolerant buffer type
Analog	Analog pins that do not have specific digital requirements. Often used for circuit calibration or monitoring
GPIO	1.8V and 3.3V tolerant GPIO Buffer type

2.4 Power Well Definitions

Table 2-4. Platform Power Well Definitions

Power Type	Voltage Range (V)	Power Well Description	
VCC_VCGI	0.5-1.45	Variable voltage supply to CPU and Graphics Core and ISP logic	S0
VNN_SVID	0.5-1.45	Variable voltage supply to other (non core) logic	S0
VCCIOA	0.5-1.45	Variable voltage supply to DDR PHY logic	S0
VCCRAM_1P05	1.05	Fixed voltage rail for SRAM Logic	S0
VCCRAM_1P05_IO	1.05	Fixed voltage rail for I/O Logic	S0
VCC_1P05_INT	1.05	Fixed voltage rail for Internal Logic	S0
VDD2_1P24_GLM	1.24	Fixed voltage rail for SoC L2	S0-S5
VDD2_1P24_AUD_ ISH_PLL	1.24	Fixed voltage rail for Audio & ISH I/O Logic and PLLs	S0-S5
VDD2_1P24_USB2	1.24	Fixed voltage rail for USB2 I/O	S0-S5
VDD2_V1P24_DSI _CSI	1.24	Fixed voltage rail for MIPI I/Os	S0-S5
VCC_1P8V_A	1.8	Fixed voltage rail for all GPIOs	S0-S5
VDDQ	1.35	Fixed voltage rail for DDR3 IO	S0-S3
	1.2	Fixed voltage rail for LPDDR3 IO	S0-S3
	1.1	Fixed voltage rail for LPDDR4 IO	S0-S3
VCC_3P3V_A	3.3	Fixed voltage rail for GPIO, I/O logic, and USB2 PHY	S0-S5
VCC_RTC_3P3V	3.3	Fixed Voltage rail for RTC (Real Time Clock)	S0-G3

2.5 Memory Interface Signals

2.5.1 DDR3L Interface Signals

Table 2-5. DDR3L System Memory Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
MEM_CH0/CH1_DQ[63:0]	I/O	VDDQ	DDR3L PHY	Data Buses: Data signals interface to the SDRAM data buses.
MEM_CH0/CH1_DQSP[7:0] MEM_CH0/CH1_DQSN[7:0]	I/O	VDDQ	DDR3L PHY	Data Strobes: Differential data strobe pairs. The data is captured at the crossing point of DQS during read and write transactions.
MEM_CH0/CH1_CLKP[1:0] MEM_CH0/CH1_CLKN[1:0]	I/O	VDDQ	DDR3L PHY	SDRAM Differential Clock: Differential clocks signal pairs, pair per rank. The crossing of the positive edge of MEM_CH0/CH1_CLKP and the negative edge of their complement MEM_CH0/CH1_CLKN are used to sample the command and control signals on the SDRAM.
MEM_CH0/CH1_CKE[1:0]	0	VDDQ	DDR3L PHY	Clock Enable: (1 per rank). These signals are used to: Initialize the SDRAMs during power-up. Power-down SDRAM ranks. Place all SDRAM ranks into and out of self-refresh during STR (Suspend to RAM).
MEM_CH0/CH1_CS[1:0]_N	0	VDDQ	DDR3L PHY	Chip Select: (1 per rank). These signals are used to select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.
MEM_CH0/CH1_ODT[1:0]	0	VDDQ	DDR3L PHY	On Die Termination: (1 per rank). Active SDRAM Termination Control.
MEM_CH0/CH1_MA[15:0]	0	VDDQ	DDR3L PHY	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM. A10 is sampled during Read/Write commands to determine whether Auto precharge should be performed to the accessed bank after the Read/Write operation. HIGH: Auto pre-charge LOW: No Auto pre-charge. A10 is sampled during a Pre-charge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be pre-charged, the bank is selected by bank addresses. A12 is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. HIGH: no burst chop
MEM_CH0_BA[2:0] MEM_CH1_BA[2:0]	0	VDDQ	DDR3L PHY	Bank Select: These signals define which banks are selected within each SDRAM rank.
MEM_CH0_CAS_N MEM_CH1_CAS_N	0	VDDQ	DDR3L PHY	CAS Control Signal: Column Address Select command signal
MEM_CH0_RAS_N MEM_CH1_RAS_N	0	VDDQ	DDR3L PHY	RAS Control Signal: Row Address Select command signal
MEM_CH0_VREFCA MEM_CH1_VREFCA	0	VDDQ	DDR3L PHY	Memory Reference Voltage for Command & Address

Table 2-5. DDR3L System Memory Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
MEM_CH0_VREFDQ MEM_CH1_VREFDQ	0	VDDQ	DDR3L PHY	Memory Reference Voltage for DQ
MEM_CH0_RESET_N MEM_CH1_RESET_N	0	VDDQ	DDR3L PHY	Channel Reset Signal
MEM_CH0_WE_N MEM_CH1_WE_N	0	VDDQ	DDR3L PHY	Wake Enable signals
MEM_CH0_RCOMP MEM_CH1_RCOMP	N/A	VDDQ	DDR3L PHY	Channel Compensation

2.5.2 LPDDR3 Interface Signals

Table 2-6. LPDDR3 System Memory Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
MEM_CH0/CH1_DQA[31:0] MEM_CH0/CH1_DQB[31:0]	I/O	VDDQ	LPDDR3 PHY	Data Buses: Data signals interface to the SDRAM data buses.
MEM_CH0/CH1_DQSA[3:0]_P/N MEM_CH0/CH1_DQSB[3:0]_P/N	I/O	VDDQ	LPDDR3 PHY	Data Strobes: Differential data strobe pairs. The data is captured at the crossing point of DQS during read and write transactions.
MEM_CH0_CLKA/B_P/N MEM_CH1_CLKA/B_P/N	I/O	VDDQ	LPDDR3 PHY	SDRAM Differential Clock: Differential clocks signal pairs, pair per rank. The crossing of the positive edge of MEM_CH0/CH1_CLKP and the negative edge of their complement MEM_CH0/CH1_CLKN are used to sample the command and control signals on the SDRAM.
MEM_CH0/CH1_CKE0A MEM_CH0/CH1_CKE1A MEM_CH0/CH1_CKE0B MEM_CH0/CH1_CKE1B	I	VDDQ	LPDDR3 PHY	Clock Enable: (1 per rank) These signals are used to: Initialize the SDRAMs during power-up. Power-down SDRAM ranks. Place all SDRAM ranks into and out of self-refresh during STR.
MEM_CH0/CH1_CS[1:0]A_N MEM_CH0/CH1_CS[1:0]B_N	I	VDDQ	LPDDR3 PHY	Chip Select: (1 per rank). These signals are used to select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.
MEM_CH0/CH1_CAA[9:0]	I/O	VDDQ	LPDDR3 PHY	Command Address: These signals are used to provide the multiplexed command and address to the SDRAM.
MEM_CH0/CH1_CAB[9:0]	I/O	VDDQ	LPDDR3 PHY	Command Address: These signals are used to provide the multiplexed command and address to the SDRAM.
MEM_CH0_VREFCA MEM_CH1_VREFCA	I/O	VDDQ	LPDDR3 PHY	Memory Reference Voltage for Command & Address
MEM_CH0_VREFDQ MEM_CH1_VREFDQ	I	VDDQ	LPDDR3 PHY	Memory Reference Voltage for DQ
MEM_CH0_RCOMP MEM_CH1_RCOMP	N/A	VDDQ	LPDDR3 PHY	Channel Compensation
MEM_CH0/CH1_ODT[A:B]	0	VDDQ	LPDDR3 PHY	On Die Termination: (1 per rank). Active SDRAM Termination Control.

2.5.3 LPDDR4 Interface Signals

Table 2-7. LPDDR4 System Memory Signals

		_		
Signal Name	Dir.	I/O Voltage	Туре	Description
MEM_CH0/CH1_DQA[31:0] MEM_CH0/CH1_DQB[31:0]	I/O	VDDQ	LPDDR4 PHY	Data Buses: Data signals interface to the SDRAM data buses.
MEM_CH0/CH1_DQSA[3:0]_P/N MEM_CH0/CH1_DQSB[3:0]_P/N	I/O	VDDQ	LPDDR4 PHY	Data Strobes: Differential data strobe pairs. The data is captured at the crossing point of DQS during read and write transactions.
MEM_CH0_CLKA/B_P/N MEM_CH1_CLKA/B_P/N	I/O	VDDQ	LPDDR4 PHY	SDRAM Differential Clock: Differential clocks signal pairs, pair per rank. The crossing of the positive edge of MEM_CH0/CH1_CLKP and the negative edge of their complement MEM_CH0/CH1_CLKN are used to sample the command and control signals on the SDRAM.
MEM_CH0/CH1_CKE[1:0]A MEM_CH0/CH1_CKE[1:0]B	I	VDDQ	LPDDR4 PHY	Clock Enable: (1 per rank) These signals are used to: Initialize the SDRAMs during power-up. Power-down SDRAM ranks. Place all SDRAM ranks into and out of self-refresh during STR.
MEM_CH0/CH1_CS[1:0]A MEM_CH0/CH1_CS[1:0]B	I	VDDQ	LPDDR4 PHY	Chip Select: (1 per rank). These signals are used to select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.
MEM_CH0/CH1_CAA[5:0]	I/O	VDDQ	LPDDR4 PHY	Command Address: These signals are used to provide the multiplexed command and address to the SDRAM.
MEM_CH0/CH1_CAB[5:0]	I/O	VDDQ	LPDDR4 PHY	Command Address: These signals are used to provide the multiplexed command and address to the SDRAM.
MEM_CH0_RCOMP MEM_CH1_RCOMP	N/A	VDDQ	LPDDR4 PHY	Channel Compensation
MEM_CH0/CH1_RESET_N	I	VDDQ	LPDDR4 PHY	Channel Reset: This signal is used to reset the individual channels

2.6 Digital Display Interface (DDI) Signals

Table 2-8. Digital Display Interface Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
DDI0_TXP[3:0]	0	V1P05	Display PHY	Port 0: Transmit Signals for DP/HDMI
DDI0_TXN[3:0]	0	V1P05	Display PHY	Port 0: Transmit Complement Signals for DP/HDMI
DDI0_AUXP	I/O	V1P05	Display PHY	Port 0: Display Port Auxiliary Channel for DP
DDI0_AUXN	I/O	V1P05	Display PHY	Port 0: Display Port Auxiliary Channel Complement for DP

Table 2-8. Digital Display Interface Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
DDI0_RCOMP_P/N	0	V1P05	Display PHY	Port 0/1: This signal is used for pre-driver slew rate compensation. Note: The SoC will use the eDP_RCOMP value for DDI Port 0/1 as well. Ensure that the eDP_RCOMP pin is populated with the correct value. There is no need to have this DDIO_RCOMP on the platform.
DDI0_DDC_SCL	I/O	V1P8	GPIO	Port 0: I ² C Clock for HDMI*
DDI0_DDC_SDA	I/O	V1P8	GPIO	Port 0: I ² C Data for HDMI*
DDI1_TXP[3:0]	0	V1P05	Display PHY	Port 1: Transmit Signals for DP/HDMI
DDI1_TXN[3:0]	0	V1P05	Display PHY	Port 1: Transmit Complement Signals for DP/HDMI
DDI1_AUXP	I/O	V1P05	Display PHY	Port 1: Display Port Auxiliary Channel for DP
DDI1_AUXN	I/O	V1P05	Display PHY	Port 1: Display Port Auxiliary Channel Complement for DP
DDI1_DDC_SCL	I/O	V1P8	GPIO	Port 1: I ² C Clock for HDMI
DDI1_DDC_SDA	I/O	V1P8	GPIO	Port 1: I ² C Data for HDMI
EDP_TXP[3:0]	0	V1P05	Display PHY	Transmit Signals for eDP*
EDP_TXN[3:0]	0	V1P05	Display PHY	Transmit Complement Signals for eDP*
EDP_AUXP	I/O	V1P05	Display PHY	Display Port Auxiliary Channel for eDP*
EDP_AUXN	I/O	V1P05	Display PHY	Display Port Auxiliary Channel Complement for eDP*
EDP_RCOMP_P/N	0	V1P05	Display PHY	This signal is used for pre-driver slew rate compensation.
PNL[0,1]_BKLTCTL	I/O	V1P8	GPIO	Panel Backlight Brightness Control (for eDP/MDSI)
PNL[0,1]_BKLTEN	I/O	V1P8	GPIO	Panel Backlight Enable (for eDP/MDSI)
PNL[0,1]_VDDEN1	I/O	V1P8	GPIO	Panel Power Enable (for eDP/MDSI)
DDI[2:0]_HPD	I/O	V1P8	GPIO	Note: Display Interface Hot Plug Detect Note: These are multiplexed signals and need to be enabled through GPIO programming Note: DDI2 is a dedicated eDP port.

2.7 MIPI*-DSI Interface Signals

Table 2-9. MIPI*-DSI Interface Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
MDSI_A_CLKN	0	V1P24	MIPI*-DPHY	MIPI* Clock output for pipe A
MDSI_A_CLKP	0	V1P24	MIPI*-DPHY	MIPI* Clock complement output for pipe A
MDSI_A_DN[3:0]	I/O	V1P24	MIPI*-DPHY	MIPI* Data Lane 3:0 for Pipe A
MDSI_A_DP[3:0]	I/O	V1P24	MIPI*-DPHY	MIPI* Data Lane 3:0 complement for Pipe A
MDSI_C_CLKN	0	V1P24	MIPI*-DPHY	MIPI* Clock output for pipe C
MDSI_C_CLKP	0	V1P24	MIPI*-DPHY	MIPI* Clock complement output for Pipe C

Table 2-9. MIPI*-DSI Interface Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
MDSI_C_DN[3:0]	I/O	V1P24	MIPI*-DPHY	MIPI* Data Lane 3:0 for Pipe C
MDSI_C_DP[3:0]	I/O	V1P24	MIPI*-DPHY	MIPI* Data Lane 3:0 complement for Pipe C
MDSI_RCOMP	I/O	V1P24	MIPI*-DPHY	This signal is used for pre-driver slew rate compensation. An external precision resistor of 150 Ω ±1% should be connected between MDSI_RCOMP and GND.
MDSI_A_TE	I	V1P8	GPIO	MIPI*-DSI tearing effect signal (Port A)
MDSI_C_TE	I	V1P8	GPIO	MIPI*-DSI tearing effect signal (Port C)
MIPI_I ² C_SDA	I/O	V1P8	GPIO	I ² C Serial Data for MIPI Port
MIPI_I ² C_SCL	I/O	V1P8	GPIO	I ² C Serial Clock for MIPI Port

2.8 MIPI*-CSI2 (DPHY1.1) Signals

Table 2-10. MIPI*-CSI2 (DPHY1.1) Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
MCSI_DN/P[0:3]	I	V1P24	MIPI*-DPHY	Four MIPI*-CSI Data Lanes
MCSI_CLKP_0 MCSI_CLKN_0 MCSI_CLKP_2 MCSI_CLKN_2	I	V1P24	MIPI*-DPHY	Two MIPI*-CSI Input clock lanes
MCSI_DPHY1.1_RCOMP	I/O	V1P24	MIPI*-DPHY	Resistor Compensation (D-PHY1.1): This signal is used for pre-driver slew rate compensation.

2.9 MIPI*-CSI2 (DPHY1.2) Signals

Table 2-11. SoC MIPI*-CSI2 (DPHY1.2) Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
MCSI_RX_DATA[3:0]_P MCSI_RX_DATA[3:0]_N	I	V1P24	MIPI*-DPHY	Data: Four MIPI*-CSI Data Lanes
MCSI_RX_CLK[1:0]_P MCSI_RX_CLK[1:0]_N	I	V1P24	MIPI*-DPHY	Clocks: Two MIPI*-CSI Input clock lanes
MCSI_DPHY1.2_RCOMP	I/O	V1P24	MIPI*-DPHY	Resistor Compensation (D-PHY1.2): This signal is used for pre-driver slew rate compensation.

2.10 MIPI* Camera Sideband Signals

Table 2-12. SoC Camera Sideband Signals

				1
Signal Name	Dir.	I/O Voltage	Туре	Description
GP_CAMERASB0	I/O	V1P8	GPIO	Output from shutter switch when its pressed halfway. This switch state is used to trigger the Auto focus LED for Xenon Flash or Torch mode for LED Flash.
GP_CAMERASB1	I/O	V1P8	GPIO	Output from shutter switch when its pressed full way. This switch state is used to trigger Xenon flash or LED Flash.
GP_CAMERASB2	I/O	V1P8	GPIO	Active high control signal to Xenon Flash to start charging the capacitor
GP_CAMERASB3	I/O	V1P8	GPIO	Active low output from Xenon Flash to indicate that the capacitor is fully charged and is ready to be triggered
GP_CAMERASB4	I/O	V1P8	GPIO	Active high Xenon Flash trigger/Enables Torch Mode on LED Flash IC
GP_CAMERASB5	I/O	V1P8	GPIO	Enables Red Eye Reduction LED for Xenon/ Triggers STROBE on LED Flash IC
GP_CAMERASB6	I/O	V1P8	GPIO	Camera Sensor 0 Strobe Output to SoC to indicate beginning of capture/Active high signal to still camera to power down the device.
GP_CAMERASB7	I/O	V1P8	GPIO	Camera Sensor 1 Strobe Output to SoC to indicate beginning of capture/Active high signal to still camera to power down the device
GP_CAMERASB8	I/O	V1P8	GPIO	Active high signal to video camera to power down the device.
GP_CAMERASB9	I/O	V1P8	GPIO	Active low output signal to reset digital still camera #0
GP_CAMERASB10	I/O	V1P8	GPIO	Active low output signal to reset digital still camera #1
GP_CAMERASB11	I/O	V1P8	GPIO	Active low output signal to reset digital video camera

Note: These signal are also part of the SoC GPIOs and designers can use them based on design implementation.

2.11 SVID Signals

Table 2-13. SVID Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
SVID_CLK	O, OD	V1P05	GPIO	SVID Clock signal
SVID_DATA	I/O, OD	V1P05	GPIO	SVID Data signal
SVID_ALERT_N	I	V1P05	GPIO	SVID Alert signal

2.12 eMMC* Signals

Table 2-14. SoC eMMC* Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
EMMC_CLK	0	V1P8	GPIO	eMMC* Clock
EMMC_D[7:0]	I/O	V1P8	GPIO	eMMC* Port Data bits 0 to 7: Bi-directional port used to transfer data to and from eMMC* device.
EMMC_CMD	I/O	V1P8	GPIO	eMMC* Port Command: This signal is used for card initialization and transfer of commands.
EMMC_PWR_N	0	V1P8/ V3P3	GPIO	eMMC Power Enable : This signal is used to power cycle the eMMC Card
EMMC_RCLK	I	V1P8	GPIO	eMMC Return Clock: Return Clock/Data Strobe signal
EMMC_RCOMP	I	V1P8	GPIO	eMMC* RCOMP: This signal is used for predriver slew rate compensation.

2.13 SD Card Signals

Table 2-15. SoC SD Card Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description	
SDCARD_CLK	0	V1P8/V3P3	GPIO	SD Card Clock: Port Clock	
SDCARD_D[3:0]	I/O	V1P8/V3P3	GPIO	SD Card Data bits 0 to 3: Bi-directional port used to transfer data to and from SD/MMC card. By default, after power up or reset, only D[0] is used for data transfer. A wider data bus can be configured for data transfer, using D[0]-D[3].	
SDCARD_CD_N	I	V1P8	GPIO	SD Card Detect: Active low when a card is present. Floating (pulled high with internal PU) when a card is not present.	
SDCARD_CMD	I/O	V1P8/V3P3	GPIO	SD Card Command: This signal is used for card initialization and transfer of commands.	
SDCARD_LVL_WP	I	V1P8	GPIO	SD Card Port Write Protect: Active High pin when High, a card does not want to accept writes.	
SDCARD_LVL_CLK_FB	I/O	V1P8	-	Clock feedback signal for aligning the SD Card data from level shifter. There is a loop back through the level shifter that drives this signal. This is connected to the controller. Note: This is not a physical GPIO that can be used. This Signal is not Ball out on the SoC. Only the buffer exists.	

Notes:

- These signals will default to 3.3V during initial power-up and depending on the type of SD Card used, it can be negotiated down to 1.8V. User needs to know the GPIO Configuration Registers to enable the 1.8V Mode.
- 2. The above signals have internal PU and PD. Refer to the Table 2-35 for more information.

2.14 System Management Bus (SMBus)

Table 2-16. SoC SMBus Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
SMB_ALERT_N	I/O	V1P8/V3P3	GPIO	SMBus Alert: This signal is used to wake the system or generate SMI#. External pull-up resistor is required.
SMB_CLK	I/O	V1P8/V3P3	GPIO	SMBus Clock: External pull-up is required.
SMB_DATA	I/O	V1P8/P3V3	GPIO	SMBus Data: External pull-up resistor is required.

Note: The I/O voltage selection is done by using Hardware Strap GPIO_78.

2.15 USB 2.0 Interface Signals

Table 2-17. USB 2.0 Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
USB2_DN[7:0]	I/O	V3P3	USB2 PHY	USB2 Data: High speed serialized data I/O.
USB2_DP[7:0]	I/O	V3P3	USB2 PHY	
USB2_RCOMP	0	V3P3	USB2 PHY	Resistor Compensation: This signal is used for pre-driver slew rate compensation.
USB2_DUALROLE_ID	I/O	V1P8		USB Dual Role Support
USB2_VBUS_SNS	I	V1P8		USB VBus Sense line
USB_OC[1:0]_N	I/O	V1P8	GPIO	Used by the controller to disable I/O in case of overcurrent Note: USB_OC[1:0]_N can be individually configured for the USB ports.

Note: There are 8x HS ports available. 6x of these can be used towards USB 3.0 ports. By default USB2_DP/ DN [7:6] are dedicated HS ports.

2.16 USB 3.0 Interface Signals

Table 2-18. SoC USB 3.0 Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
USB3_P[1:0]_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs (Port0 and Port1): SuperSpeed Serialized data outputs.
USB3_P[1:0]_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs (Port0 and Port1): SuperSpeed serialized data inputs.
PCIE_P5_USB3_P2_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs (Port2): Multiplexed PCIe*2/ Super-Speed Serialized data outputs.
PCIE_P5_USB3_P2_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs (Port2): Multiplexed PCIE*2/SuperSpeed serialized data inputs.
PCIE_P4_USB3_P3_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs (Port3): Multiplexed PCIE*2/ Super-Speed Serialized data outputs.

Table 2-18. SoC USB 3.0 Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description	
PCIE_P4_USB3_P3_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs (Port3): Multiplexed PCIE*2/SuperSpeed serialized data inputs.	
PCIE_P3_USB3_P4_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs (Port4): Multiplexed PCIE*2/ Super-Speed Serialized data outputs.	
PCIE_P3_USB3_P4_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs (Port4): Multiplexed PCIE*2/SuperSpeed serialized data inputs.	
SATA_P1_USB3_P5_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs (Port5): Multiplexed SATA3/ Super-Speed Serialized data outputs.	
SATA_P1_USB3_P5_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs (Port5): Multiplexed SATA3/SuperSpeed serialized data inputs.	
PCIE2_USB3_SATA3_RCOMP_N	0	V1P24	MOD-PHY	Resistor Compensation: This signal is used for pre-driver slew rate compensation. This signal is common for PCI2, USB3, an SATA3 compensation.	
PCIE2_USB3_SATA3_RCOMP_P	0	V1P24	MOD-PHY		

2.17 PCIe* Interface Signals

Table 2-19. SoC PCIE*2 Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
PCIE_P[2:0]_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs: PCIE*2 data outputs. Tied to PCIe* x4 controller.
PCIE_P[2:0]_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs: PCIE*2 data input. Tied to PCIe x4 controller.
PCIE_P3_USB3_P4_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs: Multiplexed PCIE*2/USB3 Super- Speed Serialized data outputs. Tied to PCIe x4 controller.
PCIE_P3_USB3_P4_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs: Multiplexed PCIE*2/USB3 Super-Speed serialized data inputs. Tied to PCIe x4 controller.
PCIE_P4_USB3_P3_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs: Multiplexed PCIE*2/USB3 Super- Speed Serialized data outputs. Tied to PCIe x2 controller.
PCIE_P4_USB3_P3_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs: Multiplexed PCIE*2/USB3 Super-Speed serialized data inputs. Tied to PCIe* x2 controller.
PCIE_P5_USB3_P2_TXP/N	0	V1P24	MOD-PHY	Differential Transmitter serial data outputs: Multiplexed PCIE*2/USB3 Super- Speed Serialized data outputs. Tied to PCIe* x2 Controller
PCIE_P5_USB3_P2_RXP/N	I	V1P24	MOD-PHY	Differential Receiver serial data inputs: Multiplexed PCIE*2/USB3 Super-Speed serialized data inputs. Tied to PCIe x2 Controller.
PCIE_CLKOUT[3:0]P/N	I/O	V1P05	CLK PHY	PCIe* Output Clocks
PCIE_WAKE[3:0]_N	I	V1P8	GPIO	PCIe* Wake Signals
PCIE_CLKREQ[3:0]_N	I/O	V1P8	GPIO	PCIE Clock Request: Used for devices that need to request one of the four output clocks. Note: Each CLKREQ signal must be associated with the corresponding PCIE_CLKOUT to enable the clocks for each port.
PCIE2_USB3_SATA3_RCOMP_N	0	V1P24	MOD-PHY	Resistor Compensation: This signal is used for pre-driver slew rate compensation.
PCIE2_USB3_SATA3_RCOMP_P	0	V1P24	MOD-PHY	This signal is common for PCI*2, USB3 and SATA3 compensation

Table 2-19. SoC PCIE*2 Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
PCIE_REF_CLK_RCOMP	0	V1P24	MOD-PHY	Resistor Compensation: PCI reference clock compensation resistor signal.
PCIE_PERST[3:0]_N	0	V1P8	GPIO	PCIe Reset Note: Operates in GPIO Mode. These signal need to be assigned by BIOS based on design implementation
PCIE_PFET[3:0]	0	V1P8	GPIO	PCIe Power FET (OPTIONAL) Note: Operates in GPIO Mode. These signals are optional and need to be assigned by BIOS based on design implementations

Notes:

- PCIE_WAKE and PCIECLKREQ can be paired with any port. These signals are not tied to a particular port usage.

 Note that each CLKREQs signal must be associated with the corresponding PCIE_REFCLK to enable the
- clocks for each port.

2.18 SATA Interface Signals

Table 2-20. SoC SATA3 Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
SATA_P0_TXP/N	0	V1P24	MOD-PHY	Serial ATA Differential Transmit Pair 0: These outbound SATA Port 0 high-speed differential signals support 1.5Gb/s, 3Gb/s and 6Gb/s.
SATA_P0_RXP/N	I	V1P24	MOD-PHY	Serial ATA Differential Receive Pair 0: These inbound SATA Port 0 high-speed differential signals support 1.5Gb/s, 3Gb/s, and 6Gb/s.
SATA_P1_USB3_P5_TXP/N	0	V1P24	MOD-PHY	Serial ATA Differential Transmit Pair 1: These outbound SATA Port 1 high-speed differential signals support 1.5Gb/s, 3Gb/s and 6Gb/s. The signals are multiplexed with USB3, Port 5 signals.
SATA_P1_USB3_P5_RXP/N	I	V1P24	MOD-PHY	Serial ATA Differential Receive Pair 1: These inbound SATA Port 1 high-speed differential signals support 1.5Gb/s, 3Gb/s, and 6Gb/s. The signals are multiplexed with USB3 Port 5 signals.
SATA_GPO/GPIO_22	I/O	V1P8	GPIO	Serial ATA Port [0] General Purpose Inputs: When configured as SATA_GP0, this is an input pin that issued as an interlock switch status indicator for SATA Port 0. Drive the pin to '0' to indicate that the switch is closed and to '1' to indicate that the switch is open.
SATA_GP1/GPIO_23	I/O	V1P8	GPIO	Serial ATA Port [1] General Purpose Inputs: When configured as SATA_GP1, this is an input pin that issued as an interlock switch status indicator for SATA Port 1. Drive the pin to '0' to indicate that the switch is closed and to '1' to indicate that the switch is open.
SATA_DEVSLP0/GPIO_24	I/O	V1P8	GPIO	Serial ATA Port [0] Device Sleep: This is an open-drain pin on the SoC side. SoC will tri-state this pin to signal to the SATA device that it may enter a lower power state (pin will go high due to pull-up that is internal to the SATA device, per DEVSLP specification). SoC will drive pin low to signal an exit from DEVSLP state.
				Note: This pin can be mapped to SATA Port 0.
SATA_DEVLSP1/GPIO_25	I/O	V1P8	GPIO	Serial ATA Port [1] Device Sleep: This is an open-drain pin on the SOC side. SoC will tri-state this pin to signal to the SATA device that it may enter a lower power state (pin will go high due to pull-up that's internal to the SATA device, per DEVSLP specification). SoC will drive pin low to signal an exit from DEVSLP state.
				Design Constraint: No external pull-up or pull- down termination required when used as DEVSLP.
				Note: This pin can be mapped to SATA Port 1.

Table 2-20. SoC SATA3 Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
SATA_LED_N/GPIO_26	I/O	V1P8	GPIO	Serial ATA LED: This signal is an open-drain output pin driven during SATA command activity. It is to be connected to external circuitry that can provide the current to drive a platform LED. When active, the LED is on. When tri-stated, the LED is off.
PCIE2_USB3_SATA3_RCOMP_N	0	V1P24	MOD-PHY	Compensation Resistor: This signal is used for pre-driver slew rate compensation.
PCIE2_USB3_SATA3_RCOMP_P	0	V1P24	MOD-PHY	Note: This signal is common for PCIe*2, USB3 and SATA3 compensation

2.19 **FAST SPI Interface**

Fast Serial Peripheral Interface (SPI) Signals 2.19.1

Table 2-21. Fast Serial Peripheral Interface (SPI) Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
FST_SPI_MOSI_IO0	I/O	V1P8	GPIO	Fast SPI Data Pad: Data Input/output
FST_SPI_MISO_IO1	I/O	V1P8	GPIO	pin for the SoC.
FST_SPI_IO2	I/O	V1P8	GPIO	
FST_SPI_IO3	I/O	V1P8	GPIO	
FST_SPI_CLK	I/O	V1P8	GPIO	Fast SPI Clock: When the bus is idle, the owner will drive the clock signal low.
FST_SPI_CS0_N	I/O	V1P8	GPIO	Fast SPI Chip Select 0: Used as the SPI bus request signal for the first SPI Flash devices.
FST_SPI_CS1_N	I/O	V1P8	GPIO	Fast SPI Chip Select 1: Used as the SPI bus request signal for the second SPI Flash devices.
FST_SPI_CS2_N	I/O	V1P8	GPIO	Fast SPI Chip Select 2: Used as the SPI bus request signal for the TPM device.
FST_SPI_CLK_FB	I/O	V1P8	-	Clock feedback signal for aligning the FST SPI data from level shifter. This is connected to the controller. Note: This is not a physical GPIO that can be used. This Signal is not Ball out on the SoC. Only the buffer exists.

Notes:

- These signals will be tri-stated when SoC is in Sx state (will need RSMRST_N to be asserted).

 G3/RSMRST_N based Flash Sharing between SoC and EC (Embedded Controller) is allowed. For Windows* platform, TXE3.0 supports verified boot flow in which the firmware form SPI device is authenticated.

SIO (LPSS) Serial Peripheral Interface (SPI) Signals 2.20

Table 2-22. SIO (LPSS) Serial Peripheral Interface (SPI) Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
SIO_SPI_0_TXD	I/O	V1P8	GPIO	SIO SPI 0 Data Pad: Data Input/Output pin
SIO_SPI_0_RXD	I/O	V1P8	GPIO	for the SoC.
SIO_SPI_0_FS0	I/O	V1P8	GPIO	SIO SPI 0 Frame Select: Used as the SPI bus request signal
SIO_SPI_0_CLK	I/O	V1P8	GPIO	SIO SPI 0 Clock: SPI Clock signal
SIO_SPI_[1:2]_TXD	I/O	V1P8	GPIO	These signals can be used as GPIOs ONLY
SIO_SPI_[1:2]_RXD	I/O	V1P8	GPIO	ONLI
SIO_SPI_[1:2]_FS0	I/O	V1P8	GPIO	
SIO_SPI_[1:2]_FS1	I/O	V1P8	GPIO	
SIO_SPI_[1:2]_CLK	I/O	V1P8	GPIO	

Notes:

- The SIO_SPI_0 is dedicated SPI to support Finger Print Sensor. This set of signals are part of the GPIO pins and need to be configured in the BIOS to enabled SPI functionality.

 The SPI functionality of SIO_SPI_1 and SIO_SPI_2 is not POR and these signals can be used as GPIOs

JTAG Interface Signals 2.21

Table 2-23. JTAG Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
JTAG_TCK	I/O	V1P8	GPIO	JTAG Test Clock: Provides the clock input for the SoC Test Bus (also known as, Test Access Port).
JTAG_TDI	I/O	V1P8	GPIO	JTAG Test Data Input: Transfers serial test data into the processor.
JTAG_TDO	I/O, OD	V1P8	GPIO	JTAG Test Data Output: Transfers serial test data out of the processor.
JTAG_TMS	I/O	V1P8	GPIO	JTAG Test Mode Select: A JTAG specification support signal used by debug tools.
JTAG_TRST_N	I/O	V1P8	GPIO	JTAG Test Reset: Asynchronously resets the Test Access Port (TAP) logic.
JTAG_PRDY_N	I/O, OD	V1P8	GPIO	Probe Mode Ready: SoC response to PREQ_B assertion. Indicates SoC is in probe mode.
JTAG_PREQ_N	I/O	V1P8	GPIO	Probe Mode Request: Requests the SoC to enter probe mode. SoC will response with PRDY_B assertion once it has entered.
JTAG_PMODE	I/O	V1P8	GPIO	Power Mode: This signal serially encodes the virtual system-state
JTAGX	I/O	V1P8	GPIO	Tap master control

2.22 Audio Interface Signals

Table 2-24. SoC Audio Interface Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O voltage	Туре	Description
AVS_I ² S[1:2]_MCLK	I/O	V1P8	GPIO	MCLK for Master Mode operation or GPIO.
AVS_I ² S[1:2]_BCLK	I/O	V1P8	GPIO	Analog microphone I ² S Bit Clock – bidirectional. In master mode the BCLK is supplied by the SoC, in slave mode serves as an input
AVS_I ² S[1:2]_WS_SYNC	I/O	V1P8	GPIO	Word Select or SYNC input – marks the beginning of serial sample
AVS_I ² S[1:2]_SDI	I/O	V1P8	GPIO	Analog microphone I ² S Data in – serial data input
AVS_I ² S[1:2]_SDO	I/O	V1P8	GPIO	Audio Codec I ² S Data out – serial data out
AVS_I ² S3_BCLK	I/O	V1P8	GPIO	Audio Codec I ² S Bit Clock – bi-directional. In master mode the BCLK is supplied by the SoC, in slave mode serves as an input
AVS_I ² S3_WS_SYNC	I/O	V1P8	GPIO	Audio Codec frame synchronization or Word select signal. Bi-directional – may be configured for master or slave
AVS_I ² S3_SDI	I/O	V1P8	GPIO	Audio Codec I ² S Data in – serial data in
AVS_I ² S3_SDO	I/O	V1P8	GPIO	Audio Codec I ² S Data out – serial data out
AVS_I ² S[4:6]_BCLK	I/O	V1P8	GPIO	Audio Codec I ² S Bit Clock – bi-directional. In master mode the BCLK is supplied by the SoC, in slave mode serves as an input This signal is a part of the GPIO pins and need to be configured in the BIOS to enable there functionality
AVS_I ² S[4:6]_WS_SYNC	I/O	V1P8	GPIO	Audio Codec frame synchronization or Word select signal. Bi-directional – may be configured for master or slave This signal is a part of the GPIO pins and need to be configured in the BIOS to enable there functionality
AVS_I ² S[4:6]_SDI	I/O	V1P8	GPIO	Audio Codec I ² S Data in – serial data in This signal is a part of the GPIO pins and need to be configured in the BIOS to enable there functionality
AVS_I ² S[4:6]_SDO	I/O	V1P8	GPIO	Audio Codec I ² S Data out – serial data out This signal is a part of the GPIO pins and need to be configured in the BIOS to enable there functionality This signal is a part of the GPIO pins and need to be configured in the BIOS to enable there functionality
AVS_DMIC_CLK_A1	I/O	V1P8	GPIO	DMIC Clock: Digital Microphone Clock for channel A (Voice trigger microphone)
AVS_DMIC_CLK_B1	I/O	V1P8	GPIO	DMIC Clock: Digital Microphone Clock for channel B (Secondary microphone)
AVS_DMIC_DATA_1	I/O	V1P8	GPIO	DMIC Data: First microphone pair data input
AVS_DMIC_CLK_AB2	I/O	V1P8	GPIO	DMIC Data: Second microphone pair Clock (common for the second pair)

Table 2-24. SoC Audio Interface Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O voltage	Туре	Description
AVS_DMIC_DATA_2	I/O	V1P8	GPIO	DMIC Data: Second microphone pair Data (Common for the second pair)

Notes

- 1. SoC supports two I²S interfaces. AVS_I²S2 and AVS_I²S6.
- 2. The other I²S interfaces can be used as GPIO.

Table 2-25. SoC HDA Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
AVS_HDA_BCLK	0	V1P8	GPIO	HD Audio Bit Clock: Up to 24-MHz serial data clock generated by the Intel HD Audio controller.
AVS_HDA_WS_SYNC	0	V1P8	GPIO	HD Audio Word Select or SYNC : 48 KHz fixed rate frames sync to the codec. Also used to encode the stream number.
AVS_HDA_SDI	I	V1P8	GPIO	HD Audio Serial Data In: Serial TDM data input from the codec. The serial input is single-pumped for a bit rate of up to 24Mb/s. The signal contains integrated pull-down resistors, which are enabled while the primary well is powered.
AVS_HDA_SDO	0	V1P8	GPIO	HD Audio Serial Data Out: Serial TDM data output to the codecs. The serial output is double-pumped for a bit rate of up to 48Mb/s.
AVS_HDA_RST_N	0	V1P8	GPIO	HD Audio Reset: Master H/W Reset to internal/ external codec.

Note: This set of signals are part of the GPIO pins and need to be configured in the BIOS to enabled HDA functionality

2.23 High Speed UART Interface Signals

These signals are part of the GPIO. Refer to Table 2-35 for more details.

Table 2-26. SoC UART Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
LPSS_UART1_RXD	I/O	V1P8	GPIO	UART1 data send
LPSS_UART1_TXD	I/O	V1P8	GPIO	UART1 data output
LPSS_UART1_RTS_N	I/O	V1P8	GPIO	UART1 Ready to Send
LPSS_UART1_CTS_N	I/O	V1P8	GPIO	UART1 Clear to Send
LPSS_UART2_RXD	I/O	V1P8	GPIO	UART2 data input
LPSS_UART2_TXD	I/O	V1P8	GPIO	UART2 data output
LPSS_UART2_RTS_N	I/O	V1P8	GPIO	UART2 Ready to Send
LPSS_UART2_CTS_N	I/O	V1P8	GPIO	UART2 Clear to Send
LPSS_UARTO_RXD	I/O	V1P8	GPIO	These signals can be used as GPIOs
LPSS_UARTO_TXD	I/O	V1P8	GPIO	These signals can be used as GPIOs
LPSS_UARTO_RTS_N	I/O	V1P8	GPIO	These signals can be used as GPIOs
LPSS_UARTO_CTS_N	I/O	V1P8	GPIO	These signals can be used as GPIOs

- LPSS_UART0 is not POR for UART functionality. These signals can be used as GPIOs.
 LPSS_UART1 should be dedicated for discrete GNSS
 LPSS_UART2 should be dedicated for Host OS Debug

I²C Interface Signals 2.24

Table 2-27. SoC I²C Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
LPSS_I ² C[7:0]_SDA	I/O	V1P8	GPIO	I ² C Serial Data
LPSS_I ² C[7:0]_SCL	I/O	V1P8	GPIO	I ² C Serial Clock
ISH_I ² C[2:0]_SDA	I/O	V1P8	GPIO	I ² C Serial Data
ISH_I ² C[2:0]_SCL	I/O	V1P8	GPIO	I ² C Serial Clock
DDI[1:0]_DDC_SDA	I/O	V1P8	GPIO	I ² C Serial Data for Display
DDI[1:0]_DDC_SCL	I/O	V1P8	GPIO	I ² C Serial Clock for Display
MIPI_I ² C_SDA	I/O	V1P8	GPIO	I ² C Serial Data for MIPI Port
MIPI_I ² C_SCL	I/O	V1P8	GPIO	I ² C Serial Clock for MIPI Port
PMIC_I ² C_SDA	I/O	V1P8	GPIO	I ² C Serial Data for PMIC
PMIC_I ² C_SCL	I/O	V1P8	GPIO	I ² C Serial Clock for PMIC

Note: These signals are part of the GPIO. Refer to Table 2-35 for more details.

2.25 **Power Management Signals**

Table 2-28. SoC PM Interface Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
PMU_BATLOW_N	I/O	V1P8/V3P3	GPIO	Battery Low: This signal indicates that there is insufficient power to boot the system. Assertion will prevent wake from S3–S5 state. This signal can also be enabled to cause an SMI# when asserted.
PMU_PLTRST_N	I/O	V1P8/V3P3	GPIO	Platform Reset: This signal is used to reset devices on the platform (such as SIO, LAN, processor, and so forth.). This signal is asserted during power-up and when S/W initiates a hard reset sequence through the Reset Control register (I/O port CF9h). The SoC drives PLTRST# active a minimum of 1 ms when initiated through the Reset Control register (I/O port CF9h)
PMU_PWRBTN_N	I/O	V1P8/V3P3	GPIO	Power Button: Power button input signal. Used to wake the SoC from power button press. The Power Button will cause SMI# or SCI to indicate a system request to go to a sleep state. If the system is already in a sleep state, this signal will cause a wake event. If PWRBTN# is pressed for more than 4 seconds, this will cause an unconditional transition (power button override) to the S5 state. Override will occur even if the system is in the S3- S4 states. This signal has an internal 16 ms de-bounce on the input.
PMU_RSTBTN_N	I/O	V1P8/V3P3	GPIO	Reset Button: Reset button input signal.
PMU_SLP_S0_N	I/O	V1P8/V3P3	GPIO	S0 Sleep Control : Controls power delivery subsystem. Asserted low in S0ix

Table 2-28. SoC PM Interface Signals (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description				
PMU_SLP_S3_N	I/O	V1P8/V3P3	GPIO	S3 Sleep Control: Controls power delivery subsystem. Asserted low in S3 and lower				
PMU_SLP_S4_N	I/O	V1P8/V3P3	GPIO	S4 Sleep Control : Controls power delivery subsystem. Asserted low in S4 and lower				
PMU_SUSCLK	I/O	V1P8/V3P3	GPIO	Suspend Clock: Primary RTC clock output.				
PMU_RCOMP	0	V1P8/V3P3	GPIO	Resistor Compensation				
SUS_STAT_N	0	V1P8/V3P3	GPIO	Suspend Status: Asserted to indicate that the system will be entering a Sx state.				
SUSPWRDNACK	0	V1P8/V3P3	GPIO	Sus Power Down Ack: Indicator from SoC that "always on" rails can be shut down.				
SOC_PWROK	I	V3P3	RTC	SoC Power OK: When asserted, this signal is an indication to the SoC that all of its core power rails have been stable for at least 5 ms. This signal can be driven asynchronously. Then this signal is negated, the SoC asserts PLTRST#. Note: This signal was previously called PCH_PWROK				

Notes:

- These signals are part of the GPIO. Refer to Table 2-35 for more details.
 The I/O voltage selection is done by using Hardware Strap GPIO_88.

Real Time Clock (RTC) Interface Signals 2.26

Table 2-29. SoC RTC Interface (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description				
INTRUDER_N	I	V3P3	RTC PHY	Intruder Detect: This signal can be set to disable system if box detected open.				
RSM_RST_N	I	V3P3	RTC PHY	Resume Well Reset Used for resetting the resume well. An externa RC circuit is required to guarantee that the resume well power is valid prior to this signal going high.				
RTC_TEST_N	I	V3P3	RTC PHY	An external RC circuit creates a time delay for the signal such that it will go high (de-assert) sometime after the battery voltage is valid. If the battery is missing/weak, this signal appears low (asserted) at boot just after the suspend power rail (V3P3) is up since it will not have time to meet Vih (Voltage input high) when V3P3A is high. When asserted, BIOS may clear the RTC CMOS RAM. Note: Unless CMOS is being cleared (only to be done in the G3 power state) or the battery is low, the signal input must always be high when all other RTC power planes are on.				

Table 2-29. SoC RTC Interface (Sheet 2 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description
RTC_RST_N	I	V3P3	RTC PHY	An external RC circuit creates a time delay for the signal such that it will go high (de-assert) sometime after the battery voltage is valid. When asserted, this signal resets all register bits in the RTC well. Notes: 1. Unless registers are being cleared (only to be done in the G3 power state), the signal input must always be high when all other RTC power planes are on. 2. In the case where the RTC battery is dead or missing on the platform, the signal should be de-asserted before the RSM_RST_N signal is de-asserted.
RTC_X1	I	V3P3	RTC PHY	Crystal Input 1: This signal is connected to the 32.768 KHz crystal. If no external crystal is used, then RTCX1 can be driven with the desired clock rate. Maximum voltage allowed on this pin is 1.5V.
RTC_X2	0	V3P3	RTC PHY	Crystal Input 2: This signal is connected to the 32.768 KHz crystal. If no external crystal is used, then RTCX2 must be left floating.
VCC_RTC_EXTPAD	0	V3P3	RTC PHY	External Pad for voltage supply

2.27 Integrated Clock Interface Signals

Table 2-30. Integrated Clock Interface Signals (Sheet 1 of 2)

Signal Name	Dir.	I/O Voltage	Туре	Description		
MEM_CH[1:0]_CLKP/N[1:0]	0	VDDQ	DDR3L	DDR3L Memory Clocks		
MEM_CH[1:0]_CLKP/N[1:0]A/B	0	VDDQ	LPDDR3	LPDDR3 Memory Clocks		
MEM_CH[1:0]_CLKP/N[1:0]A/B	0	VDDQ	LPDDR4	LPDDR4 Memory Clocks		
PCIE_CLKOUT_[3:0]P/N	0	V1P05	CLOCK	PCIe* Clocks		
eMMC_CLK	0	V1P8	GPIO	eMMC* Clock		
eMMC_RCLK	I	V1P8	GPIO	eMMC* Return Clock		
SDCARD_CLK	0	V1P8/V3P3	GPIO	SD Card Clock		
DDI[1:0]_DDC_SCL	0	V1P8	GPIO	DDI Port Clocks		
MDSI_[A, C]_CLKP/N	0	V1P24	D-PHY	MDSI Port Clocks		
MCSI_CLKP/N_[0,2]	0	V1P24	D-PHY1.1	MCSI Port Clocks (D-PHY1.1)		
MCSI_RX_CLK[0,1]_P/N	0	V1P24	D-PHY1.2	MCSI Ports Clocks (D_PHY1.2)		
AVS_HDA_BCLK	0	V1P8	GPIO	HD Audio Clock		
AVS_I ² S[3:1]_BCLK AVS_I ² S[2:1]_MCLK AVS_I ² S[5:6]_BCLK	0	V1P8	GPIO	AVS I ² S clocks		
AVS_DMIC_CLK_[A/B]1 AVS_DMIC_CLK-AB2	0	V1P8	GPIO	Digital Microphone Clocks		
MIPI_I ² C_SCL	0	V1P8	GPIO	MIPI I ² C Clock		
PMIC_I ² C_SCL	0	V1P8	GPIO	PMIC I ² C Clock		

Table 2-30. Integrated Clock Interface Signals (Sheet 2 of 2)

Signal Name		I/O Voltage	Туре	Description
ISH_I ² C[2:0]_SCL	0	V1P8	GPIO	PMIC I ² C Clock
SVID0_CLK	0	V1P05	GPIO	Serial VID Clock
LPC_CLKOUT[0,1]	0	V1P8/V3P3	GPIO	LPC Clock
SMB_CLK	0	V1P8/V3P3	GPIO	SMBus Clock
SIO_SPI_[2:0]_CLK	0	V1P8	GPIO	SIO (LPSS) Clock
FST_SPI_CLK	0	V1P8	GPIO	Fast SPI Clock (SPI NOR)
PMU_SUSCLK	0	V1P8/V3P3	GPIO	RTC clock Output to platform
SUS_CLK[3:1]	0	V1P8	GPIO	RTC clock output (GPIOs)
RTC_X[1,2]	I	V3P3	RTC	RTC Crystal Input
OSC_CLK_OUT[3:0]	0	V1P8	GPIO	Oscillator Clocks
OSCIN	I	V1P05	CLKPHY	Interface to attached crystal
OSCOUT	0	V1P05	CLKPHY	oscillator on the platform

2.28 Integrated Sensor Hub Interface Signals

Table 2-31. SoC Integrated Sensor Hub Interface Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
ISH_I ² C[2:0]_SDA	I/O	V1P8	GPIO	I ² C Data
ISH_I ² C[2:0]_SCL	I/O	V1P8	GPIO	I ² C Clock
ISH_GPIO_[15:0]	I/O	V1P8	GPIO	GPIO for wake, interrupt, alert from sensors

Note: All ISH UART signals can be used as GPIO.

2.29 Low Pin Count (LPC) Bus

Table 2-32. SoC LPC Interface

Signal Name	Dir.	I/O Voltage	Туре	Description
LPC_AD[3:0]	I/O, OD	V1P8/V3P3	GPIO	LPC Multiplexed Command, Address, Data
LPC_CLKOUT[1:0]	0	V1P8/V3P3	GPIO	Clock Out: 25 MHz output clock
LPC_CLKRUN_N	I/O, OD	V1P8/V3P3	GPIO	LPC Clock Run: Control LPC Clock Signals
LPC_FRAME_N	0	V1P8/V3P3	GPIO	LPC Frame: LFRAME# indicates the start of an LPC cycle, or an abort.
LPC_SERIRQ	I/O	V1P8/V3P3	GPIO	LPC SERIRQ: Serial Interrupt Request

Note: The I/O voltage selection is done by using Hardware Strap GPIO_110.

2.30 Miscellaneous Signals

Table 2-33. Miscellaneous Signals

Signal Name	Dir.	I/O Voltage	Туре	Description
PROCHOT_N	I/O, OD	V1P8	GPIO	Processor Hot : asserted when the processor die temperature has reached its maximum operating temperature.
THERMTRIP_N	0	V1P8	GPIO	Thermal Trip: THERMTRIP_N will be asserted/driven by the SoC under the following conditions: In case of a catastrophic thermal event as seen by the SoC. To indicate that a 'force chutdown' event has
				To indicate that a 'force shutdown' event has occurred. If user presses the power button for the override length (4 seconds), SoC will assert
				THERMTRIP_N to force a platform G2. If SOC_PWROK de-asserts unexpectedly during normal platform operation (while PMU_SLP_S3_N or PMU_SLP_S4_N) are deasserted), then the SOC considers this as an unrecoverable condition and will be asserted THERMTRIP_N to take the system into G2. Note: In the event of a catastrophic thermal failure (such as failure of cooling system), each thermal sensor can detect that die temperature exceeds thermal specification limits (typically 24-28C above Tjmax) and assert its CAT sensor output. Assertion of CAT must automatically trigger a thermal shut-down of all CPU PLLs, and platform voltage regulators within 500 ms and also trigger the soc thermtrip# I/O pin to be asserted.
GPIO_RCOMP	I/O	V1P8	GPIO	Resistor Compensation: This signal is used for pre-driver slew rate compensation.
VNN_SENSE	I/O	N/A	PWR	VNN Sense signal for voltage feedback to the Voltage Regulator
VCC_VCGI_SENSE_P/N	I/O	N/A	PWR	Differential sense line for the VCC VCGI rail Voltage Regulator
PWM[3:0]	I/O	V1P8	GPIO	PWM Signals

Hardware Straps 2.31

Notes:

- All the straps are sampled at ~95ms after RSM_RST_N de-assertion, where a stable RTC clock is used to count the duration. In cases where the RTC clock is not stable when boot starts, the strap sampling may deviate significantly above ~95ms.
- The internal termination values listed in this table will be in effect from 3 RTC clock cycles before the strap sampling event until 3 RTC clock cycles after the strap sampling event. The external signal input to each strap must be glitch-free during this time. At 4 RTC clock cycles after the strap sampling event, the termination value will change to the GPIO termination as shown in Table 2-34. If the RTC clock Timer Bypass strap is enabled, all the straps are sampled a few RTC clock cycles after
- RSM_RST_N de-assertion.

Table 2-34. Hardware Straps (Sheet 1 of 2)

GPIO#	Purpose	Internal Termination	Pin Strap Usage/Description/Polarity
GPIO_34	RSVD	20K PD	Ensure that this strap is always pulled low for normal platform operation.
GPIO_35	RSVD	20K PD	Ensure that this strap is always pulled low for normal platform operation.
GPIO_36	RSVD	20K PD	Ensure that this strap is always pulled low for normal platform operation.
GPIO_39	Enable CSE ROM Bypass	20K PD	1 = enable bypass 0 = disable bypass (default) Notes: 1. SoC supports TXE3.0 (this is also called CSE) 2. This strap tells CSE (TXE3.0) to bypass Read-Only Memory (ROM) that it has on SoC. If an issue occurs with the boot up code of CSE (TXE3.0) before the first patch point this strap enabled the platform tell CSE (TXE3.0) to bypass the ROM causing the issue and go to the patch space instead.
GPIO_40	RTC Clock Timer Bypass	20K PD	1 =enable bypass 0 =disable bypass (Default) Note: This strap shall only be used when an external oscillator is used to supply a 32.768kHz clock to RTC_X1.
GPIO_43	RSVD	20K PU	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_44	Allow SPI as a boot source	20K PU	1=enable (default) 0=disable
GPIO_47	Force DNX FW Load	20K PD	1 = Force 0 = Do not force (default) Notes: 1. DnX: Download and Execute. 2. This strap is a recovery strap for corrupted FW image. This strap will force CSE (TXE3.0) to execute a "Download and Execute" (DnX) flow, where it would fetch firmware from a USB stick and re-flash a eMMC device. CSE (TXE3.0) can do it for BIOS part of FW, but if CSE FW itself is corrupted we need this strap.
GPIO_48	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_78	SMBus 1.8V/3.3V mode select	20K PU	1=buffers set to 1.8V mode (default) 0=buffers set to 3.3V mode
GPIO_82	RSVD	20K PD	Ensure that this strap is always pulled low for normal platform operation.

Table 2-34. Hardware Straps (Sheet 2 of 2)

			-
GPIO#	Purpose	Internal Termination	Pin Strap Usage/Description/Polarity
GPIO_88	PMU (Power Management Unit) 1.8V/3.3V mode select	20K PU	1=buffers set to 1.8V mode (default) 0=buffers set to 3.3V mode
GPIO_92	SMBus No Re-Boot	20K PD	1 = Enable 0 = Disable (default) Note: Platforms should strap this LOW. Functionality is handled by the PMC.
GPIO_104	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_105	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_106	RSVD	20K PU	Ensure that this strap is pulled HIGH when RSM_RST_N deasserts for normal platform operation.
GPIO_110	LPC 1.8V/3.3V mode select	20K PU	1=buffers set to 1.8V mode (default) 0=buffers set to 3.3V mode
GPIO_111	RSVD	20K PU	Pull LOW when RSM_RST_N de-asserts to map these regions to the boot SPI Pull HIGH when RSM_RST_N de-asserts to leave these regions unmapped by the System Agent Note: Pull LOW for designs that boot from SPI and HIGH otherwise
GPIO_112	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_113	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_117	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_118	Flash Descriptor Override	20K PD	0 = No Override (Normal Operation) 1 = Override Note: This strap enables the platform to override security features in the SPI.
GPIO_120	Top swap override	20K PD	1 = Enable 0 = Disable (default) Note: Within the SPI ROM there may be different locations where the boot code is stored. This strap enables platform to change where the core will look for BIOS code for a SPI boot only.
GPIO_121	RSVD	20K PD	Ensure that this strap is pulled LOW when RSM_RST_N deasserts for normal platform operation.
GPIO_123	RSVD	20K PU	Ensure that this strap is pulled HIGH when RSM_RST_N deasserts for normal platform operation.

2.32 **GPIO Multiplexing**

Notes

- All GPIOs are available during the Sx and S0ix Standby state. The default I/O Standby State is programmable through BIOS.
- As mentioned in previous sections, not all the signals listed are supported on SoC but these signals can be used as GPIO functionality.
- The operating I/O voltage of some GPIO with native functionality of SD_CARD will default to 3.3V and can not be operated in 1.8V mode.

- The operating I/O Voltage for GPIOs with native functionality of SMBus, LPC, and PMU will be based on the Hardware Strap selection as listed in Table 2-34. PMC-SPI pins are only for PMC debug and not general purpose SPI devices.

Table 2-35. SoC GPIO Multiplexing (Sheet 1 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _79	AVS_D MIC_CL K_A1	P54	NW	624	1.8V	20K PD	HSMV	GP-In	AVS_ DMIC _CLK_ A1	AVS _I2S 4_B CLK	0	0	0	0
GPIO _82	AVS_D MIC_CL K_AB2	M55	NW	672	1.8V	20K PD	HSMV	GP-In	AVS_ DMIC _CLK_ AB2	AVS _I2S 4_S DO	0	0	0	0
GPIO _80	AVS_D MIC_CL K_B1	P52	NW	640	1.8V	20K PD	HSMV	GP-In	AVS_ DMIC _CLK_ B1	AVS _I2S 4_W S_S YNC	0	0	0	0
GPIO _81	AVS_D MIC_D ATA_1	M54	NW	656	1.8V	20K PD	HSMV	GP-In	AVS_ DMIC _DAT A_1	AVS _I2S 4_S DI	0	0	0	0
GPIO _83	AVS_D MIC_D ATA_2	M52	NW	688	1.8V	20K PD	HSMV	GP-In	AVS_ DMIC _DAT A_2	0	0	0	0	0
GPIO _75	AVS_I2 S1_BC LK	H63	NW	560	1.8V	20K PD	HSMV	GP-In	AVS_I 2S1_B CLK	0	0	0	0	0
GPIO _74	AVS_I2 S1_MC LK	G62	NW	544	1.8V	20K PD	HSMV	GP-In	AVS_I 2S1_ MCLK	0	0	0	0	0
GPIO _77	AVS_I2 S1_SDI	K61	NW	592	1.8V	20K PD	HSMV	GP-In	AVS_I 2S1_S DI	0	0	0	0	0
GPIO _78	AVS_I2 S1_SD O	K62	NW	608	1.8V	20K PD	HSMV	GP-In	AVS_I 2S1_S DO	0	0	0	0	0
GPIO _76	AVS_I2 S1_WS _SYNC	J62	NW	576	1.8V	20K PD	HSMV	GP-In	AVS_I 2S1_ WS_S YNC	0	0	0	0	0
GPIO _85	AVS_I2 S2_BC LK	H59	NW	720	1.8V	20K PD	HSMV	GP-In	AVS_I 2S2_B CLK	0	0	0	0	0
GPIO _84	AVS_I2 S2_MC LK	K58	NW	704	1.8V	20K PD	HSMV	GP-In	AVS_I 2S2_ MCLK	AVS _HD A_R ST_ N	0	0	0	0
GPIO _87	AVS_I2 S2_SDI	K59	NW	752	1.8V	20K PD	HSMV	GP-In	AVS_I 2S2_S DI	0	0	0	0	0
GPIO _88	AVS_I2 S2_SD O	M58	NW	768	1.8V	20K PD	HSMV	GP-In	AVS_I 2S2_S DO	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 2 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _86	AVS_I2 S2_WS _SYNC	M57	NW	736	1.8V	20K PD	HSMV	GP-In	AVS_I 2S2_ WS_S YNC	0	0	0	0	0
GPIO _89	AVS_I2 S3_BC LK	M62	NW	784	1.8V	20K PD	HSMV	GP-In	AVS_I 2S3_B CLK	0	0	0	0	0
GPIO _91	AVS_I2 S3_SDI	L62	NW	816	1.8V	20K PD	HSMV	GP-In	AVS_I 2S3_S DI	0	0	0	0	0
GPIO _92	AVS_I2 S3_SD O	L63	NW	832	1.8V	20K PD	HSMV	GP-In	AVS_I 2S3_S DO	0	0	0	0	0
GPIO _90	AVS_I2 S3_WS _SYNC	M61	NW	800	1.8V	20K PD	HSMV	GP-In	AVS_I 2S3_ WS_S YNC	0	0	0	0	0
GPIO _188	DDIO_ DDC_S CL	B49	NW	16	1.8V	20K PU	MSMV	Fn 1	DDIO_ DDC_ SCL	0	0	0	0	0
GPIO _187	DDIO_ DDC_S DA	C49	NW	0	1.8V	20K PU	MSMV	Fn 1	DDIO_ DDC_ SDA	0	0	0	0	0
GPIO _190	DDI1_ DDC_S CL	A54	NW	48	1.8V	20K PU	MSMV	Fn 1	DDI1_ DDC_ SCL	0	0	0	0	0
GPIO _189	DDI1_ DDC_S DA	C54	NW	32	1.8V	20K PU	MSMV	Fn 1	DDI1_ DDC_ SDA	0	0	0	0	0
GPIO _156	EMMC_ CLK	Y58	SW	64	1.8V	20K PD	HSMV	Fn 1	EMMC _CLK	0	0	0	0	0
GPIO _165	EMMC_ CMD	Y51	SW	208	1.8V	20K PU	HSMV	Fn 1	EMMC _CMD	0	0	0	0	0
GPIO _157	EMMC_ D0	V58	SW	80	1.8V	20K PU	HSMV	Fn 1	EMMC _D0	0	0	0	0	0
GPIO _158	EMMC_ D1	T58	SW	96	1.8V	20K PU	HSMV	Fn 1	EMMC _D1	0	0	0	0	0
GPIO _159	EMMC_ D2	T59	SW	112	1.8V	20K PU	HSMV	Fn 1	EMMC _D2	0	0	0	0	0
GPIO _160	EMMC_ D3	V51	SW	128	1.8V	20K PU	HSMV	Fn 1	EMMC _D3	0	0	0	0	0
GPIO _161	EMMC_ D4	V52	SW	144	1.8V	20K PU	HSMV	Fn 1	EMMC _D4	0	0	0	0	0
GPIO _162	EMMC_ D5	Y49	SW	160	1.8V	20K PU	HSMV	Fn 1	EMMC _D5	0	0	0	0	0
GPIO _163	EMMC_ D6	V55	SW	176	1.8V	20K PU	HSMV	Fn 1	EMMC _D6	0	0	0	0	0
GPIO _164	EMMC_ D7	V57	SW	192	1.8V	20K PU	HSMV	Fn 1	EMMC _D7	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 3 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _221	EMMC_ PWR_E N_N	AG5 5	W	704	1.8V/ 3.3V	20K PU	MSHV	GP-In	EMMC _PWR _EN_ N	0	0	0	0	0
GPIO _182	EMMC_ RCLK	V54	SW	464	1.8V	20K PD	HSMV	Fn 1	EMMC _RCLK	0	0	0	0	0
GPIO _103	FST_SP I_CLK	C56	NW	944	1.8V	Native	HSMV	Fn 1	FST_S PI_CL K	0	0	0	0	0
GPIO _97	FST_SP I_CS0_ N	B57	NW	848	1.8V	Native	HSMV	Fn 1	FST_S PI_CS 0_N	0	0	0	0	0
GPIO _98	FST_SP I_CS1_ N	C57	NW	864	1.8V	Native	HSMV	Fn 1	FST_S PI_CS 1_N	0	0	0	0	0
GPIO _101	FST_SP I_IO2	B60	NW	912	1.8V	Native	HSMV	Fn 1	FST_S PI_IO 2	0	0	0	0	0
GPIO _102	FST_SP I_IO3	B61	NW	928	1.8V	Native	HSMV	Fn 1	FST_S PI_IO 3	0	0	0	0	0
GPIO _100	FST_SP I_MISO _IO1	B58	NW	896	1.8V	Native	HSMV	Fn 1	FST_S PI_MI SO_IO 1	0	0	0	0	0
GPIO _99	FST_SP I_MOSI _IO0	A58	NW	880	1.8V	Native	HSMV	Fn 1	FST_S PI_MO SI_IO 0	0	0	0	0	0
GPIO _62	GP_CA MERAS B0	L37	N	800	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB0	0	0	0	0	0
GPIO _63	GP_CA MERAS B1	P34	N	816	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB1	0	0	0	0	0
GPIO _72	GP_CA MERAS B10	R34	N	960	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB10	0	0	0	0	0
GPIO _73	GP_CA MERAS B11	E30	N	976	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB11	0	0	0	0	0
GPIO _64	GP_CA MERAS B2	J34	N	832	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB2	0	0	0	0	0
GPIO _65	GP_CA MERAS B3	H30	N	848	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB3	0	0	0	0	0
GPIO _66	GP_CA MERAS B4	M37	N	864	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB4	0	0	0	0	0
GPIO _67	GP_CA MERAS B5	F30	N	880	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB5	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 4 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _68	GP_CA MERAS B6	R35	N	896	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB6	0	0	0	0	0
GPIO _69	GP_CA MERAS B7	L34	N	912	1.8V	20K PD	LSMV	GP-In	GP_C AMER ASB7	0	0	0	0	0
GPIO _70	GP_CA MERAS B8	M34	N	928	1.8V	20K PD	HSMV	GP-In	GP_C AMER ASB8	0	0	0	0	0
GPIO _71	GP_CA MERAS B9	M35	N	944	1.8V	20K PD	HSMV	GP-In	GP_C AMER ASB9	0	0	0	0	0
GPIO _0	GPIO_0	A38	N	0	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _1	GPIO_1	B33	N	16	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _10	GPIO_1 0	L39	N	160	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _11	GPIO_1	C34	N	176	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _12	GPIO_1	E39	N	192	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _13	GPIO_1	C30	N	208	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _14	GPIO_1 4	C38	N	224	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _15	GPIO_1 5	F39	N	240	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _16	GPIO_1 6	C36	N	256	1.8V	20K PU	HSMV	GP-In	0	0	0	0	0	0
GPIO _166	GPIO_1 66	P58	SW	224	1.8V	20K PD	HSMV	GP-In	GPIO_ 166	0	0	0	0	0
GPIO _167	GPIO_1 67	T52	SW	240	1.8V	20K PD	HSMV	GP-In	GPIO_ 167	0	0	0	0	0
GPIO _168	GPIO_1 68	P57	SW	256	1.8V	20K PD	HSMV	GP-In	GPIO_ 168	0	0	0	0	0
GPIO _169	GPIO_1 69	T54	SW	272	1.8V	20K PD	HSMV	GP-In	GPIO_ 169	0	0	0	0	0
GPIO _17	GPIO_1	C35	N	272	1.8V	20K PU	HSMV	GP-In	0	0	0	0	0	0
GPIO _170	GPIO_1 70	T55	SW	288	1.8V	20K PD	HSMV	GP-In	GPIO_ 170	0	0	0	0	0
GPIO _171	GPIO_1 71	T57	SW	304	1.8V	20K PD	HSMV	GP-In	GPIO_ 171	0	0	0	0	0
GPIO _18	GPIO_1 8	J39	N	288	1.8V	20K PU	HSMV	GP-In	0	0	0	0	0	0
GPIO _183	GPIO_1 83	P51	SW	480	1.8V	20K PD	MSHV	GP-In	GPIO_ 183	0	0	0	0	0
GPIO _19	GPIO_1 9	C33	N	304	1.8V	20K PU	HSMV	GP-In	0	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 5 of 14)

			1			1		1						
GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _199	GPIO_1 99	A50	NW	192	1.8V	20K PD	LSMV	GP-In	GPIO_ 199	DDI 1_H PD	0	0	0	0
GPIO _2	GPIO_2	C39	N	32	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _20	GPIO_2 0	B27	N	320	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _200	GPIO_2 00	C50	NW	208	1.8V	20K PD	LSMV	GP-In	GPIO_ 200	DDI 0_H PD	0	0	0	0
GPIO _21	GPIO_2 1	C26	N	336	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _213	GPIO_2 13	M47	NW	416	1.8V	None	LSMV	GP-In	GPIO_ 213	0	0	0	0	0
GPIO _214	GPIO_2 14	L47	NW	432	1.8V	20K PD	LSMV	GP-In	GPIO_ 214	0	0	0	0	0
GPIO _215	GPIO_2 15	P47	NW	448	1.8V	20K PD	LSMV	GP-In	GPIO_ 215	0	0	0	0	0
GPIO _216	GPIO_2 16	P30	N	1136	1.8V	20K PD	HSMV	GP-In	GPIO_ 216	0	0	0	0	0
GPIO _217	GPIO_2 17	M29	N	1152	1.8V	20K PD	HSMV	GP-In	GPIO_ 217	0	0	0	0	0
GPIO _218	GPIO_2 18	M30	N	1168	1.8V	20K PD	HSMV	GP-In	GPIO_ 218	0	0	0	0	0
GPIO _22	GPIO_2 2	A26	N	352	1.8V	20K PD	HSMV	GP-In	0	0	0	0	SAT A_G P0	0
GPIO _223	GPIO_2 23	F48	NW	400	1.8V	None	LSMV	GP-In	GPIO_ 223	0	0	0	0	0
GPIO _224	GPIO_2 24	J45	NW	480	1.8V	20K PD	LSMV	GP-In	GPIO_ 224	0	0	0	0	0
GPIO _23	GPIO_2 3	B25	N	368	1.8V	20K PD	HSMV	GP-In	0	0	0	0	SAT A_G P1	0
GPIO _24	GPIO_2 4	C25	N	384	1.8V	20K PD	HSMV	GP-In	0	0	0	0	SAT A_D EVS LP0	0
GPIO _25	GPIO_2 5	C27	N	400	1.8V	20K PD	HSMV	GP-In	0	0	0	0	SAT A_D EVS LP1	0
GPIO _26	GPIO_2 6	C31	N	416	1.8V	20K PD	HSMV	GP-In	0	0	0	0	SAT A_L EDN	0
GPIO _27	GPIO_2 7	C29	N	432	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _28	GPIO_2 8	B37	N	448	1.8V	20K PD	HSMV	GP-In	0	ISH_ GPI O_1 0	0	0	0	0
	•			•						•				

Table 2-35. SoC GPIO Multiplexing (Sheet 6 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _29	GPIO_2 9	H35	N	464	1.8V	20K PD	HSMV	GP-In	0	ISH_ GPI O_1 1	0	0	0	0
GPIO _3	GPIO_3	B39	N	48	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _30	GPIO_3 0	C37	N	480	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_1 2	0	0	0	0	0
GPIO _31	GPIO_3 1	H34	N	496	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_1 3	0	0	0	SUS CLK 1	0
GPIO _32	GPIO_3 2	F35	N	512	1.8V	20K PD	LSMV	GP-In	ISH_G PIO_1 4	0	0	0	SUS CLK 2	0
GPIO _33	GPIO_3	F34	N	528	1.8V	20K PD	LSMV	GP-In	ISH_G PIO_1 5	0	0	0	SUS CLK 3	0
GPIO _4	GPIO_4	B35	N	64	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _5	GPIO_5	A34	N	80	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _6	GPIO_6	B31	N	96	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _7	GPIO_7	H39	N	112	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _8	GPIO_8	B29	N	128	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _9	GPIO_9	A30	N	144	1.8V	20K PD	HSMV	GP-In	0	0	0	0	0	0
GPIO _146	ISH_GP IO_0	AM4 8	W	256	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_0	AVS _I2S 6_B CLK	AVS_ HDA _BCL K	0	0	0
GPIO _147	ISH_GP IO_1	AK5 8	W	272	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_1	AVS _I2S 6_W S_S YNC	AVS_ HDA _WS _SYN C	0	0	0
GPIO _148	ISH_GP IO_2	AK5 1	W	288	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_2	AVS _I2S 6_S DI	AVS_ HDA _SDI	0	0	0
GPIO _149	ISH_GP IO_3	AM5 4	W	304	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_3	AVS _I2S 6_S DO	AVS_ HDA _SD O	0	0	0
GPIO _150	ISH_GP IO_4	AM5 1	W	320	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_4	AVS _I2S 5_B CLK	LPSS _UA RT2_ RXD	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 7 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _151	ISH_GP IO_5	AM4 9	W	336	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_5	AVS _I2S 5_W S_S YNC	LPSS _UA RT2_ TXD	0	0	0
GPIO _152	ISH_GP IO_6	AM5 7	W	352	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_6	AVS _I2S 5_S DI	LPSS _UA RT2_ RTS_ B	0	0	0
GPIO _153	ISH_GP IO_7	AM5 5	W	368	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_7	AVS _I2S 5_S DO	LPSS _UA RT2_ CTS_ B	0	0	0
GPIO _154	ISH_GP IO_8	AM5 2	W	384	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_8	0	0	0	0	0
GPIO _155	ISH_GP IO_9	AK5 7	W	400	1.8V	20K PD	HSMV	GP-In	ISH_G PIO_9	SPK R	0	0	0	0
JTAG_ PMOD E	JTAG_P MODE	B19	N	1056	1.8V	None	HSMV	Fn 1	JTAG_ PMOD E	0	0	0	0	0
JTAG_ PRDY _N	JTAG_P RDY_N	C21	N	1104	1.8V	20K PU	HSMV	Fn 1	JTAG_ PRDY_ N	0	0	0	0	0
JTAG_ PREQ _N	JTAG_P REQ_N	C20	N	1072	1.8V	20K PU	MSMV	Fn 1	JTAG_ PREQ _N	0	0	0	0	0
JTAG_ TCK	JTAG_T CK	B23	N	992	1.8V	20K PD	HSMV	Fn 1	JTAG_ TCK	0	0	0	0	0
JTAG_ TDI	JTAG_T DI	C22	N	1040	1.8V	20K PU	HSMV	Fn 1	JTAG_ TDI	0	0	0	0	0
JTAG_ TDO	JTAG_T DO	A22	N	1120	1.8V	20K PU	HSMV	Fn 1	JTAG_ TDO	0	0	0	0	0
JTAG_ TMS	JTAG_T MS	C23	N	1024	1.8V	20K PU	HSMV	Fn 1	JTAG_ TMS	0	0	0	0	0
JTAG_ TRST _N	JTAG_T RST_N	C24	N	1008	1.8V	20K PD	HSMV	Fn 1	JTAG_ TRST_ N	0	0	0	0	0
JTAG X	JTAGX	B21	N	1088	1.8V	20K PU	MSMV	Fn 1	JTAGX	0	0	0	0	0
LPC_ AD0	LPC_A D0	Y61	SW	592	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_A D0	0	0	0	0	0
LPC_ AD1	LPC_A D1	Y62	SW	608	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_A D1	0	0	0	0	0
LPC_ AD2	LPC_A D2	W62	SW	624	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_A D2	0	0	0	0	0
LPC_ AD3	LPC_A D3	W63	SW	640	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_A D3	0	0	0	0	0
LPC_ CLKO UT0	LPC_CL KOUT0	AB6 1	SW	560	1.8V/ 3.3V	None	MSHV	GP-In	LPC_C LKOU T0	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 8 of 14)

			1			1		1						
GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
LPC_ CLKO UT1	LPC_CL KOUT1	AA6 2	SW	576	1.8V/ 3.3V	None	MSHV	GP-In	LPC_C LKOU T1	0	0	0	0	0
LPC_ CLKR UN_N	LPC_CL KRUN_ N	V62	SW	656	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_C LKRU NB	0	0	0	0	0
LPC_F RAME _N	LPC_FR AME_N	V61	SW	672	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_F RAME B	0	0	0	0	0
LPC_ SERIR Q	LPC_SE RIRQ	AB6 2	SW	544	1.8V/ 3.3V	20K PU	MSHV	GP-In	LPC_I LB_SE RIRQ	0	0	0	0	0
GPIO _125	LPSS_I 2C0_S CL	AR6 3	w	16	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C0_ SCL	0	0	0	0	0
GPIO _124	LPSS_I 2C0_S DA	AR6 2	w	0	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C0_ SDA	0	0	0	0	0
GPIO _127	LPSS_I 2C1_S CL	AM6 1	w	48	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C1_ SCL	0	0	0	0	0
GPIO _126	LPSS_I 2C1_S DA	AN6 2	w	32	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C1_ SDA	0	0	0	0	0
GPIO _129	LPSS_I 2C2_S CL	AP5 8	w	80	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C2_ SCL	0	0	0	0	0
GPIO _128	LPSS_I 2C2_S DA	AP5 9	W	64	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C2_ SDA	0	0	0	0	0
GPIO _131	LPSS_I 2C3_S CL	AL6 2	W	112	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C3_ SCL	0	0	0	0	0
GPIO _130	LPSS_I 2C3_S DA	AM6 2	w	96	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C3_ SDA	0	0	0	0	0
GPIO _133	LPSS_I 2C4_S CL	AP5 4	W	144	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C4_ SCL	0	0	0	0	0
GPIO _132	LPSS_I 2C4_S DA	AP5 2	W	128	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C4_ SDA	0	0	0	0	0
GPIO _135	LPSS_I 2C5_S CL	AP5 1	W	176	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C5_ SCL	ISH_ I2C0 _SC L	0	0	0	0
GPIO _134	LPSS_I 2C5_S DA	AP4 9	W	160	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C5_ SDA	ISH_ I2C0 _SD A	0	0	0	0
GPIO _137	LPSS_I 2C6_S CL	AK6 1	W	208	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C6_ SCL	ISH_ I2C1 _SC L	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 9 of 14)

				1	1									
GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _136	LPSS_I 2C6_S DA	AL6 3	W	192	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C6_ SDA	ISH_ I2C1 _SD A	0	0	0	0
GPIO _139	LPSS_I 2C7_S CL	AP6 1	W	240	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C7_ SCL	ISH_ I2C2 _SC L	0	0	0	0
GPIO _138	LPSS_I 2C7_S DA	AP6 2	w	224	1.8V	20K PU	MSMV	GP-In	LPSS_ I2C7_ SDA	ISH_ I2C2 _SD A	0	0	0	0
GPIO _41	LPSS_ UART0 _CTS_ N	C44	N	656	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 0_CTS _N	0	0	0	0	0
GPIO _40	LPSS_ UART0 _RTS_ N	A46	N	640	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 0_RTS _N	0	0	0	0	0
GPIO _38	LPSS_ UART0 _RXD	C45	N	608	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 0_RX D	0	0	0	0	0
GPIO _39	LPSS_ UART0 _TXD	B45	N	624	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 0_TX D	0	0	0	0	0
GPIO _45	LPSS_ UART1 _CTS_ N	C42	N	720	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 1_CTS _N	0	0	0	0	0
GPIO _44	LPSS_ UART1 _RTS_ N	A42	N	704	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 1_RTS _N	0	0	0	0	0
GPIO _42	LPSS_ UART1 _RXD	C43	N	672	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 1_RX D	0	0	0	0	0
GPIO _43	LPSS_ UART1 _TXD	B43	N	688	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 1_TX D	0	0	0	0	0
GPIO _49	LPSS_ UART2 _CTS_ N	M41	N	784	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 2_CTS _N	0	0	0	0	0
GPIO _48	LPSS_ UART2 _RTS_ N	L41	N	768	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 2_RTS _N	0	0	0	0	0
GPIO _46	LPSS_ UART2 _RXD	J41	N	736	1.8V	20K PU	LSMV	GP-In	LPSS_ UART 2_RX D	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 10 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _47	LPSS_ UART2 _TXD	H41	N	752	1.8V	20K PU	LSMV	GP-Out	LPSS_ UART 2_TX D	0	0	0	0	0
GPIO _201	MDSI_ A_TE	M45	NW	224	1.8V	20K PD	LSMV	Fn 1	MDSI _A_TE	0	0	0	0	0
GPIO _202	MDSI_ C_TE	M43	NW	240	1.8V	20K PD	LSMV	Fn 1	MDSI _C_TE	0	0	0	0	0
GPIO _192	MIPI_I 2C_SC L	C51	NW	80	1.8V	20K PD	MSMV	Fn 1	MIPI_ I2C_S CL	0	0	0	0	0
GPIO _191	MIPI_I 2C_SD A	B51	NW	64	1.8V	20K PD	MSMV	Fn 1	MIPI_ I2C_S DA	0	0	0	0	0
NCTF	NCTF	H48	NW	384	1.8V	None		Fn 1	NCTF	0	0	0	0	0
OSC_ CLK_ OUT_ 0	OSC_C LK_OU T_0	AG6 2	W	480	1.8V	20K PD	HSMV	Fn 1	OSC_ CLK_ OUT_ 0	0	0	0	0	0
OSC_ CLK_ OUT_ 1	OSC_C LK_OU T_1	AF6 1	W	496	1.8V	20K PD	HSMV	Fn 1	OSC_ CLK_ OUT_ 1	0	0	0	0	0
OSC_ CLK_ OUT_ 2	OSC_C LK_OU T_2	AG6 3	W	512	1.8V	20K PD	HSMV	Fn 1	OSC_ CLK_ OUT_ 2	0	0	0	0	0
OSC_ CLK_ OUT_ 3	OSC_C LK_OU T_3	AE6 0	W	528	1.8V	20K PD	HSMV	Fn 1	OSC_ CLK_ OUT_ 3	0	0	0	0	0
GPIO _209	PCIE_C LKREQ 0_N	AK6 2	W	416	1.8V	20K PU	HSMV	Fn 1	PCIE_ CLKRE Q0_N	MOD EM_ CLK REQ	0	0	0	0
GPIO _210	PCIE_C LKREQ 1_N	AH6 2	w	432	1.8V	20K PU	HSMV	Fn 1	PCIE_ CLKRE Q1_N	0	0	0	0	0
GPIO _211	PCIE_C LKREQ 2_N	AH6 1	w	448	1.8V	20K PU	HSMV	Fn 1	PCIE_ CLKRE Q2_N	0	0	0	0	0
GPIO _212	PCIE_C LKREQ 3_N	AJ6 2	w	464	1.8V	20K PU	HSMV	Fn 1	PCIE_ CLKRE Q3_N	0	0	0	0	0
GPIO _205	PCIE_ WAKE0 _N	R62	SW	0	1.8V	20K PU	HSMV	GP-In	PCIE_ WAKE 0_N	0	0	0	0	0
GPIO _206	PCIE_ WAKE1 _N	P62	SW	16	1.8V	20K PU	HSMV	GP-In	PCIE_ WAKE 1_N	0	0	0	0	0
GPIO _207	PCIE_ WAKE2 _N	P61	SW	32	1.8V	20K PU	HSMV	GP-In	PCIE_ WAKE 2_N	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 11 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _208	PCIE_ WAKE3 _N	N62	SW	48	1.8V	20K PU	HSMV	GP-In	PCIE_ WAKE 3_N	0	0	0	0	0
PMC_ SPI_C LK	PMC_S PI_CLK	E52	NW	368	1.8V	20K PD	LSMV	Fn 1	PMC_ SPI_C LK	0	0	0	0	0
PMC_ SPI_F S0	PMC_S PI_FS0	L48	NW	288	1.8V	20K PU	LSMV	Fn 1	PMC_ SPI_F S0	0	0	0	0	0
PMC_ SPI_F S1	PMC_S PI_FS1	P48	NW	304	1.8V	20K PU	LSMV	Fn 1	PMC_ SPI_F S1	DDI 2_H PD	0	0	0	0
PMC_ SPI_F S2	PMC_S PI_FS2	M48	NW	320	1.8V	20K PU	LSMV	Fn 1	PMC_ SPI_F S2	FST_ SPI_ CS2 _N	0	0	0	0
PMC_ SPI_R XD	PMC_S PI_RXD	J50	NW	336	1.8V	20K PD	LSMV	Fn 1	PMC_ SPI_R XD	0	0	0	0	0
PMC_ SPI_T XD	PMC_S PI_TXD	H50	NW	352	1.8V	20K PD	LSMV	Fn 1	PMC_ SPI_T XD	0	0	0	0	0
PMIC _I2C_ SCL	PMIC_I 2C_SC L	H45	NW	512	1.8V	1K PU	MSMV	Fn 1	PMIC_ I2C_S CL	0	0	0	0	0
PMIC _I2C_ SDA	PMIC_I 2C_SD A	F47	NW	528	1.8V	1K PU	MSMV	Fn 1	PMIC_ I2C_S DA	0	0	0	0	0
GPIO _220	PMU_A C_PRE SENT	AK4 9	w	560	1.8V/ 3.3V	20K PD	MSHV	GP-In	PMU_ AC_PR ESENT	0	0	0	0	0
PMU_ BATL OW_N	PMU_B ATLOW _N	AH5 1	w	576	1.8V/ 3.3V	20K PU	MSHV	Fn 1	PMU_ BATLO W_N	0	0	0	0	0
PMU_ PLTRS T_N	PMU_P LTRST_ N	AG5 7	w	592	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ PLTRS T_N	0	0	0	0	0
PMU_ PWRB TN_N	PMU_P WRBTN _N	AK5 5	w	608	1.8V/ 3.3V	20K PU	MSHV	Fn 1	PMU_ PWRB TN_N	0	0	0	0	0
PMU_ RSTB TN_N	PMU_R STBTN _N	AD6 2	w	624	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ RSTBT N_N	0	0	0	0	0
PMU_ SLP_S 0_N	PMU_S LP_S0_ N	AD6 1	w	640	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ SLP_S 0_N	0	0	0	0	0
PMU_ SLP_S 3_N	PMU_S LP_S3_ N	AC6 2	W	656	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ SLP_S 3_N	0	0	0	0	0
PMU_ SLP_S 4_N	PMU_S LP_S4_ N	AK5 4	W	672	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ SLP_S 4_N	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 12 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
PMU_ SUSC LK	PMU_S USCLK	AE6 2	W	688	1.8V/ 3.3V	None	MSHV	Fn 1	PMU_ SUSC LK	0	0	0	0	0
GPIO _195	PNL0_B KLTCTL	C46	NW	128	1.8V	20K PD	LSMV	Fn 1	PNLO_ BKLTC TL	0	0	0	0	0
GPIO _194	PNL0_B KLTEN	B47	NW	112	1.8V	20K PD	LSMV	Fn 1	PNLO_ BKLTE N	0	0	0	0	0
GPIO _193	PNL0_V DDEN	C47	NW	96	1.8V	20K PD	LSMV	Fn 1	PNL0_ VDDE N	0	0	0	0	0
GPIO _198	PNL1_B KLTCTL	C53	NW	176	1.8V	20K PD	LSMV	Fn 1	PNL1_ BKLTC TL	0	0	0	0	0
GPIO _197	PNL1_B KLTEN	B53	NW	160	1.8V	20K PD	LSMV	Fn 1	PNL1_ BKLTE N	0	0	0	0	0
GPIO _196	PNL1_V DDEN	C52	NW	144	1.8V	20K PD	LSMV	Fn 1	PNL1_ VDDE N	0	0	0	0	0
PROC HOT_ N	PROCH OT_N	E47	NW	496	1.8V	20K PU	MSMV	Fn 1	PROC HOT_ N	0	0	0	0	0
GPIO _34	PWM0	B41	N	544	1.8V	20K PD	LSMV	GP-In	PWM0	0	0	0	0	0
GPIO _35	PWM1	C41	N	560	1.8V	20K PD	LSMV	GP-In	PWM1	0	0	0	0	0
GPIO _36	PWM2	F41	N	576	1.8V	20K PD	LSMV	GP-In	PWM2	0	0	0	0	0
GPIO _37	PWM3	E41	N	592	1.8V	20K PD	LSMV	GP-In	PWM3	0	0	0	0	0
GPIO _177	SDCAR D_CD_ N	AB5 4	SW	416	1.8V	20K PU	HSHV	GP-In	SDCA RD_C D_B	0	0	0	0	0
GPIO _172	SDCAR D_CLK	AB5 8	SW	320	1.8V/ 3.3V	20K PD	HSHV	GP-In	SDCA RD_C LK	0	0	0	0	0
GPIO _178	SDCAR D_CMD	AC5 2	SW	432	1.8V/ 3.3V	20K PU	HSMV	GP-In	SDCA RD_C MD	0	0	0	0	0
GPIO _173	SDCAR D_D0	AC4 9	SW	352	1.8V/ 3.3V	20K PU	HSHV	GP-In	SDCA RD_D 0	0	0	0	0	0
GPIO _174	SDCAR D_D1	AC4 8	SW	368	1.8V/ 3.3V	20K PU	HSHV	GP-In	SDCA RD_D 1	0	0	0	0	0
GPIO _175	SDCAR D_D2	AC5	SW	384	1.8V/ 3.3V	20K PU	HSHV	GP-In	SDCA RD_D 2	0	0	0	0	0
GPIO _176	SDCAR D_D3	AB5 1	SW	400	1.8V/ 3.3V	20K PU	HSMV	GP-In	SDCA RD_D 3	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 13 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
GPIO _186	SDCAR D_LVL_ WP	AB5 5	SW	448	1.8V	20K PD	HSMV	GP-In	SDCA RD_L VL_W P	0	0	0	0	0
GPIO _104	SIO_SP I_0_CL K	F54	NW	976	1.8V	20K PD	HSMV	GP-In	SIO_S PI_0_ CLK	0	0	0	0	0
GPIO _105	SIO_SP I_0_FS 0	F52	NW	992	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_0_ FS0	0	0	0	0	0
GPIO _106	SIO_SP I_0_FS 1	H52	NW	1008	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_0_ FS1	0	FST_ SPI_ CS2_ N	0	0	0
GPIO _109	SIO_SP I_0_RX D	H54	NW	1024	1.8V	20K PD	HSMV	GP-In	SIO_S PI_0_ RXD	0	0	0	0	0
GPIO _110	SIO_SP I_0_TX D	J52	NW	1040	1.8V	20K PD	HSMV	GP-In	SIO_S PI_0_ TXD	0	0	0	0	0
GPIO _111	SIO_SP I_1_CL K	F58	NW	1056	1.8V	20K PD	HSMV	GP-In	SIO_S PI_1_ CLK	0	0	0	0	0
GPIO _112	SIO_SP I_1_FS 0	K55	NW	1072	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_1_ FS0	0	0	0	0	0
GPIO _113	SIO_SP I_1_FS 1	F61	NW	1088	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_1_ FS1	0	0	0	0	0
GPIO _116	SIO_SP I_1_RX D	H57	NW	1104	1.8V	20K PD	HSMV	GP-In	SIO_S PI_1_ RXD	0	0	0	0	0
GPIO _117	SIO_SP I_1_TX D	H58	NW	1120	1.8V	20K PD	HSMV	GP-In	SIO_S PI_1_ TXD	0	0	0	0	0
GPIO _118	SIO_SP I_2_CL K	F62	NW	1136	1.8V	20K PD	HSMV	GP-In	SIO_S PI_2_ CLK	0	0	0	0	0
GPIO _119	SIO_SP I_2_FS 0	D61	NW	1152	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_2_ FS0	0	0	0	0	0
GPIO _120	SIO_SP I_2_FS 1	E56	NW	1168	1.8V	20K PD	HSMV	GP-Out	SIO_S PI_2_ FS1	0	0	0	0	0
GPIO _121	SIO_SP I_2_FS 2	D59	NW	1184	1.8V	20K PD	HSMV	GP-In	SIO_S PI_2_ FS2	0	0	0	0	0
GPIO _122	SIO_SP I_2_RX D	C62	NW	1200	1.8V	20K PD	HSMV	GP-In	SIO_S PI_2_ RXD	0	0	0	0	0
GPIO _123	SIO_SP I_2_TX D	E62	NW	1216	1.8V	20K PD	HSMV	GP-In	SIO_S PI_2_ TXD	0	0	0	0	0

Table 2-35. SoC GPIO Multiplexing (Sheet 14 of 14)

GPIO No.	Signal Name	SoC Pin No.	Community	Community Offset	IO Voltage	Default Termination	Buffer Type	Default Mode	Fn 1	Fn 2	Fn 3	Fn 4	Fn 5	Fn 6
SMB_ ALER T_N	SMB_A LERT_ N	R63	SW	496	1.8V/ 3.3V	20K PU	MSHV	GP-In	SMB_ ALERT _N	0	0	0	0	0
SMB_ CLK	SMB_C LK	T62	SW	512	1.8V/ 3.3V	20K PU	MSHV	GP-In	SMB_ CLK	LPSS _I2C 7_S CL	0	0	0	0
SMB_ DATA	SMB_D ATA	T61	SW	528	1.8V/ 3.3V	20K PU	MSHV	GP-In	SMB_ DATA	LPSS _I2C 7_S DA	0	0	0	0
SUS_ STAT _N	SUS_S TAT_N	AG5 8	w	720	1.8V/ 3.3V	None	MSHV	Fn 1	SUS_ STAT_ B	0	0	0	0	0
SUSP WRD NACK	SUSPW RDNAC K	AC6 3	w	736	1.8V/ 3.3V	None	MSMV	Fn 1	SUSP WRDN ACK	0	0	0	0	0
SVID 0_ALE RT_N	SVIDO_ ALERT_ N	B17	N	1200	1.05V	None	MSMV	Fn 1	SVID0 _ALER T_N	0	0	0	0	0
SVID 0_CL K	SVID0_ CLK	C17	N	1232	1.05V	20K PU	MSMV	Fn 1	SVID0 _CLK	0	0	0	0	0
SVID 0_DA TA	SVID0_ DATA	C18	N	1216	1.05V	20K PU	MSMV	Fn 1	SVID0 _DAT A	0	0	0	0	0
THER MTRI P_N	THERM TRIP_N	J47	NW	464	1.8V	20K PU	LSMV	Fn 1	THER MTRIP _N	0	0	0	0	0
GPIO _203	USB_O CO_N	B55	NW	256	1.8V	20K PU	LSMV	Fn 1	USB_ OCO_ N	0	0	0	0	0
GPIO _204	USB_O C1_N	C55	NW	272	1.8V	20K PU	LSMV	Fn 1	USB_ OC1_ N	0	0	0	0	0

Note: PCIE_CLKREQ signals can only be used as GPIO when the corresponding PCIe* slots or a PCIe* device is NOT in use. For example, if you are using PCIE_CLKREQ0 for PCIE* Port0, then you can not use PCIE_CLKREQ0 as GPIO and it should be driven low to enable REFCLK0.

2.33 Wake Events

Table 2-36. Wake Events (Sheet 1 of 2)

Wake Event	Interrupt Type	\	Nindows* Require		æ	SoC	Implementation	(Comments
		SoC	C-MS	D-MS	S3	Interrupt Type	Description		
	I.	ı		1	Ti	mers		L	
RTC	N/A	Y	N	N	N/A	Timer Interrupt	N/A		
Always On Times/Watch Dog Time	N/A	Y	N	N	N/A	Timer Interrupt	N/A	Note:	No AONT (Always On Timer) in Win10
					Βι	ıttons			
Power Button	SCI	Y	Y	Y	Y	SCI/EC	N/A	Note:	HID event filter/ Virtual Button Driver
Home Button	GPIO	Y	Y	Y	N	SCI/EC	N/A		
LID SWTCH	GPIO	Y	Y	Υ	N	SCI/EC	N/A		
		•		Cor	nmunic	ation Device	es		
Wi-Fi Radio	GPIO	Y	Y (See Notes)	N	N	Direct Wake	GPIO_111 (WAKE_TO_HOST)	fo pr ar co 2. Or	DIS 6.3 compliant r WOL patterns, otocol off-loads id DO packet alescing n critical alert or tivity detection
MBB Radio	USB PME	Y	Y (See Notes)	N	N	PME	In band	Note:	On critical alert or activity detection
Bluetooth* Radio	GPIO	Y	Y (See note)	N/A	N	Direct Wake	GPIO_10 (BT_HOST_WAKE)	Note:	CS wake for Keyboard/ Mouse only (see below)
Wired LAN	PCIe* WAKE#	Y	Y (See Note)	N	Y	N/A	GPIO	Note:	Pattern match offload to device
	•	•			Input	Devices	1		
Keyboard (USB)	USB PME	Y	Y	Y	Y	PME	SCI	Note:	All keys generate INT (including VUP and VDN)
Keyboard Bluetooth*	GPIO	Y	Y	Y	N	Direct Wake	GPIO_10 (BT_HOST_WAKE)		
TrackPad (HIDI ² C)	GPIO	Y	Y	Y	N	DIRQ/ Direct Wake/GPE	GPIO_18	Note:	BIOS changes to SCI when entering S3 state
TrackPad (USB)	USB PME	Y	Y	Y	Y	PME	SCI		
Mouse (USB)	USB PME	Y	Y	Υ	Υ	PME	SCI		
Mouse (Bluetooth*)	GPIO	Y	Y	Y	N	Direct Wake	GPIO_10 (BT_HOST_WAKE)		

Table 2-36. Wake Events (Sheet 2 of 2)

Wake Event	Interrupt Type	1	Windows* Require		æ	SoC 1	Implementation		Comments
				Devi	es Ins	ertion/Remo	val		
Insert USB Device	USB PME	Y	N	N	N	PME	SCI		
Remove USB Device	USB PME	Y	N	N	N	PME	SCI		
Insert SDC	USB PME	Υ	N	N	N	PME	SCI	Note:	USB attached
Insert SDC	GPIO	Υ	N	N	N				
Remove SDC	USB PME	Υ	N	N	N	PME	SCI	Note:	USB attached
Remove SDC	GPIO	Υ	N	N	N				
Attach to Dock	Varies	Y	See Note	See Note	N/A	USB PME	SCI	Note:	Depends on device in dock and their state (USB Dock support ONLY)
Remove from Dock	Varies	Y	See Note	See Note	N/A	USB PME	SCI	Note:	Depends on device in dock and their state (USB Dock support ONLY)
				Environ	mental	Context Cha	inges		
Power Source change	GPIO	Y	Y	N	N	EC (GPIO_11)	SOC_RUNTIME_SCI_N		
Thermal event	GPIO	Y	N	N	N	EC (GPIO_11)	SOC_RUNTIME_SCI_N		
Battery charge complete	GPIO	Y	N	N	N	EC (GPIO_11)	SOC_RUNTIME_SCI_N		
BATT LOW	GPIO	Y	Y	N	N	EC (GPIO_11)	SOC_RUNTIME_SCI_N		
Audio Interrupt	Audio_INT	Y	Y	Y	N	Direct Wake	GPIO_116	Note:	DMIC powered on for VT

Notes:

- The SoC may not go into S0ix depending on, on-going back ground activities and actions
- C-MS Connected Modern Standby
 D-MS Disconnected Modern Standby
- S3 -Platform S3 Power State
- HID Human Interface Device
- NDIS Network Driver Interface Specification
- PME Power Management Event SCI System Control Interrupt
- EC Embedded Controller
- 10. MBB Mobile Broadband11. DMIC Digital Microphone
- 12. VT Virtualization Technology

§§

3 Functional Description

3.1 Processor Core Overview

Table 3-1. Processor Core Overview

Category	Feature Description
CPU Cores	Quad/Dual IA Processor Core
Modules/Caches	 2 Modules 2 Cores grouped per Module (Dual-Core Module) On-die, 32KiB 8-way L1 instruction cache and 24KiB 6-way L1 data cache per core On-die, 1MiB, 16-way L2 unified cache, shared per two core (module)
Architecture	Intel® 64 Bit
Virtualization architecture	Intel's full virtualization architecture support VTx-2 with Extended Page Table VT-d
Burst Technology	1/2/3/4 Core Burst Technology
Thermal Management	Supported by means of Intel® Thermal Monitor (TM1 and TM2)
Power Management	 Support Connected Standby, Modern Standby and Lucid Sleep Support system states: S0, S0ix, S3, S4/S5, and RTD3 Uses Power Aware Interrupt Routing (PAIR)
Boot feature	Support boot from SPI (secure and non-secure)
Other features	Support for a Digital Random Number Generator (DRNG) Support for Intel Carry-Less Multiplication Instruction (PCLMULQDQ)

3.2 System Memory Controller

3.2.1 Supported Memory Overview

The SoC Memory Controller supports the following Memory Technologies on two independent 64-bit channels.

Table 3-2. Specifics of Supported Memory Technologies (Sheet 1 of 2)

Technology Attributes	LPDDR4	LPDDR3	DDR3L	
Channels	4 (x32)	4 (x32)	2 (x64)	
Peak Bandwidth (GB/s)	38.4	29.86	29.86	
Maximum Data Transfer Rate (MT/s)	1600/2133/2400	1333/1600/1867	1333/1600/1867	
Maximum Total System Capacity	8GB	8GB	8GB	
Raw Card Support	N/A	N/A	A(2Rx16) B(1Rx8) C(1Rx16) F(2Rx8)	
Densities (Gb)	8, 12, 16	4, 8	4, 8	

Table 3-2. Specifics of Supported Memory Technologies (Sheet 2 of 2)

Technology Attributes	LPDDR4	LPDDR3	DDR3L		
CMD/Adds pins per channel	6	6 10			
DQ pins per channel	32	32	64		
Voltage Rail (V)	1.1	1.24	1.35		
Scrambling		Yes			
On Die Termination Control	Yes Yes				
Rank Interleaving	res				
Refresh	No per bank-refresh, only at rank level				
Power Saving Features	Fast Exit Power Down, Self Refresh plus extra features, Power/trunk gating				

3.2.2 Memory Configurations

SoC supports different configurations for channel population, SO-DIMM and Memory Down (DRAM) configurations. The tables below list the configurations and limitations for platform design.

Table 3-4. Channel Operating Rules (Sheet 1 of 3)

Channel Configurations (Applies to All Speeds)	SoC			
Single	Channel Operation Rules			
DDR3L SODIMM/Memory Down: Populating CH0 only	Supported			
DDR3L SODIMM/Memory Down: Populating CH1 only	Supported CH0 and CH1 should have identical DRAM devices.			
LPDDR3/LPDDR4 Memory Down: Populating CH0 & CH1 only [Two (2) 32b channels]	Supported			
Mi	ixed Capacity Rules			
Mixture of DRAM devices within a channel	Not supported Notes: 1. This applies to DDR3L and LPDDR3/LPDDR4 memory technology. 2. The DRAMs being used within the channel should be identical in characteristics and specifications.			
Channel 1 capacity ≥ Channel 0 capacity (Memory Down or SO-DIMM, if both channels are populated)	Supported Notes: 1. This applies to DDR3L and LPDDR3/LPDDR4 2. Configurations with a capacity imbalance across channels are not recommended as it leads to performance imbalance. Adding capacity to one channel will result in unpredictable performance losses relative to matching the smaller capacity on both channels. Applications which are allocated performance critical pages in the unmatched region will experience half memory bandwidth. 3. CH0 devices or raw cards need not be the same as CH1. Mixing different speeds will result in all channels running at the slowest common speed.			

Table 3-4. Channel Operating Rules (Sheet 2 of 3)

Channel Configurations (Applies to All Speeds)	SoC
Channel 0 capacity ≥ Channel 1 capacity (Memory Down or SO-DIMM, if both channels are populated)	Supported Notes: 1. This applies to DDR3L and LPDDR3/LPDDR4 2. Configurations with a capacity imbalance across channels are not recommended as it leads to performance imbalance. Adding capacity to one channel will result in unpredictable performance losses relative to matching the smaller capacity on both channels. Applications which are allocated performance critical pages in the unmatched region will experience half memory bandwidth 3. CH0 devices or raw cards need not be the same as CH1. Mixing different speeds will result in all channels running at the slowest common speed.
Mixe	d Configuration Rules
DDR3L Memory Down in CH0, DDR3L SO- DIMM in CH1	Supported
DDR3L SO-DIMM in CH0, DDR3L Memory Down in CH1	Supported
Different Raw Cards between Channel 0 and Channel 1	Supported Note: This applies to DDR3L SO-DIMM
LPDDR3/LPDDR4 MD CH0, CH2 and CH3 populated (CH1 not populated)	Not Supported.
LPDDR3/LPDDR4 MD CH1, CH2 and CH3 populated (CH0 not populated)	Not Supported.
LPDDR3/LPDDR4 MD CH3, CH0 and CH1 populated (CH2 not populated)	Not Supported.
LPDDR3/LPDDR4 MD CH2, CH0, and CH1 populated (CH3 not populated)	Not Supported
LPDDR3/LPDDR4 supports CH3+CH2	Not Supported
Support mixture of DRAM vendors in Memory Down configuration within a channel	Not supported Note: This applies to DDR3L and LPDDR3/LPDDR4
Support mixture of DRAM vendors in Memory Down configuration across channels	Supported Notes: 1. For SO-DIMM this will be taken care by the specific SPD. But for DRAMs the BIOS will need to include the DRAM identification 2. Applies to DDR3L and LPDDR3/LPDDR4
Mixed Tecl	hnology/Speed/Rank Rules
Support for Mixed technologies across channels	Not supported
Support for Mixed speeds across channels	Supported Note: Mixing different speeds will result in all channels running at the slowest common speed.
Support for Mixed technologies within channels	Not supported
Support for Mixed speeds within channels	Not supported
Single Rank and Dual Rank Devices within channels	Not supported

Table 3-4. Channel Operating Rules (Sheet 3 of 3)

Channel Configurations (Applies to All Speeds)	SoC				
Single Rank and Dual Rank Devices across channels	Supported Note: Configurations with a capacity imbalance across channels are not recommended as it leads to performance imbalance. Adding capacity to one channel will result in unpredictable performance losses relative to matching the smaller capacity on both channels. Applications which are allocated performance critical pages in the unmatched region will experience half memory bandwidth.				
Bit/	Byte Swapping Rules				
Byte swapping within a channel	Supported Notes: 1. Applies to DDR3L and LPDDR3/LPDDR4 2. Corresponding strobe should accompany the byte. 3. For LPDDR3/LPDDR4, limited to 4 (four) bytes of each x32 channel 4. For LPDDR3/LPDDR4, the BIOS will need to include the swap information				
Byte swapping across channels	Not supported				
Bits swapping within the same Byte Lane	Supported Note: For LPDDR3/LPDDR4, the BIOS will need to include the swap information				

Table 3-5. DDR3L Channel Configuration Support

DRAM Package	Ranks per Package	Density per DRAM Die (Gb)	DQ Width per DRAM	Number of DRAM Die per Package	DRAM Package Capacity (GB)	Number of Packages to Form a x64 Non- ECC Channel
SDP	1	4	16	1	0.5	4
DDP	2	4	16	2	1	4
SDP	1	4	8	1	0.5	8
DDP	2	4	8	2	1	8
SDP	1	8	16	1	1	4
DDP	2	8	16	2	2	4
SDP	1	8	8	1	1	8

Table 3-6. LPDDR3 Memory Configurations

Devices per Package	DQs per Package	Ranks	Device Density (Gb)	DQ Width per Device	DRAM Package Capacity (GB)
SDP	x32	1	4	32	0.5
DDP	x32	2	4	32	1
SDP	x32	1	6	32	0.75
DDP	x32	2	6	32	1.5
QDP	x32	2	6	16	3
SDP	x32	1	8	32	1

Table 3-6. LPDDR3 Memory Configurations

Devices per Package	DQs per Package	Ranks	Device Density (Gb)	DQ Width per Device	DRAM Package Capacity (GB)
DDP	x32	2	8	32	2
QDP	x32	2	8	16	4

Table 3-7. LPDDR4 Memory Configurations

Devices per Package	DQs per Package	Ranks	Device Density (Gb)	DQ Width per Device	DRAM Package Capacity (GB)
SDP	x32	1	8	2x16	1
DDP	x32	2	8	2x16	2
SDP	x32	1	12	2x16	1.5
DDP	x32	2	12	2x16	3
SDP	x32	1	16	2x16	2
DDP	x32	2	16	2x16	4

Table 3-8. LPDDR4 x32 Configuration Support

СН0	CH1	CH2	СНЗ	Restrictions
x32 BGA	x32 BGA	x32 BGA	x32 BGA	All Channels Identical
x32 BGA	Unpopulated	Unpopulated		Only on CH0
x32 BGA	x32 BGA	Unpopulated		CH0 identical to CH1

3.3 Display Controller

The Gen9 Display Engine (DE) provides the ability to connect up to three displays to the SoC using MIPI-DSI, eDP, and DP/HDMI. When only a single internal display is used (MIPI-DSI or eDP), DE can employ power optimizations to reduce power.

3.3.1 Features of Display Controller

- Support 3 Display pipes, simultaneous multi-streaming on all three display pipes (1x Internal and 2x External Displays)
- Support 2 MIPI-DSI 1.1 ports
- Support 3 DDI ports to enable eDP 1.3, DP 1.2, or HDMI 1.4b
 - Supports 1x Internal Display (eDP 1.3). DDI2 port is dedicated to eDP
 - Supports 2x External Display (DP 1.2, HDMI 1.4b). DDI0 and DDI1 can be used for external displays
- Supports Audio on DP and HDMI
- Supports Multi Plane Overlay (MPO)

 Supports Intel[®] Display Power Saving Technology (DPST) 6.3, Panel Self Refresh (PSR) and Display Refresh Rate Switching Technology (DRRS)

Table 3-9. Display Features

Feature	MIPI-DSI	eDP	DP	HDMI
Number of Ports	2 (x4)	1 (x4) (DDI-2)	1 (x4) DDI[1:0]	1 (x4) DDI[1:0]
Maximum Resolution	1x4: 1920x1200 @ 60 Hz (without compression) 2x4: 2560×1600 @ 60 Hz (without compression)	3840x2160 @ 60 Hz, with SSC	4096×2160 @ 60 Hz, with SSC	3840×2160@ 30 Hz
Data Rate	1.0 Gb/s	5.4 Gb/s	5.4 Gb/s	2.9 Gb/s
Standard	DPHY1.1	eDP 1.3	DP 1.2	HDMI 1.4b
Power gated during S0ix w/display off	Yes	Yes	Yes	Yes
DRRS (Refresh reduction)	Yes (M/N pair)	Yes (Panel command)	N/A	N/A
Self-Refresh with Frame buffer in Panel	Yes (Command Mode)	Yes (PSR)	No	No
Content-Based back light control	DPST6.0	DPST6/CABC	N/A	N/A
HDCP wired display	N/A	N/A (ASSR support)	1.4	1.4
PAVP	AES-encrypted buffer, plane control, panic attack			
SEC	All display registers can be accessed by CEC			
HD-Audio	N/A	N/A	Yes	Yes
LPE Audio	N/A	N/A	Yes	Yes
Compressed Audio	N/A	N/A	Yes	Yes

3.4 Graphics and Media Engine

- Intel 9th generation (Gen 9) LP graphics and media encode/decode engine
- Three slices of 6 EUs each (3x6); each slice supports 6 threads resulting in a total of 108 available threads
- Supports 3-D rendering, media compositing, and video encoding.
- Graphics Burst enabled through energy counters.
- Supports DX* (9.3, 10, 11.1, 12), OpenGL* 4.3, OGL ES 3.0, OpenCL* 1.2
- 4x anti-aliasing
- Supports Content protection using PAVP 2.0 and HDCP 1.4/2.0.

Table 3-10. Hardware Accelerated Video Decode/Encode Codec Support (Sheet 1 of 2)

Codec Format	Decode Level	Encode Level
HEVC (H.265) ¹	MP L5.1 8b/10b, up to 4kx2kp60 MP L5 8b/10b, up to 4Kx2Kp30	MP L4 8b, up to 4kx2kp30 Bit rate: Up to 100Mbps
H.264	CBP, MP, HP L5.2 up to 1080p240, 4kx2kp60	CBP, MP HP L5.2 up to 1080p240, 4k2kp60

Table 3-10. Hardware Accelerated Video Decode/Encode Codec Support (Sheet 2 of 2)

Codec Format	Decode Level	Encode Level
MVC	CBP, MP HP L5.2 4k2kp60	CBP, MP, HP L5.1 4k2kp30
VP8	Upto 4kx2kp60	Up to 4kx2kp30
VP9	Upto 4kx2kp60	Up to 480p30 Note: Software based only
MPEG2	HD, MP, HL Upto 1080p60	N/A
VC-1	AP L4 Upto 1080p60	N/A
WMV9	MP, HL Upto 1080p30	N/A
JPEG/MJPEG	1067 Mpps (420), 800 Mpps (422), 533 Mpps (444)	1067 Mpps (420), 800 Mpps (422), 533 Mpps (444)

Note: 1. H.265 encode is a hybrid implementation.

3.5 Imaging

The SoC consists of the Processing Subsystem (PS), which is an advanced Image Signal Processor (ISP), and the Input Subsystem (IS), which contains the MIPI*-CSI2 controllers.

Supports four concurrent streams from four operating sensors.

3.5.1 Camera Configurations

SoC supports CSI2 image sensors connected using both D-PHY 1.1 and D-PHY 1.2. There are two input blocks. One input block supports two sensors on D-PHY 1.1 lanes, and the other input block supports two sensors on D-PHY 1.2 lanes.

3.5.1.1 CSI2 D-PHY 1.1/1.2 Sensor Configurations

The SoC has four dedicated DPHY 1.1 lanes and two differential clock lanes, running at a maximum frequency of 1.5 GHz and supporting a peak MIPI*-DPHY transfer rate of 1.5 Gb/s per lane. Similarly, SoC has four dedicated DPHY 1.2 lanes and two differential clock lanes, supporting peak transfer rate of 1.5Gb/s per lane. The four clock lanes (two on D-PHY 1.1 and two on D-PHY 1.2) enable supporting of maximum of four sensors. The eight DPHY lanes can be used in any of the following configurations, to support up to four sensors.

- 1. Single sensor up to x4 configurations
- 2. Two sensors up to x4 and x4 configurations
- 3. Four sensors up to x2, x2, x2, and x2

Lane 1

Sensor SoC Package CSI-2 D-PHY 1.1 x4 Clock MCSI_CLKN_0 MCSI_CLKN_0 Lane 0 Lane 1 MCSI_DN_0 MCSI DN 0 Lane 2 MCSI_DP_0 MCSI DP 0 Lane 3 MCSI_DN_1 MCSI_DN_1 - OR -MCSI_DP_1 MCSI_DN_2 MCSI_DP_1 MCSI_DN_2 Sensor CSI-2 D-PHY 1.1 x2 MCSI_DP_2 MCSI DP 2 MCSI_DN_3 MCSI_DN_3 Clock MCSI_DP_3 Lane 0 D-PHY 1.1 MCSI_CLKN_2 MCSI CLKN 2 Lane 1 MCSI_CLKP_2 MCSI_CLKP_2 RCOMP D-PHY1.1 RCOMP Sensor CSI-2 D-PHY 1.1 x2 Lane 1 Lane 0 Clock Sensor CSI-2 D-PHY 1.2 x4 MCSI_RX_DATA0_P dphy_rx_data0_p dphy_rx_data0_n MCSI_RX_DATA0_N Lane 0 MCSI_RX_CLK0_P dphy_rx_clk0_p Clock dphy_rx_clk0_n MCSI RX CLKO N Lane 1 MCSI RX DATA1 P dphy_rx_data1_p Lane 2 dphy_rx_data1_n MCSI_RX_DATA1_N MCSI RX DATA2 P Lane 3 D-PHY 1.2 dphy_rx_data2_p dphy_rx_data2_n MCSI_RX_DATA2_N - OR -MCSI_RX_CLK1_P dphy_rx_clk1_p dphy_rx_clk1_n MCSI_RX_CLK1_N Sensor MCSI RX DATA3 P dphy_rx_data3_p CSI-2 D-PHY 1.2 x2 dphy_rx_data3_n MCSI_RX_DATA3_N Lane 0 RCOMP D-PHY1.2 RCOMP Lane 1 Sensor CSI-2 D-PHY 1.2 x2 Lane 0 Clock

Figure 3-1. CSI2 D-PHY 1.1/1.2 Sensor Configurations

Note: Pin and port names are examples only. Actual die/package pin and signal names may differ.

3.6 Audio Controller

Table 3-11. Audio Controller Features

Category	Description	
I ² S/SSP Interfaces	Two I ² S/SSP Interfaces for platform peripherals	
DSPs	Two high-performance DSPs configured with: • 32kB 4-way set associative L1 Instruction Cache • 64kB 4-way set associative L1 Data Cache	
L2	 L2 Memory controller with the local high-performance interconnect fabric L2 Cache Controller with cacheing and prefetch capabilities 	
ROM Size	8kB ROM	
DMA Interfaces	Two, 8-channel universal DMA interfaces for transferring data between memory buffers and peripherals and between memories	
DMIC Interfaces	Two, dual-channel D igital MIC rophone interfaces	
HD Audio and LPE Audio	Supports HD-Audio and LPE Audio for DDI [1:0] (DisplayPort and HDMI)	
CODEC	Supports one external CODEC for attaching audio peripherals	
Burst Mode	Local power sequencer for burst-mode data processing in micropower modes (S0ix)	
Debug Interface	DSP On-chip Debug interface with two JTAG ports	

3.7 Power Management

The SoC supports different power modes providing significant power optimization.

Table 3-12. Power Management Supported Features

Category	Description
ACPI	Support ACPI 5.0
Core C-States	CC0, CC1 and CC6
Core C-State OS definition	C0, C1, C1E, C6, C6L, C7, C7L, C8, C9, and C10
Processor Module States	MC0-CC0, MC0-CC6, MC7
Graphics States	RC0, RC1, RC6
System Sleep States	S0, S0ix, S3, S4, S5
Power States Management	Active-state power management — Performance control inputs received from platform firmware and software — Physical constraints observed through sensors in the package — Operating points determined to maximize power performance and energy efficiency Idle-state power management Flexible platform states to support phone and tablet usage models Supports minimal device-to-device operations while most of the package is quiesced Autonomous power gating
Other Power Features	Support thermal management Integrated Sensor Hub (ISH) — Supports "always on" sensing in S0ix modes

3.8 USB Controller

Table 3-13. USB xHCI Controller Features

USB Interface			
Category	Description		
USB 3.0 Port	6 (1x USB Dual Role, 1 dedicated port, 3x multiplexed with PCIe* 2.0, 1x multiplexed with SATA 3.0) Note: All Ports are backward compatible with USB 2.0		
Peak USB 3.0 Speed	5Gb/s		
USB 2.0 Port	2		
Direct Connect Interface (DCI)	USB Port0 and Port 1 only		
Peak USB 2.0 Speed	480Mb/s		

Figure 3-2. USB3/PCIe*/SATA Port Mapping

Figure 3-3. USB2 and USB3 Port Mapping

Notes:

- There are 8x USB Ports supported. USB Ports [5:0] can be used as USB2 and USB3 and are mutually exclusive. USB Port 6 and Port 7 can only be used as USB2.
- 2. Only USB Port 0 and Port 1 can be used for implementing DCI (Direct Connect Interface) on the platform.

3.9 PCI Express*

SoC has integrated PCIe* interface with following features:

Note: PCIe* Lanes 3, 4, and 5 are multiplexed with USB3 Ports 4, 3, and 2, respectively. Refer to Figure 3-2 for more information.

Table 3-15. PCIe* Features (Sheet 1 of 2)

Category	Description	
PCIe* Interface	PCIe* Gen2 and PCIe* Gen1	
PCIe* number of lanes	6 lanes (x3 dedicated and x3 multiplexed with USB 3.0)	
PCIe* Maximum Supported Devices	Up to 4 root ports/external device	
PCIe* Signal Transfer Rate	PCIe* Gen2: 5.0 GT/s and PCIe* Gen1: 2.5 GT/s per root port	

Table 3-15. PCIe* Features (Sheet 2 of 2)

Category	Description
PCIe* Clock Frequency	100 MHz (SSC/NSSC Type) Supports 4 reference Clocks (REF CLK)
PCIe* Supported Configuration	Flexible Configuration Supported with any combination of 4 root ports (should not exceed 6 lanes). Example of some common configurations: - (1) x4 + (1) x2 - (4) x1 - (2) x1 + (1) x2 + (1) x2 x1, x2, x4 lane widths (auto negotiated)
Supported Interrupt and Events	Legacy (INTx) and MSI InterruptsGeneral Purpose EventsSystem Error Event
Power Management	 Link State support for L0s, L1, and L2 L1 Sub-states support Powered Down in ACPI S3state - L3
	PCIe* Compliancy
Reference	Revision
PCI Express* Base Specification	Revision 2.0

3.9.1 PCIE* Port Mapping

Table 3-16. PCIe* Port Mapping

PCIe* Config.	Dev.	Func.	Device ID	BIOS ASL (Root Port)	Signal Names	Bifurcation
x2	20	0	0x5AD6	0/Device(RP01)	PCIE_P4_USB3_P3_TX/RX [N/P]	1 x2, 2 x1
	20	1	0x5AD7	1/Device (RP02)	PCIE_P5_USB3_P2_TX/RX [N/P]	
x4	19	0	0x5AD8	2/Device (RP03)	PCIE_P0_TX/RX [N/P]	1 x4, 2 x2, 1
	19	1	0x5AD9	3/Device(RP04)	PCIE_P1_TX/RX [N/P]	x2, 2 x1, 4 x1
	19	2	0x5ADA	4/Device (RP05)	PCIE_P2_TX/RX [N/P]	
	19	3	0x5ADB	5/Device(RP06)	PCIE_P3_USB3_P4_TX/RX [N/P]	

Note: For proper functionality of the PCIE ports each CLKREF signal must be associated with the corresponding CLKREQ signal to enable the clocks. Ensure that the BIOS assigns the valid number for the CLKREQ.

Table 3-17. Supported Configurations for x4 Root Port

Configuration	PCIe* x4			
	Port 0	Port 1	Port 2	Port 3
1 x4	x4	Disabled	Disabled	Disabled
2 x2	x2	Disabled	x2	Disabled
1 x2, 2 x1	x2	Disabled	x1	x1
4 x1	x1	x1	x1	x1

77 Intel Confidential 557555

Table 3-17. Supported Configurations for x4 Root Port

Configuration	PCIe* x4			
2 x1, 1 x2 Note: This configuration is not supported	x1	x1	x2	Disable

Table 3-18. Supported Configuration for x2 Root Port

Configuration	Port 0	Port 1
1x 2	x2	Disable
2 x1	x1	x1

3.10 Serial ATA (SATA)

The SoC has an integrated Serial ATA (SATA) host controller with independent DMA operation on up to 2 SATA ports.

Note:

SATA Port 0 is dedicated for SATA, while SATA Port 1 is multiplexed with USB3, Port 5 and can be configured to be used for either interface. Refer to Figure 3-2 for more information.

Table 3-19. SATA Interface

SATA Interface				
SATA Interface	SATA Gen3, Gen2, and Gen1			
SATA number of ports	2 SATA Ports			
SATA Signaling Transfer Rate	SATA Gen3: 6Gbps - Gen2: 3Gbps - Gen1: 1.5Gbps			
SATA Data Speed	SATA Gen3: 600MB/second - Gen2: 300MB/second - Gen1: 150MB/second			
SATA Clock Frequency	100 MHz (SSC/NSSC Type)			
SATA Compliancy				
SATA Specification Compliancy	Revision 3.1 (Also supports optional sections of the SATA Revision 2.6/2.0 Specification.)			
AHCI Specification Compliancy	Revision 1.3.1			
SATA II: Extensions to SATA 1.0	Revision 1.0 (AHCI support is required for some elements)			

Table 3-20. SATA Supported Features (Sheet 1 of 2)

Supported Features			
Native Command Queuing (NCQ)	Allows the device to reorder commands for more efficient data transfers		
Auto Activate for DMA	Collapses a DMA Setup then DMA Activate sequence into a DMA Setup only		
Asynchronous Signal Recovery	Provides a recovery from a loss of signal or establishing communication after hot-plug		
ATAPI Asynchronous Notification	A mechanism for a device to send a notification to the host that the device requires attention		
Host and Link Initiated Power Management	Capability for the host controller or device to request Partial and Slumber interface power states		

Table 3-20. SATA Supported Features (Sheet 2 of 2)

Supported Features		
Staggered Spin-Up	Enables the host to spin up hard drives sequentially to prevent power load problems on boot	
DEVSLP	Device Sleep (DEVSLP) is a host-controlled hardware signal which enables a SATA host and device to enter an ultra-low interface power state	
AHCI DMA PRD format	Allows software to communicate between system memory and SATA devices	
AHCI Mode Support	The application layer operate in AHCI Host Bus Adaptor (HBA) mode	
Dynamic clock gating and dynamic trunk gating	Enables automatic gating off of peripherals that are not being used until CPU or a DMA engine needs to use.	

Table 3-21. SATA Non-Supported Features

Non-Supported Features
Port Multiplier
FIS Based Switching
Command Based Switching
IDE Mode
Cold Presence Detect
Function Level Reset (FLR)
Command Completion Coalescing
Enclosure Management

3.11 Storage

The following interfaces are part of the Storage subsystem:

Table 3-22. Storage Interface Usage

Interface	Туре	Use
eMMC*	Storage	Internal storage device
SD-Card	Storage	Removable storage device

Table 3-23. SD Card Features

Category	Feature Supported
Specification	SD Memory Card Specification Version 3.01
SD Signalling	SD 3.01 Signaling (UHS-1@ SDR 104/50/25/12 and DDR50)
SD Clock Frequency	25, 50, 100, and 200 MHz
Data Rate	Up to 104MB/s using 4 parallel data lines (SDR104 mode)
Transfer Modes	Support transfer the data in 1-bit and 4-bit SD modes

Table 3-23. SD Card Features

Category	Feature Supported	
Mode of Operation	Support both ADMA2/DMA and Non-DMA Modes	
Cyclic Redundancy Check	Support CRC7 for command and CRC16 for data integrity	
Others	 Supports both Wi-Fi and Modem devices Support Card Detection (Insertion/Removal) for SD Card only Support Async Interrupt Cards HS200 is NOT support on SD-card interface DDR50 is the highest mode to run on SD-card interface 	

Table 3-24. eMMC* Features

Category	Feature Supported	
eMMC* Specification	embedded Multi-Media Card* Product Standard v5.0, JESD84-B50	
eMMC* Signalling	eMMC* v5.0: HS400 DDR Mode eMMC* v4.5: HS200 SDR Mode	
Transfer Modes	Support transfer the data in 1-bit, 4-bit, and 8-bit modes	
Mode of Operation	Support both ADMA2/DMA and Non-DMA Modes	
Boot Modes	Support both eMMC* Secure and Non-Secure Boot	
Cyclic Redundancy Check	Support CRC7 for command and CRC16 for data integrity	
Others	Support Interrupt Coalescing	

Table 3-25. SD Card Working Modes

SD Card Mode	Data Rate	Maximum Clock Frequency	Maximum Data Throughput
Default Speed/SDR12 ¹	Single	25 MHz	12.5MB/s
High Speed/SDR25 ²	Single	50 MHz	25MB/s
SDR50	Single	100 MHz	50MB/s
DDR50	Dual	50 MHz	50MB/s
SDR104	Single	200 MHz	104MB/s
Netoci	•	•	<u> </u>

- Default-Speed means 3.3V signaling, SDR12 means 1.8V signaling.
 High-Speed means 3.3V signaling, SDR25 means 1.8V signaling.

Table 3-26. eMMC* Working Modes

eMMC* Mode	Data Rate	Maximum Clock Frequency	Maximum Data Throughput
Compatibility	Single	26 MHz	26MB/s
High Speed SDR	Single	52 MHz	52MB/s
High Speed DDR	Dual	52 MHz	104MB/s
HS200	Single	200 MHz	200MB/s
HS400	Dual	200 MHz	400MB/s

Serial I/O (SIO) (LPSS) 3.12

SIO (LPSS) is a collection of slow I/Os used to interface various external devices in the platform.

Table 3-28. SoC Serial I/O Supported Interfaces

Interface	Number of Ports	Maximum Speed
[SIO] I ² C	8	3.1Mb/s
[SIO] HSUART	3	115,200kb/s (standard 16550) 3.6864Mb/s (high-speed 16750)
[SIO] SPI	1	25 Mb/s

Table 3-29. SIO—I²C Features

Category	Feature Supported	
SIO - I ² C Interface	Two-wire, I ² C serial interface comprising a Serial Data line (SDA) and a Serial Clock (SCL)	
Loading Range	Limited to 400 pF maximum	
Addressing	7b or 10b addressing Note: Ignores CBUS addresses (an older ancestor of $\rm I^2C$ that used to share the $\rm I^2C$ bus)	
Operation Modes	 Master I²C operation only Interrupt or polled-mode operation Handles Bit and Byte waiting at all bus speeds Notes: I I²C Multi Masters are not supported I I²C Slave Mode is not supported I I²C Generic Call is not supported 	
Maximum bit rate	High-speed mode supporting a maximum bit rate of 3.1Mb/s Note: Simultaneous configuration of FM or FM+ is not supported in Fast-mode Plus	
Data Transfer	64B transmit (TX) and receive (RX) Host Controller FIFOs 64B iDMA FIFO per channel with up to 32B Burst capability Notes: IDMA handshaking interface compatible with the DW_OCP_IDMAc handshaking interface DMA mode is not supported when Slice is assigned to TXE (Trusted Execution Engine)	
Driver/SW Support	Component parameters for configurable software driver support SW Controlled serial data line (SDA) and a serial clock (SCL) Programmable SDA hold time (tHD; DAT)	

Table 3-30. SIO—HSUART Features (Sheet 1 of 2)

Category	Feature Supported	
SIO—HSUART Interface	Four-Wire HSUART signal Interface using RTS/CTS Control only	
Addressing	Programmable character properties, such as number of data bits per character (5b to 8b), optional parity bit (even or odd parity) and number of stop bits (1b, 1.5b, or 2b)	
Operation Modes	Functionality based on the 16550 and 16750 industry standards Transmitter Holding Register Empty (THRE) interrupt mode Prioritized interrupt identification Note: HSUART Slave Mode is not supported	

Table 3-30. SIO—HSUART Features (Sheet 2 of 2)

Max bit rate	 Up to 3.6864 MT/s Auto Flow Control mode as specified in the 16750 standard Programmable serial data baud rate Programmable baud supported [baud rate = (serial clock frequency)/(16× divisor)]
Data Transfer	64B transmit (TX) and receive (RX) Host Controller FIFOs 64B iDMA FIFO per channel with up to 32B Burst capability DMA signaling with two programmable modes Programmable FIFO enable/disable Line break generation and detection **Notes:* 1. DMA mode is not supported when Slice is assigned to TXE 2. UART 16550 8b Legacy mode is not required when Slice is assigned to TXE 3. There is no external read enable signal for RAM wake-up when using external RAMs
Driver/SW Support	Software-controlled CTS overwrite (for 2-wire interface there is no flow control operation) Loopback mode enables greater testing of Modem Control and Auto Flow Control features Notes: Modem and status lines are independently controlled Serial Infrared (SIR) per the Infrared Data Association (IrDA) 1.0 is not supported

Table 3-31. SIO—SPI Features

Category	Feature Supported	
SIO-SPI Interface	Receive Without Transmit (RWOT) half duplex mode	
Addressing	Supports data sizes from 4-bit to 32-bit in length and FIFO depths of 64 entries	
Operation Modes	- Master SPI operation only - Operates as Motorola SPI Notes: 1. SPI Slave Mode is not supported 2. Network modes from one to eight time slots are not supported with independent transmit and receive (TX and RX)	
Maximum bit rate	Support Programmable baud rate	
Data Transfer	 256B Transmit (TX) and Receive (RX) Host Controller FIFOs 128B iDMA FIFO per channel with up to 64B Burst capability <i>Notes:</i> Single DMA transactions are supported DMA mode is not supported when Slice is assigned to TXE 	
Driver/SW Support	 Software control for chip-select override Programmable Polarity for clock and chip select signals Up to four chip selects per host controller 	

3.13 Fast SPI

- The SPI controller supports up to two SPI Flash devices using two separate chip select pins.
- Each SPI Flash device can be up to 16 MB.
- Communication on the SPI bus is done with a Master Slave protocol. The Slave is connected to the SoC and is implemented as a tri-state bus
- The SPI controller has two operational modes, Non-Descriptor and Descriptor

Supports TPM

3.14 Power Management Controller (PMC)

- The Power Management Controller subsystem is one of the first subsystem to be functional after reset. It is responsible for the following functionality:
- · Conducting system boot flow
- Conducting Warm/Cold/Global resets
- Conducting Sleep state entry (S3/S4/S5-cold off)
- Collecting all wake events and Conducting system wake from sleep states (wake architecture)
- · Maintain Timers
- Conducting S0ix entry/exit and wake from S0ix state
- Managing Power Rails
- Handling SMI (System Management Interrupt)
- Handling SCI events (System Control Interrupt)
- PMC uses SVID or I²C interfaces for communication with PMIC (Power Management IC)

3.15 IntelTM Legacy Block

IntelTM Legacy Block (iLB) supports the following features:

Table 3-32. iLB Features

Interrupt and Timer SubSystem

- 8259 Controllers
 - Registers mapped to fixed I/O locations
 - $-\,\,$ Uses Messages to CPU to indicate interrupt
 - 15 total interrupts
- I/O APIC
 - Registers mapped to fixed I/O locations
 - Uses Messages to CPU to indicate interrupt
- 8254 timers
 - Registers mapped to fixed I/O locations
 - Has 3 internal timers
 - Timer 0 used for OS timer tick
 - Timer 1 Unused
 - Timer 2- used for "beep" speaker
- HPET High Performance Event Timers
 - Includes one periodic timer, seven one-shots (total eight comparators)
 - Improved resolution, reduced overhead
 - Results in fewer interrupts to CPU

Table 3-32. iLB Features

GPIO

- Total of 243 GPIO capable pins.
- 1.05V, 1.8V, 3.3V signaling available on GPIO signals

Note: Check the GPIO Multiplexing Table 2-35 for more details.

- Each GPIO pad can be configured as an input or output signal
- Most pads are multiplexed between GPIO mode and native mode function(s)
- Configurable GPIO pad ownership by TXE to TXE itself, ISH or host.
- SCI/GPE and IOxAPIC interrupt capable on all GPIOs
- GPI GPE Status and GPE Enable registers in GPIO Community
- Direct IOxAPIC interrupts available on select GPIO
- 32 pins from two communities can be selected as direct interrupt wake events.
- Eight pins from two communities can be selected as TXE wake events.
- SMI capable on selected GPIOs (NMI not implemented on SoC).
- GPIO registers accessible thru IOSF-SB.

Real Time Clock (RTC)

- SoC has an integrated Real-Time Clock (RTC), a Motorola MC146818B-compatible RTC with 242 bytes of battery-backed RAM.
- The RTC operates on a 32.768 KHz crystal and a 3.3V battery.
- The RTC performs two key functions—keeping track of the time of day and storing system data, even when the system is powered down.
- The RTC supports two lockable memory ranges. By setting bits in the configuration space two, 8-byte ranges can be locked to read and write accesses. This prevents unauthorized reading of passwords or other system security information.

3.16 Integrated Sensor Hub

Integrated Sensor Hub (ISH) serves as the connection point for many of the sensors on a platform. The ISH is designed with the goal of "Always On, Always Sensing" and it provides the following functions to support this goal:

Table 3-33. Integrated Sensor Hub Supported Functions and Components

ISH Supported Functions

- Acquisition/sampling of sensor data.
- Low power Sensor Fusion.
- The ability to combine data from individual sensors to create a more complex virtual sensor that can be directly used by the firmware/OS.
- Low power operation through clock and power gating of the ISH blocks together with the ability to manage the power state of the external sensors.
- The ability to operate independently when the host platform is in a low power state (S0ix only).

ISH Key Components

- A combined cache for instructions and data.
 - -ROM space intended for the boot loader.
 - -SRAM space for code and data.
- Interfaces to sensor peripherals (I^2C and GPIO).
- An interface to main memory.
- Out of Band signals for clock and wake-up control.
- Part of the PCI tree on the host.

3.17 SMBus

SoC provides a System Management Bus (SMBus) 2.0 host controller.

The SoC is capable of communicating with I²C compatible devices.

Security Architecture 3.18

The Security involves:

- Trusted Execution Engine 3.0 (TXE3.0)
- Basic SoC security Architecture
 - Layered SoC Security
 - Security principles like CIA triad (confidentiality, integrity, and availability)
 - SoC Trusted Computing Base (TCB)
 - Adversary Model and Adversary Capabilities
- · Access Control Architecture
- SoC IP security
- SoC Assets
- · Debug Security

Table 3-34. SoC TXE 3.0 Interaction

Flow	SoC Logic Blocks
Secure Boot and DnX (Download and Execute)	SoC Power Management Controller (PMC), PMIC (by means of PMC), eMMC*, USB (USB2 and USB3), SPI, Memory Controller, I/O Subsystem, Goldmont Core, GPIO, LPSS, System Agent, C-unit
Firmware Authentication	cAVS, ISH, Imaging, PMC
Content Protection (PAVP, HDCP 2.2, WiDi, Play Ready3 DRM)	Graphics and Display Controller
Fingerprint Reader	LPSS
Provisioning flows	eMMC*, SPI
Secure timer	PMC (PMIC), Protected RTC
NFC Support (reader and secure element)	LPSS

Note: It is recommended that TXE should NOT own Function 0 unless TXE needs to do all functions of a device. When TXE owns Function 0 of a multi-function device, the host software that enumerates PCI will not be able to see Function 0 and hence will **not** look for other functions in this case. Due to this the other functions will not be usable by the host. If TXE does not own Function 0 then the host software enumerating PCI will continue to look for additional Devices 1-7 and would enumerate the functions not owned by TXE. This is the normal operation of the SoC and there is no hardware or software requirement for the above to occur and this restriction can't be changed.

This also applies to instances where there are multiple devices (with respect to Bus: Device: Function) for one type of usage/interface that results in 2x (two) "Function 0" controllers, one under each Device number. For eg. I²C, which has 8x controllers, and uses 2x Device numbers, each with 4x Functions. This results in 2x "Function 0" controllers - 1x under each device number. In this case, it is recommended that TXE does not own " $\rm I^2C0$ " and " $\rm I^2C4$ " as they both are "Function 0" under different "Devices"

3.19 Thermal Management

There are four main categories of Thermal Management:

- SoC thermal area
- · Memory thermal area
- Thermal Interrupt
- Running Average Power Limit algorithm

The SoC thermal area includes SoC thermal sensing, thermal control algorithms, reporting SoC temperature and supporting thermal interrupts.

The Memory thermal area includes memory thermal sensors, control algorithms, reporting memory thermal status, and generating thermal interrupts.

The Running Average Power Limit (RAPL) algorithm is a package-level feature for Tskin control which provides energy status reporting, power-limit configuration, and control algorithms.

3.19.1 SoC Features

There are four main SoC features:

- PROCHOT Support
- DPTF Thermal Interrupt support
- Thermal Control Algorithm
- Cross Throttling

3.19.2 Thermal Sensors

SoC Sensors are based on DTS (Digital Thermal Sensor) to provide more accurate measure of system thermals.

The SoC has 5 DTSs. DTS output are adjusted for silicon variations. For a given temperature the output from DTS is always the same irrespective of silicon.

Table 3-35. Temperature Reading Based on DTS (Sheet 1 of 2)

DTS Counter Value [8:0]	Temperature Reading (If T _{J-MAX} =90°C)
127	90°C
137	80°C
147	70°C
157	60°C
167	50°C
177	40°C
187	30°C
197	20°C
207	10°C
217	0°C

Table 3-35.Temperature Reading Based on DTS (Sheet 2 of 2)

DTS Counter Value [8:0]	Temperature Reading (If T _{J-MAX} =90°C)
227	-10°C
237	-20°C
247	-30°C
255	-38°C

- DTS encoding of 127 always represents Tjmax at 90°C, the encoding 137 from DTS indicates 80°C and so forth
- The DTS value 255 represent the minimum temperature and thus -38°C is the lowest temperature will be reported by the SoC.

3.20 Clocking

SoC contain variable frequency, multiple clock domains and multiple power plane clocking schemes with determinism and synchronization requirements in some areas. The architecture also supports various PLL clocking requirements with bypass options to save power.

Table 3-36. Summary of Clock Signals

Interface	Clock Signal	Clock Frequency	
Memory - DDR3L	MEM_CH[0:1]_CLKP/N[0:1]	Upto 933 MHz	
Memory - LPDDR3	MEM_CH[0:1]_CLKP/N[0:1]A/B	Upto 933MHz	
Memory - LPDDR4	MEM_CH[0:1]_CLKP/N[0:1]A/B	Upto 1200 MHz	
PCIe*	PCIe_CLKOUT[0:3]P/N	100 MHz	
Storage - eMMC* 4.51 and 5.0	eMMC_CLK	2, 52, 200 MHz	
Storage - SD Card	SDCARD_CLK	25, 50, 100, 200 MHz	
Display - HDMI*	DDI[0,1]_DDC_SCL	100 kHz	
Display - MIPI*-DSI	MDSI_[A,C]_CLKP/N	19.2 MHz ref (CLK Frequency 300-1600 MHz)	
Camera - MIPI*-CSI	On DPHY1.1 MCSI_CLKP/N_[0,2]	1.5Gb/s	
	On DPHY1.2 MCSI_RX_CLK[0,1]_P/N	1.5Gb/s	
Audio - HD Audio	AVS_HDA_BCLK (multiplexed)	6, 12, 24 MHz	
Audio Codec/Analog Microphone- I ² S	AVS_I ² S2_BCLK AVS_I ² S2_MCLK AVS_I ² S6_BCLK (multiplexed)	BCLK = 12.28 MHz MCLK = 19.2 MHz	
Audio - Digital Microphone	AVS_DMIC_CLK_[A/B]1 AVS_DMIC_CLK_AB2	1.2-4.8 MHz	
SIO (LPSS) I ² C	LPSS_I ² C[0:7]_SCL	100 KHz, 400 KHz, 1 MHz, 3.1 MHz	
PMIC	PMIC_I ² C_SCL	100 KHz, 400 KHz, 1 MHz, 3.1 MHz	
SVID	SVID0_CLK	19.2 MHz	

Table 3-36. Summary of Clock Signals

Interface	Clock Signal	Clock Frequency
LPC	LPC_CLKOUT[0,1]	25 MHz
PCIe	PCIe_CLKOUT[0:3]P/N	100 MHz
SMBus	SMB_CLK	Maximum 100 KHz
SIO (LPSS) SPI	SIO_SPI_0_CLK	25 MHz
FAST SPI - SPI NOR and TPM	FST_SPI_CLK	14, 25, 40, 50 MHz
Platform - OSC_CLK_OUT	OSC_CLK_OUT_[0:2]	6.7, 8, 9.6, 13.6, 14.4, 19.2, 24, 26 MHz
	OSC_CLK_OUT_[3]	19.2 MHz
Platform - SUSCLK	SUS_CLK[3:1]	32.768 KHz
XTAL Source - RTC Clock	RTC_X[1,2]	32.768 KHz
XTAL Source - SoC Clock - as default	OSCOUT OSCIN	19.2 MHz

Figure 3-4. SoC Clock Mapping

- 1. 19.2 MHz Crystal Clock Oscillator as default.
- 2. Some clocks signals that are not supported but they can be used as GPIO. Refer to GPIO Multiplexing table for more information on how to configure these clocks.

- 3. Camera Clocks CLK[0:3] are programmable (6.7–26 MHz), while CLK[4] is fixed at 19.2 MHz) for NFC clock.
- 4. To save power in deep S0ix, the 19.2 MHz oscillator is shut off and the critical timers and wake-up logic are clocked by means of RTC 32 KHz clock.
- 5. Clock support for Gen9-LP Graphics and Gen9 Display Engine

§ §

4 Reset and Power Sequences

This chapter provides information about SoC reset and power sequencing.

Notes:

- 1. All timings shown in this chapter apply to DVR and/or PMIC design. Timing should be measured from end of the ramp to beginning of the subsequent ramp rather than the mid ramp (unless other wise specified).
- 2. In this section, the term DVR is synonymous with Discrete Voltage Regulator.
- 3. "A" rail: Always on rail. Voltage rails that do not lose power at any platform S-state (S0ix/S3/S4/S5).
- "S" rail: Core voltage rails. These rails lose power in S3/S4/S5/Cold Reset. SoC S rails lose power during S0Ix state but not platform S rails.
- 5. Only one significant rail name is shown in the timing diagram for each voltage group. Refer to Chapter 2, "Physical Interfaces" section for other associated voltage rails in the same group.

4.1 Reset Flows

Three main types of resets are supported by SoC; Cold Boot from Mechanical OFF, Cold Reset, and Warm Reset. Cold Boot G3 is defined as when first time battery install or system bring-up. Cold Boot G2 is executed any time power is reapplied while the RTC well is valid. Cold Reset is normally initiated by software starting in S0 transitions through the common reset preparation flow then through the reset stages. Warm Reset is either initiated by an internal restart (if DVR present).

4.1.1 System Sleeping States Control (S-States)

The SoC supports the S0, S0Ix S3, S4, and S5 sleep states. S4 and S5 states are identical from a hardware and power perspective. The differentiation is software determined (S4 = Suspend to Disk).

The SoC platform architecture assumes the usage of an external power management controller (for example, CPLD or PMIC) or a discrete power delivery sub-system (DVR). Some flows in this section refer to the power management controller for support of the S-states transitions.

SoC Power-Up/Down Sequences

4.2.1 RTC Power Well Transition (G5 to G3 States Transition)

When VCCRTC_3P3V (Real Time Clock power) is applied by means of RTC battery, the following occurs (refer Figure 4-1 for timing):

- 1. VCCRTC_3P3V ramps. RTC_RST_N and RTC_TEST_N should be low.
- 2. The system starts the real time clock oscillator.
- 3. A minimum of t0 units after VCCRTC_3P3V ramps, the external RTC RC circuit de-asserts RTC_RST_N and RTC_TEST_N. The system is now in the G3 state. RTC oscillator is unlikely to be stable at this point.

4.2.2 Cold Boot [G3 Mechanical Off]

Cold Boot is executed the first time power is applied to SoC from a Mechanical Off. The Cold Boot is executed when power is completely lost, for example battery is dead or removed and no coin cell exists for the RTC. System starts completely fresh and without any previously saved state. During this state transition, the SoC rails are sequenced in an order critical to both SoC and memory operation.

- Platform will ignore PMU_SLP_Sx_N and THERMTRIP_N signals when RSM_RST_N is asserted. VNN_SVID rail is required to sequence along with other A rails before RSM_RST_N.
- 2.
- VCC_3P3V_A voltage ramp without VCC_V1P8V_A ramps should not exceed 500 ms.
- VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

Figure 4-1. SoC G3 Cold Boot Power-Up

Figure 4-2. SoC G3 Cold Boot Power-Up No Coin Cell

4.2.3 Cold Boot [G2]

Cold Boot G2 is executed any time power is reapplied while the RTC well is valid. Flow is the same as above G3 sequence, except that VCCRTC_3P3V would start at around 3V from the battery (note there is still a transition to V3P3A) rather than zero volts and the RTC_TEST_N is never asserted in the flow (meaning RTC was not reset).

- 1. Platform shall ignore PMU_SLP_Sx_N and THERMTRIP_N signals when RSM_RST_N is asserted.
- 2. VNN_SVID rail is required to sequence along with other A rails before RSM_RST_N.
- 3. VCC_3P3V_A voltage ramp without VCC_V1P8V_A ramps should not exceed 500 ms.
- 4. VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

Figure 4-3. SoC G2 Cold Boot Power-Up

Figure 4-4. SoC G2 Cold Boot Power-Up VDDQ V1P24 Rail Merge

Note:

For a system that implements VDD2_1P24_GLM/VDDQ rails merging, VDDQ shall sequence following the rail waveform as shown for VDD2_1P24_GLM.

4.2.4 Cold Off [S4/S5 Without Wakes]

SUSPWRDNACK is asserted on S3/S4/S5. This tells the platform that it can drop power if it does not want to honor the wake requests software has set up. If this is done then the resume is a cold boot as far as the SoC is concerned.

SOC_PWROK drops will result in Thermtrip_N

- If SOC_PWROK drops outside of when SOC is asserting SLP_S3_N or SLP_S4_N SOC treats this as an unrecoverable condition and asserts Thermtrip_N to take the system into G2.
- SoC can drop form 0 to 7us after SLP_S0_N asserts without triggering a Thermtrip_N

Note: In case of forced shut down, RSM_RST_N has to be asserted first before VNN_SVID

being de-asserted.

Figure 4-5. SoC S4/S5 Cold Off

4.2.5 G3->S5

When SoC does a cold boot and FW finds that there was no valid wake condition (SX_WAKE) and GEN_PMCON1.AG3E is set. FW will kick off a G3->S5 flow.

Note:

When exiting G3, SoC will at least briefly go to S0 in order to complete its reset sequence. If SoC needs to go to S5 at this point, it will do so before taking the platform out of reset or running any BIOS code.

Figure 4-6. G3 -> S5 Sequencing

4.3 **Reset Sequences**

4.3.1 **Cold Reset**

Cold Reset, the basic reset, is the expected form of request coming from production software to do the most complete reset possible.

- Since VCC_VCGI is lower to a minimum level in the reset flow, it is very likely that VCC_VCGI will drain off well before VNN_SVID/VCCRAM_V1P05.

 VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

Figure 4-7. SoC Cold Reset

4.3.2 Warm Reset

In Warm Reset flow there is no power domain cycled from the PMIC/VR.

Figure 4-8. SoC Warm Reset

4.3.3 Sx Reset

Note:

VNN_SVID power states are different during boot and after boot. It starts as an A rail prior to RSM_RST_N desertion. On first transition to S0 state with SOC_PWROK from L to H, VNN_SVID switches from A rail to S rail. As such, it will be turned off during S0Ix/S3/S4 states. SOC_PWROK transition from L to H can be used as the signal to switch VNN over to S rail and assertion of RSM_RST_N from H to L to switch it back to A rail.

4.3.3.1 S3

S3 is very similar to a cold reset with a large exception being that wake events are programed into the part and the SoC does not come back up right away. In addition, VDDQ is not removed.

Notes:

- VNN_SVID, VCCRAM_V1P05 and VCC_VCGI are not necessary discharged to 0V during S3. These rails may
 or may not decay to 0V by the next transition to S0 (i.e. the VR are in the off/not regulating stage).
- 2. VCCRAM_V1P05 strictly required to be ramped after VNN_SVID is stable during S3 exit (timing requirement not specified).
- 3. VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

Figure 4-9. SoC S3 Power Sequencing (S0-S3-S0)

4.3.3.2 **S4/S5** (With Wakes)

S4/S5 is very similar to a cold reset with a large exception being that wake events are programed into the part and the SoC does not come back up right away. In addition, memory power might have lot in S4.

- 1. VNN_SVID, VCCRAM_V1P05 and VCC_VCGI are not necessary discharged to 0V during S4. These rails may or may not decay to 0V by the next transition to S0 (i.e. the VR are in the off/not regulating stage).
- VCCRÁM_V1P05 strictly required to be ramped after VNN_SVID is stable during S4 exit (timing requirement not specified).
- 3. VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

V3P3RTC (PLT->SOC rail) RTEST# (PLT->SOC) SUSCLK (SOC->PLT) Running Vref (SOC internal) BG of Vdd1 V3P3A/Vdd3 (PLT->SOC rail) VnnAON (SOC internal) LDO Vdd2 From Vnn V1P8A/Vdd1 (PLT->SOC rail) V1P24A/Vdd2 (PLT->SOC rail) thermtrip# (SOC->PLT) RSMRST# (PLT->SOC) SLP S0# (SOC->PLT) SLP_S4# (SOC->PLT) VDDQ/Vmem (PLT->SOC rail) SLP_S3# (SOC->PLT) Vnn (PLT->SOC rail) V1P05S/Vccram (PLT->SOC rail) Vcc (PLT->SOC rail) PCH_PWROK (PLT->SOC) 121 EMMC_RST# (SOC->PLT) Boot device accessed (SOC->PLT) PLTRST# (SOC->PLT) SUS_STAT# (SOC->PLT) EMMC_PWR_EN# (SOC->PLT)

Figure 4-10. SoC S4 Power Sequencing (S0-S4-S0)

4.3.3.3 **SOI**x

SUSPWRDNACK (SOC->PLT)

S0Ix is the low power state where VNN_SVID and VCCRAM_1P05V are lost.

- SOC_PWROK is not required to be de-asserted but it is allowed to be de-asserted during S0Ix state. In case of SOC_PWROK de-assertion, THERMTRIP_N event will not be triggered, if SOC_PWROK is being de-assert within 1us after the assertion of PMU_SLP_SO_N.
- VNN_SVID, VCCRAM_V1P05 and VCC_VCGI are not necessary discharged to 0V during S0Ix. These rails may or may not decay to 0V by the next transition to S0 (i.e. the VR are in the off/not regulating stage). VCCRAM_V1P05 strictly required to be ramped after VNN_SVID is stable during S0Ix exit (timing
- 3. requirement not specified).
- VCC_VCGI rail ramps at first SETVID, after the assertion of SOC_PWROK. Vboot is defined as 0V.

Figure 4-11. SoC S0Ix Power Sequencing (S0-S0Ix)

4.3.4 Platform Initiated Shutdown

If a system wants to take power away form the SOC and for whatever reason waiting for a graceful S5 shutdown is not an option; and an emergency shutdown of dropping all rails at the same time is also not an option. Then reverse order of cold boot would be the desired order for the SOC (meaning that VNN is the 2nd to last rail removed). Please note however that if SOC_PWROK is removed when the SOC is not expecting it will issue a thermtrip_N and expect all rails off.

Figure 4-12. Platform Initiated Graceful Shutdown While in S0

Figure 4-13. Platform Initiated Graceful Shutdown While in S3

4.3.5 Emergency Shutdown (Global Reset)

When THERMTRIP_N asserts, the platform must shutdown. The platform must immediately assert RSM_RST_N and power off all SOC rails (with an exception given to VCC_3P3V_A).

Figure 4-14.THERMTRIP Sequencing

4.4 Timing Requirements

Table 4-1 shows the timing requirement during the reset/power sequence flows.

Table 4-1. Timing Requirements During Reset Flows (Sheet 1 of 2)

Timing Label	Description	Min	Max
t0	VCCRTC_3P3V power to RTC_TEST_N/RTC_RST_N ramped	9 ms ¹	-
t1	VNN ramped to VCC_1P8V_A start of ramp	0 ms	-
t2	VCC_3P3V_A ramped to VCC_1P8V_A start of ramp	0 ms	-
t3	VCC_1P8V_A ramped to VCC_1P24V_A start of ramp	0 ms	-
t4	"A" rails ramped to RSM_RST_N start of ramp	10 ms	-
t6	RSM_RST_N to PMU_SUSCLK starts running	95 ms	-
t7	RTC_TEST_N to RSM_RST_N start of ramp	1 μs	-
t10	PMU_SLP_S4_N de-assertion to VDDQ ramp start	no requirement	-
t11, t13, t32, t36	All rails stable to SOC_PWROK assertion	5 ms	-
t12	PMU_SLP_S3_N de-assertion to VCC_1P05V start of ramp for G3/G2 exit	no requirement	-

Table 4-1. Timing Requirements During Reset Flows (Sheet 2 of 2)

Timing	Description	Min	Max
Label	·		
t20	PMU_SLP_S4_N assertion to VDDQ stop regulation	no requirement	-
t21	PMU_SLP_S3_N assertion to SOC_PWROK de-assertion	no requirement	-
t22	PMU_SLP_S3_N assertion to "S" rails stop regulation	no requirement	-
t22-t21	SOC_PWROK deassertion to rails reach (-5%) tolerance	0 us	
t25	PMU_SLP_S4_N assertion to PMU_SLP_S4_N de-assertion (cold reset)	Programmable ²	_
t26	PMU_SLP_S3_N assertion to PMU_SLP_S3_N de-assertion (cold reset)	Programmable ²	-
t27	"S" rails 0v to PMU_SLP_S3_N de-assertion	no requirement	
t28	PMU_SLP_S4_N assertion to PMU_SLP_S4_N de-assertion during S4	Programmable ³	
t29	PMU_SLP_S3_N assertion to PMU_SLP_S3_N de-assertion during S4	Programmable ³	
t30	PMU_SLP_S3_N de-assertion to VNN ramp start	no requirement	
t31	VNN ramped to VCC_1P05V ramp start	0 ms	
t35	PMU_SLP_S4_N de-assertion to VDDQ ramp start	no requirement	
t40	SUSPWRDNACK assertion to de-assertion	0 ms (does not stretched with other SLP signals)	
t41	PMU_SLP_S3_N assertion to PMU_SLP_S3_N de-assertion during S3	Programmable ⁴	
t50	"S" rails 0V to RSM_RST_N for G2 entry	no requirement (can be negative)	
t51	RSM_RST_N assertion to SoC output defaults	0 ns	
t52	RSM_RST_N assertion to "x" on all SoC outputs	2048 RTC clocks ⁵	
t54	THERMTRIP_N assertion to RSM_RST_N asserted	-	100 µs
t51+t53	RSM_RST_N assertion to "A" rails stop regulation	1 µs	
t51+t53/ t151+t152	RSM_RST_N assertion to "A" rails stop regulation (other than V3P3A)		5 ms
t153	Any "A" rail or (Vnn when RSM_RSTN will be asserted) out of spec to all "A" rails stop regulation		100 μs
	VCC_3P3V_A ramped without VCC_V1P8_A ramped		500 ms
	RSM_RST_N assertion to starting regulation of Vnn (cold off/ Thermtrip to exiting G3)	100ms, or RTEST_N deassertion then assertion	
t51 / t151	CKE low after RSM_RST_N assertion		100ns
	SLP_S0_N assertion to SOC_PWROK deassertion	Signal might be masked and does not have to deassert	7 us

- Measured from VCCRTC_3P3V-10% to RTC_TEST_N/RTC_RST_N reaching 55%*VCCRTC_3P3V. VCCRTC_3P3V is defined as the final settling voltages that the rail ramps to.

 Programmable through PMC_CFG.PWR_CYC_DUR register.

 Programmable through GEN_PMCON3.S4MAW register.

 Programmable through GEN_PMCON3.SLP_S3_MIN_ASST_WIDTH register.

5. VDD2_1P24_GLM will be lost if SoC is in Sx on assertion. VNN_SVID will be lost if SoC is not in Sx on assertion

§§

5 Electrical Specifications

5.1 Absolute Maximum and Minimum Specifications

The absolute maximum and minimum specifications are used to specify conditions allowable outside of the functional limits of the SoC, but with possible reduced life expectancy once returned to function limits.

At conditions exceeding absolute specifications, neither functionality nor long term reliability can be expected. Parts may not function at all once returned to functional limits.

Although the processor contains protective circuitry to resist damage from Electrostatic discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.

Table 5-1. Absolute Max and Min values

Supply Name	Description	Min ^{1,2}	Nominal ¹	Max ¹	Unit
vcca_1p8	1.8V IO supply ²	1.66	1.8	1.89	volt
vcca3p3	3.3V IO Supply ²	3.00	3.30	3.45	volt

Notes:

- 1. Voltages are as measured at the transistor junction including all AC+DC components.
- 2. Voltage specifications must be met at the transistor junction. Typical bump voltages are 15-25 mV higher and typical pin voltages are 10-20 mV higher than at the bump for IO supplies.

5.2 Thermal Specifications

The following table specifies the thermal limits of SoC operation. Thermal solutions not designed to provide the following level of thermal capability may affect the long-term reliability of the processor and system and more likely result in performance throttling to ensure silicon junction temperatures within Specification.

TjMax defines the maximum operating silicon junction temperature. This is the temperature needed to ensure TDP specifications when running at guaranteed Processor and Graphics frequencies.

"TDP" defines the thermal dissipated power for a worse case estimated real world thermal scenario. "SDP", or scenario dissipated power, defines the thermal dissipated power under a lighter workload specific to a user scenario and at a lower thermal junction temperature than TjMax. Tj SDP is 80°C and Ti TDP is Tj Max from the below table.

For more details on thermal solution design, refer to this product's Thermal Mechanical Design Guide (Document Number# 559048).

5.2.1 Temperature Requirements

- For PC SKU's, the SoC must be functional from 0°C to 105°C.
- For IOTG SKU's, the SoC must be functional from -40 to 110C

Table 5-2. SoC Base Frequencies and Thermal Specifications

SKU Segment	QDF	Step ping	No. of Cores	Configuration	Processor Frequency Minimum/ Base/Burst	Graphics Frequency Minimum/ Base/Dynamic	GFX EU	Thermal Design Power TDP (W)	Tj _{Max} (°C)
Mobile	QKTW	B-0	4	FCBGA15, 1296 31mmx24mm	800 MHz/1.1 GHz/2.5 GHz	100 MHz/200 MHz/750 MHz	18	6	105
Mobile	QKTY	B-0	4	FCBGA15, 1296 31mmx24mm	800 MHz/1.1 GHz/2.2 GHz	100 MHz/200 MHz/700 MHz	12	6	105
Mobile	QKT4	B-0	2	FCBGA15, 1296 31mmx24mm	800 MHz/1.1 GHz/2.4 GHz	100 MHz/200 MHz/650 MHz	12	6	105
Desktop	QKVJ	B-0	4	FCBGA15, 1296 31mmx24mm	800 MHz/1.5 GHz/2.6 GHz	100 MHz/250 MHz/800 MHz	18	10	105
Desktop	QKVG	B-0	4	FCBGA15, 1296 31mmx24mm	800 MHz/1.5 GHz/2.3 GHz	100 MHz/250 MHz/750 MHz	12	10	105
Desktop	QKVE	B-0	2	FCBGA15, 1296 31mmx24mm	800 MHz/2.0 GHz/2.5 GHz	100 MHz/250 MHz/700 MHz	12	10	105

5.3 Storage Conditions

This section specifies absolute maximum and minimum storage temperature and humidity limits for given time durations. Failure to adhere to the specified limits could result in physical damage to the component. If this is suspected, Intel recommends a visual inspection to determine possible physical damage to the silicon or surface components.

Table 5-3. Storage Conditions Prior to Board Attach

Symbol	Parameter	Minimum	Maximum
Tabsolute storage	Device storage temperature range should not exceed for any length of time	−25 °C	125 °C
Tshort term storage	The ambient storage temperature and time for up to 72 hours.	−20 °C	85 °C
Tsustained storage	The ambient storage temperature and time for up to 30 months.	-5 °C	40 °C
RHsustained storage	The maximum device storage relative humidity for up to 30 months.	N/A	60% RH @ 24°C

- Specified temperatures are not to exceed values based on data collected. Exceptions for surface mount re-flow are specified by the applicable JEDEC* standard. Non-adherence may affect processor reliability.
- Component product device storage temperature qualification methods may follow JESD22-A119 (low temperature) and JESD22-A103 (high temperature) standards when applicable for volatile memory.
- Component stress testing is conducted in conformance with JESD22-A104.
- The JEDEC* J-JSTD-020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag.

5.4 Post Board-Attach

The storage condition limits for the component once attached to the application board are not specified. Intel does not conduct component-level certification assessments post board-attach given the multitude of attach methods, socket types, and board types used by customers.

Provided as general guidance only, board-level Intel-branded products are specified and certified to meet the following temperature and humidity limits:

- Non-Operating Temperature Limit: -40 °C to 70 °C
- Humidity: 50% to 90%, non-condensing with a maximum wet-bulb of 28 °C

5.5 Voltage, Current, and Crystal Specifications

Note: The specifications listed below are preliminary and subject to change.

5.5.1 Voltage and Current Specifications

Table 5-4. Apollo Lake SoC Power Rail DC Specification and Iccmax (Sheet 1 of 2)

Power Type	Voltage Range (V)	Voltage Tolerance (AC+DC+Ripple)	Power Well Description	Iccmax (A)
VCC_VCGI	0, 0.45-1.3 ²	With AVP¹: DC Load Line (DCLL) = 6 mOhms Ripple at Iccmax = +/-15mV TOB²_Iccmax = +/-20mV Overshoot voltage (max) = 100mV Overshoot duration (max) = 50 μs	Variable voltage supply to CPU and Graphics Core and ISP logic. SVID and I ² C VID are voltage control interface supported.	21
		Without AVP ¹ : Voltage Tolerance = +35mV/-161mV Overshoot voltage (max) = 100mV Overshoot duration (max) = 50 μs		
VNN_SVID	0, 0.45-1.3 ²	+/-50mV	Variable voltage supply to other (non core) logic	3.3
VCCIOA	0, 0.45-1.3 ²	+/-50mV	Notes: 1. Please tie VCCIOA to VNN_SVID for DDR3L and LPDDR3 designs 2. Please tie VCCIOA to VDDQ for LPDDR4 designs	1.5
VCCRAM_1P05	1.05	+/-5%	Fixed voltage rail for SRAM and I/O Logic	2.7
VCCRAM_1P05_IO	1.05	+/-5%	Fixed voltage rail for SRAM and I/O Logic	
VCC_1P05_INT	1.05	+/-5%	Fixed voltage rail for SRAM and I/O Logic	
VDD2_1P24_GLM	1.24	+/-5%	Fixed voltage rail for SoC L2	1.3
VDD2_1P24_AUD_ISH_ PLL	1.24	+/-5%	Fixed voltage rail for Audio & ISH I/O Logic and PLLs	
VDD2_1P24_USB2	1.24	+/-5%	Fixed voltage rail for USB2 I/O	
VDD2_V1P24_DSI_CSI	1.24	+/-5%	Fixed voltage rail for MIPI I/Os	
VCC_1P8V_A	1.8	+/-5%	Fixed voltage rail for all GPIOs	0.4

Table 5-4. Apollo Lake SoC Power Rail DC Specification and Iccmax (Sheet 2 of 2)

Power Type	Voltage Range (V)	Voltage Tolerance (AC+DC+Ripple)	Power Well Description	Iccmax (A)	
VDDQ	1.35 (DDR3L)	+/-5%	Fixed voltage rail for DDR3L PHY	2.8 (excluding	
	1.2 (LPDDR3)	+8.3%/-5%	Fixed voltage rail for LPDDR3 PHY	DRAM)	
	1.1 (LPDDR4)	+6/-4% ³	Fixed voltage rail for LPDDR4 PHY		
VCC_3P3V_A	3.3	+/-5%	Fixed voltage rail for GPIO, I/O logic and USB 2 PHY	0.15	
VCC_RTC_3P3V	2-3.47	N/A	Fixed Voltage rail for RTC (Real Time Clock)	6 μ	

Notes:

- AVP: Active Voltage Positioning (this is the same as DC Load Line)
 The SoCs are capable of issuing VIDs in the range of 450mV to 1.3V. The actual VIDs issued by the SoC in any given power state will dependent on the VR type (IMVP vs I2C) as selected by the platform designer.

Note: Iccmax numbers assume top bin SKU and platform supports 4K display and DDR3L/LPDDR3 1866 2x64

5.5.2 **Crystal Specifications**

Table 5-5. Integrated Clock Crystal Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
ТРРМ	Crystal frequency tolerance and stability	-30	30	ppm	1
PDRIVE	Crystal drive load	100		μW	1, Typical
RESR	ESR		80	Ohm	1
CLOAD	Crystal load capacitance		12	pF	1
CSHUNT	Crystal shunt capacitance		3	pF	1

These are the specifications needed to select a crystal for the Integrated clock oscillator circuit. Crystal must be AT cut, at fundamental frequency, parallel resonance mode.

Integrated Clock Oscillation Specification Table 5-6.

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
FPLT	Frequency	19.2 - ppm	19.2 + ppm	MHz	Typical= 19.2
TDC	Duty Cycle	45	55	%	1
TPEAKJIT	Cycle-to-Cycle Jitter (Peak)		300	ps	
TPERJIT	Period Jitter		550	ps	

Note: Measured @50% of 1.8V

Table 5-7. ILB RTC Crystal Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
FRTC	Frequency		32.768	KHz	Nominal
TPPM	Crystal frequency tolerance	-100	100	ppm	
PDRIVE	Crystal drive load	0.1		μW	Nominal
CLOAD	Crystal Load Capacitance		12.5	pF	12 pF Nominal
CSHUNT	Crystal shunt Capacitance		1.3	pF	
C1/C2	Load Capacitance tolerance	-10	10	%	

5.6 AC and DC Specifications

Platform reference voltages are specified at DC only. VCC measurements should be made with respect to the supply voltages specified in Table 5-4, "Apollo Lake SoC Power Rail DC Specification and Iccmax".

Note: $V_{IH/OH}$ Max and $V_{IL/OL}$ Minimum values are bounded by VCC and VSS.

Note: Care should be taken to read all notes associated with each parameter.

Note: SoC output timing spec, Tco, is measured in a tester environment with a test load.

Customer should validate and ensure SoC output signal is meeting device's input

setup/hold spec, probing at device's pin

5.6.1 **DISPLAY**

5.6.1.1 **Display DC Specification**

5.6.1.1.1 **Display Port* DC Specification**

Display Port* DC Specification Table 5-8.

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VTX-DIFFp-p- Level0	Differential Peak-to-peak Output Voltage Level 0	0.35	0.46	V	
VTX-DIFFp-p- Level1	Differential Peak-to-peak Output Voltage Level 1	0.51	0.68	V	
VTX-DIFFp-p- Level2	Differential Peak-to-peak Output Voltage Level 2	0.69	0.92	V	
VTx-DIFFp-p- Level3	Differential Peak-to-peak Output Voltage Level 3	0.85	1.38	٧	
VTX-PREEMP- RATIO	No Pre-emphasis	0	0	dB	
VTX-PREEMP- RATIO	3.5 dB Pre-emphasis	2.8	4.2	dB	
VTX-PREEMP- RATIO	6.0 dB Pre-emphasis	4.8	7.2	dB	
VTX-PREEMP- RATIO	9.5 dB Pre-emphasis	7.5	11.4	dB	
VTX-DC-CM	Tx DC Common Mode Voltage	0	2	V	
RLTX-DIFF	Differential Return Loss at 0.675GHz at Tx Package pins	12		dB	1
RLTX-DIFF	Differential Return Loss at 1.35 GHz at Tx Package pins	9	1.6	dB	1
Стх	TX Output Capacitance	0	1.5	pF	for HBR 2

- Notes:
 Straight loss line between 0.675 GHz and 1.35 GHz
 Represents only the effective lump capacitance seen at the SoC interface that shunts the TX termination.

5.6.1.2 Display Port* Transmitter AC Specification

Table 5-9. Display Port* Transmitter AC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
FHBR2	Frequency for High Bit Rate 2	5.37138	5.40162	Gbps	1
FHBR	Frequency for High Bit Rate	2.68569	2.70081	Gbps	1
Frbr	Frequency for Reduced Bit Rate	1.61141	1.620048	Gbps	1
UI_HBR2	Unit Interval for high bit rate 2 (5.4 Gbps/lane)	10	187	ps	
UI_HBR	Unit Interval for high bit rate (2.7 Gbps/lane)		370	ps	
UI_RBR	Unit Interval for high bit rate (1.62 Gbps/lane)		617	ps	
Down_Spread _Amplitude	Link clock down Spreading	0	0.5	%	2
FDown_Spread	Link Clock down Spreading Frequency	30	33	KHz	3
Стх	AC Coupling Capacitor	75	200	nF	11
LTX- SKEWIN- TER_PAIR_H BR_RBR	Lane-to-Lane Output Skew		2	UI	
LTX- SKEWIN- TRA_PAIR	Lane Intra-pair Output Skew		30	ps	
TTX-TJ 8b10b HBR2	Maximum TX Total Jitter		0.62	UI	
TTX-DJ 8b10b HBR2	Maximum TX Deterministic Jitter		0.49	UI	13
TTX-TJ D10.2 HBR2	Maximum TX Total Jitter		0.4	UI	13
TTX-DJ D10.2 HBR2	Maximum TX Deterministic Jitter		0.25	UI	14
TTX-RJ D10.2 HBR2	Minimum TX Random Jitter		0.23	UI	14
TTX-DIFFp-p HBR2	TX Differential Peak-to- Peak EYE Voltage	90		mV	15
TTX-DIFFp- p_RANGE HBR2	TX Differential Peak-to- Peak EYE Voltage Measurement Range	0.375	0.625	UI	16
TTX-EYE- CHIP_HBR2	Minimum TX Eye Width at Tx package pins	0.73		UI	17
TTX-EYE- MEDIAN-to- MAX-JITTER CHIP_HBR2	Maximum time between the jitter median and maximum deviation from the median at Tx package pins		0.135	UI	17
Ttx-eye- chip_hbr	Minimum TX Eye Width at Tx package pins	0.72		UI	4
TTX-EYE- MEDIAN-to- MAX-JITTER CHIP_HBR	Maximum time between the jitter median and maximum deviation from the median at Tx package pins		0.147	UI	4
Ttx- eye_chip_rbr	Minimum TX Eye Width at Tx package pins	0.82		UI	5
TTX-EYE- MEDIAN-to- MAX-JITTER CHIP_RBR	Maximum time between the jitter median and maximum deviation from the median at Tx package pins		0.09	UI	5
TTX-RISE_CHIP, TTX-FALL CHIP	D+/D- TX Output Rise/Fall Time at Tx package pins	50	130	ps	6

Table 5-9. Display Port* Transmitter AC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
ITX-SHORT	TX Short Circuit Current Limit		50	mA	7
TTX-RISE_FALL _MISMATCH _CHIPDIFF	Lane Intra-pair Rise-fall Time Mismatch at Tx package pins.		5	%	8
FTX- REJECTION-BW	Clock Jitter Rejection Bandwidth		4	MHz	9
VTX-AC- CM_HBR_RBR	TX AC Common Mode Voltage		20	mV	2
VTX-AC- CM_HBR2	TX AC Common Mode Voltage		30	mV	2
TRISE/TFALL	Rise time/ Fall time (20%-80%)	75		ps	
	Clock duty cycle, min/average/ max	40	60	%	
	TMDS differential Clock Jitter		0.25	UI	

- Frequency High limit = +300 ppm; Low limit = -5300 ppm
- Range: $0\% \sim 0.5\%$ when downspread enabled
- Range: 30 KHz ~33 KHz when downspread enabled
- For High Bit Rate
- For Reduced Bit Rate
- At 20 to 80
- Total drive current of the transmitter when it is shorted to its ground.
- Informative. D+ rise to D- fall mismatch and D+ fall to D- rise mismatch.
- Informative—Transmitter jitter must be measured at source connector pins using a signal analyzer that has a second order PLL with tracking bandwidth of 20 MHz (for D10.2 pattern) and damping factor of 1.428.
- Measured at 1.62 GHz and 2.7 GHz (if supported), within the frequency tolerance range. Time-domain measurement using a spectrum analyzer.
- All DisplayPort Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be placed on the transmitter side. Placement of AC coupling capacitors on the receiver side is optional.
- 0.20* Tcharacter @ 165 MHz
- 13. For HBR2—Measured at 1E-9 BER using the HBR2 Compliance EYE pattern.
- For HBR2—Measured at 1E-9 BER using the D10.2 compliance pattern.
 For HBR2—Measured at 1E-9 BER using the HBR2 Compliance EYE pattern.
- 16. For HBR2—Uses 0.5 CDF (Cumulative Distribution Function) of the jitter distribution as the OUI reference point. TX Differential Peak-to-Peak EYE Voltage requirement can be met anywhere within this UI range.
- 17. For High Bit Rate 2 using a D10.2 pattern.

Figure 5-1. Definition of Differential Voltage and Differential Voltage Peak-to-Peak

Figure 5-2. Definition of Pre-Emphasis

5.6.1.2.1 HDMI* DC Specification

Table 5-10. HDMI* DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
Voff	Single Ended Standby (off), output voltage	-10	10	mV	1
Vswing	Single Ended output swing voltage	400	600	mV	
VOH (<=165 MHz)	Single Ended high level, output voltage	-10	10	mv	1
VOH (>165 MHz)	Single Ended high level, output voltage	-200	10	mV	1
VOL (<=165 MHz)	Single Ended low level, output voltage	-600	-400	mV	1
VOL (>165 MHz)	Single Ended low level, output voltage	-700	-400	mV	1

 $\textbf{\textit{Note:}} \quad \text{The Minimum/Maximum values are with reference to VCC_VCGI.}$

5.6.1.3 HDMI* AC Specification

Table 5-11. HDMI* AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TRISE/ TFALL	Rise time/fall time (20-80%)		75	ps	1
	Clock Duty Cycle	40	60	%	

NOTE: 1.75 psec =< Rise time/fall time

Figure 5-3. Eye Diagram Mask for HDMI*

5.6.1.3.1 Embedded Display Port* DC Specification

Table 5-12. Embedded Display Port* DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VTX-DIFFp-p- Level0	Differential Peak-to-peak Output Voltage Level 0	0.18	0.22	V	1,2
VTX-DIFFp-p- Level1	Differential Peak-to-peak Output Voltage Level 1	0.2	0.275	V	1,2
VTX-DIFFp-p- Level2	Differential Peak-to-peak Output Voltage Level 2	0.27	0.33	V	1,2
VTX-DIFFp-p- Level3	Differential Peak-to-peak Output Voltage Level 3	0.315	0.385	V	1,2
VTX-DIFFp-p- Level4	Differential Peak-to-peak Output Voltage Level 4	0.36	0.44	٧	1,2
VTX-DIFFp-p- Level5	Differential Peak-to-peak Output Voltage Level 5	0.405	0.495	٧	1,2
VTX-DIFFp-p- MAX	Maximum Allowed Differential Peak-to-peak Output Voltage		1.38	V	3
VTX-DC-CM	Tx DC Common Mode Voltage	0	2	V	1
VTX-PREEMP- RATIO	No Pre-emphasis	0	0	dB	1
VTX-PREEMP- RATIO	3.5 dB Pre-emphasis	2.8	4.2	dB	1
VTX-PREEMP- RATIO	6.0 dB Pre-emphasis	4.8	7.2	dB	1
VTX-PREEMP- RATIO	9.5 dB Pre-emphasis	7.5	11.4	dB	1
RLTX-DIFF	Differential Return Loss at 0.675GHz at Tx Package pins	12		dB	4
RLTX-DIFF	Differential Return Loss at 1.35 GHz at Tx Package pins	9		dB	4
CTX	TX Output Capacitance		1.5	pF	5

Notes

- 1. Steps between VTX-DIFFP-P voltages must be monotonic. The actual VTX-DIFFP-P-1 voltage must be equal to or greater than the actual VTX-DIFFP-P-0 voltage; the actual VTX-DIFFP-P-2 voltage must be greater than the actual VTX-DIFFP-P-1 voltage; and so forth.
- 2. The recommended minimum VTX-DIFFP-P delta between adjacent voltages is in mV.
- 3. Allows eDP* Source devices to support differential signal voltages compatible with eDP* v1.3 (and lower) devices and designs.
- 4. Straight loss line between 0.675 GHz and 1.35 GHz.
- 5. Represents only the effective lump capacitance seen at the SoC interface that shunts the TX termination.

5.6.1.4 Embedded Display Port* AC Specification

These values reflect differences from Display Port Transmitter AC specification. Refer Table 5-19 for complete electrical parameters.

Table 5-13. Embedded Display Port* AC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
UI_Rate_1 (RBR)	Unit Interval for 1.62Gbps/lane		617.3	ps	1
UI_Rate_2	Unit Interval for 2.16Gbps/lane		463	ps	1
UI_Rate_3	Unit Interval for 2.43Gbps/lane		411.5	ps	1

Table 5-13. Embedded Display Port* AC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
UI_Rate_4 (HBR)	Unit Interval for 2.7Gbps/lane		370.4	ps	1
UI_Rate_5	Unit Interval for 3.24Gbps/lane		308.6	ps	1
UI_Rate_6	Unit Interval for 4.32Gbps/lane		231.5	ps	1

Note: Nominal Unit Interval (UI) does not account for SSC. For constant (non-SSC) frequency, the frequency range is: High limit = +300 ppm/Low Limit = -5300 ppm.

5.6.1.4.1 **Display Port* AUX Channel DC Specification**

Table 5-14. DDI AUX Channel DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VAUX-DIFFp-p	AUX Peak-to-peak Voltage at a transmitting Device	0.29	1.38	V	1
VAUXTERM_R	AUX CH termination DC resistance		100	W	
VAUX-DC-CM	AUX DC Common Mode Voltage	0	2	V	2
VAUX-TURN-CM	AUX turn around common mode voltage		0.3	V	3
IAUX_SHORT	AUX Short Circuit Current Limit		90	mA	4
Caux	AC Coupling Capacitor	75	200	nF	5

Notes:

- V_{AUX-DIFFp-p} = 2*|V_{AUXP} V_{AUXN}|
 Common mode voltage is equal to V_{bias_Tx} (or V_{bias_Rx}) voltage.
 Steady-state common mode voltage shift between transmit and receive modes of operation.
- Total drive current of the transmitter when it is shorted to its ground.
- All Display Port Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be placed on the transmitter side. Placement of AC coupling capacitors on the receiver side is optional.

5.6.1.5 **Display Port* AUX Channel AC Specification**

Table 5-15. Display Port* AUX Channel AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
UI	AUX Unit Interval	0.4	0.6	μs	1
TAUX-BUS-PARK	AUX CH bus park time	10		ns	2
TCYCLE-to- CYCLE Jitter	Maximum allowable UI variation within a single transaction at connector pins of a transmitting Device		0.08	UI	3
	Maximum allowable variation for adjacent bit times within a single transaction at connector pins of a transmitting Device		0.04	UI	4
FFAUX	FAUX transaction frequency		1	MHz	7
IAUX_SHORT	AUX Short Circuit Current Limit		90	mA	5
Caux	AC Coupling Capacitor	75	200	nF	6

- Results in the bit rate of 1Mbps including the overhead of Manchester II coding.
- Period after the AUX CH STOP condition for which the bus is parked.

- 3. Equal to 48 ns maximum. The transmitting Device is a Source Device for a Request transaction and a Sink Device for a Reply Transaction.
- Equal to 24 ns maximum.
- The transmitting Device is a Source Device for a Request transaction and a Sink Device for a Reply Transaction. Total drive current of the transmitter when it is shorted to its ground.
- The AUX CH AC-coupling capacitor placed on both the DP upstream and downstream devices.
- Nominal 675Mbps includes overhead of 8B10B coding Nominal UI is 1389 ps Frequency tolerance +/- 300 ppm.

5.6.1.6 **Embedded Display Port* AUX Channel DC Specification**

Table 5-16. Embedded Display Port* AUX Channel DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
VAUX-DIFFp-p	AUX Peak-to-peak Voltage at a transmitting Device	0.29	1.38	V	1
VAUXTERM_R	AUX CH termination DC resistance		100	W	
VAUX-DC-CM	AUX DC Common Mode Voltage	0	1.2	V	2
VAUX-TURN-CM	AUX turn around common mode voltage		0.3	V	3
IAUX_SHORT	AUX Short Circuit Current Limit		90	mA	4
Caux	AC Coupling Capacitor	75	200	nF	5

- $V_{AUX-DIFFp-p} = 2*|V_{AUXP} V_{AUXN}|$ Common mode voltage is equal to $V_{bias\ Tx}$ (or $V_{bias\ Rx}$) voltage. Steady state common mode voltage shift between transmit and receive modes of operation.
- Total drive current of the transmitter when it is shorted to its ground.
- All Display Port Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be placed on the transmitter side. Placement of AC coupling capacitors on the receiver side is optional.

5.6.1.7 Embedded Display Port* AUX Channel DC Specification

Table 5-17. Embedded Display Port* AUX Channel AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
UI	AUX Unit Interval	0.4	0.6	μs	1
TAUX-BUS- PARK	AUX CH bus park time	10		ns	2
TCYCLE-to- CYCLE Jitter	Maximum allowable UI variation within a single transaction at connector pins of a transmitting Device		0.08	UI	3
	Maximum allowable variation for adjacent bit times within a single transaction at connector pins of a transmitting Device		0.04	UI	4
FFAUX	FAUX transaction frequency		1	MHz	7
IAUX_SHORT	AUX Short Circuit Current Limit		90	mA	5
Caux	AC Coupling Capacitor	75	200	nF	6

5.6.1.8 DDI Panel GPIO DC Specification [PNL0_BKLTCTL, PNL0_BKLTEN, PNL0_VDDEN, PNL1_BKLTCTL, PNL1_BKLTEN, PNL1_VDDEN/DDI_HPD]

Table 5-18. DDI Panel GPIO Signals DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 1.5mA load
Vol	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	μΑ	
Zup	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
Zdn	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 100 MHz < 1.25 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 100 MHz < 1.25 ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 100 MHz < 5 ns]		2.23	V	1,2

Table 5-18. DDI Panel GPIO Signals DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VUS	Undershoot Voltage Magnitude [Time Duration for 100MHz < 5ns]		-0.43	V	1,2
VOS	Overshoot Voltage Magnitude105 [Time Duration for 100MHz < 10ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 100MHz < 10ns]		-0.37	V	1,2

Notes:

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{\circ}C$

5.6.1.9 **DDI Panel GPIO AC Specification** [PNL0_BKLTCTL, PNL0_BKLTEN, PNL0_VDDEN, PNL1_BKLTCTL, PNL1_BKLTEN, PNL1_VDDEN/DDI_HPD]

Table 5-19. DDI Panel GPIO Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TX Slew rate	TX Pad Slew Rate	0.1	0.2	V/ns	Test load @30pF
FCLK	Clock Frequency		100	KHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 2pF test load

5.6.1.10 MIPI*-DSI DC Specification

Table 5-20. MIPI*-DSI DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
ILEAK	Pin Leakage current	-10	28	μΑ	
Vсмтх	HS transmit static common-mode voltage	150	250	mV	
VCMTX(1,0)	VCMTX mismatch when output is differential-1 or differential-0		5	mV	
VoD	HS transmit differential voltage	140	270	mV	
ΔVod	VOD mismatch when output is Differential-1 or Differential-0		14	mV	
Vohhs	HS output high voltage		360	mV	
Zos	Single-ended output impedance	40	62.5	Ohm	
ΔZos	Single-ended output impedance mismatch		10	%	
Vон	Thevenin output high level	1.1	1.3	V	
Vol	Thevenin output low level	-50	50	mV	
ZOLP	Output impedance of LP transmitter	110		Ohm	1
VIH	Logic 1 input voltage	880		mV	

Table 5-20. MIPI*-DSI DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VIL	Logic 0 input voltage, not in ULP state		550	mV	
VHYST	Input hysteresis	25		mV	
VIHCD	Logic 1 Contention threshold	450		mV	
VILCD	Logic 0 Contention threshold		200	mV	

5.6.1.11 MIPI* Display Serial Interface (DSI) AC Specification

Table 5-21. MIPI*-DSI AC Characteristics (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
ΔVCMTX(HF)	Common-level variations above 450 MHz		15	mV	RMS
ΔVCMTX(LF)	Common-level variation between 50–450 MHz		25	mV	PEAK
TR	20%-80% rise time		0.3	UI	
TF	20%-80% fall time	150		ps	
TSKEW[TX]	Data to Clock Skew [measured at transmitter]	-0.15	0.15	UI	1
UI INST	UI Instantaneous (In 1 or 2 or 3 or 4 Lane configuration)	1	3	ns	Figure 5-19
SDDTX	Differential reflection of a Lane Module in High- Speed TX mode	-18	-3	db	Figure 5-4
SCCTX	Common-Mode return loss specification		-6	db	
TRLP/TFLP	15-85% rise time and fall time		25	ns	
δV/δtSR	Slew rate, CLOAD = 5 pF		300	mV/ns	5
δV/δtSR	Slew rate, CLOAD = 20 pF		200	mV/ns	5
δV/δtSR	Slew rate, CLOAD = 70pF		150	mV/ns	5
δV/δtSR	Slew rate@ CLOAD 5pF to 70pF (Falling Edge Only)	30		mV/ns	
CLOAD	Load Capacitance includes the total interconnect cap load	0	70	pF	1
TLPX	Length of any Low- Power state period	50		ns	2, 3, Figure 5-5
TLP-PER-TX	Period of the LP exclusive-OR clock	90		ns	4
TLP- PULSE_TX	Pulse width of the LP exclusive-OR clock. First LP exclusive-OR clock puls after Stop State.	40		ns	
TLP- PULSE_TX	All other pulses	20		ns	
Ratio TLPX	Ratio of TLPX(MASTER)/ TLPX(SLAVE) between Master and Slave side	0.66	1.5		Figure 5-5
TTA-GET	Time to drive LP-00 by new TX	250		ns	Figure 5-5

Note:
1. Deviates from MIPI* D-PHY specification Rev 1.1, which has minimum ZOLP of 110 Ohm.

Table 5-21. MIPI*-DSI AC Characteristics (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TTA-GO	Time to drive LP-00 after Turnaround Request	200		ns	Figure 5-5
TTA-SURE	Time-out before new TX side starts driving	50	100	ns	Figure 5-5
e spike	Input pulse rejection		300	V*ps	
TMIN-RX	Minimum pulse width response	20		ns	
VINT	Peak interference amplitude		200	mV	
fint	Interference frequency	450		MHz	

Notes:

- Deviates from DPHY specification, which has minimum C_{LOAD} value of 0 pF. T_{LPX} is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.
- MIPI* DPHY Revision 1.1 specification states minimum, $T_{LPX} = 50$ ns. T_{LPX} is not configurable on the SoC. MIPI* DPHY Revision 1.1 specification states minimum, $T_{LP-PER-TX} = 90$ ns. $T_{LP-PER-TX}$ is not configurable on the SoC. the SoC.
- DSI LP TX slew rates in EDS spec are not measurable with 0 and 5 pf load due capacitance of PCB traces. This issue also mentioned in MIPI* Dphy CTS.

Note:

The MIPI* data-clock TX TSKEW specification also defines the worst case data transition before and after the MIPI* clock edge. The maximum allowable TSKEW is 0.15 UI, which dictates that the minimum data transition time before and after MIPI* clock edge should be 0.35 UI.

Figure 5-4. MIPI*-DSI to Data Clock Timings

Figure 5-5. Turnaround Procedure

5.6.1.12 MIPI*-DSI GPIO DC Specification [MDSI_A_TE, MDSI_C_TE]

Table 5-22. MIPI*-DSI GPIO Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc-0.45), @1.5mA Load
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vol	Output Low Voltage		0.45	V	@-1.5mA Load
IPAD	Pad Leakage Current	-5	5	uA	
Zup	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nomina
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nomina
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nomina
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nomina
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 100 MHz < 1.25 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 100MHz < 1.25 ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 100 MHz < 5 ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 100 MHz <5 ns]		-0.43	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 100 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 100 MHz < 10 ns]		-0.37	V	1,2

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{\circ}C$

MIPI*-DSI GPIO DC Specification [MDSI_A_TE, MDSI_C_TE] 5.6.1.13

Table 5-23. MIPI*-DSI GPIO Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TX Slew rate	TX pad Slew rate	0.1	1.2	V/ns	Test load @30pF
FCLK	Clock Frequency		100	KHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 2pF test load

5.6.2 MIPI*-CSI

5.6.2.1 MIPI*-CSI DC Specification

Table 5-24. MIPI HS-RX/MIPI LP-RX Minimum, Nominal, and Maximum Voltage **Parameters**

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
	Pin Leakage current [MCSI_DN[0:3]/ MCSI_CLKN_0/2]]	-20	75	μA	
ILEAK	Pin Leakage current[MCSI_DN[0:3]/ MCSI_CLKN_0/2]]	-10	32	μA	
	Pin Leakage current[MCSI_RX_DATA[3:0]_P/N / MCSI_RX_CLK[1:0]_P/n]	-30	30	μA	
VCMRX(DC)	Common-mode voltage HS receive mode	70	330	mV	1
VIDTH	Differential input high threshold		70	mV	
VIDTL	Differential input low threshold	-70		mV	
VIHHS	Single-ended input high voltage		460	mV	
VILHS	Single-ended input low voltage	-40		mV	
VTERM-EN	Single-ended threshold for HS termination enable		450	mV	
ZID	Differential input impedance	80	125	W	
VIH	Logic 1 input voltage	880		mV	
VIL	Logic 0 input voltage, not in ULP state		550	mV	
VIL-ULPS	Logic 0 input voltage, ULP state		300	mV	
VHYST	Input hysteresis	25		mV	

Note:1. Setup/hold violation will be seen for a VCM higher than 250mv.

MIPI*-CSI AC Specification 5.6.2.2

Table 5-25. MIPI*-CSI Receiver Characteristics

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
ΔVCMRX(HF)	Common-mode interference above 450 MHz		101	mV	2,9
ΔVCMTX(LF)	Common-mode interference between 50–450 MHz	-50	50	mV	1,4
Ссм	Common-mode termination		60	pF	3
Scdrx	differential to common-mode		-26	dB	
e spike	Input pulse rejection		300	V*ps	5,6,7, Fig 5-6
TMIN-RX	Minimum pulse width response	20		ns	8
VINT	Peak interference amplitude		200	mV	
fint	Interference frequency	450		MHz	
UIINST	UI Instantaneous (In 1 or 2 or 3 or 4 Lane configuration)	0.667	25		1,2, Fig 5-7
TSETUP[RX]	Data to Clock Setup Time [receiver] Up to 1Gbps	0.15		UIINST	
THOLD[RX]	Clock to Data Hold Time [receiver] Up to 1Gbps	0.15		UIINST	
TSETUP[RX]	Data to Clock Setup Time [receiver] after 1Gbps	0.2		UIINST	
THOLD[RX]	Clock to Data Hold Time [receiver] after 1Gbps	0.2		UIINST	

- 3.
- Excluding static ground shift of 50mV. $\Delta V_{\text{CMRX(HF)}} \text{ is the peak amplitude of a sine wave superimposed on the receiver inputs.} \\ \text{For higher bit rates a 14 pF capacitor is needed to meet the common-mode return loss specification.} \\ \text{Voltage difference compared to the DC average common-mode potential.} \\ \text{Time-voltage integration of a spike above } V_{\text{IL}} \text{ when in the LP-0 state or below } V_{\text{IH}} \text{ when in the LP-1 state.} \\ \text{An impulse spike less than this will not change the receiver state.} \\ \text{In addition to the required glitch rejection, designers shall ensure rejection of known RF-interference.} \\ \text{An input pulse greater than this will toggle the output} \\ \text{Improves on DPHY specification, which requires 100 mV maximum.} \\ \\ \\$

- 7. 8.

Figure 5-6. Input Glitch Rejection of Low-Power Receivers

Table 5-26. MIPI*-CSI Clock Signal Specification

Symbol	Clock Parameter	Minimum	Typical	Maximum	Unit	Notes
UI _{INST}	UI Instantaneous (In 1 or 2 or 3 or 4 Lane configuration)			12.5	ns	1, 2
ΔUI	UI Variation	-10%		10%	UI	3
		-5%		5%	UI	4

- This value corresponds to a minimum 80 Mbps data rate.
- The minimum UI shall not be violated for any single bit period. The allowed instantaneous UI variation can cause instantaneous data rate variations. Therefore, slave devices should be able to accommodate these instantaneous variations of the UI interval.
- When UI \geq 1 ns, within a single burst. When UI < 1 ns, within a single burst. The minimum UI shall not be violated for any single bit period, that is, any DDR half cycle within a data burst.

Figure 5-7. MIPI*-CSI Clock Definition

MIPI*-CSI Camera Side Band Signals 5.6.2.3

Table 5-27. MIPI*-CSI Camera Side Band DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.80V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc-0.45), @ 1.5mA load.
Vol	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	uA	
Zup	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
vos	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 1.25 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 1.25 ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 5 ns]		2.23	٧	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 5ns]		-0.43	٧	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		-0.37	V	1,2

Notes:

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.2.4 MIPI*-CSI Camera Side Band Signals AC Specification

Figure 5-8. MIPI*-CSI Camera Side Band Signals

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	Tx Pad slew rate	0.1	1.2	V/ns	Test Load @30pF

5.6.3 Memory Specifications

5.6.3.1 DDR3L DC Specification

Table 5-28. DDR3L DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VDDQ	Nominal Voltage	1.2825	1.4175	V	@1.35V Nominal
VIL	Input Low Voltage		0.55	V	@ vref = 0.675
VIH	Input High Voltage	0.8		V	1
Vol	Output Low Voltage		0.4		
Vон	Output High Voltage	0.95		V	1
IIL	Input Leakage Current	-37.5	37.5	μΑ	
Сіо	DQ/DQS/DQS# DDR3L IO Pin Capacitance		2	pF	

Note: V_{OH} and V_{IH} measurements are taken at R_{on} = 40 Ohms and I_{Load} = 10mA

5.6.3.2 DDR3L AC Specification

Note: The contents of this section are only valid for VDDQ = 1.35V

Table 5-29. DDR3L Interface Timing Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tslr_d	DQ, DQSP, DQSN Input Slew Rate	2	4	V/ns	
Tck(avg)	Average CK Period	1072		ps	Figure 5-16, @DDR3L 1866
Тсн	Average CK High Time	482.4	589.6	ps	Figure 5-18
Tcl	Average CK Low Time	482.4	589.6	ps	Figure 5-19
TCMD (TCMDVB + TCMDVA)	Total CMD Buffer window available for command buffers (RAS#, CAS#, WE#, BS[2:0], MA)	981		ps	1, Figure 5-12
TCTL (TCTLVB + TCTLVA)	Total Control buffer Window available for Control buffers (CS#, CKE)	981		ps	2, Figure 5-13
Tdvb + Tvda	Data and DQ timing window available at the interface output for write commands. tDVB is data available before strobe and tDVA is data available after corresponding slope.	397		ps	3, Figure 5-9
Tsu + ThD	Data and DQ Input Setup Plus Hold Time requirement for successful Read operation. These Setup and Hold numbers are measured w.r.t. corresponding strobe or Falling Edge	134		ps	4, Figure 5-8

The CMD time is measured w.r.t. differential crossing of MEM_CH_CLKP and MEM_CH_CLKN. The tCMDVB and tCMDVA will be adjusted for proper CMD Setup and Hold time requirement at DRAM. The command timing assumes CMD-1N Mode.

^{2.} The CTL time is measured w.r.t. differential crossing of MEM_CH_CLKP and MEM_CH_CLKN. The tCTLVB and tCTLVA will be adjusted for proper CTL Setup and Hold time requirement at DRAM.

- 3. The accurate strobe placement using write training algorithm will be performed which will guarantee the required Data setup/hold time w.r.t. strobe differential crossing at the DRAM input.
- The Read training algorithm will center the DQS internally inside DRAM interface in order to have equal tSU and tHD timings.
- 5. All the timing windows are measured at 50% of the respective DRAM signal swing.

Figure 5-9. DDR3L DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)

Figure 5-10. DDR3L DQ Valid Before and After DQSP/DQSN (Write Operation)

Figure 5-11. DDR3L Write Preamble Duration

Figure 5-12. DDR3L Write Postamble Duration

Figure 5-13. DDR3L Command Signals Valid Before and After CLK Rising Edge

Figure 5-14. DDR3L CLKE Valid Before and After CLK Rising Edge

Figure 5-15. DDR3L CS_N Valid Before and After CLK Rising Edge

Figure 5-16. DDR3L ODT Valid Before CLK Rising Edge

Figure 5-17. DDR3L Clock Cycle Time

Figure 5-18. DDR3L Skew Between System Memory Differential Clock Pairs (CLKP/CLKN)

Note: x represents one differential clock pair and y represents another differential clock pair within same channel.

Figure 5-19. DDR3L CLK High Time

Figure 5-20. DDR3L CLK Low Time

Figure 5-21. DDR3L DQS Falling Edge Output Access Time to CLK Rising Edge

Figure 5-22. DDR3L DQS Falling Edge Output Access Time from CLK Rising Edge

Figure 5-23. DDR3L CLK Rising Edge Output Access Time to the First DQS Rising Edge

5.6.3.3 LPDDR3 Memory Controller DC Specification

Table 5-30. LPDDR3 DC Specifications

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VDDQ	I/O Supply Voltage	1.188	1.302	V	@1.24V Nominal
VIL	Input Low Voltage		0.855	V	@Vref = 0.98
VIH	Input High Voltage	1.105		V	1, @Vref = 0.98
Vol	Output Low Voltage		0.4	V	
Vон	Output High Voltage	0.84		V	1
IIL	Input Leakage Current	-20	20	μΑ	
Cio	I/O Pin Capacitance		2	pF	

Note: 1. V_{OH} and V_{IH} measurements are taken at R_{on} = 40 Ohms and I_{Load} = 10mA

5.6.3.4 **LPDDR3 Memory Controller AC Specification**

Table 5-31. LPDDR3 AC Specifications

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tslr_d	DQ, DQSP, DQSN Input Slew Rate	2	4	V/ns	
Tck(avg)	Average CK Period	1072		ps	Figure 5-16, @Lpddr3 1866
Тсн	Average CK High Time	482.4	589.6	ps	Figure 5-18
Tcl	Average CK Low Time	482.4	589.6	ps	Figure 5-19
TCMD (TCMD_VB+T CMD_V A)	Total CMD Buffer window available for command buffers	359		ps	1, Figure 5-12
TCTL (TCTRL_VB + TCTRL_VA)	Total Control buffer Window available for Control buffers	359		ps	2
TDVB+TVDA	Data, DQ timing window available at the interface output for write commands. tDVB is data available before strobe and tDVA is data available after corresponding slope.	402		ps	3, Figure 5-9
Tsu + Thd	Data, DQ Input Setup Plus Hold Time requirement for successful Read operation. These Setup and Hold numbers are measured w.r.t. corresponding strobe or Falling Edge	134		ps	4, Figure 5-8

- Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the SoC pad.
- Command Timings are based off 1/2N Command Assertion Rule which is LPDDR3 protocol.
- WL (Write Latency) is the delay, in clock cycles, between the rising edge of CLK where a write command is referenced and the first rising strobe edge where the first byte of write data is present. The WL value is determined by the value of the CL (CAS Latency) setting.
- The system memory clock outputs are differential (CLK and CLK_N), the CLK rising edge is referenced at
- the crossing point where CLK is rising and CLK_N is falling.

 The system memory strobe outputs are differential (DQSP and DQSN), the DQS rising edge is referenced at the crossing point where DQSP is rising and DQSN is falling, and the DQSP falling edge is referenced at the crossing point where DQSP is rising and DQSN is falling, and the DQSP falling edge is referenced at the crossing point where DQSN is falling and DQSN is rising.
- When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 2.5V/ns the tSU and tHD specifications must be increased by a derating factor. The input single ended slew rate is measured from DC to AC levels; VIL_DC to VIH_AC for rising edges, and VIH_DC to VIL_AC for falling edges. No derating is required for single ended slew rates equal to or greater than 2.5V/ns.
- tSU/tHD measurement made with SR of 2.5V/ns for input single-ended data and strobe.
- Sampled data according to JEDEC requirement.
- All tDVA/tDVB numbers contributions from Si, package and channel.

Figure 5-24. LPDDR3 DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)

Valid Data

DQSP 0.5 x VDDQ VDDQ

Figure 5-25. LPDDR3 DQ Valid Before and After DQSP/DQSN (Write Operation)

Valid Data

tHD

Note: x represents one differential clock pair, and y represents another differential clock pair within same channel.

Valid Data

Valid Data

5.6.3.5 LPDDR4 DC Specifications

Table 5-32. LPDDR4 DC Specifications

DQ

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VDDQ	I/O Supply Voltage	1.064	1.176	V	@1.1V Nominal
VIL	Input Low Voltage		0.175	V	@RxVref=0.3
VIH	Input High Voltage	0.425		V	@RxVref=0.3
Vol	Output Low Voltage		0.4	V	
Vон	Output High Voltage	0.72		V	@ Ron = 40 Ohms/Iload = 10mA
IIL	Input Leakage Current	-20	20	μΑ	
Сіо	I/O Pin Capacitance		2	pF	

5.6.3.6 LPDDR4 AC Specifications

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
Tslr_d	DQ, DQSP, DQSN Input Slew Rate	2	4	V/ns	
Tck(AVG)	Average CK Period	833		ps	Figure 5-16 Fig 5-16, @LPDDR4 2400
Тсн	Average CK High Time	374.85	458.15	ps	Figure 5-18
Tcl	Average CK Low Time	374.85	458.15	ps	Figure 5-19
TCMD (TCMD_VB+ TCMD_V A)	Total CMD Buffer window available for command buffers	754		ps	1, Figure 5-12
TCTL (TCTRL_VB + TCTRL_VA)	Total Control buffer Window available for Control buffers	754		ps	2
TDVB+TVD A	Data, DQ timing window available at the interface output for write commands. tDVB is data available before strobe and tDVA is data available after corresponding slope.	300		ps	3, Figure 5-9
Tsu + Thd	Data, DQ Input Setup Plus Hold Time requirement for successful Read operation. These Setup and Hold numbers are measured w.r.t. corresponding strobe or Falling Edge	100		ps	4, Figure 5-8

- Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the SoC pad.
- 2. Command Timings are based off 1/2N Command Assertion Rule which is LPDDR3 protocol.
- 3. WL (Write Latency) is the delay, in clock cycles, between the rising edge of CLK where a write command is referenced and the first rising strobe edge where the first byte of write data is present. The WL value is determined by the value of the CL (CAS Latency) setting.
- 4. The system memory clock outputs are differential (CLK and CLK_N), the CLK rising edge is referenced at the crossing point where CLK is rising and CLK_N is falling.
- 5. The system memory strobe outputs are differential (DQSP and DQSN), the DQS rising edge is referenced at the crossing point where DQSP is rising and DQSN is falling, and the DQSP falling edge is referenced at the crossing point where DQSN is falling and DQSN is rising.
- 6. When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 2.5V/ns the tSU and tHD specifications must be increased by a derating factor. The input single ended slew rate is measured from DC to AC levels; VIL_DC to VIH_AC for rising edges, and VIH_DC to VIL_AC for falling edges. No derating is required for single ended slew rates equal to or greater than 2.5V/ns.
- 7. tSU/tHD measurement made with SR of 2.5V/ns for input single-ended data and strobe.
- 8. Sampled data according to JEDEC requirement.
- 9. All tDVA/tDVB numbers contributions from Si, package and channel.

Figure 5-26. LPDDR4 DQ Setup/Hold Relationship to/from DQSP/DQSN (Read Operation)

Figure 5-27. LPDDR4 DQ Valid Before and After DQSP/DQSN (Write Operation)

Note: x represents a differential clock pair.

5.6.4 SD Card

5.6.4.1 SD Card DC Specification

Table 5-33. SD Card Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC(3.3)	I/O Voltage (3.3V)	3.05	3.45		@3.3V nominal
VCC(1.8)	I/O Voltage (1.8V)	1.66	1.89	V	@1.8V nominal
VOH	Output High Voltage	1.62		V	@1.8V nominal (Vcc- 0.18), 3mA test load
VOL	Output Low Voltage		0.18	V	@-3mA test load
VIH (3.3)	Input High Voltage (3.3 V)	1.442		V	
VIL (3.3)	Input Low Voltage (3.3 V)		0.771	V	
VIH (1.8)	Input High Voltage (1.8 V)	1.251		V	
VIL (1.8)	Input Low Voltage (1.8 V)		0.609	V	
IPAD	Pad Leakage	-11	32	uA	
CPAD	PAD Capacitance		9	pF	
ZUP	Driver Pull Up Impedance	32	48	Ohm	20 Ohm nominal
ZDN	Driver Pull down Impedance	32	48	Ohm	20 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	10	30	kOhm	20k Ohm nominal
Wpdn20K	Weak Pull Down Impedance 20K	10	30	kOhm	20k Ohm nominal
Vhys (1.8)	RX hysteresis (1.8V)	116		mV	
Vhys (3.3)	RX hysteresis (3.3V)	125		mV	

Table 5-34. SD Card Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
FCLK	Clock Frequency		200	MHz	Typical
TDC	Clock Duty Cycle	40	60	%	Measured @50%, 30pF test load
TX slew rate (1.8)	TX pad Slew rate (1.8V)	0.8	1.06	V/ns	Test load @ 10 pF
TX slew rate (3.3)	TX pad Slew rate (3.3V)	0.8	1.85	V/ns	Test load @ 10 pF

Note:

Please follow industry specification for Output timing specifications. If any failure is seen with Industry specification, Contact Intel Field Representative.

Figure 5-28. TCO Timing Definition

Figure 5-29. Setup and Hold Timing Definition Diagrams

eMMC* 5.6.5

5.6.5.1 **eMMC*** DC Specification

Table 5-35. eMMC* Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VOH	Output HIGH voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 3mA load.
VOI	Output LOW voltage		0.45	V	@ -3mA load
VIH	Input HIGH voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input LOW voltage		0.63	V	@1.80V nominal (0.35*Vcc)
CL	Bus Signal Line capacitance		5	pF	
IPAD	Pad Leakage Current	-5	5	μΑ	
ZUP	Driver Pull-up Impedance	32	48	Ohm	40 Ohm nominal
ZDN	Driver Pull-down Impedance	32	48	Ohm	40 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	44	kOhm	20kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	44	kOhm	20kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
vos	Overshoot Voltage Magnitude [Time Duration for 200MHz < 0.4ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200MHz < 0.4ns]		-0.35	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 200MHz < 0.8ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200MHz < 0.8ns]		-0.3	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 200MHz < 1.25ns]		2.06	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200MHz < 1.25ns]		-0.26	V	1,2

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. Tj = 105⁰C.

Figure 5-30. eMMC DC Bus Signal Level

5.6.5.2 eMMC* AC Specification

Table 5-36. eMMC* Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		200	MHz	typical Value
TX Slew rate	TX pad Slew rate	0.5	0.875	V/ns	Test Load @30pF
TDC	Clock Duty Cycle	40	60	%	Measured @50%, 30pF test load

Note:

Please follow industry specification for Output timing specifications. If any failure is seen with Industry specification, Contact Intel Field Representative.

5.6.6 JTAG

5.6.6.1 JTAG DC Specification

5.6.6.1.1 JTAG Signals [JTAG_TCK, JTAG_TMS, JTAG_TDI, JTAG_TRST_N, JTAG_PMODE, JTAG_PRDY_N, JTAG_TDO]

Table 5-37. JTAG DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figures
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@ 1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@ 1.80V nominal (0.35*Vcc)
VOH	Output High Voltage	1.35		V	@ 3mA load
VOL	Output Low Voltage		0.45	V	@ -3mA load

Table 5-37. JTAG DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figures
Wwpu- 20K	Weak Pull-up Impedance 20K	8	44	kOhm	20 kOhm nominal
Wwpd- 20K	Weak Pull-down Impedance 20K	8	44	kOhm	20 kOhm nominal
Zup	Driver Pull-up Impedance	40	60	Ohm	Nominal=50 Ohm
Zdn	Driver Pull-down Impedance	40	60	Ohm	Nominal=50 Ohm
Vhys	RX hysteresis	100		mV	
Ipad	Pad Current	-5	5	μΑ	
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 0.4 ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 0.8 ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 0.8ns]		-0.3	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 1.25 ns]		2.6	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 1.25 ns]		-0.26	V	1,2

Notes: 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.6.2 JTAG Signals [JTAG_TCK, JTAG_TMS, JTAG_TDI, JTAG_TRST_N, JTAG_PMODE, JTAG_PRDY_N, JTAG_TDO]

Table 5-38. JTAG AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	TX pad Slew rate	0.5	0.875	V/ns	

5.6.6.3 JTAG DC Signals [JTAG_PREQ_N, JTAGX]

Table 5-39. JTAG DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal(0.65*Vcc)
VIL	Input Low Voltage		0.63	٧	@1.80V nominal (0.35*Vcc)
VOL	Output Low Voltage		0.45	٧	@ -3mA load. Open Drain.
Wwpu-1K	Weak Pull-up Impedance 1K	0.65	1.35	kOhm	1 kOhm nominal
Wwpu-2K	Weak Pull-up Impedance 2K	1.3	2.7	kOhm	2 kOhm nominal
Wwup-20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wwpd-20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Zdn	Driver Pull-down Impedance	23	43	Ohm	33 Ohm nominal
Vhys	RX hysteresis	100		mV	
Ipad	Pad Current	-5	5	μΑ	
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 1.25 ns]		2.2	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 1.25 ns]		-0.31	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 2.5 ns]		2.14	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 2.5 ns]		-0.25	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 5 ns]		2.09	٧	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 5 ns]		-0.2	V	1,2

Notes:

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.6.4 JTAG AC Signals [JTAG_PREQ_N, JTAGX]

Table 5-40. JTAG AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	TX pad Slew rate	0.5	1.2	V/ns	

5.6.7 USB

5.6.7.1 USB 2.0 DC Specification

Table 5-41. USB 2.0 Host DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
VBUS	High-power Port	4.75	5.25	V	2
VBUS	Low-power Port	4.2	5.25		
ICCPRT	High-power Hub Port (out)	500		mA	
ICCUPT	Low-power Hub Port (out)	100		mA	
ICCHPF	High-power Function (in)		500	mA	
ICCLPF	Low-power Function (in)		100	mA	
ICCINIT	Unconfigured Function/Hub (in)		100	mA	
Іссsн	Suspended High-power Device		2.5	mA	15
Iccsl	Suspended Low-power Device		500	μΑ	
VIH	High (driven)	2		V	4
VIHZ	High (floating)	2.7	3.6	V	4
VIL	Low		0.8	V	4
VDI	Differential Input Sensitivity	0.2		V	4
Vсм	Differential Common Mode Range	0.8	2.5	V	4
VHSSQ	High-speed squelch detection threshold (differential signal amplitude)	100	200	mV	
VHSDSC	High speed disconnect detection threshold (differential signal amplitude)	525	625	mV	
VHSCM	High-speed data signaling common mode voltage range (guideline for receiver)	-50	500	mV	
Vol	Low	0	0.3	V	4,5
Vон	High (Driven)	2.8	3.6	V	4,6
Vose1	SE1	0.8		V	
Vcrs	Output Signal Crossover Voltage	1.3	2	V	10
VHSOI	High-speed idle level	-10	10	mV	
VHSOH	High-speed data signaling high	360	440	mV	
VHSOL	High-speed data signaling low	-10	10	mV	
VCHIRPJ	Chirp J level (differential voltage)	700	1100	mV	
VCHIRPK	Chirp K level (differential voltage)	-900	-500	mV	
СНРВ	Downstream Facing Port Bypass Capacitance (per hub)	120		μF	

Table 5-41. USB 2.0 Host DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
CRPB	Upstream Facing Port Bypass Capacitance	1	10	μF	9
CIND	Downstream Facing Port		150	pF	2
CINUB	Upstream Facing Port (w/o cable)		100	pF	3
CEDGE	Transceiver edge rate control capacitance		75	pF	
RPU	Bus Pull-up Resistor on Upstream Facing Port	1.425	1.575	kOhm	1.5 kOhm ±5%
RPD	Bus Pull-down Resistor on Downstream Facing Port	14.25	15.75	kOhm	1.5 kOhm ±5%
ZINP	Input impedance exclusive of pull- up/pull-down (for low/full speed)	300		kOhm	
VTERM	Termination voltage for upstream facing port pull-up (RPU)	3	3.6	V	
VHSTER M	Termination voltage in high speed	-10	10	mV	
RTERM	High Speed Termination	40.5	49.5	Ohm	
VBUSD	VBUS Voltage drop for detachable cables		125	mV	Should be 125mV max.

Notes:

- Measured at A plug
- Measured at A receptacle
- Measured at B receptacle
- Measured at A or B connector
- Measured with RL of 1.425 kOhm to 3.6V. Measured with RL of 14.25 kOhm to GND.
- Timing difference between the differential data signals.
- Timing difference between the differential data signals.

 Measured at crossover point of differential data signals.

 The maximum load specification is the maximum effective capacitive load allowed that meets the target VBUS drop of 330mV.

 Excluding the first transition from the Idle state.

 The two transitions should be a (nominal) bit time apart.

 For both transitions of differential signaling.

 Must accept as valid EOP

 Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present

- Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present, shield in the cable. That is, to measure the single-ended capacitance of D+, short D-, VBUS, GND, and the
- shield line together and measure the capacitance of D+ to the other conductors. 15. For high power devices (non-hubs) when enabled for remote wakeup

5.6.7.2 USB AC Specifications

Table 5-42. USB 2.0 AC Specification (High-Speed)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
THSR	Rise Time (10% - 90%)	100		ps	
THSF	Fall Time (10% - 90%)	100		ps	
ZHSDRV	Driver Output Resistance (which also serves as high- speed termination)	40.5	49.5		
THSDRAT	High-speed Data Rate	479.76	480.24	MB/s	
THSFRAM	Microframe Interval	124.9375	125.0625	us	

Table 5-43. USB 2.0 AC Specification (Full-Speed)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TFR	Rise Time	4	20	ns	Figure 5-25 Figure 5-26
TFF	Fall Time	4	20	ns	Figure 5-25, Figure 5-26
TFRFM	Differential Rise and Fall Time Matching	90	111.11	%	10
Zdrv	Driver Output Resistance for driver which is not high-speed capable	28	44		
TFDRATH S	Full-speed Data Rate for hubs and devices which are high- speed capable	11.994	12.006	MB/s	
Tfdrate	Full-speed Data Rate for hubs and devices which are not high-speed capable	11.97	12.03	MB/s	
TFRAME	Frame Interval	0.9995	1.0005	ms	
T _D J1	Source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-3.5	3.5	ns	7, 8, 12, 10, Figure 5-27
TDJ2	Source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-4	4	ns	7, 8, 12, 10, Figure 5-27
TFDEOP	Source Jitter for Differential Transition to SEO Transition	-2	5	ns	8, 11, Figure 5-31
TFEOPT	Source SE0 interval of EOP	160	175	ns	Figure 5-31

Table 5-44. USB 2.0 AC Specification (Low-Speed) (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TDDJ2	Downstream facing port source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-14	14	ns	7,8 Figure 5-27
TLDEOP	Source Jitter for Differential Transition to SEO Transition	-40	100	ns	8,11 Figure 5-31
TLEOPT	Source SE0 interval of EOP	1.25	1.5	us	Figure 5-31

Table 5-44. USB 2.0 AC Specification (Low-Speed) (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TLST	Width of SE0 interval during differential transition		210	ns	
TLR	Rise Time	75	300	ns	Figure 5-25
TFF	Fall Time	75	300	ns	Figure 5-25
TLRFM	Differential Rise and Fall Time Matching	80	125	%	10
TLDRATH S	Low-speed Data Rate for hubs and devices which are high- speed capable	1.49925	1.50075	MB/s	
TLDRATE	Low-speed Data Rate for hubs and devices which are not high-speed capable	1.4775	1.5225	MB/s	
Tud)1	Upstream facing port source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-95	95	ns	7,8 Figure 5-25
Tudj2	Upstream facing port source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-150	150	ns	7,8 Figure 5-25
TDDJ1	Downstream facing port source Jitter Total (including frequency tolerance): To Next Transition For Paired Transitions	-25	25	ns	7,8 Figure 5-27

- Measured at A plug.
- Measured at A receptacle.
- Measured at B receptacle.
- Measured at A or B connector. Measured with RL of 1.4 kOhm to 3.6 V.
- Measured with RL of 14. kOhm to GND.
- Timing difference between the differential data signals.
- Measured at crossover point of differential data signals.
- The maximum load specification is the maximum effective capacitive load allowed that meets the target VBUS drop of 330mV.
- Excluding the first transition from the Idle state.
 The two transitions should be a (nominal) bit time apart.
 For both transitions of differential signaling.
- Must accept as valid EOP. 13.
- Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present, shield in the cable. That is, to measure the single-ended capacitance of D+, short D-, VBUS, GND, and the shield line together and measure the capacitance of D+ to the other conductors.
- 15. For high power devices (non-hubs) when enabled for remote wakeup.

Figure 5-31. USB Rise and Fall Times

Figure 5-32. USB Full-Speed Load

Figure 5-33. USB Differential Data Jitter for Low/Full-Speed

Figure 5-34. USB Differential-to-EOP Transition Skew and EOP Width for Low/Full-Speed

5.6.7.3 **USB 3.0 DC Specification**

Table 5-45. USB 3.0 Interface DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
UI	Unit Interval	199.94	200.06	ps	1
VTX-DIFF-PP	Differential peak-peak Tx voltage swing	0.9	1.05	V	
VTX-DIFF- PP- LOW	Low-Power Differential peak-peak Tx voltage swing	k Tx 0.4		V	2
VTX-DE- RATIO	Tx De-Emphasis	3	4	dB	
RTX-DIFF-DC	DC differential impedance	68	92	Ohm	
VTX-RCV- DETECT	The amount of voltage change allowed during Receiver Detection		0.6	V	3
CAC- COUPLING	AC Coupling Capacitor	75	200	nF	4
tcdr_slew_ M AX	Maximum slew rate		10	ms/s	

Notes:

- The specified UI is equivalent to a tolerance of 300 ppm for each device. Period does not account for SSC induced variations.
- There is no de-emphasis requirement in this mode. De-emphasis is implementation specific for this mode.
- Detect voltage transition should be an increase in voltage on the pin looking at the detect signal to avoid a high impedance requirement when an "off" receiver's input goes below output.
- All transmitters shall be AC coupled. The AC coupling is required either within the media or within the transmitting component itself.

5.6.7.4 **USB 3.0 AC Specification**

Table 5-46. USB 3.0 Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TMIN- PULSE-DJ	Deterministic min Pulse		0.96	UI	1
TMIN- PULSE-TJ	Tx min Pulse		0.9	UI	2
TTX-EYE	Transmitter Eye	0.625		UI	3
TTx-DJ- DD	Tx deterministic jitter		0.205	UI	4

Notes:

- Tx pulse width variation that is deterministic Minimum Tx Pulse at 10^{-12} BER including Dj and Rj.
- Includes all jitter sources Deterministic jitter only assuming the Dual Dirac distribution.
- The specified UI is equivalent to a tolerance of 300 ppm for each device. Period does not account for SSC induced variations.

5.6.7.5 **USB GPIO DC Specification** [USB_OC0_N, USB_OC1_N]

Table 5-47. USB GPIO Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		٧	@1.80V nominal(0.65*Vcc)
VIL	Input Low Voltage		0.63	٧	@1.80V nominal(0.35*Vcc)
VOH	Output High Voltage	1.35		٧	@1.80V nominal(Vcc-0.45), @ 1.5mA load.
VOL	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	μΑ	
ZUP	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 25MHz < 2.5ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25MHz < 2.5ns]		-0.49	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 5ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 5ns]		-0.43	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 10ns]		-0.37	V	1,2

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{\circ}C$

5.6.7.6 **USB GPIO DC Specification** [USB2_OC0_N, USB2_OC1_N]

Table 5-48. USB GPIO Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	TX pad Slew rate	0.1	1.2	V/ns	Test load @30pF

5.6.8 **SPI**

SIO SPI DC Specification 5.6.8.1

Table 5-49. SIO SPI Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
vcc	I/O Voltage		1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		٧	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 3mA load.
VoL	Output Low Voltage		0.45	V	@ -3mA load.
IPAD	Pad Leakage Current	-5	5	uA	
ZUP	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K 8 44		kOhm	20 kOhm nominal	
Wpdn20K	Weak Pull-down Impedance 20K 8 44		kOhm	20 kOhm nominal	
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 0.ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25MHz < 0.8ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 0.8 ns]		-0.3	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 1.25 ns]		2.6	V	1,2
vus	Undershoot Voltage Magnitude [Time Duration for 25 MHz <1.25 ns]		-0.26	V	1,2

Notes:

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.8.2 SIO SPI AC Specification

Table 5-50. SIO SPI Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		25	MHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 60pF test load
TX Slew rate	TX pad Slew rate	0.5	0.875	V/ns	Test load @30pF
TCO	Tx Falling Clock to Data Output Delay	-7.2	5.1	ns	1
TSU	Rx Data Setup Time to CLK Rising and falling Edge	20.7		ns	
THD	Rx Data Hold Time to CLK Rising and falling Edge	4.3		ns	

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.8.3 **PMC SPI DC Specification**

Table 5-51. PMC SPI Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
vcc	I/O Voltage	1.66	1.89	٧	1.80V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
VOH	Output High Voltage	1.35		٧	@1.80V nominal (Vcc- 0.45), @ 1.5mA load.
VOL	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	uA	
ZUP	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 4 MHz < 2.5 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 4 MHz < 2.5ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 4 MHz < 5 ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 4 MHz < 5 ns]		-0.43	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 4 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 4 MHz < 10 ns]		-0.37	V	1,2

Notes:

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.8.4 PMC SPI AC Specification

Table 5-52. PMC SPI Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		4	MHz	Typical
Tx Slew rate	TX Pad Slew rate	0.5	0.875	V/ns	Test load @ 30 pF

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.8.5 **FAST SPI DC Specification**

Table 5-53. FAST SPI Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 3mA load.
Vol	Output Low Voltage		0.45	V	@ -3mA load.
IPAD	Pad Leakage Current	-5	5	μΑ	
Zup	Driver Pull-up Impedance	27	40	Ohm	33.5 Ohm nominal
Zdn	Driver Pull-down Impedance	27	40	Ohm	33.5 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	44	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	44	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 50 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 50 MHz < 0.4 ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 50 MHz < 0.8 ns]		2.1	٧	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 50 MHz < 0.8 ns]		-0.3	٧	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 50 MHz < 1.25 ns]		2.06	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 50 MHz < 1.25 ns]		-0.26	V	1,2

Notes:

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.8.6 FAST SPI AC Specification

Table 5-54. FAST SPI Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		50	MHz	Typical
TDC	Clock Duty Cycle	40	60	%	Measured @50%, 60pF test load
Tco	Tx Falling Clock to Data Output Delay	-3.8	4	ns	1
Tsu	Rx Data Setup Time to CLK Falling Edge	7.1		ns	
THD	Rx Data Hold Time to CLK Falling Edge	0.2		ns	
Tx Slew rate	TX Pad Slew rate	0.3	0.7	V/ns	Test load @ 30 pF

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.9 **SVID**

SVID DC Specification 5.6.9.1

Table 5-55. SVID Signal Group DC Specification (SVID_DATA, SVID_CLK, SVID_ALERT_N)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1	1.1	V	1.05V Nominal
VIH	Input High Voltage	0.6825		V	@1.05V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.3675	V	@1.05V nominal (0.35*Vcc)
VoL	Output Low Voltage		0.45	V	@3mA Load
IPAD	Pad Leakage Current	-5	5	μΑ	
ZdN	Driver Pull-down Impedance	15	26	Ohm	20 Ohm Nominal
Wpup1K	Weak Pull-up Impedance 1K	0.65	1.35	kOhm	1 kOhm nominal
Wpup2K	Weak Pull-up Impedance 2K	1.3	2.7	kOhm	2 kOhm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 1.25 ns]		2.2	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 1. 25 ns]		-0.31	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 2.5 ns]		2.14	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 2.5ns]		-0.25	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 5ns]		2.09	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 5ns]		-0.2	V	1,2

Notes:

Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US
 Tj = 105⁰C

5.6.9.2 SVID AC Specification

Table 5-56. SVID Signal Group AC Specification (SVID_DATA, SVID_CLK, SVID_ALERT_N)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		19.2	MHz	Typical
Tco	Tx Rising Clock to Data Output Delay (DS)	-4.4	4.3	ns	1
Tsu	Rx Data Setup Time to CLK Rising Edge	22.5		ns	
Тно	Rx Data Hold Time to CLK Rising Edge	4.6		ns	
Tx Slew rate	TX pad Slew rate	0.04	1.2	V/ns	Test Load @ 30 pF

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.10 **LPSS UART**

5.6.10.1 **LPSS UART DC Specification**

Table 5-57. LPSS UART Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 1.5mA load.
Vol	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	uA	
Zup	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
vos	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 2.5 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 2.5 ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 5 ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 5 ns]		-0.43	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		-0.37	V	1,2

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj = 105^{0}C$

5.6.10.2 LPSS UART AC Specification

Table 5-58. LPSS UART Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	TX Pad Slew rate	0.1	1.2	V/ns	Test load @ 30 pF

5.6.11 I²S (Audio)

5.6.11.1 I²S (Audio) DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Voн	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 3mA load
VoL	Output Low Voltage		0.45	V	@ -3mA load
IPAD	Pad Leakage Current	-5	5	μΑ	
ZUP	Driver Pull-up Impedance	54	80	Ohm	67 Ohm nominal
ZDN	Driver Pull-down Impedance	54	80	Ohm	67 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	44	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	44	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 12.288 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12.288 MHz < 0.4 ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 12.288 MHz < 0.8 ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12.288 MHz < 0.8 ns]		-0.3	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 12.288 MHz < 1.25 ns]		2.06	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12.288 MHz < 1.25 ns]		-0.26	V	1,2

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj=105^{0}C$

5.6.11.2 I²S (Audio) AC Specification

Table 5-59. I²S Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
FCLK	Clock Frequency		12.288	MHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 60pF test load
TCO (P-P Master)	Tx Launching Clock to Data Output Delay (P-P Master)	-5.55	13.6	ns	1
TSU(P-P Master)	Rx Data Setup Time to CLK Sampling Edge (P-P Master)	18.85		ns	
THD(P-P Master)	Rx Data Hold Time to CLK Sampling Edge (P-P Master)	-2		ns	
TCO(P-P Slave)	Tx Launching Clock to Data Output Delay (P-P Slave)	9.45	48.5	ns	1
TSU(P-P Slave)	Rx Data Setup Time to CLK Sampling Edge (P-P Slave)	-7		ns	
THD(P-P Slave)	Rx Data Hold Time to CLK Sampling Edge (P-P Slave)	32.1		ns	

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.12 **AVS DMIC**

AVS DMIC DC Specification 5.6.12.1

Table 5-60. AVS DMIC Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
VOH	Output High Voltage	1.35		٧	@1.80V nominal (Vcc- 0.45), @ 3mA load.
VOL	Output Low Voltage		0.45	V	@ -3mA load.
IPAD	Pad Leakage Current	-5	5	uA	
ZUP	Driver Pull-up Impedance	54	80	Ohm	67 Ohm nominal
ZDN	Driver Pull-down Impedance	54	80	Ohm	67 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 12 MHz < 2.5 ns]		2.29	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12 MHz < 2.5ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 12 MHz < 5 ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12 MHz < 5 ns]		-0.43	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 12 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 12 MHz < 10 ns]		-0.37	V	1,2

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj = 105^{0}C$

5.6.12.2 AVS DMIC AC Specification

Table 5-61. AVS DMIC Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		3.84	MHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 60pF test load
Tx slew rate	TX Pad Slew rate	0.1	0.2	V/ns	Test load @ 30 pF
Tsu	Rx Data Setup Time to CLK Rising Edge	21.35		ns	
Тно	Rx Data Hold Time to CLK Rising Edge	-4.7		ns	

5.6.13 I²C

5.6.13.1 I²C SIO/PMIC/ISH/MIPI/DDI_DDC DC Specification

Table 5-62. I²C SIO/PMIC/ISH/MIPI/DDI_DDC Signals DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vol	Output Low Voltage		0.45	V	@ -3mA load.
IPAD	Pad Leakage Current	-5	5	uA	
Zdn	Driver Pull-down Impedance	10	300	Ohm	20/40/100/150 Ohm nominal
Wpup1K	Weak Pull-up Impedance 1K	0.65	1.35	kOhm	1 kOhm nominal
Wpup2K	Weak Pull-up Impedance 2K	1.3	2.7	kOhm	2 kOhm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 1.25 ns]		2.2	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 1.25 ns]		-0.31	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 2.5 ns]		2.14	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 2.5 ns]		-0.25	V	1,2

Table 5-62. I²C SIO/PMIC/ISH/MIPI/DDI_DDC Signals DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VOS	Overshoot Voltage Magnitude [Time Duration for 60 MHz < 5 ns]		2.09	٧	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 60 MHz < 5 ns]		-0.2	V	1,2

Notes:

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj = 105^{0}C$

I²C SIO/PMIC/ISH/MIPI/DDI_DDC AC Specification 5.6.13.2

Table 5-63. I²C Fast/Standard Mode AC Specifications

Symbol	ymbol Parameter		Standard-Mode [ISH/DDI]		Fast-Mode [MIPI]		Mode us	Units	Notes	Figure
		Min.	Max.	Min.	Max.	Min.	Max.			
f _{SCL}	I ² C_CLK clock frequency	0	100	0	400	0	1000	KHz		+- 3% Tolerance
t _{HD:STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	0.26	-	μs		Figure 5-35
t _{LOW}	LOW period of the I ² C_CLK clock	4.7	-	1.3	-	0.5	-	μs		Figure 5-35
t _{HIGH}	HIGH period of the I ² C_CLK clock	4.0	-	0.6	-	0.26	-	μs		Figure 5-35
t _{SU:STA}	Set-up time for a repeated START condition	4.7	-	0.6	-	0.26	-	μs		Figure 5-35
t _{HD:DAT}	Data hold time: I ² C-bus devices	0	-	0	-	0	-	ns		Figure 5-35
t _{SU:DAT}	Data set-up time	250	-	100	-	50	-	ns	1	Figure 5-35
t _r	Rise time of both I ² C_DATA and I ² C_CLK signals	-	1000	20	300	-	120	ns	2, 3	Figure 5-35
t _f	Fall time of both I ² C_DATA and I ² C_CLK signals	-	300	6.03	300	6.03	120	ns	4	Figure 5-35
t _{SU:STO}	Set-up time for STOP condition	4.0	-	0.6	-	0.26	-	μs		Figure 5-35
t _{BUF}	Bus free time between a STOP and START condition	4.7	-	1.3	-	0.5	-	μs		
C _b	Capacitive load for each bus line	-	400	-	400	-	400	pF		
t _{VD:DAT}	data valid time	-	3.45	-	0.9	-	4.5	us		
t _{VD:ACK}	data valid acknowledge time	-	3.45	-	0.9	-	4.5	us		
V _{nL}	Noise margin at the LOW level for each connected device (including hysteresis)	0.1 V _{CC}	-	0.1 V _{CC}	-	0.1 V _{CC}	-	V		

Table 5-63. I²C Fast/Standard Mode AC Specifications

Symbol	Parameter	Standar [ISH/		Fast-M [MIP		Fast- Pl	Mode us Units		Notes	Figure
		Min.	Max.	Min.	Max.	Min.	Max.			
V _{nH}	Noise margin at the HIGH level for each connected device (including hysteresis)	0.2 V _{CC}	-	0.2 V _{CC}	-	0.2 V _{CC}	-	V		

Notes:

- 3 A Fast-mode I 2 C-bus device can be used in a Standard-mode I 2 C-bus system, but the requirement tSU; DAT 3 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the I^2C_CLK signal. If such a device does stretch the LOW period of the I^2C_CLK signal, it must output the next data bit to the I^2C_DATA line tr max + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I^2C -bus specification) before the I^2C_CLK line is released.
- Cb = total capacitance of one bus line in pF.

 No Active current source PU on I^2C _CLK signals. Rise time is based upon the Pull-up resistor mentioned in the Platform Design Guide.
- Specification deviates from the minimum time compared to Industrial specification
- The tolerance value for Clock frequency is +- 3%

557555 167 **Intel Confidential**

Figure 5-35. Definition of Timing for F/S-Mode Devices on ${\bf I}^2{\bf C}$ Bus

Note:

All Transactions begin with a Start (S) and are terminated by a Stop (P). The bus stays busy if a repeated START (Sr) is generated instead of Stop condition.

5.6.13.2.1 I²C High Speed Mode Electrical Specification

Table 5-64. AC Specification for High Speed Mode I²C—Bus Devices

Symbol	Parameter	C _b = 100 [SIO/	pF (max.) PMIC]	C _b = 400	pF (max.)	Units	Figure
		Minimum	Maximum	Minimum	Maximum		
f _{SCL}	I ² C_CLK clock frequency	0	3.1	0	1.7	MHz	
t _{SU} :STA	Set-Up time for a repeated START condition	160		160		ns	
t _{HD} :STA	Hold time (repeated) START condition	160		160		ns	
t _{LOW}	LOW period of the I ² C_CLK clock	160		320		ns	
t _{HIGH}	HIGH period of the I ² C_CLK clock	60		120		ns	
t _{HD} :DAT	Data hold time: I ² C-bus devices	0	70	0	150	ns	
t _{SU} :DAT	Data set-up time	10		10		ns	
t _r CL	Rise time of I ² C_CLK signals	10	40	20	80	ns	
t _f CL	Fall time of I ² C_CLK signals	10	40	20	80	ns	
t _r CL1	Rise time of $\rm I^2C_CLK$ signal after a repeated START condition and after an acknowledge bit	10	80	20	160	ns	
t _r DA	Rise time of I ² C_DATA signals	10	80	20	160	ns	
t _f DA	Fall time of I ² C_DATA signals	10	80	20	160	ns	
t _{SU:} STO	Set-up time for STOP condition	160		160		ns	
C _b	Capacitive load for each bus line	-	100	-	400	pF	
V _{nL}	Noise margin at the LOW level for each connected device (including hysteresis)	0.1 V _{CC}		0.1 V _{CC}		V	
V _{NH}	Noise margin at the HIGH level for each connected device (including hysteresis)	0.2 V _{CC}		0.2 V _{CC}		V	

Figure 5-36. Definition of Timing for High-Speed Mode Devices on I²C Bus

Note:

All Transactions begin with a Start (S) and are terminated by a Stop (P). The bus stays busy if a repeated START (Sr) is generated instead of Stop condition

5.6.14 **HDA**

HDA DC Specification 5.6.14.1

Table 5-65. HDA Signal Group DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.65*Vcc)
VOH	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 1.5mA load.
VOL	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	uA	
ZUP	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	44	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	44	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 24 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 24 MHz < 0.4ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 24 MHz < 0.8 ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 24 MHz < 0.8 ns]		-0.3	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 24 MHz < 1.25 ns]		2.06	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 24 MHz < 1.25 ns]		-0.26	V	1,2

- **Notes:** 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj = 105^{\circ}C$

5.6.14.2 HDA AC Specification

Table 5-66. HDA Signal Group AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		24	MHz	Typical
TDC	Clock Duty Cycle	45	55	%	Measured @50%, 60pF test load
TX Slew rate	TX Pad Slew rate	0.5	0.875	V/ns	Test Load @ 30 pF
TCO	Tx Falling Clock to Data Output Delay (DS)	8.3	11.4	ns	1
TSU	Rx Data Setup Time to CLK Rising Edge	13.4		ns	
THD	Rx Data Hold Time to CLK Rising Edge	-2.8		ns	

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.15 LPC

5.6.15.1 LPC DC Specification

Table 5-67. LPC Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC (3.3)	I/O Voltage (3.3)	3.05	3.45	V	3.3V nominal
VCC(1.8)	I/O Voltage (1.8)	1.66	1.89	V	1.8V nominal
VIH (3.3)	Input high Voltage (3.3)	1.442		V	
VIL (3.3)	Input Low Voltage (3.3)		0.771	V	
VIH	Input High Voltage	1.251		V	
VIL	Input Low Voltage		0.609	V	
VOH	Output High Voltage	1.62		V	@1.80V nominal (Vcc- 0.18), @ 3mA load.
VOL	Output Low Voltage		0.18	V	@ -3mA load.
IPAD	Pad Leakage Current	-11	32	μΑ	
ZUP	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	10	30	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	10	30	kOhm	20 kOhm nominal
Vhys (3.3)	RX Hysteresis (3.3)	125		mV	
Vhys (1.8)	RX hysteresis (1.8)	116		mV	
Cin	Pad Capacitance		9	pF	

5.6.15.2 LPC AC Specification

Table 5-68. LPC Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		25	MHz	Typical
Tco	Tx Rising Clock to Data Output Delay (DS)	11	21.3	ns	1
Tsu	Rx Data Setup Time to CLK Rising Edge	17.8		ns	
THD	Rx Data Hold Time to CLK Rising Edge	-1		ns	
TX Slew rate	TX Pad Slew rate	2.2	2.6	V/ns	Test Load @ 30 pF

Note: Measured @ 0.5*Vcc, with 2pF test load

5.6.16 Platform Clock

5.6.16.1 Platform Clock DC Specification

Table 5-69. Platform Clock GPIO

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V Nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 1.5mA load.
VoL	Output Low Voltage		0.45	V	@ -1.5mA load
IPAD	Pad Leakage Current	-5	5	μA	
Zup	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
Zdn	Driver Pull- down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull- down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
vos	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 1.25 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 1. 25 ns]		-0.35	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 2.5 ns]		2.1	V	1,2

Table 5-69. Platform Clock GPIO

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 2.5ns]		-0.3	V	1,2
vos	Overshoot Voltage Magnitude [Time Duration for 19.2 MHz < 5ns]		2.06	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 19.2 MHz < 5ns]		-0.26	V	1,2

- **Notes:**1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US 2. $Tj = 105^{\circ}C$

5.6.16.2 Platform Clock AC Specification

Table 5-70. Platform Clock AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FCLK	Clock Frequency		19.2	MHz	Typical
TX Slew rate	TX Pad Slew rate	0.3	0.7	V/ns	Test Load @ 30 pF

5.6.17 PCIe* Specification

5.6.17.1 PCIe* DC Specification

Table 5-71. 2G PCIe* DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/ Figure
UI	Unit Interval – PCI Express* Gen 1 (2.5 GT/s)	399.88	400.12	ps	
UI	Unit Interval – PCI Express* Gen 2 (5.0 GT/s)	199.9	200.1	ps	
TTX-EYE	Minimum Transmission Eye Width	0.7		UI	
TTX-RISE/ Fall (Gen1)	TXP/TXN Rise/Fall time	0.125		UI	
TTX-RISE/ Fall (Gen2)	TXP/TXN Rise/Fall time	0.15		UI	

5.6.17.2 PCIe* AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	
VIH	Input High Voltage	1.22		V	
VIL	Input Low Voltage		0.581	V	
VTXDIFF	Differential TX Peak to Peak	800	1200	mV	
VTXDIFF-LP	Differential TX Peak to Peak (Low power mode)	400	1200	mV	
VRXDIFF	Differential RX Peak to Peak	175	1200	mV	
VRXDIFF-LP	Differential RX Peak to Peak (Low power mode)	100	1200	mV	

5.6.18 SATA Specification

Table 5-72. General Specifications

Parameters	Limit	Gen1	Gen2	Units
Channel Speed Nom		1.5	3.0	Gbps
Fbaud	Nom	1.5	3.0	GHz

Table 5-72. General Specifications

Parameters	Limit	Gen1	Gen2	Units
FER, Frame Error Rate	Max	8.2e-8 at 95 % confidence level	8.2e-8 at 95 % confidence level	
	Min	666.433 3	333.216 7	
T1.17	Nom	666.666 7	333.333 3	Ps
TUI, Unit Interval	Max	670.233 3	335.116 7	
ftol,	Min	-350	-350	
Tx Frequency Long Term Accuracy	Max	+350	+350	ppm of Fbaud
fSSC, Spread-	Min	30	30	
Spectrum Modulation Frequency	Max	33	33	kHz
SSCtol, Spread-	Min	-5 350	-5 350	
Spectrum Modulation Deviation	Max	+350	+350	ppm of Fbaud
SSCtol, Spread- Spectrum Modulation Rate	Max	1 250	1 250	ppm/ us
Vcm,ac coupled,	Min	0	-	
AC Coupled Common Mode Voltage	Max	2 000	-	mV
Zdiff, Nominal Differential Impedance	Nom	100	-	Ohm
Cac coupling AC Coupling Capacitance	Max	12	12	nF
tsettle,cm, Common Mode Transient Settle Time	Max	10	-	ns

Table 5-72. General Specifications

Parameters	Limit	Gen1	Gen2	Units
	Min	-2.0	-2.0	
Vtrans, Sequencing Transient Voltage	Max	2.0	2.0	V

Table 5-73. Transmitted Signal Requirements

Parameter	Units	Limit	Gen1i	Gen2i
		Min	400	400
Valuetta da ina Ta Differential Daving Outrata		Min	-	-
VdiffTxdevice, Tx Differential Device Output Voltage	mVppd	Nom	500	-
		Max	600	700
		Max	-	-
		Min	400	400
VdiffTxhost, Tx Differential		Min	-	-
Host Output Voltage	mVppd	Nom	500	-
-		Max	600	700
		Max	-	-
			0.45 to 0.55	0.45 to 0.55
UIVminTx, Tx Minimum Voltage Measurement Interval	UI		-	-
t20-80Tx, Tx Rise/Fall	ps (UI)	Min 20 % to 80 %	50 (0.075)	50 (0.15)
Time	p3 (32)	Max 20 % to 80 %	273 (0.41)	136 (0.41)
tskewTx, Tx Differential Skew	ps	Max	20	20

5.6.19 SMBus Specification

5.6.19.1 SMBus DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC (3.3)	I/O Voltage (3.3)	3.05	3.45	V	3.3V Nominal
VCC(1.8)	I/O Voltage (1.8)	1.66	1.89	V	1.8V nominal
VIH (3.3)	Input High voltage (3.3)	1.442		V	
VIL (3.3)	Input Low Voltage (3.3)		0.771	V	
VIH	Input High Voltage	1.26		V	
VIL	Input Low Voltage		0.609	V	
VOH	Output High Voltage	1.62		V	@1.80V(Vcc- 0.18), @ 3mA load
VOL	Output Low Voltage		0.18	V	@ -3mA load.
IPAD	Pad Leakage Current	-11	32	uA	
ZUP	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	10	30	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	10	30	kOhm	20 kOhm nominal
Vhys (3.3)	RX Hysteresis (3.3)	125		mV	
Vhys(1.8)	RX hysteresis(1.8)	116		mV	
Cin	Pad Capacitance		9	pF	

5.6.19.2 SMBus AC Specification

Table 5-74. SMBus AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
FSMB	SMBus Operating Frequency		100	KHz	Typical
TBUF	Bus free time between Stop and Start Condition	4.7		us	
THD:STA	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.	4		us	
TSU:STA	Repeated Start Condition setup time	4.7		us	
TSU:STO	Stop Condition setup time	4		us	
TSU:DAT	Data setup time	250		ns	
THD:DAT	Data hold time	0		ns	1
TTIMEOUT	Detect clock low timeout	25	35	ms	
TLOW	Clock low period	4.7		us	
THIGH	Clock high period	4		us	2
TLOW: SEXT	Cumulative clock low extend time (slave device)		25	ms	3
TLOW: MEXT	Cumulative clock low extend time (master device)		10	ms	4
TF	Clock/Data Fall Time		300	ns	
TR	Clock/Data Rise Time		1000	ns	
TPOR	Time in which a device must be operational after power-on reset		500	ms	

- A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the VIH,MIN of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK
- tHIGH,MAX provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than tHIGH,MAX
- 3. tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START to the STOP. It is possible that another slave device or the master will also extend the clock causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master.
- parameter is measured with the slave device as the sole target of a full-speed master

 4. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master will also extend the clock causing the combined clock low time to be greater than tLOW:MEXT on a given byte. This parameter is measured with a full speed slave device as the sole target of the master

5.6.20 PMU (Power Management Signals)

5.6.20.1 PMU DC Specification

Table 5-75. PMU Signals DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC (3.3)	I/O Voltage (3.3)	3.05	3.45	V	3.3V nominal
VCC(1.8)	I/O Voltage (1.8)	1.66	1.89	V	1.8V nominal
VIH (3.3)	Input high Voltage (3.3)	1.442		V	
VIL (3.3)	Input Low Voltage (3.3)		0.771	V	
VIH	Input High Voltage	1.251		V	
VIL	Input Low Voltage		0.609	V	
VOH	Output High Voltage	1.62	1.8	V	@1.80V nominal (Vcc- 0.18), @ 3mA load.
VOL	Output Low Voltage		0.18	V	@ -3mA load.
IPAD	Pad Leakage Current	-11	32	μΑ	
ZUP	Driver Pull-up Impedance	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	10	30	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	10	30	kOhm	20 kOhm nominal
Vhys (3.3)	RX Hysteresis (3.3)	125		mV	
Vhys (1.8)	RX hysteresis (1.8)	116		mV	
Cin	Pad Capacitance		9	pF	

5.6.20.2 LPC AC Specification

Table 5-76. LPC Signals AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
TX Slew rate	TX Pad Slew rate	2.2	2.6	V/ns	Test Load @ 30 pF

5.6.21 ISH GPIO/PROCHOT_N/PCIe Wake/PCIe CLKREQ/GPIO/THERMTRIP_N Specification

Table 5-77. DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.8V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	V	@1.80V nominal (0.35*Vcc)
VOH	Output High Voltage	1.35		V	@1.80V nominal (Vcc- 0.45), @ 1.5mA load.
VOL	Output Low Voltage		0.45	V	@ -1.5mA load.

Table 5-77. DC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
IPAD	Pad Leakage Current	-5	5	uA	
ZUP	Driver Pull-up Impedance [PROCHOT_N]	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance [PROCHOT_N]	160	240	Ohm	200 Ohm nominal
ZUP	Driver Pull-up Impedance [ISH GPIO/PCIe WAKE/PCIe CLKREQ/GPIO]	40	60	Ohm	50 Ohm nominal
ZDN	Driver Pull-down Impedance [ISH GPIO/PCIe WAKE/PCIe CLKREQ/GPIO]	40	60	Ohm	50 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 0.4 ns]		2.15	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 0.4 ns]		-0.35	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 0.8 ns]		2.1	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 0.8ns]		-0.3	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 200 MHz < 1.25 ns]		2.6	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 200 MHz < 1.25 ns]		-0.26	V	1,2

Notes:

1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.21.1 AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx slew rate	TX Pad slew rate	0.3	0.7	V/ns	Test Load @ 30 pF

5.6.22 RTC Signal Specification

5.6.22.1 RTC Specification

Table 5-78. RTC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	2	3.47	V	3.3V nominal
VIH	Input High Voltage	2		V	@3.3V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.78	V	@3.3V nominal (0.35*Vcc)

5.6.23 PWM Signal Specification

5.6.23.1 PWM DC Specification

Table 5-79. PWM DC Specification (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VCC	I/O Voltage	1.66	1.89	V	1.80V nominal
VIH	Input High Voltage	1.17		V	@1.80V nominal (0.65*Vcc)
VIL	Input Low Voltage		0.63	٧	@1.80V nominal (0.35*Vcc)
Vон	Output High Voltage	1.35		٧	@1.80V nominal (Vcc-0.45), @ 1.5mA load.
Vol	Output Low Voltage		0.45	V	@ -1.5mA load.
IPAD	Pad Leakage Current	-5	5	uA	
Zup	Driver Pull-up Impedance	160	240	Ohm	200 Ohm nominal
ZDN	Driver Pull-down Impedance	160	240	Ohm	200 Ohm nominal
Wpup20K	Weak Pull-up Impedance 20K	8	50	kOhm	20 kOhm nominal
Wpdn20K	Weak Pull-down Impedance 20K	8	50	kOhm	20 kOhm nominal
Vhys	RX hysteresis	100		mV	
Cin	Pad Capacitance		5	pF	
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 1.25 ns]		2.29	V	1,2
vus	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 1.25 ns]		-0.49	V	1,2
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 5 ns]		2.23	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 5ns]		-0.43	V	1,2

Table 5-79. PWM DC Specification (Sheet 2 of 2)

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
VOS	Overshoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		2.17	V	1,2
VUS	Undershoot Voltage Magnitude [Time Duration for 25 MHz < 10 ns]		-0.37	V	1,2

Notes:

- 1. Activity Factor = 0.25, i.e., 1 out of 4 receive cycles will have the OS/US. 2. $Tj = 105^{0}C$

5.6.23.2 **PWM AC Specification**

Figure 5-37. PWM AC Specification

Symbol	Parameter	Minimum	Maximum	Units	Notes/Figure
Tx Slew rate	Tx Pad slew rate	0.1	0.2	V/ns	Test Load @30pF

§ §

6 Ball Map and SoC Pin Locations

6.1 SoC Ball Map DDR3L

Figure 6-1. Ball Map DDR3L—Left (63-42)

	63	6 2	61	60	5 9	58	5 7	56	5 5	5 4	5 3	5 2	5 1	5 0	49	48	47	46	45	44	43	42
ВJ		RSVD	RSVD	VSS		NCTF		vss		vss		MEM_CH 0_MAS		vss		MEM_CH 0_BA0		VSS		M E M _ C H 0 _ D Q 40		M EM_CI 0_DQS5 P
ВН	vss	vss	O_CKEO MEM_CH	MEM_CH 0_CKE1		NCTF	M EM _CH 0_BA2		M EM_CH 0_M A 11		M EM _CH 0_M A 8		M EM _C H 0_M A 2		M EM _ CH 0 _ M A 10		MEM_CH O_CAS_N		M EM_CH 0_D Q 46		VSS	
ВG	RSVD	M EM_CH O_D Q3					M EM _CH 0_M A 15	M EM _CH 0_M A 14	MEM_CH 0_MA7	M EM _CH 0_M A 12	M EM_CH 0_M A 6	M EM _CH 0 _ M A 9	MEM_CH 0_MA1	M EM_CH O_M A O	MEM_CH 0_BA1	M E M _ C H 0 _ W E _ N	MEM_CH O_RAS_N	M E M _ C H 0 _ M A 13	vss	M E M _ C H 0 _ D Q 45	M E M _ C H 0 _ D Q 44	O_DQS5 N
B F			VSS		M EM_CH 0_DQ19	M EM_CH 0_D Q 26																
ВЕ	vss	M EM _CH 0_D Q 2						M EM _CH 0_DQ 24		VSS		vss		M EM_CH 0_D Q 27		VSS	VSS		O_CLKO_ N EM_CH		VSS	
B D	M EM _ C H O _ D Q 4	MEM_CH 0_DQ7	vss		M EM_CH 0_DQ18	M EM_CH 0_D Q 23		vss		M EM _CH 0_D Q 25		0_DQS3_ P		M EM_CH 0_D Q 28		O_CLK1_ N	MEM_CH 0_DQSP8		M EM_CH		MEM_CH O_CB6	
вс	MSM C	M EM_CH 0_DQS0_ N			MEM CH	MEM CH						MEM CH										
ВВ	HO_DQS O_P		VSS		0_DQS2_ P	0_DQS2_ N	M EM _CH 0_D Q 17			M EM _CH 0_DQ31		0_DQS3_ N		M EM_CH 0_D Q 29		M EM _CH O_CLK 1_P	MEM_CH 0_DQSN8		vss		MEM_CH O_CB2	
ВА	vss	VSS										vss		M EM_CH 0_D Q 30		VSS	VSS		M EM_CH O_CB7		VSS	
ΑY		M EM_CH 0_D Q 0	M EM_CH 0_DQ1		M EM_CH 0_DQ15	VSS	M EM_CH 0_DQ16		M EM_CH 0_D Q 21	VSS												
A W	MEM_C HO_DQ6	M EM _CH O_D Q S												VSS		MEM_CH O_CBO	MEM_CH 0_CB1		M EM_CH O_CB3		MEM_CH 0_0 DT0	
A V		VSS	VSS		M EM _CH 0_D Q8	MEM_CH 0_DQ11	M EM_CH 0_D Q 12		VSS	M EM _CH 0_D Q 20		MEM_CH 0_DQ22		VDDQ		MEM_CH 0_CB4	MEM_CH O_CBS		VSS		VSS	
A U	MEM_C HO_DQ9	M EM _CH 0_D Q 10			MEM CH	MEM CH																
A T		VSS	VSS		0_DQS1_ P	0_DQS1_ N	VSS		M EM_CH 0_D Q 13	M EM _CH 0_D Q 14		VSS	VDDQ			VSS	VDDQ		VSS		NCTF	
A R	CO_SCL	LPSS_I2C O_SDA											1955 125				VDDQ		VSS		MEM_CH 0_CSO_N	
A P			LPSS_I2C 7_SCL			LPSS_I2C 2_SCL	NCTF		VSS	LPSS_I2C 4_SCL		LPSS_I2C 4_SDA	LPSS_I2C S_SCL		LPSS_I2C S_SDA							
A N	VSS	LPSS_I2C 1_SDA			VSS		VSS	VSS		VSS	VSS		VSS	VSS		VSS	VSS	VDDQ		VDDQ		VDDQ
А М		LPSS_I2C 3_SDA	LPSS_I2C 1_SCL		N C T F	N CTF	ISH_GP10 _6		ISH_GP10 _7	ISH_GPIO _3		ISH_GP10 _8	ISH_GPIO _4		ISH_GP10 _5	ISH_G P10 _0		VSS		VNN_SVI D		VCCIOA
A L	LPSS_I2 C6_SDA	LPSS_I2C 3_SCL																				
ΑK			LPSS_I2C 6_SCL		VSS	ISH_GP10 _1	SH_GP10 9		PMU_PW RBTN_N	PMU_SLP _S4_N		vss	ISH_GP10 _2		PRESEN T	VSS		VNN_SVI		VNN_SVI D		V N N _ S V D
ΑJ	vss																	VNN_SVI D		RSVD		V N N _ S V D
٩н		PCIE_CLK REQ1_N	P C I E _ C L K R E Q 2 _ N		vss	vss	vss		V S S	vss		vss	PMU_BA TLOW_N		RTC_TEST _N	vss						
A G	K_OUT_ 2	OSC_CLK _OUT_0			PMU_RC OMP	SUS_STA T_N	PMU_PLT RST_N		W R_EN_ N	RSVD		RSVD	V C C_RTC _EXTPAD		SOC_PW ROK	VNN_SE NSE		VSS		VSS		vss
A F		OSC_CLK _OUT_4	OSC_CLK _OUT_1																			
ΑE	vss	PMU_SU SCLK		OSC_CLK _OUT_3	vss		vss	VSS		VSS	VSS		VSS	VSS		VSS	VSS	VCC_1P8 V_A		VCC_1P8 V_A		VCC_1P V_A
A D		PMU_RST BTN_N	PMU_SLP _SO_N																			
A C	S U S P W R D N A C K	PMU_SLP _S3_N			RTC_X1	RTC_X2	RSM_RST _N		RTC_RST _N	IN TRUDE R_N		SDCARD_ CMD	SDCARD_ D2		SDCARD_ DO	SDCARD_ D1		VCC_1P8 V_A		VCC_1P8 V_A		VCC_1PI V_A
ΑВ		LPC_SERI RQ	LPC_CLK OUTO		VSS	SDCARD_ CLK	vss		SD CARD_ LV L_W P	SDCARD_ CD_N		vss	SDCARD_ D3		N C T F	VSS						
АА	VSS	LPC_CLK OUT1																VCC_1P8 V_A		VCCRTC_ 3P3V		VCC_3P: V_A
Y		LPC_AD1	LPC_ADO		VSS	EMMC_C LK	VSS		VSS	VSS		VSS	EMMC_C MD		EM M C _ D 5	VSS		VSS		VCC_3P3 V_A		VSS
W	LPC_AD 3	LPC_AD2																				
V		LPC_CLK RUN_N	LPC_FRA ME_N		EMMC_R COMP	E M M C_D 0	EM M C_D 7		EM M C _ D 6	EMMC_R CLK		EM M C_D 4	E M M C _ D 3		RSVD	RSVD	W 66 W 66	VCC_3P3 V_A		VCC_3P3 V_A		VSS
U	VSS	VSS			VSS		VSS	VSS		VSS	VSS		VSS	VSS		vcc_vcg	vcc_vcg I	vcc_vcg		vcc_vcg		v cc_v c
Г	CMD **	SM B_CLK	SMB_DA TA		EM M C_D 2	EMMC_D 1	SDIO_CM D		SD10_D3	SD10_D2		SDIO_D0	N CTF		vss		vcc_vcg		vcc_vcg		VCC_VCG I_SENSE_	
R	SMB_AL ERT_N		P C VE			SDIO				VAZ DWI		AVS_DMI	SDIO_PW			PMC CA	- 1		1		N	
Р			P C I E _ W A K E 2 _ N		VSS	SDIO_CL K	SDIO_D1		VSS	C_CLK_A 1		C_CLK_B 1	R_DWN_ N			PMC_SPI _FS1	G PIO_21 5		VSS		VSS	
N	VSS	AVS_I2S3 _BCLK	AVS_12S3 WS_SVP		we =	AVS 1252	AV S_12S 2 _W S_SYN		AVS_DMI C_CLK_A B2	AVS_DMI C_DATA_		AVS_DMI C_DATA_		Wes		PMC_SPI	G PIO_21		MDSI_A_		M DSI_C_	
M			c		VSS	_SDO	c		B 2	1		2		VSS		FS2 PMC_SPI	G PIO_21		TE		TE	
<u> </u>	3_SDO	AV S_12 S 3 _S D 1	AVS_12S1		A V S_12S 2 _SD1	A V S 12 S 2			SIO_SPI_	vss				VSS		_FSO	4		VSS		4.7.2	
K	VSS	_SDO AVS_I2S1 _W S_SYN	A V S_12S 1 _SD1		_SDI	_M CLK	VSS		1_FS0	V55		SIO_SPI_		PMC_SPI		VSS	THERMTR		GP10_22			
		c	vss		A V S_12 S_2	SIO_SPI_	SIO_SPI_ 1_RXD			SIO_SPI_ O_RXD		O_TXD SIO_SPI_ O_FS1		RXD PMC_SPI TXD			IP_N VSS		P M IC_12C _SCL		RSVD	
Н	AVS_I2S 1_BCLK	AVS_1251	1.32		A V S_12S 2 _B C L K	1_TX0	1_RXD			0_RXD		0_FS1		TXD		NCTF	+ 53		_SCL		RSVD	
G	VSS	AVS_I2S1 _M CLK	SIO_SPI_ 1_FS1			SIO_SPI_		vss		SIO_SPI_		SIO_SPI_ O_FSO		VSS		GP10_22	PMIC_I2C		vss		VSS	
F		SIO_SPI_ 2_CLK SIO_SPI_ 2_TXD	1_F51		v s s	1_CLK		V S S				O_FSO PMC_SPI _CLK		vcc_vcc		vcc_vcg	_SDA		vcc_vca		vcc_vca	
E	N CTF	2_TXD	SIO_SPI_		S10_SP1_			2_FS1		v s s		CIK				1	PROCHO T_N		1			
D		SIO_SPI_	2_FS0		2_FS2	v s s	FST_SPI	FST_SPI_ CLK	USB2_OC	DDI1 DD	PN L1_BK	PNL1_VD	MIPI_I2C _SCL	GP10_20	00000	VSS	PNLO VD	PN LO BK	LPSS_UA	LPSS_UA RTO_CTS_	LPSS_UA RT1_RXD	LPSS_UA RT1_CTS
С	N CTF VSS	SIO_SPI_ 2_RXD VSS	FST_SPI I	FST_SPI I		FST_SPI_ MISO_IO		CIK	1_N USB2_OC	DDI1_DD C_SDA		PNL1_VD DEN	_SCL	0	DDIO_DD C_SDA DDIO_DD	133	PNLO_VD DEN PNLO_BK	LTCTL	LPSS_UA RTO_RXD	N		N
В	- 43		FST_SPI_I O3	FST_SPI_I O 2		FST_SPI_ M OSI_IO	FST_SPI_ CSO_N		0_N	DDI1_DD C_SCL	PN L1_BK LTEN		MIPI_I2C _SDA		D D 10_D D C_SCL		PNLO_BK LTEN	LPSS_UA RTO_RTS_	LPSS_UA RTO_TXD		LPSS_UA RT1_TXD	LPSS_UA RT1_RTS

Figure 6-2. Ball Map DDR3L—Center (41-20)

Figure 6-3. Ball Map DDR3L—Right (19-1)

6.2 SoC Ball Map—LPDDR3

Figure 6-4. Ball Map LPDDR3—Left (63-42)

	63	62	61	60	59	58	57	56	5 5	54	53	52	51	50	49	48	47	46	45	44	43	4 2
J		RSVD	RSVD	VSS		MEM_CH 0_CKE1B		VSS		V SS		MEM_CH O_CAA2		VSS		MEM_CH 0_CAB2		VSS		M EM _CH O_DQB8		MEM_C 0_DQSI
	VSS	vss	MEM_CH 0_CKEOA	MEM_CH O_CKE1A		MEM_CH O_CKEOB	MEM_CH 0_CAA7		MEM_CH 0_CAA6		MEM_CH 0_CAA1		MEM_CH O_CABS		MEM_CH O_CAB6		MEM_CH 0_CAB1		MEM_CH 0_DQB14		VSS	
Н	RSVD	MEM_CH	O_CKEOX	O_CKEIN		O_CKEOB	MEM_CH 0_CAA9	MEM_CH	MEM_CH 0_CAA3	MEM_CH	MEM_CH 0_CAA0	MEM_CH	MEM_CH	MEM_CH	MEM_CH O_CAB8	MEM_CH	MEM_CH	MEM_CH	vss vss	M EM _CH		MEM_C
G	KSVD	0_D Q A 3	VSS		MEM_CH	MEM_CH	0_CAA9	MEM_CH 0_CAA8	0_CAA3	MEM_CH O_CAAS	0_CAAO	MEM_CH O_CAA4	0_CA89	0_CAB7	0_CAB8	0_CAB4	0_CAB3	0_CAB0	¥33	M EM_CH 0_DQB13	MEM_CH 0_DQB12	O_DQSI
F	VSS	MEM_CH	V 3 3		0_DQA19	0_DQA26		MEM_CH		V SS		VSS		MEM_CH		VSS	VSS		MEM_CH O_CLKB_		VSS	<u> </u>
E	MEM_C	MEM_CH 0_DQA2						MEM_CH 0_DQA24				M EM _CH		MEM_CH 0_DQA27		MEM_CH			N MEM CH			<u> </u>
D	HO_DQA	MEM_CH 0_DQA7	vss		MEM_CH 0_DQA18	MEM_CH 0_DQA23		VSS		MEM_CH 0_DQA25		O_DQSA3		MEM_CH 0_DQA28		O_CLKA_ N	NCTF		O_CLKB_ P		NCTF	
С		MEM_CH 0_DQSA0 N																				
В	MEM_C HO_DQS AO P		vss		MEM_CH 0_DQSA2	MEM_CH 0_DQSA2 N	M EM _CH 0_D QA 17			MEM_CH 0_DQA31		M EM_CH O_D QSA3		MEM_CH 0_DQA29		MEM_CH O_CLKA_	NCTF		vss		NCTF	
	VSS	VSS			P	_N						VSS		MEM_CH 0_DQA30		VSS	vss		NCTF		VSS	
A	***	MEM_CH	MEM_CH		MEM_CH	VSS	M EM _CH		MEM_CH 0_DQA21	VSS		****		0_DQA30		133	***		4011		*33	\vdash
Y	MEM_C	0 DQA0 MEM_CH	0 DQA1		0 DQA15	733	0 DQA16		0 DQA21	733				VSS		NCTF	NCTF		NCTF		MEM_CH	
W	HO_DQA 6	0_D Q A S																			0_0 DTA	<u> </u>
٧	MEM C	VSS	VSS		MEM_CH 0_DQA8	MEM_CH 0_DQA11	M EM _CH 0_D QA 12		VSS	MEM_CH 0_DQA20		M EM _ CH 0 _ D Q A 22		VDDQ		NCTF	NCTF		VSS		VSS	
U	HO_DQA	MEM_CH 0_DQA10																				
т		vss	vss		MEM_CH 0_DQSA1	MEM_CH 0_DQSA1	VSS		MEM_CH 0_DQA13	MEM_CH 0_DQA14		VSS	VDDQ			VSS	VDDQ		vss		MEM_CH O_CS1A_	
	LPSS_I2 CO_SCL	LPSS_I2C O_SDA			Р	N											VDDQ		vss		MEM_CH O_CSOA_	
R	CO_SCL	LPSS_I2C	LPSS_I2C		LPSS_I2C	LPSS_I2C 2_SCL	NCTF		VSS	LPSS_I2C 4_SCL		LPSS_I2C	LPSS_I2C S_SCL		LPSS_I2C S_SDA						N	
P N	VSS	7_SDA LPSS_I2C 1_SDA	7_SCL		2_SDA VSS	2_SCL	N CTF V S S	VSS	V 33	4_SCL VSS	VSS	4_SDA	5_SCL VSS	VSS	S_SDA	VSS	VSS	VDDQ		VDDQ		VDDQ
M		LPSS_I2C 3_SDA	LPSS_I2C 1_SCL		NCTF	NCTF	ISH_GPIO		ISH_GPIO 7	ISH_GPIO		ISH_GPIO 8	ISH_GPIO		ISH_GPIO	ISH_GPIO		vss		VNN_SVI		vccio
L	LPSS_I2 C6_SDA	LPSS_I2C 3_SCL					_		-			_				-						
		PCIE_CLK	LPSS_I2C		vss	ISH_GPIO	ISH_GPIO		PMU_PW RBTN_N	PMU_SLP _S4_N		VSS	ISH_GPIO		PMU_AC _PRESEN	vss		VNN_SVI		VNN_SVI		VNN_S
K		REQO_N PCIE CLK	6_SCL			_1	_9		RBTN_N	_S4_N			_2		T							
J	vss																	VNN_SVI D		RSVD		VNN_S D
н					VSS	VSS	VSS		VSS	VSS		VSS	PMU_BA TLOW_N		RTC_TEST _N	VSS						
G	K_OUT_	OSC_CLK			PMU_RC OMP	SUS_STA T_N	PMU_PLT RST_N		WR_EN_	RSVD		R S V D	VCC_RTC _EXTPAD		SOC_PW ROK	VNN_SE NSE		VSS		v ss		vss
F		OSC_CLK _OUT_4	OSC_CLK _OUT_1							N3V D			LXIFAD		NO K							
	VSS	PMU_SU SCLK		OSC_CLK	vss		VSS	vss		v ss	VSS		VSS	vss		vss	vss	VCC_1P8		VCC_1P8		VCC_11
E D		PMU_RST	PMU_SLP	_0 UT_3														V_A		V_A		V_A
	SUSPWR	PMU_SLP	_20_N				RSM_RST		RTC_RST	INTRUDE		SDCARD	SDCARD_		SDCARD_	SDCARD_		VCC_1P8		VCC_1P8		VCC_1
C	DNACK	_S3_N			RTC_X1	RTC_X2	_N		_N	R_N		SDCARD_ CMD	D2		D0	D1 -		V_A		V _A		V_A
В		LPC_SERI RQ	LPC_CLK OUTO		VSS	SDCARD_ CLK	VSS		SDCARD_ LVL_WP	SDCARD_ CD_N		VSS	SDCARD_ D3		N CTF	VSS						
Α	VSS	LPC_CLK OUT1																VCC_1P8 V_A		V C C R T C _ 3P3V		V C C _ 3 I
					VSS	EMMC_C	vss		vss	VSS		VSS	EMMC_C		EMMC_D	vss		vss		VCC_3P3 V_A		vss
	LPC_AD	LPC_AD1	LPC_ADO			LK							M D		5					V_A		
V	3	LPC_AD2																				
		LPC_CLK RUN_N	LPC_FRA ME_N		EMMC_R COMP	EMMC_D 0	EMMC_D 7		EMMC_D 6	EMMC_R CLK		EMMC_D 4	EMMC_D 3		RSVD	RSVD		VCC_3P3 V_A		VCC_3P3 V_A		vss
l	VSS	vss			vss		VSS	VSS		vss	VSS		VSS	VSS		vcc_vcs	vcc_vcg	VCC_VCG		VCC_VCG		vcc_v
		SMB_CLK	SMB_DA TA		EM M C_D 2	EM M C_D 1	SDIO_CM D		SDIO_D3	S D10 _ D 2		S D10_D0	N C T F		vss							
	SMB_AL ERT_N																vcc_vcs		vcc_vcg		VCC_VCG I_SENSE_	
	ERI_N		PCIE_WA		wee	SDIO_CL			wee	AVS_DMI C_CLK_A		AVS_DMI C_CLK_B	SDIO_PW R_DW N_			PMC SPI	GP10_21		wee		wee	
			KE2_N		VSS	K	SDIO_D1		VSS	1	-	1	N N			PMC_SPI _FS1	5		VSS		VSS	<u> </u>
	VSS	PCIE_WA KE3_N																				
1		AVS_I2S3 _BCLK	_W S_SYN C		vss	A V S _ 12 S 2 _ S D O	_W S_SYN C		AVS_DMI C_CLK_A B2	AVS_DMI C_DATA_ 1		AVS_DMI C_DATA_ 2		vss		PMC_SPI _FS2	GPIO_21		MDSI_A_ TE		M D S I_C_ TE	
	A V S_12 S 3_S D O	AVS_12S3 _SD1												VSS		PMC_SPI	GP10_21		vss		vss	
	3_500					AVS 1202										_FSO	4					<u> </u>
		SDO	AVS_12S1 _SDI		AVS_12S2 _SD1	AVS_I2S2 _MCLK	vss		SIO_SPI_ 1_FSO	V SS												<u> </u>
	VSS	A V S_12S1 _W S_SYN C									l	SIO_SPI_ O_TXD	l	PMC_SPI _RXD		VSS	THERMTR IP_N		GPIO_22 4		RSVD	l
	AVS_I2S 1_BCLK		vss		AVS_I2S2 _BCLK	SIO_SPI_ 1_TXD	SIO_SPI_ 1_RXD			SIO_SPI_ O_RXD		SIO_SPI_		PMC_SPI _TXD			vss		PMIC_I2C _SCL			
	1_BCLK	AVS_12S1 _MCLK			BCLK	I_TXD	I_RXD			O_RXD		O_FS1		_TXD		N CTF			_scr		RSVD	
	VSS	SIO_SPI_ 2_CLK			vss	SIO_SPI_ 1_CLK	1	VSS	1	SIO_SPI_ O_CLK	l	SIO_SPI_ 0_FS0	l	VSS		GP10_22 3	PMIC_I2C _SDA	l	VSS		VSS	
		SIO_SPI_ 2_TXD						SIO_SPI_ 2_FS1				PMC_SPI _CLK		vcc_vcs			PROCHO		vcc_vcg		vcc_vcg	
	N CTF	2_TXD	SIO_SPI_		SIO_SPI_	wee.		2_FS1		vss		_CLK					T_N					
		SIO_SPI_	2_FS0		2_132	vss	FST_SPI_	FST_SPI_	USB2_0 C	DDI1_DD	PNL1_BK	PNL1_VD	M IP I_I2 C	GP10_20	0010_00		PNLO_VD	PNLO_BK	LPSS_UA	LPSS_UA RTO_CTS_	LPSS_UA	EPSS_U RT1_CT
	N CTF	2_RXD				FST_SPI_	CS1_N	CTK CTK	1_N	C_SDA	LTCTL	DEN	_SCL	0	C_SDA	VSS	DEN	LTCTL	RTO_RXD	N	RT1_RXD	N
	VSS	vss	FST_SPI_I O3	FST_SPI_I O 2	L	MISO_IO 1	FST_SPI_ CSO_N	L	USB2_OC O_N	<u></u>	PN L1_BK LTEN	L	MIPI_I2C _SDA	L	DDIO_DD C_SCL	L	PN LO_BK LTEN	L_	LPSS_UA RTO_TXD		LPSS_UA RT1_TXD	L
		vss				FST_SPI_ MOSI_IO		VSS		DDI1_DD		VSS		GP10_19		vss		LPSS_UA RTO_RTS_ N		V SS		RT1_RT

Figure 6-5. Ball Map LPDDR3—Middle (41-20)

Figure 6-6. Ball Map LPDDR3—Right (19-1)

Part		19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	:
		MFM C	vss				vss		1_CAAO				VSS		1_CAB3				NCTF	
Martin		11_DQA		1_CKEOB		1_CAA7		1_CAA6		1_CAA4		1_CAB5		1_CAB4			MEM_CH 1_CAB1	MEM_CH 1_CABO		vss
		VSS	MEM_CH 1_CKEOA	MEM_CH 1_CKE1A	MEM_CH 1_CAA9	MEM_CH 1_CAA8	MEM_CH 1_CAA3	MEM_CH 1_CAAS	MEM_CH 1_CAA1	MEM_CH 1_CAA2	MEM_CH 1_CAB9	MEM_CH 1_CAB7	MEM_CH 1_CAB8	MEM_CH 1_CAB6	мем сн	MEM CH			MEM_CH 1_DQB31	NCTF
Marche							мем сн						мем сн		1_DQ80	1_DQB15		VSS	мем сн	
		B_N MEM_C			V 3 3								1_DQ87						1_DQB27	*33
	_ '	H1_CLK B_P		1_CSOA_ N	N CTF				1_DQSB0 _N		1_DQB1		VSS		1_DQ89	1_DQB10		VSS	1_DQB25	1_DQB2
Marcha M																			1_DQSB3	
Martin M		vss		1_CS1A_	N CTF				1 DOSBO					M EM _CH 1_DQB11	1_DQSB1	MEM_CH 1_DQSB1		VSS		1_DQSB
March Marc		NCTF			vss		M EM _CH 1_DQ B4													VSS
				MEM CH							VSS	1_DQB13		1_DQB14	VSS	1_DQB20		1_DQB30	1_DQB24	
		NCTF					VSS												1_DQB29	1_DQB2
		VSS		1_CSOB_ N	MEM_CH 1_ODTB		VDDQ					VSS		M EM _CH 1_D Q B 23	M E M _ C H 1 _ D Q B 2 2	M EM _CH 1_D Q B 21		VSS		
Part															MEM CH	MEM CH			MEM_CH 1_DQB16	MEM_C 1_DQB1
		VSS		VDDQ	vss			VDDQ	vss		M EM_CH 1_D Q B 17	MEM_CH 1_DQB18		vss	1_DQSB2	1_DQSB2 _P		vss		
		VSS		VDDQ		MDSLA		MOCLA	MOSLA		MADELA			MDCLDC	MDCLA	MOSLA		MOSLA	DP 1	MDSI_A DN_1
	-		VODO	vee	Vee		VCC	D N _ 2	DP_0	Vee	DN_0	VSS	vee	OMP		D N _3			CLKP	VEE
				V 55	DDIO_AU	DDIO_AU	V 5 5	M DSI_C_		V 5 5	M D S I_C_		V 3.5	M DSI_C_	MDSI_C_	M DSI_C_			DDIO_TX	
																		1	DDIO_TX	DDIO_TX N_3
			vss					M DSI_C_ DP_3	vss		VSS	VSS		M D S I_C_ D P_0	M D S I_C_ D N _ 0	VSS			DDIO_TX	
			vss																VSS	vss
					vss	vss		USB_SSIC _O_TX_P			EDP_AUX P	EDP_AUX N		VSS	vss	VSS			DD10_TX N_2	
			vss		USB_SSIC	USB_SSIC		vss												
											_								DDI1_TX	
				vss	vss		vss	VSS		VSS	VSS		vss	vss		vss	vss		VSS	vss
			24_#1111															DDI1_TX P 1	DDI1_TX N 1	
			vss		USB2_VB US_SNS	USB2_OT G_ID		NCTF	USB2_DP 6		USB2_DN 6			EDP_TXP	EDP_TXP	EDP_TXN _2			DDI1_TX	DDI1_TX
					vss			NCTE	VSS		VSS	vss		USB2_DN	USB2_DP	vss				
Vector V																		' -3		VSS
Total Tota			SI			USB2 RC		USB2 DP			USB2 DN	USB2 DP						SATA PO		
V.C. V.S.			_1P05_IO		V 3 3	OMP		2	V 55		4	4		V 5 5	V 55	V 55			_TXN SATA P1	SATA_P
No.																			_USB3_P S_TXN	_USB3_F S_TXP
NCTF					USB2_DP 1	USB2_DN 1		USB2_DN 2	USB2_DP 0		USB2_DN 0	USB2_DP 3		U S B 2_D N 3	USB2_DN 7	USB2_DP 7		PCIE_PO_ TXP	PCIE_PO_ TXN	
NCTF			vss	VSS	vss		vss	v ss		VSS	VSS		vss	VSS	SATA DI				VSS	vss
NCTF								VCC_1PO 5_INT	PCIE_P1_ RXN		PCIE_P1_ RXP	SATA_PO _RXP		SATA_PO _RXN	_USB3_P	_USB3_P		PCIE_P2_ TXN		
SECOND STATE SECOND SE	N	CTF		NCTF															TXN	PCIE_P1 TXP
MCSI_CL MCSI_SN MCSI		vss		M CSI_DP	V C C _ 1 P O 5 _ I N T			vss	USB3_P4 _RXP		USB3_P4 _RXN	VSS		PCIE_PO_ RXP		VSS		USB3_P4 _TXP	USB3_P4 _TXN	
MCSI_CL MCSI_SN MCTF																			PCIE_P4_ USB3_P3	vss
		ucsi ci		MCSL DN										PCIE_PS_	PCIE P2	PCIE P2			PCIE_P4_	
VSS	K	(P_0		_0	N CTF		V 3 3		NCTF		NCTF	V 55		_R X N	RXN	RXP		V 5 5	_TXN	PCIE_PS
VSS	K	NCSI_CL		M CSI_DP	N CTF		NCTF												USB3_P2 _TXP	USB3_P: _TXN
VSS														USB3_P2 _RXP	vss	vss			_TXN	
		vss		M C S I_D N _2	N CTF		vss		VSS										USB3_PO _TXN	USB3_P _TXP
	,	MCSI_CL		vss	NCTE		NCTE		NCTE		N CTF			vss	USB3_P3 RXN	USB3_P3 RXP		VSS		
NCTF																			USB3_P1 _RXN	vss
No.											Vee		NCTO		PCIE2_US B3_SATA	PCIE2_US B3_SATA		Vee		
SVID_D SVID_C SVID_CL	K	(N_2		_3	N CTF				NCTF				Well		P_P				_RXP	RSVD
SVIDO_D SVIDO_CL VSS NCTF NCTF NCTF VSS OUTDP OUTDP NCTF NCTF NCTF NCTF NCTF NCTF NCTF NCTF	_	VSS		_3	N CTF		VSS		VSS		NCTF							NCTF		
TAGE SVIDO_AL NCTF NCTF OUTDN VSS PCIE_CLX PCIE_	-	neve-			VSS	N CTS	NOTE	NCTE	V.55	PCIE_CLK	PCIE_CLK	NCTE	NCTF		VŠŠ		NCTF			R S V D
PCIE_CLK PCIE_CLK			M I A	SVIDO AL			WCIF			PCIE_CLK	3011P		PCIE_CLK OUT2N	PCIE_CLK OUT3P		PCIE_CLK	RSVD	VSS		,
			RSVD	ļ -	vss		NCTF		vss		PCIE_CLK OUT1N						RSVD	NCTF		

6.3 SoC Ball Map—LPDDR4

Figure 6-7. Ball Map LPDDR4—Left (63-42)

	63	62	61	60	59	58	57	56	55	54	53		51	50	49	48	47	46	45	44	43	4: MEM (
3 J		RSVD	RSVD	VSS		MEM_CH O_CKE1B		vss		VSS		MEM_CH O_CAA2		vss		MEM_CH O_CAB4		vss		MEM_CH 0_DQB8		O_DQSI
ВН	vss	vss	MEM_CH O_CKEOA	MEM_CH 0_CKE1A		MEM_CH O_CKEOB	MEM_CH O_CAAS		NCTF		MEM_CH O_CAA1		MEM_CH O_CABS		N CTF		MEM_CH O_CAB1		MEM_CH 0_DQB14		vss	
3 G	RSVD	MEM_CH O_DQA3					N CTF	MEM_CH 0_CAA8	MEM_CH O_CAA3	NCTF	MEM_CH O_CAAO	MEM_CH O_CAA4	NCTF	NCTF	N CTF	MEM_CH O_CAB2	MEM_CH O_CAB3	MEM_CH O_CABO	VSS	MEM_CH 0_DQB13	MEM_CH 0_DQB12	MEM_C 0_DQSI
B F			vss		MEM_CH 0 DQA19	MEM_CH 0 DQA26																
B E	VSS	MEM_CH 0_DQA2						MEM_CH 0_DQA24		VSS		VSS		MEM_CH 0_DQA27		vss	VSS		M EM_CH O_CLKB_ N		vss	
3 D	MEM_C HO_DQA 4	MEM_CH 0_DQA7	vss		MEM_CH 0_DQA18	MEM_CH 0_DQA23		VSS		MEM_CH 0_DQA25		MEM_CH O_DQSA3 P		MEM_CH 0_DQA28		MEM_CH O_CLKA_ N	NCTF		M EM_CH O_CLK B_ P		N CTF	
3 C		MEM_CH 0_DQSA0 N																				
ВВ	MEM_C HO_DQS		vss		MEM_CH 0_DQSA2	MEM_CH 0_DQSA2	MEM_CH 0_DQA17			MEM_CH 0_DQA31		MEM_CH 0_DQSA3		MEM_CH 0_DQA29		O_CLKA_ MEM_CH	NCTF		vss		N CTF	
3 A	VSS	VSS			Р	_N						VSS		MEM_CH 0_DQA30		VSS	VSS		NCTF		VSS	
Υ	MEM C	MEM_CH 0_DQA0	MEM_CH 0_DQA1		MEM_CH 0 DQA15	VSS	MEM_CH 0_DQA16		MEM_CH 0_DQA21	V S S												
w	HO_DQA	MEM_CH 0_DQA5												vss		NCTF	NCTF		NCTF		N CTF	
v		VSS	vss		MEM_CH 0_DQA8	MEM_CH 0_DQA11	MEM_CH 0_DQA12		VSS	MEM_CH 0_DQA20		MEM_CH 0_DQA22		VDDQ		NCTF	NCTF		VSS		vss	
υ	MEM_C HO_DQA	MEM_CH 0_DQA10																				
т		vss	vss		MEM_CH 0_DQSA1	MEM_CH 0_DQSA1	vss		MEM_CH 0_DQA13	MEM_CH 0_DQA14		vss	VDDQ			vss	VDDQ		vss		MEM_CH 0_CS1A	
A R	LPSS_I2 CO_SCL	LPSS_I2C 0 SDA															VDDQ		vss		MEM_CH O_CSOA	
P		LPSS_I2C 7_SDA	LPSS_I2C 7_SCL		LPSS_I2C 2_SDA	LPSS_I2C 2_SCL	N CTF		v ss	LPSS_I2C 4_SCL		LPSS_I2C 4_SDA	LPSS_I2C 5_SCL		LPSS_I2C S_SDA							
N	vss	LPSS_I2C 1_SDA LPSS_I2C	LPSS_I2C		VSS		vss	vss		vss	VSS		vss	vss		vss	VSS	VDDQ		VDDQ		VDDC
М	LPSS_12	3_SDA LPSS I2C	1_SCL		NCTF	NCTF	_6		_7	_3		_8	_4		_5	_0		VSS		VNN_SVI D		vccio
\ L	C6_SDA	3_SCL PCIE CLK	LPSS 12C			ISH_GPIO	ISH_GPIO						.cu co.o		PMU_AC _PRESEN			VNN SVI		VNN SVI		VNN S
K		REQO_N	6_SCL		VSS	_1	_9		PMU_PW RBTN_N	PMU_SLP _S4_N		VSS	ISH_GPIO _2		T	VSS		VNN_SVI		VNN_SVI D		V N N _ S
\ J	VSS	PCIE_CLK REQ3_N																VNN_SVI D		RSVD		VNN_S D
Н		PCIE_CLK REQ1_N			VSS	VSS	vss		VSS	vss		vss	PMU_BA TLOW_N		RTC_TEST _N	vss						
G	OSC_CL K_OUT_ 2	OSC_CLK			PMU_RC OMP	SUS_STA T_N	PMU_PLT RST_N		EMMC_P WR_EN_ N	RSV D		RSVD	VCC_RTC EXTPAD		SOC_PW ROK	VNN_SE NSE		vss		vss		vss
F		OSC_CLK _OUT_4	OSC_CLK _OUT_1																			
ΛE	vss	PMU_SU SCLK		OSC_CLK _OUT_3	vss		vss	vss		vss	vss		vss	vss		vss	vss	V C C_1 P 8 V_A		V C C_1 P 8 V_A		VCC_1
A D		PMU_RST BTN_N	PMU_SLP _SO_N																			
A C	SUSPWR DNACK	PMU_SLP _S3_N			RTC_X1	RTC_X2	RSM_RST _N		RTC_RST	INTRUDE R_N		SDCARD_	SDCARD_ D2		SDCARD_	SDCARD_ D1		V C C_1 P 8 V_A		V C C _ 1 P 8 V _ A		VCC_1
A B		LPC_SERI RQ	LPC_CLK OUTO		VSS	SDCARD_	vss		SDCARD_	SDCARD_		vss	SDCARD_		NCTF	vss						
	vss	LPC_CLK	0010			C.L.				CD_#			-					V C C_1 P 8 V_A		VCCRTC_ 3P3V		VCC_3 V_A
A		OUT1			vss	EMMC_C	VSS		VSS	VSS		VSS	ЕММС_С		EMMC_D	VSS		V_A VSS		V C C_3 P 3		V_A VSS
	LPC_AD	LPC_AD1	LPC_ADO			LK							M D		5					V_A		
V	3	LPC_AD2																				
/		LPC_CLK RUN_N	LPC_FRA ME_N		EMMC_R COMP	E M M C _ D 0	E M M C _ D 7		EM M C_D 6	EM M C_R CLK		EMMC_D 4	EMMC_D 3		RSVD	RSVD	VCC VCG	VCC_3P3 V_A VCC_VCG		VCC_3P3 V_A VCC_VCG		VSS VCC_V
J	VSS	VSS	SMB_DA		VSS	EMMC_D	VSS SDIO_CM	VSS		VSS	VSS		VSS	VSS		1	1	1		1		ī
•		SMB_CLK	TA TA		EM M C_D 2	1	D CM		SDIO_D3	SD10_D2		SDIO_DO	N CTF		VSS						vcc_vcg	
ł	SMB_AL ERT_N	PCIE_WA KEO_N								AVS DMI		AVS DMI					VCC_VCG		VCC_VCG		I_SENSE_ N	
,		PCIE_WA KE1_N	PCIE_WA KE2_N		VSS	SDIO_CL K	SDIO_D1		VSS	C_CLK_A		C_CLK_B	R_DWN_ N			PMC_SPI _FS1	GPIO_21 5		vss		vss	
ı	vss	PCIE_WA																				
И		AVS_I2S3 BCLK	A V S_12 S 3 _ W S_SYN		VSS	A V S_12 S 2	AVS_I2S2 _WS_SYN		AVS_DMI	AVS_DMI C_DATA_		AVS_DMI C_DATA_		VSS		PMC_SPI	GPIO_21		MDSI_A_		M D SI_C_	
v1	AVS_12S	AVS_12S3				_SDO	· .		52			2		vss		_FS2 PMC_SPI	3 GPIO_21		VSS		VSS	
	3_SDO	_SDI	A.W.C. 1277		ANG 1377	A V S_12 S 2								+ 33		_FSO	4		+33		+33	
(AVS_I2S1 _SDO AVS_I2S1	SDI		_SDI	_M CLK	vss		SIO_SPI_ 1_FSO	VSS												
		AVS_12S1 _WS_SYN C										SIO_SPI_ O_TXD		PMC_SPI _RXD		VSS	THERMTR IP_N		GP10_22 4		RSVD	
ı	AVS_I2S 1_BCLK		VSS		AVS_I2S2 _BCLK	SIO_SPI_ 1_TXD	SIO_SPI_ 1_RXD			SIO_SPI_ O_RXD		SIO_SPI_ O_FS1		PMC_SPI _TXD		NCTF	vss		PMIC_I2C _SCL		RSVD	
ì		AVS_I2S1 _MCLK																				
	vss	SIO_SPI_	SIO_SPI_ 1_FS1			SIO_SPI_	1	vss		SIO_SPI_		SIO_SPI_ O_FSO		vss		GP10_22	PMIC_I2C		vss		vss	
:		2_CLK			VSS	1_CLK		SID COL		0_CLK		O_FSO PMC_SPI		vcc_vcG		3	PROCHO		vcc_vcg		vcc_vcg	
	NCTF	SIO_SPI_ 2_TXD	SIO_SPI_		SIO_SPI_			SIO_SPI_ 2_FS1		vss		CLK		1		1	T_N		1		1	
)		SIO SEL	2_FS0 _		2_FS2 -	v ss	EST CD:	CCT CD.	USB2_OC	DDII DO	PNL1_BK	DNI1 VO	MIDI 125	GP10_20	DDIO DO		DNIO VO	DNIO 8*	1000 114	LPSS_UA RTO_CTS_	1000 114	LPSS_U RT1_CT
:	N CTF	SIO_SPI_ 2_RXD				FST_SPI_	FST_SPI_ CS1_N	FST_SPI_ CLK		DDI1_DD C_SDA	LTCTL	DEN	MIPI_I2C _SCL		DDIO_DD C_SDA	VSS	PN LO_V D DEN	PN LO_BK LTCTL	LPSS_UA RTO_RXD	N CIS_	LPSS_UA RT1_RXD	N .
3	vss	VSS	FST_SPI_I O3	FST_SPI_I O 2		M ISO _IO 1	FST_SPI_ CSO_N		USB2_OC 0_N		PNL1_BK LTEN		MIPI_I2C _SDA		DDIO_DD C_SCL		PN LO_BK LTEN		LPSS_UA RTO_TXD		LPSS_UA RT1_TXD	100
١.		VSS	N CTF	N CTF	1	FST_SPI_ MOSI_IO 0	1	vss		DDI1_DD C_SCL		vss	l	GPIO_19		vss		LPSS_UA RTO_RTS_ N		vss		LPSS_U RT1_RT N

Figure 6-8. Ball Map LPDDR4—Middle (41-20)

	41	40	39	38	37	36	35	34	33	32	31		29	28	27	26	25	24	23	22 MEM CH	21	20
ВJ		MEM_CH 0_DQB11		MEM_CH 0_DQB24		vss		MEM_CH 0_DQB31		VSS		MEM_CH 1_DQA7		vss		MEM_CH 1_DQA0		MEM_CH 1_DQA19		MEM_CH 1_DQSA2 _P		MEM_CH 1_DQA17
вн	MEM_C HO_DQB 15		VSS		MEM_CH 0_DQB29		MEM_CH 0_DQSB3 _N		MEM_CH 0_DQB27		MEM_CH 1_DQA2		MEM_CH 1_DQSA0 _N		MEM_CH 1_DQA4		vss		MEM_CH 1_DQA18		vss	
ВG	vss	MEM_CH 0_DQB10	MEM_CH 0_DQB9	MEM_CH 0_DQB28	MEM_CH 0_DQB30	MEM_CH 0_DQSB3 P	vss	MEM_CH 0_DQB25	MEM_CH 0_DQB26	vss	MEM_CH 1_DQA3	MEM_CH 1_DQA1	vss			MEM_CH 1_DQA6			VSS	MEM_CH 1_DQSA2 N	MEM_CH 1_DQA21	MEM_CH 1_DQA20
BF			MEM CH					мем сн		VSS		мем_сн					MEM CH					
BE	NCTF		O_DQB21 MEM_CH		VSS MEM CH		VSS MEM_CH	0_DQB17				1_DQA10	VSS MEM_CH		VSS MEM CH		1_DQA12 MEM_CH		NCTF		VSS MEM_CH	
B D B C	NCTF		0_DQB22		0_DQB19		0_DQSB2 _N	MEM_CH 0_DQB18		vss		1_DQA11	1_DQSA1		1_DQA15		1_DQA14		NCTF		1_CLKA_ N	
вв	MEM_C H0_CS0 B MEM_C		VSS		MEM_CH 0_DQB20		MEM_CH 0_DQSB2 _P	MEM_CH 0_DQB23				MEM_CH 1_DQA9	MEM_CH 1_DQSA1 _N		MEM_CH 1_DQA13		VSS		NCTF		MEM_CH 1_CLKA_ P	
ВА	HO_CS1		VSS		VSS		VSS	MEM_CH 0_DQB16		VSS		MEM_CH 1_DQA8	VSS		VSS		VSS		NCTF		VSS	
AY	NCTF		MEM_CH 0_DQSB0		мем_сн		мем_сн	vss		VSS		vss	MEM_CH		мем_сн		MEM_CH 1_DQSA3		NCTF		NCTF	
AW	VSS		_N MEM_CH 0_DQSB0		0_DQB2		0_DQB7	MEM_CH 0_RCOM		vss		MEM_CH 1_RCOM	1_DQA25 VSS		1_DQA31 MEM_CH 1 DQA28		_N MEM_CH 1_DQSA3		VSS		vss	
AV AU			_P		0_DQB1			Р		vss		Р			1_DQA28		_P					
ΑT	MEM_C HO_DQB 5		VSS		MEM_CH 0_DQB4		vss	NCTF				NCTF	vss		MEM_CH 1_DQA24		vss		MEM_CH 1_DQA27		NCTF	
AR	MEM_C HO_DQB		MEM_CH 0_DQB0		MEM_CH 0_DQB3		NCTF	MEM_CH O_RESET_ N		vss		MEM_CH 1_RESET_ N	NCTF		MEM_CH 1_DQA26		MEM_CH 1_DQA29		MEM_CH 1_DQA30		NCTF	
AP																						
AN AM	VDD Q VCCIO A		VSS		VSS VDD2_1P 24_GLM	vss		vss		RSV D		VSS VCC_VCG		VSS VDD2_1P 24_GLM	vss		VSS		VDDQ	VDDQ		VDDQ VDD2_1P 24_GLM
ΑL																				VDD2 1P		
ΑK	VNN_SV ID		VNN_SVI		VNN_SVI D	VSS		vcc_vcg I		vcc_vcg I		vcc_vcg I		VCC_VCG	VSS		VCC_3P3 V_A			24_AUD_ ISH_PLL VDD2_1P		VDD2_1P 24_GLM VDD2_1P
ΑJ	VNN_SV ID		VNN_SVI D		VNN_SVI D	VSS		VSS		vcc_vcg I		VCC_VCG		VCC_VCG	VSS		VCC_3P3 V_A		VSS	24_AUD_ ISH_PLL		24_AUD_ ISH_PLL
AH	VSS		VSS		vss	vcc_vcg		vss		vcc_vcg		vcc_vcg		vcc_vcg	VSS		VCC_1P8			VDD2_1P		VDD2_1P
AG AF						1				- 1		'		'			V_A			24_MPHY		24_USB2
ΑE	vss		VSS		vcc_vcg	VCC_VCG		vss		vcc_vcg		vcc_vcg I		vcc_vcg	vss		VCCRAM _1P05		VSS	VDD2_1P 24_MPHY		VDD2_1P 24_MPHY
ΑD																						
AC	VCC_3P 3V_A		VSS		VCC_VCG	VCC_VCG		VSS		vcc_vcg I		VCC_VCG		VCC_VCG	VSS		VCCRAM _1P05		VCCRAM _1P05_IO	RSVD		RSVD
AB	VSS		vcc_vce		vcc_vcG	vcc_vcg		vss		vcc_vcg		vcc_vcg		vcc_vcg	VSS		VCCRAM		VCCRAM			VDD2_1P 24_DSI_C
AA 	vcc_vc		vcc_vcg		vcc_vcg	vcc_vcg		vss		vcc_vcg		vcc_vcg		vcc_vcg	vss		_1P05 VCCRAM		_1P05_IO	_1P05_10		VCCRAM
Y W	GI		'		'					'		'					_1P05		_1P05			_1P05_IO
v	VCC_VC GI		vcc_vcg		1	VCC_VCG		vss		vcc_vcg I		VCC_VCG		VCC_VCG	vss		VCCRAM _1P05		VCCRAM _1P05	_1P05		vss
U T	VCC_VC GI		vcc_vcg		VCC_VCG	VCC_VCG		VSS		vcc_vcg I		VCC_VCG		VCC_VCG	VSS		VCCRAM _1P05		VCCRAM _1P05	_1POS		VCCRAM _1P05
R	VCC_VC GI_SENS E P		NCTF		NCTF		GP_CAM ERASB6	GP_CAM ERASB10		vss		NCTF	VSS		OSCIN		NCTF		VSS		MCSI_DN	
n P					VSS		VSS	GP_CAM				GPIO_21	0005						MCSI_RX _DATA0_		MCSI_DP	
P N	vss		NCTF					ERASB1		vss		ь	OSCOUT		NCTF		NCTF		N		_1	
м	LPSS_U ART2_C TS_N		NCTF		GP_CAM ERASB4		GP_CAM ERASB9	GP_CAM ERASB8		vss		GPIO_21 8	GPIO_21 7		vss		MCSI_RX _DATA2_ P		MCSI_RX _DATA0_ P		vss	
L	LPSS_U ART2_R TS_N		GPIO_10		GP_CAM ERASBO		vss	GP_CAM ERASB7				EMMC_R ST_N	VSS		VSS		MCSI_RX _DATA2_ N		MCSI_RX _CLK0_P		vss	
K	LPSS U									VSS							MCSI_RX				MCSI RX	
J	ART2_R XD LPSS_U		GPIO_18		vss		vss	GP_CAM ERASB2		VSS		vss	NCTF		VSS MCSI_DP		_DATA3_ N		MCSI_RX _CLK0_N		_DATA1_ P	
н	ART2_T XD		GPIO_7		vss		GPIO_29	GPIO_31				GP_CAM ERASB3	vss		MCSI_DP HY1.1_RC OMP		MCSI_RX _DATA3_ P		vss		MCSI_RX _DATA1_ N	
G										VSS			WCC		MCSI_DP							
F	PWM2		GPIO_15		VSS		GPIO_32			VSS		GP_CAM ERASB5	1		HY1.2_RC OMP		MCSI_RX _CLK1_P		NCTF		VSS PCIE_REF	
E	PWM3		GPIO_12		vcc_vcG		vcc_vcg	GPIO_RC OMP				GP_CAM ERASB11	VCC_VCG		VSS		MCSI_RX _CLK1_N		NCTF		_CLK_RC OMP	
D C	PWM1	vss	GPIO_2	GPIO 14	GPIO_30	GPIO 16	GPIO 17	GPIO 11	GPIO 19	vss	GPIO 26	GPIO_13	GPIO 27	vss	GPIO 25	GPIO_21	GPIO 24	JTAG_TR ST_N	JTAG_TM S	JTAG_TDI	JTAG_PR DY N	JTAG_PR EQ_N
В	PWM0		GPIO_3		GPIO_28		GPIO_4		GPIO_1		GPIO_6		GPIO_8		GPIO_20		GPIO_23		JTAG_TC K		JTAGX	
Α		vss		GPIO_0		vss		GPIO_5		VSS		GPIO_9		VSS		GPIO_22		VSS		JTAG_TD O		VSS

Figure 6-9. Ball Map LPDDR4—Right (19-1)

ВΙ	19	18	17	16 MEM_CH	15	14	13	12 MEM_CH	11	10	9	8	7	6 MEM_CH	5	4	3	2	
BJ	MEM_C H1_DQA	VSS	мем_сн	1_CKE1B	MEM_CH	VSS	N C T F	1_CAA1	мем_сн	VSS	мем_сн	VSS		1_CAB3 MEM_CH			RSVD MEM_CH	N C T F	VSS
BH	22	MEM_CH	1_CKEOB MEM_CH		1_CAA5	M EM _CH		MEM_CH	1_CAA4 MEM_CH		1_CAB5			1_CAB4		1_CAB1	1_CAB0	MEM_CH	
B G B F	VSS	1_CKEOA	1_CKE1A	NCTF	NCTF	1_CAA3	NCTF	1_CAAO	1_CAA2	N CTF	NCTF	NCTF	N CTF		MEM_CH		VSS	1_DQB31	NCT
	MEM_C H1_CLK		VSS	VSS		MEM_CH		vss		VSS		MEM_CH 1_DQB7		1_DQB0	1_DQB15			MEM_CH 1 DQB27	vss
B E B D	B_N MEM_C H1_CLK B_P		MEM_CH 1_CSOA	N C T F		1_DQB2 MEM_CH 1_DQB6		MEM_CH 1_DQSB0 N		MEM_CH 1_DQB1		VSS VSS		MEM_CH 1_DQB9	M EM_CH 1_D Q B 10		VSS	MEM_CH 1_DQB25	MEM
вс								MEM_CH										MEM_CH 1_DQSB3 _P	MEM_
ВВ	VSS		MEM_CH 1_CS1A	N C T F		M EM _CH 1_DQB5		1_DQSB0 _P		MEM_CH 1_DQB3			M EM _CH 1_DQB11	1_DQSB1	MEM_CH 1_DQSB1 P		VSS		1_DQS _N
ВА	NCTF		VSS	VSS		M EM _CH 1_DQB4		v s s										VSS	VSS
AY		1	MEM_CH	NCTF		VSS				VSS	MEM_CH 1_DQB13		MEM_CH 1_DQB14	VSS	MEM_CH 1_DQB20		1_DQB30	MEM_CH 1_DQB24 MEM_CH	
A W A V	NCTF		1_CS1B MEM_CH	NCTF		VDDQ		MEM_CH		мем_сн	VSS		MEM_CH	MEM_CH	M EM_CH		VSS	1_DQB29 VSS	
ΑU			1_CS0B					1_DQ88		1_DQ812			1_DQB23	1_DQB22	1_DQB21			MEM_CH 1_DQB16	MEM_
ΑТ	vss		VDDQ	vss			VDDQ	vss		MEM_CH	MEM_CH 1_DQB18		vss	MEM_CH 1_DQSB2	1_DQSB2		VSS	vss	
AR	VSS		VDDQ											_N	_P			MDSI_A_ DP_1	M D S I_
ΑP					MDSI_A_ DP_2		MDSI_A_ DN_2	MDSI_A_ DP_0		MDSI_A_ DN_0	VSS		M D S I_R C O M P	MDSI_A_ DP_3	M DSI_A_ DN_3		M D S I_A_ CLK N	MDSI_A_ CLKP	D.N
AN		VDDQ	VSS	VSS DDIO_AU	DDIO AU	VSS	V SS M D SI_C_		vss	VSS MDSI_C_	M D S I C	VSS	VSS MDSLC	M D S I_C_	VSS		DDIO TX	VSS DDIO_TX	VSS
AM		VSS		ХP	XN		D N _ 3	DP_2		DN_2	CLKP		CLKN	DN_1	DP_1		P_1	N_1 DDIO_TX	DDI0_T
A L		VSS		DDI1_AU	DDI1_AU		MDSI_C_	VSS		VSS	VSS		MDSI_C_	MDSI_C_	vss		DDIO_TX	P_3 DDIO_TX	N_3
A K A J		VSS		XP	XN		DP_3	VSS		VSS	VSS		DP_0	DN_0	VSS		P_0	N_0 VSS	VSS
				VSS	VSS		USB_SSIC	USB_SSIC		EDP_AUX	EDP_AUX		VSS	VSS	vss		DDIO_TX		
АН							_0_TX_P	_0_TX_N		Р	N							N _2	_
A G		VSS		USB_SSIC _O_RX_P	USB_SSIC _O_RX_N		VSS	EDP_TXP _1		EDP_TXN	EDP_TXN _0		EDP_TXP	MP_P	MP_N			DDIO_RC OMP_N	OMP_F
ΑF																	DDI1_TX N_0	P_0	
ΑE		V D D 2_1P 24_M P H Y	VSS	VSS		VSS	v ss		VSS	VSS		VSS	VSS		VSS	VSS		VSS	VSS
A D																	DDI1_TX P_1		
A C		VSS		US_SNS	G_ID		NCTF	05BZ_DP		6	EDP_TXN		_3	EDP_TXP _2	_2			DDI1_TX N_2	DDI1_T P_2
ΑВ				VSS	USB_SSIC _RCOMP		NCTF	vss		VSS	VSS		U S B 2_D N 5	USB2_DP 5	vss		DDI1_TX P_3	DDI1_TX N_3	
AA		V D D 2_1P 24_D S I_C																VSS	vss
		V C C R A M		VSS	USB2_RC		USB2_DP	VSS		USB2 DN	USB2_DP		VSS	VSS	VSS		SATA PO	SATA_PO	
Υ		_1P05_IO			OMP		2	133		4	4		***	• 55			_TXP	_TXN SATA P1	SATA_
w																		_USB3_P S_TXN	_USB3_ S_TXP
v		VCCRAM _1P05_IO		USB2_DP 1	USB2_DN 1		USB2_DN 2	USB2_DP 0		USB2_DN 0	USB2_DP 3		USB2_DN 3	USB2_DN 7	USB2_DP 7		PCIE_PO_ TXP	PCIE_PO_ TXN	
U		VSS	VSS	VSS		vss	v ss		vss	VSS		VSS	VSS		vss			VSS	vss
т					VCC_1PO 5_INT		VCC_1PO S_INT	PCIE_P1_ RXN		PCIE_P1_	SATA_PO RXP		SATA_PO	SATA_P1 _USB3_P 5_RXN	SATA_P1 _USB3_P 5_RXP		PCIE_P2_ TXN	PCIE_P2_ TXP	
R	N CTF		N C T F															PCIE_P1_ TXN	PCIE_P TXP
P	vss		MCSI_DP	VCC_1PO			VSS	PCIE_P3_ USB3_P4		PCIE_P3_ USB3_P4	VSS		PCIE_PO_	PCIE_PO_	vss			PCIE_P3_ USB3_P4	
Р			_0	5_IN T				_R X P		_RXN			RXP	RXN			_TXP	_TXN PCIE_P4_ USB3_P3	
N													PCIE PS					_TXP PCIE_P4_	VSS
М	M CSI_CL KP_0		M CSI_D N _0	N CTF		VSS		NCTF		N CTF	VSS		USB3_P2 _RXN	PCIE_P2_ RXN	PCIE_P2_ RXP		VSS	USB3_P3 _TXN	L
L	MCSI_CL		MCSI_DP	NCTE		NCTE												PCIE_PS_ USB3_P2 TXP	PCIE_P USB3_I
				,,,,,						USB3 PA	USB3_P0		P C I E _ P S _ U S B,3 - P,2	VSS	vss		USB3 P.1	USB3_P1	
K			MCSI_DN			w.		wee		_RXN	_RXP		RXP	¥ 55	¥33		_TXP	_TXN USB3_P0 _TXN	USB3_I
J	VSS		_2	N CTF		VSS		VSS						PCIE_P4_	PCIE_P4_			_TXN	_TXP
н	M CSI_CL KP_2		VSS	N CTF		N C T F		NCTF		N CTF			VSS	USB3_P3 _RXN	USB3_P3 _RXP		VSS	11502 0	
G														PCIE2 445	PCIE2 IFE			_RXN	VSS
_	M CSI_CL		M CSI_DP							VSS		NCTF		B3_SATA 3_RCOM	B3_SATA 3_RCOM		VSS	USB3_P1	
F	K N _ 2		_3 MCSI_DN	N CTF	-	NCTF		NCTF		NCTF		NCTF	-	P_P	P_N	VSS	NCTO	_RXP	RSVD
E D	VSS		_3	NCTF		VSS		VSS		NCTF		NCTF	<u> </u>	N C T F		NCTF	NCTF	NCTF	RSVD
	RSVD	SVIDO_D ATA	SVIDO_CL	VSS	N CTF	NCTF	NCTF	v s s	PCIE_CLK OUTOP	PCIE_CLK OUT1P	NCTF							NCTF	RSV
В	JTAG_P MODE		SVIDO_AL ERT_B		N CTF		NCTF		PCIE_CLK OUTON		vss	PCIE_CLK OUT2N	PCIE_CLK OUT3P		PCIE_CLK OUT3N	RSVD	VSS	VSS	
Α		R S V D		VSS		N C T F		v s s		PCIE_CLK OUT1N	VSS		PCIE_CLK OUT2P		vss	RSVD	N CTF		

6.4 SoC Pin List Numbers and Locations—DDR3L, LPDDR3, LPDDR4

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 1 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BB48	MEM_CH0_CLK1_P	MEM_CH0_CLKA_P	MEM_CH0_CLKA_P
BD48	MEM_CH0_CLK1_N	MEM_CH0_CLKA_N	MEM_CH0_CLKA_N
BD45	MEM_CH0_CLK0_P	MEM_CH0_CLKB_P	MEM_CH0_CLKB_P
BE45	MEM_CH0_CLK0_N	MEM_CH0_CLKB_N	MEM_CH0_CLKB_N
BB21	MEM_CH1_CLK1_P	MEM_CH1_CLKA_P	MEM_CH1_CLKA_P
BD21	MEM_CH1_CLK1_N	MEM_CH1_CLKA_N	MEM_CH1_CLKA_N
BD19	MEM_CH1_CLK0_P	MEM_CH1_CLKB_P	MEM_CH1_CLKB_P
BE19	MEM_CH1_CLK0_N	MEM_CH1_CLKB_N	MEM_CH1_CLKB_N
AR43	MEM_CH0_CS0_N	MEM_CH0_CS0A_N	MEM_CH0_CS0A
AT43	NCTF	MEM_CH0_CS1A_N	MEM_CH0_CS1A
BB41	NCTF	MEM_CH0_CS0B_N	MEM_CH0_CS0B
BA41	MEM_CH0_CS1_N	MEM_CH0_CS1B_N	MEM_CH0_CS1B
AW43	MEM_CH0_ODT0	MEM_CH0_ODTA	NCTF
AW41	MEM_CH0_ODT1	MEM_CH0_ODTB	NCTF
BH61	MEM_CH0_CKE0	MEM_CH0_CKE0A	MEM_CH0_CKE0A
BH60	MEM_CH0_CKE1	MEM_CH0_CKE1A	MEM_CH0_CKE1A
BH58	NCTF	MEM_CH0_CKE0B	MEM_CH0_CKE0B
BJ58	NCTF	MEM_CH0_CKE1B	MEM_CH0_CKE1B
BD17	MEM_CH1_CS0_N	MEM_CH1_CS0A_N	MEM_CH1_CS0A
BB17	NCTF	MEM_CH1_CS1A_N	MEM_CH1_CS1A
AV17	NCTF	MEM_CH1_CS0B_N	MEM_CH1_CS0B
AW17	MEM_CH1_CS1_N	MEM_CH1_CS1B_N	MEM_CH1_CS1B
AW16	MEM_CH1_ODT0	MEM_CH1_ODTA	NCTF
AV16	MEM_CH1_ODT1	MEM_CH1_ODTB	NCTF
BG18	MEM_CH1_CKE0	MEM_CH1_CKE0A	MEM_CH1_CKE0A
BG17	MEM_CH1_CKE1	MEM_CH1_CKE1A	MEM_CH1_CKE1A
BH17	NCTF	MEM_CH1_CKE0B	MEM_CH1_CKE0B
BJ16	NCTF	MEM_CH1_CKE1B	MEM_CH1_CKE1B
BJ52	MEM_CH0_MA5	MEM_CH0_CAA2	MEM_CH0_CAA2
BH53	MEM_CH0_MA8	MEM_CH0_CAA1	MEM_CH0_CAA0
BG53	MEM_CH0_MA6	MEM_CH0_CAA0	MEM_CH0_CAA1
BG54	MEM_CH0_MA12	MEM_CH0_CAA5	NCTF
BG52	MEM_CH0_MA9	MEM_CH0_CAA4	MEM_CH0_CAA4
BG55	MEM_CH0_MA7	MEM_CH0_CAA3	MEM_CH0_CAA3

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 2 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BE41	MEM_CH0_MA4	NCTF	NCTF
BG56	MEM_CH0_MA14	MEM_CH0_CAA8	NCTF
BH57	MEM_CH0_BA2	MEM_CH0_CAA7	MEM_CH0_CAA5
BH55	MEM_CH0_MA11	MEM_CH0_CAA6	NCTF
BG57	MEM_CH0_MA15	MEM_CH0_CAA9	NCTF
BG11	MEM_CH1_MA5	MEM_CH1_CAA2	MEM_CH1_CAA2
BG12	MEM_CH1_MA8	MEM_CH1_CAA1	MEM_CH1_CAA0
BJ12	MEM_CH1_MA6	MEM_CH1_CAA0	MEM_CH1_CAA1
BG13	MEM_CH1_MA12	MEM_CH1_CAA5	NCTF
BH11	MEM_CH1_MA9	MEM_CH1_CAA4	MEM_CH1_CAA4
BG14	MEM_CH1_MA7	MEM_CH1_CAA3	MEM_CH1_CAA3
BB16	MEM_CH1_MA4	NCTF	NCTF
BG15	MEM_CH1_MA14	MEM_CH1_CAA8	NCTF
BH15	MEM_CH1_BA2	MEM_CH1_CAA7	MEM_CH1_CAA5
BH13	MEM_CH1_MA11	MEM_CH1_CAA6	NCTF
BG16	MEM_CH1_MA15	MEM_CH1_CAA9	NCTF
BJ48	MEM_CH0_BA0	MEM_CH0_CAB2	MEM_CH0_CAB4
BG47	MEM_CH0_RAS_N	MEM_CH0_CAB3	MEM_CH0_CAB3
BH51	MEM_CH0_MA2	MEM_CH0_CAB5	MEM_CH0_CAB5
BG50	MEM_CH0_MA0	MEM_CH0_CAB7	NCTF
BH49	MEM_CH0_MA10	MEM_CH0_CAB6	NCTF
BG49	MEM_CH0_BA1	MEM_CH0_CAB8	NCTF
BD41	MEM_CH0_MA3	NCTF	NCTF
BG51	MEM_CH0_MA1	MEM_CH0_CAB9	NCTF
BH47	MEM_CH0_CAS_N	MEM_CH0_CAB1	MEM_CH0_CAB1
BG48	MEM_CH0_WE_N	MEM_CH0_CAB4	MEM_CH0_CAB2
BG46	MEM_CH0_MA13	MEM_CH0_CAB0	MEM_CH0_CAB0
BH6	MEM_CH1_BA0	MEM_CH1_CAB2	MEM_CH1_CAB4
ВЈ6	MEM_CH1_RAS_N	MEM_CH1_CAB3	MEM_CH1_CAB3
ВН9	MEM_CH1_MA2	MEM_CH1_CAB5	MEM_CH1_CAB5
BG9	MEM_CH1_MA0	MEM_CH1_CAB7	NCTF
BG7	MEM_CH1_MA10	MEM_CH1_CAB6	NCTF
BG8	MEM_CH1_BA1	MEM_CH1_CAB8	NCTF
BD16	MEM_CH1_MA3	NCTF	NCTF
BG10	MEM_CH1_MA1	MEM_CH1_CAB9	NCTF
BH4	MEM_CH1_CAS_N	MEM_CH1_CAB1	MEM_CH1_CAB1
BH7	MEM_CH1_WE_N	MEM_CH1_CAB4	MEM_CH1_CAB2

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 3 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
ВН3	MEM_CH1_MA13	MEM_CH1_CAB0	MEM_CH1_CAB0
AR35	MEM_CH0_VREFCA	MEM_CH0_VREFCA	NCTF
AR29	MEM_CH1_VREFCA	MEM_CH1_VREFCA	NCTF
AT34	MEM_CH0_VREFDQ	MEM_CH0_VREFDQ	NCTF
AT30	MEM_CH1_VREFDQ	MEM_CH1_VREFDQ	NCTF
AR34	MEM_CH0_RESET_N	NCTF	MEM_CH0_RESET_N
AR30	MEM_CH1_RESET_N	NCTF	MEM_CH1_RESET_N
AV34	MEM_CH0_RCOMP	MEM_CH0_RCOMP	MEM_CH0_RCOMP
AV30	MEM_CH1_RCOMP	MEM_CH1_RCOMP	MEM_CH1_RCOMP
AY62	MEM_CH0_DQ0	MEM_CH0_DQA0	MEM_CH0_DQA0
AY61	MEM_CH0_DQ1	MEM_CH0_DQA1	MEM_CH0_DQA1
BE62	MEM_CH0_DQ2	MEM_CH0_DQA2	MEM_CH0_DQA2
BG62	MEM_CH0_DQ3	MEM_CH0_DQA3	MEM_CH0_DQA3
BD63	MEM_CH0_DQ4	MEM_CH0_DQA4	MEM_CH0_DQA4
AW62	MEM_CH0_DQ5	MEM_CH0_DQA5	MEM_CH0_DQA5
AW63	MEM_CH0_DQ6	MEM_CH0_DQA6	MEM_CH0_DQA6
BD62	MEM_CH0_DQ7	MEM_CH0_DQA7	MEM_CH0_DQA7
AV59	MEM_CH0_DQ8	MEM_CH0_DQA8	MEM_CH0_DQA8
AU63	MEM_CH0_DQ9	MEM_CH0_DQA9	MEM_CH0_DQA9
AU62	MEM_CH0_DQ10	MEM_CH0_DQA10	MEM_CH0_DQA10
AV58	MEM_CH0_DQ11	MEM_CH0_DQA11	MEM_CH0_DQA11
AV57	MEM_CH0_DQ12	MEM_CH0_DQA12	MEM_CH0_DQA12
AT55	MEM_CH0_DQ13	MEM_CH0_DQA13	MEM_CH0_DQA13
AT54	MEM_CH0_DQ14	MEM_CH0_DQA14	MEM_CH0_DQA14
AY59	MEM_CH0_DQ15	MEM_CH0_DQA15	MEM_CH0_DQA15
AY57	MEM_CH0_DQ16	MEM_CH0_DQA16	MEM_CH0_DQA16
BB57	MEM_CH0_DQ17	MEM_CH0_DQA17	MEM_CH0_DQA17
BD59	MEM_CH0_DQ18	MEM_CH0_DQA18	MEM_CH0_DQA18
BF59	MEM_CH0_DQ19	MEM_CH0_DQA19	MEM_CH0_DQA19
AV54	MEM_CH0_DQ20	MEM_CH0_DQA20	MEM_CH0_DQA20
AY55	MEM_CH0_DQ21	MEM_CH0_DQA21	MEM_CH0_DQA21
AV52	MEM_CH0_DQ22	MEM_CH0_DQA22	MEM_CH0_DQA22
BD58	MEM_CH0_DQ23	MEM_CH0_DQA23	MEM_CH0_DQA23
BE56	MEM_CH0_DQ24	MEM_CH0_DQA24	MEM_CH0_DQA24
BD54	MEM_CH0_DQ25	MEM_CH0_DQA25	MEM_CH0_DQA25
BF58	MEM_CH0_DQ26	MEM_CH0_DQA26	MEM_CH0_DQA26
BE50	MEM_CH0_DQ27	MEM_CH0_DQA27	MEM_CH0_DQA27

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 4 of 36)

BD50 MEM_CHO_DQ28 MEM_CHO_DQ29 MEM_CHO_DQ29 MEM_CHO_DQ29 MEM_CHO_DQ29 BB50 MEM_CHO_DQ30 MEM_CHO_DQ30 MEM_CHO_DQ30 MEM_CHO_DQ30 BB54 MEM_CHO_DQ31 MEM_CHO_DQ31 MEM_CHO_DQ31 MEM_CHO_DQ31 BB26 MEM_CHI_DQ0 MEM_CHI_DQA0 MEM_CHI_DQA0 MEM_CHI_DQA0 BB30 MEM_CHI_DQ1 MEM_CHI_DQA1 MEM_CHI_DQA1 MEM_CHI_DQA1 BB31 MEM_CHI_DQ2 MEM_CHI_DQA2 MEM_CHI_DQA2 MEM_CHI_DQA3 BB31 MEM_CHI_DQ3 MEM_CHI_DQA3 MEM_CHI_DQA3 MEM_CHI_DQA3 BB27 MEM_CHI_DQ4 MEM_CHI_DQA4 MEM_CHI_DQA4 MEM_CHI_DQA5 BG27 MEM_CHI_DQ6 MEM_CHI_DQA6 MEM_CHI_DQA6 MEM_CHI_DQA6 B330 MEM_CHI_DQ6 MEM_CHI_DQA7 MEM_CHI_DQA7 MEM_CHI_DQA7 B830 MEM_CHI_DQ8 MEM_CHI_DQA9 MEM_CHI_DQA9 MEM_CHI_DQA9 MEM_CHI_DQA9 B830 MEM_CHI_DQ10 MEM_CHI_DQA10 MEM_CHI_DQA10 MEM_CHI_DQA11 MEM_CHI_DQA10 MEM_CHI_DQA11	SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BASO MEM_CHO_DQ30 MEM_CHO_DQ31 MEM_CHO_DQ40 MEM_CHO_DQ40 MEM_CHO_DQ41 MEM_CHO_DQ41 MEM_CHO_DQ41 MEM_CHO_DQ42 MEM_CHO_DQ42 MEM_CHOQ33 MEM_CHOQ33 MEM_CHOQ33 MEM_CHOQ33 MEM_CHOQ33 MEM_CHOQ34 MEM_CHI_DQ44 MEM_CHI_DQ44 MEM_CHI_DQ44 MEM_CHI_DQ45 MEM_CHI_DQ45 MEM_CHI_DQ45 MEM_CHI_DQ45 MEM_CHI_DQ45 MEM_CHI_DQ46 MEM_CHI_DQ46 MEM_CHI_DQ46 MEM_CHI_DQ46 MEM_CHI_DQ46 MEM_CHI_DQ47 MEM_CHI_DQ47 MEM_CHI_DQ47 MEM_CHI_DQ48 MEM_CHI_DQ48 MEM_CHI_DQ48 MEM_CHI_DQ48 MEM_CHI_DQ48 MEM_CHI_DQ49 MEM_CHI_DQ49 MEM_CHI_DQ49 MEM_CHI_DQ49 MEM_CHI_DQ411 MEM_CHI_DQ411 <th< td=""><td>BD50</td><td>MEM_CH0_DQ28</td><td>MEM_CH0_DQA28</td><td>MEM_CH0_DQA28</td></th<>	BD50	MEM_CH0_DQ28	MEM_CH0_DQA28	MEM_CH0_DQA28
BBS4 MEM_CHO_DQ31 MEM_CHO_DQA31 MEM_CHO_DQA31 B326 MEM_CH1_DQ0 MEM_CH1_DQA0 MEM_CH1_DQA0 BG30 MEM_CH1_DQ1 MEM_CH1_DQA1 MEM_CH1_DQA1 BH31 MEM_CH1_DQ2 MEM_CH1_DQA2 MEM_CH1_DQA2 BG31 MEM_CH1_DQ3 MEM_CH1_DQA3 MEM_CH1_DQA3 BH27 MEM_CH1_DQ4 MEM_CH1_DQA5 MEM_CH1_DQA5 BG26 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA6 B330 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7 B330 MEM_CH1_DQ8 MEM_CH1_DQA9 MEM_CH1_DQA9 B630 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 B630 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 B630 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA12 B623 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA12 B623 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA12 B623 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA12 B624 MEM_CH1_DQ13 MEM	BB50	MEM_CH0_DQ29	MEM_CH0_DQA29	MEM_CH0_DQA29
B126 MEM_CH1_DQ0 MEM_CH1_DQA0 MEM_CH1_DQA0 B630 MEM_CH1_DQ1 MEM_CH1_DQA1 MEM_CH1_DQA1 BH31 MEM_CH1_DQ2 MEM_CH1_DQA2 MEM_CH1_DQA2 B631 MEM_CH1_DQ3 MEM_CH1_DQA3 MEM_CH1_DQA3 BH27 MEM_CH1_DQ4 MEM_CH1_DQA4 MEM_CH1_DQA4 B627 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 B626 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7 B330 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA8 B830 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 B830 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 B826 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA10 B830 MEM_CH1_DQ14 MEM_CH1_DQA9 MEM_CH1_DQA99 B830 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA10 B825 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 B826 MEM_CH1_DQ13 MEM_CH1_DQA12 MEM_CH1_DQA13 B927 MEM_CH1_DQ14 MEM_	BA50	MEM_CH0_DQ30	MEM_CH0_DQA30	MEM_CH0_DQA30
B6330 MEM_CH1_DQ1 MEM_CH1_DQA2 MEM_CH1_DQA2 BH31 MEM_CH1_DQ2 MEM_CH1_DQA2 MEM_CH1_DQA2 BG31 MEM_CH1_DQ3 MEM_CH1_DQA3 MEM_CH1_DQA3 BH27 MEM_CH1_DQ4 MEM_CH1_DQA4 MEM_CH1_DQA4 BG27 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 BG26 MEM_CH1_DQ6 MEM_CH1_DQA7 MEM_CH1_DQA7 B330 MEM_CH1_DQ8 MEM_CH1_DQA7 MEM_CH1_DQA8 BB30 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BB25 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA12 MEM_CH1_DQA13 BB27 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA16 BD25 MEM_CH1_DQ15 MEM_CH1_DQA16 MEM_CH1_DQA16 BD27 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BD20 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BD21 MEM_CH1_DQ18 <td< td=""><td>BB54</td><td>MEM_CH0_DQ31</td><td>MEM_CH0_DQA31</td><td>MEM_CH0_DQA31</td></td<>	BB54	MEM_CH0_DQ31	MEM_CH0_DQA31	MEM_CH0_DQA31
BH311 MEM_CH1_DQ2 MEM_CH1_DQA2 MEM_CH1_DQA2 BG31 MEM_CH1_DQ3 MEM_CH1_DQA3 MEM_CH1_DQA3 BH27 MEM_CH1_DQ4 MEM_CH1_DQA4 MEM_CH1_DQA4 BG27 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 BG26 MEM_CH1_DQ6 MEM_CH1_DQA7 MEM_CH1_DQA7 B330 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA9 B830 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 B830 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA16 BD27 MEM_CH1_DQ15 MEM_CH1_DQA16 MEM_CH1_DQA16 BD27 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BD20 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BD20 MEM_CH1_DQ16	BJ26	MEM_CH1_DQ0	MEM_CH1_DQA0	MEM_CH1_DQA0
BG31 MEM_CH1_DQ3 MEM_CH1_DQA3 MEM_CH1_DQA3 BH27 MEM_CH1_DQ4 MEM_CH1_DQA4 MEM_CH1_DQA4 BG27 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 BG26 MEM_CH1_DQ6 MEM_CH1_DQA6 MEM_CH1_DQA7 B330 MEM_CH1_DQ8 MEM_CH1_DQA7 MEM_CH1_DQA7 BA30 MEM_CH1_DQ8 MEM_CH1_DQA9 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA9 MEM_CH1_DQA9 BB30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA10 BD30 MEM_CH1_DQ12 MEM_CH1_DQA11 MEM_CH1_DQA11 BB27 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BB24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BB23 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BB24 MEM_CH1_DQ18	BG30	MEM_CH1_DQ1	MEM_CH1_DQA1	MEM_CH1_DQA1
BH27 MEM_CH1_DQ4 MEM_CH1_DQA4 MEM_CH1_DQA4 BG27 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 BG26 MEM_CH1_DQ6 MEM_CH1_DQA6 MEM_CH1_DQA7 B330 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7 BA30 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA9 MEM_CH1_DQA9 BE30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA10 BD30 MEM_CH1_DQ12 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BD28 MEM_CH1_DQ16 MEM_CH1_DQA15 MEM_CH1_DQA16 BD20 MEM_CH1_DQ16 MEM_CH1_DQA17 MEM_CH1_DQA17 BD21 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BD24 MEM_CH1_DQ19	BH31	MEM_CH1_DQ2	MEM_CH1_DQA2	MEM_CH1_DQA2
B6227 MEM_CH1_DQ5 MEM_CH1_DQA5 MEM_CH1_DQA5 B626 MEM_CH1_DQ6 MEM_CH1_DQA6 MEM_CH1_DQA6 BJ30 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7 BA30 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BB30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BD30 MEM_CH1_DQ12 MEM_CH1_DQA11 MEM_CH1_DQA12 BB27 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA13 BB27 MEM_CH1_DQ14 MEM_CH1_DQA13 MEM_CH1_DQA14 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BB27 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA16 MEM_CH1_DQA16 BB224 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 B123 MEM_CH1_DQ18 <td>BG31</td> <td>MEM_CH1_DQ3</td> <td>MEM_CH1_DQA3</td> <td>MEM_CH1_DQA3</td>	BG31	MEM_CH1_DQ3	MEM_CH1_DQA3	MEM_CH1_DQA3
BG26 MEM_CH1_DQ6 MEM_CH1_DQA6 MEM_CH1_DQA6 BJ30 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7 BA30 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA8 BB30 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 BE30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BD27 MEM_CH1_DQ16 MEM_CH1_DQA15 MEM_CH1_DQA16 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BB22 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 B124 MEM_CH1_DQ19 MEM_CH1_DQA18 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20	BH27	MEM_CH1_DQ4	MEM_CH1_DQA4	MEM_CH1_DQA4
B330 MEM_CH1_DQ7 MEM_CH1_DQA7 MEM_CH1_DQA7	BG27	MEM_CH1_DQ5	MEM_CH1_DQA5	MEM_CH1_DQA5
BA30 MEM_CH1_DQ8 MEM_CH1_DQA8 MEM_CH1_DQA8 BB30 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ22 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA24 AW29 MEM_CH1_DQ24	BG26	MEM_CH1_DQ6	MEM_CH1_DQA6	MEM_CH1_DQA6
BB30 MEM_CH1_DQ9 MEM_CH1_DQA9 MEM_CH1_DQA9 BB30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA19 BG20 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA24 AW29 MEM_CH1_D	ВЈ30	MEM_CH1_DQ7	MEM_CH1_DQA7	MEM_CH1_DQA7
BE30 MEM_CH1_DQ10 MEM_CH1_DQA10 MEM_CH1_DQA10 BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA26 MEM_CH1_DQA26 AR29 MEM_CH	BA30	MEM_CH1_DQ8	MEM_CH1_DQA8	MEM_CH1_DQA8
BD30 MEM_CH1_DQ11 MEM_CH1_DQA11 MEM_CH1_DQA11 BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA12 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA24 AW29 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AR28 MEM_CH	BB30	MEM_CH1_DQ9	MEM_CH1_DQA9	MEM_CH1_DQA9
BE25 MEM_CH1_DQ12 MEM_CH1_DQA12 MEM_CH1_DQA13 BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA14 BD25 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA22 AW29 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA25 AR27 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA26 AR27 MEM_CH1_DQ28 MEM_CH1_DQA27 MEM_CH1_DQA27 AR25 MEM_CH	BE30	MEM_CH1_DQ10	MEM_CH1_DQA10	MEM_CH1_DQA10
BB27 MEM_CH1_DQ13 MEM_CH1_DQA13 MEM_CH1_DQA13 BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA15 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ28 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH	BD30	MEM_CH1_DQ11	MEM_CH1_DQA11	MEM_CH1_DQA11
BD25 MEM_CH1_DQ14 MEM_CH1_DQA14 MEM_CH1_DQA14 BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH	BE25	MEM_CH1_DQ12	MEM_CH1_DQA12	MEM_CH1_DQA12
BD27 MEM_CH1_DQ15 MEM_CH1_DQA15 MEM_CH1_DQA15 BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA23 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA31 AW27 MEM_CH	BB27	MEM_CH1_DQ13	MEM_CH1_DQA13	MEM_CH1_DQA13
BG24 MEM_CH1_DQ16 MEM_CH1_DQA16 MEM_CH1_DQA16 BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA29 AR25 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BD25	MEM_CH1_DQ14	MEM_CH1_DQA14	MEM_CH1_DQA14
BJ20 MEM_CH1_DQ17 MEM_CH1_DQA17 MEM_CH1_DQA17 BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BD27	MEM_CH1_DQ15	MEM_CH1_DQA15	MEM_CH1_DQA15
BH23 MEM_CH1_DQ18 MEM_CH1_DQA18 MEM_CH1_DQA18 BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BG24	MEM_CH1_DQ16	MEM_CH1_DQA16	MEM_CH1_DQA16
BJ24 MEM_CH1_DQ19 MEM_CH1_DQA19 MEM_CH1_DQA19 BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA31 MEM_CH1_DQA31	BJ20	MEM_CH1_DQ17	MEM_CH1_DQA17	MEM_CH1_DQA17
BG20 MEM_CH1_DQ20 MEM_CH1_DQA20 MEM_CH1_DQA20 BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BH23	MEM_CH1_DQ18	MEM_CH1_DQA18	MEM_CH1_DQA18
BG21 MEM_CH1_DQ21 MEM_CH1_DQA21 MEM_CH1_DQA21 BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA31 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BJ24	MEM_CH1_DQ19	MEM_CH1_DQA19	MEM_CH1_DQA19
BH19 MEM_CH1_DQ22 MEM_CH1_DQA22 MEM_CH1_DQA22 BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA31 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BG20	MEM_CH1_DQ20	MEM_CH1_DQA20	MEM_CH1_DQA20
BG25 MEM_CH1_DQ23 MEM_CH1_DQA23 MEM_CH1_DQA23 AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA31 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BG21	MEM_CH1_DQ21	MEM_CH1_DQA21	MEM_CH1_DQA21
AT27 MEM_CH1_DQ24 MEM_CH1_DQA24 MEM_CH1_DQA24 AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA31 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BH19	MEM_CH1_DQ22	MEM_CH1_DQA22	MEM_CH1_DQA22
AW29 MEM_CH1_DQ25 MEM_CH1_DQA25 MEM_CH1_DQA25 AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	BG25	MEM_CH1_DQ23	MEM_CH1_DQA23	MEM_CH1_DQA23
AR27 MEM_CH1_DQ26 MEM_CH1_DQA26 MEM_CH1_DQA26 AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AT27	MEM_CH1_DQ24	MEM_CH1_DQA24	MEM_CH1_DQA24
AT23 MEM_CH1_DQ27 MEM_CH1_DQA27 MEM_CH1_DQA27 AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AW29	MEM_CH1_DQ25	MEM_CH1_DQA25	MEM_CH1_DQA25
AV27 MEM_CH1_DQ28 MEM_CH1_DQA28 MEM_CH1_DQA28 AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AR27	MEM_CH1_DQ26	MEM_CH1_DQA26	MEM_CH1_DQA26
AR25 MEM_CH1_DQ29 MEM_CH1_DQA29 MEM_CH1_DQA29 AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AT23	MEM_CH1_DQ27	MEM_CH1_DQA27	MEM_CH1_DQA27
AR23 MEM_CH1_DQ30 MEM_CH1_DQA30 MEM_CH1_DQA30 AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AV27	MEM_CH1_DQ28	MEM_CH1_DQA28	MEM_CH1_DQA28
AW27 MEM_CH1_DQ31 MEM_CH1_DQA31 MEM_CH1_DQA31	AR25	MEM_CH1_DQ29	MEM_CH1_DQA29	MEM_CH1_DQA29
	AR23	MEM_CH1_DQ30	MEM_CH1_DQA30	MEM_CH1_DQA30
BJ44 MEM_CH0_DQ40 MEM_CH0_DQB8 MEM_CH0_DQB8	AW27	MEM_CH1_DQ31	MEM_CH1_DQA31	MEM_CH1_DQA31
	BJ44	MEM_CH0_DQ40	MEM_CH0_DQB8	MEM_CH0_DQB8

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 5 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BG39	MEM_CH0_DQ41	MEM_CH0_DQB9	MEM_CH0_DQB9
BG40	MEM_CH0_DQ42	MEM_CH0_DQB10	MEM_CH0_DQB10
BJ40	MEM_CH0_DQ43	MEM_CH0_DQB11	MEM_CH0_DQB11
BG43	MEM_CH0_DQ44	MEM_CH0_DQB12	MEM_CH0_DQB12
BG44	MEM_CH0_DQ45	MEM_CH0_DQB13	MEM_CH0_DQB13
BH45	MEM_CH0_DQ46	MEM_CH0_DQB14	MEM_CH0_DQB14
BH41	MEM_CH0_DQ47	MEM_CH0_DQB15	MEM_CH0_DQB15
AR39	MEM_CH0_DQ32	MEM_CH0_DQB0	MEM_CH0_DQB0
AV37	MEM_CH0_DQ33	MEM_CH0_DQB1	MEM_CH0_DQB1
AW37	MEM_CH0_DQ34	MEM_CH0_DQB2	MEM_CH0_DQB2
AR37	MEM_CH0_DQ35	MEM_CH0_DQB3	MEM_CH0_DQB3
AT37	MEM_CH0_DQ36	MEM_CH0_DQB4	MEM_CH0_DQB4
AT41	MEM_CH0_DQ37	MEM_CH0_DQB5	MEM_CH0_DQB5
AR41	MEM_CH0_DQ38	MEM_CH0_DQB6	MEM_CH0_DQB6
AW35	MEM_CH0_DQ39	MEM_CH0_DQB7	MEM_CH0_DQB7
BJ38	MEM_CH0_DQ56	MEM_CH0_DQB24	MEM_CH0_DQB24
BG34	MEM_CH0_DQ57	MEM_CH0_DQB25	MEM_CH0_DQB25
BG33	MEM_CH0_DQ58	MEM_CH0_DQB26	MEM_CH0_DQB26
BH33	MEM_CH0_DQ59	MEM_CH0_DQB27	MEM_CH0_DQB27
BG38	MEM_CH0_DQ60	MEM_CH0_DQB28	MEM_CH0_DQB28
BH37	MEM_CH0_DQ61	MEM_CH0_DQB29	MEM_CH0_DQB29
BG37	MEM_CH0_DQ62	MEM_CH0_DQB30	MEM_CH0_DQB30
BJ34	MEM_CH0_DQ63	MEM_CH0_DQB31	MEM_CH0_DQB31
BA34	MEM_CH0_DQ48	MEM_CH0_DQB16	MEM_CH0_DQB16
BE34	MEM_CH0_DQ49	MEM_CH0_DQB17	MEM_CH0_DQB17
BD34	MEM_CH0_DQ50	MEM_CH0_DQB18	MEM_CH0_DQB18
BD37	MEM_CH0_DQ51	MEM_CH0_DQB19	MEM_CH0_DQB19
BB37	MEM_CH0_DQ52	MEM_CH0_DQB20	MEM_CH0_DQB20
BE39	MEM_CH0_DQ53	MEM_CH0_DQB21	MEM_CH0_DQB21
BD39	MEM_CH0_DQ54	MEM_CH0_DQB22	MEM_CH0_DQB22
BB34	MEM_CH0_DQ55	MEM_CH0_DQB23	MEM_CH0_DQB23
AV12	MEM_CH1_DQ40	MEM_CH1_DQB8	MEM_CH1_DQB8
BD6	MEM_CH1_DQ41	MEM_CH1_DQB9	MEM_CH1_DQB9
BD5	MEM_CH1_DQ42	MEM_CH1_DQB10	MEM_CH1_DQB10
BB7	MEM_CH1_DQ43	MEM_CH1_DQB11	MEM_CH1_DQB11
AV10	MEM_CH1_DQ44	MEM_CH1_DQB12	MEM_CH1_DQB12
AY9	MEM_CH1_DQ45	MEM_CH1_DQB13	MEM_CH1_DQB13
	•		

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 6 of 36)

		<u> </u>	1
SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AY7	MEM_CH1_DQ46	MEM_CH1_DQB14	MEM_CH1_DQB14
BF5	MEM_CH1_DQ47	MEM_CH1_DQB15	MEM_CH1_DQB15
BF6	MEM_CH1_DQ32	MEM_CH1_DQB0	MEM_CH1_DQB0
BD10	MEM_CH1_DQ33	MEM_CH1_DQB1	MEM_CH1_DQB1
BE14	MEM_CH1_DQ34	MEM_CH1_DQB2	MEM_CH1_DQB2
BB10	MEM_CH1_DQ35	MEM_CH1_DQB3	MEM_CH1_DQB3
BA14	MEM_CH1_DQ36	MEM_CH1_DQB4	MEM_CH1_DQB4
BB14	MEM_CH1_DQ37	MEM_CH1_DQB5	MEM_CH1_DQB5
BD14	MEM_CH1_DQ38	MEM_CH1_DQB6	MEM_CH1_DQB6
BE8	MEM_CH1_DQ39	MEM_CH1_DQB7	MEM_CH1_DQB7
AY2	MEM_CH1_DQ56	MEM_CH1_DQB24	MEM_CH1_DQB24
BD2	MEM_CH1_DQ57	MEM_CH1_DQB25	MEM_CH1_DQB25
BD1	MEM_CH1_DQ58	MEM_CH1_DQB26	MEM_CH1_DQB26
BE2	MEM_CH1_DQ59	MEM_CH1_DQB27	MEM_CH1_DQB27
AW1	MEM_CH1_DQ60	MEM_CH1_DQB28	MEM_CH1_DQB28
AW2	MEM_CH1_DQ61	MEM_CH1_DQB29	MEM_CH1_DQB29
AY3	MEM_CH1_DQ62	MEM_CH1_DQB30	MEM_CH1_DQB30
BG2	MEM_CH1_DQ63	MEM_CH1_DQB31	MEM_CH1_DQB31
AU2	MEM_CH1_DQ48	MEM_CH1_DQB16	MEM_CH1_DQB16
AT10	MEM_CH1_DQ49	MEM_CH1_DQB17	MEM_CH1_DQB17
AT9	MEM_CH1_DQ50	MEM_CH1_DQB18	MEM_CH1_DQB18
AU1	MEM_CH1_DQ51	MEM_CH1_DQB19	MEM_CH1_DQB19
AY5	MEM_CH1_DQ52	MEM_CH1_DQB20	MEM_CH1_DQB20
AV5	MEM_CH1_DQ53	MEM_CH1_DQB21	MEM_CH1_DQB21
AV6	MEM_CH1_DQ54	MEM_CH1_DQB22	MEM_CH1_DQB22
AV7	MEM_CH1_DQ55	MEM_CH1_DQB23	MEM_CH1_DQB23
BJ42	MEM_CH0_DQS5_P	MEM_CH0_DQSB1_P	MEM_CH0_DQSB1_P
BG42	MEM_CH0_DQS5_N	MEM_CH0_DQSB1_N	MEM_CH0_DQSB1_N
AV39	MEM_CH0_DQS4_P	MEM_CH0_DQSB0_P	MEM_CH0_DQSB0_P
AW39	MEM_CH0_DQS4_N	MEM_CH0_DQSB0_N	MEM_CH0_DQSB0_N
BG36	MEM_CH0_DQS7_P	MEM_CH0_DQSB3_P	MEM_CH0_DQSB3_P
BH35	MEM_CH0_DQS7_N	MEM_CH0_DQSB3_N	MEM_CH0_DQSB3_N
BB35	MEM_CH0_DQS6_P	MEM_CH0_DQSB2_P	MEM_CH0_DQSB2_P
BD35	MEM_CH0_DQS6_N	MEM_CH0_DQSB2_N	MEM_CH0_DQSB2_N
BB63	MEM_CH0_DQS0_P	MEM_CH0_DQSA0_P	MEM_CH0_DQSA0_P
BC62	MEM_CH0_DQS0_N	MEM_CH0_DQSA0_N	MEM_CH0_DQSA0_N
AT59	MEM_CH0_DQS1_P	MEM_CH0_DQSA1_P	MEM_CH0_DQSA1_P
	1		1

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 7 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AT58	MEM_CH0_DQS1_N	MEM_CH0_DQSA1_N	MEM_CH0_DQSA1_N
BB59	MEM_CH0_DQS2_P	MEM_CH0_DQSA2_P	MEM_CH0_DQSA2_P
BB58	MEM_CH0_DQS2_N	MEM_CH0_DQSA2_N	MEM_CH0_DQSA2_N
BD52	MEM_CH0_DQS3_P	MEM_CH0_DQSA3_P	MEM_CH0_DQSA3_P
BB52	MEM_CH0_DQS3_N	MEM_CH0_DQSA3_N	MEM_CH0_DQSA3_N
BB5	MEM_CH1_DQS5_P	MEM_CH1_DQSB1_P	MEM_CH1_DQSB1_P
BB6	MEM_CH1_DQS5_N	MEM_CH1_DQSB1_N	MEM_CH1_DQSB1_N
BB12	MEM_CH1_DQS4_P	MEM_CH1_DQSB0_P	MEM_CH1_DQSB0_P
BD12	MEM_CH1_DQS4_N	MEM_CH1_DQSB0_N	MEM_CH1_DQSB0_N
BC2	MEM_CH1_DQS7_P	MEM_CH1_DQSB3_P	MEM_CH1_DQSB3_P
BB1	MEM_CH1_DQS7_N	MEM_CH1_DQSB3_N	MEM_CH1_DQSB3_N
AT5	MEM_CH1_DQS6_P	MEM_CH1_DQSB2_P	MEM_CH1_DQSB2_P
AT6	MEM_CH1_DQS6_N	MEM_CH1_DQSB2_N	MEM_CH1_DQSB2_N
BG28	MEM_CH1_DQS0_P	MEM_CH1_DQSA0_P	MEM_CH1_DQSA0_P
BH29	MEM_CH1_DQS0_N	MEM_CH1_DQSA0_N	MEM_CH1_DQSA0_N
BD29	MEM_CH1_DQS1_P	MEM_CH1_DQSA1_P	MEM_CH1_DQSA1_P
BB29	MEM_CH1_DQS1_N	MEM_CH1_DQSA1_N	MEM_CH1_DQSA1_N
BJ22	MEM_CH1_DQS2_P	MEM_CH1_DQSA2_P	MEM_CH1_DQSA2_P
BG22	MEM_CH1_DQS2_N	MEM_CH1_DQSA2_N	MEM_CH1_DQSA2_N
AV25	MEM_CH1_DQS3_P	MEM_CH1_DQSA3_P	MEM_CH1_DQSA3_P
AW25	MEM_CH1_DQS3_N	MEM_CH1_DQSA3_N	MEM_CH1_DQSA3_N
AW48	NCTF	NCTF	NCTF
AW47	NCTF	NCTF	NCTF
BB43	NCTF	NCTF	NCTF
AW45	NCTF	NCTF	NCTF
AV48	NCTF	NCTF	NCTF
AV47	NCTF	NCTF	NCTF
BD43	NCTF	NCTF	NCTF
BA45	NCTF	NCTF	NCTF
BD47	NCTF	NCTF	NCTF
BB47	NCTF	NCTF	NCTF
AR21	NCTF	NCTF	NCTF
AT21	NCTF	NCTF	NCTF
AW23	NCTF	NCTF	NCTF
AW21	NCTF	NCTF	NCTF
BA19	NCTF	NCTF	NCTF
AW19	NCTF	NCTF	NCTF

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 8 of 36)

BA23 NCTF NCTF NCTF BB23 NCTF NCTF NCTF BD23 NCTF NCTF NCTF BE23 NCTF NCTF NCTF AK3 DDI0_TXP_0 DDI0_TXP_0 DDI0_TXP_0 AK2 DDI0_TXN_0 DDI0_TXN_0 DDI0_TXP_0 AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AM2 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_2 AH2 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_3 AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP_3 AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN_3 AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXN_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN_0 AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN_1 AC1 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN_2	PDDR4
BD23 NCTF NCTF NCTF BE23 NCTF NCTF NCTF AK3 DDI0_TXP_0 DDI0_TXP_0 DDI0_TXP_0 AK2 DDI0_TXN_0 DDI0_TXN_0 DDI0_TXN AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXN_1 DDI1_TXN_2 DDI1_TXN AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	
BE23 NCTF NCTF NCTF AK3 DDI0_TXP_0 DDI0_TXP_0 DDI0_TXP_0 AK2 DDI0_TXN_0 DDI0_TXN_0 DDI0_TXN AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_3 AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXN_2 DDI1_TXN AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXN_2 DDI1_TXN_2	
AK3 DDI0_TXP_0 DDI0_TXP_0 DDI0_TXP_0 AK2 DDI0_TXN_0 DDI0_TXN_0 DDI0_TXN_0 AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN_1 AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_2 AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN_1 AL2 DDI0_TXN_3 DDI0_TXP_3 DDI0_TXP_3 AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN_3 AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN_0 AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN_1 AC1 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN_2 AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXN_2	
AK2 DDI0_TXN_0 DDI0_TXN_0 DDI0_TXN AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP AD4 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	
AM3 DDI0_TXP_1 DDI0_TXP_1 DDI0_TXP_1 AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN_1 AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_2 AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP_3 AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP_1 AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_0
AM2 DDI0_TXN_1 DDI0_TXN_1 DDI0_TXN AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_0
AH3 DDI0_TXP_2 DDI0_TXP_2 DDI0_TXP_2 AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXP_3 AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP_3 AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN_3 AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP_1 AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_1
AH2 DDI0_TXN_2 DDI0_TXN_2 DDI0_TXN AL2 DDI0_TXP_3 DDI0_TXP_3 DDI0_TXP_3 AL1 DDI0_TXN_3 DDI0_TXN_3 DDI0_TXN AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP_1 AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN_1 AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN_2 AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_1
AL2	_2
AL1	_2
AF2 DDI1_TXP_0 DDI1_TXP_0 DDI1_TXP_0 AF3 DDI1_TXN_0 DDI1_TXN_0 DDI1_TXN AD3 DDI1_TXP_1 DDI1_TXP_1 DDI1_TXP AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_3
AF3	_3
AD3	_0
AD2 DDI1_TXN_1 DDI1_TXN_1 DDI1_TXN AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_2 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_0
AC1 DDI1_TXP_2 DDI1_TXP_2 DDI1_TXP_3 AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_1
AC2 DDI1_TXN_2 DDI1_TXN_2 DDI1_TXN AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP_3	_1
AB3 DDI1_TXP_3 DDI1_TXP_3 DDI1_TXP	_2
	_2
AB2 DDI1_TXN_3 DDI1_TXN_3 DDI1_TXN	_3
	_3
AG7 EDP_TXP_0 EDP_TXP_0 EDP_TXP_	0
AG9 EDP_TXN_0 EDP_TXN_0 EDP_TXN_	.0
AG12 EDP_TXP_1 EDP_TXP_1 EDP_TXP_	1
AG10 EDP_TXN_1 EDP_TXN_1 EDP_TXN_	1
AC6 EDP_TXP_2 EDP_TXP_2 EDP_TXP_	2
AC5 EDP_TXN_2 EDP_TXN_2 EDP_TXN_	2
AC7 EDP_TXP_3 EDP_TXP_3 EDP_TXP_	3
AC9 EDP_TXN_3 EDP_TXN_3 EDP_TXN_	.3
AM16 DDIO_AUXP DDIO_AUXP DDIO_AUX	(P
AM15 DDIO_AUXN DDIO_AUXN DDIO_AUX	IN
AK16 DDI1_AUXP DDI1_AUXP DDI1_AUX	P
AK15 DDI1_AUXN DDI1_AUXN DDI1_AUX	N
AH10 EDP_AUXP EDP_AUXP EDP_AUXP)
AH9 EDP_AUXN EDP_AUXN EDP_AUXN	I
AG1 DDIO_RCOMP_P DDIO_RCOMP_P DDIO_RCC	DMP_P
AG2 DDI0_RCOMP_N DDI0_RCOMP_N DDI0_RCC	DMP_N
AG6 EDP_RCOMP_P EDP_RCOMP_P EDP_RCOM	MP_P

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 9 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AG5	EDP_RCOMP_N	EDP_RCOMP_N	EDP_RCOMP_N
AP3	MDSI_A_CLKN	MDSI_A_CLKN	MDSI_A_CLKN
AP2	MDSI_A_CLKP	MDSI_A_CLKP	MDSI_A_CLKP
AP10	MDSI_A_DN_0	MDSI_A_DN_0	MDSI_A_DN_0
AR1	MDSI_A_DN_1	MDSI_A_DN_1	MDSI_A_DN_1
AP13	MDSI_A_DN_2	MDSI_A_DN_2	MDSI_A_DN_2
AP5	MDSI_A_DN_3	MDSI_A_DN_3	MDSI_A_DN_3
AP12	MDSI_A_DP_0	MDSI_A_DP_0	MDSI_A_DP_0
AR2	MDSI_A_DP_1	MDSI_A_DP_1	MDSI_A_DP_1
AP15	MDSI_A_DP_2	MDSI_A_DP_2	MDSI_A_DP_2
AP6	MDSI_A_DP_3	MDSI_A_DP_3	MDSI_A_DP_3
AM7	MDSI_C_CLKN	MDSI_C_CLKN	MDSI_C_CLKN
AM9	MDSI_C_CLKP	MDSI_C_CLKP	MDSI_C_CLKP
AK6	MDSI_C_DN_0	MDSI_C_DN_0	MDSI_C_DN_0
AM6	MDSI_C_DN_1	MDSI_C_DN_1	MDSI_C_DN_1
AM10	MDSI_C_DN_2	MDSI_C_DN_2	MDSI_C_DN_2
AM13	MDSI_C_DN_3	MDSI_C_DN_3	MDSI_C_DN_3
AK7	MDSI_C_DP_0	MDSI_C_DP_0	MDSI_C_DP_0
AM5	MDSI_C_DP_1	MDSI_C_DP_1	MDSI_C_DP_1
AM12	MDSI_C_DP_2	MDSI_C_DP_2	MDSI_C_DP_2
AK13	MDSI_C_DP_3	MDSI_C_DP_3	MDSI_C_DP_3
AP7	MDSI_RCOMP	MDSI_RCOMP	MDSI_RCOMP
L19	MCSI_CLKN_0	MCSI_CLKN_0	MCSI_CLKN_0
M19	MCSI_CLKP_0	MCSI_CLKP_0	MCSI_CLKP_0
F19	MCSI_CLKN_2	MCSI_CLKN_2	MCSI_CLKN_2
H19	MCSI_CLKP_2	MCSI_CLKP_2	MCSI_CLKP_2
M17	MCSI_DN_0	MCSI_DN_0	MCSI_DN_0
P17	MCSI_DP_0	MCSI_DP_0	MCSI_DP_0
R21	MCSI_DN_1	MCSI_DN_1	MCSI_DN_1
P21	MCSI_DP_1	MCSI_DP_1	MCSI_DP_1
J17	MCSI_DN_2	MCSI_DN_2	MCSI_DN_2
L17	MCSI_DP_2	MCSI_DP_2	MCSI_DP_2
E17	MCSI_DN_3	MCSI_DN_3	MCSI_DN_3
F17	MCSI_DP_3	MCSI_DP_3	MCSI_DP_3
H27	MCSI_DPHY1.1_RCOMP	MCSI_DPHY1.1_RCOMP	MCSI_DPHY1.1_RCOMP
M23	MCSI_RX_DATA0_P	MCSI_RX_DATA0_P	MCSI_RX_DATA0_P
P23	MCSI_RX_DATA0_N	MCSI_RX_DATA0_N	MCSI_RX_DATA0_N

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 10 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
L23	MCSI_RX_CLK0_P	MCSI_RX_CLK0_P	MCSI_RX_CLK0_P
J23	MCSI_RX_CLK0_N	MCSI_RX_CLK0_N	MCSI_RX_CLK0_N
J21	MCSI_RX_DATA1_P	MCSI_RX_DATA1_P	MCSI_RX_DATA1_P
H21	MCSI_RX_DATA1_N	MCSI_RX_DATA1_N	MCSI_RX_DATA1_N
M25	MCSI_RX_DATA2_P	MCSI_RX_DATA2_P	MCSI_RX_DATA2_P
L25	MCSI_RX_DATA2_N	MCSI_RX_DATA2_N	MCSI_RX_DATA2_N
F25	MCSI_RX_CLK1_P	MCSI_RX_CLK1_P	MCSI_RX_CLK1_P
E25	MCSI_RX_CLK1_N	MCSI_RX_CLK1_N	MCSI_RX_CLK1_N
H25	MCSI_RX_DATA3_P	MCSI_RX_DATA3_P	MCSI_RX_DATA3_P
J25	MCSI_RX_DATA3_N	MCSI_RX_DATA3_N	MCSI_RX_DATA3_N
F27	MCSI_DPHY1.2_RCOMP	MCSI_DPHY1.2_RCOMP	MCSI_DPHY1.2_RCOMP
AG54	RSVD	RSVD	RSVD
AG52	RSVD	RSVD	RSVD
J43	RSVD	RSVD	RSVD
H43	RSVD	RSVD	RSVD
AG15	RSVD	RSVD	RSVD
AG16	RSVD	RSVD	RSVD
AH12	RSVD	RSVD	RSVD
AH13	RSVD	RSVD	RSVD
AB15	RSVD	RSVD	RSVD
V59	EMMC_RCOMP	EMMC_RCOMP	EMMC_RCOMP
V12	USB2_DP0	USB2_DP0	USB2_DP0
V10	USB2_DN0	USB2_DN0	USB2_DN0
V16	USB2_DP1	USB2_DP1	USB2_DP1
V15	USB2_DN1	USB2_DN1	USB2_DN1
Y13	USB2_DP2	USB2_DP2	USB2_DP2
V13	USB2_DN2	USB2_DN2	USB2_DN2
V9	USB2_DP3	USB2_DP3	USB2_DP3
V7	USB2_DN3	USB2_DN3	USB2_DN3
Y9	USB2_DP4	USB2_DP4	USB2_DP4
Y10	USB2_DN4	USB2_DN4	USB2_DN4
AB6	USB2_DP5	USB2_DP5	USB2_DP5
AB7	USB2_DN5	USB2_DN5	USB2_DN5
AC12	USB2_DP6	USB2_DP6	USB2_DP6
AC10	USB2_DN6	USB2_DN6	USB2_DN6
V5	USB2_DP7	USB2_DP7	USB2_DP7
V6	USB2_DN7	USB2_DN7	USB2_DN7

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 11 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AC15	USB2_DUALROLE_ID	USB2_DUALROLE_ID	USB2_DUALROLE_ID
AC16	USB2_VBUS_SNS	USB2_VBUS_SNS	USB2_VBUS_SNS
Y15	USB2_RCOMP	USB2_RCOMP	USB2_RCOMP
R27	OSCIN	OSCIN	OSCIN
P29	OSCOUT	OSCOUT	OSCOUT
C11	PCIE_CLKOUT0P	PCIE_CLKOUT0P	PCIE_CLKOUT0P
B11	PCIE_CLKOUTON	PCIE_CLKOUTON	PCIE_CLKOUTON
C10	PCIE_CLKOUT1P	PCIE_CLKOUT1P	PCIE_CLKOUT1P
A10	PCIE_CLKOUT1N	PCIE_CLKOUT1N	PCIE_CLKOUT1N
A7	PCIE_CLKOUT2P	PCIE_CLKOUT2P	PCIE_CLKOUT2P
B8	PCIE_CLKOUT2N	PCIE_CLKOUT2N	PCIE_CLKOUT2N
B7	PCIE_CLKOUT3P	PCIE_CLKOUT3P	PCIE_CLKOUT3P
B5	PCIE_CLKOUT3N	PCIE_CLKOUT3N	PCIE_CLKOUT3N
E21	PCIE_REF_CLK_RCOMP	PCIE_REF_CLK_RCOMP	PCIE_REF_CLK_RCOMP
V49	RSVD	RSVD	RSVD
E34	GPIO_RCOMP	GPIO_RCOMP	GPIO_RCOMP
AC54	INTRUDER_N	INTRUDER_N	INTRUDER_N
AG51	VCC_RTC_EXTPAD	VCC_RTC_EXTPAD	VCC_RTC_EXTPAD
AC59	RTC_X1	RTC_X1	RTC_X1
AC58	RTC_X2	RTC_X2	RTC_X2
AG49	SOC_PWROK	SOC_PWROK	SOC_PWROK
AC57	RSM_RST_N	RSM_RST_N	RSM_RST_N
AH49	RTC_TEST_N	RTC_TEST_N	RTC_TEST_N
AC55	RTC_RST_N	RTC_RST_N	RTC_RST_N
Y2	SATA_P0_TXN	SATA_P0_TXN	SATA_PO_TXN
Y3	SATA_P0_TXP	SATA_P0_TXP	SATA_PO_TXP
T7	SATA_P0_RXN	SATA_P0_RXN	SATA_PO_RXN
Т9	SATA_P0_RXP	SATA_P0_RXP	SATA_P0_RXP
W2	SATA_P1_USB3_P5_TXN	SATA_P1_USB3_P5_TXN	SATA_P1_USB3_P5_TXN
W1	SATA_P1_USB3_P5_TXP	SATA_P1_USB3_P5_TXP	SATA_P1_USB3_P5_TXP
Т6	SATA_P1_USB3_P5_RXN	SATA_P1_USB3_P5_RXN	SATA_P1_USB3_P5_RXN
T5	SATA_P1_USB3_P5_RXP	SATA_P1_USB3_P5_RXP	SATA_P1_USB3_P5_RXP
V2	PCIE_P0_TXN	PCIE_P0_TXN	PCIE_P0_TXN
V3	PCIE_P0_TXP	PCIE_P0_TXP	PCIE_P0_TXP
P6	PCIE_P0_RXN	PCIE_P0_RXN	PCIE_P0_RXN
P7	PCIE_P0_RXP	PCIE_P0_RXP	PCIE_P0_RXP
R2	PCIE_P1_TXN	PCIE_P1_TXN	PCIE_P1_TXN

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 12 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
R1	PCIE_P1_TXP	PCIE_P1_TXP	PCIE_P1_TXP
T12	PCIE_P1_RXN	PCIE_P1_RXN	PCIE_P1_RXN
T10	PCIE_P1_RXP	PCIE_P1_RXP	PCIE_P1_RXP
Т3	PCIE_P2_TXN	PCIE_P2_TXN	PCIE_P2_TXN
T2	PCIE_P2_TXP	PCIE_P2_TXP	PCIE_P2_TXP
M6	PCIE_P2_RXN	PCIE_P2_RXN	PCIE_P2_RXN
M5	PCIE_P2_RXP	PCIE_P2_RXP	PCIE_P2_RXP
F6	PCIE2_USB3_SATA3_RC OMP_P	PCIE2_USB3_SATA3_RCO MP_P	PCIE2_USB3_SATA3_RCOM P_P
F5	PCIE2_USB3_SATA3_RC OMP_N	PCIE2_USB3_SATA3_RCO MP_N	PCIE2_USB3_SATA3_RCOM P_N
P2	PCIE_P3_USB3_P4_TXN	PCIE_P3_USB3_P4_TXN	PCIE_P3_USB3_P4_TXN
Р3	PCIE_P3_USB3_P4_TXP	PCIE_P3_USB3_P4_TXP	PCIE_P3_USB3_P4_TXP
P10	PCIE_P3_USB3_P4_RXN	PCIE_P3_USB3_P4_RXN	PCIE_P3_USB3_P4_RXN
P12	PCIE_P3_USB3_P4_RXP	PCIE_P3_USB3_P4_RXP	PCIE_P3_USB3_P4_RXP
M2	PCIE_P4_USB3_P3_TXN	PCIE_P4_USB3_P3_TXN	PCIE_P4_USB3_P3_TXN
N2	PCIE_P4_USB3_P3_TXP	PCIE_P4_USB3_P3_TXP	PCIE_P4_USB3_P3_TXP
H6	PCIE_P4_USB3_P3_RXN	PCIE_P4_USB3_P3_RXN	PCIE_P4_USB3_P3_RXN
H5	PCIE_P4_USB3_P3_RXP	PCIE_P4_USB3_P3_RXP	PCIE_P4_USB3_P3_RXP
L1	PCIE_P5_USB3_P2_TXN	PCIE_P5_USB3_P2_TXN	PCIE_P5_USB3_P2_TXN
L2	PCIE_P5_USB3_P2_TXP	PCIE_P5_USB3_P2_TXP	PCIE_P5_USB3_P2_TXP
M7	PCIE_P5_USB3_P2_RXN	PCIE_P5_USB3_P2_RXN	PCIE_P5_USB3_P2_RXN
K7	PCIE_P5_USB3_P2_RXP	PCIE_P5_USB3_P2_RXP	PCIE_P5_USB3_P2_RXP
K2	USB3_P1_TXN	USB3_P1_TXN	USB3_P1_TXN
K3	USB3_P1_TXP	USB3_P1_TXP	USB3_P1_TXP
G2	USB3_P1_RXN	USB3_P1_RXN	USB3_P1_RXN
F2	USB3_P1_RXP	USB3_P1_RXP	USB3_P1_RXP
J2	USB3_P0_TXN	USB3_P0_TXN	USB3_P0_TXN
J1	USB3_P0_TXP	USB3_P0_TXP	USB3_P0_TXP
K10	USB3_P0_RXN	USB3_P0_RXN	USB3_P0_RXN
K9	USB3_P0_RXP	USB3_P0_RXP	USB3_P0_RXP
AG59	PMU_RCOMP	PMU_RCOMP	PMU_RCOMP
C19	RSVD	RSVD	RSVD
A18	RSVD	RSVD	RSVD
A4	DEBUG_PORT_A0	DEBUG_PORT_A0	DEBUG_PORT_A0
B4	DEBUG_PORT_A1	DEBUG_PORT_A1	DEBUG_PORT_A1
F1	DEBUG_PORT_B0	DEBUG_PORT_B0	DEBUG_PORT_B0
C1	DEBUG_PORT_B1	DEBUG_PORT_B1	DEBUG_PORT_B1

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 13 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
R62	PCIE_WAKE0_N	PCIE_WAKE0_N	PCIE_WAKE0_N
P62	PCIE_WAKE1_N	PCIE_WAKE1_N	PCIE_WAKE1_N
P61	PCIE_WAKE2_N	PCIE_WAKE2_N	PCIE_WAKE2_N
N62	PCIE_WAKE3_N	PCIE_WAKE3_N	PCIE_WAKE3_N
Y58	EMMC_CLK	EMMC_CLK	EMMC_CLK
V58	EMMC_D0	EMMC_D0	EMMC_D0
T58	EMMC_D1	EMMC_D1	EMMC_D1
T59	EMMC_D2	EMMC_D2	EMMC_D2
V51	EMMC_D3	EMMC_D3	EMMC_D3
V52	EMMC_D4	EMMC_D4	EMMC_D4
Y49	EMMC_D5	EMMC_D5	EMMC_D5
V55	EMMC_D6	EMMC_D6	EMMC_D6
V57	EMMC_D7	EMMC_D7	EMMC_D7
Y51	EMMC_CMD	EMMC_CMD	EMMC_CMD
P58	GPIO_166	GPIO_166	GPIO_166
T52	GPIO_167	GPIO_167	GPIO_167
P57	GPIO_168	GPIO_168	GPIO_168
T54	GPIO_169	GPIO_169	GPIO_169
T55	GPIO_170	GPIO_170	GPIO_170
T57	GPIO_171	GPIO_171	GPIO_171
AB58	SDCARD_CLK	SDCARD_CLK	SDCARD_CLK
AC49	SDCARD_D0	SDCARD_D0	SDCARD_D0
AC48	SDCARD_D1	SDCARD_D1	SDCARD_D1
AC51	SDCARD_D2	SDCARD_D2	SDCARD_D2
AB51	SDCARD_D3	SDCARD_D3	SDCARD_D3
AB54	SDCARD_CD_N	SDCARD_CD_N	SDCARD_CD_N
AC52	SDCARD_CMD	SDCARD_CMD	SDCARD_CMD
AB55	SDCARD_LVL_WP	SDCARD_LVL_WP	SDCARD_LVL_WP
V54	EMMC_RCLK	EMMC_RCLK	EMMC_RCLK
P51	GPIO_183	GPIO_183	GPIO_183
R63	SMB_ALERT_N	SMB_ALERT_N	SMB_ALERT_N
T62	SMB_CLK	SMB_CLK	SMB_CLK
T61	SMB_DATA	SMB_DATA	SMB_DATA
AB62	LPC_SERIRQ	LPC_SERIRQ	LPC_SERIRQ
AB61	LPC_CLKOUT0	LPC_CLKOUT0	LPC_CLKOUT0
AA62	LPC_CLKOUT1	LPC_CLKOUT1	LPC_CLKOUT1
Y61	LPC_AD0	LPC_AD0	LPC_AD0

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 14 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
Y62	LPC_AD1	LPC_AD1	LPC_AD1
W62	LPC_AD2	LPC_AD2	LPC_AD2
W63	LPC_AD3	LPC_AD3	LPC_AD3
V62	LPC_CLKRUN_N	LPC_CLKRUN_N	LPC_CLKRUN_N
V61	LPC_FRAME_N	LPC_FRAME_N	LPC_FRAME_N
AR62	LPSS_I2C0_SDA	LPSS_I2C0_SDA	LPSS_I2C0_SDA
AR63	LPSS_I2C0_SCL	LPSS_I2C0_SCL	LPSS_I2C0_SCL
AN62	LPSS_I2C1_SDA	LPSS_I2C1_SDA	LPSS_I2C1_SDA
AM61	LPSS_I2C1_SCL	LPSS_I2C1_SCL	LPSS_I2C1_SCL
AP59	LPSS_I2C2_SDA	LPSS_I2C2_SDA	LPSS_I2C2_SDA
AP58	LPSS_I2C2_SCL	LPSS_I2C2_SCL	LPSS_I2C2_SCL
AM62	LPSS_I2C3_SDA	LPSS_I2C3_SDA	LPSS_I2C3_SDA
AL62	LPSS_I2C3_SCL	LPSS_I2C3_SCL	LPSS_I2C3_SCL
AP52	LPSS_I2C4_SDA	LPSS_I2C4_SDA	LPSS_I2C4_SDA
AP54	LPSS_I2C4_SCL	LPSS_I2C4_SCL	LPSS_I2C4_SCL
AP49	LPSS_I2C5_SDA	LPSS_I2C5_SDA	LPSS_I2C5_SDA
AP51	LPSS_I2C5_SCL	LPSS_I2C5_SCL	LPSS_I2C5_SCL
AL63	LPSS_I2C6_SDA	LPSS_I2C6_SDA	LPSS_I2C6_SDA
AK61	LPSS_I2C6_SCL	LPSS_I2C6_SCL	LPSS_I2C6_SCL
AP62	LPSS_I2C7_SDA	LPSS_I2C7_SDA	LPSS_I2C7_SDA
AP61	LPSS_I2C7_SCL	LPSS_I2C7_SCL	LPSS_I2C7_SCL
AM48	ISH_GPIO_0	ISH_GPIO_0	ISH_GPIO_0
AK58	ISH_GPIO_1	ISH_GPIO_1	ISH_GPIO_1
AK51	ISH_GPIO_2	ISH_GPIO_2	ISH_GPIO_2
AM54	ISH_GPIO_3	ISH_GPIO_3	ISH_GPIO_3
AM51	ISH_GPIO_4	ISH_GPIO_4	ISH_GPIO_4
AM49	ISH_GPIO_5	ISH_GPIO_5	ISH_GPIO_5
AM57	ISH_GPIO_6	ISH_GPIO_6	ISH_GPIO_6
AM55	ISH_GPIO_7	ISH_GPIO_7	ISH_GPIO_7
AM52	ISH_GPIO_8	ISH_GPIO_8	ISH_GPIO_8
AK57	ISH_GPIO_9	ISH_GPIO_9	ISH_GPIO_9
AK62	PCIE_CLKREQ0_N	PCIE_CLKREQ0_N	PCIE_CLKREQ0_N
AH62	PCIE_CLKREQ1_N	PCIE_CLKREQ1_N	PCIE_CLKREQ1_N
AH61	PCIE_CLKREQ2_N	PCIE_CLKREQ2_N	PCIE_CLKREQ2_N
AJ62	PCIE_CLKREQ3_N	PCIE_CLKREQ3_N	PCIE_CLKREQ3_N
AG62	OSC_CLK_OUT_0	OSC_CLK_OUT_0	OSC_CLK_OUT_0
AF61	OSC_CLK_OUT_1	OSC_CLK_OUT_1	OSC_CLK_OUT_1

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 15 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AG63	OSC_CLK_OUT_2	OSC_CLK_OUT_2	OSC_CLK_OUT_2
AE60	OSC_CLK_OUT_3	OSC_CLK_OUT_3	OSC_CLK_OUT_3
AF62	RSVD	RSVD	RSVD
AK49	PMU_AC_PRESENT	PMU_AC_PRESENT	PMU_AC_PRESENT
AH51	PMU_BATLOW_N	PMU_BATLOW_N	PMU_BATLOW_N
AG57	PMU_PLTRST_N	PMU_PLTRST_N	PMU_PLTRST_N
AK55	PMU_PWRBTN_N	PMU_PWRBTN_N	PMU_PWRBTN_N
AD62	PMU_RSTBTN_N	PMU_RSTBTN_N	PMU_RSTBTN_N
AD61	PMU_SLP_S0_N	PMU_SLP_S0_N	PMU_SLP_S0_N
AC62	PMU_SLP_S3_N	PMU_SLP_S3_N	PMU_SLP_S3_N
AK54	PMU_SLP_S4_N	PMU_SLP_S4_N	PMU_SLP_S4_N
AE62	PMU_SUSCLK	PMU_SUSCLK	PMU_SUSCLK
AG55	EMMC_PWR_EN_N	EMMC_PWR_EN_N	EMMC_PWR_EN_N
AG58	SUS_STAT_N	SUS_STAT_N	SUS_STAT_N
AC63	SUSPWRDNACK	SUSPWRDNACK	SUSPWRDNACK
C49	DDI0_DDC_SDA	DDI0_DDC_SDA	DDI0_DDC_SDA
B49	DDI0_DDC_SCL	DDI0_DDC_SCL	DDI0_DDC_SCL
C54	DDI1_DDC_SDA	DDI1_DDC_SDA	DDI1_DDC_SDA
A54	DDI1_DDC_SCL	DDI1_DDC_SCL	DDI1_DDC_SCL
B51	MIPI_I2C_SDA	MIPI_I2C_SDA	MIPI_I2C_SDA
C51	MIPI_I2C_SCL	MIPI_I2C_SCL	MIPI_I2C_SCL
C47	PNL0_VDDEN	PNL0_VDDEN	PNL0_VDDEN
B47	PNL0_BKLTEN	PNL0_BKLTEN	PNL0_BKLTEN
C46	PNL0_BKLTCTL	PNL0_BKLTCTL	PNL0_BKLTCTL
C52	PNL1_VDDEN	PNL1_VDDEN	PNL1_VDDEN
B53	PNL1_BKLTEN	PNL1_BKLTEN	PNL1_BKLTEN
C53	PNL1_BKLTCTL	PNL1_BKLTCTL	PNL1_BKLTCTL
A50	GPIO_199	GPIO_199	GPIO_199
C50	GPIO_200	GPIO_200	GPIO_200
M45	MDSI_A_TE	MDSI_A_TE	MDSI_A_TE
M43	MDSI_C_TE	MDSI_C_TE	MDSI_C_TE
B55	USB_OC0_N	USB_OC0_N	USB_OCO_N
C55	USB_OC1_N	USB_OC1_N	USB_OC1_N
L48	PMC_SPI_FS0	PMC_SPI_FS0	PMC_SPI_FS0
P48	PMC_SPI_FS1	PMC_SPI_FS1	PMC_SPI_FS1
M48	PMC_SPI_FS2	PMC_SPI_FS2	PMC_SPI_FS2
J50	PMC_SPI_RXD	PMC_SPI_RXD	PMC_SPI_RXD

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 16 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
H50	PMC_SPI_TXD	PMC_SPI_TXD	PMC_SPI_TXD
E52	PMC_SPI_CLK	PMC_SPI_CLK	PMC_SPI_CLK
H48	NCTF	NCTF	NCTF
F48	GPIO_223	GPIO_223	GPIO_223
M47	GPIO_213	GPIO_213	GPIO_213
L47	GPIO_214	GPIO_214	GPIO_214
P47	GPIO_215	GPIO_215	GPIO_215
347	THERMTRIP_N	THERMTRIP_N	THERMTRIP_N
J45	GPIO_224	GPIO_224	GPIO_224
E47	PROCHOT_N	PROCHOT_N	PROCHOT_N
H45	PMIC_I2C_SCL	PMIC_I2C_SCL	PMIC_I2C_SCL
F47	PMIC_I2C_SDA	PMIC_I2C_SDA	PMIC_I2C_SDA
G62	AVS_I2S1_MCLK	AVS_I2S1_MCLK	AVS_I2S1_MCLK
H63	AVS_I2S1_BCLK	AVS_I2S1_BCLK	AVS_I2S1_BCLK
J62	AVS_I2S1_WS_SYNC	AVS_I2S1_WS_SYNC	AVS_I2S1_WS_SYNC
K61	AVS_I2S1_SDI	AVS_I2S1_SDI	AVS_I2S1_SDI
K62	AVS_I2S1_SDO	AVS_I2S1_SDO	AVS_I2S1_SDO
P54	AVS_DMIC_CLK_A1	AVS_DMIC_CLK_A1	AVS_DMIC_CLK_A1
P52	AVS_DMIC_CLK_B1	AVS_DMIC_CLK_B1	AVS_DMIC_CLK_B1
M54	AVS_DMIC_DATA_1	AVS_DMIC_DATA_1	AVS_DMIC_DATA_1
M55	AVS_DMIC_CLK_AB2	AVS_DMIC_CLK_AB2	AVS_DMIC_CLK_AB2
M52	AVS_DMIC_DATA_2	AVS_DMIC_DATA_2	AVS_DMIC_DATA_2
K58	AVS_I2S2_MCLK	AVS_I2S2_MCLK	AVS_I2S2_MCLK
H59	AVS_I2S2_BCLK	AVS_I2S2_BCLK	AVS_I2S2_BCLK
M57	AVS_I2S2_WS_SYNC	AVS_I2S2_WS_SYNC	AVS_I2S2_WS_SYNC
K59	AVS_I2S2_SDI	AVS_I2S2_SDI	AVS_I2S2_SDI
M58	AVS_I2S2_SDO	AVS_I2S2_SDO	AVS_I2S2_SDO
M62	AVS_I2S3_BCLK	AVS_I2S3_BCLK	AVS_I2S3_BCLK
M61	AVS_I2S3_WS_SYNC	AVS_I2S3_WS_SYNC	AVS_I2S3_WS_SYNC
L62	AVS_I2S3_SDI	AVS_I2S3_SDI	AVS_I2S3_SDI
L63	AVS_I2S3_SDO	AVS_I2S3_SDO	AVS_I2S3_SDO
B57	FST_SPI_CS0_N	FST_SPI_CS0_N	FST_SPI_CS0_N
C57	FST_SPI_CS1_N	FST_SPI_CS1_N	FST_SPI_CS1_N
A58	FST_SPI_MOSI_IO0	FST_SPI_MOSI_IO0	FST_SPI_MOSI_IO0
B58	FST_SPI_MISO_IO1	FST_SPI_MISO_IO1	FST_SPI_MISO_IO1
B60	FST_SPI_IO2	FST_SPI_IO2	FST_SPI_IO2
B61	FST_SPI_IO3	FST_SPI_IO3	FST_SPI_IO3
	•	· ·	

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 17 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
C56	FST_SPI_CLK	FST_SPI_CLK	FST_SPI_CLK
F54	SIO_SPI_0_CLK	SIO_SPI_0_CLK	SIO_SPI_0_CLK
F52	SIO_SPI_0_FS0	SIO_SPI_0_FS0	SIO_SPI_0_FS0
H52	SIO_SPI_0_FS1	SIO_SPI_0_FS1	SIO_SPI_0_FS1
H54	SIO_SPI_0_RXD	SIO_SPI_0_RXD	SIO_SPI_0_RXD
J52	SIO_SPI_0_TXD	SIO_SPI_0_TXD	SIO_SPI_0_TXD
F58	SIO_SPI_1_CLK	SIO_SPI_1_CLK	SIO_SPI_1_CLK
K55	SIO_SPI_1_FS0	SIO_SPI_1_FS0	SIO_SPI_1_FS0
F61	SIO_SPI_1_FS1	SIO_SPI_1_FS1	SIO_SPI_1_FS1
H57	SIO_SPI_1_RXD	SIO_SPI_1_RXD	SIO_SPI_1_RXD
H58	SIO_SPI_1_TXD	SIO_SPI_1_TXD	SIO_SPI_1_TXD
F62	SIO_SPI_2_CLK	SIO_SPI_2_CLK	SIO_SPI_2_CLK
D61	SIO_SPI_2_FS0	SIO_SPI_2_FS0	SIO_SPI_2_FS0
E56	SIO_SPI_2_FS1	SIO_SPI_2_FS1	SIO_SPI_2_FS1
D59	SIO_SPI_2_FS2	SIO_SPI_2_FS2	SIO_SPI_2_FS2
C62	SIO_SPI_2_RXD	SIO_SPI_2_RXD	SIO_SPI_2_RXD
E62	SIO_SPI_2_TXD	SIO_SPI_2_TXD	SIO_SPI_2_TXD
A38	GPIO_0	GPIO_0	GPIO_0
B33	GPIO_1	GPIO_1	GPIO_1
C39	GPIO_2	GPIO_2	GPIO_2
B39	GPIO_3	GPIO_3	GPIO_3
B35	GPIO_4	GPIO_4	GPIO_4
A34	GPIO_5	GPIO_5	GPIO_5
B31	GPIO_6	GPIO_6	GPIO_6
H39	GPIO_7	GPIO_7	GPIO_7
B29	GPIO_8	GPIO_8	GPIO_8
A30	GPIO_9	GPIO_9	GPIO_9
L39	GPIO_10	GPIO_10	GPIO_10
C34	GPIO_11	GPIO_11	GPIO_11
E39	GPIO_12	GPIO_12	GPIO_12
C30	GPIO_13	GPIO_13	GPIO_13
C38	GPIO_14	GPIO_14	GPIO_14
F39	GPIO_15	GPIO_15	GPIO_15
C36	GPIO_16	GPIO_16	GPIO_16
C35	GPIO_17	GPIO_17	GPIO_17
J39	GPIO_18	GPIO_18	GPIO_18
C33	GPIO_19	GPIO_19	GPIO_19

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 18 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
B27	GPIO_20	GPIO_20	GPIO_20
C26	GPIO_21	GPIO_21	GPIO_21
A26	GPIO_22	GPIO_22	GPIO_22
B25	GPIO_23	GPIO_23	GPIO_23
C25	GPIO_24	GPIO_24	GPIO_24
C27	GPIO_25	GPIO_25	GPIO_25
C31	GPIO_26	GPIO_26	GPIO_26
C29	GPIO_27	GPIO_27	GPIO_27
B37	GPIO_28	GPIO_28	GPIO_28
H35	GPIO_29	GPIO_29	GPIO_29
C37	GPIO_30	GPIO_30	GPIO_30
H34	GPIO_31	GPIO_31	GPIO_31
F35	GPIO_32	GPIO_32	GPIO_32
F34	GPIO_33	GPIO_33	GPIO_33
B41	PWM0	PWM0	PWM0
C41	PWM1	PWM1	PWM1
F41	PWM2	PWM2	PWM2
E41	PWM3	PWM3	PWM3
C45	LPSS_UARTO_RXD	LPSS_UARTO_RXD	LPSS_UARTO_RXD
B45	LPSS_UARTO_TXD	LPSS_UARTO_TXD	LPSS_UARTO_TXD
A46	LPSS_UARTO_RTS_N	LPSS_UARTO_RTS_N	LPSS_UARTO_RTS_N
C44	LPSS_UARTO_CTS_N	LPSS_UARTO_CTS_N	LPSS_UARTO_CTS_N
C43	LPSS_UART1_RXD	LPSS_UART1_RXD	LPSS_UART1_RXD
B43	LPSS_UART1_TXD	LPSS_UART1_TXD	LPSS_UART1_TXD
A42	LPSS_UART1_RTS_N	LPSS_UART1_RTS_N	LPSS_UART1_RTS_N
C42	LPSS_UART1_CTS_N	LPSS_UART1_CTS_N	LPSS_UART1_CTS_N
J41	LPSS_UART2_RXD	LPSS_UART2_RXD	LPSS_UART2_RXD
H41	LPSS_UART2_TXD	LPSS_UART2_TXD	LPSS_UART2_TXD
L41	LPSS_UART2_RTS_N	LPSS_UART2_RTS_N	LPSS_UART2_RTS_N
M41	LPSS_UART2_CTS_N	LPSS_UART2_CTS_N	LPSS_UART2_CTS_N
L37	GP_CAMERASB0	GP_CAMERASB0	GP_CAMERASB0
P34	GP_CAMERASB1	GP_CAMERASB1	GP_CAMERASB1
J34	GP_CAMERASB2	GP_CAMERASB2	GP_CAMERASB2
H30	GP_CAMERASB3	GP_CAMERASB3	GP_CAMERASB3
M37	GP_CAMERASB4	GP_CAMERASB4	GP_CAMERASB4
F30	GP_CAMERASB5	GP_CAMERASB5	GP_CAMERASB5

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 19 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
L34	GP_CAMERASB7	GP_CAMERASB7	GP_CAMERASB7
M34	GP_CAMERASB8	GP_CAMERASB8	GP_CAMERASB8
M35	GP_CAMERASB9	GP_CAMERASB9	GP_CAMERASB9
R34	GP_CAMERASB10	GP_CAMERASB10	GP_CAMERASB10
E30	GP_CAMERASB11	GP_CAMERASB11	GP_CAMERASB11
B23	JTAG_TCK	JTAG_TCK	JTAG_TCK
C24	JTAG_TRST_N	JTAG_TRST_N	JTAG_TRST_N
C23	JTAG_TMS	JTAG_TMS	JTAG_TMS
C22	JTAG_TDI	JTAG_TDI	JTAG_TDI
B19	JTAG_PMODE	JTAG_PMODE	JTAG_PMODE
C20	JTAG_PREQ_N	JTAG_PREQ_N	JTAG_PREQ_N
B21	JTAGX	JTAGX	JTAGX
C21	JTAG_PRDY_N	JTAG_PRDY_N	JTAG_PRDY_N
A22	JTAG_TDO	JTAG_TDO	JTAG_TDO
P30	GPIO_216	GPIO_216	GPIO_216
M29	GPIO_217	GPIO_217	GPIO_217
M30	GPIO_218	GPIO_218	GPIO_218
L30	RSVD	RSVD	RSVD
B17	SVID0_ALERT_B	SVID0_ALERT_B	SVID0_ALERT_B
C18	SVID0_DATA	SVID0_DATA	SVID0_DATA
C17	SVID0_CLK	SVID0_CLK	SVID0_CLK
R29	VSS	VSS	VSS
A12	VSS	VSS	VSS
A16	VSS	VSS	VSS
A20	VSS	VSS	VSS
A24	VSS	VSS	VSS
A28	VSS	VSS	VSS
A32	VSS	VSS	VSS
A36	VSS	VSS	VSS
A40	VSS	VSS	VSS
A44	VSS	VSS	VSS
A48	VSS	VSS	VSS
A5	VSS	VSS	VSS
A52	VSS	VSS	VSS
A56	VSS	VSS	VSS
A62	VSS	VSS	VSS
A9	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 20 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AA1	VSS	VSS	VSS
AA2	VSS	VSS	VSS
AA27	VSS	VSS	VSS
AA34	VSS	VSS	VSS
AA41	VSS	VSS	VSS
AA63	VSS	VSS	VSS
AB10	VSS	VSS	VSS
AB12	VSS	VSS	VSS
AB16	VSS	VSS	VSS
AB48	VSS	VSS	VSS
AB5	VSS	VSS	VSS
AB52	VSS	VSS	VSS
AB57	VSS	VSS	VSS
AB59	VSS	VSS	VSS
AB9	VSS	VSS	VSS
AC18	VSS	VSS	VSS
AC27	VSS	VSS	VSS
AC34	VSS	VSS	VSS
AC39	VSS	VSS	VSS
AE1	VSS	VSS	VSS
AE10	VSS	VSS	VSS
AE11	VSS	VSS	VSS
AE13	VSS	VSS	VSS
AE14	VSS	VSS	VSS
AE16	VSS	VSS	VSS
AE17	VSS	VSS	VSS
AE2	VSS	VSS	VSS
AE23	VSS	VSS	VSS
AE27	VSS	VSS	VSS
AE34	VSS	VSS	VSS
AE39	VSS	VSS	VSS
AE4	VSS	VSS	VSS
AE41	VSS	VSS	VSS
AE47	VSS	VSS	VSS
AE48	VSS	VSS	VSS
AE5	VSS	VSS	VSS
AE50	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 21 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AE51	VSS	VSS	VSS
AE53	VSS	VSS	VSS
AE54	VSS	VSS	VSS
AE56	VSS	VSS	VSS
AE57	VSS	VSS	VSS
AE59	VSS	VSS	VSS
AE63	VSS	VSS	VSS
AE7	VSS	VSS	VSS
AE8	VSS	VSS	VSS
AG13	VSS	VSS	VSS
AG18	VSS	VSS	VSS
AG23	VSS	VSS	VSS
AG27	VSS	VSS	VSS
AG34	VSS	VSS	VSS
AG37	VSS	VSS	VSS
AG39	VSS	VSS	VSS
AG41	VSS	VSS	VSS
AG42	VSS	VSS	VSS
AG44	VSS	VSS	VSS
AG46	VSS	VSS	VSS
AH15	VSS	VSS	VSS
AH16	VSS	VSS	VSS
AH48	VSS	VSS	VSS
AH5	VSS	VSS	VSS
AH52	VSS	VSS	VSS
AH54	VSS	VSS	VSS
AH55	VSS	VSS	VSS
AH57	VSS	VSS	VSS
AH58	VSS	VSS	VSS
AH59	VSS	VSS	VSS
AH6	VSS	VSS	VSS
AH7	VSS	VSS	VSS
AJ1	VSS	VSS	VSS
AJ18	VSS	VSS	VSS
AJ2	VSS	VSS	VSS
AJ23	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 22 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AJ34	VSS	VSS	VSS
AJ36	VSS	VSS	VSS
AJ63	VSS	VSS	VSS
AK10	VSS	VSS	VSS
AK12	VSS	VSS	VSS
AK18	VSS	VSS	VSS
AK23	VSS	VSS	VSS
AK27	VSS	VSS	VSS
AK36	VSS	VSS	VSS
AK48	VSS	VSS	VSS
AK5	VSS	VSS	VSS
AK52	VSS	VSS	VSS
AK59	VSS	VSS	VSS
AK9	VSS	VSS	VSS
AM18	VSS	VSS	VSS
AM22	VSS	VSS	VSS
AM27	VSS	VSS	VSS
AM34	VSS	VSS	VSS
AM36	VSS	VSS	VSS
AM39	VSS	VSS	VSS
AM46	VSS	VSS	VSS
AN1	VSS	VSS	VSS
AN10	VSS	VSS	VSS
AN11	VSS	VSS	VSS
AN13	VSS	VSS	VSS
AN14	VSS	VSS	VSS
AN16	VSS	VSS	VSS
AN17	VSS	VSS	VSS
AN2	VSS	VSS	VSS
AN25	VSS	VSS	VSS
AN27	VSS	VSS	VSS
AN28	VSS	VSS	VSS
AN30	VSS	VSS	VSS
AN34	VSS	VSS	VSS
AN36	VSS	VSS	VSS
AN37	VSS	VSS	VSS
AN39	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 23 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AN47	VSS	VSS	VSS
AN48	VSS	VSS	VSS
AN5	VSS	VSS	VSS
AN50	VSS	VSS	VSS
AN51	VSS	VSS	VSS
AN53	VSS	VSS	VSS
AN54	VSS	VSS	VSS
AN56	VSS	VSS	VSS
AN57	VSS	VSS	VSS
AN59	VSS	VSS	VSS
AN63	VSS	VSS	VSS
AN7	VSS	VSS	VSS
AN8	VSS	VSS	VSS
AP55	VSS	VSS	VSS
AP9	VSS	VSS	VSS
AR19	VSS	VSS	VSS
AR32	VSS	VSS	VSS
AR45	VSS	VSS	VSS
AT12	VSS	VSS	VSS
AT16	VSS	VSS	VSS
AT19	VSS	VSS	VSS
AT2	VSS	VSS	VSS
AT25	VSS	VSS	VSS
AT29	VSS	VSS	VSS
AT3	VSS	VSS	VSS
AT35	VSS	VSS	VSS
AT39	VSS	VSS	VSS
AT45	VSS	VSS	VSS
AT48	VSS	VSS	VSS
AT52	VSS	VSS	VSS
AT57	VSS	VSS	VSS
AT61	VSS	VSS	VSS
AT62	VSS	VSS	VSS
AT7	VSS	VSS	VSS
AU32	VSS	VSS	VSS
AV19	VSS	VSS	VSS
AV2	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 24 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AV21	VSS	VSS	VSS
AV23	VSS	VSS	VSS
AV29	VSS	VSS	VSS
AV3	VSS	VSS	VSS
AV32	VSS	VSS	VSS
AV35	VSS	VSS	VSS
AV41	VSS	VSS	VSS
AV43	VSS	VSS	VSS
AV45	VSS	VSS	VSS
AV55	VSS	VSS	VSS
AV61	VSS	VSS	VSS
AV62	VSS	VSS	VSS
AV9	VSS	VSS	VSS
AW14	VSS	VSS	VSS
AW30	VSS	VSS	VSS
AW34	VSS	VSS	VSS
AW50	VSS	VSS	VSS
AY10	VSS	VSS	VSS
AY32	VSS	VSS	VSS
AY54	VSS	VSS	VSS
AY58	VSS	VSS	VSS
AY6	VSS	VSS	VSS
B2	VSS	VSS	VSS
В3	VSS	VSS	VSS
B62	VSS	VSS	VSS
B63	VSS	VSS	VSS
B9	VSS	VSS	VSS
BA1	VSS	VSS	VSS
BA12	VSS	VSS	VSS
BA16	VSS	VSS	VSS
BA17	VSS	VSS	VSS
BA2	VSS	VSS	VSS
BA21	VSS	VSS	VSS
BA25	VSS	VSS	VSS
BA27	VSS	VSS	VSS
BA29	VSS	VSS	VSS
BA32	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 25 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BA35	VSS	VSS	VSS
BA37	VSS	VSS	VSS
BA39	VSS	VSS	VSS
BA43	VSS	VSS	VSS
BA47	VSS	VSS	VSS
BA48	VSS	VSS	VSS
BA52	VSS	VSS	VSS
BA62	VSS	VSS	VSS
BA63	VSS	VSS	VSS
BB19	VSS	VSS	VSS
BB25	VSS	VSS	VSS
BB3	VSS	VSS	VSS
BB39	VSS	VSS	VSS
BB45	VSS	VSS	VSS
BB61	VSS	VSS	VSS
BC32	VSS	VSS	VSS
BD3	VSS	VSS	VSS
BD32	VSS	VSS	VSS
BD56	VSS	VSS	VSS
BD61	VSS	VSS	VSS
BD8	VSS	VSS	VSS
BE1	VSS	VSS	VSS
BE10	VSS	VSS	VSS
BE12	VSS	VSS	VSS
BE16	VSS	VSS	VSS
BE17	VSS	VSS	VSS
BE21	VSS	VSS	VSS
BE27	VSS	VSS	VSS
BE29	VSS	VSS	VSS
BE35	VSS	VSS	VSS
BE37	VSS	VSS	VSS
BE43	VSS	VSS	VSS
BE47	VSS	VSS	VSS
BE48	VSS	VSS	VSS
BE52	VSS	VSS	VSS
BE54	VSS	VSS	VSS
BE63	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 26 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
BF3	VSS	VSS	VSS
BF32	VSS	VSS	VSS
BF61	VSS	VSS	VSS
BG19	VSS	VSS	VSS
BG23	VSS	VSS	VSS
BG29	VSS	VSS	VSS
BG32	VSS	VSS	VSS
BG35	VSS	VSS	VSS
BG41	VSS	VSS	VSS
BG45	VSS	VSS	VSS
BH1	VSS	VSS	VSS
BH2	VSS	VSS	VSS
BH21	VSS	VSS	VSS
BH25	VSS	VSS	VSS
ВН39	VSS	VSS	VSS
BH43	VSS	VSS	VSS
BH62	VSS	VSS	VSS
BH63	VSS	VSS	VSS
BJ10	VSS	VSS	VSS
BJ14	VSS	VSS	VSS
BJ18	VSS	VSS	VSS
BJ28	VSS	VSS	VSS
BJ32	VSS	VSS	VSS
BJ36	VSS	VSS	VSS
BJ4	VSS	VSS	VSS
BJ46	VSS	VSS	VSS
BJ50	VSS	VSS	VSS
BJ54	VSS	VSS	VSS
BJ56	VSS	VSS	VSS
BJ60	VSS	VSS	VSS
BJ8	VSS	VSS	VSS
C12	VSS	VSS	VSS
C16	VSS	VSS	VSS
C28	VSS	VSS	VSS
C32	VSS	VSS	VSS
C40	VSS	VSS	VSS
C48	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 27 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
D32	VSS	VSS	VSS
D58	VSS	VSS	VSS
D6	VSS	VSS	VSS
E12	VSS	VSS	VSS
E14	VSS	VSS	VSS
E19	VSS	VSS	VSS
E27	VSS	VSS	VSS
E4	VSS	VSS	VSS
E54	VSS	VSS	VSS
F10	VSS	VSS	VSS
F21	VSS	VSS	VSS
F3	VSS	VSS	VSS
F32	VSS	VSS	VSS
F37	VSS	VSS	VSS
F43	VSS	VSS	VSS
F45	VSS	VSS	VSS
F50	VSS	VSS	VSS
F56	VSS	VSS	VSS
F59	VSS	VSS	VSS
F63	VSS	VSS	VSS
G1	VSS	VSS	VSS
G32	VSS	VSS	VSS
H17	VSS	VSS	VSS
H23	VSS	VSS	VSS
H29	VSS	VSS	VSS
H3	VSS	VSS	VSS
H37	VSS	VSS	VSS
H47	VSS	VSS	VSS
H61	VSS	VSS	VSS
H7	VSS	VSS	VSS
J12	VSS	VSS	VSS
J14	VSS	VSS	VSS
J19	VSS	VSS	VSS
J27	VSS	VSS	VSS
J30	VSS	VSS	VSS
J32	VSS	VSS	VSS
J35	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 28 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
J37	VSS	VSS	VSS
J48	VSS	VSS	VSS
J63	VSS	VSS	VSS
K32	VSS	VSS	VSS
K5	VSS	VSS	VSS
K54	VSS	VSS	VSS
K57	VSS	VSS	VSS
K6	VSS	VSS	VSS
L21	VSS	VSS	VSS
L27	VSS	VSS	VSS
L29	VSS	VSS	VSS
L35	VSS	VSS	VSS
L43	VSS	VSS	VSS
L45	VSS	VSS	VSS
L50	VSS	VSS	VSS
M14	VSS	VSS	VSS
M21	VSS	VSS	VSS
M27	VSS	VSS	VSS
М3	VSS	VSS	VSS
M32	VSS	VSS	VSS
M50	VSS	VSS	VSS
M59	VSS	VSS	VSS
M9	VSS	VSS	VSS
N1	VSS	VSS	VSS
N32	VSS	VSS	VSS
N63	VSS	VSS	VSS
P13	VSS	VSS	VSS
P19	VSS	VSS	VSS
P35	VSS	VSS	VSS
P37	VSS	VSS	VSS
P41	VSS	VSS	VSS
P43	VSS	VSS	VSS
P45	VSS	VSS	VSS
P5	VSS	VSS	VSS
P55	VSS	VSS	VSS
P59	VSS	VSS	VSS
P9	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 29 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
R23	VSS	VSS	VSS
R32	VSS	VSS	VSS
T49	VSS	VSS	VSS
U1	VSS	VSS	VSS
U10	VSS	VSS	VSS
U11	VSS	VSS	VSS
U13	VSS	VSS	VSS
U14	VSS	VSS	VSS
U16	VSS	VSS	VSS
U17	VSS	VSS	VSS
U18	VSS	VSS	VSS
U2	VSS	VSS	VSS
U27	VSS	VSS	VSS
U34	VSS	VSS	VSS
U5	VSS	VSS	VSS
U50	VSS	VSS	VSS
U51	VSS	VSS	VSS
U53	VSS	VSS	VSS
U54	VSS	VSS	VSS
U56	VSS	VSS	VSS
U57	VSS	VSS	VSS
U59	VSS	VSS	VSS
U62	VSS	VSS	VSS
U63	VSS	VSS	VSS
U7	VSS	VSS	VSS
U8	VSS	VSS	VSS
V20	VSS	VSS	VSS
V27	VSS	VSS	VSS
V34	VSS	VSS	VSS
V42	VSS	VSS	VSS
Y12	VSS	VSS	VSS
Y16	VSS	VSS	VSS
Y22	VSS	VSS	VSS
Y27	VSS	VSS	VSS
Y34	VSS	VSS	VSS
Y42	VSS	VSS	VSS
Y46	VSS	VSS	VSS

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 30 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
Y48	VSS	VSS	VSS
Y5	VSS	VSS	VSS
Y52	VSS	VSS	VSS
Y54	VSS	VSS	VSS
Y55	VSS	VSS	VSS
Y57	VSS	VSS	VSS
Y59	VSS	VSS	VSS
Y6	VSS	VSS	VSS
Y7	VSS	VSS	VSS
AJ44	RSVD	RSVD	RSVD
AJ37	VNN_SVID	VNN_SVID	VNN_SVID
AJ39	VNN_SVID	VNN_SVID	VNN_SVID
AJ41	VNN_SVID	VNN_SVID	VNN_SVID
AJ42	VNN_SVID	VNN_SVID	VNN_SVID
AJ46	VNN_SVID	VNN_SVID	VNN_SVID
AK37	VNN_SVID	VNN_SVID	VNN_SVID
AK39	VNN_SVID	VNN_SVID	VNN_SVID
AK41	VNN_SVID	VNN_SVID	VNN_SVID
AK42	VNN_SVID	VNN_SVID	VNN_SVID
AK44	VNN_SVID	VNN_SVID	VNN_SVID
AK46	VNN_SVID	VNN_SVID	VNN_SVID
AM44	VNN_SVID	VNN_SVID	VNN_SVID
AG48	VNN_SENSE	VNN_SENSE	VNN_SENSE
BG63	RSVD	RSVD	RSVD
AC41	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
AA42	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
Y44	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
V44	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
V46	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
AJ25	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
AK25	VCC_3P3V_A	VCC_3P3V_A	VCC_3P3V_A
AC22	RSVD	RSVD	RSVD
AC20	RSVD	RSVD	RSVD
AG20	VDD2_1P24_USB2	VDD2_1P24_USB2	VDD2_1P24_USB2
AJ20	VDD2_1P24_AUD_ISH_ PLL	VDD2_1P24_AUD_ISH_PL L	VDD2_1P24_AUD_ISH_PLL
AJ22	VDD2_1P24_AUD_ISH_ PLL	VDD2_1P24_AUD_ISH_PL L	VDD2_1P24_AUD_ISH_PLL

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 31 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AE18	VDD2_1P24	VDD2_1P24	VDD2_1P24
AE20	VDD2_1P24	VDD2_1P24	VDD2_1P24
AE22	VDD2_1P24	VDD2_1P24	VDD2_1P24
AG22	VDD2_1P24	VDD2_1P24	VDD2_1P24
AM20	VDD2_1P24_GLM	VDD2_1P24_GLM	VDD2_1P24_GLM
AM28	VDD2_1P24_GLM	VDD2_1P24_GLM	VDD2_1P24_GLM
AM37	VDD2_1P24_GLM	VDD2_1P24_GLM	VDD2_1P24_GLM
AK20	VDD2_1P24_GLM	VDD2_1P24_GLM	VDD2_1P24_GLM
AA18	VDD2_1P24_DSI_CSI	VDD2_1P24_DSI_CSI	VDD2_1P24_DSI_CSI
AA20	VDD2_1P24_DSI_CSI	VDD2_1P24_DSI_CSI	VDD2_1P24_DSI_CSI
AK22	VDD2_1P24_AUD_ISH_ PLL	VDD2_1P24_AUD_ISH_PL L	VDD2_1P24_AUD_ISH_PLL
V48	RSVD	RSVD	RSVD
AA46	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AC46	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AE44	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AE42	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AC42	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AC44	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AE46	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AG25	VCC_1P8V_A	VCC_1P8V_A	VCC_1P8V_A
AA36	VCC_VCGI	VCC_VCGI	VCC_VCGI
AA37	VCC_VCGI	VCC_VCGI	VCC_VCGI
AA39	VCC_VCGI	VCC_VCGI	VCC_VCGI
AC36	VCC_VCGI	VCC_VCGI	VCC_VCGI
AC37	VCC_VCGI	VCC_VCGI	VCC_VCGI
AE36	VCC_VCGI	VCC_VCGI	VCC_VCGI
AE37	VCC_VCGI	VCC_VCGI	VCC_VCGI
AG36	VCC_VCGI	VCC_VCGI	VCC_VCGI
E43	VCC_VCGI	VCC_VCGI	VCC_VCGI
E45	VCC_VCGI	VCC_VCGI	VCC_VCGI
E48	VCC_VCGI	VCC_VCGI	VCC_VCGI
E50	VCC_VCGI	VCC_VCGI	VCC_VCGI
R45	VCC_VCGI	VCC_VCGI	VCC_VCGI
R47	VCC_VCGI	VCC_VCGI	VCC_VCGI
U36	VCC_VCGI	VCC_VCGI	VCC_VCGI
U37	VCC_VCGI	VCC_VCGI	VCC_VCGI

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 32 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
U39	VCC_VCGI	VCC_VCGI	VCC_VCGI
U41	VCC_VCGI	VCC_VCGI	VCC_VCGI
U42	VCC_VCGI	VCC_VCGI	VCC_VCGI
U44	VCC_VCGI	VCC_VCGI	VCC_VCGI
U46	VCC_VCGI	VCC_VCGI	VCC_VCGI
U47	VCC_VCGI	VCC_VCGI	VCC_VCGI
U48	VCC_VCGI	VCC_VCGI	VCC_VCGI
V36	VCC_VCGI	VCC_VCGI	VCC_VCGI
V37	VCC_VCGI	VCC_VCGI	VCC_VCGI
V39	VCC_VCGI	VCC_VCGI	VCC_VCGI
V41	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y36	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y37	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y39	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y41	VCC_VCGI	VCC_VCGI	VCC_VCGI
AA28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AA30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AA32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AC28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AC30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AC32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AE28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AE30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AE32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AG28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AG30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AG32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AJ28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AJ30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AJ32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AK28	VCC_VCGI	VCC_VCGI	VCC_VCGI
AK30	VCC_VCGI	VCC_VCGI	VCC_VCGI
AK32	VCC_VCGI	VCC_VCGI	VCC_VCGI
AK34	VCC_VCGI	VCC_VCGI	VCC_VCGI
AM30	VCC_VCGI	VCC_VCGI	VCC_VCGI
E29	VCC_VCGI	VCC_VCGI	VCC_VCGI
E35	VCC_VCGI	VCC_VCGI	VCC_VCGI

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 33 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
E37	VCC_VCGI	VCC_VCGI	VCC_VCGI
F29	VCC_VCGI	VCC_VCGI	VCC_VCGI
U28	VCC_VCGI	VCC_VCGI	VCC_VCGI
U30	VCC_VCGI	VCC_VCGI	VCC_VCGI
U32	VCC_VCGI	VCC_VCGI	VCC_VCGI
V28	VCC_VCGI	VCC_VCGI	VCC_VCGI
V30	VCC_VCGI	VCC_VCGI	VCC_VCGI
V32	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y28	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y30	VCC_VCGI	VCC_VCGI	VCC_VCGI
Y32	VCC_VCGI	VCC_VCGI	VCC_VCGI
ВЈЗ	RSVD	RSVD	RSVD
BJ61	RSVD	RSVD	RSVD
AA44	VCCRTC_3P3V	VCCRTC_3P3V	VCCRTC_3P3V
D1	RSVD	RSVD	RSVD
AA25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
AC25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
AE25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
U22	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
U23	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
V22	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
V23	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
V25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
Y23	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
Y25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
U25	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
U20	VCCRAM_1P05	VCCRAM_1P05	VCCRAM_1P05
AA22	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
AC23	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
V18	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
Y18	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
Y20	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
P16	VCC_1P05_INT	VCC_1P05_INT	VCC_1P05_INT
T15	VCC_1P05_INT	VCC_1P05_INT	VCC_1P05_INT
T13	VCC_1P05_INT	VCC_1P05_INT	VCC_1P05_INT
AA23	VCCRAM_1P05_IO	VCCRAM_1P05_IO	VCCRAM_1P05_IO
AM23	VCCIOA	VCCIOA	VCCIOA

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 34 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
AM25	VCCIOA	VCCIOA	VCCIOA
AM41	VCCIOA	VCCIOA	VCCIOA
AM42	VCCIOA	VCCIOA	VCCIOA
AN32	RSVD	RSVD	RSVD
AN18	VDDQ	VDDQ	VDDQ
AN20	VDDQ	VDDQ	VDDQ
AN22	VDDQ	VDDQ	VDDQ
AN23	VDDQ	VDDQ	VDDQ
AN41	VDDQ	VDDQ	VDDQ
AN42	VDDQ	VDDQ	VDDQ
AN44	VDDQ	VDDQ	VDDQ
AN46	VDDQ	VDDQ	VDDQ
AR17	VDDQ	VDDQ	VDDQ
AR47	VDDQ	VDDQ	VDDQ
AT13	VDDQ	VDDQ	VDDQ
AT17	VDDQ	VDDQ	VDDQ
AT47	VDDQ	VDDQ	VDDQ
AT51	VDDQ	VDDQ	VDDQ
AV14	VDDQ	VDDQ	VDDQ
AV50	VDDQ	VDDQ	VDDQ
AM32	RSVD	RSVD	RSVD
BJ62	RSVD	RSVD	RSVD
R43	VCC_VCGI_SENSE_N	VCC_VCGI_SENSE_N	VCC_VCGI_SENSE_N
R41	VCC_VCGI_SENSE_P	VCC_VCGI_SENSE_P	VCC_VCGI_SENSE_P
T51	NCTF	NCTF	NCTF
L14	NCTF	NCTF	NCTF
R19	NCTF	NCTF	NCTF
E6	NCTF	NCTF	NCTF
R17	NCTF	NCTF	NCTF
E3	NCTF	NCTF	NCTF
D4	NCTF	NCTF	NCTF
A60	NCTF	NCTF	NCTF
A61	NCTF	NCTF	NCTF
ВЈ2	NCTF	NCTF	NCTF
BG1	NCTF	NCTF	NCTF
P27	NCTF	NCTF	NCTF
А3	NCTF	NCTF	NCTF

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 35 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
M10	NCTF	NCTF	NCTF
B15	NCTF	NCTF	NCTF
M12	NCTF	NCTF	NCTF
C15	NCTF	NCTF	NCTF
F16	NCTF	NCTF	NCTF
J16	NCTF	NCTF	NCTF
D8	NCTF	NCTF	NCTF
E8	NCTF	NCTF	NCTF
H16	NCTF	NCTF	NCTF
C9	NCTF	NCTF	NCTF
F8	NCTF	NCTF	NCTF
E10	NCTF	NCTF	NCTF
E16	NCTF	NCTF	NCTF
F14	NCTF	NCTF	NCTF
F12	NCTF	NCTF	NCTF
H10	NCTF	NCTF	NCTF
H14	NCTF	NCTF	NCTF
H12	NCTF	NCTF	NCTF
A14	NCTF	NCTF	NCTF
C14	NCTF	NCTF	NCTF
M39	NCTF	NCTF	NCTF
P39	NCTF	NCTF	NCTF
R39	NCTF	NCTF	NCTF
R37	NCTF	NCTF	NCTF
C2	NCTF	NCTF	NCTF
J29	NCTF	NCTF	NCTF
P25	NCTF	NCTF	NCTF
R30	NCTF	NCTF	NCTF
C63	NCTF	NCTF	NCTF
E63	NCTF	NCTF	NCTF
D2	NCTF	NCTF	NCTF
AP57	NCTF	NCTF	NCTF
B13	NCTF	NCTF	NCTF
C13	NCTF	NCTF	NCTF
L16	NCTF	NCTF	NCTF
M16	NCTF	NCTF	NCTF
E23	NCTF	NCTF	NCTF

Table 6-1. SoC Pin Numbers - DDR3L, LPDDR3 and LPDDR4 (Sheet 36 of 36)

SoC Pin Numbers	DDR3L	LPDDR3	LPDDR4
F23	NCTF	NCTF	NCTF
R25	NCTF	NCTF	NCTF
AB49	NCTF	NCTF	NCTF
AC13	NCTF	NCTF	NCTF
AB13	NCTF	NCTF	NCTF
AM59	NCTF	NCTF	NCTF
AM58	NCTF	NCTF	NCTF

6.5 SoC X and Y Pin List

Table 6-2. SoC X and Y Pin List (Sheet 1 of 34)

Pin	X	Y
AA1	14814.17	-1854.2
AA2	14036.68	-1854.2
AA18	6299.2	-1447.8
AA20	5511.8	-1447.8
AA22	4724.4	-1447.8
AA23	3937	-1447.8
AA25	3149.6	-1447.8
AA27	2362.2	-1447.8
AA28	1574.8	-1447.8
AA30	787.4	-1447.8
AA32	0	-1447.8
AA34	-787.4	-1447.8
AA36	-1574.8	-1447.8
AA37	-2362.2	-1447.8
AA39	-3149.6	-1447.8
AA41	-3937	-1447.8
AA42	-4724.4	-1447.8
AA44	-5511.8	-1447.8
AA46	-6299.2	-1447.8
AA62	-14036.7	-1854.2
AA63	-14814.2	-1854.2
AB2	14413.87	-1390.65
AB3	13659.49	-1390.65
AB5	12999.09	-1397
AB6	12287.89	-1397
AB7	11576.69	-1397
AB9	10865.49	-1397
AB10	10154.29	-1397
AB12	9443.085	-1397
AB13	8731.885	-1397
AB15	8020.685	-1397
AB16	7309.485	-1397
AB48	-7309.49	-1397
AB49	-8020.69	-1397
AB51	-8731.89	-1397
AB52	-9443.09	-1397
AB54	-10154.3	-1397

Table 6-2. SoC X and Y Pin List (Sheet 2 of 34)

Pin	x	Y
AB55	-10865.5	-1397
AB57	-11576.7	-1397
AB58	-12287.9	-1397
AB59	-12999.1	-1397
AB61	-13659.5	-1390.65
AB62	-14413.9	-1390.65
AC1	14814.17	-927.1
AC2	14036.68	-927.1
AC5	12999.09	-520.7
AC6	12287.89	-520.7
AC7	11576.69	-520.7
AC9	10865.49	-520.7
AC10	10154.29	-520.7
AC12	9443.085	-520.7
AC13	8731.885	-520.7
AC15	8020.685	-520.7
AC16	7309.485	-520.7
AC18	6299.2	-723.9
AC20	5511.8	-723.9
AC22	4724.4	-723.9
AC23	3937	-723.9
AC25	3149.6	-723.9
AC27	2362.2	-723.9
AC28	1574.8	-723.9
AC30	787.4	-723.9
AC32	0	-723.9
AC34	-787.4	-723.9
AC36	-1574.8	-723.9
AC37	-2362.2	-723.9
AC39	-3149.6	-723.9
AC41	-3937	-723.9
AC42	-4724.4	-723.9
AC44	-5511.8	-723.9
AC46	-6299.2	-723.9
AC48	-7309.49	-520.7
AC49	-8020.69	-520.7
AC51	-8731.89	-520.7
AC52	-9443.09	-520.7
AC54	-10154.3	-520.7

Table 6-2. SoC X and Y Pin List (Sheet 3 of 34)

Pin	x	Υ
AC55	-10865.5	-520.7
AC57	-11576.7	-520.7
AC58	-12287.9	-520.7
AC59	-12999.1	-520.7
AC62	-14036.7	-927.1
AC63	-14814.2	-927.1
AD2	14413.87	-463.55
AD3	13659.49	-463.55
AD61	-13659.5	-463.55
AD62	-14413.9	-463.55
AE1	14814.17	0
AE2	14036.68	0
AE4	13284.84	0
AE5	12643.49	0
AE7	11932.29	0
AE8	11221.09	0
AE10	10509.89	0
AE11	9798.685	0
AE13	9087.485	0
AE14	8376.285	0
AE16	7665.085	0
AE17	6953.885	0
AE18	6299.2	0
AE20	5511.8	0
AE22	4724.4	0
AE23	3937	0
AE25	3149.6	0
AE27	2362.2	0
AE28	1574.8	0
AE30	787.4	0
AE32	0	0
AE34	-787.4	0
AE36	-1574.8	0
AE37	-2362.2	0
AE39	-3149.6	0
AE41	-3937	0
AE42	-4724.4	0
AE44	-5511.8	0
AE46	-6299.2	0

Table 6-2. SoC X and Y Pin List (Sheet 4 of 34)

Pin	X	Y
AE47	-6953.89	0
AE48	-7665.09	0
AE50	-8376.29	0
AE51	-9087.49	0
AE53	-9798.69	0
AE54	-10509.9	0
AE56	-11221.1	0
AE57	-11932.3	0
AE59	-12643.5	0
AE60	-13284.8	0
AE62	-14036.7	0
AE63	-14814.2	0
AF2	14413.87	463.55
AF3	13659.49	463.55
AF61	-13659.5	463.55
AF62	-14413.9	463.55
AG1	14814.17	927.1
AG2	14036.68	927.1
AG5	12999.09	520.7
AG6	12287.89	520.7
AG7	11576.69	520.7
AG9	10865.49	520.7
AG10	10154.29	520.7
AG12	9443.085	520.7
AG13	8731.885	520.7
AG15	8020.685	520.7
AG16	7309.485	520.7
AG18	6299.2	723.9
AG20	5511.8	723.9
AG22	4724.4	723.9
AG23	3937	723.9
AG25	3149.6	723.9
AG27	2362.2	723.9
AG28	1574.8	723.9
AG30	787.4	723.9
AG32	0	723.9
AG34	-787.4	723.9
AG36	-1574.8	723.9
AG37	-2362.2	723.9

Table 6-2. SoC X and Y Pin List (Sheet 5 of 34)

Pin	X	Y
AG39	-3149.6	723.9
AG41	-3937	723.9
AG42	-4724.4	723.9
AG44	-5511.8	723.9
AG46	-6299.2	723.9
AG48	-7309.49	520.7
AG49	-8020.69	520.7
AG51	-8731.89	520.7
AG52	-9443.09	520.7
AG54	-10154.3	520.7
AG55	-10865.5	520.7
AG57	-11576.7	520.7
AG58	-12287.9	520.7
AG59	-12999.1	520.7
AG62	-14036.7	927.1
AG63	-14814.2	927.1
AH2	14413.87	1390.65
AH3	13659.49	1390.65
AH5	12999.09	1397
AH6	12287.89	1397
AH7	11576.69	1397
AH9	10865.49	1397
AH10	10154.29	1397
AH12	9443.085	1397
AH13	8731.885	1397
AH15	8020.685	1397
AH16	7309.485	1397
AH48	-7309.49	1397
AH49	-8020.69	1397
AH51	-8731.89	1397
AH52	-9443.09	1397
AH54	-10154.3	1397
AH55	-10865.5	1397
AH57	-11576.7	1397
AH58	-12287.9	1397
AH59	-12999.1	1397
AH61	-13659.5	1390.65
AH62	-14413.9	1390.65
AJ1	14814.17	1854.2

Table 6-2. SoC X and Y Pin List (Sheet 6 of 34)

Pin	X	Y
AJ2	14036.68	1854.2
AJ18	6299.2	1447.8
AJ20	5511.8	1447.8
AJ22	4724.4	1447.8
AJ23	3937	1447.8
AJ25	3149.6	1447.8
AJ27	2362.2	1447.8
AJ28	1574.8	1447.8
AJ30	787.4	1447.8
AJ32	0	1447.8
AJ34	-787.4	1447.8
AJ36	-1574.8	1447.8
AJ37	-2362.2	1447.8
AJ39	-3149.6	1447.8
AJ41	-3937	1447.8
AJ42	-4724.4	1447.8
AJ44	-5511.8	1447.8
AJ46	-6299.2	1447.8
AJ62	-14036.7	1854.2
AJ63	-14814.2	1854.2
AK2	14413.87	2317.75
AK3	13659.49	2317.75
AK5	12999.09	2349.5
AK6	12287.89	2349.5
AK7	11576.69	2349.5
AK9	10865.49	2349.5
AK10	10154.29	2349.5
AK12	9443.085	2349.5
AK13	8731.885	2349.5
AK15	8020.685	2349.5
AK16	7309.485	2349.5
AK18	6299.2	2171.7
AK20	5511.8	2171.7
AK22	4724.4	2171.7
AK23	3937	2171.7
AK25	3149.6	2171.7
AK27	2362.2	2171.7
AK28	1574.8	2171.7
AK30	787.4	2171.7
	<u> </u>	i .

Table 6-2. SoC X and Y Pin List (Sheet 7 of 34)

Pin	x	Υ
AK32	0	2171.7
AK34	-787.4	2171.7
AK36	-1574.8	2171.7
AK37	-2362.2	2171.7
AK39	-3149.6	2171.7
AK41	-3937	2171.7
AK42	-4724.4	2171.7
AK44	-5511.8	2171.7
AK46	-6299.2	2171.7
AK48	-7309.49	2349.5
AK49	-8020.69	2349.5
AK51	-8731.89	2349.5
AK52	-9443.09	2349.5
AK54	-10154.3	2349.5
AK55	-10865.5	2349.5
AK57	-11576.7	2349.5
AK58	-12287.9	2349.5
AK59	-12999.1	2349.5
AK61	-13659.5	2317.75
AK62	-14413.9	2317.75
AL1	14814.17	2781.3
AL2	14036.68	2781.3
AL62	-14036.7	2781.3
AL63	-14814.2	2781.3
AM2	14413.87	3244.85
AM3	13659.49	3244.85
AM5	12999.09	3225.8
AM6	12287.89	3225.8
AM7	11576.69	3225.8
AM9	10865.49	3225.8
AM10	10154.29	3225.8
AM12	9443.085	3225.8
AM13	8731.885	3225.8
AM15	8020.685	3225.8
AM16	7309.485	3225.8
AM18	6299.2	2895.6
AM20	5511.8	2895.6
AM22	4724.4	2895.6
AM23	3937	2895.6

Table 6-2. SoC X and Y Pin List (Sheet 8 of 34)

Pin	×	Y
AM25	3149.6	2895.6
AM27	2362.2	2895.6
AM28	1574.8	2895.6
AM30	787.4	2895.6
AM32	0	2895.6
AM34	-787.4	2895.6
AM36	-1574.8	2895.6
AM37	-2362.2	2895.6
AM39	-3149.6	2895.6
AM41	-3937	2895.6
AM42	-4724.4	2895.6
AM44	-5511.8	2895.6
AM46	-6299.2	2895.6
AM48	-7309.49	3225.8
AM49	-8020.69	3225.8
AM51	-8731.89	3225.8
AM52	-9443.09	3225.8
AM54	-10154.3	3225.8
AM55	-10865.5	3225.8
AM57	-11576.7	3225.8
AM58	-12287.9	3225.8
AM59	-12999.1	3225.8
AM61	-13659.5	3244.85
AM62	-14413.9	3244.85
AN1	14814.17	3708.4
AN2	14036.68	3708.4
AN5	12643.49	3746.5
AN7	11932.29	3746.5
AN8	11221.09	3746.5
AN10	10509.89	3746.5
AN11	9798.685	3746.5
AN13	9087.485	3746.5
AN14	8376.285	3746.5
AN16	7665.085	3746.5
AN17	6953.885	3746.5
AN18	6299.2	3619.5
AN20	5511.8	3619.5
AN22	4724.4	3619.5
AN23	3937	3619.5

Table 6-2. SoC X and Y Pin List (Sheet 9 of 34)

Pin	X	Y
AN25	3149.6	3619.5
AN27	2362.2	3619.5
AN28	1574.8	3619.5
AN30	787.4	3619.5
AN32	0	3619.5
AN34	-787.4	3619.5
AN36	-1574.8	3619.5
AN37	-2362.2	3619.5
AN39	-3149.6	3619.5
AN41	-3937	3619.5
AN42	-4724.4	3619.5
AN44	-5511.8	3619.5
AN46	-6299.2	3619.5
AN47	-6953.89	3746.5
AN48	-7665.09	3746.5
AN50	-8376.29	3746.5
AN51	-9087.49	3746.5
AN53	-9798.69	3746.5
AN54	-10509.9	3746.5
AN56	-11221.1	3746.5
AN57	-11932.3	3746.5
AN59	-12643.5	3746.5
AN62	-14036.7	3708.4
AN63	-14814.2	3708.4
AP2	14413.87	4171.95
AP3	13659.49	4171.95
AP5	12999.09	4267.2
AP6	12287.89	4267.2
AP7	11576.69	4267.2
AP9	10865.49	4267.2
AP10	10154.29	4267.2
AP12	9443.085	4267.2
AP13	8731.885	4267.2
AP15	8020.685	4267.2
AP49	-8020.69	4267.2
AP51	-8731.89	4267.2
AP52	-9443.09	4267.2
AP54	-10154.3	4267.2
AP55	-10865.5	4267.2

Table 6-2. SoC X and Y Pin List (Sheet 10 of 34)

	T	
Pin	X	Y
AP57	-11576.7	4267.2
AP58	-12287.9	4267.2
AP59	-12999.1	4267.2
AP61	-13659.5	4171.95
AP62	-14413.9	4171.95
AR1	14814.17	4635.5
AR2	14036.68	4635.5
AR17	7004.05	4431.792
AR19	6096	4431.792
AR21	5143.5	4431.792
AR23	4222.75	4431.792
AR25	3270.25	4431.792
AR27	2349.5	4431.792
AR29	1397	4431.792
AR30	476.25	4431.792
AR32	0	4787.392
AR34	-476.25	4431.792
AR35	-1397	4431.792
AR37	-2349.5	4431.792
AR39	-3270.25	4431.792
AR41	-4222.75	4431.792
AR43	-5143.5	4431.792
AR45	-6096	4431.792
AR47	-7004.05	4431.792
AR62	-14036.7	4635.5
AR63	-14814.2	4635.5
AT2	14413.87	5099.05
AT3	13659.49	5099.05
AT5	12999.09	5143.5
AT6	12287.89	5143.5
AT7	11576.69	5143.5
AT9	10865.49	5143.5
AT10	10154.29	5143.5
AT12	9443.085	5143.5
AT13	8731.885	5143.5
AT16	7626.35	5142.992
AT17	7004.05	5142.992
AT19	6096	5142.992
AT21	5143.5	5142.992

Table 6-2. SoC X and Y Pin List (Sheet 11 of 34)

Pin	x	Y
AT23	4222.75	5142.992
AT25	3270.25	5142.992
AT27	2349.5	5142.992
AT29	1397	5142.992
AT30	476.25	5142.992
AT34	-476.25	5142.992
AT35	-1397	5142.992
AT37	-2349.5	5142.992
AT39	-3270.25	5142.992
AT41	-4222.75	5142.992
AT43	-5143.5	5142.992
AT45	-6096	5142.992
AT47	-7004.05	5142.992
AT48	-7626.35	5142.992
AT51	-8731.89	5143.5
AT52	-9443.09	5143.5
AT54	-10154.3	5143.5
AT55	-10865.5	5143.5
AT57	-11576.7	5143.5
AT58	-12287.9	5143.5
AT59	-12999.1	5143.5
AT61	-13659.5	5099.05
AT62	-14413.9	5099.05
AU1	14814.17	5562.6
AU2	14036.68	5562.6
AU32	0	5498.592
AU62	-14036.7	5562.6
AU63	-14814.2	5562.6
AV2	14413.87	6026.15
AV3	13659.49	6026.15
AV5	12999.09	6096
AV6	12287.89	6096
AV7	11576.69	6096
AV9	10865.49	6096
AV10	10154.29	6096
AV12	9443.085	6096
AV14	8534.4	5854.192
AV16	7626.35	5854.192
AV17	7004.05	5854.192

Table 6-2. SoC X and Y Pin List (Sheet 12 of 34)

Pin	x	Y
AV19	6096	5854.192
AV21	5143.5	5854.192
AV23	4222.75	5854.192
AV25	3270.25	5854.192
AV27	2349.5	5854.192
AV29	1397	5854.192
AV30	476.25	5854.192
AV32	0	6209.792
AV34	-476.25	5854.192
AV35	-1397	5854.192
AV37	-2349.5	5854.192
AV39	-3270.25	5854.192
AV41	-4222.75	5854.192
AV43	-5143.5	5854.192
AV45	-6096	5854.192
AV47	-7004.05	5854.192
AV48	-7626.35	5854.192
AV50	-8534.4	5854.192
AV52	-9443.09	6096
AV54	-10154.3	6096
AV55	-10865.5	6096
AV57	-11576.7	6096
AV58	-12287.9	6096
AV59	-12999.1	6096
AV61	-13659.5	6026.15
AV62	-14413.9	6026.15
AW1	14814.17	6489.7
AW2	14036.68	6489.7
AW14	8534.4	6565.392
AW16	7626.35	6565.392
AW17	7024.05	6565.392
AW19	6096	6565.392
AW21	5143.5	6565.392
AW25	4222.75	6565.392
AW25	3270.25 2349.5	6565.392
AW27		6565.392
AW29	1397	6565.392
AW30	476.25	6565.392
AW34	-476.25	6565.392

Table 6-2. SoC X and Y Pin List (Sheet 13 of 34)

Pin	x	Y
AW35	-1397	6565.392
AW37	-2349.5	6565.392
AW39	-3270.25	6565.392
AW41	-4222.75	6565.392
AW43	-5143.5	6565.392
AW45	-6096	6565.392
AW47	-7004.05	6565.392
AW48	-7626.35	6565.392
AW50	-8534.4	6565.392
AW62	-14036.7	6489.7
AW63	-14814.2	6489.7
AY2	14413.87	6953.25
AY3	13659.49	6953.25
AY5	12999.09	7048.5
AY6	12287.89	7048.5
AY7	11576.69	7048.5
AY9	10865.49	7048.5
AY10	10154.29	7048.5
AY32	0	6920.992
AY54	-10154.3	7048.5
AY55	-10865.5	7048.5
AY57	-11576.7	7048.5
AY58	-12287.9	7048.5
AY59	-12999.1	7048.5
AY61	-13659.5	6953.25
AY62	-14413.9	6953.25
A3	13954.13	-11314.18
A4	13221.34	-11314.18
A5	12548.24	-11314.18
A7	11697.34	-11314.18
A9	11024.24	-11314.18
A10	10198.1	-11314.18
A12	9271	-11314.18
A14	8343.9	-11314.18
A16	7416.8	-11314.18
A18	6489.7	-11314.18
A20	5562.6	-11314.18
A22	4635.5	-11314.18
A24	3708.4	-11314.18

Table 6-2. SoC X and Y Pin List (Sheet 14 of 34)

Pin	x	Y
A26	2781.3	-11314.18
A28	1854.2	-11314.18
A30	927.1	-11314.18
A32	0	-11314.18
A34	-927.1	-11314.18
A36	-1854.2	-11314.18
A38	-2781.3	-11314.18
A40	-3708.4	-11314.18
A42	-4635.5	-11314.18
A44	-5562.6	-11314.18
A46	-6489.7	-11314.18
A48	-7416.8	-11314.18
A50	-8343.9	-11314.18
A52	-9271	-11314.18
A54	-10198.1	-11314.18
A56	-11410.7	-11314.18
A58	-12439.4	-11314.18
A60	-13112.5	-11314.18
A61	-13785.6	-11314.18
A62	-14382.5	-11314.18
BA1	14814.17	7416.8
BA2	14220.06	7543.8
BA12	9486.9	7276.592
BA14	8534.4	7276.592
BA16	7626.35	7276.592
BA17	7004.05	7276.592
BA19	6096	7276.592
BA21	5143.5	7276.592
BA23	4222.75	7276.592
BA25	3270.25	7276.592
BA27	2349.5	7276.592
BA29	1397	7276.592
BA30	476.25	7276.592
BA32	0	7632.192
BA34	-476.25	7276.592
BA35	-1397	7276.592
BA37	-2349.5	7276.592
BA39	-3270.25	7276.592
BA41	-4222.75	7276.592
	l .	

Table 6-2. SoC X and Y Pin List (Sheet 15 of 34)

Pin	x	Y
BA43	-5143.5	7276.592
BA45	-6096	7276.592
BA47	-7004.05	7276.592
BA48	-7626.35	7276.592
BA50	-8534.4	7276.592
BA52	-9486.9	7276.592
BA62	-14220.1	7543.8
BA63	-14814.2	7416.8
BB1	14814.17	8088.63
BB3	13659.49	8001
BB5	12999.09	8001
BB6	12287.89	8001
BB7	11576.69	8001
BB10	10439.4	7987.792
BB12	9486.9	7987.792
BB14	8534.4	7987.792
BB16	7626.35	7987.792
BB17	7004.05	7987.792
BB19	6096	7987.792
BB21	5143.5	7987.792
BB23	4222.75	7987.792
BB25	3270.25	7987.792
BB27	2349.5	7987.792
BB29	1397	7987.792
BB30	476.25	7987.792
BB34	-476.25	7987.792
BB35	-1397	7987.792
BB37	-2349.5	7987.792
BB39	-3270.25	7987.792
BB41	-4222.75	7987.792
BB43	-5143.5	7987.792
BB45	-6096	7987.792
BB47	-7004.05	7987.792
BB48	-7626.35	7987.792
BB50	-8534.4	7987.792
BB52	-9486.9	7987.792
BB54	-10439.4	7987.792
BB57	-11576.7	8001
BB58	-12287.9	8001

Table 6-2. SoC X and Y Pin List (Sheet 16 of 34)

Pin	X	Y
BB59	-12999.1	8001
BB61	-13659.5	8001
BB63	-14814.2	8088.63
BC2	14220.06	8353.552
BC32	0	8343.392
BC62	-14220.1	8353.552
BD1	14814.17	8939.53
BD2	14220.06	8950.452
BD3	13629.01	8890
BD5	12960.99	8890
BD6	12287.89	8890
BD8	11391.9	8698.992
BD10	10439.4	8698.992
BD12	9486.9	8698.992
BD14	8534.4	8698.992
BD16	7626.35	8698.992
BD17	7004.05	8698.992
BD19	6096	8698.992
BD21	5143.5	8698.992
BD23	4222.75	8698.992
BD25	3270.25	8698.992
BD27	2349.5	8698.992
BD29	1397	8698.992
BD30	476.25	8698.992
BD32	0	9054.592
BD34	-476.25	8698.992
BD35	-1397	8698.992
BD37	-2349.5	8698.992
BD39	-3270.25	8698.992
BD41	-4222.75	8698.992
BD43	-5143.5	8698.992
BD45	-6096	8698.992
BD47	-7004.05	8698.992
BD48	-7626.35	8698.992
BD50	-8534.4	8698.992
BD52	-9486.9	8698.992
BD54	-10439.4	8698.992
BD56	-11391.9	8698.992
BD58	-12287.9	8890

Table 6-2. SoC X and Y Pin List (Sheet 17 of 34)

Pin	x	Y
BD59	-12961	8890
BD61	-13629	8890
BD62	-14220.1	8950.452
BD63	-14814.2	8939.53
BE1	14814.17	9612.63
BE2	14220.06	9547.352
BE8	11391.9	9410.192
BE10	10439.4	9410.192
BE12	9486.9	9410.192
BE14	8534.4	9410.192
BE16	7626.35	9410.192
BE17	7004.05	9410.192
BE19	6096	9410.192
BE21	5143.5	9410.192
BE23	4222.75	9410.192
BE25	3270.25	9410.192
BE27	2349.5	9410.192
BE29	1397	9410.192
BE30	476.25	9410.192
BE34	-476.25	9410.192
BE35	-1397	9410.192
BE37	-2349.5	9410.192
BE39	-3270.25	9410.192
BE41	-4222.75	9410.192
BE43	-5143.5	9410.192
BE45	-6096	9410.192
BE47	-7004.05	9410.192
BE48	-7626.35	9410.192
BE50	-8534.4	9410.192
BE52	-9486.9	9410.192
BE54	-10439.4	9410.192
BE56	-11391.9	9410.192
BE62	-14220.1	9547.352
BE63	-14814.2	9612.63
BF3	13629.01	9682.48
BF5	12960.99	9682.48
BF6	12344.4	10121.392
BF32	0	9779.762
BF58	-12344.4	10121.392

Table 6-2. SoC X and Y Pin List (Sheet 18 of 34)

Pin	х	Y
BF59	-12961	9682.48
BF61	-13629	9682.48
BG1	14814.17	10285.73
BG2	14220.06	10144.252
BG7	11588.75	10159.492
BG8	11125.2	10536.682
BG9	10661.65	10159.492
BG10	10198.1	10536.682
BG11	9734.55	10159.492
BG12	9271	10536.682
BG13	8807.45	10159.492
BG14	8343.9	10536.682
BG15	7880.35	10159.492
BG16	7416.8	10536.682
BG17	6953.25	10159.492
BG18	6489.7	10536.682
BG19	6026.15	10159.492
BG20	5562.6	10536.682
BG21	5099.05	10159.492
BG22	4635.5	10536.682
BG23	4171.95	10159.492
BG24	3708.4	10536.682
BG25	3244.85	10159.492
BG26	2781.3	10536.682
BG27	2317.75	10159.492
BG28	1854.2	10536.682
BG29	1390.65	10159.492
BG30	927.1	10536.682
BG31	463.55	10159.492
BG32	0	10536.682
BG33	-463.55	10159.492
BG34	-927.1	10536.682
BG35	-1390.65	10159.492
BG36	-1854.2	10536.682
BG37	-2317.75	10159.492
BG38	-2781.3	10536.682
BG39	-3244.85	10159.492
BG40	-3708.4	10536.682
BG41	-4171.95	10159.492

Table 6-2. SoC X and Y Pin List (Sheet 19 of 34)

Pin	x	Y
BG42	-4635.5	10536.682
BG43	-5099.05	10159.492
BG44	-5562.6	10536.682
BG45	-6026.15	10159.492
BG46	-6489.7	10536.682
BG47	-6953.25	10159.492
BG48	-7416.8	10536.682
BG49	-7880.35	10159.492
BG50	-8343.9	10536.682
BG51	-8807.45	10159.492
BG52	-9271	10536.682
BG53	-9734.55	10159.492
BG54	-10198.1	10536.682
BG55	-10661.7	10159.492
BG56	-11125.2	10536.682
BG57	-11588.8	10159.492
BG62	-14220.1	10144.252
BG63	-14814.2	10285.73
BH1	14814.17	10882.63
BH2	14237.84	10737.85
BH3	13631.67	10720.07
BH4	13034.77	10720.07
BH6	12437.87	10720.07
BH7	11840.97	10720.07
BH9	10661.65	10913.872
BH11	9734.55	10913.872
BH13	8807.45	10913.872
BH15	7880.35	10913.872
BH17	6953.25	10913.872
BH19	6026.15	10913.872
BH21	5099.05	10913.872
BH23	4171.95	10913.872
BH25	3244.85	10913.872
BH27	2317.75	10913.872
BH29	1390.65	10913.872
BH31	463.55	10913.872
BH33	-463.55	10913.872
BH35	-1390.65	10913.872
BH37	-2317.75	10913.872

Table 6-2. SoC X and Y Pin List (Sheet 20 of 34)

Pin	X	Υ
BH39	-3244.85	10913.872
BH41	-4171.95	10913.872
BH43	-5099.05	10913.872
BH45	-6026.15	10913.872
BH47	-6953.25	10913.872
BH49	-7880.35	10913.872
BH51	-8807.45	10913.872
BH53	-9734.55	10913.872
BH55	-10661.7	10913.872
BH57	-11841	10720.07
BH58	-12437.9	10720.07
BH60	-13034.8	10720.07
BH61	-13631.7	10720.07
BH62	-14237.8	10737.85
BH63	-14814.2	10882.63
BJ2	14382.5	11314.176
ВЈЗ	13785.6	11314.176
BJ4	13112.5	11314.176
ВЈ6	12439.4	11314.176
ВЈ8	11410.7	11314.176
BJ10	10198.1	11314.176
BJ12	9271	11314.176
BJ14	8343.9	11314.176
BJ16	7416.8	11314.176
BJ18	6489.7	11314.176
BJ20	5562.6	11314.176
BJ22	4635.5	11314.176
BJ24	3708.4	11314.176
BJ26	2781.3	11314.176
BJ28	1854.2	11314.176
BJ30	927.1	11314.176
BJ32	0	11314.176
BJ34	-927.1	11314.176
BJ36	-1854.2	11314.176
BJ38	-2781.3	11314.176
BJ40	-3708.4	11314.176
BJ42	-4635.5	11314.176
BJ44	-5562.6	11314.176
BJ46	-6489.7	11314.176

Table 6-2. SoC X and Y Pin List (Sheet 21 of 34)

Pin	X	Υ
BJ48	-7416.8	11314.176
BJ50	-8343.9	11314.176
BJ52	-9271	11314.176
BJ54	-10198.1	11314.176
BJ56	-11410.7	11314.176
BJ58	-12439.4	11314.176
BJ60	-13112.5	11314.176
BJ61	-13785.6	11314.176
BJ62	-14382.5	11314.176
B2	14382.88	-10882.88
B3	13758.8	-10720.07
B4	13161.9	-10720.07
B5	12565	-10720.07
B7	11968.1	-10720.07
B8	11371.2	-10720.07
B9	10774.3	-10745.47
B11	9734.55	-10913.87
B13	8807.45	-10913.87
B15	7880.35	-10913.87
B17	6953.25	-10913.87
B19	6026.15	-10913.87
B21	5099.05	-10913.87
B23	4171.95	-10913.87
B25	3244.85	-10913.87
B27	2317.75	-10913.87
B29	1390.65	-10913.87
B31	463.55	-10913.87
B33	-463.55	-10913.87
B35	-1390.65	-10913.87
B37	-2317.75	-10913.87
B39	-3244.85	-10913.87
B41	-4171.95	-10913.87
B43	-5099.05	-10913.87
B45	-6026.15	-10913.87
B47	-6953.25	-10913.87
B49	-7880.35	-10913.87
B51	-8807.45	-10913.87
B53	-9734.55	-10913.87
B55	-10661.7	-10913.87

Table 6-2. SoC X and Y Pin List (Sheet 22 of 34)

Pin	X	Y
B57	-11841	-10720.07
B58	-12437.9	-10720.07
B60	-13034.8	-10720.07
B61	-13631.7	-10720.07
B62	-14237.8	-10737.85
B63	-14814.2	-10882.63
C1	14814.17	-10454.13
C2	14220.06	-10258.81
C9	10661.65	-10159.49
C10	10198.1	-10536.68
C11	9734.55	-10159.49
C12	9271	-10536.68
C13	8807.45	-10159.49
C14	8343.9	-10536.68
C15	7880.35	-10159.49
C16	7416.8	-10536.68
C17	6953.25	-10159.49
C18	6489.7	-10536.68
C19	6026.15	-10159.49
C20	5562.6	-10536.68
C21	5099.05	-10159.49
C22	4635.5	-10536.68
C23	4171.95	-10159.49
C24	3708.4	-10536.68
C25	3244.85	-10159.49
C26	2781.3	-10536.68
C27	2317.75	-10159.49
C28	1854.2	-10536.68
C29	1390.65	-10159.49
C30	927.1	-10536.68
C31	463.55	-10159.49
C32	0	-10536.68
C33	-463.55	-10159.49
C34	-927.1	-10536.68
C35	-1390.65	-10159.49
C36	-1854.2	-10536.68
C37	-2317.75	-10159.49
C38	-2781.3	-10536.68
C39	-3244.85	-10159.49

Table 6-2. SoC X and Y Pin List (Sheet 23 of 34)

Pin	x	Y
C40	-3708.4	-10536.68
C41	-4171.95	-10159.49
C42	-4635.5	-10536.68
C43	-5099.05	-10159.49
C44	-5562.6	-10536.68
C45	-6026.15	-10159.49
C46	-6489.7	-10536.68
C47	-6953.25	-10159.49
C48	-7416.8	-10536.68
C49	-7880.35	-10159.49
C50	-8343.9	-10536.68
C51	-8807.45	-10159.49
C52	-9271	-10536.68
C53	-9734.55	-10159.49
C54	-10198.1	-10536.68
C55	-10661.7	-10159.49
C56	-11125.2	-10536.68
C57	-11588.8	-10159.49
C62	-14220.1	-10144.25
C63	-14814.2	-10285.73
D1	14814.17	-9723.882
D2	14220.06	-9665.462
D4	13138.79	-10121.39
D6	12255.5	-10121.39
D8	11391.9	-10121.39
D32	0	-9779.762
D58	-12344.4	-10121.39
D59	-12961	-9682.48
D61	-13629	-9682.48
E3	13621.39	-9624.187
E4	13024.49	-9473.692
E6	12255.5	-9410.192
E8	11391.9	-9410.192
E10	10439.4	-9410.192
E12	9486.9	-9410.192
E14	8534.4	-9410.192
E16	7626.35	-9410.192
E17	7004.05	-9410.192
E19	6096	-9410.192

Table 6-2. SoC X and Y Pin List (Sheet 24 of 34)

Pin	X	Υ
E21	5143.5	-9410.192
E23	4222.75	-9410.192
E25	3270.25	-9410.192
E27	2349.5	-9410.192
E29	1397	-9410.192
E30	476.25	-9410.192
E34	-476.25	-9410.192
E35	-1397	-9410.192
E37	-2349.5	-9410.192
E39	-3270.25	-9410.192
E41	-4222.75	-9410.192
E43	-5143.5	-9410.192
E45	-6096	-9410.192
E47	-7004.05	-9410.192
E48	-7626.35	-9410.192
E50	-8534.4	-9410.192
E52	-9486.9	-9410.192
E54	-10439.4	-9410.192
E56	-11391.9	-9410.192
E62	-14220.1	-9547.352
E63	-14814.2	-9612.63
F1	14814.17	-9050.782
F2	14220.06	-9072.118
F3	13697.59	-8699.5
F5	12999.09	-8699.5
F6	12287.89	-8699.5
F8	11391.9	-8698.992
F10	10439.4	-8698.992
F12	9486.9	-8698.992
F14	8534.4	-8698.992
F16	7626.35	-8698.992
F17	7004.05	-8698.992
F19	6096	-8698.992
F21	5143.5	-8698.992
F23	4222.75	-8698.992
F25	3270.25	-8698.992
F27	2349.5	-8698.992
F29	1397	-8698.992
F30	476.25	-8698.992

Table 6-2. SoC X and Y Pin List (Sheet 25 of 34)

Pin	x	Y
F32	0	-9054.592
F34	-476.25	-8698.992
F35	-1397	-8698.992
F37	-2349.5	-8698.992
F39	-3270.25	-8698.992
F41	-4222.75	-8698.992
F43	-5143.5	-8698.992
F45	-6096	-8698.992
F47	-7004.05	-8698.992
F48	-7626.35	-8698.992
F50	-8534.4	-8698.992
F52	-9486.9	-8698.992
F54	-10439.4	-8698.992
F56	-11391.9	-8698.992
F58	-12287.9	-8890
F59	-12961	-8890
F61	-13629	-8890
F62	-14220.1	-8950.452
F63	-14814.2	-8939.53
G1	14814.17	-8199.882
G2	14258.16	-8473.694
G32	0	-8343.392
G62	-14220.1	-8353.552
H3	13858.88	-8020.05
H5	12999.09	-7912.1
H6	12287.89	-7912.1
H7	11576.69	-7912.1
H10	10439.4	-7987.792
H12	9486.9	-7987.792
H14	8534.4	-7987.792
H16	7626.35	-7987.792
H17	7004.05	-7987.792
H19	6096	-7987.792
H21	5143.5	-7987.792
H23	4222.75	-7987.792
H25	3270.25	-7987.792
H27	2349.5	-7987.792
H29	1397	-7987.792
H30	476.25	-7987.792

Table 6-2. SoC X and Y Pin List (Sheet 26 of 34)

Pin	X	Y
H34	-476.25	-7987.792
H35	-1397	-7987.792
H37	-2349.5	-7987.792
H39	-3270.25	-7987.792
H41	-4222.75	-7987.792
H43	-5143.5	-7987.792
H45	-6096	-7987.792
H47	-7004.05	-7987.792
H48	-7626.35	-7987.792
H50	-8534.4	-7987.792
H52	-9486.9	-7987.792
H54	-10439.4	-7987.792
H57	-11576.7	-8001
H58	-12287.9	-8001
H59	-12999.1	-8001
H61	-13659.5	-8001
H63	-14814.2	-8088.63
J1	14814.17	-7526.782
J2	14036.68	-7416.8
J12	9486.9	-7276.592
J14	8534.4	-7276.592
J16	7626.35	-7276.592
J17	7004.05	-7276.592
J19	6096	-7276.592
J21	5143.5	-7276.592
J23	4222.75	-7276.592
J25	3270.25	-7276.592
J27	2349.5	-7276.592
J29	1397	-7276.592
J30	476.25	-7276.592
J32	0	-7632.192
J34	-476.25	-7276.592
J35	-1397	-7276.592
J37	-2349.5	-7276.592
J39	-3270.25	-7276.592
J41	-4222.75	-7276.592
J43	-5143.5	-7276.592
J45	-6096	-7276.592
J47	-7004.05	-7276.592
	1	1

Table 6-2. SoC X and Y Pin List (Sheet 27 of 34)

Pin	x	Y
J48	-7626.35	-7276.592
350	-8534.4	-7276.592
J52	-9486.9	-7276.592
J62	-14220.1	-7543.8
J63	-14814.2	-7416.8
K2	14413.87	-6953.25
K3	13659.49	-6953.25
K5	12999.09	-7048.5
К6	12287.89	-7048.5
K7	11576.69	-7048.5
K9	10865.49	-7048.5
K10	10154.29	-7048.5
K32	0	-6920.992
K54	-10154.3	-7048.5
K55	-10865.5	-7048.5
K57	-11576.7	-7048.5
K58	-12287.9	-7048.5
K59	-12999.1	-7048.5
K61	-13659.5	-6953.25
K62	-14413.9	-6953.25
L1	14814.17	-6489.7
L2	14036.68	-6489.7
L14	8534.4	-6565.392
L16	7626.35	-6565.392
L17	7004.05	-6565.392
L19	6096	-6565.392
L21	5143.5	-6565.392
L23	4222.75	-6565.392
L25	3270.25	-6565.392
L27	2349.5	-6565.392
L29	1397	-6565.392
L30	476.25	-6565.392
L34	-476.25	-6565.392
L35	-1397	-6565.392
L37	-2349.5	-6565.392
L39	-3270.25	-6565.392
L41	-4222.75	-6565.392
L43	-5143.5	-6565.392
L45	-6096	-6565.392

Table 6-2. SoC X and Y Pin List (Sheet 28 of 34)

Di-		
Pin	X	Y
L47	-7004.05	-6565.392
L48	-7626.35	-6565.392
L50	-8534.4	-6565.392
L62	-14036.7	-6489.7
L63	-14814.2	-6489.7
M2	14413.87	-6026.15
M3	13659.49	-6026.15
M5	12999.09	-6096
M6	12287.89	-6096
M7	11576.69	-6096
M9	10865.49	-6096
M10	10154.29	-6096
M12	9443.085	-6096
M14	8534.4	-5854.192
M16	7626.35	-5854.192
M17	7004.05	-5854.192
M19	6096	-5854.192
M21	5143.5	-5854.192
M23	4222.75	-5854.192
M25	3270.25	-5854.192
M27	2349.5	-5854.192
M29	1397	-5854.192
M30	476.25	-5854.192
M32	0	-6209.792
M34	-476.25	-5854.192
M35	-1397	-5854.192
M37	-2349.5	-5854.192
M39	-3270.25	-5854.192
M41	-4222.75	-5854.192
M43	-5143.5	-5854.192
M45	-6096	-5854.192
M47	-7004.05	-5854.192
M48	-7626.35	-5854.192
M50	-8534.4	-5854.192
M52	-9443.09	-6096
M54	-10154.3	-6096
M55	-10865.5	-6096
M57	-11576.7	-6096
M58	-12287.9	-6096
1130	12207.3	0000

Table 6-2. SoC X and Y Pin List (Sheet 29 of 34)

Pin	×	Y
M59	-12999.1	-6096
M61	-13659.5	-6026.15
M62	-14413.9	-6026.15
N1	14814.17	-5562.6
N2	14036.68	-5562.6
N32	0	-5498.592
N62	-14036.7	-5562.6
N63	-14814.2	-5562.6
P2	14413.87	-5099.05
Р3	13659.49	-5099.05
P5	12999.09	-5143.5
P6	12287.89	-5143.5
P7	11576.69	-5143.5
P9	10865.49	-5143.5
P10	10154.29	-5143.5
P12	9443.085	-5143.5
P13	8731.885	-5143.5
P16	7626.35	-5142.992
P17	7004.05	-5142.992
P19	6096	-5142.992
P21	5143.5	-5142.992
P23	4222.75	-5142.992
P25	3270.25	-5142.992
P27	2349.5	-5142.992
P29	1397	-5142.992
P30	476.25	-5142.992
P34	-476.25	-5142.992
P35	-1397	-5142.992
P37	-2349.5	-5142.992
P39	-3270.25	-5142.992
P41	-4222.75	-5142.992
P43	-5143.5	-5142.992
P45	-6096	-5142.992
P47	-7004.05	-5142.992
P48	-7626.35	-5142.992
P51	-8731.89	-5143.5
P52	-9443.09	-5143.5
P54	-10154.3	-5143.5
P55	-10865.5	-5143.5

Table 6-2. SoC X and Y Pin List (Sheet 30 of 34)

Pin	x	Y
P57	-11576.7	-5143.5
P58	-12287.9	-5143.5
P59	-12999.1	-5143.5
P61	-13659.5	-5099.05
P62	-14413.9	-5099.05
R1	14814.17	-4635.5
R2	14036.68	-4635.5
R17	7004.05	-4431.792
R19	6096	-4431.792
R21	5143.5	-4431.792
R23	4222.75	-4431.792
R25	3270.25	-4431.792
R27	2349.5	-4431.792
R29	1397	-4431.792
R30	476.25	-4431.792
R32	0	-4787.392
R34	-476.25	-4431.792
R35	-1397	-4431.792
R37	-2349.5	-4431.792
R39	-3270.25	-4431.792
R41	-4222.75	-4431.792
R43	-5143.5	-4431.792
R45	-6096	-4431.792
R47	-7004.05	-4431.792
R62	-14036.7	-4635.5
R63	-14814.2	-4635.5
T2	14413.87	-4171.95
Т3	13659.49	-4171.95
T5	12999.09	-4267.2
T6	12287.89	-4267.2
Т7	11576.69	-4267.2
Т9	10865.49	-4267.2
T10	10154.29	-4267.2
T12	9443.085	-4267.2
T13	8731.885	-4267.2
T15	8020.685	-4267.2
T49	-8020.69	-4267.2
T51	-8731.89	-4267.2
T52	-9443.09	-4267.2

Table 6-2. SoC X and Y Pin List (Sheet 31 of 34)

Pin	x	Y
T54	-10154.3	-4267.2
T55	-10865.5	-4267.2
T57	-11576.7	-4267.2
T58	-12287.9	-4267.2
T59	-12999.1	-4267.2
T61	-13659.5	-4171.95
T62	-14413.9	-4171.95
U1	14814.17	-3708.4
U2	14036.68	-3708.4
U5	12643.49	-3746.5
U7	11932.29	-3746.5
U8	11221.09	-3746.5
U10	10509.89	-3746.5
U11	9798.685	-3746.5
U13	9087.485	-3746.5
U14	8376.285	-3746.5
U16	7665.085	-3746.5
U17	6953.885	-3746.5
U18	6299.2	-3619.5
U20	5511.8	-3619.5
U22	4724.4	-3619.5
U23	3937	-3619.5
U25	3149.6	-3619.5
U27	2362.2	-3619.5
U28	1574.8	-3619.5
U30	787.4	-3619.5
U32	0	-3619.5
U34	-787.4	-3619.5
U36	-1574.8	-3619.5
U37	-2362.2	-3619.5
U39	-3149.6	-3619.5
U41	-3937	-3619.5
U42	-4724.4	-3619.5
U44	-5511.8	-3619.5
U46	-6299.2	-3619.5
U47	-6953.89	-3746.5
U48	-7665.09	-3746.5
U50	-8376.29	-3746.5
U51	-9087.49	-3746.5

Table 6-2. SoC X and Y Pin List (Sheet 32 of 34)

Pin	X	Y
U53	-9798.69	-3746.5
U54	-10509.9	-3746.5
U56	-11221.1	-3746.5
U57	-11932.3	-3746.5
U59	-12643.5	-3746.5
U62	-14036.7	-3708.4
U63	-14814.2	-3708.4
V2	14413.87	-3244.85
V3	13659.49	-3244.85
V5	12999.09	-3225.8
V6	12287.89	-3225.8
V7	11576.69	-3225.8
V9	10865.49	-3225.8
V10	10154.29	-3225.8
V12	9443.085	-3225.8
V13	8731.885	-3225.8
V15	8020.685	-3225.8
V16	7309.485	-3225.8
V18	6299.2	-2895.6
V20	5511.8	-2895.6
V22	4724.4	-2895.6
V23	3937	-2895.6
V25	3149.6	-2895.6
V27	2362.2	-2895.6
V28	1574.8	-2895.6
V30	787.4	-2895.6
V32	0	-2895.6
V34	-787.4	-2895.6
V36	-1574.8	-2895.6
V37	-2362.2	-2895.6
V39	-3149.6	-2895.6
V41	-3937	-2895.6
V42	-4724.4	-2895.6
V44	-5511.8	-2895.6
V46	-6299.2	-2895.6
V48	-7309.49	-3225.8
V49	-8020.69	-3225.8
V51	-8731.89	-3225.8
V52	-9443.09	-3225.8

Table 6-2. SoC X and Y Pin List (Sheet 33 of 34)

Din		V
Pin	X	Y
V54	-10154.3	-3225.8
V55	-10865.5	-3225.8
V57	-11576.7	-3225.8
V58	-12287.9	-3225.8
V59	-12999.1	-3225.8
V61	-13659.5	-3244.85
V62	-14413.9	-3244.85
W1	14814.17	-2781.3
W2	14036.68	-2781.3
W62	-14036.7	-2781.3
W63	-14814.2	-2781.3
Y2	14413.87	-2317.75
Y3	13659.49	-2317.75
Y5	12999.09	-2349.5
Y6	12287.89	-2349.5
Y7	11576.69	-2349.5
Y9	10865.49	-2349.5
Y10	10154.29	-2349.5
Y12	9443.085	-2349.5
Y13	8731.885	-2349.5
Y15	8020.685	-2349.5
Y16	7309.485	-2349.5
Y18	6299.2	-2171.7
Y20	5511.8	-2171.7
Y22	4724.4	-2171.7
Y23	3937	-2171.7
Y25	3149.6	-2171.7
Y27	2362.2	-2171.7
Y28	1574.8	-2171.7
Y30	787.4	-2171.7
Y32	0	-2171.7
Y34	-787.4	-2171.7
Y36	-1574.8	-2171.7
Y37	-2362.2	-2171.7
Y39	-3149.6	-2171.7
Y41	-3937	-2171.7
Y42	-4724.4	-2171.7
Y44	-5511.8	-2171.7
Y46	-6299.2	-2171.7

Table 6-2. SoC X and Y Pin List (Sheet 34 of 34)

Pin	X	Y
Y48	-7309.49	-2349.5
Y49	-8020.69	-2349.5
Y51	-8731.89	-2349.5
Y52	-9443.09	-2349.5
Y54	-10154.3	-2349.5
Y55	-10865.5	-2349.5
Y57	-11576.7	-2349.5
Y58	-12287.9	-2349.5
Y59	-12999.1	-2349.5
Y61	-13659.5	-2317.75
Y62	-14413.9	-2317.75

§§

7 Package Information

The SoC comes in Flip-Chip Ball Grid Array (FCBGA) package.

7.1 Package Attributes

Table 7-1. Package Attributes

Category	SoC
Package	Flip-Chip Ball Grid Array (FCBGA)
Туре	31x24 mm ²
I/O count	682
Ball count	1296
Ball pitch	0.593 mm
Z-height	1.318 mm +/- 0.092

7.2 Package Diagrams

Figure 7-1. Package Mechanical Drawing—Part 1 of 3

Figure 7-2. Package Mechanical Drawing—Part 2 of 3

Figure 7-3. Package Mechanical Drawing—Part 3 of 3

§§