MAT 1348 Review Sheet

Some of the Most Important Concepts, Methods, Theorems, and Questions

Note: You must be able to give precise definitions of important concepts, as well as state important theorems.

• Logic and Proofs

Concepts

- 1. propositions, logical connectives, equivalence
- 2. tautology, contradiction, contingency
- 3. disjunctive normal form
- 4. rules of inference, arguments; validity of an argument
- 5. counter-examples
- 6. types of proof: direct, indirect, by contradiction, proof of equivalence, proof by cases

Methods

- 1. truth tables
- 2. truth trees
- 3. proofs

Questions

- 1. Translate English sentences into compound propositions.
- 2. Is a given proposition a tautology/contradiction?
- 3. Are given propositions equivalent?
- 4. Find a disjunctive normal form of a given proposition.
- 5. Is a given argument valid?
- 6. Prove a given theorem using a specified method of proof.

• Sets

Concepts

- 1. set, cardinality, subset, equality of sets
- 2. important number sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{Z}^+ , \mathbb{Z}^- , \mathbb{Q}^+ , \mathbb{Q}^- , etc. Here:

$$\mathbb{N} = \{0, 1, 2, 3, \cdots\}$$
 The Natural Numbers

$$\mathbb{Z} = \{ \cdots, -3, -2, -1, 0, 1, 2, \cdots \}$$
 The Integers

$$\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}$$
 The Strictly Positive Integers

$$\mathbb{Z}^- = \{x \in \mathbb{Z} \mid x < 0\} \quad \text{The Strictly Negative Integers}$$

$$\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\} \quad \text{The Rational Numbers}$$

$$\mathbb{R} = \quad \text{The Real Numbers}$$

Similarly, \mathbb{Q}^+ , \mathbb{Q}^- , \mathbb{R}^+ , \mathbb{R}^- are the strictly positive and strictly negative rationals and reals, as above.

3. set operations: union, intersection, complement, difference, symmetric difference; power set, cartesian product of sets

Questions

- 1. Find the cardinality of a power set, cartesian product etc.
- 2. Prove a set identity (using a rigorous proof, known set identities, or membership tables).

• Functions

Concepts

- 1. function
- 2. injective (one-to-one) and surjective (onto) functions; bijections
- 3. invertible functions, inverse
- 4. composition of functions

Questions

- 1. Determine whether a given function is injective, surjective, invertible, or a bijection.
- 2. Find the inverse of an invertible function.

• Relations

Concepts

- 1. relation
- 2. reflexive, symmetric, antisymmetric, transitive relations
- 3. equivalence relations, equivalence classes, partitions
- 4. congruences

Questions

- 1. Determine whether a given relation is reflexive, symmetric, antisymmetric, or transitive.
- 2. Prove that a given relation is an equivalence relation.
- 3. Find the equivalence classes of a given equivalence relation (or the corresponding partition of the set).

• Counting

Concepts

- 1. Product Rule, Sum Rule, Principle of Inclusion Exclusion
- 2. Pigeonhole Principle
- 3. combinations, permutations
- 4. binomial coefficients, Binomial Theorem

Questions

- 1. How many...?
- 2. What is the smallest number of \dots to guarantee...? or Show that in any set of... we can find... such that....
- 3. Find the coefficient of \dots in the expansion of \dots

• Mathematical Induction

Concepts

1. Mathematical Induction

Questions

1. Prove... using Mathematical Induction.

• Graphs

Concepts

- 1. graph, simple graph, directed graph
- 2. complete graphs, cycles, paths, complete bipartite graphs
- 3. bipartite graphs
- 4. subgraphs, isomorphism

Theorems

- 1. Handshaking Theorem
- 2. Characterization of bipartite graphs

Questions

- 1. How many edges in a graph with a given degree sequence?
- 2. Does there exist a graph/simple graph with the given degree sequence?
- 3. Is a given graph bipartite? (If so, give a proper 2-vertex colouring. If not, find an odd cycle.)
- 4. Are two given graphs isomorphic? (If so, give an isomorphism and check it with the adjacency matrix method given in class. If not, find an invariant in which they disagree.)

1