CS 181 Homework 8

Charles Zhang, 305-413-659

May 26, 2021

Problem 1

Leftmost Reduction #1:

<u>b</u>aabba

B<u>a</u>abba

 $BA\underline{a}bba$

BAAbba

<u>BC</u>bba

Abba

AB<u>b</u>a

<u>ABB</u>a

<u>AD</u>a

 $B\underline{a}$

<u>BA</u>

ς

Leftmost Reduction #2:

baabba

B<u>a</u>abba

 $BA\underline{a}bba$

 $BAA\underline{b}ba$

BAABba

B<u>AS</u>ba

 $BA\underline{b}a$

<u>BAB</u>a

<u>BS</u> a

В<u>а</u>

<u>BA</u>

S

Problem 2

a) Proof (by construction):

- Let M_P be a Turing Machine that recognizes L_P .
- Let M_A be a Turing Machine that decides L_A .
- Construct M for $L_P \cup L_A$.
- Use UTM to simulate M_A on a given input w.
 - Since M_A decides a language, it's guaranteed to halt.
- If M_A halts and accepts, M halts and accepts.
- Else (M_A has halted and rejected):
 - Use UTM to simulate M_P on w (this may enter an infinite loop).
 - If M_P halts and accepts, M halts and accepts.
 - If M_P halts and rejects, M halts and rejects.

b) Justification:

By definition, a machine that recognizes the language $L_P \cup L_A$, must recognize every string in L_P . Since L_P is an RE language, we cannot guarantee that all strings recognized by M_P cause M_P to halt. As a result, we must account for the possibility that some strings in L_P cannot be decided, only recognized. Therefore, the language $L_P \cup L_A$ cannot be assumed to be recursive, it must be RE.