

---- North America 2023 ----

Middleware for Quantum: Enabling Advanced Quantum Computing Workflows

David García Valiñas & Paul Schweigert, IBM

Speakers

David García Valiñas Senior Software Developer at IBM Quantum Google Developer Expert

Paul Schweigert (psschwei.com) Senior Software Engineer at IBM **Knative Technical Oversight Committee** Qiskit Advocate **Kubernetes Contributor**

- Introduction to Quantum
- Quantum Middleware
- Example Application
- Q&A

- Introduction to Quantum
- Quantum Middleware
- Example Application
- Q&A

Why quantum?

Quantum computers use qubits

North America 2023

Quantum circuit

Superposition of all possibilities

Computation driven interference

Solution

Why is it important?

2*N: 2, 4, 6 ... 20 ... 200

2^N: 2, 4, 8 ... 1024 ... 1e³⁰

Ex: Shor's algorithm for factoring

North America 2023

best classical algorithm (number field sieve)

 ${\rm const}\times d^3$

Shor's algorithm

How to factor N, a product of two primes

- 1. Make a guess, g<N that shares no factors with N
- 2. Find r such that $g^r = mN+1$
- 3. If r is even, calculate $(g^{r/2}+1)$ and $(g^{r/2}-1)$. If r is odd, go back to step 1
- 4. Use Euclid's algorithm to find the greatest common divisor

Quantum Middleware: Classical + Quantum

North America 2023

Quantum Serverless

CKT

subcircuits["B"].draw("mpl", scale=0.8)

- Introduction to Quantum
- Quantum Middleware
- Example Application
- Q&A

Classical Compute Resources

Quantum Compute Resources

CPU

memory

GPU

QPU

Node

Node

memory

GPU

CPU

CPU

memory

GPU

memory

CPU

QPU

CPU

CPU

QPU

QPU

memory

QPU

memory **CPU**

Quantum Compute Resources

https://quantum.ibm.com/

Workflow

Quantum Serverless
Python Library
Pattern

Gateway

Omega

Ray Cluster Configuration


```
ray:
 cpu: 4
 memory: 8
  replicas: 1
 minReplicas: 1
 maxReplicas: 2
limits:
 maxJobsPerUser: 2
 maxComputeResources: 5
```

Workloads

Workloads

Ex: Variational Quantum Eigensolver

energy

Prepare trial state $|\Psi(\theta)
angle$ Measure expectation values

 $\langle \Psi(\theta) | P_i | \Psi(\theta) \rangle$

- Introduction to Quantum
- Quantum Middleware
- Example Application
- Q&A

Pods					
Name	9	Images	Labels	Node	Status
	30800458e7898b 459a-head-22t68	Show all	Show all	10.241.0.4	Running
	30800458e7898b 459a-worker-g-m2		Show all	10.241.0.7	Running

Quantum Middleware: Classical + Quantum

- Introduction to Quantum
- Quantum Middleware
- Example Application
- Q&A

Learn More

Quantum computing

Qiskit

Quantum Serverless

