Sprawozdanie z projektu

Realizowanego w ramach przedmiotu Zaawansowane Architektury Procesorów

Temat projektu:

Projekt z użyciem płytki STM32L4R9I-DISCOVERY, korzystający z okrągłego wyświetlacza i mechanizmów jego obsługi – zegarek.

Cele projektu:

Wykorzystanie okrągłego wyświetlacza płytki STM32L4R9I-DISCOVERY do stworzenia aplikacji zegarka wskazującego czas rzeczywisty. Praktyczne wykorzystanie wyświetlacza płytki oraz dostępnych narzędzi programistycznych i projektowych. Zapoznanie z architekturą płytek STM32.

Wykorzystany sprzęt:

Do realizacji projektu wykorzystano:

1. Płytkę STM32L4R9I-DISCOVERY firmy STMicroelectronics

Źródło grafiki: strona producenta www.st.com

Najważniejsze cechy wykorzystanej płytki:

- procesor ARM[©] Cortex[©]-M4 taktowany zegarem 120 MHz i wykonujący maksymalnie 150 milionów operacji na sekundę (150 MIPS)
- dotykowy wyświetlacz LCD o przekątnej 1,2 cala i rozdzielczości 390x390 pikseli
- 640 KB statycznej pamięci RAM i 2 MB pamięci Flash
- 2. Moduł czasu rzeczywistego RTC DS1302

Źródło grafiki: www.kuongshun-ks.com

Najważniejsze cechy wykorzystanego zegara czasu rzeczywistego:

- zasilanie napięciem od 2.0V do 5.5V (wykorzystano baterię CR2032 o napięciu 3V)
- zużycie prądu na poziomie niższym niż 300 nA przy napięciu zasilania 2V
- pięć wyprowadzeń do komunikacji z płytką, połączenia zrealizowane z pomocą kabli F/F oraz M/M

Wykorzystane narzędzia programistyczne i projektowe:

- 1. EWARM (*Embedded Workbench for ARM*) 8.11.1 firmy IAR Systems zintegrowane środowisko programistyczne (*IDE*) dla rozwijania i debugowania aplikacji dla sprzętu opartego o rdzenie ARM[©], wykorzystane na mocy licencji ewaluacyjnej. Odnośnik do strony poświęconej EWARM na stronie producenta: www.iar.com/iar-embedded-workbench/
- 2. TouchGFX firmy STMicroelectronics bezpłatne narzedzie do tworzenia aplikacji z graficznym interfejsem użytkownika dla mikrokontrolerów STM32. Pozwala na wygenerowanie kodu w języku C++ dla dalszego rozwijania w wybranych środowiskach programistycznych, w tym w EWARM. Odnośnik do strony poświęconej TouchGFX na stronie producenta: www.st.com/en/development-tools/touchgfxdesigner.html
- 3. CubeMX firmy STMicroelectronics narzędzie graficzne umożliwiające początkową konfigurację pinów mikrokontrolerów STM32, oraz wygenerowanie kodu w języku C++ dla dalszego rozwijania w wybranych środowiskach programistycznych, w tym w EWARM. Odnośnik do strony poświęconej CubeMX na stronie producenta: https://www.st.com/en/development-tools/stm32cubemx.html
- 4. STM32 ST-LINK firmy STMicroelectronics bezpłatne, nieskomplikowane narzędzie do programowania pamięci (Flash, RAM) mikrokontrolerów STM32 oraz czyszczenia zawartości pamięci urządzenia. Odnośnik do strony poświęconej STM32 ST-LINK na stronie producenta:

https://www.st.com/en/development-tools/stsw-link004.html

Przebieg prac projektowych:

Z uwagi na chęć wykorzystania wymienionych wyżej narzędzi, pierwszą dużą trudnością już na początkowym etapie realizacji projektu była odpowiednia konfiguracja narzędzi i znalezienie sposobu na wykorzystanie plików wynikowych jednego narzedzia do dalszego rozwijania w innym narzędziu. Największym kłopotem okazało się wykorzystanie plików projektu z interfejsem graficznym, wygenerowanych przez program TouchGFX, do dalszego rozwijania w środowisku EWARM i debugowanie zmodyfikowanej aplikacji. Po znalezieniu rozwiązania tego problemu i uruchomieniu prostych przykładów dla potwierdzenia poprawności rozwiązania można było przystąpić do implementacji zasadniczej części rozwiązania – komunikacji płytki z zegarem czasu rzeczywistego. Niezbędna była w tym celu dokumentacja modułu zegara czasu rzeczywistego DS1302. Jako podstawa do zrealizowania fizycznego połączenia płytki STM32L4R9I-Discovery z modułem DS1302 posłużył schemat przedstawiony na Zdjęciu 1.

Zdjęcie 1. Schemat połączenia płytki z modułem DS1302 (źródło: www.kuongshun-ks.com)

Aby móc poprawnie komunikować się z zegarem czasu rzeczywistego, konieczne było przeanalizowanie operacji odczytu oraz zapisu pojedynczego bajtu do RTC. Podsumowanie tych operacji przedstawia Zdjęcie 2.

Zdjęcie 2. Operacje transferu danych między RTC i płytką (źródło: https://datasheets.maximintegrated.com/en/ds/DS1302.pdf)

Dla właściwej interpretacji wyników otrzymanych odczytów z RTC, konieczna jest znajomość znaczenia bitów przy wykonywaniu odpowiednich operacji, takich jak na przykład odczyt minut z modułu zegara. Tabela obrazująca te własności jest przedstawiona na Zdjęciu 3.

RTC

READ	WRITE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RANGE
81h	80h	CH		10 Second	s	Seconds				00–59
83h	82h		10 Minutes			Minutes			00–59	
85h	84h	12/24	0	10 AM/PM	Hour	Hour				1–12/0–23
87h	86h	0	0	10 D	ate	Date				1–31
89h	88h	0	0	0	10 Month	Month				1–12
8Bh	8Ah	0	0	0	0	0	Day			1–7
8Dh	8Ch	10 Year				Year				00–99
8Fh	8Eh	WP	0	0	0	0	0	0	0	_
91h	90h	TCS	TCS	TCS	TCS	DS	DS	RS	RS	_

Zdjęcie 3. Znaczenie odpowiednich bitów wyniku przy wykonywaniu operacji odczytu/zapisu z/do RTC (źródło: https://datasheets.maximintegrated.com/en/ds/DS1302.pdf)

Źródła wykorzystywane podczas realizacji projektu:

- 1. Dokumentacja płytki STM32L4R9I-Discovery, dostępna na stronie producenta: https://www.st.com/en/evaluation-tools/32l4r9idiscovery.html
- 2. Dokumentacja zastosowanego zegara czasu rzeczywistego DS1302: https://datasheets.maximintegrated.com/en/ds/DS1302.pdf
- 3. Instrukcje oraz dokumentacje wykorzystanych narzędzi, dostępne na wymienionych wyżej stronach producentów w szczególności instrukcja obsługi narzędzia TouchGFX.
- 4. Liczne fora internetowe, pomagające w rozwiązaniu problemów związanych z używanymi narzędziami oraz odnajdywaniu rozwiązań innych napotykanych trudności przy realizacji projektu.