Multivariable Calculus

(MT2008)

Date: 31 December 2024

Course Instructor
Muhammad Yaseen

Roll No Section

Final Exam

Total Time (Hrs): 3
Total Marks: 100
Total Questions: 3

Student Signature

Do not write below this line

Attempt all the questions.

CLO #1. Formulate the equation of lines, planes and surfaces.

Q1: Write standard definition of Quadric Surfaces. Identify and sketch the given surface $4x^2 - y^2 + 2z^2 + 4 = 0$ [10 marks].

CLO #2. Calculate the rate of change of multivariable functions and its applications.

Q2: (a). Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$.

- (b). Find the local maximum and minimum values and saddle points of the given function $f(x,y) = x^4 + y^4 4xy + 1$.
- (c). Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

[5+10+5 marks].

CLO #3. Evaluate the integral of a multivariable function and its applications.

Q3: (a). Evaluate the iterated integral $\int_0^1 \int_y^1 \sin x^2 dx dy$. 0.199

- (b). Find the flux of the vector field F(x, y, z) = x k + y j + z i across the unit spere $x^2 + y^2 + \frac{\sqrt{3}}{3}$ $z^2 = 1$.
- (c). Use the Divergence theorem to calculate the surface integral $\iint F.dS$; that is, calculate the flux of F across S, $F(x,y,z)=xye^z$ $i+xy^2z^3$ $j-ye^z$ k, S is the surface of the box bounded by the coordinate planes and the planes x=3, y=2 and z=1.
- (d). Define curvature and also find the curvature of a circle of radius a. 1/2

Fall 2024

Department of Science and Humanities

Page 1 of 2

National University of Computer and Emerging Sciences Lahore Campus

- (e). Find a parametrization for the surface S formed by the part of the hyperbolic paraboloid $z = y^2 x^2$, lying inside the cylinder of radius one around the z-axis and for the boundary curve C of S. Then verify stokes Theorem for S using the normal having positive k-component and the vector field $F = y i x j + x^2 k$.
 - (f). Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$.
- (g). Integrate $G(x, y, z) = \sqrt{1 x^2 y^2}$ over the "football" surface S formed by rotating the curve $x = \cos z$, y = 0, $-\pi/2 \le z \le \pi/2$, around the z-axis.
- . (h). Evaluate the surface integral, $\iint (x+y+z) dS$, where S is the part of the half cylinder $x^2+z^2=1, z\leq 0$, that lies between the planes y=-2 and y=0.

[5+10+10+5+10+10+10+10 marks]