Ecole Nationale des Ponts et Chaussées

Optimization des pricing xVA suivant les caractéristiques des payoffs

Oumayma Maaraf

Résumé

Dédicaces

Je dédie ce travail à :

- mes deux chers êtres, qui m'ont entouré d'un amour sans limite et qui ont contribué grandement à l'édification de ma personnalité;
- Mon frère et mes deux soeurs, auquels je dois une profonde reconnaissance de m'avoir encourager et prêter main-forte quand ça été nécessaire;
- Mes collègues et amis, avec lesquels j'ai formé une équipe soudée, solide et efficace basée sur la confiance que j'aurai garde d'oublier;
- Mes professeurs, à qui je dois tout respect et hommage d'avoir contribué à ma solide formation.

Remerciements

Tout d'abord, je remercier Monsieur Marouan Iben Taarit pour m'avoir donner l'opportunité de réaliser ce stage au sein de l'équipe recherche xVA front office de Natixis.

Je tiens à remercier vivement Monsieur Alexis Charoy pour sa disponibilité, son partage d'expertise et son accompagnement tout au long du stage.

J'adresse ma profonde gratitude à Monsieur Aurélien Alfonsi d'avoir accepté de diriger ce travail, je le remercie pour ses remarques et ses conseils précieux.

Mes remerciements vont également à Monsieur Alaeddine Gabsi pour toute l'aide qu'il m'a fourni durant mon stage, ainsi que toute l'équipe recherche xVA front office de Natixis pour leurs gentillesse.

Table des matières

1	Déf	ormation d'échantillon	11
	1.1	Description de la méthode	11
	1.2	Applications numériques	13
		1.2.1 Modèle de marché	13
		1.2.2 Déformation d'échantillon	14
2	Col	ocating local volatility modèle	16
	2.1	Collocation stochastique	16
		2.1.1 Points de collocation	17
		2.1.2 Analyse d'erreur	
	2.2	Collocating local volatility model	
		2.2.1 Processus kernel	
		2.2.2 Paniers de haute dimension	
	2.3	Applications numériques	
3	Rés	ultats numériques	25
	3.1	Modèle à volatilité locale stochastique	25
		3.1.1 Calibration du modèle à volatilité locale stochastique au marché	
	3.2	Pricing	27
		3.2.1 Options européennes	
		3.2.2 Options exotiques	
	3.3		

Table des figures

1.1	Histogramme de l'échantillon déformé contre la densité de marché	14
1.2	Volatilité implicite du marché contre celle issus des prix calculés à partir	
	de l'échantillon déformé	15
1.3	Fonction de répartition de marché et celle empirique de l'échantillon déformé	15
2.1	1	23
2.2	Volatilité implicite du marché contre celle du modèle CLV pour différente	
	maturités	24
3.1	Volatilité implicite du marché contre celle du modèle SLV 3.1 pour diffé-	
	rentes maturités	28
3.2	Prix d'option digitale pour différents strikes avec le modèle 3.1, clv et la	
	méthode de déformation d'échantillon	29
3.3	Prix d'option forward pour différents strikes avec le modèle SLV 3.1 et	
	modèle CLV	30
3.4	Prix d'un put bermudien pour différents strikes avec le modèle SLV 3.1 et	
	modèle CLV	31
3.5	Prix d'une option put barrière up-out pour différents strikes avec le modèle	
	SLV 3.1 et modèle CLV	31

Liste des tableaux

2.2	Points de collocation $(N=4)$ pour la variable $X \sim \mathcal{N}(0,1)$	22
3.1	Prix d'un portefeuille de Call et Put calculé à partir des modèles SLV, CLV et de la méthode de déformation et comparer avec le prix du marché	27

Liste des notations

Introduction

Introduction à l'xVA

A la suite de la crise financière de 2007-2008, les universitaires et les praticiens réexaminent l'évaluation des produits financiers sous plusieurs aspects. En particulier, la valeur d'un produit doit prendre en compte la possibilité de défaut d'un des agents impliqués dans la transaction. Toutes ces questions sont représentées au niveau des équations d'évaluation par l'introduction d'ajustements de valeur, qui sont des termes supplémentaires à ajouter ou à substituer à un prix de référence idéalisé, calculé en l'absence des frictions susmentionnées, afin d'obtenir la valeur finale de la transaction.

Parmi les nouveaux risques apparus, il y a le risque de contrepartie. Les modèles de tarification standard, comme le modèle Black-Scholes, fonctionnent dans un monde sans risque de contrepartie et supposent que la contrepartie ou la banque elle-même ne fera jamais défaut, sous-estimant ainsi les pertes potentielles, ce qui devrait affecter les prix des produits dérivés. D'autres risques, comme le risque de financement, le risque de garantie ou le risque d'écart, sont également devenus plus importants depuis 2008. Chacun d'entre eux nécessite une adaptation spécifique pour être géré. La réglementation financière a rendu ce dernier impératif et a donc modifié la manière dont les banques fixent le prix des produits dérivés.

Le nouveau cadre normatif comporte deux étapes. Tout d'abord, le prix des produits dérivés est fixé comme d'habitude en utilisant des probabilités neutres par rapport au risque et en supposant qu'il n'y a pas de risque de contrepartie. On obtient ainsi ce que l'on appelle la valeur de référence. Pour obtenir la valeur économique totale du produit dérivé, la xVA est ajoutée à la valeur de référence afin de prendre en compte les risques susmentionnés qui ne sont pas pris en compte dans les hypothèses standard. Les xVA les plus courantes (où "x" est une lettre de remplacement) sont les suivantes :

- CVA : (credit valuation adjustment) le coût de la couverture contre les pertes sur une position (courte ou longue) sur un dérivé résultant de la défaillance d'une contrepartie
- DVA : (debt valuation adjustment) le coût de la couverture des pertes subies sur

une position dérivée en raison de la défaillance de la banque émettrice du dérivé

- FVA: (funding valuation adjustment) la somme du FBA (funding benefit adjustment) et du FCA (funding cost adjustment). Le FBA est un avantage associé aux transactions non garanties hors de la monnaie (c'est-à-dire les passifs). Et le FCA est un coût associé aux transactions non garanties dans la monnaie (c'est-à-dire les actifs).
- D'autres ajustements sont parfois faits comme le MVA, KVA, collVA ...

Pour l'instant, décrivons une situation générale dans laquelle les xVA sont impliqués.

On considère un portefeuille de transactions entre **Natixis** (position longue) et une contrepartie **C** collatéralisée. Le payoff de ce portefeuille est ϕ_T à la maturité T. On note :

- Pour tout $t \in [0, T]$, le montant du collatéral est C_t .
- Pour tout $t \in [0,T]$, le taux de rémunération du collatéral est r_t^C .
- Pour tout $t \in [0, T]$, la valeur de référence est V_t .
- Le temps de défaut de la contrepartie (resp. Natixis) est noté τ_C (resp. τ_N).
- Le taux de recouvrement de la contrepartie (resp. Natixis) est noté R_C (resp. R_N).
- Tous les cashflow sont considérés du point de vue de Natixis (c'est-à-dire positifs lorsqu'ils sont reçus et négatifs lorsqu'ils sont payés)

Nous visons à calculer à t = 0:

Full economic value =
$$V_0 + \text{CVA}_0$$

 V_0 est la valeur de réference de l'opération à la date t=0, donnée par la théorie standard et est donc supposée connue. Donc il reste à estimer CVA_0 qui par sa définition est égale à :

 $CVA_0 = Prix_{t=0}$ (en incluant le risque de contrepartie) $- Prix_{t=0}$ (risque free)

= $[Prix_{t=0}(\phi_T + Pertes dues au défaut de la contrepartie)] - Prix_{t=0}(\phi_T)$

 $= Prix_{t=0}(Pertes dues au défaut de la contrepartie)$

Et les pertes dues au défaut de contrepartie sont égales à $-(1 - R_C)(V_{\tau_C} - C_{\tau_C}) + \mathbf{1}_{\{\tau_C < T\}}$ Donc sous la probabilité risque neutre \mathbb{Q} , on a

$$CVA_0 = \mathbb{E}^{\mathbb{Q}} \left[-e^{-\int_0^{\tau_C} r_s ds} (1 - R_C) (V_{\tau_C} - C_{\tau_C}) + \mathbf{1}_{\{\tau_C < T\}} \right]$$

En conditionnant par rapport au temps de défaut τ_C et en supposant l'indépendance entre le temps de défaut et la valeur de référence, on trouve

$$CVA_0 = -(1 - R_C) \int_0^T B(0, T) \underbrace{\mathbb{E}^{\mathbb{Q}_t} \left[(V_t - C_t)_+ \right]}_{Expo} d\mathbb{Q} (\tau_C \le T)$$

On note $\text{Expo}_t = \mathbb{E}^{\mathbb{Q}_t} \left[(V_t - C_t)_+ \right]$ l'exposition au temps t. En pratique la formule précédente est discrétisée en considérant $0 = t_0 < t_1 < \cdots < t_N = T$

$$CVA_0 = -(1 - R_C) \sum_{k=1}^{N} B(0, t_k) \mathbb{E}^{\mathbb{Q}_{t_k}} \left[(V_{t_k} - C_{t_k})_+ \right] \mathbb{Q}(t_{k-1} \le \tau_C \le t_k)$$

Problématique du stage

Dans le but d'augmenter la précision du calcul du CVA₀, on s'intéresse au calcul de $\operatorname{Expo}_{t_k}$ pour tout $k \in [\![0,N]\!]$. On peut donc utiliser des techniques de réduction de variance, comme on peut encore s'intéresser au calcul de $V_t = \mathbb{E}^{\mathbb{Q}}\left[\phi_T|\mathcal{F}_t\right]$. Ce travail est consacré plutôt à la deuxième approche.

CHAPITRE 1

Déformation d'échantillon

On présente dans cette section une méthode élaborée dans le but de s'ajuster aux prix des options européennes. En effet, pour une maturité donnée T, on cherche un échantillon d'une variable aléatoire \bar{S}_T avec lequel on s'ajuste aux prix des options vanilles (en particulier Call).

Et sachant que pour une fonction $x \mapsto f(x)$ de classe C^2 , et x, F, K des réels positifs on a (Formule de Car-Madan):

$$f(x) = f(F) + f'(F)(x - F) + \int_0^F f''(K)(K - x) + dK + \int_F^\infty f''(K)(x - K) + dK$$

Donc pour calculer le prix d'une option européenne d'échéance T et de payoff $f(S_T)$, on pose $F = S_0 e^{rT}$ et calcule l'espérance de $e^{-rT} f(S_T)$ sous la probabilité risque-neutre :

$$Prix = e^{-rT} f(F) + \int_0^F f''(K) P(T, K) dK + \int_F^\infty f''(K) C(T, K) dK$$
 (1.0.1)

où P(T, K) et C(T, K) les prix respectifs d'un Put et d'un Call de strike K et de maturité T. Donc si on s'ajuste bien aux prix des options vanilles on s'ajustera aussi aux prix des options européennes (avec l'erreur de discrétisation des deux intégrales).

1.1 Description de la méthode

Soit T une maturité. On dispose de la fonction de répartition implicite de marché $F_{\hat{S}(T)}$ d'un sous-jacent S_T . On modélise dans un premier temps notre sous-jacent par un modèle simple avec des paramètres librement choisis par exemple :

$$\frac{dS_t}{S_t} = rdt + \sigma dW_t$$

On suit la procédure suivante :

• On cherche des strikes $0 = K_0 < K_1 < \cdots < K_n < K_{n+1} = +\infty$ tels que $\mathbb{Q}(S_T \in [K_i, K_{i+1}]) = \frac{1}{n+1}$ (donc qui divisent l'espace d'état de la variable S_T de manière équidistribuée). On résout donc le système d'équations suivant en utilisant la fonction de répartition de marché $F_{\hat{S}_T}$

$$\begin{cases} F_{\hat{S}_T}(K_1) - F_{\hat{S}_T}(K_0) &= \frac{1}{n+1} \\ \vdots &\vdots \\ 1 - F_{\hat{S}_T}(K_n) &= \frac{1}{n+1} \end{cases}$$

- On simule $(S_{i,T})_{0 \le i \le N}$ et on les ordonne en $(\tilde{S}_{i,T})_{0 < i < N}$
- On construit n bucket (B_{\cdot}) tels que chaque bucket contient $\lfloor \frac{N}{n} \rfloor$ simulations ordonnées (on prend n diviseur de N pour avoir une division entière).

$$\underbrace{\tilde{S}_{0,T} < \dots < \tilde{S}_{\left\lfloor \frac{N}{n} \right\rfloor,T}}_{B_0} < \dots < \underbrace{\tilde{S}_{(n-1)\left\lfloor \frac{N}{n} \right\rfloor,T} < \dots < \tilde{S}_{N,T}}_{B_{n+1}}$$

avec pour tous $i \in [0, n+1], \#B_i = \left|\frac{N}{n}\right| := m$

Le but est de passer de l'échantillon (taille N) de S_T à un échantillon (taille N aussi) de variable \bar{S}_T de manière à s'ajuster aux prix des options vanilles (call) et donc pour s'ajuster aux prix des options européennes (1.0.1). Pour ce faire on suit la procédure suivante :

• On construit $(\tilde{S}_{i,T}^*)_{0 \le i \le N}$ de manière à associer chaque bucket B_i au $[K_i, K_{i+1}]$. On note \mathcal{I}_j les indices des \tilde{S}_T qui sont dans le bucket $[K_j, K_{j+1}]$. On effectue alors pour chaque bucket la transformation suivante sur ces éléments.

$$\begin{cases} \tilde{S}_{0,T}^* = K_i \\ \tilde{S}_{1,T}^* = \tilde{S}_{0,T} + \frac{\tilde{S}_{m,T}^* - \tilde{S}_{0,T}^*}{\tilde{S}_{m,T} - \tilde{S}_{0,T}} (\tilde{S}_{1,T} - \tilde{S}_{0,T}) \\ \vdots & \vdots \\ \tilde{S}_{m,T}^* = K_{i+1} \end{cases}$$

Pour le dernier bucket on fait la transformation suivante $\forall j \in \mathcal{I}_n, \quad \tilde{S}_t^{j*} = \max(\tilde{S}_t^j, K_n)$

• Pour trouver un échantillon $(\bar{S}_{i,T})_{0 \le i \le N}$ avec lequel on s'ajuste aux prix des vanilles, on résout le système d'équation suivant (on cherche $\forall i \in [n, 0] \alpha_i$),

$$\frac{e^{-rT}}{N} \sum_{l \in \bigcup_{j=1}^{n} \mathcal{I}_{j}} (\bar{S}_{l,T} - K_{i}) + = C(T, Ki)$$
(1.1.1)

On prend $K_{n+1} = \max(NC(T, K_i) + K_n, \max(\tilde{S}_T^*))$. Si $l \in \mathcal{I}_i$ alors on propose la paramétrisation suivante avec α_i un réel à déterminer

$$\bar{S}_{l,T}^{*} = \begin{cases} \alpha_{i} \tilde{S}_{l,T}^{*} + (1 - \alpha_{i}) K_{i} & \text{si} \quad \frac{e^{-rT}}{N} \left(\sum_{l \in \mathcal{I}_{i}} (\tilde{S}_{l,T} - K_{i})_{+} + \sum_{l \in \bigcup_{j=i+1}^{n} \mathcal{I}_{j}} (\bar{S}_{l,T} - K_{i})_{+} \right) \geq C(T, K_{i}) \\ \alpha_{i} \tilde{S}_{l,T}^{*} + (1 - \alpha_{i}) K_{i+1} & \text{si} \quad \frac{e^{-rT}}{N} \left(\sum_{l \in \mathcal{I}_{i}} (\tilde{S}_{l,T}^{*} - K_{i})_{+} + \sum_{l \in \bigcup_{j=i+1}^{n} \mathcal{I}_{j}} (\bar{S}_{l,T}^{*} - K_{i})_{+} \right) \leq C(T, K_{i}) \end{cases}$$

$$(1.1.2)$$

On peut résoudre 1.1.1 de manière récursive rétrograde en utilisant la paramétrisation proposée 1.1.2. Pour le bucket i on trouve α_i (en notant $x \in i, i+1$):

$$\sum_{l \in \bigcup_{j=i}^{n} \mathcal{I}_{j}} (\bar{S}_{l,T} - K_{i}) = Ne^{rT}C(T, K_{i})$$

$$\sum_{l \in \mathcal{I}_{i}} (\bar{S}_{l,T} - K_{i}) + \sum_{k=i+1}^{n} \sum_{l \in \mathcal{I}_{k}} (\bar{S}_{l,T} - K_{i}) = Ne^{rT}C(T, K_{i})$$

$$\sum_{l \in \mathcal{I}_{i}} \bar{S}_{l,T} - K_{i}m(n-i+1) + \sum_{k=i+1}^{n} \sum_{l \in \mathcal{I}_{k}} \bar{S}_{l,T} = Ne^{rT}C(T, K_{i})$$

$$Ne^{rT}C(T, K_{i}) + K_{i}m(n-i+1) - \sum_{k=i+1}^{n} \sum_{l \in \mathcal{I}_{k}} \bar{S}_{l,T} = \sum_{l \in \mathcal{I}_{i}} (\alpha_{i}\tilde{S}_{l,T}^{*} + (1-\alpha_{i})K_{x})$$

$$Ne^{rT}C(T, K_{i}) + K_{i}m(n-i+1) - K_{x}m - \sum_{k=i+1}^{n} \sum_{l \in \mathcal{I}_{k}} \bar{S}_{l,T} = \alpha_{i} \sum_{l \in \mathcal{I}_{i}} (\tilde{S}_{l,T} - K_{x})$$

Donc

$$\alpha_{i} = \frac{Ne^{rT}C(T, K_{i}) + K_{i}m(n - i + 1) - K_{x}m - \sum_{k=i+1}^{n} \sum_{l \in \mathcal{I}_{k}} \bar{S}_{l,T}}{\sum_{l \in \mathcal{I}_{i}} \left(\tilde{S}_{l,T} - K_{x}\right)}$$

1.2 Applications numériques

1.2.1 Modèle de marché

On considère que le marché se modélise par un modèle de SABR (stochastic alpha beta rho model) à volatilité stochastique. Sous ce modèle le forward suit la dynamique suivante

$$dF_t = \sigma_t F_t^{\beta} dW_t$$

$$d\sigma_t = \alpha \sigma_t dZ_t \tag{1.2.1}$$

avec $d\langle W_{\cdot}, Z_{\cdot} \rangle = \rho dt$, $0 \leq \beta \leq 1$, $\alpha \geq 0$ et $-1 \leq \rho \leq 1$. On note $f := f(t_0, t) = S_0 e^{rt}$ et σ_0 la volatilité initiale.

Sous ce modèle on a la formule approximée suivante pour la volatilité implicite

$$\sigma(T, K) = \frac{\alpha}{f^{1-\beta}} \left(1 - \frac{1}{2} \left(1 - \beta - \rho \lambda \right) \log \frac{K}{f} + \frac{1}{12} \left((1 - \beta)^2 + \left(2 - 3\rho^2 \right) \lambda^2 \right) \log^2 \frac{K}{f} \right)$$

avec $\lambda = \frac{\nu}{\alpha} f^{1-\beta}$ et étant donné d'un strike K pas très loin du forward f.

Dans nos expérimentations on travaille avec les paramètres suivants : $\beta = 0.5$, $\alpha = 0.2$, $\rho = -0.9$, $\nu = 0.2$, $S_0 = 1$, r = 0.03. Et on se donne un set de maturités pour lesquelles les options européennes sont cotées $\tau = \{0.05y, 0.25y, 0.5y, 1y, 2y, 3y, 4y\}$.

1.2.2 Déformation d'échantillon

Soit la maturité T=4. On choisit le modèle suivant pour le sous-jacent S_t avec r=0.03 et $\sigma=0.2$:

 $\frac{dS_t}{S_t} = rdt + \sigma dW_t$

Après avoir suivi la procédure décrite dans le section précédente, on trouve un échantillon \bar{S}_T avec lequel on reprice exactement les Call de maturité T et de strike 1.1.

La figure 1.2.2 représente l'histogramme de l'échantillon déformé contre la densité de marché calculée comme suit :

$$f_{\hat{S}_T}(x) = e^{rT} \frac{\partial^2 C(T, K)}{\partial K^2} \bigg|_{K=x}$$

On peut remarquer que la distribution empirique de l'échantillon \bar{S}_T approxime bien la densité de marché. Néanmoins, un premier test de la méthode est de voir si elle permet de bien calculer les prix des options vanilles (Calls) de strikes différents de ceux avec laquelle elle était calibrée. La figure 1.2.2 montre la volatilité implicite du marché pour la maturité T et un set de strikes contre la volatilité implicite issue des prix de Call (sur le même set de strikes) calculés à partir de l'échantillon déformé. On remarque un ajustement exact sauf pour un strike très éloigné de la monnaie.

FIGURE 1.1 – Histogramme de l'échantillon déformé contre la densité de marché

On trace aussi la fonction de répartition du marché contre celle de l'échantillon déformé 1.2.2. Pour s'assurer du bon ajustement qu'on observe graphiquement, on effectue un test

de Kolmogorov-Smirnov ce dernier accepte au seuil de 5% l'hypothèse nulle (les deux échantillons on la même distribution) avec un p-value de 0.21.

FIGURE 1.2 – Volatilité implicite du marché contre celle issus des prix calculés à partir de l'échantillon déformé

FIGURE 1.3 – Fonction de répartition de marché et celle empirique de l'échantillon déformé

Colocating local volatility modèle

Dans un modèle de volatilité locale non paramétrique standard,

$$dS_t = rS_t dt + \sigma(t, S_t) dW_t$$

la fonction de volatilité locale est choisie de manière à ce que la densité marginale du modèle et celle du marché s'ajuste à chaque instant t. Ce modèle permet un calibrage parfait pour les options vanilles mais, d'un autre côté, il ne permet pas le contrôle des volatilités forward. De plus, afin d'obtenir des solutions numériques de haute qualité, il est nécessaire de simuler le modèle pour une grille temporelle assez dense.

Le modèle Collocating Local Volatility fait la construction de la volatilité locale de manière différente. En fait, le modèle est construit uniquement sur la base des prix des Calls cotés dans le marché, de sorte qu'il n'est pas nécessaire, contrairement au modèle de volatilité locale standard, de calculer les volatilités implicites du marché pour n'importe quel moment t entre deux échéances cotées sur le marché.

2.1 Collocation stochastique

Soit Y une variable aléatoire à valeurs réelles et $F_Y(y)$ sa fonction de répartition qui est strictement croissante. Soit $U \sim \mathcal{U}([0,1])$ et $(u_i)_{0 \le i \le n}$ un échantillon de U. Classiquement pour générer un échantillon $(y_i)_{0 \le i \le n}$ de Y on fait

$$y_i = F_Y^{-1}(u_i), \quad i \in [0, n]$$

Or dans le cas où la fonction inverse de répartition n'a pas de forme analytique cette procédure devient couteuse, car il faut faire n inversions.

On considère alors une autre variable X, pour laquelle $F_X^{-1}(.)$ est moins couteuse que celle de Y. On sait que $F_Y(Y) \stackrel{d}{=} F_X(X)$ donc $y_n = F_Y^{-1}(F_X(\xi_n))$ où y_n, ξ_n les échantillons de Y, X respectivement. Ici encore l'échantillonement de Y reste couteux. Il faut trouver une relation alternative pour ne pas faire l'inversion F_Y^{-1} pour tout l'échantillon de X.

On cherche alors une fonction g de manière à ce que $g(.) = F_Y^{-1}(F_X(.))$, donc à ce que $Y \stackrel{d}{=} g(X)$, et telle que l'évaluation de cette fonction n'est pas couteuse.

Dans la méthode de collocation stochastique on approxime Y par une fonction g de X en terme d'expansion de Lagrange $l_i(\xi_n)$:

$$y_n \approx g_N(\xi_n) = \sum_{i=1}^N y_i l_i(\xi_n), \quad l_i(\xi_n) = \prod_{j=1, i \neq j}^N \frac{\xi_n - x_j}{x_i - x_j}$$

où ξ_n est un échantillon de X et x_i, x_j sont des points de collocation (N est généralement <8), et $y_i = F_Y^{-1}(F_X(x_i))$. $\mathbf{l}(x) = (l_1(x), \dots, l_N(x))^T$ est la base de Lagrange., telle que $l_i(x_j) = \delta_{ij}$. Donc une fois les N points de collocation déterminés x_i et les N inversions F_Y^{-1} faites, on peut simuler n'importe quel nombre d'échantillons de Y et ceci par l'évaluation du polynôme $g_N(.)$. On parle ici de Stochastic Collocation Monte Carlo sampler.

2.1.1 Points de collocation

Les N points de collocation du variable X sont les zéros du polynôme orthogonal (de degré N) en L^2 respectivement à la densité $f_X(.)$. En fait, on a les deux théorèmes suivants :

Théorème 2.1.1.1. Pour toute densité $f_X(.)$, il existe une suite de polynômes orthogonaux $p_i(x)$ unique avec comme degré $deg(p_i(x)) = i$, cette suite se construit par

$$p_{i+1}(x)=(x-\alpha_i)p_i(x)-\beta_ip_{i-1}(x),\quad i\in \llbracket 0,N-1\rrbracket$$
 où $p_{-1}(x)=0$ et $p_0(x)=1$ et pour tous $i\in \llbracket 0,N-1\rrbracket$ $\alpha_i=\frac{\mathbb{E}(Xp_i^2(X))}{\mathbb{E}(p_i^2(X))}$ et $\beta_i=\frac{\mathbb{E}(p_i^2(X))}{\mathbb{E}(p_{i-1}^2(X))}$ et $\beta_0=0$

On construit la matrice de Gram $M=\mu_{ij}i, j=0^N$ en considérant le monomial $mi(X)=X^i$ par $\mu_{ij}=\mathbb{E}(m_i(X)m_j(X))=\mathbb{E}(X^{i+j})$. La matrice Mest définie positive elle s'écrit alors comme $M=R^TR$ où $R=r_{ij}{}^N_{i,j=0}$ est une matrice triangulaire inférieure. On a

$$\alpha_j = \frac{r_{j,j+1}}{r_{j,j}} - \frac{r_{j-1,j}}{r_{j-1,j-1}}, \quad \beta_j = \left(\frac{r_{j+1,j+1}}{r_{j,j}}\right)^2, \quad j = 1, \dots, N-1$$

Théorème 2.1.1.2. Les zéros x_i , $i \in [1, N]$ du polynôme orthogonal $p_N(X)$ sont les valeurs propres de la matrice symétrique suivante

$$\hat{J} := \begin{pmatrix} \alpha_1 & \sqrt{\beta_1} & 0 & 0 & 0\\ \sqrt{\beta_1} & \alpha_2 & \sqrt{\beta_2} & 0 & 0\\ & \ddots & \ddots & \ddots & \\ 0 & 0 & \sqrt{\beta_{N-2}} & \alpha_{N-1} & \sqrt{\beta_{N-1}}\\ 0 & 0 & 0 & \sqrt{\beta_{N-1}} & \alpha_N \end{pmatrix}$$

Les points de collocation pour une variable $X \sim \mathcal{N}(0,1)$ qu'on utilisera dans les parties suivantes sont donnés par

x_i	N = 4
x_1	-2.3344
x_2	-0.7420
x_3	0.7420
x_4	2.3344

Table 2.1 – Points de collocation (N=4) pour la variable $X \sim \mathcal{N}(0,1)$

Monotonie de la fonction g

Une fois les points de collocations déterminés x_i et les inversions correspondantes faites $y_i = F_Y^{-1}(F_X(x_i))$ on doit construire une fonction d'approximation $g_N(x)$ qui est idéalement monotone différentiable et qui vérifie $y_i = g_N(x_i)$, en effet en choisissant $g_N(x)$ comme un polynôme de Lagrange en ne garantie pas la monotonie. Néanmoins la convergence du SCMC sampler ne dépend pas sur la monotonie de $g_N(x)$.

2.1.2 Analyse d'erreur

On s'intéresse dans cette section à l'erreur générée par Stochastic Collocation Monte Carlo sampler.

On se met dans un premier temps dans un cas où la méthode de collocation donne des résultats exacts. Soient $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ et $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ deux variables aléatoires alors $g_N(X) \stackrel{d}{=} Y$ pour N=2. En effet, soient x_1 et x_2 deux points de collocation alors $g_2(X) = y_1 \frac{X - x_2}{x_1 - x_2} + y_2 \frac{X - x_1}{x_2 - x_1}$

On a

$$F_{\mathcal{N}(0,1)}\left(\frac{y_i - \mu_Y}{\sigma_Y}\right) = F_{\mathcal{N}(0,1)}\left(\frac{x_i - \mu_X}{\sigma_X}\right)$$

alors $y_i = \frac{x_i - \mu_X}{\sigma_X} \sigma_Y + \mu_Y$. On a donc $\mathbb{E}(g_2(X)) = \mu_Y$ et $\mathbb{V}(g_2(X)) = \sigma_Y^2$ et comme $g_2(X)$ suit une loi normale alors $Y \stackrel{d}{=} g_2(X)$.

Dans un cas général, pour mesurer l'erreur on peut soit considérer la différence entre g(X) et $g_N(X)$ soit l'erreur associée à l'approximation de la fonction de répartition.

La première erreur est liée à l'interpolation de Lagrange, en effet la relation entre Y et X est Y = g(X) qu'on approxime par un polynôme de Lagrange $Y \approx g_N(X)$ pour N points de collocation. Cette erreur est donc bien connue

$$e_X(\xi_n) = |g(\xi_n) - g_N(\xi_n)| = \left| \frac{1}{N!} \frac{d^N g(x)}{dx^N} \right| x = \hat{\xi} \prod_{i=1}^N i = 1^N (\xi_n - x_i) \right|$$

avec x_i est un point de collocation, $\hat{\xi} \in [\min(x), \max(x)]$ et $x = (x_1, \dots, x_N)^T$, on peut borner cette erreur en prenant $\hat{\xi}$ l'abscisse du maximum de $\left|\frac{d^N g(x)}{dx^N}\right|$. En utilisant $\xi_n = F_X^{-1}(u_n)$, on trouve

$$e_U(u_n) = \left| g\left(F_X^{-1}(u_n) \right) - g_N\left(F_X^{-1}(u_n) \right) \right| = \left| \frac{1}{N!} \frac{d^N g(x)}{dx^N} \right| x = \hat{\xi} \prod_{i=1}^N \left(F_X^{-1}(u_n) - x_i \right) \right|.$$

Erreur de convergence en L^2

On a $Y = g(X) \approx Y_N \equiv g_N(X)$, où $g(x) = F_Y^{-1}(F_X(x))$ donc

$$\mathbb{E}\left[(Y - Y_N)^2\right] = \mathbb{E}\left[(g(X) - g_N(X))^2\right] = \int_{\mathbb{R}} (g(X) - g_N(X))^2 f_X(X) dX$$

Les points de collocations x_i et les poids w_i sont déterminés par le théorème 2.1.1.2. Comme $g(x_i) = g_N(x_i)$, pour $i \in [1, N]$ l'erreur est :

$$\int_{\mathbb{R}} (g(x) - g_N(x))^2 f_X(x) dx = \sum_{i=1}^N (g(x_i) - g_N(x_i))^2 w_i + \varepsilon_N = \varepsilon_N$$

Donc l'erreur dans L^2 est déterminée par l'erreur de quadrature.

Pour une variable $X \sim \mathcal{N}(0,1)$ il existe une relation entre les pairs de $x_i, w_i i = 1^N$ et ceux donnés par la quadrature de Gauss-Hermite. En effet, la quadrature de Gauss-Hermite est basée sur la fonction de poids $x \mapsto e^{-x^2}$, pour une fonction $x \mapsto \Psi(x)$ on approxime les intégrales de la forme $\int -\infty^{+\infty} e^{-x^2} \Psi(x) dx$.

d'autre part on a

$$\mathbb{E}(\Psi(X)) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Psi(x) dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-x^2} \Psi(\sqrt{2}x) dx$$

donc la relation entre les points et les poids des deux méthodes est $x_i^H = \frac{x_i}{\sqrt{2}}$ et $w_i^H = w_i \sqrt{\pi}$. L'erreur de la quadrature de Gauss-Hermite et donc de la collocation

$$\varepsilon_N = \frac{N!\sqrt{\pi}}{2^N} \frac{\Psi^{(2N)}(\hat{\xi})}{(2N)!}, \quad \Psi(x) = (g(x) - g_N(x))^2 = \left(\frac{1}{N!} \frac{d^N g(x)}{dx^N} \middle| x = \hat{\xi} \prod i = 1^N (x - x_i)\right)^2$$

Pour une fonction $x \mapsto \Psi(x)$ assez régulière l'erreur ε_N converge vers 0 quand $N \to \infty$.

Erreur de convergence pour les queues

Ici on considère la différence entre Y et son approximation Y_N sachant que , où y^* détermine la queue. Pour tout $i \in [\![1,N]\!]$ on a $g_N(x_i) = g(x_i) = y_i$ et on fixe y^* et $x^* = F_X^{-1}(F_Y(y^*))$. Alors dans L^2 , on a :

$$\mathbb{E}\left[(Y - Y_N)^2 | Y > y^* \right] \le \mathbb{E}\left[(g(X) - g_N(X))^2 | X > x^* \right]$$

$$= \frac{1}{\mathbb{P}(X > x^*)} \int_{-\infty}^{+\infty} (g(x) - g_N(x))^2 1_{x > x}(x) f_X(x) dx$$

En utilisant la quadrature

$$\mathbb{E}\left[(g(X) - g_N(X))^2 | X > x^*\right] \le \frac{1}{\mathbb{P}(X > x^*)} \int_{-\infty}^{+\infty} (g(x) - g_N(x))^2 f_X(x) dx$$

$$= \frac{1}{\mathbb{P}(X > x^*)} \left(\sum_{i=1}^N (g(x_i) - g_N(x_i))^2 w_i + \varepsilon_N\right)$$

Les deux fonctions g(x) et $g_N(x)$ sont égaux dans les points de collocation donc la borne supérieure est donnée par

$$\mathbb{E}\left[(g(X) - g_N(X))^2 | X > x\right] \le \frac{1}{\mathbb{P}(X > x)} \frac{N!\sqrt{\pi}}{2^N} \frac{\Psi^{(2N)}(\hat{\xi})}{(2N)!}$$

On peut montrer que pour $x^* > 0$

$$\mathbb{P}(X > x) \ge \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \left(\frac{1}{x} - \frac{1}{x_*^3} \right)$$

et pour $x^* > 1$

$$\mathbb{E}\left[(g(X) - g_N(X))^2 | X > x\right] \le \pi \sqrt{2} e^{-x^2/2} \frac{x^3}{x^2 - 1} \frac{N!}{2^N (2N)!} \Psi^{(2N)}(\hat{\xi})$$

Donc on a $\lim_{N\to\infty} \mathbb{E}\left[(g(X) - g_N(X))^2 | X > x^*\right] = 0$

En utilisant l'inégalité de Chebychev on trouve

$$\mathbb{P}((Y - Y_N)^2 \ge a) \le \frac{1}{a} \mathbb{E}((Y - Y_N)^2) = \frac{\varepsilon_N}{a} \to 0$$

2.2 Collocating local volatility model

On considère un sous jacent S_t et un processus (kernel process) X_t dont on dispose des moments $\mathbb{E}(X_t^i)$, $i \in \mathbb{N}$. La relation entre S_t et X_t est donnée par

$$S_t = g(t, X_t)$$

où $(t,x) \mapsto g(t,x)$ est une fonction déterministe. Le but de cette méthode est de construire la fonction g de manière à ce que les volatilités implicites générées par notre modèle soit égales à celles du marché sur un set de maturités.

Le modèle est donné sous la probabilité risque neutre par

$$S_t = g(t, X(t)),$$

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad X_{t_0} = S_{t_0}$$

Soit T_i , $i=1,\ldots,M$ les maturités du marché. La fonction de répartition du marché pour une maturité T_i est donnée par

$$F_{\hat{S}_{T_i}}(x) = 1 + e^{rT_i} \frac{\partial C(t_0, T_i, K)}{\partial K} \bigg|_{K=x},$$

où $C(t_0, T_i, K) = e^{-rT_i} \int_K^\infty (x - K) f_{\hat{S}(T_i)}(x) dx$ le prix (sous probabilité risque neutre) d'une option call européene de maturité T_i et de strike K. En utilisant la méthode de collocation décrite dans la section précédente on construit la fonction g pour notre set de maturité et le set des points de collocation du processus X_t on a donc l'équation suivante avec $x_{ij} := x_j(T_i)$:

$$F_{X_{T_i}}(x_{ij}) = F_{\hat{S}_{T_i}}(g(T_i, x_{ij})) =: F_{\hat{S}_{T_i}}(s_{ij}), \quad i \in [[1, N]], \quad j \in [[1, M]]$$

les valeurs de collocation sont

$$g(T_i, x_{ij}) := s_{ij} = F_{\hat{S}_{T_i}}^{-1}(F_{X_{T_i}}(x_{ij}))$$

.

Une fois on a la grille $\{T_i, x_{ij}, s_{ij}\}$ on passe à l'étape suivante de la calibration en imposant la continuité à la fonction g(t,x) pour pouvoir simuler S_t pour des maturités autres que celles du marché $(t \in]T_i, T_{i+1}[)$. Il faut dans un premier temps déterminer les points de collocation $x_j(t), \quad j \in [1,N], \quad t \in]T_i, T_{i+1}[$, cette procédure est décrite dans la section suivante. Pour déterminer les valeur de collocation $s_j(t)$ on fait l'interpolation linéaire suivante :

$$\forall t \in [T_i, T_{i+1}[, \quad s_j(t) = s_{ij} + (s_{i+1j} - s_{ij}) \frac{t - T_i}{T_{i+1} - T_i}, \forall j \in [1, N]]$$
(2.2.1)

Une fois que les points de collocation $x_j(t)$ et les valeurs de collocations $s_j(t)$ sont déterminés, il faut déterminer une fonction continue différentiable $g(t, X_t)$ telle que $g(t, x_j(t)) = s_j(t)$. On utilise alors l'interpolation de Lagrange:

$$g(t, X_t) = \sum_{j=1}^{N} s_j(t) l_j(X_t), \quad l_j(X_t) = \prod_{k=1, j \neq k}^{N} \frac{X_t - x_j(t)}{x_k(t) - x_j(t)}$$
(2.2.2)

2.2.1 Processus kernel

Le processus X_t est choisi librement à condition de posséder des moments. Une relation quasi linéaire est favorable entre les variables X_{T_i} et \hat{S}_{T_i} pour réduire l'erreur d'approximation. On peut donc considérer comme processus kernel un brownien, un processus qui suit la dynamique d'Heston ou un processus Orlenstein Ulenbenk.

Points de collocation pour une variable normale : Soient $X_1 \sim \mathcal{N}(a_1, b_1)$ et $X_2 \sim \mathcal{N}(a_2, b_2)$ et leurs points de collocations respectifs $x_i^{X_1}$ et $x_i^{X_2}$. Alors $F_{X_1}(x_i^{X_1}) = F_{X_2}(x_i^{X_2})$ pour tous $i \in [\![1, N]\!]$ et $x_i^{X_1} = a_1 + b_1 x_i^{\mathcal{N}(0,1)}$ et $x_i^{X_2} = a_2 + b_2 x_i^{\mathcal{N}(0,1)}$, où $x_i^{\mathcal{N}(0,1)}$ sont les points de collocation pour une variable normale standard.

En utilisant le résultat précédent, on obtient les points de collocation du processus X_t par :

$$x_i(t) = \mathbb{E}(X_t) + \sqrt{\mathbb{V}(X_t)} x_i^{\mathcal{N}(0,1)}, \quad i \in [1, N]$$
 (2.2.3)

Pour trouver les $x_i^{\mathcal{N}(0,1)}$ on utilise les abscisses de Gauss-Hermite x_i^H en effet on a la relation suivante $x_i^{\mathcal{N}(0,1)} = \sqrt{2}x_i^H$.

La question qui se pose est comment choisir les paramètres du processus X_t . Considérons $X_t^1 = X_0^1 + a_1t + b_1W_t$ et $X_t^2 = X_0^2 + a_2t + b_2W_t$ (avec le même mouvement brownien) alors on a $X_t^2 = c_1 + c_2X_t^1$ donc d'après le résultat précédent $F_{X_t^1}(x_i^{X_t^1}) = F_{X_t^2}(x_i^{X_t^2})$ et comme la fonction g est complètement déterminée par les fonctions de répartitions alors $g(X_t^1) = g(X_t^2)$ p.s. Donc dans ce cas le choix des paramètres du processus X_t n'impacte pas les résultats de la méthode de collocation.

Par contre si on considère comme processus kernel un Ornstein-Uhlenbeck (OU) de dynamique

$$dX_t = \lambda(\theta - X_t)dt + \eta dW_t \tag{2.2.4}$$

De solution:

$$X_t = X_0 e^{-\lambda t} + \theta (1 - e^{-\lambda t}) + \frac{\eta}{\sqrt{2\lambda}} e^{-\lambda t} W_{(e^{2\lambda t} - 1)}$$

ici la filtration du mouvement brownien dépend du paramètre λ donc si on prend deux processus OU avec $\lambda_1 \neq \lambda_2$ on aura des trajectoires $g(X_1(t)) \neq g(X_2(t))$.

2.2.2 Paniers de haute dimension

Dans le cas d'un panier de dimension supérieure à 1, on travaille de manière similaire au cas d'une dimension. Le modèle CLV se définie alors pour M sous jacents :

$$S_t^k = g_k(t, X_t^k),$$

$$dX_t^k = \mu_k(X_t^k)dt + \sigma_k(X_t^k)dW_t^k, \quad X_{t_0}^k = S_{t_0}^k,$$

$$d\langle W^k, W^l \rangle_t = \rho_{k,l}dt, \quad k, l \in \{1, \dots, M\}$$

La dynamique précédente montre que chaque sous jacent est modélisé comme dans le cas 1 dimensionnel et que la corrélation entre les sous jacents est imposée par la corrélation entre les processus kernel.

2.3 Applications numériques

On se met dans le même cadre décrit dans 1.2.1. On récupère dans un premier temps la fonction de répartition du marché (figure 2.1) pour le set de maturité τ et un set de strike.

On considère comme processus kernel un processus OU de dynamique donnée par 2.2.4, avec les paramètres suivants : $\kappa = 1.2$, $\theta = 0.1$, $\sigma = 0.25$.

Les points de collocation donnés par la formule 2.2.3 sont présentés dans le tableau suivant

	T = 0.05	T = 0.25	T = 0.5	T = 1	T=2	T=3	T=4
j	$x_{1,j}$	$x_{2,j}$	$x_{3,j}$	$x_{4,j}$	$x_{5,j}$	$x_{6,j}$	$x_{7,j}$
1	0.8209	0.5136	0.2790	0.0118	-0.1935	-0.2519	-0.2692
2	0.9073	0.6863	0.4938	0.2569	0.0624	0.0049	-0.0123
3	0.9878	0.8471	0.6940	0.4852	0.3008	0.2442	0.2271
4	1.0742	1.0197	0.9088	0.7302	0.5568	0.5011	0.4841

Table 2.2 – Points de collocation pour le processus X(t)

Le tableau 2.3 présente les valeurs de collocations $s_{i,j}$ pour $i \in [\![1,M]\!]$ et $j \in [\![1,N]\!]$. A partir des équations 2.2.1 et 2.2.3 on trouve les pairs $\{x_j(t),s_j(t)\}_{j=1}^N$ qu'on utilisera dans l'interpolation 2.2.2, on obtient ainsi la fonction g(t,x) pour $t \in [\![0,\infty)\!]$ et $x \in \mathbb{R}$.

FIGURE 2.1 – Fonction de répartition du marché

	T = 0.05	T = 0.25	T = 0.5	T=1	T=2	T=3	T=4
j	$s_{1,j}$	$s_{2,j}$	$s_{3,j}$	$s_{4,j}$	$s_{5,j}$	$s_{6,j}$	$s_{7,j}$
1	0.8957	0.7650	0.6668	0.5311	0.2734	0.1746	0.0822
2	0.9683	0.9339	0.9111	0.8831	0.8517	0.8338	0.82270524
3	1.0350	1.0829	1.1226	1.1847	1.2852	1.3736	1.4565
4	1.1026	1.2323	1.3283	1.4647	1.6604	1.8146	1.9564

Table 2.3 – Valeurs de collocation

La figure 2.3 présente les volatilités implicites du marché contre celles issus des prix calculés par le modèle CLV. On conclue qu'il s'agit d'un bon ajustement pour les grandes maturités, néanmoins pour les petites maturités les résultats ne sont satisfaisants qu'en ATM.

FIGURE 2.2 – Volatilité implicite du marché contre celle du modèle CLV pour différente maturités

Résultats numériques

On présente dans cette section les différents résultats obtenus. En effet, on compare pour plusieurs options les prix donnés par la méthode de déformation d'échantillon 1, le modèle collocating local volatility (CLV) 2 ainsi qu'un modèle à volatilité locale stochastique qu'on a calibré au marché 3.1.

3.1 Modèle à volatilité locale stochastique

On considère le modèle à volatilité locale stochastique (SLV) suivant avec lequel on va comparer les deux méthodes précédentes :

$$\frac{\mathrm{d}S_t}{S_t} = rdt + a_t l(t, S_t) dW_t$$

$$a_t = \sigma_0 e^{Y_t}, \quad \text{où} \quad \mathrm{d}Y_t = -\kappa Y_t dt + \gamma dZ_t$$

$$d\langle W, Z \rangle_t = \rho dt$$
(3.1.1)

Afin de calibrer ce modèle au marché il faut trouver une fonction leverage l(t, S) qui permet le modèle de s'ajuster aux prix de marché des options vanilles.

On décrit dans la suite la procédure de simulation Monte Carlo pour ce modèle. Soit T une maturité, on discrétise l'intervalle (0,T) en sous-intervalle $(t_{i-1},t_i), 1 \leq i \leq n$, et on note $\Delta t_i = t_i - t_{i-1}$.

Le processus Y a pour solution

$$Y_{t_i} = e^{-\kappa \Delta t_i} Y_{t_{i-1}} = \int_{t_{i-1}}^{t_i} \gamma e^{-\kappa (t_i - s)} dZ_s$$
 (3.1.2)

Donc étant donné $Y_{t_{i-1}}$, Y_{t_i} est une variable gaussienne (donc les trajectoires peuvent être simulées exactement) :

$$\mathbb{E}[Y_{t_i}|Y_{t_{i-1}}] = e^{-\kappa \Delta t_i} Y_{t_{i-1}}, \quad \mathbb{V}[Y_{t_i}|Y_{t_{i-1}}] = \frac{\gamma^2}{2\kappa} \left(1 - e^{-2\kappa \Delta t_i}\right)$$

Pour le processus S on utilise un schéma d'Euler

$$\log S_{t_i} - \log S_{t_{i-1}} = \left(r - \frac{1}{2}\sigma_0^2 e^{2Y_{t_{i-1}}} l(t_{i-1}, S_{t_{i-1}})^2\right) \Delta t_i + \sigma_0 e^{Y_{t_{i-1}}} l(t_{i-1}, S_{t_{i-1}}) \int_{t_{i-1}}^{t_i} dW_t$$
(3.1.3)

Donc étant donné $S_{t_{i-1}}$ et $Y_{t_{i-1}}$, $\log S_{t_i}$ et Y_{t_i} sont des variables gaussiennes conjointement, avec

$$\mathbb{E}\left[\log S_{t_{i}} | S_{t_{i-1}}, Y_{t_{i-1}}\right] = \log S_{t_{i-1}} - \frac{1}{2}\sigma_{0}^{2}e^{2Y_{t_{i-1}}}\Delta t_{i}$$

$$\mathbb{V}\left[\log S_{t_{i}} | S_{i_{i-1}}, Y_{t_{i-1}}\right] = \sigma_{0}^{2}e^{2Y_{t_{i-1}}}l(t_{i-1}, S_{t_{i-1}})^{2}\Delta t_{i}$$

$$\operatorname{Cov}\left[Y_{t_{i}}, \log S_{t_{i}} | S_{t_{i-1}}, Y_{t_{i-1}}\right] = \sigma_{0}e^{Y_{t_{i-1}}}l(t_{i-1}, S_{t_{i-1}})\frac{\gamma\rho}{\kappa}\left(1 - e^{-\kappa\Delta t_{i}}\right)$$

$$\operatorname{Corr}\left[Y_{t_{i}}, \log S_{t_{i}} | S_{t_{i-1}}, Y_{t_{i-1}}\right] = \rho\sqrt{\frac{2(1 - e^{-\kappa\Delta t_{i}})}{\kappa\Delta t_{i}(1 + e^{-\kappa\Delta t_{i}})}}$$
(3.1.4)

Pour un intervalle de temps $[t_{i-1}, t_i]$ on en utilisant les équations précédentes et en notant

$$\bar{\rho} = \rho \sqrt{\frac{2(1 - e^{-\kappa \Delta t_i})}{\kappa \Delta t_i (1 + e^{-\kappa \Delta t_i})}}$$

$$\log S_{t_i} = \log S_{t_{i-1}} - \frac{1}{2} \sigma_0^2 e^{2Y_{t_{i-1}}} l(t_{i-1}, S_{t_{i-1}})^2 \Delta t_i + \sigma_0 e^{Y_{t_{i-1}}} l(t_{i-1}, S_{t_{i-1}}) \sqrt{\Delta t_i} \left(\sqrt{1 - \bar{\rho}^2} Z_1 + \bar{\rho} Z_2 \right)$$

$$Y_{t_i} = e^{-\kappa \Delta t_i} Y_{t_{i-1}} + \gamma \sqrt{\frac{1 - e^{-2\kappa \Delta t_i}}{2\kappa}} Z_2$$

Où Z_1 et Z_2 sont des variables normal standard.

3.1.1 Calibration du modèle à volatilité locale stochastique au marché

Il est bien connu, dans la littérature des modèles SLV, qu'une fonction *leverage* pour laquelle le modèle 3.1.1, peut être parfaitement calibré au smile du marché, doit satisfaire à l'équation suivante :

$$\forall (t,s) \in [0,T] \times \mathbb{R} : \quad l(t,s)^2 \mathbb{E}\left(a_t^2 | S_t = s\right) = \sigma_{Dup}(t,s)^2$$
(3.1.5)

Où σ_{Dup} est la volatilité locale de Dupire.

L'exigence minimale pour calibrer la fonction leverage l sur le smile du marché est l'approximation numérique de l'espérance conditionnelle en 3.1.5. Il existe en général trois méthodes dans la littérature afin d'effectuer la calibration (PDE method, Markovian projection method, Particles calibration method). On utilise ici la troisième méthode introduite par (Citer ici Guyon). On va donc la présenter brièvement.

Méthode de calibration par particules : Inspirés par la régression de Nadaraya-Watson, les auteurs (cité guyon) ont proposé d'approximer l'espérance conditionnelle de 3.1.1 comme suit : Pour le temps t_k , $0 \le k \le M$, où M le nombre de pas de discrétisation du schéma d'Euler de 3.1.1, pour N échantillon $\left(S_{t_k,j}^N, a_{t_k,j}^N\right)_{1 \le j \le N}$ de (S_t, a_t) , on

approxime l'espérance conditionnelle par :

$$\frac{\sum_{j=1}^{N} |a_{t_k,j}^N|^2 \delta_{t_k,N} \left(S_{t_k,j}^N - s\right)}{\sum_{j=1}^{N} \delta_{t_k,N} \left(S_{t_k,j}^N - s\right)}$$
(3.1.6)

Où $\delta_{t,N}$ est le kernel de régularisation, défini par $x \mapsto \delta_{t,N}(x) := \frac{1}{h_{t,N}} K\left(\frac{x}{h_{t,N}}\right)$, tel que K est un kernel fixé qui est symétrique avec une bande passante $h_{t,N}$ qui tend vers zéro quand N tend vers l'infini. On choisi comme kernel le kernel proposé par les auteurs (citer guyon) $x \mapsto \frac{15}{16}(1-x^2)^2 \mathbf{1}_{|x| \le 1}$ et on prend la bande passante suivante

$$h_{t,N} = \kappa S_0 \hat{a}_t \sqrt{\max(t, t^*)} N^{-\frac{1}{5}}$$

où \hat{a}_t est la volatilité implicite ATMF de la maturité $t, \kappa = 1.5$ et $t^* = \frac{1}{4}$.

la figure 3.2.1 présente les volatilités implicites du marché contre celles issus des prix calculés par le modèle SLV. On conclue qu'il s'agit d'un bon ajustement pour les grandes maturités, néanmoins pour les petites maturités les résultats ne sont satisfaisants qu'en ATM.

3.2 Pricing

On calcule dans un premier temps les prix à la date t=0 de plusieurs options avec les deux modèles SLV 3.1 et CLV 2 et avec la méthode de déformation 1.

3.2.1 Options européennes

Options vanilles

On considère un porte feuille de Calls et de Puts de différentes maturités et différents strikes. Le tableau suivant présente les prix à t=0 donné par le modèle SLV, CLV et méthode de déformation.

	Marché	SLV	CLV	Def Method
Prix du portefeuille	0.528965	0.527769	0.527973	0.528946
Erreur		0.00099	0.00119	1.94e-05

Table 3.1 – Prix d'un portefeuille de Call et Put calculé à partir des modèles SLV, CLV et de la méthode de déformation et comparer avec le prix du marché

On remarque que parmi les trois prix, le prix donné par la méthode de déformation est plus proche en terme d'erreur quadratique au prix de marché. Ce résultat est attendu vu l'ajustement au smile du marché qu'on a observé dans la figure 1.2.2.

FIGURE 3.1 – Volatilité implicite du marché contre celle du modèle SLV 3.1 pour différentes maturités

Option digitale

On considère une option digitale de prix à l'instant t = 0, $e^{-rT}\mathbb{E}\left[\mathbf{1}_{S_T > K}\right]$. On remarque dans la figure 3.2.1 que la méthode de déformation et celle de modèle SLV donnent des prix assez proches (avec une erreur absolue qui ne dépasse pas 0.005). Mais en gros les trois méthodes donnent des prix similaire pour ce type d'options.

FIGURE 3.2 – Prix d'option digitale pour différents strikes avec le modèle 3.1, clv et la méthode de déformation d'échantillon

Option spread

On considère une option spread entre deux sous-jacents, de spots $S_0^1=1$ et $S_0^2=1.4$. Son prix à l'instant $t=0,\ e^{-rT}\mathbb{E}\left[\left(S_T^2-S_T^1-K\right)_+\right]$

3.2.2 Options exotiques

Ici on ne va comparer que le modèle SLV et le modèle CLV. En effet, la méthode de déformation est conçue pour s'ajuster aux prix des options vanilles et donc européenne, néanmoins on a essayé de la tester pour des options exotiques mais elle donne des résultats non satisfaisant.

Option forward-start

Soient $T_1 = 3$ et $T_2 = 4$. On considère une option forward-start de prix à la date t = 0, $e^{-rT_2}\mathbb{E}\left[\left(\frac{S_{T_2}}{S_{T_1}} - K\right)_+\right]$. On remarque que pour les prix calculés par les deux modèles sont similaires, néanmoins en traçant la volatilité implicite des deux modèles on remarque une différentes très prononcée.

FIGURE 3.3 – Prix d'option forward pour différents strikes avec le modèle SLV 3.1 et modèle CLV

Options bermudiennes

On considère un Put bermudien de maturité T de prix à la date t=0

$$V_0 = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[e^{-r\tau}(K - S_\tau)_+\right]$$
(3.2.1)

Avec \mathcal{T} est un ensemble de dates d'exercices $t_0 \leq \cdots \leq t_n$ où on peut exercer l'option avant la maturité T.

La solution de l'équation 3.2.1 se fait par le programmation dynamique

$$\begin{cases}
V_{t_n} = (K - S_{t_n})_+ \\
V_{t_i} = \max\left((K - S_{t_i})_+, e^{-r(t_{i+1} - t_i)} \mathbb{E}\left(V_{t_{i+1}} | S_{t_i}\right)\right); & i \in [0, n - 1]
\end{cases}$$
(3.2.2)

Pour calculer le prix de cette option il faut calculer l'espérance conditionnelle $\mathbb{E}\left(V_{t_{i+1}}|S_{t_i}\right)$, $i \in [0, n-1]$. On utilise alors la méthode de **Least square Monte Carlo** (Appendice).

On remarque dans la figure 3.2.2 que les prix calculés par les deux modèles sont assez proches.

FIGURE 3.4 – Prix d'un put bermudien pour différents strikes avec le modèle SLV 3.1 et modèle CLV

Option barrière

On considère une option put barrière up-out de prix à la date t = 0, $e^{-rT}\mathbb{E}\left[(K - S_T)_+ \mathbf{1}_{(\max_{t \in [0,T]} S_t < B)}\right]$, avec B la valeur de la barrière.

FIGURE 3.5 – Prix d'une option put barrière up-out pour différents strikes avec le modèle SLV 3.1 et modèle CLV

3.3 Application au calcul de l'exposition

Conclusion