Assignment 2

Design the following circuit using Verilog and create a testbench for it to check it's functionality

1- ALSU is a logic unit that can perform logical ,arithmetic and shift operations on input ports.

Input	Width	Description	
A	WIDTH	Input port A.	
\overline{B}	WIDTH	Input port B.	
Cin	1	CARRY IN used if parameter FULL ADDER is "ON".	
red_op_A		When set high this indicates reduction operation would be executed on A rather than bitwise op on A and B ONLY WHEN opcode indicates AND & XOR operations .	
red_op_B	1	When set high this indicates reduction operation would be executed on B rather than bitwise op on A and B ONLY WHEN opcode indicates AND & XOR operations .	
opcode	3	Opcode has a separate table to describe different operations to be executed.	
bypass_A	1	When set to high this indicates that port A will be passed to the output ignoring the opcode operation.	
bypass_B	1	When set to high this indicates that port B will be passed to the output ignoring the opcode operation.	

Outputs and parameters

Output	Width	Description
Out	WIDTH+1	Out of the ALSU, OUTPUT INCLUDES THE CARRY OUT.
Odd parity	1	Odd parity of the output "out" Arithmetic operations only otherwise should be Zero.
Invalid	_1	Activated when invalid cases and invalid opcodes are executed.

parameter	DEFAULT VALUE	Description
INPUT_PRIORITY	А	If there is a conflict occurs, conflicts occur in two scenarios , red_op_A and red_op_B are both set to high or bypass_A and bypass_B are both set to high Legal values for this parameter are A and B.
FULL_ADDER	"ON"	When this parameter has value "ON" then cin input must be taken into consideration in the addition operation between A and B This parameter takes value of "ON" and "OFF".
WIDTH	4	Length of input A & B

/ Opcode	Operation
000	AND
001	XOR
010	Addition
011	Multiplication
100	Subtract if A>B so expression will be (A-B) and if A<b< b=""> so expression will be (B-A)</b<>
101	Division (if division by zero don't do division just by pass the non zero value) and if
	both A and B are equal to zero pass any one of them) (A/B)
110	Invalid opcode
111	Invalid opcode

Invalid cases

- 1. Opcode bits are set to 110 or 111
- 2. red_op_a or red_op_B are set to high and the opcode is not AND or XOR operation
- 3. Division by zero .

Test bench

In Testbench ths system function "\$urandom_range" which returns randomized unsigned integer within range if you want to strict the opcode to have valid opcodes.

Requirements

- 1. Randomize test bench where inputs are randomly generated.
- 2. ALL invalid cases should be tested.
- 3. Self-checking Test bench is optional (bouns).
- 4. If you need to make some directed tests as you can't get a specific case it's okay.

2. A designer has just made a design for ALU and it is encrypted due to privacy and there is some bugs in the design functionality and you as a verification engineer should find these errors by creating a test bench and test all cases and if you find errors you should write where they are and explain it according to the specs written.

Input A (4-bits), Input B(4-bits), output C (5-bits), output CF (1-bit), output ZF(1-bit), output Even_Num (1-bit), AF (1-bit).

Input	Width	Description	
Α	4	Input port A.	
В	4	Input port B.	
opcode	2	Opcode has a separate table to describe different operations to be executed.	

Output	Width	Description	
С	5	Output port.	
CF	1	Carry flag only in case of addition only otherwise it equals to zero.	
Even_NUM	1	If output C is even number or not.	
AF	1	Calculated only in case of addition only otherwise it equals to zero.	
ZF	1	Calculated in all cases.	

Code Snippet

Opcode	Operation
00	AND
01	Addition
10	XOR
11	OR

```
module ALU (A,B,opcode,C,CF,AF,ZF,Even_NUM);
input [3:0]A,B
input [1:0]opcode
    ;
output reg [4:0]C
    ;
output AF,ZF,Even_NUM
    ;
output reg CF
    ;
```

Requirements

1. Create a directed testbench to find the bugs and define each of them and explain it.

Deliverables

- 1) The assignment should be submitted as a PDF file with this format Name _Assignment2 for example Abdelrahman_Essam_Assignment2 .
- 2) Snippets from the waveforms captured from QuestaSim for each design with inputs assigned values and output values visible.