

SCENARIO

- VegStrenghty, e-commerce in the market of protein and vitamine shakes.
- Born to provide aid to vegan people, got appreciated by athletes.
- AllMightyShake©: new product designed to address the whole market
- Social Advertising: advertising campaign is pursued through Instagram Ads

SCENARIO

- Market segmentation: three underlying customer classes
- Two binary features:
 - Diet Profile
 - Physical activity Profile

	DIET PROFILE		
E E		LOW	HIGH
TYSICA CTIVIT ROFIL	LOW	C1	C2
# # A	HIGH	C3	C3

SIMULATED DATA: FUNCTIONS OF THE PRICE

MARGINAL REVENUE FUNCTION

Three candidates:

- Pure fixed cost
- Fixed and price-percentage cost
- "Real-life" designed function

$$MR(p) = p - 5 - \frac{1.5}{100}p^2$$

SIMULATED DATA: FUNCTIONS OF THE PRICE

CONVERSION RATE FUNCTIONS

Assumptions:

- Class C1 customers are more likely to finalize their purchase if the price is low
- Class C3 may consider a cheap price indicative of a not so worthy product
- Class C2 follows a behaviour in-between the above

SIMULATED DATA: FUNCTIONS OF THE BID

COST PER CLICK STOCHASTIC FUNCTION

Assumptions:

- Class-specific mean levels are considered
- Saturation may happen both at small and big values of the bid
- Introduction of stochasticity through a zero-mean gaussian noise: $CPC_i(b) = CPC^*(b) + \varepsilon_i$

$$CPC^*(b):[0.5,2] \to \mathbb{R}$$

SIMULATED DATA: FUNCTIONS OF THE BID

NUMBER OF DAILY CLICKS STOCHASTIC FUNCTION

Assumptions:

- Function domain: N
- Too low values of the bid win no auction: zero costumers reached
- High values of the bid lead to better ads but this effect is losen for too high bids.

Stochastic representation:

•
$$NDC_i(b) = NDC^*(b) + \varepsilon_i$$

$$NDC^*(b): [0.5,2] \to \mathbb{N}$$

 $\varepsilon_i \sim \mathcal{N}(0, \sigma_i^2)$

SIMULATED DATA

CUSTOMER RETURNS WITHIN 30 DAYSAssumptions:

- Discrete distribution whose support is {0,1,2,3}
- Any customer is likely to buy again the product proportionally to his/her needs (and so, to his/her class)

GENERAL FORMULATION

$$\max_{p_i,b_i} \sum_{i=1}^K \mathbb{E}[NDC_i(b_i)] \cdot CR_i(p_i)MR(p_i)(1+1/30 \cdot \mathbb{E}[R_i]) - \mathbb{E}[NDC_i(b_i)] \cdot \mathbb{E}[CPC_i(b_i)]$$

Variable	Description
t	time instant
T	length of observation period
i	customer class
K	total number of customer classes
$b_{i,t}$	proposed bid for class i at time t
$p_{i,t}$	proposed price for class i at time t
NDC_i	stochastic number of clicks of new users of subcampaign i given $b_{i,t}$
R_i	stochastic number of purchases within next 30 days of users of class i given $b_{i,t}$
CR_i	conversion rate for class i given $p_{i,t}$
MR	marginal revenue for price $p_{i,t}$
CPC_i	stochastic cost per click of subcampaign i given $b_{i,t}$

AGGREGATED DATA

$$\max_{p,b} \mathbb{E}[NDC_{agg}(b)] \cdot CR_{agg}(p)MR(p)(1+1/30 \cdot \mathbb{E}[R_{agg}]) - \mathbb{E}[NDC_{agg}(b)] \cdot \mathbb{E}[CPC_{agg}(b)]$$

CONTEXTUAL PRICING

$$\max_{p_i, b} \sum_{i=1}^K \mathbb{E}[NDC_{agg}(b)] \cdot CR_i(p_i)MR(p_i)(1 + 1/30 \cdot \mathbb{E}[R_i]) - \mathbb{E}[NDC_{agg}(b)] \cdot \mathbb{E}[CPC_{agg}(b)]$$

BRUTE FORCE SOLUTION

Candidates

Price	15.50	16.50	17.50	18.50	19.50	20.50	21.50	22.50	23.50	24.50	€
Bid	0.65	0.80	0.95	1.05	1.20	1.35	1.50	1.65	1.80	1.95	€

MODEL COMPLEXITY

 $\mathcal{O}(N \cdot B \cdot P)$

Where:

- N = number of costumer classes
- B = total number of bid values
- P = total number of prices values

• Aggregated Opt solution

Maximum expected revenue	337.91€
$p_{agg}*$	22.5
$b_{agg}*$	1.35

BRUTE FORCE SOLUTION

Class 1 opt. solution

 $\begin{array}{c|cccc} \text{Maximum expected revenue} & 380.56\mathfrak{C} \\ \hline & p_1* & 16.5 \\ \hline & b_1* & 1.95 \\ \hline \end{array}$

Class 2 opt. solution

Maximum expected revenue	524.83€
p_2*	21.5
b_2*	1.5

• Class 3 opt. solution

Maximum expected revenue	634.28€
p_3*	22.5
b_3*	1.5

OPTIMIZATION PROBLEM: ONLINE-LEARNING

WHAT WE OBSERVE

Random Variables

CPC	cost per click (fixed the bid)
ACC	draw from a Bernoulli of mean $CR(price)$
NDC	number of daily clicks (fixed the bi)
R	number of future purchases within 30 days

- Time horizon: 365 days
- Potential delays in the feedback
- Algorithm: MAB

MAB'S MATHEMATICAL FORMULATION

$$\min T \cdot \mu * - \sum_{t=0}^{T} \mu_t$$

 $\mu* := \max_{p,b} DailyExpectedRevenue(CR(p), NDC(b), CPC(b))$

 $\mu_t := DailyExpectedRevenue(CR(p_t), NDC(b_t), CPC(b_t))$

ASSUMPTIONS

- We consider the aggregated case in which no contextual pricing is applied
- We consider the value of mean returns to be known
- Bid related values are considered as fixed

ENVIRONMENT

The environment is modeled by using a binomial sampler

LEARNER

- Thompson Sampling and UCB1 learners modified for a Binomial reward
- What the learner registers is the expected daily revenue, computed using daily rewards

$$\max_{p \in \mathcal{D}} \mathbb{E}[NDC_{agg}(b)] \cdot CR_{agg}(p)MR(p)(1 + 1/30 \cdot \mathbb{E}[R_{agg}]) - \mathbb{E}[NDC_{agg}(b)] \cdot \mathbb{E}[CPC_{agg}(b)]$$

TS-ALGORITHM

Updated parameters at the end of the day using the realization of a binomial distribution

UCB1-ALGORITHM

It works as the classical one, but it performs the update of parameters necessary to compute the upper Hoeffding bound in a batch manner.

PERFORMANCE METRIC

We repeat 100 times a one year simulation in order to obtain the estimate of:

- **Cumulative Regret,** to identify the better performing algorithm
- Daily Expected Revenue, to understand if the algorithm actually converges to the optimum value.

- Both learners show sublinear Cumulative Regret
- TS achieves much better performances

- Fast convergence for both learners
- TS achieves perfect convergence to the optimum value; UCBI seems to converge to slightly suboptimal policy

OPTIMAL SOLUTION

• Different price to each true underlying class

Maximum Expected Revenue	485.37€
p_1*	16.50€
p_2*	21.50€
p_3*	22.50€
<i>b</i> *	1.35€

$$\max_{p_i, b} \sum_{i=1}^{K} \mathbb{E}[NDC_{agg}(b)] \cdot CR_i(p_i)MR(p_i)(1+1/30 \cdot \mathbb{E}[R_i]) - \mathbb{E}[NDC_{agg}(b)] \cdot \mathbb{E}[CPC_{agg}(b)]$$

IMPLEMENTATION

- Customer
- Feature Generation
- Context Mapping

- Context Generators
- 1. Naïve
- 2. Brute Force
- 3. Greedy

$$V_{context} = \sum p_{segment} * \mu_{segment}^*$$

IMPLEMENTATION

- Customer Database
- 1. Daily variables
- 2. Collection of daily customers
- 3. Context history
- 4. Mean Returns Estimation
- Learners
- 1. TS & UCBI
- 2. Offline-Training

```
Pseudocode for experiment workflow
Initialize:
Database
Context ← Naive
Learner
Environment.
Forall day:
  if new week:
             new context ← ContextGenerator
              update Database.ContextHistory
              if Learner.Context != new context:
                    update Learner.Context
                    perform Learner.OfflineTraining
   Daily Routine:
              prices ← Learner.pull-arms
              Database.dailyVariables ←prices, bid, costperclick
              N \leftarrow \text{sample from } NDC_{agg}
              for each customer (1 to N):
                    create Customer (ID, feature vector)
                    acceptance \leftarrow Environment.round(feature, context)
                    record Customer in Database
              update Learner
             update Database
```


FIXED PRICE AND ONLINE BIDDING

ASSUMPTIONS

- No budget constraint
- No class diversification wrt bidding
- Price related values considered as fixed

ENVIRONMENT

At each round:

- Samples values of NDC and CPC according to the given bid
- Compute the revenue expression using the sampled values

LEARNER

- MAB setting with a bid value for each arm
- 10 candidates (possible bid values)
- Models Considered:
 - Gaussian TS (GTS)
 - Gaussian Process TS (GPTS)

FIXED PRICE AND ONLINE BIDDING

GTS

- Same as TS Algorithm, but on the bid values
- Prior and Sampling distributions assumed to be Gaussian

GPTS

- Using Gaussian Process as a regressor to model the Revenue distribution, assuming:
 - Zero mean GP
 - covariance function: squared exponential kernel function k(x, x') plus a white noise:

$$k(x, x') = \theta^2 e^{-\frac{(x-x')^2}{2l^2}} + WN(\sigma^2)$$

Mean and Variance are updated according to the daily collected revenue.

FIXED PRICE AND ONLINE BIDDING

JOINT BIDDING & PRICING

We now want to apply the two algorithms sequentially in order to discover the optimal joint bidding-pricing strategy.

ADVERTISING:

- GPTS selects a bid value at the beginning of each day (according to collected data)
- The environment samples NDC and CPC values according to the bid value

PRICING:

- TS selects the price value for the day
- The environment decides for each user if they accept to buy at given price
- Given the full simulation of the day, the expected daily revenue can be computed.
- GPTS and TS parameters are updated at the end of each day, according to the collected revenue.

JOINT BIDDING & PRICING

JOINT BIDDING & PRICING

JOINT BIDDING & CONTEXTUAL PRICING

CONTEXTUAL SCENARIO

ASSUMPTIONS

- Same mechanism as before for each day
- Context diversification only wrt pricing
- Each day the drawn price is proposed to the 3 classes (context C12)
- The optimal context is assumed to be known beforehand

JOINT BIDDING & CONTEXTUAL PRICING

CONCLUSIONS

- Aggregated Optimum:
 EDR = 337.9 €
- Contextual Optimum:
 EDR = 492.5 €
- Contextual solution has a slower convergence that may lead to a loss
- Comparing regrets computed wrt the highest revenue possible (492.5€) it's clear that the contextual algorithm overcomes the aggregated one