Visão Computacional Aula 12

Segmentação de Imagens

Objetivos

- Introduzir os conceitos básicos de segmentação de imagens
 - Limiarização
 - Regiões
 - Clustering
 - Movimento

Segmentação

- Subdivide a imagem em partes ou objetos constituintes.
- O nível até o qual essa subdivisão deve ser realizada depende do problema sendo resolvido.
- A segmentação é uma das tarefas mais difíceis em visão computacional. Se ela falha, a maioria dos processos subsequentes estará comprometido.

Segmentação

- Os algoritmos de segmentação para imagens monocromáticas são geralmente baseados em uma das propriedades básicas:
 - Descontinuidade e similaridade

Limiarização

- Consiste em separar regiões de uma imagem quando esta apresenta duas classes:
 - Fundo e objeto (background, foreground)

Limiarização

- A maneira obvia de extrair objetos é selecionar um limiar T que separe os dois grupos.
- Então, para cada ponto (x,y) tal que f(x,y) > T é denominado ponto do objeto, caso contrario, fundo

$$g(x,y) = \begin{cases} 1 \operatorname{sef}(x,y) > T \\ 0 \operatorname{sef}(x,y) \le T \end{cases}$$

• Nesse caso, T depende apenas de f(x,y) e portanto é conhecida como limiarização global.

Limiarização Adaptativa

- Resultados satisfatórios são obtidos com a limiarização global.
- Porém em alguns casos, mais de um limiar deve ser utilizado.

Limiarização Adaptativa

- A limiarização adaptativa seleciona um limiar individual para cada pixel baseado no alcance da intensidade estimado em sua vizinhança local.
- Isso permite uma melhor limiarização quando não existem cumes bem definidos.

Limiarização Adaptativa

- Mecanismo para limiarização adaptativa
 - A imagem original é dividida em sub-imagens
 - Um limiar é determinado independentemente para cada região
 - Cada imagem R_i é então processada usando um limiar local
 - Uma nova imagem R' = U R_i

 Seja R a região completa de uma imagem. Pode se imaginar a segmentação como um processo de dividir R em n regiões R₁, R₂, ..., R_n, tal que:

$$\bigcup_{i=1}^{n} R_{i} = R$$

$$R_{i} \cap R_{j} = 0$$

$$P(R_{i}) = V$$

$$P(R_{i} \cup R_{j}) = F$$

• Em que $P(R_i)$ é um predicado lógico (ex: todos os pixels possuem a mesma intensidade) sobre os pontos do conjunto R_i e o é o conjunto vazio.

- Agregação de pixels
 - Agrupa pixels ou sub-regiões em regiões maiores.
 - Começa com um conjunto de pontos, chamados sementes, e a partir deles, cresce as regiões anexando a cada ponto semente aqueles pixels que possuam propriedades similares
 - · Nível de cinza, textura, cor.

Propriedade P: Diferença absoluta entre os níveis de cinza daqueles entre o pixel e semente deve ser menor que T

	0	0	5	6	7
T=3	1	1	5	8	7
	0	1	6	7	7
	2	0	7	6	6
	0	1	5	6	5

Note que qualquer semente levaria ao mesmo resultado.

Desvantagens:

- -Seleção das sementes
- -Seleção da propriedade P

Divisão e fusão

- Seja R a imagem completa e seja P um predicado.
- No caso de uma imagem quadrada, uma abordagem para segmentação de R consiste em subdividi-la sucessivamente em quadrantes cada vez menores de modo que P(Ri) = V.
- Ou seja, se P(R) for falso para qualquer quadrante, o quadrado deve ser subdivido em sub-quadrantes.
- Essa técnica possui uma representação conveniente chamada quadtree

- As fusões são limitadas inicialmente a grupos de quatro blocos que sejam descendentes na representação quadtree e que satisfaçam o predicado P.
- Quando fusões desse tipo não forem mais possíveis, o procedimento é terminado por uma fusão final.

a b

FIGURE 10.42

(a) Partitioned image.

(b) Corresponding quadtree.

Clustering

- Existem basicamente dois tipos de clustering:
 - Divisive
 - A imagem é vista como um cluster, e então são feitas divisões sucessivas.
 - · Segmentação por regiões.
 - Agglomerative
 - Cada pixel é visto como um cluster, e clusters são unidos recursivamente até formarem um bom cluster.

Clustering

- Parâmetro a definir
 - Número de clusters.
 - Geralmente n\u00e3o se conhece a priori o n\u00e4mero de clusters que existem na imagem.

Clustering

- Uma coleção de objetos que são similares entre si, e diferentes dos objetos pertencentes a outros clusters.
- Isso requer uma medida de similaridade.
- No exemplo anterior, a similaridade utilizada foi a *distância*.
 - Distance-based Clustering

k-Means Clustering

- É a técnica mais simples de aprendizagem não supervisionada.
- Consiste em fixar *k* centróides (de maneira aleatória), um para cada grupo (clusters).
- Associar cada indivíduo ao seu centróide mais próximo.
- Recalcular os centróides com base nos indivíduos classificados.

Algoritmo k-Means

- 1. Determinar os centróides
- 2. Atribuir a cada objeto do grupo o centróide mais próximo.
- 3. Após atribuir um centróide a cada objeto, recalcular os centróides.
- 4. Repetir os passos 2 e 3 até que os centróides não sejam modificados.

Objetos em um plano 2D

Passo 1: Centróides inseridos aleatoriamente

Passo 2: Atribuir a cada objeto o centróide mais próximo

Passo 3: Recalcular os centróides

Impacto da inicialização aleatória.

k-Means - Inicialização

- Importância da inicialização.
- Quando se têm noção dos centróides, pode-se melhorar a convergência do algoritmo.
- Execução do algoritmo várias vezes, permite reduzir impacto da inicialização aleatória.

4 Centróides

Movimento

- O movimento é uma poderosa pista usada pelos seres humanos e animais para a extração de um objeto de interesse de um fundo de detalhes irrelevantes.
- Abordagem básica
 - A abordagem mais simples para a detecção de mudanças entre dois quadros de imagem f(x,y,t_i) e f(x,y,t_j) tomados em instantes t_i e t_j, respectivamente, é através da comparação de imagens pixel a pixel.

Movimento

$$d_{ij}(x,y) = \begin{cases} 1 & \text{se } |f(x,y,t_i) - f(x,y,t_j)| > \Theta \\ 0 & \text{caso contrario} \end{cases}$$

- Essa abordagem pode ser aplicada quando a iluminação é relativamente constante.
- Além de objetos em movimento, a imagem da diferença pode contar com pequenos ruídos e objetos que se movem vagarosamente.

Movimento

Subtração do fundo

- Fazer a média (mediana) de várias imagens afim de criar uma aproximação do fundo.
- Subtrair os quadros subsequentes desta aproximação.
- Objetos que não fazem parte do fundo da cena apareceram como resultado desta operação de segmentação.

Próxima aula...

- Segmentação de imagens
 - Transformada Hough