Hidden Topic Sentiment Model

Md Mustafizur Rahman Hongning Wang

Department of Computer Science, University of Virginia

{mr4xb,hw5x}@virginia.edu

Abstract

User generated reviews contain useful evaluation of various aspects of products with various sentiment, i.e. positive or negative. To better model the sentiment and topics, we propose a novel probabilistic modeling framework called Hidden Topic Sentiment Model (HTSM). HTSM assumes that each sentence in a review document is only associated with one sentiment and one topic; and the sentiment and topic assignment of next sentence will be dependent on the previous sentence. The results show that the topics and sentiment identified by HTSM are much coherent than those topics and sentiment identified by traditional topic models.

Motivation

Especially when recording with speakers, the sound level gets blown out sounding horrible on playback. There is no mic jack for using a separate (adjustable) mic which would be handy.

Video quality is great though. 1080/30p

looks beautifu

Observations

- 1. Sentences used in the reviews either follow the topics of previous sentences or changed into new one.
- 2. Users have consistent positive or negative attitude towards the same aspects of the entity in one review.

Methods

EM Algorithm

1. E-Step: compute (z, τ, ψ) by alpha- beta recursion $\Pr(z_n, \psi_n, \tau_n \mid d, w_1, w_2, ..., w_{N_d}, \theta, \beta, \varepsilon, \sigma)$

$$E(C_{d,Z}) = \sum_{n=1}^{N_d} \Pr(z_{d,n} = z, \psi_{d,n} = 1 | w_1, w_2, ..., w_{N_d})$$

$$E(C_{z,w}) = \sum_{d=1}^{D} \sum_{n=1}^{N_d} \Pr(z_{d,n} = z, w_{d,n} = w | w_1, w_2, ..., w_{N_d})$$

2. M-Step: update $(\beta, \epsilon, \sigma)$ by maximum likelihood estimation

$$\varepsilon = \frac{\sum_{d=1}^{D} \sum_{n=2}^{N_d} \Pr(\psi_{d,n} = 1 | w_1, w_2, ..., w_{N_d})}{\sum_{d=1}^{D} (S - 1)}$$

$$\sigma = \frac{\sum_{d=1}^{D} \sum_{n=2}^{N_d} \Pr(\tau_{d,n} = 1 | w_1, w_2, ..., w_{N_d})}{\sum_{d=1}^{D} (S - 1)}$$

$$\beta_{Z,W} \propto E(C_{Z,W}) + \eta - 1$$

Figure: Graphical Representation of Hidden Topic Sentiment Model

ε is controlling the topic transition and σ is for controlling sentiment

Maximum entropy model to predict the τ and ψ

Hidden Markov Model to model the transition of **topic** and **sentiment**

Viterbi algorithm for posterior inference

Experimental Results

Electronics Reviews from Amazon & NewEgg

X	x Newegg			
	Category	Amazon	NewEgg	
	Camera	6919	3020	
	Tablet	6147	407	
	Phone	6899	268	
	Tv	4729	1662	

• Baseline

- Joint Topic Sentiment Model [1]
- Aspect Sentiment Unification Model [2]

Sentiment seed words

good, nice, excellent, positive, fortunate

bad, nasty, poor, negative, unfortunate

Sentiment Classification

1 massure on Positive Continuent F 1 m

Category	JST	ASUM	HTSM
Camera	0.693	0.456	0.779
Tablet	0.614	0.515	0.674
Phone	0.767	0.626	0.791
Tv	0.722	0.560	0.810

F-1 measure on Positive Sentiment F-1 measure on Negative Sentiment

Category	JST	ASUM	HTSM
Camera	0.484	0.591	0.708
Tablet	0.569	0.580	0.485
Phone	0.734	0.616	0.659
Tv	0.619	0.671	0.802

Review summarization on Tablet dataset

Aspects	Most Probable Sentence
(-, Apps)	The apps keep freezing up especially yahoo mail
(-, Power)	The power cable is not connecting
(+, Battery)	Battery lasts for week

Top words from Phone dataset

dataset			
Speaker(p)	Speaker(n)	Message(n)	
good	speaker	Text	
speaker	phone	send	
sound	bad	receive	
great	hear	message	
quality	volume	problem	

Perplexity on Tablet dataset

Review summarization on Phone dataset

Aspects	Most Probable Sentence
(-, Storage)	Storage Capacity very les
(-, Connectivity)	Poor Wi-fi sensitivity
(-, call quality)	Persistent echo during call

Conclusion

HTSM enhances the independence assumption of sentiment and topics in a opinionated text document and thus captures the dependency among them. Through extensive experiment evaluations, HTSM better modeled sentiment and topics in review texts and outperforms existing joint topic sentiment models.

References

- 1. C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. In *Proceedings of the 18th ACM conference on Information and knowledge management*, pages 375-384. ACM, 2009.
- 2. Y. Jo and A. H. Oh. Aspect and sentiment unification model for online review analysis. In *Proceedings of the fourth ACM international conference on Web search and data mining*, pages 815-824. ACM, 2011