Apresentação do Projeto RFID DOOR ACCESS

Bruno Lemos 98221 Tiago Marques 98459 Arquiteturas para Sistemas Embutidos Professor Arnaldo Oliveira

Sobre

- Utilizamos a tecnologia de identificação por RFID para controlar o acesso a portas ou entradas específicas.
- Através da leitura da tag RFID, a aplicação pode autorizar ou não o acesso.
- Os registos dos logs e permissões são guardados numa aplicação externa ao esp32

Arquitetura Geral

Arquitetura Hardware

Tasks

Setup

- Configuração
 - Alternar entre o modo de leitura e de configuração
- RC522
 - Efetuar leituras de cartões, tags com serial number associado
 - Scan Interval: 125 ms

Protocolos

- LCD I2C
 - o Clk: 100 KHz
 - PullUp por software (sda, scl)
- Uart
- RC522 SPI
 - o Clk: 5 MHz

Comunicações

Fluxo Inicial

Fluxo Ler RFID

Comunicações

Fluxo Adicionar RFID

Config

Users

Logs

Home

•	Config MODE Write C	Card Connect IP	
Name	RFID	Time	Action
andante	763221640328	06-06-2023 00h23	Remove
tag	230530204918	05-06-2023 22h07	Remove
SIGA 1230	658377737352	31-05-2023 01h41	Remove
SIGA 1292	38966592648	31-05-2023 01h40	Remove
Cartao unico	305883318121	30-05-2023 23h12	Remove

O que fizemos

- led
- Icd
- buzzer
- server
- uart
- api

Adaptamos

- rc522
 - disponível com I2C e SPI
 - no nosso código adaptamos para apenas usarmos SPI

https://github.com/abobija/esp-idf-rc522

Check list

Os requisitos obrigatórios do mini-projeto são os seguintes:

- - Utilizar o ESP32DevKitC como base do embedded system : Feito
- - A aplicação a executar no kit ESP32DevKitC deve ser desenvolvida em C/C++ e tirar partido do FreeRTOS: Feito
- Devem ser explorados os periféricos do ESP32 que fizerem sentido no contexto do projeto, incluindo aspetos de interrupções e DMA: Feito
- Os dados recolhidos do sensor e processados no ESP32 devem ser apresentados num dashboard remoto, sendo para tal necessária conectividade de rede (WiFi / BT): Feito
- - Deve ser disponibilizada uma ligação por Terminal; independente do dashboard remoto: Feito
- - Devem ser exploradas as várias funcionalidades das ferramentas de desenvolvimento, incluindo debug: Feito

Os aspetos opcionais a incluir no mini-projeto são os seguintes (não sendo uma lista fechada):

- - Podem ser explorados os modos de baixo consumo energético do ESP32: Não era possível devido ao projeto
- - Podem ser suportadas atualizações remotas (Over-the-Air) do sistema: Não
- Pode ser incluído algum tipo de atuador cuja utilização faça sentido com o sensor usado (de forma a criar um loop de controlo; ou que seja controlado através do dashboard): Feito
- - Pode ser suportado um sistema de ficheiros para armazenar dados localmente: Não
- Dados persistentes: Feito

Divisão de trabalho

Bruno Lemos - 50%

Tiago Marques - 50%

