Unidade VI: Árvores AVL

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Introdução

· As árvores AVL foram propostas por Adelson-Velskii e Landis

• No pior caso, o número de comparações para se localizar um elemento em uma AVL é aproximadamente 1,44 * $lg(n) = \Theta(lg(n))$

 Cada nó conhece seu fator de balanceamento que consiste na diferença entre o número de níveis de suas subárvores à esquerda e à direita

· Sejam as árvores abaixo, mostre o fator de balanceamento de cada nó

· Sejam as árvores abaixo, mostre o fator de balanceamento de cada nó

· Seja a árvore abaixo, mostre o fator de balanceamento de cada nó

· Seja a árvore abaixo, mostre o fator de balanceamento de cada nó

 Seja a árvore abaixo, faça a inserção de um elemento tal que o fator de balanceamento do nó cinco seja menos um

 Seja a árvore abaixo, faça a inserção de um elemento tal que o fator de balanceamento do nó cinco seja menos um

 Agora, faça a inserção de outro elemento para que o fator de balanceamento do nó cinco volte a ser zero

 Faça a inserção de outro elemento para que o fator de balanceamento do nó cinco volte a ser 0

• O que acontece se removermos o dois e, depois, o sete?

• O que acontece se removermos o dois e, depois, o sete?

 Seja a árvore abaixo, faça a inserção de um elemento tal que o fator de balanceamento do nó cinco seja menos dois

 Seja a árvore abaixo, faça a inserção de um elemento tal que o fator de balanceamento do nó cinco seja menos dois

Exemplo de uma Árvore AVL

O fator de cada nó será -1, 0 ou 1 como no exemplo abaixo:

· Cada nó conhece seu fator de balanceamento

 Quando o fator de um nó se torna ±2, o algoritmo da AVL rotaciona esse nó, sabendo que existem quatro tipos de rotação (R_F, R_D, R_{DF} e R_{FD})

Fator do nó	Tipo de rotação
2	Rotação para a esquerda
-2	Rotação para a direita

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
2	-1	_	Dupla dir-esq
-2		-1 0	Simples à direita
-2		1	Dupla esq-dir

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
2	-1	_	Dupla dir-esq
-2		-1 0	Simples à direita
-2		1	Dupla esq-dir

· Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 1

Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 1

· Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 1

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
2	-1		Dupla dir-esq
-2		-1 0	Simples à direita
-2		1	Dupla esq-dir

Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 0

Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 0

Nó com fator 2 (maior subárvore à direita) e seu filho à direita com fator 0

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
2	-1		Dupla dir-esq
		-1	Simples à
-2		0	direita
-2		1	Dupla esq-dir

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
2	-1		Dupla dir-esq
		-1 0	Simples à direita
-2		1	Dupla esq-dir

Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

Nó com fator -2 (maior subárvore à esquerda) e seu filho à esquerda com

fator -1

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
	-1		Dupla dir-esq
-2	-1	-1 0	Dupla dir-esq Simples à direita

· Nó com fator 2 (maior subárvore à direita) e seu filho à esquerda com fator

-1

· Nó com fator 2 (maior subárvore à direita) e seu filho à esquerda com fator

-1

Nó com fator 2 (maior subárvore à direita) e seu filho à esquerda com fator

-1

Nó com fator 2 (maior subárvore à direita) e seu filho à esquerda com fator

-1

Nó com fator 2 (maior subárvore à direita) e seu filho à esquerda com fator

-1

Fator do nó	Fator do filho à direita	Fator do filho à esquerda	Tipo de rotação
2	1 0		Simples à esquerda
	-1		Dupla dir-esq
-2		-1 0	Simples à direita
		1	Dupla esq-dir

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à direita com fator

1

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à direita com fator

1

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à direita com fator

1

· Nó com fator -2 (maior subárvore à esquerda) e seu filho à direita com fator

1

Nó com fator -2 (maior subárvore à esquerda) e seu filho à direita com fator

1

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente

rotação Dir (35) Esq (4)

Como o fator(4) = 2 e seu filho à direita -1, faremos uma rotação DirEsq

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente rotação Dir (35) Esq (4)

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente rotação Dir (35) Esq (4)

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

· Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente rotação Esq (13) Dir (35)

· Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente rotação Esq (13) Dir (35)

· Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente rotação Esq (13) Dir (35)

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

• Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

• Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

Exemplo

· Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente

rotação Dir (30) Esq (10)

Exemplo

· Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente

rotação Dir (30) Esq (10)

Exemplo

• Crie uma árvore AVL através de inserções sucessivas do 4, 35, 10, 13, 3,

30, 15, 12, 7, 40 e 20 respectivamente

Exercício

Insira o 6 na AVL abaixo

Exercício

 Crie uma árvore AVL através de inserções sucessivas dos números 1 a 20, respectivamente

 Crie uma árvore AVL através de inserções sucessivas dos números 20 a 1, respectivamente

 Para cada um dos dois exercícios anteriores, verifique sua resposta usando nosso código para a árvore AVL

Algoritmo em C-like

Ver código em: fonte/08/avl/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 (18) (19) (20)

17 18 19 20 <u>Inserir(1)</u>

17 (18) (19) (20)

16

