

Existence du comin solution:	
Métrique:	
Lechoir d'une métrique mesurent la différence	
entre les coordonnées 2, y n'est pas	
e Misson	
90 300000	
Décomposition approchée	
On taste chaque collule:	
-> Libre d'obstacle	
-> Rempli d'obstacle	
-> Ni l'un ni l'autre	
On développe un arbre à s'arrête si on tombe sur une cellule vide	
ou si rempli. On applique enfin un algorithme de rentercher dans un arbre	٠.
De n'est pas un algoritome complet.	
On parte dalgorithme quasi-complet s'il aboutit d'une solution pour un	
sombre de collos infini.	ŀ
En 3D dimensions, la suragion est coupée à 8.	
Cechuic	
Champs de potentiel:	0
abot En dimension 2, on génère un polontiel attrach	1
vers le but et un potentiel répulsif pour	
gin l'obstacle Par exemple:	
$L(q_1 q) = \frac{1}{2}(q-q_{bot})^2$	
champ de vactors	
$U_{rap}(q) = \frac{1}{2} \frac{4}{(q - q_{obs})^2}$	
Champs de potentiel: example de méthode globale	
On souhaite créer un soil minimum global	

