OPTICAL RECORDING MEDIUM

Publication number: JP11328740 Publication date: 1999-11-30

Inventor: SHIOMI HIROYUKI; SUZUKI KOICHIRO; ONDA TOMOHIKO

Applicant: KAO CORP

Classification:

- international: G1187/24; G1187/24; (IPC1-7): G1187/24; G1187/24

- European:

Application number: JP19980126523 19960508 Priority number(s): JP19980126523 19960508

Report a data error here

Abstract of JP11328740

PROBLEM TO SEE AVECES TO clother an optical recording median which has the high reflection by PROBLEM TO SEE AVECES TO clother an optical recording median which has the high reflection of the problem of the set of high modulation designe before and after recording in combination, is inexpensive and facilitating production designe before and after recording in combination, is inexpensive and facilitating production. SOUTHON: This object recording recording recording recording and recording average and recording selection of the recording selection selection of the recording selection of the recording selection selection of the selection selection

Data supplied from the esp@cenet database - Worldwide

1 of 1 3/20/2008 11:06 AM

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特課平11-328740

(43)公開日 平成11年(1999)11月30日

(51) Int.Cl.6		戰刑記号	FΙ		
G11B	7/24	561	C11B	7/24	561P
					561M
		5 2 2			522D

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出顧番号	特願平10-126523	(71) 出願人 000000918 北王株式会社
(22) 出版日	平成10年(1998) 5月8日	東京都中央区日本福学場町1丁目14番10号
(SE) D INSCH	+ M10 + (1000) 0 / 1 0 H	(72)発明者 塩見 浩之
		栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内
		(72) 発明者 鈴木 幸一郎
		栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内
		(72) 発明者 周田 智彦
		枥木県芳賀郡市貝町赤羽2606 花王株式会
		社研究所内
		(74)代理人 弁理士 羽鳥 修 (外1名)

(54) 【発明の名称】 光記録媒体

(57)【要約】

【課題】 ドライブ間での十分な再生互換性を得られる 高い反射率と、記録の前後における高い変調度とを併せ 持ち、且つ安価で製作の容易な光記録媒体を提供するこ と。

【解決手段】 案内溝をを有する基板2と、基板2上に 積層され且つ1 n を主成分とする材料からなる第1の記 銭層3と、第1の記録層3上に積層され且つ5 B 族また は6 B 族に属する少なくと6 1 種類の元素を含む材料か らなる第2の記録層4とと具備し、基数2個から照射さ が可能になされており、更に、案内溝Gの深さd(n m)が、光ビームの真空中の波長入(nm)及び基板2 の配折率の実部れに対して、下記関係式(1)を満たすよ うになされていることを特徴とする光記録媒体。

 $0.03\lambda/n < d < 0.11\lambda/n$ (1)

【特許請求の範囲】

【請求項1】 案内溝を有し且つ記録用光ビーム及び再 生用光ビームに対して略透明な基板と、該基板上に積層 され日つ Inを主成分とする材料からなる第1の記録層 と、該第1の記録層上に積層され且つ元素周期表5B族 または6B族に属する少なくとも1種類の元素を含む材 料からなる第2の記録層とを具備し、上記基板側から照 射された光ビームによる加熱で、上記第1の記録層と上 記第2の記録層とで情報信号の記録が可能になされてお り、更に、上記案内溝の深さ d (nm) が、照射される 光ビームの真空中の波長入 (nm)及び上記基板の屈折 率の実部 n に対して、下記関係式(1) を満たすようにな されていることを特徴とする光記録媒体。

0. $0.3\lambda/n < d < 0.11\lambda/n$ (1)

【請求項2】 上記案内溝の幅w(nm)が、隣接する 二つの該案内溝間の間隔P(nm)に対して、下記関係 式(2) を満たすようになされていることを特徴とする請 求項1記載の光記録媒体。

0.1P<w<0.5P (2)

【請求項3】 上記第2の記録層上に積層された保護層 を更に具備することを特徴とする請求項1又は2記載の 光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光記録媒体に関し、 特に、無機材料からなる記録層を具備し且つ一回のみ記 録が可能な光記録媒体に関する。 【従来の技術及び発明が解決しようとする課題】1回の

[0002]

み記録が可能な光記録媒体、いわゆる追記型ディスクの 記録層材料には大別して有機色素系と無機系との2種類 がある。これらのうち、有機色素系材料を記録層に用い た追記型ディスク、通称CD-RXはDVD-Rは、再 生用光ビームに対して未記録時の反射率が高いという利
 点を有している。しかし、有機色素系光ディスクは、日 常光でも長時間露光されると有機色素が光分解を起こ し、記録データが劣化し易い。また、有機色素の光学的 件質(屈折率や吸収係数)は光の波長によって大きく変 化するため、波長に対する互換性がなく、異なる波長の 光源を有するドライブでの再生互換性がなかった。更 に、有機色素は一般に硬度が低く、光ディスクの機械的 強度を弱める一因となっていた。一方、無機系材料を記 録層に用いた追記型光ディスクは反射率が比較的低く、 高反射率の光ディスク用に設計されたドライブでは再生 が困難な場合があり、やはりドライブに対する十分な再 4万様性がなかった。

【0003】従って、本発明の目的は、異なる波長の光 源を有する光ディスク用ドライブで十分な再生互換性が 得られる高い反射率と、記録の前後における高い変調度 とを併せ持ち、日つ安価で製作の容易な光記録媒体を提

供することにある。先に本発明者らは、記録用光ビーム および再生用光ビームに対して略透明な基板と、該基板 上に積層され、Inを主成分とする金属からなる第1の 記録膜と、該第1の記録膜上に積層され、元素周期表5 B族または6B族に属する少なくとも1種類の元素を含 む材料からなる第2の記録膜とを含む光記録媒体を発明 し、特許出願しており(特願平9-132369号、特 類平9-207895号、特願平9-332052 号)、本発明はこれらの発明を更に改良・発展させたも のである。

[0004]

【課題を解決するための手段】本発明は、案内溝を有し 且つ記録用光ビーム及び再生用光ビームに対して略透明 な基板と、該基板上に精層され目つInを主成分とする 材料からなる第1の記録層と、該第1の記録層トに精層 され且つ元素周期表5B族または6B族に属する少なく とも1種類の元素を含む材料からなる第2の記録層とを 具備し、上記基板側から照射された光ビームによる加熱 で、 ト記第1の記録層と ト記第2の記録層とで情報信号 の記録が可能になされており、更に、上記案内溝の深さ d (nm)が、照射される光ビームの真空中の波長入 (nm)及び上記基板の屈折率の実部nに対して、下記 関係式(1)を潜かすようになされていることを特徴とす

る光記録媒体を提供するものである。

$0.03\lambda/n < d < 0.11\lambda/n$ (1) 【0005】また、本発明は、上記光記録媒体におい

て、上記案内溝の幅w (nm)が、隣接する二つの該案 内溝間の間隔P(nm)に対して、下記関係式(2)を満 たすようになされていることを特徴とする光記録媒体を 提供することにより、上記目的を達成したものである。 0.1P<w<0.5P (2)

[0006]

【発明の実施の形態】以下、本発明の光記録媒体の好ま しい実施形態を、図面を参照して説明する。図1に示す 光記録媒体1は、基板2の上面に、第1の記録層3、第 2の記録層4及び保護層5が順次精層されて構成されて いる。基板2は、記録用光ビーム及び再生用光ビームが 基板2を涌過しても、記録及び再生可能である略透明な 材料、例えば、樹脂やガラス等から構成されていること が好ましい。特に、取り扱いが容易で安価であることか ら樹脂が好ましい。樹脂として具体的には例えば、ポリ カーボネート樹脂、アクリル樹脂、エポキシ樹脂、AB S樹脂等を用いることができる。基板の形状および寸法 は特に限定されないが、通常、ディスク状であり、その 厚さは0.5~0.3 mm程度、直径は40~360 m m程度である。上記材料を用いた場合、基板2の屈折率 の実部nの値は、通常1.3~2.5である。

【0007】基板2の表面には、トラッキング用やアド レス用のために特定の形状の案内溝Gが形成されてい る。図2に示すように、案内溝Gの深さd(nm)は、

昭射される光ビームの車空中の波長入(nm)及び基板 2の屈折率の実部nに対して上記関係式(1)が満たされ るようになされている。斯かる案内溝Gは、特定の材料 から構成される第1及び第2の記録層に対して最適な溝 形状を与えるものである。詳細には、案内溝Gの深さd が上記上限値以上であると、案内溝Gと溝間部(以下、 ランドという)とからの反射光が逆位相になり、干渉が 牛じて十分に大きな反射率が得られなくなる。更に、ト ラッキング用のプッシュプル信号の符号が反転してしま うこともある。一方、案内溝Gの深さdが上記下限値以 下であると、案内溝Gとランドとからの反射光の位相差 が小さくなり十分な干渉効果が生じないため、トラッキ ングサーボ用のラジアルコントラスト信号が得られなく なる。例えば、光源にλ=780 (nm) の半導体レー ザーを用い、基板2にn=1.55のポリカーボネート 樹脂を用いた場合、案内溝Gの深さdは15nm<d< 55nmであることが好ましく、25nm<d<40n mであることが一層好ましい。また、光源に $\lambda = 650$ (nm) の半導体レーザーを用い、基板2にn=1.5 5のポリカーボネート樹脂を用いた場合、案内溝Gの深 さdは13nm<d<46nmであることが好ましく、 21 nm<d<34 nmであることが一層好ましい。案 内溝Gの深さdは、光ビームの真空中の波長入及び基板 2の屈折率の実部 n に対して下記関係式(1)'を満たすこ とが一層好ましい。

[0008] 0. $05\lambda/n < d < 0. 08\lambda/n$ (1)'

[0009] 記録用光ビー入及び再生用光ビームに使用 される光濃の波長が複数ある場合には、案内溝の深さ dを、使用される光ビームのうち少なくともより長い破 長の光ビームに対して上配関係式(1) が満たされるよう になすことが好ましい、特に、案内溝のの深さ dを、使 用されるサベての光ビームの波長に対して上配関係式 (1) が満たされるようになすことが好ましい。

[0010]使用される光ビームの波具は、特に制限されないが、例えば、約780nmの波長の半導体レーザーや、630~660nmの波長の赤色の半導体レーザー、あるいは緑色(500~540nm)、青色(400~430nm)などの波長の光ビームを用いることができる。

【0011】図2に示すように、案内溝Gの幅~ (nm) は、隔接する二のの案内溝G、G間の間隔(即ちトラックビッチ) P (nm) 広村して、下記関係式(2)、特に下記関係式(2)、が満たされるようになされていることが好ましい、案内溝Gの幅がが、下記関係式(2) におる下限値以下であると、トラッキングサーボ用のブッシュアル信等の張幅が小さくなり、トラッキングエラーが生じることがある。一方、溝橋Wの上駅は、案内溝Gでの反射率がランドでの反射率よりも小さくなると、即ちラジアルコントラストが少なくとも正でなければな

らないことを要求する銀行のCD-R規格 (議権・「オレンジブックパート!!」)に基づいて定められている。つまり、案約項の幅率が下記関係式(2)における上限値以上であると、トラッキングサーボ用のラジアルコントラスト信号の符号が負になり、現行CD-Rドライブではエラーが生じる。しかしながら、原理的にはラジアルコントラスト信号の符号を負と定めて利用することも可能であり、この場合の好ましい案内簿Gの幅wia0.5 P<wぐ0.9Pとなる。

[0012]0.1P<w<0.5P (2) 0.2P<w<0.4P (2)

[0013] 例えば、現行のコンパクトディスクのよう にトラックピッチを1600nmとした場合には、案内 溝俣の幅wを160nm<wく800nm、特に320 nm<wく640nmとなずことが好ましい、本明細書 において、案内溝房の幅wは四2に示すように、案内溝 の半分の深さ位置での幅として定義される。

[0014] 図2に示すように、案内滞Gは、その側面が傾斜しており第1の記録層3の側に向かって地面した構造となっている。その傾射例6は、一層良存立信号特性を得るために20度く θ <80度、特に30度く θ <70度となされていることが好ましい。傾斜角 θ が20度以下であると、案内溝6とランドからの反射光量が出地なり。ラジアルコントラスト信号が得られなくなる場合がある。一方、傾斜角 θ が80度を超える傾斜面を有する案内溝を有する基板を作製しようとすると、スタンバー製作や成形による転等が困難になるため、安定な信号特性が得られない場合がある。

【0015】尚、案内溝Gは、光記録媒体1の回転速度 制御やアドレス情報のため、必要に応じて周期的に蛇行させてもよい(この蛇行をウォブルいう)。

【0016】第1の記録層3はInを主成分とする材料 から形成されている。即ち、第1の記録層3は、Inか ら構成されているか、In及び他の材料からなり且つⅠ nを主成分として構成されている。第1の記録層3が I n及び他の材料から構成されている場合、該他の材料と LTHAU, Ag, Al, Be, Cu, Fe, Ge, P b、Si、Sn、Ta、V、Zn等の金属が用いられ、 これらの金属は Inと合金 (In合金)を形成してい る。これらの金属のうち、ジッター向上の観点から特に Geが好ましい。更に、記録感度の一層の向上を目的と して、In又はIn合金に各種化合物、例えばCrS、 Cr. S, Cr. S, MoS, MnS, FeS, F eS2 , CoS, Co2 S3 , NiS, Ni2 S, Pd S, Cu2S, Ag2 S, ZnS, In2 S3, In2 S2 , GeS, GeS2 , SnS, SnS2 , PbS, As₂ S₃ 、Sb₂ S₃ 、Bi₂ S₃ などの金属硫化 物; MgF₂、CaF₂、RhF₃ などの金属フッ化 物; MoO、InO、In2 O、In2 O3、GeO、 PbO、SiO、SiO。などの金属酸化物を単体ある いは2種以上混合して添加することもできる。特に好ましい化合物は、GeS、MnS、ZnS、SiO $_2$ である

【0017】第1の記録解3が、1種以上の金属元素M を含む合金から形成されている場合、全金属元素Mの比率4人(A=ΣM/(In+ΣM))を0<A≤3の原子%の範囲となすことが好ましい。In以外の金属元素M を30原子%を超えて含有させると、反射率の低下や観点の上昇が配っる場合がある。また、第1の記録图3がIn又はIn合金に加えて化合物Cを含む場合、該化合物Cの添加量の比率B(B=ΣC/(In+ΣM+Σしい。化合物Cは微量の減加でも効果があるが、20モル%を超えて添加させると反射率が低下する場合があった。

【0018】第2の記録層4は、周期表の5B族または 6 B族に属する少なくとも1種類の元素を含む材料から 構成されている。第2の記録層4は、該元素の単体から 形成されていてもよく、或いは該元素を1種以上含み且 つ他の元素を含む合金 (アロイ) から構成されていても よい。第2の記録層4が上記元素の単体から形成されて いる場合、該元素としては、スパッタリング等により容 易に薄膜化でき且つ比較的安価なAs、Se、Sb、T e、Biが好ましく用いられるが、Poも用い得、ジッ ター向上の観点から特にTeが好ましい。第2の記録層 4が上記合金から構成されている場合。該合金としては InSbTe, AgInSbTe, AuInSbTe, GeSbTe、PbGeSbTe、TeOPbなどが例 示される。また、周期表の5B族または6B族に属する 元素のうち、単体での薄膜形成が困難なN.O.P.S についても、それぞれ、窒化物、酸化物、リン化物、硫 化物の形態で第2の記録層4中に含ませることができ

【0019】上述の第10型線層3及び第2の記録層4 を具備する光記線媒体1においては、基板2個から所定 バワーの記線用光ビームが照射された部位では、第1の 記線層3と第2の記線層4との構成材料が混合して固溶 体、共融証合物または化合物等が形成されることによ り、情報信号の記録が可能ななされている。

【0020】記録用光ビームの照射時に第1の記録層3 と第2の記録層4とが混合する方式には2通りの場合が 考えられる、第1の場合は、第1の記録層3 及び第2の 記録層4の構成材料が何れも光ビームの照射による加熱 によって副解し、融解した液体同士が混合する場合であ 。第2の場合は、第2の記録層4は光ビームの照射に よる加熱によって融解しないが、融解した第1の記録層 の融液に第2の記録層が溶解することによって、拡散・ 混合する場合である。尚、第1及び第2の場合の何れに おいても、このような加熱・混合の結果、基板2と第1 の記録層5との界面および、欠は第2の記録層4と保護 層5との界面が熱によって変形することがある。

【0021】上記第1及び第2の場合の何れにおいて も、第1の記録層3を構成する材料は1nを主成かとし でいるので、職成が低く半導体レーザーなどによる光ビ ームの照射によって容易に批解し、光ビームの照射によって容易に批解し、光ビームの照射によって容易に耐解し、光ビームが発けこくる若板側に、1nを主成分とする材料 から構成される反射率の高い第1の記録層3が配置され ているので、未記録状態において高い反射率を実現する ことができる。

【0022】第2の記録層4を構成する周期表5日鉄または6日族に属する元素を含む材料は、第1の記録層3を構成する材料と混合および/又は反応することにより金属間化合物または半導体等を形成し、第1の記録層3 に含まれる1 nの金属性を低下させる作用がある。その4 出来。記録用光ビームが照射されて第1の記録層3中のI nと第2の記録層4を構成する材料とが混合した部分においては、金属I nと大きく屈折率の異なる記録マーク部が形成される。これにより、記録マーク部の反射率が折りませる。これにより、記録マーク部の反射率が折りれる。高、記記録マーク部の反射率の低下には、加熱に伴う基板2と第1の記録隔3との界面の変形が寄りが行われる。尚、記録すつと記録の見料率の低下には、加熱に伴う基板2と第1の記録隔3との界面の変形が寄りることもある。

【0023】未記録状態における高い反射率と、記録後 の高い変調度とを確実に得るためには、第1の記録層3 の膜厚は5~50nm、特に10~30nmの範囲が好 ましい。第1の記録層の膜厚が厚いほど記録前の反射率 は高くなるが、膜厚50nmを超えると反射率がほぼ飽 和し、逆に膜厚の増加に伴い記録用光ビームによる加熱 が不十分になり記録感度が低下するおそれがある。ま た、第1の記録層3の膜厚が5nm未満になると記録前 の反射率および記録前後の反射率変化が共に小さくなる 場合がある。一方、第2の記録層4の膜厚は、第2の記 録層4に含まれる周期表5B族または6B族に属する元 素の量にも依存するが、5~200nm、特に5~50 n mの範囲が好ましい。第2の記録層4の膜厚が5 n m 未満であると、記録後も反射率があまり低下せず、十分 な変調度が得られない場合がある。また、膜厚が200 nmを超えると、記録用光ビームによる加熱が不十分に なり、記録感度が低下するおそれがある。

【0024】保護層5は、光記斡媒体1の耐熔燃性や耐腐食性の向上のために設けられる。保護層5は積々の有 構築の物質から構成されることが好ましく、特に放射線 硬化型化合物やその組成物を電子線または紫外線等の放 射線等により硬化させた物質から構成されることが好ま しい。保護期5の厚さは、通常0.1~100μm程度 である。保護期5はスピンコート、グラビア塗布、スプ レーコートなど通常の方法により形成される。

【0025】図1に示す光記録媒体1では、記録及び再

生は基板 2 側から第1の記録層 3 及び第2 の記録層 4 に 光ビームを照射することによって行われる。具体的な記 態方法としては、様々な方法が選択できるが、1つの好 ましい方法として、円板状の光記録媒体を画転させ、基 板 2 を通して記録用光ビームを案内溝 G上の記録層に集 光する方法が挙げられる。図1 に示す構成では案内溝 G 上に信号を記録するグルーフ部録が好ましいが、ランド 上に信号を記録するアルーフ部録が好ましいが、ランド 上に信号を記録するアループ記録が好ましいた。 記光記録媒体1 では、上記光ビームに対する記録層の相 対速度は、使用する光ビームの波長に応じて、実験的に 決定することができる。

【00261記録用光ビームは、記録すべき信号に応じてパワーの強弱またはオン・オフが削御される。また、マーク長記録を行う際には、マルチパルスを用い記録マークの偏の均一化を図ることも可能である。記録用光ビームの記録パワーP取及びボトムパワーPかの具体的な値は、使用する光ビームの波長に応じて実験的に決定することができる。一方、再生用光ビームは、記録が行われない程度の低パワーの光ビームであり具体的なパワーは使用する光ビームの波長に応じて決定することができる。

【0027】次に、本発明の第2及び第3の実施形態について図3及び図4を参照してそれぞれ説明する。ここで、図3及び図4はそれぞれ本発明の第2及び第3の実施形態の分流鏡線体の構造を示す前面図であり、第1の実施形態に対ける図1に相当する図である。尚、第2及び第3の実施形態については第1の実施形態と異なる点についてのみ説明し、特に説明しない点については第1の実施形態に関して詳述した説明が適宜適用される。また、図3及び図4において図1及び図2と同じ部材には同じ
に対金を付してある。

[0028] 図3に示す光記線域体1においては、基板 2上に、第1の記録層3、第2の記録層4及び保護層5 が順次積層され、更に保護層5上に接着層6を介して上 部基板7か積層されている。接着層6は、種々の有機3 の物質か6構成されている。接着層6は、種々の有機3 を電子線や放射線により硬化と砂塊やその組成物 を電子線や放射線により硬化と砂塊を入かしていることが望ましい。上部基板7は、上迷した基板2と 関棒の樹脂あるいはガラスで構成することができる。本 実施形態の構成によれば、光記線媒体1の上面が上部基 板7で機固に保護されると共に、光記線媒体1全体の機 機物強度まおど前久性が伸上する。

[0029] 図4に示す光記録媒体1は両面記録方式の 光記録媒体であり、基板2、第1の記録層3、第2の記 録解4及び民態層5が順次帳層されて構成をれる片側記 録部を2組有し、各組の保護層5側(第2の記録層4 側)を対向させて接着層を全りして一体に形成されてい る。本実施形態の構成によれば、高い機械的強度が得ら れると共に、第1及び第2の実験形態の光流登録媒体に比 して、1枚の光記録媒体に2倍の容量の情報が記録でき 2

【0030】以上、本売期の光記録媒体をその杭ましい、実施形態に基づを説明したが、本売期に温度を施門を制限される。 神殿されず、本売期の趣旨を金融明は上記実施形態に制限されず、本売期の趣旨を金融明といる。 なの変更が可能である。例えば、基板2と第1の記録層3との間に、反射率の調節、熱伝導の調節。記録層の腐 食防止などの目的で透明な別の層を設けてもよい。 本、第1の記録層3と第2の記録層4との間に、両層の 構成材料の混合および固溶体、共融混合物または化合物 等の形成速度を調節する目的で薄い中間層を設けてもよい。 更に、図3及び図4に示す実施形態においては、保 護層5を省いた構成となしてもよい。

[0031]

【実施例】以下に、実施例および比較例を示し、本発明 を更に詳細に説明する。しかし、本発明の範囲は斯かる 実施例に制限されるものではない。

【0032】 [実施例1] 深さd=35nm、幅w=6 35 nm、トラックピッチP=1600 nmの螺旋状の 案内溝を表面に有し、CD-Rに必要なアドレス情報等 が該案内溝の蛇行 (ウォブル) として予め記録されてい る透明なポリカーボネート基板(直径12cm. 板厚 2mm) 上に、Inからなる厚さ18nmの第1の 記録層、及びTeからなる厚さ20nmの第2の記録層 を、スパッタ法により順次形成した。第2の記録層上に 紫外線硬化型樹脂約10 μmをスピンコート法により塗 布し、紫外線を照射して硬化させて保護層を形成し、図 1 に示す構成を有する光ディスクを得た。尚、ポリカー ボネート基板の屁折率の実部は1=1.55であった。 次に、光ディスク評価装置DDU-1000(パルステ ック工業製、レーザー波長781nm、対物レンズのN A=0.5)を用いて、記録前のグループ反射率(R g)、ラジアルコントラスト信号(Rcb)、記録後の プッシュプル信号(PP)、11T信号の変調度(I1 1/Itop)を測定した。なお記録には、光スポット と媒体の相対速度を1.2m/sとして、基準クロック 32MHzのEFM信号を記録した。記録パワーは 4mWから13.5mWの範囲で適当な値を選択し、再 生パワーは0.6mWとした。このようにして得られた 測定結果を表1に示す。表中、〇印は、CD-R規格を 満足し、×印は、CD-R規格を満足しないことを表わ す。

[0033] [実施例2~10及び比較例1~6〕ポリ カーボネート基板上に形成される案内溝の深さd及び幅 w並びに第1及び第2の重線層の構成材料を表1に示す 通りとする以外は実施例1と同様にして光りディスクを 得た、得られた光ディスクについて実施例1と同様の評 価をした。その結果を表1に示す。

[0034]

【表1】

Г		案内溝形状(nn)		記録層	材料	信号特性			性
L		深さ d	傷w	第1の記録層	第20紀錄層	Rg	Pcb	PP	I 11/ I top
	1	3 5	635	ľη	Te	0	0	0	0.78
	2	20	700	In	Te	0	0	0	0.8 %
寒	3	3 0	400	Ιn	Te	0	0	0	0.72
~	4	3 0	600	I n	Te	0	0	0	0.77
抽	5	5 0	400	I n	Te	0	0	0	0.71
NE.	6	3 5	635	I n	Вi	0	0	0	0.76
69	7	3 5	635	In	TeO₂	0	0	0	0.7 7
100	8	3 5	635	I n	InSbTe	0	0	0	0.79
	9	3 5	635	In: Ger	Te	О	0	0	0.74
	10	8 5	635	Ines(ZnS)s	Te	0	0	0	0.72
Γ	1	10	500	I n	Te	O	×	×	1547/7不可
比	2	60	500	l n	Te	×	0	0	0.78
較	3	140	500	I n	Te	×	0	×	15対次不可
*EX	4	3 5	635	Ιn	С	0	0	0	記錄不可
例	б	3 5	635	I n	ΑJ	0	0	0	記錄不可
	6	3 5	635	In\$bTe	A I	×	0	0	0.5

光源の波長λ:781nm 扇桁率の実部n:1.55

【0035】表1に示す結果から明らかなように、第1 及び第2の監験層が特定の材料から構成され且つ特定の 形状の窓内溝を有する実施例の光ディスク(本発明品) は、比較例の光ディスクに比して、記録前のクループ反 射率、記録後のブッシュブル信号およびラジアルコント ラスト信号の何れもがCDーR規格を満たし、高い反射 率と高い客調度を作せ持つことが判る。

 あった。次に、実施例1と同様の光ディスク評価装置 (レーゲール天長635m、対物レンズのNA=0.
レーゲールスに設備のグループ反射率(Rg)、ラジアルコントラスト信号(Rcb)、記録前のブッシュアル信号(PP)、14 T信号の変調度(I14/Itop)を選定した。なお記録には、光エットと媒体の相対速度を3.84m/sとして、基準クロック26.16MHzのBFM信号を記録した。記録パワーは6mWから12mWの範囲で適当な信を選択し、再生パワーはを 0.6mWとした。このようにして得られた測定語集まと伝示す。表2年、〇日わまじがよ印は、表1と同じ意

[0037] 【実施例12及び13並びに比較例7及び 8) ポリカーボネート基板上に形成される案内清の深さ d及び幅やを表2に示す通りとする以外は実施例11と 同様にして光りディスクを得た。得られた光ディスクに ついて実施例11と同様の評価をした。その結果を表2 に示す。

【0038】 【表2】

味である。

		索内满形状(ma)		記録用	材料	信号 特性			* 性
		潔さd	帽w	第1の記録階	第2の配録譜	Rg	Pcb	PP	I 14/ I top
実	11	3 0	250	In ₁₂ Ge ₇	Te	0	0	0	0.72
摊	12	4 0	200	In ₂₂ Ge ₇	Te	0	0	0	0.70
例	13	3 5	150	Ins:Ger	Te	0	0	0	0.66
比較例	7	5 5	250	InGe-	Te	×	0	×	ラキガ不可
M	8	10	200	In.,Ge,	Te	0	×	×	トラッキング不可

光源の波長λ:781nm 屈折率の実部n:1,55

[0039] 表2に示す結果から明らかなように、実施 例11~13の光ディスク (本発明品)は、記録前のグループ反射率、記録後のブッシュブル信号もよびラジアルコントラスト信号の何れもがDVD-R規格を満たし、高い反射率と高い変調度とを併せ持つことが判る。[0040]

【発明の効果】以上、詳述した通り、本発明によれば、異なる被長の光濶を有する光ディスク用ドライブで十分 な再生互換性が得られる高い反射率と、記録の前後にお ける高い変調度とを併せ待ち、且つ安値で製作の容易な 光記録線体が得られる。特に本発明によれば、光淵に赤 外領域の波長を有する光ビームを用いるドライブのみな らず、赤色、緑色および着位などのより短波長の光ビー ムを用いるドライブにおいても、高い反射率および変調 度を示すが監験媒体が得られる。 【図面の簡単な限明】 【図1】本発明の光記録媒体の一実施形態の構造を示す 断面図である。

【図2】基板に形成された案内溝を示す断面図である。 【図3】本発明の第2の実施形態の光記録媒体の構造を示す断面図である。

【図4】本発明の第3の実施形態の光記録媒体の構造を示す断面図である。

- 【符号の説明】 1 光記録媒体
- 2 基板
- 2 至W 3 第1の記録層
- 4 第2の記録層
- 5 保護層 6 接着層
- 7 上部基板

