

Sistemas Operativos

Adín Ramírez adin.ramirez@mail.udp.cl

Sistemas Operativos (CIT2003-1) 1er. Semestre 2015

Objetivos de la clase

- Definición de un sistema operativo
 - ► Software que administra los recursos de una computadora para sus usuarios y aplicaciones
- Retos SO
 - Confiabilidad, seguridad, responsabilidad (tiempos de respuesta), portabilidad, etc.
- Breve historia de SO
 - Lícómo se relaciona OS X, Windows, y Linux?

¿Qué es un sistema operativo?

 Es el software que administra los recursos de una computadora para sus usuarios y aplicaciones

Processor

Network

Roles del sistema operativo

Árbitro

- ▶ Reserva de recursos entre usuarios, y aplicaciones
- Aislamiento de diferentes usuarios y aplicaciones (unos de otros)
- Comunicación entre usuarios y aplicaciones

Ilusionista

- ► Cada aplicación cree que tiene la máquina completa para ella
- Número de procesadores infinitos, (casi) memoria infinita, almacenamiento confiable, transporte de red confiable

Pegamento

► Librerias, interfaz de usuarios

Pregunta interesante

- ¿Qué necesitamos del hardware para poder
 - aislar diferentes aplicaciones unas de otras?
 - aislar el acceso de diferentes usuarios a las aplicaciones de los otros?

Ejemplo: web service

- ¿Cómo administra el servidor múltiples peticiones simultaneas?
- ¿Cómo mantenemos al cliente seguro de spyware embebido en los scripts del sitio web?
- ¿Cómo mantenemos las actualizaciones del sitio web consistentes?

Retos de SO

- Confiabilidad
 - ¿El sistema hace para lo que fue diseñado?
 - Disponibilidad
 - ¿Qué porción del tiempo está el sistema trabajando?
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)
- Seguridad
 - ▶ ¿Puede el sistema ser comprometido por un atacante?
 - Privacidad
 - Los datos son accesibles solo por usuarios autorizados
- Ambos necesitan un cuidadoso diseño y codificación

Más retos

- Portabilidad
 - Para los programas
 - Application programming interface (API)
 - Interfaz abstracta de máquina
- Para el sistema operativo
 - Capa de abstracción de hardware
 - E.g., Pintos provee rutinas del kernel específicas para el hardware

Aún más retos

Rendimiento

- ► Latencia o tiempo de respuesta
 - ¿Cuánto tiempo tarda una operación en completarse?
- Throughput (caudal)
 - ¿Cuántas operaciones pueden hacerse por unidad de tiempo?
- Overhead (sobre carga)
 - ¿Cuánto trabajo extra es realizado por el SO?
- Justicia
 - ¿Cuán equitativo es el rendimiento recibido por distintos usuarios?
- Predecibilidad
 - ¿Qué tan consistente es el rendimiento en el tiempo?

Historia de los SO

Rendimiento de las computadoras en el tiempo

	1981	1996	2011	factor
MIPS ¹	1	300	10000	10K
MIPS/\$	\$100K	\$ 30	\$ 0.5	200K
DRAM	128 KB	128 MB	10 GB	100K
Disk	10 MB	4 GB	1TB	100K
Home Internet	9.6 Kbps	256 Kbps	5 Mbps	500
LAN network	3 Mbps (shared)	10 Mbps	1 Gbps	300
Users per machine	100	1	$\ll 1$	100 +

¹Microprocessor without Interlocked Pipelines Stages

Primeros sistemas operativos

Los computadores eran caros

- Una aplicación a la vez
 - ► Tenia control total sobre el hardware
 - SO era una librería en tiempo de ejecución
 - Los usuarios hacían fila para usar el computador
- Sistemas por batch
 - Mantenian el CPU ocupado utilizando una cola de trabajos
 - ▶ SO cargaría el siguiente trabajo mientras ejecutaba uno
 - Usuarios enviaban tareas, y esperaban, y esperaban, y . . .

Sistemas Operativos de tiempo compartido

Computadoras y personas son caras

- Multiples usuarios en una computadora al mismo tiempo
 - Multi programación: ejecuta varios programas al mismo tiempo
 - Rendimiento interactivo: tratar de completar el trabajo de todos rápidamente
 - Conforme las computadoras se hicieron más baratas, se trata de optimizar para el tiempo del usuario y no de la computadora

Sistemas Operativos de hoy

Computadoras son baratas

- Smartphones
- Sistemas embebidos
- Web servers
- Laptops
- Tablets
- Máquinas virtuales

Sistemas Operativos del futuro

- Data centers gigantes
- Aumento del número de procesadores por computadora
- Aumento de número de computadoras por usuario
- Almacenamiento de gran escala

Pregunta interesante

- ¿Cómo debería un sistema operativo asignar tiempo de procesamiento entre dos usuarios que compiten?
 - Dar CPU al primero que llegó
 - ▶ Al que necesite la menor cantidad de recursos para terminar
 - Al que necesite más recursos para terminar
 - ¿Qué pasa si necesitamos asignar memoria?
 - ¿O espacio de disco?

Puntos a recordar

- Sistema operativo: administra recursos para usuarios y aplicaciones
- Roles: árbitro, ilusionista, pegamento
- Retos del SO
 - Confiabilidad
 - Seguridad
 - Portabilidad
 - Rendimiento

Libro de texto Consejos

- El texto es sofisticado.
- No lo van a absorver todo en la primera pasada
- Lean antes de cada clase
- Lean después de cada clase
- No dejen las lecturas para después, ni mucho menos para días antes de la solemne