Обработка и исполнение запросов в СУБД (Лекция 4)

Классические системы: введение в распределенные СУБД

v2

Георгий Чернышев

Академический Университет chernishev@gmail.com

5 октября 2016 г.

Распределенные СУБД І

00001 CVE II

РСУБД [Elnikety, 2009]: СУБД управляющая базой данных, данные которой подвергнуты фрагментированию и реплицированию, и находятся на нескольких, связанных друг с другом, узлах.

Цель РСУБД — "спрятать" физическую распределенность от клиентов. Клиенты работают ϵ одной базой, видимой как единое целое;

Изображение взято из [Özsu and Valduriez, 2009]

Распределенные СУБД II

История:

- Появились в конце 70x, вместе с shared-nothing системами;
 - Нужда больших организаций иметь несколько офисов;
 - Основная проблема в те годы: медленность сетей;
- Первые системы, примеры [Kian-Lee Tan, 2009]:
 - Исследовательские проекты: SDD-1 (Computer Corporation of America), Distributed INGRES (University of California at Berkeley), R*STAR (IBM);
 - Коммерческие продукты: INGRES/Star (1987), Oracle (1987), IBM продукты для интеграции разных версий DB2.

Что может дать РСУБД? І

Транспарентность при управлении данными.

Fig. 1.6 Layers of Transparency

²Изображение взято из [Özsu and Valduriez, 2009]

Транспарентность в РСУБД

Пользователь должен считать что работает с централизованной СУБД. Для этого надо обеспечить [Özsu and Valduriez, 2009]:

- Транспарентность сети:
 - транспарентность локации;
 - транспарентность имен;
- Транспарентность фрагментирования данных;
- Транспарентность репликации данных;
- Языковую транспарентность.

В [Kian-Lee Tan, 2009] выделяется еще и транспарентность выполнения транзакций.

Что может дать РСУБД? ІІ

Еще [Özsu and Valduriez, 2009]:

- Надежность посредством распределенных транзакций;
- Повышение производительности:
 - локализация данных: 1) обработка только части данных и 2) меньше сетевые задержки;
 - естественный параллелизм: 1) межзапросный и 2) внутризапросный;
- Расширяемость системы;

Фрагментирование данных

Бывает:

- Горизонтальное, "подклеиваем" с низу с помощью UNION;
- Вертикальное, "подклеиваем" сбоку с помощью JOIN;
- Смешанное.

Выбор оптимальной схемы фрагментирования это NP-трудная задача, обычно отдается на откуп администратору (ручной труд), вертикальное сложнее.

Системы лучше поддерживают горизонтальное: PostgreSQL (набор горизонтальных фрагментов), Oracle (нгф, partition by reference) и т.д.

РСУБД, сложности

РСУБД бывают:

- Полностью реплицированные: на каждом узле есть вся база;
- Полностью фрагментированные: каждый узел содержит свой уникальный фрагмент, фрагменты попарно не пересекаются, объединение дает всю базу;
- Что-то среднее.

Основные исследовательские задачи связанные с РСУБД:

- Как хранить данные?
- Как при обновлениях синхронизировать копии?
- Как осуществлять координацию и коммуникации между узлами при исполнении запроса?

Компоненты РСУБД

Fig. 1.7 Relationship Among Research Issues

3

Какие бывают РСУБД

Fig. 1.10 DBMS Implementation Alternatives

4

Аспекты РСУБД: автономность І

Автономность, в смысле автономности управления, не данных. Показывает насколько могут отдельные СУБД работать по отдельности.

Требования:

- Распределенная система не влияет на локальные операции отдельных СУБД;
- Способы обработки и оптимизации локальных запросов изолированы при выполнении глобальных запросов;
- В случае добавления или выбывания отдельных СУБД консистентность работы РСУБД не должна страдать.

Автономность бывает:

- Автономность дизайна БД: отдельные СУБД могут использовать любые модели данных и способы управления транзакциями;
- Автономность коммуникации: отдельная СУБД решает какую информацию предоставлять другим СУБД или другому управляющему ПО;
- Автономность выполнения: отдельная СУБД решает как выполнять свои транзакции.

Аспекты РСУБД: распределенность

Распределенность по данным.

Типы систем:

- Клиент-серверная;
- Peer-to-peer: нет различия между типами машин;
- Отсутствие распределенности.

Аспекты РСУБД: гетерогенность

Гетерогенность:

- Хардварная;
- Сетевая;
- Моделей данных;
- Языков запросов;
- Протоколов управления транзакциями.

Основные типы РСУБД І

Типы:

- (A0,D1, H0) клиент-сервер РСУБД;
 - Появились в 90е;
 - Не процесс, а разделение машин;
 - Сервер: основная работа;
 - Клиент: Application Interface, UI, кеши данных, кешированные замки транзакций;
 - модели: много клиентов один сервер, много клиентов много серверов;
 - тяжелый клиент и легкий клиент;
 - трехуровневая и многоуровневая архитектура;

Основные типы РСУБД ІІ

Типы:

- (A0, D2, H0) Peer-to-Peer РСУБД;
 - Два периода популярности: до 90-х и в нулевые;
 - Машины не различаются между собой;
 - local internal schema (LIS) физическая организация на узлах может быть различной, поэтому ее надо описывать (на всех узлах);
 - global conceptual schema (GCS) хранит общий вид логической структура на всех узлах;
 - local conceptual schema (LCS) фрагментирование, часть GCS;
 - external schema (ES) для пользовательского доступа.

Peer-to-Peer РСУБД

⁵Изображение взято из [Özsu and Valduriez, 2009]

Основные типы РСУБД III

Типы:

- (A2, D2, H1) (p2p) гетерогенная мультибаза (интеграционная система, гетерогенная система).
 - полностью автономны, отдельные СУБД друг о друге не знают;
 - другое понятие глобальной базы данных, подмножество;
 - GCS = ∪ ES или же GCS = ∪ часть LCS;
 - unilingual (разные пользователи) и multilingual мультибаза;
 - часто реализуются посредством mediator или middleware;
 - иногда надо писать wrapper (обертку).

Устройство мультибазы

Fig. 12. Wrapper architecture of heterogeneous databases.

⁶Изображение взято из [Kossmann, 2000]

РСУБД, сложности и частичные ответы І

Основные исследовательские задачи связанные с РСУБД:

- Как хранить данные?
 - Принцип локальности данных \longrightarrow увеличение количества реплик \longrightarrow страдают апдейты;
 - Ручной труд администратора по фрагментированию;
 - Аллокация: статическая и динамическая, экономические модели;
- Как при обновлениях синхронизировать копии?
 - Протоколы кворума;
 - Коммерческие используют ROWAA;
 - Семантика одной копии;
 - Распространения обновлений: lazy и eager методы;
- Как осуществлять координацию и коммуникации между узлами при исполнении запроса?
 - Разрезать план запроса;
 - Стоимость коммуникации высока;

РСУБД, сложности и частичные ответы ІІ

- Нужна глобальная изоляция \longrightarrow нужна глобальная сериализуемость, локальной не хватит \longrightarrow d2PL, мультиверсионные на временных метках;
- Замки: primary site vs primary узел;
- Координация очень дорога;
- Как обеспечивать надежность?
 - Для коммитов d2PC, 3PC;

Ссылки I

- Distributed DBMS. Sameh Elnikety. Encyclopedia of Database Systems. Ling Liu and M. Tamer Özsu (eds), p. 896–899. Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_654
- Distributed Database Systems. Kian-Lee Tan. Encyclopedia of Database Systems. Ling Liu and M. Tamer Özsu (eds), p. 894–896. Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_701
- Özsu M.T. and Valduriez P. Principles of Distributed Database Systems, 3rd ed. Prentice-Hall, 2011.
- Donald Kossmann. 2000. The state of the art in distributed query processing. ACM Comput. Surv. 32, 4 (December 2000), 422–469. DOI=http://dx.doi.org/10.1145/371578.371598