Reg.No										
--------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

VI SEMESTER B.E DEGREE END SEMESTER EXAMINATION -May 2011 SUB: GRAPH THEORY (MAT -301) ELECTIVE - I (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

- 1A. (i) Let G be a (p,q) graph all of whose vertices have degree k or k+1. If G has $p_k>0$ vertices of degree k and p_{k+1} vertices of degree k+1, show that $p_k = (k+1) p 2q$.
 - (ii) Construct a cubic graph with 2n vertices ($n \ge 3$) having no triangles.
- 1B. Define a bipartite graph.

 Show that a graph is bipartite, if and only if, all its cycles (if any) are even.
- 1C. If G is a graph (connected or disconnected) having exactly two vertices u_0 and v_0 of odd degrees, then show that u_0 and v_0 are connected.

(03 + 04 + 03)

- 2A. (i) Illustrate with an example that every graph is an intersection graph.

 (ii) Let G be a graph of order 13 with 3 components. Show that atleast one component of G has atleast 5 vertices.
- 2B. Define a self complementary graph.

 Show that every self complementary graph has 4n or 4n+1 vertices.

 Draw a self complementary graph with p = 5.
- 2C. If G is not connected, show that \overline{G} is connected. Give an example of a graph G in which both G and \overline{G} are connected. (04 + 03+03)
- 3A. Define the product $G_1 \times G_2$ of two graphs. If G_1 is (p_1, q_1) graph and G_2 is (p_2, q_2) graph, show that the graph $G_1 \times G_2$ has p_1 p_2 vertices and $p_1q_2 + p_2q_1$ edges. Draw the graph $G_1 \times G_2$ if $G_1 = P_2$ and $G_2 = P_3$.
- 3B. If G_1 and G_2 are regular (or bipartite) prove or disprove G_1+G_2 is regular (or bipartite).
- 3C. (i) Define: block graph B (G) and cut point graph C(G) of a graph G.
 - (ii) Illustrate with an example that if G is connected with at least one cutpoint, then B(B(G)) = C(G) (04 +03 +03)

- 4A. State Havel Hakimi theorem on graphical sequence. Given an algorithm for constructing a graph with a given degree sequence $\pi = (d_1, d_2, \ldots, d_p)$. Illustrate the algorithm for the sequence $\pi = (5,5,3,3,2,2,2)$.
- 4B. If G is a tree, then prove that every two vertices of G are joined by a unique path and that p = q+1.
- 4C. Define a cut vertex. Show that every non trivial connected graph has at least two vertices which are not cutvertices. (04 +03 + 03)
- 5A. State and prove Whitney's theorem.
- 5B. (i) Define: a outer planar graph and a maximal outer planar graph. Give one example for each. Draw the forbidden graphs for outer planarity.
 - (ii) Define the topological invariant thickness $\theta(G)$ of a graph. Show that for any (p,q) graph $\theta(G) \ge \frac{q}{3p-6}$. Hence, find $\theta(K_5)$.
- 5C. For any non trivial graph G, prove that $\alpha_0 + \beta_0 = p$ (04 +03+03)
- 6A. (i) Define the total graph T(G) of a graph G. Draw T(K₃)
 - (ii) If G is a (p,q) graph whose vertices have degrees d_i , show that T(G) has $p_T = p+q$ vertices and $q_T = 2q + \frac{1}{2} \sum_i d_i^2$ edges.
- 6B. Show that the number of labeled spanning trees of the complete graph K_p is p^{p-2} .
- 6C. Define : Coloring, an n coloring and the chromatic number $\chi(G)$ of a graph G. Determine $\chi(G)$ for following graph :

$$K_p$$
, $K_p - x$, C_{2n} , C_{2n+1} and wheel W_n .

(04 + 03 + 03)
