Neuronales Netzwerk - MNIST

Beim MNIST-Dataset¹ handelt es sich um 70.000 Bildern von handgeschriebenen Ziffern; wobei 60.000 Beispiele im Trainings- und 10.000 Beispiele im Testdatensatz enthalten sind. Jedes der Gaustufenbilder hat eine Dimension von 28 x 28 Pixeln.

Abbildung 1: Die ersten 9 Bilder des Datasets

Die Werte eines Bildes liegen zw. 0 und 255. Das ergibt 256 "Graustufen"². Die Ausgabe eins einzelnen Bildes (siehe Auszug) liefert ein Array mit der Shape 28x28. Vorsicht: von 28 Zeilen sind nur 3 zu sehen, tatsächlich gibt es Werte zw. 0 und 255.

Ziel ist es, ein Neuronales Netz zu trainieren, mit dem die Klassifikation dieser handgeschriebenen Ziffern möglich ist. Der Einfachheit halber streben wir eine Netzstruktur mit 3 Layern an – also sonderlich *deep* ist das nicht!

² 0 = schwarz und 255 = weiß, dazwischen sind verschiedene Grautöne

Mehr Details liefert nachfolgende *Model Summary*. Die gelb markierten bereiche sind ausführungsbedingt und haben – zumindest jetzt – keine Bedeutung.

Model: "sequential 16"

Layer (type)	Output Shape	Param #
dense_32 (Dense)	(None, 64)	50240
dense_ <mark>33</mark> (Dense)	(None, 10)	650

Total params: 50,890 Trainable params: 50,890 Non-trainable params: 0

Grafische Aufbereitung des NN: