

# HC32F460 Series 32-bit ARM® Cortex®-M4 microcontroller

data sheet



## **Product Characteristics**

ARM Cortex-M4 32bit MCU+FPU, 250DMIPS, up to 512KB Flash, 192KB SRAM, USB FS (Device/Host), 14 Timers, 2 ADCs, 1 PGA, 3 CMPs, 20 Communication Interfaces

■ ARMv7-M architecture 32bit Cortex-M4 CPU with integrated FPU, MPU, DSP supporting SIMD instruction, and CoreSight standard debugging unit. Maximum operating frequency 200MHz, Flash acceleration unit for 0-wait program execution, 250DMIPS or 680Coremarks computing performance.

#### **■** internal memory

- Maximum 512KByte Flash memory, support security protection and data encryption\*1
- Up to 192KByte SRAM, including 32KByte 200MHz single-cycle access high-speed RAM, 4KByte Retention RAM

#### ■ Power, Clock, Reset Management

- System power supply (Vcc): 1.8-3.6V
- 6 independent clock sources: external master clock crystal (4-25MHz), external slave crystal (32.768kHz), internal high-speed RC (16/20MHz), internal mediumspeed RC (8MHz), internal low-speed RC (32kHz), internal WDT-specific RC (10kHz)
- 14 reset sources including Power-On Reset (POR), Low Voltage Detect Reset (LVDR), Port Reset (PDR), each with individual flag bits

#### **■** Low power operation

- Peripheral functions can be turned off or on independently
- Three low power modes: Sleep, Stop, and Power down modes.
- Run mode and Sleep mode support switching between ultra-high speed mode, high speed mode, and ultra-low speed mode.
- Standby power consumption: Stop mode typ.90uA@25°C, Power down mode down to 1.8uA@25°C
- Power down mode, supports 16 ports wake-up,
   supports ultra-low power RTC operation, 4KByte
   SRAM to hold data
- Fast wake-up from standby, up to 2us in Stop mode and 20us in Power down mode.

# ■ Peripheral Runtime Support System significantly reduces CPU processing loads

- 8-channel dual host DMAC
- DMAC for USBFS

- Data Computing Unit (DCU)
- Support for mutual triggering of peripheral events (AOS)

#### **■** High Performance Simulation

- 2 independent 12bit 2.5MSPS ADCs
- 1 Programmable Gain Amplifier (PGA)
- 3 independent voltage comparators (CMPs) supporting 2 internal references
- 1 on-chip temperature sensor (OTS)

HC32F460 Series 2
Datasheet\_Rev1.5 /142

#### ■ Timer

- 3 multifunction 16bit PWM timers (Timer6)
- 3 16bit motor PWM timers (Timer4)
- 6 16bit Universal Timers (TimerA)
- 2 16bit base timers (Timer0)

#### ■ Maximum 83 GPIOs

- CPU single-cycle access, 100MHz maximum output
- Maximum 81 5V-tolerant IOs

#### ■ Maximum 20 communication interfaces

- 3 I2C, SMBus protocol support
- 4 USARTs supporting ISO7816-3 protocols
- 4 SPI
- 4 I2S, built-in audio PLL for audio grade sampling accuracy
- 2 SDIOs supporting SD/MMC/eMMC formats
- 1 QSPI supporting 200Mbps high-speed access (XIP)
- 1 CAN, supports ISO11898-1 standard protocols
- 1 USB 2.0 FS with built-in PHY, Device/Host support

#### ■ Data encryption function

- AES/HASH/TRNG

#### **■** Encapsulated form:

 LQFP100 (14×14mm)
 VFBGA100 (7×7mm)

 LQFP64 (10×10mm)
 QFN60 (7×7mm)

 QFN48 (5×5mm)
 LQFP48 (7×7mm)

#### **Supported Models:**

| hc32f460petb-lqfp100 | hc32f460pehb-vfbga100 |
|----------------------|-----------------------|
| hc32f460keta-lqfp64  | hc32f460keua-qfn60tr  |
| HC32F460JETA-LQFP48  | hc32f460jeua-qfn48tr  |
| HC32F460PCTB-LQFP100 | HC32F460KCTA-LQFP64   |
| HC32F460JCTA-LQFP48  |                       |

<sup>\*1:</sup> For specific specifications on Flash security protection and data encryption, please contact the sales window.



# declaration Ming Dynasty (1368-1644)

- ★ Xiaohua Semiconductor Co., Ltd ("XHSC") reserves the right to make changes, corrections, enhancements, or modifications to the XHSC products and/or this document at any time without notice. Users are encouraged to obtain the most current information prior to placing an order.XHSC products are sold under the terms and conditions of sale set forth in the basic contract of purchase and sale.
- ★ Customer shall select the appropriate XHSC product for your application and design, validate and test your application to ensure that your application meets the appropriate standards and any safety, security or other requirements. The Customer shall be solely responsible for this.
- ★ XHSC hereby confirms that no license to any intellectual property is granted, either expressly or impliedly.
- ★Resale of XHSC products under terms different from those set forth herein shall void any warranty commitment by XHSC with respect to such products.
- ★ Any graphics or lettering with the "®" or "™" logo are trademarks of XHSC. All other product or service names displayed on XHSC products are the property of their respective owners.
- ★ The information in this notice supersedes and replaces the information in previous versions.

©2023 Siu Wah Semiconductor Limited All Rights Reserved



# table of contents table of contents

| Pro | oduct   | Characte  | eristics                            | 2                                       |
|-----|---------|-----------|-------------------------------------|-----------------------------------------|
| de  | clarati | ion       |                                     | Ming                                    |
|     | 3       |           |                                     |                                         |
| tak | le of c | contents. |                                     | Table of Contents                       |
|     | 4       |           |                                     |                                         |
| Ta  | ble In  | dex       |                                     | 7                                       |
| Fig | ure li  | ndex      |                                     | 9                                       |
| 1   | Intr    | oduction  | ı (Overview)                        | 10                                      |
|     | 1.1     | Model     | Naming Rules                        | 11                                      |
|     | 1.2     | Compa     | arison Table of Model Functions     | 12                                      |
|     | 1.3     | Function  | onal Block Diagram                  | 15                                      |
|     | 1.4     | Function  | on Introduction                     | 16                                      |
|     |         | 1.4.1     | CPU                                 | 16                                      |
|     |         | 1.4.2     | Bus Architecture (BUS)              | 16                                      |
|     |         | 1.4.3     | Reset Control (RMU)                 | 17                                      |
|     |         | 1.4.4     | Clock Control (CMU)                 | 17                                      |
|     |         | 1.4.5     | Power Control (PWC)                 | 18                                      |
|     |         | 1.4.6     | Initialization Configuration (ICG)  | 18                                      |
|     |         | 1.4.7     | Embedded FLASH Interface (EFM)      |                                         |
|     |         | 1.4.8     | Internal SRAM (SRAM)                | 19                                      |
|     |         | 1.4.9     | General Purpose IO(GPIO)            | 19                                      |
|     |         | 1.4.10    | Interrupt control (INTC)            | 19                                      |
|     |         | 1.4.11    | Automatic Operating System (AOS)    | 20                                      |
|     |         | 1.4.12    | Keyboard Scan (KEYSCAN)             | 20                                      |
|     |         | 1.4.13    | Memory Protection Unit (MPU)        | 20                                      |
|     |         | 1.4.14    | DMA Controller (DMA)                | 20                                      |
|     |         | 1.4.15    | Voltage Comparator (CMP)            | 21                                      |
|     |         | 1.4.16    | Analog-to-digital converters (ADCs) | 21                                      |
|     |         | 1.4.17    | Temperature Sensors (OTS)           | 22                                      |
|     |         | 1.4.18    | Advanced Control Timer (Timer6)     | 22                                      |
|     |         | 1.4.19    | Universal Control Timer (Timer4)    | 22                                      |
|     |         | 1.4.20    | Emergency Brake Module (EMB)        | 23                                      |
|     |         | 1.4.21    | General purpose timer (TimerA)      | 23                                      |
|     |         | 1,7,21    | ocherat parpose timer (Timerry      | • • • • • • • • • • • • • • • • • • • • |



|   | 1.4.22      | General Purpose Timer (Timer0)               | 23 |
|---|-------------|----------------------------------------------|----|
|   | 1.4.23      | Real Time Clock (RTC)                        | 23 |
|   | 1.4.24      | Watchdog Counter (WDT)                       | 23 |
|   | 1.4.25      | Serial communication interface (USART)       | 24 |
|   | 1.4.26      | Integrated Circuit Bus (I2C)                 | 24 |
|   | 1.4.27      | Serial Peripheral Interface (SPI)            | 24 |
|   | 1.4.28      | Four-wire Serial Peripheral Interface (QSPI) | 24 |
|   | 1.4.29      | Integrated Circuit Built-in Audio Bus (I2S)  | 25 |
|   | 1.4.30      | CAN Communication Interface (CAN)            | 25 |
|   | 1.4.31      | USB2.0 Full Speed Module (USB FS)            | 25 |
|   | 1.4.32      | Cryptographic Coprocessing Module (CPM)      | 26 |
|   | 1.4.33      | Data Computing Unit (DCU)                    | 26 |
|   | 1.4.34      | CRC Computation Unit (CRC)                   | 26 |
|   | 1.4.35      | SDIO Controller (SDIOC)                      | 26 |
| 2 | Pinouts and | Functions (Pinouts)                          | 27 |
|   | 2.1 Pinout  | Diagram                                      | 27 |
|   | 2.2 Pin Fu  | nction Chart                                 | 33 |
|   | 2.3 Pin Fu  | nction Description                           | 39 |
|   |             | S                                            |    |
| 3 |             | aracteristics (ECs)                          |    |
|   | 3.1 Param   | eter conditions                              |    |
|   | 3.1.1       | Minimum and maximum values                   |    |
|   | 3.1.2       | Typical value                                |    |
|   | 3.1.3       | Typical Curve                                |    |
|   | 3.1.4       | Load Capacitance                             |    |
|   | 3.1.5       | Pin Input Voltage                            |    |
|   | 3.1.6       | Power Solutions                              |    |
|   | 3.1.7       | Current Consumption Measurement              |    |
|   |             | ite Maximum Ratings                          |    |
|   |             | ng conditions                                |    |
|   | 3.3.1       | General working conditions                   |    |
|   | 3.3.2       | Operating conditions at power-up/power-down  |    |
|   | 3.3.3       | Reset and Power Control Module Features      |    |
|   | 3.3.4       | Supply Current Characteristics               |    |
|   | 3.3.5       | Electrical sensitivity                       | 61 |



|   | 3    | 3.3.6           | Low Power Mode Wakeup Timing              | 62   |
|---|------|-----------------|-------------------------------------------|------|
|   | 3    | 3.3.7           | I/O Port Characteristics                  | . 63 |
|   | 3    | 3.3.8           | USART Interface Features                  | 67   |
|   | 3    | 3.3.9           | I2S Interface Features                    | . 68 |
|   | 3    | 3.3.10          | I2C Interface Features                    | . 70 |
|   | 3    | 3.3.11          | SPI Interface Features                    | . 71 |
|   | 3    | 3.3.12          | CAN2.0B Interface Features                | . 74 |
|   | 3    | 3.3.13          | USB Interface Features                    | 74   |
|   | 3    | 3.3.14          | PLL Characterization                      | . 76 |
|   | 3    | 3.3.15          | JTAG Interface Features                   | 77   |
|   | 3    | 3.3.16          | External Clock Source Characteristics     | 78   |
|   | 3    | 3.3.17          | Internal Clock Source Characterization    | 81   |
|   | 3    | 3.3.18          | 12 - Bit ADC Characterization             | 82   |
|   | 3    | 3.3.19          | DAC Characteristics                       | 89   |
|   | 3    | 3.3.20          | Comparator Characteristics                | 89   |
|   | 3    | 3.3.21          | Gain Adjustable Amplifier Characteristics | 90   |
|   | 3    | 3.3.22          | Temperature Sensors                       | 91   |
|   | 3    | 3.3.23          | Memory Characterization                   | 92   |
| 4 | Pack | aging Inf       | ormation                                  | . 93 |
|   | 4.1  | Package         | e Size                                    | 93   |
|   | 4.2  | Pad Sch         | ematic                                    | 99   |
|   | 4.3  | Screen I        | Printing Instructions                     | 105  |
|   | 4.4  |                 | e Thermal Resistance                      |      |
| 5 | Orde | •               | rmation                                   |      |
| V | : F  | -<br>Javiaian I | Dagayd                                    | 100  |



# table index

| Table 1-1                                             | •     |
|-------------------------------------------------------|-------|
| Model Function Comparison Table                       | . 12  |
| Гable 2-1                                             | . Pin |
| Function Table                                        | . 33  |
| Table 2-2                                             | •     |
| Func32~63 Table                                       | . 36  |
| Table 2-3                                             |       |
| Port Configuration                                    | . 37  |
| Table 2-4                                             |       |
| General Functional Specifications                     | . 38  |
| Table 2-5                                             | . Pin |
| Function Descriptions                                 | . 39  |
| Table 2-6                                             | . Pin |
| Usage Description                                     | . 42  |
| Table 3-1                                             |       |
| VCAP_1/ VCAP_2 Operating Conditions                   | . 47  |
| Table 3-2                                             |       |
| Voltage Characteristics                               | . 48  |
| Table 3-3                                             |       |
| Current Characteristics                               | . 48  |
| Table 3-4                                             | •     |
| Thermal Characteristics                               | . 48  |
| Table 3-5                                             | •     |
| General working conditions                            | . 49  |
| Table 3-6 Operating conditions at power-up/power-down | . 49  |
| Table 3-7                                             |       |
| Reset and Power Control Module Characteristics        | . 50  |
| Table 3-8                                             |       |
| Ultra High Speed Mode Current Consumption             | . 53  |
| Table 3-9                                             |       |
| High Speed Mode Current Consumption 1                 | . 54  |
| Table 3-10                                            |       |
| High Speed Mode Current Consumption 2                 | . 55  |
| Table 3-11                                            |       |



| High Speed Mode Current Consumption 3      | 56      |
|--------------------------------------------|---------|
| Table 3-12                                 |         |
| Ultra Low Speed Mode Current Consumption 1 | 57      |
| Table 3-13                                 |         |
| Ultra Low Speed Mode Current Consumption 2 | 58      |
| Table 3-14                                 | ·•      |
| Low Power Mode Current Consumption         | 59      |
| Table 3-15                                 | ·•      |
| Analog Module Current Consumption          | 60      |
| Table 3-16                                 | <b></b> |
| ESD Characteristics                        | 61      |
| Table 3-17                                 | ·•      |
| Static Latch-up Characteristics            | 61      |
| Table 3-18                                 | ·•      |
| Low Power Mode Wake-Up Times               | 62      |
| Table 3-19                                 | I/O     |
| Static Characteristics                     | 63      |
| Table 3-20                                 | ·•      |
| Output Voltage Characteristics             | . 64    |
| Table 3-21                                 | I/O     |
| AC Characteristics                         | 65      |
| Table 3-22                                 | ·•      |
| USART AC Timing                            | 67      |
| Table 3-23                                 | I2S     |
| Electrical Characteristics                 | 68      |
| Table 3-24                                 | I2C     |
| Electrical Characteristics                 | 70      |
| Table 3-25                                 | ·•      |
| SPI Electrical Characteristics             | 71      |
| Table 3-26                                 | ·•      |
| USB Full-Speed Electrical Characteristics  | 74      |



| Table 3-2 | 27                                 | USB Low-Speed Electrical Characteristics           |
|-----------|------------------------------------|----------------------------------------------------|
|           | 75                                 |                                                    |
| Table     | 3-28PLL Key Performance Indicators | 76                                                 |
| Table     | 3-29JTAG Interface Characteristics | 77                                                 |
| Table 3-3 | 30 Hig                             | h-Speed External User Clock Characteristics        |
|           | 78                                 |                                                    |
| Table 3-3 | 31 X                               | TAL 4-25 MHz Oscillator Characteristics            |
|           | 79                                 |                                                    |
| Table 3-3 | 32                                 | XTAL32 Oscillator Characteristics                  |
|           | 80                                 |                                                    |
| Table     | 3-33HRC Oscillator Characteristics | 81                                                 |
| Table 3-3 | 4 MRC Oscillator Characteristics   | 81                                                 |
| Table 3-3 | 35                                 | LRC Oscillator Characteristics                     |
|           | 81                                 |                                                    |
| Table 3-3 | 6                                  | SWDTLRC Oscillator Characteristics                 |
|           | 81                                 |                                                    |
| Table 3-3 | 37                                 | ADC Characteristics                                |
|           | 82                                 |                                                    |
| Table 3-3 | 88                                 | ADC Characteristics (continued)                    |
|           | 83                                 |                                                    |
| Table 3-3 | 9ADC1_IN0~3, ADC12_IN4~IN          | 7 Input Channel Accuracy @ f <sub>ADC</sub> =60MHz |
|           | 84                                 |                                                    |
| Table 3-4 | 0 ADC1_IN0~3, ADC12_IN4~IN7        | Input Channel Accuracy @ fADC=30MHz                |
|           | 84                                 |                                                    |
| Table 3-4 | 1 ADC1_IN0~3, ADC12_IN4~IN7        | Input Channel Accuracy @ fADC=30MHz                |
|           | 84                                 |                                                    |
| Table 3-4 | 2 ADC1_IN0~3, ADC12_IN4~IN         | 7 Input Channel Accuracy @ fADC=8MHz               |
|           | 84                                 |                                                    |
| Table 3-4 | 3 ADC1_IN12~15, ADC12_IN8~11       | Input Channel Accuracy @ fADC=60MHz                |
|           | 85                                 |                                                    |
| Table 3-4 | 4 ADC1_IN12~15, ADC12_IN8~11       | Input Channel Accuracy @ fADC=30MHz                |
|           | 85                                 |                                                    |
| Table 3-4 | .5 ADC1_IN12~15, ADC12_IN8~11      | Input Channel Accuracy @ fADC=30MHz                |
|           | 85                                 |                                                    |
| Table 3-4 | 6ADC1_IN12~15, ADC12_IN8~1         | 1 Input Channel Accuracy @ fADC=8MHz               |
|           | 85                                 |                                                    |

HC32F460 Series
Datasheet\_Rev1.5



| Table 3-47 ADC1 | _IN0~3, ADC12_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=60MHz |
|-----------------|-------------------------------------------------------------------|
| 86              |                                                                   |
| Table 3-48 ADC1 | _IN0~3, ADC12_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=30MHz |
| 86              |                                                                   |
| Table 3-49 ADC  | 1_IN0~3, ADC12_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=8MHz |
| 86              |                                                                   |
| Table 3-50      |                                                                   |
| 89              |                                                                   |
| Table 3-51      |                                                                   |
| 89              |                                                                   |
| Table 3-52      | Gain Adjustable Amplifier Characteristics                         |
| 90              |                                                                   |
| Table 3-53      | Temperature Sensor Characteristics                                |
| 91              |                                                                   |
| Table 3-54      | Flash Memory Characteristics                                      |
| 92              |                                                                   |
| Table 3-55      | Flash Programming Erase Time                                      |
| 92              |                                                                   |
| Table 3-56      | Flash Memory Erasable Counts and Data Retention Periods           |
| 92              |                                                                   |
| Table 4-1       | Thermal Resistance Coefficients for Each Package                  |
| 106             |                                                                   |



# map index

| Figure 1-1                                                      | ••••• |
|-----------------------------------------------------------------|-------|
| Function Block Diagram                                          | 15    |
| Figure 2-1                                                      | Pin   |
| Configuration Diagram                                           | 32    |
| Figure 3-1                                                      | Pin   |
| Load Conditions (Left) and Input Voltage Measurements (Right)   | 43    |
| Figure 3-2                                                      | ••••• |
| Power Solution (HC32F460PETB-LQFP100, HC32F460PEHB-VFBGA100)    | 44    |
| Figure 3-3                                                      | ••••• |
| Power Supply Program (HC32F460KETA-LQFP64)                      | 45    |
| Figure 3-4                                                      | ••••• |
| Power Supply Scheme (HC32F460KEUA-QFN60TR/ HC32F460JETA-LQFP48/ |       |
| HC32F460JEUA-QFN48TR)                                           | ••••• |
| 46                                                              |       |
| Figure 3-5                                                      |       |
| Current consumption measurement scheme                          |       |
| Figure 3-6                                                      |       |
| AC Characterization Definition                                  |       |
| Figure 3-7USART Clock Timing                                    | 67    |
| Figure 3-8                                                      |       |
| USART (CSI) Input/Output Timing                                 | 67    |
| Figure 3-9                                                      | ••••• |
| I2S Slave Mode Timing (Philips Protocol)                        | 69    |
| Figure 3-10                                                     | ••••• |
| I2S Master Mode Timing (Philips Protocol)                       | 69    |
| Figure 3-11                                                     |       |
| Bus Timing Definitions                                          | 70    |
| Figure 3-12                                                     | ••••• |
| SCK Clock Definition                                            | 71    |
| Figure 3-13                                                     | ••••• |
| SPI timing diagram -slave mode and CPHA=0                       | 72    |
| Figure 3-14                                                     | ••••• |
| SPI timing diagram -slave mode and CPHA=1                       | 72    |
| Figure 3-15                                                     | ••••• |
| SPI timing diagram -master mode                                 | 73    |
| HC32F460 Series                                                 | 12    |
| Datasheet_Rev1.5                                                | /142  |



| Figure 3-16                                          | ••••• |
|------------------------------------------------------|-------|
| USB Rise/Fall Time and Cross Over Voltage Definition | 75    |
| Figure 3-17                                          | ••••• |
| JTAG JTCK Clock                                      | 77    |
| Figure 3-18                                          | ••••• |
| JTAG Inputs and Outputs                              | 78    |
| Figure 3-19 Typical Application                      |       |
| Using 8 MHz Crystals                                 | 79    |
| Figure 3-20                                          | ••••• |
| Typical Application with 32.768 kHz Crystals         | 80    |
| Figure 3-21                                          |       |
| ADC Accuracy Characteristics                         | 87    |
| Figure 3-22 Typical Connections                      |       |
| Using ADCs                                           | 88    |
| Figure 3-23                                          | ••••• |
| Power and Reference Supply Decoupling Example        | 88    |



# 1 Introduction (Overview)

The HC32F460 series are high-performance MCUs based on the ARM® Cortex®-M4 32-bit RISC CPU with a maximum operating frequency of 200 MHz. The Cortex-M4 core integrates a Floating-Point Unit (FPU) and a DSP, realizing single-precision floating-point arithmetic operations, supporting all ARM single-precision data-processing instructions and data types, and supporting the complete DSP instruction set. It supports all ARM single-precision data processing instructions and data types, and the full DSP instruction set. The core integrates an MPU unit and a DMAC dedicated MPU unit to ensure the safety of system operation.

The HC32F460 series integrates high-speed on-chip memories, including up to 512KB of Flash and up to 192KB of SRAM, and a Flash access acceleration unit, which enables the CPU to execute single-cycle programs on Flash. The polled bus matrix supports simultaneous access to memory and peripherals by multiple bus hosts for improved performance. The bus hosts include CPU, DMA, and USB dedicated DMA. In addition to the bus matrix, it supports data transfer between peripherals, basic arithmetic operations, and event triggering, which can significantly reduce the transaction load of the CPU.

The HC32F460 series integrates a rich set of peripheral functions. These include two independent 12bit 2.5MSPS ADCs, one gain-adjustable PGA, three voltage comparators (CMPs) three multifunctional 16bit PWM timers (Timer6) supporting six complementary PWM outputs, three motor PWM timers (Timer4) supporting 18 complementary PWM outputs, and six 16bit general-purpose Timer

(TimerA) supports 3 3-phase quadrature encoding inputs and 48 Duty independently programmable PWM outputs, 11 serial communication interfaces (I2C/UART/SPI)1 QSPI interface, 1 CAN, 4 I2S with audio PLL support, 2 SDIO, 1 USB FS Controller with on-chip FS PHY support Device/Host.

The HC32F460 series supports a wide voltage range (1.8-3.6V) a wide temperature range (-40-105°C), and various low-power modes. Ultra-high speed mode ( $\leq$ 200MHz) high speed mode ( $\leq$ 168MHz) and ultra-low speed mode can be switched in Run mode and Sleep mode.

(≤8MHz) Supports fast wake-up in low-power mode, as fast as 2μs in STOP mode and 20μs in Power Down mode.

# typical application

The HC32F460 series is available in 48pin, 64pin, and 100pin LQFP packages, 48pin and 60pin QFN packages, and 100pin VFBGA package, which is suitable for high-performance motor inverter control, smart hardware, and IoT connectivity modules.

HC32F460 Series 14
Datasheet\_Rev1.5 /142



# 1.1 Model naming rules



B: -40-105°C, industrial grade A: -40-85°C, industrial grade



# 1.2 Model

# **Function**

## Table 1-1 Model Function Comparison

# Comparison

# Table

|                     | Product Model           |           |                          |          |          |          |          |          |          |          |
|---------------------|-------------------------|-----------|--------------------------|----------|----------|----------|----------|----------|----------|----------|
| functionali         | functionality           |           | HC32F460                 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 |
|                     |                         | PEHB      | PETB                     | РСТВ     | KETA     | KCTA     | JETA     | JCTA     | JEUA     | KEUA     |
| Flash Memory (      | KB)                     | 512       | 512                      | 256      | 512      | 256      | 512      | 256      | 512      | 512      |
| pinout              |                         | 100       | 100                      | 100      | 64       | 64       | 48       | 48       | 48       | 60       |
| GPIO count          |                         | 83        | 83                       | 83       | 52       | 52       | 38       | 38       | 38       | 50       |
| 5V Tolerant GPI     | 5V Tolerant GPIO count  |           | 81                       | 81       | 50       | 50       | 36       | 36       | 36       | 48       |
| seal inside         | seal inside             |           | VFBGA LQFP QFN           |          |          |          |          |          | FN       |          |
| temperature ra      | temperature range       |           | -40-105°C -40-85°C       |          |          |          |          |          |          |          |
| Power supply voltag | ge range                | 1.8~3.6 V |                          |          |          |          |          |          |          |          |
| OTP (Byte)          |                         | 960       |                          |          |          |          |          |          |          |          |
| SRAM (KB)           |                         | 192       |                          |          |          |          |          |          |          |          |
| DMA                 | DMA                     |           | 2unit * 4ch              |          |          |          |          |          |          |          |
| external port inte  | external port interrupt |           | EIRQ * 16vec + NMI * 1ch |          |          |          |          |          |          |          |
|                     | UART                    |           | 4ch (2)                  |          |          |          |          |          |          |          |
| Communcation        | SPI                     |           |                          |          |          | 4ch (3)  |          |          |          |          |

| HSC小华半导<br>AGes semicondu        | I2C       |                            |          |          |          | 3ch (2)    |          |          | www.xh   | isc.com.c |
|----------------------------------|-----------|----------------------------|----------|----------|----------|------------|----------|----------|----------|-----------|
| Minimum number of                | I2S       |                            |          |          |          | 4ch (3)    |          |          |          |           |
| Os required per ch in            | CAN       |                            |          |          |          |            |          |          |          |           |
| parentheses)                     | CAIN      |                            |          |          |          |            |          |          |          |           |
|                                  |           |                            |          | ı        | P        | roduct Mod | el       |          |          |           |
| functionali                      | HC32F460  | HC32F460                   | HC32F460 | HC32F460 | HC32F460 | HC32F460   | HC32F460 | HC32F460 | HC32F460 |           |
|                                  |           | PEHB                       | PETB     | РСТВ     | KETA     | КСТА       | JETA     | JCTA     | JEUA     | KEUA      |
|                                  | QSPI      |                            |          |          |          | 1ch (6)    |          |          |          |           |
|                                  | SDIO      |                            |          |          |          | 2ch (3)    |          |          |          |           |
|                                  | USB-FS    |                            |          |          |          | 1ch (2)    |          |          |          |           |
|                                  | Timer0    |                            |          |          |          | 2unit      |          |          |          |           |
|                                  | TimerA    | 6unit                      |          |          |          |            |          |          |          |           |
|                                  | Timer4    | 3unit                      |          |          |          |            |          |          |          |           |
| Timers                           | Timer6    |                            |          |          |          | 3unit      |          |          |          |           |
|                                  | WDT       |                            |          |          |          | 1ch        |          |          |          |           |
|                                  | SWDT      |                            | 1ch      |          |          |            |          |          |          |           |
|                                  | RTC       | 1ch                        |          |          |          |            |          |          |          |           |
|                                  | 12bit ADC | 2unit, 16ch 2unit, 10ch 2u |          |          |          |            |          |          | 2unit.   |           |
| Analog                           | PGA       |                            |          |          |          | 1ch        |          |          |          |           |
| Allatog                          | СМР       |                            |          |          |          | 3ch        |          |          |          |           |
|                                  | OTS       |                            |          |          |          | ✓          |          |          |          |           |
| AES128<br>HASH (SHA256)          |           | ✓                          |          |          |          |            |          |          |          |           |
|                                  |           |                            | ✓        |          |          |            |          |          |          |           |
| TRNG                             |           |                            |          |          |          | ✓          |          |          |          |           |
| TRNG Frequency Monitoring Module |           | ✓                          |          |          |          |            |          |          |          |           |

(FCM)



| Programmable voltage detection | ✓             |          |          |          |          |          |          |          |          |
|--------------------------------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|
| function (PVD)                 |               |          |          |          |          |          |          |          |          |
| functionality                  | Product Model |          |          |          |          |          |          |          |          |
|                                | HC32F460      | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 | HC32F460 |
|                                | PEHB          | PETB     | РСТВ     | KETA     | КСТА     | JETA     | JCTA     | JEUA     | KEUA     |
| debugging interface            | SWD           |          |          |          |          |          |          |          |          |
|                                | JTAG          |          |          |          |          |          |          |          |          |



## 1.3 functional



Figure 1-1 Function Block Diagram



#### 1.4 Function Introduction

#### 1.4.1 CPU

The HC32F460 series integrates the latest generation of embedded ARM® Cortex®-M4 with FPU 32-bit Thin Client CPU, which realizes low pin count and low power consumption, while providing excellent computing performance and fast interrupt response. The integrated on-chip memory capacity fully utilizes the excellent instruction efficiency of the ARM® Cortex®-M4 with FPU, and the CPU supports DSP instructions for efficient signal processing operations and complex algorithms. The Floating Point Unit (FPU) avoids instruction saturation and accelerates software development.

#### 1.4.2 Bus Architecture (BUS)

The master system consists of a 32-bit multilayer AHB bus matrix that

interconnects the following host and slave buses. Host Bus

- Cortex-M4F Core CPU-I Bus, CPU-D Bus, CPU-S Bus
- System DMA\_1 Bus, System DMA\_2 Bus
- USBFS\_DMA Bus

Slave Bus

- Flash ICODE Bus
- Flash DCODE Bus
- Flash MCODE bus (bus for hosts other than the CPU to access Flash)
- SRAMH Bus (SRAMH 32kB)
- SRAMA bus (SRAM1 64KB)
- SRAMB Bus (SRAM2 64KB, SRAM3 28KB, Ret\_SRAM 4KB)
- APB1 Peripheral Bus (AOS/EMB/Timers/SPI/USART/I2S)
- APB2 Peripheral Bus (Timers/SPI/USART/I2S)
- APB3 Peripheral Bus (ADC/PGA/TRNG)
- APB4 Peripheral Bus (FCM/WDT/CMP/OTS/RTC/WKTM/I2C)
- AHB1 Peripheral bus (KEYSCAN/INTC/DCU/GPIO/SYSC)
- AHB2 Peripheral Bus (CAN/SDIOC)
- AHB3 Peripheral Bus (AES/HASH/CRC/USB FS)
- AHB4 Peripheral Bus (SDIOC)
- AHB5 Peripheral Bus (QSPI)

With the help of the bus matrix, efficient concurrent access from the master bus to the slave bus can be realized.

HC32F460 Series 20
Datasheet\_Rev1.5 /109



#### 1.4.3 Reset control (RMU)

The chip is configured with 14 reset methods.

- Power-On Reset (POR)
- NRST Pin Reset (NRST)
- Undervoltage Reset (BOR)
- Programmable Voltage Detection 1 Reset (PVD1R)
- Programmable Voltage Detection 2 Reset (PVD2R)
- Watchdog Reset (WDTR)
- Specialized Watchdog Reset (SWDTR)
- Power-down wake-up reset (PDRST)
- Software Reset (SRST)
- MPU Error Reset (MPUR)
- RAM Parity Reset (RAMPR)
- RAMECC Reset (RAMECCR)
- Clock Exception Reset (CKFER)
- External high-speed oscillator abnormal stop reset (XTALER)

#### 1.4.4 Clock Control (CMU)

The Clock Control Unit provides clocking functions for a range of frequencies, including: an external high-speed oscillator, an external low-speed oscillator, two PLL clocks, an internal high-speed oscillator, an internal medium-speed oscillator, an internal low-speed oscillator, an internal low-speed oscillator dedicated to the SWDT, clock prescaler, clock multiplexing, and clock gating circuitry.

The clock control unit also provides a clock frequency measurement function. The clock frequency measurement circuit (FCM) monitors and measures the clock of the measurement object using the measurement reference clock. An interrupt or reset occurs when the set range is exceeded.

The AHB, APB and Cortex-M4 clocks are derived from the system clock, which can be sourced from a choice of six clock sources:

- 1) External High Speed Oscillator (XTAL)
- 2) External low-speed oscillator (XTAL32)
- 3) MPLL Clock (MPLL)
- 4) Internal High Speed Oscillator (HRC)
- 5) Internal medium-rate oscillator (MRC)
- 6) Internal low rate oscillator (LRC)

The system clock can run at a maximum clock frequency of 200MHz. the SWDT has a separate HC32F460 Series



clock source: the SWDT dedicated internal low-speed oscillator (SWDTLRC) the real-time clock (RTC) uses an external low-speed oscillator or an internal low-speed oscillator as clock source. The real-time clock (RTC) uses either an external low-speed oscillator or an internal low-speed oscillator as the clock source. The 48MHz clock of USB-FS and the I2S communication clock can be selected from the system clock, MPLL, and UPLL as the clock source.



For each clock source, it can be turned on and off individually. It is recommended to turn off unused clock sources to reduce power consumption.

#### 1.4.5 Power Control (PWC)

The power controller is used to control the power supply, switching, and detection of multiple power domains of the chip in multiple operation modes and low power modes. The power controller consists of power consumption control logic (PWCL), and a supply voltage detection unit (PVD).

The chip operates from 1.8 V to 3.6 V. The voltage regulator (LDO) supplies power to the VDD domain and VDDR domain, and the VDDR voltage regulator (RLDO) supplies power to the VDDR domain in power-down mode. The chip provides three modes of operation: ultrahigh speed, high speed, and ultra-low speed, and three low-power modes: sleep, stop, and power-down through the power consumption control logic (PWCL).

The power supply voltage detection unit (PVD) provides functions such as power-on reset (POR), power-down reset (PDR), undervoltage reset (BOR), programmable voltage detection 1 (PVD1), programmable voltage detection 2 (PVD2), etc., of which, POR, PDR, BOR control chip reset by detecting the VCC voltage; PVD1 detects the VCC voltage to generate a reset or interrupt by setting according to the register; PVD2 detects VCC voltage or external input detection voltage to generate a reset or interrupt according to the register; PVD2 detects VCC voltage or external input detection voltage to generate a reset or interrupt by selecting according to the register. PVD1 detects VCC voltage and generates reset or interrupt according to the register setting, while PVD2 detects VCC voltage or external input detection voltage and generates reset or interrupt according to the register setting.

The VDDR area can maintain power through the RLDO after the chip enters power-down mode, which ensures that the real-time clock module (RTC) and wake-up timer (WKTM) can continue to operate and maintain 4KB of low-power SRAM (Ret-SRAM) data. The analog module is equipped with dedicated power supply pins to improve analog performance.

## 1.4.6 Initialization Configuration (ICG)

After the chip reset is released, the hardware circuit will read the FLASH address 0x0000\_0400~0x0000\_041F (of which 0x0000\_0408~0x0000\_041F is the reserved function address, the 24byte address needs to be set to 1 by the user to ensure that the chip operates correctly) and load the data into the initialization configuration register, and the user needs to program or erase the FLASH sector 0 to modify the initialization configuration register. Users need to program or erase FLASH sector 0 to modify the initialization configuration register.

## 1.4.7 Embedded FLASH Interface (EFM)

HC32F460 Series 23
Datasheet\_Rev1.5 /109



The FLASH interface provides access to FLASH through the ICODE, DCODE and MCODE buses, which allows programming, sector erase and full erase operations on FLASH; and accelerates code execution through instruction prefetching and caching mechanisms.

#### **Key Features:**

- Maximum 512KByte FLASH space
- I-CODE Bus 16Byte Prefetched Value
- Shared 64 caches (1Kbyte) on I-CODE and D-CODE buses
- Provides 960Bbyte One Time Programming Area (OTP)
- Supports low-power read operations
- Support for Guided Exchange Function
- Supports security protection and data encryption\*1

HC32F460 Series 24
Datasheet\_Rev1.5 /109

<sup>\*1:</sup> For specifications on Flash security protection and data encryption, please consult the sales window.



#### 1.4.8 Internal SRAM (SRAM)

This product comes with 4KB of power-down mode retention SRAM (Ret\_SRAM) and 188KB of system SRAM (SRAMH/SRAM1/SRAM2/SRAM3)

SRAM can be accessed byte, half-word (16-bit), or full-word (32-bit). Read and write operations are performed at CPU speed and wait cycles can be inserted.

Ret\_SRAM provides 4KB of data retention space in power down mode.

SRAM3 with ECC checksum (Error Checking and Correcting) ECC checksum for the correction of one check two code, that is, you can correct one error, check two errors; SRAMH/SRAM1/SRAM2/Ret\_SRAM with parity check (Even- parity check) each byte of data with one parity check, with one parity bit per byte of data.

## 1.4.9 General Purpose IO (GPIO)

**GPIO Main Characteristics:** 

- 16 I/O pins per port group, may be less than 16 depending on actual configuration
- Support for pull-ups
- Supports push-pull, open-drain output modes
- Supports high, medium and low drive modes
- Inputs that support external interrupts
- Supports I/O pin peripheral function multiplexing, up to 16 selectable multiplexing functions per I/O pin, and up to 64 selectable functions for some I/Os.
- Each I/O pin can be programmed independently
- Each I/O pin can be selected to have 2 functions active at the same time (2 output functions active at the same time are not supported).

#### 1.4.10 Interrupt control (INTC)

The functions of the interrupt controller (INTC) are selection of interrupt event requests as interrupt inputs to the NVIC to wake up WFI, and as event inputs to wake up WFE. selection of interrupt event requests as wake-up conditions for low-power modes (sleep and stop modes); interrupt control functions for the external pins NMI and EIRQ; and interrupt/event selection functions for software interrupts.

#### **Key Specifications:**

1) NVIC interrupt vectors: Please refer to the user's manual for the actual number of interrupt vectors used (excluding the 16 interrupt lines of the Cortex™-M4F), and each interrupt vector can be selected according to the interrupt selection register to correspond to the peripheral interrupt event request. For more information on

HC32F460 Series 25
Datasheet\_Rev1.5 /109



exceptions and NVIC programming, please refer to Chapter 5: Exceptions and Chapter 8: Nested Vector Interrupt Controller in the ARM Cortex™-M4F Technical Reference Manual.

- 2) Programmable Priority: 16 programmable priorities (4-bit interrupt priority is used)
- 3) Non-maskable interrupts: In addition to the NMI pin as a non-maskable interrupt source, a variety of system interrupt event requests can be independently selected.

HC32F460 Series
Datasheet\_Rev1.5



As non-maskable interrupts, and each interrupt event request is equipped with an independent enable selection, hang, and clear the hang register.

- 4) Equipped with 16 external pin interrupts.
- 5) Configure multiple peripheral interrupt event requests, refer to the interrupt event request serial number list.
- 6) Equipped with 32 software interrupt event requests.
- 7) Interrupts can wake up the system in sleep mode and stop mode.

## 1.4.11 Automated Operating System (AOS)

The Automatic Operation System (AOS) is used to realize the linkage between peripheral hardware circuits without the aid of the CPU. The events generated by the peripheral circuits are used as AOS sources, such as the comparison match and overflow of the timer, the cycle signal of the RTC, the various states of sending and receiving data of the communication module (idle, full of receiving data, end of sending data, and empty of sending data) and the end of the conversion of the ADC, etc., which trigger the actions of the other peripheral circuits. The triggered peripheral circuit action is called AOS Target.

#### 1.4.12 Keyboard scanning (KEYSCAN)

This product is equipped with one unit of Keyboard Control Module (KEYSCAN). KEYSCAN module supports keyboard array (row and column) scanning, where columns are driven by independent scanning output KEYOUTm (m=0~7) and row KEYINn (n=0~15) is detected as EIRQn (n=0~15) input. This module realizes the key recognition function by line scan query method.

#### 1.4.13 Memory Protection Unit (MPU)

The MPUs can provide protection for the memory and can improve system security by blocking unauthorized access. Four host-specific MPU units and one IP-specific MPU unit are built into this product.

The ARM MPU provides CPU access control to the entire 4G address space.

The DMA MPU (DMPU) provides read/write access control for DMA\_1/DMA\_2/USB FS DMA to all 4G address space. The MPU action can be set to Ignore/Bus Error/Non-maskable Interrupt/Reset when an access to the prohibited space occurs.

The IP MPU provides access control to system IPs and security-related IPs in unprivileged mode.

## 1.4.14 DMA Controller (DMA)

DMA is used to transfer data between memories and peripheral function modules, enabling data

HC32F460 Series 27
Datasheet\_Rev1.5 /109



exchange between memories, between memories and peripheral function modules, and between peripheral function modules without CPU involvement.

- The DMA bus is independent of the CPU bus and is transmitted according to the AMBA AHB-Lite bus protocol.
- 8 independent channels (4 channels each for DMA\_1 and DMA\_2 for independent operation of different DMA transfer functions
- The start request source for each channel is configured through a separate trigger source selection register
- Transmit one block of data per request
- The minimum data block is 1 data and the maximum is 1024 data.

HC32F460 Series
Datasheet\_Rev1.5



- Each data can be configured as 8bit, 16bit or 32bit.
- Up to 65535 transmissions can be configured
- Source and destination addresses can be independently configured as fixed, self-incrementing, self-decrementing, cyclic or jumps with specified offsets
- Three types of interrupts can be generated, block transfer completion interrupt, transfer completion interrupt, and transfer error interrupt. Each interrupt can be configured to be blocked or not. The block transfer completion and transfer completion can be used as event outputs, which can be used as trigger source inputs for other peripheral modules with hardware trigger function.
- Support chain transmission function, can realize one request to transmit multiple data blocks
- Supports external event triggered channel reset
- Can be set to enter the module stop state when not in use to reduce power consumption

#### 1.4.15 Voltage Comparator (CMP)

The CMP is a peripheral module that compares two analog voltages, INP and INM, and outputs the results of the comparison. The CMP has three independent comparison channels, each of which has four inputs for the analog voltages INP and INM. The CMP has three independent comparison channels, each with four inputs for analog voltage INPs and INMs. One INP can be selected for single comparison with one INM, or multiple INPs can be scanned for comparison with the same INM. Comparison results can be read from registers, output to external pins, and generate interrupts and events.

#### **1.4.16** Analog-to-digital converter (ADC)

The 12-bit ADC is an analog-to-digital converter that uses successive approximation. It has a maximum of 16 analog input channels that can convert external port and internal analog signals. These channels can be combined into a sequence for progressive scan conversion, and the sequence can be converted in a single pass, or in a continuous scan. The ADC module also has an analog watchdog function that monitors the conversion results of any given channel to see if it exceeds a user-set threshold.

#### **ADC Main Characteristics:**

- high performance
  - Configurable 12-bit, 10-bit and 8-bit resolutions
  - The frequency ratio of the peripheral clock PCLK4 to the A/D conversion clock
     ADCLK is selectable:
    - PCLK4: ADCLK = 1:1, 2:1, 4:1, 8:1, 1:2, 1:4
       -ADCLK optional PLL asynchronous to the system clock HCLK, in which case the clock sources of PCLK4 and ADCLK are fixed to PLL at the same time,

HC32F460 Series 29
Datasheet\_Rev1.5 /109



and the frequency ratio is 1:1, and the original divider setting is invalidated.

- 2.5MSPS (PCLK4=ADCLK=60MHz, 12-bit, 17-cycle sampling)
- Individually programmable sampling time for each channel
- Independent data registers for each channel
- Data registers can be configured for data alignment
- Consecutive multiple conversion averaging function
- Analog watchdog to monitor conversion results

HC32F460 Series
Datasheet\_Rev1.5



- The ADC module can be set to stop when not in use.
- Analog Input Channels
  - Up to 16 external analog input channels
  - 1 internal reference voltage
- Conversion start condition
  - Software Setup Conversion Starts
  - Peripheral peripheral synchronization triggers conversion start
  - External pin triggers conversion start
- conversion mode
  - 2 scanning sequences A, B, single or multiple channels can be specified at will
  - Sequence A Single scan
  - Sequence A Continuous Scan
  - Dual sequence scanning, sequence A and B select trigger source independently,
     sequence B has higher priority than A
  - Synchronized mode (for devices with two or three ADCs)
- Interrupt and event signal output
  - Sequence A End of Scan Interrupt EOCA\_INT and Event EOCA\_EVENT
  - Sequence B End of Scan Interrupt EOCB\_INT and Event EOCB\_EVENT
  - Analog Watchdog Channel Compare Interrupt CHCMP\_INT and Event CHCMP\_EVENT, Sequence Compare Interrupt SEQCMP\_INT and Event SEQCMP\_EVENT
  - Each of the above 4 events can initiate a DMA

#### 1.4.17 Temperature sensors (OTS)

The OTS can obtain the internal temperature of a chip to support reliable system operation. After initiating temperature measurement using a software or hardware trigger, the OTS provides a set of temperature-dependent digital quantities that can be calculated using a formula to obtain the temperature value.

#### 1.4.18 Advanced Control Timer (Timer6)

The Advanced Control Timer 6 (Timer6) is a 16-bit count width high-performance timer, which can be used to count and generate different forms of clock waveforms for external use. The timer supports triangle and sawtooth waveform modes, and can generate various PWM waveforms; software synchronized counting and hardware synchronized counting can be realized between units; caching function is supported in each reference value register; 2-phase quadrature encoding and 3-phase quadrature encoding are supported; and EMB control is supported. This series of products is equipped with 3 units of Timer6.

HC32F460 Series 31
Datasheet\_Rev1.5 /109



## 1.4.19 Universal Control Timer (Timer4)

The Universal Control Timer 4 (Timer4) is a timer module for three-phase motor control, providing a variety of three-phase motor control solutions for different applications. The timer supports triangular and sawtooth waveform modes, and can generate various PWM waveforms; supports cache function; and supports EMB control. This series of products is equipped with a 3-unit Timer4.



#### 1.4.20 Emergency Brake Module (EMB)

The Emergency Brake Module is a functional module that notifies the timer when certain conditions are met so that the timer stops outputting PWM signals to the external motor, and the following events are used to generate the notification:

- External port input level change
- PWM output port levels are in phase (same high or low)
- Voltage Comparator Comparison Results
- External oscillator stops oscillating
- Write Register Software Control

## 1.4.21 General-purpose timer (TimerA)

The general-purpose Timer A (TimerA) is a 16-bit count width timer with 8 PWM outputs. The timer supports triangle and sawtooth waveform modes to generate various PWM waveforms, software synchronized start counting, caching of comparison reference value registers, 2-phase orthogonal coded counting and 3-phase orthogonal coded counting. This series of products is equipped with 6 units of TimerA, which can realize 48 PWM outputs at most.

## 1.4.22 General purpose timer (Timer0)

General purpose Timer 0 (Timer0) is a basic timer that can be used for both synchronous and asynchronous counting. The timer contains 2 channels which can generate a compare match event during the counting period. This event can trigger an interrupt or be used as an event output to control other modules. This series has a 2-unit Timer0.

#### 1.4.23 Real Time Clock (RTC)

The Real Time Clock (RTC) is a counter that stores time information in BCD code format. Records specific calendar times from year 00 to year 99. Supports both 12/24 hour time systems and automatically counts days 28, 29 (leap year) 30, and 31 based on the month and year.

## 1.4.24 Watchdog Counter (WDT)

There are two types of watchdog counters, one is a dedicated watchdog counter with a dedicated internal RC (WDTCLK:10KHz) as the count clock source.

(SWDT) and the other is a general purpose watchdog counter (WDT) with a count clock source of PCLK3. The Dedicated Watchdog and General Purpose Watchdog are 16-bit decrementing counters that are used to monitor for software failures due to deviations from normal operation of the application program caused by external disturbances or unforeseen logic conditions.

Both watchdogs support the window function. The window interval can be preset before

HC32F460 Series 33
Datasheet\_Rev1.5 /109



counting starts. When the count value is located in the window interval, the counter can be refreshed and counting starts again.

HC32F460 Series
Datasheet\_Rev1.5



## 1.4.25 Serial communication interface (USART)

This product is equipped with 4 units of Serial Communication Interface Module (USART). The USART enables flexible full-duplex data exchange with external devices; the USART supports universal asynchronous serial communication interface (UART), clock synchronous communication interface, and smart card interface (ISO/IEC7816-3). It supports modem operation (CTS/RTS operation) and multiprocessor operation.

#### 1.4.26 Integrated Circuit Bus (I2C)

This product carries 3 units of Integrated Circuit Bus (I2C).I2C is used as an interface between the microcontroller and the I2C serial bus. Provide multi-master mode function, can control all the I2C bus protocol, arbitration. Support standard mode, fast mode.

#### 1.4.27 Serial Peripheral Interface (SPI)

This product is equipped with a 4-channel serial peripheral interface SPI, which supports high-speed full-duplex serial synchronous transmission and convenient data exchange with peripheral devices. Users can set up 3-wire/4-wire, master/slave and baud rate range as needed.

#### 1.4.28 Four-wire serial peripheral interface (QSPI)

The Quad Serial Peripheral Interface (QSPI) is a memory control module designed to communicate with serial ROMs with SPI-compatible interfaces. The main targets are serial Flash, serial EEPROM and serial FeRAM.

HC32F460 Series Datasheet\_Rev1.5



## 1.4.29 Integrated Circuit Built-in Audio Bus (I2S)

I2S (Inter\_IC Sound Bus) an integrated circuit built-in audio bus that specializes in data transfer between audio devices. This product is equipped with 4 I2S and has the following features.

| functionality            | Main characteristics                                                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| communication<br>method  | <ul> <li>Supports full-duplex and half-duplex communication</li> <li>Supports master or slave mode operation</li> </ul>                                                                                                                                                                                                        |
| data format              | <ul> <li>Selectable channel length: 16/32 bit</li> <li>Optional transmission data length: 16/24/32 bits</li> <li>Data shift order: MSB start</li> </ul>                                                                                                                                                                        |
| baud                     | <ul> <li>8-bit programmable linear prescaler for accurate audio sampling frequency</li> <li>Supported sampling frequency 192k, 96k, 48k, 44.1k, 32k, 22.05k, 16k, 8k</li> <li>Outputs a drive clock to drive external audio components at a fixed ratio of 256*Fs (Fs is the audio sampling frequency).</li> </ul>             |
| Supports I2S<br>protocol | <ul> <li>I2S Philips Standard</li> <li>MSB Alignment Criteria</li> <li>LSB Alignment Criteria</li> <li>PCM Standard</li> </ul>                                                                                                                                                                                                 |
| data buffer              | Input and output FIFO buffers with 2-word deep, 32-bit wide buffers Input and output FIFO buffers with 2 words deep and 32 bits wide                                                                                                                                                                                           |
| clock source             | <ul> <li>Internal I2SCLK (UPLLR/UPLLQ/UPLLP/MPLLR/MPLLQ/MPLLP); can be used by</li> <li>The external clock on the I2S_EXCK pin provides the</li> </ul>                                                                                                                                                                         |
| disruptions              | <ul> <li>Generate an interrupt when the effective space in the transmit buffer reaches the alarm threshold.</li> <li>Generate an interrupt when the effective space in the receive buffer reaches the alarm threshold.</li> <li>Receive data area is full and there is still a write data request, receive overflow</li> </ul> |
|                          | <ul> <li>Send data area is empty and there is still a request to send, send underflow</li> <li>Send data area is full and there is still a request to write data, send overflow</li> </ul>                                                                                                                                     |

## 1.4.30 CAN communication interface (CAN)

This product is equipped with a CAN communication interface module (CAN) 1 unit and 512 Bytes of RAM for CAN to store transmit/receive messages. It supports the CAN2.0B protocol specified in ISO11898-1 and the TTCAN protocol specified in ISO11898-4.

## 1.4.31 USB2.0 Full Speed Module (USB FS)

HC32F460 Series 36
Datasheet\_Rev1.5 /109



The USB2.0 Full Speed Module (USB FS) is a 1-unit, on-chip, full-speed PHY. The USB FS is a dual-role (DRD) controller that supports both slave and master functions. In host mode, the USB FS supports both full-speed and low-speed transceivers, while only full-speed transceivers are supported in slave mode.

The USB FS module on this product can generate an SOF event when a SOF token is successfully sent in the host mode or received in the slave mode.



### 1.4.32 Cryptographic coprocessing module (CPM)

The Cryptographic Co-Processing Module (CPM) consists of three sub-modules: the AES encryption and decryption algorithm processor, the HASH secure hashing algorithm, and the TRNG true random number generator.

The AES encryption and decryption algorithm processor follows standard data encryption and decryption standards and can realize encryption and decryption operations with a 128-bit key length.

The HASH Secure Hash Algorithm is the SHA-2 version of SHA-256 (Secure Hash Algorithm) which is compliant with the national standard "FIPS PUB 180-3" published by the National Institute of Standards and Technology, and can produce a 256-bit message digest output for messages up to 2^64 bits in length.

The TRNG True Random Number Generator is a random number generator based on continuous analog noise, providing 64bit random numbers.

### **1.4.33** Data Computing Unit (DCU)

The Data Computing Unit (DCU) is a module that simply processes data without the aid of a CPU. Each DCU unit has 3 data registers and can add or subtract 2 data, compare sizes, and perform window comparison. This product is equipped with 4 DCUs, each of which can perform its own functions independently.

### 1.4.34 CRC Computation Unit (CRC)

The CRC algorithm in this module follows the definition of ISO/IEC13239 and uses 32-bit and 16-bit CRCs respectively. the generating polynomial for CRC32 is X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1. the generating polynomial for CRC16 is X16+X12+X5+1. the generating polynomial for CRC16 is X16+X12+X5+1.

## 1.4.35 SDIO Controller (SDIOC)

The SDIO controller is the host in the SD/SDIO/MMC communication protocol. This product has two SDIO controllers, each of which provides a host interface for communicating with SD cards that support the SD2.0 protocol, SDIO devices, and MMC devices that support the eMMC4.51 protocol. The SDIOC features are as follows:

- Supports SDSC, SDHC, SDXC format SD cards and SDIO devices.
- Supports 1-wire (1bit) and 4-wire (4bit) SD buses
- Supports 1-wire (1bit), 4-wire (4bit) and 8-wire (8bit) MMC buses
- Card recognition and hardware write protection

 HC32F460 Series
 38

 Datasheet\_Rev1.5
 /109



# 2 Pinout and Function (Pinouts)

## 2.1 Pinouts





## hc32f460pehb-vfbga100

(Top View)



Note: A1 is Pin 1.



### hc32f460keta-lqfp64/hc32f460kcta-lqfp64





### hc32f460keua-qfn60tr





### hc32f460jeta-lqfp48/hc32f460jcta-lqfp48





### hc32f460jeua-qfn48tr





# **2.2** Pin

# **Function**

### Table 2-1 Pin Function Table

# Chart

|         |          |        |         |            | Pin   |                                   |           |                | Func0 | Func1   | Func2      | Func3 | Func4                       | Func5                       | Func6           | Func7              | Func8   | Func9         | Func10    | Func11 | Func12 | Func13 | Func14   | Func15   | Func16~31 | Func32~63              |
|---------|----------|--------|---------|------------|-------|-----------------------------------|-----------|----------------|-------|---------|------------|-------|-----------------------------|-----------------------------|-----------------|--------------------|---------|---------------|-----------|--------|--------|--------|----------|----------|-----------|------------------------|
| LQFP100 | VFBGA100 | LQFP64 | QFN60 L | .QFP/QFN48 | Name  | Analog                            | EIRQ/WKUP | TRACE/JTAG/SWD | GPO   | other   | тім4       | тім6  | TIMA                        | TIMA                        | EMB, TIMA       | USART/SPI/<br>QSPI | KEY     | SDIO          | USBFS/I2S | -      | -      | -      | EVNTPT   | EVENTOUT | -         | Communication<br>Funcs |
| 1       | B2       | -      | -       | -          | PE2   |                                   | EIRQ2     | TRACECK        | GPO   |         |            |       | TIMA_3_PWM5                 |                             |                 | USART3_CK          |         |               |           |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 2       | A1       | -      | -       | -          | PE3   |                                   | EIRQ3     | TRACED0        | GPO   |         |            |       | TIMA_3_PWM6                 |                             |                 | USART4_CK          |         |               |           |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 3       | В1       | -      | -       | -          | PE4   |                                   | EIRQ4     | TRACED1        | GPO   |         |            |       | TIMA_3_PWM7                 |                             |                 |                    |         |               |           |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 4       | C2       | -      | -       | -          | PE5   |                                   | EIRQ5     | TRACED2        | GPO   |         |            |       | TIMA_3_PWM8                 |                             |                 |                    |         |               |           |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 5       | D2       | -      | -       | -          | PE6   |                                   | EIRQ6     | TRACED3        | GPO   |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 6       | E2       | 1      | 1       | 1          | PH2   |                                   | EIRQ2     |                | GPO   | FCMREF  | TIM4_2_CLK |       | TIMA_4_PWM7                 |                             | EMB_IN4         |                    |         | SDIO2_D4      | I2S3_EXCK |        |        |        |          | EVENTOUT |           | Func_Grp2              |
| 7       | C1       | 2      | 2       | 2          | PC13  |                                   | EIRQ13    |                | GPO   | RTC_OUT |            |       | TIMA_4_PWM8                 |                             |                 |                    |         | SDIO2_CK      | I2S3_MCK  |        |        |        | EVNTP313 |          |           | Func_Grp2              |
| 8       | D1       | 3      | 3       | 3          | PC14  | XTAL32_OUT                        | EIRQ14    |                | GPO   |         |            |       | TIMA_4_PWM5                 |                             |                 |                    |         |               |           |        |        |        | EVNTP314 |          |           |                        |
| 9       | E1       | 4      | 4       | 4          | PC15  | XTAL32_IN                         | EIRQ15    |                | GPO   |         |            |       | TIMA_4_PWM6                 |                             |                 |                    |         |               |           |        |        |        | EVNTP315 |          |           |                        |
| 10      | F2       | -      | -       | -          | vss   |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 11      | G2       | -      | -       | -          | vcc   |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 12      | F1       | 5      | 5       | 5          | PH0   | XTAL_EXT/XTAL_OU<br>T             | EIRQ0     |                | GPO   |         |            |       |                             | TIMA_5_PWM3                 |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 13      | G1       | 6      | 6       | 6          | PH1   | XTAL_IN                           | EIRQ1     |                | GPO   |         |            |       |                             | TIMA_5_PWM4                 |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 14      | H2       | 7      | 7       | 7          | NRST  |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 15      | H1       | 8      | 8       | -          | PC0   | ADC12_IN10/CMP3_<br>INP3          | EIRQ0     |                | GPO   |         |            |       | TIMA_2_PWM5                 |                             |                 |                    |         | SDIO2_D5      |           |        |        |        | EVNTP300 | EVENTOUT |           | Func_Grp1              |
| 16      | J2       | 9      | 9       | -          | PC1   | ADC12_IN11                        | EIRQ1     |                | GPO   |         |            |       | TIMA_2_PWM6                 |                             |                 |                    |         | SDIO2_D6      |           |        |        |        | EVNTP301 | EVENTOUT |           | Func_Grp1              |
| 17      | J3       | 10     | 10      | -          | PC2   |                                   | EIRQ2     |                | GPO   |         |            |       | TIMA_2_PWM7                 |                             | EMB_IN3         |                    |         | SDIO2_D7      |           |        |        |        | EVNTP302 | EVENTOUT |           | Func_Grp1              |
| 18      | K2       | 11     | -       | -          | PC3   | ADC1_IN13/CMP1_I<br>NM2           | EIRQ3     |                | GPO   |         |            |       | TIMA_2_PWM8                 |                             |                 |                    |         | SDIO1_WP      |           |        |        |        | EVNTP303 | EVENTOUT |           | Func_Grp1              |
| 19      | -        | -      | -       | -          | vcc   |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 20      | J1       | 12     | 11      | 8          | AVSS  |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| -       | K1       | -      | -       | -          | VREFL |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 21      | L1       | -      | -       | -          | VREFH |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 22      | M1       | 13     | 12      | 9          | AVCC  |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 23      | L2       | 14     | 13      | 10         | PAU   | ADC1_IN0/CMP1_IN<br>P1            | 0 0       |                | GPO   |         | TIM4_2_OUH |       | TIMA_2_PWM1/<br>TIMA_2_CLKA |                             | TIMA_2_T<br>RIG | SPI1_SS1           |         | SDIO2_D4      |           |        |        |        | EVNTP100 | EVENTOUT |           | Func_Grp1              |
| 24      | M2       | 15     | 14      | 11         | 1     | ADC1_IN1/CMP1_IN<br>P2            |           |                | GPO   |         | TIM4_2_OUL |       | TIMA_2_PWM2/<br>TIMA_2_CLKB | TIMA_3_TRIG                 |                 | SPI1_SS2           |         | SDIO2_D5      |           |        |        |        | EVNTP101 | EVENTOUT |           | Func_Grp1              |
| 25      | К3       | 16     | 15      | 12         |       | ADC1_IN2/CMP1_IN<br>P3            |           |                | GPO   |         | TIM4_2_OVH |       | TIMA_2_PWM3                 | TIMA_5_PWM1/<br>TIMA_5_CLKA |                 | SPI1_SS3           |         | SDIO2_D6      |           |        |        |        | EVNTP102 | EVENTOUT |           | Func_Grp1              |
| 26      | L3       | 17     | 16      | 13         | PA3   | ADC1_IN3/PGAVSS/<br>CMP1_INP4     | EIRQ3     |                | GPO   |         | TIM4_2_OVL |       | TIMA_2_PWM4                 | TIMA_5_PWM2/<br>TIMA_5_CLKB |                 |                    |         | SDIO2_D7      |           |        |        |        | EVNTP103 | EVENTOUT |           | Func_Grp1              |
| 27      | -        | 18     | -       | -          | AVSS  |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| -       | E3       | -      | -       | -          | NC    |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 28      | -        | 19     | -       | -          | AVCC  |                                   |           |                |       |         |            |       |                             |                             |                 |                    |         |               |           |        |        |        |          |          |           |                        |
| 29      | М3       | 20     | 17      | 14         |       | ADC12_IN4/CMP2_I<br>NP1/CMP3_INP4 |           |                | GPO   |         | TIM4_2_OWH |       |                             | TIMA_3_PWM5                 |                 | USART2_CK          | KEYOUT0 |               | I2S1_EXCK |        |        |        | EVNTP104 | EVENTOUT |           | Func_Grp1              |
| 30      | K4       | 21     | 18      | 15         |       | ADC12_IN5/CMP2_I<br>NP2           |           |                | GPO   |         | TIM4_2_OWL |       | TIMA_Z_CENA                 |                             | TIMA_2_T<br>RIG |                    | KEYOUT1 |               | I2S1_MCK  |        |        |        | EVNTP105 | EVENTOUT |           | Func_Grp1              |
| 31      | L4       | 22     | 19      | 16         | PA6   | ADC12_IN6/CMP2_I<br>NP3           | EIRQ6     |                | GPO   |         |            |       |                             | TIMA_3_PWM1/<br>TIMA_3_CLKA | EMB_IN2         |                    | KEYOUT2 | SDIO1_CM<br>D |           |        |        |        | EVNTP106 | EVENTOUT |           | Func_Grp1              |

| XHS      | SC4      | OHUA SEMICOND | <b>体</b>    |         | ADC12_IN7/CMP1_I            |                    |                    |       |          |            |             |                             | TIMA_3_PWM2/                |           |                    |         | <u> </u>      |            |       |          | <u> </u> |          | \\\_\\\\\\\\\\\\\\\\\\\\\\\\\\\ | hsc com c              |
|----------|----------|---------------|-------------|---------|-----------------------------|--------------------|--------------------|-------|----------|------------|-------------|-----------------------------|-----------------------------|-----------|--------------------|---------|---------------|------------|-------|----------|----------|----------|---------------------------------|------------------------|
| 32       | M4 XII   | 23 EMICOND    | 17          | PA7     | NM1/CMP2_INM1/CM<br>P3_INM1 | EIRQ7              |                    | GPO   |          | TIM4_1_OUL | TIM6_1_PWMB | TIMA_1_PWM5                 | TIMA_3_CLKB                 | EMB_IN3   |                    | KEYOUT3 | SDIO2_WP      |            |       |          |          | EVNTP107 | EVENTOUT WWW.X                  | i Falk-Phillic         |
| I OFD100 | VEDCA100 | LOEDCA OFN    | CO LOFD/OFN | 40 Pin  | Omeles.                     | FIDO/MIKIID        | TDACE / ITAC /CIND | Func0 | Func1    | Func2      | Func3       | Func4                       | Func5                       | Func6     | Func7              | Func8   | Func9         | Func10     | Func1 | 1 Func12 | Func13   | Func14   | Func15 Func16~31                | Func32~63              |
| LQFP100  | VERGATOO | LQFP64 QFN    | LQFP/QFN    | Name    | Analog                      | EIRQ/WKUP          | TRACE/JTAG/SWD     | GPO   | other    | тім4       | тім6        | TIMA                        | TIMA                        | ЕМВ, ТІМА | USART/SPI/<br>QSPI | KEY     | SDIO          | USBFS/I2S  | -     | -        | -        | EVNTPT   | EVENTOUT -                      | Communication<br>Funcs |
| 33       | K5       | 24 21         |             | PC4     | ADC1_IN14/CMP2_I<br>NM2     | EIRQ4              |                    | GPO   |          | TIM4_2_OUH |             |                             | TIMA_3_PWM7                 |           | USART1_CK          |         | SDIO2_CD      |            |       |          |          | EVNTP304 | EVENTOUT                        | Func_Grp1              |
| 34       | L5       | 25 22         | . –         | PC5     | ADC1_IN15/CMP3_I<br>NM2     | EIRQ5              |                    | GPO   |          | TIM4_2_OUL |             |                             | TIMA_3_PWM8                 |           |                    |         | SDIO2_CM      |            |       |          |          | EVNTP305 | EVENTOUT                        | Func_Grp1              |
| 35       | M5       | 26 23         | 18          | PB0     | ADC12_IN8/CMP3_I<br>NP1     | EIRQ0              |                    | GPO   |          | TIM4_1_OVL | TIM6_2_PWMB | TIMA_1_PWM6                 | TIMA_3_PWM3                 |           | USART4_CK          | KEYOUT4 | SDIO2_CM<br>D |            |       |          |          | EVNTP200 | EVENTOUT                        | Func_Grp1              |
| 36       | М6       | 27 24         | 19          | PB1     | ADC12_IN9/CMP3_I<br>NP2     | EIRQ1/WKUF<br>0_1  | Р                  | GPO   |          | TIM4_1_OWL | TIM6_3_PWMB | TIMA_1_PWM7                 | TIMA_3_PWM4                 |           | QSPI_QSSN          | KEYOUT5 | SDIO2_D3      | I2S2_EXCK  |       |          |          | EVNTP201 | EVENTOUT                        | Func_Grp1              |
| 37       | L6       | 28 25         | 20          | PB2     | PVD2EXINP                   | EIRQ2/WKUF<br>0_2  | Р                  | GPO   | VCOUT123 |            | TIM6_TRIGB  | TIMA_1_PWM8                 |                             | EMB_IN1   | QSPI_QSIO3         |         | SDIO2_D2      | I2S2_MCK   |       |          |          | EVNTP202 | EVENTOUT                        | Func_Grp1              |
| 38       | М7       |               | -           | PE7     |                             | EIRQ7              |                    | GPO   | ADTRG1   |            | TIM6_TRIGA  | TIMA_1_TRIG                 |                             |           | USART1_CK          |         |               |            |       |          |          |          | EVENTOUT                        |                        |
| 39       | L7       |               | _           | PE8     |                             | EIRQ8              |                    | GPO   |          | TIM4_1_OUL | TIM6_1_PWMB | TIMA_1_PWM5                 |                             |           |                    |         |               |            |       |          |          |          | EVENTOUT                        |                        |
| 40       | М8       |               | -           | PE9     |                             | EIRQ9              |                    | GPO   |          | TIM4_1_OUH | TIM6_1_PWMA | TIMA_1_PWM1/<br>TIMA_1_CLKA |                             |           |                    |         |               |            |       |          |          |          | EVENTOUT                        |                        |
| 41       | L8       |               | -           | PE10    |                             | EIRQ10             |                    | GPO   |          | TIM4_1_OVL | TIM6_2_PWMB | TIMA_1_PWM6                 |                             |           |                    |         |               |            |       |          |          |          | EVENTOUT                        |                        |
| 42       | М9       |               | _           | PE11    |                             | EIRQ11             |                    | GPO   |          | TIM4_1_OVH | TIM6_2_PWMA | TIMA_1_PWM2/<br>TIMA_1_CLKB |                             |           |                    |         |               |            |       |          |          |          | EVENTOUT                        |                        |
| 43       | L9       |               | _           | PE12    |                             | EIRQ12             |                    | GPO   |          | TIM4_1_OWL | TIM6_3_PWMB | TIMA_1_PWM7                 |                             |           | SPI1_SS1           |         |               |            |       |          |          |          | EVENTOUT                        | Func_Grp2              |
| 44       | M10      |               | -           | PE13    |                             | EIRQ13             |                    | GPO   |          | TIM4_1_OWH | TIM6_3_PWMA | TIMA_1_PWM3                 |                             |           | SPI1_SS2           |         |               |            |       |          |          |          | EVENTOUT                        | Func_Grp2              |
| 45       | M11      |               | -           | PE14    |                             | EIRQ14             |                    | GPO   |          | TIM4_1_CLK |             | TIMA_1_PWM4                 |                             |           | SPI1_SS3           |         | SDIO1_CD      |            |       |          |          |          | EVENTOUT                        | Func_Grp2              |
| 46       | M12      | - 26          | -           | PE15    |                             | EIRQ15             |                    | GPO   |          |            |             | TIMA_1_PWM8                 | TIMA_5_TRIG                 | EMB_IN2   | USART4_CK          |         | SDIO1_WP      |            |       |          |          |          | EVENTOUT                        | Func_Grp2              |
| 47       | L10      | 29 27         | 21          | PB10    |                             | EIRQ10             |                    | GPO   | ADTRG2   | TIM4_2_OVH |             | TIMA_2_PWM3                 | TIMA_5_PWM8                 |           | QSPI_QSIO2         |         | SDIO1_D7      | I2S3_EXCK  |       |          |          | EVNTP210 | EVENTOUT                        | Func_Grp2              |
| 48       | L11      | 30 28         | 22          | VCAP_1  |                             |                    |                    |       |          |            |             |                             |                             |           |                    |         |               |            |       |          |          |          |                                 |                        |
| 49       | F12      | 31 29         | 23          | vss     |                             |                    |                    |       |          |            |             |                             |                             |           |                    |         |               |            |       |          |          |          |                                 |                        |
| 50       | G12      | 32 30         | 24          | vcc     |                             |                    |                    |       |          |            |             |                             |                             |           |                    |         |               |            |       |          |          |          |                                 |                        |
| 51       | L12      | 33 31         | . 25        | PB12    |                             | EIRQ12             |                    | GPO   | VCOUT1   | TIM4_2_OVL | TIM6_TRIGB  | TIMA_1_PWM8                 |                             | EMB_IN2   | QSPI_QSIO1         |         | SDIO2_D1      | I2S3_MCK   |       |          |          | EVNTP212 | EVENTOUT                        | Func_Grp2              |
| 52       | K12      | 34 32         | 26          | PB13    |                             | EIRQ13             |                    | GPO   | VCOUT2   | TIM4_1_OUL | TIM6_1_PWMB | TIMA_1_PWM5                 |                             |           | QSPI_QSIO0         |         | SDIO2_D0      |            |       |          |          | EVNTP213 | EVENTOUT                        | Func_Grp2              |
| 53       | K11      | 35 33         | 27          | PB14    |                             | EIRQ14             |                    | GPO   | vсоит3   | TIM4_1_OVL | TIM6_2_PWMB | TIMA_1_PWM6                 |                             |           | QSPI_QSCK          |         | SDIO1_D6      |            |       |          |          | EVNTP214 | EVENTOUT                        | Func_Grp2              |
| 54       | K10      | 36 34         | 28          | PB15    |                             | EIRQ15             |                    | GPO   | RTC_OUT  | TIM4_1_OWL | TIM6_3_PWMB | TIMA_1_PWM7                 | TIMA_6_TRIG                 | EMB_IN4   | USART3_CK          |         | SDIO1_CK      |            |       |          |          | EVNTP215 | EVENTOUT                        | Func_Grp2              |
| 55       | К9       |               | -           | PD8     |                             | EIRQ8              |                    | GPO   |          | TIM4_3_OUL |             |                             | TIMA_6_PWM1/<br>TIMA_6_CLKA |           | QSPI_QSIO0         | KEYOUT7 |               |            |       |          |          | EVNTP408 | EVENTOUT                        | Func_Grp2              |
| 56       | K8       |               | -           | PD9     |                             | EIRQ9              |                    | GPO   |          | TIM4_3_OVL |             |                             | TIMA_6_PWM2/<br>TIMA_6_CLKB |           | QSPI_QSIO1         | KEYOUT6 |               |            |       |          |          | EVNTP409 | EVENTOUT                        | Func_Grp2              |
| 57       | J12      | -   -         | -           | PD10    |                             | EIRQ10             |                    | GPO   |          | TIM4_3_OWL |             |                             | TIMA_6_PWM3                 |           | QSPI_QSIO2         | KEYOUT5 |               |            |       |          |          | EVNTP410 | EVENTOUT                        | Func_Grp2              |
| 58       | J11      |               | -           | PD11    |                             | EIRQ11             |                    | GPO   |          | TIM4_3_CLK |             |                             | TIMA_6_PWM4                 |           | QSPI_QSIO3         | KEYOUT4 |               |            |       |          |          | EVNTP411 | EVENTOUT                        | Func_Grp2              |
| 59       | J10      |               | -           | PD12    |                             | EIRQ12             |                    | GPO   |          |            |             | TIMA_4_PWM1/<br>TIMA_4_CLKA | TIMA_5_PWM5                 |           |                    |         |               |            |       |          |          | EVNTP412 | EVENTOUT                        |                        |
| 60       | H12      | -   -         | -           | PD13    |                             | EIRQ13             |                    | GPO   |          |            |             | TIMA_4_PWM2/<br>TIMA_4_CLKB | TIMA_5_PWM6                 |           |                    |         |               |            |       |          |          | EVNTP413 | EVENTOUT                        |                        |
| 61       | H11      | -   -         | -           | PD14    |                             | EIRQ14             |                    | GPO   |          |            |             | TIMA_4_PWM3                 | TIMA_5_PWM7                 |           |                    |         |               |            |       |          |          | EVNTP414 | EVENTOUT                        |                        |
| 62       | H10      | -   -         | -           | PD15    |                             | EIRQ15             |                    | GPO   |          |            |             | TIMA_4_PWM4                 | TIMA_5_PWM8                 |           |                    |         |               |            |       |          |          | EVNTP415 | EVENTOUT                        |                        |
| 63       | E12      | 37 -          | -           | PC6     |                             | EIRQ6              |                    | GPO   |          |            |             | TIMA_3_PWM1/<br>TIMA_3_CLKA | TIMA_5_PWM8                 |           | QSPI_QSCK          | KEYOUT3 | SDIO1_D6      |            |       |          |          | EVNTP306 | EVENTOUT                        | Func_Grp2              |
| 64       | E11      | 38 35         | -           | PC7     |                             | EIRQ7              |                    | GPO   |          | TIM4_2_CLK |             | TIMA_3_PWM2/<br>TIMA_3_CLKB | TIMA_5_PWM7                 |           | QSPI_QSSN          | KEYOUT2 | SDIO1_D7      | I2S2_EXCK  |       |          |          | EVNTP307 | EVENTOUT                        | Func_Grp2              |
| 65       | E10      | 39 36         | -           | PC8     |                             | EIRQ8              |                    | GPO   |          | TIM4_2_OWH |             | TIMA_3_PWM3                 | TIMA_5_PWM6                 |           | USART3_CK          | KEYOUT1 | SDIO1_D0      | I2S2_MCK   |       |          |          | EVNTP308 | EVENTOUT                        | Func_Grp2              |
| 66       | D12      | 40 37         | _           | PC9     |                             | EIRQ9              |                    | GPO   | MCO_2    | TIM4_2_OWL |             | TIMA_3_PWM4                 | TIMA_5_PWM5                 |           |                    | KEYOUT0 | SDIO1_D1      |            |       |          |          | EVNTP309 | EVENTOUT                        | Func_Grp1              |
| 67       | D11      | 41 38         | 29          | PA8     |                             | EIRQ8/WKUF<br>2_0  | Р                  | GPO   | MCO_1    | TIM4_1_OUH | TIM6_1_PWMA | TIMA_1_PWM1/<br>TIMA_1_CLKA |                             |           | USART1_CK          |         | SDIO1_D1      | USBFS_SOF  |       |          |          | EVNTP108 | EVENTOUT                        | Func_Grp1              |
| 68       | D10      | 42 39         | 30          | PA9     |                             | EIRQ9/WKUF<br>2_1  | Р                  | GPO   |          | TIM4_1_OVH | TIM6_2_PWMA | TIMA_1_PWM2/<br>TIMA_1_CLKB |                             |           |                    |         | SDIO1_D2      | USBFS_VBUS |       |          |          | EVNTP109 | EVENTOUT                        | Func_Grp1              |
| 69       | C12      | 43 40         | 31          | PA10    |                             | EIRQ10/WKU<br>P2_2 | U                  | GPO   |          | TIM4_1_OWH | TIM6_3_PWMA | TIMA_1_PWM3                 | TIMA_5_TRIG                 |           |                    |         | SDIO1_CD      | USBFS_ID   |       |          |          | EVNTP110 | EVENTOUT                        | Func_Grp1              |
|          |          |               |             | ao Pin  |                             |                    |                    | Func0 | Func1    | Func2      | Func3       | Func4                       | Func5                       | Func6     | Func7              | Func8   | Func9         | Func10     | Func1 | 1 Func12 | Func13   | Func14   | Func15 Func16~31                | Func32~63              |
| LQFP100  | VFBGA100 | LQFP64 QFN    | LQFP/QFN    | 48 Name | Analog                      | EIRQ/WKUP          | TRACE/JTAG/SWD     | GPO   | other    | тім4       | TIM6        | TIMA                        | TIMA                        | EMB, TIMA | USART/SPI/         | KEY     | SDIO          | USBFS/I2S  | -     | -        | -        | EVNTPT   | EVENTOUT -                      | Communication<br>Funcs |



| 70  | B12 | 44 | 41 | 32 | PA11    | EIRQ11/WKU<br>P2_3 |               | GPO |          | TIM4_1_CLK            | TIMA_1_PWM4                 |                             | EMB_IN1                  |         | SDIO2_CD USBFS_DM      | EVNTP111 EVENTOUT | Func_Grp1 |
|-----|-----|----|----|----|---------|--------------------|---------------|-----|----------|-----------------------|-----------------------------|-----------------------------|--------------------------|---------|------------------------|-------------------|-----------|
| 71  | A12 | 45 | 42 | 33 | PA12    | EIRQ12/WKU<br>P3_0 |               | GPO |          | TIM4_3_OWL TIM6_TRIGA | TIMA_1_TRIG                 | TIMA_6_PWM1/<br>TIMA_6_CLKA |                          |         | SDIO2_WP USBFS_DP      | EVNTP112 EVENTOUT | Func_Grp1 |
| 72  | A11 | 46 | 43 | 34 | PA13    | EIRQ13/WKU<br>P3 1 | JTMS_SWDIO    | GPO |          |                       | TIMA_2_PWM5                 | TIMA_6_PWM2/<br>TIMA_6_CLKB | SPI2_SS1                 |         | SDIO2_D3               | EVNTP113 EVENTOUT | Func_Grp1 |
| 73  | C11 | -  | -  | -  | VCAP_2  |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |
| 74  | F11 | 47 | 44 | 35 | vss     |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |
| 75  | G11 | 48 | 45 | 36 | vcc     |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |
| 76  | A10 | 49 | 46 | 37 | PA14    | EIRQ14/WKU<br>P3_2 | JTCK_SWCLK    | GPO |          |                       | TIMA_2_PWM6                 | TIMA_6_PWM3                 | TIMA_4_T<br>RIG          |         | SDIO2_D2 I2S1_EXCK     | EVNTP114 EVENTOUT | Func_Grp1 |
| 77  | A9  | 50 | 47 | 38 | PA15    | EIRQ15/WKU<br>P3_3 | JTDI          | GPO |          |                       | TIMA_2_PWM1/<br>TIMA_2_CLKA | TIMA_6_PWM4                 | TIMA_2_T<br>RIG SPI2_SS3 |         | SDIO2_D1 I2S1_MCK      | EVNTP115 EVENTOUT | Func_Grp1 |
| 78  | B11 | 51 | 48 | -  | PC10    | EIRQ10             |               | GPO |          | TIM4_3_OUH            | TIMA_2_PWM7                 | TIMA_5_PWM1/<br>TIMA_5_CLKA |                          |         | SDIO1_D2               | EVNTP310 EVENTOUT | Func_Grp1 |
| 79  | C10 | 52 | 49 | -  | PC11    | EIRQ11             |               | GPO |          | TIM4_3_OVH            | TIMA_2_PWM8                 | TIMA_5_PWM2/<br>TIMA_5_CLKB |                          |         | SDIO1_D3               | EVNTP311 EVENTOUT | Func_Grp1 |
| 80  | B10 | 53 | 50 | -  | PC12    | EIRQ12             |               | GPO |          | TIM4_3_OWH            | TIMA_4_TRIG                 | TIMA_5_PWM3                 |                          |         | SDIO1_CK               | EVNTP312 EVENTOUT | Func_Grp1 |
| 81  | С9  | _  | -  | -  | PD0     | EIRQ0              |               | GPO | VCOUT123 |                       |                             | TIMA_5_PWM4                 |                          |         |                        | EVNTP400 EVENTOUT | Func_Grp1 |
| 82  | В9  | -  | -  | -  | PD1     | EIRQ1              |               | GPO |          |                       | TIMA_3_TRIG                 | TIMA_6_PWM5                 |                          |         |                        | EVNTP401 EVENTOUT | Func_Grp1 |
| 83  | C8  | 54 | -  | -  | PD2     | EIRQ2              |               | GPO |          |                       | TIMA_2_PWM4                 | TIMA_6_PWM6                 |                          |         | SDIO1_CM<br>D          | EVNTP402 EVENTOUT | Func_Grp1 |
| 84  | B8  | -  | -  | -  | PD3     | EIRQ3              |               | GPO | VCOUT1   |                       |                             | TIMA_6_PWM7                 |                          |         |                        | EVNTP403 EVENTOUT |           |
| 85  | В7  | -  | -  | -  | PD4     | EIRQ4              |               | GPO | VCOUT2   |                       |                             | TIMA_6_PWM8                 |                          |         |                        | EVNTP404 EVENTOUT |           |
| 86  | A6  | -  | -  | -  | PD5     | EIRQ5              |               | GPO | VCOUT3   |                       |                             |                             |                          |         |                        | EVNTP405 EVENTOUT |           |
| 87  | В6  | -  | -  | -  | PD6     | EIRQ6              |               | GPO |          |                       |                             |                             | USART2_CK                |         |                        | EVNTP406 EVENTOUT |           |
| 88  | A5  | -  | -  | -  | PD7     | EIRQ7              |               | GPO |          |                       |                             |                             | USART2_CK                |         |                        | EVNTP407 EVENTOUT |           |
| 89  | A8  | 55 | 51 | 39 | PB3     | EIRQ3/WKUP<br>0_3  | JTDO_TRACESWO | GPO | FCMREF   | TIM4_3_CLK            | TIMA_2_PWM2/<br>TIMA_2_CLKB | TIMA_6_PWM5                 |                          |         | SDIO2_D0               | EVNTP203 EVENTOUT | Func_Grp2 |
| 90  | A7  | 56 | 52 | 40 | PB4     | EIRQ4/WKUP<br>1_0  | NJTRST        | GPO |          | TIM4_3_OWL            | TIMA_3_PWM1/<br>TIMA_3_CLKA | TIMA_6_PWM6                 |                          |         | SDIO1_D0               | EVNTP204 EVENTOUT | Func_Grp2 |
| 91  | C5  | 57 | 53 | 41 | PB5     | EIRQ5/WKUP<br>1_1  |               | GPO |          | TIM4_3_OWH            | TIMA_3_PWM2/<br>TIMA_3_CLKB | TIMA_6_PWM7                 |                          |         | SDIO1_D3 I2S4_EXCK     | EVNTP205 EVENTOUT | Func_Grp2 |
| 92  | B5  | 58 | 54 | 42 | PB6     | EIRQ6/WKUP<br>1_2  |               | GPO | ADTRG2   | TIM4_3_OVL            | TIMA_4_PWM1/<br>TIMA_4_CLKA | TIMA_6_PWM8                 |                          |         | SDIO2_CK I2S4_MCK      | EVNTP206 EVENTOUT | Func_Grp2 |
| 93  | B4  | 59 | 55 | 43 | РВ7     | EIRQ7/WKUP<br>1_3  |               | GPO | ADTRG1   | TIM4_3_OVH            | TIMA_4_PWM2/<br>TIMA_4_CLKB |                             |                          |         | SDIO1_D0               | EVNTP207 EVENTOUT | Func_Grp2 |
| 94  | A4  | 60 | 56 | 44 | PB11/MD | NMI                |               |     |          |                       |                             |                             |                          |         |                        | EVNTP211          |           |
| 95  | A3  | 61 | 57 | 45 | PB8     | EIRQ8              |               | GPO |          | TIM4_3_OUL            | TIMA_4_PWM3                 |                             |                          | KEYOUT7 | SDIO1_D4 USBFS_DRVVBUS | EVNTP208 EVENTOUT | Func_Grp2 |
| 96  | В3  | 62 | 58 | 46 | PB9     | EIRQ9              |               | GPO |          | TIM4_3_OUH            | TIMA_4_PWM4                 | TIMA_6_TRIG                 | SPI2_SS1                 | KEYOUT6 | SDIO1_D5               | EVNTP209 EVENTOUT | Func_Grp2 |
| 97  | C3  | -  | -  | -  | PE0     | EIRQ0              |               |     | MCO_1    |                       | TIMA_4_TRIG                 |                             | SPI2_SS2                 |         |                        | EVENTOUT          | Func_Grp2 |
| 98  | A2  | -  | -  | -  | PE1     | EIRQ1              |               | GPO | MCO_2    | TIM4_3_CLK            |                             |                             | SPI2_SS3                 |         |                        | EVENTOUT          | Func_Grp2 |
| 99  | D3  | 63 | 59 | 47 | VSS     |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |
| 100 | C4  | 64 | 60 | 48 | vcc     |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |
| -   | Н3  | -  | -  | -  | NC      |                    |               |     |          |                       |                             |                             |                          |         |                        |                   |           |

### Notes:

- In the above table, there are 64 pins supporting Func32~63 function selection, Func32~63 are mainly for serial communication function (including USART, SPI, I2C, I2S, CAN) divided into two groups, Func\_Grp1 and Func\_Grp2. Please refer to Table 2-2 for details.



### **Table 2-2 Func32~63**

|           | Func32    | Func33    | Func34     | Func35     | Func36    | Func37    | Func38     | Func39     | Func40    | Func41    | Func42   | Func43   | Func44    | Func45    | Func46   | Func47   |
|-----------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------|----------|----------|-----------|-----------|----------|----------|
| Func_Grp1 | USART1_TX | USART1_RX | USART1_RTS | USART1_CTS | USART2_TX | USART2_RX | USART2_RTS | USART2_CTS | SPI1_MOSI | SPI1_MISO | SPI1_SS0 | SPI1_SCK | SPI2_MOSI | SPI2_MISO | SPI2_SS0 | SPI2_SCK |
| Func_Grp2 | USART3_TX | USART3_RX | USART3_RTS | USART3_CTS | USART4_TX | USART4_RX | USART4_RTS | USART4_CTS | SPI3_MOSI | SPI3_MISO | SPI3_SS0 | SPI3_SCK | SPI4_MOSI | SPI4_MISO | SPI4_SS0 | SPI4_SCK |

|           | Func48   | Func49   | Func50   | Func51   | Func52  | Func53    | Func54  | Func55  | Func56  | Func57    | Func58  | Func59  | Func60 | Func61 | Func62 | Func63 |
|-----------|----------|----------|----------|----------|---------|-----------|---------|---------|---------|-----------|---------|---------|--------|--------|--------|--------|
| Func_Grp1 | I2C1_SDA | I2C1_SCL | I2C2_SDA | I2C2_SCL | I2S1_SD | I2S1_SDIN | 12S1_WS | 12S1_CK | 12S2_SD | I2S2_SDIN | 12S2_WS | I2S2_CK |        |        |        |        |
| Func_Grp2 | I2C3_SDA | I2C3_SCL | CAN_TxD  | CAN_RxD  | 12S3_SD | I2S3_SDIN | 12S3_WS | 12S3_CK | 12S4_SD | I2S4_SDIN | 12S4_WS | 12S4_CK |        |        |        |        |



# **Table 2-3 Port Configuration**

|          | Port  |    |    |    |    |    |    |   | Bi | ts |   |   |   |   |   |   |   | Pin C | ount |
|----------|-------|----|----|----|----|----|----|---|----|----|---|---|---|---|---|---|---|-------|------|
| Package  | Group | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 | То    | tal  |
| LQFP100  | PortA | 0  | o  | o  | 0  | o  | o  | o | 0  | 0  | o | o | 0 | o | 0 | 0 | 0 | 16    | 83   |
| VFBGA100 | PortB | o  | o  | o  | o  | o  | o  | o | o  | o  | o | o | o | o | o | o | o | 16    |      |
|          | PortC | o  | o  | o  | o  | o  | o  | o | o  | 0  | o | o | o | o | 0 | 0 | 0 | 16    |      |
|          | PortD | 0  | 0  | o  | 0  | 0  | o  | 0 | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortE | 0  | 0  | o  | 0  | 0  | o  | 0 | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortH | -  | -  | -  | _  | -  | -  | - | -  | _  | - | - | - | _ | 0 | 0 | 0 | 3     |      |
| LQFP64   | PortA | 0  | 0  | o  | o  | 0  | o  | 0 | 0  | 0  | o | 0 | 0 | 0 | 0 | 0 | 0 | 16    | 52   |
|          | PortB | 0  | 0  | o  | 0  | 0  | o  | 0 | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortC | 0  | 0  | o  | 0  | o  | o  | 0 | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortD | _  | -  | -  | _  | -  | -  | _ | -  | _  | - | - | - | - | 0 | - | - | 1     |      |
|          | PortH | -  | -  | -  | -  | -  | -  | - | -  | _  | - | - | - | - | 0 | 0 | 0 | 3     |      |
| QFN60    | PortA | 0  | 0  | o  | 0  | 0  | o  | 0 | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    | 50   |
|          | PortB | o  | 0  | 0  | 0  | 0  | 0  | o | o  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortC | 0  | 0  | 0  | 0  | 0  | 0  | o | 0  | 0  | - | 0 | 0 | - | 0 | 0 | 0 | 14    |      |
|          | PortE | -  | -  | -  | _  | -  | -  | - | -  | -  | - | - | - | - | - | - | 0 | 1     |      |
|          | PortH | _  | -  | -  | -  | -  | -  | _ | -  | _  | - | - | - | - | 0 | 0 | 0 | 3     |      |
| LQFP48   | PortA | o  | o  | o  | o  | o  | o  | o | o  | o  | o | o | o | o | o | o | o | 16    | 38   |
| QFN48    | PortB | o  | 0  | 0  | 0  | 0  | 0  | o | o  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16    |      |
|          | PortC | o  | 0  | 0  | -  | -  | -  | _ | -  | -  | - | - | - | - | - | - | - | 3     |      |
|          | PortH | -  | _  | -  | _  | -  | -  | _ | -  | _  | _ | - | - | - | o | o | o | 3     |      |
|          |       | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7  | 6 | 5 | 4 | 3 | 2 | 1 | 0 |       |      |



**Table 2-4 General Functional Specifications** 

| Port  |                        | pull up        | open-drain<br>output | driving ability         | 5V Voltage     | note              |
|-------|------------------------|----------------|----------------------|-------------------------|----------------|-------------------|
| PortA | PA0~PA10<br>PA13~PA15  | be in favor of | be in favor of       | Low,<br>medium,<br>high | Support *      |                   |
|       | PA11, PA12             | be in favor of | be in favor of       | Low,<br>medium,<br>high | unsupported    |                   |
| PortB | PB0~PB10,<br>PB12~PB15 | be in favor of | be in favor of       | Low,<br>medium,<br>high | Support *      |                   |
|       | PB11                   | be in favor of | -                    | _                       | be in favor of | Input<br>Specific |
| PortC | PC0~PC15               | be in favor of | be in favor of       | Low,<br>medium,<br>high | Support *      |                   |
| PortD | PD0~PD15               | be in favor of | be in favor of       | Low,<br>medium,<br>high | be in favor of |                   |
| PortE | PE0~PE15               | be in favor of | be in favor of       | Low,<br>medium,<br>high | be in favor of |                   |
| PortH | PH0~PH2                | be in favor of | be in favor of       | Low,<br>medium,<br>high | be in favor of |                   |

### Notes:

 When used as an analog function, the input voltage must not be higher than VREFH/AVCC.



# **2.3** Pin

# **Function**

### **Table 2-5 Pin Functions**

# **Description**

| form          | functional name           | I/O | clarification                                      |
|---------------|---------------------------|-----|----------------------------------------------------|
| Power         | VCC                       | I   | electric power source                              |
|               | VSS                       | I   | POWER GROUND                                       |
|               | VCAP_1~2                  | Ю   | Kernel Voltage                                     |
|               | AVCC                      | I   | analog power                                       |
|               | AVSS                      | I   | Analog Power Ground                                |
|               | VREFH                     | I   | Analog Reference Voltage                           |
|               | VREFL                     | ı   | Analog Reference Voltage                           |
| System        | NRST                      | ı   | Reset Pin, Active Low                              |
|               | MD                        | I   | Mode Pins                                          |
| PVD           | PVD2EXINP                 | I   | PVD2 External input comparison voltage             |
| Clock         | XTAL_IN                   | Ю   | External master clock oscillator interface         |
|               | XTAL_EXT/XTAL_OUT         | Ю   | XTAL_EXT External clock input                      |
|               | XTAL32_IN                 | ı   | External Subclock (32K) Oscillator Interface       |
|               | XTAL32_OUT                | О   |                                                    |
|               | MCO_1~2                   | o   | Internal clock output                              |
| GPIO          | GPIOxy (x= A~E,H. y=0~15) | Ю   | General purpose inputs and outputs                 |
| EVENTOUT      | EVENTOUT                  | 0   | Cortex-M4 CPU event output                         |
| EIRQ          | EIRQx (x=0~15)            | ı   | Maskable external interrupt                        |
| •             | WKUPx_y (x,y=0~3)         | ı   | PowerDown mode external wake-up input              |
|               | NMI                       | ı   | Non-maskable external interrupt                    |
| Event<br>Port | EVNTPxy (x=1~4, y=0~15)   | Ю   | Event Port Input and Output Functions              |
| Key           | KEYOUTx(x=0~7)            | О   | KEYSCAN Scan Output Signal                         |
| JTAG/SWD      | JTCK_SWCLK                | ı   | online debugging interface                         |
| ·             | JTMS_SWDIO                | Ю   |                                                    |
|               | JTDO_TRACESWO             | 0   |                                                    |
|               | JTDI                      | ı   |                                                    |
|               | NJTRST                    | ı   |                                                    |
| TRACE         | TRACECK                   | О   | Trace debugging synchronized clock output          |
|               | TRACED0~3                 | o   | Trace debug data output                            |
| FCM           | FCMREF                    | ı   | External Reference Clock Input for Clock Frequency |
|               |                           |     | Measurement                                        |
| RTC           | RTCOUT                    | О   | 1Hz clock output                                   |

| nmer4   | × AOFHM44CXCUCDFK       | I   | Counting Clock Port Input www.xhsc.com.cr          |
|---------|-------------------------|-----|----------------------------------------------------|
| (x=1~3) | TIM4_x_OUH              | Ю   | PWM port U-phase output                            |
| form    | functional name         | I/O | clarification                                      |
|         | TIM4_x_OUL              | Ю   | PWM port U-phase output                            |
|         | TIM4_x_OVH              | Ю   | PWM Port V-Phase Output                            |
|         | TIM4_x_OVL              | Ю   | PWM Port V-Phase Output                            |
|         | TIM4_x_OWH              | Ю   | PWM port W-phase output                            |
|         | TIM4_x_OWL              | Ю   | PWM port W-phase output                            |
| Timer6  | TIM6_TRIGA              | I   | External Event Trigger A Input                     |
| (x=1~3) | TIM6_TRIGB              | ı   | External Event Trigger B Input                     |
|         | TIM6_x_PWMA             | Ю   | External Event Trigger Input or PWM Port Output    |
|         | TIM6_x_PWMB             | Ю   | External Event Trigger Input or PWM Port Output    |
| TimerA  | TIMA_x_TRIG             | 1   | External event-triggered inputs                    |
| (x=1~6) | TIMA_x_PWM1/TIMA_x_CLKA | Ю   | External Event Trigger Input or PWM Port Output or |
|         |                         |     | Counter Clock Port Input                           |
|         | TIMA_x_PWM2/TIMA_x_CLKB | Ю   | External Event Trigger Input or PWM Port Output or |
|         |                         |     | Counter Clock Port Input                           |
|         | TIMA_x_PWMy (y=3~8)     | Ю   | External Event Trigger Input or PWM Port Output    |
| ЕМВ     | EMB_INx (x=1~4)         | I   | Groupx (x=1~4) port input control signal           |
| USARTx  | USARTx_TX               | Ю   | Send data                                          |
| (x=1~4) | USARTx_RX               | Ю   | receive data                                       |
|         | USARTx_CK               | Ю   | communications clock                               |
|         | USARTx_RTS              | 0   | Request to send a signal                           |
|         | USARTx_CTS              | I   | Clears the transmit signal                         |
| SPIx    | SPIx_MISO               | Ю   | Master input/slave output data transfer pins       |
| (x=1~4) | SPIx_MOSI               | Ю   | Master output/slave input data transfer pins       |
|         | SPIx_SCK                | Ю   | transmission clock                                 |
|         | SPIx_SS0                | Ю   | Slave select input and output pins                 |
|         | SPIx_SS1~3              | o   | Slave Select Output Pin                            |
| QSPI    | QSPI_QSIO0~3            | Ю   | data cable                                         |
|         | QSPI_QSCK               | o   | clock output                                       |
|         | QSPI_QSSN               | o   | Slave Selection                                    |
| I2Cx    | I2Cx_SCL                | Ю   | clock line                                         |
| (x=1~3) | I2Cx_SDA                | Ю   | data cable                                         |
| I2Sx    | I2Sx_SD                 | Ю   | serial data                                        |
| (x=1~4) | I2Sx_SDIN               | ı   | Full duplex serial data input                      |
|         | I2Sx_WS                 | Ю   | word choice                                        |
|         | I2Sx_CK                 | Ю   | serial clock                                       |
|         | I2Sx_EXCK               | I   | External Clock Source                              |
|         | I2Sx_MCK                | О   | master clock                                       |
| CAN     | CAN_TxD                 | 0   | Send data                                          |
|         | CAN_RxD                 | I   | receive data                                       |
| SDIOx   | SDIOx_Dy (y=0~7)        | Ю   | SD Data Signal                                     |

HC32F460 Series
Datasheet\_Rev1.5



| form    | functional name        | I/O | clarification                                         |
|---------|------------------------|-----|-------------------------------------------------------|
|         | SDIOx_CK               | o   | SD clock output signal                                |
|         | SDIOx_CMD              | Ю   | SD Command and Response Signal                        |
|         | SDIOx_CD               | ı   | SD Card Recognition Status Signal                     |
|         | SDIOx_WP               | ı   | SD card write-protect status signal                   |
| USBFS   | USBFS_DM               | Ю   | USBFS On-Chip Full Speed PHY D-Signal                 |
|         | USBFS_DP               | Ю   | USBFS on-chip full-speed PHY D+ signaling             |
|         | USBFS_VBUS             | ı   | USBFS VBUS Signal                                     |
|         | USBFS_ID               | ı   | USBFS ID Signal                                       |
|         | USBFS_SOF              | О   | USBFS SOF Pulse Output Signal                         |
|         | USBFS_DRVVBUS          | 0   | USBFS VBUS Driver License Signal                      |
| СМРх    | VCOUT1                 | 0   | Analog Comparison Channel 1 Result Output             |
| (x=1~3) | VCOUT2                 | 0   | Analog Comparison Channel 2 Result Output             |
|         | VCOUT3                 | 0   | Analog Comparison Channel 3 Result Output             |
|         | VCOUT123               | 0   | Analog Comparison Channel 1~3 Result OR Output        |
|         | CMPx_INPy              | I   | Analog Comparator Channel x Positive Voltage y Input  |
|         | CMPx_INMy              | I   | Analog Comparator Channel x Negative Voltage y Input  |
| ADC     | ADTRG1                 | ı   | ADC1 AD conversion external startup source            |
|         | ADTRG2                 | ı   | ADC2 AD Conversion External Startup Source            |
|         | ADC1_INx (x=0~3,12~15) | ı   | ADC1 External analog input port                       |
|         | ADC12_INx (x=4~11)     | I   | ADC1 and ADC2 share common external analog input port |
|         | PGAVSS                 | 1   | PGA Ground Input                                      |



# 2.4 Pinouts

### Table 2-6 Pin Usage

| pinout         | Instructions for use                                                                        |
|----------------|---------------------------------------------------------------------------------------------|
| VCC            | Power supply, connect 1.8V~3.6V voltage, and connect decoupling capacitor near VSS pin      |
|                | (refer to [Electrical Characteristics (ECs)])                                               |
| VSS            | Power Ground to 0V                                                                          |
| VCAP_1~2       | Kernel voltage, connect capacitors close to the VSS pin to stabilize the kernel voltage     |
|                | (refer to [Electrical Characteristics (ECs)])                                               |
| AVCC           | Analog power supply, powering the analog module, connected to the same voltage as           |
|                | VCC (refer to Electrical Characteristics (ECs))                                             |
|                | When the analog module is not used, short to VCC.                                           |
| AVSS/VREFL     | Analog power ground/reference voltage, connected to the same voltage as AVSS                |
|                | (refer to Electrical Characteristics (ECs))                                                 |
|                | When the analog module is not used, short out the VSS.                                      |
| VREFH          | Analog reference voltage of ADC1, ADC2, connected to a voltage not higher than AVCC         |
|                | When ADC is not used, short to AVCC.                                                        |
| PB11/MD        | Mode input, fixed to the input state. When the reset pin (NRST) is deasserted (changed from |
|                | low to high), this pin must fix the                                                         |
|                | Set to high level. Recommended connection resistor (4.7KΩ) to VCC (pull-up)                 |
| NRST           | Reset pin, active low. Connect resistor to VCC when not in use (pull-up)                    |
| Pxy, x=A~E, H, | General purpose pins. When used as an input, the input voltage should not exceed            |
| y=0~15         | 5 V. When the input voltage exceeds VCC, the internal pull-up is prohibited, and the        |
|                | input voltage of the pin that does not support 5 V tolerance should not exceed VCC.         |
|                | When used as an analog input, the analog voltage should not exceed VREFH/AVCC.              |
|                | Suspend when not in use, or connect resistor to VCC (pull-up)/VSS (pull-down)               |



# 3 Electrical Characteristics (ECs)

# 3.1 parameter condition

All voltages are referenced to VSS unless otherwise noted.

### 3.1.1 Minimum and maximum values

Unless otherwise noted, all device minimums and maximums are guaranteed by design or characterized under worst case ambient temperature, supply voltage, and clock frequency conditions.

### 3.1.2 typical value

Typical data are analyzed by design or characterization at  $_{TA}$ = 25 °C, VCC = 3.3 V, unless otherwise noted.

### 3.1.3 typical curve

Unless otherwise noted, all typical curves are untested and are for design purposes only.

### 3.1.4 load capacitance

The load conditions used to measure the pin parameters are shown in Figure 3-1 (left).

### 3.1.5 Pin Input Voltage

The measurement of the input voltage on the device pins is shown in Figure 3-1 (right).



Figure 3-1 Pin Load Conditions (left) and Input Voltage Measurements (right)

HC32F460 Series
Datasheet\_Rev1.5



### 3.1.6 Power Solutions





Figure 3-3 Power Supply Scheme (HC32F460KETA-LQFP64)



Figure 3-4 Power Supply Scheme (HC32F460KEUA-QFN60TR/ HC32F460JETA-LQFP48/ HC32F460JEUA-QFN48TR)

- 1. A  $4.7\mu F$  ceramic capacitor must be connected to one of the VCC pins.
- 2. AVSS = VSS.
- 3. Each power pair (e.g. VCC/VSS, AVCC/AVSS ...) must be decoupled using the filtered ceramic capacitors described above. These capacitors must be placed as close as possible to or below the appropriate pins on the underside of the PCB to ensure proper operation of the device. It is not recommended to remove the filter capacitors to reduce PCB size or cost. This may cause the device to operate improperly.
- 4. The capacitors used on the VCAP\_1/VCAP\_2 pins of the chip are as follows: 1) For chips with both VCAP\_1 and VCAP\_2 pins, 0.047uF or 0.1uF capacitors can be used



on each pin (total capacity is 0.094uF or 0.2uF)



- (2) For chips with only VCAP\_1 pin, 0.1uF or 0.22uF capacitor can be used. When waking up from power-down mode, VCAP\_1/VCAP\_2 needs to be charged during the kernel voltage establishment process. On the one hand, a smaller total capacity of VCAP\_1/VCAP\_2 can shorten the charging time and provide fast response time for the application; on the other hand, a larger total capacity of VCAP\_1/VCAP\_2 will increase the charging time, but also provide better electromagnetic compatibility (EMC). Users can choose a larger or smaller capacitance value depending on EMC and system response speed requirements. The total capacity of VCAP\_1/VCAP\_2 must match the value assigned to the PWC\_PWRC3.PDTS bit. When the total capacity of VCAP\_1/VCAP\_2 is 0.2uF or 0.22uF, make sure the PWC\_PWRC3.PDTS bit is cleared to zero before entering the power-down mode. If the total capacity of VCAP\_1/VCAP\_2 is 0.094uF or 0.1uF, make sure the PWC\_PWRC3.PDTS bit is clear before entering the power-down mode.
- 5. The stability of the main regulator is achieved by connecting an external capacitor to the VCAP\_1 (or VCAP\_1/VCAP\_2) pin with the capacitance value CEXT determined according to the stability requirements of the system. The capacitance value CEXT and ESR requirements are as follows:

| notation | parameters                                   | prerequisite           |
|----------|----------------------------------------------|------------------------|
| CEXT     | Capacitance value of external capacitor      | 0.047μF/ 0.1μF/ 0.22uF |
| ESR      | Equivalent series resistance of the external | < 0.3Ω                 |
|          | capacitor ESR                                |                        |

Table 3-1 VCAP\_1/ VCAP\_2 Operating Conditions

## 3.1.7 Current consumption measurement



Figure 3-5 Current Consumption Measurement Scheme

HC32F460 Series 60
Datasheet\_Rev1.5 /109



# 3.2 Absolute maximum rating

Loads applied to the device in excess of the absolute maximum ratings listed in Table 3-2, Table 3-3, and Table 3-4 may result in permanent damage to the device. These values are stress ratings only and do not imply that the device functions properly under these conditions. Prolonged operation at the maximum ratings may affect the reliability of the device.

| notatio    | sports event                                     | minimum        | maximum values     | unit (of |
|------------|--------------------------------------------------|----------------|--------------------|----------|
| n          |                                                  | value          |                    | measur   |
|            |                                                  |                |                    | e)       |
| VCC-VSS    | External mains voltage (including AVCC,          | -0.3           | 4.0                |          |
|            | VCC) <sup>(1)</sup>                              |                |                    | v        |
|            | Input voltage on 5V withstand pin <sup>(2)</sup> | VSS-0.3        | VCC+4.0 (5.8V max) | V        |
| VIN        | On the PA11/USBFS_DM and PA12/USBFS_DP           | VSS-0.3        | 4.0                |          |
|            | pins                                             | V33-0.3        | 4.0                |          |
|            | Input Voltage                                    |                |                    |          |
| VESD (HBM) | Electrostatic discharge voltage (human model)    | Please refer t | _                  |          |

**Table 3-2 Voltage Characteristics** 

- 1. All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the permitted range.
- 2. The maximum value of VIN must always be followed. See Table 3-3 for information on the maximum allowable injection current values.

| notation | sports event                                                           | maximum<br>values | unit<br>(of  |
|----------|------------------------------------------------------------------------|-------------------|--------------|
|          |                                                                        |                   | measu<br>re) |
| ΣΙVCC    | Total current flowing into all vccx power cords (pull current)(1)      | 240               | ,            |
| ΣIVSS    | Total current flowing out of all vssx ground wires (flood current) (1) | -240              |              |
| IVCC     | Maximum current flow (pull current) into each vccx power cord (1)      | 100               |              |
| IVSS     | Maximum current flow (sink current) per vssx ground wire (1)           | -100              | mA           |
| IIO      | Output sink current for arbitrary I/O and control pins                 | 40                | IIIA         |
|          | Output pull current for arbitrary I/O and control pins                 | -40               |              |
| ΣΙΙΟ     | Total output sink current on all I/O and control pins                  | 120               |              |
|          | Total output pull current on all I/O and control pins                  | -1,120.           |              |

**Table 3-3 Current Characteristics** 

1. All mains (VCC, AVCC) and ground (VSS, AVSS) pins must always be connected to an external power supply, within the permitted range.

**Table 3-4 Thermal Characteristics** 

HC32F460 Series 61
Datasheet\_Rev1.5 /109





| notation | sports event                 | numerical value | unit (of<br>measure |
|----------|------------------------------|-----------------|---------------------|
| TSTG     | Storage temperature range    | -65 to +150     | °C                  |
| тл       | Maximum Junction Temperature | 125             | °C                  |



# 3.3 working conditions

## 3.3.1 General working conditions

**Table 3-5 General Working Conditions** 

| notatio<br>n         | parameters                                    | conditional                                                  | minimu<br>m value | typical<br>value | maximu<br>m values | unit<br>(of<br>meas<br>ure) |
|----------------------|-----------------------------------------------|--------------------------------------------------------------|-------------------|------------------|--------------------|-----------------------------|
|                      |                                               | Ultra high speed mode [1]<br>PWRC2.DVS=00<br>PWRC2.DDAS=1111 | 0                 | -                | 200                |                             |
| fHCLK                | Internal AHB clock<br>frequency               | High-speed mode [1] PWRC2.DVS=11 PWRC2.DDAS=1111             | 0                 | -                | 168                | MHz                         |
|                      |                                               | Ultra low speed mode PWRC2.DVS=10                            | 0                 | -                | 8                  |                             |
| VCC                  | Standard Operating Voltage                    | PWRC2.DDAS=1000                                              | 1.8               | -                | 3.6                |                             |
| VAVCC <sup>(2)</sup> | Analog Operating Voltage                      | -                                                            | 1.8               | -                | 3.6                |                             |
|                      | Input voltage on 5V                           | 2 V ≤ VCC ≤ 3.6 V                                            | -0.3              | -                | 5.5                | V                           |
| VIN                  | withstand pin<br>(3)                          | VCC ≤ 2 V                                                    | -0.3              | -                | 5.2                |                             |
|                      | PA11/USBFS_DM PA12/USBFS_DP Pin input voltage |                                                              | -0.3              | -                | VCC+0.3            |                             |
| тл                   | Junction temperature range                    |                                                              | -40               | -                | 125                | °C                          |

- 1. Mass production testing guaranteed.
- 2. If the VREFH pin is present, the following condition must be taken into account:  $_{VAVCC^{-}}$   $_{VREFH<}$  1.2 V.
- 3. To keep the voltage above VCC+0.3, the internal pull-up/down resistors must be disabled.

# 3.3.2 Operating conditions at power-up/power-down

TA Obey general working conditions.

Table 3-6 Operating conditions at power-up/power-down

| notation | parameters | minimum | maximum | unit (of |
|----------|------------|---------|---------|----------|
|          |            | value   | values  | measure) |

HC32F460 Series 63
Datasheet\_Rev1.5 /109





| tVCC | VCC Rise Time<br>Rate | 20 | 20000 | μs/V |
|------|-----------------------|----|-------|------|
|      | VCC Falling Time      | 20 | 20000 |      |
|      | Rate                  |    |       |      |



### 3.3.3 Reset and Power Control Module Features

**Table 3-7 Reset and Power Control Module Characteristics** 

| notation | parameters        | prerequisite                       |                       | minimu           | typical | maximu | unit |   |
|----------|-------------------|------------------------------------|-----------------------|------------------|---------|--------|------|---|
|          |                   |                                    |                       | m value          | value   | m      | (of  |   |
|          |                   |                                    |                       |                  |         | values | meas |   |
|          |                   |                                    | T                     |                  |         |        | ure) |   |
|          |                   |                                    | ICG1.BOR_LEV[1:0]=00  | 1.88             | 1.99    | 2.09   | V    |   |
|          |                   | Ultra High                         | ICG1.BOR_LEV [1:0]=01 | 1.99             | 2.09    | 2.20   | V    |   |
|          |                   | Speed                              | ICG1.BOR_LEV [1:0]=10 | 2.09             | 2.20    | 2.30   | V    |   |
| VBOR     | BOR<br>monitoring | Mode                               | ICG1.BOR_LEV [1:0]=11 | 2.30             | 2.40    | 2.51   | V    |   |
|          | voltage           |                                    | ICG1.BOR_LEV[1:0]=00  | 1.80             | 1.90    | 2.00   | V    |   |
|          |                   | High                               | ICG1.BOR_LEV [1:0]=01 | 1.90             | 2.00    | 2.10   | V    |   |
|          |                   | Speed                              | ICG1.BOR_LEV [1:0]=10 | 2.00             | 2.10    | 2.20   | V    |   |
|          |                   | Mode<br>Ultra Low<br>Speed<br>Mode | ICG1.BOR_LEV [1:0]=11 | 2.20             | 2.30    | 2.40   | V    |   |
|          |                   |                                    | pvd1lvl[2:0]=000      | 1.99             | 2.09    | 2.20   | V    |   |
|          |                   |                                    |                       | pvd1lvl[2:0]=001 | 2.09    | 2.20   | 2.30 | V |
|          |                   | Ultra High<br>Speed<br>Mode        | pvd1lvl[2:0]=010      | 2.30             | 2.40    | 2.51   | V    |   |
|          |                   |                                    | pvd1lvl[2:0]=011      | 2.54             | 2.67    | 2.79   | V    |   |
|          |                   |                                    | pvd1lvl[2:0]=100      | 2.65             | 2.77    | 2.90   | V    |   |
|          |                   |                                    | pvd1lvl[2:0]=101      | 2.75             | 2.88    | 3.00   | V    |   |
|          | 5) (5.4           |                                    | pvd1lvl[2:0]=110      | 2.85             | 2.98    | 3.11   | V    |   |
| VPVD1    | PVD1              |                                    | pvd1lvl[2:0]=111      | 2.96             | 3.08    | 3.21   | V    |   |
|          | monitoring        |                                    | pvd1lvl[2:0]=000      | 1.90             | 2.00    | 2.10   | V    |   |
|          | voltage           |                                    | pvd1lvl[2:0]=001      | 2.00             | 2.10    | 2.20   | V    |   |
|          |                   |                                    | pvd1lvl[2:0]=010      | 2.20             | 2.30    | 2.40   | V    |   |
|          |                   | High                               | pvd1lvl[2:0]=011      | 2.43             | 2.55    | 2.67   | V    |   |
|          |                   | speed                              | pvd1lvl[2:0]=100      | 2.53             | 2.65    | 2.77   | V    |   |
|          |                   | mode                               | pvd1lvl[2:0]=101      | 2.63             | 2.75    | 2.87   | V    |   |
|          |                   | Ultra low                          | pvd1lvl[2:0]=110      | 2.73             | 2.85    | 2.97   | V    |   |
|          |                   | speed<br>mode                      | pvd1lvl[2:0]=111      | 2.83             | 2.95    | 3.07   | ٧    |   |
|          |                   |                                    | pvd2lvl[2:0]=000      | 2.09             | 2.20    | 2.30   | V    |   |
|          |                   |                                    | pvd2lvl[2:0]=001      | 2.30             | 2.40    | 2.51   | V    |   |
|          |                   |                                    | pvd2lvl[2:0]=010      | 2.54             | 2.67    | 2.79   | V    |   |
|          |                   | Ultra High                         | pvd2lvl[2:0]=011      | 2.65             | 2.77    | 2.90   | V    |   |
|          |                   |                                    | PVD2LVL[2:0]=100      | 2.75             | 2.88    | 3.00   | V    |   |



|                     |                   |              |                                 |         |         | .XIISC.CO |      |
|---------------------|-------------------|--------------|---------------------------------|---------|---------|-----------|------|
| VPVD2               | PVD2              | Speed        | pvd2lvl[2:0]=101                | 2.85    | 2.98    | 3.11      | V    |
|                     | monitoring        | Mode         | pvd2lvl[2:0]=110                | 2.96    | 3.08    | 3.21      | V    |
|                     | voltage           |              | pvd2lvl[2:0]=111 <sup>(2)</sup> | 1.05    | 1.15    | 1.25      | V    |
|                     | (3)               | High         | pvd2lvl[2:0]=000                | 2.00    | 2.10    | 2.20      | V    |
|                     |                   | speed        | pvd2lvl[2:0]=001                | 2.20    | 2.30    | 2.40      | ٧    |
|                     |                   | mode         | pvd2lvl[2:0]=010                | 2.43    | 2.55    | 2.67      | V    |
|                     |                   | Ultra low    |                                 |         |         |           |      |
|                     |                   | speed        |                                 |         |         |           |      |
|                     |                   | mode         |                                 |         |         |           |      |
| notation            | parameters        | conditional  |                                 | minimu  | typical | maximu    | unit |
|                     |                   |              |                                 | m value | value   | m         | (of  |
|                     |                   |              |                                 |         |         | values    | meas |
|                     |                   |              |                                 |         |         |           | ure) |
|                     |                   |              | pvd2lvl[2:0]=011                | 2.53    | 2.65    | 2.77      | V    |
|                     |                   |              | PVD2LVL[2:0]=100                | 2.63    | 2.75    | 2.87      | V    |
|                     |                   |              | pvd2lvl[2:0]=101                | 2.73    | 2.85    | 2.97      | V    |
|                     |                   |              | pvd2lvl[2:0]=110 (1)            | 2.83    | 2.95    | 3.07      | V    |
|                     |                   |              | pvd2lvl[2:0]=111 <sup>(2)</sup> | 1.00    | 1.10    | 1.20      | V    |
| Vpvdhys             | Late PVD1,2       |              |                                 | _       | 100     | _         | mV   |
| t                   | Stagnation (3)    |              |                                 |         |         |           |      |
| VPOR <sup>(1)</sup> | Power-            | Rise along V | 1.60                            | 1.68    | 1.76    | ٧         |      |
| VPOR'               | on/power-off      | Falling edge | VPDR                            | 1.56    | 1.64    | 1.72      | V    |
|                     | reset             |              |                                 |         |         |           |      |
|                     | thresholds        |              |                                 |         |         |           |      |
| VPORhys             | POR               |              |                                 | -       | 40      | _         | mV   |
| t                   | hysteresis        |              |                                 |         |         |           |      |
|                     | Inrush current    |              |                                 |         |         |           |      |
| IRUSH               | at regulator      |              |                                 | _       | 100     | 150       | mA   |
|                     | power-up          |              |                                 |         |         |           |      |
|                     | (POR or from      |              |                                 |         |         |           |      |
|                     | standby)          |              |                                 |         |         |           |      |
|                     | (Wake-up call)    |              |                                 |         |         |           |      |
| TNRST               | NRST reset        |              |                                 | 500     | -       | -         | ns   |
|                     | minimum           |              |                                 |         |         |           |      |
|                     | height            |              |                                 |         |         |           |      |
| TIPVD1              | PVD1 reset        |              |                                 | 300     | 380     | 460       | μs   |
|                     | release<br>timing |              |                                 |         |         |           |      |
|                     | PVD2 reset        |              |                                 |         |         |           |      |
| TIPVD2              | release           |              |                                 | 300     | 380     | 460       | μs   |
|                     | ובובמשל           |              |                                 |         |         |           |      |



|         | timing                                 |     |      |      |    |
|---------|----------------------------------------|-----|------|------|----|
| TINRST  | NRST reset release timing              | 25  | 35   | 50   | μs |
| TRIPT   | Internal reset time                    | 140 | 160  | 200  | μs |
| TRSTBOR | BOR reset<br>release<br>timing         | 440 | 520  | 610  | μs |
| TRSTPOR | Power-on<br>reset<br>release<br>timing | -   | 2500 | 3000 | μs |

- 1. Mass production testing guaranteed.
- 2. When PVD2LVDL[2:0] = 111, the comparison voltage is the external input comparison voltage at the PVD2EXINP pin.
- 3. The PVD1 monitoring voltage is the monitoring voltage when the VCC voltage drops; the PVD2 monitoring voltage is the monitoring voltage when the PVDEXINP voltage drops when PVD2LVL[2:0] is set to 111, and the PVD2 monitoring voltage is the monitoring voltage when the VCC voltage drops when PVD2LVD[2:0] is set to a value other than 111.
- 4. The hysteresis of PVD1,2 is the difference between the monitoring voltage when VCC is rising and the monitoring voltage when VCC is falling. PVD1 monitoring voltage on VCC rise = Vpvd1 + Vpvdhyst.

  PVD2 monitoring voltage at VCC rise = Vpvd2 + Vpvdhyst.



### 3.3.4 Supply Current Characteristics

Current consumption is affected by a number of parameters and factors, including operating voltage, ambient temperature, I/O pin load, device software configuration, operating frequency, I/O pin switching rate, program location in memory, and running code.

Current consumption measurements are described in Figure 3-5. The current consumption measurements for the various modes of operation described in this section were obtained under laboratory conditions from a set of test codes running on FLASH.

The specific conditions are as follows:

- 1) All I/O pins are in input mode with static values (no load) n VCC or VSS.
- Clock frequency selections are ultra-high speed mode fHCLK=200MHz, high speed mode fHCLK=168MHz/120MHz/24MHz and ultra-low speed mode fHCLK=8MHz/1MHz.
- 3) The power consumption modes are categorized into: normal operation mode ICC\_RUN, sleep mode ICC\_SLEEP, stop mode ICC\_STP, power-down mode ICC\_PD and Dhrystone operation mode ICC\_DHRYSTONE.
- 4) Peripheral Clock ON/OFF Refer to the specific current test item.
- 5) The PLL is turned on in ultra-high speed mode fHCLK=200MHz and high speed mode fHCLK=168MHz/120MHz.

HC32F460 Series
Datasheet\_Rev1.5



Table 3-8 Ultra High-Speed Mode Current Consumption

|                            | _                |               |                                           | Та   | Prod | uct Specif                | ication            | •-   |
|----------------------------|------------------|---------------|-------------------------------------------|------|------|---------------------------|--------------------|------|
| para<br>digm               | Parameter        | Symbol        | conditional                               | (°C) | Min  | <b>Typ</b> <sup>(1)</sup> | Max <sup>(2)</sup> | Unit |
| uigiii                     |                  | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | -40  | -    | 16                        | -                  | mA   |
|                            |                  |               | while(1), full<br>mode<br>Block Clock ON  | -40  | -    | 29                        | -                  | mA   |
|                            | fHCLK=           |               | CACHE OFF                                 | -40  | -    | 17                        | _                  | mA   |
|                            |                  | ICC_DHRYSTONE | CACHE ON                                  | -40  | _    | 19                        | -                  | mA   |
|                            |                  | ICC_SLEEP     | Full Module Clock<br>OFF                  | -40  | -    | 11                        | I                  | mA   |
|                            |                  |               | Full Module Clock<br>ON                   | -40  | _    | 24                        | -                  | mA   |
|                            |                  | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 25   | -    | 16                        | -                  | mA   |
| Ultra<br>High<br>Spee<br>d | fHCLK=<br>200MHz |               | while(1), full<br>mode<br>Block Clock ON  | 25   | -    | 29                        | ı                  | mA   |
| Mode                       |                  | ICC_DHRYSTONE | CACHE OFF                                 | 25   | _    | 17                        | _                  | mA   |
|                            |                  |               | CACHE ON                                  | 25   | -    | 19                        | _                  | mA   |
|                            |                  | ICC_SLEEP     | Full Module Clock<br>OFF                  | 25   | -    | 11                        | ı                  | mA   |
|                            |                  |               | Full Module Clock<br>ON                   | 25   | _    | 24                        | ı                  | mA   |
|                            |                  | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 85   | -    | _                         | 22                 | mA   |
|                            |                  |               | while(1), full<br>mode<br>Block Clock ON  | 85   | _    | _                         | 35                 | mA   |
|                            |                  | ICC DUDYSTONE | CACHE OFF                                 | 85   | _    | _                         | 22                 | mA   |
|                            |                  | ICC_DHRYSTONE | CACHE ON                                  | 85   |      | _                         | 25                 | mA   |
|                            |                  | ICC_SLEEP     | Full Module Clock<br>OFF                  | 85   | _    | -                         | 17                 | mA   |
|                            |                  |               | Full Module Clock<br>ON                   | 85   | _    | -                         | 30                 | mA   |
|                            |                  | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 105  | -    | _                         | 25                 | mA   |



|               | while(1), full<br>mode<br>Block Clock ON | 105 | - | - | 39 | mA |
|---------------|------------------------------------------|-----|---|---|----|----|
| ICC DUDVCTONE | CACHE OFF                                | 105 | _ | _ | 24 | mA |
| ICC_DHRYSTONE | CACHE ON                                 | 105 | _ | - | 29 | mA |
| ICC_SLEEP     | Full Module Clock<br>OFF                 | 105 | _ | - | 21 | mA |
|               | Full Module Clock<br>ON                  | 105 | _ | - | 34 | mA |

- 1. Typ Voltage condition VCC=3.3V.
- 2. Max Voltage condition VCC=1.8~3.6V.



Table 3-9 High-Speed

| para<br>digm                      | Parameter        | Symbol        | prerequisite                          | Ta<br>(°C) | <b>Product Specification</b> |                           |                    |      |
|-----------------------------------|------------------|---------------|---------------------------------------|------------|------------------------------|---------------------------|--------------------|------|
|                                   |                  |               |                                       |            | Min                          | <b>Typ</b> <sup>(1)</sup> | Max <sup>(2)</sup> | Unit |
| Hig<br>h<br>Spe<br>ed<br>Mod<br>e | fHCLK=<br>168MHz | ICC_RUN       | while(1), full<br>module<br>Clock OFF | -40        | -                            | 13                        | _                  | mA   |
|                                   |                  |               | while(1), full<br>module<br>Clock ON  | -40        | -                            | 23                        | _                  | mA   |
|                                   |                  | ICC_DHRYSTONE | CACHE OFF                             | -40        | _                            | 14                        | -                  | mA   |
|                                   |                  |               | CACHE ON                              | -40        | _                            | 15                        | -                  | mA   |
|                                   |                  | ICC_SLEEP     | Full Module Clock<br>OFF              | -40        | -                            | 9                         | -                  | mA   |
|                                   |                  |               | Full Module Clock ON                  | -40        | _                            | 19                        | _                  | mA   |
|                                   |                  | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 25         | _                            | 13                        | _                  | mA   |
|                                   |                  |               | while(1), full<br>module<br>Clock ON  | 25         | -                            | 23                        | _                  | mA   |
|                                   |                  | ICC_DHRYSTONE | CACHE OFF                             | 25         | _                            | 14                        | _                  | mA   |
|                                   |                  |               | CACHE ON                              | 25         | _                            | 15                        | -                  | mA   |
|                                   |                  | ICC_SLEEP     | Full Module Clock<br>OFF              | 25         | _                            | 9                         | _                  | mA   |
|                                   |                  |               | Full Module Clock ON                  | 25         | _                            | 19                        | -                  | mA   |
|                                   |                  | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 85         | -                            | _                         | 18                 | mA   |
|                                   |                  |               | while(1), full<br>module<br>Clock ON  | 85         | -                            | -                         | 28                 | mA   |
|                                   |                  | ICC_DHRYSTONE | CACHE OFF                             | 85         | _                            | _                         | 18                 | mA   |
|                                   |                  |               | CACHE ON                              | 85         | _                            | _                         | 20                 | mA   |
|                                   |                  | ICC_SLEEP     | Full Module Clock<br>OFF              | 85         | _                            | -                         | 14                 | mA   |
|                                   |                  |               | Full Module Clock ON                  | 85         | _                            | -                         | 24                 | mA   |
|                                   |                  | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 105        | -                            | -                         | 20                 | mA   |
|                                   |                  |               | while(1), full<br>module<br>Clock ON  | 105        | -                            | _                         | 31                 | mA   |





| Ta              | b fe <sup>GH</sup> figh-Speed | 105 | _ | _ | 19 | mA |
|-----------------|-------------------------------|-----|---|---|----|----|
| ICC_DHRYSTONE A | deAGHFONt                     | 105 | _ | _ | 23 | mA |
|                 | n <b>stum pitidun</b> elClock | 105 | _ | - | 17 | mA |
| ICC_SLEEP       | OFF                           |     |   |   |    |    |
|                 | Full Module Clock ON          | 105 | - | - | 27 | mA |

- 1. Typ Voltage condition VCC=3.3V.
- 2. Max Voltage condition VCC=1.8~3.6V.



### Table 3-10 High-Speed

| para    | Parameter | Symbol        | prerequisite                     | Ta<br>(°C) |     | Product<br>Specific |                    | Unit |
|---------|-----------|---------------|----------------------------------|------------|-----|---------------------|--------------------|------|
| digm    |           |               |                                  |            | Min | <b>Typ</b> (1)      | Max <sup>(2)</sup> |      |
|         |           | ICC_RUN       | while(1),full module<br>Bell OFF | -40        | -   | 9.5                 | -                  | mA   |
|         |           | rec_non       | while(1),full module<br>Bell ON  | -40        | _   | 16.5                | ı                  | mA   |
|         |           | ICC DUDVETONE | CACHE OFF                        | -40        | -   | 10                  | -                  | mA   |
|         |           | ICC_DHRYSTONE | CACHE ON                         | -40        | _   | 11.5                | 1                  | mA   |
|         |           | ICC_SLEEP     | Full Module Clock OFF            | -40        | _   | 7                   | -                  | mA   |
|         |           | ICC_SLEEP     | Full Module Clock ON             | -40        | _   | 14.5                | -                  | mA   |
|         |           | ICC_RUN       | while(1),full module<br>Bell OFF | 25         | -   | 9.5                 | -                  | mA   |
|         |           | ICC_RON       | while(1),full module<br>Bell ON  | 25         | _   | 16.5                | _                  | mA   |
|         |           | ICC DUDYCTONE | CACHE OFF                        | 25         | _   | 10                  | -                  | mA   |
| Hi      |           | ICC_DHRYSTONE | CACHE ON                         | 25         | _   | 11.5                | _                  | mA   |
| gh      | fHCLK=    | ICC CLEED     | Full Module Clock OFF            | 25         | _   | 7                   | _                  | mA   |
| Sp      | 120MHz    | ICC_SLEEP     | Full Module Clock ON             | 25         | _   | 14.5                | -                  | mA   |
| ee<br>d |           | ICC_RUN       | while(1),full module<br>Bell OFF | 85         | _   | -                   | 14                 | mA   |
| M<br>od |           | ICC_RON       | while(1),full module<br>Bell ON  | 85         | _   | _                   | 22                 | mA   |
| е       |           | ICC DUDYCTONE | CACHE OFF                        | 85         | _   | -                   | 14                 | mA   |
|         |           | ICC_DHRYSTONE | CACHE ON                         | 85         | _   | -                   | 17                 | mA   |
|         |           | ICC SLEED     | Full Module Clock OFF            | 85         | _   | I                   | 12                 | mA   |
|         |           | ICC_SLEEP     | Full Module Clock ON             | 85         | _   | -                   | 20                 | mA   |
|         |           | ICC_RUN       | while(1),full module<br>Bell OFF | 105        | _   | -                   | 16                 | mA   |
|         |           | ICC_RON       | while(1),full module<br>Bell ON  | 105        | -   | -                   | 25                 | mA   |
|         |           | ICC DUDVETONE | CACHE OFF                        | 105        | _   | ı                   | 15                 | mA   |
|         |           | ICC_DHRYSTONE | CACHE ON                         | 105        | _   | -                   | 19                 | mA   |
|         |           | ICC_SLEEP     | Full Module Clock OFF            | 105        | -   | -                   | 15                 | mA   |
|         |           | ICC_SELEF     | Full Module Clock ON             | 105        | _   | ı                   | 22                 | mA   |

- 1. Typ Voltage condition VCC=3.3V.
- 2. Max Voltage condition VCC=1.8~3.6V.



Table 3-11 High-Speed

|                 |                 |               |                                       | Та   |     | Produc  | :t                 |      |
|-----------------|-----------------|---------------|---------------------------------------|------|-----|---------|--------------------|------|
| parad           | Parameter       | Symbol        | conditional                           | (°C) |     | Specifi |                    | Unit |
| igm             |                 |               |                                       |      | Min | Typ(1)  | Max <sup>(2)</sup> |      |
|                 |                 | ICC_RUN       | while(1), full<br>module<br>Clock OFF | -40  | -   | 3       | -                  | mA   |
|                 |                 |               | while(1), full<br>module<br>Clock ON  | -40  | -   | 6       | -                  | mA   |
|                 |                 | ICC_DHRYSTONE | CACHE OFF                             | -40  | _   | 3.5     | _                  | mA   |
|                 |                 | ICC_SLEEP     | Full Module Clock<br>OFF              | -40  | -   | 2       | -                  | mA   |
|                 |                 |               | Full Module Clock ON                  | -40  | _   | 5.5     | -                  | mA   |
|                 |                 | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 25   | -   | 3       | _                  | mA   |
| Hig<br>h<br>Spe | fHCLK=<br>24MHz |               | while(1), full<br>module<br>Clock ON  | 25   | -   | 6       | -                  | mA   |
| ed              |                 | ICC_DHRYSTONE | CACHE OFF                             | 25   | _   | 3.5     | _                  | mA   |
| Mod<br>e        |                 | ICC_SLEEP     | Full Module Clock<br>OFF              | 25   | _   | 2       | -                  | mA   |
|                 |                 |               | Full Module Clock ON                  | 25   | _   | 5.5     | -                  | mA   |
|                 |                 | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 85   | -   | _       | 8                  | mA   |
|                 |                 |               | while(1), full<br>module<br>Clock ON  | 85   | -   | _       | 12                 | mA   |
|                 |                 | ICC_DHRYSTONE | CACHE OFF                             | 85   | _   | _       | 7                  | mA   |
|                 |                 | ICC_SLEEP     | Full Module Clock<br>OFF              | 85   | _   | -       | 8                  | mA   |
|                 |                 |               | Full Module Clock ON                  | 85   | _   | _       | 11                 | mA   |
|                 |                 | ICC_RUN       | while(1), full<br>module<br>Clock OFF | 105  | -   | _       | 10                 | mA   |
|                 |                 |               | while(1), full<br>module<br>Clock ON  | 105  | -   | -       | 14                 | mA   |
|                 |                 | ICC_DHRYSTONE | CACHE OFF                             | 105  | _   | _       | 8                  | mA   |
|                 |                 | ICC_SLEEP     | Full Module Clock<br>OFF              | 105  | _   | -       | 10                 | mA   |



|  | Table 3 1 Mathy 6 Speed N | 105 | _ | _ | 14 | mA |
|--|---------------------------|-----|---|---|----|----|

- 1. Typ Voltage condition VCC Mode Current
- Consumption 3
  2. Max Voltage condition VCC=1.8~3.6V.



Table 3-12 Ultra Low Speed

| parad            | Parameter      | Symbol        | conditional                          | Та   | Produ | ıct Specif                | ication            | Unit  |
|------------------|----------------|---------------|--------------------------------------|------|-------|---------------------------|--------------------|-------|
| igm              | Parameter      | Symbot        | Conditional                          | (°C) | Min   | <b>Typ</b> <sup>(1)</sup> | Max <sup>(2)</sup> | Oilit |
|                  |                | ICC_RUN       | while(1),All<br>Module clock<br>OFF  | -40  | -     | 1                         | -                  | mA    |
|                  |                |               | while(1),All<br>Module Clock ON      | -40  | _     | 3.5                       | -                  | mA    |
|                  |                | ICC_DHRYSTONE | CACHE OFF                            | -40  | -     | 1.5                       | -                  | mA    |
|                  |                | ICC_SLEEP     | Full Module<br>Clock OFF             | -40  | -     | 1.2                       | -                  | mA    |
|                  |                |               | Full Module<br>Clock ON              | -40  | -     | 3.2                       | -                  | mA    |
| 1114             |                | ICC_RUN       | while(1), all<br>Module clock<br>OFF | 25   | _     | 1                         | -                  | mA    |
| Ultr<br>a<br>Low | fHCLK=<br>8MHz |               | while(1), all<br>Module clock ON     | 25   | _     | 3.5                       | _                  | mA    |
| Spee             |                | ICC_DHRYSTONE | CACHE OFF                            | 25   | _     | 1.5                       | -                  | mA    |
| d<br>Mod         |                | ICC_SLEEP     | Full Module<br>Clock OFF             | 25   | _     | 1.2                       | -                  | mA    |
| е                |                |               | Full Module<br>Clock ON              | 25   | _     | 3.2                       | -                  | mA    |
|                  |                | ICC_RUN       | while(1), all<br>Module clock<br>OFF | 85   | _     | -                         | 4                  | mA    |
|                  |                |               | while(1), all<br>Module clock ON     | 85   | _     | _                         | 6                  | mA    |
|                  |                | ICC_DHRYSTONE | CACHE OFF                            | 85   | _     | _                         | 4                  | mA    |
|                  |                | ICC_SLEEP     | Full Module<br>Clock OFF             | 85   | -     | -                         | 3.5                | mA    |
|                  |                |               | Full Module<br>Clock ON              | 85   | -     | -                         | 6                  | mA    |
|                  |                | ICC_RUN       | while(1),All<br>Module clock<br>OFF  | 105  | _     | -                         | 6                  | mA    |
|                  |                |               | while(1),All<br>Module clock ON      | 105  | -     | -                         | 7                  | mA    |
|                  |                | ICC_DHRYSTONE | CACHE OFF                            | 105  | -     | _                         | 4.5                | mA    |
|                  |                | ICC_SLEEP     | Full Module<br>Clock OFF             | 105  | _     | _                         | 4                  | mA    |
|                  |                |               | Full Module<br>Clock ON              | 105  | _     | _                         | 6.5                | mA    |



- 1. Typ Voltage condition പ്രിക്രെട്ട് വ്യാവി Low Speed
- 2. Max Voltage condition Wede f.grrggt/Consumption

1



### Table 3-13 Ultra Low Speed

| parad                | Parameter | Symbol        | conditional                               | Та   |          | Produc                    |                    | Unit |
|----------------------|-----------|---------------|-------------------------------------------|------|----------|---------------------------|--------------------|------|
| igm                  |           | _             |                                           | (°C) |          | Specific                  |                    |      |
|                      |           |               | while(1), full                            | -40  | Min<br>_ | <b>Typ</b> <sup>(1)</sup> | Max <sup>(2)</sup> | mA   |
|                      |           | ICC_RUN       | mode<br>Block Clock OFF                   |      |          |                           |                    |      |
|                      |           |               | while(1), full<br>mode<br>Block Clock ON  | -40  | -        | 2.5                       | _                  | mA   |
|                      |           | ICC_DHRYSTONE | CACHE OFF                                 | -40  | _        | 0.9                       | _                  | mA   |
|                      |           | ICC_SLEEP     | Full Module Clock<br>OFF                  | -40  | _        | 0.9                       | -                  | mA   |
|                      |           |               | Full Module Clock<br>ON                   | -40  | -        | 2.4                       | _                  | mA   |
| Ultra                | fHCLK=    | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 25   | _        | 0.7                       | -                  | mA   |
| Low<br>Speed<br>Mode | 1MHz      |               | while(1), full<br>mode<br>Block Clock ON  | 25   | -        | 2.5                       | -                  | mA   |
|                      |           | ICC_DHRYSTONE | CACHE OFF                                 | 25   | _        | 0.9                       | _                  | mA   |
|                      |           | ICC_SLEEP     | Full Module Clock OFF                     | 25   | _        | 0.9                       | -                  | mA   |
|                      |           |               | Full Module Clock<br>ON                   | 25   | -        | 2.4                       | -                  | mA   |
|                      |           | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 85   | -        | -                         | 4                  | mA   |
|                      |           |               | while(1), full<br>mode<br>Block Clock ON  | 85   | -        | -                         | 5                  | mA   |
|                      |           | ICC_DHRYSTONE | CACHE OFF                                 | 85   | _        | _                         | 3.5                | mA   |
|                      |           | ICC_SLEEP     | Full Module Clock<br>OFF                  | 85   | -        | -                         | 3.5                | mA   |
|                      |           |               | Full Module Clock<br>ON                   | 85   | -        | -                         | 5                  | mA   |
|                      |           | ICC_RUN       | while(1), full<br>mode<br>Block Clock OFF | 105  | _        | -                         | 5                  | mA   |
|                      |           |               | while(1), full<br>mode<br>Block Clock ON  | 105  | -        | -                         | 5.5                | mA   |





|  | ICC_DHRYST | Pable | 3-93-0 Http://Eow.Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed $^{ m 105}$ | - | - | 4   | mA |
|--|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|---|-----|----|
|  |            |       | Cutted the consumption of the co |                | _ | _ | 5   | mA |
|  | ICC_SLEEP  | 2     | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |   |   |     |    |
|  |            |       | Full Module Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105            | _ | _ | 5.5 | mA |
|  |            |       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |   |   |     |    |

- **1.** Typ Voltage condition VCC=3.3V.
- 2. Max Voltage condition VCC=1.8~3.6V.



Table 3-14 Low Power

| mol            | Parameter | Symbol  | Conditions (VCC=3.3V)               | Та   | Prod | uct Specif                | ication            | Unit |
|----------------|-----------|---------|-------------------------------------|------|------|---------------------------|--------------------|------|
| d<br>styl<br>e | Parameter | Symbol  | Conditions (VCC-3.3V)               | (°C) | Min  | <b>Typ</b> <sup>(1)</sup> | Max <sup>(2)</sup> | Onic |
|                |           |         | PWC_PWRC1.STPDAS=00                 | -40  | _    | 160                       | _                  | uA   |
|                |           |         | PWC_PWRC1.STPDAS=11                 | -40  | _    | 30                        | _                  | uA   |
| St             |           |         | PWC_PWRC1.STPDAS=00                 | 25   | _    | 220                       | _                  | uA   |
| ор             | _         | ICC_STP | PWC_PWRC1.STPDAS=11                 | 25   | _    | 80                        | _                  | uA   |
| М              | _         | 100_317 | PWC_PWRC1.STPDAS=00                 | 85   | _    | _                         | 3600               | uA   |
| od             |           |         | PWC_PWRC1.STPDAS=11                 | 85   | _    | _                         | 3400               | uA   |
| е              |           |         | PWC_PWRC1.STPDAS=00                 | 105  | _    | _                         | 4800               | uA   |
|                |           |         | pwc_pwrc1.stpdas=11 <sup>(3)</sup>  | 105  | _    | _                         | 4600               | uA   |
|                |           |         | Power down mode 1                   | -40  | _    | 10                        | _                  | uA   |
|                |           |         | Power-down mode 2                   | -40  | _    | 4                         | _                  | uA   |
|                |           |         | Power-down mode 3                   | -40  | _    | 1.8                       | _                  | uA   |
|                |           |         | Power-down mode 4                   | -40  | _    | 1.8                       | _                  | uA   |
|                |           |         | Power-down mode 2 + XTAL32<br>+ RTC | -40  | -    | 6                         | -                  | uA   |
|                |           |         | Power-down mode 2 + LRC + RTC       | -40  | -    | 9                         | -                  | uA   |
|                |           |         | Power down mode 1                   | 25   | _    | 10                        | _                  | uA   |
|                |           |         | Power-down mode 2                   | 25   | _    | 4                         | -                  | uA   |
| р              |           |         | Power-down mode 3                   | 25   | _    | 1.8                       | _                  | uA   |
| 0              | _         | ICC_PD  | Power-down mode 4                   | 25   | _    | 1.8                       | _                  | uA   |
| w<br>er-       |           |         | Power-down mode 2 + XTAL32<br>+ RTC | 25   | 1    | 6                         | 1                  | uA   |
| do<br>w        |           |         | Power-down mode 2 + LRC + RTC       | 25   | -    | 9                         | 1                  | uA   |
| n              |           |         | Power down mode 1                   | 85   | _    | _                         | 21                 | uA   |
| m              |           |         | Power-down mode 2                   | 85   | _    | _                         | 19                 | uA   |
| od             |           |         | Power-down mode 3                   | 85   | _    | _                         | 19                 | uA   |
| е              |           |         | Power-down mode 4                   | 85   | _    | _                         | 19                 | uA   |
|                |           |         | Power-down mode 2 + XTAL32<br>+ RTC | 85   | ı    | -                         | 21                 | uA   |
|                |           |         | Power-down mode 2 + LRC + RTC       | 85   | _    | -                         | 21                 | uA   |
|                |           |         | Power down mode 1                   | 105  | _    | _                         | 35                 | uA   |
|                |           |         | Power-down mode 2                   | 105  | _    | _                         | 33                 | uA   |
|                |           |         | Power-down mode 3                   | 105  | _    | _                         | 30                 | uA   |
|                |           |         | Power-down mode 4 [3]               | 105  | _    | _                         | 30                 | uA   |
|                |           |         | Power-down mode 2 + XTAL32          | 105  | _    | _                         | 35                 | uA   |



| + RTC Table 3-14 Low Power            | •   |   |   |    |    |
|---------------------------------------|-----|---|---|----|----|
| Power <b>MbdrenCroopder2t</b> + LRC + | 105 | _ | _ | 35 | uA |
| RTC Consumption                       |     |   |   |    |    |

- 1. Typ Voltage condition VCC=3.3V.
- 2. Max Voltage condition VCC=1.8~3.6V.
- **3.** Mass production testing guaranteed.



**Table 3-15 Analog Module Current Consumption** 

| Item       | Parameter | Symbol         | Conditions                                  | Та   |               | Product |      | Unit |
|------------|-----------|----------------|---------------------------------------------|------|---------------|---------|------|------|
|            |           |                | (VCC=AVCC=3.3V)                             | (°C) | Specification |         |      |      |
|            |           |                | (VCC-AVCC-3.3V)                             |      | Min           | Тур     | Max. |      |
|            |           |                | XTAL oscillation mode large drive 24MHz     | 25   | -             | 1.8     | _    | mA   |
|            |           |                | Driving 16MHz in oscillation mode           | 25   | -             | 1       | _    | mA   |
|            |           |                | Oscillation mode small<br>drive 10MHz       | 25   | -             | 0.8     | _    | mA   |
| Mod<br>ule | -         | ICC_MOD<br>ULE | Oscillation mode ultra-<br>small drive 8MHz | 25   | -             | 0.6     | I    | mA   |
| Curr       |           |                | XTAL 32K                                    | 25   | _             | 0.5     | _    | mA   |
| ent        |           |                | HRC                                         | 25   | _             | 0.35    | _    | mA   |
|            |           |                | PLL (@480MHz)                               | 25   | _             | 2.3     | _    | mA   |
|            |           |                | PLL (@240MHz)                               | 25   | _             | 1.4     | _    | mA   |
|            |           |                | ADC                                         | 25   | _             | 1.2     | _    | mA   |
|            |           |                | DAC                                         | 25   | _             | 70      | ı    | uA   |
|            |           |                | CMP                                         | 25   | _             | 0.11    | ı    | mA   |
|            |           |                | PGA                                         | 25   | _             | 1       | _    | mA   |
|            |           |                | USBFS <sup>(1)</sup>                        | 25   | _             | 6       | _    | mA   |

<sup>1.</sup> Contains the current when the control section communicates with the USBPHY.



### 3.3.5 Electrical sensitivity

Different tests (ESD, LU) performed on the chip using specific measurement methods to determine its performance in terms of electrical sensitivity.

### 3.3.5.1 Electrostatic Discharge (ESD)

An electrostatic discharge is applied to the pins of each sample according to each pin combination. This test complies with the JESD22-A114/C101 standard.

**Table 3-16 ESD Characteristics** 

| notatio    | parameters                      | conditional                       | maximu | unit                                  |
|------------|---------------------------------|-----------------------------------|--------|---------------------------------------|
| n          |                                 |                                   | m      | (of                                   |
|            |                                 |                                   | values | meas                                  |
|            |                                 |                                   |        | ure)                                  |
| VESD (HBM) | Electrostatic discharge voltage | TA=+25°C according to JESD22-A114 | 4000   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|            | (human model)                   |                                   |        | V                                     |
| VESD (CDM) | Electrostatic discharge voltage | TA=+25°C, JESD22-C101 compliant   | 1000   |                                       |
|            | (charging equipment model)      |                                   |        |                                       |

### 3.3.5.2 Static Latch-up

To evaluate static Latch-up performance, two complementary static Latch-up tests are performed on the chip:

- Apply overvoltage to each power and analog input pin
- Apply current injection to other input, output, and configurable I/O pins These tests comply with the EIA/JESD 78A IC Latch-up standard.

**Table 3-17 Static Latch-up Characteristics** 

| notation | parameters      | prerequisite                 | maximum values | unit<br>(of<br>measu |
|----------|-----------------|------------------------------|----------------|----------------------|
|          |                 |                              |                | re)                  |
| LU       | Static Latch-up | TA=+105°C, JESD78A compliant | 200            | mA                   |



### 3.3.6 Low Power Mode Wakeup Timing

Wake-up time is measured from the time the wake-up event is triggered to the first instruction executed by the CPU:

- For stop or sleep mode: the wake-up event is WFE.
- The WKUP pin is used to wake up from standby, stop, and sleep modes. All timings are tested at ambient temperature and VCC=3.3V.

Table 3-18 Low Power Mode Wake-Up Time

| notati<br>on        | parameters                | conditional                                                                                               | typical<br>value | maximu<br>m<br>values | unit<br>(of<br>meas<br>ure) |
|---------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------------------------|
| TSTOP1              | Wake up from stop<br>mode | PWC_PWRC1.VHRCSD=1 and PWC_PWRC1.VPLLSD=1,the system clock is MRC, the program is in the Execution on RAM | 2                | 5                     |                             |
| TSTOP2              | Wake up from stop<br>mode | The system clock is MRC and the program is executed on Flash                                              | 8                | 15                    |                             |
| TPD1 <sup>(1)</sup> | Wake up from              | VCAP_1/VCAP_2 total capacity of 0.094uF or 0.1uF                                                          | 15               | 25                    | μs                          |
|                     | power-down mode<br>1      | VCAP_1/VCAP_2 total capacity of 0.2uF or 0.22uF                                                           | 20               | 30                    |                             |
| TPD2 <sup>(1)</sup> | Wake up from              | VCAP_1/VCAP_2 total capacity of 0.094uF or 0.1uF                                                          | 40               | 50                    |                             |
|                     | power-down mode<br>2      | VCAP_1/VCAP_2 total capacity of 0.2uF or 0.22uF                                                           | 45               | 55                    |                             |
| TPD3 <sup>(1)</sup> | Wake up from              | VCAP_1/VCAP_2 total capacity of 0.094uF or 0.1uF                                                          | 2500             | 3000                  |                             |
|                     | power-down mode<br>3      | VCAP_1/VCAP_2 total capacity of 0.2uF or 0.22uF                                                           | 2500             | 3000                  |                             |
| TPD4 <sup>(1)</sup> | Wake up from              | VCAP_1/VCAP_2 total capacity of 0.094uF or 0.1uF                                                          | 65               | 75                    |                             |
|                     | power-down mode<br>4      | VCAP_1/VCAP_2 total capacity of 0.2uF or 0.22uF                                                           | 70               | 80                    |                             |

1. The total capacity of VCAP\_1/VCAP\_2 must match the value assigned to the PWC\_PWRC3.PDTS bit. If the total capacity of VCAP\_1/VCAP\_2 is 0.2uF or 0.22uF, make sure the PWC\_PWRC3.PDTS bit is cleared to zero before entering power-down mode.If the total capacity of VCAP\_1/VCAP\_2 is 0.094uF or 0.1uF, make sure the PWC\_PWRC3.PDTS bit is set to 0.094uF or 0.1uF before entering power-down mode.



### 3.3.7 I/O Port Characteristics

### **General Input/Output Characteristics**

**Table 3-19 I/O Static Characteristics** 

| notatio<br>n          |                                        | parameters                                                                      | prerequisite              | minimum<br>value | typical<br>value | maximum<br>values | unit<br>(of  |
|-----------------------|----------------------------------------|---------------------------------------------------------------------------------|---------------------------|------------------|------------------|-------------------|--------------|
|                       |                                        |                                                                                 |                           | ratae            | value            | rataes            | meas<br>ure) |
| VIL <sup>(1)</sup>    | Schmitt i                              | nput low                                                                        | 1.8≤VCC≤3.6               | -                | -                | <b>0.</b> 2vcc    | ٧            |
| VIH <sup>(1)</sup>    | Schmitt i                              | nput high                                                                       | 1.8≤VCC≤3.6               | <b>0.</b> 8vcc   | -                | _                 | ٧            |
| VHYS                  | Schmitt i                              | nput hysteresis                                                                 | 1.8≤VCC≤3.6               | -                | 0.2              | _                 | ٧            |
| VIL                   | CMOS inpu                              | ut low level <sup>(3)</sup>                                                     | 1.8≤VCC≤3.6               | -                | _                | <b>0.</b> 3vcc    | ٧            |
| VIH                   | CMOS inpu                              | ut high <sup>(3)</sup>                                                          | 1.8≤VCC≤3.6               | <b>0.</b> 7VCC   | _                | _                 | ٧            |
| ILKG <sup>(1)</sup>   | 11 (C (1) 1/O leavet                   | oakaga Current                                                                  | VSS≤VIN≤VCC               | -1               | -                | 1                 | uA           |
| ILKG**   I            | i/O input i                            | -eakage Current                                                                 | VIN = 5.5V <sup>(2)</sup> | -                | _                | 5                 | uA           |
|                       | Weak                                   | usbfs_dp, usbfs_dm                                                              | _                         | -                | 1.5              | _                 | ΚΩ           |
| RPU <sup>(1)(2)</sup> | pull-up<br>equivale<br>nt<br>resistanc | In addition to the USBFS_DP and Other input pins of USBFS_DM                    | VIN = VSS                 | -                | 30               | -                 | ΚΩ           |
|                       | е                                      |                                                                                 |                           |                  |                  |                   |              |
|                       | I/O Pin                                | PA11/USBFS_DM<br>PA12/USBFS_DP                                                  | _                         | _                | 10               | _                 | pF           |
| СІО                   | Capacit ance                           | In addition to PA11/USBFS_DM and PA12/USBFS_DP, the other outputs are inlet pin | _                         | -                | 5                | -                 | pF           |

- 1. Mass production testing guaranteed.
- 2. To keep the voltage above VCC+0.3 V, the internal pull-up/down resistors must be disabled.
- 3. The input type of the pin is CMOS when MOSI/MISO/SCK/NSS0 function of SPI is selected, or SDA/SCL of I2C and SMbus mode is selected, and the input type of the pin is Schmitt when other functions are selected.



### output voltage

### **Table 3-20 Output Voltage Characteristics**

| Driver<br>settings | notation              | parameters           | conditional            | minimum<br>value | typical<br>value | maximu<br>m<br>values | unit<br>(of<br>meas<br>ure) |
|--------------------|-----------------------|----------------------|------------------------|------------------|------------------|-----------------------|-----------------------------|
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±1.5mA,            | -                | -                | 0.4                   |                             |
| low drive          | VOH <sup>(1)(3)</sup> | High Level<br>Output | 1.8≤VCC<2.7            | VCC-0.4          | -                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±3mA, 2.7≤VCC≤3.6  | -                | -                | 0.4                   |                             |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-0.4          | -                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±6mA, 2.7≤VCC≤3.6  | ı                | _                | 1.3                   | V                           |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-1.3          | -                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±3mA, 1.8≤VCC<2.7  | _                | _                | 0.4                   |                             |
| medium             | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-0.4          | _                | _                     |                             |
| driver             | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±5mA, 2.7≤VCC≤3.6  | _                | _                | 0.4                   |                             |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-0.4          | _                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±12mA, 2.7≤VCC≤3.6 | _                | _                | 1.3                   |                             |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-1.3          | _                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±6mA, 1.8≤VCC<2.7  | _                | _                | 0.4                   |                             |
| high drive         | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-0.4          | _                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±8mA, 2.7≤VCC≤3.6  | _                | _                | 0.4                   |                             |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output |                        | VCC-0.4          | -                | _                     |                             |
|                    | VOL <sup>(1)(2)</sup> | Low Level<br>Output  | IIO=±20mA, 2.7         | -                | -                | 1.3                   |                             |
|                    | VOH <sup>(1)(3)</sup> | High Level<br>Output | ≤VCC≤3.6               | VCC-1.3          | -                | -                     |                             |

- 1. Mass production testing guaranteed.
- 2. The  $_{\mbox{\scriptsize IIO}}$  sink current of the device must always take into account the absolute

X出SC小华半导体 maximum ratings specified in Table 3-3. the sum of the IIOs (I/のportx back com.cn

control pins) must not exceed IVSS.

3. The  $_{\rm IIO}$  pull current of the device must always follow the absolute maximum ratings listed in Table 3-3, and the sum of the  $_{\rm IIOs}$  (I/O ports and control pins) must not exceed  $_{\rm IVCC}$ .



# Input/Output AC Characteristics

### Table 3-21 I/O AC Characteristics

| Driver<br>settings | notation                              | parameters                                     | Conditions (3)      | minimu<br>m value | typical<br>value | maximu<br>m values | unit<br>(of<br>mea<br>sure) |
|--------------------|---------------------------------------|------------------------------------------------|---------------------|-------------------|------------------|--------------------|-----------------------------|
|                    |                                       |                                                | CL=30 pF, VCC≥ 2.7V | -                 | _                | 20                 |                             |
|                    | <sub>fmax</sub> (IO)out               | Maximum                                        | CL=30 pF, VCC≥1.8V  | _                 | -                | 10                 | MHz                         |
|                    |                                       | frequency <sup>(1)</sup>                       | CL=10pF, VCC≥2.7V   | _                 | -                | 40                 |                             |
| low drive          |                                       | , ,                                            | CL=10pF, VCC≥1.8V   | _                 | -                | 20                 |                             |
| tow arre           |                                       |                                                | CL=30 pF, VCC≥2.7V  | _                 |                  | 15                 |                             |
|                    | $_{ m tr}$ (IO)out $_{ m tr}$ (IO)out | Output high to low level fall                  | CL=30 pF, VCC≥1.8V  | _                 | _                | 25                 |                             |
|                    |                                       | tr(IO)out                                      | time and output     | CL=10pF, VCC≥2.7V | _                | _                  | 7.5                         |
|                    |                                       | low to high level                              | CL=10pF, VCC≥1.8V   | -                 | -                | 15                 |                             |
|                    | <sub>fmax</sub> (IO)out               |                                                | CL=30 pF, VCC≥ 2.7V | _                 | _                | 45                 |                             |
|                    |                                       | IO)out Maximum  frequency <sup>(1)</sup>       | CL=30 pF, VCC≥1.8V  | _                 | _                | 22.5               | MHz                         |
|                    |                                       |                                                | CL=10pF, VCC≥2.7V   | _                 | _                | 90                 | IVII IZ                     |
|                    |                                       |                                                | CL=10pF, VCC≥1.8V   | _                 | _                | 45                 |                             |
| medium<br>driver   |                                       |                                                | CL=30 pF, VCC≥2.7V  | _                 | _                | 7.5                | ns                          |
| unven              | $_{tf}$ (IO)out                       | Output high to low level fall                  | CL=30 pF, VCC≥1.8V  | _                 | _                | 12                 |                             |
|                    | $_{\mathrm{tr}}(IO)$ out              | time and output                                | CL=10pF, VCC≥2.7V   | _                 | _                | 4                  | ns                          |
|                    |                                       | low to high level                              | CL=10pF, VCC≥1.8V   | -                 | -                | 7.5                |                             |
|                    |                                       |                                                | CL=30 pF, VCC≥2.7V  | _                 | _                | 100                |                             |
|                    | <sub>fmax</sub> (IO)out               | Maximum                                        | CL=30 pF, VCC≥1.8V  | _                 | _                | 50                 | MHz                         |
|                    | fmax(IO)Out                           | frequency (1)                                  | CL=10pF, VCC≥2.7V   | _                 | _                | 180                | MILIZ                       |
| high               |                                       | irequeitcy .                                   | CL=10pF, VCC≥1.8V   | _                 | _                | 100                |                             |
| drive              |                                       | Output high to                                 | CL=30 pF, VCC≥2.7V  | _                 | _                | 4                  |                             |
|                    | $_{\rm tf}$ (IO)out                   | low level fall                                 | CL=30 pF, VCC≥1.8V  | _                 | -                | 6                  | ns                          |
|                    | tr(IO)out                             | )out   low level fall    <br>  time and output | CL=10pF, VCC≥2.7V   | _                 | _                | 2.5                | .,,                         |
|                    |                                       | low to high level                              | CL=10pF, VCC≥1.8V   | _                 | _                | 4                  |                             |

- 1. The maximum frequency is defined in Figure 3-6.
- Load capacitance <sub>CL The</sub> capacitance of the PCB and MCU pins must be taken into account (the capacitance of the pins to the board can be roughly estimated at 10pF)





Figure 3-6 I/O AC Characteristics Definition

 HC32F460 Series
 89

 Datasheet\_Rev1.5
 /109



### **3.3.8 USART**

### Interface

### **Table 3-22 USART AC Timing**

### **Features**

| notation | para                    | meters | minimum<br>value | maximum<br>values | unit (of<br>measure) |
|----------|-------------------------|--------|------------------|-------------------|----------------------|
| tcyc     | Number of input clock   | UART   | 4                | _                 | tPCLK1               |
|          | cycles                  | CSI    | 6                | -                 |                      |
| tCKw     | Input Clock Width       | 0.4    | 0.6              | tScyc             |                      |
| tCKr     | Input clock rise time   |        | _                | 5                 | ns                   |
| tCKf     | Input clock fall time   |        | -                | 5                 | ns                   |
| tTD      | Transmission delay time | CSI    | -                | 28                | ns                   |
| tRDS     | Receive data setup time | CSI    | 15               | _                 | ns                   |
| tRDH     | Receive Data Hold Time  | CSI    | 5                | _                 | ns                   |



Figure 3-7 USART Clock Timing



Figure 3-8 USART (CSI) Input/Output Timing



### 3.3.9128

### Interface

### **Table 3-23 I2S Electrical Characteristics**

### **Features**

| notation            | Performance indicators         | prerequisite                                | Min    | Max.   | Unit |  |
|---------------------|--------------------------------|---------------------------------------------|--------|--------|------|--|
| fMCK                | I2S main clock output          | -                                           | 256*8K | 256*Fs | MHz  |  |
| fCK                 | I2S clock frequency            | Master data: 32 bits                        | 20     | 64*Fs  | MHz  |  |
|                     | 125 Clock frequency            | Slave data: 32 bits                         | _      | 64*Fs  | MITZ |  |
| DCK                 | I2S clock frequency duty cycle | Slave receiver                              | 30     | 70     | %    |  |
| tv(WS)              | WS valid time                  | Master mode                                 | 0      | _      |      |  |
| th(WS)              | WS hold time                   | Master mode                                 | 0      | _      |      |  |
| tsu(WS)             | WS setup time                  | Slave mode                                  | 1      | _      |      |  |
| th(WS)              | WS hold time                   | Slave mode                                  | 0      | _      |      |  |
| tsu(SD_MR)          | Data in mut actum times        | Master receiver                             | 7.5    | _      |      |  |
| tsu(SD_SR)          | Data input setup time          | Slave receiver                              | 2      | _      |      |  |
| th(SD_MR)           | Data innut hald time           | Master receiver                             | 0      | _      |      |  |
| th(SD_SR)           | Data input hold time           | Slave receiver                              | 0      | _      | ns   |  |
| tv(SD_ST) th(SD_ST) | Data output valid time         | Slave<br>transmitter(after<br>enable edge)  | -      | 27     | ns   |  |
| tv(SD_MT)           |                                | Master<br>transmitter(after<br>enable edge) | -      | 20     |      |  |
| th(SD_MT)           | Data output hold time          | Master<br>transmitter(after<br>enable edge) | 2.5    | -      |      |  |

1. Fs: I2S sampling frequency.





Figure 3-9 I2S Slave Mode Timing (Philips Protocol)



Figure 3-10 I2S Master Mode Timing (Philips Protocol)



### **3.3.10** I2C Interface

### **Features**

### **Table 3-24 I2C Electrical Characteristics**

| notatio | parameters                                                 | Standard Model<br>(SM)      |      | Fast Mode (FM)              |      | unit                |
|---------|------------------------------------------------------------|-----------------------------|------|-----------------------------|------|---------------------|
| n       |                                                            | Min                         | Max. | Min                         | Max. | (of<br>meas<br>ure) |
| fSCL    | SCL frequency                                              | 0                           | 100  | 0                           | 400  | KHz                 |
| tHD;STA | Start condition/restart condition Hold                     | 4.0                         | -    | 0.6                         | -    | μs                  |
| tLOW    | SCL low                                                    | 4.7                         | _    | 1.3                         | _    | μs                  |
| tHIGH   | SCL high                                                   | 4                           | _    | 0.6                         | _    | μs                  |
| tSU;STA | Restart condition Setup                                    | 4.7                         | _    | 0.6                         | -    | μs                  |
| tHD;DAT | Data Hold                                                  | 0                           | _    | 0                           | -    | μs                  |
| tSU;DAT | Data Setup                                                 | 30+<br>tl2C Reference Clock | -    | 30+<br>tl2C Reference Clock | -    | ns                  |
|         |                                                            | Cycle                       |      | Cycle                       |      |                     |
| tR      | SCL/SDA rise time                                          | _                           | 1000 | _                           | 300  | ns                  |
| tF      | SCL/SDA fall time                                          | _                           | 300  | _                           | 300  | ns                  |
| tSU;STO | Stop condition Setup                                       | 4                           | _    | 0.6                         | -    | μs                  |
| tBUF    | BUS idle between stop condition and start condition timing | 4.7                         | -    | 1.3                         | -    | μs                  |
| Cb      | load capacitance                                           | _                           | 400  | _                           | 400  | pF                  |



Figure 3-11 I2C Bus Timing Definitions



### 3.3.11 SPI

### Interface

### **Table 3-25 SPI Electrical Characteristics**

### **Features**

| ltem             |        | Symbol   | Min                                  | Max. | Unit  | Test<br>conditions |
|------------------|--------|----------|--------------------------------------|------|-------|--------------------|
| SCK clock cycle  | Master | tspcyc   | 2 (pclk ≤ 60MHz)<br>4 (pclk ≤ 60MHz) | 4096 | tpcyc | Figure 3-12        |
|                  | Slave  |          | 6                                    | 4096 |       | C=30pF             |
| SCK clock rise   | Master | tsckr    | _                                    | 5    | ns    | С ССР.             |
| and fall time    | Slave  | tsckf    | _                                    | 1    | μs    |                    |
| Data input setup | Master | <b>.</b> | 4                                    | _    |       |                    |
| time             | Slave  | tsu      | 5                                    | _    | ns    |                    |
| Data input hold  | Master | th       | tpcyc                                | _    | ns    |                    |
| time             | Slave  |          | 20                                   | _    | ns    |                    |
| Data output      | Master | tod      | _                                    | 8    | ns    | Figure 3-13        |
| delay            | Slave  | tou      | _                                    | 20   | 113   | /14/15             |
| Data output hold | Master | tob      | 0                                    | _    | ne    | C=30pF             |
| time             | Slave  | toh      | 0                                    | _    | ns    | С 30р.             |
| MOSI/MISO rise   | Master | tdr      | -                                    | 5    | ns    |                    |
| and fall time    | Slave  | tdf      | _                                    | 1    | μs    |                    |
| SS rise and fall | Master | tssr     | _                                    | 5    | ns    |                    |
| time             | Slave  | tssf     | _                                    | 1    | μs    |                    |



Figure 3-12 SCK Clock Definition





Figure 3-13 SPI timing diagram -slave mode and CPHA=0



Figure 3-14 SPI timing diagram -slave mode and CPHA=1





Figure 3-15 SPI timing diagram -master mode



#### 3.3.12 CAN2.0B Interface Features

For the port characteristics of CANx\_TX and CANx\_RX, refer to [I/O Port Characteristics]

#### **3.3.13** USB Interface Features

**Table 3-26 USB Full-Speed Electrical Characteristics** 

| Syı                | mbol               | Parameter                           | Conditions                              | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit        |
|--------------------|--------------------|-------------------------------------|-----------------------------------------|--------------------|-----|--------------------|-------------|
|                    | vcc                | operating voltage                   | -                                       | 3.0(2)             | -   | 3.6                | V           |
|                    | VIL                | Input Low Level                     | -                                       | _                  | -   | 0.8                | V           |
| impor              | VIH                | Input High Level                    | -                                       | 2.0                | -   | _                  | V           |
| tation             | VDI                | Differential Input Sensitivity      | -                                       | 0.2                | -   | _                  | V           |
|                    | VCM                | Differential Common<br>Mode Voltage | -                                       | 0.8                | -   | 2.5                | <b>&gt;</b> |
|                    | voL <sup>(3)</sup> | Static output low level             | RL=1.5k $\Omega$ to 3.6V <sup>(4)</sup> | _                  | -   | 0.3                | <b>\</b>    |
|                    | vон <sup>(3)</sup> | Static Output High                  | RL=15k $\Omega$ to VSS <sup>(4)</sup>   | 2.8                | -   | 3.6                | V           |
|                    | VCRS               | Cross-over                          | CL=50pF                                 | 1.3                | _   | 2.0                | V           |
| expor              |                    | voltage                             |                                         |                    |     |                    |             |
| ts                 | tR                 | rising time                         | CL=50pF.<br>10%~90% of  VOH-VOL         | 4                  | -   | 20                 | ns          |
|                    | tF                 | descent time                        | CL=50pF.<br>10%~90% of  VOH-VOL         | 4                  | -   | 20                 | ns          |
|                    | tRFMA              | Rise-fall time ratio                | CL=50pF                                 | 90                 | -   | 111.1              | %           |
| RPD <sup>(3)</sup> |                    | pull-down resistor                  | VIN= <sub>vcc</sub> , in host mode      | -                  | 15  | _                  | kΩ          |
|                    |                    |                                     | VIN= <sub>VSS</sub> , idle state        | 0.900              | 1.2 | 1.575              | kΩ          |
| RPU <sup>(3)</sup> |                    | pull-up resistor                    | VIN= <sub>vss.</sub><br>in device mode  | 1.425              | 2.3 | 3.090              | kΩ          |

- 1. All voltages were measured based on local ground potentials.
- USB Full Speed transceiver functionality is still guaranteed when the operating voltage drops to 2.7V, but full USB Full Speed electrical characteristics are not guaranteed, the latter being degraded over the vcc voltage range of 2.7 to 3.0V.
- 3. Mass production testing guaranteed.
- 4. RL is the load connected to the USB full-speed drive.

2.0

300

300

125

24.80

٧

ns

%

kΩ



vcrs<sup>(3)</sup>

tR<sup>(3)</sup>

tF<sup>(3)</sup>

trfma<sup>(3)</sup>

export

RPD<sup>(3)</sup>

s

Cross-over

voltage

rising time

descent time

pull-down resistor

| Sy     | mbol               | Parameter           | Conditions                              | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit |
|--------|--------------------|---------------------|-----------------------------------------|--------------------|-----|--------------------|------|
|        | VCC                | operating voltage   | -                                       | 3.0 <sup>(2)</sup> | -   | 3.6                | ٧    |
|        | VIL                | Input Low Level     | -                                       | -                  | -   | 0.8                | ٧    |
| impor  | VIH                | Input High Level    | -                                       | 2.0                | -   | -                  | ٧    |
| tation | VDI                | Differential Input  | -                                       | 0.2                | _   | -                  | ٧    |
|        |                    | Sensitivity         |                                         |                    |     |                    |      |
|        | VCM                | Differential Common | -                                       | 0.8                | -   | 2.5                | ٧    |
|        |                    | Mode Voltage        |                                         |                    |     |                    |      |
|        | VOL <sup>(3)</sup> | Static output low   | RL=1.5k $\Omega$ to 3.6V <sup>(4)</sup> | -                  | _   | 0.3                | ٧    |
|        |                    | level               |                                         |                    |     |                    |      |
|        | vон <sup>(3)</sup> | Static Output High  | RL=15k $\Omega$ to VSS <sup>(4)</sup>   | 2.8                | _   | 3.6                | ٧    |
| 1      |                    |                     |                                         |                    |     |                    |      |

CL=200pF~600pF

CL=200pF~600pF.

CL=200pF~600pF.

10%~90% of |VOH-VOL|

10%~90% of |VOH-VOL|

VIN= <sub>VCC</sub>, in host mode

1.3

75

75

80

14.25

**Table 3-27 USB Low-Speed Electrical Characteristics** 

1. All voltages were measured based on local ground potentials.

Rise-fall time ratio tR/tF CL=200pF~600pF

- 2. A drop in operating voltage to 2.7V still guarantees USB low-speed transceiver functionality, but does not guarantee full USB low-speed electrical characteristics, which degrade over the 2.7 to 3.0V  $_{\text{VCC}}$  voltage range.
- 3. Mass production testing guaranteed.
- 4. RL is the load connected to the USB low speed drive.



Figure 3-16 USB Rise/Fall Time and Cross Over Voltage Definition



### 3.3.14 PLL

**Charact** 

**Table 3-28 PLL Main Performance Indicators** 

erizatio

n

| notation  | parameters                                                          | conditional                                                          | Min | Тур  | Max. | Unit |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----|------|------|------|
| fPLL_IN   | PLL PFD (Phase<br>Frequency Detector)<br>input clock <sup>(1)</sup> | -                                                                    | 1   | -    | 25   | MHz  |
| fPLL_OUT  | PLL multiplier output clock                                         | -                                                                    | 15  | _    | 240  | MHz  |
| fvco_out  | PLL VCO output                                                      | -                                                                    | 240 | _    | 480  | MHz  |
| JitterPLL | Period Jitter                                                       | PLL PFD input<br>clock=8MHz.<br>System clock=120MHz.<br>Peak-to-Peak | -   | ±100 | -    | ps   |
|           | Cycle-to-Cycle<br>Jitter                                            | PLL PFD input<br>clock=8MHz.<br>System clock=120MHz.<br>Peak-to-Peak | -   | ±150 | _    | F    |
| tLOCK     | PLL lock time                                                       | -                                                                    |     | 80   | 120  | μs   |

<sup>1.</sup> It is recommended to use a higher input clock to obtain good Jitter characteristics.



### 3.3.15 JTAG

### Interface

### **Table 3-29 JTAG Interface Characteristics**

### **Features**

| Synbol  | Item                        | Min | Тур | Max. | Unit |
|---------|-----------------------------|-----|-----|------|------|
| tTCKcyc | JTCK clock cycle time       | 50  | _   | -    | ns   |
| tTCKH   | JTCK clock high pulse width | 20  | _   | _    | ns   |
| tTCKL   | JTCK clock low pulse width  | 20  | _   | _    | ns   |
| tTCKr   | JTCK clock rise time        | -   | _   | 5    | ns   |
| tTCKf   | JTCK clock fall time        | -   | _   | 5    | ns   |
| tTMSs   | JTMS setup time             | 8   | _   | _    | ns   |
| tTMSh   | JTMS hold time              | 8   | _   | _    | ns   |
| tTDIs   | JTDI setup time             | 8   | _   | _    | ns   |
| tTDIh   | JTDI hold time              | 8   | _   | _    | ns   |
| tTDOd   | JTDO data delay time        | _   | _   | 20   | ns   |



Figure 3-17 JTAG JTCK Clock





Figure 3-18 JTAG Inputs and Outputs

### 3.3.16 External Clock Source Characteristics

### 3.3.16.1 High-speed external user clock generated by an external source

In bypass mode, the XTAL oscillator is turned off and the input pins are standard I/O. The external clock signal must take into account the I/O static characteristics.

| notation               | parameters                              | conditional | minimum<br>value    | typical<br>value | maximum<br>values   | unit<br>(of<br>meas<br>ure) |
|------------------------|-----------------------------------------|-------------|---------------------|------------------|---------------------|-----------------------------|
| fXTAL_EXT              | User External Clock Source<br>Frequency |             | 1                   | -                | 25                  | MHz                         |
| VIH_XTAL               | XTAL_EXT input pin high                 | _           | 0. <sub>8*VCC</sub> | _                | VCC                 | ٧                           |
| VIL_XTAL               | XTAL_EXT input pin low                  |             | VSS                 | _                | 0. <sub>2*VCC</sub> |                             |
| tr(XTAL)               | XTAL_EXT Rise or fall time              |             | _                   | -                | 5                   | ns                          |
| Duty <sub>(XTAL)</sub> | duty cycle                              | _           | 40                  | _                | 60                  | %                           |

**Table 3-30 High-Speed External User Clock Characteristics** 



### 3.3.16.2 Crystal / Ceramic Resonators Generate High Speed External Clocks

The high-speed external (XTAL) clock can be generated using a 4 to 25 MHz crystal/ceramic resonator oscillator. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimize output distortion and start-up stabilization time. For detailed information on resonator characteristics (frequency, package, accuracy, etc.), please consult the crystal resonator manufacturer.

| notation                 | parameters               | prerequisite              | minimum<br>value | typical<br>value | maximu<br>m values | unit (of<br>measur |
|--------------------------|--------------------------|---------------------------|------------------|------------------|--------------------|--------------------|
|                          |                          |                           |                  |                  |                    | e)                 |
| fXTAL_IN                 | oscillator frequency     |                           | 4                | -                | 25                 | MHz                |
| RF <sup>(1)</sup>        | Feedback                 |                           | _                | 300              | _                  | kΩ                 |
|                          | resistance               |                           |                  |                  |                    |                    |
| AXTAL <sup>(2)</sup>     | XTAL Accuracy            | -                         | -500             | -                | 500                | ppm                |
| Gmmax                    | Oscillator <sub>Gm</sub> | vibration                 | 4                | -                | _                  | mA/V               |
| tSU(XTAL) <sup>(3)</sup> |                          | VCC stabilized, crystal = | -                | 2.0              | _                  | ms                 |
| tSU(XTAL)                | activation time          | 8MHz                      |                  |                  |                    |                    |
|                          |                          | VCC stabilized, crystal = | _                | 4.0              | _                  | ms                 |
|                          |                          | 4MHz                      |                  |                  |                    |                    |

Table 3-31 XTAL 4-25 MHz Oscillator Characteristics

- 1. Mass production testing guaranteed.
- 2. This parameter depends on the resonator used in the application.
- 3. tSU(XTAL) is the start-up time, measured from the time the software enables XTAL until a stable 8MHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For <sub>CL1</sub> and <sub>CL2</sub>, it is recommended to use a high quality external ceramic capacitor designed specifically for high frequency applications that meets the requirements of a crystal or resonator (see the following figure) <sub>CL1</sub> and <sub>CL2</sub> are usually the same size CL1=CL2=2\*(CL-Cs)Cs ith PCB and CL1 (CL2) that capacitance.



HC32F460 Series 102 Datasheet\_Rev1.5 /109



# Figure 3-19 Typical Application with 8 MHz Crystals

1. The value of  $_{\mbox{\scriptsize REXT}}$  depends on the crystal characteristics.



### 3.3.16.3 Crystal / Ceramic Resonator Generated Low Speed External Clocks

The low-speed external clock can be generated using an oscillator consisting of a 32.768 kHz crystal/ceramic resonator. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimize output distortion and start-up stabilization time. For detailed information on resonator characteristics (frequency, package, accuracy, etc.), consult the crystal resonator manufacturer.

| notation               | narameters               | conditional         | norm |        |      | unit        |
|------------------------|--------------------------|---------------------|------|--------|------|-------------|
| notation               | parameters               | ameters Conditional |      | Тур    | Max. | (of<br>meas |
|                        | fue and an a             |                     |      | 22.760 |      | ure)        |
| FXTAL32                | frequency                | _                   | _    | 32.768 | _    | kHz         |
| RF <sup>(1)</sup>      | Feedback                 | -                   | _    | 15     | -    | МΩ          |
|                        | resistance               |                     |      |        |      |             |
| IDD_XTAL32             | power wastage            | XTAL32DRV[2:0]=000  | _    | 0.8    | _    | μΑ          |
| AXTAL32 <sup>(2)</sup> | XTAL32 Accuracy          | 1                   | -500 | _      | 500  | ppm         |
| Gmmax                  | Oscillator <sub>Gm</sub> | -                   | 5.6  | _      | _    | uA/V        |
| TSUXTAL32              | Start-up time (3)        | VCC steady state    | _    | 2      | _    | s           |

**Table 3-32 XTAL32 Oscillator Characteristics** 

- 1. Mass production testing guaranteed.
- 2. This parameter depends on the resonator used in the application.
- 3. TSUXTAL32 is the time to oscillation, measured from the time the software enables XTAL32 until a stable 32.768 kHz oscillation frequency is obtained. This value is based on a standard crystal resonator and may vary significantly depending on the crystal manufacturer.

For <sub>CL1</sub> and <sub>CL2</sub>, it is recommended to use high quality external ceramic capacitors (see figure below) <sub>CL1</sub> and <sub>CL2</sub> are usually the same size, CL1=CL2=2\*(CL-Cs), Cs is the stray capacitance of the PCB and MCU pins (XTAL32\_IN, XTAL32\_OUT). If <sub>CL1</sub> and <sub>CL2</sub> are larger than 18pF, it is recommended to set the XTAL32DRV[2:0]=001 (for larger drivers, the typical value of power consumption increases by 0.2uA). If CL1 and CL2 are larger than 18pF, it is recommended to set XTAL32DRV[2:0]=001 (large driver, power consumption increases by 0.2uA typical)





Figure 3-20 Typical Application with 32.768 kHz Crystals

HC32F460 Series 105
Datasheet\_Rev1.5 /109



### 3.3.17 Internal Clock

Source

**Characteristics** 

### **Table 3-33 HRC Oscillator Characteristics**

### 3.3.17.1 Internal High Speed

(HRC) Oscillator

| notation  | parameters                        | conditional                   | minimu<br>m value | typical<br>value | maximu<br>m values | unit<br>(of |
|-----------|-----------------------------------|-------------------------------|-------------------|------------------|--------------------|-------------|
|           |                                   |                               |                   |                  |                    | meas        |
|           |                                   |                               |                   |                  |                    | ure)        |
|           | Frequency <sup>(1)</sup>          | Model 1                       | _                 | 16               | -                  | MHz         |
|           |                                   | Model 2                       | _                 | 20               | _                  | MITZ        |
| fHRC      | User-adjusted scale               | -                             | _                 | _                | 0.2                | %           |
|           | Frequency accuracy <sup>(1)</sup> | <sub>TA</sub> = -40 to 105 °C | -2                | _                | 2                  | %           |
|           |                                   | <sub>TA</sub> = -20 to 105 °C | -1.5              | _                | 1.5                | %           |
|           |                                   | <sub>TA</sub> = 25 °C         | -0.5              | _                | 0.5                | %           |
| tst (HRC) | HRC Oscillator Oscillation        | -                             | _                 | _                | 15                 | μs          |
|           | Stabilization Time                |                               |                   |                  |                    |             |

1. Mass production test

assurance.

# 3.3.17.2 Internal medium-

**Table 3-34 MRC Oscillator Characteristics** 

rate (MRC) oscillator

| notation            | parameters                        | minimu<br>m value | typical<br>value | maximu<br>m | unit<br>(of  |
|---------------------|-----------------------------------|-------------------|------------------|-------------|--------------|
|                     |                                   |                   |                  | values      | meas<br>ure) |
| fMRC <sup>(1)</sup> | frequency                         | 7.2               | 8                | 8.8         | MHz          |
| tst(MRC)            | MRC oscillator stabilization time | _                 | _                | 3           | μs           |

1. Mass production test

assurance.

### 3.3.17.3 Internal Low Rate

**Table 3-35 LRC Oscillator Characteristics** 

(LRC) Oscillator

| notation            | parameters                        | minimum<br>value | typical<br>value | maximum<br>values | unit (of<br>measur<br>e) |
|---------------------|-----------------------------------|------------------|------------------|-------------------|--------------------------|
| fLRC <sup>(1)</sup> | frequency                         | 27.853           | 32.768           | 37.683            | kHz                      |
| tst(LRC)            | LRC oscillator stabilization time | _                | _                | 36                | μs                       |

1. Mass production test assurance.

HC32F460 Series 106
Datasheet\_Rev1.5 /109

#### Table 3-36 SWDTLRC Oscillator Characteristics

| notation                | parameters                            | minimu<br>m value | typical<br>value | maximu<br>m | measur |
|-------------------------|---------------------------------------|-------------------|------------------|-------------|--------|
|                         |                                       |                   |                  | values      | e)     |
| fSWDTLRC <sup>(1)</sup> | frequency                             | 9                 | 10               | 11          | kHz    |
| tst(SWDTLRC)            | SWDTLRC oscillator stabilization time | _                 | _                | 57.1        | μs     |

1. Mass production test assurance.



### 3.3.18 12-Bit ADC

### Characterizati

#### Table 3-37 ADC Characteristics

on

| notatio<br>n         | parameters                           | conditional                                               | minimum<br>value | typical<br>value | maximu<br>m values | unit<br>(of<br>measu<br>re) |
|----------------------|--------------------------------------|-----------------------------------------------------------|------------------|------------------|--------------------|-----------------------------|
| VAVCC                | electric power source                | -                                                         | 1.8              | -                | 3.6                | V                           |
| VREFH <sup>(1)</sup> | Positive reference voltage           | _                                                         | 1.8              | -                | VAVCC              | V                           |
| fADC                 | ADC Conversion                       | Ultra High Speed/High Speed  Motion Mode  VAVCC=2.4~3.6 V | 1                | -                | 60                 | MHz                         |
|                      | Clock Frequency                      | Ultra High Speed/High Speed  Motion Mode  VAVCC=1.8~2.4 V | 1                | -                | 30                 |                             |
|                      |                                      | Ultra low speed action mode                               | 1                | -                | 8                  |                             |
| VAIN                 | Conversion voltage range             | _                                                         | VAVSS            | -                | VREFH              | V                           |
| RAIN                 | External Input<br>Impedance          | See Equation 1 for details                                | -                | -                | 50                 | kΩ                          |
| RADC                 | Sampling Switch<br>Resistor          | _                                                         | _                | -                | 6                  | kΩ                          |
| CADC                 | Internal sample and hold capacitance | -                                                         | -                | 4                | 7                  | pF                          |
| tD                   | Trigger conversion delay             | <sub>fADC</sub> = 60 MHz                                  | _                | -                | 0.3                | μs                          |



**Table 3-38 ADC Characteristics (continued)** 

| notatio | parameters                            | conditional                        | minimum | typical | maximu   | unit (of |
|---------|---------------------------------------|------------------------------------|---------|---------|----------|----------|
| n       |                                       |                                    | value   | value   | m values | measure) |
| tS      | campling time                         | fADC=60MHz                         | 0.183   | -       | 4.266    | μs       |
|         | sampling time                         | IADC-00MHZ                         | 11      | _       | 255      | 1/fADC   |
|         |                                       | <sub>fADC</sub> = 60 MHz           | 0.4     |         |          | 116      |
|         |                                       | 12-bit resolution                  | 0.4     | _       | _        | μs       |
|         | Total single                          | <sub>fADC</sub> = 60 MHz           | 0.36    |         |          |          |
| tCONV   | Total single- channel conversion time | 10-bit resolution                  | 0.36    | _       | _        | μs       |
|         |                                       | <sub>fADC</sub> = 60 MHz           | 0.22    |         |          |          |
|         | (including                            | 8-bit resolution                   | 0.33    | _       | _        | μs       |
|         | sampling time)                        | 20 to 268 (sampling                |         | 1/fADC  |          |          |
|         |                                       | convergence to n-bit resolution+1) |         |         |          |          |
|         |                                       | 12-bit resolution                  | -       | -       | 2.5      |          |
| fS      | sampling rate                         | single ADC                         |         |         |          | Msps     |
|         | <sub>fADC</sub> = 60 MHz              | 12-bit resolution time             | _       | _       | 4.6      |          |
|         |                                       | interpolation                      | _       | _       | 7.0      |          |
|         |                                       | Dual ADC                           |         |         |          |          |
| tST     | power-on time                         |                                    |         | 1       | 2        | μs       |

#### 1. VAVCC-VREFH<1.2V

#### **Equation 1: Formula for RAIN Maximum**

$$RAIN = \frac{k-1}{fADC \times cADC} \times ln(^{2N+2})$$
-RADC

The above equation (Equation 1) is used to determine the maximum external impedance that will keep the error below 1/4 LSB. Where N = 12 (12-bit resolution) and k is the number of sample cycles defined in the ADC\_SSTR register.



Table 3-39 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=60MHz

| notatio | parameters                | prerequisite                            | typical | maximum | unit (of |
|---------|---------------------------|-----------------------------------------|---------|---------|----------|
| n       |                           |                                         | value   | values  | measur   |
|         |                           |                                         |         |         | e)       |
| ET      | absolute error            | Illera High Coood/High                  | ±4.5    | ±6      | LSB      |
| EO      | offset error              | Ultra High Speed/High Speed Motion Mode | ±3.5    | ±6      | LSB      |
| EG      | gain error                | fADC=60MHz                              | ±3.5    | ±6      | LSB      |
| ED      | differential linear error | Input source                            | ±1      | ±2      | LSB      |
|         | (DLE)                     | impedance <1kΩ                          |         |         |          |
| EL      | Integral Linearity Error  | VAVCC=2.4 ~3.6V                         | ±1.5    | ±3      | LSB      |

Table 3-40 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

| notatio<br>n      | parameters                      | conditional                             | typical<br>value | maximum<br>values | unit (of<br>measur<br>e) |
|-------------------|---------------------------------|-----------------------------------------|------------------|-------------------|--------------------------|
| ET                | absolute error                  | Iller Bak Grand Wash                    | ±4.5             | ±6                | LSB                      |
| EO                | offset error                    | Ultra High Speed/High Speed Motion Mode | ±3.5             | ±6                | LSB                      |
| EG                | gain error                      | fADC=30MHz                              | ±3.5             | ±6                | LSB                      |
| ED <sup>(1)</sup> | differential linear error (DLE) | Input source impedance $<1k\Omega$      | ±1               | ±2                | LSB                      |
| EL <sup>(1)</sup> | Integral Linearity Error        | VAVCC=2.4 ~3.6V                         | ±1.5             | ±3                | LSB                      |

1. Mass production test assurance.

Table 3-41 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=30MHz

| notatio<br>n | parameters                         | conditional                             | typical<br>value | maximum<br>values | unit (of<br>measur<br>e) |
|--------------|------------------------------------|-----------------------------------------|------------------|-------------------|--------------------------|
| ET           | absolute error                     | Illere History of History               | ±4.5             | ±6                | LSB                      |
| EO           | offset error                       | Ultra High Speed/High Speed Motion Mode | ±3.5             | ±6                | LSB                      |
| EG           | gain error                         | fADC=30MHz                              | ±3.5             | ±6                | LSB                      |
| ED           | differential linear error<br>(DLE) | Input source<br>impedance <1kΩ          | ±1               | ±2                | LSB                      |
| EL           | Integral Linearity Error           | VAVCC=1.8 ~2.4V                         | ±2               | ±3                | LSB                      |

Table 3-42 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Accuracy @ fADC=8MHz

| notatio<br>n | parameters     | conditional       | typical<br>value | maximum<br>values | unit (of<br>measur |
|--------------|----------------|-------------------|------------------|-------------------|--------------------|
|              |                |                   |                  |                   | e)                 |
| ET           | absolute error | Illhus lavvan and | ±4.5             | ±6                | LSB                |
| EO           | offset error   | Ultra-low speed   | ±3.5             | ±6                | LSB                |

HC32F460 Series 110
Datasheet\_Rev1.5 /109



# www.xhsc.com.cn

| EG | gain error                      | action mode            | ±3.5 | ±6 | LSB |
|----|---------------------------------|------------------------|------|----|-----|
| ED | differential linear error (DLE) | fADC=8MHz              | ±1   | ±2 | LSB |
| EL | Integral Linearity Error        | Input source impedance | ±2   | ±3 | LSB |
|    | ,                               | <1kΩ VAVCC=1.8 ~3.6V   |      |    |     |



# Table 3-43 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=60MHz

| notati<br>on | parameters                      | conditional                             | typical<br>value | maximu<br>m values | unit (of<br>measur<br>e) |
|--------------|---------------------------------|-----------------------------------------|------------------|--------------------|--------------------------|
| ET           | absolute error                  | Illere III als Conne d'III als          | ±5.5             | ±7                 | LSB                      |
| EO           | offset error                    | Ultra High Speed/High Speed Motion Mode | ±4.5             | ±7                 | LSB                      |
| EG           | gain error                      | fADC=60MHz                              | ±4.5             | ±7                 | LSB                      |
| ED           | differential linear error (DLE) |                                         | ±1.5             | ±2                 | LSB                      |
| EL           | Integral Linearity Error        | impedance <1kΩ                          | ±2.0             | ±3                 | LSB                      |
|              |                                 | VAVCC=2.4 ~3.6V                         |                  |                    |                          |

# Table 3-44 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=30MHz

| notati<br>on      | parameters                      | prerequisite                            | typical<br>value | maximu<br>m values | unit (of<br>measur<br>e) |
|-------------------|---------------------------------|-----------------------------------------|------------------|--------------------|--------------------------|
| ET                | absolute error                  | Illand Illah Coos dili illah            | ±5.5             | ±7                 | LSB                      |
| EO                | offset error                    | Ultra High Speed/High Speed Motion Mode | ±4.5             | ±7                 | LSB                      |
| EG                | gain error                      | fADC=30MHz                              | ±4.5             | ±7                 | LSB                      |
| ED <sup>(1)</sup> | differential linear error (DLE) | Input source                            | ±1.5             | ±2                 | LSB                      |
| EL <sup>(1)</sup> | Integral Linearity Error        | impedance <1kΩ                          | ±2.0             | ±3                 | LSB                      |
|                   |                                 | VAVCC=2.4 ~3.6V                         |                  |                    |                          |

1. Mass production test assurance.

# Table 3-45 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=30MHz

| notati | parameters                      | conditional                             | typical | maximu   | unit (of |
|--------|---------------------------------|-----------------------------------------|---------|----------|----------|
| on     |                                 |                                         | value   | m values | measur   |
|        |                                 |                                         |         |          | e)       |
| ET     | absolute error                  | Ultra High Chood/High                   | ±5.5    | ±7       | LSB      |
| EO     | offset error                    | Ultra High Speed/High Speed Motion Mode | ±4.5    | ±7       | LSB      |
| EG     | gain error                      | fADC=30MHz                              | ±4.5    | ±7       | LSB      |
| ED     | differential linear error (DLE) | Input source                            | ±1.5    | ±2       | LSB      |
| EL     | Integral Linearity Error        | impedance <1kΩ                          | ±2.5    | ±3       | LSB      |
|        |                                 | VAVCC=1.8 ~2.4V                         |         |          |          |

### Table 3-46 ADC1\_IN12~15, ADC12\_IN8~11 Input Channel Accuracy @ fADC=8MHz

| notati | parameters | conditional | typical | maximu   | unit (of |
|--------|------------|-------------|---------|----------|----------|
| on     |            |             | value   | m values | measur   |

HC32F460 Series 112
Datasheet\_Rev1.5 /109





|    |                                 |                                |      |    | e)  |
|----|---------------------------------|--------------------------------|------|----|-----|
| ET | absolute error                  | Illian lawana d                | ±5.5 | ±7 | LSB |
| EO | offset error                    | Ultra-low speed<br>action mode | ±4.5 | ±7 | LSB |
| EG | gain error                      | fADC=8MHz                      | ±4.5 | ±7 | LSB |
| ED | differential linear error (DLE) | Input source                   | ±1.5 | ±2 | LSB |
| EL | Integral Linearity Error        | impedance <1kΩ                 | ±2.5 | ±3 | LSB |
|    |                                 | VAVCC=1.8 ~3.6V                |      |    |     |



# Table 3-47 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=60MHz

| notatio | parameters            | prerequisite          | minimu  | maximu   | unit (of |
|---------|-----------------------|-----------------------|---------|----------|----------|
| n       |                       |                       | m value | m values | measur   |
|         |                       |                       |         |          | e)       |
| ENOB    | valid digits          | Ultra High Speed/High | 10.6    | -        | Bits     |
| SINAD   | signal-to-noise ratio | Speed Motion Mode     | 64      | -        | dB       |
| SNR     | signal-to-noise ratio | fADC=60MHz            | 66      | -        | dB       |
|         |                       | Input signal          |         |          |          |
| THD     | THD                   | frequency = 2kHz      | _       | -70      | dB       |
|         |                       | Input source          |         |          |          |
|         |                       | impedance <1kΩ        |         |          |          |
|         |                       | VAVCC=2.4 ~3.6V       |         |          |          |

# Table 3-48 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=30MHz

| notatio | parameters            | conditional           | minimu  | maximu   | unit (of |
|---------|-----------------------|-----------------------|---------|----------|----------|
| n       |                       |                       | m value | m values | measur   |
|         |                       |                       |         |          | e)       |
| ENOB    | valid digits          | Ultra High Speed/High | 10.4    | -        | Bits     |
| SINAD   | signal-to-noise ratio | Speed Motion Mode     | 62      | _        | dB       |
| SNR     | signal-to-noise ratio | fADC=30MHz            | 64      | -        | dB       |
|         |                       | Input signal          |         |          | _        |
| THD     | THD                   | frequency = 2kHz      | _       | -67      | dB       |
|         |                       | Input source          |         |          |          |
|         |                       | impedance <1kΩ        |         |          |          |
|         |                       | VAVCC=1.8~2.4V        |         |          |          |

# Table 3-49 ADC1\_IN0~3, ADC12\_IN4~IN7 Input Channel Dynamic Accuracy @ fADC=8MHz

| notatio | parameters            | conditional                      | minimu  | maximu   | unit (of |
|---------|-----------------------|----------------------------------|---------|----------|----------|
| n       |                       |                                  | m value | m values | measur   |
|         |                       |                                  |         |          | e)       |
| ENOB    | valid digits          | Ultra-low speed                  | 10.4    | ı        | Bits     |
| SINAD   | signal-to-noise ratio | action mode                      | 62      | ı        | dB       |
| SNR     | signal-to-noise ratio | fADC=8MHz                        | 64      | -        | dB       |
| THD     | THD                   | Input signal<br>frequency = 2kHz | _       | -67      | dB       |
|         |                       | Input source                     |         |          |          |
|         |                       | impedance <1kΩ                   |         |          |          |
|         |                       | VAVCC=1.8~3.6V                   |         |          |          |





**Figure 3-21 ADC Accuracy Characteristics** 

- 1. See also the table above.
- 2. Examples of actual transmission curves.
- 3. Ideal Transfer Curve.
- 4. Endpoint correlation lines.
- 5. <sub>ET</sub> = Total unadjusted error: maximum deviation between actual and ideal transfer curves. <sub>EO</sub> = Offset Error: the deviation between the first actual conversion and the first ideal conversion.
  - $_{EG}$  = Gain error: the deviation between the last ideal transition and the last actual transition.  $_{ED}$  = Differential Linearity Error: Maximum deviation between actual step and ideal.
  - <sub>EL</sub> = Integral Linearity Error: the maximum deviation between any actual conversion and the endpoint correlation line.

HC32F460 Series
Datasheet\_Rev1.5





Figure 3-22 Typical Connection Using ADCs

- 1. See Table 3-37 for information on RAIN, RADC, and CADC values.
- 2. Cparasitic indicates the PCB capacitance (depending on the quality of soldering and PCB wiring) as well as the pad capacitance (approx. 5pF). Higher Cparasitic values result in lower conversion accuracy. To solve this problem, the fADC should be reduced.

#### **General PCB Design Guidelines**

The power supply should be decoupled as shown in the figure below, depending on whether VREFH is connected to AVCC and the number of AVCC pins. 0.1µF capacitors should be (high quality) ceramic capacitors. These capacitors should be placed as close to the chip as possible.



Figure 3-23 Power and Reference Decoupling Example

HC32F460 Series 116
Datasheet\_Rev1.5 /109



#### 3.3.19 DAC

#### **Characte**

#### **Table 3-50 DAC Characteristics**

#### ristics

| notatio<br>n     | parameters                                                                                                                                              | conditional | minimum<br>value | typical<br>value | maximu<br>m values | unit<br>(of |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------|--------------------|-------------|
|                  |                                                                                                                                                         |             |                  |                  |                    | measu       |
|                  |                                                                                                                                                         |             |                  |                  |                    | re)         |
| VAVCC            | Analog Supply Voltage                                                                                                                                   | _           | 1.8              | 3.3              | 3.6                | V           |
| DNL              | Differential nonlinear error (deviation<br>between two consecutive codes –<br>1LSB)                                                                     | -           | _                | -                | ±2                 | LSB         |
| misalignme<br>nt | Offset error (difference between the measured value at code (0x80) and the ideal value <sub>VAVCC/2</sub> )                                             | -           | -                | -                | ±2                 | LSB         |
| TSETTLING        | Build-up time (full scale: applies to 8-bit input code transition between lowest and highest input code until DAO/DA1 reaches its final value of ±4LSB) | -           | -                | -                | 8                  | μs          |

# **3.3.20** Comparat

or

**Table 3-51 Comparator Characteristics** 

#### Character

istics

| notatio<br>n | parameters                                 | conditional                           | minimu<br>m value | typical<br>value | maximu<br>m values | unit (of<br>measur |
|--------------|--------------------------------------------|---------------------------------------|-------------------|------------------|--------------------|--------------------|
|              |                                            |                                       |                   |                  |                    | e)                 |
| VAVCC        | Analog Supply Voltage                      | -                                     | 1.8               | 3.3              | 3.6                | V                  |
| VI           | Input Voltage Range                        | -                                     | 0                 | _                | VAVCC              | V                  |
| Tcmp         | Comparison time                            | Comparator resolution voltage = 100mV | _                 | 50               | 100                | ns                 |
| Tset         | Input channel switching stabilization time | -                                     | _                 | 100              | 200                | ns                 |

HC32F460 Series
Datasheet\_Rev1.5



# 3.3.21 Gain Adjustable

# **Amplifier**

# Table 3-52 Gain Adjustable Amplifier Characteristics

# **Characteristics**

| notati<br>on |                      | neters                     | conditional            | minimum value  | typical<br>value | maximum values | unit<br>(of<br>meas<br>ure) |
|--------------|----------------------|----------------------------|------------------------|----------------|------------------|----------------|-----------------------------|
| VAVCC        | Analog Su<br>Voltage | pply                       | -                      | 1.8            | 3.3              | 3.6            | V                           |
| vos (1)      | Input Offs           | et Voltage                 | -                      | -8             | -                | 8              | mV                          |
| VI           | Input Volt           | age Range                  | -                      | 0.1*VAVCC/Gain | _                | 0.9*VAVCC/Gain | V                           |
|              |                      |                            | Gain=2 <sup>(1)</sup>  | -1             | -                | 1              | %                           |
|              |                      |                            | Gain=2.133             | -1             | _                | 1              | %                           |
|              |                      |                            | Gain=2.286             | -1             | -                | 1              | %                           |
|              |                      |                            | Gain=2.667             | -1             | -                | 1              | %                           |
|              |                      |                            | Gain=2.909             | -1             | _                | 1              | %                           |
|              |                      | Use of<br>external         | Gain=3.2               | -1.5           | -                | 1.5            | %                           |
|              |                      | ports                      | Gain=3.556             | -1.5           | _                | 1.5            | %                           |
|              |                      | PGAVSS                     | Gain=4.0               | -1.5           | _                | 1.5            | %                           |
|              |                      | As the<br>PGA              | Gain=4.571             | -2             | -                | 2              | %                           |
|              |                      | Negative<br>phase<br>input | Gain=5.333             | -2             | _                | 2              | %                           |
|              |                      |                            | Gain=6.4               | -3.0           | _                | 3.0            | %                           |
|              |                      |                            | Gain=8                 | -3.0           | _                | 3.0            | %                           |
|              |                      |                            | Gain=10.667            | -4.0           | _                | 4.0            | %                           |
|              |                      |                            | Gain=16                | -4.0           | -                | 4.0            | %                           |
| GE           |                      |                            | Gain=32 <sup>(1)</sup> | -7.0           | _                | 7.0            | %                           |
|              | gain error           |                            | Gain=2 <sup>(1)</sup>  | -2             | _                | 2              | %                           |
|              |                      |                            | Gain=2.133             | -2             | _                | 2              | %                           |
|              |                      |                            | Gain=2.286             | -2             | _                | 2              | %                           |
|              |                      |                            | Gain=2.667             | -2             | -                | 2              | %                           |
|              |                      |                            | Gain=2.909             | -2             | -                | 2              | %                           |
|              |                      | Using the internal         | Gain=3.2               | -2.5           | -                | 2.5            | %                           |
|              |                      | analogical<br>site         | Gain=3.556             | -2.5           | -                | 2.5            | %                           |
|              |                      | AVSS                       | Gain=4.0               | -2.5           | _                | 2.5            | %                           |
|              |                      | Negative                   | Gain=4.571             | -3.0           | _                | 3.0            | %                           |

| VHC        | 八小化        | 半旦体            |                        |      |   |             |       |
|------------|------------|----------------|------------------------|------|---|-------------|-------|
| <b>VU2</b> | XIAOHUA SI | 半导体<br>MforPGA |                        |      |   | www.xhsc.co | om.cn |
|            |            | phase          | Gain=5.333             | -3.0 | _ | 3.0         | %     |
|            |            | input          |                        |      |   |             |       |
|            |            |                | Gain=6.4               | -4.0 | - | 4.0         | %     |
|            |            |                | Gain=8                 | -4.0 | - | 4.0         | %     |
|            |            |                | Gain=10.667            | -5.0 | _ | 5.0         | %     |
|            |            |                | Gain=16                | -5.0 | - | 5.0         | %     |
|            |            |                | Gain=32 <sup>(1)</sup> | -8.0 | - | 8.0         | %     |

1. Mass production test assurance.



# **3.3.22** temperat

ure

#### **Table 3-53 Temperature Sensor Characteristics**

#### sensor

| notation | parameters        | prerequisite                         | minimu<br>m value |   | maximu<br>m values | unit (of<br>measure |
|----------|-------------------|--------------------------------------|-------------------|---|--------------------|---------------------|
| TL       | relative accuracy | Each chip is individually calibrated | _                 | _ | ±5                 | °C                  |
|          |                   | according to the user manual         |                   |   |                    |                     |



# 3.3.23 Memory Characteristics

# 3.3.23.1 (electronic) flash memory

Flash memory is erased when the device is delivered to the customer.

**Table 3-54 Flash Characteristics** 

| notation | parameters     | conditional                      | minimu<br>m value | typical<br>value | maximu<br>m<br>values | unit<br>(of<br>meas<br>ure) |
|----------|----------------|----------------------------------|-------------------|------------------|-----------------------|-----------------------------|
|          |                | Read mode, VCC=1.8 V~3.6V        | -                 | _                | 5                     |                             |
| IVCC     | Supply Current | Programming mode, VCC=1.8 V~3.6V | -                 | _                | 10                    | mA                          |
|          | Supply current | Block erase mode, VCC=1.8 V~3.6V | 1                 | _                | 10                    | ША                          |
|          |                | Full erase mode, VCC=1.8 V~3.6V  | -                 | _                | 10                    |                             |

**Table 3-55 Flash Programming Erase Time** 

| notatio<br>n          | parameters  | prerequisite | minimum value              | typical value  | maximum values | unit<br>(of |
|-----------------------|-------------|--------------|----------------------------|----------------|----------------|-------------|
|                       |             |              |                            |                |                | meas        |
|                       |             |              |                            |                |                | ure)        |
| Tprog <sup>(1)</sup>  | word        | single-      | 43+2* Thclk(2)             | 48+4* Thclk(2) | 53+6* Thclk(2) | μs          |
| 1 prog                | programmin  | programming  |                            |                |                |             |
|                       | g time      | mode         |                            |                |                |             |
|                       | word        | Continuous   | 12+2* Thclk <sup>(2)</sup> | 14+4* Thclk(2) | 16+6* Thclk(2) | μs          |
|                       | programmin  | Programming  |                            |                |                |             |
|                       | g time      | Mode         |                            |                |                |             |
| Terase <sup>(1)</sup> | Block Erase | _            | 16+2* Thclk(2)             | 18+4* Thclk(2) | 20+6* Thclk(2) | ms          |
|                       | Time        |              |                            |                |                |             |
| Tmas <sup>(1)</sup>   | full erase  | _            | 16+2* Thclk <sup>(2)</sup> | 18+4* Thclk(2) | 20+6* Thclk(2) | ms          |
|                       | time        |              |                            |                |                |             |

- 1. Mass production testing guaranteed.
- 2.  $_{\mbox{\scriptsize Thclk}}$  is 1 cycle of the CPU clock.

Table 3-56 Flash Rewritable Counts and Data Retention Periods

| notation | parameters                        | conditional          | numerical<br>value<br>minimum<br>value | unit (of<br>measure) |
|----------|-----------------------------------|----------------------|----------------------------------------|----------------------|
| Nend     | Programming, Block<br>Erase Count | <sub>TA</sub> = 85°C | 10                                     | kcycles              |
| Nend     | Full Erase Count                  | <sub>TA</sub> = 85°C | 10                                     | kcycles              |

 HC32F460 Series
 121

 Datasheet\_Rev1.5
 /109





| Tret Data retention pe | od <sub>TA</sub> = 85°C after 10 kcycles | 10 | Years |
|------------------------|------------------------------------------|----|-------|
|------------------------|------------------------------------------|----|-------|



# 4 Package Information

# 4.1 Package Size

# LQFP100 package





| Comple | 14x     | 14 Millimet | er    |  |  |
|--------|---------|-------------|-------|--|--|
| Symbol | Min     | Min Nom     |       |  |  |
| А      |         |             | 1.60  |  |  |
| A1     | 0.05    |             | 0.15  |  |  |
| A2     | 1.35    | 1.40        | 1.45  |  |  |
| А3     | 0.59    | 0.64        | 0.69  |  |  |
| b      | 0.18    |             | 0.27  |  |  |
| b1     | 0.17    | 0.20        | 0.23  |  |  |
| с      | 0.13    |             | 0.17  |  |  |
| c1     | 0.12    | 0.13        | 0.14  |  |  |
| D      | 15.80   | 16.00       | 16.20 |  |  |
| D1     | 13.90   | 14.00       | 14.10 |  |  |
| E      | 15.80   | 16.00       | 16.20 |  |  |
| E1     | 13.90   | 14.00       | 14.10 |  |  |
| е      |         | 0.50BSC     |       |  |  |
| L      | 0.45    |             | 0.75  |  |  |
| L1     | 1.00REF |             |       |  |  |
| θ      | 0       |             | 7°    |  |  |

#### NOTE.

- Dimensions "D1" and "E1" do not include mold flash.



#### VFBGA100





| Symbol | 7x7 Millimeter |         |      |  |  |  |
|--------|----------------|---------|------|--|--|--|
| Symbol | Min            | Nom     | Мах. |  |  |  |
| Α      | 0.67           | 0.74    | 0.81 |  |  |  |
| A1     | 0.11           | 0.16    | 0.21 |  |  |  |
| A2     | 0.54           | 0.58    | 0.62 |  |  |  |
| А3     |                | 0.45REF |      |  |  |  |
| A4     | 0.13REF        |         |      |  |  |  |
| b      | 0.20           | 0.25    | 0.30 |  |  |  |
| D      | 6.90           | 7.00    | 7.10 |  |  |  |
| D1     |                | 5.5     |      |  |  |  |
| Е      | 6.90           | 7.00    | 7.10 |  |  |  |
| E1     |                | 5.5     |      |  |  |  |
| е      |                | 0.5     |      |  |  |  |
| F      | 0.75REF        |         |      |  |  |  |
| ddd    |                | 0.10    |      |  |  |  |
| eee    |                | 0.15    |      |  |  |  |
| fff    |                | 0.05    |      |  |  |  |



#### LQFP64 package

ш

Ш

ш



| Symbol | 10x10 Millimeter |         |       |  |  |  |  |
|--------|------------------|---------|-------|--|--|--|--|
| Symbot | Min              | Nom     | Max.  |  |  |  |  |
| Α      |                  |         | 1.60  |  |  |  |  |
| A1     | 0.05             |         | 0.15  |  |  |  |  |
| A2     | 1.35             | 1.40    | 1.45  |  |  |  |  |
| А3     | 0.59             | 0.64    | 0.69  |  |  |  |  |
| b      | 0.18             |         | 0.27  |  |  |  |  |
| b1     | 0.17             | 0.20    | 0.23  |  |  |  |  |
| С      | 0.13             |         | 0.17  |  |  |  |  |
| c1     | 0.12             | 0.13    | 0.14  |  |  |  |  |
| D      | 11.80            | 12.00   | 12.20 |  |  |  |  |
| D1     | 9.90             | 10.00   | 10.10 |  |  |  |  |
| E      | 11.80            | 12.00   | 12.20 |  |  |  |  |
| E1     | 9.90             | 10.00   | 10.10 |  |  |  |  |
| е      |                  | 0.50BSC |       |  |  |  |  |
| L      | 0.45 0.75        |         |       |  |  |  |  |
| L1     |                  | 1.00REF |       |  |  |  |  |
| θ      | 0°               |         | 7°    |  |  |  |  |

#### NOTE.

- Dimensions "D1" and "E1" do not include mold flash.



Ш

ш

ш

 E1



### LQFP48 package











| Symbol    | 7x           | 7 Millimet | er   |
|-----------|--------------|------------|------|
| Syllibot  | Min          | Nom        | Max. |
| Α         |              |            | 1.60 |
| A1        | 0.05         |            | 0.15 |
| A2        | 1.35         | 1.40       | 1.45 |
| А3        | 0.59         | 0.64       | 0.69 |
| b         | 0.18         |            | 0.27 |
| b1        | 0.17         | 0.20       | 0.23 |
| С         | 0.13         |            | 0.17 |
| <b>c1</b> | c1 0.12 0.13 |            | 0.14 |
| D         | 8.80         | 9.00       | 9.20 |
| D1        | 6.90         | 7.00       | 7.10 |
| E         | 8.80         | 9.00       | 9.20 |
| E1        | 6.90         | 7.00       | 7.10 |
| е         |              | 0.50BSC    |      |
| L         | 0.40         |            | 0.65 |
| L1        |              | 1.00REF    |      |
| θ         | 0            |            | 7°   |

#### NOTE.

- Dimensions "D1" and "E1" do not include mold flash.



# QFN60 package







| Symbol    | 7х             | 7 Millimet | er   |  |  |  |
|-----------|----------------|------------|------|--|--|--|
| Symbol    | Min            | Nom        | Max. |  |  |  |
| Α         | 0.70           | 0.75       | 0.80 |  |  |  |
| A1        | 0.00           | 0.02       | 0.05 |  |  |  |
| A2        |                | 0.547REF   |      |  |  |  |
| b         | 0.15           | 0.20       | 0.25 |  |  |  |
| b1        |                | 0.14REF    |      |  |  |  |
| С         |                | 0.20REF    |      |  |  |  |
| <b>c1</b> | 0.255REF       |            |      |  |  |  |
| c2        |                | 0.18REF    |      |  |  |  |
| D         | 6.90           | 7.00       | 7.10 |  |  |  |
| D2        | 5.50           | 5.60       | 5.70 |  |  |  |
| Nd        |                | 5.60BSC    |      |  |  |  |
| e         |                | 0.40BSC    |      |  |  |  |
| E         | 6.90 7.00 7.10 |            |      |  |  |  |
| E2        | 5.50           | 5.60       | 5.70 |  |  |  |
| Ne        | 5.60BSC        |            |      |  |  |  |
| L         | 0.35           | 0.40       | 0.45 |  |  |  |
| К         | 0.25           | 0.30       | 0.35 |  |  |  |
| h         | 0.30           | 0.35       | 0.40 |  |  |  |



# **QFN48 Package**







| Symbol    | 5x5 Millimeter |           |      |  |  |  |
|-----------|----------------|-----------|------|--|--|--|
| Syllibot  | Min            | Nom       | Max. |  |  |  |
| Α         | 0.50           | 0.55      | 0.60 |  |  |  |
| A1        | 0.00           | 0.02      | 0.05 |  |  |  |
| A2        |                | 0.40REF   |      |  |  |  |
| b         | 0.13           | 0.18      | 0.23 |  |  |  |
| b1        |                | 0.12REF   |      |  |  |  |
| С         | 0.10           | 0.15      | 0.20 |  |  |  |
| <b>c1</b> |                | 0.145REF  |      |  |  |  |
| c2        | 0.140REF       |           |      |  |  |  |
| D         | 4.90           | 5.00      | 5.10 |  |  |  |
| D2        | 3.60           | 3.70      | 3.80 |  |  |  |
| е         | 0.35BSC        |           |      |  |  |  |
| Ne        |                | 3.85BSC   |      |  |  |  |
| Nd        |                | 3.85BSC   |      |  |  |  |
| E         | 4.90           | 5.00      | 5.10 |  |  |  |
| E2        | 3.60           | 3.70      | 3.80 |  |  |  |
| L         | 0.30           | 0.35      | 0.40 |  |  |  |
| L1        | 0.13           | 0.18      | 0.23 |  |  |  |
| h         | 0.25           | 0.30      | 0.35 |  |  |  |
| L/F       | 154 x 154      |           |      |  |  |  |
| Carrier   |                | 134 / 134 |      |  |  |  |
| sizes     |                |           |      |  |  |  |



# 4.2 Pad Schematic

# LQFP100 package (14mm x 14mm)



- Dimensions are expressed in millimeters.
- Dimensions are for reference only.



# LQFP64 package (10mm x



- Dimensions are expressed in millimeters.
- Dimensions are for reference only.



# LQFP48 package (7mm x 7mm)



- Dimensions are expressed in millimeters.
- Dimensions are for reference only.



# QFN60 package (7mm x 7mm)



- Dimensions are expressed in millimeters.
- Dimensions are for reference only.



# VFBGA100 package (7mm x 7mm)

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9         | 10           | 11             |               |
|---|---|---|---|---|---|---|---|---|-----------|--------------|----------------|---------------|
| А |   |   |   |   |   |   |   |   | <u>12</u> |              |                |               |
| В |   |   |   |   |   |   |   |   |           |              |                |               |
| С |   |   |   |   |   |   |   |   |           |              |                |               |
| D |   |   |   |   |   |   |   |   |           |              |                |               |
| E |   |   |   |   |   |   |   |   |           |              |                |               |
| F |   |   |   |   |   |   |   |   |           |              |                |               |
| G |   |   |   |   |   |   |   |   |           |              |                |               |
| Н |   |   |   |   |   |   |   |   |           |              |                |               |
| 1 |   |   |   |   |   |   |   |   |           |              |                | Dsm<br>↓ Dpad |
| J |   |   |   |   |   |   |   |   |           |              |                |               |
| К |   |   |   |   |   |   |   |   |           |              |                | <b>○</b> ↑↑   |
| L |   |   |   |   |   |   |   |   |           |              |                |               |
|   |   |   |   |   |   |   |   |   |           | <b>→</b> 0.! | <b>←</b><br>50 |               |

#### NOTE.

- Dimensions are expressed in millimeters.
- Dimensions are for reference only.

# VBGA100 recommended PCB design rules (0.5mm pitch)

| Dimension         | Recommended values                                               |
|-------------------|------------------------------------------------------------------|
| Pitch             | 0.5mm                                                            |
| Dpad              | 0.240mm                                                          |
| Dsm               | 0.340mm typ. (depends on the soldermask registration) tolerance) |
| Stencil opening   | 0.240mm                                                          |
| Stencil thickness | Between 0.100mm and 0.125mm                                      |



### QFN48 package (5mm x 5mm)



- Dimensions are expressed in millimeters.
- Dimensions are for reference only.



# 4.3 Screen Printing Instructions

The location of Pin 1 and a description of the information silk-screened on the front of each package are given below.

LQFP100 package (14mm x 14mm) / LQFP64 package (10mm x

10mm) LQFP48 package (7mm x 7mm)



#### QFN60 package (7mm x 7mm) / VFBGA100 package (7mm x 7mm)



#### QFN48 package (5mm x 5mm)



#### **Attention:**

- The blank boxes above indicate optional production-related markers that are not described in this section.



# 4.4 Package Thermal Resistance

The junction temperature  $\tau_j$  (°C) of the chip surface can be calculated according to the following formula when the packaged chip is operated at the specified operating ambient temperature:

$$T_j = T_A + (P_D X_{\theta JA})$$

- TA is the operating ambient temperature in °C at which the packaged chip operates;
- <sub>θJA</sub> is the thermal resistance coefficient of the package to the operating environment in °C/W;
- PD equals the sum of the chip's internal power consumption (PINT) and the power consumption (PI/O) generated by the I/O pins while the chip is operating, in W. PINT = ICC X VCC

$$_{PI/O} = \sum (_{VOL} \times _{IOL}) + \sum ((_{VCC} - _{VOH}) \times _{IOH})$$

The junction temperature  $_{Tj}$  on the surface of the chip when the chip is operated at the specified operating ambient temperature must not exceed the maximum junction temperature  $_{TJ}$  allowable for the chip.

Table 4-1 Thermal Resistance Coefficients of Packages

| Package Type and Size             | Thermal Resistance Junction-<br>ambient Value (ፀJA) | Unit |
|-----------------------------------|-----------------------------------------------------|------|
| LQFP100 14mm x 14mm / 0.5mm pitch | 50 +/- 10%                                          | °C/W |
| LQFP64 10mm x 10mm / 0.5mm pitch  | 65 +/- 10%                                          | °C/W |
| LQFP487mm x7mm / 0.5mm pitch      | 75 +/- 10%                                          | °C/W |
| QFN60 7mm x 7mm / 0.4mm pitch     | 30 +/- 10%                                          | °C/W |
| QFN48 5mm x 5mm / 0.35mm pitch    | 42 +/- 10%                                          | °C/W |



# **5** Ordering

# Information

| Product Model                | hc32f460jeua-qfn48tr | HC32F460JETA-LQFP48       | hc32f460keua-qfn60tr | hc32f460keta-lqfp64       | hc32f460petb-lqfp100      | hc32f460pehb-vfbga100     | HC32F460JCTA-LQFP48       | HC32F460KCTA-LQFP64       | HC32F460PCTB-LQFP100      |
|------------------------------|----------------------|---------------------------|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Main Frequency<br>(MHz)      | 200                  | 200                       | 200                  | 200                       | 200                       | 200                       | 200                       | 200                       | 200                       |
| kernel (computer science)    | ARM Cortex-M4        | ARM Cortex-M4             | ARM Cortex-M4        | ARM Cortex-M4             | ARM Cortex-M4             | ARM Cortex-M4             | ARM Cortex-M4             | ARM Cortex-M4             | ARM Cortex-M4             |
| Flash (KB)                   | 512                  | 512                       | 512                  | 512                       | 512                       | 512                       | 256                       | 256                       | 256                       |
| RAM (KB)                     | 192                  | 192                       | 192                  | 192                       | 192                       | 192                       | 192                       | 192                       | 192                       |
| OTP (B)                      | 960                  | 960                       | 960                  | 960                       | 960                       | 960                       | 960                       | 960                       | 960                       |
| Package (mm*mm)              | QFN48 (5*5) e=0.35   | LQFP48 (7*7) e=0.5        | QFN60 (7*7) e=0.4    | LQFP64 (10*10) e=0.5      | LQFP100 (14*14) e=0.5     | VFBGA100 (7*7) e=0.5      | LQFP48 (7*7) e=0.5        | LQFP64 (10*10) e=0.5      | LQFP100 (14*14) e=0.5     |
| Universal IO                 | 38                   | 38                        | 50                   | 52                        | 83                        | 83                        | 38                        | 52                        | 83                        |
| Minimum Operating Voltage    | 1.8                  | 1.8                       | 1.8                  | 1.8                       | 1.8                       | 1.8                       | 1.8                       | 1.8                       | 1.8                       |
| Maximum working voltage      | 3.6                  | 3.6                       | 3.6                  | 3.6                       | 3.6                       | 3.6                       | 3.6                       | 3.6                       | 3.6                       |
| 16-bit Timer                 | 11                   | 11                        | 11                   | 11                        | 11                        | 11                        | 11                        | 11                        | 11                        |
| Motor Control Timer          | 3                    | 3                         | 3                    | 3                         | 3                         | 3                         | 3                         | 3                         | 3                         |
| 12-bit ADC converter unit    | 2                    | 2                         | 2                    | 2                         | 2                         | 2                         | 2                         | 2                         | 2                         |
| Number of 12-bit ADC         | 10                   | 10                        | 15                   | 16                        | 16                        | 16                        | 10                        | 16                        | 16                        |
| comparator                   | 3                    | 3                         | 3                    | 3                         | 3                         | 3                         | 3                         | 3                         | 3                         |
| Amplifier PGA                | 1                    | 1                         | 1                    | 1                         | 1                         | 1                         | 1                         | 1                         | 1                         |
| SPI                          | 4                    | 4                         | 4                    | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         |
| QUADSPI                      | 1                    | 1                         | 1                    | 1                         | 1                         | 1                         | 1                         | 1                         | 1                         |
| I S²                         | 4                    | 4                         | 4                    | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         |
| I C <sup>2</sup>             | 3                    | 3                         | 3                    | 3                         | 3                         | 3                         | 3                         | 3                         | 3                         |
| U(S)ART                      | 4                    | 4                         | 4                    | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         |
| CAN                          | 1                    | 1                         | 1                    | 1                         | 1                         | 1                         | 1                         | 1                         | 1                         |
| SDIO                         | 2                    | 2                         | 2                    | 2                         | 2                         | 2                         | 2                         | 2                         | 2                         |
| Full Speed USB OTG           | 1                    | 1                         | 1                    | 1                         | 1                         | 1                         | 1                         | 1                         | 1                         |
| DMA                          | 8                    | 8                         | 8                    | 8                         | 8                         | 8                         | 8                         | 8                         | 8                         |
| DCU                          | 4                    | 4                         | 4                    | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         |
| PVD                          | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| AES128                       | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| SHA256                       | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| TRNG                         | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| CRC                          | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| KEYSCAN                      | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| RTC                          | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         |
| FLASH Physical<br>Encryption | ✓                    | ✓                         | ✓                    | ✓                         | ✓                         | ✓                         | ✓                         | ✓                         | <b>√</b>                  |
| shipment method              | reel                 | cross-loading (on a tray) | reel                 | cross-loading (on a tray) |

Before ordering, please contact the sales window for the latest mass production information.



# **Version Revision Record**

| version | revision date | revision                                                       |
|---------|---------------|----------------------------------------------------------------|
| number  |               |                                                                |
| Rev1.0  | 2019/11/12    | First Edition Release.                                         |
|         |               | 1) Add 256KB of product descriptions to the full text;         |
| Rev1.1  | 2020/01/10    | 2) VFBGA package description added throughout;                 |
| 110 111 | 2020,01,10    | 3) Modify the current max value for 105°C in power-down mode   |
|         |               | in the Electrical Characteristics;                             |
|         |               | 4) Updated silkscreen instructions.                            |
|         |               | 1) Addition of ultra-high-speed operation mode description,    |
|         |               | update CoreMark/DMIPS to add ultra-high-speed mode             |
| Rev1.2  | 2020/08/26    | description. Updated functional block diagrams;                |
| Revi.z  | 2020/08/20    | 2) The pinout diagram adds 256KB models;                       |
|         |               | 3) Add pad schematic and package thermal resistance factor;    |
|         |               | 4) Increased BOR/PVD characteristics in ultra-high speed mode, |
|         |               | current characteristics;                                       |
|         |               | 5) Update the JTAG/SWJ debug port pins;                        |



|         | T             |                                                                                      |
|---------|---------------|--------------------------------------------------------------------------------------|
|         |               | 1) Modify declaration, add A2/c1/c2 size of QFN48/60 in                              |
|         |               | package size, modify data retention period in flash                                  |
|         |               | memory;                                                                              |
|         |               | 2) External master clock crystal(4-24MHz) to (4-25MHz)                               |
|         |               | 3) Function block diagram modification: USB_DMA ->                                   |
|         |               | USBFS_DMA; I2S_1 ->                                                                  |
|         |               | I2S_2; Increase AOS;                                                                 |
|         |               | 4) 1.4.6 Addresses                                                                   |
|         |               | 0x00000400H~0x0000041FH ->                                                           |
| Rev1.3  | 2021/12/10    | 0x0000_0400~0x0000_041F                                                              |
|         |               | 0x00000408~0x0000041F ->                                                             |
|         |               | 0x0000_0408~0x0000_041F                                                              |
|         |               | 5) Added description of "Automated Operating                                         |
|         |               | System (AOS)", updated "Keyboard Scanning".                                          |
|         |               | (KEYSCAN)" Description;                                                              |
|         |               | 6) Name fixes and description optimization;                                          |
|         |               | 7) Modify the recommended configuration of the analog power                          |
|         |               | supply pin bypass capacitor in the power supply schematic by                         |
|         |               | deleting the 10nF capacitor and modifying the 10uF capacitor                         |
|         |               | to 1uF;                                                                              |
|         |               | 8) Add parameter entries to the Reset and Power Control                              |
|         |               | Module Characterization Table: TIPVD1/ TIPVD2/ TINRST/                               |
|         |               | TRSTBOR TIPVD2/ TINRST/ TRSTBOR                                                      |
|         |               | TRSTTAO->TRSTPOR;                                                                    |
|         |               | 9) 3.3.12 Add CAN2.0B interface characterization;                                    |
|         |               | 10) The Max value of <sub>fPLL_IN</sub> in PLL characteristics is                    |
|         |               | changed from 24MHz to 25MHz to increase the Jitter                                   |
|         |               | characteristics;                                                                     |
| version | revision date | revision                                                                             |
| number  |               |                                                                                      |
|         |               | 11) 3.3.16.1 fxtal_ext Maximum value changed to 25MHz;                               |
|         |               | 12) 3.3.16.2 Add external high-speed oscillator XTAL accuracy                        |
|         | 1             | metrics and modify CL1 and CL2 descriptions;                                         |
|         |               |                                                                                      |
|         |               | 13) 3.3.16.3 Add external low-speed oscillator XTAL32 accuracy indicator, modify CL1 |

 HC32F460 Series
 109

 Datasheet\_Rev1.5
 /109



|         |            | and <sub>CL2</sub> related descriptions.                                                      |  |  |
|---------|------------|-----------------------------------------------------------------------------------------------|--|--|
|         |            |                                                                                               |  |  |
|         |            |                                                                                               |  |  |
|         |            |                                                                                               |  |  |
| Rev1.4  | 2022/03/09 | Company Logo updated.                                                                         |  |  |
| Rev1.41 | 2022/03/29 | 1) 3.3.13 USB Interface Characteristics RPD Delete MAX, MIN                                   |  |  |
|         |            | values and add Typ value 15k $\Omega;$                                                        |  |  |
|         |            | 3.3.16 <sub>tSU (XTAL)</sub> startup time Delete maximum value, add                           |  |  |
|         |            | typical value                                                                                 |  |  |
|         |            | 2) 4.1 LQFP100/LQFP64/LQFP48 b MAX value is revised to                                        |  |  |
|         |            | 0.27.                                                                                         |  |  |
|         |            | 1) 2.1 In the pinout diagram of each package,                                                 |  |  |
|         |            | "PH0/XTAL_IN" is changed to                                                                   |  |  |
|         |            | "PH0/XTAL_EXT/XTAL_EXT". XTAL_IN" is changed                                                  |  |  |
|         |            | to "PH0/ XTAL_EXT/ XTAL_OUT", and "PH1/ XTAL_OUT" is modified as follows                      |  |  |
| Rev1.42 | 2022/09/14 | "PH1/ XTAL_OUT" is modified as follows "PH1/ XTAL_IN", QFN60 pinout style modified, new QFN48 |  |  |
|         |            | pinout;                                                                                       |  |  |
|         |            | 2.2 "PH0/ XTAL_IN" is modified to "PH0/                                                       |  |  |
|         |            | XTAL_EXT/ XTAL_OUT" and "PH1/ XTAL_OUT" is                                                    |  |  |
|         |            | modified to "PH1/ XTAL_IN";                                                                   |  |  |
|         |            | 2.3 "XTAL_OUT" changed to "XTAL_EXT/ XTAL_OUT",                                               |  |  |
|         |            | added                                                                                         |  |  |
|         |            | Description of "XTAL_EXT External clock input";                                               |  |  |
|         |            | 2) 3.3.16.1 Amend "XTAL_IN" to "XTAL_EXT";                                                    |  |  |
|         |            | 3.3.16.2 The "XTAL_IN" and "XTAL_OUT" pins in                                                 |  |  |
|         |            | Figure 3-17 are connected to each other.                                                      |  |  |
|         |            | Change the name;                                                                              |  |  |
|         |            | 3.3.18 Change the 10uF capacitor value in Figure 3-21 to                                      |  |  |
|         |            | 1uF.                                                                                          |  |  |



|        |            | 1  | The state of the s |
|--------|------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev1.5 | 2023/09/27 | 1) | Product Features Corrects the rate of the ADC;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |            | 2) | 1 Introduction Correct the rate of the ADC;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |            | 3) | 1.4.16 Correct the ADC rate;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |            | 4) | 2.4 Table 2-6 Supplemental Pin Descriptions;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |            | 5) | 3.2 Temperature for correcting thermal characteristics;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |            | 6) | 3.3.7 Correct Table 3-19 I/O Static Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |            |    | Parameters;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |            | 7) | 3.3.10 Correct Table 3-24 I2C Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |            |    | Characterization Parameters;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |            | 8) | 3.3.11 Correct Table 3-25 SPI Electrical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |            |    | Diagram Connection, add SPI timing diagram;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |            | 9) | 4.4 Modified Package Thermal Resistance Coefficient Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |            |    | Description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |