MeEn 537 Homework #2 Solution

2-38

By inspection, we can write the following by picking the axes in the frame we are transforming from and writing them as a column in the components of the axes we are transforming to. So for the first one, this looks like this:

$$H_1^0 = \left[\begin{array}{cccc} x_1^0 & y_1^0 & z_1^0 & o_1^0 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Accordingly, we can get the others by inspection as well:

$$H_2^0 = \left[\begin{array}{cccc} x_2^0 & y_2^0 & z_2^0 & o_2^0 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$H_2^1 = \left[\begin{array}{cccc} x_2^1 & y_2^1 & z_2^1 & o_2^1 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Multiplying H_0^1 by H_2^1 results in H_2^0 .

$$H_{2}^{\circ} = \begin{cases} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 1.5 \\ 0 & 0 & 1 & 1.1 \\ 0 & 0 & 0 & 1 \end{cases}$$

$$H_3^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$0 & 0 & 0 & 0 \end{bmatrix}$$

$$H_3^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1.9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

could also have been Ha since the problem isn't clear.

$$H_3^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 6 \\ 0 & 0 & -1 & 1.9 \end{bmatrix}$$

2-43

The first and second matrices commute because the translation is happening along the same axis as the rotation. This is the same for the third and fourth matrices which also commute. The second and third will commute because although they translate about different axes, there is no rotation between them which means the ordering does not matter.

DH parans:
$$\frac{0}{\theta_1}$$
 $\frac{d}{d}$ $\frac{$

$$T_{2}^{\circ} = A_{1} A_{2}$$
, from egn 3.10 =>
$$A_{1} = \begin{bmatrix} C_{0_{1}} & O & S_{0_{1}} & O \\ S_{0_{1}} & O & -C_{0_{1}} & O \\ O & O & O & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 1 & 0 & 0 & a_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} + d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{\circ} = \begin{bmatrix} C_{\theta_{1}} & O & S_{\theta_{1}} & \alpha_{2}C_{\theta_{1}} + (d_{2}+d_{0}ff)S_{\theta_{1}} \\ S_{\theta_{1}} & O & -C_{\theta_{1}} & \alpha_{2}S_{\theta_{1}} - (d_{2}+d_{0}ff)C_{\theta_{1}} \\ O & I & O & O & I \end{bmatrix}$$

0	0	a	X	
0,	d	0	艾	
02	0	A2	0	
D ₃	0	A3	0	
parameter		the state of the s		

$$A_{1} = \begin{bmatrix} Ce_{1} & O & Se_{1} & O \\ Se_{1} & O & -Ce_{1} & O \\ O & I & O & d_{1} \\ O & O & O & I \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} Ce_{2} & -Se_{2} & O & A_{2}Ce_{2} \\ Se_{2} & Ce_{2} & O & A_{2}Se_{2} \\ O & O & I & O \\ O & O & O & I \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} C_{\Theta_{3}} & -S_{\Theta_{3}} & O & Q_{3}C_{\Theta_{3}} \\ S_{\Theta_{3}} & C_{\Theta_{3}} & O & Q_{3}S_{\Theta_{3}} \\ O & O & I & O \\ O & O & O & I \end{bmatrix}$$

I don't care if you multiply these together or not.
You should at least be able to do 2 like in problem 3-4.

To = A, A, A, A, A, A, A = I will assume that you can now evaluate egn 3.10 with the above parameters.

for Toffware part, let each link length be $10 \text{ cm} \Rightarrow$ $d_1 = 0.2 \text{ m}$ $d_4 = 0.4 \text{ m}$ $d_6 = 0.4 \text{ m}$

now see attached code and plot for approximation of mortispace.

MATLAB code is included on Learning Suite. Here is a figure representing a quarter of the workspace assuming each joint has plus and minus $\pi/2$ for the joint limits.

