Anomaly Detection in Fraud

1. Overview

Fraud could be considered as an anomaly problem to solve, and we could leverage probability and statistical approaches as well as ML/DL approaches for such problem. In the past several years, graph-based fraud detection is also getting more and more popular.

The rationale behind using anomaly detection to solve fraud detection problem is because fraudulent behaviors are usually not common and are concealed.

The challenges in fraud detection is that fraud is constantly changing and adapting and even organized, so as data scientists/researchers, we should remain vigilant, continuously update our techniques/knowledge to identify current anomalies/fraud in the system, and collaborate across industries to stay ahead of these evolving threats (prevention).

2. Summary of Techniques in Anomaly Detection (this list will keep updating)

Probability and Statistical Approaches	Machine Learning Approaches
 Z-scores/Robust Z-scores IQR Rule Mahalanobis Distances/Robust Mahalanobis Benford's Law Gaussian mixture models 	 Local Outlier Factor (LOF) Isolation Forests Classifier-Adjusted Density Estimation (CADE) One-Class Support Vector Machine (SVM) k-Nearest Neighbors (kNN) Neural Networks

Supervised	Unsupervised
 Supervised Neural 	 Mahalanobis
Networks	Distances/Robust
 Support Vector 	 Cluster Analysis (e.g.
Machine learning	density-based
 K-Nearest Neighbors 	clustering algorithm,
Classifier	K-Means)

3. Codes Examples

(See repo and will keep uploading notebooks once they are finalized)