世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 311/51, C07D 233/64, 233/68, 213/56, 409/12, A61K 31/18, 31/415, 31/44

(11) 国際公開番号 A1

JP

WO99/00359

(43) 国際公開日

1999年1月7日(07.01.99)

(21) 国際出願番号

PCT/JP98/02886

(22) 国際出願日

1998年6月26日(26.06.98)

(30) 優先権データ

特願平9/187849

1997年6月27日(27.06.97)

(71) 出願人(米国を除くすべての指定国について) 藤沢薬品工業株式会社

(FUJISAWA PHARMACEUTICAL CO., LTD.)[JP/JP] 〒541-8514 大阪府大阪市中央区道修町3丁目4番7号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

山崎則次(YAMASAKI, Noritsugu)[JP/JP]

〒672-8071 兵庫県姫路市飾磨区構1049-32 Hyogo, (JP)

井本隆文(IMOTO, Takafumi)[JP/JP]

〒305-0047 茨城県つくば市千現1-14-14-204 Ibaraki, (JP)

平邑隆弘(HIRAMURA, Takahiro)[JP/JP]

〒305-0047 茨城県つくば市千現1-14-14-403 Ibaraki, (JP)

尾野村治(ONOMURA, Osamu)[JP/JP]

〒852-8013 長崎県長崎市梁川町19番1-502 Nagasaki, (JP)

西川正浩(NISHIKAWA, Masahiro)[JP/JP] 〒944-0047 新潟県新井市白山町2-5-2-6 Niigata, (JP) 茅切 浩(KAYAKIRI, Hiroshi)[JP/JP] 〒305-0045 茨城県つくば市梅園2-31-15 Ibaraki, (JP) 阿部義人(ABE, Yoshito)[JP/JP] 〒305-0035 茨城県つくば市松代4-21-2-1-501 Ibaraki, (JP) 濱島 仁(HAMASHIMA, Hitoshi)[JP/JP]

〒305-0035 茨城県つくば市松代3-25-4-202 Ibaraki, (JP)

澤田 仁(SAWADA, Hitoshi)[JP/JP]

〒305-0035 茨城県つくば市松代2-25-10 Ibaraki, (JP)

(74) 代理人

弁理士 清水初志, 外(SHIMIZU, Hatsushi et al.) 〒300-0847 茨城県土浦市卸町1-1-1 関鉄つくばビル6階 Ibaraki, (JP)

(81) 指定国 CA, CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: AROMATIC RING DERIVATIVES

(54)発明の名称 芳香環誘導体

(57) Abstract

Novel aromatic ring derivatives represented by general formula (I) or pharmaceutically acceptable salts thereof. Because of having hypoglycemic and PDE 5 inhibitory activities, these compounds and salts thereof are useful as remedies for impaired glucose tolerance, diabetes, complication of diabetes, insulinresistant syndrome, polycystic ovary syndrome, hyperlipidemia, atherosclerosis, cardio-vascular diseases, hyperglycemia, hypertension, angina pectoris, pulmonary hypertension, congestive heart failure, glomerular diseases, tubular interstitial diseases, renal insufficiency, atherosclerosis, angiostenosis, peripheral vascular diseases, cerebral stroke, chronic reversible obstructive diseases, autoimmune diseases, allergic rhinitis, urticaria, glaucoma, diseases characterized by disordered intestinal motion, sexual impotence, nephritis, cachexia, pancreatitis, post-PTCA reconstriction, etc. In said formula (I), Nu represents a 5- or 6-membered aromatic ring; ch, and ch, represent each a cross-linking group; and A represents an aromatic ring.

(57)要約

式(I)で表される新規な芳香環誘導体又は医薬として許容される その塩。これらの化合物又はその塩は、血糖降下活性又はPDE5阻 害活性を有し、耐糖能障害、糖尿病、糖尿病性合併症、インスリン抵 抗性症候群、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬 化症、心臓血管症患、高血糖症、高血圧症、狭心症、肺高血圧、うっ 血性心不全、糸球体疾患、尿細管間質性疾患、腎不全、アテローム性 動脈硬化、血管狭窄、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾 患、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性 障害を特徴とする疾患、インポテンス、腎炎、悪液質、膵炎、又はP TCA後の再狭窄等の治療剤として有用である。

$$R_2 - SO_2 - NHCO - ch_1 - Nu - ch_2 - A$$
 (I)

(Nuは五乃至六員環の芳香環, chi, chz は架橋基, Aは芳香環)

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アルバニア アルメニア オーストリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ GGGGGGGGHU SLNZD パルパドス ガーナガンビア TG TJ TM TR TT トーコー タジキスタン トルクメニスタン BE MD MG トルクメーヘッ レ トルコ トリニダッド・トバゴ ウクライナ ウガンダ ドニア旧ユーゴスラヴィア BBBBCCCCCCCCCCDD MN MR ロー ケニア キルギスタン 北朝鮮 報国 カザフスタン セントルシア リヒテンシュタイン ロシア スーダン スウェーデン シンガポール SD

1

明細書

芳香環誘導体

技術分野

本発明は、新規な芳香環誘導体に関し、さらに詳しくは血糖降下活性又はPD E 5 阻害作用を有する新規な芳香環誘導体又は医薬として許容されるそれらの塩に関する。また本発明は上記芳香環誘導体又はそれらの塩を有効成分として含有する医薬に関する。

発明の開示

本発明は、新規な芳香環誘導体又はそれらの医薬として許容される塩、並びに上記芳香環誘導体又はそれらの医薬として許容される塩を有効成分として含有し、耐糖能障害、糖尿病(II型糖尿病)、糖尿病合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減少症、糖尿病性合内障、糖尿病性網膜症等)、インスリン抵抗性症候群(インスリン受容体異常症、Rabson-Mendenhall症候群、レブリコニズム、Kobberling-Dunnigan症候群、Seip症候群、Lawrence症候群、Cushing症候群、先端巨大症等)、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患(狭心症、心不全等)、高血糖症(例えば摂食障害等の異常糖代謝で特徴づけられるもの)、高血圧症、狭心症、肺高血圧、うっ血性心不全、糸球体疾患(例えば糖尿病性糸球体硬化症等)、尿細管間質性疾患(例えばFK506、シクロスポリン等により誘発された腎臓病)、腎不全、アテローム性動脈硬化、血管狭窄(例えば経皮性動脈形成術後のもの)、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患(例えば気管支炎、喘息(慢性喘息、アレルギー性喘息))、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特

徴とする疾患(例えば過敏症腸症候群)、インポテンス(例えば器質的インポテンス、精神的インポテンス等)、腎炎、悪液質(例えば、癌・結核・内分泌性疾患及びエイズ等の慢性疾患における、脂肪分解・筋変性・貧血・浮腫・食欲不振等による進行性の体重減少)、膵炎、又はPTCA後の再狭窄等の予防・治療剤として用いられる医薬製剤を提供することを課題とする。

本発明者らは、次式(I)及び(III)~(VI)で表される新規な芳香環 誘導体又は医薬として許容されるその塩を提供し、さらに、該化合物又は医薬と して許容されるそれらの塩を有効成分として含有し、耐糖能障害、糖尿病 (II型 糖尿病)、糖尿病合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減 少症、糖尿病性糸球体硬化症、糖尿病性腎症、糖尿病性皮膚障害、糖尿病性神経 障害、糖尿病性白内障、糖尿病性網膜症等)、インスリン抵抗性症候群(インス リン受容体異常症、Rabson-Mendenhall症候群、レブリコニズム、Kobberling-Du nnigan症候群、Seip症候群、Lawrence症候群、Cushing症候群、先端巨大症等)、 多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患 (狭 心症、心不全等)、高血糖症(例えば摂食障害等の異常糖代謝で特徴づけられる もの)、高血圧症、狭心症、肺高血圧、うっ血性心不全、糸球体疾患(例えば糖 尿病性糸球体硬化症等)、尿細管間質性疾患(例えばFK506、シクロスポリン等に より誘発された腎臓病)、腎不全、アテローム性動脈硬化、血管狭窄(例えば経 皮性動脈形成術後のもの)、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患(例 えば気管支炎、喘息(慢性喘息、アレルギー性喘息))、自己免疫疾患、アレル ギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患 (例えば過敏症 腸症候群)、インポテンス(例えば器質的インポテンス、精神的インポテンス等)、腎炎、悪液質(例えば、癌・結核・内分泌性疾患及びエイズ等の慢性疾患に おける、脂肪分解・筋変性・貧血・浮腫・食欲不振等による進行性の体重減少) 、膵炎、又はPTCA後の再狭窄等の予防・治療剤として用いられる医薬製剤を 提供した。

$$X-ch1-Nu-ch2-A (I)$$

$$(R1)n$$

「式中、Xは次式(II)

$$\begin{array}{c}
H \\
R_2 \searrow S \swarrow N \\
O \swarrow O
\end{array}$$
(II)

(式中R₂は置換基を有していてもよい、低級アルキル基、低級アルケニル基、低級アルキニル基、シクロ低級アルキル基、芳香環又は複素環を意味する。)で表される置換基であり、ch₁及びch₂は分岐していてもよい飽和又は不飽和架橋基を意味し、ch₁は低級アルキル基、低級シクロアルキル基、芳香環、複素環、低級アルキル低級シクロアルキル、芳香環低級アルキル基又は複素環低級アルキル基で置換されていてもよく、Nuは五乃至六員環の芳香環であり、XとNuは直接結合していてもよく、R₁は水素原子、ハロゲン原子、低級アルキル 基、アミノ基、アシルアミノ基、低級アルケニル基、低級アルキニル基、ハロ低級アルキル基、低級シクロアルキル基、二トロ基、低級アルキルアミノ基、カルボキシル基、エステル化されたカルボキシ基、アミド化されたカルボキシ基、低級アルカンスルホニル基、芳香環スルホニル基、水酸基又は低級アルコキシ基であり、nは2以下の自然数であり、Aは置換されていてもよい芳香環を表す。]

$$X = \begin{bmatrix} H \\ N \\ R_4 \\ A \end{bmatrix}$$
 (III)

[式中、 R_3 は水素原子又は低級アルキル基であり、 R_4 は水素原子又はアシル基であり、X及びAは前記と同様の意味を表す。]

$$X \longrightarrow N$$
 A
 (IV)

[式中、Aは前記と同様の意味を表す。]

$$R_6$$
 N R_5 (V)

[式中、 R_6 は水素原子又は低級アルキル基であり、 R_6 は水素原子、ハロゲン原子又はフェニル基であり、X及びAは前記と同様な意味を表す。]

$$X \xrightarrow{R_6} N R_5$$
 (VI)

[式中、A、R₅、R₆は前記と同様の意味を表す。]

本発明によって提供される化合物は、Nuがベンゼン環の場合、以下の反応式(a)から(h)によって合成することができる。

$$HO_2C$$
 Z
 HO_2C
 NO_2
 NR^a
 R^1
 R^1
 R^2
 NO_2
 R^2
 NO_2
 R^2
 NO_2
 R^2
 NR^a
 R^a
 R^b
 NR^a
 R^b
 NO_2
 R^b
 NR^a
 R^b
 NR^a
 NR^b
 NR^a
 NR^b

(2)

[式(a)~(c)中、Zはハロゲン原子であり、R は前記の CH_2A と同様の意味を表し、R は水素原子又はアルキル基であり、 R_2 は置換されていてもよいアルキル基、置換されていてもよい低級アルケニル基、置換されていてもよい低級アルキニル基、置換されていてもよいシクロ低級アルキル基、置換されていてもよい方香環基又は置換されていてもよい複素環基である。]

[式(d)中、R¹及びR₂は前記と同様の意味を表し、R°及びR°は水素原子又はアルキル基である。]

(8) (9)

[式(e)~(h)中、R¹及びR₂は前記と同様の意味を表し、R°は水素原子又はアルキル基である。]

すなわち、式(1)の化合物とR'NHR°(R°、R'は前記と同様の意味を表 す。)で表わされる化合物から式(2)の化合物が得られる(反応式(a))。 式(2)の化合物に、N, N' - カルボニルジイミダゾールあるいは 1-(3-ジメチルアミノプロピル) -3-エチルカルボジイミドあるいはその塩あるいは ジシクロヘキシルカルボジイミドあるいは塩化イソブチルオキシカルボニルある いは塩化イソブチロイルあるいは塩化ピバロイルあるいはイソブチルクロロホル メートあるいはジフェニルホスホリルアジドあるいはシアノリン酸ジエチルに代 表されるカルボン酸活性化剤を作用させた後、ジアザビシクロウンデセンあるい はトリエチルアミンあるいは4ージメチルアミノピリジンあるいはN. Nージメ チルアニリンあるいはピリジンあるいはN-メチルモルホリンあるいはN-エチ ルピペリジンあるいは水酸化カリウムあるいは水酸化ナトリウムあるいはリン酸 カリウムあるいは炭酸水素カリウムあるいは炭酸カリウムあるいは炭酸ナトリウ ムあるいは水素化ナトリウムあるいはt-ブトキシカリウムあるいはナトリウム メトキシドあるいはナトリウエトキシドに代表される塩基の存在下で対応するス ルホンアミド類を作用させることにより式(3)の化合物が得られる(反応式(b))。

式(3)の化合物を水素雰囲気下でパラジウムー炭素に代表される水素化触媒によりニトロ基を還元することにより式(4)の化合物が得られる(反応式(c))。ニトロ基の還元方法としては、このほかに1)還元鉄あるいは亜鉛による還元、2)ハイドロサルファイトナトリウムによる還元、3)パラジウムー炭素

に代表される遷移金属触媒の存在下での、蟻酸あるいは蟻酸アンモニウムによる 還元、4)ニッケルによる還元等が挙げられる。

式 (4) の化合物において、反応式 (d) に示す方法により化合物 (5) を合成することができる。すなわち、塩基の存在下、式 (4) の化合物と $R^{b}COY$ (R^{b} は水素原子又はアルキル基であり、Yは塩素あるいは臭素原子である)で表わされる化合物から式 (5) の化合物が合成できる。

式(6)の化合物は反応式(b)と同様の方法により、式(7)の化合物に変換できる(反応式(e))。式(7)の化合物は水酸化リチウムあるいは水酸化ナトリウムあるいは水酸化カリウムあるいは炭酸カリウムあるいは炭酸ナトリウム等の塩基により加水分解して、式(8)の化合物に変換できる(反応式(f))。式(8)の化合物は塩基の存在下で $R^{+}Z^{+}$ (R^{+} は前記と同様の意味を表し、 Z^{+} は塩素あるいは臭素あるいはヨウ素原子あるいはアルカンスルホニル基あるいはアリールスルホニル基である。)で表わされる化合物を作用させることにより、化合物(3)において R^{*} が水素原子である化合物(9)を合成することができる(反応式(g))。化合物(9)は反応式(c)と同様の方法により化合物(4)において R^{*} が水素原子である化合物(10)に変換できる(反応式(h))。

また、Nuがピリジン環である場合には、以下の反応式(i)から(k)によって合成することができる。

Me
$$\stackrel{N}{\longrightarrow}$$
 + A-CHO $\stackrel{Me}{\longrightarrow}$ (11) (12) (13)

Me
$$A$$

(13)

(14)

HOOC

N

A

(14)

(15)

[式(i)~(k)中、Aは前記と同様の意味を表す。]

式(11)の化合物と式(12)の化合物を無水酢酸中で反応させて、式(13)の化合物を得る(反応式(i))。式(13)の化合物にピリジン等の塩基の存在下、二酸化セレンを作用させ、式(14)の化合物を得る(反応式(j))。式(14)の化合物を上記反応式(b)と同様の反応に付し、式(15)の化合物を得る(反応式(k))。

また、Nuがイミダゾール環である場合には、以下の反応式(<math>1)から(x)によって合成することができる。

(26)

(25)

(17)

[反応式(1)~(x)中、 R^5 は水素原子又は低級アルキル基であり、 R^6 は水素原子、ハロゲン原子又はフェニル基であり、 R^7 は芳香環低級アルキル基であり、X及びAは前記と同様の意味を表し、Zはハロゲン原子であり、 Z^1 はフェニル基であり、Lはハロゲン原子等の脱離基であり、Phはフェニル基であり、Rは保護されたカルボン酸であり、 R^7 はイミノ保護基である。

式(16)の化合物に式(17)の化合物を反応させて式(18)の化合物を得る(反応式(1))。式(18)の化合物をアルコール中の塩化水素と反応させる反応等のイミノ保護基の脱離反応に付して、式(19)の化合物を得る(反応式(m))。式(20)の化合物を水素化ナトリウム等の塩基の存在下に式(21)の化合物と反応させて、式(22)の化合物を得る(反応式(n))。式(22)の化合物を接触還元等の脱ハロゲン化反応に付して、式(23)の化合物を得る(反応式(o))。式(22)の化合物をテトラキス(トリフェニルホスフィン)パラジウム(0)等の金属触媒及び炭酸ナトリウム等の塩基の存在下、フェニルホウ酸と反応させて式(24)の化合物を得る(反応式(p))。式(25)の化合物を上記反応式(1)と同様の反応に付し、式(26)の化合物を得る(反応式(q))。式(26)の化合物を、加水分解等のカルボキシ保護

基の脱離反応に付し、式(27)の化合物を得る(反応式(r))。式(27)の化合物を上記反応式(b)と同様の反応に付し、式(28)の化合物を得る(反応式(s))。式(29)の化合物を接触還元等の還元反応に付し、式(30)の化合物を得る(反応式(t))。

式(32)の化合物は、リチウムジイソプロピルアミド、ナトリウムアミド、 t-ブトキシカリウム、ナトリウムメトキシド、水酸化ナトリウム、水酸化カリ ウム等に代表される塩基の存在下、式(23)の化合物と式(31)の化合物を 反応させることにより得られる (反応式(u))。式(32)の化合物は酸あ るいは塩基によって化合物(33)に変換できる。また、より温和な条件で化合 物(33)を得るためには、式(32)の化合物の水酸基をアシルオキシ基ある いはメタンスルホニルオキシ基あるいはトルエンスルホニルオキシ基あるいはト リフルオロメタンスルホニルオキシ基に代表される脱離基に変換した後、酸ある いは塩基を作用させることによって式(33)の化合物が得られる。この他にも 脱水剤として用いられる反応剤を用いても式(32)の化合物から式(33)の 化合物が得られる(反応式(v))。式(33)の化合物を、加水分解等のカル ボキシ保護基の脱離反応に付し、式(34)の化合物を得る(反応式(w))。 式(34)の化合物を上記反応式(b)と同様の反応に付し、式(35)の化合 物を得ることができる(反応式(x))。反応式(u)及び反応式(v)と同様 の方法により、式(25)の化合物とCH3R(Rは前記と同様の意味を表す)で 表される式(36)の化合物からも同様の反応が進行し、式(26)の化合物が 得られる。

上記各反応の中間体はいずれも、必要に応じて通常の合成時に用いられる精製法、即ち再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー、高速液体クロマトグラフィー等の手段により精製して用いることも可能である。反応の最終生成物である本発明の化合物は、必要に応じて通常の有機化合物精製法、即ち再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー、高速液体クロ

マトグラフィー等の手段により精製できる。また化合物の同定は、NMRスペクトル分析、マススペクトル分析、IRスペクトル分析、元素分析、融点測定等により行われる。

本明細書の上記及び以下の記載において、本発明がその範囲内に包含する種々の定義の好ましい例及び詳細を以下に説明する。

低級なる語は特に断りのない限り、炭素原子数 $1 \sim 6$ を意味し、低級アルキル基の好適なものとしてはメチル基、エチル基、n-プロビル基、i-プロビル基、n-ベンチル基、i-プチル基、s e c- ブチル基、t- ブチル基、n-ベンチル基、i- ベンチル基、i- ベンチル 基、i- ベンチル ブチル 基等の 直鎖状又は分岐状のアルキル 基を挙げることができ、好適には炭素数 i- i- のものが挙げられる。

ハロゲン原子とはフッ素原子、塩素原子、臭素原子、及びヨウ素原子であり、 好適なものとしてはフッ素原子、塩素原子、臭素原子が挙げられる。

ハロ低級アルキルとはフッ素原子、塩素原子、臭素原子、及びヨウ素原子が置換した炭素数8までの直鎖状又は分岐状アルキル基であり、好適にはフッ素原子、塩素原子、及び臭素原子が置換した炭素数8まで、より好適には炭素数1~3の直鎖状又は分岐状アルキル基である。例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、1ーフルオロエチル基、1ークロロエチル基、1ーブロモエチル基、2ーフルオロエチル基、2ークロロエチル基、1、2ージフルオロエチル基、1、2ージクロロエチル基、1、2ージブロモエチル基、2、2、2ートリフルオロエチル基、へプタフルオロエチル基、1ーフルオロプロビル基、1ーク

ロロプロビル基、1-ブロモプロビル基、2-フルオロプロピル基、2-クロロ プロピル基、2-ブロモプロビル基、3-フルオロプロピル基、3-クロロプロ ビル基、3-ブロモプロビル基、1,2-ジフルオロプロビル基、1,2-ジク ロロプロピル基、1,2ージブロモプロピル基、2,3ージフルオロプロピル基 、2,3-ジクロロプロピル基、2,3-ジブロモプロピル基、3,3,3-ト リフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2-フルオロブチル基、2-クロロブチル基、2-ブロモブチル基、4-フルオロブ チル基、4-クロロブチル基、4-ブロモブチル基、4,4,4-トリフルオロ ブチル基、 2 、 2 、 3 、 3 、 4 、 4 、 4 ーヘプタフルオロブチル基、パーフルオ ロブチル基、2-フルオロペンチル基、2-クロロペンチル基、2-ブロモペン チル基、5-フルオロペンチル基、5-クロロペンチル基、5-ブロモペンチル 基、パーフルオロペンチル基、2-フルオロヘキシル基、2-クロロヘキシル基 、2-ブロモヘキシル基、6-フルオロヘキシル基、6-クロロヘキシル基、6 ーブロモヘキシル基、パーフルオロヘキシル基、2-フルオロヘプチル基、2-クロロヘプチル基、2-ブロモヘプチル基、7-フルオロヘプチル基、7-クロ ロヘプチル基、7ーブロモヘプチル基、パーフルオロヘプチル基等が挙げられる

低級アルコキシ基とは炭素数 6 までの直鎖状及び分岐状アルキルオキシ基である。例えばメトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-プチルオキシ基、i-プチルオキシ基、t-プチルオキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ペンチルオキシ基、n-ペンチルオキシ基、n-ペンチルオキシ基、n-ペンチルオキシ基、n-ペンチルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペキシルオキシ基、n-ペナルオキシ基、n-ペナルオキシ基、n-ペナルオキシ基、n-ペナルオキシ基、n-ペナルオキシ基、n-ペナルボチルオキシ基、n-ペナルガチルオキシ基、n-ペナルボチルオキシ基、n-ペナルボチルガチルオキシ基、n-ペナルボチルガチルオキシ基、n-ペナルボチルボチルガチルオキシ基、n-ペナルボチルガチルガチルオキシ基、n-ペナルボチルガチルガチルオキシ基、n-ペナルボチルガチルガチルオキシ基、n-ペナルブチルガチルガチルオキシ基、n-ペナルブチルガチルガチルオキシ基、n-ペナルブチルガチルオキシ基、n-ペナルブチルガチルガチルオキシ基、n-ペナルブチルガチルオキシ基、n-ペナルブチルガチルガチルオキシ基、n-ペナルブチルガチルガチルオキシ基、n-ペナルブチルガチルオキシ基、n-ペナルブチルガチルガチルガチルオキシ基、n-ペナルブチルガキシ基、n-ペナルブチルガキシ基、n-ペナルブチルガキシ基、n-ペナルブチルガチルガキシ基、n-ペナルブチルガキシ基、n-ペナルガキシ基、n-ペナルガキシ基、n-ペナルガキシ基、n-ペナルガキシ基、n-ペナルガキシエ、n-ペナルガキシ基、n-ペナルガキシ

低級シクロアルキル基とは炭素数3~7のシクロアルキル基であり、好適にはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられ、より好適には炭素数1~4のもの、シクロプロピル基及びシクロブチル基が挙げられる。

低級アルキル低級シクロアルキル基とは、前記低級アルキル基が結合した前記 低級シクロアルキル基を意味する。

低級アルケニル基の好適な例としては、直鎖又は分岐した低級アルケニル基、例えばエテニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1,4-メチルペンテニル基等があげられる。

低級アルキニル基の好適な例としては、直鎖又は分岐した低級アルキニル基、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-ベンチニル基、3-ベンチニル基、4-ベンチニル基、2-メチルー3-ブチニル基、1, 1-ジメチルー2-ブチニル基、5-ヘキシニル基等があげられる。

分岐していてもよい飽和又は不飽和架橋基とは、低級アルキレン基、低級アルケニレン基、オキシ基、オキシ低級アルキル基、低級アルキルオキシ基、カルボニル基、低級アルケニル基、イミノ基、イミノ低級アルキル基、低級アルキルイミノ基、チオ低級アルキル基又は低級アルキルチオ基等の架橋基となりうる置換基を意味し、これらはさらに低級アルキル基、低級シクロアルキル基、低級アル

キルシクロアルキル基、芳香環低級アルキル基又は複素環低級アルキル基で置換されていてもよい。好ましいものとしては、メチレン基、エチレン基、エテニレン基、イミノメチレン基、Nーメチルーイミノメチレン基等が挙げられる。

低級アルカンスルホニル基とはアルキル部分の炭素数が6までの直鎖状及び分岐状アルカンスルホニル基である。例えばメタンスルホニル基、エタンスルホニル基、1ープロパンスルホニル基、2ープロパンスルホニル基、1ーブタンスルホニル基、2ーブタンスルホニル基、1,1ージメチルエタンスルホニル基、1ー(2ーメチルプロパン)スルホニル基、nーペンタンスルホニル基、2ーペンタンスルホニル基、3ーペンタンスルホニル基、1ー(3ーメチルブタン)スルホニル基、1,1ージメチルプロパンスルホニル基、1ーへキサンスルホニル基、2ーヘキサンスルホニル基、2ーヘキサンスルホニル基、1ー(2ーメチルペンタン)スルホニル基、1ー(3ーメチルペンタン)スルホニル基、1ー(4ー

メチルペンタン) スルホニル基、2-エチルブタンスルホニル基、3-エチルブタンスルホニル基、1,1-ジメチルブタンスルホニル基、2,2-ジメチルブタンスルホニル基、3,3-ジメチルブタンスルホニル基、1-エチル-1-メチルプロパンスルホニル基等を挙げることができる。好適には、炭素数1~4のアルキルスルホニル基が挙げられる。

五乃至六員環の芳香環とは、シクロベンタジエニル基、ピロリル基、ピラゾリル基、イミダゾリル基、フェニル基、ピリジル基、ピリミジニル基、ピリダジニル基、フリル基、ピラニル基、トリアゾリル基、テトラゾリル基、チオフェニル基等の芳香環基を意味する。

芳香環基とは、アリール基又は複素芳香環を意味する。アリール基は、本明細書全体において炭素数6~10のもの、例えばフェニル基、ナフチル基等を含み、単にナフチル基といった場合は1ーナフチル基、2-ナフチル基を含む。複素芳香環は酸素原子、硫黄原子、窒素原子等の少なくとも1個の複素原子を有する不飽和の単環又は多環複素環基を意味し、ピロリル基、イミダゾリル基、フリル基、チエニル基、チアゾリル基、ピリジル基、ベンズイミダゾリル基、ベンゾフリル基、インドリル基、ベンゾチエニル基、キノリル基、イソキノリル基、チオフェニル基、フラニル基等が含まれる。また、そのベンゼン環上及びナフタレン環上に前記のハロゲン原子、低級アルキル基、シアノ基、ニトロ基、トリフルオロメチル基、フェニル基、ハロフェニル基、複素環基、ハロ複素環基等の置換基を有していてもよい。上記の複素原子の芳香環上の置換位置については、特に規定しない。

芳香環低級アルキル基はベンジル基、1-フェニルエチル基、2-フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルベンチル基、フェニルベンチル基、フェニルベンチル基、ナフチルメチル基、ナフチルプロピル基、ナフチルブチル基、ナフチルベンチル基、ナフチルベキシル基、ピリジルメチル基、ピリジルエチル基、キノリルメチル基、イソキノリルメチル基、フラニルメチ

ル基等を含み、前記の低級アルキル基に前記の芳香環基が結合したものを意味す る。芳香環上に前記の芳香環基と同様の置換基を有していてもよい。

芳香環スルホニル基とは、ベンゼンスルホニル基、トルエンスルホニル基、ナフタレンスルホニル基等、スルホニル基に前記の芳香環基が結合したものを含む-

複素環基としては後記のものが挙げられ、具体的にはピリジル基、キノリル基、イソキノリル基、チアゾリル基、チアジアゾリル基、ベンゾフラニル基、ジベンゾフラニル基、チアナフタレニル基、1H-1,2,3-トリアゾリル基、1,2,4-トリアゾリル基、テトラゾリル基、フリル基、チエニル基、ピロリル基、イミダゾリル基、ピリミジニル基、インドリル基、ベンズイミダゾリル基等を含み、これらは、例えばハロイソキノリル基、メチルイソキノリル基のように前記のハロゲン原子、低級アルキル基で置換されたものも含む。

ハロ複素環基とは、前記ハロゲン原子が結合した前記複素環基を意味する。

複素環低級アルキル基とは、例えばピリジルメチル基等のように前記の複素環 基により置換された前記の低級アルキル基を意味し、ハロ複素環低級アルキル基 とは、前記の複素環低級アルキル基の複素環がハロゲンで置換されたものである

また、単にピリジル基といった場合は、2-ピリジル基、3-ピリジル基、及び4-ピリジル基を含み、結合位置を規定するものではない。同様に他の複素環基についても結合位置を規定するものではない。

好適な「複素環基」は、酸素原子、硫黄原子、窒素原子等の少なくとも1個の 複素原子を有する飽和又は不飽和の単環又は多環複素環基を意味する。

より好ましい例としては、下記の複素環基、-窒素原子1乃至5個を有する7 乃至12員、好ましくは9又は10員の不飽和縮合複素環基(好ましくは二環基)、例えばインドリル、イソインドリル、インドリジニル、ベンズイミダゾリル、キノリル、イソキノリル、インダゾリル、ベンゾトリアゾリル、テトラゾロピ リジル、テトラゾロピリダジニル (例えばテトラゾロ [1,5-b] ピリダジニル等)、ジヒドロトリアゾロピリダジニル等;

ー硫黄原子1乃至3個を有する7乃至12員、好ましくは9又は10員の不飽和縮合複素環基(好ましくは二環基)又はそのS,S-二酸化物、例えばジチアナフタレニル(例えば4H-1,3-ジチアナフタレニル、1,4-ジチアナフタレニル等)、ベンゾチオフェニル又はそのS,S-二酸化物(例えばベンゾ[a]チオフェニル又はそのS,S-二酸化物等)等;

ー窒素原子 1 乃至 4 個を有する 3 乃至 8 員、好ましくは 5 又は 6 員の不飽和複素 単環基、例えばピロリル、ピロリニル、イミダゾリル、ピラゾリル、ピリジル及 びそのN ーオキサイド、ピリミジル、ピラジニル、ピリダジニル、トリアゾリル (例えば 4 H − 1, 2, 4 − トリアゾリル、1 H − 1, 2, 3 − トリアゾリル、 2 H − 1, 2, 3 − トリアゾリル等)、テトラゾリル (例えば 1 H − テトラゾリル、 2 H − テトラゾリル等)、ジヒドロトリアジニル (例えば 4, 5 − ジヒドロ − 1, 2, 4 − トリアジニル、2, 5 − ジヒドロ − 1, 2, 4 − トリアジニル等)等;

- 窒素原子1乃至4個を有する3乃至8員、好ましくは5又は6員の飽和複素単環基、例えばアゼチジニル、ピロリジニル、イミダゾリジニル、ピペリジニル、ピラゾリジニル、ピペラジニル等;
- -酸素原子1乃至2個及び窒素原子1乃至3個を有する7乃至12員、好ましくは9又は10員の不飽和縮合複素環基(好ましくは二環基)、例えばベンゾオキサゾリル、ベンゾオキサジアゾリル等;
- ー酸素原子1乃至2個及び窒素原子1乃至3個を有する3乃至8員、好ましくは5又は6員の不飽和複素単環基、例えばオキサゾリル、イソオキサゾリル、オキサジアゾリル (例えば1,2,4ーオキサジアゾリル、1,3,4ーオキサジアゾリル、1,2,5ーオキサジアゾリル等)等;

- -酸素原子1乃至2個及び窒素原子1乃至3個を有する3乃至8員、好ましくは 5又は6員の飽和複素単環基、例えばモルホリニル等;
- -硫黄原子1乃至2個及び窒素原子1乃至3個を有する7乃至12員、好ましくは9又は10員の不飽和縮合複素環基(好ましくは二環基)、例えば、ベンゾチアゾリル、ベンゾチアジアゾリル等;
- -硫黄原子1乃至2個及び窒素原子1乃至3個を有する3乃至8員、好ましくは 5又は6員の不飽和複素単環基、例えばチアゾリル、1,2ーチアゾリル、チアゾリル、チアジアゾリル(例えば1,2,4ーチアジアゾリル、1,3,4ーチアジアゾリル、1,2,5ーチアジアゾリル、1,2,3ーチアジアゾリル等) 等;
- -硫黄原子1乃至2個及び窒素原子1乃至3個を有する3乃至8員、好ましくは 5又は6員の飽和複素単環基、例えばチアゾリジニル等;
- -硫黄原子1個を有する3乃至8員、好ましくは5又は6員の不飽和複素単環基 、例えばチエニル等;等を挙げることができる。

好適な「エステル化されたカルボキシ基」としては、下記に示すものを挙げる ことができる。

エステル化されたカルボキシのエステル部分の好適な例としては、低級アルキルエステル(例えばメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、第三級ブチルエステル、ペンチルエステル、ヘキシルエステル等)、この低級アルキルエステルは適当な置換基を少なくとも1個有していてもよく、その例としては、例えば低級アルカノイルオキシ(低級)アルキルエステル [例えばアセトキシメチルエステル、プロピオニルオキシメチルエステル、ブチリルオキシメチルエステル、バレリルオキシメチルエステル、ピバロイルオキシメチルエステル、ヘキサノイルオキシメチルエステル、1-(又は2-)アセトキシエチルエステル、1-(又は2-、又は3-)アセトキシプロビルエステル、1-(又は2-、又は3-、又は4

一)アセトキシブチルエステル、1-(又は2-)プロピオニルオキシエチルエ ステル、1-(又は2-、又は3-)プロピオニルオキシプロピルエステル、1- (又は2-) ブチリルオキシエチルエステル、1-(又は2-) イソブチリル オキシエチルエステル、1-(又は2-)ピバロイルオキシエチルエステル、1 - (又は2-) ヘキサノイルオキシエチルエステル、イソブチリルオキシメチル エステル、2-エチルブチリルオキシメチルエステル、3,3-ジメチルブチリ ルオキシメチルエステル、1-(又は2-)ペンタノイルオキシエチルエステル 等]、低級アルカンスルホニル(低級)アルキルエステル(例えば2-メシルエ チルエステル等)、モノ(又はジ又はトリ)ハロ(低級)アルキルエステル(例 えば2-ヨードエチルエステル、2,2,2-トリクロロエチルエステル等); 低級アルコキシカルボニルオキシ(低級)アルキルエステル[例えばメトキシカ ルボニルオキシメチルエステル、エトキシカルボニルオキシメチルエステル、プ ロポキシカルボニルオキシメチルエステル、第三級ブトキシカルボニルオキシメ チルエステル、1-(又は2-)メトキシカルボニルオキシエチルエステル、1 - (又は2-) エトキシカルボニルオキシエチルエステル、1-(又は2-) イ ソプロポキシカルボニルオキシエチルエステル等]、フタリジリデン(低級)ア ルキルエステル、又は(5-低級アルキル-2-オキソ-1,3-ジオキソール -4-イル)(低級)アルキルエステル[例えば(5-メチル-2-オキソー1 ,3-ジオキソールー4ーイル)メチルエステル、(5-エチルー2ーオキソー 1,3-ジオキソールー4-イル)メチルエステル、(5-プロピルー2-オキ ソー1,3-ジオキソールー4-イル)エチルエステル等];低級アルケニルエ ステル(例えばビニルエステル、アリルエステル等);低級アルキニルエステル **(例えばエチニルエステル、プロピニルエステル等);適当な置換基を少なくと** も1個有していてもよいアル(低級)アルキルエステル(例えばベンジルエステ ル、4-メトキシベンジルエステル、4-ニトロベンジルエステル、フェネチル エステル、トリチルエステル、ベンズヒドリルエステル、ビス(メトキシフェニ

ル)メチルエステル、3,4ージメトキシベンジルエステル、4ーヒドロキシー3,5ージ第三級ブチルベンジルエステル等);適当な置換基を少なくとも1個有していてもよい芳香環エステル(例えばフェニルエステル、4ークロロフェニルエステル、トリルエステル、第三級ブチルフェニルエステル、キシリルエステル、メシチルエステル、クメニルエステル等);フタリジルエステル;等を挙げることができる。

このように定義される保護されたエステル化されたカルボキシの好ましい例としては、低級アルコキシカルボニル及びフェニル(又はニトロフェニル)(C1-C4)アルコキシカルボニルを挙げることができ、最も好ましいものとしては、メトキシカルボニル、エトキシカルボニル及びベンジルオキシカルボニルを挙げることができる。

好適な「アミド化されたカルボキシ基」としては、以下のものを挙げることが できる。

カルバモイル基、

モノ又はジ低級アルキルカルバモイル基(低級アルキル基は前記のものを挙げることができる) [例えばメチルカルバモイル、ジメチルカルバモイル、イソプロピルカルバモイル、n-ブチルカルバモイル、t-ブチルカルバモイル、N-メチル-N-(ピリジルメチル) カルバモイル等]、

アリール低級アルキルカルバモイル基(アリール基及び低級アルキル基は前記のものを挙げることができる) [例えばベンジルカルバモイル、3,4-メチレンジオキシベンジルカルバモイル、ジアミノベンジルカルバモイル、フェネチルカルバモイル]、

炭素数3~7のシクロ低級アルキルカルバモイル基(シクロ低級アルキル基は前記のものを挙げることができる) [例えばシクロプロピルカルバモイル、シクロプチルカルバモイル、シクロペンチルカルバモイル、シクロペキシルカルバモイル、シ

アリールカルバモイル (アリール基は前記のものを挙げることができる) [例えばフェニルカルバモイル、ナフチルカルバモイル等]、

複素環カルバモイル基(複素環は前記のものを挙げることができる) [例えばチアゾリルカルバモイル、チアジアゾリルカルバモイル、ピリジルカルバモイル、トリアゾリルカルバモイル、テトラゾリルカルバモイル、N-メチル-N-ピリジンカルバモイル、モルホリノカルバモイル等]、

複素環低級アルキルカルバモイル基 (複素環低級アルキル基は前記のものを挙げることができる) [例えばモルホリノエチルカルバモイル、ピリジルメチルカルバモイル、メチレンジオキシベンジルカルバモイル等]、

窒素原子が窒素含有複素環の一員となっているN – ジ置換カルバモイル (例えば モルホリノカルボニル、チオモルホリノカルボニル、1 – パーヒドロアゼピニルカルボニル、1 , 1 – ジオキソチアゾリジンカルボニル、ピペリジノカルボニル、1 – ピペラジニルカルボニル、4 – (2 – ヒドロキシエチル) – 1 – ピペラジニルカルボニル、カルボキシピロリジノカルボニル、4 – メチル – 1 – ピペラジニルカルボニル、カルボキシピロリジノカルボニル等)、

置換スルホニルカルバモイル基等。

また該置換スルホニルカルバモイル基の置換基としては、前記の、炭素数20までのアルキル基、アルケニル基、ハロ低級アルキル基、アリール低級アルキル基、ヒドロキシ低級アルキル基、トリ低級アルキルシリル低級アルキル基、低級アルコキシ低級アルキル基、低級アルキルチオ低級アルキル基、複素環基、又はアリール基等が挙げられ、該アリール基は、前記の、ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基又はニトロ基等で置換されていてもよい。具体的には、ナフタレンスルホニルカルバモイル、ベンゼンスルホニルカルバモイル、ニトロベンゼンスルホニルカルバモイル、トリハロベンゼンスルホニルカルバモイル、低級アルコキシベンゼンスルホニルカルバモイル、ハロベンゼンスルホニルカルバモイル、低級アルコキシベンゼンスルホニルカルバモイル、ハロベンゼンスルホニルカルバモイル、モノ又はジ低級アルキルベンゼンスルホニルカ

ルバモイル、炭素数1~20のアルカンスルホニルカルバモイル(2、2-ジメ チルエタンスルホニルカルバモイル、ブタンスルホニルカルバモイル、プロパン スルホニルカルバモイル、イソプロパンスルホニルカルバモイル、エタンスルホ ニルカルバモイル、メタンスルホニルカルバモイル、オクタンスルホニルカルバ モイル、ペンタンスルホニルカルバモイル、イソペンタンスルホニルカルバモイ ル、ヘキサンスルホニルカルバモイル等)、トリハロ(低級)アルカンスルホニ ルカルバモイル(トリフルオロメタンスルホニルカルバモイル等)、フェニル(低級)アルカンスルホニルカルバモイル、トリ低級アルカンスルホニルカルバモ イル、低級アルキルチオ低級アルカンスルホニルカルバモイル、低級アルコキシ (低級)アルカンスルホニルカルバモイル、キノリンスルホニルカルバモイル、 ヒドロキシ低級アルカンスルホニルカルバモイル(2-ヒドロキシブタンスルホ ニルカルバモイル、3ーヒドロキシブタンスルホニルカルバモイル、2ーヒドロ キシペンタンスルホニルカルバモイル)等、アルケンスルホニルカルバモイル(エテンスルホニルカルバモイル、1-ペンテンスルホニルカルバモイル等)、複 素環スルホニルカルバモイル(2-チオフェンスルホニルカルバモイル、8-キ ノリンスルホニルカルバモイル等)が挙げられる。

アシルアミノ基とは、アシル基が結合したアミノ基を意味し、好適な「アシル基」としては、脂肪族アシル、芳香族アシル、複素環アシル、並びに芳香族基又は複素環基で置換された脂肪族アシルであって、カルボン酸、炭酸、スルホン酸、カルバミン酸等から誘導されたアシルを挙げることができる。

この脂肪族アシルとしては、飽和又は不飽和の非環式又は環式のもの、例えば低級アルカノイル (例えばホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル等)等のアルカノイル、低級アルカンスルホニル (例えばメシル、エタンスルホニル、プロパンスルホニル、イソプロパンスルホニル、ブタンスルホニル、イソブタンスルホニル、ル、n-ペンタンスルホニル、ヘキサンスルホニル等)等のアルカンスルホニル

、カルバモイル、N-アルキルカルバモイル (例えばメチルカルバモイル、エチルカルバモイル等)、低級アルコキシカルボニル (例えばメトキシカルボニル、エトキシカルボニル、プロボキシカルボニル、ブトキシカルボニル、第三級ブトキシカルボニル等)等のアルコキシカルボニル、低級アルケニルオキシカルボニル (例えばビニルオキシカルボニル、アリルオキシカルボニル等)等のアルケニルオキシカルボニル、低級アルケノイル (例えばアクリロイル、メタアクリロイル、クロトノイル等)等のアルケノイル、シクロ (低級) アルカンカルボニル (例えばシクロプロパンカルボニル、シクロペンタンカルボニル、シクロペキサンカルボニル等)等のシクロアルカンカルボニル等を挙げることができる。

芳香族アシルとしては、C6-C10アロイル(例えばベンゾイル、トルオイル、キシロイル等)、N-(C6-C10) 芳香環カルバモイル(例えばN-フェニルカルバモイル、N-トリルカルバモイル、N-ナフチルカルバモイル等)、C6-C10アレーンスルホニル(例えばベンゼンスルホニル、トシル等)等を挙げることができる。

複素環アシル、例えば複素環カルボニル;複素環(低級)アルカノイル(例えば複素環アセチル、複素環プロパノイル、複素環ブタノイル、複素環ペンタノイル、複素環ペキサノイル等);複素環(低級)アルケノイル(例えば複素環プロペノイル、複素環ブテノイル、複素環ペンテノイル、複素環ペキセノイル等); 複素環グリオキシロイル;複素環スルフィニル;複素環スルホニル;等を挙げることができる。

芳香族基で置換された脂肪族アシルとしては、フェニル(低級)アルコキシカルボニル(例えばベンジルオキシカルボニル、フェネチルオキシカルボニル等)等のアラルコキシカルボニル等を挙げることができる。

これらのアシル基は、1個又はそれ以上の適当な置換基、例えばニトロ等でさらに置換されていてもよく、そのような置換基を有する好ましいアシルとしては、ニトロアラルコキシカルボニル(例えばニトロベンジルオキシカルボニル等)

等を挙げることができる。

本発明の芳香環誘導体の好適な塩は、無毒性で医薬として許容しうる慣用の塩であり、例えばナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩等の無機塩基との塩、及びトリエチルアミン、ピリジン、ピコリン、エタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N'ージベンジルエチレンアミン等の有機アミン塩、及び塩酸、臭化水素酸、硫酸、リン酸等の無機酸塩、及びギ酸、酢酸、トリフルオロ酢酸、マレイン酸、酒石酸等の有機カルボン酸塩、及びメタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸等のスルホン酸付加塩、及びアルギニン、アスパラギン酸、グルタミン酸等の塩基性又は酸性アミノ酸といった塩基との塩又は酸付加塩が挙げられる。

本発明の化合物は1か所以上の不斉中心を有することもあり、それゆえ、それらは鏡像体又はジアステレオマーとして存在しうる。さらに、アルケニル基を含有する式の若干の化合物は、シス又はトランス異性体として存在しうる。いずれの場合にも、本発明はそれらの混合物及び各個の異性体をともに包含するものである。

本発明の化合物は互変異性体の形で存在する場合もあり、本発明はそれらの混合物及び各個の互変異性体をともに包含するものである。

本発明の化合物及びその塩は、溶媒和物の形をとることもありうるが、これも 本発明の範囲に含まれる。溶媒和物としては、好ましくは、水和物及びエタノー ル和物が挙げられる。

- (N-(n-ペンタンスルホニル))ベンズアミド等が挙げられる。

式 (IV) で表されるものとしては、具体的には、(E) -N- (n-ベンタンスルホニル) -2- (4-フェニルフェニル) エテニルピリジン-4-カルボン酸アミド等が挙げられる。

式(V)で表される芳香環誘導体の具体例としては、(E)-3-(4-ブロ E-1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-N-(n-ペンタンスルホニル)-2-プロペン酸アミド、(E)-3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-N-(n-ペンタンスルホニル) - 2 - プロペン酸アミド、(E) - 3 - (4 - クロ-1-(2,4-i) -2-i -1-(2,4-i) -1-(2,4-i)-N-(n-ペンタンスルホニル)-2-プロペン酸アミド、(E)-3-(4ークロロー1ー(2,4ージクロロベンジル)ー2ーメチルイミダゾールー5ー イル) -N - ベンゼンスルホニル -2 - プロペン酸アミド、(E) -3 - (1 -(2, 4-ジクロロベンジル) - 2-メチル-4-フェニルイミダゾール-5-イル) $-N-(n-\alpha \vee 2)$ イル) $-2-\beta \vee 2$ ロペン酸アミド、(E) -3-(1-(2,4-i)クロロベンジル) -2-iメチルイミダゾール-4-iイル)) - N - (n - ペンタンスルホニル) - 2 - プロペン酸アミド、(E) - 3 - (-プロペン酸アミド、(E) -2 -ベンジル-3 - (1 - (2, 4 -ジクロロベ ンジル)-2-メチルイミダソール-5-イル)-N-(n-ペンタンスルホニ ル) -2-プロペン酸アミド等が挙げられる。

式 (VI) で表される芳香環誘導体の具体例としては、3-(1-(2,4-5) ジクロロベンジル) -2-3 メチルイミダゾール-5-4 ル) -N-(n-4)

ンスルホニル)プロピオン酸アミド、(E)-3-(1-(2,4-i)) ロロベンジル)-2-iメチルイミダゾール-4-iイル))-N-(n-i) コルカンスルホニル)プロピオン酸アミド等が挙げられる。

以上に述べた本発明の芳香環誘導体及びその医薬として許容される塩は、血糖 降下活性に基づき、例えば、耐糖能障害、糖尿病(II型糖尿病)、糖尿病合併症 (例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減少症、糖尿病性糸球体硬 化症、糖尿病性腎症、糖尿病性皮膚障害、糖尿病性神経障害、糖尿病性白内障、 糖尿病性網膜症等)、インスリン抵抗性症候群(インスリン受容体異常症、Rabs on-Mendenhall症候群、レブリコニズム、Kobberling-Dunnigan症候群、Seip症候 群、Lawrence症候群、Cushing症候群、先端巨大症等)、多嚢胞性卵巣症候群、高 脂質血症、アテローム性動脈硬化症、心臓血管疾患(狭心症、心不全等)、高血 糖症(例えば摂食障害等の異常糖代謝で特徴づけられるもの)、高血圧症、さら にはcGMP-PDE(特にPDE-V)阻害作用、平滑筋弛緩作用、気管支拡 張作用、血管拡張作用、平滑筋細胞抑制作用、アレルギー抑制作用等に基づき、 狭心症、高血圧、肺高血圧、うっ血性心不全、糸球体疾患(例えば糖尿病性糸球 体硬化症等)、尿細管間質性疾患(例えばFK506、シクロスポリン等により誘発さ れた腎臓病)、腎不全、アテローム性動脈硬化、血管狭窄(例えば経皮性動脈形 成術後のもの)、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患(例えば気管支 炎、喘息(慢性喘息、アレルギー性喘息))、自己免疫疾患、アレルギー性鼻炎 、じんま疹、緑内障、腸運動性障害を特徴とする疾患(例えば過敏症腸症候群) 、インポテンス(例えば器質的インポテンス、精神的インポテンス等)、糖尿病 合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減少症、糖尿病性糸 球体硬化症、糖尿病性腎症、糖尿病性皮膚障害、糖尿病性神経障害、糖尿病性白 内障、糖尿病性網膜症等)、腎炎、悪液質(例えば、癌・結核・内分泌性疾患及 びエイズ等の慢性疾患における、脂肪分解・筋変性・貧血・浮腫・食欲不振等に よる進行性の体重減少)、膵炎、PTCA後の再狭窄の種々の疾患の治療及び予

防にも有用である。

この発明の芳香環誘導体を治療目的に用いるにあたっては、経口投与、非経口投与及び外用投与に適した有機もしくは無機固体状もしくは液体賦形剤のような、医薬として許容される担体と混合し、前記誘導体を有効成分として含有する常用の医薬製剤の形として使用される。医薬製剤は錠剤、顆粒、粉剤、カプセルのような固体状であってもよく、また溶液、懸濁液、シロップ、エマルジョン、レモネード等のような液状であってもよい。

必要に応じて上記製剤中に助剤、安定剤、湿潤剤及びその他、乳糖、クエン酸、酒石酸、ステアリン酸、ステアリン酸マグネシウム、白土、しょ糖、コーンスターチ、タルク、ゼラチン、寒天、ベクチン、落花生油、オリーブ油、カカオ油、エチレングリコール等のような通常使用される添加剤が含まれていてもよい。

前記誘導体の使用量は患者の年齢、条件及び疾患の種類や状態、使用する前記 誘導体の種類により変化するが、一般的には経口投与の場合、1~100mg/ kg、筋注や静注の場合0.1~10mg/kgを一日に1~4回投与する。

図面の簡単な説明

図1は、化合物(31)~(36)の化学式を示す図である。

図 2 は、化合物 (37)~(43) の化学式を示す図である。

図 3 は、化合物 (44)~(45)の化学式を示す図である。

発明を実施するための最良の形態

く製造例 1; N-(n-ペンタンスルホニル) - 3-(r-モー・アセチルアミノ) - 4-ニトロベンズアミドの製造>

3-アセチルアミノー4-ニトロ安息香酸(60.22g)とN,N-ジメチルホルムアミド(200ml)の溶液にN,N ーカルボニルジイミダゾール(65.09g)を一気に加え、室温下で1時間攪拌した。1-ペンタンスルホンアミド(60.72g)と

1,8-ジアザビシクロ [5.4.0] ウンデック-7-エン (61.12g) を加え、100 ℃で16 時間攪拌した。真空ポンプを用い減圧下、90 ℃で溶媒を留去し、クロロホルムと水を加えた。撹拌しながら水層が \sim p H 4 になるまで希塩酸を加えた。有機層を分液し、硫酸ナトリウムで乾燥した後、濃縮することにより N-(n-ペンタンスルホニル) -3-(rセチルアミノ) -4-ニトロベンズアミドの粗精製物を得た.このものは直ちに次の反応に用いた。

<製造例2; N-(n-ペンタンスルホニル)-3-アミノ-4-ニトロベンズアミドの製造>

上記方法で得られたN-(n-ペンタンスルホニル)-3-(アセチルアミノ) -4-ニトロベンズアミドの粗精製物、水(300ml) 及びエタノール(500ml) の混合物に、10%水酸化ナトリウム水溶液(200g)を加え、45% - 50%で6時間攪拌した。減圧下、溶媒(約300ml)を留去した。10%塩酸で中性まで調整し、続いて希塩酸で-pH2に調整した。析出した結晶を濾別、乾燥することにより黄色結晶のN-(n-ペンタンスルホニル)-3-アミノ-4-ニトロベンズアミド(85.0g)を得た。

[化合物の物性]

¹H-NMR (DMSO-d6, δ ppm): 0.84(3H, t, J=7.5Hz), 1.27(2H, m), 1.36(2H, m), 1.68(2H, m), 3.48(2H, t, J=6.0Hz), 6.99(1H, dd, J=1.5 and 9.0Hz), 7.4 0-7.60(2H, brs), 7.50(1H, d, J=1.5Hz), 8.03(1H, d, J=9.0Hz), 12.0-13.0(1 H, brs).

く製造例3; N-(n-ペンタンスルホニル)-3-(2,4-ジクロロベンジルアミノ)-4-ニトロベンズアミドの製造>

N-(n-ペンタンスルホニル) -3-アミノ-4-ニトロベンズアミド (85.0g)、塩化2,4-ジクロロベンジル (105.4g)、ヨウ化ナトリウム (20.0g)、炭酸カリウム (113.3g) 及びメタノール (120ml) を加えた。60%で24時間 攪拌し、塩化2,4-ジクロロベンジル (105.4g) を追加し、60%で24時間

[化合物の物性]

¹H-NMR (DMSO-d6, δ ppm) : 0.84(3H, t, J=7.5Hz), 1.15-1.30(4H, m), 1.40-1.60(2H, m), 2.94(2H, t, J=7.5Hz), 4.66 (2H, d, J=6.0Hz), 7.22(1H, dd, J=1.5 and 8.5Hz), 7.27(1H, d, J=1.5Hz), 7.30(1H, d, J=8.5Hz), 7.37(1H, dd, J=2.0 and 8.5Hz), 7.65(1H, d, J=2.0Hz), 8.04(1H, d, J=8.5Hz), 8.58(1H, t, J=6.0Hz), 11.32(1H, brs).

[化合物(31)の物性]

¹H-NMR(DMSO-d6, δ ppm): 0.81(3H, t, J=7.3Hz), 1.24(2H, m), 1.32(2H, m), 1.62(2H, m), 3.40(2H, m), 4.38(2H, d, J=5.8Hz), 5.32(1H, t, J=5.8Hz), 5.59(2H, brs), 6.56(1H, d, J=8.2Hz), 6.85(1H, d, J=1.8Hz), 7.20(1H, dd, J=8.2 and 1.8Hz), 7.36(1H, d, J=8.5Hz), 7.39(1H, dd, J=8.5 and 2.1Hz), 7.63(1H, d, J=1.8Hz), 11.32(1H, brs).

 $IR(Nujol) : 1661cm^{-1}$

mp: 180-182°C.

<製造例4; 3-(N-メチル-2, 4-ジクロロベンジルアミノ)-4-ニトロ安息香酸の製造>

3- 7ルオロー4- 2トロ安息香酸(1.00g)、N- 2 N- 2 , 4- 9 N- 2 N- 2

[化合物の物性]

¹H-NMR(DMSO-d6, δ ppm): 2.75(3H, s), 4.42(2H, s), 7.39(1H, d, J=8.4Hz), 7.43(1H, dd, J=8.4 and 2.0Hz), 7.46(1H, dd, J=8.4 and 1.4Hz), 7.63(1H, d, J=2.0Hz), 7.68(1H, d, J=1.4Hz), 7.77(1H, d, J=8.4Hz).

<製造例 5; N-(n-ペンタンスルホニル)-3-(N-メチル-2,4-ジクロロベンジルアミノ)-4-ニトロベンズアミドの製造>

3-(N-メチル-2,4-ジクロロベンジルアミノ)-4-ニトロ安息香酸 (0.85g) とN,N-ジメチルホルムアミド (10<math>m1) の混合物にN,N'-カルボニルジイミダゾール (0.776g) を室温で加え、1時間撹袢した。1-ペンタンスルホンアミド (0.724g) 及び1,8-ジアザビシクロ [5.4.0] ウンデック

-7-エン (0.729g) を加え、100 $^{\circ}$ $^{\circ}$

く実施例 2; 4 ーアミノー 3 ー(Nーメチルー 2,4 ージクロロベンジルアミノ)ー(Nー(nーペンタンスルホニル))ベンズアミド(3 2)の合成>Nー(nーペンタンスルホニル)- 3 ー(Nーメチルー 2,4 ージクロロベンジルアミノ)- 4 ーニトロベンズアミド(0.605g)にエタノール(4m1)及びテトラヒドロフラン(4m1)、さらにハイドロサルファイトナトリウム(3.10g)の水溶液(10m1)を加え、80℃で20分撹袢した。反応液に水と酢酸エチルを加えて、分液した。有機層を水洗、濃縮し、残渣をエーテルから結晶化し、濾別、乾燥することにより4 ーアミノー3 ー(Nーメチルー 2,4 ージクロロベンジルアミノ)-(N-(n-ペンタンスルホニル))ベンズアミド(3 2)(0.126g)を得た。

[化合物(32)の物性]

¹H-NMR(DMSO-d6, δ ppm): 0.84(3H, t, J=7.2Hz), 1.34-1.42(2H, m), 1.42-1.48(2H, m), 1.63-1.70(2H, m), 2.51(3H, s), 3.46(2H, t, J=7.8Hz), 4.12(2H, s), 5.79(2H, s), 6.68(1H, d, J=8.6Hz), 7.37(1H, dd, J=8.2 and 2.0Hz), 7.50(1H, dd, J=8.4 and 1.9Hz), 7.55(1H, d, J=8.4Hz), 7.58(1H, d, J=2.2Hz), 7.67(1H, d, J=1.9Hz), 11.48(1H, s).

IR(Nujol): 1651cm⁻¹

 $Mass(FD) : m/e 457(M)_o$

mp: 122.5-124°C.

4-アミノ-3-((N-メチル)-2,4-ジクロロベンジルアミノ)-(N-(n-ペンタンスルホニル))ベンズアミドをクロロホルムに溶かし、トリエチルアミンと塩化アセチルを加え、室温で<math>30分撹袢した。反応液に水を加えて分液し、有機層を水洗、濃縮して得られた残渣をエーテルで結晶化させた。結晶を濾別、乾燥することにより4-(Pセチルアミノ)-3-((N-メチル)-2,4-ジクロロベンジルアミノ)-(N-(n-ペンタンスルホニル))ベンズアミド(33)を得た。

[化合物(33)の物性]

¹H-NMR(DMSO-d6, δ ppm) : 0.84(3H, t, J=7.3Hz), 1.25-1.32(2H, m), 1.34-1 .42(2H, m), 1.65-1.73(2H, m), 2.08(3H, s), 2.64(3H, s), 3.51(2H, t, J=7.7Hz), 4.14(2H, s), 7.37(1H, dd, J=8.3 and 2.2Hz), 7.47(1H, d, J=8.3Hz), 7.61(1H, d, J=2.1Hz), 7.68(1H, dd, J=8.5 amd 1.9Hz), 7.90(1H, d, J=1.9Hz), 8.11(1H, d, J=8.6Hz), 9.14(1H, s), 11.95(1H, s)。

IR(Nujol) : 1662cm⁻¹.

 $Mass(FD) : m/e 499(M)_{o}$

mp: 163.5-165°C.

<製造例6; 4,5-ジブロモー2-メチルー1-(2-(トリメチルシリル)エトキシメチル)イミダゾールの製造>

4,5-ジブロモー2ーメチルイミダゾール(4.91g)をN,N-ジメチルホルムアミド(50ml)に溶解し、60%水素化ナトリウム(901mg)を氷冷下で徐々に加えた。室温で1時間撹拌した後、2-(トリメチルシリル)エトキシメチル=クロリド(3.75g)を氷冷下で徐々に滴下し、室温で終夜撹拌した。溶媒を減圧下で留去し

た後、残渣に酢酸エチルを添加し、飽和炭酸水素ナトリウム水溶液で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=3/1)で精製し、4,5-ジブロモー2-メチルー1-(2-(トリメチルシリル)エトキシメチル)イミダゾール(7.6g)を無色油状物として得た。

[化合物の物性]

¹H NMR(CDC1₃): 0.00(9H, s), 0.92(2H, t, J=8Hz), 2.47(3H, s), 3.55(2H, t), J=8Hz, 5.24(2H, s).

<製造例7; 4-ブロモ-2-メチル-1-(2-(トリメチルシリル)エトキシメチル)イミダゾール-5-カルボキサアルデヒドの製造>

4,5-ジブロモー2ーメチルー1ー(2ー(トリメチルシリル)エトキシメチル)イミダゾール(29.2g)をテトラヒドロフラン(250ml)に溶解し、1.63Nnーブチルリチウム/ヘキサン溶液(58.1ml)を-55℃から-60℃で20分かけて滴下した。-60℃で30分撹拌した後、N,Nージメチルホルムアミド(58g)を-55℃から-60℃で徐々に滴下し、室温で1時間撹拌した。飽和食塩水を添加し、酢酸エチルで抽出した後、有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、4ーブロモー2ーメチルー1ー(2ー(トリメチルシリル)エトキシメチル)イミダゾールー5ーカルボキサアルデヒド(18.5g)を淡黄色油状物として得た。

[化合物の物性]

¹H NMR(CDCl₃): 0.00(9H, s), 0.91(2H, t, J=8Hz), 2.52(3H, s), 3.58(2H, t), J=8Hz, 5.70(2H, s), 9.71(1H, s).

< 製造例 8; 5 ー ブロモー 2 ー メチルイミダゾールー 4 ー カルボキサアルデヒドの製造>

4-ブロモー2-メチルー1-(2-(トリメチルシリル)エトキシメチル)

イミダゾールー5ーカルボキサアルデヒド(18.5g)をエタノール(80n1)に溶解し、6 N塩酸(80n1)を添加して、1時間加熱還流した。溶媒を減圧下で留去し、氷冷下で飽和炭酸水素ナトリウム水溶液を弱アルカリ性になるまで添加した。析出した結晶を濾取し、結晶をメタノールで洗浄した後、減圧下で加熱乾燥し、5ーブロモー2ーメチルイミダゾールー4ーカルボキサアルデヒド(9.17g)を白色結晶として得た。

[化合物の物性]

 1 H NMR(CDCl₃) : 2.45(3H, s), 9.53(1H, s).

<br

5-ブロモー2-メチルイミダゾールー4-カルボキサアルデヒド(2.25g)と炭酸カリウム(2.47g)をN, N-ジメチルホルムアミド(15ml)に溶解し、 2, 4-ジクロロベンジル=クロリド(2.56g)のN, N-ジメチルホルムアミド溶液(1ml)を添加した。室温で終夜、70 °Cで 1 時間撹拌した。酢酸エチルを添加して、水で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(n + サン/酢酸エチル=4/1)で精製し、n - ブロモーn - n -

[化合物の物性]

¹H NMR(CDCl₃): 2.34(3H, s), 5.58(2H, s), 6.42(1H, d, J=8Hz), 7.16(1H, d d, J=2, 8Hz), 7.45(1H, d, J=2Hz), 9.70(1H, s)_o

<製造例 10; (E) -3-(4-7) ロモー1-(2,4-9) ロロベンジル) -2-3 サルイミダゾールー5-4 ル) -2-3 ロペン酸メチルエステルの製造>

4-ブロモ-1-(2,4-ジクロロベンジル)-2-メチルイミダゾールー

5-カルボキサアルデヒド(1g)をテトラヒドロフラン(10m1)に溶解し、氷冷下でメチル=(トリフェニルホスフォラニリデン)アセテート(1.01g)を添加した。加熱還流 3 時間の後、メチル=(トリフェニルホスフォラニリデン)アセテート(290mg)を追加し、さらに 3 時間加熱還流した。溶媒を減圧下で留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル= <math>4 / 1)で精製し、(E)-3-(4-ブロモ-1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(1.04g)を淡黄色結晶として得た。

[化合物の物性]

¹H NMR(CDCl₃): 2.36(3H, s), 3.75(3H, d, J=2Hz), 5.20(2H, s), 6.39(1H, d, J=8Hz), 6.53(1H, d, J=15Hz), 7.17(1H, dd, J=2, 8Hz), 7.26(1H, d, J=2Hz), 7.47(1H, d, J=2Hz).

<br

(E) -3-(4-7)ロモー1ー(2,4-ジクロロベンジル) -2-メチルイミダゾールー5ーイル) -2-プロペン酸メチルエステル(800mg)をメタノール(20ml)に溶解し、1N NaOH(20ml)を添加して30分間加熱還流した。氷冷下で1N塩酸を添加して酸性とし、ジクロロメタンで抽出した。有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で留去し、(E) -3-(4-7)ロモー1-(2,4-ジクロロベンジル) -2-メチルイミダゾールー5ーイル) -2-プロペン酸(762mg)を白色結晶として得た。

「化合物の物性】

'H NMR(DMSO-d6): 2.32(3H, s), 5.39(2H, s), 6.28(1H, d, J=15Hz), 6.51(1H, d, J=8Hz), 7.20(1H, d, J=15Hz), 7.39(1H, dd, J=2, 8Hz), 7.74(1H, d, J=3Hz).

<実施例4; (E) -3-(4-) ロモー1-(2, 4-ジクロロベンジル

-)-2-メチルイミダゾール-5-イル)-N-(n-ペンタンスルホニル)-2-プロペン酸アミド(34)の合成>
- (E) -3-(4-7)ロモ-1-(2,4-9)0ロロベンジル)-2-8チルイミダゾール-5-4ル)-2-7ロベン酸(696mg)をN,N-9メチルホルムアミド(7ml)に懸濁し、N,N'-カルボニルジイミダゾール(376mg)を添加した。室温で1時間撹拌した後、ペンタンスルホンアミド(405mg)と1,8-9アザビシクロ[5.4.0]ウンデック-7-xン(407mg)を添加した。100°Cで3時間撹拌した後、氷冷下で1N塩酸を添加して弱酸性とし、ジクロロメタンで抽出した。有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で留去した。残渣にジイソプロピルエーテルを添加し、析出した結晶を濾取して減圧下で乾燥し、(E) -3-(4-7)ロモ-1-(2,4-9)0ロロベンジル)-2-30ペン酸アミド(34)(800mg)を白色結晶として得た。

「化合物(34)の物性】

¹H NMR(DMSO-d6): 0.82(3H, t, J=7Hz), 1.20-1.40(4H, m), 1.57-1.67(2H, m), 2.33(3H, s), 3.32-3.40(2H, m), 5.39(2H, s), 6.52(1H, d, J=9Hz), 6.69(1H, d, J=15Hz), 7.27(1H, d, J=15Hz), 7.38(1H, dd, J=2, 8Hz), 7.75(1H, s)。

Mass(ESI): 522(M-H)。

(E) $-3-(4-70\pi-1-(2,4-90\pi-1))$ $-2-8\pi$ -2π -2π

らに4時間行った。触媒を濾去したのち溶媒を減圧下で留去した。残渣にジクロロメタンを添加し、水で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(メタノール/ジクロロメタン=3/97)で精製し、3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-N-(1-ペンタンスルホニル)プロピオン酸アミド(35)(290mg)を淡黄色粉末として得た。

[化合物(35)の物性]

¹H NMR(DMSO-d6): 0.92(3H, t, J=8Hz), 1.18-1.35(4H, m), 1.53-1.63(2H, m), 2.16(3H, s), 2.52-2.60(4H, m), 3.27(2H, d, J=8Hz), 5.17(2H, s), 6.30(1H, d, J=8Hz), 6.64(1H, s), 7.36(1H, dd, J=2, 8Hz), 7.72(1H, d, J=2Hz).

Mass(ESI): m/e 444(M-H).

<br

4-ブロモー1-(2, 4-ジクロロベンジル)-2-メチルイミダゾールー5-カルボキサアルデヒド(500mg)を1, 4-ジオキサン(5ml)に溶解し、10%パラジウム炭素(100mg)、酢酸カリウム(155mg)を添加した。1気圧の水素雰囲気下で接触還元を7時間行った後、触媒を濾去したのち溶媒を減圧下で留去した。残渣に酢酸エチルを添加し、水で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去して、1-(2, 4-ジクロロベンジル)-2-メチルイミダゾール-5-カルボキサアルデヒド(379mg)を白色結晶として得た。

[化合物の物性]

¹H NMR(CDCl₃): 2.38(3H, s), 5.62(2H, s), 6.33(1H, d, J=8Hz), 7.13(1H, d, J=8Hz), 7.45(1H, d, J=2Hz), 7.82(1H, s), 9.69(1H, s)_o

<製造例13; (E) -3-(1-(2,4-ジクロロベンジル)-2-メ

チルイミダゾール-5-イル)-2-プロペン酸メチルエステルの製造>

製造例 10 と同様の操作により 1-(2,4-ジクロロベンジル) -2-メチルイミダゾール-5-カルボキサアルデヒド(346mg)から(E)-3-(1-(2,4-ジクロロベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル(330mg)を白色結晶として得た。

[化合物の物性]

¹H NMR(CDCl₃): 2.35(3H, s), 3.73(3H, s), 5.18(2H, s), 6.16(1H, d, J=15H z), 6.30(1H, d, J=8Hz), 7.15(1H, dd, J=2, 8Hz), 7.26(1H, d, J=3Hz), 7.42 -7.55(1H, m), 7.65-7.70(1H, m)_o

<製造例 14; (E) -3-(1-(2,4-ジクロロベンジル)-2-メ チルイミダゾール -5-イル) -2-プロペン酸の製造 >

[化合物の物性]

¹H NMR(DMSO-d6): 2.29(3H, s), 5.34(2H, s), 6.17(1H, d, J=15Hz), 6.35(1H, d, J=8Hz), 7.23(1H, d, J=15Hz), 7.38(1H, dd, J=2, 8Hz), 7.60(1H, s), 7.75(1H, s).

<実施例 6; (E) - 3 - (1 - (2, 4 - ジクロロベンジル) - 2 - メチルイミダゾール - 5 - イル) - N - (n - ベンタンスルホニル) - 2 - プロペン酸アミド(36)の合成>

 白色結晶として得た。

[化合物(36)の物性]

¹H NMR(DMSO-d6): 0.82(3H, t, J=7Hz), 1.20-1.38(4H, m), 1.55-1.67(2H, m), 2.27(3H, s), 3.30-3.40(2H, m), 5.36(2H, s), 6.30(1H, d, J=15Hz), 6.36(1H, d, J=8Hz), 7.34(1H, d, J=15Hz), 7.38(1H, dd, J=2, 8Hz), 7.53(1H, s), 7.73(1H, d, J=2Hz).

 $Mass(ESI) : m/e 444(M+H)_o$

<製造例15; 5-クロロ-2-メチルイミダゾール-4-カルボキサアルデヒドの製造>

5 - ブロモー2 - メチルイミダゾールー4 - カルボキサアルデヒド(400mg)を濃塩酸(6ml)に溶解し、2 4 時間加熱還流した。氷冷下で飽和炭酸水素ナトリウム水溶液を弱アルカリ性になるまで添加し、酢酸エチルで2回抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣にヘキサンを添加し、結晶を濾取して、5 - クロロー2 - メチルイミダゾールー4 - カルボキサアルデヒド(222mg)を黄色結晶として得た。

[化合物の物性]

¹H NMR(CDCl₃): 2.45(3H, s), 9.58(1H, s)

<製造例 16; 4-クロロ-1-(2, 4-ジクロロベンジル)-2-メチルイミダゾール-5-カルボキサアルデヒドの製造>

製造例 9 と同様の操作により 5-クロロ-2-メチルイミダゾール-4-カルボキサアルデヒド(205mg)から 4-クロロ-1-(2, 4-ジクロロベンジル)-2-メチルイミダゾール-5-カルボキサアルデヒド(270mg)を淡黄色結晶として得た。

[化合物の物性]

 1 H NMR(CDCl₃): 2.32(3H, s), 5.57(2H, s), 6.43(1H, d, J=8Hz), 7.16(1H, d

d, J=2, 8Hz), 7.45(1H, s), 9.76(1H, s).

<製造例17; (E) -3-(4-2)000 (2, 4-ジクロロベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステルの製造>

製造例 10 と同様の操作により 4-クロロ-1-(2 、4-ジクロロベンジル) -2-メチルイミダゾール-5-カルボキサアルデヒド(253mg)から(E) -3-(4-クロロ-1-(2 、4-ジクロロベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル(289mg)を淡黄色結晶として得た。[化合物の物性]

¹H NMR(CDCl₃): 2.33(3H, s), 3.75(3H, s), 5.17(2H, s), 6.40(1H, d, J=8Hz), 6.48(1H, d, J=15Hz), 7.18(1H, dd, J=2, 8Hz), 7.28(1H, d, J=15Hz), 7.4 8(1H, d, J=2Hz)_o

<br

[化合物の物性]

¹H NMR(DMSO-d6): 2.32(3H, s), 5.40(2H, s), 6.25(1H, d, J=15Hz), 6.53(1H, d, J=8Hz), 7.20(1H, d, J=15Hz), 7.39(1H, dd, J=2, 8Hz), 7.75(1H, d, J=3Hz)_o

<実施例 7; (E) $-3-(4-\rho \Box \Box -1-(2,4-i) \rho \Box \Box \cap i)$ (E) $-3-(4-\rho \Box \Box -1-(2,4-i) \rho \Box \cap i)$ (N-(n-ペンタンスルホニル) $-2-\beta \Box \cap i \rangle$ (3 7) の合成 >

実施例4と同様の操作により(E) -3-(4-2)0 ロロベンジル) -2-34 ージクロロベンジル) -2-34 ージグールー5ーイル) -2-31 の (130 mg) から(E) -3-(4-2)1 ロロベンジル) -2-34 ルイミダゾールー5ーイル) -N-(n-3)2 ルオニル) -2-31 酸アミド(37)(142 mg)を白色結晶として得た。

[化合物(37)の物性]

¹H NMR(DMSO-d6): 0.92(3H, t, J=7Hz), 1.20-1.38(4H, m), 1.57-1.68(2H, m), 2.31(3H, s), 3.32-3.40(2H, m), 5.38(2H, s), 6.51(1H, d, J=8Hz), 6.67(1H, d, J=15Hz), 7.26(1H, d, J=15Hz), 7.38(1H, dd, J=2, 8Hz), 7.74(1H, d, J=2Hz),

 $Mass(ESI) : m/e 478(M-H)_o$

〈実施例8; (E) $-3-(4-\rho pp-1-(2,4-ジ \rho pp-2))$ -2-メチルイミダゾール-5-イル)-N-ベンゼンスルホニル-2-プロペン酸アミド(38)の合成>

実施例 4 と同様の操作により(E)-3-(4-クロロ-1-(2, 4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-2-プロベン酸(100ng)から(E)-3-(4-クロロ-1-(2, 4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-N-ベンゼンスルホニル-2-プロベン酸アミド(3 8)(78ng)を白色結晶として得た。

[化合物(38)の物性]

¹H NMR(DMSO-d6): 2.27(3H, s), 5.33(2H, s), 6.45(1H, d, J=8Hz), 6.60(1H, d, J=15Hz), 7.13(1H, d, J=15Hz), 7.34(1H, dd, J=2, 8Hz), 7.55-7.72(4H,m), 7.90(2H, d, J=8Hz).

Mass(ESI): m/e 484(M-H).

<製造例 19; 1-(2,4-ジクロロベンジル)-2-メチルー4-フェニルイミダゾール-5-カルボキサアルデヒドの製造>

[化合物の物性]

¹H NMR(CDCl₃): 2.42(3H, s), 5.67(2H, s), 6.49(1H, d, J=8Hz), 7.15(1H, d d, J=2, 8Hz), 7.45-7.50(4H, m), 7.67-7.70(2H, m), 9.82(1H, s)_o

<製造例 20; (E) -3-(1-(2,4-ジクロロベンジル)-2-メチル-4-フェニルイミダゾール-5-イル)-2-プロベン酸メチルエステルの製造>

製造例 10 と同様の操作により 1-(2,4-ジクロロベンジル) -2-メチル-4-フェニルイミダゾール-5-カルボキサアルデヒド(280mg)から (E) -3-(1-(2,4-ジクロロベンジル) -2-メチル-4-フェニルイミダゾール-5-イル) -2-プロベン酸メチルエステル(288mg)を淡黄色結晶として得た。

「化合物の物性】

¹H NMR(CDCl₃): 2.40(3H, s), 3.69(3H, s), 5.25(2H, s), 5.77(1H, d, J=15H z), 6.53(1H, d, J=8Hz), 7.21(1H, dd, J=2, 8Hz), 7.33-7.47(3H, m), 7.50(1 H, d, J=3Hz), 7.60-7.66(3H, m)_o

<製造例21; (E) -3-(1-(2,4-ジクロロベンジル)-2-メ

チルー4-フェニルイミダゾール-5-イル)-2-プロペン酸の製造>

製造例11と同様の操作により(E)-3-(1-(2,4-ジクロロベンジル)-2-メチル-4-フェニルイミダゾール-5-イル)-2-プロベン酸メチルエステル(263ng)から(E)-3-(1-(2,4-ジクロロベンジル)-2-メチル-4-フェニルイミダゾール-5-イル)-2-プロベン酸(228ng)を白色結晶として得た。

[化合物の物性]

¹H NMR(DMSO-d6): 2.40(3H, s), 5.38(2H, s), 5.66(1H, d, J=15Hz), 6.57(1H, d, J=8Hz), 7.34-7.48(5H, m), 7.55-7.58(2H, m), 7.78(1H, s)_e

<実施例9; (E) -3-(1-(2,4-ジクロロベンジル)-2-メチル-4-フェニルイミダゾール-5-イル)-N-(n-ペンタンスルホニル)-2-プロペン酸アミド(39)の合成>

実施例4と同様の操作により(E) -3-(1-(2,4-i)) ロロベンジル) -2-i チルー4-フェニルイミダゾールー5-イル) -2-i ロペン酸(110 mg)から(E) -3-(1-(2,4-i)) ロロベンジル) -2-i チルー4-フェニルイミダゾールー5-イル) -N-(n-i) フェニルイミダゾールー5ーイル) -N-(n-i) スン酸アミド(39)(105mg)を白色結晶として得た。

[化合物(39)の物性]

¹H NMR(DMSO-d6): 0.80(3H, t, J=7Hz), 1.18-1.37(4H, m), 1.55-1.64(2H, m), 2.32(3H, s), 3.33-3.38(2H, m), 5.35(2H, s), 6.02(1H, d, J=15Hz), 6.56(1H, d, J=8Hz), 7.37-7.57(7H, m), 7.77(1H, d, J=2Hz).

 $Mass(ESI) : m/e 518(M-H)_{o}$

実施例4と同様の操作により(E)-3-(1-(2,4-ジクロロベンジル

) -2 ーメチル -4 ーフェニルイミダゾール -5 ーイル) -2 ープロペン酸(108 mg)から (E) -3 ー (1 ー (2, 4 ージクロロベンジル) -2 ーメチル -4 ーフェニルイミダゾール -5 ーイル) -N ーベンゼンスルホニル -2 ープロベン酸アミド (40)(111mg)を白色結晶として得た。

[化合物(40)の物性]

¹H NMR(DMSO-d6): 2.30(3H, s), 5.32(2H, s), 5.97(1H, d, J=15Hz), 6.54(1H, d, J=8Hz), 7.35-7.70(10H, m), 7.78(1H, d, J=2Hz), 7.87(2H, d, J=7Hz)

Mass(ESI): m/e 524(M-H)_o

<製造例22; 2-メチル-1-(2-(トリメチルシリル)エトキシメチル)イミダゾールの製造>

製造例 6 と同様の操作により 2 - メチルイミダゾール(5.00g)から 2 - メチルー 1 - (2 - (トリメチルシリル) エトキシメチル) イミダゾール(13.2g)を褐色油状物として得た。

[化合物の物性]

¹H NMR(CDCl₃): 0.00(9H, s), 0.91(2H, t, J=8Hz), 2.45(9H, s), 3.50(2H, t), J=8Hz, 5.20(2H, s), 6.92(2H, s).

<製造例23; 2-メチル-1-(2-(トリメチルシリル)エトキシメチル)イミダゾール-5-カルボキサアルデヒドの製造>

製造例 7 と同様の操作により 2-メチルー 1- (2- (トリメチルシリル) エトキシメチル) イミダゾール(7.00g)から 2-メチルー 1- (2- (トリメチルシリル) エトキシメチル) イミダゾールー 5-カルボキサアルデヒド(650mg)を淡黄色油状物として得た。

[化合物の物性]

¹H NMR(CDCl₃): 0.00(9H, s), 0.92(2H, t, J=8Hz), 2.57(3H, s), 3.61(2H, s), J=8Hz), 5.77(2H, s), 9.70(1H, s).

<製造例 24; (E) -3-(2-メチル-1-(2-(トリメチルシリル))

) エトキシメチル) イミダゾールー5ーイル) -2-プロペン酸メチルエステルの製造>

製造例10と同様の操作により2-メチル-1-(2-(トリメチルシリル) エトキシメチル) イミダゾール-5-カルボキサアルデヒド(634mg) から(E) -3-(2-メチル-1-(2-(トリメチルシリル) エトキシメチル) イミダゾール-5-イル) -2-プロペン酸メチルエステル(656mg) を褐色粉末として得た。

[化合物の物性]

¹H-NMR (CDCl₃): -0.01(9H, s), 0.92(2H, t, J=8Hz), 2.50(3H, s), 3.51(2H, d, J=8Hz), 3.80(3H, s), 5.28(2H, s), 6.30(1H, d, J=15Hz), 7.38(1H, s), 7.58(1H, d, J=15Hz)°

 $Mass(ESI) : m/e 297(M+1)_{o}$

<製造例 25; (E) -3-(2-メチルイミダゾール-4-イル)-2-プロペン酸メチルエステルの製造>

[化合物の物性]

¹H-NMR (DMSO-d6): 2.42(3H, s), 3.70(3H, s), 6.43(1H, d, J=15Hz), 7.50(1 H, d, J=15Hz), 7.60(1H, s)_o

Mass(ESI): m/e $167(M+1)_{\circ}$

mp: 200-203°C.

<製造例 26; (E) -3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-4-イル)-2-プロベン酸メチルエステルの製造>

製造例9と同様の操作により(E)-3-(2-メチルイミダゾール-4-イ

ル) -2-プロペン酸メチルエステル (190mg) から (E) -3- (1- (2, 4 -ジクロロベンジル) -2-メチルイミダゾール-4-イル) -2-プロペン酸メチルエステル (254mg) を無色結晶として得た。

[化合物の物性]

¹H-NMR (CDCl₃): 2.46(3H, s), 3.77(3H, s), 5.10(2H, s), 6.55(1H, d, J=15 Hz), 6.68(1H, d, J=8Hz), 7.00(1H, s), 7.22(1H, dd, J=8, 2Hz), 7.47(1H, b rs), 7.50(1H, d, J=15Hz)₀

Mass(ESI): m/e 325(M+1).

mp: 135-137°C.

<製造例 27; (E) -3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-4-イル)-2-プロベン酸の製造>

[化合物の物性]

¹H-NMR (DMSO-d6): 2.27(3H, s), 5.22(2H, s), 6.21(1H, d, J=15Hz), 6.90(1 H, d, J=8Hz), 7.37(1H, d, J=15Hz), 7.42-7.49(2H, m), 7.71(1H, d, J=2Hz)

Mass(ESI) : $m/e 309(M-1)_{o}$

mp : 134-135°C₀

実施例4と同様の操作により(E)-3-(1-(2,4-i)) つロロベンジル -2-i チルイミダゾール-4-i ルークローベン酸(210mg)から(E)-

3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾールー4-イル)) -N-(n-ペンタンスルホニル)-2-プロペン酸アミド(41)(220mg)を淡黄色結晶として得た。

[化合物(41)の物性]

¹H-NMR (CDCl₃): 0.89(3H, br t, J=7Hz), 1.25-1.45(4H, m), 1.71-1.86(2H, m), 2.39(3H, s), 3.46(3H, br t, J=7Hz), 5.10(2H, s), 6.61(1H, d, J=15Hz), 6.75(1H, d, J=8Hz), 7.05(1H, s), 7.23(1H, overlapped with CDCl₃), <math>7.47(1H, d, J=2Hz), 7.60(1H, d, J=15Hz).

Mass(ESI): m/e 442(M-1).

mp 170-172°C.

[化合物(42)の物性]

¹H-NMR (CDCl₃): 0.89(3H, br t, J=7Hz), 1.26-1.49(4H, m), 1.78-1.90(2H, m), 2.39(3H, s), 2.68-2.75(2H, m), 2.80-2.89(2H, m), 3.41(3H, br t, J=7Hz), 5.05(2H, s), 6.56(1H, s), 6.71(1H, d, J=8Hz), 7.24(1H, d, J=8Hz), 7.45(1H, d, J=2Hz).

Mass(ESI): m/e $446(M+1)_{o}$

mp: 120-122°C.

<製造例28; (E) -4-メチル-2-(4-フェニルフェニル) エテニ

ルピリジンの製造>

4-フェニルベンズアルデヒド (6.45g)、2,4-ルチジン (7.59g)及び無水酢酸 (10ml) の混合物を浴温 150 $^{\circ}$ で 12 時間加熱後さらに 12 時間加熱還流した。反応混合物を減圧下に濃縮乾固し、残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒 ヘキサン/酢酸エチル= $9/1\sim5/1$) で精製して (E) -4-メチル-2- (4-フェニルフェニル) エテニルビリジン (4.35g) を黄色固体として得た。

「化合物の物性】

¹H-NMR(CDCl₃): 2.38(3H, s), 6.98(1H, d, J=5Hz), 7.12-7.28(2H), 7.34(1H, t, J=8Hz), 7.44(2H, t, J=8Hz), 7.56-7.71(7H), 8.47(1H, d, J=5Hz),

<製造例 29; (E) -2-(4-フェニルフェニル) エテニルピリジンー 4-カルボン酸の製造>

(E) -4-メチル-2-(4-フェニルフェニル) エテニルピリジン (4.24 g)、二酸化ゼレン (2.08g) 及びピリジン (43n1) の混合物を 2.4 時間加熱還流した。反応混合物を減圧下に濃縮乾固し、残渣をクロロホルム/メタノール/アンモニア水 (65:25:4) で抽出した。抽出液を減圧下に濃縮乾固し、残渣を酢酸エチル中で粉砕して (E) -2-(4-フェニルフェニル) エテニルピリジン-4-カルボン酸 (3.81g) を褐色粉末として得た。

「化合物の物性〕

¹H-NMR(DMSO-d6): 7.32-7.53(4H), 7.63(1H, d, J=5Hz), 7.70-7.84(8H), 7.96(1H, s), 8.66(1H, d, J=5Hz)_o

(E) -2-(4-7) エテニルフェニル) エテニルピリジン-4-カルボン酸 (277mg) を乾燥ジメチルホルムアミド (2.8ml) に溶解し、N,N'-カルボニルジイミダゾール (194mg) を加えて室温で1.5時間、100 で30分間攪拌した

。室温まで放冷し、反応液にペンタンスルホンアミド (209ng) と 1, 8 -ジアザビシクロ [5.4.0] ウンデックー7-エン (210ng) を加え、100 $^{\circ}$ で 4 8時間攪拌した。反応混合物を氷冷後、液性を 1 N塩酸で p H 5 に調整し、生じた沈殿を濾取し水洗した。得られた粗精製物をシリカゲル薄層クロマトグラフィー(クロロホルム:メタノール: 水=65:25:4)で精製し (E) -Nー (n-ペンタンスルホニル)-2-(4-7x-2x-2x-2x-2x-2x-2x-2x-3x-4x-3x-4x-4x-5x-6x-6x-6x-6x-7x-8x->6<math>x-9x->6<math>x-9x->6<math>x->6<math>x-9x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x->7<math>x

[化合物(43)の物性]

¹H-NMR(DMSO-d6): 0.85(3H, t, J=6Hz), 1.30(4H, m), 1.64(2H, m), 3.22(2H, t, J=6Hz), 7.32-7.53(4H), 7.62-7.86(8H), 7.98(1H, s), 8.63(1H, d, J=5Hz),

<製造例30; (E) -4-メチル-2-(4-フェニルフェニル) エテニルビリジンの製造>

4-フェニルベンズアルデヒド (6.45g)、2,4-ルチジン (7.59g)及び無水酢酸 (10ml) の混合物を浴温 150 °C σ 12 時間加熱後さらに 12 時間加熱還流した。反応混合物を減圧下に濃縮乾固し、残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒 ヘキサン/酢酸エチル= $9/1\sim5/1$) で精製して (E) -4-メチル-2- (4-フェニルフェニル) エテニルピリジン (4.35g) を黄色固体として得た。

[化合物の物性]

 1 H-NMR(CDCl₃): 2.38(3H, s), 6.98(1H, d, J=5Hz), 7.12-7.28(2H), 7.34(1H, t, J=8Hz), 7.44(2H, t, J=8Hz), 7.56-7.71(7H), 8.47(1H, d, J=5Hz).

<製造例31; (E) -2-(4-フェニルフェニル) エテニルピリジン-4-カルボン酸の製造>

(E) -4-メチル-2-(4-フェニルフェニル) エテニルピリジン (4.24 g)、二酸化ゼレン (2.08g) 及びピリジン (43ml) の混合物を 2 4時間加熱還流し

た。反応混合物を減圧下に濃縮乾固し、残渣をクロロホルム/メタノール/アンモニア水(65:25:4)で抽出した。抽出液を減圧下に濃縮乾固し、残渣を酢酸エチル中で粉砕して (E)-2-(4-フェニルフェニル) エテニルビリジンー4-カルボン酸 (3.81g) を褐色粉末として得た。

「化合物の物性】

¹H-NMR(DMSO-d6): 7.32-7.53(4H), 7.63(1H, d, J=5Hz), 7.70-7.84(8H), 7.96(1H, s), 8.66(1H, d, J=5Hz)_o

<製造例32; (E) -N-(n-ペンタンスルホニル)-2-(2-(4-7)) (E) -7 (E

[化合物の物性]

¹H-NMR(DMSO-d6): 0.85(3H, t, J=6Hz), 1.30(4H, m), 1.64(2H, m), 3.22(2H, t, J=6Hz), 7.32-7.53(4H), 7.62-7.86(8H), 7.98(1H, s), 8.63(1H, d, J=5Hz),

<製造例33; 3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-3-ヒドロキシ-2-(チオフェン-2-イルメチル)プロピオン酸メチルエステルの製造>

ジイソプロピイルアミン (338mg) をテトラヒドロフラン (2ml) に溶解し、窒素雰囲気下でドライアイス-アセトン浴上で冷却しながら1.6M n-ブチルリチウム (ヘキサン溶液) (2.10ml) をシリンジで添加した。氷水浴上で30分間撹拌した後、再びドライアイス-アセトン浴上で冷却しながら3-(2-チェニル)プロピオン酸メチルエステル (285mg) のテトラヒドロフラン (1ml) 溶液をシリンジで添加した。1時間撹拌した後、1-(2,4ージクロロベンジル)-2-メチルイミダゾール-5-カルボキシアルデヒド (300mg) のテトラヒドロフラン (2ml) 溶液をシリンジで添加した。1時間撹拌した後、飽和塩化アンモニウム水溶液と酢酸エチルを添加し、ドライアイス-アセトン浴をはずした。水を添加し、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムを添加して乾燥し、濾過した。濾液を減圧濃縮し、3-(1-(2,4ージクロロベンジル)-2-メチルイミダゾール-5-イル)-3-ヒドロキシ-2-(チオフェン-2-イルメチル)プロピオン酸メチルエステル (490mg) の粗精製物を褐色油状物として得た。

く製造例34; (E) -3-(1-(2,4-ジクロロベンジル)-2-メ

チルイミダゾールー5ーイル) -2-(チオフェン-2-イルメチル)-2-プロベン酸メチルエステルの製造>

製造例 3 3 で得られた 3-(1-(2,4-ジクロロベンジル)-2-メチル イミダゾール-5-イル)-3-ヒドロキシ-2-(チオフェン-2-イルメチル)プロピオン酸メチルエステル (490mg)をジクロロメタン (5ml)に溶解し、無水酢酸 (683mg)と <math>4-(ジメチルアミノ)ビリジン (55mg)を添加した。室温で終夜撹拌した後、飽和炭酸水素ナトリウム水溶液を添加して 3 0 分間撹拌した。ジクロロメタンで 2 回抽出した後、無水硫酸ナトリウムを添加して乾燥し、濾過した。濾液を減圧濃縮して得た残査をトルエン (5ml)に溶解し、1,8-ジアザビシクロ [5.4.0]ウンデック-7-エン (424mg)を添加した。 1 0 0 $^{\circ}$ 0 の油浴上で 1 時間加熱した。減圧濃縮した後、飽和塩化アンモニウム水溶液と酢

酸エチルを添加した。分取した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムを添加して乾燥し、濾過した。濾液を減圧濃縮して得た残査をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチル= 1/3 で溶出した。目的物の画分を減圧濃縮して(E) -3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-2-(チオフェン-2-イルメチル)-2-プロベン酸メチルエステル(111mg)を白色結晶として得た。

[化合物の物性]

¹H-NMR(CDCl₃): 2.34(3H, s), 3.73(3H, s), 4.12(2H, s), 5.17(2H, s), 6.30 (1H, d, J=8Hz), 6.80(1H, d, J=3Hz), 6.90(1H, t, J=6Hz), 7.35(1H, s), 7.4 (1H, s), 7.46(1H, d, J=2Hz)_o

<製造例35; (E) -3-(1-(2,4-ジクロロベンジル)-2-メ チルイミダゾール-5-イル) -2-(チオフェン-2-イルメチル) -2-プロペン酸の製造>

[化合物の物性]

¹H-NMR(DMSO-d6): 2.30(3H, s), 3.97(2H, s), 5.32(2H, s), 6.38(1H, d, J=8 Hz), 6.79(1H, d, J=2Hz), 6.93(1H, t, J=3Hz), 7.25-7.27(3H, m), 7.36(1H, d, J=8Hz), 7.72(1H, d, J=2Hz),

実施例 4 と同様の操作により、製造例 3 5 で得られた(E) -3 - (1 - (2 4 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4 - 2 - 4

[化合物の物性]

'H-NMR(DMSO-d6): 0.89(3H, t, J=7Hz), 1.12-1.30(4H, m), 1.46-1.56(2H, m), 2.23(3H, s), 3.23-3.40(2H, m), 4.03(2H, s), 5.40(2H, s), 6.33(1H, d, J=8Hz), 6.81(1H, d, J=2Hz), 6.93(1H, t, J=3Hz), 7.21(1H, s), 7.26-7.37(4H, m), 7.72(1H, d, J=2Hz),

<br

製造例33と同様にして、1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-カルボキサアルデヒド(300mg)と3-フェニルプロピオン酸エチルエステル(298mg)から<math>2-ベンジル-3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-3-ヒドロキシプロピオン酸エチルエステル(499mg)の粗精製物を褐色油状物として得た。

<製造例 37; (E) -2-ベンジル-3-(1-(2, 4-ジクロロベンジル) -2-メチルイミダゾール-5-イル) -2-プロベン酸エチルエステルの製造>

製造例34と同様にして、製造例36で得られた2-ベンジル-3-(1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-3-ヒドロキシプロピオン酸エチルエステル(499mg)から(E)-2-ベンジル-3-(

1-(2,4-ジクロロベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸エチルエステル (70mg) を白色結晶として得た。

[化合物の物性]

 1 H-NMR(CDCl₃): 1.18(3H, t, J=7Hz), 2.34(3H, s), 3.97(2H, s), 4.13(2H, q), J=8Hz), 5.18(2H, s), 6.32(1H, d, J=8Hz), 7.11-7.27(7H, m), 7.40(1H, s), 7.47 (1H, s).

製造例 1 1 と同様の操作により、製造例 3 7 で得られた(E) -2 - ベンジル -3 - (1 - (2 , 4 - ジクロロベンジル) -2 - メチルイミダゾール-5 - イル) -2 - プロペン酸エチルエステル(57mg)から(E) -2 - ベンジル-3 - (1 - (2 , 4 - ジクロロベンジル) -2 - メチルイミダゾール-5 - イル) -2 - プロペン酸(50mg)を白色結晶として得た。

[化合物の物性]

¹H-NMR(DMSO-d6): 2.29(3H, s), 3.83(2H, s), 5.33(2H, s), 6.40(1H, d, J=8 Hz), 7.05-7.08(3H, m), 7.15(1H, t, J=7Hz), 7.26(1H, t, J=7Hz), 7.36-7.40 (2H, m), 7.72(1H, d, J=2Hz).

[化合物の物性]

¹H-NMR(DMS0-d6): 0.78(3H, t, J=7Hz), 1.07-1.27(4H, m), 1.40-1.50(2H, m), 2.22(3H, s), 3.21-3.40(2H, m), 3.90(2H, s), 5.40(2H, s), 6.32(1H, d, J=8Hz), 7.08-7.10(3H, m), 7.17(1H, t, J=7Hz), 7.25-7.30(3H, m), 7.38(1H, d, J=8Hz), 7.72(1H, d, J=2Hz),

<試験例;db/dbマウスを用いた血糖降下作用>

試験化合物

(E) -3-(4-7)ロモー1-(2,4-9)ロロベンジル) -2-3 チルイミダゾール-5-4ル) -N-(n-4) シスルホニル) -2-7ロペン酸アミド(33)

使用動物

C57BL/KsJ-dbm db+/db+, C57BL/KsJ-dbm +m/+m (Jackson Laboratory) の 5 週齢の雌性マウスを購入し、2~3週間の馴化期間の後実験に用いた。

薬物調製

乳鉢を用いて検体を粉末餌 (CE-2、日本クレア) に混合した。混合比は 0.0 1%の割合とした。群毎に 2回/週給餌し、給餌量と残餌量を記録してその差から摂餌量を算出した。

試験スケジュール

雌性db/dbマウスを体重、血糖値、血漿中トリグリセライド濃度に基づいて群分けした後、14日間薬物の混餌投与を行なった(実験期間は8週齢~10週齢)。7日目と14日目の午前中に、ヘパリン処理を施したガラスキャピラリーチューブ(Chase Heparinized Capillary Tubes)を用いて眼窩静脈叢より採血し、遠心分離により血漿画分を得た。測定項目は0日目と14日目に血糖値、血漿中トリグリセライド濃度、血漿インスリン濃度、7日目に血糖値、血漿中トリグリセライド濃度とした。又、0、7、14日目に体重を測定した。最終採血後、CO2ガスにより屠殺した。

測定法

血糖値の測定には $10\sim15\mu1$ の血漿を用い、グルコース酸化酵素法(グルコースCIIーテストワコー、和光純薬)により測定した。血漿中トリグリセライド濃度の測定には $10\sim15\mu1$ の血漿を用い、GPOーpークロロフェノール法(トリグリセライドGーテストワコー)又はGPOーDAOS法(トリグリセライドEーテストワコー)により測定した。上記の測定は採血後速やかに行なった。血漿インスリン濃度の測定には $20\mu1$ の血漿(-20°Cで保存可能)を用い、抗体法(ファデセフインスリンRIAキット、カビファルマシア)により測定した。

結果

db/dbマウスの対照群と、+/+マウスの血糖値、血漿中トリグリセライド濃度の差を100%として、被験薬剤投与群の血糖値、血漿中トリグリセライド濃度の降下率(%)を求めた。結果は、10mg/kgを投与した場合、血糖降下作用が60%、TG濃度降下作用が104%であった。

産業上の利用分野

新規な芳香環誘導体又は医薬として許容されるそれらの塩を提供した。これらの化合物又はその塩は、血糖降下活性又はPDE5阻害作用を有し、耐糖能障害、糖尿病(II型糖尿病)、糖尿病合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減少症、糖尿病性糸球体硬化症、糖尿病性腎症、糖尿病性皮膚障害、糖尿病性神経障害、糖尿病性白内障、糖尿病性網膜症等)、インスリン抵抗性症候群(インスリン受容体異常症、Rabson-Mendenhall症候群、レブリコニズム、Kobberling-Dunnigan症候群、Seip症候群、Lawrence症候群、Cushing症候群、先端巨大症等)、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患(狭心症、心不全等)、高血糖症(例えば摂食障害等の異常糖代謝で特徴づけられるもの)、高血圧症、狭心症、肺高血圧、うっ血性心不全、糸球体疾患(例えば糖尿病性糸球体硬化症等)、尿細管間質性疾患(例えばFK506、シク

ロスポリン等により誘発された腎臓病)、腎不全、アテローム性動脈硬化、血管 狭窄 (例えば経皮性動脈形成術後のもの)、末梢血管疾患、脳卒中、慢性可逆性 閉塞性疾患 (例えば気管支炎、喘息 (慢性喘息、アレルギー性喘息))、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患 (例えば過敏症腸症候群)、インポテンス (例えば器質的インポテンス、精神的インポテンス等)、腎炎、悪液質 (例えば、癌・結核・内分泌性疾患及びエイズ等の慢性疾患における、脂肪分解・筋変性・貧血・浮腫・食欲不振等による進行性の体重減少)、膵炎、又はPTCA後の再狭窄等の治療剤として有用である。

請求の範囲

1. 下記一般式(I)で表される芳香環誘導体又は医薬として許容されるその塩を有効成分として含有し、耐糖能障害、糖尿病、糖尿病性合併症、インスリン抵抗性症候群、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患、高血糖症、高血圧症、狭心症、肺高血圧、うっ血性心不全、糸球体疾患、尿細管間質性疾患、腎不全、アテローム性動脈硬化、血管狭窄、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患、インポテンス、腎炎、悪液質、膵炎、又はPTCA後の再狭窄の予防・治療剤として用いられる医薬製剤。

$$X-ch_1-N_0-ch_2-A$$
 (I)
 $(R_1)_n$

「式中Xは次式(II)

$$\begin{array}{c}
H \\
R_2 \\
O \\
O
\end{array}$$
(II)

(式中 R_2 は置換基を有していてもよい、低級アルキル基、低級アルケニル基、低級アルキニル基、シクロ低級アルキル基、芳香環又は複素環を意味する。)で表される置換基であり、 ch_1 及び ch_2 は分岐していてもよい飽和又は不飽和架橋基を意味し、 ch_1 は低級アルキル基、低級シクロアルキル基、芳香環、複素環、低級アルキル低級シクロアルキル、芳香環低級アルキル基又は複素環低級アルキル基で置換されていてもよく、 R_1 は水素原子、ハロゲン原子、低級アルキル 基、アミノ基、アシルアミノ基、低級アルケニル基、低級アルキニル基、ハロ低級アルキル基、低級シクロアルキル基、二トロ基、低級アルキルアミノ基、カルボキシ

ル基、エステル化されたカルボキシ基、アミド化されたカルボキシ基、低級アルカンスルホニル基、芳香環スルホニル基、水酸基又は低級アルコキシ基であり、 nは2以下の自然数であり、Aは置換されていてもよい芳香環を表す。]

- 2. 一般式(I)において、Nuがベンゼン環又はピリジン環であり、XはNuに直接結合し、 ch_2 がエテニレン又はアザエチレン鎖であり、 該アザエチレン鎖の窒素原子は低級アルキル基で置換されていてもよく、 R_1 が水素原子、アミノ基又はアシルアミノ基である芳香環誘導体又は医薬として許容されるその塩を有効成分として含有する、請求項 1 に記載の医薬製剤。
- 3. 一般式(I)において、 $Nuがイミダゾール環であり、<math>ch_1$ がエチレン又はエテニレン鎖であり、 ch_2 がメチレン鎖であり、 R_1 が水素原子、低級アルキル基、ハロゲン原子又はフェニル基である芳香環誘導体又は医薬として許容されるその塩を有効成分として含有する、請求項1に記載の医薬製剤。
- 4. 以下の式(III)又は(IV)で表される化合物から選ばれる芳香環誘導体又は医薬として許容されるその塩を有効成分として含有する、請求項2に記載の医薬製剤。

$$X = \begin{bmatrix} H \\ N \\ R_4 \\ A \end{bmatrix}$$
 (III)

$$X - \bigvee_{N} A$$
 (IV)

(式中 R_3 は水素原子又は低級アルキル基であり、 R_4 は水素原子又はアシル基であり、X及びAは前記と同様の意味を表す。)

5. 以下の式(V)又は(VI)で表される化合物より選ばれる芳香環誘導体 又は医薬として許容されるその塩を有効成分として含有する、請求項3に記載の 医薬製剤。

$$X \stackrel{\mathsf{R}_6}{\longrightarrow} \mathsf{N}$$
 $\mathsf{R}_5 \qquad (V)$

$$X \longrightarrow N \longrightarrow R_5$$
 (VI)

(式中 R_6 は水素原子又は低級アルキル基であり、 R_6 は水素原子、ハロゲン原子 又はフェニル基であり、X及びAは前記と同様な意味を表す。)

- 6. 一般式(I)において、Xが置換基を有していてもよい、低級アルキルスルホニルカルバモイル基、低級アルケニルスルホニルカルバモイル基、低級アルケニルスルホニルカルバモイル基、低級アルキニルスルホニルカルバモイル基、芳香環スルホニルカルバモイル基又は複素環スルホニルカルバモイル基である芳香環誘導体又は医薬として許容されるその塩を有効成分として含有する、請求項1~5のいずれかに記載の医薬製剤。
- 7. 下記一般式(I)で表される芳香環誘導体又は医薬として許容されるその 塩。

$$X-ch_1-Nu-ch_2-A \qquad (I)$$

$$(R_1)_n$$

[式中Xは次式(II)

$$R_2 N$$
 (II)

(式中R₂は置換基を有していてもよい、低級アルキル基、低級アルケニル基、低級アルキニル基、シクロ低級アルキル基、芳香環又は複素環を意味する。)で表される置換基であり、ch₁及びch₂は分岐していてもよい飽和又は不飽和架橋基を意味し、ch₁は低級アルキル基、低級シクロアルキル基、芳香環、複素環、低級アルキル低級シクロアルキル、芳香環低級アルキル基又は複素環低級アルキル基で置換されていてもよく、Nuは五乃至六員環の芳香環であり、XとNuは直接結合していてもよく、R₁は水素原子、ハロゲン原子、低級アルキル基、アミノ基、アシルアミノ基、低級アルケニル基、低級アルキニル基、ハロ低級アルキル基、低級シクロアルキル基、ニトロ基、低級アルキルアミノ基、カルボキシル基、エステル化されたカルボキシ基、アミド化されたカルボキシ基、低級アルカンスルホニル基、芳香環スルホニル基、水酸基又は低級アルコキシ基であり、nは2以下の自然数であり、Aは置換されていてもよい芳香環を表す。↑

- 8. 一般式(I)において、Nuがベンゼン環である、請求項7に記載の芳香 環誘導体又は医薬として許容されるその塩。
- 9. 一般式(I)において、Nuがピリジン環であり、ch₂が飽和又は不飽和 炭化水素架橋基である、請求項7に記載の芳香環誘導体又は医薬として許容され るその塩。
- 10. 一般式(I)において、Nuがベンゼン環であり、<math>XはNuに直接結合し、 ch_2 がアザエチレン鎖であり、該アザエチレン鎖の窒素原子は低級アルキル基で置換されていてもよく、 R_1 が水素原子、アミノ基又はアシルアミノ基である、請求項7又は8に記載の芳香環誘導体又は医薬として許容されるその塩。
- 11. 一般式(I)において、Nuがピリジン環であり、XはNuに直接結合し、 ch_2 がエテニレン鎖であり、 R_1 が水素原子又はアシルアミノ基である、請

求項7又は9に記載の芳香環誘導体又は医薬として許容されるその塩。

- 12. 一般式(I)において、Nuがイミダゾール環である、請求項7に記載の芳香環誘導体又は医薬として許容されるその塩。
- 13. 一般式(I)において、 $Nuがイミダゾール環であり、<math>ch_1$ がエチレン 又はエテニレン鎖であり、 ch_2 がメチレン鎖であり、 R_1 が水素原子、低級アル キル基、ハロゲン原子又はフェニル基である、請求項7又は12に記載の芳香環 誘導体又は医薬として許容されるその塩。
- 14. 以下の式(III)で表される芳香環誘導体又は医薬として許容される その塩。

$$X = \begin{bmatrix} H \\ N \\ R_4 \\ A \end{bmatrix}$$
 (III)

(式中R₃、R₄、X及びAは前記と同様の意味を表す。)

15. 以下の式 (IV) で表される芳香環誘導体又は医薬として許容されるその塩。

$$X - \begin{bmatrix} N \\ I \end{bmatrix}$$
 (IV)

(式中X及びAは前記と同様の意味を表す。)

16. 以下の式(V)又は(VI)で表される化合物より選ばれる芳香環誘導体 又は医薬として許容されるその塩。

$$X \stackrel{\mathsf{R}_6}{\longrightarrow} \mathsf{N}$$
 R_5
 N
 R_5
 N
 N
 R_5

$$X \xrightarrow{R_6} N \xrightarrow{N} R_5$$
 (VI)

(式中R₅、R₆、X及びAは前記と同様な意味を表す。)

17. Xが置換基を有していてもよい、低級アルキルスルホニルカルバモイル基、低級アルケニルスルホニルカルバモイル基、低級アルキニルスルホニルカルバモイル基、芳香環スルホニルカルバモイル基又は複素環スルホニルカルバモイル基である、請求項7~16のいずれかに記載の芳香環誘導体又は医薬として許容されるその塩。

1/3

図 1

2/3

図2

WO 99/00359 PCT/JP98/02886

3/3

図3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/02886

	SIFICATION OF SUBJECT MATTER .Cl ⁶ C07C311/51, C07D233/64, 23 31/415, 31/44	33/68, 213/56, 409/12,	A61K31/18,	
According t	to International Patent Classification (IPC) or to both na	ational classification and IPC		
B. FIELD	S SEARCHED			
Minimum c	locumentation searched (classification system followed			
	.Cl ⁶ C07C311/51, C07D233/64, 23 31/415, 31/44			
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Х	JP, 5-97811, A (Merck & Co.,	, Inc.),	7	
A	20 April, 1993 (20. 04. 93), Particularly refer to claim 3 & EP, 507594, A1 & US, 515		1-6, 8-17	
P, X	WO, 97/24334, A1 (Fujisawa F Co., Ltd.),	Pharmaceutical	7, 14	
P, A	10 July, 1997 (10. 07. 97), Refer to page 14, compound (12) & AU, 9712095, A	1-6, 8-13, 15-17	
A	JP, 8-510236, A (Warnar-Lamk 29 October, 1996 (29. 10. 96 & WO, 94/26702, A1 & US, 5 & EP, 698010, A1)	1-17	
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed ""."		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family Date of mailing of the international search report		
8 September, 1998 (08. 09. 98)		16 September, 1998		
Name and mailing address of the ISA/ Japanese Patent Office				
		Authorized officer		

発明の属する分野の分類(国際特許分類(IPC)) C07C311/51, C07D233/64, 233/68, 213/56, 409/12, Int. Cl 6 A61K31/18. 31/415. 31/44 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) C07C311/51, C07D233/64, 233/68, 213/56, 409/12, Int. C16 A61K31/18, 31/415, 31/44 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAS ONLINE 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP, 5-97811, A (メルク エンド カムパニー インコ \mathbf{X} ーポレーテッド), 20.4月.1993(20.04.93), 特に請求項3の化合物(51),化合物(24)参照 1-6, 8-17Α &EP, 507594, A1&US, 5157040, A WO, 97/24334, A1 (藤沢薬品工業株式会社), 10. 7, 14 P, X 7月、1997 (10.07.97), 第14頁の化合物 (12) 参照&AU, 9712095, A 1-6, 8-13,P, A 15-17パテントファミリーに関する別紙を参照。 X C欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「E」先行文献ではあるが、国際出願日以後に公表されたも 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「O」口頭による開示、使用、展示等に言及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 16.09.98 国際調査報告の発送日 国際調査を完了した日 08.09.98 特許庁審査官(権限のある職員) 7419 4 H 国際調査機関の名称及びあて先 印 西川 和子 日本国特許庁(ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3444 東京都千代田区霞が関三丁目4番3号

C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
A	JP, 8-510236, A (ワーナー-ランバート・コンパニー), 29. 10月. 1996 (29. 10. 96) &WO, 94/26702, A1&US, 5491172, A&EP, 698010, A1	1-17	
	*		