ДИСЦИПЛИНА	Операционные системы		
	(полное наименование дисциплины без сокращений)		
ИНСТИТУТ	Институт информационных технологий		
КАФЕДРА	информационных технологий в атомной энергетике		
	(полное наименование кафедры)		
ВИД УЧЕБНОГО	Лекция		
МАТЕРИАЛА	(в соответствии с пп 1-11)		
ПРЕПОДАВАТЕЛЬ	Пугачев Андрей Васильевич		
	(фамилия, имя, отчество)		
CEMECTP	IV семестр 2024 – 2025 учебный год		
	(указать семестр обучения, учебный год)		

Тема № 5: "Оперативная память"

«Операционные системы»

МИРЭА – Российский технологический университет

Москва. 2024-2025 у.г.

Иерархия памяти

Организация памяти определяет

- способ разделения на области (разделы);
- ▶ возможность динамического изменения раздела;
- привязка процесса к области памяти;
- количество процессов, находящихся в памяти;
- ▶ т.д.

Определение

Стратегия управления памятью — модель поведения выбранной организации памяти при различных уровнях нагрузки вычислительной системы.

Определение

Диспетчер памяти — компонент операционной системы, реализующий выбранную модель организации памяти и стратегию управления этой памятью.

Иерархическая организация памяти

Стратегии управления памятью

- стратегия загрузки;
- стратегия размещения;
- стратегия замены.

Стратегии загрузки

- 1. Предварительная загрузка.
 - + Уменьшение накладных расходов на управление памятью.
 - Увеличение объема используемой памяти верхнего уровня.
- 2. Загрузка по требованию.
 - + Уменьшение объема используемой памяти верхнего уровня.
 - Увеличение накладных расходов на управление памятью.

Однозадачные системы

Многозадачные системы

- ▶ Статическое разделение на блоки.
- ▶ Динамическое разделение на блоки.

Внутренняя фрагментация - недостаток статического разбиения

Снижение внутренней фрагментации

- 1. Уменьшение размера блока.
- 2. Использование блоков разного размера.

Модели загрузчики (трансляции)

- Абсолютная
- Перемещаемая

Модель с абсолютной загрузкой

Недостаток модель с абсолютной загрузкой

Модель с перемещаемой загрузкой

Динамический размер блока

Внешняя фрагментация

Раздел № 1		Раздел № 1
Раздел № 2		Дырка
Раздел № 3	St St St	Раздел № 3
	OF OF	
Раздел № 4		Дырка
Раздел № 5		Раздел № 5

Снижение внешний фрагментации

Стратегии размещения

Стратегия размещения

- 1. Первый подходящий.
- 2. Наиболее подходящий.
- 3. Наименее подходящий.

Сравнение методов

Распределение дырок

т аспределение дырок			
Запросы	Наименее	Наиболее	
	подходящий	подходящий	
_	2000, 1500	2000, 1500	
1200	800, 1500	2000, 300	
1600	Блокировка	400, 300	
_	2000, 1500	2000, 1500	
1200	800, 1500	2000, 300	
1400	800, 100	600, 300	
700	100, 100	Блокировка	

Решение проблемы нехватки памяти

1. Увеличение объема физической памяти.

Решение проблемы нехватки памяти

- 1. Увеличение объема физической памяти.
- 2. Использование виртуальной адресации.

Классификация способов адресации

- 1. Реальная.
 - в однозадачных системах
 - в многозадачных системах
 - с фиксированным размером блоков
 - одной длины
 - различной длины
 - с динамическим размером блоков
- 2. Виртуальная.
 - ь в многозадачных системах с виртуальной памятью

Типы адресов

- физическая (реальная) адресация;
- виртуальная адресация.

Блок управления памятью (MMU)

MMU — компонент аппаратного обеспечения компьютера, отвечающий за управление доступом к памяти, запрашиваемой центральным процессором.

1. сегментная адресация:

2. страничная адресация.

- 1. сегментная адресация:
 - инамический размер блоков;
- 2. страничная адресация.

- 1. сегментная адресация:
 - динамический размер блоков;
 - ▶ блоки могут пересекаться.
- 2. страничная адресация.

- 1. сегментная адресация:
 - динамический размер блоков;
 - ▶ блоки могут пересекаться.
- 2. страничная адресация.
 - фиксированный размер блоков;

- 1. сегментная адресация:
 - динамический размер блоков;
 - блоки могут пересекаться.
- 2. страничная адресация.
 - фиксированный размер блоков;
 - все блоки одной длины;

- 1. сегментная адресация:
 - динамический размер блоков;
 - блоки могут пересекаться.
- 2. страничная адресация.
 - фиксированный размер блоков;
 - все блоки одной длины;
 - блоки не могут пересекаться.

Сегментно-страничная адресация

Подкачка

Подкачка (swap) — копирование содержимого области памяти процесса на вторичное устройство хранения, «удаление процесса» из памяти и передача освободившегося пространства другому процессу.

- ▶ Linux раздел на вторичном устройстве хранения.
- ▶ Widnow файл на вторичном устройстве хранения.

Стратегия замены страниц — стратегия, определяющая, какие страницы убирать из оперативной памяти, чтобы освободить место для требуемых в данный момент.

Стратегии замены страниц

- случайная страница
- первая загружена первая выгружена;
- дольше всего не используемая страница;
- реже всего используемая страница;
- давно не используемая страница;
- стратегия "второго шанса";
- дальняя страница;
- по частоте страничного промаха.

Промах — ситуация, при которой процесс обращается к виртуальной области адресного пространства, которая не имеет отображения на физическую область памяти.

Модель рабочих наборов

Рабочий набор - набор активно используемых процессом страниц в оперативной памяти.

Размер «окна» рабочего набора - значение, определяющее, насколько продолжительный интервал времени система должна принимать во внимание, определяя, какие страницы входят в рабочий набор процесса.

Альтернативное определение

Подкачка — механизм загрузки в память некоторого набора страниц процесса.

Какие существуют типы подкачек?

Типы подкачек

- предварительная подкачка;
- ▶ подкачка по требованию.

Предварительная подкачка

Метод, загружающий в оперативную память страницы процесса, к которым вероятно он будет в ближайшее время.

- + Уменьшение количества промахов.
- Увеличение объёма используемой памяти.

Пространственная локальность — эмпирическое свойство, которое в системах подкачки проявляется в том, что процесс, в основном, работает с некоторой частью своих страниц, размещённых поблизости друг от друга в виртуальном адресном пространстве процесса.

Предварительная подкачка

Факторы, определяющие благоприятный исход:

- объем памяти, доступный для размещения загружаемых страниц.
- количество страниц, предварительно загружаемых за один проход.
- алгоритм выбора предварительно загружаемых страниц.

Подачка по требованию

Метод, при котором страницы загружаются в оперативную память только в случае явного обращения к ним процесса.

- + Уменьшение пространственно-временного показателя.
- Увеличение количества промахов.

Пространственно-временной показатель - значение, равное произведению времени нахождения процесса в памяти на объем занимаемой им памяти.

Вопросы?