PMAP 8131 Applied Research Methods Sampling

Matteo Zullo

Georgia State University & Georgia Institute of Technology

June 27, 2022

Outline

- Hypothesis Testing
 - Central Limit Theorem
 - A/B testing
- Randomized Controlled Trials
 - Potential Outcomes
 - Confounding
- Power Analysis
 - Effect sizes
 - Clustered Randomized Trials

Table of Contents

- Hypothesis Testing
 - Central Limit Theorem
 - A/B testing
- Randomized Controlled Trials
 - Potential Outcomes
 - Confounding
- Power Analysis
 - Effect sizes
 - Clustered Randomized Trials

Central limit theorem

- Property of the **mean** of a distribution, not of distribution
- N is number of samples, not population size
- Applies to any distribution X (normal, exponential, etc.)

$$\lim_{N\to\infty} \overline{X} \sim (\mu_X, \sqrt{\frac{\sigma_X^2}{N}})$$

Central limit theorem: Simulation

- Lognormal with mode = 8 and median = 10
- One population of size 1,000

Figure: Lognormal distribution of size 1,000

Central limit theorem: Simulation

- Lognormal with mode = 8 and median = 10
- 10,000 populations of size 1,000 $(1,000 \times 10,000)$

Figure: Distribution of means of 10,000 lognormals with 95% CI

Example: Churn

- A clothing brand has revamped its fashion line in the hope to reduce consumer churn. Churn dropped down from 40% to 30% in a batch of 100 clients purchasing from the new line.
 - Is that enough observations to green light the new line?

Example: Churn

- Null Hypothesis (H_0) :
- Alternative Hypothesis (H_1) :
- Significance level (α): 5%
- Type of test:

Example: Churn

- Null Hypothesis (H_0): Callback rate 40%
- Alternative Hypothesis (H_1): Callback rate less < 40%
- Significance level (α): 5%
- Type of test: One-tailed

Example: Churn

Mean and variance of the callback distribution

$$\hat{\mu} = p = 0.3$$
 $\hat{\sigma}^2 = p(1 - p) = 0.3(0.7) = 0.21$

Confidence interval for population parameter

Example: Churn

Mean and variance of the callback distribution

$$\hat{\mu} = p = 0.3$$
 $\hat{\sigma}^2 = p(1-p) = 0.3(0.7) = 0.21$

Confidence interval for population parameter

$$CI = 0.3 \pm t_{\alpha} \sqrt{\frac{\hat{\sigma}^2}{N}}$$

= $0.3 \pm 1.645 \sqrt{\frac{0.21}{100}} = [0.22, 0.38]$

Example: Churn

Mean and variance of the callback distribution

$$\hat{\mu} = p = 0.3$$

$$\hat{\sigma}^2 = p(1 - p) = 0.3(0.7) = 0.21$$

Confidence interval for population parameter

$$CI = 0.3 \pm t_{\alpha} \sqrt{\frac{\hat{\sigma}^2}{N}}$$

= $0.3 \pm 1.645 \sqrt{\frac{0.21}{100}} = [0.22, 0.38]$

The CI does not cover 0.40, so 100 customers is enough

Table of Contents

- Hypothesis Testing
 - Central Limit Theorem
 - A/B testing
- Randomized Controlled Trials
 - Potential Outcomes
 - Confounding
- Power Analysis
 - Effect sizes
 - Clustered Randomized Trials

Randomization: The "gold standard" for evaluation

Average Treatment on the Treated (ATT)

$$ATT = \underbrace{E(Y^1|T=1,X,\lambda)}_{\text{outcomes of treated, as if treated}} - \underbrace{E(Y^0|T=1,X,\lambda)}_{\text{outcomes of treated, as if not treated}}$$

Average Treatment Effect (ATE)

$$ATE = \underbrace{E(Y^1|T=1,X,\lambda)}_{\text{outcomes of treated, as if treated}} - \underbrace{E(Y^0|T=0,X,\lambda)}_{\text{outcomes of controls, as if not treated}}$$

Randomization: The "gold standard" for evaluation

Average Treatment on the Treated (ATT)

$$ATT = \underbrace{E(Y^1|T=1,X,\lambda)}_{\text{outcomes of treated, as if treated}} - \underbrace{E(Y^0|T=1,X,\lambda)}_{\text{outcomes of treated, as if not treated}}$$

Average Treatment Effect (ATE)

$$ATE = \underbrace{E(Y^1|T=1,X,\lambda)}_{\text{outcomes of treated, as if treated}} - \underbrace{E(Y^0|T=0,X,\lambda)}_{\text{outcomes of controls, as if not treated}}$$

- Perfect randomization
 - Removes bias from observables and unobservables

Confounding: Facebook example

ID	Married	FB account
001	1	1
002	1	0
003	1	1
004	1	1
005	0	0
006	0	0
007	1	1
800	0	0

Table: Effect of Facebook usage on marriages

Confounding: Facebook example

ID	Married	FB account	Extraversion
001	1	1	High
002	1	0	Medium
003	1	1	High
004	1	1	High
005	0	0	Low
006	0	0	Low
007	1	1	Medium
800	0	0	Low

Table: Effect of Facebook usage on marriages

Confounding: Facebook example

Biased estimate

$$ATT = P(Marry|FB = 1) - P(Marry|FB = 0)$$

Unbiased estimate

$$ATT = P(Marry|FB = 1, Extra) - P(Marry|FB = 0, Extra)$$

RCT: Treated and controls the same via randomization

$$E(Y^{0}|T = 0, X, \lambda) = E(Y^{0}|T = 1, X, \lambda)$$

 $E(Y^{1}|T = 1, X, \lambda) = E(Y^{1}|T = 0, X, \lambda)$

• It follows that ATT = ATE

Confounding: Definition

A confounder affects outcome and treatment alike

$$\rho(T,X) \neq 0
\rho(Y,X) \neq 0$$

- A confounder, when omitted, biases ATT and ATE
 - If $\rho(T,X) > 0$ and $\rho(Y,X) > 0$, upward bias
 - If $\rho(T,X) > 0$ and $\rho(Y,X) < 0$, downward bias

Confounders: There's one for every season

- Observable
 - Parental income (Economics)
 - Marital status (Sociology)
- Unobservable
 - Ability (Education)
 - Ideology (Political Science)

RCT checklist

- Preparing trial
 - Debiasing ✓
 - Sampling ✓
- Conducting trial
 - Attrition
 - Interaction

Table of Contents

- Hypothesis Testing
 - Central Limit Theorem
 - A/B testing
- Randomized Controlled Trials
 - Potential Outcomes
 - Confounding
- Power Analysis
 - Effect sizes
 - Clustered Randomized Trials

Effect sizes: Definition

A standardized measure of association

Power calculations

- Bivariate associations: Closed-form solutions
- Multivariate associations: Simulation-based solutions

Cohen's d:

$$d = \frac{\mu_T - \mu_C}{\sigma}$$

- with pooled variance $\sigma = \sqrt{\frac{(n_T 1)s_T^2 + (n_C 1)s_C^2}{n_T + n_C 1}}$:
 - n_T and n_C = number of treatments and controls
 - s_T^2 and s_C^2 = variances of treatments and controls

- Effect sizes: Rule of thumb
 - < 0.2: very small</p>
 - 0.2 0.5: *small*
 - 0.5 0.8: large
 - > 0.8: very large

Bivariate associations

Minimum Detectable Effect Size (MDE)

$$MDE = (t_{\frac{\alpha}{2}} + t_{1-\beta})\sqrt{\frac{\sigma^2}{n_T n_C/N}}$$

- where:
 - $\alpha = \text{probability of type I error}$
 - $\beta = \text{probability of type II error}$
 - σ = variance of the outcome (assume $\sigma_T^2 = \sigma_C^2$)
 - $N = \text{total number of units} (N = n_T + n_C)$
- *MDE* decreases when α , β , and σ increase, and decreases when *N* increases

Bivariate associations

- **①** Choose α and β
 - Standard values: $\alpha = 0.05$, $\beta = 0.8$ (Cohen, 1988)
- ② Choose n_1 and n_2
 - Optimal treatment ratio: $\frac{n_T}{N} = \frac{1}{1 + \frac{\sigma_{control}}{\sigma_{treat}}}$
 - With budget contraint: $\frac{n_T}{n_C} = \sqrt{\frac{c_C}{c_T}}$ (Duflo, 2007)
- **3** Set σ following prior literature or similar population
- Calculate MDE or solve for N choosing a target MDE

Multivariate associations: Variance of OLS estimator

$$Var(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{S_{XX}(1 - R_j^2)}$$

- where:
 - $\hat{\sigma}^2 = \text{residual error}$
 - S_{XX} = variation in the predictor
 - $R_i^2 = R^2$ from regression of X_j on other predictors
- Multicollinearity
 - As R_i^2 increases, variance of OLS estimator increases

- Adding regressors might increase variance
 - If residual variance SSE (numerator) less than new degrees of freedom p in the model (denominator)

$$\sigma^2 = \frac{SSE}{n-p}$$

• If residual error $\hat{\sigma}^2$ (numerator) reduces less than new multicollinearity R_j^2 with other regressors (denominator)

$$Var(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1-R_i^2)}$$

Stratification

Example: Categorical regressor

ID	SAT	Treat		ID	SAT	Treat	Female
001	1300	0		001	1300	0	0
002	1550	0	\Longrightarrow	002	1550	0	1
003	1400	1		003	1400	1	0
004	1500	1		004	1500	1	1

- Adding Female increases dimensionality from 2 to 4
 - Before: treat, control
 - After: M treat, M control, F treat, F control

Stratification

- Adding regressors increases dimensionality
 - Categorical: Add $df \times k$ dimensions (k levels)
 - Continuous: Add infinite dimensions
- Idea
 - Reproduce optimal treatment ratio within each subgroup

Clustered Randomized Trials: School example

student_id	prep_class	SAT
001	0	1,300
002	1	1,500
003	0	1,200
004	1	1,400
005	0	900
006	0	1,000

Clustered Randomized Trials: School example

student_id	school_id	prep_class	SAT
001	А	0	1,300
002	Α	1	1,500
003	Α	0	1,200
004	В	1	1,400
005	В	0	900
006	В	0	1,000

Intra-class correlation coefficient (ICC)

$$ICC = \frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2}$$

- where:
 - $\sigma_{between}^2 =$ variance across clusters $\sigma_{within}^2 =$ variance within clusters

- For *K* clusters, *M* subjects in each cluster
 - Effective sample size (ESS)

$$\overline{N} = \frac{M \cdot K}{DE}$$

Design Effect (DE)

$$DE = 1 + (M-1)ICC$$

Minimum Detectable Effect Size (MDE)

$$extit{MDE} = (t_{rac{lpha}{2}} + t_{1-eta}) \sqrt{rac{\sigma^2}{n_T n_C/\overline{N}}}$$

Clustered Randomized Trials: School example

Without clustering (i.e., ICC = 0)

$$N = \frac{2 \cdot 3}{1} = 6$$

ullet With clustering and perfect correlation (i.e., ICC =1)

$$\overline{N} = \frac{2 \cdot 3}{1 + ICC(3 - 1)} = \frac{6}{1 + 2} = 2$$

Hence:

$$K \leq ESS \leq N$$

- When clusters highly correlated ($\sigma_{between}^2 >> 0$), ESS \downarrow
 - Recruit more subjects
 - Increase cluster size or number of clusters
 - Use simulation software (G*Power)
- When clusters uncorrelated ($\sigma_{between}^2 \approx 0$), $ESS \approx N$
- When clusters are unbalanced, not much of a deal