Planche nº 15. Trigonométrie hyperbolique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (*IT)

Etablir pour ch, sh et th les formules d'addition, de duplication et de linéarisation.

Exercice nº 2 (**)

Etudier $f: x \mapsto \ln(\operatorname{ch} x) - x$. Montrer en particulier que la droite \mathscr{D} d'équation $y = -2x - \ln 2$ est asymptote au graphe de f en $-\infty$ (on dit que la droite d'équation y = ax + b est asymptote au graphe de f en $-\infty$ si et seulement si $\lim_{x \to -\infty} f(x) - (ax + b) = 0$. Construire le graphe de f et la droite \mathscr{D} .

Exercice no 3 (**)

Résoudre dans \mathbb{R} l'équation $\operatorname{sh}(2+x) + \operatorname{sh}(2+2x) + ... + \operatorname{sh}(2+100x) = 0$.

Exercice nº 4 (**I)

- 1) Montrer que pour tout réel x non nul, on a : $th x = \frac{2}{th(2x)} \frac{1}{th x}$.
- 2) En déduire la valeur de $u_n = 2^0 \operatorname{th} \left(2^0 x \right) + 2^1 \operatorname{th} \left(2^1 x \right) + ... + 2^n \operatorname{th} \left(2^n x \right)$ pour n entier naturel et x réel non nul donnés puis calculer la limite de la suite (u_n) .

Exercice nº 5 (***I) (définition de argsh, argch et argth)

- 1) a) Montrer que sh est une bijection de \mathbb{R} sur \mathbb{R} . On note argsh la fonction réciproque (argument sinus hyperbolique).
 - b) Construire le graphe de argsh.
 - c) Déterminer une expression simple de l'argument sinus hyperbolique d'un nombre (ou encore résoudre l'équation $\operatorname{argsh} x = y$ d'inconnue x et de paramètre y).
 - d) Etudier la dérivabilité de argsh et déterminer sa dérivée.
- 2) a) Montrer que ch réalise une bijection de $[0, +\infty[$ sur un intervalle à préciser. On note argch la fonction réciproque (argument cosinus hyperbolique).
 - b) Construire le graphe de argch.
 - c) Déterminer une expression simple de l'argument cosinus hyperbolique d'un nombre.
 - d) Etudier la dérivabilité de argch et déterminer sa dérivée.
- 3) a) Montrer que th réalise une bijection de \mathbb{R} sur un intervalle à préciser. On note argth la fonction réciproque (argument tangente hyperbolique).
 - b) Construire le graphe de argth.
 - c) Déterminer une expression simple de l'argument tangente hyperbolique d'un nombre.
 - d) Etudier la dérivabilité de argth et déterminer sa dérivée.

Exercice nº 6 (**)

Simplifier les expressions suivantes

1)
$$\ln \left(\sqrt{x^2 + 1} + x \right) + \ln \left(\sqrt{x^2 + 1} - x \right)$$
.

2)
$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x}$$
.

3)
$$\sinh^2 x \cos^2 y + \cosh^2 x \sin^2 y$$
.

Exercice nº 7 (**T)

Résoudre dans \mathbb{R} les équations suivantes :

1)
$$ch x = 2$$

2)
$$ch x = \frac{1}{2}$$
.

Exercice nº 8 (**)

$$\mathrm{Calculer}\, \sum_{k=0}^n \mathrm{ch}(\mathfrak{a} k + b),\, ((\mathfrak{a},b) \in \mathbb{R}^2,\, \mathfrak{n} \in \mathbb{N}).$$

Exercice nº 9 (***)

Résoudre dans \mathbb{R} l'équation $a \operatorname{ch} x + b \operatorname{sh} x = c$ en discutant en fonction des paramètres réels a, b et c (pénible).