世界知的所有権機関 国際 事務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/12, C07K 14/47, 14/435, C12P 21/08, C07K 16/18, C12N 1/21, C12P 21/02, A61K 38/17, 39/395, 31/70, C12N 5/12 // (C12P 21/02, C12R 1:19) (C12N 1/21, C12R 1:19) (C12P 21/08, C12R 1:91)

(11) 国際公開番号

WO97/31109

(43) 国際公開日

1997年8月28日(28.08.97)

(21) 国際出願番号

PCT/JP96/03017

A1

(22) 国際出願日

1996年10月17日(17.10.96)

(30) 優先権データ

特願平8/61756

1996年2月23日(23.02.96)

1990年2月23日(23.02.96)

(71) 出願人 (米国を除くすべての指定国について)

持田製薬株式会社

(MOCHIDA PHARMACEUTICAL CO., LTD.)[JP/JP]

〒160 東京都新宿区四谷一丁目7番地 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

藤澤淳子(FUJISAWA, Atsuko)[JP/JP]

〒184 東京都小金井市中町2-18-20 305号 Tokyo, (JP)

山川 徹(YAMAKAWA, Toru)[JP/JP]

白川嘉門(SHIRAKAWA, Kamon)[JP/JP]

水岛千登勢(MIZUSHIMA, Chitose)[JP/JP]

尾川直樹(OGAWA, Naoki)[JP/JP]

〒160 東京都新宿区四谷一丁目7番地

持田製薬株式会社内 Tokyo, (JP)

(74) 代理人

弁理士 川原田一穂, 外(KAWARADA, Kazuho et al.)

〒105 東京都港区愛宕一丁目2番2号

第9森ビル8階 Tokyo,(JP)

(81) 指定国 AU, CA, JP, US, 欧州特許 (AT, BE, CH, DE,

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開音類

国際調査報告書

(54)Title: MELTRINS

(54)発明の名称 メルトリン

(57) Abstract

Novel substances participating in the adhesion and fusion of myoblasts with each other in the course of the myotube formation. Meltrins which are membrane proteins acting on the fusion, adhesion or agglutination of cells, in particular, myoblasts; polypeptides of the respective domains thereof; DNAs encoding the same; antisense RNAs for these DNAs; various antibodies against these meltrins and the polypeptides; expression vectors containing the DNAs; Transformants constructed by using these expression vectors; a process for producing the above-mentioned meltrins and the polypeptides with the use of the transformants; and medicinal compositions containing the meltrins or meltrin antagonists as the active ingredient.

筋管形成の過程に於ける筋原細胞同士の接着・融合に関与している新規な物質を提供すること。

細胞、特に筋原細胞の融合又は接着又は凝集活性を有する膜蛋白質であるメルトリン及びその各領域ポリペプチド、それらをコードするDNA、該DNAに対するアンチセンスRNA、これらメルトリン及びその各領域ポリペプチドに対する各種抗体、該DNAを含む発現ベクター、該発現ベクターによる形質転換体、及び該形質転換体を使用する上記メルトリン及びその各領域ポリペプチドの製造方法及びメルトリンもしくはメルトリンアンタゴニストを有効成分とする医薬組成物。

償役としての用途のみ PCTに基づいて公開される国際出版をパンフレット第一頁にPCT加包国を同定するために使用されるコード RSSSSSSSSTTTTTTTUUUU ロシア亞邦 エスフフガギルシード アルバニア アルメニア オーストリア オーストラリア オーストラジャン E E E S F I A L A M FGGGGGGHIIIJKKKKKLL ABBEFG. ヘマスティン マスプランド マスティーゴ アモルバイン バルバドス ベルギー ブルギリア ブルガリア ベナン タジキスタン BI ヘナン ブラジル ベラルーシ カナダ 中央アフリカ共和国 RYAFGHIMNZEK コンイーー コストー・ジャール 中国 ウッツーチェッツーク NZ PT PT RO デンマーク

DEICHOOD AND COLUMN

明細書

メルトリン

技術分野

本発明は、細胞、特に筋原細胞の融合又は接着又は凝集活性を有するメルトリン及びその各領域ポリペプチド、それらをコードするDNA、該DNAに対するアンチセンスオリゴヌクレオチド、これらメルトリン及びその各領域ポリペプチドに対する各種抗体、該DNAを含む発現ベクター、該発現ベクターによる形質転換体、該形質転換体を使用する上記メルトリン及びその各領域ポリペプチドの製造方法及びメルトリンもしくはメルトリンアンタゴニストを有効成分として含有する医薬組成物に関するものである。

背景技術

筋形成において、未分化中胚葉細胞由来の筋肉形成細胞から分裂・増殖して分化した筋原細胞は、最終回の分裂以後、ミオシンやアクチン等の筋肉特異的物質の合成を開始するとともに、隣接する同種の細胞との間でお互いの細胞質膜が接着・癒合し、接着面での細胞境界を失って、筋管と呼ばれる多核のシンシチウムに変わる。

これまでに、Nーカドへリン(Knudsen, K. A. et al., Expl. Cell Res., 188, 175-184 (1990), Merge, R. M. et al., J. Cell Sci., 103, 897-906 (1992)), 及びMーカドへリン(Donalies, M. et al., Proc. Natl. Acad. Sci., U. S. A. 88, 8024-8028 (1991), NーCAMs (Merge, R. M. et al., J. Cell Sci., 103, 897-906 (1992) 及びその他), VーCAMs及びインテグリン類(Rosen, G. D. et al., Cell 69, 1107-1119)

(1992) その他)等を含む幾種類かの膜蛋白質がこの筋管形成に関与していることが報告されている。

しかしながら、筋原細胞同士のお互いの細胞質膜が接着・癒合して筋 管と呼ばれる多核のシンシチウムに変わる過程の分子的な機序について は、未だ充分に理解されてはいない。

一方、ウイルスが細胞に感染する際に関与する接着因子として、「融合ペプチド」と呼ばれる物質も知られている(Morrison, T. G. Virus Res., 10, 113-136 (1988)その他)。卵と精子との接着に関与する分子として最近単離されたファーテリンは、ルベラウイルスの融合ペプチドに類似する配列を含んでいることが判った(Biobel, C. P. et al., Nature 356, 248-252 (1992)その他)。

このように、接着活性を有する分子は多く知られており、インテグリン類等については、それを阻害する物質が医薬品として開発・研究されている。

今回、本発明者は新規な接着に係わる分子の単離を試みた。特に上記筋管形成の過程に於ける筋原細胞同士の接着・融合には、卵と精子との接着と同様に、融合ペプチド様の接着因子が関与しているのではないかとの仮定に立って、ファーテリンαおよびβで保存性の高い配列をプローブとして使用して、細胞の接着にかかわる新規な物質のクローニングに成功して、これをメルトリンと命名し本発明を完成させた。

発明の開示

即ち、本発明は、新規な物質であるメルトリンに係わる。メルトリンの1つの特徴は筋細胞の分化誘導過程で発現され、ファーテリン α 、 β と保存性の高い配列を有することである。また、メルトリンの他の特徴は細胞の融合または接着または凝集に関わる蛋白質であるということに

ある。すなわち、メルトリンを介して筋細胞等ある種の細胞では、細胞間の融合、接着もしくは凝集が生じる。

細胞の融合とは、2つ以上の細胞が互いに1つの細胞のように融合し、多核細胞が形成されることである。細胞の接着とは、2つ以上の細胞が互いに接着することである。また、凝集とは2つ以上の細胞(特に液体中に存在している細胞)が集合し細胞塊を形成することである。細胞間で接着が生じ、それに引き続く現象として、融合および凝集が観察されるとも考えられる。

本発明のメルトリンは、その起源は特に限定されない。したがって、特記しない限り、本明細書においてメルトリンとは、前記特徴を有するいかなる動物由来のポリペプチドをも含む。また、後の実施例で示すように、同一の動物種から前記特徴を有する少なくとも 3 種の分子種 (α 、 β 、 γ) が単離されている。本明細書においては、メルトリンとは、特記しない限り、これらのいずれの分子種をも含む。

本発明のメルトリンの具体例はマウスのメルトリンα、β及びγであり、それらは、それぞれ、図2a~図2j、図3a~図3j及び図4a~図4iに示されるアミノ酸配列、もしくはその部分配列で特徴づけることができる。

その他の具体例として、ヒトのメルトリン α 、 β 、 γ がある。ヒトのメルトリン α 、 β 、 γ は、それぞれ、図12a~図12bまたは図15a~図15fまたは図23a~図23bのいずれか、図16または図17a~図17cのいずれか、図13a~図13dに示されたアミノ酸配列もしくはその部分配列を含有することを特徴とする。

尚、上記のアミノ酸配列は、本発明のメルトリンの一具体例にすぎず 筋細胞で発現しファーテリンα、βと保存性の高い配列を有する、もし くは、細胞の融合または接着または凝集に関わる限り、上記アミノ酸配 部が異なるものも、本発明のメルトリンに含まれるものである。今回、本発明者が明らかにしたように、図2a~図2jに示したマウス由来のアミノ酸配列のデイスインテグリン領域からシステイン・リッチ領域にかけての部分と図12a~図12bのヒト由来のアミノ酸配列と約80%以上のホモロジーを示す物質は、メルトリンとしての機能を残していると考えられる。特にマウスもしくはヒトのメルトリンを示す配列を有する物質は、その前後の配列が全て異なっていて域にからでするものと考えられる。したがって、上記アミノ酸配列もしくはその一部と高いホモロジーを示し、ヒトもしくはマウスメルトリンと同様の活性を示す物質は本発明のメルトリンに含まれる。

メルトリンは、後に記載する実施例に示されるように、細胞内領域、 膜貫通領域、細胞外領域からなる膜蛋白質および膜貫通領域を持たない 可溶型蛋白質として生体内に存在している。細胞外領域には、前駆体領 域、メタロプロテアーゼ領域、ディスインテグリン領域、システイン・ リッチ領域が含まれており、メルトリンαについては、そのシステイン ・リッチ領域中に、融合ペプチド様配列が含まれている(図8参照)。

このうち、ディスインテグリン領域は、細胞の接着、融合もしくは凝集というメルトリンの機能に必要不可欠な領域である。一方、前駆体領域やメタロプロテアーゼ領域は、メルトリンが特定の臓器や組織、条件下において活性を発揮するために、調節的な働きをする配列であると考えられる。ヘビ毒中に発見されたディスインテグリンは、血小板IIb/IIIaに結合することが知られている。したがって、メルトリンのディスインテグリン領域もそれ自体、細胞に結合する作用を有することが予想される。また、メタロプロテアーゼ領域はそれ自体で、その名の通り、蛋白分解酵素としても働きうる。

したがって、本発明は、メルトリンの任意の一部を含むポリペプチドにも係わる。当該ポリペプチドには、メルトリンの各領域部分そのもの、メルトリンの各領域を少なくとも含むポリペプチド、メルトリンの任意の一部分、メルトリンの任意の一部分の配列を少なくとも含むポリペプチド、およびメルトリンの任意の各領域もしくはメルトリンの任意の一部分が任意の順番で結合した配列を少なくとも含むポリペプチドが含まれる。また、本発明には、上記ポリペプチドに化学的修飾を施したり、塩を形成させたものも含まれる。

本発明のポリペプチドの好ましい例は、ディスインテグリン領域の一部からなるポリペプチド、ディスインテグリン領域そのものからなるポリペプチド、少なくともディスインテグリン領域を含むポリペプチド、少なくともディスインテグリン領域とシステインリッチ領域を含むポリペプチドである。他の好ましい例は、メタロプロテアーゼ領域とディスインテグリン領域とシステインリッチ領域を少なくとも含むポリペプチドである。また、メルトリンのメタロプロテアーゼ領域の一部からなるポリペプチド、メタロプロテアーゼ領域そのものからなるポリペプチドも好ましい例である。

- - - - -

じし返仏了エ子のに間心にたんこともと、「加工

上清中に分泌され、培養上清中から効率よく回収することができるという利点がある。

マウスおよびヒトのメルトリンlpha、eta、 γ において、前駆体領域、メ タロプロテアーゼ領域、ディスインテグリン領域、システインリッチ領 域、膜貫通領域、細胞内領域が、図2a~図2j、図3a~図3j、図 4 a~図4 i、図12a~図12b、図13a~図13d、図15a~ 図15f、図16、図17a~図17c、図23a~図23bに示した アミノ酸配列のどの部分にあたるかは実施例で考察した。しかしながら 、それらのアミノ酸配列で規定されたポリペプチドは、本発明のポリペ プチドの一具体例にすぎず、それらのアミノ酸配列を本質的に含むポリ ペプチドも本発明に属する。即ち、例えば、各領域の境目は、これに限 定されるものでなく実施例で考察した各領域の境目から、1個~約20 個分N末端方向またはC末端方向、もしくはその両方にずれた領域を含 むポリペプチドも、それが上記アミノ酸配列で規定したポリペプチドと 同様の機能を有する限り、本発明のポリペプチドに含まれる。同様に、 各領域と同様の機能を有する限り、該アミノ酸配列において、アミノ酸

の欠失、変更、追加及び挿入等によって、その一部が異なるものも、本 発明のポリペプチドに含まれるものである。

例えば、上記図中の各領域のアミノ酸配列と80%以上のホモロジーを有するアミノ酸配列、より好ましくは90%以上のホモロジーを有するアミノ酸配列を有するポリペプチドは、本発明のポリペプチドと同様の機能を有すると予測され、本発明のポリペプチドに含まれる。

本発明のメルトリンは、細胞同士や細胞とプレート等の器具を接着させるために使用することができる。また、本発明のメルトリンと他の任意の物質を融合して、筋細胞の培養系や組織、生体に投与すれば、その成分を筋細胞へ効率的に運搬させることができる。

一方、メルトリンの一部を少なくとも含むポリペプチドは、培養系に 添加することによって、細胞同士の接着、または凝集、もしくは融合を 競合的に阻害することが可能である。特にディスインテグリン領域の一 部、ディスインテグリン領域そのもの、もしくはディスインテグリンを 含む可溶型のポリペプチドは、細胞の接着を阻止するための医薬組成物 の有効成分として使用することができる。例えば、血小板の接着を阻止 し、血栓形成や血液凝固を抑制する抗凝固剤として、血栓症やDIC、 多臓器不全の治療薬として使用することが可能である。また、癌細胞の 転移にはインテグリンファミリーをはじめとする接着因子が関与してい ると考えられているので、当該ディスインテグリン領域を含むポリペプ チドは、癌の発育を抑制したり癌細胞が他の細胞へ接着するのを抑制し て転移を予防するための薬剤としても使用しうる。さらに、破骨細胞の 形成においても細胞同士の接着が重要な役割を担っていることが知られ ている。実施例で示すように、本発明者等は、その接着を担う分子の1 つがメルトリンであり、抗メルトリン抗体によって、破骨細胞の形成を 抑制し、骨吸収の亢進を抑制できることを明らかにしている。したがっ

て、本発明のメルトリンのディスインテグリン領域を含むポリペプチド、特にメルトリン α もしくは β のディスインテグリン領域を含むポリペプチドは、抗メルトリン抗体と同様に、骨吸収を抑制するための医薬組成物の有効成分として使用することが可能である。

また、メルトリンの一部を少なくとも含むポリペプチドのうち、メタロプロテアーゼ領域を含むポリペプチドは、それ自身蛋白分解酵素として、もしくは生体内で他の蛋白分解酵素を競合的に阻害するポリペプチドとして使用することができ、炎症性疾患の治療薬として利用することが可能である。

本発明のメルトリンおよびポリペプチドは、これらの利用法のみでなく、抗体作成の際の抗原としても使用できる。

本発明は、また、本発明のメルトリンまたはメルトリンの任意の一部を含むポリペプチドのアミノ酸配列をコードする塩基配列を含むDNAにも係わる。かかるDNAは、染色体DNA、cDNA等のいかなるDNAをも包含する。

本発明のDNAは、その起源は特に限定されない。本発明のDNAの具体例はマウスのメルトリン α 、 β 及び γ もしくはそれらの一部を含むポリペプチドをコードするDNAであり、それらは、それぞれ、図 5 a \sim 図 5 j、図 6 a \sim 図 6 h、図 7 a \sim 図 7 e のコーディング領域もしくはその部分配列で特徴づけることができる。その他の具体例としては、ヒトのメルトリン α 、 β 、 γ もしくはそれらの一部を含むポリペプチドをコードするDNAであり、それぞれ図 1 2 a \sim 図 1 2 b または図 1 5 a \sim 図 1 5 f または図 2 3 a \sim 図 2 3 b のいずれか、図 1 6 または図 1 7 a \sim 図 1 7 c のいずれか、図 1 3 a \sim 図 1 3 d に示された塩基配列のコーディング領域もしくはその部分配列で特徴づけることができる。

なお、これらの図において、前駆体領域、メタロプロテアーゼ領域、

ディスインテグリン領域、システインリッチ領域の各領域、膜貫通領域、細胞内領域をコードする塩基配列が、図の配列のどの部分に相当するかについては実施例で考察した。しかしながらそこで規定した部分は一具体例に過ぎず、それらの塩基配列を本質的に含むDNAも本発明に属する。即ち、各領域の境目はこれらに限定されるものではなく、例えば、リーディングフレームがはずれない限り、実施例で考察した各領域の境目から1個〜約60個分、5′末端方向、3′末端方向、もしくはその両方にずれた塩基配列で規定されたDNAも、それが、前駆体領域、メタロプロテアーゼ領域、ディスインテグリン領域、システインリッチ領域、膜貫通領域、細胞内領域と実質的に同様の機能を有するポリペプチドをコードするものであれば本発明のDNAに含まれる。

さらに、上記図で示された塩基配列以外にも、遺伝暗号の縮重を考慮して化学合成や遺伝子工学的手法によって作成される同一アミノ酸配列をコードする塩基配列もしくはその一部を含むDNAも本発明のDNAに含まれる。また、今回発明者らが明らかにしたように、マウスとヒトのメルトリンとは、互いに高いホモロジーを有することから、上記アミノ酸配列と約80%以上、好ましくは90%以上のホモロジーを示す物質はメルトリンとしての機能を残していると考えられる。そして、このようなホモロジーのあるポリペプチドをコードするDNAは、互いにハイブリダイズすることが予想される。したがって、上述の図で示した塩基配列に相補的な塩基配列を有するDNAをプローブとして用い、ハイストリージェンシーな条件下でハイブリダイゼーションを行った場合に得られるDNA断片は本発明のDNAに含まれる。

マウスメルトリン α 、 β 、 γ 、ヒトメルトリン α 、 β 、 γ をコードするDNAもしくはその一部は、後述の実施例に記載されているように、プラスミドベクターに組み込まれ、それで形質転換した大腸菌は工業技

術院生命工学工業技術研究所に寄託されている。

本発明のDNAは公知の方法で作成することが可能である。例えば、 該 c D N A は、従来公知の方法によって、 c D N A ライブラリーを作成 し、図2a~図2j、図3a~図3j、図4a~図4i、図12a~図 12b、図13a~図13d、図15a~図15f、図16、図17a ~図17cもしくは図23a~図23bに示したアミノ酸配列の一部の ポリペプチドに対する重鎖プライマーを使用してPCR(例えば、Mich ael A. I.等,PCR Protocols,a guide to method and application,Ac ademic Press, 1990, 参照) により得ることが出来る。例えば、ディス インテグリン領域のアミノ酸配列をコードする重鎖プライマーを使用し てPCRを行う。または、得られた増幅断片の塩基配列をもとにプロー ブを作製し、ハイブリダーゼション法によっても、本発明のDNAを得 ることができる。cDNAライブラリーを得るための材料としては、実 施例で示すように、筋芽細胞を分化誘導させたもの、骨髄、胎児肺細胞 が好ましい。また、この他に、cDNAライブラリーとしては、胎盤や 絨毛細胞、胎児細胞から作製した公知のライブラリー等を利用すること も可能である。

本発明のDNAのうち、メルトリンの任意の一部を任意の順序で結合させたポリペプチドをコードするDNAは、例えば以下の方法で作成することができる。すなわち、メルトリンの任意の一部をコードする各DNA断片をPCRにより増幅させる。このとき、必要があれば適当な制限酵素認識配列を有するようにプライマーを設定しても良い。リーディングフレームがずれないように注意し、得られた断片をDNAリガーゼを使用して連結させる。

本発明のDNAは、本発明のメルトリンもしくは本発明のポリペプチドを、遺伝子工学的に生産するために使用することができる。当該DN

Aを使用した、本発明のメルトリンもしくはポリペプチドの生産は、公知方法を参考にして行うことができる(例えば、(Sambrook J.) 等、Molecular Cloning a Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory, New York, 1989 参照)。

本発明のDNAは、適当なベクターに組み込んで遺伝子治療等に使用することも可能である。例えば、任意の生理活性物質をコードする塩基配列を本発明のDNAの下流に融合させたDNAを作成し、適当なウイルス由来のベクターに組み込んで、生体内の細胞を形質転換させると、該生理活性物質は、本発明のメルトリンとの融合蛋白質として発現される。そして、該生理活性物質は、メルトリンが接着する生体内の細胞の周辺に集積させることができる。

更に、本発明は、本発明のメルトリンまたはメルトリンの任意の一部を含むポリペプチドをコードするDNAに対するアンチセンスオリゴヌクレオチドおよびその誘導体に係わるものである。

本発明のアンチセンスオリゴヌクレオチドおよびその誘導体は、メルトリンをコードする塩基配列もしくはその一部に相補的な塩基配列を有するか、メルトリンもしくはその一部を含むポリペプチドの発現を阻止する機能を有することで特徴づけられる。後者のアンチセンスオリゴヌクレオチドおよびその誘導体には、メルトリンをコードする塩基配列もしくはその一部に相補的に結合して発現を阻止するものの他、メルトリンのコーディング領域の上流、下流のノンコーディング領域に相補的に結合するものも含まれる。

本発明のアンチセンスオリゴヌクレオチドおよびその誘導体の具体例は、本発明のDNAもしくはその一部に相補的な塩基配列を有する。特に好ましくは、図5a~図5j、図6a~図6h、図7a~図7e、図12a~図12b、図13a~図13d、図15a~図15f、図16

、図17a~図17cおよび図23a~図23bのいずれかに記載のDNAもしくはその一部の相補鎖を有するオリゴヌクレオチドもしくはその誘導体である。アデニン(A)に対する相補的塩基としてはチミン(T)のかわりにウラシル(U)であってもよい。

本発明のアンチセンスオリゴヌクレオチド誘導体には、その立体構造や機能がオリゴヌクレオチドと類似するものすべてが含まれる。たとえば、オリゴヌクレオチドの3'末端もしくは5'末端に他の物質が結合した物や、オリゴヌクレオチドの塩基、糖、リン酸の少なくともいずれか1つにおいて、置換や、修飾が生じた物質、天然には存在しないような、塩基、糖、リン酸を有する物や、糖ーリン酸骨格以外の骨格(バックボーン)を有するもの等である。

本発明のアンチセンスオリゴヌクレオチドおよびアンチセンスオリゴヌクレオチド誘導体のは、公知方法で製造することができる(例えば、スタンレー T. クルーク(Stanley T. Crooke) およびベルナルド レブロー(Bernald Lebleu)編、in Antisense Research and Applications, CRC出版、フロリダ、1993年)。

天然のDNAやRNAであれば、目的とする本発明のアンチセンスオリゴヌクレオチド配列の5'末端、3'末端に相補的な配列をもつセンスプライマー、アンチセンスプライマーを化学合成し、メルトリン遺伝子もしくはメルトリンをコードするRNAを鋳型としてPCR法により本発明のアンチセンスオリゴヌクレオチドを得ることができる。また、メチルフォスフォネート型やフォスフォロチオエート型等、誘導体の中には、化学合成機(たとえばパーキンエルマージャパン(株)、394型)を使用して合成できるものもある。この場合には、化学合成機に添付されたマニュアルに従って操作を行い、得られた合成産物を逆相クロマトグラフィー等を用いたHPLC法により精製することによっても、

目的のアンチセンスオリゴヌクレオチドもしくはアンチセンスオリゴヌクレオチド誘導体を得ることができる。

本発明のアンチセンスオリゴヌクレオチドおよびその誘導体はラジオアイソトープや蛍光物質、酵素、発光物質で標識して、試料中にメルトリンもしくはその一部が存在するか否かを測定するためのプローブとして使用することができる。また、本発明のアンチセンスオリゴヌクレオチドおよびその誘導体は、生体におけるメルトリンの発現を阻止するための医薬品として使用することができる。

本発明のアンチセンスオリゴヌクレオチドまたはアンチセンスオリゴ ヌクレオチド誘導体を用いて、メルトリンもしくはその一部の発現を阻 止するには、それらを直接適当な溶媒に溶解もしくは懸濁して使用して もよいし、リポソーム中に封入したり、適当なベクターに組み込んだ形 にして使用する。

本発明のアンチセンスオリゴヌクレオチドおよびアンチセンスオリゴ ヌクレオチド誘導体を医薬用途に使用する場合には、医薬品として使用 するのに適した純度のものを、薬理学的に許容されうる使用方法で使用 することが好ましい。

前述のように、メルトリンは骨格筋形成に加え破骨細胞の形成や癌の発育・転移に関与すると考えられる。したがって、本発明のアンチセンスオリゴヌクレオチドまたはその誘導体を用いてメルトリンの発現を阻止することにより、癌の治療及び癌転移の予防や、骨吸収を抑制して骨粗鬆症や高カルシウム血症を治療することが可能である。

更に、本発明は、本発明のメルトリンもしくはその任意の一部を少なくとも含む本発明のポリペプチドを認識する抗体に係わる。言い換えると、該抗体は、本発明のメルトリンのみを認識する抗体、本発明のポリペプチドのみを認識する抗体、もしくはそれらの両方を認識する抗体で

The state of the s

ある。

該抗体には、本発明のメルトリンもしくは本発明のポリペプチドを特異的に認識する抗体に加え、他のポリペプチドと交叉反応するような抗体も含まれる。また、メルトリン α 、 β 、 γ のいずれかの分子種を特異的に認識する抗体、メルトリン α 、 β 、 γ の2つ以上の分子種を認識する抗体のいずれもが含まれる。さらに、特定の動物種(例えばヒトもしくはマウス)由来のメルトリンもしくはその一部を少なくとも含むポリペプチドのみを認識する抗体、2つ以上の動物種由来のメルトリンもしくはその一部を少なくとも含むポリペプチドを認識する抗体いずれもが含まれる。

本発明の抗体は、好ましくは、図2a~図2j、図3a~図3j、図 4 a~図4 i、図12 a~図12 b、図13 a~図13 d、図15 a~ 図15f、図16、図17a~図17cおよび図23a~図23bのい ずれかに記載のアミノ酸配列もしくはその一部を認識する抗体である。 さらに好ましくは、図2a~図2j、図3a~図3j、図4a~図4 i、図12a~図12b、図13a~図13d、図15a~図15f、 図16、図17a~図17cおよび図23a~図23bのいずれかに記 載のアミノ酸配列もしくはその一部を少なくとも有するポリペプチドを 、必要があれば適当なキャリアと結合させて投与抗原として動物に免役 して得られる抗体である。例えば、図5 a。~図5 j、図6 a ~図6 h、 図7a~図7e、図12a~図12b、図13a~図13d、図15a ~図15f、図16、図17a~図17c、図23a~図23bに記載 の塩基配列もしくはその一部を有するDNAを適当な発現ベクターに組 み込み、該ベクターで適当な宿主を形質転換して、該メルトリンを生産 させる。そして、形質転換体の菌体もしくは培地からメルトリンを精製 して、それを投与抗原として得られる抗体である。更に、該形質転換体

の菌体そのものもしくはメルトリンを発現している任意の細胞そのものを投与抗原として得られたものであってもよい。このような形質転換体および細胞は、メルトリン α 、メルトリン β 、メルトリン γ のいずれか1種を発現しているものであっても、2種以上を発現しているものであってもよい。また、メルトリンの一部のアミノ酸配列からなるポリペプチドを化学合成し、KLH(キーホールリンペットへモシアニン)等のキャリアと結合させ、それを投与抗原として得られる抗体であってもよい。

抗原としてメルトリンの一部を使用しても、メルトリンの全体を認識する抗体を得ることができるし、マウスメルトリンもしくはその一部を抗原として使用しても、ヒトメルトリンもしくはその一部を少なくとも含むポリペプチドを認識する抗体を得ることが可能である。

本発明の抗体にはモノクローナル抗体、ポリクローナル抗体のいずれ もが含まれる。また、該抗体は、いずれのクラス、サブクラスに属する ものであってもよい。

該抗体は、公知方法によって((例えば、免疫実験操作法、日本免疫学会編、日本免疫学会発行、参照)作製することができる。以下に、その一例を簡単に説明する。

まず、図5a~図5j、図6a~図6h、図7a~図7e、図12a~図12b、図13a~図13d、図15a~図15f、図16、図17a~図17c、図23a~図23bに記載の塩基配列のコーディング領域もしくはその一部を組み込んだ発現ベクターで、適当な宿主を形質転換して、これを抗原とするか、もしくは当該形質転換体に該メルトリンを生産させ、形質転換体の菌体もしくは培地からメルトリンを精製し、これを抗原とするか、上記図に記載のアミノ酸配列からなるポリペプチドを化学合成し、KLH(キーホールリンペットへモシアニン)等の

キャリアと結合させ、精製して抗原とする。抗原を、もしくはフロイントの完全アジュバント(FCA)や不完全アジュバント(FIA)等の適切なアジュバントと抗原とを、動物に接種し、2~4週間の間隔で追加免疫する。追加免疫後、採血を行い抗血清を得る。免疫する動物は、ラット、マウス、ウサギ、ヒツジ、ウマ、ニワトリ、ヤギ、ブタ、ウシ等から、目的の抗体を産生しうる動物種を選択して使用する。ポリクローナル抗体は、得られた抗血清を精製することによって得る事が出来る。精製は、塩析、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等の公知方法を適宜組み合わせて行えば良い。

モノクローナル抗体を得るには以下のように行う。すなわち、免疫した動物から脾細胞もしくはリンパ球等の抗体産生細胞を採取し、ポリエチレングリコール、センダイウイルス、電気パルス等を用いる公知方法によって、ミエローマ細胞株等と融合し、ハイブリドーマを作製する。その後、本発明のメルトリンに結合する抗体を産生しているクローンを選択して培養する。選択されたクローンの培養上清から、塩析、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等の公知方法を適宜組み合わせてモノクローナル抗体を生成する。

本発明の抗体は、さらに、メルトリンが有する、細胞の融合または接着または凝集活性を阻害する、所謂、中和抗体であり得る。該中和抗体には、メルトリンの活性を完全に抑制するもの、部分的に抑制するもののいずれもが含まれる。

中和抗体のスクリーニングの1つの方法は、抗血清や、ハイブリドーマの培養上清を、メルトリン発現細胞の培養系に加え、細胞の融合や凝集の阻害を指標に行う方法である。スクリーニングの結果、選別された血清やハイブリドーマ培養上清から公知方法を組み合わせて目的の抗体を精製する。

本発明の抗体には、本発明のポリペプチドもしくはその一部を認識して結合するものであれば、Fab、F(ab')、F(ab')。もしくはFvも含まれる。また、H鎖とL鎖のFvを一本鎖となるように連結させたシングルチェインFvをコードするような遺伝子を構築し、これを適当な宿主細胞で発現させて得られるシングルチェインFvも本発明の抗体に含まれる。さらに、本発明のポリペプチドもしくはその一部を認識するものであれば、キメラ抗体、ヒト抗体、ヒト化抗体も本発明に含まれる。

例えば、キメラ抗体は、本発明のメルトリンまたはポリペプチドを認識するマウス抗体の定常部をコードする遺伝子を、ヒト抗体の定常部をコードする遺伝子と置きかえ、再構成された遺伝子を動物細胞で発現させることにより得ることができる。ヒト抗体は in vitro sensitization 法 (Borrebaeck, C.A.K.J. Immunol, Meth., 123, 157, 1989 参照)やSCIDマウスを用いた方法(工藤俊雄、組織培養、19, 61-65、1993参照)等の方法で得ることができる。また、ヒト化抗体は、相補性決定部位(CDR)がマウス抗体のCDRと置き換えられた抗体をコードするように遺伝子を再構成させ、それを動物細胞で発現させることにより得ることができる(Carter等、Pro. Nat. Acad. Sci. 89巻、4285頁、1992年)。

必要に応じ、再構成されたヒト化抗体のCDRが適切な抗原結合部位を形成するするように可変領域のフレームワークを、マウスのフレームワークとホモロジーが高い配列となるようにアミノ酸の置換をしても良い。このようなヒト化抗体の好ましい例は、後述の中和抗体F932-15-2やF937-9-2と同一のCDRを有するものである。当該好ましいヒト化抗体を得るには、実施例で示したハイブリドーマF932-15-2やF937-9-2から抗体をコードするDNAを作製し

、CDR部分以外がヒト由来の配列となるようにヒト抗体をコードする DNAと連結させる。さらに必要に応じてフレームワーク部分をコード するDNAに変異を導入する。得られたDNAを適当な発現ベクターに 組み込んで、適当な細胞を形質転換させ、形質転換体の培養上清から精 製する。

本発明の抗体は、蛍光物質、酵素、発光物質もしくはラジオアイソトープで標識して体液中や組織中に存在するメルトリンもしくはその分解産物を検出するために使用することができる。先述のように、メルトリンは、筋管形成、骨吸収、癌の転移と係わっていると考えられるので、各組織や体液中におけるメルトリンの有無を検出できれば、疾患の進行度や、予後の予測、治療効果の確認をすることが可能になる。該抗体は、また、メルトリンを精製するために使用する抗体カラムの作製、精製時の各分画中のメルトリンを検出するために使用することができる。

また、本発明の抗体のうち中和抗体は、細胞の融合または接着または 凝集を阻害するため、更に、骨吸収の抑制や、炎症の抑制、血液凝固の 抑制、癌転移の抑制を目的とした医薬組成物の有効成分となる。又、培 養中の細胞のアグリゲーションを阻止する培養用の試薬としても使用可 能である。抗体を医薬組成物の有効成分として用いる場合には、抗原性 の点から前述のようにして得られるヒト抗体やヒト化抗体が好ましい。

又、本発明は、先述した本発明のDNAを含有するベクターに係わる。本発明のベクターは、上記DNAに加え、必要に応じて、エンハンサーの配列、プロモーターの配列、リボゾーム結合配列、コピー数の増幅を目的として使用される塩基配列、シグナルペプチドをコードする塩基配列、他のポリペプチドをコードする塩基配列、ポリA付加配列、スプライシング配列、複製開始点、選択マーカーとなる遺伝子の塩基配列等を含んでいてもよい。

該ベクターは、先述した本発明のDNAを、当業者に公知の方法(例えばサムブルック J. (Sambrook J.)等、 Molecular Cloning, a Labora tory Manual 2nd ed., Cold Spring Harbor Laboratory, ニューヨーク (New York), 1989年、参照)で、任意のベクターに組み込むことにより 作製できる。メルトリンもしくはその一部をコードするDNAの好適な 例は、本発明のDNAに対する説明の欄ですでに開示している。 当該DNAを組み込むベクターは、プラスミドベクター、ファージベクター、ウイルスベクター等から適宜選択して使用しうるが、その好適な例は、 PUC118、 PBR322、 PSV2ーdhfr、 PBluescript II、 PHILーS1、 λ Zap II、 λgt10、 pAc700、 YRP17、 pEF-BOS、 pEFN-II等である。

本発明のベクターの好適な例は、メルトリンもしくはその一部を少なくとも含有するポリペプチドをコードするDNAに加え、必要に応じて複製開始点、選択マーカー、プロモーターを含み、当該メルトリンもしくはポリペプチドの発現に使用しうるベクターである。複製開始点は、大腸菌用ベクターの場合は、ColEl、R因子、F因子等を使用し、動物細胞用のベクターにはSV40やアデノウイルス由来のもの等を使用することができる。プロモーターとしては、大腸菌用にはtrp、lac、tacプロモーター等が利用でき、動物細胞用にはSV40由来のもの、サイトメガロウイルス由来のもの、アデノウイルス由来のもの、エロンゲーションファクター1aのプロモータ領域などヒトや動物の遺伝子上に本来存在するプロモーター配列が利用できる。また、酵母用にはaプロモーターが使用でき、ピキア属酵母の場合にはAOX1プロモーターが使用できる。当該ベクターを真核細胞の形質転換に使用する場合には、上記配列に加え、必要に応じて、RNAスプライス部位、ポリアデニル化シグナル等

る大心の風仏丁山原にも利用しさる。

本発明は、上記ベクターを使用して形質転換させた形質転換体に係わる。

該形質転換体は、適当な宿主細胞を公知方法(実験医学臨時増刊、遺伝子工学ハンドブック1991年3月20日発行、羊土社、参照)に従い、上記ベクターで形質転換することによって得ることができる。使用する宿主細胞は、大腸菌や枯草菌等の原核細胞、もしくは酵母や昆虫細胞、動物細胞等の真核細胞から適宜選択することができる。本発明の形質転換体の好適な例は、大腸菌または酵母、またはCHO細胞を宿主として得られた形質転換体であり、本発明のメルトリンもしくは本発明のポリペプチドを発現する形質転換体である。

本発明は更に、かかる形質転換体を培養する工程を含む、本発明のメルトリンもしくはその一部を少なくとも含むポリペプチドの製造方法に係わる。

該製造方法では、まず、本発明の形質転換体を培養し、必要に応じて、遺伝子の増幅や発現誘導をおこなう。形質転換体の培養や発現誘導は、公知方法(たとえば、「微生物実験法」社団法人日本生化学会編、株式会社東京化学同人、1992年、参照)に従って行うことができる。次に、培養混合物、すなわち培養上消もしくは細胞を回収し、それらを材料として、必要に応じて凝縮、可溶化、透析、各種クロマトグラフィー等の操作を行い、本発明のメルトリンもしくはその一部を含むポリペプチドを精製する。当該ポリペプチドの精製は、上記のような通常の蛋白質の精製方法を適宜組み合わせて行うことができるが、本発明の抗体を用いたアフィニティーカラムを使用すれば効率的に精製することがで

きる。

当該製造方法において、本発明のポリペプチドはβ-ガラクトシダーゼ等の他のポリペプチドとの融合蛋白として形質転換体に生産させてもよい。当該蛋白質を他の蛋白質との融合蛋白として発現させた場合には、精製工程のいずれかのステップにおいて、融合蛋白質をブロムシアン等の化学物質やプロテアーゼ等の酵素で処理して当該蛋白質を切り出す操作を行う。

本発明は、また、新規な有効成分を含有する医薬組成物に係わる。 本発明の医薬組成物は本発明のメルトリンを有効成分とするか、メルトリンアンタゴニストを有効成分とするものである。ここでいうメルトリンアンタゴニストとは、メルトリンを介した細胞の融合、接着または凝集を阻害できる分子のことである。例えば、メルトリンを認識する本発明の抗体のうち中和活性を有するもの、もしくは該抗体のフラグメント、メルトリンの一部もしくはメルトリンの任意の一部が任意の順序で結合したポリペプチド、メルトリンをコードするDNAに対するアンチセンスオリゴヌクレオチドもしくはその誘導体である。

メルトリンを認識する抗体は、本発明の抗体の説明の欄で既に説明した方法で得ることができるので、その中から筋細胞、破骨細胞もしくは癌細胞の接着、融合もしくは凝集を完全もしくは部分的に中和する抗体を選択し、本発明の医薬組成物の有効成分とする。該抗体は、ヒトメルトリンを認識し、ヒトの筋細胞もしくは破骨細胞、癌細胞の接着、融合もしくは凝集を阻止するものであれば、いかなるポリペプチドを投与抗原をとして得られた抗体であってもよく、またいかなる動物を免疫して得られたものであってもよい。さらにポリクローナル抗体、モノクローナル抗体のいずれであってもよい。本発明の医薬組成物をヒトに投与することを考えると、当該医薬組成物の有効成分とする抗体は、好ましく

TA O C \ G C | LIMPO | P/C/J/G/G/C WICH A C C C J C J C C

本発明の医薬組成物の有効成分として使用する上記抗体のフラグメントとしては、上記中和抗体のFabやF(ab')、F(ab')。、Fvが挙げられる。

本発明の医薬組成物の有効成分として使用するメルトリンの一部もしくはメルトリンの任意の一部が任意の順序で結合したポリペプチドは、細胞の接着もしくは融合、もしくは凝集を阻止する活性を有するものであれば、メルトリンのかなる一部を含むポリペプチドであってもよい。好適な例は、メルトリンのディスインテグリン領域の一部 むしくにアーゼ領域とディスインテグリン領域およびシステインリッチ領域を含みかつメルトリンの膜貫通領域を含まないポリペプチド、メルトリンのメタロプテアーゼ領域とディスインテグリン領域を少なくとも含みかつメルトテアーゼ領域とディスインテグリン領域を少なくとも含みかつメルトテアーゼ領域とディスインテグリン領域を少なくとも含みかつメルトテアーゼ領域とディスインテグリン領域を少なくとも含みかつメルトテアーゼ領域を含まないポリペプチドである。これらのポリペプチドは化学合成して得ることもできるし、本発明のポリペプチドについての説明の欄で示したように、遺伝子工学的に生産することもできる。

本発明の医薬組成物の有効成分として使用するアンチセンスオリゴヌクレオチドおよびその誘導体は、メルトリンをコードする遺伝子に相補的に結合し、その発現を完全もしくは部分的に抑制するもので、ヒトに投与するのに適したものであれば、いかなる塩基配列を有するものであってもよく、いかなる構造を有する者であっても良い。

既に述べたように、メルトリンは破骨細胞の形成や癌細胞の転移に関与すると考えられる。したがって、メルトリンアンタゴニストを有効成分とする医薬組成物は、骨吸収の抑制や癌の転移抑制の目的で使用でき

る。骨吸収抑制のための医薬の有効成分としてより好ましいものは、ヒトメルトリン α もしくは β に対するアンタゴニストであり、癌転移抑制のための有効成分としてより好ましいものはヒトメルトリン γ に対するアンタゴニストである。

なお、本発明の医薬組成物が有効成分とするメルトリンおよびメルトリンアンタゴニストは、その基本的な活性を失わない限り、薬理学的に許容されうる化学修飾が施されたものや塩を形成させたものであってもよい。例えば、塩酸、リン酸、臭化水素酸、硫酸等の無機酸との塩や、マレイン酸、コハク酸、リンゴ酸、酒石酸等の有機酸との塩などである。

本発明の医薬組成物には、経口投与、経皮投与、静脈内投与、筋肉内 投与、腹空内投与、皮下投与、皮内投与、経腸投与等、あらゆる投与経 路で使用される医薬組成物が含まれる。

また、投与方法や、投与期間も特に限定されない。本発明の医薬組成物は投与経路に応じ、薬理学的に許容されうる補助成分(賦形剤、充塡剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、溶解補助剤、緩衝剤、無痛化剤、保存剤、安定化剤等)を含むことが可能である。例えば、当該医薬組成物が注射剤である場合には、ゼラチンやヒト血清アルブミン(HSA)、ポリエチレングリコール等の安定化剤、Dーマンニトール、Dーソルビトール、ブドウ糖などのアルコールや糖類、ポリソルベート80(TM)等の界面活性剤を含んでいてもよい。

本発明の医薬組成物は、主として、骨粗鬆症や高カルシウム血症の治療・予防、癌の浸潤や転移を予防するために使用することができる。

本発明の医薬組成物のヒトに対する投与量は患者の病態、年齢、あるいは投与方法により異なるが、例えば、約 $0.1\sim100$ m g / k g / 日の用量、好ましくは、 $1\sim50$ m g / k g / 日、特に好ましくは約

1~10mg/kg/日の用量で使用することができ、患者の病態に応じて、点滴等で持続的に投与したり、適当な回数に分割して投与したり、単回投与したりすることができる。

本発明の医薬組成物は定法にしたがって製剤化することが可能である。例えば、注射用製剤であれば、薬理学的に許容されうる程度に精製され、無菌状態で調整されたメルトリンもしくはメルトリンアンタゴニストを生理食塩水、緩衝液等に溶解し、必要があればゼラチンやヒト血清アルブミンを添加する。また、このような液剤を凍結乾燥して、使用時に注射用蒸留水や、生理食塩水に溶解しても良い。

本発明のメルトリン、各種ポリペプチド、及びそれらをコードするDNA等を使用して、メルトリンに結合する物質やメルトリンの活性を阻害する物質、メルトリンの発現を調節する物質のスクリーニングを実施することも出来る。

図面の簡単な説明

図 1 a \sim 図 1 b は、マウスメルトリン α 、 β 、 γ (それぞれM α 、M β 、M γ) の一部と公知の配列 (macrophage specific antigen(MS2)、 Jararhagin(JR)、fertilin $-\alpha$ ($f\alpha$))との比較を示す図である。

図 2a \sim 図 2j は、マウスメルトリン α のアミノ酸配列と対応するDNA配列を示す図である。

図3a~図3jは、マウスメルトリンβのアミノ酸配列と対応するDNA配列を示す図である(図中、Nはその部位の塩基が未確定であることを示す)。

図4a~図4iは、マウスメルトリン γ のアミノ酸配列と対応するDNA配列を示す図である。

図 5a ~図 5j は、 $pBSMel\alpha$ 中に組み込まれている、マウスメ

ルトリン α をコードする塩基配列を含むDNAのDNA配列の解析結果を示す図である(図中、N、M、W、Sはその部位の塩基が未確定であることを示す。)

図 6 a \sim 図 6 h は、 p B S M e 1 β 中に組み込まれている、マウスメルトリン β をコードする塩基配列を含む D N A の D N A 配列の解析結果を示す図である(図中、 N、 M、 W、 S はその部位の塩基が未確定であることを示す。)

図7a~図7eは、pBSMe1 γ 中に組み込まれている、マウスメルトリン γ をコードする塩基配列を含むDNAのDNA配列の解析結果を示す図である(図中、N、M、W、Sはその部位の塩基が未確定であることを示す。)

図 8 は、メルトリン α 、 β 、 γ 、 δ M P、 δ P r o の構造を模式的に示した図である。

図9は、ウエスタンブロッティングの結果を示す電気泳動の写真である。

図10は、ノーザンブロッティングの結果を示す電気泳動の写真である。

図11a~図11bは、筋芽細胞におけるメルトリンの融合促進活性を示す図である。

図12a~図12bは、pBShuMa300に組み込まれた、ヒトメルトリン α をコードするDNAの塩基配列の解析結果を示す図である(図中、Nはその部位の塩基が未確定であることを示し、Xはその部位のアミノ酸が未確定であることを示す)。

図13a~図13dは、 $pBShuM\gammaG238$ に組み込まれた、ヒトメルトリン γ をコードするDNAの塩基配列の解析結果を示す図である。

- E - Zv4. 2

図14 a は、ヒトメルトリンαのクローニングにおける、クローニング領域を模式的に示す図である。

図 1 4 b は、ヒトメルトリンβのクローニングにおける、クローニング領域を模式的に示す図である。

図15a~図15fは、pMe 1α -26N、pMe 1α -25Cに組み込まれたDNAの解析結果をもとに決定したヒトメルトリン α の部分アミノ酸配列と対応する塩基配列を示す図である。

図16は、ヒトメルトリンβ部分のアミノ酸配列と対応する塩基配列 を示す図である。

図17a~図17cは、pMel β -24C、pMel β -24Nに組み込まれたDNAの解析結果をもとに決定したヒトメルトリン β の部分アミノ酸配列と対応する塩基配列を示す図である。

図18 a は、投与抗原に使用したペプチドの、マウスメルトリン α における部位を模式的に示す図である。

図18bは、投与抗原に使用したペプチドのアミノ酸配列を示す図である。

図19は、抗マウスメルトリンα抗体を使用したウエスタンブロティングの結果を示す電気泳動の写真である。

図20は、抗マウスメルトリン抗体による筋管形成の抑制を示す図である。

図21は、抗マウスメルト `ン抗体の、マウス全骨細胞による骨吸収 窩形成に及ぼす作用を示す図である。

図22は、抗マウスメルトリン抗体の低Ca食マウスにおける血清Ca値に対する作用を示す図である。

図23a~図23bは、ヒトメルトリンαの膜貫通領域を含むアミノ酸及びそれに対応する塩基配列を示す図である。

図 2 4 a \sim 図 2 4 e は、pMel β - 24C、pMel β - 24Nに組み込まれたDN A の塩基配列の解析結果を示す図である。

発明を実施するための最良の形態

以下、本発明の最良の実施の形態を示す実施例により、本発明をより 詳細に説明するが、これらの実施例は本発明を何等限定するものではない。

実施例

以下の記載において用いる略号は、当該技術分野における慣用略号に基づくものである。

なお、以下に示す実施例中の諸操作は、主にサムブルック等編〔モレキュラークローニング,ア ラボラトリーマニュアル 第2版〕コールドスプリングハーバーラボラトリー,1989年;ハーロー・レイン著 [抗体 ア ラボラトリーマニュアル] コールドスプリングハーバー等を参考として実施した。

実施例1:RT-PCRによるマウスメルトリンをコードするDNAの取得

(1) RNA、cDNAの調製

胎児性線維芽細胞C3H10T1/2由来の筋芽細胞(筋分化制御因子myogenin遺伝子をトランスフェクトし、発現させたクローン)を10%ウシ胎児血清(モアゲート)を含むDMEM中で10%細胞/ $\phi10cm$ プレートまで増殖させ、分化培地(2%ウマ血清ギブコを含むDMEM)で37%にて2日間培養し、分化誘導した。グアニジンイソチオシアネート/アシッドフェノール法(コムシンスキー P. (Chom

czynski P.)およびサシー N. (Sacchi N.)、Anal. Biochem., 162 巻、156-159 頁、1987年)によって総RNAを分離した後、オリゴ(dT)ーセルロースカラムクロマトグラフィーを2回繰り返しポリ(A)RNAを選択的に分離した。このポリ(A) RNAを鋳型として、ランダムプライマー(N6、ファルマシア)を用い、cDNAを合成した。合成にはGibco BRLのMLV逆転写酵素を用い、その合成マニュアルに従った。このcDNAを次のPCRの鋳型として用いるとともに、さらに二重鎖DNAを合成し、ファージ(λ ZapII(stratagene))に組み込み、cDNAライブラリーを作成した。

(2) RT-PCR

(1) で調製した cDNAを鋳型として以下の手順でRT-PCRを行った。センスプライマーとしてアミノ酸配列 EDCDCGもじくはECDCGをコードする重複プライマー (degenerative primer)を合成して使用した。また、アンチセンスプライマーとして、アミノ酸配列(KCGKLIC)をコードする重複プライマーを合成して使用した。

まず、プライマーと前述の c DNA、T a q ポリメラーゼ、およびその反応試薬 (ベーリンガーマンハイム) と混合し、DNAサーマルサイクラー (パーキン・エルマー・シータス) にて 9.5 \mathbb{C} で 1 分間、 5.5 \mathbb{C} で 2 分間、 7.2 \mathbb{C} で 3 分間反応させ、この操作を 3.6 サイクル行い、 4.5 0 b p 付近の増幅産物を 1.5 % アガロースゲルで電気泳動して回収した。

得られた増幅断片をプラスミドpBS-SKII(-) (Stratagene) のSmal サイトに組み込み、DNAシーケンサー(370A型、アプライドバイオシステムズ)を使用して、DNA配列を解析した。その結果、3種の分子種が存在することが判明した(図1参照)ので、これら

3種のDNAフラグメントをプローブとして、先に述べた c DNAライブラリーをスクリーニングし、それぞれ903,920,845アミノ酸残基のオープンリーディングフレーム(図2a~図2j、図3a~図3j、図4a~図4i)を有する c DNAを単離し、それぞれの遺伝子産物(図5a~図5j、図6a~図6h、図7a~図7e)をメルトリン(meltrin) $-\alpha$ 、 β 、 γ と命名した。これらの c DNAを p B S - S K II(一)に挿入したプラスミドをそれぞれ p B S M e 1 β 、p B S M e 1 γ と命名した。

公知方法で大腸菌株 J M 1 0 9 を p B S M e 1 α 、 p B S M e 1 β 、 p B S M e 1 γ で形質転換し、得られた形質転換体 J M 1 0 9 (p B S M e 1 α)、 J M 1 0 9 (p B S M e 1 α)、 J M 1 0 9 (p B S M e 1 γ) を、1996年 2 月 19日付で日本国茨城県つくば市東 1 丁目 1 番 3 号(郵便番号 305)の工業技術院生命工学工業技術研究所に寄託した(受託番号 F E R M P -1 5 4 5 1、 F E R M P -1 5 4 5 2、 F E R M P -1 5 4 5 3)。尚、それらは、1996年10月8日付でブタペスト条約に基づく寄託に移管され、夫々、受託番号 F E R M B P -5 7 0 1、 F E R M B P -5 7 0 2 及び F E R M B P -5 7 0 3 が付されている。

(3)メルトリンの構造の解析

上記(2)で決定したDNA配列をもとに、メルトリンの構造を解析した。その結果、メルトリン α 、 β 、 γ は、膜貫通型蛋白質と推定され、細胞外ドメイン、膜貫通(Transmembrane, TM)領域、細胞内ドメインからなり、細胞外ドメインはシグナルペプチド様配列を含む前駆体様領域(Pro region)と、メタロプロテアーゼ(Metalloproteinase)領域、ディスインテグリン(Disintegrin)領域とそれに続くCystein Rich)領域からなり、メルト

へビ毒Jararhagin等との相同性に基づき、メルトリンαでは、前駆体様領域は図2a~図2jのN末端から205番目のArgまで(対応する塩基配列は、塩基番号221~835)、メタロプロテアーゼ領域は、206番目のGluから414番目Proまで(対応する塩基配列は、塩基番号836~1462)、ディスインテグリン領域は、420番目のPheから509番目Glyまで(対応する塩基配列は、塩基番号1478~1747)、システイン・リッチ領域は、510番目のHisから706番目のGlyまで(そのうち融合ペプチド様配列は585番目Glyから607番目のGluまで)(対応する塩基配列は、それぞれ塩基番号1748~2338、1973~2041)、膜貫通領域は707番目のLeuから727番目のLeuまで(対応する塩基配列は、塩基番号2339~2401)と考えられた。

メルトリンβでは、前駆体様領域はN末端から204番目のArgまで(対応する塩基配列は、塩基番号63~674)、メタロプロテアーゼ領域は205番目のG1uから409番目Proまで(塩基番号675~1289)、ディスインテグリン領域は415番目のTyrから504番目のG1yまで(塩基番号1305~1574)、システイン・リッチ領域は505番目のThrから706番目のProまで(塩基番号1575~2180)、膜貫通領域は707番目のValから729番目のArgもしくは707番目のValから724番目のLeuまで(塩基番号2181~2249もしくは2181~2234)と考えられた。

メルトリン γ では、前駆体様領域はN末端から205番目のArgまで(塩基番号 $69\sim683$)、メタロプロテアーゼ領域は206番目の

Alaから406番目のProまで(塩基番号684~1292)、ディスインテグリン領域は412番目のTyrから502番目のGlyまで(塩基番号1302~1574)、システイン・リッチ領域は503番目のTyrから694番目のAlaまで(塩基番号1575~2150)、膜貫通領域は695番目のLeuから714番目のIleまで(塩基番号2151~2210)と考えられた。

実施例2: 抗メルトリンα抗体の取得

(I) 投与抗原の調製

グルタチオンーSートランフェラーゼ(GST)(Smith, D. B. & Johnson, K. S. 、Gene、67巻、31-40 、1988年)の C 末端に、図 2 a ~ 図 2 j に示したメルトリン α のアミノ酸配列のN末端より数えて 4 8 3 番目の Serから 6 3 5 番目の Lysまでを有するキメラポリペプチドを以下の方法で作成した。まず、GSTに対する cDNAを含むプラスミド p G E X 2 T(ファルマシア)を B a m H I で消化し、ベクターとした。一方、P C R により、図 2 a ~図 2 j のメルトリン α の 4 8 3 番目の Serから 6 3 5 番目の Lysに対応する cDNAを p B S Me 1 α から 増幅 させ、 B a m H I リンカーを、 DNA リガーゼを使用してライゲーションした。これと、 先に得られたベクターを DNA リガーゼを使用してライゲーションし、プラスミドを作成した。このプラスミドを使用してライゲーションし、プラスミドを作成した。このプラスミドを使用して、公知の方法で大腸菌株 NM 5 2 2 を形質転換した。

得られた大腸菌トランスフォーマントを 0. 1 mM I PT Gを含むレープロスで培養し、発現誘導することによって、菌内で大量のキメラペプチドを産生させた。この菌をMT PBS(150 mMN a C I、16 mMN a 2 H PO 4、4 mMN a H 2 PO 4、0. 1 mM PM SF)に 懸濁し、超音波処理したのち、1%Tritonにて溶解し、上清を回

収した。その上清にグルタチオンアガロース(シグマ)を加えてキメラペプチドを吸着させ、溶出バッファー($50 \, mMT \, r \, i \, s - HC \, l \, 、 p$ H 8. $0 \, < 5 \, mM$ グルタチオン)で溶出し抗原とした。

(2) 抗血清の調製

(1) で作成した投与抗原 $1 \, \text{mg} / 0$. $5 \, \text{mlPBS}$ と等量のRIB IをPBSでもどしたもの(MPL+TDM+CWS Emulsion フナコシ)とを混合し、ウサギ(12 週齢、雌)の皮下・皮内に投与した。その4週間後さらに4週間間隔で $2 \, \text{回}$ 、 $500 \, \mu$ g追加投与を行い、抗血液を採取し、血清を分離して、抗血清を得た。

(3) 抗血清のアフィニティー精製

(1)において大腸菌で発現させ可溶化したキメラポリペプチド、あるいはペプチドを融合していないGSTをグルタチオンーアガロースビーズに結合させたあと、0.2Mのホウ酸ナトリウム(pH9.0)で洗浄し、ディメチルピメリミデート(終濃度20mM)を加え、抗原をビーズに不可逆的に結合させて、夫々、キメラポリペプチドーアフィニティービーズおよびGST-アフィニティービーズを作成した。

次に、 $10\,\mathrm{mMTr\,is-HCl}$ (pH7.5) で10倍希釈した抗血清を、まず、 $GST-アフィニティービーズと混合し、抗GST抗体を吸着除去したのち、上清をキメラペプチドーアフィニティビーズと混合し、抗メルトリンα抗体を吸着させた。これを<math>10\,\mathrm{mM}$ Tris pH7.5500 mM NaClで洗浄ののち $100\,\mathrm{mM}$ グリシンで溶出し、精製抗メルトリンα抗体を回収した。

(4) ウエスタンブロッティング

C2細胞を15%ウシ胎児血清を含むDMEMで10 % 細胞/ $\phi10$ cmプレートまで増殖させた。さらに分化培地(2%のウマ血清を含むDMEM)で37 % Cにて培養し、2日目の細胞(C2DM d 2)、および 4日目の細胞(C2DM d 4)を回収した。

また、以下の実施例 5 (3)の方法で作成した p B O S M e 1 α (+) の形質転換体 C 2 を、 1 5 % ウシ胎児血清を含有する D M E M 中で、 3 7 $^{\circ}$ C、 3 日間培養した。培養後、直径 6 c m のプラスチックディッシュに 2×1 0 $^{\circ}$ / ディッシュとなるように植え込み、さらに 1 日培養したのち前述の分化培地に交換し、分化誘導を行った。 2 日間培養後、細胞を回収した。

回収したC2DM d2、C2DM d4および $pBOSMe1\alpha$ (+)の形質転換体をSDS可溶化バッファー(100mMトリス塩酸(pH6.8)、4%SDS、20%グリセロール)と混合後、超音波破砕を行い、遠心してその上清をサンプルとして用いた。

次にメンブレンを洗浄液で2回洗浄した。TBS-Tにとかした5%スキムミルクで、(3)で得られた抗血清を20倍に希釈し、これにメンブレンを浸してと37℃で1時間反応させた。反応終了後、洗浄液で2回洗浄した。上記スキムミルクで、ビオチン標識抗ウサギイムノグロブリンズ抗体(ダコ)を4000倍に希釈し、これにメンブレンを浸して37℃で1時間反応させた。メンブレンを洗浄液で2回、洗浄ののち5000倍に希釈したペルオキシダーゼ標識ストレプトアビシンで1時間反応させ、2回洗浄し、MB試薬(Cat. TM912、シック)で発色させ、ECLシステム(アマーシャム)で測定した。

結果を図9に示した。

ウエスタンブロッティングの結果、約115 KD、86 KD、67 KD、58 kDの位置にバンドが認めれた。分子量から、メルトリン α は

糖蛋白として発現されていると確定された。また、ももれたのかする、 前駆体様領域配列が欠損したもの、67kD、56kDの分子は、更に メタロプロテアーゼ領域までが欠損したものと考えられた。

実施例3: ノーザンブロッティング

ファルマシアのmRNA分離キットを用い、マウス各組織(成年マウスの骨、脳、肝臓、心臓、骨格筋および新生児マウスの骨、骨格筋、胎児マウスの骨、骨格筋)から実施例1の方法でポリ(A)RNAを調製した。50%ホルムアミド中で65%5分間加熱しRNAを変性させ、6.6%のホルマリンを含む1.5%アガロースゲルで電気泳動を行い、ナイロン膜(ハイボンドーN、アマーシャム)に転写させた。

一方、実施例1で得られたメルトリンα、β、γのディスインテグリン領域及びシステイン・リッチ領域の一部(図2a~図2jのN末端から数えて434番目のG1uから583番目のCys、図3a~図3jのN末端から数えて429番目のG1uから578番目のCys、図4a~図4iのN末端から数えて426番目のG1uから575番目のCysをコードするcDNAをPCRにより調製し、ランダムプライマーラベリングキット(Megaprime、アマーシャム)によって32P標識した。また、コントロール用のプローブとしてG3PDH(glyceraldehyde3-phosphatedehydrogenase,グリセルアルデヒド3ーフォスフェートデハイドロゲナーゼ)に対するcDNAを同様に32P標識した。これらプローブを使用し、前述の各組織からのmRNAに対してノーザンブロッティングを行った。ブロッティングの操作は、ハイストリンジェンシー(high stringency)の条件下でサムブルックJ、(Sambrook J.)らの方法(Molecular Cloning: A Laboratory Manual, 2nded., Cold Spring Harbor Laboratory, ニューヨーク(New York), 19

89年)を用いた。

結果を図10に示した。メルトリンα、βは成年および新生児マウスの骨、新生児マウス、胎児マウスの骨格筋でのみ発現していた(胎児マウスの結果は図10には示していない)。またメルトリンγの発現は、組織特異性は認められず、普遍的に発現していた。

実施例4: メルトリンの接着活性の確認

(1) プラスミドpBOSMelαδMP (+) およびpBOSMelαδMP (-) の作成

メルトリン α の細胞外ドメインのうち、前駆体様領域とメタロプロテアーゼ領域部分を欠失させた、欠失型メルトリン δ MPを以下の方法で作成した。

一方、プラスミドpEFBOS(Mizushima S. & Nagata S 、 Nucle ic Acid Res. 18巻、5322頁、1990年)を制限酵素 X b a I で消化し、脱リン酸化し、K l e n o w フラグメントにて平滑末端としたのち、1%アガロースゲル電気泳動に供して直鎖型ベクターDNAを得た。これと、先述の 5. 8 k b p の断片とを、D N A リガーゼを使用してライゲーションし、プラスミドpBOSMel α δ M P (+) およびpBOSMel α δ M P (-) を得た。これらは、メルトリン α アミノ酸配列の

N末端より数えて55番目のIleから399番目Gluの欠失したδ MPをコードするインサートDNAを、それぞれセンス方向、アンチセンス方向に組み込んだコンストラクトである。

(2) プラスミドpBOSMelα(+)の作成

プラスミド p B S M e l α を E c o R V および N o t l で消化し、約7 k b のフラグメントを得た。先述のプラスミド p E F B O S を制限酵素 X b a l で消化し、脱リン酸化し、K l e n o w フラグメントにて平滑末端としたのち、1%アガロースゲル電気泳動に供して直鎖型ベクター D N A を得た。これと、先述の約7 k b p の断片とを、D N A リガーゼを使用してライゲーションし、得られた発現プラスミド p B O S M e l α (+) と命名した。

(3) プラスミドpBOSMelαδPro(+)の取得

メルトリン α の前駆体様領域とメタロプロテアーゼ領域の境界付近には A f 1 II f II

+)を得た。

(4)筋芽細胞融合促進活性の確認

筋芽細胞の融合活性を調べるため、得られたトランスフォーマント及び親株のC2細胞をbFGF非存在下で3-4日間培養した後、直径6cmのプラスティックディッシュに2X10°/ディッシュとなるように植え込み、さらに一日培養した。これを前述の分化培地に移して分化誘導を行い、さらに4日間培養した。分化誘導を行うとC2は筋管を形成し始めた。4日後、メタノールで固定し、ギムザ、ライトの染色液(メルク)にて染色後、各ディッシュ中の任意の4カ所について1mm² あたりの核数を測定し、以下の式によって融合率を求めた。

また、分化誘導後、1日ごとに5日間、細胞融合率の時間経過を調べた。

これらの実験結果を図11a~図11bに示した。図から明らかなように、メルトリン α の全長を発現させた形質転換体($pBOSMe1\alpha$)

一方、メルトリン β の全長を(3)の要領でp E F B O S に組み込んだプラスミドp B O S M e 1 β (+) で C 2 細胞を形質転換して、メルトリン β を発現させた場合、筋細胞の融合能に大きな変化はみとめられなかった。しかし、p B O S M e 1 α (+) δ C 2 細胞にコトランスフェクトして得られた形質転換体を調べると、 親株に比べて細胞融合が促進されることがわかった。

これに対し、メルトリン γ の全長を(3)の要領で γ EFBOSに組み込んだプラスミド γ PBOSMel γ (+)でC2細胞を形質転換して、メルトリン γ を発現させた場合、あるいは、 γ PBOSMel γ (+)をC2細胞にコトランスフェクトして得られた形質転換体は、いずれも筋細胞の融合能に大きな変化はみとめられなかった。

以上の結果から、メルトリン α は筋細胞融合に関与し、そのプロセシングによって細胞融合を促進する活性を示すことが明らかになった。さらに、メルトリン α と β とをともに発現するような形質転換体で筋細胞の融合が促進されたことから、メルトリン α および β は単独で機能しているのではなく、メルトリン α と β がヘテロマーを形成して機能するものと推定された。

(5) 非筋細胞におけるメルトリンの機能の検討

マウス線維芽細胞L929を $pBOSMe1\alpha$ (+)あるいは $pBOSMe1\beta$ (+)で形質転換し、メルトリン α あるいは β を発現する形質転換体を単離した。これらの形質転換体では、いずれの場合も同種細胞同士の凝集あるいは融合は認められなかった。また、メルトリン α およびメルトリン β の両方を発現させた細胞でもこうした変化はみられなかった。

これに対し、L929をpBOSMelァ(+)で形質転換した形質 転換体は、カルシウムイオンを含まない培地で細胞をプレートからはが し、これをカルシウムイオン添加培地に戻すと、顕著な凝集活性を示し た。

この結果から、メルトリン γ には細胞凝集能のあることが示されるとともに、分子の相同性から考えて、メルトリン α 、 β の筋芽細胞融合促進活性も、筋芽細胞凝集活性によって引き起こされたことが示唆された。

実施例5: アンチセンスによる接着活性の抑制

実施例4(1)で作成したプラスミド $pBOSMela\delta MP(-)$ を、プラスミドPSV2NEOとモル比で20:1に混合し、実施例4(4)に述べた方法でC2細胞を形質転換し、アンチセンスRNAを発現している形質転換体を単離した。この形質転換体の接着活性を実施例4の方法で測定した。結果を図11a~図11bに示した(図中のAS)。その結果、 δMP に対するアンチセンスRNAの発現により、C2細胞の融合が抑制されることが確認された。

このことから、メルトリンαが筋細胞の融合には不可欠な役割を示す ことが明らかとなった。

実施例 6 : ヒトメルトリン α および γ をコードする c DNA断片の取得方法

ヒト骨髄細胞から精製されたmRNA(クローンテック)を鋳型として、実施例1(1)に記載の方法でcDNAを合成し、これを鋳型として、実施例1(2)で作製した重複プライマーを用いて36 サイクルのPCRを行った。増幅産物をクローニングし、pBS-SKII(一)のEcoRV サイトに挿入し、pBShuMa300 と命名した。解析したDNA配列を図12a,図12bに示した。

解析の結果、ヒトメルトリン α のディスインテグリンの途中からシステインリッチ領域の途中までをコードする塩基配列を含むことがわかった(図12 $a\sim$ 12b中のアミノ酸配列のうち、36番目のG1yまでがディスインテグリン領域であり、37番目以降はシステインリッチ領域である)。

解析の結果、ヒトメルトリンγのメタロプロテアーゼ領域の途中からシステインリッチ領域の途中までをコードする塩基配列が含まれていることがわかった(図13a~図13b中のN末端からアミノ酸番号40番目のProまでがメタロプロテアーゼ領域、41番目のLysから136番目のG1yもしくは46番目のTyrから136番目のG1yま

でがディスインテグリン領域、137番目のTyr以降がシステインリッチ領域である)。公知方法に従い、大腸菌株JM109を、これらのプラスミドで夫々形質転換し、得られた形質転換体JM109(pBShuMα300)及びJM109(pBShuMαG238)を1996年2月19日付で日本国茨城県つくば市東1丁目1番3号(郵便番号305)の工業技術院生命工学工業技術研究所に寄託した(受託番号 FERMP-1545455)。尚、それらは、1996年10月8日付でブタペスト条約に基づく寄託に移管され、夫々、受託番号FERMBP-5705が付されている。

実施例7: ヒト胎盤由来 c D N A ライブラリーを使用したヒトメルト リンαをコードする c D N A 断片の取得 - 1

(1) 1 stスクリーニング

実施例 6 で得られたメルトリン α cDNAの配列をもとに、センスプライマーMA-1、アンチセンスプライマーMA-2(表1 参照)を合成した。ヒト胎盤 λ gt 11 cDNAライブラリー(クローンテック社 code No. CLHL1008b)をLBプレート(ϕ 10cm)上に1万プラーク/plateになるよう播種した。プラーク形成後、S M バッファーを5ml 加え、室温下 4 時間静置することでプレートごとにファージを回収した(プレートライセート法)。回収したそれぞれのファージ溶液を鋳型としてPCR を行った。即ち、先に合成した MA-1、MA-2 プライマーと、Ex Taq ポリメラーゼ(TaKa Ra社)、およびその反応試薬(TaKaRa社)を混合し、DNA サーマルサイクラー(パーキン・エルマー社)にて94℃で30秒間、55℃で30秒間、72℃で1分間反応させ、この操作を35サイクル行った。増幅産物の一部をアガロースゲル電気泳動に供することにより、メルトリン α cDNAが組み込まれたクローンを含むファージ液を選択した。

(2) 2nd. スクリーニング

lst スクリーニングで得られた、目的とするクローンを含むファージ液を400 プラーク/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を選択した。

(3) 3rd. スクリーニング

2nd スクリーニングで得られた、目的とするクローンを含むファージ液を40プラーク/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を選択した。

(4) 4th. スクリーニング

3rd スクリーニングで得られた、目的とするクローンを含むファージ液を10プラーグ/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を選択した。

(5) final スクリーニング

4th スクリーニングで得られた、目的とするクローンを含むファージ液を20プラーク/plateになるよう播種し、プラークを形成させた。単一プラークそれぞれを楊枝で穿刺し、鋳型としてPCR 反応液中に懸濁した。MA-1, MA-2 プライマーによる35サイクルのPCR により、目的プラークの判別を行ったところ、最終的に2つの陽性クローンが得られた。この目的クローンを含む単一の陽性プラークをSM Buffer 中に回収し、フ

ァージを溶出させた。

更に、このファージを鋳型として、 λ gtll Forward primer 、同Reverse primer (表 1 参照) によりPCR を行いファージベクター中のヒトメルトリン α cDNA断片を回収した。

この断片の末端塩基配列を一部解析したところ、実施例 6 で得られた ヒトメルトリン α をコードする塩基配列を含んでおり、マウスメルトリンの約650 アミノ酸(clone 23)と約500 アミノ酸(clone 25)に対応するヒトcDNA 断片であることが予想された(図 1 4 参照)。

実施例 8: ヒト胎盤由来 c D N A ライブラリーを使用したヒトメルト リンαをコードする c D N A 断片の取得 - 2

実施例 7 で明らかとなったclone 23中のcDNA配列のN 末端側の配列をもとにセンスプライマーMel α -5'S (表 1 参照)を設定した。センスプライマーMel α -5'SとアンチセンスプライマーMA-2を用いて、ヒト胎盤 λ gt 11 cDNAライブラリーをスクリーニングした。その結果、約700 アミノ酸をコードするcDNA (clone 26) が得られた。(図 1 4 a 参照)。

メルトリン遺伝子の塩基配列解析のために A gt11 Forward-Eco、 A gt 11 Reverse-Eco、MA-1-Eco、MA-2-Eco、計 4 種のプライマーを合成した。 (表1 参照)

PCT/JP96/03017

表1: PCR用primerの塩基配列

```
MA-1
               : 5' ACG ATG GGC ACT CAT GTC AG 3'
               : 5' CAT CTC GCA TTT GGC AAA GG 3'
MA-2
             : 5' GGT GGC GAC GAC TCC TGG AGC CCG 3'
λ gtll Forward
               : 5' TTG ACA CCA GAC CAA CTG GTA ATG 3'
λ gtl1 Reverse
Mel \alpha -5'S
               : 5' CAC TGA ACA TTC GGA TCG TG 3'
λ gtl1 Forward-Eco: 5' CCG GAA TTC GGT GGC GAC GAC TCC TGG AGC CCG 3'
λ gt11 Reverse-Eco : 5' CCG GAA TTC TTG ACA CCA GAC CAA CTG GTA ATG
MA-1-Eco
               :5' CCG GAA TTC ACG ATG GGC ACT CAT GTC AG 3'
MA-2-Eco
               : 5' CCG GAA TTC CAT CTC GCA TTT GGC AAA GG 3'
S-hMel α -TM5' : 5' GCA CAA AGT GTG CAG ATG GA
               : 5' CAG AGG CTT CTG AGG AGG N
A-mMel \alpha -3'
```

Clone 25をtemplateとし、MA-1-Eco、 λ gtll Reverse-Ecoプライマーを用いたPCR によりメルトリン遺伝子の後半部を、Clone 26をtemplateとし、MA-2-Eco、 λ gtll Forward-Ecoプライマーを用いたPCR により、メルトリン遺伝子の前半部を増幅した。これらのcDNA 断片をEcoRI 消化後、それぞれpUC 118 のEco RI site にクローニングし、それぞれ、pMel α -26N、pMel α -25Cと命名した。これらのプラスミドについて常法により塩基配列解析を行いメルトリン α cDNA配列を決定した。

これらのプラスミドで、大腸菌 J M 1 0 9 株をハナハン等の方法で形質転換し、得られた形質転換体(大腸菌 J M 1 0 9 (pMel α - 26N)、大腸菌 J M 1 0 9 (pMel α - 25C))を日本国茨城県つくば市東1丁目1番3号(郵便番号305)の工業技術院生命工学工業技術研究所

特許微生物寄託センターにブタペスト条約に基づき1996年10月3日付で寄託した(受託番号:BP-5689、BP-5688)。

 $pMeI \alpha$ -25Cおよび $pMeI \alpha$ -26Nの塩基配列の解析から明らかになった、ヒトメルトリン α の塩基配列及び対応するアミノ酸配列を図 $15 a \sim 20$ 15 f に示す。

実施例 6 で得られたDNAの塩基配列と比較したところ 4 カ所において塩基が異なっていた。そのうちの 3 カ所はサイレントミューテーションであり、残りの 1 カ所については、対応するアミノ酸が実施例 6 ではグルタミン酸であったのに対し、今回解析した配列ではアスパラギン酸(図 1 5 a ~図 1 5 f に示したアミノ酸番号の 5 0 5 番目)であった。

また、得られた塩基配列の構造を解析したところ、今回得られたDN Aはヒトメルトリンαの前駆体領域の途中からC末端までをコードする ものであると思われた。すなわち、図15a~図15fに示したアミノ 酸配列のうち、N末端のGIyから155番目のArg(対応する塩基 配列は、塩基番号1~465)までが前駆体領域のC末端側部分配列で あり、156番目のGluから364番目のPro(対応する塩基配列 は塩基番号466~1092)までがメタロプロテアーゼ領域であり、 3 6 5番目のG 1 uから 4 5 9番目のG 1 y もしくは 3 7 0番目の P h eから459番目のGly (対応する塩基配列は塩基番号1093~1 377もしくは1108~1377)までがディスインテグリン領域で あり、460番目のHisから656番目のGlnもしくは460番目 のHisから652番目のAla(対応する塩基配列は塩基番号137 8~1968もしくは1378から1956) までがシステイン・リッ チ領域(そのうち融合ペプチド様配列は535番目のGlyから557 番目のG1n(対応する塩基配列は塩基番号1603~1671))で ある。一方、今回得られたヒトメルトリンαには膜貫通領域が存在して

5 a ~ 図15 f のアミノ酸配列を有するメルトリンαは、生体内で細胞外に分泌され血液や体液中に存在するものと考えられる。このような可溶型のメルトリンαは、生体内で、細胞の接着、融合、凝集を調節する役割を担っていると考えられる。

図15a~図15fのアミノ酸配列を有するメルトリンは、遺伝子のオルタネイティブスプライシングによって生じたものと考えられる。おそらく今回得られた配列のシステインリッチ領域よりも後の部分をコードするDNAと、膜貫通領域から細胞内領域をコードするDNAとは異なるエクソン上にあって、それらのいずれかがスプライシングアウトすることで可溶型メルトリンと、膜結合型メルトリンが生じるのであろう

実施例 9: ヒトメルトリンβをコードするcDNA断片の取得

(1) ヒトメルトリン β をコードする c D N A 断片のディスインテグリン領域の一部の取得

ヒト骨髄細胞から精製されたmRNA(クローンテック)を鋳型として実施例1(1)に記載の方法でcDNAを合成し、これを鋳型として実施例1(2)で作製した重複プライマーを用いて36 サイクルのPC Rを行った。増幅産物をクローニングし、pBS-SKII(一)に挿入した。得られたDNA配列を解析したところ、メルトリン β の部分配列であることが確認された。解析したDNA配列を図16に示した。

(2) ヒト胎児肺由来 c D N A ライブラリーを使用した 1 stスクリーニング

(1)で得られたメルトリン β cDNA部分配列をもとに、センスプライマーMA-3、アンチセンスプライマーMA-4(表 2 参照)を合成した。ヒト胎児肺 λ gt 11 cDNAライブラリー(クローンテック社 code No. CLHL1072)をLBプレート(ϕ 10cm)上に1万プラーク/plateになるよう播種した。プラーク形成後、S M バッファーを5m1 加え、室温下 4 時間静置することでプレートごとにファージを回収した(プレートライセート法)。回収したそれぞれのファージ溶液を鋳型とし、先に合成したMA-3、MA-4プライマーと、Ex Taq ポリメラーゼ(TaKaRa社)、およびその反応試薬(TaKaRa社)を混合し、DNA サーマルサイクラー(パーキン・エルマー社)にて 9 4 $\mathbb C$ で3 0 秒間、 5 5 $\mathbb C$ で3 0 秒間、 7 2 $\mathbb C$ で1 分間反応させ、この操作を 3 5 サイクル行った。増幅産物の一部をアガロースゲル電気泳動に供することにより、メルトリン β cDNAが組み込まれたクローンを含むファージ液を選択した。

(3) 2nd. スクリーニング

1st スクリーニングで得られた、目的とするクローンを含むファージ液を1000プラーク/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を判別した。

(4) 3rd, スクリーニング

2nd スクリーニングで得られた、目的とするクローンを含むファージ液を100 プラーク/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を判別した。

(5) 4th. スクリーニング

3rd スクリーニングで得られた、目的とするクローンを含むファージ液を10プラーク/plateになるよう播種した。プラーク形成後、上記と同様の手法によりファージを回収し、目的クローンを含むファージ液を判別した。

(6) cDNA部分配列を含むDNA断片の回収および確認

4th スクリーニングで得られた目的クローンを含むファージ液(#24)を鋳型として、 λ gtll Forward primer (表1参照)とMA-4プライマーによるPCR、および λ gtllReverse primer (表1参照)とMA-3プライマーによるPCR を行い、それぞれ約500 bp (24- F/4) および約2 kbp (24- R/3) の増幅産物を得た。これら2 種のDNAフラグメントの末端塩基配列を一部解析したところ、(1)で得られた配列を含むことが確認された。

(7) 塩基配列解析

ヒトメルトリン β c D N A部分配列を含むDNA フラグメントをサブクローニングするために、新たにMA-3-Bco、MA-4-Eco、計2 種のプライマーを合成(表2参照)した。ファージ液#24をtemplateとして、MA-4-Eco、 λ gt11 Forward-Ecoプライマー(表1参照)を用いたPCR、およびMA-3-Bco、 λ gt11 Reverse-Bcoプライマー(表2参照)を用いたPCR を行い、それぞれ得られた増幅産物をBcoRI 消化後、pUC 118 のEco RI site にクローニングした(図14b参照)。これらのプラスミドpMel β -24C、pMel β -24Nについて常法により塩基配列解析を行いメルトリン β cDNA配列を決定した。

なお、これらのプラスミドで大腸菌JMl09株をハナハン等の方法

で形質転換し、得られた形質転換体を、日本国茨城県つくば市東1丁目 1番 3号(郵便番号 305)の工業技術院生命工学工業技術研究所特許微生物寄託センターにブタペスト条約に基づき1996年10月 3日付で寄託した(微生物識別のための記号大腸菌JM109(pMel β -24C)受託番号 BP-5690、微生物識別のための記号JM109(pMel β -24N)受 託番号 BP-5691)。pMel β -24CおよびpMel β -24Nに組み込まれた DNAの塩基配列から明らかになったヒトメルトリン β の塩基配列および対応するアミノ酸配列を図24eに示す。

(1)で得られたDNAの塩基配列と比較したところ1カ所において塩基が異なっていたが、これはサイレントミューテーションであり、対応するアミノ酸に違いはなかった。

また、得られた塩基配列の構造を解析したところ、今回得られたDNAはヒトメルトリンβのメタロプロテアーゼ領域の途中からC末端までをコードするものであると思われた。すなわち、図24a~図24eに示したアミノ酸配列のうち、N末端のG1yから36番目のPro(対応する塩基配列は、塩基番号2~109)までがメタロプロテアーゼ領域のC末端側部分配列であり、37番目のAspから131番目のG1y(対応する塩基配列は塩基番号110から394もしくは125~394)までがディスインテグリン領域であり、132番目のThrから330番目のPro(対応する塩基配列は塩基番号395~991)までがシステイン・リッチ領域であり、331番目のValから348番目のMetもしくは331番目のValから353番目のMetもしくは331番目のValから358番目のMetもしくは331番目のValから358番目のMetもしくは354番目のValのHisまでが細胞内領域に相当すると考えられるが、マウスメルトリ

表2: PCR用primerの塩基配列

MA-3 : 5' TGC TGC CAC CAG TGT AAG 3'

MA-4 : 5' TCC TGG TAG GTG AGG CAC ATG 3'

MA-3-Eco : 5' CCG GAA TTC TGC TGC CAC CAG TGT AAG 3'

MA-4-Eco : 5' CCG GAA TTC TCC TGG TAG GTG AGG CAC ATG 3'

実施例10: 抗メルトリンαモノクローナル抗体の作製

(1) ペプチド配列の選択

実施例1で決定したマウスメルトリン α のアミノ酸配列に基づき、エピトープの解析を行った。メルトリン α と β でアミノ酸配列の異なる部分、またnon-RGD領域と推定される領域、メタロプロテアーゼが切断されると考えられる領域から、二次構造を考慮し、エピトープ領域と推定されるペプチド配列8種類を選択した(図18 α 、18 β 0 を用いて合成し、クリベージ後、逆相カラム(YMC-ODS)により、これら8種のペプチドをペプチド合成機(ABI 432A)を用いて合成し、クリベージ後、逆相カラム(YMC-ODS)によ

りHPLCで精製した。

(2) 抗血清の作製

(1)で得られたペプチドを凍結乾燥した後、各々のペプチド0.5 $5 \, \text{mg} \, \epsilon \, 0.1 \, \text{M}$ リン酸バッファー (pH7.0) $5 \, 5 \, \mu \, 1$ に溶解した。また、マレイミド化KLH (ベーリンガーマンハイム社) 0.7 $7 \, \text{mg} \, \epsilon \, \bar{x} \, \text{留水 } 7 \, 7 \, \mu \, 1$ で溶解した。両者を混合し、室温にて2 時間反応させた後、生理食塩水で平衡化したNickカラム(ファルマシア社)で精製し、これを投与抗原として、以下の実験に使用した。

各投与抗原 50μ g を生理食塩水で0.1ml に希釈し等量のフロイント完全アジュバント (DIFCO 社) と混合し、Wistar rat (5 週令、雌)の腹腔に投与した。2 週間後、同量をフロイント不完全アジュバント (DIFCO 社) と混合し同様に投与した。

(3) 抗血清の評価 (プレートアッセイ)

投与1 週間後眼底より採血し、投与したペプチドに対する抗体価の上昇を固相化したペプチドと抗血清との反応性を以下の方法でプレートアッセイにより確認した。まず、アミノプレート(住友ベークライト社)に0.5mg/mlのSulfo-SMCC(Pierce社)を0.9%NaClを含む50mMリン酸緩衝液(pH7.2)に溶解し各ウエルに分注した。37℃で2時間反応後イオン交換水で5回洗浄し各ペプチドを同じ緩衝液を用いて0.5μg/mlに溶解したものを添加した。37℃で1時間反応後0.1%BSAと4mg/mlシステアミンを0.45%NaClを含む0.076Mリン酸緩衝液(pH6.4)(以下、PBSと記載する)でブロッキングした。ブロッキング剤を除去後、各抗血清をPBSで1000倍から1000倍に希釈し各ウエルに添加して37℃で1時間反応させた。次に0.00

5 %Tween20 を含む0.9 %NaClで2 回洗浄し、1 0 %ウサギ血清を含む PBSで1 0 0 0倍に希釈したペルオキシダーゼ標識抗ラットイムノグロブリン抗体(ダコ社)を各ウエルに添加し37℃で1 時間反応させた。反応終了後、洗浄液で5 回、イオン交換水で2 回洗浄し、3mg/mlオルトフェニレンジアミンと0.027 %過酸化水素を含む0.1M マッキルベインバッファー(pH5.0)を添加し5 分間反応後、1N塩酸で反応を停止し49 0nm の吸光度を測定した。結果を表3に示す。表3において、(++)は強く反応したことを示し、(+)は弱く反応したことを示す。

表 3 抗原ペプチドに対する抗血清の反応性

 抗原	マプチド	抗血清の反応性
1	ProA	+.+
2	MP - A	+ +
3	MP - B	++
4	DC - A	+
5	DC - B	+
6	DC-C	++
7	DC-D	N.D.
8	DEA	++

N.D.: 実施していない。

- (4) 抗血清の評価(ウエスタンブロッティング)
- (2) で作製した抗血清がメルトリンに結合するか否かを確認するため、ウエスタンブロッティングを行った。

まず、実施例 4 と同様に、マウス筋芽細胞(C 2)をp B O S M e 1 α δ P r o (+) とp B O S M e 1 β (+) で形質転換させた細胞(以後、#9-3と称する)とC 2 細胞をp B O S M e 1 α δ M P (+) で

形質転換させた細胞(以後、# 3-5と称する)を準備した。各細胞 1×10^7 個を PBS- (GIBCO BRL 社)で遠心洗浄し細胞を回収した。回収した細胞を PBS-で 5×10^6 cells/mlに調製し、蛋白分解阻害剤 $C\phi$ mplete (ベーリンガーマンハイム社)を 25 分の 1 量添加し、さらに最終濃度 0 . 2%となるように SDSを添加した。室温で 30 分間放置し、4%下で 10 秒間(1 秒× 10 回)ソニケーションを行い、遠心後の上清を回収し、細胞抽出液とした。陰性コントロールとして繊維芽細胞 10 29 (ATCC No. CCL-1)より同様の方法で細胞抽出液を調製した。

得られた細胞抽出液 $10\mu1$ をゲルローディングバッファー(0.25M Tr is-HCI、2%SDS、30%Glycerol、0.01%BPB(pH6.8))と等量混合し、この溶液 $6\mu1$ を $4\sim207\%のSDS-PAGE$ (テフコ社)にアプライし、25mA にて室温で約1時間泳動した。泳動終了後、PVDFメンブレン(ミリポア社)に4 ℃にて150mA 、45分の条件で転写した。メンブレンを<math>4%スキンミルク(明治乳業(株))で室温1時間振とうしブロッキングを行ったのち、各レーンを裁断した。各レーンを4%スキンミルクを添加した0.05%Tween20 を含む50m M Tris-HCI(pH7.2)(以下、T-TBS と記す)で500 倍に希釈した抗血滑1m1 に浸し、室温にて1時間振とうした。反応終了後、各レーンをT-PBS で2 回洗浄し、次に4%スキンミルクを添加したT-PBS で500 倍に希釈した出解PO標識抗ラットイムノグロブリン抗体(ダコ社)1m1 に浸し、室温にて1時間反応させた。T-PBS で5 回洗浄後、ECLシステム(ECL0、ECL1のではECL1ので始出した。結果を表4に示す。ウエスタンブロッティングではECL1のでがいたが検出された。

表 4 ウエスタンブロッティングにおける各抗血滑の 細胞抽出液に対する反応性

抗原ペ	抗原ペプチド 1 ProA 2 MP-A 3 MP-B 4 DC-A 5 DC-B 6 DC-C 7 DC-D	ウエスタンブロッティング
1 P	r o A	+
2 M	P - A	-
3 M	P - B	_
4 D	C - A	N.D.
5 D	C - B	N.D.
6 D	C - C	+
7 D	C - D	N.D.
8 D	ΕA	+

N.D.: 検討していない。

(5) モノクローナル抗体の作製

投与抗原(ProA、MP-B、DC-C、DEA)それぞれ 50μ g を生理食塩水 400μ 1 に希釈し、(3)(4)で抗体価の上昇が確認されたラットの尾静脈に投与した。3日後、公知方法(「単クローン抗体実験操作入門、安東民衛・千葉丈著、講談社サイエンティフィク」参照)に従い、ミエローマP3X63Ag8U.1を使用して細胞融合を行った。6日後、培養上滑を回収して、(3)の方法でプレートアッセイを行った。ここで抗原ペプチドとの反応性の得られたウェルを限界希釈法(「単クローン抗体実験操作入門、安東民衛・千葉丈著、講談社サイエンティフィク」参照)によりクローニングした。クローニング後、再度、プレートアッセイによるスクリーニングを行い、抗原ペプチドと反応する抗マウスメルトリン α モノクローナル抗体を産生ハイブリドーマ27クローンを得た。表5に得られたクローンの内訳を記した。

表 5	抗メルト	・リンペプチ	ドモノク	ローナル抗体産生ハ	イブリ	ドーマ
-----	------	--------	------	-----------	-----	-----

抗原ペプチド	ハイブリドーマ番号	ハイブリドーマ数
ProA	F 9 3 6	1 0
MP - B	F 9 3 9	4
DC-C	F 9 3 3	4
DEA	F 9 3 4	8

樹立した抗メルトリンモノクローナル抗体産生ハイブリドーマから以下の方法により精製抗体を得た。

ハイブリドーマを 1 ng/mlのヒト11.6 を含む 10 % 牛胎児血清/RPMI 16 4 0 中で培養し、 2×10 $^{\circ}$ cells/mlになった時点で無血清培地(Hybridoma-SFM、GIBCO BRL)に交換し細胞が死ぬまで培養を行った。得られた培養上清を縮紙で濾過して細胞を除去した後プロテインGカラム Prosep-G (Bioprocessing INC) を用いて精製した。すなわち培養上清 1 Lを Prosep-G カラム(2 0 ml)に 1 0 ml/min の流速で添加し、次に 0. 1 5 MのN a C 1 を含む 0. 1 Mりん酸緩衝液(pH 7. 5)でカラムを洗浄した。 2 8 0 nmの吸光度が低下した後、0. 1 Mクエン酸緩衝液(pH 3. 0)により結合したモノクローナル抗体を溶出した。溶出液の p Hを中性に戻した後、ダイアフロー(グレースジャパン社)により濃縮し、0. 4 5 %のN a C 1 を含む 0. 0 7 6 Mりん酸緩衝液(pH 6. 4)で透析した。得られた精製抗体の蛋白濃度を 2 8 0 nmの吸光度より算出した。

(6) モノクローナル抗体の評価

#9-3細胞の抽出液を使用し、(4)の方法に準じてウエスタンブロッティングを行い、(6)で得られた精製抗体7ロット(抗体濃度1

 $0\mu g/ml$)のメルトリンに対する結合活性を確認した。結果を図19に示す。F933-4-3(サブクラスIgG2a)、F933-10-26(サブクラスIgG2a)、F934-17-6(サブクラスIgG2a)、F934-3-23(サブクラスIgG2a)、F934-6-3(サブクラスIgG2a)、F934-20-5(サブクラスIgG2a)、F934-6-3(サブクラスIgG2a)、F934-20-5(サブクラスIgG2a)でそれぞれ約67k Da付近に、#9-3 細胞抽出液に特異的なバンドが検出された。L929 の抽出液ではこれらのバンドは確認されなかったことから、(6)で得られたモノクローナル抗体はメルトリンと結合していることが確認された。

実施例11: 抗マウスメルトリンモノクローナル抗体の作製

(1) 投与抗原の調製及び及びラットの免疫

#9-3細胞と#3-5細胞を投与抗原として、以下の方法でラットを免役した。投与抗原として使用した各細胞は、それぞれ、bFGF非存在下で次のように培養した。まず、約5×10° cells/直径10 cmのデイッシュの細胞を4枚から20枚に分配し、この細胞密度に達した時点で、40枚の直径15cmのデイッシュに分配し、約5~6×10° cells/デイッシュになるまで培養した。これを、分化培地(2%の馬血清を含むDMEM)で更に2日間培養し、筋管を形成させた。これらをシリコン性ラバーポリスマンで剝がし、PBSで2回洗浄した後10%DMSOを含む培地で懸濁し-80℃で保存した。

まず、初回投与として#9-3細胞、#3-5細胞をそれぞれ1×10'cells/ラットとなるよう、200 μ 1の生理食塩水に懸濁し、等量のフロイント完全アジュバント (DIFCO社) と混合し、Wistar Rat (5週令、雌)の腹腔に投与した。2週間後、同量を等量のフロイント不完全アジュバント (DIFCO社) と混合し同様に投与した。

(2) 抗血清の評価

追加投与1 週間後に眼底より採血し、抗血清とメルトリンの結合を、細胞抽出液を使用し、実施例10(3)の方法に準じたプレートアッセイにより測定した。#9-3、#3-5またはL929の細胞の細胞抽出液は実施例10(4)の方法で調整した。ただし、界面活性剤としてはNP-40(ナカライテスク社)最終濃度0.5%を使用した。

まず、各細胞抽出液をPBS で 40μ g/mlに希釈し、各 50μ l / ウェルづつイムノプレート(Maxisorp、Nunc社)に分注し、56 ℃で30分間処理し抗原を結合した。イオン交換水で5 回洗浄後、20%ブロックエース(雪印乳業社)/PBS100 μ l を各ウエルに添加し室温で30分間ブロッキングした。ブロッキング液を廃棄した後、培養上清 50μ l を添加し、37 ℃で1 時間反応後2 回洗浄液で洗浄した。次に10% ブロックエース/PB S で1000倍に希釈したHRPO標識抗ラットイムノグロブリン抗体(ダコ社)を 50μ l 添加し37 ℃で1 時間反応した。洗浄液で5 回洗浄後、さらにイオン交換水で2 回洗浄し、0.027% 過酸化水素を含む3mg/mlのオルトフェニレンジアミン/0.1Mマッキルベインバッファー(pH5.0)を 50μ l 添加し10分間反応させ、1N塩酸 50μ l で反応を停止した。吸光度計により490nm の吸光度を測定した。

また、以下の(4)に示したL4-3細胞の細胞抽出液を用いてウエスタンプロティングを行いメルトリンとの結合を確認した。結果を表 6に示した。

#9-3および#3-5で免役したラットから得られた抗血清はそれぞれの細胞抽出液と反応し、ウエスタンブロティングでメルトリンと結合することが確認された。

表 6	#9-	3及び#3	- 5 投与ラッ	ト抗血清のメルトリン	/との反応性
-----	-----	-------	----------	------------	--------

 抗血清	プレ	ートアッ	セイ	ウェスタンブロッティング		
	#9-3	#3-5	L929	L4-3		
#9-3 投与ラット	+	N. D.		+		
#3-5 投与ラット	N. D.	+	-	+		

N.D.: 検討していない。

(3) モノクローナル抗体の作製

 1×10^7 cellsの#9-3細胞、#3-5細胞をそれぞれ、生理食塩水200µ1に懸濁し、抗体価の上昇が認められたラットの腹腔内に投与し、3日後、公知方法(「単クローン抗体実験操作入門、安東民衛・千葉丈著、講談社サイエンティフィク」参照)に従い、ミエローマP3X63Ag8U.1を使用して細胞融合を行った。6日後、固相化した細胞抽出液との反応性により培養上清のスクリーニングを行った。細胞抽出液と反応の認められたウェルを限界希釈法(「単クローン抗体実験操作入門、安東民衛・千葉丈著、講談社サイエンティフィク」参照)によりクローニングし、再度上記方法でスクリーニングを行いメルトリンと反応するハイブリドーマ13クローンを得た。内訳は#9-3(δ Pro)投与ラットから5クローン(ハイブリドーマ番号F932)、#3-5(δ MP)投与ラットから8クローン(ハイブリドーマ番号F937)であった。

(4)モノクローナル抗体の評価

(3) で得られたモノクローナル抗体のうち、細胞抽出液との反応性が高かった抗体 F932-15-2 (サブクラス IgG1) と F937-9-2 (サブクラス IgG1) を用いて抗体の評価を行った。

まず、細胞蛍光染色法を用いてC 2 細胞に形成させた筋管が染色されるか検討した。C 2 細胞を $3 \times 10^+$ c e l l s/ml となるように 10% F C S/DM E Mに懸濁し各 100 μ l を 5% C O 2 下で2 日間培養後培地を 2% 馬血清/DM E Mに交換し2 日後に形成された筋管を用いて細胞染色を行った。細胞を P B S で2 回洗浄後、 4% ホルムアルデヒドを添加し室温で 30% 間反応させ細胞を固定した。次に P B S で3 回洗浄後 20% ブロックエース/T - P B S で 10μ g/ml に希釈した抗体を添加し室温で 10% で 10% を 10% で 10% で

入し、L8-5 (Meltrin α δ Proを発現)を単離した。

各細胞はコラーゲンコートしたデイッシュ中で10%FCS/DME Mにより培養し、チャンバースライドに継代した。L929、L4-3、L2-10、L8-5を用いて特異性の確認を細胞染色により行った。結果を表7に示した。この結果により、F932-15-2 はメルトリン α および β と、F937-9-2 はメルトリン α と結合するものと考えられた。

尚、モノクローナル抗体F932-15-2を産生するハイブリドーマは、日本国茨城県つくば市東1丁目1番3号(郵便番号305)の工業技術院生命工学工業技術研究所特許微生物寄託センターにブタペスト条約に基づき1996年10月3日付で寄託した(受託番号BP-5687)。

表 7

細胞	発現	F 932-15-2	F 937-9-2
L 9 2 9	-	_	_
L 4 - 3	α, β	+	+
L 2 - 1 0	β	+	_
L 8 - 5	α (δ Pro)	+	+

(5) 中和活性の測定

(3)で得られたモノクローナル抗体の中和活性を確認するため、C 2細胞の筋管の形成を抑制するか否かを検討した。C 2細胞を10%F CS/DMEMでコラーゲンコートディッシュで培養し80%コンフルエントになったとき、0もしくは 400μ g/mlの抗体を含む2%馬血清/DMEMに培地を交換し、筋管が形成されるか観察し、筋管中の

核の割合を算定した。図 2 0 に示すように 2 日後の筋管形成は抑制され F932-15-2 および F937-9-2 ともに中和活性を有していた。

実施例12: メルトリン中和抗体のマウス全骨細胞における骨吸収窩 形成抑制作用

13日齢 ICR マウスより摘出した大腿骨および頚骨を 5 % 牛胎児血清含有 MEM α 培地(GIBCO) 中で細切した。 2 分間静置して沈んだ骨片を除去後、上清の細胞浮遊液を 1×10^7 cells/mlに調整し、象牙片をセットした96穴マイクロプレートに100 μ 1 ずつ添加した。象牙片は、象牙を薄切し6mm 径に打ち抜いた後、 7 0 % エタノールで洗浄、滅菌したものを用いた。実施例 1 1 で得られたマウスメルトリン中和抗体(F932-15-2)あるいはラット IgGを、終濃度がそれぞれ5、50、500 μ g/mlとなるように 5 % 中胎児血清含有 MEM α 培地で希釈し、各ウェルに 100 μ 1 ずつ添加した。 5 % CO $_2$ 下 $_3$ 7 $_4$ にて $_3$ 日間培養した後、ポリスマンで細胞を除去し、酸ヘマトキシリン溶液(SIGMA)で約7分間染色した後、染色された吸収窩を接眼ミクロメーターを用いて顕微鏡下計数した。計数は吸収窩の含まれるマス目をカウントした。

結果を図21に示す。図から明らかなように、形成された吸収窩数はマウスメルトリン中和抗体により用量依存的に抑制された。 この結果より、メルトリン中和抗体が破骨細胞に直接あるいは間接的に作用し、骨吸収を抑制することが示唆された。

実施例13: 骨吸収亢進モデルマウスにおけるメルトリン中和抗体の 血滑Ca値低下作用

7週齢ICR 雄性マウスにCa含有量0.02%以下の低Ca食を与えて5日間

飼育した。これを1群 5匹として、実施例11 で作製したマウスメルトリン中和抗体(F932-15-2)を0.1、1mg/匹、あるいは対照としてラット1gGを1mg/匹あるいはリン酸緩衝生理食塩水のみを尾静脈注射により投与した。投与前および1日後に眼下静脈より採血し、血清分離後にカルシウム測定用キット(カルシウム1R-1I、和光純薬)を使用し、自動分析装置(COBAS FARA II、ROCHE)で血清中Ca值を測定した。結果を図22 に示す。

図から明らかなように、投与1日後のマウスメルトリン中和抗体投与 群の血清Ca値は、リン酸緩衝生理食塩水あるいはラットIgG 投与群に比 べて低値を示した。これらの結果から、メルトリン中和抗体は副甲状腺 機能の亢進や悪性高Ca血症などにより病的に亢進した骨吸収を抑制する ことが示唆された。

実施例 1 4 : <u>膜貫通領域を含むヒトメルトリンαをコードする c D N</u>A 断片の取得

実施例 8 で得られたヒトメルトリン α c D N A 部分配列をもとに、センスプライマーS - hMel α - T M 5 $^{\prime}$ (表 1 参照)を、マウスメルトリン α c D N A をもとに、アンチセンスプライマーA - mMel α - 3 $^{\prime}$ (表 1 参照)を合成した。

ヒト胎盤 λ gt 11 c D N A ライブラリー(クローンテック社 code No. CLHL 1008b)を鋳型とし、先に合成した S - hMel α - T M 5 $^{\prime}$ 、 A - mM el α - 3 $^{\prime}$ プライマーと、 Ex Taq ポリメラーゼ(TaKaRa)、およびその反応試薬(TaKaRa)を混合し、D N A サーマルサイクラー(パーキン・エルマー社)にて 9 4 $^{\circ}$ で 5 分間加熱後、 9 4 $^{\circ}$ で 3 0 秒間、 5 5 $^{\circ}$ で 3 0 秒間、 7 2 $^{\circ}$ で 1 分間反応させ、この操作を 3 5 サイクル行った。得られた増幅断片(clone T M)の塩基配列を解析したところ、マウ

スメルトリンの膜貫通領域を含む約220アミノ酸に対応するヒトcD NA断片であることが予想された。

得られた塩基配列および対応するアミノ酸配列を図23a~図23b に示した。

実施例 15: 急性毒性試験

7週齢ICR雄性マウスを1群5匹とし、実施例11で作製した抗マウスメルトリン中和抗体(F932-15-2)を、それぞれ1mg/匹、3mg/匹の用量で各群のマウスに投与した。またコントロール群にはリン酸緩衝生理食塩水を投与した。投与後、各群のマウスの状況を観察したが、いずれの群においても、著しい体重減少や顕著な副作用、死亡例は認められなかった。

参考例! ヒトメルトリンを認識するモノクローナル抗体の作製

(1) ヒトメルトリン由来のアミノ酸配列を有するペプチドを抗原とした抗体の作製

実施例10の結果を参考にして、実施例8で得られたヒトメルトリン α のアミノ酸配列からDC-Cに相当する部分の配列GKVSKSSFAKCEMRDAKCを実施例10(1)と同様に合成し、精製後マレイミド化KLHと結合し投与抗原を調製した。投与抗原20 μ gを0.1mlの生理食塩水に溶解し等量のFCAと混合してddyマウス(5週齢、メス)に投与した。2週間後同量をFLAと混合後投与した。1週間後眼底より採血し抗血清を得た。得られた抗血清のペプチドとの反応性を測定するため、実施例10(3)にしたがって抗血清を評価したところ投与したペプチドと特異的に反応した。したがって、該ペプチドを投与抗原として、マウス、ラット、ハムスター等を免疫し、実施例10

(5) の方法でモノクローナル抗体を作成することができる。また、このような抗体はウエスタンブロッティングにも使用することができる。

なお、図15a~図15fに示したアミノ酸配列は可溶型のメルトリンαであると予想されるので、C末端付近のアミノ酸配列から作製したペプチドを抗原とした場合には、生体内の可溶型メルトリンを測定するのに有効な抗体を得ることができる。

同様に、図17a ~図17c もしくは図13a ~図13d で示したアミノ酸配列から適当な部位を選択して、そのアミノ酸配列を有するペプチドを化学合成し、それで動物を免役することにより、それぞれヒトメルトリン β 、ヒトメルトリン γ を認識する抗体をえることができる。いずれの場合もアミノ酸配列は、細胞外領域から選択する。

また、 α 、 β 、 γ にそれぞれ特異的な抗体を作製する場合には、当然のことながら、3者でホモロジーの低い部分を選び出し、その部分に相当するアミノ酸配列を有するペプチドを合成して、実施例10(2)と同様に動物を免役する。動物としては、マウス、ラット、ハムスターが適している。

上記いずれの場合も、モノクローナル抗体は、実施例10(5)と同様の方法で作成する。

(2) ヒトメルトリン発現細胞を抗原とした抗メルトリンモノクローナ ル抗体の作成方法

図15a~図15fに示したアミノ酸配列のメタロプロテアーゼ領域 もしくはディスインテグリン領域からシステイン・リッチ領域までの配 列の下流に、図23a~図23bに示したアミノ酸配列の膜貫通領域以 降のアミノ酸配列が融合したアミノ酸配列をコードするDNAを作製し 、発現ベクターpEFBOSに組み込み、得られたベクターでC2細胞

同様に図17a~図17cに示したアミノ酸配列もしくはディスインテグリン領域以降の配列をコードするDNAを作製し、発現ベクターpEFBOSに組み込み、得られたベクターでC2細胞を形質転換する。得られた形質転換を実施例11(1)と同様に処理し、それを抗原として動物を免役する。動物は、ラット、マウス、ハムスターが適している。実施例11(2)と同様の方法で、目的とするヒトメルトリン β を認識する抗体をスクリーニングし、実施例11(3)と同様にモノクローナル抗体を作製する。

同様に図13a~図13dに示したアミノ酸配列もしくはディスインテグリン領域以降の配列をコードするDNAを作製し、発現ベクターpEFBOSに組み込み、得られたベクターでC2細胞を形質転換する。得られた形質転換を実施例11(1)と同様に処理し、それを抗原として動物を免役する。動物は、ラット、マウス、ハムスターが適している。実施例11(2)と同様の方法で、目的とするヒトメルトリン β を認識する抗体をスクリーニングし、実施例11(3)と同様にモノクローナル抗体を作製する。

配列表

SEQ ID NO: 1

1		١.	CECLIENICE	CHARACTERI	CTLCC.
1	. 1	,	SEQUENCE	CHARACIERI	211 (2):

- (A) LENGTH: 6915 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JMI09(pBSMela)
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 1:

GCCAGAGTAG CGCGCGCGC CACGCACACA CACGGGGAGG GGAGAAAGTT TTTTTTTGAA	60
AAAATGAAAG GCTAGACTCG CTGCTCAGCG ACCCGGGGGC TGCGCGAGGG GGTCGCGGCA	120
GACTCAGGGC AGTAGGACTT CCCCCAGCTC GCCGCCCGCG TGGGATGCTG CAGCGCTGGC	180
CGCGGGGCCC CCGAAGCAGC TGCACGCCAG GCCGGCGACA ATG GCA GAG CGC CCG	235
Met Ala Glu Arg Pro	
CCG CGG CGC CCC CCC CCC CCC CCC CTC CTG CTG	283
Ala Arg Arg Ala Pro Pro Ala Arg Ala Leu Leu Leu Ala Leu Aia Gly	
CCC CTG CTG GCG CCC CGT GCA GCC CGA GGG ATG AGT TTG TGG GAC CAG	331
Ala Leu Leu Ala Pro Arg Ala Ala Arg Gly Met Ser Leu Trp Asp Gln	
AGA GGA GCT TAC GAA GTG GCC AGA GCC TCC CTT CTG AGC AAG GAC CCT	379
Arg Gly Ala Tyr Glu Val Ala Arg Ala Ser Leu Leu Ser Lys Asp Pro	

GGG ATC CCA GGA CAG AGC ATC CCA GCC AAG GAT CAT CCA GAC GTG CTG	427
Gly Ile Pro Gly Gln Ser Ile Pro Ala Lys Asp His Pro Asp Val Leu	
ACT GTG CAA CTG CAG CTG GAG ACC CGA GAC CTG ATC CTC AGC CTG GAA	475
Thr Val Gin Leu Gin Leu Glu Ser Arg Asp Leu Ile Leu Ser Leu Giu	
AGG AAT GAG GGA CTC ATT GCC AAT GGC TTC ACG GAG ACC CAT TAT CTG	523
Arg Asn Glu Gly Leulle Ala Asn Gly Pho Thr Glu Thr His Tyr Leu	
CAA GAT GGT ACT GAT GTC TCT CTC ACT CGA AAT CAC ACG GAT CAT TGT	571
Gin Asp Gly The Asp Val See Leu The Arg Asn His The Asp His Cys	
TAC TAC CAT GGA CAT GTG CAA GGA GAT GCT GCA TCA GTG GTC AGC CTC	619
Tyr Tyr His Gly His Val Gln Gly Asp Ala Ala Ser Val Val Ser Leu	
AGT ACT TGC TCT GAT CTC CGG GGA CTT ATC ATG TTT GAA AAT AAA ACG	667
Ser Thr Cys Ser Asp Leu Arg Cily Leu ile Mot Phe Glu Asn Lys Thr	
TAC AGC TTA GAG CCA ATG AAA AAC ACC ACT GAC AGC TAC AAA CTC GTC	715
Tyr Ser Leu Glu Pro Met Lys Asn Thr Thr Asp Ser Tyr Lys Leu Val	
CCA GCT GAG AGC ATG ACG AAC ATC CAA GGG CTG TGT GGG TCA CAG CAT	763
Pro Ala Glu Ser Met Thr Asnile Gln Gly Leu Cys Gly Ser Gln Hús	
AAC AAG TCC AAC CTC ACC ATG GAA GAT GTC TCC CCT GGA ACC TCT CAA	811
Asn Lys Ser Asn Leu Thr Met Glu Asp Val Ser Pro Gly Thr Ser Gln	
ATG CGG GCA AGA AGG CAT AAG AGA GAG ACC CTT AAG ATG ACC AAG TAC	859

AAA GAC CTG GAG AAA GTT AAG CAG CGA TTA ATA GAG ATC GCC AAT CAC Lys Asp Leu Glu Lys Val Lys Gln Arg Leu lle Glu lle Ala Asn His GTT GAC AAG TTT TAC AGA CCA CTG AAC ATC CGG ATC GTG CTG GTA GGA Val Asp Lys Phe Tyr Arg Pro Leu Asn lle Arg lle Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Asn Asp lle Asp Lys Gys Ser lle Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys lle Lys Leu Leu CCT CGA AAA TGC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala		Туг	Ly s	Thr	Met	Lys	Leu	Thr	Glu	Ar g	Ly s	His	, Arg	Arg	Ala	Ar g	Met
AAA GAC CTG GAG AAA GTT AAG CAG CGA TTA ATA GAG ATC GCC AAT CAC Lys Asp Leu Glu Lys Val Lys Gln Arg Leu lle Glu lle Ala Asn His GTT GAC AAG TTT TAC AGA CCA CTG AAC ATC CGG ATC GTG CTG GTA GGA Val Asp Lys Phe Tyr Arg Pro Leu Asn lle Arg lle Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Asn Asp lle Asp Lys Cys Ser lle Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys lle Lys Leu Leu CCT CGA AAA TGC CAC GAC AAT GCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GGA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Mét Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGC ATG AAC 1296 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGC ATG AAC 1296 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGC ATG AAC 1296	90	. GGA	CAA	AGG	CAG	TTT	GAG	A GA	: AAC	GAC	GCA	GT _C C	ТТА	ണ	cro	GAC	GTA
CTT GAC AAG TTT TAC AGA CCA CTG AAC ATC CGG ATC GTG CTG GTA GGA Val Asp Lys Phe Tyr Arg Pro Leu Ash II e Arg II e Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Ash Asp II e Asp Lys Cys Ser II e Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys II e Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Ash Ala Gln Leu II e Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr II e Gly Met Ala Pro II e Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GCG ATG AAC 1296 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GCG ATG AAC 1296 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GCG ATG AAC 1297		Gl y	Gin	Ar g	Gln	Phe	Gl u	Ar g	As n	As p	Al a	Val	ile	Val	Le u	Gl u	Val
GTT GAC AAG TTT TAC AGA CCA CTG AAC ATC CGG ATC GTG CTG GTA GGA Val Asp Lys Phe Tyr Arg Pro Leu Ash lle Arg lle Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Ash Asp lle Asp Lys Cys Ser lle Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys lle Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Ash Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT 1243 Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1294	95	CAC	AAT	GCC	ATC	GAG	АТА	T TA	CGA	CAG	AAG	CIT	; AAA	GAC	стс	GAC	AAA
Val Asp Lys Phe Tyr Arg Pro Leu Asn He Arg He Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Asn Asp He Asp Lys Gys Ser He Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys He Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu He Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr He Gly Met Ala Pro He Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC ACC CCC CTT GGT Glu Glu Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291		His	As n	Al a	lle	Glu	lle	Leu	Ar g	GI n	Lys	Val	Lys	Gl u	Leu	As p	Lys
Val Asp Lys Phe Tyr Arg Pro Leu Asn He Arg He Val Leu Val Gly GTG GAA GTG TGG AAT GAC ATC GAC AAA TGC TCT ATA AGC CAG GAC CCA Val Glu Val Trp Asn Asp He Asp Lys Gys Ser He Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys He Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu He Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr He Gly Met Ala Pro He Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC ACC CCC CTT GGT Glu Glu Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291 GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291	100:	GGA	GTA	CTG	GTG	ATC	CGG	ATC	AAC	стс	CCA	AGA	TAC	TTT	AAG	GAC	GTT
Val Glu Val Trp Asn Asp lle Asp Lys Cys Ser lle Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys lle Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT GCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291																	
Val Glu Val Trp Asn Asp lle Asp Lys Cys Ser lle Ser Gln Asp Pro TTC ACC AGG CTC CAT GAG TTT CTA GAC TGG AGA AAG ATA AAG CTT CTA 109 Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys lle Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT GCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291	105	CCA	CAC	CAC	ÁCC	474	TCT	TCC		CAC	4 TC	CAC	ΛΛΥ	TCC	CTC.	CAA	crc
Phie Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys Ile Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu Ile Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA 1198 Gln Gly Thr Thr Ile Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT 1243 Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1298	1051																
Phie Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys Ile Lys Leu Leu CCT CGA AAA TCC CAC GAC AAT CCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu Ile Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA 1198 Gln Gly Thr Thr Ile Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT 1243 Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1298																	
CCT CGA AAA TCC CAC GAC AAT GCT CAG CTT ATC AGT GGG GTT TAT TTC 114 Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1298	1099																
Pro Arg Lys Ser His Asp Asn Ala Gln Leu lle Ser Gly Val Tyr Phe CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA Gln Gly Thr Thr lle Gly Met Ala Pro lle Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT Glu Glu Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1293				2, 0		2, 2	6										
CAA GGA ACC ACC ATC GGC ATG GCA CCC ATC ATG AGC ATG TGC ACT GCA 1193 Gln Gly Thr Thr Ile Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT 1243 Glu Glu Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1293	1147	TTC	TAT	CTT	GGG	ACT	ATC	CTT	CAG	CCT	AAT	GAC	CAC	TCC	AAA	CGA	CCT
GIN GLY THE THE ILE GLY MET ALA PRO ILE MET SEE MET CYS THE ALA GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT I243 GLU GLU SEE GLY GLY VAL VAL MET ASP HIS SEE ASP SEE PRO LEU GLY GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1293		Phe	Туг	Val	Gl y	Ser	lle	Leu	Gln	Al a	As n	As p	His	Ser	Lys	Ar g	Pro
GAA CAG TCT GGA GGA GTT GTC ATG GAC CAT TCA GAC AGC CCC CTT GGT 1243 GLu Glu Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1293	1195	GCA	ACT	TGC	ATG	AGC	ATG	ATC	CCC	GCA	ATG	GGC	ATC	ACC	ACC	GGA	CAA
GLU GLU Ser Gly GLY Val Val Met Asp His Ser Asp Ser Pro Leu GLY GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291		Al a	Γhr	Cy s	Met	Ser	Met	lle:	Pro	Ala	Me t	Gl y	lle	Thr	Thr	Gl y	Gl n
GCC GCA GTG ACC TTG GCA CAT GAG CTG GGC CAC AAC TTC GGG ATG AAC 1291	1243	GGT	CTT	CCC	AGC	GAC	TCA	CAT	GAC	ATG	стс	GTT	GGA	GGA	TCT	CAG	GAA
		Gl y	_e u	Pr o	Ser	As p	Ser	His	As p	Met	Va I	Va l	Gl y	Gl y	Ser	Gl n	Glu
	1261	AA C	^ TC	ccc	TTC	AAC :	CAC	ccc	C TC	CAC	CAT	CCA	TTC	۸۵۵	CTC.	CCA	ccc
are real are are are and are only the rine only incertain	1291																

CAT GAC ACA CTG GAG AGG GGC TGC AGG TGC AGA ATG GCC GCA GAG AAA His Asp Thr Leu Glu Arg Gly Cys Ser Cys Arg Met Ala Ala Glu Lys	1339
GGA GGC TGC ATC ATG AAC CCG TCC ACG GGG TTC CCA TTC CCC ATG GTG Gly Gly Cys lle Met Asn Pro Ser Thr Gly Phe Pro Phe Pro Met Val	1387
TTC AGC AGC TGC AGC AGG AAG GAC CTG GAG GCT AGC CTG GAG AAG GGC Phe Ser Ser Cys Ser Arg Lys Asp Leu Glu Ala Ser Leu Glu Lys Gly	1435
ATG GGG ATG TGC CTC TTC AAC CTA CCA GAG GTC AAG CAG GCC TTT GGG Met Gly Met Cys Leu Phe Asn Leu Pro Glu Val Lys Gln Ala Phe Gly	1483
GCC CGG AAG TGT GGA AAT GGC TAT GTG GAA GAG GGA GAA GAG TGT GAC Gly Arg Lys Cys Gly Asn Gly Tyr Val Glu Glu Gly Glu Glu Cys Asp	1531
TGC GGA GAA CCG GAG GAA TGC ACG AAT CGC TGC TGT AAC GCT ACC ACC Cys Gly Glu Pro Glu Glu Cys Thr Asn Arg Cys Cys Asn Ala Thr Thr	1579
TGT ACT CTG AAG CCA GAT GCT GTG TGC GCG CAC GGG CAG TGC TGT GAA Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Gln Cys Cys Glu	1627
GAC TGT CAG CTG AAG CCT CCA GGA ACT GCA TGC AGG GGC TCC AGC AAC Asp Cys Gin Leu Lys Pro Pro Gly Thr Ala Cys Arg Gly Ser Ser Asn	1675
TCC TGT GAC CTC CCA GAA TTC TGC ACA GGG ACT GCC CCT CAC TGT CCA Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Thr Ala Pro His Cys Pro	1723
GCC AAT GTG TAC CTA CAT GAT GGC CAC CCG TGT CAG GGC GTG CAT GGT Ala Asn Val Tyr Leu His Asp Gly His Pro Cys Gln Gly Val Asp Gly	1771

TA	с тсс	C TAC	CAAC	GGC	ATC	TGC	CAG	ACC	CAT	` GAC	CAC	CAC	т та	r cro	CACG	1819
Ту	r Cys	Туг	Ašn	GI y	Πé	Cy s	GIn	Thr	His	-Glu	Gl ⁻ n	Gl n	Cy s	Va I	Thr	
СТ	с тсс	G GGA	CCA	CGT	CCT	AAA	CCG	GCT	CCT	GGC	ATC	TGC	TTT	GAC	CGA	1867
Le	u Trp	Gly	Pro	GIy	Al a	Ly s	Pr o	Al a	Pr o	Gl y	lle	. Cys	Phe	Glu	Ar g	
GT	C AAC	тст	GCA	GGA	GAT	ССТ	TAT	GGT	AAC	TOT	GGC	AAA	GAC	тсс	AAG	1915
Val	Asn	Ser	Al a	Gly	As p	Pr o	Tyr	Gl y	As n	Cy s	Gl y	Lys	Asp	Ser	Ly s	
AG	C GCC	TTC	GCC	AAA	TCT	GAG	CTG	AGA	GAT	GCC	AAG	TGT	GCC	AAA	ATC	1963
Sei	- Ala	Phe	Al a	Lys	Cy s	Glu	Leu	Ar g	As p	Al a	Lys	Cy s	Gl y	Lys	lle	
	ं रहा															2011
Glr	Cy s	Gln	Gl y	Cly	Al a	Ser	Ar g	Pr o	Val	Пе	Gl y	Thr	Asn	Al a	Val	
	C ATA															2059
Ser	lle	Glu	Thr	As n	lle	Pro	Gin	Gln	Glu	Gl y	Gl y	Ar g	lle	Leu	Cy s	
001			~.~													
	GGG															2107
Arg	G) y	ınr	ru s	Va!	lyr	Leu	Gly	Asp	As p	Met	Pro	As p	Pr o	Giy	Lev	
CT (. (4141	CCA	CCA	464	440	тт	CC4	C4.4	CCA		4.00	TCC	~	4 4 T	COT	0.155
	CTT Leu															2155
vai	Leu	74 4	O ₁ y	1111	Lys	Cys	71 E	Giu	Сау	Lys	116	Cys	Leu	ASII	₩. B	
CGA	TCT	CAG	ΑΔΤ	ΔΤΟ	ACT	CTC.	TTC	ccc	CTT.	CAC	AAC	тст	CCC	ATC	CAG	2203
	Cy s															2203
, u 8	·) .	G, II	rsa II	116	261	7 a l		OI y	val	. u .	Lys	C.J. 3	~u 4	WEL	Gi II	
TGC	CAC	GGC	CGA	GGG	GTA	тст	AAC	AAC	AGG	AAG	ЛАТ	TGC	CAC	TGT	GAA	2251

Cys Hus Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys Hus Cys Glu GCC CAC TGG GCT CCA CCC TTC TGT GAC AAG TTT GGC TTT GGA GGA AGC 2299 Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly Gly Scr ACA GAC AGT GGT CCC ATC AGG CAA CCA GAT AAC CAG GGC TTG ACT GTA 2347 The Asp Ser Gly Pro IIe Arg Gln Ala Asp Asn Gln Gly Leu The Val GGA ATC CTG GTG AGC ATC CTG TGT CTG CTT GCT GCT GGA TTT GTG CTG 2395 Gly 11e Leu Val Ser Ite Leu Cys Leu Leu Ala Ala Gly Phe Val Val TAT CTC AAA AGG AAG ACG TTG ATG CGG CTG CTG TTC ACA CAT AAA AAA 2443 Tyr Leu Lys Arg Lys Thr Leu Met Arg Leu Leu Phe Thr His Lys Lys ACC ACC ATG GAA AAG CI'A AGG TGT GTG CAC CCT TCC CGG ACA CCC AGT 2491 Thr Thr Met Glu Lys Leu Arg Cys Val His Pro Ser Arg Thr Pro Ser GGC CCT CAC CTT GGC CAG GCT CAC CAC ACC CCC GGG AAA GGC CTG CTG 2539 Gly Pro His Leu Gly Gln Ala His His Thr Pro Gly Lys Gly Leu Leu ATG AAC CGG GCA CCA CAT TTC AAT ACC CCC AAG GAC ACG CAC TCG CTG 2587 Met Asn Arg Ala Pro His Phe Asn Thr Pro Lys Asp Arg His Ser Leu AAA TOC CAG AAC ATG GAC ATC AGC AGG CCC CTC GAC GCT CGA GCC GTC 2635 Lys Cys Gin Asn Met Aspille Ser Arg Pro Leu Asp Ala Arg Ala Val CCA CAG CTT CAG TCA CCT CAG CGA GTG CTC CTG CCT CTC CAC CAG ACC 2683 Pro Glin Leu Glin Ser Pro Glin Arg Val Leu Leu Pro Leu His Glin Thr

nunnann uup

CCA	CCT	GCA	CCC	AGT	CCC	CCT	GCC	AGG	CCC	CTG	CCC	GCC	AGT	CCT	GC4	2731
Pro	Ar g	Al a	Pr o	Ser	Gl y	Pr o	Al a	Ar g	Рго	Leu	Pro	Al a	Ser	Pr o	Al a	
стс	AGG	CAG	GCC	CAG	CCC	ATT	CGA	AAA	CCC	AGT	ССТ	ССТ	CAG	AAG	ССТ	2779
Val	Ar g	Ci n	Al a	CI n	Gły	lle	Ar g	Lys	Pro	Ser	Pro	Pro	Gl n	Ly s	Pr o	
СТG	ССТ	GCT	GAT	CC.A	CTG	AGC	AGG	ACT	тст	CGG	стс	ACT	AGT	CCC	TTG	2827
Leu	Pr o	Al a	As p	Pr o	Lev	Ser	Ar g	Thr	Ser	Ar g	Leu	Thr	Ser	Ala	Leu	
стс	AGG	ACC	CCA	GGG	CAG	CAG	GAA	ССТ	GGG	CAC	CGC	CCA	GCC	CCC	ATC	2875
Val	Ar g	Thr	Pro	Gl y	Cl n	Gl n	Glu	Pro	Gly	Hi s	Ar g	Pro	Al a	Pr o	11 e	
AGA	CCT	GCC	ССТ	AAG	CAT	CAA	GTA	CCC	AGA	ССТ	TCC	CAC	AAT	CCC	TAT	2923
Ar g	Pr o	Al a	Pro	Ly s	His	Gln	Val	Pr o	Ar g	Pro	Ser	His	Asn	Ala	Туг	
ATC	AAG	TGA	GAAG	CCA (CCC.	AGAC(ാദ ന	гссто	CAAC	A CTO	GAAG	AC.AG	AAG	rttc	CAC	2979
lle	Lys															
TAT	стс	AGC '	TCCA	TTGG	AG T	rgrte	mc	T AC	CAAC	ттс	CGA	TTT	CTA /	4ACT	STTTAA	3036
AAC	ACCA	TTC	тсто	CAGA	cc c	TGGA	GCCA(C TG	CCAT	CGGT	GCT	TGC	rgt (GCTC	TITTGT	3099
GTA	CTTG	стс	AGGA	ACTT	CT A	AGTT	ATTA	A TT	TATG	CAGA	ന്ദ	CTA	TTA (CTGC	GCAGGG	3159
CGC	CGTA	GCA	GGCA	TTTG	TA C	CATC	ACAG	G GC	rttt	CTAC	AG4	AGGA/	AGG (стсс	rcarga	3219
TTT	тстт	T TT	стсс	AGGA	стт	GAAA'	TACC	СТС	CTTG	ATGG	GAC	CTAA	GAT (GAGA'	rgttta	3279
СТТ	TCTA	TTC	AAGG	CCTT	AT C	GGAA	AATA	G CT	cccc	ACCT	TCC	CAAG	GCT	GTTA'	TGGTAC	3339
CAC	ACAC	ACA	GCTC	AGGA	CA C	CCCA	GGGA	G AA	ссто	GCAT	CCC	ידנדו	CTT '	rarr	rgcttt	3399
CAT	ТТТА	тст	TTTA	TATT	TT G	GTAT	СССТ.	а тс	TTGG	GTTG	TAG	CCAG	GCC	сттс	AGGAAG	3459
GTC	TTGC	GCC	ACTO	CATO	CT A	ATGG	ССТТ	C AG	стсс	TGCA	CCC	rgaa(GCT	CTCA	GACAAC	3519
AAC	TAGO	ATC	TGCT	ттст	AG C	CAGC	AGCT	т тс	GAGA	GAAC	сто	CCCT	ACT	GAAA.	AGAAGG	3579
דדד	GGGC	រាជា	CCTT	ATAC	CA G	GATG	GAGA	с тс	GAAT	ССТА	ATC	TGGG	CAA .	ACAT	CTGACC	3639

TTGAGCTGAG CACCCATGAG CACCTCTAGG AAGCAAGGAC GGCTGAGGTG CTGCACAAGG	3699
CTCTGCTTTG AGAGCTGGCA GGGGCTTCTC TCTGGCTGCC CTTTGCAGAG TGCTAGCTGC	3759
CATGGCATGT TGTTTACATC GGGAACAGTG GTGTTTCTAC AAGAAAGCCA CTGCCTGGGG	3819
ACTGCAGACC TCCGTCTCCT GCCCATTTAG AGCTAAGCAA ATTACCACAT TGTCTTCTGG	3879
ACTGTAATAC AATGACCCTG TGTTCTGACA GATAGAGGAG GCTTTCTATG GAACCATAAC	3939
TATTTCANA TOTGAACTAG TAACCAGATC TAGTCGATCA ACTCTCGAGA TAGAAATCTC	3999
CITTTTACTG CAAGGCTCGA CTTATTAAAA ATTAGGCAGA ATCCATATGC TTGCAAAAGC	4059
TATAACCACG TGGAATGCTC TTCTCATGGC ACAGCCTGAG TCTGGTATCC TTATTAGTAG	4119
CCATTGGACA AAGCACCCAA AGTTACCTGT GTGTTCTCTT CAAGGCATCC TAATTTCTTC	4179
ACCATAGAGA GACTEGGTET TECTEACATT ETGAACATAE ETATEAATGA ETAAGNEAGE	4239
AAGGCAATCC GTTTCCGAAT ACTGAGTTGC TCACGGNAAG GCAACCTCAG CCCAGGNAAA	4299
CTTTTTCCT CTGNTCTTTC AGFATGTGAC TGGGGGGGCTA CCTTCAGAAG CAAATTTCA	4359
AGGTGGNCTC AACCCCATNG GATGAAAGNT ATTTTTTTAA AAAATAATTA ATGGTAATGC	4419
CAGAGGGCTT TCCTGGCNTC CAGATNGGGG CGTAGGNTTG ACTAGCTTTC ACGACAGAAG	4479
GTAAATGACA GCAGTCCTCT ACCTCGTCTG ACTGCTTTAA GATCAAGGCT TCTTTGGAAG	4539
GGTAACTAAC ATTAATGGCT GGCCTGTGCC TTGAAGCAGA AGGGAAAATA CAGATAAGGA	4599
ATTTGGTTTG CTTTCTAGAA TCCAAAACTG TATCCAGCAT TGGGAAGCAT GGTCTTCATG	4659
ACTGGGTAAA TAAATCCACG TCACAGATGC ATAAAAGAAT AACTCTTATG ACATCCCTCT	4719
TTTTGTGGCA CAGAGACAAT ATTGCTGCCA CTGAGATGCA TACAAAATTT CTGTAACTGA	4779
TATGTCATTC AGTAGTTGTA TTAAGGCCAA ACATCCACAA CTGTAAAGAC TTATAGAGTT	4839
CTCTCCCCT TCTCTTCTGA GACACACAAA GCCTCAGCTG AAGCCTATGA GCTCCTCCTC	4899
CAGGTGGGAG TGATGGGGAG GCTAGAAACA CACAAAGACA ACAGAAGACC TTTGGTTTGG	4959
GGGGGGTGCA GAGAGAGTGT GGTTTAGAGG AAGTTGGAGC CATGATCTTC TGCCATCTCC	5019
CCAGTGTCCA CTAAGGATGC CGATGGTGCC TTACCAGCTG TGCAGTGCTG GCTGCTTGCT	5079
TTTACAGAGC CATGCATTCA TTTCTGAATA AGAACATATT TAATCCTGAA ATTCCCTTAC	5139
AGGACAGACA GTGTTACTAA AGGAATTCCT CTAAGATACA GTAGTTGTCA ATTAAAGCAT	5199
ATTTAGCAGT AACTTCAATT TTAACAAAAT TGGGACCCAA TAGCCAGCAT GAGGGTTCTT	5259
TGACAGAGGG TAGTTTCTCT CTCCCTTTCT CCATCCTTCA AATGACAAGA CCTCAAAACT	5319
AATACAGTTC ATTTGCAGTC CATCTCATGC TTATACATAC TAGAGGTATG ACTAAAGTTG	5379

GTTGAGTCAT GGGAGACCAT CCCTGAGAAA GTCCAGTCGG TCAAGAGCCT TGCCAGGTGG	5439
CGTGGCTGGA CGTCCTCCTT TTGTTCCTGC ACTGAGGAAT AGTTATAGGT TATGTGACCC	5499
CACTTCACAG GCAAGTGGGA GCCGAACCTT GCAGGCATGC CCCTTAAAAG CTGGTCTCAG	5559
ACCTACAATA GTCCTGAGTC TGFTTTCCCA GCACACAGAG AGCAACAATG CAGTTTTCCA	5619
TTTCAAAATA TGCATGCCGA GTTTGCCCCTC TGTGTGAGTG TTTCCAGGTT ACACATATGG	5679
GATGACATCA CAGAAACCAC ACAAGCAACA AATTAAATTC TACGGGAAGA AATCETCCTG	5739
ACTIGOTICTET GAGGAGACAT TTTTATGCCT TCTTAACTTT ATTAGGAACT CTCAGGCTGA	5799
AGCTAGGGGT CATTGTCCCC CAACAAATCA ATACAAAGCC ATCAATGNAC TCTCGAAGAA	5859
CTGCCAAACC CTGATCTGTG TGAATGTTCT CAGGAGCCTG TGATCCCCCAT GGTGCTANAA	5919
AGAGGCTGGA GCTGGGCCAA CAAGAAGGCC TAAGAGTCCT CCTGCCTCTC AGCAGATGTT	5979
TACTGAGCAC TCTGAGCCAG AAGCACCCCG ACAACCAGGA GGACGATNGC TCGGCAGTAG	6039
GGCGCCCAGC CACTTGCAGC TCTTTCCTCT GAGGCCCGCT TTGTGTTTTA ATTCCCTTCT	6099
GTCAGGCCCC AANCAGNGGA CACTGTCCTA TAGACCTCCC TCTNAGTTTT CAGACGGCCT	6159
AAGCCATACA CAAATGCCCC AGACTAAGAA ACACCAATAC NTCCCAGCAG TCCCCCAAGAA	6219
CTGGTTTTTA AACACTATGA CAAGTAGAAG AGGGTGTCAC AGAGGCCATT TTTTTTCTTT	6279
TCTTTCCACT CATACTGGAA CCTAGGTCCT CTCTCTACAC TCCTAGTTCC TTTACACAAC	6339
TCGGCAGTGG CTCCATTACA CCAAGGACAC AGAAAAACAC AGGTACCGAT TTGCCTTCCT	6399
CTCCTGCCAA TCACAAGTGC CTTACTCFGA CCAGACCCAT GACAAAACCT CTGTCATCCA	6459
AGAGAGCCAA CTCTCTACCT TTGTTACTAC TTCAAGCCAA TGTGGTAACT GCTAACCTTC	6519
AAGGGTCACC TAAACAGTAT AGTCCAACCT TCACCAGGAC CATAGCACAG AGCAACCTCC	6579
AGNACACAGA CACACACA CCTTGAATCT ATCCCACAGC ATATCAACCC ACAGTGACCT	6639
CCCTCCCACE GCCTTGTTCT AATTACAAGG TGAAGATGGC CATAGAAAAT CAAGTTAGCA	6699
CTAATTACAA AATGCTTTTG-ATGCAACCTG AATTTCCCAA TGCCACCTAT TGCTTTGAAA	6759
CTCTGATGAG TTAAGTCATG CTCTGGGAGC TGTGAGCCCC ATGCTCAGAT CCACTGGGCA	6819
GGGGGACTC CTTGCAGGAG ACATGGGCAC ACATATGAAT GTACCATTTC CATGCCTTTT	6879
STGGAGTACA GACATATAAA CATAAATACT TCCATT	6915

SEQ ID NO. 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 903 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (:i) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 2:

Met Ala Glu Arg Pro Ala Arg Arg Ala Pro Pro Ala Arg Ala Leu Leu Leu Ala Pro Arg Ala Arg Ala Leu Leu Leu Ala Pro Arg Ala Ala Arg Gly Met Leu Ala Leu Ala Leu Ala Cly Ala Leu Leu Ala Pro Arg Ala Ala Arg Ala Sci Leu Leu Ser Leu Trp Asp Gln Arg Gly Ala Tyr Glu Val Ala Arg Ala Sci Leu Leu Ser Lys Asp Pro Gly He Pro Gly Glu Ser He Pro Ala Lys Asp His Pro Asp Val Leu Thr Val Gln Leu Gln Leu Glu Ser Arg Asp Leu He Leu Ser Leu Glu Arg Asn Glu Gly Leu He Ala Asn Gly Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp Val Ser Leu Thr Arg Asn His Thr Asp His Cys Tyr Tyr His Gly His Val Gln Gly Asp Ala Ala Ser Val Val Ser Leu Ser Thr Cys Ser Asp Leu Arg Gly Leu He Met Phe Glu Asn Lys Thr Tyr Ser Leu Glu Pro Met Lys Asn Thr Thr Asp

Ser Tyr Lys Leu Val Pro Ala Glu Scr Met Thr Asn Ile Gln Gly Leu Cys Gly Ser Gln His Asn Lys Ser Asn Leu Thr Met Glu Asp Val Ser Pro Gly Thr Ser Gln Met Arg Ala Arg Arg His Lys Arg Glu. Thr Leu Lys Met Thr Lys Tyr Val Glu Leu Vai lle Val Ala Asp Asn Arg Glu Phe Gln Arg Gln Gly Lys Asp Len Glu Lys Val Lys Gln Arg Leu He Glu Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg lle Val Leu Val Gly Val Glu Val Trp Asn Asp lle Asp Lys Cys Ser lle Ser Gln Asp Pro Phe Thr Arg Leu His Glu Phe Leu Asp Trp Arg Lys II e Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala Gln Leu II e Ser Gly Val Tyr Phe Gln Gly Thr Thr lie Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala Glu Gln Ser Gly Gly Val Val Met Asp His Ser Asp Ser Pro Leu Gly Ala Ala Val Thr Leu Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu Glu Arg Gly Cys Ser Cys Arg Met Ala Ala Glu Lys Gly Gly Cys Ile Met Asn Pro Scr Thr Gly Phe Pro Phe Pro Met Val Phe Ser Ser Cys Ser Arg Lys Asp Leu Glu Ala

Ser Len Gin Lys Gly Met Gly Met Cys Lou Phe Asn Len Pro Glu Val Lys Gln Ala Phe Gly Gly Arg Lys Cys Gly Asn Gly Tyr Val Glu Glu Gly Glu Glu Cys Asp Cys Gly Glu Pro Glu Glu Cys Thr Asn Arg Cys Cys Asn Ala Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Gln Cys Cys Glu Asp Cys Gln Leu Lys Pro Pro Gly Thr Ala Cys Arg Gly Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Thr Ala Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Pro Cys Gln Gly Val Asp Gly Tyr Cys Tyr Asn Gly lle Cys Gln Thr His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly lle Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys Asp Scr Lys Ser Ala Phe Ala Lys Cys Glu Leu Arg Asp Ala Lys Cys Gly Lys lle Gln Cys Gln Gly Gly Ala Ser Arg Pro Val lle Gly Thr Asn Ala Val Ser lie Glu Thr Asn lie Pro Gln Glu Gly Gly Arg lle Leu Cys Arg Gly Thr His Val Tyr Leu Gly Asp Asp Met

Pro Asp Pro Gly Leu Val Leu Ala Gly Thr Lys Cys Ala Glu Gly Lys lle Cys Leu Asn Arg Arg Cys Gin Asn lle Ser Val Phe Gly Val His Lys Cys Ala Met Gln Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys Clu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Cly Phe Gly Gly Ser Thr Asp Ser Gly Prolle Arg Gln Ala Asp Asn Gln Gly Leu Thr Val Gly Ile Leu Val Ser Ile Leu Cys Leu Leu Ala Ala Gly Phe Val Val Tyr Leu Lys Arg Lys Thr Leu Met Arg Leu Leu Phe Thr His Lys Lys Thr Thr Met Glu Lys Leu Arg Cys Val His Pro Ser Arg Thr Pro Ser Gly Pro His Leu Gly Gln Ala His His Thr Pro Gly Lys Gly Leu Leu Met Asn Arg Ala Pro His Phe Asn Thr Pro Lys Asp Arg His Ser Leu Lys Cys Cln Asn Mct Asp Ile Ser Arg Pro Leu Asp Ala Arg Ala Val Pro Gln Leu Gln Ser Pro Gln Arg Val Leu Leu Pro Leu His Gln Thr Pro Arg Ala Pro Ser Gly Pro Ala Arg Pro Leu Pro Ala Ser Pro Ala Val Arg Gin Ala Gin Gly Ile Arg Lys Pro Ser Pro Pro Gin Lys Pro Leu Pro Ala Asp Pro Leu Ser Arg Thr Ser Arg

Leu Thr Ser Ala Leu Vai Arg Thr Pro Gly Gin Gln Glu Pro Gly His

Arg Pro Ala Pro Ile Arg Pro Ala Pro Lys His Gln Val Pro Arg Pro

Ser His Asn Ala Tyr Ile Lys

698

SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6345 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (III) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JM109(pBSMelβ)
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 3:

GGCCGGGGGC AGGCAATGGC AGGGGATGTG TGATTGCGGA CAGTGAGAGG GCCGFTGCTA 60

TC ATG CCC GGG CGC GCG GGC GTC GCC CGG TTC TGC TTG CTG GCT CTC 107

Met Pro Gly Arg Ala Gly Val Ala Arg Phe Gys Leu Leu Ala Leu

GCT CTG CAG CTA CAT TGG CCG CTG GCG GCG TGC GAG CCG GGA TGG ACC 155

Ala Leu Glu Leu His Trp Pro Leu Ala Ala Cys Glu Pro Gly Trp Thr

ACA	AG/	A GGA	A AGC	CAA	GAA	GGT	AGC	ca	CCC	G CTA	CAC	CA	Γ GAA	СТО	C ATA	203
Thr	Ar g	Gly	Ser	Gl n	Gш	GI y	Ser	Pro	Pro	Leu	Gln	Hi s	G G u	Leu	lle	
ATA	ССТ	. CAC	TGG	CGC	ACT	ТСА	GAA	AGC	CCT	. GGC	G AGA	GG4	A AAC	CAT	CCA	251
lle	Pro	Gln	Tr p	Ar g	Thr	Ser	Gш	Ser	Pro	Gi y	Ar g	Gl. y	Lys	Hi∈s	Pro	
стс	AGA	. GCA	GAG	CTC	AGG	GTC	AT G	GCT	G4A	GGG	CGA	GAC	; стс	ATC	СТА	299
Leu	Ar g	Al a	Gl u	Leu	Ar g	Val	Me t	Al a	Glu	Gl y	Ar g	Gl u	Leu	He	Leu	
GAC	CTG	GAG	AAG	AAC	GAG	CAC	CTT	TŢT	GCT	CCA	GCC	TAC	: ACA	GAA	ACC:	347
Asp	Leu	Glu	Ly s	As n	Glu	Hi s	Leu	Phe	Ala	Pro	Al a	Туг	Thr	Glu	Thr	
TGC	TAC	АСТ	GCA	ACT	CCC	ΔΔΤ	CCT	CAA	۸۲۲	ΔCC	ACC.	CT C	AAC	T/~T	CAC	395
			Al a													333
GAT	CAC	TGC	TTT	TAC	CAC	GGG	ACT	CTG	AGG	GAC	GTG	GAT.	GAG	TCC	AGT	443
As p	His	Cy s	Phe	Туг	His	Gl y	Thr	Vai	Ar g	Asp	Val	As p	Gl u	Ser	Ser	
STC	ACG	стс	AGC	ACC	TGC	CGG	GGA	TTA	AGA	GGA	CT'G	ATT	ATA	org	AGA	491
√al	Thr	Le v	Ser	Thr	Cy s	Ar g	Gly	He	Ar g	Gl y	Leu	lle	f1e	Val	Ar g	
			AGC													539
er	Asn	Leu	Ser	Tyr	He	lie	Glu	Pro	Val	Pro	Asn	Ser	Asp	Ser	Gln	
CAC	ССТ	ATT	TAC	AGA	TCC	GAA	CAT	ctc	ACG	CTG	CCC	CCG	GGG	AAC	TGT	587
ti s	Ar g	Пе	Tyr	Ar g	Ser	Glu	His	Leu	Thr	Leu	Pro	Pro	Gl y	As n	Cy s	
GGG	TTC	GAG	CAC	TCC	GGG	CCC	ACC	TCG	AAG	GAC	TGG	GCC	СТТ	CAG	TT 7	635
					-											

Gly Phe Glu His Ser Gly Pro Thr Ser Lys Asp Trp Ala Leu Gla Phe	
ACA CAT CAG ACC AAA AAG CAA CCI CGC AGA ATG AAA CGG GAA GAT CTA Thr His Glin Thr Lys Lys Glin Pro Arg Arg Met Lys Arg Glin Asp Len	683
CAC TOT ATG AAG TAC GTG GAG CTT TAC CTG GTG GCT GAT TAT GCA GAG His Ser Met Lys Tyr Val Glu Leu Tyr Leu Val Ala Asp Tyr Ala Glu	731
TIT CAG AAG AAT CGA CAT GAC CAG GAT CCC ACC AAA CGC AAG CTC ATG Phe Gln Lys Asn Arg His Asp Gln Asp Ala Thr Lys Arg Lys Leu Met	779
GAG ATT GCC AAC TAT GTT GAT AAG TTT TAC CGC TCC CTG AAC ATC CGA Gluille Ala Asn Tyr Val Asp Lys Phe Tyr Arg Ser Leu Asn He Arg	827
ATT GCA CTT GTC GGC TTG GAG GTG TGG ACG CAT GGG GAT AAG TGT GAA	875
GTT TCA GAG AAT CCC TAC TCT ACC CTC TGG TCC TTT CTT AGT TGG ACG	923
Val Ser Glu Asn Pro Tyr Ser Thr Leu Trp Ser Phe Len Ser Trp Arg CGC AAG CTG CTT GCT CAG AAG AGC CAT GAC AAT GCT CAG CTA ATC ACG	971
Arg Lys Leu Leu Ala Gin Lys Ser His Asp Asn Ala Gin Leu Ile Thr GGC AGG TCC TTC CAA GGC ACC ACC ATT GGC CTG GCC CCC CTC ATG GCC	10.00
Gly Arg Ser Phe Gln Gly Thr Thr lle Gly Leu Ala Pro Leu Met Ala	1019
ATG TGC TCC GTG TAC CAG TCT GGA GGA GTT AGC ATG GAC CAC TCC GAG Met Cys Ser Val Tyr Glin Ser Gly Gly Val Ser Met Asp His Ser Glu	1067

AA	T GO	C A	TT (GT	GTA	GC(СТС	C AC	T GT	G GC	C CA	T GA	G AT	T GO	C C	AC AAC	111
As	n Al	a II	e (Яy	Va l	Al a	i Se	r Th	r Val	Al	a Hi	s Gl	u II	e Gl	y Hi	s Asn	
TT	T GC	C A	ΓG A	GC	CAT	GAT	TC	T GC	A CAC	C TG	C TG	т тс	T GC	C AG	a. cc	A GCC	116
Phe	e Gl	y Ma	et S	er	His	As p	Ser	· Al a	a His	Cy s	Cy:	s Sei	· Al	a Se	r Al	a Ala	
GAT	r GG	c co	C T	GC	ATC	ATC	GCC	C GCG	C GCC) AC	C GG(G CAG	0 00	г тг	c cc	C AAA	121
As p	Gl:	y Gl	y C	y s	He	Met	Al a	Ala	Λla	Thr	Gl y	/ Flis	Pro) Pho	e Pr	o Lys	
ന	; TT	C AC	T T	GG	TGI	AAC	AGC	, AAC	G GAC	arc	GAC	AGO	TAT	CTO	G CA	G ACA	1259
Val	Phe	e Se	r Tr	q	Cy s	As n	Λгд	Lys	Giu	Leu	As p	Arg	Tyr	Let	ı Glı) Thr	
GGA	GG/	\ GG	G A1	rg r	TGT	стс	TCC	: AAC	ATG	CCG	GAC	ACT	' ACC	ACC	s cre	TAT	1307
GI y	Gl y	Gl	y Me	t (Cy s	Leu	Ser	As n	Met	Pro	As p	Thr	Ar g	Thr	Leu	Туг	
GGA	GGG	CG	G AC	G T	TGT	GGC	AAC	GGG	TAC	CTG	GAA	GAC	GGT	GAA	G/\A	TGT	1355
									Туг								
																TCC	1403
									Lys								
									GAG								1451
									Glu								
																GTT	1499
									Gl y								
									TGC								1547
Ar g	Gln	Cy s	As t	L	eu I	Pr o	Glu	Ph e	Cy s	Thr	Gly	Ly s	Ser	Pr o	His	Cys	

CCC ACC AAC TAT TAT CAG ATG GAT GGC ACC CCC TGC GAG GGT GGC CAG Pro Thr Asn Tyr Tyr Gln Met Asp Gly Thr Pro Cys Glu Gly Gly	1595
GCC TAC TGC TAC AAC GGC ATG TGC CTC ACT TAC CAG GAA CAG TGC CAG Ala Tyr Cys Tyr Asn Gly Met Cys Leu Thr Tyr Gln Glu Gln Cys Gln	1643
CAG CTG TGG GGA CCT GGA GCC CGG CCT GCC CTC GAT CTT TGC TTT GAG Gln Leu Trp Gly Pro Gly Ala Arg Pro Ala Leu Asp Leu Cys Phe Glu	1691
ACG GTG AAT GCT GCT GGT GAC ACC TAT GGA AAC TGT GGC AAG GGC TTG Arg Val Asn Ala Ala Gly Asp Thr Tyr Gly Asn Cys Gly Lys Gly Leu	1739
AAT GGC CAA TAC AGG AAG TGC AGT CCC AGG GAT GCC AAG TGT GGS AAG Asn Gly Gln Tyr Arg Lys Cys Ser Pro Arg Asp Ala Lys Cys Xaa Lys	1787
ATT CAG TGC CAG AGC ACC CAG GCC CGG CCC CTG GAA TCC AAC GCA GTA lle Gln Cys Gln Ser Thr Gln Ala Arg Pro Leu Glu Ser Asn Ala Val	1835
TCT ATT GAC ACC ACC ATC ACC TTG AAC GGG AGG CGG ATC CAC TGT CGG Ser lle Asp Thr Thr lle Thr Leu Asn Gly Arg Arg lle His Cys Arg	1883
GGC ACC CAC GTC TAC CGG GGT CCT GAG GAG GAG GAA GGG GAA GGT GAC Gly Thr His Val Tyr Arg Gly Pro Glu Glu Glu Glu Gly Glu Gly Asp	1931
ATG CTG GAC CCA CGG CTG GTG ATG ACT CGA ACC AAG TGT GGC CAC AAC Met Leu Asp Pro Gly Leu Val Met Thr Gly Thr Lys Cys Gly His Asn	1979
CAT ATT TGC TTC GAG GGG CAG TGC AGG AAC ACC TCC TTC TTT GAG ACG	2027

BNGD0010- 2010 - 072440044 1 -

Hus	He	Cy s	Pho	e Glu	i Gly	Gla	ı Cys	: Агд	: As n	Thr	Ser	Phe	Phe	: Gli	ı Thr	
GAA	GGC	TGT	GGC	G AAA	AAC	тсс	CAAT	GGC	CAC	GGC	ണ	TCC	: AAC	C AAC	C AAC	2075
Gl u	Gl y	Cy s	Gl y	Lys	Ly s	Cy s	Asn	Gl y	His	Gl y	Val	Cy s	As n	Asn	As n	
AAG	AAC	ाता	` CAT	` TGC	TTC	ССТ	. CCC	TGG	тст	CCA	CCT	TTC	: ТСТ	` AAC	CACC	2123
				Cy s												
666	001	C														
				Gl y											G AGI	2171
1.0	Oi j	1 63 17	(4)	O. y	501	****	лωр	361	City	110	Leu	110	110	Lys	aer	
GTG	GGT	CCC	GT G	ATC	GCT	GGG	G)'G	TTT	TCA	GCI	стс	TTC	CTG	TTG	GCA	2219
Val	GI y	Pr o	Val	lle	Al a	Gl y	Val	Phe	Ser	A) a	Leu	Phe	Val	Leu	Al a	
CTT.	CTC.	CTC.	CT A	CTC.	TOT	C4.C	700	T. C	4 () 4	0.0	4.60	0.0		am c	220	2005
				Leu											GGC	2267
	202		200	Len	O J .3	16.3	C.J .,	,,,	/ u K	OI II	361	11.5	Lys	Leu	Ciy	
AAA	ccc	TCG	GCT	стс	ССТ	ттс	AAG	СТG	CGG	CAT	CAG	TTC	AGT	TGT	CCC	2315
Lys	Pro	Ser	Al a	Leu	Pro	Phe	Ly s	Leu	Ar g	His	Gl n	Phe	Ser	Cy s	Pr o	
				CAG												2363
rne	Arg	va i	Ser	Gl n	Ser	GI y	Gly	lhr	Ciy	Hu's	Ala	Asn	Přo	Thr	Phe	
AAG	TTG	CAG	ACC	CCC	CAG	GGC	AAG	CGA	AAG	ന്ദ	\CT	AAC	ACC	ССТ	GAA	2411
Lys	Leu	Gin	Thr	Pr o	Gl n	Gl y	Ly s	Ar g	Lys	Val	r	Asn	Thr	Pr o	Glu	
				CCG												2459
ser	Leu	Arg	Lys	Pr o	26L	HI S	LL 0	Pr o	Leu	Ar g	rr o	Pr o	l'r o	As p	lyr	

CTG CGC GTT GAA TCG CCA CCT GCA CCA TTG TCG GCA CAT CTG AAC AGG	2507
Leu Arg Val Glu Ser Pro Pro Ala Pro Leu Ser Ala His Leu Asn Arg	
GCT GCT GGG AGC TCC CCA GAA GCT GGG GCT CGA ATA GAA AGA AAG GAG	2555
Ala Ala Gly Ser Ser Pro Glu Ala Gly Ala Arg Ile Glu Arg Lys Glu	
TCA GCC AGG AGG CCT CCC CCA AGC CGA CCC ATG CCC CCT GCA CCT AAC	2603
Ser Ala Arg Arg Pro Pro Pro Ser Arg Pro Met Pro Pro Ala Pro Asn	
TGC CTA CTG TCC CAG GAC TTC TCC AGG CCT CGA CCA CCT CAG AAG GCA	2651
Cys Leu Leu Ser Gin Asp Phe Ser Arg Pro Arg Pro Pro Gin Lys Ala	
CTC CCA CCC ANT CCC TO TO THE COLUMN TO THE	
CTC CCA GCC AAT CCG GTG CCA GGC CAA AGG ACC GGT CCC AGG TCA GGA	2699
Leu Pro Ala Asn Pro Val Pro Gly Gln Arg Thr Gly Pro Arg Ser Gly	
CCC ACC TCC CTC CTT CAC CCC CCT ACT TCT CCT C	
GGC ACC TCC CTG CTT CAG CCC CCT ACT TCT GGT CCT CAG CCC CCC ACC Gly Thr Ser Leu Leu Gln Pro Pro Thr Ser Gly Pro Gln Pro Pro Arg	2747
and the second of the first the second of th	
CCT CCA GCA GTG CCT GTT CCA AAG CTA CCC GAG TAC CGA TCA CAG AGG	2795
Pro Pro Ala Val Pro Val Pro Lys Leu Pro Glu Tyr Arg Ser Gln Arg	2133
GTT GGA GCA ATA ATT AGC TCC AAG ATC TAGAAGTGTC GAGAAGTTTC	2842
Val Gly Ala lle Ile Ser Ser Lys Ile	
TTGTTCCGAT GGAAGACTCC GGATGCCATG GAACGTCCAG AAGAAAGACG CCTTCTCACC	2902
CATCCTGAAG CTTTGGCAGC CTTCTGGAAC GTCCCTCATC CCCAGAATCT CCCTTCTTAC	2962
CCGAGTGCCT CCTGCTTCCT CCGAGGCCCA GCGCGCACTCA TATCCAATGG CTCCTAAGTG	3022
TTTGTCCTGT GCAATATACA GCCCAGGGAG GGAAGGGAAG	3082
ACCITICICC TCACCCCACT ACCCAAGAGC TACCACCGAT CCTCACCGAA CCCTTCACCT	3142

GGGGTCCTCC TCTGCGGAGC TTGGAGAAGG TACCCATCCT GGTCCTATGC TGGCAGGAAC	3202
ACACGCGAGT GTCACTGATT GGCCTCCTTC 1'GGGATCCCA GGCTGCTGAG GAAGCTACTC	3262
CTACATCCCT ACCCCAAGGG GCTTGGTCAA GGTGCCTGTC CTGGCTCTCT GCCTGCATGT	3322
AATAAGCCAT GCTCCCCTCC CCTGCCTTTC TTCACATTCC CACTCCCATA TTTACACGGG	3382
TCACTCTGAC TCAGACAGGT ACTATTTGTA AGTAGCATAG ACAGCAGGGG GGTGGGGTGG	3442
TCAACCTGTG TCCCCTCTGA GCCGTTATGC CAAAGGTCAC TAAGGACATT TAGAATCCCC	3502
ATCCATCCAT CCATCCATCC ATCCATCCAT CCATTCATCC ATCCCCACTG TTCCATGTGT	3562
CACCTTCTCC TTTTCCAGCA TCCCTATCCT ATGGTGCTTT GGTGGTGAAC TATGGCAGTC	3622
CTGACTTGCT GATGACCATA TGCTGGTGAC CTACAAATCG GGATCCTGCC ATATGGGGTC	3682
GCCACTGGAC TTTCTGCACT GGTTCTCAAG AGCGTTGAGC CGAGTGGGCG TGTATGTTTG	3742
मदादादादाद मदादादादाद मदादादादाद मदादादादा	3802
AAAGAGACAG AGGCAATGAG AGAGACAGAC ATGCAGGCAG GCCGACAGCT CTGCATGTAC	3862
TTGTGTTTTA CGGCCTCAAG CAGTATAAGG GACCTCCTCC TTATTTCTGA CTCATATCTA	3922
AGTAAGGTTC CCCAGGACAG CCACAGCTGT ACTGAGGGGG GCTGACATGT TTGGCATCCT	3982
GGCTATAGTA TTGTATACAC AGGGCCACCA GCCCCGCCCT AGTGGTCAGC TCTGAGGGGG	4042
GACTGGTGAC TCTGAACAGA TCGATGTCAA CAGCCATGGT GAACCAGATC TGGGCAGGGT	4102
TCCCCAAACT CTATTCAACC AGAGTTTTAT CACGCACTCA TCGGGTCTCT CCTGGTTGCT	4162
GCCCCGAGGT GATCGTCATG GAAAATCCTG AGAAGGTGGG AATGCGATGG GGTGGACCTT	4222
CTCTTGCTTG GTGCTCCGCT ATTTGGAACA GTTCTTACAC ATTTGCTGCG CCTGCCCTCT	4282
GAGAGGCCAT CTTCCACCCC CAGAAAGGTG CTAATGGCAC TGCAGAGGGC TCTCTAGGGG	4342
CCTCCCCGCC CCAACAGCAA GCACTTGTTA CCTCTTGGAA GCCTCCAGAG GAAGAGGCAA	4402
GCGTTTGACT TCCCCTTTAC CACCTGAGGC CTCCTTATAT CTCTTCCCAG AGTAAGCTTT	4462
GGGATTGTAG ACATGTGGGA, GCTATGACAG ACGTGGCCTG GGGTAGAAAG ATCTCAGGAA	4522
AGCACCTTTC TCCTTTTCAG GGTGACCGTG CTCTTCACAC TCTCTGAGGC CTCAGTCCAT	4582
GTCCTATATC AGITTCTCTT TTGTGTGCTT TACCAAGTGG CCGGTGACTA CAGGCCACCC	4642
CGATTCTCAC CACAAAGTTA GAAACCCTCC ACTTTCTGTC CCTTGAACCA TATCAGAAAA	4702
AGACCCATTT CCTTGCTCTT TGGTAATCAC TTCTGTTTTT TCTTCTTCAT TACTGTGCTA	4762
CCACCTCCAT CCCATGACAT TATTCTGTGA GTGTAAGAGG ACGGTGTTTI TTATCTTGGG	4822
AGAATGTCGG CAGCTGCTCT ACACACAACT TCACTCAAGG CTTTGTCTCC AGACCCCACC	1000

TAGULTGTCA CAGGCAGGAA TCCCCTTCCCA TCTGCTTTGT GAAGGGTCCC ATACAGGTCT	494
ATCTAGACIT CAAGGACAGG GTTTGTCTCA CAGGATTGTC ACTTAGGAGA TGAAAGAATA	500
TTACCACATG AGGAGGAGGG GCAGTTGCAA CAGAACACTT TGGTCTTCCT ACACCAAGTC	506
TGTGAGGGCA TCCAAGACTG AATGAAAGCG CTTTTCTTAT GCATACAATG TGAGCAAGAA	512
CAAGAACTGT TTAAGGCACC TCTGTTCCCA GCCACTGAAG AGAGACGTCA GAAGATGTTA	518
GAATAGGTCA AAACCAAGGC TCTGGTGGAC TGAGGGAAGG TTTGTAGCTG CGTTTAGTGG	524
TATACATCTT TAGTCCCAGC ATAGGCAGGT GAATCTCGAG TTTGAAGCTA GCCTGGTCTA	530
AAAAGGAAGT TCCAAGACTG CCAGGGCCAC ACAGAGGAAA AAAAAAAACC CTCTAGAAAA	536
ACAAAAATGA AGACAGGTTC TCATGTATCG TAGATTGGCC TTTAAGTCAC TTTACCAAGG	542
ATGATCTTTG AACTCCTGAG TACAGACTGC CGGTGTGTGC TACCATGCTT TATGTGGCCC	5482
TGGGTTCAAA CACAGCCCTT CATATGTATA TAGCCAAACA CTCTACAACT GAGCTACATC	5542
CTCCAGCCTA GGCTGTAAAT GTTTTTTGGA GCTAGATTAG CTGCCTGCCA ACCTTAGAAC	5602
TOCAAAGCCA TITCCTGACCT GTAAACCTCA GCTCTCCATC TCTATAAGAG GTATAGCCTG	5662
GGCTAATACC GTCCAAGTTA CAACTCCTTG CTTGCTTTCT GTTCCTTCTA GCCTTGGTGA	5722
CTTCCACCAG GAAGAGAATA CCCCCTCTCT ACCCCTGCTC CAAGACACTG TAGATGCTAG	5782
TGTCGGAGTG TTCTCTGTAA CGCGACAGTT CCTTCTGTTG CAATAGCCCC CCTGCAACAC	5842
TOCAATAATC CTTCAGTGTC TCCCCTGGGC TCAATTCACT TCCTTATTTG ACAAAGTGGA	5902
SCTGAGACTT GTATTCTTAA AATTGGAGGC TAGTTATTTI GTCAAATGCA TGTAATGAAC	5962
AGACCCGAAG GAATCCTCCA CACACAAGCC AGGGAACACC AACTGGAAAG GTACCCCGTC	6022
CCAGGGAAGC CTGCTAGGGA GAGGTTCTGT AGAATCCGAG CCTAGCACCC CAAAGTCATG	6082
CACCCAGTAT CCTCTTGTAT GACTGTATAT GTCTATGTCT GGGATCCAGG GCAAATGTGA	6142
ATTTCCTTTT GATTTGGGAG ATTGTTCACA GGAAGTAGTC CTCCCCCTCTC ATGTCCTCCT	6202
ATTGATTGTT TACAATATTT GTACATCTAT GCAAAATACT TGAATGGCCC ATGGTGCCTT	6262
TTTTTTGTT GTTGTTGTTA TTTTTTCTC CTTGTTTGTA TTTAATTAAA ACAAATTGTC	6322
TGAGGAAAA AAAAAAAAAA AAA	6345

SEQ ID NO. 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ 1 D NO: 4:

Met Pro Cly Arg Ala Gly Val Ala Arg Phe Cys Leu Leu Ala Leu Ala Leu Gln Leu His Trp Pro Leu Ala Ala Cys Glu Pro Gly Trp Thr Thr Arg Gly Ser Gln Glu Gly Ser Pro Pro Leu Gln His Glu Leu Ile lle Pro Gln Trp Arg Thr Ser Glu Ser Pro Gly Arg Gly Lys His Pro Leu Arg Ala Glu Leu Arg Val Met Ala Glu Gly Arg Glu Leu lle Leu Asp Leu Glu Lys Asn Glu His Leu Phe Ala Pro Ala Tyr Thr Glu Thr Cys Tyr Thr Ala Ser Gly Asn Pro Gln Thr Ser Thr Leu Lys Ser Glu Asp His Cys Phe Tyr His Gly Thr Val Arg Asp Val Asp Glu Ser Ser Val Thr Leu Ser Thr Cys Arg Gly lle Arg Gly Leu lle lle Val Arg Ser Asn Leu Ser Tyr lle lle Glu Pro Val Pro Asn Ser Asp Ser Gln His Arg Ile Tyr Arg Ser Glu His Leu Thr Leu Pro Pro Gly Asn Cys Gly

Phe Glu His Ser Gly Pro Thr Ser Lys Asp Trp Ala Leu Gln Phe Thr His Gln Thr Lys Lys Gln Pro Arg Arg Met Lys Arg Glu Asp Leu His Ser Met Lys Tyr Val Glu Leu Tyr Leu Val Ala Asp Tyr Ala Glu Phe Glin Lys Asin Arg His Asp Glin Asp Ala Thr Lys Arg Lys Leu Met Gliu lle Ala Asn Tyr Val Asp Lys Phe Tyr Arg Ser Leu Asn lle Arg lle Ala Leu Val Gly Leu Glu Val Trp Thr His Gly Asp Lys Cys Glu Val Ser Glu Asn Pro Tyr Ser Thr Leu Trp Ser Phe Leu Ser Trp Arg Arg Lys Leu Leu Ala Gin Lys Ser His Asp Asn Ala Gin Leu lle Thr Gly Arg Ser Phe Gln Gly Thr Thr lle Gly Leu Ala Pro Leu Met Ala Met Cys Ser Val Tyr Gin Ser Gly Gly Val Ser Met Asp His Ser Glu Asn Ala Ile Cly Val Ala Ser Thr Val Ala His Glu Ile Gly His Asn Phe Gly Met Ser His Asp Ser Ala His Cys Cys Ser Ala Ser Ala Ala Asp Gly Gly Cys Ile Met Ala Ala Ala Thr Gly His Pro Phe Pro Lys Val Phe Ser Trp Cys Asn Arg Lys Glu Leu Asp Arg Tyr Leu Gln Thr Gly Gly Gly Met Cys Leu Ser Asn Met Pro Asp Thr Arg Thr Leu Tyr Gly

Gly Arg Cys Gly Asn Gly Tyr Leu Glu Asp Gly Glu Glu Cys Asp Cys Gly Glu Glu Glu Cys Lys Asn Pro Cys Cys Asn Ala Ser Asn Cys Thr Leu Lys Glu Gly Ala Glu Cys Ala His Gly Ser Cys Cys His Gin Cys Lys Leu Val Ala Pro Gly Thr Gin Cys Arg Glu Gin Val Arg Gln Cys Asp Leu Pro Glu Phe Cys Thr Gly Lys Ser Pro His Cys Pro Thr Asn Tyr Tyr Gin Met Asp Gly Thr Pro Cys Glu Gly Gly Gin Ala Tyr Cys Tyr Asn Gly Met Cys Leu Thr Tyr Gln Glu Gln Cys Gln Gln Leu Trp Gly Pro Gly Ala Arg Pro Ala Leu Asp Leu Cys Phe Glu Arg Val Asn Ala Ala Gly Asp Thr Tyr Gly Asn Cys Gly Lys Gly Leu Asn Gly Glu Tyr Arg Lys Cys Ser Pro Arg Asp Ala Lys Cys Xaa Lys !le Gln Cys Gln Ser Thr Gln Ala Arg Pro Leu Glu Ser Asn Ala Val Ser lle Asp Thr Thr lle Thr Leu Asn Gly Arg Arg lle His Cys Arg Gly Thr His Val Tyr Arg Gly Pro Glu Glu Glu Glu Glu Gly Glu Gly Asp Met Leu Asp Pro Gly Leu Val Met Thr Gly Thr Lys Cys Gly His Asn His

lle Cys Phe Glu Gly Gln Cys Arg Asn Thr Ser Phe Phe Glu Thr Glu Gly Cys Gly Lys Lys Cys Asn Gly His Gly Val Cys Asn Asn Asn Lys Asn Cys His Cys Phe Pro Gly Trp Ser Pro Pro Phe Cys Asn Thr Pro Gly Asp Gly Gly Ser Val Asp Ser Gly Pro Leu Pro Pro Lys Ser Val Gly Pro Val Ile Ala Gly Val Phe Ser Ala Leu Phe Val Leu Ala Val Leu Val Leu Leu Cys His Cys Tyr Arg Gin Scr His Lys Leu Gly Lys Pro Ser Ala Leu Pro Phe Lys Leu Arg His Gln Phe Ser Cys Pro Phe Arg Val Ser Gln Ser Gly Gly Thr Gly His Ala Asn Pro Thr Phe Lys Leu Gln Thr Pro Gln Gly Lys Arg Lys Val Thr Asn Thr Pro Glu Ser Leu Arg Lys Pro Ser His Pro Pro Leu Arg Pro Pro Pro Asp Tyr Leu Arg Val Glu Ser Pro Pro Ala Pro Leu Ser Ala His Leu Asn Arg Ala Ala Giy Ser Ser Pro Giu Ala Giy Ala Arg lle Glu Arg Lys Giu Ser Ala Arg Arg Pro Pro Pro Ser Arg Pro Met Pro Pro Ala Pro Asu Cys Leu Leu Ser Glin Asp Phe Ser Arg Pro Arg Pro Pro Glin Lys Ala Leu Pro Ala Asn Pro Val Pro Gly Gln Arg Thr Gly Pro Arg Ser Gly Gly

Thr Ser Leu Leu Gin Pro Pro Thr Ser Gly Pro Gin Pro Pro Arg Pro

Pro Ala Val Pro Val Pro Lys Leu Pro Glu Tyr Arg Ser Gln Arg Val

Gly Ala Ile Ile Ser Ser Lys Ile

716

SEQ ID NO. 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3928 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JM109(pBSMel γ)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 5:

CTTCCAACGA TCACCGAAGC CGAGGCGGGG GCCGCCCCTT GAGCGGAACC. TCCCGAAGCC 60

CTCGCT ATG GGG CGG CGC GCG CTC TCG CCC CTT GCC TCT CTG CGA CTA 108

Met Gly Pro Arg Ala Leu Ser Pro Leu Ala Ser Leu Arg Leu

AGG TGG CTG CCG TGT GGC TTG CTG GGC CCA GTC CTC GAG GCC GGG 156

Arg Trp Leu Leu Ala Cys Gly Leu Leu Gly Pro Val Leu Glu Ala Gly

CGA CCA GAC TTG GAA CAG ACT GTC CAT CTT TCT TCT TAT GAA ATT ATT Arg Pro Asp Leu Glu Gln Thr Val His Leu Ser Ser Tyr Glu lle llc	204
ACT CCT TGG AGA TTA ACT AGA GAA AGA AGG GAA GCT CTG GGG CCC AGT Thr Pro Trp Arg Leu Thr Arg Glu Arg Arg Glu Ala Leu Gly Pro Ser	252
TCA CAG CAG ATC TCT TAC GTC ATC CAG GCC CAA GGA AAA CAG CAT ATT Ser Gin Gin ile Ser Tyr Val lie Gin Ala Gin Gly Lys Gin His lie	300
ATT CAC TTG GAA AGA AAC ACA GAC CTT TTA CCT AAT GAT TTT GTA GTT lle His Leu Glu Arg Asn Thr Asp Leu Leu Pro Asn Asp Phe Val Val	348
TAC ACC TAC GAC AAG GAA GGC TCC CTA CTC TCT GAC CAT CCC AAC GTA Tyr Thr Tyr Asp Lys Glu Gly Ser Leu Leu Ser Asp His Pro Asn Val	396
CAG AGC CAT TGT CAC TAT CGA GGC TAT GTG GAG GGA GTG CAG AAT TCC Gln Ser His Cys His Tyr Arg Gly Tyr Val Glu Gly Val Gln Asn Ser	144
GCG GTT GCT GTG AGC GCC TGC TTT GGA CTC AGA GGC TTG CTG CAT TTG Ala Val Ala Val Ser Ala Cys Phe Gly Leu Arg Gly Leu Leu His Leu	492
GAG AAT GCC AGT TTT GGA ATT GAA CCT CTG CAC AAC AGC TCA CAC TTT Glu Asn Ala Ser Phe Gly Ile Glu Pro Leu His Asn Ser Ser His Phe	540
GAG CAC ATA TTT TAC CCC ATG GAT GGC ATC CAC CAG GAG CCT CTG AGA	588
TOT GGA GTC TCT AAC AGG GAC ACA GAG AAG GAA GGC ACA CAG GGG GAT	636

	y Asp	GI:	GLi	Thr	Gl y	Glu	Lys	Gl u	Thr	Asp	Arg	· As r	l Sei	Val	GI y	Cy s
. 68	A GCT															
73	C AAG															
78	Lys L GAG															
	GI u	Glu	Ar g	Va I	Al a	Thr	Gln	As n	Агд	Gl y	Met	Met	Asp	Tyr	Ar g	Glu
82	AAC As n												TTA Leu			
87€	CCT Pr.o.												GTG Val			
924													ATT			
													lle			
972													AAG Lys			
1020													AAG Lys			
1068													TGT			
											Arg :					

CAT AAC CTT CGA ATG AAT CAT GAT GAT GGG AGA GAG TGT TTC TGT GGA His Ash Leu Gly Met Ash His Ash Ash Gy Ash Gly Cys Phe Gys Gly GGA AAG AGC TGT ATC ATG AAT TCA CGA CGA TCC GGG TGC AGA AAC TTT Ala Lys Ser Cys Ile Met Ash Ser Gly Ala Ser Gly Ser Arg Ash Phe AGC AGT TGC AGT CCC GAG GAC TTT GAG AAG TTA ACG TTG AAT AAG CGA Ser Ser Cys Ser Ala Gli Ash Phe Gli Lys Leu Thr Leu Ash Lys Gly GGA ACC TGC CTG CTT AAC ATC CCG AAG CCT GAC GAA CCC TAC ACC CCG Gly Ser Cys Leu Leu Ash Ile Pro Lys Pro Ash Glu Ala Tyr Ser Ala CCC TCC TGT GGT AAT AAG CTG GTG GAC CCT GGA GAG GAG TGT GAC TCC Pro Ser Cys Gly Ash Lys Leu Val Ash Pro Gly Gli Gli Cys Ash Cys GGC ACA CCG AAG GAG TGT GAG GTG GAC CCA TCC TGT GAA CGA ACC ACT Gly Thr Ala Lys Gli Cys Gli Val Ash Pro Gys Cys Gli Gly Ser Thr TGT AAG CTC AAG TCA TTT GCT GAG TGT CCA TAT GCC GAC TGT TGT AAA 1452 Cys Lys Leu Lys Ser Phe Ala Gli Cys Ala Tyr Gly Ash Cys Cys Lys GAT TCC CAG TTC CTT CCA GGA CCC TCC ATG TCC AGG GAG ACC ACT Ash Cys Gh Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser GAG TGT GAT GTT CCT GAG TAC TCC AAC CGT TCC TCT CAG TTC TGC CCG GIu Cys Ash Val Pro Glu Tyr Cys Ash Gly Ser Ser Gli Phe Cys Pro	CAA ATC ACT GTG GAG ACA TTT GCA TCC ATT GTT GCT CAT GAA TTG GGG Glin lie Thr Val Glin Thr Phie Ala Ser Ile Val Ala His Glin Leu Gly	1116
AGA AGA TGC AGT CGG GAG GAC TTT GAG AAG TTA AGG TTG AAT AAG GGA Ser Ser Cys Ser Ala Glu Asp Phe Glu Lys Leu Thr Leu Ash Lys Gly GGA AGC TGC CTG CTT AAC ATC CGG AAG CCT GAC GAA GCC TAC AGC GCG Gly Ser Cys Leu Leu Ash IIe Pro Lys Pro Asp Glu Ala Tyr Ser Ala CCC TCC TGT GGT AAT AAG CTG GTG GAC CCT GGA GAG GAG TGT GAC TGC Pro Ser Cys Gly Ash Lys Leu Val Asp Pro Gly Glu Glu Cys Asp Cys GGC ACA GCG AAG GAG TGT GAG GTG GAC CCA TGC TGT GAA GGA AGC ACT Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr TGT AAG CTC AAG TCA TTT GCT GAG TGT GCA TAT GCC GAC TGT TGT AAA 1452 Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGC AAG ACC ACT Asp Cys Gln Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser	CAT AAC CTT GGA ATG AAT CAT GAT GGT GGG AGA GAG TGT TTC TGT GGA His Asn Leu Gly Met Asn His Asp Asp Gly Arg Glu Cys Phe Cys Gly	1164
Ser Ser Cys Ser Ala Glu Asp Phe Glu Lys Leu Thr Leu Ash Lys Gly GGA AGC TGC CTG CTT AAC ATC CCG AAG CCT GAC GAA GCC TAG AGC GCG Gly Ser Cys Leu Leu Ash II e Pro Lys Pro Asp Glu Ala Tyr Ser Ala CCC TCC TGT GGT AAT AAG CTG GTG GAC CCT GGA GAG GAG TGT GAC TGC Pro Ser Cys Gly Ash Lys Leu Val Asp Pro Gly Glu Glu Cys Asp Cys GGC ACA GCG AAG GAG TGT GAG GTG GAC CCA TGC TGT GAA GGA AGC ACT Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr TGT AAG CTC AAG TCA TTT GCT GAG TGT GCA TAT GCC GAC TGT TGT AAA Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GCG AAG ACC AGT Asp Cys Gln Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser	GCA AAG AGC TGT ATC ATG AAT TCA GGA GCA TCC GGG TCC AGA AAC TTT Ala Lys Ser Cys lle Met Asn Ser Gly Ala Ser Gly Ser Arg Asn Phe	1212
CCC TCC TGT GGT AAT AAG CTG GTG GAC CCT GGA GAG GAG TGT GAC TCC 1356 Pro Ser Cys Gly Asn Lys Leu Val Asp Pro Gly Glu Glu Cys Asp Cys GCC ACA CCG AAG GAG TGT GAG GTG GAC CCA TGC TGT GAA GGA AGC ACT 1404 Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr TGT AAG CTC AAG TCA TTT GCT GAG TGT GCA TAT GGC GAC TGT TGT AAA 1452 Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGG AAG ACC AGT 1500 Asp Cys Gln Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCG 1548	AGC AGT TGC AGT GCG GAG GAC TTT GAG AAG TTA ACG TTG AAT AAG GGA Ser Scr Cys Ser Ala Glu Asp Phe Glu Lys Leu Thr Leu Asn Lys Gly	1260
GCC ACA GCG AAG GAG TGT GAG GTG GAC CCA TGC TGT GAA GGA AGC ACT Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr TGT AAG CTC AAG TCA TTT GCT GAG TGT GCA TAT GGC GAC TGT TGT AAA Gys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGG AAG ACC AGT Asp Cys Gln Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTG TGC CCC GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTG TGC CCC GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTG TGC CCC L548	GGA AGC TGC CTG CTT AAC ATC CCG AAG CCT GAC GAA GCC TAC AGC GCG Gly Ser Cys Leu Leu Asn lle Pro Lys Pro Asp Glu Ala Tyr Ser Ala	1308
Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGG AAG ACC AGT 1500 Asp Cys Gln Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCC 1548	CCC TCC TGT GGT AAT AAG CTG GTG GAC CCT GGA GAG GAG TGT GAC TGC Pro Ser Cys Gly Asn Lys Leu Val Asp Pro Gly Glu Glu Cys Asp Cys	1356
GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGG AAG ACC AGT 1500 Asp Cys Gin Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCC 1548	GGC ACA GCG AAG GAG TGT GAG GTG GAC CCA TGC TGT GAA GGA AGC ACT Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr	1404
GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCC 1548	TGT AAG CTC AAG TCA TTT GCT GAG TGT GCA TAT GGC GAC TGT TGT AAA Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys	1452
GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCG 1548 Glu Cys Asp Val Pro Glu Tyr Cys Asn Gly Ser Ser Gln Phe Cys Pro	GAT TGC CAG TTC CTT CCA GGA GGC TCC ATG TGC AGA GGG AAG ACC AGT Asp Cys Gin Phe Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser	1500
	GAG TGT GAT GTT CCT GAG TAC TGC AAC GGT TCC TCT CAG TTC TGC CCG I	548

CCA	GAT	GTC	TTC	TTA	CAG	AAT	GG/	TAT	CCT	TGC	CAC	C AAC	AGG	C AAA	GCC	1596
Pro	. As p	Val	Phe	lle	G n	As n	Gl y	Туг	o 19	Cy s	Glu	. Asn	Ser	Ly s	Ala	
															GTC	1644
Tyr	Cy s	Tyr	As n	GГу	Met	Cy s	Gln	Tyr	Tyr	Asp	Al a	Gln	Cy s	Cl n	Val	
ATC	TTT	GGT	TCA	AAG	GCT	AAG	CCT	GCC	CCA	AGA	CAT	TGC	TTC	ATT	GAA	1692
	Phe															1037.
GTC	AAT	TCT	AAA	CCT	GAC	AGA	TTT	GGC	AAC	TGI	GGT	TTC	TCC	GGC	ACT	1740
Val	As n	Ser	Lys	Gl y	As p	Ar g	Phe	Gl y	As n	Cys	Gl y	Phe	Ser	Gl y	Ser	
GAG	TAC	AAG	AAG	TCT	GCC	ACT	GGG	AAC	GCG	CTG	TGT	GGA	AAG	CTT	CAA	1788
Glu	Tyr	Lys	Lys	Cy s	Al a	Thr	Gly	Asn	Al a	Leu	Cy s	Gl y	Lys	Leu	Gl n	
TCC	CAC	A A Tr	⇔ T Λ	CAC	CAC	ATC	ccc	~~~	- Trans	CCA	AT 1	CT.A	CCA	cor	A TC	1000
	GAG															1836
Cys	Glu	AS II	vai	GIN	ASP	Met	Pro	vai	Pne	GLY	rre	vai	Pro	AUa	116	
ATT	CAG	ACA	CCC	AGT	CGA	GGC	ACC	AAA	TGC	TGG	GGT	GTG	GAT	TTC	CAG	1884
l l e	Gl n	Thr	Pr o	Ser	Ar g	Gl y	Thr	Lys	Cys	Tr p	Gl y	Val	Asp	Phe	Gl n	
CTT	GGT	TCC	GAC	GIT	CCA	GAC.	CCA	GGG	ATG	GTG	AAT	GAA	GGC	ACC	AAA	1932
Leu	Gl y	Ser	As p	Val	Pr o	As p	Pr o	Gl y	Met	Val	Asn	Cl u	Gl y	Thr	Lys	
TCT	GAT	CCT	GGC	AAG	ATT	TGC	AGG	AAT	TTT	CAG	TGT	GTA	AAT	GCT	TCT	1980
Cy s	As p	Al a	Gl y	Ly s	ll e	Cy s	Ar g	As n	Phe	Gl n	Cy s	Val	As n	Ala	Ser	
CTC.	СТС	4 A T	ጥ ነጥ	CAC	TOT	CAC	ልጕጥ	C4.C	CC 4		TOT	CAT	ccc	CAT	505	0.000
OI C	CTG	ΛΛ I	IAI	UNC	101	UNC	WI!	CAG	COA	MAA	101	CAT	CK	U(I	VV	2028

Val Leu Asn Tyr Asp Cys Asp He Gln Gly Lys Cys His Gly His Gly CITA TGT AAC AGC AAT AAG AAT TGT CAC TGT GAA GAT GGC TGG CCT CCC 2076 Val Cys Asn Ser Asn Lys Asn Cys His Cys Glu Asp Gly Trp Ala Pro CCA CAC TGT GAC ACC AAA GGA TAT GGA GGA ACC GTG GAC AGC CGG CCG 2124 Pro His Cys Asp Thr Lys Gly Tyr Gly Gly Ser Val Asp Ser Gly Pro ACG TAT AAT GCA AAG AGC ACA GCA CTG AGG GAC GGG CTT CTG GTC TTC 2172 Thr Tyr Asn Ala Lys Ser Thr Ala Leu Arg Asp Gly Leu Leu Val Phe TTC TTC CTA ATC GTC CCC CTT GTT GCG CCT GCC ATT TTC CTC TTT ATC 2220 Phe Phe Leu IIe Val Pro Leu Val Ala Ala IIe Phe Leu Phe IIe AAG AGA GAT GAA CTA CCG AAA ACC TTC AGG AAG AAG AGA TCA CAA ATG 2268 Lys Arg Asp Glu Leu Arg Lys Thr Phe Arg Lys Lys Arg Scr Gln Met TCA GAT GGC AGA AAT CAA GCA AAC GTC TCT AGA CAG CCA GCA GAT CCT 2316 Ser Asp Gly Arg Asn Gln Ala Asn Val Ser Arg Gln Pro Gly Asp Pro AGT ATC TCC AGA CCA CCA GGG GGC CCA AAT GTC TCC AGA CCA CCA GGG 2364 Ser Ile Ser Arg Pro Pro Gly Gly Pro Asn Val Ser Arg Pro Pro Gly GGC CCA GGT GTC TCC AGA CCA CGG GGC CCA GGT GTC TCC AGA CCA 2412 Gly Pro Gly Val Ser Arg Pro Pro Gly Gly Pro Gly Val Ser Arg Pro CCA GGG GGC CCA GGT GTC TCC AGA CCG CCA CCT GGG CAT GGA AAC AGA 2460 Pro Gly Gly Pro Gly Val Ser Arg Pro Pro Pro Gly His Gly Asn Arg

TTC CCA GTA CCA ACC TAC GCC GCC AAG CAG CCT GCG CAG TTC CCG TCA	250
Phe Pro Val Pro Thr Tyr Ala Ala Lys Gln Pro Ala Gln Phe Pro Ser	
AGG CCA CCT CCA CCA CAA CCG AAA ATA TCT TCT CAG GGA AAC TTG ATT	2556
Arg Pro Pro Pro Gin Pro Lys II c Ser Ser Gln Gly Asn Leu II e	
CCG GCT CGG CCC GCT CCT GCA CCT CCT TTA TAT AGC TCC CTC ACC	2601
Pro Ala Arg Pro Ala Pro Ala Pro Pro Leu Tyr Ser Ser Leu Thr	
TGATAGTAGA ATATTAGAAT CTTATTTTTT AAATGTCTTC AGCGAACTGA GCAAATGTTT	2661
GTTGTTTTT TTTTCCTGAT GTTTTCTTGA AAAGCCTTTC TCTTCCAACC ATGAATGAAC	2721
ACAAACCACC ACAAAACAAG CTTTATTAAC ACAGGAGCCT AGTGGGGATT GCGAAACACA	2781
GGAATGTGCA GGCCCTCCGG GGGGTGTAAA GTGAACGTTT CCATCGTTAG AATGTTTTCT	2841
CTCGCCATTT GTGGATTTAA TCCACTTGAC GTGGATTAAG TTATTCTGAG CATGTTACTG	2901
TAATGATTCT CAAATTAACT GTATTAGTGT AAGCTTTGTC ACTATGCGCT AAACGTAATC	2961
CTGACTTTTT GACCCCAGTT ACCATTAATA GTTTCTGGTT GACCATTTGA ACATGTATTA	3021
ACTTAGGAAG ACTAATTGCC AATAACGTCT GCATTTTCAT CTTGCATGGA TTAACAGCCA	3081
TTTATATGGA CTTATGTCTC TTAATGCACA AAGAAGCAGA TATCTCGAAG GAGCTTACAC	3141
AAGAACCACA ATTACTAGAT CATGATATAC TTGGAAAGTG TGAAATATGG TGTGTACTCA	3201
GITATTGGCT TCCATTTTTA TGATCTTTCA ACTATAACAA TTATGATAGA AATCGATTTA	3261
ACACAATCAG TTATGGGCTT CCATTTTCAA ATATCTTTTC AAGTGTAATG ACTATGACAG	3321
GAACTGATTC AACTCTCAAT TITCTTTATG CATCATGGTA AAGCATTGCA GCAGTGTTGT	3381
TTTGTTTGAA GTGCACACTC TATGGTACGA GGTGTTTAGT ATACCCAAGC AGATAGGTGT	3441
CCATCGAACA GGAGCAGGGA GAATACTTCC AACAGTTGAG GTGTTACCAA ACCACTTGAG	3501
AATTCATGAG CACTTTAACT CTAAACTCTG AATTTCAAAG CTTGATGTGA AGTCCTCTAG	3561
AATGTTTACA TTTACTAAGG TGTGCTGGGT CCTGTCTCTT TTGACTAATA TTTTCGTAAA	3621
	3681
CATTACCCTG GAGAAACGAA GGAAGCAGTG GTTTCCTTAG ATAACTACAG AATTATACTG	
GTCTCTGGGA TTACTCTCTC AGCTGTATTA AAATGAATTT GTACTTTGAA AGGAATGATA	3741
TTGACACTAA AATTTTAAAC ATTTAAATTT TTTCATAATC TTTCATAAAG AAGTTTAATA	3801

ATACGTATAT TAACTGAATT TCATTAGTTT TITAAAATAA TATTGTTTGT GTATATATAC 3861 ATATTAAAAT AAAAACATTT ACAACAAATA AAATACTTGA AATTCTAAAA AAAAAAAAA 3921 AAAAAAA

(2) INFORMATION FOR SEQ 1D NO. 6:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO. 6:

Met Gly Pro Arg Ala Leu Ser Pro Leu Ala Ser Leu Arg Leu Arg Trp

Leu Leu Ala Cys Gly Leu Leu Gly Pro Val Leu Glu Ala Gly Arg Pro

Asp Leu Glu Gln Thr Val His Leu Ser Ser Tyr Glu He He Thr Pro

Trp Arg Leu Thr Arg Glu Arg Arg Glu Ala Leu Gly Pro Ser Ser Gln

Gln He Ser Tyr Val He Gln Ala Gln Gly Lys Gln His He He His

Leu Glu Arg Asn Thr Asp Leu Leu Pro Asn Asp Phe Val Val Tyr Thr

Tyr Asp Lys Glu Gly Ser Leu Leu Ser Asp His Pro Asn Val Gln Ser

His Cys His Tyr Arg Gly Tyr Val Glu Gly Val Gln Asn Ser Ala Val

Ala Val Ser Ala Cys Phe Gly Len Arg Gly Leu Leu His Leu Glu Asn Ala Ser Phe Gly Ile Glu Pro Leu His Asn Ser Ser His Phe Glu His lle Phe Tyr Pro Met Asp Gly lle His Gln Glu Pro Leu Arg Cys Gly Val Ser Asn Arg Asp Thr Glu Lys Glu Gly Thr Gln Gly Asp Glu Glu Glu His Pro Ser Val Thr Glu Leu Leu Arg Arg Arg Arg Ala Val Leu -205 - 1Pro Gin Thr Arg Tyr Val Giu Leu Phe IIe Val Val Asp Lys Giu Arg Tyr Asp Met Met Cly Arg Asn Gln Thr Ala Val Arg Glu Glu Met lle Arg Leu Ala Asn Tyr Leu Asp Ser Met Tyr Ile Met Leu Asn Ile Arg lle Val Leu Val Gly Leu Glu lle Trp Thr Asp Arg Asn Pro lle Asn lle lle Gly Gly Ala Gly Asp Val Leu Gly Asp Phe Val Gln Trp Arg Glu Lys Phe Leu IIe Thr Arg Arg Arg His Asp Ser Alfa Glin Leu Val Leu Lys Lys Gly Phe Gly Gly Thr Ala Gly Met Ala Phe Val Gly Thr Val Cys Ser Arg Ser His Ala Gly Gly He Asn Val Phe Gly Gln He Thr Val Glu Thr Phe Ala Ser 11e Val Ala His Glu Leu Gly His Asn

Len Gly Met Asn His Asp Asp Gly Arg Gln Cys Phe Cys Gly Ala Lys Ser Cys Ile Met Ash Ser Gly Ala Ser Gly Ser Arg Ash Phe Ser Sei Cys Ser Ala Glu Asp Phe Glu Lys Leu Thr Leu Asn Lys Gly Gly Ser Cys Leo Leo Aso He Pro Lys Pro Asp Glo Ala Tyr Ser Ala Pro Ser Cys Gly Asn Lys Leu Val Asp Pro Gly Glu Glu Cys Asp Cys Gly Thr Ala Lys Glu Cys Glu Val Asp Pro Cys Cys Glu Gly Ser Thr Cy's Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys Asp Cys Glin Phie Leu Pro Gly Gly Ser Met Cys Arg Gly Lys Thr Ser Glu Cys Asp Val Pro Glu Tyr Cys Asn Gly Ser Ser Gln Phe Cys Pro Pro Asp Val Phe lle Gin Asn Gly Tyr Pro Cys Gin Asn Ser Lys Ala Tyr Cys Tyr Asn Gly Met Cys Gln Tyr Tyr Asp Ala Gln Cys Gln Val Ile Phe Gly Ser Lys Ala Lys Ala Ala Pro Arg Asp Cys Phe Ile Glu Val Asn Ser Lys Gly Asp Arg Phe Gly Asn Cys Gly Phe Ser Gly Ser Glu Tyr Lys Lys Cys Ala Thr Gly Asn Ala Leu Cys Gly Lys Leu Glu Cys Glu Asn Val Gln Asp Net Pro Val Phe Gly ile Val Pro Ala ile Ile Gln

The Pro Ser Arg Gly The Lys Cys Tep Gly Val Asp Phe Gln Leu Gly Ser Asp Val Pro Asp Pro Gly Met Val Asn Glu Gly Thr Lys Cys Asp Ala Gly Lys Ile Cys Arg Asn Phe Gln Cys Val Asn Ala Scr Val Leu Asn Tyr Asp Cys Asp lle Gln Gly Lys Cys His Gly His Gly Val Cys Ash Ser Ash Lys Ash Cys His Cys Glu Ash Gly Tro Ala Pro Fro His Cys Asp Thr Lys Gly Tyr Gly Gly Ser Val Asp Ser Gly Pro Thr Tyr Asn Ala Lys Ser Thr Ala Leu Arg Asp Gly Leu Leu Val Phe Phe Phe Leu lle Val Pro Leu Val Ala Ala Ala Ile Phe Leu Phe Ile Lys Arg Asp Glu Leu Arg Lys Thr Phe Arg Lys Lys Arg Ser Gln Met Ser Asp Gly Arg Asn Gln Ala Asn Val Ser Arg Gln Pro Gly Asp Pro Ser Ite Ser Arg Pro Pro Gly Gly Pro Asn Val Ser Arg Pro Pro Gly Gly Pro Gly Val Ser Arg Pro Pro Gly Gly Pro Gly Val Ser Arg Pro Pro Gly Gly Pro Gly Val Ser Arg Pro Pro Pro Gly His Gly Asn Arg Phe Pro Val Pro Thr Tyr Ala Ala Lys Glin Pro Ala Glin Phe Pro Ser Arg Pro

Pro Pro Pro Glin Pro Lys lie Ser Sei Glin Gly Asin Len Ile Pro Ala

Arg Pro Ala Pro Ala Pro Pro Leu Tyr Ser Ser Leu Tir

640

SEQ LD NO. 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JML09(pBSlinMa 300)
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO. 7:

AAG CCT GCA GGA ACA GCG TGC AGG GAC TCC AGC AAC TCC TGT GAC CTC

48

Lys Pro Ala Gly Thr Ala Cys Arg Asp Ser Ser Asn Ser Cys Asp Leu

CCA GAG TTC TGC ACA GGG GCC AGC CCT CAC TGC CCA GCC AAC GTG TAC

Pro Glu Phe Cys Thr Gly Ala Ser Pro His Cys Pro Ala Asn Val Tyr

CTG CAC GAT GGG CAC TCA TGT CAG GAT GTG GAC GGC TAC TGC TAN AAT

Leu His Asp Gly His Ser Cys Gln Asp Val Asp Gly Tyr Cys Xaa Asn

PCT/JP96/03017

GGC ATC TGC CAG ACT CAC GAG CAG CAG TGT GTC ACG CTC TGG GGA CCA

192
Gly lle Cys Gln Thr His Glu Gln Cln Cys Val Thr Leu Trp Gly Pro

GGT GCT AAA CCT GCC CCT GGG ATC TGC TTT GAG AGA GTC AAT TCT GCA

240
Gly Ala Lys Pro Ala Pro Gly lle Cys Phe Glu Arg Val Asn Ser Ala

GGT GAA CCT TAT GGC AAC TGT GGC AAA GTC TCG AAG AGT TCC TTT GCC

288
Gly Glu Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala

AAA TGC GAG ATG AGA GAT GCT AAA TGC GGC AAG

Lys Cys Glu Met Arg Asp Ala Lys Cys Gly Lys

SEQ 1D NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ 1 D NO. 8:

 Lys
 Pro
 Al a
 Gl y
 Thr
 Al a
 Cys
 Arg
 Asp
 Ser
 Ser
 Asn
 Sér
 Cys
 Asp
 Leu

 1
 1
 5
 5
 1
 1
 10
 1
 1
 15
 15

 Pro
 Gl u
 Phe
 Cys
 Thr
 Gl y
 Al a
 Ser
 Pro
 His
 Cys
 Pro
 Al a
 Asn
 Val
 Tyr
 Asn
 Val
 Tyr

 Leu
 His
 Asp
 Gl y
 His
 Ser
 Cys
 Gl n
 Asp
 Val
 Asp
 Gl y
 Tyr
 Cys
 Xa a
 Asn

 Gl y
 His
 Cys
 Gl n
 Gl n
 Gl n
 Gl n
 Cys
 Val
 Thr
 Leu
 Trp
 Gl y
 Pro

80

5.5 60

Gly Ala Lys Pro Ala Pro Gly IIe Cys Phe Glu Arg Val Asn Ser Ala 7.0 75

Gly Glu Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala 85 90

Lys Cys Glu Met Arg Asp Ala Lys Cys Gly Lys 100 105

SEQ 1D NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 967 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JM109(pBShuMy G238)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GCA AAG AGC TGC ATC ATG AAT TCA GGA GCA TCG GGT TCC AGA AAC TTT 48 Ala Lys Ser Cys Ile Mot Asn Ser Gly Ala Ser Gly Ser Arg Asn Phe

AGC AGT TGC AGT GCA GAG GAC TTT GAG AAG TTA ACT TTA AAT AAA GGA 96 Ser Ser Cys Ser Ala Qu Asp Phe Glu Lys Leu Thr Leu Asn Lys Gly

GGA AAC TGC CTT CTT AAT ATT CCA AAG CCT GAT GAA GCC TAT AGT GCT 144

Gl y	Ası	ı Cyr	s Le	v Lei	ı Ası	ı Ile	e Pro	Lys	s Pro	As ₁	p Gla	ı Al	а Ту	r Se	r Ala	
															C TGT p Cys	192
															T ACC	240
TGI	AAC	. (T1	· AAA	N T.C.A	, TT T	GCT	. G40	TGT	GCA	. TA T	GCT	GAC	: TGI	r tgʻ	I AAA	288
															Lys C AGI	336
				Le u CCA											Ser CAG	384
				Pr o											Gl n	432
Pro .																101.
TAT Tyr (480
ATC T																528
CTG A																576

GAA TAC AAG AAG TOE OCC ACT OGG AAT OCT TEG TOE GGA AAG CTT CAG	624
Glu Tyr Lys Lys Cys Ala Thr Gly Asn Ala Leu Cys Gly Lys Leu Gln	
TGT GAG AAT GTA CAA GAG ATA CCT GTA TTT GGA ATT GTG CCT GCT ATT	672
Cys Glu Asn Val Gln Glu Ile Pro Val Phe Gly Ile Val Pro Ala Ile	
ATT CAA ACG CCT AGT CGA GGC ACC AAA TGT TGG GGT GTG GAT TTC CAG	720
lle Gin Thr Pro Ser Arg Gly Thr Lys Cys Trp Gly Val Asp Phe Gln	
CTA GGA TCA GAT GTT CCA GAT CCT GGG ATG GTT AAC GAA GGC ACA AAA	768
Leu Gly Ser Asp Val Pro Asp Pro Gly Met Val Asn Glu Gly Thr Lys	
TGT GGT GCT GGA AAG ATC TGT AGA AAC TTC CAG TGT GTA GAT GCT TCT	816
Cys Gly Ala Gly Lys Ile Cys Arg Asn Phe Gln Cys Val Asp Ala Ser	
GTT CTG AAT TAT GAC TGT GAT GTT CAG AAA AAG TGT CAT GGA CAT GGG	864
Val Len Asn Tyr Asp Cys Asp Val Gln Lys Lys Cys His Gly His Gly	
GTA TGT AAT AGC AAT AAG AAT TGT CAC TGT GAA AAT GGC TGG CTC CCC	912
Val Cys Asn Ser Asn Lys Asn Cys His Cys Glu Asn Gly Trp Leu Pro	
CAA ATT GTG AGA CTA AAG GAT ACG AGA TCA AGC TTA TCG ATA CCG TCG	960
Gin lie Val Arg Leu Lys Asp Thr Arg Scr Ser Lou Ser lie Pro Scr	
ACC TCG A	967
Thr Ser	

......

PCT/JP96/03017

(2) INFORMATION FOR SEQ 1D NO. 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 322 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO. 10:

Ala Lys Ser Cys Ile Met Asn Ser Gly Ala Ser Gly Ser Arg Asn Phe i 5 10 15 Ser Ser Cys Ser Ala Glu Asp Phe Glu Lys Leu Thr Leu Asn Lys Gly 20 25 30 Cly Asn Cys Leu Leu Asn Ile Pro Lys Pro Asp Glu Ala Tyr Ser Ala 35 4() 45 Pro Ser Cys Gly Asn Lys Leu Val Asp Ala Gly Glu Glu Cys Asp Cys 55 Gly Thr Pro Lys Glu Cys Glu Leu Asp Pro Cys Cys Glu Gly Ser Thr 70 75 Cys Lys Leu Lys Ser Phe Ala Glu Cys Ala Tyr Gly Asp Cys Cys Lys 85 90 Asp Cys Arg Phe Leu Pro Gly Gly Thr Leu Cys-Arg Gly Lys Thr Ser 100 105 110 Glu Cys Asp Val Pro Glu Tyr Cys Asn Gly Ser Ser Gln Phe Cys Gln 115 120 125 Pro Asp Val Phe II c Gin Asn Gly Tyr Pro Cys Glu Asn Asu Lys Ala 130 135 140 Tyr Cys Tyr Asn Gly Met Cys Gln Tyr Tyr Asp Ala Gln Cys Gln Val 145 150 155 160

He Pire Gly Ser Lys Ala Lys Ala Aia Pro Lys Asp Cys Phe He Gln 165 170 Val Asn Ser Lys Gly Asp Arg Phe Gly Asn Cys Gly Phe Ser Gly Asn 180 185 Glu Tyr Lys Lys Cys Ala Thr Gly Asn Ala Len Cys Gly Lys Len Gln 195 200 205 Cys Glu Asn Val Gln Glu II e Pro Val Phe Gly II e Val Pro Ala II e 210 215 220 lle Glin Thr Pro Ser Arg Gly Thr Lys Cys Trp Gly Val Asp Phe Glin 225 230 235 Leu Gly Ser Asp Val Pro Asp Pro Gly Met Val Asn Glu Gly Thr Lys 245 250 255 Cys Gly Ala Gly Lys He Cys Arg Asn Phe Gln Cys Val Asp Ala Ser 260 265 270 Val Leu Asn Tyr Asp Cys Asp Val Gln Lys Lys Cys His Gly His Gly 275 280 285 Val Cys Asn Ser Asn Lys Asn Cys His Cys Glu Asn Gly Trp Leu Pro 295 Gln lle Val Arg Leu Lys Asp Thr Arg Ser Ser Leu Ser lle Pro Ser 305 310 315 320 Thr Ser

SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2848 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHET! CAL: NO

(iv) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE

(B) CLONE: JM109 (pMel a - 25C)

 $JM109(pMe1 \alpha - 26N)$

(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 11:

GGG GAC CTC TGG ATC CCA GTG AAG AGC TTC GAC TCC AAG AAT CAT CCA	48
Gly Asp Leu Trp 11e Pro Val Lys Ser Phe Asp Ser Lys Asn His Pro	
GAA CTG CTG AAT ATT CGA CTA CAA CGG GAA ACC AAA GAA CTG ATC ATA	96
Glu Val Leu Asnille Arg Leu Gln Arg Glu Ser Lys Glu Leu ile ile	
AAT CTG CAA ACA AAT CAA GCT CTC ATT GCC AGC AGT TTC ACG GAA ACC	144
Asn Leu Glu Arg Asn Glu Gly Leu Ile Ala Ser Ser Phe Thr Glu Thr	
CAC TAT CTG CAA GAC GGT ACT GAT GTC TCC CTC GCT CGA AAT TAC ACG	192
His Tyr Leu Gln Asp Gly Thr Asp Val Scr Leu Ala Arg Asn Tyr Thr	
GGT CAC TGT TAC TAC CAT GGA CAT GTA CGG GGA TAT TCT GAT TCA GCA	240
Gly His Cys Tyr Tyr His Gly His Val Arg Gly Tyr Ser Asp Ser Ala-	
GTC AGT CTC AGC ACG TGT TCT GGT CTC AGG GGA CTT ATT GGG TTT GAA	288
Val Ser Leu Ser Thr Cys Ser Gly Leu Arg Gly Leu IIe Gly Phe Glu	
AAT GAA AGC TAT GTC TTA GAA CCA ATG AAA AGT GCA ACC AAC AGA TAC	336
	.,.,,
Asn Glu Ser Tyr Val Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr	

Ą۵	LA C	rc :	TTC.	CC.	A CC	CG A/	AG A	AG CI	FG AA	1 .4 AC	C Gr	C CG	G GG	A TC	A TGI	GGA	384
Ly	s Le	eu F	^o h e	Pr (o Al	a Ly	s Ly	s Le	o Ly	's Se	r Val	l Ar	g Gly	' Ser	Cy s	Gl y	
TC	Λ Cª	AT C	CAC	AAG	C AC	A CC	A AA	C CI	C CC	TE GO	A AAG	G AA	ല ന	; TTT	· CCA	CCA	432
Se	r Hi	s t	lis.	Asr	n Th	r Pr	o As	n Le	u Al	a Al	a Lys	s Ası	y Val	Phe	- Pro	Pro	
CC	СТС	т с	ŅG	ACA	t TG	G GC	A AG	A AG	G CA	T AA	A AG₄	A GAC	G ACC	CTC	: AAG	CCA	480
Pr	o Se	r C	i n	Thr	Tr	p Al	a Ar	g Ar	g Hi	s Ly:	s Arg	GI u	Thr	Leu	Lvs	Al a	
АC	ΓAA	GТ	ΑT	GTC	GA(G CT	g gr	G AT	ഗ ന്ന	G GC/	A GAC	C AAC	: CGA	GAG	11.1	CAG	528
Thr	Ly:	s T	yΓ	Val	GL	ı Lei	r Val	lie	e Val	l Ala	ı Asp	As n	Ar g	GLu	Phe	Gl n	
AGC	G CA	4 G	GA	AAA	G٩٦	сто	G GA≉	4 AAA	A GT	i aac	G CAG	CGA	TTA	ATA	GAG	ATT	576
Ar g	GLi	ı Gl	у	Lys	As p	Leu	Glu	Lys	Val	Lys	Gl n	Ar g	Leu	He	Glu	He	
GCT	AA7	r C	NC (CTT	GAC	: AAC	ודד ז	TAC	C AGA	CCA	CTG	AAC	АТТ	CGG	ATC	СТG	624
Al a	Asn	Hi	s '	Val	Asp	Ly s	Phe	Tyr	Ar g	Pro	Leu	As n	He	Air g	Пе	Val	
TTG	GTA	GC	Ю	STG	GAA	GTG	TGG	AAT	GAC	ATG	GAC	AAA	TGC	тст	GTA 1	AGT	672
Leu	Val	GI	y \	√a l	Glu	Val	Tr p	As n	As p	Met	Asp	Ly s	Cy s	Ser	Val S	Ser	
CAG	GAC	CC	ΑΊ	TC	лсс	AGC	CTC	CAT	GAA	TTT	CTG	GAC	TGG .	AGG /	AAG A	ATG	720
											Leu						
AAG	CTT	CT/	4 C	CT.	CGC	AAA	TCC	CAT	GAC	AAT	GCG	CAG (CTT (STC A	ለ ርፐ ር	CCC	768
Ly s	Leu	Lei	ıΡ	го .	Arg	Ly s	Ser	His	As p	As n	Ala (Gin i	Leu V	/al S	Ser C	il y	
GTT	TAT	TTO	C C	ΛA (ncc	ACC	ACC	ATC	GGC	ATG	GCC (CCA /	NTC A	ATG A	NGC A	TG	816

Val Tyr Phe Glu Gly Thr Thr 1	le Gly Met Ala Pro Ile Met Ser Met	
	XGA ATT CTC ATC CAC CAT TCA GAC AAT By Ile Val Met Asp His Ser Asp Asn	864
	TG GCA CAT GAG CTG GGC CAC AAT TTC ge	912
GGG ATG AAT CAT GAC ACA CTG GA	AC AGG GGC TGT AGC TGT CAA ATG GCG	960
	SP Arg Gly Cys Ser Cys Gln Met Ala FG AAC CCT TCC ACC GCG TAC CCA TTT 10	108
	Ct Asn Ala Ser Thr Gly Tyr Pro Phe CC ACG AAG GAC TTG GAG ACC AGC CTG 10	156
Pro Met Val Phe Ser Ser Cys Se	r Arg Lys Asp Leu Glu Thr Ser Leu	- "
	G TTT AAC CTG CCG GAA GTC AGG GAG 110 u Phe Asn Leu Pro Glu Val Arg Glu	04
	G AAC AGA TTT GTG GAA GAA GGA GAG 115 y Asn Arg PhewVal Glu Glu Gly Glu	52
	G GAA TGT ATG AAT CGC TGC TGC AAT 120 J Glu Cys Met Asn Arg Cys Cys Asn	0 0
	G GAC GCT GTG TGC GCA CAT GGG CTG 124 D Asp Ala Val Cys Ala His Gly Leu	18

TGC TGT GAA GAC TGC CAG CTG AAG CCT GCA GGA ACA GCG TGC AGG GAC Cys Cys Glu Asp Cys Glu Leu Lys Pro Ala Gly Tur Ala Cys Arg Asp	1296
TCC AGC AAC TCC TGT GAC CTC CCA GAG TTC TGC ACA GGG GCC AGC CCT	1344
Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala Ser Pro	
CAC TOC CCA GCC AAC GTG TAC CTG CAC GAT GGG CAC TCA TGT CAG GAT	1392
His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser Cys Gla Asp	
GTG GAC GGC TAC TGC TAC AAT GGC ATC TGC CAG ACT CAC GAG CAG CAG	1440
Val Asp Gly Tyr Cys Tyr Asn Gly Ile Cys Gln Thr His Glu Gln Gln	
TGT GTC ACG CTC TGG GGA CCA GGT GCT AAA CCT GCC CCT GCG ATC TGC	1 4 0 0
Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly Ile Cys	1488
TTT GAG AGA GTC AAT TCT GCA CKIT GAT CCT TAT GGC AAC TGT CKIC AAA	1536
Phe Glu Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys	
GTC TCG AAG ACT TCG TTT CCC AAA TCG CAG ATG AND TCG	
GTC TCG AAG AGT TCC TTT GCC AAA TGC GAG ATG AGA GAT GCT AAA TGT Val Ser Lys Ser Ser Phe Ala Lys Cys Glu Met Arg Asp Ala Lys Cys	1584
y so the fact by s Cy's Columber Arg Asp Ala Lys Cy's	
GGA AAA ATC CAG TGT CAA GGA GGT GCC AGC CGG CCA GTC ATT GGT ACC	1632
Gly Lys lle Gln Cys Gln Gly Gly Ala Ser Arg Pro Val lle Gly Thr	
AAT, goo —	
AAT GCC GTT TCC ATA GAA ACA AAC ATC CCC CTG CAG CAA GGA GGC CCC	1680
Asn Ala Val Ser lle Glu Thr Asn lle Pro Leu Gln Gln Gly Gly Arg	
ATT CTG TGC CGG GGG ACC CAC GTG TAC TTG GGC GAT GAC ATG CCG GAC	
lle Leu Cys Arg Cly Thr His Val Tyr Leu Gly Asp Asp Met Pro Asp	1728
The same was the hap	

CCA	GGG	CTT	CTG	CTT	GCA	GGC	ACΛ	AAG	TGT	CCA	GAT	GGA	AAA	ΛTC	TGC	1776
Pro	Gl y	Leu	Val	Leu	Al a	Gl y	Thr	Lys	Cy s	Al a	As p	Gl y	Lys	11 e	Cy s	
CTG	AAT	CCT	CAA	TGT	CAA	AAT [*]	АТТ	ACT	GTC	777	GGG	GFT	CAC	GAG	TGT	1824
Leu	As n	Ar g	Gl n	Cy s	Gln	As n	He	Ser	Val	Phe	Gl y	Val	His	Glu	Cy s	
CCA	ATG	CAG	TGC	CAC	GGC	AGA	GGG	CTG	TGC	AAC	AAC	AGG	AAG	AAC	TGC	1872
Al a	Me t	Gln	Cy s	His	Gly	Ar g	Gl y	Va I	Cy s	Asn	As n	Ar g	Lys	As n	Cy s	
CAC	TGC	GAG	GCC	CAC	TGG	GCA	CCT	CCC	TTC	TGT	GAC	AAG	TTT	GGC	TTT	1920
His	Cy s	Glu	Al a	His	Tr p	Al a	Pro	Pr o	Phe	Cy s	As p	Lys	Phe	Gl y	Phe	
GGA	GGA	AGC	ACA	GAC	AGC	GGC	ccc	ATC	CGG	CAA	GCA :	GAA	CCA	AGG	CAG	1968
Gl y	Gl y	Ser	Thr	As p	Ser	Gl y	Pr o	ll e	Ar g	Gl n	Al a	Gl u	Al a	Ar g	Gl n	
GAA	CCT	GCA	GAG	TCC	AAC	AGG	GAG	CGC	GGC	CAG	GGC	CAG	GAG	CCC	GTG	2016
Gl u	AJ a	Al a	Gl u	Ser	As n	Ar g	Glu	Ar g	Gl y	Gl n	Gl y	Gl n	Gl u	Pr o	Va!	
GGA	TCG	CAG	GAG	CAT	GCG	TCT	ACT	GCC	TCA	CTG	ACA	CLC	ATC	TGA		2061
Gl y	Ser	Gln	Gl u	His	Al a	Ser	Thr	Al a	Ser	Leu	Ťhr	Leu	I I e	*		
CCC	CTCCC	AT C	ACAT	`GGAC	A CC	CTGA	CCAC	TGC	TGCT	CCA	GAGC	AGGT	CA C	CCCT	CCCCA	2121
AGGC	CTCC	TG T	GACT	`GGCA	NG CA	TTGA	crci	GTC	GCTT	TGC	CATO	GTT	CC A	TGAC	AACAG	2181
ACAC	CAACA	CA C	птст	CGGC	зс ст	CAGC	AGGC	GAA	ctcc	CAGC	CTAC	CAGC	CA C	जित	'GCAGA	2241
NACA	CTCC	CAA C	GAAC	GGCA	G CC	ACTT	.001.0	GTT	'GAGC	TTC	TGCT	`AAAA	CA T	`GGAC	ATGCT	2301
ГСАС	TGCT	GC T	CCTC	AGAC	A GT	`AGCA	GGTT	ACC	ACTO	CTGG	CAGC	CCCC	AG C	CCTC	CAGCA	2361
AGGA	\GC;AA	GA C	GACT	CAA	A GT	стсс	CCTT	TCA	CTGA	/CCC	CCCA	CAGC	AG T	'GĠGC	GAGAA	2421
GCAA	GGGT	TG 0	GCCC	AGTO	T CC	CCTT	TCCC	CAC	TGAC	ACC	TCAC	CCTT	.cc c	AGCC	CTGAT	2481

GACTGGTCTC	TGGCTGCAAC	TTAATGCTCT	GATATGGCTT	TTAGCATTTA	TTATATGAAA	2541
ATAGCAGGGT	TTTAGITTTT	AATTTATCAG	AGACCCTGCC	ACCCATTICCA	TCTCCATCCA	2601
AGCAAACTGA	ATGGCATTGA	AACAAACTGG	AGAAGAAGGT	AGGAGAAAGG	GCGGTGAACT	2661
CTGGCTCTTT	GCTGTGGACA	TGCGTGACCA	GCAGTACTCA	GGTTTGAGGG	TTTGCAGAAA	2721
GCCAGGGAAC	CCACACACTC	ACCAACCCTT	CATTTAACAA	GTAAGAATGT	TAAAAAGTGA	2781
AAACAATGTA	AGAGCCTAAC	TCCATCCCCC	CITGCCCATTA	CTGCATAAAA	TAGAGTGCAT	2841
CCCCCCC						2848

SEQ ID NO. 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 686 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 12:

Gly Asp Leu Trp IIe Pro Val Lys Ser Phe Asp Ser Lys Asn His Pro Clu Val Leu Val Leu Asn IIe Arg Leu Gln Arg Glu Ser Lys Glu Leu IIe IIe Asn Leu Glu Arg Asn Glu Gly Leu IIe Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp Val Ser Leu Ala Arg Asn Tyr Thr Gly His Gly His Gly His Val Arg Gly Leu IIe Gly Phe Gln Val Ser Leu Ser Thr Gys Ser Gly Leu Arg Gly Leu IIe Gly Phe Gln

Asn Glu Ser Tyr Val Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu He Glu He Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn !le Arg !le Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr 11e Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly He Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu Asp Arg Gly Cys Ser Cys Gln Met Aln

Val Glu Lys Gly Gy Cys He Met Asn Afa Ser Thi Gly Tyr Pro Phe Pro Met Val Pho Ser Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly M:t Gly Val Cys Leo Phe Ash Leo Pro Glo Val Arg Glo Ser Phe Gly Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Gly Giu Glu Cys Asp Cys Gly Glu Pro Glu Giu Cys Met Asn Arg Cys Cys Asn Ala Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Cly Leu Cys Cys Glu Asp Cys Glu Leu Lys Pro Ala Gly Thr Ala Cys Arg Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly He Cys Gln Thr His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys Glu Met Arg Asp Ala Lys Cys Gly Lys Ile Gln Cys Gln Gly Gly Ala Ser Arg Pro Val Ile Gly Thr Asn Ala Val Ser Ile Glu Thr Asn Ile Pro Len Gln Gln Gly Gly Arg

PCT/JP96/03017

Pro Gly Leu Val Leu Ala Gly Thr Lys Cys Ala Asp Gly Lys He Cys

Leu Asn Arg Gln Cys Gln Asn He Ser Val Phe Gly Val His Glu Cys

Ala Met Gln Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys

His Cys Glu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe

Gly Gly Ser Thr Asp Ser Gly Pro He Arg Gln Ala Glu Ala Arg Gln

Glu Ala Ala Glu Ser Asn Arg Glu Arg Gly Gln Gly Gln Glu Pro Val

Gly Ser Gln Glu His Ala Ser Thr Ala Ser Leu Thr Leu He

SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 base pairs
 - (B) TYPE: nucleic acid-
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xr) SEQUENCE DESCRIPTION: SEQ 1D NO.13:

GOG GAA GAG TOT GAT TOT GOA GAA GAA GAG GAA TOT AAC AAC CCC TOC	48
Gly Glu Glu Cys Asp Cys Gly Glu Glu Glu Glu Cys Asn Asn Pro Cys	
TOO AAT GOO TOT AAT TOT ACC CTG AGG CCG GOG GOG GAG TOT GOT CAC	96
Cys Asn Ala Ser Asn Cys Thr Len Arg Pro Gly Ala Glu Cys Ala His	
GGC TCC TGC TGC CAC CAG TGT AAG CTG TTG GCT CCT GCG ACC CTG TCC	144
Gly Ser Cys Cys His Gln Cys Lys Leu Len Ala Pro Gly Thr Leu Cys	
CGC GAG CAG GCC AGG CAG TGT GAC CTC CCG GAG TTC TGT ACG CGC AAG	192
Arg Glu Gln Ala Arg Glu Cys Asp Leu Pro Glu Phe Cys Thr Gly Lys	
TOT COO CAC TIGO COT ACC AAC TTO TAC CAG ATG GAT GOT ACC COO TIGT	240
Ser Pro His Cys Pro Thr Asn Phe Tyr Glin Met Asp Gly Thr Pro Cys	
GAG COO CGC CAG GCC TAC TGC TAC AAC CGC ATG TGC CTC ACC TAC CAG	288
Giu Gly Gly Gln Ala Tyr Cys Tyr Asn Gly Met Cys Len Thr Tyr Gln	
GAG CAG TGC CAG CAG CTG TCG GGA CCC GGA GCC CGA CCT GCC CCT GAC	336
Glu Gln Cys Gln Gln Leu Trp Gly Pro Gly Ala Arg Pro Ala Pro Asp	
CTC TGC TTC GAG AAG CTG AAT GTG GCA GGA GAC ACC TTT GGA AAC TGT	384
Leu Cys Phe Glu Lys Val Asn Val Ala Gly Asp Thr Phe Gly Asn Cys	
CGA AAG GAC A	394
Gly Lys Asp	

SEQ 1D NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ 1D NO. 14:
- Gly Glu Glu Cys Asp Cys Gly Glu Glu Glu Glu Cys Asn Asn Pro Cys 1 - 5 15 Cys Asn Ala Ser Asn Cys Thr Leu Arg Pro Gly Ala Glu Cys Ala His 20 25 3.0 Gly Ser Cys Cys His Gln Cys Lys Leu Leu Ala Pro Gly Thr Leu Cys 35 40 45 Arg Glu Gln Ala Arg Gln Cys Asp Leu Pro Glu Phe Cys Thr Gly Lys 55 60 Ser Pro His Cys Pro Thr Ash Phe Tyr Gln Met Asp Gly The Pro Cys 7.0 75 Glu Gly Gly Gln Ala Tyr Cys Tyr Asn Gly Met Cys Leu Thr Tyr Gln 85 90 Glu Gln Cys Gln Gln Leu Trp Gly Pro Gly Ala Arg Pro Ala Pro Asp 100 105

Leu Cys Phe Glu Lys Val Asn Val Ala Gly Asp Thr Phe Gly Asn Cys

120

Gly Lys Asp

115

130

125

SEQ 1D NO: 15:

(1)	SEQUENCE	CHARACTERI STI CS:	
-----	----------	--------------------	--

- (A) LENGTH: 1183 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

C GGA GCT GCC ACT GGG CAC CCC TTT CCC AAA GTG TTC AAT GGA TGC	4.6
Gly Ala Ala Thr Gly His Pro Phe Pro Lys Val Phe Ash Gly Cys	
AAC AGG AGG GAG CTG GAC AGG TAT CTG CAG TCA GGT GGT GCA ATG TGT	9-1
Asn Arg Arg Glu Leu Asp Arg Tyr Leu Glu Ser Gly Gly Gly Met Cys	
CTC TCC AAC ATG CCA GAC ACC AGG ATG TTG TAT GGA GCC CGG AGG TGT	142
Leu Ser Asn Met Pro Asp Thr Arg Met Leu Tyr Gly Gly Arg Arg Cys	
COG AAC COG TAT CTG GAA GAT COG GAA GAG TOT GAC TOT CCA GAA GAA	190
Gly Asn Gly Tyr Leu Glu Asp Gly Glu Glu Cys Asp Cys Gly Glu Glu	
GAG GAA TGT AAC AAC CCC TGC TGC AAT CCC TCT AAT TGT ACC CTG ACG	238
Glu Glu Cys Asn Asn Pro Cys Cys Asn Ala Ser Asn Cys Thr Leu Arg	
CCG GCG GCG GAG TGT GCT CAC GGC TCC TGC TGC CAC CAG TGT AAG CTG	286
Pro Gly Ala Glu Cys Ala His Gly Ser Cys Cys His Gln Cys Lys Leu	

TTG	GCT	CCT	GGG	ACC	CTG	TGC	CGC	GAG	CAG	GCC	AGG	CAC	TGT	G4C	CTC	33-
Leu	Al a	Pro	Gl y	Thr	Leu	Cy s	Ar g	Glu	Gl n	Al a	Ar g	Gl n	Cy s	As p	Leu	
CCG	GAG	TTC	TCT	ACG	GGC	AAG	TCT	CCC	CAC	TGC	CCT	ACC	AAC	TTC	TAC	383
Pro	Gl u	Phe	Cy s	Thr	Gly	Lys	Ser	Pro	His	Cy s	Pro	Thr	As n	Phe	Tyr	
CAG	ATG	GAT	GGT	ACC	CCC	TGT	GAG	GGC	GGC	CAG	GCC	TAC	TGC	TAC	AAC	430
Gl n	Met	As p	Gl y	Thr	Pro	Cy s	Gl u	Gly	Gl y	Gl n	Al a	Tyr	Cy s	Тут	Asn	
GGC	ЛТG	TGC	стс	ACC	TAC	CAG	GAG	CAG	TGC	CAG	CAG	CTG	TGG	GG-4	CCC	478
Gl y	M⊵ι	Cy s	Leu	Thr	Tyr	Gl n	Glu	Gl n	Cy s	GIn	Gl n	Leu	Trp	Gl y	Pr o	
GGA	GCC	CGA	CCT	GCC	CCT	GAC	CTC	TGC	TTC	GAG	AAG	GTG	AAT	GrG	GCA	526
Gl y	Al a	Агд	Pro	Ala	Pr o	As p	Leu	Cys	Phe	Gl u	Lys	Va1	Asn	Val	Ala	
GGA	GAC	ACC	TTT	GGA	AAC	TGT	GGA	AAG	GAC	ATG	ААТ	GGT	GAA	CAC	AGG	574
Gl y	As p	Thr	Phe	Gly	As n	Cy s	Glу	Lys	As p	Met	As n	Gl y	Gl u	His	Ar g	
AAG	TGC	AAC	ATG	AGA	GAT	GCG	AAG	TGT	GGG	AAG	ATC	CAG	TGT	CAG	AGC	622
Ly s	Cy s	As n	Me t	Ar g	Asp	Λla	Ly s	Cy s	СГу	Lys	11 e	Gl n	Cys	GIn	Ser	
тст	GAG	GCC	CGG	CCC	стс	GAG	TCC	AAC	GCG	G TG	CCC	ATT	GAC	ACC	ACT	670
Ser	Glu	Aì a	Ar g	Pr o	Le u	Gl u	Ser	As n	Ala	Val	Pro	He	As p	Thr	Thr	
ATC	ATC	ATG	AAT	CCC	AGG	CAG	ATC	CAG	TGC	CCC	GGC	ACC	CAC	GIC	TAC	718
11 e	lle	Me≀	As n	Gl y	Ar g	Gln	lle	Gln	Cy s	Ar g	Gl y	Thr	His	Val	lyr	
CGA	GCT	ССТ	GAG	GAG	GAG	CCT	GAC	ATG	CLC	GAC	CCA	GGG	CIG	GTG	ATG	766
Ar g	Gl y	Pr o	Gl u	Glu	Glu	Gl y	As p	Me t	Leu	As p	Pro	Cly	Leu	Val	Met	

ACT GGA ACC AAG TGT GGC TAC AAC CAT ATT TGC CTT GAG GGG CAG TGC	814
Thr Gly Thr Lys Cys Gly Tyr Asn His He Cys Leu Glu Gly Gln Cys	
AGG AAC ACC TCC TTC TTT GAA ACT GAA GGC TGT GGG AAG AAG TGC AAT	862
Arg Asn Thr Ser Phe Phe Glu Thr Glu Gly Cys Gly Lys Lys Cys Asn	
GGC CAT GGG GTC TGT AAC AAC CAG AAC TGC CAC TGC CTG CCG GGC	910
Gly His Gly Val Cys Asn Asn Asn Gln Asn Cys His Cys Len Pro Gly	
TOG GCC CCG CCC TTC TGC AAC ACA CCG GGC CAC GGG GGC AGT ATC GAC	958
Trp Ala Pro Pro Phe Cys Asn Thr Pro Gy His Gly Gly Ser He Asp	
AGT GOG COT ATG COO COT GAG AGT GTG GGT COT GTG GTA GOT GGA GTG	1006
Ser Gly Pro Met Pro Pro Glu Ser Val Gly Pro Val Val Ala Gly Val	
TTG GTG GCC ATC TTG GTG CTG GCG GTC CTC ATG CTG ATG TAC TAC TCC Leu Val Ala He Leu Val Leu Ala Val Leu Met Leu Met Tyr Tyr Cys	1054
TGC AGA CAG AAC AAA CTA GGC CAA CTC AAG CCC TCA GCT CTC CCT Cys Arg Cln Asn Asn Lys Leu Cly Gln Leu Lys Pro Ser Ala Leu Pro	1102
TCC AAG CTG AGG CAA CAG TTC AGT TGT CCC TTC AGG GTT TCT CAG AAC Ser Lys Leu Arg Glin Glin Phe Ser Cys Pro Phe Arg Val Ser Glin Asin	1150
ACC GCG ACT GCT CAT GCC AAC CCA ACT TTC AAG Ser Gly Thr Gly His Ala Asn Pro Thr Phe Lys	1183

SEQ ID NO. 16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 16:

Gl y	Al a	AJ a	Thr	Gl y	His	Pro	Phe	Pr o	Lys	Val	Phe	Asıı	Gł y	Cys	Asn
1				5					10					15	
Ar g	Ar g	GI u	Leu	As p	Ar g	Tyr	Leu	Gl n	Ser	Gl y	Gl y	Gl y	Met	Cys	Len
			20					25					30		
Ser	Asn	Me t	Pr o	As p	Thr	Ar g	Me t	Leu	Tyr	Gl y	Gl y	Ar g	Ar g	Cy s	Gl y
		35					40					45			
As n	Gl y	Туг	Len	Glι	As p	Gl y	Glu	Glu	Cys	Asp	Cy s	Gl y	GL u	Glu	GLu
	50					55					60				
Gl u	Cy s	As n	As n	Pr o	Cy s	Cy s	As n	Al a	Ser	Asn	Cys	Thr	Leu	Ar g	Pro
65					70					75					80
Gl y	Al a	Glu	Cy s	Al a	His	Gl y	Ser	Cy s	Cy s	Hi s	Gł n	Cy s	Lys	Leu	Leu
				85					90					95	
Al a	Pro	Gl y	Thr	Leu	Cy s	Аг д	Glu	Gl n	Al a	Ar g	Gl n	Cy s	As p	Leu	Pr o
			100					105					110.		
Gl u	Phe	Cy s	Thr	Cl y	Ly s	Ser	Pr o	His	Cy s	Pro	Thr	Asn	Phe	Tyr	Gl n
		115					120					125			
Met	Asp	Gi y	Thr	Pr o	Cy s	Glu	Cay	Gl y	GI n	Al a	Туг	Cy s	Туr	As n	Gl y
	130					135					140				
Met	Cy s	Leu	Thr	Туг	Gln	Gl u	Gl n	Cy s	Gl n	GI n	Leu	Trp	Gl y	Pr o	Gl y
145					150					155					160

					1	â 5				1	70				17	5
As	s p	Th	r P	he G	Ly As	sn Cy	s Gl	y Ly	rs A	sp M	et As	n Gl	y Gl	u Hu	s Ar	g Lys
				1.8	80				13	85				19	0	
Cy	S	As	n Me	et Ar	g As	p Al	a Ly	s Cy	s Gl	y Ly	's 11	e Gl	n Cy	s Gl	n Se	r Ser
			19	9.5				2 (0.0				20	5		
Gl	U	AL.	a Ar	g Pr	o Le	u Gl	u Se	r As	n Al	a Va	4 Pr	o 11	e As	p Th	r Th	r He
		21	()				21	5				22	()			
I 1	e	Mei	ı As	n G	y Ar	g G	n 1 l	e Gl	n Cy	s Ar	g Gl	y Thi	r Hi.	s Val	Тут	r Arg
22						23					23					240
G)	У	Pro	G!	n G	n G	o G	y As	p NE	i Le	u As	p Pro	o GLy	r 4.eu	ı Val	Met	Thr
					24	5				25	()				255	5
GI :	y	Thi	Ly	s Cy.	s Gl	r Tyr	· As i	ı Hi:	s II	e Cy.	s Les	ı Gla	ı GL)	GI n	Cy s	Ar g
				26					26					270		
Ası	1	Thr	Sei	r Phe	e Pho	Glu	Th r	Gu	ı Gl	r Cy :	s Gly	Lys	Lys	Cy s	As n	GLy
			275					280					285			
Hi s	: (Gl y	Val	Cy s	: As n	As n	As n	Gin	Ası	Cy s	: His	Cy s	Leu	Pro	GLy	Trp
	2	90					295					300				
Al a	F)r o	Pro	Phe	Cy s	As n	Thr	Pr o	GI y	His	Gl y	Gl y	Ser	He	As p	Ser
305						310					315					320
Gl y	P	r o	Met	Pro	Pr o	Glu	Ser	Va I	Gl y	Pr o	Val	Val	Al a	Gl y	Val	Leu
					325					330					335	
Val	Α	Ja	He	Leu	Val	Leu	Al a	Val	Le u	Met	Leu	Met	Тут	Tyr	Cy s	Cy s
				340					345					350		
Air g	G	Ιn	As n	Asn	Ly s	Len	Cil y	CI n	Leu	Lys	Pro	Ser	Ala	Len	Pr o	Ser
			355					360					365			
Lys	Le	9 (1	Ar g	Gln	Cl n	Ph e	Ser	Cy s	Pr o	Phe	Ar g	Val	Ser	Gl n	As n	Ser
	3 7						375					380				
Gl y	Th	ır.	Gly	Hi s	Al a	As n	Pro	Thr	Phe	Ly s						
385						390										

.. SEQ 1D NO. 17:

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 624 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: not relevant	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETI CAL: NO	
(iv) ANTI-SENSE: NO	
(vii) 1 MMEDIATE SOURCE:	
(B) CL(WE: CLONE TM	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
GC ACA AAG TGT GCA GAT OGA AAA ATC TGC CTG AAT CGT CAA TGT CAA	47
Thr Lys Cys Ala Asp Gly Lys He Cys Leu Asn Arg Gln Cys Gln	
AAT ATT AGT GTC TTT GGG GTT CAC GAG TGT GCA ATG CAG TGC CAC GGC	95
Asn lle Scr Val Phe Gly Val His Glu Cys Ala Met Gln Cys His Gly	
AGA GCG GTG TGC AAC AGG AAG AAC TGC CAC TGC GAG GCC CAC TGG	143
Arg Cily Val Cys Asn Asn Arg Lys Asn Cys His Cys Clu Ala His Trp	
GCA CCT CCC TTC TGT GAC AAG TTT GGC TTT GGA CGA AGC ACA GAC AGC	191
Ala Pro Pro Phe Cys Asp Lys Phe Cly Phe Gly Cly Ser Thr Asp Ser	

GCC CCC ATC CCG CAA GCA GAT AAC CAA GGT TTA ACC ATA GCA ATT CTG 239

Gly Pro II e Arg Gln Ala Asp Asn Gln Gly Len Thi II e Gly II e Len	
GTG ACC ATC CTG TGT CTT CTT CCT GCC GGA TTT GTG GTT TAT CTC AAA Val Thr lie Leu Cys Leu Leu Ala Ala Gly Phe Val Val Tyr Leu Lys	287
AGG AAG ACC TTG ATA CGA CTG CTG TTT ACA AAT AAG AAG ACC ACC ATT Arg Lys Thr Leu Ile Arg Leu Leu Phe Thr Ash Lys Lys Thr Thr Ile	335
GAA AAA CTA AGG TGT GTG CGC CCT TCC CGG CCA CCC CGT GGC TTC CAA Glu Lys Leu Arg Cys Val Arg Pro Ser Arg Pro Pro Arg Gly Phe Gln	383
CCC TGT CAG GCT CAC CTC GGC CAG CTT GGA AAA GGC CTG ATG AGG AAG Pro Cys Gin Ala His Leu Gly His Leu Gly Lys Gly Leu Met Arg Lys	434
CCG CCA GAT TCC TAC CCA CCG AAG GAC AAT CCC AGG AGA TTG CTG CAG Pro Pro Asp Ser Tyr Pro Pro Lys Asp Asn Pro Arg Arg Leu Leu Glin	479
TGT CAG AAT GTT GAC ATC AGC AGA CCC CTC AAC GGC CTG AAT GTC CCT Cys Gln Asn Val Aspille Ser Arg Pro Leu Asn Gly Leu Asn Val Pro	527
CAG CCC CAG TCA ACT CAG CGA GTG CTT CCT CCC CTC CAC CGG GCT CCA Gln Pro Gln Ser Thr Gln Arg Val Leu Pro Pro Leu His Arg Ala Pro	575
CGT GCA CCT AGC GTC CCT GCC AGA CCC CTG CCA GCC AAG CCT CCA CTT Arg Ala Pro Ser Val Pro Ala Arg Pro Leu Pro Ala Lys Pro Ala Leu	623
A	624

Α

- ----

SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 amino acids
 - (B) TYPE: amino acid
 - (f)) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 18:

Thr Lys Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln Cys Gln Asn 1 10 15 lle Ser Val Pho Gly Val His Glu Cys Ala Met Gle Cys His Gly Arg 20 25 Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys Glu Ala His Trp Ala 35 45 40 Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly Gly Ser Thr Asp Ser Gly 50 55 Pro lle Arg Gln Ala Asp Asn Gln Gly Leu Thr lle Gly lle Leu Val 70 75 Thr Ile Leu Cys Leu Leu Ala Ala Gly Phe Val Val Tyr Leu Lys Arg 85 90 Lys Thr Leu lle Arg Leu Leu Phe Thr Asn Lys Lys Thr Thr Ile Glu 100 105 110 Lys Leu Arg Cys Val Arg Pro Ser Arg Pro Pro Arg Gly Phe Gln Pro 115 120 Cys Glin Ala His Leu Gly His Leu Gly Lys Gly Leu Met Arg Lys Pro 130 135 140 Pro Asp Ser Tyr Pro Pro Lys Asp Asu Pro Arg Arg Leu Clu Cys 145 150 155 160 Gln Asn Val Asp Ile Ser Arg Pro Leu Asn Gly Leu Asn Val Pro Gln

165

170

175

Pro Glin Ser Thr. Qin Arg Val. Leu Pro Pro Leu His Arg Alia Pro Arg

180

185

190

Ala Pro Ser Val Pro Ala Arg Pro Leu Pro Ala Lys Pro Ala Leu 195 - 200 - 205

SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2669 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: not relevant

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(III) HYPOTHETI CAL: NO

(iv) ANTI-SENSE: NO

(vii) IMMEDIATE SOURCE

(B) CLONE: JMI09(pMel β -24C)

JMI09(pMel B -24N)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

C GGA GCT GCC ACT GGG CAC CCC TTT CCC AAA GTG TTC AAT GGA TGC

46

Gly Ala Ala Thr Gly His Pro Phe Pro Lys Val Phe Asn Gly Cys

AAC AGG AGG GAG CTG GAC AGG TAT CTG CAG TCA GGT GGT GGA ATG TGT

94

142

Ash Arg Arg Glu Leu Asp Arg Tyr Leu Gln Ser Gly Gly Met Cys

CTC TCC AAC ATG CCA GAC ACC AGG ATG TTG TAT GGA GCC CGG AGG TGT

Leu Ser Asn Met Pro Asp Thr Arg Met Leu Tyr Gly Gly Arg Arg Cys

- 129 -

GGG	AAC	GGG	TAT	CTG	GAA	GAT	CCC	GAA	GAG	TGT	GAC	TAT	GGA	GAA	GAA	190
Gl y	Asn	Gl y	Туг	Leu	Glu	As p	Gl y	Glu	Glu	Cys	As p	Cy s	Gl y	Glu	Gl u	
GAG	GAA	тат	AAC	AAC	CCC	TGC	TGC	AAT	CCC	TCI	AAT	TGI	ACC	CTG	ACG	238
Glu	Gl u	Cy s	Asıı	Asn	Pr o	Cy s	Cy s	Asn	Al a	Ser	As n	Cy s	Thr	Leu	Ar g	
CCG	GGG	GCG	GAG	TGT	GCT	CAC	GGC	TCC	TGC	TCC	CAC	CAG	TGT	AAG	CTG	286
Pro	Gl y	Al a	Gi u	Cy s	Al a	Hi s	Gl y	Ser	Cys	Cy s	Hi s	Gln	Cy s	Lys	Leu	
									a. a	000		C1.5	ar (24).	CAC	CTC.	224
	GCT															334
Leu	Al a	Pr o	Gl y	Thr	Leu	Cy s	Ar g	Glu	Gl n	Al a	Ar g	Glu	Cy s	As p	Leu	
CCG	GAG	TTC	TGT	ACG	CCC	AAG	TCT	CCC	CAC	TCC	CCT	ACC	AAC	TTC	TAC	382
Pr o	Gl u	Phe	Cy s	Thr	Gl y	Ly s	Ser	Pr o	Hi s	Cy s	Pr o	Thr	As n	Phe	Tyr	
CAG	ATG	GAT	GGT	ACC	CCC	тст	GAG	GGC	GGC	CAG	CCC	TAC	TGC	TAC	AAC	430
Gln	Met	As p	Gl y	Thr	Pr o	Cy s	Cl u	Gl y	Gl y	Cl n	Al a	Tyr	Cy s	Туг	Asn	
CCC	ATG	TGC	СТС	ACC	TAC	CAG	GAG	CAG	TGC	CAG	CAG	CIG	TGG	GGA	CCC	478
Gl y	Met	Cy s	Leu	Thr	Tyr	Gl n	Clu	Gl n	Cy s	Gl n	Gl n	Leu	Tr p	Cl y	Pro	
CCA	GCC	CCA	cct	ccc	CCT	CAC	CTC.	TCC	TTC	CAG	AAC.	CTC	ΔΔΤ	CTC:	CCA	526
																.,,,,
Gl y	Al a	Arg	Pro	Ala	Pro	As p	Leu	Cys	Pirc	GIU	L.y.s	Val	Asn	vai	AL a	
GGA	GAC	ACC	TTT	GGA	AAC	TGT	GGA	AAG	GAC	ATG	ААТ	GGT	GAA	CAC	AGG	574
Cl y	Asp	Thr	Phe	Gl y	As n	Cy s	Gl y	Lys	As p	Met	Asıı	Gl y	Gl u	His	Ar g	
AAG	TGC	AAC	ATG	AGA	GAT	GCG	AAG	TGT	CCC	AAG	ATC	CAG	TCT	CAG	AGC	622

Lys Cys Asn Met Arg Asp Ala Lys Cys Gly Lys He Gln Cys Gln Ser TOT GAG GCC CGG CCC CTG GAG TCC AAC GCG GTG CCC ATT GAC ACC ACT 670 Ser Glu Ala Arg Pro Leu Glu Ser Asu Ala Val Pro Ile Asp Thr Thr ATC ATC ATG AAT COG AGG CAG ATC CAG TOC COG COC ACC CAC GTC TAC 718 lle lle Met Asn Gly Arg Gln lle Gln Cys Arg Gly Thr His Val Tyr CGA GGT CCT GAG GAG GAG GGT GAC ATG CTG GAC CCA GGG CTG GTG ATG 766 Arg Gly Pro Glu Glu Glu Gly Asp Met Leu Asp Pro Gly Leu Val Met ACT GGA ACC AAG TGT GGC TAC AAC CAT ATT TCC CTT GAG GGG CAG TGC 814 Thr Gly Thr Lys Cys Gly Tyr Asn His Ile Cys Leu Glu Gly Gln Cys AGG AAC ACC TCC TTC TTT GAA ACT GAA GGC TGT GGG AAG AAG TGC AAT 862 Arg Asn Thr Ser Phe Phe Glu Thr Glu Gly Cys Gly Lys Lys Cys Asn GGC CAT GGG GTC TGT AAC AAC CAG AAC TGC CAC TGC CTG CCG GGC 910 Gly His Gly Val Cys Asn Asn Gln Asn Cys His Cys Leu Pro Gly TGG GCC CCG CCC TTC TGC AAC ACA CCG GGC CAC GGG GGC AGT ATC GAC 958 Trp Ala Pro Pro Phe Cys Asn Thr Pro Gly His Gly Gly Ser Ile Asp ACT GCG CCT ATG CCC CCT GAG ACT GTG GCT CCT GTG GTA GCT GGA GTG 1006 Ser Gly Pro Met Pro Pro Glu Ser Val Gly Pro Val Val Ala Gly Val TTG GTG GCC ATC TTG GTG CTG GCG GTC CTC ATG CTG ATG TAC TAC TGC 1054 Leu Val Ala Ile Leu Val Leu Ala Val Leu Met Leu Met Tyr Tyr Cys

TGC AGA CAG AAC AAA CTA GGC CAA CTC AAG CCC TCA GCT CTC CCT	1102
Cys Arg Gin Asn Asn Lys Leu Giy Gin Leu Lys Pro Ser Ala Leu Pro	
TCC AAG CTG AGG CAA CAG TTC AGT TGT CCC TTC AGG GTT TCT CAG AAC	1150
Ser Lys Leu Arg Gin Gin Phe Ser Cys Pro Phe Arg Val Ser Gin Asn	
AGC GGG ACT GGT CAT GCC AAC CCA ACT TTC AAG CCG GAA TTC CGG GCC	1198
Ser Gly Thr Gly His Ala Asn Pro Thr Phe Lys Pro Glu Phe Arg Ala	
CCC CAC AGC CCA CAC CAC CAT GAC AAG CGC CAC CAA TTC CAC CGC CAC	1246
Pro His Ser Pro His His His Asp Lys Gly His Gln Phe His Gly His	
ACC CTC CTC CAC TCT GGG GAC GAC CCG GAT CCT CAC TGA GCTGACCACA	1295
Thr Leu Leu His Ser Gly Asp Asp Pro Asp Pro His *	
ACAGCCACTA CAACTGCAGC CACTGGATCC ACGGCCACCC TGTCCTCCAC CCCAGGGAC	C 1355
ACCTGGATCC TCACAGAGCC GAGCACTATA GCCACCGTGA TGGTGCCCAC CGGTTCCAC	G 1415
GCCACCGCCT CCTCCACTCT GGGAACAGCT CACACCCCCA AAGTGGFGAC CACCATGGC	C 1475
ACTATICCCCA CAGCCACTIGC CTCCACGGTT CCCAGCTCGT CCACCGTGGG GACCACCCG	C 1535
ACCCCTGCAG TGCTCCCCAG CAGCCTGCCA ACCTTCAGCG TGTCCACTGT GTCCTCCTC	A 1595
GTCCTCACCA CCCTGAGACC CACTGGCTTC CCCAGCTCCC ACTTCTCTAC TCCCTGCTTC	C 1655
TCCAGGGCAT TTCGACAGTT TTTCTCCCCC CCGGAAGTCA TCTACAATAA GACCGACCG	A 1715
GCCGGCTGCC ATTTCTACGC AGTGTGCAAT CAGCACTGTG ACATTGACCG CTTCCACGG	C 1775
GCCTGTCCCA CCTCCCCACC GCCAGTGTCC TCCGCCCCGC TGTCCTCGCC CTCCCCTGC	C 1835
CCTGGCTGTG ACAATGCCAT CCCTCTCCGG CAGGTGAATG AGACCTGGAC CCTGGAGAAG	C 1895
TICCACCITTCG CONGISTICCT COSTGACAAC CISTISTICCT TICCTGGACCC AAAGCCTGT	G 1955
GCCAACGTCA CCTGCGTGAA CAAGCACCTG CCCATCAAAG TGTCGGACCC GAGCCAGCCG	C 2015
TGTGACTTCC ACTATGAGTG CCAGTGCATC TGCAGCATGT GGGGGGGGCTC CCACTATTC	C 2075
ACCTITIGACG GCACCTCTTA CACCTTCCGG GCCAACTGCA CCTATGTCCT CATGAGAGA	G 2135

ATCCATGCAC G	CTTTGGGAA	TOTCAGCOTO	TACCICGACA	ACCACTACTG	CACGGCCTCT	2195
GCCACTGCCG C	rccccccc	CICCCCCCC	GCCCTCAGCA	TCCACTACAA	GTCCATGGAT	2255
ATCGTCCTCA CT	rgt caccat	GGTGCATGGG	AAGGAGGAGG	GCCTGATCCT	GTTTGACCAA	2315
ATTCCCGTGA GC	CAGCGGTTT	CAGCAAGAAC	CCCCTCCTTG	TGTCTGTGCT	GGGGACCACC	2375
ACCATGCGTG TC	GACATTCC '	TOCCCTOGGC	GTGAGCGTCA	CCTTCAATGG	CCAACTCTTC	2435
CAGGCCCGGC TO	CCCTACAG (CCTCTTCCAC	AACAACACCG	AGGGCCAGTG	CGGCACCTGC	2495
ACCAACAACC AG	AGGGACGA (CTGTCTCCAG	CGGGACGGAA	CCACTGCCGC	CAGTTGCAAG	2555
GACATGGCCA AG	ACGTGGCT (GGTCCCCGAC /	AGCAGAAAGG .	ATGGCTGCTG	GGCCCCGACT	2615
GGCACACCCC CC	ACTGCCAG (CCCCGCAGCC (CCGGIGTCTA (GCACACCCAC	CCCG	2669

SEQ 1D NO. 20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 20:

Gly Ala Ala Thr Gly His Pro Phe Pro Lys Val Phe Asn Gly Cys Asn 5 10 Arg Arg Glu Leu Asp Arg Tyr Leu Gln Ser Gly Gly Gly Met Cys Leu 20 25 30 Ser Asn Met Pro Asp Thr Arg Met Leu Tyr Gly Gly Arg Arg Cys Gly 35 40 45 Asın Gly Tyr Leu Glu Asp Gly Glu Glu Cys Asp Cys Gly Glu Glu Glu 50 55 60 Glu Cys Asn Asn Pro Cys Cys Asn Ala Ser Asn Cys Thr Leu Arg Pro 65 70 75 80

Gl y	Al a	Glu	Cy s	Al a	Hi s	Gl y	Ser	Cy s	Cy s	His	Glu	Cy s	Lys	Leu	Lei
				85					9 ()	i				95	
Al a	Pro	Gly	Thr	Leu	Cy s	Ar g	Glu	Gl n	Al a	Ar g	Gln	Cy s	As p	Leu	Pr c
			100					105					110		
Gl u	Phe	Cy s	Thr	Gl y	Ly s	Ser	Pr o	His	Cy s	Pr o	Thr	As n	Plie	Tyr	GLi
		115					120					125			
Met	As p	Сlу	Thr	Pr o	Cy s	Glu	Gl y	Gly	G! n	Al a	Туг	Cy s	Tyr	As n	Gl y
	130					135					140				
Met	Cy·s	Leu	Thr	Tyr	Gl n	Glu	CI n	Cy s	Gl n	Gl n	Leu	Tr p	Gl y	Pr o	Gl y
145					150					155					160
AJ a	Ar g	Pr o	Al a	Pr o	As p	Leu	Cy s	Phe	Glu	Lys	Val	As n	Val	Al a	Gl y
				165					170					175	
As p	Thr	Phe	Gly	As n	Cy s	Gl y	Ly s	As p	Met	Asn	GLy	Gl u	Hi s	Ar g	Lys
			180					185					190		
Cy s	As n	Met	Ar g	As p	Al a	Lys	Cy s	Gl y	Ly s	He	Gln	Cy s	GI 'n	Ser	Ser
		195					200					205			
Gl u	Al a	Ar g	Pr o	Leu	Gl u	Ser	As n	Al a	Va I	Pr o	He	As p	Thr	Thr	11 e
	210					215					220				
lle	Me t	As n	Gl y	Ar g	Gl n	lle	Gin	Cy s	Ar g	Gl y	Thr	Hi s	Val	Tyr	Ar g
225					230					235					240
Gl y	Pro	Glu	Gl u	Glu	Gl y	As p	Me t	Leu	As p	Pr o	Gl y	Leu	Val	Met	Thr
				245					250					255	
Gl y	Thr	Ly s	Cy s	Сiу	Туг	As n	Hi s	11 e	Cy s	Leu	Gl u	Gl y	Gln	Cy s	Ar g
			260					265					270		
Asn	Thr	Ser	Phe	Phe	Cl u	Thr	СIи	Gl y	Cy s	Gl y	Lys	t.ys	Cy s	As n	Gl y
		275					280					285			
His	Gl y	Va I	Cy s	As n	As n	As n	Gl n	As n	Cy s	His	Cys	Leu	Pr o	GI y	Tr p
	290					295					300				
۸۱ ۵	Dr.o	Dr o	Dha	Cuc	Acn	The	D	Cl	ui -	CLv	Clv	Car	11.0	Acn	Sar

305 310 3 1 5 320 Gly Pro Met Pro Pro Glu Ser Val Gly Pro Val Val Ala Gly Val Leu 325 330 Val Ala II e Leu Val Leu Ala Val Leu Met Leu Met Tyr Tyr Cys Cys 345 Arg Gln Asn Asn Lys Leu Gly Gln Leu Lys Pro Ser Ala Leu Pro Ser 360 Lys Len Arg Gln Gin Phe Ser Cys Pro Phe Arg Val Ser Gln Asn Ser 370 375 380Gly Thr Gly His Ala Asn Pro Thr Phe Lys Pro Glu Phe Arg Ala Pro 385 390 395 His Ser Pro His His His Asp Lys Gly His Gln Phe His Gly His Thr 405 410 415 Leu Leu His Ser Gly Asp Asp Pro Asp Pro His 420 425

SEQ 1D NO. 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1483 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE

.

(B) CLONE: JM109(pMel a -25C)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO. 21:

GAT	GCG	CAC	TCA	ाता	CAG	GAT	GI.C	GAC	CCC	TAC	TGC	TAC	CAA C	GGC	CATC	48
As p	Gl y	His	Ser	Cy s	Gl n	As p	Va I	As p	GI y	Туг	Cy s	Tyr	As n	Gly	He	
AAA	CCL	GCC	CC1	GGG	ATC	TGC	TTT.	GAG	AGA	GIC	AAT	TCT	GCA	CCT	GAT	144
Ly s	Pro	Al a	Pr o	Gły	II e	Cy s	Phe	Gl u	Ar g	Val	Asıı	Ser	Al a	Gly	Asp	
															TGC	192
Pro	Туг	Gly	Asn	Cy s	Gl y	Lys	Va!	Ser	Lys	Ser	Ser	Phe	Δla	Lys	Cys	
CAC	ATC	A C A	CIT	CCT	444	T/~ T	CCA	A A A	ATC	CAC	T/T	CAA	CCA	(°(~1)	ccc	0.40
															GCC	240
GLU	NET	Arg	As p	Ala	Lys	Cys	Gry	Ly s	lie	GIN	Cys	GIn	(il y	GLy	Λla	
AGC	CGG	CCA	GTC	ATT	GGT	ACC	AAT	GCC	СТТ	TCC	ΑΤΑ	GAA	ACA	AAC	ATC	288
					Gly											200
	•				,					,, ,,						
CCC	CTG	CAG	CAA	GGA	GGC	CGG	ATT	CTG	TGC	CCC	GGG	ACC	CAC	ന്ദ	TAC	336
Pro	Leu	Gl n	Gl n	Gl y	Gly	Ar g	He	Leu	Cy s	Ar g	Gl y	Thr	Hi s	Va I	Tyr	
TTG	GGC	GAT	GAC	AT'G	CCG	GAC	CCA	GGG	CTT	CTG	CTT	GCA	GCC	ACA	AAG	384
Leu	Gl y	As p	As p	Me t	Pr o	As p	Pr o	Gl y	Leu	Val	Leu	Ala	Gl y	Thr	Lys	
TGT	GCA	GAT	GGA	AAA	ATC	TGC	CTG	AAT	CCT	CAA	TOT	CAA	AAT	ATT	AGT	432
Cys	Al a	As p	Gl y	Ly s	Ile	Cy s	Leu	As 11	Ar g	Gl n	Cy s	Gln	Asn	Пe	Ser	
CTC	TTT.	GGG	GTT	CAC	GAG	TGT	GCA	ATG	CAG	TGC	CAC	GGC	AGA	CCC	GTG	480
Val	Phe	Сlу	Val	His	СIи	Cy s	Al a	Me t	Gin	Cy s	Hi s	Gl y	Ar g	(i) y	Val	

Phie Cys Asp Lys Phe Cly Phe Cly Cly Ser Thr Asp Ser Cly Pro 11e CGG CAA GCA GAA GCA AGG CAG GAA GCT GCA GAG TCC AAC AGG GAG CGC Arg Gln Ala Glu Ala Arg Gln Glu Ala Ala Glu Ser Asn Arg Glu Arg GGC CAG GGC CAG GAG CCC GTG GGA TCG CAG GAG CAT GCG TCT ACT GCC Gly Gln Gly Gln Glu Pro Val Gly Ser Gln Glu His Ala Ser Thr Ala TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Ser Leu Thr Leu II e * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGCCAG CATTCACTCT GTGGCTTTCC CATCGTTTCC ATGACAACAG ACACACACA GTTCTCCGCGG CTCAGGAGGG GAAGTCCAGC CTACCAGGCA CGTCTGCAGA AACAGTGCAA GGAACGCCAG CACTTCCTG GTTGACTTC TGCTAAAACA TGGACATGCT TCAGTGCTGC TCCTGAGAGG GTAGCAGGTT ACCACTCTGG CAGGCCCCAG CCCTCCAGCA AGGACGAAGA GGAACGCCAAAA CTCTGGCCTT TCACTGAGCC CCCACAGCAG TGGGGCAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC CAGTGACACC TCAGGCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAAA CTCTGGCCTT TCACTGACCC CCCACAGCAG TGGGGCAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGCCTGCAACA TTAATCCTCT TCACTGACCT TTAGCATTTA TTATATGAAA ATAGCAGGTT TTAGTTTTT AATTTATCAG AGACACCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGCCTTTTA AACAAACTGG CAGTGACTAC ACCTTTCACCC TTTCCATCCA AGCAAAACTGA ATGCCTTTTA AACAAACTGG AGAAGAAGAGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGGGTGACCA GCACTATCAC CCTTTCACCC TTTCCACCAAA CCCACCCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCA CCTTTCACCC TTTCCACCAAA GCCACCCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCA CCTTTCACCC TTTCCACCAAA GCCACCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCA CCTTTCACCC TTTCCACCAAA GCCACCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCA CCTTTCACCC TTTCCACCAAA GCCACCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCAC ACCTTTCACCC TTTCCACCAAA GCCACCTTTT GCTGTGGACA TGGGTGACCA GCACTACTCACACCACACCTTTCACCC TTTCCACCAAAA CCCACCTTTT GCTGTGGACA TGGGTGACCA	528
Phie Cys Asp Lys Phe Cly Phe Cly City Ser Thr Asp Ser Cly Pro Tie CGG CAA GCA GAA GCA AGG CAG GAA GCT GCA GAG TCC AAC AGG GAG CGC Arg Gin Ala Glu Ala Arg Gin Glu Ala Ala Glu Ser Asn Arg Glu Arg GGC CAG GGC CAG GAG CCC GTG CGA TCG CAG GAG CAT GCG TCT ACT GCC Gly Gin Gly Gin Glu Pro Val Gly Ser Gin Glu His Ala Ser Thr Ala TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Ser Leu Thr Leu II e * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGGCAG CATTGACTCT GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACAC GTTCTCCGGG CTCACGAGGG GAAGTCCAGC CTACCAGGCA CGTCTGCAGA AACAGTGCAA GGAAGGGCAG CGACTTCCTG GTTGAGCTTC TGCTAAAACA TGGACATCCT TCAGTGCTGC TCCTGAGAGA GTAGCAGGTT ACCACTCTGG CAGGCCCCAG CCCTCCAGCA AGGAGGAAGA GGACTCAAAA GTCTGGCCTT TCACTGAGCC CCCACAGCAG TGCGCGCAGAA GCAAGGAGAGA GGACTCAAAA GTCTGGCCTT TCACTGAGCC CCCACAGCAG TGCGCGCAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGCGCTGCAAC TTAATGCTCT GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG AGAACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG AGAACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG AGAAGAAGAGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGCTGCACCA AGAAGAAGAGGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAGGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAGGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTCGCCTCTTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAACGT AGGAGAAACGG GCGGTGAACT CTCGCTCTCTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAACGT AGGAGAAACG GCGGTGAACT CTCGCTCTCTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAAGAACGT AGGAGAAACG GCGGTGAACT CTCGCTCTCTTT GCTGTGCACA TGCGGTGACCA 1226 AGAAGAACACTACAACACACACACACTCTCTCTCTCTCTTT GCTGTCTCTTT GCTGTCTCTCTC	
CGG CAA GCA GAA GCA AGG CAG GAA GCT GCA GAG TCC AAC AGG GAG CGC Arg Glin Alia Gliu Alia Arg Glin Gliu Alia Alia Gliu Set Asin Arg Gliu Arg GGC CAG GGC CAG GAG CCC GTG GGA TCG CAG GAG CAT GCG TCT ACT GCC Gliy Glin Gliy Glin Gliu Pro Val Gliy Set Glin Gliu His Alia Set Thir Alia TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Set Leu Thir Leu Ilie * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGGCAG CATTGACTTCT GTGCGCTTTCC CATCGTTTCC ATGACAACAG ACACACACA GTTCTCGCGG CTCAGGAGGG GAAGTCCAGC CTACCAGGCA CGTCTGCAGA AACAGTGCAA GGAAGGGCAG CGACTTCCTG GTTGAGCTTC TGCTAAAACA TGGACATGCT TCAGTGCTGC TCCTGAGAGG GTAGCAGGTT ACCACTCTGG CAGGCCCCAG CCCTCCAGCA AGGACGGAAGA GGACTCAAAA GTCTGGCCTT TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGCGTTG GCCCCAGTTG CCCCTTTCCC CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG AGAACACCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGCCTCTTTT GCTGTGGACA TGCGGTGACCA AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGCCTCTTTT GCTGTGGACA TGCGGTGACCA 1266 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGCCTCTTTT GCTGTGGACA TGCGGTGACCA 1266 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGCCTCTTTT GCTGTGGACA TGCGGTGACCA 1326	576
Arg Gin Ala Giu Ala Arg Gin Giu Ala Ala Giu Ser Asn Arg Gin Arg GGC CAG GGC CAG GAG CCC GTG GGA TCG CAG GAG CAT GGG TCT ACT GGC Gly Gin Gly Gin Glu Pro Val Gly Ser Gin Glu His Ala Ser Thr Ala TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Ser Leu Thr Leu Ile * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGGCAG CATTGACTCT GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACACA	
GGC CAG GGC CAG GAG CCC GTG CGA TCG CAG GAG CAT GCG TCT ACT GCC GLy Glin Gly Glin Glu Pro Val Gly Ser Glin Glu His Alia Ser Thr Alia TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Ser Leu Thr Leu Ille * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGCAG CATTGACTCT 78 GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACAC GTTCTCGGGG CTCAGGAGGG 84 GAAGTCCAGC CTACCAGGCA CGTCTGCAGA AACAGTGCAA GGAAGGGCAG CGACTTCCTG 90 GTTGACCTTC TGCTAAAACA TGGACATGCT TCAGTGCTGC TCCTGAGAGA GTAGCAGGTT 96 ACCACTCTGG CAGGCCCCAG CCCTCCAGCA AGCACGAAGA GGACTCAAAA GTCTGCCCTT 102 TCACTGAGCC CCCACAGCAG TGCGGGAGAA GCAAGGGAGG GGACTCAAAA GTCTGCCCTT 102 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGCCTGCAAC TTAATGCTCT 1140 GATATGCCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGAT AGGAGAAAGG GCGGTGAACT CTGCCTCTTT CCTGTGGACA TGCGTGACCA 1320	524
TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGGAGA CCGTGACCAG Ser Leu Thr Leu He * TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGGCAG CATTGACTCT 78 GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACACA	
TCA CTG ACA CTC ATC TGA GCCCTCCCAT GACATGCAGA CCGTGACCAG Ser Leu Thr Leu H e * TGCTGCTGCA GACGAGGTCA CGCGTCCCCA ACGCCTCCTG TGACTGGCAG CATTGACTCT 78 GTGGCTTTCC CATCGTTTCC ATGACAACAG ACACAACACA	72
TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGCCAG CATTGACTCT 78 GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACACA	
TGCTGCTGCA GAGGAGGTCA CGCGTCCCCA AGGCCTCCTG TGACTGGCAG CATTGACTCT 78 GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACACA	20
GTGGCTTTGC CATCGTTTCC ATGACAACAG ACACAACACA	
GAAGTCCACC CTACCAGGCA CGTCTGCAGA AACAGTGCAA GGAAGGGCAG CGACTTCCTG 90 GTTGAGCTTC TGCTAAAACA TGGACATGCT TCAGTGCTGC TCCTGAGAGA GTAGCAGGTT 96 ACCACTCTGG CAGGCCCCAG CCCTGCAGCA AGGAGGAAGA GGACTCAAAA GTCTGGCCTT 102 TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC 1086 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1146 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1206 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1266 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1326	₹ ()
GTTGAGCTTC TGCTAAAACA TGGACATGCT TCAGTGCTGC TCCTGAGAGA GTAGCAGGTT 96 ACCACTCTGG CAGGCCCCAG CCCTGCAGCA AGGAGGAAGA GGACTCAAAA GTCTGGCCTT 102 TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC 1086 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1146 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1206 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1266 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1326	0
ACCACTCTGG CAGGCCCCAG CCCTGCAGCA AGGAGGAAGA GGACTCAAAA GTCTGGCCTT 1020 TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC 1080 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1140 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	0
ACCACTCTGG CAGGCCCCAG CCCTGCAGCA AGGAGGAAGA GGACTCAAAA GTCTGGCCTT 1020 TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC 1080 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1140 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	0
TCACTGAGCC CCCACAGCAG TGGGGGAGAA GCAAGGGTTG GGCCCAGTGT CCCCTTTCCC 1080 CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1140 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	0
CAGTGACACC TCAGCCTTGG CAGCCCTGAT GACTGGTCTC TGGCTGCAAC TTAATGCTCT 1140 GATATGGCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	0
GATATGCCTT TTAGCATTTA TTATATGAAA ATAGCAGGGT TTTAGTTTTT AATTTATCAG 1200 AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	O
AGACCCTGCC ACCCATTCCA TCTCCATCCA AGCAAACTGA ATGGCATTGA AACAAACTGG 1260 AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	0
AGAAGAAGGT AGGAGAAAGG GCGGTGAACT CTGGCTCTTT GCTGTGGACA TGCGTGACCA 1320	
	()
1380 CACAGACTT ACCAGACA TITOCAGAAA GCCAGACACACTC ACCAACCCTT 1380	
CATTTAACAA GTAAGAATGT TAAAAAGTGA AAACAATGTA AGAGCCTAAC TCCATCCCCC 1440	
GTGGCCATTA CTGCATAAAA TAGAGTGCAT CCCGCCCGAA TTC 1483	

PCT/JP96/03017

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 22:
- Asp Gly His Ser Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly 11e 10 1.5 Cys Gln Thr His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala 25 20 Lys Pro Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp 4.0 45 35 Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys 55 60 50 Glu Met Arg Asp Ala Lys Cys Gly Lys lle Gln Cys Gln Gly Gly Ala 75 65 70 Ser Arg Pro Val lle Gly Thr Asn Ala Val Ser lle Glu Thr Asn lle 90 85 Pro Leu Gin Gin Giy Giy Argile Leu Cys Arg Gly Thr His Val Tyr 105 100 Leu Gly Asp Asp Met Pro Asp Pro Gly Leu Val Leu Ala Gly Thr Lys 125 115 120 Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln Cys Gln Asn Ile Ser 140 135 130 Val Phe Gly Val His Glu Cys Ala Met Gln Cys His Gly Arg Gly Val 160 155 150 145

Cys Asn Asn Arg Lys Asn Cys His Cys Glu Ala His Trp Ala Pro Pro 165

170

Phe Cys Asp Lys Phe Gly Phe Gly Gly Ser Thr Asp Ser Gly Pro Ile 185

Arg Glu Ala Glu Ala Arg Glu Glu Ala Ala Glu Ser Asu Arg Glu Arg 195 200

Gly Gln Gly Gln Glu Pro Val Gly Ser Gln Glu His Ala Ser Thr Ala 210 215 220

Ser Leu Thr Leu lle *

225 230

SEQ 1D NO. 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1569 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: J M109(pMel α -26N)
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO. 23:

GGG GAC CTC TGG ATC CCA GTG AAG AGC TTC GAC TCC AAG AAT CAT CCA 48 Gly Asp Leu Trp IIe Pro Val Lys Ser Phe Asp Ser Lys Asn Ilis Pro

GAA	GTG	CTG	. A∧\T	ATT	` CGA	CTA	CAA	CGG	GAA	AGC	AAA	G-V-A	CITC	ATC	ATA	9 (
Gl u	Val	Leu	Asn	ile	Ai⁻ g	Leu	Gn	Ar g	Glu	Ser	Ly s	Glu	Leu	110	il e	
AAT`	CTG	GAA	AGA	AAT	GAA	GGT	стс	ATT	CCC	ACC	AGT	TTC	ACG	GAA	ACC	144
Asn	Leu	Clu	Ar g	As n	Glu	Gl y	Le u	He	AJ a	Ser	Ser	Phe	Thr	GLu	Thr	
CAC	TAT	стG	CAA	GAC	GCT	ACT.	GAT	GTC	TCC	CTC	GCT	CGA	A-AT	TAC	ACG	192
Hi s	Tyr	Leu	Gl n	As p	Gł y	Thr	As p	Val	Ser	Leu	ΛIa	Ar g	Asn	Tyr	Thr	
GGT	CAC	TGT	T.AC	TAC	CAT	GGA	CAT	GTA	CGG	CGA	TAT	TCI.	GAT	TCA	GCA	240
Gl y	Hi s	Cy s	Tyr	Tyr	His	Gl y	Hi s	Val	Ar g	Gl y	Tyr	Ser	Asp	Ser	Al a	
GTC	AGT	стс	AGC	ACG	тст	TCI	GGT	СТС	AGG	GGA	CIT.	ATT	GGG	17 1	GAA	288
Val	Ser	Leu	Ser	Thr	Cy s	Ser	Gl y	Leu	Ar g	Gl y	Leu	11e	Gł y	Phe	Glu	
AAT	G.A.A	AGC	ТАТ	стс	TTA	GAA	CCA	ATG	ААЛ	AGT	GCA	ACC	AAC	AG4	TAC	336
Asn	Glu	Ser	Tyr	Val	Leu	GI tı	Pr o	Met	Ly s	Ser	Al a	Thr	As n	Ar g	Tyr	
AAA	ctc	ттс	CC4	GCG	AAG	AAG	CTG	AAA	AGC	ണ്ട	CGG	GGA	T'CA	TGT	GGA	384
Lys	Leu	Phe	Pr o	Al a	Lys	Lys	Leu	Lys	Ser	Val	Ar g	GLy	Ser	Cy s	Gl y	
TCA	CAT	CAC	AAC	ACA	CCA	AAC*	arc	GCT	GCA	A 'AG	ΑΑТ	GTG	TIT	CC.A	CCA	432
Ser	His	His	Asn	Thr	Pr o	As n	Leu	Al a	Al a	Lys	As n	Val	Phe	Pr o	Pr o	
CCC	TCT	CAG	AC4	TGG	GCA	AGA	AGG	CAT	AAA	AGA	GAG	ACC	CTC	AAG	GCA	480
								His								
ACT	AAG	TAT	GTG	GAG	CTG	G T G	ATC	GTG	GCA	GAC	AAC	CGA	GAG	TTT	CAG	528
								Va I								

......

AGG CAA CGA AAA GAT CTG GAA AAA GTT AAG CAG CGA TTA ATA GAG ATT	576
Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu lle Glu lle	
GCT AAT CAC GTT GAC AAG TIT TAC AGA CCA CTG AAC ATT CGG ATC GTG	624
Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn lle Arg Ile Val	0.5.4
TTG GTA CCC GTG GAA GTG TGG AAT GAC ATG GAC AAA TCC TCT GTA AGT	672
Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys Ser Val Ser	
CAG GAC CCA TTC ACC AGC CTC CAT GAA TIT CTG GAC TGG AGG AAG ATG	720
Oln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp Trp Arg Lys Met	
AAG CIT CTA CCT CGC AAA TCC CAT GAC AAT GCG CAG CTT GTC ACT GCG	200
Lys Len Leu Pro Arg Lys Ser His Asp Asn Ala Gln Leu Val Ser Gly	768
GIT TAT TTC CAA GGG ACC ACC ATC GGC ATG GCC CCA ATC ATG AGC ATG	816
Val Tyr Phe Gln Gly Thr Thr He Gly Met Ala Pro He Met Ser Met	
TOC ACG GCA GAC CAG TOT GCG GGA ATT GTC ATG GAC CAT TOA GAC AAT	864
Cys Thr Ala Asp Gin Ser Gly Gly He Val Met Asp His Ser Asp Asn	
CCC CTT GGT GCA GCC CTG ACC CTG GCA CAT GAG CTG GGC CAC AAT TTC	
Pro Leu Gly Ala Ala Val Thr Leu Ala His Glu Leu Gly His Asn Pho	912
GGG ATG AAT CAT GAC ACA CTG GAC AGG GGC TGT AGC TGT CAA ATG GCG	960
Gly Met Asn His Asp Thr Leu Asp Arg Gly Cys Ser Cys Gln Met Ala	
GTT GAG AAA GGA GGC TGC ATC ATG AAC GCT TCC ACC GGG TAC CCA TTT	1008

Val	Gl 11	Ly s	Gl y	Gl y	Cy s	He	Met	Asn	Ala	Ser	Thr	Gl y	Тут	Pr o	Phe	
			TTC Phe													1056
			ATG Met													1104
тст	TTC	GGG	GGC	CAG	AAG	TGI	GGG	AAC	AGA	TTT	GTG	GAA	GAA	GGA	GAG	1152
			Gl y TGT													1200
			Cy s													1248
			Cys													1296
			GAC As p													1230
			TCC Ser													1344
			GCC Al a													1392
			TAC Tyr													1440
val	vs b	Cry	ıyı	Cys	13.1	() () ()	\4 <i>j</i>		~,,,,	~						

TGT GTC ACG CTC TGG GGA CCA GGT GCT AAA CCT GCC CCT GGG ATC TGC 1488

Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly He Cys

TTT GAG AGA GTC AAT TCT GCA GGT GAT CCT TAT GGC AAC TGT GCC AAA 1536

Phe Glu Arg Val Ash Ser Ala Gly Asp Pro Tyr Gly Ash Cys Gly Lys

GTC TCG AAG AGT TCC TTT GCC AAA TGC GAG ATG 1569

Val Ser Lys Ser Ser Phe Ala Lys Cys Glu Met

SEQ 1 D NO. 24:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 523 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 24:

Gly Asp Leu Trp !le Pro Val Lys Ser Phe Asp Scr Lys Asn His Pro
Glu Val Leu Asn II e Arg Leu Gln Arg Glu Scr Lys Glu Leu II e II e

Asn Leu Glu Arg Asn Glu Gly Leu II e Ala Scr Scr Phe Thr Glu Thr

His Tyr Leu Gln Asp Gly Thr Asp Val Scr Leu Ala Arg Asn Tyr Thr

Gly His Cys Tyr Tyr His Gly His Val Arg Gly Tyr Scr Asp Ser Ala

Val Ser Leu Ser Thr Cys Ser Gly Leu Arg Gly Leu He Gly Phe Glu Asn Glu Ser Tyr Val Len Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His Asn Thr Pro Asn Len Ala Ala Lys Asn Val Phe Pro Pro Pro Ser Glin Thr Trp Alia Arg Arg His Lys Arg Gliu Thr Leu Lys Alia \cdot 1 1 Thr Lys Tyr Val Glu Leu Val 11e Val Ala Asp Asn Arg Glu Pho Glu Arg Gla Gly Lys Asp Lea Glu Lys Val Lys Gla Arg Lea He Glu He Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asu IIe Arg IIe Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys Ser Val Ser Glin Asp Pro Phe Thr Ser Leu His Gliu Phe Leu Asp Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala Glin Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr He Gly Met Ala Pro He Met Ser Met Cys Thr Ala Asp Glin Ser Gly Gly He Val Met Asp His Ser Asp Asp Pro Leu Gly Ala Ala Val Thr Leu Ala His Glu Leu Gly His Asu Phe Gly Met Ash His Asp Thr Leu Asp Arg Cly Cys Ser Cys Cln Met Ala

Val Glu Lys Gly Gly Cys He Met Asn Ala Sci Thr Gly Tyr Pro Phe Pro Met Val Phe Ser Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met Gly Val Cys Leu Pho Ash Leu Pro Glu Val Arg Glu Ser Phe Gly Gly Glu Lys Cys Gly Asn Arg Phe Val Glu Glu Gly Glu Gro Cys Asp. Cys. Gly. Glir. Pro. Glir. Glir. Gis. Abt. Asn. Arg. Cys. Gys. Asn. Ala Thr Thi Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu Cys Cys Clu Asp Cys Cln Leu Lys Pro Ala Cly Thr Ala Cys Arg Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly He Cys Gln Thr His Gln Gln Gln Cys Val Thr Len Trp Gly Pro Gly Ala Lys Pro Ala Pro Gly He Cys Phe Gla Arg Val Asn Ser Ala Gly Asp Pro Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys Glu Met

368

SEQ 1 D NO. 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2404 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: J M109(p Me I β -24 C)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

TGC	TGC	CAC	CAG	TGT	AAG	CTG	ΤΤG	GCT	CCT	GGG	ACC	CIG	TGC	CGC	GAG	48
Cy s	Cys	Hi s	Gl n	Cys	Ly s	Leu	l.e u	Ala	Pro	Gl y	Thr	Leu	Cys	Агд	Glu	
CAG	GCC	AGG	CAG	тат	GAC	CIC	CCG	GAG	TTC	тст	ACG	GGC	AAG	TCT	CCC	96
Gl n	Al a	Ar g	Gl n	Cy s	A s p	Leu	Pr o	Gl u	Phe	Cy s	Thr	Gl y	Lys	Ser	Pr o	
CAC	TGC	CCI.	ACC	AAC	ም ር	TAC	C7C	ΔТС	CAT	ccr	ACC:	ccc	тст	CAC	CCC	144
		Pro														144
GGC	CAG	CCC	TAC	TGC	TAC	AAC	CCC	ATG	TGC	CTG	ACC	TAC	CAG	GAG	CAG	192
Gl y	Gl n	Al a	Туг	Cy s	Туг	As n	Gl y	Met	Cy s	Leu	Thr	Туг	Cl n	Gu	Gl n	
TGC	CAG	C:/C	CTG	TGG	GGA	CCC	GGA	GCC	CGA	CCT	GCC	CCT	GAC	CTC	TCC	240
Cys	Glii	Gl n	Len	Tr p	Cl y	Pro	Gly	Al a	Ar g	Pro	Al a	Pro	Asp	Le 11	Cys	
TTC	GAG	AAG	GTG	ААТ	GTG	GCA	GGA	GAC	ACC	TTT	GGA	AAC	TGT	GGA	AAG	288

Phe Glockys Val Asn Val Ala Gly Asp Thr Phe Gly Asn Cys Gly Lys	
GAC ATG AAT OCT GAA CAC AGG AAG TGC AAC ATG AGA GAT GCG AAG TGT Asp Met Asn Gly Glu His Arg Lys Cys Asn Met Arg Asp Ala Lys Cys	336
GCG AAG ATC CAG TGT CAG AGC TCT GAG GCC CCG CCC CTG GAG TCC AAC Gly Lys lle Glu Cys Glu Ser Ser Glu Ala Arg Pro Leu Glu Ser Asu	384
GCG GTG CCC ATT GAC ACC ACT ATC ATC ATG AAT GGG AGG CAG ATC CAG Ala Val Pro lle Asp Thr Thr He lle Met Asp Gly Arg GEn lle GEn	432
TGC CGG CGC ACC CAC GTC TAC CGA GGT CCT GAG GAG GAG GGT GAC ATG Cys Arg Gly Thr His Val Tyr Arg Gly Pro Glu Glu Glu Gly Asp Met	480
CTG GAC CCA GGG CTG GTG ATG ACT GGA ACC AAG TGT GCC TAC AAC CAT Leu Asp Pro Gly Leu Val Met Thr Gly Thr Lys Cys Gly Tyr Asn His	528
ATT TGC CIT GAG GGG CAG TGC AGG AAC ACC TCC TTC TTT GAA ACT GAA He Cys Leu Glu Gly Glu Cys Arg Asn Thr Ser Phe Phe Glu Thr Glu	576
GGC TGT CGG AAG AAG TGC AAT GGC CAT GGG GTC TGT AAC AAC AAC CAG Gly Cys Gly Lys Lys Cys Asn Gly His Gly Val Cys Asn Asn Asn Gln	624
AAC TGC CAC TGC CTG CCG GGC TGG GCC CCG CCC TTC TGC AAC ACA CCG Asn Cys His Cys Leu Pro Gly Trp Ala Pro Pro Phe Cys Asn Thr Pro	672
GGC CAC GGG GGC AGT ATC GAC AGT GGG CCT ATG CCC CCT GAG AGT GTG Gly His Gly Gly Ser lle Asp Ser Gly Pro Met Pro Pro Glu Ser Val	720

PCT/JP96/03017

GGT CCT GTG GTA GCT GGA GTG TTG GTG GCC ATC TTG GTG CTG GCG GTG	768
Gly Pro Val Val Ala Gly Val Leu Val Ala Ile Leu Val Leu Ala Val	
CTC ATG CTG ATG TAC TAC TGC TGC AGA CAG AAC AAC AAA CTA GGC CAA	816
Leu Met Leu Met Tyr Tyr Cys Cys Arg Glin Asn Asn Lys Leu Gly Glin	
CTC AAG CCC TCA GCT CTC CCT TCC AAG CTG AGG CAA CAG TTC AGT TGT	864
Leu Lys Pro Ser Ala Leu Pro Ser Lys Leu Arg Gln Gln Phe Ser Cys	
CCC TTC AGG CTT TCT CAG AAC AGG GGG ACT GGT CAT GCC AAC CCA ACT	912
Pro Phe Arg Val Ser Glin Asia Ser Gly Thr Gly His Alia Asia Pro Thr	
TTC AAG CCG GAA TTC CGG GCC CCC CAC AGC CCA CAC CAC CAT GAC AAG	960
Phe Lys Pro Glu Phe Arg Ala Pro His Ser Pro His His His Asp Lys	
GGC CAC CAA TTC CAC GGC CAC ACC CTC CTC CAC TCT GGG GAC GAC CCG	1008
Gly His Gln Phe His Gly His Thr Lon Leu His Sor Gly Asp Asp Pro	
GAT CCT CAC TGA CCTGACCACA ACAGCCACTA CAACTGCAGC CACI'GGATCC	1060
Asp Pro His *	
ACGGCCACCC TGTCCTCCAC CCCAGGGACC ACCTGGATCC TCACAGACCC GAGGACTAT	A 1120
GCCACCGTG4 TGGTGCCCAC CCGTTCCACG GCCACCGCCT CCTCCACTCT GCGAACAGC	T 1180
CACACCCCA AAGTGGTGAC CACCATGGCC ACTATGCCCA CAGCCACTGC CTCCACGGT	T 1240
CCAGCTCGF CCACCGTGGG GACCACCCGC ACCCCTGCAG TGCTCCCCAG CAGCCTGCC	CA 1300
ACCITCAGCG TGTCCACTGT GTCCTCCTCA GICCTCACCA CCCTGAGACC CACTGGCTT	C 1360
CCAGCICCC ACTICTAC ICCCTGCTTC TCCAGGGCAT TIGGACACIT TTICICGCC	C 1420
ROGGAACTCA TOTACAATAA GACCGACCGA GOOOGGTGCO ATTTOTACGO ACTGTGCAA	T 1480
CAGCACTOTG ACATTGACCG CTTCCAGGGC GCCTGTCCCA CCTCCCCACC GCCAGTGTC	C 1540

TOCOCCOCC TOTACTICOCC CYCCOCYGCC COYGGCTGTG ACAATGCCAT COCTCTCCGG	1600
CAGGTGAATG AGACCTGGAC CCTGGAGAAC TGCACGGTGG CCAGGTGCGT GGGTGACAAC	1660
CGTGTCGTCC TGCTGGACCC AAAGCCTGTG GCCAACGTCA CCTGCGTGAA CAAGCACCTG	1720
CCCATCAAAG TCTCCCACCC GAGCCAGCCC TGTCACTTCC ACTATGAGTG CGACTGCATC	1780
TGCAGCATGT GGGGCGGCTC CCACTATTCC ACCTTTGACG GCACCTCTTA CACCTTCCGG	1840
GGCAACTGCA CCTATGTCCT CATGAGAGAG ATCCATGCAC GCTTTGGGAA TCTCAGCCTC	1900
TACCTOGACA ACCACTACTO CACGOCCTICT OCCACTIGCCC CTIGCCCCCCC CTIGCCCCCCCC	1960
GCCCTCAGCA TCCACTACAA GTCCATGGAT ATCGTCCTCA CTGTCACCAT GGTCCATGGG	2020
AAGGAGGAGG GCCTGATCCT GTTTGACCAA ATTCCGGTGA GCAGCGGTTT CAGCAAGAAC	2080
GGCGFGCTTG TGTCTGFGCT GGGGACCACC ACCATGCGTG TGGACATTCC TGCCCTGGGC	2140
GTGAGCCTCA CCTTCAATGG CCAAGTCTTC CAGGCCCGGC TGCCCTACAG CCTCTTCCAC	2200
AACAACACCG AGGGCCAGTG CGGCACCTGC ACCAACAACC AGAGGGACGA CTGTCTCCAG	2260
COCGACGGAA CCACTOCCGC CACTTGCAAG GACATGGCCA AGACGTGGCT GGTCCCCGAC	2320
ACCAGAAAGG ATGGCTGCTG GCCCCCGACT GGCACACCCC CCACTGCCAG CCCCGCAGCC	2380
CCGGTGTCTA GCACACCCAC CCCG	2404

SEQ 1D NO. 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 339 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO. 26:

			20					25					30		
Hi s	Cy s	Pr o	Thr	As n	Phe	Туг	Gln	Met	As p	Gly	Thr	Pro	Cys	Gl u	Gl(y)
*		35					40					45			
Gl y	Gl n	Al a	Tyr	Cy s	Туг	As n	Gl y	Met	Cy s	Leu	Thr	Туг	Gl n	Glu	G! n
	50					55					6.0				
Cy s	Gl n	Gl n	Leu	Tr p	Gl y	Pr o	Gl y	Al a	Ar g	Pro	Al a	Pr o	Asp	Leu	Cys
65					70					75					80
Phe	Gl u	Ly s	Val	As n	Va I	Al a	Cil y	As p	Thr	Phe	Gl y	As n	Cy s	Gl y	Lys
				85					90					95	
As p	Met	As n	Gl y	Cl u	His	Ar g	Lys	Cy s	As n	Me t	∆r g	Asp	Al a	Ly s	Cy s
			100					105					110		
Gl y	Lys	He	Gl n	Cy s	Gl n	Ser	Ser	Glu	Al a	Ar g	Pro	Leu	Gru	Ser	Asn
		115					120					125			,
AJ a	Val	Pr o	He	As p	Thr	Thr	Пе	l l e	Met	Asn	Gl y	Ar g	Gl n	He	Gl n
	130					135					140				
Cy s	Ar g	Gl y	Thr	His	Val	Туг	Ar g	Gl y	Pr o	Gl u	Glu	GLu	G! y	As p	Me t
145					150					155					160
Leu	As p	Pr o	Gl y	Leu	Val	Me t	Thr	Gl y	Thr	Lys	Cy s	Gl y	Туг	As n	Fli s
				165					170					175	
lle	Cy s	Leu	Gl u	Gl y	Gln	Cy s	Ar g	As n	Thr	Ser	Phe	Phe	Cl u	Thr	Gl u
			180					185					190		
Gl y	Cy s	Gl y	Lys	Lys	Cy s	As n	G) y	His	Gly	Val	Cy s	Asn	Asn	As n	Gl n
		195					200					205			
As n	Cy s	His	Cys	Leu	Pr o	Gl y	Tr p	Al a	Pr o	Pro	Phe	Cy s	As n	Thr	Pr o
	210					215					220				
Gl y	His	Gl y	Gl y	Ser	lle	As p	Ser	Gl y	Pr o	Me t	Pro	Pro	Gl u	Ser	Val
225					230					235					240
Cl y	Pro	Val	Val	Al a	Gly	Val	Leu	Val	Al a	He	Leu	Val	Leu	Ala	Val
				245					250					255	

Leu Met Leu Met Tyr Tyr Cys Cys Arg Glin Asii Asii Lys Leu Gly Glin 260 265 270

Leu Lys Pro Ser Ala Leu Pro Ser Lys Leu Arg Glin Glin Phe Ser Cys
275
280
285

Pro Phe Arg Val Ser Gln Asn Ser Gly Thr Gly His Ala Asn Pro Thr 290 295 300

Phe Lys Pro Glu Phe Arg Ala Pro His Sei Pro His His His Asp Lys 305 310 315 320

Gly His Gln Phe His Gly His Thr Leu Leu His Ser Gly Asp Asp Pro

Asp Pro His

339

SEQ 1D NO. 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: c DNA
- (iii) HYPOTHETI CAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE
 - (B) CLONE: JM109(pMe1 B -24N)
- (xi) SEQUENCE DESCRIPTION: SEQ 1D NO. 27:

C GGA GCT GCC ACT GGG CAC CCC TTT CCC AAA GTG TTC AAT GGA TGC

G	ly Ai	la A	la Ti	hr G	ly H	is Pi	ro Pi	lie Pi	ro L	ys V	al Pi	ire A	sn G	ly C	y s	
AAC	AGG	AGG	GAG	CTG	GAC	AGG	TAT	CTG	CAG	T'CA	GGT	GGT	GGA	ATG	TGF	9.
Asn	Ar g	∕lr g	Glu	Leu	Asp	Ar g	Tyr	Leu	Gl n	Ser	Gl y	Gl y	Gly	Μt	Cy s	
					7. 0				mm 0	m 4 m	001	000			· marc	1.41
						ACC Thr										141
Leu	sei	MSII	ivis (110	лар	1111	ALE	WEL	ren	131	Сяу	Спу	~ κ	пв	C) 3	
GGG	AAC	GGG	TAT	CTG	GAA	GAT	GGG	GAA	GAG	TGF	GAC	TGT	GGA	GAA	GAA	190
Gl y	Asn	Gl y	Тут	L.e u	Cl u	As p	Gl y	Gl u	Glu	Cys	As p	Cys	Gl y	Glu	Gl u	
GAG	GAA	TGT	AAC	AAC	CCC	TGC	TGC	AAT	GCC	TCI	AAT:	TGF	ACC	CTG	AGG	238
Glu	Gl u	Cys	Asıı	As n	Pr o	Cy s	Cy s	Asn	Al a	Ser	Asn	Cys	Thr	Leu	Ar g	
															~~~.	
						CAC										286
Pro	Gl y	Ala	Gl u	Cy s	Ala	His	Gly	Ser	Cys	Cys	His	Gln	(ÿ. s	Lys	Leu	
TTG	GCT	CCT	GGG	ACC	CTG	TGC	CGC	GAG	CAG	GCC	AGG	CAG	TGT	GAC	CTC	334
						Cy s										
CCG	GAG	TTC	TGT	ACG	GGC	AAG	TCT	CCC	CAC	TGC	CCT	ACC	AAC	TTC	1'AC	382
Pr o	Gl u	Phe	Cy s	Thr	Gly	Lys	Ser	Pr o	His	Cy s	Pro-	Thr	A's n	Plie	Туг	
						TGT										430
Gln	Met	As p	Gł y	Thr	Pro	Cy s	Glu	Gl y	Gly	Gln	Ala	Туг	Cys	Tyr	Asn	
ccc	ΔTG	ፐርድ	CTC	۸۵۵	TAC	CAG	CA.									453
					Tyr											
,	•															

INFORMATION FOR SEQ ID NO. 28:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 150 amino acrds
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO. 28:

Gly Ala Ala Thr Gly His Pro Phe Pro Lys Val Phe Ash Gly Cys Ash 1 5 10 Arg Arg Clu Leu Asp Arg Tyr Leu Gln Ser Gly Gly Met Cys Leu 20 25 3.0 Ser Asn Met Pro Asp Thr Arg Met Len Tyr Gly Gly Arg Arg Cys Gly 3.5 4.0 4.5 Asn Gly Tyr Leu Glu Asp Gly Glu Glu Cys Asp Cys Gly Glu Glu Glu 50 5.5 Glu Cys Asn Asn Pro Cys Cys Asn Ala Ser Asn Cys Thr Leu Arg Pro 7.0 75 Gly Ala Glu Cys Ala His Gly Ser Cys Cys His Glu Cys Lys Leu Leu 85 90

Ala Pro Gly Thr Leu Cys Arg Glu Gln Ala Arg Gln Cys Asp Leu Pro 100 105 110

Glu Phe Cys Thr Gly Lys Ser Pro His Cys Pro Thr Asn Phe Tyr Gln 115 120 125

Met Asp Gly Thr Pro Cys Glu Gly Gly Gln Ala Tyr Cys Tyr Asn Gly
130 135 140

Met Cys Leu Thr Tyr Qin 145

## 請求の範囲

- 1. 細胞の融合または接着または凝集に関わる蛋白質であるメルトリン。
  - 2. マウスのメルトリンである、請求項1記載のメルトリン。
  - 3. ヒトのメルトリンである、請求項1記載のメルトリン。
- 4. それぞれ、図 2 a  $\sim$  図 2 j、図 3 a  $\sim$  図 3 j及び図 4 a  $\sim$  図 4 i に示されたアミノ酸配列を含むことを特徴とする、メルトリン $\alpha$ 、  $\beta$  及び  $\gamma$  のいずれかである、請求項 1 ないし 2 記載のメルトリン。
- 5. それぞれ、図12a~図12bもしくは図15a~図15fもしくは図23a~図23b、図16もしくは図17a~図17c及び図13a~図13dに示されたアミノ酸配列を含むことを特徴とする、メルトリン $\alpha$ 、 $\beta$ 及び $\gamma$ のいずれかである、請求項1または3記載のメルトリン。
- 6. 細胞の融合または接着または凝集に関わる蛋白質であるメルトリンの一部分を少なくとも含むポリペプチド。
- 7. メルトリンのメタロプロテアーゼ領域、デイスインテグリン領域及びシステイン・リッチ領域を少なくとも含む、請求項6に記載のポリペプチド。
- 8. メルトリンのデイスインテグリン領域及びシステイン・リッチ 領域を少なくとも含む、請求項 6 記載のポリペプチド。
- 9. メルトリンの細胞内領域、膜貫通領域、前駆体領域、メタロプロテアーゼ領域、デイスインテグリン領域、融合ペプチド様配列及びシステイン・リッチ領域並びにそれらより選ばれる任意の領域を任意の順序で結合させた結合物からなる群から選択される、請求項6記載のポリペプチド。

- 10. メルトリンのメタロプロテアーゼ領域、ディスインテグリン領域の一部分のアミノ酸配列を有する請求項6に記載のポリペプチド。
- 11. 図2a~図2j、図3a~図3j、図4a~図4i、図12a~図12b、図15a~図15f、図23a~図23b、図16、図17a~図17c又は図13a~図13dに示されたアミノ酸配列の少なくとも一部分を含む請求項6記載のポリペプチド。
- 12. 前記各領域が、それぞれ下記より選ばれるいずれかのアミノ酸配列を本質的に含む請求項7ないし10いずれかに記載のポリペプチド

### 前駆体領域:

- 図2a~図2jのN末端より数えて1番目のMetから205 番目のArgまでのアミノ酸配列
- 2) 図3 a ~ 図3 jのN末端より数えて1番目のMetから204 番目のArgまでのアミノ酸配列
- 3) 図4 a ~ 図4 i のN末端より数えて1番目のMetから205 番目のArgまでのアミノ酸配列
- 4) 図15a~図15fのN末端より数えて1番目のGlyから155番目のArgまでのアミノ酸配列

# メタロプロテアーゼ領域:

- 1) 図2a~図2jのN末端より数えて206番目のGluから4
   14番目のProまでのアミノ酸配列
- 2) 図3 a ~ 図3 jのN末端より数えて205番目のG1 uから409番目のProまでのアミノ酸配列
- 3) 図4 a ~ 図4 i のN末端より数えて206番目のAlaから406番目のProまでのアミノ酸配列

- 4) 図15 a ~ 図15 f のN末端より数えて156番目のGluから364番目のProまでのアミノ酸配列
- 5) 図17a~図17cのN末端より数えて1番目のGlyから36番目のProまでのアミノ酸配列
- 6) 図13a~図13dのN末端より数えて1番目のAlaから40番目のProまでのアミノ酸配列

## ディスインテグリン領域:

- 1) 図2a~図2jのN末端より数えて420番目のPheから5
   09番目のGlyまでのアミノ酸配列
- 2) 図3a~図3jのN末端より数えて415番目のTyrから504番目のGlyまでのアミノ酸配列
- 3) 図4a~図4iのN末端より数だで412番目のTyrから502番目のG1vまでのアミノ酸配列
- 4) 図 1 2 a ~ 図 1 2 b の N 末端より数えて 1 番目の L y s から 36 番目の G 1 y までのアミノ酸配列
- 5) 図15a~図15fのN末端より数えて370番目のPheから459番目のGlyまでのアミノ酸配列
- 6) 図16のN末端より数えて1番目のG1yから77番目のG1yまでのアミノ酸配列
- 7) 図17a~図17cのN末端より数えて42番目のTyrから131番目のG1yまでのアミノ酸配列
- 8) 図13a~図13dのN末端より数えて46番目のTyrから 136番目のG1yまでのアミノ酸配列

### システイン・リッチ領域:

- 1) 図2a~図2jのN末端より数えて510番目のHisから7
   06番目のGlyまでのアミノ酸配列
- 2) 図3a~図3jのN末端より数えて505番目のThrから706番目のProまでのアミノ酸配列
- 3) 図4a~図4iのN末端より数えて503番目のTyrから694番目のAlaまでのアミノ酸配列
- 4) 図12 a ~ 図12 b の N 末端より数えて37番目の H i s から 107番目の L y s までのアミノ酸配列
- 5) 図15 a ~ 図15 f のN末端より数えて460番目のHisから656番目のGlnまでのアミノ酸配列
- 6) 図16のN末端より数えて78番目のThrから131番目の Argまでのアミノ酸配列
- 7) 図17a~図17cのN末端より数えて132番目のThrから330番目のProまでのアミノ酸配列
- 8) 図13a~図13dのN末端より数えて137番目のTyrから322番目のSerまでのアミノ酸配列

### 融合ペプチド様配列:

- 1) 図2a~図2jのN末端より数えて585番目のGlyから6
   07番目のGluまでのアミノ酸配列
- 2) 図15 a ~ 図15 f のN末端より数えて535番目のG1yから557番目のG1nまでのアミノ酸配列

#### 膜貫通領域:

1) 図2a~図2jのN末端より数えて707番目のLeuから7
 27番目のLeuまでのアミノ酸配列

- 2) 図3 a ~ 図3 jのN末端より数えて707番目のValから729番目のArgまでのアミノ酸配列
- 3) 図4a~図4iのN末端より数えて695番目のLeuから7

### 14番目のITeまでのアミノ酸配列

- 4) 図23a~図23bのN末端より数えて74番目のLeuから94番目のLeuまでのアミノ酸配列
- 5) 図17a~図17cのN末端より数えて331番目のValから348番目のMetまでのアミノ酸配列

### 細胞内領域:

- 1) 図2a~図2jのN末端より数えて728番目のLysから9
   03番目のLysまでのアミノ酸配列
- 2) 図3 a ~ 図3 jのN末端より数えて730番目のG1nから920番目のI1eまでのアミノ酸配列
- 3) 図4a~図4iのN末端より数えて715番目のPheから845番目のThrまでのアミノ酸配列
- 4) 図23a~図23bのN末端より数えて95番目のLysから207番目のLeuまでのアミノ酸配列
- 5) 図17a~図17cのN末端より数えて349番目のTyrから394番目のLysまでのアミノ酸配列
- 13. 請求項1ないし3のいずれかに記載のメルトリンをコードする塩基配列を含むDNA。
- 14. 請求項4記載のメルトリンをコードする塩基配列を含むDNA。
  - 15. 請求項5記載のメルトリンをコードする塩基配列を含むDN

A o

16.以下より選ばれるいずれかの塩基配列を含む請求項14に記載のDNA。

- 1) 図5a~図5jの塩基番号221~2929
- 2) 図6a~図6hの塩基番号63~2822
- 3) 図7a~図7eの塩基番号69~2603
- 17. 以下より選ばれるいずれかの塩基配列を含む請求項15に記載のDNA。
  - 1) 図12a~図12bの塩基番号1~321
  - 2) 図15a~図15fの塩基番号1~2058
  - 3) 図23a~図23bの塩基番号3~623
  - 4) 図16の塩基番号1~393
  - 5) 図17a~図17cの塩基番号2~1183
  - 6) 図13a~図13dの塩基番号1~966
- 18. 請求項6記載のポリペプチドをコードする塩基配列を含むD NA。
- 19. 請求項7ないし10又は12のいずれか記載のポリペプチドをコードする塩基配列を含むDNA。
- 20. 図5a~図5j、図6a~図6h、図7a~図7e、図12 a~図12b、図15a~図15f、図23a~図23b、図16、図 17a~図17c、図13a~図13dに示されたいずれかの塩基配列 の一部である請求項18記載のDNA。
- 21. 下記より選ばれるいずれかの塩基番号で示される塩基配列も しくは下記より選ばれるいずれか1つ以上の塩基番号で示される塩基配

列が任意の順序で結合した塩基配列を本質的に含む請求項 1 9 記載の D N A。

- (1) 図5a~図5jの塩基番号221~835
- (2) 図5a~図5jの塩基番号836~1462
- (3) 図5a~図5jの塩基番号1478~1747
- (4) 図5a~図5jの塩基番号1748~2338
- (5) 図5a~図5jの塩基番号2339~2401
- (6) 図5a~図5jの塩基番号1973~2041
- (7) 図5a~図5jの塩基番号2402~2929
- (8) 図 6 a ~ 図 6 h の塩基番号 6 3 ~ 6 7 4
- (9) 図6a~図6hの塩基番号675~1289
- (10) 図6a~図6hの塩基番号1305~1574
- (11) 図6a~図6hの塩基番号1575~2180
- (12) 図6a~図6hの塩基番号2181~2249
- (13) 図6a~図6hの塩基番号2250~2822
- (14) 図7a~図7cの塩基番号69~683
- (15) 図7a~図7cの塩基番号684~1292
- (16) 図7a~図7cの塩基番号1302~1574
- (17) 図7a~図7cの塩基番号1575~2150
- (18) 図7a~図7cの塩基番号2151~2210
- (19) 図7a~図7cの塩基番号2211~2603
- (20) 図12a~図12bの塩基番号1~108
- (21) 図12a~図12bの塩基番号109~321
- (22) 図15a~図15fの塩基番号1~465
- (23) 図15a~図15fの塩基番号466~1092
- (24) 図15a~図15fの塩基番号1108~1377

- (25) 図15a~図15fの塩基番号1378~1968
- (26) 図23a~図23bの塩基番号3~221
- (27) 図23a~図23bの塩基番号222~284
- (28) 図23a~図23bの塩基番号285~623
- (29) 図16の塩基番号1~231
- (30) 図16の塩基番号232~393
- (31) 図 1 7 a ~ 図 1 7 c の塩基番号 2 ~ 1 0 9
- (32) 図17a~図17cの塩基番号125~394
- (33) 図17a~図17cの塩基番号395~991
- (34) 図17a~図17cの塩基番号992~1045
- (35) 図17a~図17cの塩基番号1046~1183
- (36) 図13a~図13dの塩基番号1~120
- (37) 図13a~図13dの塩基番号136~408
- (38) 図13a~図13dの塩基番号409~966
- (39) 図15a~図15fの塩基番号1603~1671
- 22. 請求項13ないし21のいずれか一項に記載のDNAに対するアンチセンスオリゴヌクレオチドおよびその誘導体。
- 23. 請求項1、2、3、4もしくは5のいずれかに記載のメルトリン又は請求項6、7、8、9、10、11もしくは12のいずれかに記載のポリペプチドを認識する抗体。
- 24. 請求項1、2、3、4もしくは5のいずれかに記載のメルトリン、又はその一部を抗原として得られる抗体。
- 25. 請求項6、7、8、9、10、11もしくは12のいずれかに記載のポリペプチド又はそれらの断片を抗原として得られる抗体。
  - 26. 中和抗体である請求項23、24又は25のいずれかに記載

- ----

### の抗体。

- 27. モノクローナル抗体である請求項23、24、25又は26 のいずれかに記載の抗体。
- 28. 少なくとも、請求項13ないし17のいずれかに記載のDNA を含有するベクター。
- 29. 少なくとも、請求項18ないし21のいずれかに記載のDNA を含有するベクター。
  - 30. 請求項28に記載のベクターによる形質転換体。
  - 31. 請求項29に記載のベクターによる形質転換体。
  - 32. 真核細胞である請求項30に記載の形質転換体。
  - 33. 大腸菌である請求項30に記載の形質転換体。
  - 34. 真核細胞である請求項31に記載の形質転換体。
  - 35. 大腸菌である請求項31に記載の形質転換体。
- 36. 請求項30、32又は33のいずれかに記載の形質転換体を 培養することから成る、請求項1、2、3、4又は5のいずれかに記載 のメルトリンの製造方法。
- 37. 請求項31、34又は35のいずれかに記載の形質転換体を 培養することから成る、請求項6、7、8、9、10、11又は12の いずれかに記載のポリペプチドの製造方法。
- 3 8. 請求項 4 または 5 いずれかに記載のメルトリンをコードする塩 基配列に相補的な塩基配列とハイブリダイズする塩基配列によりコード されるアミノ酸配列を有するメルトリン。
- 39. 請求項12に記載のポリペプチドをコードする塩基配列に相補 的な塩基配列とハイブリダイズする塩基配列によりコードされるアミノ 酸配列を有するポリペプチド。
  - 40. 請求項1に記載のメルトリンをコードする塩基配列であって、

以下より選ばれるいずれかの塩基番号で示された塩基配列に相補的な塩 基配列とハイブリダイズする塩基配列を含む DNA。

- 1) 図5a~図5jの塩基番号221~2929
- 2) 図5a~図5jの塩基番号1478~1747
- 3) 図6a~図6hの塩基番号63~2822
- 4) 図6a~図6hの塩基番号1305~1574
- 5) 図7a~図7eの塩基番号69~2603
- 6) 図7a~図7eの塩基番号1302~1574
- 7) 図12a~図12bの塩基番号1~321
- 8) 図15a~図15fの塩基番号1~2058
- 9) 図15a~図15fの塩基番号1108~1377
- 10) 図23a~図23bの塩基番号3~623
- 11) 図16の塩基番号1~393
- 12) 図17a~図17cの塩基番号2~1183
- 13) 図17a~図17cの塩基番号125~394
- 14) 図13a~図13dの塩基番号1~966
- 15) 図13a~図13dの塩基番号136~408
- 41. 請求項 6 に記載のポリペプチドをコードする塩基配列であって、以下より選ばれるいずれかの塩基番号で示された塩基配列の一部に相補的な塩基配列とハイブリダイズする塩基配列を有するDNA。
  - 1) 図5a~図5jの塩基番号221~835
  - 2) 図5a~図5jの塩基番号836~1462
  - 3) 図5a~図5jの塩基番号1478~1747
  - 4) 図5a~図5jの塩基番号1748~2338
  - 5) 図5a~図5jの塩基番号2339~2401

- 6) 図5a~図5jの塩基番号1973~2041
- 7) 図5a~図5jの塩基番号2402~2929
- 8) 図6a~図6hの塩基番号63~674
- 9) 図6a~図6hの塩基番号675~1289
- 10) 図6a~図6hの塩基番号1305~1574
- 11) 図6a~図6hの塩基番号1575~2180
- 12) 図6a~図6hの塩基番号2181~2249
- 13) 図6a~図6hの塩基番号2250~2822
- 14) 図7a~図7eの塩基番号69~683
- 15) 図7a~図7eの塩基番号684~1292
- 16) 図7a~図7eの塩基番号1302~1574
- 17) 図7a~図7eの塩基番号1575~2150
- 18) 図7a~図7eの塩基番号2151~2210
- 19) 図7a~図7eの塩基番号2211~2603
- 20) 図12a~図12bの塩基番号1~108
- 21) 図12a~図12bの塩基番号109~321
- 22) 図15a~図15fの塩基番号1~465
- 23) 図15a~図15fの塩基番号466~1092
- 24) 図15a~図15fの塩基番号1108~1377
- 25) 図15a~図15fの塩基番号1378~1968
- 26) 図23a~図23bの塩基番号3~221
- 27) 図23a~図23bの塩基番号222~284
- 28) 図23a~図23bの塩基番号285~623
- 29) 図16の塩基番号1~231
- 30) 図16の塩基番号232~393
- 31) 図17a~図17cの塩基番号2~109

- 32) 図17a~図17cの塩基番号125~394
- 33) 図17a~図17cの塩基番号395~991
- 34) 図17a~図17cの塩基番号992~1045
- 35) 図17a~図17cの塩基番号1046~1183
- 36) 図13a~図13dの塩基番号1~120
- 37) 図13a~図13dの塩基番号136~408
- 38) 図13a~図13dの塩基番号409~966
- 39) 図15a~図15fの塩基番号1603~1671
- 42. 請求項1に記載のメルトリン又は請求項6に記載のポリペプチドを有効成分とすることを特徴とする医薬組成物。
- 43.メルトリンに対するアンタゴニストを有効成分とすることを特徴とする医薬組成物。
- 4.4.前記アンタゴニストが請求項6ないし12いずれかに記載のポリペプチドである請求項43に記載の医薬組成物。
- 4 5. 前記アンタゴニストが請求項22に記載のアンチセンスオリゴ ヌクレオチドおよびその誘導体である請求項43に記載の医薬組成物。
- 46. 前記アンタゴニストが請求項26又は27いずれかに記載の抗体である請求項45に記載の医薬組成物。
- 47. 骨吸収抑制作用を有する請求項42ないし46いずれかに記載の医薬組成物。
- 48. 骨粗鬆治療剤又は高カルシウム血症治療剤である請求項47記載の医薬組成物。

	100	167 159 114 200	267 256 214 300	367 354 312 397	465	452 466 489	565 132 132 546 504	566 662 150	151 626 571 683
OS IPAKDHPD LPSHWGQYPE		TTDSYKIMPA DEEGGHAMYO PDSEAHAMFK SORFEHVLYT		HDTLERGCSC HDEDIPSCYCHDIGSCSC HDHSACVC		LKSFRECAYO LVKGAECAYO LVKGAECASO LNSGSOOGIG LKGWATOSNE	PYGNCGFOSK TEGNCGFOLM REDNCGFS-G NSMYS YZGYORZE-N	FGVHKCAMOG	RSENCSAKCN Y TANCSAKEM
LLSKDP RLAASR	SSYEIVIPES	KTISLEPHEN TVHLIEPLDA ETYFIEPLEL TSYGISPILS	KEYBPLNIBI KLYOELSFBV EIFFHTHWU IBTGGIRTEV	HELGHINFSWN HELGHILSWS HENGHILSIR HELGHILSIR	NECCIVATICT	OEGSFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFI OFFI OFFI OFFI OFFI OFFI OFFI OFF	SEERVISAGE SEIEWENSERS SITESIPE SYTESIPE SE-KONOMEN	NRRCONI-SV FGVHKCAMO	DGSCODLRUY B WHCVDVATA 3
RGA <u>YEV</u> ARAS VKO <u>YEV</u> VWPR	IHCHLGPVHY	DLRGLIMFEN GLRGFFRVGS GLKSYFKLOR GLRGILIMEN	PLISIANHUD SVLEVVHHUD SWYSLAHIVN SVVDHIALAN	Spigaavta NSIEVASIPA INLVVAVIRA DAELSAALIV	OCCEPSECT-	OCGTAKECEV CCGTPQDCQ- CCGTPENCQ- CCGTPENCQ-	SPGAKEAPGI SPGARSALDL SSKALAARBUD SPGARVRADS SADVYEREDS CHGARSARDA		TKCEEGKVON TKCAOGKVOS ISOASSKAOV
AARGMSIMDO SSPWTSFAPI	тгу <b>ё</b> ту <b>й</b> ген	ASWSLSTCE GSAASISTCA DSTASISACN SSFVSVSACE	CCKDDSKVKC LA-SREAVEC NNCDLDFIFA MGSEVNETVC	SGGVVMDHSD SGAVNODHSK SVGIVQEYSP AAAVEAEHHE	NGYVEEGEEC	NLFVENGEQC NELLENGEGC NGVVEESEGC	HEDOCATUR IXOEOCOUR XXDADOCAUE ILADOCROBA IMXHOCYALE DEGIDCALE		IDTFE <b>IVIOC</b> DEHKEYUPO SETEGANSAG
. ALEGALIAPR LAZOREMIS	GHLCVRIVTK	IYHGHVOGDA IYOGHVEGYE IYHGRIENDA HYEGYIESAS	I VADNPSTOR VVAD SQEFOK V* VBOGTVTK VVVVNNOREDY	PIMSMCTAEO KVSAL - SRH YIGSMCHPKR FLNGAGSSGF	KOAFEGRKEG	NRFV <mark>eg</mark> pvag TDI I SPPVAG ARRRAATOG	DGYCYNG156 OAYCYNGAGL KAYCYNGAG -GYGFDESSP YBYCYNGAG	RGTHVYLED	Vchalgtesn Kmfysne Sisnfgdpas
RAPBARABLL CSRSHHAWP	. MVABRLGEVP	SLIRNHTOHC TEOLOECOHC TTYPPVEOHC OEIPSIARD	LKATKKVEIV PRETRVELY YDPYKVIEFF WVHTKKVEHF	YSOGTFIGH DFISSTVELD DENGPIGH HHPGEISSON	Na-Printerou	GOLTAVE-DA ECIINEF-LG ACLENKEWHK	LHOCHECOCY  KODGTPCES  TONSTREES  TONSTREES  THOCHECOCY	BOOEBGRILE	SFCTFSSNHG ESQNNPE QIPHEDDWCW
MAERPAR	RSLLOTCTLL	THYLODGTOV FYSAANGSEN IHYSPOGREI VYSYHNGNVR	MRARHKRET YRAOPRWHLI OLAFTAEOOR HSVQALSSYL	HDNAQLISSY HDNAQLITSY HDNAQLLTAI HDVEHNIVG-	MEAS BERGH	DESEVTEPOT CWDEIMNHNP FYHEIHEHR	TAPHCPANNY KSPHCPTNY SSQFTPPONF RKFTCPEDAF QSSECPANK QSSECELDTH	TNAVS IET <mark>ZI</mark>	ER
	-	E SI I IANGETE RDL LGS SYTE M SI FSKOY SE KROYEVDDEP	MEDVSPGTSQ NDLGPRALEI KSYEPIKKAS TSWQQGSRKP	AYIKDLPRKS PEONLOGOHP RYTDELLTARK PODKULPRVR	HVES SOSRICO	RIFSRCSKIS KFFSNCSYIQ SGFSNCSSDY	SODLPEFCTG COLPEFCTG COLPEFCTG COLPEFCDG COLPEFCDG COLPEFCTG	ogcaske vije	TEISSIE
	RNTISFSASL	RDLIDSBERN HVFT-HURKN EPVVJHUEKN GHKOLIHLKV	SSQHNKSNLT STCGVKDTNL PKMCGVTQNW ASAKDSQAVS	FTRUHETION NVT ENTINES DYTINGS AER RVT LANGINES	WNPSTGEPER	TESISSKAT KGPTISNEPS YOENITEE	PCT ACRESSN ECT CCREGVR G-SWCREKTS A-SEVCR-LSKD S-JECTRASMS S-JYLORP SVG	AF JGKIOC	CEGGGRI-
	MRSGSHMASV RNT	VIIVOLOLES SILSYALGTSG AMOYEFKVNG GRISYMLITO	ESMTNIFGLC BSQH AKHLBQKA FTCG YENVEKEDEA PKMC MARQAPVSCR ASAK	ISKCSISOBP -OZEVISKA GELIEVPOEL	Praveresson	PEPRESSON GDXPOI BDKHSQL	S C C C C C C C C C C C C C C C C C C C	-SAFAKGELA -GOYRKOSPS -BEYRKOATG	-GRINRGAL Y -GRKIPIAPE PTIVGISGD S
Ma As	Fa	MS2 JR Fa	Ма Н82 ЈВ	Ma MS2 JR Fa	ደ ዊ ያ	HS2 JR Fa	на Н Н 1 н г 1 н г 1 н г	£ # £	HS2 JR

<u>N</u>

図

762 707 783 862 792 804 903 PISADPLSRT PISELKPKOV BASPAVROAO GIRKBSBBOR OAHHTPGKGL LMWRAPHENT PRORHSLKCO MMDISRAGLDA RAVPQLOSPO RVLLPLHOTA RAPSGPARATA ---GLSNPLF TTRDSSL-PA KNRPPDPSET VSTNOPARPI AKPKRP---- -----PPAA PGAVSSS-A SRLTSALVRT PGOGEPEHRE APIREHEKHO BERESHNAYI K KPTFAPPIPP VKPGTGETY GATOGEGGPK MALKVPIOK- R MG MS2 Ha HS2 Fa Ha HS2

87

**図**2 a

27 CGCGGGGCCCCCGAAGCAGCTGCACGCCAGGCCGGCGACA<u>ATG</u>GCAGAGCGCCCGGCGCG 300  $\mathtt{CTGGCTGGGGCCCTGCTGGCGCCCCGG}$ 290 ъ <u>ڻ</u> 280 L A L 210 270 200 260 250 190

47

29

CCTTCTGAGCAAGGACCCTGGGATCCCAGGACAGGATCCCAGCCAAGGATCATCCAGA I P A S ð 9 م I 9

Z ш 470 S CGTGCTGACTGCAACTGCAGCTGGAGAGCCGAGACCTGATCCT 460 450 S H

図2 9

		107
540	ATTGCCAATGGCTTCACGGAGACCCATTATCTGCAAGATGGTACTGATGT	D V
	TAC	<del>[</del>
530	TGG	G
Ŋ	AGA	D
	GCA	Ö
520	TCI	
52	YTT/	<b>X</b>
	7000	H
0	4GA(	⊣
510	266/	म्प
	ICA(	<del>[</del>
	GCT	G F T E
500	ATG	9
	CCA	Z
	TTG	A
		<b>—</b>
4	GAC	
	'GAGGGACTC	<u>ය</u>
	TC	Ŧ

		127	
600	GAGATGC	D A	
290	ATGTGCAAG	0 0 l	
580	FACCATGGAC	I Н G Н	•
570	CATTGTTAC	н с у	Ċ
260	TCACACGGAT	N H T D H C Y Y H G H V Q G D A	000
550	CTCTCTCACTCGAAATCACACGGATCATTGTTACTACCATGGACATGTGCAAGGAGATGC	L T R N	610
	CT	S	

630 029 S S

TAAAACGTACAGCTTAGAGCCAATGAAAAACACCACTGACAGCTACAAACT 700 069 Z ×  $\mathbf{z}$ 089 মে

187 780 **I'GAGAGCATGACGAACATCCAAGGGCTGTGTGGGTCACAGCATAACAAGTCCAACCTCAC** Z S Z  $\Xi$ Ö S ۍ 750 ပ Z × S

**図**2 c

207	227	247	267	287
790 800 810 820 830 840 CATGGAAGATGTCCCCCTGGAACCTCTCAAATGCGGGCAAGAAGGCATAAGAGAGAG	850 860 870 880 890 900 CCTTAAGATGACCAAGAGTTTCAGAG L K M T K Y V E L V I V A D N R E F Q R	910 920 930 940 950 960 GCAAGGAAAAGACTTAAGCGATTAATAGAGATCGCCAATCACGTTGA Q G K D L E K V K Q R L I E I A N H V D	970 980 1000 1010 1020 CAAGTTTTACAGACCACTGGATCGTGGTGGTGGAATGA K F Y R P L N I R I V L V G V E V W N D	1030 1040 1050 1060 1070 1080 CATCGACAAATGCTCTATAAGCCAGGACCCATTCACCAGGCTCCATGAGTTTCTAGACTG I D K C S I S Q D P F T R L H E F L D W
820 AATGCGGGCAA( M R A R	880 FATTGTGGCAGA I V A D	940 GCATTAATAGA R L I E	1000 GTGCTGGTAGGAG V L V G V	1060 TTCACCAGGCT F T R L
810 GAACCTCTCA/ T S Q	870 FAGAGCTGGT	930 V K Q	990 CATCCGGATC I R I	1050 CCAGGACCCA Q D P
800 STCTCCCCTG	860 CCAAGTACG	920 ACCTGGAGA/ L E K	980 GACCACTGAA P L N	1040 GCTCTATAAG S I S
790 CATGGAAGATG	850 CCTTAAGATGA L K M T	910 GCAAGGAAAGA Q G K D	970 CAAGTTTTACAG K F Y R	1030 CATCGACAAAT I D K C

387

p	
0	
図	

1180 1190 1200 CATGAGCATGTGCACTGCAGAACA M S M C T A E Q 327	2 2 1 1 2 1 1 2 G V 307
	1150 1160 1170 1180 1190 1200 TTATTTCCAAGGAACCACCATCGCCATCATGAGCATGTGCACTGCAGAACA Y F Q G T T I G M A P I M S M C T A E Q

407	427	447	467	487
図2 e 1390 1400 1410 1420 1430 1440 CATGGTGTTCAGCAGCAGGAGGACCTGGAGGGCATGGG M V F S S C S R K D L E A S L E K G M G	1450 1460 1470 1480 1490 1500 GATGTGCCTCTTCAACCAGGGTCAAGCAGGCCTTTGGGGGCCGGAAGTGTGGAAA M C L F N L P E V K Q A F G G R K C G N	1510 1520 1530 1540 1550 1560 TGGCTATGTGGAAGAGGGAGGGGTGTGACTGCGAGAACCGGAGGAATGCAGAATCG G Y V E E G E E C D C G E P E E C T N R	1570 1580 1590 1600 1610 1620 CTGCTGTAACGCTACCAGACCCAGATGCTGTGTGCGCGCACGGGCAGTG C C N A T T C T L K P D A V C A H G Q C	1630 1640 1650 1660 1670 1680 CTGTGAAGACTGTCAGCTGCAGGGGCTCCAGCAACTCCTG C E D C Q L K P P G T A C R G S S N S C
1430 SCCTGGAGA/ L E K	1490 3GGCCGGAA G R K	1550 CGAGGAAT( E E C	1610 GTGCGCGCAC C A H	1670 3GGCTCCAG G S S
1420 GAGGCTAG E A S	1480 GCCTTTGG A F G	1540 GGAGAACC GEP	1600 GATGCTGT D A V	1660 GCATGCAG A C R
1410 IAGGACCTG	1470 GTCAAGCAG V K Q	1530 GTGACTGC DC	1590 TGAAGCCA K P	1650 CAGGAACT G T
1400 TGCAGCAGGA CSRK	1460 CTACCAGAGG L P E V	1520 GGAGAAGAGT G E E C	1580 A <u>C</u> CTGTACTC T C T L	40 GAAGCCTC K P P
14 AGCAGCTG S S C	14 FTCAACCT	15. 3AAGAGGG 3 E G	15 SCTACCAÇ	1640 FGTCAGCTGAA
図2e 1390 CATGGTGTTCAG MVFS	1450 TGTGCCTC	1510 GCTATGTGG Y V E	1570 TGCTGTAACGC C C N A	1630 GTGAAGACI E D (
⊠ CA ⊠	GA	TG	CT	CT

4
2
図

527	547	567	587
1800	1860	1920	1980
CAGACCCA	ATCTGCTT	AAGAGCGC	GGTGGTGC
Q T H	I C F	K S A	G G A
1790 GCATCTGC	1850 GCTCCTGGC A P G	1910 AAAGACTCC K D S	1970 CAGTGTCAA
1780	1840	1900	1960
CTGCTACAAC	FGCTAAACCG	FAACTGTGGC	FGGGAAATC
C Y N	A K P	N C G	G K I
1770	1830	1890	1940 1950 1960 1970 198
TGGATGGTTAO	GGGACCAGG	ATCCTTATGG	CAGCTGAGAGATGCCAAGTGTGGAAATCCAGTGTCAAGGTGGTG
D G Y	G P G	P Y G	E L R D A K C G K I Q C Q G G A
1760	1820	1880	1940
FGTCAGGGCG	GTCACGCTCT	CTGCAGGAG,	AGCTGAGAGA
1750	1810	1870	1930 1940 1950 1960 1970 1980
FGATGGCCACCCG	FGAGCAGTGTG	FGAGCGAGTCAACT	CTTCGCCAAATGTGAGGAGATGCCAAGTGTGGGAAAATCCAGTGTCAAGGTGGTGC
D G H P	E Q Q C	E R V N S	F A K C E L R D A K C G K I Q C Q G G A
	1760 1770 1780 1790 1800 CTGTCAGGGCGTGGATGGTTACTGCTACAACGGCATCTGCCAGACCCA CQGVDGYCYNGCTACAGGCATCTGCCAGACCCA		

209	627	647	199	289
2040	2100	2160	2220	2280
CAGCAGGA	SCCAGACCC	CCTCGATG	CCGAGGGGT	CTGTGACAA
Q Q E	P D P	R R C	R G V	C D K
2030	2090	2150	2210	2270
AAATATCCCA	FGATGACATO	CTGCCTCAA1	3TGCCACGG(	TCCACCCTTO
N I P	D D M	C L N	C H G	P P F
2020	2080	2140	2200	2260
CATAGAAACA	GTACTTGGG	AGGAAAAAT	TGCCATGCA(	CCACTGGGC
I E T	Y L G	G K I	A M Q	H W A
2010	2070	2130	2190	2250
TGCTGTTTC	GACCCATGT	GTGTGCAGA	TCACAAGTG	ACTGTGAAGC
A V S	T H V	C A E	H K C	C E A
2000 2010 2020 2030 2040 ATTGGTACCAATGCTGTTTCCATAGAAACAAATATCCCACAGCAGGA I G T N A V S I E T N I P Q Q E	2060 2070 2080 2090 2100 CTGTGCCGGGGGCCCATGTGTACTTGGGTGATGACATGCCAGACCO	2120 2130 2140 2150 2160 GCAGGAACAAGTGTGCAGGAAAAATCTGCCTCAATCGTCGATG A G T K C A E G K I C L N R R C	2180 2190 2200 2210 2220 GTCTTCGGCGTTCACAAGTGTGCCATGCCAGGGGGGT V F G V H K C A M Q C H G R G V	2240 2250 2260 2270 2280 AAGAATTGCCACTGTGAAGCCCACTGGGCTCCACCCTTCTGTGACAA K N C H C E A H W A P P F C D K
図2g 1990 AAGCCGACCTGTCA SRPVI	2050 2060 2070 2080 2090 2100 AGGAGGTCGGATTCTGTGCCGGGGGACCCATGTGTACTTGGGTGATGACATGCCAGACCC G G R I L C R G T H V Y L G D D M P D P	2110 AGGGCTTGTGCTTG G L V L A	2170 2180 2190 2200 2210 2220 TCAGAATATCAGTGTTCACAAGTGTGCCATGCAGTGCCACGGCCGAGGGGT Q N I S V F G V H K C A M Q C H G R G V	2230 2240 2250 2260 2270 2280 ATGTAACAACAGGAAGATTGCCACTGTGAAGCCCACTGGGCTCCACCCTTCTGTGACAA C N N R K N C H C E A H W A P P F C D K
M A	A(	A(	Ĕ	A.

787

H

図2 h

rcctg L	2410 2420 2430 2440 2450 2460 CAAAAGGAAGACGTTGATGCGCTGCTGTTCACACATAAAAAACCACCATGGAAAAGCT K R K T L M R L L F T H K K T T M E K L 747	2470 2480 2490 2500 2510 2520 AAGGTGTGCACCCTTCCCGGACACCCAGTGGCCTCACCAGGCTCACCACAC R C V H P S R T P S G P H L G Q A H H T 767	CCCCGGGAAAGGCCTGCTGATGAACCGGGCACCACATTCAATACCCCCAAGGACAGGCA
2350 2360 ACTGTAGGAATCCTGGTGAGCATC T V G I L V S I	2410 2420 AAAAGGAAGACGTTGATGCGGCTG K R K T L M R L	2470 2480 AGGTGTGCACCCTTCCCGGACA R C V H P S R T	2530 2540 CCCGGGAAAGGCCTGCTGATGAAC

区 区 i

807	827	847	298	887
2590 2600 2610 2620 2630 2640 CTCGCTGAAATGCCAGGACATCAGCAGGCCCCTCGAGCCGTCCCACA S L K C Q N M D I S R P L D A R A V P Q	2660 2670 2680 2690 2700 CAGCGAGTGCTCCTCCACCAGACCCCACGTGCACCCAGTGG Q R V L L P L H Q T P R A P S G	2710 2720 2730 2740 2750 2760 CCCTGCCAGGCCCCTGCCGGCCAGGCCCAGGGCATTCGAAAACC P A R P L P A S P A V R Q A Q G I R K P	2770 2780 2790 2800 2810 2820 CAGTCCTCCTCAGAGCCTCTGCCTGATCCACTGAGCAGGACTTCTCGGCTCACTAG S P P Q K P L P A D P L S R T S R L T S	2840 2850 2860 2870 2880 CCCCAGGGCAGCAGGACCTGGGCACCGCCCCATCAGACC
2590 2600 CTCGCTGAAATGCCAGAACATG S L K C Q N M	2650 2660 GCTTCAGCCTCAGCGAGTG L Q S P Q R V	2710 2720 CCCTGCCAGGCCCCTGCCCGCC P A R P L P A	2770 2780 CAGTCCTCAGAAGCCTCTG S P P Q K P L	2830 2840 TGCCTTGGTGAGGACCCCAGGG

図 2 j

2890 2940 2910 2920 2930 2940 TGCCCCTAAGCATCAAGTACCCAGACCTTCCCACAATGCCTATATCAAGTGAGAAGCCAG A P K H Q V P R P S H N A Y I K *** 903

80

20

GCGCGCGCCCCGGTTCTGCTT R A G V A R F C L 140 150 GGCGCGTGCGATGGACCAC A C E P G W T T 200 210 GCATGAACTCATAATACCTCAGTGGCG H E L I I P Q W R 260 270 ACTCAGAGCAGGCTCAGGCTA 320 330 3AACGAGCACCTTTTGCTCCAGCCTA	100 GCTGGCTCTCGCTCTGCAGC L A L A L Q L	160 170 180 AAGAGGAAGCCAAGAAGGTAGCC R G S Q E G S P	220 230 240 GACTTCAGAAAGCCCTGGGAGAG T S E S P G R G	280 290 300 TGAAGGGCGAGAGCTGATCCTAG E G R E L I L D	340 350 360 CACAGAAACCTGCTACACTGCAA
9 80 GCGCGCGGCGTC R A G V 140 140 GCGCGCGTGCGAG A A C E A A C E 200 GCATGAACTCATA H E L I H E L I A Z60 ACTCAGAGCAGAG L R A E L R A E	90 GCCCGGTTCTGCTTC A R F C L	150 CCGGGATGGACCACA P G W T T	210 ATACCTCAGTGGCGG I P Q W R	270 CTCAGGGTCATGGCT L R V M A	330 TTTGCTCCAGCCTAC
	70 80 GGGCGCGGGCGTC G R A G V	30 140 CTGGCGCGTGCGAG L A A C E	190 200 ACAGCATGAACTCATA Q H E L I	250 TCCACTCAGAGCAGAG P L R A E	) AGAACGAGCACCTT

図3b 370 380 390 400 GTGGCAATCCTCAAACCAGCACGCTGAAGTCTGAGGATCA	G N P Q T S T L·K S E D H	430 440 450 460 TGAGGGACGTGGATGAGTCCAGCTCAGCACCTC	K D V D E S S V T L S T C	90 510
0 CTCAAACCAGCACGCTGAAGTC	STLKS	140 CCAGTGTCACGCT	SVTL	
0 CTCAAACCAGCACGCTG	STL	140 CCAGTGTC	>	00
0 CTCAAACCAGCAG	ST	140 CCAC	S	00
0 CTCAAAC(		7 E	S	500
0 CTC	⊣	ATGAC	Ŧ	
370 TCC1	P 0	430 CGTGG	\ \	490
図3b GTGGCAA	N 9	AGGGA	× ⊃	7
M T		TG		

550 560 570 580 590 600  STATTACAGATCCGAACATCTCACGCTGCCCCGGGGAACTGTGGGTTCGAGCACT  I Y R S E H L T L P P G N C G F E H S 180  610 620 630 640 650 660	PTSKDWALLQFTH QTKK0PR
------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------

H

S

950

220

図3 c 670 680 690 700 710 720 GCAGAATGAAACGGGAAGATCTACACTCTATGAGTACGTGGAGCTTTACCTGGTGGCTG	730 740 750 760 770 780	ATTATGCAGAGTTTCAGAAGAATCGACATGACCAGGATGCCACCAAACGCAAGCTCATGG Y A E F Q K N R H D Q D A T K R K L M E	790 810 820 840 AGATTGCCAACTATGTTGATAAGTTTTACCGCTCCCTGAACATCCGAATTGCACTTGTCG I A N Y V D K F Y R S L N I R I A L V G	850 860 870 880 890 900 GCTTGGAGGTGTGGACGCATGGGGATAAGTGTGAAGTTTCAGAGAATCCCTACTCTACCC L E V S E N P Y S T L	096
GGTC	>	GCTC L	ACTT	CTCT S	
10 ACC1	Y L	GCAA K	830 ATTGC I A	890 CCCTA P Y	950
710 CTTTACC	L Y 7	AAAC K R	8 CGAA R. I	AATC	6
GGAG	Ħ	CACC	ZATCO I I	GAG/	
700 ACGTG	v 760	ATGC(	820 GAAC N	880 TTCA S	940
AGT/	<b>&gt;</b>	AGGA	T 1000	AAGT V	
0 ATGA	¥ .	GACC D Q	0 CGCT R S	o TGTG C E	0
690 CTCTA1	2 M 750	ACAT H	810 FTACCG	870 FAAGTG K	930
raca	=	VTCG, R	GTT.	GGA1 D	
680 GATC	л г 740	AGAA	800 GATAA D K	860 CATGG H G	920
GAA(	1 2	CAGA Q K	8 GTTG V D	8 4CGC I H	6
ACGG	4	GTTT F	CTATO Y	TGG/W	
670 FGAA/	730	CAGA( E	790 CAA( N	850 AGGTG V	910
図3 c GCAGAA7	E	TATG( Y A	ATTGO I A	CTTGGA L E	
図 /25	<b>-</b>	ATT Y	AGA I	T	

-	τ	3
C	Y	)
2	Y	1

980 990 1000 1010 1020 GTCCTTCCAAGGCACCACTTGGCCTGGCCCCCTCATGGCCA S F Q G T T I G L A P L M A M  1040 1050 1060 1070 1080 GTCTGGAGGTTAGCATGGACATGCCATTGGTG S G G V S M D H S E N A I G V  1100 1110 1120 1130 1140  CCATGAGATTGGCAACTTTGGCATGACTTCTGCAC H E I G H N F G M S H D S A H  160 1170 1180 1200 CGCAGCCGATGGCCCCCCGCCCCCCCCCCCCCCCCCCCC	320	340	360	380	400
AGCTAATCACGGGCAGG L I T G R 1030 TGTGCTCCGTGTACCAGG C S V Y Q 1090 TAGCCTCCACTGTGGCG A S T V A 1150 1150 1150 1150 1150 1150 1150 115	980 990 1000 1010 GAGGTCCTTCCAAGGCACCACTTGGCCTGGCCCCCCTCATG R S F Q G T T I G L A P L M	1040 1050 1060 1070 CCAGTCTGGAGGTTAGCATGGACCACTCCGAGAATGCCATT Q S G G V S M D H S E N A I	1100 1110 1120 1130 FGTGGCCCATGAGATTGGCCATGAGTTCT V A H E I G H N F G M S H D S	1160 1170 1180 1190 CAGTGCAGCCGCTGCATCATGGCCGCCGCCACCGGG S A A D G G C I M A A A T G	1220 1230 1240 1250 STTCAGTTGGTGAACGGAGGGGGGGGAGGGAGGAGGAGGAGGAGGAGGAGG

ø
က
図

420	440	460	480	500
1270 1280 1290 1300 1310 1320	1330 1340 1350 1360 1370 1380	1390 1400 1410 1420 1430 1440	1450 1460 1470 1480 1490 1500	1510 1520 1530 1540 1550 1560
GAGGAGGGATGTCTCTCCAACATGCCGGACGACGCTGTATGGAGGCCGGAGGT	GTGGCAACGGTACCTGGAAGACGTGAAGAGAGAGAGGAGAATGTA	AGAACCCTTGCAATGCCTCCAACTGCACTGCACAGGGGGCAGAGTGTGCCCATG	GTTCCTGCCACCAGTGCAAGCTGGTGGTTCGGAACCCAGTGTCGGGAGCAGGTTC	GGCAATGTGACCTCCCGAGTTCTGCACCGGCAAGTCTCCCCACTGCCCACCAACTATT
G G M C L S N M P D T R T L Y G G R R C	G N G Y L E D G E E C D C G E E E C K	N P C C N A S N C T L K E G A E C A H G	S C C H Q C K L V A P G T Q C R E Q V R	Q C D L P F F C T G K S P H C P T N Y Y

逐 3 5

1570

図3 g 1870 1880 1890 1900 1910 1920 ACGGGAGGCGGATCCACTGTCGGGGGGCAGGAAG G R R I H C R G T H V Y R G P E E E G	1930 1940 1950 1960 1970 1980 GGGAAGGTGACATGCTGGACCCAGGTGTGGCCACAACC E G D M L D P G L V M T G T K C G H N H	1990 2000 2010 2020 2030 2040 ATATTTGCTTCGAGGGGCAGTGCAGGAACACCTCCTTCTTTGAGACGGAAGGCTGTGGGA I C F E G Q C R N T S F F E T E G G G K	2050 2060 2070 2080 2090 2100 AAAAGTGCCATGGGGTCTGCAACAACAAGAACTGTCATTGCTTCCCTGGCT K C N G Ḥ G V C N N K N C H C F P G W	2110 2120 2130 2140 2150 2160 GGTCTCCACCTTTCTGTAACACCCCGGGAGATGGTGGTGGTCGACAGTGGTCGTTTGC S P P F C N T P G D G G S V D S G P L P
図 3	GGGA/	ATAT7	AAAAG	GGTCT
ACGG	E	I	K	S

780

CTGGCCATGCCAACCTTTCAAGTTGCAGACCCCCCAGGGCAAGCGAAAGGTGACTA

×

Ľ,

Z

-	٢	7	
C	Y	)	
1	- >	(	

	2400	2390	2380	2370	2350 2360
160	2340	2330	2320	2310	2290 2340 2340 2320 2330 2340
	TGGTGGAA	GTATCTCAGAG	TCCCTTCAGGO	FCAGTTG	TCCCTTTCAAGCTGCGCATCAGTTCAGTTGTCCCTTCAGGGTATCTCAGAGTGGTGGAA
	G G T	V S Q S	P F R	S C	P F K L R H Q F S C P F R V S Q S G G T
740	2280	2240 2250 2260 2270 2280	2260	2250	2230 2240 2250 2260 2270 2280
	CTCGGCTC	FIGTCACTGCTACAGACAGCCACAAACTGGGCAAACCCTCGGCTC	GAGCCACAAA	ACAGACA	TTCTGGTGCTACTGCTACAGACAGCCACAAACTGGGCAAACCCTCGGCTC
	S A L	C H C Y R Q S H K L G K P S A L	S H K J	R Q	L V L L C H C Y R Q S H K L G K P S A L
720	$\begin{array}{c} 2220\\ \text{GTTGGCAG}\\ \text{L} & \text{A} & \text{V} \end{array}$	2210 GCTCTCTTCGT A L F V	2200 GGTGTTTTCA V F S	2190 TCGCTGG A G	2170 2180 2200 2210 2220 CCCCTAAGAGTGTGGTCCCGTGATCGCTGGGGGTGTTTTCAGCTCTTCGTGTTGGCAG PKSVGPVIAGC

ACACCCTGAATCCCTCGGAAGCCGTCCCACCCCCTCTCGGCCCCTCTCAGACTACC P D 2450 2 S ıт

•	-	_	4
C	Y		)
ì	7	<u> </u>	l

820	840	098	880	000
2470 2480 2500 2510 2520 TGCGCGTTGAATCGCCACCTGCACCATCTGAACAGGGCTGCTGGAGCT R V E S P P A P L S A H L N R A G S S	2530 2540 2550 2560 2570 2580 CCCCAGAAGCTGGGGCTCGAATAGAAAGGAAGGAGTCAGCCAGGGGCCTCCCCCAAGCC PEAGAR TERKESARR	2590 2600 2610 2620 2630 2640 GACCCATGCCCCTGCCTACTGTCCCAGGACTTCTCCAGGCCTCGACCAC P M P P A P N C L L S Q D F S R P R P P	2650 2660 2670 2680 2690 2700 CTCAGAAGGCACTCCCAGTCCGGTGCCAGGCCGGTCCCAGGTCAGGAG Q K A L P A N P V P G Q R T G P R S G G	2710 2720 2740 2750 2760 GCACCTCCCTGCTTCAGCCCCCCAGGCCTCCAGCAGTGC T S L L Q P P T S G P Q P P R P A V P

2820 CCCAAGA S K I	2880 AGGTCC
2810 ATAATTAGC7 I I S S	2870 ATGCCATGGA
2800 GGTTGGAGCA	2860 AAGACTCCGG/
2790 GATCACAGAG S Q R	2850 3TTCCGATGG
770 2780 2790 2800 2810 2820 AAAGCTACCCGAGTACCGATCACAGAGGGTTGGAGCAATAATTAGCTCCAAGA K L P E Y R S Q R V G A I I S S K I	830 2840 2850 2860 2870 2880 GTGTCGAGAAGTTTCTTGTTCCGATGGAAGACTCCGGATGCCATGGAAGGTCC
図3j 2770 2780 2800 2810 2820 CTGTTCCAAAGCTACCCAGTCACAGAGGGTTGGAGCAATAATTAGCTCCAAGA V P K L P E Y R S Q R V G A I I S S K I	2830 CTAGAAGTGTCGA
図 5	TC

**巡**4 a

18	38	58	78	86
		·		
CCCTCGCT $\overline{ATG}$ GGGCCGCGCCTCTCGCCCTTGCCTCTCTGCGACTAAGGTGGCTGC M G P R A L S P L A S L R L R W L L	130 140 150 160 170 180 TGGCGTGTGGGCCCAGTCCTCGAGGCCGGGCGACCAGACTTGGAACAGACTG A C G L L G P V L E A G R P D L E Q T V	190 200 210 220 240 TCCATCTTTATGAAATTATTACTCCTTGGAGATTAACTAGAGGAAAGAAGGAAAGAAGGAAAGAAA	250 260 370 280 290 300 CTCTGGGGCCCAGTTCACATCTCTTACGTCATCCAGGCCCAAGGAAAACAGCATA L G P S S Q Q I S Y V I Q A Q G K Q H I	310 320 340 350 360 TTATTCACTTGGAAAGAAACACACTTTTACCTAATGATTTTGTAGTTTACACCTACG I H L E R N T D L L P N D F V V Y T Y D

610 620 630 640 650 660 CTAACAGGGACACAGAGGAAGGCACACACAGGGGGGATGAGGAGGAGCATCCGAGTGTCA N R D T E K E G T Q G D E E E H P S V T

図4 P

118	138	158	178
370 380 390 400 410 420	430 440 450 460 470 480	490 540 510 520 530 540	550 570 580 500 600 TTGAGCACATATTTTACCCCATGGATGGCATCCACCAGGAGCCTCTGAGATGTGGAGTCT E H I F Y P M D G I H Q E P L R C G V S 17
ACAAGGAAGGCTCCCTACTCTGACCATCCCAACGTACAGAGCCATTGTCACTATCGAG	GCTATGTGGAGGGAGTGCAGATTCCGCGGTTGCTGTGAGCGCCTTTGGACTCAGAG	GCTTGCTGCATTTGGAGTTTTGGAATTGAACCTCTGCACACAGCTCACACA	
K E G S L L S D H P N V Q S H C H Y R G	Y V E G V Q N S A V S A C F G L R G 13	L L H L E N A S F G I E P L H N S S H F 15	
370	430	490	550
ACAAGGAAGGCTCCCT/	GCTATGTGGAGGGAGTG	GCTTGCTGCATTTGGAG	TTGAGCACATATTTTAC
K E G S L	Y V E G V	L L H L E	E H I F Y

<u>紧</u>4 c

218	238	258	278	298
670 680 690 700 710 720	730 740 750 760 770 780	790 810 820 840	850 860 870 880 890 900	910 920 930 940 950 960
CTCAGCTGCTGCAGAGAGAGCTGTTCTACCACAGACCCGCTATGTGGAGCTGTTCA	TTGTTGTAGACAAGGTACGACATGATGGGACGGAACCAGACTGCTGTGAGAAG	AGATGATTCGCTTAGCAAACTACCTGGATGGAATTG	TGCTGGTTGGACAGACAGACAGAATCCTATCAATATAATTGGAGGAGCTG	GAGATGTGCTGGCCAACTTTGTTCAGTGGCGGGAAAGGTTCCTTATAACTCGTCGAGAC
Q L L R R R A V L P Q T R Y V E L F I	V V D K E R Y D M M G R N Q T A V R E E	M I R L A N Y L D S M Y I M L N I R I V	L V G L E I W T D R N P I N I I G G A G	D V L G N F V Q W R E K F L I T R R R H

	ACGACAGTGCACAGTTTTGAAGAAAGGCTTTGGTGGAACTGCAGGAATGGCGTTTG D S A Q L V L K K G F G G T A G M A F V	1030 1040 1050 1060 1070 1080 TAGGAACAGTATGTTCAAGGAGCCACGCAGGTGGGATCAATGTGTTTGGGCAAATCACTG G T V C S R S H A G G I N V F G Q I T V	1090 1100 1110 1120 1130 1140 TGGAGACATTTGCATGATTTGGGGCCATAACCTTGGAATGAAT	GAGAGTGTTTCTGTGGAGCAAAGAGCTGTATCATGAATTCAGGAGCATCCG RECFC CARAGAGCTGTATCATCAGGAGCATCCG	1210 1220 1230 1240 1250 1260 GGTCCAGAAACTTTAGCAGTTGCAGTGCGGAGGACTTTGAGAAGGGACTTTGAATAAGG
	990 10 SAAGAAAGGCTTTGG K K G F G	1050 CCACGCAGGTGGGATC H A G G I	1110 IGCTCATGAATTGGGC A H E L G	1170 1180 GGAGCAAAGAGCTGTATCA G A K S C I M	1230 AGTGCGGAGGACTTTGAG
	980 SACAGTTGGTTTT Q L V L	) 1040 FATGTTCAAGGAGG C S R S	TGCATCCATTGT	) 1160 AGAGTGTTTCTG7 E C F C	) CTTTAGCAGTTG
<u>×</u> 4 d	970 ACGACAGTGC/ D S A	1030 TAGGAACAGT G T V	1090 TGGAGACATT E T F	1150 ATGATGGGAG D G R	1210 GGTCCAGAAA

မ
ゼ
図

418	438	458	478	498
1270 1280 1300 1310 1320	1330 1340 1350 1360 1370 1380	1390 1400 1410 1420 1430 1440	1450 1460 1470 1480 1490 1500	1510 1520 1530 1540 1550 1560
GAGGAAGCTGCCTAACATCCCGAAGCCTGACGAAGCCTACAGCGCGCCCTCCTGTG	GTAATAAGCTGGACCCTGGAGGAGGAGTGTGACTGCGGCACGCGAAGGAGTGTGAGG	TGGACCCATGCTGAAGCACTTGTAAGCTCATTTGCTGAGTGTGCATATG	GCGACTGTTGTAAAGATTGCCAGTTCCTTCCAGGGGCTCCATGTGCAGGGGAAGACCA	GTGAGTGTGTTCCTGCAGGTTCCTCTCAGTTCTGCCCGCCAGATGTCT
G S C L L N I P K P D E A Y S A P S C G	N K L V D P G E E C D C G T A K E C E V	D P C C E G S T C K L K S F A E C A Y G	D C C K D C Q F L P G G S M C R G K T S	E. C. D. V. P. E. Y. C. N. G. S. Q. F. C. P. P. D. V. F.

図4 f 1570 1580 1590 1600 1610 1620 TCATTCAGAATGGATATCCTTGCCAGAAGCCTACTGCTACAATGGCATGTGCC T Q N G Y P C Q N S K A Y C Y N G M C Q	1630 1640 1650 1660 1670 1680 AATATTATGACGCCAGTGTCATCTTTGGTTCAAAGGCTAAGGCTGCCCCAAGAG Y Y D A Q C Q V I F G S K A K A A P R D	1690 1700 1710 1720 1730 1740 ATTGCTTCATTGAAGTCAATTCTAAAGGTGACAGATTTGGCAACTGTGGTTTCTCCGGCA C F I E V N S K G D R F G N C G F S G S	1750 1760 1770 1780 1790 1800 GTGAGTACAAGAGTGTGCCACTGGGAACGCGTGTGGAAAGCTTCAATGCGAGAATG E Y K K C A T G N A L C G K L Q C E N V	1810 1820 1840 1850 1860 TACAGGACATGCCGGTGTTTGGAATAGTACCAGCTATCATTCAGACACCCCAGTCGAGGCA
CATG	CCCA	CTCC	CGAG E	TCGA R
1610 CAATGG N G	1670 XTAAGGCTGC K A A	30 GTTT F	1790 TCAATGCG/ Q C E	50 CCAG
16 TACA Y N	16 'AAGG K A	17 TGTG C G	17 CTTC L <b>Q</b>	18 ACAC T P
CTGC	GGCT A	CAAC	AAAG	TCAG
1600 CCTAC	1660 CAAAGGC K A	1720 TTGG	1780 GTGGAAAGC GKL	1840 TCAT I
XAAAG K A	GGTT G S	1720 1730 SAGATTTGGCAACTGTGGTT R F G N C G F	CTGT	1830 1840 1850 GTACCAGCTATCATTCAGACACCCA V P A I I Q T P S
1590 AACAGO N S	1650 ATCTTT I F	710 3TGAC D	1770 GGGAACGCGCTGT G N A L C	330 TACCA P
15 CAGA/ 2 N	16 3TCA1 / I	1710 AAAGGTGA K G D	17 36GAA	18 \TAG1
rtgcc c (	) FCAG(	) ITCTA S k	) ZACT( T (	) rGGAA G I
1580 ATCCT1 P (	1640 \GTGTC/ C Q	1700 ICAATTO N S	1760 3TGCCA( A T	1820  GTTTGG  F G
GAT/	0 72921	AAGT	AGTC	V (500)
570 GAATG N G	.630 \TGACG D A	690 CATTGA I E	1750 ACAAGA K K	810 CATGC( M P
f 15 'TCAG	16 TTAT Y	16 CTTC F	17 IGAGTAC E Y	18 CAGGAC Q D
図4 f TCATTC I Q	AATA Y	ATTG C	GTGA E	TACA Q

558

618	638	658	829	869
图4 g 1870 1880 1890 1900 1910 1920 CCAAATGCTGGGGTGTGGATTTCCAGCTTGGTTCCGACGTTCCAGGGATGGTGA K C W G V D F Q L G S D V P D P G M V N	1930 1940 1950 1960 1970 1980 ATGAAGGCACCAAATGTGATGCTGGCAAGATTTTCAGTGTGTAAATGCTT E G T K C D A G K I C R N F Q C V N A S	1990 2000 2010 2020 2030 2040 CTGTCCTGAATTATGAÇTGTGACATTCAGGGAAAATGTCATGGCCATGGGGTATGTAACA V L N Y D C D I Q G K C H G H G V C N S	2050 2060 2070 2080 2090 2100 GCAATAAGAATTGTCACTGTGAAGGATGCTGCCCCCCCCACCTGTGACCACCAAAGGAT N K N C H C E D G W A P P H C D T K G Y	2110 2120 2130 2140 2150 2160 ATGGAGGAGGGGGGGGGGGGGTATAATGCAAAGAGCACAGCACTGAGGGACG G S V D S G P T Y N A K S T A L R D G

4
4
X

718	738	758	778	798
CGCTTCTGGTCTTCTTCTTCTTAATCGTCCCCTTGTTGCGGCTGCCATTTTCCTCTTTA  L L V F F F L I V P L V A A A I F L F I	2230 2240 2250 2260 2270 2280	2290 2340 2340 2320 2330 2340	2350 2370 2380 2400	2410 2420 2430 2440 2450 2460
	TCAAGAGAGATGAACTACGGAAAACCTTCAGGAAGAAGAGAGATCACAAATGTCAGATGGCA	GAAATCAAGCAAACGTCTCTAGACCACCAGGGGG	GCCCAAATGTCTCCAGACCACCAGGGGGCCCCAG	GTGTCTCCAGACCAGGGGGGCCCAGGTGTCTCCAGACCACCTGGGCATGGAAACA
	K R D E L R K T F R K K R S Q M S D G R	N Q A N V S R Q P G D P S I S R P P G G	P N V S R P P G G P G V S R P P G G P G	V S R P P G G P G V S R P P G H G N R

4	
<b>逐</b>	

20 TC	Д,
2520 ACCTC	Д
170 2480 2490 2500 2510 2520 GTACCAACCTACGCCGCCAAGCCAGCCTGCGCAGTTCCCGTCAAGGCCACCTC	Д
0 'AAG	æ
2510 GTCA	S
၁၁၁	Д
GTT	۵ ۲
2500 CGCA(	ð
2 TGC	А
3CC	4
90 GCA(	O
2490 CAAGC	×
)     	Ч
0 0	A
2480 CTAC	Y
AAC	€—
ACC	Д
470 AGT	>
2.	٦.
2470 GATTCCCAG	<b></b>

2580	AC P
25	TGC A
	TCC P
0	CGC A
2570	0000 100000000000000000000000000000000
	P K I S S Q G N L I P A R P A P A P
(	GGC A
2560	77. P
2	GAT. I
£	
2550	AAA N
25	900 G
ر د	<b>.</b>
0 آبایا	S
2540	S
7 / 7	I
Z A A	×
2530	<u>Б</u>
CCACA	ð
CACC	Ъ

2590 2600 2610 2620 2630 CTCCTTTATATAGCTCCCTCACCTGATAGTAGTAGTAGAATCTTATTTT P L Y S S L T 845

⊠ 5 a				
GCCAGAGTAG	AG CGCGCGCG CACGCACACA CACGGGGAGG GGAGAAGTT	CACGCACACA	CACGGGGAGG	GGAGAAAGTT
TTTTTTGAA	AA AAAATGAAAG GCTAGACTCG CTGCTCAGCG ACCCGGGCGC	GCTAGACTCG	CTGCTCAGCG	ACCCGGGCGC
TGCGCGAGGG	GG GGTCGCGGCA GACTCAGGGC AGTAGGACTT CCCCCAGCTC	GACTCAGGGC	AGTAGGACTT	CCCCCAGCTC
9090009099	CG TGGGATGCTG CAGCGCTGGC CGCGGGGCCC CCGAAGCAGC	CAGCGCTGGC	2229999999	CCGAAGCAGC
		U II	リーディングフレーム	フレーム

	2225252525	TGGCGCCCG	TACGAAGTGG	ACAGAGCATC	AGCTGGAGAG	ATTGCCAATG	CTCTCTCACT	AAGGAGATGC	GGACTTATCA
	GCCGGCGACA ATGGCAGAGC GCCCGGCGCG GCGCGCCCC	GGGCCCTGC TGGCGCCCCG	GGGATGAGTT TGTGGGACCA GAGAGGAGCT TACGAAGTGG	CCTTCTGAGC AAGGACCCTG GGATCCCAGG ACAGAGCATC	ATCATCCAGA CGTGCTGACT GTGCAACTGC AGCTGGAGAG	ATCCTCAGCC TGGAAAGGAA TGAGGGACTC ATTGCCAATG	GACCCATTAT CTGCAAGATG GTACTGATGT CTCTCTCACT	CGGATCATTG TTACTACCAT GGACATGTGC AAGGAGATGC	GTCAGCCTCA GTACTTGCTC TGATCTCCGG GGACTTATCA
_	ATGGCAGAGC	CCCTCCTGCT GGCCCTGGCT	TGTGGGACCA	AAGGACCCTG	CGTGCTGACT	TGGAAAGGAA	CTGCAAGATG	TTACTACCAT	GTACTTGCTC
	GCCGGCGACA	CCCTCCTGCT	GGGATGAGTT	CCTTCTGAGC	ATCATCCAGA	ATCCTCAGCC	GACCCATTAT	CGGATCATTG	GTCAGCCTCA
	TGCACGCCAG	9090009000	TGCAGCCCGA	CCAGAGCCTC	CCAGCCAAGG	CCGAGACCTG	GCTTCACGGA	CGAAATCACA	TGCATCAGTG

Ą	
2	
M	

DESCRIPTION AND ATTENDANT

700	7 - 6	000	800	820	900	1000	1050	1100	1100	1150	1200	1250	1300	1350	1400	
CACCACTGAC	AAGGGTGTG			AGTTCACAC	GAGATCGCCA	CGTGCTGGTA	GCCAGGACCC	AAGCTTCTAC	TTATTTCLA	TIMITICCAA	CIGCAGAACA	GGIGCGCAG	CCATGACACA	GAGGCTGCAT	AGCAGCTGCA	
CGTAC AGCTTAGAGC CAATGAAAAA CACCACTGAC	CCAGC TGAGAGCATG ACGAACATCC	CCAACCTCAC CATGGAAGAT	AGAGAGAGAC		AAGTTAAGCA GCGATTAATA	ACATCCGGAT		GAGAAAGATA	TCAGTGGGT	AGCATGTGCA			I CGGGA I GAA			
AGCTTAGAGC	TGAGAGCATG	CCAACCTCAC		TATTGTGGCA			CATCGACAAA	TTCTAGACTG					GOCCACAACI	CAGAAIGGCC GCAGAGAAAG	TCCCATTCCC CATGGTGTTC	
TAAAACGTAC	TCGTCCCAGC	TGGGTCACAG CATAACAAGT	GAACCTCTCA AATGCGGGCA	ACCAAGTACG TAGAGCTGGT	GCAAGGAAAA GACCTGGAGA	ATCACGTTGA CAAGTTTTAC	TGTGGAATGA	ATTCACCAGG CTCCATGAGT	CCACGACAAT	TCGGCATGGC	GTTGTCATGG	TGACCTTGGC ACATGAGCTG		aciacacia	CAIGAACCCG ICCACGGGGT	
TGTTTGAAAA TAAAA	AGCTACAAAC TCGTC	TGGGTCACAG	GAACCTCTCA	ACCAAGTACG	GCAAGGAAAA	ATCACGTTGA	GGAGTGGAAG	ATTCACCAGG	CTCGAAAATC	GGAACCACCA	GTCTGGAGGA GTTGTC	TGACCTTGGC	CTGGAGAGAGAGGG ATTU		CAIGAACCCG	

区 5 C

GCAGGAAGGA CCTGG	CCTGGAGGCT		AGCCTGGAGA AGGGCATGGG	GATGTGCCTC	1450
$\mathcal{C}_{\mathcal{C}}$	CAGAGGTCAA	GCAGGCCTTT	GGGGCCGGA	AGTGTGGAAA	1500
TG	TGGCTATGTG GAAGAGGGAG	AAGAGTGTGA	CTGCGGAGAA	CCGGAGGAAT	1550
GCACGAATCG	CTGCTGTAAC	GCTACCACCT	GTACTCTGAA	GCCAGATGCT	1600
293	GTGTGCGCGC ACGGGCAGTG	CTGTGAAGAC	TGTCAGCTGA	AGCCTCCAGG	1650
AACTGCATGC	AGGGCTCCA	GCAACTCCTG	TGACCTCCCA	GAATTCTGCA	1700
79.I	CAGGGACTGC CCCTCACTGT	CCAGCCAATG	TGTACCTACA	TGATGGCCAC	1750
CCGTGTCAGG	GCGTGGATGG	TTACTGCTAC	AACGGCATCT	GCCAGACCCA	1800
TGAGCAGCAG	TGTGTCACGC	TGTGTCACGC TCTGGGGACC AGGTGCTAAA	AGGTGCTAAA	CCGGCTCCTG	1850
GCATCTGCTT	TGAGCGAGTC	AACTCTGCAG	GAGATCCTTA	TGGTAACTGT	1900
GGCAAAGACT	CCAAGAGCGC	CCAAGAGCGC CTTCGCCAAA	TGTGAGCTGA	GAGATGCCAA	1950
${\tt GTGTGGGAAA}$	ATCCAGTGTC	AAGGTGGTGC	AAGCCGACCT	GTCATTGGTA	2000
CCAATGCTGT	TTCCATAGAA	ACAAATATCC	CACAGCAGGA	AGGAGGTCGG	2050
$\mathfrak{ICC}$	ATTCTGTGCC GGGGGACCCA	TGTGTACTTG	GGTGATGACA	TGCCAGACCC	2100
3.T.G	CTTGCAGGAA	AGGGCTTGTG CTTGCAGGAA CAAAGTGTGC AGAAGGAAAA	AGAAGGAAAA	ATCTGCCTCA	2150

7
5
図

BRISDOCID- MIC 073110041 1 .

TGCCAGAACA GCTTCAGTCA CACCCAGGGCA TCCACGGGA	AGGACAGGCA CTCGCTGAAA TGCCAGAACA AGGACAGGCA CTCGCTGAAA TGCCAGAACA GACGCTCGAG CCGTCCCACA GCTTCAGTCA TCTCCACCAG ACCCCACGTG CACCCAGTGG CCAGTCCTG AGTCAGGCAG GCCCAGGGCA CAGAAGCCTC TGCCTGCTGA TCCACTGAGC TGCCTTGGTG AGGACCCCAG GGCAGCAGGA	AATACCCCCA AGGACAGGCA CTCGCTGAAA TGCCAGAACA CAGGCCCCTC GACGCTCGAG CCGTCCCACA GCTTCAGTCA TGCTCCTGCC TCTCCACCAG ACCCCACGTG CACCCAGTGG CCCTTGCCG CCAGTCCTGC AGTCAGGCAG GCCCAGGGCA CAGTCCTCT CAGAAGCCTC TGCCTGCTGA TCCACTGAGC GGCTCACTAG TGCCTTGGTG AGGACCCCAG GGCAGGGA	AATACCCCCA CAGGCCCCTC TGCTCCTGCC CCCCTGCCCG CAGTCCTCCT	ACCACATTTC TGGACATCAG CCTCAGCGAG CCCTGCCAGG TTCGAAACC
	CTCGCTGAAA	AGGACAGGCA	AATACCCCCA	ACCACATTTC
	GGACACCCAG	AAGGIG CACCCTTCCC GGACACCCAG	CTCACCACAC	CTTGGCCAGG
CACACATAAA AAAACCACCA	CACACATAAA	ACGTTGATGC GGCTGCTGTT	ACGTTGATGC	CAAAAGGAAG
TGGTGTATCT	GCTGGATTTG		GCATCCTGTG	ATCCTGGTGA
GACTGTAGGA	ACCAGGGCTT	TCCCATCAGG CAAGCAGATA ACCAGGGCTT	TCCCATCAGG	CAGACAGTGG
GGAGGAAGCA	TCTGTGACAA GTTTGGCTTT	TCTGTGACAA		AGCCCACTGG
GCCACTGTGA	ATGTAACAAC AGGAAGAATT	ATGTAACAAC		CAGTGCCACG
TCAGAATATC AGTGTCTTCG GCGTTCACAA GTGTGCCATG	GCGTTCACAA	AGTGTCTTCG		ATCGTCGATG

区 5

ACCTGGGCAC	ACCTGGGCAC CGCCCAGCCC		CCATCAGACC TGCCCCTAAG CATCAAGTAC	CATCAAGTAC	2900
CCAGACCTTC	CCAGACCTTC CCACAATGCC	TATATCAAGT	GAGAAGCCAG CCCAGACCGG	CCCAGACCGG	2950
TCCTCAACAG	TGAAGACAGA	AGTTTGCACT	ATCTTCAGCT	CCATTGGAGT	3000
TGTTGTTGTA	CCAACTTTCC	GAGTTTCTAA	AGTGTTTAAA	ACACCATICT	3050
CTCCAGACCC	CTCCAGACCC TGGAGCCACT	GCCATCGGTG	CTGTGCTGTG	GTGCTTTGTG	3100
TACTTGCTCA	TACTTGCTCA GGAACTTGTA	AGTTATTAAT	TTATGCAGAG	TGTCTATTAC	3150
TGCGCAGGGC	TGCGCAGGGC GCCGTAGCAG	GCATTTGTAC	CATCACAGGG	CTTTTCTACA	3200
GAAGGAAGGC	TCCTCGTGCT	TTTGTTTTTC	TGGAGGACTT	GAAATACCCT	3250
GCTTGATGGG	ACCTAAGATG	AGATGTTTAC	TTTCTATTCA	TITCTATICA AGGCCTTAIC	3300
GGAAAATAGC	TCCCCACCTT	CCCAAGGCTG	TTATGGTACC	AGACACAG	3350
CTCAGGACAC	CTCAGGACAC CCCAGGGAGA	ACCTGGCATG	GGTTTTCTTT	GTTTGCTTTC	3400
ATTTTATCTT	TTATATTTTG	GTATCCCTAT	CTTGGGTTGT	AGCCAGGGCC	3450
TTCAGGAAGG	TTCAGGAAGG TCTTGGGCCA	CTGCATGCTA	ATGGCCTTCA	GGTCCTGCAC	3500

•	÷	4	
L	2	)	
[	Y	1	

OUGGOOD 1110 - 677......

3550	3600	3650	3700	3750	3800	3850	3900	3950	7000	4050	4100	4150	4200	4250
GCTTTCTAGC CAGCAGCTTT	GTTATACCAG					CCCATTTAGA	ATGACCCTGT	ATTTCANAT	AGAAATCTCC	TCCATATGCT	CAGCCTGAGT	GTTACCTGTG	ACTCGGTCTT	AGGCAATCCG
GCTTTCTAGC	TTGGGGTGTG	CATCTGACCT	GCTGAGGTGC	CTGGCTGCCC	GGAACAGTGG	CCGTCTCCTG	CTGTAATACA	AACCATAACT	CTCTGGAGAT	TTAGGCAGAA	TCTCATGGCA	AGCACCCAAA	GCATAGAGAG	TAAGNCAGCA
CAACA AGTAGGATCT	AAAAGAAGGT	TCTGGGCAAA	AGCAAGGACG	GGGCTTCTCT	GTTTACATCG	CTGCAGACCT	GTCTTCTGGA	CTTTCTATGG	AGTCGATCAA	TTATTAAAAA	GGAATGCTCT	CATTGGACAA	AATTTCTTCA GCATAGAGAG	TATCAATGAC
TCAGACAACA	GGAGAGACC TGGGGTACTG	GGAATCCTAA	ACCTCTAGGA	GAGCTGGCAG	GCTAGCTGGC ATGGCATGTT	TGCCTGGGCA	TTACCACATT	ATAGAGGAGG	AACCAGATCT	AAGGCTCGAC	ATAACCACGT	TATTAGTAGC	TCCT	TACC
CCTGAAGCTC TCAGA	GGAGAGAACC	GATGGAGACT GGAAT	AGCCATGAGC ACCTC1	TCTGCTTTGA	GCTAGCTGGC	AGAAAGCCAC	GCTAAGCAAA	GTTCTGACAG	GTGAACTAGT	TTTTACTGC	TGCAAAAGCT	CTGGTATCCT	IGITCICTIC	CCICACAIIC IGAACA

∑ 5 8

1C 4300					3A 4550	1A 4600							T 4950	2000 2000
CCAGGNAAAC	CTTCAGAAGC	TTTTTTAAA			GTAACTAACA	AGATAAGGA	GGGAAGCATG		TTGCTGCCAC		TGTGGGCGTT	CTCCTCCTCC	CAGAAGAGCT	AGTTGGAGC
CAACCTCAGC	GGGGAGCTAC	ATGAAAGNTA	CCTGGCNTCC	TAAATGACAG	CTTTGGAAGG	GGGAAAATAC AGATAAGGAA	ATCCAGCATT	CACAGATGCA	AGAGACAATA	ATGTCATTCA	TATAGAGTTG	AGCGTATGAG	ACAAAGACAA	GTTTAGAGGA AGTTGGAGCC
CACGGNAAGG	GTATGTGACT	ACCCCATNGG	AGAGGGCTTT	CGACAGAAGG	ATCAAGGCTT	TGAAGCAGAA	CCAAAACTGT	AAATCCACGT	TTTGTGGCAC	TGTAACTGAT	TGTAAAGACT	CCTCAGCTGA	CTAGAAACAC	AGAGAGTGTG
CTGAGTTGCT	TGNTCTTTCA	GGTGGNCTCA	TGGTAATGCC	CTAGCTTTCA CGACAGAAGG	CTGCTTTAAG	GCCTGTGCCT	TTTCTAGAAT	CTGGGTAAAT	ACTCTTATGA CATGCCTCTT	ACAAAATTTC	CATCCACAAC	GTCTTGTGAG ACACACAAAG	GATGGGGAGG	TTGGTTTGGG GGGGGTGCAG
TTTCCGAATA CTGAGT	TTTTTCCTC	AAATTTTCAA GGTGGN	AAATAATTAA	GTAGGNTTGA	CCTCGTCTGA	TTAATGGCTG	TTTGGTTTGC	GTCTTCATGA	ACTCTTATGA	TGAGATGCAT	TAAGGCCAAA	GTCTTGTGAG	AGGTGGGAGT	TTGGTTTGGG

5700

5100

5150

5200

5250

5300

5350

5400

5450

5500

5550

5600

5650

**図**5 h

TTCCCTTACA GGACAGACAG ATGATCTTCT GCCATCTCCC CAGTGTCCAC TAAGGATGCC GATGGTGCCT TTACAGAGCC ATGCATTCAT AGCCAGCATG TCCCTTTCTC CATCCTTCAA TTGAGTCATG GGAGACCATC GCCAGGTGGC GTGGCTGGAC GTTATAGGTT ATGTGACCCC ACTTCACAGG CAAGTGGGAG GCGAACCTTG CAGGCATGCC CCTTAAAAGC ACGGGAAGAA ATCCTCCTGA CTGGTCTCTG TAGTTGTCAA TTAAAGCATA GTTTTCCCAG CACACAGAGA TTTGCAGTCC ATCTCATGCT CACATATGGG ATGACATCAC AGAAACCACA TTCAAAATAT GCATGCCGAG TTTGCGCTCT GGGACCCAAT AATCCTGAAA ATACAGTTCA TAAGATACAG TAACAAATT AGTTTCTCŢC CAAGAGCCTT TCCTGAGTCT CTGCTTGCTT CTAAAGTTGG CTGAGGAATA GACAGAGGGT ATGACAAGAC GTCAAAACTA **TATACATACT AGAGGTATGA** TGTTCCTGCA GCAGTGCTGG TCCAGTCGGT GAACATATTT GGAATTCCTC ACTTCAATTT TGGTCTCAGA CCTACAATAG ATTAAATTCT AGTTTTCCAT TTCCAGGTTA TACCAGCTGT TTCTGAATAA TGTTACTAAA **ITTAGCAGTA** AGGGTTCTTT CCTGAGAAAG GCAACAATGC GTCCTCTTT GTGTGAGTGT CAAGCAACAA

•	_	
L	Ω	
3	X	

Bushes we convert

A 5800	T 5850	T 5900	T 5950	A 6000	C 6050	6 6100	C 6150	N 6200	A 6250	C 6300	C 6350	C 6400	C 6450	T 6500
TCAGGCTGAA	TCAATGNACT	AGGAGCCTGT	AAGAAGGCCT	CTGAGCCAGA	GCGCCCAGCC	TTCCCTTCTG	CTNAGTTTTC	CACCAATACN	AAGTAGAAGA	ATACTGGAAC	CGGCAGTGGC	TGCCTTCCTC	ACAAAACCTC	TCAAGCCAAT
TTAGGAACTC	TACAAAGCCA	GAATGTTCTC	CTGGGCCAAC	ACTGAGCACT	GGGCAGTAGG	TGTGTTTTAA	AGACCTCCCT	GACTAAGAAA	ACACTATGAC	CTTTCCACTC	TTACACAACT	GGTACCGATT	CAGACCCATG	TGTTACTACT
CTTAACTTTA	AACAAATCAA	TGATCTGTGT	GAGGCTGGAG	GCAGATGTTT	GACGATNGCT	AGGCCCGCTT	ACTGTCCTAT	AAATGCCCCA	TGGTTTTTAA	TTTTTCTTTT	CCTAGTTCCT	GAAAAACACA	TTACTCTGAC	TCTCTACCTT
AGGAGACATT TTTATGCCTT	GCTAGGGGTC ATTGTCCCCC	CTCGAAGAAC TGCCAAACCC	GTGCTANAAA	CTGCCTCTCA	CAACCAGGAG	CTTTCCTCTG	ANCAGNGGAC	AGCCATACAC	CCCCAAGAAC	GAGGCCATTT	TCTCTACACT	CAAGGACACA	CACAAGTGCC	GAGAGCCAAC
AGGAGACATT	GCTAGGGGTC	CTCGAAGAAC	GATCCCCATG GTGCTA	AAGAGTCCTC	AGCACCCCGA	ACTTGCAGCT	TCAGGCCCCA	AGACGGCCTA	TCCCAGCAGT	GGGTGTCACA	CTAGGTCCTC	TCCATTACAC	TCCTGCCAAT CACAAG	TGTCATCCAA GAGAGC

<u>図</u>

6916				CCATT	ATAAATACTT
069	ACATATAAAC	TGGAGTACAG	ATTICC ATGCCTTITG TGGAGTACAG ACATATAAAC	TACCATTTCC	CATATGAATG
685(	CATGGGCACA	TTGCAGGAGA	GGGGGACTCC	CACTGGGCAG	TGCTCAGATC
089	GTGAGCCCCA	TCTGGGAGCT	TAAGTCATGC	TCTGATGAGT TAAGTCATGC TCTGGGAGCT	GCTTTGAAAC
675(	GGCACCTATT	ATTTCCCAAT	TGCAACCTGA	TAATTACAAA ATGCTTTTGA TGCAACCTGA ATTTCCCAAT	TAATTACAAA
049	AAGTTAGCAC	ATAGAAAATC	GAAGATGGCC	ATTACAAGGT GAAGATGGCC ATAGAAAATC AAGTTAGCAC	CCTTGTTCTA
999	CCTCCCACCG	CAGTGACCTC	ACAGCA TATCAACCCA CAGTGACCTC	TCCCACAGCA	CTTGAATCTA
099	ACACACAC	GNACACACAC	ATAGCACAGA GCAACCTCCA GNACACACAC ACACACACAC	ATAGCACAGA	CACCAGGACC
655(	GTCCAACCTT	AAACAGTATA	CTAACCTTCA AGGGTCACCT AAACAGTATA GTCCAACCTT	CTAACCTTCA	GTGGTAACTG

720

09

180

240

300

a GGGGC AGGCAATGGC AGGGGATCT

GGCCGGGGC AGGCAATGCC AGGGGATGTG TGATTGCGGA CAGTGAGAGG GCCGTTGCTA リーディングフレーム

TTATAGTGAG AAGTAACCTC AGCTACATCA TCGAGCCCGT CCCTAACAGC GACAGCCAAC TCATGCCCGG GCGCGGGC GTCGCCCGGT TCTGCTTGCT GGCTCTCGCT CTGCAGCTAC ATTGGCCGCT GGCGGCGTGC GAGCCGGGAT GGACCACAAG AGGAAGCCAA GAAGGTAGCC CTCCGCTACA GCATGAACTC ATAATACCTC AGTGGCGGAC TTCAGAAAGC CCTGGGAGAG GAAAGCATCC ACTCAGAGCA GAGCTCAGGG TCATGGCTGA AGGGCGAGAG CTGATCCTAG ACCTGGAGAA GAACGAGCAC CTTTTTGCTC CAGCCTACAC AGAAACCTGC TACACTGCAA GTGGCAATCC TCAAACCAGC ACGCTGAAGT CTGAGGATCA CTGCTTTTAC CACGGGACTG CCGGGCCCAC CTCGAAGGAC TGGGCCCTTC AGTTTACACA TCAGACCAAA AAGCAACCTC GCAGAATGAA ACGGGAAGAT CTACACTCTA TGAAGTACGT GGAGCTTTAC CTGGTGGCTG ATTATGCAGA GTTTCAGAAG AATCGACATG ACCAGGATGC CACCAAACGC AAGCTCATGG TGAGGGACGT GGATGAGTCC AGTGTCACGC TCAGCACCTG CCGGGGAATT AGAGGACTGA ACCGTATTTA CAGATCCGAA CATCTCACGC TGCCCCGGG GAACTGTGGG TTCGAGCACT

420

360

480

540

009

Д	
9	
X	

ľČĠ			) [ V	ひん	) V	יייט	) A C	TJ	7 L	TC	) L	) F	ر را	TC
GCACTTG	TACTCTA	GACAATC	CTCATGG	GCCATTG	GATTCTG	ACCEGE	CTGCAGAC	CGCCGCAC	CACCAATC	TGTGCCA	CAGCACCT	ACCAACTA	GGCATGTG	GCCCTCGA
CATCCGAATT	AGAGAATCCC	GAAGAGCCAT	TTCCAAGGCA CCACCATTGG CCTGGCCCC CTCATGGCCA	CTCCGAGAAT	CATGAGCCAT	GTGCA GCCGATGGCG GCTGCATCAT GGCCGCCGCC ACCGGCACC	GGACAGGTAT	GCTGTATGGA	TGGAGAAGAG	AGGGCAGAG	CCAGTGTCGG	CCACTGCCCC	CTGCTACAAC	AGCCCGGCCT
GCTCCCTGAA	GTGAAGTTTC	TGCTTGCTCA	CCACCATTGG	GCATGGACCA	ACAACTTTGG	GCTGCATCAT	GGAAGGAGCT	ACACTAGGAC	AATGTGACTG	CTCTGAAGGA	CTCCTGGAAC	GCAAGTCTCC	GCCAGGCCTA	GGGGACCTGG
AAGTTTACC	GGGGATAAGT	AGGCGCAAGC	TTCCAAGGCA	GGAGGAGTTA	GAGATTGGCC	GCCGATGGCG	TGGTGTAACA	AACATGCCGG	GACGGTGAAG	TCCAACTGCA	AAGCTGGTGG	TTCTGCACCG	TGCGAGGGTG	CAGCAGCTGT
AGATTGCCAA CTATGTTGAT AAGTTTTACC GCTCCCTGAA CATCCGAATT GCACTTGTCG	GCTTGGAGGT GTGGACGCAT GGGGATAAGT GTGAAGTTTC AGAGAATCCC TACTCTACCC	TCTGGTCCTT TCTTAGTTGG AGGCGCAAGC TGCTTGCTCA GAAGAGCCAT GACAATGCTC	AGCTAATCAC GGGCAGGTCC	TGTGCTCCGT GTACCAGTCT GGAGGAGTTA GCATGGACCA CTCCGAGAAT GCCATTGGTG	TAGCCTCCAC TGTGGCCCAT GAGATTGGCC ACAACTTTGG CATGAGCCAT GATTCTGCAC	TGCCAGTGCA	CTTTCCCCAA AGTGTTCAGT TGGTGTAACA GGAAGGAGCT GGACAGGTAT CTGCAGAFAG	GAGGAGGGAT GTGTCTCTCC AACATGCCGG ACACTAGGAC GCTGTATGGA GGCCGAGGT	GTGGCAACGG GTACCTGGAA GACGGTGAAG AATGTGACTG TGGAGAAGAG GAGGAATGTA	AGAACCCTTG CTGCAATGCC TCCAACTGCA CTCTGAAGGA AGGGGCAGAG TGTGCCAATG	GTTCCTGCTG CCACCAGTGC AAGCTGGTGG CTCCTGGAAC CCAGTGTCGG GAGCAGGTTTC	GGCAATGTGA CCTCCCCGAG TTCTGCACCG GCAAGTCTCC CCACTGCCCC ACCAACTATT	ATCAGATGGA TGGCACCCCC TGCGAGGGTG GCCAGGCCTA CTGCTACAAC GGCATGTGC	TCACTTACCA GGAACAGTGC CAGCAGCTGT GGGGACCTGG AGCCCGGCCT GCCCTCGATC
AGATTGCCAA	GCTTGGAGGT	TCTGGTCCTT	AGCTAATCAC	TGTGCTCCGT	TAGCCTCCAC	ACTGCTGTTC TGCCA	CTTTCCCCAA	GAGGAGGGAT	GTGGCAACGG	AGAACCCTTG	GTTCCTGCTG	GGCAATGTGA	ATCAGATGGA	TCACTTACCA
						4 3	/ 9	0						

逐 c

TTTGCTTTGA GAGGGTGAAT GCTGCTGGTG ACACCTATGG AAACTGTGGC AAGGGCTTGA	ATGGCCAATA CAGGAAGTGC AGTCCCAGGG ATGCCAAGTG TGGSAAGATT CAGTGCCAGA	GCACCCAGGC CCGGCCCCTG GAATCCAACG CAGTATCTAT TGACACCACC ATCACCTTGA	ACGGGAGGCG GATCCACTGT CGGGCACCC ACGTCTACCG GGGTCCTGAG GAGGAAG	GGGAAGGTGA CATGCTGGAC CCAGGGCTGG TGATGACTGG AACCAAGTGT GGCCACAACC	GGCTGTGGGA	TTCCCTGCT	GGTCCTTTGC	GTGTTGGCAG		AGTGGTGGAA	AAGGTGACTA	CCAGACTACC	GCTGGGAGCT	CCCCCAAGCC
AAACTGTGGC	TGGSAAGATT	TGACACCACC	GGGTCCTGAG	AACCAAGTGT	TGAGACGGAA	CTGTCATTGC	CGTCGACAGT	AGCTCTCTTC	ACTGGGCAAA	GCAT CAGTICAGIT GICCCTICAG GGTATCICAG AGIGGIGAA	TTCAAGTTGC AGACCCCCCA GGGCAAGCGA AAGGTGACTA	CCGGCCCCT	GAACAGGGCT	CAGGAGGCCT
ACACCTATGG	ATGCCAAGTG	CAGTATCTAT	ACGTCTACCG	TGATGACTGG	CCTCCTTCTT	ACAACAAGAA	ATGGTGGCAG	GGGTGTTTTC	AGAGCCACAA	GTCCCTTCAG	AGACCCCCCA	ACCCCCCTCT	CGGCACATCT	AGGAGTCAGC
GCTGCTGGTG	AGTCCCAGGG	GAATCCAACG	CGGGGCACCC	CCAGGGCTGG	TGCAGGAACA	GTCTGCAACA	ACCCCGGGAG	GTGATCGCTG	TGCTACAGAC	CAGTTCAGTT	TTCAAGTTGC	AAGCCGTCCC	GCACCATTGT	ATAGAAAGAA
GAGGGTGAAT	CAGGAAGTGC	CCGGCCCCTG	GATCCACTGT	CATGCTGGAC	ATATTIGCTI CGAGGGCCAG TGCAGGAACA CCTCCTTCTT TGAGACGGAA GGCTGTGGGA	AAAAGTGCAA TGGCCACGGG GTCTGCAACA ACAACAAGAA CTGTCATTGC TTCCCTGGCT	GGTCTCCACC TTTCTGTAAC ACCCCGGGAG ATGGTGGCAG CGTCGACAGT GGTCCTTTGC	CCCCTAAGAG TGTGGGTCCC GTGATCGCTG GGGTGTTTTC AGCTCTCTTC GTGTTGGCAG	TTCTGGTGCT ACTGTGTCAC TGCTACAGAC AGAGCCACAA ACTGGGCAAA CCCTCGGCTC	GCTGCGGCAT	CTGGCCATGC CAACCCAACT	ACACCCCTGA ATCCCTCGG AAGCCGTCCC ACCCCCCTCT CCGGCCCCCT	TGCGCGTTGA ATCGCCACCT GCACCATTGT CGGCACATCT GAACAGGGCT	CCCCAGAAGC TGGGGCTCGA ATAGAAAGAA AGGAGTCAGC CAGGAGGCCT CCCCCAAGCC
TTTGCTTTGA	ATGGCCAATA	GCACCCAGGC	ACGGGAGGCG	GGGAAGGTGA	ATATTTGCTT	AAAAGTGCAA	GGTCTCCACC	CCCCTAAGAG	TTCTGGTGCT	TCCCTTTCAA GCTGCG	CTGGCCATGC	ACACCCCTGA	TGCGCGTTGA	CCCCAGAAGC

2760

2640

p	
တ	
X	

GACCCATGCC CCCTGCACCT AACTGCCTAC TGTCCCAGGA CTTCTCCAGG CCTCGACCAC CTCAGAAGGC ACTCCCAGCC AATCCGGTGC CAGGCCAAAG GACCGGTCCC AGGTCAGGAG GCACCTCCCT GCTTCAGCCC CCTACTTCTG GTCCTCAGCC CCCCAGGCCT CCAGCAGTGC

## リーディングフレーム

CTGTTCCAAA GCTACCCGAG TACCGATCAC AGAGGGTTGG AGCAATAATT AGCTCCAAGA

___

2940 3000 3060 3120 TCTAGAAGTG TCGAGAAGTT TCTTGTTCCG ATGGAAGACT CCGGATGCCA TGGAAGGTCC AGAAGAAGA CGCCTICTCA CCCATCCTGA AGCTTTGGCA GCCTTCTGGA ACGTCCCTCA AGCACGGCGA GGAGGGTGGG AAAGGTTCTC CCTCAGCCCA CTAGCCAAGA GCTACCAGCG TCCCCAGAAT CTCCCTTCTT ACCCGAGTGC CTCCTGCTTC CTCCGAGGCC CAGGGGGACT

4 5 / 9 0

မ	
9	
X	

GGTACCCATC	TCTGGGATCC	AAGGTGCCTG	TTCTTCACAT	GTAAGTAGCA	TGCCAAAGGT	CATCCATTCA	CCTATGGTGC	GACCTACAAA	AAGAGGGTTG	GTGTGTGT	GACATGCAGG	AGGGACCTCC	CTGTACTGAG	ACCAGCCCCG
ATGCTCAGGG AAGGCTTGAG CTGGGGTCCT CCTCTGCGGA GCTTGGAGAA GGTACCCATC	TTGGCCTCCT TCTGGGATCC		TGTAATAAGC CATGCTCCCC TCCCCTGCCT					TGGCA GTCCTGACTT GCTGATGACC ATATGCTGGT GACCTACAAA	ATGGG GTCGCCACTG GACTTTCTGC ACTGGTTCTC AAGAGCGTTG	GTGTGTGT GTGTGTGT GTGTGTGT	CAGAGGCAAT GAGAGACA GACATGCAGG	TTACGGCCTC AAGCAGTATA AGGGACCTCC	TTCCCCAGGA CMAGCCACAG CTGTACTGAG	GGGGGCTGAC ATGTTTGGCA TCCTGGCTAT AGTATTGTAT ACACAGGGCC ACCAGCCCCG
CCTCTGCGGA	CTGGTCCTAT GCTGGCAGGA ACACACGCGA GTGTCACTGA	CTACCCCAAG	CATGCTCCCC	GACTCAGACA	GTGTCCCCTC	CATCCATCCA	TCCTTTTCCA	GCTGATGACC	GACTTTCTGC	GTGTGTGTGT				AGTATTGTAT
CTGGGGTCCT	ACACGCGA	TGCTACATCC	TGTAATAAGC	GGGTCACTCT	TGGTCAACCT	CCCATCCATC	TGTCACCTTC	GTCCTGACTT	GTCGCCACTG	TTGTGTGTGT	GTGAAAGAGA	TACTTGTGTT	CTAAGTAAGG	TCCTGGCTAT
AAGGCTTGAG	GCTGGCAGGA	AGGAAGCTAC	TYCCTGGCTC TCTGGCTGCA	ATATTTACAC	TAGACAGCAG GGGGGTGGGG TGGTCAACCT	ATTAGAATC	GTGTTCCATG	AACTATGGCA	GCCATATGGG	GCGTGTATGT	GTGTGTGT GTGTGTGT GTGAAGAGA	GCTCTGCATG	TCCTTATTTC TGACTCATAT CTAAGTAAGG	ATGTTTGGCA
ATGCTCAGGG	CTGGTCCTAT	CAGGCTGCTG	TYCCTGGCTC	TCCCACTCCC	TAGACAGCAG	CACTAAGGAC ATTTA	TCCATCCCCA	TTTGGTGGTG AACTA	TCGGGATCCT GCCAT	AGCCGAGTGG GCGTG	GTGTGTGTGT	CAGGCCGACA GCTCTGCATG	TCCTTATTTC	GGGGCTGAC
						4 6	/ 9	0						

4860

4080

4140

4260

4200

4320

4440

4380

4560

4620

4680

4740

4800

4500

•	
Ç	0
2	$\overline{\mathbf{X}}$

CCCTAGTGGT CAGCTCTGAG GGGGGACTGG TGACTCTGAA CAGATCGATG TCAACAGCCA TGCTGAGAAG CCCAGAGTAA GCTTTGGGAT TGTAGACATG TGGGAGCTAT GACAGACGTG TTATCACGCA GAGGCCTCAG TCCATGTCCT ATATCAGTTT CTCTTTTGTG TGCTTTACCA ATCACTICTG GTGGGAATGG GATGGGGTGG ACCTTCTCTT GCTTGGTGCT CCGCTATTTG GAACAGTTCT AGGTGCTAAT GGCACTGCAG AGGGCTCTCT AGGGGCCTCC CCGCCCCAAC AGCAAGCAGT TGTTAGCTCT TGGAACCCTC CAGAGGAAGA GGCAAGCGTT TGACTTCCCC TTTACCACCT GAGGCCTCCT GAAAGATCTC AGGAAAGCAC CTTTCTCCTT TTCAGGGTGA CCGTGCTCTT AGTGGCCGGT GACTACAGGC CACCCCGATT CTCACCACAA AGTTAGAAAC CCTCCACTTT TGTGANGTGT CACACAACTT CCCTTCCCAT TGGTGAACCA GATCTGGGCA GGGTTCCCCA AACTCTATTC AACCAGAGTT NCTCATCGGG TCTCTCCTGG TTGCTGCCCC GAGGTGATCG TCATGGAAAA TACACATTIG CIGGGCCIGG CCICIGAGAG GCCAICTICC ACCCCCAGAA CTGTCCCTTG AACCATATCA GAAAAGACC CATTTCCTTG CTCTTTGGTA TTCATTACTG TGCTACCACC TCCATCCCAT GACATTATTC TGTTTTNTTA NTCTTGGGAG ANATGTCGGC AGCTGCTCTA TTTGTCTCCA GAGGCCAGCT AGGCTGTCAC AGGCAGGAAT TATATCTCTT GCCTGGGGTA CACACTCTCT CACTCAAGGC TTTTTCTTC AAGAGGACGG

逐 6 g

CAAC	25251	CCAG	GACT	GGTG	CACA	TCGT	TGCG	ATAT	GGAG	TCAG	TTGC	TCTA	CTTC
CAGTTG	ATGAAA	CTGTTC		TAGGCA	CAGGGC	CATGTA	ACAGAC		TTTTT	TAAACC	AACTCC	CCCCTC	ער ער ער ע
GGAGGAGGGG	CCAAGACTGA			AGTCCCAGCA		GACAGGTTCT	ACTCCTGAGT	ACAGCCCTTC	GCTGTAAATG	TCCTGACCTG	TCCAAGTTAC	AAGAGAATAC	CCCCTGCTCC AAGACACTGT AGATGCTAGT GTCGGAGTGT TCTCTGTAAC GCGACACTTC
TACCACATGA	GTGAGGGCAT	AAGAACTGTT	AATAGGTCAA	ATACATCTTT	AAAGGAAGTT	CAAAAATGAA	TGATCTTTGA	GGGTTCAAAC	TCCAGCCTAG	GCAAAGCCAT	GCTAATACCG	TTCCACCAGG	GTCGGAGTGT
GAAAGAATAT	CACCAAGTCT	GAGCAAGAAC	AAGATGTTAG	GTTTAGTGGT	CCTGGTCTAA	TCTAGAAAAA	TTACCAAGGA	ATGTGGCCCT	AGCTACATCC	CCTTAGAACT	TATAGCCTGG	CCTTGGTGAC	AGATGCTAGT
CTTAGGAGAT	GGTCTTCCTA	CATACAATGT	GAGACGTCAG	TTGTAGCTGC	TTGAAGCTAG	AAAAAACCC	TTAAGTCACT		TCTACAACTG	TGCCTGCCAA	CTATAAGAGG	TTCCTTCTAG	AAGACACTGT
AGGATTGTCA	AGAACACTTT	TTTTCTTATG	CCACTGAAGA	GAGGGAAGGT	AATCTCGAGT	CAGAGGAAAA	AGATTGGCCT	GGTGTGTGCT	AGCCAAACAC	CTAGATTAGC	CTCTCCATCT	TTGCTTTCTG	CCCCTGCTCC
	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGGG CAGTTGCAAC	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGGG CAGTTGCAACAGAAGCACCAACATTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGGG CAGTTGCAACACACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAAA AAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGTTCT CATGTATCGT	AGGATTGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGAGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAAA AAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGTTCT CATGTATCGT AGATTGGCCT TTAAGTCACT TTACCAAGGA TGATCTTTGA ACTCCTGAGT ACAGACTGCG	AGGATTGTCA CTTAGGAGAT GAAGAATAT TACCACATGA GGAGGGGG CAGTTGCCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAA AAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGTTCT CATGTATCGT AGATTGGCCT TTAAGTCACT TTACCAAGGA TGATCTTTGA ACTCCTGAGT ACAGACTGCG GGTGTGCT ACCATGCTTT ATGTGGCCCT GGGTTCAAAC ACAGCCCTTC ATATGTATAT	AGGATGTCA CTTAGGAGAT GAAAGATAT TACCACATGA GGAGGAGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGTTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAAA AAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGTTCT CATGTATCGT AGATTGGCCT TTAAGTCACT TTACCAAGGA TGATCTTTGA ACTCCTGAGT ACAGACTGCG GGTGTGGCT ATGTGGCCCT GGGTTCAAAC CAAGCCCTTC ATATGTATAT AGCCAAACAC TCTACAACTG AGCTACATCC TCCAGCCTAG GTTTTTTGGAG	AGACACTT GGTCTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC AGAACACTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGGTGGACT GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAAA AAAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGTTCT CATGTATCGT AGATTGGCCT TTAAGTCACT TTACCAAGGA TGATCTTTGA ACTCCTGAGT ACAGACTGCG GGTGTGGCT ACCATGCTTT ATGTGGCCCT GGGTTCAAACCTTC ATATGTATAT AGCCAAACAC TCTACAACTC TCCAGGCTTC ATATGTATAT AGCCAAACAC TCTACAACTC TCCAGCCTTC TAAACCTCAG CTAGATTAGC TGCCTGCCAA CCTTAGAACT TCCTGACTTG TAAACCTCAG	AGGATGTCA CTTAGGAGAT GAAAGAATAT TACCACATGA GGAGGGG CAGTTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGA ATGAAAGCGC TTTTCTTATG CATACAATGT GAGCAAGAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGTTCCCAG GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGCTAG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGCCACA CAGAGGAAAA AAAAAAACCC TCTAGAAAAA CAAAGAAGTT CCAAGACTGC CAGGCCACA CAGAGGAAAA AAAAAAACCC TCTAGAAAAA CAAAAAGAGA TGATCTTTGA ACTCCTGAGT ACAGACTGCG GGTGTGTGCT ACACACTGC TTACCAAGGA TGATCTTTGA ACTCCTGAGT AGCCAAACAC TCTACAACTG AGCTACATCC TCCAGCCTTC ATATGTATAT AGCCAAACAC TCTACAACTG AGCTACATCC TCCAGCCTTC TAAACCTCAG CTAGATTAGC TCCCAGCTACATC ACAGCCCTTC AAAACCTCAG CTACAATTAGC TCCTAGAAACT ACAGCCTGAG CTCTACAGTTAC AAAACCTCAG CTCTCCATCT CTATAAGAGG TATAGCCTG GCTAATACC ACACCCTTCC	AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGCAAC AGAACACTTT GGTCTTCCTA CACCAAGTCT GTGAGGGCAT CCAAGACTGC TTTTCTTATG CATACAATGT GAGCAAGAAC AAGAACTGTT TAAGGCACCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTTA AACCAAGGCT CTGTTCCCAG CCACTGAAGA GAGACGTCAG AAGATGTTAG AATAGGTCAA AACCAAGGCT CTGTTCCCAG GAGGGAAGGT TTGTAGCTGC GTTTAGTGGT ATACATCTTT AGTCCCAGCA TAGGCAGGTG AATCTCGAGT TTGAAGACTG CCTGGTCTAA AAAGGAAGTT CCAAGACTGC CAGGGCCACA CAGAGGAAAA AAAAAAAACCC TCTAGAAAAA CAAAAATGAA GACAGGCTTCT CATGTATTTTGGAG GGTGTGTGCT ACCATGCTTT ATGTGGCCCT GGGTTCAAAC ACAGCCCTTC ATATGTATAT AGCCAAACAC TCTACAACTG AGCTACATCC TCCAGCCTTC ATATGTATAT AGCCAAACAC TCTACAACTG GCTACATCC TCCAGCCTTC ATATGTATAT AGCCAAACAC TCTACAACTG GCTACATTC ACAGCCCTTC CTAGATTAGC TGCCTGCCAA CCTAGAACT CCTGACCTGG CTAGATTAGC TGCTGCCAA GCTACATACC TCCAGACTTAC ATATGTATAT AGCCCAACCTC CTATAAGCCTGG GCTAATACC TCCTGACCTTGC TTGCTTTCTG TTCCTTCTAG ACTTGGTGAC TCCAGGTTAC ACTCCTTTCTA

4	
9	
X	

LUSSELUUU	TTGGAGGCT	CACAAGCCA	GGTTCTGTA	CTGTATATG	TGTTCACAG	ACATCTATE	TTTTTCTC	
CTTCTGTTGC AATAGCCCCC CTGCAACACT GCAATAATCC TTCAGTGTCT CCCTGGGCT	ATTTGA CAAAGTGGAG GTGAGACTTG TATTCTTAAA ATTGGAGGCT	ATGCAT GTAATGAACA GACCCGAAGG AATCCTCCAC ACACAAGCCA	GGGAACACCA ACTGGAAAGG TACCCCGTCC CAGGGAAGCC TGCTAGGGAG AGGTTCTGTA	GAATCCGAGC CTAGCACCCC AAAGTCATGC ACCCAGTATC CTCTTGTATG ACTGTATATG	TCTATGTCTG GGATCCAGGG CAAATGTGAA TTTCCTTTTG ATTTGGGAGA TTGTTCACAG	GAAGTAGTCC TCCCCTCTCA TGTCCTCCTA TTGATTGTTT ACATATTTG TACATCTATC	CAAAATACTT GAATGGGCCA TGGTGCCTTG TTTTTTGTTG TTGTTGTTAT TTTTTTTCC	TIGITIGIAT TIAATTAAAA CAAATIGICA TGAGGAAAAA AAAAAAAA AA
GCAATAATCC	GTGAGACTTG	GACCCGAAGG	CAGGGAAGCC	ACCCAGTATC	TTTCCTTTTG	TTGATTGTTT	TTTTTTGTTG	TGAGGAAAA
CTGCAACACT	CAAAGTGGAG	GTAATGAACA	TACCCCGTCC	AAAGTCATGC	CAAATGTGAA	TGTCCTCCTA	TGGTGCCTTG	CAAATTGTCA
AATAGCCCCC	CCTTATTTGA	TCAAATGCAT	ACTGGAAAGG	CTAGCACCCC	GGATCCAGGG	TCCCCTCTCA	GAATGGGCCA	TTAATTAAAA
CTTCTGTTGC	CAATTCACTT CCTT	AGTTATTTTG TCAA	GGGAACACCA	GAATCCGAGC	TCTATGTCTG	GAAGTAGTCC	CAAAATACTT	TTGTTTGTAT
						4 9	/ 9	0

780

720

09

180

240

300

360

420

480

540

009

099

<u>×</u>7 а

GTTGCAAGGA TGACCGAAGN NCGGAGGCGG CGGCCGCGCG TTGAGCGGAA CCTGCCGAAG

CCCTCGCTAT GGGGCCGCGC GCGCTCTCGC CCCTTGCCTC TCTGCGACTA AGGTGGCTGC TGGCGTGTGG CTTGCTGGGC CCAGTCCTCG AGGCCGGGCG ACCAGACTTG GAACAGACTG TTCTTATGAA ATTATTACTC CTTGGAGATT AACTAGAGAA AGAAGGGAAG CTCTGGGGCC CAGTTCACAG CAGATCTCTT ACGTCATCCA GGCCCAAGGA AAACAGCATA TTGTTGTAGA CAAGGAAAGG TACGACATGA TGGGACGGAA CCAGACTGCT GTGAGAGAAG FTATTCACTT GGAAAGAAC ACAGACCTTT TACCTAATGA TTTTGTAGTT TACACCTACG ACAAGGAAGG CTCCCTACTC TCTGACCATC CCAACGTACA GAGCCATTGT CACTATCGAG GCTATGTGGA GGGAGTGCAG AATTCCGCGG TTGCTGTGAG CGCCTGCTTT GGACTCAGAG CTCAGCTGCT GCGCAGAAGA AGAGCTGTTC TACCACAGAC CCGCTATGTG GAGCTGTTCA CCGAGTGTCA GCTTGCTGCA TTTGGAGAAT GCCAGTTTTG GAATTGAACC TCTGCACAAC AGCTCACACT TTGAGCACAT ATTTTACCCC ATGGATGGCA TCCACCAGGA GCCTCTGAGA TGTGGAGTCT CTAACAGGGA CACAGAGAAG GAAGGCACAC AGGGGGATGA GGAGGAGCAT リーディングフレーム TCCATCTTTC

図7.1

1680	GCCCCAAGAG	GGCTAAGGCT	TTGGTTCAAA	AATATTATGA CGCGCAGTGT CAGGTCATCT TTGGTTCAAA GGCTAAGGCT GCCCCAAGAG	CGCGCAGTGT	AATATTATGA
1620	GGCATGTGCC	CTGCTACAAT	GCAAAGCCTA	TCATTCAGAA TGGATATCCT TGCCAGAACA GCAAAGCCTA CTGCTACAAT GGCATGTGCC	TGGATATCCT	TCATTCAGAA
1560	CCAGATGTCT	TACTGCAACG GTTCCTCTCA GTTCTGCCCG CCAGATGTCT	GTTCCTCTCA	TACTGCAACG	GTGAGTGTGA TGTTCCTGAG	GTGAGTGTGA
1500	GGGAAGACCA	CATGTGCAGA	CAGGAGGCTC	GCGACTGTTG TAAAGATTGC CAGTTCCTTC CAGGAGGCTC CATGTGCAGA GGGAAGACCA	TAAAGATTGC	GCGACTGTTG
1440	TGTGCATATG	ATTTGCTGAG	AGCTCAAGTC	TGGACCCATG CTGTGAAGGA AGCACTTGTA AGCTCAAGTC ATTTGCTGAG TGTGCATATG	CTGTGAAGGA	TGGACCCATG
1380	GAGTGTGAGG	CACAGCGAAG	GTGACTGCGG	GTAATAAGCT GGTGGACCCT GGAGAGGAGT GTGACTGCGG CACAGCGAAG GAGTGTGAGG	GGTGGACCCT	GTAATAAGCT
1320	CCCTCCTGTG	CTACAGCGCG	CTGACGAAGC	GAGGAAGCTG CCTGCTTAAC ATCCCGAAGC CTGACGAAGC CTACAGCGCG CCCTCCTGTG	CCTGCTTAAC	GAGGAAGCTG
1260	TTGAATAAGG	GAAGTTAACG	AGGACTTTGA	GGTCCAGAAA CTTTAGCAGT TGCAGTGCGG AGGACTTTGA GAAGTTAACG TTGAATAAGG	CTTTAGCAGT	GGTCCAGAAA
1200	GGAGCATCCG	CATGAATTCA	AGAGCTGTAT	ATGATGGGAG AGAGTGTTTC TGTGGAGCAA AGAGCTGTAT CATGAATTCA GGAGCATCCG	AGAGTGTTTC	ATGATGGGAG
1140	ATGAATCATG	TAACCTTGGA	AATTGGGGCA	TGGAGACATT TGCATCCATT GTTGCTCATG AATTGGGGCA TAACCTTGGA ATGAATCATG	TGCATCCATT	TGGAGACATT
1080	CAAATCACTG	TGTGTTTGGG	GTGGGATCAA	TAGGAACAGT ATGTTCAAGG AGCCACGCAG GTGGGATCAA TGTGTTTGGG CAAATCACTG	ATGTTCAAGG	TAGGAACAGT
1020	ATGGCGTTTG	TTGAAGAAAG GCTTTGGTGG AACTGCAGGA ATGGCGTTTG	GCTTTGGTGG	TTGAAGAAAG	ACGACAGTGC ACAGTTGGTT	ACGACAGTGC
096	CGTCGGAGAC	GTTCAGTGGC GGGAAAGTT CCTTATAACT CGTCGGAGAC	GGGAAAGTT		GAGATGTGCT GGGCAACTTT	GAGATGTGCT
006	GGAGGAGCTG	CAATATAATT	GAAATCCTAT	TGCTGGTTGG ACTAGAAATT TGGACAGACA GAAATCCTAT CAATATAATT GGAGGAGCTG	ACTAGAAATT	TGCTGGTTGG
840	ATTCGAATTG	CATGTTAAAC	GCATGTACAT	AGATGATTCG CTTAGCAAAC TACCTGGATA GCATGTACAT CATGTTAAAC ATTCGAATTG	CTTAGCAAAC	AGATGATTCG

逐 7 c

ATTGCTTCAT	ATTGCTTCAT TGAAGTCAAT TCTAAAGGTG ACAGATTTGG CAACTGTGGT TTCTCCGGCA	TCTAAAGGTG	ACAGATTTGG	CAACTGTGGT	TTCTCCGGCA	1740
GTGAGTACAA	GTGAGTACAA GAAGTGTGCC ACTGGGAACG CGCTGTGTGG AAAGCTTCAA TGCGAGAATG	ACTGGGAACG	CGCTGTGTGG	AAAGCTTCAA	TGCGAGAATG	1800
TACAGGACAT	TACAGGACAT GCCGGTGTTT GGAATAGTAC CAGCTATCAT TCAGACACCC AGTCGAGGCA	GGAATAGTAC	CAGCTATCAT	TCAGACACCC	AGTCGAGGCA	1860
CCAAATGCTG	CCAAATGCTG GGGTGTGGAT TTCCAGCTTG GTTCCGACGT TCCAGACCCA GGGATGGTGA	TTCCAGCTTG	GTTCCGACGT	TCCAGACCCA	GGGATGGTGA	1920
ATGAAGGCAC	ATGAAGGCAC CAAATGTGAT GCTGGCAAGA TTTGCAGGAA TTTTCAGTGT GTAAATGCTT	GCTGGCAAGA	TTTGCAGGAA	TTTTCAGTGT	GTAAATGCTT	1980
CTGTCCTGAA	CTGTCCTGAA TTATGACTGT GACATTCAGG GAAAATGTCA TGGCCATGGG GTATGTAACA	GACATTCAGG	GAAAATGTCA	TGGCCATGGG	GTATGTAACA	2040
GCAATAAGAA	GCAATAAGAA TTGTCACTGT GAAGATGGCT GGGCTCCCCC ACACTGTGAC ACCAAAGGAT	GAAGATGGCT	GGGCTCCCCC	ACACTGTGAC	ACCAAAGGAT	2100
ATGGAGGAAG	ATGGAGGAAG CGTGGACAGC GGCCCGACGT ATAATGCAAA GAGCACAGCA CTGAGGGACG	GGGCCGACGT	ATAATGCAAA	GAGCACAGCA	CTGAGGGACG	2160
GGCTTCTGGT	GGCTTCTGGT CTTCTTC CTAATCGTCC CCCTTGTTGC GGCTGCCATT TTCCTCTTTA	CTAATCGTCC	CCCTTGTTGC	GGCTGCCATT	TTCCTCTTTA	2220
TCAAGAGAGA	TCAAGAGAGA TGAACTACGG AAAACCTTCA GGAAGAAGAG ATCACAAATG TCAGATGGCA	AAAACCTTCA	GGAAGAAGAG	ATCACAAATG	TCAGATGGCA	2280
GAAATCAAGC	GAAATCAAGC AAACGICICI AGACAGCCAG GAGAICCIAG IAICICCAGA CCACCAGGGG	AGACAGCCAG	GAGATCCTAG	TATCTCCAGA	CCACCAGGGG	2340
GCCCAAATGT	GCCCAAATGT CTCCAGACCA CCAGGGGGC CAGGTGTCTC CAGACCACCA GGGGGCCCAG	CCAGGGGGCC	CAGGTGTCTC	CAGACCACCA	GGGGCCCAG	2400
GTGTCTCCAG	GTGTCTCCAG ACCACCAGGG GGCCCAGGTG TCTCCAGACC GCCACCTGGG CATGGAAACA	GGCCCAGGTG	TCTCCAGACC	GCCACCTGGG	CATGGAAACA	2460
GATTCCCAGT	GATTCCCAGT ACCAACCTAC GCCGCCAAGC AGCCTGCGCA GTTCCCGTCA AGGCCACCTC	GCCGCCAAGC	AGCCTGCGCA	GTTCCCGTCA	AGGCCACCTC	2520
CACCACAACC	CACCACAACC GAAAATATCT	TCTCAGGGAA	ACTTGATTCC	TCTCAGGGAA ACTTGATTCC GGCTCGGCCC GCTCCTGCAC	GCTCCTGCAC	2580

3300

3360

2760

2820

2880

2940

3000

3060

3120

3180

3240

区 7 d リーディング

CTCCTTTATA TAGCTCCCTC ACCTGATAGT AGAATATTAG AATCTTATTT TTTAAATGTC TCTCTTCCA ACCATGAATG AACACAAACC ACCACAAAAC AAGCTTTATT AACACAGGAG AAAGTGAACG TGAAAAGCCT ATAGTTTCTG ACAAAGAAGC TACTTGGAAA TTCAACTATA TATGCATCAT GACGTGGAT TCAAATATCI TCTGCATTT TGTAAGCTT CCTAGTGGGG ATTGCGAAAC ACAGGAATGT GCAGGCGCTC CGGGGGGTGT GTCACTATGC GCTAAACGTA ATCCTGACTT TTTGACCCCCA GTTACCATTA GTTGACCATT TGAACATGTA TTAACTTAGG AAGACTAATT GCCAATAACG CATCTTGCAT GGATTAACAG CCATTTATAT GGACTTATGT CTCTTAATGC AGATATCTCG AAGGAGCTTA CACAAGAACC ACAATTACTA GATCATGATA TCAGGGAAC TGAGCAAATG TTTGTTGTTT TTTTTTCCT GATGTTTTCT TCTCTGGCCA TTTGTGGATT TAATGCACTT AAGTTATTCT GAGCATGTTA CTGTAATGAT TCTCAAATTA ACTGTATTAG GTGTGAAATA TGGTGTGTAC TCAGTTATTG GCTTCCATTT TTWATGATCT FTTCAACTGT AATGACTATG ACAGGAACTG ATTCAACTCT CAATTTTCTT TAGAAATCGA TTTAACACAA TCAGTTATGG GCTTCCATTT TTCCATCGT TAGAATGTTT ACAATTATGA

GGTAAAGCAT	TGCAGCAGTG	TTGTTTTGTT	TGAAGTGCAC	GGTAAAGCAT TGCAGCAGTG TTGTTTTGTT TGAAGTGCAC ACTCTATGGT ACGAGGTGTT	ACGAGGTGTT	3420
TAGTATACCC AAGCAG	AAGCAGATAG	GTGTCGATCG	AACAGGAGCA	ATAG GTGTCGATCG AACAGGAGCA GGGAGAATAC TTCCAACAGT	TTCCAACAGT	3480
TGAGGTGTTA	CCAAACCACT	TGAGAATTCA	TGAGCACTTT	TGAGGTGTTA CCAAACCACT TGAGAATTCA TGAGCACTTT AACTCTAAAC TCTGAATTTC	TCTGAATTTC	3540
AAAGCTTGAT	GTGAAGTCCT	CTAGAATGTT	TACATTTACT	AAAGCTTGAT GTGAAGTCCT CTAGAATGTT TACATTTACT AAGGTGTGCT GGGTCCTGTC	GGTCCTGTC	3600
TCTTTTGACT	AATATTTCG	TAAACATTAG	GCTGGAGAAA	TCTTTTGACT AATATTTTCG TAAACATTAG GCTGGAGAAA GGAAGGAAGC AGTGGTTTCC	AGTGGTTTCC	3660
TTAGATAACT	ACAGAATTAT	ACTGGTCTCT	GGGATTACTC	TTAGATAACT ACAGAATTAT ACTGGTCTCT GGGATTACTC TCTCAGCTGT ATTAAAATGA	ATTAAAATGA	3720
ATTTGTACTT	TGAAAGGAAT	GATATTGACA	CTAAAATTTT	ATTIGIACIT IGAAAGGAAI GATAIIGACA CIAAAAIIII AAACAIIIAA AIITIIICAI	ATTTTTCAT	3780
AATCTTTCAT	AAAGAAGTTT	AATAATAGGT	ATATTAACTG	AATCTTTCAT AAAGAAGTTT AATAATAGGT ATATTAACTG AATTTCATTA GTTTTTAAA	GTTTTTAAA	3840
ATAATATTGT	TTGTGTATAT	ATACATATTA	AAATAAAAAC	ATAATATTGT TTGTGTATAT ATACATATTA AAATAAAAAC ATTTACAACA AATAAAATAC	AATAAAATAC	3900
TTGAAATTCT	AAAAAAAA	TTGAAATTCT AAAAAAAAA AAAAAAAAA	A			3931



WO 97/31109 PCT/JP96/03017



図 9



図10

## 図 11a



## 図 11b



EM 1 2 b 310 320 AGAGATGCTAAATGCGGCAAG R D A K C G K

6 1 / 9 0

80

-----

20

図13a 10 20 30 40 50 GCAAAGAGCTGCATCATGAATTCAGGAGCATCGGGTTCCAGAACTTTAGCAGTTGCAGT A K S C I M N S G A S G S R N F S S C S	70 80 90 100 110 120 GCAGAGGACTTTGAGAAGTTAACTTTAAATAAAGGAGGAAACTGCCTTCTTAATATTCCA A E D F E K L T L N K G G N C L L N I P	130 140 150 160 170 180 AAGCCTGATGAAGCCTATAGTGCTCCCTCCTGTGGTAATAAGTTGGTGGACGCTGGGGAA K P D E A Y S A P S C G N K L V D A G E	240 ACC T	300 TTC F
729	TT(		2 TATE	3 3GT
TT	TA'	TG	AA( S	TC(
CAC	raa N	CGC A	9	TG C
50 'AG	110 'TCT'	170 3GTGGACC V D A	230 CGAAG E G	290 AGAC D
LH	TT	1 3TG	200	2 AA(
AC	))))	TG(	3C7	GTA K
AA. N	VCT C	GT L	TTC	TT(
40 CA(	00 AAA N	50 ГАА К	220 ACCC	280 ACTGT
ľTC S	100 GGAGGAAA GGN	AA' N	2.2 iGA( D	28 GA( D
667	9 9	150 160 CCCTCCTGTGGTAATAA PSCGNK	TTG	GGT
rcg	IAA (	GT	AA	'AT(
30 CA	90 'AAAT/ N	50 CC1	210 \TGTGA\ C E	270 GCATA A Y
3AG A	[AA N	1 CCT S	2 AT C	Z TG
AG(	TT] L	TCC	3GA E	3TG C
rtc S	AAC T	ĞÇ' A	AA( K	GA( E
20 AA . N	80 TT/ L	140 TAGT	200 TCCA P	260 TGCT
ATG	1AG (	AT	CT.	TT(
TC/	AG/	CCI	GTA	CAT
3CA I	TG	AG	TG. G	AT( S
10 iCT(	70 CTJ F	130 ATGA E	190 ACTG C	250 TTAA K
a a 3AG S	3GA D	1 IGA D	GA D	CT.
図 1 3 a GCAAAGA( A K S	GCAGAGG/ A E D	CCJ P	190 200 210 220 230 240 GAGTGTGACTCCCAAAGGAATGTGAATTGGACCCTTGCTGCGAAGGAAG	TGTAAGCTTAAATCATTTGCTGAGTGTGCATATGGTGACTGTTGTAAAGACTGTCGGTTCC C K L K S F A E C A Y G D C C K D C R F
⊠ 3CA	3CA	AG	AG'	GT.
_ ) 4		A X	E	C

09

120	140	160	180	200
STO 340 350 360 360 360 360 360 360 360 CTTCCAGGGGAGGTACTTTATGCCGAGGAAAACCAGTGAGTG	370 380 390 400 410 420	430 440 450 460 470 480	490 500 510 520 530 540	550 560 570 580 590 600
	AATGGTTCTCTGTCAGCCAGATGTTTTTTTTTCAGAATGGATATCCTTGCCAG	AATAACAAAGCCTATTGCTACAAGGTCAATGTCAAGTC	ATCTTTGGCTCAAAGGCTGCCCCCAAAGATTGTTTCATTGAAGTGAATTCTAAA	GGTGACAGATTTGGCATTCTCTGGCAATGAATACAAGAGTGTGCCACTGGG
	N G S S Q F C Q P D V F I Q N G Y P C Q	N N K A Y C Y N G M C Q Y Y D A Q C Q V	I F G S K A K A A P K D C F I E V N S K	G D R F G N C G F S G N E Y K K C A T G

220	24(	260	280	300
AT S C 610 620 630 640 650 660 AATGCTTTGTGTGGAAAGCTTCAGTGTGAAATGTACAAGAGATACCTGTATTTGGAATT N A L C G K L Q C E N V Q E I P V F G I	670 680 690 700 710 720 GTGCCTGCTATTATTCAAACGCCTAGTCGAGGCACCAAATGTTGGGGTGTGGATTTCCAG V P A I I Q T P S R G T K C W G V D F Q	730 740 750 760 770 780 CTAGGATCAGATCCTGGGATGGTTAACGAAGGCACAAATGTGGTGCTGGA L G S D V P D P G M V N E G T K C G A G	790 810 820 840 AAGATCTGTAGAACTTCCAGTGTGTGTGTTTTTTTTTTT	850 860 870 880 890 900 CAGAAAAAGTGTCATGGACATGGGGTATGTAATAGCAATAAGAATTGTCACTGTGAAAAT Q K K C H G H G V C N S N K N C H C E N
GGA	TTC F	GCT A	GAT D	GAA E
LL	JAT (	3GT	reTe	rgT(
650 TGTA	710 .TGTG( V l	°0 GT(	830 .TGAC) D (	0 'AC'
65 CTG	71 GTC	770 AATG	83 ATG	890 GTCA(
TAC	9 999	CAA	ATT	ATT
4GA I	TT:	3CA	rga. N	AGA. N
640 AAGA	700 AATG	760 3AAGG 3. G	820 3TTCTG / L	880 \ATAA
ACA Q	CAA K	CGA E	8 T5T: V	CAA N
TGT V	CAC	TAA N	TTC	TAG
0 GAA N	0 AGG G	o GGT V	810 GATGC D A	0 TAA N
630 FGAGA E	690 FCGA( R (	750 SATGO	81 \GA' D	870 \TGT/ C
620 630 640 650 64 GGAAAGCTTCAGTGTGGAATGTACAAGAGATACCTGTATTTGGAA' G K L Q C E N V Q E I P V F G I	680 690 700 710 72 ATTCAAACGCCTAGTCGAGGCACCAAATGTTGGGGTGTGGATTTCCA I Q T P S R G T K C W G V D F Q	9	800 810 820 830 84 AACTTCCAGTGTGTAGATGCTTCTGAATTATGACTGTGATGT N F Q C V D A S V L N Y D C D V	860 870 880 890 90 CATGGACATGGGGTATGTAATAGCAATAAGAATTGTCACTGTGAAA/ H G H G V C N S N K N C H C E N
CA(	CCI P	CCT P	TG1	9 999,
620 GCT1 L	680 AACG T	740 AGAT D	800 CCAG	860 ACAT H
6 AAG K	6 CAA Q	7 CCA P	8 ITC F	8 3GA
GGA.	ATT [	GTT(	IAC	CAT(
) [GT(	) VTT/	ATT(	GA/	GT(
610 71676 , C	670 CTA1	730 CAGA	790 GTAC	850 AGT(
S CTT	CTG A	GAT S	TCT	AAA K
610 AATGCTTTGTG N A L C	670 GTGCCTGCTA1 V P A I	rag. G	790 AAGATCTGTAC K I C R	850 CAGAAAAAGTG Q K K C
N A N	5 >	ວ	A/ K	ν V

**巡13d** 

ACCTCGA

6 5 / 9 0





図146

**図15**a

60	120	180	240	300	360 120	420
GGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAAT	ATTCGACTACAACGGAAAGGAACTGATCATAAATCTGGAAAGAAA	ATTGCCAGCAGTTTCACGGAAACCCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCT	CGAAATTACACGGGTCACTGTTACTACCATGGACATGTACGGGGATATTCTGATTCAGCA	GTCAGTCTCAGCACGTGTTCTGGTCTCAGGGGACTTATTGGGTTTGAAAATGAAAGCTAT	GTCTTAGAACCAATGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTG	AAAAGCGTCCGGGGATCATGTGGATCACATCACAACCAAACCTCGCTGCAAAGAAT
G D L W I P V K S F D S K N H P E V L N		I A S S F T E T H Y L Q D G T D V S L A	R N Y T G H C Y Y H G H V R G Y S D S A	VSLSTCSGLRGLRGLIGFENESY	V'LEPMKSATNRYKLFPAKKL	K S V R G S C G S H H N T P N L A A K N

⊠ 1 5 b

ACTAAGTATGTGGAGCTGGTGATCGTGGCAGCACCGAGCTTTCAGAGGCAAGGAAAA  T K Y V E L V I V A D N R E F Q R Q G K  GATCTGGAAAAAGTTAAGCAGTTAATAGAGATTGCTAATCACGTTGACAAGTTTTAC  D L E K V K Q R L I E I A N H Y D K F Y  AGACCACTGAACATTCGGATCGTTGGTAGCGTGGAATGACATGGACAAA  R P L N I R I V L V G V E V W N D M D K  TGCTCTGTAAGTCAGGACCATTCACCAGCCTCCATGAATTTTTCTGGACTGGAGAGATG  C S V S Q D P F T S L H E F L D W R K M  AAGCTTCTACCTCGCAAATCCCATGACAATGCGCAGCTTTATTTCCAA  K L L P R K S H D N A Q L V S G V Y F Q
TGGCAGACCGAGGTTTCAGAGGCAAGGAAD N R E F Q R Q G TAATAGAGATTGCTAATCACGTTGACAAGT I E I A N H .V D K F V G V E V W N D M D CCAGCCTCCATGAATTTCTGGACTGGAA S L H E F L D W R K ACAATGCGCAGCTTGTCAGTGGGGTTTATT ACAATGCGCAGCTTGTCAGTGGGGTTTATT
TTAATAGAGATTGCTAATCACGTTGACAAGTTTT  L I E I A N H .V D K F Y  TTGGTAGGCGTGGAAGTGTGGAATGACATGGACA  L V G V E V W N D M D K  ACCAGCCTCCATGATTTCTGGACTGGAGA  T S L H E F L D W R K M  SACAATGCGCAGCTTGTCAGTGGGGTTTATTTCC  D N A Q L V S G V Y F Q
TTGGTAGGCGTGGAAGTGGAATGACATGGACAA L V G V E V W N D M D K ACCAGCCTCCATGAATTTCTGGACTGGAGGAAGAT F S L H E F L D W R K M SACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCA
ACCAGCCTCCATGAATTTCTGGACTGGAGGAAGAT F S L H E F L D W R K M SACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCA D N A Q L V S G V Y F Q
3ACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCA/ D N A Q L V S G V Y F Q

 $\circ$ 

300	960	1020 340	1080 360	1140 380	1200	1260
ATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACATGAGCTG	GGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCG	GTTGAGAAAGGAGGCTGCATCATGAACGCTTCCACCGGGTACCCATTTCCCATGGTGTTC V E K G G C I M N A S T G Y P F P M V F	AGCAGTTGCAGCAGGACTTGGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTG S S C S R K D L E T S L E K G M G V C L	TTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCCAGAAGTGTGGGAACAGATTTGTG F N L P E V R E S F G G Q K C G N R F V	GAAGAAGGAGGGGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTGCTGCAAT E E G E E C D C G E P E E C M N R C C N	GCCACCACCTGTACCCTGAGCCGGACGCTGTGCGCCACATGGGCTGTGCTGTGAAGAC A T T C T L K P D A V C A H G L C C E D

図15d

1320	1380	1440	1500	1560	1620	1680
	460	480	500	520	540	560
TGCCAGCTGAAGCCTGCAGGGACTCCAGCAACTCCTGTGACCTCCA C Q L K P A G T A C R D S S N S C D L P	GAGTICTGCACAGGGCCAGCCTCACTGCCCAGCCAACGTGTACCTGCACGATGGGCAC E F C T G A S P H C P A N V Y L H D G H	TCATGTCAGGATGTGGACGGCTACTGCTACATGGCATCTGCCAGACTCACGAGCAGCAGCAG	TGTGTCACGCTCTGGGGACCAGGTGCTAAACCTGCCCTGGGATCTGCTTTGAGAGAGTC	AATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGATTCCTTTGCCAAA NSAGDPYGNCGKVSKSSFAK	TGCGAGATGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCA C E M R D A K C G K I Q C Q G G A S R P	GTCATTGGTACCAATGCCGTTTCCATAGAAACAACATCCCCCTGCAGGCAG

図 1 5 e

1740	1800	1860 620	1920 640	1980	2040	2100
ATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGACATGCCGGACCCAGGGCTTGTG	CTTGCAGGCACAAAGTGTGCAGATGGAAAATCTGCCTGAATCGTCAAAGTATT L A G T K C A D G K I C L N R Q C Q N I	AGTGTCTTTGGGGTTCACGAGTGTGCAGTGCCACGGCAGAGGGGTGTGCAACAAC S V F G V II E C A M Q C H G R G V C N N	AGGAAGAACTGCCACTGCGCCCACTGGGCACCTCCTTCTGTGACAGTTTGGCTTT R K N C H C E A II W A P P F C D K F G F	GGAGGAAGCACAGCGGCCCCATCCGGCAAGCAAGCCAGGAAGCTGCAGAG G G S T D S G P I R Q A E A R Q E A A E	TCCAACAGGGAGCGGCCAGGAGCCCGTGGGATCGCAGGAGCATGCGTCTACT S N R E R G Q G Q E P V G S Q E H A S T	GCCTCACTGACACTCATCTGAGCCCTCCCATGACATGGAGACCGTGACCAGTGCTGCTGCTGC

# <u>⊠</u> 1 5

0707	ACTGCATAAAATAGAGTGCATCCCCC
0000	AGTAAGAATGTTAAAAAGTGAAAACAATGTAAGAGCCTAAACTCCATCCCCCGTGCCATT
2760	AGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCAACCCTTCATTTAACA
2700	IAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGCAGTACTC
2640	CACCCATICCATCCCATCCAAGCAACTGAATGGCATTGAAACAAACGAGAAGAAGG
2580	111AGCATTTATTATGAAAATAGCAGGTTTTAGTTTTAATTTATCAGAGCCCTGC
2520	ULCAGCUTTGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCT
2460	CCCCAGAGAGGGGGGGGGGGGGTTGGGCCCAGTGTCCCCTTTCCCCAGTGACAC
2400	GOOTION OF THE CONTRACT OF THE
2340	CIGLIAAAACATGGACATGCTTCAGTGCTCCTGAGAGAGTAGCAGGTTACCACTCTG
2280	CCTACCAGGCACGTCTGCAGAACAGTGCAAGGAAGGGCAGCGACTTCCTGGTTGAGCTT
2220	CCATCGTTTCCATGACAACAGACACACAGTTCTCGGGGCTCAGGAGGGGAAGTCCAG
9160	AGAGGAGGTCACGCGTCCCCAAGGCCTCCTGTGACTGGCAGCATTGACTCTGTGGCTTTG

9	
X	

000	20	120	40	180	09	240	08	300	100	360	120		
	. 7	17	7	=======================================		~		$\tilde{\omega}$	=	Ŝ			
ICI	S	AAG	<b>×</b>	21	( <del></del> .	TOI	ပ	CAG	ď	OLC GTC	^		
38	~	IGT	د	GAG	Œ	8	Д.	36	ပ	AAT	z		
4AT (	z	CAG.	_ ~	CCC GAG TTC	ط	ACC	<b>←</b>	CAG	ე ტ	213	Λ		
38		CAC (	<b>=</b>			<u>G</u>	ن	GAG	Œ	AAg	<b>×</b>		
MC	P C C	32	_ ပ	GAC (	<u> </u>	GAT		CAG	ð	979	ET)		
$\mathfrak{A}$	<u></u>	<u>3</u>	۔ ن	TET	ن	ATC	Z	TAC	Α.	TIC	(T.		
GAT TOT GGA GAA GAA GAG GAA TOT AAC AAC CCC TGC TGC AAT GCC	2.	2	S	CAG	E Q A R Q C D L	ACC GCC AAG TCT CCC CAC TGC CCT ACC AAC TTC TAC CAG ATG GAT GGT ACC CCC TGT	ď	GGC GGC CAG GCC TAC TGC TAC AAC GGC ATG TGC CTC ACC TAC CAG GAG CAG TGC CAG	A Y C Y N G M C L T Y Q E	333	LWGPGARPAPDLCFEKVNV	ব	: =
AAC .	N C	28	<u>ت</u>	AGG	24	TAC	<b>X</b>	CLC		CIC	_	394	131
IST	_ ၁	CAC	H	3	A	110	ഥ	333	၁	CAC	<b>Q</b>	V	:
GAA	ı ت	SCT	¥	CAC	9	AAC	z	ATG	=	Œ	هـ	GAC	
GAG	ĿЛ	TGT	ပ	GAG	ш	ACC	<del>[</del>	33	ی	$\mathfrak{F}$	V	AAG	<u>×</u>
GAA	म	GAG	田	38	24	CCI	م	AAC	z	8	۵	GGA	ی
GAA	म्य	93	V	33	၁	333	ပ	TAC	Υ	CG.A	$\approx$	TOT	N N
GGA	9	999	G	CIG	Ţ	CAC	H	<b>3</b> 90	၁	8	A	AAC	z
TEL	9 0 Q	93	Д.	¥	G T L C R	8	Д	TAC	>	GGA	9	83	D T F G
GAT	0	AGG	~	99	9	<b>T</b>	S	පූ	V	8	۵.	Ħ	( <u>T</u>
<b>TGT</b>	ပ	CTG	_	CT.	Ь	AAG	×	SS	ď	<b>SSA</b>	ى	ğ	⊢
GAG	( <del>1</del> 2)	ACC	<u>-</u>	SCI	V	33	9	33	9	<u> 1</u> 00	æ	Sec	Q
GAA	ഥ	TGT ACC CTG AGG CCG GGG GGG TGT GCT CAC GGC TCC TGC TGC CAC CAG TGT AAG	၁	CTG TTG GCT CCT GGG ACC CTG TGC CGC GAG CAG GCC AGG CAG TGT GAC CTC		ACC	€	99		CTG		GCA GGA GAC ACC TIT GGA AAC TOT GGA AAG GAC	5
99	g	AAT	z			TGT	ပ	GAG	Œ	8	Õ	Ş	V.

区 1 7

480	160	540	180	009	200	099	220	720	240	780	260	840	280
990	Ü	991	ت	3TG	၁	CAT	_	900	N N	3TG	၁	rga	ப
)))	Д	CITI	Έ.	3AA(	×	3000	ط	CTA(	٨	CAA(	×	1 A C J	$\vdash$
/99:	9	AC(		)))	А	GT	>	)CT(	: <b>&gt;</b>	1AC	€	rg A /	(±)
T60.	<b>=</b>	16A(	_	1GA7	Q	))))	A	CAC	Ħ	/991	9	CTT	رت
CTC.		1991	ح	3AG	$\simeq$	CAA(	z	CACC	←	3AC7	<del>[</del>	CTT(	Œ
3CA(	<b>♂</b>	7095	V	CAT(	×	3TC	S	)999	9	3AT(	×	CTC(	S
CA(	<b>~</b>	rgT(	>	CAA(	z	36A(	ഥ	)9))	~	3GT(	^	CAC(	€
3TG(	೨	SAAZ	Z	3T6(	၁	CCT(		3TG	၁	3CT(		GAA(	z
GCA!	<b>⇒</b>	66T	>	GAA	×	၁၁၅	ط	CCA	0	AGG(	g	CAG	$\simeq$
66 A	. <del></del> )	GAA.	4	CAG	æ	ອວວ	∝	GAT		222	۵.	010	ပ
CCA	<b>→</b>	CGA	ਸ	ACA	<b></b>	<b>၁</b> 99	A	GCA	O	GGA	0	VOS	Ö
CTA	<b>&gt;</b> -	CTT	L,	TGA	Ħ	TGA	মে	9 V 9	84	GCT		999	g
CAC	<b>—</b>	CTG	د	166	9	CTC	S	TGG	9	CAT	×	TGA	டி
CCT	_	CCT	J	GAA	z	GAG	S	GAA	z	TGA	0	CCT	
6 T 6	ن	TGA	<u> </u>	CAT	×	TCA	0	CAT	×	999	ى	TTG	ပ
CAT "	E	222	<b>L</b>	GGA	Q	GTG	ပ	CAT	-	GGA	E	TAT	-
	ح	TGC	<b>C</b>	AAA	¥	CCA	ď	TAT	<b>—</b>	GGA	Ŀ	VOO	Ξ
CAA	<b>z</b>	ACC'	<b>L</b>	16G	9	GAT	_	CAC	⊣	TGA	டி	CAA	z
CTA '	<b>&gt;</b>	900	4	CTG	ပ	GAA	×	CAC	⊏	TCC	<u>م</u>	CTA	<b>&gt;</b>
CTGCTACAACGCCATGTGCCTCACCTACCAGGAGCAGTGCCAGCAGCTGTGGGGACCCGG	ر	AGCCCGACCTGCCCTCTGCTTCGAGAAGGTGAATGTGGCAGGAGACACCTTTGG	<	AAACTGTGGAAAGGACATGAATGGTGAACACAGGAAGTGCAACATGAGAGATGCGAAGTG	z	TGGGAAGATCCAGTGTCAGAGCTCTGAGGCCCGGCCCCTGGAGTCCAACGCGGTGCCCAT	ى	TGACACCACTATCATCATGGGAGGCAGATCCAGTGCCGGGGCACCCACGTCTACCG	_	AGG'	GPEEEGDMLDPGLVMTGTKC	T66	G Y N H I C L E G Q C R N T S F F E T E

300	960 320	1020 340	1080	1140	1183 394
AGGCTGTGGGAAGAAGTGCCATGGGGTCTGTAACAACAACAGAACTGCCACTG	CCTGCCGGGCTGGCCCCCCCCTTCTGCAACACACCGGGGCCACGGGGGCAGTATCGACAG	TGGGCCTATGCCCCCTGAGAGTGTGGGTCCTGTGGTAGCTGGTGGTGGCCATCTT	GGTGCTGGCGGTCCTCATGCTACTACTGCTGCAGACAGAACAACTAGGCCA	ACTCAAGCCCTCAGCTCCAAGCTGAGGCAACAGTTCAGTTGTCCCTTCAGGGT	TTCTCAGAACAGCGGGACTGGTCATGCCAACTTTCAAG
G C G K K C N G H G V C N N N Q N C H C		G P M P P E S V G P V V A G V L V A I L	V L A V L M L M Y Y C C R Q N N K L G Q	L K P S A L P S K L R Q Q F S C P F R V	S Q N S G T G H A N P T F K

モノクローナル抗体作製に用いたペプチド ಡ  $\infty$  $\mathbb{X}$ 

膜真通訊域			
色でいます。		DC-D	
ディスインテグリン領域		DC-A DC-C	DC.B
メタロブロテアーゼ 領域 前域		MP-A MP-B DEA	
前躯体領域	ļ	Pro-A	
シグナル「配列			

モノクローナル抗体作製に用いたペプチド配列 Р  $\infty$ <u>図</u>

No.	<b>分</b> 符	配列 (N末-C末)
-	Pro-A	TTDSYKLVPAESMTNIC
2	MP-A	ADNREFQRQGKDLEKVKC
က	NP-B	FTRLHEFLDWRKIKC
4	DC-A	QLKPPGTACRGSSNSC
လ	DC-B	GTACRGSSNSCDLPEFC
9	ე-ე@	GKDSKSAFAKCELRDAKC
7	O-DQ	QGGASRPVIGTNAVSIETNIC
œ	DE-A	LFNLPEVKQAFGGRKC

## 図19 抗メルトリンモノクローナル抗体を用いたウエスタンブロッティング

F933-4-3	F933-10-26	F934-17-6	F934-3-23	F934-4-33	F934-6-3	F934-20-5
----------	------------	-----------	-----------	-----------	----------	-----------

12 12 12 12 12 12 12



レーン 1;#9-3 2;L929

図20 C2細胞の筋管形成に対する抗メルトリン抗体の効果



図21 マウス全骨細胞による吸収窩形成に及ぼす作用





**⊠**23a

09	20
GCACAAAGTGTGCAGATGGAAAATCTGCCTGAATCGTCAATGTCAAAATATTAGTGTCT	TKCADGKICLNRQCQNISVF

120	40
1GA	Z
GAA	$\mathbf{x}$
CAG	24
CAAC	z
CAA	z
0L $0$	၁
L	>
AATGCAGTGCCACGGCAGGGGTGTGCAACAACAGGAAGA	ۍ
	$\simeq$
	G
	H
	ပ
	ð
AAT	×
TGTGCA	V
3TG	၁
ACGAG	Œ
TCA(	H
GGTTC	>
0000	ی

180	09
AA	S
GAGGA	S
<b>T</b> 66	9
recettiee	[I
	9
GTT	[I
CAA	$\simeq$
TGA	
<b>ACTGCCACTGCGAGGCCCACTGGGCACCTCCCTTCTGTGACAA</b>	ပ
	ഥ
	م
	۵.
	W
CTC	
$\sum_{i=1}^{N}$	Ħ
299	A
256	ದ್ರ
CTC	ပ
300	Ħ
ACT	၁

140 CCCGGCCACCCGTGGCTTCCAACCCTGTCAGGCTCACCTCGGCCACCTTGGAAAAGGCC ۍ  $\succeq$ ۍ H ۍ  $\equiv$ V ď ہے ð ഥ G 8 ۵. 2

480 160 TGATGAGGAAGCCGCCAGATTCCTACCCACCGAAGGACAATCCCAGGAGATTGCTGCAGT 8  $\simeq$ z 0 K Д S 

540180 GTCAGAATGTTGACATCAGCAGACCCCTCAACGGCCTGAATGTCCCTCAGCCCCAGTCAA S ð z ى z م 2 S z

TCAGCGAGTGCTTCCTCCCTCCACCGGCTCCACGTGCCACGTCCCTGCCAGAC 600 Q R V L P P L H R A P R A P S V P A R P 200

CCTGCCAGCCAAGCCTGCACTTA 624

**図24a** 

GGATGCAACAGGAGGAGCT G C N R R E L AACATGCCAGACACCAGGAT N M P D T R M GATGGGAAGAGTGTGACTG D G E E C D C TCTAATTGTACCCTGAGGCC S N C T L R P AAGCTGTTGGCTCCTGGGAC K L L A P G T TTCTGTACGGCAAGTCTCC F C T G K S P	420	360	300 100	240	180	120	60
CGGAGCTGCCACTGGGCACCCCTTTCCCAAAGTGTTCCATGGGACGGCACGCGAAGTGTTCTCCCAAGGTGTCTCCCAAGGTGTCTCCCAAGGTGTCTCCCCCCCC	CCACTGCCCTACCAACTTCTACCAGATGGTACCCCCTGTGAGGGCGGCCAGGCCTA H C P T N F Y Q M D G T P C E G G Q A Y	CCTGTGCCGCGAGCCAGGCAGTGTGACCTCCCGGAGTTCTGTACGGGCAAGTCTCC L C R E Q A R Q C D L P E F C T G K S P	GGGGGGGGGGTGTGCTCCTGCTGCCACCAGTGTAAGCTGTTGGCTCCTGGGAC G A E C A H G S C C H Q C K L L A P G T	TGGAGAAGAAGGAATGTAACAACCCCTGCTGCAATGCCTCTAATTGTACCCTGAGGCC G E E E C N N P C C N A S N C T L R P	GTTGTATGGAGGCCGGAGGTGTGGGGTATCTGGAAGATGGGGAAGAGTGTGACTG L Y G G R R C G N G Y L E D G E E C D C	GGACAGGTATCTGCAGTCGTGGTGGAATGTGTCTCTCCAACATGCCAGACACCAGGAT D R Y L Q S G G G M C L S N M P D T R M	CGGAGCTGCCACTGGGCACCCCTTTCCCAAAGTGTTCAATGGATGCAACAGGAGGGAG

区 2 4

480 160	540 180	600 200	660 220	720 240	780	840 280
9 990	TGG G	GTG C	CAT	CCG R	GTG C	TGA E
ACC P	CTT F	GAA K	م کائ	CTA Y	CAA K	A A C
9 999	CAC T	TGC A	GGT V	CGT.	A A C T	TGA
GTG ₩	AGA D	AGA D	V OGC	CCA	TGG.	CTT' F
TO9	A G G	GAG R	CAA	CAC T	GAC	CIT
GCA Q	9 9 9	CAT	GTC S	36G	3AT.	STC
OCA.	TGT V	CAA	GGA( E	CCG( R	3GT( V	CAC( T
OT6 C	GAA	GTG C	CCT	GTG C	GCT(	3AA( N
GCA Q	7 V	GAA K	) 	CCA(	466. 6	CAG(
TGCTACAACGGCATGTGCCTCACCTACCAGGAGCAGTGCCAGCAGCTGTGGGGACCCG	GAA	CAG R	CCG. R	3AT( I	CCC,	3TG( C
O O	CGA	ACA H	96C(	SCA(	3GA( D	3CA(
CTA Y	CTT. F	TGA. E	TGA( E	GAG( R	GCT( L	9999
CAC	CTG C	TGG	CTC' S	TGG(	CAT(	IGA( E
CCT	CCT	GAA N	GAG S	GAA'	rga( D	CCT.
GTG C	TGA D	CAT	TCA 0	CAT	36G'	rtg( C
CAT M	д Эээ	GGA	3TG C	CAT(	3GA( E	rat.
<u>ن</u> در	TGC A	A A A A (	O CCA(	FAT( I	GGA( E	CCA7 H
CAA	ACC.	TGG. G	3AT(	CAC	rga( E	CAA(
CTA Y	CCG, R	CTG' C	3AA( K	CAC( T	[CC]	CTA(
CTGCTACAACGCATGTGCCTCACCTACCAGGAGCAGTGCCAGCAGCTGTGGGGACCCGG	AGCCCGACCTGCCTCTGCTTCGAGAAGGTGAATGTGGCAGGAGACACCTTTGG A R P A P D L C F E K V N V A G D T F G	AAACTGTGGAAAGGACATGGTGAACACAGGAAGTGCAACATGAGAGATGCGAAGTG N C G K D M N G E H R K C N M R D A K C	TGGGAAGATCCAGTGTCAGAGCTCTGAGGCCCCTGGAGTCCAACGCGGTGCCCAT G K I Q C Q S S E A R P L E S N A V P I	TGACACCACTATCATCAATGGGAGGCAGATCCAGTGCCGGGGCACCCACGTCTACCG D T T I I M N G R Q I Q C R G T H V Y R	AGGTCCTGAGGAGGGTGACATGCTGGACCCAGGGCTGGTGATGACTGGAACCAAGTG G P E E G D M L D P G L V M T G T K C	TGGCTACAACCATATTTGCCTTGAGGGGCAGTGCAGGAACACCTCCTTCTTTGAAACTGA G Y N H I C L E G Q C R N T S F F E T E

a)

AGAACGGCGTGCTTGTGTGTGTGCTGGGGACCACCACCATGCGTGTGACATTTCTTGCC	9400
	0010
TGGGCGTGAGCGTCACCTTCAATGGCCAAGTCTTCCAGGCCCGGCTGCCCTACAGGCCTCT	2460
TOCACAACAACACGGGCCAGGGCCAGTGCGGCACCTGCACAACAACAAGGGGACGAACTCTC	9590
	0707
TCCAGCGGACGGAACCACTGCCGCCAGTTGCAAGGACATGGCCAAGACGTGGCTGGTCC	2580
	) ·
CONTRACTOR AND AND AND INCOLOUR AND INFORMACION CONTRACT OF A CONTRACT O	2640
CAGCCCGGTGTCTAGCACCCACCCCG 2889	

C071	SSIFICATION OF SUBJECT MATTER THE K K14/435, C12P21/08, C07K16/	18, C12N1/21, C12P21/0	02, A61K38/17,			
A61K39/395, A61K31/70, C12N5/12 // (C12P21/02, C12R1:19), According to International Patent Classification (IPC) or to both national classification and IPC						
	DS SEARCHED		<del></del>			
	ocumentation searched (classification system followed b	y classification symbols)				
Int	. C1 ⁶ C12N15/12, C07K14/47 N1/21, C12P21/02, A61K38/17	, C07K14/435, C12P21/0				
Documentati	ion searched other than minimum documentation to the	extent that such documents are included in th	ne fields searched			
Electronic da	ate base consulted during the international search (name	of data base and, where practicable, search t	erms used)			
CAS	ONLINE, WPI, WPI/L, BIOSIS	PREVIEWS				
		,				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category®	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.			
Χ/	Cell Structure and Function	n <u>20</u> (6) (1995)	1, 6-10, 13, 18-20, 22,			
	T. Yagami-Hiromasa, et al. Metalloprotease-Disintegri		23-25, 27-37,			
	Myotube Formation" p. 585		40, 41/			
Y/			2-5, 11-17, 20-25, 27-39/			
A			26, 42-48			
x/	Cell Structure and Function		1, 2, 4,			
	T. Kurisaki et al. "Cloning Mambers of Metalloprotease		6-14, 16, 18-21, 23-25,			
	Involved in Myogenesis" p.		27-41/			
Υ/	-		3, 5, 11-13, 15, 17,			
			20-25, 27-39/			
A			26, 42-48			
х/	Nature <u>377</u> (1995) T. Yagam:	i-Hiromasa, et al.	1, 2, 4,			
	"A metalloprotease-disinted myoblast fusion" p. 652-656		6-14, 16,			
Y/	myoblast idsion p. 632-636	)	18-25, 27-41/ 3, 5, 11-13,			
X Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	<u> </u>			
	categories of cited documents:	T later document published after the inter				
	nt defining the general state of the art which is not considered particular relevance	date and not in conflict with the applie the principle or theory underlying the				
	document but published on or after the international filing date  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive sent which may throw doubts on priority claim(s) or which is					
cited to	cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be					
means	being obvious to a person skilled in the art					
	document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
	ctual completion of the international search	Date of mailing of the international sear	rch report			
Janu	mary 16, 1997 (16. 01. 97)	January 28, 1997 (	(28. 01. 97)			
Name and m	ailing address of the ISA/	Authorized officer				
Japa	nese Patent Office					
Facsimile No	<b>).</b>	Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

⊠24 c

300	960	1020 340	1080	1140	1200	1260
AGGCTGTGGGAAGAAGTGGAATGGCGTCTGTAACAACAACCAGAACTGCCACTG 90( G C G K K C N G H G V C N N N Q N C H C 30(	CCTGCCGGCCTGGCCCCTTCTGCAACACACGGGGCCACGGGGGCAGTATCGACAG 96(	TGGGCCTATGCCCCTGAGAGTGTGGGTCCTGTGGTAGCTGGTGGTGGCCATCTT 108	GGTGCTGGCGGTCCTCATGCTGTACTACTGCTGCAGAACAACAAACTAGGCCA 108 V L A V L M L M Y Y C C R Q N N K L G Q 36	ACTCAAGCCCTCAGCTCCAAGCTGAGGCAACAGTTCAGTTGTCCCTTCAGGGT 114 L K P S A L P S K L R Q Q F S C P F R V 38	TTCTCAGAACAGCGGGACTGGTCATGCCAACCTTTCAAGCCGGAATTCCGGGCCCCC 120 S Q N S G T G H A N P T F K P E F R A P 40	CCACAGCCCACCACCATGACAAGGGCCACCAATTCCACGGCCACACCCTCCTCCACTC 120

# **₹** 2 4

TGGGGACGACCCGGATCCTCACTGACCTACCACAGCCACTACAACTGCAGCCACTG	1320	
GATCCACGCCACCCTGTCCTCCACCCAGGGACCACCTGGATCCTCACAGAGCCGAGCA	1380	
CTATAGCCACCGTGATGGTGCCCACCGGTTCCACGGCCACCGCCTCCTCCACTCTGGGAA  CAGCTCACACACCCCACAAACTCCACAACACAA	1440	
CGGTTCCCAGCTCGTCCACCGTGGGGACCACCGCGCACCTGCAGTGCTCCCAGGCAGCCAGGCAGCCAGGCAGG	1500 1560	
TGCCAACCTTCAGCGTGTCCACTGTGTCCTCCTCAGTCCTCACCACCCTGAGACCCACTG	1620	
GCTTCCCCAGCTCCCACTTCTACTCCCTGCTTCTGCAGGCCATTTGGACAGTTTTTCT	1680	
CGCCCGGGGAAGTCATCTACAATAAGACCGACCGAGCCGGCTGCCATTTCTACGCAGTGT	1740	
GCAAICAGCACTGTGACATTGACCGCTTCCAGGGCGCCTGTCCCACCTCCCCACGCCAG	1800	
TGICCICCGCCCCGCTGTCCTCCCCTCCCCTGGCTGTGACAATGCCATCCCTC	1860	
TCCGGCAGGTGAATGAGACCTGGACCCTGGAGAACTGCACGGTGGCCAGGTGCGTGGGTG	1920	
ACAACCGTGTCGTCCTGCTGGACCCAAAGCCTGTGGCCAACGTCACCTGCGTGAACAAGC	1980	
ACCTGCCCATCAAAGTGTCGGACCCGAGCCAGCCCTGTGACTTCCACTATGAGTGCGAGT	2040	
GCATCTGCAGCATGTGGGGCGGCTCCCACTATTCCACCTTTGACGGCACCTCTTACACCT	2100	
ICCGGGCAACTGCACCTATGTCCTCATGAGAGATCCATGCACGCTTTGGGAATCTCA	2160	
GUTUTARCTGGACAACCACTACTGCACGGCCTCTGCCACTGCCGCTGCCGCTGCC	2220	
CCCGCGCCTCAGCATCCACTACAAGTCCATGGATATCGTCCTCACTGTCACCATGGTGC	2280	
ATGGGAAGGAGGGCCTGATCCTGTTTGACCAAATTCCGGTGAGCAGCGGTTTCAGCA	2340	

### INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03017

	P96/03017					
C (Continu	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.			
A			15, 17, 20, 21, 23-25, 27-39/ 26, 42-48			
P,X/	"Generalized Research Report in Fiscal Heisei 5 to 7, Morphological and Bioch and Molecular Biological Basic Research	nemical	1, 2, 4, 6-14, 16, 18-25, 17-41/			
P,Y	Muscular Dystrophy", (03. 96) Junko Fu and others "Molecular Mechanism of Differentiation and Formation of Skele Muscle" p. 85-88		3, 5, 11-13, 15, 17, 20, 21, 23-25, 27-39			
P,X	Genomics 34 (3) (15.06.96) C. Cho et "Chromosomal Assignment of Four Test i Expressed Mouse Genes from a New Famil Transmembrane Proteins (ADAMs) Involve Cell-Cell Adhesion and Fusion" p. 413-	s- y of d in	1, 6-12			
P,X/	Experimental Medicine 14 (10) (01. 07. Tomohiro Kurizaki, Junko Fujisawa (Seb "A Novel Cellular Adhesive Molecule Me	ara)	1, 2, 4, 6-14, 16, 18-25, 27-41/			
P,Y	belonging to Metalloprotease Dysintegr Family" p. 1352-1356		3, 5, 11-13, 15, 17, 20, 21, 23-25, 27-39			
P,X	Biochemistry 68 (8) (08. 96) Tsuyoshi "ADAM Family and Cell Fusion" p. 1453-		1, 6-12			
A	Proc. Natl. Acad. Sci. USA <u>91</u> (1994) Get al. "A family of cellular proteins to snake venom disintegerins"	. Weskamp related	1 - 48			
			•			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

### INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03017

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER (C12N1/21, C12R1:19), (C12P21/08, C12R1:91)

Form PCT/ISA/210 (extra sheet) (July 1992)

国際出願番号 PCT/JP96/03017 国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. C1° C12N15/12. C07K14/47. C07K14/435. C12P21/08. C07K16/18. C12N1/21. C12P21/02. A61K38/17. A61K39/395. A61K31/70, C12N5/12 // (C12P21/02, C12R1:19), (C12N1/21, C12R1:19), (C12P21/08, C12R1:91) 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1° C12N15/12. C07K14/47. C07K14/435. C12P21/08. C07K16/18. C12N1/21. C12P21/02. A61K38/17. A61K39/395. A61K31/70, C12N5/12 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE. WPI. WPI/L. BIOSIS PREVIEWS 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリーキ 1. 6-10. 13. 18-20. Cell Structure and Function 20 [6] (1995) T. Yagami-Hiromasa, et al X/ THELTRINα, A NOVEL METALLOPROTEASE-DISINTEGRIN, PARTICIPATES IN MYOTUBE 22, 23-25, 27-37. FORMATION _ p. 585 2A-1345 40.41/ Y/ 2-5, 11-17, 20-25. 27-39/ A 26, 42-48 Cell Structure and Function 20 [6] (1995) T. Kurisaki et al 「CLONING OF MEL 1, 2, 4, 6-14, 16, 18 X/ TRINS. NOVEL MAMBERS OF METALLOPROTEASE-DISINTEGRIN FAMILY INVOLVED IN MYOCE -21, 23-25, 27-41/ **Y**/ NESISJ p. 585 2A-1330 3. 5. 11-13, 15, 17.

$\times$	C棚の焼きにも文献が列挙されている。
----------	--------------------

□ パテントファミリーに関する別紙を参照。

20-25, 27-39/ 26, 42-48

### * 引用文献のカテゴリー

A

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公妾されたもの
- 「O」口頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ侵先権の主張の基礎となる出願

#### の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

様式PCT/ISA/210 (第2ページ) (1992年7月)

	り用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
-	カテゴリー* X/	利用文献名 及び一部の箇所が関連することは、その関連する箇所の表示 Nature 377 (1995) T. Yagami-Hiromasa, et al 「A metalloprotease-disintegrin	1, 2, 4, 6-14, 16, 18	ĺ
	Α/	participating in myoblast fusion p. 652-656	-25, 27-41/	ĺ
1	Υ/		3, 5, 11-13, 15, 17,	ĺ
1			20, 21, 23-25, 27- 39/	
			39/ -26:42=48	
1		AND THE STATE OF THE PARTY OF T	COOKIDETO/Proprosition	Plan
}	P. X/	筋ジストロフィーの形態学的及び生化学・分子生物学的基礎研究 平成5-7年度総	1. 2. 4, 6-14, 16, 18	į
	1.4/	括研究報告書 (03.96) 藤沢淳子 他 「骨格筋分化・形成の分子機構」p.85-88	-25, 27-41/	į
1	P. Y		3, 5, 11-13, 15, 17,	
			20, 21, 23-25, 27- 39 -	ŀ
1			28	l
	D V	Genomics 34 [3] (15.06.96) C. Cho et al Chromosomal Assignment of Four Test	1. 6-12	Į
	Р. Х	is-Expressed Mouse Genes from a New Family of Transmembrane Proteins (ADAMs)		ĺ
		Involved in Cell-Cell Adhesion and Fusion p. 413-417		l
			4 0 4 0 4 4 0 4 0	
	P. X/	実験医学 14 [10] (01.07.96) 栗崎知浩, 藤沢 (瀬原) 淳子 「メタロプロテアーゼ	1, 2, 4, 6-14, 16, 18 -25, 27-41/	ĺ
	p. v	・ディスインテグリンファミリーに属する新しい細胞接着分子メルトリン(meltrin)	3, 5, 11-13, 15, 17.	l
1	P. Y	」р. 1352-1356	20, 21, 23-25, 27-	l
			_; 39	,
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 6-12	
	P. X	生化学 <u>68</u> [8] (08.96) 遠藤剛 「ADAMファミリーと細胞融合」 p.1453-1458	1, 0-12	ĺ
	•	Proc. Natl. Acad. Sci. USA 91 (1994) G. Weskamp et al FA family of cellular prot	1-48	
1	, <b>A</b>	eins related to snake venom disintegerins」		l
l		( <del></del>		
ļ				ĺ
١				
١				
I				
١			-	
į		<u>.</u>		
		l,		
		·		
	<u> </u>			
			}	