Poisson distribution into exponential factor.
Poisson distribution:
$$f(k; h) = Pr(x = k) = \frac{h^k e^{-h}}{k!}$$

Write into exponential family:

$$f(k; h) = \frac{1}{k!} \cdot \exp \log e(h^k e^{-h})$$

$$= \frac{1}{k!} \cdot (\exp \log e h^k) \cdot e^{-h}$$

$$= \frac{1}{k!} \cdot e^{k \log e h - h}$$

Let
$$T(y)=k$$
, $u=\log e\lambda$, $a(u)=\lambda$, $b(u)=\frac{1}{k!}$

Then we have
$$P(Y,Y) = b(X) \exp(XT(Y) - a(X))$$

and $a(X) = \lambda = \exp(\log_e \lambda) = e^X$