Université Mohammed V

Faculté des Sciences de Rabat

Département d'Informatique

Année Universitaire 2021/22

Master IPS; Module:SI **Prof: Mme F.Omary**

<u>Série de TD</u> (Hachage & signature)

Exercice:1

Soient p et q deux nombres premiers tels que : q divise p-1 et le problème du logarithme discret dans ${\bf Z_p}^*$ soit difficile.

Soit $\alpha \in \mathbb{Z}_p^*$ une racine q^e de 1 modulo p.

On définit $\beta \equiv \alpha^a \mod p$ où:

$$0 \le a \le q-1$$

Soit h : $\{0,1\}^* \xrightarrow{\rightarrow} \mathbf{Z}_q$ une fonction de hachage sûre.

Pour un nombre aléatoire secret k, $1 \le k \le q-1$ et K l'ensemble formé par la clé publique et la clé privé. On définit la signature d'un document x par :

Sig
$$_{K}$$
 (x, k) = (γ , δ) Où:

$$\gamma = h(x//\alpha^k)$$

et

$$\delta = k + a \gamma \mod p$$

- 1) Comment peut-on construire α ?
- 2) Définir une clé publique et une clé privé pour le schéma de signature ci-dessus.
- 3) Comment peut-on vérifier la signature du document x ?
- 4) Application:

On prend q=101 et p=78q+1=7879

Hypothèse: 3 est un élément primitif dans (Z₇₈₇₉*).

- 1) construire α
- 2) Prendre a=75
- 3) Définir la clé publique et la clé privé.
- 4) On suppose que Alice veuille signer le message x et qu'elle choisisse k=50, déterminer la signature correspondant à ces paramètres. (Indication : On suppose que $h(x//\alpha^k)=96$
- 5) Vérifier bien cette signature.

Exercice 2

Comment peut-on vérifier que la signature d'El Gamal a été construite correctement ?

- 1) Monter que $A^r r^s \equiv g^{(H(M))} \mod p$
- 2) Que fait Bob pour vérifier l'authenticité du document en question ?

Exercice3

On note $(\mathbb{Z}//2\mathbb{Z}/)$ par F et par F m l'ensemble des chaînes de m bits pris dans F.

Soit, $f: F \xrightarrow{m} F$ une fonction quelconque. On propose g comme fonction de hachage à itérer, définie comme suit :

On a g : $\mathbf{F}^{2m} \rightarrow \mathbf{F}^{m}$ telle que pour une chaîne x de 2m bits, découpée en 2 blocs \mathbf{X}_h et \mathbf{X}_l , on ait $\mathbf{g}(\mathbf{X}) = \mathbf{g}(\mathbf{X}_h / / \mathbf{X}_l) = \mathbf{f}(\mathbf{X}_h \oplus \mathbf{X}_l)$

Montrer que g n'est pas résistante à la seconde préimage.