NASA Quiet, Efficient Fans for Space Flight Workshop

Fan Acoustic Issues in the NASA Space Flight Experience

Christopher S. Allen (JSC/SF22 Acoustics Office)
Jerry Goodman (JSC/SF Habitability and Environmental Factors Division)

NASA Glenn Research Center April 2-3, 2008

Outline

- General Concerns
- Apollo Command Module & Lunar Module
- Shuttle Orbiter
- ISS Hardware
- Cx Acoustic Requirements

General Concerns

- Emphasis needs to be placed on choosing quiet fans compatible with systems design and specifications that control spec levels
 - Sound power
 - Choose quiet fan or plan to quiet it, early in program
 - Plan early verification that fan source allocations are met

Airborne noise

- System design should function/play together with fans used (flow passages, restrictions, bends, expansions & contractions, and acoustics) vs. fan speed understood (nominal, worst case, & unplanned variances)
- Fan inlets treated, as required
- Fan Outlets treated, as required
- Ducted system inlets are outlets designed for acoustic compliance compatibility & designed so some late required modifications can be made without signicant impacts

Structure Borne Noise

- Structure borne noise dealt with as part of fan package or installation
- Duct attachments and lines isolated

Case Radiated Noise

- Treatment added as much as possible to fan package (see example)

Good Examples of Integrated Fan Features

- ISS AAA fan and packaging (Integrated muffler & covers)

ISS IMV fan (Integrated barrier and isolators)

Apollo Command Module & Lunar Modules

Apollo Command Module (CM)

 Crews did not operate the cabin fans except during short specified periods and relied upon suit heat exchanger for the total thermal control of the cabin gas. This was because of the fan noise and because the noise passing through the cabin heat exchanger was amplified by the cabin structure

Apollo Lunar Module (LM)

Fan use was mostly discontinued because of excessive noise

Space Shuttle Orbiter

Fans were dominant noise source in Orbiter. Late acceptance of NC-55 as Orbiter limit, although NASA technical inputs were NC-50. Lost time: long debate over "goals" vs. requirements and NC-50 vs. 55. Orbiter levels were 68 dBA after IMU muffler fixes (see Figure)

Space Shuttle Orbiter (Continued)

 RFP requested Orbiter ECS use of "quiet fans" developed by NASA-JSC in RTOP contract with Hamilton Standard. Rockwell carried fan through early development as baseline, but deleted them in deference to "off-the shelf fans". NASA technical objected, and costs/schedule to re-implement quiet fans was prohibitive

IMU Fans

-Unacceptably high levels prior to Orbiter acceptance and shipment. Incorporated NASA GFE mufflers on three inlets and outlet at Palmdale-this demonstrated levels could be reduced to acceptable levels. Later incorporated integrated muffler for inlets/outlets

Cabin Fans

- Mufflers considered, but impacts were too significant because of costs & schedules and late identification

Avionics Bay Fans

Were loud but located in isolated avionics bays which were treated

FGB Module Ventilation System

Cabin Circulation Fans

FGB Air Filtration Fans

Two encased fans (each side of vehicle)
Diameter 170 mm
3000 RPM
Rotational frequency 50 Hz
Two blades
Blade passage frequency 100
Hz
Inlet dimensions ~ 550 mm x
230 mm
Inflow area 18644 sqmm

FGB Air Filtration Fan Rotor Hub

Aerodynamic Noise

Blade passage frequency (# blades

Support strut wake/blade interaction

Inlet turbulent flow

Blade pressure fluctuations

Blade-vortex interaction

Exhaust

Structureborne Noise

Motor

Rotor unbalance

Bearings

Noise spectra in FGB

FGB Fans

Noise control options

- Aerodynamic fairing
- Unobstructed inflow
- Blade design
- Motor/bearing design
- Helmholtz resonator
- Enclosure/duct
- Plenum
- Muffler
- Barrier
- Absorptive lining
- Damping

Solutions worked:

- 1. NASA Muffler (photo below). Incorporated Helmholtz resonators, inlet with blocked direct field of view, and incorporated foam absorption.
- 2. Russian mufflers, also utilized Helmholtz resonators

FGB Cabin Circulation Fans

- Could not change fans to quieter ones or put isolators on them. Also, they couldn't accept absorbing liners in outboard flow areas
- Inlet & outlet crew compartment areas circled were used to quiet resultant noise.
 Significant hardware items, weight, & infringement into habitable volume was the result

FGB Quieting Equipment

Profile Cross-Section of Service Module

Kayuta Acoustic Treatments

Service Module Ventilation System Fans

Ventilation Subsystem

Installation of soundproofing device on BΠΟ10, BΠΟ11, BCЭΠ1

SM Acoustic Contract

Quiet Fan Development

1.6k

₹

2.5k 3.15k

1.25k

40 50 63 80 100 125 160

70

Уровни шума в 1/3-октавных полосах частот, дБ

200 250 315 400 500 630

갽

6.3k 8k 10k

WHC

- Given a fan because it was spaceflight qualified
- Problem with voltage settings and MTL software

Crew Quarters

- Did not have time to choose a fan
- Vibration isolation problem
- Beating phenomenon
- Mockup testing was very helpful
 - Wooden mockup
 - Intermediate mockup

Noise Reduction of Airborne Path

Acoustic Emissions of CQ Ventilation System Mockup, SPL @ 95th Percentile Male Ear, CQV Inlet Fan Speed Medium (20 VDC), Chamber Ventilation Fan Off, 8/25/06, 8/28/06, 9/7/06, 9/8/06

Fan to Fan Differences

OGS

- Problem with manifold causing the fan to stall
- Show levels before and after choke

Effect of Reducing Backpressure

40x80 Noise at Different Rotational Speeds

Figure 27a. Noise level variation with changing fan rotational speed, N, but with constant test section flow velocity of M=0.1 (34.5 m/s, 67 kts).

Node 3

REFERENCE: N3-PL-AI-0019

DATE: 16 - Apr - 2007

ISSUE: 5 CLASS: DC

Page: 11/97

Node 3 Ventilation System

Linear diffuser Port side (position B, see annex A)

THC/Acoustic troubleshooting

- Test Performed on May, the 17th 2007 (ACOUSTICS)
 - Alternative Perforated Plates tested

Common Midbay Diffuser (22 slots out of 31 open, as per picture above) – Plate No. 1F70849-1B Rev. NC MFG8Z095

Common Zenith Diffuser (all slots open) - Plate No. 1F70849-1

Alternative Plates installed as per pictures above.

Increase of passage area:

75% on common zenith perforated plate
100% on common midbay perforated plate

THC/Acoustic troubleshooting

Test Performed on May, the 17th 2007 (ACOUSTICS)

ISS Noise Requirements

Octave Band Center Frequency, Hz

CGBA

PCG-STES

CPCG

PCG-STES

SAMS-II

MAMS

ADVASC

SAMS-I

Octave Band Center Frequency, Hz

Muffler Effects

CxP 70024, HUMAN-SYSTEMS INTEGRATION REQUIREMENTS

3.2.6.2.4 Sound Pressure Level (SPL) Limits for Continuous Noise during the Orbit Phase

The system shall limit the SPLs, created by the sum of all simultaneously operating equipment, averaged over any 20 second measurement period, throughout the crew habitable volume, to the values in Table 3.2-7 or less, within each of the specified octave bands, during all mission phases except launch and entry. [HS3076]

Rationale: This NC-52 requirement will limit noise levels within the crewhabitable volume to allow for adequate voice communications and habitability during the on-orbit mission operations. The octave band sound level limits from 63 Hz to 8 kHz are equivalent to NC-52 and the 16 kHz octave band has been added to extend the range throughout the audible frequency range. This requirement does not apply to alarms, communications, items listed in Table 3.2-8, or to any noise experienced during maintenance activities. The noise attenuation effectiveness of hearing protection or communications headsets may not be used to satisfy this requirement. This limit does not apply to impulse noise.

Table 3.2-7 Octave Band Sound Pressure Level Limits

Band center frequency (Hz)	63	125	250	500	1 k	2 k	4 k	8 k	16 k
SPL (dB)	72	65	60	56	53	51	50	49	48

CxP 70024, HUMAN-SYSTEMS INTEGRATION REQUIREMENTS

3.2.6.3.1 Tonal and Narrow-Band Noise Limits

The system shall limit the maximum SPL of narrow-band noise components and tones to at least 10 dB less than the broadband SPL of the octave band that contains the component or tone for the 1, 2, 4, and 8 kHz octave bands, and at least 5 dB less than the broadband SPL of the octave band that contains the component or tone for the 63, 125, 250 and 500 Hz octave bands. [HS3080]

<u>Rationale:</u> Limiting narrow band noise component and tone levels to 10 dB below the broadband level will prevent irritating and distracting acoustic conditions. Ref.: NASA-STD-3000, Fig 5.4.3.2.3.2.

Quiet Equipment Fan Database Data Acquisition

Performed at ARC, Nate Burnside, Clif Horne

Quiet, Efficient Fans for Space Exploration

Fan Database development website:

http://jsc-slssisl8/devroot/fpd/hefo/efo/acoustics/quietfan/form.cfm

