

# **Batch Process**



# **Description:**

This function is used to apply **sequentially** different polarimetric data processes. The different steps of this batch process are:

- Speckle Filter (BoxCar, JS Lee refined filter)
- H / A / Alpha Decomposition and analysis
- Unsupervised Wishart H / A / Alpha Classification

This basic processing approach provides a first **qualitative analysis** of the fully polarimetric data set processed.

This functionality is only available for:

- [S2]: 2x2 complex Scattering Matrix raw binary data (monostatic case).
- [S2]: 2x2 complex Scattering Matrix raw binary data (bistatic case).

#### **Comments:**

Parameters written in Red can be modified directly by the user from the keyboard

# **Input/Output Arguments:**

Input Indicates the location of the considered Main Directory

Directory containing the polarimetric data sets to be processed.

Output

**Directory** 

Indicates the location of the data output directory.

# **Output Image Number of Rows/Columns:**

The output image numbers of rows and columns are initialised to the input data set dimensions.

Users wishing to process a sub-part of the initial image can modify the **Init** and **End** values of the converted images rows and columns.

Note: init and end values have to remain within the range defined by the input image dimensions.

# **Output Format:**

As incoherent averaging will be introduced during the different data processing, this function is used to select the data output format.

|              | <u>-</u>                                                                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [S2] >> [T3] | Raw Binary Data will be converted during processing to (3x3) complex Coherency [ <b>T3</b> ] matrix in case of (2x2) complex Sinclair monostatic [ <b>S2</b> ] matrix. |
| [S2] >> [C3] | Raw Binary Data will be converted during processing to (3x3) complex Covariance [C3] matrix in case of (2x2) complex Sinclair monostatic [S2] matrix.                  |
| [S2] >> [T4] | Raw Binary Data will be converted during processing to (4x4) complex Coherency [ <b>T4</b> ] matrix in case of (2x2) complex Sinclair bistatic [ <b>S2</b> ] matrix.   |
| [S2] >> [C4] | Raw Binary Data will be converted during processing to (3x3)                                                                                                           |

complex Covariance [C4] matrix in case of (2x2) complex Sinclair

**Speckle Filter:** 

This function is used to apply a Polarimetric Speckle filtering on polarimetric raw binary datasets. Two Polarimetric Speckle Filters are proposed

bistatic [S2] matrix.

Box Car Filter This function filters polarimetric raw binary datasets using a Boxcar filter which performs incoherent averaging within a (N\*N) sliding window (W).

### Filtering Parameters

• Window Size: Users have to set the size of the (N\*N) sliding window used to compute the local estimate of the average matrix. The default value of N is set to 7.

Note: The default value of the **Output Directory** is set automatically to: **Main Directory\_BOX / X3** where **X3** stands for **T3, C3, T4 or C4** according to the data output format selected.

## J.S. Lee Refined Filter

This function filters polarimetric raw binary data sets using the J.S. Lee refined filter which estimates local statistics within a (N\*N) sliding window (W) and filters data in an adaptive way by minimizing a least square constraint.

This refined approach also includes the use of directional masks for the local statistics estimation.

#### Filtering Parameters

- **Number of Looks**: Users have to set the Input data equivalent number of looks used to compute the a priori input speckle noise variance. The default value of N is set to **1**.
- Window Size: Users have to set the size of the (N\*N) sliding window used to compute the local estimate of the average matrix. The default value of N is set to 7.

Note: The default value of the **Output Directory** is set automatically to: **Main Directory\_LEE / X3** where **X3** stands for **T3, C3, T4 or C4** according to the data output format selected.

# H/A/Alpha Decomposition:

This program creates binary files corresponding to the different polarimetric descriptors obtained from the H/A/Alpha decomposition.

The H/A/Alpha polarimetric decomposition is based on an eigenvector decomposition of the coherency matrix.

An option may be set to simultaneously create the corresponding bitmap image files.

# Processing Parameters

Data to be decomposed may be processed through an additional filtering procedure consisting of a boxcar filter. Users have then to set the size of the (N\*N) sliding window used to compute the local estimate of the average matrix.

The default value of N is set to  $\mathbf{0}$ . Users wishing to avoid additional filtering may set N to  $\mathbf{1}$ .

# H/A/Alpha Planes

The classification procedure creates three output files

- A classified data binary file containing the class index of each pixel of the input image.
- The corresponding bitmap image file.
- A bitmap image file indicating the pixels occurrence (density) in the selected classification plane.
- A bitmap image file indicating the location of classified data in the selected classification plane.

The different output files are

• H\_alpha\_class.bin; H\_alpha\_class.bmp;

- H\_alpha\_occurence\_plane.bmp;
- H\_alpha\_segmented\_plane.bmp;

#### ColorMap 9

The color coding of the bitmap output files is realized by the way of a 9 element colormap initialised with arbitrary values. Users have the possibility to modify the elements of the colormap in an interactive way



## **Unsupervised Wishart - H/A/Alpha Classification:**

This program creates binary and bitmap image files resulting from the segmentation of polarimetric data using the Wishart H-Alpha and Wishart H-A-Alpha schemes.

#### **Output Files**

Each classification procedures creates ouput binary files and the corresponding optional bitmap image files.

- wishart\_H\_alpha\_class\_x.bin (.bmp)
- wishart\_H\_A\_alpha\_class\_x.bin (.bmp)

The variable x indicates the window size of the eventual additional filtering performed prior to data classification.

# Processing Parameters

Data to be decomposed may be processed through an additional filtering procedure consisting of a boxcar filter. Users have then to set the size of the (N\*N) sliding window used to compute the local estimate of the average matrix.

The default value of N is set to 0. Users wishing to avoid additional filtering may set N to 1.

The segmentation termination criterion consists of a logical combination of two conditions.

The iterative k-mean clustering procedure is stopped if:

- A sufficiently low percentage of pixels switch class from one iteration to the other.
- The number of iterations reaches a maximum value Numerical values are automatically set to default values and may be modified.

#### **ColorMaps**

The color coding of the bitmap output files is realized by the way of a 8 or 16 element colormap initialized with arbitrary values. Users have the possibility to modify the elements of the colormaps in an interactive way.



