Gathering data

In [1]:

```
#Import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(color_codes=True)
import pickle
```

In [2]:

```
#Loading data
train_data=pd.read_csv('./client_data.csv')
history_data=pd.read_csv('./price_data.csv')
churn_data=pd.read_csv('output.csv')
```

In [3]:

```
#Show the first 5 rows of data train_data.head()
```

Out[3]:

	id	activity_new	campaign_disc_ele	
0	48ada52261e7cf58715202705a0451c9	esoiiifxdlbkcsluxmfuacbdckommixw	NaN	Imkel
1	24011ae4ebbe3035111d65fa7c15bc57	NaN	NaN	foc
2	d29c2c54acc38ff3c0614d0a653813dd	NaN	NaN	
3	764c75f661154dac3a6c254cd082ea7d	NaN	NaN	foc
4	bba03439a292a1e166f80264c16191cb	NaN	NaN	Imkel

5 rows × 32 columns

In [4]:

history_data.head()

Out[4]:

	id	price_date	price_p1_var	price_p2_var	price_p3_var	pri
0	038af19179925da21a25619c5a24b745	2015-01- 01	0.151367	0.0	0.0	4
1	038af19179925da21a25619c5a24b745	2015-02- 01	0.151367	0.0	0.0	4
2	038af19179925da21a25619c5a24b745	2015-03- 01	0.151367	0.0	0.0	4
3	038af19179925da21a25619c5a24b745	2015-04- 01	0.149626	0.0	0.0	4
4	038af19179925da21a25619c5a24b745	2015-05- 01	0.149626	0.0	0.0	4
4						•

In [5]:

churn_data.head()

Out[5]:

	id	churn
0	48ada52261e7cf58715202705a0451c9	0
1	24011ae4ebbe3035111d65fa7c15bc57	1
2	d29c2c54acc38ff3c0614d0a653813dd	0
3	764c75f661154dac3a6c254cd082ea7d	0
4	bba03439a292a1e166f80264c16191cb	0

In [6]:

```
#merge the train_data and churn_data into one dataframe
train=pd.merge(train_data,churn_data, on="id")
train.head()
```

Out[6]:

	id	activity_new	campaign_disc_ele	
0	48ada52261e7cf58715202705a0451c9	esoiiifxdlbkcsluxmfuacbdckommixw	NaN	I
1	24011ae4ebbe3035111d65fa7c15bc57	NaN	NaN	
2	d29c2c54acc38ff3c0614d0a653813dd	NaN	NaN	
3	764c75f661154dac3a6c254cd082ea7d	NaN	NaN	
4	bba03439a292a1e166f80264c16191cb	NaN	NaN	ı
5 r	ows × 33 columns			_
4			•	

Accessing Data

In [7]:

#See the datatype of train data train.dtypes

Out[7]:

id	object
activity_new	object
campaign_disc_ele	float64
channel_sales	object
cons 12m	int64
cons_gas_12m	int64
cons_last_month	int64
date_activ	object
_ date_end	object
date_first_activ	object
date_modif_prod	object
date_renewal	object
forecast_base_bill_ele	float64
forecast_base_bill_year	float64
forecast_bill_12m	float64
forecast_cons	float64
forecast_cons_12m	float64
forecast_cons_year	int64
<pre>forecast_discount_energy</pre>	float64
<pre>forecast_meter_rent_12m</pre>	float64
forecast_price_energy_p1	float64
<pre>forecast_price_energy_p2</pre>	float64
forecast_price_pow_p1	float64
has_gas	object
<pre>imp_cons</pre>	float64
margin_gross_pow_ele	float64
margin_net_pow_ele	float64
nb_prod_act	int64
net_margin	float64
num_years_antig	int64
origin_up	object
pow_max	float64
churn	int64
dtype: object	

In [8]:

history_data.dtypes

Out[8]:

id	object
price_date	object
price_p1_var	float64
price_p2_var	float64
price_p3_var	float64
price_p1_fix	float64
price_p2_fix	float64
price_p3_fix	float64
dtype: object	

In [9]:

#See the shape of dataset
train.shape

Out[9]:

(16096, 33)

In [10]:

history_data.shape

Out[10]:

(193002, 8)

In [11]:

#See the general descriptive statistics of data
train.describe()

Out[11]:

	campaign_disc_ele	cons_12m	cons_gas_12m	cons_last_month	forecast_base_bill_e
count	0.0	1.609600e+04	1.609600e+04	1.609600e+04	3508.00000
mean	NaN	1.948044e+05	3.191164e+04	1.946154e+04	335.84385
std	NaN	6.795151e+05	1.775885e+05	8.235676e+04	649.40600
min	NaN	-1.252760e+05	-3.037000e+03	-9.138600e+04	-364.94000
25%	NaN	5.906250e+03	0.000000e+00	0.000000e+00	0.00000
50%	NaN	1.533250e+04	0.000000e+00	9.010000e+02	162.95500
75%	NaN	5.022150e+04	0.000000e+00	4.127000e+03	396.18500
max	NaN	1.609711e+07	4.188440e+06	4.538720e+06	12566.08000

8 rows × 23 columns

It's seems that the campaign_disc_lel is an empty column

In [12]:

history_data.describe()

Out[12]:

	price_p1_var	price_p2_var	price_p3_var	price_p1_fix	price_p2_fix	price_p3_
count	191643.000000	191643.000000	191643.000000	191643.000000	191643.000000	191643.0000
mean	0.140991	0.054412	0.030712	43.325546	10.698201	6.4554
std	0.025117	0.050033	0.036335	5.437952	12.856046	7.7822
min	0.000000	0.000000	0.000000	-0.177779	-0.097752	-0.065
25%	0.125976	0.000000	0.000000	40.728885	0.000000	0.0000
50%	0.146033	0.085483	0.000000	44.266930	0.000000	0.0000
75%	0.151635	0.101780	0.072558	44.444710	24.339581	16.2260
max	0.280700	0.229788	0.114102	59.444710	36.490692	17.4582

In [13]:

#See The missing data of train
train.isnull().sum()/train.shape[0]

Out[13]:

id	0.000000
activity_new	0.593004
campaign_disc_ele	1.000000
channel_sales	0.262053
cons_12m	0.000000
cons_gas_12m	0.000000
cons_last_month	0.000000
date_activ	0.000000
date_end	0.000124
date_first_activ	0.782058
date_modif_prod	0.009754
date_renewal	0.002485
forecast_base_bill_ele	0.782058
forecast_base_bill_year	0.782058
forecast_bill_12m	0.782058
forecast_cons	0.782058
forecast_cons_12m	0.000000
forecast cons year	0.00000

As we can see that some of columns have missing data over 75%, we need to clean them in the later

In [14]:

```
history_data.isnull().sum()/history_data.shape[0]
```

Out[14]:

```
id
               0.000000
price_date
               0.000000
price_p1_var
               0.007041
price_p2_var
               0.007041
price_p3_var
               0.007041
price_p1_fix
               0.007041
price_p2_fix
               0.007041
price_p3_fix
               0.007041
dtype: float64
```

In [15]:

```
#Deep diving on the main parameters, first for the Churn
churn=train[['id','churn']]
churn.columns=['Companies','churn']
```

In [16]:

```
churn_total=churn.groupby(churn['churn']).count()
churn_percentage=churn_total/churn_total.sum()*100
```

In [17]:

About 10% of total customers have chruned

In [18]:

```
#Next see the acitivity distribution
activity=train[['id','activity_new','churn']]
activity=activity.groupby([activity['activity_new'],activity['churn']])['id'].count().unsta
```

In [22]:

```
activity.plot(kind='bar',figsize=(12,10),width=2,stacked=True,title="SME Activity")
plt.ylabel("Number of Companies")
plt.xlabel('Activity')
plt.legend(['Retention','Churn'],loc="upper right")
plt.xticks([])
plt.show()
```


The xticks is not showing to facilitate the visualization and the distribution of the activity is despite the lack of 60% of the entries

In [30]:

Out[30]:

Percentage churn Total companies

activity_new		
xwkaesbkfsacseixxksofpddwfkbobki	100.0	1.0
wkwdccuiboaeaalcaawlwmldiwmpewma	100.0	1.0
ikiucmkuisupefxcxfxxulkpwssppfuo	100.0	1.0
opoiuuwdmxdssidluooopfswlkkkcsxf	100.0	1.0
pfcocskbxlmofswiflsbcefcpufbopuo	100.0	2.0

In [31]:

```
#Now is about Sales channel
channel=train[['id','channel_sales','churn']]
channel=channel.groupby([channel['channel_sales'],channel['churn']])['id'].count().unstack(
```

In [32]:

 $channel_churn = (channel.div(channel.sum(axis = 1), axis = 0)*100).sort_values(by = [1], ascending = Factorial or a structure of the context of the contex$

In [39]:

In [40]:

Out[40]:

	Churn percentage	Total companies
channel_sales		
foosdfpfkusacimwkcsosbicdxkicaua	12.498306	7377.0
usilxuppasemubllopkaafesmlibmsdf	10.387812	1444.0
ewpakwlliwisiwduibdlfmalxowmwpci	8.488613	966.0
Imkebamcaaclubfxadlmueccxoimlema	5.595755	2073.0
epumfxlbckeskwekxbiuasklxalciiuu	0.000000	4.0

In [41]:

```
#Next is the consumption
consumption=train[['id','cons_12m','cons_gas_12m','cons_last_month','imp_cons','has_gas','c
```

```
In [62]:
```

```
fig,axs=plt.subplots(nrows=4,figsize=(8,15))
cons_12m=pd.DataFrame({'Retention':consumption[consumption['churn']==0]['cons_12m'],
                      'Churn':consumption[consumption['churn']==1]['cons_12m']})
cons_12m[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[0],stacked=True);
axs[0].set_xlabel('cons_12m')
axs[0].ticklabel_format(style='plain',axis='x')
cons_gas_12m=pd.DataFrame({'Retention':consumption[consumption['has_gas']=='t'][consumption
                      'Churn':consumption[consumption['has_gas']=='t'][consumption[consumpt
cons_gas_12m[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[1],stacked=True);
axs[1].set xlabel('cons 12m')
axs[1].ticklabel_format(style='plain',axis='x')
cons_last_month=pd.DataFrame({'Retention':consumption[consumption['churn']==0]['cons_last_m
                      'Churn':consumption[consumption['churn']==1]['cons_last_month']})
cons_last_month[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[2],stacked=True);
axs[2].set_xlabel('cons_12m')
axs[2].ticklabel_format(style='plain',axis='x')
imp_cons=pd.DataFrame({'Retention':consumption[consumption['churn']==0]['imp_cons'],
                      'Churn':consumption[consumption['churn']==1]['imp_cons']})
cons_12m[['Retention','Churn']].plot(kind='hist',bins=20,ax=axs[0],stacked=True);
axs[0].set_xlabel('cons_12m')
axs[0].ticklabel_format(style='plain',axis='x')
```


In []: