Exercice 1: (3 points)

Montrer en utilisant l'expression du taux d'accroissement que la dérivée de la fonction $f(x) = \frac{1}{x}$ au point d'abscisse $a \ne 0$ est $f'(a) = -\frac{1}{a^2}$.

Exercice 2: (5 points)

Soit
$$f(x) = \frac{2x+2}{x+3}$$

- 1. Donner le plus grand ensemble de réels sur lequel f est définie et dérivable.
- 2. Calculer la dérivée de la fonction f(x).
- **3.** Étudier le signe de f'(x).
- **4.** Réaliser le tableau des variations de f(x).

Exercice 3: (9 points)

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^3 - 6x^2 + 2$$

- **1.** Calculer f'(x).
- 2. Étudier le signe du trinôme $3x^2 12x$.
- **3.** Dresser le tableau de variation de f.
- **4.** Déterminer les extremums locaux de f.
- **5.** Donner le meilleur encadrement possible pour f(x) lorsque
 - **a.** *x* appartient à [1, 3].
 - **b.** x appartient à [-3, 4]

Exercice 4: (3 points)

Soit \mathcal{C} la courbe représentative de la fonction f définie sur $[0;+\infty[$ par $f(x)=\sqrt{x}.$

Soit *T* la droite d'équation $T: y = \frac{1}{8}x + 2$.

T est-elle tangente à la courbe C?

Exercice 5: (Bonus)

Démontrer le théorème sur les variations d'une fonction affine en utilisant la dérivée.

Exercice 6: (Bonus)

Calculer la dérivée de la fonction définie sur $]-\frac{1}{3}$, $+\infty[$ par $g(x)=\sqrt{3x+1}$.

Exercice 7: (Bonus)

Montrer que pour toute fonction h dérivable sur un intervalle I, la fonction $i(x) = [h(x)]^2$ est aussi définie et dérivable sur I et $i'(x) = 2h'(x) \times h(x)$.