CAP 2. DADOS MULTIMÍDIA

AULA 8: PRINCIPAIS CARACTERÍSTICAS E REQUISITOS DAS INFORMAÇÕES MULTIMÍDIA

Cap. 2 Dados Multimídia

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- Principais características e requisitos das informações multimídia

Nesta aula veremos...

Principais características e requisitos das informações multimídia

Requisitos de armazenamento

 Unidade de armazenamento: será adotado o Sistema Internacional (SI)

Múltiplos do byte V·D·E				V.D.E	
Prefixo binário (IEC)			Prefixo do SI		
Nome	Símbolo	Múltiplo	Nome	Símbolo	Múltiplo
byte	В	20	byte	В	10 ⁰
kibibyte	KiB	2 ¹⁰	kilobyte	kB	10 ³
mebibyte	MiB	2 ²⁰	megabyte	MB	10 ⁶
gibibyte	GiB	2 ³⁰	gigabyte	GB	10 ⁹
tebibyte	TiB	2 ⁴⁰	terabyte	ТВ	10 ¹²
pebibyte	PiB	2 ⁵⁰	petabyte	PB	10 ¹⁵
exbibyte	EiB	2^{60}	exabyte	EB	10 ¹⁸
zebibyte	ZiB	2 ⁷⁰	zettabyte	ZB	10 ²¹
yobibyte	YiB	2 ⁸⁰	yottabyte	YB	10 ²⁴

Requisito de taxa de bits

Unidade de taxa: será adotado o SI

Bit rates				
Name	Symbol	Multi	ple	
bit per second	bit/s	1	1	
Decimal prefixes (\$	Decimal prefixes (SI)			
kilobit per second	kbit/s	10 ³	1000 ¹	
megabit per second	Mbit/s	10 ⁶	1000 ²	
gigabit per second	Gbit/s	10 ⁹	1000 ³	
terabit per second	Tbit/s	10 ¹²	1000 ⁴	
Binary prefixes (IEC 80000-13)				
kibibit per second	Kibit/s	2 ¹⁰	1024 ¹	
mebibit per second	Mibit/s	2 ²⁰	1024 ²	
gibibit per second	Gibit/s	2 ³⁰	1024 ³	
tebibit per second	Tibit/s	2 ⁴⁰	1024 ⁴	

155

Imagens

- Requisito de armazenamento = HVP/8
 - H = nº de pixels por linha, V = número de linhas, P = bits por pixel
- Exemplo
 - Tamanho de dados de Imagem de 420 pixels/linha, 512 linhas e 24 bits ocupa 420*512*24/8 = 645120 B = 645,12 KB

Imagens

- Tamanho do arquivo
 - Tamanho dos dados: 645.120 B
 - Arquivo precisa de um cabeçalho: 54B no caso do BMP
 - Tamanho total dos dados do arquivo: 645120+54 = 645.174 B
- Tamanho em disco
 - Arquivo ocupa uma quantidade de unidades de alocação (clusters)
 - Tamanho da unidade de alocação definida na formatação: ex. 4096B
 - Tamanho em disco (Windows): 647.168 B
 - Arquivo de 645.174 B ocupará 645.174/ 4096 = 157,31 => 158 clusters
 - Tamanho em disco 158*4096 = 647.168 B

Tamanho: 630 KB (645.174 bytes)

Tamanho em disco: 632 KB (647.168 bytes)

Cabeçalho

(54 bytes)

Dados

(645.120)

Arquivo .bmp

11010101010 10101010101

Imagens

- Taxa de bits é calculada a partir dos requisito de armazenamento e tempo de transferência
 - R= HVP/t (t = tempo de transmissão)
- Exemplo
 - se a imagem (deve ser transmitida em 2s, a taxa de bits necessária é (420*512*24)/2 = 2,58 Mbps
 - Aumento devido aos dados do cabeçalho do arquivo e sobrecarga dos protocolos (p.e. HTTP/TCP/IP na Web)

512

420

Áudios

Taxa de bits = número_de_canais * taxa_de_amostragem * bits_por_amostra

Aplicações	Número de canais	Taxa de amostragem	Bits por amostra	Taxa de transmissão (Kbps)
Telefone Digital	1	8000	8	64
CD-Audio	2	44100	16	1.411,2
DAT	2	48000	16	1.536
Radio digital	2	32000	16	1.024

Telefone:

- 8000 amostra/s
- 8 bits/amostra

Áudios

- Espaço ocupado=
 (num canais)*(amostra/s)*(bits/amostra)*duração/8
 - Telefone digital com 1 minuto (mono=> 1 canal)
 - taxa de bits = 1*8000*8 = 64Kbps
 - Espaço ocupado = 1*8000*8*60/8 = 480KB
 - Qualidade CD-Áudio com 1 minuto
 - taxa de bits = 2*44100*16 = 1,41 Mbps
 - Espaço ocupado = 2*44100*16 *60/8 = 10,6 MB

Vídeos

- Taxa de bits = (HVP)*fps
- Espaço ocupado = (HVP/8)*fps*duração
 - 30 fps e imagens 720x480 com 24 bits/pixel de 1 minuto
 - taxa de bits = 720*480*24*30 = 249 Mbps
 - Espaço ocupado = 249*60/8 = 1,87 GB

Qualidade	Resolução	Bits por píxel	Taxa de quadros	Taxa de transmissão (Mbps)
DVD (PAL 4x3)	720x576	24	30	249,6
SDTV (HDMI 1.3)	704x480	48	30	486,6
HDTV (HDMI 1.3)	1920x1080	48	30	2.986

Relações temporais e espaciais entre mídias

 Mídias estáticas e dinâmicas estão relacionadas em uma apresentação (temporalmente e espacialmente)

Relações espaciais

- são definidas no momento da criação da aplicação
- não existem muitos problemas tecnológicos associados.

Relações temporais

- Aplicações multimídia devem apresentar informações multimídia ao usuário de forma satisfatória
 - As informações podem ser oriundas de fontes ao vivo, como câmeras de vídeo e microfones, ou originária de servidores distribuídos
 - Busca e transmissão dos dados deve ser coordenada e apresentada de forma que as relações temporais sejam mantidas
 - É uma das principais problemáticas de sistemas multimídia: sincronização multimídia

Relações temporais e espaciais entre mídias

- Definição de Sincronização Multimídia
 - Aparecimento (apresentação) temporalmente correto/desejado dos dados multimídia

Tipos de sincronização

- Sincronização intramídia
 - Significa que os elementos de mídia (amostras de áudio, quadros de vídeo) devem ser apresentados em instantes corretos
 - Ex.: Vídeo a 30fps (1 quadro a cada 1/30s)

Tipos de sincronização

- Sincronização intermídia
 - Significa que os relacionamentos temporais corretos/desejados entre os dados multimídia de uma aplicação devem ser mantidos

Sincronização intermídia

- Sincronização labial: Sincronização entre o movimento dos lábios e da voz
 - Distorção é percebida facilmente devido à referência do movimento dos lábio

Tipos de sincronização

- Sincronização de interação
 - Significa que o evento de interação produza o efeito desejado dentro de um tempo relativamente curto

Requisitos de atrasos e variações de atrasos (Jitter)

- Atrasos fim-a-fim: soma de todos os atrasos em todos os componentes de um sistema multimídia
 - Atraso aceitável é subjetivo e depende da aplicação
 - conversações ao vivo: necessitam a manutenção da natureza interativa: limite da percepção é de 400ms
 - recuperação de informação: alguns segundos

Requisitos de atrasos e variações de atrasos (Jitter)

- Atrasos fim-a-fim: soma de todos os atrasos em todos os componentes de um sistema multimídia
 - Atraso aceitável é subjetivo e depende da aplicação
 - conversações ao vivo: necessitam a manutenção da natureza interativa: limite da percepção é de 400ms
 - recuperação de informação: alguns segundos

Requisitos de atrasos e variações de atrasos (Jitter)

 Variação de atraso (Jitter): mídias contínuas são transmitidos em pacotes que sofrem diferentes atrasos fim-a-fim

Requisitos de atrasos e variações de atrasos (Jitter)

- Para mídias contínuas a variações de atrasos deve ser pequena
 - Para garantir a sincronização: processamento e comunicação devem satisfazer requisitos tempo-real
 - Normalmente a variação de atraso é eliminada por buffers de jitter
 - Buferizam os pacotes que chegam da rede e o player retira do buffer na taxa de apresentação

Tolerância a erros e perdas em dados multimídia

- Erros ou perdas em dados de áudio, vídeo e imagens são tolerados
- Percepção humana tolera perda de informações
 - Sem perda da semântica
- Técnicas de recobrimento de erros
 - empregadas para aumentar a qualidade de áudio e vídeo

Original	Perdas
Original	i Ciuu

Exemplo 1: 20% Loss

Exemplo 2: 30% Loss

Pontos Importantes

Saber calcular taxa de bits e requisitos de armazenamento

• Para imagens, áudios e vídeos

Sincronismo Multimídia

• Saber os tipos de sincronização

Restrições de atraso

• Diferenciar limites de atrasos para aplicações conversacionais e baseadas em servidor

Tolerância a perdas de informação

• Usuário final são humanos, que toleram certa perda sem perda de semântica