How the Greater Thames Estuary Fish Migration Roadmap was built

Wanda Bodnar Assistant Manager Thames Estuary Partnership 11th Nov 2021

Introduction

Introduction

• Objectives:

- To gather information on fish migratory barriers and river connectivity within the Thames River Basin and adjacent catchments
- To develop an online, easy-to-access and easy-to-use web-based GIS tool to visualise all relevant data
- To develop a replicable, strategic method that can be used in other catchments

Introduction

- Data science
 - Designation of project area
 - Data collection
 - Data pre-processing and merging
 - Data analysis
 - Data visualisation

• Designation of project area

- Data collection
 - Barriers
 - Adaptive Management of Barriers in European Rivers (AMBER)
 - Catchment Based Approach (CaBA)
 - Canal and River Trust (CRT)
 - Combined Essex Catchment
 - Environment Agency (EA) (separate file on barriers and passes)
 - River Obstacles app (existing data)
 - Stakeholders (London Wildlife Trust, SERT, ZSL)

- Data pre-processing and merging
 - All barrier datasets were clipped in ArcMap (*Clip tool*) to focus on the project area only

- Data pre-processing and merging
 - The separately received 'Fish and eel passes' (135 locations) data and the 'Thames obstruction' (1,333 locations) data from the EA were spatially joined in ArcMap (*Spatial join tool*)
 - AMBER, CaBA, EA, Essex and River Obstacles app barrier datasets were spatially joined in ArcMap (*Spatial join tool*) and standardised

- Data pre-processing and merging
 - Finalised barrier dataset
 - Cut down in ArcMap (*Buffer tool*) using a 100-metre buffer zone to concentrate on those barriers that occurred on the migratory routes only

- Data pre-processing and merging
 - Data from CRT, SERT, London Wildlife Trust and ZSL were manually integrated
 - Checking through each barrier location using Google Earth 3D satellite imagery

- Data analysis
 - The finalised barrier dataset was overlayed on top of the river shapefile
 - The river shapefile was split into fragments using the Split tool (manually)
 - In GIS: snapping points to lines and then split line at point
 - The length of each river fragment (km) was calculated (Calculate geometry tool)

- Data analysis
 - Open: river fragments where the nearest barrier downstream had fish, eel or multi-species pass, installed, were removed, or did not need mitigation
 - Closed: the rest of the river fragments
 - Separate shapefiles:
 - Upstream fish connectivity
 - Upstream eel connectivity

• Data analysis

• Data analysis

- Data analysis
 - The upstream fish and eel connectivity shapefiles were further arranged into sub-networks

(Each sub-network was made up of interconnected migratory routes)

- Data analysis
 - Using the upstream fish and eel connectivity shapefiles, the proportion of river fragmentation was calculated
 - The percentage value (%)
 of a river fragment was
 then assigned to the
 nearest barrier
 downstream and was
 integrated into the
 finalised barrier dataset

- Data analysis
 - River habitat survey data (EA)

- Data analysis
 - River habitat survey data (EA)

- Data analysis
 - River habitat survey data (EA)

River Habitat Survey			
Habitat quality assessment		Habitat modification score (class)	
Diverse	61 to 100	Near-natural	5
High	49 to 60	Predominantly unmodified	4
Moderate	38 to 48	Obviously modified	3
Low	37 to 37	Significantly modied	2
Poor	1 to 25	Severely modified	1

- Data analysis
 - River habitat survey data (EA)
 - Within each river fragment, the mean average was calculated for all HQA and HMS class habitats, and the value of the mean average was then assigned to nearest barrier downstream

- Data analysis
 - Final barrier dataset

82 features 0 selected

- Data analysis
 - Reprioritisation (Category field in the data)
 - Barriers with the highest % connectivity gain within the given subnetwork were marked as 'Connectivity gain'
 - Barriers that had information missing were marked as 'Data needed'
 - Impassable barriers (barriers without fish/eel pass) on the Highways and at the confluence of the Highways and A-roads were marked as 'First barrier'
 - Barriers without fish, eel or multi-species pass from where the upstream river sections had habitat scores HQA ≥ 49 and/or HMS class ≥ 4 were marked as 'Habitat priority'
 - Locations where it is known that passes are not present were marked as 'Pass not installed'
 - Barriers that had fish/eel pass installed or were removed were marked as 'Success'
 - Barriers that need to be addressed urgently for eel passage were marked as 'Super critical'

Reprioritisation

Barrier data

- Barriers locations
 where data is missing
 (not surveyed)
- Barriers with no pass installed
- Barriers with low EBAT score

Integrating additional data

- Barriers with high connectivity gain
- Barriers with good quality habitat upstream
- Barriers in the vicinity of developments
- Barriers with river section prone to pollution

Expert knowledge

- Barriers with a quick 'win'
- Barriers with easy access
- Barrier where major fish or eel project is needed
- Barrier where the fish/eel pass is now missing
- Redundant barriers
- Barrier where connectivity is not possible
- Barriers passable at HT

Reprioritisation

Barrier data

- Barriers locations
 where data is missing
 (not surveyed)
- Barriers with no pass installed
- Barriers with low EBAT score

Integrating additional data

- Barriers with high connectivity gain
- Barriers with good quality habitat upstream
- Barriers in the vicinity of developments
- Barriers with river section prone to pollution

Expert knowledge

- Barriers with a quick 'win'
- Barriers with easy access
- Barrier where major fish or eel project is needed
- Barrier where the fish/eel pass is now missing
- Redundant barriers
- Barrier where connectivity is not possible
- Barriers passable at HT

Reprioritisation

Barrier data

- Barriers locations
 where data is missing
 (not surveyed)
- Barriers with no pass installed
- Barriers with low EBAT score

Integrating additional data

- Barriers with high connectivity gain
- Barriers with good quality habitat upstream
- Barriers in the vicinity of developments
- Barriers with river section prone to pollution

Expert knowledge

- Barriers with a quick 'win'
- Barriers with easy access
- Barrier where major fish or eel project is needed
- Barrier where the fish/eel pass is now missing
- Redundant barriers
- Barrier where connectivity is not possible
- Barriers passable at HT

- Data visualisation
 - ArcGIS Online

- Data visualisation
 - ArcGIS Web Mapping Application

Map usage

Map usage

Map usage

- Thames Eels project barrier data
 - Data collection DONE
 - Data pre-processing and merging DONE
 - Data analysis
 - Open and closed river fragments Project partners
 - Calculation of connectivity gain Project partners
 - River habitat data integration Wanda
 - Reprioritisation Project partners
 - Integration of additional data Project partners
 - Data visualisation
 - Online and/or hardcopy map -> Fish Migration Vision and legacy projects - Project partners

- Thames Eels project barrier data
 - Data visualisation
 - Online and/or hardcopy map -> Fish Migration Vision and legacy projects
 - Highlighting which barriers are already passable
 - Marking where the 'new' barriers are
 - Identifying how the 'new' barriers scored with EBAT and 'passability'
 - 'New' barriers in between eel passes

- Thames Eels project
 - Updated data to be sent tomorrow (12th Nov)
 - 26th Nov Fish Migration Vision follow-up meeting
 - Draft maps for each catchment with prioritised barriers for discussion
 - 29th Nov Co-design workshop
 - Discussion of possible legacy projects with the wider audience

- Update of the Greater Thames Estuary Fish Migration Roadmap with extra catchments and updated barrier data
- Final report by March 2021 -> inform the Thames Eels project report

Questions & Discussion