

CS 590: Algorithms Sorting and Order Statistics I: Heapsort / Quicksort

Outline

- 4.1. Heapsort
 - 4.1.1. Tree & Binary Tree
 - 4.1.2. Heap
 - 4.1.3. Heapsort
 - 4.1.4. Priority Queues
- 4.2. Quick Sort
 - 4.2.1. Description of Quicksort
 - 4.2.2. Performance of Quicksort
 - 4.2.3. Randomized Quicksort
 - 4.2.4. Analysis of Quicksort

- 4.1. Heapsort
 - 4.1.1. Tree & Binary Tree
 - 4.1.2. Heap
 - 4.1.3. Heapsort
 - 4.1.4. Priority Queues
- 4.2. Quick Sort
 - 4.2.1. Description of Quicksort
 - 4.2.2. Performance of Quicksort
 - 4.2.3. Randomized Quicksort
 - 4.2.4. Analysis of Quicksort

Tree:

• The tree is a graphical way of representing a data structure.

Rooted tree:

- A rooted tree has one of the vertices distinguished from the others.
- The distinguished vertex is called the **root** of the tree and is located at the top of the tree.
- A vertex of a rooted tree is also called a **node**, represented by a circle.
- A pair of nodes are connected by an edge, represented by a segment.

Properties:

Consider a node x in a rooted tree T with root r.

- Parent and child: A node y at one lower depth connected to x. A node z at one depth higher and connected to x is a child of x.
- Ancestor: Any node y on the unique simple path from r to x, y is an ancestor of x.
- Descendant: If y is an ancestor of x, then x is a descendant of y.
- The subtree rooted at x: A tree induced by a descendant of x.
- If two nodes have the same parent, they are siblings.

Characteristics:

- Degree of x: the number of children of a node x.
- **Depth** of x: the length of the simple path from the root.
- Level: consists of all nodes at the same depth.
- Height: the number of edges on the longest simple downward path from a leaf (a node without a child) to the root. It is also equal to the largest depth of any node in the tree.

A binary tree is a structure defined on a finite set of nodes that either

- contains no nodes or
- composed of three disjoint sets of nodes a root node, a left subtree, and a right subtree.

- A binary tree is not simply an ordered tree in which each node has a degree at most of 2.
- Full binary tree: each node is either a leaf or has a degree of exactly 2. (there are no degree-1 nodes).
- Perfect binary tree: a full binary tree of height h with exactly $2^h 1$ nodes.
- Complete binary tree: a perfect binary tree through h-1 with some extra leaf nodes at depth h, all toward the left.

A heap (or binary heap) data structure is an array object A that can be considered as a complete binary tree with the following properties.

- The root of the tree is A[1].
- Every subtree is a heap
 - $0 \le A.heapsize \le A.length$
- The indices of parent, left child, and right child for A[j] are $A\left[\left|\frac{j}{2}\right|\right]$, A[2j], and A[2j+1], respectively.

Two kinds of binary heaps:

- Max-heap:
 - \circ The value of a node is the most the value of its parents, A[Parent(j)] >= A[j].
 - The largest element in a max-heap is stored at the root.
- Min-heap:
 - Opposite of Max-heap: A[Parent(j)] <= A[j].
 - o The smallest element in a min-heap is at the root.

16

14

10

8

7

9

3

2

4

The height of the heap is the height of its root.

• A heap with n elements based on a complete binary tree runs $\Theta(\lg n)$ time.

Proof:

Given an n-element heap of height k and is an almost-complete binary tree.

- it has at most $2^{k+1} 1$ elements when all levels are complete.
- it has at least 2^k elements when the most-left node at the depth of k has a child.

General Algorithmic Procedure of Heapsort:

- 1. The MAX-HEAPIFY procedure is the key to maintaining the max-heap property.
- 2. The BUILD-MAX-HEAP procedure produces a max-heap from an unordered input array.
- 3. The HEAPSORT sorts an array in place.
- 4. The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY, and HEAP-MAXIMUM allow the heap data structure to implement a priority queue.

Demonstration on board.

1870

The MAX-HEAPIFY() assumption:

- Consider a subtree with a root of j at any depth.
- Suppose the subtrees rooted at LEFT(j) and RIGHT(j) are max-heaps.
- If A[j] is smaller than its children, violates the max-heap property.

The MAX-HEAPIFY() operations as follow:

- It lets have value at A[j] "float down" in the max-heap so the subtree rooted at index j obeys the max-heap property.
- Then, A[j] needs to be placed at its highest children node (either LEFT(j) or RIGHT(j)).
- The children node with the highest value replaces A[j].
- This comparison and swap between A[j] and children until the array is heapified.


```
MAX-HEAPIFY(A,j,n)
    1 = LEFT(j), r = RIGHT(j)
    if (1 \le n \text{ and } A[1] > A[j]) then
        largest = 1
    else
        largest = j
    if (r <= n and A[r] > A[largest])
    then
 8
        largest = r
 9
    if (largest != j) then
10
        swap A[j] and A[largest]
11
        MAX-HEAPIFY(A, largest, n)
```


- Heap is an almost complete binary tree.
- Compares 3 items and swaps 2 at the most.
 - Fixing up the relationships among the elements $(A[j], \overline{A[LEFT(j)}, and A[RIGHT(j)])$ at a given node j takes $\Theta(1)$ time.

Worst case:

- when the node A[j] becomes a leaf of the tree.
- The children's subtrees each have a size at most 2n/3. (only half full case)
- The running time of the recursion equation becomes $T(n) \le T\left(\frac{2n}{3}\right) + \Theta(1)$.
- The solution of MAX-HEAPIFY() running time is $T(n) = O(\lg n)$.

Building a heap

- Use MAX-HEAPIFY in a *bottom-up* manner to convert an array A[1 ... n] into a max-heap.
- $A\left[\left(\left|\frac{n}{2}\right|+1\right)...n\right]$ are all leaves of the tree so each is a 1-element heap to begin with.

```
BUILD-MAX-HEAP(A, n)

1 for (floor(n/2) >= j >= 1)

2 MAX-HEAPIFY(A, j, n)
```


Loop Invariant Correctness:

- Initialization since $j = \left\lfloor \frac{n}{2} \right\rfloor$ before the first iteration of the for loop, the invariant is initially true.
 - Why?
- Maintenance Decrementing j reestablishes the loop invariant at each iteration.
 - Is the subsolution always a max-heap?
- Termination When i = 0, the loop terminates.
 - What happens to the solution?

1870

- 1. Simple Bound: the running time is $O(n \lg n)$.
- 2. tighter analysis:
 - The running time for MAX-HEAPIFY() becomes linear in the node j's height for its run. Most nodes have small heights.
 - We have $\leq \left[\frac{n}{2^{k+1}}\right]$ nodes of height k and height of heap is $\lfloor \lg n \rfloor$.

BUILD-MAX-HEAP() Analysis:

How?

- Start with finding the number of leaves in tree T.
- The tree leaves (nodes at height 0) are at depths K and K-1.
- They consist of all notes at depth K, and the nodes at depth K-1 that are not parents of depth-K nodes.

- When n is odd, the even number of leaves x in the tree T at the depth K.
 - If n is even, then x is odd.
- If x is even,
 - x/2 nodes of nodes at K-1 are parents of x.
 - $2^{K-1} x/2$ nodes at K 1 depth are leaves since there are a total of 2^{K-1} nodes at K-1 depth.
- The total number of leaves in T is $\left[\frac{n}{2}\right]$.
- If x is odd, the total number of leaves is also $\left[\frac{n}{2}\right]$.
 - Similar arguments can be made.

1870

- Let n_h be the number of nodes at height h in the n-node tree T.
- Form a new tree T' formed after removing the leaves of tree T.
- Then it has $n' = n n_h$ nodes.
- Since we know that $n_h = \left\lceil \frac{n}{2} \right\rceil$, $n' = \left\lceil \frac{n}{2} \right\rceil$.

- Let n'_{h-1} be the number of nodes at height k-1 in T'.
- Then $n_h = n'_{h-1}$.
- We can bound that $n_h = n'_{h-1} \le \left\lceil \frac{n'}{2^h} \right\rceil = \left\lceil \frac{\lfloor n/2 \rfloor}{2^k} \right\rceil \le \left\lceil \frac{n/2}{2^k} \right\rceil = \left\lceil \frac{n}{2^{k+1}} \right\rceil$.
- The time required by MAX-HEAPIFY when called on a node of height h is O(h), so the total cost of BUILD-MAX-HEAP is

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{2^{k+1}} \right] O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) = O\left(n \left(\frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2}\right)\right) = O(2n) = O(n)$$

- Thus, the running time of BUILD-MAX-HEAP is O(n).
- The same argument works for min-heap and MIN-HEAPIFY.

- Finding the maximum value in an array A[1,..., n] is easy:
- A[...] becomes a max-heap using **BUILD-MAX-HEAP()** function.
- Then, A[1] is always the maximum element.
- However, finding the smallest element A[j] is not easy.
- How can A[...] be sorted?
- Consider a max-heap array A=[7, 4, 3, 1, 2].

For a given input array, the Heapsort works as follows:

- 1. We build a max-heap from the array.
- 2. We start with the root (the maximum element), the algorithm places the maximum element into the correct place in the array by swapping it with the element in the last position.
- 3. We discard this last node by decreasing the heap size and calling MAX-HEAPIFY on the new and possibly incorrectly placed root.
- 4. We repeat this process until only one node (the smallest element) remains in the correct place.

1870

- Demonstrate a heapsort with A=[7, 4, 3, 1, 2].
- On board


```
HEAPSORT(A, n)

1 BUILD-MAX-HEAP(A, n)

2 for (n >= j >= 2)
    swap A[1] and A[j]
    MAX-HEAPIFY(A, j, n)
```

- The running time is $O(n \lg n)$.
- Compare to Insertion Sort $\Theta(n^2)$ and Merge-Sort $\Theta(n \lg n)$
 - The heapsort is faster than the insertion sort and slower than the merge sort.
 - But it does not require massive recursion (less split) and multiple arrays (one subproblem).

4.1.4. Priority Queues

- Priority queue:
 - Maintains a dynamic set S of elements.
 - Each set element has a key an associated value.
 - Common dynamic operations:
 - INSERT(S, x): inserts elements x into set S.
 - MAXIMUM(S): returns an element of S with the largest key.
 - EXTRACT-MAX(S): removes and returns element of S with the largest key.
 - INCREASE-KEY(S, x, k): increases value of element x's key to k assuming k >= x.key.
 - Similarly, we can operate for the minimum key value.

4.1.4. Priority Queues

1870

Discussion on board.

Outline

- 4.1. Heapsort
 - 4.1.1. Tree & Binary Tree
 - 4.1.2. Heap
 - 4.1.3. Heapsort
 - 4.1.4. Priority Queues
- 4.2. Quick Sort
 - 4.2.1. Description of Quicksort
 - 4.2.2. Performance of Quicksort
 - 4.2.3. Randomized Quicksort
 - 4.2.4. Analysis of Quicksort

4.2.1. Description of Quicksort

Quicksort has a similar approach as the merge sort.

- It is another sorting algorithm based on the divide-and-conquer process.
- Divide the partition A[p ... r] into two subarrays A[p ... q 1] and A[q + 1 ... r].
- Note: Elements will be arranged before the split!
 - each element in $A[p ... q 1] \le A[q]$ and
 - $A[q] \le A[q+1...r]$.
- Conquer: We sort the two subarrays by recursive calls to QUICKSORT.
- Combine: No need to combine the subarrays, because they are sorted in place.

```
QUICKSORT(A, p, r) //initial call (A,1,n)

1 if (p < r) then

2 q = PARTITION(A, p, r)

3 QUICKSORT(A, p, q-1)

4 QUICKSORT(A, q+1, r)
```


4.2.1. Description of Quicksort


```
PARTITION(A, p, r)
 x = A[r] //the last element (call it a pivot)
2 i = p - 1
  for (p <= j <= r-1)
  if (A[j] \le x):
  i = i + 1
       swap A[i] and A[j]
  swap A[i+1] and A[r]
  return i+1 //returns q the index to split
```

- PARTITION() rearranges the subarray in place before the split.
- PARTITION() always selects the last element A[r] in the subarray A[p...r] as the pivot (the element around which to partition).
- As the procedure executes, the array is partitioned into four regions which may be empty.

4.2.1. Description of Quicksort

A = [8, 1, 6, 4, 0, 3, 9, 5] becomes [1, 4, 0, 3, 5, 8, 9, 6] when PARTITION(A, 1, n) is called.

```
PARTITION (A, p, r)
1x = A[r]
2i = p - 1
3 \text{ for } (p \le j \le r-1)
     if (A[j] \le x):
     i = i + 1
       swap A[i] and A[j]
7 \text{ swap A[i+1]} and A[r]
8 return i+1
```



```
PARTITION(A, p, r)

1 x = A[r]
2 i = p - 1
3 for (p <= j <= r-1)
4    if (A[j] <= x):
5         i = i + 1
6         swap A[i] and A[j]
7 swap A[i+1] and A[r]
8 return i+1</pre>
```

Loop invariant:

- 1. Array elements are arranged before a call.
 - 1. All entries in A[p...i] are $\langle x (A[r])$.
 - 2. All entries in A[i+1,...r-1] are > x.
- 2. Elements move to the positions to maintain the arrangement rules. (not sorted)
 - The pivot stays at the end of the array.
- 3. All elements are positioned and arrangement rules are satisfied.

Note: The additional region A[j...r-1] consists of elements that have not yet been processed. We do not yet know how they compare to the pivot element.

The running time of **QUICKSORT** depends on the partitioning of the subarrays.

- QUICKSORT is as fast as MERGE-SORT if the partitioned subarrays are balanced (even-sized).
- QUICKSORT is as slow as INSERTIONSORT if the partitioned subarrays are unbalanced (uneven-sized).

Worst case: Subarrays completely unbalanced.

- Have 0 elements in one subarray and n-1 elements in the other subarray.
- The recurrence running time:

$$T(n) = T(n-1) + T(0) + \Theta(n) = O(n^2)$$

- See 4.2.4. Analysis of Quicksort
- The running time is like INSERTION-SORT.

Best case: Subarrays are always completely balanced.

- Each subarray has $\leq n/2$ elements.
- The recurrence running time:

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$= \Theta(n \lg n)$$

Balanced partitioning:

- Let's assume that PATITION always produces a 9 to 1 split.
- Then the recurrence is

$$T(n) \le T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + \Theta(n) = O(n\lg n)$$

- As long as it's a constant, the base of the log does not matter in asymptotic notation.
- Any split of constant proportionality will yield a recursion tree of depth $\Theta(\lg n)$.

Average case:

- Splits in the recursion tree will not always be constant.
- There will usually be a mix of "good" and "bad" splits throughout the recursion tree.
- It does not affect the asymptotic running time assume that levels alternate between best- and worst-case splits.
- The bad split only adds to the constant hidden in Θ notation.
- The same number of subarrays to sort but twice as much work is needed.
- Both splits result in $\Theta(n \lg n)$ time, though the constant on the bad split is higher.

4.2.3 Randomized Quicksort

- We assumed so far that all input permutations are equally likely which is not always the case.
- We introduce randomization to improve the quicksort algorithm.
- One option would be to use a random permutation of the input array.
- We use random sampling instead which is picking one element at random.
- Instead of using A[r] as the pivot element we randomly pick an element from the subarray.

4.2.3 Randomized Quicksort


```
RANDOMIZED-PARTITION(A, p, r)
1 i = random(p, r)
2 exchange A[r] and A[i]
3 return PARTITION(A, p, r)
```

```
RANDOMIZED-QUICKSORT(A, p, r)
1 if p < r:
2   q = RANDOMMIZED-PARTITION(A, p, r)
3   RANDOMIZED-QUICKSORT(A, p, q-1)
4   RANDOMIZED-QUICKSORT(A, q+1, r)</pre>
```

4.2.4 Analysis of Quicksort

Work on board

