

GENERAL GUIDELINES

Do's:-

- Students should be on time for every lecture.
- Students are advised to show due respect to all faculty members.
- Students should keep the Classrooms, Laboratories and Workshops clean and tidy.
- Students must maintain absolute discipline and decorum, while on campus.
- Students should come prepared with algorithm / flowchart / program / procedure for all the experiments before attending the laboratory session.
- Students should bring the data sheets and laboratory records completed in all respects to the laboratory.
- Students are advised to clarify their doubts in the respective courses with the faculty.
- Students have to inform their parents that they should follow up the progress of their wards by being in touch with the institution authorities at regular intervals.
- Students are advised to be present for the mentor meetings conducted by their respective Faculty Advisors, failing which appropriate disciplinary action will be taken.

Don'ts:-

- Students are not permitted to attend the class without the identity card, once issued.
- Ragging is strictly prohibited because it is punishable under Karnataka Education Act. Any student involved in ragging, will be severely punished which includes handing over the case to Police, rustication from the college etc.
- Writing on desks and walls is strictly prohibited, failing which the students will be fined heavily. If the identity of the individual is not established the entire class / students in the block will be fined.
- Students must not use their cell phones during class hours. If any student is found using their cell phone during class hours it will be confiscated.
- Students are not supposed to alter the configuration of the system / any software on the systems.

IV SEMESTER (2016-2020)

Sl. No.	Course Code	Course Title	Hours / week			Course Title Hours / week Credi		Credits	Course Type
110.			L	T	P	S			
1.	UE16MA251	Linear Algebra & Its Applications	3	1	1	0	4	FC	
2.	UE16CS251	Design and Analysis of Algorithms	4	0	0	0	4	CC	
3.	UE16CS252	Data Base Management Systems	4	0	0	0	4	CC	
4.	UE16CS253	Microprocessors & Computer Architecture	4	0	0	0	4	FC	
5.	UE16CS254	Theory of Computation	4	0	0	0	4	CC	
6.	UE16CS255	Design and Analysis of Algorithms Laboratory	0	0	2	0	1	CC	
7.	UE16CS256	Data Base Management Systems Laboratory	0	0	2	0	1	CC	
8.	UE16CS257	Microprocessor & Computer Architecture Laboratory	0	0	2	0	1	FC	
9.	UE17MA151D	Engineering Mathematics-II (Applicable to Lateral Entry Students)	2	1	0	0	2	FC	
		Total	19/21	1/2	07	0	23/25		

UE16MA251: Linear Algebra & its Applications(3-1-1-0-4)

Class	Chapter Title /			# of Hours: 52 rtion covered	
#	Reference Literature			Cumulative %	
1	Unit 1	Introduction to Linear Algebra			
2	Matrices and Guassian	The Geometry of Linear Equations			
3	Elimination	The Geometry of Linear Equations			
4	T1:1.1-1.6	Gaussian Elimination –Forward Elimination			
5		Gaussian Elimination-Back substitution			
6		Scilab Class Number1 – Gaussian Elimination	20	20	
7		Elimination Matrices			
8		Triangular Factors and Row Exchanges			
9		Inverses and Transposes			
10		Scilab Class Number 2- LU Decomposition			
11		Scilab Class Number 3-Inverses			
12	Unit 2 Vector Spaces	Vector Spaces			
13		Column Space			
14	T1: Chapter 2 2.1—2.4	Nullspace			
15		Linear Independence			
16		Linear Independence, Basis		40	
17		Basis and Dimensions	20	40	
18		The Four Fundamental Subspaces			
19		The Four Fundamental Subspaces			
20		Scilab Class Number 4– Span of Column Space of A			
21		Scilab Class Number 5 – Four Fundamental Subspaces of A			
22	Unit 3 Linear	Linear Transformations in two dimensions			
23	Transformations	Linear Transformations in two dimensions	20	60	
24	and Orthogonality	Linear Transformations in two dimensions	20	UU	
25	T1: 3.1—3.3	Orthogonal Vectors and Subspaces			

		(Jan – May 2018)	T.	1
26		Orthogonal Vectors and Subspaces		
27		Cosines and Projections onto Lines		
28		Projections onto a Plane		
29		Least Squares		
30		Scilab Class Number 6-Projections by Least Squares		
31	Unit 4	Orthogonal Bases		
32	Orthogonalization, Eigen Values and	Orthonormal Basis	-	
33	Eigen Vectors T1: 3.4	The Gram- Schmidt Orthogonalization		
34	T1: 5.1—5.3 T2:2.14-2.15	QR Factorization		
35		Scilab Class Number 7- The Gram- Schmidt process	20	
36		Introduction to Eigen values and Eigen vectors,		80
37		Power Method		
38		Diagonalization of a Matrix		
39		Diagonalization of a Matrix		
40		Scilab Class Number 8- Eigen Values and Eigen Vectors		
41		Scilab Class Number 9-The Power Method		
42	Unit 5	Graphical solution of LPP		
43	Linear Programming	Graphical solution of LPP		
44	Problem T1:8.1-8.2	General LPP	20	100
45	T2: 28.5.1—5.3	Canonical and Standard Forms		
46	T2:33.5—33.8	Canonical and Standard Forms		
47		Scilab Class Number 10- Graphical Solution of LPP		
48		Simplex Method		
49		Simplex Method		
50		Simplex Method		
51		Repetition of Lab Hour/ Practice Test in Scilab		
52		Scilab – In Semester Assessment		

Book	Code	Title & Author	Publication Information			
Type			Edition	Publisher	Year	
Text Book	T1	Linear Algebra and its Applications by Gilbert Strang, ,	4 th	Thomson Brooks/ Cole	2007	
Text Book	Т2	Higher Engineering Mathematics by B S Grewal	42 nd	Khanna Publishers		

UE16CS251:Design and Analysis of Algorithms(4-0-0-0-4)

Class	Chapter Title /	Title / Topics to be Covered		on covered
#	Reference Literature		% of	Cumulative
			Syllabus	%
1	Unit 1	Motivation for the course.		
		Scheme of the course.		
	T1: Chapters	Introduction to Algorithms.		
2	1 (1.1, 1.2, 1.3), and	Fundamentals of Algorithmic problem solving.		
	2 (2.1, 2.2, 2.3, 2.4)	Important problem types – sorting, searching.		
3		Important problem types – string processing, graph problems,	16%	16%
		Combinatorial, Geometrical, numerical problems		
4		Analysis Framework, Asymptotic notations		
5		Basic Efficiency classes. Analysis of non recursive algorithms		
6		Analysis of Non recursive algorithms		
7		Examples of Recursive algorithms		
8		Examples of Non-recursive algorithms		
9	Unit 2	Brute-Force approach		
10		Sequential Search]	
11	T1: Chapters	Selection Sort and Bubble Sort]	
12	3 (3.1, 3.2, 3.4), and	Brute-Force String Matching]	
13	4 (4.1, 4.2, 4.3, 4.4,	Exhaustive Search – Travelling Salesman Problem	23%	39%
14	4.5)	Knapsack Problem, Assignment Problem		
15		Divide-and-Conquer approach		
16		Mergesort		
17		Quicksort		
18		Binary Search		
19		Multiplication of Large Integers		
20		Strassen's Matrix Multiplication		
21	Unit 3	Decrease-and-Conquer approach - Insertion Sort		
22		Depth First Search, Breadth First Search		
23	T1: Chapters	Topological Sorting]	
24	5 (5.1, 5.2, 5.3, 5.4,	Algorithms for Generating Combinatorial Objects]	
25	5.5), and	Decrease-by-a-Constant-Factor Algorithms	21%	60%
26	6 (6.1, 6.2, 6.3, 6.4,	Transform-and-Conquer approach - Presorting		
27	6.5)	Gaussian Elimination		
28		Balanced Search Trees - AVL		
29		2-3 trees		
30		Heaps and Heapsort		
31		Horner's Rule and Binary Exponentiation		
32	Unit 4	Space and Time Tradeoffs - Sorting by Counting		
]	
33	T1: chapters	Input Enhancement in String Matching – Horspool's algorithm]	
34	7 (7.1, 7.2, 7.3), and	Boyer-Moore Algorithm]	
35	8 (8.1, 8.2, 8.4)	Hashing]	
36	1	Dynamic Programming approach	17%	77%
37	1	Computing a Binomial Coefficient	1	
38	1	Warshall's Algorithm	1	
39	1	Floyd's Algorithm	1	
	I .	1 /	1	1

40		Knapsack problem		
41	Unit 5	Prim's Algorithm		
42		Kruskal's Algorithm		
43	T1: chapters	Problems on Prim's and Kruskal's Algorithm		
44	9 (9.1, 9.2, 9.3, 9.4),	Dijkstra's Algorithm		
45	11 (11.1, 11.2, 11.3),	Problem using Dijkstra's Algorithm		
46	and 12 (12.1, 12.2)	Huffman trees		
47		Comparison of Design Strategies		1000/
48		Lower Bound Algorithms	23%	100%
49		Decision Trees		
50		P,NP and NP Complete problems		
51		Backtracking – N queens Problem, Hamiltonian circuit Problem,		
		Sum of Subset Problem		
52		Branch and Bound- Assignment, knapsack problem, Travelling		
		salesman problem		

Book Type	Code	Title & Author	Publication Information			
Book Type			Edition	Publisher	Year	
Text Book	T1	Introduction to The Design and Analysis of Algorithms Anany Levitin	2	Pearson	2011	
Reference Book	R1	Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	3	Prentice-Hall India	2009	

UE16CS252: Database Management Systems (4-0-0-0-4)

	Chanter 441a /			# 01 Hours: 52
Class #	Chapter title / Reference	Topics to be Covered	_	ions covered
	Literature		% of syllabus	Cumulative %
1		Introduction, characteristics, advantages		
2		Data models, 3-schema architecture, data independence,		
2		database environment		
3	Unit 1	Conceptual Data Modelling – ERD diagram		
5	Introduction and ER	Entity, Relationships, Attributes, Keys	10	19
	Model	Weak Entity, Roles, Structural Constraints	19	1)
7	T1: Chapter 1,2,3	Company ERD Example, Design issues ERD Exercises		
8		Introduction to SQL commands		
9		History, Database Languages, Interfaces		
		Review of Chapters.		
10		SQL Data Definition and Data type		
12		Specifying Basic Constraints in SQL		
13		Schema Change Statements in SQL		
14	Unit 2	Basic Queries in SQL		
15	SQL language	More Complex SQL Queries		
16	T1: Chapter 8,9.x	SQL Review and Exercises	19	38
17		Insert, Delete and Update		
18		Assertion, Trigger, Views, other SQL features		
19		Database programming		
20		SQL Review and Exercises		
21		Relational Model , Constraints and Schemas		
22		Specifying constraints in SQL		
22		Relational Algebra, Unary Relational Operations:		
23	Unit 3	SELECT and PROJECT		
24	Relational Model	Set Theory Operations and Examples		
25	T1: Chapter 5,6,7.1	Binary Relational Operations: JOIN. and: DIVISION		
26	11. Chapter 3,0,7.1	Aggregate functions and grouping, Examples	19	58
27		Review of Relational Algebra		
		Relational Database Design Using ER-to Relational		
28		Mapping		
29		ER to Relational mapping examples		
30		Review of Relational Model and Exercises.		
31		Informal Design Guidelines for Schemas		
32		Functional Dependencies		
33	Unit 4	Functional Dependencies, Minimal Cover		
34	Relational	Normal Forms Based on Primary Keys		
35	Decomposition FDs,	1st ,2nd and 3rd NF		
36	Normal Forma	Boyce-Codd Normal Form and Examples (Lab 10)		
37		Properties of Relational Decompositions		
38	T1:Chapter	Schema Design		
39	10,11.x	Higher Normal Forms		
40		Chapter Review and Exercises	19	77

		(= :: ::)		
41		Transactions and ACID Properties, Schedules,		
41		Concurrency		
42		Serializability and Recoverability		
43	Unit 5	Lock-Based Concurrency Control, 2PL, Strict 2PL		
44	Transaction	Deadlocks, Precedence Graphs		
45	Management,	Concurrency Control without Locking, Introduction to		
43	Security and	Crash Recovery		
46	Advanced Topics	ARIES, Write-Ahead Log Protocol,	23	100
47	T2: Chapter 16,17,18,	Recovery from System Crash		
48	and 21	Database Security: Discretionary, Mandatory Access		
40		Controls		
49		Advanced topics		
50		Non Relational databases		
51		Review of Units 4 and 5		
52		Review of Course.		

Book Type	Code	Title & Author	Publication Info			
Dook Type	Code	The & Author	Edition	Publisher	Year	
Text Book	T1	Fundamentals of Database Systems Elmasri and Navathe	5 th or latest	Pearson Education	2006	
Text Book	T2	Database Management Systems by Gehrke and RaghuRam Krishnan	3 rd or latest	Pearson Education	2003	

UE16CS253: Microprocessors & Computer Architecture (4-0-0-0-4)

Class	Chapter Title /		% of port	ions covered
#	Reference Literature	Topics to be Covered	% of syllabus	Cumulative %
1	Unit 1:	Overview of Microprocessor : Evolution and Introduction to INTEL Processor	·	
2	Introduction to	Overview of Microcontroller: 8051		
3	Microprocessor	Introduction to RISC and CISC Processors		
	Architecture	RISC Architecture		
4	T3:1.6, 2.3,	Instruction set Architecture : Endian, ARM Programmer		
	T1:A-3,	Model	20%	20%
5	T3:pg no: 51-55	Addressing Modes		
6	T4:Chapter 3.1 to	Data Processing Instructions		
7	3.5	Conditional Execution Instructions		
8		Sample Programs		
9		Branch Instructions		
10		Multiple Register Transfer Instructions		
11		Function & Procedures		
12		Function & Procedures - continued		
13		Software Interrupts		
14		Sample Programs		
15	Unit 2: Instruction	Instruction Encoding: Data Processing		
16	set	Instruction Encoding: Multiple Register Transfer	25%	45%
17	T3:6.8, 5.6, 4.1	Instruction Encoding: Multiplication	2370	4370
18		Instruction Encoding: Branch Instruction		
19		Barrel Shifter		
20		Arm Data path Timing		
21		Introduction to Co-processor		
22		Sample Programs		
23		Introduction to Pipelining,		
		3 stage pipelining		
24		5 stage pipelining		
25	T	Pipeline Hazards		
26	Unit 3:	Data Hazards		
27	Pipelining	Data Hazards continued	20%	65%
28	T1: Appendix	Data Hazards continued		
29	C-1 to C-4	Structural Hazards		
30	1	Branch Hazards		
31	1	Branch Hazards continued		
32	1	Branch Hazards continued		
33		Introduction to Memory Hierarchy		
34	1	Introduction to DRAM, SRAM.		
35	Unit 4 : Memory	Fully Associative, Direct Map Cache Memory		
36	Hierarchy	Set Associative Cache Memory	20%	85%
37	T1:Appendix B	Cache Performance Problems		
38	1	Basic cache Optimizations		
39		First & Second optimizations		
	1	1		I

		(bull 1/1 u 2 010)		
40		Third & Fourth Optimizations		
41		Fifth & Sixth Optimizations		
42		Fundamentals of Virtual Memory Concept		
43		Exceptions & Interrupts		
44		Interrupt Handling Mechanism		
45	Unit 5:	Introduction to Super Scalar Computers:		
	Interrupts and	Instruction Level Parallelism (ILP)		
46	Super Scalar	ILP: continued		
47	Computers	Data Level Parallelism (DLP).	15%	100%
48	T1,T2: Chapter -	Introduction to Single Board Computers : Beagle Board ,	15%	100%
	3.1, 4.1, 4.2	Intel Edison Board		
49	3.1, 1.1, 1.2	Arduino Board		
50		Raspberry PI and Sensors.		
51		Revision		
52		Revision		

Dool- T	Cada	70°41 - 0 A 41	Publication Info		
Book Type	Code	Title & Author	Edition	Publisher	Year
Text Book	T1	Hennessy Patterson	Fifth Edition	MK Morgan Kaufmann	2012
Text Book	T2	Raspberry PI cookbook	Third Reprint 2015	Simon Monk	2015
Text Book	Т3	ARM System on Chip, Steve Furber	Second Edition,	Pearson Education	2000
Text Book	T4	ARM System Developer's Guide	Reprint 2009	Elsevier	2009

UE16CS254: Theory of Computation (4-0-0-0-4)

Class	Chapter title / Reference	Topics to be Covered	% of portions covered	
#	Literature	Topics to be Covered	% of syllabus	Cumulative %
1.		Computers, Computation, Computability		
2.		Automata		
3.		Languages and Grammars		
4.		Deterministic Finite Automata	19	19
5.	Unit 1	Deterministic Finite Automata		
6.	Finite Automata	Deterministic Finite Automata		
7.	T1: Chapter 1,2,3	Non-Deterministic Finite Automata		
8.]	Constructing Finite Automata		
9.		Equivalence of Deterministic and Non–Deterministic Finite Automata		
10.		Minimizing Finite Automata		
11.		Regular Expressions,	19	38
12.		Equivalence of Regular Expressions		
13.		Regular Languages and Finite Automata		
14.	Unit 2 Regular Grammar and Languages T1: Chapter 4,5,6	Regular Expressions in Practice		
15.		Regular Grammars		
16.		Regular Expressions Construction		
17.		Equivalence to Finite Automata		
18.		Closure Properties of Regular Languages		
19.		Answering Questions about Regular Languages		
20.		Pumping Lemma and identifying Non–Regular Languages		
21.		Idea of Context–Free Grammars		
22.		Nature of Context-Free Grammars		
23.	Unit 3	Constructing CFGs:Linear Grammar		
24.	Context-Free	Constructing CFGs:Non-Linear Grammar	19	58
25.	Grammars	Introduction to Parsing and Ambiguity		
26.	T1: Chapter 7	Parsing and Ambiguity		
27.		Constructing Context–Free Grammars		
28.		Conversion to Chomsky and Greibach Normal Forms		
29.		A Membership Algorithm for Context–Free Languages		
30.		Simple and Linear Grammars		
31.		Machines for Context-Free Languages	_	

32.	Unit 4 Pushdown Automata	Constructing Pushdown Automata		
33.		Converting CFGs to PDAs		
34.		Converting PDAs to CFGs		
35.	T1:Chapter 8,9	Non-Deterministic Pushdown Automata		
36.		Nature of Context-Free Languages		
37.		Equivalence of Pushdown Automata and Context–Free Grammars	19	77
38.		Closure Properties		
39.		Questions about Context–Free Languages		
40.		Pumping Lemma for Context-Free Languages		
41.		The Standard Turing Machine		
42.		Constructing Turing Machines		
43.		Variations of Turing Machines		
44.	Unit 5	Universal Turing Machine, Church–Turing Thesis		
45.	Turing Machines and	Recursive and Recursively Enumerable Languages		
46.	Computability	Diagonalization	23	100
47.	T1 : Chapter 10,11,12	Unrestricted Grammars	23	100
48.		Context–Sensitive Grammars and Languages		
49.		Linear-Bounded Automata		
50.		Deterministic Pushdown Automata		
51.		Deterministic Context–Free Languages		
52.		Post Correspondence Problem, Undecidable Problems		

Book	Code Title X Author		Publication Info		
Type	Couc	The a rather	Edition Publisher Year		Year
Text Book	T1	Theory of Computation: A Problem–Solving Approach, Kavi Mahesh.	Latest	Wiley India	2012

UE16CS255:Design and Analysis of Algorithms Laboratory (0-0-2-0-1)

Lab#	Program No	Title of the program/ Problem Statement
1	Program 1	Introduction to the lab environment.
		- Compile and execution of a C program in Linux.
		- Handling Input-Output formats with large number of test-cases.
		Brute Force: Implementation of Sequential Search algorithm
		Find the key element in an array of integers using the sequential search algorithm.
2	Program 2	Brute Force: Implementation of String Matching algorithm
		Find a pattern of length m in a text of length n using the naive string matching algorithm.
3	Program 3	Brute Force: Implementation of Bubble Sort algorithm
		Sort a given array of integers using the bubble sort algorithm.
		Brute Force: Implementation of Selection Sort algorithm
		Sort a given array of integers using the selection sort algorithm.
4	Program 4	Brute Force: Solution for Traveling Salesperson Problem
		Find a solution to the traveling salesperson problem using the exhaustive search method.
5	Program 5	Divide and Conquer: Implementation of Merge Sort
		Sort a given array of integers using the merge sort algorithm.
		Divide and Conquer: Implementation of Binary Search
		Search for a key element in a sorted array of integers.
6	Program 6	Divide and Conquer: Implementation of Quick Sort
	7 -	Sort a given array of student records using the quick sort algorithm.
7	Program 7	Decrease and conquer: Implementation of Insertion Sort algorithm
		Sort a given array of student records using the insertion sort algorithm.
		Decrease and conquer: Demonstration of BFS
		Find the number of components of an undirected graph given in the form of an adjacency matrix
	D 0	using BFS technique.
8	Program 8	Decrease and conquer: Demonstration of DFS algorithms
		Find the number of components of an undirected graph given in the form of an adjacency matrix
		using DFS technique. Decrease and conquer: Topological Sorting of vertices in a digraph
		Find a topological order of a directed acyclic graph using the DFS technique.
9	Program 9	Transform and Conquer: Implementation of Heap Sort algorithm
,	r iogiani 9	Sort a given array of student records using the heap sort algorithm. Use bottom up approach for the
		heap construction.
		Space and Time Tradeoffs: Implementation of Sorting by Distribution Counting algorithm
		Sort a given array of student records using the distribution counting sort algorithm.
10	Program 10	Space and Time Tradeoffs: Implementation of Horspool's algorithm
10	110gram 10	Find a pattern of length m in a text of length n using the Horspool's algorithm.
11	Program 11	Dynamic Programming: Implementation of Warshall's algorithm
	11081411111	Find the transitive closure of a graph given in the form of an adjacency matrix.
		Dynamic Programming: Implementation of Floyd's algorithm
		Find all-pairs-shortest-paths of a weighted graph given in the form of a cost matrix.
12	Program 12	Dynamic Programming: Solution for the Knapsack Problem
		Find the solution to a 0/1 Knapsack problem using Dynamic Programming technique.
13	Program 13	Greedy Technique: Implementation of Prim's algorithm
		Find a minimum spanning tree of a weighted connected undirected graph using the Prim's
		algorithm.
		Greedy Technique: Implementation of Dijkstra's algorithm
		Find single-source-shortest-paths of a weighted connected graph using the Dijkstra's algorithm.

UE16CS256:Database Management Systems Laboratory (0-0-2-0-1)

Lab#	Program No	Title of the program/ Problem Statement
1	Program 1	Introduction to database and PostgresSQL. Learn basic psql commands. Create a sample database, populate with data, execute given queries, explain the output produced.
2	Program 2	ERD diagram – Draw the ERD for the given case studies. The case studies will be shared with the students in the lab (a different case study per batch will be used).
3	Program 3	Create the following databases with proper constraints and populate the corresponding tables with at least 10 records. Create the Railway database called mytraindb for the given schema of tables. Trainhalts(id, seqno, stcode, timein, timeout) Track(stcode1, stcode2, distance) Station(stcode, name) Train(id, name) Write the following Queries for the above Railway Schema Find pairs of stations (station codes) that have a
		track (direct connection) with distance less than 20Kms between them. • Find the IDs of all the trains which have a stop at THANE • Find the names of all trains that start at MUMBAI. • List all the stations in order of visit by the train 'CST-AMR_LOCAL'. • Find the name of the trains which have stop at Thane, before the 6th station in the route of the train.
4	Program 4	create the following databases with proper constraints and populate the corresponding tables with at least 10 records. Create the university database for the given schema of tables. • Student(id, name, dep_name, tot_credits) • Takes(id, course id, sec id, sem, year, grade) • Section(course id, sec id, sem, year, building, room_no, time_slot_id) • Time_slot(time_slot_id, day, start_time, end_time) • Classroom(building, room_no, capacity) • Teaches(i_id, course_id, sec_id, sem, year) • Instructor(i_id, name, dep_name, salary) • Dept(dep_name, building, budget) • Advisor(id, i_id) • Course(course_id, title, dep_name, credits) • Prereq(course_id, prereq_id)

		(Jan – May 2018)
5	Program 5	Write the following simple SQL Queries on the University Schema
		 Find the names of all the students whose total credits are greater than 100 Find the course id and grades of all courses taken by any student named 'Tanaka' Find the ID and name of instructors who have taught a course in the Comp. Sci. department, even if they are themselves not from the Comp. Sci. department. To test this query, make sure you add appropriate data, and include the corresponding insert statements along with your query. Find the courses which are offered in both 'Fall' and 'Spring' semester (not necessarily in the same year).
		Additional queries
		 Find the names of all the instructors from Comp. Sci. department Find the course id and titles of all courses taught by an instructor named 'Srinivasan' Find names of instructors who have taught at least one course in Spring 2009
6	Program 6	Write the following SQL Queries on the University Schema (use nested queries)
		 Find the id and title of all courses which do not require any prerequisites. Find the names of students who have not taken any biology dept courses Write SQL update queries to perform the following Give a 10% hike to all instructors Increase the tot_creds of all students who have taken the course titled "Genetics" by the number of credits associated with that course. For all instructors who are advisors of at least 2 students, increase their salary by 50000. Set the credits to 2 for all courses which have less than 5 students taking them (across all sections for the course, across all years/semesters).
7	Program 7	SQL DDL commands and Updates
		Each offering of a course (i.e. a section) can have

many Tagahing aggi	
is a student. Extend tables) to accommod According to the exist have only one advised have only one advisors and to insert multiple advisors and to insert during the service of will need to insert during are not empty. Find all students where services and Prof. A services of Find students advised departments. etc. Write SQL queries for the following: Delete all information more than 10 years of verify your query. Delete the course CS CS 101 as a prereq set. Create a	allow a student to have ad make sure that you are able lvisors for a student. on the modified schema. You ata to ensure the query results to have more than 3 advisors to are co-advised by Prof.
collection and populating it with on Documents with varying fields su	octing to the database, creating database and documents. Ich as books, film, person, hospital etc. can be) and findOne() for querying the database.
9 Program 9 Write complex queries to retrieve various \$opertors	the documents from the collection using
10 Program 10 Mini Project	
10 Program 10 Mini-Project 11 Program 11 Mini-Project	
11 Program 11 Mini-Project 12 Program 12 Mini-Project	
13 Final Assessment	
Fillal Assessment	

UE16CS257:Microprocessor & Computer Architecture Laboratory (0-0-2-0-1)

Lab#	Program No	Title of the program/ Problem Statement
1	Program 1	Debugging assembly language code using a simulator.
2	Program 2	Program using data processing instructions.
3	Program 3	Program using logical and looping instructions.
4	Program 4	Program using functions and subroutine instructions.
5	Program 5	Program to perform operations on string data.
6	Program 6	Program using recursion.
7	Program 7	Program to interface with input / output devices.
8	Program 8	Install setup and configure a single board microcomputer system.
9	Program 9	Mini Project
10	Program 10	Mini Project
11	Program 11	Mini Project
12	Program 12	Mini Project
13	Program 13	Mini Project