MAT240 Problem Set 3

Nicolas Coballe

October 15, 2021

Lemma 1.0: $3n^2 + 3n + 6$ is divisible by 6 for all $n \in \mathbb{N}$.

Proof.

We will use induction.

Base Case: n = 1.

3+3+6=12=6(2) Thus, the base case is true.

Induction Hypothesis: If $3n^2 + 3n + 6$ is divisible by 6, then

 $3(n+1)^2 + 3(n+1) + 6$ is divisible by 6.

Inductive Step:

$$3(n+1)^{2} + 3(n+1) + 6 = 3(n^{2} + 2n + 1) + 3n + 3 + 6$$

$$= 3n^{2} + 6n + 3 + 3n + 9$$

$$= 3n^{2} + 3n + 6 + 6n + 6$$

$$= 6k + 6n + 6, \ k \in \mathbb{N}$$

$$= 6(k+n+1)$$

Therefore, $3(n+1)^2 + 3(n+1) + 6$ is divisible by 6; thus, $3n^2 + 3n + 6$ is divisible by 6 for all $n \in \mathbb{N}$.

1. a)

Proof.

We will use induction.

Base Case: n = 1.

 $1^3 + 5 = 6 = 6(1)$ Thus, the base case is true.

Induction Hypothesis: If $n^3 + 5n$ is divisible by 6, then

 $(n+1)^3 + 5(n+1)$ is divisible by 6.

Inductive Step:

$$(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5$$

= $n^3 + 5n + 3n^2 + 3n + 6$
= $6k + 3n^2 + 3n + 6, k \in \mathbb{Z}$
= $6k + 6j, j \in \mathbb{Z}$, Lemma 1.0

Then, $(n+1)^3 + 5(n+1)$ is divisible by 6; therefore, $n^3 + 5n$ is divisible by 6 for all $n \in \mathbb{N}$.

b)

Proof.

We will use induction.

Base Case: n=1. $\sum_{k=1}^1 \frac{k}{2^k} = \frac{1}{2} = 2 - \frac{3}{2} = 2 - \frac{n+2}{2^n}.$ Thus, the base case is true. Induction Hypothesis: If $\sum_{k=1}^n \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$, then $\sum_{k=1}^{n+1} \frac{k}{2^k} = 2 - \frac{(n+1)+2}{2^{n+1}}$ Inductive Step:

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = 2 - \frac{(n+1)+2}{2^{n+1}}$$

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{n} \frac{k}{2^k} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{2n+4}{2^{n+1}} + \frac{n+1}{2^{n+1}}$$

$$= 2 + \frac{n+1-2n-4}{2^{n+1}}$$

$$= 2 + \frac{-n-3}{2^{n+1}}$$

$$= 2 - \frac{(n+1)+2}{2^{n+1}}$$

Thus, $\sum_{k=1}^{n+1} \frac{k}{2^k} = 2 - \frac{(n+1)+2}{2^{n+1}}$; therefore, $\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ for all

c)

Proof.

Consider:

$$8 = 3 + 5$$

$$9 = 3(3) + 5(0)$$

$$10 = 3(0) + 5(2)$$

$$11 = 3(2) + 5$$

$$12 = 3(4) + 5(0)$$

$$13 = 3 + 5(2)$$

$$14 = 3(3) + 5$$

$$15 = 3(5) + 5(0)$$

$$16 = 3(2) + 5(2)$$

$$17 = 3(4) + 5$$

Thus, integers from 8 to 17 can be expressed in the form 3a + 5b, $a, b \in \mathbb{N} \cup \{0\}$.

Now consider $n \geq 18$. Then, $n-8 \geq 10$. Thus we can choose the largest (well-ordering principle) $k \in \mathbb{N} \cup \{0\}$ such that $10k \leq n-8$. If we take the difference between the two. Then

 $n-8-10k=j,\ j\in\{0,1,2,3,4,5,6,7,8,9\}$. Notice that if we add 8 to both sides we get

 $n-10k=z,\ z\in\{8,9,10,11,12,13,14,15,16,17\}.$ But we know that this set of numbers can be expressed in the form 3a+5b. Thus, we can rewrite the equation as

n = 3a + 5b + 10k = 3a + 5b + 5(2k) = 3a + 5(b + 2k). Therefore, all numbers greater than 8 can be expressed in the form

3a + 5b, $a, b \in \mathbb{N} \cup \{0\}$. Hence, you are able to make any sum of rubles greater than equal to 8 with a non-negative integer sum of 3 ruble and 5 ruble bills.

Alternatively, assume that you cannot express $n \geq 8$ in the form 3a + 5b, $a, b \in \mathbb{N} \cup \{0\}$. This contradicts contradicts the *Chicken McNugget Theorem*.

2. a)

Proof.

The largest sum you can make out of $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$ is the sum of the largest $\frac{1}{n_1}$, $\frac{1}{n_2}$, and $\frac{1}{n_3}$ individually. This is trivial because for all $x \in \mathbb{R}$, if y > z, then x + y > x + z. Since $f : \mathbb{N} \to \mathbb{R}$, $f(n) = \frac{1}{n}$ is a monotone decreasing function for all n > 0, then the largest value it can take is at n = 1; thus, f(1) = 1. Therefore, the supremum of S is 3 and it is in S, so it is also the maximum of S.

0 is a lower bound for S because a sum of 3 positive numbers is always greater than 0. We will now show that 0 is the greatest lower bound by assuming that there exists some $\epsilon > 0$ such that ϵ is a lower bound. But if we choose n_1, n_2 , and n_3 arbitrarily large such that $\frac{1}{n_1}, \frac{1}{n_2}, \frac{1}{n_3} < \frac{\epsilon}{3}$. Thus $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$. Thus we created an element that is smaller than ϵ , thus ϵ cannot be a lower bound, making 0 the greatest lower bound. But since a sum of positive numbers can never be 0, 0 is not a minimum of S.

b)

Proof.

Consider $f: [\frac{1}{2}, 2] \to \mathbb{R}$, $f(x) = x + \frac{1}{x}$. Notice that $T = f((\frac{1}{2}, 2])$. We can choose $a := 1 \in (\frac{1}{2}, 2]$. f(a) = 2. Suppose that 2 is a lower bound to T. We will show this by proving that $f(1 + \psi) > 2$, $\forall \psi \in (0, 1]$ and $f(1 - \phi) > 2$, $\forall \phi \in (0, \frac{1}{2})$. If $\psi \in (0, 1]$, then $\frac{\psi}{1 + \psi} < \psi$ because the denominator on the left is greater than 1. But we can rewrite the inequality as:

$$\begin{split} \psi > & \frac{\psi + 1 - 1}{\psi} \\ = & \frac{1 + \psi}{1 + \psi} - \frac{1}{1 + \psi} \\ = & 1 - \frac{1}{1 + \psi} \\ \psi + \frac{1}{1 + \psi} > & 1 \end{split}$$

Thus $2=1+1<1+\psi+\frac{1}{1+\psi},\ \forall \psi\in(0,1];$ thus, $f(1+\psi)>2,\ \forall \psi\in(0,1].$ Now if $\phi\in(0,\frac{1}{2}),$ then $\phi<\frac{\phi}{1-\phi}.$ This is because the denominator on the right is in (0,1). Then:

$$\begin{aligned} -\phi > & \frac{-\phi}{1-\phi} \\ > & \frac{-\phi+1-1}{1-\phi} \\ & \frac{1-\phi}{1-\phi} - \frac{1}{1-\phi} \\ > & 1 - \frac{1}{1-\phi} \\ -\phi + \frac{1}{1-\phi} > & 1 \end{aligned}$$

Thus $2=1+1<1-\psi+\frac{1}{1-\psi},\ \forall \psi\in(0,\frac{1}{2});$ thus, $f(1+\psi)>2,\ \forall \psi\in(0,1].$ Therefore, 2 is less than equal to all elements in T, but 2 is the greatest element less than equal to all elements in T, making it a infimum. 2 is in T, so 2 is also a minimum.

To find the supremum we will show that f is strictly increasing on the interval (1,2] and strictly decreasing on the interval $[\frac{1}{2},1)$. Then, we can take the $\max\{f(q)\},\ q\in\partial[\frac{1}{2},2]$ (boundary of the interval).

To show that f is strictly increasing on the interval (1,2], we will take $1 < a < b \le 2$. Because a,b > 1, then ab > 1. Thus:

$$b-a > \frac{b-a}{ab}$$

$$> \frac{b}{ab} - \frac{a}{ab}$$

$$> \frac{1}{a} - \frac{1}{b}$$

$$b + \frac{1}{b} > a\frac{1}{a}$$

Thus f is strictly increasing on the interval (1, 2].

To show that f is strictly decreasing on the interval $[\frac{1}{2}, 1)$, we will

take $\frac{1}{2} \le a < b < 1$. Because 0 < a < b < 1, then ab < 1. Thus:

$$b-a < \frac{b-a}{ab}$$

$$< \frac{b}{ab} - \frac{a}{ab}$$

$$< \frac{1}{a} - \frac{1}{b}$$

$$b + \frac{1}{b} < a + \frac{1}{a}$$

Thus f is strictly decreasing on the interval $(\frac{1}{2},1)$. Because f strictly increases on the interval (1,2] and strictly decreases on the interval $(\frac{1}{2},1)$ then we can just take the maximum between the boundary $f(\frac{1}{2}) = \frac{3}{2}$ and $f(2) = \frac{3}{2}$. But because in the actual set T, $f(\frac{1}{2})$ is not included in the set, but f(x), $x \in (\frac{1}{2},1)$ is in the T, then $\forall x \in (\frac{1}{2},1)$, $f(x) < \frac{3}{2}$ (because the function is decreasing on this interval). Since 2 is in T, then we can take f(2) as the maximum of T because it is equal to $\frac{3}{2}$. Because 2 is the maximum of T, 2 is also the supremum. (Consider that there is some supremum less than 2, well it would be less than 2, contradicting the fact that it is a supremum; thus, 2 is the least upper bound).

Lemma 3.0: There exists $a, b \in \mathbb{Z}$ such that $0 < a + \sqrt{2}b < \frac{1}{n}, \ \forall n \in \mathbb{N}$.

Proof.

We will use induction.

Base Case: $n=1,\ 0<\sqrt{2}(1)-1<\frac{1}{1}$ $n=2,\ 0<\sqrt{2}(1)-1<\frac{1}{2}$ Thus, both base cases are true. Induction Hypothesis: If $\exists a,b\in\mathbb{Z}:0< a+\sqrt{2}b<\frac{1}{n}$, then $\exists c,d\in\mathbb{Z}:0< c+\sqrt{2}d<\frac{1}{n^2}$. Inductive Step: By the induction hypothesis $0< a+\sqrt{2}b<\frac{1}{n}$, then $0< a^2+2b^2+2b\sqrt{2}<\frac{1}{n^2}$ because $f:\mathbb{R}\to\mathbb{R},\ f(x)=x^2$ is an increasing function on the interval $(0,+\infty)$. Thus if $c:=a^2+2b^2$ and d:=2b, then $0< c+\sqrt{2}d<\frac{1}{n^2}$. Thus there exists $a,b\in\mathbb{Z}$ such that $0< a+\sqrt{2}b<\frac{1}{n}$, $\forall n\in\{2^{2^k}:k\in\mathbb{N}\}$. If we wanted $0< a+b\sqrt{2}<\frac{1}{n}$, $\forall n\in\mathbb{N}$, then for any n we can choose k sufficiently large such that $n<2^{2^k}$. Thus, there exists $0< c+d\sqrt{2}<\frac{1}{2^{2^k}}<\frac{1}{n}$. This is because if $n<2^{2^k}$ then $\frac{1}{n}>\frac{1}{2^{2^k}}$. Therefore, there exists $a,b\in\mathbb{Z}$ such that $0< a+\sqrt{2}b<\frac{1}{n}$, $\forall n\in\mathbb{N}$.

3.

Proof.

Clearly, 0 is a lower bound to S; thus, we will show that 0 is the greatest lower bound to S.

For the sake of contradiction assume that $inf(S) = \epsilon > 0$. But, by Lemma 3.0, there exists $a, b \in \mathbb{Z}$ such that $0 < a + \sqrt{2}b < \frac{1}{n}$, $\forall n \in \mathbb{N}$. Because we can choose n arbitrarily large, we can choose n such that $\frac{1}{n} < \epsilon$. Thus, there exists $a, b \in \mathbb{Z}$ such that $0 < a + \sqrt{2}b < \frac{1}{n} < \epsilon$. This contradicts the fact that ϵ is a lower bound of S. Therefore, the inf(S) = 0.

4.

Proof.

Trivially, A(0) = 0, A(1) = 0, A(2) = 0, and A(3) = 1. We want to prove that $A(n) = \frac{(n-1)(n-2)}{2}$, $\forall n \in \mathbb{N}$. Notice that we can show the ways we can make n as a sum of n_1, n_2, n_3 by listing the ordered pairs in the set $\{1, 2, ...n - 1\} \times \{1, 2, ...n - 2\}$. For example, (a, b) in the set corresponds to $n_1 := a$, $n_2 := b$, $n_3 := n - a + b$. Although, if $a + b \ge n$ then there will $n_3 < 1$. We want to ensure that each $n_i > 0$; thus, we will only permit elements (a, b) such that $a + b \le n$. Consider that 1 + j < n for all j < n - 2; thus, there are n - 2 elements (a, b) where a = 1. 2 + j < n for all j < n - 3; thus, there are n - 3 elements (a, b) where a = 2. If we continue this process we will get a series of $(n - 1) + (n - 2) + \cdots + 2 + 1$. We can rewrite this as $\sum_{i=0}^{n-1} i$. But we know that $\sum_{i=0}^{n} i = \frac{n(n-1)}{2}$; thus, by substituting n - 1 into n we get $\frac{(n-1)(n-2)}{2}$ elements as desired.

5. a)

Proof.

Because $\binom{3^n}{\ell}$ = $\frac{3^n(3^n-1)\cdots(3^n-\ell+1)}{\ell!}$ is an integer and the numerator has at least n multiples of 3 while $\ell!$ has at most n-1 multiples of 3, $\ell!$ cannot divide out enough prime factors of 3; thus, $\binom{3^n}{\ell}$ must be divisible by 3.

b)

Proof.

We will use induction on k.

Base Case: k = 0. $\binom{3^n}{1}$ is divisible by 3 via question 5 a. Thus, the

Induction Hypothesis: If $\binom{3^n+k}{k+1}$ is divisible by 3, then $\binom{3^n+k+1}{k+1+1}$ is divisible by 3.

Inductive Step:

Thus $\binom{3^n+k}{k+1}$ is divisible by 3.

c)

Proof.

We will start with $\binom{3^n+k}{k+1}$.

We will induct on k. Base Case: k=0. $\binom{3^n}{0}=1 \mod 3$. Thus the base case is true. Induction Hypthesis: If $\binom{3^n+k}{k}=1 \mod 3$, then $\binom{3^n+k+1}{k+1}=1 \mod 3$.

Inductive Step:

$$\binom{3^n + k + 1}{k + 1} = \binom{3^n + k}{k + 1} + \binom{3^n + k}{k}$$

$$= 0 + 1, \text{ by the induction hypothesis and 5 b}$$

$$= 1 \mod 3$$

Now we will do $\binom{3^n+k}{3^n}$.

Base Case: k=0. $\binom{3^n}{3^n}=1 \mod 3$. Thus, the base case is true. Induction hypothesis: If $\binom{3^n+k}{3^n}=1 \mod 3$, then $\binom{3^n+k+1}{3^n}=1 \mod 3$. Inductive Step:

$$\binom{3^n + k + 1}{3^n} = 1 \mod 3$$