REQUEST FOR RECONSIDERATION

Applicants respectfully request entry of the foregoing and reexamination and reconsideration of the application, as amended, in light of the remarks that follow.

The present invention provides an irradiation apparatus that contains a discharge lamp and a lighting system capable of applying light radiation from the discharge lamp to a photosensitizer having a relatively large adsorption coefficient within certain wavelength ranges suitable for photodynamic therapy (PDT) or photodynamic diagnosis (PDD). For PDT, light capable of penetrating tissue and having wavelengths in the range of 600nm-800nm is used. For PDD, light capable of causing the photosensitizer to fluoresce and having wavelengths in the range of 400-440nm is used. The discharge lamp of the present invention emits minimal light outside the wavelength range suitable for PDT and PDD, which reduces the sensation of heat experienced by patients undergoing PDT or PDD using conventional discharge lamps emitting unnecessary wavelengths.

Claims 1-3, 6-7, 14 and 16-20 are rejected under 35 U.S.C. § 102(b) over U.S. Patent No. 3,958,145 ("Jack"). In addition, Claims 1 and 4-5 are rejected under 35 U.S.C. § 103(a) over <u>Jack</u> in view of JP54-30228 ("<u>Tokyo</u>"). Claim 8-10, 13-15 and 19 are rejected under 35 U.S.C. § 103(a) over <u>Jack</u> in view of U.S. Patent No. 4,336,809 ("<u>Clark</u>"). Claims 11-12 are rejected under 35 U.S.C. § 103(a) over <u>Jack</u> in view of <u>Tokyo</u> and further in view of <u>Clark</u>.

<u>Jack</u> discloses a high pressure mercury vapor discharge lamp comprising a rare gas, mercury, halides of *tin* (with the exception of fluoride) and halides of lithium with the exception of fluoride), where up to a maximum of 50 mol% of the lithium halide may be replaced by sodium halide. <u>Jack</u> at abstract. An object of the <u>Jack</u> invention is to provide *tin* halide-comprising high pressure mercury vapor discharge lamps which have a low color temperature of the emitted radiation while retaining a high radiation efficienciency and a satisfactory color rendition. <u>Jack</u> at column 2, lines 3-7. <u>Jack</u> discloses that the radiation,

produced from high pressure mercury vapor discharge lamps that also contain *tin* halides, mainly originates from the *tin* halide molecules and has a *very broad continuous spectrum*, which results in a very satisfactory color rendition. <u>Jack</u> at column 1, lines 38-47.

<u>Tokyo</u> discloses a metal vapor discharge lamp filled with a *rare earth metal* halide, sodium halide, potassium halide and/or rubidium halide. Tokyo at English-language abstract.

<u>Clark</u> is discloses that a tissue photoradiation system uses a hematoporphyrin or hematoporphyrin derivative dye in tissue to be irradiated and arranges a xenon ion laser for simultaneous lasing of deep blue light and red light. <u>Clark</u> at abstract. The Final Rejection cites <u>Clark</u> for teaching "a means for selecting a wavelength in an irradiation apparatus". Final Rejection at page 2, lines 16-17.

However, the cited prior art fails to suggest the limitations of independent Claims 1 and 8 of an irradiation apparatus comprising a discharge lamp in which "tin or rare-earth metal is not filled", or the independent Claim 16 limitation that "the discharge lamp does not contain tin or rare-earth metal".

Because the cited prior art fails to suggest all of the limitations of the claimed invention, the rejections under 35 U.S.C. § 102 and § 103 should be withdrawn.

Pursuant to MPEP § 821.04, after independent product Claims 1, 8 and 16 are allowed, Applicants respectfully request examination and allowance of method Claims 18-20, which include all of the limitations of independent product Claims 1, 8 and 16, respectively.

In view of the foregoing amendments and remarks, Applicants respectfully submit that the application is in condition for allowance. Applicants respectfully request favorable consideration and prompt allowance of the application.

Should the Examiner believe that anything further is necessary in order to place the application in even better condition for allowance, the Examiner is invited to contact Applicants' undersigned attorney at the telephone number listed below.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Corwen Vaul Umbach

Norman F. Oblon Attorney of Record Registration No. 24,618

Corwin P. Umbach, Ph.D. Registration No. 40,211

Attachment:

The Practicing Scientist's Handbook, pages 532-537

Customer Number 22850

Tel: (703) 413-3000 Fax: (703) 413 -2220 (OSMMN 08/03) TABLE 111. FLAME SPECTRA OF THE ELEMENTS*

Explored to the control of the control

Legend: AH air-hydrogen, OH oxyhydrogen, OA oxyacetylene, OC oxycyanogen; solvent is water. AHn, OHn, OAn, the corresponding flames with nonaqueous solvent is indicated, for each group of data, by the following symbols: AA acetylacetone, Ac acetone, Bu Butanol, Bz benzene, C chloroform, EA 1:2:1 ether-alcohol-water, G gasoline, H hexone, K kerosene, M methanol, N naphtha, P isopropanol; subscript number indicates percentage, e.g., Ac₆₀ = 60% acetone + 40% water. Other notations: () very doubtful; a arc line, b band peak, c continuum or very wide band, d double, f intercombination line, i inner cone emission, k with an S-1 photomultiplier, m multiple, p resonance line, r head of red-degraded band, s spark line, t triple, u unclassified line, v head of violet-degraded band, w wide or diffuse band, x with uncoated mirror in burner housing (mirror normally has a silicone coating).

Notes: (1) Seen in absorption against an effectively hotter OH band. (2) Data to be provided by Kniseley, Fassel and Curry, Spectrochimica Acta. (3) Obscured by CN bands. (4) Bands emitted only from iodate solution. (5) For 1P28 photomultiplier with red filter. (6) The arc lines 382.94, 383.23, 383.83 sometimes appear within this band. (7) The stronger bands 386-388 are interfered with by CH 387, 389.

Species	Character	Wavelength mµ	Intensity in various flames							
			АН	AHn	ОН	OHn	OA	OAn	ос	
Ag	P	328.07	100		100	100 EA	50	30 EA	25	
_	p	338.29	250		170	170	50	40	20	
Al	p p	394.40	pc 0.3		0.8	20 H	1	100 H	25	
	P	396.15	pc 0.35		1.0	30	2	200	30	
AIO	ī	467.2	rc 0.8		2	10	0.15	17	0.0	
	r	484.2	1.5		2 3	50	0.3	70	0.0	
	r	510.2	rc 1		2	10	0.2	17	0.0	
A.s	a	228.81 x		2.5					0.1	
	a	234.98 x		4			(0.1) i		0.0	
4u	p	242.80 x	0.1		1		1.1			
	P	267.60 x	0.3		2		1.7			
BO ₂	db	494	5		30	50 Bu₄	5	8 M ₅₀	0.0	
	b	518.0	5 8		50	80	6	15	0.0	
	b	547.6	11		60	90	15	17	0.0	
	ь	579	7		30	70	10	10	0.0	
Ва	p	553.56	170		40	100 Bu ₄	50	50 N	5	
Ba ⁺	S	455.40	c 8		8	20	10	100	100	
	sb	493.41	c 80		25	40	50	100	70	
BaO H	b	488	100		30	40	50	5	0	
	b	513	150		30	50	70	5	0	
	b	830	200 k		30	25 Bz	5	(300)	0	
	b	873	80 k		30	25	5	(300)	0	
3e	p	234.86 x	0.0		0.0		0.0	, ,	10	
3eO	Ī	470.9 լ	rc 0.2		0.7		0.25			
	r	473.3 }	10 0.2		0.5		0.2			
3i	dp	223.0 x		7 P					0.0	
	p	306.77	0.2	0.2	0.017		0.01 i ¹		3	
	a	472.26	0.5	0.00	0.25	0.005 P	0.05		0.0	

0-	_	422.67	250		1000	1700 Bu ₄	250	1000 EA	400
Ca	p	393.37	230		sc 25		sc 30		500
Ca+	S		500		1700	2500 Bu4	170	700 EA	10
CaOH	b	554			700	1000	250	300	3
	b	602	100		2500	5000	500	1000	10
	b	622	500	20 B		17 P ₅₀	0.25	1000	20
Cd	p	228.80 x	0.2	20 P	1 2	5 Ac	0.25	5 Ac	0.4
	f	326.11	20	6	7	5 Ac	c 0.7	2	U. .
CeO	bc	494	c 40			10	0.7		
(Ce)	С	550-600	70		10	10 30 Bu₄	5		Q
Co	a	340.51	40		20		3		9 9
	dpf	341.25	40		25	30	7		só
	dap	345.4	45		25	50			7
	a	350.23	30		17	30	3		10
	tap	352.8	35		35	. 50	7		10
	da	387.35	30		20	30	4		
Cr	a	357.87	40	15 P ₂₅	80	80 N	20	1000 H	50
٠.	P	425.43	120	15	100	150 Ac ₆₀	20	900	120
	P	427.48	110	8	80	110	17	550	110
	P	428.97	100		70	80	12	300	80
	ta	520.6	ac 170		70	70 Bu4	10	100	80
CrO	rc	579.4	250		20	120 Bua	15		. 0
Cs		455.54	20		25	30 Bu ₄	0.3		0.03
Cs	8	852.11 k	1000		1000	2000	1000		40
	p	894.35 k	300	•	300	700	300		10
	P		60	40 P ₂₅	100	500 M	100	300 K	30
Cu	P	324.75		25	100	500 112	100	300	20
	p	327.40	40	23	17	20 Bua	6	****	Ö
CuOH	w	537	100		70	80 H	·	2	•
DyO	mr	526.3				70			
	b	540.0			60				
	ь	572.9			120	150			
	ь	583.3			120	150 .		2	
ErO	b	504			30	55 H			
	b	552			50	80	••	2	
Eu	p	459.40			25	35 H	10	-	
	p	462.72			20	30	10		
(EuOH)	bc	598			100	120 H	(10)		
•	wc	623			70	100	(10)		
	wc	647			25	150	(10)		
	w	702			50	100	(10)		
Fe	a	302.06	4	5 P ₂₅	2.5	50 H	1.5		50
	p	371.99	80	11	40	50 Bu4	15	100 AA	20
	(d)p	373.71	80	10	30	50	8	70	14
	tp	374.7	70	8	25	50	6	50	11
	(d)p	385.99	70	9	35	50	11	70	3
	(u)p	363.77		-					

TABLE 111. (Continued)

Species	Character	r Wavelength mμ	Intensity in various flames							
			АН	AHn	ОН	OHn	OA	OAn	oc	
FeO	rc	564.7	c 170		40	120 Bu ₄	10	3 M ₅₀		
	rc	581.9	c 170		40	120	11	3 M 50	0	
Ga	p	403.30	10		100	150 Bu ₄	10	,	U	
	p	417.21	20		200	300	20			
GdO	I	461.6			17	30 H	20	2		
	mrc	580.7	(5)		50	120	(10)			
	mrc	598.7	(10)		80	250	(20)			
	bc	622	(10)		70	250	(20)			
Ge	u	259.25 x		0.7 P		0.025 P ₅₀	0.015 i	0.025 i P ₅₀		
	dp	265.14 x	0.00	2	0.01	0.03	0.013 i	0.025 1 P ₅₀		
ig	f	253.65 x	1.7	2.5 P	0.3	1.7 Ac	${0.2 \atop 1.2 i}$	0.05 1		
-loO	r	515.7			50	50 H	1.21	2		
	b	527			50	50		=		
	b	532.0			50	50				
	ь	565.9			120	170				
0	rc	484.5			(1)4	170				
	rc	513.1			(i)				0.00	
	ıc	530.8			(1)				0.00	
n	P	410.18	150	50 P ₂₅	200	300 Bu ₄	50		0.00	
	p	451.13	250	80	350	500 Bu ₄	50			
	da	404.5	30	1 P ₂₅	70	100 Bu ₄	70 10			
	p	766.49 k)		25		•	t 30,000		0.15	
	p	769.90 k}	10,000		30,000	50,000	{30,000		}300	
aO	mr	438.0	. 5		25	25 H	17	00.11	•	
	mr	442.3	5		25	30	17	80 H		
	r	560.0	17		70	100		80		
	mr	743 k	30		20	1000	17 100	170		
	mr	792 k	25		20	1000	100	120		
.i	a	610.36	30		20	30 Bua	100	150		
	p	670.78 ⁵	10,000	1500 P ₂₅	50,000	70,000	10,000		25	
uO	mr	466.2	,	2000 225	30	70,000 80 H	10,000	2	3000	
	mr	517.0			50	110		-		
lg	р	285.21	100	20 P ₂₅	100	250 Ac	70	100 54		
IgOH	p b	370.2	500	60	100	100 EA	70 5	100 EA	1000	
	mb ⁶	381-383	500	50	80	80 80	3.5		0	

Mn MnO	tp r	403.2 538.9	500 100		1000 50	1500 N 80 Bu ₄	500 8		120 0.2
	r -	558.6	120		80	120	17	••	0.15
Mo	p	379.93	c 2.5	0.0 P ₈₀	c 0.8	10 i N	(0.5) i	20	3
		206.41	c 3	0.0	c 0.8	10 i	(0.3) i	H ₅₀ Ac ₂₀ P ₂₀ 20	. 13
	p	386.41	c 3	0.0	c 0.8	5 i	(0.25) i	20	11
	P	390.30	25	0.0	10	31	(3)	20	0
(MoO ₂)	C	550-600 385.3 ⁷	23		10	0.17 iN	(3)		v
NC	dv	226.3 x		0.4 P		0.17 11			
NO	dv								
	dv	236.3 x		0.5	20	10 Bu ₄	10		0.5
Na	da	330.3	2.5				25,000		2000
	dp	589.2	30,000		50,000	70,000	23,000		10
	da	819 k	_		5	10	0.3		10
(Nb)	C	550	5		1	100 11		2	
NdO	mb	660			10	100 H	10	-	
	ъc	691			16	500	5		
	bc	702 k			10	500	10		
	tbc	712 k			10	500	10		c 0
Ni	p	341.48	80 -	25 P ₂₅	50	60 Bu ₄	10		50
	dp	346.0	45	15	20	30	7		20
	P	349.30	25	10	17	25	7		20
	p	351.51	45	15	22	30	9	(***) 4	20
	p	352.45	80	25	50	80	15	(50) C	30
	а	361.94	40	10	22	30	5		20
PO	vb	238.3 x	0.4	8 P					
	v	246.4 x	0.5	10					
(P)	С	520	30						
Pb	а	363.96	1.5	2 G	. 5	7 G	0.1	.5 G	2.5
	a	368.35	3 3	4	10	15	0.2	10	7
	а	405.78	3	4	10	15	0.3	10	7
Pd	а	340.46	45		70	200 H	10		80
	а	360.95	30		45	90	7		50
	а	363.47	55		80	150	10		100
(PmO)	b	(640)			(10)	(50) H	(1)		
	b	(680)			(10)	(50)	(1)	2	
PrO	rc	576.3			15	11 H		•	
	фı	603			10	20			
	bc	709.5 k			(10)	50			
	drc	735 k			(10)	30			_
Pt	p	265.95 x	0.11		0.8		0.5		8 7
		306.47	0.25		1		0.7		7
Ra	P P	482.59			(5) (3)				
Ra ⁺	S	381.44			(3)				

ос	
0.1 100 50	
0.2	
8 10	
150 400	

SrOH	b	605	5000	250 P ₂₅	1000	1500 Bu4	100		
	b	666	500		700	1000	40		
	b	680	250		1000	1000	30	_	
ТьО	b	534			40	60 H		2	
	bc	573			50	100			
	bc	592.1			80	170	(10)		
	bc	598.0			70	150	(10)		
Te	da	238.5 x	0.01	1 P			0.000		
TeO	drc	371.4	3.5		0.3		c 0.015		
	drc	377.3	3.5		0.2		c 0.015		
	trc	382.7	3.5		0.25		c 0.017		
	trc	388.4	3.5		. 0.25		c 0.017		
TiO	rc	516.7			40		1.5	1.5 P	
	IC	544.9			45		1.5	1.5	
	rc	575.9			45		1.5	1.5	
	bc	715			20		10		_
Tl	р	377.57	50		100	170 Bu ₄	10 5		6 8
	a	535.05	30		70	100	5	2	8
TmO	b	491			30	50 H		2	
	b	538			35	60			
	b	541.5			35	60			
(UO_2)	c	550	15		5				
V	ta	318.4	-	0.00 P ₅₀			_		23
vo	rc	522.9	80	c 17 P ₅₀	30	80 Bu ₄	5 7		0.0
	rc	547.0	100	c 17	40	100			0.0
	rc	573.7	110	c 30	40	110	10	2	0.0
YO	r	481.8			30	50 H	20		
	mr	599			300	1000	30	70 H	
	mr	615	4.1		300	800	30	50 ₂	
Yb	а	398.80	70		25	120 H	(10)	-	
	pb	555.65	250		70	60	(10)		
(YbOH)	b	498.1	200		50	50 H	(5)		
	b	532.5	250		80	80	(5)		
	b	572.5	300		110	100	(10)		
Zn	p	213.86 x	0.04	0.15 P ₅₀	0.06	1 Ac	.0.017		6
	а	481.05	c 0.3		c 0.06	0.6 iN	i	c 6 Ac	•
(Zn)	c	520-600	0.5		0.12	12 Ac	(0.1)	4	0 0
ZrO	bc	564			1.2		(0.1)		Ü
	bc	574			1.2		(0.1)		0

TABLE III. (Continued)

ОН

(5) (5) 35

2500 (0.1) (0.1)

8 15 8

20 40 250

200

0.012

(0.015)

0.05

0.9 1000

30

3500

AHn

17 P

0.00 P₅₀

0.00

11

12

150 P₂₅

0.5 P₂₅

25 8 7

Species

(RaOH)

RЬ

Re

Rh

Ru

Sb

ScO

SiO

SmO

Sn

SnO

Sr Sr⁺ Character

b

b

p

P P

p p tp

tr

tr

r

mbc

mbc tbc

mbc

a a

а

P

r

P S Wavelength mµ

665 420.19 780.02 k 794.76 k 488.92

527.55

339.68 343.49

350.25

365.80 369.24

370.09

349.89 372.80

379.9 217.59 x 231.15 x

259.81 x 485.8

581.2 607.3 611.0

241.4 x 248.7 x 256.4 x

624 642

235.48 x 242.95 x

270.65 x

284.00

303.41

358.5

460.73

407.77

627

AH

20

3500

2500

pc 4 2.5 pc 3.5

ac 6

ac 6

0.07

0.01

0.08

0.08

0.4

500

0.025

Intensity in various flames

OHn

50 Bu₄ 5000

3000

25 10

15 40 11

30 M₅₀ 150 100

60 H 150

1200 (0.1) (0.1)

(0.1) 80 H

0.22 Ac₆₀

2000 Ac₆₀ 50 Bu₄

80 100

110

1700

OA

2 2000

1700

> (0.1) i (0.1) i

30

25

1.7 i

0.2 i { 0.05 0.4 i

200 17 OAn

17 8 9

22

^{*}Reproduced from: Clark, George L., Ed., "The Encyclopedia of Spectroscopy," Van Nostrand Reinhold, New York, 1960. References to this table may be found in this Encyclopedia. The intensities are computed for the Beckman DU spectrophotometer with flame and photomultiplier attachments; the intensity J = 100(R - B)/B, where B is the blank reading for the pure solvent and R is the reading for a solution containing 10 mg of the element per liter for the slit width at which, for the blank, shot-effect noise equals flame flicker.

ارو

Van Nostrand Reinhold Company Regional Offices: New York Cincinnati Atlanta Dallas San Francisco

Van Nostrand Reinhold Company International Offices: London Toronto Melbourne

Copyright © 1978 by Litton Educational Publishing, Inc.

Library of Congress Catalog Card Number: 77-5866 ISBN: 0-442-25584-5

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company 135 West 50th Street, New York, N. Y. 10020

Published simultaneously in Canada by Van Nostrand Reinhold Ltd.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data Moses, Alfred James, 1921-The practicing scientist's handbook.

Includes index.
1. Matter-Properties-Handbooks, manuals, etc.
2. Materials-Handbooks, manuals, etc. I. Title.
QC173.397.M67 530.4 77-5866
ISBN 0-442-25584-5

One of science fact, the of mate and stin The r source . signers. interior chapter The n necessit fining to theory : this gap obstacle The r. locate ii conduct more c Element The h netic rad summar for the 1 Proper thermal nuclear. handboo

> Materi organic composi and mis

describe

and spac

terials ir

Adminis

for mucl

Specia