Доклад

Модели с урнами

Артамонов Т. Е.

8 августа 2024

Российский университет дружбы народов, Москва, Россия

Докладчик

- Артамонов Тимофей Евгеньевич
- студент группы НКНбд-01-21
- Российский университет дружбы народов
- https://github.com/teartamonov

Введение

Исследовать модели с урнами и рассмотреть области их применения.

Задачи

- Рассмотреть базовую модель с урнами
- Исследовать разновидности моделей с урнами
- Рассмотреть область их применения

Определение

Модель урны

Модель урны — это либо набор вероятностей, описывающих события в задаче с урной, либо распределение вероятностей или семейство таких распределений случайных величин, связанных с задачами с урной.

Разновидности

Базовая модель (Модель без возвращения)

В этой базовой модели урны в теории вероятностей урна содержит п белых и m черных шаров, хорошо перемешанных друг с другом. Из урны случайным образом вынимают один шар и наблюдают за его цветом. Процесс выбора повторяется. Такую модель называют извлечением без замены. Такая модель будет зависеть от истории, т.к. на вероятности будут оказывать влияние предыдущие эксперименты.

Базовая модель. Формула

Для модели без возвращения вероятность вытянуть k шаров, из урны с m черными и n белыми шарами, из которых l черных шаров можно выразить следующей формулой:

$$P(k) = \frac{\binom{m}{l}\binom{n}{k-l}}{\binom{m+n}{k}}$$

Где: P(k) - вероятность вытянуть ℓ черных шаров $\binom{n}{k} = \frac{k!}{n!(n-k)!}$ - количество способов выбрать ℓ элементов из ℓ элементов (сочетание)

Модель Бернулли

Модель Бернулли описывает случайный эксперимент с двумя возможными исходами: успехом и неудачей. Пусть успех - черный шар, неудача - белый. Обозначим вероятность успеха как p и вероятность неудачи как q. При этом должно выполняться условие p+q=1. В данной модели, после того, как шар достают, его возвращают обратно в урну, т.к. эксперимент Бернулли - независимый эксперимент. Таким образом независимо от количества испытаний, эксперимент не меняется, т.е. вероятность не зависит от истории.

Модель Бернулли. Формула

Формула для расчёта вероятности того, что из урны с m черными шарами и n белыми шарами будет вытянуто k шаров, из котрых l - черные для данной модели выглядит следующим образом:

$$P(l) = \binom{k}{l} * p^l * (1-p)^{k-l}$$

Где: P(l) - вероятность того, что будет вытянуто l черных шаров p - вероятность вытащить черный шар

Модель Поля. The reach get reacher

В статистике модель урны Поля, названная в честь Джорджа Поля, представляет собой модель, в которой после того, как шар достается, он возвращается в урну, и ещё добавляется шар такого же цвета. Этот процесс повторяется. Можно заметить, что если, например, белых шаров больше чем чёрных, то с большей вероятностью будет добавлен белый шар. То есть эта урна зависит от истории и сходится.

Даже если мы смоделируем ситуацию, где в урне находится одинаковое количество шаров черного и белого цвета, количество шаров одного цвета будет сильно больше шаров другого цвета. Допустим, вы начинаете с равным количеством шаров (5 белых, 5 черных). Если после первого испытания будет выбран белый шар, в урне окажется 6 белых и 5 черных шаров. Это автоматически создает неравенство, при котором в следующем испытании с большей вероятностью будет выбран белый шар, нежели черный. Шансы теперь составляют 6/11, что будет выбран белый шар, и 5/11, что вы выберете черный. Этот фактор и может стать снежным комом.

График изменения количества шаров в урне Поля при m = 5, n = 5. (рис. (fig:001?))

Рис. 1: График урны Поля

Модель баланса

Модель баланса или же модель плохой выборной компании - модель которую изучал Фридман, и ее можно рассматривать как моделирование предвыборной кампании, в которой кандидаты настолько плохи, что люди, которые их слушают, решают голосовать за противоположного кандидата. Данная урна, в отличие от урны Поля, стремится сохранить баланс черных и белых шаров. В данной модели после выемки шара в урну кладётся шар противоположного цвета. Модель сходится к равновесию.

График изменения количества шаров в урне Фридмана при m = 10, n = 5.

Среднее значение 7.5, поэтому количество черных и белых шаров колеблется возле этого значения. (рис. (fig:002?))

Области применения

Теория вероятности

Модели с урнами - это мощный инструмент в теории вероятностей, используемый для моделирования случайных событий. Каждая из упомянутых моделей используется в теории вероятностей для анализа случайных процессов и событий а так же вероятностных распределений из многих областей нашей жизни и помогает решать реальные задачи.

Генетика

В генетике модели с урнами могут быть использованы для описания процессов мутации и передачи генов. Например, урна с генами различных аллелей может быть использована для моделирования генетического разнообразия в популяции. Модель урны схожая с моделью Поля используется для моделирования генетического дрейфа в теоретической популяционной генетике. (wiki:polya?)

Экономика

В экономике модели с урнами могут быть применены для анализа случайных процессов в экономике, таких как изменения цен, вариации спроса и предложения, а также для моделирования рисков и случайных событий в финансовых рынках.

Обучающие процессы 1/2

Эти модели являются продолжением процесса Поля. Один из вариантов, так называемая стохастическая модель обучения с двумя вариантами ответов, предложенная Одли и Джонкхиром (1956). Мы рассматриваем последовательность испытаний, в каждом из которых испытуемый должен отреагировать одним из двух возможных способов.

Обучающие процессы 2/2

Один ответ "вознаграждается" — положительная оценка — каждый раз, когда он совершается. Другой "наказаывается" — негативная оценка. Таким образом, (i + 1)-й ответ субъекта, скорее всего, будет зависеть от каждого из первых і ответов. Используя эту модель, Одли и Джонкхир получили условное распределение вероятности успеха в (n + 1)-м испытании, учитывая результаты предыдущих n испытаний.

Биология

Саpture-recapture дано целому классу методов, используемых для оценки размеров естественных популяций. Многие из них происходят из работ Шнабеля(1938) и Чапмана(1952), в которых обсуждается оценка численности рыбы f в озере. Предложенный метод состоял в разделении рыбы на меченую и немеченую.(book:two?)

Выводы

В работе были исследованы разновидности моделей с урнами, а так же было рассмотренно их применение в различных областях. Таким образом, хотя модель с урнами - это и простой мысленный эксперимент, различные её виды внесли вклад в развитие многих областей нашей жизни и используются и по сей день.

Список литературы

- 1. Polya urn porblem [Электронный ресурс]. Free Software Foundation, 2024. URL: https://en.wikipedia.org/wiki/Urn_problem.
- 2. Polya urn. Definiton, examples. [Электронный ресурс]. 2024. URL: https://www.statisticshowto.com/polya-urn/.
- 3. Flajolet P., Dumas P., Puyhaubert V. Some exactly solvable models of urnprocess theory. DMTCS,2006.118 c.
- 4. Johnson N.L., Kotz S. Urn Models and their application. John Wiley &Sons,Inc.,1977.402 c.