1 Эквивалентности

1.1 Определение синтаксической эквивалентности

Определение

Две формулы ϕ и ψ сигнатуры σ называются **синтаксически эквивалентными** (или просто **эквивалентными**), тогда и только тогда, когда $\triangleright \phi \vdash \psi$ и $\triangleright \psi \vdash \phi$. Это отношение обозначается как: $\phi \equiv \psi$.

Замечание

Отношение \equiv на множестве $F(\sigma)$ является отношением эквивалентности.

Доказательство

Рефлексивность и симметричность очевидно следуют из определения. Транзитивность: пусть $\phi \equiv \psi$ и $\psi \equiv \chi$. Тогда $\triangleright \phi \vdash \psi$ и $\psi \vdash \chi$, следовательно, по правилу сечения $\triangleright \phi \vdash \chi$. Обратное включение $\triangleright \chi \vdash \phi$ доказывается аналогично.

1.2 Пропозициональная эквивалентность

Определение

Формулы ϕ и ψ называются **пропозиционально эквивалентными**, тогда и только тогда, когда $\phi \to \psi$ и $\psi \to \phi$ тождественно истинны. Это отношение обозначается как $\phi \stackrel{s}{\equiv} \psi$.

Предложение

Если $\phi \stackrel{s}{\equiv} \psi$, то $\phi \equiv \psi$.

Доказательство

Если $\phi \to \psi$ и $\psi \to \phi$ тождественно истинны, то $\rhd \vdash \phi \to \psi$ и $\rhd \psi \to \phi$. Тогда, используя аксиомы $\phi \vdash \phi$ и $\psi \vdash \psi$ по правилу сечения получим вывод секвенций $\phi \vdash \psi$ и $\psi \vdash \phi$, т.е. $\phi \equiv \psi$.

Лемма (об эквивалентностях)

1)
$$\phi \to \psi \equiv \neg \phi \lor \psi$$

3)
$$\phi \wedge \phi \equiv \phi$$

5)
$$\phi \wedge \top \equiv \phi$$

Существуют следующие пропозициональные эквивалентности:

7)
$$\phi \vee \top \equiv \top$$

9)
$$\neg(\phi \land \psi) \equiv (\neg \phi) \lor (\neg \psi)$$

11)
$$\phi \wedge \psi \equiv \psi \wedge \phi$$

13)
$$\phi \wedge (\psi \wedge \chi) \equiv \phi \wedge (\psi \wedge \chi)$$

15)
$$\phi \lor (\psi \lor \chi) \equiv \phi \lor (\psi \lor \chi)$$

Доказательство

Следуют из соответствующих утверждений об эквивалентностях в логике высказываний и предыдущего предложения.

1.3 Лемма об эквивалентности

Лемма (эквивалентность)

Пусть $\phi_1 \equiv \phi_2, \psi_1 \equiv \psi_2$. Тогда:

1.
$$\neg \phi_1 \equiv \neg \phi_2$$

2.
$$(\phi_1 \bullet \psi_1) \equiv (\phi_2 \bullet \psi_2)$$
, где $\bullet \in \{\land, \lor, \rightarrow\}$

3.
$$\forall x \phi_1 \equiv \forall x \phi_2$$

$$4. \ \exists x \phi_1 \equiv \exists x \phi_2$$

Доказательство

Эквивалентности 1 и 2 доказываются точно так же, как и в логике высказываний. Докажем эквивалентности 3 и 4. Пусть $\phi_1 \equiv \phi_2$. Тогда $\triangleright \phi_1 \vdash \phi_2$.

Таким образом $\triangleright Qx\phi_1 \vdash Qx\phi_2$, где $Q \in \{\forall, \exists\}$. Обратные секвенции $\triangleright Qx\phi_2 \vdash Qx\phi_1$ могут быть доказаны аналогично. \square

1.4Теорема о замене

Теорема (о замене)

Пусть формула ϕ' получена из ϕ заменой некоторого вхождения подформулы ψ формулой ψ' . Тогда если $\psi \equiv \psi'$, то $\phi \equiv \phi'$.

Доказательство

Доказательство проводится индукцией по разности глубин формул ϕ и ψ . Шаг индукции следует из леммы об эквивалентностях.

1.5 Эквивалентности с кванторами

Лемма (эквивалентности с кванторами)

Пусть ϕ, ψ - формулы и $x \notin FV(\psi), y$ - переменные. Тогда

1)
$$\neg \exists x \phi = \forall x \neg \phi$$

1)
$$\neg \exists x \phi \equiv \forall x \neg \phi$$
 2) $\neg \forall x \phi \equiv \exists x \neg \phi$

3)
$$\exists x \phi \land \psi \equiv \exists x (\phi \land \psi)$$

3)
$$\exists x \phi \land \psi \equiv \exists x (\phi \land \psi)$$
 4) $\forall x \phi \land \psi \equiv \forall x (\phi \land \psi)$

5)
$$\exists x \phi \lor \psi \equiv \exists x (\phi \lor \psi)$$

5)
$$\exists x \phi \lor \psi \equiv \exists x (\phi \lor \psi)$$
 6) $\forall x \phi \lor \psi \equiv \forall x (\phi \lor \psi)$
7) $\exists x \phi \equiv \exists y [\phi]_y^x$ 8) $\forall x \phi \equiv \forall y [\phi]_y^x$
9) $\exists x \psi \equiv \psi$ 10) $\forall x \psi \equiv \psi$

$$\exists x \phi \equiv \exists y$$

$$8) \ \forall x \phi \equiv \forall y [\phi]_y^x$$

9)
$$\exists x\psi \equiv \psi$$

10)
$$\forall x\psi \equiv \psi$$

Доказательство

Докажем, например, 8. Для этого заметим, что: $[[\phi]_{y}^{x}]_{x}^{y} \vdash \phi$.

$$\frac{[\phi]_y^x \vdash [\phi]_y^x}{\forall x \phi \vdash [\phi]_y^x} \qquad \frac{[[\phi]_y^x]_x^y \vdash \phi}{\forall y [\phi]_y^x \phi \phi} \\ \forall x \phi \vdash \forall y [\phi]_y^x \qquad \forall y [\phi]_y^x \vdash \forall x \phi$$

1.6 Конгруэнтные формулы

Определение

Формула ϕ' получена из ϕ заменой связанной переменной, тогда и только тогда, когда существует такое вхождение некоторой подформулы $Qx\phi \sqsubseteq \phi$, что ϕ' получена из ϕ заменой этого вхождения на $Qy[\phi]_{u}^{x}$.

Отметим, что это понятие почти то же самое, что и α -редукция в λ -исчислении.

Определение

Формулы ϕ и ψ называются **конгруэнтными**, обозначается как $\phi \stackrel{c}{\sim} \psi$, тогда и только тогда, когда существует такая последовательность формул χ_1, \ldots, χ_n , что $\phi = \chi_1, \psi = \chi_n$ и формула χ_{i+1} получена χ_i заменой связанной переменной.

Замечание

Очевидно, что $\stackrel{c}{\sim}$ является отношением эквивалентности на множестве всех формул.

1.7 Эквивалентность конгруэнтных формул

Лемма

Даны две формулы ϕ, ψ , если $\phi \stackrel{c}{\sim} \psi$, то $\phi \equiv \psi$.

Доказательство

По теореме о замене достаточно показать, что для любой формулы ϕ , любых переменных x, y и квантора $Q \in \{\forall, \exists\}$ верно следующее

$$Qx\phi \equiv Qy[\phi]_y^x$$

1.8 Определение пренексной нормальной формы

Определение

Формула логики предикатов ϕ находится в **дизъюнктивной нормальной форме** (ДНФ), тогда и только тогда, когда ϕ получена из пропозициональной формулы ψ , находящейся в ДНФ, заменой всех пропозициональных переменных атомарными формулами логики предикатов.

Определение

Формула логики предикатов ϕ находится в **пренексной нормальной** форме (ПНФ), тогда и только тогда, когда $\phi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi$, где $Q_i \in \{\forall, \exists\}$ - кванторы, x_1, \dots, x_n - предметные переменные, ψ - бескванторная формула в ДНФ.

пример

 $\forall x \exists y \forall z ((p(x,y) \land \neg q(y)) \lor (p(y,z) \land q(x)))$ - находится в ПНФ.

1.9 Теорема - приведение к ПНФ

Теорема (приведение к ПНФ)

Для любой формулы ϕ сигнатуры σ существует такая формула ϕ' , находящаяся в ПНФ, что $\phi \equiv \phi'$.

Доказательство

По эквивалентности $\phi_1 \to \phi_2 \equiv \neg \phi_1 \lor \phi_2$ и теореме о замене существует такая формула $\phi' \equiv \phi$, что ϕ' не содержит символов \rightarrow . Индукцией по длине ϕ' докажем, что существует такая формула $\phi'' \equiv \phi'$, что $\phi'' = Q_1 x_1 \dots Q_n x_n \psi$, где $Q_i \in \{ \forall, \exists \}$ и ψ не содержит кванторов. Основание индукции. Если ϕ' является атомарной формулой, то ϕ' не содержит кванторов, поэтому можно рассматривать ϕ' в качестве ϕ'' . Шаг индукции. Пусть $\phi' = Q_0 x_0 \phi_1$. Тогда $l(\phi_1) < l(\phi')$, следовательно, существует такая формула $Q_1x_1\dots Q_kx_k\psi_1$, что $\phi_1\equiv Q_1x_1\dots Q_kx_k\psi_1$ и ψ_1 не содержит кванторов. По теореме о замене $\phi \equiv Q_0 x_0 Q_1 x_1 \dots Q_k x_k \psi_1$. Пусть $\phi' = \neg \phi_1$. Тогда $l(\phi_1) < l(\phi')$, следовательно, существует такая формула $Q_1x_1\dots Q_kx_k\psi_1$ что $\phi_1\equiv Q_1x_1\dots Q_kx_k\psi_1$ и ψ_1 не содержит кванторов. Для кванторов будем использовать соглашение: $\bar{\forall} = \exists$ и $\bar{\exists} = \forall$. k раз применяя индукцию, по теореме о замене и эквивалентности $\neg Qx\phi \equiv Q\neg \phi$, получим $\phi \equiv \bar{Q}_1 x_1 \dots \bar{Q}_k x_k \neg \psi_1$. Пусть $\phi' = \phi_1 \bullet \phi_2$, где $\bullet \in \{\land, \lor\}$. Тогда $l(\phi_1), l(\phi_2) < l(\phi')$. Если обе формулы ϕ_1 и ϕ_2 не содержат кванторов, то утверждение доказано. Предположим, что ϕ_1 содержит кванторы. По предположению индукции $\phi_1 \equiv Qx\psi_1$ для некоторой ψ_1 . Пусть y - некоторая новая переменная, вхождений которой нет в ϕ' . Тогда $Qx\psi_1 \equiv Q_y[\psi_1]_y^x$, и по теореме о замене

$$\phi' \equiv \phi_1 \bullet \phi_2 \equiv Qy[\psi_1]_y^x \bullet \phi_2 \equiv Qy([\psi_1]_y^x \bullet \phi_2)$$

Поскольку $l([\psi_1]_y^x ullet \phi_2) < l(\phi')$, предположение индукции верно. Таким образом, мы получаем некую формулу $\phi'' \equiv \phi'$, такую, что $\phi'' = Q_1 x_1 \dots Q_n x_n \psi$, где $Q_i \in \{\forall, \exists\}$ и ψ не содержит кванторов. Затем необходимо привести ψ

к ДНФ. Для этого сначала преобразуем ψ в формулу с тесными отрицаниями (т.е. отрицание может находиться только перед атомарными формулами), после чего, используя дистрибутивность, приведём её к ДНФ. Оба действия могут быть выполнены, так как для логики предикатов существуют те же эквивалентности, что и для логики высказываний:

$$\neg \neg \phi \equiv \phi$$

$$\neg (\phi_1 \lor \phi_2) \equiv \neg \phi_1 \land \neg \phi_2$$

$$\neg (\phi_1 \land \phi_2) \equiv \neg \phi_1 \lor \neg \phi_2$$

$$\psi \lor (\phi_1 \land \phi_2) \equiv (\psi \lor \phi_1) \land (\psi \lor \phi_2)$$

$$\psi \land (\phi_1 \lor \phi_2) \equiv (\psi \land \phi_1) \lor (\psi \land \phi_2)$$

2 Корректность и полнота

2.1 Определение истинности секвенции

Определение

Секвенция $s = \phi_1, \dots, \phi_n \vdash \phi_0$ называется **истинной** в структуре \mathcal{M} при означивании переменных $\gamma : FV(s) \to M$, тогда и только тогда, когда

$$\mathcal{M} \models ((\bigwedge_{1 \le i \le n} \phi_i) \to \phi_0)[\gamma]$$

Истинность секвенции s в структуре \mathcal{M} при означивании γ обозначается как: $\mathcal{M} \models s[\gamma]$.

Определение

Секвенция s называется **тождественно истинной**, тогда и только тогда, когда для любой структуры $\mathcal M$ и для любого означивания $\gamma:FV(s)\to M$ верно, что

$$\mathcal{M} \models s[\gamma]$$

2.2 Теорема - корректность PredC_{σ}

Teopema (корректность $PredC_{\sigma}$)

Если секвенция s является выводимой, то s тождественно истинна.

Доказательство

Доказательство проводится индукцией по высоте дерева вывода s. Основание индукции: s - аксиома. тождественная истинность секвенций $\phi \vdash \phi, \vdash \top$ и $\vdash (x=x)$ очевидна. Тождественная истинность секвенции $x=y, (\phi)_x^z \vdash (\phi)_y^z$ также очевидна. Шаг индукции. Предположим, что утверждение верно для всех деревьев вывода высоты < n, и рассмотрим дерево вывода T высоты n. Тогда

$$T = \frac{T_1 \dots T_n}{s}$$

Пусть $s_i = r(T_i)$ - корни деревьев T_i . По предположению индукции все секвенции s_i тождественно истинны. Необходимо доказать тождественную истинность s. Известно, что $\frac{s_1...s_n}{s} \in R_{PC}$ является правилом вывода. Проверим, что все правила вывода $\operatorname{PredC}_{\sigma}$ сохраняют тождественную истинность: если $\frac{s_1...s_n}{s}$ является правилом вывода PredC_σ и все s_i тождественно истинны, то s также тождественно истинно. Для правил вывода $\operatorname{PredC}_{\sigma}$, имеющих тот же вид, что и правила вывода исчисления высказываний, доказательство аналогично их доказательству в исчислении высказываний. Следовательно, достаточно проверить только правила с кванторами. Возьмем, например, правило $\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall x \phi}$ при условии, что $x \notin FV(\Gamma)$. Пусть $\Gamma \vdash \phi$ - тождественно истинна. Предположим, что $\Gamma \vdash \forall x \phi$ не является тождественно истинной. Тогда существует такая структура \mathcal{M} и означивание $\gamma : FV(\Gamma \cup \{\phi\})$, что $\mathcal{M} \models \Gamma[\gamma]$ и $\mathcal{M} \not\models \forall x \phi$. По определению это означает, что существует такой элемент $a \in M$, что $\mathcal{M} \not\models \phi[\gamma_a^x]$. Поскольку $x \notin FV(\Gamma)$ и $\mathcal{M} \models \Gamma[\gamma]$, $\mathcal{M} \models \Gamma[\gamma_a^x]$. По условию секвенция $\Gamma \vdash \phi$ тождественно истинна, следовательно, $\mathcal{M} \models \phi[\gamma_a^x]$ - противоречие. Остальные 3 правила рассматриваются аналогично. \square

Следствие (теоремы о корректности)

Для любых двух формул ϕ и ψ , если $\phi \equiv \psi$, то $\phi \sim \psi$.

Доказательство

Рассмотрим эквивалентные формулы $\phi \equiv \psi$. Тогда по теореме о корректности $\phi \vdash \psi$ и $\psi \vdash \phi$ - тождественно истинные секвенции. Возьмём любую структуру \mathcal{M} , $\bar{a} \in M$ - любой кортеж из \mathcal{M} . Тогда если $\mathcal{M} \models \phi(\bar{a})$, то $\mathcal{M} \models \psi(\bar{a})$ и обратное включение, если $\mathcal{M} \models \psi(\bar{a})$, то $\mathcal{M} \models \phi(\bar{a})$. Следовательно, это означает, что $\phi \sim \psi$ по определению.

2.3 Понятие модели для множества формул

Определение

Структура \mathcal{M} называется **моделью** для множества формул Γ , тогда и только тогда, когда существует такое означивание $\gamma : FV(\Gamma) \to M$, что $\mathcal{M} \models \Gamma[\gamma]$.

Замечание

Понятно, что по определению множество формул Γ выполнимо тогда и только тогда, когда существует модель множества Γ .

2.4 Противоречивое множество формул

Определение

Пусть Φ - множество формул, ψ - формула. Тогда ψ является **выводимой** из Φ , тогда и только тогда, когда существуют такие формулы $\phi_1, \ldots, \phi_n \in \Phi$, что секвенция $\phi_1, \ldots, \phi_n \vdash \psi$ является выводимой. Обозначим это как: $\Phi \vdash \psi$.

Определение

множество формул Φ называется **противоречивым**, тогда и только тогда, когда существуют такие формулы $\phi_1, \ldots, \phi_n \in \Phi$, что секвенция $\phi_1, \ldots, \phi_n \vdash \bot$ является выводимой. Множество называется **непротиворечивым**, тогда и только тогда, когда оно не является противоречивым.

Понятно, что Φ противоречива \Leftrightarrow возможно вывести \bot из Φ .

Предложение

Если множество Ф противоречиво, то не существует модели Ф.

Доказательство

Предположим обратное, т.е. что \mathcal{M} - модель Φ . Пусть γ - такое означивание, что $\mathcal{M} \models \Phi[\gamma]$. так как Φ противоречиво, существует такая $\phi_1, \ldots, \phi_n \in \Phi$, что секвенция $\phi_1, \ldots, \phi_n \vdash \bot$ является выводимой. По теореме о корректности эта секвенция тождественно истинна. Поскольку $\mathcal{M} \models \Phi[\gamma]$, $\mathcal{M} \models \phi_i[\gamma]$ для всех $1 \leq i \leq n$. Следовательно, должно быть верно следующее $\mathcal{M} \models \bot$, но это невозможно. Получаем противоречие, поэтому можно сделать вывод о том, что не существует модели множества Φ .

2.5 Свойства непротиворечивых множеств

Лемма (свойства непротиворечивых множеств)

В дальнейшем непротиворечивое множество формул будем обозначать как Φ .

- 1. ∅ непротиворечиво
- 2. если $\phi_1, \dots, \phi_n \in \Phi$ и секвенция $\phi_1, \dots, \phi_n \vdash \psi$ не является выводимой, то $\Phi \cup \{\psi\}$ также является непротиворечивым
- 3. если $\Phi \cup \{\exists x \psi\}$ является непротиворечивым и переменная $y \notin FV(\Phi)$, то $\Phi \cup \{[\psi]_u^x\}$ также непротиворечиво
- 4. для любой формулы $\psi, \Phi \cup \{\psi\}$ или $\Phi \cup \{\neg \psi\}$ непротиворечиво

Доказательство

1). Если \emptyset противоречиво, то возможно вывести $\vdash \bot$, тогда формула \bot будет являться тождественно истинной. 2) Предположим, что $\Phi \cup \{\psi\}$ противоречиво. Тогда существуют такие формулы $\psi_1, \ldots, \psi_m \in \Phi$, что секвенция $\psi_1, \ldots, \psi_m, \psi \vdash \bot$ является выводимой. Но секвенция $\phi_1, \ldots, \phi_n \vdash \psi$ также является выводимой, тогда по правилу сечения $\psi_1, \ldots, \psi_m, \phi_1, \ldots, \phi_n \vdash \bot$, следовательно, Φ противоречиво. 3) Предположим, что $\Phi \cup \{[\psi]_y^x\}$ противоречиво. Тогда существуют такие формулы $\psi_1, \ldots, \psi_m \in \Phi$, что

секвенция $\psi_1, \ldots, \psi_m, [\psi]_y^x \vdash \bot$ является выводимой. Так как y не имеет вхождений в $FV(\psi_1, \ldots, \psi_m)$,

$$\frac{\psi_1, \dots, \psi_m, \neg [\psi]_y^x \vdash \bot}{\psi_1, \dots, \psi_m \vdash \neg [\psi]_y^x} \frac{\psi_1, \dots, \psi_m \vdash \neg [\psi]_y^x}{\psi_1, \dots, \psi_m \vdash \forall y \neg [\psi]_y^x}$$

Тогда можно вывести секвенцию $\psi_1, \dots, \psi_m \vdash \forall x \neg \psi$. Следовательно,

$$\frac{\psi_1, \dots, \psi_m \vdash \forall x \neg \psi}{\psi_1, \dots, \psi_m \vdash \neg \exists x \psi}$$
$$\psi_1, \dots, \psi_m, \exists x \psi \vdash \bot$$

Т.е. множество $\Phi \cup \{\exists x\psi\}$ противоречиво. 4) Предположим, что для некоторой формулы ϕ оба множества $\Phi \cup \{\phi\}$ и $\Phi \cup \{\neg \phi\}$ противоречивы. Тогда по определению существуют такие формулы $\phi_1, \ldots, \phi_n, \psi_1, \ldots, \psi_m \in \Phi$, что можно вывести секвенции $\phi_1, \ldots, \phi_n, \phi \vdash \bot$ и $\psi_1, \ldots, \psi_m, \neg \phi \vdash \bot$. Но тогда

$$\frac{\phi_1, \dots, \phi_n, \phi \vdash \bot}{\phi_1, \dots, \phi_m, \psi_1, \dots, \psi_m \vdash \phi} (cut)$$

Следовательно, Ф противоречиво - противоречие.

2.6 Понятие теории

Определение

Непротиворечивое множество предложений T сигнатуры σ называется **теорией**, тогда и только тогда, когда для любого предложения ϕ сигнатуры σ , если ϕ является выводимой из T, то $\phi \in T$ (т.е. теория замкнута относительно выводимости)

Определение

Теория T сигнатуры σ называется **полной**, тогда и только тогда, когда для любого предложения верно, что либо $\phi \in F(\sigma)$, либо $\phi \in T$, либо $\neg \phi \in T$.

Определение

Полная теория T сигнатуры σ называется **Теорией Хенкина**, тогда и только тогда, когда для любого предложения $\phi \in T$, если $\phi = \exists x \psi$, то существует некоторая константа c в σ , такая, что $(\psi)_c^x \in T$.

2.7 Лемма о теориях

Лемма (расширение теории)

Для любого непротиворечивого множества предложений Φ сигнатуры σ существует теория T такая, что $\Phi \subseteq T$.

Доказательство

Рассмотрим множество $T = \{\phi | \phi \in S(\sigma), \ \Phi \vdash \phi\}$ - все предложения, выводимые из Φ . Поскольку $\rhd \phi \vdash \phi, \ \Phi \subseteq T$. Пусть $T \vdash \phi$, т.е. существует некоторая $\phi_1, \ldots, \phi_n \in T$ такая, что $\rhd \phi_1, \ldots, \phi_n \vdash \phi$. Но для каждого $1 \leq i \leq n$ существует такая $\Gamma_i \subseteq \Phi$, что $\rhd \Gamma_i \vdash \phi_i$. Следовательно, n раз применяя правило сечения, получаем, что $\Gamma_1, \ldots, \Gamma_n \vdash \phi$, т.е. $\Phi \vdash \phi$, тогда по определению $\phi \in T$. Следовательно, T замкнута относительно выводимости. Если предположить, что T непротиворечива, то для некоторой $\phi_1, \ldots, \phi_n \in T$ верно, что $\rhd \phi_1, \ldots, \phi_n \vdash \bot$. Тогда $\Phi \vdash \bot$ также противоречива, но это не так.

2.8 Лемма о максимальности полных теорий

Лемма (максимальность полных теорий)

Множество предложений T сигнатуры σ является полной теорией $\Leftrightarrow T$ является максимальным непротиворечивым множеством предложений сигнатуры σ .

Доказательство

 \Leftarrow . Пусть T - полная теория. Рассмотрим некоторое Φ такое, что $T \subseteq \Phi$ и Φ непротиворечиво. Возьмем некоторую $\phi \in \Phi$. Предположим, что $\phi \notin T$. Но тогда $\neg \phi \in T$, следовательно, $\phi, \neg \phi \in \Phi$, т.е. Φ противоречиво. \Rightarrow . Предположим, что $T \vdash \phi$. Тогда по лемме о непротиворечивых

множествах $T \cup \{\phi\}$ непротиворечиво. Поскольку T максимальное непротиворечивое множество, $T \cup \{\phi\} = T$, тогда $\phi \in T$. Предположим, что $\phi, \neg \phi \notin T$. тогда $T \cup \{\phi\}$ или $T \cup \{\neg \phi\}$ непротиворечиво - это противоречит максимальности T.

2.9 Лемма о полных теориях

Лемма (о полных теориях)

Пусть T - полная теория сигнатуры σ . Тогда для любых предложений ϕ и ψ сигнатуры σ верно следующее:

- 1. $(\phi \land \psi) \in T \Leftrightarrow (\phi \in T) \land (\psi \in T)$
- 2. $(\phi \lor \psi) \in T \Leftrightarrow (\phi \in T) \lor (\psi \in T)$
- 3. $(\phi \to \psi) \in T \Leftrightarrow (\phi \in T) \to (\psi \in T)$
- 4. $\neg \phi \in T \Leftrightarrow \phi \notin T$

Доказательство

1) Пусть $(\phi \land \psi) \in T$, предположим, что $\phi \notin T$. Поскольку T является полной теорией, $\neg \phi \in T$, но тогда $\rhd \neg \phi, (\phi \land \psi) \vdash \bot$, т.е. T противоречива. Обратное включение, пусть $\phi \in T, \psi \in T$. Тогда $\rhd \phi, \psi \vdash (\phi \land \psi)$, следовательно, так как T - это теория, $(\phi \land \psi) \in T$ 2) Пусть $(\phi \lor \psi) \in T$, предположим, что $\phi \notin T$ и $\psi \notin T$. Поскольку T является полной теорией, $\neg \phi \in T$ и $\neg \psi \in T$. Тогда $\rhd \neg \phi, \neg \psi \vdash (\neg \phi \land \neg \psi)$, следовательно, $\rhd \neg \phi, \neg \psi, (\phi \land \psi) \vdash \bot$, т.е. T противоречива. Обратное включение, пусть $\phi \in T$. Тогда $\rhd \phi \vdash (\phi \lor \psi)$, следовательно, так как T - это теория, $(\phi \lor \psi) \in T$ 3) Пусть $(\phi \to \psi) \in T$, Предположим, что $\phi \in T$ и $\psi \notin T$. Поскольку T является полной теорией, $\neg \psi \in T$. Тогда $\rhd \phi, \neg \psi, (\phi \to \psi) \vdash \bot$ т.е. T противоречиво. Обратное включение, пусть $\neg \phi \in T$ или $\psi \in T$. В обоих случаях $\rhd \neg \phi \vdash (\phi \to \psi)$ и $\rhd \psi \vdash (\phi \to \psi)$, следовательно, так как T - теория, $(\phi \to \psi) \in T$ 4) Если $\neg \phi \in T$ и $\phi \in T$, тогда T противоречива. Обратное включение, если $\phi \notin T$, то $\neg \phi \in T$ по определению полной теории. \square

2.10 Теорема (о полноте)

Теорема (существование модели)

Если Φ - непротиворечивое множество формул, то существует модель для Φ .

Теорема (о полноте, Гёдель)

Пусть Φ - множество формул, ψ - формула. Если $\Phi \models \psi$, то $\Phi \vdash \psi$, т.е. ψ может быть выведена из Φ .

Доказательство

Предположим, что $\Phi \not\models \psi$, т.е. ψ не может быть выведена из Φ . Тогда множество $\Phi \cup \{\neg \psi\}$ непротиворечиво. Действительно, если $\Phi \cup \{\neg \psi\}$ противоречиво, то существуют такие $\phi_1, \ldots, \phi_n \in \Phi$, что $\triangleright \phi_1, \ldots, \phi_n, \neg \psi \vdash \bot$. Но тогда $\triangleright \phi_1, \ldots, \phi_n \vdash \psi$, т.е. ψ может быть выведена из Φ . По теореме о существовании модели существует модель $\mathcal{M} \models \Phi \cup \{\neg \psi\}$. Но тогда $\mathcal{M} \models \Phi$ и $\mathcal{M} \not\models \psi$ противоречит $\Phi \models \psi$.

Следствие (теоремы о полноте)

Если секвенция $s = \phi_1, \dots, \phi_n \vdash \phi_0$ тождественно истинна, то s является выводимой.

Доказательство

Достаточно доказать что если s тождественно истинна, то $\{\phi_1, \ldots, \phi_n\} \models \phi_0$. Тогда по теореме о полноте вывод ϕ_0 может быть получен из множества $\{\phi_1, \ldots, \phi_n\}$. Следовательно, $\triangleright \phi_{i_1}, \ldots, \phi_{i_k} \vdash \phi_0$, но тогда $\triangleright \phi_1, \ldots, \phi_n \vdash \phi_0$.

Теорема (о достаточности)

Пусть Φ - множество формул, ψ - формула. Тогда

$$\Phi \models \psi \Leftrightarrow \Phi \vdash \psi$$

Это следствие теорем о полноте и корректности.

2.11 Аксиомы теории ZF множеств

Аксиомы теории ZF множеств

Сигнатура теории множеств $\sigma_{ZF} = \{ \in^2 \}$. Аксиомы ZF:

- 1. $\exists x \forall y \neg (y \in x)$ аксиома \emptyset
- 2. $\forall x \forall y ((x=y) \leftrightarrow \forall z ((z \in x) \leftrightarrow (z \in y)))$ аксиома расширения
- 3. $\forall x \forall y \exists z \forall t ((t \in z) \leftrightarrow ((t = x) \lor (t = y)))$ аксиома пары
- 4. $\forall x \exists y \forall z ((z \in y) \leftrightarrow \exists t ((z \in t) \land (t \in x)))$ аксиома объединения
- 5. $\forall x \exists y \forall z ((z \in y) \leftrightarrow \forall t ((t \in z) \to (t \in x)))$ аксиома мощности множества $\mathcal{P}(x)$
- 6. $\forall x(\exists y(y\in x)\to\exists z((z\in x)\land \forall t((t\in z)\to\neg(t\in x))))$ аксиома обоснованности
- 7. $\exists x ((\emptyset \in x) \land \forall y ((y \in x) \rightarrow (y \cup \{y\} \in x)))$ аксиома бесконечности
- 8. Пусть $\phi(x)$ формула сигнатуры σ_{ZF} . Тогда $\forall x \exists y \forall z ((z \in y) \leftrightarrow ((z \in x) \land (\phi)_x^z))$ аксиома спецификации
- 9. Пусть $\phi(x,y)$ формула с двумя свободными переменными. Обозначим $\exists ! y \phi$ как формулу $\exists y (\phi \land \forall y' ((\phi)^y_{y'} \to (y=y')))$. Тогда для любой такой формулы $\phi(x,y)$ может быть сформулирована аксиома о замене:

$$\forall x (\forall z ((x \in x) \to \exists t(\phi)_{z,t}^{x,y}) \to \\ \exists y \forall z ((z \in y) \leftrightarrow \exists t ((t \in x) \land (\phi)_{t,z}^{x,y})))$$

10. $\forall x \exists f((f:x \to \cup x) \land \forall y((y \in x) \to (f(y) \in y)))$ - аксиома выбора.

Обозначим как ZFC все аксиомы теории ZF множеств вместе с аксиомой выбора.

2.12 Определение математики

Определение

Формальное математика - это множество всех предложений сигнатуры σ_{ZF} , выводимых в $\mathrm{PredC}_{\sigma_{ZF}}$ из ZFC. Т.е. математика - это множество предложений

$$Math = \{\phi | \phi \in S(\sigma_{ZF}), \ ZFC \vdash \phi\}$$

Непротиворечиво ли множество аксиом ZFC? Знаменитая вторая теорема Гёделя о неполноте утверждает, что невозможно доказать непротиворечивость ZFC внутри ZFC, следовательно, если нам дан пример явного противоречия в ZFC, однозначный ответ на этот вопрос - нет. Но, не выходя за рамки аксиом ZFC, невозможно получить однозначно положительный ответ на этот вопрос.