Avaliação – Laboratório de Programação

Prof. Msc. Lucas Gonçalves Nadalete

Nome: <u>Fábio Lucas Romeiro de Castro</u> Data: <u>30 / 04 / 2018</u>

Semana 25/03 à 31/03 - Exercícios 30 à 35

Elaborar: Algoritmo elaborado em Pseudocódigo (ver Refcard de Pseudocódigo disponível)

Capítulo 3 – Exercício 30 – Calcule o imposto de renda de um grupo de dez contribuintes, considerando que os dados de cada contribuinte, número do CPF, número de dependentes e renda mensal são valores fornecidos pelo usuário. Para cada contribuinte será feito um desconto de 5% do salário mínimo por dependente. Os valores da alíquota para o cálculo do imposto são:

Renda liquida	Alíquota
Até 2 salários mínimos	Isento
2 a 3 salários mínimos	5%
3 a 5 salários mínimos	10%
5 a 7 salários mínimos	15%
Acima de 7 salários mínimos	20%

Observe que deve ser fornecido o valor atual do salário mínimo para que o algoritmo calcule os valores corretamente.

Resolução:

Algoritmo imposto_de_renda

```
var
cpf:Caracter
i, numDependentes, numeroSalariosMinimos:Inteiro
rendaMensal, imposto:Real

const
valorSalMinimo <- 954

inicio

para i <- 1 até 10 passo 1 faça
escreva "Digite seu CPF:"
leia cpf
escreva "Digite o numero de dependentes: "
leia numDependentes
```

escreva "Digite sua renda mensal: "

leia rendaMensal

numeroSalariosMinimos <- rendaMensal / valorSalMinimo

```
se (numeroSalariosMinimos <= 2) então
    imposto <- 0
  fim se
  se (numeroSalariosMinimos <= 3 e numeroSalariosMinimos > 2) então
    imposto <- rendaMensal * (5/100)
  fim se
  se (numeroSalariosMinimos <= 5 e numeroSalariosMinimos > 3) então
    imposto <- rendaMensal * (10/100)
  fim se
  se (numeroSalariosMinimos <= 7 e numeroSalariosMinimos > 5) então
    imposto <- rendaMensal * (15/100)
  fim se
  se (numeroSalariosMinimos > 7) então
    imposto <- rendaMensal * (20/100)
  fim se
  imposto <- imposto - (numDependentes*(rendaMensal*(5/100)))
  se (imposto > 0) então
    escreva "Senhor(a) portador(a) do CPF: ", cpf
    escreva "O valor do seu imposto de renda é de R$", imposto
  fim se
fim para
```

Capítulo 3 – Exercício 31 –Foi realizada uma pesquisa sobre algumas características físicas da população de uma certa região, a qual coletou os seguintes dados referentes a cada habitante para análise:

- Sexo ('M' masculino ou 'F' feminino);
- Cor dos olhos ('A' azuis, 'V' verdes ou 'C' castanhos);
- Cor dos cabelos ('L' loiros, 'C' castanhos ou 'P' pretos);
- Idade.

Faça um algoritmo que determine e escreva:

- A maior idade dos habitantes;
- A porcentagem entre os indivíduos do sexo masculino, cujo idade está entre 18 e 35 anos, inclusive, e que tenham olhos verdes e cabelos loiros.

O final do conjunto de habitantes é reconhecido pelo valor -1 entrando como idade.

Resolução:

fim se

```
Algoritmo caracteristicas_fisicas
  var
     sexo, codDosOlhos, codDoCabelo: Caracter
     numHabitantes, idade, maiorIdade, qtdM, qtdF, idade:Inteiro
     totalPessoas, qtdMVL:Inteiro
     porcMVL:Real
inicio
  maiorIdade <-0
  qtdM < -0
  qtdF < -0
  qtdMVL <-0
  idade <- 1
  enquanto (idade != -1) faça
     escreva "Digite sua idade:"
    leia idade
    se (idade != -1) então
       se (idade > maiorIdade) então
         maiorIdade <- idade
       fim se
       escreva "Qual seu sexo? (M/F)"
       leia sexo
       se (sexo == 'M') então
         qtdM < -qtdM + 1
```

```
se (sexo == 'F') então
       qtdF < -qtdF + 1
     fim se
     escreva "Qual a cor dos seus olhos? (A = Azuis / V = Verdes / C = Castanhos)"
     leia codDosOlhos
     escreva "Qual a cor do seu cabelo? (L = Loiro / C = Castanhos / P = Pretos)"
    leia codDoCabelo
    totalPessoas <- qtdF + qtdM
    se (sexo == 'M' e idade > 18 e idade < 35 e corDosOlhos == 'V' e
        corDoCabelo == 'L') então
       qtdMVL < -qtdMVL + 1
    fim se
  fim se
fim enquanto
escreva "A maior idade dos habitantes é de ", maiorIdade
porcMVL <- (qtdMVL * 100) / totalPessoas
escreva "A porcentagem de indivíduos do sexo masculino com idade entre 18 e 35,
        com olhos verdes e cabelos loiros é de ",porcMVL, "%"
```

Capítulo 3 – Exercício 32 – Anacleto tem 1,50 metro e cresce 2 centímetros por ano, enquanto Felisberto tem 1,10 metro e cresce 3 centímetros por ano. Construa um algoritmo que calcule e imprima quantos anos serão necessários para que Felisberto seja maior que Anacleto.

Resolução:

```
Algoritmo Felisberto_vai_ficar_maior
var tamanhoAnacleto, tamanhoFelisberto :Real
anos :Inteiro
inicio
tamanhoAnacleto <- 1.5
tamanhoFelisberto <- 1.1
anos <- 0
enquanto (tamanhoAnacleto > tamanhoFelisberto) faça
tamanhoAnacleto <- tamanhoAnacleto + 0.2
tamanhoFelisberto <- tamanhoFelisberto + 0.3
anos <- anos + 1
fim enquanto
escreva "Serão necessários ", anos, " anos para que Felisberto fique maior do que
Anacleto"
fim
```

Capítulo 3 – Exercício 33 – Realizou-se uma pesquisa para determinar alguns dados estatísticos em relação ao conjunto de crianças nascidas em um certo período de uma determinada maternidade. Construa um algoritmo que leia o número de crianças nascidas nesse período e, depois, em um numero indeterminado de vezes, o sexo de um recémnascido prematuro ('M' – masculino ou 'F' - feminino) e o numero de dias que este foi mantido na incubadora.

Como finalizador, teremos a letra 'X' no lugar do sexo da criança.

Determine e imprima:

- A porcentagem de recém-nascidos prematuros;
- A porcentagem de recém-nascidos meninos e meninas do total de prematuros;
- A media de dias de permanência dos recém-nascidos prematuros na incubadora;
- O maior numero de dias que um recém-nascido prematuro permaneceu na incubadora;

Resolução:

Algoritmo prematuros

```
var porcPrematuro,porcMPre, porcFPre, mediaDeDias :Real sexo, prematuro :Caractere qtdPrematuro, diasDeIncubadora, totalDeCriancas, qtdMPre, qtdFPre, somaDeDias, maiorNumDias :Inteiro
```

inicio

```
sexo <- "",
qtdPrematuro <- 0
totalDeCriancas <- 0
maiorNumDias <- 0
somaDeDias <- 0
qtdMPre <- 0
qtdFPre <- 0
enquanto (sexo <> 'X') faça
  escreva "Digite o sexo da criança (M/F):"
  leia sexo
  se(sexo <> X) então
     totalDeCriancas <- totalDeCriancas + 1
     escreva "Seu filho foi prematuro? (S/N)"
     leia prematuro
     se(prematuro == 'S') então
       qtdPrematuro <- qtdPrematuro + 1
       se(sexo == 'M') então
         qtdMPre <- qtdMPre + 1
       fim se
```

```
se(sexo == 'F') então
         qtdFPre <- qtdFPre + 1
       fim se
    fim se
    escreva "Quantos dias ele ficou na incubadora?"
    leia diasDeIncubadora
    somaDeDias <- somaDeDias + diasDeIncubadora
    se(diasDeIncubadoras > maiorNumDias) então
       maiorNumDias <- diasDeIncubadora
    fim se
  fim se
fim enquanto
porcPrematuro <- (qtdPrematuro * 100) / totalDeCriancas
porcMPre <- (qtdMPre * 100)/totalDeCriancas
porcFPre <- (qtdFPre * 100)/totalDeCriancas
mediaDeDias <- somaDeDias / qtdPrematuro
escreva "A porcentagem de recém-nascidos prematuros é de: ", porcPrematuro, "%"
escreva "A porcentagem de recem-nascidos meninos do total de prematuros é de ",
        porcMPre, "%"
escreva "A porcentagem de recem-nascidos meninas do total de prematuros é de ",
        porcFPre, "%"
escreva "A media de dias de recem nascidos prematuros na incubadora é de ",
        mediaDeDias. " dias"
escreva "O maior numero de dias que um recem nascido prematuro permaneceu na
        incubadoa foi de ," maiorNumDias, " dias"
```

Capítulo 3 – Exercício 34 – Um cinema possui capacidade de 100 lugares e está sempre com ocupação total. Certo dia cada espectador respondeu a um questionário, no qual constava:

- Sua idade:
- Sua opinião em relação ao filme, segundo as seguintes notas:

Nota	Significado
A	Ótimo
В	Bom
C	Regular
D	Ruim
E	Péssimo

Elabore um algoritmo que, lendo esses dados, calcule e imprima:

- A quantidade de respostas Ótimo;
- A diferença porcentual entre respostas Bom e Regular;
- A media de idade das pessoas que responderam Ruim;
- A porcentagem de resposta Péssimo e a maior idade que utilizou essa opção;
- A diferença de idade entre a maior idade que respondeu Ótimo e a maior idade que respondeu Ruim;

Resolução:

Algoritmo classificacao_cinema

```
var idade, somaIdade, qtdOtimo, qtdBom, qtdRegular, qtdRuim, qtdPessimo, total, maiorIdadePessimo, maiorIdadeOtimo, maiorIdadeRuim:Inteiro opniao:Caractere porcRegular, porcBom, mediaIdade, porcPessimo:Real
```

inicio

```
somaIdade <- 0
qtdOtimo <- 0
qtdBom <- 0
qtdRegular <- 0
qtdRegular <- 0
qtdPessimo <- 0
maiorIdadePessimo <- 0
maiorIdadeOtimo <- 0
maiorIdadeRuim <- 0

para numDeEspectadores <- 1 até 100 passo 1 faça
escreva "Digite sua idade"
leia idade
escreva "Qual sua opnião sobre o filme? (A = Otimo / B = Bom / C = Regular /
D = Ruim / E = Pessimo)"
leia opniao
```

```
se (opniao == 'A') então
    qtdOtimo <- qtdOtimo + 1
    se (idade > maiorIdadeOtimo) então
       maiorIdadeOtimo <- idade
    fim se
  fim se
  se (opniao == 'B') então
    qtdBom <- qtdBom + 1
  fim se
  se (opniao == 'C') então
    qtdRegular <- qtdRegular + 1
  fim se
  se (opniao == 'D') então
    qtdRuim <- qtdRuim + 1
    somaIdade <- somaIdade + idade
    se (idade > maiorIdadeRuim) então
       maiorIdadeRuim <- idade
    fim se
  fim se
  se (opniao == 'E') então
    qtdPessimo <- qtdPessimo + 1
    se (idade > maiorIdadePessimo) então
       maiorIdadePessimo <- idade
    fim se
  fim se
fim para
total <- qtdOtimo + qtdBom + qtdRegular + qtdRuim + qtdPessimo
porcBom <- (qtdBom * 100) / total
porcRegular <- (qtdRegular * 100)/total
porcPessimo <- (qtdPessimo * 100) / total
mediaIdade <- somaIdade / qtdRuim
escreva "A quantidade de respostas ótimas foi de ", qtdOtimo
escreva "A diferença de porcentual entre respostas Bom e Regular é de ",
         porcBom - porcRegular, "%"
escreva "A media de idade das pessoas que responderam Ruim foi de: ",
         mediaIdade, " anos"
escreva "A porcentagem de respostas pessimas é de : ", porcPessimo, "%"
```

Capítulo 3 – Exercício 35 – Em um prédio há três elevadores denominados A, B e C. Para otimizar o sistema de controle dos elevadores foi realizado um levantamento no qual cada usuário respondia:

- O elevador que utilizava com mais frequência;
- O período em que utilizava o elevador, entre
 - \circ 'M' matutino;
 - \circ 'V' = vespertino;
 - \circ 'N' = noturno.

/N = Noturno)"

leia periodo

Construa um algoritmo que calcule e imprima:

- Qual é o elevador mais frequentado e em que o período, se concentra o maior fluxo:
- Qual o período mais usado de todos e a que elevador pertence;
- Qual a diferença porcentual entre o mais usado dos horários e o menos usado;
- Qual porcentagem sobre o total de serviços prestados do elevador de media utilização.

Resolução:

```
Algoritmo elevadores
```

```
var
     elevador, periodo: Caracter
     a, b, c, m, v, n, elevadorMaisUsado, periodoMaisUsado, i :Inteiro
    porcElevadorMaisUsado:Real
inicio
  a <- 0
  b < -0
  c < -0
  m < -0
  v <- 0
  n < -0
  elevadorMaisUsado <- 0
  periodoMaisUsado <- 0
  i < -0
  escreva "Qual o elevador mais utilizado por voce? (A / B / C)"
  leia elevador
  escreva "Qual o periodo em que voce mais o utiliza? (M = Matutino / V = Vespertino
```

```
enquanto (elevador <> ") faça
  se(elevador == 'a') então
    a < -a + 1
  fim se
  se(elevador == 'b') então
    b < -b + 1
  fim se
  se(elevador == 'c') então
    c < -c + 1
  fim se
  se(periodo == 'm') então
    m < -m + 1
  fim se
  se(periodo == 'v') então
     v < -v + 1
  fim se
  se(periodo == 'n') então
     n < -n + 1
  fim se
  i < -i + 1
fim enquanto
se(a>b e b>c) então
  elevadorMaisUsado <- 'A'
  escreva "O elevador A tem o maior fluxo de pessoas"
fim se
se(b>a e a>c) então
  elevadorMaisUsado <- 'B'
  escreva "O elevador B tem o maior fluxo de pessoas"
fim se
se(c>a e a>b) então
  elevadorMaisUsado <- 'C'
  escreva "O elevador B tem o maior fluxo de pessoas"
fim se
se(m>v e v>n) então
  escreva "Matutino é o perído com maior fluxo de pessoas"
fim se
```

```
se(v>m e m>n) então
escreva "Vespertino é o perído com maior fluxo de pessoas"
fim se

se(n>m e n>v) então
escreva "Noturno é o perído com maior fluxo de pessoas"
fim se

porcElevadorMaisUsado <- (elevadorMaisUsado * 100) / i
escreva "A porcentagem do elevador mais utilizado é de ", porcElevadorMaisUsado,
"%"
```

Elaborar: Algoritmo em Pseudocódigo (ver Refcard de Pseudocódigo disponível)

Ler do teclado a idade dos alunos de uma turma (N alunos). Ao final, quando se digita idade igual a zero, calcular a média aritmética das idades, a média geométrica, a média harmônica e o desvio padrão (população e amostral). Imprimir as médias e o desviopadrão calculados.

```
n = n^{\circ} alunos
 M\'{e}diaAritm\'{e}tica=\frac{\sum Idades}{n}
 MédiaGeométrica= √ Idades
 M\acute{e}diaHarm\^{o}nica = \frac{n}{\sum \frac{1}{Idade}}
DesvioPopulação=\sqrt{\frac{n\sum Idade^2 - (\sum Idade)^2}{n^2}}
DesvioAmostra= \sqrt{\frac{n\sum Idade^2 - (\sum Idade)^2}{n(n-1)}}
Algoritmo idade_dos_alunos
  var
     n, soma, somaMH, multiMG, somaDP: Inteiro
     idade, MG, MA, MH, DP, DA: Real
inicio
  idade <- 1
  n <- 0
  soma <- 0
  multiMG <- 1
  somaMH <- 0
  enquanto (idade <> 0) faça
     escreva ("Digite a idade do aluno (ou digite 0 para sair):")
     leia (idade)
     somaMA <- somaMA + idade
     multiMG <- multiMG * idade
     somaMH <- somaMH + (1/idade)
     somaDP < - somaDP + (idade**2)
     n < -n + 1
  fim-enquanto
  n <- n - 1
  MA <- soma/n
  MG <- rad(multiMG, n)
  MH <- n/somaMH
  DP < -rad(((somaDP - (soma)**2)/n**2),2)
  DA < -rad(((somaDP - (soma)**2)/n*(n-1)),2)
  escreva ("Média Aritmética = ", MA)
  escreva ("Média Geométrica = ", MG)
```

escreva ("Média Harmônica = ", MH) escreva ("Desvio População = ", DP) escreva ("Desvio Amostra= ", DA) fim

Exercícios - Estruturas de Repetição

Elaborar: Algoritmo em Pseudocódigo (ver Refcard de Pseudocódigo disponível)

- Obter e imprimir os primeiros termos da série de Fibonacci, até que a soma acumulada destes atinja 4.000. Ao final imprimir:
 - Soma acumulada.
 - A soma dos termos de ordem par;
 - A soma dos termos de ordem ímpar;
 - · Soma dos quadrados dos termos.

Série de Fibonacci:

```
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 .....
```

```
Algoritmo soma_fibonacci
  var somaAcumulada, somaPar, somaImpar, somaQuad, a, b:Inteiro
inicio
  a <- 0
  b < -1
  somaImpar <- 0
  somaPar <- 0
  somaQuad <- 0
  somaAcumulada <- 0
  enquanto (soma <= 4000) faça
    somaAcumulada <- somaAcumulada + b
    se (MOD(b,2) == 0) então
       somaPar <- somaPar + b
    senão
       somaImpar <- somaImpar + b
    somaQuad <- somaQuad + (b**2)
    a <- b
    b < -a + b
  fim-enquanto
  escreva ("Soma dos valores acumulados = ", somaAcumulada)
  escreva ("Soma dos números pares = ", somaPar)
  escreva ("Soma dos números impares = ", somaImpar)
  escreva ("Soma dos quadrados dos termos = ", somaQuad)
fim
```

Semana 08/04 à 11/04 - Exercícios 6 à 9 (Estrutura de Dados Homogênea Unidimensionais)

Elaborar: Algoritmo elaborado em Pseudocódigo (ver Refcard de Pseudocódigo disponível)

Capítulo 4 – Exercício 6 – Construa um algoritmo que permita informar dados para 2 vetores inteiros de 20 posições, e apresente a intersecção dos vetores. Lembrando que intersecção são os elementos repetidos em ambos os vetores, mas sem repetição (Cada número pode aparecer uma única vez no resultado):

Algoritmo interseccao

```
tipo vinteiros = vetor [1..20] de inteiros
  var
     vinteiros: conjuntoA, conjuntoB, intersecção
     contador: Inteiro
     existente:Logico
inicio
  para i<-1 até 20 passo 1 faça
     escreva "Digite um elemento do conjunto A"
     leia conjuntoA[i]
  fim para
  para i<-1 até 20 passo 1 faça
     escreva "Digite um elemento do conjunto B"
     leia conjuntoB[i]
  fim para
  contador<-0
  para i<-1 até 20 passo 1 faça
     para x<-1 até 20 passo 1 faça
       se (conjuntoA[i] == conjuntoB[x]) então
          existente<- falso
          para y<-1 até 20 passo 1 faça
            se(conjuntoA[i] == interseccao[y]) então
               existente <- verdadeiro
            fim se
          fim para
          se(existente == falso) então
            contador <- contador + 1
```

```
interseccao[i] <- conjuntoA[i]
    fim se
    fim para
fim para

para y<-1 até contador passo 1 faça
    escreva interseccao[y]
fim para
fim</pre>
```

Capítulo 4 – Exercício 7 – Construa um algoritmo que permita informar dados para 2 vetores inteiros de 20 posições e apresente o conjunto união dos vetores. Lembrando que conjunto união são todos os elementos que existem em ambos os vetores, mas sem repetição (Cada número pode aparecer uma única vez no resultado).

Algoritmo uniao

```
tipo vinteiros = vetor [1..20] de inteiros
  var
     vinteiros: conjuntoA, conjuntoB, união
     contador: Inteiro
    acabado:Logico
inicio
  para i<-1 até 20 faça
     escreva "Digite um elemento do conjunto A"
    leia conjuntoA[i]
    escreva "Digite um elemento do conjunto B"
     leia conjuntoB[i]
  fim para
  contador<-1
  contador2<-1
  contador3<-1
  enquanto (acabado == falso) faça
    se conjuntoA[i] == conjuntoB[i] então
       uniao[contador2] <-conjuntoA[contador]
       contador2 <- contador2 + 1
     fim se
     contador <- contador + 1
    se(contador > 20) então
       contador <- 1
       contador3<- contador3 + 1
     fim se
     se(contador3 > 20) então
       acabado <- verdadeiro
     fim se
  fim enquanto
```

```
contador2 <- 1
contador3 <- 20
acabado <- falso
enquanto (terminado == falso) faça
  para i<- 1 até contador3 passo 1 faça
     se (uniao[contador2+i] == uniao[contador2]) então
       uniao[contador2+i] <- 0
     fim se
     se(i == contador3) então
       contador2 <- contador2 + 1
       contador3 < - contador3 - 1
     fim se
     se(contador2 > 20) então
       acabado <- verdadeiro
     fim se
  fim para
fim enquanto
escreva uniao
```

Capítulo 4 – Exercício 8 – Crie um algoritmo que leia a pontuação final de 200 provas de um concurso e os nomes dos respectivos participantes, e apresente um ranking dos colocados que obtiveram mais de 70 pontos.

```
Algoritmo ranking
```

```
tipo vreais = vetor [1..200] de reais
  tipo vcaracter = vetor [1..200] de caracter
  var
     vreais: pontuação
     vcaracter:participante, ranking
inicio
  para i<-1 até 200 passo 1 faça
     escreva "Digite seu nome: "
     leia participante[i]
     escreva "Digite sua pontuacao: "
     leia pontuacao[i]
     se (pontuacao[i] > 70) então
       ranking[i]<- "Nome: ", participante[i], " | Pontuacao: ", pontuacao[i], " pontos"
        escreve ranking[i]
     fim se
  fim para
```

Capítulo 4 – Exercício 9 – Dado um vetor com dados de 50 alturas, elabore um algoritmo que permita calcular:

- a) A média das alturas;
- b) O desvio padrão das alturas. Lembrando que desvio padrão é dado por (∑(alturas²)/número de alturas) – media²;
- c) A moda das alturas. Lembrando que moda é o valor que tem maior incidência de repetições;
- d) A mediana das alturas. Lembrando que a mediana é o elemento central de uma lista ordenada;

Algoritmo alturas

```
tipo
     vreais = vetor [1..50] de reais
     vinteiros = vetor [1..50] de inteiros
  var
     vreais: alturas
     vinteiro: contador
     soma, media, desvioPadrao: Reais
     maisRepitido:Inteiro
inicio
  soma<-0
  maisRepitido<-0
  para i<-1 até 50 passo 1 faça
     contador[i] <- 0
  fim para
  para i<-1 até 50 passo 1 faça
     escreva "Digite a altura: "
     leia alturas[i]
     para x<-1 até 50 passo 1 faça
       se (alturas[i] == alturas[x]) então
          contador[i] <- contador[i] + 1
          se(contador[i]>maisRepitido) então
             maisRepitido<- alturas[i]
          fim se
       fim se
     fim para
     soma<- soma + alturas[i]</pre>
  fim para
```

```
media<- soma/50
desvioPadrao <-((soma * soma)/50) - (media * media)
mediana <- (alturas[25] + alturas[26])/2
escreva "Media: ", media, " | Desvio padrão: ", desvioPadrao, " | Moda: ",
maisRepitido, " | Mediana: ", mediana
```