

UNITED KINGDOM · CHINA · MALAYSIA

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING FACULTY OF ENGINEERING

ELECTRONIC PROCESSING AND COMMUNICATIONS
(EEEE2044 UNUK) (FYR1 22-23)

LTspice Simulation of Sequential Circuits

Author: George Downing

Student Number: 20273662

October 24, 2022

Contents

Question 1	2
Question 2	2
Question 3	3
Question 4	4
Question 5	4
Question 6	4
Question 7	5
Question 8	6
Question 9	6
Question 10	6
Question 11	6
Question 12	6
Question 13	6
Question 14	6
Question 15	6
Question 16	6
Question 17	6
Question 18	6
Question 19	6
Question 20	6
References	6

Question 1

Figure 1: State Diagram for Q1 $\,$

Question 2

Present State	Next	State $(n+1)$	Present Output		
(n)	X=0	X=1	Z		
S_0	S_0	S_1	0		
S_1	S_2	S_2	0		
S_2	S_0	S_3	0		
S_3	S_2	S_1	1		

Table 1: State Transition Table in terms of \mathcal{S}_0 and \mathcal{S}_1

Pre	sent	Next State (n+1)			D-inputs reqired			Output		
Stat	e(n)	X =	X = 0		$X = 1 \qquad X = 0$		= 0	X = 1		7 Output
Q_n^A	Q_n^B	Q_{n+1}^A	Q_{n+1}^B	Q_{n+1}^A	Q_{n+1}^B	D_A	D_B	D_A	D_B	
0	0	0	0	0	1	0	0	0	1	0
0	1	1	0	0	1	1	0	0	1	0
1	0	0	0	1	1	0	0	1	1	0
1	1	1	0	0	1	1	0	0	1	1

Table 2: State Transition Table in terms of \mathcal{Q}_n^A and \mathcal{Q}_n^B

Question 3

Figure 2: Karnaugh map for the Input of flip-flop \mathcal{D}_A

Figure 3: Karnaugh map for the Input of flip-flop D_B

$$D_A = Q_n^B \cdot \overline{X} + Q_n^A \cdot \overline{Q_n^B} \cdot X \tag{1}$$

$$D_B = X (2)$$

$$Z = Q_n^A \cdot Q_n^B \tag{3}$$

Eq. 1 is the input of flip-flop D_A derived from the Karnaugh map as shown in figure 2. Eq. 2 is the input of flip-flop D_B derived from the Karnaugh map as shown in figure 3. Eq. 3 is the output of the flip-flop D_A as shown by Table 2.

Question 4

Question 5

Question 6

$$t_{AFGCD} = t_{pd} + t_{A1} + t_{A5} (4)$$

$$t_{DGCD} = t_{pd} + t_{A1} + t_{A5} (5)$$

Eq. 4 and 5 denote the delay through paths t_{DGCD} and t_{AFGCD} .

Question 7

$$t_{JGCD} = t_{A1} + t_{A5} (6)$$

Eq. 6 denotes the delay through path t_{JGCD} .

- Question 8
- Question 9
- Question 10
- Question 11
- Question 12
- Question 13
- Question 14
- Question 15
- Question 16
- Question 17
- Question 18
- Question 19
- Question 20
- References