Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Introduction

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I1_introduction

Designing Adaptable ML Systems

Advanced Machine Learning on GCP

Max Lotstein

Learn how to...

Recognize various data dependencies

Make cost-conscious engineering decisions

Mitigate model pollution

Implement a pipeline that is immune to one type of dependency

Debug the causes of observed model behavior

Few Programs are Islands

Few Programs are Islands

Modular Is More Maintainable

Dependency Management Is Manageable

Dependency Management Is Manageable

Explicit Dependencies Make Life Easier

```
xsi:schemaLocation="http://maven.apache.org/
     <modelVersion>4.0.0</modelVersion>
     <groupId>com.mycompany.app</groupId>
     <artifactId>my-app</artifactId>
     <version>1.0-SNAPSHOT</version>
     <packaging>jar</packaging>
 9.
     <name>Maven Quick Start Archetype</name>
10.
     <url>http://maven.apache.org</url>
11.
12.
13.
     <dependencies>
14.
       <dependency>
         <groupId>junit
15.
         <artifactId>junit</artifactId>
16.
17.
         <version>4.8.2
18.
         <scope>test</scope>
19.
       </dependency>
     </dependencies>
21. </project>
```


Containers eliminate infrastructure dependencies

The old way: Applications on host

Heavyweight, non-portable Relies on OS package manager The new way: Deploy containers

Small and fast, portable Uses OS-level virtualization

Data: the Dependency Outside the Codebase

Mismanaged Dependencies are Costly

- Losses in prediction quality
- Decreases to system stability
- Decreases in team productivity

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I3_adapting_to_data

Adapting to Data

Mitigating Training-Serving Skew Through Design

Adapting to Data

Mitigating Training-Serving Skew Through Design

Adapting to Data

Mitigating Training-Serving Skew Through Design

Adapting to Data

Mitigating Training-Serving Skew Through Design

Adapting to Data

Mitigating Training-Serving Skew Through Design

Adapting to Data

Mitigating Training-Serving Skew Through Design

Which of these is least likely to change?

- 1. An upstream model
- A data source maintained by another team
- 3. The relationship between features and labels
- 4. The distribution of inputs

Which of these is least likely to change?

- 1. An upstream model
- A data source maintained by another team
- 3. The relationship between features and labels
- 4. The distribution of inputs

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data: Changing Distributions

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-O_3_I4_adapting_to_data:_changing_distributions

 $\{element1, element2, element3, \ldots\}$

- Monitor descriptive statistics for your inputs and outputs
- Monitor your residuals as a function of your inputs
- Use custom weights in your loss function to emphasize data recency
- Use dynamic training architecture and regularly retrain your model

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data: Lab

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I5_adapting_to_data:_lab_intro

Lab

Making Good ML Engineering Investments

Max Lotstein

Scenario 1: Code Sprint

Scenario 2: A Gift Horse

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data: Right and Wrong Decisions

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-0_3_I7_adapting_to_data:_right_and_wrong_decisions

Right and Wrong Data Decisions

Right and Wrong Data Decisions

- patient age
- gender
- prior medical conditions
- hospital name
- vital signs
- test results

Data Leakage

https://upload.wikimedia.org/wikipedia/commons/5/5f/Beth_lsrael_Deaconess_Medical_Center_East_Campus.jpg

Predict political affiliation from metaphors

Predict political affiliation from metaphors

the mind is a

the mind is a battlefield
the mind is a walled garden
the mind is a muscle
the mind is a powerful tool
the mind is a powerful force
the mind is a powerful
the mind is a powerful
the mind is a prison
the mind is a great servant
the mind is a soft boiled potato
the mind is a beautiful servant

Predict political affiliation from metaphors

the mind is a

the mind is a battlefield

the mind is a walled garden

the mind is a muscle

the mind is a powerful tool

the mind is a powerful force

the mind is a powerful

the mind is a prison

the mind is a great servant

the mind is a soft boiled potato

the mind is a beautiful servant

Solution: Cross-contamination; you have to split by author

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data: System Failure

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I8_adapting_to_data:_system_failure

Systems Fail

Systems Fail

Model Accuracy Over Time

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Adapting to Data: Summary

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I9_adapting_to_data:_summary

Adapting to Data

- Assess all data sources and features based on both cost and benefit before including into the model
- Communicate with upstream data producers to make your needs known
- Replicate critical data sources
- Monitor descriptive statistics for your inputs and outputs

Adapting to Data

- Monitor your residuals as a function of your inputs
- Use custom weights in your loss function to emphasize data recency
- Use dynamic training architecture and regularly retrain your model
- You get what you optimize for

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Mitigating Training-Serving Skew Through Design

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-0_3_l10_mitigating_training-serving_skew_through_design

Agenda

Adapting to Data

Mitigating Training-Serving Skew Through Design

Debugging a Production Model

Agenda

Adapting to Data

Mitigating Training-Serving Skew Through Design

Debugging a Production Model

Training/Serving Skew

- A discrepancy between how you handle data in the training and serving pipelines
- 2. A change in the data between when you train and when you serve.
- 3. A feedback loop between your model and your algorithm.

How Code Can Create Training/Serving Skew

- Different library versions that are functionally equivalent but optimized differently
- Different library versions that are not functionally equivalent
- Re-implemented functions

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Lab Intro: Serving ML Predictions in batch and real-time

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-0_3_l111_lab_intro:_serving_ml_predictions_in_batch_and _real-time

Lab

Serving ML Predictions in batch and real-time

Max Lotstein

Lab: Serving ML Predictions in batch and real-time

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Lab Solution: Serving ML Predictions in batch and real-time

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-0_3_l12_lab_solution:_serving_ml_predictions_in_batch_and_real-time

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Debugging a Production Model

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_I13_debugging_a_production_model

Agenda

Adapting to Data

Mitigating Training-Serving Skew Through Design

Debugging a Production Model

Predicting Widget Demand

Along comes a new feature

Course 2: Production ML Systems

Module 3: Designing Adaptable ML Systems

Lesson Title: Module Summary

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_3_l14_module_summary

Keep humans in the loop

Prioritize maintainability

Get ready to roll back

