13주차 3차시 블루투스

[학습목표]

- 1. 블루투스와 피코넷 개념에 대해 설명할 수 있다.
- 2. 블루투스와 UWB 기술에 대해 설명할 수 있다.

학습내용1 : 블루투스의 개요

1. 블루투스(Bluetooth)란?

- 무선으로 음악을 자유롭게 즐길 수 있는 기술인 IEEE 802.15.1 기술
- 휴대전화, MP3 플레이어 등 모바일 기기와 가정용 오디오 헤드셋은 물론, 차량용 오디오까지 확대 적용

2. 블루투스의 개념

- 1994년 에릭슨 사의 실험실(Ericsson Laboratories)에서 휴대전화와 그 주변장치를 연결하는 저비용 무선 인터페이스에 연구 블루투스 등장
- 1998년, 3Com, 에릭슨(Ericsson), IBM, 인텔(Intel), 마이크로소프트(Microsoft), 모토로라(Motorola), 노키아(Nokia), 도시바(Toshiba)등이 주축 '블루투스 SIG' 결성
- WPAN의 개념을 도입한 블루투스에 대한 표준화 블루투스 SIG가 결성된 지 1년 후인 1999년에 이르러 표준화 완료
- 블루투스 SIG 회원 2014년 기준으로 전 세계적으로 회원사의 수가 20,000여개
- 블루투스는 ISM 주파수 대역인 2400~2483.5MHz를 사용하며, 타 시스템과의 주파수 간섭 현상을 최소화하기 위해 2402~2480MHz 대역에서 79개 채널을 사용

학습내용2 : 블루투스와 피코넷

피코넷(piconet) : 하나의 주(master) 디바이스와 7개까지의 종속(slave) 디바이스로 구성된 기본 네트워크 단위

피코넷을 기본단위로 하는 중앙 집중형 블루투스 구조 종속 디바이스 S6이 주 디바이스 M1을 통해서만 종속 디바이스 S4와 데이터 전송이 이루어짐

1. 종족 디바이스의 데이터 전송

종속 디바이스는

- ①주 디바이스가 polling 신호를 보냈을 경우
- ②주 디바이스가 이전 패킷에 대하여 브로드캐스트 패킷을 보냈을 경우, 혹은
- ③종속 디바이스가 미리 예약을 하였을 경우에만 데이터를 전송할 수 있음
- 주 디바이스와 종속 디바이스의 역할은 상황에 따라 변경이 가능함

학습내용3 : 블루투스 프로토콜 계층구조

1. 블루투스 프로토콜 계층구조의 개요

- 블루투스 프로토콜의 계층구조 : 호스트 측과 블루투스(BT) 디바이스 측
- 블루투스 디바이스 측에서의 계층 : 기저대역과 무선 주파수(RF)로 구성되는 블루투스 물리 계층, 링크제어 계층, 링크관리 프로토콜 계층, HCI 계층
- 호스트 측의 각 계층 : 호스트 측 HCI 계층, 호스트 제어기 및 인터페이스 드라이버 계층, L2CAP 계층, SDP/RFCOMM 계층, 블루투스 응용 계층

1) 계층별 기능

블루투스 물리 계층

블루투스 프로토콜 계층구조의 최하위 계층으로, 블루투스 radio 영역에서의 기술적 특성 정의 ISM 대역인 2.4GHz ISM 대역에서 동작하고, BFSK 변조 방식 사용 피코넷의 구성 관리

2) 링크제어기 계층

기저대역(baseband) 프로토콜 기능, 미디어접근 기능, 링크제어 기능 등 제어

링크관리 프로토콜

서로 다른 디바이스에서 링크관리 기능 수행 링크의 설정, 링크제어 및 구성, 인증, 데이터 암호화, 저전력 모드 관리 등 기능 수행

3) 호스트제어 인터페이스 계층

기저대역 제어기와 링크관리 프로토콜 사이의 명령 인터페이스 제공 L2CAP 계층

기저대역 프로토콜에 대한 링크 기능 제공

상위레벨 프로토콜에 다중화 기능, 패킷의 단편화와 재조립, QoS 등 기능 제공

4) RFCOMM/SDP 계층

케이블대체 프로토콜 L2CAP상에서 가상의 직렬포트를 구성, emulation 기능 수행

5) SDP

휴대형 블루투스 디바이스에서 어떤 서비스가 이용 가능한가를 알 수 있게 하는 기능 제공

6) 블루투스 응용 계층

블루투스의 대표적인 응용으로는 이동전화와 통신이 가능한 핸즈프리 헤드셋이 있으며, 무선 마우스, 무선 키보드, 무선 프린터 등에 응용

학습내용4 : 블루투스 기술의 특성

1. 블루투스 4.1의 주요 특성

- 블루투스와 LTE 무선장치 사이의 대역폭으로 인한 간섭 현상을 최소화하는 공존성(coexistence) 향상
- 블루투스 연결 장치 간 거리로 인해 연결이 끊어졌을 때 이들이 다시 거리 내로 되돌아오게 되면 자동으로 재연결되도록 성능 보완

개발자에게 더 많은 유연성을 제공

- 블루투스 연결을 통해 웨어러블 기기가 스마트폰의 주변장치로 동작 가능
- 동시에 타 장치와의 허브 역할도 가능해짐
- 향후 사물 인터넷(IoT)을 위한 새로운 IPV6 사용 표준도 포함됨

학습내용5 : 블루투스 UWB 기술

1. UWB의 개요

기존 무선기술을 사용하던 무선 반송파를 이용하지 않고, 기저대역 상태에서 수 GHz이상의 넓은 주파수대역 및 매우짧은 펄스 폭(1~4nsec)를 이용한 단거리 고속 통신 기술

2. 장점

- 저전력 및 속도 면에서 구현 유리
- 광대역, 저전력에 의한 낮은 간섭
- 벽과 같은 장애물에 대한 투과율이 좋음

3. 단점

- 전송거리 제한
- 타 기기에 간섭 유발됨으로 전력제한 등 저전력화 필수

4. 와이미디어(WiMedia) 초광대역(UWB) 기술

- 멀티미디어 기기들의 고속 무선 데이터 접속을 지원하는 기술
- 480Mbps의 높은 데이터 전송률을 보장하며 다양한 이동성 응용 디바이스들 사이의 접속을 지원하는 기술
- 블루투스 SIG는 블루투스 3.0에 UWB를 지원할 예정이었으나, 이에 대한 주된 역할을 담당했던 WiMedia Alliance이 2009년 3월에 해체되면서 블루투스 3.0 규격에서 UWB 기술은 제외와이미디어 연합

- 향후 높은 속도와 전력 최적화 구현에 대한 작업을 포함하여 모든 규격과 관련된 역할을 블루투스 SIG와 무선 USB Promoter Group 및 USB 구현 Forum 등으로 이전
- UWB 기술 초기에는 군사적 목적으로 활용되어 왔으나, 2002년 2월에 FCC가 상업적 용도로의 활용을 승인
- * 대표적인 응용 사례
- 항공기 충돌 예방장치, 차량 충돌 방지장치, 지하 탐사 레이더, 고정밀 위치 추적 시스템 등이 있으며, 최근에는 사무실 및 개인 공간에서의 전자기기 관련 활용 분야로 개발이 활발하게 진행
- UWB는 블루투스의 약 20배 정도의 저전력을 사용하며 480Mbp 정도의 데이터 전송이 가능함
- 블루투스보다 비트당 낮은 전력을 이용하면서도 고속으로 데이터를 전송 블루투스의 동작 범위가 100미터 정도인 것에 비해 UWB는 3 ~ 10미터 범위 내에서 동작한다는 점을 감안하면 UWB는 매우 협소한 범위 내에서 고속 데이터 전송 지원이 가능함
- 블루투스는 동작 범위가 더 확장되고 저전력을 이용하지만 UWB 기술에 비해 상대적으로 저속 데이터 전송을 지원함
- 블루투스와 UWB 기술은 서로 상이하면서도 상호 보완적인 기술임

[학습정리]

- 1. UWB는 기존 무선기술을 사용하던 무선 반송파를 이용하지 않고, 기저대역 상태에서 수 GHz이상의 넓은 주파수대역 및 매우 짧은 펄스 폭(1~4nsec)를 이용한 단거리 고속 통신 기술이다.
- 2. 블루투스 4.1은 블루투스와 LTE 무선장치 사이의 대역폭으로 인한 간섭 현상을 최소화하는 공존성(coexistence)을 향상시키고 있다.
- 3. 블루투스 물리 계층은 블루투스 프로토콜 계층구조의 최하위 계층으로, 블루투스 radio 영역에서의 기술적 특성을 정의하고 있다.