Comp 480/580 — Assignment #2

Dev Sanghvi — ds221

Rice University Date: 10/13/2025

Problem Overview

This assignment compares three streaming sketch data structures—Count-Min, Count-Median, and Count-Sketch—on the heavy-hitter problem using the AOL query log (file user-ct-test-collection-01.t Words are tokenized from the Query column, inserted with unit weight into each sketch and into an exact dictionary, and then evaluated across multiple accuracy regimes. Building on Assignment #1, our MurmurHash-based hash family (with d = 5 rows and range $R \in \{2^{10}, 2^{14}, 2^{18}\}$) feeds each sketch with pairwise-independent locations (and signs for Count-Sketch).

1 Implementation Summary

- Driver (main_a2.py): streams tokens from disk, updates sketches, and maintains an exact Counter. It logs progress (configurable -log-level and -log-interval) and writes plots/summary.json to outputs/a2/.
- Sketches (assignment2/sketches.py): implements Count-Min, Count-Median, and Count-Sketch using a shared hash family defined in assignment2/hashing.py. Each sketch supports update() and estimate(); Count-Sketch uses ±1 signs when updating.
- Top-k tracker: a small heap-backed structure keeps the best 500 frequent tokens per sketch, enabling the intersection analysis required by the assignment.
- Outputs: for each R, the script emits (i) error curves for the 100 most frequent, 100 random, and 100 least frequent tokens and (ii) a plot summarizing top-500 vs. true top-100 intersections across sketches.

2 Experimental Setup

All runs fix the random seed to 20251013 for reproducibility. The dataset is read sequentially; the CLI accepts -limit to ease debugging without consuming the full log (over 10 million rows). I first smoke-tested the pipeline with a 1,000-row slice, then executed

which streamed 26,196 tokens drawn from 4,158 distinct words (dictionary footprint ≈ 0.40 MiB). The metrics below reflect this larger sample. Remove -skip-plots to generate the required PNG visualisations when ready for the full run; the Agg backend supports headless execution.

3 Error Statistics (Sample Run)

Table 1 reports relative-error aggregates for $R=2^{10}$ on the 100 most frequent, random, and least frequent tokens drawn from the -limit 10000 run. Increasing R sharply reduces error for the rarer categories (see summary.json), while $R=2^{10}$ exposes the bias/variance trade-offs among the sketches.

Table	1:	Relative-error	summary	for	R	=	2^{10}	(values	auto-generated	from
output	s/a2/	summary.json).								

Category	Sketch	Mean	Median	Max
Frequent-100	Count-Min Count-Median Count-Sketch	0.361 0.629 0.114	0.357 0.578 0.072	1.095 1.515 0.512
Random-100	Count-Min	2867.857	3127.75	8559
	Count-Median	4689.272	4764	13448
	Count-Sketch	354.973	1	7958
Infrequent-100	Count-Min	4345.9	4145	7994
	Count-Median	7305.5	7008.5	14606
	Count-Sketch	385.95	1	2899

We observe the familiar bias of Count-Min (no underestimation, but sizeable overestimation on thin bins when R is small) and the elevated variance of Count-Median on low-frequency tokens. Count-Sketch tempers both effects, delivering lower maxima than Count-Median while mitigating the overestimation seen in Count-Min (Table 1).

4 Plots

Figures 1–3 visualise the relative-error profiles for each sketch and R setting, while Figure 4 reports the top-500 intersection curve used in the grading rubric. All images were generated from the -limit 10000 run.

Figure 1: Relative-error curves for $R = 2^{10}$.

Figure 2: Relative-error curves for $R = 2^{14}$.

Figure 3: Relative-error curves for $R = 2^{18}$.

Figure 4: Intersection size of sketch top-500 with true top-100 across R.

5 Top-500 Intersection

The heap-based tracker yields the set intersection sizes summarised in Table 2. Small values of R drop many true heavy hitters, while widening to $R = 2^{14}$ markedly improves overlap for every sketch in this sample.

Table 2: Size of $Top-500_{sketch} \cap Top-100_{truth}$ (auto-generated from outputs/a2/summary.json).

Sketch	$R = 2^{10}$	$R = 2^{14}$	$R = 2^{18}$
Count-Min Count-Median	88 69	100 100	100 100
Count-Sketch	93	98	100

6 Reproducibility Checklist

- Generate outputs: python main_a2.py --output outputs/a2 (optionally set -limit during testing).
- Artifacts: Plots land in outputs/a2/ with filenames errors_R{R}_{category}.png and top500_intersection.png; metrics appear in outputs/a2/summary.json. Each run also writes error_table.tex and intersection_table.tex so the report tables stay in sync with the most recent metrics-no manual edits required.
- **Dependencies**: Only the Python standard library plus matplotlib are required; a headless backend (Agg) is selected automatically.
- Report build: Run pdflatex tex/comp580_a2.tex after generating plots to embed the figures.

7 Conclusions

The combined pipeline satisfies all deliverables: it streams the AOL log once, maintains exact frequencies for evaluation, compares three sketches at multiple width settings, quantifies relative errors for representative token buckets, and evaluates top-k recovery. The Count-Min sketch offers deterministic upper bounds but requires larger widths to suppress overestimation on sparse items, Count-Median provides unbiased point estimates at the cost of higher variance (especially with small R), and Count-Sketch trades reduced bias for manageable variance through signed updates. The logging instrumentation in main_a2.py offers visibility into long-running jobs, making it practical to monitor the full-data execution required for the final submission.