Defending Against Packet-Size Side-Channel Attacks in IoT Networks

Motivation

IoT devices are ubiquitous

These devices communicate by sending packets over wireless networks

Interception of packets can reveal private information, regardless of connection encryption

• e.g., packets sent from a smartwatch may reveal activity status (walking, running, sleeping)

Side-channel attacks

Use of statistical properties of packets to reveal sensitive information

Properties are observable despite content encryption

This paper's focus: size-based side-channel attacks

• i.e., using packet size to infer information

Preliminaries

We observe a sequence of packets

- X_1, X_2, \dots, X_n
- $\circ X_i \in \mathcal{X}$, where \mathcal{X} is the set of all possible packet sizes
 - i.e., we observe the size of each packet rather than content

Each packet follows a distribution $p_{v}(X_{i}=x)$

- \circ p_v comes from a family of distribtions, $\mathcal{P} = \{p_v\}_{v=1}^{s}$
- Packets are assumed to be i.i.d

 \mathcal{P} and $P(X \sim p_v)$ is known by the adversary

Goal

 \mathcal{P} and $P(X \sim p_v)$ is known by the adversary

Given a raw packet stream, an adversary can determine which IoT device generated the stream, as well
as its state

We want perturb the packet size to make inferring $P(X \sim p_v)$ difficult

Packet Padding Obfuscator

Methodology:

- Define a conditional probability distribution $q(\hat{x}|x)$ that maps x to \hat{x}
- $\hat{x} \in \hat{X}$ i.e., the set of packet sizes and obfuscated packet sizes to not have to be the same

How do we select the values of q?

- Naïve: assign all packets the max size
 - Not a great solution, requires too much additional bandwidth overhead

$$\begin{array}{c|cccc}
\hat{X} \\
X & \begin{bmatrix} 0.1 & 0.7 & 0.2 \\ 0 & 0.6 & 0.4 \\ 0 & 0 & 1 \end{bmatrix}
\end{array}$$

Example
$$q(\hat{X} = \hat{x}|X = x)$$

Optimal $q(\hat{x}|x)$: Heuristics

Two heuristics are defined to address bandwidth overhead

 $\widehat{W}_{avg}(q(\widehat{x}|x))$: the expected size per packet

 $\widehat{W}_{worst}(q(\widehat{x}|x))$: the maximum potential packet size

Optimal $q(\hat{x}|x)$: Guaranteeing Privacy

Local Differential Privacy

- More stringent than classical differential privacy
- Protects individual data rather than aggregate data

Probability of a packet following distribution p_v after observing the obfuscated size

$$\frac{P(X \sim p_v \mid \hat{X} = \hat{x})}{P(X \sim p_{v'} \mid \hat{X} = \hat{x})} \leq \frac{P(X \sim p_v)}{P(X \sim p_{v'})} \cdot e^{\epsilon}$$

Probability of a packet following distribution p_v

We can use Bayes Theorem to rewrite this guarantee in terms of $q(\hat{x}|x)$

Optimal $q(\hat{x}|x)$: The Optimization Problem

Our goal is to find $q(\hat{x}|x)$ that minimizes \widehat{W}_{avg} or \widehat{W}_{worst} such that:

$$0 \le q(\hat{x}_j | x_i) \le 1, \ \forall i, j$$

$$\sum_{j=1}^{|\hat{\mathcal{X}}|} q(\hat{x}_j | x_i) = 1, \ \forall i$$
Ensure q is a proper probability distribution

 $q(\hat{x}_i|x_i)=0, \ \forall x_i>\hat{x}_i$ Ensure q can not decrease the packet size

$$X = \begin{bmatrix}
0.1 & 0.7 & 0.2 \\
0 & 0.6 & 0.4 \\
0 & 0 & 1
\end{bmatrix}$$
Example $q(\hat{X} = \hat{x}|X = x)$

Privacy guarantee after applying Bayes Theorem

If our chosen heuristic is \widehat{W}_{avg} we can solve the problem using linear programming If our chosen heuristic is \widehat{W}_{worst} we can solve the optimization problem is convex

Results

Privacy level

Experiment Setup

- Use real and synthetically generated packet data
 - Real: PMF of 3 IoT devices
 - Synthetic: generated from Zipf, Poisson (and mix of Zipf/Poisson)
 - \circ i.e., there are 4 families of distributions, $\mathcal{P}_{1:4}$, each family has 3 "sub"-distributions
- Explore how different priors, $P(X \sim p_v)$, affect additional bandwidth of obfuscated packets. Assume 3 different priors:
 - SAND: assume highest probability on lowest bandwidth source
 - UNIF: assume uniform probability on all sources
 - ROCK: assume highest probability on highest bandwidth source

Fig. 1: On-Average and Worst-Case Privacy-Bandwidth Tradeoffs. Each of the 4 subfigures on the top row compares the *on-average* tradeoffs ϵ - $\hat{W}_{\text{avg}}(q_{\text{LP}}^*)$ (solid line) and ϵ - $\hat{W}_{\text{avg}}(q_{\text{MM}}^*)$ (dotted line), under SAND, UNIF, and ROCK priors for the corresponding family of PMFs. Each subfigure on the bottom row compares *worst-case* tradeoffs ϵ - $\hat{W}_{\text{worst}}(q_{\text{LP}}^*)$ and ϵ - $\hat{W}_{\text{worst}}(q_{\text{MM}}^*)$, accordingly.

Conclusion

 Using a heuristic and privacy constraint, we can create a provably private mechanism by solving the emerging optimization problem

• Notes:

- Assumption that the data is i.i.d
 - Many sequences will not follow this
- Assumption (in experiments) that the adversary will only observe a single packet at a time
 - If an adversary observed N packets, privacy leakage would be $N \cdot \epsilon$ (sequential composition)