

Détection de faux billets



|   | is_genuine | diagonal | height_left | height_right | margin_low | margin_up | length |
|---|------------|----------|-------------|--------------|------------|-----------|--------|
| 0 | True       | 171.81   | 104.86      | 104.95       | 4.52       | 2.89      | 112.83 |
| 1 | True       | 171.46   | 103.36      | 103.66       | 3.77       | 2.99      | 113.09 |
| 2 | True       | 172.69   | 104.48      | 103.50       | 4.40       | 2.94      | 113.16 |
| 3 | True       | 171.36   | 103.91      | 103.94       | 3.62       | 3.01      | 113.51 |
| 4 | True       | 171.73   | 104.28      | 103.46       | 4.04       | 3.48      | 112.54 |

Le fichier comprend 1500 billets avec les marges, leurs longueurs, les hauteurs et la diagonal.

Nous savons que 1000 billets sont classés vrais et 500 faux.



<class 'pandas.core.frame.DataFrame'> RangeIndex: 1500 entries, 0 to 1499 Data columns (total 7 columns):

| Data  | COLUMNIS (COCA | i / columns).  |         |
|-------|----------------|----------------|---------|
| #     | Column         | Non-Null Count | t Dtype |
|       |                |                |         |
| 0     | is_genuine     | 1500 non-null  | bool    |
| 1     | diagonal       | 1500 non-null  | float64 |
| 2     | height_left    | 1500 non-null  | float64 |
| 3     | height_right   | 1500 non-null  | float64 |
| 4     | margin_low     | 1463 non-null  | float64 |
| 5     | margin_up      | 1500 non-null  | float64 |
| 6     | length         | 1500 non-null  | float64 |
| dtype | es: bool(1), f | loat64(6)      |         |



Des valeurs manquantes ont été repérées sur la colonne margin\_low!!



<class 'pandas.core.frame.DataFrame'>
Int64Index: 1500 entries, 72 to 1499
Data columns (total 7 columns):

| раса  | COLUMNIS / COCA | i / columns). |            |
|-------|-----------------|---------------|------------|
| #     | Column          | Non-Null Cou  | nt Dtype 🔨 |
|       |                 |               |            |
| 0     | is_genuine      | 1500 non-nul  | l bool     |
| 1     | diagonal        | 1500 non-nul  | l float64  |
| 2     | height_left     | 1500 non-nul  | l float64  |
| 3     | height right    | 1500 non-nul  | l float64  |
| 4     | margin up       | 1500 non-nul  | l float64  |
| 5     | length          | 1500 non-nul  | l float64  |
| 6     | margin low      | 1500 non-nul  | l float64  |
| dtype | es: bool(1), f  | loat64(6)     |            |

Des solutions existent pour combler ce manque !

J'ai choisi la régression linéaire pour remplacer les valeurs manquantes, ce qui consiste à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives.



## Analyse de la regression

#### OLS Regression Results

| Dep. Variable:    | margin low       | R-squared:          | 0.617     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.615     |
| Method:           | Least Squares    | F-statistic:        | 390.7     |
| Date:             | Wed, 15 Dec 2021 | Prob (F-statistic): | 4.75e-299 |
| Time:             | 17:44:10         | Log-Likelihood:     | -774.14   |
| No. Observations: | 1463             | AIC:                | 1562.     |
| Df Residuals:     | 1456             | BIC:                | 1599.     |
| Df Model:         | 6                |                     |           |
|                   |                  |                     |           |

|                    | coef    | std err | t       | P> t  | [0.025  | 0.975] |
|--------------------|---------|---------|---------|-------|---------|--------|
| Intercept          | 2.8668  | 8.316   | 0.345   | 0.730 | -13.445 | 19.179 |
| is genuine[T.True] | -1.1406 | 0.050   | -23.028 | 0.000 | -1.238  | -1.043 |
| diagonal           | -0.0130 | 0.036   | -0.364  | 0.716 | -0.083  | 0.057  |
| neight left        | 0.0283  | 0.039   | 0.727   | 0.468 | -0.048  | 0.105  |
| neight right       | 0.0267  | 0.038   | 0.701   | 0.484 | -0.048  | 0.102  |
| margin up          | -0.2128 | 0.059   | -3.621  | 0.000 | -0.328  | -0.098 |
| length             | -0.0039 | 0.023   | -0.166  | 0.868 | -0.050  | 0.042  |
| length             | -0.0039 | 0.023   | -0.166  | 0.868 | -0.050  |        |

| ibus: 21.975      | Durbin-Watson:    | 2.038    |
|-------------------|-------------------|----------|
| o(Omnibus): 0.000 | Jarque-Bera (JB): | 37.993   |
| w: 0.061          | Prob(JB):         | 5.62e-09 |
| tosis: 3.780      | Cond. No.         | 1.95e+05 |
| cosis: 3.780      | Cond. No.         |          |

#### Notes.

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Avec un R<sup>2</sup> de 0.617, nous n'avons pas un modèle de bonne qualité, nous recherchons plus 0.90.

Les variables margin\_low et is\_genuine sont statistiquement significative car leur p>|t| est égal à 0.00.

Le fait de garder que ces 2 variables pourraient influer sur le R².(ce qui n'est pas le cas)

coef : La modélisation de margin\_low permet de trouver margin\_low par rapport aux autres variables





Pour la normalité des résidus

Nous avons un modèle linéaire non faussé car la distribution suit une loi normale. (histogramme en forme de cloche)



|   | feature      | VIF           |
|---|--------------|---------------|
| 0 | diagonal     | 170808.246898 |
| 1 | height_left  | 114373.426488 |
| 2 | height_right | 105157.499668 |
| 3 | margin_up    | 264.908266    |
| 4 | margin_low   | 89.003990     |
| 5 | length       | 31205.638468  |

## Calcul du VIF (variance inflation factor en anglais)

VIF évalue si les factures sont corrélés les uns aux autres(multi-colinéarité), ce qui pourraient influence les autres facteurs et réduire la fiabilité du modèle.

Pour qu'un VIF soit acceptable nous avons la formule VIF < MAX(10,1/1\*R²)

Dans notre cas, VIF doit être entre 10 et 2.56 Cela confirme que la régression linéaire n'est pas de bonne qualité





# Le Pairplot

Ce graphique permet en un seul coup d'oeil de distinguer les différences entre variables

Dans nos données, nous pouvons remarquer que les vrais billets ont tendance à être plus long que les faux.

De plus les faux billets auraient une marge plus grande.

Par contre, il est difficile de voir un vrai ou faux billets avec les diagonales



# L'ACP(Analyse en composante principale) Elle permet de réduire le nombre de variables et de rendre l'information moins redondante.

La longueur serait une tendance pour les 'vrais' billets.

Les hauteurs et les marges pencheraient plus pour les 'faux' billets.

On peut constater aussi qu'il serait difficile de distinguer les vrais et faux billets par rapport à la diagonal.

Comme nous l'avez indiqué le pairplot





Le Split des données consiste à séparer nos données en un jeu d'entraînement et un jeu de test. Ici notre jeu de test correspond à 20% de nos données soit 300 lignes.

```
x = X_projected
y = billet['is_genuine']
xtrain, xtest, ytrain, ytest = train_test_split(x, y, train_size=0.8, random_state= 1)
```

## Les K-means

Il permet d'analyser un jeu de données caractérisées par un ensemble de descripteurs,

afin de régrouper les données "similaires" en groupes (ou clusters)



Avec l'algorithme des K-means, sur les 300 billets analysés, 198 sont classés 'vrai' et 97 sont classés 'faux', d'après notre jeu de données.

> Cet algorithme se trompe sur 6 billets Ce qui donne de bon résultats

Int64Index([728, 1104, 669, 1482, 626, 946],

# Les KNN(k-nearest neighbors)

La méthode des K plus proches voisins (KNN) a pour but de classifier des points cibles (classe méconnue) en fonction de leurs distances par rapport à des points constituant un échantillon d'apprentissage (c'est-à-dire dont la classe est connue a priori)

: pred = knn.predict(xtest)
knn.score(xtest, ytest)
executed in 47ms, finished 12:02:05 2021-

0.9866666666666667

Avec cette méthode, et après affinement des paramètres, nous arrivons à presque 99% de réussite sur notre jeu de données.

# Les KNN(k-nearest neighbors)

La méthode des K plus proches voisins (KNN) a pour but de classifier des points cibles (classe méconnue) en fonction de leurs distances par rapport à des points constituant un échantillon d'apprentissage (c'est-à-dire dont la classe est connue a priori)



Avec un échantillon d'entraînement de 300 données, nous arrivons à 5 erreurs sur un échantillon de test!

Int64Index([728, 1104, 1482, 626, 946],

# La régression logistique

La régression logistique est une méthode d'analyse statistique qui consiste à prédire une valeur de données d'après les observations réelles d'un jeu de données.



Avec le même échantillon d'entraînement que les Knn, nous arrivons à 5 erreurs sur un échantillon de test !!

Int64Index([728, 1104, 1482, 626, 946],



Int64Index([728, 1104, 1482, 626, 946], dtype='int64') sont les index erreurs des KNN
Int64Index([728, 1104, 1482, 626, 946], dtype='int64') sont les index erreurs de la regression logistique
Int64Index([728, 1104, 669, 1482, 626, 946], dtype='int64') sont les index erreurs des Kmeans

Nous pouvons remarquer que ces 3 algorithmes se trompent sur les mêmes billets. Cependant, je choisirai la regression logistique pour la fonction.

### POURQUOI ??

La regression logistique est plus adapté sur les gros datasets,(je suppose qu'il y aura beaucoup de billets à analyser),

La régression logistique est un modèle paramétrique qui suit des lois de probabilités normales.

