PTC3314 - Ondas e Linhas

4º Exercício de Simulação Computacional

Data para entrega: 08 de dezembro de 2024

Este exercício computacional contará como um dos testes da disciplina.

A listagem completa e os gráficos solicitados deverão ser entregues na data acima, impreterivelmente.

As simulações solicitadas podem ser feitas utilizando-se o programa Matlab ou outro similar.

Considere uma onda eletromagnética plana, propagando-se no vidro, incidindo obliquamente na interface vidro-ar como mostrado abaixo. Essa onda tem o campo elétrico no plano de incidência, e oscila na frequência de 1,0 GHz

A onda incidente tem o campo magnético (na direção y) com valor de 1 mA_{ef}/m.

Dados para o vidro: $\mu_{vidro} = \mu_0$, $\epsilon_{vidro} = 3$,mnp ϵ_0 , de acordo com os 3 últimos algarismos do seu número USP (exemplo: nusp=2264123 => $\epsilon_{vidro} = 3,123 \; \epsilon_0$). Este trabalho poderá ser realizado em grupos de no máximo 3 alunos (todos de uma mesma turma de PTC3314) e, neste caso, o número USP do primeiro aluno, em ordem alfabética, deverá ser o utilizado para a escolha dos parâmetros.

- a) (2,0) Faça um gráfico do valor do ângulo θ_2 em função do ângulo θ_1 , para θ_1 variando de 0 a 90° (em passos de 0,1 grau). Explicite o valor do ângulo de incidência crítico, θ_c , com precisão de centésimos de grau.
- b) **(2,0)** Faça um gráfico das partes real e imaginária de $Z_L = \frac{\dot{E}_{x2}}{\dot{H}_{y2}}$, num mesmo eixo. Interprete o resultado. Explicite os valores de Z_L para $\theta_1 = 0^\circ$, 90° e θ_c .
- c) (4,0) Faça os gráficos das relações $\frac{|N_{z2}^+|}{|N_{z1}^+|}$ e $\frac{|N_{z1}^-|}{|N_{z1}^+|}$ (componentes na direção z dos vetores

de Poynting incidente (1,+), refletido (1,-) e transmitido (2,+)) num mesmo eixo. Qual o valor do ângulos de Brewster θ_p ? Explicite os valores desses gráficos para $\theta_1 = 0^\circ$, θ_p e 40°, com precisão de 10^{-3} .

d) (2,0) Para θ_1 =60°, faça um gráfico de |**H**| em função de z, para z entre -20 cm e +10 cm. Interprete o resultado. Explicite seu valor em z = 0 e em z = 5 cm.

FOLHA DE RESPOSTAS

PTC3314 – 4° Exercício de Simulação Computacional Professor:

Turma: Professo	or:		
Nome:	NUSP:		
Nome:	NUSP:NUSP:		
a) (2,0) $\theta_c = $, Anexar gráfico.	0		
b) (2,0) $Z_L(0^{\circ}) =$ Anexar gráfico.	$\underline{\hspace{1cm}} \Omega \qquad Z_L(\theta_c) =$	$\underline{\hspace{1cm}}\Omega Z_L(9)$	$0^{\mathrm{o}})=$ \O
c) (4,0) $\theta_p =,$	0		
potência transmitida:	$\frac{ N_{z2}^{+} }{ N_{z1}^{+} }\Big _{\theta_{i}=0^{\circ}} =$	$\frac{\left N_{z2}^{+}\right }{\left N_{z1}^{+}\right }\Big _{\theta_{i}=\theta_{p}}=$	$\frac{\left N_{z2}^{+}\right }{\left N_{z1}^{+}\right }\Big _{\theta_{i}=\theta_{c}}=$
potência refletida:	$\frac{ N_{z1}^{-} }{ N_{z1}^{+} }\Big _{\theta_{i}=0^{\circ}} = -$	$\frac{\left N_{z}^{-}\right }{\left N_{z}^{+}\right }\Big _{\theta_{i}=\theta_{p}}=$	$\frac{ N_{z1}^{-} }{ N_{z1}^{+} }_{\theta_{i}=40^{\circ}} =$
Anexar gráfico.			
d) (2,0) $ \dot{H}_{y}(z=0) =$ Anexar gráfico.	mA _{ef} /m	$ \dot{H}_{y}(z=5\mathrm{cm}) =$	MA_{ef}/m .

Expressões úteis:

para meios sem perdas: $k_i = \omega \sqrt{\mu_i \varepsilon_i}$, $\eta_i = \sqrt{\frac{\mu_i}{\varepsilon_i}}$

$$\theta_2 = \operatorname{sen}^{-1} \left(\operatorname{sen} \theta_1 \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} \right);$$

se $\operatorname{sen} \theta_1 \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} > 1$ então θ_2 será complexo e nesse caso

$$\theta_2 = \frac{\pi}{2} \pm j \cosh^{-1} \left(\operatorname{sen} \theta_1 \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} \right) \text{ (prove!)}.$$

Como na expressão do campo no meio 2 teremos termos do tipo $e^{-jk_2\cos\theta_2 z} = e^{-jk_2\cos\left(\frac{\pi}{2} \pm j\psi\right)z} = e^{\mp k_2\sinh\psi z}$ devemos escolher

$$\theta_2 = \frac{\pi}{2} + j \cosh^{-1} \left(\operatorname{sen} \theta_1 \sqrt{\frac{\epsilon_1}{\epsilon_2}} \right)$$

• $Z_L = \eta_2 \cos(\theta_2)$ $Z_{z1} = \eta_1 \cos(\theta_1)$ \vec{E} no plano de incidencia $Z_L = \eta_2 \sec(\theta_2)$ $Z_{z1} = \eta_1 \sec(\theta_1)$ \vec{H} no plano de incidencia

$$\rho_0 = \frac{\dot{E}_{t1-}}{\dot{E}_{t1+}} = \frac{Z_L - Z_{z1}}{Z_L + Z_{z1}} \quad ; \quad \tau_0 = \frac{\dot{E}_{t2}}{\dot{E}_{t1+}} = 1 + \rho_0 \quad \text{onde } t \text{ pode ser } x \text{ ou } y.$$

$$\beta_{x1} = k_1 \operatorname{sen} \theta_1 \qquad \beta_{z1} = k_1 \cos \theta_1$$

$$\beta_{x2} = k_2 \operatorname{sen} \theta_2 = \beta_{x1} \qquad \beta_{z2} = k_2 \cos \theta_2$$

• campo elétrico no plano de incidência :

$$\begin{split} \dot{H}_{y}(x,z) &= \dot{H}_{y1+} e^{-j\beta_{x}x} \Big[e^{-j\beta_{z1}z} - \rho_{0} e^{j\beta_{z1}z} \Big] \\ \dot{E}_{x}(x,z) &= \eta_{1} \cos \theta_{1} \dot{H}_{y1+} e^{-j\beta_{x}x} \Big[e^{-j\beta_{z1}z} + \rho_{0} e^{j\beta_{z1}z} \Big] \\ \dot{E}_{z}(x,z) &= -\eta_{1} \sin \theta_{1} \dot{H}_{y1+} e^{-j\beta_{x}x} \Big[e^{-j\beta_{z1}z} - \rho_{0} e^{j\beta_{z1}z} \Big] \end{split} \quad \text{para } z < 0 \end{split}$$

$$\begin{split} \dot{H}_{y}(x,z) &= (1-\rho_{0})\dot{H}_{y1+} \ e^{-j\beta_{x}x} \, e^{-j\beta_{z}z} \\ \dot{E}_{x}(x,z) &= \eta_{2}\cos\theta_{2}(1-\rho_{0})\dot{H}_{y1+} \, e^{-j\beta_{x}x} \, e^{-j\beta_{z}z} \\ \dot{E}_{z}(x,z) &= -\eta_{2}\sin\theta_{2}(1-\rho_{0})\dot{H}_{y1+} \, e^{-j\beta_{x}x} \, e^{-j\beta_{z}z} \end{split} \qquad \text{para } z > 0$$

• campo magnético no plano de incidência:

$$\begin{split} \dot{E}_{y}(x,z) &= \dot{E}_{y1+} e^{-j\beta_{x}x} \left[e^{-j\beta_{z1}z} + \rho_{0} e^{j\beta_{z1}z} \right] \\ \dot{H}_{x}(x,z) &= \frac{-\dot{E}_{y1+}}{\eta_{1} \sec \theta_{1}} e^{-j\beta_{x}x} \left[e^{-j\beta_{z1}z} - \rho_{0} e^{j\beta_{z1}z} \right] \\ \dot{H}_{z}(x,z) &= \frac{\dot{E}_{y1+}}{\eta_{1} \csc \theta_{1}} e^{-j\beta_{x}x} \left[e^{-j\beta_{z1}z} + \rho_{0} e^{j\beta_{z1}z} \right] \end{split} \quad \text{para } z < 0 \end{split}$$

$$\begin{split} \dot{E}_{y}(x,z) &= (1+\rho_{0})\dot{E}_{y1+}e^{-j\beta_{x}x}e^{-j\beta_{z}z} \\ \dot{H}_{x}(x,z) &= -\frac{(1+\rho_{0})\dot{E}_{y1+}}{\eta_{2}\sec\theta_{2}}e^{-j\beta_{x}x}e^{-j\beta_{z}z} \\ \dot{H}_{z}(x,z) &= \frac{(1+\rho_{0})\dot{E}_{y1+}}{\eta_{2}\csc\theta_{2}}e^{-j\beta_{x}x}e^{-j\beta_{z}z} \end{split}$$
 para $z > 0$