11.1. Seguences (continued).

A sequence is a list of numbers. To compate its limit we can use continuous functions.

Squeeze Theorem: Let [an], [bn], [cn] be sequences with an & bu & cu from

some point onwards (i.e. for u big enough) and lim an = $L = \lim_{n \to \infty} c_n$.

Then lim bn = L.

Remark: The squeeze theorem is used to compute lin c. ch for -14 140.

Example: Compute: $\lim_{n\to\infty} \frac{R^n}{n!}$ for all real numbers R.

When R=0, then $\frac{R^n}{n!} = 0$ so $\lim_{n \to \infty} \frac{R^n}{n!} = 0$.

We do first R>0. We compute $\lim_{n\to\infty} \frac{R^n}{n!}$. Sady $f(x) = \frac{R^n}{n!}$, is not a

continuous function because x! is not a function. Since R is a real number,

there is a unfamil number M such that MERCM+1.

$$\frac{M}{D} = \frac{M+1}{R} = \frac{R}{R} + \frac{R}{M+1} + \frac{R}{M+1$$

Makin n big, much ligger from M, we can write:

Now:
$$0 < \frac{R^n}{n!} < 4 \cdot \frac{R}{n}$$
, setting $a_n = 0$, $b_n = \frac{R^n}{n!}$, $c_n = 4 \cdot \frac{R}{n}$,

we have:
$$\lim_{n\to\infty} a_n = 0 = \lim_{n\to\infty} c_n$$
. By the Squeeze Theorem: $\lim_{n\to\infty} \frac{R^n}{n!} = \lim_{n\to\infty} b_n = 0$.

Sketch: For R<0, when that
$$-\frac{|R|^N}{n!} \leq \frac{|R|^N}{n!}$$
, use Squeeze Theorem.

Think: (a) lim
$$\frac{\sin(n)}{n^2}$$
.

(b) $\lim_{n\to\infty} \frac{-3n}{n^2}$.

Using Squeeze Theorem.

When limits converge, everything behaves like a number.

Example: Compare:

free futer not

lim
$$\frac{2n^2-3}{8n+5n^2} \stackrel{!}{=} \lim_{n \to \infty} \frac{n^2! \left(2-\frac{3}{n^2}\right)}{n^2! \left(5-\frac{8}{n}\right)} = \frac{\lim_{n \to \infty} \left(2-\frac{3}{n^2}\right)}{\lim_{n \to \infty} \left(5-\frac{8}{n}\right)} = \frac{2}{5}$$

Example: Compute:

$$\lim_{n \to \infty} \left(\sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} \right) = \lim_{n \to \infty} \sqrt[3]{\frac{2n+3}{n}} - \lim_{n \to \infty} \frac{1}{n} = \frac{1}{n}$$

$$= \sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} = \lim_{n \to \infty} \sqrt[3]{\frac{2n+3}{n}} - \lim_{n \to \infty} \frac{1}{n} = \frac{1}{n}$$

$$= \sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} = \lim_{n \to \infty} \sqrt[3]{\frac{2n+3}{n}} - \lim_{n \to \infty} \frac{1}{n} = \frac{1}{n}$$

$$= \sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} = \frac{1}{n} = \frac{1}{n}$$

$$= \sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n}$$

$$= \sqrt[3]{\frac{2n+3}{n}} - \frac{1}{n} = \frac{1}{n}$$

WARNINE: You should Jack convergence before applying limit laws.

In practice: apply limit laws. It result finite, then application of

limit laws and result is correct. If result not finite, everything is

imalid.

