MASTERY QUIZ DAY 17

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V3. Determine if the vectors
$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly

dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

V4. Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

Solution: It is closed under addition and scalar multiplication, so it is a subspace. Alternatively, it is the image of the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^4$ given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix}.$$

S2. Determine if the set $\left\{ \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ -1 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 0 & 4 \end{bmatrix} \right\}$ is a basis of $\mathbb{R}^{2 \times 2}$.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & 4 & 3 \\ 2 & 2 & -1 & 0 \\ 3 & 4 & 8 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.