Interdomain Routing: Border Gateway Protocol (BGP)

Kameswari Chebrolu

Background

- Routing process builds forwarding tables at routers
- Two types of algorithms: DV and LS
- Routing in Internet is lot more complex: Need to handle policy, scale and performance
- BGP protocol is extremely complex
 - Many issues still not well understood, very few possess good knowledge of the protocol

Internet Architecture – v1

Wish it were so!

Internet Architecture – v2

Reality

- Connectivity, Cooperation and Competition
- Many ISP's want complex policies

Not all ISP's are equal

where Tier1, Tier 2, Tier3 - was, regiment

Scalability is a big concern

Internet Architecture – V3

Relations between ASs 15Ps

• Transit: provider/customer relation; typically financial settlement is involved

• Peering: Mutual access to subset of routing tables; typically no financial settlement involved

Routing in the Internet

- Autonomous System == Routing Domain: Controlled by a single administrative entity
 - Network within an organization; network within an ISP
- Routing problem: Two aspects
 - Routing within an AS
 - Routing between ASs

Routing within an AS

- Intradomain routing: Employs interior gateway protocol (IGP)
 - E.g. OSPF, RIP→ ⁰ ∨
- Focuses on finding 'optimal' paths within the domain
- Different AS can implement different IGPs within

Routing across ASs

- Interdomain routing: Employs exterior gateway protocol
 - Border Gateway Protocol (BGPv4)
- Focuses on Reachability, Policy and Scalability
- Needs to be common across ASs

Policies

- Dictated by political, security and economic consideration
- No transit through certain ASs
 Use a specific AS only if there are no other routes

- Traffic from X country can't go through Y country
- Traffic starting or ending at Google can't go through Facebook

to destination

Break

Routing across ASs

- BGP messages exchanged using TCP, port 179.
- eBGP: Facilitate inter-AS communication
 - Routers are in different ASs, often directly connected
- iBGP: Facilitate communication
 - Routers within same AS, need not be directly connected
 - Install learned routes (via eBGP) within AS

Summary of Framework

- Border gateway routers employ eBGP to exchange IP prefix information
 - Underlying route determination (which next hop AS to take) is based on path vector
 - An AS need not export all the IP prefixes it has learnt (to be covered under exporting routes)
 - When there are multiple routes to a given destination, policy takes precedence over optimality (to be covered under importing routes)

Summary of Framework

- Learned information via eBGP is injected within AS via iBGP sessions
 - Border gateway routers form a mesh of iBGP sessions with all routers within AS
- A forwarding table at a router is dictated by both the IGP and EGP protocols