SBML Model Report

Model name: "Thomsen1988-_AdenylateCyclase_Inhibition"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Enuo He¹ at September 26th 2006 at 6:47 p.m. and last time modified at February thirteenth 2014 at 3:49 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	10
events	0	constraints	0
reactions	6	function definitions	0
global parameters	0	unit definitions	0
rules	0	initial assignments	0

Model Notes

This model was created according to the paper *Inhibition of Adenylate Cyclase Is Mediated by the High Affinity Conformation of the alpha2-Adrenergic Receptor* published in 1988.

The figure4 (steady state curve) in the paper has been simulated having the same plot with Copasi 4.0.19 (development) and roadRunner(online). Because the initial concentration of R and D were not given in the paper, so we gave it 1e-9 Mol/L and 1e-8 Mol/L respectively.

¹University of Oxford, enuo.he@wolfson.ox.ac.uk

Pay attention that the simulations of steady state concentration of species in arbitrary units are shown for figure 4 and figure 6 in the paper.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

	racio 2. Froperates of all compartments.						
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains ten species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
agonist	D	cell	$\text{mol} \cdot 1^{-1}$		
DR	DR	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
DRG_GDP	DRG_GDP	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
DRG	DRG	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
GDP	GDP	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
DRG_GTP	$DRG_{\operatorname{ ext{-}GTP}}$	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
GTP	GTP	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
Recptor	R	cell	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
G_GDP	$G_{-}GDP$	cell	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
$G_{-}GTP$	G_GTP	cell	$\text{mol} \cdot 1^{-1}$		

5 Reactions

This model contains six reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	Forming	Forming DR	$agonist + Recptor \Longrightarrow DR$	
2	${\tt reaction_1}$	DR binding with G_GDP produc DRG_GDP	$DR + G_GDP \Longrightarrow DRG_GDP$	
3	${\tt reaction_2}$	GDP releasing	$DRG_GDP \Longrightarrow GDP + DRG$	
4	$reaction_3$	GTP binding with DRG	$DRG + GTP \Longrightarrow DRG_GTP$	
5	${\tt reaction_4}$	DRG_GTP dissociates(G protein activation)	$DRG_GTP \longrightarrow G_GTP + DR$	
6	${\tt reaction_5}$	G protein inactivated	$G_GTP \longrightarrow G_GDP$	

5.1 Reaction Forming

This is a reversible reaction of two reactants forming one product.

Name Forming DR

Reaction equation

$$agonist + Recptor \rightleftharpoons DR \tag{1}$$

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
agonist	D	
Recptor	R	

Product

Table 6: Properties of each product.

Id	Name	SBO
DR	DR	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{agonist}] \cdot [\text{Recptor}] - \text{k7} \cdot [\text{DR}])$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		5000000.0	Ø
k7	k7	0.5	\square

5.2 Reaction reaction_1

This is a reversible reaction of two reactants forming one product.

Name DR binding with G_GDP produc DRG_GDP

Reaction equation

$$DR + G_GDP \Longrightarrow DRG_GDP \tag{3}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
DR	DR	
G_GDP	$G_{-}GDP$	

Product

Table 9: Properties of each product.

Id	Name	SBO
DRG_GDP	DRG_GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{cell}\right) \cdot \left(\text{k2} \cdot [\text{DR}] \cdot [\text{G_GDP}] - \text{k8} \cdot [\text{DRG_GDP}]\right) \tag{4}$$

Table 10: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k2		108	\overline{Z}
k8	k8	0.100	

5.3 Reaction reaction_2

This is a reversible reaction of one reactant forming two products.

Name GDP releasing

Reaction equation

$$DRG_GDP \rightleftharpoons GDP + DRG \tag{5}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
DRG_GDP	DRG_GDP	

Products

Table 12: Properties of each product.

Id	Name	SBO
GDP	GDP	
DRG	DRG	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot (\text{k3} \cdot [\text{DRG_GDP}] - \text{k9} \cdot [\text{DRG}] \cdot [\text{GDP}])$$
 (6)

Table 13: Properties of each parameter.

Id	Name	SBO Va	lue Unit	Constant
k3			0.1	
k9	k9	1000	0.000	

5.4 Reaction reaction_3

This is a reversible reaction of two reactants forming one product.

Name GTP binding with DRG

Reaction equation

$$DRG + GTP \Longrightarrow DRG_GTP \tag{7}$$

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
DRG	DRG	
GTP	GTP	

Product

Table 15: Properties of each product.

Id	Name	SBO
DRG_GTP	DRG_GTP	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{cell}\right) \cdot \left(\text{k4} \cdot [\text{DRG}] \cdot [\text{GTP}] - \text{k10} \cdot [\text{DRG}_{\text{-}}\text{GTP}]\right) \tag{8}$$

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4		10^{7}	Ø
k10	k10	0.100	\square

5.5 Reaction reaction_4

This is an irreversible reaction of one reactant forming two products.

Name DRG_GTP dissociates(G protein activation)

Reaction equation

$$DRG_GTP \longrightarrow G_GTP + DR \tag{9}$$

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
$DRG_{-}GTP$	DRG_GTP	

Products

Table 18: Properties of each product.

Id	Name	SBO
G_GTP	G_GTP	
DR	DR	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cell}) \cdot \text{k5} \cdot [\text{DRG_GTP}]$$
 (10)

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5		0.05	

5.6 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product.

Name G protein inactivated

Reaction equation

$$G_GTP \longrightarrow G_GDP$$
 (11)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
G_GTP	G_GTP	

Product

Table 21: Properties of each product.

Id	Name	SBO
G_GDP	G_GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cell}) \cdot \text{k6} \cdot [\text{G_GTP}] \tag{12}$$

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k6		0.1	

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

6.1 Species agonist

Name D

Initial concentration $10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in Forming).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{agonist} = -v_1 \tag{13}$$

6.2 Species DR

Name DR

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_1 and as a product in Forming, reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DR} = |v_1| + |v_5| - |v_2| \tag{14}$$

6.3 Species DRG_GDP

Name DRG_GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_2 and as a product in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DRG}_{-}\mathrm{GDP} = v_2 - v_3 \tag{15}$$

6.4 Species DRG

Name DRG

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DRG} = |v_3| - |v_4| \tag{16}$$

6.5 Species GDP

Name GDP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GDP} = v_3 \tag{17}$$

6.6 Species DRG_GTP

Name DRG_GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_4 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{DRG}_{-}\mathrm{GTP} = |v_4| - |v_5| \tag{18}$$

6.7 Species GTP

Name GTP

Initial concentration $10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GTP} = -v_4\tag{19}$$

6.8 Species Recptor

Name R

Initial concentration $10^{-9} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in Forming).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Recptor} = -v_1 \tag{20}$$

6.9 Species G_GDP

Name G_GDP

Initial concentration $10^{-9} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_1 and as a product in reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G}_{-}\mathrm{GDP} = |v_6| - |v_2| \tag{21}$$

6.10 Species G_GTP

Name G_GTP

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_5 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G}_{-}\mathrm{GTP} = |v_5| - |v_6| \tag{22}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany