N-gram Language Models

COMP90042 Natural Language Processing Lecture 3

Semester 1 2022 Week 2 Jey Han Lau

Language Models

- One NLP application is about explaining language
 - Why some sentences are more fluent than others
- E.g. in speech recognition:
 - recognise speech > wreck a nice beach
- We measure 'goodness' using probabilities estimated by language models
- Language model can also be used for generation

Sign In

Language Models

- Useful for
 - Query completion
 - Optical character recog.
- Other generation tasks
 - Machine translation
 - Summarisation
 - Dialogue systems
- Nowadays pretrained language models are the backbone of modern NLP systems

Outline

- Deriving n-gram language models
- Smoothing to deal with sparsity

Probabilities: Joint to Conditional

Our goal is to get a probability for an arbitrary sequence of *m* words

$$P(w_1, w_2, \ldots, w_m)$$

First step is to apply the chain rule to convert joint probabilities to conditional ones

$$P(w_1, w_2, \dots, w_m) = P(w_1)P(w_2 | w_1)P(w_3 | w_1, w_2) \dots$$
$$P(w_m | w_1, \dots, w_{m-1})$$

COMP90042

The Markov Assumption

Still intractable, so make a simplifying assumption:

$$P(w_i | w_1...w_{i-1}) \approx P(w_i | w_{i-n+1}...w_{i-1})$$

For some small *n*

When n = 1, a unigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i)$$

the dog barks

When n = 2, a bigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

the $\frac{w_i}{\text{barks}}$

When n = 3, a trigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-2} w_{i-1})$$

 $\begin{array}{c} w_i \\ \text{the dog barks} \end{array}$

COMP90042

Maximum Likelihood Estimation

How do we calculate the probabilities? Estimate based on counts in our corpus:

For unigram models,

$$P(w_i) = \frac{C(w_i)}{M}$$

 $\frac{C(\mathsf{barks})}{M}$

For bigram models,

$$P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

 $\frac{C(\text{dog barks})}{C(\text{dog})}$

For n-gram models generally,

$$P(w_i | w_{i-n+1}...w_{i-1}) = \frac{C(w_{i-n+1}...w_i)}{C(w_{i-n+1}...w_{i-1})}$$

Book-ending Sequences

- Special tags used to denote start and end of sequence
 - <s> = sentence start
 - </s> = sentence end

Trigram example

Corpus:

yes no no no no yes no no no yes yes yes no

What is the probability of

yes no no yes

under a trigram language model?

P(yes no no yes) =

$$P(no \mid \langle s \rangle yes) \times$$

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

Corpus:

<s> <s> yes no no no no yes </s>

<s> <s> no no no yes yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes I <s><s>)</s></s>	1/2	<s> <s> yes</s></s>
	1/2	<s> <s> no</s></s>

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <s> no</s></s></s>
P(<i>no</i> I <s> <i>yes</i>)</s>	1/1	<s> yes no</s>

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <s> no</s></s></s>
P(<i>no</i> I <s> <i>yes</i>)</s>	1/1	<s> yes no</s>
P(no I yes no)	1/2	yes no no yes no

COMP90042

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes yes no </s>

Compute: P(yes no no yes)

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <</s></s>
P(<i>no</i> I <s> <i>yes</i>)</s>	1/1	<s> yes no</s>
P(no I yes no)	1/2	yes no no yes no
P(yes I no no)	?	

PollEv.com/jeyhanlau569

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <</s></s>
P(no I <s> yes)</s>	1/1	<s> yes no</s>
P(no I yes no)	1/2	yes no no yes no
P(yes I no no)	2/5	no no no no no no no no yes no no no no no yes

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes no </s>

$$P(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <s> <s> no</s></s></s></s>
P(no I <s> yes)</s>	1/1	<s> yes no</s>
P(no I yes no)	1/2	yes no no yes no
P(yes I no no)	2/5	no no no no no no no no yes no no no no no yes
P(no yes)	1/2	no yes

Corpus:

<s> <s> yes no no no yes </s> <s> <s> no no no yes yes no </s>

Compute: P(yes no no yes) = $\frac{1}{2} \times 1 \times \frac{1}{2} \times \frac{2}{5} \times \frac{1}{2} = 0.05$

P(yes <s><s>)</s></s>	1/2	<s> <s> yes <s> no</s></s></s>
P(no I <s> yes)</s>	1/1	<s> yes no</s>
P(no I yes no)	1/2	yes no no yes no
P(<i>yes</i> I <i>no no</i>)	2/5	no no no no no no no no yes no no no no no yes
P(no yes)	1/2	no yes yes no

COMP90042

Several Problems

- Language has long distance effects need large
 - The lecture/s that took place last week was/were on preprocessing.
- Resulting probabilities are often very small
 - Use log probability to avoid numerical underflow
- What about unseen *n*-grams?
 - $P(w_1, w_2, ..., w_m) = P(w_1 | \langle s \rangle) \times P(w_2 | w_1) ...$
 - Need to smooth the LM!

whole term = 0 if $P(w_2|w_1) = 0$

Smoothing

Smoothing

- Basic idea: give events you've never seen before some probability
- Must be the case that P(everything) = 1
- Many different kinds of smoothing
 - Laplacian (add-one) smoothing
 - Add-k smoothing
 - Absolute discounting
 - Kneser-Ney
 - And others...

Laplacian (Add-one) Smoothing

 Simple idea: pretend we've seen each n-gram once more than we did.

For unigram models (V= the vocabulary),

$$P_{add1}(w_i) = \frac{C(w_i) + 1}{M + |V|}$$

For bigram models,

$$P_{add1}(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |V|}$$

Add-one Example

<s> the rat ate the cheese </s>

What's the bigram probability *P(ate I rat)* under add-one smoothing?

$$=\frac{C(rat\ ate)+1}{C(rat)+|V|}=\frac{2}{6}$$

 $V = \{ \text{ the, rat, ate, cheese, } </s> \}$

What's the bigram probability *P(ate I cheese)* under add-one smoothing?

$$= \frac{C(cheese\ ate) + 1}{C(cheese) + |V|} = \frac{1}{6}$$

<s> is not part of vocabulary because we never need to infer its conditional probability (e.g. P(<s> I ...))

```
Recall: P(yes no no yes) =
P(yes \mid <s><s>) \times P(no \mid <s> yes) \times P(no \mid yes no) \times P(yes \mid no no) \times P(</s> \mid no yes)
```

Add-k Smoothing

- Adding one is often too much
- Instead, add a fraction k
- AKA Lidstone Smoothing, or Add- α Smoothing

$$P_{addk}(w_i \mid w_{i-1}, w_{i-2}) = \frac{C(w_{i-2}, w_{i-1}, w_i) + k}{C(w_{i-2}, w_{i-1}) + k \mid V \mid}$$

Have to choose k

Lidstone Smoothing

Context = *alleged*

- 5 observed bi-grams
- 2 unobserved bi-grams

			Lidstone sm	noothing, $\alpha = 0.1$
	counts	unsmoothe probability	01100110	smoothed probability
mpropriety	8	0.4	7.826	0.391
fense	5	0.25	4.928	0.246
damage	4	0.2	3.961	0.198
deficiencies	2	0.1	2.029	0.101
outbreak	1	0.05	1.063	0.053
nfirmity	0	0	0.097	0.005
alleged	0	0	0.097	0.005
	20	1.0	20	1.0
				·
	0.3	391 x 20		(8 + 0.1)
		(0 + 0).1) / (20 + 7 x 0.	1)

Absolute Discounting

- 'Borrows' a fixed probability mass from observed n-gram counts
- Redistributes it to unseen n-grams

Absolute Discounting

Context = *alleged*

- 5 observed bi-grams
- 2 unobserved bi-grams

			Lidstone smoothing, $\alpha = 0.1$		Discountir	$g, d \neq 0.1$
	counts	unsmoothed probability	effective counts	smoothed probability	effective counts	smoothed probability
impropriety	8	0.4	7.826	0.391	7.9	0.395
offense	5	0.25	4.928	0.246	4.9	0.245
damage	4	0.2	3.961	0.198	3.9	0.195
deficiencies	2	0.1	2.029	0.101	1.9	0.095
outbreak	1	0.05	1.063	0.053	0.9	0.045
infirmity	0	0	0.097	0.005 / (0.25	0.013
alleged	0	0	0.097	0.005	0.25	0.013
	20	1.0	20	1.0	20	1.0
				(0.1 x	5) / 2	\
				8 - 0.1	· • / · -	0.25 / 20

Backoff

- Absolute discounting redistributes the probability mass equally for all unseen n-grams
- Katz Backoff: redistributes the mass based on a lower order model (e.g. unigram)

$$P_{katz}(w_i|w_{i-1}) = \begin{cases} \frac{C(w_{i-1},w_i)-D}{C(w_{i-1})}, & \text{if } C(w_{i-1},w_i) > 0\\ \alpha(w_{i-1}) \times \frac{P(w_i)}{\sum_{w_j:C(w_{i-1},w_j)=0}P(w_j)}, & \text{otherwise} \end{cases}$$
 unigram probability for wine e.g. P(infirmity) sum unigram probabilities for all words that do not co-occur with context winder e.g. P(infirmity) + P(alleged)

the amount of probability mass that has been discounted for context w_{i-1} ((0.1 x 5) / 20 in previous slide)

Issues with Katz Backoff

$$P_{katz}(w_i|w_{i-1}) = \begin{cases} \frac{C(w_{i-1}, w_i) - D}{C(w_{i-1})}, & \text{if } C(w_{i-1}, w_i) > 0\\ \alpha(w_{i-1}) \times \frac{P(w_i)}{\sum_{w_j: C(w_{i-1}, w_j) = 0} P(w_j)}, & \text{otherwise} \end{cases}$$

- I can't see without my reading ____
- C(reading, glasses) = C(reading, Francisco) = 0
- C(Fransciso) > C(glasses)
- Katz backoff will give higher probability to Francisco

Kneser-Ney Smoothing

- Redistribute probability mass based on the versatility of the lower order n-gram
- AKA "continuation probability"
- What is versatility?
 - High versatility -> co-occurs with a lot of unique words, e.g. glasses
 - men's glasses, black glasses, buy glasses, etc
 - Low versatility -> co-occurs with few unique words, e.g. francisco
 - san francisco

COMP90042

Kneser-Ney Smoothing

$$P_{\mathit{KN}}(w_i \,|\, w_{i-1}) = \begin{cases} \frac{C(w_{i-1}, w_i) - D}{C(w_{i-1})}, & \text{if } C(w_{i-1}, w_i) > 0 \\ \beta(w_{i-1}) P_{\mathit{cont}}(w_i), & \text{otherwise} \end{cases}$$
 the amount of probability mass that has been discounted for context w_{i-1}
$$P_{\mathit{cont}}(w_i) = \frac{|\{w_{i-1} : C(w_{i-1}, w_i) > 0\}|}{\sum_{w_j} |\{w_{j-1} : C(w_{j-1}, w_j) > 0\}|}$$

- Intuitively the numerator of P_{cont} counts the number of unique w_{i-1} that co-occurs with w_i
- High continuation counts for glasses
- Low continuation counts for Franciso

Interpolation

- A better way to combine different orders of n-gram models
- Interpolated trigram model:

$$P_{\mathit{IN}}(w_i \,|\, w_{i-1}, wi-2) = \lambda_3 P_3(w_i \,|\, w_{i-2}, w_{i-1}) \\ + \lambda_2 P_2(w_i \,|\, w_{i-1}) \\ + \lambda_1 P_1(w_i)$$
 Learned based on held out data

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

A Final Word

- N-gram language models are a simple but effective way to capture the predictability of language
- Can be trained in an unsupervised fashion, scalable to large corpora
- Require smoothing to be effective
- Modern language models uses neural networks (lecture 8)

Reading

• E18 Chapter 6 (skip 6.3)

Events Confirmed	Wee k	Date, Time, Location
Summerfest Welcome Back Expo	1	1-Mar-22, 2-5pm 2-Mar-22, 2-5pm 3-Mar-22, 2-5pm 4-Mar-22, 2-5pm
Welcome event with DSSS & HackMelbourne	2	7-Mar-22, 11:30am
Google Career Discussion	2	8-Mar-22, 5 - 6:30pm
Spaghetti Bridge Building Comp Collab	2	11-Mar-22, 3-5:30pm
Robogals collab industry week	3	this whole week
Google Women in Tech clubs session	3	16-Mar-22, 5-5:45pm
Macquarie Grad Program Event	3	TBD

Events planned (wk4 onwards):

- Annual Hackathon
- Workshops for CV and job seeking
- High Tea networking
- Industry Panels
- Free lunch on campus
- Study sessions
- Tech-related clubs collaboration
- SWOT cake
- •••

Other opportunities:

- Weekly job posts
- Tech-related events/competitions
- Volunteering opportunities
- ...

JOIN US HERE!

JOIN DATA SCIENCE STUDENT SOCIETY TODAY

TOMORROW'S DATA SCIENTIST STARTS WITH US

FREE MEMBERSHIP/ CLUB MAILING LIST

OR VISIT https://tinyurl.com/dscubed-unimelb-2022

www.facebook.com/dscubed.unimelb

www.instagram.com/dscubed.unimelb/

www.linkedin.com/company/data-science-student-society/