# DNS, NAT, Congestion Control

29 January 2025 Lecture 12

Slides Credits: Steve Zdancewic (UPenn)

## **Topics for Today**

- DNS
- Network Address Translation (NAT)
- Congestion Control
  - Queuing
- Sources:
  - DNS: PD 9.3.1
  - NAT: PD 4.3
  - Congestion Control PD 6.1-6.2

## Domain Name System

- System for mapping mnemonic names for computers into IP addresses.
  - softwares.kinneret.ac.il 172.67.23.145
- Domain Hierarchy
- Name Servers
  - 13 Root servers map top-level domains such as ".com" or ".net"
- Name Resolution
  - Protocol for looking up hierarchical domain names to determine the IP address
  - Protocol runs on UDP port 53

# Domain Name Hierarchy



#### **DNS** Records

 The most important types of resource records forming the contents of nodes in the DNS name space.

| Type of record | Associated entity | Description                                                   |
|----------------|-------------------|---------------------------------------------------------------|
| SOA            | Zone              | Holds information on the represented zone                     |
| Α              | Host              | Contains an IP address of the host this node represents       |
| MX             | Domain            | Refers to a mail server to handle mail addressed to this node |
| SRV            | Domain            | Refers to a server handling a specific service                |
| NS             | Zone              | Refers to a name server that implements the represented zone  |
| CNAME          | Node              | Symbolic link with the primary name of the represented node   |
| PTR            | Host              | Contains the canonical name of a host                         |
| HINFO          | Host              | Holds information on the host this node represents            |
| TXT            | Any kind          | Contains any entity-specific information considered useful    |

#### Excerpt from the DNS database for the zone cs.vu.nl.

| Name      | Record Type | Record Value                                                                                                                                                                                               |  |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cs.vu.nl. | SOA         | primary name server = star.cs.vu.nl responsible mail addr = hostmaster.cs.vu.nl serial = 2022112500 refresh = 7200 (2 hours) retry = 3600 (1 hour) expire = 2419200 (28 days) default TTL = 7200 (2 hours) |  |
| cs.vu.nl  | TXT         | "v=spf1 redirect=vu.nl"                                                                                                                                                                                    |  |
| cs.vu.nl  | TXT         | "google-site-verification=Hgkj69rep7_FHZsXaTOoO8JxO6e9XUpK1aeNqPKUo7I"                                                                                                                                     |  |
| cs.vu.nl  | NS          | ns1.labs.vu.nl                                                                                                                                                                                             |  |
| cs.vu.nl  | NS          | ns0.labs.vu.nl                                                                                                                                                                                             |  |
| cs.vu.nl  | NS          | ns2.labs.vu.nl                                                                                                                                                                                             |  |
| cs.vu.nl  | NS          | new-ns1.vu.nl                                                                                                                                                                                              |  |
| cs.vu.nl  | NS          | new-ns2.vu.nl                                                                                                                                                                                              |  |

#### Excerpt from the DNS database for the zone cs.vu.nl.

| Name            | Record<br>Type | Record Value                           |
|-----------------|----------------|----------------------------------------|
| ns0.labs.vu.nl  | Α              | 192.31.231.42                          |
| ns1.labs.vu.nl  | Α              | 130.37.192.252                         |
| ns2.labs.vu.nl  | Α              | 130.37.192.254                         |
| new-ns1.vu.nl   | Α              | 130.37.164.20                          |
| new-ns2.vu.nl   | Α              | 130.37.164.22                          |
| ns0.labs.vu.nl  | AAAA           | 2001:610:110:6e0::2a                   |
| ns1.labs.vu.nl  | AAAA           | 2001:610:110:6e0::1:0                  |
| ns2.labs.vu.nl  | AAAA           | 2001:610:110:6e0::1:2                  |
| cs.vu.nl        | MX             | 0 cs-vu-nl-mail.protection.outlook.com |
| star.cs.vu.nl   | Α              | 192.31.231.42                          |
| zephyr.cs.vu.nl | HINFO          | "CPU = Sun OS = Unix"                  |
| ftp.cs.vu.nl    | CNAME          | soling.cs.vu.nl                        |

#### Excerpt from the DNS database for the zone cs.vu.nl.

| Name          | Record<br>Type | Record Value                 |
|---------------|----------------|------------------------------|
| www.cs.vu.nl  | CNAME          | papac022.vu.nl               |
| papac02.vu.nl | Α              | 130.37.164.171               |
| inkt.cs.vu.nl | А              | 192.168.4.3                  |
| inkt.cs.vu.nl | HINFO          | "CPU = OCE OS = Proprietary" |
| pen.cs.vu.nl  | HINFO          | "CPU = OCE OS = Proprietary" |
| pen.cs.vu.nl  | Α              | 192.168.4.2                  |
|               |                |                              |

# Kinneret DNS Records (1/2)

An excerpt from the DNS database for zone kinneret.ac.il

| kinneret.ac.il         | NS | kineret.kinneret.ac.il |
|------------------------|----|------------------------|
| kineret.kinneret.ac.il | Α  | 212.150.112.60         |
| kinneret.ac.il         | NS | ns2.kinneret.ac.il     |
| ns2.kinneret.ac.il     | Α  | 212.150.112.59         |
| kinneret.ac.il         | Α  | 88.218.117.88          |

# Kinneret DNS Records (2/2)

An excerpt from the DNS database for zone kinneret.ac.il

| kinneret.ac.il             | MX  | 10 mail-secure.kinneret.ac.il    |
|----------------------------|-----|----------------------------------|
| kinneret.ac.il             | SOA | origin = kineret.kinneret.ac.il  |
|                            |     | mail addr = mordo.kinneret.ac.il |
|                            |     | serial = 2024053124              |
|                            |     | refresh = 7200                   |
|                            |     | retry = 3600                     |
|                            |     | expire = 2419200                 |
|                            |     | minimum = 3600                   |
| mail-secure.kinneret.ac.il | Α   | 172.25.1912.1                    |

#### **DNS** Roots







ICANN is responsible for managing roots and top level domains

- 13 DNS root servers heavily replicated around the world
- 12 independent orgs run the roots

# Distributed Control (DNS)

Jan 1998: Jon Postel of IANA told 8 of the 12 roots at the time to contact IANA's root copy instead of the US government's root copy (Network Solutions, Inc. in Herndon, VA)

- Postel said it was a test and changed it back when asked (?)
- Sept 1998 ICANN is formed and takes over IANA's job



From <a href="http://www.postel.org/pr.htm">http://www.postel.org/pr.htm</a>: Photo by Irene Fertik, USC News Service. © 1994, USC. Permission granted for free use and distribution, conditioned upon inclusion of the above attribution and copyright notice.

# DNS Roots Worldwide (2015)



## DNS Roots Worldwide (2016)



# DNS Roots Worldwide (2018)



# DNS Roots Worldwide (2019)



# DNS Roots Worldwide (2021)



# DNS Roots Worldwide (2022)



# DNS Roots Worldwide (2023)



# DNS Roots Worldwide (2024)



#### **DNS** Roots in Israel





Map includes some in Jordan, Ramallah and Gaza.

Total of 7 in Petah Tikvah and Tel Aviv.

#### **DNS TLDs**

1,445 TLDs (Top Level Domains) are maintained by private networking companies and organizations (Jan 2025)

Private registrars sign up customers

#### TLDs are

- By business sector (ex. .bike, .clothing, .plumbing)
- By country (ex. .us, .il, .ca, .uk)
- By organization type (ex. .org, .ac.il, .edu, .co.uk)
- By language (ex. XN--1QQW23A (Chinese), XN--3E0B707E (Korean), XN--45BRJ9C (Hindi), XN--4GBRIM (Arabic Saudi Arabia))
- Generic (ex. .info, .xyz, .center, .cards)

#### Notable TLDs:

- .com used to be run by US DoD, now by Verisign 160.9 million domains (Dec 2022)
- .edu run by Educause (contracted to Verisign)
- il is run by ISOC Israel 285K domains (2025)
   ישראל. is also run by ISOC 9K domains (2025)

## Domain Name Distribution



## So Far

- DNS
- Network Address Translation (NAT)
- Congestion Control
  - Queuing

## **Network Address Translation**

Idea: Break the invariant that IP addresses are globally unique



#### **NAT Behavior**

NAT maintains a table of the form:

 $\langle client IP \rangle \langle client port \rangle \langle NAT ID \rangle$ 

- Outgoing packets (on non-NAT port):
  - Look for client IP address, client port in the mapping table
  - If found, replace client port with previously allocated NAT ID (same size as PORT #)
  - If not found, allocate a new unique NAT ID and replace source port with NAT ID
  - Replace source address with NAT address

#### NAT: Network Address Translation



#### **NAT Behavior**

- Incoming Packets (on NAT port)
  - Look up destination port number as NAT ID in port mapping table
  - If found, replace destination address and port with client entries from the mapping table
  - If not found, the packet is not for us and should be rejected
- Table entries expire after 2-3 minutes to allow them to be garbage collected
- "Private" IP addresses:
  - 192.168. *x*. *x*
  - -172.16. x. x-172.31. x. x
  - -10.x.x.x

### Benefits of NAT

- Only allows connections to the outside that are established from inside.
  - Hosts from outside can only contact internal hosts that appear in the mapping table, and they're only added when they establish the connection
  - Some NATs support firewall-like configurability
- Can simplify network administration
  - Divide network into smaller chunks
  - Consolidate configuration data
- Traffic logging
- Load balancing
- Robust failover

#### Drawbacks of NAT

#### Rewriting IP addresses isn't so easy:

- Must also look for IP addresses in other locations and rewrite them (may have to be protocol-aware)
- Potentially changes sequence number information
- Must validate/recalculate checksums

# Limited filtering of packets / change packet semantics

 For example, NATs may not work well with encryption schemes that include IP address information

#### May not work with all protocols

Clients may have to be aware that NAT translation is going on

Hinders throughput

Slow the adoption of IPv6?

## So Far

- DNS
- Network Address Translation (NAT)
- Congestion Control
  - Queuing

#### Resource Allocation

- When we have a real network we must deal with contention and congestion
  - Too many users, not enough resources
- We'll talk about packet switched networks for now
- Congestion can come from:
  - Too many users trying to make small connections
  - A few users making huge connections
  - Fast links that must pass over a slower link



## What is the Goal?

Fairness



Utilization



## What are we Managing?

- Connectionless Flows
  - Data sent between sender and receiver.
  - The routers sees them as moving between addresses (ignore ports)
- Routers maintain soft state about connections
  - Detected automatically
  - Lives and dies as the connection does
  - Helps the router make better routing decisions
- Flows can be explicit or implicit
  - Difference is whether the end points tell the routers before they start
  - Datagram versus Virtual Circuits

## What is the Network Offering?

- The basic model: Best Effort
  - Try, but no guarantee
  - All packets are created (more or less) equal
- More advanced: Quality of Service (QoS)
  - Senders and receivers request the routers to guarantee a minimum amount of resources
  - Some protocols: RSVP, ATM

## How are we Managing?

- Router Centric vs. Host Centric
  - Who is doing most of the decision making?
  - Router Centric the router tells the hosts how fast they can send
  - Host Centric the hosts decide how fast to send based on their experiences
- Reservation Based vs. Feedback Based
  - Reservation: send request before
    - Requires Router Centric
  - Feedback: change based on what happens
    - Explicit Router more involved
    - Implicit Host more involved
- Window Based vs. Rate Based

## What is Common?

#### With Best Effort:

- Feedback since we can't reserve, and therefore...
- Host centric, and often...
- Window based

#### With QoS:

- Reservation normally, and therefore...
- Router centric, and therefore often...
- Rate based

## So Far

- DNS
- Network Address Translation (NAT)
- Congestion Control
  - Queuing

## Congestion Control vs. Avoidance

Congestion <u>control</u> goal: Stay left of cliff



Congestion <u>avoidance</u> goal: Stay left of knee

# Queuing Techniques

- First In First Out (FIFO)
- Priority Queuing (PQ)
- Fair Queuing (FQ)
- Weighted Fair Queuing (WFQ)

### First In First Out

Rule: Packets are sent out of the router as they arrive



## FIFO and Dropping

What if the queue is full?



- Random Drop
  - Why?

# **Priority Queuing**

- Put a strict order on the queues
  - Highest priority first, then secondary ones
  - Advantages? Disadvantages?



## Conclusion

- DNS
- Network Address Translation (NAT)
- Congestion Control
  - Queuing