泛函分析作业

1 第 3 周

问题 1.1. 设 (X,d) 是度量空间, $\{x_n\}$ 是 (X,d) 中的 Cauchy 点列, 证明: $\{x_n\}$ 收敛当且仅当 $\{x_n\}$ 存在收敛子列.

证明 必要性是显然的.

下证充分性. 设 Cauchy 点列 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$ 使得 $x_{n_k} \to x$ $(k \to \infty)$. 任取 $\epsilon > 0$. 一方面, 由于 $\{x_n\}$ 是 Cauchy 点列, 则存在 $N = N(\epsilon) \in \mathbb{N}_+$, 使得

$$d(x_n, x_m) < \frac{1}{2}\epsilon, \quad \forall m, n > N.$$
(1.1)

另一方面, 由于 $x_{n_k} \to x$ $(k \to \infty)$, 则存在 $K = K(\epsilon) \in \mathbb{N}_+$ 使得

$$n_k > N$$
 并且 $d(x_{n_k}, x) < \frac{1}{2}\epsilon$, $\forall k > K$. (1.2)

综上, 由 (1.1)-(1.2) 式, 对任意 n > N, 取 k = K + 1, 就有

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon,$$

所以 $x_n \to x (n \to \infty)$.

问题 1.2. 设 f 是度量空间 (X,d) 到 \mathbb{R} 的连续映射, M 是 X 中的紧集, 证明: 连续映射 f 在紧集 M 上能够取到最值, 即存在 $x_0, x_1 \in M$ 使得

$$f(x_0) = \min_{x \in M} f(x), \quad f(x_1) = \max_{x \in M} f(x).$$

证明 Step1. 设

$$l = \inf_{x \in M} f(x).$$

下证 $l \in \mathbb{R}$.

反证法, 假设 $l = -\infty$, 则对任意 $n \in \mathbb{N}_+$, 存在 $x_n \in M$ 使得

$$f(x_n) < -n,$$

于是

$$f(x_n) \to -\infty \quad (n \to \infty).$$
 (1.3)

另一方面, 由于 $\{x_n\} \subset M$ 并且 M 是紧集, 则存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 以及 $x \in M$ 使得

$$x_{n_k} \to x \quad (k \to \infty).$$

根据映射 f 的连续性, 就有

$$f(x_{n_k}) \to f(x) \in \mathbb{R} \quad (k \to \infty).$$

这与 (1.3) 式矛盾. 所以 $l \in \mathbb{R}$.

Step2. 根据下确界的定义, 存在 $\{x_n\} \subset M(称为极小化序列)$ 使得

$$f(x_n) \to l \quad (n \to \infty).$$

由于 M 是紧集, 则存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 以及 $x \in M$ 使得

$$x_{n_k} \to x \quad (k \to \infty).$$

根据映射 f 的连续性, 就有

$$\inf_{x \in M} f(x) = l = \lim_{n \to \infty} f(x_n) = \lim_{k \to \infty} f(x_{n_k}) = f\left(\lim_{k \to \infty} x_{n_k}\right) = f(x).$$

所以连续映射 f 在紧集 M 上可以取到最小值.

同理可证,连续映射 f 在紧集 M 上可以取到最大值.

注 1.1. 上述结论才是数学分析中闭区间上的连续函数最值性的本质. 在一般的度量空间中, 有界闭集不一定是紧集, 有界闭集上的连续映射不一定有最值性.

问题 1.3.

定义 1.1 (Hölder 连续函数). 设 $\alpha \in (0,1]$. 若 $f \in C[a,b]$ 满足

$$[f]_{\alpha} = \sup_{\substack{x,y \in [a,b], \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty,$$

则称 f 是 [a,b] 上具有指数 α 的 Hölder 连续函数. C[a,b] 中所有具有指数 α 的 Hölder 连续函数的全体记为 $C^{0,\alpha}[a,b]$.

(1) 令

$$\bar{d}(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| + [f - g]_{\alpha}, \quad \forall f, g \in C^{0,\alpha}[a,b],$$

证明 $(C^{0,\alpha}[a,b],\bar{d})$ 是一个度量空间.

- (2) 证明 $(C^{0,\alpha}[a,b],\bar{d})$ 是完备的度量空间.
- (3) 利用 Ascoli-Arezela 定理证明, 若 M 是 $(C^{0,\alpha}[a,b], \bar{d})$ 中的有界集, 则 M 是 (C[a,b], d) 中的列紧集, 其中 d 是最大值距离, 即

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|, \quad \forall f, g \in C[a,b].$$

证明 (1) 任取 $f, g \in C^{0,\alpha}[a, b]$, 对任意 $x, y \in [a, b]$ 且 $x \neq y$, 都有

$$\frac{|(f-g)(x) - (f-g)(y)|}{|x-y|^{\alpha}}$$

$$\leq \frac{|f(x) - f(y)|}{|x-y|^{\alpha}} + \frac{|g(x) - g(y)|}{|x-y|^{\alpha}}$$

$$\leq [f]_{\alpha} + [g]_{\alpha} < +\infty,$$

从而

$$[f - g]_{\alpha} = \sup_{\substack{x,y \in [a,b], \\ x \neq y}} \frac{|(f - g)(x) - (f - g)(y)|}{|x - y|^{\alpha}} \le [f]_{\alpha} + [g]_{\alpha} < +\infty.$$

所以 $\bar{d}(f,q)$ 的定义是合理的.

(i) 显然 $\bar{d}(f,g) \ge 0$. 由于 $d(f,g) \le \bar{d}(f,g)$, 根据 d(f,g) 的正定性可知, $\bar{d}(f,g) = 0$ 等价于

$$f(t) = g(t), \quad \forall t \in [a, b],$$

从而等价于 f = g.

(ii) 设 $f, g, h \in C^{0,\alpha}[a, b]$, 则

$$d(f,g) \le d(f,h) + d(h,g).$$

另一方面, 对任意 $x, y \in [a, b]$ 且 $x \neq y$, 都有

$$\frac{|(f-g)(x) - (f-g)(y)|}{|x-y|^{\alpha}}$$

$$= \frac{\left| [(f-h) + (h-g)](x) - [(f-h) + (h-g)](y) \right|}{|x-y|^{\alpha}}$$

$$\leq \frac{|(f-h)(x) - (f-h)(y)|}{|x-y|^{\alpha}} + \frac{|(h-g)(x) - (h-g)(y)|}{|x-y|^{\alpha}},$$

从而

$$[f-g]_{\alpha} \le [f-h]_{\alpha} + [h-g]_{\alpha}.$$

综上,

$$\bar{d}(f,g) \le \bar{d}(f,g) + \bar{d}(h,g).$$

所以 $(C^{0,\alpha}[a,b],\bar{d})$ 是一个度量空间.

(2) 设 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列. 由于 $C^{0,\alpha}[a,b] \subset C[a,b]$ 并且

$$0 \le d(f,g) \le \bar{d}(f,g), \quad \forall f, g \in C^{0,\alpha}[a,b],$$

易证 $\{f_n\}$ 也是 (C[a,b],d) 中的 Cauchy 点列. 根据 (C[a,b],d) 的完备性, 存在 $f \in C[a,b]$ 使得

$$d(f_n, f) \to 0 \quad (n \to \infty).$$

下证 $f \in C^{0,\alpha}[a,b]$ 并且

$$\bar{d}(f_n, f) \to 0 \quad (n \to \infty).$$

由于 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列, 从而是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列 (p219 第 14 题), 于是存在 M>0 使得对任意 $x,y\in[a,b]$ 并且 $x\neq y$ 都有

$$\frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}} \le [f_n]_{\alpha} = [f_n - 0]_{\alpha} \le \bar{d}(f_n, 0) \le M, \quad \forall n \in \mathbb{N}_+.$$
 (1.4)

由于函数列 $\{f_n\}$ 在 [a,b] 上一致收敛于 f,那么也逐点收敛于 f,即对任意 $x \in [a,b]$,都有

$$f_n(x) \to f(x) \quad (n \to \infty).$$
 (1.5)

因此, 在 (1.4) 两端令 $n \to \infty$, 可得

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le M, \quad \forall x, y \in [a, b], \ x \ne y,$$

从而 $[f]_{\alpha} < +\infty, f \in C^{0,\alpha}[a,b].$

对任意 $\epsilon > 0$, 由于 $\{f_n\}$ 是空间 $(C^{0,\alpha}[a,b],\bar{d})$ 中的 Cauchy 点列, 则存在正整数 N, 使得对任意 m,n > N, 都有

$$\frac{\left| [f_n(x) - f_m(x)] - [f_n(y) - f_m(y)] \right|}{|x - y|^{\alpha}} \le [f_n - f_m]_{\alpha} \le \bar{d}(f_n, f_m) < \epsilon, \quad \forall x, y \in [a, b], \ x \ne y.$$

在上式中固定 x, y 以及 n > N, 令 $m \to \infty$, 结合 (1.5) 式可得

$$\frac{\left| \left[f_n(x) - f(x) \right] - \left[f_n(y) - f(y) \right] \right|}{|x - y|^{\alpha}} \le \epsilon, \quad \forall n \ge N, \ \forall x, y \in [a, b], \ x \ne y,$$

所以

$$[f_n - f]_{\alpha} \le \epsilon, \forall n > N.$$

综上

$$[f_n - f]_{\alpha} \to 0 \quad (n \to \infty),$$

从而

$$\bar{d}(f_n, f) = d(f_n, f) + [f_n - f]_{\alpha} \to 0 \quad (n \to \alpha).$$

所以 $(C^{0,\alpha}[a,b],\bar{d})$ 是完备的度量空间.

(3) 设 M 在 $(C^{0,\alpha}[a,b],\bar{d})$ 中有界. 由于 $C^{0,\alpha}[a,b] \subset C[a,b]$ 并且

$$0 \le d(f,g) \le \bar{d}(f,g), \quad \forall f, g \in C^{0,\alpha}[a,b],$$

所以 M 也在 (C[a,b],d) 中有界. 任取 $\{f_n\} \subset M$, 则 $\{f_n\}$ 既是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列, 又是 (C[a,b],d) 中的有界点列, 从而函数列 $\{f_n\}$ 在 [a,b] 上一致有界. 下证函数列 $\{f_n\}$ 在 [a,b] 上等度连续.

由于 $\{f_n\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列,则存在 M>0,使得

$$[f_n]_{\alpha} = [f_n - 0]_{\alpha} \le \bar{d}(f_n, 0) \le M.$$

从而

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}, \quad \forall n \in \mathbb{N}_+, \ \forall x, y \in [a, b].$$

$$(1.6)$$

对任意 $\epsilon > 0$, 取

$$\delta = \left(\frac{\epsilon}{M}\right)^{\frac{1}{\alpha}} > 0,$$

则对任意 $x,y \in [a,b]$ 且 $|x-y| < \delta$, 根据 $\alpha \in (0,1]$ 以及(1.6)式可得

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha} < M\delta^{\alpha} = \epsilon, \quad \forall n \in \mathbb{N}_+,$$

因此函数列 $\{f_n\}$ 在 [a,b] 上等度连续.

根据 Ascoli-Arezela 定理, 点列 $\{f_n\}$ 在空间 (C[a,b],d) 中有收敛子列, 由此可知集合 M 是空间 (C[a,b],d) 中的列紧集.

由于 $\{f_n\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 中的有界点列, 根据 (2) 的证明的前半部分可知, 上述收敛子列 $\{f_{n_k}\}$ 的极限 f 也在 $C^{0,\alpha}[a,b]$ 中. 然而, 虽然 $\{f_{n_k}\}$ 在 (C[a,b],d) 中收敛, 但是却不能保证 $\{f_{n_k}\}$ 是 $(C^{0,\alpha}[a,b],\bar{d})$ 的 Cauchy 点列, 因此我们无法像 (2) 的证明的后半部分那样证明

$$[f_{n_k} - f]_{\alpha} \to 0 \quad (k \to \infty).$$