Theis Equation

November 7, 2019

1 Theis Solution

Charles V. Theis

The Theis (1935) equation is used to calculate drawdown for two-dimensional radial groundwater flow to a point source in an infinite, homogeneous aquifer. The Theis equation was derived from heat transfer literature (with the mathematical help of C.I. Lubin) and is defined as:

$$s = \frac{Q}{4\pi T}W(u) \tag{1}$$

where s is drawdown [L], Q is the pumping rate [L³/T], T is the aquifer transmissivity [L²/T], u is a dimensionless time parameter [unitless], and W(u) is the Well function (exponential integral E_1) [unitless]. The exponential integral is available in scipy.special as the exp1() function.

The dimensionless time parameter is defined as:

$$u = \frac{r^2 S}{4Tt} \tag{2}$$

where r is the distance from the pumping well to a point where drawdown is observed [L], S is storativity [unitless], and t is the time since pumping began. Storativity is defined as:

$$S = S_s b \tag{3}$$

where S_s is specific storage [1/L] and b is the thickness of the aquifer.

1.1 Drawdown from a pumping well

First we will plot drawdown with time at a arbitrary distance from a pumping well. The relevant parameters are:

Table 1: Aquifer and well parameters

Parameter	Value	Units
\mathbf{x}_{well}	0.	m
y_{well}	0.	\mathbf{m}
X_{obs}	1000.	\mathbf{m}
y_{obs}	1000.	\mathbf{m}
${ m T}$	0.30	$\rm m^2/s$
S	0.0008	unitless
Q	1.16	m^3/s

1.1.1 Exercise 1

Create a function that calculates the drawdown at a monitor well location. You will also need a function to calculate the distance from the monitor well to the pumping well. Plot drawdown versus time using matplotlib.

1.1.2 Exercise 2

Make new functions from your existing drawdown and distance functions to calculate the drawdown for a square area with a fixed cell size $(\Delta x = \Delta y)$ and a pumping well in the center of the area. Your functions should be able to work with two-dimensional numpy arrays and return a numpy drawdown array that can be plotted with matplotlib. Use an odd number of rows and columns (rows = columns) so that the pumping well is located in center of the area.