લક્ષ

If people do not believe that mathematics is simple, it is only because they do not realise how complicated life is.

- John Louis Von Neumann

10.1 પ્રાસ્તાવિક અને લક્ષનો ઈતિહાસ

હવે આપણે કલનશાસ્ત્રનો અભ્યાસ કરીશું. અત્યાર સુધીનો આપણો અભ્યાસ પ્રાક્કલન અભ્યાસ હતો. Calculus એ એક લેટીન શબ્દ છે. તેનો અર્થ ગણતરી કરવા માટેનો નાનો પથ્થર એવો થાય છે. જેમ ભૂમિતિ એ આકારોનો અભ્યાસ છે, બીજગણિત ક્રિયાઓનો અભ્યાસ છે અને તેનો ઉપયોગ સમીકરણોનો ઉકેલ મેળવવા થાય છે, તે જ પ્રમાણે કલનશાસ્ત્ર એ સતત બદલાતી જતી રાશિઓનો અભ્યાસ છે. કલનશાસ્ત્રનો વિજ્ઞાન, અર્થશાસ્ત્ર અને ઇજનેરી જેવી શાખાઓમાં બહોળો ઉપયોગ થાય છે.

પુરાણકાળના કેટલાક વિચારો આપણને અનિયત સંકલન તરફ દોરી જાય છે. ઈજિપ્તના મૉસ્કો પેપીરસ (Moscow Papyrus) (1820 B.C.) ગ્રંથમાં ક્ષેત્રફળ અને ઘનફળને લગતી ગણતરી અનિયત સંકલનથી જોવા મળે છે. પરંતુ તેને લગતા સૂત્રો ફક્ત માહિતી સ્વરૂપે છે અને તેમાનાં કેટલાંક ખોટાં પણ છે. જો કે ગ્રીક ગણિતજ્ઞ યુડોક્ષસે (Eudoxus) (408-335 B.C.) ક્ષેત્રફળ અને ઘનફળ શોધવા માટે ક્રમશઃ સૂક્ષ્મ ભાગ કરવાની પદ્ધતિ (Method of exhaustion)નો ઉપયોગ કરી લક્ષ (Limit)ની સંકલ્પના આપી. આર્કિમીડિઝે (Archimedes) (287-212 B.C.) આ સંકલ્પનાને આગળ વિકસાવી. ત્રીજી સદીમાં ચીની ગણિતજ્ઞ લીહુએ (Lie Hue) એ ક્રમશઃ સૂક્ષ્માતિસૂક્ષ્મ ભાગોની સંકલ્પનાનો ફરી ઉપયોગ કરી વર્તુળનું ક્ષેત્રફળ મેળવ્યું.

બ્રહ્મગુપ્તનું યુક્તિભાષા (Yuktibhasha) કલનશાસ્ત્ર પરનું પ્રથમ પુસ્તક ગણાય છે. ભાસ્કરનું કલનશાસ્ત્ર પરનું કાર્ય ન્યૂટન તથા લીબનીટ્ઝના કાળ કરતાં ઘણું પહેલાનું છે. ભાસ્કર-2એ વિકલ-કલનના સિદ્ધાંતોનો ઉપયોગ ખગોળશાસ્ત્રના પ્રશ્નોમાં કર્યો. એવો નક્કર આધાર છે કે ભાસ્કર વિકલ-કલનના કેટલાક સિદ્ધાંતોના કામમાં અગ્રેસર હતા. ચલના મધ્યકમાન પ્રમેયનું વિધાન પણ તેમણે કર્યું હતું. તેમના પુસ્તક સિદ્ધાંત શિરોમણીમાં ગાણિતીય વિશ્લેષણ અને શૂન્યાભિલક્ષી કલનની પ્રાથમિક સંકલ્પના જોવા મળે છે.

આ બધા વિચારો દ્વારા વિકલ-કલનના વિકાસનું શ્રેય ગોટફ્રી વિલિયમ લીબનીટ્સ (Gottfried Wilhelm Leibnitz)ના ફાળે જાય છે. તેણે ન્યુટન (Newton)ના સમયમાં જ સ્વતંત્ર રીતે કલનની શોધ કરી. કલનશાસ્ત્રના શોધનો યશ લીબનીટ્ઝ

અને ન્યુટન બંનેના ફાળે જાય છે. ન્યુટને કલનના પરિણામ પહેલાં તારવ્યા પરંતુ લીબનીટ્ઝે તેને પ્રથમ પ્રકાશિત કર્યા. બંનેએ એકબીજાથી સ્વતંત્ર રીતે પરિણામ મેળવ્યા. પરંતુ લીબનીટ્ઝે અનિયત સંકલનથી શરૂઆત કરી અને ન્યુટને વિકલનથી શરૂઆત કરી. કલનશાસ્ત્ર એવું નામ એ લીબનીટ્ઝે આપ્યું. ઓગણીસમી સદીમાં કોશી (Cauchy), રીમાન (Riemann) અને વાયરસ્ટ્રાસે (Weirstrass) કલનનો આગળ વિકાસ કર્યો. લક્ષની ε-δ ની આધુનિક વ્યાખ્યા વાયરસ્ટ્રાસની ઉપજ છે.

વિધયના લક્ષની આધુનિક સંકલ્પના એ બોલ્ઝાનોના સમયની છે. તેણે ϵ - δ ની રીત વિધયના સાતત્ય માટે ઈ.સ. 1817 માં વાપરી હતી. કોશીએ *Cours d' analyse* (1821)માં 1821 માં લક્ષની ચર્ચા કરી હતી. પણ તેણે ફક્ત અનૌપચારિક વ્યાખ્યા આપી હતી. **વાયરસ્ટ્રાસે \epsilon-\delta** સ્વરૂપે લક્ષની આધુનિક વ્યાખ્યા આપી. તેનો આજે ઉપયોગ થાય છે. તેણે $\lim_{x\to x_0}$ જેવો $\lim_{x\to x_0}$ માં તેના પુસ્તક 'A course of pure mathematics' માં $\lim_{x\to x_0}$ જેવો હાલમાં પ્રચલિત છે તેવો સંકેત આપ્યો.

10.2 લક્ષનો સાહજિક ખ્યાલ

હવે આપણે કલનશાસ્ત્રના મૂળભૂત ખ્યાલ લક્ષ પર આવીએ. લક્ષની વ્યાખ્યા આપતાં પહેલા આપણે લક્ષનો સાહજિક ખ્યાલ મેળવીએ. હવે આપણે આગળ જે ચર્ચા કરીશું તે આપણને લક્ષ વિષે સાહજિક ખ્યાલ આપશે અને ઉદાહરણોની ચર્ચા આપણને લક્ષની સંકલ્પના તરફ દોરી જશે.

જયારે કોઈ ચલ તેના પ્રદેશમાં સતત બદલાતો હોય અને તે કોઈ ચોક્કસ કિમતની નજીક જાય ત્યારે તે વિધેયનું 'લક્ષ' જો અસ્તિત્વ ધરાવતું હોય તો તે એ વિધેયનું અંતિમ મૂલ્ય (Ultimate Value) છે. ચાલો, વધુ સ્પષ્ટતા કરીએ. જયારે x ની કિંમત 1 ની વધુ નજીક જાય ત્યારે વિધેય f(x) = (3x+2)નું લક્ષ $\lim_{x\to 1} 3x+2$ એમ લખાય. હવે તે કેવી રીતે શોધવું તે જોઈએ. x અને f(x)નાં કેટલાંક મૂલ્યોનું કોષ્ટક બનાવીએ.

3	x	0.9	0.99	0.999	0.9999	1.1	1.01	1.001	1.0001
f	(x)	4.7	4.97	4.997	4.9997	5.3	5.03	5.003	5.0003

કોષ્ટક પરથી જોઈ શકાય કે જેમ x ની કિંમતો 1 થી નાની રહીને 1ની વધુ ને વધુ નજીક જાય છે, તેમ f(x)ની કિંમતો 5 ને અનુલક્ષે છે. આ પરિસ્થિતિ દર્શાવવા આ પ્રમાણે વિધાન કરાય છે. 'જેમ x એ 1 ને ડાબી બાજુથી અનુલક્ષે છે, તેમ f(x) નું લક્ષ 5 છે.' આને માટે સંકેત $\lim_{x\to 1^-} f(x)=5$ લખાય છે. તે જ પ્રમાણે જેમ xની કિંમતો 1થી મોટી રહીને 1ની વધુ ને વધુ નજીક જાય ત્યારે 'જેમ x એ 1 ને જમણી બાજુથી અનુલક્ષે છે તેમ f(x)નું લક્ષ 5 છે.' અથવા $\lim_{x\to 1^-} f(x)=5$ લખાય છે. વળી અહીં, f(1)=3+2=5 છે પરંતુ આ જરૂરી નથી.

જો $\lim_{x\to a_{-}}f(x)$ અને $\lim_{x\to a_{+}}f(x)$ નું અસ્તિત્વ હોય અને બંને સમાન હોય, તો $\lim_{x\to a}f(x)$ નું અસ્તિત્વ છે અને તે $\lim_{x\to a_{-}}f(x)$ અથવા $\lim_{x\to a_{+}}f(x)$ બરાબર છે.

ચાલો હવે એને આલેખ પરથી સમજીએ.

અહીં જોઈ શકાય છે કે જેમ $x \to 1-$, y-યામ 5 ને અનુલક્ષે છે અને તેવું જ $x \to 1+$. માટે થાય છે. અહીં લક્ષની ચર્ચામાં આપણે નોંધીએ કે f(1)=5.

ઉદાહરણ 1 થી 13 લક્ષની સંકલ્પનાની સમજૂતી માટે જ છે. તે પરીક્ષામાં પૂછવાના પ્રશ્નો નથી.

આકૃતિ 10.1

ઉદાહરણ 1 : $\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} = 2$ કોષ્ટકની મદદથી ચકાસો. $\left(x \neq \frac{1}{2}\right)$

x	0.49	0.499	0.4999	0.51	0.501	0.5001
f(x)	1.98	1.998	1.9998	2.02	2.002	2.0002

જુઓ કે,

$$f(x) = \frac{4x^2 - 1}{2x - 1}$$

$$= 2x + 1$$
, $\Re x \neq \frac{1}{2}$.

આમ, આપણે જોઈ શકીએ છીએ કે,

$$\lim_{x\to\frac{1}{2}}f(x)=2.$$

 \mathbf{H} મજૂતી : જેમ x એ $\frac{1}{2}$ ને જમણી કે ડાબી બાજુથી અનુલક્ષે તેમ f(x) એ 2ને અનુલક્ષે છે. અહીં આલેખ પર $x=rac{1}{2}$ ને અનુરૂપ બિંદુ $\left(rac{1}{2},2
ight)$ અસ્તિત્વ ધરાવતું નથી. આમ, જેમ x એ 1 ને અનુલક્ષે તેમ f(x) નું 'અંતિમ મૂલ્ય' 2 છે.

ઉદાહરણ 2 : $\lim_{x\to 0} |x|$ શોધો.

ઉંકેલ: આપણે જાણીએ છીએ કે
$$|x|=\begin{cases} x & x\geq 0 \\ -x & x<0 \end{cases}$$

$$\begin{cases} -x & x < 0 \end{cases}$$

તેથી,

x	-0.1	-0.01	-0.001	0.1	0.01	0.001
f(x)	0.1	0.01	0.001	0.1	0.01	0.001

આમ, અનુમાન કરી શકાય કે,

$$\lim_{x\to 0} f(x) = 0.$$

જુઓ કે
$$f(0) = 0$$
.

આકૃતિ 10.3

ઉદાહરણ 3 : સાબિત કરો કે, $\lim_{x\to 2} [x]$ નું અસ્તિત્વ નથી.

ઉકેલ :
$$f(x) = [x] = \begin{cases} 1 & \text{wii } 1 \le x < 2 \\ 2 & \text{wii } 2 \le x < 3 \end{cases}$$

x	1.9	1.99	1.999	1.9999	2.1	2.01	2.001	2.0001
f(x)	1	1	1	1	2	2	2	2

આમ,
$$\lim_{x \to 2^{-}} f(x) = 1$$
 અને $\lim_{x \to 2^{+}} f(x) = 2$

$$\therefore \lim_{x \to 2} f(x)$$
નું અસ્તિત્વ નથી.

સમજતી: અહીં આપણે જોઈ શકીએ છીએ કે P અને Q વચ્ચે અવકાશ છે. જમણી બાજુનું લક્ષ અને ડાબી બાજુનું લક્ષ સમાન નથી.

આકૃતિ 10.4

f એ x = 0 આગળ વ્યાખ્યાયિત નથી.

x	-0.1	-0.01	-0.001	0.1	0.01	0.001
f(x)	-1	-1	-1	1	1	1

સ્પષ્ટ છે કે,
$$\lim_{x \to 0+} f(x) = 1$$
, $\lim_{x \to 0-} f(x) = -1$

$$\therefore \lim_{x\to 0} f(x)$$
નું અસ્તિત્વ નથી.

નોંધ : ઉદાહરણ 1માં $f\left(\frac{1}{2}\right)$ વ્યાખ્યાયિત નથી પણ $\lim_{x \to \frac{1}{2}} f(x)$ નું અસ્તિત્વ છે.

ઉદાહરણ 2માં f(0) વ્યાખ્યાયિત છે અને $\lim_{x\to 0} f(x) = f(0)$.

ઉદાહરણ 3માં $\lim_{x\to 2^-} f(x) \neq \lim_{x\to 2^+} f(x)$. અહીં f(2)નું અસ્તિત્વ છે. પણ લક્ષનું અસ્તિત્વ નથી.

ઉદાહરણ 4માં $\lim_{x\to 0+} f(x) \neq \lim_{x\to 0-} f(x)$ અને f(0)નું અસ્તિત્વ નથી. લક્ષનું અસ્તિત્વ પણ નથી.

હવે આપણી પાસે નક્કર આધાર છે કે જેના પરથી આપણે તારણ પર આવી શકીએ કે $\lim_{x o a} f(x)$ નું મૂલ્ય કે અસ્તિત્વ તેનાં a આગળનાં મૂલ્ય f(a) કે f(a) ના અસ્તિત્વ પર આધારિત નથી.

ઉદાહરણ
$$5: \lim_{x \to 0} f(x)$$
 શોધો, જ્યાં $f(x) = \begin{cases} x+3 & x < 0 \\ 3-x & x \ge 0 \end{cases}$

ઉકેલ : અહીં x < 0 માટે f(x) = x + 3 અને x > 0 માટે f(x) = 3 - x.

∴ કિંમતોનું કોષ્ટક નીચે પ્રમાણે થશે ઃ

x	-0.1	-0.01	-0.001	0.1	0.01	0.001
f(x)	2.9	2.99	2.999	2.9	2.99	2.999

228 ગણિત-2

$$\therefore \quad \lim_{x \to 0-} f(x) = \lim_{x \to 0+} f(x) = 3$$

આમ,
$$\lim_{x\to 0} f(x) = 3.$$

સમજૂતી : (0, 3) એ આલેખ પરનું બિંદુ છે અને જેમ $x \to 0-$ તેમ બિંદુ A એ C તરફ જાય છે અને જેમ $x \to 0+$ તેમ B એ C તરફ જશે. આથી $\lim_{x \to 0+} f(x)$ અને $\lim_{x \to 0-} f(x)$ સમાન થશે.

વળી,
$$f(0) = 3$$
. આમ ત્રણેય સમાન છે.

ઉદાહરણ 6 :
$$\lim_{x \to 1} f(x)$$
 શોધો, જ્યાં $f(x) = \begin{cases} x+3 & x > 1 \\ 10 & x = 1 \\ x+5 & x < 1 \end{cases}$

ઉકેલ :

x	0.9	0.99	0.999	1.1	1.01	1.001
f(x)	5.9	5.99	5.999	4.1	4.01	4.001

x < 1 x > 1

આમ, $\lim_{x \to 1^-} f(x)$ એ 6 હોય તેમ લાગે છે અને

 $\lim_{x \to 1+} f(x)$ એ 4 હોય તેવું લાગે છે. આમ, $\lim_{x \to 1} f(x)$ નું

અસ્તિત્વ નથી.

વળી, f(1) = 10. ત્રણેય ભિન્ન છે.

સમજૂતી:

આમ,
$$\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

અને બંને ભિન્ન છે.

ઉદાહરણ 7 : $\lim_{x \to 1} (x^2 - x)$ શોધો.

ઉકેલ :

x	0.9	0.99	0.999	1.1	1.01	1.001
f(x)	-0.09	-0.0099	-0.000999	0.11	0.0101	0.001001

આમ,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 0, f(1) = 1^{2} - 1 = 0$$

$$\lim_{x \to 1} f(x) = 0 = f(1)$$

આકૃતિ 10.7

સમજૂતી : જેમ, $x \to 1-$, A એ C ને અનુલક્ષે છે અને જેમ $x \to 1+$ તેમ B એ Cને અનુલક્ષે છે.

$$\therefore \lim_{x\to 1} f(x) = 0$$

ઉદાહરણ 8 :
$$f: \mathbb{R} \to \mathbb{R}$$
. $f(x) = 5$ માટે $\lim_{x \to 10} f(x)$ શોધો.

ઉકેલ :

x	9.9	9.99	9.999	10.1	10.01	10.001
f(x)	5	5	5	5	5	5

$$\lim_{x\to 10} f(x) = 5$$

આકૃતિ 10.8

સમજૂતી : જેમ, $x \to 10^-$, તેમ A એ C ને અનુલક્ષે છે અને જેમ $x \to 10^+$, તેમ B એ C ને અનુલક્ષે છે. C(10, 5) છે.

$$\lim_{x\to 10} f(x) = 5$$

ઉદાહરણ 9 : $\lim_{x \to \frac{\pi}{2}} cosx$ શોધો.

ઉકેલ :

x	$\frac{\pi}{2} - 0.1$	$\frac{\pi}{2} - 0.01$	$\frac{\pi}{2} - 0.001$	$\frac{\pi}{2} + 0.1$	$\frac{\pi}{2} + 0.01$	$\frac{\pi}{2} + 0.001$
f(x)	0.099833	0.009999833	0.0009999998	-0.099833	-0.009999833	-0.0009999998

આમ, $\lim_{x \to \frac{\pi}{2}} cosx = 0$

સમજૂતી : cosx નો આલેખ જોતા.

આકૃતિ 10.9

જેમ, $x o \frac{\pi}{2}$ અને $x o \frac{\pi}{2}$ + તેમ અનુક્રમે A એ C ને અને B પણ C ને અનુલક્ષે છે.

$$\lim_{x \to \frac{\pi}{2}} \cos x = 0$$

ઉદાહરણ 10 : $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $(x \neq 0)$ ચકાસો.

ઉકેલ :

x		-0.7	-0.2	-0.05	0.4	0.3	0.03	0.01
f (c)	0.92031	0.993347	0.999583	0.97275	0.98506	0.99985	0.999983

આકૃતિ 10.10

સમજૂતી : નોંધીએ કે $\frac{\sin x}{x}$ એ યુગ્મ વિધેય છે. એટલે કે, $\frac{\sin(-x)}{-x} = \frac{-\sin x}{-x} = \frac{\sin x}{x}$.

તેથી આપણે x>0 જ લઈશું. એમ અનુમાન કરી શકાય કે, $\lim_{x\to 0} \frac{\sin x}{x}=1$. જે આલેખ પરથી પણ જોઈ શકાય છે અને તે આપણે આ પ્રકરણમાં આગળ સાબિત પણ કરીશું.

ઉદાહરણ 11 :
$$\lim_{x\to 0} (x + \cos x)$$
 શોધો.

ઉકેલ :

x	-0.1	-0.01	-0.001	0.1	0.01	0.001
f(x)	0.895004165	0.98995	0.9989995	1.095004165	1.009995	1.0009995

સમજૂતી : કોપ્ટક પરથી અનુમાન કરી શકાય કે, $\lim_{x\to 0} (x + cosx) = 1$.

આકૃતિ 10.11

$$\text{gol}, \lim_{x \to 0} x = 0, \lim_{x \to 0} \cos x = 1.$$

$$\therefore \quad \lim_{x \to 0} (x + \cos x) = \lim_{x \to 0} x + \lim_{x \to 0} \cos x$$

ઉદાહરણ 12 : $\lim_{x\to 0} \frac{1}{x}$ ના અસ્તિત્વ વિશે ચર્ચા કરો.

ઉકેલ :

x	-0 .1	-0.01	-0.001	0.1	0.01	0.001
f(x)	-10	-100	-1000	10	100	1000

સમજૂતી : અહીં, આપણે જોઈ શકીએ છીએ કે જેમ $x \to 0+$ તેમ $\frac{1}{x}$ અપરિમિત રીતે વધે અને જેમ $x \to 0-$ તેમ $\frac{1}{x}$ અપરિમિત રીતે ઘટે છે. તેથી $\lim_{x \to 0+} \frac{1}{x}$ અથવા $\lim_{x \to 0-} \frac{1}{x}$ નું અસ્તિત્વ નથી. જેમ $x \to 0+$, $\frac{1}{x} \to \infty$ તથા જેમ $x \to 0-$ તેમ $\frac{1}{x} \to -\infty$ કહેવાય. તેથી $\lim_{x \to 0} \frac{1}{x}$ નું અસ્તિત્વ નથી.

આકૃતિ 10.12

 $\lim_{x\to 0\div}\frac{1}{x}=\infty \text{ અથવા }\lim_{x\to 0-}\frac{1}{x}=-\infty \text{ કહેવું ખોટું છે. અહીં આપણે નોંધીશું કે <math>\infty$ અને $-\infty$ એ માત્ર સંકેતો છે અથવા વિસ્તૃત વાસ્તવિક સંખ્યા સંહતિના ઘટકો છે. આપણે તો વાસ્તવિક સંખ્યા સંહતિમાં જ લક્ષ શોધીએ છીએ.

ઉદાહરણ 13 :
$$\lim_{x\to 0} \frac{1}{x^2}$$
 વિશે ચર્ચો.

G}4 :

x	-0.1	-0.01	-0.001	0.1	0.01	0.001
f(x)	10 ²	104	106	10 ²	104	106

સમજૂતી : અહીં, જેમ $x \to 0+$ કે $x \to 0-$, $\frac{1}{x^2}$ એ અપરિમિત રીતે વધે છે અથવા $\frac{1}{x^2} \to \infty$ પણ આપણે $\lim_{x \to 0} \frac{1}{x^2} = \infty$ લખતાં નથી. $\lim_{x \to 0} \frac{1}{x^2} = \frac{1}{x^2} = \infty$ લખતાં નથી.

10.3 લક્ષની ઔપચારિક વ્યાખ્યા

હવે આપણે લક્ષની ઔપચારિક વ્યાખ્યા આપવા તૈયાર છીએ. અત્યાર સુધી આપણે કોષ્ટકો અને આલેખોના આધારે વિધેયોના લક્ષ વિશે અનુમાન બાંધ્યું. પણ તે વ્યવહારુ નથી. ઘણીવાર બહુ સરળ દાખલા વિષે પણ અનુમાન બાંધી શકાતું નથી તથા તેનું કોષ્ટક આપણને ગેરમાર્ગે પણ દોરે છે. $sin\frac{1}{x}$ નો આલેખ જુઓ (આકૃતિ 10.14). શું આપણ $\lim_{x\to 0} sin\frac{1}{x}$ વિષે અનુમાન બાંધી શકીએ ? જ્યારે x, $\frac{1}{k\pi}$, $k\in Z-\{0\}$ શ્રેણીની કોઈ પણ કિંમત લે તો $sin\frac{1}{x}=0$, જ્યારે $x=\frac{2}{(4m+1)\pi}$ ત્યારે $sin\frac{1}{x}=1$ અને $x=\frac{2}{(4m+3)\pi}$ માટે $sin\frac{1}{x}=-1$. તે સિવાયની પણ x ની કિંમતોને આપણે લક્ષમાં લીધી નથી. આમ, $\lim_{x\to 0} sin\frac{1}{x}$ વિષે કશું પણ અનુમાન બાંધવું મુશ્કેલ છે.

વ્યાખ્યા : વિધેયનું લક્ષ : ધારો કે વિધેય f(x) એ a ને સમાવતા કોઈ અંતરાલમાં a સિવાયની વાસ્તવિક સંખ્યાઓ માટે વ્યાખ્યાયિત છે. (a એ f ના પ્રદેશમાં ન પણ હોય.) જો પ્રત્યેક $\varepsilon > 0$ માટે $\delta > 0$ એવો મળે કે જેથી,

 $a-\delta < x < a+\delta, x \neq a \Rightarrow l-\varepsilon < f(x) < l+\varepsilon$ તો $\lim_{x\to a} f(x) = l$ તેમ કહેવાય અથવા જેમ x એ a ને અનુલક્ષે છે તેમ f(x)નું લક્ષ l છે.

અહીં જોઈ શકાય છે કે $\delta > 0$ એ કોઈ પણ ધન સંખ્યા છે. આપણે f(x)ને l ની વધુ નજીક લઈ જવા $-\varepsilon < f(x) - l < \varepsilon$ અથવા $|f(x) - l| < \varepsilon$ લઈ શકાય તે માટે δ ની અનુરૂપ પસંદગી કરવી પડે કે જેથી $a - \delta < x < a + \delta, x \neq a$ અથવા $-\delta < x - a < \delta, x \neq a$ એટલે કે $|x - a| < \delta, x \neq a$.

આમ, આપણે $\delta > 0$ એવો પસંદ કરીએ કે જેથી x ને aની વધુ નજીક લવાય અને તેથી f(x) પણ l ની વધુ નજીક આવે.

ડાબી બાજુનું લક્ષ : જો વિષેય f(x) કોઈ અંતરાલ (a-h, a), (h>0) માં વ્યાખ્યાયિત છે. અને પ્રત્યેક $\varepsilon>0$ ને સંગત $\delta>0$ મળે કે જેથી, પ્રત્યેક $x\in(a-\delta,a)$ અને $\delta< h$ માટે $l-\varepsilon< f(x)< l+\varepsilon$, તો જેમ $x\to a-$ તેમ f(x)નું (ડાબી બાજુનું) લક્ષ l છે તેમ કહેવાય અથવા $\lim_{x\to a-} f(x)=l$.

જમણી બાજુનું લક્ષ : જો વિષેય f(x) કોઈક અંતરાલ (a, a + k), (k > 0) માં વ્યાખ્યાયિત છે. અને પ્રત્યેક $\varepsilon > 0$ ને સંગત $\delta > 0$ એવો મળે કે પ્રત્યેક $x \in (a, a + \delta)$, $\delta < k$, માટે $l - \varepsilon < f(x) < l + \varepsilon$, તો જેમ $x \to a + \lambda + f(x)$ નું (જમણી બાજુનું) લક્ષ l છે તેમ કહેવાય અથવા $\lim_{x \to a +} f(x) = l$.

નોંધ : (1) વ્યાખ્યામાં એવું ક્યાંય પણ નથી કે a એ fના પ્રદેશમાં હોવો જોઈએ. f(x) એ a ને સમાવતા કોઈક અંતરાલમાં a સિવાયની કિંમતો માટે વ્યાખ્યાયિત હોવું જોઈએ. a એ fના પ્રદેશમાં હોઈ પણ શકે કે ના પણ હોય.

(2) $\varepsilon > 0$ આપેલ સંખ્યા છે અને f પર આધારિત $\delta > 0$ શોધવો પડે.

હવે આપણે વ્યાખ્યા સમજવા કેટલાંક ઉદાહરણ લઈએ.

ઉદાહરણ 14 : સાબિત કરો :
$$\lim_{x\to 2} (3x+2) = 8$$
.

63લ : ધારો કે $\varepsilon > 0$ એ આપેલ ધન સંખ્યા છે.

આપણે
$$8 - \varepsilon < 3x + 2 < 8 + \varepsilon$$
 મેળવવા ઇચ્છીએ છીએ. ($l = 8$)

$$8 - \varepsilon < 3x + 2 < 8 + \varepsilon \Leftrightarrow 6 - \varepsilon < 3x < 6 + \varepsilon$$

$$\Leftrightarrow 2 - \frac{\varepsilon}{3} < x < 2 + \frac{\varepsilon}{3}$$

$$2-\delta < x < 2+\delta$$
 સાથે સરખાવતાં $\delta = \frac{\varepsilon}{3}$ લેવાનું સૂચન મળે છે. ($a=2$)

આમ, $\delta = \frac{\varepsilon}{3}$ લેતાં,

$$\therefore 2 - \delta < x < 2 + \delta, x \neq 2 \Rightarrow 2 - \frac{\varepsilon}{3} < x < 2 + \frac{\varepsilon}{3}$$
$$\Rightarrow 6 - \varepsilon < 3x < 6 + \varepsilon$$

$$\Rightarrow$$
 8 - ε < 3x + 2 < 8 + ε

આ જ આપણે મેળવવા ઇચ્છતા હતા અને $\delta=\frac{\varepsilon}{3}>0$ એવો મળે છે કે જેથી

$$2 - \delta < x < 2 + \delta$$
, $x \neq 2 \implies 8 - \varepsilon < 3x + 2 < 8 + \varepsilon$

$$\therefore \lim_{x\to 2} (3x+2) = 8.$$

ઉદાહરણ 15 : સાબિત કરો : $\lim_{x\to a} x = a$.

ઉકેલ : ધારો કે
$$\varepsilon = \delta$$
, $\varepsilon > 0$ તો, $a - \delta < x < a + \delta$, $x \neq a \Rightarrow a - \varepsilon < x < a + \varepsilon$

$$\therefore \lim_{x \to a} x = a.$$

નોંધ: એ દેખીતું નથી કે જેમ $x \to a$ તેમ $x \to a$. પણ તે આપણે વ્યાખ્યાનો ઉપયોગ કરી સાબિત કર્યું.

ઉદાહરણ 16 : સાબિત કરો :
$$\lim_{x\to a} (mx+c) = ma+c \quad (m\neq 0)$$

ઉકેલ : ધારો કે
$$\delta = \frac{\varepsilon}{|m|}, \, \varepsilon > 0.$$

$$a - \delta < x < a + \delta, x \neq a \implies a - \frac{\varepsilon}{|m|} < x < a + \frac{\varepsilon}{|m|}$$

$$\implies ma - \frac{\varepsilon}{|m|}m < mx < ma + \frac{\varepsilon}{|m|}m$$

$$\implies ma - \varepsilon < mx < ma + \varepsilon$$

$$(m > 0 \text{ êddi})$$

$$\Rightarrow ma - \varepsilon + c < mx + c < ma + \varepsilon + c$$

l = ma + c elai,

$$\therefore a - \delta < x < a + \delta, x \neq a \Rightarrow l - \varepsilon < mx + c < l + \varepsilon$$

$$\therefore \quad \text{in} \quad m > 0 \text{ cli} \quad \lim_{x \to a} (mx + c) = ma + c.$$

તે જ પ્રમાણે, m < 0 માટે પણ સાબિત કરી શકાય.

$$a - \delta < x < a + \delta, x \neq a \implies ma + c + \varepsilon > mx + c > ma + c - \varepsilon$$
 ($|m| = -m$)
 $\implies ma + c - \varepsilon < mx + c < ma + c + \varepsilon$

$$\lim_{x\to a} (mx+c) = ma+c.$$

10.4 લક્ષનું બીજગણિત

બધે જ લક્ષની વ્યાખ્યાનો ઉપયોગ કરવો મુશ્કેલ અને અઘરો હોવાથી આપણે વિધેયનું લક્ષ શોધવા માટે કેટલાંક કાર્યનિયમો જોઈશું. તેમને સાબિત કરી શકાય પણ આપણે તે સાબિતી વિના સ્વીકારીશું.

ધારો કે $\lim_{x\to a} f(x)$ તથા $\lim_{x\to a} g(x)$ નું અસ્તિત્વ છે અને તેમનાં મૂલ્યો અનુક્રમે I તથા m છે.

તો (1)
$$\lim_{x \to a} (f(x) + g(x))$$
નું અસ્તિત્વ છે અને

$$\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x) = l + m$$

(2) $\lim_{x \to a} (f(x) g(x)) + \int_{0}^{x \to a} (f(x) g(x)) dx$

$$\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = lm$$

(3)
$$\Re m \neq 0$$
, $\operatorname{ch} \lim_{x \to a} \frac{f(x)}{g(x)}$ is where $\operatorname{ch} \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{1}{m}$

ઉદાહરણ 17 : સાબિત કરો કે જો f(x) એ અચળ વિધેય છે અને જો f(x)=c, તો $\lim_{x\to a}f(x)=c$ અથવા બીજા

શબ્દોમાં $\lim_{x \to a} c = c$ અને તે પરથી તારવો કે જો, $\lim_{x \to a} f(x)$ નું અસ્તિત્વ હોય તો $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$.

ઉકેલ : ધારો કે
$$f(x) = c$$
 અને $x \in (a - \delta, a + \delta) - \{a\}$. ધારો કે $l = c$.

$$a-\delta < x < a+\delta$$
, $x \neq a \Rightarrow |f(x)-l| = |c-c| = 0 < દ જ્યાં $0 < \varepsilon$.$

$$\therefore \lim_{x \to a} f(x) = c$$
 એટલે કે, $\lim_{x \to a} c = c$

જો
$$\lim_{x \to a} f(x)$$
નું અસ્તિત્વ હોય, તો $\lim_{x \to a} cf(x) = \lim_{x \to a} c \lim_{x \to a} f(x)$

$$= c \lim_{x \to \infty} f(x)$$

નોંધ : $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ તથા $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ નો ઉપયોગ કરીને

આપણે
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
 સાબિત કરી શકીએ.

$$\begin{array}{ll} \text{ will } c = -1 \text{ will, } \lim_{x \to a} (f(x) - g(x)) &= \lim_{x \to a} (f(x) + (-1)g(x)) \\ \\ &= \lim_{x \to a} f(x) + \lim_{x \to a} (-1)g(x) \\ \\ &= \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \end{array}$$

પ્રમેય 1 : સાબિત કરો : $\lim_{x \to a} x^n = a^n$ $n \in \mathbb{N}$

સાબિતી : આ પ્રમેય આપણે ગણિતીય અનુમાનના સિદ્ધાંતથી સાબિત કરીશું.

ધારો કે
$$P(n)$$
 : $\lim_{x \to a} x^n = a^n$ $n \in \mathbb{N}$

આપણે સાબિત કર્યું કે, $\lim_{x\to a} x = a$

∴ P(1) સત્ય છે.

ધારો કે P(k) સત્ય છે.

$$\therefore \lim_{x \to a} x^k = a^k$$

ધારો કે n = k + 1

ાં
$$\lim_{x \to a} x^{k+1} = \lim_{x \to a} x^k \cdot x$$

$$= \lim_{x \to a} x^k \lim_{x \to a} x$$

$$= a^k \cdot a = a^{k+1}$$
(લક્ષના ગુણાકાર માટેનો કાર્યનિયમ)
(P(k) અને P(1))

- \therefore P(k + 1) સત્ય છે.
- \therefore ગિષાતીય અનુમાનના સિદ્ધાંત દ્વારા $P(n), \forall n \in \mathbb{N}$ સત્ય છે.

પ્રમેય 2 : જો $\lim_{x\to a} f_i(x)$ (i = 1, 2, 3,..., n) નું અસ્તિત્વ હોય, તો

$$\lim_{x \to a} (f_1(x) + f_2(x) + \dots + f_n(x)) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \dots + \lim_{x \to a} f_n(x)$$

સાબિતી : આ પરિશામ આપશે ગણિતીય અનુમાનના સિદ્ધાંતથી સાબિત કરીશું.

ધારો કે,

$$P(n): \lim_{x \to a} (f_1(x) + f_2(x) + ... + f_n(x)) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + ... + \lim_{x \to a} f_n(x)$$

n = 1 માટે પરિણામ સ્પષ્ટ છે.

ધારો કે P(k) સત્ય છે.

$$\therefore \lim_{x \to a} (f_1(x) + f_2(x) + ... + f_k(x)) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + ... + \lim_{x \to a} f_k(x)$$

ધારો કે n = k + 1

$$\lim_{x \to a} (f_1(x) + ... + f_k(x) + f_{k+1}(x))$$

$$= \lim_{x \to a} (f_1(x) + ... + f_k(x)) + \lim_{x \to a} f_{k+1}(x) \qquad \left(\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \right)$$

$$= \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \dots + \lim_{x \to a} f_k(x) + \lim_{x \to a} f_{k+1}(x)$$
(P(k))

- \therefore P(k + 1) સત્ય છે.
- \therefore ગણિતીય અનુમાનના સિદ્ધાંત દ્વારા $P(n), \forall n \in \mathbb{N}$ સત્ય છે.

બહુપદી વિધેયનું લક્ષ :

આપણે જાણીએ છીએ કે $f(x)=c_nx^n+c_{n-1}x^{n-1}+...+c_0$, $x\in\mathbb{R}$ $(c_n\neq 0,c_0,c_1...c_n\in\mathbb{R})$ n ઘાત વાળી બહુપદી છે.

$$\lim_{x \to a} f(x) = \lim_{x \to a} (c_n x^n + c_{n-1} x^{n-1} + \dots + c_0)$$

$$= \lim_{x \to a} c_n x^n + \lim_{x \to a} c_{n-1} x^{n-1} + \dots + \lim_{x \to a} c_0$$

$$\left(\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)\right)$$

$$= \lim_{x \to a} c_n \lim_{x \to a} x^n + \lim_{x \to a} c_{n-1} \lim_{x \to a} x^{n-1} + \dots + \lim_{x \to a} c_0$$

$$\left(\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)\right)$$

$$= c_n a^n + c_{n-1} a^{n-1} + \dots + c_0$$

$$= f(a)$$

$$\left(\lim_{x \to a} x^n = a^n, \lim_{x \to a} c_k = c_k\right)$$

$$= f(a)$$

આમ, જેમ $x \to a$ તેમ બહુપદીનું લક્ષ આપણે બહુપદીમાં x = a મૂકવાથી મેળવી શકીએ.

(આ ગુણધર્મને બહુપદી વિધેયનું 'સાતત્ય' કહે છે.)

ઉદાહરણ 18 :
$$\lim_{x\to 2} (2x^3 + 3x^2 - 5x + 1)$$
 શોધો.

634:
$$\lim_{x \to 2} (2x^3 + 3x^2 - 5x + 1) = 2 \cdot 2^3 + 3 \cdot 2^2 - 5 \cdot 2 + 1$$

= 16 + 12 - 10 + 1 = 19

સંમેય વિધેયનું લક્ષ :

ધારો કે p(x) અને q(x) બહુપદીઓ જ્યાં $q(x) \neq 0$ તેવા પ્રદેશ પર વ્યાખ્યાયિત છે. $h(x) = \frac{p(x)}{q(x)}$ ને સંમેય વિધેય કહે છે.

જો p(x) અને q(x) એ a ને સમાવતા પ્રદેશ પર વ્યાખ્યાયિત હોય અને $q(a) \neq 0$ તો,

$$\lim_{x \to a} h(x) = \lim_{x \to a} \frac{p(x)}{q(x)} = \frac{\lim_{x \to a} p(x)}{\lim_{x \to a} q(x)} = \frac{p(a)}{q(a)} = h(a).$$

આમ, સંમેય વિધેય h(x) પણ સતત વિધેય છે.

ઉદાહરણ 19 :
$$\lim_{x\to 1} \frac{x^2+1}{x^2+3x+4}$$
 શોધો.

ઉકેલ: અહીં,
$$x = 1$$
 માટે $x^2 + 3x + 4 \neq 0$

$$\therefore \lim_{x \to 1} \frac{x^2 + 1}{x^2 + 3x + 4} = \frac{2}{8} = \frac{1}{4}$$

આમ જો $q(a) \neq 0$ તો સંમેય વિધેય $h(x) = \frac{p(x)}{q(x)}$ માટે $\lim_{x \to a} h(x) = h(a)$ આપણને h(x) માં x = a મૂકવાથી મળશે. પરંતુ જો q(a) = 0 હોય તો ?

શેષ પ્રમેય મુજબ x-a એ q(x)નો અવયવ થાય. હવે આપણે કેટલાંક વિકલ્પો જોઈશું.

વિકલ્પ (1) :
$$p(x) = (x - a)^k f(x)$$

 $q(x) = (x - a)^k g(x), f(a) \neq 0, g(a) \neq 0, k \in \mathbb{N}$

હવે,
$$\lim_{x \to a} h(x) = \lim_{x \to a} \frac{p(x)}{q(x)}$$

$$= \lim_{x \to a} \frac{(x-a)^k f(x)}{(x-a)^k g(x)}$$

$$= \lim_{x \to a} \frac{f(x)}{g(x)}$$
(લક્ષની ચર્ચામાં $x \neq a$)
$$= \frac{f(a)}{g(a)}$$

આમ, (x-a)ની સમાન ઘાત અંશ અને છેદમાં હોય તો આપણે તેને દૂર કરી ત્યાર બાદ x=a મૂકી લક્ષ મેળવીશં.

ઉદાહરણ 20 :
$$\lim_{x\to 0} \frac{x^3 - 3x^2 + x}{4x^3 - 5x^2 + 3x}$$
 શોધો.

634:
$$\lim_{x \to 0} \frac{x^3 - 3x^2 + x}{4x^3 - 5x^2 + 3x} = \lim_{x \to 0} \frac{x(x^2 - 3x + 1)}{x(4x^2 - 5x + 3)}$$
$$= \lim_{x \to 0} \frac{x^2 - 3x + 1}{4x^2 - 5x + 3} = \frac{1}{3}$$

ઉદાહરણ 21 :
$$\lim_{x \to 1} \frac{x^4 - 7x^3 + 8x^2 - 3x + 1}{3x^4 - 5x^3 + 6x^2 - 10x + 6}$$
 શોધો.

Get:
$$\lim_{x \to 1} \frac{x^4 - 7x^3 + 8x^2 - 3x + 1}{3x^4 - 5x^3 + 6x^2 - 10x + 6} = \lim_{x \to 1} \frac{(x - 1)(x^3 - 6x^2 + 2x - 1)}{(x - 1)(3x^3 - 2x^2 + 4x - 6)}$$
$$= \lim_{x \to 1} \frac{x^3 - 6x^2 + 2x - 1}{3x^3 - 2x^2 + 4x - 6}$$
$$= \frac{-4}{-1} = 4$$

નોંધ: અહીં p(1)=q(1)=0, તેથી (x-1) એ p(x) અને q(x)નો અવયવ છે. p(x) અને q(x)ના અવયવો પાડ્યા બાદ (x-1)ને અંશ અને છેદમાંથી દૂર કરી, x=1 લેતાં લક્ષ મળે.

ઉદાહરણ 22 :
$$\lim_{x\to 2} \frac{x^3 - 5x^2 + 8x - 4}{2x^3 - 9x^2 + 12x - 4}$$
 શોધો.

34:
$$p(2) = 8 - 20 + 16 - 4 = 0$$
, $q(2) = 16 - 36 + 24 - 4 = 0$

 \therefore (x-2) એ p(x) અને q(x)નો અવયવ છે.

$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{2x^3 - 9x^2 + 12x - 4} = \lim_{x \to 2} \frac{(x - 2)^2 (x - 1)}{(x - 2)^2 (2x - 1)}$$
$$= \lim_{x \to 2} \frac{x - 1}{2x - 1} = \frac{1}{3}$$

અહીં, $(x-2)^2$ એ p(x) તથા q(x) બંનેનો અવયવ છે.

વિકલ્પ (2) : હવે જો $(x-a)^k$ અને $(x-a)^m$ અનુક્રમે p(x) અને q(x)ના અવયવો હોય જયાં $k \neq m$ અને $\frac{p(x)}{(x-a)^k}$ અને $\frac{q(x)}{(x-a)^m}$ નો અવયવ x-a ન હોય તો શું થાય તે હવે આપણે જોઈએ.

હવે, જો
$$k > m$$
 તો $h(x) = \frac{p(x)}{q(x)} = \frac{(x-a)^k f(x)}{(x-a)^m g(x)} = \frac{(x-a)^{k-m} f(x)}{g(x)}$

અહીં, $k - m \in N$.

 $\therefore f(a) \neq 0, g(a) \neq 0.$

$$\therefore \lim_{x \to a} h(a) = \frac{0 \cdot f(a)}{g(a)} = 0$$

આમ, જો p(x)માં (x-a)નો ઘાતાંક વધુ હોય તો, $\lim_{x\to a} h(x)=0$.

વિકલ્પ (3) : જો
$$p(x) = (x - a)^k f(x)$$
, $q(x) = (x - a)^m g(x)$ જયાં $k < m$ અને $\frac{p(x)}{(x - a)^k} = f(x)$ અને $\frac{q(x)}{(x - a)^m} = g(x)$ એ $x - a$ માટે શૂન્યેતર છે તો,

$$\lim_{x \to a} h(x) = \lim_{x \to a} \frac{(x-a)^k f(x)}{(x-a)^m g(x)} = \lim_{x \to a} \frac{f(x)}{(x-a)^{m-k} g(x)}$$

હવે,
$$f(a)$$
 એ વાસ્તવિક સંખ્યા છે. $(a-a)^{m-k}g(a)=0$

 \therefore જેમ x o a તેમ h(x)નો છેદ અસિમિત થશે અને $\lim_{x o a} h(x)$ નું અસ્તિત્વ નથી.

ઉદાહરણ 23 :
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 3x - 1}{x^2 - 1}$$
 શોધો.

Geometric Sets
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 3x - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)^3}{(x - 1)(x + 1)}$$
$$= \lim_{x \to 1} \frac{(x - 1)^2}{x + 1} = \frac{0}{2} = 0$$

ઉદાહરણ 24 :
$$\lim_{x\to 0} \frac{x^4 - x^3 + x^2}{x^6 - x^5 + x}$$
 શોધો.

Get:
$$\lim_{x \to 0} \frac{x^4 - x^3 + x^2}{x^6 - x^5 + x} = \lim_{x \to 0} \frac{x^2(x^2 - x + 1)}{x(x^5 - x^4 + 1)}$$
$$= \lim_{x \to 0} \frac{x(x^2 - x + 1)}{x^5 - x^4 + 1} = \frac{0 \cdot 1}{1} = 0$$

એક અગત્યનું લક્ષ :

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}, \quad n \in \mathbb{N} \ (x \neq a), \ x, \ a \in \mathbb{R}$$

આપણે જોઈ શકીએ છીએ કે આ એક સંમેય વિધેય છે.

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + a^{n-1})}{x - a}$$

$$= \lim_{x \to a} (x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + a^{n-1})$$

$$= a^{n-1} + a^{n-2}a + a^{n-3}a^2 + \dots + a^{n-1} = na^{n-1}$$

નોંધ: આ પરિણામ પ્રત્યેક $n \in \mathbb{R}$ માટે સત્ય છે. આપણે તેનો ઉપયોગ $x \in \mathbb{R}^+$, $a \in \mathbb{R}^+$, $x \neq a$ માટે આગળ કરીશું.

ઉદાહરણ 25 :
$$\lim_{x\to 1} \frac{x^{18}-1}{x^{16}-1}$$
 શોધો.

634:
$$\lim_{x \to 1} \frac{x^{18} - 1}{x^{16} - 1} = \lim_{x \to 1} \frac{x^{18} - 1}{x - 1} \times \frac{x - 1}{x^{16} - 1}$$

$$= \frac{\lim_{x \to 1} \frac{x^{18} - 1}{x - 1}}{\lim_{x \to 1} \frac{x^{16} - 1}{x - 1}}$$

$$= \frac{18(1)^{17}}{16(1)^{15}} = \frac{18}{16} = \frac{9}{8}$$

ઉદાહરણ 26 :
$$\lim_{x \to -2} \frac{x^5 + 32}{x^3 + 8}$$
 શોધો.

634:
$$\lim_{x \to -2} \frac{x^5 + 32}{x^3 + 8} = \lim_{x \to -2} \frac{x^5 - (-2)^5}{x^3 - (-2)^3}$$

$$= \frac{\lim_{x \to -2} \frac{x^5 - (-2)^5}{x - (-2)}}{\lim_{x \to -2} \frac{x^3 - (-2)^5}{x - (-2)}}$$

$$= \frac{5(-2)^4}{3(-2)^2} = \frac{5 \cdot 16}{3 \cdot 4} = \frac{20}{3}$$

ઉદાહરણ 27 :
$$\lim_{x\to 2} \frac{x^4-16}{x^3-3x^2+3x-2}$$
 શોધો.

634:
$$\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 3x^2 + 3x - 2} = \frac{\lim_{x \to 2} \frac{x^4 - 2^4}{x - 2}}{\lim_{x \to 2} \frac{(x - 2)(x^2 - x + 1)}{x - 2}}$$
$$= \frac{4 \cdot 2^3}{4 - 2 + 1} = \frac{32}{3}$$

આદેશનો નિયમ અથવા સંયોજિત વિધેયના લક્ષનો નિયમ :

ધારો કે $\lim_{x \to a} f(x)$ નું અસ્તિત્વ છે અને $\lim_{x \to a} f(x) = b$ તથા $\lim_{y \to b} g(y)$ નું અસ્તિત્વ છે અને $\lim_{y \to b} g(y) = l$,

 $\operatorname{di} \lim_{x \to a} g(f(x)) = l.$

અહીં, $\lim_{x\to a} f(x)$ નું અસ્તિત્વ છે એટલે f એ કોઈક $\delta>0$ માટે $(a-\delta,\,a+\delta)-\{a\}$ માં વ્યાખ્યાયિત છે અને y=f(x). g એ કોઈક $\delta'>0$ માટે $(b-\delta',\,b+\delta')-\{b\}$ માં વ્યાખ્યાયિત છે.

ઉદાહરણ 28 : $\lim_{x\to 0} \frac{(x+2)^5 - 32}{x}$ શોધો.

ઉકેલ : જો
$$y = f(x) = x + 2$$
 તો $\lim_{x \to 0} f(x) = 2 = b$.

$$\lim_{y \to 2} g(y) = \lim_{y \to 2} \frac{y^5 - 2^5}{y - 2} = 5 \cdot 2^4 = 80$$

$$\lim_{x\to 0} g(f(x)) = \lim_{x\to 0} \frac{(x+2)^5 - 32}{x} = 80$$

વ્યવહારમાં આપણે y=x+2 આદેશ લઈશું અને દાખલામાં જેમ $x\to 0$ તેમ $y\to 2$ થશે. 'સતત' વિધેય માટે આ સત્ય છે.

બીજી રીત :

$$\lim_{x \to 0} \frac{(x+2)^5 - 32}{x}$$

$$= \lim_{x \to 0} \frac{x^5 + {5 \choose 1}x^4 \cdot 2 + {5 \choose 2}x^3 \cdot 2^2 + {5 \choose 3}x^2 \cdot 2^3 + {5 \choose 4}x \cdot 2^4 + {5 \choose 5}2^5 - 32}{x}$$

$$= \lim_{x \to 0} \left(x^4 + {5 \choose 1}2x^3 + {5 \choose 2}4x^2 + {5 \choose 3}8x + {5 \choose 4}2^4\right) = 5 \cdot 16 = 80$$

ઉદાહરણ 29 : $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$ શોધો.

ઉકેલ : ધારો કે y = x + h. આથી, $h \to 0$ તો $y \to x$ થશે.

$$\therefore \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{y \to x} \frac{y^{\frac{1}{2}} - x^{\frac{1}{2}}}{y - x} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

ઉદાહરણ 30 : $\lim_{x\to 2} \frac{x^3-8}{\sqrt{x^2+x+2}-\sqrt{3x+2}}$ શોધો.

Geq :
$$\lim_{x \to 2} \frac{x^3 - 8}{\sqrt{x^2 + x + 2} - \sqrt{3x + 2}}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}{\left(\sqrt{x^2 + x + 2} - \sqrt{3x + 2}\right)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}{(x^2 + x + 2) - (3x + 2)}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}{x^2 - 2x}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}{x(x - 2)}$$

$$= \lim_{x \to 2} \frac{(x^2 + 2x + 4)\left(\sqrt{x^2 + x + 2} + \sqrt{3x + 2}\right)}{x}$$

$$= \frac{(12)(\sqrt{8} + \sqrt{8})}{2} = 6(4\sqrt{2}) = 24\sqrt{2}$$

$$\lim_{x \to 2} \sqrt{x^2 + x + 2} = \sqrt{\lim_{x \to 2} (x^2 + x + 2)} = \sqrt{8}$$

संयोषित विधेयना सक्षनो नियम)

બે અગત્યના નિયમો :

- (1) જો સમાન પ્રદેશમાં f(x) < g(x), $\forall x$ અને જો $\lim_{x \to a} f(x)$ અને $\lim_{x \to a} g(x)$ નું અસ્તિત્વ હોય તો $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.
- (2) જો સમાન પ્રદેશમાં વ્યાખ્યાયિત વિધેયો માટે $g(x) < f(x) < h(x), \ \forall x.$ જો $\lim_{x \to a} g(x)$ અને $\lim_{x \to a} h(x)$ નું અસ્તિત્વ હોય અને તે પણ l થાય.

આને સેન્ડવીચ પ્રમેય (Sandwich Theorem) કે સ્વીઝ પ્રમેય (Squeeze Theorem) કહે છે. આપણે આ પ્રમેયને સાબિત નહિ કરીએ.

ઉદાહરણ 31 : સાબિત કરો : $\lim_{x\to 0} x \sin \frac{1}{x} = 0$. $(x \neq 0)$

$$634: -1 \le \sin\frac{1}{x} \le 1$$

$$\therefore -x \le x \sin \frac{1}{x} \le x \qquad (x > 0)$$

$$\lim_{x \to 0+} x = 0, \lim_{x \to 0+} -x = -\lim_{x \to 0+} x = 0$$

 \therefore સેન્ડવીય પ્રમેય પરથી, $\lim_{x\to 0^+} x\sin\frac{1}{x} = 0$.

તે જ પ્રમાણે, $\lim_{x \to 0^-} x \sin \frac{1}{x} = 0.$

 $\lim_{x \to 0} x \sin \frac{1}{x} = 0$

નોંધ : નીચે પ્રમાણેનો તર્ક ખોટો છે.

$$\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} x \lim_{x \to 0} \sin \frac{1}{x}$$
$$= 0 (-1 અને 1 વચ્ચેની કોઈ પણ સંખ્યા)$$
$$= 0$$

જયારે બધાં જ ઘટક વિધેયનું લક્ષ અસ્તિત્વ ધરાવતું હોય ત્યારે જ ગુણાકારનો નિયમ વપરાય. અહીં $\lim_{x o 0} sin \frac{1}{x}$ નું અસ્તિત્વ નથી. (જુઓ આકૃતિ 10.14)

ઉદાહરણ 32 : સાબિત કરો : $\lim_{x\to 0} x^2 \sin\frac{1}{x} = 0$. $(x \neq 0)$

$$\therefore -x^{2} \le x^{2} \sin \frac{1}{x} \le x^{2}$$

$$\lim_{x \to 0} x^{2} = 0, \lim_{x \to 0} -x^{2} = -\lim_{x \to 0} x^{2} = 0$$

$$(x^{2} > 0)$$

 \therefore સેન્ડવીય પ્રમેય પરથી $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0.$

નોંધ : ઉપરના ઉદાહરણમાં કિંમતોના કોષ્ટક પરથી આપણને ચોક્કસ પરિણામ નથી મળતું તેથી આપણે વ્યાખ્યાની મદદથી આગળ વધી શકીએ.

ધારો કે
$$\delta = \sqrt{\varepsilon}$$
 .

 $\varepsilon > 0$ હોવાથી $\delta > 0$ અસ્તિત્વ ધરાવે.

$$0 < |x - 0| < \delta \implies 0 < |x| < \sqrt{\varepsilon}$$
$$\Rightarrow 0 < |x|^2 < \varepsilon$$

હવે, જો
$$0<\mid x-0\mid <\delta$$
 તો $\left|x^2sin\frac{1}{x}-0\right|=\left|x^2sin\frac{1}{x}\right|\leq \mid x\mid^2<\epsilon$

કારણ કે
$$\left| \sin \frac{1}{x} \right| \le 1$$

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

10.5 ત્રિકોણમિતીય લક્ષ

આપણે કેટલાંક ત્રિકોણમિતીય પરિણામો મેળવીશું.

પૂર્વપ્રમેય 1 :
$$cosx < \frac{sinx}{x} < 1; 0 < |x| < \frac{\pi}{2}.$$

સાબિતી ઃ જો x એ ∠AOPનું રેડિયન માપ હોય, જ્યાં $0 < x < \frac{\pi}{2}$, તો $P(x) \in \widehat{AB}$. અત્રે $\Theta(O, OA)$ એકમ વર્તુળ છે. A આગળનો વર્તુળનો સ્પર્શક \overrightarrow{OP} ને Q માં છેદે છે. \overline{PM} \bot X-અક્ષ અને M ∈ \overline{OP} .

આકૃતિ 10.15

સ્પષ્ટ છે કે,
$$\Delta OAP$$
નું ક્ષેત્રફળ $<$ વૃત્તાંશ OAP નું ક્ષેત્રફળ $<$ ΔOAQ નું ક્ષેત્રફળ હવે, $PM = sinx$, $AQ = \frac{AQ}{OA} \cdot OA = OA tanx = tanx$

$$\therefore \quad \frac{1}{2}OA \cdot PM < \frac{1}{2}(OA)^2x < \frac{1}{2}OA \cdot AQ$$

((i) અને વૃત્તાંશનું ક્ષેત્રફળ =
$$\frac{1}{2}r^2\theta$$
)

$$\therefore$$
 sinx < x < tanx

$$(OA = 1)$$

$$\therefore$$
 1 < $\frac{x}{sinx}$ < $\frac{1}{cosx}$

$$\therefore \quad \cos x < \frac{\sin x}{x} < 1 \qquad \qquad 0 < x < \frac{\pi}{2}$$

$$0 < x < \frac{\pi}{2}$$

જો x < 0 તો, ધારો કે x = -y, તો y > 0

$$\therefore \quad \cos y < \frac{\sin y}{y} < 1$$

$$0 < y < \frac{\pi}{2}$$

$$\therefore \cos(-x) < \frac{\sin(-x)}{-x} < 1 \qquad 0 < -x < \frac{\pi}{2}$$

$$0 < -x < \frac{\pi}{2}$$

$$\therefore \cos x < \frac{\sin x}{x} < 1$$

$$0<|x|<\frac{\pi}{2}$$

$$(|x| = -x)$$

પૂર્વપ્રમેય
$$2: |sinx| \le |x|$$
 \\
\[
\text{will will } : \frac{\pi}{\pi} |x| \\
\text{x} = 0 \text{ માટે } |sin0| = 0 \le 0 = |0|
\]
\[
\text{ed} \text{ આપશે } \text{sin} \text{ \text{will } \text{ \text{od}} \text{ \text{od}} \\
\text{sin} \text{ \text{od}} \text{ \text{sin} \text{ \text{od}} \\
\text{sin} \text{ \text{od}} \text{ \text{dist}} \\
\text{sin} \text{ \text{od}} \\
\text{dist} \\
\text{sin} \text{ \text{od}} \\
\text{dist} \\
\text{sin} \text{ \text{od}} \\
\text{dist} \\
\text{dis} \\
\text{dist} \\
\text{dist} \\
\text{dist} \\
\text{dist} \\

$$\therefore \lim_{x\to 0} |x| = 0$$

પૂર્વપ્રમેય 4 : જો
$$\lim_{x \to 0} |f(x)| = 0$$
 તો, $\lim_{x \to 0} f(x) = 0$

$$\lim_{x \to 0} -|f(x)| \le f(x) \le |f(x)|$$

$$\lim_{x \to 0} -|f(x)| = -\lim_{x \to 0} |f(x)| = 0, \lim_{x \to 0} |f(x)| = 0$$

$$\therefore \quad \text{સેન્ડવીચ પ્રમેય પરથી, } \lim_{x \to 0} f(x) = 0.$$

લક્ષ

પૂર્વપ્રમેય 5 :
$$\lim_{x\to 0} \sin x = 0$$

સાબિતી :
$$0 \le |\sin x| \le |x|$$
 $\forall x \in \mathbb{R}$

$$\lim_{x \to 0} 0 = 0, \ \lim_{x \to 0} |x| = 0$$

$$\lim_{x\to 0}|\sin x|=0$$

(સેન્ડવીચ પ્રમેય)

$$\lim_{x\to 0} \sin x = 0$$

(पूर्वप्रभेय 4)

પૂર્વપ્રમેય 6:
$$1 - \frac{x^2}{2} \le cosx \le 1$$
 $\forall x \in \mathbb{R}$

સાબિતી : આપણે જાણીએ છીએ કે,
$$1 - \cos x = 2\sin^2\frac{x}{2}$$

વળી,
$$|\sin x| \leq |x|$$

$$\therefore \quad \left| \sin \frac{x}{2} \right| \leq \left| \frac{x}{2} \right|$$

$$\therefore \sin^2 \frac{x}{2} \leq \frac{x^2}{4}$$

$$\therefore 1 - \cos x = 2\sin^2\frac{x}{2} \le 2 \times \frac{x^2}{4} = \frac{x^2}{2}$$

$$\therefore 1 - \frac{x^2}{2} \le \cos x \le 1$$

પ્રમેય 3 :
$$\lim_{x \to 0} cosx = 1$$

સાબિતી :
$$1 - \frac{x^2}{2} \le cosx \le 1$$

$$\lim_{x \to 0} 1 - \frac{x^2}{2} = 1 - 0 = 1 અને \lim_{x \to 0} 1 = 1$$

(બહુપદીનું લક્ષ)

$$\therefore \quad \text{સેન્ડવીય પ્રમેય પરથી, } \lim_{x \to 0} \cos x = 1.$$

પ્રમેય 4 :
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

સાબિતી :
$$cosx < \frac{sinx}{x} < 1$$
 $0 < |x| < \frac{\pi}{2}$

$$0 < |x| < \frac{\pi}{2}$$

$$\therefore \lim_{x \to 0} \cos x = 1, \quad \lim_{x \to 0} 1 = 1$$

$$\therefore$$
 સેન્ડવીચ પ્રમેય પરથી, $\lim_{x\to 0} \frac{\sin x}{x} = 1$

$$y + u = \sin x = \sin x$$

સાબિતી : ધારો કે
$$x - a = h$$
 તો $x = a + h$

$$\therefore x \to a \text{ di } h \to 0$$

$$\therefore \lim_{x \to a} sinx = sina$$

પ્રમેય 6 : $\lim_{x \to a} \cos x = \cos a$

સાબિતી :
$$x = a + h$$
 લેતાં, જેમ $x \to a$ તેમ $h \to 0$

હવે,
$$\lim_{h \to 0} \cos h = 1$$
 તથા $\lim_{h \to 0} \sin h = 0$

$$\lim_{x \to a} cosx = \lim_{h \to 0} cos(a+h) = \lim_{h \to 0} (cosa cosh - sina sinh)$$

$$= cosa \lim_{h \to 0} cosh - sina \lim_{h \to 0} sinh$$

$$= cosa \cdot 1 + sina \cdot 0$$

$$= cosa$$

$$\lim_{x \to a} \cos x = \cos a$$

પ્રમેય 7 :
$$\lim_{x \to 0} \frac{tanx}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x}$$

$$= \frac{\lim_{x \to 0} \frac{\sin x}{x}}{\lim_{x \to 0} \cos x}$$

$$= \frac{1}{1} = 1$$

$$\left(\lim_{x \to 0} \frac{\sin x}{x} = 1, \lim_{x \to 0} \cos x = 1\right)$$

$$\therefore \quad \lim_{x \to 0} \frac{tanx}{x} = 1$$

હવે આપણે આ પરિણામોનો ઉપયોગ કરી ઉદાહરણો ગણીશું.

ઉદાહરણ 33 :
$$\lim_{x\to 0} \frac{sinax}{sinbx}$$
 શોધો. $a, b \neq 0$

General Sinax
$$\frac{\sin ax}{x \to 0} = \frac{\lim_{x \to 0} \frac{\sin ax}{ax} \cdot a}{\lim_{x \to 0} \frac{\sin bx}{bx} \cdot b}$$

$$= \frac{a \cdot 1}{b \cdot 1} = \frac{a}{b}$$

$$\left(\lim_{x \to 0} \frac{\sin x}{x} = 1\right)$$

247

લક્ષ

ઉદાહરણ 34 :
$$\lim_{x\to 0} \frac{1-\cos 2x}{1-\cos x}$$
 શોધો.

General Series is
$$\lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos x} = \lim_{x \to 0} \frac{2\sin^2 x}{2\sin^2 \frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{\frac{x}{2} \cdot 2}{\sin \frac{x}{2}} \cdot \frac{\frac{x}{2} \cdot 2}{\sin \frac{x}{2}}$$

 $= 1 \cdot 1 \cdot 2 \cdot 2 = 4$

$$\frac{1 - \cos 2x}{1 - \cos x} = \lim_{x \to 0} \frac{(1 - \cos 2x)(1 + \cos 2x)(1 + \cos x)}{(1 + \cos 2x)(1 - \cos x)(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^2 2x(1 + \cos x)}{\sin^2 x(1 + \cos 2x)}$$

$$= \lim_{x \to 0} \frac{\sin^2 2x}{4x^2} \frac{4x^2}{\sin^2 x} \frac{(1 + \cos x)}{(1 + \cos 2x)}$$

$$= 1 \cdot 4 \cdot \frac{(2)}{(2)} = 4$$

ઉદાહરણ 35 :
$$\lim_{x\to 0} \frac{\sin ax + bx}{ax + \sinh x}$$
 શોધો.

General Sinax + bx
$$= \lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx} = \lim_{x \to 0} \frac{\frac{\sin ax}{x} + b}{a + \frac{\sin bx}{x}}$$
$$= \lim_{x \to 0} \frac{a \frac{\sin ax}{ax} + b}{a + b \frac{\sin bx}{bx}} = \frac{a + b}{a + b} = 1$$

ઉદાહરણ 36 :
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{\frac{\pi}{2} - x}$$
 શોધો.

ઉકેલ : ધારો કે
$$\frac{\pi}{2}-x=\alpha$$
. તો જેમ $x \to \frac{\pi}{2}$ તેમ $\alpha \to 0$

$$\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{\frac{\pi}{2} - x} = \lim_{\alpha \to 0} \frac{\tan 2\left(\frac{\pi}{2} - \alpha\right)}{\alpha}$$

$$= \lim_{\alpha \to 0} \frac{\tan (\pi - 2\alpha)}{\alpha}$$

$$= \lim_{\alpha \to 0} \frac{-\tan 2\alpha}{2\alpha} \cdot 2 = -2$$

ઉદાહરણ 37 :
$$\lim_{x\to 0} \frac{tanx - sinx}{x^3}$$
 શોધો.

ઉદાહરણ 38 :
$$\lim_{x\to 0} \frac{cosecx-cotx}{x}$$
 શોધો.

General Series is
$$\frac{\cos e c x - \cot x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x \cdot x}$$

$$= \lim_{x \to 0} \frac{2\sin \frac{x}{2} \cdot \sin \frac{x}{2}}{2 \cdot \frac{x}{2} \cdot \frac{x}{2} \cdot 2} \frac{x}{\sin x}$$

$$= \frac{2}{4} = \frac{1}{2}$$

અથવા
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x \cdot x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{(1 + \cos x)x\sin x}$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x\sin x (1 + \cos x)}$$
$$= \lim_{x \to 0} \frac{\sin x}{x(1 + \cos x)}$$
$$= \frac{1}{1+1} = \frac{1}{2}$$

ઉદાહરણ 39 :
$$\lim_{x \to \frac{\pi}{4}} \frac{sinx - cosx}{\frac{\pi}{4} - x}$$
 શોધો.

634:
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\frac{\pi}{4} - x} = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x \right)}{\frac{\pi}{4} - x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \left(\sin x \cos \frac{\pi}{4} - \sin \frac{\pi}{4} \cos x \right)}{\frac{\pi}{4} - x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \sin \left(x - \frac{\pi}{4} \right)}{-\left(x - \frac{\pi}{4} \right)}$$

$$= \lim_{\alpha \to 0} \frac{\sqrt{2} \sin \alpha}{-\alpha}$$

$$= -\sqrt{2}$$

$$\left(\alpha = x - \frac{\pi}{4} \text{ Acti } \alpha \to 0 \right)$$

પ્રકીર્ણ દાખલા :

ઉદાહરણ 40 :
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2-1} \right)$$
 શોધો.

General Section 1:
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right) = \lim_{x \to 1} \frac{x+1-2}{x^2 - 1}$$
$$= \lim_{x \to 1} \frac{(x-1)}{(x-1)(x+1)}$$
$$= \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$$

ઉદાહરણ 41 :
$$\lim_{x \to -2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}$$
 શોધો.

634:
$$\lim_{x \to -2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2} = \lim_{x \to -2} \frac{(x+2)(x^2 - x + 6)}{(x+2)(x^2 - 2x + 1)}$$

$$= \lim_{x \to -2} \frac{x^2 - x + 6}{x^2 - 2x + 1}$$

$$= \frac{4 + 2 + 6}{4 + 4 + 1}$$

$$= \frac{12}{9} = \frac{4}{3}$$

ઉદાહરણ 42 :
$$\lim_{x\to 0} \frac{\sqrt{x^2+x+1}-\sqrt{x+1}}{x^2}$$
 શોધો.

634:
$$\lim_{x \to 0} \frac{\left(\sqrt{x^2 + x + 1} - \sqrt{x + 1}\right)\left(\sqrt{x^2 + x + 1} + \sqrt{x + 1}\right)}{x^2\left(\sqrt{x^2 + x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{x \to 0} \frac{\frac{x^2 + x + 1 - x - 1}{x^2\left(\sqrt{x^2 + x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x^2 + x + 1} + \sqrt{x + 1}} = \frac{1}{2}$$

ઉદાહરણ 43 :
$$\lim_{x \to \frac{\pi}{2}} \left(xtanx - \frac{\pi}{2}secx\right)$$
 શોધો.

634:
$$\lim_{x \to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2} s e c x \right) = \lim_{x \to \frac{\pi}{2}} \frac{x \sin x - \frac{\pi}{2}}{\cos x}$$

$$= \lim_{\alpha \to 0} \frac{\left(\frac{\pi}{2} - \alpha\right) \cos \alpha - \frac{\pi}{2}}{\sin \alpha}$$

$$= \lim_{\alpha \to 0} \frac{\frac{\pi}{2} (\cos \alpha - 1)}{\sin \alpha} - \frac{\alpha \cos \alpha}{\sin \alpha}$$

$$= \lim_{\alpha \to 0} \left(\frac{-\frac{\pi}{2} \left(2 \sin^2 \frac{\alpha}{2} \right)}{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} - \frac{\alpha}{\tan \alpha} \right)$$

$$= \lim_{\alpha \to 0} \left(-\frac{\pi}{2} \tan \frac{\alpha}{2} - \frac{\alpha}{\tan \alpha} \right)$$

$$= -1$$

ઉદાહરણ 44 :
$$\lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2}$$
 શોધો.

ઉકેલ : ધારો કે
$$1-x=\alpha$$
 તો $x\to 1$ તેમ $\alpha\to 0$.

$$\therefore \lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2} = \lim_{\alpha \to 0} \alpha \tan \frac{\pi}{2} (1 - \alpha)$$

$$= \lim_{\alpha \to 0} \alpha \tan \left(\frac{\pi}{2} - \frac{\pi \alpha}{2}\right)$$

$$= \lim_{\alpha \to 0} \alpha \cot \frac{\pi \alpha}{2}$$

$$= \lim_{\alpha \to 0} \frac{\frac{\pi}{2} \alpha}{\frac{\pi}{2} \tan \frac{\pi \alpha}{2}}$$

$$= \frac{1}{\frac{\pi}{2}} = \frac{2}{\pi}$$

ઉદાહરણ 45 :
$$\lim_{r \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right)$$
 શોધો. $(m, n \in \mathbb{N})$

634:
$$\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) = \lim_{x \to 1} \frac{m(1 - x^n) - n(1 - x^m)}{(1 - x^n)(1 - x^m)}$$

ધારો કે
$$x = 1 + h$$
. આમ જો $x \to 1$ તો $h \to 0$

$$\begin{split} & \lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) \\ & = \lim_{h \to 0} \frac{m[1 - (1 + h)^n] - n[1 - (1 + h)^m]}{[(1 + h)^m - 1][(1 + h)^n - 1]} \\ & = \lim_{h \to 0} \frac{m(1 - 1 - nh - \binom{n}{2}h^2 - \binom{n}{3}h^3 - \dots - h^n) - n(1 - 1 - \binom{m}{1}h - \binom{m}{2}h^2 - \dots - h^m)}{\binom{m}{1}h + \binom{m}{2}h^2 + \dots + h^m)\binom{n}{1}h + \binom{n}{2}h^2 + \dots + h^n} \\ & = \lim_{h \to 0} \frac{h(-mn - m\binom{n}{2}h - m\binom{n}{3}h^2 - \dots - mh^{n-1} + nm + n\binom{m}{2}h + n\binom{m}{3}h^2 + \dots + nh^{m-1})}{h\binom{m}{1} + \binom{m}{2}h + \dots + h^{m-1}) \cdot h\binom{n}{1} + \binom{n}{2}h + \dots + h^{n-1}} \\ & = \lim_{h \to 0} \frac{h(-m\binom{n}{2} - m\binom{n}{3}h - \dots - mh^{n-2} + n\binom{m}{2} + n\binom{m}{3}h + \dots + nh^{m-2})}{h\binom{m}{1} + \binom{m}{2}h + \dots + h^{m-1})\binom{n}{1} + \binom{n}{2}h + \dots + h^{m-1}} \\ & = \frac{-m\binom{n}{2} + n\binom{m}{2}}{\binom{m}{1}\binom{n}{1}} \\ & = \frac{-mn(n-1)}{2} + \frac{nm(m-1)}{2} \\ & = \frac{-mn(n-1)}{2} + \frac{nm(m-1)}{2} \\ & = \frac{m-1-n+1}{2} \end{split}$$

 $=\frac{m-n}{2}$

સ્વાધ્યાય 10

લક્ષના બીજગણિત તથા વ્યાખ્યાનો ઉપયોગ કરી નીચેના સાબિત કરો : (1 થી 3)

1.
$$\lim_{x \to 2} x^2 = 4$$

$$\lim_{x \to 2} x^2 = 4$$
 2. $\lim_{x \to 1} |x|^2 = 1$ 3. $\lim_{x \to 3} x^3 = 27$

3.
$$\lim_{x \to 3} x^3 = 27$$

સાબિત કરો કે નીચેનાં લક્ષનું અસ્તિત્વ નથી : (4 થી 6)

4.
$$\lim_{x \to 0} \frac{|x|}{x}$$
 5. $\lim_{x \to 3} \frac{|x-3|}{x-3}$ **6.** $\lim_{x \to 2} [x]$

5.
$$\lim_{x \to 3} \frac{|x-3|}{x-3}$$

6.
$$\lim_{x \to 2} [x]$$

7.
$$f(x) = \frac{x^2 - 9}{x - 3}$$
, $x \neq 3$, $f(3) = 6$ માટે સાબિત કરો કે $\lim_{x \to 3} f(x) = f(3)$.

8.
$$f(x) = \frac{x^2 - 1}{x + 1}, x \neq -1, f(-1) = 5$$
 માટે સાબિત કરો કે $\lim_{x \to -1} f(x) \neq f(-1)$

9. જો કોઈક
$$\delta > 0$$
 માટે પ્રત્યેક $x \in (a - \delta, a + \delta) - \{a\}$ માટે $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ તો એમ કહી શકાય કે પ્રત્યેક $x \in (a - \delta, a + \delta) - \{a\}$ માટે $f(x) = g(x)$?

10. જો
$$x^2 + 1 \le f(x) \le 2x^4 + x^2 + 1$$
 તો સાબિત કરો કે $\lim_{x \to 0} f(x) = 1$.

નીચેનાં લક્ષ શોધો : (11 **થી 32**)

11.
$$\lim_{x \to 64} \frac{x^{\frac{1}{6}} - 2}{\sqrt{x} - 8}$$

12.
$$\lim_{x\to 0} \frac{\tan mx}{\tan nx}$$

13.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} \cos x - \sin x}{x - \frac{\pi}{3}}$$

14.
$$\lim_{x \to \alpha} \frac{9\sin x - 40\cos x}{x - \alpha}$$
 wei, $\tan \alpha = \frac{40}{9}$, $0 < \alpha < \frac{\pi}{2}$

15.
$$\lim_{h \to 0} \frac{(x+h)^{\frac{1}{4}} - x^{\frac{1}{4}}}{h}$$

16.
$$\lim_{h \to 0} \frac{(x+h)^{\frac{1}{3}} - x^{\frac{1}{3}}}{h}$$

17.
$$\lim_{x \to 1} \frac{x^4 - 3x^3 + 2}{x^3 - 5x^2 + 3x + 1}$$

18.
$$\lim_{x \to \frac{\pi}{2}} (secx - tanx)$$

19.
$$\lim_{x \to 1+} \frac{\sqrt{x-1}}{\sqrt{x^2-1} + \sqrt{x^3-1}}$$

$$(\exists \mathsf{H} \ x \to \mathsf{1} + ?)$$

20.
$$\lim_{x \to 1} \frac{x^{n+1} - (n+1)x + n}{(x-1)^2}$$
; $n \in \mathbb{N}$ **21.** $\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3}$

21.
$$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x^3}$$

22.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin 3x + \cos 3x}{x - \frac{\pi}{4}}$$

23.
$$\lim_{x\to 0} \frac{(1+mx)^n - (1+nx)^m}{x^2}$$
; $m, n \in \mathbb{N}$

24.
$$\lim_{x \to \pi} \frac{\sqrt{10 + \cos x} - 3}{(\pi - x)^2}$$

$$25. \quad \lim_{x \to 0} \frac{\cos 5x - \cos 7x}{x^2}$$

26.
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}$$

$$27. \quad \lim_{x \to \frac{\pi}{2}} \frac{secx - tanx}{\frac{\pi}{2} - x}$$

28.
$$\lim_{h \to 0} \frac{\sin(a+3h) - 3\sin(a+2h) + 3\sin(a+h) - \sin a}{h^3}$$

29.
$$\lim_{x \to 0} \frac{\sin(3+x) - \sin(3-x)}{x}$$

30.
$$\lim_{x \to a} \frac{\sqrt{2a+3x} - \sqrt{x+4a}}{\sqrt{3a+2x} - \sqrt{4x+a}}$$

31.
$$\lim_{h \to 0} \frac{(a+h)^2 \sin(a+h) - a^2 \sin a}{h}$$

32.
$$\lim_{h \to 0} \frac{(x+h) \sec (x+h) - x \sec x}{h}$$

33. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને 🦳 માં લખો :

(1)
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \dots$$

$$(c) -1$$

(2)
$$\lim_{x \to 0} \frac{|x|}{x}$$

(3)
$$\lim_{x \to \pi} \frac{tanx}{\pi - x}$$

(a)
$$1 \vartheta$$
. (b) -1ϑ .

(4)
$$\Re \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80$$
, $\Re n = \dots$ \Re .

(a)
$$-3$$

(5)
$$\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx}$$
 ϑ .

(a)
$$\frac{m}{n}$$

(a)
$$\frac{m}{n}$$
 (b) $\frac{m^2}{n^2}$ (c) $\frac{m^3}{n^3}$

(c)
$$\frac{m^3}{n^3}$$

(6)
$$\lim_{x \to 0+} \frac{|\sin x|}{x}$$

(7)
$$\lim_{x \to 0^{-}} \frac{\sin[x]}{[x]}$$
 $(-1 < x < 0, x \in \mathbb{R})$

(8)
$$\lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} = \dots$$
 ϑ .

- (a) 1 (b) 2
- (c) 0
- (d) -1

(9)
$$\lim_{x \to 1} \frac{(\sqrt{x} - 1)(2x - 3)}{2x^2 + x - 3}$$

- (a) $+\frac{1}{10}$ એસ્તિત્વ +થી. (b) 1 છે. (c) $\frac{1}{10}$ છે. (d) $-\frac{1}{10}$ છે.

(10)
$$\lim_{x \to 0} \frac{\sin x - 2\sin 3x + \sin 5x}{x}$$
 $\dot{\Theta}$.

- (b) 6
- (c) 0
- (d) 10

(11) If
$$1 \le f(x) \le x^2 + 2x + 2 \quad \forall x \in \mathbb{R}, \lim_{x \to -1} f(x) \dots \vartheta$$
.

- (a) 2
- (b) 0
- (c) -1
- (d) 1

(12)
$$\lim_{x \to 0^{-}} \left(\frac{1}{x} + \frac{1}{|x|} \right) \dots \vartheta$$
.

- (d) -1

(a) 2 (b) 1 (c) 0 (d) - (13)
$$\lim_{x \to 2} f(x)$$
 $f(x) = \begin{cases} 2x + 3 & x < 2 \\ 5 & x = 2 \\ 3x + 2 & x > 2 \end{cases}$

- (d) નું અસ્તિત્વ નથી.

(a)
$$5$$
 છે. (b) 3 છે. (c) 2 છે. (d) નું અસ્તિત્વ નથી.
(14) $\lim_{x \to 0+} f(x) = \dots$ જ્યાં, $f(x) = \begin{cases} 3x^2 - 1 & x < 0 \\ 3x^2 + 1 & x \ge 0 \end{cases}$

- (a) 1 (b) -1
- (c) 0
- (d) $\frac{1}{3}$

(15)
$$\lim_{x \to 5+} [x] \dots \emptyset$$
.

(a) 6

(a) 5

(b) 5

(b) -5

(c) -5

(c) -4

(d) 4

(16)
$$\lim_{x \to -4^-} [x] \dots \vartheta$$
.

(17)
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} \dots$$
 થાય.

(d) 4

- (a) cosa
- (b) sina
- (c) a
- (d) 0

(18)
$$\lim_{x \to a} \frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \ (a > 0) \dots \hat{\theta}.$$

- (a) $\cos a$ (b) $\frac{\cos a}{2\sqrt{a}}$
- (c) $2\sqrt{a}\cos a$ (d) $2\sqrt{a}$

(19)
$$\lim_{x \to 0} \frac{\tan x - 5x}{7x - \sin x} \dots \vartheta.$$

(a)
$$\frac{2}{3}$$

(a)
$$\frac{2}{3}$$
 (b) $\frac{-2}{3}$

(c)
$$\frac{5}{7}$$

(c)
$$\frac{5}{7}$$
 (d) $\frac{-5}{7}$

(20)
$$\lim_{x \to a} \frac{x^{\frac{1}{3}} - a^{\frac{1}{3}}}{x^{\frac{1}{5}} - a^{\frac{1}{5}}} (a > 0) \dots \emptyset.$$

(a)
$$\frac{1}{3}a^{\frac{3}{5}}$$
 (b) $\frac{1}{5}a^{\frac{1}{15}}$

(b)
$$\frac{1}{5}a^{\frac{1}{15}}$$

(c)
$$\frac{5}{3} a^{\frac{5}{3}}$$

(c)
$$\frac{5}{3}a^{\frac{5}{3}}$$
 (d) $\frac{5}{3}a^{\frac{2}{15}}$

*

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. લક્ષનો ઇતિહાસ
- 2. આલેખ અને કોષ્ટકથી લક્ષનું અનુમાન
- 3. લક્ષની ઔપચારિક વ્યાખ્યા અને ઉપયોગ.
- **4.** લક્ષનું બીજગણિત. જો $\lim_{x \to a} f(x)$ અને $\lim_{x \to a} g(x)$ નું અસ્તિત્વ હોય તો,

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x),$$

$$\lim_{x\to a} (f(x) g(x)) = \lim_{x\to a} f(x) \lim_{x\to a} g(x),$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (જ્યાં, } \lim_{x \to a} g(x) \neq 0\text{)}$$

- 5. $\lim_{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$ અને આદેશની રીત
- 6. સેન્ડવીય પ્રમેય અને ત્રિકોશમિતીય લક્ષ

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \lim_{x \to 0} \frac{\tan x}{x} = 1, \lim_{x \to 0} \sin x = 0, \lim_{x \to 0} \cos x = 1$$

$$\lim_{x \to a} \sin x = \sin a, \quad \lim_{x \to a} \cos x = \cos a$$

Bhaskara I

Bhaskara stated theorems about the solutions of today so called Pell equations. For instance, he posed the problem: "Tell me, O mathematician, what is that square which multiplied by 8 becomes - together with unity - a square?" In modern notation, he asked for the solutions of the Pell equation $8x^2 + 1 = y^2$. It has the simple solution x = 1, y = 3, or shortly (x,y) = (1,3), from which further solutions can be constructed, e.g., (x,y) = (6,17).