17 | Tychonoff Theorem

17.1 Tychonoff Theorem. If $\{X_s\}_{s\in S}$ is a family of topological spaces and X_s is compact for each $s\in S$ then the product space $\prod_{s\in S} X_s$ is compact.

17.2 Definition. Let \mathcal{A} be a family of subsets of a space X. The family \mathcal{A} is *centered* if for any finite number of sets $A_1, \ldots, A_n \in \mathcal{A}$ we have $A_1 \cap \cdots \cap A_n \neq \emptyset$

- **17.5 Lemma.** Let X be a topological space. The following conditions are equivalent:
 - 1) The space X is compact.
 - 2) For any centered family A of closed subsets of X we have $\bigcap_{A \in A} A \neq \emptyset$.

17.16 Proposition. If X_i is a Hausdorff space for each $i \in I$ then the product space Γ Hausdorff.	$\prod_{i\in I} X_i$ is also
Proof. Exercise.	
17.17 Corollary. If X_i is a compact Hausdorff space space for each $i \in I$ then the $\prod_{i \in I} X_i$ is also compact Hausdorff.	oroduct space