Math2310 - Fall '22

Syllabus - Lecture 04

BY GENNADY URALTSEV

Review

- prop Generalized Pythagoras theorem Cosine law.
- [5] Using the Cosine law to prove the identity

$$a_1b_1 + a_2b_2 = \|\vec{a}\|\|\vec{b}\|\cos(\theta)$$

where θ is the angle formed by $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$.

- Equation of a plane using the normal vector [6]
- Equation of a line in \mathbb{R}^2 using a normal vector
 - $\circ~$ rotation of a vector by 90° counterclockwise

Topics

1 The cross product [1,2,3]

- Algebraic expression and properties.
- Geometric properties
 - \circ magnitude
 - direction
- Differences between \mathbb{R}^3 and \mathbb{R}^2
- Chirality/handedness.
- Signed area
- Inequalities of the cross product
 - when it vanishes
 - when it is maximal
- Cross product as area of parallelogram: \mathbb{R}^2 and \mathbb{R}^3
- The volume of the parallelogram and the triple product formula

• Using the cross product to find a normal to a parameterized plane [4]

2 Projections

- unit vectors and normalization
- <u>defn</u> projections
- using dot products to compute projections onto:
 - \circ lines [7,8]
 - o planes [9]

References

Videos

- 1. Cross products | Chapter 10, Essence of linear algebra YouTube
- 2. Cross Product of Two Vectors Explained! YouTube
- 3. The Vector Cross Product YouTube
- 4. Normal to a Plane using the Vector Product of Two Vectors- Worked Example YouTube
- 5. Proof of Law of Cosines using Dot Product YouTube
- 6. Normal vector from plane equation | Vectors and spaces | Linear Algebra | Khan Academy YouTube
- 7. Projection Vector Proof YouTube
- 8. Orthogonal Projections Scalar and Vector Projections YouTube
- 9. Projection of a vector onto a plane YouTube

Textbook

- [Ste] Chap 12.3 The Dot Product pp847 854
- [Ste] Chap 12.5 Equations of Lines and Planes pp864 870
- [Ste] Chap 12.4 The Cross product pp855-864

Additional material