Augmenting Causal Diagrams with Effect Modification, Interaction and Other Parametric Information

Onyebuchi A. Arah^{1,2,3}

¹Department of Epidemiology, UCLA Fielding School of Public Health ²UCLA Center for Health Policy Research, Los Angeles, California, USA ³Academic Medical Center, University of Amsterdam, Netherlands

> 48th Annual Meeting, SER Denver, CO June 17, 2015

Outline

- Background & Objective
- Notation & Definitions
- Effect Modification
- Joint Total Effects & Interaction
- Mediation & Interaction
- Conclusion

Background & Objective

- Directed acyclic graphs (DAGs) have become ubiquitous in epidemiology
- Despite this widespread use, students and researchers have not been able to use them to depict effect modification and interaction
- This study introduces and demonstrates how to augment DAGs with (parametric) information on product terms typically used in modeling effect modification and interaction

Notation & Definitions

- *X*: Primary exposure or intervention variable
- **Z**: Effect-modifier
- *A*: Secondary exposure or intervention variable
- *M*: Mediator
- *Y*: Outcome variable
- *C*: Covariate, proxy or confounding variable; numbered sequentially
- *U*: Unknown, unmeasured variable

- []: Square brackets indicate conditioning
- (): Round brackets or parentheses indicate unmeasured variable
- *XZ*: Product term node which is deterministic
- X(Z): Product term node with unmeasured effect-modifier or secondary exposure variable

Effect Modification

Four types of effect modification (EM)*

Red path(s): total effect of X on Y

Type 2: Indirect EM

*VanderWeele TJ, Robins JM. *Epidemiology* 2007; 18(5): 561-568

UCLA
FIELDING
SCHOOL OF
PUBLIC HEALTH

Four types of effect modification (EM)

Red path(s): total effect of X on Y

Type 4: EM by common cause

- With augmented DAGs, we can see that assessing effect modification requires
 - (i) the 'direct' arrow from X to Y and
 - (ii) the arrow from the product term XZ (or XC) to Y
 - (iii) quantifying these two paths without bias

• It also shows that assessing the signal carried by the direct arrow from Z to Y without bias is not necessary for effect modification

Joint Total Effects & Interaction

Red path(s): total joint effects of X and A on Y

With augmentation, we see that

- Joint effects of A and X have 3 components represented by the three arrows from X, A, and AX into Y
- 2. Decomposition of Y (outcome) yields 4 components under the joint effects DAG: the 3 components of joint effects + the background risk captured in U_Y
- Joint total effects of X and A require joint uncontrolled confounding of X→Y and A→Y

Mediation & Interaction

- There are now several ways of decomposing effects under mediation analysis (VanderWeele 2015):
 - 2 way: PDE + TIE, TDE + PIE, CDE + PE
 - -3 way: PDE + PIE + INT_{med}
 - 4 way: CDE + INT_{ref} + INT_{med} + PIE

where

PDE: pure (natural) direct effect

TIE: total (natural) indirect effect

TDE: total (natural) direct effect

PIE: pure (natural) indirect effect

CDE: controlled direct effect

PE: portion eliminated

INT_{med}: mediated interaction

INT_{ref}: reference interaction

Conclusion

- Existing graphical rules continue to be applicable to augmented DAGs
- Several important implications can be read from the augmented DAGs
- The augmentation also allows for an intuitive visual depiction of the structural classification of effect decomposition and related concepts
- Augmentation should make DAGs more widely useful in applications

Funding

European Commission FP7 grant # 241822 NIH / NIDDK grant # Ro1DK095668-02 NICHD grant # Ro1HD072296-01A1

Contact

Onyebuchi A. Arah, MD, MSc, DSc, MPH, PhD

Department of Epidemiology

UCLA Fielding School of Public Health

Email: ARAH@UCLA.EDU