Computer Vision

Paulo Dias

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Morphological mathematics operates on images as a set of points
- Modify in a control way the structure/morphology of an image
- Typically used in binary images
- Can be used in graylevel ou colour image as well
- Used in Image Processing for
 - Filtering
 - Segmentation
 - Object description

Main idea

Main idea

Erosion

Burger and Burge

Structuring element

Neighbourhood

- Main Morphological operations
 - Dilation
 - Erosion

Basic Operations

- OpeningClosing

Composed Operations

Morphological operations - Dilation

Dilation

- gradually enlarge the boundaries of regions
- small holes and gaps are filled

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

0	1	1	0	0
0	1	1	0	0
0	1	1	0	0
0	1	1	1	1
0	0	0	0	0

	:1 -	. 4:	
1)	112	ITI	nn
	Пσ		VJII

*			_		
	0	1	1	0	0
	0	1	1	0	0
	0	1	1	0	0
	0	1	1	1	1
	0	0	0	0	0

 $I \oplus X$

Morphological operations - Dilation

$$I \equiv \{(1,1), (2,1), (2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}), (\mathbf{1},\mathbf{0})\}$$

$$I \oplus H \equiv \{ (1,1) + (\mathbf{0},\mathbf{0}), (1,1) + (\mathbf{1},\mathbf{0}), (2,1) + (\mathbf{0},\mathbf{0}), (2,1) + (\mathbf{1},\mathbf{0}), (2,2) + (\mathbf{0},\mathbf{0}), (2,2) + (\mathbf{1},\mathbf{0}) \}$$

Morphological operations - Erosion

Erosion

- Dual of the dilation operation
- Erode away the boundaries of regions of foreground
- holes and gaps are increased

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Original image

*	
1	1
Struct	turing
eler	nent

0	1	0	0	0
0	1	0	0	0
0	1	0	0	0
0	1	1	1	0
0	0	0	0	0

Erosion

A				
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	1	0	0
0	0	0	0	0

 $I \ominus X$

Morphological operations - Erosion

$$I \equiv \{(1,1),(2,1),(2,2)\}, H \equiv \{(\mathbf{0},\mathbf{0}),(\mathbf{1},\mathbf{0})\}$$

$$I\ominus H\equiv\{\,(1,1)\,\}\mbox{ because}$$

$$(1,1)+(\mathbf{0},\mathbf{0})=(1,1)\in I\quad\mbox{and}\quad (1,1)+(\mathbf{1},\mathbf{0})=(2,1)\in I$$

Dilation and Erosion are dual operations

Typical structuring elements

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Morphological operations - Opening

Opening

- Erosion followed by dilation
- Idempotent operation
 - Results will not change applied multiple time
- Union of all objects that fit in Structuring Element

- Circular kernel:
 - Smooth edges of object
 - Broke thin connections

$I \cup I - (I \cup I) \cup I$	IOX =	(I		X)	\oplus	X
--------------------------------	-------	----	--	----	----------	---

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

$\overline{}$				
1	KIO	$\square \square \square$	ima	$\alpha \alpha$
		1111111	11117	(\cup)
\smile	114	III IQI	11110	U
	\sim	'		$\mathbf{\mathcal{I}}$

*						
	1	1				
Structuring						
element						

\bigcirc	ner	ning
	pei	11119

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	a 1	1	0
0	0	1	1	0

潫	Ę				
	0	1	1	0	0
	0	1	1	0	0
	0	0	0	0	0
	0	1	1	1	0
	0	0	1	1	0

 $I \cap X$

Morphological operations - Opening

- Opening example
 - Circular structuring element
 - Radius of structuring element must be larger than subsets to remove

Original image

After erosion

After dilation

Opening with different structuring elements

Morphological operations - Closing

Closing

- Dilation followed by erosion
- Dual to opening
- Idempotent operation
 - Results will not change applied multiple time

$$I \bullet X = (I \oplus X) \ominus X$$

0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

0	1	1	1
0	1	1	119
0	1	1	0
0	1	1	1
0	0	1	1
	Clo	osin	g

0

.

Morphological operations - Closing

Closing example

Original image

After closing

- Edge detection with morphology (outlining)
 - Since erosion results in an isotropic contraction of images, can be used for edge detection:

$$Edge = I - (I \ominus X)$$

- Erosion of objects and then subtraction from original (using 3x3 or 5x5 structuring element)
- Size of structuring element will have impact of contour thickness

Edge detection with morphology (outlining)

$$I' = I \ominus H_n$$

$$B = I \cap \overline{I'} = I \cap \overline{(I \ominus H_n)}$$

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

Segmentation

Segmentation means dividing image in regions

Often applied before image analysis

 Typical approach is to group pixels with similar properties

Segmentation

Examples

Burger and Burge

Segmentation

No segmentation methods that can be used in every case

No "perfect" segmentation method

- Typical segmentation are based in:
 - pixel intensity
 - regions
 - edges

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Thresholding
 - Oldest segmentation method
 - Appropriate when object of interest have homogeneous intensity different from background
 - Not easy to find the adequate value

- Oldest segmentation approach
- Appropriate whenever the intensity of the objects of interest is homogeneous and they are different from the background

Example: OCR (Optical Character Recognition)

- If the threshold value is unknown, analyze the histogram to choose an adequate threshold value
- For a bimodal histogram, the threshold value corresponds to the valley between the peaks

- This approach can produce "classification errors", depending on the image histogram and the intensity values of the objects
- The *thresholding* can be applied to image sub-regions

- Several approaches for threshold selection
 - Global
 - Variable
 - Local depends on properties of neighbouring pixels
 - Adaptive depends on spatial coordinates
 - Otsu's method based on probabilistic analysis obtained from histogram

Summary

- Morphological operations
 - Dilation, erosion
 - Opening, closing
- Segmentation
 - Thresholding
 - Region growing

- Grow region by aggregation of pixels starting at a seed point
- All neighbouring pixels that comply the rule are labelled as belonging to the region
- A problem is to obtain "good" seed pixels
- Seed can be obtained using
 - Histograms
 - Interactively

– ...


```
RegionLabeling(I)
          I: binary image (0 = background, 1 = foreground)
          The image I is labeled (destructively modified) and returned.
       Initialize m \leftarrow 2 (the value of the next label to be assigned).
2:
       Iterate over all image coordinates (u, v).
4:
           if I(u,v)=1 then
 5:
               FLOODFILL(I, u, v, m) \triangleright use any of the 3 versions below
               m \leftarrow m + 1.
6:
 7:
       return the labeled image I.
    FLOODFILL(I, u, v, label)
                                                     9:
       if coordinate (u, v) is within image boundaries and I(u, v) = 1 then
10:
           Set I(u, v) \leftarrow label
11:
           FLOODFILL(I, u+1, v, label)
           FloodFill(I, u, v+1, label)
12:
13:
           FLOODFILL(I, u, v-1, label)
           FLOODFILL(I, u-1, v, label)
14:
15:
       return.
```



```
FloodFill(I, u, v, label)
                                                              ▷ Depth-First Version
16:
17:
         Create an empty stack S
         Put the seed coordinate \langle u, v \rangle onto the stack: Push(S, \langle u, v \rangle)
18:
19:
         while S is not empty do
20:
              Get the next coordinate from the top of the stack:
                   \langle x, y \rangle \leftarrow \text{Pop}(S)
              if coordinate (x,y) is within image boundaries and I(x,y)=1
21:
                   then
22:
                   Set I(x,y) \leftarrow label
                   PUSH(S, \langle x+1, y \rangle)
23:
                   PUSH(S, \langle x, y+1 \rangle)
24:
                   PUSH(S, \langle x, y-1 \rangle)
25:
                   PUSH(S, \langle x-1, y \rangle)
26:
27:
         return.
```



```
FLOODFILL(I, u, v, label)

▷ Breadth-First Version

29:
         Create an empty queue Q
         Insert the seed coordinate \langle u, v \rangle into the queue: Enqueue(Q, \langle u, v \rangle)
30:
31:
         while Q is not empty do
32:
              Get the next coordinate from the front of the queue:
                   \langle x, y \rangle \leftarrow \text{Dequeue}(Q)
              if coordinate \langle x,y\rangle is within image boundaries and I(x,y)=1
33:
                  then
34:
                   Set I(x,y) \leftarrow label
                   ENQUEUE(Q, \langle x+1, y \rangle)
35:
                   ENQUEUE(Q, \langle x, y+1 \rangle)
36:
                   ENQUEUE(Q, \langle x, y-1 \rangle)
37:
                   ENQUEUE(Q, \langle x-1, y \rangle)
38:
39:
         return.
```


Flood-Filling

(a) Original

breadth-first

