Нелинейные методы строительной механики

Введение

Черновик

СМиМ ЗабГУ

2020

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям

Статический спосоо

Статическая теорема

Кинематический способ

Вопросы

Ссылки

Материалы курса

vetrovsv.github.io/NLST

Литература курса

Сухов М. Ф. Нелинейные задачи строительной механики [Текст]: учеб. пособие / М.Ф. Сухов, Д.А. Кожанов; Нижегор. гос. архитектур. - строит. ун-т – Н.Новгород: ННГАСУ, 2017. – 66 с

Нелинейность

"A view of nature as dense and nonlinear is at the core of our contemporary science"

- Gregory Benford

Нелинейность

Какие уравнения называют линейными?

Нелинейность

Какие уравнения называют линейными?

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Какие уравнения называют нелинейными?

Линейная строительная механика

- Принцип отвердевания
- Принцип малых перемещений
- Принцип независимости действия сил
- ▶ Закон Гука

Линейная строительная механика

- Принцип отвердевания
- Принцип малых перемещений
- Принцип независимости действия сил
- Закон Гука

$$\varepsilon_{X} = \frac{\sigma_{X}}{E} - \frac{\mu}{E}\sigma_{y} - \frac{\mu}{E}\sigma_{z}$$

• • •

Нелинейная строительная механика

- Расчёт конструкции для всех этапов нагружения, включая разрушения
- Рассматриваются в том числе неупругие деформации
- Принцип отвердевания неприменим. Размеры и форма конструкции могут изменятся.
- Учёт запредельных деформаций при расчёте по предельным состояниям может сделать констукцию более экономичной.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Кинематический способ

Вопрось

Ссылки

Виды нелинейности

В механике выделяют три вида нелинейности:

- Физическая нелинейность
- Геометрическая нелинейность
- Конструктивная нелинейность

- Бетон, дерево, пластик и некоторые другие строительные материалы характеризуются нелинейной зависимостью напряжений от деформаций даже при небольших нагрузках
- Такая нелинейность называется физической
- Проявляется при возникновении пластических деформаций в различных формах (текучести – деформировании при постоянных напряжениях, ползучести – росте деформаций во времени без увеличения нагрузки), при криволинейной диаграмме «напряжения-деформации», при изменении свойств материалов от внешних воздействий и т. д

Диаграмма деформирования.

Диаграмма деформирования. Упругие деформации (линейные) - слева от т. 1 Пластические деформации - справа от т. 1

Задачи рассматривающие обе части деформаций называются упругопластическими.

 Связь между напряжениями и деформациями в общем виде

$$\sigma = E(\varepsilon)\varepsilon$$

где $E(\varepsilon)$ – матрица, характеризующая физические свойства материала – элементы ее являются функциями компонент вектора деформаций ε . То есть физические свойства материала зависят от того, насколько он деформирован.

- ε вектор деформаций.
- Причем приведённая система уравнений (в матричной форме) в случае присутствия физической нелинейности превращается в систему нелинейных уравнений.
- Закон Гука не учитывает такую нелинейность

Геометрическая нелинейность (ГН)

- Большие перемещения
- Значительные деформации
- Нелинейная зависимость между нагрузками и перемещениями
- Учитывается в уравнениях связывающих деформации с перемещениями
- Например, в случае продольного и продольно-поперечного изгиба стержней, изменении координат точек конструкции из-за сравнительно больших перемещений

Конструктивная нелинейность (КН)

- Изменение расчётной схемы из-за нагружения
- Включение и выключение связей
- ► Например, возникновение контакта с опорой в из-за прогиба.
- Уравнения равновесия должны включать перемещения

Конструктивная нелинейность (КН)

изменение расчётной схемы в результате появления новой связи (опоры)

Методы расчёта нелинейно деформируемых систем

Классификация задач

Классификация задач нелинейной строительной механики (без учёта конструктивной нелинейности):

- ФЛ, ГЛ
- ФН, ГЛ
- ФЛ, ГН
- ФН, ГН

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Вопросы

Ссылки

Диаграмма деформирования

- Как будет вести себя стержень из малоуглеродистой стали если приложить к нему небольшое растягивающее усилие, а затем постепенно увеличивать?
- Как будет изменятся его длина?
- Что будет если на определённом этапе убрать нагрузку?
- Стержень сможет восстановить свою исходную форму любой деформации?

Диаграмма деформирования

Пластичный материал

F — продольная растягивающая сила, [H]; Δl — абсолютное удлинение рабочей части образца, [мм]

I — участок пропорциональности; II — участок текучести; III — участок самоупрочнения;

IV — участок разрушения.

 $F_{\Pi \text{ц}}$ – предел пропорциональности; F_{T} – предел текучести; F_{max} – предел прочности; $F = \text{предел упругости.} \stackrel{?}{=} 9000$

Нагрузка и разгрузка

Упругие деформации (до точки E) исчезнут (верхняя схема), если убрать нагрузку с материала.

Текучесть

Предел текучести материала – наименьшее напряжение, при котором деформация увеличивается без заметного увеличения нагрузки. На диаграмме – точка, после которой линия диаграммы некоторое время движется параллельно оси деформаций ε . Практически горизонтальный участок диаграммы, следующий за пределом текучести, называется площадкой текучести.

Пластичные материалы (малоуглеродистая сталь, латунь, алюминий и многие другие металлы) обладают свойствами текучести (увеличения деформаций без увеличения нагрузки) при нормальных температурах.

Хрупкие и пластичные материалы

Диаграмма деформирования (растяжения) для хрупкого (слева) и пластичного материала (справа)

Бетон

Диаграмма одноосного сжатия

Фибробетон

Диаграмма одноосного сжатия

Фибробетон

Тесты материалов на растяжение и сжатие

https://youtu.be/D8U4G5kcpcM

В ролике упоминается yeld-point – это предел текучести.

Тест бетона на сжатие https://youtu.be/c7U91LbKFjI

Модели деформирования

- упругая
- упруго-пластическая
- жётско-пластическая
- произвольного вида

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Вопросы

Ссылки

Пластический шарнир

 Этапы изменения напряжений в балке в условиях чистого сгиба.

Пластический шарнир образуется в опасных сечениях балки: там где действует сила или в месте соединения с опорой (связью)

Пластический шарнир

Пластический шарнир

Допускаемая нагрузка

- Интерес представляет величина внешней силы Q при котором элемент ещё не исчерпал свою несущую способность
- ▶ Будем называть такую величину **допускаемым значением** $Q_{\text{доп}}$
- Допускаемое значение внешней силы связано с допускаемым моментом $M_{\text{доп}}$, возникающем в опасном сечении.

Допускаемая нагрузка

 Допускаемый момент зависит от свойств материала и элемента конструкции:

$$M_{\text{доп}} = \sigma_{\text{T}} W_{\text{пл}} \tag{1}$$

где $\sigma_{\rm T}$ – предел текучести, $W_{\rm ПЛ}$ – момент сопротивления поперечного сечения балки.

$$W_{\Pi\Pi} = 2|S_X^{(1/2)}|$$

где $S_\chi^{(1/2)}$ – статический момент сопротивления половины сечения

 $S_\chi^{(1/2)}$ и $\sigma_{\rm T}$ можно найти в справочниках для балок различных форм сечения. docs.cntd.ru/document/1200157342

Статический момент сечения: как вычислить

Статический момент сечения относительно оси x площади сечения A

$$S_X = \sum_{i=1}^n y_i \, dA_i = \int_A y dA$$

 y_i – расстояние от центра і-й площадки dA до оси х Статический момент сечения измеряют в см 3

Статический момент половины сечения: как вычислить

- Для симметричных фигур статический момент сечения относительно оси симметрии равен нулю
- Потому, что центр площади находится на этой оси симметрии
- Для таких фигур считают статический момент половины сечения $S_x^{1/2}$

Статический момент половины сечения: как вычислить

- Для симметричных фигур статический момент сечения относительно оси симметрии равен нулю
- Потому, что центр площади находится на этой оси симметрии
- Для таких фигур считают статический момент половины сечения $S_{x}^{1/2}$
- Чему равен $S_\chi^{1/2}$ для прямоугольного сечения размером b на h?

Предельная нагрузка

- ▶ Кроме допускаемой нагрузки, интерес представляет
 предельное значение нагрузки Q_{пр}
- Это значение, при котором возникает пластический шарнир
- ▶ $Q_{np} > Q_{доп}$
- ▶ Приложить силу больше чем $Q_{\rm np}$ невозможно, ибо балка разрушится.
- Значение предельной силы определяется из условия равенства моментов внутренних и внешних сил для опасного сечения балки.

https://youtu.be/F5RtSUbrifg

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Вопросы

Ссылки

Методы расчёта сооружений

- Расчет по допускаемым напряжениям
- Расчет по допускаемым нагрузкам
- Метод предельных состояний

Расчет по допускаемым напряжениям

В методе расчета по допускаемым напряжениям должно соблюдаются неравенство:

$$\sum S_i \le A[\sigma] \tag{2}$$

где S_i – воздействие на рассчитываемый элемент і-ой *нормативной* нагрузки (постоянной или временной)

А - геометрическая характеристика сечения

 $[\sigma]$ - допускаемое напряжение в элементе

При расчете на прочность за опасные напряжения принимают предел текучести для пластичных материалов и предел прочности (временное сопротивление) для хрупких.

Расчет по допускаемым напряжениям

Значения допускаемых напряжений включают коэффициенты надёжности.

Введя коэффициенты надёжности получим неравенство 2 в виде:

$$\sum \gamma_i S_i \leq A \frac{\sigma_{\mathsf{пред}}}{\gamma_R}$$

где γ_i – коэффициент надежности по нагрузке γ_R – коэффициенты надежности по материалам

Расчет по допускаемым напряжениям

- о прочности всей конструкции судят по напряжениям в опасных точках
- Метод подходит для систем, напряжения в которых распределяются равномерно по сечениям, и систем, в которых разрушение одного элемента влечет за собой разрушение всей конструкции в целом.
- Однако для многих конструкций, изготовленных из пластичных материалов, появление в какой-либо точке напряжений, равных разрушающим, еще не означает, что данная система выйдет из строя (статически неопределимые системы).

Расчет по предельным состояниям

Предельное состояние – состояние конструкции (сооружения), при котором она перестаёт удовлетворять эксплуатационным требованиям.

- используется несколько коэффициентов запаса, учитывающих особенности работы сооружения, независимых коэффициентов
- учёт вероятностных свойств действующих на конструкции нагрузок и сопротивлений этим нагрузкам
- **...**

Предельные состояния

- Первое предельное состояние характеризуется потерей устойчивости и полной непригодностью к дальнейшей эксплуатации.
- Второе предельное состояние характеризуется наличием признаков, при которых эксплуатация конструкции или сооружения хотя и затруднена, но полностью не исключается

Предельные состояния

Первое предельное состояние

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Предельные состояния

изображение с сайта lib.dystlab.com/index.php/engineering/civil/structural/87-limit-states

Проверки по предельным состояниям

 $N_{max} \leq N$

 N_{max} – фактор характеризующий нагрузку Например: изгибающий момент, напряжение, деформация, перемещение, ...

N – нормативное значение соответствующего N_{max} фактора или расчётное значение соответствующего сопротивления

В настоящее время расчёт по предельным состояниям заменил расчёт по допускаемым напряжениям и определяется ГОСТом и Eurocode.

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема Кинематический способ

Вопросы

Ссылки

Расчет статически неопределимых балок по допускаемым напряжениям

- Несущая способность статически определимой балки исчерпается, когда, хотя бы в одном сечении образуется пластический шарнир и система становится геометрически изменяемой.
- Для статически неопределимых балок образование одного пластического шарнира не приводит к исчерпанию несущей способности, т.к. в этом случае степень кинематической определимости системы снижается на одну единицу.
- В случае п раз статически неопределимой балки исчерпание несущей способности происходит при формировании n + 1 пластических шарниров.

Расчет статически неопределимых балок по допускаемым напряжениям

 Однако в ряде случаев часть балки может стать геометрически изменяемой при значительно меньшем числе пластических шарниров.

Задача

Для балки прямоугольного сечения (b x h) требуется:

- определить допускаемое значение нагрузки $P_{\text{доп}}$ (расчёт по допускаемым напряжениям)
- определить предельное значения нагрузки Р_{пред} (расчёт по предельным состояниям)
- Сравнить, какое из значений нагрузки больше

Пример 1. Расчёт по допускаемым напряжениям

- 1. Значение силы $P_{\text{доп}}$ определим используя значение $M_{\text{доп}}$.
- 2. $M_{\text{доп}}$ будем считать равным M_{max} наибольшему моменту, действующему в опасном сечении.

$$M_{\text{доп}} = M_{max}$$

При этом значение, напряжение в опасном сечении достигает предела текучести, но пластический шарнир ещё не образуется.

Решение

1. Определим наиболее опасное сечение и M_{max} построив эпюру М

- 2. $M_{\text{доп}} = M_{\text{max}} = 13/64Pl$
- 3. $M_{\text{доп}} = 13/64 P_{\text{доп}} l$

Решение

1.
$$P_{\text{доп}} = 13/64 \cdot M_{\text{доп}}/l$$

2. Определим $M_{\text{доп}}$ из формулы $(1)^{1}$:

$$M_{\text{доп}} = \sigma_{\text{T}} W_{\text{X}}$$

$$P_{\text{доп}} = \frac{13}{64} \sigma_{\text{T}} W_{\text{X}} / l$$

- 3. Для балки прямоугольного сечения $W_X = \frac{bh^2}{6}$
- 4. $P_{\text{ДОП}} = \frac{13}{64} \sigma_{\text{T}} \frac{bh^2}{6l} = \frac{32}{39} \sigma_{\text{T}} \frac{bh^2}{l} \approx 0.82 \sigma_{\text{T}} \frac{bh^2}{l}$

 $^{^1}$ в расчёте по предельным состояниям используется момент сопротивления сечения (W_{x}), а не пластический момент ($W_{\Pi\Pi}$), как в формуле

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям

Статический способ Статическая теорема

Вопросы

Ссылки

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ

Статическая теорема Кинематический способ

Вопросы

Ссылки

Решение

Определим предельное значение силы Р.

- Увеличивая величину внешней силы Р > Рдоп, пластическая область в опасном сечении В балки увеличивается.
- При некотором значении силы в сечении В возникает пластический шарнир, тогда величина изгибающего момента в этом сечении становится равной M_{пр}.
- При дальнейшем росте внешней силы Р, момент в сечении В остается постоянным и равным M_{пр}.
- Возникновение пластического шарнира в т. В превращает один раз статически неопределимую балку в балку статически определимую

Решение

1. Определим способ разрушения балки

Что будет происходить с балкой дальше, если сила P проложит действовать?

Решение

1. Определим способ разрушения балки

Что будет происходить с балкой дальше, если сила P проложит действовать?

Наибольшая величина изгибающего момента формируется в сечении C, достигает предельной величины $M_{\rm np}$, формируется пластический шарнир, балка превращается в геометрически изменяемую систему.

Решение

2. Составим уравнения равновесия:

••

ightharpoonup 3. ...и равенства изгибающего момента в сечениях пластического шарнира предельному моменту $M_{\rm np}$:

..

- ▶ 4. Из уравнений выразим $P_{\mathsf{пр}}$ через $M_{\mathsf{пр}}$
- ▶ 5. М_{пр} выразим через уравнение (1)
- ▶ 6. Сравним Р_{пр} и Р_{доп}.

Решение

2. Составим уравнения равновесия:

..

ightharpoonup 3. ...и равенства изгибающего момента в сечениях пластического шарнира предельному моменту $M_{\rm np}$:

••

- ▶ 4. Из уравнений выразим $P_{пр}$ через $M_{пр}$
- ▶ 5. М_{пр} выразим через уравнение (1)
- ▶ 6. Сравним Р_{пр} и Р_{доп}.

$$P_{DOT} < P$$

Решение

2. Составим уравнения равновесия:

..

• 3. ...и равенства изгибающего момента в сечениях пластического шарнира предельному моменту $M_{\rm np}$:

•••

- ▶ 4. Из уравнений выразим $P_{\mathsf{пр}}$ через $M_{\mathsf{пр}}$
- ▶ 5. М_{пр} выразим через уравнение (1)
- ▶ 6. Сравним Р_{пр} и Р_{доп}.

 $P_{\text{доп}} < P$ Какой способ определения нагрузки позволяет экономичнее использовать материал?

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям

CIATINACCRIIII CITOCOO

Статическая теорема

Кинематический способ

Вопросы

Ссылки

Статическая теорема

Выше был рассмотрено *статически возможное* (через уравнения статики) состояние балки.

Там был всего один вариант образования

Но, в зависимости от действующих нагрузок и конфигурации связей, вариантов образования пластических шарниров может быть несколько.

Каждый вариант может дать свой ответ для предельной нагрузки

Статическая теорема говорит о том, какой из вариантов выбрать.

Статическая теорема

Нагрузка соответствующая статически возможному состоянию меньше чем предельная.

Статическая теорема

Нагрузка соответствующая статически возможному состоянию меньше чем предельная.

Статически допустимым считается такое поле напряжений, которое удовлетворяет условиям равновесия, граничным условиям и при котором ни в одной точке напряжения не превосходят значений, определяемых условиями пластичности

Статическая теорема

Нагрузка соответствующая статически возможному состоянию меньше чем предельная.

Статически допустимым считается такое поле напряжений, которое удовлетворяет условиям равновесия, граничным условиям и при котором ни в одной точке напряжения не превосходят значений, определяемых условиями пластичности

Таким образом нагрузка определённая статическим способом даёт приближение для предельной нагрузки снизу.

Статическая теорема

Таким образом нагрузка определённая статическим способом даёт приближение для предельной нагрузки снизу.

Значит наибольшее напряжение из возможных будет ближе всего к предельной.

Статический метод

- 1. Выявляются места образования пластических шарниров (в точках действия сосредоточенных сил, в том числе реакций связей)
- 2. Рассматриваются различные схемы образования пластических шарниров.
- 3. Для каждой схемы:
 - 3.1 Возле каждого из пластических шарниров изображаются внутренние моменты $^2 M_{\rm np}$
 - 3.2 Для каждой из схем составляются уравнения равновесия и уравнения равенства моментов, определяются предельные значения внешней силы.
 - 3.3 Проверяется неравенство: $|M| < M_{\text{пред}}$, где M момент в произвольной точке конструкции, исключая пластические шарниры.
 - 3.4 Схемы, где неравенство не выполняется, исключаются из рассмотрения как статически недопустимые.
- ²чтобы правильно изобразить моменты можно нарисовать возможное положение конструкции при изгибах в пластических шарнирах. Тогда направление моментов будет от деформированного к недеформированному положению части конструкции. Если положение деформированной 67/

Статический метод

- 4. Наибольшее значение из всех схем является расчетной величиной предельной силы.
- 5. Схема с *наибольшей* внешней силой наиболее вероятная схема разрушения.

Задача

Сухов М. Ф. Нелинейные задачи строительной механики: учеб. пособие / М.Ф. Сухов, Д.А. Кожанов; стр. 51

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям

Статический способ Статическая теорема

Кинематический способ

Вопрось

Ссылки

Кинематический способ

- Жестко-пластическое приближение.
- Составляется уравнение работы всех внешних и внутренних усилий на основе принципа возможных перемещений.
- Принцип возможных перемещений: если система твердых тел находится в равновесии под действием системы сил, то работа, совершаемая этими силами на любом малом возможном перемещении системы, должна быть равна нулю.

$$\Sigma \delta A = 0$$

Возможное перемещение

Кинематический способ

Примеры возможные перемещений

Кинематический способ

Как выбрать схему разрушения?

Пример 2

Расчёт кинематическим методом.

Кинематическая теорема

Нагрузка соответствующая кинематически возможному состоянию больше, чем предельная нагрузка.

В кинематически возможном состоянии уравнения равновесия могут не выполнятся.

Таким образом выбирается *наименьшая* нагрузка из возможных. Она будет ближе к предельной.

Определение предельной нагрузки

- Для того чтобы статически возможное состояние было действительным, оно должны быть кинематически возможным и наоборот.
- Если предельные нагрузки определённые статическим и кинематическим методом совпадают, то полученная предельная нагрузка считается действительной, а решение полным.

Другие способы расчёта

- ▶ Расчёт методом линейного программирования
- ▶ Расчёт методом нелинейного программирования

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Вопросы

Ссылки

- Что такое нелинейность?
- Какие виды нелинейности бывают? Примеры.
- Что такое упругие и пластические деформации?
- Какую часть диаграммы деформирования описывает закон Гука?
- Что такое пластический шарнир?
- Что такое допускаемое значение нагрузки?
- Что такое предельное значение нагрузки?
- Какое соотношение между этими двумя величинами?

 Как изменяется статически неопределимая система при возникновении пластического шарнира?

В чем разница метода допускаемых напряжений и метода предельных состояний? Какой метода даёт большую величину для внешней нагрузки?

 Объясните статический метод определения предельной нагрузки.

Как изменяется статически неопределимая система при возникновении пластического шарнира?

В чем разница метода допускаемых напряжений и метода предельных состояний? Какой метода даёт большую величину для внешней нагрузки?

- Объясните статический метод определения предельной нагрузки.
- Какие проверки нужно делать для каждого варианта образования пластических шарниров?
- Как выбирается значение предельной силы из всех вариантов для схем образования пластических шарниров?

 Объясните кинематический метод определения предельной нагрузки.

- Объясните кинематический метод определения предельной нагрузки.
- Что такое возможное перемещение?
- Как вычислить работу момента на возможном перемещении?

Outline

Введение

Виды нелинейности

Диаграмма деформирования

Пластический шарнир

Расчёт по предельным состояниям

Расчет по допускаемым напряжениям

Расчет по предельным состояниям Статический способ Статическая теорема

Кинематический способ

Вопросы

Ссылки

Ссылки

- ► Сухов М. Ф. Нелинейные задачи строительной механики: учеб. пособие / М.Ф. Сухов, Д.А. Кожанов;
- Малинин, Н. Н. Прикладная теория пластичности и ползучести: учебник для бакалавриата и магистратуры / Н. Н. Малинин. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2018. 402 с. (Бакалавр и магистр. Академический курс). // ЭБС Юрайт [сайт]. URL: biblio-online.ru/bcode/415958 biblio-online.ru/viewer/prikladnaya-teoriya-plastichnosti-i-polzuchesti-415958page/208