

Fundamentos de Bancos de Dados

Diagrama de Classes

- Para definir uma classe, utiliza-se o diagrama de classes da UML (Unified Modeling Language). (SOMERA, 2006)
- "O Diagrama de Classes é um dos mais importantes e mais utilizados da UML". GUEDES (2011, p. 101)
- Seu objetivo é visualizar as classes que irão compor o sistema e seus respectivos atributos e métodos e demonstrar como elas se relacionam, complementam e transmitem informações entre si. GUEDES (2011)

- Segundo Goes (2014, p. 132)
 - O Diagrama de Classes não é novo, simplesmente é a evolução do antigo modelo de Entidade e Relacionamento (E-R). Sua ideia central é concentrar a construção de um sistema em torno de objetos, ou seja, mais próximo do mundo real.
- A especificação de uma classe é composta por três regiões:
 - Nome da classe;
 - Conjunto de atributos da classe e;
 - Conjunto de métodos da classe.

SOMERA (2006) (WIKIPEDIA, 2016)

 Não é obrigatório que toda classe tenha todas as três regiões. (GUEDES, 2011 p. 103)

Nome

visibilidade nome : tipo = valor_default

visibilidade nome : tipo = valor_default

visibilidade nome (lista_args): tipo

visibilidade nome (lista_args): tipo

identificador da classe

atributos

métodos

 Uma classe pode ter três categorias de visibilidade definidas:

+ Público (public)

 O atributo ou método de um objeto desta classe pode ser acessado por qualquer outro objeto de uma outra classe, ou seja, há uma visibilidade externa total.

Protegido (protected)

• O atributo ou método de um objeto desta classe pode ser acessado apenas por um objeto uma classe derivada desta, por meio de herança.

- Privado (privated)

- O atributo ou método de um objeto desta classe não pode ser acessado por um objeto de outra classe. Não há visibilidade externa.
- GOES (2014, p 136) SOMERA (2006, p. 14) (WIKIPEDIA c, 2016WIKIPEDIA, 2016)
- Em FBD/BD usaremos apenas PRIVADO (-)!

Nome das Classes

- Devem estar sempre:
 - No singular;
 - Em negrito (ferramenta gráfica UML);
 - Centralizado;
 - Pode ser simples ou composto;
 - A primeira letra deve ser maiúscula seguida de letras minúsculas.

(GOES, 2014 p. 134)

Nome dos Atributos/Métodos

- Devem...
 - Ser escritos em formatação normal;
 - sem negrito, itálico, etc.
 - Começar por letras minúsculas;
 - Ser posicionados à esquerda em seu compartimento no diagrama;
 - Podem ter nomes simples ou compostos;
 - Quando o nome for composto, a partir do segundo termo do nome do atributo, a primeira letra deve ser maiúscula.
 - No caso dos métodos, devem ser verbos.

Classe

Produto View

```
#codigo: integer
#nome: string
#preco: decimal
#qtdEstoque: integer
#nomFabricante: string
+setCodigo(pCodigo:integer): integer
+setNome(pNome:string): string
+getCodigo(): integer
+getNome(): string
```


Modelando Banco de Dados com o Diagrama de Classes

Nome da classe

Tipo Produto

- id: key

Produto

- id: key

Associação → Tipo de Relacionamento

Associações entre Classes

Multiplicidade | Restrições de Cardinalidade e de Participação

Multiplicidade de Associações

Classe Associativa → Tipo de Relacionamento que possui Atributos

Classes Associativas servem apenas para vincular atributos às associações

Associação N-ária → Tipo de Relacionamento com Grau acima de 2

Associação Ternária com Classe Associativa

Note que esta classe não possui atributo chave (classe associativa)

• A indicação de papéis somente é obrigatória em associações cuja semântica é ambígua ou não clara.

- Especialização
- Composição
- Agregação
- Identificador da Entidade-Fraca

Relacionamento "é-um"

Abstração de Especialização

Herança Múltipla: Subclasses podem ter mais de uma classe base.

herdados apenas uma vez

Recomendação:

Não utilize herança múltipla, pois causa um problema de entendimento conceitual.

Relacionamento de posse (tem, possui, é parte de)

Proprietário da Identificação de Nariz e Braço

Entidade-Fraca → Tipo de Entidade-Fraca

 Entidade-fraca com dois Proprietários da Identificação

Outras formas de representação :

DER-X

Infelizmente isso é chamado também de agregação

DER

Exemplo de um Esquema Conceitual

Exemplo

Loja Virtual de Calçados

Uma loja de calçados contratou você para elaborar um banco de dados para vendas pela internet. É preciso cadastrar os clientes e saber deles, nome, endereço completo e e-mails. Dos produtos (Calçados) é preciso saber o nome, a marca, o gênero (masculino/feminino), a coleção (primavera/verão ou Outono/Inverno), o modelo do calçado (sapato, tênis, sapa tênis, sandália, chinelo, etc), a cor, a numeração, o estoque atual e o preço de venda. O estoque dos calçados é feito por cor e número. Por exemplo, uma sandália pode ter 2 pares brancos Nº 35 e apenas 1 branco Nº 36. Em cada venda, é preciso saber quem é o cliente, quais calçados comprou e quanto pagou em cada um deles.

IMPACTA Minimundo: Substantivos

Uma loja de calçados contratou você para elaborar um banco de dados para vendas pela internet. É preciso cadastrar os clientes e saber deles, nome, endereço completo e e-mails. Dos produtos (Calçados) é preciso o **nome**, a **marca**, saber o **gênero** (masculino/feminino), a **coleção** (primavera/verão ou Outono/Inverno), o modelo do calçado (sapato, tênis, sapa tênis, sandália, chinelo, etc), a cor, a numeração, o estoque atual e o preço de venda. O estoque dos calçados é feito por cor e número. Por exemplo, uma sandália pode ter 2 pares brancos Nº 35 e apenas 1 branco Nº 36. Em cada **venda**, é preciso saber quem é o cliente, quais calçados comprou e quanto pagou em cada um deles.

Minimundo: Classes

Uma loja de calçados contratou você para elaborar um banco de dados para vendas pela internet. É preciso cadastrar os clientes e saber deles, nome, endereço completo e e-mails. Dos produtos (Calçados) é preciso saber o **nome**, a **marca**, o **gênero** (masculino/feminino), a coleção (primavera/verão ou Outono/Inverno), o modelo do calçado (sapato, tênis, sapa tênis, sandália, chinelo, etc), a cor, a numeração, o estoque atual e o preço de venda. O estoque dos calçados é feito por cor e número. Por exemplo, uma sandália pode ter 2 pares brancos Nº 35 e apenas 1 branco Nº 36. Em cada **venda**, é preciso saber quem é o cliente, quais calçados comprou e quanto pagou em cada um deles.

IMPACTA Diagrama de Classes: Cliente

É preciso cadastrar os **clientes** e saber deles, **nome**, **endereço completo** e **e-mails**.

Diagrama de Classes: Produto

Dos produtos (Calçados) é preciso saber o nome, a marca, o gênero (masculino/feminino), a coleção (primavera/verão ou Outono/Inverno), o modelo do calçado (sapato, tênis, sapa tênis, sandália, chinelo, etc), a cor, a numeração, o estoque atual e o preço de venda.

Diagrama de Classes: Venda

• Em cada **venda**, é preciso saber quem é o cliente, **quais calçados comprou** e **quanto pagou** em cada um deles.

IMPACTA TECNOLOGIA Diagrama de Classes Completo

Nunca Faça Isso!

Nunca Faça Isso!

- Não deixe de colocar a Multiplicidade.
- •Não coloque cardinalidade (DE-R) achando que é Multiplicidade
- Não crie uma Classe sem Atributos
- Não reaproveite associações.
- -Utilize nomes diferentes e somente verbos.
- Não deixe de indicar os atributos chave
- Entidades Fraca e Classes Associativas não tem chave.
- Não deixe de indicar o sentido da leitura (seta na associação)
 - Não coloque pontas nas associações! Pontas (setas) apenas em hierarquias.
 - Respeite as regras de nomenclatura!
 - Visibilidade Privado para atributos (modelando Banco de Dados)

Passos para realizar a modelagem conceitual

- Descubra as potenciais Classes.
 - Substantivos que representam conjuntos.
- Crie os tipos de relacionamentos de generalização.
 - Nem sempre eles existem.
- Defina todos os atributos.
 - Indique aqueles que forem multivalorados, derivados e chaves.
 - Não existem atributos compostos em diagramas de Classe!
 - Atributos derivados s\u00e3o precedidos por uma barra "\".
 - Atributos multivalorados são sucedidos pela multiplidade. Ex: 1..*
- Defina os tipos de entidade-fraca.
 - São os tipos de entidade que não possuem atributos-chaves.
 - Estabeleça a associação (Composição Losango pintado)
 - Se necessário, defina os atributos qualificadores.
- Defina as associações necessárias para recuperar os dados desejados.
 - Indique as multiplicidades.
 - Crie as Classes Associativas.
 - Indique os papéis se necessário.

Leituras Recomendadas

Leituras Recomendadas

- ELMASRI, Ramez; NAVATHE, Shamkant B.. **Sistemas de banco de dados**. **6**. **ed**. São Paulo: Pearson Education, 2011. 788 p.
 - Capítulos 10

ou

- ELMASRI, Ramez; NAVATHE, Shamkant B.. **Sistemas de banco de dados**. 4. ed. São Paulo: Pearson Education, 2005. 724 p.
 - Capítulos 4 e 12

Referências

- Batini, C.; Ceri, S.; Navathe, S. Conceptual Database Design: An Entity-Relationship Approach.
 Benjamin/Cummings, Redwood City, Calif., 1992.
- Date, C.J., **Introdução a Sistemas de Banco de Dados**, tradução da 8 edição americana, Campus, 2004.
- ELMASRI, Ramez; NAVATHE, Shamkant B.. Sistemas de banco de dados. 6. ed. São Paulo: Pearson Education, 2011. 788 p.
- Ferreira, J.E.; Finger, M., Controle de concorrência e distribuição de dados: a teoria clássica, suas limitações e extensões modernas, Coleção de textos especialmente preparada para a Escola de Computação, 12a, São Paulo, 2000.

- GUEDES, Gilleanes T. A.. Diagrama de Classes. In: GUEDES, Gilleanes T. A.. UML 2: Uma Abordagem Prática. São Paulo: Novatec, 2011. Cap. 4. p. 101-179.
- GOES, Wilson Moares. Diagrama de Classes. In: GOES, Wilson Moares. **Aprenda UML por meio de estudo de casos**. São Paulo: Novatec, 2014. Cap. 5. p. 132-177.
- Heuser, C.A., Projeto de Banco de Dados., Sagra -Luzzatto, 1 edição, 1998.
- Korth, H.; Silberschatz, A. Sistemas de Bancos de Dados.
 3a. Edição, Makron Books, 1998.

Obrigado

Prof. Dr. Alexandre L. Rangel <u>alexandre.leite@faculdadeimpacta.edu.br</u> www.alexandrelrangel.blogspot.com.br

- RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Sistemas de gerenciamento de banco de dados. 3. ed. São Paulo: Mc Graw Hill, 2008. 884 p.
- SOMERA, Guilherme. **Treinamento Profissional em Java**: Aprenda a programar nesta poderosa linguagem!. São Paulo: Digerati Books, 2006.
- Takai, O.K; Italiano, I.C.; Ferreira, J.E. Introdução a Banco de Dados. Apostila disponível no site: http://www.ime.usp.br/~jef/apostila.pdf. (07/07/2005).
- Teorey, T.; Lightstone, S.; Nadeau, T. Projeto e modelagem de bancos de dados. Editora Campus, 2007.
- WIKIPEDIA. Classe (programação). 2016. Disponível em: https://pt.wikipedia.org/wiki/Classe_ (programação)>. Acesso em: 28 jul. 2016.