Marcus Zibrowius Jan Hennig 03.12.2024

Topologie I Blatt 7

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**, bzw. der punktierten Version **Top**_{*}.

1 | Stegreiffragen: Höhere Homotopiegruppen

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Was ist $\pi_i(S^1)$?
- (b) Was ist die "Randabbildung" $\pi_1(S^1) \to \pi_0(S^0)$ für die Hopf-Faserung $S^0 \to S^1 \to S^1$?
- (c) Was ist die "Randabbildung" $\pi_1(S^1) \to \pi_0(\mathbb{Z})$ für die universelle Überlagerung $\mathbb{Z} \to \mathbb{R} \to S^1$?
- (d) Wahr oder falsch: X, Y topologische Räume und $f: X \to Y$ mit $f_*: \pi_i(X) \stackrel{\cong}{\to} \pi_i(Y)$ für alle i, dann gilt $X \simeq Y$.

2 | Warum sind S^2 und S^3 so ähnlich?

Ziel dieser Aufgabe ist der Vergleich der Homotopiegruppen von S^2 und S^3 .

- (a) Berechnen Sie $\pi_0(S^2)$ und $\pi_0(S^3)$.
- (b) Berechnen Sie $\pi_1(S^2)$ und $\pi_1(S^3)$.
- (c) Berechnen Sie $\pi_2(S^2)$ und $\pi_2(S^3)$.
- (d) Zeigen Sie $\pi_i(S^2) \cong \pi_i(S^3)$ für i > 3.

(Hinweis: Falls Sie nicht alle Gruppen bestimmen können, berechnen Sie alle Homotopiegruppen in Abhängigkeit eines einzelnen Moduls A (die Berechnung von A wird sehr bald sehr leicht sein).)

3 | Eckmann-Hilton = Hilton-Eckmann

Sei M eine Menge mit binären Operationen $- \circ - : M \times M \to M$ und $- \otimes - : M \times M \to M$ mit

- (i) Unitarität: es gibt $1_{\circ}, 1_{\otimes} \in M$ mit $m \circ 1_{\circ} = m = 1_{\circ} \circ m$ und $m \otimes 1_{\otimes} = m = 1_{\otimes} \otimes m$.
- (ii) Vertauschung: $(a \otimes b) \circ (c \otimes d) = (a \circ c) \otimes (b \circ d)$ für alle $a, b, c, d \in M$.
- (a) Zeigen Sie, dass $1_{\circ} = 1_{\otimes}$.
- (b) Zeigen Sie, dass die Operationen übereinstimmen und kommutativ sind. (Hinweis: Zeigen Sie $a \circ b = b \otimes a$)
- (c) Zeigen Sie, dass die Operation assoziativ ist.

Nun zu den vielfältigen Anwendungen:

- (d) Folgern Sie, dass $\pi_i(X)$ für $i \geq 2$ kommutativ ist.
- (e) Folgern Sie, dass $\pi_1(X)$ für einen H-Raum X kommutativ ist. (X H-Raum: es gibt $e \in X$ und $\mu: X \times X \to X$ mit $\mu(e,e) = e$ und $\mu(-,e) \simeq_e \operatorname{id}_X \simeq_e \mu(e,-)$)
- (f)* Folgern Sie, dass ein Gruppenobjekt in der Kategorie der Gruppen eine abelsche Gruppe ist.