EC 533 Labour Economics

Problem Set 2

- 1. (Signaling): In this problem, you are asked to work through a model that combines signaling with productive aspects of schooling. There are two types of agents: "high" and "low" ability. Education (e) is continuous and observed, but individual ability (and output) is not. The labor productivity for the "low" type is $y_l(e) = \alpha_1$ and the cost of education is $c_l(e) = \frac{3}{2}e^2$. For the "high" type, output and education costs are $y_h(e) = \alpha_1 + \alpha_2 e$ and $c_h(e) = e^2$, respectively.
 - (a) Solve for the most efficient separating equilibrium of the signaling game.
 - (b) Show that the high type does not have an incentive to deviate from your proposed equilibrium strategy.
 - (c) Does the high type's investment in education differ from what would have obtained in the perfect-information case? Why or why not?
 - (d) Suppose now that $c_l(e) = 10e^2$. Does the high type's investment in education differ from what would have obtained in the perfect-information case? Why or why not?
 - (e) Suppose again that $c_l(e) = \frac{3}{2}e^2$ and furthermore suppose that there is a compulsory schooling requirement of \underline{e} . Characterize the most efficient separating equilibrium. Does the high type invest in education more or less in this case than in (a)? Explain why.
 - (f) Characterize the equilibrium if $y_l(e) = y_h(e) = \alpha_1 + \alpha_2 e$; $c_l = \frac{3}{2}e^2$; and $c_h = e^2$. Why does the equilibrium differ from the one in (a)?
 - (g) Does a separating equilibrium exist when $y_l(e) = \alpha_0 + \alpha_2 e$; $y_h(e) = \alpha_1 + \alpha_2 e$; $c_l = c_h = e^2$ with $\alpha_0 < \alpha_1$?
 - (h) Compute the observed return to schooling in part (a).