Versuch 5: Oszilloskop

Team 2-13: Jascha Fricker, Benedict Brouwer

1. September 2022

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie 2.1 Tieftpass 2.2 Schwingkreis	2 2 2
3	Ergebnisse	3
4	Diskussion	3

1 Einleitung

In diesem Versuch wurden verschiedene RC und LC-Schaltungen mit einem Oszilloskop gemessen.

2 Theorie

2.1 Tieftpass

Eine Tiefpass besteht aus einem Kondensator mit Kapazität C und einem Widerstand mit Wert R. Die Ausgangsspannung wird beim Tiefpass am Kondensator (beim Hochpass am Widerstand) abgegriffen. Beim Tiefpass lässt sich aus R, C und der Frequenz f die Durchgangskurve, also der Quoteint der Ausgangsspannung $U_{\rm Atp}$ und der Eingangsspannung $U_{\rm E}$

$$g_{\rm tp} = \frac{U_{\rm Atp}}{U_{\rm E}} = \frac{1}{\sqrt{1 + (\omega RC)}} \tag{1}$$

(2)

berechnen. Auch die Phasenverschiebung

$$\phi_{\rm tp} = \arctan \frac{1}{\omega RC} \tag{3}$$

(4)

lässt sich theoretisch berechnen. Die Grenzfrequenz, bei der die Phasenverschiebung 0 ist, ist somit

$$f_{\rm g} = \frac{1}{2\pi RC} \,. \tag{5}$$

2.2 Schwingkreis

Auch bei einem Serienschwingkreis (Serienschaltuung von Spule und Kondensator) kann die Durchgangskurve

$$g_{\rm Ssc} = \frac{U_{\rm Atp}}{U_{\rm E}} = \frac{R}{\sqrt{R^2 + \left(\omega R - \frac{1}{\omega C}\right)^2}} \tag{6}$$

mit dem Ausgangswiderstand R, die Phasenverschiebung

$$\tan \phi_{\rm Ssc} = \frac{1}{R} \left(\omega L - \frac{1}{\omega C} \right) \tag{7}$$

und die Eigenfreqenz

$$f_{\rm Ssc} = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} \,. \tag{8}$$

berechnen.

Bei einem Parallelschwinkreis lässt sich die Eingenschwingung

$$f_{\rm Psc} \approx \frac{1}{2\pi} \sqrt{\frac{1}{RL} - \left(\frac{R^4C}{2L^3}\right)}$$
 (9)

nur ungefähr berechnen.

- 3 Ergebnisse
- 4 Diskussion