Chapitre M1

Cinématique

Application 1 On considère un point M dont les coordonnées cartésiennes dépendent du temps, avec

 $x(t) = 2t^2$, y(t) = 4t + 7 et z(t) = t(2 - t)1. Calculer les coordonnées du vecteur vitesse $\overrightarrow{\mathbf{v}}$, ainsi que sa norme.

2. En déduire l'expression du vecteur déplacement élémentaire
$$d\overrightarrow{OM}$$

- 3. Calculer les coordonnées du vecteur accélération \overrightarrow{a} , ainsi que sa norme.
- 4. Calculer l'angle que fait le vecteur vitesse avec l'axe (Ox) à l'instant t=1.
- Solution: $\boxed{1} \text{ Dans la base cartésienne, le vecteur } \overrightarrow{\mathbf{v}} \text{ s'exprime } \overrightarrow{\mathbf{v}} = \dot{x}\overrightarrow{e_{\mathbf{x}}} + \dot{y}\overrightarrow{e_{\mathbf{y}}} + \dot{z}\overrightarrow{e_{\mathbf{z}}} \text{ avec } (\overrightarrow{e_{\mathbf{x}}}, \ \overrightarrow{e_{\mathbf{y}}}, \ \overrightarrow{e_{\mathbf{z}}}) \text{ les}$

vecteurs de la base. $\dot{x} = 4t, \, \dot{y} = 4 \text{ et } \dot{z} = -2t + 2$

Ainsi on obtient $\overrightarrow{\mathbf{v}} = 4t\overrightarrow{e_{\mathbf{x}}} + 4\overrightarrow{e_{\mathbf{y}}} + (-2t+2)\overrightarrow{e_{\mathbf{z}}}$ $||\overrightarrow{\mathbf{v}}|| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$

$$=\sqrt{(4t)^2+4^2+(-2t+2)^2}$$

$$= \sqrt{16t^2 + 16 + 4t^2 - 8t + 4}$$

$$= \sqrt{16t^2 + 16 + 4t^2} - 4t^2 - 4t^$$

$$= \sqrt{20t^2 - 8t + 20}$$

$$\boxed{2}$$
 On a la relation suivant : $\overrightarrow{\nabla} = \frac{d\overrightarrow{OM}}{dt}$ $d\overrightarrow{OM} = \overrightarrow{\nabla} dt$

$$= (\dot{x}\overrightarrow{e_{x}} + \dot{y}\overrightarrow{e_{y}} + \dot{z}\overrightarrow{e_{z}})dt$$
$$= (\frac{dx}{dt}\overrightarrow{e_{x}} + \frac{dy}{dt}\overrightarrow{e_{y}} + \frac{dz}{dt}\overrightarrow{e_{z}})dt$$

$$= dx\overrightarrow{e_{\mathbf{x}}} + dy\overrightarrow{e_{\mathbf{y}}} + dz\overrightarrow{e_{\mathbf{z}}}$$

3 Dans la base cartésienne, le vecteur
$$\overrightarrow{a}$$
 s'exprime $\overrightarrow{a} = \ddot{x}\overrightarrow{e_{x}} + \ddot{y}\overrightarrow{e_{y}} + \ddot{z}\overrightarrow{e_{z}}$ avec $(\overrightarrow{e_{x}}, \overrightarrow{e_{y}}, \overrightarrow{e_{z}})$

les vecteurs de la base.
$$\ddot{x} = 4, \ \ddot{y} = 0 \ \text{et} \ \ddot{z} = -2$$

Ainsi on obtient
$$\overrightarrow{a} = 4\overrightarrow{e_x} - 2\overrightarrow{e_z}$$

 $||\overrightarrow{a}|| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$

 $=\sqrt{4^2(-2)^2}$

 $=\sqrt{20}=2\sqrt{5}$ 4 En passant dans une base cylindrinque, on obtient que $x(t) = r\cos(\theta)$ avec $r = ||\overrightarrow{\nabla}||$

A l'instant
$$t=1$$
 : $\theta(1)=cos^{-1}(\frac{x(1)}{||\overrightarrow{\nabla}(1)||})$
 $\theta(1)=cos^{-1}(\frac{2}{\sqrt{32}})$

 $\theta = cos^{-1}(\frac{x(t)}{||\overrightarrow{\mathbf{v}}||})$

$$= cos^{-1}\left(\frac{2}{4\sqrt{2}}\right)$$
$$= cos^{-1}\left(\frac{\sqrt{2}}{4}\right)$$

 $\approx 69.3^{\circ}$

Application 2: Changement de coordonnées

1. Sur un schéma, représenter les vecteurs $\overrightarrow{e_{\mathbf{x}}}$ et $\overrightarrow{e_{\mathbf{y}}}$

 $P(r, \theta) = P(x, y)$

Solution:

1

 $1~{\rm sur}~1$