Exercise 1 Let $E = \mathbb{Q}(\alpha)$, where α is a root of the equation:

$$\alpha^3 + \alpha^2 + \alpha + 2 = 0$$

Express $(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha)$ and $(\alpha - 1)^{-1}$ in the form

$$a\alpha^2 + b\alpha + c$$
 with $a, b, c \in \mathbb{Q}$

Proof.

$$(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha) = (\alpha^4 + \alpha^3 + \alpha^2) + (\alpha^3 + \alpha^2 + \alpha) \tag{1}$$

$$=\alpha(\alpha^3 + \alpha^2 + \alpha) - 2\tag{2}$$

$$= -2\alpha - 2\tag{3}$$

Note by polynomial long division we see that:

$$(x-1)(x^2+2x+3)+5=x^3+x^2+x+2$$
(4)

So plugging in α in the above equation we get $(\alpha - 1)(\alpha^2 + 2\alpha + 3) = -5$

$$\frac{1}{\alpha - 1} = \frac{\alpha^2 + 2\alpha + 3}{(\alpha - 1)(\alpha^2 + 2\alpha + 3)} \tag{5}$$

$$= \frac{-1}{5}\alpha^2 + \frac{-2}{5}\alpha + \frac{-3}{5} \tag{6}$$

Exercise 2 Let $E = F(\alpha)$, where α is algebraic over F, of odd degree. Show that $E = F(\alpha^2)$.

Proof. We will show that $\alpha \in F(\alpha^2)$. First note that this is clear if n = 1, since in that case $\alpha \in F$. So we can assume that $3 \le n = 2m + 1$. Since $\{1, \alpha, \dots, \alpha^{2m}\}$ is a basis let $a_i \in F$ such that:

$$\alpha^{2m+1} = \sum_{i=0}^{2m} a_i \alpha^i \tag{7}$$

Now we have:

$$(\alpha^{2})^{m+1} = \alpha^{2m+2}$$

$$= \alpha \alpha^{2m+1}$$

$$= \alpha \sum_{i=0}^{2m} a_{i} \alpha^{i}$$

$$= a_{2m} \alpha^{2m+1} + \sum_{i=0}^{2m-1} a_{i} \alpha^{i+1}$$

$$= \sum_{i=0}^{2m} a_{2m} a_{i} \alpha^{i} + \sum_{i=1}^{2m} a_{i-1} \alpha^{i}$$

$$(\alpha^{2})^{m+1} = \sum_{i=0}^{2m} (a_{2m} a_{i} + a_{i-1}) \alpha^{i} \text{ where } a_{-1} = 0$$

$$(\dagger)$$

Let $\beta \in F(\alpha^2)$ be given by $\beta = \sum_{j=0}^m (a_{2m}a_{2j} + a_{2j-1})\alpha^{2j}$, all the even terms in † Now by † we see that:

$$(\alpha^{2})^{m+1} - \beta + a_{2j-1})\alpha^{2j} = \sum_{i=0}^{2m} (a_{2m}a_{i} + a_{i-1})\alpha^{i} - \sum_{j=0}^{m} (a_{2m}a_{2j} + a_{2j-1})\alpha^{2j}$$

$$= \sum_{j=0}^{m} (a_{2m}a_{2j+1} + a_{2j})\alpha^{2j+1} \text{ odd terms in } \dagger$$

$$= \alpha(\sum_{j=0}^{m} (a_{2m}a_{2j+1} + a_{2j})\alpha^{2j})$$

So finitely since we notice that $\sum_{j=0}^{m} (a_{2m}a_{2j+1} + a_{2j})\alpha^{2j} \in F(\alpha^2)$ we have

$$\alpha = \frac{(\alpha^2)^{m+1} - \beta}{\sum_{i=0}^{m} (a_{2m} a_{2j+1} + a_{2j}) \alpha^{2j}} \in F(\alpha^2)$$

So $F(\alpha) \subseteq F(\alpha^2) \subseteq F(\alpha) = E$.

Exercise 3

Proof. Let $h(X) = \operatorname{Irr}(\beta, F(\alpha), X)$. Then, since $g(X) \in F(\alpha)[X]$ and $g(\beta) = 0$ we have $h(X) \mid g(X)$, so $\deg h \leq \deg g$. So note that:

$$[F(\alpha, \beta) \colon F] = [F(\alpha, \beta) \colon F(\alpha)][F(\alpha) \colon F]$$
$$= (\deg h)(\deg f)$$

But on the other hand we have:

$$[F(\alpha, \beta) \colon F] = [F(\alpha, \beta) \colon F(\beta)] \underbrace{[F(\beta) \colon F]}_{\deg g}$$

Therefore we see that $\deg g \mid (\deg h)(\deg f)$, but since $\gcd(\deg g, \deg f) = 1$ we have that $\deg g \mid \deg h$. So we have $\deg g \leq 1$ $\deg h$. Therefore $\deg g = \deg h$, so g(X) = ch(X) with $c \in F(\alpha)$. But by definition of Irr, c = 1. So $g(X) = \operatorname{Irr}(\beta, F(\alpha), X)$ and so is irreducibe in $F(\alpha)[X]$

Exercise 4 Let α be the real positive fourth root of 2. Find all intermidiate fields in the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} .

Proof. Notice that $Irr(\alpha, \mathbb{Q}, X) = X^4 - 2$, so $[\mathbb{Q}(\alpha): \mathbb{Q}] = 4$. Indeed α is a root of this polynomial and by Eisenstein this polynomila is irreducible. We claim that

Now notice that $(\alpha^2)^2 - 2 = \alpha^4 - 2 = 0$, so α^2 is a root of $X^2 - 2$. So we see that $[\mathbb{Q}(\alpha^2): \mathbb{Q}] = 2$. So $\mathbb{Q} \subseteq \mathbb{Q}(\alpha^2) \subseteq \mathbb{Q}(\alpha)$. Now let F be an intermidiate field of $\mathbb{Q}(\alpha)$ and \mathbb{Q} , then we have:

$$4 = [\mathbb{Q}(\alpha) \colon \mathbb{Q}] = [\mathbb{Q}(\alpha) \colon F][F \colon \mathbb{Q}]$$

So we see that $[F:\mathbb{Q}] \mid 4$, if $[F:\mathbb{Q}] = 1$ then $F = \mathbb{Q}$ if $[F:\mathbb{Q}] = 4$ then $F = \mathbb{Q}(\alpha)$, so assume that $[F:\mathbb{Q}] = 2$, so

Now let's look at $m(X) = \operatorname{Irr}(\alpha, F, X)$ notice that since $F(\alpha) = \mathbb{Q}(\alpha)$ and $[\mathbb{Q}(\alpha): F] = 3$ we see that $\deg m = 2$.

Now by inspection we notice that the roots of $X^4 - 2$ are $i^k \alpha$ where k = 0, 1, 2, 3. Now since $X^4 - 2 \in F[X]$ we see that $m(X) \mid X^4 - 2$, furthermore since $m(\alpha) = 0$ we have that $(X - \alpha) \mid m(X)$.

Therefore we see that:

$$m(X) = (X - \alpha)(X - i^k \alpha) \text{ for some } k = 1, 2, 3$$
(8)

Note since $X - \alpha, m(X) \in \mathbb{Q}(\alpha)[X]$ this means that $X - i^k \alpha \in \mathbb{Q}(\alpha)[X]$. So $i^k \alpha \in \mathbb{Q}(\alpha)$, but since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ we see that k must be even. So we have that:

$$m(X) = (X - \alpha)(X + \alpha) = X^2 - \alpha^2 \in F[X]$$

$$\tag{9}$$

So we see that $\alpha^2 \in F$, so $\mathbb{Q}(\alpha^2) \subseteq F$ but since $2 = [\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha^2)] = [\mathbb{Q}(\alpha) : F][F : \mathbb{Q}(\alpha^2)] = 2[F : \mathbb{Q}(\alpha^2)]$, so $[F : \mathbb{Q}(\alpha^2)] = 2[F : \mathbb{Q}(\alpha^2)] = 2[F : \mathbb{Q}(\alpha^2)]$

So the only intermidiate fields in the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} are $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\alpha^2)$, $\mathbb{Q}(\alpha^2)$

Exercise 5 If α is a complex root of $X^6 + X^3 + 1$, find all homomorphisms $\sigma \colon \mathbb{Q}(\alpha) \to \mathbb{C}$.

Proof.

Lemma 1. For any homomorphism $\sigma: F \subseteq \mathbb{C} \to \mathbb{C}$, where F is as subfield of \mathbb{C} . We have $\sigma(r) = r$ for all $r \in \mathbb{Q}$.

Proof. Recall $\sigma(1) = 1$, so for all $n \in \mathbb{N}^*$ we have

$$\sigma(n) = \sigma(\underbrace{1+1+\cdots+1}_{\text{n times}}) = \underbrace{\sigma(1)+\sigma(1)+\cdots+\sigma(1)}_{\text{n times}} = \underbrace{1+1+\cdots+1}_{\text{n times}} = n$$

Since $\sigma(0) = 0$ and $\sigma(-n) = -\sigma(n)$. We see that for all $n \in \mathbb{Z}$ we have $\sigma(n) = n$.

Therefore we see that $\sigma(\frac{1}{m}) = \sigma(m^{-1}) = (\sigma(m))^{-1} = m^{-1} = \frac{1}{m}$ for all $m \in \mathbb{Z} \setminus \{0\}$. For all $r \in \mathbb{Q}$ there exists $n \in \mathbb{Z}$ and $m \in \mathbb{N}^*$ such that $r = \frac{n}{m}$ and so we have

$$\sigma(r) = \sigma(\frac{n}{m}) = \sigma(n)\sigma(\frac{1}{m}) = \frac{\sigma(n)}{\sigma(m)} = \frac{n}{m} = r$$

Lemma 2. If $\alpha \in \mathbb{C}$ is such that there exists $n \in \mathbb{N}^*$ such that $\alpha^n = 1$ and there doesn't exist a $m \in \mathbb{N}^*$ such that $\alpha^m = 1$, then $\alpha = e^{\frac{2i\pi k}{n}}$ where $\gcd(k, n) = 1$

Proof. Recall from complex analysis we know that $\alpha = e^{\frac{2i\pi k}{n}}$, for some $0 \le k \le n$. Now let $d = \gcd(k, n)$, so let $k_1, n_1 \in \mathbb{N}$ be such that $dk_1 = k$ and $dn_1 = n$,

 $\alpha^{n_1} = e^{\frac{2i\pi k n_1}{n}} = e^{\frac{2i\pi d k_1 n_1}{n}} = e^{2i\pi k_1} = 1 \tag{10}$

Since $n_1 \le n \Rightarrow n_1 = n$ so d = 1.

Lemma 3. The roots of $X^6 + X^3 + 1$ are of the form $e^{\frac{2i\pi k}{9}}$, where $1 \le k < 9$ and gcd(k, 9) = 1.

Proof. By polynomial division we see that:

$$X^9 - 1 = (X^3 - 1)(X^6 + X^3 + 1) (11)$$

So note that the roots of $X^6 + X^3 + 1$ are the roots of $X^9 - 1$ that are not roots of $(X^3 - 1)$ (indeed we can check derivatives to see that these polynomials don't have any multiple roots).

Let β be such that $\beta^9 = 1$ assume that $\beta^n = 1$ for n < 9. Then we have $e^{\frac{2\pi ki}{9}}$, for some $0 \le k < 9$ and we have:

$$\beta^n = e^{\frac{2\pi kni}{9}}$$

So we have $9 \mid kn$. Since both k, n < 9 this means that $3 \mid k$, so β is a root of $X^3 - 1$. So the roots of $X^6 + X^3 + 1$ are elements β such that $\beta^9 = 1$ and $\beta^n \neq 1$ for n < 9. So by the lemma 2, the roots of this polynomial are:

$$e^{\frac{2i\pi k}{9}}$$
 such that $\gcd(9,k) = 1$ (12)

Let $\sigma \colon \mathbb{Q}(\alpha) \to \mathbb{C}$, be any homomorphism:

By lemma 1:

$$0 = \sigma(\alpha^{6} + \alpha^{3} + 1) = \sigma(\alpha)^{6} + \sigma(\alpha)^{3} + 1$$

So σ sends α to another root of $X^6 + X^3 + 1$. Furthermore, let β be a root of $X^6 + X^3 + 1$ since $\mathbb{Q}(\alpha) = \{\sum_{i=0}^5 a_i \alpha^i \mid a_i \in \mathbb{Q}\}$, we can define a homomorphism $\sigma_\beta \colon \mathbb{Q}(\alpha) \to \mathbb{C}$, with $\sigma_\beta(\alpha) = \beta$ and $\sigma(r) = r$ for all $r \in \mathbb{Q}$.

So all homomorphisms of from $\mathbb{Q}(\alpha) \to \mathbb{C}$ are the homomorphisms sending α to another root of $X^6 + X^3 + 1$. If we let $\{k_1, k_2, \dots, k_6\}$ be the coprime integers smaller than 9, where wlog we let $\alpha = e^{\frac{2\pi i k_1}{9}}$, then the homomorphisms are $\sigma_i \colon \mathbb{Q}(\alpha) \to \mathbb{C}$ where $\sigma_i(\alpha) = e^{\frac{2\pi i k_1}{9}}$.

Exercise 6

Proof. Note that $((\sqrt{2} + \sqrt{3})^2 - 5)^2 - 24 = (2 + 3 + \sqrt{24} - 5)^2 - 24 = 0$. So $\sqrt{2} + \sqrt{3}$ is algebraic, furthermore since $f(X) = (X^2 - 5)^2 - 24 = X^4 - 10X^2 + 1$, is such that $f(\sqrt{2} + \sqrt{3}) = 0$, we see that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] \le 4$.

$$[\mathbb{Q}(\sqrt{2} + \sqrt{3}) \colon \mathbb{Q}] = [\mathbb{Q}(\sqrt{2} + \sqrt{3}) \colon \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) \colon \mathbb{Q}] = [\mathbb{Q}(\sqrt{2} + \sqrt{3}) \colon \mathbb{Q}(\sqrt{2})]2$$
(13)

Since $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] \leq 4$ and is even: $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=2$ or $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$.

Assume for a contradiction that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=2$, then we have $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}(\sqrt{2})]=1$ so we have: $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2})$. So we have $\sqrt{2},\sqrt{2}+\sqrt{3}\in\mathbb{Q}(\sqrt{2})\Rightarrow\sqrt{3}\in\mathbb{Q}(\sqrt{2})$.

So there are $a, b \in Q$ such that:

$$\sqrt{3} = a + b\sqrt{2} \Rightarrow 3 = (a + b\sqrt{2})^2 = ((a^2 + 2b^2) + 2ab\sqrt{2})$$
(14)

Therefore:

$$\sqrt{2} = \frac{(3 - (a^2 + 2b^2))}{2ab} \in \mathbb{Q} \tag{15}$$

Which is famously false.

Therefore
$$[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$$

Exercise 7

 \Box

Exercise 8

Proof.

Exercise 9 Find the splitting field of $f(X) = X^{p^8} - 1$ over the field $\mathbb{Z}/p\mathbb{Z}$.

Proof. Let K be the spitting field of f(X), the for all non-zero $\alpha \in K$ we have $\alpha^{p^8} = 1$, but recall we also have

Exercise 10 Let α be a real number such that $\alpha^4 = 5$.

- (a) Show that $\mathbb{Q}(i\alpha^2)$ is normal over \mathbb{Q}
- (b) Show that $\mathbb{Q}(\alpha + i\alpha)$ is normal over $\mathbb{Q}(i\alpha^2)$
- (c) Show that $\mathbb{Q}(\alpha + i\alpha)$ is not normal over \mathbb{Q}

Proof. (a) Note since:

$$(i\alpha^2)^2 = -1\alpha^4 = -5 \tag{16}$$

So $i\alpha^2$ is the root of the polynomial $X^2 + 5 \in \mathbb{Q}[x]$. The other root of this polynomial is $-i\alpha^2$.

So $\mathbb{Q}(i\alpha^2) = \mathbb{Q}(i\alpha^2, -i\alpha^2)$ is the splitting field of $X^2 + 5$, and so it is normal over \mathbb{Q} .

(b) Note since:

$$(\alpha + i\alpha)^2 = \alpha^2 + 2i\alpha^2 - \alpha^2 = 2i\alpha^2 \tag{17}$$

So $\alpha + i\alpha$ is a root of the polynomial $X^2 - 2i\alpha^2 \in \mathbb{Q}(i\alpha^2)[X]$, the other root of this polynomial is $-(\alpha + i\alpha)$. So $\mathbb{Q}(\alpha + i\alpha) = \mathbb{Q}(\alpha + i\alpha, -(\alpha + i\alpha))$ is the splitting field of $X^2 - 2i\alpha^2$. So $\mathbb{Q}(\alpha + i\alpha)$ is normal over $\mathbb{Q}(i\alpha^2)$.

(c) Let:

$$f(X) = (X^2 - 2i\alpha^2)(X^2 + 2i\alpha^2) = X^4 + 20$$
(18)

Note that

$$(-\alpha + i\alpha) = (i(\alpha + i\alpha))^2 = -(\alpha + i\alpha)^2 = -2i\alpha^2$$
(19)

So it is a root of $(X^2 + 2i\alpha^2)$. So the roots of f are $\pm(\alpha + i\alpha)$ and $\pm(-\alpha + i\alpha)$.

Assume for a contradiction that $-\alpha + i\alpha \in \mathbb{Q}(\alpha + i\alpha)$ then:

$$r(\alpha + i\alpha) = -\alpha + i\alpha$$
 for some $r \in \mathbb{Q}$
 $r(\alpha + i\alpha) = i(\alpha + i\alpha)$

Therefore, r = i which is not possible since $i \notin \mathbb{Q}$. So $-\alpha + i\alpha \notin \mathbb{Q}(\alpha + i\alpha)$.

Note $X^4 + 20$ is irreducible by Eisenstein, that has a root in $\mathbb{Q}(\alpha + i\alpha)$ but does not split into linear factors in $\mathbb{Q}(\alpha + i\alpha)$. So it is indeed not normal over \mathbb{Q} .

Exercise 11 Describe the splitting fields of the following polynomials over Q, and find the dgree of each such splitting field.

- (a) $X^2 2$
- (b) $X^2 1$
- (c) $X^3 2$
- (d) $(X^3-2)(X^2-2)$
- (e) $X^2 + X + 1$
- (f) $X^6 + X^3 + 1$
- (g) $X^5 7$

Proof. (a) The roots of $X^2 - 2$ are $\pm \sqrt{2}$ so the splitting field of $X^2 - 2$ is $\mathbb{Q}(\sqrt{2})$. The degree is $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$

(b) The splitting field of $X^2 - 1$ is \mathbb{Q} , and $[\mathbb{Q} : \mathbb{Q}] = 1$.

(c) Let α be the real root of X^3-2 , we know that a real root exists by the intermidiate value theorem. Let ζ_3 be a root of X^2+X+1 , then since $X^3-1=(X-1)(X^2+X+1)$, we see that $\zeta_3^3-1=0$. Since ζ_3 is a primitive root of unity we can assume whoge that $\zeta_3=e^{\frac{2i\pi}{3}}$

Then notice that:

$$(\zeta_3{}^i\alpha)^3 - 2 = \zeta_3{}^{3i}\alpha^3 - 2 = \alpha^3 - 2 = 0 \text{ for } i = 0, 1, 2$$
 (20)

Note since $\zeta_3 \neq \pm 1$ we see that $\alpha, \zeta_3 \alpha, {\zeta_3}^2 \alpha$ are the distinct roots of $X^3 - 2$. So the splitting field of $X^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(\alpha, \zeta_3 \alpha, {\zeta_3}^2 \alpha)$.

But notice, since $\alpha, \zeta_3 \alpha \in \mathbb{Q}(\alpha, \zeta_3 \alpha, {\zeta_3}^2 \alpha)$

$$\zeta = \frac{1}{2}(\zeta \alpha)(\alpha^2) \in \mathbb{Q}(\alpha, \zeta \alpha, \zeta^2 \alpha)$$
(21)

So $\mathbb{Q}(\alpha,\zeta)\subseteq\mathbb{Q}(\alpha,\zeta\alpha,\zeta^2\alpha)$, the other inclusion is clear so $\mathbb{Q}(\alpha,\zeta)$ is the splitting field of X^3-2 over \mathbb{Q} .

$$[\mathbb{Q}(\alpha,\zeta)\colon\mathbb{Q}] = [\mathbb{Q}(\alpha,\zeta)\colon\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha)\colon\mathbb{Q}]$$
$$= 3[\mathbb{Q}(\alpha,\zeta)\colon\mathbb{Q}(\alpha)]$$

Note that since $\frac{d}{dx}X^2 + X + 1 = 2X + 1$, then then:

$$(-0.5)^2 + 0.5 + 1 = 0.75 \le X^2 + X + 1 \text{ for all } X \in \mathbb{R}$$
 (22)

So this function has no roots in \mathbb{R} , so $\zeta_3 \in \mathbb{C} \setminus \mathbb{R}$, so $\zeta_3 \notin \mathbb{Q}(\alpha) \subseteq \mathbb{R}$.

Since $\operatorname{Irr}(\zeta_3,\mathbb{Q}(\alpha),X) \mid X^2+X+1$ and can't be of degree 1, we find that $\operatorname{Irr}(\zeta_3,\mathbb{Q}(\alpha),X)=X^2+X+1$. So

$$[\mathbb{Q}(\alpha,\zeta)\colon\mathbb{Q}] = 3\cdot 2 = 6\tag{23}$$

(d) Recall the roots of $(X^3 - 2)(X^2 - 2)$, are $\pm \sqrt{2}$ and $\zeta_3^i \alpha$, for i = 0, 1, 2. Where ζ_3 and α have the same definition as in (c).

Any field that contains these roots also contain ζ_3 so contains $\mathbb{Q}(\zeta_3, \alpha.\sqrt{2})$. But $\mathbb{Q}(\zeta_3, \alpha.\sqrt{2})$ contains all the roots of this polynomial so it is indeed the splitting field.

Now since

$$\begin{split} [\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}] &= [\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2})\colon\mathbb{Q}] \\ &= [\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}(\alpha,\sqrt{2})][\mathbb{Q}(\alpha,\sqrt{2})\colon\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2})\colon\mathbb{Q}] \\ &= 4[\mathbb{Q}(\alpha,\sqrt{2})\colon\mathbb{Q}(\sqrt{2})] \end{split}$$

Note we indeed see that since ζ_3 is imaginary, $\zeta_3 \notin \mathbb{Q}(\alpha, \sqrt{2}) \subseteq \mathbb{R}$ so $[\mathbb{Q}(\alpha, \zeta_3, \sqrt{2}) \colon \mathbb{Q}(\alpha, \sqrt{2})] = 2$.

On the other hand notice that:

$$\begin{aligned} [\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}] &= [\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}(\alpha,\zeta_3)][\mathbb{Q}(\alpha,\zeta_3)\colon\mathbb{Q}] \\ &= 6[\mathbb{Q}(\alpha,\zeta_3,\sqrt{2})\colon\mathbb{Q}(\alpha,\zeta_3)] \end{aligned}$$

So $3 \mid [\mathbb{Q}(\alpha, \zeta_3, \sqrt{2}) \colon \mathbb{Q}] = 4[\mathbb{Q}(\alpha, \sqrt{2}) \colon \mathbb{Q}(\sqrt{2})] \Rightarrow 3 \mid [\mathbb{Q}(\alpha, \sqrt{2}) \colon \mathbb{Q}(\sqrt{2})].$

Since $\operatorname{Irr}(\alpha, \mathbb{Q}(\sqrt{2}), X) \mid X^3 - 2$, we see that $[\mathbb{Q}(\alpha, \sqrt{2}) \colon \mathbb{Q}(\sqrt{2})] \leq 3$, therefore $[\mathbb{Q}(\alpha, \sqrt{2}) \colon \mathbb{Q}(\sqrt{2})] = 3$ so:

$$[\mathbb{Q}(\alpha, \zeta_3, \sqrt{2}) \colon \mathbb{Q}] = 12 \tag{24}$$

(e) Recall that the roots of $X^2 + X + 1$ are ζ_3 and ζ_3^2 , where ζ_3 is defined as above. So the splitting field of this polynomial is:

$$\mathbb{Q}(\zeta_3) \tag{25}$$

Furthermore, since $\zeta_3 \notin \mathbb{Q}$ we see that $[\mathbb{Q}(\zeta_3) \colon \mathbb{Q}] = 2$.

(f) Let $\omega_1, \omega_2, \omega_3$ be the roots of $X^3 - \zeta_3$ and $\gamma_1, \gamma_2, \gamma_3$ be the roots of $X^3 - {\zeta_3}^2$. Note we see that these roots are all distinct by looking at derivatives. We have:

$$(\omega_i)^6 + \omega_i^3 + 1 = \zeta^3 + \zeta + 1 = 0 \text{ and } (\gamma_i)^6 + \gamma_i^3 + 1 = (\zeta^2)^3 + \zeta^2 + 1 = 0 \text{ for } i = 1, 2, 3$$
 (26)

Since $\zeta_3 = e^{\frac{2i\pi(1+3k)}{3}}$, for $k \in \mathbb{Z}$. We have that the distinct roots of $X^3 - \zeta_3$ are $e^{\frac{2i\pi(1+3k)}{9}}$, for k = 0, 1, 2. More explicitly the roots:

- $e^{\frac{2i\pi}{9}}$
- \bullet $e^{\frac{8i\pi}{9}}$
- $e^{\frac{14i\pi}{9}}$

Likewise the distinct roots of $X^3 - \zeta_3^2$ are $e^{\frac{2i\pi(2+3k)}{9}}$, for k = 0, 1, 2. More explicitly the roots:

- \bullet $e^{\frac{4i\pi}{9}}$
- \bullet $e^{\frac{10i\pi}{9}}$
- $\bullet e^{\frac{16i\pi}{9}}$

Note that any field containing the roots of $X^6 + X^3 + 1$ contains the field $\mathbb{Q}(e^{\frac{2\pi i}{9}})$. Furthermore since:

$$(e^{\frac{2i\pi}{9}})^2 = e^{\frac{4i\pi}{9}}$$

$$(e^{\frac{2i\pi}{9}})^4 = e^{\frac{8i\pi}{9}}$$

$$(e^{\frac{2i\pi}{9}})^8 = e^{\frac{16i\pi}{9}}$$

$$(e^{\frac{2i\pi}{9}})^{-2} = e^{\frac{-4i\pi}{9}} = e^{2\pi i + \frac{-4i\pi}{9}} = e^{\frac{14i\pi}{9}}$$

$$(e^{\frac{2i\pi}{9}})^{-4} = e^{\frac{-8i\pi}{9}} = e^{2\pi i + \frac{-8i\pi}{9}} = e^{\frac{10i\pi}{9}}$$

So $\mathbb{Q}(e^{\frac{2\pi i}{9}})$ is contains all the roots of $X^6 + X^3 + 1$ and so is the splitting field over \mathbb{Q} . Furthermore, using Eisenstein on $(X+1)^6 + (X+1)^3 + 1$, we see that $X^6 + X^3 + 1$ is irreducible so:

$$[\mathbb{Q}(e^{\frac{2\pi i}{9}}):\mathbb{Q}] = \deg(X^6 + X^3 + 1) = 6$$

(g) $X^5 - 7$

By the intermidiate value theorem, we can see that this polynomial has a real root, call this β . Now let ζ_5 be a root of $X^4 + X^3 + X^2 + X + 1$, note since

$$(\zeta_5)^5 - 1 = ((\zeta_5) - 1)((\zeta_5)^4 + (\zeta_5)^3 + (\zeta_5)^2 + (\zeta_5) + 1) = 0$$

And if $n \leq 5$ is such that $\zeta_5^n = 1$, then we have $(X^n - 1) \mid (X^5 - 1) = (X - 1)(X^4 + X^3 + X^2 + X + 1)$, but from Eisenstein we can see that $X^4 + X^3 + X^2 + X + 1$ is irreducibe and $\zeta + 5 \neq 1$, so we have $X^n - 1 = X^5 - 1$, so n = 5. Then ζ_5 is a primitive root of unity.

So WLOG we can let $\zeta_5 = e^{\frac{2\pi i}{5}}$, now by a similar argument from, (c) we see that the splitting field of $X^5 - 7$ is:

$$\mathbb{Q}(\beta,\zeta_5)$$

And similarly to (c) we conclude that

$$[\mathbb{Q}(\beta,\zeta_5)\colon\mathbb{Q}] = [\mathbb{Q}(\beta,\zeta_5)\colon\mathbb{Q}(\beta)][\mathbb{Q}(\beta)\colon\mathbb{Q}] = 4\cdot 5 = 20$$

Exercise 12 Let K be a finite field with p^n elements, show that every element of K has an unique p^{th} root in K.

Proof. Let $\alpha \in K$ and $f(X) = X^p - \alpha \in K[X]$, let $\beta \in K^a$ be a root of f(X), then notice that we have $\beta^p = \alpha$ Recall that α is a root of the polynomial $g(X) = X^{p^n} - X$:

$$0 = \alpha^{p^n} - \alpha = (\beta^p)^{p^n} - \beta^p = (\beta^{p^n})^p - \beta^p = (\beta^{p^n} - \beta)^p$$
 (27)

Since K^a is a field this implies that $\beta^{p^n} - \beta = 0$. So we see that β is a root of g(X) so $\beta \in K$.

Now we will show uniqueness assume that β and γ are roots of f(X) so we have:

$$(X - \gamma)^p = X^p - \gamma^p = X^p - \alpha = X^p - \beta^p = (X - \beta)^p$$
(28)

So by unique factorization of K[X] we have that $\gamma = \beta$.

Exercise 13 If the roots of a monic polynomial $f(X) \in k[X]$ in some splitting field are distinct and form a field, then char k = p and $f(X) = X^{p^n} - X$.

Proof. Let $S = \{\alpha \in k^a \mid f(\alpha) = 0\}$, since S is finite and a field there is a p such that: $\underbrace{1 + 1 + \dots + 1}_{p \text{ times}}$.

So we indeed see that k has characteristic p, now notice that since S is a finite field of characteristic p, then it is of the form \mathbb{F}_{p^n} , for some $n \geq 1$. So all elements of S are the roots of a polynomial $X^{p^n} - X$. So we have:

$$f(X) = \prod_{\alpha \in S} (X - \alpha) = X^{p^n} - X \tag{29}$$

Exercise 14 Let $\operatorname{char} K = p$. Let L be an extension of K, and suppose that [L:K] is prime to p. Show that L is separable over K.

Proof. Recall that $[L:K] = p^n[L:K]_s$, for some $n \in \mathbb{N}$. But we also know that [L:K] is prime to p, so n = 0.

Exercise 15 Suppose char K = p. Let $a \in K$, if a has no p-th rooth in K, show that $X^{p^n} - a$ is irreducibe in K[X] for all positive integers n.

Proof.

Exercise 16 Let char K = p. Let α be algebraic over K. Show that α is separable if and only if $K(\alpha) = K(\alpha^{p^n})$ for all positive integers n.

Proof. $\bullet \Rightarrow$ Assume that α is separable.

Exercise 17 Prove that the following two properties are equivalent:

- (a) Every algebraic extension of K is separable
- (b) Either char K = 0, or char K = p and every element of K has a p-th root in K.

Exercise 18 Show that every element of a finite field can be written as a sum of two squares in that field.

Proof. Let F be a finite field and $\alpha \in F$.

Exercise 19 Let E be an algebraic extension of F. Show that every subring of E which contains F is actually a field. Is this necessarily true if E is not algebraic over F?

Prove or give a counterexample

Proof. Let $F \subseteq L$ be a subring of E. Let $\alpha \in L \setminus \{0\}$, since α is algebraic over F let

$$p(X) = Irr(\alpha, F, X) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$$

Since this polynomial is irreducibe we know that $a_0 \neq 0$, since if it was we could factor this polynomial by 0.

So we have:

$$a_0 + a_1\alpha + \dots + \alpha^n = 0 \Rightarrow -a_0^{-1}(a_1\alpha + \dots + \alpha^n) = 1 \Rightarrow \alpha \underbrace{\left(-a_0^{-1}(a_1 + a_2\alpha + \dots + \alpha^{-1})\right)}_{\beta} = 1$$

7

But since $\alpha, a_i \in L$, we see that $\alpha^{-1} = \beta \in L$. So every non-zero element of L is invertible, so L is a field(it is trivially a commutative ring).

Now let us look ath the extension \mathbb{R}/\mathbb{Q} , let $x \in \mathbb{R}$ ne transcendental over \mathbb{Q} (we can choose $x = \pi$ if we want, but since \mathbb{Q}^a is countable and \mathbb{R} is uncountable there are an uncountably infinite amount of transcendental numbers in \mathbb{R} over \mathbb{Q}).

Let $\mathbb{Q}[x] = \{a_0 + a_1x + \cdots + a_nx^n \mid n \in \mathbb{N}, \ a_i \in \mathbb{Q} \text{ and } a_n \neq 0\}$, this is a subring of \mathbb{R} . Assume that this is a field, then there exists $a_i \in \mathbb{Q}$ such that:

$$a_0 + a_1 x + \dots + a_n x^n = x^{-1} \tag{30}$$

Note that n > 0, since $x \notin \mathbb{Q} \Rightarrow x^{-1} \notin \mathbb{Q}$. From this we see that we have:

$$-1 + a_0 x + a_1 x^2 + \dots + a_n x^{n+1} = 0 (31)$$

So if we let $-1 + \sum_{i=0}^{n} a_i X^{i+1} = q(X) \in \mathbb{Q}[X]$, is a polynomial such that q(x) = 0. But this contradicts the fact that X is transcendental. So this statement is not necessarily true if E is not algebraic over F.

Exercise 20 Let E = F(x) where x is transcendental over F.

- (a) Let $K \neq F$ be a subfield of E which contains F. Show that x is algebraic over K.
- (b) Let $y = \frac{f(x)}{g(x)}$ be a ration function with relatively prime polynomials $f, g \in F[x]$. Let $n = \max(\deg f, \deg g)$. Suppose n > 1, prove that:

$$[F(x)\colon F(y)] = n$$

Proof. (a) Let $y \in K \subseteq E$. Furthermore we can assume that $y \notin F$. Recall

$$E = F(x) = \{f(x) \mid f \in F(X) \text{ is a rational function}\}\$$

So there is a rational function f(X) such that f(X) = y. Let $p(X), q(X) \in F[X]$ such that $f(X) = \frac{p(X)}{q(X)}$, we have:

$$p(x) - q(x)y = 0 (32)$$

So let $s(X) \in E[X]$ be given by s(X) = p(X) - q(X)y. Assume that s(X) = 0 this means that:

$$p(X) - q(X)y = 0 \Rightarrow p(X) = q(X)y$$

Since $q \neq 0$, this implies that $y \in F$ (just compare coefficients), but this is impossible by assumption. So $s(X) \neq 0$ and s(x) = 0, so x is algebraic over E.

(b) Since
$$n \ge 1$$
, notice that $0 \ne f(X) - g(X)y \in F(y)[X]$. So $Irr(x, F(y), X) \mid f(X) - g(X)y$.

Exercise 21 Let \mathbb{Z}^+ be the set of all positive integers, and A an additive abelian group. Let $f: \mathbb{Z}^+ \to A$ and $g: \mathbb{Z}^+ \to A$ be maps. Suppose that for all n,

$$f(n) = \sum_{d \min n} g(d)$$

Let μ be the Möbius function. Prove that:

$$g(n) = \sum_{d|n} \mu(n/d) f(d)$$

Recall the Möbius fucntion is the function such that:

$$\begin{cases} \mu(1) = 1 \\ \mu(p_1 \cdots p_r) = (-1)^r \text{ if } p_i \text{ are distinct primes} \\ mui(m) = 0 \text{ if } p^2 \mid m \text{ for some prime } p. \end{cases}$$

 \Box

23.Let k be a finite field with q elements

(a) Define the **zeta function** by:

$$Z(t) = (1-t)^{-1} \prod_{p} (1-t^{\deg p})^{-1}$$
(33)

Where p ranges over all irreducible polynomials $p = p(X) \in k[X]$ with leading coefficient 1.

Prove that Z(t) is a rational function and determine this rational function.

(b) Let $\pi_q(n)$ be the number of primes p as in (a) of degree $\leq n$. Prove that

$$\pi_q(m) = \frac{q}{q-1} \frac{q^m}{m} \text{ for } m \to \infty$$
(34)