Livro: Álgebra Linear - Editora Harbra

(Boldrini/Costa/Figueiredo/Wetzler)

nibblediego@gmail.com.br Compilado dia 06/03/2017

Solucionário da 3^a edição do livro de Álgebra Linear dos autores: José Luiz Boldrini, Sueli I.Rodrigues Costa, Vera Lúcia Figueiredo e Henry G. Wetzler.

Para quem desejar; uma cópia do livro pode ser baixada em http://www.professores.uff.br/jcolombo/Alg_lin_I_mat_2012_2/Algebra%20Linear%20Boldrini.pdf.

A expectativa é que seja respondido um capítulo do livro por mês. Mas, infelizmente resolver e digitar (principalmente digitar), os exercícios desse livro leva um bom tempo. Assim, pode haver atrasos na postagem. De todo modo, não deixe de acompanhar o documento no link abaixo, para obter futuras atualizações. www.number.890m.com

Sumário

MATRIZES	2
1.1 Exercícios da página 11	2
1.2 Exercícios da página 26	14
SISTEMAS DE EQUAÇÕES LINEARES	20
2.1 Exercícios da página 49	20
DETERMINANTE E MATRIZ INVERSA	44
3.1 Exercícios da página 90	44
ESPAÇO VETORIAL	62
4.1 Exercícios da página 129	62
TRANSFORMAÇÕES LINEARES	91
5.1 Exercícios da página 171	91
ANEXO I	101
ANEXO II	102
	1.1 Exercícios da página 11 1.2 Exercícios da página 26 SISTEMAS DE EQUAÇÕES LINEARES 2.1 Exercícios da página 49 DETERMINANTE E MATRIZ INVERSA 3.1 Exercícios da página 90 ESPAÇO VETORIAL 4.1 Exercícios da página 129 TRANSFORMAÇÕES LINEARES 5.1 Exercícios da página 171

1 MATRIZES

1.1 Exercícios da página 11

1. Sejam

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} e D = [2, -1]$$

Encontre:

- a) A + B
- b) A · C
- c) B · C
- d) C · D
- e) D · A
- f) D · B
- g) -A
- h) -D

Solução de A:

$$A + B$$

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & -1 \end{array}\right) + \left(\begin{array}{ccc} -2 & 0 & 1 \\ 3 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} -1 & 2 & 4 \\ 5 & 1 & 0 \end{array}\right)$$

Solução de B:

$$A \cdot B$$

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & -1 \end{array}\right) \cdot \left(\begin{array}{c} -1 \\ 2 \\ 4 \end{array}\right) = \left(\begin{array}{c} 15 \\ -4 \end{array}\right)$$

Solução de C:

$$-1 \cdot A$$

$$-1 \cdot \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & -1 \end{array}\right) = \left(\begin{array}{rrr} -1 & -2 & -3 \\ -2 & -1 & 1 \end{array}\right)$$

2. Seja A =
$$\begin{pmatrix} 2 & x^2 \\ 2x - 1 & 0 \end{pmatrix}$$
 Se A' = A, então $x = \cdots$

Se A' = A então:

$$\left(\begin{array}{cc} 2 & 2x-1 \\ x^2 & 0 \end{array}\right) = \left(\begin{array}{cc} 2 & x^2 \\ 2x-1 & 0 \end{array}\right)$$

Que resulta nas seguintes igualdades:

$$2 = 2 e 2x - 1 = x^2$$

Desta ultima igualdade tira-se que x = 1.

3. Se A é uma matriz simétrica, então A - A'...

Solução:

Se A é simétrica então A = A' e portanto A - A' = A - A = 0. Assim, o resultado desta operação seria uma matriz nula.

4. Se A é uma matriz triangular superior, então A' é ...

Solução:

Uma matriz triangular superior quando transposta passa a ser uma matriz triangular **inferior**.

5. Se A é uma matriz diagonal, então A'...

Solução:

Toda matriz diagonal é simétrica de modo que se A é uma matriz diagonal então A' = A.

6. Classifique em verdadeiro ou falso:

a)
$$-A' = -A'$$

b)
$$(A + B)' = B' + A'$$

d)
$$k_1 A k_2 B = k_1 k_2 A B$$

$$e) -A -B = -AB$$

f) Se A e B são matrizes simétricas, então AB = BA

g) Se
$$AB = 0$$
, então $BA = 0$

h) Se é possível efetuar o produto AA, então A é matriz quadrada

Solução de A:

Pela propriedade iv a proposição é verdadeira.

Solução de B:

Pela propriedade iii a proposição é verdadeira.

Solução de C:

Falsa. Tomando A = $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ e B = $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ por exemplo, verifica-se que a proposição não é verdadeira.

Solução de D:

Usando a associatividade

$$(k_1k_2)AB = A(k_1k_2)B$$

Usando a comutatividade

$$A(k_2k_1)B = k_2(Ak_1)B = (Ak_1) \cdot (k_2B) = (k_1A)(k_2B).$$

Solução de E:

Falsa. Como contra exemplo tome A = $\begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$ e B = $\begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix}$

Solução de F:

Falsa. Como contra exemplo tome A = $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ e B = $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$

Solução de G:

Falsa.

Solução de H:

Verdadeiro. O produto entre duas matrizes só é possível se o numero de linhas da segunda for igual ao numero de colunas da primeira. Assim $A_{m\times n}\cdot A_{m\times n}$ só ocorre se m=n. O que implicaria no fato de A ser quadrada.

7. Se
$$A^2 = A \cdot A$$
, então $\begin{pmatrix} -2 & 1 \\ 3 & 2 \end{pmatrix}^2 \dots$

Solução:

$$\left(\begin{array}{cc} -2 & 1 \\ 3 & 2 \end{array}\right)^2 = \left(\begin{array}{cc} -2 & 1 \\ 3 & 2 \end{array}\right) \cdot \left(\begin{array}{cc} -2 & 1 \\ 3 & 2 \end{array}\right) = \left(\begin{array}{cc} 7 & 0 \\ 0 & 7 \end{array}\right)$$

8. Se A é uma matriz triangular superior, então \mathbf{A}^2 é . . .

Solução:

Do tipo triangular superior.

9. Ache,
$$x, y, z, w$$
 se $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

O produto entre as matrizes $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ e $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ resulta em $\begin{pmatrix} 2x+3y & 3x+4y \\ 2z+3w & 3z+4w \end{pmatrix}$ Que por hipótese é igual a matriz nula.

$$\begin{pmatrix} 2x+3y & 3x+4y \\ 2z+3w & 3z+4w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Resolvendo as equações acima chega-se a x = -4; y = 3; z = 3; e w = -2.

10. Dadas
$$A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{pmatrix}$ e $C = \begin{pmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{pmatrix}$ sostre que $AB = AC$.

Solução:

$$AB = AC$$

$$\begin{pmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{pmatrix} = \begin{pmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{pmatrix}$$

- 11. Suponha que A \neq 0 e AB = AC onde A, B, C são matrizes tais que a multiplicação esteja definida.
 - a) B = C?
 - b) Se existir uma matriz Y, tal que YA = I, onde I é a matriz identidade, então B = C?

Solução:

Se $AB = AC e A^{-1}$ for transposta de A então:

$$A^{-1}(AB) = A^{-1}(AC)$$

Usando a associatividade

$$(A^{-1}A)B = (A^{-1}A)C$$

$$IB = IC$$

$$B = C$$

12. Explique por que,
$$(A+B)^2 \neq A^2 + 2AB + B^2$$
 e $(A+B)(A-B) \neq A^2 - B^2$.

As equações não são verdadeiras pois, não são satisfeitas para qualquer matriz.

14. Se A =
$$\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$
, ache B, de modo que B² = A.

Solução:

Tomando B = $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ então:

$$\left(\begin{array}{cc} x & y \\ z & w \end{array}\right) \cdot \left(\begin{array}{cc} x & y \\ z & w \end{array}\right) = \left(\begin{array}{cc} 3 & -2 \\ -4 & 3 \end{array}\right)$$

A equação acima resulta no seguinte sistema:

$$\begin{cases} x^2 + yz = 3 & (1) \\ zy + w^2 = 3 & (2) \\ xy + yw = -2 & (3) \\ zx + wz = -4 & (4) \end{cases}$$

Das equações (1) e (2) obtemos que $x = \pm w$. Vamos tomar (arbitrariamente), x = w.

Se x = w então a equação (3) pode ser escrita como:

$$wy + yw = -2$$

Como y e W são números reais e portanto vale a comutatividade então:

$$wy + yw = -2$$

$$2(wy) = -2$$

$$\Rightarrow wy = -1 (5)$$

Ainda supondo que x = w podemos escrever a equação (4) como:

$$zx + wz = -4$$

$$z(x+w) = -4$$

$$z(w+w) = -4$$

$$\Rightarrow w = -\frac{2}{z} \ (6)$$

Colocando (6) em (5) chegamos a uma nova relação.

$$wy = -1$$

$$-\frac{2}{z}y = -1 \Rightarrow z = 2y (7)$$

Agora tome a equação (1)

$$x^2 + yz = 3$$

Usando novamente que x=w então:

$$w^2 + yz = 3$$

Usando a equação (7)

$$w^2 + y(2y) = 3$$

Usando agora a equação (5)

$$w^2 + 2y^2 = 3$$

$$w^2 + 2\left(-\frac{1}{w}\right)^2 = 3$$

$$w^2+\frac{2}{w^2}-3=0 \Rightarrow w=-1 \text{ ou } w=1$$

Tomando (arbitrariamente) w=1 então por (5) y=-1 e por (7) z=-2. Como havíamos suposto de início que x=w então x=1

$$Logo B = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$$

15. Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregado em cada tipo de casa é dada pela matriz:

	Ferro	Madeira	Vidro	Tinta	Tijolo
Moderno	5	20	16	7	17
Mediterrâneo	7	18	12	9	21
Colônial	6	25	8	5	13

(Qualquer semelhança dos números com a realidade é mera coincidência).

- a) Se ele vai construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial respectivamente, quantas unidades de casa material serão empregadas?
- b) Suponha agora que os preços por unidade de ferro, madeira, vidro, tinita e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10 u.c.p. Qual é o preço unitário de cada tipo de casa?
- c) Qual o custo total do material empregado?

Solução de A:

Pela matriz a quantidade de materiais de uma casa moderna é igual a 65 (soma dos elementos da primeira linha). De uma casa mediterrânea 67 (soma dos elementos da segunda linha) e de uma casa colonial 57(soma dos elementos da terceira linha). Logo serão utilizadas 1478 unidades de materiais.

$$5 \cdot 65 + 7 \cdot 67 + 12 \cdot 57 = 1478$$

Solução de B:

O preço da casa moderno será:

$$5(15) + 20(8) + 16(5) + 7(1) + 17(10) = 492$$

Analogamente se calcula para as demais casas.

16. Uma rede de comunicação tem cinco locais com transmissores de potências distintas. Estabelecemos que $a_{ij}=1$, na matriz abaixo, significa que a estação i pode transmitir diretamente à estação j, $a_{ij}=0$ o que significa que a transmissão da estação i não alcança a estação j. Observe que a diagonal principal é nula significando que uma estação não transmite diretamente para si mesma.

$$\mathbf{A} = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

Qual seria o significado da matriz $A^2 = A \cdot A$?

Seja A² =
$$[c_{ij}]$$
. Calculemos o elemento $c_{42} = \sum_{k=1}^5 a_{4k} a_{k2} = 0 + 0 + 1 + 0 + 0 = 1$

Note que a única parcela não nula veio de $a_{43} \cdot a_{32} = 1 \cdot 1$. Isto significa que a estação 4 transmite para a estação 2 através de uma transmissão pela estação 3, embora não exista uma transmissão direta de 4 para 2.

- a) Calcule A^2 .
- b) Qual o significado de $c_{13} = 2$?
- c) Discuta o significado dos termos nulos, iguais a 1 e maiores que 1 de modo a justificar a afirmação: "A matriz A^2 representa o número de caminhos disponíveis para se ir de uma estação a outra com uma única retransmissão".
- d) Qual o significado das matrizes $A + A^2$, $A^3 \in A + A^2 + A^3$?
- e) Se A fosse simétrica, o que significaria?

Solução de A:

(Solução retirada da lista da Professora. Marina Tebet (GAN/IME/UFF)).

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Solução de B:

(Solução retirada da lista da Professora. Marina Tebet (GAN/IME/UFF)).

 $c_{13} = 2$ e significa que a estação 1 transmite para estação 3 através de uma terceira de dois modos (através da estação 2 e da estação 4).

Solução de C:

(Solução retirada da lista da Professora. Marina Tebet (GAN/IME/UFF)).

Cada elemento de A^2 representa o número de modos que uma estação trans mite para uma outra através de uma terceira estação.

Solução de D:

(Solução retirada da lista da Professora. Marina Tebet (GAN/IME/UFF)).

Cada elemento de $A + A^2$ representa a soma do número de modos que uma estação transmite para outra, diretamente e através de uma terceira para uma outra.

$$A + A^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 & 2 \\ 1 & 2 & 3 & 3 & 2 \\ 1 & 1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Veja:

O elemento 14 indica que há 4 maneiras de se transmitir da estação 1 à estação 4: Diretamente: $1\rightarrow 5\rightarrow 4,\ 1\rightarrow 2\rightarrow 4$ e $1\rightarrow 3\rightarrow 4$.

Cada elemento de A^3 representa o número de modos que uma estação transmite para uma outra através de uma quarta estação.

$$A^{3} = \begin{bmatrix} 1 & 3 & 5 & 5 & 4 \\ 2 & 2 & 4 & 6 & 2 \\ 0 & 3 & 2 & 5 & 2 \\ 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 0 & 3 & 0 \end{bmatrix}$$

Veia:

O elemento 25 indica que há 2 maneiras de se transmitir da estação 1 para a estação 2 através de uma quarta estação: $2\rightarrow 3\rightarrow 4\rightarrow 5$ e $2\rightarrow 1\rightarrow 4\rightarrow 5$.

Cada elemento de $A + A^2 + A^3$ representa a soma do número de modos que uma estação transmite para outra estação, diretamente, através de uma terceira e de uma quarta.

$$A + A^{2} + A^{3} = \begin{bmatrix} 2 & 5 & 8 & 9 & 6 \\ 3 & 4 & 7 & 9 & 4 \\ 1 & 4 & 4 & 6 & 3 \\ 1 & 1 & 4 & 3 & 3 \\ 0 & 1 & 1 & 3 & 1 \end{bmatrix}$$

Veja:

Experimente listar as maneiras de se transmitir da estação 3 para a estação 5 considerando transmissões diretas, através de uma terceira e através de uma quarta.

Solução de E:

(Solução retirada da lista da Professora. Marina Tebet (GAN/IME/UFF)).

Se A fosse simétrica, isto é, $a_{ij}=a_{ji}$, isso significaria que a estação i transmite para a estação j sempre que a estação j transmitir para a i.

Existem três marcas de automóveis disponíveis no mercado: o Jacaré, o Piranha e o Urubu. O termo a_{ij} da matriz A abaixo é a probabilidade de que um dono de carro da linha i mude para o carro da coluna j, quando comprar um carro novo.

Os termos da diagonal de dão a probabilidade a_{ii} de se comprar um carro novo da mesma marca.

 A^2 representa as probabilidades de se mudar de uma marca para outra depois de duas compras. Você pode verificar isto a partir dos conceitos básicos de probabilidade (consulte 1.5) e produto de matrizes. Calcule A^2 e interprete.

Solução:

$$A^{2} = \begin{bmatrix} \frac{59}{100} & \frac{7}{25} & \frac{13}{100} \\ \frac{11}{25} & \frac{39}{100} & \frac{17}{100} \\ \frac{12}{25} & \frac{9}{25} & \frac{4}{25} \end{bmatrix}$$

Os termos de A^2 , a_{ij} , significam mudar da marca i para a marca j depois de duas compras.

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

1.2 Exercícios da página 26

Suponha que um corretor da Bolsa de Valores faça um pedido para comprar ações na segundafeira, como segue: 400 quotas de ação A, 500 quotas da ação B e 600 quotas da ação C. As ações A, B e C custam por quota Cr\$ 500,00 Cr\$ 400,00 e Cr\$ 250,00 respectivamente.

- a) Encontre o custo total das ações, usando multiplicações de matrizes.
- b)Qual será o ganho ou a perda quando as ações forem vendidas seis meses mais tarde se as ações A, B e C custam Cr\$ 600,00 Cr\$ 350,00 e Cr\$ 300,00 por quota, respectivamente?

Solução de A:

A resposta deve ser uma matriz 1×1 , assim uma matriz deve ser da ordem $1\times a$ e outra $a\times1$. Como temos três quantidades de quotas (A, B e C) e três valores (um para cada quota), então a=3. Ou seja, demos ter uma matriz 1×3 e outra 3x1.

A primeira matriz será a de quantidade:

$$Q = (400, 500, 600)$$

Enquanto a segunda será de preço

$$P = \left(\begin{array}{c} 500\\400\\250 \end{array}\right)$$

Fazendo P·Q chegamos á matriz de custo total igual a 550 mil.

$$P \cdot Q = [550.000]$$

Solução de B:

Nesse caso basta trocar os valores da matriz P e em seguida realizar a multiplicação.

$$Q \cdot P = (400, 500, 600) \cdot \begin{pmatrix} 600 \\ 350 \\ 300 \end{pmatrix}$$
$$= [595.000]$$

Ou seja, houve um ganho de 45 mil.

2. É observado que as probabilidades de um time de futebol ganhar, perder e empatar uma partida depois de conseguir uma vitória são 1/2, 1/5 e 3/10 respectivamente; e depois de ser derrotado são 3/10, 3/10 e 2/5, respectivamente; e depois de empatar são 1/5, 2/5 e 2/5,

respectivamente. Se o time não melhor nem piorar, conseguira mais vitórias ou derrotas a longo prazo?

Solução:

Primeiro vamos considerar as probabilidades após Ganhar uma partida.

	G	
G	1/2	
P	1/5	
E	3/10	

Agora as probabilidades após Perder um jogo.

	G	Р	
G	1/2	3/10	
Р	1/5	3/10	
Е	3/10	2/5	

E finalmente as probabilidades após Empatar.

	G	Р	Е
G	1/2	3/10	1/5
Р	1/5	3/10	2/5
Е	3/10	2/5	2/5

Observe que esta ultima matriz é regular (quadrada e com possibilidade de inversão). Assim podemos aplicar o teorema 1.5.4.

$$\begin{pmatrix} p_G \\ p_P \\ p_E \end{pmatrix} = \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.4 \\ 0.3 & 0.4 & 0.4 \end{pmatrix} \cdot \begin{pmatrix} p_G \\ p_P \\ p_E \end{pmatrix}$$

$$\begin{pmatrix} p_G \\ p_P \\ p_E \end{pmatrix} = \begin{pmatrix} 0.5p_G + 0.3p_P + 0.2p_E \\ 0.2p_G + 0.3p_P + 0.4p_E \\ 0.3p_G + 0.4p_P + 0.4p_E \end{pmatrix}$$

Que resulta nas seguintes equações.

$$\begin{aligned} 0.5p_G + 0.3p_P + 0.2p_E &= p_G \\ 0.2p_G + 0.3p_P + 0.4p_E &= p_P \\ 0.3p_G + 0.4p_P + 0.4p_E &= p_E \end{aligned}$$

e nos possibilita montar o seguinte sistema:

$$\begin{cases} -0.5p_G + 0.3p_P + 0.2p_E = 0 \\ 0.5p_G - 0.7p_P + 0.2p_E = 0 \\ 0.5p_G + 0.3p_P - 0.6p_E = 0 \end{cases}$$

Além disso, sabemos que as somas das probabilidades é igual a um $(p_G + p_P + p_E = 1)$. Daí, $p_G = \frac{26}{79}$, $p_P = \frac{24}{79}$ e $p_E = \frac{29}{79}$.

3. Numa pesquisa procura-se estabelecer uma correlação entre os níveis de escolaridade de pais e filhos, estabelecendo as letras: P para os que concluíram o curso primário; S para os que concluíram o secundário; e U para quem concluiu o curso universitário. A probabilidade de um filho pertencer a um desses grupos, dependendo do grupo em que o pai está, é dada pela matriz:

Qual a probabilidade de um neto, de um indivíduo que concluiu o curso secundário, ser universitário?

Solução:

A matriz do problema é a matriz de transição de estado da cadeia de Markov. Sendo assim, a matriz dos netos é dada pelo quadrado da matriz de transição.

$$\begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 2/3 \end{pmatrix} \cdot \begin{pmatrix} 2/3 & 1/3 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 2/3 \end{pmatrix} = \begin{pmatrix} 5/9 & 1/3 & 1/9 \\ 1/3 & 1/3 & 1/3 \\ 1/9 & 1/3 & 5/9 \end{pmatrix}$$

A probabilidade desejada é portanto 1/3.

- 4. Numa cidade industrial, os dados sobre a qualidade do ar são classificados como satisfatório (S) e insatisfatório (I). Assuma que, se um dia é registrado S, a probabilidade de se ter S no dia seguinte é 2/5 e que, uma vez registrado I, tem-se 1/5 de probabilidade de ocorrer S no dia seguinte.
 - a) Qual é a probabilidade do quarto dia ser S, se o primeiro dia é I?
 - b) O que se pode dizer a longo prazo sobre a probabilidade de termos S ou I?

Solução de A:

Quando se registra S a probabilidade de ser S no dia seguinte é de 2/5.

	S	I
S	2/5	
Ι		

Quando marca I a probabilidade de ser S é de 1/5.

	S	I
S	2/5	1/5
I		

Sabemos que $p_S + p_I = 1$ (pois são eventos complementares), assim podemos completar a tabela acima.

	S	I
S	2/5	1/5
I	3/5	4/5

Essa será a matriz de transição do problema.

$$T = \begin{pmatrix} 2/5 & 1/5 \\ 3/5 & 4/5 \end{pmatrix}$$

para determinar a probabilidade do 4° dia basta fazer o cubo da matriz de transição.

$$T^{3} = \begin{pmatrix} 2/5 & 1/5 \\ 3/5 & 4/5 \end{pmatrix}^{3} = \begin{pmatrix} 32/125 & 31/125 \\ 93/125 & 94/125 \end{pmatrix}$$

O resultado é o valor do elemento a_{12} da 3^a potência. No caso, $\frac{31}{125}$.

Solução de B:

Usando o teorema 1.5.4:

$$\left(\begin{array}{c}p_S\\p_I\end{array}\right)=\left(\begin{array}{cc}2/5&1/5\\3/5&4/5\end{array}\right)\cdot\left(\begin{array}{c}p_S\\p_I\end{array}\right)$$

Da equação acima retira-se o seguinte sistema

$$\begin{cases} -0.6p_S + 0.2p_I = 0\\ 0.6p_S - 0.2p_I = 0 \end{cases}$$

Cuja solução ocorre para $p_S = \frac{1}{4}$ e $p_I = \frac{3}{4}$. Assim, a longo prazo, a probabilidade de termos dias satisfatórios é 1/4 e de termos dias insatisfatórios é de 3/4.

5. Numa ilha maravilhosa verificou-se que a cor azul ocorre em borboletas de genótipo aa, e não ocorre em Aa e AA. Suponha que a proporção de borboletas azuis seja 1/4. Depois de algumas gerações, qual será a porcentagem das borboletas não azuis, mas capazes de ter filhotes azuis?

Denotando por d, dominante, r, recessivo e h, hibrido, e os respectivos cruzamentos por dXd, dXr, dXh, colocando as probabilidades em colunas, podemos montar a seguinte matriz de transição:

-	$d \times d$	r×r	$d \times r$	$d \times h$	$r \times h$	$h \times h$
d	1	0	0	0.5	0	0.25
h	0	0	1	0.5	0.5	0.5
r	0	1	0	0	0.5	0.25

Usando o teorema 1.5.4

$$\begin{pmatrix} p_d^{(2)} \\ p_h^{(2)} \\ p_r^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0.5 & 0 & 0.25 \\ 0 & 0 & 1 & 0.5 & 0.5 & 0.5 \\ 0 & 1 & 0 & 0 & 0.5 & 0.25 \end{pmatrix} \cdot \begin{pmatrix} p_d^{(1)} \cdot p_d^{(1)} \\ p_r^{(1)} \cdot p_r^{(1)} \\ 2 \cdot p_d^{(1)} \cdot p_r^{(1)} \\ 2 \cdot p_d^{(1)} \cdot p_h^{(1)} \\ 2 \cdot p_r^{(1)} \cdot p_h^{(1)} \\ p_h^{(1)} \cdot p_h^{(1)} \end{pmatrix}$$

Onde $p_d^{(1)}$ é a porcentagem de indivíduos dominantes, $p_h^{(1)}$ a porcentagem de indivíduos híbridos. E $p_r^{(1)}$ a porcentagem de indivíduos recessivos.

$$\begin{pmatrix} p_d^{(2)} \\ p_h^{(2)} \\ p_r^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0.5 & 0 & 0.25 \\ 0 & 0 & 1 & 0.5 & 0.5 & 0.5 \\ 0 & 1 & 0 & 0 & 0.5 & 0.25 \end{pmatrix} \cdot \begin{pmatrix} 0.25 \cdot 0.25 \\ 0.25 \cdot 0.25 \\ 2 \cdot 0.25 \cdot 0.25 \\ 2 \cdot 0.25 \cdot 0.5 \\ 2 \cdot 0.25 \cdot 0.5 \\ 0.5 \cdot 0.5 \end{pmatrix}$$

assim nossas probabilidades são:

$$\begin{pmatrix} p_d^{(2)} \\ p_h^{(2)} \\ p_r^{(2)} \end{pmatrix} = \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix}$$

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

2 SISTEMAS DE EQUAÇÕES LINEARES

2.1 Exercícios da página 49

1. Resolva o sistema de equações, escrevendo as matrizes ampliadas, associadas aos novos sistemas.

$$\begin{cases} 2x - y + 3z = 11 \\ 4x - 3y + 2z = 0 \\ x + y + z = 6 \\ 3x + y + z = 4 \end{cases}$$

Solução:

A matriz ampliada do sistema é:

$$\left(\begin{array}{ccccc}
2 & -1 & 3 & 11 \\
4 & -3 & 2 & 0 \\
1 & 1 & 1 & 6 \\
3 & 1 & 1 & 4
\end{array}\right)$$

Vamos agora usar as operações de multiplicação e soma nas linhas da matriz para resolver o sistema.

Fazendo L2 = L2 - 2L1; L3 = 2L3 - L1 e L4 = 3L1 - 2L4

$$\left(\begin{array}{ccccc}
2 & -1 & 3 & 11 \\
0 & -1 & -4 & -22 \\
0 & 3 & -1 & 1 \\
0 & -5 & 7 & 25
\end{array}\right)$$

Fazendo agora L3 = 3L2 + L3 e L4 = L4 - 5L2

$$\left(\begin{array}{ccccc}
2 & -1 & 3 & 11 \\
0 & -1 & -4 & -22 \\
0 & 0 & -13 & -65 \\
0 & 0 & 27 & 135
\end{array}\right)$$

Fazendo L4 = 27L3 + 13L4

$$\left(\begin{array}{ccccc}
2 & -1 & 3 & 11 \\
0 & -1 & -4 & -22 \\
0 & 0 & -13 & -65 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Dividindo L1 por 2, L2 por -1 e L3 por -13

$$\left(\begin{array}{cccc} 1 & -1/2 & 3/2 & 11/2 \\ 0 & 1 & 4 & 22 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Fazendo L1 = L1 + 0.5L2

$$\left(\begin{array}{cccc}
1 & 0 & 7/2 & 33/2 \\
0 & 1 & 4 & 22 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Fazendo L2 = L2 - 4L3

$$\left(\begin{array}{cccc} 1 & 0 & 7/2 & 33/2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Finalmente fazendo L1 = L1 - (7/2)L3

$$\left(\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Solução: x = -1, y = 2 e z = 5

2. Descreva todas as possíveis matrizes 2×2 , que estão na forma escada reduzida por linhas.

Solução:

Tome A =
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 com coeficientes não nulos.

Existe um $k \in \mathbb{R}$ onde $ka_{21} = a_{11}$. Sendo assim, multiplicando L2 por k e depois subtraímos L1 de L2.

$$\left(\begin{array}{ccc}
a_{11} & a_{12} \\
k \cdot a_{21} - a_{11} & k \cdot a_{22} - a_{12}
\end{array}\right)$$

Que resulta na matriz a seguir.

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ 0 & ka_{22} - a_{12} \end{array}\right)$$

Agora, dividimos L1 por a_{11}

$$\left(\begin{array}{cc} 1 & \frac{a_{12}}{a_{11}} \\ 0 & ka_{22} - a_{12} \end{array}\right)$$

E finalmente dividimos L2 por $ka_{22} - a_{12}$

$$\left(\begin{array}{cc} 1 & \frac{a_{12}}{a_{11}} \\ 0 & 1 \end{array}\right)$$

Que é a forma geral de uma matriz reduzida por linha 2 por 2 com coeficientes não nulos.

As demais matrizes ficam a cargo do leitor.

3. Reduza as matrizes à forma escada reduzida por linhas.

a)
$$\begin{pmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 3 \\ 3 & 1 & 2 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 3 \\ 3 & -4 & 2 \\ 2 & -3 & 1 \end{pmatrix}$

Solução de A:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right)$$

Solução de B:

$$\begin{pmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{pmatrix} L1 = L1 + L2 \rightarrow \begin{pmatrix} 2 & 0 & -7 & 5 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{pmatrix}$$

$$L2 = L1 - L2 \rightarrow \begin{pmatrix} 2 & 2 & -7 & 5 \\ 0 & -1 & -3 & 2 \\ 2 & 3 & 2 & -1 \end{pmatrix} L3 = L3 - L1 \rightarrow \begin{pmatrix} 2 & 2 & -7 & 5 \\ 0 & -1 & -3 & 2 \\ 0 & 3 & 9 & -6 \end{pmatrix}$$

$$L3 = 3L2 + L3 \rightarrow \begin{pmatrix} 2 & 2 & -7 & 5 \\ 0 & -1 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Finalmente dividindo L2 por -1 e L1 por 2:

$$\left(\begin{array}{cccc}
1 & 1 & -7/2 & 5/2 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Solução de C:

$$\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

4. Calcule o posto e nulidade das matrizes da questão 3.

Solução:

A solução de a do problema anterior é a matriz:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right)$$

Como não há nenhuma linha nula na matriz então p=3 (posto). Pois a matriz tem 3 linhas não nulas. Já a nulidade, que é o numero de colunas da matriz menos o seu posto, é igual a 1.

A solução de b do problema anterior é a matriz:

$$\left(\begin{array}{cccc}
1 & 1 & -7/2 & 5/2 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Como temos apenas duas linhas não nulas então o posto é igual 2. Já a nulidade será 2.

A solução de c do problema anterior é a matriz:

$$\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Como temos apenas duas linhas não nulas então o posto será 2. E a nulidade será 1.

5. Dado o sistema
$$\begin{cases} 3x+5y=1\\ 2x+z=3\\ 5x+y-z=0 \end{cases}$$
escreva a matriz ampliada, associada ao sistema e reduza-a à forma escada reduzida por

linhas, para resolver o sistema original.

Solução:

A matriz ampliada será:

$$\left(\begin{array}{cccc}
3 & 5 & 0 & 1 \\
2 & 0 & 1 & 3 \\
5 & 1 & -1 & 0
\end{array}\right)$$

Reduzindo a matriz à forma escada por linhas

$$\begin{split} \text{L1} &= 2 \text{L1} \text{ e L2} = 3 \text{L2} \rightarrow \begin{pmatrix} 6 & 10 & 0 & 2 \\ 6 & 0 & 3 & 9 \\ 5 & 1 & -1 & 0 \end{pmatrix} \text{L2} = \text{L2} - \text{L1} \rightarrow \begin{pmatrix} 6 & 10 & 0 & 2 \\ 0 & -10 & 3 & 7 \\ 5 & 1 & -1 & 0 \end{pmatrix} \\ \text{L3} &= 6 \text{L3} \text{ e L1} = 5 \text{L1} \rightarrow \begin{pmatrix} 30 & 50 & 0 & 10 \\ 0 & -10 & 3 & 7 \\ 30 & 6 & -6 & 0 \end{pmatrix} \text{L3} = \text{L3} - \text{L1} \rightarrow \begin{pmatrix} 30 & 50 & 0 & 10 \\ 0 & -10 & 3 & 7 \\ 0 & -44 & -6 & 10 \end{pmatrix} \\ \text{L3} &= -10 \cdot \text{L3} / 44 \rightarrow \begin{pmatrix} 30 & 50 & 0 & 10 \\ 0 & -10 & 3 & 7 \\ 0 & 10 & 60 / 44 & 100 / 44 \end{pmatrix} \text{L3} = \text{L2} + \text{L3} \rightarrow \begin{pmatrix} 30 & 50 & 0 & 10 \\ 0 & -10 & 3 & 7 \\ 0 & 0 & 192 / 44 & 408 / 44 \end{pmatrix} \end{split}$$

Finalmente fazendo L1 = L1/30, L2 = -L2/10 e $L3 = 44 \cdot L3/192$.

$$\left(\begin{array}{cccc}
1 & 5/3 & 0 & 1/3 \\
0 & 1 & -3/10 & -7/10 \\
0 & 0 & 1 & 17/8
\end{array}\right)$$

encontramos a matriz escada linha reduzida. Realizando mais algumas operações entre as linhas chega-se à:

$$\rightarrow \left(\begin{array}{cccc} 1 & 0 & 0 & 7/16 \\ 0 & 1 & 0 & -1/16 \\ 0 & 0 & 1 & 17/8 \end{array}\right)$$

Assim, a solução ocorre para $x = \frac{7}{16}, y = -\frac{1}{16}$ e $z = \frac{17}{8}$.

6. Determine k para que o sistema possua solução:

$$\begin{cases}
-4x + 3y = 2 \\
5x - 4y = 0 \\
2x - y = k
\end{cases}$$

Solução:

O sistema acima possui duas incógnitas, assim só necessitamos de duas linhas para resolve-lo.

$$\begin{cases} -4x + 3y = 2\\ 5x - 4y = 0 \end{cases}$$

Resolvendo o sistema acima chegamos à: x=-0.5 e y=0. Como desejamos descobrir o valor de k fazemos:

$$2x - y = k$$

$$2(-0.5) - (0) = k$$

$$k = -1$$

O valor de k deve ser -1.

7. Encontre todas as soluções do sistema

$$\begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 - 7x_5 = 14 \\ 2x_1 + 6x_2 + x_3 - 2x_4 + 5x_5 = -2 \\ x_1 + 3x_2 - x_3 + 2x_5 = -1 \end{cases}$$

Solução:

Fazendo o escalonamento do sistema chega-se até:

$$\begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 - 7x_5 = 14 \\ x_3 + \frac{8}{3}x_4 - \frac{19}{3}x_5 = 10 \\ x_4 - 2x_5 = 3 \end{cases}$$

Onde observamos que as variáveis com maior grau de liberdade é x_5 e x_4 . Assim, podemos usar qualquer uma delas para expressar as demais respostas. Para coincidir com o livro vamos usar x_5 .

$$x_1 = 1 - 3x_2 - x_5$$

$$x_3 = 2 + x_5$$

$$x_4 = 3 + 2x_5$$

8. Explique por que a nulidade de uma matriz nunca é negativa.

Solução:

A nulidade é o numero de colunas subtraída do posto de uma matriz (que deve estar na forma escalonada linha). Assim, para que a nulidade seja negativa é necessário que o posto seja maior que o numero de colunas da matriz.

No entanto, o posto de uma matriz significa na prática o numero de soluções do sistema associado a ela. Se cada coluna da matriz representa uma incógnita do sistema não faz nenhum sentido que o numero de soluções (posto) seja maior que o numero de colunas. Se isso fosse possível teríamos um sistema com mais soluções que o numero de incógnitas do mesmo.

9. Foram estudados três tipos de alimentos. Fixada a mesma quantidade (1g) determinou-se que:

- i) O alimento I têm 1 unidade de vitamina A, 3 unidade de vitamina B e 4 unidades de vitamina C.
 - ii) O alimento II tem 2, 3 e 5 unidades respectivamente, das vitaminas A, B e C.
- iii) O alimento III tem 3 unidades de vitaminas A, 3 unidades de vitamina C e não contém vitamina B.

Se são necessárias 11 unidades de vitaminas A, 9 de vitamina B e 20 de vitamina C;

- a) Encontre todas as possíveis quantidades dos alimentos I, II e III, que fornecem a quantidade de vitaminas desejada.
- b) Se o alimento I custa 60 centavos por grama e os outros dois custam 10, existe uma solução custando exatamente Cr\$ 1,00?

Solução de A:

(Solução retirada da lista da professora Cláudia Santana (UESC)).

Analisando o sistema:

$$\begin{cases} x + 2y + 3z = 11 \\ 3x + 3y + 0z = 9 \\ 4x + 5y + 3z = 20 \end{cases}$$

Onde x, y e z são as quantidades, em gramas, dos alimentos I, II e III respectivamente. Chega-se a solução:

$$\frac{5}{3} \le z \le \frac{8}{3}$$
; $x = -5 + 3z$; $y = 8 - 3z$

Solução de B:

(Solução retirada da lista da professora Cláudia Santana (UESC)).

Analisando o sistema:

$$\begin{cases} x + 2y + 3z = 11 \\ 3x + 3y + 0z = 9 \\ 6x + y + z = 10 \end{cases}$$

Onde $x,\ y$ e z são as quantidades, em gramas, dos alimentos I, II e III respectivamente. Chega-se a solução:

$$x = 1g e y = z = 2g.$$

Resolva os sistemas seguintes achando as matrizes ampliadas linha reduzidas à forma escada e dando também seus postos, os postos das matrizes dos coeficientes e, se o sistema for possível, o grau de liberdade.

10.
$$\{x_1 + 2x_2 - x_3 + 3x_4 = 1\}$$

Todas as variáveis possui o mesmo grau de liberdade assim, podemos usar qualquer uma delas para escrever a solução. Neste caso, vamos usar $x_2, ..., x_5$.

- Matriz ampliada: $[1 \ 2 \ -1 \ 3 \ 1];$
- Posto: 1;
- Posto da matriz dos coeficientes: 1;
- Solução: $x_1 = 1 2x_2 + x_3 3x_4$;
- Grau de liberdade: 3.

O grau de liberdade é a diferença entre o numero de variáveis e o número de equações não nulas na forma escada.

11.
$$\begin{cases} x + y + z = 4 \\ 2x + 5y - 2z = 3 \end{cases}$$

Solução:

- Matriz ampliada: $\begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -4/3 & -5/3 \end{pmatrix}$;
- Posto: 2;
- Posto da matriz dos coeficientes: 2;
- Solução: $x = \frac{17 7z}{3}$; $y = \frac{4z 5}{3}$;
- Grau de liberdade: 1.

12.
$$\begin{cases} x+y+z=4\\ 2x+5y-2z=3\\ x+7y-7z=5 \end{cases}$$

Solução:

- Matriz ampliada: $\begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 3 & -4 & -5 \\ 0 & 0 & 0 & -11 \end{pmatrix}$;
- Posto: 3;
- Posto da matriz dos coeficientes: 2;
- Solução: O sistema não tem solução.

13.
$$\begin{cases} x - 2y + 3z = 0 \\ 2x + 5y + 6z = 0 \end{cases}$$

- Matriz ampliada: $\begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 9 & 0 & 0 \end{pmatrix}$;
- Posto: 2;
- Posto da matriz dos coeficientes: 2;
- Solução: x = -3z; y = 0;
- Grau de liberdade: 1.

14.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 - x_4 = 4 \\ x_1 + x_2 - x_3 + x_4 = -4 \\ x_1 - x_2 + x_3 + x_4 = 2 \end{cases}$$

Solução:

- $\bullet \text{ Matriz ampliada: } \left(\begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & 0 \\ 0 & x_2 & 0 & 0 & 0 \\ 0 & 0 & x_3 & 0 & 2 \\ 0 & 0 & 0 & x_4 & -2 \end{array} \right);$
- Posto: 4;
- Posto da matriz dos coeficientes: 4;
- Solução: $x_1 = 0$; $x_2 = 0$; $x_3 = 2$ e $x_4 = -2$;
- Grau de liberdade: 0.

15.
$$\begin{cases} x + 2y + 3z = 0 \\ 2x + y + 3z = 0 \\ 3x + 2y + z = 0 \end{cases}$$

- Matriz ampliada: $\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3/2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$;
- Posto: 3:
- Posto da matriz dos coeficientes: 3;
- Solução: x = 0; y = 0 e z = 0;
- Grau de liberdade: 0.

16.
$$\begin{cases} 3x + 2y - 4z = 1 \\ x - y + z = 3 \\ x - y - 3z = -3 \\ 3x + 3y - 5z = 0 \\ -x + y + z = 1 \end{cases}$$

Solução:

A cargo do leitor.

17. O método de Gauss para resolução de sistemas é um dos mais adotados quando se faz uso do computador, devido ao menor número de operações que envolve. Ele consiste em reduzir a matriz ampliada só sistema por linha-equivalência a uma matriz que só é diferente da linha reduzida à forma escada na condição "cada coluna que contém o primeiro elemento não nulo de alguma linha tem todos os seus outros elementos iguais a zero", que passa a ser: "cada coluna que contém o primeiro elemento não nulo de alguma linha, tem todos os elementos abaixo desta linha iguais a zero". As outras condições são idênticas. Uma vez reduzida a matriz ampliada a esta forma, a solução final do sistema é obtida por substituição.

Exemplo:

$$\begin{cases} 2x_1 + x_2 = 5\\ x_1 - 3x_2 = 6 \end{cases}$$

$$\begin{pmatrix} 2 & 1 & 5\\ 1 & -3 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1/2 & 5/2\\ 0 & -7/2 & 7/2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1/2 & 5/2\\ 0 & 1 & -1 \end{pmatrix}$$

a ultima matriz corresponde ao sistema:

$$x_1 + \frac{1}{2}x_2 = \frac{5}{2}$$

$$x_2 = -1$$

Por substituição, $x_1 - \frac{1}{2} = \frac{5}{2}$, ou seja, $x_1 = 2$.

Resolva pelo método de Gauss os exercícios 13,14 e 15.

Solução de 14:

A matriz ampliada do sistema, após o escalonamento, é a seguinte: (ver problema 14)

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & 0 \\ 0 & x_2 & 0 & 0 & 0 \\ 0 & 0 & x_3 & 0 & 2 \\ 0 & 0 & 0 & x_4 & -2 \end{pmatrix};$$

Que resulta no seguinte sistema:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 = 0 \\ x_3 = 2 \\ x_4 = -2 \end{cases}$$

Note que os valores e $x_2, ..., x_4$ já são bem evidentes. Assim só nos resta definir o valor de x_1 .

$$x_1 = -(x_2 + x_3 + x_4)$$

$$x_1 = -(0+2+-2)$$

$$x_1 = 0$$

Assim, pelo método de Gauss a solução será x=y=z=0.

Solução de 15:

A matriz ampliada do sistema, após o escalonamento, será:

$$\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & 3/2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)$$

veja o problema 15.

que implica no seguinte sistema:

$$\begin{cases} x + 2y + 3z = 0 \\ y + (3/2)z = 0 \\ z = 0 \end{cases}$$

Que por substituição resulta em x = 0; y = 0 e z = 0.

Solução de 16:

A matriz ampliada do sistema, após o escalonamento, será:

$$\begin{pmatrix}
1 & 2/3 & -4/3 & 1/3 \\
0 & 1 & -7/5 & -8/5 \\
0 & 0 & 1 & 3/2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2
\end{pmatrix}$$

que resulta no seguinte sistema:

$$\left\{ \begin{array}{l} x+(2/3)y-(4/3)z=1/3\\ y-(7/5)z=-(8/5)\\ z=3/2\\ 0=1/2 \end{array} \right.$$

Com base na ultima linha tornamos evidente que trata-se de um sistema impossível, e portanto, sem solução mesmo pelo método de Gauss.

- 18. a) Mostre a proposição 2.4.3 para matrizes 2×2 quaisquer.
- b) Sinta a dificuldade que você terá para formalizar o resultado para matrizes $n \times m$, mas convença-se de que é só uma questão de considerar todos os casos possíveis, e escreva a demonstração. Consulte 2.7.

Solução:

Veja páginas 60 e 61.

- 19. Chamamos de sistema homogêneo de n equações e m incógnitas aquele sistema cujos termos independentes b_i , são todos nulos.
 - a) Um sistema homogêneo admite pelo menos uma solução. Qual é ela?
 - b) Encontre os valores de $k \in \mathbb{R}$, tais que o sistema homogêneo

$$\begin{cases} 2x - 5y + 2z = 0 \\ x + y + z = 0 \\ 2x + kz = 0 \end{cases}$$

tenha uma solução distinta da trivial (x = y = z = 0).

Solução de a:

Uma solução para todo sistema homogêneo é zero.

Solução de b:

Escalonando o sistema

$$\begin{cases} 2x - 5y + 2z = 0 \\ x + y + z = 0 \\ 2x + kz = 0 \end{cases}$$

Chegamos a solução de k=2.

20. Considere o sistema

$$\begin{cases} x + 6y - 8z = 1 \\ 2x + 6y - 4z = 0 \end{cases}$$

Note que podemos escreve-lo na forma matricial

$$(*) \left(\begin{array}{cc} 1 & 6 & -8 \\ 2 & 6 & -4 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

- a) verifique que a matriz $X_1=\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}1\\1/3\\0\end{pmatrix}$ é uma solução para o sistema.
- b) = Resolva o sistema e verifique que toda "matriz-solução" é da forma:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1/3 \\ 0 \end{pmatrix}$$

onde $\lambda \in \mathbb{R}$.

c) Verifique

$$\lambda \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -4\lambda \\ 2\lambda \\ \lambda \end{pmatrix}$$

é a solução do sistema homogênea, associado ao sistema (*),

$$(**)\left(\begin{array}{cc} 1 & 6 & -8 \\ 2 & 6 & -4 \end{array}\right)\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

d) Conclua, dos itens a), b) e c), que o conjunto-solução do sistema * é o conjunto-solução do sistema **, somando a uma solução particular tema *.

Solução de A:

Basta substituir x,y e z por 1, 1/3 e 0 no sistema e verificar se as equações seguintes são satisfeitas:

$$x + 6y - 8z = 1$$
$$2x + 6y - 4z = 0$$

Solução de B:

Resolvendo o sistema em z chega-se á $y = \frac{1}{3} - 2z$ e x = -1 - 4z

Assim, chamando
$$z=\lambda$$
 podemos dizer que a matriz $X=\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}-1-4\lambda\\\frac{1}{3}-2\lambda\\\lambda\end{array}\right)$

Com a ultima matriz a direita podemos escrever a equação:

$$\begin{pmatrix} -1 - 4\lambda \\ \frac{1}{3} - 2\lambda \\ \lambda \end{pmatrix} = \lambda \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1/3 \\ 0 \end{pmatrix}$$

Finalizando a solução do problema.

Solução de C:

Semelhante a a.

Solução de D:

Pela letra c do problema a solução do sistema (**) é $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4\lambda \\ 2\lambda \\ \lambda \end{pmatrix}$. Já pela letra a

uma solução particular do sistema (*) é $\begin{pmatrix} 1\\ \frac{1}{3}\\ 0 \end{pmatrix}$. Note que somando as duas soluções chegamos

à solução geral de (*).

$$\begin{pmatrix} -4\lambda \\ 2\lambda \\ \lambda \end{pmatrix} + \begin{pmatrix} 1\\ \frac{1}{3} \\ 0 \end{pmatrix} = \begin{pmatrix} -4\lambda + 1\\ 2\lambda + \frac{1}{3} \\ \lambda \end{pmatrix}$$

21. Dado o sistema

$$\begin{pmatrix} 1 & 2 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 1 & 2 & 2 & -1 \\ 3 & 4 & 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 8 \end{pmatrix}$$

- a) Encontre uma solução dele sem resolve-lo. (Atribua valores para x, y, z e w)
- b) Agora, resolva efetivamente o sistema, isto é, encontre sua matriz-solução;
- c) Resolva também o sistema homogêneo associado;
- d) Verifique que toda matriz solução obtida em b) é a soma de uma matriz solução encontrada em c) com a solução particular que você encontrou em a).

Solução de A:

$$x = 0, y = z = 1 e w = 0.$$

Solução de B:

$$\left(\begin{array}{c}\lambda\\1\\1\\\lambda\end{array}\right)$$

Solução de C:

$$\left(\begin{array}{c} \lambda \\ 0 \\ 0 \\ \lambda \end{array}\right)$$

Solução de D:

$$\begin{pmatrix} \lambda \\ 1 \\ 1 \\ \lambda \end{pmatrix} = \begin{pmatrix} \lambda \\ 0 \\ 0 \\ \lambda \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

- 22. Altamente motivado pelos Exercícios 20 e 21, mostre que toda matriz-solução de um sistema linear AX = B é a soma de uma solução do sistema homogêneo associado AX = 0 com uma solução particular AX = B. Sugestão: siga as etapas seguintes, usando somente propriedades de matrizes.
- i) Mostre que se \mathbf{X}_0 é uma solução do sistema $\mathbf{A}\mathbf{X}=0$ e \mathbf{X}_1 é uma solução de $\mathbf{A}\mathbf{X}=\mathbf{B},$ então \mathbf{X}_0 + \mathbf{X}_1 é solução de $\mathbf{A}\mathbf{X}=\mathbf{B}.$
 - ii) Se \mathbf{X}_1 e \mathbf{X}_2 são soluções de $\mathbf{A}\mathbf{X}=\mathbf{B},$ então \mathbf{X}_1 \mathbf{X}_2 é solução de $\mathbf{A}\mathbf{X}=0.$
 - iii) Use i) e ii) para chegar à conclusão desejada.

Solução:

Queremos mostrar que se
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 é solução de um sistema AX = B

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

e $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ é solução do sistema homogêneo associado a AX = B

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

então a soma das soluções também é solução de AX = B.

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

Para verificar tal afirmação substituímos esse resultado na equação AX = B

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Note que a equação matricial acima representa o seguinte sistema

$$\begin{cases} a_{11}(x_1+y_1)+\cdots+a_{1n}(x_n+y_n) \\ \vdots \\ a_{1n}(x_1+y_1)+\cdots+a_{nn}(x_n+y_n) \end{cases}$$

e podemos representa-la como:

$$\begin{cases} a_{11}x_1 + a_{11}y_1 + \dots + a_{1n}x_n + a_{1n}y_n \\ \vdots \\ a_{1n}x_1 + a_{1n}y_1 + \dots + a_{nn}x_n + a_{nn}y_n \end{cases}$$

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + a_{11}y_1 + \dots + a_{1n}y_n \\ \vdots \\ a_{1n}x_1 + \dots + a_{nn}x_n + a_{1n}y_1 + \dots + a_{nn}y_n \end{cases}$$

Observando a equação do sistema homogêneo notamos que a soma de todos os termos acompanhados de y_b com $b \in (1, ..., n)$ é igual a zero. Assim podemos rescrever o sistema

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n + 0 \\ \vdots \\ a_{1n}x_1 + \dots + a_{nn}x_n + 0 \end{cases}$$

Que na forma de equação matricial fica

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Assim, a soma das soluções é uma solução do sistema AX = B.

- 23. Faça o balanceamento das reações:
- a) $N_2O_5 \rightarrow NO_2 + O_2$ (decomposição térmica do N_2O_5)
- b) $HF + SiO_2 \rightarrow SiF_4 + H_2O$
- c) $(NH_4)_2CO_3 \rightarrow NH_3 + H_2O + CO_2$

Solução de A:

Podemos observar que as quantidades de "N" e "O" em ambos os lados não é a mesma. Se os coeficientes estequiométricos forem respectivamente x, y e z temos que:

$$xN_2O_5 \rightarrow yNO_2 + zO_2$$

Ou seja:

$$\begin{cases} 2x - y \ (Ni) \\ 5x - 2y - 2z \ (O) \end{cases}$$

O Sistema é SPI (Sistema Possível e Indeterminado) e admite mais de uma solução (x, y, z), porém nos interessa a menor solução inteira. A solução genérica desse sistema é:

$$\left(\frac{\lambda}{2}, \lambda, \frac{\lambda}{4}\right)$$

adotando

$$\lambda = 4$$

Que nos dá a menor solução inteira, teremos: x=2, y=4 e z=1 e a equação balanceada é:

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

Solução de B:

$$4\mathrm{HF} + \mathrm{SiO}_2 \rightarrow \mathrm{SiF}_4 + 2\mathrm{H}_2\mathrm{O}$$

Solução de C:

$$(NH_4)_2CO_3 \rightarrow 2NH_3 + H_2O + CO_2$$

- 25. Sabendo-se que a alimentação diária equilibrada em vitaminas deve constar de 170 unidades de vitamina A, 180 unidades de vitamina B, 140 unidades de vitamina C, 180 unidades de vitamina D e 320 unidades de vitamina E. Fixada a mesma quantidade (1g) de cada alimento, determinou-se que:
- a) o alimento I tem uma unidade da vitamina A, 10 unidades da vitamina B, 1 unidade da vitamina C, 2 unidades da vitamina D e 2 unidades da vitamina E;
- b) o alimento II tem 9 unidades da vitamina A, 1 unidade da vitamina B, 0 unidades da vitamina C, 1 unidade da vitamina D e 1 unidade da vitamina E;
- c) o alimento III tem 2 unidades de vitamina A, 2 unidades de B, 5 unidade de C, 1 unidade de D e 2 unidades de E;
- d) o alimento IV tem 1 unidade de A, 1 unidade de B, 1 unidade de C, 2 unidades de D e 13 unidades de E;
- e) o alimento V tem 1 unidade de A, 1 unidade de B, 1 unidade de C, 9 unidades de D e 2 unidades de E.

Quantos gramas de cada um destes 5 alimentos (I a V) deve-se ingerir diariamente para se ter uma alimentação equilibrada?

Solução:

A matriz que relaciona os alimentos com suas devidas quantidades de cada vitamina é:

	A	В	С	D	\mathbf{E}
I	1	10	1	2	2
II	9	1	0	1	1
III	2	2	5	1	2
IV	1	1	1	2	13
V	1	1	1	9	2

A primeira coluna refere-se a vitamina A, a segunda B e sucessivamente até a E. Considere ainda que:

- x_1 Quantidade a ser ingerida do alimento 1;
- x_2 Quantidade a ser ingerida do alimento 2;
- x_3 Quantidade a ser ingerida do alimento 3;
- x_4 Quantidade a ser ingerida do alimento 4;
- $\bullet \ x_5$ Quantidade a ser ingerida do alimento 5.

Assim, a quantidade consumida das vitaminas pode ser expressa por:

$$\begin{cases} x_1 + 9x_2 + 2x_3 + x_4 + x_5 = 170 \ (Vitamina \ A) \\ 10x_1 + x_2 + 2x_3 + x_4 + x_5 = 180 \ (Vitamina \ B) \\ x_1 + 0x_2 + 5x_3 + x_4 + x_5 = 140 \ (Vitamina \ C) \\ 2x_1 + x_2 + x_3 + 2x_4 + 9x_5 = 180 \ (Vitamina \ D) \\ 2x_1 + x_2 + 2x_3 + 13x_4 + 2x_5 = 320 \ (Vitamina \ E) \end{cases}$$

Agora basta você montar a matriz estendida deste sistema e escalona-la, você encontrará:

$$x = 10, 11$$

$$y=10,12$$

$$z=20,37$$

$$w = 17,53$$

$$u = 10, 46$$

 $26.\,$ Necessita-se adubar um terreno acrescentando a cada $10\mathrm{m}^2$ $140\mathrm{g}$ de nitrato, $190\mathrm{g}$ de fosfato e $205\mathrm{g}$ de potássio.

Dispõe-se de quatro qualidades de adubo com as seguintes características:

- (a) Cada quilograma de adubo I custa 5 u.c.p e contem 10g de nitrato, 10g de fosfato e 100g de potássio.
- (b) Cada quilograma de adubo II custa 6 u.c.p e contem 10g de nitrato, 100g de fosfato e 30g de potássio.
- (c) Cada quilograma de adubo III custa 5 u.c.p e contém 50g de nitrato, 20g de fosfato e 20g de potássio.

(d) Cada quilograma de adubo IV custa 15 u.c.p e contém 20g de nitrato, 40g de fosfato e 35g de potássio.

Quanto de cada adubo devemos misturar para conseguir o efeito desejado se estamos dispostos a gastar 54 u.c.p. a cada $10\mathrm{m}^2$ com a adubação?

Solução:

Os dados do problema estão distribuídos na próxima tabela.

	Custo	Nitrato	Fosfato	Potássio
x_1	5	10	10	100
x_2	6	10	100	30
x_3	5	50	20	20
x_4	15	20	40	35

Analisando o sistema a seguir chegamos a solução.

$$\begin{cases} 5x_1 + 6x_2 + 5x_3 + 15x_4 + = 54 \\ 10x_1 + 10x_2 + 50x_3 + 20x_4 = 140 \\ 10x_1 + 100x_2 + 20x_3 + 40x_4 = 190 \\ 100x_1 + 30x_2 + 20x_3 + 35x_4 = 205 \end{cases}$$

$$x = \frac{6451}{9619}$$
; $y = \frac{4381}{9619}$; $z = \frac{25927}{9619}$

27. Deseja-se construir um circuito como mostrado na figura

onde $V_i=280V,\ V_2=100V,\ V_3=50V,\ R_1=20\Omega,\ R_2=30\Omega,\ R_3=50\Omega,\ R_4=40\Omega,\ R_5=100\Omega.$

Dispõe-se de uma tabela de preços de vários tipos de resistências; assim como as correntes máximas que elas suportam sem queimar.

RESISTÊNCIAS

Corrente máxima

	20Ω	30Ω	40Ω	50Ω	100Ω
0.5A	10,00	10,00	15,00	15,00	20,00
1.0A	15,00	20,00	15,00	15,00	25,00
3.0A	20,00	22,00	20,00	20,00	28,00
5.0A	30,00	30,00	34,00	34,00	37,00

Solução:

Usando as leis dos nós obtemos as seguintes equações:

$$\left\{ \begin{array}{l} i_1-i_2-i_5=0\\ i_5+i_4+i_3-i_1=0\\ i_1-i_4-i_3-i_5=0 \end{array} \right.$$

Já aplicando a lei das malhas

$$\begin{cases} i_1 + 5i_5 - 14 = 0 \\ 3i_2 + 10 + 4i_4 - 10i_5 = 0 \\ 5i_3 + 5 - 4i_4 = 0 \end{cases}$$

Usando as três equações do sistema acima e duas do sistema formando pela lei dos nós chegamos a um terceiro sistema que nos dará a solução das correntes.

$$\begin{cases} i_1 + 5i_5 = 14 \\ 3i_2 + 4i_4 - 10i_5 = -10 \\ 5i_3 - 4i_4 = -5 \\ i_1 - i_2 - i_5 = 0 \\ -i_1 + i_3 + i_4 + i_5 = 0 \end{cases}$$

Cuja solução ocorre para:

$$i_1 = 3.6774194 \ i_2 = 1.6129032 \ i_3 = 0.1612903 \ i_4 = 1.4516129 \ i_5 = 2.0645161$$

Com base nesses dados e na tabela do problema o custo mínimo é de R\$ 115,00.

28. Uma placa quadrada de material homogêneo e mantida com os bordos AC e BD temperatura de 20°C, o bordo AB a 40°C e CD a 10°C, com o uso de isolantes térmicos em A, B, C e D (vide figura).

Após ser atingido o equilíbrio térmico, qual e a temperatura aproximada em cada ponto da placa?

Solução:

Considere o seguinte reticulado da placa:

A temperatura em um ponto qualquer é aproximadamente a média dos pontos vizinhos. Por exemplo, a temperatura no ponto em vermelho da figura pode ser aproximada por:

$$p_{32} = \frac{20 + p_{42} + p_{22} + p_{33}}{4}$$

Onde p_{32} é o ponto situado na linha 3 e coluna 2.

Podemos multiplicar os dois lados da equação por 4, e então colocar as variáveis no lado esquerdo e as constantes no lado direito:

$$4p_{32} = 20 + p_{42} + p_{22} + p_{33}$$

$$4p_{32} - p_{42} - p_{22} - p_{33} = 20$$

Repetindo o processo para cada ponto obtemos um sistema de equações lineares. Cujas soluções nos dará as temperaturas dos pontos.

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

3 DETERMINANTE E MATRIZ INVERSA

3.1 Exercícios da página 90

Comentário: Devido a facilidade de alguns exercícios deste capítulo algumas respostas serão dadas sem muitas explicações.

- 1. Dê o numero de inversões das seguintes permutações de 1, 2, 3, 4, 5:
- a) 3 5 4 1 2
- b) 2 1 4 3 5
- c) 5 4 3 2 1
- d) No determinante de uma matriz 5×5 , que sinal (negativo ou positivo) precederia os termos $a_{13}a_{25}a_{34}a_{41}a_{52}$ e $a_{15}a_{24}a_{33}a_{42}a_{51}$?

Solução:

- a) 5 b) 2 c) 10
- d) A permutação do primeiro termo tem numero ímpar de permutações já a segunda um número par. Portanto, os sinais são e +, respectivamente.
 - 2. Quantas inversões tem a permutação (n, n-1, ..., 2, 1) dos números 1, 2, ..., n-1, n?

Solução:

O numero de inversões de uma permutação também é o numero de inter-trocas necessárias para coloca-la em ordem natural.

Tome como por exemplo a permutação (5, 4, 3, 2, 1).

A troca do ultimo termo com o primeira resulta em 4 operações. Veja:

(5, 4, 1, 3, 2)

(5, 1, 4, 3, 2)

(1, 5, 4, 3, 2)

Agora a troca do ultimo termo (2) resulta em mais 3 operações.

(1, 5, 4, 2, 3)

Agora a troca do ultimo termo (3) resulta em mais 2 operações.

Agora a troca do ultimo termo (4) resulta em mais 1 operação.

Note que não é necessário trocar o ultimo termo (que agora é o 5). Como ao total realizamos 4, 3, 2 e 1 trocas então a permutação (5, 4, 3, 2, 1) possui 10 inversões (4 + 3 + 2 + 1).

Pensando de forma análoga o número de inversões de (n,...,1) seria (n-1)+(n-2)+...+1.

- 3. Calcule $\det \begin{bmatrix} 2 & 0 & -1 \\ 3 & 0 & 2 \\ 4 & -3 & 7 \end{bmatrix}$
- a) pela definição.
- b) em relação à segunda coluna, usando o desenvolvimento de Laplace.

Solução de A:

Pela definição

$$det = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{23}a_{31}$$
$$= 21$$

Solução de B:

$$\det A = a_{11}|A_{11} - a_{12}|A_{12} + a_{13}|A_{13} = 21$$

- 4. Dadas as matrizes $A=\left[\begin{array}{cc}1&2\\1&0\end{array}\right]$ e B
 = $\left[\begin{array}{cc}3&-1\\0&1\end{array}\right]$, calcule
- a) $\det A + \det B$
- b) $\det(A + B)$

Solução de A:

Como det A = -2 e det B = 3 então det A + det B = 1

Solução de B:

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array}\right] + \left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 4 & 1 \\ 1 & 1 \end{array}\right]$$

Portanto

$$\det \left[\begin{array}{cc} 4 & 1 \\ 1 & 1 \end{array} \right] = 4 - 1 = 3$$

- 5. Sejam A e B matrizes do tipo $n \times n$. Verifique se as colocações abaixo são verdadeiras ou falsas.
 - a) det(AB) = det(BA)
 - b) det(A') = det A
 - c) $det(2A) = 2 \cdot det A$
 - $d) \det(A^2) = (\det A)^2$
 - e) det $A_{ij} < \det A$
 - f) Se A é uma matriz 3×3 , então

$$a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13} = a_{21}\Delta_{21} + a_{22}\Delta_{22} + a_{23}\Delta_{23}$$

Solução de A:

 $Como \det(AB) = \det(A) \cdot \det(B) \in \det(AB) = \det(B) \cdot \det(A).$

Como $det(A) \cdot det(B) = det(B) \cdot det(A)$, temos que det(AB) = det(BA).

Portanto, a afirmativa verdadeira!

Solução de B:

A afirmativa é verdadeira!

Solução de C:

$$det(2A) = 2 \cdot det(A)$$

Sabe-se que $\det(\mathbf{x} \cdot \mathbf{A}) = x^n \cdot \det(\mathbf{A})$, portanto $\det(2\mathbf{A}) = 2^n \cdot \det(\mathbf{A})$. Logo a afirmativa é falsa.

Solução de D:

$$\det(A^2) = (\det(A))^2$$

$$\det(A^2) = \det(A \cdot A) = \det(A) \cdot \det(A) = (\det(A))^2.$$

Logo a afirmativa é verdadeira!

Solução de E:

É falsa. Basta considerar a matriz $A=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ e $A_{22}.$

Solução de F:

Verdadeira.

6. Dada A =
$$\begin{bmatrix} 2 & 3 & 1 & -2 \\ 5 & 3 & 1 & 4 \\ 0 & 1 & 2 & 2 \\ 3 & -1 & -2 & 4 \end{bmatrix}$$
 calcule

- a) A₂₃
- b) $|A_{23}|$
- c) Δ_{23}
- d) det A

Solução de A:

$$A_{23} = \left[\begin{array}{ccc} 2 & 3 & -2 \\ 0 & 1 & 2 \\ 3 & -1 & 4 \end{array} \right]$$

Solução de B:

Usando a regra de Sarrus

$$\det A_{23} = 36$$

Solução de C:

$$\Delta_{23} = (-1)^{2+3} |A_{23}|$$

$$=(-1)^5 \cdot 36$$

$$= -36$$

Solução de D:

O determinante é zero.

- 7. Propriedade: O determinante de uma matriz triangular $A_{n\times n}$ é igual ao produto dos elementos de sua diagonal.
- a) Prove esta propriedade no caso em que A é uma matriz triangular superior (genérica) 5×5 . (Sugestão: Use e abuse do desenvolvimento de Laplace.)
 - b) O que você pode dizer sobre o numero de soluções dos sistemas abaixo?

$$i) \begin{cases} 5x_1 + 2x_2 - 3x_3 + 9x_4 = 0\\ -3x_2 + 9x_3 - \frac{1}{3}x_4 = 0\\ -2x_3 + x_4 = 0\\ x_4 = 1 \end{cases}$$

$$ii) \begin{cases} 3x_5 + 2x_4 + x_1 = 0 \\ -x_3 + x_2 - x_1 = 5 \\ -9x_3 - x_2 + 9x_1 = 0 \\ -3x_2 + x_1 = 0 \\ x_1 = 0 \end{cases}$$

Solução de A:

Tome a matriz M(5,5) a seguir.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix}$$

Usando Laplace na primeira coluna o determinante de M seria

$$\det(\mathbf{M}) = a_{11}|M_{11}| + a_{21}|M_{21}| + a_{31}|M_{31}| + a_{42}|M_{41}| + a_{15}|M_{15}|$$

$$\det(\mathbf{M}) = a_{11}|M_{11}| + 0|M_{21}| + 0|M_{31}| + 0|M_{41}| + 0|M_{15}|$$

$$\det(\mathbf{M}) = a_{11}|M_{11}|$$

Ou seja,

$$\det(\mathbf{M}) = a_1 1 \cdot \det \begin{pmatrix} a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & a_{55} \end{pmatrix}$$

Aplicando Laplace a primeira coluna desta última matriz analogamente ao raciocínio anterior chegaremos á:

$$\det(\mathbf{M}) = a_{11} \cdot a_{22} \cdot \det \begin{pmatrix} a_{33} & a_{34} & a_{35} \\ 0 & a_{44} & a_{45} \\ 0 & 0 & a_{55} \end{pmatrix}$$

Aplicando Laplace novamente a primeira coluna

$$\det(\mathbf{M}) = a_{11} \cdot a_{22} \cdot a_{33} \cdot \det \begin{pmatrix} a_{44} & a_{45} \\ 0 & a_{55} \end{pmatrix}$$

E novamente

$$\det(\mathbf{M}) = a_{11} \cdot a_{22} \cdot a_{33} \cdot a_{44} \cdot \det(a_{55})$$

Onde finalmente se conclui-que det(M)= $a_{11} \cdot a_{22} \cdot a_{33} \cdot a_{44} \cdot a_{55}$

A demonstração feita aqui foi para uma triangular superior, mas a demonstração para a triangular inferior é análoga e fica a cargo do leitor.

Solução de B:

- (i) única, (ii) nenhuma.
- 8. Calcule det A, onde

a)

$$\mathbf{A} = \left[\begin{array}{cccc} 3 & -1 & 5 & 0 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{array} \right]$$

b)

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 19 & 18 & 0 & 0 & 0 \\ -6 & \pi & -5 & 0 & 0 \\ 4 & \sqrt{2} & \sqrt{3} & 0 & 0 \\ 8 & 3 & 5 & 6 & -1 \end{bmatrix}$$

c)

$$\mathbf{A} = \begin{bmatrix} i & 3 & 2 & -1 \\ 3 & -i & 1 & i \\ 2 & 1 & -1 & 0 \\ -i & i & 0 & 1 \end{bmatrix}$$

Solução:

a) 12

- b) 0
- c) 12 + 8i

8. Calcule o det A, onde

a)

$$\mathbf{A} = \left[\begin{array}{cccc} 3 & -1 & 5 & 0 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{array} \right]$$

b)

$$\mathbf{A} = \left[\begin{array}{cccc} i & 3 & 2 & -i \\ 3 & -i & 1 & i \\ 2 & 1 & -1 & 0 \\ -i & i & 0 & 1 \end{array} \right]$$

c)

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 19 & 18 & 0 & 0 & 0 \\ -6 & \pi & -5 & 0 & 0 \\ 4 & \sqrt{2} & \sqrt{3} & 0 & 0 \\ 8 & 3 & 5 & 6 & -1 \end{bmatrix}$$

Solução de A:

$$\det(A) = 12$$

Solução de B:

A cargo do leitor.

Solução de C:

O determinante de uma matriz triangular, seja ela superior ou inferior, será sempre o produto dos elementos da diagonal principal. Assim, $\det(A) = 3 \times 18 \times -5 \times 0 \times 1 = 0$.

9. Encontre A^{-1} , onde

a)

$$\mathbf{A} = \left[\begin{array}{cccc} 4 & -1 & 2 & -2 \\ 3 & -1 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 7 & 1 & 1 \end{array} \right]$$

b)

$$\mathbf{A} = \begin{bmatrix} 0 & -i & -2 & i \\ 1 & -1 & i & 1 \\ 0 & -1 & 1 & -i \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

c)

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & x \\ 1 & 1 & x^2 \\ 2 & 2 & x \end{array} \right]$$

Solução de A:

$$\mathbf{A}^{-1} = \begin{bmatrix} -1 & -1 & 4 & -2 \\ -3 & -4 & 12 & -6 \\ 11 & 14 & -43 & 22 \\ 10 & 14 & -41 & 21 \end{bmatrix}$$

Solução de B:

$$\mathbf{A}^{-1} = \begin{bmatrix} 0.6 + 0.2i & 0.4 - 0.2i & 0.4 - 0.2i & 0.6 + 0.2i \\ 0.2 + 0.4i & -0.2 - 0.4i & -0.2 + 0.6i & 0.2 + 0.4i \\ -0.8 - 0.6i & -0.2 + 0.6i & -0.2 - 0.4i & 0.2 - 0.6i \\ -1 + i & 1 & -1 + i & -1 \end{bmatrix}$$

Solução de C:

A cargo do leitor.

10. Se A ou B é uma matriz não inversível, então $A \cdot B$ também não é. Prove isto, sem usar determinantes.

Solução:

Para ser inversível o determinante da matriz tem que ser diferente de zero. Logo det(A)

0 ou $\det(B) = 0$. E como $\det(AB) = \det(A) \cdot \det(B)$ então $\det(AB) = 0$. Logo, não pode ser inversível.

11. Mostre que

$$\frac{d}{dx} \left[\begin{array}{ccc} x^2 & x+1 & 3 \\ 1 & 2x-1 & x^3 \\ 0 & x & -2 \end{array} \right] = \left[\begin{array}{ccc} 2x & 1 & 0 \\ 1 & 2x-1 & x^3 \\ 0 & x & -2 \end{array} \right] + \left[\begin{array}{ccc} x^2 & x+1 & 3 \\ 0 & 2 & 3x^2 \\ 0 & x & -2 \end{array} \right] + \left[\begin{array}{ccc} x^2 & x+1 & 3 \\ 1 & 2x-1 & x^3 \\ 0 & 1 & 0 \end{array} \right]$$

Observe atentamente a igualdade acima e enuncie a propriedade que ela ilustra.

Solução:

A derivada do determinante é a soma dos determinantes das matrizes obtidas da original, diferenciando as linhas, uma por uma.

12. Dada a matriz A =
$$\begin{bmatrix} 2 & 1 & -3 \\ 0 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}$$
 calcule

- a) adj A
- b) det A
- c) A^{-1}

Solução:

a)
$$Adj(A) = \begin{bmatrix} 5 & -6 & 7 \\ 5 & 21 & -2 \\ -10 & 3 & 4 \end{bmatrix}$$

b) 45

c)
$$A^{-1} = \frac{1}{45} \begin{bmatrix} 5 & -6 & 7 \\ 5 & 21 & -2 \\ -10 & 3 & 4 \end{bmatrix}$$

13. Mostre que det
$$\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (a-b)(b-c)(c-a)$$

Solução:

Basta aplicar a regra de Sarrus na matriz e desenvolver o lado direito da equação para se chegar a conclusão requerida.

14. Dizemos que A e B são matrizes semelhantes se existe uma matriz P tal que $B = P^{-1}AP$. Mostre que det $A = \det B$ se A e B são semelhantes.

Solução: (Retirada da Wikipédia)

Mostraremos que se A e B são matrizes semelhantes, então $\det(A) = \det(B)$. Com efeito, temos que existe uma matriz invertível M tal que $A = M^{-1}BM$. Pelas propriedades do determinante segue que:

$$det(A) = det(M^{-1}BM)$$

$$= det(M^{-1}) det(B) det(M)$$

$$= \frac{1}{det(M)} det(B) det(M)$$

$$= det(B)$$

- 15. Verdadeiro ou falso?
- a) Se det A = 1, então $A^{-1} = A$.
- b) Se A é uma matriz triangular superior e ${\bf A}^{-1}$ existe, então também ${\bf A}^{-1}$ será uma matriz triangular superior.
 - c) Se A é uma matiz escalar $n \times n$ da forma $k \cdot I_n$, então det $A = k^n$.
 - d) Se A é uma matriz triangular, então det A = $a_{11} + \cdots + a_{nn}$.

Solução:

- a) F b) V c) V e d) F
- 16. Resolve o sistema, usando a Regra de Cramer:

$$\begin{cases} x - 2y + z = 1 \\ 2x + y = 3 \\ y - 5z = 4 \end{cases}$$

Solução:

$$\Delta = \det \left(\begin{array}{ccc} 1 & -2 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & -5 \end{array} \right) = -23$$

$$\Delta_1 = \det \left(\begin{array}{ccc} 1 & -2 & 1 \\ 3 & 1 & 0 \\ 4 & 1 & -5 \end{array} \right) = -36$$

$$\Delta_2 = \det \left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 0 & 4 & -5 \end{array} \right) = 3$$

$$\Delta_3 = \det \left(\begin{array}{ccc} 1 & -2 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 4 \end{array} \right) = 19$$

$$x_1 = \Delta_1/\Delta = \frac{36}{23}$$

$$x_2 = \Delta_2/\Delta = \frac{-3}{23}$$

$$x_3 = \Delta_3/\Delta = \frac{-19}{23}$$

17. Dado o sistema

$$\begin{cases} x + y - x = 0 \\ x - z + w = 2 \\ y + z - w = -3 \\ x + y - 2w = 1 \end{cases}$$

- a) Calcule o posto da matriz dos coeficientes.
- b) Calcule o posto da matriz ampliada.
- c) Descreva a solução deste sistema.
- d) Considere um sistema homogêneo AX = 0, onde A é uma matriz $n \times n$. Que condição você deve impor sobre A, para que o sistema admita soluções diferentes da solução trivial (X = 0)? Compare com 3, 6 e o Exercício 18 do capitulo 2.

Solução:

- a) 3
- b) 3
- c) Possível e indeterminado
- d) As linhas de A como vetores são LD.

18. Prove que: Uma matriz A, com ordem n, tem posto n se, e somente se A é inversível.

Solução:

Para provar a bicondicional dada considere uma matriz $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$

 (\Rightarrow)

Se o posto de A é igual a n então A possui uma forma escalonada com n linhas não nulas.

Escalonada(A) =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$

Também não pode ocorrer dos elementos da diagonal (circulados em vermelho a seguir) serem nulos, caso contrário a matriz acima não estaria em sua forma escalonada.

Escalonada(A) =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$

Pelo **teorema de Jacobi** o determinante de A coincide com o determinante da sua matriz escalonada (não confunda com a matriz escalonada reduzida). Assim:

$$det(A) = a_{11} \cdot \prod_{i=1}^{n} b_{ii}$$

Supondo por absurdo que A seja não inversível, então $\det(A) = 0$. O que implicaria na existência de pelo menos um elemento b_{ii} ou mesmo a_{11} nulo, o que é um absurdo, pois como vimos uma matriz $n \times n$ de nulidade n possui todos os elementos de sua diagonal diferentes de zero.

Portanto, $det(A) \neq 0$ e a matriz é inversível.

 (\Leftarrow)

Associado a matriz A temos o seguinte sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1(n-1)}x_{n-1} = a_{1n} \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2(n-1)}x_{n-1} = a_{2n} \\ \vdots + \vdots + \dots + \vdots = \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n(n-1)}x_{n-1} = a_{nn} \end{cases}$$

De modo que sua forma escalonada será:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1(n-1)}x_{n-1} = a_{1n} \\ b_{22}x_2 + \dots + b_{2(n-1)}x_{n-1} = b_{2n} \\ \vdots & = \vdots \\ b_{n(n-1)}x_{n-1} = b_{nn} \end{cases}$$

Pela regra de Cramer se $det(A) \neq 0$ então o sistema acima é **possível determinado** possuindo n linhas linearmente independentes o que implica em p(A) = n.

19. A partir do exercício acima, você pode concluir que uma matriz A, de ordem n, possui determinante diferente de zero se, e somente se A, têm n linhas linearmente independentes. Por quê? (Veja o final da secção 2.4)

Solução:

Segundo a seção 2.4 o posto de uma matriz também pode ser definido como o número de linhas linearmente independentes desta. E como uma matriz A é inversível se, e somente se, $\det(A) \neq 0$.

A afirmação provada no exercício anterior

"Uma matriz A, com ordem n, tem posto n se, e somente se A é inversível."

Pode ser escrita como

"Uma matriz A, com ordem n, tem n linhas linearmente independentes se, e somente se determinante de A é diferente de zero."

21. Mostre que a área do triângulo na figura

é dada pelo determinante

$$\frac{1}{2} \left[\begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right]$$

Solução:

Construa um trapézio auxiliar como na figura a seguir:

A área do triangulo será a área do trapézio menos as áreas dos 2 triângulos coloridos, isto é:

$$\Delta = A_T - A1 - A2$$

$$\Delta = \frac{((y_3 - y_2) + (y_1 - y_2))(x_3 - x_1)}{2} - \frac{(x_2 - x_1)(y_1 - y_2)}{2} - \frac{(x_3 - x_2)(y_3 - y_2)}{2}$$

Efetuando as multiplicações e simplificando, chegamos a:

$$2\Delta = x_1y_2 - x_1y_3 - x_2y_1 + x_2y_3 + x_3y_1 - x_3y_2$$

Que podemos escrever como

$$2\Delta = (1) \cdot det \left[\begin{array}{cc} x_1 & x_1 \\ y_3 & y_2 \end{array} \right] + (-1) \cdot det \left[\begin{array}{cc} x_2 & x_2 \\ y_3 & y_1 \end{array} \right] + (1) \cdot det \left[\begin{array}{cc} x_3 & x_3 \\ y_2 & y_1 \end{array} \right]$$

E usando a recíproca do teorema de Laplace, temos:

$$2\Delta = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \Rightarrow \Delta = \frac{1}{2} \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

22 a) Mostre que
$$\begin{bmatrix} 1 & a_1 & a_1^2 \\ 1 & a_2 & a_2^2 \\ 1 & a_3 & a_3^2 \end{bmatrix} = (a_2 - a_1)(a_3 - a_1)(a_3 - a_2)$$

b) Se $a_1, a_2, ..., a_n$ são números, mostre por indução finita que

$$V_n = \begin{bmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{bmatrix} = \Pi(x_j - x_i) com (i < j)$$

O símbolo à direita significa o produto de todos os termos $x_j - x_i$ com i < j e i, j inteiros variando de 1 a n.

Solução de A:

Basta calcular o determinante usando a regra de sarrus. Onde chegaremos á:

$$\det(\mathbf{A}) = (a_2 a_3^2 + a_1 a_2^2 + a_1^2 a_3) - (a_2 a_1^2 + a_3 a_2^2 + a_3^2 a_1)$$

Onde após algum algebrismo conclui-se a igualdade

$$(a_2a_3^2 + a_1a_2^2 + a_1^2a_3) - (a_2a_1^2 + a_3a_2^2 + a_3^2a_1) = (a_2 - a_1)(a_3 - a_1)(a_3 - a_2)$$

terminando a demonstração.

Solução de B^1 :

Seja

$$V_n = \begin{bmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{bmatrix}$$

verifica-se imediatamente que a condição é verdadeira tanto para n=1

 $^{^{1}}$ Ao substituir x_{j} por a_{j} e x_{i} por a_{i} o autor parece sugerir que seja utilizada a demonstração por polinômio, entretanto como aqui não se fez uso dessa demonstração não foi feita a substituição uma vez que a mesma se faz desnecessária.

$$V_1 = |1| = 1$$

como para n=2.

$$V_2 = \left[\begin{array}{cc} 1 & a_1 \\ 1 & a_2 \end{array} \right] = (a_1 - a_2)$$

Com isso provamos a base da indução.

Agora, provemos para a matriz $n \times n$ supondo válido para as matrizes $n-1 \times n-1$. Seja c_i a coluna i, então multiplicamos a coluna c_i por $-a_1$ e somamos com a coluna c_{i+1} :

$$|V_n| = \det \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ 1 & a_3 & a_3^2 & \cdots & a_n^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & a_2 - a_1 & a_2(a_2 - a_1) & \cdots & a_2^{n-2}(a_2 - a_1) \\ 1 & a_3 - a_1 & a_3(a_3 - a_1) & \cdots & a_3^{n-2}(a_3 - a_1) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 1 & a_n - a_1 & a_n(a_n - a_1) & \cdots & a_n^{n-2}(a_n - a_1) \end{pmatrix}$$

Calculando o determinante, por propriedade se elimina a primeira linha e a primeira coluna, achando assim uma matriz de $n-1 \times n-1$, logo.

$$|V_n| = \det \begin{pmatrix} a_2 - a_1 & a_2(a_2 - a_1) & \cdots & a_2^{n-2}(a_2 - a_1) \\ a_3 - a_1 & a_3(a_3 - a_1) & \cdots & a_3^{n-2}(a_3 - a_1) \\ \vdots & \vdots & \ddots & \vdots \\ a_n - a_1 & a_2(a_n - a_1) & \cdots & a_n^{n-2}(a_n - a_1) \end{pmatrix}$$

Prosseguindo, podemos colocar os $(a_i - a_1)$ em evidência,

$$|V_n| = (a_2 - a_1)(a_3 - a_1) \cdots (a_n - a_1) \times det \begin{pmatrix} 1 & a_2 & a_2^2 & \cdots & a_2^{n-2} \\ 1 & a_3 & a_3^2 & \cdots & a_3^{n-2} \\ 1 & a_4 & a_4^2 & \cdots & a_4^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-2} \end{pmatrix}$$

$$\Rightarrow |V_n| = (a_2 - a_1)(a_3 - a_1) \cdots (a_n - a_1) \times |V_{n-1}|$$

Expandindo este determinante pela primeira linha (ou coluna, tanto faz) e aplicando a hipótese de indução temos que:

$$|V_n| = \prod_{i < j} (a_i - a_i)$$

Completando a demonstração.

Obs: Tal determinante é chamado determinante de Vandermonde e além dessa existem outras provas da mesma, também por indução, nos seguintes links.

ProfWiki (Em inglês) Blog Legauss (Em português) IME (Em português)

- 23. Uma maneira de codificar uma mensagem blá, blá, blá... (na prática ninguém faz isso).
- a) Você recebeu a mensagem:

$$-12\ 48\ 23\ -2\ 42\ 26\ 1\ 42\ 29$$

Utilizando a mesma chave traduza a mensagem.

- b) Aconteceu que o inimigo descobriu sua chave. O seu comandante manda voe substituir a matriz chave por $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Você transmite a mensagem "CRETINO..." a ele (codificada naturalmente!) Por quê não será possível a ele decodificar sua mensagem?
- c) Escolha uma matriz chave que dê para codificar palavras até 16 letras. Codifique e descodifique à vontade!

Solução de A:

$$\mathbf{C}^{-1} = \left(\begin{array}{ccc} 2 & 1 & -3 \\ 1 & 1 & -2 \\ -1 & -1 & 3 \end{array} \right)$$

Fazendo $(M \cdot C) \cdot C^{-1}$ chegamos a mensagem M.

$$\left(\begin{array}{ccc} -12 & 48 & 23 \\ -2 & 42 & 26 \\ 1 & 42 & 29 \end{array}\right) \cdot \left(\begin{array}{ccc} 2 & 1 & -3 \\ 1 & 1 & -2 \\ -1 & -1 & 3 \end{array}\right) = \left(\begin{array}{ccc} 1 & 13 & 9 \\ 12 & 14 & 0 \\ 15 & 14 & 0 \end{array}\right)$$

Que de acordo com a tabela forma a frase: ANIMO-PO-

Solução de B:

A matriz chave não tem inversa.

Solução de C:

Lembrando que toda matriz cujo determinante é diferente de zero possui inversa, então qualquer matriz 4×4 com determinante não nulo é uma solução para o problema.

$$\left(\begin{array}{ccccc}
1 & 2 & 2 & 3 \\
0 & 1 & 4 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Vale ressaltar que ao contrário do que coloca o autor esse método não é usado na prática, pois apresenta o mesmo nível de quebra que a cifra de césar exigindo maior custo computacional.

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

4 ESPAÇO VETORIAL

4.1 Exercícios da página 129

1 a) Seja V o espaço vetorial \mathbb{R}^n , definindo no Exemplo 2 de 4.2.2. Qual é o vetor nulo de V é o que é $-(x_1, x_2, ..., x_n)$? b) Seja W = M(2, 2) (veja 4.2.2 Exemplo 3 i)) descreva o vetor nulo e vetor oposto.

Solução de A:

Olhando o exemplo 2 de 4.2.2 o espaço vetorial ${f V}$ é formado pelo conjunto de vetores com da forma:

$$(x_1, x_2, ..., x_n)$$

Por definição o vetor nulo (u) de V é um vetor tal que:

$$v + u = v \text{ (para todo } v \in \mathbf{V})$$

$$(v_1, v_2, ..., v_n) + u = (v_1, v_2, ..., v_n)$$

$$(v_1, v_2, ..., v_n) + (u_1, u_2, ..., u_n) = (v_1, v_2, ..., v_n)$$

$$(v_1 + u_1, v_2 + u_2, ..., v_n + u_n) = (v_1, v_2, ..., v_n)$$

$$\Rightarrow v_1 + u_1 = v_1 \Rightarrow u_1 = 0$$

$$\Rightarrow v_2 + u_2 = v_2 \Rightarrow u_2 = 0$$

$$\vdots$$

$$\Rightarrow v_n + u_n = v_n \Rightarrow u_n = 0$$
Ou seja, $u = (0, 0, ..., 0)$.

Obs: Existe uma convenção, criada a fim de simplificar a escrita de que um vetor nulo. Assim, podemos dizer que u é nulo simplesmente escrevendo $u = \{0\}$.

Solução da 2° parte de A:

Se u é um vetor de \mathbf{V} tal que $u=(x_1,x_2,...,x_n)$, então $-u=-(x_1,x_2,...,x_n)$.

Como u - u = 0 então -u é o vetor oposto.

Solução de B:

Seja $m, u \in W$ onde:

$$m = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]; \ u = \left[\begin{array}{cc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array} \right]$$

e sendo u o vetor nulo de W então

$$m \cdot u = m$$

$$\Rightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

que implica em $b_{11}=b_{12}=b_{21}=b_{22}=0$. Logo o vetor u será igual à:

$$u = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

O vetor oposto de um vetor m genérico será -m.

2. Mostre que os seguintes subconjuntos de R^4 são subespaços

a) W =
$$\{(x, y, z, t) \in \mathbb{R}^4 | x + y = 0 \text{ e } z - t = 0\}$$

b)
$$U = \{(x, y, z, t) \in \mathbb{R}^4 | 2x + y - t = 0 \text{ e } z = 0\}$$

Solução de A:

Como \mathbb{R}^4 é um espaço vetorial provamos que W e U são subespaços se mostrarmos que:

- i) A **soma** e fechada em W e U.
- ii) Todo elemento de W ou de U multiplicado por um escalar contínua a pertencer a W ou a U respectivamente.

Prova da condição i

Primeiro tomamos um vetor u e v pertencentes a W tal que

$$u = (x, y, z, t)$$
 e $v = (x_1, y_1, z_1, t_1)$.

Pelo enunciado sabemos que em Wx + y = 0 (que implica em x = -y) e z - t = 0 (que implica em z = t). Assim, u e v podem ser escritos como:

$$u = (-y, y, z, z)$$
 e $v = (-y_1, y_1, z_1, z_1)$

Fazendo u + v então:

$$(-y, y, z, z) + (-y_1, y_1, z_1, z_1) = (-y + y_1, y + y_1, z + z_1, z + z_1)$$

Note que se fizermos a soma dos dois primeiro elementos do resultado de u+v o resultado é zero.

$$(-y - y_1) + (y + y_1) = -(y + y_1) + (y + y_1) = 0$$

O mesmo resultado ocorre se fizermos a diferença entre os dois últimos elementos

$$(z + z_1) - (z + z_1) = 0$$

portanto, $u + v \in W$.

Prova da condição ii

Tomando $k \in \mathbb{R}$ então:

$$k \cdot u = k(-y, y, z, z) = (-ky, ky, kz, kz)$$

Fazendo a soma dos dois primeiros elementos o resultado é o vetor nulo.

$$-ky + ky = 0$$

O mesmo ocorre se fizermos a diferença entre os dois últimos elementos.

$$kz - kz = 0$$

Ou seja, se $u \in W$ então $ku \in W$.

Como as condições i e ii foram satisfeitas então W é realmente um subespaço vetorial.

Solução de B:

Semelhante a anterior.

3. Responda se os subconjuntos são subespaços de $M(2,\ 2)$. Em caso afirmativo exiba geradores

a) V =
$$\left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \text{com a, b, c, d} \in \mathbb{R} \text{ e b} = c \right\}$$

b) V =
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{com a, b, c, d} \in \mathbb{R} \text{ e b} = c+1 \right\}$$

Solução de A:

Vamos começar provando que a soma é fechada em V.

Tome $M_1 = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ e $M_2 = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ pertencentes a V. Como em V todas as matrizes tem o elemento $a_{12} = a_{21}$ então M_1 e M_2 podem ser rescritos como:

$$\mathbf{M}_1 = \left[\begin{array}{cc} a_1 & b_1 \\ b_1 & d_1 \end{array} \right] \in \mathbf{M}_2 = \left[\begin{array}{cc} a_2 & b_2 \\ b_2 & d_2 \end{array} \right]$$

Fazendo $M_1 + M_2$

$$\left[\begin{array}{cc} a_1 & b_1 \\ b_1 & d_1 \end{array}\right] + \left[\begin{array}{cc} a_2 & b_2 \\ b_2 & d_2 \end{array}\right] = \left[\begin{array}{cc} a_1 + a_2 & b_1 + b_2 \\ b_1 + b_2 & d_1 + d_2 \end{array}\right]$$

Note que a matriz resultante também pertence a V, pois ainda é uma matriz 2×2 e o seu elemento a_{12} ainda é igual ao elemento a_{21} .

Com isso provamos que a soma em V é fechada.

Agora vamos provar que multiplicando um elemento qualquer de V por um escalar real ainda teremos um elemento de V.

Tomando $k \in \mathbb{R}$ então:

$$k \cdot \mathbf{M}_1 = k \begin{bmatrix} a_1 & b_1 \\ b_1 & d_1 \end{bmatrix} = \begin{bmatrix} k \cdot a_1 & k \cdot b_1 \\ k \cdot b_1 & k \cdot d_1 \end{bmatrix}$$

Note que a matriz resultante também pertence a V, pois seu elemento a_{12} ainda é igual ao seu elemento a_{21} .

Ou seja, se $u \in M_1$ então $k \cdot M_1 \in V$.

Logo V é realmente um subespaço vetorial de M(2, 2).

Para determinar um **gerador** tomamos a matriz $M_1 = \begin{bmatrix} a_1 & b_1 \\ b_1 & d_1 \end{bmatrix}$ pertencente a V e a descrevemos como uma soma de matrizes. Veja:

$$\left[\begin{array}{cc} a_1 & b_1 \\ b_1 & d_1 \end{array}\right] = a_1 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b_1 \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] + d_1 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

como $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ e $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ são LI então são estas uma base de V.

Solução de B:

Tome
$$M_1=\left[\begin{array}{cc}a_1&b_1\\c_1&d_1\end{array}\right]$$
 e $M_2=\left[\begin{array}{cc}a_2&b_2\\c_2&d_2\end{array}\right]$ pertencentes ao conjunto V.

Como em V todas as matrizes tem o elemento a_{12} igual ao elemento a_{21} acrecido em uma unidade (b=c+1) então M_1 e M_2 podem ser rescritos como:

$$\mathbf{M}_1 = \left[\begin{array}{cc} a_1 & c_1 + 1 \\ c_1 & d_1 \end{array} \right] \in \mathbf{M}_2 = \left[\begin{array}{cc} a_2 & c_2 + 1 \\ c_2 & d_2 \end{array} \right]$$

Fazendo $M_1 + M_2$

$$\begin{bmatrix} a_1 & c_1 + 1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & c_2 + 1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & c_1 + c_2 + 2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$$

note que a matriz resultante não pertence a V, pois o elemento $a_{12} \neq a_{21} + 1$. Portanto, V não é um sub espaço vetorial.

4. Considere dois vetores (a, b) e (c, d) no plano. Se ad - bc = 0, mostre que eles são LD. Se $ad - bc \neq 0$. Mostre que eles são LI.

Solução:

Dado $k_1, k_2 \in \mathbb{R}$ então:

$$k_1 \cdot (a, b) + k_2 \cdot (c, d) = (0, 0)$$
 (1)

da equação acima montamos o seguinte sistema linear

$$\begin{cases} ak_1 + ck_2 = 0\\ bk_1 + dk_2 = 0 \end{cases}$$

Retirando o determinante da matriz dos coeficientes do sistema acima chega-se até:

$$\det \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) = ad - cb$$

Se ad - cb = 0 então, pela regra de Cramer, o sistema deve ser possível e indeterminado ou impossível. Entretanto, como $k_1 = k_2 = 0$ é claramente uma solução então o sistema deve ser possível e indeterminado (ou seja, possui várias soluções). Portanto, nesse caso os vetores (a, b) e (c, d) são LD.

Entretanto, se $ad - bc \neq 0$ então o sistema admite apenas uma única solução. No caso, $k_1 = k_2 = 0$. O que prova que neste caso (a, b) e (c, d) são LI.

- 5. Verifique se os conjuntos são espaços vetoriais reais, com as operações usuais. No caso afirmativo, exiba uma base e dê a dimensão.
 - a) Matrizes diagonais $n \times n$.

b) Matrizes escalares $n \times n$.

c)
$$\left\{ \left[\begin{array}{cc} a & a+b \\ a & b \end{array} \right] : a,b \in \mathbb{R} \right\}$$

d)
$$V = \{(a, a, ..., a) \in \mathbb{R}^n : a \in \mathbb{R}\}\$$

e)
$$\{(a, b) : a, b \in \mathbb{R}\}$$

f) A reta
$$\{(x, x + 3) : x \in \mathbb{R}\}$$

g)
$$\{(a, 2a, 3a) : a \in \mathbb{R}\}$$

Solução de A:

Dado as matrizes $A_{n\times n}$, $B_{n\times n}$ e $C_{n\times n}$ pertencentes ao conjunto das matrizes diagonais $n\times n$ então:

$$(A_{n\times n} + B_{n\times n}) + C_{n\times n}$$

$$= \left(\left(\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & a_{nn} \end{array} \right) + \left(\begin{array}{cccc} b_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & b_{nn} \end{array} \right) \right) + \left(\begin{array}{cccc} c_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & c_{nn} \end{array} \right)$$

observando como ocorre a soma em $M_{n\times n}$ (ver anexo II) então:

$$= \begin{pmatrix} a_{11} + b_{11} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} + b_{nn} \end{pmatrix} + \begin{pmatrix} c_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & c_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} (a_{11} + b_{11}) + c_{11} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & (a_{nn} + b_{nn}) + c_{nn} \end{pmatrix}$$

usando a associatividade em \mathbb{R} (ver anexo I)

$$= \begin{pmatrix} a_{11} + (b_{11} + c_{11}) & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} + (b_{nn} + c_{nn}) \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & 0 & \cdots & 0 & a_{1n} \\ 0 & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ a_{n1} & 0 & \cdots & 0 & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} + c_{11} & 0 & \cdots & 0 & b_{1n} + c_{1n} \\ 0 & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ b_{n1} + c_{n1} & 0 & \cdots & 0 & b_{nn} + c_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} + \begin{pmatrix} c_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & c_{nn} \end{pmatrix} \right)$$

$$= \mathbf{A}_{n \times n} + (\mathbf{B}_{n \times n} + \mathbf{C}_{n \times n}).$$

Como $(A_{n\times n} + B_{n\times n}) + C_{n\times n} = A_{n\times n} + (B_{n\times n} + C_{n\times n})$ então a condição i está provada.

Para provar a condição ii somamos $A_{n\times n}$ e $B_{n\times n}$ e mostramos que a soma é comutativa.

$$A_{n\times n} + B_{n\times n}$$

$$= \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} + b_{nn} \end{pmatrix}$$

como a soma em \mathbb{R} é comutativa então

$$\begin{pmatrix} a_{11} + b_{11} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} + b_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} + a_{11} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & b_{nn} + a_{nn} \end{pmatrix}$$
$$= \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} + \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$
$$= B_{n \times n} + A_{n \times n}.$$

Como $\mathbf{A}_{n\times n} + \mathbf{B}_{n\times n} = \mathbf{B}_{n\times n} + \mathbf{A}_{n\times n}$ então a condição ii está provada.

As demais propriedades são satisfeitas, mas serão deixadas a cargo do leitor. A dimensão é igual a n e a base é a seguinte:

$$Base = \left\{ \left(\begin{array}{ccc} 1 & \cdots & 0 \\ \vdots & 0 & \vdots \\ 0 & \cdots & 0 \end{array} \right), \left(\begin{array}{ccc} 0 & \cdots & \cdots & 0 \\ \vdots & 1 & \vdots & \vdots \\ \vdots & \vdots & 0 & \vdots \\ 0 & \cdots & \cdots & 0 \end{array} \right), \ldots, \left(\begin{array}{ccc} 0 & \cdots & 0 \\ \vdots & 0 & \vdots \\ 0 & \cdots & 1 \end{array} \right) \right\}$$

Solução de B:

É um espaço vetorial. A dimensão é igual a 1 e a base é a seguinte:

$$Base = \left\{ \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \right\}$$

Solução de C:

É um espaço vetorial. A dimensão é igual a 2 e a base é a seguinte:

$$Base = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) \right\}$$

Solução de D:

É um espaço vetorial. A dimensão é igual a 1 e a base é a seguinte:

$$Base = \{(1, 1, 1..., 1)\}$$

Solução de E:

Não é um espaço vetorial, pois não existe o elemento neutro.

Solução de F:

Não é um espaço vetorial, pois não existe o elemento neutro.

Solução de G:

É um espaço vetorial. A dimensão é igual a 1 e a base é a seguinte:

$$Base = \{(1, 2, 3)\}$$

6. Considere o subespaço de \mathbb{R}^4

$$S = [(1, 1-2, 4), (1, 1, -2, 2), (1, 4, -4, 8)]$$

- a) O vetor $\left(\frac{2}{3}, 1, -1, 2\right)$ pertence a S?
- b) O vetor (0,0,1,1) pertence a S?

Solução de A:

O vetor $\left(\frac{2}{3},1,-1,2\right)\in S$ se, e somente se, puder ser escrito como combinação linear dos vetores que geram S. Ou seja,

$$\left(\frac{2}{3}, 1, -1, 2\right) = x(1, 1 - 2, 4) + y(1, 1 - 1, 2) + z(1, 4, -4, 8)$$
 (1)

para algum $x, y \in \mathbb{R}$.

Note que da equação (1) podemos extrair o seguinte sistema

$$\begin{cases} x + y + z = 2/3 \\ x + y + 4z = 1 \\ -2x - y - 4z = -1 \\ 4x + 2y + 8z = 2 \end{cases}$$

cuja solução ocorre para x = 0, y = 5/9 e z = 1/9

Logo $\left(\frac{2}{3},1,-1,2\right)$ pode realmente ser escrito como combinação linear dos geradores de S de modo que **pertence** a S.

Solução de B:

$$(0,0,1,1) = x(1,1-2,4) + y(1,1-1,2) + z(1,4,-4,8)$$

que implica no seguinte sistema

$$\begin{cases} x + y + z = 0 \\ x+y+4z = 0 \\ -2x-y-4z = 1 \\ 4x+2y+8z = 1 \end{cases}$$

Como o sistema não possui solução, então o vetor **não** pertence a S.

7. Seja W o subespaço de M(2, 2) definido por

$$W = \left\{ \left(\begin{array}{cc} 2a & a+2b \\ 0 & a-b \end{array} \right) : a, b \in \mathbb{R} \right\}$$

$$a) \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \in W?$$

b)
$$\begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} \in W$$
?

Solução de A:

A equação abaixo

$$\left(\begin{array}{cc} 0 & -2 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 2a & a+2b \\ 0 & a-b \end{array}\right)$$

implica no seguinte sistema

$$\begin{cases} 2a = 0 \\ a+2b = -2 \\ a-b = 1 \end{cases}$$

cuja solução ocorre para a=0 e b=-1. Sendo assim, o vetor $\left(\begin{array}{cc} 0 & -2 \\ 0 & 1 \end{array}\right)$ pertence a W.

Solução de B:

Não pertence. E nesse caso nem é preciso seguir o raciocínio anterior para chegar a tal conclusão, basta observar que nessa nova matriz o elemento $a_{21} \neq 0$.

8. Seja W o subespaço de M(3, 2) gerado por

$$\left(\begin{array}{cc}0&0\\1&1\\0&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&0\\0&0\end{array}\right)\text{O vetor}\left(\begin{array}{cc}0&2\\3&4\\5&0\end{array}\right)\text{ pertence a W?}$$

Solução:

Se o vetor pertencer a W então ele poderá ser escrito como combinação linear dos geradores de W.

$$\begin{pmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{pmatrix} = a \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\left(\begin{array}{cc} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ a & a \\ 0 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & b \\ 0 & -b \\ b & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & c \\ 0 & 0 \\ 0 & 0 \end{array}\right)$$

Note que a equação acima implica no seguinte sistema

$$\begin{cases}
0 = 0 \\
b + c = 2 \\
a = 3 \\
a - b = 4 \\
b = 5
\end{cases}$$

Como $a=3,\,b=5$ e a-b=4 então o sistema não têm solução, portanto, o vetor não pode pertencer a W.

9. Mostre que

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

é base de M(2,2).

Solução:

Se os vetores descritos no enunciado forem realmente a base de M(2,2), então qualquer matriz M(2,2) pode ser escrita como combinação linear deles.

Como a equação a seguir é verdadeira e os vetores são LI então realmente são base de M(2,2).

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] + c \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right] + d \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

10. Escreva uma base para o espaço vetorial das matrizes $n \times n$. Qual a dimensão deste espaço?

Solução:

Como os vetores

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

são LI e

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} + \cdots + a_{nn} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

então uma base seria

$$\left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

11. Quais são as coordenadas de x = (1,0,0) em relação à base $\beta = \{(1,1,1), (-1,1,0), (1,0,-1)\}$?

Solução:

$$(1,0,0) = a(1,1,1) + b(-1,1,0) + c(1,0,-1)$$

o que implica em a=1/3, b=-1/3 e c=1/3. Logo as coordenadas de $\mathbf{x}=(1,\,0,\,0)$ em relação à base $\mathbf{B}=\{(1,1,1),(-1,1,0),(1,0,-1)\}$ é: $1/3,\,-1/3$ e 1/3 ou então:

$$[x]_{\beta} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

12. Qual seria uma base "natural" para P_n ? (Veja o Exemplo 4 de 4.2.2). Dê a dimensão deste espaço vetorial.

Solução:

Como

$$(a_0 + a_1 x^1 + \dots + a_n x^n) = a_0(1, 0, \dots, 0) + a_1(0, 1, 0, \dots, 0) + \dots + a_n(0, 0, \dots, 1)$$

então os vetores, com n termos, e linearmente independentes

$$\{(1,0,\cdots,0),(0,1,0,\cdots,0),\cdots,(0,0,\cdots,1)\}$$

são uma base para P_n . E como temos um vetor para cada coeficiente de P_n , então a dimensão será igual a n+1.

13. Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 .

Solução:

Se os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 então o polinômio $a_3t^3+a_2t^2+a_1t+a_0$ pode ser escrito como combinação linear deles. Ou seja:

$$a_3t^3 + a_2t^2 + a_1t + a_0 = k_1(1-t^3) + k_2(1-t)^2 + k_3(1-t) + k_4(1)$$

para algum $k_1, k_2 \in \mathbb{R}$.

Devemos então provar duas coisas: que existe cada k_n e que os vetores em questão são LI.

Como:

$$a_3t^3 + a_2t^2 + a_1t + a_0 = k_1(1-t^3) + k_2(1-t)^2 + k_3(1-t) + k_4(1)$$

então:

$$a_3t^3 + a_2t^2 + a_1t + a_0 = k_1(1 - t^3) + k_2(1 - 2t + t^2) + k_3(1 - t) + k_4(1)$$

$$a_3t^3 + a_2t^2 + a_1t + a_0 = (-k_1)t^3 + (k_2)t^2 - (2k_2 + k_3)t + (k_3 + k_4 + k_1 + k_2)$$

o que implica em:

$$-k_1 = a_3 \tag{1}$$

$$k_2 = a_2 \tag{2}$$

$$2k_2 + k_3 = a_1 (3)$$

$$k_3 + k_4 + k_1 + k_2 = 0 (4)$$

Da equação (1) chegamos a $k_1 = -a_3$. De (2) que $k_2 = a_2$. Da equação (3) e (2) chegamos a $k_3 = a_1 - 2a_2$. E finalmente da equação (4), (3), (2) e (1) chegamos a $k_4 = -(a_3 + a_1 - a_2)$. Com isso provamos a existência de cada k_n (ou o fato de que um polinômio de grau três realmente pode ser escrito como combinação dos vetores dados).

Para mostrar que esses vetores são LI fazemos:

$$\alpha(1-t^3) + \beta(1-t)^2 + \omega(1-t) + \phi 1 = 0$$

que implica em:

$$\alpha = 0 \tag{5}$$

$$\beta = 0 \tag{6}$$

$$\omega = 0 \tag{7}$$

$$\phi = 0 \tag{8}$$

Como esses vetores também são LI então são base de P_3 .

A demonstração para P₂, P₁ e P₀ é similar e fica a cargo do leitor.

- 14. Considere [-a,a] um intervalo simétrico e $C^1[-a,a]$ o conjunto das funções reais definidas no intervalo [-a,a] que possuem derivadas contínuas no intervalo. Sejam ainda os subconjunto $V_1 = \{f(x) \in C^1[-a,a] \mid f(-x) = f(x), \ \forall \ x \in [-a,a]\}$ e $V_2 = \{f(x) \in C^1[-a,a] \mid f(-x) = -f(x), \ \forall \ x \in [-a,a]\}$.
 - a) Mostre que C^1 [-a,a] é um espaço vetorial real.
 - b) Mostre que V_1 e V_2 são subespaços de $C^1[-a,a]$.
 - c) Mostre que $V_1 \bigoplus V_2 = C^1[-a, a]$.

Solução de A:

As propriedades das operações com funções reais são as mesmas do conjunto dos números reais. Por isso, a demonstração de que $C^1[-a,a]$ é um espaço vetorial é evidente.

Solução de B:

Dado f(x) e $g(x) \in V_1$ então podemos afirmar que tanto f(x) como g(x) são funções pares. Como f(x) e g(x) estão definidas no intervalo [-a,a] então f(x)+g(x) também está. E como a soma de funções pares é par então: $f(x)+g(x) \in V_1$ confirmando que a soma é fechada em V_1 .

Dado agora um $\alpha \in \mathbb{R}$ e considerando que f(x) = b para algum $x \in [-a, a]$ então:

$$\alpha f(x) = \alpha \cdot b$$

e também

$$\alpha f(-x) = \alpha \cdot b$$

ou seja: $\alpha f(x) = \alpha f(-x)$ e portanto $\alpha f(x)$ ainda é uma função par. Como $\alpha f(x)$ também pertence a [-a,a], pois f(x) pertence, então a multiplicação por escalar também é fechada em V_1 .

Como a soma e a multiplicação por um escalar qualquer são operações fechadas em V_1 então V_1 é um espaço vetorial.

A demonstração de V_2 é semelhante e fica a cargo do leitor.

Solução de C:

Essa demonstração será feita por **dupla inclusão**, ou seja, primeiro vamos demonstrar que todo elemento de $C^1[-a, a] \in V_1 \bigoplus V_2$ e depois o contrário.

 (\Rightarrow) A ideia principal aqui é o fato de que toda função $f: E \to \mathbb{R}$ definida em um conjunto E simétrico em relação à origem pode ser escrita como a soma de uma função par e uma função ímpar. Assim, dado uma função $f(x) \in C^1[-a,a]$ então:

$$f(x) = f_i(x) + f_p(x)$$

o que implica no fato de $f(x) \in V_1 \bigoplus V_2$.

 (\Leftarrow) Dado $f_p \in V_1$ e $f_i \in V_2$, então $f_i + f_p \in V_1 \bigoplus V_2$. Como tanto f_i como f_p estão definidas no intervalo $C^1[-a,a]$ e pertencem a $C^1[-a,a]$ então $f_i + f_p$ também está definida no intervalo [-a,a] e também é diferenciável no intervalo. Ou seja: $f_i + f_p \in C^1[-a,a]$.

Logo, por dupla inclusão, $v_1 \bigoplus V_2 = C^1[-a, a]$.

15. Seja V o espaço das matrizes 2×2 sobre R, e seja W o subespaço gerado por

$$\left[\begin{array}{cc} 1 & -5 \\ -4 & 2 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ -1 & 5 \end{array}\right], \left[\begin{array}{cc} 2 & -4 \\ -5 & 7 \end{array}\right], \left[\begin{array}{cc} 1 & -7 \\ -5 & 1 \end{array}\right]$$

Encontre uma base, e a dimensão de W.

Solução:

Note que dado

$$M_1=\left[\begin{array}{cc}1&0\\0&0\end{array}\right],\ M_2=\left[\begin{array}{cc}0&1\\0&0\end{array}\right],\ M_3=\left[\begin{array}{cc}0&0\\1&0\end{array}\right]\ \mathrm{e}\ M_4=\left[\begin{array}{cc}0&0\\0&1\end{array}\right]$$

O conjunto $\alpha = \{M_1, M_2, M_3, M_4\}$ é uma base de M(2,2).

A base α é chamada de base canônica de M(2;2). Mais geralmente, a base canônica de M(m;n) é formada por mn matrizes distintas, cada uma das quais possuindo uma única entrada igual a 1 e todas as demais entradas iguais a 0, ordenadas de forma semelhante ao que foi feito no caso M(2;2).

Como α possui 4 vetores então dim(W) = 4.

16. Seja P o conjunto de todos os polinômios (de qualquer grau) com coeficientes reais. Existe uma base finita para este espaço? Encontre uma "base" para P e justifique então por que P é conhecido como um espaço de dimensão infinita.

Solução:

Perceba que qualquer polinômio, de qualquer grau, pode ser escrito como combinação linear dos vetores LI: $(1, x, ..., x^n, ...)$. Logo, essa é uma base para P.

Já a prova de que **não existe** uma base finita para P pode ser feita por absurdo.

Imagine, por absurdo, que P tenha uma base finita com n vetores. Logo existe um polinômio $p(x) \in P$ que pode ser escrito como combinação linear desses n vetores.

$$p(x) = \alpha_1(1) + \alpha_2(x) + \dots + \alpha_n(x^n)$$

Sendo assim o polinômio $h(x) = p(x) + \alpha_n(x^{n+1})$ não pode pertencer a P, pois x^{n+1} não pertence a base P. O que é um absurdo, pois P é o conjunto de **todos os polinômios** independente do grau.

- 17. a) Dada uma matriz \mathbf{A} de ordem $m \times n$, você pode considerar as m linhas como vetores do R^n e o subespaço V, de R^n , gerado por estes m vetores. Da mesma forma para a matriz \mathbf{B} , linha reduzida à forma escada de \mathbf{A} , podemos considerar o subespaço \mathbf{W} gerado pelos m vetores, dados por suas linhas. Observando que cada linha de \mathbf{B} é obtida por combinação linear das linhas de \mathbf{A} e vice-versa (basta reverter as operações com as linhas), justifique que $\mathbf{V} = \mathbf{W}$.
- b) Mostre, ainda, que os vetores dados pelas linhas não nulas de uma matriz-linha reduzida à forma escada são LI.

Solução de A:

Supondo que A seja uma matriz não nula, caso contrário a matriz linha reduzida também seria nula e a igualdade entre W e V seria evidente, então supondo que por absurdo W \neq V das duas uma:

i) existe um $\alpha \in V$ que não pertença a W,

ii) ou existe um $\beta \in W$ que não pertença a V.

Na primeira hipótese se α não pertence a W então não pode ser escrito como combinação linear dos vetores de W. O que é um absurdo, pois por hipótese todo vetor de V pode ser escrito como combinação linear de W.

O mesmo absurdo ocorre considerando a segunda hipótese. Concluindo que V = W.

Solução de B:

Observe a matriz $m \times n$ a seguir.

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\
0 & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{mn}
\end{pmatrix}$$

Se fizermos

$$\alpha_1(a_{11},\cdots,a_{1n})+\alpha_2(0,a_{22},\cdots,a_{2n})+\cdots+\alpha_n(0,\cdots,0,a_{mn})=(0,\cdots,0)$$
então fica fácil perceber que

$$\alpha_1 \cdot a_{11} + \alpha_2 \cdot 0 + \dots + \alpha_n \cdot 0 = 0 \Rightarrow \alpha_1 \cdot a_{11} = 0$$

Mas como α_{11} é um pivô então não pode ser nulo. O que implica em $\alpha_1=0$.

Já sobre α_2 raciocinamos o seguinte.

$$\alpha_1 \cdot a_{12} + \alpha_2 \cdot a_{22} = 0 + \dots + \alpha_n \cdot 0 = 0$$

mas como $\alpha_1=0$ então $\alpha_2 \cdot a_{22}=0$. Como a_{22} também é um pivô então $\alpha_2 \cdot a_{22}=0 \Rightarrow \alpha_2=0$.

Analogamente se chega a conclusão de que cada α_n dado é igual a zero. Logo o conjunto de vetores formado pela matriz escada são LI.

18. Considere o subespaço de R⁴ gerado pelos vetores $v_1 = (1, -1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (-2, 2, 1, 1)$ e $v_4 = (1, 0, 0, 0).$

- a) O vetor $(2, -3, 2, 2) \in [v_1, v_2, v_3, v_4]$? Justifique.
- b) Exiba uma base para $[v_1, v_2, v_3, v_4]$. Qual a dimensão?
- c) $[v_1, v_2, v_3, v_4] = \mathbb{R}^4$? Por quê?

Solução de A:

O vetor $(2, -3, 2, 2) \in [v_1, v_2, v_3, v_4]$, pois pode ser escrito como combinação linear de $[v_1, v_2, v_3, v_4]$. Veja:

$$(2, -3, 2, 2) = 0(1, -1, 0, 0) + \frac{7}{2}(0, 0, 1, 1) - \frac{3}{2}(-2, 2, 1, 1) - 1(1, 0, 0, 0)$$

$$\Rightarrow$$
 (2, -3, 2, 2) = (2, -3, 2, 2)

Solução de B:

Solução no próprio livro na página 137.

Solução de C:

Solução no próprio livro na página 138.

19. Considere o subespaço de R³ gerado pelos vetores $v_1 = (1, 1, 0), v_2 = (0, -1, 1)$ e $v_3 = (1, 1, 1)$. $[v_1, v_2, v_3 = R^3]$? Por que?

Solução:

Os vetores v_1, v_2 e v_3 geram o \mathbb{R}^3 pois qualquer vetor $(x, y, z) \in \mathbb{R}^3$ pode ser escrito como combinação linear deles.

$$(x, y, z) = \alpha_1(1, 1, 0) + \alpha_2(0, -1, 1) + \alpha_3(1, 1, 1)$$

 $\Rightarrow \alpha_1 = 2x - z - y, \alpha_2 = x - y \in \alpha_3 = z - x + y.$

 $20.\ Use$ o exercício 17 para exibir uma base para o subespaço S, definido no Exercício 6. Qual é a dimensão de S?

Solução:

Esse exercício é bem similar a letra B do exercício 8.

Primeiro montamos a matriz a seguir:

$$\left[\begin{array}{cccc}
1 & 1 & -2 & 4 \\
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 2
\end{array}\right]$$

onde por meio de operações elementares com as linhas chegamos até:

$$\left[\begin{array}{cccc}
1 & 1 & -2 & 4 \\
0 & 1 & -2 & 4 \\
0 & 0 & 1 & -2
\end{array}\right]$$

Sendo assim a base de S seria $[(1,1,-2,4),\,(0,1,-2,4),\,(0,0,1,-2)]$ cuja dimensão é igual a 3.

Observe que esse resultado faz muito mais sentido do que [(1,0,0,0),(0,1,-1,2)], pois não exite um x e y tal que $(1,1,-2,4) \in S$ possa ser escrito como combinação linear de (1,0,0,0) e (0,1,-1,2).

21. Considere o sistema linear

(§)
$$\begin{cases} 2x_1 + 4x_2 - 6x_3 = a \\ x_1 - x_2 + 4x_3 = b \\ 6x_2 - 14x_3 = c \end{cases}$$

Seja $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \text{ é solução de } (\S) \}$. Isto é, W é o conjunto-solução do sistema.

- a) Que condições devemos impor a $a, b \in c$ para que W seja subespaço vetorial de \mathbb{R}^3 ?
- b) Nas condições determinadas em a) encontre uma base para W.
- c) Que relação existe entre a dimensão de W e o grau de liberdade do sistema? Seria este resultado válido para quaisquer sistemas homogêneos?

Solução de A:

Se W é um subespaço então para todo $a \in \mathbb{R}$ e $x_n \in W$ então $ax_n \in W$. Sendo assim, se $(x_1, x_2, x_3) \in W$ então $(-x_1, -x_2, -x_3)$ também pertence a W. E portanto também é conjunto solução do sistema ou seja:

$$-2x_1 - 4x_2 + 6x_3 = a$$

como por hipótese

$$2x_1 + 4x_2 - 6x_3 = a$$

então se somarmos ambas as linhas termo a termo chegamos ao valor de a, que é igual a zero.

$$(-2x_1 - 4x_2 + 6x_3) + (2x_1 + 4x_2 - 6x_3) = a + a$$

$$\Rightarrow 0 = 2a$$

$$\Rightarrow a = 0$$

Analogamente chegamos a condição de b e c iguais a zero.

Solução de B:

Solução na página 138.

Solução de C:

Solução na página 138.

22. Seja U o subespaço de R³, gerado por (1,0,0) e W o subespaço de R³, gerado por (1,1,0) e (0,1,1). Mostre que R³ = U \bigoplus W

Solução:

Solução na página 138.

23 Demostre o teorema 4.3.5, isto é, mostre que, dados $u = w_1 + w_2 \in W_1 + W_2$ e $v = w_1' + w_2' \in W_1 + W_2$ (onde $w_1, w_1' \in W_1$ e $w_2, w_2' \in W_2$), então $u + v \in W_1 + W_2$ e $ku \in W_1 + W_2$ para todo $k \in R$.

Solução:

$$u + v = (w_1 + w_2) + (w_1' + w_2')$$

Como $u,v\in W_1+W_2$ então vale a associatividade, pois W_1 e W_2 são subespaços e portanto associativos. Sendo assim:

$$u + v = ((w_1 + w_2) + w_1^{'}) + w_2^{'}$$

usando a comutatividade

$$u + v = ((w_2 + w_1) + w_1') + w_2'$$

usando novamente a associatividade

$$u + v = (w_2 + (w_1 + w_1^{\prime})) + w_2^{\prime}$$

e novamente

$$u + v = w_2 + ((w_1 + w_1') + w_2')$$

usando agora a comutatividade

$$u + v = w_2 + (w_2' + (w_1 + w_1'))$$

e a associatividade uma última vez

$$u + v = (w_2 + w_2') + (w_1 + w_1')$$

e a comutatividade

$$u + v = (w_1 + w_1') + (w_2 + w_2')$$
 (1)

como $w_2,w_2^{'}\in W_2$ e $w_1,w_1^{'}\in W_1$ e todo subespaço vetorial é fechado para soma então a conclusão retirada de (1) é que $u+v\in W_1+W_2$ como queríamos demonstrar.

A prova de que $ku \in W_1 + W_2$ segue quase a mesma lógica e fica a cargo do leitor.

24. Mostre que, se $V = W_1 \bigoplus W_2$ e $\alpha = \{v_1, \dots, v_k\}$ é a base de W_1 , $\beta = \{w_1, \dots, w_r\}$ é a base de W_2 então $\gamma = \{v_1, \dots, v_k, w_1, \dots, w_r\}$ é base de V.

Mostre com um exemplo que o resultado não continua verdadeiro se a soma de subespaços não for uma soma direta.

Solução:

Como (v_1, \dots, v_k) é uma base de W_1 então $(v_1, \dots, v_k) \in W_1$. Analogamente podemos dizer que $(w_1, \dots, w_r) \in W_2$.

Sendo assim $(v_1, \dots, v_k, w_1, \dots w_r) \in V$, pois V é a soma direta de W_1 com W_2 .

Seja $(x_1, \dots, x_k, x_1' \dots x_r')$ uma base de V. Então existe um α que permite escrevermos $(v_1, \dots, v_k, w_1, \dots w_r)$ como combinação linear da base ou seja:

$$(v_1, \cdots, v_k, w_1, \cdots w_r) = \alpha(x_1, \cdots, x_k, x'_1, \cdots x'_r)$$

Note, entretanto, que para $\alpha=1$ facilmente verificamos que:

$$x_1 = v_1$$

$$\vdots$$

$$x_k = v_k$$

$$\vdots$$

$$x'_1 = w_1$$

$$\vdots$$

$$x'_r = w_r$$

ou seja, $(v_1, \dots, v_k, w_1, \dots w_r)$ é a própria base de V.

O exemplo pedido se encontra na página 138 do livro.

25. Sejam W₁ = $\{(x,y,z,t) \mid \in \mathbb{R}^4 \mid x+y=0 \text{ e } z-t=0 \}$ e W₂ = $\{(x,y,z,t) \in \mathbb{R}^4 \mid x-y-z+t=0 \}$ subespaços de \mathbb{R}^4 .

- a) Determine $W_1 \cap W_2$
- b) Exiba uma base para $W_1 \cap W_2$.
- c) Determine $W_1 + W_2$.
- d) $W_1 + W_2$ é soma direta? Justifique.
- e) $W_1 + W_2 = \mathbb{R}^4$?

Solução:

Resposta na página 139 do livro.

26. Sejam
$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 tais que a = d e b = c $\right\}$ e $W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tais que a = c e b = d $\right\}$ subespaços de $M(2,2)$

- a) Determine $W_1 \cap W_2$ e exiba uma base.
- b) Determine $W_1 + W_2$. É soma direta? $W_1 + W_2 = M(2,2)$?

Solução de A:

Pelas informações dadas podemos dizer que W_1 é o conjunto formado por todas as matrizes 2 por 2 da forma:

$$\left[\begin{array}{cc} d & c \\ c & d \end{array}\right] \quad (1)$$

enquanto W_2 das matrizes

$$\left[\begin{array}{cc} c & d \\ c & d \end{array}\right] \quad (2)$$

Sendo assim, uma matriz que pertença a intercessão desses conjuntos seria uma matriz tal que além de estar sob as condições de W_1 (a=d e b=c) e W_2 (a=c e b=d) teria de ter d=c e vice versa.

$$(1) = (2)$$

$$\left[\begin{array}{cc} d & c \\ c & d \end{array}\right] = \left[\begin{array}{cc} c & d \\ c & d \end{array}\right] \Rightarrow d = c \in c = d$$

ou seja,

$$W_1 \cap W_2 = \left\{ \left[\begin{array}{cc} d & d \\ d & d \end{array} \right] \right\}$$

Onde uma base seria

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right]$$

Solução de B:

De imediato podemos descartar a hipótese de ser soma direta, pois como determinamos no item A $W_1 \cap W_2 \neq \{0\}$.

Vamos simplesmente determinar a soma então.

$$W_1 = \left\{ \left[\begin{array}{cc} d & c \\ c & d \end{array} \right] \mid d, c \in \mathbb{R} \right\} \in W_2 = \left\{ \left[\begin{array}{cc} c & d \\ c & d \end{array} \right] \mid c, d \in \mathbb{R} \right\}$$

Então,

$$W_1 + W_2 = \left\{ \left[\begin{array}{cc} d+c & c+d \\ c & d \end{array} \right] \mid c, d \in \mathbb{R} \right\}$$

Obs: Uma outra notação para $W_1 + W_2$ seria

$$\left\{ \left[\begin{array}{cc} d & c \\ c & d \end{array} \right], \left[\begin{array}{cc} c & d \\ c & d \end{array} \right] \mid d, c \in \mathbb{R} \right\}$$

É aconselhável que o professor deixe isso bastante claro uma vez que ambas as notações são usadas no livro e para muitos alunos sua equivalência não é evidente.

27. a) Dado o subespaço $V_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}$ ache um subespaço V_2 tal que $\mathbb{R}^3 = V_1 \bigoplus V_2$.

b) Dê exemplos de dois subespaço de dimensão dois de R^3 tais que $V_1+V_2=\mathbb{R}^3$. A soma é direta?

Solução:

Se $V_1=\{(x,y,z)\in\mathbb{R}^3\mid x=-2y-z\}$ então o vetor $(x,y,z)\in V_1$ pode ser escrito como:

$$(-2y-z,y,z)$$

$$= y(-2,1,0) + z(-1,0,1)$$

como (-2,1,0) e (-1,0,1) são LI (verifique) e são capazes de gerar qualquer elemento de V_1 , então podemos dizer que são uma base de V_1 .

$$V_1 = [(-2, 1, 0), (-1, 0, 1)]$$

como a base de V_1 têm dois vetores então $dim(V_1) = 2$. Usando a fórmula

$$dim(V_1 + V_2) = dim(V_1) + dim(V_2) - dim(V_1 \cap V_2)$$

e lembrando que no caso de uma soma direta $v_1 \cap V_2 = \{0\} \Rightarrow dim(V_1 \cap V_2) = 0$ então:

$$dim(V_1 + V_2) = dim(V_1) + dim(V_2)$$

$$\Rightarrow 3 = 2 + dim(V_2)$$

$$\Rightarrow dim(V_2) = 1.$$

Assim, a base de V_1 deve ser um único vetor LI com (-2,1,0) e (-1,0,1) para completar a dimensão de \mathbb{R}^3 tal que $V_1 \cap V_2 = \{0\}$. Podemos por exemplo, tomar (0,0,1) de modo que $V_2 = \{(0,0,1)\} = \{(x,y,z) \mid x=0, y=0 \text{ e } z \in \mathbb{R}\}.$

Solução de B:

Podemos fazer:

$$V_1 = [(1,0,0),(0,1,0)] e V_2 = [(0,0,1),(1,0,0)]$$

de modo que $V_1 + V_2 = [(1,0,0), (0,1,0), (0,0,1)].$

Como [(1,0,0),(0,1,0),(0,0,1)] é uma base de \mathbb{R}^3 então $V_1+V_2=\mathbb{R}^3$.

Nesse caso a soma não é direta, pois $dim(V_1 \cap V_2) = 1$.

Veja também a página 141 do livro.

28. Ilustre com um exemplo a proposição: "Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então:

$$dim(U+W) = dimU + dimW - dim(U \cap W)$$

Solução:

Considere o espaço vetorial \mathbb{R}^3 , que é de dimensão 3. Desse espaço podemos extrair dois subespaços gerados pelas bases r_1 e r_2 tal que:

$$r_1 = \{(x, y, z) \mid x = z \in y = 0\} \text{ ou } r_1 = [(1, 0, 0), (0, 0, 1)]$$

e também

$$r_2 = \{(x, y, z) \mid x = y \in z = 0\}$$
 ou $r_2 = [(1, 0, 0), (0, 1, 0)]$

ambos com dimensão igual a 2.

Note que a intersecção entre as bases $(r_1 e r_2)$ é o eixo OX cuja base é [(1,0,0)] e, por tanto, tem de dimensão igual a 1.

Logo 3 = 2 + 2 - 1 confirmando, neste caso, o teorema.

Veja também a página 122.

- 29. Sejam $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2\{(\sqrt{3},1)(\sqrt{3},-1)\} \in \beta_2 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .
 - a) Ache as matrizes de mudança de base:
 - $i) \quad [I]_{\beta}^{\beta_1} \quad ii) \quad [I]_{\beta_1}^{\beta} \quad iii) \ [I]_{\beta_2}^{\beta} \ iv) \ [I]_{\beta_3}^{\beta}$
 - b) Quais são as coordenadas do vetor v=(3,-2) em relação à base:
 - i) β ii) β_1 iii) β_2 iv) β_3
 - c) As coordenadas de um vetor v em relação à base β_1 são dadas por

$$[v]_{\beta_1} = \left[\begin{array}{c} 4 \\ 0 \end{array} \right]$$

Quais são as coordenadas de v em relação à base:

i)
$$\beta$$
 ii) β_2 iii) β_3

Solução de A:

Resolvendo a equação

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \cdot \left[\begin{array}{cc} x & y \\ z & w \end{array}\right] = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array}\right]$$

chega-se a $x=-1,\,y=1,\,z=1$ e w=1. Logo

$$[I]_{\beta}^{\beta_1} \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$$

analogamente se chega as demais soluções.

Solução de B e C:

Ver página 140 do livro.

30. Se
$$[I]_{\alpha}^{\alpha'} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

ache
a)
$$[v]_{\alpha}$$
 onde $[v]_{\alpha'} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$
b) $[v]_{\alpha'}$ onde $[v]_{\alpha} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$

Solução de A:

Olhando a página 125 do livro obtemos:

$$[v]_{\alpha} = [I]_{\alpha}^{\alpha'} \cdot [v]_{\alpha'}$$

que implica em:

$$[v_{\alpha}] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -4 \end{bmatrix}$$

A letra B fica a cargo do leitor.

31. Se β' é obtido de β , a base canônica de R^2 , pela rotação por um angulo $-\frac{\pi}{3}$, ache a) $[I]_{\beta'}^{\beta'}$ b) $[I]_{\beta'}^{\beta}$

Se $\beta = [(1,0),(0,1)]$ e $M_{(-\pi/3)} = \begin{bmatrix} cos(-\pi/3) & sen(-\pi/3) \\ -sen(-\pi/3) & cos(-\pi/3) \end{bmatrix}$ então primeiro devemos descobrir β' .

$$\begin{bmatrix} \cos(-\pi/3) & \sin(-\pi/3) \\ -\sin(\pi/3) & \cos(-\pi/3) \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix}$$

$$\begin{bmatrix} cos(-\pi/3) & sen(-\pi/3) \\ -sen(-\pi/3) & cos(-\pi/3) \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sqrt{3}/2 \\ 1/2 \end{bmatrix}$$

Assim,
$$\beta' = [(1/2, \sqrt{3}/2), (-\sqrt{3}/2, 1/2)].$$

Seja então $\beta = \{(1,0),(0,1)\}$ e $\beta' = [(1/2,\sqrt{3}/2),(-\sqrt{3}/2,1/2)]$ podemos determinar $[I]_{\beta}^{\beta'}$.

$$w_1 = (1/2, \sqrt{3}/2) = a_{11}(1,0) + a_{21}(0,1)$$

donde

$$(1/2, \sqrt{3}/2) = a_{11}, a_{21}$$

implica em

$$a_{11} = 1/2, \ a_{21} = \sqrt{3}/2$$

$$w_2 = (-\sqrt{3}/2, 1/2) = a_{12}(1, 0) + a_{22}(0, 1)$$

donde

$$(-\sqrt{3}/2,1/2) = a_{12}, a_{22}$$

 $implica\ em$

$$a_{12} = -\sqrt{3}/2, \ a_{22} = 1/2$$

Portanto

$$[I]^{\beta}_{\beta'} = \begin{bmatrix} 1/2 & -\sqrt{3}/2\\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$

Solução de B:

Basta determinar a matriz inversa de $\left[\begin{array}{cc}1/2&-\sqrt{3}/2\\\sqrt{3}/2&1/2\end{array}\right]$ ficando a cargo do leitor.

32. Sejam
$$\beta_1 = \{(1,0)(0,2)\}, \ \beta_2 = \{(-1,0),(1,1)\} \ e \ \beta_3 = \{(-1,-1),(0,-1)\}$$
 três bases

ordenadas de \mathbb{R}^2 .

- a) Ache
- $i) [I]_{\beta_1}^{\beta_2}$
- $(ii) [I]_{\beta_2}^{\beta_3}$
- $iii) [I]_{\beta_1}^{\beta_3}$
- $iv) [I]_{\beta_1}^{\beta_2} \cdot [I]_{\beta_2}^{\beta_3}$
- b) Se for possível, dê uma relação entre estas matrizes de mudança de base.

Solução de A:

i)
$$w_1 = (-1,0) = a_{11}(1,0) + a_{21}(0,2)$$

que implica em $a_{11} = -1$ e $a_{21} = 0$

$$w_2 = (1,1) = a_{21}(1,0) + a_{22}(0,2)$$

que implica em $a_{21}=1$ e $a_{22}=1/2$

logo
$$[I]_{\beta_1}^{\beta_2}=\left[\begin{array}{cc} -1 & 1 \\ 0 & 1/2 \end{array}\right]$$

$$ii) \ [I]_{\beta_2}^{\beta_3} = \left[egin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}
ight]$$

$$iii) \ [I]_{\beta_1}^{\beta_3} = \left[\begin{array}{cc} -1 & 0 \\ -1/2 & -1/2 \end{array} \right]$$

$$iv) \ [I]_{\beta_1}^{\beta_3} = \left[\begin{array}{cc} -1 & -2 \\ -1/2 & -1/2 \end{array} \right]$$

Solução de B:

Como o problema não especifica que tipo de relação devemos procurar qualquer similaridade entre as matrizes serve. Como, por exemplo, todas têm determinante diferente de zero.

33. Seja V o espaço vetorial de matrizes 2×2 triangulares superiores. Sejam

$$\beta = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\} \in \beta_1 = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

duas bases de V. Ache $[I]^{\beta_1}_{\beta}$.

Solução:

Seja
$$\beta = \{(1,0,0,0), (0,1,0,0), (0,0,0,1)\}$$
e $\beta_1 = \{(1,0,0,0), (1,1,0,0), (1,1,0,1)\}$

então

$$(1,0,0,0) = a_{11}(1,0,0,0) + a_{21}(0,1,0,0) + a_{31}(0,0,0,1) (1,1,0,0) = a_{12}(1,0,0,0) + a_{22}(0,1,0,0) + a_{32}(0,0,0,1)$$

 $(1,1,0,1) = a_{13}(1,0,0,0) + a_{23}(0,1,0,0) + a_{33}(0,0,0,1)$ que implica em

$$[I]_{\beta}^{\beta_1} = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

34. Volte a 4.7.2 e mostre efetivamente que $([I]_{\beta}^{\beta'})^{-1} = [I]_{\beta'}^{\beta}$

Solução:

A cargo do leitor.

35. Se α é base de um espaço vetorial, qual é a matriz de mudança de base $[I]^{\alpha}_{\alpha}$?

Solução:

Solução na página 141.

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

5 TRANSFORMAÇÕES LINEARES

5.1 Exercícios da página 171

- 1. Seja $T:V\to W$ uma função. Mostre que:
 - a) Se T é uma transformação linear, então T(0) = 0.
 - b) Se $T(0) \neq 0$, então T não é uma transformação linear.

Solução de A:

Se T é mesmo uma transformação então V é um espaço vetorial. Assim, deve existir um vetor $u \in V$ e um oposto a ele tal que u + (-u) = 0 (vetor nulo).

Por definição de sabemos que:

$$T(a+b) = T(a) + T(b)$$
 e $T(ka) = kT(a)$

Fazendo então:

$$T(0) = T(u + (-u))$$

$$= T(u) + T(-u)$$

$$= T(u) + T(-1 \cdot u)$$

$$= T(u) - 1 \cdot T(u)$$

$$= T(u) - T(u) = 0$$

$$\Rightarrow T(0) = 0.$$

Como se quer demonstrar.

Solução de B:

Vamos partir da segunda condição de transformação linear para essa prova que é: T(ka) = kT(a).

Note que para obtermos T(0) deveremos ter k=0 ou a=0 ou os dois casos. Entretanto, não podemos ter k=0 pois se tivéssemos teríamos T(0)=0, veja:

$$T(k \cdot a) = kT(a)$$

$$\Rightarrow T(0 \cdot a) = 0 \cdot T(a)$$

 $\Rightarrow T(0) = 0$

Logo a única possibilidade é termos a=0. Contudo, se fizermos a=0 pela primeira propriedade (T(a+b)=T(a)+T(b)) chegaremos também a T(0)=0, vejamos:

$$T(a+b) = T(a) + T(b)$$

$$\Rightarrow T(0+b) = T(0) + T(b)$$

$$\Rightarrow T(b) = T(0) + T(b)$$
$$\Rightarrow T(0) = T(b) - T(b)$$
$$\Rightarrow T(0) = 0$$

Sendo assim, nem a nem k podem ser nulos o que invalida a segunda propriedade. Em outras palavras, se $T(0) \neq 0$ então a segunda propriedade das transformações lineares simplesmente não se satisfaz.

2. Determine quais das seguintes funções são aplicações lineares:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \to (x+y, x-y)$

b)
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \to (xy)$

c)
$$h: \mathbb{M}_2 \to \mathbb{R}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \to det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

d)
$$k: \mathcal{P}_2 \to \mathcal{P}_3$$

 $ax^2 + bx + c \to ax^3 + bx^2 + cx$

e)
$$m: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \to (x, y, z) \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$

f)
$$n: \mathbb{R} \to \mathbb{R}$$

 $x \to |x|$

Solução de A

Primeiro vamos provar a primeira propriedade que é f(x,y) = f(x) + f(y). Para facilitar o entendimento isso será feito na forma de um passo a passo.

Primeiro passo: Tomamos um $u = (x_1, x_2)$ e um $v = (y_1, y_2)$.

Segundo passo: Determinamos f(u+v).

$$\begin{split} f(u+v) &= f((x_1+x_2)+(y_1+y_2)) = f(x_1+y_1,x_2+y_2) \\ &= ((x_1+y_1)+(x_2+y_2),(x_1+y_1)-(x_2+y_2)) \\ &= (x_1+x_2+y_1+y_2,x_1-x_2+y_1-y_2) \end{split} \tag{Equação 1}$$

Terceiro passo: Calculamos agora f(u) + f(v).

$$f(u) + f(v) = f(x_1, x_2) + f(y_1, y_2)$$

$$= (x_1 + x_2, x_1 - x_2) + (y_1 + y_2, y_1 - y_2)$$

$$= (x_1 + x_2 + y_1 + y_2, x_1 - x_2 + y_1 - y_2)$$
 (Equação 2)

Quarto passo: Verificamos se o valor da função calculado no passo 3 (equação 2) é igual ao valor da função calculada no passo 2 (equação 1). Se forem fica provado a primeira propriedade, isto é, podemos afirmar que f(u+v) = f(u) + f(v).

Provado a primeira propriedade temos de provar a segunda.

$$f(ku) = kf(u)$$

Isso será feito também seguindo um passo a passo.

Primeiro passo: Determinamos f(ku).

$$f(k(x_1, y_1)) = f(kx_1, ky_1)$$

= $(kx_1 + ky_1, kx_1 - ky_1)$
= $k(x_1 + y_1, x_1 - y_1)$ (Equação 3).

Segundo passo: Determinamos agora kf(u).

$$kf(u)$$

$$kf(x_1,y_1)$$

$$=k(x_1+y_1,x_1-y_1) \ ({\bf Equação} \ {\bf 4}).$$

Terceiro passo: Verificamos se a equação calculada no passo 1 (equação 3) é igual a equação calculada no passo 2 (equação 4). Se forem iguais fica provado que f(ku) = kf(u).

Observação: Embora esse exemplo tenha sido resolvido na forma de um passo a passo normalmente ele é resolvido de forma mais direta, o que é até mais elegante. Os próximos problemas serão resolvidos assim.

Solução de B:

Seja
$$u = (x_1, x_2)$$
 e $v = (y_1, y_2)$ então:

$$g(u+v) = g((x_1, x_2) + (y_1, y_2))$$

$$= g(x_1 + y_1, x_2 + y_2)$$

$$= (x_1 + y_1)(x_2 + y_2)$$

$$= (x_1x_2 + x_1y_2, y_1x_2 + y_1y_2)$$

entretanto

$$g(u)+g(v)=g(x_1,x_2)+g(y_1,y_2)$$

= $x_1x_2+y_1y_2$
Como $g(u+v)\neq g(u)+g(v)$ então **não é** uma transformação.

Exemplo C:

Dado
$$u = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$
 e $v = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ então:

$$h(u+v) = h \left(\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \right)$$

$$= h \left(\begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{pmatrix} \right) = (a_1 + a_2)(d_1 + d_2) - (b_1 + b_2)(c_1 + c_2)$$

$$= (a_1d_1 + a_2d_2) - (b_1c_1 + b_2c_2)$$

$$= (a_1d_1 - b_1c_1) + (a_2d_2 - b_2c_2)$$

$$= h \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} + h \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$$

$$= h(u) + h(v)$$

Assim fica provado que h(u+v) = h(u) + h(v).

Agora vamos verificar se h(ku) = kh(u) para todo $k \in \mathbb{R}$.

$$f\left(k\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}\right) = h\left(\begin{pmatrix} ka_1 & kb_1 \\ kc_1 & kd_1 \end{pmatrix}\right) = k^2a_1d_1 - k^2b_1c_1$$

$$= k^2(a_1d_1 - b_1c_1)$$

$$= k^2 \cdot f\left(\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}\right)$$

$$= k^2 \cdot f(u)$$

Como para todo $k \neq 1$ e 0 temos $f(ku) \neq kf(u)$ então a segunda condição não se cumpre e portanto, h **não é** uma transformação.

Solução de D:

Seja
$$u = a_1 x^2 + b_1 x + c_1$$
 e $v = a_2 x^2 + b_2 x + c_2$, então:

$$k(u+v) = k((a_1 x^2 + b_1 x + c_1) + (a_2 x^2 + b_2 x + c_2))$$

$$= k((a_1 + a_2)x^2 + (b_1 + b_2)x + (c_1 + c_2))$$

$$= (a_1 + a_2)x^3 + (b_1 + b_2)x^2 + (c_1 + c_2)x$$

$$= (a_1x^3 + b_1x^2 + c_1x) + (a_2x^3 + b_2x^2 + c_2x)$$

$$= k(a_1x^2 + b_1x + c_1) + k(a_2x^2 + b_2x + c_2)$$

$$= k(u) + k(v)$$

Ou seja, vale a primeira condição, isto é k(u+v) = k(u) + k(v)

Vamos provar agora a segunda condição, sendo $z \in \mathbb{R}$.

$$k(zu) = k(z(a_1x^2 + b_1x + c_1))$$

$$= k(za_1x^2 + zb_1x + zc_1)$$

$$= (za_1)x^3 + (zb_1)x^2 + (zc_1)x$$

$$= z(a_1x^3 + b_1x^2 + c_1x)$$

$$= zk(u)$$

Ou seja, vale a segunda condição, isto é k(zu) = zk(u)

Sendo assim, é uma transformação linear.

Solução de E:

Dado $u = x_1, y_1, z_1 \text{ e } v = x_2, y_2, z_2 \text{ então:}$

$$m(u+v) = m((x_1, y_1, z_1) + (x_1, y_1, z_1))$$

$$= m(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (x_1 + x_2, y_1 + y_2, z_1 + z_2) \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$$

$$=(x_1+x_2+z_1+z_2 \ 2x_1+2x_2-y_1-y_2+z_1+z_2)$$

$$=(x_1+z_1 \quad 2x_1-y_1+z_1)+(x_2+z_2 \quad 2x_2-y_2+z_2)$$

$$= (x_1, y_1, z_1) \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix} + (x_2, y_2, z_2) \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= m(u) + m(v)$$

Ou seja, m(u+v)=m(u)+m(v). Vamos provar agora a segunda condição.

$$m(ku) = m\left(k(x_1, y_1, z_1)\right)$$

$$m(kx_1, ky_1, kz_1)$$

$$= (kx_1, ky_1, kz_1) \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} kx_1 + kz_1 & 2kx_1 - ky_1 + kz_1 \end{pmatrix}$$

$$= \begin{pmatrix} k(x_1 + z_1) & k(2x_1 - y_1 + z_1) \end{pmatrix}$$

$$= k \begin{pmatrix} x_1 + z_1 & 2x_1 - y_1 + z_1 \end{pmatrix}$$

$$= k \begin{bmatrix} (x_1, y_1, z_1) & \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix} \end{bmatrix}$$

$$= k \cdot m((x_1, z_1, y_1)) = k \cdot m(u)$$

Ou seja, $m(ku) = k \cdot m(u)$. Com isso também provamos que a função **é uma transformação** linear.

Solução de F:

Dado u e v pertencentes a \mathbb{R} então:

$$n(u+v) = |u+v|$$

Entretanto, n(u)+n(v)=|u|+|v|. Como $|u+v|\leq |u|+|v|$ então não n pode ser uma transformação linear.

3. a) Ache a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0)=(2,0), T(0,1,0)=(1,1) e T(0,0,1)=(0,-1).

b) Encontre \mathbf{v} de \mathbb{R}^3 tal que $T(\mathbf{v}) = (3, 2)$.

Solução de A:

$$\begin{split} &(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) \\ &T(x,y,z) = xT(1,0,0) + yT(0,1,0) + zT(0,0,1) \\ &T(x,y,z) = x(2,0) + y(1,1) + z(0,-1) \\ &T(x,y,z) = (2x,0) + (y,y) + (0,-z) \\ &T(x,y,z) = (2x+y,y-z) \end{split}$$

Solução de B:

Como $\{(1,0,0);(0,1,0);(0,0,1)\}$ é uma base de \mathbb{R}^3 então v pode ser escrito como combinação linear dessa base.

$$v = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

Por hipótese T(v) = (3, 2), assim:

$$T(v) = xT(1,0,0) + yT(0,1,0) + zT(0,0,1) = (3,2)$$

$$x(2,0) + y(1,1) + z(0,-1) = (3,2)$$

$$(2x,0) + (y,y) + (0,-z) = (3,2)$$

Dessa última equação chegamos ao sistema:

$$\begin{cases} 2x + y = 3\\ y - z = 2 \end{cases}$$

Que implica em: x = x; y = 3 - 2x e z = 1 - 2x.

Sendo assim,

$$v = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

$$\Rightarrow v = (x, y, z)$$

$$\Rightarrow v = (x, 3 - 2x, 1 - 2x)$$

- 4. Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1) = (3,2,1) e T(0,-2) = (0,1,0)?
- b) Ache T(1,0) e T(0,1).
- c) Qual é a transformação linear $S:\mathbb{R}^3\to\mathbb{R}^2$ tal que $S(3,2,1)=(1,1),\ S(0,1,0)=(0,-2)$ e S(0,0,1)=(0,0)?
 - d) Ache a transformação linear $P: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $P = S \circ T$.

Solução de A:

Os vetores (1,1) e (0,-2) são uma base de \mathbb{R}^2 , pois são linearmente independentes. Sendo assim, um vetor $(x,y) \in \mathbb{R}^2$ pode ser escrito como combinação linear deles. Ou seja:

$$(x,y) = a(1,1) + b(0,-2)$$

 $\Rightarrow (x,y) = (a,a) + (0,-2b)$

$$\Rightarrow (x,y) = (a,a-2b)$$

Que implica em a=x e $b=\frac{x-y}{2}.$ Desse modo:

$$(x,y) = x(1,1) + \frac{x-y}{2}(0,-2)$$

$$\Rightarrow T(x,y) = T\left(x(1,1) + \frac{x-y}{2}(0,-2)\right)$$

$$\Rightarrow T(x,y) = xT(1,1) + \frac{x-y}{2}T(0,-2)$$

$$\begin{split} &\Rightarrow T(x,y) = x(3,2,1) + \frac{x-y}{2}(0,1,0) \\ &\Rightarrow T(x,y) = (3x,2x,1x) + \left(0,\frac{x-y}{2},0\right) \\ &\Rightarrow T(x,y) = \left(3x,\frac{5x-y}{2},x\right) \text{ que \'e a transformação desejada.} \end{split}$$

Solução de B:

Usando a solução anterior:

$$\begin{split} T(1,0) &= \left(3 \cdot 1, \frac{5 \cdot 1 - 0}{2}, 1\right) = \left(3, \frac{5}{2}, 1\right) \\ T(0,1) &= \left(3 \cdot 0, \frac{5 \cdot 0 - 1}{2}, 0\right) = \left(0, \frac{-1}{2}, 0\right) \end{split}$$

Solução de C:

Os vetores (3,2,1), (0,1,0) e (0,0,1) são LI e portanto base de \mathbb{R}^3 . Sendo assim:

$$(x,y,z) = a(3,2,1) + b(0,1,0) + c(0,0,1)$$

$$\Rightarrow$$
 $(x, y, z) = (3a, 2a + b, a + c)$

que implica em $a = \frac{x}{3}$, $b = y - \frac{2x}{3}$ e $c = z - \frac{x}{3}$. Sendo assim:

$$(x, y, z) = a(3, 2, 1) + b(0, 1, 0) + c(0, 0, 1)$$

$$\Rightarrow S(x, y, z) = aS(3, 2, 1) + bT(0, 1, 0) + cS(0, 0, 1)$$

$$\Rightarrow S(x,y,z) = \left(\frac{x}{3}\right)T(3,2,1) + \left(y - \frac{2x}{3}\right)T(0,1,0) + \left(z - \frac{x}{3}\right)T(0,0,1)$$

$$\Rightarrow S(x,y,z) = \left(\frac{x}{3}\right)(1,1) + \left(y - \frac{2x}{3}\right)(0,-2) + \left(z - \frac{x}{3}\right)(0,0)$$

$$\Rightarrow S(x,y,z) = \left(\frac{x}{3}, \frac{5x-6y}{3}\right)$$
 que é a transformação desejada.

Solução de D:

Primeiro determinamos a matriz transformação de S em relação a base canônica.

$$S(1,0,0) = \left(\frac{1}{3}, \frac{5}{3}\right)$$

$$S(0,1,0) = (0,-2)$$

$$S(0,0,1) = (0,0)$$

$$\Rightarrow S = \left[\begin{array}{ccc} 1/3 & 0 & 0 \\ 5/3 & -2 & 0 \end{array} \right]$$

Agora determinamos a matriz transformação de T em relação a base canônica.

$$T(1,0) = \left(3, \frac{15}{2}, 1\right)$$
$$T(0,1) = \left(0, \frac{-1}{2}, 0\right)$$

$$\Rightarrow \left[\begin{array}{cc} 3 & 0 \\ \frac{15}{2} & \frac{-1}{2} \\ 1 & 0 \end{array} \right]$$

Finalmente fazemos $S \cdot T$.

$$= \left[\begin{array}{ccc} 3 & 0 \\ \frac{15}{2} & \frac{-1}{2} \\ 1 & 0 \end{array} \right] \cdot \left[\begin{array}{ccc} 1/3 & 0 & 0 \\ 5/3 & -2 & 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 \\ -10 & 1 \end{array} \right]$$

Pelo resultado a forma algébrica de P têm as seguintes características:

$$\begin{cases}
P(1,0) = (1,-10) \\
P(0,1) = (0,1)
\end{cases}$$

e com base nelas podemos encontrar a forma algébrica de P (veja exercício 3).

$$P(x,y) = (x, y - 10x)$$

- 5. a) Ache a transformação T do plano no plano que é uma reflexão em torno da reta x = y.
- b) Escreva-a em forma matricial.

Solução:

No fim do livro.

Quer saber quando sairá a próxima atualização desse documento? Nesse caso você pode:

- verificar diretamente no blog (www.number.890m.com);
- ou me seguir no Facebook (www.facebook.com/diegoguntz).

E se alguma passagem ficou obscura ou se algum erro foi cometido por favor escreva para nibblediego@gmail.com para que possa ser feito a devida correção.

www.number.890m.com

Para encontrar esse e outros exercícios resolvidos de matemática acesse: www.number.890m.com

6 ANEXO I

Propriedades Operatórias em \mathbb{R}

• Associatividade

$$(x+y)+z=x+(y+z)$$
 e $(x\cdot y)\cdot z=x\cdot (y\cdot z)$

• Elemento neutro

$$0+x=x+0=x \text{ e } 1 \cdot x=x \cdot 1=x$$

• Comutativa

$$x + y = y + x e x \cdot y = y \cdot x$$

• Existência do elemento oposto

Para qualquer real x existe -x tal que x + (-x) = 0

 \bullet Existência do elemento inverso

Para qualquer real x diferente de zero então, existe um $\frac{1}{x}$, tal que $x \cdot \frac{1}{x} = 1$

• Distributiva da multiplicação em relação a adição

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

7 ANEXO II

Operações em $M_{n\times n}$

• Soma

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} + a_{n1} & \cdots & a_{nn} + b_{nn} \end{pmatrix}$$

• Multiplicação por escalar.

$$k \cdot \left(\begin{array}{ccc} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{array}\right) = \left(\begin{array}{ccc} k \cdot a_{11} & \cdots & k \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ k \cdot a_{n1} & \cdots & k \cdot a_{nn} \end{array}\right)$$