PATENT JAPAN **OFFICE**

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

願 年 月 Date of Application:

2003年10月22日

出 号 願 Application Number:

特願2003-361994

REC'D 1 2 NOV 2004 **WIPO**

PCT

[ST. 10/C]:

ĭ

[JP2003-361994]

出 願 人 Applicant(s):

花王株式会社

SUBMITTED OR TRANSMITTED IN **COMPLIANCE WITH** RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 9月27日

特許願 【書類名】 103K0241 【整理番号】 平成15年10月22日 【提出日】 特許庁長官 【あて先】 A01N 25/02 【国際特許分類】 【発明者】 花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】 【氏名】 永井 智 【発明者】 花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】 勝幸 【氏名】 高野 【発明者】 花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】 鈴木 政宏 【氏名】 【発明者】 花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】 伴 武 【氏名】 【発明者】 花王株式会社研究所内 【住所又は居所】 和歌山県和歌山市湊1334 横須賀 道夫 【氏名】 【特許出願人】 【識別番号】 000000918 【氏名又は名称】 花王株式会社 【代理人】 【識別番号】 100087642 【弁理士】 【氏名又は名称】 古谷 聡 03 (3663) 7808 【電話番号】 【選任した代理人】 100076680 【識別番号】 【弁理士】 溝部 孝彦 【氏名又は名称】 【選任した代理人】 100091845 【識別番号】 【弁理士】 持田 信二 【氏名又は名称】 【選任した代理人】 100098408 【識別番号】 【弁理士】 義経 和昌 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 200747 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 要約書 1 【物件名】

【書類名】特許請求の範囲

【請求項1】

ヒドロキシ基又はカルボキシ基を有する構成単位を有する高分子化合物のヒドロキシ基又はカルボキシ基の水素原子の少なくとも一部を、下記一般式(I)で示される基で置換した水溶性高分子化合物、及び水を含有するアレルゲン低減化剤。

$$-R^{1a}-(OR^{1b})_a-E-R^{1c}$$
 (I)

[式中: R^{1a} はヒドロキシ基又はオキソ基で置換されていてもよい炭素数 $1\sim 6$ のアルキレン基であり、 R^{1b} は炭素数 $1\sim 6$ のアルキレン基であり、 R^{1c} はヒドロキシ基で置換されていてもよい炭素数 $4\sim 3$ 0 のアルキル基又はヒドロキシ基で置換されていてもよい炭素数 $1\sim 5$ のスルホアルキル基である。Eはエーテル基又はオキシカルボニル基であり、aは $0\sim 5$ 0(平均付加モル数)であり、a 個の(O R^{1b})は同一でも異なっていてもよい。]

【請求項2】

スプレーデバイスを備えた容器に請求項1記載のアレルゲン低減化剤を充填してなる、スプレー容器入りアレルゲン低減化剤。

【請求項3】

可撓性シートに請求項1記載のアレルゲン低減化剤を含浸してなるアレルゲン低減化シート。

【請求項4】

請求項1記載のアレルゲン低減化剤を空間に噴霧する、アレルゲン低減化方法。

【請求項5】

請求項1記載のアレルゲン低減化剤を対象表面に噴霧又は塗布し、乾燥するまでに吸水性物品で拭き取るアレルゲン低減化方法。

【請求項6】

請求項5の方法を行なった後、吸引による掃除又は掃き掃除を行なう、清掃方法。

【書類名】明細書

【発明の名称】アレルゲン低減化剤

【技術分野】

[0001]

本発明は、住居内空間に浮遊するアレルゲン又はその前駆物質を容易に除去する方法、及び該方法に供されるアレルゲン低減化剤に関する。

【背景技術】

[0002]

近年、ハウスダストに起因するアレルギー疾患が増加する傾向にあり、社会的問題となっている。アレルギーの原因となるハウスダストとしては、花粉、黴の胞子、及びダニの死骸や糞を代表例として挙げることができるが、これらは数 μ m〜数十 μ m程度の非常に微細な物質であるため、人間が歩行する程度の簡単な活動でさえも容易に舞い上がり住居内空間を汚染する。このような空間に舞い上がり浮遊したハウスダストは一般の掃除行動では全く除去することができないことから、空間に浮遊するハウスダストを効果的に除去する方法が熱望されている。

[0003]

特許文献1にはカチオン界面活性剤を含む組成物を空間に噴霧するアレルゲン除去剤が開示されている。特許文献2にはアレルゲンを不活性化及び/又は除去する空間噴霧型のハウスダスト処理剤が開示されている。特許文献3にはポリビニルアルコールを含有する溶液を空間に噴霧するするハウスダスト処理剤が開示されている。特許文献4には家庭環境中における浮遊粒子状物質を除去する方法が開示されている。また、特許文献5には、ダストコンロールテストにより繊維に残留するダストの量が30%以上であり、且つ摩擦率解析法によるMIU値が3.0以下のアレルゲン無害化組成物が記載されており、具体的な化合物として高分子重合体が記載されている。特許文献6には、ヒドロキシプロピルセルロースなどの水溶性の多糖類を用いて表面にアレルゲンを安定化するように、小さいダニアレルゲンを接着して、アレルゲンをコントロールする技術が記載されている。また特許文献7には、水溶性多糖ポリマー主鎖と疎水性部分を含む疎水性改質水溶性多糖ポリマーを含むビヒクル系と家事用成分を含有する家庭用配合物が記載されている。

【特許文献1】特開2000-264837号公報

【特許文献 2 】 特開 2 0 0 2 - 1 2 8 6 5 9

【特許文献3】特開2002-128680号公報

【特許文献4】特表2000-504621号公報

【特許文献5】国際公開第02/28179号パンフレット

【特許文献6】英国特許第GB2300122号明細書

【特許文献7】特表2002-508438号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

しかしながら、上記文献に記載された手段によってもアレルゲン物質の不活化や除去は 十分に行うことができなかった。

[0005]

本発明の課題は、アレルゲンやその前駆物質を効果的に不活化、除去できる剤及び方法を提供することにある。

【課題を解決するための手段】

[0006]

本発明は、ヒドロキシ基又はカルボキシ基を有する構成単位を有する高分子化合物のヒドロキシ基又はカルボキシ基の水素原子の少なくとも一部を、下記一般式(I)で示される基で置換した水溶性高分子化合物、及び水を含有するアレルゲン低減化剤に関する。

$$-R^{1a}-(OR^{1b})_a-E-R^{1c}$$
 (I)

「式中:R^{1a}はヒドロキシ基又はオキソ基で置換されていてもよい炭素数1~6のアルキ

[0007]

また、本発明は、スプレーデバイスを備えた容器に上記本発明のアレルゲン低減化剤を 充填してなる、スプレー容器入りアレルゲン低減化剤に関する。

[0008]

また、本発明は、可撓性シートに上記本発明のアレルゲン低減化剤を含浸してなるアレルゲン低減化シートに関する。

[0009]

また、本発明は、上記本発明のアレルゲン低減化剤を空間に噴霧する、アレルゲン低減 化方法に関する。

[0010]

また、本発明は、上記本発明のアレルゲン低減化剤を対象表面に噴霧又は塗布し、乾燥するまでに吸水性物品で拭き取るアレルゲン低減化方法、更にこの方法を行なった後、吸引による掃除又は掃き掃除を行なう、清掃方法に関する。

【発明の効果】

[0011]

本発明によれば、表面及び空間のアレルゲンを低減化すること、特に効率よくアレルゲンを除去することができる。

【発明を実施するための最良の形態】

[0012]

本発明に係わるアレルゲン低減化剤は、ヒドロキシ基又はカルボキシ基を有する構成単位を有するものであり、特にこれら構成単位を主鎖として構成されている高分子化合物、好ましくはセルロース、澱粉及びこれらの誘導体のヒドロキシ基又はカルボキシ基の水素原子の一部又はすべてが、下記一般式(I)で示される基で置換された水溶性高分子化合物 [以下(a)成分という]を含有する。本発明において水溶性高分子化合物の水溶性とは、20℃の水に少なくとも1質量%以上溶解するものを指す。

$$-R^{1a} - (OR^{1b})_a - E - R^{1c}$$
 (I)

[式中: R^{1a} はヒドロキシ基又はオキソ基で置換されていてもよい炭素数 $1\sim 6$ のアルキレン基であり、 R^{1b} は炭素数 $1\sim 6$ のアルキレン基であり、 R^{1c} はヒドロキシ基で置換されていてもよい炭素数 $4\sim 3$ 0 のアルキル基又はヒドロキシ基で置換されていてもよい炭素数 $1\sim 5$ のスルホアルキル基である。Eはエーテル基(-O-) 又はオキシカルボニル基(-O-CO-もしくは-CO-O-)であり、aは $0\sim 5$ 0(平均付加モル数)であり、a 個の(OR^{1b})は同一でも異なっていてもよい。]

[0013]

 R^{1a} は、好ましくはエチレン基、プロピレン基、トリメチレン基、2-ビドロキシトリメチレン基、1-ビドロキシトリメチレン基、1-オキソエチレン基、1-オキソエチレン基、1-オキソエチレン基、1-オキソエチレン基、1-メチレン基、1-メチレン基が好ましい。 R^{1b} は、好ましくはエチレン基、プロピレン基であり、 R^{1c} は、好ましくはヒドロキシ基で置換されていてもよい炭素数 1- スルボプロピル基であるか、1- スルボーン・ボロギンプロピル基、1- スルボーン・ビロキシプロピル基、1- スルボー 1- (ビドロキシメチル) エチル基である。 Eは、好ましくは 1- スルボー 1- (ビドロキシメチル) エチル基である。 Eは、好ましくは 1- スルボー 1- (ビドロキシメチル) エチル基である。 Eは、好ましくは 1- スルボー 1- (ビドロキシメチル) エチル基である。

[0014]

セルロース誘導体としては、ヒドロキシアルキル(炭素数1~3) セルロース及びアル

[0015]

本発明の(a)成分は、上記セルロース、澱粉、及びこれらの誘導体等の水酸基又はカルボキシ基の水素原子の一部又は全部を、一般式(I)の置換基で置換した高分子化合物であり、該置換基(I)の置換度は、水酸基又はカルボキシ基を含む単量体単位残基当たり(例えば、構成単糖残基当たり)、0.001~1、更に0.0005~0.5、更に0.001~0.1、特に0.001~0.05が好ましい。また、一般式(I)において R^{1c} がスルホアルキル基の場合にはスルホアルキル基の置換度は、水酸基又はカルボキシ基を含む単量体単位残基当たり(例えば、構成単糖残基当たり)、0~1、更に0~0.8、特に0~0.5が好ましい。

[0016]

(a) 成分の重量平均分子量は、好ましくは1万~200万、より好ましくは5万~150万、特に好ましくは10万~60万である。なお、重量平均分子量はパルスアンペロメトリック検出器付き高性能陰イオン交換クロマトグラフィー (HPAEC) やキャピラリー電気泳動法により求めることができる。

[0017]

本発明の(a)成分のあるものは、WOOO/73351号公報記載の方法でセルロース誘導体又は澱粉誘導体と R^{1d} ー(O R^{1b}) $_a$ ーEー R^{1c} [R^{1d} は炭素数3~6のエポキシ化アルキル基、又はヒドロキシ基で置換していてもよい炭素数1~6のハロゲン化アルキル基、又はカルボキシ基若しくは炭素数2~6のカルボキシアルキル基若しくはそれらの誘導体を示し、 R^{1b} 、a、E、 R^{1c} は前記と同一の意味である。]で示される化合物と反応させ、所望により通常のスルホン化剤でスルホン化することで得られる。

[0018]

他の(a)となる水溶性高分子化合物としては、アクリル酸、酢酸ビニル(ポリビニルアルコールの製造)、グリシドール等のヒドロキシ基又はカルボキシ基を有する構成単位を形成し得る単量体から得た高分子化合物のヒドロキシ基又はカルボキシ基を、前記一般式(I)の基で置換したものが挙げられる。

[0019]

本発明の(a)成分は、水溶性高分子化合物でありながら部分的にR^{1c}として疎水性基を有する。一方アレルゲン、特にダニアレルゲンは、水溶性である。本発明の(a)成分を水に溶解させた水性組成物として用いることで、該水性組成物と接触し溶解したアレルゲンは、溶液中の(a)成分の疎水性基によって包括されたような構造をとるものと推測される。この結果、アレルゲンが高分子化合物に被覆されたような状態になり、アレルギーを発現し難くなり、これがアレルゲンの低減として捉えられるものと考えている。

[0020]

本発明のアレルゲン低減化剤は、(a)成分を0.005~10質量%、更に0.01~5質量%、特に0.05~1質量%含有することが好ましい。

[0021]

本発明に係るアレルゲン低減化剤には、下記任意成分の他に残部として水 [以下(b)成分とする]を含有する。水はなるべく純粋に近い方が好ましいが、配合成分に影響しない程度、又は不純物としてアレルゲンとなり得る化合物を実質的に含まないグレードのものを用いればよい。具体的には、塩素などで殺菌した殺菌水や微量に存在するカルシウムなどの金属成分を除去したイオン交換水等を用いることができる。

[0022]

[0023]

本発明に係るアレルゲン低減化剤は、空間に噴霧した液滴の乾燥を速める目的、及び(a)成分のアレルゲン低減化剤中での安定性を高める目的から、水溶性有機溶剤〔以下(c)成分という〕を含有することが好ましく、特に水と共沸混合物を形成し、1013.25hPa(760mmHg)における水との共沸温度が100 C未満になる水溶性有機溶剤が好ましく、中でも化学便覧基礎編 改訂 4版 日本化学会編 丸善(株) II-147頁 表8・43に記載の水と共沸混合物を形成する化合物のうち、共沸温度が100 C未満、好ましくは60~90 Cの化合物を用いることが好ましい。(c)成分の好ましい具体例としてはエタノール、シクロヘキサン、2-ブタノール、2-ブタノール、1-ブロパノール、2-プロパノール、1-ブロパノール、1-ベンタノール、1-ベンタノールを挙げることができ、炭素数2~7のアルコール化合物が好ましい。特にエタノール、1-プロパノール、2-プロパノール、1-プロパノール、2-プロパノールがアレルゲン除去物が好ましい。特にエタノール、1-プロパノール、2-プロパノールがアレルゲン除去効果の点から最も好ましい。

[0024]

(c) 成分の含有量は、本発明のアレルゲン低減化剤中、0~50質量%、更に0.5~20質量%、特に1~18質量%が好ましい。なお、フローリング等の硬質な表面に塗布又は噴霧して吸収体で拭き取るアレルゲン除去方法、或いは不織布などの可撓性シートに本発明のアレルゲン低減化剤を含浸させて用いる場合は、(c)成分は、本発明のアレルゲン低減化剤中、好ましくは8質量%以下、より好ましく5質量%以下とすることで、乾燥速度を上げるよりも、アレルゲンを水溶液に溶解させることを優先し、十分にアレルゲンを取り込み無害化する点において好ましい。一方空間のアレルゲンを除去する方法としては、噴霧して用いる場合、(c)成分は、本発明のアレルゲン低減化剤中、5質量%以上、更に8~20質量%配合することが好ましい。

[0025]

本発明では、節足動物に対する忌避剤〔以下(d)成分という〕を含有することが好ましく、(d)成分を含有する本発明のアレルゲン低減化剤を継続的に使用することにより、ダニ等の節足動物を忌避し、節足動物由来のアレルゲン物質の絶対量を低減化することができる。ここで本発明の節足動物忌避剤とは、コナヒョウヒダニに忌避効果を有する物質と定義し、下記の進入阻止法によるコナヒョウヒダニの忌避率が50%以上の物質である。

[0026]

忌避率測定法(進入阻止法)

試験培地;粘着シート板に9cmのシャーレを固定し、その中にコナヒョウヒダニを培地とともに約10,000頭放つ。次いでシャーレ内に直径4cmのシャーレを中央部に置き、濾紙を同径に切り、底部に敷き、試験物質10質量%エタノール溶液0.5mlを濾紙に染み込ませる。その濾紙の中央部にマウス用粉末飼料と乾燥酵母を混合した飼料500mgを置く。

比較培地;同じ粘着シート板に別の9cmのシャーレを固定し、試験培地において濾紙に染み込ませる溶液をエタノールのみにした以外は同様の方法で比較培地を調製する。

[0027]

これらを25℃、75%RHの条件下に移し、48時間後に中央部の飼料内に侵入した ダニ数をカウントし、試験培地と比較培地との差から下式により忌避率(%)を算出する 。ダニ数のカウントは実体顕微鏡下で測定する。

忌避率 (%) = (1-試験培地のダニ侵入数/比較培地のダニ侵入数) ×100

[0028]

[0029]

(d-1):テトラハイドロリナロール (Tetrahydrolinalool)、ボ ルニルアセテート (Bornyl Acetate)、ミルセニルアセテート (Myrc enyl Acetate)、セドリルアセテート (Cedryl Acetate)、ラ ベンダリーアセテート (Lavandulyl Acetate)、シトロネリルイソブ チレート (Citronellyl Isobutyrate)、テルピニルプロピオネ ート (Terpinyl Propionate)、リナリルホルメート (Linaly l Formate)、シトロネリルチグレート (Citronellyl Tigrat e)、ノピルアセテート (Nopyl Acetate)、ベチベリルアセテート (Ve tiveryl Acetate)、リラール (Lyral)、シトロネリルオキシアセ トアルデヒド (Citronellyloxyacetaldehyde)、2,6,1 0-トリメチル-9-ウンデカナール (2, 6, 10-Trimethyl-9-Und ecanal), $\alpha - \exists J \mathcal{V} (\alpha - Ionone)$, $\beta - \exists J \mathcal{V} (\beta - Ionone)$, rイロン (Irone)、 α ーダマスコン (α -Damascone)、 β ーダマスコン $(\beta-Damascone)$ 、ヌートカトン (Nootkatone)、セドリルメチル エーテル (Cedryl Methyl Ether)、イソメントン (Isomenth one)、シトロネラール、リナロール、シトロネロール、シトラール、Lーメントール 、pーメンタン、αーピネン、βーピネン、dーリモネン、ゲラニオール、αーテルピネ オール、βーテルピネオール、γーテルピネオール、1, 8ーシネオール、pーメンタン -8-エン-1, 2-ジオール、オイゲノール、ベンジルホーメイト、ベンジルアセテー ト、ベンジルプロピオネート、ベンジルブチレート、ベンジルバレレート、ベンジルカプ ロエート、ベンジルフェニルケトン、ベンゾフェノン、リナロール、αーヘキシルケイ皮 アルデヒド、コニフェリルアルデヒド、ジャスモン、ジヒドロジャスモン、ジャスモン酸 メチル、ジヒドロジャスモン酸メチルから選ばれる合成又は単離香料の単独又は2種以上 の混合物

(d-2):レモングラス油、ラベンダー油、オレンジ油ベチバー油、パチョウリ油、カナンガ油、クローブ油、カジェプット油、シトロネラ油、ナツメグ油、ペッパー油、サンダルウッド油、バルク油、ガージン油、ジンジャー油、カンポー油、キュウベブユ油、レモングラス油、コーンミント油、アニス油、ラング油、シナモン油、メース油、パロマローサ油、フェンネル油、カラムス油、タイムス油、ニーム油、シナモンリーフ油、セダーウッド油から選ばれる植物精油の単独又は2種以上の混合物

(d-3):ヒノキチオール及び/又はヒノキチオール誘導体

(d-4):柿の葉、ヤツデ、ヨモギ、セロリ、及びどくだみをアルコールにより抽出した植物抽出エキス

[0030]

本発明では(d-1)及び(d-2)のものが特に好ましく、(d-1)の化合物としてジャスモン、ジヒドロジャスモン、ジャスモン酸メチル、ジヒドロジャスモン酸メチルが特に好ましく、(d-2)の植物精油としては、カラムス油、シナモンリーフ油、クローブ油、レモングラス油、セダーウッド油が特に好ましい。

[0031]

本発明に係るアレルゲン低減化剤は、(d)成分を好ましくは0.001~2質量%、より好ましくは0.005~1質量%、特に好ましくは0.01~0.5質量%含有する。なお(d)成分以外に香料成分を配合する場合は、(d)成分との合計で2質量%以下、更には1質量%以下、特には0.5質量%以下が好ましい。

[0032]

本発明では殺菌剤〔以下 (e) 成分という〕を含有することが好ましく、アレルゲン物 出証特2004-3086373

[0033]

本発明の(e)成分の抗菌性化合物は、木綿金巾#2003に該化合物1質量%を均一に付着させた布を用いJIS L 1902「繊維製品の抗菌性試験法」の方法で抗菌性試験を行い阻止帯が見られる化合物である。このような化合物としては「香粧品、医薬品防腐・殺菌剤の科学」(吉村孝一、滝川博文著、フレグランスジャーナル社、1990年4月10日発行)の501頁~564頁に記載されているものから選択することができる。

[0034]

本発明の(e)成分としては、特に下記(I)~(IV)の抗菌性化合物が好ましい。 【0035】

- (I) 20℃における水への溶解度が1g/100g以下、好ましくは0.5g/100g以下、分子量が100~420、好ましくは150~410、融点が40℃以上で、4級アンモニウム基を含有しない抗菌性化合物(但し、有機過酸又は有機過酸化物は除く。)
- (II) 0℃における水への溶解度が2g/100g以上、好ましくは5g/100g以上の、炭素数8~16のアルキル基を少なくとも1つ有する水溶性4級アンモニウム型抗菌性化合物
- (III) 2-(4-チオシアノメチルチオ) ベンズイミダゾール、ポリリジン、ポリヘキ サメチレンビグアニリド及びグルクロン酸クロルヘキシジンから選ばれる一種以上の抗菌 性化合物
- (IV) 20℃における水への溶解度が1g/100gを超える銀、銅、亜鉛から選ばれる 金属の塩

[0036]

(I)の性質を満たす化合物として好ましいものはトリクロサン、ビスー(2ーピリジルチオー1ーオキシド)亜鉛、2,4,5,6ーテトラクロロイソフタロニトリル、トリクロロカルバニリド、8ーオキシキノリン、デヒドロ酢酸、安息香酸エステル類、クロロクレゾール類、クロロチモール、クロロフェン、ジクロロフェン、ブロモクロロフェン、ベキサクロロフェンから選ばれる1種以上である。特にトリクロサンが本発明の課題に対して優れた効果を有するため好ましい。また、特開平11-189975号に記載されているトリクロサン類自体も良好であり、具体的にはジクロロヒドロキシジフェニリエーテル、モノクロロヒドロキシジフェニルエーテルが好ましい。

[0037]

(II) の化合物としては下記一般式(1)又は(2)の4級アンモニウム化合物を使用することも好ましい。

[0038]

【化1】

$$R^{1}(T)_{n}-R^{2}-N-R^{3}-$$
 (1)

$$R^6 - N \qquad \qquad Y^- \qquad \qquad (2)$$

〔式中、 R^1 、 R^6 は、それぞれ、炭素数 $5\sim16$ 、好ましくは $7\sim16$ のアルキル基又はアルケニル基、好ましくはアルキル基であり、 R^4 、 R^5 は、それぞれ、炭素数 $1\sim3$ のアルキル基又はヒドロキシアルキル基である。 Tは-COO-、-OCO-、-CONH-、-NHCO-、又は

【0040】

[0041]

である。nは0又は1である。 R^2 、 R^3 は、それぞれ炭素数 $1\sim6$ のアルキレン基又は $(O-R^7)_m$ -である。ここで R^7 はエチレン基もしくはプロピレン基、好ましくはエチレン基であり、mは $1\sim10$ 、好ましくは $1\sim5$ の数である。さらに Y^- は陰イオン基、好ましくはハロゲンイオン、炭素数 $1\sim3$ のアルキル硫酸イオンである。〕

[0042]

最も好ましい4級アンモニウム化合物としては下記のものを挙げることができる。なお、式中のY-は前記と同様の意味である。

[0043]

【化3】

$$R - N - CH_2 - \left\langle \begin{array}{c} CH_3 \\ \\ \\ CH_3 \end{array} \right\rangle$$

[式中、Rは炭素数8~16のアルキル基である。]

$$R \longrightarrow (OC_2H_4)_k - N - CH_2 \longrightarrow Y$$

$$CH_3$$

$$CH_3$$

[式中、Rは分岐していてもよい炭素数 $6 \sim 10$ のアルキル基、kは $1 \sim 5$ の数である。]

$$R-N$$
 Y^{-}

[式中、Rは炭素数8~18のアルキル基である。]

[0044]

(III) の化合物としては特にポリリジンが好適である。

[0045]

(IV) の化合物としては、化学便覧基礎編(改定3版)、II-166頁~II-177、

[0046]

本発明の(e)成分としては、トリクロサン、一般式(1)の化合物、ポリリジン、及び硫酸亜鉛、塩化亜鉛、酢酸亜鉛から選ばれる1種以上が、アレルゲンの低減化に好ましい効果を有することから、最も好ましい。

[0047]

(e) 成分の含有量は、本発明に係るアレルゲン低減化剤中、5質量%以下、更に0.001~3質量%以下、特に0.005~2質量%が好ましい。

[0048]

本発明のアレルゲン低減化剤は上記(a)成分及び所望により(c)~(e)成分を(b)成分の水に溶解させた水溶液(分散する成分が存在していてもよい)の形態である。 また、本発明のアレルゲン低減化剤の20℃におけるpHは、安全性や基剤損傷性の点か ら、好ましくは5.5~8.5、より好ましくは6.5~8.0である。pH調整剤とし ては、塩酸や硫酸などの無機酸や、クエン酸、コハク酸、リンゴ酸、フマル酸、酒石酸、 マロン酸、マレイン酸などの有機酸などの酸剤や、水酸化ナトリウムや水酸化カリウム等 のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等の炭酸塩、アンモニアやその 誘導体、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、アミノメ チルプロパノール、アミノメチルエタノールなどのアミン化合物などのアルカリ剤を、単 独もしくは複合して用いることが好ましい。なお本発明では(a)成分以外の乾燥するこ とで固体化する物質、且つ30℃以下で固体状態である物質のうち粘着性やフィルム形成 性のないものは乾燥時にアレルゲンを凝集し固化する性質を示すことから、物理的なアレ ルゲン除去性を向上させる目的で併用することが好ましい。アレルゲン無害化の観点にお いて、これら固体化物質は 0. 0 1 質量%未満であってもアレルゲン低減化効果を得るこ とができる。硬質表面や空間のアレルゲンに対しては、固体化物質は少な目とするのが良 く、アレルゲン低減化剤中、1質量以下、さらには0.1質量%以下、特には0.05質 量%以下に設計配合することが好ましく、従って前記pH調整剤も、この点を考慮して濃 度を調整して用いられる。また、本発明に係るアレルゲン低減化剤中のJISK0067 に記載の乾燥減量(大気圧下で加熱乾燥する方法、105℃/2時間)が95%以上、更 に98%以上、更に99%以上、特に99.5%以上であることが好ましい。

[0049]

本発明のアレルゲン低減化剤には、上記(a)成分~(e)成分の他に、アルキルグリコシドなどの(e)成分以外の界面活性剤、クエン酸などのキレート剤、ジエチレングリコールモノブチルエーテルなどのグリコール類などの水溶性溶剤、キサンタンガムなどの増粘剤、防カビ/防腐剤、(c)成分以外の香料、を配合することができるが、その使用はアレルゲン低減化剤の安定性や物性を考慮する一方で、アレルギー性にも十分な配慮が望まれる。(a)~(e)成分以外の成分の合計の配合量は、好ましくは2質量%以下、より好ましくは1.5質量%以下、最も好ましくは1質量%以下である。

[0050]

本発明のアレルゲン低減化剤の1つの使用形態として、スプレーデバイスを備えた容器に該アレルゲン低減化剤を充填してなるスプレー容器入りアレルゲン低減化剤が挙げられる。また、他の使用形態として、可撓性シートに本発明のアレルゲン低減化剤を含浸してなるアレルゲン低減化シートが挙げられる。

[0051]

前記スプレー容器入りアレルゲン低減化剤は、アレルゲンが舞っている空中に噴霧することでアレルゲンを無害化させる方法に用いる他、処理対象に直接噴霧して対象表面上のアレルゲンを無害化させる方法等に用いられる。

[0052]

該スプレー容器から、アレルゲン低減化剤を空間に噴霧することで、浮遊するアレルゲ 出証特2004-3086373

ン又はアレルゲン前駆物質に接触させる。アレルゲン物質は水溶性の化合物が多く、アレ ルゲン低減化剤の液滴に溶解し、(a)成分と接触する。本発明の(a)成分は上記凝集 /沈降の作用に加えて、アレルゲンそのものを不活性化する効果を有するものであり、沈 降後においても、アレルゲンと人体との接触を妨げ、効果的にアレルゲン及びその前駆物 質を除去することが可能になる。

[0053]

本発明のアレルゲン低減化剤を処理対象に直接噴霧する方法は、特に床などの硬質表面 に対して特に有効であり、その場合は噴霧後に、アレルゲン低減化剤が乾燥しないうちに 、吸水性物品、例えば液体吸収性の布帛等の吸収体で拭き取ることで、アレルゲンを吸収 体に吸着させ除去することができる。一般に、1つの吸収体を用いて何度も拭き取り処理 を行うと、一度吸収体に吸着除去したアレルゲンが硬質表面に再付着し、十分なアレルゲ ン低減効果が得られない可能性も考えられる。しかし、本発明ではこのような問題がない 。なぜなら、アレルゲンが処理面に再付着した場合でも、一旦本発明のアレルゲン低減化 剤に溶解したアレルゲンは溶液内の(a)成分により無害化されているからである。従っ て、上記の方法は、アレルゲン低減化剤を吸収体に含浸させたものを用いてもよい。もち ろん、再付着を抑制するための手段を講じることも好ましく、その場合は、吸収体にセル ロース繊維を含むものを用いることがよく、詳しくは後述するセルロース系繊維を含有す る繊維構造体を用いることができる。

[0054]

スプレーデバイスとしては、エアゾールなどの噴射剤を用いた噴霧方法も可能であるが 、本発明ではトリガー式噴霧器を用いることが好適である。トリガー式噴霧器としては1 回のストロークで 0.1g~2.0g、好ましくは 0.2~1.5g、さらに好ましくは 0.3g~1.0g噴出するものが良好である。本発明で使用するトリガー式スプレー容 器として特に好ましいものは、実開平4-37554号公報に開示されているような蓄圧 式トリガーが、噴霧の均一性の点で特に良好である。

[0055]

噴霧特性としては、特に地面に垂直に置いた対象物に15cm離れた場所からスプレー したときの液のかかる面積が100~800cm²、更に150~600cm²になるトリ ガー式噴霧器が好ましい。また、本発明では(a)成分を空間1m³当たり好ましくは1 0~4000mg、より好ましくは50~4000mgになるように均一にスプレーする ことで、より高いアレルゲン除去効果を得ることができる。なお空間噴霧に使用する場合 は、液滴が小さくなるように噴霧時に泡立たないものが用いられる。そのためには起泡性 を示す界面活性剤の配合は実質的に避けた方がよい。

[0056]

一方、アレルゲン低減化剤を含浸してなるアレルゲン低減化シートの、含浸用の可撓性 シートとしては、セルロース系繊維を含有する繊維構造体、及び繊維構造体を積層したも のを用いることが好ましい。繊維構造体としては不織布、織布及び編布などを挙げること ができるが、本発明では特に不織布を用いることが清掃性の点から好ましい。セルロース 系繊維としては、綿、麻等の天然繊維、及びビスコースレーヨン、テンセルやアセテート 等のセルロース系化学繊維が挙げられ、本発明では特にレーヨンを用いることがアレルゲ ンなどの除去効果に優れるため最も好ましい。セルロース系繊維以外に用いることができ る繊維としては、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン系 繊維、ポリエチレンテレフタレート等のポリエステル系繊維、ナイロン等のポリアミド系 繊維、ポリアクリロニトリル系繊維、ポリビニルアルコール系繊維を挙げることができる 。該可撓性シートは、乾燥状態において3g/m²の荷重下で、厚みが0.2~10mm 、更に 0. 4~5 mmが好ましい。また、自重に対して 1~4 倍の質量の水を保持できる 水保持性を有することが好ましい。含浸率は、可撓性シート、特に繊維構造体に対して、 アレルゲン低減化剤を質量比で1.5倍~5倍、特には2.2倍~3.5倍含浸させるこ とが好ましい。含浸量は繊維構造体の繊維径や坪量によって相違する。

[0057]

本発明では、前記可撓性シートとなる繊維構造体中にセルロース系繊維を好ましくは40~100質量%、より好ましくは50~90質量%含有する繊維構造体が好適である。【0058】

また、前記可撓性シートとなる繊維構造体は、密度(嵩密度)が、 $3.0gf/cm^2$ 荷重下で $0.01\sim1.0g/cm^3$ であることが好ましく、 $0.05\sim0.5g/cm^3$ であることが更に好ましく、 $0.1\sim0.3g/cm^3$ であることが一層好ましい。また、坪量は $5\sim150g/m^2$ であることが好ましく、 $10\sim100g/m^2$ であることが更に好ましく、 $10\sim100g/m^2$ であることが更に好ましく、 $10\sim100g/m^2$ であることが更に好ましく、 $10\sim100g/m^2$ であることが一層好ましい。

[0059]

また、本発明では、可撓性シートに不織布を用いる場合には、湿式不織布、ケミカルボンド、サーマルボンド(エアースルー)、エアーレイド等の乾式不織布の他にスパンレース、スパンボンド、メルトブローン、ニードルパンチ及び/又はステッチボンドを挙げることができるが、特に湿式不織布、ケミカルボンド、サーマルボンド(エアースルー)、メルトブローン、又は、スパンレースから選ばれる1種以上が本発明の効果の点から有効である。また、繊維長は20mm以上、特に30~100mm、とりわけ35~65mmの繊維から構成される低交絡不織布を使用することが好ましい。

[0060]

このような低交絡不織布としては、スパンレース不織布、エアースルー等のサーマルボンド不織布、スパンボンド不織布、立体起毛不織布等が挙げられる。この場合、繊維長20mm以上の繊維から構成される低交絡不織布は、そのすべての構成繊維の繊維長が20mm以上であることを要せず、該不織布の原料中に及び/又は製造工程にて不可避的に混入及び/又は発生する繊維長20mm未満の繊維が含まれることは許容される。また、本発明の拭き取り材は熱エンボス加工によって、その表面に多数の凹凸を形成することも、清掃時の操作性を向上(摩擦抵抗を低減)させる点で好ましい。

[0061]

本発明は、またアレルゲンの低減化において、次の清掃方法をも提案する。すなわち、吸引による掃除又は掃き掃除を行なう前に、本発明のアレルゲン低減化剤を対象表面に噴霧又は塗布し、乾燥するまでに吸水性物品で拭き取ることを行う、清掃方法である。吸引による掃除や掃き掃除は、アレルゲンを舞い散らせることになり、清掃の後でアレルゲン低減化処理を行うよりも、予めアレルゲン低減化処理を行った方が、十分な効果を発揮することができる。本発明の清掃方法は、従来の拭き掃除と異なり、前記掃除に先だって硬質表面を本発明のアレルゲン低減化剤で処理することで、優れたアレルゲン除去性が得られることを見出した。なお、拭き取りに用いる吸水性物品には、前記可撓性シートの記述を参照できる。なお、本発明には、吸水性物品に本発明のアレルゲン低減化剤を含浸させたもので拭き取ることも含まれる。

【実施例】

[0062]

<実施例1>

床面積 $7.4m^2$ 、高さ2.3mの空間(容積 $17m^2$ 、温度23°C)を密閉し、実際の家庭で2年間使用された綿わた敷き布団に布団タタキを用いて10秒間の衝撃を与え、空間内で発塵させ、ダストを舞わせた。次いで表1のアレルゲン低減化剤を、床から1.7mの高さより45° 斜め上方の空間にトリガー式スプレー(花王(株)製、アレルクリン清潔スプレーふとん用に付属のトリガー)を用いて17g噴霧した。

[0063]

スプレーしてから30分後に、ガラス繊維フィルター(柴田科学(株)、GB-100R-110A)を装着したハイボリウムエアサンプラー(柴田科学(株)、HV-500F)を500L/minの条件で床面にて60分間運転し、フィルター上にダストを捕集した。ダストを捕集したガラス繊維フィルターをPBS(リン酸バッファー液:pH 7.4±0.1、KH2PO4、NaCl、Na2HPO4・7H2Oをそれぞれ0.144g/L、9.00g/L、0.795g/Lとなるように蒸留水に溶解したもの)にTween20 (SIGMA) を0.05質量%含有した溶液(以下T-PBSと呼ぶ) 1cc以下中で十分に揉み、ダスト中のアレルゲ

[0064]

スプレーを噴霧しない場合のDer f II濃度をa、スプレーを噴霧した場合のDer f II濃度をbとし、スプレーによるアレルゲンの低減率Rを R = $(b/a) \times 100$ であるとした。

[0065]

スプレーを噴霧しない場合及び表1のアレルゲン低減化剤についての試験を順次行い、 適宜順番を入れ替えながらこれを4回繰り返し、得られた4回分のアレルゲン低減率の平均 値を比較したところ、表1の配合例のアレルゲン低減化剤ではすべて優れたアレルゲン低 減率が得られた。また、別に実施した水だけを噴霧した場合の試験結果に比べても優れて いた。

[0066]

<実施例2>

床面積 $7.4m^2$ 、高さ2.3mの空間(容積 $17m^2$ 、温度23°C)を密閉し、実際の家庭で2年間使用された綿わた敷き布団に布団タタキを用いて10秒間の衝撃を与え、空間内で発塵させ、ダストを舞わせた。

[0067]

3時間後、床面を20秒/m²となる様に真空掃除機((株)日立製作所、CV-CD4、吸込仕事率5 30W)を用いて掃除した。その後、直ちに下記不織布作成方法で得た不織布に、表1のアレルゲン低減化剤を含浸率250%(質量比)となるように含浸させたシート状構造体Aをクイックルワイパー(花王(株))に装着し、床面を清拭した。

[0068]

清拭した後に再び3時間静置し、市販の清掃用シート(花王(株)、フロアクイックルドライタイプ)にT-PBSを含浸率150%(質量比)となるように含浸した拭き上げシートBを用い、床面全面を拭き上げた。

[0069]

シートBより、汚染されたPBSを絞り出し、下記サンドイッチELISA法を用いてアレルゲン量を定量した。

[0070]

表1のアレルゲン低減化剤に代えて水をシートAに含浸して試験した場合(対照試験)のDerfII濃度をaとし、表1に記した組成物をシートAに含浸した場合のDerfII濃度をbとし、アレルゲンの低減率RをR = $(b/a) \times 100$ とした。

[0071]

対照試験及び表1のアレルゲン低減化剤についての試験を順次行い、適宜順番を入れ替えながらこれを4回繰り返し、得られた4回分のアレルゲン低減率の平均値を比較したところ、表1の配合例のアレルゲン低減化剤ではすべて優れたアレルゲン低減率が得られた。

[0072]

<実施例3>

床面積7.4m²、高さ2.3mの空間(容積17m²、温度23℃)を密閉し、実際の家庭で2年間使用された綿わた敷き布団に布団タタキを用いて10秒間の衝撃を与え、空間内で発塵させ、ダストを舞わせた。

[0073]

3時間後、下記不織布作成方法で得た不織布に、表1のアレルゲン低減化剤を含浸率250% (質量比)となるように含浸させたシート状構造体Aをワイパー装置(花王(株)、クイックルワイパー)に装着し、床面を清掃した。その後直ちに床面を20秒/m²となる様に真空掃除機((株)日立製作所、CV-CD4、吸込仕事率530W)を用いて吸引清掃した。

[0074]

吸引清掃した後に再び3時間静置し、その後市販の清掃用シート(花王(株)、フロアクイックルドライタイプ)にT-PBSを含浸率150%(質量比)となるように含浸した拭き上げシートBを用い、床面全面を拭き上げた。

[0075]

シートBより、汚染されたPBSを絞り出し、下記サンドイッチELISA法を用いてアレルゲン量を定量した。

[0076]

表1のアレルゲン低減化剤に代えて水を含浸して試験した場合(対照試験)のDer f II濃度をaとし、表1のアレルゲン低減化剤を含浸して試験した場合のDer f II濃度をbとし、アレルゲンの低減率Rを R = $(b/a) \times 100$ とした。

[0077]

対照試験及び表1のアレルゲン低減化剤についての試験を順次行い、適宜順番を入れ替えながらこれを4回繰り返し、得られた4回分のアレルゲン低減率の平均値を比較したところ、表1の配合例のアレルゲン低減化剤ではすべて優れたアレルゲン低減率が得られた。また、その低減率は、すべての場合において対応する配合例で行った実施例2の場合よりも高いものであった。

[0078]

<実施例4>

床面積 $7.4m^2$ 、高さ2.3mの空間(容積 $17m^2$ 、温度23°C)を密閉し、実際の家庭で2年間使用された綿わた敷き布団に布団タタキを用いて10秒間の衝撃を与え、空間内で発塵させ、ダストを舞わせた。

[0079]

3時間後、表1のアレルゲン低減化剤を、床から0.6mの高さより45°斜め下方にトリガー式スプレー(花王(株)製、アレルクリン清潔スプレーふとん用に付属のトリガー)を用いて30g噴霧した。直ちに、下記不織布作成方法で得た不織布4枚を順次用い、クイックルワイパー(花王(株))に装着した状態で床面を清掃した。

[0800]

3時間後、市販の清掃用シート(花王(株)、フロアクイックルドライタイプ)にT-PBSを含浸率150%(質量比)となるように含浸した拭き上げシートBを用い、床面全面を拭き上げた。

[0081]

シートBより、汚染されたPBSを絞り出し、下記サンドイッチELISA法を用いてアレルゲン量を定量した。

[0082]

表1のアレルゲン低減化剤に代えて水を噴霧して試験した場合(対照試験)のDer f II濃度をaとし、表1のアレルゲン低減化剤を噴霧して試験した場合のDer f II濃度をbとし、アレルゲンの低減率Rを R = $(b/a) \times 100$ とした。

[0083]

対照試験及び表1のアレルゲン低減化剤についての試験を順次行い、適宜順番を入れ替えながらこれを4回繰り返し、得られた4回分のアレルゲン低減率の平均値を比較したところ、表1の配合例のアレルゲン低減化剤では、すべてにおいて、より優れたアレルゲン低減率が得られた。

[0084]

<サンドイッチELISA法>

- 1. モノクローナル抗体15E11(生化学工業(株))をPBS(リン酸バッファー液: pH 7.4 ± 0.1 、 KH_2 PO4、NaC1、Na₂ HPO₄ ・7H₂ Oをそれぞれ0.144g/L、9.00g/L、0.795g/Lとなるように蒸留水に溶解したもの)で 2 μ g/mlの濃度に希釈しマイクロプレート(住友ベークライトELISA PLATE H TYPE)の各ウェルに50 μ lずつ分注し、室温で 2 時間静置する。
- 2. プレートをPBSで3回洗浄する。
- 3. 1%BSA (SIGMA) を含むPBS (大日本製薬 プロックエース) を各ウェルに200 μ lずっ分注し室温で1時間静置し、プロッキングを行う。
- 4. T-PBS(Tween20 (SIGMA) を0.05質量%含有するPBS)で3回洗浄する。
- 5. スタンダードとしてrDer f II (生化学工業(株)) を0.3μg/mlから 9 管T-PBSで 2 n

- 6. プレートをT-PBSで3回洗浄する。
- 7. 至適濃度のHRP標識13A4 (生化学工業 (株)) を各ウェルに50 μ l分注し室温で 2 時間 静置する。
- 8. プレートをT-PBSで3回洗浄する。
- 9. ペルオキシダーゼ用発色キットT(住友ベークライト)を用いて発色を行う。まず発色剤10mに基質液を0.1mに加えて混和して発色液とする。この発色液を各ウェルに 100μ 1ずつ分注し室温で発色させる。その後停止液を各ウェルに 100μ 1ずつ分注して反応を止め、プレートリーダーで450mにおける吸光度を測定する。
- 10.スタンダードの吸光度から得られる検量線を用いて測定する試料のDer f II濃度を 算出する。

[0085]

<不織布作製方法>

芯がポリプロピレンからなり、鞘がポリエチレンからなる芯鞘構造で、立体クリンプ形状をもつ低融点繊維(2.8dtex × 51mm、鞘成分の融点130 $^{\circ}$ C)を用いて坪量27g/m²のエアースルー不織布を作製した。繊維同士を温度140 $^{\circ}$ Cで熱接着させた。このエアースルー不織布の破断強度は、流れ方向(MD)が1660cN/25mm、幅方向(CD)が220cN/25mmであった。

[0086]

一方、レーヨン繊維(1.7dtex × 40mm)とアクリル繊維(0.9dtex × 51mm)と、芯がポリプロピレンからなり鞘がポリエチレンからなる芯鞘繊維(1.0dtex × 38mm)とを、重量比5 0/25/25の比率で混合し、常法のカード機で作製した坪量 $19g/m^2$ の繊維ウェブを、前記エアースルー不織布の上下に積層した。次いで低エネルギー条件でウォーターニードリング処理を施し、エアースルー不織布と繊維ウェブとを交絡させて繊維自由度の高い表面層を有する坪量 $65g/m^2$ の複合スパンレース不織布を調製した。超音波エンボス機を用い、調製した不織布の全面にダイヤ柄の凹凸模様からなるエンボス加工を施して前記実施例で用いた不織布を得た。

[0087]

【表1】

· 				配合例									
				1	2	3	4	5	6	7	8	9	10
	(質量%)	(a)	化合物A1	0.1	0.1	0.1							
			化合物A2			0.1	0.2	0.1					
			化合物B					0.1	0.1				
			化合物C							0.1			
			化合物D								0.1		
			化合物E								_	0.1	
ア			アキュリン22 (ISP社)										0.1
レ		(b)	水	残部									
ルゲ		(c)	エタノール	3.0	5.0	5.0	3.0	20	5.0	5.0	5.0	5.0	5.0
ン低			イソフ゜ロハ゜ノール				1.0	2.0					
低減化		(d)	シ'ヒト'ロシ'ャスモン	0.05			0.05	0.05					
化剤			シ゚ヒト゚ロシ゚ャスモン酸メチル		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		(e)	塩化ヘンサールコニウム	0.01			0.01			ļ			
			ホ°リリシ ・ ン		0.02	0.02	0.02						
		硫	酸ナトリウム			0.2	0.2	0.2					
		プロモノ	コヒ°レンク・リコール ソメチルエーテル			1.0	1.0	1.0					
			合計	100	100	100	100	100	100	100	100	100	100
		pH(20℃)		7	7	7	7	7	7	7	7	7	7

[0088]

表中の化合物A1、A2、B、C、D、Eは、以下の合成例により得られたものである。また、アキュリン22は、ISP社の高分子化合物アクリル酸・メタクリル酸アルキル・ポリオキシエチレン(平均付加モル数20)ステアリルエーテル共重合体である。なお、表中、pHはpH調整剤として硫酸とアミノメチルプロパノールを用いて調整した。

【0089】 <合成例1(化合物A1)>

重量平均分子量150万、ヒドロキシエチル基の置換度が1.8のヒドロキシエチルセルロース (HEC-QP100MH、ユニオンカーバイド社製)80g、80%イソプロピルアルコール (IPA) 水溶液640g及び48%水酸化ナトリウム水溶液5.34gを混合してスラリー液を調製し、窒素雰囲気下室温で30分間攪拌した。この溶液に次式【0090】

【化4】

$$O \longrightarrow O \longrightarrow O \longrightarrow C_{12}H_{25}$$

[0091]

で表されるポリオキシアルキレン化合物 12.78 g を加え、80 $\mathbb C$ で 8 時間反応させてポリオキシアルキレン化を行った。反応終了後、反応液を酢酸で中和し、反応生成物をろ別した。反応生成物をイソプロピルアルコール 500 g $\mathbb C$ 2 回洗浄し、減圧下 60 $\mathbb C$ $\mathbb C$ $\mathbb C$ を で 1 昼夜乾燥し、化合物 $\mathbb C$ \mathbb

[0092]

<合成例2 (化合物A2)>

合成例1及びW000/73351号公報記載の方法に準じ、重量平均分子量20万、ヒドロキシエチル基の置換度が2.5のヒドロキシエチルセルロース(ハーキュレス社製)を用い、次式

【0093】

$$O \longrightarrow O \longrightarrow O \longrightarrow C_{12} C_{12} H_{25}$$

[0094]

で表されるポリオキシアルキレン化合物を加え、ポリオキシアルキレン基の置換度は 0.014 である化合物 A 2 を得た。

[0095]

<合成例3 (化合物B)>

平均重合度2000のポリビニルアルコール20g、ジメチルスルホキシド (DMSO) 200g、粒状NaOH 1.81gを混合し70℃で撹拌した。溶液が均一になった後、冷却した。室温にて次式

[0096]

【化6】

$$O \longrightarrow O \longrightarrow O \longrightarrow C_{12}H_{25}$$

[0097]

で表される化合物1.87gを添加し、80℃で8時間熟成した。冷却後、酢酸2.59mLを添加し、中和した。反応終了物をIPA中に添加した。析出した白色固体を濾過し、得られた固体をIPAで洗浄(300mL×3)した。減圧乾燥の後、下記の構成単位を含む化合物 Bを19.0g得た。

[0098]

【化7】

$$-CH_{2}CH-CH_{2}CH-$$

$$OH O$$

$$HO \longrightarrow O$$

$$O \longrightarrow O$$

[0099]

得られた化合物Bのポリオキシアルキレン基を含む置換基の置換度は0.0033であった。

[0100]

<合成例4(化合物C)>

【化8】

C=O
$$+ C=O$$

$$+ O + CH_{2}CH_{2}O + CH_{2}CH_{$$

[0101]

上記スキームのモノマーA 97.1g、モノマーB 20.7g、エタノール180gを混合した。この溶液中に窒素ガスを吹き込み(20mL/min、1時間)、系内を脱気した後、60mCに昇温した。その後V-65(アゾ系重合開始剤、和光純薬工業株式会社)のエタノール溶液(3wt%) 82.8gを温度60mCに保ちながら滴下した。滴下終了後60mCで12時間熟成を行った。反応終了後、得られた反応終了物をジイソプロピルエーテル2kg中に滴下した。得られた白色固体を濾別し、更にジイソプロピルエーテルで洗浄した($500g \times 2m$)。減圧乾燥の後、化合物 mCを105g得た。得られた化合物 mCのモノマーBの導入率をmMRより測定した結果m0.025であった。また重量平均分子量はm51000であった。

[0102]

<合成例 5 (化合物 D) >

【化9】

[0103]

上記スキームのモノマーC 501.8g、モノマーB 20.7g及びエタノール780gを混合した。この溶液中に窒素ガスを吹き込み(40mL/min、1時間)、系内を脱気した後、 60° に昇温した。その後V-65エタノール溶液(3wt%) 82.8gを温度 60° に保ちながら滴下した。滴下終了後 60° で12時間熟成を行った。反応終了後、得られた反応終了物をジイソプロピルエーテル5kg中に滴下した。得られた白色固体を濾別し、更にジイソプロピルエーテルで洗浄した($500\text{g}\times2\text{回}$)。減圧乾燥の後、化合物 D を490g得た。得られた化合物 D のモノマーBの導入率をNMRより測定した結果0.022であった。また重量平均分子量は110000であった。

[0104]

<合成例6(化合物E)>

重量平均分子量5400のポリグリシドール3g、DMSO 100g、粒状NaOH 0.16gを混合し、70℃で撹拌した。溶液が均一になった後、冷却した。室温にて次式

[0105]

【化10】

$$O \longrightarrow O \longrightarrow O \longrightarrow C_{12} C_{12} H_{25}$$

[0106]

で表される化合物0.765gを添加し、80℃で8時間熟成した。冷却後、酢酸0.23mLを添加し中和した。DMS0を留去し、得られた淡黄色粘稠固体をIPAで洗浄(30mL×3)した。減圧乾燥の後、下記の構成単位を有する化合物 E を2.9g得た。

[0107]

【化11】

【0108】 得られた化合物Eのポリオキシアルキレン基を含む置換度の置換度は0.0053であった。

【要約】

【課題】 アレルゲンやその前駆物質を効果的に不活化、除去できる手段を提供する。 【解決手段】 ヒドロキシ基又はカルボキシ基を有する構成単位を有する高分子化合物 のヒドロキシ基又はカルボキシ基の水素原子の少なくとも一部を、ポリエーテル基を含む 特定の基で置換した水溶性高分子化合物、及び水を含有するアレルゲン低減化剤。

【選択図】 なし

特願2003-361994

出願人履歴情報

識別番号

[000000918]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

東京都中央区日本橋茅場町1丁目14番10号

氏 名 花王株式会社