2017 Fall - Math 355 - Homework 7

Due: Friday, October 20 in class.1

Unless specified otherwise, you must always show your work and justify your answers.

- (1) Write \mathbb{R}^5 as a direct sum of two (non-zero) subspaces.
- (2) Write \mathbb{R}^5 as a sum of three (non-trivial²) subspaces.
- (3) Let $U, W < \mathbb{R}^5$ be subspaces, suppose dim U = 3, dim W = 3. What are the possibilities for dim $U \cap W$, dim U + W? For each, exhibit an example.

(4) Let
$$\vec{b}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{b}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ be a basis of \mathbb{R}^3 . Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be the

unique linear map such that
$$f(\vec{b}_1) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $f(\vec{b}_2) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $f(\vec{b}_3) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

What is
$$f(\begin{pmatrix} 1\\3\\1 \end{pmatrix})$$
? What is $f(\begin{pmatrix} 0\\0\\0 \end{pmatrix})$? What is $f(\begin{pmatrix} 2\\2\\1 \end{pmatrix})$?

- (5) Let V be a vector space. Let $n = \dim V$. Show that V is the direct sum of n subspaces, all of dimension 1.
- (6) Suppose $V = W_1 + W_2 + W_3$. Suppose dim $W_1 + \dim W_2 + \dim W_3 = \dim V$. Suppose W_i is non-trivial for all i. What can you say about $W_1 \cap W_2$? What can you say about $W_2 \cap W_3$? What can you say about $W_1 \cap W_2 \cap W_3$? Discuss.
- (7) Suppose dim V=3 and suppose $V=W_1+W_2+W_3$. Suppose dim $W_1+\dim W_2+\dim W_3=4$. Suppose W_i is non-trivial for all i. What can you say about $W_1\cap W_2\cap W_3$? Discuss.

 $^{^1{\}rm This}$ file was last updated at 18:01 on Friday $13^{\rm th}$ October, 2017.

²A subspace U < V is non-trivial if $U \neq \{\vec{0}\}$ but also $U \neq V$.