西安交通大学考试题数理统计 2000 年

一、填空

1. 设 $X_1, X_2, \cdots X_{10}$ 是来自正态总体N(0,4) 的样本,

$$c \cdot \frac{\sum_{i=1}^{5} X_{i}}{\sqrt{\sum_{j=1}^{5} (X_{j} - \frac{1}{5} \sum_{i=1}^{5} X_{i})^{2} + \sum_{i=6}^{10} X_{i}^{2}}} \sim t(m)$$

则 c = 70 , m = 49

- 2. 用 $\Phi(x)$ 表示标准正态分布N(0,1)的分布函数,则 $\Phi(-x)$ 与 $\Phi(x)$ 的关系为 $\Phi(-x)=1-\Phi(x)$
 - 3. 己知 $T \sim t(n)$,则 $T^2 \sim F(1,n)$
 - 4. 设总体 X 的概率密度为 $f(x;\theta)$, 则参数 θ 估计的费歇 (Fisher) 信息量

$$I(\theta) = -E \left[\frac{\partial^2 \ln f(x; \theta)}{\partial \theta^2} \right]$$

- 二、选择题(填 A,B,C,D, 有几个正确填几个, 若都不正确, 则填 E)
 - 1. 设 $(X_1, X_2, \cdots X_{20})$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,统计量

$$S = \sum_{i=1}^{10} (2X_{2i} - X_{2i-1})^2 , \quad \text{M}$$
 (C)

A.
$$\frac{1}{5\sigma^2}S \sim \chi^2(9)$$

B.
$$\frac{1}{3\sigma^2}S \sim \chi^2(9)$$

C.
$$\frac{1}{5\sigma^2}S \sim \chi^2(10)$$

D.
$$\frac{1}{3\sigma^2}S \sim \chi^2(10)$$

2. 独立地分别从两总体X和Y中抽得大小各为m和n的样本,其样本均值分别为 \bar{X} 和 \bar{Y} ,则 $D(\bar{X}-\bar{Y})=$ (D)

A.
$$\frac{D(X)}{m^2} - \frac{D(Y)}{n^2}$$

B.
$$\frac{D(X)}{m^2} + \frac{D(Y)}{n^2}$$

C.
$$\frac{D(X)}{m} - \frac{D(Y)}{n}$$

D.
$$\frac{D(X)}{m} + \frac{D(Y)}{n}$$

3. 设 $X_1, X_2, \cdots X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知,而 σ^2 未

知,则下列是统计量的是

(AD)

A.
$$\overline{X} + X_6$$

$$B. \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$$

$$C. \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

D.
$$(X_2 - \mu)^2 + 2X_8 + \mu$$

4. 设
$$F \sim F(6,8)$$
,则

(AD)

A.
$$P\{F < F_{1-\alpha}(6,8)\} = \alpha$$

B.
$$P\{|F| > \frac{1}{F_{\alpha}(8,6)}\} = \alpha$$

C.
$$P\{|F| > F_{1-\frac{\alpha}{2}}(6,8)\} = \alpha$$

D.
$$P\{F < \frac{1}{F_{\alpha}(8,6)}\} = \alpha$$

三、为比较 A、B 两型灯泡的寿命,随机抽取 A 型灯泡 5 只,测得平均寿命 \overline{x} =1000 (小时),标准差 s_A =28 (小时),随机抽取 B 型等泡 7 只,测得平均寿命 \overline{y} =980 (小时),标准差 s_B =32 (小时),设总体都是正态的,试在显著性水平之下 (α = 0.05) 检验两总体寿命分布是否相同。

解:

依题意,需要检验假设为

$$H_{01}: \sigma_x = \sigma_y \leftrightarrow H_{02}: \sigma_x \neq \sigma_y$$

$$H_{02}: \mu_x = \mu_y \leftrightarrow H_{02}: \mu_x \neq \mu_y$$

i) 对于假设 H_{01} ,由于 μ_x , μ_y 未知,则可选取

$$F = \frac{S_x^{*2}}{S_y^{*2}}$$

作为检验统计量, 当 H_{01} 成立时,

$$F = \frac{S_x^{*2}}{S_y^{*2}} \sim F(n_x - 1, n_y - 1)$$

且当 H_{01} 成立时,F过分偏大将不利于 H_{01} 的成立,则其拒绝域的形式为

$$W = \{ F \le k_1 \cup F \ge k_2 \}$$

对于给定的水平 $\alpha = 0.05$,于是 $k_1 = F_{0.975}(n_x - 1, n_y - 1), k_2 = F_{0.025}(n_x - 1, n_y - 1)$ 对于本题,

$$n_x = 5, S_x^{*2} = n_x \cdot s_A^2 / (n_x - 1) = 980, n_y = 7, S_y^{*2} = n_y \cdot s_B^2 / (n_y - 1) = 7 \times 32^2 / 6$$

则

$$F = \frac{S_x^{*2}}{S_y^{*2}} = \frac{980 \times 6}{7 \times 32^2} = 0.8203$$

查表得, $F_{0.025}(4,6) = 6.23$, $F_{0.975}(4,6) = 1/F_{0.025}(6,4) = 1/9.2 = 0.0892$ 。由于 0.0892 < F < 6.23,则接受假设,即认为 $\sigma_x = \sigma_y$ 。

ii) 对于假设 H_{02} ,由于 $\sigma_x = \sigma_v$,且未知,则可选取

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{1}{n_x} + \frac{1}{n_y}} \cdot \sqrt{\frac{(n_x - 1)S_x^{*2} + (n_y - 1)S_y^{*2}}{n_x + n_y - 2}}}$$

作为检验统计量, 当 H_{02} 成立时,

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{1}{n_x} + \frac{1}{n_y}} \cdot \sqrt{\frac{(n_x - 1)S_x^{*2} + (n_y - 1)S_y^{*2}}{n_x + n_y - 2}}} \sim t(n_x + n_y - 2)$$

且当 H_{01} 成立时,T过分偏大将不利于 H_{02} 的成立,则其拒绝域的形式为

$$W = \{ |T| \ge k \}$$

对于给定的水平 $\alpha = 0.05$,于是 $k = t_{0.025}(n_x - 1, n_y - 1)$ 对于本题,

$$n_x = 5, S_x^{*2} = n_x \cdot s_A^{-2}/(n_x - 1) = 980, n_y = 7, S_y^{*2} = n_y \cdot s_B^{-2}/(n_y - 1) = 7 \times 32^2/6$$
则 $T = 1.0258$, 查表得, $T_{0.025}(10) = 2.2281$ 。 由于 $1.0258 < T$, 则拒绝假设,即认为 $\mu_x \neq \mu_y$ 。

综上所述, 两总体寿命分布不相同。

四、想要考察特定一群人的收入与其花在书籍报纸上的支出有无关系,把收入分成高、中、低三档,书报上的支出分别为多、少两档。设随机抽查了 201 名,结果如下表:

收入	低	中	高
书报上支出			
少	63	37	60
多	16	17	8

试在水平 $\alpha = 0.05$ 之下检验收入与书报上支出有无关联。

解:

依题意,有两个指标,记 X 为书报上的支出情况,记 Y 为收入情况,且记 A_1,A_2 分别为书报上的支出多、少两档; B_1,B_2,B_3 分别为收入高、中、低三档。则需要检验的假设为 $H_0: p_{ij} = p_{i\cdot} \cdot p_{\cdot j}, i = 1,2; j = 1,2,3 \leftrightarrow H_1:$ 至少存在某组 (i,j),使得 $p_{ij} \neq p_{i\cdot} \cdot p_{\cdot j}$ 。 其中 $p_{ij} = P\{X = A_i, Y = B_j\}, p_{i\cdot} = P\{X = A_i\}, p_{\cdot j} = P\{Y = B_j\}$ 。于是,

$$k = \frac{\sum_{j=1}^{3} \sum_{i=1}^{2} (n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n})^{2}}{\frac{n_{i} \cdot n_{\cdot j}}{n}} = 6333.7$$

查表得, $\chi^2_{0.05}(2) = 5.991$ 。由于 k > 5.991,则拒绝假设,即认为收入与书报上支出有关联。

五、在硝酸钠 ($NaNO_3$) 的溶解度试验中,测得在不同温度 x (${}^{\circ}C$) 下,溶解于 9 份水中的硝酸钠份数 y 的数据如下表:

y: 66.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1

假设y与x之间有线性关系,在正态假定下,求y在 x_0 = 25 的置信度为 95%的预测区间。

解:

依题意,可计算得

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = 0.8706$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = 67.5078$$

则 y 与 x 之间有线性关系为 y = 0.8706x + 67.5078。

于是,当
$$x_0 = 25$$
时, $y_0 = 89.2728$ 。

y 置信度为 95%的预测区间为

$$(y_0 \mp t_{0.025}(n-2) \cdot \sigma^{*2} / \sqrt{1 + 1/n + (x_0 - \overline{x}) / \sum_{i=1}^{n} (x_i - \overline{x})})$$

则y在 $x_0 = 25$ 的置信度为95%的预测区间为

六、设自一大批产品中随机抽出 200 个产品,发现其中 120 个是一等品,求这大批产品的一等品率的 95%置信区间。

解:

$$U = \frac{\sqrt{n}(\overline{X} - p)}{\sqrt{p(1-p)}} \sim N(0,1)$$

七、今有两台测量合金材料中某种金属含量的光谱仪,为鉴定他们的测量准确性有无显著差异,对 9 件含该金属分别为 x_1, x_2, \cdots, x_9 (不等)的合金材料进行测量,第一台测量结果服从正态分布 $N(x_t + \delta_1, \sigma_1^2)$, $t = 1, 2, \cdots, 9$;第二台测量结果服从 $N(x_t + \delta_2, \sigma_2^2)$, $t = 1, 2, \cdots, 9$ 。测得的 9 对观测值如下:

第一台: 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

第二台: 0.10 0.21 0.52 0.32 0.78 0.59 0.68 0.77 0.89

问能否认为第一台的测量值比第二台显著偏大($\alpha = 0.05$)?

八、设 $X_1, X_2, \cdots X_n$ 是来自总体X的样本 (n > 2),总体的概率密度为

- 1. 设 $\lambda = \frac{1}{\sqrt{2}}$, 试求参数a的最大似然估计。
- 2. 设a=0, 试求参数 λ 的矩估计。
- 3. 设 a=0,试推导 $2n\lambda \bar{X}$ 服从的分布,其中 $\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 。
- 4. 设a=0, 试计算 $E(\hat{\lambda})$, 并求k, 使 $\hat{\lambda}^*=k\hat{\lambda}$ 为 λ 的无偏估计。

解:

1. 先得到似然函数

野野以然函数
$$L(a) = \prod_{i=1}^{n} \lambda e^{-\lambda(x_i - a)} = \lambda^n e^{-\lambda \sum_{i=1}^{n} (x_i - a)} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i + n\lambda a} \qquad x_i \ge a$$

由于

2.

- 一. (本题满分 20 分) 填空题:
 - 1. 设 $X_1, X_2, \cdots X_{10}$ 是来自正态母体 $N(\mu, \sigma^2)$ 的一个简单随机子样,其中 μ , σ^2 已 知。填充下列统计量的分布及其相应参数:

A.
$$\frac{X_2 + \mu}{\sigma} + \frac{X_9 - 2\mu}{2\sigma} \sim (N(\frac{3\mu}{2\sigma}, \frac{5}{4}))$$

B.
$$\frac{\sum_{i=1}^{10} (X_i - \mu)^2}{\sigma^2} \sim (\chi^2(10))$$

C.
$$\frac{2\sum_{i=1}^{6} (X_i - \mu)^2}{3\sum_{i=7}^{10} (X_i - \mu)^2} \sim (\underline{F(6,4)})$$

2. 设有一母体 X , 其均值 $EX = \mu$, 方差 $DX = \sigma^2$ 以及四阶矩 EX^4 都存在, $X_1, X_2, \cdots X_n$ 是来自母体 X 的简单随机子样。则 μ 的无偏估计量为 \overline{X} ,相合估计量为 \overline{X} ; σ^2 的无偏估计量为 $EX^2 - EX$,相合估计量为 $EX^2 - EX$ 。

- 二. 选择题(本题满分 20 分,从 A~E 中选择一个完整的答案,填入指定处) $1. \ \, \forall \, X \sim N(0,1), \, \, \cup \, P \, \{\, X > \} = 1 a \, (\, 0 < a < 1\,). \tag{C}$
 - A. u_a B. $-u_a$ C. u_{1-a} D. B 或 C E. A~D 的答案皆错

A.
$$-F_a(m,n)$$
 B. $F_{1-a}(m,n)$ C. $F_a(m,n)$ D. $F_a^{-1}(n,m)$ E. B 或 D

3.设检验假设H: θ = θ_0 的一个检验法则犯第一类错误的概率为 P(I),检验的显著水平为 α ,则。

A. $P(I)=1-\alpha$ B. $P(I)=\alpha/2$ C. $P(I)=\alpha$ D. $P(I) \ge 1-\alpha$ E. C $\not\equiv$ D

4,设 $X_1, X_2, \cdots X_n$ 是来自正态母体 $N(\mu, \sigma^2)$ 的子样,其中 μ 未知, σ^2 已知,则是统计量。

A. S^2/σ^2 ; B. $(X_1 - \mu)/\sigma$; C. $|X_1| + |X_2|$; D.A 和 C; E.A 和 B

5.设母体 X 及 Y 的分布式任意的,但分别是具有有限的非零方差,记 $EX = \mu_1$,

 $EY = \mu_2$, 现独立地从两母体中各取一个子样, 子样容量分别是 n_1 和 n_2 。在大子样下,

我们可以推出 $\mu_1 - \mu_2$ 的置信概率近似为 $1-\alpha$ 的置信区间。这里所谓的大子样,一般是指。

A. $n_1 \ge 50$; B. $n_2 \ge 50$; C. $n_1 + n_2 \ge 50$; D.A 且 B; E.A~D 的答案皆错

三. (本题满分 20 分)

设母体X的概率密度为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 $(0 < \theta < +\infty)$

- 1. 求 θ 的矩估计量和最大似然估计量;
- 2. 用以上方法求得的估计量是否为 θ 的无偏估计?是否为 θ 的相合估计?

解:

- 1. θ 的矩估计量和最大似然估计量均为 θ
- 2. 显然用以上方法求得的估计量是 θ 的无偏估计,也为 θ 的相合估计。
- 四. (本题满分14分)

已知某种设备的工作温度服从正态分布,现对该温度作 10 次测量,得数据($^{\circ}C$)

1250 12751265 1245 1260 1255 1270 1265 1250 1240

- 1. 求温度的母体均值 μ 的 95%置信区间;
- 2. 求温度的母体标准差 σ 的 95%置信区间。

解:

1. 枢轴量

$$T = \frac{\overline{X} - \mu}{S^* / \sqrt{n}} \sim t(n - 2)$$

2. 枢轴量

$$\chi^2 = \frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1)$$

五. (本题满分14分)

设有两个独立的来自不同正态母体的子样

$$(-4.4, 4.0, 2.0, -4.8), (6.0, 1.0, 3.2, -4.0)$$

问能否认为两个子样来自同一母体($\alpha = 0.05$)?

解:

(提示: 首先检验两母体的方差是否相同, 其次检验两母体的均值是否相同)

六. (本题满分6分)

设母体 $X \sim N(\mu, 1)$,希望检验假设 $H_0: \mu = 6 \leftrightarrow H_1: \mu = 7$ 。若从该母体中取出容量为 4 的简单随机子样,并采用如下检验法则:

当 $\bar{X} \geq 7$ 时,拒绝 H_0 ,接受 H_1 ;当 $\bar{X} < 7$ 时,接受 H_0 ,拒绝 H_1 。求上述检验

法则犯第一、二类错误的概率。

解:

利用上述检验法则犯第一、二类错误的概率分别为

$$P_{\theta^{1}} = 1 - \Phi(\frac{7 - 6}{\sqrt{4}}) = 1 - \Phi(0.5)$$

$$P_{\theta^{2}} = \Phi(\frac{7 - 7}{\sqrt{4}}) = 0.5$$

七. (本题满分6分)

设 $t_{\alpha}(n)$, $F_{\alpha}(m,n)$ 分别表示t(n),F(m,n)分布相应的上侧分位数,

求证:
$$\left[t_{\alpha/2}(n)\right]^2 = F_{\alpha}(1,n)$$

证明:

设 $X \sim N(0,1), Y \sim \chi^2(n)$ 则,

$$T = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

于是,对于给定显著水平 α ,有 $P\{T|\geq t_{\alpha/2}\}=\alpha$ 。而

$$T^2 = \frac{X^2}{Y/n} \sim F(1, n)$$

于是,
$$P\{T^2 | \geq [t_{\alpha/2}(n)]^2\} = \alpha = P\{T^2 | = F \geq F_{\alpha}(1,n)\}$$

一. (本题满分14分)

已知某零件的长度服从正态分布 $N(u,\sigma^2)$,其中 $\sigma^2=5.5mm^2$,从一大堆这种零件中随机抽取 n 个,测量其长度。现用子样均值 \bar{X} 来估计母体均值 u ,此时:

- (1) 若要估计量的标准差在1mm²之下,n应取多大?
- (2) 若要估计误差的绝对值超过 1 mm 的概率在 1%以下, n 应取多大?

解:

二. (本题满分 20 分)

判断下列命题的真伪并简述理由:

- 1. "统计量"与"估计量"是同一概念。(错,用作估计的统计量称为估计量,因此统计量的概念大一些)
- 2. "点估计"与"区间估计"的关系为: 前者是后者的一种特殊形式,即区间估计的区间长度为一个点即为点估计。
- 3.设母体 X 的均值和方差都存在, X_1, X_2, X_3 为来自母体 X 的一个简单随机子样,则 $\theta_1 = \frac{1}{3}(X_1 + X_2 + X_3)$ 与 $\theta_2 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ 都是 E(X) 的无偏估计,且 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。 (对,利用方差比较,越小越有效)
- (4) 在一个确定的假设检验问题中,其判断结果不但与其检验水平 α 有关,而且与抽到的子样有关。(对,因此才会存在第一、二类错误)

四. (本题满分14分)

已知某种设备的工作温度服从正态分布,现作十次测量,得数据(${}^{\circ}C$)

1250 1275 1265 1245 1260 1255 1270 1265 1250 1240

- (1) 求温度的母体均值u的 95%置信区间。
- (2) 求温度母体标准差 σ 的 95%置信区间。

解:

(1) 枢轴量

$$T = \frac{\overline{X} - \mu}{S^* / \sqrt{n}} \sim t(n-1)$$

(2) 枢轴量

$$\chi^2 = \frac{(n-1)S^*}{\sigma^2} \sim \chi^2(n-1)$$

五. (本题满分14分)

设有两个独立的来自不同的正态母体的子样:

$$(-4.4, 4.0, 2.0, -4.8)$$
 $(6.0, 1.0, 3.2, -4.0)$

问能否认为两个字样来自同一母体($\alpha = 0.05$)?

解:

(先检验两个子样的方差是否相同,再证明两个子样的均值是否相同)

六. (本题满分 12 分)

下面的数据给出了三个地区人的血液中的胆固醇的含量

地区		测量值					
1	403	304	259	336	259	253	290
2	362	322	362	420	420	386	274
3	361	344	353	235	349	260	226

试用单因素方差分析法, 检验不同地区人的血液中胆固醇的平均量之间是否存在显著差别? ($\alpha = 0.05$)

解:

方差来源	平方和	自由度	均方和	F值
因素 A (组间)		r-1		
误差 <i>E</i> (组内)		n-r		
总和				

七. (本题满分15分)

在某乡镇,随机地走访了十户居民加,得其家庭月收入(x)与日常开支(y)的子样数据如下(单位:元)

收入 x: 820 930 1050 1300 1440 1500 1600 1800 2000 2700 支出 y: 750 850 920 1050 1200 1300 1300 1450 1560 2000

(1) 求日常开支y与家庭月收入x间的经验回归方程;

- (2) 检验回归效果是否显著? ($\alpha = 0.05$)
- (3) 对 $x_0 = 2200$ (元),给出y的置信概率为95%的预测区间。

解:

(1)

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
$$\hat{a} = \overline{y} - \hat{b}\overline{x}$$

(2) 检验假设为 H_0 : $b=0 \leftrightarrow H_1$: $b \neq 0$, 检验统计量为

$$T = \frac{b}{\hat{\sigma}^* / \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \sim t(n-2)$$

(3) 枢轴量

$$T = \frac{y_0 - \hat{y}_0}{\hat{\sigma}^* \cdot \sqrt{(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2}})}} \sim t(n - 2)$$

八. (本题满分6分)

已知母体X为一个连续型随机变量,X的分布函数是F(x),设 $X_1,X_2,\cdots X_n$ 是来自母体X的简单随机子样,试证随机变量 $Y=-2\sum_{i=1}^n \ln[F(X_i)]$ 服从 $\chi^2(2n)$ 分布。

西安交通大学研究生课程考试题(数理统计2007)

附表:

标准正态分布的分布函数值: $\Phi(1.96) = 0.9750$

t 分布的上侧分位数:

 χ^2 分布的上侧分位数:

n	0.025	0.05
12	2.1788	1.7823
15	2.1314	1.7531
18	2.1009	1.7341

n	0.05	0.95	
15	24.996	7.261	

F分布的上侧分位数: $F_{0.025}(9,9) = 4.03$, $F_{0.05}(2,12) = 3.89$ 。

- 一. 填空题(本题分值为30)
 - (1) 设 X_1, \dots, X_n 为**i.i.d.**,其含义是_____
 - (2) 设 $U \sim N(0,1)$,若有 $P\{|U| < c\} = \alpha$ (0 < α < 1),则 c=____ (用N(0,1)分 布的上侧分位数符号表示)。
 - (3) 设 $X_1, \dots, X_n, X_{n+1}, \dots, X_{n+m}$ 为正态总体 $N(0, \sigma^2)$ 的样本,若要

$$a \frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=n+1}^{n+m} X_{i}^{2}} \sim F(b, c)$$

(4) 写出估计参数最常用的三种方法:

(5) 若参数假设问题 $H_0:\theta\in\Theta_0\longleftrightarrow H_1:\theta\in\Theta_1$ 的拒绝域为W,则该检验犯第 I 类错误的概率 $p_1=$ _______。

*1

二. (本题分值为 12) 已知总体 X 的概率密度函数为

$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2} \exp\left\{-\frac{x - \theta_1}{\theta_2}\right\}, x > \theta_1 \\ 0, & x < \theta_1 \end{cases}, \quad (-\infty < \theta_1 < +\infty, \theta_2 > 0)$$

设 X_1, \dots, X_n 是总体X的样本,求未知参数 θ_1, θ_2 的矩估计。

五. (本题分值为 12)

(1) 完成下列方差分析表中欠缺的项目:

方差来源	离差平方和	自由度	均方离差	F 值
组间	2578.8		1289.4	
组内		12		
总和	6279.6			

- (2) 问这是几个因素几种水平试验的方差分析表?、
- (3) 由上述方差分析表,检验各组均值是否有显著差异 ($\alpha = 0.05$)?
- (4) 已知在因素的每一水平上进行等重复试验,且算得 $\bar{x}_1 = 87.2$, $\bar{x}_2 = 55.4$,求 $\mu_1 \mu_2$ 的 95% 置信区间
- 六. (本题分值为 6) 假设 (x_i, y_i) 满足线性回归关系:

$$y_i = a + bx_i + \varepsilon_i$$
, $(i = 1, \dots, n)$

其中 $\varepsilon_1,\cdots,\varepsilon_n$ 为 i.i.d.且 $\varepsilon_1\sim N(0,\sigma^2)$, x_1,\cdots,x_n 不全相同,试用极大似然法估计参数a,b。

- 七. (本题分值为 6) 设 X_1, \dots, X_n 是取自 $N(0, \sigma^2)$ 的样本,其中 $\sigma > 0$ 为未知参数。
 - (1) 问 $\sigma = \frac{1}{n} \sum_{i=1}^{n} |X_i|$ 是否为 σ 的无偏估计? (若认为是 σ 的无偏估计,请给出证明;

若认为不是,对它作适当的修正,给出 σ 的无偏估计。)

- (2) 针对 (1) 的讨论结果, 求 σ 的无偏估计的 (有) 效率。
- 八. (本题分值为 5) 设 $X \sim N(\mu,1)$, 其中 μ 为未知参数, F(x) 为 X 的分布函数。又设常数 c 满足等式: F(c)=0.975。先从总体 X 抽取一个样本,算得 $\overline{x}=3.04$,求 c 的极大似然估计值。
- 九. (本题分值为 5) 设 X_1, \dots, X_n 为取自总体 X 的样本,已知总体 X 的分布函数 F(x) 为连续函数,证明 $F(X_{(1)}) \sim \beta(1,n)$,其中 $X_{(1)}$ 是第一顺序统计量(已知 $\beta(1,n)$ 分

布的概率密度为
$$f(x;1,n) = \begin{cases} n(1-x)^{n-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$
)。

2009(上)《数理统计》考试题(A卷)及参考解答

一、填空题(每小题3分,共15分)

1,设总体X和Y相互独立,且都服从正态分布 $N(0,3^2)$,而 (X_1,X_2,L_1,X_2) 和

解: t(9).

2,设 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 都是总体未知参数 θ 的估计,且 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效,则 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 的期望与方差满 足_____.

解: $E(\hat{\theta}_1) = E(\hat{\theta}_2)$, $D(\hat{\theta}_1) < D(\hat{\theta}_2)$.

- 3,"两个总体相等性检验"的方法有_____ 与 .
- 解: 秩和检验、游程总数检验.
- 4,单因素试验方差分析的数学模型含有的三个基本假定是
- 解:正态性、方差齐性、独立性.
- 5,多元线性回归模型 $Y = X\beta + \varepsilon$ 中, β 的最小二乘估计是 $\hat{\beta} =$.

解: $\hat{\mathbf{\beta}} = (XX)^{-1}XY$.

- 二、单项选择题(每小题3分,共15分)
- 1,设 (X_1,X_2,L,X_n) $(n \ge 2)$ 为来自总体N(0,1)的一个样本, \overline{X} 为样本均值, S^2 为 样本方差,则 D .
 - (A) $n\bar{X} : N(0,1) :$

(B) $nS^2: \chi^2(n);$

(C)
$$\frac{(n-1)\overline{X}}{S}$$
: $t(n)$;

- (D) $\frac{(n-1)X_1^2}{\sum_{i=1}^n X_i^2}$: F(1, n-1).
- 2, 若总体 $X: N(\mu, \sigma^2)$, 其中 σ^2 已知, 当置信度 $1-\alpha$ 保持不变时, 如果样本容量 n 增大,则 μ 的置信区间_____B____.
- (A) 长度变大; (B) 长度变小; (C) 长度不变; 述都有可能.
 - - (D) 前
- 3,在假设检验中,分别用 α , β 表示犯第一类错误和第二类错误的概率,则当样本容 量n一定时,下列说法中正确的是<u>C</u>...
 - (A) α 减小时 β 也减小;

(B) α 增大时 β 也增大;

(C) α , β 其中一个减小,另一个会增大;

(D)(A)和(B)同时成立.

4,对于单因素试验方差分析的数学模型,设 S_T 为总离差平方和, S_e 为误差平方和, S_A 为效应平方和,则总有 A .

$$(A) S_T = S_e + S_A;$$

(B)
$$\frac{S_A}{\sigma^2}$$
: $\chi^2(r-1)$;

(C)
$$\frac{S_A/(r-1)}{S_e/(n-r)}$$
: $F(r-1, n-r)$;

(D) $S_A 与 S_e$ 相互独立.

5,在一元回归分析中,判定系数定义为
$$R^2 = \frac{S_{\Box}}{S_T}$$
,则____B____.

(A) R^2 接近 0 时回归效果显著;

(B) R^2 接近 1 时回归效果显著:

(C) R^2 接近 ∞ 时回归效果显著:

(D) 前述都不对.

三、(**本题 10 分**) 设总体 $X: N(\mu_1, \sigma^2)$ 、 $Y: N(\mu_2, \sigma^2)$, (X_1, X_2, L, X_{n_1}) 和 (Y_1, Y_2, L, Y_{n_2}) 分别是来自 X 和 Y 的样本,且两个样本相互独立, \overline{X} 、 \overline{Y} 和 S_X^2 、 S_Y^2 分别是它们的样本均值和样本方差,证明

$$\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_{\omega}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}:\ t(n_1+n_2-2),$$

其中
$$S_{\omega}^{2} = \frac{(n_{1}-1)S_{X}^{2} + (n_{2}-1)S_{Y}^{2}}{n_{1}+n_{2}-2}$$
.

证明: 易知

$$\overline{X} - \overline{Y} : N(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}), \qquad U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} : N(0, 1).$$

由定理可知

$$\frac{(n_1-1)S_X^2}{\sigma^2}: \ \chi^2(n_1-1) \,, \qquad \frac{(n_2-1)S_Y^2}{\sigma^2}: \ \chi^2(n_2-1) \,.$$

由独立性和 χ^2 分布的可加性可得

$$V = \frac{(n_1 - 1)S_X^2}{\sigma^2} + \frac{(n_2 - 1)S_Y^2}{\sigma^2} : \chi^2(n_1 + n_2 - 2).$$

由U与V得独立性和t分布的定义可得

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{U}{\sqrt{V/(n_1 + n_2 - 2)}} : t(n_1 + n_2 - 2).$$

四、(本题 10 分) 已知总体 X 的概率密度函数为 $f(x) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & 其它 \end{cases}$

数 $\theta > 0$, (X_1, X_2, L_1, X_n) 为取自总体的一个样本,求 θ 的矩估计量,并证明该估计量是无偏估计量.

解: (1) $v_1 = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} \frac{1}{\theta} x e^{-\frac{x}{\theta}} dx = \theta$,用 $v_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$ 代替,所以

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} .$$

(2) $E(\hat{\theta}) = E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = E(X) = \theta$,所以该估计量是无偏估计.

五、(本题 10 分) 设总体 X 的概率密度函数为 $f(x;\theta) = (1+\theta)x^{\theta}, 0 < x < 1$,其中未知参数 $\theta > -1$, $(X_1, X_2, L X_n)$ 是来自总体 X 的一个样本,试求参数 θ 的极大似然估计.

解:

$$L(\theta) = \begin{cases} (\theta+1)^n (\prod_{i=1}^n x_i)^{\theta}, & 0 < x_i < 1 \\ 0, & \text{ } \sharp \dot{\Xi} \end{cases}$$

得

$$\hat{\theta} = -1 - \frac{n}{\sum_{i=1}^{n} \ln x_i}.$$

六、(**本题 10 分**) 设总体 X 的密度函数为 $f(x;\lambda) = \begin{cases} \lambda \mathrm{e}^{-\lambda x}, & x>0; \\ 0, & x\leq 0, \end{cases}$ 未知参数 $\lambda>0$, (X_1,X_2,\mathbf{L},X_n) 为总体的一个样本,证明 \overline{X} 是 $\frac{1}{\lambda}$ 的一个 UMVUE.

证明: 由指数分布的总体满足正则条件可得

$$I(\lambda) = -E \left[\frac{\partial^2}{\partial \lambda^2} \ln f(x; \lambda) \right] = -E \left(\frac{-1}{\lambda^2} \right) = \frac{1}{\lambda^2}$$

 $\frac{1}{\lambda}$ 的的无偏估计方差的 C-R 下界为

$$\frac{\left[\left(\frac{1}{\lambda}\right)'\right]^{2}}{nI(\lambda)} = \frac{\left[\frac{-1}{\lambda^{2}}\right]^{2}}{n\frac{1}{\lambda^{2}}} = \frac{1}{n\lambda^{2}}.$$

另一方面

$$E(\overline{X}) = 1/\lambda$$
, $Var(\overline{X}) = \frac{1}{n\lambda^2}$,

即 \overline{X} 得方差达到 C-R 下界, 故 \overline{X} 是 $\frac{1}{2}$ 的 UMVUE.

七、(本题 10 分) 合格苹果的重量标准差应小于 0.005 公斤. 在一批苹果中随机取 9 个苹果称重,得其样本标准差为 S=0.007 公斤,试问: (1) 在显著性水平 $\alpha=0.05$ 下,可否认为该批苹果重量标准差达到要求? (2) 如果调整显著性水平 $\alpha=0.025$,结果会怎样?

参考数据: $\chi^2_{0.025}(9)=19.023$, $\chi^2_{0.05}(9)=16.919$, $\chi^2_{0.025}(8)=17.535$, $\chi^2_{0.05}(8)=15.507$.

解: (1)
$$H_0: \sigma^2 \le 0.005$$
, $\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(8)$, 则应有:
$$P(\chi^2 > \chi^2_{0.05}(8)) = 0.005, \Rightarrow \chi^2_{0.05}(8) = 15.507$$
,

具体计算得: $\chi^2 = \frac{8 \times 0.007^2}{0.005^2} = 15.68 > 15.507$, 所以拒绝假设 H_0 ,即认为苹果重量标准差指标未达到要求.

(2) 新设 $H_0: \sigma^2 \le 0.005$,由 $\chi^2_{0.025} = 17.535$,⇒ $\chi^2 = \frac{8 \times 0.007^2}{0.005^2} = 15.68 < 17.535$,则接受假设,即可以认为苹果重量标准差指标达到要求.

八、(本题 10 分) 已知两个总体 X 与 Y 独立, $X \sim (\mu_1, \sigma_1^2)$, $Y \sim (\mu_2, \sigma_2^2)$, μ_1 , μ_2 , σ_1^2 , σ_2^2 未知, (X_1, X_2, L_1, X_{n_1}) 和 (Y_1, Y_2, L_1, Y_{n_2}) 分别是来自 X 和 Y 的样本,求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信度为 $1-\alpha$ 的置信区间.

解:设 S_X^2 , S_Y^2 分别表示总体X,Y 的样本方差,由抽样分布定理可知

$$\frac{(n_1-1)S_X^2}{\sigma_1^2}: \chi^2(n_1-1), \frac{(n_2-1)S_Y^2}{\sigma_2^2}: \chi^2(n_2-1),$$

由F分布的定义可得

$$F = \frac{\frac{(n_1 - 1)S_X^2}{\sigma_1^2} / (n_1 - 1)}{\frac{(n_2 - 1)S_Y^2}{\sigma_2^2} / (n_2 - 1)} = \frac{S_X^2}{S_Y^2} \frac{\sigma_2^2}{\sigma_1^2} : F(n_1 - 1, n_2 - 1).$$

对于置信度 $1-\alpha$, 查F 分布表找 $F_{\alpha/2}(n_1-1,n_2-1)$ 和 $F_{1-\alpha/2}(n_1-1,n_2-1)$ 使得

$$P[F_{\alpha/2}(n_1-1,n_2-1) < F < F_{1-\alpha/2}(n_1-1,n_2-1)] = 1-\alpha$$
,

即

$$P\left(\frac{S_X^2/S_Y^2}{F_{1-\alpha/2}(n_1-1,n_2-1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_X^2/S_Y^2}{F_{\alpha/2}(n_1-1,n_2-1)}\right) = 1 - \alpha,$$

所求 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信度为 $1-\alpha$ 的置信区间为 $\left(\frac{S_X^2/S_Y^2}{F_{1-\alpha/2}(n_1-1,n_2-1)}, \quad \frac{S_X^2/S_Y^2}{F_{\alpha/2}(n_1-1,n_2-1)}\right)$.

九、(本题 10 分)试简要论述线性回归分析包括哪些内容或步骤.

解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.

2009(上)《数理统计》考试题(B卷)及参考解答

一、填空题(每小题3分,共15分)

1,设总体 X 服从正态分布 N(0, 4),而 (X_1, X_2, L_1, X_{15}) 是来自 X 的样本,则

解: F(10,5).

2, $\hat{\theta}_n$ 是总体未知参数 θ 的相合估计量的一个充分条件是______.

解:
$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$
, $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$.

3,分布拟合检验方法有 与 .

解: χ^2 检验、柯尔莫哥洛夫检验.

- 4, 方差分析的目的是 .
- 解:推断各因素对试验结果影响是否显著.
- 5, 多元线性回归模型 $Y = X\beta + \varepsilon$ 中, β 的最小二乘估计β 的协方差矩阵

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \underline{\hspace{1cm}}.$$

- 解: Cov($\hat{\boldsymbol{\beta}}$) = $\sigma^2(XX)^{-1}$.
- 二、单项选择题(每小题3分,共15分)

(A)
$$\frac{\overline{X}-1}{3} \sim N(0, 1)$$
;

(B)
$$\frac{\overline{X}-1}{1} \sim N(0, 1)$$
;

(C)
$$\frac{\overline{X}-1}{9} \sim N(0, 1)$$
;

(D)
$$\frac{\overline{X} - 1}{\sqrt{3}} \sim N(0, 1)$$
.

- 2, 若总体 $X: N(\mu, \sigma^2)$, 其中 σ^2 已知, 当样本容量 n 保持不变时, 如果置信度 $1-\alpha$ 减小,则 μ 的置信区间B___.
- (A) 长度变大; (B) 长度变小; (C) 长度不变; (D) 前

述都有可能.

- 3,在假设检验中,就检验结果而言,以下说法正确的是 B.
- (A) 拒绝和接受原假设的理由都是充分的;
- (B) 拒绝原假设的理由是充分的,接受原假设的理由是不充分的;
- (C) 拒绝原假设的理由是不充分的,接受原假设的理由是充分的;

(D) 拒绝和接受原假设的理由都是不充分的.

4,对于单因素试验方差分析的数学模型,设 S_T 为总离差平方和, S_e 为误差平方和, S_A 为效应平方和,则总有___A___.

(A)
$$S_T = S_e + S_A$$
; (B) $\frac{S_A}{\sigma^2}$: $\chi^2(r-1)$;

(C)
$$\frac{S_A/(r-1)}{S_c/(n-r)}$$
: $F(r-1,n-r)$; (D) $S_A \ni S_e$ 相互独立.

5,在多元线性回归分析中,设 $\hat{\beta}$ 是 β 的最小二乘估计, $\hat{\epsilon} = Y - X\hat{\beta}$ 是残差向量,则

$$(A) E(\hat{\boldsymbol{\varepsilon}}) = \mathbf{0}_n ; \tag{B}$$

 $Cov(\hat{\varepsilon}) = \sigma^2 [I_n - X(XX)^{-1}X'];$

(C)
$$\frac{\hat{\pmb{\varepsilon}}'\hat{\pmb{\varepsilon}}}{n-p-1}$$
 是 σ^2 的无偏估计; (D) (A)、(B)、(C) 都对.

三、(本题 10 分) 设总体 $X: N(\mu_1, \sigma^2)$ 、 $Y: N(\mu_2, \sigma^2)$, (X_1, X_2, L, X_{n_1}) 和 (Y_1, Y_2, L, Y_{n_2}) 分别是来自 X 和 Y 的样本,且两个样本相互独立, \overline{X} 、 \overline{Y} 和 S_X^2 、 S_Y^2 分别是它们的样本均值和样本方差,证明

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} : t(n_1 + n_2 - 2),$$

其中
$$S_{\omega}^{2} = \frac{(n_{1}-1)S_{X}^{2} + (n_{2}-1)S_{Y}^{2}}{n_{1}+n_{2}-2}$$
.

证明: 易知

$$\overline{X} - \overline{Y} : N(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}), \qquad U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} : N(0, 1).$$

由定理可知

$$\frac{(n_1-1)S_X^2}{\sigma^2}: \chi^2(n_1-1), \qquad \frac{(n_2-1)S_Y^2}{\sigma^2}: \chi^2(n_2-1).$$

由独立性和 χ^2 分布的可加性可得

$$V = \frac{(n_1 - 1)S_X^2}{\sigma^2} + \frac{(n_2 - 1)S_Y^2}{\sigma^2} : \chi^2(n_1 + n_2 - 2).$$

由U与V得独立性和t分布的定义可得

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{U}{\sqrt{V/(n_1 + n_2 - 2)}} : t(n_1 + n_2 - 2).$$

四、(本题 10 分) 设总体 X 的概率密度为 $f(x;\theta)=$ $\begin{cases} \dfrac{1}{2\theta}, & 0< x<\theta,\\ \dfrac{1}{2(1-\theta)}, & \theta\leq x<1, \ \text{其中参}\\ 0, & \text{其他}, \end{cases}$

数 θ (0< θ <1) 未知, (X_1, X_2, L, X_n) 是来自总体的一个样本, \bar{X} 是样本均值,(1) 求参数 θ 的矩估计量 $\hat{\theta}$; (2) 证明 $4\bar{X}^2$ 不是 θ^2 的无偏估计量.

解: (1)

$$E(X) = \int_{-\infty}^{+\infty} x f(x,\theta) dx = \int_{0}^{\theta} \frac{x}{2\theta} dx + \int_{\theta}^{1} \frac{x}{2(1-\theta)} dx = \frac{1}{4} + \frac{\theta}{2},$$

令 $\bar{X} = E(X)$,代入上式得到 θ 的矩估计量为 $\hat{\theta} = 2\bar{X} - \frac{1}{2}$.

$$E(4\bar{X}^2) = 4E\bar{X}^2 = 4[D\bar{X} + (E\bar{X})^2] = 4\left[\frac{1}{n}DX + (\frac{1}{4} + \frac{1}{2}\theta)^2\right] = \frac{4}{n}DX + \frac{1}{4} + \theta + \theta,$$

因为 $D(X) \ge 0$, $\theta > 0$, 所以 $E(4\overline{X}^2) > \theta^2$. 故 $4\overline{X}^2$ 不是 θ^2 的无偏估计量.

五、(本题 10 分) 设总体 X 服从 $[0,\theta]$ ($\theta>0$) 上的均匀分布, $(X_1,X_2,L\ X_n)$ 是来自总体 X 的一个样本,试求参数 θ 的极大似然估计.

M: X 的密度函数为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta; \\ 0, & \text{ 其他,} \end{cases}$$

似然函数为

$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & 0 < x_i < \theta, i = 1, 2, L, n, \\ 0, & \text{ } \sharp \text{ } \boxminus \end{cases}$$

显然 $\theta>0$ 时, $L(\theta)$ 是 单 调 减 函 数 , 而 $\theta\geq \max\left\{x_1,x_2,L\ ,x_n\right\}$, 所 以 $\hat{\theta}=\max\left\{X_1,X_2,L\ ,X_n\right\} \in \theta$ 的极大似然估计.

六、(本题 10 分) 设总体 X 服从 B(1,p) 分布, $(X_1,X_2,L X_n)$ 为总体的样本,证明 \overline{X}

是参数 p 的一个 UMVUE.

证明: X 的分布律为

$$f(x; p) = p^{x}(1-p)^{1-x}, x = 0,1.$$

容易验证 f(x; p) 满足正则条件,于是

$$I(p) = E \left[\frac{\partial}{\partial p} \ln f(x; p) \right]^2 = \frac{1}{p(1-p)}.$$

另一方面

$$\operatorname{Var}(\overline{X}) = \frac{1}{n} \operatorname{Var}(X) = \frac{p(1-p)}{n} = \frac{1}{nI(p)},$$

即 \bar{X} 得方差达到C-R下界的无偏估计量,故 \bar{X} 是p的一个UMVUE.

七、(本题 10 分) 某异常区的磁场强度服从正态分布 $N(\mu_0,\sigma^2)$,由以前的观测可知 $\mu_0=56$. 现有一台新仪器,用它对该区进行磁测,抽测了 16 个点,得 $\overline{x}=61$, $s^2=400$,问此仪器测出的结果与以往相比是否有明显的差异 ($\alpha=0.05$). 附表如下:

t 分布表

x²分布表

n	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.025$
14	1. 3450	1. 7613	2. 1448
15	1.3406	1.7531	2. 1315
16	1. 3368	1.7459	2. 1199

n	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.025$
14	21.064	23.685	26.119
15	22. 307	24. 996	27. 488
16	23. 342	24. 296	28. 845

解: 设 H_0 : $\mu = \mu_0 = 56$. 构造检验统计量

$$t = \frac{\overline{X} - \mu_0}{\sqrt[s]{\sqrt{n}}} \sim t(15) ,$$

确定拒绝域的形式 $\left\{ \left| t \right| > t_{\frac{\alpha}{2}} \right\}$. 由 $\alpha = 0.05$,定出临界值 $t_{\alpha/2} = t_{0.025} = 2.1315$,从而求出拒绝域 $\left\{ t \right| > 2.1315 \right\}$.

而
$$n = 16$$
, $\bar{x} = 60$, 从而 $|t| = \left| \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{60 - 56}{20 / \sqrt{16}} \right| = 0.8 < 2.1315$, 接受假设 H_0 ,

即认为此仪器测出的结果与以往相比无明显的差异.

八、(本题 10 分) 已知两个总体 X 与 Y 独立, $X \sim (\mu_1, \sigma_1^2)$, $Y \sim (\mu_2, \sigma_2^2)$, $\mu_1, \ \mu_2, \ \sigma_1^2, \ \sigma_2^2$ 未知, (X_1, X_2, L_1, X_{n_1}) 和 (Y_1, Y_2, L_1, Y_{n_2}) 分别是来自 X 和 Y 的样本,求

 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信度为 $1-\alpha$ 的置信区间.

 \mathbf{M} : 设 S_1^2 , S_2^2 分别表示总体X, Y的样本方差,由抽样分 布定理知

$$P[F_{\alpha/2}(n_1-1,n_2-1) < F < F_{1-\alpha/2}(n_1-1,n_2-1)] = 1-\alpha$$
,

则

$$P\left(\frac{S_1^2/S_2^2}{F_{1-\alpha/2}(n_1-1,n_2-1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2/S_2^2}{F_{\alpha/2}(n_1-1,n_2-1)}\right) = 1 - \alpha,$$

所求
$$\frac{\sigma_1^2}{\sigma_2^2}$$
 的置信度为1- α 的置信区间为 $\left(\frac{S_1^2/S_2^2}{F_{1-\alpha/2}(n_1-1,n_2-1)}, \quad \frac{S_1^2/S_2^2}{F_{\alpha/2}(n_1-1,n_2-1)}\right)$.

九、(本题 10分)试简要论述线性回归分析包括哪些内容或步骤.

2011-2012 (下)研究生应用数理统计试题(A)

1 设 X_1, X_2, L, X_n 为正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,令 $d = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu|$,试证 $E(d) = \sqrt{\frac{2}{\pi}} \sigma$, $D(d) = \left(1 - \frac{2}{\pi}\right) \frac{\sigma^2}{n}$ 。 (10 分)

2 设总体 x 服从正态 $N(\mu, \sigma^2)$, X_1, X_2 L, X_n 为其样本, \overline{x} 与 S^2 分别为样本均值及方差。又设 X_{n+1} 与 X_1, X_2 L, X_n 独立同分布,试求统计量 $Y = \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$ 的分布。 (其中 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$) (10 分)

3 设总体 X 具有分布律

X	1	2	3
p	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ (0< θ <1) 为未知参数,已知取得了样本值 x_1 =1, x_2 =2, x_3 =1,求 θ 的矩估计和最大似然估计. (10分)

4 证明样本 k 阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 是总体 X 的 k 阶原点矩 $\mu_k = E(X^k)$ 的无偏估计量。
(10 分)

5 假定某商场某种商品的月销售量服从正态分布 $N(\mu, \sigma^2)$, μ, σ 未知。为了决定商店对该商品的进货量,需对 μ 作估计,为此,随机抽取若干月,其销售量分别为: 64,57,49,81,76,70,59,求 μ 的置信度为 0.95 的置信区间。(10 分)

6 一种元件,要求其使用寿命不得低于 1000 (小时)。现在从一批这种元件中随机抽取 25 件,测得其寿命平均值为 950 (小时)。已知该种元件寿命服从标准差 $\sigma=100$ (小时)的正态分布,试在显著水平 0.05 下确定这批元件是否合格。 $(10\ \mathcal{O})$

7 某小学一年级共有三个班级,在一次数学考试中从三个班随机抽取 12,15,13 个学生的成绩。设学生成绩服从正态分布且方差相等,样本的方差分析表如下表 1 所示,问在显著性水平为 0.05 时,三个班的平均成绩有无显著差异? (10 分)

		化1 万左	.71/11/43		
方差来源	平方和	自由度	均方差	F 值	显著性
因素 A	355.477				
误差	13429.498				
总和	13764.975				

表 1 方差分析表

- **8** 某问题是一个四因素二水平试验,选用 L_8 (2⁷) 正交表,要考虑 $A \times B$,试验方案设计及试验结果见表 2。(15 分)
- (1) 各因素及交互作用的主次顺序(指标 y 越大越好)。
- (2) 试找最优工艺条件。
- (3) 在显著水平 α=0.05 下,哪些因素的影响显著?

#	\sim
衣	2

	_			10. 2				
列号	A	В	$A \times B$	С			D	数据 y _i
试验号	1	2	3	4	5	6	7	秋沙 y _i
1	1	1	1	1	1	1	1	115
2	1	1	1	2	2	2	2	160
3	1	2	2	1	1	2	2	145
4	1	2	2	2	2	1	1	155
5	2	1	2	1	2	1	2	140
6	2	1	2	2	1	2	1	155
7	2	2	1	1	2	2	1	100
8	2	2	1	2	1	1	2	125
I_{j}	575	570	500	500	540	535	525	
II_{j}	520	525	595	595	555	560	570	
R_{j}	55	45	95	95	15	25	45	
S_{j}	378.1	253.1	1128.1	1128.1	28.1	78.1	253.1	

9 营业税税收总额 y 与社会商品零售总额 x 有关。为了利用社会商品零售总额预测税收总额,现收集了以下数据,见表 3 。(15 分)

表 3 单位: 亿元

序号	社会商业零售总额 x	营业税税收总额 y
1	142. 08	3. 93
2	177. 30	5. 96
3	204. 68	7.85
4	242. 88	9.82
5	316. 24	12. 50
6	341. 99	15. 55
7	332. 69	15. 79
8	389. 29	16. 39
9	453. 40	18. 45

- (1) 求营业税税收总额 y 与社会商品零售总额 x 的线性回归方程。
- (2) 在显著水平 α =0.05 下检验回归方程的线性性。
- (3) 预测当社会商品零售总额 x = 300 亿元时的营业税的平均税收总额。附表:

2011-2012 (下)研究生应用数理统计试题(A)

1 设 X_1, X_2, L, X_n 为正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,令 $d = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu|$,试证 $E(d) = \sqrt{\frac{2}{\pi}} \sigma$, $D(d) = \left(1 - \frac{2}{\pi}\right) \frac{\sigma^2}{n}$ 。 (10 分)

2 设总体 x 服从正态 $N(\mu, \sigma^2)$, X_1, X_2 L, X_n 为其样本, \overline{x} 与 S^2 分别为样本均值及方差。又设 X_{n+1} 与 X_1, X_2 L, X_n 独立同分布,试求统计量 $Y = \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$ 的分布。 (其中 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$) (10 分)

3 设总体 X 具有分布律

X	1	2	3
p	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ (0< θ <1) 为未知参数,已知取得了样本值 x_1 =1, x_2 =2, x_3 =1,求 θ 的矩估计和最大似然估计. (10分)

5 假定某商场某种商品的月销售量服从正态分布 $N(\mu, \sigma^2)$, μ, σ 未知。为了决定商店对该商品的进货量,需对 μ 作估计,为此,随机抽取若干月,其销售量分别为: 64,57,49,81,76,70,59,求 μ 的置信度为 0.95 的置信区间。(10 分)

6 一种元件,要求其使用寿命不得低于 1000 (小时)。现在从一批这种元件中随机抽取 25 件,测得其寿命平均值为 950 (小时)。已知该种元件寿命服从标准差 $\sigma=100$ (小时)的正态分布,试在显著水平 0.05 下确定这批元件是否合格。 $(10\ \mathcal{O})$

7 某小学一年级共有三个班级,在一次数学考试中从三个班随机抽取 12,15,13 个学生的成绩。设学生成绩服从正态分布且方差相等,样本的方差分析表如下表 1 所示,问在显著性水平为 0.05 时,三个班的平均成绩有无显著差异? (10 分)

秋1 万左万仞衣								
方差来源	平方和	自由度	均方差	F 值	显著性			
因素 A	355.477							
误差	13429.498							
总和	13764.975							

表 1 方差分析表

- **8** 某问题是一个四因素二水平试验,选用 L_8 (2⁷) 正交表,要考虑 $A \times B$,试验方案设计及试验结果见表 2。(15 分)
- (4) 各因素及交互作用的主次顺序(指标 y 越大越好)。
- (5) 试找最优工艺条件。
- (6) 在显著水平 α=0.05 下,哪些因素的影响显著?

	_			10. 2				
列号	A	В	$A \times B$	С			D	数据 y _i
试验号	1	2	3	4	5	6	7	秋沙 y _i
1	1	1	1	1	1	1	1	115
2	1	1	1	2	2	2	2	160
3	1	2	2	1	1	2	2	145
4	1	2	2	2	2	1	1	155
5	2	1	2	1	2	1	2	140
6	2	1	2	2	1	2	1	155
7	2	2	1	1	2	2	1	100
8	2	2	1	2	1	1	2	125
I_{j}	575	570	500	500	540	535	525	
II_{j}	520	525	595	595	555	560	570	
R_{j}	55	45	95	95	15	25	45	
S_{j}	378.1	253.1	1128.1	1128.1	28.1	78.1	253.1	

9 营业税税收总额 y 与社会商品零售总额 x 有关。为了利用社会商品零售总额预测税收总额,现收集了以下数据,见表 3 。(15 分)

表 3 单位: 亿元

序号	社会商业零售总额 x	营业税税收总额y
1	142. 08	3. 93
2	177. 30	5.96
3	204. 68	7.85
4	242. 88	9.82
5	316. 24	12. 50
6	341. 99	15. 55
7	332. 69	15. 79
8	389. 29	16. 39
9	453. 40	18. 45

- (1) 求营业税税收总额 y 与社会商品零售总额 x 的线性回归方程。
- (2) 在显著水平 α =0.05 下检验回归方程的线性性。
- (3) 预测当社会商品零售总额 x = 300 亿元时的营业税的平均税收总额。附表:

西安交通大学研究生试卷

考试科目:		数 珰	统	计		
考试时间:	2008年1	月 8 日	时——	时	考试方式:_	闭卷
学 号:			_ 姓 名		成	绩
一. 填3		2 分。共 2	0 分)			
				A, X _n 是 ?	来自总体的	简单样本,
$\overline{X} = \frac{1}{I}$	$\frac{1}{n}\sum_{i=1}^n X_i , S$	$^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{1}{n-1} \sum_$	$\sum_{i=1}^{n} (X_i - \overline{X})$	² ,则统 ⁻	计量	
$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	~	$\underline{\underline{\hspace{1cm}}}$, $\underline{\overline{X}} - \underline{\underline{\hspace{1cm}}}$	$\frac{\mu}{\sqrt{n}}$ \sim	$\sum_{i=1}^{r}$	$\frac{1}{\sigma^2}(X_i-\mu)^2 \sim$	
2. 设总	体 X ~ N(_t	$(u,1), X_1, X_2$	X_2 是来自 A	总体的简单	单样本, \hat{a}_1 =	$\frac{2}{3}X_1 + \frac{1}{3}X_2$,
	$\frac{1}{4}X_1 + \frac{3}{4}X_2$	_	$\frac{1}{2}X_1 + \frac{1}{2}X_2$	都是 μ 的	无偏估计量,	则最有效的
3. 设总	体 X ~ N(μ	u,σ²),其¤	中 σ^2 己知,	为使总位	体均值 μ 的置	信度为1-α的
置信	区间的长度	不大于 L ,	则样本容	量n至少	应取	o
4. 在一	元方差分析	f 中,一次	抽样后由	n个子样化	直计算得 F的	数值,对假设
检验	$H_0: \mu_1 =$	$\mu_2 = \Lambda =$	μ_{r} ,接显	著水平	$\alpha=5\%$, $ extrictleday$	H ₀ 的拒绝域
是		,接受	:域是		o	
5. 对一	元线性回归	日问题: {	$Y = \alpha + \beta X$ $\varepsilon \sim N(0, \sigma^2)$	+ <i>ε</i> ,所	胃线性关系的	显著性检验,
注 。命	7.题纸上一般	不留答题位	置。字、图	清楚, 请勿	7超出边框,以	便复印。

第 2 页 共3页

是指检验假设 H_0 :	,若按显著水平 α 拒绝了 H_0 ,	就表示
	,若接受 H_0 ,就表示	

- 二. 判断题(每题2分,共8分)
- 1. 在对单个正态总体均值的假设检验中,当总体方差已知时,选用t检验

1)假设 H_0 : $\mu = \mu_0(\mu_0$ 已知), H_1 : $\mu \neq \mu_0$,其中方差 σ^2 已知。

2)假设 H_0 : $\mu=\mu_0(\mu_0$ 已知) , H_1 : $\mu\neq\mu_0$, 其中方差 σ^2 未知。

六(15 分) 设母体 X 具有指数分布,它的分布密度为

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\frac{1}{\mu}x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

其中 $\mu > 0$, 试问 \overline{X} 是不是 μ 的优效估计(写出过程)。

七(14 分)对于一元线性回归模型 $Y=\alpha+\beta X+\varepsilon$,已知 n 对试验值 $(x_i,y_i)(i=1,2,\Lambda,n),$ 用最小二乘法给出 α 、 β 的估计值(写出过程)。

西安交通大学研究生课程考试题(数理统计2007)

附表:

标准正态分布的分布函数值: $\Phi(1.96) = 0.9750$

t 分布的上侧分位数:

 χ^2 分布的上侧分位数:

n	0.025	0.05
12	2.1788	1.7823
15	2.1314	1.7531
18	2.1009	1.7341

α	0.05	0.95
15	24.996	7.261

F 分布的上侧分位数: $F_{0.025}(9,9) = 4.03$, $F_{0.05}(2,12) = 3.89$ 。

- 填空题(本题分值为30)
 - 设 X_1,L,X_n 为 **i.i.d.** , 其 含 (1) 义
 - 设 $U \sim N(0,1)$,若有 $P\{|U| < c\} = \alpha \quad (0 < \alpha < 1)$,则 c=_____(用 (2) N(0,1) 分布的上侧分位数符号表示)。
 - 设 X_1 ,L, X_n , X_{n+1} ,L, X_{n+m} 为正态总体 $N(0,\sigma^2)$ 的样本,若要 (3)

$$a \frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=n+1}^{n+m} X_{i}^{2}} \sim F(b, c)$$

(4)

若参数假设问题 $H_0:\theta\in\Theta_0\leftrightarrow H_1:\theta\in\Theta_1$ 的拒绝域为W,则该检验犯第 I (5)

类错误的概率 p_1 =______,犯第 II 类错误的概率 p_2 =_____。

二. (本题分值为 12) 已知总体 X 的概率密度函数为

$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2} \exp\left\{-\frac{x - \theta_1}{\theta_2}\right\}, x > \theta_1 \\ 0, & x < \theta_1 \end{cases}, \quad (-\infty < \theta_1 < +\infty, \theta_2 > 0)$$

设 X_1 , L, X_n 是总体 X 的样本, 求未知参数 θ_1 , θ_2 的矩估计。

五. (本题分值为12)

(1) 完成下列方差分析表中欠缺的项目:

方差来源	离差平方和	自由度	均方离差	<i>F</i> 值
组间	2578.8		1289.4	
组内		12		
总和	6279.6			

- (2) 问这是几个因素几种水平试验的方差分析表?、
- (3) 由上述方差分析表,检验各组均值是否有显著差异 ($\alpha = 0.05$)?
- (4) 已知在因素的每一水平上进行等重复试验,且算得 $\overline{x}_1 = 87.2$, $\overline{x}_2 = 55.4$, 求 $\mu_1 \mu_2$ 的 95%置信区间

六. (本题分值为 6) 假设 (x_i, y_i) 满足线性回归关系:

$$y_i = a + bx_i + \varepsilon_i$$
, $(i = 1,L,n)$

其中 ε_1 ,L $,\varepsilon_n$ 为 **i.i.d.**且 ε_1 ~ $N(0,\sigma^2)$, x_1 ,L $,x_n$ 不全相同,试用极大似然法估计 参数a,b 。

- 七. (本题分值为 6) 设 X_1 ,L, X_n 是取自 $N(0,\sigma^2)$ 的样本,其中 $\sigma > 0$ 为未知参数。
 - (1) 问 $\sigma = \frac{1}{n} \sum_{i=1}^{n} |X_i|$ 是否为 σ 的无偏估计? (若认为是 σ 的无偏估计,请给出证明; 若认为不是,对它作适当的修正,给出 σ 的无偏估计。)
 - (2) 针对 (1) 的讨论结果, 求 σ 的无偏估计的 (有) 效率。
- 八. (本题分值为 5) 设 $X \sim N(\mu,1)$, 其中 μ 为未知参数, F(x) 为 X 的分布函数。又 设常数 c 满足等式: F(c) = 0.975 。先从总体 X 抽取一个样本,算得 $\overline{x} = 3.04$, 求 c 的极大似然估计值。
- 九. (本题分值为 5) 设 X_1 , L , X_n 为取自总体 X 的样本,已知总体 X 的分布函数 F(x) 为连续函数,证明 $F(X_{(1)})\sim \beta(1,n)$,其中 $X_{(1)}$ 是第一顺序统计量(已知 $\beta(1,n)$ 分

布的概率密度为
$$f(x;1,n) = \begin{cases} n(1-x)^{n-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

试卷清晰度较差,部分数据可能有误,自己看着参考。若我看错了,忘见谅!

这张试卷效果实在太差,很多内容看不太清,部分数据可能有误,但类型应该差不多,若我看错了,忘见谅!

西安交通大学研究生课程考试题(数理统计2002)

一. (本题满分14分)

已知某零件的长度服从正态分布 $N(u,\sigma^2)$,其中 $\sigma^2=5.5mm^2$,从一大堆这种零件中随机抽取 n 个,测量其长度。现用子样均值 \bar{X} 来估计母体均值 u ,此时:

- (1) 若要估计量的标准差在 $1 \text{ } mm^2$ 之下, n 应取多大?
- (2) 若要估计误差的绝对值超过 1 mm 的概率在 1%以下, n 应取多大?
- 二. (本题满分20分)

判断下列命题的真伪并简述理由:

- 1. "统计量"与"估计量"是同一概念。
- 2. "点估计"与"区间估计"的关系为: 前者是后者的一种 (瞅不清)
- 3.设母体 X 的均值和方差都存在, X_1, X_2, X_3 为来自母体 X 的一个简单随机子样,则

$$\theta_1 = \frac{1}{3}(X_1 + X_2 + X_3)$$
与 $\theta_2 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ 都是 $E(X)$ 的无偏估计,且 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

(4) 在一个确定的假设检验问题中,其判断结果不但与其检验水平a有关,而且与抽到的子样有关。

四. (本题满分14分)

已知某种设备的工作温度服从正态分布,现作十次测量,得数据($^{\circ}C$)

1250 1275 1265 1245 1260 1255 1270 1265 1250 1240

- (1) 求温度的母体均值u的 95% 置信区间。
- (2) 求温度母体标准差 σ 的 95%置信区间。
- 五. (本题满分14分)

设有两个独立的来自不同的正态母体的子样:

$$(-4.4, 4.0, 2.0, -4.8)$$
 $(6.0, 1.0, 3.2, -4.0)$

问能否认为两个字样来自同一母体 ($\alpha = 0.05$)?

六. (本题满分12分)

下面的数据给出了三个地区人的血液中的胆固醇的含量

地区	测量值						
1	403	304	259	336	259	253	290
2	362	322	362	420	420	386	274
3	361	344	353	235	349	260	226

试用单因素方差分析法,检验不同地区人的血液中胆固醇的平均量之间是否存在显著差别? ($\alpha = 0.05$)

七. (本题满分15分)

在某乡镇,随机地走访了十户居民加,得其家庭月收入(x)与日常开支(y)的子样数据如下(单位:元)

收入 x: 820 930 1050 1300 1440 1500 1600 1800 2000 2700 支出 y: 750 850 920 1050 1200 1300 1300 1450 1560 2000

- (1) 求日常开支 y 与家庭月收入 x 间的经验回归方程;
- (2) 检验回归效果是否显著? ($\alpha = 0.05$)
- (3) 对 $x_0 = 2200$ (元),给出 y 的置信概率为 95%的预测区间。

八. (本题满分6分)

分布。

已知母体 X 为一个连续型随机变量, X 的分布函数是 F(x) ,设 $X_1,X_2,$ L X_n 是来自 母体 X 的简单随机子样,试证随机变量 $Y=-2\sum_{i=1}^n \ln[F(X_i)]$ (瞅不清,似乎是)服从 $\chi^2(2n)$

一. (本题满分 20 分)

填空题:

1. 设 X_1, X_2, L X_{10} 是来自正态母体 $N(\mu, \sigma^2)$ 的一个简单随机子样,其中 μ , σ^2 已 知。填充下列统计量的分布及其相应参数:

A.
$$\frac{X_2 + \mu}{\sigma} + \frac{X_9 - 2\mu}{2\sigma} \sim$$
 (______)

B.
$$\frac{\sum_{i=1}^{10} (X_i - \mu)^2}{\sigma^2} \sim$$
 (______)

C.
$$\frac{2\sum_{i=1}^{6} (X_i - \mu)^2}{3\sum_{i=7}^{10} (X_i - \mu)^2} \sim \underline{\qquad}$$

2.设有一母体 X , 其均值 $EX = \mu$, 方差 $DX = \sigma^2$ 以及四阶矩 EX^4 都存在,

 $X_1, X_2,$ L X_n 是来自母体X的简单随机子样。则 μ 的无偏估计量为_____,相

合估计量为_______, σ^2 的无偏估计量为______,相合估计量为_____。

二. (本题满分 20 分)

选择题(从 A~E 中选择一个完整的答案,填入指定处)

1.设
$$X \sim N(0,1)$$
,则 $P\{X > _____} = 1 - a (0 < a < 1)$ 。

A. u_a B. $-u_a$ C. u_{1-a} D. B或C E. A~D 的答案皆错

2.设
$$F \sim F(m,n)$$
,则 $P\{F > _____} = 1 - a (0 < a < 1)$ 。

A.
$$-F_a(m,n)$$
 B. $F_{1-a}(m,n)$ C. $F_a(m,n)$ D. $F_a^{-1}(n,m)$ E. B 或 D

3.设检验假设 $H: \theta = \theta_0$ 的一个检验法则犯第一类错误的概率为 P(I),检验的显著水平为 α ,则 。

A. $P(I) = 1 - \alpha$ B. $P(I) = \alpha / 2$ C. $P(I) = \alpha$ D. $P(I) \ge 1 - \alpha$ E. C $\not\equiv$ D

- A. S^2/σ^2 ; B. $(X_1 \mu)/\sigma$; C. $|X_1| + |X_2|$; D.A 和 C; E.A 和 B
- 5.设母体 X 及 Y 的分布式任意的,但分别是具有有限的非零方差,记 $EX = \mu_1$,

 $EY = \mu_2$,现独立地从两母体中各取一个子样,子样容量分别是 n_1 和 n_2 。在大子样下,我们可以推出 $\mu_1 - \mu_2$ 的置信概率近似为 $1 - \alpha$ 的置信区间。这里所谓的大子样,一般是指______。

A. $n_1 \ge 50$; B. $n_2 \ge 50$; C. $n_1 + n_2 \ge 50$; D.A 且 B; E.A~D 的答案皆错

三. (本题满分 20 分)

设母体X的概率密度为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 $(0 < \theta < +\infty)$

- 1. $\bar{x}\theta$ 的矩估计量和最大似然估计量:
- 2. 用以上方法求得的估计量是否为 θ 的无偏估计?是否为 θ 的相合估计?

四. (本题满分14分)

已知某种设备的工作温度服从正态分布,现对该温度作 10 次测量,得数据(${}^{\circ}\!C$)

1250 1275 1265 1245 1260 1255 1270 1265 1250 1240

- 1. 求温度的母体均值 μ 的 95% 置信区间;
- 2. 求温度的母体标准差 σ 的 95% 置信区间。

五. (本题满分14分)

设有两个独立的来自不同正态母体的子样

$$(-4.4, 4.0, 2.0, -4.8), (6.0, 1.0, 3.2, -4.0)$$

问能否认为两个子样来自同一母体 ($\alpha = 0.05$)?

(提示: 首先检验两母体的方差是否相同, 其次检验两母体的均值是否相同)

六. (本题满分6分)

设母体 $X \sim N(\mu, 1)$,希望检验假设 $H_0: \mu = 6 \leftrightarrow H_1: \mu = 7$ 。若从该母体中取出容量为 4 的简单随机子样,并采用如下检验法则:

当 $\bar{X}\geq 7$ 时,拒绝 H_0 ,接受 H_1 ;当 $\bar{X}<7$ 时,接受 H_0 ,拒绝 H_1 。求上述检验法则犯第一、二类错误的概率。

七. (本题满分6分)

设 $t_{\alpha}(n)$, $F_{\alpha}(m,n)$ 分别表示t(n),F(m,n)分布相应的上侧分位数,

求证:
$$\left[t_{\alpha/2}(n)\right]^2 = F_{\alpha}(1,n)$$

(限时间、心情、眼力和水平所限,可能有个别错误的地方,忘海涵,有错的地方可以指出来,大家共同讨论一下)

西安交通大学考试题 数理统计 2000 年

一. 填空

1. 设 $X_1, X_2, L X_{10}$ 是来自正态总体N(0,4)的样本,

$$c \cdot \frac{\sum_{i=1}^{5} X_{i}}{\sqrt{\sum_{j=1}^{5} (X_{j} - \frac{1}{5} \sum_{i=1}^{5} X_{i})^{2} + \sum_{i=6}^{10} X_{i}^{2}}} \sim t(m)$$

2. 用 $\Phi(x)$ 表示标准正态分布N(0.1)的分布函数,则 $\Phi(-x)$ 与 $\Phi(x)$ 的关系为

$$\Phi(-x) =$$

- 3. 已知 $T \sim t(n)$,则 $T^2 \sim$
- 4. 设总体 X 的概率密度为 $f(x;\theta)$,则参数 θ 估计的费歇 (Fisher)信息量 $I(\theta)$ =
- 二. 选择题(填 A,B,C,D,有几个正确填几个,若都不正确,则填 E)
 - 1. 设 $(X_1, X_2, L X_{20})$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,统计量

$$S = \sum_{i=1}^{10} (2X_{2i} - X_{2i-1})^2$$
 , \mathbb{M}

A.
$$\frac{1}{5\sigma^2}S \sim \chi^2(9)$$
 B. $\frac{1}{3\sigma^2}S \sim \chi^2(9)$

B.
$$\frac{1}{3\sigma^2}S \sim \chi^2(9)$$

C.
$$\frac{1}{5\sigma^2}S \sim \chi^2(10)$$
 D. $\frac{1}{3\sigma^2}S \sim \chi^2(10)$

D.
$$\frac{1}{3\sigma^2} S \sim \chi^2(10)$$

2. 独立地分别从两总体 X 和 Y 中抽得大小各为 m 和 n 的样本, 其样本均值分别为 \bar{X}

和
$$\overline{Y}$$
,则 $D(\overline{X}-\overline{Y})=$ 。

A.
$$\frac{D(X)}{m^2} - \frac{D(Y)}{n^2}$$

B.
$$\frac{D(X)}{m^2} + \frac{D(Y)}{n^2}$$

C.
$$\frac{D(X)}{m} - \frac{D(Y)}{n}$$

D.
$$\frac{D(X)}{m} + \frac{D(Y)}{n}$$

3. 设 X_1, X_2, L X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知,而 σ^2 未知,则

下列是统计量的是。

A.
$$\overline{X} + X_6$$

B.
$$\frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$$

C.
$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

D.
$$(X_2 - \mu)^2 + 2X_8 + \mu$$

A.
$$P\{F < F_{1-\alpha}(6,8)\} = \alpha$$

B.
$$P\{|F| > \frac{1}{F_{\alpha}(8,6)}\} = \alpha$$

C.
$$P\{|F| > F_{1-\frac{\alpha}{2}}(6,8)\} = \alpha$$

D.
$$P\{F < \frac{1}{F_{\alpha}(8,6)}\} = \alpha$$

- 三. 为比较 A、B 两型灯泡的寿命,随机抽取 A 型灯泡 5 只,测得平均寿命 \overline{x} =1000 (小时),标准差 s_A =28 (小时),随机抽取 B 型等泡 7 只,测得平均寿命 \overline{y} =980 (小时),标准 差 s_B =32 (小时),设总体都是正态的,试在显著性水平之下 (α = 0.05) 检验两总体寿命分布是否相同。
- 四. 想要考察特定一群人的收入与其花在书籍报纸上的支出有无关系,把收入分成高、中、低三档,书报上的支出分别为多、少两档。设随机抽查了201名,结果如下表:

收入 书报上支出	低	中	高
少	63	37	60
多	16	17	8

试在水平 $\alpha = 0.05$ 之下检验收入与书报上支出有无关联。

五. 在硝酸钠 ($NaNO_3$) 的溶解度试验中,测得在不同温度 x ($^{\circ}C$) 下,溶解于 9 份水中的硝酸钠份数 y 的数据如下表:

0 10 15 68 36 51 85.7 80.6 71.0 76.3 92.9 99.4 113.6 125.1 假设y与x之间有线性关系,在正态假定下,求y在x的置信度为95%的预测区间, 并求 $x_0 = 25$ 的预测区间。

六. 设自一大批产品中随机抽出 200 个产品,发现其中 120 个是一等品,求这大批产品的一等品率的 95%置信区间。

七. 今有两台测量合金材料中某种金属含量的光谱仪,为鉴定他们的测量准确性有无显著差异,对 9 件含该金属分别为 x_1, x_2, L x_9 (不等)的合金材料进行测量,第一台测量结果服从正态分布 $N(x_t + \delta_1, \sigma_1^2)$,t = 1, 2, L y_1, y_2, z_3, z_4 ,第二台测量结果服从 y_1, y_2, z_4 ,第二台测量结果服从 y_2, z_4 , y_3, z_4 , y_4, z_5 , y_5, z_4 , y_5, z_5 , y_6, z_5

第一台 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 第二台 0.10 0.21 0.52 0.32 0.78 0.59 0.68 0.77 0.89 问能否认为第一台的测量值比第二台显著偏大($\alpha=0.05$)?

(注:此题甚不清晰,数据可能有一两个有误, $N(x_t + \delta_1, \sigma_1^2)$ 和 $N(x_t + \delta_2, \sigma_2^2)$ 也不是很清晰,题意差不多,知道方法就行。)

八. 设 X_1, X_2, L X_n 是来自总体X 的样本 (n > 2),总体的概率密度为

$$f(x; \lambda, a) = \begin{cases} \lambda e^{-\lambda(x-a)}, \stackrel{\omega}{=} x \ge a \\ 0, \stackrel{\omega}{=} x < a \end{cases} (5 \% \lambda > 0)$$

- 1. 设 $\lambda = \frac{1}{\sqrt{2}}$, 试求参数a的最大似然估计。
- 2. 设a=0, 试求参数 λ 的矩估计。
- 3. 设a=0,试推导 $2n\lambda \bar{X}$ 服从的分布,其中 $\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 。
- 4. 设a=0,试计算 $E(\hat{\lambda})$,并求k,使 $\hat{\lambda}^*=k\hat{\lambda}$ 为 λ 的无偏估计。($\chi^2(x)$ 分布密度在写着在附录中,但试卷上没有,看书上的)

(限时间、眼力和水平所限,难免有些地方出错,忘海涵,谁发现有错的话可以指出来。)

2011-2012 (下)研究生应用数理统计试题(A)

1 设 X_1, X_2, L, X_n 为正态总体 $X \sim N(\mu, \sigma^2)$ 的样本,令 $d = \frac{1}{n} \sum_{i=1}^{n} |X_i - \mu|$,试证 $E(d) = \sqrt{\frac{2}{\pi}}\sigma$, $D(d) = \left(1 - \frac{2}{\pi}\right)\frac{\sigma^2}{n}$ (10 %)

2 设总体 x 服从正态 $N(\mu, \sigma^2)$, x_1, x_2 L, x_n 为其样本, \overline{x} 与 s^2 分别为样本均值及方差。又 设 X_{n+1} 与 X_1, X_2 上 $, X_n$ 独立同分布,试求统计量 $Y = \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$ 的分布。

$$ar{x}\sim N(\mu, rac{\sigma^2}{n})$$
, $x_{n+1}\sim N(\mu, \sigma^2)$, $rac{(n-1)}{\sigma^2}\,S^2\sim \chi^2(n-1)$. 则有
$$x_{n+1}-ar{x}\sim N(0, rac{n+1}{n}\,\sigma^2),$$
从而
$$rac{x_{n+1}-ar{x}}{\sigma_1}\sim N(0,1).$$

$$\frac{x_{n+1} - \overline{x}}{\sigma \sqrt{\frac{n+1}{n}}} \sim N(0,1).$$

又
$$rac{x_{n+1}-ar{x}}{\sigma\sqrt{rac{n+1}{n}}}$$
与 $rac{(n-1)}{\sigma^2}S_n^2$ 相互独立,从而

$$\frac{\frac{x_{n+l}-\overline{x}}{\sigma\sqrt{\frac{n+1}{n}}}}{\sqrt{\frac{(n-1)}{\sigma^2}S^2\left/\!\left(n-1\right)}} = \sqrt{\frac{n}{n+1}}\frac{(x_{n+l}-\overline{x})}{S} \sim t(n-1).$$

(其中
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
) (10 分)

3 设总体 X 具有分布律

X	1	2	3
p	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数,已知取得了样本值 $x_1=1,x_2=2,x_3=1$,求 θ 的矩估计和最 大似然估计. (10分)

4 证明样本k 阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$ 是总体X 的k 阶原点矩 $\mu_k = E(X^k)$ 的无偏估计量。 (10分)

5 假定某商场某种商品的月销售量服从正态分布 $N(\mu,\sigma^2)$, μ,σ 未知。为了决定商店对该 商品的进货量,需对μ作估计,为此,随机抽取若干月,其销售量分别为:64,57,49,81,

- 76, 70, 59, 求 μ 的置信度为 0.95的置信区间。(10分)
- 6 一种元件,要求其使用寿命不得低于 1000 (小时)。现在从一批这种元件中随机抽取 25 件,测得其寿命平均值为 950 (小时)。已知该种元件寿命服从标准差 $\sigma=100$ (小时)的正态分布,试在显著水平 0.05 下确定这批元件是否合格。 $(10\ f)$
- 7 某小学一年级共有三个班级,在一次数学考试中从三个班随机抽取 12,15,13 个学生的成绩。设学生成绩服从正态分布且方差相等,样本的方差分析表如下表 1 所示,问在显著性水平为 0.05 时,三个班的平均成绩有无显著差异? (10 分)

人工 力左升机农					
方差来源	平方和	自由度	均方差	F 值	显著性
因素 A	355.477				
误差	13429.498				
总和	13764.975				

表 1 方差分析表

- **8** 某问题是一个四因素二水平试验,选用 L_8 (2^7) 正交表,要考虑 $A \times B$,试验方案设计及试验结果见表 2。(15 分)
- (1) 各因素及交互作用的主次顺序(指标 y 越大越好)。
- (2) 试找最优工艺条件。
- (3) 在显著水平 α=0.05 下,哪些因素的影响显著?

表 2

列号	A	В	$A \times B$	С			D	数据 y _i
试验号	1	2	3	4	5	6	7	多 又功白 <i>y</i> _i
1	1	1	1	1	1	1	1	115
2	1	1	1	2	2	2	2	160
3	1	2	2	1	1	2	2	145
4	1	2	2	2	2	1	1	155
5	2	1	2	1	2	1	2	140
6	2	1	2	2	1	2	1	155
7	2	2	1	1	2	2	1	100
8	2	2	1	2	1	1	2	125
I_{j}	575	570	500	500	540	535	525	
II_{j}	520	525	595	595	555	560	570	
R_j	55	45	95	95	15	25	45	
S_{j}	378.1	253.1	1128.1	1128.1	28.1	78.1	253.1	

9 营业税税收总额 y 与社会商品零售总额 x 有关。为了利用社会商品零售总额预测税收总额,

表 3

单位: 亿元

序号	社会商业零售总额 x	营业税税收总额y
1	142. 08	3. 93
2	177. 30	5. 96
3	204. 68	7.85
4	242. 88	9.82
5	316. 24	12. 50
6	341.99	15. 55
7	332.69	15. 79
8	389. 29	16. 39
9	453.40	18. 45

- (1) 求营业税税收总额 y 与社会商品零售总额 x 的线性回归方程。
- (2) 在显著水平 α =0.05 下检验回归方程的线性性。
- (3) 预测当社会商品零售总额 x = 300 亿元时的营业税的平均税收总额。 附表: