Egy bolha ugrál a számegyenesen, minden ugrásnál 1 egységet lép a pozitív vagy a negatív irányba. Hányféleképpen juthat el a 0-ból 10-be pontosan 18 ugrással?

$$\begin{array}{c} X \cdot (1) + Y \cdot (-1) = 10 \\ \times + Y = 18 \end{array}$$

$$\begin{array}{c} (2) \quad X = 18 - Y \\ (1) \quad (18 - Y) \cdot 1 - Y = 10 \Leftrightarrow 18 - 2 \cdot Y = 10 \Leftrightarrow 8 - 2Y = 0 \Leftrightarrow 8 = 2Y \Leftrightarrow 4 = Y \\ (2) \quad 18 - Y = 18 - 4 = 14 = X \\ \hline 18! \\ \hline 4! \cdot 4! \end{array}$$

Egy buszjegyen 9 számjegy található, amelyek közül érvényesítséskor 3-at vagy 4-et lyukasztunk ki. Hányféle lyukkombináció lehetséges?

952 am;
$$3/4$$
 lyuk; porrend: $\binom{9}{3} + \binom{9}{4}$

Egy dobókockával háromszor dobunk egymás után. Hány dobássorozat fordulhat elő, amelyben a 6-os dobás is szerepel?

$$0.552E5 - R055Z = 30$$

 $0.6.6 - 5.5.5 = 30$

Legyen $n, k \in \mathbb{N}$. Igazolja a következő azonosságokat:

(b)
$$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$$

$$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$$

$$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}!$$

$$k \cdot \frac{n!}{k! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot (n-k)!} / (n-k)!$$

$$k \cdot \frac{n!}{k! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot (n-k)!} / (n-k)!$$

$$k \cdot \frac{n!}{k!} = \binom{n-1}{k-1}! / n!$$

- (a) Mennyi az 1, 2, 3 számjegyek permutációjával képezhető háromjegyű számok összege?
- (b) Mennyi az 1, 2, 3, 4, 5, 6 számjegyek felhasználásával képezhető hatjegyű számok összege?

(a)
$$3! \cdot (1+2+3)=3! \cdot 6=36$$

db háromjegyű szám

// párok száma: 0.5 × 6!

(b) 1,2,3,4,5,6; hatjugyű szám, p számjegy-isnitlődin #2: 10^{5} 10^{7} 10^{3} 10^{1} 10^{1} 10^{0} 10^{5}