Exercise Sheet 3

Discrete Mathematics, 2021.9.26

Note: The following exercises involve a new logical operators \oplus . Its truth table is as follows:

\overline{p}	\overline{q}	$p \rightarrow q$
\mathbf{T}	\mathbf{T}	\mathbf{T}
${f T}$	\mathbf{F}	${f F}$
\mathbf{F}	\mathbf{T}	${f T}$
${f F}$	\mathbf{F}	\mathbf{T}

- 1. a) Prove that $p \to (q \to p)$ is a tautology.
 - b) Prove that $(p \to q \to r) \to (p \to q) \to (p \to r)$ is a tautology.
 - c) Prove that $p \to q \to r \equiv (p \land q) \to r$.

Here, \rightarrow is right associative, i.e. $\phi \rightarrow \psi \rightarrow \chi$ means $\phi \rightarrow (\psi \rightarrow \chi)$.

- 2. (P36, Ex.52, [R]) In this exercise we will show that $\{|\}$ is a functionally complete collection of logical operators. (**Note**: p|q means p NAND q. The proposition p NAND q is true when either p or q, or both, are false; and it is false when both p and q are true. The operators | is called the Sheffer stroke after H. M. Sheffer)
 - a) Show that $\phi | \phi$ is logically equivalent to $\neg \phi$.
 - b) Show that $(\phi|\psi)|(\phi|\psi)$ is logically equivalent to $\phi \wedge \psi$.
 - c) Show that {|} is a functionally complete collection of logical operators based on the results above.