Лекция 6. Логические функции

Напомним, что в математическом анализе под *числовой функцией* нескольких переменных понимается правило (закон соответствия), сопоставляющее числам $(x_1, x_2, \ldots, x_n) \in D \subset \mathbb{R}^n$, называемым *аргументами*, некоторое вполне определенное число $y \in E \subset \mathbb{R}$, где множество D – область определения функции, множество E – область значений функции, что обозначается $y = f(x_1, \ldots, x_n)$. При этом функция может быть задана различными способами:

- 1) аналитическим (явно в виде формулы $y = f(x_1, \ldots, x_n)$, неявно в виде формулы $F(x_1, \ldots, x_n, y) = 0$ или параметрически);
- 2) графическим (график функции кривая для n=1, поверхность для произвольного n);
- 3) если множество D состоит из конечного числа элементов табличным (в этом случае функции называются $\partial ucкретными$).

Пример 1. Пусть n=2 и $y=f(x_1,x_2)$, причем $(x_1,x_2)\in D\subset \mathbb{R}^2$, где $D=\{(1,1),(1,2),(2,1),(2,2)\}$. Тогда табличным способом можно задать следующую функцию $f:D\xrightarrow{f}E$, где $E=\{1,2,3\}$:

x_1	x_2	$f(x_1, x_2)$
1	1	1
1	2	2
2	1	3
2	2	1

Упражнение 1 (д/з). Задать табличным способом другие функции $f: D \xrightarrow{f} E$, где D и E – множества из примера 1.

Замечание 1. В отличие от математического анализа, в дискретной математике рассматриваются только дискретные функции. В частности, в разделе дискретной математики, называемом двузначной логикой, рассматриваются функции логических переменных, принимающих только два значения (см. определение 1 из лекции 1): 0 и 1, или "истина" и "ложь" и т.д. (см. пример 1 из лекции 1), при этом те же два значения принимают и сами функции. Таким образом, можно сформулировать

Определение 1. Логической функцией n переменных на двухэлементном множестве D называется правило f, сопоставляющее n логическим переменным (аргументам) x_1, \ldots, x_n со значениями из D некоторый вполне определенный элемент подмножества E_f того же множества D. В этом случае $(D, \ldots, D) \equiv D^n$ – область определения функции f, а множество $E_f \subset D$ – область значений f:

$$(D,\ldots,D)\stackrel{\mathrm{f}}{\to} E_f\subset D \Leftrightarrow D^n\stackrel{\mathrm{f}}{\to} E_f\subset D.$$

В частности, для $E_2 = \{0, 1\}$

$$(\{0,1\},\ldots,\{0,1\}) \xrightarrow{f} E_f \subset \{0,1\} \Leftrightarrow \{0,1\}^n \xrightarrow{f} E_f \subset \{0,1\}.$$

f – логическая функция n переменных

Замечание 2. Построить логическую функцию значит задать какое-либо правило, которое позволяет найти значения функции f для всех возможных наборов значений аргументов, например, в виде таблицы, в левой части которой перечислены все возможные наборы значений аргументов для определенности в лексикографическом порядке, а в правой части — значения функции, соответствующие этим наборам (см. примеры ниже).

Пример 2. $n=1, \{0,1\} \stackrel{f_{1,i}}{\to} E_{f_{1,i}} \subset \{0,1\}$: $f_{1,i}$ – логические функции одной переменной (здесь и далее первый индекс обозначает число переменных, а второй индекс i – номер рассматриваемой функции среди функций данного числа переменных).

$$f_{1,i} - ? (i - ?)$$

 $i = 0. f_{1,0}$:

Таблица 1

x	$f_{1,0}(x)$
0	0
1	0

Упражнение 2 (д/з). Построить другие логические функции одной переменной. Сколько их всего существует?

Ответ: 4 функции, представленные в табл. 2.

Таблица 2

\boldsymbol{x}	$f_{1,0}(x)$	$f_{1,1}(x)$	$f_{1,2}(x)$	$f_{1,3}(x)$
0	0	0	1	1
1	0	1	0	1

Замечание 3. Эти функции называются и обозначаются следующим образом:

 $f_{1,0}(x) \equiv 0 - \kappa$ онстанта ноль,

 $f_{1,1}(x) \equiv x - m$ ождественная функция,

 $f_{1,2}(x) \equiv \bar{x} - ompuцание x$ (читается "не x"),

 $f_{1,3}(x) \equiv 1 - \kappa$ онстанта единица.

Замечание 4 (расширенная интерпретация отрицания). Если 0 – ложь и 1 – истина, то:

- а) отрицание истины (1) есть ложь (0),
- б) отрицание лжи (0) есть истина (1).

Далее рассмотрим логические функции $f_{2,i}$ двух переменных (n=2). В этом случае количество различных наборов переменных будет равно $N_2=2^2=4$ (см. утверждение из лекции 1).

Упражнение 3 (д/з). Построить в лексикографическом порядке все логические функции $f_{2,i}$ двух переменных. Чему равно их количество $P_2(2)$? (Здесь нижний индекс означает количество возможных значений каждой переменной, а число в скобках – количество переменных.)

Ответ: $P_2(2) = 16$. Функции представлены в табл. 2 в лексикографическом порядке, соответствующем возрастанию чисел от 0 до 15, записанных в двоичной системе счисления. Вторые индексы у функций соответствуют этим числам.

Таблица 2

x_1	x_2	$f_{2,0}(x_1,x_2)$	$f_{2,1}(x_1,x_2)$	$f_{2,2}(x_1,x_2)$	$f_{2,3}(x_1,x_2)$
0	0	0	0	0	0
0	1	0	0	0	0
1	0	0	0	1	1
1	1	0	1	0	1

x_1	x_2	$f_{2,4}(x_1,x_2)$	$f_{2,5}(x_1,x_2)$	$f_{2,6}(x_1,x_2)$	$f_{2,7}(x_1,x_2)$
0	0	0	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	1	0	1

x_1	x_2	$f_{2,8}(x_1,x_2)$	$f_{2,9}(x_1,x_2)$	$f_{2,10}(x_1,x_2)$	$f_{2,11}(x_1,x_2)$
0	0	1	1	1	1
0	1	0	0	0	0
1	0	0	0	1	1
1	1	0	1	0	1

x_1	x_2	$f_{2,12}(x_1,x_2)$	$f_{2,13}(x_1,x_2)$	$f_{2,14}(x_1,x_2)$	$f_{2,15}(x_1,x_2)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	1	0	1