GOVERNMENT POLYTECHNIC NAGAMANGALA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vth Semester Diploma

Artificial Intelligence and Machine Learning (20CS51)

Assignment: 02

NAME: Nithya

ROLL NO: 158cs22031

AIML (20CS51)

ASSIGNMENT - WEEK 03

- Download any two datasets from the internet and perform the following operations.
 - a) Analyze the univariate dataset Ex- Mean, Mode, Median, Range, Std, and Variance and perform Univariate tests for the dataset.
 - b) Analyze the multivariate of the dataset Ex- co-variance, co-relation.
 - c) Visualize the univariate and multivariate with various plots.
 - d) Push the code to your GitHub Repository.

Important Note:

- 1. Last Date for Submission: 31-07-2024.
- 2. Everyone must perform the above operation using datasets (Previously used).
- 3. Submit the report to the email <u>aimlgptn@gmail.com</u>

- 1. Download any two datasets from the internet and perform the following operations.
- a) Analyze the univariate dataset Ex- Mean, Mode, Median,

Range, Std, and Variance and perform Univariate tests

for the dataset.

import pandas as pd

data=pd.read_csv('/content/people (1).csv')

df=pd.read_csv('/content/Country-data.csv')

Mean:

data.mean(numeric_only=True)

df.mean(numeric_only=True)

Output:

Height(cm) 166.15

Weight(kg) 74.35

dtype: float64

child_mort 38.270060

exports 41.108976

health 6.815689

imports 46.890215

income 17144.688623

inflation 7.781832

life_expec 70.555689

total_fer 2.947964

gdpp 12964.155689

dtype: float64

Median

data.median(numeric_only=True)

df.median(numeric_only=True)

Output:

Height(cm) 164.0

Weight(kg) 64.0

dtype: float64

child_mort 19.30

exports 35.00

health 6.32

imports 43.30

income 9960.00

inflation 5.39

life_expec 73.10

total_fer 2.41

gdpp 4660.00

dtype: float64

Mode:

data.mode(numeric_only=True)

 $df.mode(numeric_only=True)$

Output:

Height(cm) Weight(kg)

0 160 64

child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp	
0	4.5	23.8	5.07	19.4	1390.0	16.6	70.4	1.57	1310.0
1	NaN	35.0	5.20	23.8	12700.0	NaN	74.5	1.92	NaN
2	NaN	NaN	NaN	26.8	15300.0	NaN	76.3	NaN	NaN
3	NaN	NaN	NaN	28.0	15400.0	NaN	76.4	NaN	NaN
4	NaN	NaN	NaN	28.5	20100.0	NaN	79.5	NaN	NaN
5	NaN	NaN	NaN	37.4	21100.0	NaN	80.4	NaN	NaN
6	NaN	NaN	NaN	42.1	28300.0	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	43.0	28700.0	NaN	NaN	NaN	NaN
8	NaN	NaN	NaN	43.3	29600.0	NaN	NaN	NaN	NaN
9	NaN	NaN	NaN	46.2	36200.0	NaN	NaN	NaN	NaN
10	NaN	NaN	NaN	49.6	41100.0	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	51.3	NaN	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	57.5	NaN	NaN	NaN	NaN	NaN
13	NaN	NaN	NaN	58.9	NaN	NaN	NaN	NaN	NaN
14	NaN	NaN	NaN	62.9	NaN	NaN	NaN	NaN	NaN
15	NaN	NaN							

Range

```
data.max(numeric_only=True)-data.min(numeric_only=True)
df.max(numeric_only=True)-df. min(numeric_only=True)
Output:
Height(cm) 46
Weight(kg) 91
dtype: int64
child_mort 205.4000
         199.8910
exports
health
          16.0900
          173.9341
imports
        124391.0000
income
inflation
        108.2100
life_expec 50.7000
total_fer 6.3400
gdpp 104769.0000
dtype: float64
Variance:
data.var(numeric_only=True)
df. var(numeric_only=True)
Output:
Height(cm) 144.450000
Weight(kg) 883.081579
dtype: float64
child_mort 1.626423e+03
exports 7.514183e+02
health 7.545116e+00
imports 5.861042e+02
income 3.716439e+08
inflation 1.117398e+02
life_expec 7.908851e+01
total_fer 2.291734e+00
gdpp 3.359414e+08
dtype: float64
```


Standard deviation:

data. std(numeric_only=True)

df. std(numeric_only=True)

Output:

Height(cm) 12.018735

Weight(kg) 29.716689

dtype: float64

child_mort 40.328931

exports 27.412010

health 2.746837

mports 24.209589

income 19278.067698

inflation 10.570704

life_expec 8.893172

total_fer 1.513848

gdpp 18328.704809

dtype: float64

Univariate tests

T-test:

import pandas as pd

import scipy.stats as stats

df = pd.read_csv('/content/Country-data.csv')

df.head()

imports1 = df[df['imports'] == 'imports1']['child_mort']

income2 = df[df['income'] == 'income2']['child_mort']

t_stat, p_value = stats.ttest_ind(imports1,income2)

print("T-test Results:")

print("T-statistic:", t_stat)

Output:

T-test Results:

T-statistic: nan

Chi-square test:

observed_values = pd.crosstab(df['child_mort'],df['life_expec'])

chi2,p,dof,expected = stats.chi2_contingency(observed_values)

print("Chi-square Test Results:")

print("Chi-square statistic:",chi2)

Output:

Chi-square Test Results:

Chi-square statistic: 18031.36111111111

Anova test:

 $healths = [df[df['health'] == group]['income'] \ for \ group \ in \ df['health'].unique()]$

f_stat, p_value = stats.f_oneway(*healths)

print("ANOVA Test Results:")

print("F-statistic:", f_stat)

Output:

ANOVA Test Results:

F-statistic: 2 7949074494831665

b) Analyze the multivariate of the dataset Ex- co-variance,

co-relation.

Co-variance:

data.cov(numeric_only=True)

df. cov(numeric_only=True)

Output:

Height(cm) Weight(kg)

Height(cm) 144.450000 231.260526

Weight(kg) 231.260526 883.081579

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp	
	1626.422713 -3.570463e+05	-351.65112	8	-22.199943	-124.20198	2	-4.076360e-	+05	122.893627	7-318.008262
exports	-351.651128	751.418298	3 -8.614534	489.350622	2 2.730946e+	-05	-31.090078	77.110598	-13.279671	2.103785e+05
health	-22.199943 -8.614534	7.545116	6.365141	6.861669e-	+03	-7.415093	5.146808	-0.817828	1.741797e+	04
imports	-124.201982	489.35062	2 6.365141	586.104198	8 5.712872e+	-04	-63.208898	11.710284	-5.829066	5.125005e+04
income 104916.78	-407635.982270 -5517 -14645.727	273094.598 7927	3023 3.164430e+	6861.66907 -08	71	57128.7215	588	3.716439e+	08	-30110.122438
inflation	122.893627 -31.090078	3 -7.415093	-63.208898	-3.011012e	+04	111.739781	-22.533965	5.071509	-4.294042e	+04

life_expec -318.008262 77.110598 5.146808 11.710284 1.049168e+05 -22.533965 79.088507 -10.243585 9.781472e+04

gdpp -357046.306154 210378.470377 17417.971217 51250.050217 3.164430e+08 -42940.421636

97814.722603 -12622.333657 3.359414e+08

Co-relation:

data.corr(numeric_only=True)

data.corr(numeric_only=True)

Output:

F	leight(cm)	Weight(kg)			
Height(cm)	1.000000	0.647504			
Weight(kg)	0 647504	1 000000			

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
child_mort	1.000000	-0.318093	-0.200402	-0.127211	-0.524315	0.288276	-0.886676	0.848478	-0.483032
exports	-0.318093	1.000000	-0.114408	0.737381	0.516784	-0.107294	0.316313	-0.320011	0.418725
health	-0.200402	-0.114408	1.000000	0.095717	0.129579	-0.255376	0.210692	-0.196674	0.345966
imports	-0.127211	0.737381	0.095717	1.000000	0.122406	-0.246994	0.054391	-0.159048	0.115498
income	-0.524315	0.516784	0.129579	0.122406	1.000000	-0.147756	0.611962	-0.501840	0.895571
inflation	0.288276	-0.107294	-0.255376	-0.246994	-0.147756	1.000000	-0.239705	0.316921	-0.221631
life_expec	-0.886676	0.316313	0.210692	0.054391	0.611962	-0.239705	1.000000	-0.760875	0.600089
total_fer	0.848478	-0.320011	-0.196674	-0.159048	-0.501840	0.316921	-0.760875	1.000000	-0.454910
gdpp	-0.483032	0.418725	0.345966	0.115498	0.895571	-0.221631	0.600089	-0.454910	1.000000

c) Visualize the univariate and multivariate with various

plots.

Univariate plots:

import pandas as pd

df=pd.read_csv('/content/people (1).csv')

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(20, 15))

- <Figure size 2000x1500 with 0 Axes>
- <Figure size 2000x1500 with 0 Axes>

Bar plot: plt.subplot(5, 5, 6) plt.bar(df['Height(cm)'], df['Weight(kg)']) plt.xlabel('Height(cm)') plt.ylabel('Weight(kg)') Box plot: plt.subplot(5, 5, 6) plt.boxplot(df['Height(cm)']) plt.title("box plot") plt.xlabel('Height(cm)') plt.ylabel('Weight(kg)') plt. show() Histogram: plt.hist(df['Height(cm)'], color='green') plt.title("histogram") plt.xlabel('Height(cm)') plt.ylabel(Weight(kg)') plt. show() Violin plot: sns.violinplot(y=df['Weight(kg)'])

Output:

plt.title('Violin Plot')
plt.show()

import pandas as pd

df=pd.read_csv('/content/Country-data.csv')

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(20, 15))

<Figure size 2000x1500 with 0 Axes>

<Figure size 2000x1500 with 0 Axes>

Bar plot:

plt.subplot(2, 3, 2)


```
plt.bar(df['child_mort'], df['health'])
plt.title("bar plot")
plt.xlabel('chil_mort')
plt.ylabel('health')
plt. show()
Box plot:
plt.subplot(2, 3, 6)
plt.boxplot(df['exports'])
plt.title("box plot")
plt.xlabel('exports')
plt.ylabel('imports')
plt. show()
Histogram:
plt.subplot(2, 3, 6)
plt.hist(df['exports'], color='red')
plt.title("histogram")
plt.xlabel('exports')
plt.ylabel('health')
plt. show()
Violin plot:
sns.violinplot(y=df['export'])
plt.title('Violin Plot')
```

Output

plt.show()

Mulivariate plots:

import pandas as pd

df=pd.read_csv('/content/people (1).csv')

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(20, 15))

<Figure size 2000x1500 with 0 Axes>

<Figure size 2000x1500 with 0 Axes>

Box plot:

sns.boxplot(x="Height(cm)", y="Weight(kg)", data=df)

plt.show()

Joint plot:

sns.jointplot(x="Weight(kg)", y="Height(cm)", data=df)

plt.show()

Bar plot:

sns.barplot(x = 'Weight(kg)', y = 'Height(cm)', data = df)

Scatter plot:

sns.scatterplot(x='Height(cm)',y='Weight(kg)',data = df)

Output:

import pandas as pd

data=pd.read_csv('/content/Country-data.csv')

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(20, 15))

<Figure size 2000x1500 with 0 Axes>

<Figure size 2000x1500 with 0 Axes>

Box plot:

sns.boxplot(x="imports", y="health",data=data)

plt.show()

Joint plot:

sns.jointplot(x="child_mort", y="imports", data=data)

plt.show()

Bar plot:

sns.barplot(x='imports', y='income', data = data)

Scatter plot:

sns.scatterplot(x='total_fer',y='income',data = data)

Output:

d) Push the code to your GitHub Repository.

e)perform any probability calculation

import pandas as pd

file_path = ('/content/people (1).csv')

if 'Height(cm)' in data.columns:


```
people_above_30 = data[data['Height(cm)'] > 30]
probability_above_30 = len(people_above_30) / len(data)
print(f"Probability of a person being older than 30: {probability_above_30:.4f}")
else:
    print("The 'Height(cm)' column is not found in the dataset.")
```

Output:

Probability of a person being older than 30: 1.0000

```
2)
import pandas as pd
file_path = ('/content/Country-data.csv')
if 'child_mort' in data.columns:

Country_above_30 = data[data['child_mort'] > 30]

probability_above_30 = len(Country_above_30) / len(data)

print(f'Probability of a person being older than 30: {probability_above_30:.4f}')
else:

print('The 'child_mort' column is not found in the dataset.'')
```

Outputs:

The 'child_mort' column is not found in the dataset.