Origin-equivalence of two-way word transducers is in PSPACE

Sougata Bose

LaBRI, Université de Bordeaux

Delta Meeting 2018

Joint work with Anca Muscholl, Gabriele Puppis and Vincent Penelle

- Input Alphabet ∑, Output Alphabet □
- Define a relation $R \subseteq \Sigma^* \times \Gamma^*$

Delete all occurrences of the letter "A"

AHMEDABAD → HMEDBD

Subword Relation

Reverse Subword Relation

Shape of a run

Shape of a run

• Shape of a run is the sequence of shape of transition taken in the run.

$$\bigcirc \stackrel{\longrightarrow}{\longleftrightarrow} \stackrel{$$

Equivalence Problem

The problem

Given two transducers T_1 and T_2 , check if they compute the same relation.

Equivalence Problem

The problem

Given two transducers T_1 and T_2 , check if they compute the same relation.

Functional Case

Equivalence Problem is decidable in PSPACE for 2-way functional transducers. [Culik, Karhumäki, '87]

Equivalence Problem

The problem

Given two transducers T_1 and T_2 , check if they compute the same relation.

Functional Case

Equivalence Problem is decidable in PSPACE for 2-way functional transducers. [Culik, Karhumäki, '87]

Relational Case

Equivalence Problem is undecidable even for 1-way transducers. [Griffiths '68]

Not Equivalent

State of the Art

- 1-way Transducers [Filiot et al '16]
- Streaming String Transducers [Bojańczyk et al, '17]
- Top-down Tree Transducers [Filiot, et al '18]

State of the Art

- 1-way Transducers [Filiot et al '16]
- Streaming String Transducers [Bojańczyk et al, '17]
- Top-down Tree Transducers [Filiot, et al '18]

Input is processed in one direction

State of the Art

- 1-way Transducers [Filiot et al '16]
- Streaming String Transducers [Bojańczyk et al, '17]
- Top-down Tree Transducers [Filiot, et al '18]

Input is processed in one direction

Theorem

Origin-equivalence is decidable in PSPACE for non deterministic 2-way transducers

Subcase: Busy Transducers

All transitions produce non-empty output.

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1 and multiple matching runs of T_2 .

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1 and multiple matching runs of T_2 .

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

• Guess a run of T_1 and multiple matching runs of T_2 .

Characterization for containment

For every run of T_1 , there exists a run of T_2 with the same shape and same output.

Can be checked in PSPACE by similar techniques for two-way automata. [Vardi '89]

Same as equivalence for NFA!

Busy Transducer with regular outputs

- Transitions are of the form (q, a, L, q').
- Transition can output any word from the language L.

Reduce any arbitrary transducer to Busy transducer with regular output

Key Idea

- Remove Lazy U turns
- Output special symbol \$ on straight lazy paths

Identifying similar origins

Origin equivalence is stronger than classical equivalence

Identifying similar origins

Origin equivalence is stronger than classical equivalence

Goal

Relax Containment relation under origin semantics

Identifying similar origins

Origin equivalence is stronger than classical equivalence

Resynchronizers

Introduced by Filiot et al '17 for 1-way case

- $\gamma(y, z) : z = y + 1$
- MSO formula on the input

- $\gamma(y,z): z = y + 1$
- MSO formula on the input
- Outputs with origin y can get origin z.
- γ(1, 2)

- $\gamma(y,z): z = y + 1$
- MSO formula on the input
- Outputs with origin y can get origin z.

- $\gamma(y,z): z = y + 1$
- MSO formula on the input
- Outputs with origin y can get origin z.

 T_1 T_2

 $egin{array}{lll} egin{array}{lll} egin{arra$

$$egin{array}{lll} {\sf T}_1 & & {\sf T}_2 \\ & {\sf G}_1 & \subseteq & {\sf R}_{\gamma}({\sf G}_2) \longleftarrow & {\sf G}_2 \end{array}$$

$$egin{array}{lll} {\sf T}_1 & & \subseteq_{\it R} & {\sf T}_2 \\ & {\sf G}_1 & \subseteq & {\sf R}_{\gamma}({\sf G}_2) \longleftarrow {\sf G}_2 \end{array}$$

$$egin{array}{lll} {\sf T}_1 & & \subseteq_R & {\sf T}_2 \\ & {\sf G}_1 & \subseteq & {\sf R}_\gamma({\sf G}_2) \longleftarrow & {\sf G}_2 \end{array}$$

- $\gamma(y,z) = \text{true}$
- This reduces to classical containment

Restrict the formula γ

k-bounded Restriction

• Outputs with origin y get origin z.

For a fixed z, there are at most k positions y_1, y_2, \ldots, y_k such that $\gamma(y_i, z)$ is true.

k-bounded Restriction

• Outputs with origin y get origin z.

k-boundedness is decidable

Equivalence modulo Resynchronizer

Equivalence modulo Resynchronizer is decidable.

Equivalence modulo Resynchronizer

Equivalence modulo Resynchronizer is decidable.

Split the block of c's in an ordered manner

Split the block of c's in an ordered manner

• $\gamma(y,z)$: z=y

Split the block of c's in an ordered manner

• $\gamma(y, z)$: $z = y \lor z = y - 1$

Split the block of c's in an ordered manner

• $\gamma(y, z)$: $z = y \lor z = y - 1$

Split the block of c's in an ordered manner

- $\gamma(y, z)$: $z = y \lor z = y 1$
- $\delta(y, y')$: $y = y' \land y = y' 1$

Split the block of c's in an ordered manner

- α β
- $\gamma(y, z)$: $z = y \lor z = y 1$
- $\delta(y, y')$: $y = y' \land y = y' 1$

Conclusion

Summary

- Origin Equivalence for 2-way transducers
- Resynchronizers for 2-way transducers

Conclusion

Summary

- Origin Equivalence for 2-way transducers
- Resynchronizers for 2-way transducers

Future Works

- Capture one way resynchronizers
- Composition of resynchronizers

Thank You! Questions?