10:15

1. (a) (10%) For silicon (Si), the number per unit volume of by a factor of 10^7 ? Note: Boltzmann's constant k is effectively available states (B) for silicon is 7.3×10^{15} cm⁻³K^{-3/2} and the bandgap voltage $E_g = 1.12$ eV. As it is the hole concentration drops below the intrinsic level n_i doped with phosphorus, what must ND be if at T=300 K

The property of the property

a voltage of 3 V is imposed. Let $\mu_n = 1350 \text{ cm}^2/V \cdot \text{s}$ and (b) (10%) Contrast the electron and hole drift velocities through a 10-µm layer of intrinsic silicon across which $\mu_p = 480 \text{ cm} 2/V \cdot \text{ s}.$

Vudrift= Mut= = 1350x 3000= 4,05×10 6cm/4 B @ Vpolit = MpE= 48 x 3000 = 1. Ufx 10 cm/50 0 E- Cm= 10 × 10 4 10 = 3000

Calculate the built-in voltage of a PN junction in which the p

7

(a) (5%) With the terminals left open, what is the width of the and n regions are doped equally with 5×10^{16} atoms/cm³. Assume $n_i = 1.5 \times 10^{10} / \text{cm}^3$.

011 = 14 0 (MAND) 12 10 15 × 10 10 × 5 × 10 10 10 NA=No=6+10 octoms/cm3 . Mx=1.5+100/cm3

2019/10/30

(d) $v_{GS} = 2.5 \text{V and } v_{DS} = 2.5 \text{ V}$ (t_1) $C_{OX} = \frac{\xi_0 \chi}{\xi_{OX}} (t_1) \qquad I_D = \frac{1}{2} k_N V_{OX}^2 = 5.5 \text{ mA} \neq 4$

Kn= Mu(0x W +1) Vov = V65-Vt = 2V +1)

channel length is 0.5 μ m, the associated value of λ is 4. (20%) For a particular NMOS technology with the minimum

saturation at $v_{DS} = 1 \text{ V}$ with 100 μA drain current, what (a) If the gate length L_G becomes 1.5 µm and operates in does the drain current become if v_{DS} is raised to 5 V?

 $\frac{(+2)}{2} A = \frac{0.02}{3} V^{-1} = 0.01 V^{-1}$ $\frac{0V}{100} A(4) = \frac{1}{10} (1+3\times1) = 1.01 ID$ $\frac{1}{100} A(4) = \frac{1}{10} (1+3\times1) = 1.01 ID$ $\frac{1}{100} A(4) = \frac{1}{10} (1+3\times1) = 1.01 ID$

(+3) $\frac{1}{1_D} + \Delta I_D = I_D'(I+\lambda \times \zeta) = I_0 S I_D'$ (b) What can be done over the channel length L_G to reduce

the percentage by a factor of 2? $_{L,G}$)

Doubling channel length to 3 hm

5. (20%) A signal attenuator as shown in below with the attenuation factor controlled by the value of the dc current I, and v_S is a sinusoidal signal. Capacitors C_I

depletion region?