6) Data Analytics III

In [15]: ConfusionMatrixDisplay(confusion_matrix=cm).plot()

Out[15]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1bd5d076d20>

- 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.
- In [1]: import pandas as pd In [2]: df = pd.read_csv('IRIS.csv') df.head() sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 Iris-setosa 4.9 3.0 1.4 0.2 Iris-setosa 4.7 0.2 Iris-setosa 2 3.2 1.3 4.6 3.1 1.5 0.2 Iris-setosa 5.0 3.6 1.4 0.2 Iris-setosa In [3]: df.isna().sum() Out[3]: sepal_length 0 sepal_width petal_length 0 petal_width 0 species dtype: int64 In [4]: from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import LabelEncoder from sklearn.metrics import precision_score, accuracy_score, confusion_matrix, recall_score, ConfusionMatrixDisplay In [5]: labelencoder = LabelEncoder() df['species'] = labelencoder.fit_transform(df['species']) In [6]: x = df.drop(columns=['species']) y = df['species'] In [7]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2) In [8]: model = GaussianNB() model.fit(x_train, y_train) GaussianNB GaussianNB() In [9]: predicted = model.predict(x_test) predicted Out[9]: array([0, 0, 0, 2, 2, 1, 1, 1, 1, 2, 2, 2, 0, 0, 2, 2, 2, 1, 0, 1, 1, 0, 1, 2, 1, 2, 1, 0, 0, 1]) In [10]: precision_score(y_test, predicted, average='micro') Out[10]: 0.93333333333333333 In [12]: recall_score(y_test, predicted, average='macro') Out[12]: 0.9487179487179488 In [13]: accuracy_score(y_test, predicted) Out[13]: 0.93333333333333333 In [14]: cm = confusion_matrix(y_test, predicted) Out[14]: array([[9, 0, 0], [0, 11, 2], [0, 0, 8]], dtype=int64)

