ECE368: Probabilistic Reasoning

Lab 1: Classification with Multinomial and Gaussian Models

Na	me:	: Student Number:	
2 MB); 2)	ald hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under one figure for Question 1.2.(c) and two figures for Question 2.1.(c) in the .pdf format; and 3) two es classifier.py and Idaqda.py that contain your code. All these files should be uploaded to Quercus.	
1	Na	ïve Bayes Classifier for Spam Filtering	
1.	(a)	Write down the estimators for p_d and q_d as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2,, N$ using the technique of "Laplace smoothing". (1 pt)	
	(1.)		
	` /	Complete function learn_distributions in python file classifier.py based on the expressions. (1 pt)	
2.	(a)	Write down the MAP rule to decide whether $y = 1$ or $y = 0$ based on its feature vector \mathbf{x} for a new email $\{\mathbf{x}, y\}$. The d -th entry of \mathbf{x} is denoted by x_d . Please incorporate p_d and q_d in your expression. Please assume that $\pi = 0.5$. (1 pt)	
	(1.)		
	(b)	Complete function classify_new_email in classifier.py, and test the classifier on the testing set. The number of Type 1 errors is, and the number of Type 2 errors is (1.5 pt)	
	(c)	Write down the modified decision rule in the classifier such that these two types of error can be traded off. Please introduce a new parameter to achieve such a trade-off. (0.5 pt)	
		Write your code in file classifier.py to implement your modified decision rule. Test it on the testing	

Write your code in file classifier.py to implement your modified decision rule. Test it on the testing set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name **nbc.pdf**. (1 **pt**)

2 Linear/Quadratic Discriminant Analysis for Height/Weight Data

In the case of LDA, write down the decision boundary as a linear equation of \mathbf{x} with param $\boldsymbol{\mu}_m, \boldsymbol{\mu}_f, \text{and } \boldsymbol{\Sigma}$. Note that we assume $\pi = 0.5$. (0.5 pt)
In the case of QDA, write down the decision boundary as a quadratic equation of \mathbf{x} with param $\boldsymbol{\mu}_m, \boldsymbol{\mu}_f, \boldsymbol{\Sigma}_m, \text{and } \boldsymbol{\Sigma}_f$. Note that we assume $\pi = 0.5$. $(0.5 \mathbf{pt})$
$\boldsymbol{\mu}_m, \boldsymbol{\mu}_j, \boldsymbol{\omega}_m, \text{ and } \boldsymbol{\omega}_j$. Note that we assume $\boldsymbol{\kappa}$