12-27-00

Certificate of Mailing:

The undersigned certifies that this correspondence

is being sent via Express Mail, postage prepaid, in an envelope addressed to the Commissioner for Patents,

P.O. Box 1450, Alexandria, VA 22313-1450,

this 22nd day of December, 2004

Express Mail Label No.: 1/EV457833815US

PRINTER'S RUSH

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Darrow et al.

Atty Docket: ORT-1560

Serial No.: 10/041,054

Art Unit: 1652

Filed: January 7, 2002

Examiner: William W. Moore

For: DNA Encoding The Human

Confirmation No.: 3780

Serine Protease T

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Attention: Issue Branch

RESPONSE TO EXAMINER'S REQUEST FOR SUBSTITUTE SEQUENCE LISTING

Sir:

The accompanying substitute Sequence Listing is being filed in response to a request by Examiner Moore made in a telephonic message to the undersigned on December 10, 2004 regarding the above-captioned allowed application, which is being prepared for issuance (the issue fee having been transmitted on October 29, 2004). Examiner Moore informed the undersigned that the sequence information set forth in the computer readable form (CRF) did not correspond with the paper version of the Sequence Listing as filed with the present application on January 7, 2002. In particular,

the Examiner informed the undersigned that the paper version of the Sequence Listing as filed is apparently incomplete insofar as it contains only nine sequences, whereas the CRF contains two additional sequences, as reflected in the parent U.S. application, Serial No. 09/386,653, now U.S. Patent No. 6,458,564.

Upon review, it is apparent that the paper version of the Sequence Listing of record in the present divisional application indeed fails to include SEQ.ID.NO.:10 and SEQ.ID.NO.:11. The undersigned appreciates the USPTO's detection of this error.

To correct the error, which the undersigned believes was made in good faith without deceptive intent, Applicant is providing herewith a substitute Sequence Listing, which contains all eleven sequences. The addition of SEQ.ID.NO.:10 and SEQ.ID.NO.:11 in the accompanying substitute Sequence Listing is supported not only by the CRF as originally filed, but also by Table 1 of the specification, which provides the amino acid sequences corresponding to SEQ. ID. NO.: 10 and SEQ.ID.NO.: 11. Thus, the substitute Sequence Listing does not include new matter.

Pursuant to 37 C.F.R. §1.825(b), a diskette containing a substitute CRF is also enclosed. The undersigned states that the enclosed CRF is the same as the substitute Sequence Listing in paper form submitted herewith. Since the substitute Sequence Listing corrects the above-noted informalities and includes no new matter, Applicant respectfully requests its entry so that the patent issuing from this application will list complete sequence information.

It is believed that no fee is due in connection with the submission of this paper. If it is determined that any fee is due, however, please charge all necessary fees to Deposit Account No. 10-0750.

Respectfully submitted,

Date: December 22, 2004

Linda S. Evans Reg. No. 33,873

LSE/MDR

Johnson & Johnson One Johnson & Johnson Plaza New Brunswick, New Jersey 08933-7003 (858) 320-3406

<110> Darrow, Andrew Qi, Jenson Andrade-Gordon, Patricia

<120> DNA ENCODING THE HUMAN SERINE PROTEASE T

<130> ORT-1560

<140> 10/041,054

<141> 2002-01-07

<150> 09/386,653

<151> 1999-08-31

<160> 11

<170> PatentIn version 3.3

<210> 1

<211> 1110

<212> DNA

<213> Homo sapiens

<400> 1

gaccacggcc ctgcgcccca gccaggcctg aggacatgag gcggccggcg gcggtgccgc 60
tcctgctgct gctgtgtttt gggtctcaga gggccaaggc agcaacagcc tgtggtcgcc 120
ccaggatgct gaaccgaatg gtgggcgggc aggacacgca ggagggcgag tggccctggc 180
aagtcagcat ccagcgcaac ggaagccact tctgcggggg cagcctcatc gcggagcagt 240
gggtcctgac ggctgcgcac tgcttccgca acacctctga gacgtccctg taccaggtcc 300
tgctgggggc aaggcagcta gtgcagccgg gaccacacgc tatgtatgcc cgggtgaggc 360
aggtggagag caaccccctg taccagggca cggctccag cgctgacgtg gccctggtgg 420
agctggaggc accagtgccc ttcaccaatt acatcctccc cgtgtgcctg cctgacccct 480
cggtgatctt tgagacggc atgaactgct gggtcactgg ctggggcagc cccagtgagg 540
aagacctcct gcccgaaccg cggatcctgc agaaactcgc tgtgcccatc atcgacacac 600

ccaagigcaa cetgetetac agcaaagaca cegagittgg etaccaacec aaaaceatea 660
agaatgacat getgigegee ggettegagg agggcaagaa ggatgeetge aagggegact 720
cgggeggeee cetggigige etegiggite agtegigget geaggegggg gigateaget 780
ggggigaggg etgigeeege eagaacegee eaggigieta cateegigte acegeeeace 840
acaactggat ceateggate ateceeaaac igeagiteea geeagegagg itgggeggee 900
agaagigaga eeeeegggge eaggageeee itgageagag eteigeacee ageetgeeeg 960
ceeacaceat eeigeiggie eteeeagege igeigitigea eeigigagee eeaceagact 1020
cattigtaaa tagegeteet teeteeeete teaaatacee itatiitati tatgittete 1080
ceaataaaaa eeeageetgi gigeeagetg 1110

<210>- 2

<211> 20

<212> DNA

<213> Artificial

<220>

<223> ProtT PCRTP-U PCR primer

<400> 2

gccaggcctg aggacatgag

20

<210> 3

<211> 20

<212> DNA

<213> Artificial

<220>

<223> ProtT PCRTP-L PCR primer

<400> 3

tgcgctggat gctgacttgc

20

<210> 4

<211> 40

<212> DNA

```
<213> Artificial
<220>
<223> ProtT PCTTP-PP primer
<400> 4
                                                       40
ccaggatgct gaaccgaatg gtgggcgggc aggacacgca
<210> 5
<211> 30
<212> DNA
<213> Artificial
<220>
<223> ProtT Xba-U PCR prmer
<400> 5
                                                   30
aggatctaga ggagggcgag tggccctggc
<210> 6
<211> 30
<212> DNA
<213> Artificial
<220>
<223> ProtT Xba-L PCR primer
<400> 6
ggggtctaga cttctggccg cccaacctcg
                                                 30
<210> 7
<211> 290
<212> PRT
<213> Homo sapiens
<400> 7
Met Arg Arg Pro Ala Ala Val Pro Leu Leu Leu Leu Cys Phe Gly
                    10
                                15
         5
Ser Gln Arg Ala Lys Ala Ala Thr Ala Cys Gly Arg Pro Arg Met Leu
      20
                              30
```

Asn Arg Met Val Gly Gly Gln Asp Thr Gln Glu Gly Glu Trp Pro Trp 35 40 45
Gln Val Ser Ile Gln Arg Asn Gly Ser His Phe Cys Gly Gly Ser Leu 50 55 60
Ile Ala Glu Gln Trp Val Leu Thr Ala Ala His Cys Phe Arg Asn Thr 65 70 75 80
Ser Glu Thr Ser Leu Tyr Gln Val Leu Leu Gly Ala Arg Gln Leu Val 85 90 95
Gln Pro Gly Pro His Ala Met Tyr Ala Arg Val Arg Gln Val Glu Ser 100 105 110
Asn Pro Leu Tyr Gln Gly Thr Ala Ser Ser Ala Asp Val Ala Leu Val 115 120 125
Glu Leu Glu Ala Pro Val Pro Phe Thr Asn Tyr Ile Leu Pro Val Cys 130 135 140
Leu Pro Asp Pro Ser Val Ile Phe Glu Thr Gly Met Asn Cys Trp Val 145 150 155 160
Thr Gly Trp Gly Ser Pro Ser Glu Glu Asp Leu Leu Pro Glu Pro Arg 165 170 175
Ile Leu Gln Lys Leu Ala Val Pro Ile Ile Asp Thr Pro Lys Cys Asn 180 185 190
Leu Leu Tyr Ser Lys Asp Thr Glu Phe Gly Tyr Gln Pro Lys Thr Ile 195 200 205

Lys Asn Asp Met Leu Cys Ala Gly Phe Glu Glu Gly Lys Lys Asp Ala 210 215 220 Cys Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Val Gly Gln Ser 235 225 230 Trp Leu Gln Ala Gly Val Ile Ser Trp Gly Glu Gly Cys Ala Arg Gln 255 245 250 Asn Arg Pro Gly Val Tyr Ile Arg Val Thr Ala His His Asn Trp Ile

265 270 260

His Arg Ile Ile Pro Lys Leu Gln Phe Gln Pro Ala Arg Leu Gly Gly 275 280 285

Gln Lys 290

<210> 8 <211> 1130 <212> DNA <213> Artificial

<220>

<223> PFEK-PROTT-HIS fusion protein nucleic acid sequence

<400> 8 60 gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120 gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctat 180 240 getetagagg agggegagtg gecetggeaa gteageatee agegeaaegg aagceaette 300 tgcggggca gcctcatcgc ggagcagtgg gtcctgacgg ctgcgcactg cttccgcaac 360 acctetgaga egtecetgta eeaggteetg etgggggeaa ggeagetagt geageeggga ccacacgcta tgtatgcccg ggtgaggcag gtggagagca accccctgta ccagggcacg 420 atcetecceg tgtgeetgee tgaceceteg gtgatetttg agaeggeat gaactgetgg 540
gteactgget ggggeageee cagtgaggaa gaceteetge cegaacegeg gateetgeag 600
aaactegetg tgeecateat egacacacee aagtgeaace tgetetacag caaagacace 660
gagtttgget accaacecaa aaceateaag aatgacatge tgtgegeegg ettegaggag 720
ggeaagaagg atgeetgeaa gggegacteg ggeggeeeee tggtgtgeet egtgggteag 780
tegtggetge aggeggggt gateagetgg ggtgaggget gtgeeegeea gaacegeeca 840
ggtgtetaca teegtgteae egeeeaceae aactggatee ateggateat eccaaactg 900
cagtteeage cagegaggtt gggeggeeag aagtetagae ateaceatea ceateactag 960
eggeegette cetttagtga gggttaatge ttegageaga catgataaga tacattgatg 1020
agtttggaca aaceacaact agaatgeagt gaaaaaaaatg etttatttgt gaaatttgtg 1080
atgetattge tttatttgta aceattataa getgeaataa acaagttgac 1130

<210> 9

<211> 315

<212> PRT

<213> Artificial

<220>

<223> PFEK-PROTT-HIS fusion protein amino acid sequence

<400> 9

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu Leu 1 5 10 15

Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys 20 25 30

Asp Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45

Asp Asp Lys Ile V 50 55		Ala Leu Glu Glu G	ly Glu Trp Pro
Trp Gln Val Ser Ile 65 70	e Gln Arg Asn C 75	Gly Ser His Phe Cy 80	s Gly Gly Ser
Leu Ile Ala Glu Gl 85	n Trp Val Leu T 90	hr Ala Ala His Cy 95	s Phe Arg Asn
Thr Ser Glu Thr Se 100	er Leu Tyr Gln V 105	/al Leu Leu Gly A 110	la Arg Gln Leu
Val Gln Pro Gly Pi 115		fyr Ala Arg Val A 25	rg Gln Val Glu
Ser Asn Pro Leu T			p Val Ala Leu
Val Glu Leu Glu A 145 150	ala Pro Val Pro I 155	Phe Thr Asn Tyr Ile 160	e Leu Pro Val
Cys Leu Pro Asp P 165	ro Ser Val Ile P 170	he Glu Thr Gly Me 175	et Asn Cys Trp
Val Thr Gly Trp G 180	ly Ser Pro Ser G	_	eu Pro Glu Pro
Arg Ile Leu Gln Ly 195		Pro Ile Ile Asp Thr 05	Pro Lys Cys
Asn Leu Leu Tyr S 210 21			In Pro Lys Thr

Ile Lys Asn Asp Met Leu Cys Ala Gly Phe Glu Glu Gly Lys Lys Asp 240· 225 230 235 Ala Cys Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Val Gly Gln 245 250 255 Ser Trp Leu Gln Ala Gly Val Ile Ser Trp Gly Glu Gly Cys Ala Arg 270 260 265 Gln Asn Arg Pro Gly Val Tyr Ile Arg Val Thr Ala His His Asn Trp 275 · 280 285 Ile His Arg Ile Ile Pro Lys Leu Gln Phe Gln Pro Ala Arg Leu Gly 290 295 300 Gly Gln Lys Ser Arg His His His His His His 305 310 315 <210> 10 <211> 4 <212> PRT <213> Artificial <220> <223> Chromogenic substrate 5 <220> <221> MISC_FEATURE <222> (1)..(1) <223> N-Succinyl-alanine <220> <221> MISC_FEATURE <222> (4)..(4) <223> Phe-p-nitroanilide <400> 10

Xaa Ala Pro Xaa

```
1
```

```
<210> 11
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Chromogenic substrate 6
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-(methoxysuccinyl)-Ala
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Val-p-nitroanilide
<400> 11
Xaa Ala Pro Xaa
```