

第2章 微机原理(8088)

教师: 苏曙光 华中科技大学软件学院

- 第二章 微机原理
 - ■第1节 8088CPU的基本原理
 - ■第2节 8088的运行(执行)环境
 - ■第3节 数字电路、常用门和IC芯片
 - ■第4节 8088CPU外部结构
 - ■第5节 8088CPU总线时序
 - ■第6节 IA-32发展历史

- ●本章重点
 - ■8088内部结构
 - ■8088外部引脚;
 - ■8088内部寄存器;
 - ■8088的存储器组织;
 - ■8088的工作时序
 - ■数字电路回顾:常用门和IC芯片

第1节 8088CPU的基本原理

• 8086/8088 CPU

8086/8088 CPU的特点

- 采用并行流水线工作方式
- 支持多处理器系统
- 片内无浮点运算部件,浮点运算由数学协处理器**8087** 支持(也可用软件模拟)
 - ■注:80486DX以后的CPU均将数学协处理器作为标准部件集成到CPU内部
- 对内存空间实行分段管理

8086/8088 MPU

- ■相同点
 - ◆寄存器: 16位;
 - ◆地址线: 20根, 1MB内存
- ■差异:数据总线,指令队列
 - ◆数据总线
 - □8086: 16根
 - □8088: 8根 (准16位机)
 - ◆指令队列
 - □8086:6字节
 - □8088: 4字节

8088 内部结构: EU和BIU

- EU (Execute Unit, 执行单元): 负责执行指令或运算
- BIU (Bus Interface Unit,总线接口单元):负责读指令和数据

EU功能和内部构成

- 内部构成
 - 1) ALU: 执行基本运算和处理.
 - 2) 一组通用寄存器 + 标志寄存器
 - 3) EU控制系统: 队列控制和时序控制
- 功能:负责执行指令或运算
 - 从指令队列中取指令代码,译码,在 ALU中完成数据的运算,结果的特征保 存在标志寄存器中。

BIU功能和内部构成

- 构成
 - 1)四个段寄存器+ 指令指针IP
 - 2)地址加法器: 段地址和偏移地址相加,形成20位物理地址
 - 3)指令队列缓冲器: 6或4字节。
 - 4)总线控制逻辑:内外总线接口。
- 功能
 - 具有预取指令的功能
 - ◆执行指令的同时从内存取下一 条或几条指令放在队列中。
 - 指令执行顺序
 - ◆顺序指令执行。
 - ◆执行转移指令后:清除队列。 从新地址取指并立即送往执行 单元。

8088工作原理:取指令-执行指令不断循环

8088并行工作方式:流水线

- 指令预取队列的存在使EU和BIU可同时工作
- 2级流水线

FEU	执行指令1	空闲	执行指令2	空闲	空闲	执行指令3
BIU	取指令2	取操作数1	存结果1	取指令3	取操作数	取指令4
总线	忙碌	忙碌	忙碌	忙碌	忙碌	忙碌

第2节8088的运行(执行)环境

- ●8088的运行(执行)环境
 - ■寄存器
 - ■内存空间
 - ■堆栈 (Stack)

14个基本寄存器

- 8个通用寄存器
 - **■** General Registers
 - ■数据和地址寄存器各4个
- 1个指令指针寄存器
 - IP: Instruction Point
- 1个状态标志寄存器
 - **■** Flags Register;
- 4个段寄存器
 - **■** Segment Registers
 - **■** CS,DS,SS,ES

15		10	9	8	7	6	5	4	2	0
		0F	DF	IF	TF	SF	ZF	AF	PF	CF

4个数据相关的寄存器:AX,BX,CX和DX

- ●常用来存放参与运算的操作数或运算结果
- 16位数据寄存器,分为8个8位寄存器

■ AX: AH, AL

■ BX: BH, BL

■ CX: CH, CL

■ DX: DH, DL

● 8位可以单独操作位

数据寄存器

4个数据相关的寄存器:AX,BX,CX和DX

●习惯使用

■AX: 累加器。多用于存放运算结果及与外设信息等;

■BX: 基址寄存器。常用于存放内存地址;

■CX: 计数寄存器。循环或串操作存放循环或重复次数;

■DX: 数据寄存器。在32位乘除法运算存放高16位数;

	15 8	7 0	
\mathbf{AX}	AH	AL	累加器
BX	вн	BL	基址
$\mathbf{C}\mathbf{X}$	СН	CL	计数
DX	DH	DL	数据

数据寄存器

4个地址相关的寄存器:SP,BP,SI,DI

● SP,BP,SI,DI: 段内寻址时存放偏移地址

SP (stack pointer) ——堆栈指针寄存器

用来指示栈顶的偏移地址,必须与SS段寄存器联合使用确定实际地址。

BP(base pointer)——基址指针寄存器

可以与SS寄存器联合使用来确定堆栈段中某一存储器单元地址。

SI——Source Index Register 源变址寄存器。

DI——Destination Index 目的变址寄存器。

- ◆一般与DS或ES联合使用,寻址数据段,具有自增1的功能。
- ◆例: MOV AX, [SI]

4个地址相关的寄存器:SP,BP,SI,DI

● 串处理指令中SI、DI分别在数据段DS和附加段ES中寻址。

● 例:

• • • • • •

MOV SI, 2000H

MOV DI, 3000H

MOV CX, 100H

CLD

MOVSB

.

1个指令指针寄存器:IP

- 存储CPU将要执行的下一条指令的偏移地址;
- CPU在执行完一条指令之后,会自动将下一条指令的偏移地址存入到IP中。

1个状态标志寄存器:PSW

● 16位,包含9个标志位(6个状态位,3个控制位)

- ■状态位:由算术、逻辑运算结果结果自动设置
 - ◆作为条件转移指令的转移控制条件
- ■控制位:由用户或程序直接或间接设置。
- ■状态位的例子
 - ◆OF(Overflow Flag),溢出标志位
 - □功能: 标示符号数的运算结果是否溢出
- ■控制位的例子
 - ◆DF(Direction Flag),方向位
 - □功能:用于控制字符串操作的地址步进方向

4个段寄存器:CS,DS,SS,ES

● 段寄存器和其他寄存器组合起来指向某个内存单元

数据存放规律

• 字节数据

■一单元存放一个数

例子: E4H 放在 00001H单元;

● 字数据: 2个字节

■2单元: "低对低,高对高"

■字的地址: 2 个单元中的低地址

例子: 76E4H放在00001H地址中

● 机器指令(机器码): 多个字节

■按字节顺序地址递增存放

如: MOV BX,AX;89C3H,4H单元

● 字符串: 多个字节

■按字节顺序地址递增存放,同机器指令。

0 0000Н	23Н
0 0001H	EAH
0 0002Н	76H
0 0003H	10100101
0 0004H	89H
0 0005H	СЗН
0 0006H	<i>21H</i>

FFFFH 41H FFFFH 42H

●练习题

■00002H单元存放的字节/字/双字节指令为多少?

<i>0 0000H</i>	<i>23H</i>								
0 0001H	<i>Е4H</i>								
0 0002Н	76H								
0 0003 <i>Н</i>	1	0	1	0	0	1	0	1	
0 0004 <i>H</i>	89H								
0 0005H	СЗН								
0 0006 <i>H</i>	21Н								

 F FFEH
 41H

 F FFFH
 42H

堆栈

● 例子: 子程序调用的过程

- ■调用发生后,主程序在CPU中的运行环境被破坏。
- ■调用返回时,必须恢复主程序之前的运行环境

- 堆栈 (STACK)
 - 在子程序调用和中断服务时存储参数和现场数据;
 - ■特殊内存
 - ◆ "后进先出"(LIFO)存储
 - ◆堆栈一端固定(栈底),另一端活动(栈顶),数据只允许从 栈顶存取(进或出)
 - ◆栈指针: 指示栈顶位置(Stack Poniter, SP)
 - ■堆栈的伸展方向
 - ◆栈底的地址大, 栈顶的地址小
 - 栈的操作(PC)
 - ◆入栈:将一个数存入栈顶,并改变SP(变小)
 - ◆出栈: 从栈顶读出一个数据,并改变SP (变大)

- 入栈操作
 - ■PUSH SRC; SRC 代表寄存器或存储单元地址
 - ■功能:将寄存器或存储单元中的一个字压入堆栈
 - ■操作:
 - ◆ "先减后入": SP-1 → SP, 字高位 → [SP]
 - SP-1 → SP, 字低位 → [SP]
 - ■结果: SP-2, 数据高对高, 低对低存放。

- 入栈操作
 - PUSH SRC; SRC 代表寄存器或存储单元地址
 - ■功能:将寄存器或存储单元中的一个字压入堆栈
 - ■操作:
 - ◆ "先减后入": SP-1 → SP, 字高位 → [SP]
 - SP-1 → SP, 字低位 → [SP]
 - ■结果: SP-2, 数据高对高, 低对低存放。
 - 例: AX=1122H, BX=3344H
 - SS=095BH, SP=0040H
 - 执行: PUSH AX ;SP=?
 - PUSH BX ;SP=?

- 入栈操作
 - ■PUSH SRC; SRC 代表寄存器或存储单元地址
 - ■功能:将寄存器或存储单元中的一个字压入堆栈
 - ■操作:
 - ◆ "先减后入": SP-1 → SP, 字高位 → [SP]
 - SP-1 → SP, 字低位 → [SP]
 - ■结果: SP-2, 数据高对高, 低对低存放。
 - 例: AX=1122H, BX=3344H

SS=095BH, SP=0040H

执行: PUSH AX ;SP=003EH

PUSH BX ;SP=003CH

- 出栈操作
 - POP DST; DST 代表寄存器或存储单元地址
 - ■功能:将栈顶一个字传送到寄存器或存储单元中
 - ■操作
 - ◆ "先出后加": [SP] → 字低位, SP+1 → SP
 - [SP] → 字高位 , SP+1 → SP
 - ■结果: SP+2, 数据低对低,高对高存放
 - ■例:上述前一例子中再执行:

- Flag寄存器出/入栈
 - ■命令格式

PUSHF; F入栈, SP-2 → SP

POPF:F出栈, SP+2→SP

- ■功能: 保护和恢复状态标志寄存器Flag
- 注意:
 - ■栈操均以字为单位,下列指令均错:

PUSH AL POP DH

- ■PUSH与POP成对,避免堆栈溢出或程序出错;
- ■堆栈实为内存区,还可按数据区的方法对其操作。

第3节数字电路、常用门和IC芯片

- ●本节基本内容
 - ■数字电路基本概念
 - ■常用门电路
 - ■常用IC芯片

- 电路中两类信号
 - ■模拟信号: 在时间上和幅值上均连续的信号
 - ■数字信号: 在时间上和幅值上均离散的信号

- 两类电路
 - ■模拟电路:处理模拟信号的电路
 - ■数字电路:处理数字信号的电路

数字电路中的基本概念

- 0和1: 两个数字,高低两种电平,两种逻辑,...
- 电路中半导体管工作在开关状态
 - ■二极管工作在导通态和截止态
 - ■三极管工作在饱和态和截止态
- ●逻辑运算
 - ■基本逻辑运算
 - ◆与、或、非。
 - ■复杂逻辑运算
 - ◆通过三种基本逻辑运算来实现。

复合逻辑运算

- 基本逻辑运算的复合叫做复合逻辑运算。而实现复合逻辑运算的电路叫复合逻辑门。
 - ■与非门
 - ■或非门
 - ■异或门
 - ■同或门

其它逻辑门:三态门

- 三态门(简称TS门,有▽符号)
 - ■0、1、Z(高阻状态或禁止态)。
- 在普通门上增加一个使能端(EN)
 - ■EN有效:门按原逻辑工作,输出0或1;
 - ■EN无效:门输出Z(高阻态)。
- 例:三态门的两个例子

EN =1: 使能

EN = 0: 失能, 输出Z态

EN =0: 使能

EN = 1: 失能,输出Z态

三态门的典型应用

- 数据传输方向控制
- ●总线存取控制
- ●模拟开关

数据传输方向控制

● A和B间数据传输方向可选,利用EN控制传输方向?

- 思考:
 - ■EN=1时,数据能从 <u>B</u>端传到 <u>A</u>端;
 - ■EN=0时,数据能从_A_端传到 B_端;

数据传输方向控制

● A和B之间传输方向可选: D控制方向,OE使能端。

- 思考:
 - OE = <u>1</u> 时, A和B之间高阻
 - OE = <u>0</u> 时, A和B之间连通
 - **◆D = 0** 时,数据能从 <u>B</u>端传到 <u>A</u>端;
 - ◆D = 1 时,数据能从 A 端传到 B 端;

总线存取控制

数据总线

多个设备连在数据总线上,必须控制存取权限,任何时候只能让最多 1个设备逻辑连接(占用)总线

ENi = 0: 设备i脱离总线(Z态)

ENi = 1: 设备i逻辑连上总线

模拟开关

- 例子: 单刀双掷开关
 - ■A,B输入,F=A或B?
- ●思考
 - ■若C=0, F = A还是=B?
 - ■若C=1, F = A还是=B?
- ●答案
 - $\blacksquare C = 0$
 - ◆ TG_1 通,F = A;
 - $\blacksquare C = 1$
 - ◆ TG_2 通,F = B。

触发器——D触发器

● 触发器的功能和特点

- ■能储存一位二进制信息的单元电路。
- ■用于信号保持
- ■用于导通开关
- ■特点: 0-1双稳态电路

■联系: 触发器是在门电路的基础上引入反馈构成的。

■区别:门是组合电路,触发器是时序电路。

● 触发器的种类

■基本RS触发器、同步RS触发器、主从型JK触发器、维持阻塞型D触发器、T和T'触发器等。

●工作方式

- ■CP上升沿锁存D (阻塞D),上升沿后Q端保持不变。
- ■触发器在CP脉冲的上升沿产生状态变化:Q=D。而在上升沿后,D端信号变化对触发器输出状态没有影响。触发器的次态取决于CP脉冲上升沿时的D信号,

● CP下降沿触发的触发器

D Q -

● 带清零和置1端的D触发器

● R: 置0端

● S: 置1端

- D触发器集成电路
 - ■74HC74
 - ■2D触发器

锁存器——D锁存器

- ●和触发器有类似的功能
 - ■具有0和1两个稳状,能自行保持。
 - ■能存储一位二进制码。
- ●区别
 - ■锁存器对电平敏感,触发器对边沿敏感

- *E*=1时 Q = *D*
- E=0时 Q不变

D锁存器的功能表

E	D	Q	$ar{oldsymbol{arrho}}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

E=1时 Q=DE=0时 Q 不变

$$\frac{Q}{\bar{Q}}$$

锁存器74HC373:8D三态锁存器

- LE (Lock Enable) LE=1: Q = D; LE=0: Q不变
- OE (三态输出使能): O输出使能, 1输出失能

Intel 8282: 三态锁存器

DI: 输入;

DO:输出

STB: 选通控制(等同373的LE)

OE:输出使能

异步清零的锁存器: 74LS273

D: 输入; Q: 输出 CLK: 控制 CLR: Clear

具有异步清零的 上升沿锁存器

74LS244 ——缓冲器(实质是三态开关)

			_
	1A1	171	
	1A2	1Y2	
	1A3	173	
	1A4	1Y4	
	2A1	2Y1	
	2A2	2Y2	
	2A3	2Y3	
	2A4	2Y4	
<u> </u>	1Ğ		
6	2Ğ		
	TAT COAA		
	74LS244		

$$1\overline{G} = 0$$
: $1Y = 1A$

$$1\overline{G} = 1: 1Y = Z$$

$$2\overline{G} = 0$$
: $2Y = 2A$

$$2\overline{G} = 1: 2Y = Z$$

特点:

8位单向缓冲器 双4位分两组 输出与输入同相

74LS245 ——缓冲器(实质是三态开关)

8位双向缓冲器 控制端E低电平有效 输出与输入同相

E: 低电平导通

DIR: 决定传输方向

DIR=1: $A \rightarrow B$

DIR=0: $B \rightarrow A$

缓冲器—— Intel 8286 (实质是三态开关)

8位双向缓冲器 控制端OE低电平有效 输出与输入同相

E: 低电平导通

T: 决定传输方向

DIR = 1: $A \rightarrow B$

DIR = 0: $B \rightarrow A$

数据收发器

基本芯片--译码器

- 译码器
 - 功能:将某个二进制数据的含义"翻译"出来,指示唯一的某1个事件有效。
 - ■结构:n位输入脚,2ⁿ个输出脚(每脚对应1个事件)

■特点:每次译码,仅唯一的1个输出引脚为有效电平

◆输入: AB = [00, 01, 10, 11]

◆输出: Y0Y1Y2Y3= 0111, 1011, 1101, 1110

3-8译码器

- 结构: 3个输入引脚,8个(=2³)输出引脚
- ●功能:输入3位二进制代码A₂A₁A₀(000~111),在唯一的某个输出引脚上出现有效电平(低)。

74LS138 ——3-8译码器

74LS138的功能表

	输	入			输			出		
\mathbf{S}_1	$\overline{S}_2 + \overline{S}_3$	$\mathbf{A_2}\mathbf{A_1}\mathbf{A_0}$	$\overline{Y_0}$	$\overline{Y_1}$	$\overline{Y_2}$	\overline{Y}_3	\overline{Y}_4	\overline{Y}_{5}	\overline{Y}_{6}	\overline{Y}_7
×	1	×××	1	1	1	1	1	1	1	1
0	×	×××	1	1	1	1	1	1	1	1
1	0	0 0 0	.0	1	1	1	1	1	1	1
1	0	0 0 1	1	•0	1	1	1	1	1	1
1	0	0 1 0	1	1	0,	1	1	1	1	1
1	0	0 1 1	1	1	1	.0	1	1	1	1
1	0	1 0 0	1	1	1	1	0,	1	1	1
1	0	1 0 1	1	1	1	1	1	.0	1	1
1	0	1 1 0	1	1	1	1	1	1`	0,	1
1	0	1 1 1	1	1	1	1	1	1	1	0

禁止 译码

译码工作

译中为0

高电平 有效 低电平 有效

常用集成门电路(TTL系列)

序号	型号	名称	主要功能
1	74LS00	四2输入与非门	
2	74LS02	四2输入或非门	
3	74LS04	六反相器	
4	74LS05	六反相器	OCÏ
5	74LS08	四2输入与门	
6	74LS10	三3输入与非门	
7	74LS14	六反相器	施密特触发
8	74LS20	双4输入与非门	
9	74LS21	双4输入与门	
10	74LS30	8输入与非门	
11	74LS32	四2输入或门	
12	74LS64	4-2-3-2输入与或非门	
13	74LS86	四2输入异或门	
14	74LS125	四总线缓冲器	三态输出

第4节 8088微处理的外部结构

8088的电气特性

- 电气特性
 - ■电源: 5V ± 10% 的条件下能够工作;
 - ■输入特性:

```
低电平 0.8 V (0)
```

- 高电平 2.0 V (1)
- ■输出特性:

```
低电平 0.45V (0)
```

高电平 2.4 V (1)

8088的外部引脚

- ●外部引脚的属性
 - ■引脚的功能
 - ■是否复用
 - ■信号的流向
 - ■有效电平
 - ■三态能力

8088的外部引脚——辅助引脚:电源,时钟,复位

- 电源管脚
 - VCC(40)、GND(1/20)
 - $5V \pm 10\%$
- 时钟管脚
 - **■** CLK(19)
 - ■外接4.77MHz外部时钟
- 复位管脚
 - **■** RESET(21)
 - ■正脉冲复位(4T)
 - ◆标志清0: Flag=0000H;
 - ◆DS,SS,ES复位为0H;
 - ◆CS:FFFFH,IP复位为0H;
 - □ FFFF0H放第一条指令。

8088的外部引脚——功能引脚

- 读、写信号RD、WR
- 端口/存储器选择信号M/IO
- 数据传送/接收信号DT/R
- 数据线AD7~AD0
- 数据允许DEN
- 地址线A19~A0
- 地址锁存ALE
- TEST
- READY
- INTR
- INTA
- NMI

8088的外部引脚

● RD(32) ——读(输出,三态)	地 A14 2	40 Vcc(+5V) 39 A15
■读I/O端口或存储器时,RD输出低	A13	$38 \longrightarrow A16 / S3$
电平; 否则为高或高阻态。	A12 4	37 A17 / S4
电1; 口州川町以间归心。	A11 5	36 A18 / S5
IN AL,25H ;读I/O	A10 6	$35 - \frac{\text{A19}}{\text{S6}}$
	A9 7	8 34 SS0 (HIGH)
MOV AX,[BX] ; 读MEM	A8 - 8	$33 \longrightarrow MN / \overline{MX}$
● WR(29) ——写(输出,三态)	AD7 = 9	\bigcirc 32 \square RD
	AD6 10	31 HOLD ($\overline{RQ}/GT0$)
■写I/O端口或存储器时,WR输出低	AD5 = 11	8_{30} HLDA (RQ/GT1)
电平; 否则为高或高阻态。	AD4 = 12	29 WR (LOCK)
	AD3 = 13	$\frac{\mathbf{R}}{28} = \overline{\mathbf{M}} / \mathbf{IO} (\overline{\mathbf{S2}})$
OUT 25H,AX ; 写I/O	AD2 14	$27 \longrightarrow DT / \overline{R} (\overline{S1})$
MOV [BX],AX ; 写MEM	AD1 = 15	$26 \longrightarrow \overline{DEN} (\overline{S0})$
	AD0 = 16	25 ALE (QS0)
	NMI 17	24 INTA (QS1)
问题: 执行: MOV BX, AX ?	INTR 18	23 TEST
	CLK 19	22 READY
	地 20	21 RESET

8088的外部引脚

读写信号和IO/M信号的组合

●由IO/M、WR和RD生成存储器读、存储器读写、I/O 读、I/O写等4种信号(低电平有效)

输出/低电平有效	IO/M	WR	RD
存储器读(MEMR)	低	1	低
存储器写(MEMW)	低	低	1
I/O读(IOR)	高	1	低
I/O写(IOW)	高	低	1

读写信号和IO/M信号的组合——实现IO读信号

● 通过RD、WR、IO/M得到IO读信号(IOR)

		IO/M	WR	RD
	MEMR	低	1	低
	MEMW	低	低	1
→	IOR	高	1	低
	IOW	高	低	1

读写信号和IO/M信号的组合——实现IO写信号

● 通过RD、WR、IO/M得到IO写信号(IOW)

		IO/M	WR	RD
	MEMR	低	1	低
	MEMW	低	低	1
	IOR	高	1	低
—	IOW	高	低	1

课堂练习——实现存储器读/写信号

● 通过RD、WR、IO/M得到存储器读/写信号(MEMR/MEMW)

		IO/M	WR	RD
→	MEMR	低	1	低
→	MEMW	低	低	1
	IOR	高	1	低
	IOW	高	低	1

●画出它们各自或和与两种形式的电路图

读写信号和IO/M信号的组合——实现存储器读信号

● 通过RD、WR、IO/M得到存储器读信号

		IO/M	WR	RD
→	MEMR	低	1	低
	MEMW	低	低	1
	IOR	高	1	低
	IOW	恒	低	1

读写信号和IO/M信号的组合——实现存储器写信号

● 通过RD、WR、IO/M得到信号存储器写信号

	IO/M	WR	RD	
MEMR	低	1	低]
MEMW	低	低	/	
IOR	高	1	低	
IOW	高	低	1	

读写信号和IO/M信号的组合——综合实现存储器和IO读写信号

● 通过单一电路同时实现存储器和I/0的读写4个信号

- DT/R(27)
 - ■数据传送/接收信号(出,三态)
 - 向I/O或存储器传送数据,输出高OUT 25H, AL ; 写I/O

MOV [BX],AX ;写MEM

- ■从I/O或存储器接收数据,输出低
 - IN AL,25H; 读I/O
 - MOV AX,[BX]; 读MEM
- ■其它情况下处于高阻状态

地

20

RESET

● A19~A8,AD7~AD0地址线(出,三态) A14 **Vcc(+5V) A15** 39 ■读写I/O或存储器,出现地址信息 **A13** A16 / S3 38 AL, 25H ;读I/O **A12** IN A17 / S4 37 **A11** A18 / S5 **36** OUT 25H, AL 写I/O A19 / S6 **A10** 35 MOV BX, 0000H SSO (HIGH) **A9** 34 AL, [BX];读MEM MOV MN / \overline{MX} **A8** 33 MOV [BX], 32H ; 写MEM AD7 **RD 32 HOLD** (RQ/GT0) AD6 10 31 ■AD7~AD0数据和地址复用 HLDA (RQ/GT1) AD5 **30** ◆先传送地址,后传送数据。 WR (LOCK) AD4 12 29 ◆地址20位 13 8 $\overline{\mathbf{M}}/\mathbf{IO}(\overline{\mathbf{S2}})$ AD3 28

AD2

AD1

AD0

NMI

INTR

CLK

地

14

15

16

18

19

20

26

23

22

DT / R (S1)

ALE (QS0)

INTA (QS1)

 $\overline{\text{DEN}}$ ($\overline{\text{S0}}$)

TEST

READY

RESET

- ◆数据8位
- ALE(25)地址锁存信号(出,三态)
 - 当A_{19~0}出现地址,产生正脉冲。
 - ■利用该脉冲锁存地址

● DEN(26)	数据・	允许 (虫	三太\	地	4	1		40	Vcc(+5V)
	双刀口。		· — · · · · /	A1 4	ļ <u> </u>	2		39	A15
■低电平	Ž: Al	D _z 。传诗	的是数:	据 。 A1	3	3		38	A16 / S3
		. •		Al	2	4		37	A17 / S4
• A19/S6-A	16/S	3仅在T1	输出地均	止,其他时1		5		36	A18 / S5
间输出状	太S	-S-		A1 0)	6		35	A19 / S6
	- 1-1	D3 D = a a a a				7	8	34	SSO (HIGH)
■ S6: 作	1代,清	表示8088	3当前与.	A9 总线相连 _{A8}		8	U	33	$\mathbf{M}\mathbf{N}/\overline{\mathbf{M}\mathbf{X}}$
■ S5: 箱	出。	PSW中制	5允许标:	去狀太 AD	7	9		32	\overline{RD}
	•	,		$\mathbf{A}\mathbf{D}$	6	10	U	31	HOLD (RQ/GT0)
■ S4, S3	: 当	前正在侵	卢用的段	寄存器。AD	5		8	30	■ HLDA (RQ/GT1)
ŕ				AD		12	U	29	WR (LOCK)
	S_4	S_3		AD		13	Q	28	$\overline{\mathbf{M}}/\mathbf{IO}(\overline{\mathbf{S2}})$
_	-	D 3		AD			O		
	0	0	ES			14		27	
		-		AD		15		26	$\overline{\mathbf{DEN}}$ (S0)
	0	1	SS	AD	0 💆	16		25	$\underline{\underline{}}$ (QS0)
-	1	Λ	CC	NM	Ι	17		24	INTA (QS1)
	1	0	CS	INT	R	18		23	TEST
	1	1	DS	CL	~	19		22	READY

地

20

RESET

8088系统总线的形成

8088系统总线的形成

- ●主要解决
 - ■实现地址总线,数据总线和控制总线
 - ◆地址与数据的分离
 - ◆地址锁存

8088总线生成的典型实现电路

8088总线生成的典型实现电路

- ●电路实现方案
 - ■用3片8位锁存器(例74LS373)实现地址锁存。ALE 为锁存控制信号, OE=0输出地址;
 - ■用1片双向缓冲器(三态门,例如74LS245)用作数据 总线隔离,DT/R控制方向,DEN作为使能信号;
 - ■控制信号由8088直接产生。

8088总线生成的典型实现电路

- AD_{7~0}解复用和地址锁存
 - ■先传送地址,后传送数据

- ①总线出现地址后,在ALE下降沿,地址被373锁存;
- ②总线出现地址时, DEN高电平, 245失能, 数据总线被禁止。
- ③总线出现数据时, DEN变低, 245使能, 数据总线开通。
- 数据传送方向的确定
 - ■数据输出时DT/ \bar{R} 高电平,245的DIR高电平: A \longrightarrow B
 - ■数据输出时DT/R高电平,245的DIR高电平:B ← A

- INTR(18, 中断请求信号, 入)
 - ■高电平有效
 - ■外设发来的可屏蔽中断请求信号。
- INTA(24, 中断请应答信号, 出)
 - ■低电平有效
 - ■向外设回应的中断应答信号。
 - ■连续2个负脉冲
- NMI(17, 非屏蔽中断请求信号, 入)
 - ■非屏蔽中断请求信号
 - ■高电平有效

- READY (22, 准备就绪信号,入)
 - ■高电平有效
 - ■存储器或I/O口准备好时将该信号 置为高电平。
- TEST(23, 测试信号,入)
 - ■低电平有效
 - ■执行WAIT指令时CPU监视TEST端, 为低电平则执行WAIT后面的指令; 为高时CPU空转。
 - ■用来与外设同步。

● SS0(34, 系统状态, 出)

IO/M	DT/R	SSO	Characteristics
1(HIGH)	0	0	Interrupt Acknowledge
1	0	1	Read I/O Port
1	1	0	Write I/O Port
1	1	1	Halt
0(LOW)	0	0	Code Access
0	0	1	Read Memory
0	1	0	Write Memory
0	1	1	Passive

8088的两种工作模式

- 最小模式
 - ■构成小规模的应用系统——单处理器系统
 - ■8088本身提供所有的系统总线信号
- 最大模式
 - ■构成较大规模的应用系统——多处理器系统
 - ◆例如可以接入数值协处理器8087
 - ■控制信号较多
 - ◆结合总线控制器8288形成系统总线号

8088的两种工作模式

- 两种模式利用MN/MX引脚区别
 - ■MN/MX接高电平为最小模式
 - ■MN/MX接低电平为最大模式
 - ■硬件决定工作方式
- 两种模式内部操作没有区别
 - ■本书:最小模式
 - ■IBM PC/XT:最大模式

第5节8088处理器时序和总线周期

8088处理器的时序

- 时序概念 (Timing)
 - ■时序是指信号随时间和事件变化的顺序或规律。

- ■可用时序描述CPU通过总线对外实施的各种操作(总线操作):
 - ◆存储器读操作
 - ◆I/0读操作
 - ◆存储器写操作
 - ◆I/0写操作
 - ◆中断响应操作
 - ◆总线请求及响应操作

和时序相关的几个概念

- ●周期
 - ■时钟周期 | 总线周期 | 指令周期
- 时钟周期(Clock Cycle)
 - ■时钟的周期,时钟频率的倒数。8088: 4.77MHz
- 总线周期 (Bus Cycle)
 - ■CPU通过总线与外部进行基本操作(一次数据交换) 的过程
 - ■I/O读或写总线周期,存储器读或写总线周期,...
- 指令周期 (Instruction Cycle)
 - ■取指、译码、读写操作数到执行完成的过程
 - 指令周期 > 总线周期 > 时钟周期

- 总线周期(即总线操作)产生的例子
 - ■指令取指阶段:存储器读总线周期(读取指令代码)
 - ■源操作数是存储单元的指令:存储器读总线周期
 - ■目的操作数是存储单元的指令:存储器写总线周期
 - ■执行IN指令: I/O读总线周期
 - ■执行OUT指令: I/O写总线周期
 - ■CPU响应可屏蔽中断:中断响应总线周期
- 空闲总线周期
 - ■CPU不执行任何存储单元或I/O操作,则执行空闲周期T_i(Idle)

总线周期的构成

- (基本)总线周期需要4个时钟周期: T1、T2、T3和T4
 - ■时钟周期也被称作"T状态" (T State)
 - ■空闲周期T: 空转,2个总线周期之间插入。
 - ■等待周期Tw: 用于延长总线周期,插入T3和T4之间

CPU和外设操作的同步:READY,等待周期Tw

- READY (22, 准备就绪信号,入)
 - ■高电平有效
 - MEM或I/O准备好时将该信号置高
 - CPU在T3期间采样READY信号
 - ◆1. T3期间检测READY是否有效?
 - ◆2. 如果READY无效,在T3和T4间插一个等效T3的Tw状态,转1
 - ◆3. 如果READY有效,执行完T3后AD4 进入T4。

同步:T3和T4间插入等待状态Tw

- ●基本的总线周期
 - ■存储器读
 - ■存储器写
 - ■I/0端口读
 - ■I/0端口写
 - ■中断响应

存储器写总线周期

I/O写总线周期

存储器读总线周期

I/O读总线周期

第6节 IA-32发展历史

IA-32的发展历史

- IA-32微处理器是8086/8088的延伸
 - ■功能扩展
 - ■性能扩展

● 1.从16位扩展为32位

■8086: 16位,内存范围64K。

■80386: 32位,内存范围4G。(1985年)

3	1	16 15	8	7 0	
EAX			АН	AL	
EBX			ВН	BL	
ECX			СН	CL	
EDX			DH	DL	
ESI			SI		
EDI			DI		
EBP		ВР			
ESP			SP		
EIP			IP		
FLAGS			FLAGS		

15	0
CS	代码
SS	堆栈
DS	
ES	2 2000 000 000 000
FS	
GS	

- 2.从实模式至保护模式
 - ■从80286开始,在80386中真正完善保护模式。
 - ■保护模式
 - ◆保护地址模式
 - ◆虚拟地址存储管理方式
 - ◆提供存储管理单元(MMU)
 - ◆增加支持多任务的指令。
 - ◆采用多级地址映射,把逻辑地址映射到物理地址。

- 3.浮点支持
 - ■工程应用、图形处理、科学计算等
 - ■自80486芯片开始集成x87(及其增强)浮点单元。

- 4.MMX技术
 - ■影像、语音、通信等处理: 计算密集,矩阵运算
 - ■MMX增设57条指令,程序执行效率提高。
 - ■例:利用逻辑运算实现两幅图像的合成。

● 5.SIMD: 单指令流多数据流

PADDB mm1, mm2

矢量相加,每项一个字节

性能提高

- 1. 流水线技术
 - ■提高操作的并行性

- 2. 片内缓存(Cache)
 - ■程序局部性
 - ■提高内存访问效率

当前处理器实现方式的演化

total = 0
for i = 1 to N loop
 total += M[i]
end loop

通用处理器

专用处理器

单用途处理器

- ●典型的IA-32结构
 - **■**1.8088/8086
 - **2**. 80386
 - ■3.奔腾 (Pentium)
 - ■4. Intel超线程处理器
 - ■5. Intel多核处理器

1.8088

● 8位CPU: 寄存器16位;

● 20根地址线: 寻址1MB内存;

2.80386

- IA-32系列第一个32位处理器。
- 引入32位寄存器。
- 提供虚拟8086方式
 - ■实模式 | 保护模式
 - ■虚拟: 在"保护模式"下提供"实模式"程序运行 环境
- ●能支持4GB内存。

3.80486

- 第一次: 指令执行采用流水线(5级)
- 第一次:引入缓存(CACHE)
- 第一次:引入 FPU (浮点处理单元)

4. 奔腾 (Pentium) (1995)

- 增加第二条流水线, 达到超标量性能。
 - ■Pentium II (引入MMX)
 - ■Pentium II Xeon (至强)
 - ■Celeron (赛扬)
 - ■Pentium III (引进流SIMD扩展,即SSE)
 - ■Pentium III Xeon (至强)
 - ■Pentium 4 (基于Intel NetBurst微结构)

超标量(Super Scalar)技术

● 超标量(Super Scalar)技术:

是RISC采用的有一种处理技术,是指在一个时钟周期内CPU可以执行一条以上的指令。它通过内装多条流水线来同时执行多个处理,其实质就是以空间换取时间。

5. Intel超线程处理器

- 超线程技术(Hyper-Threading,简称"HT")
 - ■HT利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器能支持线程级并行计算。
- 双核技术是CPU含两个硬核实现多线程。