Parametric Linkage Analysis

Two-point linkage analysis:

Analysis of linkage between a disease gene and a marker gene

Goals:

- 1. Estimation of the recombination fraction θ between marker and disease locus
- 2. Testing the null hypothesis H_0 : $\theta=1/2$ (i.e., marker and disease locus are unlinked) against the alternative hypothesis H_1 : $\theta<1/2$ (i.e., marker and disease locus are linked)

Parametric Linkage Analysis

Method:

- Sample of families with the disease (i.e., one or more affected individuals in each family)
- Calculation of the likelihood $L_i(\theta \mid y_i)$ of pedigree i
- Likelihood of the whole sample: $\prod_{i=1}^{n} L_i(\theta \mid y_i)$
- Estimation of θ :

$$\widehat{\theta} = \arg\max_{\theta \in [0, 1/2]} \prod_{i=1}^{n} L_i(\theta \mid y_i) = \arg\max_{\theta \in [0, 1/2]} \sum_{i=1}^{n} \ln L_i(\theta \mid y_i)$$

• Testing of H_0 :

$$Z(\theta) = \log_{10} \frac{\prod_{i=1}^{n} L_i(\theta \mid y_i)}{\prod_{i=1}^{n} L_i(\theta = 1/2 \mid y_i)} = \sum_{i=1}^{n} \log_{10} \frac{L_i(\theta \mid y_i)}{L_i(\theta = 1/2 \mid y_i)}$$

 $(Z(\theta))$: lod score, $Z(\widehat{\theta})$: maximum lod score)

Requires knowledge of

- 1. disease model
 - number of alleles at the disease locus (usually: two), frequencies p_i of the alleles at the disease locus
 - penetrance parameters f₂, f₁, f₀
 (f_i is the conditional probability that an individual is affected given his/her genotype at the disease locus contains i disease alleles)
- 2. parameters related to the marker locus
 - ullet number and frequencies q_i of alleles at the marker locus
 - relationship between marker genotype and marker phenotype

$$y = (y_1, \ldots, y_I)$$
:

 y_j describes observed marker and disease phenotypes of individual j

$$L(\theta \mid y)$$
:

probability of observing y, given θ and the pedigree structure (and assuming all model parameters f_i , p_i , q_i to be known)

 \Rightarrow

$$L(\theta \mid y) = \sum_{g \in \mathcal{G}} P_{\theta}(y,g) = \sum_{g \in \mathcal{G}} P_{\theta}(y \mid g) \cdot P_{\theta}(g) \tag{1}$$
 with \mathcal{G} denoting the set of all joint marker-disease genotypes (including

with \mathcal{G} denoting the set of all joint marker-disease genotypes (including phase)

Founders are pedigree members without parents in the pedigree; \mathcal{F} denotes the set of founders in the pedigree.

Non-founders are pedigree members with parents in the pedigree. If individual j is a non-founder, then let F_j and M_j denote the father and mother of individual j.

Assumption 1: Genotypes of founders are assumed to be independent

$$\Rightarrow P_{\theta}(g) = \prod_{j \in \mathcal{F}} P_{\theta}(g_j) \cdot \prod_{j \notin \mathcal{F}} P_{\theta}(g_j \mid g_{F_j}, g_{M_j})$$
 (2)

Assumption 2:

a) y_1, \ldots, y_I are independent conditional on g_1, \ldots, g_I

b)
$$y_j$$
 only depend on g_j , i.e., $P_{\theta}(y_j \mid g_1, \dots, g_I) = P_{\theta}(y_j \mid g_j)$

$$\Rightarrow \qquad P_{\theta}(y \mid g) = \prod_{j=1}^{I} P_{\theta}(y_j \mid g_j) \tag{3}$$

 \Rightarrow

$$L(\theta \mid y) = \sum_{g \in \mathcal{G}} \left[\prod_{j=1}^{I} P(y_j \mid g_j) \right] \cdot \left[\prod_{j \in \mathcal{F}} P(g_j) \right] \cdot \left[\prod_{j \notin \mathcal{F}} P_{\theta}(g_j \mid g_{F_j}, g_{M_j}) \right]$$

(obtained from (1) by inserting (2) and (3) and by noting that $P(y_j \mid g_j)$ and, for $j \in \mathcal{F}$, $P(g_j)$ does not depend on θ)

Calculation of the pedigree likelihood: genotype elimination

Let $\mathcal{G}^* := \{g \in \mathcal{G} : \prod_{j=1}^I P(y_j \mid g_j) > 0\}$ denote the set of genotypes being compatible with the observed phenotype y

$$\Rightarrow$$

$$L(\theta \mid y) = \sum_{g \in \mathcal{G}^{\star}} \left[\prod_{j=1}^{I} P(y_j \mid g_j) \right] \cdot \left[\prod_{j \in \mathcal{F}} P(g_j) \right] \cdot \left[\prod_{j \notin \mathcal{F}} P_{\theta}(g_j \mid g_{F_j}, g_{M_j}) \right]$$

☐: male, unaffected

○: female, unaffected

■ : male, affected

• : female, affected

Assumptions:

- $f_2 = f_1 = 1$, $f_0 = 0$, i.e., the disease is dominantly inherited (because of $f_2 = f_1$), fully penetrant (because of $f_2 = f_1 = 1$), and without phenocopies (because of $f_0 = 0$)
- ullet two alleles T and t with frequencies p_T and p_t at the disease locus
- four alleles 1, 2, 3, and 4 with frequencies q_i at the marker locus

Phase in the father?

• $P(g_j)$ for $j \in \mathcal{F}$:

Assumption 3: Marker and disease locus haplotypes are in Hardy-Weinberg equilibrium, i.e., with $g_j = (m_{j1}d_{j1}, m_{j2}d_{j2})$ denoting the two marker/disease haplotypes of individual j, it follows that

$$P(g_j) = \begin{cases} P^2(m_{j1}d_{j1}) & \text{if } m_{j1}d_{j1} = m_{j2}d_{j2} \\ 2 \cdot P(m_{j1}d_{j1}) \cdot P(m_{j2}d_{j2}) & \text{if } m_{j1}d_{j1} \neq m_{j2}d_{j2} \end{cases}$$

Assumption 4: There exists linkage equilibrium between alleles at the marker and the disease locus, i.e.,

$$P(m_{j1}d_{j1}) = P(m_{j1}) \cdot P(d_{j1}) = q_{m_{j1}} \cdot p_{d_{j1}}$$

Application to the pedigree of the example:

$$\tilde{g}$$
 and $\tilde{\tilde{g}}$:
$$\prod_{j \in \mathcal{F}} P(g_j) = 4 \cdot p_T \cdot p_t^3 \cdot q_1 \cdot q_2 \cdot q_3 \cdot q_4$$

•
$$P_{\theta}(g_j \mid g_{F_j}, g_{M_j})$$
 for $j \notin \mathcal{F}$:

$$\tilde{g}$$
: $P_{\theta}(g_j \mid g_1, g_2) = 0.25 \cdot (1 - \theta)$ for $j = 3, 4, 5$

$$\tilde{g}$$
: $P_{\theta}(g_i \mid g_1, g_2) = 0.25 \cdot \theta$ for $j = 3, 4, 5$

•
$$P(y_i | g_i) = 1$$
 for $j = 1, ..., 5$

$$\Rightarrow$$

$$L(\theta \mid y) = 4 \cdot p_T \cdot p_t^3 \cdot q_1 \cdot q_2 \cdot q_3 \cdot q_4 \cdot \left[\frac{1}{4} \cdot (1 - \theta)\right]^3$$

$$+4 \cdot p_T \cdot p_t^3 \cdot q_1 \cdot q_2 \cdot q_3 \cdot q_4 \cdot \left[\frac{1}{4} \cdot \theta\right]^3$$

$$= \frac{1}{16} \cdot p_T \cdot p_t^3 \cdot q_1 \cdot q_2 \cdot q_3 \cdot q_4 \cdot \left[(1 - \theta)^3 + \theta^3\right]$$

$$\hat{\theta} = 0$$

$$Z(\theta) = \log_{10} \left[4 \cdot (1 - \theta)^3 + 4 \cdot \theta^3\right]$$

$$Z(\hat{\theta}) = \log_{10} 4 \sim .6021$$

Recall the assumptions for the calculation of the lod score $Z(\theta)$:

- dominant mode of inheritance
- ullet disease allele frequencies p_T and p_t
- marker allele frequencies q_1, \ldots, q_4

In this specific example, $Z(\theta)$ does not depend on

- the assumed marker allele frequencies, since all members of the pedigree are genotyped at the marker locus.
- the assumed disease allele frequencies, since the observed disease phenotypes in the pedigree imply a unique disease genotype in all members of the pedigree.

However, the assumed mode of inheritance is crucial for $Z(\theta)$!

• $f_2 = 1, f_1 = f_0 = 0$, i.e., recessive mode of inheritance:

 \Rightarrow

$$L(\theta \mid y) = \frac{1}{16} \cdot p_T^3 \cdot p_t \cdot q_1 \cdot q_2 \cdot q_3 \cdot q_4 \cdot \theta \cdot (1 - \theta)$$

$$Z(\theta) = \log_{10} \left[4\theta (1 - \theta) \right]$$

$$\hat{\theta} = 1/2$$

$$Z(\hat{\theta}) = 0$$