Lógica CC

nome: _	número		
	Grupo I		
(V) ou t -0,25 ve	apo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se alores ou θ valores, consoante a resposta esteja certa, errada, ou não seja assinalad amente. A cotação total neste grupo é no mínimo θ valores.	erá 1	valor
1.	Para todo o tipo de linguagem com um símbolo de função unário f e um símbolo de relação binário R, qualquer variável é substituível sem captura de variáveis por $f(x_1)$ em $\forall x_1 R(x_0, x_1)$.		
2.	Para todo o tipo de linguagem L que apenas contém uma constante e um símbolo de relação unário, existem 64 L -estruturas cujo domínio é $\{0,1,2,3\}$.		
3.	Para todo o tipo de linguagem L , para toda a L -fórmula φ e para toda a L -estrutura $E, E \models \varphi$ ou $E \models \neg \varphi$.		
4.	Para todo o tipo de linguagem L , para toda a L -fórmula φ e para toda a variável x , se φ é instância de $p_1 \vee p_2$, então φ não é universalmente válida.		
5.	Para todo o tipo de linguagem com símbolos de relação unários P e Q , $\exists x_1 \exists x_2 (P(x_1) \land Q(x_2))$ é uma forma normal prenexa, logicamente equivalente a $\exists x_1 P(x_1) \land \exists x_1 Q(x_1)$.		
6.	Para todo o tipo de linguagem L com um símbolo de relação unário R , o conjunto $\{\exists x_0 R(x_0) \leftrightarrow \forall x_0 R(x_0), \neg R(x_0)\}$ é semanticamente consistente.		
	Grupo II		

Nas questões 1(a), 2(a), 2(b), 2(c) e 2(d), apresente a sua resposta no espaço disponibilizado a seguir à questão.

- 1. Seja L um tipo de linguagem cujo único símbolo de função é f, sendo f um símbolo binário.
 - (a) Dê exemplo de um L-termo t_1 com $\underline{\operatorname{três}}$ subtermos, de um L-termo t_2 com $\underline{\operatorname{um}}$ subtermo e de uma variável x tais que $\operatorname{VAR}(t_1[t_2/x]) \neq (\operatorname{VAR}(t_1) \setminus \{x\}) \cup \operatorname{VAR}(t_2)$. Justifique.

Resposta:

(b) Prove por indução que, no entanto, $VAR(t_1[t_2/x]) \subseteq (VAR(t_1) \setminus \{x\}) \cup VAR(t_2)$, para quaisquer L-termos t_1, t_2 e para qualquer variável x.

2. Considere o tipo de linguagem $L = (\{c, f\}, \{=, R\}, \mathcal{N})$, em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(R) = 2$. Seja $E = (\mathbb{N}_0, \overline{})$ a L-estrutura tal que:

Seja a a atribuição em E tal que $a(x_i) = i$, para todo $i \in \mathbb{N}_0$.

(a) Indique $f(f(x_2))[a]_E$. Justifique.

Resposta:

(b) Indique $(\forall x_1(\neg(x_1 = x_0 \lor x_1 = \mathsf{c}) \to \mathsf{R}(x_1, \mathsf{f}(x_1))))[a]_E$. Justifique. **Resposta:**

(c) Diga se a L-fórmula $(\forall x_1(\neg(x_1 = x_0 \lor x_1 = c) \to \mathsf{R}(x_1, \mathsf{f}(x_1))))$ é válida em E. Justifique. **Resposta:**

(d) Indique, <u>sem justificar</u>, uma L-fórmula válida em E que represente a afirmação: Há um número que é igual ao seu quadrado e é menor que todos os outros.

Resposta:

- 3. Seja L um tipo de linguagem com uma constante c e com os símbolos de relação unários R e Q. Construa uma derivação em DN que mostre: $\forall x_0(R(x_0) \to Q(x_0)), \neg Q(c) \vdash \exists x_1 \neg R(x_1)$.
- 4. Sejam L um tipo de linguagem, Γ um conjunto de L-sentenças, φ uma L-fórmula tal que $\Gamma \cup \{\varphi\}$ é semanticamente inconsistente e x uma variável. Prove que $\Gamma \models \neg \exists x \varphi$.

Cotações	I.	II.1.	II.2.	II.3.	II.4.
Cotações	6	2 + 2	1,5+2+1,5+1,5	2	1,5