MW 22.12.20

p.14 s.4

Etapy nasycania w aparaturze próżniowo-ciśnieniowej

Opis rysunku (od lewej):
a)

- Rp zasypka termoizolacyjna: koks naftowy + piasek kwarcowy
- Przesypka (Przesypka oporowa: mieszanka koksu i grafitu)
- Elektrody
- Elektrografit (grafit sztuczny/syntetyczny)

b)

- Rp
- Przesypka
- Bloki
- Elektrografit

Na nowym slajdzie nie ma drugiego pieca

Nowa prezka

Krótka historia nanostruktur węglowych

- 1985 odkrycie fulerenów
- 1989 opracowanie metody otrzymywania makroskopowych ilości fulerenu
- 1991 odkrycie nanorurek
- 1996 Nobel za fulereny
- 2004 wydzielenie monowarstwy grafenu
- 2010 Nobel za grafen

`p. 37 s.1

Nanowłókna węglowe - carbon nanofibers (CNF) - cylindryczne nanostruktury zbudowane z warstw grafenowych ułożonych w układ płytek, stoków lub kubków. $d_{CNF}=10-200nm$ długość - kilka do kilkuset μm

Nanorurki węglowe (CNT) - szczególnych przypadek nanowłókien węglowych o warstwach grafenowych równoległych do głównej osi i zwiniętych w idealne walce

p. 34 s.5

Jednościenne nanorurki węglowe – bardziej homogenne niż wielościenne, mniej defektów, zbliżone średnice. Minimalna średnica kanału centralnego ~0,4 nm. Długość ~1 μm. Mogą być zamknięte lub otwarte. Zazwyczaj kilkadziesiąt nanorurek w wiązce. Różny stopień skręcenia warstw grafenowych - ma wpływ na przewodnictwo elektryczne.

"Arm-chair" –przewodzące, "zig-zag" i chiralne – na ogół właściwości półpółprzewodnikowe. Wpływ średnicy nanorurki.

Wielościenne nanorurki węglowe – od 2 do kilkadziesiąt koncentrycznych warstw grafenowych, odstęp między nimi ~ 0,34 nm. Średnica zazwyczaj od 2 do 25 nm, długość kilka µm.

Model jednościennej nanorurki węglowej

Zakończenia - otwarte niewysycone, otwarte z grupami funkcyjnymi oraz zamknięte

Parametr	SWCNT	MWCNT	CNF
Moduł Younga, GPa	1000-1300	500-1200	300-700

Parametr	SWCNT	MWCNT	CNF
Wytrzymałość na rozciąganie, GPa	45-150	30-150	3-120
Opór właściwy Ωcm	6e-4	(0.6 - 2) e-4	1.5-3
Przewodnośc właściwa S/cm	550	80-1000	300
Powierzchnia właściwa m2/g	400-900	150-450	10-250
Porowatość cm3/g	0.15-0.3 mikroporowate	0.5-2 mezoporowate	0.2-2 mezoporowate

p.37 s.6

Właściwości nanowłókien węglowych

- Wysoka wytrzymałość mechanicza
- · Inertny charakter
- · Duża powierzchnia właściwa
- · Wysokie przewodnictwo elektryczne
- · Możliwość kontrolowania struktury i porowatości
- Czystość chemiczna
- Odporność na kwasy i zasady

Substrate-support interactions in metal-catalyzed carbon nanofiber growth, Randall L, Carbon 39 (2001) 2277-2289

Odporność na kwasy i zasady i inertny charakter w nowej prezentacji podsumowano jako: obojętność chemiczna

Coś jeszcze mówiła, że "świetne perkolatory" (czymkolwiek jest perkolator, coś do robienia elektrod)

Zastosowania nanowłókien/nanorurek węglowych:

- elektronika (przełączniki, emisja polowa, emitery termoelektronowe, optoelektronika, filtry optyczne itd.)
- inżynieria materiałowa (modyfikatory polimerów)
- sensory chemiczne
- selektywne adsorbenty
- nośniki leków
- magazynowanie energii (baterie litowo-jonowe, superkondensatory, ogniwa paliwowe, magazynowanie wodoru)
- katalizatory i nośniki katalizatorów

Otrzymywania nanorurek i nanowłókien węglowych

Wymagania

- · niski koszt syntezy
- wysoka wydajność produktu (metoda ciągła)
- jak najwyższa czystość produktu
- selektywność syntezy możliwość kontrolowania parametrów, tak aby otrzymać produkt o pożądanej strukturze

Metody otrzymywania

- · Wyładowania łukowe
- · Ablacja laserowa
- Metoda plazmowo-łukowa
- · Osadzanie elektrolityczne (electrospinning)
- · Chemiczne osadzanie z fazy gazowej CVD
- Chemiczne katalityczne osadzanie z fazy gazowej CCVD

Jest "ablacja laserowa", ma być "odparowanie laserowe" Osadzanie z fazy gazowej - CVD, cabon vapour deposition