Longitudinal Cohort data II

Survival/time-to-event data

ERHS 732

Longitudinal Cohort data - last week

► The survival (and Cox) models we were working on last week relied on one observation per participant

id	time	X_1	X_2	Y
1	1200	0	1	1
2	4434	1	1	1
3	8766	0	0	0
4	8766	1	0	0

Longitudinal Cohort data - last week

- ► The survival (and Cox) models we were working on last week relied on one observation per participant
 - Essentially looking at values of covariates at baseline and hazard of mortality/MI by end of follow-up

id	time	X_1	X_2	Y
1	1200	0	1	1
2	4434	1	1	1
3	8766	0	0	0
4	8766	1	0	0

The Framingham Study (FHS) timeline

► Each participant in FHS had multiple measurements (approximately one every two-years for the original FHS)

Figure: Figure 1, Anderson et al. 2019

Longitudinal Cohort data - this week

Today we will leverage all the available observations per participant

id	time	time2	X_1	X_2	Y
1	0	1200	0	1	1
2	0	1902	1	1	0
2	1903	3804	1	1	0
2	3804	4434	1	0	1
3	0	1902	0	0	0
3	1903	3804	0	0	0
3	3804	8766	0	0	0

Longitudinal Cohort data - this week

- Today we will leverage all the available observations per participant
 - Now we are looking at values of covariates and hazard of mortality/MI at each time interval

id	time	time2	X_1	X_2	Y
1	0	1200	0	1	1
2	0	1902	1	1	0
2	1903	3804	1	1	0
2	3804	4434	1	0	1
3	0	1902	0	0	0
3	1903	3804	0	0	0
3	3804	8766	0	0	0

Multilevel exposures

Multilevel exposures - non-linearities

Multilevel exposures - non-linearities

Multilevel exposures - non-linearities

► The study has several predictors for CVD outcomes

- The study has several predictors for CVD outcomes
- ▶ If we are interested in the potential effect of one of them rather than merely prediction, confounding becomes an issue

- ▶ The study has several predictors for CVD outcomes
- ▶ If we are interested in the potential effect of one of them rather than merely prediction, confounding becomes an issue
- ► What is a problem with including all of these predictors in a single model in this dataset

- The study has several predictors for CVD outcomes
- ▶ If we are interested in the potential effect of one of them rather than merely prediction, confounding becomes an issue
- What is a problem with including all of these predictors in a single model in this dataset
 - A DAG can be a useful tool in visualizing our assumptions about causal structure and what we need to adjust for (or not adjust for)