WM14 AND CPT BASIC Serial protocol V3 R0

SERIAL COMMUNICATION PROTOCOL

WM14-DIN Basic WM14-96 Basic CPT-DIN Basic

Ver. 3 Rev. 0

17th March 2006

WM14 AND CPT BASIC Serial protocol V3 R0

Index

1	COMMUNICATION PROTOCOL	3
1.1 1.2	INTRODUCTION	
1.3	WIRING DIAGRAMS	
2	VARIABLE MAPPING	7
2.1	RAM MEMORY MAPPING	
2.2	ALARM MAPPING (READING ONLY)	
2.3	EEPROM MEMORY MAPPING	
2.4	RESET OF THE PEAK VALUES AND OF THE LATCH ALARM	
2.5	RESET OF THE LATCH ALARM ONLY	
2.6	RESET OF THE PEAK VALUES RELEVANT TO THE CURRENTS ONLY	
2.7	RESET OF THE ENERGY AND HOUR METERS	10
3	VARIABLE READING	11
3.1	INTRODUCTION	11
3.2	READING OF INSTANTANEOUS VARIABLES	
3.3	FIRST READING WITH BYTE ORDER INVERTION	
3.4	READING OF CONFIGURATION PARAMETERS	
3.5	READING OF ALARM STATE	
3.6	READING OF C.G.C. INSTRUMENT CODE	14
4	CRC CALCULATION	15
4.1	EXAMPLE OF CRC CALCULATION	15

WM14 AND CPT BASIC Serial protocol V3 R0

1 COMMUNICATION PROTOCOL

1.1 INTRODUCTION

WM14 and CPT are provided with a RS485 serial interface. The serial communication protocol is MODBUS/JBUS.

The data format is fixed:

- 1 start bit
- 8 data bit
- 1 stop bit
- 9600 baud
- Parity: none

The host starts the communication, by sending the frame relevant to the query. Each frame is composed of 4 types of information:

- slave address: it is a number within the range from 1 to 255, which identifies each instrument connected to the network.
- function code (command): it defines the control type (reading of n words, writing of one word)
- data field: it defines the function parameters (e.g. address of the word to write, value of this word, etc.)
- control word (CRC): it is used to detect transmission errors that may occur.

The master calculates the CRC after defining address, function number and data field. When the slave receives the query, it stores it in a temporary buffer. After that, the CRC is calculated and compared with the one received. If the two CRC values are the same and the address is correct, the slave carries out the command and then sends back its reply.

The frame synchronisation is forced after a minimum time of 3 msec without communicating.

1.2 FUNCTIONS

Three functions are available on WM14 and CPT:

- Reading of n words (function 03)
- Reading of n words (function 04)
- Writing of one word (function 06) (available only for C.G. Controls, except for the reset instructions)

Note: The functions 03 and 04 have exactly the same effect.

The user is allowed to reset the peak values (Wdmdmax, Amax, Admdmax), the meters (energy meters and hourmeter) and the latch alarm. To carry out the reset a write command must be sent.

Pay attention to follow scrupulously the reset instructions and to send the exact frame, because a different write command could modify some calibration parameters, invalidating the accuracy of the measurements.

WM14 AND CPT BASIC Serial protocol V3 R0

1.2.1 FUNCTIONS 03 AND 04

Query

Address	Function *	Word addr	ess	n° of w	ords **	CRC	
1 byte	1 byte	2 bytes		2 bytes		2 by	tes
from 1 to 255	04 *	MSB	LSB	MSB	LSB	MSB	LSB

Note: * The function code can be either 04 or 03

** The maximum number of words is 12

Reply

Address	Function	nº bytes	Values	CRC	
1 byte	1 byte	1 byte	n° bytes	2 bytes	
from 1 to 255	04 *		***	MSB	LSB

Note: *** The byte order is LSB-MSB if the "dat" parameter is "A" or MSB-LSB if it is "b"

1.3 WIRING DIAGRAMS

1.3.1 FOUR-WIRE CONNECTION

1.3.2 TWO-WIRE CONNECTION

WM14 AND CPT BASIC Serial protocol V3 R0

Notes:

- 1. To avoid errors due to the signal reflections or line coupling, it is necessary to terminate the input of the last instrument on the network, and also the reception of the Host. If this is not enough, it is also possible to bias the Host transmission (in case of 2-wire connection, it is only possible to either terminate or bias the Host, not both). The termination on both the instrument and the host is necessary even in case of point-to-point connection, within short distances.
- 2. The GND connection is optional if a shielded cable is used.
- 3. For connections longer than 1000m, a line amplifier is necessary.

1.3.3 TIMING

Timing characteristics of reading function, 4-wires/2-wires connections		
T response: Max answering time	300ms	
T response: Typical answering time	40ms	
T delay: Minimum time for a new query	10ms	
T null: Max interruption time on the request frame	2ms	

WM14 AND CPT BASIC Serial protocol V3 R0

1.3.4 APPLICATION NOTES

- If an instrument does not answer within the "max answering time", it is necessary to repeat the
 query. If the instrument does not answer after 2 or 3 consecutive queries, it must be considered as
 not connected, faulty or with wrong address. The same consideration is valid in case of CRC errors
 or incomplete frames.
- 2. By entering the programming mode (by pushing the "S" key) the communication is interrupted. Any data received during the programming mode are ignored.
- 3. The writing is allowed only for C.G. Controls internal and service use (except for the reset instructions).
- 4. For the timing calculation, please refer to the following formulae:

$$Trequest = \frac{N^{\circ}bit}{Baud_rate} * 8$$

$$Treply = \frac{N^{\circ}bit}{Baud_rate} * N^{\circ} char$$

$$TS = T_request + T_response + T_reply + T_delay1$$

$$TA = TS * N^{\circ} request$$

$$TM = (TS + Tdelay 2) * N^{\circ}instruments$$

N°bit	10
N°char	5+N° Word*2 if function 04 o 03, 8 if function 06
N°word	Number of words to be read in an instrument
TS	Execution time of one reading
Tdelay1	Minimum time for new query on the same address
TA Data acquiring time from one instrument	
TM	Monitoring time of all the instruments
N°instruments	Number of instruments connected to the network.
Tdelay2	Minimum time for new query on a different address

WM14 AND CPT BASIC Serial protocol V3 R0

2 VARIABLE MAPPING

2.1 RAM MEMORY MAPPING

ADDRESS	BYTES	VARIABLE	Type	ADDRESS	BYTES	VARIABLE	Type
0280h	2	V L1-N	VN	02A6h	2	VA Σ	PΣ
0282h	2	A L1	A	02A8h	2	var L1	P
0284h	2	W L1	P	02AAh	2	var L2	P
0286h	2	V L2-N	V	02ACh	2	var L3	P
0288h	2	A L2	A	02AEh	2	$\operatorname{var}\ \Sigma$	PΣ
028Ah	2	W L2	P	02B0h	2	W dmd	PΣ
028Ch	2	V L3-N	V	02B2h	2	VA dmd	PΣ
028Eh	2	A L3	A	02B4h	2	W dmd MAX	PΣ
0290h	2	W L3	P	02B6h	2		
0292h	2	V L1-L2	VC	02B8h	2	Hz	H
0294h	2	V L2-L3	VC	02BAh	2	Admdmax	А
0296h	2	V L3-L1	VC	02BCh	1+1	PF L1/PF L2 *	PF
0298h	2	VL-L Σ	VC	02BEh	1+1	PF L3/ PF ∑ *	PF
029Ah	2	A max	A	02C0h	2	A L1 dmd	А
029Ch	2	A n	А	02C2h	2	A L2 dmd	А
029Eh	2	WΣ	P \sum	02C4h	2	A L3 dmd	А
02A0h	2	VA L1	P	02C6h	4	kWh	E
02A2h	2	VA L2	P	02CAH	4	varh	E
02A4h	2	VA L3	P	02CEh	4	Hourmeter	HM

The byte order in each word is depending on the "dat" parameter (LSB-MSB if "dat"="A" or MSB-LSB if "dat"="b".

Note *: if the "dat" parameter is "A", the word 2BCh contains the PF L1 value on its LSB and the PF L2 value on its MSB (most significant byte); the word 2BEh contains the PF L3 value on its LSB and the PF Σ value on its MSB. If the "dat" parameter is "b", the word 2BCh contains the PF L2 value on its LSB and the PF L1 value on its MSB (most significant byte); the word 2BEh contains the PF Σ value on its LSB and the PF L3 value on its MSB.

For each byte related to the power-factor variables, the most significant bit indicates the sign, in the following way:

msb=0 L (inductive) type

msb=1 C (capacitive) type.

2.1.1 VARIABLE REPRESENTATION

All the variables, except for the PF values, are represented as signed two's complement integers, by using the number of bytes specified in the memory-mapping table. For the correct interpretation, it is necessary to consider also the decimal point and the engineering unit, according to the following table, and multiply the value by the relevant CT (current transformer) and VT (voltage transformer) ratios:

INF	d.p	ENG. Unit
VN	111.1	V
VC	111	V
А	111	mA
$P\sum$	111	W, VA, VAR
P	111.1	W, VA, VAR
Н	111.1	HZ
PF	1.11	PF

WM14 AND CPT BASIC Serial protocol V3 R0

The following variables are not to be multiplied by the CT and the VT ratios:

INF	d.p	ENG. Unit
Е	111.1	kWh or kvarh
HM	11.11	Hours

Note: The format of the single variables is referred to the electrical input of the instrument and it does not depend on the setting of the CT (current transformer) and VT (voltage transformer) ratios. It means that the software which reads the values from the RAM must multiply them by CT and/or VT according to the variable type and then consider the variable format.

2.2 ALARM MAPPING (READING ONLY)

ADDRESS	BYTE	CONSTANT	Description
027Eh	1	XXXXXXX1	Voltage alarm ON
		XXXXXXX0	Voltage alarm OFF
027Eh	1	XXXXXX1X	Current alarm ON
		XXXXXX0X	Current alarm OFF

2.3 EEPROM MEMORY MAPPING

ADDRESS	BYTES	PARAMETER	DESCRIPTION	FORMAT
1080h	2	Password	Programming access password	111
1082h	2	Vt_ratio	Voltage transformer ratio	11.1
1084h	2	Ct_ratio	Current transformer ratio	111
1086h	2	P_int	Integration period (Wdmd)	111 [minutes]
1088h	2	Filter_rng	Filter range	111 [% f.s.]
108ah	2	Filter_coe	Filter coefficient	111
108ch	2	Address	Instrument address	111
108eh	2	Set_vup	Upper voltage threshold	111 [V] ¹
1090h	2	Set_vdown	Lower voltage threshold	111 [V] ¹
1092h	2	Set_an	Neutral current threshold	1.11 [A] ²
1094h	2	System	System type (see 2.3.1)	111
1096h	2	Reserved	DON'T MODIFY	===
1098h	2	A_int	Integration period (Admd)	111 [minutes]
109Ah	2	dat	Byte order in the words(see 2.3.2)	111

¹ Value with voltage transformer ratio = 1

² Value with current transformer ratio = 1

WM14 AND CPT BASIC Serial protocol V3 R0

2.3.1 SYSTEM CODE

Value	System type
0	3P (*)
1	3P.n
2	2P
3	1P
4	3P.A

(*) NOTE: the 3-phase without neutral selection is only for balanced loads. The current A L2 and A L3 are a copy of A L1 value, even if there is a different current in the relevant input.

2.3.2 BYTE ORDER IN THE DATA WORDS

Value	Byte order
0	A (LSB-MSB)
1	b (MSB-LSB)

2.4 RESET OF THE PEAK VALUES AND OF THE LATCH ALARM

Pay attention to follow scrupulously the reset instructions and to send the exact frame, because a different write command could modify some calibration parameters, invalidating the accuracy of the measurements.

The following frame must be sent to reset Wdmdmax, Amax, Admdmax and the latch alarm:

Request frame

Address	Function	Data address		Value		CRC	
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	00h	00h	00h	MSB	LSB

Answer frame

Address	Function	Data a	ddress	Va	lue	CI	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	00h	00h	00h	MSB	LSB

NOTE: the answer frame is an echo of the request frame, which confirm the execution of the command.

2.5 RESET OF THE LATCH ALARM ONLY

Pay attention to follow scrupulously the reset instructions and to send the exact frame, because a different write command could modify some calibration parameters, invalidating the accuracy of the measurements.

The following frame must be sent to reset the latch alarm only:

Request frame

Address	Function	Data a	ddress	Va	lue	CI	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	01h	00h	00h	MSB	LSB

WM14 AND CPT BASIC Serial protocol V3 R0

Answer frame

Address	Function	Data a	ddress	Va	lue	CI	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	01h	00h	00h	MSB	LSB

NOTE: the answer frame is an echo of the request frame, which confirm the execution of the command.

2.6 RESET OF THE PEAK VALUES RELEVANT TO THE CURRENTS ONLY

Pay attention to follow scrupulously the reset instructions and to send the exact frame, because a different write command could modify some calibration parameters, invalidating the accuracy of the measurements.

The following frame must be sent to reset Amax and Admdmax:

Request frame

Address	Function	Data address		Value		CRC	
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	02h	00h	00h	MSB	LSB

Answer frame

Address	Function	Data a	ddress	Va	lue	CF	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	02h	00h	00h	MSB	LSB

NOTE: the answer frame is an echo of the request frame, which confirm the execution of the command.

2.7 RESET OF THE ENERGY AND HOUR METERS

Pay attention to follow scrupulously the reset instructions and to send the exact frame, because a different write command could modify some calibration parameters, invalidating the accuracy of the measurements.

The following frame must be sent to reset the energy (kWh and kvarh) and hour meters:

Request frame

toquoot manno							
Address	Function	Data a	ddress	Va	lue	CI	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	03h	00h	00h	MSB	LSB

Answer frame

Address	Function	Data a	ddress	Va	lue	CI	RC
1 byte	1 byte	2 b	yte	2 b	yte	2 b	yte
From 1 to 255	06h	33h	03h	00h	00h	MSB	LSB

NOTE: the answer frame is an echo of the request frame, which confirm the execution of the command.

WM14 AND CPT BASIC Serial protocol V3 R0

3 VARIABLE READING

3.1 INTRODUCTION

WM14 and CPT allow reading up to 12 consecutive words. A reading access is always possible: if the query is related to a non-existing variable, WM14/CPT replies with non-significant values.

The field "Word address" in the request frame must be exactly the physical memory address (not the register number). During n-words reading, the answer contains the exact memory image. This means that the first byte is the content of the memory address specified in the request frame. The following bytes are the contents of the following addresses.

3.2 READING OF INSTANTANEOUS VARIABLES

To read all the variables, it is necessary to carry out at least four reading instructions as indicated below. If the values of current ratio and/or voltage ratio are different from 1, A, V and P values shall be calculated after the reading by multiplying the relevant values for CT and VT.

The examples in this paragraph 3.2.x are valid when considering "dat" = "A".

3.2.1 FIRST READING (FROM ADDRESS 0280H TO 0297H)

Re	que	st (8by	/tes	5)		
1	4	2	80	0	С	F0	5F

Answer (29 bytes)

2 4 18 98 8 DF 5 C5 6F 97 8 DB 5 9C 6F 97 8 D9 5 4B 6F BF 0 BF 0 CRC	2 4 18	98 8	י אוווי	C5 6F 97 8	DB 5	9C 6F 97 8	4B 6F BF 0	BF 0	BF 0	CRC CRC

Example of interpretation

Variable	Value read(h)	Value converted (d)	Value formatted
V L1-N	0898	2200	220,0V
A L1	05DF	1503	1,503A
W L1	6FC5	28613	2861W
V L2-N	0897	2199	219,9V
A L2	05DB	1499	149,9A
W L2	6F9C	28572	2857W
V L3-N	0897	2199	219,9V
A L3	05D9	1497	1,497A
W L3	6F4B	28491	2849W
V L1-L2	00BF	191	191V
V L3-L1	00BF	191	191V
V L2-L3	00BF	191	191V

WM14 AND CPT BASIC Serial protocol V3 R0

3.2.2 SECOND READING (FROM ADDRESS 0298H TO 02AFH)

Request (8 bytes)

2 4 2 98 0 C 70 6B

Answer (29 bytes)

2 4 18 BF 0 E4 5 0 0 80 21 EF C E3 C E3 C B4 26 7B 6 71 6 76 6 62 13 CRC CRC

Example of interpretation

Variable	Value read(h)	Value converted (d)	Value formatted
VL-L ∑	00BF	191	191V
A max	05E4	1508	1,508A
A n	0000	0	0A
WΣ	2180	8576	8576W
VA L1	OCEF	3311	3311VA
VA L2	OCE3	3299	3299VA
VA L3	OCE3	3299	3299VA
VA Σ	26B4	9908	9908VA
var L1	067B	1659	1659var
var L2	0671	1649	1649var
var L3	0676	1654	1654var
var Σ	1362	4926	4926var

3.2.3 THIRD READING (FROM ADDRESS 02B0H TO 02BFH)

Request (8 bytes)

2 4 2 B0 0 8 F1 A0

Answer (21 bytes)

2 4 10 5A 21 8A 26 82 21 0 0 F5 1 DB 05 57 57 57 57 CRC CRC

Example of interpretation

Variable	Value read (h)	Value converted (d)	Value formatted		
W dmd	215A	8538	8538W		
VA dmd	268A	9866	9866VA		
W dmd max	2182	8578	8578W		
Hz	01F5	501	50,1HZ		
A dmd max	05DB	1499	1,499A		
PF L1	57	87	L.87		
PF L2	57	87	L.87		
PF L3	57	87	L.87		
PF Σ	57	87	L.87		

WM14 AND CPT BASIC Serial protocol V3 R0

3.2.4 FOURTH READING (FROM ADDRESS 02C0H TO 02D1H)

Request (8 bytes)

2 4 2 C0 0 9 31 BB

Answer (23 bytes)

2 4 12 DF 05 D9 05 DA 05 FC 0B 00 00 B8 06 00 00 1D 0E 00 00 CRC CRC

Example of interpretation

Variable	Value read (h)	Value converted (d)	Value formatted		
A L1 dmd	05DF	1503	1,503 A		
A L2 dmd	05D9	1497	1,497 A		
A L3 dmd	05DA	1498	1,498 A 306,8 kWh		
kWh	0000 OBFC	3068			
kvarh	0000 06B8	1720	172,0 kvarh		
Hourmeter	0000 0E1D	3613	36,13 hour		

3.3 FIRST READING WITH BYTE ORDER INVERTION

Should the "dat" parameter be set to "b", the previous example must be interpreted as follows:

Request (8bytes)

1 4 2 80 0 C F0 5F

Answer (29 bytes)

2 4 18 8 98 5 DF 6F C5 8 97 5 DB 6F 9C 8 97 5 D9 6F 4B 0 BF 0 BF 0 BF CRC CR
--

Example of interpretation

Variable	Value read(h)	Value converted (d)	Value formatted		
V L1-N	0898	2200	220,0V 1,503A 2861W		
A L1	05DF	1503			
W L1	6FC5	28613			
V L2-N	0897	2199	219,9V		

Etc.

3.4 READING OF CONFIGURATION PARAMETERS

Request (8 bytes)

1 4 10 80 0 E CRC CRC

Answer (33 bytes)

1	4	1A	3	0	F	0	5	0	F	0	0	2	0	1	0	6E	0	64	0	64	0	1	0	1	0	5	0	0	0	CRC	CRC

Example of interpretation

Variable	Value read (h)	Value converted (d)	Value formatted		
Password	0003	3	3		
Tv	000F	15	1,5		
Ta	0005	5	5		
P int	000F	15	15min		

WM14 AND CPT BASIC Serial protocol V3 R0

FiS	0003	3	3%		
Fic	0002	2	2		
Add	0001	1	1		
AL_V up	006E	110	110V		
AL_V down	0064	100	100V		
AL_I	0064	100	1,00A		
System	0001	1	3P.n		
Reserved	0001	1	===		
A_int	0005	5	5min		
dat	0000	0	A (order MSB-LSB)		

3.5 READING OF ALARM STATE

Request (8 bytes)
2 4 2 7E 0 1 50 59

An	swe	er (7	₹ by	/tes)	
2	4	2	1	0	FC	A0

To obtain the alarm representation, mask the not-significant bits of the byte indicated in bold (AND with the value 03h). In the example, the voltage alarm is ON.

3.6 READING OF C.G.C. INSTRUMENT CODE

Table of identification codes

Table of lacinimodi	011 00000	
Code	Model	Description
1Dh	WM14 AV5 Basic	400VL-L / 660VL-L 5A
1Eh	WM14 AV6 Basic	100VL-L / 208VL-L 5A
2Bh	CPT AV5 Basic	400VL-L / 660VL-L 5A
2Ch	CPT AV6 Basic	100VL-L / 208VL-L 5A

To read the identification code, send the following rigid-structure frame (the example is related to the address 2). The code is contained on the position 5 of the reply.

Example:

Request (8 bytes)

2 4 0 B 0 1 40 3B

Answer (21 bytes)

2 4 2 0 **1D** 3C FF

1Dh is the identification code of the WM14 AV5

WM14 AND CPT BASIC Serial protocol V3 R0

4 CRC CALCULATION

4.1 **EXAMPLE OF CRC CALCULATION**

Frame = 0207h

Init CRC	1111	1111	1111	1111	
Load first character			0000	0010	
Execute the XOR with the first char. of the frame	1111	1111	1111	1101	
Execute first Shift to the right	0111	1111	1111	1110	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1101	1111	1111	1111	
Execute 2° Shift to the right	0110	1111	1111	1111	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1100	1111	1111	1110	
Execute 3° Shift to the right	0110	0111	1111	1111	0
Execute 4° Shift to the right	0011	0011	1111	1111	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1001	0011	1111	1110	
Execute 5° Shift to the right	0100	1001	1111	1111	0
Execute 6° Shift to the right	0010	0100	1111	1111	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1000	0100	1111	1110	
Execute 7° Shift to the right	0100	0010	0111	1111	0
Execute 8° Shift to the right	0010	0001	0011	1111	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1000	0001	0011	1110	
Load second character of the frame			0000	0111	
Execute XOR with the second character of the	1000	0001	0011	1001	

POLY = crc calculation polynominal: A001h

Load second character of the frame			0000	0111
Execute XOR with the second character of the	1000	0001	0011	1001
frame				

Irame					
Execute 1° Shift to the right	0100	0000	1001	1100	1
Carry = 1, load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1110	0000	1001	1101	
Execute 2° Shift to the right	0111	0000	0100	1110	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1101	0000	0100	1111	
Execute 3° Shift to the right	0110	1000	0010	0111	1
Carry = 1, load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1100	1000	0010	0110	
Execute 4° Shift to the right	0110	0100	0001	0011	0
Execute 5° Shift to the right	0011	0010	0000	1001	1
Carry = 1 , load polynomial	1010	0000	0000	0001	
Execute XOR with the polynomial	1001	0010	0000	1000	
Execute 6° Shift to the right	0100	1001	0000	0100	0
Execute 7° Shift to the right	0010	0100	1000	0010	0
Execute 8° Shift to the right	0001	0010	0100	0001	0
CRC result	0001	0010	0100	0001	

12h 41h

Note: the byte 41h is sent first.