

INTRO TO DATA SCIENCE LECTURE 2: MACHINE LEARNING

Jason Dolatshahi Data Scientist, EveryScreen Media RECAP 2

LAST TIME:

- FIRST LOOK AT DATA SCIENCE & THE DATA MINING WORKFLOW
- DATA EXPLORATION WITH UNIX
- DATA VISUALIZATION WITH R & GGPLOT2

QUESTIONS?

What's big data?

The practical viewpoint:

- $O(n^2)$ algorithm feasible: small data
- Pits on one machine: medium data
- O Doesn't fit on one machine: big data

AGENDA 4

- I. WHAT IS MACHINE LEARNING?
- II. MACHINE LEARNING PROBLEMS

EXERCISES:

III. MULTIPLE REGRESSION & FEATURE EXTRACTION

INTRO TO DATA SCIENCE

LEARNING?

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can $learn\ from\ data$."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can $learn\ from\ data$."

"The core of machine learning deals with representation and generalization..."

source: http://en.wikipedia.org/wiki/Machine_learning

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can $learn\ from\ data$."

"The core of machine learning deals with representation and generalization..."

• representation – extracting structure from data

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can $learn\ from\ data$."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

source: http://en.wikipedia.org/wiki/Machine_learning

YOU ARE HERE 11

ANSWER: PROBLEM SOLVING!

ANSWER: PROBLEM SOLVING!

NOTE

Implementing solutions to ML problems is the focus of this course!

INTRO TO DATA SCIENCE

IL MACHINE LEARNING PROBLEMS

supervised unsupervised

making predictions extracting structure

generalization

supervised unsupervised

making predictions extracting structure

representation

quantitative qualitative

continuous categorical quantitative qualitative

NOTE

The space where data live is called the *feature* space.

Each point in this space is called a *record*.

TYPES OF ML SOLUTIONS

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

continuouscategoricalsupervisedregressionclassificationunsuperviseddimension reductionclustering

NOTE

We will implement solutions using *models* and *algorithms*.

Each will fall into one of these four buckets.

QUESTION

WHAT
IS THE
GOAL
OF
MACHINE LEARNING?

GOALS OF ML 24

supervised unsupervised

making predictions extracting structure

ANSWER

The goal is determined by the type of problem.

QUESTION

HOW
DO YOU
DETERMINE
THERIGHT
APPROACH?

desired solution.

continuouscategoricalsupervisedregressionclassificationunsuperviseddimension reductionclustering ANSWER The right approach is determined by the

continuouscategoricalsupervisedregressionclassificationunsuperviseddimension reductionclusteringANSWER
The NOTE is des All of this depends on your data!

QUESTION

NHAT
DO YOU
DO
WITH YOUR
RESULTS?

ANSWER

Interpret them and react accordingly.

source: http://benfry.com/phd/dissertation-110323c.pdf

ANSWER

_a NOTE

This also relies on your problem solving skills!

source: http://benfry.com/phd/dissertation-110323c.pdf

INTRO TO DATA SCIENCE

III. RELATIONSHIPS AMONG SEVERAL VARIABLES

EXERCISE – MULTIPLE REGRESSION (BACKWARD ELIMINATION)

KEY OBJECTIVES

TOOLS

- Create a regression model using several independent variables

- R (plot, lm, update)

- Extract meaningful features

INTRO TO DATA SCIENCE

DISCUSSION