Business Analytics Practicum (MGT 4803)

Zhaohu (Jonathan) Fan

Information Technology Management Scheller College of Business Georgia Institute of Technology March 12, 2024

Project goals

Machine health assessment:

 How should we approach the evaluation and reporting of Sparck machines' operational health on an individual and collective basis?

Project goals (cont'd)

- Q1: Critical performance indicators:
 - Which **Key Performance Indicators (KPIs)** and metrics are essential for assessing the performance of our machinery?"

KPIs

• In Dropbox, navigate to Sparck Project Files Spring 2024 > Sparck Project Files Spring 2024 - GT to find the IBOC Team4 follow up 16022024 document.

Follow up Sparck to Team 4 from meeting Feb 16th 2024

Most important KPIs and their location in the data sets

KPI name	Data set	Identifier
ARL Machine	RDA Trending	ARL_Machine
ARL Operator	RDA Trending	ARL Operator
ARL All	RDA Trending	ARL_All
Orders retracted	RDA Trending	OrdersRetracted
Orders	RDA trending	Orders
Timekeeping producing	RDA trending	TkProducing
Timekeeping starting	RDA trending	IkStarting
Timekeeping stopping	RDA trending	IkStopping
Timekeeping asleep during production	RDA trending	TkAsleepDuringProduction
Timekeeping idle	RDA trending	<u>Tkldle</u>
Timekeeping operator error	RDA Trending	TkInOperatorError
Timekeeping machine error	RDA Trending	TklnMachineError

(items in grey are not important, yet used in calculations below)

Calculated metrics

Retraction rate (%) = <u>OrdersRetracted</u> / Orders * 100

Commonly accepted value for this calculated metric: <5%

What does the folder structure look like?

```
Sparck Project Files Spring 2024
  - 2-21-24 (Folder)
   CSVdaily (Folder)
   RDATrending (Folder)
   ReportSpecifications (Folder)
   Servicedata (Folder)
   folder_structure.txt (Text Document)
   GA Tech - Let's talk about automated packaging (PowerPoint Presentati
   readmecsvdaily (Text Document)
   readmemain (Text Document)
```

Project goals (cont'd)

Q2: Health assessment benchmarks:

 What benchmark thresholds (Red /Yellow/Green)should Sparck establish to evaluate machine health effectively?"

• Q3: Determining machine performance:

 How do we define and distinguish between high-performing and lowperforming machines?

The Importance of knowing our numbers

- Q4: How many machines have we deployed globally?
- Q5: Which countries are our biggest markets, and how many machines are in each?
- Q6: How do our product lines vary in distribution across these markets?

• Note: **In Dropbox**, navigate to Sparck Project Files Spring 2024 > Sparck Project Files Spring 2024-GT to find the Active Customer Assets Systems Total 19_2_2024 15-08-04 document.

Q4: How many machines have we deployed globally?

Global machine distribution overview

- **United States**: Strong market presence with **6** machines
- **United Kingdom & Germany**: Solid footholds with **4** and **3** machines respectively
- Emerging Markets: **Netherlands (2)**, Slovakia, Sweden, Poland, France, Canada (**1 each**)

Q5: How do the product line insights break down in terms of market presence for our machine models—**CVP Everest, CVP Impack, and CVP 500**?

Product line insights

- CVP Everest: Flagship product with broad acceptance (10 machines)
- **CVP Impack**: Significant market traction (**8 machines**)
- CVP 500: Emerging product with growth potential (2 machines)

CVP Impack

Automated Packaging Power

Max machine rate 500 / hour Box closure Tape

CVP Everest

Reliable, Regardless the Peak

Max machine rate 1,100 / hour Box closure Hotmelt

Q6: Which countries are our biggest markets, and how many machines are in each?

Product distribution: CVP Everest, Impack, and 500 across countries

- Here's the distribution of the three product types (CVP Everest, CVP Impack, and CVP 500) across the countries:
 - United States:
 - CVP Impack: 3
 - CVP Everest: 2
 - CVP 500: 1
 - United Kingdom:
 - CVP Everest: 3
 - CVP 500: 1
 - CVP Impack: 0
- and more...

Product types distribution by country

R Demonstration

• Load Required Libraries:

- Use library(readxl) to read Excel files.
- Use library(dplyr) for data manipulation.
- Use library(tidyr) to pivot data.
- Use library(ggplot2) for data visualization.

• Read the Excel File:

```
o df ← read_excel("path_to_your_file.xlsx")
```

R Demonstration (cont'd)

- Group the data by country and product
- Pivot the data to widen it, making each product type a separate column
- Convert the data back to a long format suitable for ggplot2.
- Create a bar plot showing the distribution of product types by country.

R Demonstration(cont'd)

• Navigate to Course Page > Modules > Week 10 > 3-12-24.R

Discussion

Machine health assessment:

 How should we approach the evaluation and reporting of Sparck machines' operational health on an individual and collective basis?

Discussion (cont'd)

• Q1: Critical performance indicators:

 Which Key Performance Indicators (KPIs) and metrics are essential for assessing the performance of our machinery?"

Q2: Health assessment benchmarks:

 What benchmark thresholds (Red /Yellow/Green)should Sparck establish to evaluate machine health effectively?"

• Q3: Determining machine performance:

 How do we define and distinguish between high-performing and lowperforming machines?