CA ASSIGNMENT

Yosys implementation of Booth Multiplication algorithm

Name- Asmit Kumar Panika Id- 2020UCP1165

Booth's multiplication

Booth's Multiplication Algorithm is a commonly used algorithm for multiplication of two signed numbers.

Flowchart:

Verilog Code:

module booth_multiplication(clk,rst,start,X,Y,valid,Z);

```
input clk;
input rst;
input start;
input signed [3:0]X,Y;
output signed [7:0]Z;
output valid;

reg signed [7:0] Z,next_Z,Z_temp;
reg next_state, pres_state;
reg [1:0] temp,next_temp;
reg [1:0] count,next_count;
```

```
reg valid, next_valid;
parameter IDLE = 1'b0;
parameter START = 1'b1;
always @ (posedge clk or negedge rst)
begin
if(!rst)
begin
        <= 8'd0;
 Ζ
 valid
        <= 1'b0;
 pres_state <= 1'b0;
         <= 2'd0;
 temp
         <= 2'd0;
 count
end
else
begin
 Ζ
        \leq next Z;
        <= next_valid;
 valid
 pres_state <= next_state;</pre>
 temp
         <= next_temp;
 count
          <= next_count;
end
end
always @ (*)
begin
case(pres_state)
IDLE:
begin
next_count = 2'b0;
next_valid = 1'b0;
if(start)
begin
  next_state = START;
  next\_temp = \{X[0],1'b0\};
  next_Z = \{4'd0,X\};
end
else
begin
  next_state = pres_state;
  next_temp = 2'd0;
  next_Z = 8'd0;
end
end
START:
begin
  case(temp)
  2'b10: Z_temp = {Z[7:4]-Y,Z[3:0]};
  2'b01: Z_{temp} = \{Z[7:4]+Y,Z[3:0]\};
  default: Z_{temp} = \{Z[7:4], Z[3:0]\};
  endcase
next_temp = {X[count+1],X[count]};
```

```
next_count = count + 1'b1;
next_Z = Z_temp >>> 1;
next_valid = (&count) ? 1'b1 : 1'b0;
next_state = (&count) ? IDLE : pres_state;
end
endcase
end
Endmodule
```

Testbench:

```
module booth_tb;
reg clk,rst,start;
reg signed [3:0]X,Y;
wire signed [7:0]Z;
wire valid;
always #5 clk = \simclk;
booth multiplication inst (clk,rst,start,X,Y,valid,Z);
initial
$monitor($time, "X=%d, Y=%d, valid=%d, Z=%d ",X,Y,valid,Z);
initial
begin
X=5;Y=7;clk=1'b1;rst=1'b0;start=1'b0;
#10 \text{ rst} = 1'b1;
#10 start = 1'b1;
#10 start = 1'b0;
@valid
#10 X=-4;Y=6;start = 1'b1;
#10 start = 1'b0;
end
endmodule
```

Synthesis Report:

Running ABC command: "<yosys-exe-dir>/yosys-abc" -s -f <abc-temp-dir>/abc.script 2>&1

ABC: ABC command line: "source <abc-temp-dir>/abc.script"</abc-temp-dir>			
ABC:			
ABC: + read_blif <abc-temp-dir>/input.blif</abc-temp-dir>			
ABC: + read_library <abc-temp-dir>/stdcells.genlib</abc-temp-dir>			
ABC: Entered genlib library with 13 gates from file " <abc-temp-dir>/stdcells.genlib"</abc-temp-dir>			
ABC: + strash			
ABC: + dretime			
ABC: + map			
ABC: + write_blif <abc-temp-dir>/output.blif</abc-temp-dir>			
Re-integrating ABC results.			
ABC RESULTS:	OR cells:	2	
ABC RESULTS:	NOR cells:	2	
ABC RESULTS:	AND cells:	1	
ABC RESULTS:	NOT cells:	18	
ABC RESULTS:	XNOR cells:	6	
ABC RESULTS:	ORNOT cells:	3	

ABC RESULTS:	NAND cells:	3	
ABC RESULTS:	XOR cells:	10	
ABC RESULTS:	MUX cells:	38	
ABC RESULTS:	ANDNOT cells:	26	
ABC RESULTS:	internal signals:	95	
ABC RESULTS:	input signals:	22	
ABC RESULTS:	output signals:	12	
Removing temp directory.			
Printing statistics.			
=== booth_multiplication ===			
Number of wires:	109		
Number of wire bits:	145		

11

35

0

0

Number of public wires:

Number of memories:

Number of memory bits:

Number of public wire bits:

Number of processes: 0

Number of cells: 130

\$_ANDNOT_ 26

\$_AND_ 1

\$_DFF_P_ 16

\$_MUX_ 38

\$_NAND_ 3

\$_NOR_ 2

\$_NOT_ 17

Checking the synthesis

\$_ORNOT_ 3

\$_OR_ 2

\$_SDFFE_PPON_ 2

\$_SDFFE_PPOP_ 5

\$_SDFFE_PP1N_ 1

\$_XNOR_ 4

