(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年8月5日(05.08.2004)

PCT

(10) 国際公開番号 WO 2004/065032 A1

B21C 37/08, B23K 11/06, (51) 国際特許分類7:

B21D 33/00, 51/00, C22C 38/00, 38/58, C21D 9/08, 9/50, G03G 15/08, 15/20

(21) 国際出願番号:

PCT/JP2004/000360

(22) 国際出願日:

2004年1月19日(19.01.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2003年1月20日(20.01.2003) JР 特願2003-011015 2003年12月1日(01.12.2003) JP 特願2003-401052

(71) 出願人(米国を除く全ての指定国について): 新日 本製鐵株式会社 (NIPPON STEEL CORPORATION) [JP/JP]; 〒1008071 東京都千代田区大手町二丁目6番 3号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 稲田 幸輝(IN-ADA, Koki) [JP/JP]; 〒1008071 東京都千代田区大手町 二丁目 6 番 3 号新日本製鐵株式会社内 Tokyo (JP). 岩 見和俊(IWAMI, Kazutoshi)[JP/JP]; 〒1008071 東京都 千代田区大手町二丁目6番3号新日本製鐵株式会社 内 Tokyo (JP). 今井 篤比古 (IMAI, Atuhiko) [JP/JP]; 〒 1008071 東京都千代田区大手町二丁目6番3号新日本 製鐵株式会社内 Tokyo (JP). 小林 浩樹 (KOBAYASHI, Hiroki) [JP/JP]; 〒1008071 東京都千代田区大手町二 丁目6番3号新日本製鐵株式会社内 Tokyo (JP). 高橋 康夫 (TAKAHASHI, Yasuo) [JP/JP]; 〒5670047 大阪府 茨木市美穂ヶ丘11番1号大阪大学接合科学研究所

/続葉有/

(54) Title: METAL FOIL TUBE AND METHOD AND APPARATUS FOR PRODUCTION THEREOF

(54) 発明の名称: 金属箔チューブおよびその製造方法並びに製造装置

(57) Abstract: A metal foil tube, characterized in that it has been prepared though the welding or solid-joining of a metal foil raw sheet (W) having a sheet thickness (t) of 10 to 100 μ m; a method for manufacturing the metal foil tube, which comprises shaping the metal foil raw sheet (W) so as to form a superimposed portion (G), welding the opposed sides, and finishing the welded part smoothly; and an apparatus for practicing the method. The method allows a foil to be shaped with certainty into the form of a tube even in the case of an extremely thin foil.

(57) 要約: 本発明は、厚さが $10\sim 100\,\mu$ mである金属箔チューブと、極めて薄い金属箔であっても確実にチューブ状 に仕上げることができる金属箔チューブの製造方法と装置を提供す

内 Osaka (JP). 山中 幹雄 (YAMANAKA, Mikio) [JP/JP]; 〒2130012 神奈川県川崎市高津区坂戸 3 - 2 - 1 株 式会社日鐵テクノリサーチ内 Kanagawa (JP). 斎藤 亨 (SAITO, Toru) [JP/JP]; 〒2130012 神奈川県川崎市高 津区坂戸 3 - 2 - 1 株式会社日鐵テクノリサーチ内 Kanagawa (JP).

- (74) 代理人: 青木 篤、外(AOKI, Atsushi et al.); 〒1058423 東京都港区虎ノ門三丁目 5 番 1 号 虎ノ門 3 7 森ビ ル青和特許法律事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

- SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

金属箔チューブおよびその製造方法並びに製造装置

技術分野

本発明は、新規な金属箔チューブおよびその製造方法並びに製造装置に関するものである。より詳しくは、電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、ファクシミリ等のトナー焼付用ロール、現像用ロール、定着用ロールなどに用いて好適な新規な金属箔チューブおよびその製造方法並びに製造装置に関するものである。

背景技術

現在の電子写真式プリンタ、レーザービームプリンタ(LBP)、 複写機、ファクシミリ等の画像形成装置においては、感光体ドラム を画像信号により露光し、現像機にてトナー像を形成し、この感光 体ドラムに形成されたトナー像を記録紙に転写し、更に定着器により熱定着して出力するようにしている。そして、このような画像形成プロセスでは、上記の感光体ドラムやトナー焼付用ロール、現像用ロール、加圧ロール、定着用ロールなど、様々なロール部材が使用されている。通常、このロール部材は、円筒状あるいは円柱状に形成されており、駆動装置(モータなど)により駆動されるようになっている。

こうした電子写真式プリンタ、レーザービームプリンタ (LBP) 、複写機、ファクシミリ等の画像形成装置のトナー焼付用ロール、 現像用ロール、定着用ロール等として使用可能な円筒状の金属製薄 肉チューブには、金属の持つ高弾性、高剛性、高熱伝導性が求めら

れ、さらに、その極薄化技術により、軽量でさらにシャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどのない高い回転精度を達成すべくチュープ表面全体が滑らかであり、かつ耐久性に優れることも求められている。そのため、こうした金属製薄肉チューブは、ステンレス鋼板などをプレス加工やレーザー溶接、プラズマ溶接などにより円筒状に成形、溶接して素管(金属製厚肉チューブ)を作製し、さらにこれをしごき加工、スピニング加工、引き抜き加工、バルジ加工などの薄肉化技術により、極薄の厚さに加工している(例えば、特開2002-55557号公報参照。)。

また、電子写真式プリンタ、レーザービームプリンタ (LBP)、 複写機、ファクシミリ等の画像形成装置のトナー焼付用ロール、現 像用ロール、定着用ロールなどとして使用可能な金属製薄肉チュー ブを製造する方法として、熱可塑性樹脂で金属薄膜シート端面を接 合する方法などが提案されている(例えば、特開2000-280339号公 報参照。)。

しかしながら、プレス加工やレーザー溶接、プラズマ溶接などにより作製した素管(金属製厚肉チューブ)を薄肉化技術により加工した金属製薄肉チューブでは、レーザー溶接やプラズマ溶接により溶接部の組織が一旦溶融し、その硬度(Hv)が半分程度まで低下し、強度も低下する。さらに素管を薄肉化する際に、その表面が金属圧延材(例えば、ステンレス箔)に比べると粗く(肌あれ)、例えば、90%程度の加工を施すスピニング加工の場合では、表面粗さ(Rz)は3μmぐらいであり、薄肉化に伴う表面欠陥が生じるという問題点がある。そのため、シャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどにより回転精度が十分に得られにくいという問題を有している。また、こうした薄肉化技術では、製造過程が複雑であり、製造コストが高くなる傾向にある。

また、熱可塑性樹脂で金属薄膜シート端面を接合する方法では、金属薄膜を覆う樹脂フィルムが熱可塑性樹脂であることが必要であり、非熱可塑性、或は熱硬化性であるポリイミド等の樹脂では成形が不可能である。また、金属接合に比して、樹脂接合では接合強度が弱く長期間の耐久性を持たせることが困難であり、特に高温で使用される場合に、当該接合部に加わる負荷により接合部での剥離が生じるなどの熱脆化が見られるなど、トナー焼付用ロールなどとしては不向きである。また、金属薄膜に別途樹脂を均一に被覆する必要があり、製造コストがかさむ問題があった。

そこで、本発明の目的は、プレス加工やレーザー溶接ないしプラズマ溶接法および薄肉化技術や樹脂材料等を用いることなく、極めて滑らかな表面を有し、金属の持つ高弾性、高剛性、高熱伝導性を有し、極薄で軽量であり、さらにシャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどのない高い回転精度を有し、耐久性にも優れる新規な金属製薄肉チューブおよびその製造方法並びに製造装置を提供するものである。

本発明者らは、上記目的を達成すべく、新規な金属製薄肉チューブおよびその製造方法並びに製造装置につき鋭意検討した結果、従来のようなプレス加工やレーザー溶接ないしプラズマ溶接法および薄肉化技術や樹脂材料を用いることなく、ステンレス箔などの金属箔をほぼ非溶融で溶接および/又は圧接することで、溶融部分が完全にないか又は極めて少なく、したがって硬度が落ちることがなく、耐久性が高く、該溶接部を平滑に仕上げることのできる新規な金属製薄肉チューブの製造方法およびその製造装置を見出した。これにより製造コストを格段に下げることができ、得られる金属製薄肉チューブに比して、金属の持つ高弾性、高剛性、高熱伝導性を有し

、極薄で軽量であり、さらに表面平滑性に優れ、シャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどのない高い回転精度を有し、耐久性にも優れる新規な金属箔チューブが得られることを見出し本発明を完成するに至ったものである。

さらに、本発明者らは、上記した新規な製造方法およびその製造 装置により得られる新規な金属箔チューブに満足することなく、鋭 意改良を試みた結果、以下の知見を得、本発明の更なる改良をなし た。

すなわち、一般に溶接部は金属箔母材に対して形状がやや不整と なり、また表面粗さも大きくなる傾向にある。本発明では、金属箔 をほぼ非溶融で溶接および/又は圧接するものである。そのため、 溶接部を平滑に仕上げることができる、溶接部は箔母材に対して形 状が不整とならず、また表面粗さも小さくできるものである。しか しながら、その後に研究改良を重ねる中で、金属箔をほぼ非溶融で 溶接および/又は圧接する際に、柔らかい箔素材を使用した方が 2 枚重ね部が潰れ易く、また電極の疵も軽減される一方、使用性能の 面からは高サイクル疲労寿命を長くするためにチューブの材質は硬 い方が望ましいケースが多いことを知得した。そこで、この矛盾点 を解決し本発明の金属箔チューブを更に改良する手段として、焼鈍 状態の箔をほぼ非溶融で溶接および/又は圧接し、しかる後にスェ ジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれ・ らの方法の組み合わせにより冷間加工を施して減肉し、当該溶接部 を滑らかにして溶接部の形状と表面粗さを整え、同時に材質を加工 硬化させることにより金属箔チューブの疲労寿命を長くすることが できることを見出した。ここでSUS301やSUS304などの準安定オース テナイト鋼では、冷間加工によってマルテンサイト相を生じて加工 硬化が著しく、ビッカース硬度で600程度まで硬化可能である。ま

たこれほどではないにしても、SUS304N1, SUS304N2, SUS316N, SUS 836L等の高窒素ステンレス鋼やSUS201やSUS202等の高Mn系ステンレスでも加工硬化は大きく、ビッカース硬度で500程度まで可能である。その他の通常のオーステナイト系ステンレス鋼では、ビッカース硬度で430程度まで加工硬化可能であるということを見出し、本発明の更なる改良をなした。

また、本発明では、ほぼ非溶融で溶接および/又は圧接するもの として、金属箔をシーム溶接やマッシュシーム溶接等の電気抵抗溶 接により接合させる手段を見出していたが、その後に研究改良を重 ねる中で、シーム溶接による溶接部は、溶接線に沿って連続的なナ ゲット(溶融凝固した部分)、または溶接線に沿って50%以上の部 分に断続的なナゲットが存在することによって溶接部の強度を安定 的に高くすることができることを見出したものである。即ち、ほぼ 非溶融で溶接および/又は圧接するシーム溶接においては、一旦ナ ゲットが生成されると円盤状の電極(図6の符号32参照)が回転進 行しても電流の多くが電気抵抗の小さいナゲット部分に流れ(無効 電流)、新たに接合すべき界面には、電気抵抗が大きいため、少量 の電流しか流れない。このため、この部分は溶融温度にまで達せず に圧接状態になる。一旦圧接部分ができると、ここも電気抵抗が小 さくなるため、ナゲットと同様にその先でのナゲットの生成を妨げ られる。このような悪循環を避けるために、本発明者らはパルス電 源を用いてシーム溶接を行ない、短い通電時間の次に比較的長い非 通電時間を設け、このサイクルを繰り返すことにより連続ナゲット を得ることに成功した。この際の最適な通電時間と非通電時間の比 は、1/12~1/8であり、1/12未満または1/8超~1/6で 断続的なナゲットが生成される。本発明者らの実験によれば、断続 ナゲットになっても溶接線の長さの50%以上をナゲットがカバーす

れば強度的には問題ないことも判明した。以上のことから、溶接長の50%以上をカバーするナゲットを得るには、パルス電源を用い、通電時間と非通電時間の比を1/15~1/7に設定してシーム溶接を行う必要があることを知得し本発明を更に改良をした。

一方、非溶融で溶接および/又は圧接することのできるマッシュシーム溶接(非溶融であるため溶融部ができないので溶接部の硬度が落ちない利点がある)においても、溶接部の強度をより安定的に高くするには、パルス電源を用いてマッシュシーム溶接を行うのがよく、この際にも最適な通電時間と非通電時間の比が存在することを見出した。即ち、マッシュシーム溶接では、パルス電源を用い、通電時間と非通電時間の比を1/3~1/1に設定して溶接を行うのが望ましいことを知得し、本発明の更なる改良をなした。

さらに、プリンタの定着ロールは異物の混入等によって表面に疵がつくことがあり、一旦疵がつくと後の印刷結果に悪影響する等の 弊害があった。

また、本発明者らが見出してなる新規な金属箔チューブにおいて、金属箔をシーム溶接するのに際して、溶融凝固してできるナゲットが連続的に生じないことがままあり、この部分は圧接状態で溶接強度が相対的に低く改良の余地があることがわかってきた。そこで、こうした点を改善して製品の歩留まり及び品質向上を図る必要があることもわかってきた。

そこで、本発明の更なる改良では、これらの問題をも解決するものであって、その第1のものは金属箔を抵抗溶接等により接合・成形した箔チューブの表面と内表面の少なくとも一方は、硬質なめっき層によって表面硬化されている金属箔チューブである。

またその第2のものは、めっき層の組成が主としてクロム、ニッケル、コバルト、パラジウムのいずれか1種または2種以上の金属

である上記の金属箔チューブである。

またその第3のものは、めっき層の組成がNi-P系合金である上記の金属箔チューブである。

またその第4のものは、ステンレス箔の両表面の少なくとも一方の接合部近傍に第10~11族元素又はこれらの元素を1種以上含む合金、或いは、融点が1200℃以下の金属をめっきし、その後該箔を抵抗溶接してなる金属箔チューブおよびその製造方法である。

またその第5のものは、めっき層の組成が重量比で1~14%のPを含むNi-P合金である上記の金属箔チューブおよびその製造方法である。

またその第6のものは、ステンレス箔を抵抗溶接等により接合又は更に成形加工した箔チューブを800~1100℃の温度で熱処理する 金属箔チューブおよびその製造方法である。

またその第7のものはステンレス箔を抵抗溶接等により接合又は 更に成形加工した箔チューブを800~1100℃の温度で熱処理した後 に、箔チューブの内外面の少なくとも一方に硬質めっきを施してな る金属箔チューブおよびその製造方法である。

本発明の上記目的は、下記の手段により達成される。

- (1) 厚さが、 $10\sim100\,\mu$ mである金属箔を接合ないし溶接したことを特徴とする金属箔チューブ。
 - (2) 前記金属箔がステンレス鋼箔であり、

該ステンレス鋼が、フェライト系ステンレス鋼、マルテンサイト 系ステンレス鋼、オーステナイト系ステンレス鋼、析出硬化型ステ ンレス鋼のいずれか1種であることを特徴とする上記(1)に記載 の金属箔チューブ。

(3) 電気抵抗溶接により接合されたことを特徴とする上記(1)) または(2) に記載の金属箔チューブ。

(4) 前記電気抵抗溶接が、シーム溶接であることを特徴とする 上記 (3) に記載の金属箔チューブ。

- (5) 前記シーム溶接が、パルス電源を用い、通電時間と非通電時間の比を $1/15\sim 1/7$ に設定して行ったものであることを特徴とする上記(4) に記載の金属箔チューブ。
- (6) 前記電気抵抗溶接が、マッシュシーム溶接であることを特徴とする上記 (3) に記載の金属箔チューブ。
- (7)前記マッシュシーム溶接が、パルス電源を用い、通電時間と非通電時間の比を1/3~1/1に設定して行ったものであることを特徴とする上記(6)に記載の金属箔チューブ。
- (8)接合面の少なくとも一部が、固相接合であることを特徴とする上記(1)~(7)のいずれか1つに記載の金属箔チューブ。
- (9)接合または接合線が直線状又はスパイラル状に配置されている上記(1)~(8)のいずれか1つに記載の金属箔チューブ。
- (10)接合または溶接部と母材部との硬度差の絶対値が、ビッカース硬さ (Hv)で母材部の硬さの25%以下であることを特徴とする上記 (1)~(9)のいずれか1つに記載の金属箔チューブ。
- (11) 上記 (1) ~ (10) のいずれか1つに記載の金属箔チューブに冷間加工を施して減肉し、当該接合部ないし溶接部を滑らかにして接合部ないし溶接部の形状と表面粗さを整え、少なくとも当該接合部の材質を加工硬化させたことを特徴とする金属箔チューブ。
 - (12) 前記金属箔がステンレス鋼箔であり、

該ステンレス鋼箔が、オーステナイト系ステンレス鋼の焼鈍材であることを特徴とする上記(2)~(11)のいずれか1つに記載の金属箔チューブ。

(13) 前記金属箔チューブの母材部のビッカース硬さが、180以下であることを特徴とする上記(1)~(12)のいずれか1つに記

載の金属箔チューブ。

(14) 前記金属箔チューブの母材部および溶接部のビッカース硬さが、300~600であることを特徴とする上記(1)~(12)のいずれか1つに記載の金属箔チューブ。

(15) 前記ステンレス鋼箔表層の最大窒素濃度が3質量%以下であることを特徴とする上記(11)~(14)のいずれか1つに記載の金属箔チューブ。

(16) 前記ステンレス鋼箔が、

C:0.05質量%以下、

Si: 0.05~3.6質量%、

Mn: 0.05~1.0質量%、

Cr: 15~26質量%、

Ni: 5~25質量%、

Mo: 2.5質量%以下、

Cu: 2.5質量%以下、

N:0.06質量%以下、

を含有し、残部がFeおよび不可避的不純物よりなる軟質系オーステナイト系ステンレス鋼であることを特徴とする上記 (2) ~ (15) のいずれか1つに記載の金属箔チューブ。

(17) 前記ステンレス鋼箔が、

C:0.05~0.2質量%、

Si: 0.05~3.6質量%、

Mn: 1.0~5.0質量%、

Cr:15~26質量%、

Ni: 5~25質量%、

Mo: 5.0質量%以下、

Cu: 4.0質量%以下、

N: 0.06質量%超~0.4質量%、

を含有し、残部がFeおよび不可避的不純物よりなる高強度オーステナイト系ステンレス鋼であることを特徴とする上記 (2) ~ (11) のいずれか1つに記載の金属箔チューブ。

- (18) 前記金属箔がステンレス鋼の圧延まま材で、溶接部にはマルテンサイト相が析出してなることを特徴とする上記 (2) ~ (12) に記載の金属箔チューブ。
- (19) 金属箔を接合・成形した箔チューブの表面と内表面の少なくとも一方は、硬質なめっき層によって表面硬化されていることを特徴とする上記(1)~(18)のいずれか1つに記載の溶接金属箔チューブ。
- (20) 前記硬質めっき層の組成が主としてクロム、ニッケル、コバルト、パラジウムのいずれか1種または2種以上の金属であることを特徴とする上記(19) に記載の溶接金属箔チューブ。
- (21) 前記硬質めっき層の組成がNi-P系合金であることを特徴とする上記 (19) に記載の溶接金属箔チューブ。
- (22) 前記硬質めっき層の組成が重量比で1~14%のPを含むNi - P合金であることを特徴とする上記(21) に記載の溶接金属箔チューブ。
- (23) ステンレス箔の両表面の少なくともどちらか一方の接合部近傍に第10~11族元素又はこれらの元素を含む合金、或いは、融点が1200℃以下の金属をめっきし、その後該箔を抵抗溶接してなることを特徴とする上記(1)~(22)のいずれか1つに記載の金属箔チューブ。
- (24) ステンレス箔を接合・成形した金属箔チューブを800~110 0℃の温度で熱処理してなることを特徴とする上記(1)~(18) のいずれか1つに記載の溶接金属箔チューブ。

(25) ステンレス箔を接合又は更に成形加工した金属箔チューブを800~1100℃の温度で熱処理した後に、箔チューブの内外面の少なくとも一方に硬質めっきを施してなることを特徴とする上記(1)~ (18) のいずれか1つに記載の溶接金属箔チューブ。

- (26) 前記金属箔チューブの溶接部には溶接線に沿って連続的なナゲット、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することを特徴とする上記(1)~(25)のいずれか1つに記載の金属箔チューブ。
- (27) 前記金属箔チューブの接合部の重ね代(x) μ mが、前記金属箔箔厚(t) μ m として、 $x \le 40+5$ t を満足することを特徴とする上記(1)~(26)のいずれか 1 つに記載の金属箔チューブ
- (28) 前記金属箔チューブの肉厚に対するチューブの内径の比が、1/500以下であることを特徴とする上記(1)~(27)のいずれか1つに記載の金属箔チューブ。
- (29) 前記金属箔チューブのJIS B0601-2001で規定される表面粗 2.0μ m以下であることを特徴とする上記(1)~(28) のいずれか 1 つに記載の金属箔チューブ。
- (30) 前記金属箔チューブに、60サイクル/min以上の繰り返しサイクルで0.2%以下の歪を与える疲労試験において、 1×10^6 回以上の耐久性を有することを特徴とする上記(1) \sim (29) のいずれか1つに記載の金属箔チューブ。
- (31) 画像形成装置のトナー焼付け用ロールおよび/または現像 用ロールに用いられてなることを特徴とする上記(1)~(30)の いずれか1つに記載の金属箔チューブ。
- (32) 板厚が10~100 μmの金属箔素板を一組の対向辺が重ね合 わさるように成形する成形工程と、前記重ね合わせた対向辺を溶接

する溶接工程とを有することを特徴とする金属箔チューブの製造方法。

- (33) さらに、前記溶接した部分を平滑に仕上げる仕上げ工程を有することを特徴とする上記(32) に記載の金属箔チューブの製造方法。
- (34) 前記成形工程は、前記金属箔素板の対向辺を重ね合わせる前に、成形用の芯棒に該金属箔素板を位置決めする位置決め工程を有することを特徴とする上記(32)または(33)に記載の金属箔チューブの製造方法。
- (35) 前記位置決め工程は、前記芯棒と常に平行な位置を保って 近接離間する成形装置に金属箔素板を保持し、該成形装置を前記芯 棒に近づけ金属箔素板と芯棒が線接触した時点で、該金属箔素板を 芯棒に対して押圧し、位置決めするようにしたことを特徴とする上 記(34) に記載の金属箔チューブの製造方法。
- (36) 前記成形工程は、前記位置決め工程後に前記成形装置が芯棒に向かって更に接近し、該成形装置に形成した断面が半円形の凹部と前記芯棒との間で該金属箔素板を保持し、該金属箔素板を芯棒の周囲に巻き付ける巻き付け工程を有することを特徴とする上記(34) 又は(35) に記載の金属箔チューブの製造方法。
- (37) 前記成形工程は、前記巻き付け工程後に前記金属箔素板の円周の一部を半径方向に変位させることにより重ね代を調整する重ね代調整工程を有することを特徴とする上記(36) に記載の金属箔チューブの製造方法。
- (38) 前記重ね代(x) μ mは、前記板厚(t) μ mとして、x $\leq 40+5$ t を満足することを特徴とする上記(36)又は(37)に記載の金属箔チューブの製造方法。
 - (39) 前記溶接工程は、電気抵抗溶接法である上記 (32) または

- (33) に記載の金属箔チューブの製造方法。
- (40) 前記電気抵抗溶接は、シーム溶接又はマッシュシーム溶接であることを特徴とする上記(39) に記載の金属箔チューブの製造方法。
- (41) 前記電気抵抗溶接は、パルス電源を用い通電時間と非通電時間の比を1/15~1/7に設定してシーム溶接を行うか、又は、パルス電源を用い通電時間と非通電時間の比を1/3~1/1に設定してマッシュシーム溶接を行うことを特徴とする上記(40)に記載の金属箔チューブの製造方法。
- (42) 前記溶接工程は、前記芯棒の外面に軸方向に沿って形成された溝内に設けられた導電性の固定電極部材と、当該固定電極部材に対向して設けられた導電性の可動電極部材との間で通電することにより行なうことを特徴とする上記(32),(33)又は(39)~(41)のいずれかに記載の金属箔チューブの製造方法。
- (43) 前記固定電極部材は、外面の一部又は全部が平坦面となるように形成したことを特徴とする上記(42) に記載の金属箔チューブの製造方法。
- (44) 前記固定電極部材及び/または可動電極部材は、それぞれ少なくともその一部がモリブデンまたはアルミナ分散銅合金からなることを特徴とする上記(42)又は(43)に記載の金属箔チューブの製造方法。
- (45) 前記固定電極部材および/または可動電極部材の硬度と前記金属箔素板の硬度とをほぼ同じとしたことを特徴とする上記(42)~(44)のいずれかに記載の金属箔チューブの製造方法。
- (46) 前記金属箔チューブは、前記芯棒内から半径方向に流体を噴出させることにより当該芯棒から剥離し、取り外すようにしたことを特徴とする上記 (34) ~ (36) および (42) のいずれかに記載

の金属箔チューブの製造方法。

(47) 前記芯棒を複数の部材から構成し、一部を軸方向に移動させることにより金属箔チューブが当該芯棒から剥離するようにしたことを特徴とする上記(34)~(37) および(42) のいずれかに記載の金属箔チューブの製造方法。

- (48) 前記金属箔素板の板厚に対する金属箔チュープ内直径の比を、1/500以下とすることを特徴とする上記(32)~(47)のいずれかに記載の金属箔チューブの製造方法。
- (49) 上記 (32) ~ (48) のいずれかに記載の方法で得られた金属箔チューブに芯金を入れ、さらにスェジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれらの方法の組み合わせにより冷間加工を施して減肉し、当該接合部ないし溶接部を滑らかにして接合部ないし溶接部の形状と表面粗さを整え、少なくとも当該接合部ないし溶接部の材質を加工硬化させることを特徴とする金属箔チューブの製造方法。
- (50) ステンレス箔の両表面の少なくともどちらか一方の接合部 近傍に第10~11族元素又はこれらの元素を含む合金、或いは、融点 が1200℃以下の金属をめっきし、その後該箔を抵抗溶接することを 特徴とする上記(32)~(49)のいずれかに記載の金属箔チューブ の製造方法。
- (51) ステンレス箔を接合又は更に成形加工した金属箔チューブを800~1100℃の温度で熱処理することを特徴とする上記(32)~(50) のいずれかに記載の金属箔チューブの製造方法。
- (52) ステンレス箔を接合又は更に成形加工した金属箔チューブを800~1100℃の温度で熱処理した後に、金属箔チューブの内外面の少なくとも一方に硬質めっきを施すことを特徴とする上記(32)~ (51) のいずれかに記載の金属箔チューブの製造方法。

(53) 前記硬質めっきの組成が重量比で1~14%のPを含むNi-P合金であることを特徴とする上記(50) または(52) に記載の金属箔チューブの製造方法。

- (54) 前記金属箔チューブの溶接により、当該溶接部には溶接線に沿って連続的なナゲット、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することを特徴とする上記(32)~(53)のいずれかに記載の金属箔チューブの製造方法。
- (55) 板厚が10~100 μ m の金属箔素板を所定形状に成形する成形部と、前記金属箔素板の対向辺を溶接する溶接部とを有することを特徴とする金属箔チューブの製造装置。
- (56) 前記成形部は、軸に直角な断面円形の芯棒と、当該芯棒に対し近接離間し得るように設けられ、金属箔素板を保持する成形装置と、該成形装置を前記芯棒に近づけ金属箔素板と芯棒が線接触した時点で、該金属箔素板を押圧し前記芯棒に対して位置決めする位置決め部材とを有し、

前記成形装置を移動させて前記位置決めされた金属箔素板を芯棒に向かって接近させ、金属箔素板を予め芯棒の周囲にU字状に巻き付けるようにしたことを特徴とする上記(55)に記載の金属箔チューブの製造装置。

(57) 前記成形装置は、前記芯棒と常に平行な位置を保って近接離間するように設けられ、前記芯棒との間で前記金属箔素板をU字状に巻き付ける断面半円形の凹部を有する保持板と、前記U字状の金属箔素板の一辺を前記芯棒の外周に密着するように押圧する第1押圧部材と、前記U字状の金属箔素板の他辺を前記芯棒の外周に向かって押圧する第2押圧部材とを有し、

前記巻き付け後に前記金属箔素板の対向辺端部を重ね合せて重ね合わせ部を形成するようにしたことを特徴とする上記(56)に記載

の金属箔チューブの製造装置。

(58) 前記成形部は、前記第2押圧部材による押圧完了前に、対向辺相互の重ね合わせ部の重ね代が所定値となるように前記金属箔素板の円周の一部を半径方向に変位する重ね代調整手段を有する上記 (56) 又は (57) に記載の金属箔チューブの製造装置。

- (59) 前記重ね代調整手段は、前記芯棒の内部に設けた偏心装置により構成したことを特徴とする上記(58) に記載の金属箔チューブの製造装置。
- (60) 前記重ね代調整手段は、前記芯棒の外部に設けた偏心装置により構成したことを特徴とする上記(58) に記載の金属箔チューブの製造装置。
- (61) 前記重ね代調整手段は、前記金属箔素板が前記芯棒に密着 していない非密着部分を加圧部材により加圧するようにしたことを 特徴とする上記 (58) に記載の金属箔チューブの製造装置。
- (62) 前記重ね代調整手段は、前記芯棒に形成した凹部に向かって前記芯棒の外部に設けられた加圧部材を押し込むようにしたことを特徴とする上記 (58) に記載の金属箔チューブの製造装置。
- (63) 前記加圧部材は、カム、ロール、円筒体あるいは棒状部材のいずれか1つであり、前記芯棒の軸方向両端部に個別に作動するように設けたことを特徴とする上記(61)又は(62)に記載の金属箔チューブの製造装置。
- (64) 前記重ね代(x) μ m が、前記板厚(t) μ m として、x $\leq 40+5$ t を満足するように構成されていることを特徴とする上記 (57) 又は (58) に記載の金属箔チューブの製造装置。
- (65) 前記溶接部は、電気抵抗溶接部であることを特徴とする上記 (55) に記載の金属箔チューブの製造装置。
 - (66) 前記溶接部は、前記芯棒の外面に軸方向に沿って設けられ

た導電性の固定電極部材と、当該固定電極部材に対向して設けられ た可動電極部材とから構成され、両電極部材間に前記金属箔素板の 前記重ね合わせ部を挟持した状態で溶接するようにしたことを特徴 とする上記 (55) に記載の金属箔チューブの製造装置。

- (67) 前記固定電極部材は、外面の一部または全部が平坦面となるように形成したことを特徴とする上記(66) に記載の金属箔チューブの製造装置。
- (68) 前記可動電極部材は、前記重ね合わせ部を加圧しつつ通電する電極輪である上記(66) に記載の金属箔チューブの製造装置。
- (69) 前記固定電極部材及び/または可動電極部材は、それぞれ少なくともその一部がモリブデンまたはアルミナ分散銅合金からなることを特徴とする上記(66)~(68)のいずれかに記載の金属箔チューブの製造装置。
- (70) 前記固定電極部材および/または可動電極部材の硬度が、 前記金属箔素板の硬度とほぼ同じであることを特徴とする上記(66)) ~ (68) のいずれかに記載の金属箔チューブの製造装置。
- (71) 前記金属箔チューブは、前記芯棒内から半径方向に流体を噴出すことにより当該芯棒から剥離し、取り外すようにしたことを特徴とする上記(56),(57),(66)のいずれかに記載の金属箔チューブの製造装置。
- (72) 前記芯棒は、当該芯棒から溶接後の金属箔チューブを剥離する流体を噴出する流体通路を有することを特徴とする上記 (56)
- , (57), (66) のいずれかに記載の金属箔チューブの製造装置。
- (73) 前記芯棒は、前記金属箔素板が芯棒に密着しないようにするための切り欠き部を外周面に有することを特徴とする上記 (56)
- , (57), (66)のいずれかに記載の金属箔チューブの製造装置。
 - (74) 前記芯棒は、複数の部材から構成され、一部を軸方向に移

動させることにより金属箔チューブが当該芯棒から剥離するように したことを特徴とする上記 (56), (57), (66)のいずれかに記 載の金属箔チューブの製造装置。

- (75) 前記金属箔素板の板厚に対する金属箔チューブ内直径の比が、1/500以下となるように構成されていることを特徴とする上記 (55) ~ (74) のいずれかに記載の金属箔チューブの製造装置。
- (76) 上記 (32) ~ (54) に記載の金属箔チューブの製造方法ないし上記 (55) ~ (75) に記載の金属箔チューブの製造装置を用いて得られたものであることを特徴とする金属箔チューブ。

図面の簡単な説明

- 図1 (A) は、金属箔チューブに成形する金属箔素板の平面図である。
 - 図1 (B) は、溶接前の金属箔チューブの断面図である。
 - 図1 (C)は、接合部が直線状の金属箔チューブの斜視図である
- 図1 (D) は、接合部がスパイラル状の金属箔チューブの斜視図である。
- 図2は、本発明の実施形態に係る金属箔チューブ製造装置の概略側面図である。
 - 図3は、図2の平面図である。
 - 図4は、図3の4-4線に沿う断面図である。
 - 図5は、図4の要部拡大断面図である。
- 図6は、本発明の実施形態の金属箔チューブ製造装置の溶接状態を示す拡大断面図である。
- 図7は、本発明の実施形態の金属箔チュープ製造装置の芯棒の軸線に沿う概略断面図である。

図8は、本発明の実施形態に係る金属箔チューブ製造装置の芯棒の他の例を示す概略図である。

発明を実施するための最良の形態

以下、本発明の実施形態を添付図面に基づいて説明する。

<金属箔チューブ>

本発明は、厚さが、 $10\sim100\,\mu$ m、好ましくは $20\sim50\,\mu$ mである 金属箔を接合または溶接したことを特徴とする金属箔チューブであ る。本発明の金属箔チューブは、以下に説明するように、金属の持 つ特性である高弾性、高剛性を有し、極薄軽量で耐久性に優れ、さ らにかつ高熱伝導性を有し、シャープなフルカラー画質にとって悪 影響を与える振動や回転ムラなどのない高い回転精度が望まれる電 子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、フ ァクシミリ等の画像形成装置のトナー焼付用ロールや現像用ロール などに適用し得る。従来の薄肉化技術等では、その表面がどうして も肌あれしており、滑らかにするのが困難であり、表面粗さRzが3 μm以下のものは得られなかったが、本発明のように金属箔、例え ば、圧延ステンレス箔を接合または溶接して用いる場合には、その 表面が滑らかであり、表面粗さが2μm以下のものが提供できるも のである。その結果、シャープなフルカラー画質にとって悪影響を 与える振動や回転ムラなどのない高い回転精度を有する金属箔チュ ーブを提供することができるのである。また、従来の熱可塑性樹脂 に接合する方法では、十分な接合強度が得られず、耐久性に劣るも のであったが、本発明では、金属接合であるため、接合強度が十分 であり、耐久性に優れるものである。また、従来の熱可塑性樹脂で 接合する方法では、熱可塑性樹脂を金属箔表面に均一な厚さになる ように塗布する必要があり、高コストになるが、本発明ではそのよ

うな工程が必要でなく、生産性に優れており、低コストな金属箔チューブを提供することができる。さらに、電力消費量が少なく、機械的な繰り返し応力に優れ、また疲労試験等での耐久性に優れ製品寿命が長く、200~400℃程度の高温使用温度域でも熱脆化を生じることなく、トナー焼付用ロール等にも好適に利用でき、さらにステンレス鋼のような合金を用いることのできる金属箔チューブを提供することができるものである。さらに、電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、ファクシミリ等の画像形成装置の小型化及び軽量化を図ることができ、また省エネルギー化を図ることができる。

ここで、本発明の金属箔チューブの厚さ(肉厚)が、 100μ mを 超える場合には、熱伝導が悪くなるため省エネモードからの立ち上 がりに時間を要する。また、重量が増加し、箔が肉厚化することで 、薄型化、軽量化を達成するのが困難となるため、小型軽量化を指 向する利用者やメーカーの要望に十分に応えることができなくなる おそれがある。一方、ステンレス鋼箔の厚さは薄ければ薄いほど望 ましいが、 10μ m未満の場合には強度と剛性が低く扱いにくいもの となる。

なお、本発明では、上記したように金属箔をそのまま接合してなる金属箔チューブであることから、その表面粗さRzが $2~\mu$ m以下、好ましくは $0.1\sim 1~\mu$ mのものとすることができる。これは、上記した通り、圧延後の金属箔の表面粗さを損なうことなく、接合により金属箔チューブに仕上げることができるためである。なお、必要により、圧延後更に表面仕上げしても良い。また、圧延後の金属箔の表面粗さRzを $0.1~\mu$ m未満とすると高コストとなるので、該金属箔の表面粗さRzを $0.1~\mu$ m以上とするのが望ましい。これにより、電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、

ファクシミリ等の画像形成装置のトナー焼付けロール、現像用ロールなどに用いることのできる金属箔チューブとして、高弾性、高剛性、極薄で、軽量であり、耐久性に優れ、さらにシャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどのない高い回転精度を有する表面性状の良好なチューブを提供することができる

なお、上記表面粗さRzの測定方法は、JIS B0601-2001(最大高さ粗さ)で規定される測定法により行うことができるが、これに制限されるものではない。

次に、本発明の金属箔チューブに用いられる金属箔材料としては 、特に制限されるべきものではなく、使用用途に応じて最適な材料 を適宜選択すればよいが、電子写真式プリンタ、レーザービームプ リンタ (LBP)、複写機、ファクシミリ等の画像形成装置の定着ロ ール、現像ロール、加熱ロールなどの用途の場合には、高弾性、高 剛性、極薄で、軽量化が図れ、耐久性に優れ、さらにシャープなフ ルカラー画質にとって悪影響を与える振動や回転ムラなどのない高 い回転精度を有するものを提供することができる点で、ステンレス 箔が望ましく、具体的には、その材質は、フェライト系ステンレス 鋼、マルテンサイト系ステンレス鋼およびオーステナイト系ステン レス鋼、析出硬化型ステンレス鋼のいずれか1種である。なお、上 記析出硬化型ステンレス鋼は、後述する実施例7のように、電気抵 抗溶接等により接合して金属箔チューブを作製し、研磨などの仕上 げ処理を行った後に、使用するステンレス鋼の特性に沿って、例え ば、固溶化熱処理、必要があれば中間処理、析出硬化熱処理等を行 うことで析出硬化させて高耐力を得ることができ、また母材部と溶 接部の硬さを略同じにすることができ、耐久性を格段に向上させる ことができる点で有利である。このときの固溶化熱処理、必要があ

れば中間処理、析出硬化熱処理等の条件は、ステンレス鋼種ごとに 最適条件を選択すれば良い。

従来、金属箔を直接接合する技術は何ら確立されていなかったが、本発明の接合技術は、使用目的に応じて、軟質材のステンレス箔から硬質材のステンレス箔までの各種材料につき幅広く使用可能であり、使用材料による何らの制限を受けることなく、幅広い用途に適用し得る金属箔チューブを提供することができるものである。なお、本発明の金属箔チューブの材料としては、これらに制限されるべきものではなく、例えば、Fe基超合金、NiおよびNi合金、CoおよびCo合金、TiおよびTi合金、NbおよびNb合金、ZrおよびZr合金、TaおよびTa合金などを用いることもできる。

本発明の金属箔チューブの金属箔の材料としては、フェライト系 ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系 ステンレス鋼及び析出硬化型ステンレス鋼のいずれか1種のステン レス鋼を原板とし、その後に圧延を行って得られる圧延まま材、さ らに圧延後に焼鈍を行って得られる焼鈍材、そのほかテンションア ンーニリング材などが好適であるが、これらに制限されるものでは ない。具体的には、JISにおいてSUS400番台に規定されているフェ ライト系ステンレス鋼箔のほかSUSXM27やTp.409系などのフェライ ト系ステンレス鋼箔、JISにおいてSUS400番台に規定されているマ ルテンサイト系ステンレス鋼箔、およびJISにおいてSUS200番台お よび300番台に規定されているオーステナイト系ステンレス鋼箔の ほか、SUSXM7, SUSXM15J1, Tp.302B, Tp.314系などのオーステナイ ト系ステンレス鋼、SUS630およびSUS631などの析出硬化型ステンレ ス鋼のいずれか1種のステンレス鋼を原板とし、その後に箔圧延を 行って得られる圧延まま材、さらに圧延後に焼鈍を行って得られる 焼鈍材及び析出処理材などが挙げられる。

また、本発明の金属箔チューブは、電気抵抗溶接により接合され たものであるのが望ましく、具体的には、電気抵抗溶接が、シーム 溶接、望ましくはマッシュシーム溶接であるものが望ましい。また 、本発明の金属箔チューブは、従来の薄肉化技術に比して、表面平 滑性により優れているものであるが、かかる表面平滑性を達成する には、接合部と母材部との間でも表面平滑性に優れるように接合し 、さらには接合部と母材部で硬度差がビッカース硬さ(Hv)で母材 部の硬さの25%以下となるようにされている必要がある。そのため には、当該接合部が、電気抵抗溶接により接合されたものであるこ とが望ましく、具体的には電気抵抗溶接が、シーム溶接、望ましく はマッシュシーム溶接である。上記接合手段を用いてなる金属箔チ ューブでは、電極加圧力をかけて行う継手の抵抗溶接法であるシー ム溶接、さらには円板電極で強加圧のもとで、継手部分をつぶしな がら溶接し、突合せ継手に近い接合部を得る溶接法であるマッシュ シーム溶接を採用することで、接合部の箔同士が適度な電極加圧で 連続してつぶされて突合せ継手に近い接合部を形成し得ることがで きる。そのため、溶接部の肉厚が平坦化されており、その後の表面 仕上げの際に箔同士の接合部に過大な負荷を加えなくてもよく、接 合後の平滑仕上げが簡便でよいために、製造コストを抑えることが できる。その結果、上記したような表面粗さRzの低い滑らかな表面 (接合部) に仕上げることができるものである。

さらに、本発明の金属箔チューブにおいては、金属箔チューブの溶接部には溶接線に沿って連続的なナゲット(溶融凝固した部分)、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することが望ましい。これは、ほぼ非溶融で溶接および/又は圧接することのできるシーム溶接等により接合を行う場合に、当該溶接部は、溶接線に沿って連続的なナゲット(溶融凝固した部分)、ま

たは溶接線に沿って50%以上の部分に断続的なナゲットが存在する ことによって溶接部の強度を安定的に高くすることができるためで ある。

即ち、通常シーム溶接においては、一旦ナゲットが生成されると 円盤状の電極(図6の符号32参照)が回転進行しても電流の多くが 電気抵抗の小さいナゲット部分に流れ(無効電流)、新たに接合す べき界面には電気抵抗が大きいため少量の電流しか流れない。この ためこの部分は溶融温度にまで達せずに圧接状態になる。一旦圧接 部分ができるとこの部分も電気抵抗が小さくなるため、ナゲットと 同様にその先でのナゲットの生成が妨げられる。このような悪循環 を避けるために、本発明者らはパルス電源を用いてシーム溶接を行 ない、短い通電時間の次に比較的長い非通電時間を設け、このサイ クルを繰り返すことにより連続ナゲットを得ることに成功した。こ の際の最適な通電時間と非通電時間の比は、1/12~1/8であり 、1/12未満または1/8超~1/6では断続的なナゲットが生成 される。しかしながら、本発明者らの実験によれば、断続ナゲット になっても溶接線の50%以上をナゲットがカバーすれば強度的には 問題ないことが判明した。溶接長の50%以上をカバーするナゲット を得るには、通電時間と非通電時間の比を1/15~1/7にする必 要がある。以上の観点から、本発明の金属箔チューブでは、パルス 電源を用い、通電時間と非通電時間の比を1/15~1/7に設定し てシーム溶接してなるものが望ましいともいえる。

さらに、非溶融で溶接および/又は圧接することのできるマッシュシーム溶接、なおこのマッシュシーム溶接は、非溶融であるため溶融部ができないので硬度が落ちない利点がある、においても、溶接部の強度をより安定的に高くするには、パルス電源を用いてマッシュシーム溶接を行うのがよく、この際にも最適な通電時間と非通

電時間の比が存在することを見出したものである。即ち、本発明の 金属箔チューブでは、パルス電源を用い、通電時間と非通電時間の 比を1/3~1/1に設定してマッシュシーム溶接してなるものも 望ましい態様の1つといえる。

また、本発明の金属箔チューブの溶接部は、接合面に沿って生じ るナゲットの部分を除いて溶融相の残らない固相接合状態であるた め、溶融相が溶接部の全厚にわたって残るレーザー溶接あるいはプ ラズマ溶接などに比して接合部での組成変化(結晶構造変化)によ る強度低下を抑えることができる。また当該接合部と非接合部(母 材部)での硬度等の機械的特性がほぼ同等であるため、当該接合部 と母材部との境界部や接合面での応力集中による急激な金属疲労な どによるひび割れや接合剥離などを生じにくく、耐久性に優れる。 そのため、金属箔チューブを画像形成装置のトナー焼付け用ロール や現像用ロール等に用いた際に、長期寿命化を図ることができる。 但し、使用する材料が軟質材の場合は、溶接時の加圧力を小さくし て溶接部に溶融相を残し、母材との硬度差を少なくすることもでき る。以上のことから、本発明による金属箔チューブの溶接部の接合 面の少なくとも一部は、固相接合であることが望ましい。この場合 、固相接合であるのは、接合面の一部であってもよいし、全部であ ってもよい。なお、非溶融で溶接および/又は圧接することのでき るマッシュシーム溶接を用いれば、ナゲットを生成することなく、 溶接部の接合面の全部を固相接合することが可能である。溶融相が 形成されないため接合部での組成変化(結晶構造変化)による強度 低下がない点で望ましい。

上記電気抵抗溶接(シーム溶接、マッシュシーム溶接を含む)等でのほぼ非溶融で溶接および/又は圧接により、接合部の重ね代(x)が、前記金属箔の箔厚(t)として、x≤40+5 tを満足して

なる金属箔チューブが好ましい。ここで、重ね代(x)が40+5 t よりも大きい場合には、さらに表面仕上げ加工を行えばよい。なお、ここでの重ね代(x)及び金属箔の箔厚(t)の単位は、いずれも μ m とする。

本発明の金属箔チューブでは、溶接部と母材部(非溶接部)の硬度差(ビッカース硬さ)の絶対値が、ビッカース硬さ(Hv)で母材部の硬さの25%以下になるようにすることが望ましい。溶接部と母材部(非溶接部)の硬度差の絶対値が、ビッカース硬さ(Hv)で母材部の硬さの25%を超える場合には、溶接部と母材部(非溶接部)の境界部で硬度差による冶金的ノッチ効果により金属疲労などによるひび割れや亀裂などを生じ易くなる。なお、従来のレーザー溶接法では、溶接部が溶けて硬度が下がったままとなる。該ビッカース硬さ(Hv)の測定方法は、JIS Z 2244(1998)による。本発明では、上記溶接法や材料や熱処理方法を適宜選択することで、溶接部と母材部(非溶接部)の硬度差を抑えることができ、金属箔チューブ全体の耐久性を高めることができ、機械的強度(硬度差)による回転ムラや振動のない高い回転精度を実現することができる。

また、本発明の金属箔チューブでは、ステンレス箔として、フェライト系ステンレス鋼またはマルテンサイト系ステンレス鋼の圧延まま材で、溶接部にはマルテンサイト相が析出するものが好適に利用可能である。具体的には、SUS410Lなどのフェライト系ステンレス鋼、SUS403、SUS410系、SUS420系、SUS431、SUS440系などのマルテンサイト系ステンレス鋼などが溶接部にはマルテンサイト相が析出するものとして例示できる。これらの鋼の場合は、溶接部は、溶接熱によるマルテンサイトの析出で硬化させ、母材部は、圧延による加工硬化を利用して硬化させ、溶接部と母材部の硬度差を小さくすることができる。

また、マルテンサイト系ステンレス鋼では、溶接後に適当な温度で熱処理することにより、その硬度をHv300から600の広範囲に調整することが出来る。

かかるステンレス箔として硬質材を用いてなる金属箔チューブは、例えば、 30μ m以下の厚さの金属箔チューブの用途に好適に利用することができる。特に、ステンレス箔として上記硬質材を用いる場合には、溶接部の機械的性質を高めることができる。そのため、疲労寿命を長くすることができ、耐久性向上に寄与し得るものである。さらに、節電モードからの立ち上がり時間を短縮することも可能である。

さらに本発明の金属箔チューブでは、ステンレス箔として、SUS3 04などJISで規定されているSUSの300番台に規定されているオーステナイト系ステンレス鋼を圧延、焼鈍してなる焼鈍材が挙げられる。かかるステンレス箔として軟質材を用いてなる金属箔チューブは、溶接部はそれほど硬化せず、母材部は軟質材であるから、全体として軟質なチューブを得ることができる。この場合は、金属箔の硬度とほぼ同程度の硬度の電極材を用いることで、電極材および金属箔の双方を傷つけることなく、接合することができる。特に、金属箔にオーステナイト系ステンレス鋼の焼鈍材を用いる場合には、電極材に銅などの電気伝導性に優れた材料を組み合わせることができる点でも有利である。

金属箔として上記オーステナイト系ステンレス鋼の焼鈍材を用いる場合には、母材部のビッカース硬さ (Hv) が180以下であるものが好ましい。これは、製造段階で加工性に優れ、チューブ状に成型し易いなどの特性がある。また、金属箔を高精度に切り出す (打ち抜く)際にも、反りや周縁部のひずみなどが生じ難い点でも優れている。また、金属箔の硬度とほぼ同程度硬度の電極材として、例え

ば、モリブデン、アルミナ分散銅合金などがあり、こうした電極材を利用できるため、製造段階での電極材ないしチューブの損傷を抑えることもできる。

上記金属箔チューブにおいては、耐久性、耐磨耗性に優れ、高サ イクル疲労寿命を長くする観点から、材質、すなわち金属箔チュー ブの母材部および接合部(溶接部)の材質、のビッカース硬さ(Hv) が、300~600、好ましくは400~500である。すなわち、製造段階 で加工性に優れ、チューブ状に成型し易いなどの観点からは、母材 部のビッカース硬さが180以下が望ましいものである。しかしなが ら、使用性能の面からは高サイクル疲労寿命を長くするためにチュ ープの材質は硬い方が望ましいケースが多い。そこで、金属箔を接 合ないし溶接して得られた金属箔チューブに、更に冷間加工を施し て減肉し、当該接合部を滑らかにして接合部の形状と表面粗さを整 え、少なくとも当該接合部の材質を加工硬化させてもよい。これに より当該接合部を含む材質のビッカース硬さ(Hv)を上記に規定す る範囲にまで高めることができ、使用性能として耐久性、耐磨耗性 を高めることができる。その結果、溶接段階での加工性と、使用性 能の面からの高サイクル疲労寿命の双方を同時に達成することがで きるものである。

本発明では、前記金属箔チューブの溶接部を含めて、全体に加工を施して減肉し、当該溶接部を滑らかにして溶接部の形状と表面粗さを整え、当該溶接部を含むチューブ全体の材質を加工硬化させたものであってもよい。これは、先述したように、本発明のようにほぼ非溶融で溶接および/又は圧接する場合においては、柔らかい箔素材を使用した方が2枚重ね部が潰れ易く、また電極の疵も軽減される一方、使用性能の面からは高サイクル疲労寿命を長くするためにチューブの材質は硬い方が望ましいケースが多いためである。こ

の矛盾点を解決すべく本発明の更なる改良では、焼鈍状態の箔を溶接し、しかる後にスェジング、分割ローラー圧延法、穴ダイス法、 へら絞り法またはこれらの方法の組み合わせにより冷間加工を施して減肉し、当該溶接部を滑らかにして溶接部の形状と表面粗さを整え、同時に材質を加工硬化させることにしたものである。これにより金属箔チューブの疲労寿命を長くすることができるものである。

すなわち、上記加工法に適している金属箔チューブとしては、上記したように焼鈍状態の箔を溶接してなるものが望ましいが、未焼鈍の箔を溶接してなるものの使用を排除するものではない。即ち、金属箔を接合ないし溶接して得られた金属箔チューブに冷間加工を施して減肉し、当該溶接部を滑らかにして溶接部の形状と表面粗さを整え、同時に材質を加工硬化させることにより金属箔チューブの疲労寿命を長くすることができるものであれば、未焼鈍の箔を溶接してなるものも、本発明の上記技術範囲に含まれるものである。

上記金属箔チューブの溶接部の加工法としては、例えば、スェジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれらの方法の組み合わせて冷間加工を行なうことができる。ただし、本発明では、溶接部を滑らかにして溶接部の形状と表面粗さを整え、少なくとも当該溶接部の材質を加工硬化させることができるものであれば、これらの冷間加工法に制限されるべきものではない。

上記加工法により冷間加工を行って溶接部を滑らかにすることで溶接部は、外観上、形状、表面粗さおよび硬度において母材部と区別できなくなるように整えるのが望ましい。これにより、シャープなフルカラー画質にとって悪影響を与える振動や回転ムラなどのない高い回転精度を達成でき、チューブ表面全体が滑らかであり、かつ耐久性に優れる金属箔チューブを提供することができる。

同様に、溶接部を滑らかにすることで表面粗さは、JIS B0601-20

01 (最大高さ粗さ)で規定される表面粗さRzが $2.0\,\mu$ m以下、好ましくは $0.1\sim1\,\mu$ m となるように整えるのが望ましい。特に、上記加工法による冷間加工では、表面粗さを整えるのに適しており、上記の好適な範囲の下限値に近いものに調整可能である(後述の実施例 9 の表 1 参照)点で極めて有効である。

また、冷間加工を行ない、材質、金属箔チューブの母材部および接合部(溶接部)の材質、を加工硬化させることで、材質のビッカース硬さ(Hv)が300~600、好ましくは400~600、より好ましくは450~550となるようにするのが望ましい。これにより、上述したように、画像形成装置のトナー焼付用ロールや現像用ロール等として使用可能な耐久性、耐磨耗性に優れ、高サイクル疲労寿命を長くする上で有効な硬度を有する溶接金属箔チューブを提供することができる。

また、上記金属箔として上記オーステナイト系ステンレス鋼の焼 鈍材を用いる場合には、高精度に金属箔を切り出す(打ち抜く)際 に、シワやひび割れ(クラック)などを生じさせないために、ステ ンレス鋼箔全体(バルク)での窒素元素の含有量が、0.06質量%以下 下、より好ましくは0.03質量%以下であることが望ましい。また、 同時にステンレス箔表層の最大窒素濃度が3質量%以下であることが望ましい。ここで、ステンレス鋼箔表層とは、焼鈍処理により が望ましい。ここで、ステンレス鋼箔表層とは、焼鈍処理により で、最表層より、酸素濃度のピークから50%になるまでの深さの部分 を指す。ステンレス鋼箔の窒素含有量が0.06質量%を超える場合に は、ステンレス箔が硬くなるため、高精度に金属箔を切り出すく なく)際に割れやすく、クラックが生じ易くなるおそれがある。 これは、通常のステンレス薄板や圧延しただけのステンレス箔では 、窒素分が著しく増加することはないが、製造段階で焼鈍を行う場

合には、雰囲気中の N_2 ガスがステンレス箔に取り込まれ、顕著な窒化が生じる。そのため、バルクの窒素含有量が増加すると同時に、表層の酸化皮膜中の窒素含有量も著しく増加する。表層部の窒素含有量はバルク内部に対して相対的に増加するので、バルク内部よりもさらに高硬度化する。その結果、高精度に金属箔を切り出す(打ち抜く)際に表層部に浅いクラックが生じ、厚さ方向に進行してひび割れにつながる。

また、金属箔として上記オーステナイト系ステンレス鋼の焼鈍材 を用いる場合には、その材質は、具体的には、SUSシリーズでは、S US304、SUS304L、SUS304J1 (Cu添加)、SUS304J2 (17%Cr-7%Ni - 4 % Mn - 2 % Cu) 、 SUS316 (Mo添加) 、 SUS316L (Mo添加) 、 SUS 305、SUSXM7 (Cu添加)、SUS317、SUS317L、SUS309Sなど、新日本 製鐵株式会社独自鋼種のYUSシリーズでは、YUS304UL, YUS316UL (M o添加)、YUS27A (Cu添加)、YUS110M (Cu, Si, Mo添加)、YUS170 などのステンレス鋼を原板とし、その後に圧延、焼鈍を行って得ら れたものが使用可能であるが、これらに制限されるものではない。 ステンレス鋼として最も広く使用されており、圧延処理に用いるス テンレス薄板として既に安定かつ安価に市販されており、圧延によ るステンレス鋼箔への加工技術が確立されており、さらに焼鈍処理 にも適してなる上記のSUS316系やSUS304系などのステンレス鋼を原 板とし、その後に圧延、焼鈍を行って得られたものがより望ましい 。なかでも、SUS304J1(17%Cr-7%Ni-2%Cu)およびSUS304J2 (17%Cr-7%Ni-4%Mn-2%Cu) を原板としたものは、C, N 低下とCu添加で成形性向上と時効割れ性改善効果が大きく、プレス 成形性は上記に例示したものの中でも最高である。また、SUS316や SUS305のようなオーステナイト安定系を原板としたものは、加工誘 起マルテンサイトの生成がなく、時効割れの危険性がない。なお、

Ti添加鋼のSUS316Ti, SUS321、高Ni鋼のSUS310S(25%Cr-20%Ni)、SUS317J5L(21%Cr-24%Ni-4.5%Mo-1.5%Cu-低C)、SUS384(16%Cr-18%Ni)、SUSXM15J1(18%Cr-13%Ni-4%Si)なども電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、ファクシミリ等の画像形成装置のトナー焼付用ロールや現像用ロール等として使用可能である。

また、金属箔として上記オーステナイト系ステンレス鋼の焼鈍材のような軟質系オーステナイト系ステンレス鋼(軟質材)ないし高強度オーステナイト系ステンレス鋼(硬質材)を用いる場合には、ステンレス鋼の好適な各成分範囲は次の通りである。

C: Cは、オーステナイト安定化元素であるが、高めの場合は材質が硬くなるので、軟質材を得る場合は0.05質量%以下とし、硬質材を得る場合は0.05~0.2質量%とする。

Si:Siは、脱酸に0.05質量%以上必要である。また、耐酸化性には有効に働くが、強力なフェライト形成元素であり、3.6質量%を越えると加工性を損なうと同時に熱延時のデスケーリングが困難になるため、上限を3.6質量%とする。

Mn: Mnは、オーステナイト安定化元素として有効であると同時に、Sを固定して熱間加工性を向上させるために添加される。しかしながら、含有量が0.05質量%に満たないとその効果に乏しく、一方1.0質量%を超えると材質が硬くなるので、軟質材を得る場合は0.05~1.0質量%とし、硬質材を得る場合は1.0~5.0質量とする。

Cr: Crは、ステンレス鋼の基本成分であり、優れた耐食性を得るには最低15質量%を必要とする。一方、26質量%を越えると鋼が脆化し、加工性が劣化するので、上限を26質量%とする。好ましい範囲は17~19質量%である。

Ni: Niは、オーステナイトステンレス鋼の基本成分の一つである

。加工性、耐食性に有効な元素であり、5質量%以上添加される。 しかしながら、25質量%以上を越えて添加してもこれらの効果は飽 和に達するので、5~25質量%の範囲とすることが望ましい。

Mo: Moは、耐食性を向上させる元素であり、必要に応じて添加される。しかしながら、含有量が2.5質量%を越えると鋼が硬化し、5.0質量%を超えると鋼が脆化するので、軟質材を得る場合は上限を2.5質量%とし、硬質材を得る場合は上限を5.0質量%とする。

Cu: Cuは、オーステナイトを安定化するとともに、加工性、耐食性を向上させる元素であり、必要に応じて添加される。しかしながら、含有量が軟質材では2.5質量%、硬質材では4.0質量%を越えて添加してもその効果は飽和に達するので、軟質材を得る場合は上限を2.5質量%とし、硬質材を得る場合は上限を4.0質量%とする。

N:Nは、強力なオーステナイト安定化元素であると同時に、耐食性を向上させる元素であり、0.005質量%以上が添加される。軟質材では、0.06質量%を越えて含有すると、光輝焼鈍後の箔材の加工性(高精度な切り出し加工ないし打ち抜きプレス加工性)が劣化し、割れやクラックが発生しやすくなる。一方、硬質材では0.06質量%以下の含有量では十分な強度が得られにくく、0.4質量%を越えて含有すると箔材の加工性(高精度な切り出し加工ないし打ち抜きプレス加工性)が劣化し、割れやクラックが発生しやすくなる。以上のことから、軟質材を得る場合は0.06質量%以下、より好ましくは0.007~0.03質量%の範囲であり、硬質材を得る場合は0.06質量%超~0.4質量%である。

さらに、当該ステンレス鋼には、添加微量元素として、Ti, Caなどを含有していてもよい。

また当該ステンレス鋼は、上記各成分(上記添加微量元素を含む)を上記範囲(上記添加微量元素の量は、使用目的に応じて適量(

通常、Ti:0.2質量%以下、Ca:0.0050質量%以下) 含有されていればよく、特に制限されるものではない) にて含有し、残部がFeおよび不可避的不純物よりなるものである。不可避的不純物元素としては、P,S,A1,Oなどが挙げられる。不可避的不純物の量は、通常、P:0.045質量%以下、A1:0.05質量%以下、S:0.030質量%以下、O:0.01質量%以下である。

また、本発明の金属箔チューブでは、金属箔を抵抗溶接等により接合・成形した箔チューブの表面と内表面の少なくとも一方は、硬質なめっき層によって表面硬化されているものである。以下に、本発明の箔チューブの表面と内表面が硬質なめっき層によって表面硬化されている金属箔チューブにつき、詳細に説明する。

プリンタの定着ロールは、時として紙とともに異物が持ち込まれ ることもあり、ローラーに疵が付きこれが印刷結果に悪影響を与え ることがある。このためローラーの表面硬度はヴィッカースで400 以上あることが望ましい。溶接後にあまり加工をしない場合は金属 箔チューブの内外面に硬質めっきを施すことによってこれは達せら れる。めっきする金属としては、クロム、ニッケル、コバルト、パ ラジウムなどの金属を主体とするものが可能で、これらを硬化させ るためにPなどの添加物を若干量加えることも有効である。Ni-P 系合金のめっきの場合は、Pの濃度としては重量比で1~14%が望 ましい。その理由は1%未満では硬化の効果が薄く、14%超ではめ っき層が脆くて、割れを生じ易くなるためである。めっき方法とし ては無電解めっきや電気めっきが可能であるが、箔チューブの内側 (内表面) をめっきするには無電解めっきが都合がよい。本発明は 、上記したような箔チューブの表面と内表面の両方に硬質なめっき 層を設けてなる場合に何ら制限されるものではなく、いずれか一方 にのみ硬質なめっき層を設けてもよい。即ち、トナー焼付用ロール

、現像用ロール、定着用ロールなどに用いる場合には、感光体ドラムや他のロール或いは用紙等と接する箔チューブの表面(外表面)を硬化させておくのが有効である。一方、ロール内にヒータを設置することもあるので、そのような場合には箔チューブの内表面を硬化させておくことが有効である。このように金属箔チューブの使用用途に応じて、箔チューブの内及び/又は外表面に硬質なめっき層を設ければよい。

また本発明の金属箔チューブは、ステンレス箔を抵抗溶接等により接合又は更に成形加工した箔チューブを800~1100℃の温度で熱処理してなるものである。

ステンレス鋼をシーム溶接する場合に、ステンレスの表面不動態 化皮膜が強固であるため、これらを完全に打ち破って強固な金属結合を溶接線の全長にわたって得るためには、電流、電圧、溶接速度、通電比率などを仔細に検討して、かなり狭い溶接条件の範囲内での溶接が必要になる。特に重ねた2枚の箔を完全に潰して1枚の厚さにするマッシュシーム溶接の場合は、箔の端面が埋め込まれた部分、すなわち、圧接により2枚の箔の重なり部の端面が潰されてほぼ一体となった部分、への通電密度が低い。このためこの部分の接合強度が不充分で、繰り返し加工を受けた場合は接合線にそって開口する場合がある。この問題を解決するために本発明者らは二つの方法が有効であることを知見した。

そのひとつは、ステンレス箔を抵抗溶接等により接合又は更に成形加工した箔チューブを熱処理して接合線を拡散接合させて接合強度を補強することである。この場合熱処理は真空熱処理や不活性雰囲気中で行なうのが良い。熱処理温度は800~1100℃が適当である。ステンレスがフェライト系やマルテンサイト系の場合は低めの温度でよく、オーステナイト系の場合は高めの温度が必要である。さ

りながら、800℃未満では拡散接合が充分に行なわれず、また1100 ℃超では熱処理中に変形が大きく、結晶粒も粗大化するので好まし くない。また、熱処理によって溶接部周辺の熱応力が開放されて、 溶接部周辺に往々にして見られるゴワゴワ感がなくなる効果もある。 さらに熱処理後に上記の硬質めっきをすると溶接部の小さな凹凸 も隠されて、溶接部の位置が判らなくなるほどである。したがって 本発明の金属箔チューブとしては、ステンレス箔を抵抗溶接等によ り接合又は更に成形加工した箔チューブを800~1100℃の温度で熱 処理した後に、箔チューブの内外面の少なくとも一方に硬質めっき を施してなるものが望ましい。該硬質めっきに関しては、上記した 通りであるので、ここでの説明は省略する。

第二の方法は、溶接前の金属箔にあらかじめ、Au, Ag, Cu, Ni等 の第10~11族元素又はこれらの元素を含む合金(例えば、Ni-P系 合金等)、或いは、A1などの融点が1200℃以下の金属をめっきして おき、これを抵抗溶接して金属箔チューブを得る方法である。この 方法では接合線の部分はステンレス等の金属箔の融点に達してなく とも、めっき層の融点以上になればめっき層が溶けて、ステンレス 等の金属箔表面の不動態化皮膜などを伴い大部分が接合線に沿って 接合部の外へ押し出される。したがって溶接線に沿って完全な金属 結合が得られる。さらに箔の端面が埋め込まれた部分では小さな溝 が生じることがあるが、ここをもめっきされた溶融金属が埋めて接 合部にノッチが生じない等の利点がある。したがって、本発明の金 属箔チューブとしては、金属箔の両表面の少なくともどちらか一方 の接合部近傍にAu, Ag, Cu, Ni等の第10~11族元素又はこれらの元 素を1種以上含む合金(例えば、Ni-P系合金等)、或いは、Al等 の金属箔の融点よりも低い融点の金属(合金を含む)、好ましくは 融点が1200℃以下の金属(合金を含む)をめっきし、その後該箔を

抵抗溶接してなるものが望ましい。

また、本発明の金属箔チューブでは、チューブの肉厚に対するチューブの内径の比(肉厚/内直径)が、1/300以下、好ましくは1/500以下であることが望ましい。なお、ここでいう肉厚およびチューブの内径は、許容範囲誤差があることから、複数箇所(例えば、5~10箇所程度)の平均値を用いるものとする。

また、金属箔チューブの内径としては、特に制限されるものではなく、使用用途に応じて適宜決定すればよいが、例えば、電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、ファクシミリ等の画像形成装置のトナー焼付け用ロールや現像用ロールは、小型軽量化の要請が強いことから、現状用いられている内径50mm以下に対応しえるものであればよい。特に後述する本発明の製造方法および製造装置では、こうした小型化の要求に十分に対応することができるものであり、小型化によりチューブの曲率が大きくなり、チューブ状に成形する際の加工性が要求されるような場合にも、上記したステンレス箔のうちのオーステナイト系ステンレス鋼の焼鈍材を用いることで、内径10~15mm程度までの小径に十分対応することができるものである。

同様に、金属箔チューブの長さとしても、特に制限されるものではなく、使用用途に応じて適宜決定すればよいが、例えば、電子写真式プリンタ、レーザービームプリンタ(LBP)、複写機、ファクシミリ等の画像形成装置のトナー焼付け用ロールや現像用ロールは、小型軽量化の要請が強いことから、現状用いられている長さ500mm以下に対応しうるものであればよい。特に後述する本発明の製造方法および製造装置では、こうした小型化の要求に十分に対応することができるものである。小型化するにつれて許容誤差が占める精度への関与は大きくなるが、本発明では、上記オーステナイト系ス

テンレス鋼の焼鈍材を用いることで、所定の寸法に切り出す(打ち抜く)際の歪等を生じ難いため、打ち抜き寸法精度を極めて高いものとすることができ、短筒に十分対応することができるものである

また、本発明の金属箔チューブは、60サイクル/min以上の繰り 返しサイクルで0.2%以下の歪を与える疲労試験において、1×10⁶ 回以上、より好ましくは2×10⁶回以上の耐久性を有することが望 ましい。本発明では、下記に示す電子写真式プリンタ、レーザービ ームプリンタ (LBP) 、複写機、ファクシミリ等の画像形成装置の トナー焼付け用ロールや現像用ロールなどに利用する場合、その疲 労試験として、上記に規定する疲労試験が一般になされるが、その 場合の耐久性が、およそ100ないし200万回以上であれば、現在求め られている部品の耐久性を十分に上回る極めて高い耐久性を具備し 得るものである。金属箔チューブの疲労試験結果が100ないし200万 回未満である場合には、金属製薄肉チューブの耐久性を飛躍的に向 上させることができない。ここでいう耐久性とは、表面性状にひび 割れなどの異常がなく、また接合部にも接合剥離などの異常が認め られない状態である場合を良好として、耐久性を有するものとし、 逆に異常が認められた場合には耐久性を有しないものとする。ただ し、本発明では、使用用途によっては金属箔チューブの疲労試験結 果が50万回以上あれば十分に使用可能な場合がある。

また、本発明の金属箔チューブの用途としては、特に制限されるべきものではなく、例えば、電子写真式プリンタ、レーザービームプリンタ (LBP)、複写機 (コピー機)、ファクシミリなどの画像形成装置のトナー焼付け用ロールや現像用ロールなどに利用することができるが、これらに制限されるべきものではない。

く金属箔チューブの製造装置>

次に、本実施形態の金属箔チューブの製造装置について説明する。図1 (A) は、金属箔チューブに成形する金属箔素板の平面図、図1 (B) は、溶接前の金属箔チューブの断面図、図1 (C) は、接合部が直線状になるように溶接して得られた金属箔チューブの斜視図、図1 (D) は、接合部がスパイラル状になるように溶接して得られた金属箔チューブの斜視図である。図2は、本発明の実施形態に係る金属箔チューブ製造装置の概略側面図、図3は、図2の平面図、図4は図3の4-4線に沿う断面図である。

本実施形態で使用する金属箔素板Wは、図1(A)、図1(B)に示すように、全体形状が矩形状であり、例えば、長さ S_1 が1 m、幅 S_2 が100mm程度であるが、板厚t は、 $10\sim100$ μ m という極めて薄いものである。本実施形態では、この金属箔素板Wを断面円形に丸め、対向辺端部を重ね合せ、この重ね合わせ部Gに対し溶接を施し、金属箔チューブPに成形する。この金属箔チューブPは、例えば、コピー機の定着ロールをはじめ、種々の装置に適用できる。

本実施形態に係る金属箔チューブ製造装置は、大別すれば、成形部10と溶接部30とを有している。成形部10は、矩形の金属箔素板Wを一挙に円筒状に丸めるのではなく、内型に相当する芯棒13の周囲に外型に相当する成形装置15により段階的に密着させ円筒状に成形し、溶接部30は、金属箔素板Wの対向辺端部の重ね合わせ部Gを溶接する。

まず、成形部10について述べる。図2,3において、成形部10は、基台11に立設された支持部12に片持ち支持された円柱状の芯棒13と、芯棒13の下位に位置し、金属箔素板Wを保持すると共に芯棒13の外周面に巻き付ける成形装置15と、この金属箔素板Wを芯棒13に対して位置決めする位置決め部材16とを有している。

芯棒13は、金属箔素板Wの長手方向長さS₁より多少長く、太さ

は、金属箔素板Wの幅方向の長さ S_2 が1周する程度であるが、この芯棒13に関しては、後に詳述する。

成形装置15は、図4に示すように、位置決め部材16と、保持板17と、第1押圧部材18と、第2押圧部材19とを有している。位置決め部材16は略Wの中央と芯棒13の下面中央を位置決めする部材である。保持板17は、芯棒13の下位に位置し、芯棒13と常に平行状態を保って近接離間するように、基台11上に設けられたシリンダC₁と連結されている。この保持板17は、上面がフラットで、中央に芯棒13が嵌合し得る程度の半円形状の凹部20が形成され、この凹部20と芯棒13とを合体することにより金属箔素板Wを変形し、芯棒13の下面部分にU字状に巻き付けるようにしている。

第1押圧部材18は、U字状に変形された金属箔素板Wの、芯棒13の側面に立ち上がった状態の辺を、芯棒13の外周に押圧し密着させるものである。この第1押圧部材18は、図4に示すように、保持板17上において芯棒13の左方に位置し、シリンダ C_2 により芯棒13の軸線に直交する方向で近接離間するようになっている。

第2押圧部材19も、第1押圧部材18と同様な構成であり、芯棒13を中心に前記第1押圧部材18と対称位置に設けられ、シリンダC₃により芯棒13に対し近接離間するように作動し、U字状の金属箔素板Wの他辺を芯棒13の外周に向かって押圧する。

これら位置決め部材16、保持板17、第1押圧部材18及び第2押圧部材19の共働で、金属箔素板Wを芯棒13の外周面に巻き付け、芯棒13の上面で金属箔素板Wの対向辺端部、つまり幅方向の両端部が重ね合わされた重ね合わせ部Gを形成する。

なお、この成形装置15の保持板17上への金属箔素板Wの搬入は、 例えば、負圧吸着手段などのような適当な搬送手段(図示せず)に より行なわれる。

前記位置決め部材16は、成形装置15の中央に形成された半円形状の凹部20に開設された通孔21を挿通するロッドで、芯棒13の下位で軸方向の基端部、中央部及び先端部に位置し、それぞれシリンダC4により芯棒13の下面に近接離間するように設けられている。

位置決め部材16は、この近接時に芯棒13の下面に当接し、金属箔素板Wを押圧することにより当該金属箔素板Wを位置固定に保持する。位置決め部材16が作動するタイミングとしては、保持板17の上面に載置された金属箔素板Wが、保持板17の上動により押し上げられ、芯棒13に線接触した時点である。

しかし、位置決め部材16により位置決めしたとしても、芯棒13の下端から先端まで均一な幅の重ね合わせ部Gが形成されるとは限らない。したがって、本実施形態の成形部10では、重ね合わせ部Gの重ね代x(図1B参照)を調整するための重ね代調整手段22(図5参照)が設けられている。ここに、図5は図4に要部拡大断面図である。

重ね代調整手段22は、第2押圧部材19による押圧完了前に、対向 辺相互の重ね合わせ部Gの重ね代xが所定値、例えば、0.1mm程度 となるように、金属箔素板Wの円周の一部を半径(放射)方向に変 位する。

さらに具体的にいえば、重ね代調整手段22は、図 5 に示すように、芯棒13の内部に、少なくとも芯棒13の基端と先端に偏心装置(カムまたはローラなど)23を設け、この偏心装置(カムまたはローラなど)23を駆動装置(モータなど) M_1 により駆動し、金属箔素板Wの円周の一部を半径方向に変位させるようにしたものである。

この偏心装置(カムまたはローラなど)23の回転量は、制御部24からの信号で制御され、重ね代xが所定値となるようにしている。制御部24は、重ね合わせ部Gの重ね代xを検知する検知装置(CCD

カメラなど)25と、これをモニターし、前記所定値と比較して制御量を決定する演算部26とを有している。

なお、駆動装置(モータなど) M_1 は、芯棒13の基端部に設け、基端、中央、先端等複数設けられた偏心装置(カムまたはローラなど)23を一括作動させても良いが、各偏心装置(カムまたはローラなど)23を個々独立に作動させ、重ね代xを調整するようにしても良い。

ただし、本発明は、これのみに限定されるものではない。例えば、他の重ね代調整手段22としては、図5に一点鎖線で示すように、前記偏心装置(カムまたはローラなど)23を芯棒13の外部に設けてもよい。また、金属箔素板Wが芯棒13に密着していない非密着部分が生じるように芯棒13の周囲に設け、加圧部材により加圧し、金属箔素板Wの円周の一部を半径方向に変位させてもよい。

さらに、図6に略示するように、芯棒13に形成した凹部27に向かって芯棒13の外部に設けた加圧部材28で、金属箔素板Wの円周の一部が、図上破線で示すように、半径方向に変位するように加圧してもよい。これら加圧部材としては、カム、ロール、円筒体あるいは棒状部材のいずれでもよい。

実験では、重ね代(x)は、前記板厚(t)として、 $x \le 40 + 5$ t(単位は μ m である。)を満足するのが望ましいことが判明している。

次に、溶接部30について述べる。本実施形態における溶接は、抵抗溶接法である。きわめて薄い金属箔素板Wを溶接するので、制御しやすい溶接方法でなければならないからである。特に、抵抗溶接法のうち、シーム溶接法が好ましく、より好ましくは、マッシュシーム溶接である。この溶接を使用すると、溶接部分と他の部分との間の硬度差が少なく、好ましい結果が得られた。なお、レーザー溶

接またはプラズマ溶接などを使用すれば、硬度差が30%以上となり、実用的でないことが判明している。

図6は本実施形態の溶接状態を示す拡大断面図である。溶接部30は、図6に示すように、芯棒13の外面に軸方向に沿って設けられた導電性の固定電極部材31と、固定電極部材31に対向して設けられた導電性の可動電極部材32とから構成され、両電極部材間に金属箔素板Wを重ね合わせ部Gを挟持して溶接する。

固定電極部材31は、芯棒13の外面に軸方向に沿って形成された溝33内に設けられた導電性のものである。一方、可動電極部材33は、重ね合わせ部Gを加圧しつつ回転移動する導電性の電極輪32である

この固定電極部材31は、芯棒13の頂部に設けられた溝33内に設けられた銅材により構成されているが、この上を電極輪32が転動しつつ溶接を行なうので、固定電極部材31の上面は、全体的に平坦面に形成されていることが好ましい。このため、固定電極部材31としては、例えば、扁平化銅ワイヤが使用されている。ただし、上面全体が平坦面である必要はなく、一部が平坦面であってもよい。一方、電極輪32も固定電極部材31の上面が平坦面であれば、外周面は平坦面とすることが好ましいが、固定電極部材31の上面が円弧面であれば、外周面は中凹状のもの、つまり太鼓状をしたものが好ましい。この場合の曲率半径は、固定電極部材31の円弧状の面の曲率半径より大きいことが好ましい。

電極輪32は、図4に示すように、導電性のフランジ状回転部材34を介して電源供給部材35と接続されているが、電源供給部材35は非導電性のブラケット36に支持されている。このブラケット36は、シリンダ C_5 により昇降可能に連結されている。シリンダ C_5 は、移動ブロック37に取り付けられているが、この移動ブロック37は、一対

のガイド棒38(図3参照)により摺動可能に支持され、中央を挿通するように設けられたねじ軸39により芯棒13の軸線に沿って移動するようになっている。ねじ軸39は、支持台40、41上に設けられた軸受部42により支持され、カップリング43を介して連結された駆動装置(モータなど) M_2 により回転される。つまり、電極輪32は、シリンダ C_5 により昇降しつつねじ軸39及び駆動装置(モータなど) M_2 により芯棒13の基端から先端まで移動するようになっている。

各電極部材31,32の硬度は、片当たりや偏摩耗を防止し、長期に わたり確実な溶接ができるように、金属箔素板Wの硬度とほぼ同じ にすることが好ましい。ビッカース硬さHVで言えば、180以下であ れば、電極の傷みが少ないことが実験で判明している。高温強度や クリープ強度を高めるために、固定電極部材31及び可動電極部材33 を、それぞれ少なくともその一部がモリブデンまたはアルミナ分散 銅合金により構成してもよい。

本実施形態では、 $10\sim100\,\mu$ mというきわめて薄い金属箔素板Wの $0.1\,m$ mという小さな重ね代xの重ね合わせ部Gを溶接するので、その電流値及び送り速度が課題であるが、実験では、電流値は、 $70\,0\sim1500$ アンペア程度、電圧 $0.5\sim2.0$ ボルト、送り速度 $0.3\sim1.5\,m$ /分程度が最も良好な結果が得られた。

ただし、電流を流すと溶接部30は加熱され、長時間にわたって溶接作業をすると、この熱により薄い金属箔素板Wが変形し、良好な溶接が不可能となる虞があり、また、比較的長尺な芯棒13の外周面に金属箔素板Wを巻回し、金属箔チューブPを成形するので、この金属箔チューブPの剥離あるいは取り出しも課題である。

ここで、本実施形態では、この冷却(表変形)の課題と取り出し の課題を一挙に解決する手段として、前記芯棒13自体に種々の対策 を施している。

まず、芯棒13は、金属箔素板Wを断面円形に成形する型材として機能するものであるために、全体的には断面形状が円形であるが、図6に示すように、中心部分には、断面 Y字状をした通常の機械構造用炭素鋼からなる芯部13 a が設けられ、この芯部13 a 上には、前記固定電極部材31を保持する強度的に優れたクロム鋼からなる電極支持部13 b が取り付けられ、芯部13 a の側部には全体を円形断面に仕上げる側板部13 c が設けられている。

このようにすることにより固定電極部材31が摩耗しても交換しやすく、全体を円形断面に成形する場合の成形も容易となる。

また、芯棒13の内部には、図6,7に示すように、流体通路45が 形成されている。流体通路40は、芯棒13の軸線に沿って中心部分に 形成された中心通路45aと、中心通路40aから半径方向に形成され た分岐通路45bとから構成されている。なお、図7は芯棒の軸線に 沿う概略断面図である。

流体通路45には、芯棒13の端部にロータリジョイント46(図2参照)を介して連結された配管47から空気を導入し、この空気により芯棒13を冷却するとともに、分岐通路45bから空気を噴出し、これにより金属箔チューブPを芯棒13の表面から浮き上がらせて取り外し易くしている。

空気を使用すれば、作業性も良く清潔な作業環境となる効果もあるが、これのみに限定されるものではなく、他の流体、例えば、水あるいは切削油等も使用することも可能である。

さらに、芯棒13から金属箔チューブPを取り外し易くするために、芯棒13の外周面に軸線方向に伸延するように形成された切り欠き部R(図6参照)を設けても良い。金属箔素板Wと芯棒13との密着面積が低減し、一層金属箔チューブPの取り外しが容易となる。

この取り外しに関しては、芯棒13自体を複数の部材により構成し

、金属箔チューブPの成形後、これを分解するようにしても良い。 図8は芯棒の他の例を示す軸線に沿う概略断面図である。例えば、 図8に示すように、芯棒13を軸線と交差するテーパ面50で2つの芯 棒部材13d, 13eに分割し、金属箔チューブ成形後に、一方の芯棒 部材13eを他方の芯棒部材13dに対し軸方向にスライドし、金属箔 チューブPを芯棒13から剥離してもよい。ただし、このような分割 した芯棒13を用いて取り外す場合は、芯棒13は、両端で支持し、一 方を軸方向に移動可能に構成することが好ましい。

上記実施形態により得られた金属箔チューブは、図1 (C)に示すように、重ね合わせ部Gが直線状に溶接された接合部を有する金属箔チューブを得ることができる。ただし、本発明は、これらに制限されるものではなく、例えば、図1 (D)に示すように、重ね合わせ部G'がスパイラル状に溶接された接合部を有する金属箔チューブを得ることもできる。この場合には、例えば、適当な幅にスリットし、これを銅合金製の電極棒の周に表を通りに表しては多い状に巻きつける。この際、箔と箔の重ね代ェを検の出るのである。さらに該電極棒を回転させながら左右に摺動させ、該重ね合わせ部の上をもうひとのの銅合金製なでを振った。より好ましくはマッシュの電板が存後(好ましくはシーム溶接、より好ましてはマッシュを通知な接(好ましくはシーム溶接、より好ましてはマッシュを接接)を行えばよい。その後、このチューブを適用な長さに切断して、必要に応じて接合部付近の内外面を研磨して、所望の金属箔チューブを得ることができるものである。

また、前記金属箔素板の板厚に対する金属箔チューブ内直径の比は、1/300以下、好ましくは1/500以下であることが望ましい。なお、ここでいう金属箔素板の板厚および金属箔チューブ内直径は、許容範囲誤差があることから、複数箇所(例えば、5~10箇所程

度) の平均値を用いるものとする。

なお、前記の電極棒との間に通電して、シーム溶接を行う場合に おいては、その溶接部は、溶接線に沿って連続的なナゲット(溶融 凝固した部分)、または溶接線に沿って50%以上の部分に断続的な ナゲットが存在することによって溶接部の強度を安定的に高くする ことができる。即ち、シーム溶接においては、一旦ナゲットが生成 されると円盤状の電極(図6の符号32参照)が回転進行しても電流 の多くが電気抵抗の小さいナゲット部分に流れ(無効電流)、新た に接合すべき界面には電気抵抗が大きいため少量の電流しか流れな い。このためこの部分は溶融温度にまで達せずに圧接状態になる。 一旦圧接部分ができるとこの部分も電気抵抗が小さくなるため、ナ ゲットと同様に、その先でのナゲットの生成が妨げられる。このよ うな悪循環を避けるために、本発明者らはパルス電源を用いてシー ム溶接を行ない、短い通電時間の次に比較的長い非通電時間を設け 、このサイクルを繰り返すことにより連続ナゲットを得ることに成 功した。この際の最適な通電時間と非通電時間の比は、1/12~1 /8であり、1/12未満または1/8超~1/6では断続的なナゲ ットが生成される。また、本発明者らの実験によれば、断続ナゲッ トになっても溶接線の50%以上をナゲットがカバーすれば強度的に は問題ないことが判明したことから、パルス電源を用い、通電時間 と非通電時間の比を1/15~1/7に設定してシーム溶接すること が望ましい。これにより、溶接長の50%以上をカバーするナゲット を得ることができるものである。

同様に、パルス電源を用いてマッシュシーム溶接を行う場合にも、 、上記のように溶接部の強度をより安定的に高くする上で最適な通 電時間と非通電時間の比が存在することを見出したものである。即 ち、マッシュシーム溶接では、パルス電源を用い、通電時間と非通

電時間の比を1/3~1/1に設定して溶接を行うのが望ましい。 <金属箔チューブの製造方法>

このように構成された金属箔チューブの製造装置の作用とともに 金属箔チューブの製造方法について説明する。

く成形工程>

板厚が10~100μmの金属箔素板Wは、負圧吸着手段などの搬送手段により成形装置15の保持板17上に載置される。金属箔素板Wは、図示しないガイド部材により保持され、その中心線が新棒13の中心軸線、保持板17に形成された凹部20の中心線と一致するようにセットされる。

この状態から保持板17がシリンダC₁により上昇を開始するが、 保持板17は、芯棒13と常に平行な位置を保っている。したがって、 金属箔素板Wが芯棒13に接した時点では、芯棒13を中心として金属 箔素板Wはほぼ同じ幅になっている。金属箔素板Wが芯棒13に接す ると、位置決め部材16が作動する。

位置決め部材16は、シリンダC4によりロッドが作動し、下方から芯棒13の中央に当接し、芯棒13とロッド先端との間で金属箔素板Wを挟持する。この挟持は、芯棒13の基端、中央、先端で行なわれるので、金属箔素板Wの全長で芯棒13と接することになる。これにより金属箔素板Wは、その幅方向ほぼ中央で位置決めされたことになる。

この位置決め後、さらにシリンダ C₁を作動すると、保持板17は 上昇し、保持板17の凹部20内に芯棒13が入り始める。この結果、金 属箔素板 W は、次第に U 字状に変形される。そして、芯棒13が凹部 20内に入ると、金属箔素板 W は、芯棒13の下半分の外周面に巻き付 いた部分と、側面より立ち上った状態の一対の辺に変形される。

この一方の辺に向かって第1押圧部材18がシリンダC3の作動に

より突出される。この突出は、その先端の円弧面部分18 a が芯棒13の外周に接するまで行なわれ、この円弧面部分18 a で芯棒13の外周面に金属箔素板Wの一辺を押し付け、密着させる。

次に、第2押圧部材19も同様にシリンダC₃により作動し、先端の円弧面部分19 a が芯棒13の外周に接するまで金属箔素板Wの他辺を押圧するが、この押圧は最終段階の手前で停止し、金属箔素板Wが芯棒13に完全に密着しない状態とする。

つまり、金属箔素板Wは芯棒13の周囲に巻き付けられ、芯棒13の 頂部において一組の対向辺端部が重ね合わされた重ね合わせ部Gを 形成するが、前記他辺は完全に位置固定された状態ではなく、変位 可能な状態とする。

この変位可能な状態で重ね合わせ部Gの重ね代xを調整する。この調整は、制御部24の検知装置(CCDカメラなど)25が重ね代x 量を検知し、これを演算部26で所定値と比較し、正常かどうか判断し、正常でない場合は、駆動装置(モータなど) M_1 を駆動して偏心装置(カムまたはローラなど)23を回転させ、金属箔素板Wを半径(放射)方向に変位させる。

重ね合わせ部Gにおける重ね代(x)が、前記板厚(t)として、 $x \le 40+5$ t(単位は μ mである)を満足するようになると、重ね代xの調整は完了する。この状態で、第2押圧部材19がシリンダ C_3 により作動し、金属箔素板Wの他片を芯棒13に完全に密着押圧する。これにより金属箔素板Wが位置固定的に芯棒13に保持された状態になる。

く溶接工程>

金属箔素板Wの保持が完了すると、重ね合わせ部Gの位置は、第 1押圧部材18の先端と第2押圧部材19の先端との間であって、固定 電極部材31の直上であり、電極輪32は、この第1押圧部材18と第2

押圧部材19との間で昇降可能であるため、溶接を開始できる。

この溶接の開始時点で、電極輪32を芯棒13の基端に位置させておき、全体を溶接すれば、精度の良い溶接が可能となる。

溶接は、まず、シリンダ C_5 の作動から行なわれる。シリンダ C_5 が作動すると、そのピストンロッドが下降し、ブラケット36、電源供給部材35、フランジ状回転部材34を介して電極輪32が下降する。電極輪32は、第1押圧部材18の先端と第2押圧部材19の先端との間に入り込み、固定電極部材31との間で重ね合わせ部Gを挟持する。

この挟持とともに固定電極部材31と電極輪32との間で通電すると、重ね合わせ部Gが相互に溶接されるが、同時に駆動装置(モータなど) M_2 も動作し、ねじ軸39が回転し、移動ブロック37が移動を開始する。これにより電極輪32が重ね合わせ部G上を $0.3 \sim 1.5 m$ /分程度で移動し、金属箔素板Wの端部まで溶接する。

また、場合によっては、電極輪32を芯棒13の先端に位置させておき、溶接しながら金属箔チューブPを引き出すようにしても良い。このようにすれば、迅速で作業性の良い溶接が可能となる。

<仕上げ工程>

溶接が完了すると、この溶接した部分を平滑に仕上げる。この仕上げは、砥石による研磨あるいはラッピング、ローラバニッシングによる押しつぶし等により金属箔チューブPの表面が平滑な面となるまで行なわれるが、公知の技術を適用できるので説明は省略する

そして、芯棒13から金属箔チューブPの取り外しが行なわれる。 この取り外しは、芯棒13の端部から空気を流体通路45に供給し、芯棒13の軸線に沿った中心通路45aから分岐通路45bを通って半径方向に空気を噴出すことにより芯棒13から金属箔チューブPを剥離する。僅かでも芯棒13と金属箔チューブPとの間に空気が流れると、

金属箔チューブPは芯棒13から容易に取り外すことができる。なお、この取り外し後に、前記仕上げを行なっても良い。

上述した実施形態では、固定電極部材上を可動電極部材が走行するか金属箔チューブPを移動させるものであるが、本発明は、これのみでなく両電極部材が相対的に移動する場合、あるいは両電極部材と金属箔チューブPが相対的に移動する場合であっても良い。

以上の溶接方法により得られた溶接金属箔チューブは、そのまま本発明の溶接金属箔チューブとして各種用途に幅広く利用することができるものであるが、さらに、必要に応じて、上記溶接方法により得られた溶接金属箔チューブに芯金を入れ、さらにスェジング、分割ローラー圧延法、穴ダイス法(引き抜き法)、へら絞り法またはこれらの方法の組み合わせにより冷間加工を施して減肉し、当該溶接部を滑らかにして溶接部の形状と表面粗さを整え、材質を加工硬化させてもよい。

上記金属箔チューブの溶接部の加工法として、上記したようなスェジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれらの方法の組み合わせによる冷間加工を行なうことができる。これらのスェジング、分割ローラー圧延法、穴ダイス法およびへら絞り法に関しては、公知の冷間加工技術であるため、ここでの加工法の説明は省略する。

本発明では、溶接金属箔チューブの溶接部が対象となり、そのままでは取り扱いにくいため、該金属箔チューブ内に予め芯金を入れて冷間加工(主に塑性加工)を適用できるようにした状態で、それぞれの加工を行えばよい。

上記芯金としては、例えばS45Cを焼き入れした硬度の高い材料で、最初は溶接チューブの内径に合った外径のものを用い、加工によってチューブの内径が変化した場合は、随時芯金の外径もこれにあ

ったものに付け替えるのが望ましい。

また、スェジングでは、溶接チューブに上記の芯金を挿入したう え、チューブの外側に配置された3~4個の工具でチューブ表面を 叩きながらチューブの肉厚を薄くしてゆく。

また、分割ローラー圧延法では、溶接チューブに上記の芯金を挿入したうえ、チューブの外側に配置された複数の小径ローラーをさらに別の冶具またはバックアップロールで押し付け、チューブと複数の小径ローラーを相対的に回転させながらチューブの肉厚を薄くしてゆく。

また、穴ダイス法は、円錐状の穴 (ダイス) にやや太い材料 (ここでは、芯金を入れた溶接箔チューブ) を通して絞る方法であり、適当な潤滑剤を使えばチューブの径を変えずに肉厚を薄くしてゆくことができる。

また、へら絞り法では、芯金を入れた溶接箔チューブを回転させながらチューブの外面に単数または複数のへらを押し付けて肉厚を薄くしてゆく。

これらの冷間加工では、チューブが仕上げ寸法に近づいた場合は加工する工具やローラーの表面粗さを十分に小さなものにすることにより、溶接部の形状が均一な厚みでかつ滑らかにすることができる。本発明の金属箔チューブでは、JIS B0601-2001(最大高さ粗さ)で規定される表面粗さRzが $2.0\,\mu$ m以下、好ましくは $0.1\sim 1\,\mu$ mとなるまで上記冷間加工を施して減肉し、当該溶接部を滑らかに整えるのが望ましい。

また、上記冷間加工を施して減肉し、材質を加工硬化させることで、材質のビッカース硬さ (Hv) が300~600、好ましくは400~600、より好ましくは450~550となるようにするのが望ましい。これにより、上述したように、耐久性、耐磨耗性に優れ、高サイクル疲労

寿命を長くする上で有効な硬度を有する溶接金属箔チューブを提供することができる。なお、ここでいう材質のビッカース硬さとは、 金属箔チューブの母材部および溶接部の双方の硬さを含むものである。

さらに、本発明の金属箔チューブの製造方法においては、ステン レス鋼をシーム溶接する場合に、ステンレスの表面不動態化皮膜が 強固であるため、これらを完全に打ち破って強固な金属結合を溶接 線の全長にわたって得るためには、電流、電圧、溶接速度、通電比 率などを仔細に検討して、かなり狭い溶接条件の範囲内での溶接が 必要になる。特に重ねた2枚の箔を完全に潰して1枚の厚さにする マッシュシーム溶接の場合は、箔の端面が埋め込まれた部分、すな わち、圧接により二枚の箔の重なり部の端面が潰されてほぼ一体と なった部分、への通電密度が低い。このためこの部分の接合強度が 不充分で、繰り返し加工を受けた場合は接合線に沿って開口する場 合がある。この問題を解決するために本発明者らは二つの方法が有 効であることを知見した。その第一の方法は、ステンレス箔を抵抗 溶接等により接合又は更に成形加工した箔チューブを熱処理して接 合線を拡散接合させ、強度を補強する方法である。この場合、熱処 理は真空熱処理や不活性雰囲気中で行なうのが良い。熱処理温度は 800~1100℃が適当である。ステンレス箔がフェライト系やマルテ ンサイト系の場合は低めの温度でよく、オーステナイト系の場合は 高めの温度が必要である。しかしながら800℃未満では拡散接合が 充分に行なわれず、また1100℃超では熱処理中に変形が大きく、結 晶粒も粗大化するので好ましくない。また、熱処理によって溶接部 周辺の熱応力が開放され、溶接部周辺に往々にして見られるゴワゴ ワ感がなくなる効果もある。さらに、熱処理後に上記の硬質めっき をすると溶接部の小さな凹凸も隠されて、溶接部の位置が判らなく

なるほどである。上記の硬質めっきする金属としては、クロム、ニッケル、コバルト、パラジウムなどの金属を主体とするものが可能で、これらを硬化させるためにPなどの添加物を若干量加えることも有効である。Ni-P系合金のめっきの場合は、Pの濃度としては1~14%が望ましい。その理由は1%未満では硬化の効果が薄く、14%超ではめっき層が脆くて、割れを生じ易くなるためである。めっき方法としては無電解めっきや電気めっきが可能であるが、管の内側をめっきするには無電解めっきが都合がよい。

第二の方法は、溶接前の金属箔にあらかじめAu、Ag、Cu、Ni等の第10~11族元素又はこれらの元素を含む合金(例えば、NiーP系合金等)、或いは、A1などの金属箔の融点よりも低い融点の金属(合金を含む)、好ましくは融点が1200℃以下の金属(合金を含む)をめっきしておき、これを抵抗溶接して金属箔チューブを得る方法である。この方法では、接合線の部分はステンレス等の金属箔の融点に達してなくとも、めっき層の融点以上になればめっき層が溶けて、ステンレス等の金属箔表面の不動態化皮膜などを伴い大部分が接合線に沿って接合部の外へ押し出される。したがって溶接線に沿って完全な金属結合が得られる。さらに箔の端面が埋め込まれた部分では小さな溝が生じることがあるが、この溝をもめっきされた溶融金属が埋めて接合部にノッチが生じない等の利点がある。

さらに、本発明の金属箔チューブの製造方法では、金属箔チューブの溶接により、当該溶接部には溶接線に沿って連続的なナゲット(溶融凝固した部分)、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することが望ましい。これは、シーム溶接などの溶接部は、溶接線に沿って連続的なナゲット(溶融凝固した部分)、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することによって溶接部の接合強度を安定的に高くすることが

できるためである。

また、シーム溶接においては、一旦ナゲットが生成されると円盤 状の電極 (図6の符号32参照) が回転進行しても電流の多くが電気 抵抗の小さいナゲット部分に流れ(無効電流)、新たに接合すべき 界面には電気抵抗が大きいため少量の電流しか流れない。このため この部分は溶融温度にまで達せずに圧接状態になる。一旦圧接部分 ができるとこの部分も電気抵抗が小さくなるため、ナゲットと同様 にその先でのナゲットの生成が妨げられる。このような悪循環を避 けるために、本発明者らはパルス電源を用いてシーム溶接を行ない 、短い通電時間の次に比較的長い非通電時間を設けてこのサイクル を繰り返すことにより連続ナゲットを得ることに成功した。この際 の最適な通電時間と非通電時間の比は、1/12~1/8であり、1 /12未満または1/8超~1/6では断続的なナゲットが生成され る。本発明者らの実験によれば、断続ナゲットになっても溶接線の 50%以上をナゲットがカバーすれば強度的には問題ないことが判明 した。溶接長の50%以上をカバーするナゲットを得るには、通電時 間と非通電時間の比を1/15~1/7にする必要がある。以上のこ とから、本発明の金属箔チューブの製造方法では、パルス電源を用 い、通電時間と非通電時間の比を1/15~1/7に設定してシーム 溶接することが望ましい。

さらに、本発明者らはパルス電源を用いてマッシュシーム溶接を 行う場合にも、溶接部の強度をより安定的に高くする上で、最適な 通電時間と非通電時間の比が存在することを見出したものである。 即ち、本発明の金属箔チューブの製造方法では、パルス電源を用い 、通電時間と非通電時間の比を1/3~1/1に設定してマッシュ シーム溶接することが望ましい。

実施例

本発明の効果を、以下の実施例および比較例を用いて説明する。 ただし、本発明の技術的範囲が以下の実施例に限定されるものではない。なお、特に単位を示さない寸法単位は、「mm」単位とする。

実施例1

圧延ロール表面粗さを適正に制御して、SUS410L(11%Cr-0.02 % C) のステンレス鋼を、箔の表面粗さRzが1.5μm及び0.8μmに なるようにそれぞれ40 μmの厚さに圧延し、圧延のままの材料を94 .3mmL×250mmWに切断した。この2種の表面粗さを有する箔を各 々30mmφの銅合金の冶具に巻き付け100μmの重ね代の部分をマッ シュシーム溶接により接合した。この際、両方((a)表面粗さRz が 1.5μ mのチューブと、(b) 表面粗さRzが 0.8μ mのチューブ) の接合部周辺を切り出して埋め込み研磨し、いずれも母材部の硬度 がHvで270前後であり、接合部の硬度がHvで230前後であることをそ れぞれ確認した。両方の研磨試料をエッチングして金属組織を調べ た結果、両方共に接合部には溶融凝固相はなく、接合面は固相接合 状態であり、ここに低炭素マルテンサイト相がみられた。なお、接 合部の厚さは両方とも55μmであった。この両方のチューブ(図1 (C) 参照のこと) を各々50mmの長さに切断し、接合部周辺の内外 面を研磨して、両方とも接合部の厚さを42μm程度にした。両方と も硬めのスポンジ円筒を差込み、これを120mmφ×80mmLの鋼製ロ ーラーの表面に押し付けながら回転させて疲労寿命を調べた。この 際の試験チューブ回転速度は120rpmで、鋼製ローラーに最も押し付 けられた状態で、試験チューブは約4mm潰される状態であった。こ のときの試験チューブ表面に加わる歪は0.17%であった。試験の結 果、両方のチューブ (a), (b) とも100万回以上の回転後も試 験チューブに異常は見られなかった。

実施例2

表面粗さRzが 1.0μ m及 $V0.5 \mu$ mのSUS316L(16% Cr -12% Ni -2% Mo)の 30μ mの厚さの焼鈍箔をそれぞれ60nmの幅にスリットし、これを前記の30nm ϕ の銅合金製の電極棒の周りにスパイラル状に巻きつけた。この際も、表面粗さRzが 1.0μ mのものと、表面粗さRzが 0.5μ mのものの両方につき、箔と箔の重なり代を 100μ mになるようにそれぞれ調整した。さらに該電極棒を回転させながら左右に摺動させ、該重ね合わせ部の上をもうひとつの銅合金電極ローラーが転動しながら前記の電極棒との間に通電して、マッシュシーム溶接を行った。実施例 1 と同様にして両方((c)表面粗さRzが1. 0μ mのチューブと(d)表面粗さRzが 0.5μ mのチューブ)の接合部周辺の硬度を調べた結果、両方とも母材部でHv200前後、接合部で245前後であった。また金属組織を調べ、両者共に溶融凝固相のないことを確認した。さらにこの両方のチューブ(図 1 (D)参照のこと)を各々50nmの長さに切断し、接合部付近の内外面を研磨して、実施例 1 と同じやり方で疲労試験を行った。

なお試験で試験チューブ表面に加わる歪は0.13%であった。その結果、この両方のチューブ(c),(d)とも100万回以上の疲労試験に耐えた。

実施例3

表面粗さRzが 0.3μ m及び 0.8μ mのSUS304(18% Cr-8%Ni)の 50μ m厚さの完全焼鈍箔を用いて、実施例 1 と同様な方法で2 種の箔チューブを作成した。なおこのステンレス箔は $Ar-H_2$ 雰囲気中で焼鈍され、表面の窒素濃度は1.2%であった。両方((e)表面粗さRzが 0.3μ mのチューブと、(f)表面粗さRzが 0.8μ mのチューブ)とも接合部の厚さは 75μ mであったのを、内外面の研磨により 60μ mにした。この場合両方共に母材部の硬さは、Hvで178前後

で、接合部は、Hvで220前後であった。実施例1と同様にして疲労 試験を行った結果、この両方のチューブ(e), (f)とも100万 回以上の疲労試験に耐えた。

実施例4

表面粗さRzが0.34 μ m σ SUS304(18% Cr -8% Ni)の50 μ m p さの完全焼鈍箔を用いて、実施例 1 と同様な方法で箔チューブを作成した。なお、このステンレス箔はアンモニア分解ガス中で焼鈍され、表面の窒素濃度は4.4%であった。接合部の厚さは77 μ m であったのを、内外面の研磨により60 μ mにした。この場合の母材部の硬さはHvで190前後で、接合部はHvで230前後であった。実施例 1 と同様にして疲労試験を行った結果、このチューブは50 万回の時点で母材の表面に微細なクラックが生じたため疲労試験を中止したが、使用用途によっては50 万回までの耐久性を備えるものであり、用途によっては十分に使用可能であった。

実施例5

表面粗さRzが 0.5μ m の SUS304(18% Cr-8% Ni)の 50μ m 厚さの硬質材を用いて、実施例 1 と同様な方法で箔チューブを作成した。接合部の厚さは 90μ m であったのを、内外面の研磨により 60μ m にした。この場合の母材部の硬さはHvで410前後で、接合部はHvで230前後であり、接合部と母材部の硬度差は母材部の硬度の43%であった。実施例 1 と同様にして疲労試験を行った結果、このチューブは50万回の時点で接合部と母材の境界部にクラックが生じて破断した。この場合も使用用途によっては50万回までの耐久性を備えるものであり、用途によっては+分に使用可能であった。

実施例6

表面粗さRzが 0.7μ m のSUS420J1(13% Cr-0.18% C)の 20μ m 厚さの圧延ままの箔を用いて、実施例 1 と同様な方法で箔チューブ

を作成した。接合部の厚さは $32\,\mu$ mであったのを、内外面の研磨により $23\,\mu$ mにした。この場合の母材部の硬さはHvで340前後で、接合部はHvで315前後であった。実施例1と同様にして疲労試験を行った結果、このチューブは200万回以上の疲労試験に耐えた。

実施例7

表面粗さRzが 0.9μ mのSUS630(17% Cr-4%Ni-4%Cu-0.2%Nb-0.1%Ta)の 20μ m厚さの圧延ままの箔を用いて、実施例 1 と同様な方法で箔チューブを作成した。接合部の厚さは 35μ mであったのを、内外面の研磨により 26μ mにした。その後、真空熱処理炉で1040%に加熱した後、冷却過程で480%で 1 時間均熱して析出硬化させた。この場合の母材部と溶接部の硬さはほぼ同じで、Hvで380前後であった。実施例 1 と同様にして疲労試験を行った結果、このチューブは200万回以上の疲労試験に耐えた。

実施例8

表面粗さRzが 0.85μ mのYUS170(新日鐵規格:24%Cr-12%Ni-0.7%Mo-0.35%N)の 25μ m厚さの圧延ままの箔を用いて、実施例 1 と同様な方法で箔チューブを作成した。接合部の厚さは 30μ mであったのを、内外面の研磨により 22μ mにした。この場合の母材部の硬さはHvで290前後で、接合部はHvで220前後であった。実施例 1 と同様にして疲労試験を行った結果、このチューブは100万回以上の疲労試験に耐えた。

比較例1

実施例1~8において、それぞれのステンレス鋼箔を電気抵抗溶接(マッシュシーム溶接)に代えてレーザー溶接で接合した以外は、実施例1~8と同様にして、各ステンレス鋼箔材料について箔チューブを作成して疲労試験を行った。いずれの場合にも10万~30万回で接合部と母材の境界部にクラックが生じて破断した。

比較例2

実施例1~8において、それぞれのステンレス鋼箔を電気抵抗溶接 (マッシュシーム溶接) に代えてプラズマ溶接で接合した以外は、実施例1~8と同様にして、各ステンレス鋼箔材料について箔チューブを作成して疲労試験を行った。いずれの場合にも10万~30万回で接合部と母材の境界部にクラックが生じて破断した。

実施例9

 $Ar-H_2$ 雰囲気中で焼鈍された表面粗さRzが 0.9μ mのSUS304の厚さ 60μ mの完全焼鈍箔(表面の窒素濃度は1.2%であった)を用い、実施例1 と同様な方法で $24\sim30$ mm $\phi \times 250$ mmL のチューブをマッシュシーム溶接法により7本作製した。その後、これらのうち6本に関しては、さらに該チューブに焼き入れされたS45C製の芯金を入れ、スェジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれらの方法の組み合わせにより冷間加工を施して減肉し、溶接部を滑らかにして溶接部の形状と表面粗さを整え、同時に材質を加工硬化させることにより、それぞれ 30μ m前後の厚さの箔チューブを得た。これらの箔チューブの冷間加工前後(即ち、未加工品および加工品)の寸法、材質、疲労寿命等を測定し、結果を表1 にまとめた。

〔表 1〕

[双工]			,				
加工法	(1)溶接	(2)スェ	(3)3分	(4)穴ダ	(5)へら	(6);	(7);
	のまま	ジング	割ローラ	イス法	絞り法	(2)+(3)	(5)+(4)
寸法、材質等			一圧延法				
チューブ厚(μm)	60	28	32	34	30	29	30
硬さ(Hv)	220	467	423	396	448	454	445
溶接部の表面粗さ Ra(μm)	0.62	0. 33	0.18	0.12	0. 29	0.19	0. 12
溶接部の表面粗さ Rz(μm)	5. 22	1.96	1.36	0.99	1.91	1.58	0.91
疲労寿命(hr)	456	818	732	701	763	774	753

上記表1において、チューブ厚は、非接合部(母材部)の厚さを、硬さは、母材部のビッカース硬さを示し溶接部の表面粗さRaは、(JIS B0601 2001算術平均粗さ)により測定したものであり、溶接部の表面粗さRzは、金属箔のJIS B0601-2001(最大高さ粗さ)により測定したものである。

また、上記表1の疲労寿命は、実施例1と同様に、各箔チューブ硬めのスポンジ円筒を差込み、これを120mmφ×80mmLの鋼製ローラーの表面に押し付けながら回転させて疲労寿命を調べたものである。この際の試験チューブ回転速度は360rpmであり、鋼製ローラーに最も押し付けられた状態で試験チューブは約4mm潰される状態であった。このときの試験チューブ表面に加わる歪は、順に(1)0.34、(2)0.16、(3)0.18、(4)0.19、(5)0.17、(6)0.16、及び(7)0.17%であった。試験は、箔チューブにクラック等の異常が確認されるまで行い、この間の稼動時間(hr)を疲労寿命とした。

なお、上記表1の(2)~(7)の各冷間加工は、冷間加工前の 内径が以下のような各溶接チューブより出発し、前述の各冷間加工 法により実施した。

すなわち、(2) スェジング; 26mm φ の溶接チューブ、(3) 3 分割ローラー圧延法; 24mm φ の溶接チューブ、(4) 穴ダイス法; 30mm φ の溶接チューブ、(5) へら絞り法; 24mm φ の溶接チューブ 、(6):(2)+(3); 24mm φ の溶接チューブ、(7):(5))+(4); 26mm φ の溶接チューブ、である。

実施例10

 $Ar-H_2$ 雰囲気中で焼鈍された表面粗さRzが $1.2\,\mu$ m の SUS301, SUS201, SUS316N, YUS170(24% Cr-12% Ni-0.3% N)の厚さ $25\,\mu$ m の完全焼鈍箔(表面の窒素濃度は $1.7\sim2.4\%$ であった)を用い、実施例 1 と同様な方法で30mm $\phi \times 250$ mmL のチューブをマッシュシーム溶接法により作製した。その後これらのチューブを実施例 9 と同様のスェジング+分割ローラー圧延法(上記(6):(2)+(3)の冷間加工)で $25\,\mu$ m 前後の厚さの箔チューブを得た。これらの箔チューブの冷間加工前後の寸法、材質、疲労寿命等を表 2 に示した。

〔表 2〕

材質	SUS	301	SUS201 SUS316N		16N	YUS170		
	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	溶接	加工	溶接	加工	溶接	加工	溶接	加工
材質等	まま	後	まま	後	まま	後	まま	後
チュープ厚(μm)	50	27	50	25	50	24	50	25
硬さ(Hv)	251	608	235	512	198	497	211	511
溶接部の表面粗さ Ra(μm)	0.42	0. 29	0.51	0.18	0.55	0. 17	0. 45	0. 20
溶接部の表面粗さ Rz(μm)	3. 45	1.96	2. 73	1. 32	3.72	1.45	2. 57	1.42
疲労寿命(hr)	328	857	228	723	208	785	325	817

なお、表 2 のチューブ厚(μ m)、硬さ(Hv)、溶接部の表面粗さRa(μ m)、溶接部の表面粗さRz(μ m)及び疲労寿命(hr)は、表 1 で説明したとおりである。

なお、疲労寿命試験での、試験チューブ表面に加わる歪は、順に (8) 0.28、(9) 0.15、(10) 0.28、(11) 0.14、(12) 0.28、 (13) 0.14、(14) 0.28、(15) 0.14%であった。

実施例11

 $25\,\mu$ mの厚さのSUS316箔を実施例1と同様な方法でシーム溶接して、 $30\,\mathrm{mm}\,\phi$ $\times 250\,\mathrm{mm}\,L$ の箔チューブを得た。これに厚さ $2\,\mu$ m 目標の硬質Cr めっきを行なった。箔チューブの内面については、棒状のCr 電極を入れて内外面にわたってCr めっきを行なった。また同様にして溶接した別のSUS316箔チューブについては夫々 $Ni-8\,\%$ P,Co ,Pd の厚さ $2\,\mu$ m 目標の無電解めっきを行なった。これらのチューブの端を切って断面の埋め込み研磨を行ない、めっき膜(層)の厚さを調べた。これとは別に、めっき層の硬度の測定のために鉄板の

上に上記と同じ材質のめっきをそれぞれ約30μmの厚さに行い、樹脂に埋め込んで研磨した後に硬度を測定した。上記の各めっき箔チューブと比較材としての無めっき箔チューブをプリンタの定着ロールに組み込み、みみかき半杯の鉄粉をチューブ内面に散布したうえ、10分間回転させた。その後チューブをはずし、切り開いて内面の疵の発生状況を観察した。これらの結果を表3にまとめて示す。

〔表3〕

	めっき層	めっき層の硬さ	疵の発生状況		
	の厚さ	Hv			
無めっき箔チュープ			数十条の線状痕発生		
Ni-8%Pめっき 箔チューブ	2 μ m	562	施なし		
Coめっき箔チューブ	3 μ m	432	疵なし		
Pdめっき箔チュープ	2 μ m	481	疵なし		

表3に示すように、各めっき層の硬さはいずれもHvが400以上で、これらの箔チューブは定着ロールの内面に鉄粉を散布した劣悪な環境にあっても疵が発生しなかった。これに対して無めっき箔チューブは何条もの線状の疵が発生した。

実施例12

厚さ $30\,\mu$ mのSUS316箔の両面に厚さが約 $2\,\mu$ mのNi $-2\,\%$ P、Ni $-8\,\%$ P、Ni $-12\,\%$ Pの無電解めっきを行なった。またこれらとは別に同箔の溶接部になる近傍、すなわち箔のカット端面から $2\,\sim 3\,$ nnの間の両面に厚さ約 $2\,\mu$ mのAlとAgの電気めっきをそれぞれ行った。これらの箔をマッシュシーム溶接法により $30\,\mathrm{nm}\,\phi \times 250\,\mathrm{nm}\,\mathrm{L}\,\phi$ チューブに成形した。溶接部を切り出し、埋め込み研磨して溶接部の断面形状と金属組織を観察した。その結果、母材部の厚さがめっ

き層を含めて34μmであったのに対して、二枚の箔が重なる溶接部の厚さは35~37μmとほぼ母材部と同じ厚さに潰されていた。さらに溶接部を中心にして密着曲げを行い、これを樹脂に埋め込んで、曲げ部の金属組織を観察した。比較材として無めっきの厚さ40μmのSUS316箔を同様にしてマッシュシーム溶接して、溶接部を切り出した後、この部分を密着曲げした。さらにこの部分を樹脂に埋め込み研磨して、金属組織の観察を行った。その結果、無めっき箔の溶接部は密着曲げにより接合線が箔面に達する部分で僅かに口を開いたが、めっき箔の溶接部の密着曲げ部は全く口を開かなかった。

実施例13

厚さ40μmのSUS304およびSUS420J2の箔をマッシュシーム溶接により30mmφ×250mmLのチューブに成形した。溶接後SUS304チューブについては1030℃×3分、SUS420J2については880℃×10分の真空熱処理を行った。熱処理後のチューブの溶接部近傍を切り出し、溶接部を中心にして密着曲げを行い、さらにこれらを埋め込み研磨してエッチングし、溶接部の組織を観察した。その結果溶接部は全く口を開くことなく、密着曲げに耐えていることが判明した。

実施例14

実施例13で試作したSUS304およびSUS420J2の箔チューブの内外面にNi-8%Pの無電解めっきを行った。これらの各チューブを実施例11と同様の鉄粉による疵試験を行ったが、線状痕は発生しなかった。またこれらのチューブを前記の疲労試験に供したが、いずれも750万回を経過して溶接部の破壊は見られなかった。

実施例15

厚さ $40\,\mu$ mのSUS316の箔を用いて $30\,\mathrm{mm}\,\phi$ × $250\,\mathrm{mm}\,L$ のチューブをシーム溶接した。この際に溶接電源としてパルス電源を用い、通電時間と非通電時間の比を種々変化させ、さらに溶接部の金属組織を

観察し、ナゲットの生成状況を観測した。これの結果を表4に示す

[表4]

通電時間/非通電時間	1/20	1/15	1/14	1/12	1/10	1/8	1/7	1/6	1/5
ナゲット長の比率(%)	36	52	63	100	100	100	54	18	0
備考	比較	本発明例	本発明例	本発明例	本発明例	本発明例	本発明例	比較	比較

表4に示すように、通電時間/非通電時間を1/15~1/7に設定したものではナゲット長が溶接線に沿って50%以上あり、良好な溶接が行われていることが判る。

産業上の利用可能性

本発明の金属箔チューブでは、従来法のように金属板をプレス加工やレーザー溶接、プラズマ溶接などで接合して、チューブ状の素管とし、この素管を例えば、しごき加工、スピニング加工、引き抜き加工、バルジ加工などの薄肉化技術により薄肉チューブに加工する場合に比して、金属板を圧延し、さらに必要に応じて焼鈍や熱処理することで薄肉化し、所望の厚さの金属箔やチューブを量産化することができるため、素管ごとに薄肉化する場合に比して生産コストを格段に下げることができる。

また、従来法では、プレス加工やレーザー溶接、プラズマ溶接などにより円筒状に作製した素管を薄肉化する際に、素管表面に強い機械的な応力が加わるために、どうしても肌あれ(表面平滑性の低下)が避けられないが、本発明では、圧延処理にて表面平滑性に優

れた金属箔を得ることができ、この金属箔を用いて金属箔チューブ に仕上げることができ、さらに該金属箔を薄肉化加工を施すことな く、そのまま用いることができるため、優れた表面平滑性を保持し 得る点でも有利である。

さらに、本発明では、金属箔溶接を電気抵抗溶接法とするチューブであるため、接合制御が簡単で、極めて薄い金属箔チューブの製造を良好に行なうことができる。そのため、従来のレーザー溶接及びプラズマ溶接などで素管を形成し、これを薄肉化した薄肉チューブに比して、接合部と非接合部との硬度差を小さくすることができ、接合部と非接合部の危属疲労などによる耐久性の低下を抑えることができる。また、溶接部の溶接剥離の問題についても、従来のレーザー溶接及びプラズマ溶接などで素管を形成し、これを薄肉化した薄肉チューブでは、薄肉化の際に当該溶接部に90%程度の大きな加工が加わるため、その後の使用により溶接剥離を生じ易いが、本発明では、溶接後に大きな加工を加えなくてもよいため、当該溶接部での溶接剥離などの問題を生じにくくできる点でも有利である。

また、本発明では、使用用途に応じて、金属箔として任意の材料を選択することができる点で有利である。すなわち、本発明では、硬質材から軟質材まで既存の材料を用いることができ、使用用途に応じて、高弾性、高剛性、軽量化、極薄化、高熱伝導性などの要求性能を満足する材料を適宜選択することができる。

さらに、本発明では、管の内外面に硬質めっきを施すことによって、紙とともに異物が持ち込まれても、ローラーに疵がつくのを抑えることができ、印刷結果への悪影響を抑えることができる。また、硬質めっきを施すことによって、シーム溶接するのに際して、溶融凝固してできるナゲットが連続的に生じないことがあってもめっ

き層が溶けて溶接線に沿って完全な金属結合が得られる。そのため、この部分は圧接状態で十分な接合強度を得ることができ、製品の 歩留まり及び品質向上を図ることができる。

本発明の金属箔チューブの製造方法は、板厚が10~100 μ m の金属箔素板であっても、重ね合わせ部を形成するように成形した後、その対向辺を溶接し、この溶接部分を平滑に仕上げるので、極めて薄い金属箔であっても確実にチューブ状に仕上げることができる。

成形は、金属箔を一挙に丸めるのではなく、位置決めした後に電極を有する芯棒に巻き付け、その後重ね合わせ部を形成した後に溶接するので、極めて精密な成形ができ、溶接も容易となる。この重ね合わせ部も重ね代を調整しながら形成するので、一層精密な成形が可能となる。重ね代(x)が、板厚(t)として、 $x \le 40+5$ t(単位は μ mである)を満足するものであれば、極めて薄い金属箔でも両端を溶接連結ができる。

溶接は、電気抵抗溶接法であるため、溶接制御が簡単で、極めて 薄い金属箔の製造を良好に行なうことができる。また、内型となる 芯棒に固定電極部材を設け、この固定電極部材に対向して可動電極 部材を設け、両者間に金属箔を挟んで通電すれば、金属箔の両端を 精度良く接合できる。

本発明の製造装置は、軸に直角な断面が円形の芯棒の周囲に、近接離間可能な金属箔素板を保持する成形装置を設けたので、板厚が10~100 μ m という極めて薄い金属箔であっても、重ね合わせ部を形成するように成形した後に、その対向辺を溶接し、確実にチューブ状に仕上げることができる。

成形は、金属箔素板をU字状とする保持板と、各辺を芯棒の外周 に密着するように押圧する第1押圧部材及び第2押圧部材とにより 芯棒に巻き付けつつ位置決めし、対向辺端部を重ね合せるので、極

めて精密な成形ができ、後の溶接も容易となる。

重ね合わせ部の重ね代調整も、芯棒の内部あるいは外部に設けた 偏心装置(カムまたはローラなど)、金属箔素板の非密着部分を加 圧するかあるいは芯棒に形成した凹部に向かって金属箔素板を押し 込む加圧部材により行なうようにしたので、一層精密な成形が可能 となる。

溶接は、内型となる芯棒に固定電極部材を設け、この固定電極部材に対向して可動電極部材を設け、両者間に金属箔を挟んで通電するので、金属箔の両端を精度良く連結できる。また、可動電極部材を電極輪とすれば、円滑で精度の良い溶接が可能となり、各電極部材の硬度と金属箔素板の硬度をほぼ同じにすれば、長期的に精度の良い溶接が可能となる。

成形後の金属箔チューブも芯棒内から半径方向に流体を噴出するか、分割した芯棒を用いて取り外すと、金属箔チューブが芯棒から剥離し易く、極めて薄い金属箔チューブでも容易に取り外し可能となる。

請 求 の 範 囲

- 1. 厚さが、 $10\sim100\,\mu$ mである金属箔を接合ないし溶接したことを特徴とする金属箔チューブ。
 - 2. 前記金属箔がステンレス鋼箔であり、

該ステンレス鋼が、フェライト系ステンレス鋼、マルテンサイト 系ステンレス鋼、オーステナイト系ステンレス鋼、析出硬化型ステ ンレス鋼のいずれか1種であることを特徴とする請求項1に記載の 金属箔チューブ。

- 3. 電気抵抗溶接により接合されたことを特徴とする請求項1または2に記載の金属箔チューブ。
- 4. 前記電気抵抗溶接が、シーム溶接であることを特徴とする請求項3に記載の金属箔チューブ。
- 5. 前記シーム溶接が、パルス電源を用い、通電時間と非通電時間の比を1/15~1/7に設定して行ったものであることを特徴とする請求項4に記載の金属箔チューブ。
- 6. 前記電気抵抗溶接が、マッシュシーム溶接であることを特徴とする請求項3に記載の金属箔チューブ。
- 7. 前記マッシュシーム溶接が、パルス電源を用い、通電時間と 非通電時間の比を1/3~1/1に設定して行ったものであること を特徴とする請求項6に記載の金属箔チューブ。
- 8.接合面の少なくとも一部が、固相接合であることを特徴とする請求項1~7のいずれか1項に記載の金属箔チューブ。
- 9.接合または溶接線が直線状又はスパイラル状に配置されてなる請求項1~8のいずれか1項に記載の金属箔チューブ。
- 10. 接合または溶接部と母材部との硬度差の絶対値が、ビッカース硬さ (Hv) で母材部の硬さの25%以下であることを特徴とする請

求項1~9のいずれか1項に記載の金属箔チューブ。

11. 請求項1~10のいずれか1項に記載の金属箔チューブに冷間加工を施して減肉し、当該接合部を滑らかにして接合部の形状と表面粗さを整え、少なくとも当該接合部の材質を加工硬化させたことを特徴とする金属箔チューブ。

12. 前記金属箔がステンレス鋼箔であり、該ステンレス鋼箔がオーステナイト系ステンレス鋼の焼鈍材であることを特徴とする請求項3~11のいずれか1項に記載の金属箔チューブ。

13. 前記金属箔チューブの母材部ビッカース硬さ(Hv)が、180 以下であることを特徴とする請求項1~12のいずれか1項に記載の 金属箔チューブ。

14. 前記金属箔チューブの母材部および溶接部のビッカース硬さ (Hv) が、300~600であることを特徴とする請求項1~12のいずれか1項に記載の金属箔チューブ。

15. 前記ステンレス鋼箔表層の最大窒素濃度が3質量%以下であることを特徴とする請求項11~14のいずれか1項に記載の金属箔チューブ。

16. 前記ステンレス鋼箔が、

C:0.05質量%以下、

Si: 0.05~3.6質量%、

Mn: 0.05~1.0質量%、

Cr:15~26質量%、

Ni: 5~25質量%、

Mo: 2.5質量%以下、

Cu: 2.5質量%以下、

N:0.06質量%以下、

を含有し、残部がFeおよび不可避的不純物よりなる軟質系オーステ

・ナイト系ステンレス鋼であることを特徴とする請求項2~15のいず れか1項に記載の金属箔チューブ。

17. 前記ステンレス鋼箔が、

C:0.05~0.2質量%、

Si: 0.05~3.6質量%、

Mn: 1.0~5.0質量%、

Cr:15~26質量%、

Ni: 5~25質量%、

Mo: 5.0質量%以下、

Cu: 4.0質量%以下、

N:0.06質量%超~0.4質量%、

を含有し、残部がFeおよび不可避的不純物よりなる高強度オーステナイト系ステンレス鋼であることを特徴とする請求項2~11のいずれか1項に記載の金属箔チューブ。

- 18. 前記金属箔がステンレス鋼の圧延まま材で、溶接部にはマルテンサイト相が析出してなることを特徴とする請求項2~12に記載の金属箔チューブ。
- 19. 金属箔を接合・成形した箔チューブの表面と内表面の少なくとも一方は、硬質なめっき層によって表面硬化されていることを特徴とする請求項1~18のいずれか1項に記載の金属箔チューブ。
- 20. 前記硬質めっき層の組成が主としてクロム、ニッケル、コバルト、パラジウムのいずれか1種または2種以上の金属であることを特徴とする請求項19に記載の金属箔チューブ。
- 21. 前記硬質めっき層の組成がNi-P系合金であることを特徴と する請求項19に記載の金属箔チューブ。
- 22. 前記硬質めっき層の組成が重量比で $1 \sim 14\%$ の P を含む Ni-P 合金であることを特徴とする請求項 21 に記載の金属箔チューブ。

23. ステンレス箔の両表面の少なくともどちらか一方の接合部近傍に第10~11族元素又はこれらの元素を1種以上含む合金、或いは、融点が1200℃以下の金属をめっきし、その後該箔を抵抗溶接してなることを特徴とする請求項1~22のいずれか1項に記載の金属箔チューブ。

- 24. ステンレス箔を接合又は更に成形加工した金属箔チューブを 800~1100℃の温度で熱処理してなることを特徴とする請求項 1 ~1 8のいずれか 1 項に記載の金属箔チューブ。
- 25. ステンレス箔を接合又は更に成形加工した金属箔チューブを800~1100℃の温度で熱処理した後に、箔チューブの内外面の少なくとも一方に硬質めっきを施してなることを特徴とする請求項1~18のいずれか1項に記載の金属箔チューブ。
- 26. 前記金属箔チューブの溶接部には溶接線に沿って連続的なナゲット、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することを特徴とする請求項1~25のいずれか1項に記載の金属箔チューブ。
- 27. 前記金属箔チューブの接合部の重ね代(x) μ m が、前記金属箔の箔厚(t) μ m として、 $x \le 40+5$ t を満足することを特徴とする請求項 $1 \sim 26$ のいずれか 1 項に記載の金属箔チューブ。
- 28. 前記金属箔チューブの肉厚に対するチューブの内径の比が、 1/500以下であることを特徴とする請求項1~27のいずれか1項 に記載の金属箔チューブ。
- 29. 前記金属箔チューブのJIS B0601-2001で規定される表面粗さ Rzが、 2.0μ m以下であることを特徴とする請求項 $1 \sim 28$ のいずれか 1 項に記載の金属箔チューブ。
- 30. 前記金属箔チューブに、60サイクル/min以上の繰り返しサイクルで0.2%以下の歪を与える疲労試験において、1×10⁶回以上

の耐久性を有することを特徴とする請求項1~29のいずれか1項に 記載の金属箔チューブ。

- 31. 画像形成装置のトナー焼付け用ロールおよび/または現像用ロールに用いられてなることを特徴とする請求項1~30のいずれか1項に記載の金属箔チューブ。
- 32. 板厚が10~100 µ mの金属箔素板を一組の対向辺が重ね合わさるように成形する成形工程と、前記重ね合わせた対向辺を溶接する溶接工程とを有することを特徴とする金属箔チューブの製造方法
- 33. さらに、前記溶接した部分を平滑に仕上げる仕上げ工程を有することを特徴とする請求項32に記載の金属箔チューブの製造方法
- 34. 前記成形工程は、前記金属箔素板の対向辺を重ね合わせる前に、成形用の芯棒に該金属箔素板を位置決めする位置決め工程を有することを特徴とする請求項32または33に記載の金属箔チューブの製造方法。
- 35. 前記位置決め工程は、前記芯棒と常に平行な位置を保って近接離間する成形装置に金属箔素板を保持し、該成形装置を前記芯棒に近づけ金属箔素板と芯棒が線接触した時点で、該金属箔素板を芯棒に対して押圧し、位置決めするようにしたことを特徴とする請求項34に記載の金属箔チューブの製造方法。
- 36. 前記成形工程は、前記位置決め工程後に前記成形装置が芯棒に向かって更に接近し、該成形装置に形成した断面が半円形の凹部と前記芯棒との間で該金属箔素板を保持し、該金属箔素板を芯棒の周囲に巻き付ける巻き付け工程を有することを特徴とする請求項34又は35に記載の金属箔チューブの製造方法。
 - 37. 前記成形工程は、前記巻き付け工程後に前記金属箔素板の円

周の一部を半径方向に変位させることにより重ね代を調整する重ね 代調整工程を有することを特徴とする請求項36に記載の金属箔チュ ーブの製造方法。

- 38. 前記重ね代(x) μ mは、前記板厚(t) μ mと、 $x \le 40+5$ t を満足することを特徴とする請求項36又は37に記載の金属箔チューブの製造方法。
- 39. 前記溶接工程は、電気抵抗溶接法であることを特徴とする請求項32または33に記載の金属箔チューブの製造方法。
- 40. 前記電気抵抗溶接は、シーム溶接又はマッシュシーム溶接であることを特徴とする請求項39に記載の金属箔チューブの製造方法
- 41. 前記電気抵抗溶接は、パルス電源を用い通電時間と非通電時間の比を1/15~1/7に設定してシーム溶接を行うか、又は、パルス電源を用い通電時間と非通電時間の比を1/3~1/1に設定してマッシュシーム溶接を行うことを特徴とする請求項40に記載の金属箔チューブの製造方法。
- 42. 前記溶接工程は、前記芯棒の外面に軸方向に沿って形成された溝内に設けられた導電性の固定電極部材と、当該固定電極部材に対向して設けられた導電性の可動電極部材との間で通電することにより行なうことを特徴とする請求項32,33,39~41のいずれかに記載の金属箔チューブの製造方法。
- 43. 前記固定電極部材は、外面の一部又は全部が平坦面となるように形成したことを特徴とする請求項42に記載の金属箔チューブの製造方法。
- 44. 前記固定電極部材及び/または可動電極部材は、それぞれ少なくともその一部がモリブデンまたはアルミナ分散銅合金からなることを特徴とする請求項42又は43に記載の金属箔チューブの製造方

法。

- 45. 前記固定電極部材および/または可動電極部材の硬度と前記 金属箔素板の硬度とをほぼ同じとしたことを特徴とする請求項42~ 44のいずれかに記載の金属箔チューブの製造方法。
- 46. 前記金属箔チューブは、前記芯棒内から半径方向に流体を噴出させることにより当該芯棒から剥離し、取り外すようにしたことを特徴とする請求項34~36および42のいずれかに記載の金属箔チューブの製造方法。
- 47. 前記芯棒を複数の部材から構成し、一部を軸方向に移動させることにより金属箔チューブが当該芯棒から剥離するようにしたことを特徴とする請求項34~37のいずれか又は42に記載の金属箔チューブの製造方法。
- 48. 前記金属箔素板の板厚に対する金属箔チューブ内直径の比を、1/500以下とすることを特徴とする請求項32~47のいずれかに記載の金属箔チューブの製造方法。
- 49. 請求項32~48のいずれかに記載の方法で得られた金属箔チューブに芯金を入れ、さらにスェジング、分割ローラー圧延法、穴ダイス法、へら絞り法またはこれらの方法の組み合わせにより冷間加工を施して減肉し、溶接部を滑らかにして溶接部の形状と表面粗さを整え、少なくとも当該溶接部の材質を加工硬化させることを特徴とする金属箔チューブの製造方法。
- 50. ステンレス箔の両表面の少なくともどちらか一方の接合部近傍に第10~11族元素又はこれらの元素を1種以上含む合金、或いは、融点が1200℃以下の金属をめっきし、その後該箔を抵抗溶接することを特徴とする請求項32~49のいずれかに記載の金属箔チューブの製造方法。
 - 51. ステンレス箔を接合又は更に成形加工した金属箔チューブを

800~1100℃の温度で熱処理することを特徴とする請求項32~50の いずれかに記載の金属箔チューブの製造方法。

- 52. ステンレス箔を接合又は更に成形加工した金属箔チューブを 800~1100℃の温度で熱処理した後に、箔チューブの内外面の少な くとも一方に硬質めっきを施すことを特徴とする請求項32~51のい ずれかに記載の金属箔チューブの製造方法。
- 53. 前記硬質めっきの組成が重量比で1~14%のPを含むNi-P合金であることを特徴とする請求項50または52に記載の金属箔チューブの製造方法。
- 54. 前記金属箔チューブの溶接により、当該溶接部には溶接線に沿って連続的なナゲット、または溶接線に沿って50%以上の部分に断続的なナゲットが存在することを特徴とする請求項32~53のいずれかに記載の金属箔チューブの製造方法。
- 55. 板厚が10~100 µ m の金属箔素板を所定形状に成形する成形部と、前記金属箔素板の対向辺を溶接する溶接部とを有することを特徴とする金属箔チューブの製造装置。
- 56. 前記成形部は、軸に直角な断面円形の芯棒と、当該芯棒に対し近接離間し得るように設けられ、金属箔素板を保持する成形装置と、該成形装置を前記芯棒に近づけ金属箔素板と芯棒が線接触した時点で、該金属箔素板を押圧し前記芯棒に対して位置決めする位置決め部材とを有し、

前記成形装置を移動させて前記位置決めされた金属箔素板を芯棒に向かって接近させ、金属箔素板を予め芯棒の周囲にU字状に巻き付けるようにしたことを特徴とする請求項55に記載の金属箔チューブの製造装置。

57. 前記成形装置は、前記芯棒と常に平行な位置を保って近接離間するように設けられ、前記芯棒との間で前記金属箔素板をU字状

に巻き付ける断面半円形の凹部を有する保持板と、前記U字状の金属箔素板の一片を前記芯棒の外周に密着するように押圧する第1押 圧部材と、前記U字状の金属箔素板の他片を前記芯棒の外周に向かって押圧する第2押圧部材とを有し、

前記巻き付け後に前記金属箔素板の対向辺端部を重ね合せて重ね合わせ部を形成するようにしたことを特徴とする請求項56に記載の金属箔チューブの製造装置。

- 58. 前記成形部は、前記第2押圧部材による押圧完了前に、対向 辺相互の重ね合わせ部の重ね代が所定値となるように前記金属箔素 板の円周の一部を半径方向に変位する重ね代調整手段を有する請求 項56又は57に記載の金属箔チューブの製造装置。
- 59. 前記重ね代調整手段は、前記芯棒の内部に設けた偏心装置により構成したことを特徴とする請求項58に記載の金属箔チューブの製造装置。
- 60. 前記重ね代調整手段は、前記芯棒の外部に設けた偏心装置により構成したことを特徴とする請求項58に記載の金属箔チューブの製造装置。
- 61. 前記重ね代調整手段は、前記金属箔素板が前記芯棒に密着していない非密着部分を加圧部材により加圧するようにしたことを特徴とする請求項58に記載の金属箔チューブの製造装置。
- 62. 前記重ね代調整手段は、前記芯棒に形成した凹部に向かって前記芯棒の外部に設けられた加圧部材を押し込むようにしたことを特徴とする請求項58に記載の金属箔チューブの製造装置。
- 63. 前記加圧部材は、カム、ロール、円筒体あるいは棒状部材のいずれか1つであり、前記芯棒の軸方向両端部に個別に作動するように設けたことを特徴とする請求項61又は62に記載の金属箔チューブの製造装置。

64. 前記重ね代(x) μ m が、前記板厚(t) μ m として、 $x \le 40+5$ t を満足するように構成されていることを特徴とする請求項 57又は58に記載の金属箔チューブの製造装置。

- 65. 前記溶接部は、電気抵抗溶接部であることを特徴とする請求項55に記載の金属箔チューブの製造装置。
- 66. 前記溶接部は、前記芯棒の外面に軸方向に沿って設けられた 導電性の固定電極部材と、当該固定電極部材に対向して設けられた 可動電極部材とから構成され、両電極部材間に前記金属箔素板の前 記重ね合わせ部を挟持した状態で溶接するようにしたことを特徴と する請求項55に記載の金属箔チューブの製造装置。
- 67. 前記固定電極部材は、外面の一部または全部が平坦面となるように形成したことを特徴とする請求項66に記載の金属箔チューブの製造装置。
- 68. 前記可動電極部材は、前記重ね合わせ部を加圧しつつ通電する電極輪である請求項66に記載の金属箔チューブの製造装置。
- 69. 前記固定電極部材及び/または可動電極部材は、それぞれ少なくともその一部がモリブデンまたはアルミナ分散銅合金からなることを特徴とする請求項66~68のいずれかに記載の金属箔チューブの製造装置。
- 70. 前記固定電極部材および/または可動電極部材の硬度は、前記金属箔素板の硬度とほぼ同じであることを特徴とする請求項66~68のいずれかに記載の金属箔チューブの製造装置。
- 71. 前記金属箔チューブは、前記芯棒内から半径方向に流体を噴出すことにより当該芯棒から剥離し、取り外すようにしたことを特徴とする請求項56,57,66のいずれかに記載の金属箔チューブの製造装置。
 - 72. 前記芯棒は、当該芯棒から溶接後の金属箔チューブを剥離す

る流体を噴出する流体通路を有することを特徴とする請求項56,57 ,66のいずれかに記載の金属箔チューブの製造装置。

- 73. 前記芯棒は、前記金属箔素板が芯棒に密着しないようにするための切り欠き部を外周面に有することを特徴とする請求項56,57,66のいずれかに記載の金属箔チューブの製造装置。
- 74. 前記芯棒は、複数の部材から構成され、一部を軸方向に移動させることにより金属箔チューブが当該芯棒から剥離するようにしたことを特徴とする請求項56,57,66のいずれかに記載の金属箔チューブの製造装置。
- 75. 前記金属箔素板の板厚に対する金属箔チューブ内直径の比が、1/500以下となるように構成されていることを特徴とする請求項55~74のいずれかに記載の金属箔チューブの製造装置。
- 76. 請求項32~54に記載の金属箔チューブの製造方法ないし請求項55~75に記載の金属箔チューブの製造装置を用いて得られたものであることを特徴とする金属箔チューブ。

PCT/JP2004/000360

Fig.4

WO 2004/065032

Fig.5

PCT/JP2004/000360

Fig.8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/000360

A.	CLASSIFIÇ	ATION OF SUBJECT MATTER	200 51 100 500500 100	20./50	
l	Int.Cl7	B21C37/08, B23K11/06, B21D33/		38/58,	
		C21D9/08, 9/50, G03G15/08, 15	0/20		
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Min	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ B21C37/08, B23K11/06, B21D33/00, 51/00, C22C38/00, 38/58,				
	int.Ci	C21D9/08, 9/50, G03G15/08, 15		30/30,	
		C21B3, 00, 3,30, 003G13,00, 13	,, 20		
Doc	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922–1996 Toroku Jitsuyo Shinan Koho 1994–2004				
	Jitsuyo Shinan Koho 1922—1996 Toroku Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1971—2004 Jitsuyo Shinan Toroku Koho			1996-2004	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
C	Category* Citation of document, with indication, where appropriate, of the relevant passages			Relevant to claim No.	
	· X	JP 2-197318 A (Nippon Steel (Corp.),	1,2,9,55,75,	
	70	03 August, 1990 (03.08.90), Examples; table 1		76 3-8,10-54,	
	<u>A</u>	(Family: none)		55-74	
	(2000)				
1	A JP 3-61322 A (Nippon Steel Corp.),		1-76		
		18 March, 1991 (18.03.91),			
·	(Family: none)				
	A JP 8-146804 A (Brother Industries, Ltd.),		1-76		
		07 June, 1996 (07.06.96),			
		(Family: none)			
				,	
ļ					
1					
Further documents are listed in the continuation of Box C. See patent family annex.					
* "Δ"	* Special categories of cited documents: "T" later document published after the international filing date or priori date and not in conflict with the application but cited to understand				
ŀ	to be of particular relevance the principle or theory underlying the invention				
"E"	"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claim filing date considered novel or cannot be considered			claimed invention cannot be idered to involve an inventive	
"L"	document which may throw doubts on priority claim(s) or which is step when the document is taken alone			e	
	cited to establish the publication date of another citation or other "Y" document of particular relevance; the class special reason (as specified) considered to involve an inventive st			step when the document is	
"o"	'O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination				
"P"	"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
Date of the actual completion of the international search Date of mailing of the international search report				rch report	
	13 April, 2004 (13.04.04) 27 April, 2004 (27.04.04)				
1			Authorized officer		
	Japanese Patent Office				
Fac	Facsimile No. Telephone No.				
Form PCT/ISA/210 (second sheet) (January 2004)					

電話番号 03-3581-1101 内線 3423

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. 'B21C37/08 B23K11/06 B21D33/00, 51/00 C22C38/00. 38/58 C21D9/08, 9/50 G03G15/08, 15/20 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. 'B21C37/08 B23K11/06 B21D33/00, 51/00 C22C38/00, 38/58 C21D9/08, 9/50 G03G15/08, 15/20 最小限資料以外の資料で調査を行った分野に含まれるもの 1922-1996年 日本国実用新案公報 日本国公開実用新案公報 1971-2004年 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 1,2,9,55,75,76 JP 2-197318 A (新日本製鐵株式会社) X 1990.08.03 実施例、第1表 (ファミリーなし) 3-8,10-54, <u>A</u> 55-74 1-76 JP 3-61322 A (新日本製鐵株式会社) Α 1991.03.18 (ファミリーなし) JP 8-146804 A (ブラザー工業株式会社) 1-76 1996.06.07 (ファミリーなし) □ パテントファミリーに関する別紙を参照。 C欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「O」ロ頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査報告の発送日 国際調査を完了した日 27. 4. 2004 13.04.2004 4E 9442 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 國方 康伸 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号