By the law of diminishing returns, greedily assign the brilliant students to the class with the current smallest pass ratio. O(n) or O(n + k) using median selection (similar to 1283. Find the Smallest Divisor Given a Threshold).

Let the pass ratio of a class be $\frac{a}{b}$, let d=b-a, and let k denote the number of extra students. Suppose the marginal gain by adding one student is y. Solve $\frac{x+1}{x+d+1} - \frac{x}{x+d} = y$, we get the number of brilliant students needed is $\lfloor x-a+1 \rfloor = \lfloor -b+\frac{1}{2}+\sqrt{\frac{d}{y}+\frac{1}{4}} \rfloor$ when $y>\frac{x}{x+d}$. To find an initial approximation for y with O(n) additive error, such that $\sum_i \lfloor x_i - a_i + 1 \rfloor < k$, set y to be the solution of $\sum_{i:x_i \geq a} \sqrt{\frac{d_i}{y}} - b_i + 1 = k-1$, which again can be found using median finding.

Maximum Average Pass Ratio

Submission Detail

Accepted Solutions Runtime Distribution

Runtime: 200 ms, faster than 100.00% of C++ online submissions for Maximum Average Pass Ratio.

Memory Usage: $90.7\,MB$, less than 79.74% of C++ online submissions for Maximum Average Pass Ratio.

References