Due: November 19, 2014 3:00PM

CS127 Homework 6

Due: November 19, 2014 3:00PM

Warmup 1 (Textbook Problem 12.3)

Let relations $r_1(A,B,C)$ and $r_2(C,D,E)$ have the following properties: r_1 has 20,000 tuples, r_2 has 45,000 tuples, 25 tuples of r_1 fit on one block, and 30 tuples of r_2 fit on one block. Estimate the number of block transfers required, using each of the following join strategies for $r_1 \bowtie r_2$:

- 1. Nested-loop join
- 2. Block nested-loop join
- 3. Merge join
- 4. Hash join

Warmup 2 (Textbook Problem 12.6)

Consider the following bank database, where the primary keys are underlined:

```
branch(<u>branch_name</u>, branch_city, assets)
customer(<u>customer_name</u>, customer_street, customer_city)
loan(<u>loan_number</u>, branch_name, amount)
borrower(<u>customer_name</u>, <u>loan_number</u>)
account(<u>account_number</u>, branch_name, balance)
depositor(<u>customer_name</u>, account_number)
```

Suppose that a B+Tree index on *branch_city* is available on relation *branch*, and that no other index is available. List different ways to handle the following selections that involve negation:

- 1. $\sigma_{\neg (branch_city < "Brooklyn")}(branch)$
- 2. $\sigma_{\neg (branch_city="Brooklyn")}(branch)$
- 3. $\sigma_{\neg (branch_city < "Brooklyn") \lor assets < 5000}(branch)$

Warmup 3 (Textbook Problem 13.4)

Consider the relations $r_1(A,B,C)$, $r_2(C,D,E)$, and $r_3(E,F)$, with primary keys A, C, and E, respectively. Assume that r_1 has 1000 tuples, r_2 has 1500 tuples, and r_3 has 750 tuples. Estimate the size of $r_1 \bowtie r_2 \bowtie r_3$ and give an efficient strategy for computing the join.

Warmup 4 (Textbook Problem 14.12)

List the ACID properties. Explain the usefulness of each.

Problem 5 (To Be Graded)

Consider again the simplified university registrar database from the previous homeworks:

Student				
name	${f gradyear}$	\mathbf{gpa}		
Amy	2016	3.95		
Ben	2015	3.87		
Carl	2016	3.29		
Dan	2017	3.43		
Eliza	2015	4.0		

Course				
${f title}$	$\mathbf{semester}$	instructor		
CS33	2014F	Doeppner		
CS127	2014F	Zdonik		
CS195	2013F	Kraska		
CS127	2012F	Zdonik		
CS136	2012S	Fonseca		

Enrollment				
name	${f title}$	$\mathbf{semester}$	grade	
Eliza	CS33	2014F	A	
Eliza	CS127	2014F	A	
Ben	CS127	2012F	A	
Carl	CS195	2013F	\mathbf{C}	
Carl	CS127	2014F	В	

The database has the following statistics:

- $Student(\underline{name}, gradyear, gpa)$: $n_{Student} = 10,000, f_{Student} = 100$
- $Course(title, semester, instructor): n_{Course} = 200, f_{Course} = 50$
- Enrollment(name, title, semester, grade): $n_{Enrollment} = 250,000, f_{Enrollment} = 25$

Answer the questions about the following queries:

- $1.\ select\ name, gpa\ from\ student\ where\ gpa>3.75$
 - a. Draw a plan for this query.
 - b. Assume Student is sorted. Does this affect how the query should be executed? Explain.
 - c. Instead, we add an index to speed up the query. Should we use a B-tree or hash index? Explain.
- $2. \ \ select * from \ student \ s, course \ c, enrollment \ e \ where \ s.name = e.name \ and \ c.title = e.title \ and \ c.semester = e.semester = e.semester$
 - a. Draw all possible plans for this query.
 - b. Choose the best plan and give its cost with a block nested-loop join and a buffer size of 3 blocks.
 - c. Choose the best plan and give its cost with a block nested-loop join and a buffer size of 6 blocks.