AN INNOVATIVE ENERGY METHOD TO INFORM SURGICAL PLANNING OF ADOLESCENT IDIOPATHIC

Fundings: ANR grant ANR-24-CE17-4266, project MAIS

SCOLIOSIS

M. Carrère⁽¹⁾,

A. Eon^(1,2), M. Bony⁽¹⁾, B. Brun-Cottan⁽¹⁾, T. Langlais^(1,2), J. Sales de Gauzy^(1,2), P. Swider⁽¹⁾, P. Assemat⁽¹⁾ (1) Institut de Mécanique des Fluides de Toulouse, UMR5502, France (2) CHU Purpan, Toulouse, France

Context

- Adolescent Idiopathic Scoliosis (AIS) requires surgery in severe cases yet choosing the right instrumented levels and ensuring proper sagittal balance remain clinical challenges [1].
- To reduce empiricism in surgical planning, we developed an imagedriven, in silico energetic model, implemented in our in-house simulation tool, **Spinergy**®, to simulate post-surgery spinal alignment from pre-operative effective properties [2], Fig. 1.

Figure 1 – Biplanar radiographs and pre-operative Spinergy® simulation

the **relative distance** Δ , from (c).

Objectives

Simulate the impact of instrumentation the length, ie. the choice of lower and upper instrumented vertebrae (LIV and UIV), on postoperative spinal alignment.

Mechanical Model Equation [2]

$$V(\mathbf{u}, \mathbf{p}) = \frac{1}{2} \sum_{i} \mathbf{q}_{i/\mathcal{R}_{i}}^{\top} \cdot \mathbf{K}_{i} \cdot \mathbf{q}_{i/\mathcal{R}_{i}} + \frac{1}{2} \sum_{i} \mathbf{q}_{i/\mathcal{R}_{A}}^{\top} \cdot \mathbf{B}_{i} \cdot \mathbf{q}_{i/\mathcal{R}_{A}} - \sum_{i} \mathbf{G}_{i} \cdot \mathbf{q}_{i/\mathcal{R}_{A}}$$

The local elastic (strain) energy on vertebral segments

The **global elastic** (strain) **energy** on vertebral segments

Gravitational potential energy

Methodology

- 3D wire-frame model of the spine
 - o Based on **pre-operative biplanar** o Pre-operative **effective parameters EOS® X-rays, Fig.1a,b**
 - o Inverse algorithm based mechanical energy minimization (Fig.1c)
 - -> Energy and effective tensors
- Clinical balance defined as:
 - Alignment of vertebral bodies along the vertical axis in the frontal plane
- Surgery simulation inputs, Fig.2a,c:

 - Instrumented length (range of UIV to LIV)
 - Sagittal curvature
 - Spine curve reduction
- Surgery simulations, Fig.2e-h:
 - Residual area A: between non-instrumented vertebrae and the T1-S1 axis
- Z_{max}: absolute distance between the vertical axis and the apex of free (noninstrumented) vertebral segments

Discussion

- simulations:
- ~1 hour to compute inputs on 10 CPU cores
- Simulation of multiple instrumentation lengths in a few seconds
- In Fig.2b,d: **simulated** (**blue**) and **post**operative (dark blue) distributions based on Fig.2a,c show a **good agreement on** thoracic-lumbar actual T3-L3 instrumentation.
- Spinergy® enables fast and efficient · Fig. 2e-h illustrates the impact of varying instrumentation levels (n-2 to n+1) compared to the actual case (n = T3-L3):

 $L_{instrumentation} \Rightarrow \uparrow A_{residual} \text{ and } \equiv Z_{max}$

UIV-LIV	A _{residual} (mm²)	Z _{max} (mm)
T3-L4 (n+1)	34	< 0.5
T3-L3 (n)	78	1
T3-L2 (n-1)	153	3
T3-L1 (n-2)	467	3

Results

Figure 2 - Post-operative results and Spinergy® simulations

 $||z_{max}^{D}|| \le 3 \text{ mm}$

 A_D : 153 mm²

 $||z_{max}^{D}|$: 1 mm

 A_D : 78 mm²

---- T1-S1

 $||z_{max}^{D}|$: 0 mm

 A_D : 34 mm²

---- T1-S1

E 200 +

 $|z_{max}^{D}|$: 3 mm

 A_D : 467 mm²

Conclusion

- Spinergy® provides efficient patient-specific simulations that enhance and personalize AIS surgical planning. Expert-reviewed results suggest that, in the illustrative case, a shorter instrumentation could have been appropriate.
- This project contributes to the development of **Spinergy®** as a **decision-support tool** to:
- Help surgeons choose optimal instrumentation levels
- Improve surgical outcomes and patient well-being

References

- Compagnon, R. et al., Orthopaedics & Traumatology: Surgery & Research, Volume 108, Issue 6, 2022.
 - [2] Brun-Cottan, B. et al., Biomechanic and modeling in mecanobiology. 20, 359-370, 2021.