26. listopada 2012.

Surame _	
Stud. no.	

Zí Za slijedeća četiri qubita kompletirajte njihove definicije

$$|\psi\rangle = \frac{1}{\sqrt{5}}|0\rangle + \dots |1\rangle \qquad |\chi\rangle = \dots |0\rangle + \frac{1}{5}|1\rangle$$
$$|\lambda\rangle = \frac{1-i}{\sqrt{3}}|0\rangle + \dots |1\rangle \quad |\sigma\rangle = \frac{1}{2-i}|0\rangle + \dots |1\rangle.$$

Za svakog od njih izračunajte, ako je izvršeno mjerenje, vjerojatnost nalaženja u stanju |0\) i |1\).

Z2 Ako je vjerojatnost nalaženja qubita $|\psi\rangle$ u stanju $|1\rangle$ jednaka 1/3 nakon što je obavljeno mjerenje, napišite potpuni izraz za taj qubit.

Z3 Ako uvedemo matričnu reprezentaciju za stanja ovako

$$|0
angle
ightarrow|e_1
angle=\left(egin{array}{c}1\\0\end{array}
ight)\quad ext{and}\quad|1
angle
ightarrow|e_1
angle=\left(egin{array}{c}0\\1\end{array}
ight)$$

napišite qubite u matričnoj formi

$$|\psi\rangle = \frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle$$
$$|\chi\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$$
$$|\phi\rangle = \frac{1-i}{2}|0\rangle + \frac{1+i}{2}|1\rangle.$$

Provjerite prvo da li su qubiti dobro normalizirani. Ako nisu, normalizirajte ih. [Uobičajeno je označavati vektorski prostor koji je razapet vektorima u matričnoj formi sa $C^{(2)}$ tako da se razlikuje od Hilbertovog prostora $\mathcal{H}^{(2)}$ koji je razapet vektorima $|0\rangle$ i $|1\rangle$.]

Z4 U vektorskom prostoru $C^{(2)}$ dana su tri vektora

$$\begin{split} |\tilde{a}\rangle &= \frac{2i}{5}|e_1\rangle + \frac{3}{5}|e_2\rangle = \frac{2i}{5}\begin{pmatrix} 1\\0 \end{pmatrix} + \frac{3}{5}\begin{pmatrix} 0\\1 \end{pmatrix} \\ |\tilde{b}\rangle &= \frac{1+2i}{\sqrt{10}}|e_1\rangle + \frac{2-i}{\sqrt{10}}|e_2\rangle \quad \mathrm{i} \\ |c\rangle &= \frac{2}{\sqrt{5}}|e_1\rangle + \gamma_2|e_2\rangle. \end{split}$$

Normalizirājte vektore $|\tilde{a}\rangle$ i $|\tilde{b}\rangle$. Izračunājte skalarni (unutarnji) produkt $|\tilde{a}\rangle$ i $|\tilde{b}\rangle$ i pokažite da vrijedi $\langle \tilde{a}|\tilde{b}\rangle = \langle \tilde{b}|\tilde{a}\rangle$. Odredite γ_2 tako da vektor $|c\rangle$ bude ortogonalan na vektor $|\tilde{a}\rangle$.

[Predati DZ na slijedećem predavanju.]

9. listopada 2012.

Prezime ______Stud. br. _____

Z5 Operator A ima slijedeću matričnu reprezentaciju

$$\begin{pmatrix} 2 & -i \\ i & 1 \end{pmatrix}$$

- (a) Provjerite da li je matrica normalna, tj. da li vrijedi $A^{\dagger}A = AA^{\dagger}$.
- (b) Da li je matrica hermitska?
- (c) Izračunajte kako matrica A transformira jedinične vektore kanonske baze $|0\rangle$ i $|1\rangle$ gdje je (u $C^{(2)}$)

$$|0\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(d) Izračunajte matrične elemente operatora A u kanonskoj bazi, npr.

$$A_{1,2} = \langle 0|A|1 \rangle$$
, itd.

(e) Izračunajte kako operator A djeluje na vektor - qubit koji je u kanonskoj bazi dan ovako

$$|\phi\rangle = \frac{1}{3} \begin{pmatrix} 1\\0 \end{pmatrix} + \frac{2i\sqrt{2}}{3} \begin{pmatrix} 0\\1 \end{pmatrix}$$

- (f) Nađite vlastite vektore i vlastite vrijednosti operatora A
- (g) Provjerite da li su vlastiti vektori međusobno okomiti.
- (h) Normirajte vlastite vektore.
- (i) Pronađite unitarnu matricu koja transformira vektore baze iz kanonske forme u novu bazu (koja se sastoji od vlastitih vektora operatora A).
- (i) Provjerite da li unitarna transformacija dijagonalizira matricu A.
- (k) Napišite matricu A u dijagonalnoj formi.

[DZ predati na predavanju 16. studenog 2012.]

16. studenog 2012.

Prezime	_
Mat. br.	_

 ${f Z6}$ Neka je operator A dan ovako

$$\hat{A} = 1 + \sigma_x \cdot \sigma_y$$

gdje su $\sigma_{x,y}$ Paulijeve matrice. Provjeri da li je operator (a) hermitski i (b) normalan. (c) Nađi vlastite vrijednosti i vlastite funkcije operatora A. (d) Izračunaj trag operatora A.

Z7 Uvode se dva operatora $S_{+} = S_{x} + iS_{y}$ i $S_{-} = S_{x} - iS_{y}$. Izračunajte kako ti operatori djeluju na vektore standardne baze $|\uparrow\rangle \equiv |+\rangle = |0\rangle$ i $|\downarrow\rangle \equiv |-\rangle = |1\rangle$.

Z8 Pokaži da je stanje

$$|\phi\rangle = e^{-i\phi/2}\cos\frac{\theta}{2}|0\rangle + e^{i\phi/2}\sin\frac{\theta}{2}|1\rangle$$

(dano ui knjizi, formula (3.4)) vlastito stanje operatora $\vec{\sigma} \cdot \hat{n}$ gdje su σ_i Paulijeve matrice, a \hat{n} je jedinični vektor dan u formuli (3.5).

Z9 Neka je \hat{A} operator i neka vrijedi $\hat{A}^{\dagger} = \hat{A}$, gdje † znači "hermitsku konjugaciju". U određenoj bazi operator ima matričnu reprezentaciju A, a odgovarajuća matica je nedijagonalna. Pokaži da je TrA jednak sumi vlastitih vrijednosti operatora. Dobro je iskoristiti cikličko svojstvo traga iu unitarnu transformaciju.

Z10 Naka su A i B dvije matrice dane ovako

$$A = \begin{pmatrix} 2 & -i \\ i & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -i & -2 \\ 1 & 1 \end{pmatrix}$

(a) Pokaži da je operacija traga linearna, tj. Tr(A+B)=TrA+TrB. (b) Pokažite cikličko svojstvo traga tj. Tr(AB)=Tr(BA) što je posebno svojstvo općenitog slučaja

$$\operatorname{Tr}(ABCD) = \operatorname{Tr}(DABC) = \operatorname{Tr}(CDAB) = \operatorname{Tr}(BCDA).$$

^

[Kada predati DZ? 2012.]

16. siječnja 2013.

Prezime	
Mat. br.	

 ${\bf Z11} \quad {\bf Razmatramo\ operator\ } \Sigma$

$$\widehat{\Sigma} = \frac{1}{2} \left(\widehat{1} + \vec{\sigma}_A \cdot \vec{\sigma}_b \right)$$

koji djeluje na dvo-qubitno stanje $|i_A j_B\rangle$

$$\widehat{\Sigma}|i_A j_B\rangle = |x y\rangle.$$

Izračunajte moguća stanja $|x y\rangle$.

 ${\bf Z12}$ Napišite tablice istinitosti za (klasična) vrata: NOT, OR, AND, XOR i NAND i nacrtajte odgovarajuće grafičke simbole.

[Kada predati DZ? 2013.]

KVANTNA RAČUNALA Međuispit - 4. prosinca 2012.

Ime i	prezime	 	
Mat.	br		

Z1 Napišite qubit $|\psi\rangle$ ako se zna da je vjerojatnost nalaženja sustava u stanju $|0\rangle$ jednaka 60%.

 ${f Z2}$ U dvodimenzionalnom prostoru ${\cal C}^{(2)}$ dana su dva vektora

$$|a\rangle = 2i|e_1\rangle - |e_2\rangle$$
 i

$$|b\rangle = i|e_1\rangle + 2|e_2\rangle.$$

Konstruirajte od tih vektora ortonormiranu bazu za $C^{(2)}$, ako je $\langle e_i|e_j\rangle=\delta_{i,j}$.

Z3 Spinska valna funkcija čestice spina 1/2 je

$$|\chi\rangle \sim \left(rac{1-i}{i}
ight).$$

Izračunajte vjerojatnost da će pri mjerenju x-komponente spina, rezultat dati stanje sa spinom dolje!

Z4 Operator A je u matričnoj reprezentaciji dan preko 2 × 2 matrica $\hat{1}$ and Paulijevih matrica $\sigma_{x,z}$ ovako

$$\hat{A} = \frac{1}{2} \left(\hat{1} + \sigma_z \right) + \sigma_x.$$

- (a) Provjerite da li je operator hermitski.
- (b) Izračunajte njegove vlastite vrijednosti i vlastite vektore.
- (c) Izračunajte trag operatora.
- (d) Napišite operator u dijagonalnoj formi.
- (e) Izračunajte komutator $[\hat{A}, \sigma_y]$ i rezultat izrazite preko Paulijevih matrica.

T1 Definirajte qubit.

T2 Napišite disperzionu relaciju za EM polje i za kvantnomehaničku valnu funkciju.

T3 Koje karakteristike mora imati funkcija da bi mogla predstavljati kvantnomehaničku valnu funkciju?

T4 Napišite Schrödingerovu jednadžbu za jednodimenzionalni harmonički oscilator.

Pregled gradiva do 1. MI - KVANTNA RAČUNALA 27. studenog 2012.

1. Definicija qubita

Polarizacija svjetlosti

- polarizator
- analizator
- projekcije polja u zadanom smjeru
- Malusov zakon
- 2. Vektorski prostor
 - aksiomi vektorskog prostora

Skalarni produkt

- unitarni prostor
- Hilbertov prostor
 - baza Hilbertovog prostora
 - Ortogonalizacija vektora

Operator

- matrični zapis operatora
- hermitski operator 1
- unitarni operator

Problem vlastitih vrijednosti - 1

- vlastite vrijednosti
- vlastiti vektori

Diracova notacija

3. Uvod u QM (kvantnu mehaniku)

Stern-Gerlachov pokus

"Izvod" Schrödingerove jednadžbe

- disperzijska relacija za EM val
- disperzijska relacija QM

Rješenje Schrödingerove jednadžbe za slobodnu česticu

Postulati QM

Hermitski operator - 2

- problem vlastitih vrijednosti - 2

Komutator

- relacije neodređenosti
- 4. Projektor

Spektralna reprezentacija operatora

Tenzorski produkt

5. Spin

Paulijeve matrice

Dijagonalizacija $\sigma_{x,y}$

- vlastite vrijednosti i vlastiti vektori

KRAJ PRVOG DIJELA!

KVANTNA RAČUNALA Završni ispit - 8. veljače 2013.

Prezir	ne _		
Stud.	broj		<u></u>

Z1 Vrata " $\pi/8$ " su definirana ovako

Z3

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix},$$

a H i X su Hadamardova odnosno Paulijeva NOT-vrata. Izračunajte kako na stanja $H|0\rangle$ i $H|1\rangle$ djeluju vrata [T,X], gdje $[\quad,\quad]$ predstavlja komutator.

Z2 Dana su dva-qubitna stanja u prostoru $\mathcal{H}_1^{(2)} \otimes \mathcal{H}_2^{(2)}$

$$|\psi\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \quad |\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}.$$

(Prepoznajete, naravno, Bellova stanja!) Izračunajte $X\otimes I|\psi\rangle$ i $Z\otimes I|\phi\rangle$ gdje su X i Z Paulijeva vrata, a I je vrata-identitet.

Slika 1 uz zadatke 3, 4, i 5.

•

Z4 Prema slikama (c) i (d) izračunajte konačno stanje za moguća stanja $|a\rangle$ i $|b\rangle$! Na slici (d) vrata H_c su kontrolirana Hadamardova vrata koja rade analogno ranije definiranim kontrolnim vratima (kontrolni bit je na liniji koja ulazi u "crnu točku").

Z5 Pokažite da su dvije kvantne mreže na slici (e) ekvivalentne. Lijevi dijagram predstavlja kontrolirana X-vrata. Izaberite jedno početno stanje po želji!

Slika 2 uz zadatak 6.

 ${f Z6}$ Razmotrite lijevu kvantnu mrežu na slici 2. Ako je funkcija U_f definirana ovako

$$U_f|x,y\rangle = |x,y \circledast f(x)\rangle.$$

izračunajte $|\phi_2\rangle$ ako je $|a\rangle=|0\rangle$ i $|b\rangle=|0\rangle$. Da li je moguće generirati Bellova stanja

$$|b_1\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \quad |b_2\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$
$$|b_3\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}} \quad |b_4\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

za neku posebnu vrstu funkcije, tj. ako je funkcija uravnotežena, odnosno ako je konstantna?

Izračunajte desnu kvantnu mrežu na slici 2, ako stignete! Uzmite identična početna stanja (po želji).