Sampling and Generation

Ling 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2025

Generation / Decoding

Figure 7.2 Turning a predictive model that gives a probability distribution over next words into a generative model by repeatedly sampling from the distribution. The result is a left-to-right (also called autoregressive) language models. As each token is generated, it gets added onto the context as a prefix for generating the next token.

Generation / Decoding

- A Language Model outputs a probability distribution over possible words
 - The LM encodes the probability for all possible sequences
 - Given this, how do we decide what the predicted sequence should be? (This process is often called "decoding")

Figure 7.2 Turning a predictive model that gives a probability distribution over next words into a generative model by repeatedly sampling from the distribution. The result is a left-to-right (also called autoregressive) language models. As each token is generated, it gets added onto the context as a prefix for generating the next token.

Generation / Decoding

- A Language Model outputs a probability distribution over possible words
 - The LM encodes the probability for all possible sequences
 - Given this, how do we decide what the predicted sequence should be? (This process is often called "decoding")
- How do we generate new sequences?
 - During training, we always know what the next word should be
 - For many real-world tasks (e.g. Chatbots), we want the model to **generate novel text**

Figure 7.2 Turning a predictive model that gives a probability distribution over next words into a generative model by repeatedly sampling from the distribution. The result is a left-to-right (also called autoregressive) language models. As each token is generated, it gets added onto the context as a prefix for generating the next token.

 $\hat{w}_t = \operatorname{argmax}_{w \in V} P(w \mid w_{< t})$

- "Greedy" decoding is the simplest strategy
 - At each time step, choose the highestprobability word
 - "Greedy" because it does NOT guarantee the highest-probability sequence

Figure 7.7 Taking the logit vector **u** and using the softmax to create a probability vector **y**.

$$\hat{w}_t = \operatorname{argmax}_{w \in V} P(w \mid w_{< t})$$

- "Greedy" decoding is the simplest strategy
 - At each time step, choose the highestprobability word
 - "Greedy" because it does NOT guarantee the highest-probability sequence
- No randomness involved (same context gives the same completion)

righte 7.7 Taking the logit vector **u** and using the sortmax to create a probability vector **y**.

$$\hat{w}_t = \operatorname{argmax}_{w \in V} P(w \mid w_{< t})$$

- "Greedy" decoding is the simplest strategy
 - At each time step, choose the highestprobability word
 - "Greedy" because it does NOT guarantee the highest-probability sequence
- No randomness involved (same context gives the same completion)
- Tends to generate boring or repetitive text
 - Or text that's been exactly copied from the training data

iguite 1.1 Taking the logit vector **u** and using the sorthax to create a probability vector **y**

$$\hat{w}_t = \operatorname{argmax}_{w \in V} P(w \mid w_{< t})$$

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

 Sampling: taking random draws from a probability distribution

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words
 - Stop when the End-Of-Sequence token is reached, or define a maximum sequence length

$$i \leftarrow 1$$
 $w_i \sim p(w)$
while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words
 - Stop when the End-Of-Sequence token is reached, or define a maximum sequence length
- Each word has the **probability assigned by the LM** of being generated

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words
 - Stop when the End-Of-Sequence token is reached, or define a maximum sequence length
- Each word has the probability assigned by the LM of being generated
 - Pros: relatively "interesting", novel text generation

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words
 - Stop when the End-Of-Sequence token is reached,
 or define a maximum sequence length
- Each word has the probability assigned by the LM of being generated
 - Pros: relatively "interesting", novel text generation
 - Cons: high chance of generating nonsense (because of the long tail of low-probability choices)

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

- Sampling: taking random draws from a probability distribution
 - For LMs: sample from distribution over possible words
 - Stop when the End-Of-Sequence token is reached, or define a maximum sequence length
- Each word has the probability assigned by the LM of being generated
 - Pros: relatively "interesting", novel text generation
 - Cons: high chance of generating nonsense (because of the long tail of low-probability choices)
- Is there something in-between this and greedy?

$$i \leftarrow 1$$
 $w_i \sim p(w)$

while $w_i != EOS$
 $i \leftarrow i + 1$
 $w_i \sim p(w_i \mid w_{< i})$

 Instead of considering the whole distribution, what about the top few words?

- Instead of considering the whole distribution, what about the top few words?
- Top-k Sampling:
 - Take the k highest-probability words
 - Sample among these words according to their probability

- Instead of considering the whole distribution, what about the top few words?
- Top-k Sampling:
 - Take the k highest-probability words
 - Sample among these words according to their probability
- Cuts off the long tail of the distribution

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

 Problem with top-k: probability distributions can look very different

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

- Problem with top-k: probability distributions can look very different
 - Sometimes the top k will make up the
 majority of the probability mass (peaked)

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

- Problem with top-k: probability distributions can look very different
 - Sometimes the top k will make up the majority of the probability mass (peaked)
 - Other times the distribution is spread out (flat)

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

- Problem with top-k: probability distributions can look very different
 - Sometimes the top k will make up the majority of the probability mass (peaked)
 - Other times the distribution is spread out (flat)
 - (Hard to find a *k* that always works well)

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

- Problem with top-k: probability distributions can look very different
 - Sometimes the top k will make up the majority of the probability mass (peaked)
 - Other times the distribution is spread out (flat)
 - (Hard to find a k that always works well)
- Top-p (AKA nucleus) sampling: truncate the distribution to the top probability mass (e.g. 0.2 / 20%)

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

- Problem with top-k: probability distributions can look very different
 - Sometimes the top k will make up the majority of the probability mass (peaked)
 - Other times the distribution is spread out (flat)
 - (Hard to find a k that always works well)
- Top-p (AKA nucleus) sampling: truncate the distribution to the top probability mass (e.g. 0.2 / 20%)
 - Adaptable to different distribution shapes

Figure 5: The probability mass assigned to partial human sentences. Flat distributions lead to many moderately probable tokens, while peaked distributions concentrate most probability mass into just a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling problematic, while the presence of peaked distributions makes large k's problematic.

probs = softmax(\mathbf{x}/τ)

 The "peakiness" of a distribution can be adjusted with parameter called temperature (τ)

logits

0.9

0.1

-0.5

the

your

that

- The "peakiness" of a distribution can be adjusted with parameter called temperature (τ)
 - Low temperature → more peaky / close to greedy sampling

0.9

0.1

-0.5

(towards greedy)

the

your

that

- The "peakiness" of a distribution can be adjusted with parameter called temperature (τ)
 - Low temperature → more peaky / close to greedy sampling
 - High temperature → more flat / close to uniform distribution

0.9

0.1

-0.5

the

your

that

- The "peakiness" of a distribution can be adjusted with parameter called temperature (τ)
 - Low temperature → more peaky / close to greedy sampling
 - High temperature → more flat / close to uniform distribution
 - $\tau = 1.0 \rightarrow \text{regular softmax}$

low temperature

sampling

(towards greedy)

probs = $softmax(\mathbf{x}/\tau)$

high temperature

sampling

0.9

0.1

the

your

that

- The "peakiness" of a distribution can be adjusted with parameter called temperature (τ)
 - Low temperature → more peaky / close to greedy sampling
 - High temperature → more flat / close to uniform distribution
 - $\tau = 1.0 \rightarrow \text{regular softmax}$
- Can be tuned to give more/less deterministic outputs

low temperature

sampling

(towards greedy)

high temperature

sampling