高等量子力学笔记

陈炎柯*

版本: 1.00

更新时间: September 30, 2020

^{*}chenyanke@stu.pku.edu.cn, 个人主页 http://yankechen.xyz

写在前面

该笔记是在北京大学 2020 年秋季学期上尹澜教授的高等量子力学课程所记录,该课程主要使用的教材是 J. J. Sakurai 以及 Jim Napolitano 所著的《Modern Quantum Mechanics》。课程和教材本身的难度不高,易于理解,对于细节的讲述十分详细,本笔记主要用于快速浏览,追求简短,故省略了大部分如推导一类的过程。主要记录思路和结果。

笔记大部分是随着上课在课堂上写的,目前还没有进行订正,所以可能会有很多 笔误,等后续慢慢再修改吧。

第一章的内容省略了很多,主要原因是我在第一章上课时笔记是手写的,由于内容都是基础,后面也比较懒,就没再整理成 LaTeX 版的。

笔记模板来自 ElegantIATeX Group,模板下载地址: https://ddswhu.me/resource/随课程进行每周更新。

2020.09.30 更新至 2.3 节

目录

1	量子	力学的数学基础和基本原理	4
	1.1	量子力学的数学基础	4
	1.2	测量、观测量与不确定原理	4
2	2 量子动力学		5
	2.1	时间演化与薛定谔方程	5
	2.2	两种绘景	5
	2.3	谐振子	6

1 量子力学的数学基础和基本原理

1.1 量子力学的数学基础

希尔伯特空间、算符、本征态和本征值的基本介绍略。

厄米算符的重要性质(证明略)

- 厄米算符的本征值是实数。
- 厄米算符的属于不同本征值的本征态相互正交

完备性定理:

可以把任意态矢用厄米算符的本征态展开,设 $\hat{A}|\psi_n\rangle = \lambda_n|\psi_n\rangle$ 。

$$|\Psi\rangle = \sum_{n} c_n |\psi_n\rangle, \quad c_n = \langle\psi_n|\Psi\rangle$$
 (1.1)

 $|\psi\rangle_n$ 方向的投影算符为: $|\psi_n\rangle\langle\psi_n|$, 且

$$\sum_{n} |\psi_n\rangle \langle \psi_n| = 1 \tag{1.2}$$

算符的矩阵表示:

设 $\hat{A} |\psi_n\rangle = \lambda_n |\psi_n\rangle$,则

$$\hat{B} = \sum_{m,n} |\psi_m\rangle \langle \psi_m| \,\hat{B} \, |\psi_n\rangle \langle \psi_n| = \sum_{m,n} B_{mn} \, |\psi_m\rangle \langle \psi_n| \tag{1.3}$$

1.2 测量、观测量与不确定原理

观测: 观测前系统处于 $|\Psi\rangle$, 针对可观测量 \hat{A} 进行观测,则观测结果为本征值 λ_n ,观测到个本征值的几率为 $|c_n|^2=|\langle\psi_n|\Psi\rangle|^2$,且期望为:

$$\langle \hat{A} \rangle = \langle \Psi | \hat{A} | \Psi \rangle = \sum_{n} c_{n}^{*} c_{n} A_{n} = A_{n} P_{n}$$
 (1.4)

不确定原理

$$\langle \Delta \hat{A}^2 \rangle \langle \Delta \hat{B}^2 \rangle \ge \frac{1}{4} |\langle [\hat{A}, \hat{B}] \rangle|^2 \tag{1.5}$$

位置空间、动量空间的展开、波函数等略。

2 量子动力学

2.1 时间演化与薛定谔方程

时间演化算符 $|\psi_t\rangle = \hat{U}(t,t_0) |\psi(t_0)\rangle$

$$\langle \psi(t_0) | \psi(t_0) \rangle = \langle \psi(t) | \psi(t) \rangle \Rightarrow \hat{U}^{\dagger} \hat{U} = 1$$
 (2.1)

$$\hat{U}(t_2, t_1)\hat{U}(t_1, t_0) = \hat{U}(t_2, t_0), \quad \hat{U}(t_1, t_0) = \exp\left[\frac{-i\hat{H}(t_1 - t_0)}{\hbar}\right]$$
(2.2)

$$\hat{U}(t+dt,t_0) - \hat{U}(t,t_0) = \frac{\partial}{\partial t}\hat{U}(t,t_0)dt \Rightarrow i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$
 (2.3)

设 $\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$,以 $| \psi_n \rangle$ 为基矢

$$|\Psi(t)\rangle = \sum_{n} c_n(t) |\psi_n\rangle, \quad c_n(t) = \langle \psi_n | \psi(t)\rangle \Rightarrow c_n(t) = c_n(0)e^{\frac{-iE_nt}{\hbar}}$$
 (2.4)

可观测量随时间的变化:

$$\langle \hat{A} \rangle = \langle \psi(t_0) | \hat{U}^{\dagger}(t, t_0) \hat{A} \hat{U}(t, t_0) | \psi(t_0) \rangle \tag{2.5}$$

如果 $[\hat{A}, \hat{H}] = 0$ 则 $\langle \hat{A} \rangle$ 不随时间变化,如果 $[\hat{A}, \hat{H}] \neq 0$,则在 \hat{H} 本征矢做基底的情况下

$$\langle \hat{A} \rangle = \sum_{n,m} A_{mn} c_m^*(t_0) c_n(t_0) \exp\left[\frac{-i(E_n - E_m)(t - t_0)}{\hbar}\right], \quad \omega_{nm} = \frac{E_n - E_m}{\hbar}$$
 (2.6)

时间关联函数:

$$C(t) = \langle \psi(t_0) | \psi(t) \rangle = \sum_{n} |c_n(t_0)|^2 \exp\left[\frac{-iE_n(t - t_0)}{\hbar}\right]$$
 (2.7)

关于时间的测不准原理

$$\Delta t \Delta E \ge \hbar \tag{2.8}$$

其中 Δt 是系统状态变化的特征时间, ΔE 是系统在能量空间的分布范围。

2.2 两种绘景

薛定谔绘景: 算符不随时间变化, 态矢随时间的变化由薛定谔方程描述

$$|\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle, \quad i\hbar \frac{d|\psi(t)\rangle}{dt} = \hat{H}|\psi(t)\rangle \Rightarrow |\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$$
 (2.9)

海森堡绘景: 态矢不随时间变化, 算符随时间的变化由海森堡方程描述

$$\hat{A}(t) = \hat{U}^{\dagger}(t)\hat{A}(0)\hat{U}(t), \quad \frac{d\hat{F}(t)}{dt} = \frac{1}{i\hbar} \left(-\hat{U}^{\dagger}\hat{H}\hat{F}\hat{U} + \hat{U}^{\dagger}\hat{F}\hat{H}\hat{U} \right) = \frac{1}{i\hbar} [\hat{F}(t), \hat{H}(t)] \quad (2.10)$$

以上约定两种绘景在 $t_0 = 0$ 时刻是相同的

$$\hat{A}^H(t_0 = 0) = \hat{A}^S, \quad |\psi^H\rangle = |\psi^S(t_0 = 0)\rangle, \quad \hat{U}(t) = \hat{U}(t, t_0 = 0)$$
 (2.11)

埃伦福斯特定理:

$$m\frac{\mathrm{d}^2}{\mathrm{d}t}\langle \hat{x}\rangle = \frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{p}\rangle = -\langle \nabla V(\hat{x})\rangle \tag{2.12}$$

基矢的变化:

在薛定谔绘景下

$$\hat{A}^{S} = |\psi_{n}\rangle = \lambda_{n} |\psi_{n}\rangle, \quad |\psi^{S}(t)\rangle = \sum_{n} c_{n}(t) |\psi_{n}\rangle, \quad c_{n}(t) = \langle \psi_{n} | \psi^{S}(t)\rangle$$
 (2.13)

在海森堡绘景下:

$$\hat{A}^{H}(t) | \psi^{H}(t) \rangle = \lambda_{n} | \psi_{n}^{H}(t) \rangle, \quad | \psi_{n}^{H}(t) \rangle = \hat{U}^{\dagger}(t) | \psi^{H} \rangle$$
 (2.14)

$$|\psi^H\rangle = c_n(t)\psi_n^H(t)\rangle, \quad c_n(t) = \langle \psi_n^H(t)|\psi^H\rangle$$
 (2.15)

从海森堡绘景下也可以得到形式上的薛定谔方程(两种绘景相互等价)

2.3 谐振子

一维谐振子

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 \tag{2.16}$$

(后面为了简单不算符不写上标了) 定义:

$$a = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{ip}{m\omega}), \quad a^{\dagger} = a = \sqrt{\frac{m\omega}{2\hbar}}(x - \frac{ip}{m\omega})$$
 (2.17)

可得

$$[a, a] = 0, \quad [a^{\dagger}, a^{\dagger}] = 0, \quad [a, a^{\dagger}] = 1$$
 (2.18)

定义粒子数算符

$$N = a^{\dagger}a, \quad N^{\dagger} = N, \quad [N, a] = -a, \quad [N, a^{\dagger}] = a^{\dagger}$$
 (2.19)

则有

$$H = \hbar\omega(N + \frac{1}{2})\tag{2.20}$$

设 $N|n\rangle = n|n\rangle$,有

$$H|n\rangle = E_n|n\rangle, \quad E_n = \hbar\omega(n + \frac{1}{2}), \quad n = \langle n|a^{\dagger}a|n\rangle \ge 0$$
 (2.21)

此外有

$$Na |n\rangle = (n-1)a |n\rangle \tag{2.22}$$

可设 $a|n\rangle = c_n(n-1)$,可得 $c_n = \sqrt{n}$,即

$$a_n |n\rangle = \sqrt{n} |n-1\rangle, \quad a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$
 (2.23)

由于 $n\geq 0$ 不能无限减小,需设 $a^{n+1}\ket{\alpha}=0$,可得 $\alpha=n$ 。n 必须为非负整数。H 的基态为 $\ket{0}$, $E_0=1/2\hbar\omega$

$$|n\rangle = \frac{(a^{\dagger})^n}{\sqrt{n!}} |0\rangle, \quad E_n = (n + \frac{1}{2})\hbar\omega$$
 (2.24)

易得

$$\langle n|x|n\rangle = \langle n|p|n\rangle = 0, \quad \langle \frac{m\omega^2 x^2}{2}\rangle = \langle \frac{p^2}{2m}\rangle = \frac{\langle H\rangle}{2}$$
 (2.25)

在基态有

$$\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle = \frac{\hbar^2}{4}$$
 (2.26)

本征波函数

$$\psi_0(x) = \langle x | 0 \rangle, \langle x | a | 0 \rangle = 0 \tag{2.27}$$

$$(x + \frac{\hbar}{m\omega} \frac{\mathrm{d}}{\mathrm{d}x})\psi_0(x) = 0, \quad \psi_0(x) = \frac{1}{\pi^4 \sqrt{x_0}} e^{-\frac{1}{2}(\frac{x}{x_0})^2}, \quad x_0 = \frac{\hbar}{\omega}$$
 (2.28)

$$\psi_n(x) = \langle x | \frac{(a^{\dagger})^n}{\sqrt{n!}} | 0 \rangle = \left(\frac{1}{\pi^{1/4} \sqrt{2^n n!}} \right) \left(\frac{1}{x_0^{n+1/2}} \right) \left(x - x_0^2 \frac{d}{dx} \right)^n \exp \left[-\frac{1}{2} \left(\frac{x}{x_0} \right)^2 \right]$$
(2.29)

时间的演化:

由海森堡方程可得:

$$\frac{da}{dt} = -i\omega a, \quad \frac{da^{\dagger}}{dt} = i\omega a^{\dagger} \tag{2.30}$$

定义相干态 $|\alpha\rangle$, 是 a 的本征态, $a|\alpha\rangle = \alpha |\alpha\rangle$, 对 N 的本征态 $|n\rangle$ 展开:

$$|\alpha\rangle = \sum_{n} \alpha_n |n\rangle, \quad \alpha_{n+1}\sqrt{n} = \alpha_n\alpha, \quad \alpha_n = \frac{\alpha^n}{\sqrt{n!}}\alpha_0$$
 (2.31)

$$|\alpha\rangle = \alpha_0 \sum_n \frac{\alpha^n}{n!} (a^{\dagger})^n |0\rangle$$
 (2.32)

由于 a 不是厄米算符, 基矢没有正交性, 约定归一化系数

$$|\alpha_0|^2 e^{|\alpha|^2} = 1 \tag{2.33}$$

有完备性

$$\int d\alpha d\alpha^* |\alpha\rangle \langle \alpha| = \pi \tag{2.34}$$

Homework:Sakurai 书 (版本不同以教学网为准)

chapter1:1, 4(a)(b), 7(a)(b),16,30

chapter2:4, 5, 8(a)(b), 11

10月12日(周一)上交