1. 참가 기본정보						
*개인·팀·기업명	빅웨이브					
*참가구분	□ 개인 ■	팀구성 🗆 단체	□ 기업 □ 학생 □ 기타 ()		
참가자	*이름	*연락처	*이메일	소속		
*팀 대표						
팀 원 1						
팀 원 2						
팀 원 3						

*는 필수입력 항목

2. 참가 과제정보				
참가분야	■ 분석 아이디어 [□ 분석 사례		
참가주제	□ 포스트코로나 준비 등	■ 주택문제해결·주거복지지원 등		
제 목	다각도 환경적 요인을 활용한 세분	화된 침수 피해 취약 지역 예측 분석		
_1 _1 _1 _1	·			

• 과 제 개 요

- 1. 활용이 예상되는 분야 : 각 지자체 침수피해 관련 정책 지원
- 2. 제안 사유:
- 이상 기후로 인한 침수피해 빈도 및 범위 확대에 따라 침수피해 지역에 대한 사전 대응의 중요성 확대
- 침수에 취약한 환경에 대한 세분화된 분석을 통해 보다 다양한 환경적 요소를 반영하여 정확도를 높인 침수피해 발생 예측 지역 도출 및 사전 대응책 마련에 활용
- 3. 아이디어의 차별성/창의성:
- 기존의 침수피해 관련 분석의 경우 직접적으로 연관이 있는 하천 및 상하수도 관련 공간정보 데이터를 주로 활용함, 이 아이디어에서는 하천/상하수도 관련 데이터 뿐 아 니라 시설의 특성 정보(지하시설 등)을 반영하고 시설의 노후화 여부 등 시계열 정보 를 함께 분석하여 피해 지역적 특성에 맞춘 대응책 마련 가능

• 활용 데이터

연번	데이터명	데이터 설명	출처	무상여부
1	하천망도	국가하천 및 지방하천의 구간변경, 명칭	환경부	0

		변경 등 작성된 지도	국가공간정보포털	
2	수자원단위지도	대권역, 중권역 및 표준유역의 가상의 구역을 설정한 지도	환경부 국가공간정보포털	0
3	상수도	서울시 상수도 공간정보	서울특별시 서울 열린데이터 광장	0
4	하수도	하수도 및 배수구역	국토교통부 국가공간정보포털	0
5	DEM	지형의 고도값을 수치로 저장함으로써 지형의 형상을 나타내는 지도	국토지리정보원 국가공간정보포털	0
6	경사도	서울시 등고선, 표고점 데이터	서울특별시 공공데이터포털	0
7	지하도 및 지하차도	서울시 도로관리시스템 지하도 및 지하 차도 위치정보	서울특별시 서울특별시 빅데이터 캠퍼스	0
8	지하주차장	건축인허가 관리대장의 부설주차장 속성 정보	국토교통부 공공데이터포털	0
9	건물지하시설	서울시 주택인허가대장 동별 지하층수 정보	서울특별시 서울 열린데이터 광장	0
10	맨홀	서울시 동별 맨홀 개수	서울특별시 서울 열린데이터 광장	0
11	기상관측자료	기상청 단기예보	기상청 공공데이터포털	0

• 분석 프로세스

1. 분석 프로세스 요약

(1) 데이터 수집

- 침수 관련 환경적 요인 데이터, 시설 특성 및 공간정보, 기상 데이터, 과거 침수피해 지역 데이터로 구분하여 수집
- 침수 관련 환경적 요인 : 하천 및 상하수도, 배수 시설 위치정보, DEM, 경사도 데이터
- 시설 특성 및 공간정보 : 건물 지하시설, 지하도 및 지하차도, 지하주차장, 맨홀, 건물 노후화 여부 등
- 기상 데이터 : 기상관측데이터 (강수량 등)

(2) 데이터 정제 및 융합

- 침수 관련 환경적 요인 데이터를 활용, 행정동 경계 혹은 그리드 단위 지도 생성
- 해당 지도 내 시설 특성 및 기상정보, 시계열 정보 등의 데이터 결합

(3) 데이터 분석

- 침수 피해 발생 지역의 지역적 특성 및 주변 환경 구성요소와의 상관관계 분석을 통해 침수 피해에 높은 영향을 미치는 변수 분석
- 분석된 결과를 참고하여 과거 침수피해 지역 데이터를 예측변수로 활용, 머신러닝을 통한 침수 피해 관리 우선 지역 분석 모델링

(4) 시각화

• 지속적인 활용이 가능하도록 예측지도 시각화

2. 데이터 분석 및 활용 상세

- (1) 데이터 수집 및 정제
 - 기존의 하천 및 상하수도 위치데이터, 고도, 경사와 같은 침수 관련 공간특성 뿐 아니라 시설 특성 정보 및 시설 노후화 둥 시계열 정보를 수집

 수집 데이터를 공간정보화 하여 격자 및 행정동 경계 내 매핑, 침수피해 예측 모델링을 위한 분석 기본자료 생성

- (2) 침수피해 발생 지역 데이터 분석 및 알고리즘 구성
 - EDA(탐색적) 분석을 통해 수집 데이터의 특성을 파악하고 특성에 맞춘 정제 작업을 통해 데이터 클렌징 시행
 - 과거 침수피해 지역 데이터와 각 요인 데이터 간의 상관관계 분석 및 Feature importance 도출 과정을 통해 높은 영향도를 가진 요인 데이터 변수 선택
 - 과거 침수피해 지역 데이터를 예측변수로 하천 및 상하수도 데이터 및 시설 특성 데이터 등을

데이터변환및

변수생성

데이터정규화

융합DB구축

최적알고래즘

선택및구축

피해발생

예상지역예측

H크바 네에 하이되는 디아란 아크림포의 경기 자리적의 비스ᆗ크 이스먼트

• 분석 결과

- 위의 프로세스로 분석할 경우, 지대가 낮은 지역이나 하천 인근 지역 뿐 아니라 노후화된 건물과 배수시설 그리고 지하시설이 많은 지역에 대한 위험도가 높게 나타날 것으로 예상
- 시각화 예시와 같이 위험도가 높은 지역은 색이 진하게, 낮은 지역은 색이 연하게 노출

• 기대 효과

- 1. 수혜자 범위
 - 지자체 : 침수피해 취약 지역 확인 및 해당 지역의 침수피해 취약 원인 파악 용이
 - 지역 내 거주인구 : 꼭 필요한 사전 대응 정책을 지원받아 효과적인 침수피해 대응 가능
 - 지역 내 거주인구 외 : 침수피해로 인한 교통마비 등의 지역적 문제 최소화
- 2. 정량적 기대효과 : 금액, % 등 도출 가능한 정량적 기대효과
 - 침수 피해 및 복구 금액 절감 (공공시설, 주거시설 피해 및 인명 피해)
 - 지하철 침수로 인한 교통 마비 현상 최소화
- 3. 정성적 기대효과 : 대국민 또는 행정 정책 등에서 도출 가능한 정성적 기대효과
 - 취약 지역으로 예측된 지역 경계 내 매핑되어 있는 환경적 특성 데이터를 확인하면 해당 지역이 어떠한 이유로 침수피해에 취약한 지역인지를 확인할 수 있으며, 이에 따라 더 최적화된 침수 피 해 대응이 가능할 것으로 예상
 - 침수 피해 및 복구에 수반되는 정신적 피해 최소화