Unicamp Mecânica dos Fluidos Mazza

Mecânica dos Fluidos

Erik Yuji Goto

Campinas 2021

Sumário

1	Con	Conceitos Fundamentais 3									
	1.1	Tensão									
2	Esta	ática dos Fluidos 5									
	2.1	Lei de Stervin									
	2.2	Referencial não Inercial									
		2.2.1 Superfícies em Rotação									
3	Teo	rema de Transporte de Reynolds 7									
	3.1	Conservação de Massa									
	3.2	Conservação de Quantidade de Movimento - Referencial Inercial									
	3.3	Conservação de Quantidade de Movimento - Referencial Não Inercial 7									
	3.4	Conservação do Momento da Quantidade de Movimento									
	3.5	Conservação de Energia									
	3.6	Trabalho da Bomba									
	3.7	Eq. de Bernoulli									
4	Aná	ilise Dimensional 8									
	4.1	Protótipo x Modelo									
	4.2	Dimensões de Algumas Grandezas Físicas									
	4.3	Teorema dos π de Buckingham									
		4.3.1 Matriz Dimensional									
		4.3.2 Formando os π 's									
		4.3.3 Cuidados									
		4.3.4 Procedimento									
5	Sem	nelhança 10									
6	Esce	pamento Interno 11									
	6.1	Comprimento de Desenvolvimento									
	6.2	Perfil de Velocidade num Tubo									
	6.3	Coeficiente de Energia Cinética									
	6.4	Introdução Perda de Carga Localizada e Distribuída									
	6.5	Perda de Carga Distribuída									
		6.5.1 Rugosidade Relativa									
		6.5.2 Diagrama de Moody									
		6.5.3 Equação de Colebrook-White									
	6.6	Perda de Carga Localizada									
		6.6.1 Contrações e Expansões									
		6.6.2 Curvas, Válvulas, etc									
		6.6.3 Entradas e Saídas									
	6.7	Rede de Tubulações									
		6.7.1 Exemplo									

7	\mathbf{Esc}	scoamento Externo	20
	7.1	Teoria da Camada Limite	 20
		7.1.1 Equação Integral da Camada Limite	 20
	7.2	2 Camada Limite - Placa Plana	 21
		7.2.1 Placa plana: Laminar	 22
		7.2.2 Placa Plana: Turbulento	 22
8	Cor	orpo Rombudo	22
	8.1	Força Resultante no Corpo	 23
	8.2	2 Arrasto de Forma(Presão)	 23
	8.3	3 Coeficiente de Sustentação	 24

1 Conceitos Fundamentais

Fluido: É uma substância que se deforma continuamento quando submetida a uma tensão de cisalhamento, não importa o quão pequena essa tensão.

Composição do fluido: Inúmeras moléculas em movimento. Vamos tratar o fluido como contínuo.

Referencial Lagrangiano: Acompanha elementos de massa identificáveis.

Referencial Euleriano: Focaliza a atenção sobre as propriedades do escoamento num determinado ponto do espaço como função do tempo.

1.1 Tensão

Tensão: Força de superfície com duas componentes:

- Normal, também chamada de pressão;
- Cisalhamento, única que causa deformação no fluido.

1.1.1 Tensão de Deformação

É a variação de um ponto N em relação ao tempo. É um fenômeno local.

Figura 1: Tensão de Deformação

1.1.2 Tensão x Deformação

Para fluidos Isaac Newton propôs:

$$au = rac{d\mu}{dy}$$

 $\mu[\frac{N.s}{m^2}]$ viscosidade dinâmica

Fluido Newtoniano: A viscosidade só poderá ser alterada com a temperatura; A relação $\tau = \frac{\mu du}{dy}$ é um modelo.

Cisalhamento Simples: É quando a deformação é constante:

$$\frac{du}{dy} = cte \to u = a.y + b$$

Condição de não deslizamento: O fluido não desliza na interface com uma fronteira sólida, mas fica derido a ela.

Tensão Superficial: É a força por unidade de comprimento devido à atração molecular ao longo de qualquer linha de interface.

2 Estática dos Fluidos

Trata do estado de forças no fluido na ausência de movimento relativo entre suas partículas. Implica na existência de somente tensões normais.

2.1 Lei de Stervin

"A diferença de pressão entre dois pontos de massa de um líquido em equilíbrio é igual à diferença de nível entre os pontos, multiplicada pelo peso específico do líquido". Temos isso para um mesmo fluido e mesma altura.

Peso devido a coluna de água:

$$(P_B - P_A) = \varphi.g.h$$

2.2 Referencial não Inercial

Figura 2: Aplicações

$$- \nabla P = \rho.(\vec{g} - \vec{a}_{rel})$$

Figura 3: Aceleração Relativa

Podemos calcular a angulação:

$$\frac{dz}{dx} = -\frac{a_x}{g + a_z} = -tg\theta$$

2.2.1 Superfícies em Rotação

$$\nabla P = -\rho g_k + \rho \omega^2 r_r$$

Inclinação de superfícies em rotação:

$$\alpha = \arctan(\frac{\omega^2 r}{g})$$

Distância da superfície livre

 Dado o volume inicial de líquido no tanque, (H.ΠR²) determine a posição Q e M da interface após submeter o tanque a uma rotação ω constante.

$$Q = \frac{\omega^2 R^2}{2g} \quad e \quad M = H - \frac{\omega^2 R^2}{4g}$$

Figura 4: Distância da Superfície Livre

3 Teorema de Transporte de Reynolds

3.1 Conservação de Massa

$$0 = \frac{\delta}{\delta t} \int_{VC} \varphi dV + \int_{SC} \varphi \vec{V} \vec{n} dA$$

O termo $\vec{V}.\vec{n}$

Figura 5: Conservação Massa

3.2 Conservação de Quantidade de Movimento - Referencial Inercial

$$\frac{\delta}{\delta t} \int_{vc} \vec{V} \cdot \varphi dV + \int_{sc} \vec{V} \cdot \varphi \cdot \vec{V_r} \cdot \vec{n} dA =
\int_{vc} \varphi \cdot \vec{g} dV + \int_{sc} (-\vec{n} \cdot P) dA + \int_{sc} \vec{n} \cdot \tau dA + \vec{F_{mec}}$$

Figura 6: Quantidade de Movimento

Por ser uma equação vetorial ela pode ser decomposta nas três direções (x, y, z)

3.3 Conservação de Quantidade de Movimento - Referencial Não Inercial

$$\frac{\delta}{\delta t} \int_{vc} \vec{v_{xyz}} \cdot \varphi dV + \int_{vc} \vec{v_{xyz}} \varphi \cdot \vec{V_r} \cdot \vec{n} dA = \sum F_{ext} - \int_{vc} \vec{a_{ref}} \cdot \varphi dV$$

 $\overrightarrow{v_{xyz}}$ é medido a partir do referencial não inercial.

3.4 Conservação do Momento da Quantidade de Movimento

$$\int_{sc} (\vec{r_{xyz}} \times \vec{v_{xyz}}) \varphi \cdot \vec{V_r} \cdot \vec{n} dA = \dot{T}_{eixo} - \int_{sc} \varphi \cdot (\vec{r_{xyz}} \times \vec{a_{rel}}) dV$$
Aceleração relativa:
$$\vec{a_{rel}} = \frac{d\vec{\omega}}{dt} \times \vec{r_{xyz}} + \vec{\omega} \times (\vec{\omega} \times \vec{r_{xyz}}) + 2\vec{\omega} \times \vec{V_{xyz}}$$
Potência
$$\dot{W}_{eixo} = T_{eixo} \cdot \omega$$

Obs: Como o torque **T** sempre está na direção \hat{z} , os produtos vetoriais devem ser na mesma direção, caso contrário podemos descartá-los.

3.5 Conservação de Energia

$$\dot{Q}_{vc} - \dot{W}_{vc} = \frac{\delta}{\delta t} \int_{vc} \varphi(u + \frac{V_I^2}{2} + g.z) dV + \int_{sc} (u + P.v + \frac{V_I^2}{2} + g.z) \varphi \vec{V}_r \cdot \vec{n} dA$$

3.6 Trabalho da Bomba

O papel da bomba é transferir energia para os termos mecânicos e também para as irreversibilidades.

$$w_{shaft} = (\frac{V_I^2}{2} + g.z + \frac{P}{\varphi})_{in} - [(\frac{V_I^2}{2} + g.z + \frac{P}{\varphi})_{out} + w_{irr}] \text{ ou}$$
$$\frac{w_{shaft}}{g} = (\frac{V_I^2}{2g} + z + \frac{P}{\varphi.g})_{in} - (\frac{V_I^2}{2g} + z + \frac{P}{\varphi.g})_{out} - h_{irr}$$

3.7 Eq. de Bernoulli

Considerando um processo:

- Reversível $\longrightarrow s_{ger} = 0;$
- Sem transferência de Calor $\longrightarrow s_{in} = s_{out}$;
- Sem realização de trabalho $\longrightarrow W_{shaft} = 0$.

$$0 = (\frac{V_I^2}{2} + g.z + u + \frac{P}{\varphi})_{in} - (\frac{V_I^2}{2} + g.z + u + \frac{P}{\varphi})_{out}$$

4 Análise Dimensional

4.1 Protótipo x Modelo

Protótipo: Tamanho real, custo elevado e nem sempre é possível de ser realizado;

Modelo: Tamanho escalado, custo reduzido, mas necessita de formas de inferir os resultados ao tamanho real;

^{*} Entalpia - h

^{*} As diferenças de energia cinética devem ser medidas a partir de um referencial inercial.

4.2 Dimensões de Algumas Grandezas Físicas

Grandeza	Símbolo	Dimensões (M, L, T)
Comprimento	1	L
Tempo	t	T
Massa	m	M
Força	F	MLT ⁻²
Velocidade	V	LT^{-1}
Aceleração	а	LT^{-2}
Área	A	L^2
Vazão	Q	$L^{3}T^{-1}$
Pressão ou queda de pressão	$\tilde{\Delta}p$	$ML^{-1}T^{-2}$
Aceleração da gravidade	g	LT^{-2}
Massa específica	ρ	ML^{-3}
Peso específico	, ,	$ML^{-2}T^{-2}$
Viscosidade dinâmica	μ	$ML^{-1}T^{-1}$
Viscosidade cinemática	ν	L^2T^{-1}
Tensão superficial	σ	MT^{-2}
Módulo de elasticidade volumétrica	K	$ML^{-1}T^{-2}$

Figura 7: Dimensões

4.3 Teorema dos π de Buckingham

O Teorema dos π diz quantas variáveis adimensionais são requeridas para um dado conjunto de variáveis dimensionais de um dado problema.

4.3.1 Matriz Dimensional

É formada listando os expoentes (a, b, c, d, etc) das dimensões primárias (M, L e T) de cada variável. O propósito da matriz dimensional é checar a independência linear das

	F 1 1 -2	D	V	ρ	μ
M	1	0	0	1	1
L	1	1	1	-3	-1
T	-2	0	-1	0	-1

Figura 8: Matriz Dimensional

variáveis dimensionais em termos das dimensões primárias escolhidas (M, L, T).

Isto é feito determinando-se o 'rank' da matriz.

O rank é o **determinante** de todas possíveis submatrizes quadradas começando-se pela maior até encontrar uma cujo determinante é não nulo.

A quantidade de parâmetros adimensionais necessário para expressar a dependência funcional será de n-r variáveis (r é o rank):

$$\pi_1 = f(\pi_2, \pi_3, \pi_4...\pi_{n-r})$$

4.3.2 Formando os π 's

Os π 's são formados escolhendo-se uma base de repetição A base contém 'r' variáveis dimensionais do total de 'n' que contenha entre elas as 'r' dimensões.

As 'r' variáveis da base não podem ser linearmente dependentes uma das outras. A sub-matriz dos seus expoentes dimensionais tem que ser não nulo.

4.3.3 Cuidados

- Evitar variáveis que possam serem derivadas da outra por uma produto de potências:
 - Combinação entre comprimento, L, velocidade LT-1 e aceleração LT-2 é linearmente dependente. Pode-se combiná-las de forma que o resultado seja adimensional!
 - Combinação entre comprimento, L, densidade ML-3 e velocidade LT-1 é linearmente independente. Pode formar uma base porque qualquer que seja o produto entre elas nunca será adimensional!
- Evitar duas propriedades físicas para compor a base.
 - Ex: Viscosidade e densidade.

4.3.4 Procedimento

- 1. Liste todos os parâmetros envolvidos;
- 2. Selecione um conjunto de dimensões fundamentais;
- 3. Liste as dimensões de todos os parâmetros em termos das dimensões primárias;
- 4. Selecione da lista um número dos parâmetros que se repetem;
- 5. Estabeleça equações adimensionais combinando os parâmetros;
- 6. Verifique se os parâmetros são adimensionais.

5 Semelhança

As leis de escala podem ser aplicadas desde que haja semelhança entre modelo e protótipo.

Os testes no modelo são semelhantes ao protótipo quando:

$$\pi_{2m} = \pi_{2m}; \pi_{3m} = \pi_{3m}; ...; \pi_{km} = \pi_{km}$$

Usando o número de Reynolds como exemplo: Precisamos garantir que o Re do modelo e do protótipo sejam iguais para assegurar a semelhança.

Nem sempre é possível garantir a semelhança completa. Ao invés de se falar em semelhança ou similaridade completa, fala-se de tipos particulares de semelhança:

- Geométrica Um modelo e um protótipo são geometricamente similares se todas as dimensões do corpo possuírem a mesma razão linear;
- Cinemática A similaridade cinemática requer que as velocidades, nas três direções coordenadas, no modelo e no protótipo tenham a mesma razão linear;
- Dinâmica A similaridade dinâmica existe quando o modelo e protótipo possuem a mesma razão de comprimento, tempo e força;
- Térmica.

6 Escoamento Interno

Escoamento Laminar x Turbulento: Escoamentos laminares são altamente ordenados, com cada partícula do fluido seguindo umas as outras de forma ordeira.

Escoamentos turbulentos são altamente desordenados, sendo difícil definir as posições das partículas instante a instante. Diz-se que o escoamento é de alguma forma caótico

Figura 9: Escoamento Laminar e Turbulento

Reynolds mostrou que para tubos as instabilidades começam quando $\mathbf{Re} = 2.300$ e que acima de 10^4 o escoamento é completamente turbulento. Entre 2.300 e 10^4 há a **transição** do escoamento e pode haver regime laminar, turbulento ou ambas.

Valores de Re aceitos para transição em tubos:

- Laminar $Re_D < 2300$
- Turbulento $Re_D > 4000$
- Transição $2300 < Re_D < 4000$

Figura 10: Experimento de Osborne Reynolds (1841-1912)

Figura 11: Definição de Reynolds

6.1 Comprimento de Desenvolvimento

Enquanto que próximo da entrada o perfil de velocidades pode ser plano, a atuação da viscosidade desacelera o fluido próximo da parede.

Para conservar massa o núcleo deve ser acelerado!

Este conjunto de fatores faz com que seja estabelecido um perfil de velocidades a jusante da entrada cujo máximo é no centro e o mínimo é na parede

Figura 12: Diferença entre laminar e tubulento

O perfil de velocidades e a pressão variam ao longo da direção axial do tubo. O comprimento da região de entrada é denominado por Le.

Para distâncias superiores a Le, diz-se que o escoamento está hidrodinamicamente desenvolvido. O termo 'Desenvolvido' significa que o perfil não mais varia ao longo da

Figura 13: Escoamento Desenvolvido

direção axial do escoamento.

Quando o escoamento está completamente desenvolvido o vetor de velocidades é unidimensional, com apenas uma componente na direção r que depende da distância da parede.

A pressão varia ao longo do escoamento, mas não varia transversalmente à ele, P = P(x). Em qualquer seção transversal a pressão é uniforme.

6.2 Perfil de Velocidade num Tubo

A velocidade não está distribuída uniformemente ao longo do tubo, mas apresenta um perfil:

$$\frac{V(r)}{U_{\text{max}}} = \left(1 - \left[\frac{r}{R}\right]\right)^{\frac{1}{n}} \quad \text{(se turbulento)}$$

$$\frac{V(r)}{U_{\text{max}}} = \left(1 - \left[\frac{r}{R}\right]^{2}\right) \quad \text{(se laminar)}$$

Figura 14: Perfil de Velocidade

Num tubo a velocidade máxima, U_{max} , ocorre no centro (r=0). A relação entre a velocidade média e a máxima é uma função do perfil de velocidades:

$$\frac{\overline{V}}{U_{\text{max}}} = \frac{2n^2}{(n+1) \cdot (2n+1)}$$
 (se turbulento)
ou
$$= \frac{1}{2}$$
 (se laminar)

Figura 15: Relação entre Velocidades

6.3 Coeficiente de Energia Cinética

$$\alpha = \left(\frac{U_{\text{max}}}{\overline{V}}\right)^3 \cdot \frac{2n^2}{(2n+3)(n+3)}$$

Figura 16: Coeficiente de Energia Cinética

Para escoamentos em regime turbulento em dutos frequentemente assume-se que o coeficiente α é igual a 1.

Para regime laminar entretanto é necessário o uso da correção de E.K. pois coeficiente α é igual a 2

• Laminar: $\alpha = 2$

• Turbulento: $\alpha = 1$

A conservação de energia é escrita como:

$$(\alpha \frac{\bar{V}^{2}}{2g} + z + \frac{P}{\varphi g})_{out} - (\alpha \frac{\bar{V}^{2}}{2g} + z + \frac{P}{\varphi g})_{in} = -h_{L} - w_{eixo}$$
ou
$$w_{shaft} = (\alpha \frac{\bar{V}^{2}}{2} + gz + \frac{P}{\rho})_{in} - [(\alpha \frac{\bar{V}^{2}}{2} + gz + \frac{P}{\rho})_{out} + h_{L}]$$

Obs: $\dot{W}_{eixo} = \rho.Q.w_{eixo}$

6.4 Introdução Perda de Carga Localizada e Distribuída

As perdas de carga tem origem no atrito que a parede exerce no fluido e na mudança de padrão do escoamento.

Desta forma, associa-se a perda de carga à uma parcela distribuída (hf) ao longo de toda tubulação e outra localizada (hm) em acessórios (curva, restrição, válvula, etc).

$$h_L = h_f + \sum h_m$$

6.5 Perda de Carga Distribuída

$$h_f = f(\frac{L}{D}).(\frac{V^2}{2g}) = 8.f \frac{LQ^2}{\pi^2 D^5 g} [m]$$

 $h_f = 8.f \frac{LQ^2}{\pi^2 D^5} [J]$

f é determinado pelo Diagrama de Moody.

6.5.1 Rugosidade Relativa

Material	Condition	ft	mm	Uncertainty, %		
Steel	Sheet metal, new	0.00016	0.05	± 60		
	Stainless, new	0.000007	0.002	± 50		
	Commercial, new	0.00015	0.046	± 30		
	Riveted	0.01	3.0	± 70		
	Rusted	0.007	2.0	± 50		
Iron	Cast, new	0.00085	0.26	± 50		
	Wrought, new	0.00015	0.046	± 20		
	Galvanized, new	0.0005	0.15	± 40		
	Asphalted cast	0.0004	0.12	± 50		
Brass	Drawn, new	0.000007	0.002	± 50		
Plastic	Drawn tubing	0.000005	0.0015	± 60		
Glass	_	Smooth	Smooth			
Concrete	Smoothed	0.00013	0.04	± 60		
	Rough	0.007	2.0	± 50		
Rubber	Smoothed	0.000033	0.01	± 60		
Wood	Stave	0.0016	0.5	± 40		

Figura 17: Rugosidade

$$[rugosidade \cdot relativa] = \frac{\varepsilon}{d} = \frac{[rugosidade - mm]}{[diametro - tubo - mm]}$$

6.5.2 Diagrama de Moody

6.5.3 Equação de Colebrook-White

O diagrama de Moody é uma representação gráfica da equação de Colebrook-White;

$$\frac{1}{\sqrt{f}} = -2log[\frac{\varepsilon}{3.7D} + \frac{2.51}{Re\sqrt{f}}]$$

Figura 18: Diagrama de Moody

6.6 Perda de Carga Localizada

Toda a perda de carga localizada é modelada como sendo uma parcela da energia cinética, sendo determinada como:

$$h_m = K.\frac{\bar{V}^2}{2}$$
 ou $h_m = f.(\frac{L_e}{D}).\frac{\bar{V}^2}{2}$

 $\frac{L_e}{D}, f$ e Ksão encontrados em tabelas

6.6.1 Contrações e Expansões

Figura 19: Contrações e Expansões

6.6.2 Curvas, Válvulas, etc

Tabela 7-2 Coeficiente de perda de carga , $K = \frac{h_m}{V_A^2/2g}$ para válvulas abertas, cotovelos e tês.

	Conexão com rosca			Conexão com flange					
Diâmetro nominal, cm (in.)	1,3 (0,5)	2,5 (1,0)	5,0 (2,0)	10 (4,0)	2,5 (1,0)	5 (2,0)	10 (4,0)	20 (8,0)	50 (20)
Válvulas (totalmente a	abertas);			-3	DIA.	SLE	-		
Globo	14,0	8,2	6,9	5,7	13,0	8,5	6,0	5,8	5,5
Gaveta	0,30	0,24	0,16	0,11	0,80	0,35	0,16	0,07	0,03
Giratória	5,1	2,9	2,1	2,0	2,0	2,0	2,0	2,0	2,0
Ångulo	9,0	4,7	2,0	1,0	4,5	2,4	2,0	2,0	2,0
Cotovelos:									
45° comum	0,39	0,32	0,30	0,29					
45" raio longo			,		0,21	0,20	0,19	0,16	0,14
90° comum	2,0	1,5	0,95	0,64	0,50	0,39	0,30	0,26	0,21
90° raio longo	1,0	0,72	0,41	0,23	0,40	0,30	0,19	0,15	0,10
180° comum	2,0	1,5	0,95	0,64	0,41	0,35	0,30	0,25	0,20
180° raio longo	911				0,40	0,30	0,21	0,15	0,10
Tês:									
Em linha	0,90	0,90	0,90	0,90	0,24	0,19	0,14	0,10	0,07
Perpendicular	2,4	1,8	1,4	1,1	1,0	0,80	0,64	0,58	0,41

Figura 20: Coeficiente K

Tipo de Acessório	Comprimento Equivalente, ^a L _e /D
Válvulas (completamente abertas)	
Válvula gaveta	8
Válvula globo	340
Válvula angular	150
Válvula de esfera	3
Válvula de retenção: tipo globo	600
: tipo angular	55
Válvula de pé com crivo: disco gu	iado 420
: disco art	iculado 75
Cotovelo padrão: 90°	30
: 45°	16
Curva de retorno (180°), configuração	ão curta 50
Tê padrão: escoamento principal	20
: escoamento lateral	60

Baseado em $h_{-} = f \frac{L_{c}}{V^{2}}$	Tab	Tabela 7-3 Perdas de válvulas parcialmente abertas.				
^a Baseado em $h_{t_n} = f \frac{L_e}{D} \frac{V^2}{2}$.	Condição	Razão K/K (condição aberta) Válvula da porta Válvula Globo				
	Aberta	1,0	1,0			
	Fechada, 25% 50%	3,0-5,0 12-22	1,5-2,0 2,0-3,0			
	75%	70-120	6,0-8,0			

Figura 21: Coeficiente $\frac{L_e}{D}$

6.6.3 Entradas e Saídas

Tipo de Entrada	Coeficie	Coeficiente de Perda Localizada, Ka				
Reentrante	—	+		0,	78	
Borda-viva	\rightarrow	<u> </u>		0,	,5	
Arredondado	\rightarrow	$rac{1}{1}$	r/D K	0,02	0,06	≥ 0,15 0,04

"Baseado em $h_{loc} = K(\sqrt[3]{2}/2$, em que $\sqrt[3]{6}$ é a velocidade média no tubo. Fonte: Dados da Referência [11].

Figura 22: Entradas e Saídas

6.7 Rede de Tubulações

De forma similar à circuitos elétricos, utilizando a leis de Kirchhoff (malha e nós), com a seguinte associação:

- Correte elétrica é similar a vazão;
- Diferença de potencial é similar a diferença de pressão;
- Resistência elétrica é similar a perda de carga:
 - Resistencia elétrica é linear: Depende da primeira potência da corrente e é constante;
 - Perda de carga: Depende do quadrado da vazão/velocidade é não é constante.
 - Vazão em cada junção (nó) na rede dever ser nula:
 - · Conservação de massa;
 - A variação de pressão ao longo de uma malha fechada dever ser nula:
 - · Continuidade da linha de pressão;
 - A variação de pressão ao longo de uma malha aberta tem ser satisfeita:
 - Todas as variações de pressão devem satisfazer as correlações de perda de carga, distribuídas e localizadas:
 - · Conservação de energia;

Figura 23: Regras

6.7.1 Exemplo

Figura 24: Exemplo

Vazão no nó D:

$$Q_4 + Q_6 = Q_7 + Q_9$$

Pressão na malha I:

$$\begin{split} P_A - P_B + P_B - P_D - (P_D - P_F) - (P_F - P_A) &= 0 \\ P_A - P_B &= f \frac{L}{D} \cdot \frac{V^2}{2g} + \sum K \frac{V^2}{2g} - (Z_A - Z_B) \end{split}$$

Se juntarmos (Z_A-Z_B) com a diferença de pressão:

$$P_A - P_B = f \frac{L}{D} \cdot \frac{V^2}{2g} + \sum K \frac{V^2}{2g}$$

7 Escoamento Externo

7.1 Teoria da Camada Limite

Fora da camada limite os efeitos viscosos são desprezíveis e pode ser tratado como sem viscosidade. Equação de Bernoulli é válida!

 δ é a espessura da camada limite. É definida como a distância da parede onde a velocidade é de até 99% da corrente livre. Na Região Interna: Efeitos viscosos e inércia

Figura 25: Camada Limite

são igualmente importantes. Há atrito na parede e Bernoulli não pode ser usado.

7.1.1 Equação Integral da Camada Limite

$$\frac{\tau_w}{\rho} = \frac{\partial}{\partial x}(U^2\theta) + \delta^* U \frac{dU}{dx}$$

Espessura de Deslocamento: Representa a espessura efetiva e está relacionada com o arrasto de pressão;

$$\delta^* = \int_0^\delta (1 - \frac{u}{U}) dy$$

Figura 26: Espessura de Deslocamento

Espessura de Momento: Pode-se dizer que a espessura de momento representa o arrasto viscoso.

$$\theta \approx \int_0^\theta \frac{u}{U} (1 - \frac{u}{U}) dy$$

Figura 27: Espessura de Momento

7.2 Camada Limite - Placa Plana

Método de Kármán Polhaussem Placa Plana

$$\begin{array}{l} \bullet \, \text{dP/dx} = 0 \to \, \text{dU/dx} = 0 \\ \\ \frac{\tau_w}{\rho} = U^2 \, \frac{d\theta}{dx} \end{array} \qquad \begin{cases} \frac{u}{U} = f\left(\eta\right); \quad \eta = y/\delta \\ \\ \frac{\delta^*}{\delta} = \int\limits_0^1 \left(1 - \frac{u}{U}\right) \cdot d\eta = \alpha \\ \\ \frac{\theta}{\delta} = \int\limits_0^1 \frac{u}{U} \left(1 - \frac{u}{U}\right) \cdot d\eta = \beta \end{cases}$$

• Uma vez conhecido o perfil u/U pode-se determinar α e β e consequentemente o atrito na parede!

Figura 28: Método de Kármán Polhaussem

7.2.1 Placa plana: Laminar

A tensão:

$$\frac{\tau_{\rm w}}{\rho} = \frac{\mu U}{\rho \delta(x)} \cdot f'(0)$$

• O fator de atrito de Fanning

$$Cf = \frac{\tau_w}{\frac{1}{2}\rho U^2} = \frac{\sqrt{2\beta f'(0)}}{\sqrt{Re_x}} = \frac{0,664}{\sqrt{Re_x}}$$

• O coeficiente de arrasto D por unidade de largura

$$D = \frac{\int\limits_{0}^{L} \tau_{\rm w} dx}{\frac{1}{2} \rho U^{2} \left(L\right)} = 2 \frac{\sqrt{2 \beta f'(0)}}{\sqrt{Re_{\rm L}}} = 2 C_{\rm f}$$

Figura 29: Placa Plana: Laminar

7.2.2 Placa Plana: Turbulento

$$\frac{\delta}{x} = \frac{0.382}{Re_x^{1/5}}$$

Coeficiente de Atrito de Fanning

$$C_f = \frac{0.0594}{Re_x^{1/5}}$$

8 Corpo Rombudo

A TCL não é válida para escoamentos com separação. Na separação δ cresce e δ/L não é pequeno! Entretanto, a TCL pode prever aproximadamente o ponto de separação. O ponto de separação é definido quando a tensão na parede é nula, $\tau_w = 0$, isto é:

$$separacao \Rightarrow \frac{du}{dy} = 0$$

Figura 30: Separação do Escoamento

8.1 Força Resultante no Corpo

A força resultante pode ser decomposta em duas componentes em relação a direção do escoamento:

- Arrasto(FD) Paralela
- Sustentação(FL) Normal

8.2 Arrasto de Forma(Presão)

Causa uma força resultante na direção posta ao escoamento. Ela é expressa na forma de um coeficiente:

$$C_D = \frac{\bar{D}_p}{(1/2)\rho U_{ext}^2 A} \longrightarrow \bar{D}_p = C_D.(\frac{1}{2})\rho U_{ext}^2 A$$

U é a velocidade relativa, $(U_{corpo} - U_{fluido})$

Arrasto total:

$$\bar{D}_T = \bar{D}_p + \bar{D}_f$$

Para Re $\gg 1$, o arrasto de forma \bar{D}_p corresponde a maior fração do arrasto total, e o arrasto viscoso \bar{D}_f pode ser desprezado.

Figura 31: Forças no corpo

8.3 Coeficiente de Sustentação

 Corpos simétricos com ângulos de ataque nulos não produzem sustentação;

Figura 32: A diferença de pressão causa a força de sustentação

• A força de sustentação é expressa por um coeficiente de forma similar à de arrasto:

$$C_{_L} = \frac{L}{1 / 2 \cdot \rho \cdot U^2 \cdot A_{_p}} \qquad \Rightarrow \qquad L = C_{_L} \cdot \frac{1}{2} \cdot \rho \cdot U^2 \cdot A_{_p}$$

• O coeficiente de sustentação depende do número de Reynolds, do ângulo de ataque e da forma do corpo

Figura 33: