

ITI

Introduction to Computer Networks & Cyber Security

Prepared By: Mohamed AboSehly

Application Layer

TCP/IP Protocol Architecture

- Application Layer
 - Communication between processes or applications

Application **Transport** Internet Network Access

- **Application Layer Protocols**
 - File transfer
 - FTP
 - TFTP
 - Network File System
 - E-mail
 - Simple Mail Transfer Protocol
 - Remote login
 - Telnet
 - rlogin
 - Network management
 - Simple Network Management Protocol
 - Name management
 - Domain Name System

Internet Services (Client/Web Server)

The World Wide Web: HTTP

Naming Service: DNS

File Transfer: FTP

Telnet Service

• Electronic Mail service: IMAP, POP3, SMTP

Client	Protocol	Server	Port No
Browser	HTTP	WEB	80
Browser	FTP	FTP	21
Browser	HTTP	Mail	110
Or	SMTP		143
Outlook Express	POP3		25
Microsoft Outlook	IMAP4		
Telnet	Telnet	Telnet	23

HTTP Protocol

- Hyper Text Transfer Protocol
- Supports the delivery of web pages to the client

Browser as a web client

Use Internet Browser as WEB client.

URL

```
Protocol :// Host : Port / Path
```

https://www.microsoft.com/ar-ww/microsoft-365/

- URL is Universal Resource Locator
- Protocol: HTTP, HTTPS or FTP
- Host: is the domain name of the computer on which the information is located.
- Port: The URL can optionally contain the port number of the server
- Path: is the pathname of the file where the information is located

DNS

- Domain Name Servers
- Application specified in the TCP/IP suite
- A way to translate human-readable names into IP addresses

List of Top Level Domains (TLDs)

Domain Name	Assigned To		
com Commercial organization			
edu	Educational institution		
gov	Government organization		
mil	Military group		
net	Major network support center		
org	Organization other than those above		
country code	A country		

DNS Tree

DNS Query

A hierarchy of DNS servers contains the resource records that match names with addresses.

How DNS works?

- At the beginning they use Hosts file, It maps the IP addresses to host names
- It is found at C: Windows\System32\drivers\etc
 - Problems:
 - Huge number of hosts
 - Update very dynamic
 - Searching will be too slow
- So hosts file can be used in local networks
- DNS Server is used for centralize the Domain Name Servers.
- DNS are used to convert the addresses into IP addresses and vice versa

DNS Lookup

How the client get the website:

- 1- check the cash
- 2- check the hosts file
- 3- Ask DNS server

Basic Network Elements (Software) - Lab

Nslookup

 nslookup is the name of a program that lets you to enter a host name and find out the corresponding IP address

```
C:\Windows\system32\cmd.exe - nslookup
   ault Server: vnsc-bak.sys.gtei.net
  rver: vnsc-bak.sys.gtei.net
  n-authoritative answer:
  dresses: 64.233.161.147, 64.233.161.99, 64.233.161.103, 64.233.161.104
  liases: www.google.com
  www.vahoo.com
  rver: vnsc-bak.sys.gtei.net
         www.vahoo.com
```

FTP

- File Transfer Protocol
- a transmission protocol that provides reliable data transfer between hosts.
- The default FTP port is
 - > Port 21 for command and control,
 - Port 20 for data transport.

Working Principle of FTP

FTP

FTP Client

- Browser as a FTP client
 - Use Internet Browser as FTP client.
 - Using MS Windows built-in FTP client (CLI)
 - Third party programs "FileZilla FTP"

Mail Server and Clients

- Mail Clients
 - Web based
 - Hotmail
 - gmail
 - Non web based
 - Microsoft Outlook

Mail Protocols

- SMTP (send mail transfer Protocol)
 - It is the common language used by the majority of Mail Servers to send messages back and forth to other Mail Servers or Email Clients
- POP3 "Post Office Protocol version 3"
 - In order to collect email messages from the Mail Server, the Email Client contacts the Mail Server.
 - Download messages on the hard disk
 - You can work Offline
 - Keep the user's quota on the server
- IMAP4 "Internet Message Access Protocol version 4"
 - Retrieve only message header

Telnet (23)/SSH(22)

- Telnet/ssh is a user command and an underlying TCP/IP protocol for accessing remote computers.
- Through Telnet/ssh, an administrator can access someone else's computer remotely

Telnet client (not secure)

- Built in MS-Windows Telnet client
- Third party programs

• RDP

 Remote Desktop Protocol (RDP) is a Microsoft proprietary protocol that enables remote connections to other computers,

Part 1_Network Elements (Hardware)

Network Hardware

Devices Medium

Computers / Peripherals

Any device that can connect to network with NIC

Ex: Computer

- ✓ Mobile
- ✓ Laptop-
- ✓ Printers-
- ✓ Cameras
- ✓ smart TV
- ✓etc

NIC (Network Interface Card)

Called network interface controller, network adapter or LAN adapter.

- Operate at the physical layer of OSI/RM
- hardware component without a computer cannot be connected over a network cable (interface between the PC and the network)
- Resides in the motherboard of the PC
 - Internal NIC (plugs into the motherboard directly)
 - External NIC (Wireless and USB based)
- Have A physical Address burned on the card called Mac.

LAN Segment Limitations

- Signals degrade with transmission distance.
- Each Ethernet type has a maximum segment length.

Repeater

- > Operates at the physical layer.
- > Regenerate the signal over the same network before the signal becomes too weak or corrupted
- Only extend the length of the signal to its original strength
- ➤ Does not amplify the signal.
- > 2 port device.

Extending LAN Segments

❖ Hub

- It is multi port repeater
- Shares bandwidth
- Extends cable distances
- Repeats or amplifies signal
- It is **layer 1 device**
- It work only with bits
- Must work with half duplex communication
- It works by flooding

Collisions

- All ports of the hub have the same collision domain and broadcast domain.
- Collisions makes the network very slow and congested

CSMA/CD

Carrier sense

Each station continuously listens for traffic on the medium to determine when gaps between frame transmissions occur.

Multiple access

Stations may begin transmitting any time they detect that the network is quiet (there is no traffic).

Collision detect

This means that if any collision occurs, it will be detected immediately

Carrier Sense Multiple Access Collision Detection (CSMA/CD)

Switch

- Allow different <u>nodes</u> to communicate with each other at the same time without slowing each other down.
- Imply less traffic and high performance and effective.
- Switch is data link layer device.
- The switch can perform error checking before forwarding data.
- less collision domain of hosts

❖ Switch

- Layer 2 switch
 - LAN switch
 - Forwards traffic based on the MAC address
- Layer 3 switch
 - Routing switch
 - Forwards traffic based on <u>IP Address</u>
 - Used for Inter-VLAN routing
 - Don't have WAN connectivity

*Router

- Allow different <u>networks</u> to communicate with each other (redirect packets between networks)
- Routes data packets based on their IP addresses.
- Routers are protocol dependent
- Operate at Network Layer device.
- Normally connect LANs and WANs together
- have a dynamically updating routing table based on which they make decisions on routing the data packets.

Router

– Path Determination :

 Getting update about the networks and send its updates to the other routers using the routing protocol configured

– Packet forwarding:

• Routers use the routing table to know where to forward packets using the best path out of its serial interfaces.

Hub, Switch, Router Layers

Splitter

- is a device that divides a telephone signal into two or more signals,
- each carrying a selected frequency range
- can also reassemble signals from multiple signal sources into a single signal

❖Your Home "Router"

- Main Function is Routing
- Act as Switch
- Act as DHCP
- Act as Firewall
- Act As Access point

Part 1_Network Media (Hardware)

Network Transmission Media

Wired Media Wireless Media

Network Transmission Media

- Cable Media
 - Twisted Pair Cables
 - UTP
 - STP
 - Coaxial Cables
 - Fiber Optic Cables
- Wireless Media
 - WIFI
 - Infra red
 - Microwave

- Unshielded twisted pair (UTP)
- Shielded twisted pair (STP)

- Coaxial cable
- Fiber optic

Network Transmission Media - Twisted pair cable

- Most widely used (Ethernet networks)
- Two basic types
 - STP
 - Shielded twisted pair
 - Protected
 - Hard to install

— UTP

- Unshielded twisted pair
- Most common
- Easy to install
- Less expensive
- Effected By electromagnetic interference
- Use RJ-45 connectors
- Crimper tool attach the twisted pair cable to RJ-45

UTP Categories

Type	Use
Category 1	Voice Only (Telephone Wire)
Category 5	Data to 100 Mbps (Fast Ethernet)
Category 5e	Data to 1 Gbps (Giga Ethernet)
Category 6	Data to 1 – 10 Gbps (Giga Ethernet)

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Coaxial Cable

- High capacity cable
- Used for video transfer
- Has two types
 - Thick coaxial cable (Thicknet)
 - ½ inch diameter
 - Thin coaxial cable (Thinnet)
 - ¼ inch diameter
- Use BNC connector

Fiber optic

- Fiber optic cabling is composted of the following components:
- The core that carries the signals. It is made of plastic or glass
- The cladding maintains the signal in the center of the core as the cable bends.

Part 1_Network Media (Hardware) Fiber Optic Types

Туре	Description
Single Mode	 Transfer data through the core using a single light ray The core diameter is around 9 microns Supports a large amount of data Cable length can extended a great distance
Multi-Mode	 Transfers the data through the core using multiple light rays The core diameter is around 50 to 50 microns Cable length are limited in distance compared to single mode
Multimode	Cladding Glass Core Glass

Fiber Optic advantages

Advantages

- Faster than twisted pair and coaxial
- Send data as light pulses over glass medium
- Free of electromagnetic interference
- Highly resistance to Eavesdropping
- Support extremely high data transfer rate
- Allow grater cable distances without repeater

Disadvantages

- Expensive
- Hard to install

Part 1_Wireless Communication

Wireless Media

- Flexible (Used in areas where it is hard to install cables)
- Used in wireless LANs
- Hybrid environment is one which wireless components communicate with a network that use cables

Part 1_Wireless Communication

- Transmits data over the air vs. data over the wire
- Looks like a wired network to the user
- Defines physical and data link layer
- Uses MAC addresses
- The same protocols/applications run over LANs.
 - IP (network layer)
 - Web, FTP, SNMP (applications)

PART 1_WIRELESS COMMUNICATION

Service Set Identifier (SSID)

- Unique identifier that client devices use to <u>distinguish</u> between multiple wireless networks in the same vicinity (separate WLANs)
- Alphanumeric, case-sensitive entry from 2 to 32 characters long.
- The SSID is configured on the AP and can be either broadcasted to the outside world or hidden.
- The SSID must match on client and access point.
- Access point broadcasts one SSID in beacons.
- Client cannot be configured without SSID.

PART 1_WIRELESS COMMUNICATION

Service Modes

Independent Mode:

- Mobile clients connect directly without an intermediate access point.
- Ad hoc mode

Infrastructure Mode:

 Mobile clients use a single access point for connecting to each other or to wired network resources.

PART 1_WIRELESS COMMUNICATION

Advantages

- Provide the ability to work anywhere within range of your access points
- Extends the range of your network without running additional wires

Disadvantages

- Introduces serious security concerns
- provides much less bandwidth than wired devices

Thank You