Examen des préalables, ECN 6578

2021-01-15

Questions

- 1. La fonction de répartition d'une loi exponentielle est $F(x) = 1 e^{-\lambda x}$, où $\lambda > 0$ est un paramètre. Le taux d'incidence d'une variable aléatoire X non-négative est la fonction h(x) = f(x)/(1 F(x)), où F(x) est sa fonction de répartition et f(x) est sa fonction de densité. Trouvez le taux d'incidence d'une loi exponentielle.
- 2. Trouvez le vecteur p (des prix d'états) qui vérifie l'équation $G'p = \iota$, où

$$G = \begin{bmatrix} 1 + R_f & 1 + R_1 \\ 1 + R_f & 1 + R_2 \end{bmatrix}, \qquad \iota = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

et $R_1 < R_f < R_2$ sont constants.

- 3. Trouvez les racines de l'équation $1 1.6x 0.63x^2 = 0$.
- 4. Soit c_1 et c_2 des constantes arbitraires. Montrez que chacune des séquences $\rho_k^{(1)} = c_1(0.9)^k$ et $\rho_k^{(2)} = c_2(0.7)^k$, $k = 0, 1, \ldots$, vérifie l'équation de récurrence $\rho_k = 1.6\rho_{k-1} 0.63\rho_{k-2}$.
- 5. Soit X_1 , X_2 et X_3 trois variables aléatoires indépendantes avec moyennes μ_1 , μ_2 et μ_3 et variances σ_1^2 , σ_2^2 et σ_3^2 . Trouvez $\text{Var}[a+bX_1+cX_2]$ et $\text{Cov}[a+bX_1+cX_2,d+eX_1+fX_3]$, où a,b,c,d,e et f sont des constantes.
- 6. Soit X_i une séquence de variables aléatoires indépendentes du type gamma, avec paramètres α et β : $X_i \sim \operatorname{iid} \operatorname{Ga}(\alpha, \beta)$. La fonction de densité pour X_i est

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}.$$

Donnez la densité conjointe $f(x_1, \ldots, x_n)$ de (X_1, \ldots, X_n) comme fonction des paramètres $(\alpha \text{ et } \beta), \sum_{i=1}^n x_i \text{ et } \prod_{i=1}^n x_i$.

- 7. Trouvez les valeurs (C_1^*, C_2^*) qui maximisent $U(C_1, C_2) = C_1^{1/2} + \delta C_2^{1/2}$ sous la contrainte $C_1 + C_2/(1+R) = m$, où m > 0 et R > 0 sont constants.
- 8. Supposons que c_1 et c_2 sont scalaires, ι et μ sont des vecteurs $n \times 1$ et Ω est une matrice inversible $n \times n$. Simplifiez l'expression $(c_1\Omega^{-1}\iota)'\Omega(c_2\Omega^{-1}\mu)$.