AD campaign recommender

Model Building

Praveen Selvaraj

Praveenselvaraj.ps@gmail.com praveenselvaraj@arizona.edu MS in Data Science University of Arizona (Upgrad)

Index

Slide titles

Overall flow of Analysis

Reading the data

Data Cleaning

Feature Engineering

Exploratory Data Analysis

Data Preparation

Model Building

Scenario 1 – Gender Prediction

Scenario 1 – Age Group Prediction

Scenario 2 – Gender Prediction

Scenario 2 – Age Group Prediction

Scenario 1 – Model Performance

Scenario 2 – Model Performance

Overall Flow of the Analysis and Model

1	77100101
•	Data Preparation
١	Merge All necessary DataFrames
	[] 42 cells hidden
•	Label Encoding
	[] 41 cell hidden
•	Train Test Split
	[] 4.2 cells hidden
•	Standard Scaler
	[] 41 cell hidden
•	Target Encoding for "Gender Prediction"
	[1 / 3 cells hidden

Flow of the Analysis and Model Building

Scenario 1

•	Gender Prediction - Random Forest - Model Selection
•	Gender Prediction - Random Forest - Best Parameters
	[] 41 cell hidden
•	Gender Prediction - XG Boost
	♦ 4 16 cells hidden
٠	Gender Prediction - Model Stacking
	[] 48 cells hidden
•	Gender Prediction - Final Model Selection
	[] 41 cell hidden
•	Gender Prediction - Exporting Model to a Pickle File Scenario 1
	[] 41 cell hidden

Age Group Prediction - Random Forest Model Selection
[] 41 cell hidden
Age Group Prediction - Random Forest - Best Parameters
[] 41 cell hidden
Age Group Prediction - XG Boost
[] 41 cell hidden
Age Group Prediction - XG Boost Hyperparameter Tuning
[] 414 cells hidden
Age Group Prediction - Model Stacking
[] 48 cells hidden
Age Group Prediction - Final Model Selection
[] 41 cell hidden
Age Group Prediction - Exporting Model to a Pickle File Scenario 1
[] 41 cell hidden

Flow of the Analysis and Model Building

Scenario 2

•	Gender Prediction - Random Forest - Model Selection
	[] 41 cell hidden
•	Gender Prediction - Random Forest - Best Parameters
	♦ 41 cell hidden
•	Gender Prediction - XG Boost
	[] 412 cells hidden
•	Gender Prediction - Model Stacking
	[] 4.6 cells hidden
•	Gender Prediction - Final Model Selection
	[] 41 cell hidden
•	Gender Prediction - Exporting Model to a Pickle File Scenario 2
	[] 41 cell hidden

•	Age Group Prediction
١	Age Group Prediction - train test Split
	[] 4.1 cell hidden
Þ	Age Group Prediction - Logistic Regression
	[] 42 cells hidden
Þ	Age Group Prediction - Logistic Model Selection
	[] 4,1 cell hidden
١	Age Group Prediction - Random Forest Classifier
	[] 41 cell hidden
Þ	Age Group Prediction - Random Forest Hyperparameter Tuning
	[] 4,10 cells hidden
١	Age Group Prediction - XG Boost
	[] 4,1 cell hidden
	17.5
١	Age Group Prediction - XG Boost Hyperparameter Tuning
	[] 4,10 cells hidden
١	Age Group Prediction - Model Stacking
	[] 48 cells hidden
١	Age Group Prediction - Final Model Selection
	[] 41 cell hidden

Reading the data

Read Data

```
dfAppEvents = pd.read_csv("https://uoacapstone.s3.amazonaws.com/app_events.csv")

dfTrainEvents = pd.read_csv("https://uoacapstone.s3.amazonaws.com/train_event_data.csv")

dfMetaAppEvents = pd.read_csv("https://uoacapstone.s3.amazonaws.com/app_events_meta_data.csv",quoting=csv.QUOTE_NONE)

dfMobileBrandTrain = pd.read_csv("https://uoacapstone.s3.amazonaws.com/train_mobile_brand.csv")
```

Renaming columns in each DataFrame ¶

Basic Stats on the Datasets dfMetaAppEvents.head() app id label id category category app_id label_id 1 7324884708820027918 Finance Finance 4 6058196446775239644 dfAppEvents.head() 2 5927333115845830913 2 -5720078949152207372 2 -1633887856876571208 2 -653184325010919369 2 8693964245073640147 dfTrainEvents.head()

	device_id	gender	age	group_train	event_id	datetimestamp	latitude	longitude
0	-7548291590301750000	М	33	M32+	2369465.0	2016-05-03 15:55:35	33.98	116.79
1	-7548291590301750000	M	33	M32+	1080869.0	2016-05-03 06:07:16	33.98	116.79
2	-7548291590301750000	M	33	M32+	1079338.0	2016-05-04 03:28:02	33.98	116.79
3	-7548291590301750000	М	33	M32+	1078881.0	2016-05-04 02:53:08	33.98	116.79
4	-7548291590301750000	M	33	M32+	1068711.0	2016-05-03 15:59:35	33.98	116.79

	device_id	gender	age	group_train	phone_brand	device_model
0	-7548291590301750000	М	33	M32+	Huawei	è⊡£è€€3C
1	6943568600617760000	M	37	M32+	Xiaomi	xnote
2	5441349705980020000	М	40	M32+	OPPO	R7s
3	-5393876656119450000	М	33	M32+	Xiaomi	MI 4
4	4543988487649880000	M	53	M32+	samsung	Galaxy S4

dfMobileBrandTrain.head()

Data Cleaning

MetaAppEvents ¶

dfMetaAppEvents = dfMetaAppEvents.iloc[1:,:].reset index(drop=True) dfMetaAppEvents.head(3)

	AppID	LabelID	Category
0	7324884708820027918	251	Finance
1	-4494216993218550286	251	Finance
2	6058196446775239644	406	unknown

```
dfMetaAppEvents.AppID = dfMetaAppEvents.AppID.astype("int64")
dfMetaAppEvents.LabelID = dfMetaAppEvents.LabelID.astype("int64")
```

dfMetaAppEvents.Category = dfMetaAppEvents.Category.str.upper()

AppEvents Data

All Rows seem to have 1 value for column - IsInstalled. Will drop this column

```
dfAppEvents = dfAppEvents[["EventID", "AppID", "IsActive"]]
dfAppEvents.nunique()
EventID
            1488096
```

AppID 19237 IsActive dtype: int64

MobileBrandTrain

dfMobileBrandTrain.head()

	DeviceID	Gender	Age	GroupTrain	MobilePhoneBrand	DeviceModel
0	-7548291590301750000	М	33	M32+	Huawei	è□£è€€3C
1	6943568600617760000	М	37	M32+	Xiaomi	xnote
2	5441349705980020000	М	40	M32+	OPPO	R7s
3	-5393876656119450000	М	33	M32+	Xiaomi	MI 4
4	4543988487649880000	М	53	M32+	samsung	Galaxy S4

Dealing with Junk Data such as in the 1st row in column DeviceModel - è□£è€€3C

```
#Function to Clean Gibberish Data
def cleanJunk(str):
    if str.isascii():
        return str
        a="".join(list(map(lambda x:x if x.isascii() else "",str)))
        return a
dfMobileBrandTrain["DeviceModel"] = dfMobileBrandTrain["DeviceModel"].apply(cleanJunk)
dfMobileBrandTrain.head()
```

	DeviceID	Gender	Age	GroupTrain	MobilePhoneBrand	DeviceModel
0	-7548291590301750000	М	33	M32+	Huawei	3C
1	6943568600617760000	M	37	M32+	Xiaomi	xnote
2	5441349705980020000	M	40	M32+	OPPO	R7s
3	-5393876656119450000	M	33	M32+	Xiaomi	MI 4
4	4543988487649880000	M	53	M32+	samsung	Galaxy S4

TrainEvents Data

Format the type for DateTimestamp

dfTrainEvents["DateTimestamp"]=pd.to_datetime(dfTrainEvents["DateTimestamp"])

Feature Engineering

Format the type for DateTimestamp

```
dfTrainEvents["DateTimestamp"]=pd.to_datetime(dfTrainEvents["DateTimestamp"])
```

Create new features from DateTimestamp Column, such as Hour, WeekDay, DayName and WeekNum

```
dfTrainEvents["Hour"] = dfTrainEvents.DateTimestamp.dt.hour

dfTrainEvents["WeekDay"] = dfTrainEvents.DateTimestamp.dt.day_of_week

dfTrainEvents["DayName"] = dfTrainEvents.DateTimestamp.dt.day_name()

dfTrainEvents["WeekNum"] = dfTrainEvents.DateTimestamp.dt.weekofyear
```

```
Create a DataFrame where the EventIDs are not null
dfTrainEventsWithEventData = dfTrainEvents[~(dfTrainEvents.EventID.isnull())]
dfTrainEventsWithEventData.shape[0]
1215598
dfTrainEventsWithEventData["Coordinates"] = dfTrainEventsWithEventData[["Latitude", "Longitude"]]
    .apply(lambda x: (x["Latitude"], x["Longitude"]), axis = 1)
dfTrainEventsWithEventData.head()
                                                       DateTimestamp Latitude Longitude Hour WeekDay DayName WeekNum
              DeviceID Gender Age GroupTrain EventID
 0 -7548291590301750000
                                      M32+ 2369465.0
                                                                                116.79 15.0
                                                                                                 1.0 Tuesday
                                                                                                                              116.79)
                                                                                116.79 6.0
 1 -7548291590301750000
                                       M32+ 1080869.0
                                                                                                 1.0 Tuesday
                                                                                                                              116.79)
2 -7548291590301750000
                                       M32+ 1079338.0
                                                                                                 2.0 Wednesday
                                                                                                                              116.79)
                                                            2016-05-04
                                                                                116.79 2.0
 3 -7548291590301750000
                                       M32+ 1078881.0
                                                                                                 2.0 Wednesday
                                                                                                                              116.79)
                                                                                116.79 15.0
 4 -7548291590301750000
                                      M32+ 1068711.0
                                                                                                 1.0 Tuesday
                                                                                                                              116.79)
dfTrainEventsWithEventData.EventID = dfTrainEventsWithEventData.EventID.astype("int64")
dfTrainEventsWithEventData.Hour = dfTrainEventsWithEventData.Hour.astype("int64")
dfTrainEventsWithEventData.WeekDay = dfTrainEventsWithEventData.WeekDay.astype("int64")
dfTrainEventsWithEventData.WeekNum = dfTrainEventsWithEventData.WeekNum.astvpe("int64")
dfTrainEventsWithEventData.info()
```


Data Preparation

Merge All necessary DataFrames ¶

```
dfDeviceData = dfTrainEventsWithEventData[["DeviceID", "Gender", "AgeGroup"]].drop_duplicates()
dfDeviceEventsMerged = pd.merge(dfDeviceData, dfDeviceLocationTimeOfDay, how="left", on="DeviceID")
dfDeviceEventsMerged = pd.merge(dfDeviceEventsMerged, dfDeviceTopCategoryApp, how="left", on="DeviceID")
dfDeviceEventsMerged = pd.merge(dfDeviceEventsMerged, dfDeviceCluster, how="left", on="DeviceID")
dfDeviceEventsMerged = pd.merge(dfDeviceEventsMerged, dfDeviceEventCount, how="left", on="DeviceID")
dfDeviceEventsMerged = pd.merge(dfDeviceEventsMerged, dfMobileBrand, how="left", on="DeviceID")
print(dfDeviceEventsMerged.shape)
dfDeviceEventsMerged.drop(["Morning", "Evening"], axis=1, inplace=True)
dfDeviceEventsMerged["TravellerType"].fillna("Unknown", inplace=True)
dfDeviceEventsMerged["Cluster"].fillna(-99,inplace=True)
dfDeviceEventsMerged["Cluster"] = dfDeviceEventsMerged["Cluster"].astype("category")
dfDeviceEventsMerged.head()

(23310, 11)
```

	DeviceID	Gender	AgeGroup	TravellerType	HighLevelCategory	Cluster	EventCount	MobilePhoneBrand	DeviceModel
0	-7548291590301750000	M	33-45	Infrequent	BUSINESS	0.0	292	HUAWEI	3C
1	6943568600617760000	M	33-45	Unknown	FINANCE	-99.0	1	XIAOMI	XNOTE
2	5441349705980020000	M	33-45	Unknown	FINANCE	-99.0	1	OPPO	R7S
3	-5393876656119450000	M	33-45	Unknown	FINANCE	-99.0	4	XIAOMI	MI 4
4	4543988487649880000	M	46+	Frequent	FINANCE	0.0	115	SAMSUNG	GALAXY S4

Train Test Split

```
dfTrainTest = pd.read_csv("train_test_split.csv")

dfTrainTest.columns = ["DeviceID", "Gender", "Age", "Group", "TrainTestFlag"]

dfTrainTest.head()
```

	DeviceID	Gender	Age	Group	TrainTestFlag
0	-7548291590301750000	M	33	M32+	train
1	6943568600617760000	M	37	M32+	train
2	5441349705980020000	M	40	M32+	train
3	-5393876656119450000	M	33	M32+	train
4	4543988487649880000	M	53	M32+	train

Label Encoding

```
#Defining Target Columns
target_columns = ['Gender', 'AgeGroup']
# Create an instance of the LabelEncoder
encoder = LabelEncoder()
# Apply label encoding on the selected columns
dfDeviceEventsMergedEncoded = dfDeviceEventsMerged.copy()
label mappings = {}
for column in target_columns:
    encoded_labels = encoder.fit_transform(dfDeviceEventsMerged[column])
    dfDeviceEventsMergedEncoded[column] = encoded_labels
    label_mappings[column] = dict(zip(encoder.classes_, encoder.transform(encoder.classes_)))
# Print the mappings for each column
for column, mappings in label_mappings.items():
    print(f"Label Mappings for column '{column}':")
    for label, encoded_label in mappings.items():
       print(f"{label} : {encoded_label}")
    print()
Label Mappings for column 'Gender':
F : 0
M : 1
Label Mappings for column 'AgeGroup':
25-32 : 1
33-45 : 2
46+ : 3
```

Standard Scaler

```
num_columns=["EventCount"]

# Apply Standardscaler
scaler = StandardScaler()
dfTrain[num_columns] = scaler.fit_transform(dfTrain[num_columns].values)
dfTest[num_columns] = scaler.transform(dfTest[num_columns].values)
# Replace numerical columns with scaled values in the DataFrame
```

Target Encoding for "Gender Prediction"

```
target_columns = ['Gender']

cat_columns = ["TravellerType", "HighLevelCategory", "Cluster", "MobilePhoneBrand", "DeviceModel"]
encoder = ce.TargetEncoder(cols=cat_columns)
encoder.fit(dfTrain, dfTrain["Gender"])
# train_df.shape

dfTrain = encoder.transform(dfTrain)
dfTest = encoder.transform(dfTrast)
```

Model Building - 1

- Scenario 1 With Events Scenario 1 With Events
 - Prediction Gender
 - Models:-
 - Logistic
 - Random Forest
 - XG Boost
 - Model Stacking

- Prediction -AgeGroup
- Models:-
 - Logistic
 - Random Forest
 - XG Boost
 - Model Stacking

Scenario 1: Gender Prediction, Logistic Reg


```
#Applying L1 Regularization
   y_pred,accuracy,training_accuracy,recall,precision,F1,lr_gender_2 = logistic_regression(X_train,
             y gender train,X test,y gender test,penalty='l1', solver='liblinear')
   evaluation_metrics(lr_gender_2,X_test,y_gender_test,"Logistic Regression",accuracy,training_accuracy,recall,
            precision, F1, "Gender")
              -Model Statistics----
Gender Model Accuracy: 0.6592312971859985
Gender Model training Accuracy: 0.6721193947483846
Gender Model Precision: 0.6752999428680251
Gender Model Recall: 0.9265743402142671
Gender Model F1 Score: 0.7812293456708525
          -----Confusion Matrix-----
<Figure size 800x500 with 0 Axes>
                                                      3000
                                                      2500
                                                      2000
                                                      1500
                                                      1000
                     Predicted label
                                                                            AUC-ROC CurveLogistic Regression
             --Decile Analysis----

    Logistic Regression

Top Probability: 0.5540670318181501
Bottom Probability: 0.6336251419362263
                                                      0.8
Decile 0: 0.0006009929448654305
Decile 1: 0.000888424353279349
Decile 2: 0.005252155735563091
Decile 3: 5.226025607524276e-05
Decile 4: 0.0027436634439508834
Decile 5: 0.0029265743402142608
Decile 6: 0.0020642801149725054
                                                      0.2
Decile 7: 0.0048602038149987425
Decile 8: 0.0026914031878756406
Decile 9: 0.0010452051215050773
        -----ROC Curve-----
ROC AJC SCORE -> 0.607403575452932
```

Scenario 1: Gender Prediction, Random Forest

```
Gender Prediction - Random Forest - Model 5
   param_grid={
                    "n estimators":[80].
                   "min_samples_split":[2,5],
                   "min samples leaf":[5],
                   "max_leaf_nodes":[80,100],
                   "max_depth": [50],
                   "oob_score": [True],
                    "bootstrap":[True]
   y_gender_pred,accuracy_gender,training_accuracy_gender,cv_gender,best_score_gender,best_params_gender_5 =
            cross_validation(X_train,y_gender_train,X_test,y_gender_test,rf_gender_1,param_grid)
   print("Gender Model Accuracy:",accuracy_gender)
   print("Gender Model training Accuracy:",training accuracy gender)
   print("Best CV Score:",best_score_gender)
   print("Best Paramater:",best_params_gender_5)
Gender Model Accuracy: 0.6573438572409059
Gender Model training Accuracy: 0.6912824619608741
Best CV Score: 0.6724631452986097
Best Paramater: {'bootstrap': True, 'max_depth': 50, 'max_leaf_nodes': 100, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 80, 'oob_score': True}
Gender Prediction - Random Forest - Model Selection
   # Since Model 5 has best accouracy score taking model 5 as final model
   best_params_gender=best_params_gender_5
```

```
Gender Prediction - Random Forest - Best Parameters
    #Best Random Forest Model
   y_pred,accuracy,training_accuracy,recall,precision,F1.rf_gender = randon_forest(X_train.y_gender_train.X_test.
            y_gender_test,**best_params_gender)
   evaluation_metrics(rf_gender,X_test,y_gender_test,"Random Forest",accuracy,training_accuracy,recall,precision,
             ---Model Statistics---
Gender Model Accuracy: 0.6573438572409059
Gender Model training Accuracy: 0.6912824619608741
Gender Model Precision: 0.6743521341463414
Gender Model Recall: 0.9247452312516331
Gender Model F1 Score: 0.7799449035812672
       -----Confusion Matrix-----
<Figure size 800x500 with 0 Axes>
                                                     3000
                                                     2500
                                                     2000
                                                      1500
                                                     1000
                     Predicted label
                                                                              AUC-ROC CurveRandom Forest
                                                      1.0 - Random Forest
             --Decile Analysis----
Top Probability: 0.5565927512322382
Bottom Probability: 0.6370836299390606
Decile 0: 0.0006009929448654305
Decile 1: 0.000888424353279349
Decile 2: 0.005252155735563091
Decile 3: 5.226025607524276e-05
Decile 4: 0.0027436634439508834
Decile 5: 0.0029255743402142608
Decile 6: 0.0020542801149725054
Decile 7: 0.0048682838149987425
Decile 8: 0.0025914031878756406
Decile 9: 0.0010452051215050773
```

ROC AUC SCORE -> 0.605671034354785

Scenario 1: Gender Prediction, XG Boost

```
Gender Prediction - XG Boost Tuning Model 5
    param_grid={"n_estimators":[50],
               "max depth":[2,3],
               "learning_rate":[0.3,0.4],
                'min_child_weight': [3,4],
                'gamna': [0.2, 0.3]
    y conder pred, accuracy gender, training accuracy gender, ev gender, best score conder, best params cender 5 =
            cross_validation(X_train,y_gender_train,X_test,y_gender_test,xgb_gender_1,param_grid)
    print("Gender Model Accuracy:",accuracy gender)
    print("Gender Model training Accuracy:",training_accuracy_gender)
    print("Best CV Score:", best score gender)
    print("Best Paramater:", best_params_gender_5)
 Gender Model Accuracy: 0.6557995881949211
 Gender Model training Accuracy: 0.6847614689394806
 Best CV Score: 0.6726918670047767
 Best Paramater: {'gamma': 0.3, 'learning_rate': 0.3, 'max_depth': 3, 'min_child_weight': 4, 'n_estimators': 50}
Gender Prediction - XG Boost Tuning Model Selection
    # Since Model 1 has best accouracy score taking model 1 as final model
```

best params gender=best params gender 1

```
Gender Prediction - XG Boost Model with Best Parameters
    #Best XG Boost Model
    y_pred,accuracy,training_accuracy,recall,precision,F1.xgb_gender = xg_boost(X_train,y_gender_train,X_test,
             y_gender_test,**best_params_gender)
    evaluation_metrics(xgb_gender,X_test,y_gender_test,"XGBoost",accuracy,training_accuracy,recall,precision,F1,
              Model Statistics
Gender Model Accuracy: 0.6597460535346603
Gender Model training Accuracy: 0.6774968539868756
Gender Model Precision: 0.6752851711026516
Gender Model Recall: 0.9281421478965247
Gender Model F1 Score: 0.7817761637504128
   -----Confusion Matrix--
<Figure size 800x500 with 0 Axes>
                                                     3000
                                                     2500
                     Predicted Jahe
                                                                                  AUC-ROC CurveXGBpost
              Decile Analysis
                                                          10 - XGBoost
Top Probability: 0.54701
Bottom Probability: 0.6412411
KS Statistic
Decile 0: 0.0036009929448654305
Decile 1: 0.000888424353279349
Decile 2: 0.005252155735563091
Decile 3: 5.225025607524276e-05
Decile 4: 0.0027436534439508834
Decile 5: 0.0029265743402142608
Decile 6: 0.0020642801149725054
                                                          0.2
Decile 7: 0.0048602336143967425
Decile 8: 0.0026914031878756406
Decile 9: 0.0010452051215050773
ROC AUC SCORE -> 0.6627117092094141
```

Scenario 1: Gender Prediction, Stacking

BOC ALC SCORE -> 0.6054692760256924

ROC AUC SCORE -> 0.6347950825509647

Gender Prediction - Model Stacking - 3

Stacking XGBoost and Logistic regression as classifier and XGBoost as Random Forest Neta classifier. classifiers=[lr_gender,xgb_gender]

y pred,accuracy,training accuracy,recall,precision,Fl,stacking gender 3-model stacking(X train,y gender train, X test,y gender test, classifiers, rf gender)

evaluation_metrics(stacking_gender_3,X_test,y_gender_test,"Stacking",accuracy,training_accuracy,recall, precision, F1, "Gender")

-----Voiel Statistics-----Gender Model Accuracy: 0.6539121482498285 Gender Model training Accuracy: 0.6760668115776227 Gender Model Precision: 0.6732388973965389 Sender Nodel Recall: 0.9189966836833551 Gender Nodel El Score: 0.7771516959451894 ----Confusion Matrix----

<Figure size 802x502 with 0 Axes>

Top Probability: 2.5592532518772229 Bottom Probability: 0.6365221613797095 Decile 0: 0.0005039329448654305 Decile 1: 0.000888424353279349 Decile 2: 0.005252155735563091 Decile 3: 5.226825687524276e-05 Decile 4: 8.8922436534639588836

Decile 5: 0.0029255743402142608 Decile 6: 0.0028642801149725854 Decile 7: 0.0048622838149987425

Decile 8: 0.0025914231878756406 Decile 9: 0.0018452851215050773 ROC AUC SCORE -> 0.6065698533017264

Scenario 1: Gender Prediction, Final Model

Gender Prediction - Final Model Selection

Logistic Regression Gives best accuracy so considering Logistic Regression model as final model final_model_gender = lr_gender

Scenario 1: AgeGroup Prediction, Logistic Reg.

Age Group Prediction - Logistic Regression

-----Model Statistics-----

Age Group Model Accuracy: 0.4169526424159231

Age Group Model training Accuracy: 0.4159707127330969

Age Group Model Precision: 0.38663323370759994

Age Group Model Recall: 0.4169526424159231

Age Group Model F1 Score: 0.30725067530201844

-----Confusion Matrix-----

<Figure size 800x500 with 0 Axes>

-----Multiclass Log Loss-----

Multiclass Log Loss: 1.2607

```
#Applying L1 Regularization
```

--Model Statistics-----

Age Group Model Accuracy: 0.414378860672615

Age Group Model training Accuracy: 0.416027914426267

Age Group Model Precision: 0.279444850883026

Age Group Model Recall: 0.414378860672615

Age Group Model F1 Score: 0.29353896262283374

-----Confusion Matrix-----

<Figure size 800x500 with 0 Axes>

-----Multiclass Log Loss-----

Multiclass Log Loss: 1.2606

Scenario 1: AgeGroup Prediction, Random Forest

```
Age Group Prediction - Random Forest Model 1
```

```
param_grid={
                     "n_estimators": [120,130],
                    "min_samples_split":[2,3],
                    "min_samples_leaf":[3,5],
                    "max_leaf_nodes":[100,120],
                    "max_depth": [50],
                    "oob_score": [True],
                     "bootstrap": [True]
    y_age_group_pred,accuracy_age_group,training_accuracy_age_group,cv_age_group,best_score_age_group,
            best_params_age_group_1 = cross_validation(X_train,y_age_group_train,X_test,y_age_group_test,
             rf age group 1, param grid)
    print("age_group Model Accuracy:",accuracy_age_group)
    print("age_group Model training Accuracy:",training_accuracy_age_group)
    print("Best CV Score:",best_score_age_group)
    print("Best Paramater:", best params age group 1)
 age_group Model Accuracy: 0.41815374056280025
 age_group Model training Accuracy: 0.44274110513671205
 Best CV Score: 0.41534148046686004
 Best Paramater: {'bootstrap': True, 'max_depth': 50, 'max_leaf_nodes': 100, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 120, 'oob_score': True}
Age Group Prediction - Random Forest Model Selection
    # All Models have similar Accuracy Taking model 1 as final model
    best_params_age_group=best_params_age_group_1
```

```
Age Group Prediction - Random Forest - Best Parameters
    #Best Random Forest Model
    y_pred,accuracy,training_accuracy,recall,precision,F1,rf_age_group = randon_forest[X_train,y_age_group_train,
           X test.v age group test.average="weighted".**best params age group)
   evaluation_metrics(rf_age_group,X_test,y_age_group_test,"Random Forest",accuracy,training_accuracy,recall,
            precision.Fl."age group".multiclass=True)
            ---Model Statistics-----
age_group Model Accuracy: 0.41815374056280025
age_group Model training Accuracy: 0.44274110513671205
age_group Model Precision: 0.37245509320271114
age_group Model Recall: 0.41815374056280025
age_group Model F1 Score: 0.31931241974438135
          ----Confusion Natrix-----
<Figure size 800x500 with 0 Axes>
                    Predicted label
          -----Multiclass Log Loss-----
```

Multiclass Log Loss: 1.2572

Scenario 1: AgeGroup Prediction, XGBoost

```
Age Group Prediction - XG Boost Model 1
    param grid={"n_estimators": [10,20],
               "max depth": [3,6],
               "learning rate": [0.1,0.3],
                'min_child_weight': [2, 3],
                'gamma': [0.1, 0.2]
    y_age_group_pred,accuracy_age_group,training_accuracy_age_group,cv_age_group,best_score_age_group,
            best params age group 1 = cross validation(X train, y age group train, X test, y age group test,
            xgb age group 1, param grid)
    print("age group Model Accuracy:",accuracy age group)
    print("age_group Model training Accuracy:",training_accuracy_age_group)
    print("Best CV Score:", best_score_age_group)
    print("Best Paramater:", best_params_age_group_1)
 age group Model Accuracy: 0.4226149622512011
 age group Model training Accuracy: 0.42060404987987643
 Best CV Score: 0.4154557137179274
Best Paramater: {'gamma': 0.1, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_weight': 2, 'n_estimators': 10}
Age Group Prediction - XG Boost Tuning Model Selection
    # Since Model 1 has best accouracy score taking model 1 as final model
    best params age group=best params age group 1
```

```
Age Group Prediction - XG Boost Model with Best Parameters
    #Base XG Boost Model
    y_pred,accuracy,training_accuracy,recall,precision,F1,xgb_age_group = xg_boost(X_train,y_age_group_train,
            X test,y age group test,average="weighted",**best params age group)
    evaluation_metrics(xgb_age_group,X_test,y_age_group_test,"XG Boost",accuracy,training_accuracy,recall,
            precision, F1, "Age Group", multiclass=True)
              -Model Statistics-----
 Age Group Model Accuracy: 0.4226149622512011
 Age Group Model training Accuracy: 0.42060404987987643
 Age Group Model Precision: 0.40207347838117236
 Age Group Model Recall: 0.4226149622512011
 Age Group Model F1 Score: 0.31262486922894567
            ---Confusion Matrix-----
 <Figure size 800x500 with 0 Axes>
                                                    1750
                     Predicted label
              -Multiclass Log Loss---
Multiclass Log Loss: 1.2926
```

Scenario 1: AgeGroup Prediction, Stacking

Age Group Prediction - Model 1

Stacking Lagistic regression and random forest as classifier and XGBoost as Meta classifier classifiers=[lr_ape_group.rf_age_group]

y_pred,accuracy,training_accuracy,recall,precision,F1,stacking_age_group_1=model_stacking(X_train, y age group train,X test,y age group test,classifiers,xgb age group,average='weighted')

evaluation metrics(stacking age group 1,X test,y age group test, "Stacking", accuracy, training accuracy, recall, precision, F1, "Age Group", multiclass=True)

------Model Statistics-----

Age Group Model Accuracy: 3.4212422785547781

Age Group Model training Accuracy: 0.42352133623155247

Age Group Model Precision: 0.3715274489377117

Age Group Model Recall: 0.4212422786547701

Age Group Model F1 Score: 8.32375218185822823

--Confusion Matrix---

«Figure size 800x580 with 8 Axes»

---Multiclass Log Loss----

Multiclass Log Loss: 1,2917

Age Group Prediction - Model 2

Stacking Logistic regression and random forest as classifier and XGBoost as Meta classifier classifiers=[xob age proup.rf age group]

y pred accuracy, training accuracy, recall precision, F1, stacking age group 2=model stacking(X train, y_age_group_train,X_test,y_age_group_test,classifiers,lr_age_group,average='weighted') evaluation_metrics(stacking_age_group_2,X_test,y_age_group_test,"Stacking",accuracy,training_accuracy,recall,

---Model Statistics-----

precision,F1,"Age Group",multiclass=True)

Age Group Model Accuracy: 0.41918325326012357

Age Group Model training Accuracy: 8.4318727834343897

Age Group Model Precision: 0.36839865261815696

Age Group Model Recall: 0.41918325326012357

Age Group Model F1 Score: 0.3230286266185266

-Confusion Natrix-----

<Figure size 800x500 with 0 Axes>

Multiclass Log Loss: 1.2573

Age Group Prediction - Model 3

Stacking Logistic regression and random forest as classifier and XGBcost as Meta classifier. classifiers=[lr age group,xgb age group]

y_pred,accuracy,training accuracy,recall,precision,F1,stacking age_group 3=model_stacking(X_train, y_age_group_train,X_test,y_age_group_test,classifiers,rf_age_group,average='weighted'. evaluation_metrics(stacking_age_group_3,X_test,y_age_group_test,"Stacking",accuracy,training_accuracy,recall,

-Nodel Statistics--

Age Group Model Accuracy: 0.4283843514878807

Age Group Model training Accuracy: 8.4297184532662157

precision,F1,"Age Group",multiclass=True)

Age Group Model Precision: 9.3841898497652787

Age Group Nodel Recall: 0.4203843514078037

Age Group Nodel F1 Score: 0.32373208115878444

-----Confusion Matrix-----

«Figure size 800x500 with 0 Axes».

-Nulticlass Log Loss-

Multiclass Log Loss: 1,2599

Scenario 1: AgeGroup Prediction, Final Model

Age Group Prediction - Final Model Selection

```
# Random Forest Gives best accuracy so considering XG Boost model as final model
final_model_age_group = xgb_age_group
```

Model Building - 2

- Scenario 1 Without Events
 - Prediction Gender
 - Models :-
 - Logistic
 - Random Forest
 - XG Boost
 - Model Stacking

- Scenario 1 Without Events
 - Prediction -AgeGroup
 - Models:-
 - Logistic
 - Random Forest
 - XG Boost
 - Model Stacking

Scenario 2: Gender Prediction, Logistic Reg


```
#Applying L1 Regularization
   y pred,accuracy,training accuracy, recall, precision, F1, lr cender 2 = logistic regression(X train,
            y_gender_train,X_test,y_gender_test,penalty='l1', solver='liblinear')
   evaluation_metrics(lr_gender_2,X_test,y_gender_test,"Logistic Regression",accuracy,training_accuracy,recall,
            precision.F1."Gender")
            --- Model Statistics--
Gender Model Accuracy: 0.6348850798597585
Gender Model training Accuracy: 0.6457983295590133
Gender Model Precision: 0.6515861768232857
Gender Model Recall: 0.9153139356814701
Gender Model F1 Score: 0.7612558109915303
-----Confusion Matrix-----
<Figure size 800x500 with 0 Axes>
                                                      5000
                                   5977
                                                      1000
                      Predicted label
                                                                          AUC-ROC CurveLogistic Regression
                                                          Logistic Regression
            ---Decile Analysis---
Top Probability: 0.20483807417177302
Bottom Probability: 0.873673962145846
KS Statistic
Decile 0: 0.0032159264931087284
Decile 1: 0.003062787136294015
Decile 2: 0.003215926493108756
Decile 3: 0.00245022970903519
Decile 4: 0.0033690658499234694
Decile 5: 0.000612557427258853
Decile 6: 0.0004594180704440287
                                                    0.2
Decile 7: 0.0013782542113323082
Decile 8: 0.001990811638591161
Decile 9: 0.0007656967840734552
                                                                                  0.4
                                                                                                                      1.0
ROC AUC SCORE -> 0.5940206209641142
                                                                                       FPR
```

Scenario 2: Gender Prediction, Random Forest

Gender Prediction - Random Forest - Model 2 param_grid={ "n_estimators": [100,120], "min_samples_split":[2,3], "min_samples_leaf":[3,5], "max_leaf_nodes":[120,130], "max_depth": [50], "oob_score":[True], "bootstrap": [True] y_gender_pred,accuracy_gender,training_accuracy_gender,cv_gender,best_score_gender,best_params_gender_2 = cross validation(X train,y gender train,X test,y gender test,rf gender 1,param grid) print("Gender Model Accuracy:",accuracy_gender) print("Gender Model training Accuracy:",training_accuracy_gender) print("Best CV Score:",best_score_gender) print("Best Paramater:",best_params_gender_2) Gender Model Accuracy: 0.639851967276977 Gender Model training Accuracy: 0.6662770594394526 Best CV Score: 0.6523242506148489 Best Paramater: {'bootstrap': True, 'max_depth': 50, 'max_leaf_nodes': 120, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 120, 'oob_score': True} Gender Prediction - Random Forest - Model Selection # Since Model 2 has best acccuracy score taking model 2 as final model best_params_gender=best_params_gender_2

Scenario 2: Gender Prediction, X G Boost

Gender Prediction - XG Boost Tuning Model 3

```
param grid={"n estimators":[20],
               "max depth": [6,8],
               "learning rate": [0.3,0.4],
                'min_child_weight': [2, 3],
                'gamma': [0.2, 0.3]
    y gender pred, accuracy gender, training accuracy gender, cv gender, best score gender, best params gender 3 =
            cross validation(X_train,y_gender_train,X_test,y_gender_test,xgb_gender_1,param_grid)
    print("Gender Model Accuracy:",accuracy gender)
    print("Gender Model training Accuracy:",training_accuracy_gender)
    print("Best CV Score:", best_score_gender)
    print("Best Paramater:", best params gender 3)
Gender Model Accuracy: 0.638975457732762
Gender Model training Accuracy: 0.66620400808435
Best CV Score: 0.6527138578420629
Best Paramater: {'gamma': 0.3, 'learning_rate': 0.4, 'max_depth': 6, 'min_child_weight': 2, 'n_estimators': 20}
Gender Prediction - XG Boost Tuning Model Selection
    # Since Model 3 has best accouracy score taking model 3 as final model
    best params gender=best params gender 3
```

Gender Prediction - XG Boost Model with Best Parameters #Best XG Boost Model y pred accuracy training accuracy recall precision, F1.xqb gender = xq boost(X train, y gender train, X test, y_gender_test,**best_params_gender) evaluation metrics (xqb gender, X test, y gender test, "XGBoost", accuracy, training accuracy, recall, precision, F1, --Model Statistics---Gender Model Accuracy: 0.538975457732762 Gender Model training Accuracy: 0.66620400808435 Gender Model Recall: 0.915385911179173 Gender Model F1 Score: 0.7635087719298246 <Figure size 800x500 with 6 Axes> Predicted label AUC-ROC CurveXGBoost XG Boost Top Probability: 0.03222484 Bottom Probability: 0.9703369 Decile 0: 0.0032159264931087284 Decile 1: 0.003062787136294015 Decile 2: 0.003215926493188756 Decile 3: 0.00245022970903519 Decile 4: 0.0033690658499234594 Decile 6: 0.0004594180704440287 Decile 7: 0.0013782542113323082 Decile 8: 0.001990811638591151 Decile 9: 0.0007656967840734552 ROC AUC SCORE -> 0.5997812499743949 FPR

Scenario 2: Gender Prediction, Stacking


```
Gender Prediction - Model Stacking - 2
    #### Stacking XGBoost and random forest as classifier and XGBoost as Logistic regression Neta classifier
   y_pred,accuracy,training_accuracy,recall,precision,F1,stacking_gender_2=nodel_stacking(X_train,y_gender_train,
            X_test,y_gender_test,classifiers,lr_gender)
    evaluation_matrics(stacking_gender_2,X_test,y_gender_test,"Stacking",accuracy,training_accuracy,recall,
            precision, F1, "Gender")
              -Nodel Statistics--
 Gender Model Accuracy: 8.5404353869731264
Gender Model training Accuracy: 8.5672516775074878
Gender Model Precision: 0.655115872321819
 Gender Model Recall: 8.8177641653985053
 Gender Model F1 Score: 8.7645187794361525
            ---Confusion Matrix-----
dinure size $889,580 with 6 Ayess
                                                     4000
                     Producted label
                                                                                AUC-ROC CurveStacking
                                                      1.0 - Stacking
            ----Decile Analysis----
 Top Probability: 0.14329574433172027
Bottom Probability: 0.856932234179531
 Decile 0: 0.0032159264931887284
Decile 1: 0.003062787138294015
Decile 2: 0.003215926493188756
Decile 3: 0.00245022970903519
 Decile 4: 0.0033690658499234694
 Decile 5: 0.000612557427258853
 Deci'.s 5: 0.0004594180784440287
 Decils 7: 0.0013782542113323082
 Decile 8: 0.001990811638591161
 Decile 9: 0.0007656967840734552
             ----ROC Curve-----
 RDC ALC SCORE -> 0.6823082746872638
```


Scenario 2: Gender Prediction, Final Model

Gender Prediction - Final Model Selection

```
# Since Model 3 gives best accuracy, considering it is best Stacking Model
stacking_gender=stacking_gender_3
```

Scenario 2: AgeGroup Prediction, Logistic Reg.

Age Group Prediction - Logistic Regression

Age Group Model Accuracy: 0.4104012465913518

Age Group Model training Accuracy: 0.4112547787761463

<Figure size 800x500 with 0 Axes>

-----Multiclass Log Loss-----

Multiclass Log Loss: 1.2583

<Figure size 800x500 with 0 Axes>

-----Multiclass Log Loss-----

Multiclass Log Loss: 1.2583

Scenario 2: AgeGroup Prediction, Random Forest

```
Age Group Prediction - Random Forest Model 1
    param_grid={
                    "n estimators": [120,130],
                   "min_samples split":[2,3],
                    "min_samples_leaf":[3,5],
                   "max_leaf_nodes":[100,120],
                    "max depth": [50],
                   "oob_score": [True],
                    "bootstrap": [True]
    y_age_group_pred,accuracy_age_group,training_accuracy_age_group,cv_age_group,best_score_age_group,
            best_params_age_group_1 = cross_validation(X_train,y_age_group_train,X_test,y_age_group_test,
            rf_age_group_1,param_grid)
    print("age_group Model Accuracy:",accuracy_age_group)
    print("age_group Model training Accuracy:",training_accuracy_age_group)
    print("Best CV Score:",best_score_age_group)
    print("Best Paramater:", best params age group 1)
 age_group Model Accuracy: 0.4120568757304246
 age_group Model training Accuracy: 0.42048359997077944
 Best CV Score: 0.4081866218618355
 Best Paramater: {'bootstrap': True, 'max_depth': 50, 'max_leaf_nodes': 100, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 130, 'oob_score': True}
Age Group Prediction - Random Forest Model Selection
    # Since Model 1 has best accouracy score taking model 1 as final model
    best_params_age_group=best_params_age_group_1
```

```
Age Group Prediction - Random Forest - Best Parameters
    #Best Random Forest Model
   y_pred,accuracy,training_accuracy,recall,precision,F1,rf_age_group = randon_forest(X_train,y_age_group_train,
            X_test,y_age_group_test,average="weighted",x*best_params_age_group!
    evaluation_metrics(rf_age_group,X_test,y_age_group_test,"Random Forest",accuracy,training_accuracy,recall,
            precision,F1,"age_group",multiclass=True)
            ---Model Statistics-----
age_group Model Accuracy: 0.4120568757304246
age_group Model training Accuracy: 0.42048359997077944
age group Model Precision: 0.3778037482766203
age group Model Recall: 0.4120568757304246
age_group Model F1 Score: 0.27994600716422957
    -----Confusion Matrix-----
<Figure size 800x500 with 0 Axes>
                                                  - 3000
                                                  - 2500
                                                  - 2000
                    Precicted label
             --Multiclass Log Loss-----
Multiclass Log Loss: 1,2545
```

Scenario 2: AgeGroup Prediction, XGBoost

Age Group Prediction - XG Boost Model 2

```
param grid={"n estimators":[10,20],
                "max depth":[6,9],
                "learning_rate": [0.3,0.5],
                 'min_child_weight': [2, 3],
                 'gamma': [0.1, 0.2]
    y_age_group_pred,accuracy_age_group,training_accuracy_age_group,cv_age_group,best_score_age_group,
            best_params_age_group_1 = cross_validation(X_train,y_age_group_train,X_test,y_age_group_test,
            xgb_age_group_1,param_grid)
    print("age_group Model Accuracy:",accuracy_age_group)
    print("age_group Model training Accuracy:",training_accuracy_age_group)
    print("Best CV Score:",best_score_age_group)
    print("Best Paramater:",best params age group 1)
 age_group Model Accuracy: 0.41264121542656795
 age group Model training Accuracy: 0.4216767721041225
 Best CV Score: 0.4077483137312197
 Best Paramater: {'gamma': 0.1, 'learning_rate': 0.5, 'max_depth': 6, 'min_child_weight': 3, 'n_estimators': 10}
Age Group Prediction - XG Boost Tuning Model Selection
    # Since Model 2 has best accouracy score taking model 2 as final model
    best_params_age_group=best_params_age_group_2
```

```
Age Group Prediction - XG Boost Model with Best Parameters
    #Base XG Boost Model
    y_pred,accuracy,training_accuracy,recall,precision,F1,xgb_age_group = xg_boost(X_train,y_age_group_train,
            X_test,y_age_group_test,average="weighted",**best_params_age_group)
    evaluation_metrics(xgb_age_group,X_test,y_age_group_test,"XG Boost",accuracy,training_accuracy,recall,
             precision, F1, "Age Group", multiclass=True)
 [14:36:19] WARNING: /Users/runner/work/xqboost/xqboost/python-package/build/temp.macosx-10.9-x86_64-cpython-38/xqboost/src/learner.cc:767:
Parameters: { "bootstrap", "max_leaf_nodes", "min_samples_leaf", "min_samples_split", "oob_score" } are not used.
              -Model Statistics-----
 Age Group Model Accuracy: 0.4024152707440592
 Age Group Model training Accuracy: 0.4351669223464095
 Age Group Model Precision: 0.3567617072607607
 Age Group Model Recall: 0.4024152707440592
Age Group Model F1 Score: 0.32177559773047437
           ----Confusion Matrix-----
<Figure size 800x500 with 0 Axes>
                                                     2500
                                                     2000
```

1500

1000

Scenario 2: AgeGroup Prediction, Stacking

Age Group Prediction - Model 1

Parameters: { "bootstrap", "max_leaf_modes", "min_samples_leaf", "min_samples_split", "mob_score" } are not used.

-----Fodel Statistics-----

Age Group Model Accuracy: 0.383813798418829

Age Group Model training Accuracy: 0.3938167964521879

Age Group Model Precision: 0.3399878977967593

Age Group Model Recall: 8,383813798416829

Age Group Model F1 Score: 0.3277839054926466

-----Confusion Matrix-----

-Figure size 800:520 with 0 Axes-

Age Group Prediction - Model 2

144(9457) MARKING: https://docs.org/marking/m

[Mi-4123] NARVING: 86-54-cpythom-packape/build/terp.maccso-18.9-\$86-54-cpythom

144 G1511 MARING: <u>Alberty numer Northing Cost Anghost (withon-tackesp Northing and sea-18.9-88-86-caption-18/appoint/profleamen.co.227)</u>
Parameters: { "bootstrap", "max_leaf_modes", "min_sarples_leaf", "min_sarples_palit", "cot_score" } are not used.

[14: G:21] NAMYING: places/common/hors/gaponet/sphones/python-package/build/tesp.macosc-10.0-986-66-cpython-52/gaponet/sep/learmer.cc-22:2:
Parasitess: ["bootstrap", "max.leaf.node", "min.sarpies.leaf", "min.sarpies.splif", "com.score"] | are not used.

------Vodel Statistics------

Age Group Model Accuracy: 8.41351772497078364

Age Group Model training Accuracy: 8.4192417269340346

Age Group Model Precision: 8.3937895562636593

Age Group Model Recall: M.41351772492878384

Age Snoup Model F1 Score: 8.2759512822588468 -----Confusion Matrix-----

«Figure size BARKSOO with 8 Axes»

Age Group Prediction - Model 3

Stacking Legistic regression and random forest as classifier and XEBoost as Meta classifier classifiers=[lr_age_group.xgb_age_group]

y pred,accuracy,training accuracy,recall,precision,F1,stacking age group 3-model_stacking(X.train, y, age_proup.train,X_test,y_age_proup_test,classifiers,riage_proup,average="unignted")
evaluation_metrics(stacking_age_proup_3,X_test,y_age_group_test,"Stacking",accuracy,training_accuracy,recall, precision_F1,"Age_Group",unlticlass=True)

| 122:28:58| W.YUNG: /Lisers/runner/work/sychost/sychon-jackspe/build/temp.macosx-18.9-x86 64-ccychon-30/sychost/syc/learner.cc;767
| Parareters: { "bootstrap", "max leaf modes", "min sample; leaf", "min sample; split", "pob score" } are not used.

[72:20:13] W73INK: [Lisers/runner/Amrk/sphonst/python-parkasp/build/temp.macosz-10.3-ddb.66-cpythom-30/ophonst/spe/learner.ne:762: Parameters: { "bootstrap", "max_leaf_modes", "min_samules_leaf", "min_samules_split", "cob_score" } are not used.

[27:29:78] WEATING: [Lisers/conner/Amrik/sgloost/pythom-parkape/build/temp.macos=18.9=x86_64-cpythom=38/sgloost/src/learner.cc276]:
Parameters: { "bootstrap", "max leaf nodes", "min sample: leaf", "min sample: split", "sob score" } are not used.

[22:29:45] W-RITMS: /Lisers/runner/work/sybcost/sybcost/pythom-packape/build/teng.macosz-10.9-x86_64-cpythom-38/sybcost/src/learner.cc:767:
Perareters: { "bootstrap", "max_leaf_modes", "min_samples_leaf", "min_samples_split", "cob_score" } are not used.

Age Group Model Accuracy: 0.40894839735899336

Age Group Model training Accuracy: 9.41778764847687925

Age Sroup Model Precision: 6.38877653044561386

Age Shoup Model Recall: 8.48894033735099336

Age Group Model P1 Score: 0.2717432295792193

*Figure size 309x590 with 0 Axes:

Nulticlass log Loss: 1.256

Scenario 2: AgeGroup Prediction, Final Model

Age Group Prediction - Final Model Selection

```
# Stacking Gives best accuracy so considering Stacking model as final model
final_model_age_group = stacking_age_group
```

Scenario 1 - Model Performance

Scenario	Target	Modeling Type	Model Name	Accuracy	Training Accuracy	Precision	Recall	F1 Score	ROC Score
Scenario 1	Gender Prediction	Logistic Regression	lr_gender_1	65.854	67.120	67.445	92.788	78.112	60.872
		Logistic Regression - L1 Regularization	lr_gender_2	65.923	67.211	67.529	92.657	78.122	60.740
		Random Forest 1	best_params_gender_1	65.511	69.408				
		Random Forest 2	best_params_gender_2	65.511	69.408				
		Random Forest 3	best_params_gender_3	65.562	69.299				
		Random Forest 4	best_params_gender_4	65.614	69.225				
		Random Forest 5	best_params_gender_5	65.734	69.128				
		Random Forest Best Parameters	rf_gender	65.734	69.128	67.435	92.474	77.994	60.567
		XG Boost 1	best_params_gender_1	65.974	67.749				
		XG Boost 2	best_params_gender_2	65.957	67.881				
		XG Boost 3	best_params_gender_3	65.837	67.904				
		XG Boost 4	best_params_gender_4	65.923	68.150				
		XG Boost 5	best_params_gender_5	65.579	68.476				
		XG Boost Best Parameters	xgb_gender	65.974	67.749	67.528	92.814	78.177	60.271
		Stacking Model 1	stacking_gender_1	65.803	67.858	67.347	93.023	78.130	60.479
		Stacking Model 2	stacking_gender_2	65.717	68.441	67.630	91.664	77.834	60.540
		Stacking Model 3	stacking_gender_3	65.391	67.606	67.323	91.899	77.715	60.656
	Age Group Prediction	Logistic Regression	lr_age_group_1	41.695	41.597	38.663	41.695	30.725	
		Logistic Regression - L1 Regularization	lr_age_group_2	41.437	41.602	27.944	41.437	29.353	
		Random Forest 1	best_params_age_group_1	41.815	44.274				
		Random Forest 2	best_params_age_group_2	41.815	44.274				
		Random Forest 3	best_params_age_group_3	41.815	44.274				
		Random Forest 4	best_params_age_group_4	41.815	44.274				
		Random Forest 5	best_params_age_group_5	41.815	44.274				
		Random Forest Best Parameters	rf_age_group	41.815	44.274	37.245	41.815	31.931	
		XG Boost 1	best_params_age_group_1	42.261	42.060				
		XG Boost 2	best_params_age_group_2	41.969	41.718				
		XG Boost 3	best_params_age_group_3	42.227	42.157				
		XG Boost 4	best_params_age_group_4	41.935	42.821				
		XG Boost 5	best_params_age_group_5	41.798	43.358				
		XG Boost Best Parameters	xgb_age_group	42.261	42.060	40.207	42.261	31.262	
		Stacking Model 1	stacking_age_group_1	42.124	42.352	37.152	42.124	32.375	
		Stacking Model 2	stacking_age_group_2	41.918	43.187	36.839	41.918	32.302	
		Stacking Model 3	stacking_age_group_3	42.038	42.071	38.418	42.038	32.373	

Scenario 2 – Model performance

Scenario	Target	Modeling Type	Model Name	Accuracy	Training Accuracy	Precision	Recall	F1 Score	ROC Score
Scenario 2	Gender Prediction	Logistic Regression	lr_gender_1	63.507	64.567	65.146	91.653	76.159	59.434
		Logistic Regression - L1 Regularization	lr_gender_2	63.488	64.579	65.158	91.531	76.125	59.402
		Random Forest 1	best_params_gender_1	63.936	66.605				
		Random Forest 2	best_params_gender_2	63.985	66.627				
		Random Forest 3	best_params_gender_3	63.975	66.720				
		Random Forest Best Parameters	rf_gender	63.985	66.627	65.278	92.649	76.591	60.276
		XG Boost 1	best_params_gender_1	63.751	66.598				
		XG Boost 2	best_params_gender_2	63.761	66.457				
		XG Boost 3	best_params_gender_3	63.897	66.620				
		XG Boost Best Parameters	xgb_gender	63.897	66.620	65.434	91.638	76.350	59.978
		Stacking Model 1	stacking_gender_1	63.361	65.707	65.086	91.439	76.044	59.612
		Stacking Model 2	stacking_gender_2	60.043	66.725	65.511	91.776	76.451	60.230
		Stacking Model 3	stacking_gender_3	63.946	65.977	65.273	92.542	76.551	59.459
	Age Group Prediction	Logistic Regression	lr_age_group_1	41.040	41.125	35.124	41.040	27.285	
		Logistic Regression - L1 Regularization	lr_age_group_2	41.030	41.171	35.845	41.030	25.797	
		Random Forest 1	best_params_age_group_1	41.205	42.048				
		Random Forest 2	best_params_age_group_2	41.166	41.843				
		Random Forest 3	best_params_age_group_3	41.205	42.048				
		Random Forest Best Parameters	rf_age_group	41.205	42.048	37.780	41.205	27.994	
		XG Boost 1	best_params_age_group_1	41.059	41.371				
		XG Boost 2	best_params_age_group_2	41.264	42.167				
		XG Boost 3	best_params_age_group_3	41.020	41.427				
		XG Boost Best Parameters	xgb_age_group	40.241	43.516	35.676	40.241	32.177	
		Stacking Model 1	stacking_age_group_1	38.381	39.301	33.990	38.381	32.778	
		Stacking Model 2	stacking_age_group_2	41.351	41.924	39.370	41.351	27.695	
		Stacking Model 3	stacking_age_group_3	40.894	41.770	38.877	40.894	27.174	

Thank You @!