Obtain Mark:

Date: 08/08/2024

Trigonometry

Time: 50 min

Total Mark: 96

- 1. If A+B+C= π prove that, cotBcotC+cotCcotA+cotACotB = 1. (08)
- 2. If $\mathbf{x=10}$ prove that, $\cos(2x)^0\cos(4x)^0\cos(6x)^0\cos(8x)^0 = \frac{1}{16}$. (08)
- 3. Prove it, $(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$, when $I = \sqrt{-1}$. (08)
- 4. If $\sin\theta = \frac{a-b}{a+b}$ prove that, $\tan(\frac{\pi}{4} \frac{\theta}{2}) = \pm \sqrt{\frac{b}{a}}$. (08)
- 5. Prove that, $\tan \frac{45^0 + \theta}{2} + \tan \frac{45^0 \theta}{2} = \frac{\sqrt{2}\cos\theta 1}{\sqrt{2}\cos\theta + 1}$ (08)
- 6. If $\sin \alpha = \frac{m^2 n^2}{m^2 + n^2}$ prove that, $\frac{\tan(\alpha \beta) + \tan\beta}{1 \tan(\alpha \beta)\tan\beta} = \frac{m^2 n^2}{2mn}$. (08)
- 7. If $\tan\theta = \sqrt{\frac{1-e}{1+e}} \tan\frac{\theta}{2}$ show that, $\sec\theta = \frac{1-\cos x}{\cos x e}$. (08)
- 8. If x=5 prove it, $\frac{1}{\sin(2x)^0} \frac{\sqrt{3}}{\cos(2x)^0} = 4$ (08)
- 9. If $\alpha + \beta = \theta$ and $\cos \alpha = k\cos \beta$, then prove that, $\tan \frac{1}{2} (\alpha \beta) = \frac{1-k}{1+k}$ $\cot \frac{\theta}{2}$. (08)
- 10. If cosecA + secA = cosecB + secB, then show that, $tanA.tanB = cot \frac{1}{2} (A + B)$. (08)
- 11. Given, $\tan \frac{\theta}{2} = \tan^3 \frac{\Phi}{2}$ and $\tan \Phi = 2\tan \alpha$ now prove it, $\theta + \Phi = 2\alpha$.
- 12. Evaluate: $\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$. (08)