FIG. 1

Sequence of human APRIL (SEQ ID NOS: 1 and 2)

Human G70 cDNA (SEQ ID NO 1) Length: 1465 bp GCCAACCTTC CCTCCCCAA CCCTGGGGCC GCCCCAGGGT TCCTGCGCAC 51 TGCCTGTTCC TCCTGGGTGT CACTGGCAGC CCTGTCCTTC CTAGAGGGAC TGGAACCTAA TTCTCCTGAG GCTGAGGGAG GGTGGAGGGT CTCAAGGCAA 101 151 CGCTGGCCCC ACGACGAGT GCCAGGAGCA CTAACAGTAC CCTTAGCTTG CTTTCCTCCT CCCTCCTTTT TATTTTCAAG TTCCTTTTTA TTTCTCCTTG 201 CGTAACAACC TTCTTCCCTT CTGCACCACT GCCCGTACCC TTACCCGCCC 251 CGCCACCTCC TTGCTACCCC ACTCTTGAAA CCACAGCTGT TGGCAGGGTC 301 351 CCCAGCTCAT GCCAGCCTCA TCTCCTTTCT TGCTAGCCCC CAAAGGGCCT 401 CCAGGCAACA TGGGGGGCCC AGTCAGAGAG CCGGCACTCT CAGTTGCCCT 451 CTGGTTGAGT TGGGGGGCAG CTCTGGGGGC CGTGGCTTGT GCCATGGCTC 501 TGCTGACCCA ACAAACAGAG CTGCAGAGCC TCAGGAGAGA GGTGAGCCGG 551 CTGCAGGGGA CAGGAGGCCC CTCCCAGAAT GGGGAAGGGT ATCCCTGGCA 601 GAGTCTCCCG GAGCAGAGTT CCGATGCCCT GGAAGCCTGG GAGAGTGGGG AGAGATCCCG GAAAAGGAGA GCAGTGCTCA CCCAAAAACA GAAGAAGCAG 651 701 CACTCTGTCC TGCACCTGGT TCCCATTAAC GCCACCTCCA AGGATGACTC 751 CGATGTGACA GAGGTGATGT GGCAACCAGC TCTTAGGCGT GGGAGAGGCC TACAGGCCCA AGGATATGGT GTCCGAATCC AGGATGCTGG AGTTTATCTG 801 851 CTGTATAGCC AGGTCCTGTT TCAAGACGTG ACTTTCACCA TGGGTCAGGT 901 GGTGTCTCGA GAAGGCCAAG GAAGGCAGGA GACTCTATTC CGATGTATAA 951 GAAGTATGCC CTCCCACCCG GACCGGGCCT ACAACAGCTG CTATAGCGCA GGTGTCTTCC ATTTACACCA AGGGGATATT CTGAGTGTCA TAATTCCCCG 1001 1051 GGCAAGGGCG AAACTTAACC TCTCTCCACA TGGAACCTTC CTGGGGTTTG 1101 TGAAACTGTG ATTGTGTTAT AAAAAGTGGC TCCCAGCTTG GAAGACCAGG 1151 GTGGGTACAT ACTGGAGACA GCCAAGAGCT GAGTATATAA AGGAGAGGGA ATGTGCAGGA ACAGAGGCGT CTTCCTGGGT TTGGCTCCCC GTTCCTCACT 1201 TTTCCCTTTT CATTCCCACC CCCTAGACTT TGATTTTACG GATATCTTGC 1251 TTCTGTTCCC CATGGAGCTC CGAATTCTTG CGTGTGTGTA GATGAGGGGC 1301 1351 GGGGGACGGG CGCCAGGCAT TGTTCAGACC TGGTCGGGGC CCACTGGAAG 1401 CATCCAGAAC AGCACCACCA TCTAACGGCC GCTCGAGGGA AGCACCCGGC 1451 GGTTTGGGCG AAGTC

The proposed transmembrane domains are boxed

human G70 protein sequence (SEQ ID NO 2)

- 1 MPASSPFLLA PKGPPGNMGG PVREPALSVA LWLSWGAALG AVACAMALLT
- 51 QQTELQSLRR EVSRLQGTGG PSQNGEGYPW QSLPEQSSDA LEAWESGERS
- 101 RKRRAVLTQK QKKQHSVLHL VPINATSKDD SDVTEVMWOP ALRRGRGLOA
- 151 QGYGVRIQDA GVYLLYSQVL FQDVTFTMGQ VVSREGQGRQ ETLFRCIRSM
- 201 PSHPDRAYNS CYSAGVFHLH QGDILSVIIP RARAKLNLSP HGTFLGFV

FIG. 2A

Sequence of mouse G70 (SEQ ID NOS: 3 and 4)

```
Mouse G70 (SEQ ID NO 3)
   1
       CATGCCGAGT GCTTTGTGTG TGTTACCTGC TCTAAGAAGC TGGCTGGGCA
       GCGTTTCACC GCTGTGGAGG ACCAGTATTA CTGCGTGGAT TGCTACAAGA
   51
       ACTTTGTGGC CAAGAAGTGT GCTGGATGCA AGAACCCCAT CACTGGGTTT
  101
  151
       GGTAAAGGCT CCAGTGTGGT GGCCTATGAA GGACAATCCT GGCACGACTA
  201
       CTGCTTCCAC TGCAAAAAAT GCTCCGTGAA TCTGGCCAAC AAGCGCTTTG
  251
       TATTTCATAA TGAGCAGGTG TATTGCCCTG ACTGTGCCAA AAAGCTGTAA
       CTTGACGCT GCCCTGTCCT TCCTAGATAA TGGCACCAAA TTCTCCTGAG
  301
  351
       GCTAGGGGGG AAGGAGTGTC AGAGTGTCAC TAGCTCGACC CTGGGGACAA
       GGGGGACTAA TAGTACCCTA GCTTGATTTC TTCCTATTCT CAAGTTCCTT
  401
       TTTATTTCTC CCTTGCGTAA CCCGCTCTTC CCTTCTGTGC CTTTGCCTGT
  451
  501
       ATTCCCACCC TCCTGCTAC CTCTTGGCCA CCTCACTTCT GAGACCACAG
       CTGTTGGCAG GGTCCCTAGC TCATGCCAGC CTCATCTCCA GGCCACATGG
  551
       GGGGCTCAGT CAGAGAGCCA GCCCTTTCGG TTGCTCTTTG GTTGAGTTGG
  601
  651
       GGGGCAGTTC TGGGGGCTGT GACTTGTGCT GTCGCACTAC TGATCCAACA
       GACAGAGCTG CAAAGCCTAA GGCGGGAGGT GAGCCGGCTG CAGCGGAGTG
  701
  751
       GAGGGCCTTC CCAGAAGCAG GGAGAGCGCC CATGGCAGAG CCTCTGGGAG
       CAGAGTCCTG ATGTCCTGGA AGCCTGGAAG GATGGGGCGA AATCTCGGAG
  801
  851
       AAGGAGAGCA GTACTCACCC AGAAGCACAA GAAGAAGCAC TCAGTCCTGC
       ATCTTGTTCC AGTTAACATT ACCTCCAAGG ACTCTGACGT GACAGAGGTG
  901
  951
       ATGTGGCAAC CAGTACTTAG GCGTGGGAGA GGCCTGGAGG CCCAGGGAGA
 1001
       CATTGTACGA GTCTGGGACA CTGGAATTTA TCTGCTCTAT AGTCAGGTCC
       TGTTTCATGA TGTGACTTTC ACAATGGGTC AGGTGGTATC TCGGGAAGGA
 1051
 1101
       CAAGGGAGAA GAGAAACTCT ATTCCGATGT ATCAGAAGTA TGCCTTCTGA
 1151
       TCCTGACCGT GCCTACAATA GCTGCTACAG TGCAGGTGTC TTTCATTTAC
      ATCAAGGGGA TATTATCACT GTCAAAATTC CACGGGCAAA CGCAAAACTT
 1201
 1251
      AGCCTTTCTC CGCATGGAAC ATTCCTGGGG TTTGTGAAAC TATGATTGTT
      ATAAAGGGGG TGGGGATTTC CCATTCCAAA AACTGGCTAG ACAAAGGACA
 1301
 1351
      AGGAACGGTC AAGAACAGCT CTCCATGGCT TTGCCTTGAC TGTTGTTCCT
      CCCTTTGCCT TTCCCGCTCC CACTATCTGG CCTTTGACTC CATGGATATT
 1401
1451
       AAAAAAGTAG AATATTTTGT GTTTATCTCC CAAAAA
```

FIG. 2B

Mouse G70 Length: 241 (SEQ ID NO 4)

- 1 MPASSPGHMG GSVREPALSV ALWLSWGAVL GAVTCAVALL IQQTELQSLR
- 51 REVSRLQRSG GPSQKQGERP WQSLWEQSPD VLEAWKDGAK SRRRRAVLTQ
- 101 KHKKKHSVLH LVPVNITSKD SDVTEVMWQP VLRRGRGLEA QGDIVRVWDT
- 151 GIYLLYSQVL FHDVTFTMGQ VVSREGQGRR ETLFRCIRSM PSDPDRAYNS
- 201 CYSAGVFHLH QGDIITVKIP RANAKLSLSP HGTFLGFVKL *

G-70 FLAG des92 (smuG70) Strain #4081 (SEQ ID NO 19):

MDYKDDDDKKHKKKHSVLHLVPVNITSKDSDVTEVMWQPVLRRGRGLEAQGDIVRVWDTGIY LLYSQVLFHDVTFTMGQVVSREGQGRRETLFRCIRSMPSDPDRAYNSCYSAGVFHLHQGDII TVKIPRANAKLSLSPHGTFLGFVKL*

Alignm of human and mouse G70

mouse:	٦	
human:	, l	MPASSPFLLAPKGPPGNMGGP <u>VREPALSVALWLSWGALGAV CA+ALL QOTELQSLRR</u> MPASSPFLLAPKGPPGNMGGP <u>VREPALSVALWLSWGAALGAVACAMALL</u> TQQTELQSLRR
mouse:	52	EVSRLQRSGGPSQKQGERPWQSLWEQSPDVLEAWKDGAKSRRRAVLTQKHKKKHSVLHL
human:	61	EVSRLQGTGGPSQNGEGYPWQSLPEQSSDALEAWESGERSRKRRAVLTQKQKKQHSVLHL
mouse:	112	112 VPVNITSKD-SDVTEVMWQPVLRRGRGLEAQGDIVRVWDTGIYLLYSQVLFHDVTFTMGQ
human:	121	VETN ISAD SDVIEVMWQPALRRGRGLFAQG VR+ D G+YLLYSQVLF DVTFTMGQ VPINATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRIQDAGVYLLYSQVLFQDVTFTMGQ
mouse:	171	171 VVSREGQGRRETLFRCIRSMPSDPDRAYNSCYSAGVFHLHQGDIITVKIPRANAKLSLSP
human:	181	vvsregggræfilfreirsmes forkrinserskevfhlhggdi++v ifra AKL+LSP VVSREGgGRQETLFREIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPRARAKINLSP
mouse:	231	
human	241	HGIFLGFVKI, 250

FIG. 4A

Effect of sG70/April on Raji cell proliferation

Effect of sG70/April on Jurkat cell proliferation

Effect of sG70/April on K562 cell proliferation

FIG. 4B

Effect of sG70/April on U937 cell proliferation

Effect of sG70/April on 293 T cell proliferation

Effect of sG70/April on 3T3 cell proliferation

FIG. 5B-1

FIG. 5B-2

Raji FIG. 5B-3 160-Sounts 8 40 -

FIG. 6

-1

The effect of r-G70/April on human peripheral blood B cell, T cell and Granucolyte

The effect of IL-2 and G70/April on human peripheral T cell proliferation

FIG. 7 Effect of sG70/April on murine B cell proliferation 70 60 50 40 -Control cells 30 -□-sG70/April 20 10 0 0 10 100 1000 ng/ml (48hr)

Effect of sG70/April on murine T cell proliferation

FIG. 8

Effect of G70/April on murine T cell proliferation costimulated through CD28 antibody

FIG. 9

Co-stimulatory activity of G70/April on mouse T cells

FIG. 10A

Human BCMA

Human (SEQ ID NO: 5):

1 MAGQCSQNEY FDSLLHACIP CQLRCSSNTP PLTCQRYCNA SVTNSVKGTN
51 AILWTCLGLS LIISLAVFVL MFLLRKISSE PLKDEFKNTG SGLLGMANID
101 LEKSRTGDEI ILPRGLEYTV EECTCEDCIK SKPKVDSDHC FPLPAMEEGA

Human (SEQ ID NO: 5):

MAGQCSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY CNASVTNSVK

GTNA ILWTCL GLSLIISLAV FVLMFLLRKI SSEPLKDEFK NTGSGLLGMA

NIDLEKSRTG DEIILPRGLE YTVEECTCED CIKSKPKVDS DHCFPLPAME

EGATILVTTK TNDYCKSLPA ALSATEIEKS ISAR

151 TILVTTKTND YCKSLPAALS ATEIEKSISA R

hBCMA's extracellular domain (SEQ ID NO: 6):

MAGQCSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY CNASVTNSVK
GTNA

hBCMA's cysteine-rich consensus region (SEQ ID NO: 7):
CSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY C

hBCMA's transmembrane region (SEQ ID NO: 8):
ILWTCL GLSLIISLAV FVLMF

FIG. 10B

huBCMA-Fc (SEQ ID NO 9)

MAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNAGGG GGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL PAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK*

muBCMA-Fc (SEQ ID NO 10)

MAQQCFHSEYFDSLLHACKPCHLRCSNPPATCQPYCDPSVTSSVKGSYTGGGGG DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK*

Alignment of human BCMA amino acid sequence and murine BCMA amino acid sequence

murine BCMA amino acid sequence Length 185 (SEQ ID NO

- MAQQCFHSEY FDSLLHACKP CHLRCSNPPA TCQPYCDPSV TSSVKGTYTV
- LWIFLGLTLV LSLALFTISF LLRKMNPEAL KDEPQSPGQL DGSAQLDKAD
- TELTRIRAGD DRIFPRSLEY TVEECTCEDC VKSKPKGDSD HFFPLPAMEE 101
- 151 GATILVTTKT GDYGKSSVPT ALQSVMGMEK PTHTR

alignment of human BCMA amino acid sequence and murine BCMA amino acid sequence

- MAGOCSQNEYFDSLLHACIPCOLRCSSNTPPLTCQRYCNASVTNSVKGTNAILWTCLGLS MA QC *EYFDSILHAC PC LRCS* PP TCQ YC+ SVT+SVKGT +LW LGL+ Query
 - MAQQCEHSEYFDSLLHACKPCHLRCSN--PPATCQPYCDPSVTSSVKGTYTVLWIFLGLT Sbjct
- LIISLAVFVLMFLLRKISSEPLKDEFKNTG----SGLLGMANIDLEKSRTGDEIILPRGL L++SLA+F + FLLRK++ E LKDE ++ G S L A+ +L + R GD+ I PR L L++SLA+F + FLLRK++ E LKDE ++ G 64 Query
- LVLSLALFTISFLLRKMNPEALKDEPQSPGQLDGSAQLDKADTELTRIRAGDDRIFPRSL Sbjct
- EYTVEECTCEDCIKSKPKVDSDHCFPLPAMEEGATILVTTKTNDYCKS-LPAAL-SATEI SYTVEECTCEDC+KSKPK DSDH FPLPAMEEGATILVTTKT DY KS +P AL S 120 Query
- **EYTVEECTCEDCVKSKPKGDSDHFFPLPAMEEGATILVTTKTGDYGKSSVPTALQSVMGM** Sbjct
- Query 178 EKSISAR 184
- A X
- Sbjct 179 EKPTHTR 185

FIG. 12A

Human TACI

huTACI (SEQ ID NO 14)

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
 - 51 KTICNHQSQR TCAAFCRSLS CRKEQGKFYD HLLRDCISCA SICGQHPKQC
 - 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
 - 151 PGLKLSADOV ALVYSTLGLC LCAVLCCFLV AVACFLKKRG DPCSCQPRSR
 - 201 PROSPAKSSO DHAMEAGSPV STSPEPVETC SFCFPECRAP TQESAVTPGT
 - 251 PDPTCAGRWG CHTRTTVLQP CPHIPDSGLG IVCVPAQEGG PGA

MSGLGRSRRGGRSRVDQEERFPQGLWTGVAMRSCPEEQYWDPLLGTCMSC KTICNHQSQRTCAAFCRSLSCRKEQGKFYDHLLRDCISCASICGQHPKQC AYFCENKLRSPVNLPPELRRQRSGEVENNSDNSGRYQGLEHRGSEASPAL PGLKLSADQVALVYSTLGLCLCAVLCCFLVAVACFLKKRGDPCSCQPRSR PRQSPAKSSQDHAMEAGSPVSTSPEPVETCSFCFPECRAPTQESAVTPGT PDPTCAGRWGCHTRTTVLQPCPHIPDSGLGIVCVPAQEGGPGA

huTACI's extracellular domain (SEQ ID NO 15)

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
 - 51 KTICNHQSQR TCAAFCRSLS CRKEQGKFYD HLLRDCISCA SICGQHPKQC
 - 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
 - 151 PGLKLSADOV ALVYST

FIG. 12B

huTACI's cysteine-rich consensus region (SEQ ID NO: 16): CPEEQYWDPLLGTCMSCKTICNHQSQRTCAAFC and CRKEQGKFYDHLLRDCISCASICGOHPKOCAYFC

transmembrane region (SEQ ID NO: 17): LGLCLCAVLCCFLVAVACFL

hTACI-Fc (SEQ ID NO: 18):

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
- 51 KTICNHQSQR TCAAFCRSLS CRKEQGKFYD HLLRDCISCA SICGOHPKOC
- 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
- 151 PGLKLSADQV ALVYSGGGGG DKTHTCPPCP APELLGGPSV FLFPPKPKDT
- 201 LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEOYNSTY
- 251 RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT
- 301 LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS
- 351 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK*

FIG. 13

Alignment of cysteine rich extracellular regions of human TACI and human BCMA

34	CPEEQYWDPLLGTCMSCKTICN	HQS QRTCAAFCRSLSCRKEQGF	(F.A DHT	82
8	CSQNEYFDSLLHACIPCQLRCSS	SNTPPLTCQRYCNASVTNSVKGT	' NAI	55
	83 LRDCISCASI 92		•	
	56 LWTCLGLSLI 65			

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 15A

FIG. 15B

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 18

FIG. 19A

FIG. 19B

FIG. 21 Fc-humanAPRIL

Fc-humanAPF	RIL protein sequenc	e including the sig	jnal sequence, Fo	Fc-humanAPRIL protein sequence including the signal sequence, Fc domain, linker (Xhol site)
-	MEWSWVFLFF	LSVTTGVHSD	MEWSWVFLFF LSVTTGVHSD KTHTCPPCPA PELLGGPSVF	PELLGGPSVF
	LFPPKPKDTL			
51	MISRTPEVTC	VVVDVSHEDP	MISRIPEVIC VVVDVSHEDP EVKFNWYVDG VEVHNAKIKP	VEVHNAKTKP
	REEQYNSTYR			
101	VVSVLTVLHQ	DWLNGKEYKC	VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG	IEKTISKAKG
	QPREPQVYTL			
151	PPSRDELTKN	QVSLTCLVKG	PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY	ESNGQPENNY
	KTTPPVLDSD			
201	GSFFLYSKLT	VDKSRWQQGN	GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL	LHNHYTQKSL
	SLSPGK SRAV	Λξ		
251	LTQKQKKQHS	VLHLVPINAT	LTQKQKKQHS VLHLVPINAT SKDDSDVTEV MWQPALRRGR	MWQPALRRGR
	GLQAQGYGVR			
301	IQDAGVYLLY	SQVLFQDVTF	IQDAGVYLLY SQVLFQDVTF TMGQVVSREG QGRQETLFRC	QGRQETLFRC
	IRSMPSHPDR			
351	AYNSCYSAGV	FHLHQGDILS	FHLHQGDILS VIIPRARAKL NLSPHGTFLG	NLSPHGTFLG
	-			

FIG. 22

Fc-HumanAPRIL and soluble human AGP3 stimulate proliferation of primary B cells

FIG. 23

hBCMA-Fc and wt hTACI-Fc inhibits Flag-mAPRIL mediated mouse B cell proliferation

FIG. 24

hBCMA-Fc reduces PB B cell level *In vivo* 15 mg/kg ip on day 0, 3, and 6

CD3-B220+ #	1 3 0 27 0 00506	32 06	12
CD3+ #	2 3 0 32 0 24737	27 06	2 1 0 5
#Lym 10e6/ml	3 81 0 43 0 01570	6 43 1 52	5 55 1 79
WBC 10e6/ml	5 30 0 39 0 03318	8 02 1 27	6 90 2 04
BLOOD	SCMA-Fc SD t test	S S S	Saline

FIG. 25

hBCMA-Fc reduces spleen B cell levels *In vivo* 15 mg/kg ip on day 0, 3, and 6

CD3-B220+ #	41 8 4 92 0 02088	57 1 9 67	48 5 29 15
CD3-B220+ (%)	45 5 1 29 0 00234	50 6 1 95	53.7 6.7
spleen lym# 10ml(x10e6)	89 3 9 32 0 02668	112 5 15 65	113 1
Lym (%)	97 9 0 51 0 89118	97 9 0 38	98 5 0 1
WBC 10e6/ml	9 12 0 92 0 02778	11 49	11 48
Spleen	BCMA-Fc SD t test	PC SD	Saline

FIG. 26
Flag-mAPRIL and hAGP3 mediated IgA production inhibited by hBCMA-Fc and hTACI-Fc in vitro

FIG. 27
Flag-mAPRIL and hAGP3 Mediated IgG Production Inhibited by BCMA-Fc and TACI-Fc in Vitro

FIG. 28
Significantly reduces total IgE and IgA in normal mice treated with mBCMA-Fc and trun hTACI-Fc 5 mg/kg ip day 0, 3, and 6

FIG. 29

BCMA-Fc and truncated TACI-Fc at daily doses of 0 5 mg/kg inhibits humoral immunity *in vivo*

FIG. 31

Neutralizing anti-mAPRIL Mab Reduces anti-Pheumovacs IgM In Vivo 5 mg/kg ip on day 0, 3, and 6

a difference between Anti-April Ab and anti-AGP3 Pb Peak 2+ Anti-April Ab Groups

N=10 Mice were treated for 8 weeks 3x/week with the indicated proteins KIN2 group had 12 mice The 100 in the legend stands for 100 μg of protein or 4mg/kg ι p

FIG. 33

Effect of hBCMA-Fc in NCB/NCWF1 mice

Percentage of mice with proteinurea (>300mg/dl)

FIG. 34

Analysis of antibodies to dsDNA from the peripheral blood from various treatment groups of BWF1 at day 0,30,60, and 90

MEAN anti-dsDNA isotypes in U/ml

) A C () ()				
	Day 0		Day 30		Day 60		Day 90	
Group #	IgG	IgM	lgG	IgM	lgG	IgM	lgG	IgM
hBCMA-300	179	260	163	371	150	902	171	841
hBCMA-100	150	430	259	718	171	822	688	1031
hBCMA-30	377	265	297	458	401	664	424	601
5	149	371	234	283	384	331	432	351
PBS	308	292	439	311	247	9/5	720	467

Standard Deviation of the above means

	IgM	734	1225	400	237	327
Day 90	lgG .	62	371	421	233	870
	IgM	518	852	909	151	370
Day 60	lgG	62	212	305	391	247
	IgM	211	461	430	93	152
Day 30	lgG	116	908	281	150	474
	IgM	303	262	455	160	73
Day 0	<u> </u>	104	109	363	89	311
	Group #	hBCMA-300	hBCMA-100	hBCMA-30		PBS

FIG. 35

Evaluation of B cell numbers at treatment day 60 from the 12mg/kg (30 ug), 4mg/kg (100ug), and 1 3mg/kg (300 ug) dose of hBCMA-Fc groups along with the Fc and DBS control group

	\Box		=			_			7											
ł		%B220	103	23.4	292	315	236	9 8												
		%CD8	69	52	64	76	65	10							٠.					
	30	%CD4	25	132	159	148	116	62												
Soups along with the realing Pos control groups	hBCMA-FC-30		06	100	110	120	×	ps												
res con		%B220	101	106	83	13.4	106	21			155	19.5	17.5	265	198	4 8				
e re and	hBCMA-100	%CD8	149	113	133	113	12.7	17			83	121	34	114	88	4 0				
n in with the		0	%CD4	26 1	21 1	246	200	230	29	1		169	191	7.1	199	158	တ			
gioups air		"	20	09	2.0	80	×	ps	000	20	37.0	380	390	400	×	bs				
J-VIAIS	00	%B220	164	116	66	131	128	28			25.4	153	210	210	20 7	4				
		8	8			%CD8	110	111	.7 4	133	107	24			81	49	93	111	84	26
				%CD4	163	24 1	18.2	25 4	210	44			7.0	107	189	20 1	142	64		
	hBCMA-fc-300	Mouse#	9		30	40	×	ps	ę Li	>	330	340	350	360	×	þs .				

FIG. 36

Specific APRIL binding to Human Cell lines determined by FACS analysis

APRIL binding

++	++	++	+	++	++	+++	ł	:	:
HT 29 Colon adenocarcinoma	NCI 460 Lung carcinoma	PC3 Prostate adenocarcinoma	C6 Glial carcinoma	Rajı Burkıtt lymphoma	A20 Mouse B cell lymphoma	U266Bl Myeloma	A435 Epidermoid carcinoma	A469 Kidney carcinoma	MDA-231 breast adenocarcinoma

CHO-Fc @ 15 mg/kg/dose mBCMA @ 2mg/kg/dose mBCMA @ 15mg/kg/dose mBCMA @ 5mg/kg/dose PBS p<0 0001 p=0 0032 p=0 0221 EFFECT OF MURINE BCMA-Fc AGAINST HT-29 SC TUMOR GROWTH Rx IP, Q2D, day 0 Linear growth ANOVA with Dunnett's correction for multiple testing (n=10/group) 2 FIG. 41 TIME (days) 1200 1000 80 009 200 400 TUMOR VOLUME (mm³)