Assignment Math45-Homework-WEEK-15 due 12/11/2020 at 11:59pm PST

1. (1 point)

Let $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$. Find the matrix form of the linear system

$$\frac{dx}{dt} = 6x + 7y$$

$$\frac{dy}{dt} = 1x + 9y.$$

- A. $X' = \begin{pmatrix} 6 & 1 \\ 7 & 9 \end{pmatrix} X$
- B. $\mathbf{X}'\begin{pmatrix} 6 & 1 \\ 7 & 9 \end{pmatrix} = \mathbf{X}$
- C. $X' = \begin{pmatrix} 6 & 7 \\ 1 & 9 \end{pmatrix} X$
- D. $X' = \begin{pmatrix} 1 & 9 \\ 6 & 7 \end{pmatrix} X$

2. (1 point)

Let $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$. Write the system of differential equations given by $\mathbf{X}' = \begin{pmatrix} 1 & 1 \\ 3 & 8 \end{pmatrix} \mathbf{X}$ without using matrices.

- A. $\frac{dx}{dt} = 1x + 1y$; $\frac{dy}{dt} = 3x + 8y$
- B. $\frac{dx}{dt} = 3x + 8y$; $\frac{dy}{dt} = 1x + 1y$
- C. $\frac{dx}{dt} = 1x 1y$; $\frac{dy}{dt} = 3x 8y$
- D. $\frac{dx}{dt} = 1x + 1y$; $\frac{dy}{dt} = 8x + 3y$

3. (1 point)

Which of the following is a solution to the system of differential equations given by $\mathbf{X}' = \begin{pmatrix} 4 & 3 \\ 0 & 6 \end{pmatrix} \mathbf{X}$?

• A.
$$\mathbf{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{4t}$$

- B. $\mathbf{X} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{6t}$
- C. $\mathbf{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{4t}$
- D. $\mathbf{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{6t}$

4. (1 point)

Which of the following is a solution to the system of differential equations given by $\mathbf{X}' = \begin{pmatrix} 8 & 1 \\ 0 & 2 \end{pmatrix} \mathbf{X}$?

- A. $\mathbf{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}$
- B. $\mathbf{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{8t}$
- C. $X = \binom{0}{1} e^{8t}$
- D. $\mathbf{X} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} e^{2t}$

5. (1 point)

Which of the following vectors forms a fundamental set of solutions to the system of differential equations $\mathbf{X}' = \begin{pmatrix} 2 & 1 \\ 0 & 6 \end{pmatrix} \mathbf{X}$?

- A. $\mathbf{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}; \ \mathbf{y_2} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{6t}$
- B. $\mathbf{y_1} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} e^{1t}$; $\mathbf{y_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{1t}$; $\mathbf{y_3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}$
- C. $\mathbf{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}; \ \mathbf{y_2} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{6t}$
- D. $\mathbf{y_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}; \, \mathbf{y_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{1t}; \, \mathbf{y_3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t}; \, \mathbf{y_4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{1t}$

6. (1 point)

Is it guarenteed that the initial value problem consisting of the system $\mathbf{X}' = \begin{pmatrix} 7 & 9 \\ 0 & 6 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \sin(t) \\ \frac{1}{t} \end{pmatrix}$ and the initial conditions $\mathbf{X}(3) = \begin{pmatrix} \sqrt{49} \\ 49 \end{pmatrix}$ has a unique solution on the interval $I = (0, \infty)$?

- A. Yes
- B. No
- 7. (1 point) Consider the linear system

$$\mathbf{X}' = \left[\begin{array}{cc} 6 & 4 \\ -12 & -8 \end{array} \right] \mathbf{X}.$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(1) Find the eigenvalues and eigenvectors for the coefficient matrix.

$$\lambda_1 =$$
____, $\vec{v}_1 =$ $\begin{bmatrix} \ \ \ \ \ \end{bmatrix}$, and $\lambda_2 =$ ____, $\vec{v}_2 =$ $\begin{bmatrix} \ \ \ \ \ \end{bmatrix}$

(2) For each eigenpair in the previous part, form a solution of $\mathbf{X}' = A\mathbf{X}$. Use t as the independent variable in your answers.

$$\vec{y}_1(t) = \begin{bmatrix} & & \\ & & \end{bmatrix}$$
 and $\vec{y}_2(t) = \begin{bmatrix} & & \\ & & \end{bmatrix}$

- (3) Does the set of solutions you found form a fundamental set (i.e., linearly independent set) of solutions?
- Choose
- Yes, it is a fundamental set
- No, it is not a fundamental set