Mémoire de Thèse

Visualisation et Interactions avec une colonie d'abeilles virtuelle :

Simulation, pédagogie et complexité.

Thomas Alves

Dirigé par Thierry Duval et Vincent Rodin Encadré par Jérémy Rivière

Contents

1	Introduction	1
2	Etat de l'art: Simulation Multi-Agents Interactives 2.1 SMA: Rercéer et comprendre des systemes complexes existants . 2.2 Manipuler et observer ces systèmes complexes	2 2 2
3	État de l'art: Modèles Multi-Agents et prise de décision 3.1 Foraging for work	2 2 2 2
4	Proposition Modèle de prise de décision PAAMS 4.1 Interruption : Motivation	2 2 2 3 3
	4.2.2 Subsomption Hiérarchique et Exécution	3 4 4
5	Simulation Multi-Agents d'une colonie d'abeilles 5.1 Biologie : Connaissances des biologistes sur l'abeille	44 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6	État de L'art VISU INTER 6.1 DataViz	5 5
7	Proposition visu interaction 7.1 Interaction Immersive avec Manettes	6 6 6
8	Discussions	6

1 Introduction

• Colonie d'abeille en tant que système complexe. Beaucoup de recherche sur les butineuses mais moins sur l'intérieur de la ruche.

- Comprendre l'auto organisation interne par la modélisation SMA vs Équation différentielles de l'importance des contacts individuels.
- $\bullet\,$ Transmettre et faciliter l'apprentissage avec l'environnement immersif.

2 Etat de l'art: Simulation Multi-Agents Interactives

2.1 SMA : Rercéer et comprendre des systemes complexes existants

Comprendre les mécanismes, créer un modèle puis évaluer l'impact des différents paramètres sur l'évolution du comportement du système.

2.2 Manipuler et observer ces systèmes complexes

Systèmes en général non immersif, on s'arrête à la RA, et [de ce que j'ai vu], sans utilsation d'interacteurs tangibles.

3 État de l'art: Modèles Multi-Agents et prise de décision

Etat de l'art de l'article PAAMS

- 3.1 Foraging for work
- 3.2 Modèles à seuils
- 3.3 Motivation, un pas vers les BDI?

Pas encore fait mais le parallèle est peut-être intéressant ?

4 Proposition Modèle de prise de décision PAAMS

Description du modèle d'interruption PAAMS

4.1 Interruption : Motivation

4.1.1 Etat de l'art rapide sur la Motivation

Les deux types de motivation qu'on a pu croiser dans la littérature. La motivation comme stimulus source de l'action (Drogoul), et la motivation comme perception interne (Flow), guide de l'action.

4.1.2 Notre utilisation de la Motivation

On se base sur l'idée du Flow, avec la motivation de l'individu qui baisse lorsqu'il est confronté à l'échec.

4.2 Modélisation des tâches : Exécution du comportement

4.2.1 Actions, Activités et Tâches

Afin de modéliser nos tâches, nous allons utiliser 3 concepts, actions, activités et tâches. Une action est définie comme une interaction avec l'environnement extérieur, d'une durée déterminée et courte (pas plus de quelques pas de temps). Elle n'est donc pas forcément élémentaire, mais doit s'en approcher. Chaque action possède une condition d'activation.

Ensuite, une activité est une ensemble d'actions et/ou d'autres activités. Une activité possède aussi sa propre condition d'activation. Indirectement, tout ce qu'elle contient partage alors sa condition d'activation, ce qui nous permet de factoriser cette condition et d'alléger notre écriture, tout en permettant des comportements complexes.

Pour finir, une tâche est l'ensemble des activités et actions qui concernent un comportement. On peut donc voir une tâche comme l'activité racine, un peu a la manière d'un système de fichier: les activités sont des dossiers et contiennent d'autre dossier, ou des fichiers que sont les actions.

4.2.2 Subsomption Hiérarchique et Exécution

Une architecture de subsomption permet de hiérarchiser différents comportement entre eux, afin d'obtenir un comportement complexe. Dans un ordre défini, la subsomption interroge tour à tour la condition d'activation de ses différents blocs comportement, et exécute le premier dont la condition est valide. Par exemple, modéliser le comportement d'un mouton peut se faire en deux blocs. Un premier bloc "Brouter", toujours valide. Au dessus de celui ci, donc avec une priorité plus importante, un autre bloc "Fuir", qui s'active dès que le mouton perçoit un prédateur. Ainsi, tant qu'aucun grand méchant loup n'est en vue, le mouton va brouter paisiblement. Dès qu'il en verra un, alors il pourra fuir.

Une subsomption hiérarchique ajoute à cette structure simple, le fait que chaque bloc comportement puisse être une autre architecture de subsomption. Cette légère modification apporte une grande modularité dans la conception de ces architectures, et permet de modéliser des comportements plus complexes sans la lourdeur des subsomption classiques.

Ce que j'ai donc appelé "bloc comportement" des subsomptions correspond à nos actions et activités. Les blocs qui contiennent une autre subsomption sont appelés activités, et ceux qui contiennent du comportement sont des actions. Ensuite, la subsomption en elle même est alors une tâche, vous trouverez Figure 1 une représentation graphique de subsomption hiérarchique contenant nos concepts définis plus tôt.

Ainsi, pour qu'un agent puisse exécuter une tâche, il interroge l'activité racine puis va récursivement interroger ses composants. Chaque activité ou action interrogée va ainsi vérifier sa condition d'activation. Une activité dont l'activation est valide va alors continuer d'interroger ses composantes. On a donc une

Figure 1: Modélisation d'une tâche.

recherche en profondeur, qui s'arrête dès qu'une action interrogée voit sa condition d'activation validée. Cette action est alors remontée à l'agent, qui pourra alors l'exécuter pendant toute sa durée. Ensuite, une fois l'action terminée, tout ce processus recommence afin de pouvoir récupérer une nouvelle action à exécuter.

Exemple swarm robotics

Les deux points clés : Évaluation systématique et Intégration de la motivation dans le calcul de score.

4.3 Sélection : Modèle à Seuil

4.4 Modèle de prise de décision

Récapitulatif, exemple et conclusion sur le modèle en entier. L'exemple avancé dans l'article PAAMS pourrait être poussé un peu grâce au travail du stagiaire et à des nouveaux trucs que j'ai compris pendant la paramétrisation complexe du bousin.

4.4.1 Utilisation en Swarm Robotics

5 Simulation Multi-Agents d'une colonie d'abeilles

5.1 Biologie : Connaissances des biologistes sur l'abeille

Synthèse des connaissances, notamment de notre visite à Avignon et ses 43 degrés à l'ombre.

Rôles et fonctions physiologiques associées. Différents rôles de différentes phéromones. Modélisation simplifiée :

Cas classique de la vie d'une abeille.

Quels changements provoquent quelles réactions dans le métabolisme de l'abeille, et donc dans la répartition du travail.

5.2 Description du modèle adapté

Application du modèle théorique à notre simulation de colonie d'abeilles virtuelle. Simplification gigantesque de la biologie de l'abeille, ainsi que des différentes tâches au sein de la colonie. On veut de la répartition des tâches dans le plus simple des contextes.

5.3 Description de l'implémentation

L'implémentation du modèle de prise de décision décris dans la partie d'avant, et modèle biologique de l'abeille adulte avec le systeme a seuil.

5.4 Calibration

5.4.1 Calibration rapide - Accélération

Dans sa version PAAMS avec la biologie accélérée Obtenir des résultats dans trop de temps de simulation. Le but était de vérifier la répartition des taches a l'aide du modèle, pas encore de chercher une validité biologique.

5.4.2 Calibration biologique - Données directes et indirectes

En ajustant les paramètres connus grâce à la biologie, comme les durées de vie ou la durée et fréquence des nourrissements par exemple. Paramétristaion des paramètres indirects, ou émergents, comme par exemple le fameux "UNE nourrice s'occupe de DEUX larves", qui n'est codé nul part mais qu'on doit retrouver. [Spoiler alert on le retrouve pas, et je ne sais pas pourquoi]

5.5 Analyse des résultats

Ce qui marche, ce que ça montre et ce qui ne marche pas, et ce que ça peut vouloir dire.

6 État de L'art VISU INTER

Comment mieux comprendre un système complexe : Environnement immersif et interacteurs tangibles. Ruche, cadre et connaissances apicoles.

6.1 DataViz

Comment visualiser de grande quantité de données, les données micro.

6.2 Interaction / visu immersive pour comprendre

Environnement immersif

6.3 Interaction tangible

Interacteurs tangibles

7 Proposition visu interaction

Notre proposition

7.1 Interaction Immersive avec Manettes

Manipulation des cadres avec les manettes

7.2 Interaction Immersice ET tangible

L'apport et les contraintes du tangible (qu'il faut encore définir) pour la manipulation des cadres

7.3 Visualisation : Graph3D sur l'état interne de la colonie

Le graph3D et les information qu'il apporte

7.4 Résultats/Évaluation Visualisation Interactive proposée

8 Discussions

Comment l'ensemble se comporte et avis critique sur la totalité. Notamment le modèle multi agent simplifié qui apporte une quantité gigantesque de biais.

Conclusion

C'était cool

Perspectives

Tout est possible, pousser le modèle de l'abeille de la simulation, pousser le domaine tangible avec peut être un cadre manette (un cadre avec un ou deux boutons?)

Rideau