1

(1998 - 2Marks)

d) $\frac{3}{16}$

ASSIGNMENT 3

EE24BTECH11003 - Akshara Sarma Chennubhatla

I. D: MCQs with One or More than One Correct 3) The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then $Pr(\overline{A}) + Pr(\overline{B})$ is (1987 - 2Marks)a) 0.4 b) 0.8 c) 1.2 d) 1.4 e) none (Here \overline{A} and \overline{B} are the complements of A and B, respectively). 4) For two given events A and B, $Pr(A \cap B)$ (1988 - 2Marks)a) not less than Pr(A) + Pr(B) - 1b) not greater than Pr(A) + Pr(B)c) equal to $Pr(A) + Pr(B) - Pr(A \cup B)$ d) equal to $Pr(A) + Pr(B) + Pr(A \cup B)$ 5) If E and F are independent events such that 0 < Pr(E) < 1 and 0 < Pr(F) < 1, then (1989 - 2Marks)a) E and F are mutually exclusive b) E and F^c (the complement of the event F) are independent c) E^c and F^c are independent d) $Pr(E|F) + Pr(E^c|F^c) = 1$. 6) For any two events A and B in a sample space (1991 - 2Marks)a) $Pr(A|B) \ge \frac{Pr(A) + Pr(B) - 1}{Pr(B)}$, $Pr(B) \ne 0$ is always true b) $Pr(A \cap \overline{B}) = Pr(A) - Pr(A \cap B)$ does not hold c) $Pr(A \cup B) = 1 - Pr(\overline{A})Pr(\overline{B})$, if A and B are independent d) $Pr(A \cup B) = 1 - Pr(\overline{A})Pr(\overline{B})$, if A and B are disjoint. 7) E and F are two independent events. The probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$. Then, (1993 - 2Marks)a) $Pr(E) = \frac{1}{3}, Pr(F) = \frac{1}{4}$ b) $Pr(E) = \frac{1}{2}, Pr(F) = \frac{1}{6}$ c) $Pr(E) = \frac{1}{6}, Pr(F) = \frac{1}{2}$ d) $Pr(E) = \frac{1}{4}, Pr(F) = \frac{1}{3}$ 8) Let $0 < \Pr(A) < 1, 0 < \Pr(B) < 1$ and $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A) \Pr(B)$ then (1995S)a) Pr(A|B) = Pr(B) - Pr(A)b) Pr(A' - B') = Pr(A') - Pr(B')c) $Pr(A \cup B)' = Pr(A') Pr(B')$ d) Pr(A|B) = Pr(A)9) If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3

10) If \overline{E} and \overline{F} are the complementary events of events E and F respectively and if $0 < \Pr(F) < 1$, then (1998 - 2Marks)

b) $\frac{1}{4}$

drawn is

a) $\frac{13}{32}$

black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be

c) $\frac{1}{32}$

(1998 - 2Marks)

(1998 - 2Marks)

d) $\frac{1}{4}$

	 a) occurrence of E ⇒ occurrence of F b) occurrence of F ⇒ occurrence of E c) non-occurrence of E ⇒ non-occurrence of F d) none of the above implications holds 				
13)	A fair coin is tossed repeatedly. If the tail appears on first four tosses, then the probability of the head appearing on the fifth toss equals $(1998 - 2Marks)$				
	a) $\frac{1}{2}$	b) $\frac{1}{32}$	c) $\frac{31}{32}$	d) $\frac{1}{5}$	
14)	Seven white balls and three black balls are randomly placed in a row. The probability that no black balls are placed adjacently equals $(1998-2Ma$				
	a) $\frac{1}{2}$	b) $\frac{7}{15}$	c) $\frac{2}{15}$	d) $\frac{1}{3}$	
15)	The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and confidence of passing in at least one, a 50% chance of passing in at least two, and a 40% chance of passing in exactly two. Which of the following relations are true? (1999 – 3Marks)				
	a) $p + m + c = \frac{19}{20}$		b) $p + m + c = \frac{27}{20}$		
	c) $pmc = \frac{1}{10}$		d) $pmc = \frac{1}{4}$		
16)	6) Let E and F be two independent events. The probability that exactly one of them occurs is $\frac{1}{2}$: the probability of none of them occurring is $\frac{2}{25}$. If $Pr(T)$ denotes the probability of occurrent the event T, then				
	a) $Pr(E) = \frac{4}{5}, Pr(F) = \frac{3}{5}$		b) $Pr(E) = \frac{1}{5}, Pr(F) = \frac{1}{5}$	$=\frac{2}{5}$	
	c) $Pr(E) = \frac{2}{5}, Pr(F) = \frac{1}{5}$		d) $Pr(E) = \frac{3}{5}, Pr(F) = \frac{3}{5}$	$= \frac{4}{5}$	
17)	7) A ship is fitted with three engines E_1 , E_2 and E_3 . The engines function independently of each other with respective probabilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_1 , X_2 and X_3 denote respectively the events that the engines E_1 , E_2 and E_3 are functioning. Which of the following is(are) true? (2012) a) $\Pr\left(X_1^c X\right) = \frac{3}{16}$ b) $\Pr\left(\text{Exactly two engines of the ship are functioning } X\right) = \frac{7}{8}$ c) $\Pr\left(X X_2\right) = \frac{5}{16}$ d) $\Pr\left(X X_1\right) = \frac{7}{16}$				

11) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only

c) $\frac{1}{2}$

a) $\Pr(E|F) + \Pr(\overline{E}|F) = 1$ b) $\Pr(E|F) + \Pr(E|\overline{F}) = 1$ c) $\Pr(\overline{E}|F) + \Pr(E|\overline{F}) = 1$ d) $\Pr(E|\overline{F}) + \Pr(\overline{E}|\overline{F}) = 1$

two tests are needed is

a) $\frac{1}{3}$

b) $\frac{1}{6}$

12) If E and F are events with $Pr(E) \le Pr(F)$ and $Pr(E \cap F) > 0$, then