Práctica 3

Unidad aritmética y lógica

Objetivo

El alumno se familiarizará con la unidad aritmética y lógica de un sistema computacional.

Equipo

Computadora personal con el software Logisim.

Teoría

Mapa mental sobre:

- Unidad aritmética y lógica (ALU).
- Unidad de punto flotante (FPU).

Responda las preguntas:

¿En qué situaciones se activa la bandera de **acarreo** (carry) en una ALU? Incluya ejemplos. ¿En qué situaciones se activa la bandera de **sobreflujo** (overflow) en una ALU? Incluya ejemplos.

Desarrollo

- 1. Unidad Aritmética y Lógica (ALU) de un sistema computacional genérico.
 - a) Diseñe y simule en Logisim una ALU que realice las funciones listadas en la Fig. 1. El tamaño de los operandos es **8 bits**.

Figura 1. Unidad Aritmética y Lógica.

b) Describa paso a paso en el reporte el procedimiento de ejecución de las operaciones indicadas por el instructor.

2. ALU de un procesador didáctico de 4 bits.

El diagrama de la ALU del procesador de 4 bits es el que se muestra en la Fig. 2. La memoria de registros consiste en los registros **RO-R3** que se vieron en la Práctica 2.

Figura 2. ALU del procesador de 4 bits.

Figura 3. Memoria de registros.

Los registros **RS** y **RD** contienen los operandos sobre los cuales la ALU realiza la operación aritmética o lógica. Los bits **C** y **Z** son indicadores (banderas) del estado de la operación realizada por la ALU y consisten en el bit de **acarreo de salida** y bit de **cero** respectivamente.

Las instrucciones para realizar operaciones aritméticas y lógicas en el procesador tienen el siguiente formato:

Tabla 1. Instrucciones de Registro básicas

OP	TT	Función
00	00	$[S] + C_i \rightarrow [D]$
01	00	$[S] + [D] + C_i \rightarrow [D]$
10	00	$[D]-[S]-\overline{C}_i \to [D]$

Tabla 2. Bit de acarreo

СС	C _i
00	0
01	1
10	С
11	Ē

Tabla 3. Instrucciones de Registro con operación lógicas

OP	CC	T	Función
11	00	01	$[S] \lor [D] \to [D]$
11	00	10	$[S] \land [D] \rightarrow [D]$
11	00	11	$[S] \oplus [D] \to [D]$

Tabla 4. Instrucciones de registro con constante

INSTRUCCIÓN	MNEMÓNICO		OPERACIÓN	CÓDIGO				
INSTRUCCION			OPERACION	OP	D	TT	K (4bits)	
LOAD Constant to Register	LDI	R2,K	$K \rightarrow R2$	00	10	01	K	
ADD Constant to Register	ADD	R3,K	$R3 + K \rightarrow R3$	00	11	10	K	
SUB Constant to Register	SUB	R1,K	$R1 - K \rightarrow R1$	00	01	11	K	
OR Constant to Register	OR	RO,K	$R0 \lor K \rightarrow R0$	01	00	01	K	
AND Constant to Register	AND	R2,K	$R2 \wedge K \rightarrow R2$	01	10	10	K	
XOR Constant to Register	XOR	R3,K	$R3 \oplus K \rightarrow R3$	01	11	11	K	
Compare Constant to Register	CMP	RO,K	RO - K (update flags only)	10	00	01	K	
TEST Constant to Register	TEST	R2,K	R2 ∧ K (update flags only)	10	10	10	K	
Shift Right to Register	SHR	R3	R3 ÷2 → R3	10	00	11	Χ	

El bit C es el bit de acarreo de salida de la ALU. El bit C_i es acarreo de entrada y su valor depende de CC y C, como se puede ver en la Tabla 2.

Los bits **S** y **D** de la instrucción indican los registros (**RO-R3**) sobre los cuales se va a realizar la operación. El registro <u>fuente</u> es **S** y el <u>destino</u> es **D**, esto quiere decir que el <u>resultado</u> de la operación se almacena en el registro especificado por **D**. Al momento de hacer la operación en la ALU, se debe copiar a **RS** el valor del registro indicado por los bits **S** de la instrucción y a **RD** el valor del registro especificado por **D**.

Operaciones con una constante:

En la **Tabla 4** se muestran las instrucciones que operan con un registro y una constante K de 4 bits. En este caso, al registro se le aplica una suma/resta/xor/and/or con la constante y el resultado se almacena en el registro.

Ejemplos de instrucciones:

Tabla 5. Ejemplos de instrucciones de registro

INSTRUCCIÓN	MNEMÓNICO	OPERACIÓN	CÓDIGO				
INSTRUCCION	IVINEIVIONICO	OPERACION	OP	CC	TT	S	D
ADD	ADD R1,R0	$R1 + R0 \rightarrow R0$	01	00	00	01	00
ADD (/w CARRY)	ADC R1,R0	$R1 + R0 + C \rightarrow R0$	01	10	00	01	00
SUBTRACT	SUB R2,R0	R0 - R2 → R0	10	01	00	10	00
SUBTRACT (/w BORROW)	SBB R2,R0	$RO - R2 - \overline{C} \rightarrow RO$	10	11	00	10	00
OR	OR R1,R0	$R1 \lor R0 \rightarrow R0$	11	00	01	01	00
AND	AND R3,R2	$R3 \land R2 \rightarrow R2$	11	00	10	11	10
XOR	XOR RO,R3	$R0 \oplus R3 \rightarrow R3$	11	00	11	00	11

Tabla 6. Instrucciones extendidas de registro

INSTRUCCIÓN	MNEMÓNICO	OPERACIÓN	CÓDIGO						
INSTRUCCION	IVINEIVIONICO	OPERACION	OP	CC	TT	RS	RD		
CLEAR	CLR R2	R2 - R2 → R2	10	01	00	10	10		
INCREMENT	INC R3	R3 + 1 → R3	00	01	00	11	11		
SHIFT (LEFT)	SHL R1	R1 + R1 → R1	01	00	00	01	01		
ADD	ADD R1,R0	$R1 + R0 \rightarrow R0$	01	00	00	01	00		

ADD (/w CARRY)	ADC R1,R0	$R1 + R0 + C \rightarrow R0$	01	10	00	01	00
SUBTRACT	SUB R2,R0	R0 - R2 → R0	10	01	00	10	00
SUBTRACT (/w BORROW)	SBB R2,R0	$R0 - R2 - \overline{C} \rightarrow R0$	10	11	00	10	00
NO OPERATION	NOP	$R0 + 0 \rightarrow R0$	00	00	00	00	00
MOVE	MOV R3,R2	R3 + 0 → R2	00	00	00	11	10

Los pasos para hacer una operación en la ALU son:

- 1. Cargar [S] en el registro RS si es una operación con dos registros, o cargar K en RS si es una operación con constante.
- 2. Cargar [D] en el registro RD.
- 3. Realizar la operación aritmética o lógica en los registros RS y RD. Almacenar el resultado en el registro [D] (excepto en las instrucciones **CMP** y **TEST** donde solo se actualizan **C** y **Z**).
- a) Simule en Logisim la ALU para el procesador didáctico descrita anteriormente.
 - i) Es necesario decodificar la instrucción para determinar que sea una instrucción de operaciones aritméticas y lógicas. En caso de que no lo sea, la ALU no debe operar.
 - ii) Si es una operación aritmética con dos registros, decodificar **CC** para determinar cuál es el **acarreo de entrada C**_i.
 - registro (**RO-R3**) copiar a **RS**. Para operaciones con constante: Cargar **K** en **RS**. Para todas las instrucciones: Decodificar **D** para determinar cuál registro copiar a **RD**.
 - iv) Decodificar **OP** y **TT** para seleccionar la operación de la ALU.
 - v) Almacenar en el registro **D** el resultado de la operación (excepto **CMP** y **TEST**) y actualizar las banderas **C** y **Z**.
- b) Describa paso a paso en el reporte el procedimiento para hacer las operaciones indicadas por el instructor. Incluya impresiones de pantalla de su diseño en Logisim.

Conclusiones y comentarios Dificultades en el desarrollo Referencias