Определение 1. Набор векторов $\{e_1, \dots, e_n\} \subset \mathbb{R}^m$ называется базисом, если для любого вектора $w \in \mathbb{R}^m$ найдётся единственный набор чисел $\{w^1,\dots,w^n\}$ (который называется координатами вектора w в этом базисе) такой, что $w = w^1 v_1 + \ldots + w^n v_n$.

Определение 2. Матрицей называется произвольная прямоугольная таблица действительных чисел.

Соглашение 1. (Правило суммирования Эйнштейна) В физике и механике часто рассматривают различные суммы произведений. Например, если w^i — координаты вектора w в базисе $\{e_i\}$, то $w=\sum_{\alpha=1}^m w^\alpha e_\alpha$. В тех случаях, когда суммирование ведётся по одному нижнему и одному верхнему индексу, знак суммы может быть опущен: пишут просто $w^{\alpha}e_{\alpha}$, имея в виду сумму по всем осмысленным значениям параметра α . Таким образом могут быть коротко записаны довольно длинные суммы:

$$T^{\mu\nu}=rac{1}{\mu_0}\left[F^{\mu\alpha}F^{
u}{}_{\alpha}-rac{1}{4}\eta^{\mu
u}F_{\alpha\beta}F^{\alpha\beta}
ight]$$
— тензор натяжений Максвелла

Координаты вектора $w \in \mathbb{R}^m$ в стандартном базисе $\{e_i\}$ будем обозначать через w^1, \dots, w^m . Будем записывать координаты вектора w матрицей $m \times 1$ (то есть столбцом) его координат:

$$w = \begin{pmatrix} w^1 \\ \vdots \\ w^m \end{pmatrix} = w^1 e_1 + w^2 e_2 + \dots + w^m e_m = w^{\alpha} e_{\alpha}.$$

 $w = \binom{w^1}{\vdots} = w^1 e_1 + w^2 e_2 + \ldots + w^m e_m = w^\alpha e_\alpha.$ Задача 1. Докажите, что набор векторов $\{e_1,\ldots,e_m\} \in \mathbb{R}^m$, где $e_i = (0,\ldots,1_i,\ldots,0)$, образует базис \mathbb{R}^m . Будем называть его стандартным.

Задача 2. а) Пусть $f: \mathbb{R}^m \to \mathbb{R}^m$ — биективное линейное отображение. Докажите, что набор векторов $\{e_{1'}, \ldots, e_{m'}\}$, где $e_{i'} = f(e_i)$, образует базис \mathbb{R}^m .

б) Пусть линейное преобразование f переводит базис $\{e_1, \ldots, e_m\}$ в базис. Докажите, что оно биективно.

Задача 3. Пусть $f \colon \mathbb{R}^m \to \mathbb{R}^m$ — произвольное линейное отображение. Запишем координаты вектора $e_{i'} = f(e_i)$ в столбец: $\begin{pmatrix} c_{\mathbf{i}}^1 \\ c_{\mathbf{i}}^2 \\ \vdots \\ c_{\mathbf{m}} \end{pmatrix}$, а из этих столбцов составим квадратную таблицу $C := \begin{pmatrix} C_{\mathbf{1}}^1 & C_{\mathbf{2}}^1 & \cdots & C_{\mathbf{m}}^1 \\ C_{\mathbf{1}}^2 & C_{\mathbf{2}}^2 & \cdots & C_{\mathbf{m}}^2 \\ \vdots & \vdots & \ddots & \vdots \\ C_{\mathbf{1}}^m & C_{\mathbf{2}}^m & \cdots & C_{\mathbf{m}}^m \end{pmatrix}$

Эта таблица называется матрицей преобразования f в базисе $\{e_i\}$.

Задача 4. Выразите вектор $e_{i'}$ через базисные векторы $\{e_{\alpha}\}$ и элементы матрицы $\{C^p_{\mathfrak{a}}\}$ в короткой нотации.

Задача 5. а) Найдите координаты вектора f(w) в базисе $\{e_{1'}, \ldots, e_{m'}\}$.

б) Найдите координаты вектора f(w) в базисе $\{e_1, \dots, e_m\}$.

в) Придумайте привило умножения матрицы C на вектор-столбец координат вектора w так, чтобы работало правило $f(w) = C \cdot w$.

Задача 6. Вычислите: **a)** $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix};$ **б)** $\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix};$ Что это за линейное преобразование? **в)** $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix};$ **г)** $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix};$ **д)** $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ -5 \end{pmatrix}.$

Задача 7. Пусть f и g — два биективных линейных отображения $\mathbb{R}^m \to \mathbb{R}^m$, а C и D — матрицы преобразований f и g в базисе $\{e_i\}$ соответственно.

а) Найдите координаты $g(f(e_1))$ в базисе $\{e_i\}$. б) Найдите координаты g(f(w)) в базисе $\{e_i\}$.

в) Придумайте правило умножения матриц так, чтобы для каждого вектора w

 $g(f(w)) = (D \cdot C) \cdot w$.

Задача 8. Придумайте две матрицы C и D такие, что: **a)** CD = D; **б)** CD = DC; **в)** $CD \neq DC$.

Задача 9. Постройте биекцию между множеством всех линейных отображений (операторов) $\mathbb{R}^m \to \mathbb{R}^m$ и множеством матриц размера m на m.

Задача 10. а) Найдите такую матрицу E, что для любой матрицы C верно: EC = CE = C.

б) Докажите, что такая матрица единственна.

в) Пусть C — матрица биективного линейного оператора. Докажите, что найдётся матрица D такая, что CD = DC = E.

г) Докажите, что множество матриц биективных линейных операторов образуют группу относительно операции умножения.

Задача 11. Придумайте, как описать аффинные преобразования с помощью матриц, векторов, их сложения и умножения.

1	$\begin{bmatrix} 2 \\ a \end{bmatrix}$	2 6	3	4	5 a	5 6	5 B	6 a	6 6	6 B	6 г	6 д	7 a	7 б	7 B	8 a	8 6	8 B	9	10 a	10 б	10 B	10 Г	11