# Spark 3.0

performance improvement

# **Adaptive Query Execution**

## | Without AQE

- ▼ Plan computed before execution
- Source Table metrics are gathered before plan
- ▼ Intermediate Table metrics are inferred
- ▼ Single-pass optimisation



# | Without AQE

- ▼ Plan computed before execution
- ▼ Source Table metrics are gathered before plan
- Intermediate Table metrics are inferred
- ▼ Single-pass optimisation



## | With AQE

- ▼ Plan computed before execution
- ▼ Source Table metrics are gathered before plan
- ▼ Intermediate Table metrics are inferred
- During Execution new Table metrics are gathered
- ▼ During Execution new plan are computed based on the newest metrics
- New plan after each stage (shuffle)



## **Adaptive Query Execution**

- ▼ Disable by default
- spark.sql.adaptive.enabled = true
- Optimisations
  - □ Dynamic Partition Pruning
  - ∇ Partition Coalesce
  - ∇ Skew Join optimisation
  - ∇ Smarter Broadcast Join
- 2x faster on TPC-DS than spark 2.4



# Task, Stage, Job and Partition

```
val wc = sc.textFile(myData)
    .map(_.split(","))
    .map(row => (row(0), (row(14), 1)))
    .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
    .mapValues { case (dataSum, cpt) => dataSum/cpt }
```



```
val wc = sc.textFile(myData)
   .map(_.split(","))
   .map(row => (row(0), (row(14), 1)))
   .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
   .mapValues { case (dataSum, cpt) => dataSum/cpt }
```



```
val wc = sc.textFile(myData)
    .map(_.split(","))
    .map(row => (row(0), (row(14), 1)))
    .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
    .mapValues { case (dataSum, cpt) => dataSum/cpt }
```



```
val wc = sc.textFile(myData)
   .map(_.split(","))
   .map(row => (row(0), (row(14), 1)))
   .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
   .mapValues { case (dataSum, cpt) => dataSum/cpt }
```



```
val wc = sc.textFile(myData)
    .map(_.split(","))
    .map(row => (row(0), (row(14), 1)))
    .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
    .mapValues { case (dataSum, cpt) => dataSum/cpt }
```





```
val wc = sc.textFile(myData)
    .map(_.split(","))
    .map(row => (row(0), (row(14), 1)))
    .reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
    .mapValues { case (dataSum, cpt) => dataSum/cpt }
```



# **Partition Coalesce**

#### Partition coalesce

- spark.sql.shuffle.partitions = 200
- ▼ automatique partition coalesce
- coalesce partition according to table metrics between stage
- spark.sql.adaptive.coalescePartitions.enabled = true
- ▼ spark.sql.adaptive.coalescePartitions.minPartitionNum = 200
- spark.sql.adaptive.coalescePartitions.initialPartitionNum = 200
- ▼ spark.sql.adaptive.advisoryPartitionSizeInBytes = 64Mb

# **Broadcast Join**









### Broadcast Join





#### **EXECUTOR** Broadcast Join large table large table result table large table small table large table result table **EXECUTOR** large table large table large table result table small table 23

### Broadcast Join



## Broadcast join

- no shuffle
- ▼ the small table is sent (broadcast) to all executor
- ▼ the small table must fit in executor memory
- ▼ broadcast join is automatic
- ▼ spark.sql.autoBroadcastJoinThreshold = 10Mb

df1.join(broadcast(df2), Seq("column1"))

#### **Auto Broadcast Join**

- with AQE enabled broadcast are smarter
- ▼ use inter stage table metrics to auto broadcast stable
- ▼ Without AQE auto broadcast only work with table

# **Skew Join**

### | Skew Join





### Skew Join

we add a new column (salt), the value of this column is randomly chosen from the salt value (blue or orange)



### | Skew Join

Replicate the other table and add the value of the salt (bleu or orange)



### Skew Join

To join we use our join key AND the salt



When shuffling before joining the partition H-M is smaller



#### | Manual Skew Join Drawback

- duplicate a big table
- create smaller partition for already small partition
- ▼ You must add and remove your salt

# **Skew Join Optimisation**



| Skew Join Optimization







#### | Adaptive Query Execution

- ▼ split and duplicate only the skewed partition
- no more salt removal
- ▼ spark.sql.adaptive.skewJoin.enabled = true
- ▼ spark.sql.adaptive.skewJoin.skewedPartitionFactor = 5
- ▼ spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes = 256Mb

# **Dynamic Partition Pruning**

#### Dynamic Partition Pruning

- ▼ only if
  - □ partitioned data
  - ∀ broadcast join
- filter the broadcasted table
- use the result to do a filter push down on the other side of the join
- ▼ independent from AQE

```
SELECT *
FROM Students
JOIN Class
WHERE Class.name = '6A' AND year = 2014;
```





# **Before Dynamic Partition Pruning**



# **Before Dynamic Partition Pruning**



#### Before Dynamic Partition Pruning

- Class table is small
- ▼ Student table is large
- Broadcast of Class table since it's small
- ▼ Full scan of student table every time











- Small table is filtered
- ▼ Result after filtering are used as predicate push down on the large table
- ▼ Large table is not fully scanned
- Fewer data during Join (Broadcast Join)

# The End

Question?