Logic & Proofs (Lecture – 1)

Dr. Nirnay Ghosh

Formal Definition: Proposition

Let p be a proposition. The *negation of* p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement

"It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

- Michael's PC runs Linux
 - It is not the case that Michael's PC runs Linux
 - Michael's PC does not run Linux
- Vandana's smartphone has at least 32GB of memory
 - It is not the case that Vandana's smartphone has at least 32GB of memory
 - Vandana's smartphone does not have at least 32GB of memory
 - Vandana's smartphone has less than 32GB of memory

Truth Tables & Connectives

TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

• Each row shows the truth value of $\neg p$ corresponding to the truth value of p for that row

• <u>Connectives</u>: logical operators that are used to form new propositions from two or more existing propositions

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \wedge q$, is the proposition "p and q." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Truth Tables & Connectives

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

TABLE 2 TI	ne Truth Table for
the Conjuncti	on of Two
Propositions.	

•		
p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F
I .		

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \oplus q$, is the proposition that is true when exactly one of p and q is true and is false otherwise.

Conditional Statements

Let p and q be propositions. The *conditional statement* $p \to q$ is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \to q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.

p	q	$p \rightarrow q$
T	T	Т
T	F	F
F	T	T
F	F	T

"if p, then q"

"if p, q"

"p is sufficient for q"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless ¬p"

"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \to q$ as a statement in English.

Contrapositive, Converse & Inverse

- Given conditional statement: $p \rightarrow q$
 - Contrapositive: $\neg q \rightarrow \neg p$
 - Converse: $q \rightarrow p$
 - Inverse: $\neg p \rightarrow \neg q$
- Construct truth tables for converse, contrapositive, and inverse of a conditional statement. What do you observe?
- Statement: "The home team wins whenever it is raining"
 - $p \rightarrow q$: "If it is raining, then the home team wins" (conditional)
 - $\neg q \rightarrow \neg p$: "If the home team does not win, then it is not raining" (contrapositive)
 - $q \rightarrow p$: "If the home team wins, then it is raining" (converse)
 - $\neg p \rightarrow \neg q$: "If it is not raining, then the home team does not win" (inverse)

Contrapositive, Converse & Inverse

Contrapositive Truth Table

$\neg q$	$\neg q$ $\neg p$ $\neg q$	
T	T	T
T	F	F
F	Т	T
F	F	Т

Converse Truth Table

q	P	<i>q</i> → p
Т	T	Т
Т	F	T
F	T	F
F	F	Т

Inverse Truth Table

$\neg p$	$\lnot q$	¬p → ¬q
T	T	Т
T	F	T
F	T	F
F	F	Т

Biconditional Statement

Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.

p	\boldsymbol{q}	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

• Find out the truth table for: $(p \rightarrow q) \land (q \rightarrow p)$.

Truth Table for Compound Propositions

- Five basic logical connectives: conjunction, disjunction, negation, conditional statements, biconditional statements
- Three derived logical connectives: contrapositive, converse, inverse
- These can be used to build up complicated propositions involving any number of propositional variables
- Construct truth table for: $(p \lor \neg q) \to (p \land q)$

TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.						
p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
T	T F T T T					
T	F	T F F				
F	F T F F T					
F	F F T T F					

Precedence of Logical Operators

TABLE 8

Precedence of Logical Operators.

Operator	Precedence
_	1
^ V	2 3
$\overset{\rightarrow}{\leftrightarrow}$	4 5

- Logic bit operators:
 - Information is represented in form of bits
 - Symbol with two possible values: 0 (zero) and 1 (one).
 - It can also be used to represent truth values: *true* and *false*
 - In practice, 1 represents T (true) and 0 represents F (false)
 - **Boolean variable**: value is either true or false

TABLE 9 Table for the Bit Operators *OR*, *AND*, and *XOR*.

x	у	$x \vee y$	$x \wedge y$	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Application of Propositional Logic

- Statements in mathematics and the sciences and in natural language often are imprecise or ambiguous.
- To make such statements precise, they can be translated into the language of logic
- Examples:
 - Specification of software and hardware: need precise specification before the actual development phase
 - Design of computer circuits, to construct computer programs, to verify correctness of programs, and so on.

Application of Propositional Logic

- We will look into the following application domains:
 - Translating English Sentences
 - System Specifications
 - Boolean Searches
 - Logic Puzzles
 - Logic Circuits

Logic Circuit

• Logic circuit (or digital circuit) receives input signals p_1 , p_2 , ..., p_n each a bit [either 0 (off) or 1 (on)), and produces output signals s_1 , s_2 , ..., s_n , each a bit.

FIGURE 1 Basic logic gates.

FIGURE 2 A combinatorial circuit.

Logic Circuit

• Build a logic circuit for: $(p \vee \neg r) \wedge (\neg p \vee (q \vee \neg r))$

7/19/2019