Klasszikus fizika laboratórium

4. mérés

Termoelektromos hűtőelemek vizsgálata

Bakó Bence Kedd délelőtti csoport

Mérés dátuma: 2020. március 31. Leadás dátuma: 2020. április 12.

1. A mérés célja:

A termoelektromos jelenségek vizsgálata, ezen belül is a hővezetés, a Joule-hő, valamint a Thomson-, Peltier- és Seebeck- effektus.

2. Mérőeszközök:

- Tranzisztoros hőmérő
- Tápegység
- Peltier-elem
- Hőmérő
- Feszültségmérő
- Hőtartály

3. A mérés menete:

- Elsőként megmértem a hűtendő tér hőmérsékletét, majd a Peltier-elemet lehűtöttem, mértem a feszültséget (I=1 A mellett) a sarkain és amikor elérte a 0-t, akkor megkaptam a hűtővíz hőmérsékletét.
- Ezek utén állandó áram mellett mértem a hőmérséklet változását az idő függvényében.
- 1 A-enként változtatva a hőmérsékletet, mértem a hűtött tér egyensúlyi hőmérsékletét (az előzőleg kiszámolt 4-szeres θ időd hagyva az egyensúly beállására.
- Végezetül lehűtöttem a Peltier-elemet, amjd az idő függvényében mértem a hőmérsékletet és a feszültséget, melyekbők meghatározható a Seebeck együttható.
- A mérés elején és végén is megmértem a labor hőmérsékletét, hogy a beáramló hőmérsékletre tudjak következtetni.

4. A mérés elmélete:

A mérés során fellépő jelenségek röviden:

1. Joule-hő: ha a vezetőn áram folyik át, akkor a vezetőben Q hő keletkezik.

$$\frac{dQ}{dt} = RI^2$$

2. Hővezetés: Ha egy test különböző részein más a hőmérséklet, akkor a hő a melegebb résztől a hideg fele áramlik (λ a hővezetési együttható).

$$\frac{1}{A}\frac{dQ}{dt} = -\lambda \frac{dT}{dx}$$

3. Seebeck-effektus: a vezetőben hőmérséklet-gradiens hatására gradT-vel arányos erősségű elektromos tér keletkezik, az arányossági tényező a Seebeck együttható.

$$U = S_{ab}(T_m - T_h)$$

4. Peltier-effektus: két különböző vezetőből álló körben ha áram folyik, akkor az egyik csatlakozási pont lehűl, a másik pedig felmelegszik.

$$\frac{dQ}{dt} = P_{ab}I$$

5. Thomson-effektus: inhomogén hőmérsékleteloszlású vezetőben a rajta átfolyó áram hatására hő fejlődik (ennek hatása a többihez képest általában elhanyagolható).

$$\frac{dQ}{dt} = \tau I \frac{dT}{dx}$$

5. <u>Mérési adatok:</u>

- A labor levegőjének kezdeti hőmérséklete: $T_1=(21,6\pm0,05)^\circ C=(294,6\pm0,05)K$
- A labor levegőjének végső hőmérséklete: $T_2 = (22, 8 \pm 0, 05)^{\circ}C = (295, 8 \pm 0, 05)K$
- A hűtendő tér hőmérséklete: $T(0)=(20,8\pm0,05)^{\circ}C=(293,8\pm0,05)K$
- A hűtővíz hőmérséklete: $T_0=(20,4\pm0,05)^{\circ}C=(293,4\pm0,05)K$

5.1. Karakterisztikus idő mérése

Idő [s]	Hőmérséklet [° C]	Idő [s]	Hőmérséklet [° C]
5	19,0	125	0,5
10	17,9	130	0,2
15	16.5	135	0
20	15,1	140	-0,2
25	14,0	145	-0,5
30	12,8	150	-0,8
35	11,5	155	-0,9
40	10.5	160	-1,2
45	9,4	165	-1,3
50	8,6	170	-1,5
55	7,8	175	-1,6
60	7,1	180	-1,8
65	7,2	190	-2,1
70	5,4	200	-2,3
75	4,9	210	-2,5
80	4,3	220	-2,7
85	3,7	230	-2,9
90	3,2	240	-3,0
95	2,8	250	-3,2
100	2,3	260	-3,3
105	1,9	270	-3,4
110	1,5	280	-3,5
115	1,2	291	-3,6
120	0,8	306	-3,7
		322	-3,8

5.2. Egyensúlyi hőmérséklet mérése az áramerősség függvényében

I [A]	$T [^{\circ}C]$
1,0	5,7
2,0	-4,1
3,0	-9,5
4,0	-12,9
4,5	-13,4
5	-13,2
5,5	-12,2
6	-11

5.3. Seebeck együttható mérése

Idő [s]	$T [^{\circ}C]$	U [mV]
10	6,4	159,91
20	7,7	144,41
30	8,8	131,73
40	9,9	119,08
50	10,9	108,52
60	11,8	98,23
70	12,5	90,99
80	13,3	82,49
90	13,9	75,16
100	14,4	69,53
110	15,0	63,58
120	15,5	58,18
130	15,9	53,41
140	16,3	49,19
150	16,6	45,18
160	16,9	41,51
170	17,3	38,16
180	17,5	35,18
190	17,8	32,22
200	18,0	29,57
210	18,2	27,49
220	18,4	25,01
230	18,6	22,95
240	18,8	21,07
250	18,9	19,33
260	19,1	17,70
270	19,2	16,25
280	19,3	14,87
290	19,5	13,57
300	19,6	12,33

6. <u>Kiértékelés:</u>

6.1. Karakterisztikus idő mérése

Az első táblázatban feltüntetett hőmérsékleteket átalakítottam Kelvin-be, majd ábrázoltam ezeket és exponenciális függvényt illesztettema pontokra.

Tudjuk, hogy:

$$T(t) = A^{-t/\tau} + T_{\infty}$$

Ezért ilyen egyenletű görbét illesztettem, az illesztésből megkaptam a paraméterek értékét:

$$A = (25, 01 \pm 0, 05)^{\circ}C$$

$$\tau = (73 \pm 0, 4)s$$

$$T_{\infty} = (269, 01 \pm 0, 04)^{\circ}C$$

Ez azonban a karakterisztikus időt elég nagy bizonytalansággal adja meg, ezért alakítsuk át az egyenletet és logaritmáljuk:

$$ln(T - T_{\infty}) = -1/\tau + lnA$$

Az így kapott adatokra egyenest illesztettem (200 s-ig) és az egyenes meredeksége adja meg a karatterisztikus időt:

$$\tau = (73, 87 \pm 0, 23)s$$

Itt a relatív hiba megegyezik a meredekség hibájával, így ezt az illesztés során ki is számoltam. (Az illesztéseket pythonban végeztem a scipy modul curve_fit függvényének segítségével, ezt használom a továbbiakban is.)

6.2. Maximális hőmérsékletkülönbség meghatározása

Ábrázoltam a második táblázatban szereplő hőmérsékleteket (Kelvinben) az áramerősség függvényében és parabolát illesztettem:

Az illesztett görbe egyenlete és paraméterei:

$$T = a + b \cdot I + c \cdot I^{2}$$

$$a = (290, 2 \pm 0, 5)K$$

$$b = (-13, 2 \pm 0, 33)K/A$$

$$c = (1, 42 \pm 0, 046)K/A^{2}$$

Továbbá ahhoz, hogy megkapjuk a hőmérséklet minimumát, az első derivált gyökét keressük:

$$b + 2 \cdot c \cdot I = 0 \implies I_{min} = 4,65A \implies T_{min} = 259,5K$$

Hibaszámítás

A hibaterjedés módszerét felhasználva megkaphatjuk I_{min} és T_{min} hibáját is. Az egyenlet paramétereinek hibáit az illesztésből megkaptuk, innen a relatív hibák:

$$\frac{\Delta a}{a} = 1,7 \cdot 10^{-3}$$

$$\frac{\Delta b}{b} = 25 \cdot 10^{-3}$$

$$\frac{\Delta c}{c} = 32, 4 \cdot 10^{-3}$$

Tehát I_{min} hibája:

$$\frac{\Delta I_{min}}{I_{min}} = \frac{\Delta b}{b} + \frac{\Delta c}{c} = 57, 4 \cdot 10^{-3}$$
$$\Delta I_{min} = 0, 27A$$

 T_{min} hibája pedig:

$$\Delta T_{min} = \Delta a + \Delta (b \cdot I) + \Delta (c \cdot I^{2})$$

$$\frac{\Delta (b \cdot I)}{(b \cdot I)} = \frac{\Delta b}{b} + \frac{\Delta I_{min}}{I_{min}} = 82, 4 \cdot 10^{-3}$$

$$\Delta (b \cdot I) = 5,06K$$

$$\frac{\Delta (c \cdot I^{2})}{(c \cdot I^{2})} = \frac{\Delta c}{c} + 2\frac{\Delta I_{min}}{I_{min}} = 147, 2 \cdot 10^{-3}$$

$$\Delta (c \cdot I^{2}) = 4,52K$$

Tehát:

$$\Delta T_{min} = 9,58K$$

Mint látható, a parabola illesztés paramétereinek bizonytalansága miatt nagyon nagy hibával kapjuk csak meg a hőmérséklet minimumát és az áramerősséget, amihez tartozik.

6.3. Seebeck együttható mérése

A harmadik táblázatból ábrázoltam a feszültséget a hőmérséklet függvényében (Kelvinben) és egyenest illesztettem:

Az egyenes meredeksége:

$$m = (-11, 12 \pm 0, 02) \frac{mV}{K}$$

Ennek abszolút értéke adja meg a Seebeck együtthatót (a bizonytalanság megegyezik):

$$S_{ab} = (11, 12 \pm 0, 02) \frac{mV}{K}$$

6.4. Más együtthatók meghatározása:

1. Peltier együttható 1:
$$P_{ab}(T_0) = S_{ab}T_0 = 3,26 V$$

2. Peltier együttható 2:
$$P_{ab}(T_{min}) = S_{ab}T_{min} = 2,88 V$$

3. A hűtőelem ellenállása:
$$R_{ab} = \frac{TminS_{ab}}{I_{min}} = 0,62~\Omega$$

4. Peltier elem jósága:
$$z = \frac{T(0) - T_{min}}{T_{min}^2} = 5,09 \cdot 10^{-4} \frac{1}{K}$$

5. A hővezetési együttható:
$$h_{ab}=\frac{S_{ab}^2}{zR_{ab}}=0,39\frac{W}{K}$$

Hibaszámítás

Az előzőekben meghatározott bizonytalanságokból a relatív hibák:

$$\bullet \ \frac{\Delta S_{ab}}{S_{ab}} = 1,71 \cdot 10^{-3}$$

•
$$\frac{\Delta T_0}{T_0} = 0,17 \cdot 10^{-3}$$

$$\bullet \ \frac{\Delta T_{min}}{T_{min}} = 36, 9 \cdot 10^{-3}$$

•
$$\frac{\Delta I_{min}}{I_{min}} = 58,06 \cdot 10^{-3}$$

•
$$\frac{\Delta T(0)}{T(0)} = 0,17 \cdot 10^{-3}$$

A további együtthatók bizonytalanságát a hibaterjedés módszerével határozzuk meg:

1.
$$\frac{\Delta P_{ab1}}{P_{ab1}} = \frac{\Delta T_0}{T_0} + \frac{\Delta S_{ab}}{S_{ab}} = 1,88 \cdot 10^{-3}$$

$$\Delta P_{ab1} = 6.12 \cdot 10^{-3} V$$

2.
$$\frac{\Delta P_{ab2}}{P_{ab2}} = \frac{\Delta T_{min}}{T_{min}} + \frac{\Delta S_{ab}}{S_{ab}} = 38,61 \cdot 10^{-3}$$

$$\Delta P_{ab2} = 11, 12 \cdot 10^{-2} V$$

3.
$$\frac{\Delta R_{ab}}{R_{ab}} = \frac{\Delta T_{min}}{T_{min}} + \frac{\Delta S_{ab}}{S_{ab}} + \frac{\Delta I_{min}}{I_{min}} = 96,67 \cdot 10^{-3}$$

$$\Delta R_{ab} = 5,99 \cdot 10^{-2} \Omega$$

4.
$$\Delta z = \Delta(\frac{T(0)}{T_{min}^2}) + \Delta(\frac{1}{T_{min}})$$

$$\Delta(\frac{T(0)}{T_{min}^2}) = \frac{T(0)}{T_{min}^2} \cdot \left(\frac{\Delta T(0)}{T(0)} + 2\frac{\Delta T_{min}}{T_{min}}\right) = 3, 23 \cdot 10^{-4} \frac{1}{K}$$

$$\Rightarrow \Delta z = 1, 42 \cdot 10^{-4} \frac{1}{K}$$

5.
$$\frac{\Delta h_{ab}}{h_{ab}} = \frac{\Delta R_{ab}}{R_{ab}} + 2\frac{\Delta S_{ab}}{S_{ab}} + \frac{\Delta z}{z} = 37, 9 \cdot 10^{-2}$$

$$\Delta h_{ab} = 0, 15 \frac{W}{K}$$

Itt is látható, hogy az előzőekben említett nagy hibák miatt itt is nagy hibákat kapunk.

6.5. A parabolás közelítés helyességének vizsgálata:

Ahogy láttuk korábban, az illsztett parabola paraméterei csak nagy hibával határozhatóak meg, ezért a következő átalakítást végezzük:

$$T(I) = \frac{\frac{R_{ab}}{2h_{ab}}I^2 + T_0}{\frac{S_{ab}}{h_{ab}} + 1} \to T(I) + \frac{S_{ab}}{h_{ab}}IT(I) = \frac{R_{ab}}{2h_{ab}}I^2 + T_0$$
$$\frac{T(I)}{I} = \frac{R_{ab}}{2S_{ab}} + \frac{h_{ab}}{S_{ab}}\frac{T_0 - T(I)}{I^2}$$

Ezzel az átalakítással kapott koordináta rendszerben $((x,y) \to (\frac{T_0-T(I)}{I^2}, \frac{T(I)}{I}))$ ábrázolom a pontokat és egyenest illesztek rájuk:

Az egyenes meredeksége és eltolása:

$$m = \frac{h_{ab}}{S_{ab}} = (16, 99 \pm 0, 07)A$$

$$b = \frac{R_{ab}}{2S_{ab}} = (29, 58 \pm 0, 46) \frac{A}{K}$$

Ebből megkaphatjuk:

$$h_{ab} = 0,189 \frac{W}{K}$$

$$R_{ab} = 0,66\Omega$$

Hibaszámítás

$$\bullet \ \ \tfrac{\Delta m}{m} = 4,12\cdot 10^{-3}$$

•
$$\frac{\Delta b}{b} = 15,55 \cdot 10^{-3}$$

$$\bullet \ \frac{\Delta S_{ab}}{S_{ab}} = 1,71 \cdot 10^{-3}$$

Tehát a hővezetési együttható és az ellenállás hibája:

$$\frac{\Delta h_{ab}}{h_{ab}} = \frac{\Delta m}{m} + \frac{\Delta S_{ab}}{S_{ab}} = 5,83 \cdot 10^{-3}$$

$$\Rightarrow \Delta h_{ab} = 1,1 \cdot 10^{-3} \frac{W}{K}$$

$$\frac{\Delta R_{ab}}{R_{ab}} = \frac{\Delta b}{b} + \frac{\Delta S_{ab}}{S_{ab}} = 17,26 \cdot 10^{-3}$$

$$\Rightarrow \Delta R_{ab} = 11,39 \cdot 10^{-3} \Omega$$

Itt láthatjuk, hogy sokkal kisebb hibával kapjuk meg a kívánt értékeket.

6.6. A teljestményegyenleg tagjainak meghatározása:

A teljesítményegyenleg:

$$\frac{dQ}{dt} = \frac{dQ_P}{dt} - \frac{1}{2}\frac{dQ_J}{dt} - \frac{dQ_V}{dt} - \frac{dq}{dt} = 0$$

Ahol:

• $\frac{dQ_P}{dt}$ a Peltier effektusból származó teljesítmény:

$$\frac{dQ_P}{dt} = P_{ab}(T_{min}) \cdot I_{min} = 13,39W$$

• $\frac{dQ_J}{dt}$ a Joule-hő teljesítménye:

$$-\frac{1}{2}\frac{dQ_J}{dt} = -\frac{1}{2}R_{ab} \cdot I_{min}^2 = -7,13W$$

 $\bullet \ \frac{dQV}{dt}$ a hővezetési hő teljesítménye:

$$-\frac{dQ_V}{dt} = -h_{ab} \cdot (T_0 - T_{min}) = -6,41W$$

$$-\frac{dq}{dt} = -h_{ab} \cdot (T_0 - T(0)) = -0,075W$$

Látjuk, hogy ezeket összeadva 0-hoz közeli értéket kapunk. Tehát a hővezetési együttható és az ellenállás korrigálásával elfogadhatóbb eredményeket kaptnk. Főleg azért nem pontosan 0 az összeg, mert a T_{min} és I_{min} hibája továbbra is nagyon nagy.

7. Diszkusszió:

Az eredményeket összegezve:

A karakterisztikus idő	$(73 \pm 0, 4)s$
I_{min}	$(4,65\pm0,27)A$
T_{min}	$(259, 5 \pm 9, 58)K$
A Seebeck együttható	$(11, 125 \pm 0, 02) \frac{mV}{K}$
A Peltier együttható $T_0 - ban$	$(3, 26 \pm 0, 006)V$
A Peltier együttható $T_{min} - ben$	$(2,88\pm0,11)V$
A hűtőelem ellenállása	$(0,66\pm0,01)\Omega$
A Peltier elem jósága	$(5,09\pm1,42)\cdot10^{-4}\frac{1}{K}$
A hővezetési együttható	$(0,189\pm0,001)\frac{W}{K}$

Itt már a korrigált ellenállást és hővezetési együtthatót tüntettem fel. A kapott eredményekről elmondhatjuk, hogy a minimális hőmérséklet és a hozzá tartozó áramerősség esetében túl nagy a hiba, tehát nem túl helyes az eredmény. Hasonló a helyzet a többi belőlük származtatott és nem korrigált mennyiségeknél is. Mindez nagyrészt a parabola illesztés hibájából fakad. Ezeken felül úgy gondolom jó eredényeket kaptam.

Hivatkozások

 Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.