Statistics 565 Applied Time Series Analysis

Spring 2019

Homework 3

Due: Mon 02/18/19 @ 6:00pm rutgers.instructure.com/courses/21204

- 1. Problem 3.6 (d) and (f).
- 2. Problem 3.12.
- 3. Problem 4.2.
- 4. Problem 4.3.
- 5. Problem 4.19. Hint: The sequence $\{\theta_1, ..., \theta_6\}$ decays in a particular way. What is the process that has such a general linear representation?
- 6. Consider four AR(2) processes of the form $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$, where $e_t \sim WN(0, \sigma^2)$ for the following values of ϕ_1 and ϕ_2 :
 - (a) $\phi_1 = 0.6$ and $\phi_2 = 0.3$.
 - (b) $\phi_1 = -0.4$ and $\phi_2 = 0.5$.
 - (c) $\phi_1 = 1.2$ and $\phi_2 = -0.7$.
 - (d) $\phi_1 = -1$ and $\phi_2 = -0.6$.
 - (i) Prove that all of the above four processes are stationary.
 - (ii) For each of these processes, compute the ψ_j coefficients in the linear process representation $Y_t = \sum_{j=0}^{\infty} \psi_j e_{t-j}$ for j = 0, 1, 2, 3, 4.
 - (iii) Using the Yule-Walker equations, write a function to compute the autocorrelation coefficients for each of the four processes up to lag 20, and plot them against the lags.