IntroHLT: End-to-end ASR

October 24, 2023

Speech Recognition

- Classical Methods
 - Noisy Channel

$$p_{\Theta}(\mathbf{w}|\mathbf{x}) = \frac{p_{\theta_1}(\mathbf{x}|\mathbf{w}) p_{\theta_2}(\mathbf{w})}{\sum_{\mathbf{w}} p_{\theta_1}(\mathbf{x}|\mathbf{w}) p_{\theta_2}(\mathbf{w})}$$

ASR system has components

$$p_{\Theta}\left(\mathbf{w}|\mathbf{x}\right) = \frac{\sum_{\mathbf{s}} p_{\theta_{1}}\left(\mathbf{x}|\mathbf{s}\right) p_{\theta_{3}}\left(\mathbf{s}|\mathbf{w}\right) p_{\theta_{2}}\left(\mathbf{w}\right)}{\sum_{\mathbf{w},\mathbf{s}} p_{\theta_{1}}\left(\mathbf{x}|\mathbf{s}\right) p_{\theta_{3}}\left(\mathbf{s}|\mathbf{w}\right) p_{\theta_{2}}\left(\mathbf{w}\right)},$$

Speech Recognition

End-to-End Methods

$$p_{\Theta}(\mathbf{w}|\mathbf{x}) = \frac{\sum_{\mathbf{s}} p_{\theta_1}(\mathbf{x}|\mathbf{s}) p_{\theta_3}(\mathbf{s}|\mathbf{w}) p_{\theta_2}(\mathbf{w})}{\sum_{\mathbf{w},\mathbf{s}} p_{\theta_1}(\mathbf{x}|\mathbf{s}) p_{\theta_3}(\mathbf{s}|\mathbf{w}) p_{\theta_2}(\mathbf{w})}, \qquad p_{\Theta}(\mathbf{w}|\mathbf{x}) = f_{\Theta}(\mathbf{x}, \mathbf{w})$$

ullet H, L, G are still present in $f_{igotimes}\left(\mathbf{x},\mathbf{w}
ight)$

Speech Recognition

HMM

Hidden Markov Modeks

The "source-channel" model for automatic speech recognition (ASR)

Hidden Markov models are popular as acoustic models

$$P(\mathbf{A} \mid \mathbf{W}) = \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A}, \mathbf{S} \mid \mathbf{W}) = \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} \mid \mathbf{S}, \mathbf{W}) P(\mathbf{S} \mid \mathbf{W})$$

$$\approx \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P_E(\mathbf{A} \mid \mathbf{S}) P_T(\mathbf{S})$$

$$= \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P_E(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_T \mid s_1, s_2, \dots, s_T) P_T(s_1, s_2, \dots, s_T)$$

$$= \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} \prod_{t=1}^T P_E(\mathbf{a}_t \mid s_t) P_T(s_t \mid s_{t-1})$$

Dynamic programming is popular for "decoding," i.e. for hypothesis search

$$\begin{split} \widehat{\mathbf{W}} &= \arg \max_{\mathbf{W}} P(\mathbf{A} \,|\, \mathbf{W}) P(\mathbf{W}) \\ &= \arg \max_{\mathbf{W}} \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} \,|\, \mathbf{S}) P(\mathbf{S}) P(\mathbf{W}) \\ &\approx \arg \max_{\mathbf{W}} \max_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} \,|\, \mathbf{S}) P(\mathbf{S}) P(\mathbf{W}) \\ &= \arg \max_{\mathbf{W}} \max_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} \log P(\mathbf{A} \,|\, \mathbf{S}) + \log P(\mathbf{S}) + \log P(\mathbf{W}) \\ &\equiv \operatorname{Project} \left(\operatorname{Bestpath} \left(\operatorname{Compose} \left(\mathbf{A}_{\log P(\mathbf{A} \,|\, \mathbf{S})} \circ \mathbf{L}_{\log P(\mathbf{S})} \circ \mathbf{G}_{\log P(\mathbf{W})} \right) \right) \right) \end{split}$$

Composite HMM for "cat and hat"

cat

Composite HMM for "cat and hat"

"Forward" Algorithm

$$P(\mathbf{y}|\mathbf{w}) = \sum_{\mathbf{s} \in \mathcal{S}(\mathbf{w})} P_{\vartheta}(\mathbf{y}|\mathbf{s}) P_{\tau}(\mathbf{s})$$

$$= \sum_{s \in \mathcal{S}(w)} \prod_{i=1}^{n} P_{\vartheta}(y_i|s_i) P_{\tau}(s_i|s_{i-1})$$

Viterbi Algorithm

$$\hat{s} = \arg \max_{s \in S(w)} P(s|y)$$

$$= \arg \max_{s \in \mathcal{S}(w)} \frac{P(y, s)}{P(y)}$$

$$= \arg \max_{s \in \mathcal{S}(w)} \prod_{i=1}^{n} P_{\vartheta}(y_i|s_i) P_{\tau}(s_i|s_{i-1})$$

CTC

Connectionist Temporal Classification

$$\mathcal{L}_{CE}(\boldsymbol{\theta}) = -\log \prod_{i=1}^{n} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{\phi}}_i | y_i)$$

$$\mathcal{L}_{\text{CTC}}(\boldsymbol{\theta}) = -\log \sum_{t} \prod_{i=1}^{t} p_{\boldsymbol{\theta}}(\boldsymbol{\phi}_{t_i} | y_i)$$

$$\mathcal{L}_{\text{HMM}}(\boldsymbol{\vartheta}) = -\log \sum_{t} \prod_{i=1}^{n} p_{\boldsymbol{\vartheta}}(y_i | \boldsymbol{\phi}_{t_i}) p_{\boldsymbol{\vartheta}}(\boldsymbol{\phi}_{t_i} | \boldsymbol{\phi}_{t_{i-1}})$$

cat and hat

and ae n d cat k ae t hat h ae t

Phoneme HMMs

Composite HMM for "cat and hat"

The CTC "Blank" Symbol (β)

FSA of permissible CTC strings for "cat and hat"

	HMIMI State Sequences	k : k : k	k : k : ae	k : k : t	k : ae : ae	k : ae : n	k : ae : d	k : ae : h	k : t : ae	k : t : ae	k : ae : t	k : ae : t	k : ae : t	k : n : t	k : n : t	k : d : t	k : d : t	k : h : t	ae : h : t	t : h : t	ae : h : t	n : ae : t	d : ae : t	h : ae : t	ae : t : t	t : t : t
-	Sequences	β : β : k	β : k : ae	β : β : t	β β β \vdots ae	eta : ae : n	β \vdots ae \vdots d	β : β : h	β : t : ae	β : β : t	β β β β	eta : ae : eta	β β β β	β β β β	β : n : β	β \vdots d \vdots β	β \vdots β	k : h : β	ae : β : β	t : β : β	ae : β : β	n : β : β	d : β : β	h : β : β	ae : ae : β	t : t : β

أأخاخ والحاران ووراحاوا

$$\mathcal{L}_{\text{CTC}}(\boldsymbol{\theta}) = -\log \sum_{t} \prod_{i=1}^{n} p_{\boldsymbol{\theta}}(\boldsymbol{\phi}_{t_i}|y_i)$$

Neural Speech Recognition without HMMs (aka End2End ASR)

"Purely" CTC-Based Speech Recognition Architectures

End-to-End Speech Recognition

arXiv

Deep Speech: Scaling up end-to-end speech recognition

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research - Silicon Valley AI Lab

The CNN Architecture

The CNN+LSTM Architecture

A Bidirectional LSTM Architecture (Deep Speech)

Transducers

(RNN-T)

The Transducer: Inference

- 1 Tokenize transcripts hello there hell o the
 - Transducer produces sequences of scores over a finite set of tokens, called a Vocabulary
 - Vocabulary includes a special symbol, ø, which means move to the next audio sample

The Transducer: Inference

- 1 Tokenize transcripts hello there hell o the re
 - Transducer produces sequences of scores over a finite set of tokens, called a Vocabulary
 - Vocabulary includes a special symbol, ø, which means move to the next audio sample

The Transducer: Training

- igcup The posterior of **one** alignment, a a particular transcript
- ∞ product of scores, $a_{i\prime}$ along alignment path

Many possible alignments

_hell
$$\emptyset$$
 \emptyset o \emptyset _the \emptyset \emptyset re _hell \emptyset o \emptyset \emptyset _the re \emptyset \emptyset _hell \emptyset o \emptyset \emptyset \emptyset \emptyset _the re

Possible alignments of the 4 token sequence

_hell o _the re

with a 9-frame speech utterance

- The posterior of a particular transcript is computed by ma
- Using normalized scores, i.e. via Softmax gives ...

No conditional independence assumption

$$p(y|x) = \sum_{a} \prod_{i=1}^{|a|} a_i (y_0^{i-1}, x)$$

The Transducer: Training Alignment

Score of aligning frame, , t_0 position, u with label, , t_0

$$L \sim (T \times U \times d)$$

Align input frames with output tokens using ø

- All paths are length U + T
- Dynamic programming computes sum over paths

The Transducer: Memory Hungry

$$L \sim (T \times U \times d)$$

- When the vocabulary size is large, i.e., characters in Mandarin ~ 10,000
- When the sequence length is long

Memory Explodes!

15s utterance, 30 character transcript, 10,000 types \rightarrow 0.45 GB with fp16 / utterance

The Transducer: Memory Hungry

- Solution: "Pruned RNN-T for fast, memory-efficient ASR training", Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin, Mingshuang Luo, Zengwei Yao, Daniel Povey, Interspeech 2022
 - Only realize the tensor, L of scores for the top-k scoring positions at each time-step
 - Use a 2-pass method to first prune unlikely paths
 - The first pass uses a "simple" joiner that avoids realizing any large matrices
 - The new tensor of scores, , during the second pass has different dimensions

Encoder Decoder

Encoder-Decoder

RNN-Transducer

Attention

- Both do not use the explicit conditional independence assumptions
- Use of \mathbf{h}_t only versus \mathbf{h}_t for $1, ..., t, ..., T \rightarrow$ Get the future information more efficiently
- The output depends on input frame t or not \rightarrow Online property

Sequence Generation is auto-regressive

$$p\left(\mathbf{y}_0^{N-1}\right) = \prod_{i=0}^{N-1} p\left(\mathbf{y}_i | \mathbf{y}_0^{i-1}\right)$$

- Beam-search
- Almost identical to NMT models

Whisper

Robust Speech Recognition via Large-Scale Weak Supervision

Alec Radford *1 Jong Wook Kim *1 Tao Xu 1 Greg Brockman 1 Christine McLeavey 1 Ilya Sutskever 1

