Definition 21 (Petite sets) A set $C \in \mathcal{B}(\mathcal{X})$ is ν_a -petite if the sample chain satisfies the bound

$$K_a(x,B) \ge \nu_a(B),$$

for all $x \in C$, $B \in \mathcal{B}(\mathcal{X})$, where ν_a is a non-trivial measure on $\mathcal{B}(\mathcal{X})$.

The following shows that every small set is petite.

Proposition 12 If $C \in \mathcal{B}(\mathcal{X})$ is ν_m -small, then C is ν_{δ_m} -petite.

Proof:

Proposition 13

- (i) If $A \in \mathcal{B}(\mathcal{X})$ is ν_a -petite and $D \stackrel{d}{\leadsto} A$, then D is ν_{d*a} -petite, where ν_{d*a} can be chosen as a multiple of ν_a .
- (ii) If Φ is ψ -irreducible and if $A \in \mathcal{B}^+(\mathcal{X})$ is ν_a -petite, then ν_a is an irreducibility measure for Φ .

Proof:

So, the above proposition tells us if we have a petite set, then we can generate an irreducibility measure for Φ . There are other useful properties of petite sets that distinguish them from small sets.

Proposition 14 Suppose Φ is ψ -irreducible.

- (i) If A is ν_a -petite, then there exists a sampling distribution b such that A is also ψ_b -petite where ψ_b is a maximal irreducibility measure.
- (ii) The union of two petite sets is petite.
- (iii) There exists a sampling distribution c, an everywhere strictly positive, measurable function $s: \mathcal{X} \to \mathbb{R}$, and a maximal irreducibility measure ψ_c such that

$$K_c(x, B) \ge s(x)\psi_c(B), \quad x \in \mathcal{X}, \ B \in \mathcal{B}(\mathcal{X}).$$

Thus, there is an increasing sequence $\{C_i\}$ of ψ_c -petite sets, all with the same sampling distribution c and minorizing measure equivalent to ψ with $\cup C_i = \mathcal{X}$.

Proof:

27

We have already seen that every small set is petite. We now show that if Φ is also aperiodic, then every petite set is small.

Theorem 7 If Φ is irreducible and aperiodic, then every petite set is small.

Proof:

1.6 Transience and Recurrence/Harris Recurrence

Definition 22 (Uniform Transience and Recurrence) A set A is called uniformly transient if there exists a real valued number M such that for all $x \in \mathcal{A}$, $\mathbb{E}_x(\eta_A) \leq M$.

A is called recurrent if for all $x \in A$, $\mathbb{E}_x(\eta_A) = \infty$.

Note that in this definition, it is not $U(x,A) := \mathbb{E}_x(\eta_A) = \sum_{n=1}^{\infty} P^n(x,A), x \in \mathcal{X}$. We need another definition here to aid in the discussion.

Definition 23 (Taboo Probabilities) The n-step taboo probability is

$$_{A}P^{n}(x,B) := P_{x}(\Phi_{n} \in B, \tau_{A} \ge n), \quad x \in \mathcal{X}; \ A, B \in \mathcal{B}(\mathcal{X}).$$

 $_AP^n(x,B)$ denotes the probability of a transition to B in n steps of the chain, "avoiding" the set A. The taboo probabilities satisfy the iterative relation

$$_AP^1(x,B) = P(x,B)$$

and for $n \ge 1$

$$_{A}P^{n}(x,B) = \int_{A^{c}} P(x,dy)_{A}P^{n-1}(y,B), \quad x \in \mathcal{X}; \ A,B \in \mathcal{B}(\mathcal{X}).$$

Define

$$U_A(x,B) := \sum_{n=1}^{\infty} {}_A P^n(x,B), \quad x \in \mathcal{X}; \ A,B \in \mathcal{B}(\mathcal{X}).$$

Note also that

$$L(x, A) = U_A(x, A), \quad x \in \mathcal{X}; \ A \in \mathcal{B}(\mathcal{X}).$$

By convention $_{A}P^{0}(x,A)=0.$

Now, for $B \in \mathcal{B}(\mathcal{X})$ consider the event

$$\{\Phi_n \in B\} = \bigcup_{j=1}^{n-1} \{\Phi_n \in B, \tau_A = j\} \cup \{\Phi_n \in B, \tau_A \ge n\}, \quad A \in \mathcal{B}(\mathcal{X}), A \ne B.$$

The sets on the r.h.s. are mutually exclusive. Based on this decomposition we have the first-entrance decomposition

$$P^{n}(x,B) = {}_{A}P^{n}(x,B) + \sum_{i=1}^{n-1} \int_{A} {}_{A}P^{j}(x,dy)P^{n-j}(y,B).$$

Similarly, there exists a decomposition of $\{\Phi_n \in B\}$ into mutually exclusive sets that results in the last-exit decomposition

$$P^{n}(x,B) = {}_{A}P^{n}(x,B) + \sum_{i=1}^{n-1} \int_{A} P^{j}(x,dy) {}_{A}P^{n-j}(y,B).$$