Dato un alfabeto Σ e un linguaggio $L \subseteq \Sigma^*$, $R_L \subseteq \Sigma^* \times \Sigma^*$ è una relazione tra stringhe in Σ^* in cui due stringhe x,y sono in relazione se e solo se ogni loro possibile continuazione z produce stringhe in L o non in L allo stesso modo, sia se applicata a x che se applicata a y.

$$xR_Ly$$
 se e solo se, per ogni $z \in \Sigma^*$, $xz \in L$ se e solo se $yz \in L$

La relazione R_L è una relazione di equivalenza, in quanto:

- xR_Lx per ogni x
- Per ogni x, y, se xR_Ly allora yR_Lx
- Per ogni x, y, z, se xR_Ly e yR_Lz , allora xR_Lz

Quindi, R_L decompone Σ^* in un insieme di classi di equivalenza: indichiamo il numero di tali classi come *indice* della relazione, $i(R_L)$.

Theorem (Myhill-Nerode). L è regolare se e solo se $i(R_L)$ è finito.

Dimostrazione. Per mostrare che L regolare implica che $i(R_L)$ sia finito, supponiamo che L sia regolare, e consideriamo un qualunque ASFD $\mathcal{A}=<\Sigma,Q,\delta,q_0,F>$ che lo riconosce: assumiamo, senza perdita di generalità, che \mathcal{A} abbia un solo stato finale, e quindi che $F=\{q_F\}$. L'automa \mathcal{A} permette di definire una nuova relazione R_A tra stringhe in Σ^* , in cui due stringhe x,y sono in relazione se e solo se la loro lettura porta l'automa da q_0 in uno stesso stato.

$$xR_Ay$$
 se e solo se $\overline{\delta}(q_0,x)=\overline{\delta}(q_0,y)$

Anche R_A è una chiaramente relazione di equivalenza, con un numero di classi al più pari al numero di stati di \mathcal{A} : quindi $i(R_A) \leq |Q|$.

Inoltre, si ha anche che se x e y portano l'automa in uno stesso stato q, ogni loro continuazione z porta \mathcal{A} in uno stesso stato $\overline{\delta}(q,z)$. Ne deriva che se xR_Ay allora xzR_Ayz per ogni $z\in\Sigma^*$.

Osserviamo ora che se xR_Ay , e quindi x e y portano l'automa nello stesso stato q, allora, se $q=q_F$ le due stringhe vengono entrambe accettate, altrimenti vengono entrambe rifiutate. Quindi, se xR_Ay allora $x\in L$ se e solo se $y\in L$, e quindi xR_Ay implica xR_Ly (ma non il vice versa). Ne deriva che se x e y sono nella stessa classe di equivalenza in R_A sono nella stessa classe di equivalenza anche in R_L , per cui in R_A ci sono almeno tante classi quante ce ne sono in R_L , e quindi $i(R_A) \geq i(R_L)$.

Dato che $i(R_A)$ è finito (e pari a |Q|) abbiamo allora che anche $i(R_L)$ è finito.

Per mostrare l'implicazione inversa, che se $i(R_L)$ è finito allora L è regolare, definiamo a partire dall'insieme delle classi di equivalenza di R_L un ASFD $\mathcal{A}=<\Sigma,Q,\delta,q_0,F>$ che riconosce L. La definizione è la seguente:

- per ognuna delle classi di equivalenza [x] di R_L , definiamo uno stato $q_{[x]} \in Q$
- lo stato iniziale è associato alla classe di equivalenza della stringa vuota $q_0=q_{[arepsilon]}$
- uno stato è finale se è associato alla classe di equivalenza di stringhe in L: $F = \{q_{[z]} : z \in L\}$
- per ogni stato $q_{[x]}$ e ogni carattere a, la funzione di transizione porta nello stato corrispondente alla classe di equivalenza associata alla stringa xa, quindi $\delta(q_{[x]},a)=q_{[xa]}$

Il teorema di Myhill-Nerode ha una importante applicazione. Esso può essere utilizzato per minimizzare un dato ASFD \mathcal{A} , vale a dire per costruire l'automa equivalente avente il minimo numero di stati: l'automa \mathcal{A}' introdotto nella dimostrazione del teorema gode infatti di tale proprietà, valendo le seguenti disuguaglianze:

$$|Q| \ge \operatorname{ind}(R_A) \ge \operatorname{ind}(R_L) = |Q'|,$$

il che mostra che \mathcal{A} non può avere un numero di stati inferiore a quello degli stati di \mathcal{A}' . Tale automa \mathcal{A}' gode inoltre della ulteriore proprietà di essere unico (a meno di una ridenominazione degli stati), proprietà che tuttavia non proveremo in questa sede.