

01 | 강사 소개 : 장원중 교수

▲ (현) 가톨릭관동대학교 공과대학 소프트웨어학과 교수 Al리터러시MD 책임교수 / Al융합전공 교수 디지털스포츠헬스케어MD 교수

▲ (현) 강원LRS공유대학 인공지능/컴퓨터 비전/기계학습 책임교수

[저서]

- ◆ 데이터 분석의 모든 것: 입문자를 위한 개념 이해부터 정형·비정형 데이터 분석까지!(2021)
- ◆ 4차 산업혁명, 새로운 제조업의 시대(2017)
- ◆ 4차 산업혁명, 어떻게 시작할 것인가(2016)

[연구분야]

◆ 인공지능(컴퓨터비전,자연어처리), 머신러닝, 빅데이터

[좋아하는 것]

→ 수영, 여행, 등산

😘 교과목 정보

과목명(국문)	강원혁신플랫폼 기계학습	과목명(영문)	Gangwon Innovation Platform Machine Learning	
이수구분	데이터 필수	학점 · 시수	3-3-0	
대상 학년	학부 3학년	개설 학기	2학기	
	■ 원격 (영상물) □ 원격 (실시간+영상물)	ㅁ 대면수업		
수업 운영 방식	기계학습의 전반적인 이론 및 실습 내용을 동영상으로 제공한다. 기계학습의 학습 과정을 상세히 설명하다. 마이썬 프로그래밍을 통해 구현해 본다. 또한, 기계학습 모델 구성 및 결과 해설 역량을 배양한다. 이를 필요한 실습 개발환경 가이드와 실습 스크립트를 제공하여 학생이 스스로 수업에 참여할 수 있도록 한다. 또한, 필요시 원격 실시간 줌(Zoom) 화면으로 학생들이 원활히 학습할 수 있도록 소통하고자 한다 평가 (중간, 기말)는 실시간 원격 평가로 진행			

교원 정보

책임교수	성명	장원중	소속대학	가톨릭관동대학교
	연락처	010-4930-5323	E-mail 주소	wjjang@cku.ac.kr
	성명	조인제	소속대학	가톨릭관동대학교
부책임교수	연락처		E-mail 주소	nall@cku.ac.kr

02 강의소개

😘 수업 개요

- ▲ 본 교과목은 기계학습의 전반적인 개념과 데이터 전처리 및 기계학습 알고리즘 지식습득 과정을 상세히 설명하고 파이썬 프로그래밍을 통해 구현해 본다.
 - ◆ 또한, 기계학습 모델 구성 및 결과 해설 역량을 배양한다.
 - ◆ 기계학습 모델 개발을 위한 데이터 전처리, 지도학습 및 비지도학습 알고리즘 등의 기술요소를 이해함으로 디지털 기술 역량을 배양한다.
 - ◆ 이를 통해 교육 목표를 달성하고 기계학습 기반으로 현실세계의 다양한 문제해결역량을 배양한다.

02 기 강의 소개

🚱 교과 목표

- ▲ 본 교과목을 수강 후 다음이 가능할 것을 기대한다.
 - 1 기계학습의 전반적인 개념을 이해할 수 있다.
 - 파이썬 프로그래밍으로 데이터 전처리를 구현할 수 있다.
 - ③ 기계학습 알고리즘을 이용한 모델 구성 및 결과를 해석할 수 있다.
 - 4 기계학습 기반 현실세계의 다양한 문제 해결방안을 제시할 수 있다.
 - ◆ 기계학습은 인공지능 발전에 매우 중요한 핵심요소이며,
 본 교과목은 수강생들이 기계학습 기반 현실세계의 다양한 문제해결역량 배양을 목표로 한다.

🥝 수업 방법

. \ _\ /_ /			요소	별 평가 비중	(%)			7.7.
강의	토의/토론	실험/실습	현장학습	개별/팀별 발표	문제중심 학습	프로젝트 기반학습	플립러닝	기타
60%		40%		\ \				

😘 학습과정 모니터링

7 H	학습과정 모니터링 방법						
구분	돌발퀴즈	쪽지시험	<u></u> 발표	리포트 제출	학생 면담	기타	
체크(�)	⊘			⊘			

않 성적 평가방법

ᇤ기버나시					요소별 평가 비중 (%)				
	평가방식	중간고사	기말고사	퀴즈	출석	과제	포트폴리오	수업참여	기타
	등급제 (상대/절대)	30%	30%	12.4	20%	20%			

🚱 사용 교재

주교재	자체 제작 교재
부교재	- 사이토고키 (2017), "Deep Learning from Scratch", 한빛미디어 채진석 (2013), "파이썬을 이용한 데이터 분석의 정석", 서울, 루비페이퍼 최성철 (2022), "데이터 과학을 위한 파이썬 머신러닝", 한빛아카데미 - 박동규&강영민 (2021), "으뜸 데이터 분석과 머신러닝", 생능출판 - 오렐리앙 제롱 (2018), "핸즈온 머신러닝", 한빛미디어

02 강의 소개

🥸 주차별 강의 계획

주차명	1	기계9	학습의 기본 개념, 컴퓨터가 데이터에서 배우는 원리, 추론 및 기계학습의 활용을 이해한다.	<u>//</u>
1 10	- N. T.	1	기계학습의 기본 개념	7
	차시명	2	컴퓨터가 데이터에서 배우는 원리	\
	- 7	3	추론 및 기계학습 활용의 개념	1/1
주차명	2	기계	학습의 활용사례, 기계학습의 종류, 기계학습의 주요 도전 과제의 개념을 이해한다.	
		1	기계학습의 활용 사례	h k h
	차시명	2	기계학습 종류	
		3	기계학습의 주요 도전과제	
주차명	3	아나	콘다 개발환경 구축, 결측값과 이상값 처리 개념을 이해한다.	
		1	아나콘다 개발환경구축	V
	차시명	2	결측값 처리 개념	
		3	이상값 처리 개념	
주차명	4	변수	변환 (선형, 비선형, 범주형) 개념을 이해하고 데이터 전처리에 적용한다.	
		1	선형 변환 변수	
	차시명	2	비선형 변환 변수	
		3	범주형 변환 변수	
주차명	5	차원	축소의 개념, 차원 축소를 위한 접근 방법, 주성분 분석을 구현한다.	
		1	차원축소의개념	
	차시명	2	차원 축소를 위한 접근 방법	
		3	주성분 분석 실습	
주차명	6	모넬	테스트 및 검증, Scikit-learn 모듈을 이해하고 기계학습에 적용한다.	
	±1.1100	1	모델 테스트 및 검증	
	차시명	2	Scikit-learn 모듈	
T + I FH	7	3	Scikit-learn 모듈을 이용한 기계학습 맛보기	
주차명	7	_	일반화 전략, 혼동 행렬, 모델 평가, ROC 곡선의 개념을 이해하고 모델 평가를 구현한다.	
	+11109	1	모델일반화전략	
	차시명	3	혼동 행렬 및 모델 평가 □ DOC 고서 및 모델 평가 시스	
	0	3	ROC 곡선 및 모델 평가 실습 조가면기	
	8		중간평가	

🥸 주차별 강의 계획

주차명	9	구글 코랩 개발환경 구축, 계층적 군집 분석의 알고리즘을 이해하고 구현한다.
7/ 1		1 구글 코랩 개발 환경 구축
	차시명	2 계층적 군집 분석
/ \		3 계층적 군집 분석 실습
주차명	10	K-평균 군집 알고리즘을 이해하고 구현한다.
		1 K-평균 군집 알고리즘
	차시명	2 K-평균 군집 실습 (1)
		3 K-평균 군집 실습 (2)
주차명	11	선형 회귀 분석 알고리즘을 이해하고 구현한다.
	차시명	1 선형 회귀 분석 알고리즘
		2 선형 회귀 분석 실습 (1)
		3 선형 회귀 분석 실습 (2)
주차명	12	K-최근접 이웃 알고리즘을 이해하고 구현한다.
		1 K-최근점 이웃 알고리즘
	차시명	2 K-최근접 이웃 분석 실습 (1)
		3 K-최근접 이웃 분석 실습 (2)
주차명	13	합성곱 신경망의 전체 구조, 합성곱 연산, 패딩, 스트라이드, 풀링 계층, im2col, col2im의 개념을 이해하고 구현한다.
		1 합성곱 신경망의 전체구조와 합성곱 연산
	차시명	2 패딩, 스트라이드, 3차원과 4차원 데이터의 합성곱 연산, 합성곱 계층에서 배치 처리의 개념
		3 물링계층, im2col, col2im 데이터 전개의 개념
주차명	14	합성곱 계층, 폴링 계층, SimpleConvNet, CNN 시각화, 층 깊이에 따른 정보 변화의 개념을 이해하고 구현한다.
		1 합성곱 계층 구현
	차시명	2 물링계층구현
		3 SimpleConvNet 구현, CNN 시각화, 층 깊이에 따른 정보 변화
	15	기말고사