Data Structures Graphs

DataLab

November 19, 2016

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
- ApplicationsFinding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexit
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

We are full of Graphs

We are full of Graphs

5/93

We are full of Graphs

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
- Complexity
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

We need NICE representations

First One

Matrix Representation

Second One

Adjacency Representation

We need NICE representations

First One

Matrix Representation

Second One

Adjacency Representation

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexit
- ApplicationsFinding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Adjacency Matrix Representation

This is the simplest one

If we number the nodes of an undirected graph:

Adjacency Matrix Representation

In a natural way the edges can be identified by the nodes

For example, the edge between 1 and 4 nodes gets named as (1,4)

Then

How, we use this to represent the graph through a Matrix or and Array of Arrays??!!!

Adjacency Matrix Representation

In a natural way the edges can be identified by the nodes

For example, the edge between 1 and 4 nodes gets named as (1,4)

Then

How, we use this to represent the graph through a Matrix or and Array of Arrays??!!!

What about the following?

How do we indicate that an edge exist given the following matrix

- You sav it!!
 - Use a 0 for no-edge
 - Use a 1 for edge

What about the following?

How do we indicate that an edge exist given the following matrix

You say it!!

- Use a 0 for no-edge
- Use a 1 for edge

We have then...

Definition

- ullet 0/1 N imes N matrix with N=Number of nodes or vertices
- $\bullet \ A(i,j) = 1 \ \mathrm{iff} \ (i,j) \ \mathrm{is} \ \mathrm{an} \ \mathrm{edge}$

We have then...

For the previous example

Properties of the Matrix for Undirected Graphs

Property One

Diagonal entries are zero.

Property Two

Adjacency matrix of an undirected graph is symmetric

 $A\left(i,j
ight)=A\left(j,i
ight)$ for all i and \jmath

Properties of the Matrix for Undirected Graphs

Property One

Diagonal entries are zero.

Property Two

Adjacency matrix of an undirected graph is symmetric:

$$A(i, j) = A(j, i)$$
 for all i and j

What about direct Graphs!!!

Similar idea

- Use a 0 for no-edge
- Use a 1 for directed edge

Example

We have that

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - The Algorith
 - Example
 - Complexity
- Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

What about the code?

Partial Code

We can try to write it!!!

Operations on a Graph

Operations on a Graph

Most of the basic operations in a graph are:

• Adding an edge – O(1)

Operations on a Graph

- Adding an edge O(1)
- Deleting an edge O(1)

Operations on a Graph

- Adding an edge O(1)
- Deleting an edge O(1)
- ullet Answering the question "is there an edge between i and j" O(1)

Operations on a Graph

- Adding an edge O(1)
- Deleting an edge O(1)
- Answering the question "is there an edge between i and j" O(1)
- ullet Finding the successors of a given vertex O(N)

Operations on a Graph

- Adding an edge -O(1)
- Deleting an edge O(1)
- Answering the question "is there an edge between i and j" O(1)
- Finding the successors of a given vertex O(N)
- ullet Finding (if exists) a path between two vertices $O(N^2)$

Operations on a Graph

- Adding an edge O(1)
- Deleting an edge O(1)
- Answering the question "is there an edge between i and j" O(1)
- Finding the successors of a given vertex O(N)
- Finding (if exists) a path between two vertices $O(N^2)$

Space Drawbacks of This Representation

We need the following amount of space

If you have ${\cal N}$ integers of 4 bytes each, we requiere

$$4 \times N \times N = 4N^2$$

space

Which is a killer!!!

If your graph does not have an edge between any two pair of nodes

What to do?

Space Drawbacks of This Representation

We need the following amount of space

If you have N integers of 4 bytes each, we requiere

$$4 \times N \times N = 4N^2$$

space

Which is a killer!!!

If your graph does not have an edge between any two pair of nodes

What to do?

Space Drawbacks of This Representation

We need the following amount of space

If you have N integers of 4 bytes each, we requiere

$$4 \times N \times N = 4N^2$$

space

Which is a killer!!!

If your graph does not have an edge between any two pair of nodes

So

What to do?

Possible Solutions

If you have an undirected graph

• For an undirected graph, may store only lower or upper triangle (exclude diagonal).

Possible Solutions

If you have an undirected graph

- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
- Space used (Assume Integers): $4 \times \frac{N(N-1)}{2} = 2N(N-1)$

Possible Solutions

If you have an undirected graph

- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
- Space used (Assume Integers): $4 \times \frac{N(N-1)}{2} = 2N(N-1)$

Better

Use Sparse Matrix Representations

We use the sparse Representation of Matrices!!!

23 / 93

We use the sparse Representation of Matrices!!!

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity

 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Definition

Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.

An array of N adjacency lists.

Each adiacency list is a chain.

Definition

Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.

Basically

An array of N adjacency lists.

Each adjacency list is a chain.

Definition

Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.

Basically

An array of N adjacency lists.

Thus

Each adjacency list is a chain.

Space for storage

For undirected or directed graphs $O\left(V+E\right)$

O(1 + degree(v))

Space for storage

For undirected or directed graphs $O\left(V+E\right)$

Search: Successful or Unsuccessful

O(1 + degree(v))

Adjacency lists can readily be adapted to represent weighted graphs

Space for storage

For undirected or directed graphs O(V+E)

Search: Successful or Unsuccessful

O(1 + degree(v))

In addition

Adjacency lists can readily be adapted to represent weighted graphs

ullet Weight function $w:E o\mathbb{R}$

Space for storage

For undirected or directed graphs O(V + E)

Search: Successful or Unsuccessful

O(1 + degree(v))

In addition

Adjacency lists can readily be adapted to represent weighted graphs

- Weight function $w: E \to \mathbb{R}$
- The weight w(u,v) of the edge $(u,v) \in E$ is simply stored with vertex v in u's adjacency list

Possible Disadvantage

When looking to see if an edge exist

There is no quicker way to determine if a given edge (u,v)

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity

 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

What about the code?

Partial Code

We can try to write it!!!

Why?

Do you have any examples?

Why?

Do you have any examples?

- Search for paths satisfying various constraints
- Shortest Path
- Visit some sets of vertices
- Tours
- Search for subgraphs
 - ▶ Isomornhisms

Why?

Do you have any examples?

- Search for paths satisfying various constraints
 - ► Shortest Path
 - Visit some sets of vertices
- ► Tours
- Search for subgraphs
 - ▶ Isomorphisms

Why?

Do you have any examples?

- Search for paths satisfying various constraints
 - ▶ Shortest Path
- Visit some sets of vertices
 - Tours
- Search for subgraphs
 - ▶ Isomorphisms

Why?

Do you have any examples?

- Search for paths satisfying various constraints
 - ▶ Shortest Path
- Visit some sets of vertices
 - ► Tours
- Search for subgraphs
 - ▶ Isomornhisms

Why?

Do you have any examples?

- Search for paths satisfying various constraints
 - ▶ Shortest Path
- Visit some sets of vertices
 - ► Tours
- Search for subgraphs

Why?

Do you have any examples?

- Search for paths satisfying various constraints
 - ▶ Shortest Path
- Visit some sets of vertices
 - ► Tours
- Search for subgraphs
 - Isomorphisms

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First SearchThe Algorithm
 - Ine Algorithn
 - Example
 - Complexity
 - Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Breadth-first search

Definition

Given a graph G=(V,E) and a source vertex s, breadth-first search systematically explores the edges of Gto "discover" every vertex that is reachable from the vertex s

A vertex is discovered the first time it is encountered during the search

Breadth-first search

Definition

Given a graph G=(V,E) and a source vertex s, breadth-first search systematically explores the edges of Gto "discover" every vertex that is reachable from the vertex s

Something Notable

A vertex is discovered the first time it is encountered during the search

- Given a node u, we have that
 - ▶ color is a field indicating
 - * WHITE Never visited node
 - * GRAY Node pointer is at the Queue Q
 - BLACK Node has been visited and processed

Color

- Given a node u, we have that
 - lacktriangledown color is a field indicating

★ BLACK Node has been visited and processed

- ullet Given a node u, we have that
 - ► color is a field indicating
 - ★ WHITE Never visited node

- Given a node u, we have that
 - ► color is a field indicating
 - ★ WHITE Never visited node
 - \star GRAY Node pointer is at the Queue Q

- ullet Given a node u, we have that
 - color is a field indicating
 - ★ WHITE Never visited node
 - \star GRAY Node pointer is at the Queue Q
 - ★ BLACK Node has been visited and processed

Distance d

- \bullet Given a node u, we have that
 - lacktriangleright d is a field indicating the distance from the node source s so far

Predecesor π

- \bullet Given a node u, we have that
 - $\blacktriangleright \ \pi$ is a field indicating who is the immediate predecessor of u in the path from s to u

Algorithm

- 1. **for** each vertex $u \in G.V \{s\}$
- u.color = WHITE
- 3. $u.d = \infty$
- 4. $u.\pi = NIL$

Algorithm

- 1. for each vertex $u \in G.V \{s\}$
- 2. u.color = WHITE
- 3. $u.d = \infty$
- 4. $u.\pi = NIL$
- 5. s.color = GRAY
- 6. s.d = 0
- 7. $s.\pi = NIL$
- 8. $Q = \emptyset$

Algorithm

- 1. **for** each vertex $u \in G.V \{s\}$
- 2. u.color = WHITE
- 3. $u.d = \infty$
- $u.\pi = NIL$
- 5. s.color = GRAY
- 6. s.d = 0
- 7. $s.\pi = NIL$
- 8. $Q = \emptyset$
- 9. Enqueue(Q, s)

Algorithm

- 1. **for** each vertex $u \in G.V \{s\}$
- 2. u.color = WHITE
- 3. $u.d = \infty$
- 4. $u.\pi = NIL$
- 5. s.color = GRAY
- 6. s.d = 0
- 7. $s.\pi = NIL$
- 8. $Q = \emptyset$
- 9. Enqueue(Q, s)

- $10. \ \ \text{while} \ Q \neq \emptyset$
- $11. \hspace{1.5cm} u = \mathsf{Dequeue}(Q)$

Algorithm

- 1. **for** each vertex $u \in G.V \{s\}$
- 2. u.color = WHITE
- 3. $u.d = \infty$
- 4. $u.\pi = NIL$
- 5. s.color = GRAY
- 6. s.d = 0
- 7. $s.\pi = NIL$
- 8. $Q = \emptyset$
- 9. Enqueue(Q, s)

- 10. while $Q \neq \emptyset$
- 11. $u = \mathsf{Dequeue}(Q)$
- 12. for each $v \in G.Adj[u]$

Breadth-First Search Algorithm

Algorithm

$$\mathsf{BFS}(G,s)$$

- 1. **for** each vertex $u \in G.V \{s\}$
- 2. u.color = WHITE
- 3. $u.d = \infty$
- 4. $u.\pi = NIL$
- 4. $u.\pi = NIL$
- 5. s.color = GRAY
- 6. s.d = 0
- 7. $s.\pi = NIL$
- 8. $Q = \emptyset$
- 9. Enqueue(Q, s)

- 10. while $Q \neq \emptyset$
- 11. $u = \mathsf{Dequeue}(Q)$
- 12. **for** each $v \in G.Adj[u]$
- 13. **if** v.color == WHITE14. v.color = GRAY
 - $v.color = \mathsf{GRAY}$
- 15. v.d = u.d + 1
- 16. $v.\pi = u$
- 17. $\mathsf{Enqueue}(Q, v)$

DataLab

Data Science Community

Breadth-First Search Algorithm

Algorithm

$$\begin{aligned} \mathsf{BFS}(G,s) \\ 1. \ \ \text{for each vertex} \ u \in G.V - \{s\} \end{aligned}$$

- 2. u.color = WHITE
- 3. $u.d = \infty$
- *u.u* = ∞
- 4. $u.\pi = NIL$
- 5. s.color = GRAY
- 5. s.color = GRAY
- 6. s.d = 07. $s.\pi = NIL$
- 0.00
- 8. $Q = \emptyset$
- 9. Enqueue(Q, s)

10. while $Q \neq \emptyset$

15.

- 11. $u = \mathsf{Dequeue}(Q)$
- 12. **for** each $v \in G.Adj[u]$
- 13. **if** v.color == WHITE14. v.color = GRAY
 - v.color = GRAYv.d = u.d + 1
- 16. $v.\pi = u$
- ${\bf 17.} \hspace{1.5cm} {\bf Enqueue}(Q,v)$
- 18. u.color = BLACK

Change the Order of Recursion

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexity
 - Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexity
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

What about the outer loop?

 ${\cal O}(V)$ Enqueue / Dequeue operations – Each adjacency list is processed only once.

The sum of the lengths of f all the adjacency lists is $\Theta(E)$ so the scanning takes O(E)

What about the outer loop?

 ${\cal O}(V)$ Enqueue / Dequeue operations – Each adjacency list is processed only once.

What about the inner loop?

The sum of the lengths of f all the adjacency lists is $\Theta(E)$ so the scanning takes O(E)

Overhead of Creation

O(V)

Overhead of Creation

O(V)

Then

Total complexity O(V + E)

Properties: Predecessor Graph

Something Notable

Breadth-First Search constructs a Breadth-First Tree, initially containing only its root, which is the source vertex \boldsymbol{s}

Thus

We say that u is the predecessor or parent of v in the breadth-first tree.

Properties: Predecessor Graph

Something Notable

Breadth-First Search constructs a Breadth-First Tree, initially containing only its root, which is the source vertex s

Thus

We say that \boldsymbol{u} is the predecessor or parent of \boldsymbol{v} in the breadth-first tree.

For example

For example

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

 $\delta(s,v) = \text{shortest path from } s \text{ to } v$

Upon termination of BFS, every vertex $v \in V$ reachable from s has

 $v.d = \delta(s, v)$

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

We have the following function

 $\delta\left(s,v\right)=$ shortest path from s to v

Upon termination of BFS, every vertex $v \in V$ reachable from s has

 $v.d = \delta(s, v)$

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

We have the following function

 $\delta\left(s,v\right)=$ shortest path from s to v

We claim that

Upon termination of BFS, every vertex $v \in V$ reachable from s has

$$v.d = \delta(s, v)$$

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexity
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Depth-first search

Given G

- Pick an unvisited vertex v, remember the rest.
 - ► Recurse on vertices adjacent to v

Outline

- - Graphs Everywhere
- - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
- Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Code for DFS

DFS(G)

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$

Code for DFS

DFS(G)

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0

Code for DFS

DFS(G)

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. **for** each vertex $u \in G.V$
- 6. **if** u.color = WHITE
- 7. **DFS-VISIT**(G, u)

Code for DFS

$\mathsf{DFS}(G)$

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. **for** each vertex $u \in G.V$
- 6. **if** u.color = WHITE
- 7. **DFS-VISIT**(G, u)

- 1. time = time + 1
- 2. u.d = time
- 3. u.color = GRAY

Code for DFS

$\mathbf{DFS}(G)$

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. **for** each vertex $u \in G.V$
- 6. **if** u.color = WHITE
- 7. **DFS-VISIT**(G, u)

- 1. time = time + 1
- 2. u.d = time
- 3. u.color = GRAY
- 4. **for** each vertex $v \in G.Adj[u]$

Code for DFS

$\mathbf{DFS}(G)$

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. **for** each vertex $u \in G.V$
- 6. **if** u.color = WHITE
- 7. $\mathbf{DFS\text{-}VISIT}(G, u)$

- 1. time = time + 1
- 2. u.d = time
- 3. u.color = GRAY
- 4. **for** each vertex $v \in G.Adj[u]$
- 5. **if** v.color == WHITE
- $v.\pi = u$
- 7. $\mathbf{DFS\text{-}VISIT}(G, v)$

Code for DFS

$\mathsf{DFS}(G)$

- 1. **for** each vertex $u \in G.V$
- 2. u.color = WHITE
- 3. $u.\pi = NIL$
- 4. time = 0
- 5. **for** each vertex $u \in G.V$
- 6. **if** u.color = WHITE
- 7. $\mathbf{DFS\text{-}VISIT}(G, u)$

- 1. time = time + 1
- 2. u.d = time
- 3. u.color = GRAY
- 4. **for** each vertex $v \in G.Adj[u]$
- 5. **if** v.color == WHITE
- $v.\pi = u$
- 7. **DFS-VISIT**(G, v)
- 8. u.color = BLACK
- 9. time = time + 1
- 10. u.f = time

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Complexity
 - Applications

 Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

- **①** The loops on lines 1–3 and lines 5–7 of DFS take $\Theta(V)$.
- ♠ The procedure DFS-VISIT is called exactly once for each vertex
- $v \in V$.
- lacksquare During an execution of DFS-VISIT(G,v) the loop on lines 4–7
- executes $|Adj\left(v
 ight)|$ times.
- But $\sum_{v \in V} |Adj(v)| = \Theta(E)$ we have that the cost of executing g lines 4–7 of DFS-VISIT is $\Theta(E)$.
 - lines 4–7 of DF3-VISIT is $\Theta(E)$.

- **①** The loops on lines 1–3 and lines 5–7 of DFS take $\Theta(V)$.
- ② The procedure DFS-VISIT is called exactly once for each vertex $v \in V$.

- But $\sum_{v \in V} |Adj(v)| = \Theta(E)$ we have that the cost of execution lines A of DES VISIT is $\Theta(E)$
- en

- **1** The loops on lines 1–3 and lines 5–7 of DFS take $\Theta(V)$.
- ② The procedure DFS-VISIT is called exactly once for each vertex $v \in V$.
- ① During an execution of DFS-VISIT(G,v) the loop on lines 4–7 executes |Adj(v)| times.

- **1** The loops on lines 1–3 and lines 5–7 of DFS take $\Theta(V)$.
- ② The procedure DFS-VISIT is called exactly once for each vertex $v \in V$.
- ① During an execution of DFS-VISIT(G, v) the loop on lines 4–7 executes |Adj(v)| times.
- **③** But $\sum_{v \in V} |Adj(v)| = \Theta(E)$ we have that the cost of executing g lines 4–7 of DFS-VISIT is $\Theta(E)$.

Analysis

- **①** The loops on lines 1–3 and lines 5–7 of DFS take $\Theta(V)$.
- ② The procedure DFS-VISIT is called exactly once for each vertex $v \in V$.
- ① During an execution of DFS-VISIT(G, v) the loop on lines 4–7 executes |Adj(v)| times.
- **③** But $\sum_{v \in V} |Adj(v)| = \Theta(E)$ we have that the cost of executing g lines 4–7 of DFS-VISIT is $\Theta(E)$.

Then

DFS complexity is $\Theta(V+E)$

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms
- Artificial Intelligence Algorithms
- Importance in Social Network
- a Pank Algorithms for Googla
- Rank Algorithms for Google
- Etc.

- Finding a path between nodes
- Strongly Connected Components

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review
- (i = i i i)
- Computer vision Algorithms
- Artificial Intelligence Algorithms
- Importance in Social Network
-
- Rank Algorithms for Google
- a Etc

We have several

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)

DataLab
Data Science Community

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms
- Artificial Intelligence Algorithms

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms
- Artificial Intelligence Algorithms
- Importance in Social Network

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms
- Artificial Intelligence Algorithms
- Importance in Social Network
- Rank Algorithms for Google

- Finding a path between nodes
- Strongly Connected Components
- Spanning Trees
- Topological Sort The Program (or Project) Evaluation and Review (PERT)
- Computer Vision Algorithms
- Artificial Intelligence Algorithms
- Importance in Social Network
- Rank Algorithms for Google
- Etc.

Outline

- Graphs
 - Graphs Everywhere
- Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

We do the following

- ullet Start a breadth-first search at vertex v.
- Terminate when vertex u is visited or when Q becomes empty (whichever occurs first).

We do the following

- ullet Start a breadth-first search at vertex v.
- ullet Terminate when vertex u is visited or when Q becomes empty (whichever occurs first).

- ullet $O\left(V^2
 ight)$ when adjacency matrix used
- \bullet O(V+E) when adjacency lists used.

We do the following

- ullet Start a breadth-first search at vertex v.
- ullet Terminate when vertex u is visited or when Q becomes empty (whichever occurs first).

Time Complexity

 \circ $O(V^2)$ when adjacency matrix used.

We do the following

- ullet Start a breadth-first search at vertex v.
- Terminate when vertex u is visited or when Q becomes empty (whichever occurs first).

Time Complexity

- ullet $O(V^2)$ when adjacency matrix used.
- O(V+E) when adjacency lists used.

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

We have the following function

 $\delta\left(s,v\right)\!\!=\!$ shortest path from s to v

Upon termination of BFS, every vertex $v \in V$ reachable from s has $\operatorname{distance}(v) = \delta(s,v)$

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

We have the following function

 $\delta\left(s,v\right)\!\!=\!$ shortest path from s to v

Upon termination of BFS, every vertex $v \in V$ reachable from s has distance $(v) = \delta(s, v)$

This allow to use the Algorithm for finding The Shortest Path

Clearly

This is the unweighted version or all weights are equal!!!

We have the following function

 $\delta\left(s,v\right)\!\!=\!$ shortest path from s to v

We claim that

Upon termination of BFS, every vertex $v \in V$ reachable from s has $\mathrm{distance}(v) = \delta(s,v)$

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Connected Components

Definition

A connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths.

Connected Components

Definition

A connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths.

Example

First

Start a breadth-first search at any as yet unvisited vertex of the graph.

Thi

Newly visited vertices (plus edges between them) define a component

Repeat until all vertices are visited.

First

Start a breadth-first search at any as yet unvisited vertex of the graph.

Thus

Newly visited vertices (plus edges between them) define a component.

Repeat until all vertices are visited.

First

Start a breadth-first search at any as yet unvisited vertex of the graph.

Thus

Newly visited vertices (plus edges between them) define a component.

Repeat

Repeat until all vertices are visited.

Time

 $O(V^2)$

When adjacency matrix used

O(V+E)

When adjacency lists used (E is number of edges)

Time

$O(V^2)$

When adjacency matrix used

O(V+E)

When adjacency lists used (E is number of edges)

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
 - Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Spanning Tree with edges with same weight of no weight

Definition

A spanning tree of a graph $G=(V\!,E)$ is a acyclic graph where for $u,v\in V\!$, there is a path between them

Spanning Tree with edges with same weight of no weight

Definition

A spanning tree of a graph G=(V,E) is a acyclic graph where for $u,v\in V$, there is a path between them

First

Start a Breadth-First Search at any vertex of the graph.

Thus

If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (Breadth-First Spanning Tree).

First

Start a Breadth-First Search at any vertex of the graph.

Thus

If graph is connected, the n-1 edges used to get to **unvisited vertices** define a spanning tree (**Breadth-First Spanning Tree**).

Time

$O(V^2)$

When adjacency matrix used

O(V+E)

When adjacency lists used (E is number of edges)

Time

$O(V^2)$

When adjacency matrix used

O(V+E)

When adjacency lists used (${\cal E}$ is number of edges)

86 / 93

Outline

- Graphs
 - Graphs Everywhere
- 2 Graph Representation
 - Introduction
 - Matrix Representation
 - Possible Code for This Representation
 - Adjacency List Representation
 - Possible Code for This Representation
- 3 Traversing the Graph
 - Breadth-first search
 - Example
 - Complexity and Properties
 - Depth-First Search
 - The Algorithm
 - Example
 - Complexity
- 4 Applications
 - Finding a path between nodes
 - Connected Components
 - Spanning Trees
 - Topological Sorting

Topological Sorting

Definitions

A topological sort (sometimes abbreviated topsort or toposort) or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u,v) from vertex u to vertex y, u comes before v in the ordering.

Topological Sorting

Definitions

A topological sort (sometimes abbreviated topsort or toposort) or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u,v) from vertex u to vertex y, u comes before v in the ordering.

From Industrial Engineering

 The canonical application of topological sorting (topological order) is in scheduling a sequence of jobs or tasks based on their dependencies.

Topological Sorting

Definitions

A topological sort (sometimes abbreviated topsort or toposort) or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u,v) from vertex u to vertex y, u comes before v in the ordering.

From Industrial Engineering

- The canonical application of topological sorting (topological order) is in scheduling a sequence of jobs or tasks based on their dependencies.
- Topological sorting algorithms were first studied in the early 1960s in the context of the PERT technique for scheduling in project management (Jarnagin 1960).

Then

We have that

The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started.

When washing

When washing clothes, the washing machine must finish before we put thee clothes to dry.

A topological sort gives an order in which to perform the jobs...

Then

We have that

The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started.

Example

When washing clothes, the washing machine must finish before we put the clothes to dry.

A topological sort gives an order in which to perform the jobs.

Then

We have that

The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started.

Example

When washing clothes, the washing machine must finish before we put the clothes to dry.

Then

A topological sort gives an order in which to perform the jobs.

Algorithm

TOPOLOGICAL-SORT

lacksquare Call DFS(G) to compute finishing times v.f for each vertex v.

Algorithm

TOPOLOGICAL-SORT

- Call $\mathsf{DFS}(G)$ to compute finishing times v.f for each vertex v.
- 2 As each vertex is finished, insert it onto the front of a linked list

Algorithm

TOPOLOGICAL-SORT

- Call $\mathsf{DFS}(G)$ to compute finishing times v.f for each vertex v.
- 2 As each vertex is finished, insert it onto the front of a linked list
- Return the linked list of vertices

Example

Thus

Using the u.f

As each vertex is finished, insert it onto the front of a linked list

Example

