Intro a la Probabilidad y estadística

Martes y Jueves Aula B17 Dra Ana Georgina Flesia

- La distribución Gamma es una familia bi-paramétrica de distribuciones de probabilidad continua muy versatil.
- Las distribuciones Exponencial, Erlang y Chi-cuadrado son casos especiales de esta familia de distribuciones.
- Las densidades correspondientes a distribuciones de esta familia son sesgadas a derecha.

- Hay dos parametrizaciones equivalentes en uso
 - Con parámetro de forma α y parámetro de escala β
 - Con parámetro de forma α y parámetro de escala inverso $\lambda=1/\beta$, llamado el parámetro de tasa.
- En ambos casos, los parámetros son números reales positivos.

- Esta familia de distribuciones tiene importantes aplicaciones en muchos campos, como econometría, estadística Bayesiana, testeo de longevidad y confiabilidad (o fiabilidad) de procesos instrumentales.
 - En econometría la parametrización con forma α y escala β es común para modelar tiempos de espera,
 - Estimación Bayesiana favorece la parametrización en forma α y tasa λ para uso como distribución a priori conjugada.
- En ambos casos, los parámetros son números reales positivos.

La función gamma, muy importante en muchas ramas de la matemática, es parte de la definición de la función de densidad de probabilidad de la familia Gamma

Función Gamma de Euler Γ

Para $\alpha>0$, la función Gamma evaluada en α esta definida como

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

Propiedades de la función Gamma de Euler

- 1. $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$ para cualquier $\alpha > 1$
- $2. \Gamma(n) = (n-1)! \ \forall n \in N$
- 3. $\Gamma(1/2) = \sqrt{\pi}$

Caracterización usando forma α y tasa λ

Variable aleatoria $X \sim \Gamma(\alpha, \lambda)$

Para $\alpha,\lambda>0$, Se dice que una variable aleatoria X tiene distribución Gamma con parámetros de forma α y tasa $\lambda, X \sim \Gamma(\alpha,\lambda)$, si función densidad de probabilidad es

$$f_X(x,\alpha,\lambda) = \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}$$

Caracterización usando forma α y escala β

Variable aleatoria $X \sim \Gamma(\alpha, \beta)$

Se dice que una variable aleatoria X tiene distribución Gamma con parámetros forma α y escala θ si la función de densidad de probabilidad es

$$f_X(x,\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} & \text{si } x \ge 0\\ 0 & \text{en otro caso} \end{cases}$$

Esperanza y varianza de una distribución Gamma

 La media de una distribución Gamma esta dada por el producto de sus parámetros

$$\mu = \alpha \beta = \alpha / \lambda$$

2. La varianza es

$$\sigma^2 = \alpha \beta^2 = \alpha / \lambda^2$$

3. La raíz cuadrada del parámetro de forma es el coeficiente de variación

$$\sigma/\mu = 1/\sqrt{\alpha}$$

Propiedad

Si $X \sim \Gamma(\alpha, \lambda)$ y a > 0 entonces $aX \sim \Gamma(\alpha, \lambda/a)$

Variable aleatoria $X \sim \chi^2(k)$

Se dice que una variable aleatoria X tiene distribución Chi cuadrado con k grados de libertad, $X \sim \chi^2(k)$, si función densidad de probabilidad de X es

$$f_X(x,k) = \begin{cases} \frac{1}{2^{k/2}\Gamma(k/2)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} & \text{si } x \ge 0\\ 0 & \text{en otro caso} \end{cases}$$

Notación: $X \sim \chi^2(k) = \Gamma(k/2, \lambda = 1/2) = \Gamma(k/2, \beta = 2)$.

Distribución Chi cuadrado con k grados de libertad

Propiedades

1. Si $X \sim \chi^2(k)$ entonces

$$E(X) = k \quad Var(X) = 2k$$

2. Si Z_1, \dots, Z_n son variables normales estándar independientes, entonces la variable definida como

$$X = Z_1^2 + \dots + X_n^2$$

tiene distribución Chi cuadrado con n grados de libertad.

3. Una variable Chi cuadrado con 2 grados de libertad es una variable con distribución exponencial con tasa $\lambda=1/2$

$$X \sim \chi^2(2) = \Gamma(2/2, \lambda = 1/2) = \Gamma(1, \lambda = 1/2) = \mathcal{E}(1/2)$$

Distribución Chi cuadrado con k grados de libertad

Cuantiles

Si X es una variable chi cuadrado con n grados de libertad, entonces para todo $\alpha \in (0,1)$ la cantidad $\chi^2_{\alpha,n}$ esta definida tal que

$$P(X \ge \chi^2_{\alpha,n}) = \alpha$$

Ejemplo

Si X es una variable Chi cuadrado con 26 grados de libertad, determine $P(X_2^2 6 \leq 30.435)$

$$P(X \le 30.435) = 1 - P(X \ge 30.435) \sim 1 - 0.25 = 0.75$$

Ejemplo

Hallar los puntos críticos para una $X \sim \chi^2(10)$ tales que

1. el área de la cola superior sea igual a 0.025

$$P(X \ge \chi_{10}^2) = 0.025$$
 entonces $\chi_{10}^2 = 20.483$

2. el área de la cola inferior sea igual a 0.025

$$P(X \le \chi^2_{10}) = 0.025$$
 entonces $P(X \ge \chi^2_{10}) = 1 - 0.025 = 0.975$ $\chi^2_{10} = 3.247$

Distribución Chi cuadrado con k grados de libertad

Ejemplo

Supongamos que estamos intentando localizar un objetivo en un espacio tridimensional, y que los errores de las coordenadas (en metros) del punto elegido son variables aleatorias normales independientes con media 0 y desviación estándar 2. Encuentre la probabilidad de que la distancia entre el punto elegido y el objetivo supere los 3 metros.

Distribución Chi cuadrado con k grados de libertad

Resolución

Si D es la distancia entonces

$$D^2 = X_1^2 + X_2^2 + X_3^2$$

donde X_i es el error en la i-esima coordenada y por hipótesis tienen distribución normal con media cero y desviación estándar 2. Defino $Z_i = X_i/2, \ i=1,2,3$, entonces Z_i son todas variables aleatorias normales estándar y

$$P(D^{2} > 9) = P(X_{1}^{2} + X_{2}^{2} + X_{3}^{2} > 9)$$

$$= P(Z_{1}^{2} + Z_{2}^{2} + Z_{3}^{2} > 9/4)$$

$$= P(\chi_{3}^{2} > 2.25) \sim 0.525$$

pues 2.55 está entre 2.109(p=0.55) y 2.366(p=0.5)

Distribución exponencial de tasa λ

Variable aleatoria $X \sim \mathcal{E}(\lambda)$

Recordemos que se dice que una variable aleatoria X tiene distribución Exponencial con tasa λ , $X \sim \mathcal{E}(\lambda)$, si función densidad de probabilidad es

$$f_X(x,\lambda) = \lambda \exp^{-\lambda x} = \frac{\lambda^1 x^{1-1} e^{-\lambda x}}{\Gamma(1)} \quad x > 0$$

por lo cual si X tiene distribución exponencial de tasa λ , entonces también tiene distribución Gamma con parámetro de forma $\alpha=1$ y tasa λ .

Notación: $X \sim \mathcal{E}(\lambda) = \Gamma(1, \lambda)$

Variable aleatoria $X \sim \mathcal{E}(\lambda)$

Propiedades

1. Si $X \sim \mathcal{E}(\lambda)$ entonces

$$\mu = 1/\lambda$$
 $\sigma^2 = 1/\lambda^2$

2.

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

3. Si $t \ge 0$ entonces $P(X \ge t + t_0 | X \ge t)$ para todo t > 0

Variable aleatoria $X \sim \mathcal{E}(\lambda)$

Propiedades

1. Si tenemos varias variables exponenciales $X_i \sim \mathcal{E}(\lambda_i)$ para las cuales los eventos $(X_i > x)$ son independientes entre si, entonces

$$P[\min(X_1, \cdots, X_n) > x] = e^{-\sum_{i=1}^n \lambda_i x}$$

Por lo cual, la variable $X = \min(X_1, \dots, X_n)$ tiene distribución exponencial con tasa $\sum_{i=1}^{n} \lambda_i$.

2. Si $X \sim \mathcal{E}(\lambda)$ entonces para todo c > 0, la variable $cX \sim \mathcal{E}(\frac{\lambda}{c})$

Variable aleatoria $X \sim \mathcal{E}(\lambda)$

Propiedades

- Esta distribución es muy utilizada para modelar, por ejemplo, el tiempo de vida o duración de determinados componentes.
- La propiedad enunciada en el item (c) es conocida como carencia de memoria y puede entenderse como que no tiene en cuenta el efecto desgaste producido por el paso del tiempo.
- Existen otras distribuciones alternativas como la distribución Weilbull y la lognormal para modelar paso del tiempo que modelan otro tipo de decaimiento.

Definición

Se dice que una variable aleatoria X tiene distribución Weibull con parámetros α y β si su función densidad de probabilidad es

$$f_X(x,\alpha,\beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-(\frac{x}{\beta})^{\alpha}} & \text{si } x \ge 0\\ 0 & \text{en otro caso} \end{cases}$$

con α y β números positivos. Notación $X \sim W(\alpha, \beta)$

Proposición

Sea X una variable aleatoria con distribución Weibull con parámetros α y β entonces

- 1. Si $\alpha = 1$ entonces $W(1, \beta) = \mathcal{E}(1/\beta)$
- 2. La función de distribución acumulada es

$$F(x) = \begin{cases} 1 - e^{-(\frac{x}{\beta})^{\alpha}} & \text{si } x > 0 \\ 0 & \text{en otro caso} \end{cases}$$

3.
$$E(X)=\beta\Gamma(1+\frac{1}{\alpha})$$
 y $Var(X)=\beta^2[\Gamma(1+\frac{2}{\alpha})-\Gamma(1+\frac{1}{\alpha})^2]$ con α y β números positivos.

Variable aleatoria Log-normal

Definición

Se dice que una variable aleatoria X tiene distribución Log-normal con parámetros μ y σ^2 si la variable aleatoria $Y=\ln X \sim N(\mu,\sigma^2)$. Entonces su función densidad de probabilidad es

$$f_X(x) = \begin{cases} \frac{1}{x\sqrt{2\pi\sigma^2}} e^{\frac{(\ln(x) - \mu)^2}{2\sigma^2}} & \text{si } x > 0\\ 0 & \text{en otro caso} \end{cases}$$

con $\mu \in \mathbb{R}$ y $\sigma > 0$. Notación $X \sim lognormal(\mu, \sigma^2)$

Variable aleatoria Log-normal

Proposición

Sea X una variable aleatoria con distribución Log-normal con parámetros μ y σ entonces

La función de distribución acumulada es

$$F(x) = \begin{cases} \Phi(\frac{\ln(x) - \mu}{\sigma}) & \text{si } x > 0\\ 0 & \text{en otro caso} \end{cases}$$

donde Φ es la función de distribución acumulada de la normal estándar.

2.
$$E(X) = e^{\mu + \sigma^2} \text{ y } Var(X) = e^{2\mu + \sigma^2} [e^{\sigma^2} - 1]$$