5. Exercise sheet

Due by: Friday, 24 May 2024, 11:59 pm (CEST)

Please refer to Assignment Submission Guideline on Moodle

The next exercise sessions will be held 27.-28.5.2024

Problem 1. Determine the ANOVA decomposition for

$$f(x_1, x_2) = 12x_1 + 6x_2 - 6x_1x_2$$

and compute the associated variances σ_1^2 , σ_2^2 and σ_{12}^2 . The underlying measure is the uniform probability measure on $[0,1]^2$. (See also pp. 71–72 in the course textbook for an explanation about the ANOVA decomposition.)

Problem 2. Let $\pi_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$. In this task, we will consider the problem of approximating integrals

$$\int_{-\infty}^{\infty} f(x)\pi_X(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} w_i f(x_i) \tag{1}$$

by generating an appropriate quadrature rule with positive weights $(w_i)_{i=1}^n$ and nodes $(x_i)_{i=1}^n$.

In this case, the sequence of polynomials H_k orthogonal with respect to the inner product $\langle p,q\rangle_{\pi_X}=\int_{-\infty}^{\infty}p(x)q(x)\pi_X(x)\,\mathrm{d}x$ can be characterized by the three-term recurrence

$$H_0(x) = 1,$$

$$H_1(x) = (x - \alpha_1)H_0(x),$$

$$H_{k+1}(x) = (x - \alpha_{k+1})H_k(x) - \beta_{k+1}H_{k-1}(x), \quad k \ge 1,$$

where $\alpha_k = 0$ for all $k \ge 1$ and $\beta_k = k - 1$ for all $k \ge 2$.

(a) Let n = 10, form the tridiagonal matrix

$$A = \begin{bmatrix} \alpha_1 & \sqrt{\beta_2} \\ \sqrt{\beta_2} & \alpha_2 & \sqrt{\beta_3} \\ & \sqrt{\beta_3} & \alpha_3 & \ddots \\ & & \ddots & \ddots & \sqrt{\beta_n} \\ & & & \sqrt{\beta_n} & \alpha_n \end{bmatrix},$$

and solve the eigenvalues x_j and eigenvectors $\mathbf{q}_j = [q_{1,j}, \dots, q_{n,j}]^T$, $j = 1, \dots, n$ (cf., e.g., numpy.linalg.eig). The Golub-Welsch algorithm states that the nodes of the quadrature rule (1) are precisely the eigenvalues of matrix A and the corresponding quadrature weights are $w_j = q_{1,j}^2$. Print the nodes and weights that you obtain using this method.

(b) The even moments of a Gaussian random variable $X \sim \mathcal{N}(0,1)$ satisfy

$$I_{2k} = \mathbb{E}[X^{2k}] = \frac{2^k}{\sqrt{\pi}} \Gamma(k + \frac{1}{2}), \quad k \ge 0,$$
 (2)

where Γ denotes the gamma function (cf., e.g., scipy.special.gamma).

Using the quadrature rule (1) with the nodes and weights you obtained in part (a) with n = 10, compute

$$Q_{2k} = \sum_{i=1}^{n} w_i x_i^{2k},$$

and compare these values with the analytical solution (2) for k = 0, 1, ..., 9. That is, print the absolute differences $|I_{2k} - Q_{2k}|$ for k = 0, 1, ..., 9. What happens when k = 10? Why?

Problem 3. Let $X \sim N(1,3)$ and $f(x) = 1 + 2x + x^2$.

- (a) Calculate $\mathbb{E}[f(X)]$ and Var[f(X)] by hand.
- (b) Implement the Monte Carlo method to approximate the expected value of f, i.e.

$$\mathbb{E}[f(X)] \approx f_M := \frac{1}{M} \sum_{i=1}^{M} f(x_i), \qquad x_i \stackrel{\text{i.i.d.}}{\sim} \text{N}(1,3).$$

Let $M=1,2,4,8,\ldots,256$. For each M, compute N=10000 simulations (realizations) of f_M . For each M, calculate the mean and the variance of f_M over the N rounds. Visualize your results by plotting the mean and variance of f_M over the N rounds as functions of M in two separate plots.