

Forecasting: principles and practice

Rob J Hyndman

3.1 Dynamic regression

Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t was WN.
- Now we want to allow ε_t to be autocorrelated.

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t was WN.
- Now we want to allow ε_t to be autocorrelated.

Example: ARIMA(1,1,1) errors

$$y_{t} = \beta_{0} + \beta_{1} x_{1,t} + \dots + \beta_{k} x_{k,t} + \eta_{t},$$

$$(1 - \phi_{1} B)(1 - B)\eta_{t} = (1 + \theta_{1} B)\varepsilon_{t},$$

where ε_t is white noise.

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

- Be careful in distinguishing η_t from ε_t .
- Only the errors η_t are assumed to be white noise.
- In ordinary regression, η_t is assumed to be white noise and so $\eta_t = \varepsilon_t$.

4

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- 2 Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- *p*-values for coefficients usually too small ("spurious regression").
- 4 AIC of fitted models misleading.

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- *p*-values for coefficients usually too small ("spurious regression").
- 4 AIC of fitted models misleading.
 - Minimizing $\sum \varepsilon_t^2$ avoids these problems.
 - Maximizing likelihood is similar to minimizing $\sum \varepsilon_t^2$.

Stationarity

Regression with ARMA errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$
 where η_t is an ARMA process.

- If we estimate the model while any variable is non-stationary, the estimated coefficients can be incorrect.
- Difference variables until all stationary.
- If necessary, apply same differencing to all variables to preserve interpretability.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$\begin{aligned} \mathbf{y}_t &= \beta_0 + \beta_1 \mathbf{x}_{1,t} + \dots + \beta_k \mathbf{x}_{k,t} + \eta_t \\ \text{where} \quad \phi(\mathbf{B}) (1 - \mathbf{B})^d \eta_t &= \theta(\mathbf{B}) \varepsilon_t \end{aligned}$$

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$\begin{aligned} \mathbf{y}_t &= \beta_0 + \beta_1 \mathbf{x}_{1,t} + \dots + \beta_k \mathbf{x}_{k,t} + \eta_t \\ \text{where} \quad \phi(\mathbf{B}) (1-\mathbf{B})^d \eta_t &= \theta(\mathbf{B}) \varepsilon_t \end{aligned}$$

After differencing all variables

$$\begin{aligned} \mathbf{y}_t' &= \beta_1 \mathbf{x}_{1,t}' + \dots + \beta_k \mathbf{x}_{k,t}' + \eta_t'. \\ \text{where} \quad \phi(\mathbf{B}) \eta_t &= \theta(\mathbf{B}) \varepsilon_t \\ \text{and} \quad \mathbf{y}_t' &= (\mathbf{1} - \mathbf{B})^d \mathbf{y}_t \end{aligned}$$

Model selection

- Fit regression model with automatically selected ARIMA errors.
- Check that ε_t series looks like white noise.

Selecting predictors

- AICc can be calculated for final model.
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AICc value.

```
autoplot(uschange[,1:2], facets=TRUE) +
  xlab("Year") + ylab("") +
  ggtitle("Quarterly changes in US consumption and personal income")
   Quarterly changes in US consumption and personal income
 -1 -
 -2-
-2.5 -
     1970
                   1980
                                                 2000
                                                               2010
```

```
qplot(Income,Consumption, data=as.data.frame(uschange)) +
   ggtitle("Quarterly changes in US consumption and personal income")
```


- No need for transformations or further differencing.
- Increase in income does not necessarily translate into instant increase in consumption (e.g., after the loss of a job, it may take a few months for expenses to be reduced to allow for the new circumstances). We will ignore this for now.

```
(fit <- auto.arima(uschange[,1], xreg=uschange[,2]))</pre>
## Series: uschange[, 1]
## Regression with ARIMA(1,0,2) errors
##
## Coefficients:
##
          ar1
                 ma1
                        ma2 intercept
                                        xreg
##
        0.692 - 0.576 0.198
                                 0.599
                                       0.203
## s.e. 0.116 0.130 0.076
                                 0.088
                                       0.046
##
## sigma^2 estimated as 0.322: log likelihood=-156.9
## AIC=325.9 AICc=326.4 BIC=345.3
```

```
(fit <- auto.arima(uschange[,1], xreg=uschange[,2]))</pre>
## Series: uschange[, 1]
## Regression with ARIMA(1,0,2) errors
##
## Coefficients:
##
          ar1
                 ma1
                        ma2 intercept
                                        xreg
##
        0.692 - 0.576 0.198
                                 0.599
                                       0.203
## s.e. 0.116 0.130 0.076
                                 0.088
                                       0.046
##
## sigma^2 estimated as 0.322: log likelihood=-156.9
## AIC=325.9 AICc=326.4 BIC=345.3
```

Write down the equations for the fitted model.

checkresiduals(fit, plot=FALSE)

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 5.9, df = 3, p-value = 0.1
##
## Model df: 5. Total lags used: 8
```

```
fcast <- forecast(fit,
    xreg=rep(mean(uschange[,2]),8), h=8)
autoplot(fcast) + xlab("Year") +
    ylab("Percentage change") +
    ggtitle("Forecasts from regression with ARIMA(1,0,2) errors")</pre>
```


Forecasting

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

Model daily electricity demand as a function of temperature using quadratic regression with ARMA errors.

```
qplot(elecdaily[,"Temperature"], elecdaily[,"Demand"]) +
    xlab("Temperature") + ylab("Demand")
```



```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(2,1,2)(2,0,0)[7] errors
## Q* = 28, df = 4, p-value = 1e-05
##
## Model df: 10. Total lags used: 14
```

```
fcast <- forecast(fit,
    xreg = cbind(rep(26,14), rep(26^2,14),
        c(0,1,0,0,1,1,1,1,1,0,0,1,1,1)))
autoplot(fcast) + ylab("Electicity demand (GW)")</pre>
```


Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Lab Session 19

Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Trend

Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

	A	В
1	Yes	
2	Yes	
3	No	
4	Yes	
5	No	
6	No	
7	Yes	
8	Yes	
9	No	
10	No	
11	No	
12	No	
13	Yes	
14	No	

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

		Α	В	С	D	Е
,	1	Monday	1	0	0	0
	2	Tuesday	0	1	0	0
	3	Wednesday	0	0	1	0
	4	Thursday	0	0	0	1
	5	Friday	0	0	0	0
	6	Monday	1	0	0	0
	7	Tuesday	0	1	0	0
	8	Wednesday	0	0	1	0
	9	Thursday	0	0	0	1
	10	Friday	0	0	0	0
	11	Monday	1	0	0	0
	12	Tuesday	0	1	0	0
	13	Wednesday	0	0	1	0
	14	Thursday	0	0	0	1
	15	Friday	0	0	0	0

Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable (taking value 1 for that observation and 0 elsewhere) to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable (taking value 1 for that observation and 0 elsewhere) to remove its effect.

Public holidays

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose K by minimizing AICc.
- Called "harmonic regression"
- fourier() function generates these.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

■ Variables take values 0 before the intervention and values $\{1, 2, 3, \dots\}$ afterwards.

Holidays

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

Trading days

With monthly data, if the observations vary depending on how many different types of days in the month, then trading day predictors can be useful.

```
z<sub>1</sub> = # Mondays in month;
z<sub>2</sub> = # Tuesdays in month;
:
z<sub>7</sub> = # Sundays in month.
```

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Dynamic harmonic regression

Combine Fourier terms with ARIMA errors

Advantages

- it allows any length seasonality;
- for data with more than one seasonal period, you can include Fourier terms of different frequencies;
- the seasonal pattern is smooth for small values of K (but more wiggly seasonality can be handled by increasing K);
- the short-term dynamics are easily handled with a simple ARMA error.

Disadvantages

seasonality is assumed to be fixed

```
cafe04 <- window(auscafe, start=2004)
autoplot(cafe04)</pre>
```


harmonics <- fourier(gasoline, K = 13)

```
(fit <- auto.arima(gasoline, xreg = harmonics, seasonal = FALSE))
## Series: gasoline
  Regression with ARIMA(0,1,2) errors
##
  Coefficients:
##
          ma1
                ma2
                     drift S1-52 C1-52
                                         S2-52
##
      -0.961
              0.094 0.001 0.031 -0.255 -0.052
## s.e. 0.027
              0.029 0.001 0.012 0.012 0.009
##
       C2-52 S3-52 C3-52 S4-52 C4-52 S5-52
##
     -0.017
              0.024 -0.099 0.032 -0.026 -0.001
## s.e. 0.009 0.008 0.008 0.008 0.008 0.008
      C5-52 S6-52 C6-52 S7-52 C7-52 S8-52
##
##
      -0.047
              0.058 -0.032 0.028
                                 0.037
                                        0.024
## s.e. 0.008
              0.008 0.008 0.008
                                  0.008 0.008
##
      C8-52 S9-52 C9-52 S10-52
                                 C10-52 S11-52
     0.014 -0.017 0.012 -0.024 0.023 0.000
##
## s.e. 0.008
              0.008
                     0.008 0.008 0.008 0.008
##
       C11-52 S12-52 C12-52 S13-52 C13-52
    -0.019 -0.029 -0.018 0.001 -0.018
##
## s.e. 0.008 0.008 0.008 0.008 0.008
##
  sigma^2 estimated as 0.056: log likelihood=43.66
## AIC=-27.33
            AICc=-25.92
                          BIC=129
```


checkresiduals(fit, plot=FALSE)

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,1,2) errors
## Q* = 130, df = 75, p-value = 6e-05
##
## Model df: 29. Total lags used: 104.357142857143
```

```
newharmonics <- fourier(gasoline, K = 13, h = 156)
fc <- forecast(fit, xreg = newharmonics)
autoplot(fc)</pre>
```


autoplot(calls)


```
xreg <- fourier(calls, K = c(10,0))
(fit <- auto.arima(calls, xreg=xreg, seasonal=FALSE, stationary=TRUE))</pre>
## Series: calls
## Regression with ARIMA(3,0,2) errors
##
## Coefficients:
##
         ar1
               ar2
                      ar3
                             ma1
                                    ma2 intercept
     0.841 0.192 -0.044 -0.590 -0.189 192.070
##
## s.e. 0.169 0.178 0.013 0.169 0.137
                                            1.764
##
   S1-169 C1-169 S2-169 C2-169 S3-169
##
   55.245 -79.087 13.674 -32.375 -13.693
## s.e. 0.701 0.701 0.379 0.379 0.273
    C3-169 S4-169 C4-169 S5-169 C5-169 S6-169
##
##
      -9.327 -9.532 -2.797 -2.239 2.893 0.173
## s.e. 0.273 0.223 0.196 0.196 0.179
##
     C6-169 S7-169 C7-169 S8-169 C8-169 S9-169
      3.305 0.855 0.294 0.857 -1.391 -0.986
##
## s.e. 0.179 0.168 0.168
                             0.160 0.160
                                           0.155
##
       C9-169 S10-169 C10-169
   -0.345 -1.196 0.801
##
## s.e. 0.155 0.150 0.150
##
  sigma^2 estimated as 243: log likelihood=-115412
## ATC=230877
            AICc=230877
                          BIC=231099
```



```
fc <- forecast(fit, xreg = fourier(calls, c(10,0), 1690))
autoplot(fc)</pre>
```


Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Lab Session 20

Outline

- 1 Regression with ARIMA errors
- 2 Lab session 19
- 3 Some useful predictors for linear models
- 4 Dynamic harmonic regression
- 5 Lab session 20
- **6** Lagged predictors

Sometimes a change in x_t does not affect y_t instantaneously

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

The model include present and past values of predictor: $x_t, x_{t-1}, x_{t-2}, \ldots$

$$y_t = a + \nu_0 x_t + \nu_1 x_{t-1} + \dots + \nu_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

The model include present and past values of predictor: $x_t, x_{t-1}, x_{t-2}, \ldots$

$$y_t = a + \nu_0 x_t + \nu_1 x_{t-1} + \cdots + \nu_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

Rewrite model as

$$y_t = a + (\nu_0 + \nu_1 B + \nu_2 B^2 + \dots + \nu_k B^k) x_t + \eta_t$$

= $a + \nu(B) x_t + \eta_t$.

The model include present and past values of predictor: $x_t, x_{t-1}, x_{t-2}, \ldots$

$$y_t = a + \nu_0 x_t + \nu_1 x_{t-1} + \dots + \nu_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

Rewrite model as

$$y_t = a + (\nu_0 + \nu_1 B + \nu_2 B^2 + \dots + \nu_k B^k) x_t + \eta_t$$

= $a + \nu(B) x_t + \eta_t$.

- ν (B) is called a *transfer function* since it describes how change in x_t is transferred to y_t .
- x can influence y, but y is not allowed to influence x.

```
autoplot(insurance, facets=TRUE) +
   xlab("Year") + ylab("") +
   ggtitle("Insurance advertising and quotations")
```



```
Advert <- cbind(
    AdLag0 = insurance[,"TV.advert"],
    AdLag1 = lag(insurance[,"TV.advert"],-1),
    AdLag2 = lag(insurance[,"TV.advert"],-2),
    AdLag3 = lag(insurance[,"TV.advert"],-3)) %>%
  head(NROW(insurance))
# Restrict data so models use same fitting period
fit1 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1],</pre>
  stationary=TRUE)
fit2 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:2],</pre>
  stationary=TRUE)
fit3 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:3],</pre>
  stationary=TRUE)
fit4 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:4],</pre>
  stationary=TRUE)
c(fit1$aicc, fit2$aicc, fit3$aicc, fit4$aicc)
```

```
(fit <- auto.arima(insurance[,1], xreg=Advert[,1:2],
    stationary=TRUE))</pre>
```

```
## Series: insurance[, 1]
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
##
         ar1
                 ar2 ar3 intercept AdLag0
                                             AdLag1
   1.412 -0.932 0.359
                               2.039 1.256
                                              0.162
##
## s.e. 0.170 0.255 0.159
                               0.993 0.067 0.059
##
## sigma^2 estimated as 0.217: log likelihood=-23.89
## AIC=61.78 AICc=65.28 BIC=73.6
```

```
(fit <- auto.arima(insurance[,1], xreg=Advert[,1:2],
    stationary=TRUE))</pre>
```

```
## Series: insurance[, 1]
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
## ar1 ar2 ar3 intercept AdLag0 AdLag1
## 1.412 -0.932 0.359 2.039 1.256 0.162
## s.e. 0.170 0.255 0.159 0.993 0.067 0.059
##
## sigma^2 estimated as 0.217: log likelihood=-23.89
## AIC=61.78 AICc=65.28 BIC=73.6
```

$$y_t = 2.04 + 1.26x_t + 0.16x_{t-1} + \eta_t,$$

$$\eta_t = 1.41\eta_{t-1} - 0.93\eta_{t-2} + 0.36\eta_{t-3} + \varepsilon_t,$$

```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1],rep(10,19)), rep(10,20)))
autoplot(fc)</pre>
```



```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1],rep(8,19)), rep(8,20)))
autoplot(fc)</pre>
```



```
fc <- forecast(fit, h=20,
    xreg=cbind(c(Advert[40,1],rep(6,19)), rep(6,20)))
autoplot(fc)</pre>
```

