Lecture 3 Composable Definitions of Security

Nicola Laurenti October 7, 2020

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Lecture 3— Contents

 ${\sf Distinguishability}$

Composable security

A distinguisher between two random variables x_0 and x_1 is a system D that is allowed to observe a realization of y without knowing in advance if b=0 or b=1 and should then guess which one holds

- $ightharpoonup x_0$ and x_1 are characterized by their PMDs p_{x_0} , p_{x_1}
- ▶ D is composed of a decision function $g: \mathcal{Y} \mapsto \{0,1\}$, i.e. $\hat{b} = g(y)$

It is a common situation in security (e.g., intrusion detection, authenticity verification, etc.)

Distinguisher performance $P(\hat{b}=0|\hat{b}=0)$

The performance of a distinguisher D is given by the pair of correct decision probabilities

$$\left(p_{\hat{b}|b}(0|0), p_{\hat{b}|b}(1|1)\right)$$

or complementarily by the pair of error probabilities

$$\left(p_{\hat{b}|b}(1|0),p_{\hat{b}|b}(0|1)\right)$$

1/0 di fere

We define the distinguishability between x_0 and x_1 with D as

$$d_D(x_0,x_1) = |p_{\hat{b}|b}(0|0) + p_{\hat{b}|b}(1|1) - 1| = |p_{\hat{b}|b}(1|0) + p_{\hat{b}|b}(0|1) - 1|^2 \text{ Staylor}$$

Note that $d_D(x_0, x_1) = 1$ for a perfect distinguisher while $d_D(x_0, x_1) = 0$ for a dumb distinguisher

Indistinguishability and statistical distance

It is not always possible to find a perfect or even a good distinguisher

Definition (unconditional)

Two variables x_0 and x_1 are said to be ε -unconditionally indistinguishable if, for any distinguisher D, it is $d_D(x_0, x_1) \leq \varepsilon$

Unconditional distinguishability is a measure of statistical distance between two variables

perfectly distinguishable $p_{x_0}(a)$ $p_{x_1}(a)$

The distinguisher that maximizes $d_D(x_0,x_1)$ is the ML estimator of b from observation y

Variational statistical distance

Definition

The variational distance between two rvs x, y with alphabet A is defined as

$$d_{\mathsf{V}}(x,y) = rac{1}{2} \sum_{a \in \mathcal{A}} |p_x(a) - p_y(a)|$$
 of message with ,

It is a 1-norm distance between their PMD, and it holds

(indistinguishable)
$$0 \le d_V(x,y) \le 1$$
 (perfectly distinguishable)

Relationship with distinguishability

$$\sup_{D} d_D(x, y) = d_{\mathsf{V}}(x, y)$$

Composable Definitions of Security

Kullback-Leibler divergence for discrete rvs

Definition

Given two discrete rvs, x, y with alphabets $\mathcal{A}_x \subset \mathcal{A}_y$ and pmds p_x, p_y , their Kullback-Leibler divergence is $p_x(x) = p_x(x)$

$$D(p_x||p_y) = E\left[\log_2 \frac{p_x(x)}{p_y(x)}\right] = \sum_{a \in \mathcal{A}_x} p_x(a) \log_2 \frac{p_x(a)}{p_y(a)}$$

Example: Binary rvs

For binary rvs, with $A = \{0, 1\}$,

$$D(p_x || p_y) = p_x(0) \log_2 \frac{p_x(0)}{p_y(0)} + p_x(1) \log_2 \frac{p_x(1)}{p_y(1)}$$

The KLD definition can be extended to the case $\mathcal{A}_x \not\subset \mathcal{A}_y$ (i.e. $p_y(a) = 0$ for some $a \in \mathcal{A}_x$), by letting $D(p_x || p_y) = \infty$ in that case

Kullback-Leibler divergence (cont.)

The KLD is a measure of statistical diversity between rvs. It is related to their distinguishability

Properties

- 1. (positivity) $D(p_x||p_y) \geq 0, \forall p_x, p_y$ and $D(p_x||p_u) = 0$ if and only if $p_x \equiv p_u$
- 2. (asymmetry) $D(p_x||p_y) \neq D(p_y||p_x)$, in general
- 3. (Pinsker inequality) $D(p_x||p_y) \ge 2d_V(x,y)^2$

System distinguishers

 S_0 is characterized by the conditional PMD $p_{u_0|x_0}$ S_1 is characterized by $p_{y_1|x_1}$ A distinguisher between two probabilistic systems S_0 and S_1 is a third system D that is allowed to interact with a system S_b without knowing in advance if b=0of b=1 and

- \triangleright can feed any input x to S_h
- can observe the corresponding output y
- \blacktriangleright should then guess whether b=0 or b=1

D is composed of

- \triangleright an input selection strategy p_x (possibily adaptive, $p_{x|y}$) and
- \blacktriangleright a decision function $g: \mathcal{X} \times \mathcal{Y} \mapsto \{0,1\}$, i.e. $\hat{b} = q(x, y)$

Indistinguishability

It is not always possible to find a perfect or even a good distinguisher

Definition (unconditional)

Two systems S_0 and S_1 are said to be ε -unconditionally indistiguishable if $d(S_0, S_1) < \varepsilon$, for any distinguisher D. it is $d_D(S_0, S_1) < \varepsilon$

Definition (computational, concrete)

 S_0 and S_1 are said to be (ε, T_0) -computationally indistiguishable if, for any distinguisher D with complexity $T_D < T_0$, it is $d_D(S_0, S_1) < \varepsilon$

Definition (computational, asymptotic)

Two sequences of systems $S_{0,n}$ and $S_{1,n}$ are said to be computationally indistiguishable in the asymptotic forumlation if, for any polynomials $p(\cdot), q(\cdot)$ and any sequence of distinguishers D_n with complexity $T_{D_n} \leq p(n)$, ther exist n_0 such that $d_{D_n}(S_{0,n}, S_{1,n}) \leq 1/q(n)$, $\forall n > n_0$

10 / 19

Security definitions

Definition (unconditional)

A mechanism M is said to be ε -unconditionally secure if it is ε -unconditionally indistiguishable from its ideal counterpart M^{\star}

Definition (computational, concrete)

A mechanism M is said to be (ε, T_0) -computationally secure if it is (ε, T_0) -computationally indistiguishable from its ideal counterpart M^{\star}

Definition (computational, asymptotic)

A sequence of mechanisms $\{M_n\}$, $n \in \mathbb{N}$ is said to be computationally secure in the asymptotic formulation if it is computationally indistiguishable from its ideal counterpart $\{M_n^{\star}\}$ in the asymptotic formulation

Example: pseudo random functions

Ideal random functions

An ideal random function $f^*: \mathcal{X} \mapsto \mathcal{Y}$ is a random mapping such that

- \blacktriangleright for each possible input value $x \in \mathcal{X}$, $f^{\star}(x)$ is a random variable uniform over \mathcal{Y}
- ▶ the random variables corresponding to different values of x are statistically independent

Equivalently, by letting $\mathcal{X} = \{x_1, \dots, x_N\}$, we have that $[f^*(x_1), \dots, f(x_N)]$ is a random vector, uniformly distributed over all possible strings of N elements from \mathcal{Y}

Pseudo random functions

4- Provider

A secure pseudo random function $f: \mathcal{X} \times \mathcal{K} \mapsto \mathcal{Y}$ is a system that is computationally indistinguishable from an ideal random function f^* , if k is chosen uniformly over \mathcal{K} .

A pseudo random function is a typical model for a cryptographic hash function

Some sand

Example: pseudo random permutations

Ideal random permutations

An ideal random permutation $f^\star: \mathcal{X} \times \Omega \mapsto \mathcal{Y}$ is a random mapping such that

 $ightharpoonup [f(x_1), \ldots, f(x_N)]$ is a random vector, uniformly distributed over all possible permutations of N distinct elements from \mathcal{Y}

Pseudo random functions

A secure pseudo random function $f: \mathcal{X} \times K \mapsto \mathcal{Y}$ is a system that is computationally indistinguishable from an ideal random permutation f^* , if k is chosen uniformly and secretly over \mathcal{K} .

A pseudo random permutation is a typical model for a block cipher

Relationship between security definitions

Proposition

If a mechanism M is δ -unconditionally secure and its ideal counterpart M^* offers ε -unconditional security against a class A of attacks, then M offers $(\varepsilon + \delta)$ -unconditional security against the same class A.

Proof.

Since $d(M, M^*) < \delta$, there exist a joint conditional distribution of the outputs $p_{yy^*|x}$ such that $P[y \neq y^*|x=a] < \delta, \forall a \in \mathcal{A}_r$.

Therefore, for all $A \in \mathcal{A}$, and by the total probability theorem

$$P[S_{\mathcal{A}}; A, M] = P[S_{\mathcal{A}}|y = y^{*}; A, M] P[y = y^{*}; A, M] + P[S_{\mathcal{A}}|y \neq y^{*}; A, M] P[y \neq y^{*}; A, M]$$

$$\leq P[S_{\mathcal{A}}; A, M^{*}] \cdot 1 + 1 \cdot \delta$$

$$\leq \varepsilon + \delta$$

Relationship between security definitions

Similar relationship can be stated in the computational sense and can be proved analogously

Proposition

If a mechanism M is (δ, T_0) -computationally secure and its ideal counterpart M^\star offers (ε, T_0) -computational security against a class $\mathcal A$ of attacks, then M offers $(\varepsilon + \delta, T_0)$ -computational security against the same class $\mathcal A$.

Proposition

If a sequence of mechanisms $\{M_n\}$ is computationally secure in the asyptotic formulation and its ideal counterparts $\{M_n^*\}$ offer asymptotic computational security against a class $\mathcal A$ of attacks, then $\{M_n\}$ also offer asymptotic computational security against the same class $\mathcal A$.

Composition of security mechanisms

Consider a security mechanism S that makes use of another mechanism M, and denote this occurrence by S[M]. Let $S[M^{\star}]$ denote the same mechanism S where M is replaced by its ideal counterpart M^{\star} , and S^{\star} denote the ideal counterpart of S (which need not use M nor M^{\star}).

Is it possible to derive the security of S[M] from those of M and $S[M^{\star}]$?

A trivial example

Consider the following mechanisms:

- ${\cal S}$ an encryption system employing a L-bit key but actually making use only of the first L/2 bits
- M a key generation mechanism that outputs a L-bit key where the first L/2 bits are deterministic and only the last L/2 bits are uniform

based on variational distance

$$d_{\mathsf{V}}(M, M^{\star}) = 2^{L/2} \left(\frac{1}{2^{L/2}} - \frac{1}{2^{L}} \right) + \left(2^{L} - 2^{L/2} \right) \frac{1}{2^{L}} = 2 - \frac{1}{2^{L/2 - 1}}$$

idem for $d_{\mathsf{V}}(S[M^{\star}], S^{\star})$.

They are both insecure and S[M] is totally insecure

The composition theorem

Theorem (unconditional)

If M is ε_1 -unconditionally secure and $S[M^*]$ is ε_2 -unconditionally secure, then S[M] is $(\varepsilon_1 + \varepsilon_2)$ -unconditionally secure

Proof.

Follows from the triangular inequality property of distinguishability. In fact:

$$d(S[M], S^*) \le d(S[M], S[M^*]) + d(S[M^*], S^*)$$

$$\le d(M, M^*) + d(S[M^*], S^*) \le \varepsilon_1 + \varepsilon_2$$

By repeatedly applying the above result, we can generalize to N-fold uses of M in S

Corollary

If M is ε_1 -unconditionally secure and $S[M^*]$ is ε_2 -unconditionally secure, then $S[M^N]$ is $(N\varepsilon_1 + \varepsilon_2)$ -unconditionally secure

The composition theorem

Analogously, we can state without proof

Theorem (computational, concrete)

If M is (ε_1, T_0) -computationally secure and $S[M^*]$ is (ε_2, T_0) -computationally secure, then S[M] is $(\varepsilon_1 + \varepsilon_2, T_0)$ -computationally secure

In the asymptotic form, the asymptotic security is retained even if M is used polynomially many times in S, as follows

Theorem (computational, asymptotic)

In the asymptotic formulation, if $\{M_n\}$ is computationally secure and $S_n[M_n^{\star}]$ is computationally secure, then for any polynomial $p(\cdot)$, $S_n[M_n^{p(n)}]$ is computationally secure

Composable Definitions of Security

19 / 19