Section 14.8 Lagrange Multipliers

Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

$$f(x,y) = 2x^2 + 6y^2$$
, $x^4 + 3y^4 = 1$

Solution:

 $f(x,y) = 2x^2 + 6y^2, g(x,y) = x^4 + 3y^4 = 1, \text{ and } \nabla f = \lambda \nabla g \quad \Rightarrow \quad \langle 4x, 12y \rangle = \langle 4\lambda x^3, 12\lambda y^3 \rangle, \text{ so we get the three}$ equations $4x = 4\lambda x^3, 12y = 12\lambda y^3, \text{ and } x^4 + 3y^4 = 1.$ The first equation implies that x = 0 or $x^2 = \frac{1}{\lambda}$. The second equation implies that y = 0 or $y^2 = \frac{1}{\lambda}$. Note that x and y cannot both be zero as this contradicts the third equation. If x = 0, the third equation implies $y = \pm \frac{1}{\sqrt{3}}$. If y = 0, the third equation implies that $x = \pm 1$. Thus, f has possible extreme values at $\left(0, \pm \frac{1}{\sqrt{3}}\right)$ and $(\pm 1, 0)$. Next, suppose $x^2 = y^2 = \frac{1}{\lambda}$. Then the third equation gives $\left(\frac{1}{\lambda}\right)^2 + 3\left(\frac{1}{\lambda}\right)^2 = 1 \quad \Rightarrow \quad \lambda = \pm 2$. $\lambda = -2$ results in a nonreal solution, so consider $\lambda = 2 \quad \Rightarrow \quad x = y = \pm \frac{1}{\sqrt{2}}$. Therefore, f also has possible extreme values at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ (all 4 combinations). Substituting all 8 points into f, we find the maximum value is $f\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right) = 4$ and the minimum value is $f(\pm 1, 0) = 2$.

10. Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

$$f(x, y, z) = e^{xyz}; \quad 2x^2 + y^2 + z^2 = 24$$

Solution:

 $f(x,y,z) = e^{xyz}, \ g(x,y,z) = 2x^2 + y^2 + z^2 = 24, \ \text{and} \ \nabla f = \lambda \nabla g \quad \Rightarrow \quad \langle yze^{xyz}, xze^{xyz}, xye^{xyz} \rangle = \langle 4\lambda x, 2\lambda y, 2\lambda z \rangle.$ Then $yze^{xyz} = 4\lambda x, xze^{xyz} = 2\lambda y, xye^{xyz} = 2\lambda z, \ \text{and} \ 2x^2 + y^2 + z^2 = 24.$ If any of $x, y, z, \text{ or } \lambda$ is zero, then the first three equations imply that two of the variables x, y, z must be zero. If x = y = z = 0 it contradicts the fourth equation, so exactly two are zero, and from the fourth equation the possibilities are $(\pm 2\sqrt{3}, 0, 0), (0, \pm 2\sqrt{6}, 0), (0, 0, \pm 2\sqrt{6}),$ all with an f-value of $e^0 = 1$. If none of x, y, z, λ is zero then from the first three equations we have $\frac{4\lambda x}{yz} = e^{xyz} = \frac{2\lambda y}{xz} = \frac{2\lambda z}{xy} \quad \Rightarrow \quad \frac{2x}{yz} = \frac{y}{xz} = \frac{z}{xy}.$ This gives $2x^2z = y^2z \quad \Rightarrow \quad 2x^2 = y^2 \quad \text{and} \quad xy^2 = xz^2 \quad \Rightarrow y^2 = z^2.$ Substituting into the fourth equation, we have $y^2 + y^2 + y^2 = 24 \quad \Rightarrow \quad y^2 = 8 \quad \Rightarrow \quad y = \pm 2\sqrt{2}, \text{ so}$ or $x^2 = 4 \quad \Rightarrow \quad x = \pm 2 \quad \text{and} \quad z^2 = y^2 \quad \Rightarrow \quad z = \pm 2\sqrt{2}, \text{ giving possible points } \left(\pm 2, \pm 2\sqrt{2}, \pm 2\sqrt{2}\right)$ (all combinations). The value of f is e^{16} when all coordinates are positive or exactly two are negative, and the value is e^{-16} when all are negative or exactly one of the coordinates is negative. Thus the maximum of f subject to the constraint is e^{16} and the minimum is e^{-16} .

28. Find the extreme values of f on the region described by the inequality.

$$f(x,y) = 2x^2 + 3y^2 - 4x - 5, \quad x^2 + y^2 \le 16$$

Solution:

 $f(x,y)=2x^2+3y^2-4x-5 \quad \Rightarrow \quad \nabla f=\langle 4x-4,6y\rangle=\langle 0,0\rangle \quad \Rightarrow \quad x=1,\,y=0. \text{ Thus } (1,0) \text{ is the only critical point } of \,f, \text{ and it lies in the region } x^2+y^2<16. \text{ On the boundary, } g(x,y)=x^2+y^2=16 \quad \Rightarrow \quad \lambda \nabla g=\langle 2\lambda x,2\lambda y\rangle, \text{ so } 6y=2\lambda y \quad \Rightarrow \quad \text{either } y=0 \text{ or } \lambda=3. \text{ If } y=0, \text{ then } x=\pm 4; \text{ if } \lambda=3, \text{ then } 4x-4=2\lambda x \quad \Rightarrow \quad x=-2 \text{ and } y=\pm 2\sqrt{3}. \text{ Now } f(1,0)=-7, \, f(4,0)=11, \, f(-4,0)=43, \text{ and } f\left(-2,\pm 2\sqrt{3}\right)=47. \text{ Thus the maximum value of } f(x,y) \text{ on the disk } x^2+y^2\leq 16 \text{ is } f\left(-2,\pm 2\sqrt{3}\right)=47, \text{ and the minimum value is } f(1,0)=-7.$

57. The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.

Solution:

We need to find the extreme values of $f(x,y,z)=x^2+y^2+z^2$ subject to the two constraints g(x,y,z)=x+y+2z=2 and $h(x,y,z)=x^2+y^2-z=0$. $\nabla f=\langle 2x,2y,2z\rangle, \lambda \nabla g=\langle \lambda,\lambda,2\lambda\rangle$ and $\mu \nabla h=\langle 2\mu x,2\mu y,-\mu\rangle$. Thus we need $2x=\lambda+2\mu x$ (1), $2y=\lambda+2\mu y$ (2), $2z=2\lambda-\mu$ (3), x+y+2z=2 (4), and $x^2+y^2-z=0$ (5). From (1) and (2), $2(x-y)=2\mu(x-y)$, so if $x\neq y, \mu=1$. Putting this in (3) gives $2z=2\lambda-1$ or $\lambda=z+\frac{1}{2}$, but putting $\mu=1$ into (1) says $\lambda=0$. Hence $z+\frac{1}{2}=0$ or $z=-\frac{1}{2}$. Then (4) and (5) become x+y-3=0 and $x^2+y^2+\frac{1}{2}=0$. The last equation cannot be true, so this case gives no solution. So we must have x=y. Then (4) and (5) become 2x+2z=2 and $2x^2-z=0$ which imply z=1-x and $z=2x^2$. Thus $2x^2=1-x$ or $2x^2+x-1=(2x-1)(x+1)=0$ so $x=\frac{1}{2}$ or x=-1. The two points to check are $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ and $\left(-1,-1,2\right)$: $f\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)=\frac{3}{4}$ and $f\left(-1,-1,2\right)=6$. Thus $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ is the point on the ellipse nearest the origin and $\left(-1,-1,2\right)$ is the one farthest from the origin.