

Hochschule München

Fakultät für Elektrotechnik und Informationstechnik

Studiengang Elektrotechnik und Informationstechnik

Industrie 4.0 - Pathfinding auf einer SPS

Bachelorarbeit von Niels Garibaldi

Bearbeitungsbeginn: xx.xx.2016 **Abgabetermin:** xx.xx.2016 **Ifd. Nr.:** xxxxx

Hochschule München

Fakultät für Elektrotechnik und Informationstechnik

Studiengang Elektrotechnik und Informationstechnik

Industrie 4.0 - Pathfinding auf einer SPS

Industry 4.0 - Pathfinding on a PLC

Bachelorarbeit von Niels Garibaldi

betreut von Prof. Dr. K. Ressel

Bearbeitungsbeginn: xx.xx.2016 **Abgabetermin:** xx.xx.2016 **Ifd. Nr.:** xxxxx

Erklärung des Bearbeiters

1.	Ich	erkläre	hiermit,	dass	ich	die	vorliegende	Bachelorarbeit	selbständig	
verfasst und noch nicht anderweitig zu Prüfungszwecken vorgelegt habe.										

Sämtliche benutzte Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate sind als solche gekennzeichnet.

2.	Ich erkläre mein Einverständnis, dass die von mir erstellte Bachelorarbeit in
	die Bibliothek der Hochschule München eingestellt wird. Ich wurde darauf
	hingewiesen, dass die Hochschule in keiner Weise für die missbräuchliche
	Verwendung von Inhalten durch Dritte infolge der Lektüre der Arbeit haf-
	tet. Insbesondere ist mir bewusst, dass ich für die Anmeldung von Patenten,
	Warenzeichen oder Geschmacksmustern selbst verantwortlich bin und daraus
	resultierende Ansprüche selbst verfolgen muss.

Niels Garibaldi

Zusammenfassung

Zusammenfassungstext hier einfügen

Abstract

Insert abstract text here

Inhaltsverzeichnis

	Erklärung des Bearbeiters]								
	Zusammenfassung/Abstract	II								
	Inhaltsverzeichnis	III								
	Abkürzungsverzeichnis	IV								
1	Einführung in das Thema Industrie 4.0									
2 Definition der Anforderungen										
	2.1 Allgemeine Aufgabenstellung	2								
	2.1.1 Aufteilung der Themenbereiche									

Abkürzungsverzeichnis

CPPS Cyber-physisches Produktionssystem

IoT Internet of Things

Einführung in das Thema Industrie 4.0

Der Begriff "Industrie 4.0" ist seit seiner Popularisierung durch die Bundeskanzlerin auf der Hannovermesse 2013 vor allem in den Bereichen Produktion und Fertigung in aller Munde. Da er jedoch je nach Branche unterschiedliche Bedeutungen haben kann, möchte ich als Einführung zunächst einmal erläutern, was Industrie 4.0 im Kontext der Automatisierungstechnik bedeutet. Der Begriff beschreibt die vierte industrielle Revolution und die damit einhergehende Verflechtung von informationstechnisch erhobenen Daten in den Produktionsablauf. Ein interessanter Aspekt ist hier beispielsweise der Bereich der prädiktiven Wartung, bei dem Anhand der Auswertung empirischer Daten mögliche Anlagenausfälle frühzeitig erkannt und behoben werden können. Für den weiteren Verlauf dieser Arbeit ist vor allem auch ein sogenanntes Cyber-physisches Produktionssystem (CPPS) von Bedeutung. Diese bestehen aus der Verbindung von einzelnen, dezentralen Objekten wie beispielsweise Produktionsanlagen oder Logistikkomponenten, welche mit eingebetteten Systemen ausgestattet und zudem kommunikationsfähig gemacht werden. Durch eingebaute Sensoren und Aktoren kann die Umwelt erfasst und beeinflusst werden. Mittels der Kommunikationskomponenten können Daten aus der Produktion über ein Netzwerk oder das Internet ausgetauscht, beziehungsweise von entsprechenden Diensten ausgewertet, verarbeitet oder gespeichert werden [1]. Sind mehrere Cyber-physische Produktionssysteme an einem Produktionsprozess beteiligt, unabhängig von ihrem Standort, so spricht man auch von einer Smart Factory. Abschließend ist noch zu erwähnen, dass der Begriff "Industrie 4.0" vor allem im deutschsprachigen Raum verwendet wird. Im internationalen Kontext werden viele der zentralen Punkte von Industrie 4.0 durch das Konzept des Internet of Things (IoT) abgedeckt.

Definition der Anforderungen

2.1 Allgemeine Aufgabenstellung

Diese Arbeit beschäftigt sich mit dem Entwurf und der Realisierung eines CPPS im Modellmaßstab. Die resultierende Anlage soll unter anderem dazu dienen verschiedene Aspekte von Industrie 4.0 vorzuführen und zu veranschaulichen. Kernpunkte, die dargestellt werden sollen, sind vor allem die Dezentralisierung und Skalierbarkeit der Anlage. Den Rahmen für die Bearbeitung dieser Aufgabe bildet die Fachberatung für Automatisierungstechnik der Siemens AG in München. Um die erwähnten Konzepte demonstrieren zu können, soll die Anlage gemäß ihrer realen Vorbilder bestehen aus Bearbeitungsstationen, an welchen der Bearbeitungsprozess simuliert werden kann, und Werkstückträgern, welche Werkstücke durch die Modellanlage zu den Maschinenplätzen transportieren können. Im vorliegenden Fall stellen die Werkstückträger gleichzeitig das Werkstück dar, dass die Produktionsanlage durchfährt.

2.1.1 Aufteilung der Themenbereiche

Fahrerloses Transportsystem

Dynamische Wegfindung

Literaturverzeichnis

[1] BAUERHANSL, THOMAS, MICHAEL TEN HOMPEL und BIRGIT VOGEL-HEUSER: *Industrie 4.0 in Produktion, Automatisierung und Logistik*. Springer Vieweg, 2014.