Introducción a Python

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Contenidos

- ¿Por qué Python?
- Entorno de trabajo
- ¿Cómo empezar con Colab?
- Instalación local (opcional)
- Programación en Python

¿Por qué Python?

Python es un lenguaje de programación muy popular que hace hincapié en la legibilidad de su código. Es un lenguaje interpretado, dinámico, multiplataforma y de **código abierto**.

Elegimos Python como herramienta para este curso en principio porque es **gratis** y relativamente **fácil de aprender** si se tiene un conocimiento mínimo de programación en cualquier otro lenguaje.

Adicionalmente software geotécnicos como **Plaxis, FLAC y OpenSees** pueden ser controlados vía Python, ampliando las capacidades básicas que ofrecen por su interfaz gráfica.

¿Por qué Python?

Sin embargo, este es un curso de geotecnia no de programación! No exigimos utilizar Python, aunque lo recomendamos y las herramientas que daremos en clase están escritas en este lenguaje.

Usen otro lenguajes de programación u software matemático si sienten que tener que usar Python es un obstáculo para la resolución de los ejercicios propuestos.

ptc mathcad®

Entorno de trabajo

En este curso y para evitar tener que instalar Python en nuestras maquinas, vamos a utilizar la herramienta

Google Colab es un entorno para crear **Jupyter Notebooks** que se ejecuta en la nube y almacena los archivos en Google Drive.

Introducción a Google Colab, una noble y completa guía

Este procedimiento lo tenemos que hacer una sola vez:

1. Iniciar sesión con una cuenta de Google e ir a Drive.

2. Ir a Mi unidad > Más > + Conectar más aplicaciones

3. Se abrirá una ventana y en el buscador buscamos "Colaboratory"

Resultados de búsqueda de Colaboratory

4. Hacemos clic en el botón "Instalar" y luego en "Continuar"

Para crear un nuevo archivo de Colab, vamos a la carpeta donde queremos crearlo lo hacemos en forma similar a un archivo de

documentos de Drive.

Los notebooks que compartimos desde el Github, tienen un botón para "Abrir en Colab". Luego podemos guardar una copia en Drive (por default van a una nueva carpeta llamada Colab Notebooks).

El archivo queda en la nube y se auto-guarda permanentemente. Para la entrega de los TPs, es necesario descargar el archivo como ".ipynb" y cargarlo al formulario correspondiente.

Instalación local (opcional)

En Google Colab podemos ejecutar código en la nube con recursos limitados en su versión gratuita. Adicionalmente necesitamos estar conectados a Internet para poder usarlo.

Si queremos trabajar localmente, necesitamos instalar Python (entre otros componentes) en nuestra pc.

Para ello recomendamos "Anaconda".

Instalación local (opcional)

Anaconda es una distribución gratuita de Python (y R) orientada a la programación científica que busca simplificar el despliegue y administración de las herramientas que usaremos con Python.

Al instalar Anaconda estaremos instalando automáticamente:

- Python
- Un gestor de paquetes (anaconda y pip)
- Un gestor de entornos virtuales (por comandos o interfaz visual)
- Varios IDE's: Spyder, Jupyter

Instalación local (opcional)

Para descargar e instalar la Anaconda en las PC personales https://www.anaconda.com/products/individual

Anaconda Installers		
Windows 4	MacOS É	Linux 🕭
Python 3.8 64-Bit Graphical Installer (457 MB) 32-Bit Graphical Installer (403 MB)	Python 3.8 64-Bit Graphical Installer (435 MB) 64-Bit Command Line Installer (428 MB)	Python 3.8 64-Bit (x86) Installer (529 MB) 64-Bit (Power8 and Power9) Installer (279 MB)

En YouTube encontrarán cientos de tutoriales cortos sobre como manejar Anaconda y crear un Jupyter Notebook. Una vez dentro de Jupyter, trabajaremos igual que en Google Colab.

Programación en Python

A continuación vamos a:

- Explorar el entorno de trabajo Google Colab
- Repasar algunos conceptos básicos de programación (variables, if, for, funciones)
- Ver el uso básico de una librería para hacer matemática (NumPy), para álgebra (SciPy) y para graficar (MatPlotLib)
- Resolver ejercicios básicos de programación

Recursos adicionales

w3schools – "Curso de Python desde 0", en ingles.

Youtube – Miles de cursos gratis

Chat GPT

- Para ayudarnos a escribir código
- Para ayudarnos a entender código
- Para entender los significados de los errores