[V]
$$\pm 5.7$$
 max $2x_1 - 6x_2$

$$-x_1 - x_2 - x_3 \le -2 \qquad x_1, x_2, x_3 \ge 0$$

$$2x_1 - x_2 + x_3 \le 1$$

add slacks si, sz = 0

$$-X_1 - X_2 - X_3 + S_1 = 2$$

 $2X_1 - X_2 + X_3 + S_2 = 1$

	Xı	XZ	X3	
S,	-2	1	١	1
Sz	1	2	1	-1
3	0	2	-6	0

- p_i : mal - infeasible b = (-2, 1)not dual feasible

Phase I:
$$A^{T}y = (-y_1 + 2y_2, -y_1 - y_2, -y_1 + y_2) = (2, -1, 1)$$

$$C - A^{T}y = (2, -6, 0) - (2, -1, 1) = (0, -5, -1) \le 0$$

	χı	Xz	X3	1
51	-2	1	1	1
52	1	-2	1	- 1
3	1	0	-5	~ 1

$$X^{\frac{1}{4}} = (x_1, x_2, x_3) = (0, 0.5, 1.5), \quad x^{\frac{1}{4}} = 210) - 6 \cdot (0.5) = -3$$

$$A = \begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} a_2, a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}, C_8 = (-6,0)$$

$$B^{-1} = -\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}, y^{\frac{1}{2}} = (3,3)$$

$$A^{T}y^{*} = (3, -6, 0) \geq (2, -6, 0) = C$$

$$b^{T}y^{\dagger} = (-2,1) \cdot (3,3) = -6 + 3 = -3 = 3^{*}$$
 $X_{1}^{\dagger} = 0, \quad X_{2}^{\dagger} = 0.5, \quad X_{3}^{\ast} = 1.5, \quad 3 = -3$

$$max - x_1 - 3x_2 - x_3$$

 $2x_1 - 5x_2 + x_3 = -5$
 $2x_1 - x_2 + 2x_3 = 4$

$$S_{1}, S_{2} \ge 0$$
; $2x_{1} - S_{2} + x_{3} + S_{1} = -S_{2}$
 $2x_{1} - x_{2} + 2x_{3} + S_{2} = 4$

	Χι	XZ	λ3	
Sı	-2	-2	5	-1
52	4	-2	1	-2
3	0	-1	-3	-1

Primal-infeasible

Phase I: $\chi_2 = 1 + \frac{2}{5} \chi_1 + \frac{1}{5} \chi_3 + \frac{1}{5} S_1$

	1	XI	XZ	51	
_	X ₂		2/5		
	52	5	-8/5	- %	1/5
	3	-3	-11/5	-8/5	-3/5

$$\lambda_1 = x_3 = s_1 = 0$$
 $x_2 = 1, s_2 = 5$
 $x^* = (0,1,0), 3^* = -3$

$$B = \begin{bmatrix} -5 & 0 \\ -1 & 1 \end{bmatrix}, C_{B} = (-3,0), B^{-1} = \frac{1}{-5} \begin{bmatrix} 1 & 0 \\ 1 & -5 \end{bmatrix} = \begin{bmatrix} -1/5 & 0 \\ -1/5 & 1 \end{bmatrix}$$

$$9 *T = C_{B}^{T} B = (-3,0) \begin{bmatrix} -1/5 & 0 \\ -1/5 & 1 \end{bmatrix} = (3/5,0)$$

[V]
$$\pm 5.9$$
 max $x_1 + 3x_2$ $x_1, x_2 \ge 0$
 $-x_1 - x_2 \le -3$
 $-x_1 + x_2 \le -1$ $x_1, x_2 \ge 0$
 $x_1 + x_2 \le -1$ $x_2 \ge 0$

5,,52,53 20

	X ₁ X ₂	
Sı	-3 1	1
52	-1 1	-1
53	4 -1	-2
3	0 1	3

primal infensible

$$A^{T}y = (-0.0 + 1.5, -0.0 + 0.0 + 3) = (1.5, 3)$$

$$C - A^{T}y = (1,3) - (1.5,3) = (-0.5,0)$$

	1 X1	1 /2	
SI	-3	1	1
52	-1	1	-1
53	4	-1	-2
2	6	-1.2	6

	1 X1	Sı	
kz	3	-1	/
S2	-4	2	-1
53	-2	1	-2
3	6	- 0-5	0

$$S_2 = -4 + 2 \times 1 - S_1 \Rightarrow \chi_1 = 2 + \frac{1}{2} S_1 + \frac{1}{2} S_2$$

	Sı	52	
X,	2	1/2	1/2
X2	1	1/2	-1/2
53	0	-3/2	1/2
3	5	-1/4	-1/4

$$- \chi_1^{k} = 2, \chi_2^{k} = 1, S_3^{+} = 0$$

$$- 3^{*} = 1 \cdot 2 + 3 \cdot 1 = 5$$

$$A = \begin{bmatrix} -1 & -1 \\ -1 & 1 \\ 1 & 2 \end{bmatrix}, \ b = (-3, -1, 4), \ c = (1,3)$$

$$\begin{cases} -41 - 42 + 43 = 1 \\ -41 + 42 + 243 = 3 \end{cases}$$

$$y^{\dagger} = (1,0,2)$$

$$b^{T}y^{\dagger} = -3(1) - 1(0) + 4(2) = 5 = 3^{\dagger}$$

$$\chi_{1}^{\dagger} = 2, \quad \chi_{2}^{\dagger} = 1, \quad 3 = 5$$

[v] #6.1 (a) Indices of Basic Vars: B = {3,13

Basic Vours: { X3, X1}

Indices of Non-Basic Vars: N = {4,2}

Non-Basic Vors: {X4, X1}

(b)
$$\chi_{g}^{*} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 (c) $Z_{N}^{*} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ (d) $B_{N} = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 1 & -3 \end{bmatrix}$

- (e) Yes, primal soln. associated w/ dictionary in feasible be $\chi_B^{1}>0$
- (+) No, the dictionary is not optimal became, $Z_2^{*}20$, ouch
- (9) yes, the dictionary is degenerate be xt = 0

$$\begin{bmatrix} V \end{bmatrix} * 6.2 \qquad A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 7 & 5 & -3 & -2 & 0 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, c = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \end{bmatrix}$$

$$(a) \quad B = \begin{bmatrix} 3 & 5 \\ -3 & 5 \end{bmatrix}$$

$$(b) \quad A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 16 \end{bmatrix}$$

(a)
$$B = \begin{bmatrix} 3 & 5 \\ -3 & 0 \end{bmatrix}$$
 (b) $N = \begin{bmatrix} 1 & 2 & 4 \\ 7 & 5 & -2 \end{bmatrix}$

(c)
$$b = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 (a) $c_B = \begin{bmatrix} 4 \\ 16 \end{bmatrix}$ (e) $c_N = \begin{bmatrix} 1 \\ 2 \\ 8 \end{bmatrix}$

(f)
$$B^{-1}N$$
, $det(B) = 3.0 - (5)(-3) = 15$

$$B^{-1} = \frac{1}{15} \begin{bmatrix} 0 & -5 \\ 3 & 3 \end{bmatrix}$$

$$B^{-1}N = \frac{1}{15} \begin{bmatrix} 0 & -5 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 7 & 5 & -2 \end{bmatrix} = \begin{bmatrix} -7/3 & -5/3 & 2/3 \\ 8/5 & 7/5 & 2/5 \end{bmatrix}$$

(9)
$$X_{B}^{*} = B^{-1}b = \frac{1}{15}\begin{bmatrix} 0 & -5 \\ 3 & 3 \end{bmatrix}\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/5 \end{bmatrix}$$
 $X_{3} = 0$ $X_{5} = 2/5$

(h)
$$3^* = C_B^T B^{-1}b = [4 \ 167[0] = 32/5$$

(i)
$$(B^{-1}N)^{T}_{CB} = \begin{bmatrix} -7/3 & 8/5 \\ -5/3 & 7/5 \\ 2/3 & 2/5 \end{bmatrix} \begin{bmatrix} 4 \\ 16 \end{bmatrix} = \begin{bmatrix} 244/15 \\ 236/15 \\ 136/15 \end{bmatrix}$$

$$\frac{3^*}{2^*} = \begin{bmatrix} 244/15 & -1 \\ 236/15 & -2 \\ 136/15 & -8 \end{bmatrix} = \begin{bmatrix} 229/15 \\ 206/15 \\ 16/15 \end{bmatrix}$$

(j)
$$X_{B} = B^{-1}b - B^{-1}N \chi_{N} d z = \frac{2}{3} x_{1} + \frac{5}{3} x_{2} - \frac{2}{3} x_{4}$$

$$X_{3} = \frac{2}{3} x_{1} + \frac{5}{3} x_{2} - \frac{2}{3} x_{4}$$

$$X_{5} = \frac{2}{5} - \frac{6}{5} x_{1} - \frac{7}{5} x_{2} - \frac{2}{5} x_{4}$$

$$\frac{3}{5} = \frac{32}{5} - \left(\frac{229}{15}\chi_1 + \frac{206}{15}\chi_2 + \frac{16}{15}\chi_4\right)$$

(a)
$$\Delta C^{T} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$N = \{1564\}$$
 $\Delta C_{N}^{T} = [2000]$

$$B = \{2 \ 3 \ 7\} \qquad \Delta C_{\mathcal{B}}^{\mathsf{T}} = [0 \ 0 \ 0]$$

$$Z_N^{*T} = [1.2 \quad 0.2 \quad 0.9 \quad 2.8]$$

$$\Delta Z_{N}^{*T} = (B^{T}N)_{\Delta CB}^{T} - \Delta CN^{T}) = [-2 \quad 0 \quad 0 \quad 0]$$

$$(\overline{z}_{N}^{*} + \Delta \overline{z}_{N}^{*})^{T} = [-0.8 \quad 0.2 \quad 0.9 \quad 2.8]$$

$$\overline{z}_{N}^{*} + \Delta \overline{z}_{N}^{*} + \Delta \overline{z}$$

Next, find optimal by simplex method.

$$B^{1}Ne_{1} = \begin{bmatrix} 1 \\ 0.2 \\ 1.6 \end{bmatrix}, \quad X_{B}^{1T} = \begin{bmatrix} 6 \\ 0.4 \\ 11.2 \end{bmatrix} \qquad \frac{6}{1} = 6 \implies i = 2$$

$$\frac{0.4}{0.2} = 2 \implies i = 3$$

$$\frac{11.2}{1.6} = 7.25 \implies i = 7$$

Choose i as leaving vow.

$$A = \begin{bmatrix} 2 & 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 4 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \quad c^{T} = \begin{bmatrix} 3 & 2 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$b = \begin{bmatrix} 8 \\ 12 \\ 18 \end{bmatrix}$$

$$C_{B}^{T} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$$
 $C_{N}^{T} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$

$$B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}, N = \begin{bmatrix} 5 & 1 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{bmatrix}, (B_N)^T = \begin{bmatrix} -5 & 5 & -8 \\ 3 & -1 & 0 \\ -1 & 1 & -2 \\ 1 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$X_{B}^{*} = B^{-1}b = \begin{bmatrix} 4 \\ 2 \\ 8 \end{bmatrix} ([B^{-1}N]^{T}C_{B} - C_{N})^{T} = \begin{bmatrix} 4 & 2 & 1 & \frac{1}{2} \end{bmatrix}$$

$$Z_{B}^{*} = C_{B}^{T}B^{-1}b = 14$$

So, re have optimal dict.

$$(X_1, X_2, X_3, X_4) = (2, 4, 0, 0), 3 = 14$$

$$B = \{2 \ 3 \ 7\}$$

$$N = \{1 \ 5 \ 6 \ 4\}$$

$$(B^{-1}N)^{T} = \begin{bmatrix} 1 & 0.2 & 1.6 \\ 0 & 0.2 & -0.4 \\ 0.5 & -0.1 & -0.3 \\ 2 & -0.2 & -1.6 \end{bmatrix}$$

$$\Delta C_{\mathsf{g}}^{\mathsf{T}} = \begin{bmatrix} 0 & -0.5 & 0 \end{bmatrix} \quad \Delta C_{\mathsf{N}}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Z_{N}^{*T} = \begin{bmatrix} 1.2 & 0.2 & 0.9 & 2.8 \end{bmatrix}$$
 $\Delta Z_{N}^{*T} = \begin{bmatrix} -0.1 & -0.1 & 0.05 & 0.1 \end{bmatrix}$

$$(Z_N^* + \Delta Z_N^*)^T = [1.1 \ 0.1 \ 0.95 \ 2.9] \ge 0$$
 dict. is still applical

New optimal value,

$$(C_8^{\mathsf{T}} + \Delta C_8^{\mathsf{T}}) B^{\mathsf{T}} b = 3^* + \Delta C_8^{\mathsf{T}} B^{\mathsf{T}} b$$

$$= 12.4 + (-0.2) = 12.2$$

$$B^{\mathsf{T}} b = \begin{bmatrix} 6 \\ 2/5 \end{bmatrix}$$

$$= 56 = \begin{bmatrix} 6 \\ 2/5 \end{bmatrix}$$

$$(X_1, X_2, X_3, X_4) = (0, 6, 0.4, 0) 3^{*} = 12.2$$

(c)
$$B = \{2 \ 3 \ 73$$
 $N = \{1 \ 5 \ 6 \ 43\}$
 $B = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $X_{B}^{*T} = \begin{bmatrix} 6 \ 0.4 \ 11.2 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 6 \ 0.4 \ 1.2 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$
 $A \times _{B}^{*T} = \begin{bmatrix} 1 \ 5 \ 0 \end{bmatrix}$

$$B = \begin{cases} 2 & 3 & 7 \end{cases} \qquad \chi_{B}^{#7} = \begin{bmatrix} 13 & -1 & 7 \end{bmatrix}$$

$$N = \begin{cases} 1 & 5 & 6 & 4 \end{cases}$$

$$(B^{-1}N)^{T} = \begin{bmatrix} 1 & 0.2 & 1.6 \\ 0 & 0.2 & .0.4 \\ 0.5 & -0.1 & .0.3 \\ 2 & -0.2 & -1.6 \end{bmatrix}, (B^{-1}N)^{T} = \begin{bmatrix} 0.2 \\ 0.2 \\ -0.1 \\ -0.2 \end{bmatrix}$$

$$z^{*} = \begin{bmatrix} 1.2 \\ 0.2 \\ 0.9 \\ 2.8 \end{bmatrix}, 0 \neq z^{*} + (B^{-1}N)^{T} z_{B}$$

$$z^* = \begin{bmatrix} 1.2 \\ 0.2 \\ 0.9 \\ 2.8 \end{bmatrix}$$
, $0 \leq z^* + (B^{-1}N)^T z_B$

$$\chi_3 \ge -\frac{1\cdot 2}{0\cdot 2} = -6 \Rightarrow j=1$$

$$x_3 \ge -\frac{0.2}{0.2} = -1 \Rightarrow j=5$$

$$X3 \ge -\frac{0.2}{0.2} = -1 \Rightarrow j=5$$
 $X3 \ge -\frac{0.9}{0.1} = 9 \Rightarrow j=6 \quad \text{for the dual}$
 $X3 \le \frac{0.9}{0.1} = 9 \Rightarrow j=6 \quad \text{for the dual}$
 $X3 \le \frac{0.9}{0.1} = 9 \Rightarrow j=6 \quad \text{for the dual}$
 $X3 \le \frac{0.9}{0.1} = 9 \Rightarrow j=6 \quad \text{for the dual}$

 $X_3 \leq \frac{2.8}{0.2} = 14 \implies j = 4$

$$B = \begin{cases} 2 & 6 & 73 \\ 0 & cT = [1211000] \end{cases}$$

$$N = \begin{cases} 1 & 5 & 3 & 43 \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 4 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 8 \\ 26 \\ 18 \end{bmatrix} \quad C_B = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} \bar{1} & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \chi_{B}^{*} = B^{-1}b = \begin{bmatrix} 8 \\ 10 \\ 10 \end{bmatrix} \quad \text{optimal!}$$

$$z^{*} = C_{B}^{T}B^{-1}b = 16$$

(x1, x2, x3, x4) = (0,8,0,0), 3 = 16

$$X_1 + 2X_2 + X_3 + X_4 \le 5$$
 $X_3, X_4 \ge 0$
 $3X_1 + X_2 - X_3 + 0X_4 \le 8$ Check $X^* = (3, -1, 0, 2)$
 $X_2 + X_3 + X_4 = 1$

$$3+2(-1)+0+2=3 = 5$$

 $3(3)+(4)-0+0(2)=8 = 8$
 $-1+0+2=1$
 $X_3=0, X_4=2 \ge 0, \chi^*$ in feasible

$$X_1: Y_1 + 3Y_2 = 6$$
 First constraint slacn:
 $X_2: 2Y_1 + Y_2 + Y_3 = 1$ $5 - (3) = 2 > 0 \Rightarrow Y_1 = 0$
 $Y_1 - Y_2 + Y_3 \neq -1$ $X_4 = 2 > 0$, so reduced cost
 $Y_1 + Y_3 \neq -1$ $Y_1 + Y_3 = -1$

So,
$$Y_1 = 0$$
, $3Y_2 = 6 \Rightarrow Y_2 = 2$
 $2Y_1 + Y_2 + Y_3 = 1 \Rightarrow Y_3 = 1 - 2 \Rightarrow Y_3 = -1$
 $Y_1 - Y_2 + Y_3 = 0 - 2 - 1 = -3 \le -1$
 $Y_1 = 0 \ge 0$, $Y_2 = 2 \ge 0$

 $(Y_1,Y_2,Y_3) = (0,2,-1)$, Primal value at $x^* : 6x_1+y_2-x_3-x_4=6\cdot 3+(-1)-0-2=15$ Dual value: $5y_1+8y_2+1\cdot y_3=5\cdot 0+8\cdot 2+(-1)=15$ Primal & dual feasible \Rightarrow zero duality gap \Rightarrow optimal. So $X^* = (3,-1,0,2)$ is optimal

3. [v]
$$X^* = (2,0,1)$$
, $3^* = 13$, $y^* = (1,0,1)$

min
$$5y_1 + 11y_2 + 6y_3 + 3y_4$$

 $2y_1 + 4y_2 + 3y_3 + 3y_4 \ge 5$ $y \ge 0$
 $3y_1 + y_2 + 4y_3 + 1y_4 \ge 4$
 $y_1 + 2y_2 + 2y_3 - y_4 \ge 3$

$$\begin{cases} 3 y_3 + 3 y_4 = 5 \\ 2 y_3 - y_4 = 3 \end{cases}, \quad y_3, y_4 \ge 0 \implies y_3 = \frac{14}{9}, y_4 = \frac{1}{9}$$

$$\begin{cases} 3x_1 + 2x_3 = 8 \\ 3x_1 - x_3 = 3 \end{cases} \implies x_1 = \frac{14}{7}, x_3 = \frac{5}{3}, x_2 = 0$$

$$x_2 = 0$$

obj:
$$5 \cdot \frac{14}{9} + 3 \cdot \frac{5}{3} = \frac{115}{9}$$

$$x = (\frac{14}{9}, 0, \frac{5}{3}), 3^{t} = \frac{115}{9}$$