第8章 高强钢角焊缝设计理论

8.1 引言

8.2 计算模型

如图 8.1 所示,对等边且焊脚尺寸为 h_f 的角焊缝,假定在外荷载 2P 作用下,试件最终的断裂面角度为 α ,由于对称作用,假定每一条焊缝在破坏前承受相同的荷载,P,而 P 与焊缝长度方向夹角为 θ ,如图 8.2 所示,对于正面角焊缝和十字接头角焊缝, $\theta = 90^\circ$;对于侧面角焊缝, $\theta = 0^\circ$ 。破坏面的面积为

$$A_{\theta} = \frac{h_f l \sin \frac{\pi}{4}}{\sin(\frac{\pi}{4} + \alpha)} \tag{1.1}$$

图 8.1 角焊缝受力示意图(正视)

图 8.2 角焊缝受力示意图 (俯视)

将图 8.1 中红色部分取为隔离体,根据外荷载沿坐标轴合力为 0,轻易得到隔离体的受力图,如图 8.3 所示,由于两侧等大反向的荷载 $P\sin\theta$ 可能不在同一条直线上,使其沿 z 轴存在一个力矩,为了平衡该力矩,在图 8.3 的两个受力截面上存在荷载 $CP\sin\theta$, C 为常数;同理,荷载 $P\cos\theta$ 沿着 x 轴、y 轴产生的力矩,分别由荷载 $AP\cos\theta$ 与 $BP\cos\theta$ 平衡,其中 A、B 为常数,力的方向与作用位置如图 8.4 所示。

图 8.3 隔离体受力图(平面)

图 8.4 隔离体受力图(空间)

图 8.4 包含了破坏面上的所有荷载,则破坏面上的平均剪应力为

$$\tau = \frac{P}{A_a} [(\sin\theta\cos\alpha - C\sin\theta\sin\alpha)^2 + \cos^2\theta]^{1/2}$$
 (1.2)

平均正应力为

$$\sigma = \frac{P}{A_{\theta}} [\sin \theta \sin \alpha + C \sin \theta \cos \alpha]$$
 (1.3)

8.3 强度理论

根据材料力学的知识,工程中常用于预测强度破坏的理论有四个,分别为第一强度理论——最大拉应力理论;第二强度理论——最大伸长线应变理论;第三强度理论——最大剪应力理论;第四强度理论——形状改变能密度理论。根据适用性及简便性,下文中,将使用第一、三、四强度理论对角焊缝的破坏模式及破坏荷载进行预测。

8.3.1 第一强度理论——最大拉应力理论

根据该强度理论,当式(1.3)描述的正应力达到极限应力 σ_u 时,即发生强度破坏,对式(1.3)求偏导,得

$$\frac{\partial \sigma}{\partial \alpha} = \frac{P}{h_f l \sin \frac{\pi}{4}} \left[\cos(\frac{\pi}{4} + \alpha)(\sin \theta \sin \alpha + C \sin \theta \cos \alpha) + \sin(\frac{\pi}{4} + \alpha)(\sin \theta \cos \alpha - C \sin \theta \sin \alpha) \right]$$
(1.4)

令 $\frac{\partial \sigma}{\partial \alpha}$ = 0,并且先假定图 8.3 所示的等大反向的荷载 $P\sin\theta$ 在同一条直线上,即 C=0,可以得到在任意加载角度 θ 作用下,正应力最大的截面(α),见图 8.5,从推导过程以及图中可以看出,按照该准则计算得到的破坏截面与加载角度无关。由式(1.3)可知,对于正面角焊缝(θ =0°)的情况,极限荷载无穷大,这与实际情况不符,说明该强度理论不适用于预测角焊缝的破坏。

图 8.5 破坏截面与加载角度的关系

图 8.6 极坐标下 P_{θ}/P_0 与加载角度 θ 的关系

8.3.2 第三强度理论——最大剪应力准则

根据该强度理论,当式(1.2)描述的剪应力达到极限剪应力 τ_u 时,即发生强度破坏,对式(1.2)求偏导,

$$\frac{\partial \tau}{\partial \alpha} = \frac{P}{h_f l \sin \frac{\pi}{4}} \left[(\sin \theta \cos \alpha - C \sin \theta \sin \alpha)^2 + \cos^2 \theta \right]^{-1/2}
* \left\{ \cos(\frac{\pi}{4} + \alpha) \left[(\sin \theta \cos \alpha - C \sin \theta \sin \alpha)^2 + \cos^2 \theta \right] \right.
+ \frac{\sin(\frac{\pi}{4} + \alpha)}{2} \left[2C \sin^2 \theta * (2\sin^2 \alpha - 1) + 2\sin^2 \theta \cos \alpha \sin \alpha (C^2 - 1) \right] \right\}$$
(1.5)

令 $\frac{\partial \tau}{\partial \alpha}$ =0,且先假定 C=0,可以得到在任意加载角度 θ 作用下,剪应力最大的截面(α),见图 8.5,该截面即为破坏截面,再将得到的 α 带入式(1.2),并认为破坏时有

$$\tau = \tau_{u} \tag{1.6}$$

成立,可以得到在任意加载角度 θ 下的极限荷载 P_{θ} ,

$$P_{\theta} = A_{\theta} \tau_{u} / \left[(\sin \theta \cos \alpha - C \sin \theta \sin \alpha)^{2} + \cos^{2} \theta \right]^{1/2}$$
 (1.7)

将 $\theta = 0^{\circ}$ 的极限荷载记为 P_0 ,则有

$$\frac{P_{\theta}}{P_0} = \frac{A_{\theta}}{A_0} \left[(\sin \theta \cos \alpha - C \sin \theta \sin \alpha)^2 + \cos^2 \theta \right]^{-1/2}$$
 (1.8)

 A_0 为纵向角焊缝所对应的破坏截面面积。图 8.6 表示随着加载角度的改变,极限荷载的变化,此时取 C=0。

8.3.3 第四强度理论——von Mises 准则

将 von Mises 屈服准则中的屈服强度换成极限强度, 定义等效应力为

$$\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2} \tag{1.9}$$

当等效应力达到材料的极限强度时,认为发生强度破坏。将式(1.2)和式(1.3)带入式(1.9),并对 α 求偏导,得到

$$\frac{\partial \sigma_{eq}}{\partial \alpha} = \frac{P}{h_f l \sin \frac{\pi}{4}} \left[\cos(\frac{\pi}{4} + \alpha) \times M^{1/2} + \frac{1}{2} \sin(\frac{\pi}{4} + \alpha) \times M^{-1/2} \times \frac{\partial M}{\partial \alpha} \right]$$
(1.10)

其中

$$M = (1+3C^2)\sin^2\theta\sin^2\alpha + (C^2+3)\sin^2\theta\cos^2\alpha$$

$$-4C\sin^2\theta\sin\alpha\cos\alpha + 3\cos^2\theta$$
(1.11)

$$\frac{\partial M}{\partial \alpha} = (4C^2 - 4)\sin^2\theta \sin\alpha \cos\alpha - 4C\sin^2\theta (\cos^2\alpha - \sin^2\alpha) \tag{1.12}$$

令 $\frac{\partial \sigma_{eq}}{\partial \alpha} = 0$,可以得到在任意加载角度 θ 作用下,等效应力最大的截面(α),见图 8.5,该截面即为破坏截面,再将得到的 α 带入式(1.9),并认为破坏时有

$$\sigma_{eq} = \sigma_u \tag{1.13}$$

成立,因此可以得到在任意加载角度 θ 下的极限荷载 P_{θ} ,

$$P_{\theta} = A_{\theta} \sigma_{u} / M^{1/2} \tag{1.14}$$

将 $\theta = 0^{\circ}$ 的极限荷载记为 P_0 ,则有

$$\frac{P_{\theta}}{P_0} = \frac{\sqrt{3}A_{\theta}}{A_0} / M^{1/2} \tag{1.15}$$

图 8.6 表示随着加载角度的改变,极限荷载的变化,此时取 C=0。

8.3.4 系数 C 的影响

8.2 节已介绍了截面上外力 $CP\sin\theta$ 产生的原因,C的取值由等值反向的一对力偶 $P\sin\theta$ 产生的力矩大小决定,图 8.7(a)表示 $P\sin\theta$ 在同一直线上,产生力矩为 0,此时 C=0,该种情况表示在焊缝的受拉边上应力分布最不均匀,靠近焊缝根部应力最集中;图 8.7(b)表示焊缝受拉边上的应力均匀分布,合力在受拉边的一半,根据力矩平衡,

$$P\sin\theta \times (0.5h_f - \frac{0.5h_f \tan\alpha}{1 + \tan\alpha}) = CP\sin\theta \times \frac{0.5h_f}{1 + \tan\alpha}$$
 (1.16)

得到 C=1; 对于图 8.7(c)所示的更一般的情况,有 0<C<1。

(a) C=0 的情况 (b) C=1.0 的情况 (c) 0<C<1 的情况 图 8.7 C 的取值

C 的取值对开裂角度的影响可以通过式(1.5)与式(1.10)进行研究,改变 C 的值,对任一固定的加载角度 θ ,可以得到采用不同破坏准则预测的开裂角度的变化情况,结果见图 8.8 和图 8.9。

图 $8.8 \, \mathrm{C}$ 的取值对开裂角度 α 的影响(最大剪应力准则)

图 8.9 C 的取值对开裂角度 α 的影响(von Mises 准则)

表 8.1 汇总了 C 值从 0 变到 1 时,在不同的加载角度下,两种强度理论预测的开裂角度的最大值与最小值之差,从中可以看出,加载角度 $\theta < 30^{\circ}$ 时,C 值的变化对开裂角度的影响很小,但是随着加载角度的增加,开裂角度受 C 值影响明显,尤其采用最大剪应力理论。为了更好的对角焊缝的破坏模式及承载能力进行预测,需要缩小 C 的取值范围。

12 0.10		/ 农用反 (4	日74次 日日74次日	八旦一取り	「阻之左(ほ	٤/	
加载角度 θ	0	15	30	45	60	75	90
最大剪应力理论	0	2	5	14	19	21	21
von Mises 强度理论	0	1	5	13	8	11	12

表 $8.1\,\mathrm{C}$ 的取值对开裂角度 lpha 的取值的最大值与最小值之差(度)

8.3.5 确定 C 值

本章最终的研究目的是对一个特定尺寸的角焊缝在特定加载角度下的破坏角度及破坏荷载进行预测,需要首先确定系数 C,代入式(1.5)或(1.10)中,求得破坏角度;再带入式(1.7)或(1.14)中,求得破坏荷载。从上一节的分析中可知,系数 C 的取值对破坏角度有较大影响,进而影响到破坏荷载的预测。第6章已有实测的正面角焊缝、侧面角焊缝的试验数据,本节中根据实测的破坏角度代入式(1.5)或(1.10)中反推系数 C。

		角度	THISTEIS	
编号	有字面	无字面	断裂位置	最大荷载 kN
T11-1	20.62	32.23	双边	272.18
T11-2	15.97	20.23	单边(有字)	254.89
T11-3	18.50	21.68	单边(有字)	346.76
T11-4	18.40	26.73	双边	324.03
T12-1	21.27	18.93	双边	348.58
T12-2	24.88	22.07	双边	358.28
T12-3	19.50	20.00	双边	361.43
T12-4	17.92	20.40	双边	373.48
T13-1	22.93	15.63	单边(无字)	342.08
T13-2	19.82	16.00	单边(无字)	356.8
T13-3	20.77	16.33	单边(无字)	378.39
T13-4	20.02	9.92	单边(无字)	369.4
T14-1			母材	413.28
T14-3			母材	413.6
T14-5			母材	427.1
均值	20.05	20.01		
T21-1	20.47	24.38	双边	668.61
T21-2	21.82	23.76	双边	677.08

表 8.2 $\theta = 90^{\circ}$ 的试件破坏角度汇总

T21-4	21.74	19.50	双边	873.74
T21-5			母材	1143.25
T23-1	16.15	21.93	双边	1017.70
T23-2	18.68	19.42	双边	993.33
T23-3	14.43	18.33	双边	831.51
T24-1	15.33	10.92	双边	1042.49
T24-2			母材	1150.36
均值	18.37	19.75		
C11-1	19.6	14.6	双边	293.58
C11-2	20.7	22.7	双边	296.32
C11-3	14.1	20.8	双边	394.12
C11-5	9.0	18.1	双边	328.05
C13-1			母材	406.97
C13-2	25.5	18.7	双边	357.34
C13-3	27.8	20.8	双边	381.35
C13-5	23.6	20.6	双边	360.73
C14-1			母材	390.48
C14-2	17.7	20.4	双边	364.98
C14-3	19.8	17.8	双边	364.10
C14-5	18.3	18.6	双边	398.09
均值	19.60	19.30		
C21-1	14.4	23.4	双边	918.35
C21-2	22.5	13.0	双边	883.51
C21-3	24.4	12.6	双边	820.21
C21-5	28.0	6.6	双边	1127.95
C23-1	25.9	11.8	双边	893.28
C23-2	22.8	16.3	双边	761.02
C23-3	24.5	12.6	双边	872.32
C23-5	17.1	10.9	双边	945.32
均值	22.45	13.38		
正面角焊缝整体均值	19	.23		
标准差	4.	64		
变异系数(%)	24	.14		

表 8.3 $\theta = 0^{\circ}$ 的试件破坏角度汇总

TO STATE OF THE PROPERTY OF TH								
		破坏						
编号	1 号边	2 号边	3 号边	4 号边	极限荷载 kN			
L1-1-60	57.41	69.73	65.42	67.07	409.87			
L1-2-60	52.92	56.29	43.01	69.53	422.92			
L3-1-60	63.15	66.84	48.24	90.00	441.45			
L3-2-60	56.99	86.59	54.07	61.05	439.26			
L4-1-60	60.54	68.30	50.75	44.99	623.06			

1	1	l	Ī	1 1	
L4-2-60	71.64	50.12	58.48	54.23	670.75
L1-1-70	41.41	39.35	41.59	43.35	940.70
L1-2-70	43.08	39.86	43.87	43.69	956.81
L2-1-70					1138.11
L2-2-70					1043.50
L3-1-70	51.38	40.83	43.76	48.78	951.15
L3-2-70	45.82	41.40	42.17	58.12	1040.49
L4-1-70	47.54	35.17	48.99	45.52	1265.72
L4-2-70	44.85	49.55	50.95	41.33	1191.80
L1-1-90	61.61	54.92	56.91	48.93	734.11
L1-2-90	49.33	60.22	51.61	47.22	773.22
L3-1-90	45.48	58.74	51.70	53.43	807.58
L3-2-90	50.76	52.96	39.01	67.12	796.87
L4-1-90	47.22	50.19	47.38	39.57	979.29
L4-2-90	47.41	44.38	90.00	51.72	983.81
L1-1-140	40.37	53.24	40.41	60.94	1310.00
L1-2-140	72.08	49.56	51.37	40.30	1353.71
L2-1-140	46.59	39.95	54.89	60.74	1524.26
L2-2-140	53.30	56.36	42.40	44.07	1590.30
L3-1-140	60.91	37.31	109.13	37.17	1559.15
L3-2-140	40.24	49.83	58.93	45.19	1324.61
L4-1-140	43.59	48.41	39.78	42.40	1570.00
L4-2-140	48.58	40.82	42.48	40.11	1686.48
均值		51	.91		
标准差		12	.17		
变异系数(%)		23	.45		

表 8.2 和表 8.3 为实测的破坏角度汇总,对于正面角焊缝和十字接头角焊缝, θ =90°,破坏角度的平均值为 19.23°,带入公式(1.5)中,求得 $C_{\tau}^{\theta=90^{\circ}}$ = 0.1146,带入公式(1.10)中,得到 $C_{m}^{\theta=90^{\circ}}$ = 0.4422。对于侧面角焊缝, θ =0°,破坏角度的平均值为 51.91°,不存在力矩平衡, $C_{\tau}^{\theta=0^{\circ}}$ = $C_{m}^{\theta=0^{\circ}}$ = 0。

8.3.6 关于 C 值, 使用 DIC 数据

C 的存在是在焊缝处应力分布不均匀导致的,可以通过 x 和 y 向的双向应变,根据胡克定律找到焊缝边缘的应力分布,可以直观的表示出应力分布的均匀程度。

8.4 简化公式

8.4.1 开裂角度预测

根据特定的 C 值,带入公式(1.5)和式(1.10),根据不同的加载角度 θ ,可求得破坏角度,但上述两个公式计算复杂。图 8.10 绘制了破坏角度与加载角度的关系,又 θ =0时,有 α_0 =45°,因此将截距设置为 45 再进行最小二乘拟合,得到的拟合关系式及相关系数见图 8.10。则预测破坏角度的简化公式为:

(1) 最大剪应力强度理论

$$\alpha_{\tau} = -26\sin^{1.6193}\theta + 45\tag{1.17}$$

(2) von Mises 理论

$$\alpha_m = -26\sin^{2.1543}\theta + 45\tag{1.18}$$

 $\frac{P_{\tau-\theta}}{P_{\tau-0}} = 1.2699 \sin^{1.2567} \theta + 1$ 2.0 1.5 $\frac{n-\theta}{n} = 1.0439 \sin^{1.282}$ $R^2 = 0.9997$ Max shear stress Fitting of Max_shear stress 0.5 Fitting of von Mises 0.0 0.6 8.0 0.2 1.0 1.2 $\sin \theta$

图 8.10 加载角度与破坏角度的关系

图 8.11 加载角度与承载力关系

8.4.2 极限荷载预测

(1) 最大剪应力理论

对于正面角焊缝,将 θ =90°, C_{τ}^{θ =90°=0.1146,实测的焊脚尺寸 h_f ,焊缝长度 L,破坏角度 α ,且极限剪应力取为

$$\tau_u = \sigma_u / \sqrt{3} \tag{1.19}$$

带入式(1.7),得到预测荷载,见下表 8.4。

(2) von Mises 理论

对于正面角焊缝,将 θ =90°, $C_m^{\theta=90^\circ}=0.4422$,实测的焊脚尺寸 h_f ,焊缝长度 L,破坏角度 α , σ_u 带入式(1.14),得到预测荷载,见下表 8.4。

表 8.45mm 正面角焊缝试验破坏荷载的预测值比较

4.5	焊缝金 名义焊脚尺		ナ 破坏模式	焊缝金属极限	预测值/试验值		
编 号	属	mm	破坏模式	强度	最大剪应	von	
					カ	Mises	
T11-1	ER50-6	5	双边	631	0.597	0.590	
T11-2	ER50-6	5	单边(有字)	631	0.543	0.542	
T11-3	ER50-6	5	单边(有字)	631	0.545	0.545	
T11-4	ER50-6	5	双边	631	0.574	0.572	
T12-1	ER59-G	5	双边	707	0.593	0.592	
T12-2	ER59-G	5	双边	707	0.534	0.532	
T12-3	ER59-G	5	双边	707	0.567	0.567	
T12-4	ER59-G	5	双边	707	0.546	0.545	
T13-1	ER76-G	5	单边 (无字)	733	0.567	0.565	
T13-2	ER76-G	5	单边 (无字)	733	0.582	0.581	
T13-3	ER76-G	5	单边 (无字)	733	0.544	0.543	
T13-4	ER76-G	5	单边 (无字)	733	0.555	0.552	
T14-1	ER96-G	5	母材	899			
T14-3	ER96-G	5	母材	899			
T14-5	ER96-G	5	母材	899			
均值					0.562	0.560	
标准差					0.020	0.019	
变异系数(%)					3.603	3.463	

表 8.5 10mm 正面角焊缝试验破坏荷载的预测值比较

	12	0.3 10111111 正闽用汗	実 はしが 収が	可我们则然仍且心我		
(春日	焊缝金	名义焊脚尺寸	破坏模	焊缝金属极限强	预测值/试验值	
编号	属	mm	式	度	最大剪应	von
					カ	Mises
T21-1	ER50-6	10	双边	631	0.679	0.677
T21-2	ER50-6	10	双边	631	0.668	0.666
T21-4	ER50-6	10	双边	631	0.601	0.600
T21-5	ER50-6	10	母材	631		
T23-1	ER76-G	10	双边	733	0.608	0.606
T23-2	ER76-G	10	双边	733	0.633	0.633
T23-3	ER76-G	10	双边	733	0.623	0.622
T24-1	ER96-G	10	双边	899	0.618	0.615
T24-2	ER96-G	10	母材	899		
均值					0.633	0.631
标准差					0.028	0.027
变异系数(%)					4.362	4.351

表 8.6 5mm 十字接头角焊缝试验破坏荷载的预测值比较

编号

	焊缝金	名义焊脚尺寸	破坏模	焊缝金属极限强	最大剪应	von
	属	mm	式	度	カ	Mises
C11-1	ER50-6	5	双边	631	0.529	0.528
C11-2	ER50-6	5	双边	631	0.515	0.514
C11-3	ER50-6	5	双边	631	0.564	0.562
C11-5	ER50-6	5	双边	631	0.589	0.585
C13-1	ER76-G	5	母材	733		
C13-2	ER76-G	5	双边	733	0.529	0.527
C13-3	ER76-G	5	双边	733	0.514	0.511
C13-5	ER76-G	5	双边	733	0.586	0.585
C14-1	ER96-G	5	母材	899		
C14-2	ER96-G	5	双边	899	0.643	0.643
C14-3	ER96-G	5	双边	899	0.612	0.611
C14-5	ER96-G	5	双边	899	0.643	0.642
均值					0.572	0.571
标准差					0.048	0.048
变异系数(%)					8.320	8.402

表 8.7 10mm 十字接头角焊缝试验破坏荷载的预测值比较

.	焊缝金	名义焊脚尺寸	破坏模	焊缝金属极限强	预测值/试验值		
编号	属	mm	式	度	最大剪应	von	
					カ	Mises	
C21-1	ER50-6	10	双边	631	0.570	0.568	
C21-2	ER50-6	10	双边	631	0.595	0.593	
C21-3	ER50-6	10	双边	631	0.536	0.533	
C21-5	ER50-6	10	双边	631	0.604	0.596	
C23-1	ER76-G	10	双边	733	0.687	0.683	
C23-2	ER76-G	10	双边	733	0.675	0.674	
C23-3	ER76-G	10	双边	733	0.704	0.701	
C23-5	ER76-G	10	双边	733	0.753	0.750	
均值					0.641	0.637	
标准差					0.070	0.070	
变异系数(%)					10.973	11.014	

表 8.8 侧面角焊缝试验破坏荷载的预测值比较

编号 焊缝金属			预测/试验				
	金属强度	试验获得极限荷载 kN	.kㅁ ^/호	逢 板板	均值		
			焊缝		焊缝	板板	
L1-1-60	ER50-6	631	409.872	0.947	0.834		
L1-2-60	ER50-6	631	422.920	0.910	0.836	0.906	0.840
L3-1-60	ER76-G	733	441.448	0.923	0.866		

				1			
L3-2-60	ER76-G	733	439.260	1.033	0.946		
L4-1-60	ER96-G	899	623.059	0.826	0.800		
L4-2-60	ER96-G	899	670.749	0.796	0.760		
L1-1-70	ER50-6	631	940.697	0.752	0.713		
L1-2-70	ER50-6	631	956.812	0.788	0.767		
L2-1-70	ER59-G	707	1138.113	0.756	0.729		
L2-2-70	ER59-G	707	1043.498	0.784	0.748	0.012	0.704
L3-1-70	ER76-G	733	951.150	0.832	0.845	0.812	0.784
L3-2-70	ER76-G	733	1040.494	0.815	0.782		
L4-1-70	ER96-G	899	1265.722	0.864	0.823		
L4-2-70	ER96-G	899	1191.804	0.909	0.866		
L1-1-90	ER50-6	631	734.112	0.699	0.681		
L1-2-90	ER50-6	631	773.221	0.650	0.625		
L3-1-90	ER76-G	733	807.581	0.708	0.692	0.710	0.607
L3-2-90	ER76-G	733	796.872	0.728	0.698	0.712	0.687
L4-1-90	ER96-G	899	979.293	0.744	0.713		
L4-2-90	ER96-G	899	983.807	0.745	0.716		
L1-1-140	ER50-6	631	1310.000	0.634	0.604		
L1-2-140	ER50-6	631	1353.713	0.677	0.658		
L2-1-140	ER59-G	707	1524.264	0.596	0.580		
L2-2-140	ER59-G	707	1590.298	0.599	0.576	0.675	0.651
L3-1-140	ER76-G	733	1559.146	0.646	0.621	0.675	0.651
L3-2-140	ER76-G	733	1324.608	0.759	0.733		
L4-1-140	ER96-G	899	1570.000	0.763	0.736		
L4-2-140	ER96-G	899	1686.480	0.723	0.704		

从预测结果来看,无论采用最大剪应力理论还是 von Mises 强度理论,预测结果与试验值相比都较低。Miazga 等[1]认为由于约束效应,焊根处于三向应力状态,参考图 8.4,与 z 向约束作用相比,x 向的约束作用可以忽略不计,此时焊根假定处于平面受力状态,由 von Mises 屈服准则,

$$\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 = \sigma_y \tag{1.20}$$

又

$$\sigma_2 = v\sigma_1 \tag{1.21}$$

则

$$\sigma_1 = \sigma_v / \sqrt{1 + v^2 - v} \tag{1.22}$$

将 von Mises 屈服准则用于极限状态,且假定焊缝处于不可压缩状态 ($v_p = 0.5$),由于存在约束作用,在焊缝处极限强度如下

$$\sigma_{ur} = \sigma_u / \sqrt{1 + v_p^2 - v_p} = 1.155\sigma_u$$
 (1.23)

不同的加载角度将在焊缝处产生不同的约束作用,正面角焊缝约束最大,侧面角焊缝约束作用几乎为 0,因此假定约束作用与加载角度成正弦关系,那么用来计算承载力的公式应乘以放大系数 $(1+0.155\sin\theta)$ 。但是从本文的试验结果来看,焊缝处的多向应力带来的强度放大为 $(1+0.67\sin\theta)$,则式 (1.7)和式 (1.14)将分别被修正为式 (1.24)和式 (1.25)。

$$P_{\tau-\theta} = (1 + 0.67\sin\theta) * A_{\theta}\tau_{u} / [(\sin\theta\cos\alpha - 0.1146\sin\theta\sin\alpha)^{2} + \cos^{2}\theta]^{1/2}$$
 (1.24)

$$P_{m-\theta} = (1 + 0.67 \sin \theta) * A_{\theta} \sigma_{u} / M^{1/2}$$
 (1.25)

由于式(1.24)和式(1.25)预测公式复杂,不便于实际使用;又破坏角度与加载角度相关,破坏荷载与破坏角度相关,公式中虽有 C 的影响,但 C 的取值同样与加载角度相关,因此,假定极限荷载仅受加载角度的影响,且与 θ 的正弦相关,那么,对于公式(1.24)和式(1.25),给定一个 $\sin\theta$,得到 $P_{\tau-\theta}/A_{\theta}\tau_{u}$ 与 $P_{m-\theta}/A_{\theta}\sigma_{u}$,只需得到二者的关系,即可化简公式。

$$\frac{P_{\tau-\theta}}{h_f L \sin(\pi/4)\sigma_u} = \frac{(1+0.67\sin\theta)}{\sqrt{3}\sin(\pi/4+\alpha)} / [(\sin\theta\cos\alpha - 0.1146\sin\theta\sin\alpha)^2 + \cos^2\theta]^{1/2}$$
(1.26)

$$\frac{P_{\tau-\theta}}{P_{\tau-0}} = \sqrt{3} \times \frac{P_{\tau-\theta}}{h_f L \sin(\pi/4)\sigma_u}$$
 (1.27)

$$\frac{P_{m-\theta}}{h_f L \sin(\pi/4)\sigma_u} = \frac{(1+0.67\sin\theta)}{\sin(\pi/4+\alpha)} / M^{1/2}$$
 (1.28)

$$\frac{P_{m-\theta}}{P_{m-0}} = \sqrt{3} \times \frac{P_{m-\theta}}{h_f L \sin(\pi/4)\sigma_u}$$
 (1.29)

而 $h_f L \sin(\pi/4)$ 为等边直角角焊缝的最小截面面积,称为有效计算面积 A_e 。图 8.11 绘制了极限荷载与加载角度的关系,经拟合发现,极限荷载与 $\sin^{1.3}\theta$ 基本成线性关系,在 $\theta=0$ 时,有 $P_\theta=P_0$,因此将截距设置为 1 再进行最小二乘拟合,得到的拟合关系式及相关系数见 图 8.11。则预测极限荷载的简化公式为:

(1) 最大剪应力强度理论

$$\frac{P_{\tau-\theta}}{P_{\tau-0}} = 1.2699 \sin^{1.2567} \theta + 1 \tag{1.30}$$

$$P_{\tau-\theta} = \frac{A_e f_u}{\sqrt{3}} (1.2699 \sin^{1.2567} \theta + 1)$$
 (1.31)

(2) Von Mises 理论

$$\frac{P_{m-\theta}}{P_{m-0}} = 1.0439 \sin^{1.2825} \theta + 1 \tag{1.32}$$

$$P_{m-\theta} = \frac{A_e f_u}{\sqrt{3}} (1.0439 \sin^{1.2825} \theta + 1)$$
 (1.33)

8.4.3 与美国和加拿大规范对比

$$F_{AISC} = 0.60\phi \cdot A_w f_u \cdot (1.0 + 0.50 \sin^{1.5} \theta)$$
 (1.34)

$$F_{CSA} = 0.67\phi \cdot A_{w} f_{u} \cdot (1.0 + 0.50 \sin^{1.5} \theta)$$
 (1.35)

8.5 与试验结果对比(包括他人的试验结果)

8.5.1 与第 5 章试验结果对比

根据上一节得到的简化公式,对第 5 章的试验结果进行预测,预测结果见下表 8.9,从预测结果来看,von Mises 强度理论对破坏荷载的预测结果更好,预测精度达到 1%,且对破坏位置的预测较准确,基本上预测破坏荷载接近或超过母材承载力的试件最终破坏都发生在母材;而基于最大剪应力强度理论的预测公式预测结果偏大,精度为 12%,但对预测破坏荷载超过母材承载力的试件仍有部分破坏出现于母材,破坏位置的预测不够准确。

表 8.9 使用简化公式对正面角焊缝的破坏角度和破坏荷载进行预测

		金值			力强度理证				强度理论	<u>}</u>
编号			预测	側值	预测值	/试验值	预测	則值	预测值	/试验值
	最大荷载	7.0.1.7.42 00	破坏荷	破坏角	破坏荷	破坏角	破坏荷	破坏角	破坏荷	破坏角
	kN	破坏角度	载 kN	度	载	度	载 kN	度	载	度
T11-1	272.2	26.43	291.5	19	1.07	0.72	262.4	19	0.96	0.72
T11-2	254.9	18.10	255.7	19	1.00	1.05	230.2	19	0.90	1.05
T11-3	346.8	20.09	350.0	19	1.01	0.95	315.1	19	0.91	0.95
T11-4	324.0	22.57	341.1	19	1.05	0.84	307.1	19	0.95	0.84
T12-1	348.6	20.10	382.9	19	1.10	0.95	344.8	19	0.99	0.95
T12-2	358.3	23.47	351.8	19	0.98	0.81	316.7	19	0.88	0.81
T12-3	361.4	19.75	379.8	19	1.05	0.96	342.0	19	0.95	0.96
T12-4	373.5	19.16	377.3	19	1.01	0.99	339.8	19	0.91	0.99
T13-1	342.1	19.28	357.5	19	1.04	0.99	321.9	19	0.94	0.99
T13-2	356.8	17.91	383.9	19	1.08	1.06	345.7	19	0.97	1.06
T13-3	378.4	18.55	380.5	19	1.01	1.02	342.7	19	0.91	1.02
T13-4	369.4	14.97	373.3	19	1.01	1.27	336.2	19	0.91	1.27
T14-1	413.3		488.9	19	1.18		440.2	19	1.07	
T14-3	413.6		415.1	19	1.00		373.8	19	0.90	
T14-5	427.1		504.3	19	1.18		454.1	19	1.06	
T21-1	668.6	22.42	837.1	19	1.25	0.85	753.7	19	1.13	0.85
T21-2	677.1	22.79	833.4	19	1.23	0.83	750.4	19	1.11	0.83
T21-4	873.7	20.62	971.7	19	1.11	0.92	874.9	19	1.00	0.92
T21-5	1143.3		1285.5	19	1.12		1157.6	19	1.01	
T23-1	1017.7	19.04	1142.2	19	1.12	1.00	1028.5	19	1.01	1.00
T23-2	993.3	19.05	1165.7	19	1.17	1.00	1049.6	19	1.06	1.00
T23-3	831.5	16.38	956.3	19	1.15	1.16	861.0	19	1.04	1.16
T24-1	1042.5	13.13	1174.8	19	1.13	1.45	1057.8	19	1.01	1.45
T24-2	1150.4		1427.4	19	1.24		1285.3	19	1.12	
C11-1	293.6	17.09	286.5	19	0.98	1.11	257.9	19	0.88	1.11
C11-2	296.3	21.73	282.2	19	0.95	0.87	254.1	19	0.86	0.87
C11-3	394.1	17.41	409.6	19	1.04	1.09	368.8	19	0.94	1.09
C11-5	328.0	13.55	350.6	19	1.07	1.40	315.7	19	0.96	1.40
C13-1	407.0		515.7	19	1.27		464.3	19	1.14	
C13-2	357.3	22.08	347.4	19	0.97	0.86	312.8	19	0.88	0.86
C13-3	381.3	24.26	357.7	19	0.94	0.78	322.1	19	0.84	0.78
C13-5	360.7	22.09	390.4	19	1.08	0.86	351.6	19	0.97	0.86
C14-1	390.5		611.9	19	1.57		550.9	19	1.41	
C14-2	365.0	19.03	434.8	19	1.19	1.00	391.5	19	1.07	1.00
C14-3	364.1	18.80	412.8	19	1.13	1.01	371.7	19	1.02	1.01

C14-5	398.1	18.49	474.2	19	1.19	1.03	427.0	19	1.07	1.03
C21-1	918.3	18.89	963.1	19	1.05	1.01	867.2	19	0.94	1.01
C21-2	883.5	17.75	965.4	19	1.09	1.07	869.2	19	0.98	1.07
C21-3	820.2	18.50	803.2	19	0.98	1.03	723.2	19	0.88	1.03
C21-5	1127.9	17.26	1204.9	19	1.07	1.10	1084.9	19	0.96	1.10
C23-1	893.3	18.87	1116.6	19	1.25	1.01	1005.5	19	1.13	1.01
C23-2	761.0	19.55	948.2	19	1.25	0.97	853.8	19	1.12	0.97
C23-3	872.3	18.54	1123.3	19	1.29	1.02	1011.5	19	1.16	1.02
C23-5	945.3	13.97	1301.0	19	1.38	1.36	1171.5	19	1.24	1.36
平均值					1.09	1.01			0.99	1.01
标准差					0.10	0.16			0.09	0.16
变异系数(%)					9.38	15.75			9.38	15.75

表 8.10 使用简化公式对侧面角焊缝的破坏角度和破坏荷载进行预测

					预测	/试验	
编号	焊缝金属	金属强度 MPa	字测极限荷载 	/日 <i>/</i> /久	+=+=	均	值
			kN	焊缝	板板	焊缝	板板
L1-1-60	ER50-6	631	409.9	0.947	0.834		
L1-2-60	ER50-6	631	422.9	0.910	0.836		
L3-1-60	ER76-G	733	441.4	0.923	0.866	0.006	0.840
L3-2-60	ER76-G	733	439.3	1.033	0.946	0.906	0.840
L4-1-60	ER96-G	899	623.1	0.826	0.800		
L4-2-60	ER96-G	899	670.7	0.796	0.760		
L1-1-70	ER50-6	631	940.7	0.752	0.713		
L1-2-70	ER50-6	631	956.8	0.788	0.767		
L2-1-70	ER59-G	707	1138.1	0.756	0.729		
L2-2-70	ER59-G	707	1043.5	0.784	0.748	0.012	0.794
L3-1-70	ER76-G	733	951.2	0.832	0.845	0.812	0.784
L3-2-70	ER76-G	733	1040.5	0.815	0.782		
L4-1-70	ER96-G	899	1265.7	0.864	0.823		
L4-2-70	ER96-G	899	1191.8	0.909	0.866		
L1-1-90	ER50-6	631	734.1	0.699	0.681		
L1-2-90	ER50-6	631	773.2	0.650	0.625		
L3-1-90	ER76-G	733	807.6	0.708	0.692	0.712	0.697
L3-2-90	ER76-G	733	796.9	0.728	0.698	0.712	0.687
L4-1-90	ER96-G	899	979.3	0.744	0.713		
L4-2-90	ER96-G	899	983.8	0.745	0.716		
L1-1-140	ER50-6	631	1310.0	0.634	0.604		
L1-2-140	ER50-6	631	1353.7	0.677	0.658		
L2-1-140	ER59-G	707	1524.3	0.596	0.580	0.675	0.651
L2-2-140	ER59-G	707	1590.3	0.599	0.576		
L3-1-140	ER76-G	733	1559.1	0.646	0.621		

L3-2-140	ER76-G	733	1324.6	0.759	0.733
L4-1-140	ER96-G	899	1570.0	0.763	0.736
L4-2-140	ER96-G	899	1686.5	0.723	0.704

8.5.2 与其他研究者的试验结果对比

1986年,Miazga和 Kennedy^[1]对不同加载角度的角焊缝做了一系列的试验,试验结果与采用简化公式预测的结果的关系见下表 8.11。图 8.13 和图 8.14 表示预测结果与试验结果比值的均值与加载角度的关系,整体上看,采用两种强度理论预测的破坏荷载都偏低、预测的破坏角度都偏高;从预测的平均值来看,在破坏荷载和破坏角度的预测中,采用最大剪应力强度理论预测的结果都相对较好;另外,名义焊脚尺寸越大,两种强度理论的预测结果都更好。加载角度越小(接近 0),预测精度越差。

表 8.11 使用简化公式对 Miazga 和 Kennedy 的试验结果进行预测

		: 8.11 1史用			力强度理论				强度理论	<u> </u>
	试验	佥结果	预测	侧值	预测值	试验值	预测	 側值	预测值	/试验值
	破坏	极限荷	预测	预测	预测	预测	预测	预测	预测	预测
加载角度	角度	载 kN	荷载	角度	荷载	角度	荷载	角度	荷载	角度
90	10	421	432	19	1.03	1.90	393	19	0.93	1.90
90	13	431	439	19	1.02	1.46	399	19	0.92	1.46
90	10	407	438	19	1.08	2.00	398	19	0.98	2.00
75	12	466	445	20	0.96	1.70	405	21	0.87	1.74
75	11	451	426	20	0.94	1.86	388	21	0.86	1.90
75	12	471	433	20	0.92	1.70	394	21	0.84	1.74
60	19	568	444	24	0.78	1.32	406	26	0.71	1.40
60	19	566	441	24	0.78	1.32	403	26	0.71	1.40
60	18	559	429	24	0.77	1.36	392	26	0.70	1.44
45	34	447	371	30	0.83	0.90	342	33	0.77	0.98
45	23	433	345	30	0.80	1.31	318	33	0.74	1.42
45	25	419	340	30	0.81	1.21	313	33	0.75	1.31
30	28	614	454	37	0.74	1.33	426	39	0.69	1.42
30	20	626	483	37	0.77	1.87	453	39	0.72	2.01
30	22	610	454	37	0.74	1.70	425	39	0.70	1.82
15	42	484	384	42	0.79	1.00	370	44	0.76	1.04
15	42	477	389	42	0.82	1.00	375	44	0.79	1.04
15	43	482	383	42	0.80	0.99	369	44	0.77	1.03
0	51	513	319	45	0.62	0.89	319	45	0.62	0.89
0	49	487	329	45	0.68	0.92	329	45	0.68	0.92
0	51	483	332	45	0.69	0.89	332	45	0.69	0.89
90	16	789	738	19	0.94	1.23	671	19	0.85	1.23

90	21	807	763	19	0.94	0.93	693	19	0.86	0.93
90	20	791	755	19	0.95	0.97	685	19	0.87	0.97
75	18	821	781	20	0.95	1.13	710	21	0.86	1.16
75	19	810	757	20	0.93	1.10	689	21	0.85	1.13
75	20	805	778	20	0.97	1.02	708	21	0.88	1.04
60	18	895	804	24	0.90	1.39	734	26	0.82	1.48
60	16	892	834	24	0.94	1.57	762	26	0.86	1.67
60	17	894	850	24	0.95	1.48	777	26	0.87	1.57
45	19	842	868	30	1.03	1.59	801	33	0.95	1.72
45	25	858	893	30	1.04	1.23	824	33	0.96	1.33
45	19	861	867	30	1.01	1.59	799	33	0.93	1.72
30	19	980	810	37	0.83	1.97	760	39	0.77	2.12
30	17	968	789	37	0.81	2.15	739	39	0.76	2.30
30	15	989	833	37	0.84	2.44	781	39	0.79	2.61
15	26	773	638	42	0.83	1.65	615	44	0.80	1.71
15	37	724	657	42	0.91	1.15	632	44	0.87	1.19
15	25	815	645	42	0.79	1.72	621	44	0.76	1.78
0	49	752	582	45	0.77	0.93	582	45	0.77	0.93
0	48	825	596	45	0.72	0.94	596	45	0.72	0.94
0	49	787	593	45	0.75	0.92	593	45	0.75	0.92
平均值					0.86	1.37			0.80	1.43
标准差					0.11	0.4			0.09	0.43
变异系数										
(%)					12.8	28.8			10.7	29.9

上表汇总

焊脚尺寸	预测值/实测值 均值(最大剪应力)	预测值/实测值 均值(von Mises)
5mm	0.83	0.77
9mm	0.90	0.84

图 8.13 破坏荷载的预测结果

图 8.14 破坏角度的预测结果

1974 年 Kato 和 Morita^[2]对不同焊脚尺寸的正面角焊缝进行了试验研究,论文中仅有破坏角度的数据,试验结果与预测结果见表 8.12 使用简化公式对 Kato 和 Morita^[2]的试验结果进行预测。从预测结果来看,预测破坏角度比试验结果稍低,均值相差不足 2°,表明预测结果较好;另外从试验数据可知,焊脚尺寸在很大范围内变化(5mm-40mm),破坏角度基本没有变化,表明破坏角度与焊脚尺寸无关。

表 8.12 使用简化公式对 Kato 和 Morita^[2]的试验结果进行预测

								最大剪	拉应力			von N	Aises	
									预测'	值/试			预测值	直/试验
							预测	削值	验	值	预测化	直	ſ	直
			焊							预		预		
			脚							测		测		
	焊材	加载	尺	焊缝	破坏	破坏	预测	预测	预测	角	预测荷	角	预测	预测
编号	强度	角度	寸	面积	角度	荷载	荷载	角度	荷载	度	载	度	荷载	角度
L1	478	0		7.64		302	211	45	0.70		211	45	0.70	
L2	478	0		7.64		286	211	45	0.74		211	45	0.74	
L3	478	0		7.64		319	211	45	0.66		211	45	0.66	
Н1	511	90		7.64		343	454	19	1.32		413	19	1.20	
Н2	511	90		7.64		312	454	19	1.46		413	19	1.32	
Н3	511	90		7.64		338	454	19	1.34		413	19	1.22	
S1-5B	576	90	5	3.37	21	211	226	19	1.07	0.90	205	19	0.97	0.90
S1-5R	564	90	5	3.22	20.5	150	211	19	1.41	0.93	192	19	1.28	0.93
S1-10B	588	90	10	6.19	20.5	340	424	19	1.25	0.93	385	19	1.13	0.93
S1-15B	583	90	15	9.07	21.9	508	616	19	1.21	0.87	560	19	1.10	0.87
S1-15R	542	90	15	8.65	21.8	452	546	19	1.21	0.87	496	19	1.10	0.87
S1-20B	595	90	20	12.14	22	662	841	19	1.27	0.86	764	19	1.16	0.86
S1-30B	595	90	30	17.28	21.5	870	1198	19	1.38	0.88	1088	19	1.25	0.88
S1-40B	595	90	40	23.26	21	1207	1612	19	1.34	0.90	1464	19	1.21	0.90
S1-40R	550	90	40	20.18	20.5	916	1292	19	1.41	0.93	1173	19	1.28	0.93
平均值					21.2				1.18	0.90			1.09	0.90
标准差					0.59				0.26	0.02			0.21	0.02
变异系										_				
数					2.8				22.0	2.8			19.5	2.8

2002年,Anthony 和 Robert^[3]对 102个正面角焊缝的试件进行了试验,其中包括6个十字接头角焊缝,共研究了钢材提供厂商、焊材提供厂商、焊脚尺寸和焊道数、缺口方向以及环境温度这一系列参数不同对正面角焊缝接头强度的影响。表 8.13 为作者实测的破坏角度和破坏强度以及利用上一节中简化公式预测的结果,整体上看,采用两种强度理论预测的破坏荷载都偏低,从预测的平均值来看,

采用最大剪应力强度理论预测的结果都相对较好,另外,名义焊脚尺寸越大,两种强度理论的预测结果都更好。由于实测的破坏角度离散性较大,猜想可能与焊接缺陷有关,因此预测结果与实测值差异较大。

表 8.13 使用简化公式对 Anthony 和 Robert^[3]的试验结果进行预测

				最 。	大剪应力			on Mises	
		试验	结果	预测化	直	预测强	预测化	直	预测强
	名义焊	破坏	Pu/Ae	预测荷载	预测	度/试验	预测荷载	预测	度/试
试件编号	脚尺寸	角度	[MPa]	[MPa]	角度	值	[MPa]	角度	验值
T1	6.4	10	738	606	19	0.82	550	19	0.75
T2	6.4	11	721	606	19	0.84	550	19	0.76
Т3	6.4	15	666	606	19	0.91	550	19	0.83
T4	6.4	0	976	695	19	0.71	631	19	0.65
T5	6.4	0	978	695	19	0.71	631	19	0.65
Т6	6.4	86	1140	695	19	0.61	631	19	0.55
T7	6.4	90	1122	695	19	0.62	631	19	0.56
Т8	6.4	9	932	695	19	0.75	631	19	0.68
Т9	6.4	31	1098	695	19	0.63	631	19	0.57
T10	6.4	21	1012	695	19	0.69	631	19	0.62
T11	6.4	0	930	705	19	0.76	640	19	0.69
T12	6.4	79	1021	705	19	0.69	640	19	0.63
T13	6.4	70	964	705	19	0.73	640	19	0.66
T14	6.4	6	930	705	19	0.76	640	19	0.69
T15	6.4	0	1015	705	19	0.69	640	19	0.63
T16	6.4	19	944	690	19	0.73	626	19	0.66
T17	6.4	82	1187	690	19	0.58	626	19	0.53
T18	6.4	0	1137	571	19	0.50	519	19	0.46
T19	6.4	25	1023	571	19	0.56	519	19	0.51
T20	12.7	14	602	606	19	1.01	550	19	0.91
T21	12.7	0	708	695	19	0.98	631	19	0.89
T22	12.7	0	849	695	19	0.82	631	19	0.74
T23	12.7	14	682	695	19	1.02	631	19	0.93
T24	12.7	21	798	695	19	0.87	631	19	0.79
T25	12.7	6	783	705	19	0.90	640	19	0.82
T26	12.7	23	822	705	19	0.86	640	19	0.78
T27	12.7	17	710	705	19	0.99	640	19	0.90
T28	12.7	6	788	705	19	0.89	640	19	0.81
T30	12.7	20	886	690	19	0.78	626	19	0.71
T31	12.7	0	846	571	19	0.67	519	19	0.61
T32	12.7	19	799	571	19	0.71	519	19	0.65
C1	9.18	5	560	695	19	1.24	631	19	1.13
C2	9.41	5	446	690	19	1.55	626	19	1.40

平均值	0.81	0.73
标准差	0.20	0.18
变异系数		
(%)	25.0	25.0

上表汇总

焊脚尺寸	预测值/实测值 均值(最大剪应力)	预测值/实测值 均值(von Mises)
6.4mm	0.70	0.64
12.7mm	0.95	0.86

焊脚尺寸越大预测结果更接近原因:

图 8.15 焊脚尺寸对预测结果影响原因

余高的存在,对于不同焊脚尺寸的角焊缝,一般余高尺寸差距不大,随着焊脚尺寸的增加, h_{re}/h_{e} 降低,预测结果更接近真实的焊脚尺寸。

8.6 本章小结

8.6.1 三种强度理论的适用性分析

8.7 接下来试验结果的预测

8.7.1 正面角焊缝

				最大剪	应力		von M		
焊材	焊缝金 属强度 Mpa	焊脚 尺寸 mm	母材 承载 力	预测荷 载	预测 角度	是否破 坏出现 在母材	预测 荷载	预测角度	是否破 坏出现 在母材
ER50	721	5	412	297	19	0	270	19	0
	721	6	412	356	19	0	324	19	0

ER59	867	5	412	357	19	0	324	19	0
	867	6	412	429	19	1	389	19	0
ER100	941	5	412	388	19	0	352	19	0
	941	6	412	465	19	1	422	19	1
ER110	905	5	412	373	19	0	339	19	0
	905	6	412	447	19	1	406	19	0
ER83	893	5	412	368	19	0	334	19	0
	893	6	412	441	19	1	401	19	0
ER120	1069	5	412	440	19	1	400	19	0
	1069	6	412	528	19	1	480	19	1
ER50	721	10	1154	831	19	0	755	19	0
	721	10	1154	831	19	0	755	19	0
	721	14	1154	1164	19	1	1057	19	0
ER59	867	10	1154	1000	19	0	908	19	0
	867	10	1154	1000	19	0	908	19	0
	867	14	1154	1400	19	1	1272	19	1
ER100	941	10	1154	1085	19	0	986	19	0
	941	10	1154	1085	19	0	986	19	0
	941	14	1154	1519	19	1	1380	19	1
ER110	905	10	1154	1044	19	0	948	19	0
	905	10	1154	1044	19	0	948	19	0
	905	14	1154	1461	19	1	1327	19	1
ER83	893	10	1154	1030	19	0	935	19	0
	893	10	1154	1030	19	0	935	19	0
	893	14	1154	1442	19	1	1310	19	1
ER120	1069	10	1154	1233	19	1	1120	19	0
	1069	10	1154	1233	19	1	1120	19	0
	1069	14	1154	1726	19	1	1568	19	1

表格中0表示在焊缝处破坏,1表示在母材破坏。

8.7.2 十字接头角焊缝

				最大剪应力			von Mises		
焊材	焊缝金 属强度 Mpa	 焊脚 尺寸 mm	母材 承载 力	预测荷 载	预测 角度	是否破 坏出现 在母材	预测 荷载	预测角度	是否破 坏出现 在母材
ER50	721	5	412	297	19	0	270	19	0
	721	6	412	356	19	0	324	19	0
ER110	905	5	412	373	19	0	339	19	0

	905	6	412	447	19	1	406	19	0
ER120	1069	5	412	440	19	1	400	19	0
	1069	6	412	528	19	1	480	19	1
ER50	721	10	1730	831	19	0	755	19	0
	721	12	1730	998	19	0	906	19	0
	721	14	1730	1164	19	0	1057	19	0
ER110	905	10	1730	1044	19	0	948	19	0
	905	12	1730	1252	19	0	1138	19	0
	905	14	1730	1461	19	0	1327	19	0

8.7.3 侧面角焊缝

			最大剪应力						
	焊缝金	焊脚			是否破			是否破	母材
焊材	属强度	尺寸			坏出现			坏出现	承载
	Mpa	mm	预测荷载	预测角度	在母材	预测荷载	预测角度	在母材	カ
	721	5	353	45	0	353	45	0	1236
EDEO	721	5	530	45	0	530	45	0	1236
ER50	721	10	824	45	0	824	45	0	3708
	721	5	824	45	0	824	45	0	1236
EDE0	867	10	991	45	0	991	45	0	3708
ER59	867	5	991	45	0	991	45	0	1236
ED100	941	10	1076	45	0	1076	45	0	3708
ER100	941	5	1076	45	0	1076	45	0	1236
	905	5	443	45	0	443	45	0	1236
ED440	905	5	665	45	0	665	45	0	1236
ER110	905	10	1035	45	0	1035	45	0	3708
	905	5	1035	45	0	1035	45	0	1236
ED03	893	10	1021	45	0	1021	45	0	3708
ER83	893	5	1021	45	0	1021	45	0	1236
ER120	1069	5	524	45	0	524	45	0	1236
	1069	5	786	45	0	786	45	0	1236
	1069	10	1222	45	0	1222	45	0	3708
	1069	5	1222	45	0	1222	45	0	1236

8.8 和孙老师讨论之后还需要解决的几个问题

(1) 使用 DIC 数据,推导得到应力分布,观察应力不均匀分布的情况,缩小 C 的取值范围,或者直接求得 C。

(2) 焊缝尺寸越大预测结果更接近的原因: ①余高的影响,这一点可以通过 2002 年 Anthony 和 Robert 的试验结果得出。可以提出修正系数。 ②处于双向应力或三向应力的焊缝区域,破坏应力与受拉应力的比值可能不止 1.155, 而是 1.5.

参考文献

- [1] Miazga G S, Kennedy D L. Behaviour of fillet welds as a function of the angle of loading[R]. Department of Civil Engineering, University of Alberta, Edmonton, AB, 1986.
- [2] Kato B, Morita K. Strength of transverse fillet welded joints[J]. Welding journal. 1974, 53(2): 59-64.
- [3] Ng K F, Driver R G, Grondin G Y. Behaviour of transverse fillet welds[R]. Department of Civil Engineering, University of Alberta, Edmonton, AB, 2002.

校对报告

当前使用的样式是 [同济大学学报.自然科学版] 当前文档包含的题录共6条 有0条题录存在必填字段内容缺失的问题 所有题录的数据正常