(Computational) number theory

Number Theory

- Number theory is the part of mathematics devoted to the study of the integers and their properties.
- Number theory has a long history.
 - E.g.: Chinese Remainder Theorem
 1700 years old
- For a long time, it had been regarded as pure mathematics and useless.
 - G. H. Hardy (prominent British mathematician):
 Pure mathematics is "beautiful" and "useless".
 Applied mathematics is "trivial", "ugly", and "dull"
- However, number theory has found numerous applications in computer science in recent decades.

Why now?

- We have not needed any number theory or "advanced math" until now
 - Practical private-key cryptography is based on stream ciphers, block ciphers, and hash functions
 - Lots of interesting and non-trivial crypto can be done without any number theory!

Why now?

- Reason 1: Culmination of "top-down" approach
 - For most cryptography, we ultimately need to assume some problem is hard
 - The "lowest-level" assumptions we can make are about hardness of certain problems in number theory

Why now?

- Reason 2: The public-key setting
 - Public-key encryption requires number theory (in some sense)

Our goal

Cover basic number theory quickly!

- Cover the minimum needed for all the applications we will study
 - Some facts stated without proof
 - Can take entire class(es) devoted to this material

Computational number theory

- We will be interested in the computational difficulty of various problems
 - Different from most of mathematics!

 The representation of mathematical objects is crucial for understanding the computational efficiency of working with them

Computational number theory

- Measure running times of algorithms in terms of the *input lengths* involved
 - For integer x, we have $||x|| = O(\log x)$, $x = O(2^{||x||})$

- An algorithm taking input x and running in time O(x) is an exponential time algorithm
 - Efficient algorithms run in time poly(||x||)

Computational number theory

- Our goal: classify various problems as either "easy" or "hard"
 - I.e., polynomial-time algorithms known or not
- We will not focus on optimizations, although these are very important in practice
 - For "easy" problems: speed up cryptographic implementations
 - For "hard" problems: need to understand concrete hardness for concrete security

Representing integers

- Cryptography involves very large numbers!
- Standard (unsigned) integers (e.g., in C) are small, fixed length (e.g., 16 or 32 bits)
 - For crypto, need to work with integers that are much longer (e.g., 2000 bits)
- Solution: use an array
 - E.g., "bignum" = array of unsigned chars (bytes)
 - May be useful to also maintain a variable indicating the length of the array
 - Or, assume fixed length (which bounds the maximum size of a bignum)

Example: addition

- Now need to define all arithmetic operations on bignums
 - Note: all our examples assume non-negative numbers; in practice, may need to also handle negative numbers

 Assume as a subroutine a way to add two bytes modulo 2⁸ (i.e., discarding overflow)

Step 1

- AddWithCarry(byte a, byte b, byte carry)
 - // carry is 0 or 1
 - If a $< 2^{\frac{1}{7}}$ and b $< 2^{7}$ res=a+b+carry, carry=0
 - If a $< 2^{\frac{37}{7}}$ and b $\ge 2^{\frac{7}{7}}$ res=a+(b-2⁷)+carry
 - If res $\geq 2^7$ res=res- 2^7 , carry=1
 - Else res=res+2⁷, carry=0
 - If $a \ge 2^7$ and $b \ge 2^7$ res= $(a-2^7)+(b-2^7)+carry$, carry=1

• Note: $a \ge 2^7$ iff msb(a)=1

Example: addition

- Add(bignum a, int L1, bignum b, int L2)
 - Use grade-school addition, using AddWithCarry byte-by-byte...

- Running time O(max{L1,L2}) = O(max{||a||,||b||})
 - If ||a|| = ||b|| = n then O(n)
 - Is it possible to do better?
 - No must read input (O(n)) and write output (O(n))

Example: multiplication

- What is the length of the result of a*b?
 - $\|ab\| = O(\log ab) = O(\log a + \log b) = O(\|a\| + \|b\|)$

- Use grade-school multiplication...
- Running time O(||a||·||b||)
 - If ||a|| = ||b|| = n then $O(n^2)$
- Is it possible to do better? Our wgns.
 - Surprisingly…yes!

Basic arithmetic operations

- As we have seen, addition / subtraction / multiplication can all be done efficiently
 - Using grade-school algorithms (or better)

- Division-with-remainder can also be done efficiently
 - Much harder to implement!

Modular arithmetic

- Notation:
 - [a mod N] is the remainder of a when divided by N
 - Note 0 ≤ [a mod N] ≤ N-1

• $a = b \mod N \Leftrightarrow [a \mod N] = [b \mod N]$

Modular Arithmetic

Lemma

meger

For any $a, b \in \mathbf{Z}$, $N \in \mathbf{Z}^+$, $a \mod N = (a + bN) \mod N$.

Proof

– By Euclid's Division Theorem, there exist unique $q, r, 0 \le r < N$, such that

$$a = Nq + r \tag{1}$$

- Similarly, there exist unique $q', r', 0 \le r' < N$, such that a + bN = Nq' + r' (2)
- Adding kN to both sides of (1):

$$a + bN = N(q + b) + r$$

By the uniqueness in Division Theorem, we have

$$r = r'$$

- By definition of mod, $a \mod N = (a + bN) \mod N$.

Modular arithmetic

Note that

 [a+b mod N] = [[a mod N] + [b mod N] mod N]
 [a-b mod N] = [[a mod N] - [b mod N] mod N]
 and
 [ab mod N] = [[a mod N][b mod N] mod N]

- I.e., can reduce intermediate values
 - This can be used to speed up computations

Modular Arithmetic

Proof:

– By Euclid's Division Theorem, there exist unique q_1, q_2 , s.t.

$$a = q_1 N + (a \mod N)$$

$$b = q_2 N + (b \mod N)$$

- Adding these 2 equations and take modulo N $(a + b) \mod N$ $= ((q_1 + q_2)N + (a \mod N) + (b \mod N)) \mod N$
- The theorem then follows from the previous Lemma.

Modular arithmetic

Careful: not true for division!

- I.e., [9/3 mod 6] = [3 mod 6] = 3
 but [[9 mod 6]/[3 mod 6] mod 6] = 3/3 = 1
 - We will return to division later...

Modular arithmetic

- Modular reduction can be done efficiently
 - Use division-with-remainder

- Modular addition / subtraction / multiplication can all be done efficiently
 - We will return to division later.

Exponentiation

- Compute a^b?
 - $\|a^b\| = O(b \cdot \|a\|)$
 - Just writing down the answer takes exponential time!
- Instead, look at modular exponentiation
 - I.e., compute [a^b mod N]
 - Size of the answer ≤ ||N||
 - How to do it?
 - © Computing ab and then reducing modulo N will not work...

without computing ab

Modular exponentiation

Consider the following algorithm:

```
exp(a, b, N) {
    // assume b ≥ 0
    ans = 1;
    for (i=1, i ≤ b; i++)
        ans = [ans * a mod N];
    return ans;
}
```

- This runs in time O(b * poly(||a||, ||N||))
 - This is an exponential-time algorithm!

Efficient modular exponentiation

- Assume $b = 2^k$ for simplicity
 - The preceding algorithm roughly corresponds to computing a*a*a*...*a
 - Better: compute $(((a^2)^2)^2...)^2$
 - 2^k multiplications vs. k multiplications
 - Note k = O(||b||)

Modular Exponentiation

How to compute

 $a^n \mod N$

efficiently for large *n*?

Repeated squaring method

- Compute $a^2 \mod N$ $a^{2^2} \mod N = a^4 \mod N = (a^2 \mod N)^2 \mod N$ $a^{2^3} \mod N = a^8 \mod N = (a^4 \mod N)^2 \mod N$...
- Write n in binary $n = (b_k \dots b_1 b_0)_2$ - $a^n = a^{b_0 \cdot 1} \cdot a^{b_1 \cdot 2} \cdot a^{b_2 \cdot 2^2} \cdots \mod N$
- Example: $n = 50 = 32 + 16 + 2 = (110010)_{2}$
 - $-a^{50} = a^{2^1}a^{2^4}a^{2^5} \mod N$ $a^{\nu} \quad a^{\prime \nu} \quad a^{3\nu}$

Efficient exponentiation

Consider the following algorithm:

```
exp(a, b, N) { a^{b}, a^{b^{c}} // assume b \ge 0 x=a, t=1; while (b > 0) { if (b \text{ odd}) t = [t * x \text{ mod N}], b = b-1; x = [x^{2} \text{ mod N}], b = b/2; } return t; }
```

- Why does this work?
 - Invariant: answer is $[t \cdot x^b \mod N]$
- Running time is polynomial in ||a||, ||b||, ||N||

Primes and divisibility

- Notation a | b
- If a | b then a is a divisor of b
- p > 1 is prime iff its only divisors are 1 and p
 - p is composite otherwise
- d = gcd(a, b) if both: 最大心的数.
 - d | a and d | b
 - d is the largest integer with that property

Computing gcd?

 Can compute gcd(a, b) by factoring a and b and looking for common prime factors...

Example

$$120 = 2^{3} \cdot 3 \cdot 5$$
 $500 = 2^{2} \cdot 3^{0} \cdot 5^{3}$ $gcd(120,500) = 2^{min(3,2)} \cdot 3^{min(1,0)} \cdot 5^{min(1,3)} = 2^{2} \cdot 3^{0} \cdot 5^{1} = 20$

Definition

The integers a and b are relatively prime if gcd(a, b) = 1.

Example: 17 and 22

Computing gcd?

- Can compute gcd(a, b) by factoring a and b and looking for common prime factors...
 - This is not (known to be) efficient!

- Use Euclidean algorithm to compute gcd(a, b)
 - One of the earliest nontrivial algorithms!

Euclidean Algorithm

Lemma

Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r).

Proof

- Suppose that d divides both a and b. Then d divides any linear combination of a and b, including a bq = r (see first slide). Hence, any common divisor of a and b must also be any common divisor of b and b.
- Suppose that d divides both b and r. Then d also divides the linear combination bq + r = a. Hence, any common divisor of a and b must also be a common divisor of a and r.
- Therefore, gcd(a, b) = gcd(b, r).

Euclidean algorithm

ALGORITHM B.7

The Euclidean algorithm GCD

Input: Integers a, b with $a \ge b > 0$

Output: The greatest common divisor of a and b

if b divides a

return b

else return $GCD(b, [a \mod b])$

gcd (500,120) z gcd (120,20) z gcd (20) 0)

Euclidean Algorithm

```
gcd(a,b):
x \leftarrow a
y \leftarrow b
while y \neq 0
r \leftarrow x \mod y
x \leftarrow y
y \leftarrow r
return y
```

- Examples:
- gcd(54, 12) 54=12·4+6
- $= \gcd(12, 6) = 6$
- gcd(14,6) 14=2.6+2
- $= \gcd(6, 2) = 2$

Correctness of algorithm follows from previous lemma

Termination is obvious

Proposition

- Given a, b > 0, there exist integers X, Y such that Xa + Yb = gcd(a, b)
- Moreover, d=gcd(a, b) is the smallest positive integer that can be written this way

 Can use the extended Euclidean algorithm to compute X, Y

GCDs as Linear Combinations

• Theorem (Bézout's Theorem) If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.

Examples

- $gcd(54, 12) = (-4) \cdot 12 + 1 \cdot 54$
- $gcd(14,6) = (-2) \cdot 6 + 1 \cdot 14$
- Instead of proving this theorem directly, we give an algorithm to find such s and t.

The Extended Euclidean Algorithm

Example

Express gcd(252,198) as a linear combination of 252 and 198.

Solution

- First find gcd(252,198)
 - 1) 252 = 1.198 + 54
 - 2) 198 = 3.54 + 36
 - 3) 54 = 1.36 + 18
 - 4) 36 = 2.18
 - 5) gcd(252,198) = 18

Rewriting:

$$-54 = 252 - 1.198$$

$$36 = 198 - 3.54$$

$$-18 = 54 - 1.36$$

Substituting:

$$18 = 54 - 1 \cdot (198 - 3.54)$$

$$= 4 \cdot 54 - 1 \cdot 198$$

$$= 4 \cdot (252 - 1.198) - 1 \cdot 198$$

$$= 4.252 - 5.198$$

Puzzle: Water Measuring

- What is the gcd of 500 and 700?
- 100
- Express gcd(700,500) as a linear combination of 700 and 500.
- Given
 - Two bottles: one has volume of 500 ml and the other one 700 ml.
 - Infinite water supply
- Goal: Get exactly 100 ml of water
- This follows exactly from $100 = \gcd(500,700)$

$$= 3 \times 500 - 2 \times 700$$

Corollary: Any multiple of the gcd can be obtained.

Group theory

Groups

Introduce the notion of a group

- Provides a way to reason about objects that share the same mathematical structure
 - Not absolutely needed to understand crypto applications, but does make it conceptually easier

Groups

takes 2

- An abelian *group* is a set G and a binary operation
 defined on G such that:
 - (Closure) For all g, h∈G, $g \circ h$ is in G
 - There is an identity e∈G such that e∘g=g for g∈G
 - Every g∈G has an inverse h∈G such that $h \circ g = g \circ h = e$
 - (Associativity) For all f, g, $h \in G$, $f \circ (g \circ h) = (f \circ g) \circ h$
 - (Commutativity) For all g, h∈G, $g \circ h = h \circ g$
- The order of a finite group G is the number of elements in G

Examples and non-examples

- [0,1]* with concatenation. [0,1] with xor. \
 \[\mathbb{Z} under addition \(\mathbb{O} \sqrt{3} \) \(\mathbb{O} \) \(\math
- R under addition ① ✓ ② o ③ -a ⊕ ✓ ⑤ ✓
- $\sqrt{\mathbb{R}}$ under multiplication $\mathcal{O} \checkmark \mathcal{O} \checkmark \mathcal{O} \checkmark$
- $\mathbb{R}\setminus\{0\}$ under multiplication \emptyset / \emptyset / \emptyset / \emptyset /
- {0,1}* under concatenation / empty ×
- $\{0, 1\}^n$ under bitwise XOR $\checkmark \circ^n \checkmark \checkmark \checkmark$
- 2 x 2 real, invertible matrices under mult.

Groups

- The group operation can be written additively or multiplicatively
 - I.e., instead of g∘h, write g+h or gh
 - Does not imply that the group operation has anything to do with (integer) addition or multiplication

- Identity denoted by 0 or 1, respectively
- Inverse of g denoted by –g or g⁻¹, respectively
- Group exponentiation: m · a or a^m, respectively

Computations in groups

- When computing with groups, need to fix some representation of the group elements
 - Usually (but not always) some canonical representation •
 - Usually want unique representation for each element
- Must be possible to efficiently identify elements in the group
- Must be possible to efficiently perform the group operation
 - ⇒ Group exponentiation can be computed efficiently

Useful example

- $\mathbb{Z}_N = \{0, ..., N-1\}$ under addition modulo N
 - Identity is 0
 - Inverse of a is [-a mod N]
 - Associativity, commutativity obvious
 - Order N

Example

 What happens if we consider multiplication modulo N?

- {0, ..., N-1} is *not* a group under this operation!
 - 0 has no inverse
 - Even if we exclude 0, there is, e.g., no inverse of 2 modulo 4

Modular inverses

- b is invertible modulo N if there exists an integer a such that ab = 1 mod N
 - Let [b⁻¹ mod N] denote the unique such a that lies in the range {0, ..., N-1}

- Division by b modulo N is only defined when b is invertible modulo N
 - Then [c/b mod N] is defined to be [c b⁻¹ mod N]

Cancellation

- The "expected" cancellation rule applies for invertible elements
- I.e., if ab = cb mod N and b is invertible modulo N, then a = c mod N
 - Proof: multiply both sides by b⁻¹
- Note: this is <u>not true</u> if b is not invertible
 - E.g., $3*2 = 15*2 \mod 8$ but $3 \neq 15 \mod 8$

Invertibility

- How to determine whether b is invertible modulo N?
- Thm: b invertible modulo N iff gcd(b, N)=1
- To find the inverse, use extended Euclidean algorithm to find X, Y with Xb + YN = 1
 - Then [X mod N] is the inverse of b modulo N
- Conclusion: can efficiently test invertibility and compute inverses!

Multiplicative Inverses

Definition

The (multiplicative) inverse of a modulo N is some b such that $ab = 1 \mod N$

• By default "inverse" means "multiplicative inverse".

Examples

$$\mathbf{Z}_{6}$$
: $\begin{vmatrix} a & 1 & 2 & 3 & 4 & 5 \\ a^{-1} & 1 & \mathbf{X} & \mathbf{X} & \mathbf{S} \end{vmatrix}$

Z ₈ :	\boldsymbol{a}	1	2	3	4	5	6	7
	a^{-1}	1	X	3	X	5	X	7

Multiplicative Inverses

• Theorem $\{o \sim N/\}$ For any $a \in \mathbf{Z}_N$, N > 1, if $\gcd(a, N) = 1$ then a has a unique inverse in \mathbf{Z}_N .

Proof of Theorem

Since gcd(a, N) = 1, by Bézout's Theorem, there are integers s and t such that sa + tN = 1.

- Hence, $sa + tN = 1 \mod N$.
- Since $tN = 0 \mod N$, it follows that $sa = 1 \pmod{N}$
- Consequently, s mod N is the inverse of a in \mathbb{Z}_N .

Corollary

For any prime p, every nonzero $a \in \mathbf{Z}_p$ has a multiplicative inverse.

Example

- Consider instead the *invertible* elements modulo N, under multiplication modulo N
- Define $\mathbb{Z}_{N}^{*} = \{0 < x < N : gcd(x, N) = 1\}$
 - Closure
 - Identity is 1
 - Inverse of a is [a⁻¹ mod N]
 - Associativity, commutativity obvious

$\phi(N)$

• $\phi(N)$ = the number of invertible elements modulo N

```
= |\{a \in \{1, ..., N-1\} : gcd(a, N) = 1\}|
```

= The order of \mathbb{Z}_{N}^{*}

Two special cases

 If p is prime, then 1, 2, 3, ..., p-1 are all invertible modulo p

$$-\phi(p) = |\mathbb{Z}_p^*| = p-1$$

 If N=pq for p, q distinct primes, then the invertible elements are the integers from 1 to N-1 that are not multiples of p or q

$$-\phi(N) = |\mathbb{Z}^*_N| = ?$$

Fermat's little theorem

- Let G be a finite group of order m. Then for any g
 ∈ G, it holds that g^m = 1
- Useful in computing the remainders of large powers
- **Example:** Find 7^{222} mod 11.

By the theorem, we know that $7^{10} \equiv 1 \pmod{11}$, and so $(7^{10})^k \equiv 1 \pmod{11}$, for any positive integer k. Therefore,

•
$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

Examples

- In \mathbb{Z}_{N} :
 - For all $a \in \mathbb{Z}_N$, we have $N \cdot a = 0 \mod N$ (Note that N is not a group element!)

- In \mathbb{Z}^*_{N} :
 - For all $a \in \mathbb{Z}_{N}^{*}$, we have $a^{\phi(N)} = 1 \mod N$
 - p prime: for all $a \in \mathbb{Z}_{p}^{*}$, we have $a^{p-1} = 1 \mod p$

Fermat's little theorem

- Let G be a finite group of order m. Then for any $g \in G$, it holds that $g^m = 1$
 - Proof (abelian case)

Corollary

- Let G be a finite group of order m. Then for $g \in G$ and integer x, it holds that $g^x = g^{[x \mod m]}$
 - Proof: Let x = qm+r. Then $g^x = g^{qm+r} = (g^m)^q g^r = g^r$

- This can be used for efficient computation...
 - ...reduce the exponent modulo the order of the group before computing the exponentiation

Corollary

- Let G be a finite group of order m
- For any positive integer e, define f_e(g)=g^e
- Thm: If gcd(e,m)=1, then f_e is a permutation of G. Moreover, if $d=e^{-1}$ mod m then f_d is the inverse of f_e
 - Proof: The first part follows from the second. And $f_d(f_e(g)) = (g^e)^d = g^{ed} = g^{[ed \mod m]} = g^1 = g$

Corollary

- Let N=pq for p, q distinct primes
 - $\text{So} \mid \mathbb{Z}_{N}^{*} \mid = \phi(N) = (p-1)(q-1)$
- If $gcd(e, \phi(N))=1$, then $f_e(x) = [x^e \mod N]$ is a permutation
 - In that case, let $[y^{1/e} \mod N]$ be the *unique* $x \in \mathbb{Z}_N^*$ such that $x^e = y \mod N$
- Moreover, if $d = e^{-1} \mod \phi(N)$ then f_d is the inverse of f_e
 - So for any x we have $(x^e)^d = x \mod N$
 - $I.e., [x^{1/e} \mod N] = [x^d \mod N] !$

Example

- Consider N=15
 - Look at table for $f_3(x)$
- N = 33
 - Take e=3, d=7, so 3rd root of 2 is...?
 - e=2; squaring is not a permutation...

	X	x ³ mod 33	X	x ³ mod 33
	1	1	17	29
• N=33	2	8	19	28
	4	31	20	14
	5	26	23	23
	7	13	25	16
	8	17	26	20
	10	10	28	7
	13	19	29	2
	14	5	31	25
	16	4	32	32