Determine as duas áreas compreendidas entre a semicircunferência, a reta, e o eixo das abscissas.

Observemos inicialmente que as intersecções entre a semicircunferência e a reta são $(-2\sqrt{3},\ 2)$ e $(2\sqrt{3},\ 2)$.

Calculemos a área superior A_1 .

$$A_1 = \int_{-2\sqrt{3}}^{2\sqrt{3}} (\sqrt{16 - x^2} - 2) dx$$

Seja $x = 4\sin\theta$ para $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], dx = 4\cos\theta d\theta.$

$$A_1 = \int_{-\pi/3}^{\pi/3} 16(\cos\theta)^2 d\theta - \int_{-2\sqrt{3}}^{2\sqrt{3}} 2 \ dx =$$

$$= 16 \int_{-\pi/3}^{\pi/3} \frac{(\cos 2\theta) + 1}{2} d\theta - \int_{-2\sqrt{3}}^{2\sqrt{3}} 2 \ dx =$$

$$= 16 \int_{-\pi/3}^{\pi/3} \frac{(\cos 2\theta)}{2} d\theta + \int_{-\pi/3}^{\pi/3} 8 \ d\theta - \int_{-2\sqrt{3}}^{2\sqrt{3}} 2 \ dx =$$

$$=4\sqrt{3}+\frac{16\pi}{3}-8\sqrt{3} \implies$$

$$\Rightarrow \boxed{A_1 = \frac{16\pi}{3} - 4\sqrt{3}}$$

A área de baixo, A_2 , será $8\pi - A_1$.

$$A_2 = \frac{8\pi}{3} + 4\sqrt{3}$$

Documento compilado em Thursday $13^{\rm th}$ March, 2025, 20:44, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com".