

TD 12 - Séquence 4 : Électromagnétisme

Correction

Potentiel électrostatique Condensateur

Lien entre champ et potentiel

Exercice 1 : Potentiel créé par une sphère uniformément chargée

La distribution de charge est de taille finie, on peut donc considérer le potentiel nul à l'infini. Par définition et compte tenu des symétries,

$$\vec{E} = - \overrightarrow{\text{grad}} V$$
 soit $\frac{\mathrm{d}V}{\mathrm{d}r} = -E_r$

• Potentiel fixé à l'infini : le potentiel est fixé pour r > R, c'est donc par ce domaine de l'espace qu'il faut commencer. Dans ce cas,

$$\frac{\mathrm{d}V}{\mathrm{d}r} = -\frac{q}{4\pi\varepsilon_0 r^2} \qquad \text{donc} \qquad \int_0^{V(r)} \mathrm{d}V = -\frac{q}{4\pi\varepsilon_0} \int_{\infty}^r \frac{\mathrm{d}r}{r^2}$$

ce qui donne

$$V(r > R) = \frac{q}{4\pi\varepsilon_0 r} \,.$$

Pour r < R,

$$\frac{\mathrm{d}V}{\mathrm{d}r} = -\frac{q}{4\pi\varepsilon_0} \frac{r}{R^3} \qquad \text{donc} \qquad \int_{V(R)}^{V(r)} \mathrm{d}V = -\frac{q}{4\pi\varepsilon_0 R^3} \int_R^r r \, \mathrm{d}r$$

ce qui donne, grâce à la continuité du potentiel,

$$V(r) - \frac{q}{4\pi\varepsilon_0 R} = -\frac{q}{8\pi\varepsilon_0 R^3} (r^2 - R^2) \qquad \text{soit} \qquad V(r < R) = -\frac{q}{8\pi\varepsilon_0} \frac{r^2}{R^3} + \frac{q}{8\pi\varepsilon_0 R} + \frac{q}{4\pi\varepsilon_0 R} \,.$$

Après factorisation, on en déduit finalement

$$V(r) = \begin{cases} \frac{q}{8\pi\varepsilon_0 R} \left(3 - \frac{r^2}{R^2} \right) & \text{si } r < R \\ \frac{q}{4\pi\varepsilon_0 r} & \text{si } r > R \end{cases}$$

• Potentiel fixé à l'origine : dans le cas où le potentiel pris nul en r = 0, il faut commencer par le domaine r < R. Les calculs sont identiques au cas précédent, et donnent

$$\int_0^{V(r)} \mathrm{d}V = -\frac{q}{4\pi\varepsilon_0 \, R^3} \int_0^r r \, \mathrm{d}r \qquad \text{soit} \qquad V(r < R) = -\frac{q}{8\pi\varepsilon_0} \frac{r^2}{R^3} \, .$$

Pour le domaine r > R, on a maintenant

$$\int_{V(R)}^{V(r)} \mathrm{d}V = -\frac{q}{4\pi\varepsilon_0} \int_R^r \frac{\mathrm{d}r}{r^2} \qquad \text{soit} \qquad V(r) + \frac{q}{8\pi\varepsilon_0\,R} = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R}\right)$$

ce qui conduit à

$$V(r > R) = \frac{q}{4\pi\varepsilon_0 r} - \frac{3q}{8\pi\varepsilon_0 R}.$$

Finalement,

$$V(r) = \begin{cases} -\frac{q}{8\pi\varepsilon_0} \frac{r^2}{R^3} & \text{si } r < R \\ \frac{q}{4\pi\varepsilon_0 r} - \frac{3q}{8\pi\varepsilon_0 R} & \text{si } r > R \end{cases}$$

• Conclusion: les deux expressions ne diffèrent que d'une valeur constante $3q/8\pi\varepsilon_0 R$... ce qui n'a rien d'étonnant, puisque le potentiel n'a de sens physique qu'à une constante additive près.

Exercice 2 : Charge en surface d'un semi-conducteur

oral banque PT | \mathfrak{P} 1 | \mathbb{X} 2

- ▷ Équation de Maxwell-Gauss;
 ▷ Théorème de Gauss;
 ▷ Lien entre champ et potentiel.

La distribution de charge est schématisée qualitativement sur la figure À FAIRE.

1 Analysons les symétries de la distribution de charge pour déterminer la direction de $\vec{E}(M)$. Comme ρ ne dépend que de x et que σ_0 est uniforme dans le plan (yOz), on en déduit que tout plan passant par M et parallèle à l'axe (Ox)est plan de symétrie de la distribution de charge. Ainsi, E(M) est inclus dans l'intersection de tous ces plans, on en déduit qu'il est porté par \overrightarrow{e}_x :

$$\overrightarrow{E} = E_0 e^{-x/\ell} \overrightarrow{e}_x$$
.

2 D'après l'équation de Maxwell-Gauss appliquée pour x < 0,

$$\operatorname{div} \overrightarrow{E} = 0 = \frac{\rho}{\varepsilon_0}$$
 donc $\rho(x < 0) = 0$.

Dans le domaine x > 0,

$$\operatorname{div} \overrightarrow{E} = \frac{\mathrm{d} E_x}{\mathrm{d} x} = -\frac{E_0}{\ell} \, \mathrm{e}^{-x/\ell} \qquad \text{d'où} \qquad \boxed{\rho(x > 0) = -\frac{\varepsilon_0 \, E_0}{\ell} \, \mathrm{e}^{-x/\ell} \, .}$$

Théorème de Gauss: Le flux du champ électrique au travers d'une surface de Gauss (surface fermée de normale orientée vers l'extérieur) est égal à la charge contenue à l'intérieur de cette surface divisée par la permittivité diélectrique du vide :

$$\iint_{SG} \vec{E} \cdot \vec{dS} = \frac{Q_{\text{int}}}{\varepsilon_0} \,.$$

- Surface de Gauss : cylindre fermé de rayon R dont les faces planes sont situées en $x_0 < 0$ et x > 0.
- Flux sortant:

$$\oint \overrightarrow{E} \cdot \overrightarrow{dS} = \iint_{\text{face } x_0} \underbrace{\overrightarrow{E}(x_0)}_{=0} \cdot (-dS \overrightarrow{e}_x) + \iint_{\text{latérale}} \underbrace{E_x(x) \overrightarrow{e}_x \cdot (dS \overrightarrow{e}_r)}_{\overrightarrow{e}_x \overrightarrow{e}_x = 0} + \iint_{\text{face } x} \overrightarrow{E}(x) \cdot (dS \overrightarrow{e}_x)$$

Ainsi,

$$\oint \overrightarrow{E} \cdot \overrightarrow{dS} = \pi R^2 E_0 e^{-x/\ell}.$$

Charge intérieure : Comme la surface enjambre le plan x=0,

$$Q_{\text{int}} = \int_{x_0}^{x} \rho(x) \underbrace{\pi R^2 dx}_{=d\tau} + \sigma_0 \pi R^2$$

$$= -\pi R^2 \frac{\varepsilon_0 E_0}{\ell} \int_0^x e^{-x/\ell} dx + \sigma_0 \pi R^2$$

$$= -\pi R^2 \frac{\varepsilon_0 E_0}{\ell} \left[-\ell e^{-x/\ell} \right]_0^x + \sigma_0 \pi R^2$$

$$Q_{\text{int}} = \pi R^2 \varepsilon_0 E_0 (e^{-x/\ell} - 1) + \sigma_0 \pi R^2$$

Conclusion : d'après le théorème de Gauss, on a pour tout x

$$\pi R^2 E_0 e^{-x/\ell} = \pi R^2 E_0 (e^{-x/\ell} - 1) + \frac{\sigma_0}{\varepsilon_0} \pi R^2$$

ce qui donne

$$E_0 e^{-x/\ell} = E_0 e^{-x/\ell} - E_0 + \frac{\sigma_0}{\varepsilon_0}$$

et finalement

$$\sigma_0 = \varepsilon_0 E_0 \,.$$

On aurait en fait pu donner ce résultat sans calcul en utilisant la relation de passage ... mais, en PT,

elle n'est pas à connaître et doit être rappelée :
$$E_x(x=0^+) - E_x(x=0^-) = \frac{\sigma_0}{\varepsilon_0} \qquad soit \qquad E_0 - 0 = \frac{\sigma}{\varepsilon_0} \,.$$

4 Par définition, $\overrightarrow{E} = -\overrightarrow{\text{grad}}V$ ce qui donne en se plaçant dans le semi-conducteur

$$-\frac{\mathrm{d}V}{\mathrm{d}x} = E_0 \,\mathrm{e}^{-x/\ell} \qquad \text{d'où} \qquad V(x>0) = +\ell E_0 \,\mathrm{e}^{-x/\ell} + \text{cte} \,.$$

D'après la condition limite donnée, la constante est nulle, donc

$$V(x>0) = \ell E_0 e^{-x/\ell}$$

et comme le potentiel est partout continu on trouve directement

$$V(x=0) = \ell E_0.$$

Dans le domaine x < 0, le potentiel est constant et partout égal à cette même valeur ℓE_0 par continuité. Cet exemple permet de constater que, même si le champ électrostatique est nul, il n'y a aucune obligation que le potentiel le soit.

Exercice 3 : Potentiel de Yukawa

D Théorème de Gauss;

□ Lien entre champ et potentiel.

1 Par définition,

$$\vec{E} = - \overrightarrow{\text{grad}} V = - \frac{\mathrm{d}V}{\mathrm{d}r} \vec{u}_r = - \frac{Ze}{4\pi\varepsilon_0} \frac{-\frac{1}{a} e^{-r/a} \times r - e^{-r/a} \times 1}{r^2} \vec{u}_r$$

soit en simplifiant

$$\overrightarrow{E} = \frac{Ze}{4\pi\varepsilon_0} \left(1 + \frac{r}{a} \right) \frac{\mathrm{e}^{-r/a}}{r^2} \overrightarrow{u}_r .$$

2 Calculons la charge à partir du théorème de Gauss. Le champ ne dépendant que de r, son flux sortant d'une sphère se calcule directement :

$$\iint \vec{E} \cdot \vec{dS} = \frac{Ze}{4\pi\varepsilon_0} \left(1 + \frac{r}{a} \right) \frac{e^{-r/a}}{r^2} \times 4\pi r^2$$

$$\iint \vec{E} \cdot \vec{dS} = \frac{Ze}{\varepsilon_0} \left(1 + \frac{r}{a} \right) e^{-r/a}$$

Ainsi d'après le théorème de Gauss,

$$Q_{\rm int}(r) = Ze\left(1 + \frac{r}{a}\right)e^{-r/a}$$
.

3 Pour $r \ll a$ on a $Q_{\rm int} = Ze$; et pour $r \gg a$ on a $Q_{\rm int} \to 0$. Le potentiel modélise un atome de numéro atomique \overline{Z} , avec un noyau ponctual au centre et un nuage électronique de rayon typique a.

Exercice 4 : Électro-érosion par fil

D Théorème de Gauss;

□ Lien entre champ et potentiel.

1 En coordonnées cylindriques de même axe que le fil, le champ électrostatique est par hypothèse de la forme

$$\overrightarrow{E} = E_r(r) \overrightarrow{e}_r$$
.

On raisonne sur la surface de Gauss schématisée figure 1, en forme de demi-cylindre de hauteur h et de rayon $d/2 \le r \le D/2$, complété par un rectangle et deux demi-disques en haut et en bas. Cette surface contient une charge Q_{int} inconnue mais constante.

Figure 1 – Surface de Gauss en demi-cylindre.

Le flux du champ électrostatique sortant de cette surface de Gauss s'écrit

$$\iint_{SG} \overrightarrow{E} \cdot \overrightarrow{dS} = \iint_{haut} E_r \overrightarrow{e}_r \cdot dS \overrightarrow{e}_z + \iint_{demi-cyl} E_r(r) \overrightarrow{e}_r \cdot dS \overrightarrow{e}_r + \iint_{rect} E_r \overrightarrow{e}_r \cdot dS \overrightarrow{e}_\theta + \iint_{bas} E_r \overrightarrow{e}_r \cdot (-dS \overrightarrow{e}_z)$$

$$= 0 + E_r(r) \times \frac{2\pi rh}{2} + 0 + 0$$

D'après le théorème de Gauss, on en déduit

$$\pi r h E_r(r) = \frac{Q_{\rm int}}{\varepsilon_0 \varepsilon_r}$$
 soit $E_r(r) = \frac{Q_{\rm int}}{\pi r h \varepsilon_0 \varepsilon_r}$

et on obtient bien la forme souhaitée,

$$\overrightarrow{E} = \frac{K}{r} \overrightarrow{e}_r$$
 avec $K = \frac{Q_{\text{int}}}{\pi h \varepsilon_0 \varepsilon_r}$.

2 Par définition du potentiel, dans le fond de l'entaille on a

$$-\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{K}{r} \qquad \text{soit} \qquad \mathrm{d}V = -K\frac{\mathrm{d}r}{r}$$

En intégrant entre la surface de la pièce et celle du fil,

$$\int_0^U \mathrm{d}V = -K \int_{D/2}^{d/2} \frac{\mathrm{d}r}{r} \qquad \text{soit} \qquad U = -K \ln \frac{d/2}{D/2} = K \ln \frac{D}{d} \qquad \text{d'où} \qquad \boxed{K = \frac{U}{\ln(D/d)} \,.}$$

3 Le champ électrique est le plus faible en r=D/2, au voisinage immédiat de la pièce à découper. L'arc électrique apparaît si

$$E_r(r=D/2) \ge E_{\mathrm{rupt}}$$
 soit $\frac{U}{\ln(D/d)} \times \frac{2}{D} \ge E_{\mathrm{rupt}}$ d'où $U > \frac{D}{2} \ln\left(\frac{D}{d}\right) E_{\mathrm{rupt}} = 35 \,\mathrm{V}$

4 L'arc électrique attaque le fil tout autant que la pièce : si le fil n'est pas remplacé au fur et à mesure de la découpe, il est très rapidement coupé.

Exercice 5: Floculation d'une suspension colloïdale

oral banque PT | \mathfrak{P} 3 | \mathfrak{R} 3

- Equation de Poisson;
 Lien entre champ et potentiel;
 Théorème de Gauss;

L'énoncé est fidèle à celui rapporté par le candidat, j'y ai juste ajouté le document pour préciser le contexte et donner du sens aux calculs.

 $|\mathbf{1}|$ Le rayon d'un ion est similaire à celui d'un atome, de l'ordre de 10^{-10} m, très inférieur à celui du colloïde.

2 La densité de charge s'écrit

$$\rho(r) = zeN_{+}(r) - zeN_{-}(r) = zeN_{0} \left(e^{-zeV(r)/k_{B}T} - e^{+zeV(r)/k_{B}T} \right).$$

Comme $|zeV(r)| \ll k_B T$, on peut développer au premier ordre

$$\rho(r) \simeq zeN_0 \left(1 - \frac{zeV(r)}{k_{\rm B}T} - 1 - \frac{zeV(r)}{k_{\rm B}T}\right)$$

soit finalement

$$\rho(r) \simeq -\frac{2z^2 e^2 N_0}{k_{\rm B}T} V(r) \, .$$

|3| • Équation différentielle sur V : D'après l'équation de Poisson,

$$\Delta V = -\frac{\rho(r)}{\varepsilon_0} = \frac{2z^2e^2N_0}{\varepsilon_0k_{\rm B}T}V(r)\,. \label{eq:deltaV}$$

En utilisant l'expression du laplacien fournie.

$$\frac{1}{r} \frac{\mathrm{d}^2}{\mathrm{d}r^2} (rV) = \frac{2z^2 e^2 N_0}{\varepsilon_0 k_{\mathrm{B}} T} V(r) ,$$

ce que l'on écrit sous la forme

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} \left(rV\right) - \frac{2z^2 e^2 N_0}{\varepsilon_0 k_\mathrm{B} T} \, rV(r) = 0 \, . \label{eq:delta_rV}$$

On reconnaît une équation différentielle du second ordre portant sur la fonction u(r) = rV(r), et on introduit une longueur caractéristique

$$\delta = \sqrt{\frac{\varepsilon_0 k_{\rm B} T}{2z^2 e^2 N_0}},$$

soit

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} - \frac{1}{\delta^2} u = 0.$$

Résolution : Le polynôme caractéristique associé à cette équation s'écrit

$$r^2 - \frac{1}{\delta^2} = 0$$
 d'où $r_{\pm} = \pm 1/\delta$.

Les solutions de cette équation sont donc de la forme

$$u(r) = A e^{-r/\delta} + B e^{r/\delta},$$

soit

$$V(r) = \frac{A}{r} e^{-r/\delta} + \frac{B}{r} e^{r/\delta}.$$

En supposant le potentiel électrostatique nul à l'infini (possible car distribution finie), on en déduit que B=0:

$$V(r) = \frac{A}{r} e^{-r/\delta}.$$

4 Le champ électrique s'obtient par dérivation du potentiel,

$$E_r(r) = -\frac{\mathrm{d}V}{\mathrm{d}r}$$
 soit $E_r(r) = \frac{A}{r^2} e^{-r/\delta} - \frac{A}{r} \times \frac{-1}{\delta} e^{-r/\delta}$

ce qui s'écrit finalement

$$E_r(r) = \frac{A}{r^2} \left(1 + \frac{r}{\delta} \right) e^{-r/\delta}.$$

On retrouve bien la forme de l'énoncé.

On raisonne sur une surface de Gauss sphérique de rayon R, identique à celle du colloïde. D'après le théorème de Gauss,

$$\oint \oint \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{Q}{\varepsilon_0} \quad \text{soit} \quad \frac{A}{R^2} \left(1 + \frac{R}{\delta} \right) e^{-R/\delta} \times 4\pi R^2 = \frac{Q}{\varepsilon_0}$$

d'où on déduit

$$A = \frac{Q}{4\pi\varepsilon_0} \frac{1}{\left(1 + \frac{R}{\delta}\right) e^{-R/\delta}}$$

5 En l'absence des ions, $N_0=0$ donc $\delta\to\infty$. Le champ électrique créé par le colloïde pour r>R équivaut à celui d'une charge ponctuelle, $E_r(r) = Q/4\pi\varepsilon_0 r^2$, qui décroît comme $1/r^2$. L'ajout des sels ioniques renforce nettement cette décroissance à grande distance $(r \gg \delta)$ puisque le terme en $1/r^2$ est remplacé par $e^{-r/\delta}/r$. Ainsi, les ions permettent d'écranter le champ créé par le colloïde, et ce faisant de masquer sa présence aux colloïdes environnants, ce qui est favorable à la floculation.

Cartes de champ

Exercice 6 : Apparition d'un arc électrique

oral banque PT | 🏵 1 | 💥 0

Lignes de champ et équipotentielles.

1 Le champ dans un condensateur est uniforme, relié à la tension à ses bornes par

$$||\overrightarrow{E}|| = \frac{U}{d}$$
 d'où $U \ge dE_c = 7.2 \,\mathrm{kV}$.

2 En haut à gauche: $-100 \,\mathrm{mV}$, colonne de droite de haut en bas: $-200 \,\mathrm{mV}$, 0 et $200 \,\mathrm{mV}$.

3 Tracé à faire. Le champ est dirigé dans le sens des potentiels décroissants, donc les lignes de champ partent de l'électrode du bas pour aboutir sur l'électrode du haut, et en tout point elles sont orthogonales aux équipotentielles.

4 Le champ est maximal là où les équipotentielles sont le plus resserrées, l'arc apparaîtra donc initialement le long de l'axe (Oz), c'est-à-dire sur l'axe de symétrie des électrodes.

Exercice 7 : Lecture d'une carte de champ

1 Les lignes de champ électrique divergent des charges positives et convergent vers les charges négatives. On en déduit que toutes les charges sont positives hormis q_3 .

 $|\mathbf{2}|$ Le plan orthogonal à la figure contenant l'axe y=0 est un plan de symétrie du champ électrique, c'est donc aussi un plan de symétrie de la distribution de charge ... mais cela n'apporte aucune information sur les charges car elles sont toutes comprises dans ce plan.

On constate que le plan x=0 est plan de symétrie du champ électrique, donc également de la distribution de charges. On en déduit

$$q_5 = q_1$$
 et $q_4 = q_2$.

Les lignes de champ semblent « éviter » les points où \mathcal{S} croise les plans de symétrie : cela signifie en fait qu'il existe deux lignes de champ « médianes » (l'une colinéaire à \overrightarrow{u}_x , l'autre colinéaire à \overrightarrow{u}_y) qui s'y coupent. La seule possibilité pour que \overrightarrow{E} soit tangent à deux lignes de champ orthogonales en ces points est qu'il soit nul.

4 Le champ est nul en tout point de S, donc son flux au travers de cette surface est nul, donc d'après le théorème de Gauss la charge intérieure à cette surface est nulle :

$$q_2 + q_3 + q_4 = 0$$
 soit $q_3 = -2q_2$

Condensateur

Exercice 8 : Condensateur cylindrique

- ▷ Théorème de Gauss;
 - ▷ Lien entre champ et potentiel;
 - ▷ Condensateur;
 - ▷ Coordonnées cylindriques.

 $oxedsymbol{1}$ Les effets de bord étant négligeables, la distribution sera assimilée à une distribution infinie. Soit M un point quelconque de l'espace.

 \triangleright Le plan contenant M et l'axe du cylindre est plan de symétrie de la distribution, de même que le plan contenant M et orthogonal à l'axe du cylindre. On en déduit

$$\overrightarrow{E}(M) = E_r(M) \overrightarrow{e}_r$$
.

▷ Le champ électrique étant toujours dirigé des charges positives vers les charges négatives, on en déduit que

$$E_r(M) < 0$$
.

 \triangleright La distribution est invariant par rotation autour de l'axe et translation le long de cet axe, donc E_r ne dépend que la coordonnée r du point M.

 $oxed{2}$ Considérons comme surface de Gauss un cylindre de rayon r quelconque et de hauteur ℓ coïncidant avec celle du condensateur.

 $\,\rhd\,$ Le flux du champ électrostatique sortant de ce cylindre s'écrit

$$\oint \overrightarrow{E} \cdot \overrightarrow{dS} = \iint_{\text{haut}} E_r(r) \overrightarrow{e}_r \cdot dS \overrightarrow{e}_z + \iint_{\text{bas}} E_r(r) \overrightarrow{e}_r \cdot (-dS \overrightarrow{e}_z) + \iint_{\text{lat}} E_r(r) \overrightarrow{e}_r \cdot dS \overrightarrow{e}_r = 0 + 0 + E_r(r) \times 2\pi r\ell.$$

ightharpoonup La charge contenue à l'intérieur de la surface de Gauss dépend du rayon r:

- \rightarrow si $r < R_1$, on a directement $Q_{\text{int}} = 0$;
- \rightarrow si $R_1 < r < R_2$ alors seule la première armature se trouve à l'intérieur de la surface de Gauss, donc $Q_{\text{int}} = -Q$;
- \rightarrow enfin, si $r > R_2$, les deux armatures sont comprises dans la surface de Gauss, donc $Q_{\text{int}} = -Q + Q = 0$.

▶ En conclusion, d'après le théorème de Gauss,

$$\rightarrow \sin r < R_1,$$

$$E_r(r) \times 2\pi r \ell = 0$$
 soit $\overrightarrow{E}(r < R_1) = \overrightarrow{0}$;

$$\rightarrow \operatorname{si} R_1 < r < R_2,$$

$$E_r(r) \times 2\pi r \ell = \frac{-Q}{\varepsilon_0}$$
 soit $\overrightarrow{E}(r < R_1) = -\frac{Q}{2\pi \varepsilon_0 \, r \ell} \, \overrightarrow{e}_r \, ;$

 \rightarrow si $r > R_2$, on a comme dans le premier cas

$$\vec{E}(r > R_2) = \vec{0} .$$

3 Le champ ne dépendant que de r, il en est de même pour le potentiel. \triangleright pour $r < R_1$,

$$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \qquad \text{soit} \qquad V(r < R_1) = \text{cte} = V(r = R_1) \underset{\mathrm{CL}}{=} 0 \qquad \text{d'où} \qquad \boxed{V(r < R_1) = 0 \,.}$$

▷ entre les deux armatures, on a

$$-\frac{\mathrm{d}V}{\mathrm{d}r} = -\frac{Q}{2\pi\varepsilon_0 \, r\ell} \qquad \text{d'où} \qquad \int_0^{V(r)} \mathrm{d}V = \frac{Q}{2\pi\varepsilon_0 \, \ell} \int_{R_1}^r \frac{\mathrm{d}r}{r}$$

ce qui donne

$$V(R_1 < r < R_2) = \frac{Q}{2\pi\varepsilon_0 \ell} \ln \frac{r}{R_1}.$$

⊳ enfin, à l'extérieur des armatures, on a comme dans le premier cas

$$V = \text{cte} = V(r = R_2) \underset{\text{continuité}}{+} \frac{Q}{2\pi\varepsilon_0 \ell} \ln \frac{R_2}{R_1} \quad \text{soit} \quad V(r > R_2) = \frac{Q}{2\pi\varepsilon_0 \ell} \ln \frac{R_2}{R_1}.$$

4 De ce qui précède, on déduit la différence de potentiel entre les armatures du condensateur,

$$U = V(R_2) - V(R_1) = \frac{Q}{2\pi\varepsilon_0 \ell} \ln \frac{R_2}{R_1}$$

et par définition de la capacité

$$C = \frac{Q}{U} = \frac{2\pi\varepsilon_0 \,\ell}{\ln(R_2/R_1)} \,.$$

Exercice 9 : Puissance transportée par un éclair

oral banque PT | Ψ 2 | \aleph 2

- ▶ Théorème de Gauss;
- ▷ Lien entre champ et potentiel;
- De Coordonnées sphériques.

On se place bien sûr en coordonnées sphériques.

1 • Invariances et symétries : on se place en un point M quelconque.

- ▷ la distribution est invariante par toute rotation autour du centre des sphères, donc le champ électrique ne dépend pas des coordonnées angulaires θ et φ ;
- \triangleright tout plan contenant la droite (OM) est un plan de symétrie de la distribution de charges, donc le champ électrique doit se trouver dans chacun de ces plans : il est donc forcément colinéaire à \overrightarrow{OM} ;
- ▷ en conclusion,

$$\vec{E}(M) = E_r(r) \vec{e}_r .$$

- **Théorème de Gauss :** on choisit comme surface de Gauss une sphère de centre O.
- Flux sortant : comme le champ est uniforme sur la sphère,

$$\iint_{SG} E_r(r) \overrightarrow{e}_r \cdot dS \overrightarrow{e}_r = 4\pi r^2 E_r(r).$$

- ▷ Charge intérieure :

 - \rightarrow si r > R + h alors $Q_{\text{int}} = 0$.
- ▷ Conclusion:

$$\overrightarrow{E} = \begin{cases} \overrightarrow{0} & \text{si } r < R \\ -\frac{Q}{4\pi\varepsilon_0 r^2} \overrightarrow{e}_r & \text{si } R < r < R + h \\ \overrightarrow{0} & \text{si } r > R + h \end{cases}$$

On peut en fait aller beaucoup plus vite : comme la distribution est à symétrie sphérique, alors le champ électrique qu'elle crée à une distance r du centre est identique à celui d'une charge ponctuelle égale à la charge intérieure à une sphère de rayon r qui serait placée au centre de la distribution. Il s'agit d'un résultat à connaître d'après le programme : vous pouvez donc l'utiliser tel quel, mais je vous recommande malgré tout d'être prêt dans un oral à ce que l'examinateur vous interroge sur le théorème de Gauss dans la foulée.

2 Par définition du potentiel électrostatique,

$$\overrightarrow{E} = -\overrightarrow{\operatorname{grad}} V$$
 soit $E_r = -\frac{\mathrm{d}V}{\mathrm{d}r}$ donc $\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{Q}{4\pi\varepsilon_0 r^2}$

En séparant les variables,

$$\int_0^V \mathrm{d}V = \frac{Q}{4\pi\varepsilon_0} \int_R^{R+h} \frac{\mathrm{d}r}{r^2} \,,$$

ce qui donne

$$V = \frac{Q}{4\pi\varepsilon_0} \left(-\frac{1}{R+h} + \frac{1}{R} \right)$$
 soit $V = \frac{Q}{4\pi\varepsilon_0} \frac{h}{R(R+h)}$.

Attention, comme on utilise l'expression de \overrightarrow{E} entre les deux sphères alors l'expression de V que l'on obtient n'est valable que dans ce domaine.

3 Par définition,

$$C = \frac{Q}{V - 0}$$
 donc $C = 4\pi\varepsilon_0 \frac{R(R + h)}{h}$.

 $\boxed{\mathbf{4}}$ Comme $h \ll R$, on peut faire l'approximation $R + h \simeq R$, donc

$$C = \varepsilon_0 \frac{4\pi R^2}{h} = 7.6 \cdot 10^{-5} \,\mathrm{F}.$$

On reconnaît l'expression de la capacité d'un condensateur plan d'épaisseur h dont les armatures ont une surface $4\pi R^2$: comme la distance inter-armatures est très faible, elles sont localement vues comme des plans.

5 Sans plus de précision, on ne peut que supposer que l'éclair permet de décharger localement le condensateur formé par l'ionosphère et la Terre. La charge transférée vaut

$$Q = I \,\Delta t = 7.5 \cdot 10^2 \,\mathrm{C}\,,$$

ce qui signifie que la valeur initiale du potentiel V de l'ionosphère était de

$$V = \frac{Q}{C} \sim 1 \cdot 10^7 \, \mathrm{V} \, .$$

Le puissance moyenne au cours de l'éclair vaut donc

$$\mathcal{P} \sim V I = 3 \cdot 10^{11} \,\mathrm{W}.$$

Le candidat indique dans son retour d'oral qu'il n'est plus certain de la dernière question ... et je ne suis pas non plus certain de ma reconstitution : un éclair n'a pas lieu entre l'ionosphère et le sol, mais entre le bas du nuage d'orage et le sol. En première approximation, on peut considérer que le nuage se trouve à quelques kilomètres du sol, disons $6\,\mathrm{km}$ pour pouvoir facilement comparer : h serait divisé par 10, donc C multiplié par 10, donc V divisé par 10. La puissance serait donc plutôt de l'ordre de $3\cdot 10^{10}\,\mathrm{W}$... ce qui correspond davantage à l'ordre de grandeur que l'on peut trouver sur des sites dédiés aux orages.

Exercice 10 : Capteur capacitif de niveau de liquide

- ▶ Équation de Poisson ;
- ▷ Condensateur;
- ▷ Énergie électrostatique ;
- Coordonnées cylindriques.

Le système est invariant par toute rotation autour de l'axe des cylindres, donc V est indépendant de θ . Par ailleurs, les effets de bords sont négligés, ce qui revient à supposer une invariance par translation le long de l'axe des cylindres : V ne dépend donc pas non plus de z. Finalement, V ne dépend que de r.

2 L'espace entre les deux cylindres est vide de charge. L'équation de Poisson s'écrit donc

$$\Delta V = 0$$
 soit $\frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left(r \frac{\mathrm{d}V}{\mathrm{d}r} \right) = 0$ donc $\frac{\mathrm{d}}{\mathrm{d}r} \left(r \frac{\mathrm{d}V}{\mathrm{d}r} \right) = 0$

à à Attention! Pour résoudre une telle équation, il ne faut surtout pas chercher à développer la dérivée en espérant aboutir à une forme canonique connue : ça ne marche pas! Il faut au contraire procéder par deux intégrations successives.

Par une première intégration, on obtient

$$r\frac{\mathrm{d}V}{\mathrm{d}r} = k$$
 avec $k = \text{cte}$.

On en déduit par une seconde intégration

$$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{k}{r}$$
 d'où $V = k \ln r + k'$ avec $k' = \text{cte}$.

Les deux constantes k et k' se déterminent avec les conditions aux limites,

$$\begin{cases} V(r=a) \underset{\text{CL}}{=} V_0 \underset{\text{expr}}{=} k \ln a + k' \\ V(r=b) \underset{\text{CL}}{=} 0 \underset{\text{expr}}{=} k \ln b + k' \end{cases}$$

Par soustraction,

$$V_0 = k \ln a - k \ln b$$
 soit $V_0 = k \ln \frac{a}{b}$ donc $k = \frac{V_0}{\ln(a/b)}$.

En réinjectant dans la condition limite en r = b, il vient

$$k' = -k \ln b = -\frac{V_0}{\ln(a/b)} \ln b$$
.

Finalement,

$$V(r) = \frac{V_0}{\ln(a/b)} \ln r - \frac{V_0}{\ln(a/b)} \ln b = \frac{V_0}{\ln(a/b)} \left(\ln r - \ln b \right) \qquad \text{d'où} \qquad \boxed{V(r) = \frac{\ln(r/b)}{\ln(a/b)} V_0 \,.}$$

3 Le champ électrique entre les deux cylindres vaut

$$\overrightarrow{E} = - \overrightarrow{\operatorname{grad}} \, V = - \frac{\mathrm{d} V}{\mathrm{d} r} \, \overrightarrow{e}_r = - \frac{k}{r} \, \overrightarrow{e}_r \qquad \text{d'où} \qquad \overrightarrow{E} = - \frac{V_0}{r \ln(a/b)} \, \overrightarrow{e}_r \, .$$

Évitez de multiplier les calculs inutiles : rien ne sert de dériver l'expression finale du potentielle, puisque sa dérivée a déjà été déterminée dans la première étape d'intégration.

Test de vraisemblance : le champ est bien dirigé dans le sens des potentiels décroissants, c'est-à-dire selon $+\vec{e}_r$, car $\ln(a/b) < 0$.

 $\boxed{\mathbf{4}}$ Plaçons l'origine z=0 au fond de la cuve. L'énergie électrostatique stockée dans la partie de la sonde immergée dans le liquide vaut

$$\begin{split} \mathcal{E}_{\text{liq}} &= \iiint \left[\frac{1}{2} \varepsilon_0 \varepsilon_r \left(\frac{V_0}{r \ln(a/b)} \right)^2 \right] r \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z \\ &= \frac{1}{2} \varepsilon_0 \varepsilon_r \frac{V_0^2}{\ln^2(a/b)} \times \int_a^b \frac{\mathrm{d}r}{r} \times \int_0^{2\pi} \mathrm{d}\theta \times \int_0^h \mathrm{d}z \\ &= \frac{1}{2} \varepsilon_0 \varepsilon_r \frac{V_0^2}{\ln^2(a/b)} \times \ln \frac{b}{a} \times 2\pi h \\ \mathcal{E}_{\text{liq}} &= \varepsilon_0 \varepsilon_r \frac{\pi h}{\ln(b/a)} V_0^2 \end{split}$$

en utilisant $\ln^2(a/b) = \ln^2(b/a)$ pour simplifier. On déduit par un calcul analogue l'énergie électrostatique stockée par la partie non immergée,

$$\mathcal{E}_{\text{air}} = \varepsilon_0 \frac{\pi (H - h)}{\ln(b/a)} V_0^2.$$

L'énergie totale stockée dans la sonde est donc la somme,

$$\boxed{\mathcal{E} = \varepsilon_0 \frac{\pi}{\ln(b/a)} \left[(H - h) + \varepsilon_r h \right] V_0^2 = \varepsilon_0 \frac{\pi}{\ln(b/a)} \left[H + (\varepsilon_r - 1)h \right] V_0^2.}$$

 $\boxed{\bf 5}$ La tension imposée aux bornes du condensateur est simplement $V_0-0=V_0$. Par définition de la capacité,

$$\mathcal{E} = \frac{1}{2}CV_0^2$$
 d'où $C = 2\varepsilon_0 \frac{\pi}{\ln(b/a)} \left[H + (\varepsilon_r - 1)h \right]$.

Connaissant la capacité C, on peut en déduire la hauteur de liquide : l'expression de la capacité s'inverse en

$$H + (\varepsilon_{\rm r} - 1)h = \frac{C}{2\pi\varepsilon_0} \ln \frac{b}{a}$$

$$h = \frac{1}{\varepsilon_{\rm r} - 1} \left(\frac{C}{2\pi\varepsilon_0} \ln \frac{b}{a} - H \right).$$

La sonde peut être utilisée pour tout liquide isolant à condition de la calibrer à chaque changement de liquide car la constante diélectrique ε_r dépend du liquide. En revanche, elle ne peut pas convenir pour des liquides conducteurs : l'espace entre les armatures d'un condensateur doit être constitué d'un isolant, sans quoi un courant circule dès qu'une tension est appliquée. Il faut utiliser d'autres sondes, comme celles présentées dans la vidéo dont le lien figure dans l'énoncé.