

MU4RBI08 Traitement du signal audio

Henri Boutin boutin@ircam.fr

2021/2022

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Acquisition : le CAN
 - Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - Rappels : définitions et propriétés
 - ➤ Analyse temps-fréquence
 - Transformée de Fourier à Court Terme
 - Principe d'incertitude
 - Conclusions
 - OVERLAP ADD !!!

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Acquisition : le CAN
 - > Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - > Rappels : définitions et propriétés
 - ➤ Analyse temps-fréquence
 - Transformée de Fourier à Court Terme
 - Principe d'incertitude
 - Conclusions
 - OVERLAP ADD !!!

Contexte

Signaux différents

Spectres similaires

- 3.1 Analyse temps-fréquence: Transformée de Fourier à Court Terme TFCT / STFT
 - Définition :
 - > Existence:

> Exemples:

Interprétation 1: TFCT $X(\tau, f)$ donne le spectre pour tout f à l'instant τ fixé.

> Exemples:

« Sinus glissant »
(chirp / swept sine):
chirp([0:Te:1],100,0.2,800)

ightharpoonup: TFCT $X(\tau, f_0)$, en fonction de τ , donne l'évolution d'une fréquence f_0 au cours du temps.

$$X(\tau, f_0) = \int_{\mathbb{R}} x(t)h^*(t-\tau)e^{-2j\pi f_0 t}dt$$

$$= \int_{\mathbb{R}} x(t)x_{\tau}^*(t)dt \qquad \text{où } x_{\tau}(t) = h(t-\tau)e^{+2j\pi f_0 t}$$

$$= \int_{\mathbb{R}} X(f)X_{\tau}^*(f)df \qquad \text{Parseval}$$

$$X_{\tau}(f) = \text{TF} \Big[h (t - \tau) e^{+2j\pi f_0(t - \tau)} e^{+2j\pi f_0 \tau} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \text{TF} \Big[h (t) e^{+2j\pi f_0 t} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \int_{\mathbb{R}} h (t) e^{+2j\pi f_0 t} e^{-2j\pi f t} dt$$

 \triangleright Interprétation 2: TFCT $X(\tau, f_0)$, en fonction de τ , donne l'évolution d'une fréquence f_0 au cours du temps.

$$egin{aligned} X(au,f_0) &= \int_{\mathbb{R}} x(t)h^*(t- au)e^{-2\mathrm{j}\pi f_0 t}dt \ &= \int_{\mathbb{R}} x(t)x_ au^*(t)dt \qquad \qquad \mathrm{où}\ x_ au(t) = h\ (t- au)e^{+2\mathrm{j}\pi f_0 t} \ &= \int_{\mathbb{R}} X(f)X_ au^*(f)df \qquad \qquad \mathrm{Parseval} \end{aligned}$$

$$X_{\tau}(f) = \text{TF} \Big[h (t - \tau) e^{+2j\pi f_0(t - \tau)} e^{+2j\pi f_0 \tau} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \text{TF} \Big[h (t) e^{+2j\pi f_0 t} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \int_{\mathbb{R}} h (t) e^{+2j\pi f_0 t} e^{-2j\pi f t} dt$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} H (f - f_0)$$

$$\Rightarrow X(\tau, f_0) = e^{-2j\pi f_0 \tau} \int_{\mathbb{R}} X(f) H^*(f - f_0) e^{+2j\pi f \tau} df$$

$$\Rightarrow |X(\tau, f_0)| = \left| \int_{\mathbb{R}} X(f) H^*(f - f_0) e^{+2j\pi f \tau} df \right|$$

Conclusions: 1- pour $f = f_0$ fixé: $|X(\tau, f_0)|$ est

- un signal temporel de la variable au,
 - le module de la TF inverse de X(f) filtrée par $H^*(f-f_0)$ en au.

ightharpoonup Interprétation 2: TFCT $X(\tau, f_0)$, en fonction de τ , donne l'évolution d'une fréquence f_0 au cours du temps.

$$egin{aligned} X(au,f_0) &= \int_{\mathbb{R}} x(t)h^*(t- au)e^{-2\mathrm{j}\pi f_0 t}dt \ &= \int_{\mathbb{R}} x(t)x_ au^*(t)dt \qquad \qquad \mathrm{où}\ x_ au(t) = h\ (t- au)e^{+2\mathrm{j}\pi f_0 t} \ &= \int_{\mathbb{R}} X(f)X_ au^*(f)df \qquad \qquad \mathrm{Parseval} \end{aligned}$$

$$X_{\tau}(f) = \text{TF} \Big[h (t - \tau) e^{+2j\pi f_0(t - \tau)} e^{+2j\pi f_0 \tau} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \text{TF} \Big[h (t) e^{+2j\pi f_0 t} \Big]$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} \int_{\mathbb{R}} h (t) e^{+2j\pi f_0 t} e^{-2j\pi f t} dt$$

$$= e^{+2j\pi f_0 \tau} e^{-2j\pi f \tau} H (f - f_0)$$

$$\Rightarrow X(\tau, f_0) = e^{-2j\pi f_0 \tau} \int_{\mathbb{R}} X(f) H^*(f - f_0) e^{+2j\pi f \tau} df$$

$$\Rightarrow |X(\tau, f_0)| = \left| \int_{\mathbb{R}} X(f) H^*(f - f_0) e^{+2j\pi f \tau} df \right|$$

Conclusions: 1- pour $f = f_0$ fixé: $|X(\tau, f_0)|$ est - un signal temporel de la variable τ ,

- le module de la TF inverse de X(f) filtrée par $H^*(f-f_0)$ en au.

2- la résolution fréquentielle est d'autant meilleure que le support de H(f) est étroit!

 \succ Exemple: x(t) = chirp(t, 100, t(end), 8000), i.e. $f \in [100 \text{ Hz}, 8000 \text{ Hz}]$ et $f_0 = 500 \text{ Hz}$

- ightharpoonup Exemple: x(t) = chirp(t, 100, t(end), 8000), i.e. $f \in [100 \text{ Hz}, 8000 \text{ Hz}]$ et $f_0 = 500 \text{ Hz}$
 - |TFCT(t, 500 Hz)|: méthode 1: TF de chaque x fenêtrée puis valeur en f_0

- ightharpoonup Exemple: x(t) = chirp(t, 100, t(end), 8000), i.e. $f \in [100 \text{ Hz}, 8000 \text{ Hz}]$ et $f_0 = 500 \text{ Hz}$
 - |TFCT(t, 500 Hz)|: méthode 1: TF de chaque x fenêtrée puis valeur en f_0 \Rightarrow N TF! méthode 2: TF(x) puis filtrage par TF(fenêtre) autour de f_0 puis TF inverse \Rightarrow 2 TF + 1 TF inv

> CONCLUSIONS

Exemple: x(t) = chirp(t, 100, t(end), 8000), i.e. $f \in [100 \text{ Hz}, 8000 \text{ Hz}]$ et $f_0 = 500 \text{ Hz}$ • |TFCT(t, 500 Hz)|: méthode 1: TF de chaque x fenêtrée puis valeur en f_0 ⇒ N TF! méthode 2: TF(x) puis filtrage par TF(fenêtre) autour de f_0 puis TF inverse ⇒ 2 TF + 1 TF inv

⇒ Méthode 2: + rapide, ... mais temps différé... Méthode 1: + coûteuse mais temps réel!

> CONCLUSIONS

Exemple: fenêtre rectangulaire

Support temporel étroit

Support temporel large

> CONCLUSIONS

> CONCLUSIONS

Support temporel étroit ⇒ support fréquentiel large ⇒ bonne résolution en temps / mauvaise résolution en fréq.

Support temporel large ⇒ support fréquentiel étroit ⇒ mauvaise résolution en temps / bonne résolution en fréq.

QUESTION : Est-il possible d'avoir simultanément une bonne résolution temporelle et fréquentielle ?

Support temporel étroit ⇒ support fréquentiel large ⇒ bonne résolution en temps / mauvaise résolution en fréq.

Support temporel large ⇒ support fréquentiel étroit ⇒ mauvaise résolution en temps / bonne résolution en fréq.

- Application au traitement du signal:
 - Indicateurs de localisation temps / fréquence:

$$\sigma_t^2 = \int_{-\infty}^{+\infty} |tx(t)|^2 dt$$

$$\sigma_f^2 = \int_{-\infty}^{+\infty} |fX(f)|^2 df$$

• Enoncé:
$$\sigma_t \sigma_f \geq \frac{E_\chi}{4\pi}$$

Démonstration

$$\sigma_t^2 \sigma_f^2 = \int_{-\infty}^{+\infty} |tx(t)|^2 dt \int_{-\infty}^{+\infty} |fX(f)|^2 df$$

$$\int_{-\infty}^{+\infty} |x'(t)|^2 dt = 4\pi^2 \int_{-\infty}^{+\infty} |fX(f)|^2 df$$

$$\Rightarrow \sigma_t^2 \sigma_f^2 = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} |tx(t)|^2 dt \times \int_{-\infty}^{+\infty} |x'(t)|^2 dt$$
$$\geq \frac{1}{4\pi^2} \left| \int_{-\infty}^{+\infty} tx^*(t) x'(t) dt \right|^2 = \frac{|I|^2}{4\pi^2}$$

Inégalité de Cauchy-Schwarz

avec
$$I = \int_{-\infty}^{+\infty} tx^*(t)x'(t)dt$$
$$= -E_x - \int_{-\infty}^{+\infty} tx'^*(t)x(t)dt$$
$$= -E_x - I^*$$
$$\Rightarrow 2Re(I) = -E_x$$
$$\Rightarrow |I|^2 \ge \frac{E_x^2}{4}$$

IPP et x d'énergie finie donc à support compact

ightharpoonup Interprétation: $\sigma_t \sigma_f \geq \frac{E_x}{4\pi}$

 \Rightarrow on ne peut avoir σ_t et σ_f aussi petits que souhaités

 \Rightarrow on ne peut avoir x(t) et X(f) de supports aussi petits que souhaités

- ightharpoonup Interprétation: $\sigma_t \sigma_f \geq \frac{E_x}{4\pi}$
 - \Rightarrow on ne peut avoir σ_t et σ_f aussi petits que souhaités
 - \Rightarrow on ne peut avoir x(t) et X(f) de supports aussi petits que souhaités
- \Rightarrow Notamment une **fenêtre** h(t) ne peut avoir **des supports en temps et en fréquence** aussi petits que souhaités

ex.:
$$x(t) = \cos(2\pi f_0 t)$$

$$x(t) = \delta(t)$$

3.3 Analyse temps-fréquence: conclusions

Pour minimiser $\sigma_t \times \sigma_f$ = surface des « pavés temps-fréquence »:

a- fenêtre rectangulaire :

- $\sigma_t \times \sigma_f = +\infty$
- \Rightarrow aire des pavés temps-fréquence $= +\infty$
- ⇒ mauvais compromis de résolution temps / fréquence

b- fenêtre gaussienne : $|h(t)| = e^{-\frac{t^2}{2}}$:

- $\Rightarrow \sigma_t \times \sigma_f = \frac{E_h}{4\pi}$
- ⇒ aire des *pavés temps-fréquence* minimale
- ⇒ meilleur compromis de résolution temps / fréquence

Quelques références:

S. Lasaulce 2010, Module Ondelettes du DEA TIS, Supélec.

Blanchet & Charbit 2001, «Signaux et Images sous Matlab». Hermes Sciences.

Hartmann96, «signal, sound and sensation», Springer-Verlag

Hayes 96, «Statistical Digital Signal Processing», John Wiley

Kahrs1998, «applications of digital signal processing to audio and acoustics», Kluwer Academic Publishers.