

本科实验报告

课程名称: 电子电路设计实验 I

姓 名: 李昕

学 院: 信息与电子工程学院

专业: 信息工程

学 号: 3230103034

指导老师: 施红军,叶险峰,邓靖靖

2024年11月5日

浙江大学实验报告

专业:信息工程姓名:李昕学号:3230103034日期:2024 年 11 月 5 日地点:东 4-216

课程名称: _____电子电路设计实验 I _____ 指导老师: 施红军, 叶险峰, 邓靖靖 成绩: ______

一、 实验目的

验证基尔霍夫电流、电压定律的正确性,加深对基尔霍夫定律的理解。

二、 实验任务和要求

- (1) 理论计算出 3 个支路的电流值与各节点的电压值
- (2) 用电流表测得各支路的电流值,用电压表测得各节点的电压值,与理论值进行比较

三、实验原理

基尔霍夫定律:测量某电路中的各支路电流及每个元件两端的电压,应分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。

- KCL: 对电路中的任一个节点而言,应有 $\sum I = 0$;
- KVL: 对电路中的任何一个闭合回路而言, 应有 $\sum U = 0$.

注意: 运用上述定律时必须注意各支路或闭合回路中电流的正方向, 此方向可预先任意设定。

四、实验方案设计与参数计算

1. 实验方案总体设计

图 1: 验证基尔霍夫定律的实验电路

本实验使用图 1 所示的电路来验证基尔霍夫定律。实验前先任意设定三条支路和三个闭合回路的电流正方向。图 1 中的 I_1 、 I_2 、 I_3 的方向已设定。三个闭合回路的电流正方向可设为 ADEFA、BADCB 和 FBCEF。 将两路直流稳压源接入电路,其中 $U_{s1}=6V$, $U_{s2}=6V$;先将电阻 R_5 接入电路,测量相应的电压和电流值;再用二极管 D_1 代替 R_5 ,重复实验。

2. 理论值计算

2.1 R₅ 接入电路,各支路电流值

$$\begin{cases}
1020I_1 + 510I_3 = 6 \\
1330I_2 + 510I_3 = 12 \\
I_1 + I_2 = I_3
\end{cases}$$
(1)

解得

$$\begin{cases}
I_1 = 1.92mA \\
I_2 = 5.988mA \\
I_3 = 7.914mA
\end{cases}$$
(2)

2.2 D₁ 接入电路,各节点电流值

$$\begin{cases}
1020I_1 + 510I_3 = 6 \\
I_2 = 0 \\
I_1 = I_3
\end{cases}$$
(3)

解得

$$\begin{cases}
I_1 = 3.922mA \\
I_2 = 0 \\
I_3 = 3.922mA
\end{cases}$$
(4)

由电流的结果可以依次算出 $U_1,U_2,U_{FA},U_{AB},U_{AD},U_{CD},U_{DE}$ 。

五、 实验仪器设备

- 万用表
- 电流表
- 电路板

六、 实验步骤、实验数据记录

1. 测量电流值

先将 R5 接入电路, 测量电流值

学号: 3230103034

表 1: 各支路电流测量值

	$I_1 \text{ (mA)}$	$I_2 \text{ (mA)}$	$I_3 \text{ (mA)}$
计算值	1.926	5.988	7.914
测量值	1.82	6.31	8.22

可以发现, $I_1 + I_2 \approx I_3$, 即验证了基尔霍夫电流定律成立 再将 D_1 接入电路, 测量电流值

表 2: 各支路电流测量值

	$I_1 \text{ (mA)}$	$I_2 \text{ (mA)}$	$I_3 \text{ (mA)}$
计算值	3.922	0	3.922
测量值	4.00	0	3.92

2. 测量电压值

将 R5 接入电路,测量各节点的电压值

表 3: 各节点电压测量值

	U_1	U_2	U_{FA}	U_{AB}	U_{AD}	U_{CD}	U_{DE}
理论值	6V	12V	0.982V	-5.988V	4.036V	-1.995V	0.982V
测量值	6.03V	12.03V	1.02V	-5.97V	4.09V	-2.01V	0.94V

满足 $\sum U = 0$, 验证了基尔霍夫电压定律成立 将 D_1 接入电路, 测量各节点的电压值

表 4: 各节点电压测量值

	U_1	U_2	U_{FA}	U_{AB}	U_{AD}	U_{CD}	U_{DE}
理论值	6V	12V	2V	0V	2V	-10V	2V
测量值	6.03V	12.03V	2.08V	0V	1.90V	-10.14V	1.88V

满足 $\sum U = 0$, 即验证了对于非线性元件, 基尔霍夫电压定律依旧成立

七、 数据分析与讨论

本实验中,在两种情况下(R_5 接入和 D_1 接入),测量的电流值与理论计算值非常接近,验证了基尔霍夫电流定律的正确性。对于非线性元件,在 D_1 接入电路时, I_2 的理论值为 0,测量值也为 0,这进一步证实了基尔霍夫定律的准确性。电压测量值与理论值也基本一致,对于非线性元件也同样适用。

本实验存在较小误差,但测量误差的存在是不可避免的,但误差范围在可接受范围内,这表明实验方法和 设备的准确性较高。

八、 结论

基尔霍夫电流定律和电压定律成立, 即 $\sum I_{in} = \sum I_{out}, \sum U = 0$.

九、 心得与体会

通过本次实验,我验证了基尔霍夫定律的准确性,加深了对电路分析基本法则的理解,提升了实践操作能力。

十、 思考题

1. 如果设定不同的电压与电流参考方向,基尔霍夫定律是否仍然成立?

答:成立。基尔霍夫电流定律 KCL 表明,进入一个节点的电流总和等于离开该节点的电流总和,这个关系与电流的方向无关。而在 KVL 中,电压降的总和等于电压升的总和,也与电压的参考方向无关。

基尔霍夫定律本身描述的是代数和,不会因为参考方向的改变而受到影响。

2. 如果电路中含有非线性器件,基尔霍夫定律是否仍然成立?

依旧成立,基尔霍夫定律同样适用于含有非线性器件的电路。KCL 展现的是电路中的电荷守恒, KVL 则是能量守恒,它们不依赖于电路元件的线性特性,因此对于非线性器件(例如二极管)依旧成立。

5