ICLR' 21 Spotlight

The Intrinsic Dimension of Images and Its Impact on Learning

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, Tom Goldstein

발표자: 공채린

Motivation

Natural Images are believed to reside in lower dimension manifold.

→ How low is the intrinsic dimension?

→ How does it affect the *difficulty* in deep learning tasks?

Contribution

Verify the reliability of MLE-based intrinsic dimension estimator using GANs

- Measure and report dimensionalities of popular datasets like MNIST, CIFAR-10, ImageNet.
- Discover that intrinsic dimensionality positively correlates with sample complexity, while extrinsic dimensionality has no influence.

Intrinsic Dimension Estimator

 Assume constant density in local neighborhood of each data point, and model # data points within certain radius with Poisson process.

Levina & Bickel (NIPS 2004)

• Maximum Likelihood Estimator of intrinsic dimension at point x:

$$\hat{m}_k(x) = \left[\frac{1}{k-1}\sum_{j=1}^{k-1}\log\frac{T_k(x)}{T_j(x)}\right]^{-1}$$

$$T_k(x) \text{: Euclidean distance to k-th neareast data point from } x$$

Estimator across the data points:

$$\bar{m}_k = \left[\frac{1}{n} \sum_{i=1}^n \hat{m}_k(x_i)^{-1}\right]^{-1} = \left[\frac{1}{n(k-1)} \sum_{i=1}^n \sum_{j=1}^{k-1} \log \frac{T_k(x_i)}{T_j(x_i)}\right]^{-1}$$

Proof Sketch

From Levina & Bickel (NIPS 2004)

$$x_1, x_2, ..., x_n \in \mathbb{R}^p, X_i = g(Y_i), Y_i \sim i.i.d.f(x) \sim \mathbb{R}^m$$

 $T_k(x)$: Euclidean distance to k-th neareast data point from x

 $\frac{k}{n} \approx f(x)V(m)[T_k(x)]^m$ V(m): Volume of unit sphere in m dimension

"The proportion of sample points falling into a ball around x is roughly f(x) times the volume of the ball."

Assume $f(x) \approx const$ in neighborhood of x, let $S_x(R)$: sphere of radius R around x

$$\begin{split} N(t,x) &= \sum_{i=1}^n \mathbf{1}\{X_i \in S_x(t)\} \ \, \Rightarrow \text{Poisson process} \\ \lambda(t) &= f(x)V(m)mt^{m-1} \\ L(m,\theta) &= \int_0^R \log \lambda(t)\,dN(t) - \int_0^R \lambda(t)\,dt \ \, \Rightarrow \text{Log-likelihood } (\theta : \log f(x)) \end{split}$$

$$\begin{split} \frac{\partial L}{\partial \theta} &= \int_0^R dN(t) - \int_0^R \lambda(t) dt = N(R) - e^{\theta} V(m) R^m = 0, \\ \frac{\partial L}{\partial m} &= \left(\frac{1}{m} + \frac{V'(m)}{V(m)} \right) N(R) + \int_0^R \log t \, dN(t) - \\ &- e^{\theta} V(m) R^m \left(\log R + \frac{V'(m)}{V(m)} \right) = 0. \end{split}$$

IDE Validation

We don't know how good that estimator is since we never know the true intrinsic dimension of the dataset

→ Can upper-bound intrinsic dimensionality for GAN generated images using latent dimension degree of freedom.

BigGAN on 128x128 ImageNet (class= 'basenji') with 128-dim latent vectors, all zero except for \bar{d} entries

IDE Validation

Hyperparameter K affects the dimension estimate

→ Generally, high K leads to higher estimate

("Low K has high variance while high K has larger positive bias") → Report all values under different Ks

Class='daisy', $\bar{d}=10$

Generalization

- Construct synthetic data of class {basenji, beagle} with ResNet-18 architecture GAN
- Fix extrinsic resolution at 32x32 and vary intrinsic dim 16, 32, 64, 128
- Measure binary classification test accuracy against sample size ("Sample Complexity")

Generalization

- Construct synthetic data of class {basenji, beagle} with ResNet-18 architecture GAN
- Fix intrinsic dimension at 128 and vary extrinsic dimension by nearest neighbor interpolation → {16, 32, 64, 128, 256}

Generalization

- Intrinsic Dimension Estimate for Real Data

Dataset	MNIST	SVHN	CIFAR-100	CelebA	CIFAR-10	MS-COCO	ImageNet
MLE (k=3)	7	9	11	9	13	22	26
MLE $(k=5)$	11	14	18	17	21	33	38
MLE $(k=10)$	12	18	22	24	25	37	43
MLE $(k=20)$	13	19	23	26	26	36	43
SOTA Accuracy	99.84	99.01	93.51	-	99.37	-	88.55

- Align image resolutions by resizing

	MNIST	SVHN	CIFAR-10	ImageNet
k = 3	7.5 (0.2)	8.5 (0.1)	11.4 (0.2)	15.4 (0.8)
k = 4	9.8 (0.3)	11.6 (0.1)	15.9 (0.2)	19.8 (0.9)
k = 5	10.9 (0.4)	13.2 (0.1)	18.3 (0.3)	21.6 (1.0)

- Sample Complexity for real datasets

Additional Experiments

Add uniformly sampled noise to CIFAR-10

	$\underline{d} = 256$	$\underline{d} = 512$	$\underline{d} = 1024$	$\underline{d} = 1536$	$\underline{d} = 2048$	$\underline{d} = 2560$
k = 3	19.7	30.9	57.1	77.8	110.0	136.1
k = 4	25.2	39.1	72.8	101.3	142.1	177.7
k = 5	27.6	42.5	78.3	110.2	153.4	196.6

- More noise leads to Higher sample complexity

Q&A / Comments