1	Contest	1	8.5 3D	#ifdef LOCAL # define dbg() cerr << '[' < <file "]="" #<="" ':'="" ("="" <<="" <<line="" th=""></file>		
2	2 Mathematics		9 Strings 22	VA_ARGS << "):", dbg_out(VA_ARGS) #else		
	2.1 Equations			# define dbg()		
	2.2 Recurrences	2	10 Various 24	# define cerr if (false) cerr		
	2.3 Trigonometry	2	10.1 Intervals	#endif		
	2.4 Geometry	2	10.2 Misc. algorithms	<pre>constexpr int inf = int(1e9);</pre>		
	<u>, </u>		•	constexpr int mod = 998244353; //int(1e9)+7		
	_	3 3	10.3 Dynamic programming	<pre>constexpr int N = int(2e5);</pre>		
		3	10.4 Debugging tricks	<pre>void run_case() {</pre>		
	2.7 Series	-	10.5 Optimization tricks	}		
	2.8 Probability theory	3				
	2.9 Markov chains	3	Contest (1)	<pre>int32_t main() { ios_base::sync_with_stdio(false);</pre>		
_				cin.exceptions(ios_base::failbit);		
3	Data structures	4	template.cpp 71a387,86 lines			
			#include <bits stdc++.h=""></bits>	#ifdef LOCAL		
4	Numerical	6	using namespace std;	<pre>auto tbegin = chrono::high_resolution_clock::now(); #else</pre>		
	4.1 Polynomials and recurrences	6	using ll = long long;	cin.tie(nullptr);		
	4.2 Optimization	7	<pre>#define all(v) begin(v), end(v) #define rall(v) rbegin(v), rend(v)</pre>	#endif		
	4.3 Matrices	8	#define sz(v) int(size(v))	int 4 - 1		
	4.4 Fourier transforms		#define rep(a, b) for (int $i = a$; $i < (b)$; ++i)	int t = 1; cin >> t;		
	4 Tourier transforms		<pre>mt19937 rng { unsigned(chrono::steady_clock::now().time_since_epoch().count</pre>	for (int i = 1; i <= t; ++i) {		
_	Number theory	9	())};	run_case();		
3		9	template <typename a,="" b="" typename=""></typename>	}		
		_	ostream& operator<<(ostream& os, const pair <a, b="">& p) {</a,>	#ifdef LOCAL		
	5.2 Primality		return os << '(' << p.first << ", " << p.second << ')';	<pre>auto tend = chrono::high_resolution_clock::now();</pre>		
	5.3 Divisibility		}	<pre>cerr << setprecision(4) << fixed;</pre>		
	5.4 Fractions		template <typename args=""></typename>	<pre>cerr << "Time: " << chrono::duration_cast<chrono::duration<double>>(tend -</chrono::duration<double></pre>		
			ostream& operator<<(ostream& os, const tuple <args>& t) {</args>	#endif		
	5.6 Primes	11	os << '('; apply([&os](const Args& args) {	}		
	5.7 Estimates	11	$size_t n = 0$;			
	5.8 Mobius Function	11	((os << args << (++n != sizeof(Args) ? ", " : "")),);	.bashrc 21 lines		
			}, t);	alias cpsan='g++ \		
6	Combinatorial	11	return os << ')';	-std=gnu++17 \		
-	6.1 Permutations		j	-DLOCAL \		
	6.2 Partitions and subsets		<pre>template<typename c,="" enable_if<!is_same<c,="" string="" t="typename" typename="">::</typename></pre>	-pedantic \ -Wall \		
	6.3 General purpose numbers		<pre>value, typename C::value_type>::type> ostream& operator<<(ostream& os, const C& v) {</pre>	-Wextra \		
	0.5 General purpose numbers	14	os < ' { ';	-Wconversion \		
7	Carach	10	string sep;	-Wshadow \		
/	1	12	for (const T& x : v) os << sep << x, sep = ", ";	-Wfloat-equal \ -Wmisleading-indentation \		
	7.1 Fundamentals		return os << "}#" << v.size();	-Wimplicit-fallthrough \		
	7.2 Network flow		j	-Wlogical-op \		
	7.3 Matching	14	template <typename t=""></typename>	-Wduplicated-cond \ -Wduplicated-branches \		
	8	15	<pre>ostream& operator<<(ostream& os, const vector<t>& v) { os << '[';</t></pre>	-Wuseless-cast \		
	7.5 Coloring	16	string sep;	-Wno-sign-conversion \		
,	7.6 Heuristics		for (const T& x : v) os << sep << x, sep = ", ";	-Wno-unused-const-variable \		
	7.7 Trees		return os << "]#" << v.size();	-D_GLIBCXX_DEBUG \ -ggdb3 \		
	7.8 Math	18	}	-fno-omit-frame-pointer \		
			<pre>void dbg_out() { cerr << endl; }</pre>	-fsanitize=undefined,float-divide-by-zero,float-cast-overflow,address'		
8 Geometry		18				
-	8.1 Geometric primitives		template <typename first,="" rest="" typename=""> void dbg_out(First first, Rest</typename>	.Xmodmap 8 lines		
	8.2 Circles		<pre> rest) { cerr << ' ' << first;</pre>	! map Shift+Shift to CapsLock		
	8.3 Polygons		dbg_out(rest);	keysym Shift_L = Shift_L Caps_Lock Shift_L		
	8.4 Misc. Point Set Problems		}	keysym Shift_R = Shift_R Caps_Lock Shift_R		
	0.4 IVII.5C. FUIIII 5CI FIUUICIIIS	41				

template .bashrc .Xmodmap hash stress troubleshoot

```
! map CapsLock to Ctrl
keysym Caps_Lock = Control_L
add control = Control_L
remove lock = Caps_Lock
hash.sh
# Hashes a file, ignoring all whitespace and comments. Use for
# verifying that code was correctly typed.
cpp -dD -P -fpreprocessed | tr -d '[:space:]'| md5sum |cut -c-6
stress.sh
                                                                         22 lines
# A and B are executables you want to compare, gen takes int
# as command line arg. Usage: 'sh stress .sh'
for ((i = 1; ; ++i)); do #if they are same then will loop forever
   ./gen $i > inp
   ./A < inp > out1
   ./B < inp > out2
   diff -w out1 out2 || break
   # diff -w < (./A < inp) < (./B < inp) || break
# The following will break on the first input file such that the produced output
      file is empty.
#for((i = 1; ++i)); do
# echo $i
# ./gen $i > inp
# ./A < inp > out
# if ! [[ -s "out" ]]; then
# echo "no output'
# break
# fi ;
#done
troubleshoot.txt
                                                                         52 lines
Write a few simple test cases if sample is not enough.
Are time limits close? If so, generate max cases.
Is the memory usage fine?
Could anything overflow?
Make sure to submit the right file.
Wrong answer:
Print your solution! Print debug output, as well.
Are you clearing all data structures between test cases?
Can your algorithm handle the whole range of input?
Read the full problem statement again.
Do you handle all corner cases correctly?
Have you understood the problem correctly?
Any uninitialized variables?
Any overflows?
Confusing N and M, i and j, etc.?
Are you sure your algorithm works?
What special cases have you not thought of?
Are you sure the STL functions you use work as you think?
Add some assertions, maybe resubmit.
Create some testcases to run your algorithm on.
Go through the algorithm for a simple case.
Go through this list again.
Explain your algorithm to a teammate.
Ask the teammate to look at your code.
Go for a small walk, e.g. to the toilet.
Is your output format correct? (including whitespace)
```

Rewrite your solution from the start or let a teammate do it.

Have you tested all corner cases locally?
Any uninitialized variables?
Are you reading or writing outside the range of any vector?
Any assertions that might fail?
Any possible division by 0? (mod 0 for example)
Any possible infinite recursion?
Invalidated pointers or iterators?
Are you using too much memory?
Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Runtime error:

Do you have any possible infinite loops? What is the complexity of your algorithm? Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf) Avoid vector, map. (use arrays/unordered_map) What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

Mathematics (2)

2.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \dots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

2.3 Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V + W) \tan(v - w)/2 = (V - W) \tan(v + w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{p}$

Length of median (divides triangle into two equal-area triangles):

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $\alpha + \beta$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

NSU / NSU_CyanCubed

2.4.3 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(y, x)$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1 + x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax - 1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent *X* and *Y*,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n, p), $n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np$$
, $\sigma^2 = np(1-p)$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, ...$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $Exp(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{2}, \ \sigma^2 = \frac{1}{2^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A *Markov chain* is a discrete random process with the property that the next state depends only on the current state. Let $X_1, X_2, ...$ be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P}=(p_{ij})$, with $p_{ij}=\Pr(X_n=i|X_{n-1}=j)$, and $\mathbf{p}^{(n)}=\mathbf{P}^n\mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)}=\Pr(X_n=i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi=\pi P$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i=\frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing ($p_{ii} = 1$), and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

[FH] SegmentTree.h

Description: Recursive Segment Tree. Bounds are inclusive. Can be used for various operations, just need to change the merge function.

```
template <class T>
struct segment_tree {
 vector<T> stree;
 function<T(const T&, const T&)> merge;
 T identity = T();
 segment_tree(): n(0), merge(nullptr), identity(0) { }
 segment_tree(int n, function<T(const T&, const T&)> merge, T identity): n(
       n), merge(merge), identity(identity) {
   stree.resize(4*n+5);
 void build(const vector<T>& arr, int node, int b, int e) {
     stree[node] = arr[b];
     return;
   int mid = (b+e)>>1;
   build(arr. 2*node. b. mid): build(arr. 2*node+1. mid+1. e):
   stree[node] = merge(stree[2*node], stree[2*node+1]);
 segment_tree(const vector<T>& arr, function<T(const T&, const T&)> merge,
       T identity): n(arr.size()), merge(merge), identity(identity) {
   stree.resize(4*n+5);
   build(arr, 1, 0, n-1);
 void set(int node, int b, int e, int ind, T val) {
   if(ind > e or ind < b) return:</pre>
   if(ind<=b and ind>=e) {
     stree[node] = val;
     return;
   int mid = (b+e)>>1:
   set(2*node, b, mid, ind, val); set(2*node+1, mid+1, e, ind, val);
   stree[node] = merge(stree[2*node].stree[2*node+1]);
 void set(int ind, T val) { set(1, 0, n-1, ind, val); }
 void update(int node, int b, int e, int ind, T val) {
   if(ind > e or ind < b) return;</pre>
   if(ind<=b and ind>=e) {
     stree[node] = merge(stree[node], val);
     return;
   int mid = (b+e)>>1;
   update(2*node, b, mid, ind, val); update(2*node+1, mid+1, e, ind, val);
   stree[node] = merge(stree[2*node], stree[2*node+1]);
 void update(int ind, T val) { update(1, 0, n-1, ind, val); }
 T query(int node, int b, int e, int l, int r) {
   if(l > e or r < b)
     return identity;
   if(l<=b and r>=e)
```

```
return stree[node];
int mid = (b+e)>>1;
T c1 = query(2*node, b, mid, l, r);
T c2 = query(2*node+1, mid+1, e, l, r);
return merge(c1,c2);
}
T query(int l, int r) { return query(1, 0, n-1, l, r); }
};
```

[FH] LazySegTree.h

Description: Recursive Lazy Segment Tree. Bounds are inclusive. Can be used for both range update and range set. Can be used for various operations, just need to change the merge function. Must change the propagation function accordingly.

Usage: segment_tree<int> st(arr, [](int a, int b){return a+b;}, 0, 0, -1); **Time:** $\mathcal{O}(\log N)$ 9796B.84 line

```
template <class T>
struct segment_tree {
 vector<T> stree, lzadd, lzset;
 function<T(const T&, const T&)> merge;
 T id = T(); T aid = T(); T sid = T();
 segment_tree(): n(0), merge(nullptr), identity(0), add_identity(0),
       set_identity(0) { }
 segment_tree(int n, function<T(const T&, const T&)> merge, T id, T aid, T
 n(n), merge(merge), id(id), aid(aid), sid(sid) {
   stree.resize(4*n+5);lzadd.resize(4*n+5, aid);lzset.resize(4*n+5, sid);
 void build(const vector<T>& arr. int node. int b. int e) {
   if(b==e)return void(stree[node] = arr[b]); int mid = (b+e)>>1;
   build(arr, 2*node, b, mid);build(arr, 2*node+1, mid+1, e);
   stree[node] = merge(stree[2*node].stree[2*node+1]):
 segment tree(const vector<T>& arr. function<T(const T&. const T&)> merge.
      T id. T aid. T sid):
 n(arr.size()), merge(merge), id(id), aid(aid), sid(sid) {
   stree.resize(4*n+5);lzadd.resize(4*n+5, aid);lzset.resize(4*n+5, sid);
   build(arr, 1, 0, n-1);
 void propagate(int node, int b, int e) {
   if(lzset[node]!=sid) {
     lzadd[node]=aid:
     stree[node] = lzset[node]*(e-b+1);
      lzset[2*node]=lzset[node]; lzset[2*node+1]=lzset[node];
     lzset[node]=sid;
   else {
     if(lzadd[node]==aid) return:
     stree[node]+=lzadd[node]*(e-b+1);
     if(b!=e) {
      if(lzset[2*node]==sid) {
        lzadd[2*node]+=lzadd[node];
       else {
        lzset[2*node]+=lzadd[node]; lzadd[2*node]=0;
       if(lzset[2*node+1]==sid) {
        lzadd[2*node+1]+=lzadd[node];
       else {
        lzset[2*node+1]+=lzadd[node]; lzadd[2*node+1]=0;
     lzadd[node]=aid;
```

```
void update(int node, int b, int e, int l, int r, T val) {
 propagate(node, b, e):
  if(l > e or r < b) return;
  if(l \le b \text{ and } r \ge e) \{
   lzadd[node]+=val; // apply to lazy
   propagate(node, b, e); return;
  int mid = (b+e)>>1:
  update(2*node, b, mid, l, r, val); update(2*node+1, mid+1, e, l, r, val)
  stree[node]=merge(stree[2*node], stree[2*node+1]); return;
void update(int l, int r, T val) { update(1, 0, n-1, l, r, val); }
void set(int node, int b, int e, int l, int r, T val) {
 propagate(node, b, e);
  if(l > e or r < b) return;</pre>
  if(l \le b \text{ and } r \ge e) \{
   lzset[node]=val; // apply to lazy
   propagate(node, b, e); return;
  int mid = (b+e)>>1;
  set(2*node, b, mid, l, r, val); set(2*node+1, mid+1, e, l, r, val);
  stree[node]=merge(stree[2*node], stree[2*node+1]); return;
void set(int l, int r, T val) { set(1, 0, n-1, l, r, val); }
T query(int node, int b, int e, int l, int r) {
 propagate(node, b, e);
  if(l > e or r < b) return id;</pre>
  if(l<=b and r>=e) return stree[node];
  int mid = (b+e)>>1;
  T c1 = query(2*node, b, mid, l, r); T c2 = query(2*node+1, mid+1, e, l, r)
  return merge(c1,c2);
T query(int l, int r) { return query(1, 0, n-1, l, r); }
```

[AlphaQ] PersistentSegTree.cpp

a6ce84 37 lines

```
const int N = 200010:
const int M = 10000010:
int n, q, nodes, root[N], a[N], t[M], L[M], R[M];
void update(int p, int v, int prev_node, int cur_node, int b = 1, int e = n
 if (b == e) return void(t[cur_node] = v);
 int mid = b + e >> 1:
 if (p <= mid) R[cur_node] = R[prev_node], L[cur_node] = ++nodes, update(p,</pre>
        v, L[prev_node], L[cur_node], b, mid);
 else L[cur_node] = L[prev_node], R[cur_node] = ++nodes, update(p, v, R[
        prev_node], R[cur_node], mid + 1, e);
 t[cur_node] = t[L[cur_node]] + t[R[cur_node]];
int query(int l, int r, int u, int b = 1, int e = n) {
 if (b > r or e < l) return 0;
 if (b >= l and e <= r) return t[u];</pre>
 int mid = b + e >> 1;
 return query(l, r, L[u], b, mid) + query(l, r, R[u], mid + 1, e);
int main() {
 cin >> n >> a:
 for (int i = 1; i \le n; ++i) scanf("%d", a + i);
 map<int, int> last;
  for (int i = 1; i \le n; ++i) {
   int x = a[i], pos = last[x], prev_root = root[i - 1];
   if (pos) {
     root[i] = ++nodes;
     update(pos, 0, prev_root, root[i]);
     prev_root = root[i];
```

c59ada, 13 lines

```
root[i] = ++nodes:
 update(i, 1, prev_root, root[i]);
 last[x] = i;
while (q--) {
 int l, r;
 scanf("%d %d", &l, &r);
 printf("%d\n", query(l, r, root[r]));
```

[FH] BIT2D.h

Description: 2D Fenwick Tree (1 based indexing). Bounds are inclusive

```
Time: \mathcal{O}(\log^2 N). (Use persistent segment trees for \mathcal{O}(\log N).)
                                                                       16d4a8, 31 lines
template <class T>
struct fenwick2d { // 1 based indexing
 int n. m:
 vector<vector<T>> bit;
 fenwick2d(int n, int m) : n(n), m(m) { bit = vector(n+1, vector<T>(m+1));
  fenwick2d(const\ vector< vector< T>>\&\ v)\ :\ n(v.size()),\ m(v[0].size())\ \{
   bit = vector(n+1, vector<T>(m+1));
   for(int i = 0; i < n; i++)
     for(int j = 0; j < m; j++)
       update(i+1, j+1, v[i][j]);
 void update(int x, int y, T val) {
   while(x<=n) {</pre>
     for(int i = y; i <=n; i+=i&-i) bit[x][i]+=val;</pre>
     x+=x&-x:
 T query(int x, int y) {
   T sum = 0;
   while(x>0) {
     for(int i = y; i >0; i-=i&-i) sum+=bit[x][i];
     x-=x&-x:
   return sum;
 T query(int x1, int y1, int x2, int y2) {
   T sum1 = query(x2, y2); T sum2 = query(x2, y1-1);
   T sum3 = query(x1-1, y2); T sum4 = query(x1-1, y1-1);
   return sum1 - sum2 - sum3 + sum4;
```

[FH] Matrix.h

};

Description: Matrix stuct for matrix multiplication and exponentiation.

```
dd3898, 39 lines
struct matrix {
 vector<vector<ll>> mat;
 matrix(int n, int m) {
   mat.resize(n, vector<ll>(m));
 matrix(const vector<vector<ll>>% v) {
   int n = v.size(), m = v.front().size();
   mat.resize(n, vector<ll>(m));
   for(int i = 0; i < n; i++)
     for(int j = 0; j < m; j++)
      mat[i][j]=v[i][j];
 matrix operator*(const matrix& a) {
   int n = this->mat.size(), m = a.mat[0].size();
   assert(this->mat[0].size()==a.mat.size());
   matrix prod(n, m);
   for(int i = 0; i < n; i++) {
     for(int j = 0; j < m; j++) {
```

```
for(int k = 0; k < (int)a.mat.size(); k++) {
        prod.mat[i][j] = (prod.mat[i][j]+mat[i][k]*a.mat[k][j])%mod;
   return prod;
};
matrix binexp(matrix base, ll exp) {
 int n = base.mat.size():
 matrix ret(n, n);
 for(int i = 0; i < n; i++)
   ret.mat[i][i]=1;
 while(exp) {
   if(exp&1)
     ret = ret*base:
   base = base*base;
   exp>>=1;
 return ret;
```

[FH] DSU.h

Description: Disjoint-set-union data structure.

Time: $\mathcal{O}(\alpha(N))$ 29ea06, 17 lines

```
vector<int> rep; // store negation of size of representative
 DSU(int sz) { rep = vector<int>(sz, -1); cc = sz -1; } // get representive
       component (uses path compression)
 int get(int x) { return rep[x] < 0 ? x : rep[x] = get(rep[x]); }
 bool same_set(int a, int b) { return get(a) == get(b); }
 int size(int x) { return -rep[get(x)]; }
 bool unite(int x, int y) { // union by size
  x = get(x), y = get(y);
   if (x == y) return false;
   if (rep[x] > rep[y]) swap(x, y); // rep[x] less means bigger size
   rep[x] += rep[y];
   rep[y] = x;
   return true;
};
```

[FH] DSURollback.h

Description: Disjoint-set-union data structure with rollback feature. Time: $\mathcal{O}(\alpha(N))$

```
d0c2b8, 23 lines
struct DSU {
 vector<int> p, sz;
 vector<pair<int, int>> p_history, sz_history;
 DSU(int n) : p(n), sz(n, 1) \{ iota(p.begin(), p.end(), 0); \}
 int get(int x) \{ return x == p[x] ? x : get(p[x]); \}
 bool sameset(int a, int b) { return get(a) == get(b); }
 void unite(int a, int b) {
  a = get(a);
   b = get(b);
   if (a == b) { return; }
   if (sz[a] < sz[b]) { swap(a, b); }</pre>
   p_history.push_back({b, p[b]});
   sz_history.push_back({a, sz[a]});
   p[b] = a;
   sz[a] += sz[b];
 void rollback() {
   p[p_history.back().first] = p_history.back().second;
   sz[sz_history.back().first] = sz_history.back().second;
   p_history.pop_back();
```

```
sz_history.pop_back();
 }
};
```

[FH] MoQueries.h

Description: Mo's algorithm for offline range queries. Make sure to sort the queries first. Implement add(), remove() and get() functions accordingly.

```
Time: \mathcal{O}\left((N+Q)F\sqrt{N}\right) where \mathcal{O}(F) is add()/remove()/get() complexity.
const int B = 450; // sqrt(Q)
vector<array<int, 4>> queries; // {l/B, r, l, id }
sort(all(queries));
int left = 0, right = -1;
for(auto [_, r, l, id]: queries) {
  while(right < r) add(++right);</pre>
  while(right > r) remove(right--);
  while(left < l) remove(left++);</pre>
  while(left > l) add(--left);
  ans[id] = get();
```

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type.

Time: $\mathcal{O}(\log N)$

```
30ef4c, 16 lines
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class T>
   using iset = tree<T,null_type,less<T>,rb_tree_tag,
         tree_order_statistics_node_update>;
void example() {
 iset<int> t, t2; t.insert(8);
  auto it = t.insert(10).first;
  assert(it == t.lower_bound(9));
  assert(t.order_of_key(10) == 1);
  assert(t.order_of_key(11) == 2);
  assert(*t.find_by_order(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
 const uint64_t C = ll(4e18 * acos(0)) | 71;
 ll operator()(ll x) const { return __builtin_bswap64(x*C); }
__gnu_pbds::gp_hash_table<ll,int,chash> h({},{},{},{},{1<<16});
```

SubMatrix.h

Description: Calculate submatrix sums quickly, given upper-left and lower-right corners

```
Usage: SubMatrix<int> m(matrix);
m.sum(0, 0, 2, 2); // top left 4 elements
Time: \mathcal{O}(N^2 + Q)
```

template<class T> struct SubMatrix { vector<vector<T>> p; SubMatrix(vector<vector<T>>& v) { int R = sz(v), C = sz(v[0]); p.assign(R+1, vector<T>(C+1));

```
NSU / NSU_CyanCubed
```

```
6
```

```
rep(r,0,R) rep(c,0,C)
    p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
}
T sum(int u, int l, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
}
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

 $\mathbf{me} : \mathcal{O}(\log N)$

```
struct Line {
 mutable ll k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
 // (for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a/b)
 static const ll inf = LLONG MAX:
 ll div(ll a, ll b) {//floored division
   return a / b - ((a ^b) < 0 && a % b); }
 bool isect(iterator x, iterator y) {
   if (y == end()) return x -> p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
   while ((y = x) != begin() \&\& (--x)->p >= y->p)
     isect(x, erase(y));
 ll query(ll x) {
   assert(!empty());
   auto l = *lower_bound(x);
   return l.k * x + l.m:
};
```

Treap.h

Time: $\mathcal{O}(\log N)$

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data.

struct Node {
 Node *l = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) { }
 void recalc();
};

int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(l) + cnt(r) + 1; }

template<class F> void each(Node* n, F f) {

if (n) { each(n->l, f); f(n->val); each(n->r, f); }

if $(cnt(n->l) >= k) { // "n->val>= k" for lower_bound(k) }$

pair<Node*, Node*> split(Node* n, int k) {

if (!n) return { };

n->recalc();

auto pa = split(n->l, k);
n->l = pa.second;

Numerical (4)

vector<double> a;

4.1 Polynomials and recurrences

Polynomial.h struct Poly {

```
return { pa.first, n };
  }else {
   auto pa = split(n->r, k - cnt(n->l) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
   return { n, pa.second };
Node* merge(Node* l, Node* r) {
 if (!l) return r;
 if (!r) return l;
 if (l->y > r->y) {
   l->r = merge(l->r, r);
   l->recalc();
   return l;
  }else {
   r->l = merge(l, r->l);
   r->recalc();
   return r;
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
 return merge(merge(pa.first, n), pa.second);
// Example application: move the range [l, r) to index k
void move(Node*& t, int l, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, l); tie(b,c) = split(b, r - l);
 if (k \le l) t = merge(ins(a, b, k), c);
 else t = merge(a, ins(c, b, k - r));
Description: Range Minimum Queries on an array. Returns min(V[a], V[a+1], ... V[b-1])
1]) in constant time.
Usage: RMO rmg(values):
rmq.query(inclusive, exclusive);
Time: \mathcal{O}(|V| \log |V| + Q)
                                                                     510c32, 16 lines
template<class T>
struct RMQ {
 vector<vector<T>> jmp;
 RMQ(const vector<T>& V) : jmp(1, V) {
   for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
     jmp.emplace_back(sz(V) - pw * 2 + 1);
     rep(j,0,sz(jmp[k]))
       jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
 T query(int a, int b) {
   assert(a < b); // or return inf if a == b
   int dep = 31 - __builtin_clz(b - a);
   return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
```

```
for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
   a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots(\{\{2,-3,1\}\},-1e9,1e9) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
                                                                         b00bfe, 23 lines
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) \{ return \{ -p.a[0]/p.a[1] \} ; \}
  vector<double> ret;
 Poly der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i,0,sz(dr)-1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(l) > 0;
    if (sign (p(h) > 0)) {
     rep(it, 0,60) { // while (h - l > 1e - 8)
       double m = (l + h) / 2, f = p(m);
       if ((f <= 0) ^sign) l = m;</pre>
       else h = m;
```

double operator()(double x) const {

rep(i,1,sz(a)) a[i-1] = i*a[i];

double b = a.back(), c; a.back() = 0;

for (int i = sz(a); i--;) (val *= x) += a[i];

double val = 0:

return val;

void diff() {

a.pop_back();

void divroot(double x0) {

PolvInterpolate.h

return ret;

ret.push_back((l + h) / 2);

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 ... n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
```

BerlekampMassey.h

c9b7b0, 17 lines

Description: Recovers any *n*-order linear recurrence relation from the first 2*n* terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
                                                                    96548b, 20 lines
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 ll b = 1;
 rep(i,0,n) { ++m;
   ll d = s[i] % mod;
   rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; ll coef = d * modpow(b, mod-2) % mod;
   rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 for (ll& x : C) x = (mod - x) \% mod;
 return C:
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{i} S[i-j-i]$ 1]tr[j], given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number

```
Time: \mathcal{O}(n^2 \log k)
```

```
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
 int n = sz(tr);
 auto combine = [&](Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i,0,n+1) rep(j,0,n+1)
    res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
   for (int i = 2 * n; i > n; --i) rep(j,0,n)
    res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
   res.resize(n + 1);
   return res:
 };
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
 for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
 rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
 return res:
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a, b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is *eps*. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = gss(-1000.1000.func):
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                                      31d45b, 14 lines
double gss(double a, double b, double (*f)(double)) {
 double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2):
  while (b-a > eps)
   if (f1 < f2) {//change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
     a = x1; x1 = x2; f1 = f2;
     x2 = a + r*(b-a); f2 = f(x2);
 return a;
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions.

8eeeaf, 14 lines

```
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
 pair<double, P> cur(f(start), start);
 for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
   rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
    P p = cur.second:
    p[0] += dx*jmp;
    p[1] += dy*jmp;
     cur = min(cur, make_pair(f(p), p));
 return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes. 4756fc, 7 lines

```
double quad(double a, double b, F f, const int n = 1000) {
 double h = (b - a) / 2 / n, v = f(a) + f(b);
 rep(i,1,n*2)
  v += f(a + i*h) * (i&1 ? 4 : 2);
 return v * h / 3;
```

IntegrateAdaptive.h

```
Usage: double sphereVolume = quad(-1, 1, [](double x) {
return quad(-1, 1, [&](double y) {
return quad(-1, 1, [&](double z) {
return x*x + y*y + z*z < 1; {);});});
                                                                    92dd79, 15 lines
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
```

Description: Fast integration using an adaptive Simpson's rule.

```
template <class F>
d rec(F& f, d a, d b, d eps, d S) {
 dc = (a + b) / 2;
 d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
 if (abs(T - S) \le 15 * eps | | b - a < 1e-10)
   return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d quad(d a, d b, F f, d eps = 1e-8) {
```

```
return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \le b, x \ge 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of $c^T x$ otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1,1,-4\}, c = \{-1,-1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

```
Time: \mathcal{O}(NM * \# pivots), where a pivot may be e.g. an edge relaxation. \mathcal{O}(2^n) in the gen-
typedef double T; //long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j
struct LPSolver {
 int m, n;
  vi N, B;
  vvd D:
  LPSolver(const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
     rep(i,0,m) rep(j,0,n) D[i][j] = A[i][j];
     rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
     rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
     rep(j,0,n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
   rep(j,0,n+2) if (j != s) D[r][j] *= inv;
   rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
   swap(B[r], N[s]);
  bool simplex(int phase) +
   int x = m + phase - 1:
    for (;;) {
     int s = -1;
     rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
     int r = -1;
     rep(i,0,m)
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                   < MP(D[r][n+1] / D[r][s], B[r])) r = i;
     if (r == -1) return false;
     pivot(r, s);
  T solve(vd &x) {
   rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
```

```
if (D[r][n+1] < -eps) {</pre>
     pivot(r, n);
     if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
     rep(i,0,m) if (B[i] == -1) {
      int s = 0;
      rep(j,1,n+1) ltj(D[i]);
      pivot(i, s);
   bool ok = simplex(1); x = vd(n);
   rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
   return ok ? D[m][n+1] : inf;
};
```

Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}(N^3)$

bd5cec, 15 lines double det(vector<vector<double>>& a) { int n = sz(a); double res = 1; rep(i,0,n) { int b = i;rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j; if (i != b) swap(a[i], a[b]), res *= -1; res *= a[i][i]; if (res == 0) return 0: rep(j,i+1,n) { double v = a[j][i] / a[i][i]; if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k]; return res;

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

```
3313dc, 18 lines
const ll mod = 12345;
ll det(vector<vector<ll>>% a) {
 int n = sz(a); ll ans = 1;
 rep(i,0,n) {
   rep(j,i+1,n) {
     while (a[j][i] != 0) { // gcd step
       ll t = a[i][i] / a[j][i];
       if (t) rep(k,i,n)
         a[i][k] = (a[i][k] - a[j][k] * t) % mod;
       swap(a[i], a[j]);
       ans *= -1;
   ans = ans * a[i][i] % mod;
   if (!ans) return 0;
 return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.

Time: $\mathcal{O}(n^2m)$

44c9ab, 38 lines typedef vector<double> vd;

```
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
```

```
int n = sz(A), m = sz(x), rank = 0, br, bc;
if (n) assert(sz(A[0]) == m);
vi col(m); iota(all(col), 0);
rep(i,0,n) {
 double v, bv = 0;
 rep(r,i,n) rep(c,i,m)
   if ((v = fabs(A[r][c])) > bv)
     br = r, bc = c, bv = v;
 if (bv <= eps) {
   rep(j,i,n) if (fabs(b[j]) > eps) return -1;
   break;
 swap(A[i], A[br]);
 swap(b[i], b[br]);
 swap(col[i], col[bc]);
 rep(j,0,n) swap(A[j][i], A[j][bc]);
 bv = 1/A[i][i];
 rep(j,i+1,n) {
   double fac = A[j][i] * bv;
   b[j] = fac * b[i];
   rep(k,i+1,m) A[j][k] -= fac*A[i][k];
 rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
 b[i] /= A[i][i];
 x[col[i]] = b[i];
 rep(j,0,i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of *x* back from SolveLinear, make the following changes:

```
"SolveLinear.h"
                                                                         08e495, 7 lines
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
 rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
 x[col[i]] = b[i] / A[i][i];
fail:; }
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.

Time: $\mathcal{O}(n^2m)$

```
fa2d7a, 34 lines
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert(m <= sz(x));</pre>
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break:
   int bc = (int)A[br]._Find_next(i-1);
   swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j,0,n) if (A[j][i] != A[j][bc]) {
```

```
A[j].flip(i); A[j].flip(bc);
  rep(j,i+1,n) if (A[j][i]) {
   b[i] ^= b[i];
   A[j] ^= A[i];
  rank++;
x = bs():
for (int i = rank; i--;) {
 if (!b[i]) continue;
 x[col[i]] = 1;
  rep(j,0,i) b[j] ^= A[j][i];
return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set A^{-1} = $A^{-1}(2I - AA^{-1})$ (mod p^k) where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}(n^3)$

```
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i,0,n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
       r = i, c = k;
   if (fabs(A[r][c]) < 1e-12) return i;</pre>
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
   rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
   swap(col[i], col[c]);
   double v = A[i][i];
   rep(j,i+1,n) {
     double f = A[j][i] / v;
     A[j][i] = 0;
     rep(k,i+1,n) A[j][k] -= f*A[i][k];
     rep(k,0,n) tmp[j][k] = f*tmp[i][k];
   rep(j,i+1,n) A[i][j] /= v;
   rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[i][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
 rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0 , a_{n+1} , b_i , c_i and d_i are known. a can then be obtained from

$$\begin{aligned} \{a_i\} &= \text{tridiagonal}(\{1,-1,-1,...,-1,1\},\{0,c_1,c_2,...,c_n\},\\ \{b_1,b_2,...,b_n,0\},\{a_0,d_1,d_2,...,d_n,a_{n+1}\}). \end{aligned}$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed. Time: $\mathcal{O}(N)$

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
   const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
 rep(i,0,n-1) {
   if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0}
     b[i+1] -= b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
     diag[i+1] = sub[i]; tr[++i] = 1;
   }else {
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] -= b[i]*sub[i]/diag[i];
 for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
   }else {
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum_{i=1}^{n} a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10¹⁶; higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $O(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

00ced6, 35 lines

```
typedef complex<double> C:
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
 static vector<complex<long double>> R(2, 1);
 static vector<C> rt(2, 1); //(^10% faster if double)
 for (static int k = 2; k < n; k *= 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
   rep(i,k,2*k) \ rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
 rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     C z = rt[j+k] * a[i+j+k]; //(25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
```

```
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return { };
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 rep(i,0,sz(b)) in[i].imag(b[i]);
 fft(in):
 for (C& x : in) x *= x;
 rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]);
 rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res:
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in

```
Time: \mathcal{O}(N \log N), where N = |A| + |B| (twice as slow as NTT or FFT)
```

```
"FastFourierTransform.h"
                                                                   b82773, 22 lines
typedef vector<ll> vl;
template<int M> vl convMod(const vl &a, const vl &b) {
if (a.empty() || b.empty()) return { };
 vl res(sz(a) + sz(b) - 1);
 int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
 vector<C> L(n), R(n), outs(n), outl(n);
 rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
 rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
 fft(L), fft(R);
 rep(i,0,n) {
  int j = -i & (n - 1);
  outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft(outl), fft(outs);
 rep(i,0,sz(res)) {
  ll av = ll(real(outl[i])+.5), cv = ll(imag(outs[i])+.5);
   ll bv = ll(imag(outl[i])+.5) + ll(real(outs[i])+.5):
   res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
 return res:
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \text{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^ab + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFT-Mod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
```

```
"../number-theory/ModPow.h"
const ll mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> vl;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static vl rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n):
   ll z[] = {1, modpow(root, mod >> s)};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
```

```
for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(i,0,k) {
     ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z):
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return { };
 int s = sz(a) + sz(b) - 1, B = 32 - \_builtin\_clz(s),
     n = 1 << B:
 int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
 ntt(L), ntt(R);
 rep(i,0,n)
   out[-i & (n - 1)] = (ll)L[i] * R[i] % mod * inv % mod;
  ntt(out);
 return { out.begin(), out.begin() + s };
```

FastSubsetTransform.h

```
Description: Transform to a basis with fast convolutions of the form c[z] = \sum_{z=v \in \mathbb{N}} a[x]
b[y], where \oplus is one of AND, OR, XOR. The size of a must be a power of two.
```

Time: $\mathcal{O}(N \log N)$

```
void FST(vi& a, bool inv) {
 for (int n = sz(a), step = 1; step < n; step *= 2) {
   for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
     int &u = a[j], &v = a[j + step]; tie(u, v) =
      inv ? pii(v - u, u) : pii(v, u + v); //AND
      inv ? pii(v, u - v) : pii(u + v, u); //OR
      pii(u + v, u - v);
 if (inv) for (int& x : a) x /= sz(a); //XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
 rep(i,0,sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

[CP-Algo] primitiveRoots.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p, q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k \text{ alternates between} > x \text{ and}$ $\langle x. \rangle$ If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
"ModPow.h"
                                                                       6b43b0, 25 lines
int generator(int p) {
   vector<int> fact;
   int phi = p-1, n = phi;
   for (int i=2; i*i<=n; ++i)
       if (n % i == 0) {
           fact.push_back(i);
           while (n % i == 0)
               n /= i:
   if (n > 1) fact.push_back(n);
    for (int res = 2; res <= p; ++res) {</pre>
```

```
bool ok = true;
       for (int i = 0: i < fact.size() && ok: ++i)</pre>
          ok &= modpow(res, phi / fact[i], p) != 1;
       if (ok) return res;
   return -1;
// j = 1;
// for (i = 0; i < P; ++i)
    dlog[j] = i;
// j = j * G \% P;
```

ModularArithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
const ll mod = 17; // change to something else
struct Mod {
 ll x;
 Mod(ll xx) : x(xx) { }
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
 Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
 Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
 Mod operator/(Mod b) { return *this * invert(b); }
 Mod invert(Mod a) {
   ll x, y, g = euclid(a.x, mod, x, y);
   assert(g == 1); return Mod((x + mod) % mod);
 Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^(e / 2); r = r * r;
   return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is

```
const ll mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

ll modpow(ll b, ll e, ll mod) { ll ans = 1: for (; e; b = b * b % mod, e /= 2) if (e & 1) ans = ans * b % mod: return ans;

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: $\mathcal{O}(\sqrt{m})$

```
ll modLog(ll a, ll b, ll m) {
 ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
 unordered_map<ll, ll> A;
 while (j \le n \&\& (e = f = e * a % m) != b % m)
   A[e * b % m] = j++;
 if (e == b % m) return j;
 if (\_gcd(m, e) == \_gcd(m, b))
   rep(i,2,n+2) if (A.count(e = e * f % m))
     return n * i - A[e];
```

```
return -1;
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division. **Time:** $\log(m)$, with a large constant.

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m: c %= m:
 if (!k) return res;
 ull to2 = (to * k + c) / m;
 return res + (to - 1) \star to 2 - divsum(to 2, m-1 - c, m, k);
ll modsum(ull to, ll c, ll k, ll m) {
 c = ((c \% m) + m) \% m;
 k = ((k \% m) + m) \% m:
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$.

Time: $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
bbbd8f, 11 lines
typedef unsigned long long ull;
ull modmul(ull a. ull b. ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (ll)M);
ull modpow(ull b. ull e. ull mod) {
 ull ans = 1;
 for (; e; b = modmul(b, b, mod), e /= 2)
  if (e & 1) ans = modmul(ans, b, mod);
 return ans;
```

ade764, 6 lines

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a$ \pmod{p} (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p"ModPow.h"

```
ll sqrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert(modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p \% 4 == 3) return modpow(a, (p+1)/4, p);
 // a^{(n+3)/8} or 2^{(n+3)/8} * 2^{(n-1)/4} works if p \% 8 == 5
 ll s = p - 1, n = 2:
 int r = 0, m;
 while (s % 2 == 0)
  ++r, s /= 2;
 while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
 ll x = modpow(a, (s + 1) / 2, p);
 ll b = modpow(a, s, p), g = modpow(n, s, p);
 for (;; r = m) {
  ll t = b:
   for (m = 0; m < r \&\& t != 1; ++m)
    t = t * t % p;
   if (m == 0) return x;
  ll gs = modpow(g, 1LL \ll (r - m - 1), p);
   g = gs * gs % p;
  x = x * gs % p;
   b = b * g % p;
```

5.2 Primality

[FH] SPFSieve.h

Description: smallest prime factor sieve for N<=1e7

e9210e, 13 lines

```
int spf[N+1];
void precompute() {
 for(int i = 2; i \le N; i+=2) spf[i] = 2;
 for(int i = 3; i*i <=N; i+=2) {
   if(spf[i]==0) {
     spf[i] = i:
     for(int j = i*i; j<=N; j+=i)</pre>
       if(spf[j]==0) spf[j]=i;
 for(int i = 2; i \le N; i++)
   if(!spf[i]) spf[i]=i;
```

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

Time: LIM=1e9 ≈ 1.5 s

```
6b2912, 20 lines
const int LIM = 1e6:
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
 vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {
   cp.push_back({i, i * i / 2});
   for (int j = i * i; j \le S; j += 2 * i) sieve[j] = 1;
  for (int L = 1; L \le R; L += S) {
   array<bool, S> block { };
   for (auto &[p, idx] : cp)
     for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
   rep(i,0,min(S, R - L))
     if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
 return pr;
```

MillerRabin.h

19a793, 24 lines

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                                    60dcd1 12 lines
bool isPrime(ull n) {
 if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
 ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
     s = __builtin_ctzll(n-1), d = n >> s;
 for (ull a : A) { // ^ count trailing zeroes
   ull p = modpow(a%n, d, n), i = s;
   while (p != 1 && p != n - 1 && a % n && i--)
     p = modmul(p, p, n);
   if (p != n-1 && i != s) return 0;
 return 1;
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

euclid Euclid CRT phiFunction ContinuedFractions FracBinarySearch

```
Time: \mathcal{O}(n^{1/4}), less for numbers with small factors.
```

```
"ModMulLL.h", "MillerRabin.h"
                                                                    d8d98d, 18 lines
ull pollard(ull n) {
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 auto f = [\&](ull x) \{ return modmul(x, x, n) + i; \};
 while (t++ \% 40 | | \_gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return { };
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto l = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
 return l;
```

5.3 Divisibility

euclid.h

```
ll euclid(ll a, ll b, ll &x, ll &y) {
   if (!b) return x = 1, y = 0, a;
   ll d = euclid(b, a % b, y, x);
   return y -= a/b * x, d;
}
```

Euclid.java

Description: Finds $\{x, y, d\}$ s.t. ax + by = d = gcd(a, b).

6aba01, 11 lines

```
static BigInteger[] euclid(BigInteger a, BigInteger b) {
   BigInteger x = BigInteger.ONE, yy = x;
   BigInteger y = BigInteger.ZERO, xx = y;
   while (b.signum() != 0) {
      BigInteger q = a.divide(b), t = b;
      b = a.mod(b); a = t;
      t = xx; xx = x.subtract(q.multiply(xx)); x = t;
      t = yy; yy = y.subtract(q.multiply(yy)); y = t;
   }
   return new BigInteger[]{x, y, a};
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m, n)$. Assumes $mn < 2^{62}$.

Time: $\log(n)$

```
"euclid.h"

O4d93a,7 lines

ll crt(ll a, ll m, ll b, ll n) {
   if (n > m) swap(a, b), swap(m, n);
   ll x, y, g = euclid(m, n, x, y);
   assert((a - b) % g == 0); // else no solution
   x = (b - a) % n * x % n / g * m + a;
   return x < 0 ? x + m*n/g : x;
}
</pre>
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

```
Description: Euler's \phi function is defined as \phi(n) := \# of positive integers \leq n that are coprime with n. \phi(1) = 1, p prime \Rightarrow \phi(p^k) = (p-1)p^{k-1}, m, n coprime \Rightarrow \phi(mn) = \phi(m)\phi(n). If n = p_1^{k_1}p_2^{k_2}...p_r^{k_r} then \phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}. \phi(n) = n \cdot \prod_{p|n} (1-1/p). \sum_{d|n} \phi(d) = n, \sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1
```

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime} \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

const int LIM = 5000000; int phi[LIM]; void calculatePhi() { rep(i,0,LIM) phi[i] = i&1 ? i : i/2; for (int i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>

for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;</pre>

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k \text{ alternates between} > x \text{ and } < x.)$ If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$ dd6c5e, 21 lines

```
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<ll, ll> approximate(d x, ll N) {
 ll LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
 for (;;) {
   ll lim = min(P ? (N-LP) / P : inf, 0 ? (N-L0) / 0 : inf),
      a = (ll)floor(y), b = min(a, lim),
      NP = b*P + LP, NO = b*O + LO;
   if (a > b) {
     // If b > a/2, we have a semi-convergent that gives us a
     // better approximation; if b = a/2, we *may* have one.
     // Return {P,Q} here for a more canonical approximation.
     return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
       make_pair(NP, NQ) : make_pair(P, Q);
   if (abs(y = 1/(y - (d)a)) > 3*N) {
     return {NP, NQ};
   LP = P; P = NP;
   LQ = Q; Q = NQ;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p,q \le N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3} **Time:** $\mathcal{O}(\log(N))$

```
struct Frac { ll p, q; };

template<class F>
Frac fracBS(F f, ll N) {
  bool dir = 1, A = 1, B = 1;
```

```
Frac lo { 0, 1 }, hi { 1, 1 }; // Set hi to 1/0 to search (0, N]
if (f(lo)) return lo;
assert(f(hi));
while (A || B) {
    ll adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
        adv += step;
        Frac mid { lo.p * adv + hi.p, lo.q * adv + hi.q };
        if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
            adv -= step; si = 2;
        }
    }
    hi.p += lo.p * adv;
    hi.q += lo.q * adv;
    dir = !dir;
    swap(lo, hi);
    A = B; B = !!adv;
    }
    return dir ? hi : lo;
}
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

cf7d6d, 8 lines

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{>a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n = 1] \text{ (very useful)}$$

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\left\lfloor \frac{n}{n} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m)g(\left\lfloor \frac{n}{n} \right\rfloor)$$

IntPerm multinomial

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n	123	4	5 6	7	8		9	10
n!	126	24 12	20 720	5040	4032	20 362	2880 36	28800
n	11	12	13	1	4	15	16	17
n!	4.0e7	4.8e	8 6.2e	9 8.7	e10 1	.3e12	2.1e13	3.6e14
n	20	25	30	40	50	100	150	171
n!	2e18	2e25	3e32	8e47	3e64	9e157	7 6e262	2 >DBL_MAX

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. **Time:** $\mathcal{O}(n)$

int permToInt(vi& v) {
 int use = 0, i = 0, r = 0;
 for(int x:v) r = r * ++i + __builtin_popcount(use & -(1<<x)),
 use |= 1 << x;
 return r;
}</pre>

6.1.2 Cycles

Let $g_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_{S}(n) \frac{x^{n}}{n!} = \exp\left(\sum_{n \in S} \frac{x^{n}}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g(g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing *n* as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1 + \dots + k_n}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1! k_2! \dots k_n!}$$
.

ll multinomial(vi& v) {
 ll c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i]) c = c * ++m / (j+1);
 return c;
}

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, ...] = [1, -\frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{22}, 0, \frac{1}{2}, ...]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{-\infty}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1) \dots (x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, ...

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{i=0}^{k} (-1)^{i} {n+1 \choose i} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

6.3.5 Bell numbers

Total number of partitions of *n* distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For*p*prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1n_2\cdots n_kn^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots (d_n-1)!)$

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1$$
, $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$, $C_{n+1} = \sum C_i C_{n-i}$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with *n* pairs of parenthesis, correctly nested.
- binary trees with with n + 1 leaves (0 or 2 children).
- ordered trees with n + 1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes V^2 max $|w_i| < \sim 2^{63}$.

```
Time: \mathcal{O}(VE)
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; } };</pre>
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; ///3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   ll d = cur.dist + ed.w:
   if (d < dest.dist) {</pre>
     dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FloydWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf i i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle. **Time:** $O(N^3)$

```
const ll inf = 1LL << 62;
void floydWarshall(vector<vector<ll>& m) {
    int n = sz(m);
    rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
    rep(k,0,n) rep(i,0,n) rep(j,0,n)
    if (m[i][k] != inf && m[k][j] != inf) {
        auto newDist = max(m[i][k] + m[k][j], -inf);
        m[i][j] = min(m[i][j], newDist);
    }
    rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
        if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
}</pre>
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned. **Time:** $\mathcal{O}(|V| + |E|)$

```
vi topoSort(const vector<vi>& gr) {
    vi indeg(sz(gr)), q;
    for (auto& li : gr) for (int x : li) indeg[x]++;
    rep(i,0,sz(gr)) if (indeg[i] == 0) q.push_back(i);
    rep(j,0,sz(q)) for (int x : gr[q[j]])
    if (--indeg[x] == 0) q.push_back(x);
```

7.2 Network flow

PushRelabel.h

return q;

Description: Push-relabel using the highest label selection rule and the gap heuristic. Ouite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
struct PushRelabel {
 struct Edge {
   int dest, back;
   ll f, c;
 vector<vector<Edge>> g;
 vector<ll> ec;
 vector<Edge*> cur:
 vector<vi> hs: vi H:
 PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
 void addEdge(int s, int t, ll cap, ll rcap=0) {
   if (s == t) return;
   g[s].push_back({t, sz(g[t]), 0, cap});
   g[t].push_back({s, sz(g[s])-1, 0, rcap});
 void addFlow(Edge& e, ll f) {
   Edge &back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f: back.c += f: ec[back.dest] -= f:
 ll calc(int s, int t) {
   int v = sz(g); H[s] = v; ec[t] = 1;
   vi co(2*v); co[0] = v-1;
   rep(i,0,v) cur[i] = g[i].data();
   for (Edge& e : g[s]) addFlow(e, e.c);
   for (int hi = 0;;) {
     while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
     while (ec[u] > 0) // discharge u
      if (cur[u] == g[u].data() + sz(g[u])) {
        HΓu1 = 1e9:
         for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
          H[u] = H[e.dest]+1, cur[u] = &e;
        if (++co[H[u]], !--co[hi] && hi < v)</pre>
          rep(i,0,v) if (hi < H[i] && H[i] < v)
            --co[H[i]], H[i] = v + 1;
       } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        addFlow(*cur[u], min(ec[u], cur[u]->c));
       else ++cur[u];
 bool leftOfMinCut(int a) { return H[a] >= sz(g); }
```

MinCostMaxFlow.h

Description: Min-cost max-flow. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}(FE \log(V))$ where F is max flow. $\mathcal{O}(VE)$ for setpi.

```
#include <bits/extc++.h>

const ll INF = numeric_limits<ll>::max() / 4;

struct MCMF {
    struct edge {
        int from, to, rev;
        ll cap, cost, flow;
    };
    int N;
    vector<vector<edge>> ed;
    vi seen;
    vector<ll> dist, pi;
```

```
vector<edge*> par;
 MCMF(int N) : N(N), ed(N), seen(N), dist(N), pi(N), par(N) { }
 void addEdge(int from, int to, ll cap, ll cost) {
  if (from == to) return;
   ed[from].push_back(edge { from, to, sz(ed[to]), cap, cost, 0 });
   ed[to].push_back(edge { to,from,sz(ed[from])-1,0,-cost,0 });
 void path(int s) {
   fill(all(seen), 0);
   fill(all(dist), INF);
   dist[s] = 0; ll di;
   __gnu_pbds::priority_queue<pair<ll, int>> q;
   vector<decltype(q)::point_iterator> its(N);
   q.push({ 0, s });
   while (!q.empty()) {
    s = q.top().second; q.pop();
    seen[s] = 1; di = dist[s] + pi[s];
     for (edge& e : ed[s]) if (!seen[e.to]) {
      ll val = di - pi[e.to] + e.cost;
      if (e.cap - e.flow > 0 && val < dist[e.to]) {</pre>
        dist[e.to] = val;
        par[e.to] = &e;
        if (its[e.to] == q.end())
          its[e.to] = q.push({ -dist[e.to], e.to });
          q.modify(its[e.to], {-dist[e.to], e.to });
   rep(i,0,N) pi[i] = min(pi[i] + dist[i], INF);
 pair<ll, ll> maxflow(int s, int t) {
  ll totflow = 0, totcost = 0;
   while (path(s), seen[t]) {
    ll fl = INF;
     for (edge* x = par[t]; x; x = par[x->from])
      fl = min(fl, x->cap - x->flow);
    totflow += fl:
     for (edge* x = par[t]; x; x = par[x->from]) {
      x \rightarrow flow += fl:
      ed[x->to][x->rev].flow -= fl;
   rep(i,0,N) for(edge& e : ed[i]) totcost += e.cost * e.flow;
   return { totflow, totcost/2 };
 // If some costs can be negative, call this before maxflow:
 void setpi(int s) { // (otherwise, leave this out)
   fill(all(pi), INF); pi[s] = 0;
   int it = N, ch = 1; ll v;
   while (ch-- && it--)
    rep(i,0,N) if (pi[i] != INF)
      for (edge& e : ed[i]) if (e.cap)
        if ((v = pi[i] + e.cost) < pi[e.to])</pre>
          pi[e.to] = v, ch = 1;
   assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
   graph, int source, int sink) {
 assert(source != sink);
 T flow = 0:
 vi par(sz(graph)), q = par;
 for (;;) {
   fill(all(par), -1);
   par[source] = 0;
   int ptr = 1;
   q[0] = source;
   rep(i,0,ptr) {
     int x = q[i];
     for (auto e : graph[x]) {
       if (par[e.first] == -1 && e.second > 0) {
        par[e.first] = x;
        q[ptr++] = e.first;
        if (e.first == sink) goto out;
   return flow;
   T inc = numeric limits<T>::max():
   for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
   flow += inc;
   for (int y = sink; y != source; y = par[y]) {
     int p = par[y];
     if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
     graph[y][p] += inc;
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adiacency matrix.

Time: $\mathcal{O}(V^3)$ 8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
 pair<int, vi> best = { INT_MAX, { } };
 int n = sz(mat);
 vector<vi> co(n);
 rep(i,0,n) co[i] = {i};
 rep(ph,1,n) {
   vi w = mat[0];
   size_t s = 0, t = 0;
   rep(it, 0, n-ph)  { // O(V^2) -> O(E log V) with prio. queue
     w[t] = INT_MIN;
     s = t, t = max_element(all(w)) - w.begin();
     rep(i,0,n) w[i] += mat[t][i];
   best = min(best, {w[t] - mat[t][t], co[t]});
   co[s].insert(co[s].end(), all(co[t]));
   rep(i,0,n) mat[s][i] += mat[t][i];
   rep(i,0,n) mat[i][s] = mat[s][i];
   mat[0][t] = INT_MIN;
```

```
return best:
```

GomoryHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path.

Time: $\mathcal{O}(V)$ Flow Computations

```
"PushRelabel.h"
                                                                    0418b3, 13 lines
typedef array<ll, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
 vector<Edge> tree;
 vi par(N);
 rep(i,1,N) {
  PushRelabel D(N): // Dinic also works
   for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
   tree.push_back({i, par[i], D.calc(i, par[i])});
   rep(j,i+1,N)
    if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
 return tree;
```

7.3 Matching

if (islast) break;

if (next.empty()) return res;

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);
```

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
                                                                     f612e4, 42 lines
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1;
 for (int b : g[a]) if (B[b] == L + 1) {
   if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
     return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
 int res = 0;
 vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
   fill(all(A), 0);
   fill(all(B), 0);
   cur.clear();
   for (int a : btoa) if(a != -1) A[a] = -1;
   rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
   for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
     for (int a : cur) for (int b : g[a]) {
       if (btoa[b] == -1) {
         B[b] = lay;
         islast = 1;
       else if (btoa[b] != a && !B[b]) {
         B[b] = lay;
         next.push_back(btoa[b]);
```

```
for (int a : next) A[a] = lay;
 cur.swap(next);
rep(a,0,sz(g))
 res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); dfsMatching(g, btoa);
```

```
Time: \mathcal{O}(VE)
                                                                     522b98, 22 lines
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : g[di])
   if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
     return 1;
 return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
  rep(i,0,sz(g)) {
   vis.assign(sz(btoa), 0);
   for (int j : g[i])
     if (find(j, g, btoa, vis)) {
       btoa[j] = i;
       break;
 return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
vi cover(vector<vi>& g, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(g, match);
 vector<bool> lfound(n, true), seen(m);
 for (int it : match) if (it != -1) lfound[it] = false;
 vi a. cover:
 rep(i,0,n) if (lfound[i]) q.push_back(i);
 while (!q.empty()) {
  int i = q.back(); q.pop_back();
  lfound[i] = 1;
   for (int e : g[i]) if (!seen[e] && match[e] != -1) {
    seen[e] = true;
     q.push_back(match[e]);
 rep(i,0,n) if (!lfound[i]) cover.push_back(i);
 rep(i,0,m) if (seen[i]) cover.push_back(n+i);
 assert(sz(cover) == res);
 return cover;
```

WeightedMatching.h

GeneralMatching SCC BiconnectedComponents 2sat

```
Description: Given a weighted bipartite graph, matches every node on the left with a node
on the right such that no nodes are in two matchings and the sum of the edge weights is
minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and
returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max
cost. Requires N < M.
```

Time: $O(N^2M)$

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, { } };
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n-1);
  rep(i,1,n) {
   p[0] = i;
   int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
   vector<bool> done(m + 1);
   do {// dijkstra
     done[j0] = true;
     int i0 = p[i0]. i1. delta = INT MAX:
     rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
     rep(j,0,m) {
      if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
     j0 = j1;
    } while (p[j0]);
   while (j0) {//update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return { -v[0], ans }; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod.

```
Time: \mathcal{O}(N^3)
"../numerical/MatrixInverse-mod.h"
                                                                     cb1912, 40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) \% mod;
 int r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert(r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<ll>(M));
   rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
      int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) \% mod;
  } while (matInv(A = mat) != M);
 vi has(M, 1); vector<pii> ret;
 rep(it,0,M/2) {
   rep(i,0,M) if (has[i])
     rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
      fi = i; fj = j; goto done;
```

```
} assert(0); done:
  if (fj < N) ret.emplace_back(fi, fj);</pre>
  has[fi] = has[fj] = 0;
  rep(sw,0,2) {
   ll a = modpow(A[fi][fj], mod-2);
    rep(i,0,M) if (has[i] && A[i][fj]) {
     ll b = A[i][fj] * a % mod;
     rep(j,0,M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
   swap(fi,fj);
return ret;
```

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

Usage: scc(graph, [&](vi& v) { ... }) visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. Time: $\mathcal{O}(E+V)$

```
vi val, comp, z, cont;
int Time, ncomps;
template<class G, class F> int dfs(int j, G& g, F& f) {
 int low = val[j] = ++Time, x; z.push_back(j);
 for (auto e : g[j]) if (comp[e] < 0)
  low = min(low, val[e] ?: dfs(e,g,f));
 if (low == val[i]) {
   do {
     x = z.back(); z.pop_back();
     comp[x] = ncomps:
     cont.push_back(x);
   } while (x != i):
   f(cont): cont.clear():
   ncomps++;
 return val[j] = low;
template<class G, class F> void scc(G& g, F f) {
 int n = sz(g);
 val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0:
 rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}(E+V)
                                                                      c6b7c7, 32 lines
vi num, st;
vector<vector<pii>>> ed;
int Time:
template<class F>
int dfs(int at, int par, F& f) {
 int me = num[at] = ++Time, top = me;
  for (auto [y, e] : ed[at]) if (e != par) {
```

```
if (num[y]) {
     top = min(top, num[y]);
     if (num[y] < me)</pre>
       st.push_back(e);
    }else {
     int si = sz(st);
     int up = dfs(y, e, f);
     top = min(top, up);
     if (up == me) {
       st.push_back(e);
       f(vi(st.begin() + si, st.end()));
       st.resize(si);
     else if (up < me) st.push_back(e);</pre>
     else {/*e is a bridge */ }
 return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
 rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

76b5c9, 24 lines

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a||b)&&(|a||c)&&(d||b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (~x).

```
Usage: TwoSat ts(number of boolean variables);
ts.either(0, ~3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne({0,\sim1,2}); // <= 1 of vars 0, \sim1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
```

Time: O(N+E), where N is the number of boolean variables, and E is the number of clauses 5f9706 56 lines

```
struct TwoSat {
 int N:
  vector<vi> gr;
  vi values; //0 = false, 1 = true
  TwoSat(int n = \emptyset) : N(n), gr(2*n) { }
  int addVar() { // (optional)
   gr.emplace_back();
   gr.emplace_back();
   return N++;
  void either(int f, int j) {
   f = max(2*f, -1-2*f);
   j = max(2*j, -1-2*j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = ~li[0];
   rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
```

cur = ~next;

```
either(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
   int low = val[i] = ++time, x; z.push_back(i);
   for(int e : gr[i]) if (!comp[e])
    low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
    x = z.back(); z.pop_back();
     comp[x] = low;
    if (values[x>>1] == -1)
      values[x>>1] = x&1;
   } while (x != i);
   return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1:
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
Time: O(V + E)

vi eulerWalk(vector<vector<pii>>>& gr, int nedges, int src=0) {
    int n = sz(gr);
    vi D(n), its(n), eu(nedges), ret, s = {src};
    D[src]++; // to allow Euler paths, not just cycles
    while (!s.empty()) {
        int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
        if (it == end) { ret.push_back(x); s.pop_back(); continue; }
        tie(y, e) = gr[x][it++];
        if (!eu[e]) {
            D[x]--, D[y]++;
            eu[e] = 1; s.push_back(y);
        } }
        for (int x : D) if (x < 0 || sz(ret) != nedges+1) return { };
        return { ret.rbegin(), ret.rend() };
}</pre>
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: \mathcal{O}(NM) e210e2, 31 lines
```

```
cc[loc[d]] = c;
for (int cd = d; at != -1; cd ^= c ^d, at = adj[at][cd])
    swap(adj[at][cd], adj[end = at][cd ^c ^d]);
while (adj[fan[i]][d] != -1) {
    int left = fan[i], right = fan[++i], e = cc[i];
    adj[u][e] = left;
    adj[left][e] = u;
    adj[right][e] = -1;
    free[right] = e;
    }
    adj[u][d] = fan[i];
    adj[fan[i]][d] = u;
    for (int y : {fan[0], u, end})
        for (int& z = free[y] = 0; adj[y][z] != -1; z++);
}
rep(i,0,sz(eds))
    for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
return ret;
}
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

Time: $\mathcal{O}(3^{n/3})$, much faster for sparse graphs

b0d5b1, 12 lines

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = ~B(), B X={ }, B R={ }) {
    if (!P.any()) { if (!X.any()) f(R); return; }
    auto q = (P | X)._Find_first();
    auto cands = P & ~eds[q];
    rep(i,0,sz(eds)) if (cands[i]) {
        R[i] = 1;
        cliques(eds, f, P & eds[i], X & eds[i], R);
        R[i] = P[i] = 0; X[i] = 1;
    }
}
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<bitset<200>> vb;
struct Maxclique {
 double limit=0.025, pk=0;
 struct Vertex { int i, d=0; };
 typedef vector<Vertex> vv;
 vb e;
 vv V;
 vector<vi> C;
 vi qmax, q, S, old;
 void init(vv& r) {
   for (auto\& v : r) v.d = 0;
   for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
   sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i,0,sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
   while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.push_back(R.back().i);
```

```
for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
    if (sz(T)) {
      if (S[lev]++ / ++pk < limit) init(T);</pre>
      int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
      C[1].clear(), C[2].clear();
      for (auto v : T) {
        int k = 1:
        auto f = [&](int i) { return e[v.i][i]; };
        while (any_of(all(C[k]), f)) k++;
        if (k > mxk) mxk = k, C[mxk + 1].clear();
        if (k < mnk) T[j++].i = v.i;
        C[k].push_back(v.i);
      if (j > 0) T[j - 1].d = 0;
      rep(k, mnk, mxk + 1) for (int i : C[k])
        T[j].i = i, T[j++].d = k;
      expand(T, lev + 1);
     else if (sz(q) > sz(qmax)) qmax = q;
    q.pop_back(), R.pop_back();
 vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
   rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertexCover.

7.7 Trees

[FH] LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 1 as root).

Time: $\mathcal{O}(N \log N + Q)$

fc6a76, 55 lin

```
struct LCA {
  int n, lg;
  vector<vector<int>> adj, ancs;
  vector<int> depth:
  LCA(int n): n(n) {
   adj.resize(n+1);
   lg = ceil(log2(n));
   ancs.resize(n+1, vector<int>(lg+1));
   depth.resize(n+1, 0);
  void add_edge(int u, int v) {
   adj[u].push_back(v); adj[v].push_back(u);
  void dfs(int v, int p) {
   ancs[v][0] = p;
   for(int i = 1; i \le lg; i++) {
     ancs[v][i] = ancs[ancs[v][i-1]][i-1];
    for(auto c: adj[v]) {
     if(c^p) {
       depth[c] = 1 + depth[v];
       dfs(c, v);
  int lca(int x, int y) {
   if(depth[x] < depth[y]) {</pre>
     swap(x, y);
```

[FH] HLD [FH] CentroidDecomp CompressTree

```
for(int i = lg; i>=0; i--) {
     if(depth[y] + (1<<i) <= depth[x]) {
      x = ancs[x][i];
   if(x==y) return x;
   for(int i = lg; i >= 0; i--) {
     if(ancs[x][i]!=ancs[y][i]) {
      x = ancs[x][i];
      y = ancs[y][i];
   return ancs[x][0];
 int get_dist(int x, int y) {
   return depth[x] + depth[y] - 2*depth[lca(x, y)];
 int kth_ancestor(int x, int k) {
   for(int i = lg; i>=0; i--) {
    if(k & (1<<i)) {
      x = ancs[x][i];
   return x;
};
[FH] HLD.h
```

Description: Heavy Light Decomposition. Bounds are inclusive. Useful for path queries and updates. Can be used for subtree queries and updates too. Call decompose with the necessary functions and identities.

```
Time: \mathcal{O}\left((\log N)^2\right)
"../data-structures/[FH] SegmentTree.h"
                                                                       d6d491, 83 lines
template <class T>
struct HLD {
 vector<int> in, out, ssz, depth, parent, head;
 vector<T> val, euler;
 int n. timer:
 vector<vector<int>> adj;
 segment_tree<T> st;
 HLD(int n): n(n), timer(-1), in(n+1), out(n+1), ssz(n+1), depth(n+1),
       parent(n+1), head(n+1), val(n+1), euler(n+1) {
   adj.resize(n+1);
 void add_edge(int u, int v) {
   adj[u].push_back(v);
   adj[v].push_back(u);
 void assign_val(int v, T x) {
   val[v] = x;
 void dfs_ssz(int v, int p) {
   ssz[v]=1, parent[v]=p;
   int mx = 0:
   for(auto &c: adj[v]) {
     if(c!=p) {
       depth[c]=1+depth[v];
       dfs_ssz(c, v);
       ssz[v]+=ssz[c];
       if(mx < ssz[c]) {</pre>
         mx = ssz[c];
         swap(adj[v][0], c);
 void dfs_hld(int v, int p) {
   in[v]=++timer;
   euler[timer]=val[v];
```

```
head[v] = (p and adj[p][0]==v) ? head[p] : v;
   for(auto c: adj[v]) {
    if(c^p) {
      dfs_hld(c, v);
   out[v]=timer;
 void decompose(function<T(const T&, const T&)> merge, T identity, T
       add identity. T set identity) {
   dfs_ssz(1, 0);
   dfs_hld(1, 0);
   st = segment_tree<T>(euler, merge, identity, add_identity, set_identity)
 int lca(int a, int b) {
   for(; head[a]!=head[b]; b = parent[head[b]]) {
    if(depth[head[a]] > depth[head[b]]) swap(a, b);
   if(depth[a]>depth[b]) swap(a, b);
   return a;
 T query(int a, int b) {
   T ret = st.identity;
   for(; head[a]!=head[b]; b = parent[head[b]]) {
    if(depth[head[a]] > depth[head[b]]) swap(a, b);
     ret = st.merge(ret ,st.query(in[head[b]], in[b]));
   if(depth[a]>depth[b]) swap(a, b);
   ret = st.merge(ret, st.query(in[a], in[b]));
   return ret;
 void update(int a, int b, T val) {
   for(; head[a]!=head[b]; b = parent[head[b]]) {
    if(depth[head[a]] > depth[head[b]]) swap(a, b);
    st.update(in[head[b]], in[b], val);
   if(depth[a]>depth[b]) swap(a, b);
   st.update(in[a], in[b], val);
 void set(int a, int b, T val) {
   for(; head[a]!=head[b]; b = parent[head[b]]) {
    if(depth[head[a]] > depth[head[b]]) swap(a, b);
     st.set(in[head[b]], in[b], val);
   if(depth[a]>depth[b]) swap(a, b);
   st.set(in[a], in[b], val);
};
[FH] CentroidDecomp.h
```

Description: Example of Centroid Decomposition of a tree. This one computes the number of paths with length k. call decompose(1, 0) to start the decomposition.

Time: $\mathcal{O}(N \log N)$

```
f0695d, 51 lines
vector<int> adj[N+1];
int cnt[N], ssz[N+1];
bitset<N+1> bad; int mx; ll ans = 0;
void dfs_ssz(int v, int p) {
 ssz[v]=1;
  for(auto c: adj[v]) {
   if(!bad[c] and c^p) {
     dfs_ssz(c, v);
     ssz[v]+=ssz[c];
int get_centroid(int v, int p, int sz) {
```

```
for(auto c: adj[v]) {
   if(!bad[c] and c^p and ssz[c]*2>sz)
     return get_centroid(c, v, sz);
 return v;
void calc(int v, int p, bool flag, int depth) {
 if(depth>k)
   return;
 mx = max(mx, depth);
 if(flag)
   cnt[depth]++; // incrementing for calculation of next subtrees
   ans+=cnt[k-depth]; // calculation for the current subtree
 for(auto c: adj[v]) {
  if(c^p and !bad[c])
     calc(c, v, flag, depth+1);
void decompose(int v, int p) {
 dfs_ssz(v,p);
 int cen = get_centroid(v, p, ssz[v]);
 bad[cen]=1;
 mx = 0:
 for(auto c: adj[cen]) {
  if(!bad[c]) {
     calc(c, cen, false, 1); // calculating for this subtree
     calc(c, cen, true, 1); // updating cnt[] for upcoming subtrees calc.
 for(int i = 1; i \le mx; i++)
   cnt[i]=0;
 for(auto c: adj[cen]) {
  if(!bad[c]) {
     decompose(c, cen);
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S| - 1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

```
Time: \mathcal{O}(|S| \log |S|)
```

```
"LCA.h"
                                                                    9775a0, 21 lines
typedef vector<pair<int. int>> vpi:
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset. &T = lca.time:
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
  sort(all(li), cmp);
  int m = sz(li)-1;
  rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push_back(lca.lca(a, b));
  sort(all(li). cmp):
 li.erase(unique(all(li)), li.end());
 rep(i,0,sz(li)) rev[li[i]] = i;
 vpi ret = { pii(0, li[0]) };
 rep(i,0,sz(li)-1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

NSU / NSU_CyanCubed LinkCutTree DirectedMST Point 18

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

462, 90 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
 void fix() {
   if (c[0]) c[0]->p = this;
   if (c[1]) c[1]->p = this;
   // (+ update sum of subtree elements etc. if wanted)
 void pushFlip() {
   if (!flip) return;
   flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
   if (c[1]) c[1]->flip ^= 1:
 int up() { return p ? p \rightarrow c[1] == this : -1; }
  void rot(int i, int b) {
   int h = i ^b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x:
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z->c[i ^1];
   if (b < 2) {
     x->c[h] = y->c[h ^1];
    y->c[h ^1] = x;
   z\rightarrow c[i ^1] = this;
   fix(); x->fix(); y->fix();
   if (p) p->fix();
   swap(pp, y->pp);
 void splay() {
   for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
 Node* first() {
   pushFlip();
   return c[0] ? c[0]->first() : (splay(), this);
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) { }
  void link(int u, int v) {// add an edge (u, v)
   assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
 void cut(int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
   assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
     x->c[0] = top->p = 0;
     x->fix();
```

```
bool connected(int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
   return nu == access(&node[v])->first();
 void makeRoot(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
     u - c[0] - p = 0;
     u\rightarrow c\lceil 0\rceil \rightarrow flip ^= 1:
     u \rightarrow c[0] \rightarrow pp = u;
     u - c[0] = 0;
     u->fix();
 Node* access(Node* u) {
   u->splay();
   while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp->c[1]->p = 0; pp->c[1]->pp = pp; }
     pp - c[1] = u; pp - fix(); u = pp;
  return u;
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}(E \log V)$

```
"../data-structures/UnionFindRollback.h"
struct Edge { int a, b; ll w; };
struct Node {
 Edge kev:
 Node *l. *r:
 ll delta;
 void prop()
   key.w += delta;
   if (l) l->delta += delta;
   if (r) r->delta += delta;
   delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->l, (a->r = merge(b, a->r)));
 return a:
void pop(Node*& a) { a->prop(); a = merge(a->l, a->r); }
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
 for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node { e } );
 ll res = 0;
 vi seen(n, -1), path(n), par(n);
 seen[r] = r;
 vector\langle Edge \rangle Q(n), in(n, \{-1,-1\}), comp;
 deque<tuple<int, int, vector<Edge>>> cycs;
 rep(s,0,n) {
   int u = s, qi = 0, w;
   while (seen[u] < 0) {</pre>
     if (!heap[u]) return {-1, { } };
     Edge e = heap[u]->top();
     heap[u]->delta -= e.w, pop(heap[u]);
```

```
O[qi] = e, path[qi++] = u, seen[u] = s;
   res += e.w, u = uf.find(e.a);
   if (seen[u] == s) {
     Node* cyc = 0;
     int end = qi, time = uf.time();
     do cyc = merge(cyc, heap[w = path[--qi]]);
     while (uf.join(u, w));
     u = uf.find(u), heap[u] = cyc, seen[u] = -1;
     cycs.push_front({u, time, {&Q[qi], &Q[end]}});
  rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
for (auto& [u,t,comp] : cycs) { // restore sol (optional)
 uf.rollback(t);
 Edge inEdge = in[u];
 for (auto& e : comp) in[uf.find(e.b)] = e;
 in[uf.find(inEdge.b)] = inEdge;
rep(i,0,n) par[i] = in[i].a;
return { res, par };
```

7.8 Math

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]-, mat[b][b]++ (and mat[b][a]-, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.8.2 Erdős-Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
    typedef Point P;
    T x, y;
    explicit Point(T x=0, T y=0) : x(x), y(y) {
    bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
    bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
    P operator+(P p) const { return P(x+p.x, y+p.y); }
    P operator+(P p) const { return P(x-p.x, y-p.y); }
    P operator+(T d) const { return P(x*d, y*d); }
    P operator/(T d) const { return P(x*d, y*d); }
    T cross(P p) const { return x*p.y - y*p.x; }
    T cross(P a, P b) const { return (a-*this).cross(b-*this); }
</pre>
```

```
T dist2() const {return x*x + y*y; }
double dist() const {return sqrt((double)dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const {return atan2(y, x); }
P unit() const {return *this/dist(); }// makes dist()=1
P perp() const {return P(-y, x); }// rotates +90 degrees
P normal() const {return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {
    return os << "(" << p.x << "," << p.y << ")"; }
};
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

f6bf6b, 4 lines

res

5c88f4, 6 lines

```
"Point.h"
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
  return (double)(b-a).cross(p-a)/(b-a).dist();
}
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

```
Usage: Point<double> a, b(2,2), p(1,1); bool onSegment = segDist(a,b,p) < 1e-10;
```

```
"Point.h"

typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
   if (s==e) return (p-s).dist();
   auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
   return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from \$1\$ to \$e1\$ and from \$2\$ to \$e2\$ exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<||> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

| Usage: vector<P> inter = segInter(\$1,e1,\$2,\$e2);


```
if (sz(inter)==1)

cout << "segments intersect at " << inter[0] << endl;

"Point.h", "OnSegment.h"

yds7f2,13 lines
```

```
template<class P> vector<P> segInter(P a, P b, P c, P d) {
   auto oa = c.cross(d, a), ob = c.cross(d, b),
      oc = a.cross(b, c), od = a.cross(b, d);

   // Checks if intersection is single non-endpoint point.

if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
   return { (a * ob - b * oa) / (ob - oa) };

set<P> s;

if (onSegment(c, d, a)) s.insert(a);

if (onSegment(a, b, c)) s.insert(b);

if (onSegment(a, b, d)) s.insert(d);
```

```
return { all(s) };
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists $\{1, point\}$ is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1, (0,0)\}$ is returned. The wrong position will be returned if P is Point<||> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or II.

```
sition will be returned if P is Point<||> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or II.

Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;
"Point.h"

a01f81,8 lines

template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
 auto d = (e1 - s1).cross(e2 - s2);
 if (d == 0) // if parallel
  return {-(s1.cross(e1, s2) == 0), P(0, 0)};
 auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
 return {1, (s1 * p + e1 * q) / d};
}
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow$ left/on line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>.

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively oriented
triangles with vertices at 0 and i
struct Angle {
 int x, y;
  int t:
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return { x-b.x, y-b.y, t }; }
  int half() const {
   assert(x || y);
   return y < 0 \mid | (y == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return { -x, -y, t + half() } ; }
  Angle t360() const { return { x, y, t + 1 } ; }
bool operator<(Angle a, Angle b) {</pre>
 // add a. dist2() and b. dist2() to also compare distances
 return make_tuple(a.t, a.half(), a.y * (ll)b.x) <</pre>
        make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
 if (b < a) swap(a, b);
  return (b < a.t180() ?
         make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) \{ // point \, a + vector \, b \}
  Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) \{ // angle b - angle a \}
 int tu = b.t - a.t: a.t = b.t:
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

CircleTangents.h

res

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
<u>"Point.h"</u> b0153d, 13 lines
```

```
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
```

```
P d = c2 - c1;
double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
if (d2 == 0 || h2 < 0) return { };</pre>
vector<pair<P, P>> out;
for (double sign : {-1, 1}) {
 P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
 out.push_back(\{c1 + v * r1, c2 + v * r2\});
if (h2 == 0) out.pop_back();
return out:
```

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon. Time: $\mathcal{O}(n)$

```
"../../content/geometry/Point.h"
typedef Point<double> P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&](P p, P q) {
   auto r2 = r * r / 2;
   P d = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 | | 1 \le s) return arg(p, q) * r2;
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
 };
 auto sum = 0.0;
 rep(i,0,sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

1caa3a, 9 lines

```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
 return (B-A).dist()*(C-B).dist()*(A-C).dist()/
     abs((B-A).cross(C-A))/2;
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
 return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points.

Time: expected $\mathcal{O}(n)$

```
09dd0a, 17 lines
"circumcircle.h"
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P o = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i,0,sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
   o = ps[i], r = 0;
   rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
     o = (ps[i] + ps[j]) / 2;
     r = (o - ps[i]).dist();
     rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
```

```
o = ccCenter(ps[i], ps[j], ps[k]);
     r = (o - ps[i]).dist();
}
return { o, r };
```

Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}}:

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for

```
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}(n)
                                                                        2bf504, 11 lines
"Point.h", "OnSegment.h", "SegmentDistance.h"
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
 int cnt = 0, n = sz(p);
 rep(i,0,n) {
   P q = p[(i + 1) \% n];
   if (onSegment(p[i], q, a)) return !strict;
   //or: if (segDist(p[i], q, a) \le eps) return! strict;
   cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
```

PolygonArea.h

return cnt:

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h"
template<class T>
T polygonArea2(vector<Point<T>>& v) {
T = v.back().cross(v[0]);
 rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$

```
9706dc, 9 lines
"Point.h"
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
 for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
  res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
 return res / A / 3;
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
                                                                      f2b7d4, 13 lines
typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
 vector<P> res;
  rep(i,0,sz(poly)) {
  P cur = poly[i], prev = i ? poly[i-1] : poly.back();
```

```
bool side = s.cross(e, cur) < 0;</pre>
  if (side != (s.cross(e, prev) < 0))</pre>
   res.push_back(lineInter(s, e, cur, prev).second);
  if (side)
    res.push_back(cur);
return res;
```

ConvexHull h

Description:

"Point.h"

Returns a vector of the points of the convex hull in counter-clockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

310954 13 line

```
Time: \hat{\mathcal{O}}(n \log n)
```

```
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
 sort(all(pts));
 vector<P> h(sz(pts)+1);
 int s = 0, t = 0;
 for (int it = 2; it--; s = --t, reverse(all(pts)))
   for (P p : pts) {
     while (t \ge s + 2 \& h[t-2].cross(h[t-1], p) \le 0) t--;
     h\lceil t++\rceil = p:
 return { h.begin(), h.begin() + t - (t == 2 && h[0] == h[1]) };
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

```
Time: \mathcal{O}(n)
```

```
"Point.h"
                                                                    c571b8, 12 lines
typedef Point<ll> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
 pair<ll, array<P, 2>> res({0, {S[0], S[0]}});
 rep(i,0,j)
   for (;; j = (j + 1) \% n) {
     res = \max(res, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
     if ((S[(j + 1) \% n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
       break;
 return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
                                                                      71446b, 14 lines
typedef Point<ll> P;
bool inHull(const vector<P>& l, P p, bool strict = true) {
 int a = 1, b = sz(l) - 1, r = !strict;
 if (sz(l) < 3) return r && onSegment(l[0], l.back(), p);</pre>
 if (sideOf(l[0], l[a], l[b]) > 0) swap(a, b);
 if (sideOf(l[0], l[a], p) >= r || sideOf(l[0], l[b], p) <= -r)
   return false:
  while (abs(a - b) > 1) {
   int c = (a + b) / 2;
   (sideOf(l[0], l[c], p) > 0 ? b : a) = c;
 return sgn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection ClosestPair kdTree FastDelaunay

```
LineHullIntersection.h
```

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i, i+1), • (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

```
Time: \mathcal{O}(\log n)
```

```
"Point.h"
                                                                   7cf45b, 39 lines
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
 while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
   (ls < ms \mid | (ls == ms \&\& ls == cmp(lo, m)) ? hi : lo) = m;
 return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
 int endB = extrVertex(poly, (b - a).perp());
 if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
 array<int, 2> res;
 rep(i,0,2) {
   int lo = endB, hi = endA, n = sz(poly);
   while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
     (cmpL(m) == cmpL(endB) ? lo : hi) = m;
   res[i] = (lo + !cmpL(hi)) % n;
   swap(endA, endB);
 if (res[0] == res[1]) return { res[0], -1 };
 if (!cmpL(res[0]) && !cmpL(res[1]))
   switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return { res[0], res[0] };
     case 2: return { res[1], res[1] };
 return res:
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
                                                                     ac41a6, 17 lines
typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {
  assert(sz(v) > 1);
  set<P> S:
  sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
  pair<ll, pair<P, P>> ret { LLONG_MAX, { P(), P() } };
  int j = 0;
  for (P p : v) {
   P d { 1 + (ll)sqrt(ret.first), 0 };
   while (v[j].y \le p.y - d.x) S.erase(v[j++]);
   auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
   for (; lo != hi; ++lo)
     ret = min(ret, { (*lo - p).dist2(), { *lo, p } } );
```

```
S.insert(p);
return ret.second;
```

```
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
                                                                      bac5b0, 63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
 T \times 0 = INF, \times 1 = -INF, \times 0 = INF, \times 1 = -INF; // bounds
 Node *first = 0. *second = 0:
 T distance(const P& p) { // min squared distance to a point
  T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
   T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
   return (P(x,y) - p).dist2();
  Node(vectorP>&& vp) : pt(vp[0]) {
   for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
     y0 = min(y0, p.y); y1 = max(y1, p.y);
   if (vp.size() > 1) {
     // split on x if width >= height (not ideal ...)
     sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
     // divide by taking half the array for each child (not
     // best performance with many duplicates in the middle)
     int half = sz(vp)/2;
     first = new Node({vp.begin(), vp.begin() + half});
     second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root:
 KDTree(const vector<P>& vp) : root(new Node({all(vp)})) { }
 pair<T, P> search(Node *node, const P& p) {
   if (!node->first) {
     // uncomment if we should not find the point itself:
     // if (p == node \rightarrow pt) return \{INF, P()\};
     return make_pair((p - node->pt).dist2(), node->pt);
   Node *f = node->first, *s = node->second;
   T bfirst = f->distance(p), bsec = s->distance(p);
   if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
   // search closest side first, other side if needed
   auto best = search(f, p);
   if (bsec < best.first)</pre>
     best = min(best, search(s, p));
   return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
 pair<T, P> nearest(const P& p) {
   return search(root, p);
```

```
FastDelaunav.h
```

};

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
typedef Point<ll> P;
typedef struct Quad* 0;
typedef __int128_t lll; //(can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
 Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  Q& r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  0 next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) {//is p in the circumcircle?
 lll p2 = p.dist2(), A = a.dist2()-p2,
     B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;
0 makeEdge(P orig, P dest) {
  Or = H? H: new Ouad { new Ouad { new Ouad { new Ouad { 0} } } };
  H = r - > 0; r - > r() - > r() = r;
  rep(i,0,4) r = r->rot, r->p = arb, r->o = i & 1 ? r : r->r();
 r\rightarrow p = orig: r\rightarrow F() = dest:
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
0 connect(0 a, 0 b) {
  Q q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) \le 3) {
   Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
   if (sz(s) == 2) return \{a, a\rightarrow r()\};
    splice(a->r(), b);
   auto side = s[0].cross(s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
   return { side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 Q A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B\rightarrow p.cross(H(A)) < 0 \&\& (A = A\rightarrow next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  0 base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) { \
```

```
0 t = e->dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e->o = H; H = e; e = t; \
 for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
     base = connect(base->r(), LC->r());
 return {ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return { };</pre>
 Q e = rec(pts).first;
 vector < Q > q = \{e\};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 q.push\_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
 return pts;
```

8.5 3D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long 80586e, 32 lines

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) { }
 bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 // returns unit vector normal to *this and p
```

```
P normal(P p) const { return cross(p).unit(); }
//returns point rotated 'angle' radians ccw around axis
P rotate(double angle, P axis) const {
  double s = sin(angle), c = cos(angle); P u = axis.unit();
  return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
}
};
```

3dHull.h

"Point3D.h"

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards. **Time:** $\mathcal{O}(n^2)$

```
typedef Point3D<double> P3;
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
};
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4):
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,v) E[f,x][f,v]
 vector<F> FS;
 auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[l]) > q.dot(A[i]))
     a = a * -1:
   F f { q, i, j, k };
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
 rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[i];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
      E(a,b).rem(f.c);
      E(a,c).rem(f.b);
      E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
      FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
    F f = FS[i];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
  A[it.c] - A[it.a]).dot(it.q) \le 0) swap(it.c, it.b);
 return FS;
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) fl (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0= north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

[FH] Hashing.h

Description: Self-explanatory methods for string hashing

2744f8 26 line

d0dcf4, 70 lines

```
class HashedString {
private:
 // use randomized base for safeguarding anti hash tests
  static const ll M = 1e9 + 9;
  static const ll B = 9973:
  static vector<ll> pow; // pow[i] contains B^i % M
 // p_hash[i] is the hash of the first i characters of the given string
  vector<ll> p_hash;
public:
  HashedString(const string &s) : p_hash(s.size() + 1) {
   while (pow.size() < s.size()) { pow.push_back((pow.back() * B) % M); }</pre>
   p_hash[0] = 0;
   for (int i = 0; i < (int)s.size(); i++) {
     p_hash[i + 1] = ((p_hash[i] * B) % M + s[i]) % M;
 ll getHash(int start, int end) {
   ll raw val =
     (p_hash[end + 1] - (p_hash[start] * pow[end - start + 1]));
   return (raw_val % M + M) % M;
};
vector<ll> HashedString::pow = { 1 };
// for randomised base (anti hack)
// mt19937 rng(chrono::steady_clock :: now().time_since_epoch().count());
// const ll HashedString::B = uniform_int_distribution < ll > (0, M - 1)(rng);
```

[SAM] Trie.cc

cur = cur->next[i - 'a'];

Time: $\mathcal{O}(n)$

struct trie {
 struct node {
 array<node*, 26> next { };
 int leaf = 0, prefix = 0;
 node() {
 for (auto& i : next) i = nullptr;
 }
}

```
node() {
    for (auto& i : next) i = nullptr;
    leaf = 0, prefix = 0;
}
};
node root;
void add(const string& s) {
    node* cur = &root;
    for (auto i : s) {
        if (cur->next[i - 'a'] == nullptr) cur->next[i - 'a'] = new node();
        cur->prefix += 1;
```

KMP Zfunc Manacher MinRotation SuffixArray SuffixTree

```
cur->leaf += 1:
 cur->prefix += 1;
void erase(const string& s) {
 node* cur = &root:
 for (auto i : s) {
   if (cur->next[i - 'a'] == nullptr) return:
   cur->prefix -= 1;
   cur = cur->nextΓi - 'a'l:
 cur->leaf -= 1;
 cur->prefix -= 1:
int count(const string& s) {
 node* cur = &root:
 for (auto i : s) {
   if (cur->next[i - 'a'] == nullptr) return 0;
   cur = cur->next[i - 'a']:
 return cur->leaf;
int count_prefixes(const string& s) {
 node* cur = &root:
 for (auto i : s) {
   if (cur->next[i - 'a'] == nullptr) return 0;
   cur = cur->next[i - 'a'];
 return cur->prefix;
bool contains(const string& s) {
 node* cur = &root:
 for (auto i : s) {
   if (cur->next[i - 'a'] == nullptr) return false;
   cur = cur->next[i - 'a']:
 return cur->leaf;
};
void del_all(node* cur, vector<node*>& ad) {
 for (auto& i : cur->next) {
   if (i == nullptr) continue;
   ad.push_back(i);
   del_all(i, ad);
void destroy() {
 vector<node*> ad;
 del_all(&root, ad);
 for (auto& u : ad) {
   delete[] u;
~trie() { destroy(); }
```

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string. **Time:** $\mathcal{O}(n)$

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
  }
  return p;
```

```
vi p = pi(pat + '\0' + s), res;
rep(i,sz(p)-sz(s),sz(p))
   if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
return res;
}
```

vi match(const string& s. const string& pat) {

Zfunc.h

 $\begin{tabular}{ll} \textbf{Description:} & z[i] & computes the length of the longest common prefix of $s[i:]$ and s, except $z[0]=0$. (abacaba -> 0010301) \\ \end{tabular}$

```
Time: O(n)
vi Z(const string& S) {
  vi z(sz(S));
  int l = -1, r = -1;
  rep(i,1,sz(S)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - l]);
    while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
    z[i]++;
  if (i + z[i] > r)
    l = i, r = i + z[i];
  }
  return z;
}
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down). **Time:** O(N)

```
array<vi, 2> manacher(const string& s) {
   int n = sz(s);
   array<vi, 2> p = {vi(n+1), vi(n)};
   rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
      int t = r-i+!z;
      if (i<r) p[z][i] = min(t, p[z][l+t]);
      int L = i-p[z][i], R = i+p[z][i]-!z;
      while (L>=1 && R+1<n && s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
      if (R>r) l=L, r=R;
   }
   return p;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string.

Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: O(N)

```
int minRotation(string s) {
   int a=0, N=sz(s); s += s;
   rep(b,0,N) rep(k,0,N) {
    if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
   if (s[a+k] > s[b+k]) {a = b; break;}
   }
   return a;
}
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The Lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. **Time:** $O(n \log n)$

```
struct SuffixArray {
    vi sa, lcp;
    SuffixArray(string& s, int lim=256) {//or basic_string<int>
```

```
int n = sz(s) + 1, k = 0, a, b;
   vi x(all(s)), y(n), ws(max(n, lim));
   x.push_back(0), sa = lcp = y, iota(all(sa), 0);
   for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
    p = j, iota(all(y), n - j);
    rep(i,0,n) if (sa[i] \ge j) y[p++] = sa[i] - j;
    fill(all(ws), 0);
    rep(i,0,n) ws[x[i]]++;
    rep(i,1,lim) ws[i] += ws[i - 1];
    for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
    swap(x, y), p = 1, x[sa[0]] = 0;
    rep(i,1,n) = sa[i - 1], b = sa[i], x[b] =
      (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
   for (int i = 0, j; i < n - 1; lcp[x[i++]] = k)
    for (k \&\& k--, j = sa[x[i] - 1];
        s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

if (mask == 3)

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l,r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l,r) substrings. The root is 0 (has l=-1, r=0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}(26N)
                                                                      aae0b8, 50 lines
struct SuffixTree {
  enum { N = 200010. ALPHA = 26 }: //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
  string a; //v = cur \ node, \ q = cur \ position
  int t[N][ALPHA], l[N], r[N], p[N], s[N], v=0, q=0, m=2;
  void ukkadd(int i. int c) { suff:
   if (r[v]<=a) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
  SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; l[0] = l[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (l[node] <= i2 && i2 < r[node]) return 2;</pre>
   int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
    rep(c,0,ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
```

2932a0, 17 lines

```
best = max(best, {len, r[node] - len});
  return mask;
}
static pii LCS(string s, string t) {
  SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2));
  st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
  return st.best;
}
};
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with AhoCorasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(–, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N = sum of length of patterns. find(x) is $\mathcal{O}(N)$, where N = length of x. findAll is $\mathcal{O}(NM)$.

f35677, 66 line

```
struct AhoCorasick {
 enum { alpha = 26, first = 'A' }; // change this!
 struct Node {
   // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N;
 vi backp:
 void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0:
   for (char c : s) {
     int& m = N[n].next[c - first]:
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
     else n = m;
   if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
 AhoCorasick(vector<string>& pat) : N(1, -1) {
   rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
   queue<int> q:
   for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
      int &ed = N[n].next[i], y = N[prev].next[i];
      if (ed == -1) ed = y;
       else {
        N[ed].back = y;
        (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
          = N[y].end;
        N[ed].nmatches += N[y].nmatches;
        q.push(ed);
 vi find(string word) {
   int n = 0;
   vi res; // ll count = 0;
   for (char c : word) {
     n = N[n].next[c - first];
```

```
res.push_back(N[n].end);
  // count += N[n].nmatches;
}
return res;
}
vector<vi> findAll(vector<string>& pat, string word) {
  vi r = find(word);
  vector<vi> res(sz(word));
  rep(i,0,sz(word)) {
    int ind = r[i];
    while (ind != -1) {
      res[i - sz(pat[ind]) + 1].push_back(ind);
      ind = backp[ind];
    }
}
return res;
}
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

Time: $O(\log N)$

```
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
 auto it = is.lower_bound({L, R}), before = it;
 while (it != is.end() && it->first <= R) {</pre>
  R = max(R. it->second):
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
  L = min(L, it->first);
  R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second:
 if (it->first == L) is.erase(it);
 else (int&)it->second = L:
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R. empty(). Returns empty set on failure (or if G is empty).

Time: $O(N \log N)$

```
Imme: O(N log N)

template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
  iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
  T cur = G.first;
  int at = 0;
  while (cur < G.second) { // (A)
    pair<T, int> mx = make_pair(cur, -1);
```

```
while (at < sz(I) && I[S[at]].first <= cur) {
    mx = max(mx, make_pair(I[S[at]].second, S[at]));
    at++;
}
if (mx.second == -1) return { };
cur = mx.first;
R.push_back(mx.second);
}
return R;</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...});

Time: \mathcal{O}\left(k\log\frac{n}{2}\right)
```

```
753a4c, 19 lines
template<class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
   g(i, to, p);
   i = to; p = q;
 }else {
   int mid = (from + to) >> 1:
   rec(from, mid, f, g, i, p, f(mid));
   rec(mid+1, to, f, g, i, p, q);
template<class F. class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 g(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < ... < f(i) \ge ... \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(\emptyset,n-1,[&](int i){return a[i];});

Time: \mathcal{O}(\log(b-a))
```

```
template<class F>
int ternSearch(int a, int b, F f) {
   assert(a <= b);
   while (b - a >= 5) {
    int mid = (a + b) / 2;
    if (f(mid) < f(mid+1)) a = mid; //(A)
    else b = mid+1;
   }
   rep(i,a+1,b+1) if (f(a) < f(i)) a = i; //(B)
   return a;</pre>
```

r rc h

Time: $\mathcal{O}(N \log N)$

Description: Compute indices for the longest increasing subsequence.

```
template<class I> vi lis(const vector<I>& S) {
  if (S.empty()) return { };
  vi prev(sz(S));
  typedef pair<I, int> p;
  vector res;
  rep(1,0,sz(S)) {
```

2dd6c9, 10 lines

520e76, 5 lines

```
// change 0 -> i for longest non-decreasing subsequence
 auto it = lower_bound(all(res), p { S[i], 0 } );
 if (it == res.end()) res.emplace_back(), it = res.end()-1;
 *it = {S[i], i};
 prev[i] = it == res.begin() ? 0 : (it-1)->second;
int L = sz(res), cur = res.back().second;
while (L--) ans[L] = cur, cur = prev[cur];
return ans:
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum S <= t such that S is the sum of some subset of the weights.

Time: $\mathcal{O}(N \max(w_i))$ b20ccc, 16 lines

```
int knapsack(vi w, int t) {
 int a = 0, b = 0, x;
 while (b < sz(w) \&\& a + w[b] <= t) a += w[b++];
 if (b == sz(w)) return a;
 int m = *max_element(all(w));
 vi u, v(2*m, -1);
 v[a+m-t] = b;
 rep(i,b,sz(w)) {
   u = v;
   rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
   for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
     v[x-w[j]] = max(v[x-w[j]], j);
 for (a = t; v[a+m-t] < 0; a--);
 return a;
```

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i, j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with *i*, computes a[i] for i = L..R - 1.

Time: $\mathcal{O}((N + (hi - lo)) \log N)$

d38d2b, 18 lines

```
struct DP { // Modify at will :
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 ll f(int ind, int k) { return dp[ind][k]; }
 void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
 void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) \gg 1:
   pair<ll, int> best(LLONG_MAX, L0);
   rep(k, max(L0,lo(mid)), min(HI,hi(mid)))
    best = min(best, make_pair(f(mid, k), k));
   store(mid, best.second, best.first);
   rec(L, mid, L0, best.second+1);
   rec(mid+1, R, best.second, HI);
 void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

10.4 Debugging tricks

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept(29); kills the program on NaNs(1), 0-divs(4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))if (i & 1 << b) $D[i] += D[i^{(1 << b)}]$; computes all sums of subsets.

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a \pmod{b}$ in the range $\begin{bmatrix} 0.2b \\ 2.5 & \text{lines} \end{bmatrix}$

```
typedef unsigned long long ull;
struct FastMod {
 ull b, m;
 FastMod(ull\ b) : b(b), m(-1ULL\ /\ b) \ {} \}
 ull reduce(ull a) \{ // a\% b + (0 \text{ or } b) \}
   return a - (ull)((__uint128_t(m) * a) >> 64) * b;
};
```

Description: Read an integer from stdin. Usage requires your program to pipe in input

```
Usage: ./a.out < input.txt</pre>
```

Time: About 5x as fast as cin/scanf.

```
inline char gc() {//like getchar()
 static char buf[1 << 16];
 static size_t bc, be;
 if (bc >= be) {
  buf[0] = 0, bc = 0;
```

```
be = fread(buf, 1, sizeof(buf), stdin);
 return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
 while ((a = gc()) < 40);
 if (a == '-') return -readInt();
 while ((c = gc()) >= 48) a = a * 10 + c - 480;
 return a - 48:
```

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s)
 static size_t i = sizeof buf;
  assert(s < i);</pre>
 return (void*)&buf[i -= s];
void operator delete(void*) { }
```

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

```
template<class T> struct ptr {
 unsigned ind:
 ptr(T*p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
  assert(ind < sizeof buf);</pre>
 T& operator*() const { return *(T*)(buf + ind); }
 T* operator->() const { return &**this; }
 T& operator[](int a) const { return (&**this)[a]; }
 explicit operator bool() const { return ind; }
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

```
Usage: vector<vector<int, small<int>>> ed(N);
```

```
bb66d4, 14 lines
char buf[450 << 20] alignas(16);</pre>
size_t buf_ind = sizeof buf;
template<class T> struct small {
  typedef T value_type;
  small() { }
  template<class U> small(const U&) { }
  T* allocate(size_t n) {
   buf_ind -= n * sizeof(T);
   buf ind &= 0 - alignof(T):
   return (T*)(buf + buf_ind);
 void deallocate(T*, size_t) { }
};
```

Unrolling.h

7b3c70, 17 lines

#define F { . . . ; ++i; } int i = from; while (i&3 && i < to) F // for alignment, if needed while $(i + 4 \le to) \{ F F F F \}$ while (i < to) F