TALLER:

ANÁLISIS CON MÉTODOS NO SUPERVISADOS

Soy

Daniel Chávez Gallo

Científico de datos CVM en Entel Perú

Me puedes encontrar como:

dacg160381@hotmail.com

Agrupar objetos similares entre sí que sean distintos a los objetos de otros agrupamientos

- > Datos dentro del mismo grupo deben tener caracteristicas similares.
- Datos de grupos diferentes deben tener características diferentes.

Agrupar objetos similares entre sí que sean distintos a los objetos de otros agrupamientos

Los resultados obtenidos dependerán de:

- El algoritmo de agrupamiento seleccionado.
- El conjunto de datos disponible.
- La medida de similitud utilizada para comparar objetos.

Noción de similitud

Dada una representación vectorial de dos clientes **x** y **y**, podemos determinar el grado de similitud entre ellos a través del uso de una **métrica**.

$$d(x,y) = \sqrt[2]{\sum_{i=1}^{n} |x_i - y_i|^2}$$

• ¿Cuántos grupos?

Grupos o clusters no definidos a priori. Diferencia con los métodos supervisados.

¿Cómo buscarlos?

Los objetos dentro de un cluster sean similares o cercanos entre sí en algún sentido (gran similaridad intra-clase) y diferentes o alejados a los objetos de otro cluster (baja similaridad inter-clase)

Para medir la distancia entre las instancias, es necesario que todos los atributos estén en la misma escala.

Normalización: escala los valores numéricos en el Rango [0,1]

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Estandarización: hace que la distribución de los datos sea normal

$$x_{new} = \frac{x - \mu}{\sigma}$$

Probablemente el más utilizado y conocido

- Asigna cada observación a uno de los k clusters
- K es un número definido a priori

Minimizar las distancias intra cluster y maximizar las inter clase

- ¿Cómo funciona el algoritmo?
 - 1. Elegir el valor de K (número de clusters).
 - 2. Asignar cada objeto al grupo más cercano (por ejemplo distancia euclídea)
 - 3. Re-estimar los centros de los k clusters, asumiendo que las asignaciones a los grupos están bien.
 - 4. Repetir el paso 3 hasta que no haya más cambios

• Se puede cambiar el punto 2, empezando con k centroides iniciales

• La mayor parte de las reasignaciones ocurren en la primera iteración del algoritmo

Elegir el número de clústers:

- ➤ Conocimiento a priori: por ejemplo, si clasificamos películas, k = nº de géneros
- ➤ Dirigidos por el negocio: por ejemplo, el departamento de Marketing sólo tiene recursos para hacer 3 campañas distintas de marketing
- \triangleright Sin nada de lo anterior: k = raíz(n/2), valor inicial

Ventajas

- Principios no estadísticos
- Muy flexible
- Funciona bien en casos de la vida real
- Rápido: no hay calcular las distancias entre todas y cada una de las observaciones

Desventajas

- No muy sofisticado
- No está garantizado encontrar en número de clusters óptimo
- Sensible a outliers que pueden formar clusters propios
- La solución final depende del punto de partida

Limitaciones

- Principalmente, su desempeño se ve mermado cuando los clusters tienen
 - Diferentes tamaños
 - Diferentes densidades
 - Formas no globulares
- (Al igual que casi todos) También presenta problemas cuando los datos contienen outliers
- Una solución puede ser hacer un número superior de clusters, y luego "unir las partes"

Agrupación RFM

• Los más propensos a comprar son aquellos que han comprado más recientemente, con más frecuencia y gastan más dinero.

• Se aplica sobre esta "Ley de Pareto" y se refiere a que "el 80% de las compras las realizan el 20% de los clientes".

Agrupación RFM

- Con la Recencia, medimos los días que han pasado desde hoy (o cualquier fecha a futuro) hasta la fecha en que realizó su última compra.
- Con la **Frecuencia**, medimos el número de compras que ha hecho cada cliente en total.
- Y el Valor **Monetario**, es la suma total de cantidad de dinero que el cliente lleva gastado en sus compras.

Reglas de asociación

 Los ejemplos para este tipo de problema están constituidos por Transacciones las cuales constan de un TID y un conjunto de Items o Itemset:

- TID: Identificador de la transacción.
- Itemset: Artículos de la transacción.

(4235, {Leche, Pan, Huevos, Jamón})

Reglas de asociación

- **Soporte**: Indica el porcentaje de transacciones que llevan juntos el antecedente y el consecuente, con respecto al total de transacciones realizadas.
- Confianza: Indica el porcentaje de transacciones que llevan juntos el antecedente y el consecuente, con respecto al total de transacciones donde sólo aparece el antecedente.
- Lift: Indica el aumento en la probabilidad de selección del consecuente, al ser comprado en conjunto con el antecedente.

Reglas de asociación

- Luego de obtener las reglas, se deben evaluar los indicadores estudiados.
- Las mejores reglas son aquellas en los que los tres indicadores son altos.
- El Soporte varía entre 0 y 1, al igual que la confianza, porque finalmente son probabilidades.
- El indicador de Lift es bueno si es más alto. Son recomendables los valores por encima de 1, siempre y cuando los otros valores sean también altos.
- Si A,B->C es una buena regla, significa que si el cliente compra A y B, tiene una probabilidad alta de comprar C.

· GRACIAS!

dacg160381@hotmail.com

