Λ(2020) 7/2⁺

 $I(J^P) = O(\frac{7}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

In LITCHFIELD 71, need for the state rests solely on a possibly inconsistent polarization measurement at 1.784 GeV/c. HEMING-WAY 75 does not require this state. GOPAL 77 does not need it in either $N\overline{K}$ or $\Sigma\pi$. With new K^- n angular distributions included, DECLAIS 77 sees it. However, this and other new data are included in GOPAL 80 and the state is not required. BACCARI 77 weakly supports it.

	∧ (20	020) POLE PO	SITIC	NC	
REAL PART		DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>
• • • We do not	use the following	data for average	es, fits,	limits, et	.c. • • •
1757		$^{ m 1}$ KAMANO	15	DPWA	Multichannel
$^{ m 1}$ From the prefe	erred solution A i	n KAMANO 15.	Solutio	on B repo	rts M = 2041^{+80}_{-82} MeV.
-2×IMAGINA	RY PART	DOCUMENT ID		TFCN	COMMENT
• • • We do not	use the following				
146		-			Multichannel
-	arrad calution A i				
- From the prefe	erred solution A II	n KAMANO 15.	Solutio	оп в геро	rts M = $238 + 114 - 34$ MeV.
	Λ(20	020) POLE RE	ESIDU	ES	
The norn	nalized residue is	the residue divid	led by	$\Gamma_{pole}/2$.	
Normalized resi	due in $N\overline{K} ightarrow$	<i>Λ</i> (2020) →	ΝK		
		DOCUMENT I		TECN	COMMENT
• • • We do not				limits, et	.c. • • •
	77		15		Multichannel
¹ From the prefe	erred solution A i	in KAMANO 15			
Normalized resi	due in $N\overline{K} ightarrow$	<i>∧</i> (2020) →	$\Sigma\pi$		
		DOCUMENT I		TECN	COMMENT
• • • We do not	use the following	data for average	es, fits,	limits, et	.c. • • •
0.0112 12	20	$^{ m 1}$ KAMANO	15	DPWA	Multichannel
$^{ m 1}$ From the prefe	erred solution A i	in KAMANO 15.			
Normalized resi	due in $N\overline{K} \rightarrow$	<i>∧</i> (2020) →	Λη		
MODULUS PI	HASE (°)	DOCUMENT I	D	TECN	COMMENT
• • • We do not	use the following	data for average	es, fits,	limits, et	.c. • • •
0.000786 —	100	$^{ m 1}$ KAMANO	15	DPWA	Multichannel
$^{ m 1}$ From the prefe	erred solution A i	in KAMANO 15.			
HTTP://PDG.	LBL.GOV	Page 1		Create	ed: 5/30/2017 17:20

Normalized residue in $N\overline{K} \rightarrow \Lambda(2020) \rightarrow \Sigma(1385)\pi$, F-wave PHASE (°) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ KAMANO 15 DPWA Multichannel 0.00451 $^{\mathrm{1}}$ From the preferred solution A in KAMANO 15. Normalized residue in $N\overline{K} \rightarrow \Lambda(2020) \rightarrow \Sigma(1385)\pi$, H-wave DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ KAMANO -12815 DPWA Multichannel 0.0000298 ¹ From the preferred solution A in KAMANO 15.

Λ(2020) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2020 OUR ESTIMATE				
2043 ± 22	ZHANG	13A	DPWA	Multichannel
2140	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2117	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2100 ± 30	LITCHFIELD	71	DPWA	$K^- p \rightarrow \overline{K} N$
2020 ± 20	BARBARO	70	DPWA	$K^- p \rightarrow \Sigma \pi$

Λ(2020) WIDTH

Λ(2020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	
Γ_2	$\Sigma \pi$	
Γ_3	$\Lambda\eta$	
Γ_4	$\Sigma(1385)\pi$, \emph{F} -wave	
Γ_5	$\Sigma(1385)\pi$, $ extit{H}$ -wave	
Γ_6	$N\overline{K}^*(892)$, $S=1/2$, F -wave	
Γ_7	$N\overline{K}^*(892)$, $S=3/2$, F -wave	
Γ ₈	$N\overline{K}^{*}(892)$, $S=3/2$, H -wave	
Γ_9	$\Lambda \omega$	
Γ ₁₀	$N\overline{K}^*(892)$, $S=1/2$	(30±9) %

Created: 5/30/2017 17:20

Λ(2020) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.028 ± 0.005				Multichannel	
0.05	DECLAIS				
0.05 ± 0.02	LITCHFIELD			$K^- p \rightarrow \overline{K} N$	
• • • We do not use the following			limits, e	etc. • •	
not seen	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	KAMANO 15.				
$\Gamma(\Sigma\pi)/\Gamma_{total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • We do not use the following of	data for averages	, fits,	limits, e	etc. • • •	
0.891	¹ KAMANO	15	DPWA	Multichannel	
¹ From the preferred solution A in					
$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	3,
• • We do not use the following of	<u> </u>				
•	¹ KAMANO			Multichannel	
1 From the preferred solution A in	_	15	DI WA	Widicienamie	
					- /-
$\Gamma(\Sigma(1385)\pi, F$ -wave $)/\Gamma_{total}$					Γ_4/Γ
VALUE				COMMENT	
• • • We do not use the following	_	, fits,	limits, e	etc. • •	
0.105	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	KAMANO 15.				
$\Gamma(\Sigma(1385)\pi, H\text{-wave})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ_5/Γ
• • We do not use the following of	data for averages	. fits.			
	¹ KAMANO	15		Multichannel	
$^{ m 1}$ From the preferred solution A in	KAMANO 15.				
Γ(N K*(892), S=1/2, F-wave)	/F _{total}		TECN	COMMENT	Γ_6/Γ
• • • We do not use the following of	·			•	
	¹ KAMANO	15		Multichannel	
		13	DF WA	iviuiticiialillei	
$^{ m 1}$ From the preferred solution A ir	NAMANO 15.				

Created: 5/30/2017 17:20

Γ(N\(\overline{K}\)*(892), S	•	Γ _{total}		TECN	COMMENT	Γ ₇ /Γ
• • • We do not u		<u>- </u>				
0.001	1	KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the prefe	erred solution A in	KAMANO 15.				
Γ(<i>N</i> K *(892), <i>S</i>	i=3/2, <i>H</i> -wave),	/Γ _{total}				Г8/Г
VALUE	•	DOCUMENT ID		TECN	COMMENT	
• • • We do not u	use the following d	ata for averages	, fits,	limits, e	etc. • • •	
not seen	1	KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the prefe	erred solution A in	KAMANO 15.				
Γ(<i>N</i> K *(892), <i>S</i>	=1/2)/Γ _{total}					Γ ₁₀ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
0.30 ± 0.09		ZHANG	13A	DPWA	Multichannel	
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$	•	$(0) \rightarrow \Sigma \pi$ DOCUMENT ID		TECN	• -	Γ ₂) ^½ /Γ
$+0.02\pm0.01$		ZHANG			Multichannel	
$-0.15\!\pm\!0.02$		BARBARO	70	DPWA	$K^- p \rightarrow \Sigma \pi$	
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$	in <i>N K → Λ</i> (202	20) → Λω DOCUMENT ID			COMMENT	Γ ₉) ^½ /Γ
< 0.05		BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$	
	Λ(20	20) REFERE	NCE	S		
KAMANO 15 ZHANG 13A GOPAL 80 BACCARI 77 DECLAIS 77 GOPAL 77 HEMINGWAY 75 LITCHFIELD 71 BARBARO 70 Hyperon Resonance	PR C92 025205 PR C88 035205 Toronto Conf. 159 NC 41A 96 CERN 77-16 NP B119 362 NP B91 12 NP B30 125 Duke Conf. 173 es, 1970	H. Kamano et H. Zhang et al G.P. Gopal B. Baccari et al Y. Declais et al G.P. Gopal et R.J. Hemingwal P.J. Litchfield A. Barbaro-Gal	l. al. al. al. y et al et al.		(SACL,	(KSU) RHEL) CDEF) IJP CERN) IJP RHEL) MPIM) IJP

Created: 5/30/2017 17:20