Probability theory

Lecture 7: Convergences

Maksim Zhukovskii

MIPT

Almost sure convergence

 ξ_1, ξ_2, \dots converges almost surely (with prob. 1) to ξ ,

Almost sure convergence

$$\xi_1, \xi_2, \dots$$
 converges almost surely (with prob. 1) to ξ , if

 $P(\xi_n \to \xi) = 1.$

Almost sure convergence

$$\xi_1, \xi_2, \dots$$
 converges almost surely (with prob. 1) to ξ , if

$$\xi_n \xrightarrow{\text{a.s.}} \xi$$

 $P(\xi_n \to \xi) = 1.$

 ξ_1, ξ_2, \dots converges in probability to ξ ,

$$\xi_1, \xi_2, \dots$$
 converges in probability to ξ , if for every $\varepsilon > 0$, $\lim_{n \to \infty} \mathsf{P}(|\xi_n - \xi| \ge \varepsilon) = 0$.

$$\xi_1, \xi_2, \dots$$
 converges in probability to ξ , if for every $\varepsilon > 0$, $\lim_{n \to \infty} \mathsf{P}(|\xi_n - \xi| \ge \varepsilon) = 0$.

$$\xi_n \stackrel{\mathsf{P}}{\longrightarrow} \xi$$

$$\xi_1, \xi_2, \dots$$
 converges in probability to ξ , if for every $\varepsilon > 0$, $\lim_{n \to \infty} \mathsf{P}(|\xi_n - \xi| \ge \varepsilon) = 0$.

$$\xi_n \stackrel{\mathsf{P}}{\longrightarrow} \xi$$

the law of large numbers:

$$\frac{S_n - \mathsf{E} S_n}{n} \stackrel{\mathsf{P}}{\longrightarrow} 0$$

Let p > 0.

Let p > 0.

$$\xi_1, \xi_2, \dots$$

converges in the L^p -norm to ξ ,

 $\mathsf{E}\xi^p, \ \mathsf{E}\xi_i^p < \infty, \quad \lim_{n \to \infty} \mathsf{E}|\xi_n - \xi|^p = 0.$

Let
$$p > 0$$
.

$$\xi_1, \xi_2, \dots$$

converges in the L^p -norm to ξ ,

if

Let p > 0.

$$\xi_1, \xi_2, \dots$$

converges in the
$$L^p$$
-norm to ξ , if

$$\xi_n \xrightarrow{L_p} \xi$$

 $\mathsf{E}\xi^p, \ \mathsf{E}\xi_i^p < \infty, \quad \lim_{n \to \infty} \mathsf{E}|\xi_n - \xi|^p = 0.$

Let p > 0.

$$\xi_1, \xi_2, \dots$$

converges in the L^p -norm to ξ ,

if

$$\mathsf{E}\xi^p,\,\mathsf{E}\xi_i^p<\infty,\quad \lim_{n\to\infty}\mathsf{E}|\xi_n-\xi|^p=0.$$

$$\xi_n \xrightarrow{L_p} \xi$$

If
$$p = 1$$
, we say that ξ_1, ξ_2, \ldots converges in mean to ξ .

 ξ_1, ξ_2, \ldots converges in distribution (converges weakly) to ξ ,

 ξ_1, ξ_2, \ldots converges in distribution (converges weakly) to ξ ,

if

for every $x\in\mathbb{R}$ at which F_{ξ} is continuous, $\lim_{n o\infty}F_{\xi_n}(x)=F_{\xi}(x).$

 ξ_1, ξ_2, \ldots converges in distribution (converges weakly) to ξ ,

i

for every $x\in\mathbb{R}$ at which F_{ξ} is continuous, $\lim_{n o\infty}F_{\xi_n}(x)=F_{\xi}(x).$

$$\xi_n \xrightarrow{d} \xi$$

$$\xi_1, \xi_2, \ldots$$
 converges in distribution (converges weakly) to ξ ,

for every $x \in \mathbb{R}$ at which F_{ξ} is continuous, $\lim_{n \to \infty} F_{\xi_n}(x) = F_{\xi}(x)$.

$$\xi_n \stackrel{d}{\longrightarrow} \xi$$

Equivalent definition:

for every continuous bounded function $f: \mathbb{R} \to \mathbb{R}$, $\lim_{n \to \infty} \mathsf{E} f(\xi_n) = \mathsf{E} f(\xi)$.

Relations

Theorem

1)
$$\xi_n \xrightarrow{a.s.} \xi$$
 implies $\xi_n \xrightarrow{P} \xi$;

Relations

2) $\xi_n \stackrel{\mathsf{P}}{\longrightarrow} \xi$ implies $\xi_n \stackrel{\mathsf{d}}{\longrightarrow} \xi$;

Theorem

1)
$$\xi_n \xrightarrow{a.s.} \xi$$
 implies $\xi_n \xrightarrow{P} \xi$;

Theorem

1)
$$\xi_n \xrightarrow{a.s.} \xi$$
 implies $\xi_n \xrightarrow{P} \xi$;

Relations

2) $\xi_n \stackrel{\mathsf{P}}{\longrightarrow} \xi$ implies $\xi_n \stackrel{d}{\longrightarrow} \xi$;

3) for every p > 0, $\xi_n \xrightarrow{L_p} \xi$ implies $\xi_n \xrightarrow{P} \xi$.

Relations

Theorem

- 1) $\xi_n \xrightarrow{a.s.} \xi$ implies $\xi_n \xrightarrow{P} \xi$;
- 2) $\xi_n \stackrel{P}{\longrightarrow} \xi$ implies $\xi_n \stackrel{d}{\longrightarrow} \xi$;
- 3) for every p > 0, $\xi_n \xrightarrow{L_p} \xi$ implies $\xi_n \xrightarrow{P} \xi$.

a.s. $\Rightarrow P$

$$a.s. \Rightarrow P$$

Let $\xi_n \xrightarrow{\text{a.s.}} \xi$, $\varepsilon > 0$.

$$a.s. \Rightarrow P$$

Let
$$\xi_n \xrightarrow{\text{a.s.}} \xi$$
, $\varepsilon > 0$.

$$A_n = \{\omega : |\xi_n(\omega) - \xi(\omega)| < \varepsilon\},$$

$$A_n = \{\omega : |\xi_n(\omega) - \xi(\omega)| < \varepsilon\},$$

$$B_n = \{\omega : \forall k \ge n |\xi_k(\omega) - \xi(\omega)| < \varepsilon\} \subset A_n.$$

$$a.s. \Rightarrow P$$

Let
$$\xi_n \stackrel{\text{a.s.}}{\longrightarrow} \xi$$
, $\varepsilon > 0$.

$$A_n = \{\omega : |\xi_n(\omega) - \xi(\omega)| < \varepsilon\},$$

$$B_n = \{\omega : \forall k \ge n |\xi_k(\omega) - \xi(\omega)| < \varepsilon\} \subset A_n.$$

It remains to prove that $P(B_n) \to 1$, $n \to \infty$.

a.s. $\Rightarrow P$

$$a.s. \Rightarrow P$$

 $A := \{\omega : \exists n \in \mathbb{N} \, \forall k \geq n \, |\xi_k(\omega) - \xi(\omega)| < \varepsilon\},\$

 $A := \{\omega : \exists n \in \mathbb{N} \,\forall k \geq n \, |\xi_k(\omega) - \xi(\omega)| < \varepsilon\},\$

 $\{\xi_n \to \xi\} \subset A$,

$$a.s. \Rightarrow P$$

$$\mathsf{a.s.} \Rightarrow \mathsf{P}$$

 $A := \{\omega : \exists n \in \mathbb{N} \,\forall k \geq n \, |\xi_k(\omega) - \xi(\omega)| < \varepsilon\},\$

 $\{\xi_n \to \xi\} \subset A$,

P(A) = 1,

a.s.
$$\Rightarrow P$$

 $A := \{\omega : \exists n \in \mathbb{N} \,\forall k \geq n \, |\xi_k(\omega) - \xi(\omega)| < \varepsilon\},\$

 $\{\xi_n \to \xi\} \subset A$,

P(A) = 1,

Clearly, $B_n \uparrow A$.

The proof of 1)

$$\mathsf{a.s.} \Rightarrow \mathsf{P}$$

Clearly, $B_n \uparrow A$.

Therefore, $P(B_n) \to 1$, $n \to \infty$.

 $A := \{\omega : \exists n \in \mathbb{N} \, \forall k > n \, | \xi_k(\omega) - \xi(\omega) | < \varepsilon \},$

 $\{\xi_n \to \xi\} \subset A$,

P(A) = 1,

 $P \Rightarrow d$

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \leq C$, $\varepsilon > 0$.

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \leq C$, $\varepsilon > 0$.

Let
$$\tilde{\xi}_n = \xi I(\xi \leq n)$$
.

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \leq C$, $\varepsilon > 0$.

Let
$$\tilde{\xi}_n = \xi I(\xi \leq n)$$
.

Obviously, $\tilde{\xi}_n \stackrel{\text{a.s.}}{\longrightarrow} \xi$.

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \leq C$, $\varepsilon > 0$.

Let
$$\tilde{\xi}_n = \xi I(\xi \leq n)$$
.

Obviously, $\tilde{\xi}_n \xrightarrow{\text{a.s.}} \xi$. Therefore, $\tilde{\xi}_n \xrightarrow{P} \xi$.

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \leq C$, $\varepsilon > 0$.

Let
$$\tilde{\xi}_n = \xi I(\xi \leq n)$$
.

Obviously,
$$\tilde{\xi}_n \xrightarrow{\text{a.s.}} \xi$$
. Therefore, $\tilde{\xi}_n \xrightarrow{P} \xi$.

There exists
$$n_1 \in \mathbb{N}$$
 such that, for all $n \geq n_1$,

 $P(|\tilde{\xi}_n - \xi| > 1) < \varepsilon/(6C).$

$$P \Rightarrow d$$

$$f: \mathbb{R} \to \mathbb{R}$$
 — continuous, $|f| \le C$, $\varepsilon > 0$.

Let
$$\tilde{\xi}_n = \xi I(\xi \leq n)$$
.

Obviously,
$$\tilde{\xi}_n \xrightarrow{\text{a.s.}} \xi$$
. Therefore, $\tilde{\xi}_n \xrightarrow{P} \xi$.

There exists
$$n_1 \in \mathbb{N}$$
 such that, for all $n \geq n_1$,

$$\mathsf{P}(| ilde{\xi}_n - \xi| > 1) < arepsilon/(6C).$$

Therefore,
$$\forall n \geq n_1$$
, $P(\xi > n) < \varepsilon/(6C)$.

 $P \Rightarrow d$

 $P \Rightarrow d$

f is uniformly continuous on any [a, b].

$$P \Rightarrow d$$

f is uniformly continuous on any [a,b]. Therefore, there exists a $\delta>0$ such that, if $x,y\in [-n_1-\delta,n_1+\delta],\ |x-y|<\delta,$ then $|f(x)-f(y)|<\varepsilon/3$.

$$P \Rightarrow d$$

f is uniformly continuous on any [a,b]. Therefore, there exists a $\delta>0$ such that, if $x,y\in[-n_1-\delta,n_1+\delta]$, $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon/3$.

Let $n_2 \in \mathbb{N}$ be such that, for all $n \geq n_2$,

$$P(|\xi_n - \xi| > \delta) < \varepsilon/(6C).$$

 $P \Rightarrow d$

$$P \Rightarrow d$$

 $|\mathsf{E} f(\xi_n) - \mathsf{E} f(\xi)| = |\mathsf{E} (f(\xi_n) - f(\xi))| \le$

For
$$n \geq \max\{n_1, n_2\}$$
,

$$P \Rightarrow d$$

 $|\mathsf{E}f(\xi_n) - \mathsf{E}f(\xi)| = |\mathsf{E}(f(\xi_n) - f(\xi))| \le$

For
$$n > \max\{n_1, n_2\}$$

For
$$n \geq \max\{n_1, n_2\}$$
,

For
$$n \ge \max\{n_1, n_2\}$$
,

 $E|f(\xi_n)-f(\xi)|=$

$$P \Rightarrow d$$

 $\mathsf{E}|f(\xi_n)-f(\xi)|=\mathsf{E}\Big(|f(\xi_n)-f(\xi)|I(\xi>n_1)+$

 $|f(\xi_n) - f(\xi)|I(\xi \le n_1, |\xi - \xi_n| \ge \delta) +$

 $|f(\xi_n)-f(\xi)|I(\xi\leq n_1,|\xi-\xi_n|<\delta)$

For
$$n \geq \max\{n_1, n_2\}$$
,

For
$$n \geq \max\{n_1, n_2\}$$
,

For
$$n \geq \max\{n_1, n_2\}$$
, $|\mathsf{E} f(\xi_n) - \mathsf{E} f(\xi)| = |\mathsf{E} (f(\xi_n) - f(\xi))| \leq$

$$\mathsf{P}\Rightarrow d$$

For
$$n > \max\{n_1, n_2\}$$
,

For
$$n \geq \max\{n_1, n_2\}$$
,

For
$$n \geq \max\{n_1, n_2\}$$
, $|\mathsf{E} f(\xi_n) - \mathsf{E} f(\xi)| = |\mathsf{E} (f(\xi_n) - f(\xi))| \leq$

 $\mathsf{E}|f(\xi_n)-f(\xi)|=\mathsf{E}\Big(|f(\xi_n)-f(\xi)|I(\xi>n_1)+$

 $|f(\xi_n) - f(\xi)|I(\xi \le n_1, |\xi - \xi_n| \ge \delta) +$

 $|f(\xi_n)-f(\xi)|I(\xi\leq n_1,|\xi-\xi_n|<\delta)$

 $2CP(\xi > n_1) + 2CP(|\xi - \xi_n| \ge \delta) + \varepsilon/3 < \varepsilon.$

 $L_p \Rightarrow \mathsf{P}$

 $L_p \Rightarrow \mathsf{P}$

Let $\varepsilon > 0$.

$$L_p \Rightarrow \mathsf{P}$$

Let $\varepsilon > 0$.

$$P(|\xi_n - \xi| \ge \varepsilon) = P(|\xi_n - \xi|^p \ge \varepsilon^p) \le$$

$$L_p \Rightarrow \mathsf{P}$$

Let $\varepsilon > 0$.

$$\mathsf{P}(|\xi_n - \xi| \ge \varepsilon) = \mathsf{P}(|\xi_n - \xi|^p \ge \varepsilon^p) \le$$
 $\frac{\mathsf{E}|\xi_n - \xi|^p}{\varepsilon^p} \to 0.$

Let
$$\xi_1 = \xi_2 = \ldots = -\xi$$
,

Let
$$\xi_1 = \xi_2 = \ldots = -\xi$$
, $\xi \sim U(\{-1, 1\})$.

Let
$$\xi_1 = \xi_2 = \ldots = -\xi$$
, $\xi \sim U(\{-1, 1\})$.
 $\xi_n \xrightarrow{d} \xi$, since, for any f , $Ef(\xi_n) = Ef(\xi)$.

d does not imply P

Let
$$\xi_1 = \xi_2 = \ldots = -\xi$$
, $\xi \sim U(\{-1, 1\})$.
 $\xi_n \xrightarrow{d} \xi$, since, for any f , $Ef(\xi_n) = Ef(\xi)$.

However, $P(|\xi - \xi_n| \ge 2) = 1$ for $n \in \mathbb{N}$.

d does not imply P

Let
$$\xi_1 = \xi_2 = \ldots = -\xi$$
, $\xi \sim U(\{-1, 1\})$.
 $\xi_n \xrightarrow{d} \xi$, since, for any f , $Ef(\xi_n) = Ef(\xi)$.

However, $P(|\xi - \xi_n| \ge 2) = 1$ for $n \in \mathbb{N}$. ξ_n does not converge in probability to ξ .

P does not imply neither a.s. nor L_p

 $\Omega = [0, 1], \mathcal{F} = \mathcal{B}[0, 1], P$ — uniform

P does not imply neither a.s. nor L_p $\Omega=[0,1],\ \mathcal{F}=\mathcal{B}[0,1],\ \mathsf{P} \ -\! \ \mathsf{uniform}$ $\xi_1=2^{1/p}\textit{I}_{[0,1)},$

$$\Omega = [0,1], \, \mathcal{F} = \mathcal{B}[0,1], \, \mathsf{P}$$
 — uniform

$$\xi_1 = 2^{1/p} I_{[0,1)},$$

 $\xi_2 = 2^{2/p} I_{[0,1/2)}, \; \xi_3 = 2^{3/p} I_{[1/2,1)},$

$$\begin{split} &\Omega = [0,1], \ \mathcal{F} = \mathcal{B}[0,1], \ \mathsf{P} - \mathsf{uniform} \\ &\xi_1 = 2^{1/p} \textit{I}_{[0,1)}, \\ &\xi_2 = 2^{2/p} \textit{I}_{[0,1/2)}, \ \xi_3 = 2^{3/p} \textit{I}_{[1/2,1)}, \\ &\xi_4 = 2^{4/p} \textit{I}_{[0,1/4)}, \ \xi_5 = 2^{5/p} \textit{I}_{[1/4,1/2)}, \\ &\xi_6 = 2^{6/p} \textit{I}_{[1/2,3/4)}, \ \xi_7 = 2^{7/p} \textit{I}_{[3/4,1)}, \end{split}$$

$$\begin{split} &\Omega = [0,1], \ \mathcal{F} = \mathcal{B}[0,1], \ \mathsf{P} - \mathsf{uniform} \\ &\xi_1 = 2^{1/p} \textit{I}_{[0,1)}, \\ &\xi_2 = 2^{2/p} \textit{I}_{[0,1/2)}, \ \xi_3 = 2^{3/p} \textit{I}_{[1/2,1)}, \\ &\xi_4 = 2^{4/p} \textit{I}_{[0,1/4)}, \ \xi_5 = 2^{5/p} \textit{I}_{[1/4,1/2)}, \\ &\xi_6 = 2^{6/p} \textit{I}_{[1/2,3/4)}, \ \xi_7 = 2^{7/p} \textit{I}_{[3/4,1)}, \ \ldots \end{split}$$

P does not imply neither a.s. nor L_p

Let $\varepsilon > 0$, $\delta > 0$.

P does not imply neither a.s. nor L_p

Let $\varepsilon > 0$, $\delta > 0$.

Find k such that $\delta > \frac{1}{2^k}$.

P does not imply neither a.s. nor L_p

Let $\varepsilon > 0$, $\delta > 0$. Find k such that $\delta > \frac{1}{2^k}$. For every $n \ge 2^k$, $P(|\xi_n| > \varepsilon) \le \frac{1}{2^k} < \delta$.

P does not imply neither a.s. nor L_p

Let
$$\varepsilon > 0$$
, $\delta > 0$.
Find k such that $\delta > \frac{1}{2^k}$.
For every $n \geq 2^k$, $P(|\xi_n| > \varepsilon) \leq \frac{1}{2^k} < \delta$.

$$\xi_n \stackrel{\mathsf{P}}{\longrightarrow} 0$$

P does not imply neither a.s. nor L_p

P does not imply neither a.s. nor L_p

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

P does not imply neither a.s. nor L_p

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

P does not imply neither a.s. nor L_p

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

 $E|\xi_n|^p \ge 2^{2^k-1}$ for every $n \ge 2^k$.

P does not imply neither a.s. nor L_p

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

 $\mathsf{E}|\xi_n|^p \ge 2^{2^k-1}$ for every $n \ge 2^k$. $\mathsf{E}|\xi_n|^p \to \infty$.

P does not imply neither a.s. nor L_p

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

$$\mathsf{E}|\xi_n|^p \ge 2^{2^k-1}$$
 for every $n \ge 2^k$. $\mathsf{E}|\xi_n|^p \to \infty$.

 ξ_n does not converge to 0 in L_p

$$\Omega = [0, 1], \mathcal{F} = \mathcal{B}[0, 1], P$$
 — uniform

$$\Omega = [0,1], \, \mathcal{F} = \mathcal{B}[0,1], \, \mathsf{P}$$
 — uniform $\xi_1 = \mathit{I}_{[0,1)},$

$$\Omega = [0,1], \, \mathcal{F} = \mathcal{B}[0,1], \, \mathsf{P}$$
 — uniform $\xi_1 = I_{[0,1)},$ $\xi_2 = I_{[0,1/2)}, \, \xi_3 = I_{[1/2,1)},$

$$L_p$$
 does not imply a.s.

$$\Omega = [0,1], \, \mathcal{F} = \mathcal{B}[0,1], \, \mathsf{P}$$
 — uniform $\xi_1 = I_{[0,1)},$ $\xi_2 = I_{[0,1/2)}, \, \xi_3 = I_{[1/2,1)},$ $\xi_4 = I_{[0,1/4)}, \, \xi_5 = I_{[1/4,1/2)},$ $\xi_6 = I_{[1/2,3/4)}, \, \xi_7 = I_{[3/4,1)},$

$$L_p$$
 does not imply a.s.

$$\Omega = [0,1], \ \mathcal{F} = \mathcal{B}[0,1], \ \mathsf{P}$$
 — uniform $\xi_1 = I_{[0,1)},$ $\xi_2 = I_{[0,1/2)}, \ \xi_3 = I_{[1/2,1)},$ $\xi_4 = I_{[0,1/4)}, \ \xi_5 = I_{[1/4,1/2)},$ $\xi_6 = I_{[1/2,3/4)}, \ \xi_7 = I_{[3/4,1)}, \ldots$

 L_p does not imply a.s.

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 L_p does not imply a.s.

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

 L_p does not imply a.s.

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

 $E|\xi_n|^p \le 2^{-k}$ for every $n \ge 2^k$.

 L_p does not imply a.s.

For $\omega \in [0,1)$, there are infinitely many n such that $\xi_n(\omega) > 1$.

 ξ_n does not converge to 0 a.s.

$$E|\xi_n|^p \le 2^{-k}$$
 for every $n \ge 2^k$.

$$\xi_n \xrightarrow{L_p} 0$$

a.s. does not imply L_p

a.s. does not imply L_p

$$\Omega = [0,1], \, \mathfrak{F} = \mathfrak{B}[0,1], \, \mathsf{P}$$
 — uniform.

a.s. does not imply L_p

$$\Omega = [0, 1], \, \mathcal{F} = \mathcal{B}[0, 1], \, P$$
 — uniform.

$$\xi_n = 2^{(1/p)n} I_{[0,1/n]}, \ n \in \mathbb{N}.$$

a.s. does not imply L_p

$$\Omega = [0, 1], \ \mathcal{F} = \mathcal{B}[0, 1], \ \mathsf{P}$$
 — uniform.

$$\xi_n = 2^{(1/p)n} I_{[0,1/n]}, \ n \in \mathbb{N}.$$

For $\omega \in (0,1]$, $\xi_n(\omega) = 0$ for n large enough.

a.s. does not imply L_p

$$\Omega = [0,1], \, \mathcal{F} = \mathcal{B}[0,1], \, \mathsf{P}$$
 — uniform.

$$\xi_n = 2^{(1/p)n} I_{[0,1/n]}, \ n \in \mathbb{N}.$$

For $\omega \in (0,1]$, $\xi_n(\omega) = 0$ for n large enough.

$$\xi_n \stackrel{\mathsf{a.s.}}{\longrightarrow} 0$$

a.s. does not imply L_p

$$\Omega = [0, 1], \mathcal{F} = \mathcal{B}[0, 1], P$$
 — uniform.

$$\xi_n = 2^{(1/p)n} I_{[0,1/n]}, n \in \mathbb{N}.$$

For $\omega \in (0,1]$, $\xi_n(\omega) = 0$ for n large enough.

$$\xi_n \stackrel{\mathsf{a.s.}}{\longrightarrow} 0$$

$$\mathsf{E}|\xi_n|^p = \frac{2^n}{n}$$
 for every $n \in \mathbb{N}$.

a.s. does not imply L_p

$$\Omega = [0, 1], \mathcal{F} = \mathcal{B}[0, 1], P$$
 — uniform.

$$\xi_n = 2^{(1/p)n} I_{[0,1/n]}, n \in \mathbb{N}.$$

For $\omega \in (0,1]$, $\xi_n(\omega) = 0$ for n large enough.

$$\xi_n \stackrel{\mathsf{a.s.}}{\longrightarrow} 0$$

 $\mathsf{E}|\xi_n|^p = \frac{2^n}{n}$ for every $n \in \mathbb{N}$.

$$\mathsf{E}|\xi_n|^p \to \infty$$

Simple random walk

$$\xi_1, \xi_2, \ldots$$
 — i.i.d. r.v. $\sim U(\{-1, 1\})$.

Simple random walk

$$\xi_1, \xi_2, \ldots$$
 — i.i.d. r.v. $\sim U(\{-1, 1\})$.

$$S_0=0,\ S_n=\xi_1+\ldots+\xi_n$$
 $\{S_n,\ n\in\mathbb{N}\}$ — simple random walk (on \mathbb{Z})

Simple random walk

$$\xi_1, \xi_2, \ldots$$
 — i.i.d. r.v. $\sim U(\{-1, 1\})$.

$$S_0 = 0, S_n = \xi_1 + \ldots + \xi_n$$

 $\{S_n, n \in \mathbb{N}\}$ — simple random walk (on \mathbb{Z})

For
$$\omega \in \Omega$$
, $\{S_n(\omega), n \in \mathbb{N}\}$ — a trajectory of the random walk.

Trajectory

$$N(n,x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

$$N(n, x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

• if
$$|x| > n$$
,

$$N(n, x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

• if
$$|x| > n$$
, then $N(n,x) = 0$;

$$N(n, x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

- if |x| > n, then N(n, x) = 0;
- if x + n is odd,

$$N(n, x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

- if |x| > n, then N(n, x) = 0;
- if x + n is odd, then N(n, x) = 0;

$$N(n, x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

- if |x| > n, then N(n, x) = 0;
 - if x + n is odd, then N(n, x) = 0;
 - ▶ otherwise.

$$N(n,x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n(\omega) = x$.

- if |x| > n, then N(n, x) = 0;
 - if x + n is odd, then N(n, x) = 0;
 - ▶ otherwise, $N(n, x) = \binom{n}{n+x}$.

$$\tilde{N}(n,x)$$
 — number of trajectories of $\{S_k, k \leq n\}$ s.t. $S_n = x, S_1, \dots, S_{n-1} \neq 0$.

$$\tilde{N}(n, x)$$
 — number of trajectories of $\{S_k, k < n\}$ s.t. $S_n = x, S_1, \dots, S_{n-1} \neq 0$.

 $\tilde{N}(n,x) = N(n-1,x-1) - N(n-1,-x-1).$

Theorem (Reflection principle)

If x > 0, then

$$\tilde{N}(n, x)$$
 — number of trajectories of $\{S_k, k \le n\}$ s.t. $S_n = x, S_1, \dots, S_{n-1} \ne 0$.

If x > 0, then $\tilde{N}(n,x) = N(n-1,x-1) - N(n-1,-x-1).$ If x < 0, then

If
$$x > 0$$
, then $\tilde{N}(n,x) = N(n-1,x-1) - N(n-1,-x-1)$. If $x < 0$, then $\tilde{N}(n,x) = N(n-1,x+1) - N(n-1,-x+1)$.

Let x > 0.

Let x > 0.

TI :

There exists a bijection between $\{\text{trajectories s.t. } S_1 = 1, S_n = -x\},$ $\{\text{trajectories s.t. } S_1 = 1, S_n = x, \text{ at least one of } S_2, \dots, S_{n-1} \text{ equals } 0\}.$

Let x > 0.

There exists a bijection between

{trajectories s.t.
$$S_1 = 1$$
, $S_n = -x$ }, {trajectories s.t. $S_1 = 1$, $S_n = x$, at least one of S_2, \ldots, S_{n-1} equals 0}.

$$\tilde{N}(n,x) =$$

$$\tilde{N}(n,x) =$$
 the number of trajectories from $(1,1)$ to (n,x) that never meet $0 =$

$$\tilde{N}(n,x)=$$
 the number of trajectories from $(1,1)$ to (n,x) that never meet $0=N(n-1,x-1)$ —the number of trajectories from $(1,1)$ to (n,x) that meet $0=$

$$N(n,x) =$$
 the number of trajectories from $(1,1)$ to (n,x) that never meet $0 = N(n-1,x-1)$ —the number of trajectories from $(1,1)$ to (n,x) that meet $0 = N(n-1,x-1) - N(n-1,-x-1)$.

$$N(n,x) =$$
 the number of trajectories from $(1,1)$ to (n,x) that never meet $0 = N(n-1,x-1)$ —the number of trajectories from $(1,1)$ to (n,x) that meet $0 = N(n-1,x-1) - N(n-1,-x-1)$.

The case x < 0 is symmetric.

$$P(S_n = x) =$$

$$P(S_n = x) = \frac{1}{2^n} N(n, x) =$$

$$\mathsf{P}(S_n = x) = \frac{1}{2^n} \mathsf{N}(n, x) = \frac{1}{2^n} \binom{n}{\frac{n+x}{2}}$$

$$P(S_n = x) = \frac{1}{2^n} N(n, x) = \frac{1}{2^n} \binom{n}{\frac{n+x}{2}}$$

$$P(S_1 > 0, ..., S_{n-1} > 0, S_n = x) =$$

$$P(S_n = x) = \frac{1}{2^n} N(n, x) = \frac{1}{2^n} \binom{n}{\frac{n+x}{2}}$$

$$P(S_1 > 0, ..., S_{n-1} > 0, S_n = x) = \frac{\tilde{N}(n, x)}{2^n} =$$

$$P(S_n = x) = \frac{1}{2^n} N(n, x) = \frac{1}{2^n} \binom{n}{\frac{n+x}{2}}$$

$$2^{n} \cdot (2^{n} \cdot 1) = 2^{n} \cdot (2^{n} \cdot 1) = 2^{n} \cdot (\frac{n}{2})$$

$$P(S_1 > 0, ..., S_{n-1} > 0, S_n = x) = \frac{\tilde{N}(n, x)}{2^n} =$$

 $\frac{N(n-1,x-1)-N(n-1,-x-1)}{n-1}=$

$$\mathsf{P}(S_n = x) = \frac{1}{2^n} \mathsf{N}(n, x) = \frac{1}{2^n} \binom{n}{\frac{n+x}{2}}$$

$$P(S_1 > 0, ..., S_{n-1} > 0, S_n = x) = \frac{\tilde{N}(n, x)}{2^n} =$$

$$1 \left(\Im_n - \lambda \right) = \frac{2^n \operatorname{Ve}(n, \lambda)}{2^n \left(\frac{n+x}{2} \right)}$$

 $\frac{N(n-1,x-1)-N(n-1,-x-1)}{n-1}=$

 $\frac{1}{2^n}\left(\binom{n-1}{\frac{n+x-2}{2}}-\binom{n-1}{\frac{n-x-2}{2}}\right).$

$$P(\forall n \geq 1 | S_n \neq 0) =$$

$$P(\forall n \geq 1 \ S_n \neq 0) =$$

$$2P(\forall n \geq 1 | S_n > 0) =$$

$$\mathsf{P}(\forall n \geq 1 \ S_n \neq 0) =$$

$$2P(\forall n \geq 1 | S_n > 0) =$$

$$\lim_{n\to\infty}\sum_{-\infty}^{\infty}\mathsf{P}(S_1>0,\ldots,S_{n-1}>0,S_n=x)$$

$$P(\forall n \geq 1 | S_n \neq 0) =$$

$$2P(\forall n \geq 1 | S_n > 0) =$$

$$\lim_{n\to\infty} \sum_{i=1}^{n} P(S_1 > 0, \dots, S_{n-1} > 0, S_n = x) = 0.$$

Law of large numbers

Since $ES_n = 0$, we get

$$\frac{S_n}{\sqrt{n}f(n)} \stackrel{\mathsf{P}}{\longrightarrow} 0$$

for $f(n) \uparrow \infty$.

Law of large numbers

Since $ES_n = 0$, we get

$$\frac{S_n}{\sqrt{n}f(n)} \stackrel{\mathsf{P}}{\longrightarrow} 0$$

for $f(n) \uparrow \infty$.

What about a.s. convergence?

Law of large numbers

Since $ES_n = 0$, we get

$$\frac{S_n}{\sqrt{n}f(n)} \stackrel{\mathsf{P}}{\longrightarrow} 0$$

for $f(n) \uparrow \infty$.

- What about a.s. convergence?
- ▶ Is there a limit of $\frac{S_n}{\sqrt{n}}$?