Zadanie

Zaprojektować programowany automat sterujący pracą pomp P₁ i P₂ opróżniających zbiornik magazynujący odpady z procesu chemicznego. Poziom w zbiorniku kontrolowany jest czujnikami X₁ i X₂. Program pracy pomp jest następujący:

- po zapełnieniu się zbiornika ($X_1 = 1$) powinna się załączyć jedna z pomp P_1 lub P_2 ,
- po opróżnieniu się zbiornika (X₂ = 0) pracująca pompa powinna się wyłączyć,
- pompy powinny pracować na przemian.

Kolejne etapy syntezy automatu:

Pierwotna siatka programu:

о ор	różnie	niu się	zbiorı	nika (X	₂ = 0) p	oracuj	ąca pompa powinna się wyłączyć,
omp	y pow	inny p	racowa	ać na p	rzemia	an.	
niki _l	oomp	P ₁ , P ₂ z	załącza	ne są o	do siec	i za po	omocą styczników odpowiednio Z ₁ i Z ₂ .
lejn	e etap	y syn	tezy a	utoma	atu:		
erwo	tna sia	atka pr	ogram	u:			10.0.
	$x_1^t x_2^t$						
	<i>λ</i> 1 <i>λ</i> 2						
	00	01	11	10	Z_1^t	Z_2^t	
S ₀	1	S ₁	So	1	1	0	16/24
S ₁	S ₂	S ₁	-	-	1	0	10013
S ₂	S ₂	S ₃	-	-	0	0	HA
S ₃		S ₃	S ₄	-	0	0	
S ₄	-	S ₅	S ₄	-	0	1	
S ₅	S ₆	S ₅	- 5	1	0	1	
S ₆	S ₆	S ₇	-	ı	0	0	
S ₇		S ₇	S ₀	-	0	0	

Siatka programu po redukcji:

 $x_1^t x_2^t$

	00	01	11	10	Z_1^t	Z_2^t
S ₀	S ₂	S ₀	So	-	1	0
S ₂	S ₂	S ₂	S ₄	-	0	0
S ₄	S ₆	S ₄	S ₄	-	0	1
S_6	S ₆	S ₆	S ₀	-	0	0

Siatka Karnaugha:

 $x_{1}^{t}x_{2}^{t}$

Tablica zawartości mikroprogramu:

Q_1^t	Q_2^t	x_1^t	x_2^t	Q_1^{t+1}	Q_2^{t+1}	Z_1^t	Z_2^t
A ₃	A ₂	A ₁	A ₀	Y ₁₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	1	1	0
0	0	0	1	0	0	1	0
0	0	1	0	-	-	-	-
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	-	-	-	-
0	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	-	- 🗴	(4)	-
1	0	1	1	0	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	1	1	0	1
1	1	1	0	-	-	-	-
1	1	1	1	1	1	0	1

Źródło: Małysiak, H. (Red.). (2003). *Teoria Automatów Cyfrowych - Laboratorium*. (wydanie V). Gliwice: Wydawnictwo Politechniki Śląskiej. (s. 278).

Zaprogramowaliśmy dostępną pamięć RAM o rozmiarze 16×4 . Najpierw podłączyliśmy wejście CS do masy. Następnie na wejściach $A_3A_2A_1A_0$ ustawialiśmy kolejne adresy. Przy każdym adresie na wejściach $X_3X_2X_1X_0$ wprowadzaliśmy negację oczekiwanych stanów wyjść, a na wejściu WE przez chwilę ustawialiśmy stan niski, co zapisywało dane do pamięci. Po zakończeniu procesu programowania pamięci, odłączyliśmy wejścia $X_3X_2X_1X_0$. Wejście WE zostawiliśmy wiszące. Wyjścia Y_3Y_2 podłączyliśmy do przerzutników typu D, a wyjścia przerzutników podłączyliśmy do wejść A_3A_2 . Dzięki temu układ działał synchronicznie i nie dochodziło do wyścigów. Jako zegar wykorzystaliśmy przycisk, który był przez jednego z nas naciskany z wystarczająco dużą częstotliwością.

Schemat układu:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy opisany układ. Działał poprawnie. Najważniejszą zaletą układów mikroprogramowalnych jest to, że można zmienić działanie układu dla określonych wejść bez konieczności projektowania całego układu od nowa. Sprawia to, że są one szeroko stosowane w automatyce przemysłowej, robotyce i systemach wbudowanych.