This is my quiz A template for quizzes

Markus Tripp March 7, 2024

(Cancellability Rules)

Let A, B two $m \times n$ matrices and $x \in \mathbb{R}^n$ a vector such that

$$Ax = Bx$$

holds. This implies: A = B.

- ♠ True
- B False

(Cancellability Rules)

Let A, B two $m \times n$ matrices and $x \in \mathbb{R}^n$ a vector such that

$$Ax = Bx$$

holds. This implies: A = B.

- **⚠** True
- B False

(Cancellability Rules)

Let A, B two $m \times n$ matrices such that for all vectors $x \in \mathbb{R}^n$

$$Ax = Bx$$

holds. This implies: A = B.

- ♠ True
- B False

(Cancellability Rules)

Let A, B two $m \times n$ matrices such that for all vectors $x \in \mathbb{R}^n$

$$Ax = Bx$$

holds. This implies: A = B.

B False

(Vector Spaces)

Which of the following sets are vector spaces?

- **B** The set of solutions x of Ax = 0, where A is a $m \times n$ matrix
- **(6)** The set of 2×2 matrices A with det A = 0
- **①** The set of polynomials p(x) with $\int_{-1}^{1} p(x) dx = 0$

(Vector Spaces)

Which of the following sets are vector spaces?

$$\{x = (x_1, x_2, x_3)^t \in \mathbb{R}^3 : \begin{pmatrix} 1 & 0 & 2 \end{pmatrix} x = 0 \}$$

- **B** The set of solutions x of Ax = 0, where A is a $m \times n$ matrix \checkmark
- The set of 2×2 matrices A with det A = 0
- **①** The set of polynomials p(x) with $\int_{-1}^{1} p(x) dx = 0$

(Linear Independence)

Let V be a vector space over a field K, and let $A = \{v_1, \ldots, v_k\} \subseteq V$. If there is **a** vector $v \in V$, which can be uniquely written as a linear combination of v_1, \ldots, v_k , then A is linear independent.

- ⚠ True
- B False

(Linear Independence)

Let V be a vector space over a field K, and let $A = \{v_1, \ldots, v_k\} \subseteq V$. If there is **a** vector $v \in V$, which can be uniquely written as a linear combination of v_1, \ldots, v_k , then A is linear independent.

B False

(Linear Independence)

Let V be a vector space over a field K, and let $A = \{v_1, \ldots, v_k\} \subseteq V$. If there is **a** vector $v \in V$, which can be uniquely written as a linear combination of v_1, \ldots, v_k , then A is linear independent.

B False

Improvements?

Improvements?

Feel free to adapt/polish this template in any way you like. I am happy to discuss ideas and suggestions for general improvement of this template!

