Aufgabenblatt 9 zur Diskreten Mathematik 2

(Gruppen)

Aufgabe 9.1

Definiere $G := \mathbb{Q} \setminus \{1\}$, und auf G definiere die Verknüpfung

$$x \circ y := x + y - xy \quad (x, y \in G)$$

Zeigen Sie, dass (G, \circ) eine kommutative Gruppe ist.

Aufgabe 9.2

Es sei (G, \circ) eine Gruppe mit $g \circ g = e$ für alle g in G. Zeigen Sie, dass G abelsch ist.

Aufgabe 9.3

- (1) Es sei (M, \circ) eine algebraische Struktur mit den folgenden Eigenschaften:¹
 - (i) $\forall x, y, z \in M : (x \circ y) \circ z = x \circ (y \circ z)$ (Assoziativgesetz),
 - (ii) $\exists e \in M \ \forall x \in M : e \circ x = x = x \circ a$ (Existenz neutrales Element).

Ein Element $x \in M$ heisst invertierbar, wenn es ein $x' \in M$ gibt mit $x' \circ x = e = x \circ x'$. Setze

$$M^\times := \{x \in M \,|\, x \text{ ist invertierbar}\}.$$

Zeigen Sie: M^{\times} ist eine Gruppe.

- (2) (a) Zeigen Sie: Für alle $m \in \mathbb{N}$ gilt $\{[1]_m, [m-1]_m\} \subseteq \mathbb{Z}_m^{\times}$.
 - (b) Bestimmen Sie \mathbb{Z}_m^{\times} für m=6,7,8.

Aufgabe 9.4

Gibt es eine Gruppe der Ordnung 5, die nicht kommutativ ist? Falls ja, geben Sie eine an, falls Nein, beweisen Sie, dass es keine solche Gruppe gibt.

Hinweis: Verwenden Sie Verknüpfungstafeln.

¹Man nennt eine algebraische Struktur mit diesen Eigenschaften MONOID.