1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2018

How to model chemical interactions

Lecture 6

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

E-mail: <u>mbuehler@MIT.EDU</u>

URL: http://web.mit.edu/mbuehler/www/

Content overview

I. Fundamentals of particle methods

- 1. Atoms, molecules, chemistry
- 2. Statistical mechanics
- 3. Molecular dynamics, Monte Carlo
- 4. Visualization and data analysis
- 5. Mechanical properties application: how things fail (and how to prevent it)
- 6. Multi-scale modeling paradigm
- 7. Biological systems (simulation in biophysics) how proteins work and how to model them

Lectures 1-12 February/March

II. Advanced topics in particle methods

- 1. Quantum Weirdness: The Theory of Quantum Mechanics
- 2. The Many-Body Problem: From Many-Body to Single-Particle
- 3. Quantum modeling of materials
- 4. From Atoms to Solids
- 5. Basic properties of materials
- 6. Advanced properties of materials
- Materials Informatics

Lectures 13-24 March/April/May

Lecture 6: How to model chemical interactions

Outline:

- 1. Review
- 2. Example: Model of fracture of brittle materials

Goal of today's lecture:

- Get to know basic methods to model chemical bonds (starting with simple "pair potentials")
- Practice problem
- Learn how to identify parameters for models of chemical bonds (for pair potentials)
- Case study of brittle fracture
 - Movies, etc.

Optional reading assignments

"Atomistic Modeling of Materials Failure"

- Chapter 2, pp. 31-54 and pp. 90-94
- Chapter 4, pp. 132-142
- Chapter 6, pp. 185-201 (brittle fracture)

http://www.springer.com/us/book/9780387764 252#otherversion=9781441945518

Further reading...

Chapters of particular relevance

The Materiome Pages 27-60

Computational Approaches and Simulation Pages 213-263

Mechanical Characterization in Molecular Simulation Pages 265-296

http://www.springer.com/us/book/9789400716100

Other books, reading

- M. P. Allen, D. J. Tildesley (1989) Computer simulation of liquids.
 Oxford University Press. ISBN 0-19-855645-4.
- D. C. Rapaport (1996) The Art of Molecular Dynamics Simulation.
 ISBN 0-521-44561-2.
- Frenkel, Daan; Smit, Berend (2002) [2001]. Understanding Molecular Simulation: from algorithms to applications. San Diego: Academic Press. ISBN 0-12-267351-4.
- J. M. Haile (2001) Molecular Dynamics Simulation: Elementary Methods. ISBN 0-471-18439-X
- Andrew Leach (2001) Molecular Modelling: Principles and Applications. (2nd Edition) Prentice Hall. ISBN 978-0-582-38210-7.

1. Review

Atomic interactions – different types of chemical bonds

- Primary bonds ("strong")
 - Ionic (ceramics, quartz, feldspar rocks)
 - Covalent (silicon)
 - Metallic (copper, nickel, gold, silver) (high melting point, 1000-5,000K)
- Secondary bonds ("weak")
 - Van der Waals (wax, low melting point)
 - Hydrogen bonds (proteins, spider silk) (melting point 100-500K)
- Ionic: Non-directional (point charges interacting)
- Covalent: Directional (bond angles, torsions matter)
- Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic interactions

Interatomic bond - model

Attraction: Formation of chemical bond by sharing of electrons **Repulsion**: Pauli exclusion (too many electrons in small volume)

Types of bonding (illustrations)

Ionic bonding

Covalent bonding

electron density (localized!)

10

Overview - pair potentials: total energy calculation

Simple approximation: Total energy is sum over the energy of all pairs of atoms in the system

Pair wise interaction potential

 $\phi(r_{ii})$

$$r_{ij}$$
 = distance between particles i and j

Energy of atom i $U_i = \sum_{i=1}^N \phi(r_{ij})$

avoid double counting
$$U_{total} = \underbrace{\frac{1}{2} \sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} \phi(r_{ij})}_{}$$

Interatomic pair potentials: examples

$$\phi(r_{ij}) = D \exp\left(-2\alpha(r_{ij} - r_0)\right) - 2D \exp\left(-\alpha(r_{ij} - r_0)\right)$$
 Morse potential

$$\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

Lennard-Jones 12:6 potential (excellent model for noble Gases, Ar, Ne, Xe..)

$$\phi(r_{ij}) = A \exp\left(-\frac{r_{ij}}{\sigma}\right) - C\left(\frac{\sigma}{r_{ij}}\right)^{6}$$

Buckingham potential

$$\phi(r_{ij}) = a_0 + \frac{1}{2}k(r_{ij} - r_0)^2$$

Harmonic approximation (no bond breaking)

Multi-scale paradigm

- Show earlier: molecular dynamics provides a powerful approach to relate the diffusion constant that appears in continuum models to atomistic trajectories
- Force field fitting to identify parameters for potentials (based on quantum mechanical results) is yet another "step" in this multi-scale paradigm

Derivative of LJ potential ~ force

Properties of LJ potential as function of parameters \mathcal{E}, σ

Equilibrium distance between atoms r_0 and maximum force

first derivative zero (force)

second derivative zero (=loss of convexity, spring constant=0)

 r_0 = distance of nearest neighbors in a lattice

Copper, NN: 2.556 Å $(a_0=3.615 \text{ Å})$

Case study: plasticity in a micrometer crystal of copper

Simulation details

- 1,000,000,000 atoms (0.3 micrometer side length)
- 12:6 Lennard-Jones ductile material, for copper
- Visualization using energy filtering method (only show high energy atoms)

Generic features of atomic bonding: "repulsion vs. attraction"

A simulation with 1,000,000,000 particles Lennard-Jones - copper

Strengthening mechanisms

down and material becomes brittle

MD updating scheme: Complete

(1) Updating method (integration scheme)

$$r_i(t_0 + \Delta t) = -r_i(t_0 - \Delta t) + 2r_i(t_0)\Delta t + a_i(t_0)(\Delta t)^2 + \dots$$

Positions at t_0 - Δt

Positions at t_0

Accelerations at t_0

(2) Obtain accelerations from forces

$$f_i = ma_i$$
 $a_i = f_i / m$

(4) Crystal (initial conditions) Positions at t_0

(3) Obtain forces from potential

$$F = -\frac{\mathrm{d}\,\phi(r)}{\mathrm{d}\,r} \qquad f_i = F\,\frac{x_i}{r}$$

Potential

$$\phi(r) = 4\varepsilon \left(\left[\frac{\sigma}{r} \right]^{12} - \left[\frac{\sigma}{r} \right]^{6} \right)$$

Practice problem

Pair potential formulation

1. List **all parameters** and their respective dimension for the following pair potentials:

Lennard-Jones Morse Harmonic

2. Explain the **physical meaning** of each parameter in the **harmonic potential**.

3. Explain the **physical meaning** of each parameter in the **Morse potential**. To solve this problem sketch the Morse potential for different parameter choices and observe changes in the potential shape.

4. Calculate the **potential energy** for the structures shown below (lines between atoms indicate equal distance at r_0), for a Morse pair potential, with cutoff $r_{\rm cut} = 1.1 \ r_0$

Morse potential

$$\phi(r_{ij}) = D \exp(-2\alpha(r_{ij} - r_0)) - 2D \exp(-\alpha(r_{ij} - r_0))$$

25

Lennard-Jones (LJ) potential

$$\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

Harmonic potential

$$\phi(r_{ij}) = a_0 + \frac{1}{2}k(r_{ij} - r_0)^2$$

Pair potential formulation

1. List **all parameters** and their respective dimension for the following pair potentials:

Lennard-Jones Morse Harmonic

- Explain the **physical meaning** of each parameter in the harmonic potential.
- Explain the **physical meaning** of each parameter in the **Morse potential**. To solve this problem sketch the Morse potential for different parameter choices and observe

changes in the potential shape.

 $\phi(r_{ij}) = D \exp\left(-2\alpha(r_{ij} - r_0)\right) - 2D \exp\left(-\alpha(r_{ij} - r_0)\right)$

Morse potential

Lennard-Jones (LJ) potential
$$\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

26

Harmonic potential $\phi(r_{ij}) = a_0 + \frac{1}{2}k(r_{ij} - r_0)^2$

4. Calculate the **potential energy** for the structures shown below (lines between atoms indicate equal distance at r_0), for a Morse pair potential, with cutoff $r_{\rm cut} = 1.1 \ r_0$

Cutoff radius

ľ

Cutoff radius = considering interactions only to a certain distance Basis: Force contribution negligible (slope)

Practice problem

4. Calculate the **potential energy** for the structures shown below (lines between atoms indicate equal distance at r_0), for a Morse pair potential, with cutoff $r_{\rm cut} = 1.1 \ r_0$

Practice problem

4. Calculate the **potential energy** for the structures shown below (lines between atoms indicate equal distance at r_0), for a Morse pair potential, with cutoff $r_{\rm cut} = 1.1 \ r_0$

Example: How to fit a potential

Problem statement

Given: QM data: energy vs. distance between Ne-Ne Determine suitable **Morse potential**

2. Example: Model of fracture of brittle materials

Tensile test of a wire

copper nanowire? (pset #1)

Ductile versus brittle materials

Glass
Polymers
Ice
Silicon

Difficult to deform, breaks easily

Copper, Gold, Nickel Platinum

Easy to deform hard to break

Deformation of materials: Nothing is perfect, and flaws or cracks matter

Failure of materials initiates at cracks

Griffith, Irwine and others: Failure initiates at defects, such as cracks, or grain boundaries with reduced traction, nano-voids, other imperfections ³⁷

Introduction: brittle fracture

 Materials: glass, silicon, many ceramics, rocks

 At large loads, rather than accommodating a shape change, materials break

Science of fracture: model geometry

- Typically consider a single crack in a crystal
- Remotely applied mechanical load
- Following discussion focused on single cracks and their behavior

Brittle fracture loading conditions

Commonly consider a single crack in a material geometry, under three types of loading: mode I, mode II and mode III

Brittle fracture mechanisms: fracture is a multiscale phenomenon

Questions to be answered

- Basic fracture process: dissipation of elastic energy
- Fracture initiation, that is, at what applied load to fractures initiate
- Fracture dynamics, that is, how fast can fracture propagate in material
- Relevance to earthquakes (speed and nature of spreading!)

Basic fracture process: dissipation of elastic energy

dissipated into breaking chemical bonds 43
---SURFACE ENERGY!

Earthquakes: "brittle" failure of the Earth

Once critical load exceeds, failure initiates

Critical condition given by "critical energy release rate": Dissipation of recoverable (elastic) energy equals surface energy

Stretching=store elastic energy

Release elastic energy dissipated into breaking chemical bonds

Earthquake dynamics (1999 Kocaeli, Turkey)

Sekiguchi et al., Bulletin of the Seismological Society of America, 92, 1, pp. 300–311, February 2002

"Then about 7.0 sec after the origin time, a strong moment release is triggered just behind the first time-window front moving at 5.8 km/sec [...]"

Significance: hints at intersonic fracture!

Sekiguchi et al., Bulletin of the Seismological Society of America, 92, 1, pp. 300–311, February 2002

Limiting speeds of cracks: linear elastic continuum theory

- Cracks can not exceed the limiting speed given by the corresponding wave speeds unless material behavior is nonlinear
- Cracks that exceed limiting speed would produce energy (physically impossible - *linear elastic continuum theory*)

Sound speeds in materials: overview

Material	$c_R \text{ (in m/s)}$	$c_s \text{ (in m/s)}$	$c_l \; ({\rm in} \; {\rm m/s})$
Steel	2,940	3,200	6,000
Al	2,850	3,100	$6,\!300$
Glass	3,030	3,300	5,800
PMMA	920	1,000	2,400

Wave speeds are calculated based on elastic properties of material

$$c_l = \sqrt{\frac{3\mu}{\rho}}$$
 $c_s = \sqrt{\frac{\mu}{\rho}}$ $c_R \approx \beta c_s$ $\beta \approx 0.923$

 μ = shear modulus $E = 8/3\mu$ $\mu = 3/8E$

$$E = 8/3\mu$$

$$\mu = 3/8E$$

Experiment evidence ("laboratory earthquakes" at Caltech)

Experiment: intersonic cracks

Rosakis et al., *Science*, 1999 *Paper posted on Stellar*

Experiment: intersonic cracks (47% faster than shear wave speed)

Isochromatic fringe pattern around a steady-state mode II intersonic crack along a weak plane in Homalite-100

Experiment

Theory (L.B. Freund)

Experiment: intersonic cracks

K. Xia, A. Rosakis et al., *Science*, 2004 *Paper posted on Stellar*

Building an atomistic model

Model building - review

Mike Ashby (Cambridge University):

 A model is an idealization. Its relationship to the real problem is like that of the map of the London tube trains to the real tube systems: a gross simplification, but one that captures certain essentials.

"Physical situation"

A "simple" atomistic model: geometry

Pair potential to describe atomic interactions Confine crack to a 1D path (weak fracture layer): Define a pair potential whose bonds never break (bulk) and a potential whose bonds break

$$\phi = \begin{cases} \frac{1}{2} k_0 (r - r_0)^2 & r < r_{\text{break}} \\ \frac{1}{2} k_0 (r_{\text{break}} - r_0)^2 & r \ge r_{\text{brea}} \end{cases}$$

Harmonic and harmonic bond snapping potential

$$\phi = \frac{1}{2}k_0(r - r_0)^2$$

$$\phi = \begin{cases} \frac{1}{2} k_0 (r - r_0)^2 & r < r_{\text{break}} \\ \frac{1}{2} k_0 (r_{\text{break}} - r_0)^2 & r \ge r_{\text{break}} \end{cases}$$

59

APPENDIX: Parameters for Morse potential

(for reference)

Morse potential parameters for various metals

Metal	$lpha a_0$	β	$L(\text{ev}) \times 10^{-22}$	$\alpha = A^{-1}$	$r_0 = A$	D(ev)
Pb	2.921	83.02	7.073	1.1836	3.733	0.2348
$\mathbf{A}\mathbf{g}$	2.788	71.17	10.012	1.3690	3.115	0.3323
Ni	2.500	51.78	12.667	1.4199	2.780	0.4205
Cu	2.450	49.11	10.330	1.3588	2.866	0.3429
Al	2.347	44.17	8.144	1.1646	3.253	0.2703
Ca	2.238	39.63	4.888	0.80535	4.569	0.1623
Sr	2.238	39.63	4.557	0.73776	4.988	0.1513
${f Mo}$	2.368	88.91	24.197	1.5079	2.976	0.8032
${f W}$	2.225	72.19	29.843	1.4116	3.032	0.9906
Cr	2.260	75.92	13.297	1.5721	2.754	0.4414
${f Fe}$	1.988	51.97	12.573	1.3885	2.845	0.4174
\mathbf{Ba}	1.650	34.12	4.266	0.65698	5.373	0.1416
\mathbf{K}	1.293	23.80	1.634	0.49767	6.369	0.05424
Na	1.267	23.28	1.908	0.58993	5.336	0.06334
Cs	1.260	23.14	1.351	0.41569	7.557	0.04485
Rb	1.206	22.15	1.399	0.42981	7.207	0.04644

$$\phi(r_{ij}) = D \exp(-2\alpha(r_{ij} - r_0)) - 2D \exp(-\alpha(r_{ij} - r_0))$$

Further Morse potential parameters

Table 3 Morse potential parameters used in MD simulation of uniaxial tensile loading [24]

Material	Crystal structure	Dissociation energy, D (eV)	Equilibrium radius, r_0 (Å)	α -parameter (\AA^{-1})	Lattice constant (Å)
Aluminium	FCC	0.2703	3.253	1.1650	4.05
Copper	FCC	0.3429	2.866	1.3590	3.62
Nickel	FCC	0.4205	2.780	1.4199	3.52
Iron	BCC	0.4172	2.845	1.3890	2.87
Chromium	BCC	0.4414	2.754	1.5721	2.89
Tungsten	BCC	0.9906	3.032	1.4116	3.17