15. Základné rovinné útvary – lineárne útvary

Rovinný útvar je útvar, ktorý je podmnožinou roviny, napr. bod, priamka, polpriamka,

rovina, polrovina,...

Bod je bezrozmerný geometrickú útvar, označuje sa veľkými písmenami (A,

B, C...)

Priamka je jednorozmerný geometrický útvar, označuje sa malými písmenami (a,

b,...) alebo dvoma bodmi (XY,...);

2 priamky môžu byť:

1.) rovnobežné:

a) $r\hat{o}zne - p // q$ a súčasne $p \neq q$

b) totožné – p // q a súčasne splývajú p ∩ q = p

2.) rôznobežné: p nie je // s q a súčasne p priesečník q = P; P –

priesečník p \cap q = $\{P\}$

3.) **mimobežné:** p nie je // s q a súčasne p priesečník q = prázdna

množina

Polpriamka polpriamka AB je množina všetkých takých bodov X na priamke AB, že

bod A neleží medzi bodmi BA

Úsečka ak bod A sa nerovná B a A patrí p, B patrí p, tak úsečku AB definujeme

ako prienik dvoch polpriamok, AB = polpriamka AB prienik polpriamka

BA

Dĺžka dĺžka (veľkosť úsečky) AB je vzdialenosť bodov A, B

Stred úsečky sa nazýva bod S, ktorý úsečku AB delí tak, že platí: veľkosť AS =

veľkosť SB

Os úsečky je priamka, ktorá prechádza stredom S úsečky AB a je na ňu kolmá

Rovina je dvojrozmerný geometrický útvar, môže byť označená:

a) gréckymi písmenami – $(\alpha, \beta, \gamma,...)$

b) cez 3 body – ↔ABC; A,B,C sú nekolineárne body

c) priamkou a bodom na nej neležiacim – ↔pA; A nepatrí p

d) dvoma priamkami – ↔pq; p nie je totožná s q

Polrovina polrovina pC je množina všetkých bodov X v rovine, ktoré majú tú

vlastnosť, že nijaký bod priamky p nie je vnútorným bodom úsečky CX; priamka p delí rovinu r na dve navzájom opačné polroviny, táto priamka je hranicou, hraničnou priamkou oboch polrovín, každý iný bod roviny r, ktorý neleží na hraničnej priamke, je vnútorným bodom jednej z oboch

rovín

priamy uhol

plný uhol

ostrý uhol

striedavé uhly α, a β

oL≅ B

súhlasné uhly αaβ α≅β

nulový uhol

pravý uhol

tupý uhol

uhol AVB je prienik 2 polrovín, AVB a BVA; bod V nazývame vrchol uhla AVB, polpriamky VA a VB nazývame ramená uhla

- a) **konvexný uhol** sa nazýva uhol AVB, ktorý má veľkosť do 180°
- b) **konkávny uhol (nekonvexný)** sa nazýva uhol, ktorý vznikne zjednotením polrovín opačných k polrovinám AVB a BVA, má veľkosť nad 180°

druhy uhlov:

- a) **priamy uhol** ak sú polpriamky VA, VB opačné, tak sa uhol AVB nazýva priamy uhol a má veľkosť 180°
- b) **nulový uhol** ak sa VA = VB, tak tieto polpriamky určujú nulový uhol (neobsahuje žiadne ďalšie body roviny)
- c) **plný uhol** ak sa VA = VB, tak tieto polpriamky určujú aj plný uhol, jeho vnútornými bodmi sú všetky ostatné body roviny; je to doplnok nulového uhla v rovine
 -) **pravý uhol** je taký uhol, ktorý je zhodný so svojim susedným uhlom, je to polovica priameho uhla; má veľkosť 90°
- e) **ostrý uhol** je konvexný uhol, ktorého veľkosť je menšia ako veľkosť pravého uhla
- f) **tupý uhol** je konvexný uhol, ktorý je väčší ako pravý uhol
- g) kosý uhol je uhol, ktorý nie je nulový, pravý, priamy, ani plný
- h) **dutý uhol** je uhol, ktorý je menší ako priamy uhol

dvojice uhlov:

- a) **vrcholové uhly** sú dva uhly, ktorých ramená sú opačné polpriamky, vrcholové uhly sú zhodné
- b) **susedné (vedľajšie) uhly** sú dva uhly, ktorých jedno rameno je spoločné a druhé ramená sú opačné polpriamky, súčet vedľajších uhlov je priamy uhol
- c) **súhlasné uhly** sú dva uhly, ktorých prvé ramená ležia na jednej priamke a druhé ramená sú rovnobežné, pritom smer príslušných ramien je rovnaký (súhlasný); súhlasné uhly sú zhodné
- d) striedavé uhly sú dva uhly, ktorých prvé ramená ležia na jednej priamke a druhé ramená sú rovnobežné, pritom smer príslušných ramien je opačný (striedavý); striedavé uhly sú zhodné

Os uhla

je polpriamka so začiatkom vo vrchole uhla, ktorá uhol rozdelí na dva zhodné uhly

Stredový uhol

uhol, ktorého vrcholom je stred S kružnice k a ktorého ramená prechádzajú bodmi A, B oblúka kružnice k, sa nazýva stredový uhol prislúchajúci ku kružnicovému oblúku, ktorý v tomto uhle leží; obvykle ho označujeme ω (omega)

Obvodový uhol

ku každému stredovému uhlu prislúcha nekonečne mnoho tzv. obvodových uhlov γ (gama) – uhol AVB, ktorého vrchol leží na opačnom kružnicovom oblúku ako oblúk prislúchajúci stredovému uhlu ω (omega) – uhol ASB

veľkosť stredového uhla ASB sa rovná dvojnásobku veľkosti obvodového uhla, ω = 2γ

Kolmice

ak priamky p, q zvierajú uhol 90°, tak ich nazývame kolmicami (kolmými priamkami), ich priesečník sa nazýva päta kolmice

Vzdialenosť

- a) **dvoch bodov:** d = |AB| = |xB xA|
- b) **bodu od priamky:** vzdialenosť bodu A od priamky p je dĺžka úsečky AP, kde bod P je priesečník priamky p a kolmice k vedenej cez bod A na priamku p; $d(X_0,p) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$
- c) **dvoch rovnobežných priamok:** vzdialenosť rovnobežných priamok p, q je vzdialenosť bodov A, B, ktoré sú priesečníkmi priamok p, q s ľubovoľnou kolmicou k na tieto priamky

Deliaci pomer

ak chcem rozdeliť danú úsečku AB v určitom pomere (napr. $\frac{2}{3}$), tak

sčítam hodnoty čitateľa a menovateľa (5) a k úsečke AB spravím pod ľubovoľným uhlom úsečku AC, ktorú rozdelím na 5 rovnakých častí (napr. |AC| = 5cm => 1 časť = 1cm), následne vediem rovnobežky vzhľadom na CB, ktoré prechádzajú cez body rozdelenej AC a tieto rovnobežky rozdelia úsečku AB v danom pomere

Príklady:

- 1.) Viete, že v rovnoramennom trojuholníku má rameno dĺžku 10cm. Akú dĺžku môže mať jeho základňa? (|AB| ∈ (0; 20))
- 2.) V trojuholníku ABC poznáte ťažnice $t_a = 9$ cm, $t_b = 6$ cm. Aké hodnoty môže nadobúdať strana a? (a \in (2; 14))
- 3.) V danej kružnici k zostrojte dva l'ubovol'né priemery AB a CD. Označte uhol α, ktorý zvierajú priamky AB a CD. Dokážte, že dotyčnice ku kružnici k v krajných bodoch daných priemerov zvierajú tiež uhol α.
- 4.) Nad stranami AB, AC trojuholníka ABC sú zostrojené rovnostranné trojuholníky ABH a ACK tak, že majú spoločné len strany AB a AC. Dokážte, že CH = BK.
- 5.) V trojuholníku ABC narysujte všetky tri stredné priečky. Trojuholník ABC je rozdelený na štyri trojuholníky, ktoré sú podobné s trojuholníkom ABC. Dokážte a podobnosť zapíšte.
- 6.) Do rovnostranného trojuholníka ABC so stranou a je vpísaný štvorec. Vypočítajte dĺžku strany štvorca. (a. $(2\sqrt{3} 3))$
- 7.) Danej kružnici vpíšte a opíšte pravidelný 6-uholník. Dokážte, že oba 6-uholníky sú podobné a vypočítajte pomer podobnosti. $(\frac{2\sqrt{3}}{3}:1)$

- 8.) Sú dané kružnice k_1 (O_1 ; 4cm), k_2 (O_2 ; 2cm), $|O_1O_2| = 9$ cm. Vypočítajte vzdialenosť stredov rovnoľahlosti daných kružníc k_1 , k_2 . (12cm)
- 9.) V akom pomere sú obsahy dvoch podobných trojuholníkov? (k²)
- 10.) Je daný obdĺžnik ABCD. Označte S stred strany AB. Z bodu B zostrojte kolmicu na úsečku SC, jej pätu označte B_1 . Vypočítajte pomer dĺžok úsečiek $|SB_1|$: $|B_1C|$. Úlohu riešte pre: a) a = 6cm, b = 4cm; b) všeobecne; (9:16); $(a^2:4b^2)$
- 11.) Je daná kružnica. Kružnici opíšeme a vpíšeme štvorec. Určte pomer dĺžok strán a pomer obsahov týchto dvoch štvorcov. $(\sqrt{2}:2;1:2)$
- 12.) Je daná kružnica k (S; 3cm). Zvoľte bod M tak, aby platilo |SM| = 9cm. Z bodu M zostrojte dotyčnice ku kružnici k. Označte body dotyku T₁, T₂. Vypočítajte dĺžky úsečiek: a) MT₁ b) T₁T₂ c) vzdialenosť stredu S od úsečky T₁T₂ (6√2 cm; 4√2 cm: 1cm)
- 13.) Je daný obdĺžnik ABCD (AB = 8cm; BC = 6cm). Označte A₁ pätu kolmice zostrojenej z bodu A na úsečku BD, označte A₂ pätu kolmice zostrojenej z bodu A₁ na úsečku AB. Vypočítajte dĺžky úsečiek: a) BD b) DA₁ c) BA₁ d) AA₁ e) A₁A₂ (10cm; 3,6cm; 6,4cm; 4,8cm; 3,84cm)
- 14.) Na ciferníku hodiniek vyznačte trojuholník, ktorý spája body zodpovedajúce číslam 11, 8, 4. Vypočítajte jeho vnútorné uhly. (75°, 45°, 60°)
- 15.) Na ciferníku hodiniek vyznačte dve úsečky, ktoré vzniknú spojením bodov zodpovedajúcich číslam 1, 5 a 8, 4. Dokážte, že tieto úsečky sú navzájom kolmé.
- 16.) V pravidelnom 8-uholníku vyznačte štvoruholník BDEH. Vypočítajte veľkosti jeho vnútorných uhlov. (90°; 112,5°; 90°; 67,5°)
- 17.) Do kružnice je vpísaný trojuholník ABC, ktorého vrcholy delia danú kružnicu na tri oblúky v pomere 2 : 3 : 7. Vypočítajte veľkosti vnútorných uhlov trojuholníka. (30°, 45°, 105°)
- 18.) V pravom trojuholníku s preponou c je daná odvesna a = 4cm a ťažnica t_a = 6cm. Vypočítajte ťažnicu t_b . (2 $\sqrt{6}$)
- 19.) Nájdite v kocke ABCDEFGH ku priamke AB: a) aspoň tri priamky k nej rôznobežné b) dve rovnobežné priamky c) dve mimobežné priamky
- 20.) Zostrojte priesečnicu rovín BCG a AEO v kocke ABCDEFGH. Bod O je stred steny BCGF