1A

1A Vectors and Matrices

Consider $z \in \mathbb{C}$ with |z| = 1 and $\arg z = \theta$, where $\theta \in [0, \pi)$.

- (a) Prove algebraically that the modulus of 1+z is $2\cos\frac{1}{2}\theta$ and that the argument is $\frac{1}{2}\theta$. Obtain these results geometrically using the Argand diagram.
- (b) Obtain corresponding results algebraically and geometrically for 1-z.

Proof. (Algebraic)

Note that $\cos \theta = \cos^2 \frac{1}{2}\theta - \sin^2 \frac{1}{2}\theta = 2\cos^2 \frac{1}{2}\theta - 1$.

We have $z = \cos \theta + i \sin \theta$ and therefore

$$|1+z| = \sqrt{(1+\cos\theta)^2 + \sin^2\theta} = \sqrt{2(1+\cos\theta)} = \sqrt{2(1+2\cos^2\frac{1}{2}\theta - 1)} = 2\cos\frac{1}{2}\theta \quad (1)$$

$$|1 - z| = \sqrt{(1 - \cos \theta)^2 + \sin^2 \theta} = \sqrt{2(1 - \cos \theta)} = \sqrt{2(1 - (2\cos^2 \frac{1}{2}\theta - 1))} = 2\sin \frac{1}{2}\theta. (2)$$

Proof. (Geometric)

OABC is a rhombus, with sides of length 1 and $\angle AOC = \theta$. The diagonal OB bisects $\angle AOC$, therefore $\angle OBC = \theta/2$. $\angle BOD$ is a right angle since it is formed from a triangle inscribed in a circle. Hypotenuse BD has length 2, since C is the centre of a second unit circle with radii CB and CD. Therefore the length of OB is $2\cos\frac{1}{2}\theta$ and the length of OD is $2\sin\frac{1}{2}\theta$.

2C

2C Vectors and Matrices

Let A and B be real $n \times n$ matrices.

Show that $(AB)^T = B^T A^T$.

For any square matrix, the matrix exponential is defined by the series

$$e^A = I + \sum_{k=1}^{\infty} \frac{A^k}{k!}.$$

Show that $(e^A)^T = e^{A^T}$. [You are not required to consider issues of convergence.]

Calculate, in terms of A and A^T , the matrices Q_0, Q_1 and Q_2 in the series for the matrix product

$$e^{tA} e^{tA^T} = \sum_{k=0}^{\infty} Q_k t^k$$
, where $t \in \mathbb{R}$.

Hence obtain a relation between A and A^T which necessarily holds if e^{tA} is an orthogonal matrix.

Claim. $(AB)^T = B^T A^T$

Proof. Let $i, j \in \{1, ..., n\}$. Then

$$\left((AB)^T \right)_{ij} = (AB)_{ji} = \sum_{l=1}^n A_{jl} B_{li} = \sum_{l=1}^n (A^T)_{lj} (B^T)_{il} = (B^T A^T)_{ij} \tag{3}$$

Lemma. $(A^k)^T = (A^T)^k$.

Proof. Note that $(A^m)^T(A^T)^n=(AA^{m-1})^T(A^T)^n=(A^{m-1})^T(A^T)^{n+1}$. By iterating this formal manipulation k times, we have $(A^k)^T=(A^k)^T(A^T)^0=(A^0)^T(A^T)^k=(A^T)^k$. \square

Claim. $(e^{A})^{T} = e^{(A^{T})}$

Proof. Note that $(e^A)_{ij} := \sum_{k=0}^{\infty} \frac{(A^k)_{ij}}{k!}$, where $A^0 := I$ and 0! := 1. Therefore

$$\left((e^A)^T \right)_{ij} = \sum_{k=0}^{\infty} \frac{((A^k)^T)_{ij}}{k!} = \sum_{k=0}^{\infty} \frac{((A^T)^k)_{ij}}{k!} = \left(e^{(A^T)} \right)_{ij}.$$
(4)

Problem. For $t \in \mathbb{R}$ we define matrices Q_k such that $e^{tA}e^{tA^T} = \sum_{k=0}^{\infty} Q_k t^k$. Calculate Q_0, Q_1, Q_2 .

Solution.

We switch notation, so that Q_k becomes $Q^{(k)}$. We have

$$\left(e^{tA}e^{tA^T}\right)_{ij} = \left(\sum_{k=0}^{\infty} \frac{((tA)^k)_{ij}}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{((tA^T)^k)_{ij}}{k!}\right) \tag{5}$$

$$= \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} (A^k)_{ij}\right) \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} (A^k)_{ji}\right)$$

$$(6)$$

$$= \delta_{ij}\delta_{ji}t^{0} + (A_{ij}\delta_{ji} + \delta_{ij}A_{ji})t + \left(A_{ij}A_{ji} + \frac{1}{2}\delta_{ij}A_{ji}^{2} + \frac{1}{2}A_{ij}^{2}\delta_{ji}\right)t^{2} + \dots$$
 (7)

$$=Q_{ij}^{(0)}t^0 + Q_{ij}^{(1)}t + Q_{ij}^{(2)}t^2 + \dots$$
(8)

Therefore

$$Q_0 = I (9)$$

$$Q_1 = 2\operatorname{diag}(A) \tag{10}$$

$$Q_2 = A \times A^T + \operatorname{diag}(A^2)$$
 (where \times is elementwise). (11)

If e^{tA} is orthogonal, then $e^{tA}e^{tA^T} = e^{tA}(e^{tA})^{-1} = I = \sum_{k=0}^{\infty} Q_k t^k$.

3F Analysis I

Given an increasing sequence of non-negative real numbers $(a_n)_{n=1}^{\infty}$, let

$$s_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

Prove that if $s_n \to x$ as $n \to \infty$ for some $x \in \mathbb{R}$ then also $a_n \to x$ as $n \to \infty$.

Proof. Assume that $s_n \to x$ as $n \to \infty$. We will show that $s_n \le a_n \le x$, for all n, therefore $a_n \to x$ as $n \to \infty$, as required.

First note that $s_{n+1} = \frac{n}{n+1} s_n + \frac{1}{n+1} a_{n+1}$.

It's intuitively obvious that $s_n \leq a_n$ for all n. To prove this, note that it's true for n=1; assume for induction that it's true for n=k. Then we have $s_{k+1} = \frac{k}{k+1}s_k + \frac{1}{k+1}a_{k+1} \leq \frac{k}{k+1}a_k + \frac{1}{k+1}a_{k+1} \leq a_{k+1}$, as required.

Finally we show that $a_n \leq x$ for all n. Seeking a contradiction, assume that there exists M such that $a_M > x$. Let $\epsilon = a_M - x > 0$ (see diagram below).

Define
$$\Delta_n := s_{n+1} - s_n = \frac{n}{n+1} s_n + \frac{1}{n+1} a_{n+1} - s_n = \frac{1}{n+1} (a_{n+1} - s_n) > \frac{1}{n+1} (x + \epsilon - s_n).$$

Now, we seek $N \ge M$ such that $x - s_N < \Delta_N$, since then we will have $s_{N+1} > x$, a contradiction. Supposing that such an N exists and solving for it, we have

$$x - s_N < \frac{1}{N+1}(x + \epsilon - s_N) \tag{12}$$

$$s_N \frac{N}{N+1} > x \frac{N}{N+1} - \frac{\epsilon}{N+1} \tag{13}$$

$$s_N > x - \epsilon/N. \tag{14}$$

Hm, but we require an expression for s_N that does not depend on N! Let's try ϵ/M .

Let N be such that $x - s_N < \epsilon/M$. Then

$$\Delta_N > \frac{1}{N+1} (\epsilon + \epsilon/M) \tag{15}$$

$$= \epsilon/M - \frac{N}{N+1}\epsilon/M + \frac{1}{N+1}\epsilon \tag{16}$$

$$= \epsilon/M - \epsilon \left(\frac{N}{M(N+1)} - \frac{1}{N+1}\right),\tag{17}$$

which fails to prove the desired $\Delta_N > \epsilon/M$.

