Siguiente

✓ Volver a la semana 6

× Lecciones

3 min

11 min

3 min

11 min

3 min

Evaluating a Learning Algorithm

Bias vs. Variance

0	Diagnosing Bias vs.	7 min
	Variance	

- Diagnosing Bias vs.
 Variance
- Regularization and
 Bias/Variance
- Regularization and Bias/Variance
- Learning Curves
- Learning Curves
- Deciding What to Do Next
 Revisited
- Deciding What to do Next
 Revisited 3 m

Review

Building a Spam Classifier

Handling Skewed Data

Using Large Data Sets

Review

Deciding What to Do Next Revisited

Our decision process can be broken down as follows:

• Getting more training examples: Fixes high variance

Trying smaller sets of features: Fixes high variance

Adding features: Fixes high bias

Adding polynomial features: Fixes high bias

• Decreasing λ: Fixes high bias

Increasing λ: Fixes high variance.

Diagnosing Neural Networks

- A neural network with fewer parameters is prone to underfitting. It is also computationally cheaper.
- A large neural network with more parameters is prone to overfitting. It is also computationally expensive. In this
 case you can use regularization (increase λ) to address the overfitting.

Using a single hidden layer is a good starting default. You can train your neural network on a number of hidden layers using your cross validation set. You can then select the one that performs best.

Model Complexity Effects:

- Lower-order polynomials (low model complexity) have high bias and low variance. In this case, the model fits poorly
 consistently.
- Higher-order polynomials (high model complexity) fit the training data extremely well and the test data extremely poorly. These have low bias on the training data, but very high variance.
- In reality, we would want to choose a model somewhere in between, that can generalize well but also fits the data reasonably well.

Marcar como completo

