PL - Formal Proof

HE Mingxin, Max

CS104: program07 @ yeah.net

CS108: mxhe1@yeah.net

I2ML(H) Spring 2023 (CS104|CS108)

Exercises 05: Reading and More

Record your time spent (in 0.1 hours) with brief tasks and durations in your learning log by hand writing!

- 1) Read textF-ch03-PL-DeductiveSystems.pdf (in 2 weeks, may skip something)
- 2) Work on Assignment 2...
- 3) Optional Reading: ref-reading01-proposition-language-L0.pdf and ref-reading02-proof-system-of-L0.pdf.

Topic 5.1

Formal Proofs

Consequence to Derivation

Let us suppose for a (in)finite set of formulas Σ and a formula F, we have $\Sigma \models F$.

Can we syntactically infer $\Sigma \models F$ without writing the truth tables, which may be impossible if the size of Σ is infinite?

We call the syntactic inference "derivation". We derive the following statements.

$$\Sigma \vdash F$$

Example: Derivation

Example 5.1

Let us consider the following simple example.

$$\sum \bigcup \{F\} \vdash F$$
Left hand side(lhs)

If F occurs in lhs, then F is clearly a consequence of the lhs.

Therefore, we should be able to derive the above statement.

Proof Rules

A proof rule provides us a means to derive new statements from the old statements.

A derivation proceeds by applying the proof rules.

What rules do we need for the propositional logic?

Proof Rules - Basic

$$\operatorname{Assumption}_{\overline{\Sigma} \vdash F} F \in \Sigma$$

$$\mathrm{Monotonic}\frac{\Sigma \vdash F}{\Sigma' \vdash F}\Sigma \subseteq \Sigma'$$

Derivation

Definition 5.1

A derivation is a list of statements that are derived from the earlier statements.

Example 5.2

A derivation due to the previous rules

- 1. $\{p \lor q, \neg \neg q\} \vdash \neg \neg q$
- 2. $\{p \lor q, \neg \neg q, r\} \vdash \neg \neg q$

Since assumption does not depend on any other statement, no need to refer.

Assumption

Monotonic applied to 1

We need to point at an earlier statement.

Proof Rules for Negation

DOUBLENEG
$$\frac{\Sigma \vdash F}{\sum \vdash \neg \neg F}$$

Example 5.3

The following is a derivation

- 1. $\{p \lor q, r\} \vdash r$
- 2. $\{p \lor q, \neg \neg q, r\} \vdash r$
- 3. $\{p \lor q, \neg \neg q, r\} \vdash \neg \neg r$

Assumption
Monotonic applied to 1
DoubleNeg applied to 2

Proof Rules for \wedge

$$\wedge - \text{INTRO} \frac{\Sigma \vdash F \quad \Sigma \vdash G}{\Sigma \vdash F \land G} \quad \wedge - \text{Elim} \frac{\Sigma \vdash F \land G}{\Sigma \vdash F} \quad \wedge - \text{Symm} \frac{\Sigma \vdash F \land G}{\Sigma \vdash G \land F}$$

Example 5.4

The following is a derivation

- 1. $\{p \land q, \neg \neg q, r\} \vdash p \land q$
 - 2. $\{p \land q, \neg \neg q, r\} \vdash p$
 - 3. $\{p \land q, \neg \neg q, r\} \vdash q \land p$

Assumption

 \land -Elim applied to 1

∧-Symm applied to 1

Proof Rules for ∨

$$\vee - \text{INTRO} \frac{\Sigma \vdash F}{\Sigma \vdash F \lor G} \qquad \vee - \text{Symm} \frac{\Sigma \vdash F \lor G}{\Sigma \vdash G \lor F}$$

$$\vee - \mathrm{DEF} \frac{\Sigma \vdash F \lor G}{\Sigma \vdash \neg (\neg F \land \neg G)} \quad \vee - \mathrm{DEF} \frac{\Sigma \vdash \neg (\neg F \land \neg G)}{\Sigma \vdash F \lor G}$$

$$\lor - \text{ELIM} \frac{\Sigma \vdash F \lor G}{\sum \vdash H} \frac{\Sigma \cup \{F\} \vdash H}{\Sigma \vdash H}$$

Example: Distributivity

Example 5.5

Let us show if we have $\Sigma \vdash (F \land G) \lor (F \land H)$, we can derive $\Sigma \vdash F \land (G \lor H)$.

1.
$$\Sigma \vdash (F \land G) \lor (F \land H)$$

Premise

2.
$$\Sigma \cup \{F \land G\} \vdash F \land G$$

3. $\Sigma \cup \{F \land G\} \vdash F$

Assumption ^-Elim applied to 2

4.
$$\Sigma \cup \{F \land G\} \vdash G \land F$$

∧-Symm applied to 2

5.
$$\Sigma \cup \{F \land G\} \vdash G \land F$$

∧-Elim applied to 4∨-Intro applied to 5

6.
$$\Sigma \cup \{F \land G\} \vdash G \lor H$$

∧-Intro applied to 3 and 6

7.
$$\Sigma \cup \{F \land G\} \vdash F \land (G \lor H)$$

Example: Distributivity (contd.)

$$- \cup \{F \land H\} \vdash F$$

10.
$$\Sigma \cup \{F \wedge H\} \vdash H \wedge F$$

11.
$$\Sigma \cup \{F \wedge H\} \vdash H$$

12.
$$\Sigma \cup \{F \wedge H\} \vdash H \vee G$$

13.
$$\Sigma \cup \{F \land H\} \vdash G \lor H$$

$$G \vee H$$

14.
$$\Sigma \cup \{F \wedge H\} \vdash F \wedge (G \vee H)$$

15.
$$\Sigma \vdash F \land (G \lor H)$$

$$\wedge$$
-Elim applied to 10

$$\vee$$
-Symm applied to 12 \wedge -Intro applied to 9 and 13

∨-elim applied to 1, 7, and 14

Topic 5.2

Rules for Implication and Others

Proof Rules for \Rightarrow

$$\Rightarrow -\text{Intro} \frac{\Sigma \cup \{F\} \vdash G}{\Sigma \vdash F \Rightarrow G} \qquad \Rightarrow -\text{Elim} \frac{\Sigma \vdash F \Rightarrow G \quad \Sigma \vdash F}{\Sigma \vdash G}$$

$$\Rightarrow -\text{DEF} \frac{\Sigma \vdash F \Rightarrow G}{\Sigma \vdash \neg F \lor G} \qquad \Rightarrow -\text{DEF} \frac{\Sigma \vdash \neg F \lor G}{\Sigma \vdash F \Rightarrow G}$$

Example: Central Role of Implication

Example 5.6

Let us prove $\{\neg p \lor q, p\} \vdash q$.

- 1. $\{\neg p \lor q, p\} \vdash p$
- 2. $\{\neg p \lor q, p\} \vdash \neg p \lor q$
- 3. $\{\neg p \lor q, p\} \vdash p \Rightarrow q$
- 4. $\{\neg p \lor q, p\} \vdash q$

Assumption

Assumption

 \Rightarrow -Def applied to 2

 \Rightarrow -Elim applied to 1 and 3

All the Rules so far

$$\Rightarrow -\text{Intro} \frac{\Sigma \cup \{F\} \vdash G}{\Sigma \vdash F \Rightarrow G} \quad \Rightarrow -\text{Elim} \frac{\Sigma \vdash F \Rightarrow G}{\Sigma \vdash G} \quad \Rightarrow -\text{Def} \frac{\Sigma \vdash F \Rightarrow G}{\Sigma \vdash \neg F \lor G} *$$

* Works in the both directions

Example: another proof Example 5.7

Let us prove $\emptyset \vdash (p \Rightarrow q) \lor p$.

1.
$$\{\neg p\} \vdash \neg p$$

2.
$$\{\neg p\} \vdash \neg p \lor q$$

3.
$$\{\neg p\} \vdash (p \Rightarrow q)$$

4. $\{\neg p\} \vdash (p \Rightarrow q) \lor p$

$$(p\Rightarrow q)\vee p$$

5.
$$\{p\} \vdash p$$

6. $\{p\} \vdash p \lor (p \Rightarrow q)$

8. $\{\} \vdash (p \Rightarrow p)$ 9. $\{\} \vdash (\neg p \lor p)$ 10. $\{\} \vdash (p \Rightarrow q) \lor p$

6.
$$\{p\} \vdash p \lor (p \Rightarrow q)$$

7. $\{p\} \vdash (p \Rightarrow q) \lor p$

$$p \lor (p \Rightarrow q)$$

 \vee -Elim applied to 4, 7, and 9

 \Rightarrow -Intro applied to 5 \Rightarrow -Def applied to 8 Only two cases

$$\begin{array}{c} \textit{Assumption} \\ \lor \textit{-Intro applied to 1} \\ \Rightarrow \textit{-Def applied to 2} \\ \lor \textit{-Intro applied to 3} \end{array} \right\} \textit{ Case 1}$$

Proof Rules for Punctuation

$$()-\mathrm{Intro}\frac{\Sigma\vdash F}{\Sigma\vdash (F)} \qquad ()-\mathrm{Elim}\frac{\Sigma\vdash (F)}{\Sigma\vdash F}$$

$$\wedge - \operatorname{PAREN} \frac{\Sigma \vdash (F \land G) \land H}{\Sigma \vdash F \land G \land H} \quad \vee - \operatorname{PAREN} \frac{\Sigma \vdash (F \lor G) \lor H}{\Sigma \vdash F \lor G \lor H}$$

Proof Rules for ⇔

$$\Leftrightarrow -\mathrm{DEF} \frac{\Sigma \vdash F \Leftrightarrow G}{\Sigma \vdash G \Rightarrow F} \qquad \Leftrightarrow -\mathrm{DEF} \frac{\Sigma \vdash F \Leftrightarrow G}{\Sigma \vdash F \Rightarrow G}$$

$$\Leftrightarrow -\mathrm{DEF} \frac{\Sigma \vdash G \Rightarrow F \qquad \Sigma \vdash F \Rightarrow G}{\Sigma \vdash G \Leftrightarrow F}$$

Thinking Exercise 5.1

Define rules for \oplus .

Topic 5.3

Soundness

Soundness

We need to show that

Theorem 5.1

If

proof rules derive a statement $\Sigma \vdash F$

then

$$\Sigma \models F$$
.

Proof.

We will make an inductive argument. We will assume that the theorem holds for the premises of the rules and show that it is also true for the conclusions. ...

Proving soundness

Proof(contd.)

Consider the following rule

$$\wedge - \text{ELIM} \frac{\Sigma \vdash F \land G}{\Sigma \vdash F}$$

Consider model $m \models \Sigma$. By the induction hypothesis, $m \models F \land G$.

Using the truth table, we can show that if $m \models F \land G$ then $m \models F$.

m(F)	m(G)	$m(F \wedge G)$
0	0	0
0	1	0
1	0	0
1	1	1

Therefore, $\Sigma \models F$.

Proof

Proof

Consider one more rule

$$\Rightarrow -\text{Intro}\frac{\Sigma \cup \{F\} \vdash G}{\Sigma \vdash F \Rightarrow G}$$

Consider model $m \models \Sigma$. There are two possibilities.

- - ightharpoonup case $m \models F$: Therefore, $m \models \Sigma \cup \{F\}$. By the induction hypothesis, $m \models G$. Therefore, $m \models (F \Rightarrow G)$.
- ▶ case $m \not\models F$: Therefore, $m \models (F \Rightarrow G)$.

Therefore, $\Sigma \vdash F \Rightarrow G$.

Similarly, we draw truth table or case analysis for each of the rules to check the soundness.

Topic 5.4

Problems

Exercise: the Other Direction of Distributivity

Thinking Exercise 5.2

Show if we have $\Sigma \vdash F \land (G \lor H)$, we can derive $\Sigma \vdash (F \land G) \lor (F \land H)$.

Hint: Case split on G and $\neg G$.

Exercise: Proving a Puzzle

Thinking Exercise 5.3

a. Convert the following argument into a propositional statement, i.e., $\Sigma \vdash F$.

If the laws are good and their enforcement is strict, then crime will diminish. If strict enforcement of laws will make crime diminish, then our problem is a practical one. The laws are good. Therefore our problem is a practical one. (Hint: needed propositional variables G, S, D, P) (Source: Copi, Introduction of logic)

b. Write a formal proof proving the statement in the previous problem.

Redundant Rules

Exercise 5.4

Show that the following rule(s) can be derived from the other rules.

▶ ∨-*Symm*

Redundancy***

Thinking Exercise 5.5

Find a minimal subset of the proof rules which has no redundancy, i.e., none of the rules can be derived from others. Prove that the subset has no redundancy.