import pandas as pd import numpy as np import seaborn as sns from google.colab import files uploaded=-files.upload() Choose Files QVI_transa...n_data.xlsx QVI_transaction_data.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 11979155 bytes, last modified: 6/3/2025 - 100% done transaction_data= pd.read_excel('/content/QVI_transaction_data.xlsx') transaction_data.head(5) ₹ DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_NAME PROD_QTY TOT_SALES 扁 0 43390 2 1000 1 5 Natural Chip Compny SeaSalt175g 6.0 ıı. 1 43599 1 1307 348 66 CCs Nacho Cheese 175g 3 6.3 Smiths Crinkle Cut Chips Chicken 170g 2 2 43605 1343 383 61 2.9 2 **3** 43329 2373 974 69 Smiths Chip Thinly S/Cream&Onion 175g 5 15.0 43330 2426 1038 108 Kettle Tortilla ChosHov&Ilono Chili 150a 13.8 from google.colab import files uploaded= files.upload() Choose Files QVI purch...ehaviour.csv QVI_purchase_behaviour.csv(text/csv) - 2452463 bytes, last modified: 6/3/2025 - 100% done purchase_behaviour= pd.read_csv('/content/QVI_purchase_behaviour.csv') purchase_behaviour.head() **₹** LYLTY_CARD_NBR LIFESTAGE PREMIUM_CUSTOMER ⊞ 0 1000 YOUNG SINGLES/COUPLES Premium 1 1 1002 YOUNG SINGLES/COUPLES Mainstream 2 1003 YOUNG FAMILIES Budget 3 1004 **OLDER SINGLES/COUPLES** Mainstream 1005 MIDAGE SINGLES/COLIPLES Mainstream Next steps: Generate code with purchase_behaviour View recommended plots New interactive sheet transaction_data.describe() ₹ DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_QTY TOT_SALES 扁 264836.000000 264836.00000 2.648360e+05 2.648360e+05 264836.000000 264836.000000 264836.000000 count 43464.036260 135.08011 1.355495e+05 1.351583e+05 56.583157 1.907309 7.304200 mean std 105.389282 76.78418 8.057998e+04 7.813303e+04 32.826638 0.643654 3.083226 43282.000000 1.000000e+03 1.000000e+00 1.000000 1.500000 min 1.00000 1.000000 25% 43373.000000 70.00000 7.002100e+04 6.760150e+04 28.000000 2.000000 5.400000 50% 43464.000000 130.00000 1.303575e+05 1.351375e+05 56.000000 2.000000 7.400000 2.030942e+05 2.027012e+05 43555.000000 203.00000 85.000000 2.000000 9.200000 75% 114 000000 43646 000000 272 00000 2.373711e+06 2.415841e+06 200 000000 650 000000 may

transaction_data.isnull().sum()

Untitled22.ipynb - Colab

transaction_data.dtypes

now come on outlier

import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(transaction_data['TOT_SALES'], kde= True)

<ipython-input-16-8cb2e9261753>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(transaction_data['TOT_SALES'], kde= True) <Axes: xlabel='TOT_SALES', ylabel='Density'>

numeric_data= transaction_data.select_dtypes(['float', 'int']) numeric_data.head()

_		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES	
	0	43390	1	1000	1	5	2	6.0	ıl.
	1	43599	1	1307	348	66	3	6.3	
	2	43605	1	1343	383	61	2	2.9	
	3	43329	2	2373	974	69	5	15.0	
	4	43330	2	2426	1038	108	3	13.8	
	4								

x= numeric_data[numeric_data['TOT_SALES'] < 8.000]</pre> sns.displot(x['TOT_SALES'] , kde= True)

