

healthy aquatic ecosystems

Review of Benthic Invertebrates and Epilithic Algae at Long-term Monitoring Sites in the Bow River

- > Alberta Environment
- > K.A. Saffran, M.Sc, P. Biol., and A.-M. Anderson, Ph.D., P. Biol.
- > March 2009

Pub No: W0902

ISBN: 978-0-7785-7684-6 (Printed Edition) ISBN: 978-0-7785-7685-3 (On-Line Edition)

Disclaimer

This document is an independent report requested by, and prepared for, Alberta Environment. The authors are solely responsible for the interpretations of data and statements made within this report. The report does not necessarily reflect endorsement by, or the policies of Alberta Environment.

Reproduction and Availability

This report and its contents may be reproduced in whole, or in part, provided that this title page is included with such reproduction and/or appropriate acknowledgements are provided to the authors and sponsors of this project.

Any comments, questions or suggestions on the content of this document may be directed to:

Alberta Environment Communications 10th Floor, Petroleum Plaza South Tower 9915-108 Street Edmonton, AB T5K 2G8

Tel: 780.427.2700 (outside of Edmonton dial 310.0000 for toll-free connection)

Fax: 780. 422.4086

E-mail: env.infocent@gov.ab.ca

Web Site: http://environment.gov.ab.ca/info/home.asp

Additional Copies

Additional print copies of this document are available from:

Alberta Environment Information Centre Main Floor, Oxbridge Place 9820-106 Street Edmonton, AB T5K 2J6

Tel: 780.427.2700 (outside of Edmonton dial 310.0000 for toll-free connection)

Fax: 780. 422.4086

E-mail: env.infocent@gov.ab.ca

Copyright of this publication, regardless of format, belongs to Her Majesty the Queen in right of the Province of Alberta. Reproduction of this publication, in whole or in part, regardless of purpose, requires the prior written permission of Alberta Environment.

© Her Majesty the Queen in right of the Province of Alberta. 2009

Review of Benthic Invertebrates and Epilithic Algae at Long-term Monitoring Sites in the Bow River

Prepared for:

Alberta Environment
Water for Life – Healthy Aquatic Ecosystems
Edmonton, Alberta

Prepared by:

K.A. Saffran, M.Sc, P. Biol. Medicine Hat, Alberta

And

A.-M. Anderson, Ph.D., P. Biol. Alberta Environment

March 2009

EXECUTIVE SUMMARY

Water for Life: Alberta's Strategy for Sustainability (Government of Alberta 2003) requires regular monitoring, evaluation, and reporting of aquatic ecosystem health. Although comprehensive water quality information is generated annually as part of Alberta Environment's Long-term River Network (LTRN), comparable, current information on sediment quality and biological communities is not available.

•

•

.

.

•

•

•

ŏ

•

•••••••

In 2006 benthic invertebrates and epilithic algae were collected from the Bow River in order to:

- Fill knowledge and information gaps identified by North South Consulting Inc. et al. (2007) with current data for Bow River LTRN sites.
- Compare various benthic invertebrate sampling techniques for long-term river monitoring sites in Alberta and provide recommendations for future monitoring at these sites.
- Evaluate temporal changes and longitudinal trends in benthic invertebrate and epilithic algal communities, particularly as they relate to nutrient management in the Bow River.

After comparing the relative merits of data collected with a Neill cylinder sampler and kick nets of varying mesh sizes, the former was selected for further monitoring at LTRN sites. This decision was based on several considerations. Maintaining continuity with Alberta Environment's historical database was viewed as important. Neill cylinder samples are quantitative and replicated, and hence lend themselves easily to statistical difference testing of population densities. Furthermore, Neill cylinder samples reflect a greater taxonomic diversity than kick samples. Nevertheless, kick samples could be appropriate in other contexts even though they only provide qualitative information.

Benthic invertebrate data from 2006 show evidence of perturbation at Cochrane, most likely due to sharp diurnal fluctuations in discharge (and stage) caused by the operation of an upstream hydro-electric dam. As well, *Didymosphenia geminata*, a colonial diatom which forms dense cotton-like mats on the rocks contributes further to the inhospitable nature of the physical habitat at this site. Zoobenthic and epilithic algal communities provide clear evidence of nutrient enrichment at Stier's Ranch and Carseland downstream of Calgary. Algal and invertebrate abundances are lower at Cluny, but a diverse community including sensitive taxa is supported. The fauna at Ronalane, near the mouth of the Bow River, is characteristic of a depositional area with a sediment bottom, macrophytes, and potentially lower dissolved oxygen levels. Longitudinal changes in benthic invertebrate communities are similar in erosional and depositional areas, although signs of stress, such as lower diversity indices, are apparent in depositional areas of Stier's Ranch and Carseland.

There is a gap of thirteen years between the current data and the last zoobenthic samples collected from the Bow River. Based on this limited record, it appears that while the City

of Calgary's nutrient removal program led to some improvements reflected in the river's benthic invertebrate and epilithic algal communities, the degree of impairment may again be increasing. These conclusions may be biased by differing annual flow regimes; in the future, a more consistent sampling schedule should be adhered to so that such variation can be better accounted for.

Evaluating these biomonitoring data along with sediment and water quality chemistry will help to further define current conditions and past changes in the Bow River. The development of indicators and perhaps even a predictive model for aquatic ecosystem health should follow. Again, this work would be of most value if supported by a regular and consistent sampling schedule.

TABLE OF CONTENTS

EXEC	UTIVI	E SUMI	MARY	i		
LIST	OF FIG	GURES	· · · · · · · · · · · · · · · · · · ·	iv		
LIST	OF AF	PEND	ICES	v		
			MENTS			
1.0			CTION			
2.0						
		METHODS				
	2.1	Sampling Program				
		2.1.1	Introduction			
		2.1.2	Benthic Invertebrates			
		2.1.3	Epilithic Algae			
	2.2		ratory Analyses			
		2.2.1	Benthic Invertebrates			
		2.2.2	Epilithic Algae			
	2.3	Data	Analyses			
		2.3.1	Benthic Invertebrate Data			
		2.3.2	Epilithic Algal Data	10		
3.0	RESULTS AND DISCUSSION11					
	3.1	Com	parison of Benthic Invertebrate Sampling Methods	11		
		3.1.1	Numbers of Organisms and Taxa	11		
		3.1.2	Relative Proportions of Organisms	12		
		3.1.3	Indices			
		3.1.4	Other Considerations	14		
		3.1.5	Conclusions	14		
	3.2		Assessment Of Longitudinal And Temporal Trends In Benthic			
		Inver	tebrate Data			
		3.2.1	Longitudinal Trends in Erosional Habitat (2006) - Neill Cylin			
			Samples			
		3.2.2	Longitudinal trends in Depositional Habitat (2006) – 210 µm Net Samples			
		3.2.3	Historical Longitudinal and Temporal Trends for Invertebrate			
			Erosional Habitat			
	3.3		ssment Of Longitudinal Trends In Epilithic Algal Data			
			Epilithic Algae – 2006			
		3.3.2	Comparison with Historical Data	26		
4.0	GEN	NERAL	DISCUSSION AND CONCLUSIONS	28		
5.0	LITERATURE CITED31					

LIST OF FIGURES

Figure 1	Map of study area		
Figure 2	Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006)		
Figure 3	Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006)		
Figure 4	Comparison of various benthic invertebrate metrics depicting longitudinal trends in erosional (E) and depositional (D) areas (October 2006)		
Figure 5	Comparison of habitat preferences of invertebrates in erosional and depositional areas from the Bow River (October 2006)		
Figure 6	Comparison of habits of invertebrates in erosional and depositional areas from the Bow River (October 2006)		
Figure 7	Plots for Discriminant Functions 1, 2, and 3		
Figure 8	Summary of linear regression and ANOVAs on discriminant scores by year		
Figure 9	Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006		
Figure 10	Summary of metrics for epilithic algae collected from the Bow River in 2006		
Figure 11	Longitudinal trends in epilithic diatoms classified according to broad preference ranges for phosphorus and nitrogen concentrations		
Figure 12	Longitudinal trends in chlorophyll-a in epilithic algal samples from the Bow River (Oct 2006)		
Figure 13	Comparison of longitudinal trends for a selection of benthic invertebrate and epilithic algal metrics in the Bow River (Oct 2006)		
Figure 14	Comparison of longitudinal trends in epilithic chlorophyll-a for the Bow River in 1983-1986, 1993 and 2006		
Figure 15	Comparison of epilithic algal density in the Bow River in 1980-81, 1994, and 2006		
Figure 16	Comparison of the relative density (%) of epilithic algal taxa in the Bow River in 1980-81, 1994 and 2006		
Figure A 9-1	Daily flows in the Bow River which correspond to benthic invertebrate sampling dates, 1983-2006		
Figure A 9-2	Monthly flows in the Bow River which correspond to benthic invertebrate sampling months, 1983-2006		
Figure A 9-3	Daily Flows at several locations in the Bow River		

LIST OF APPENDICES

Appendix I	Summary of field data from the Bow River, October 2006 97
Appendix 2	Raw benthic invertebrate data from the Bow River, October 2006 98
Appendix 3	Raw epilithic algal data for the Bow River (Fall 2006) 115
Appendix 4	Metrics derived from benthic invertebrate data collected with a Neill cylinder and kick nets (210 and 400 µm mesh size) in erosional and depositional areas from the Bow River in Fall 2006
Appendix 5	Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006)
Appendix 6	Summary of results of the Bootstrap assessment of differences among sampling approaches
Appendix 7	Summary of ANOVAS performed on 2006 benthic invertebrate data to assess longitudinal trends in the Bow River
Appendix 8	Summary of results of Step-wise Discriminant Analysis on historical benthic invertebrate Neill cylinder data for the Bow River
Appendix 9	Discussion on the influence of discharge on variability in the historical benthic invertebrate data from the Bow River
Appendix 10	Comparisons among years: examples of results of Bonferroni test performed on samples collected in 1985, 1993, and 2006

ACKNOWLEDGEMENTS

This report was prepared under contract with Alberta Environment and with funding from Water for Life, Aquatic Ecosystem Health working group.

Several staff members from Alberta Environment, including John Willis, Ray Walker, Randy Sweeny, Christie Bonham, Richard Casey and Anne-Marie Anderson, collected samples from the Bow River in 2006.

Epilithic chlorophyll-a was analyzed at the Analytical Chemistry Laboratory of the Alberta Research Council in Vegreville under supervision of Frank Skinner. Michael Agbeti (Bio-Limno Research & Consulting Inc.) Halifax, Nova Scotia identified and enumerated epilithic algae. Benthic invertebrates collected in 2006 were sorted, identified, and enumerated by Bob Saunders, Calgary, while most of the historical samples were processed by Bill Anderson, Spruce Grove.

Bridgett Halbig, Westbank, British Columbia, helped to format the historical invertebrate data for analysis.

Statistical analyses were performed by Dr. Zack Florence, Vancouver, British Columbia.

Mary Raven, Alberta Environment, finalized figures and tables and formatted the report.

Valuable review comments provided by Leigh Noton, Richard Casey and Al Sosiak (Alberta Environment) were incorporated in the final draft.

1.0 INTRODUCTION

...

0

Regular monitoring, evaluation, and reporting of aquatic ecosystem health are requirements highlighted under Water for Life, Alberta's Strategy for Sustainability (Government of Alberta 2003). A recent report by North South Consulting Inc. et al. (2007) reviewed available information on aquatic ecosystem health in Alberta. Although comprehensive water quality information is generated on a regular basis as part of reporting on Alberta Environment's long-term river network (LTRN), data for sediment quality and biological communities at the network sites was not available.

The use of benthic invertebrate and epilithic algal communities in biomonitoring programs is widespread and well documented (*e.g.*, Davis and Simon 1995, Barbour *et al.* 1999). Although recent biomonitoring data are lacking in Alberta, there is a substantial historical database for benthic invertebrates as well as some epilithic algae data dating back to the 1980s (*e.g.*, Charlton 1986, Charlton *et al.* 1986, Anderson 1991, Sosiak 2002).

Alberta Environment established a long-term zoobenthos monitoring network in the 1970s and 80s at about 20 sites on major provincial rivers. The network was designed with spring and fall collections over 5 consecutive years alternating with 5 years with no collections. The expectation was that, over time, it would be possible to relate changes in community composition to changes in aquatic ecosystem quality (Anderson 1991). Sampling was not resumed as scheduled in 1993 because of fiscal constraints and evolving provincial monitoring priorities. However, benthic invertebrate monitoring continued in some rivers as part of other projects (*e.g.*, longitudinal surveys in the Bow River in 1993, following some major upgrades to municipal wastewater treatment in Calgary).

The Bow River is an interesting system in which to study responses of biological communities to improvements in municipal wastewater treatment. Phosphorus removal technology was implemented at Calgary's two wastewater treatment plants in 1982-83. This was followed by improvements to nitrogen removal between 1987 and 1990. However, between 1983 and 2006, Calgary's metropolitan area population grew from 620,692 to 991,759 (City of Calgary 2007) and is now over 1,000,000. Despite reductions in nutrient concentrations due to improved municipal treatment, increasing population density will lead to increased wastewater production which could increase nutrient loadings to the Bow River.

In the Bow River, chlorophyll-a and taxonomic composition of epilithic algal communities as well as biomass and macrophytes species composition have been monitored regularly since the early 1980s. These data were used to document biological responses to the management of municipal effluent loading from Calgary (Charlton et al. 1986, Sosiak 2002). According to Sosiak (2002), changes to nutrient loading from the City of Calgary resulted in a reduction of macrophyte biomass but did not significantly influence epilithic algal growth in the period studied (up to 1996). Both the continued phosphorus removal (alum) and the scouring action of the 2005 flood have resulted in an aquatic plant community that is mostly periphyton and which now may be responding to much lower levels of phosphorus (Al Sosiak, pers. communication, 2008).

Benthic invertebrate monitoring was part of surveys conducted in 1989 and 1992. Initial benthic invertebrate responses to phosphorus removal from Calgary's municipal discharges were documented in Anderson (1991), but benthic data have not been evaluated since.

In 2006 a pilot sampling program for both benthic invertebrates and epilithic algae was implemented on the Bow River. Objectives of the study were to:

- 1. Start filling knowledge and information gaps identified by North South Consulting Inc. *et al.* (2006) with current data for Bow River LTRN sites.
- Compare the relative merits of various benthic invertebrate sampling techniques
 for long-term river monitoring sites in Alberta and provide recommendations for
 future monitoring at these sites. Although Neill cylinder samples have been the
 standard sampling technique by AENV, rapid assessment sampling techniques are
 gaining popularity and needed investigation.
- Evaluate temporal changes and longitudinal trends (both current and historical) in benthic invertebrate and epilithic algal communities, particularly as they relate to nutrient management in the Bow River.

2.0 METHODS

....

•••••

2.1 Sampling Program

2.1.1 Introduction

Alberta Environment (AENV) collected benthic invertebrate and epilithic algal community samples from five long-term monitoring sites on the Bow River (Cochrane, Stier's Ranch, Carseland, Cluny, and Ronalane - Figure 1) in October 2006. Method comparison was one of the objectives of this project; therefore, care was taken to alternate the collection of sample types to account for habitat variability and to augment the comparability of data sets. For example, in erosional areas, six rocks for epilithic algal sampling would be collected first, followed by one Neill cylinder sample, a '90 second' kick sample with a 210µm net, and finally a '90 second' kick sample with a 400µm mesh. This cycle would be repeated until all samples were collected. Sampling proceeded in an upstream direction, taking care not to disturb areas yet to be sampled.

In addition to biological sampling described below, flow velocity, depth, and a visual assessment of substrate type were recorded from the reach sampled at each site (Appendix 1).

2.1.2 Benthic Invertebrates

Alberta Environment has used a Neill cylinder to collect lotic benthic invertebrates for over 30 years (e.g., Anderson 1991). This method is quantitative as the cylinder covers a known area (0.1m²) which allows estimates of invertebrate population density. The cylinder is inserted securely in the substrate so that a seal is established. Rocks enclosed in the cylinder are cleaned by hand and the substrate is then agitated with a pointed shovel until water flows clear into the collecting net. Debris and invertebrates are washed into a net (mesh aperture of 0.210 µm) attached to the downstream portion of the cylinder, and from there into a collection bottle. In accordance with AENV protocol (AENV 2006), five replicate samples are collected at each site.

Semi-quantitative kick net sampling methods are favoured by many organisations (United States Geological Survey, USGS, Cuffney et al. 1993; United States Environmental Protection Agency, USEPA, Barbour et al. 1999; Ontario Benthic Biomonitoring Network OBBN, Jones et al. 2005). These methods are primarily used in conjunction with "rapid assessment" and "reference condition" approaches which usually involve only one sample per site. However, the reference condition approach requires individual samples from numerous sites to provide sufficient sample size to define the characteristics of reference sites. These samples may be standardized based on sample area, and/or the length of time spent agitating the substrate upstream of the net. The mesh size of the net tends to vary. USEPA (Barbour et al. 1999) and OBBN (Jones et al. 2005) protocols specify 500µm openings; Waterwatch Australia (2004) and others (Taylor 1997) recommend a 250 µm mesh size.

Three methods were used to collect benthic invertebrates from erosional areas in the Bow River:

- Neill cylinders with a 210μm mesh size and a 0.1 m² sampling area. Five (5) replicate samples per site as per Alberta Environment (2006).
- Kick samples taken with a 400μm mesh size, total time of 3 minutes. A single sample per site with two extra samples at 2 sites for QA/QC purposes.
- 3. Kick samples taken with a 210µm mesh size, total time of 3 minutes. A single sample per site with two extra samples at 2 sites for QA/QC purposes.

Each kick sample was usually made up of two subsamples timed at 90 seconds and pooled together to form a composite. The net was emptied more often if fines were clogging it, but the total sampling time was always 3 minutes. All invertebrate samples were preserved shortly after collection with 4% formaldehyde.

In depositional areas a kick sample taken with a 210µm mesh size was collected over 90 sec.

2.1.3 Epilithic Algae

Epilithic algae samples for chlorophyll-a analysis, as well as samples for taxonomic analysis were collected from erosional areas. Epilithic algae for chlorophyll-a determination were scraped from rocks using the template method (Alberta Environment 2006). Scrapings from a 4 cm² template were taken from each of 3 rocks to form a composite sample. Algal material was placed on a GF/C filter, sprinkled with MgCO₃, and then wrapped in aluminum foil and frozen. Three replicate composite samples were collected at each site, and up to 6 additional samples were taken at some sites for QA/QC.

Epilithic algae for taxonomic analysis were also obtained using the template method, but in this case scrapings from 9 rocks (4 cm² scraping each) were combined to form one composite sample. The sample was preserved shortly after collection with Lugol's solution and 5 drops of formaldehyde.

2.2 Laboratory Analyses

2.2.1 Benthic Invertebrates

The zoobenthic samples were stained with Rose Bengal (Mason and Yevich 1967) then sorted through three sieves with mesh apertures of 2, 1, and 0.2 mm. The coarse fraction and fine fractions were sorted under a dissecting microscope (magnification range 6 to 50X). It was necessary to sub-sample the fine fractions (residue on the 1 and 0.2 mm screens) of some samples that contained large numbers of organisms. Sub-sampling was performed using the Imhoff cone method described by Wrona *et al.* (1982).

Specimens were identified to genus or species where possible, according to Edmunds *et al.* (1976), Baumann *et al.* (1977), Wiggins (1977), Pennak (1978), Merritt and Cummins

(1984, 1996), Clifford (1991), Thorp and Covich (2001), and others using the most current taxonomic designations available.

Raw benthic invertebrate data are presented in Appendix 2

2.2.2 Epilithic Algae

:

•

•

•••••

•

•

••••••

•

•

•

•

•

•

.

Chlorophyll-*a* and phaeophytin-*a*, a degradation product of chlorophyll, were determined fluorometrically after acetone extraction at Alberta Research Council, Vegreville. Results are reported as mg/m².

Non-diatoms (soft algae) and diatoms were analyzed separately. Depending on their concentration, non-diatom samples were diluted first. To determine the appropriate dilution, the original samples were screened to assess the densities of algae and non-algal matter (debris and particulate matter). Aliquots of the appropriately diluted samples were allowed to settle overnight in sedimentation chambers following Utermöhl's procedure described in Lund *et al.* (1958). Algal units were counted from a minimum of four transects on a Zeiss Axiovert 40 CFL inverted microscope. Counting units were individual cells, filaments, or colonies depending on the organization of the algae. Both diatoms and non-diatoms were counted. For soft algae, between 250 and 300 units were counted at 500X magnification; a number of transects were scanned at 250X for larger algae. For diatoms, a minimum of 250 was set as the target. At this stage, diatoms were not identified to species or genus, but recorded as "diatoms", and were later identified to species from prepared slides.

Preparation of diatom slides consisted of digesting sub-samples using concentrated nitric acid and hydrogen peroxide and washing several times (by centrifuging) with distilled water. A few drops of the diatom slurry were placed on a cover slip and allowed to evaporate overnight. Once dry, the diatoms were mounted in Naphrax and identified using 1000 to 1500 X magnifications (under oil immersion) on a Zeiss Axioskop 40 compound microscope. A minimum of 500 diatom frustules were counted on each slide. The diatom counts on the slides were converted to density based on the number of transects covered during the fresh (Utermöhl) counts.

Biomass was calculated from recorded abundance and specific biovolume estimates, based on geometric solids (Rott 1981), assuming unit specific gravity. The biovolume of each species was estimated from the average dimensions of 10 to 15 individuals. The biovolume of colonial taxa was based on the number of individuals in a colony. All calculations for cell concentration (units/cm²) and biomass (μ g/cm²) were performed with Hamilton's (1990) computer program.

Taxonomic identifications of soft algae were based primarily on Anton and Duthie (1981), Entwisle *et al.*, (2007), Findlay and Kling (1976), Huber-Pestalozzi (1961, 1972, 1982, 1983), Tikkanen (1986), Prescott (1982), Whitford and Schumacher (1984), Starmach (1985), Komarek & Anagnostidis (1998, 2005), and Wehr and Sheath (2003). Diatom identifications were based primarily on the following texts and supplemented with other publications: Krammer and Lange-Bertalot (1986, 1988, 1991a,b), Reavie and Smol (1998), Cumming *et al.* (1995), Bahls (2004), Camburn and Charles (2000), Fallu

et al. (2000), Patrick and Reimer (1966, 1975), Siver and Kling (1997), and Siver et al. (2005).

Raw epilithic algal data are presented in Appendix 3.

2.3 Data Analyses

2.3.1 Benthic Invertebrate Data

2.3.1.1 *Metrics*

The use of benthic invertebrates as indicators of aquatic ecosystem health is well established. Characteristics such as feeding method, habit, habitat preference, pollution tolerance (primarily tolerance to organic pollution) and environmental sensitivity can account for the distribution of benthic invertebrates and can be used to illustrate changes due to both natural and man-made factors. Many metrics, based on invertebrate counts (individuals and taxa), proportions, or more complex indices have been derived to summarize invertebrate data in order assess river conditions (Merritt and Cummins 1996, Barbour *et al.* 1999, Mandaville 2002). Several such metrics were computed from raw data for this report. These metrics, along with their rational and formulae, if appropriate, are listed here.

Abundance – The total count of individuals in a sample.

<u>Richness</u> – The number of unique taxa in a sample. Richness was calculated at the species, genus, and family level for this report. A greater the number of taxa usually suggests a healthier aquatic community.

<u>Diversity</u> – Diversity combines the concepts of abundance and richness. Two common diversity indices were calculated for this report (Beals, Gross, and Harrell 1999, 2000):

Simpson Diversity Index (D) -

$$D = \frac{\sum_{i=1}^{S} n_i (n_i - 1)}{N(N - 1)}$$

...where S is the number of taxa (species), N is the number of organisms, and n is the number of organisms in the "ith" taxon. This index is usually presented as 1-D so that the results are more intuitive (*i.e.* the lower the number, the lower the diversity).

Shannon Diversity Index (H) -

$$\tilde{H} = -\sum_{i=1}^{S} p_{i} \ln p_{i}$$

...where S is the number of taxa in the community, and p_t is the proportion of individuals in the " t^{th} " taxon. H increases with increasing diversity.

"Number of unique zoobenthos groups" - The number of species, genera or families within a particular group of invertebrates, whether defined taxonomically, by functional feeding group, habit/behaviour, habitat preference, or pollution tolerance/sensitivity. Useful measures within this category include:

<u>Number of EPT taxa</u> – Members of the orders Ephemeroptera, Plecoptera, and Trichoptera are generally considered to be sensitive to pollution, preferring oxygenrich habitats. Richness in these groups should be higher when water quality conditions are better.

•

<u>Number of ETO taxa</u> – This is similar to the previous measure, but includes Odonata, instead of Plecoptera, which are also considered to be sensitive.

<u>Number of Clinger taxa</u> – These organisms hold their position on the bottom substrate in flowing water. Their numbers are lower in the presence of excessive algal growth or sedimentation.

<u>Number of Pollution-Intolerant Taxa</u> – 'Pollution' refers primarily to nutrient or organic enrichment. Organisms were assigned a value between 0 (very intolerant) to 10 (very tolerant) based on the concept of Hilsenhoff (1987, 1988) as compiled by Mandaville (2002). For this report, a conservative approach was used where species with rankings from 0 through 2 were counted as intolerant.

<u>Proportional Abundance</u> – The number of a particular group of invertebrates in comparison to the total number of individuals in a sample. Examples of metrics in this category include:

<u>Proportion of Chironomidae</u> – Higher proportions of midge larvae are expected at more impacted sites.

<u>Proportion of EPT</u> – Higher proportions of these organisms are expected at less impacted sites.

<u>Proportion of Filtering Collectors</u> – These organisms will be found in greater proportions at sites with more fine particulate organic matter in the water column.

<u>Proportion of Burrowers</u> – These organisms will be found in greater numbers where the riverbed is covered with sediment.

<u>Proportion with Erosional Preference</u> – These invertebrates should occur in greater proportions in erosional (riffle) areas (rather than in depositional or sediment habitats).

Percent Contribution by Dominant Taxon – A large prevalence of a single type of organism in a sample suggests an impacted site. In this report, the dominant order of insects was compared to total insects.

<u>Ratio of EPT to Chironomidae</u> – An indication of community balance, this ratio is lower under conditions of environmental stress.

<u>Ratio of Hydropsychidae to Trichoptera</u> – Hydropsychids are considered to be less sensitive than most caddisflies.

Ratio of Scrapers to Filterers – This ratio compares two different feeding strategies to reflect different environmental conditions. Scrapers prefer areas with lots of algae and plant material, while filters require fine particulate material in the water column. Filterers may also be used to assess pollutants adsorbed to particulates, although they are not necessarily sensitive to such pollutants. This ratio did not provide much information for the Bow River sites.

Biotic Index (BI, Species) and Family Biotic Index (FBI) - (Modified from Hilsenhoff 1987, 1988). Pollution tolerance values from 0 to 10 were assigned at the species or family level according to tables compiled by Mandaville (2002). The indices were then calculated according to the following formula:

BI or FBI =
$$\Sigma(n_i *t_i)/(N)$$

...where n_i the number of individuals in the "ith" taxon, t_i is the tolerance value of the ith taxon, and N is the total number of organisms in the sample. A lower index value implies better water quality.

Biological Monitoring Working Party (BMWP) – (Modified for North America by Mackie 2004). This procedure assigns scores, primarily at the family level, between 1 and 10, where 1 is least sensitive to pollution and 10 indicates a high sensitivity. The scores for all families are then added together. A higher number indicates better aquatic conditions. Scores for this index were obtained from Mandaville (2002).

Average Score Per Taxon (ASPT) - The BMWP (sensitivity) for a sample is divided by the number of taxa used to calculate the BMWP. This eliminates the effect of family richness, yielding a number between 1 and 10; the higher the ASPT, the better the conditions.

2.2.3.2 Sampling Method Comparison

The raw numbers and 20 metrics selected from Section 2.2.3.1 were used to compare the three sampling methods based on two broad criteria: whether similar patterns were exhibited among sites and whether the kick samples fell within the variability exhibited by the replicate Neill cylinder samples. The latter is particularly important if valid historical comparisons are to be made should the Neill cylinder method eventually be replaced by kick samples.

Method comparisons were accomplished both statistically (11 metrics) and/or graphically (20 metrics). Because five replicates are available for the Neill cylinder, the data can be treated in two ways, either using the mean (or other measure of central tendency) of a metric calculated for each of the five samples, or by calculating the metric on the averaged (or summed) data. The results can be very different for metrics dealing with counts (of species or other taxonomic levels) but are more similar for proportional data (ratios, percentages). The two ways of dealing with the data, as described above, are designated as "Average Neill" and "Total Neill" in the Figure 2 and Appendix 4.

The Neill replicates were compared statistically to the individual kick and total Neill (a.k.a. Neill mean metric) by using the "bootstrap" method, which estimated the mean difference and 95% confidence bounds over a course of 1000 iterations for each metric. The bootstrap offers a well-established method for estimating parameters and their standard errors when larger samples are not available (Manly 1991, 2001; Efron and Tibshirani 1986, 1993).

The protocol was as follows:

•

•

•

•••••••••

•••••••

•

•

•

•

•

Ö

- 1. Sample 5 values from field data (replicates), with replacement.
- 2. Calculate the mean.
- 3. Subtract the reference value (210 kick, 400 kick, Neill) from the mean (#2).
- 4. Store the resulting difference.
- 5. Repeat the above 1000 times.
- 6. Calculate the upper and lower 95% percentiles around the 1000 differences.
- 7. Decision: do the 95% bounds contain "0" (zero)? If so, this is good evidence that the respective sample method (210 kick, 400 kick, or Neill Mean) is a good fit, with 95% confidence, to the Neill replicates.

The total number of factorial combinations in this exercise was: 3 methods x 5 locations x 21 metric = 315.

All bootstrapping was done using: Resampling Stats, version 5.0.2, Resampling Stats, Inc., Arlington, VA, USA, 22201. The reasoning for performing 1000 iterations is contained in Manly (1991).

2.2.3.3 Assessment of Longitudinal and Temporal Trends

In order to compare the Bow River zoobenthos data collected in autumn 2006 to other data also collected in autumn at the same sites (i.e., 1983, 1984, 1985, 1986, 1987, 1989, and 1993), some changes to taxonomic groupings had to be made. Identifications in the two previous decades were often not as detailed as those done for the 2006 samples; occasionally, identifications were at relatively high levels, family or order. This difference in level of detail had the greatest impact on results for the family Chironomidae. These organisms were almost always identified to genus for the 2006 samples but were left at tribe or sub-family in the earlier samples. Changes to taxonomic conventions in the 13 years between 1993 and 2006 also led to differences between the recent and earlier data sets. In particular, mayflies included historically in the genus *Baetis* have been split into the following: *Acerpenna*, *Diphentor*, *Fallceon*, *Procleon*, *Plauditus*, *Acentrella*, and *Baetis*, while the historical genus *Psuedocoleon* was included with *Baetis* (W.J. Anderson, pers. comm. 2007, Merritt and Cummins, 2nd and 3rd Editions). Therefore, the data had to be altered to achieve taxonomic consistency among years.

The raw data and the derived metrics can be found in Appendix 5.

Statistical analyses, usually performed on transformed data $(e.g., \log(x+1), \arcsin(x))$, consisted of principal components analysis (PCA) and step-wise discriminant analysis for all sites and years; analysis of variance (ANOVA) for changes in mean values over sites for each year $(longitudinal\ differences)$, changes in mean values over years for each site

(temporal differences), and changes in PC scores and discriminant function (DF) scores for the five sites over time; and Bonferroni pair-wise comparisons among years and sites for all scores and means.

2.3.2 Epilithic Algal Data

Longitudinal trends for chlorophyll-a data and various metrics based on the taxonomic data were examined graphically. Metrics included biomass, density, number of species and genera, and % biomass distributed over the various algal groups for each site, as well as the Shannon diversity index. In addition, diatom species were classified as preferring low or high total phosphorus concentrations, and low or high total nitrogen concentrations, according to the work of Potapova and Charles (2007).

Pearson correlations were performed to examine the relationship between various invertebrate and epilithic algal metrics. A limited amount of historical epilithic community and chlorophyll-a data were also available for comparison.

3.0 RESULTS AND DISCUSSION

3.1 Comparison of Benthic Invertebrate Sampling Methods

3.1.1 Numbers of Organisms and Taxa

Because the Neill cylinder samples are quantitative and the kick samples are not, the actual number of organisms counted cannot be directly compared. However, the number of organisms collected can be important in that too small a sample may not adequately show the diversity of the benthic community, and too large a sample presents enumeration difficulties. If the collection methods are equivalent, however, the proportions of the various groups of organisms collected should be similar, even if the numbers are not comparable. The Neill average had the lowest abundances, while the total Neill and 210 kicks had the highest abundance. The fewest organisms were collected at Cochrane in all cases. The site with the most organisms varied with method; the largest number of organisms, 73675, was collected in the 210 kick at Stier's Ranch (Figure 2.1). Counts in the Neills were statistically different from those in the corresponding kick samples at all sites (Appendix 6).

An important indicator of aquatic ecosystem health is the number of unique taxa collected. Samples, therefore, must accurately reflect the variety of organisms present. For all methods, the lowest number of taxa was collected at Cochrane. The highest number of taxa was collected at Carseland for all methods except for the 400 kick. The individual Neill samples, which tend to collect fewer organisms than the kicks, had the least number of taxa. When the results of the replicates were summed, however, the Neills had the highest number of taxa – between 22 and 30 more per site than the individual samples. The second highest number of taxa was usually collected by the 210 kicks (Figure 2.2). The richness of the kicks and of the summed Neills could almost always be considered to be different than that of the individual Neills, with a few exceptions at Stier's Ranch and Cluny for the 210 kicks.

The different collection methods produced similar longitudinal patterns for many sub-sets of organisms, such as number of chironomid genera. The greatest numbers of chironomid genera were found at Carseland by all methods. As for overall taxon richness, the lowest numbers were from the average Neills and highest were from the total Neills (Figure 2.3). For Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera, all methods found the number of unique genera to be highest at Cluny. While the total Neills tended to have the highest counts overall, the 400 kick samples had higher counts than the 210 samples and the average Neills had the lowest (Figure 2.4).

It is possible that the behaviour of the benthic invertebrates (*i.e.*, whether they burrow, climb, cling, swim, *etc.*) might affect their capture by the Neill cylinder compared to kick nets. For clinger taxa, a similar longitudinal pattern was seen for all methods, with more clinger taxa being found at Carseland than anywhere else (Figure 2.5). For taxa classified primarily as swimmers, however, similarities among the methods were not apparent (Figure 2.6). These results may reflect a sampler-type bias, an overall challenge associated with collecting swimmers, or the fact that the number of taxa in this habit category was low.

The benthic invertebrates were also categorised by functional feeding group. Unlike some of the previous examples, the numbers of collector-gatherer taxa for both averaged and total Neill samples were higher than for the kick net samples. Lowest counts overall were found at Cochrane; for the Neills, the highest number of gatherers were found at Carseland, while for the kicks, numbers were highest at Ronalane (Figure 2.7). Relatively low counts in the individual Neill samples occurred for the predator taxa; as in the previous case, however, the kick samples were much more similar to each other than they were to either the averaged or total Neills (Figure 2.8).

Both kicks and Neills showed similar site-to-site patterns for taxa classified by habitat preference (erosional, depositional, *etc.*). The most taxa with an erosional preference were found at Carseland and the least were found at Cochrane, independent of the method used. Overall, the greatest variety of erosional taxa was present in the total Neill samples (Figure 2.9).

All sampling methods showed similar patterns among sites for taxa intolerant to pollution (*i.e.*, those rated as 0, 1, or 2 on a scale from 0 to 10). This occurred even though relatively small numbers of these taxa were found (Figure 2.10). The number of intolerant taxa in the 400 kick samples was consistently higher than that in the 210 kick samples, despite the fact that the 210 kicks collected more invertebrates in total.

3.1.2 Relative Proportions of Organisms

Calculating the proportion of various organisms to the total collected or to a sub-set of the collection should reduce some of the difference among methods that is due to sample size. For the Oligochaeta, longitudinal patterns and percent contributions were similar for the average and total Neill samples and the 400 kick samples at all sites. At Carseland and Cluny, the percentages of the 210 kick samples made up of aquatic worms were double the percentages collected by the other methods (Figure 2.11). This finding may reflect the fact that a smaller mesh size is more effective at collecting smaller organisms; at these sites, the oligochaetes were almost exclusively from the family Naididae, which tend to be quite small. The Neill and 400 kick also tracked each other more closely than the 210 kick samples for the percentage of Diptera (including the Chironomidae), although the overall trend was similar for all samples (Figure 2.12).

The dominance of one type of organisms in a sample can be an indication of an impacted, or a less complex, benthic environment. The contribution by the dominant insect order at each site (as a percentage of total insects) showed closer correspondence between the Neill samples and the 210 kick samples than the 400 kick samples (Figure 2.13). The percentage contribution was always lower in the 400 kicks than the individual Neill samples, and significantly so at four of the five sites (Appendix 6). In most samples, dipterans dominated, primarily as a function of number of Chironomidae. The only exceptions were for both Cochrane kicks, in which Hemiptera (Corixidae) were most plentiful and for the 400 kick at Cochrane for which the high Diptera counts were due to Simuliidae.

The ratio of EPT to Chironomidae can be used to indicate environmental stress, with higher ratios (relatively more EPT) indicating less stress. In this case, the 400 kick

samples gave much higher EPT/Chironomidae ratios, particularly at Stier's Ranch and Cluny (Figure 2.14). Not only were fewer small and/or filiform organisms, such as chironomids, collected by the 400 mesh nets, but it appears that more EPT organisms were collected as well (see Figure 2.4). This finding was confirmed by the statistical exercise. With the exception of Ronalane, either one or both of the proportion of EPT and the EPT/Chironomidae ratio were significantly higher for the 400 mesh kick samples than for the individual Neills (Appendix 6). Perhaps greater flow through the wider mesh offers less resistance to larger and mobile insects. Slower flow through the finer mesh, slowed further by a greater chance of the mesh being obstructed by debris, may allow more active animals a chance to escape capture.

The longitudinal patterns for the percentage of organisms that cling to the substrate were similar for all the collection methods, with the percentage of clinger taxa highest for all samples at Stier's Ranch and lowest at Ronalane. At each site, the percentage of clingers tended to be lower for the 210 kicks than the other methods (Figure 2.15). As suggested previously, increased resistance to flow through the 210 mesh net may have made capture of clinger taxa slightly more difficult. Swimming taxa, the actual numbers of which were difficult to interpret, clearly made up a larger percentage of all samples taken at Cochrane than elsewhere. The percentage of swimmers was much higher in the 210 kick than in other samples at this site. Over all sites, however, the proportion of swimmers was slightly higher in the 400 kicks (Figure 2.16).

The percentage of predator taxa was higher for both types of kick samples than for the Neill samples at Cochrane and Stier's Ranch. Sample results were not as different at the three downstream sites (Figure 2.17). The ratio of scraper taxa to filtering collectors, however, was similar for all sample types at the first three sites. At Cluny, both kicks differed from the Neills (210 lower, 400 higher) and at Ronalane the 400 kick had a higher scraper to filterer ratio than the Neills (Appendix 6).

The 210 kick samples at Cochrane and Stier's Ranch appeared to be different from both the Neills and the 400 kicks for taxa preferring depositional habitats. At Cochrane, the 210 sample had the highest percentage of depositional taxa compared with the other sampling methods, while at Stier's Ranch the 210 sample had the lowest percentage (Figure 2.18). Statistically, the 210 kick samples at Cluny and Ronalane were also different than the Neills (Appendix 6). For taxa with a preference for an erosional habitat, the proportion found in the 400 kicks was different than that of the individual Neills at four of the five sites (lower on 3 of these occasions), while the proportion found in the 210 kicks was higher than the Neills at Cluny and Ronalane, and lower at Cochrane.

3.1.3 Indices

••••••••••••••••••••••••

The Biotic Index is calculated by assigning pollution tolerance values from 0 (intolerant) to 10 (tolerant) to all taxa (species in this case) to determine an average tolerance for the community. Longitudinal patterns were generally similar, with the highest or second highest scores for each method occurring at Cochrane and Ronalane, and the lowest scores (more favourable conditions for invertebrates) for each method occurring at Stier's Ranch. However, the kick samples gave index values that were quite different from the Neill samples and often very different from each other (Figure 2.19 and Appendix 6). It

is apparent that the meaning of the index values must be calibrated for each method, and need to be reviewed in the context of actual rather than assigned taxa tolerances, and actual river conditions. For example, despite pronounced diurnal fluctuations and critically low DO in summer at Stier's Ranch, the abundant food supply resulting from enrichment at this site still allows the establishment of large invertebrate populations.

The Shannon Index uses the number of individuals in each taxon present in a community to give an indication of diversity. A higher value represents higher biotic diversity. The index values differed for each collection method, giving different impressions of the pattern of diversity at each site. The highest index scores for the kick methods were achieved at Cochrane, while the Neill methods produced the lowest scores at this site (Figure 2.20). As for the biotic index, the diversity index values should not be compared among different collection methods and need to be evaluated in the context of other data (Appendix 6).

3.1.4 Other Considerations

As well as being able to capture a representative sample of benthic invertebrates, an ideal collection method should be easy to use and be both time- and cost-effective. Kick nets and Neill cylinders are both fairly easy to use. The nets tend to allow more variability in the way they can be used. Neill cylinder use may be more easily reproduced, which is particularly important if many field technicians are involved in the collections. The time taken to obtain five Neill samples is slightly more than the time required to collect a single kick sample, but not significantly so.

Sample processing time and cost are also a consideration. Even if the cost for processing Neill and Kick samples are similar, processing Neill samples would be costlier because collection of replicates is the norm. Kick samples are larger than individual Neill samples and contain more debris so require more time to process unless severe sub-sampling measures are taken. Although the total number of organisms in five replicate Neills can be fairly close to the total found in a 210 µm kick sample, more of the material tends to get sorted. In the current study, even the coarse 2.0 mm fraction of the 210 and 400 kicks from Stier's Ranch had to be quartered to make sorting and identifying manageable. For the 1.0 mm fraction, most of the Neill replicates were sorted in their entirety, while on average half of the fraction was sorted for the 210 kicks and a third of the fraction was sorted for the 400 kicks. For the finest fraction (0.2 mm), a little more than a tenth of the Neill material and a quarter of the 400 kick sample was used on average. For all the 210 kicks except from Cochrane, only one fortieth of the fine fraction was evaluated. The smaller the sample fraction sorted the larger the uncertainty surrounding the estimated abundance and richness of that sample.

3.1.5 Conclusions

Although there is a higher cost associated with processing Neill cylinder samples, this method appears to be the most appropriate for continuing to monitor longitudinal and temporal trends in the benthos of Alberta's major rivers. The method is repeatable and relatively simple. The replicates collected at each site provide smaller, more manageable samples that provide greater statistical power than a single kick sample. Considered together, the Neill replicates have the ability to reflect greater taxonomic diversity than

either the 210 or 400 kick samples. The quantitative nature of the Neill cylinder allows population density estimates that are not possible with kick samples. Furthermore, given that Neill cylinder samples have historically been used in Alberta rivers by AENV, the results will be directly comparable with 20 years of previous data.

Many of the site-to-site differences that were observed in the Neill samples were reflected in the kick samples as well. Kick samples may very well be appropriate in other contexts, such as in a regional survey of smaller streams where many locations are being examined. In a case where kick nets are preferred, the choice of mesh size will be important. Although a smaller mesh allows the capture of more organisms, the potential for very large samples that may be biased towards smaller organisms must be considered.

3.2 Assessment Of Longitudinal And Temporal Trends In Benthic Invertebrate Data

3.2.1 Longitudinal Trends in Erosional Habitat (2006) – Neill Cylinder Samples

3.2.1.1 Abundance, Richness, and Diversity

Differences in the numbers and types of invertebrates found at each of the five Bow River sites show longitudinal patterns consistent with natural and anthropogenic changes along the length of the river. The lowest abundance of organisms (total number of organisms) was found at Cochrane, while the highest was found at Stier's Ranch (Figure 3.1). Abundance at Cochrane was significantly lower than at all other sites; the only other significant difference was between Stier's and Cluny (Appendix 7). The Cochrane site is upstream of most major point-sources of nutrient enrichment on the Bow River (except for some municipal and industrial discharge from the Bow Valley Corridor). In contrast, Stier's Ranch is directly below the City of Calgary and its two wastewater treatment facilities, which provide nutrients to maintain substantial populations of algae, macrophytes, and invertebrates.

The number of unique taxa (richness) provides information about the "health" or degree of perturbation at a site, with fewer taxa suggesting a more impacted site. In the Bow River, the lowest richness occurred at Cochrane (Figure 3.2), where the number of taxa was significantly lower than at all other sites (Appendix 7). Given Cochrane's foothills location and heterogeneous substrate, the site would be expected to support a larger variety of taxa. However, as suggested by Anderson (1991), manipulation of flow as a result of the operation of the Ghost River hydroelectric dam upstream of the site causes significant diurnal disturbance to the benthic fauna at this site. Benthic communities in this reach of the river may be submerged and exposed within a 24 hour period, depending on their location in the channel. This situation would not be tolerated by many sensitive organisms and would affect the distribution of other organisms. Collecting a representative sample at such a site is difficult, as samplers may not be aware that they are accessing an area that has been recently exposed to air (Anderson 1991). Furthermore, during periods of high flows, flow velocity and steep slopes make it difficult to penetrate deep enough in the river. Didymosphenia geminata, a colonial diatom, was encountered regularly when collecting invertebrates in the 1980's and 1990's; it was present in 2006 although perhaps not to the same degree. The diatom can

cover rocks with cotton wad-like material and contributes further to a rather inhospitable habitat for invertebrates. The distribution of *Didymosphenia geminata* in Alberta Rivers is believed to be linked to flow regulation (Kirkwood *et al.* 2007).

For richness, as for all metrics involving counts of taxa, the Neill cylinder data can be summarized as either the mean number of taxa per site (based on 5 replicates) or as the total number of unique taxa at a site, the latter better reflecting the site's true complement of taxa, including rare organisms. In this case, while the highest mean number of taxa occurred at Stier's Ranch, the highest total number of unique taxa occurred at Ronalane (Figure 3.2, Appendix 7). Note also most of the analyses for the 2006 data are based on a "truncated" data set, reflecting taxonomic levels and names used in the historical data sets. Using the original taxon list for the 2006 data, total richness is higher at each site by between 12 and 23 taxa (Figure 3.3). The overall pattern is similar to that based on higher taxonomic levels; however, the highest mean and total numbers of taxa occur at Carseland, mainly due to a large variety of chironomids at this site.

Because they summarize the relative abundance of various taxa, it is expected that diversity indices provide more succinct information about benthic communities than abundance or richness alone. Two such common indices, Simpson's (*D*) and Shannon's (*H*) were calculated for the 2006 data. The Simpson Index showed the lowest diversity at Cochrane and Ronalane, with Cochrane differing significantly only from Stier's Ranch, the most diverse site (Figure 3.4, Appendix 7). This index de-emphasizes rare taxa, while highlighting common taxa and evenness or equability among taxa (Mandaville 2002; Beals, Gross, and Harrell 1999). The Shannon Index also considers abundance and evenness of taxa, but is more affected by rare taxa (Mandaville 2002; Beals, Gross, and Harrell 2000). This index again showed Stier's Ranch to have the highest diversity, and Cochrane the lowest, although the results did not differ significantly (Figure 3.5, Appendix 7).

3.2.1.2 Counts and Proportions of Taxa

The previous measures suggest that Cochrane experiences some disturbance which limits benthic invertebrate abundance and richness, while enrichment downstream of Calgary supports a larger and more diverse population. More specific information about the taxa at each site is necessary to describe further differences in the benthic communities along the length of the Bow River. The presence of a variety of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa is generally indicative of desirable lotic conditions. The number of EPT genera was significantly lower at Cochrane than at the other sites, and was also significantly lower at Ronalane, near the mouth of the Bow River, than at the previous three sites (Figure 3.6, Appendix 7). Stoneflies (Plecoptera) were completely absent from both Cochrane and Ronalane. While flow fluctuations likely limit the number of EPT taxa at Cochrane, it is probable that many of these taxa are excluded from Ronalane by the slower flow and more homogeneous substrate typical of a depositional (as opposed to erosional) environment. Lower dissolved oxygen levels may limit sensitive taxa at Ronalane as well.

In erosional habitats, the balance between the abundance of EPT organisms and the generally more pollution-tolerant Chironomidae should be relatively even in a community in good biotic condition (Mackie 2004). The EPT to Chironomidae ratio

tended to be highest at Stier's Ranch (mean 0.59), although replicates varied widely, while the lowest was at Ronalane (mean 0.02) (Figure 3.7). The mean ratio at Stier's Ranch was significantly higher than that at the Cochrane, Carseland, or Ronalane sites (Appendix 7).

Chironomids, nematodes and oligochaetes, as major groups, are often described as being tolerant to adverse conditions, especially nutrient enrichment and low DO. However, many taxa belong to these groups and the perceived tolerance may be attributable to only a few taxa. Unfortunately this is seldom recognized because species or genus identifications are rarely performed on nematodes and oligochaetes. The highest proportions of chironomids were in samples taken from Carseland, while the lowest proportions were found at Cochrane (Figure 3.8). Cochrane, however, had the highest proportion of Nematoda (Figure 3.9). Oligochaetes were present in the greatest proportion at Ronalane followed by Cochrane (Figure 3.10).

The relative contribution to abundance by different taxa is another measure of environmental condition. In a less complex, potentially more impacted site, the percent contribution of the dominant group would be expected to be higher than at a less impacted site. In terms of insects, members of the order Diptera were most abundant at all 5 sites. The percent dominance of this order was higher at Ronalane (mean 98%) than at all other sites, and significantly so for all but Carseland (Figure 3.11, Appendix 7).

3.2.1.3 Functional Feeding Groups

:

•

••••

.

Aquatic invertebrates can be classified into functional feeding groups by the type and size of food particles they eat and by the method that food is obtained (Merritt and Cummins 1996). The feeding group concept is useful for describing the ecological role of aquatic organisms. The numbers of invertebrates with various feeding strategies can then be used to make inferences about river conditions.

Filtering collectors, or suspension feeders, feed on fine particulate organic matter. Ronalane had the highest number of filter-feeding taxa (Figure 3.12, Appendix 7). However, the proportion of filters was significantly higher at Stier's Ranch than at all other sites (Figure 3.13, Appendix 7), likely as a result of organic enrichment from the City of Calgary. In contrast, gathering collectors, which consume coarser particulate organic matter, occurred in the highest proportion at Ronalane (Figure 3.14, Appendix 7). Both Cochrane and Stier's Ranch had much lower proportions of gatherers than did the downstream sites.

Shredder organisms, which "shred" coarse organic matter such as leaf litter, were found in the highest proportion at Cochrane (Figure 3.15). Shredder proportions were relatively low at all sites, however, and the differences between the sites were not significant (Appendix 7). Scraper organisms, which feed directly on periphyton, were found in much lower proportions at Cochrane and Ronalane than at the other sites (Figure 3.16, Appendix 7), reflecting lower amounts of epilithic algae at these sites.

Predators, which feed on other invertebrates, were found in the highest proportion at Stier's Ranch (mean 0.10), the site with the highest invertebrate abundance. Predator proportions were the lowest at Ronalane (mean 0.03) (Figure 3.17, Appendix 7).

3.2.1.4 Habits and Habitat Preference

Differences in the behaviour or habit of benthic invertebrates, defined as the way they move or maintain position in flowing water, were examined for the Bow River sites. The proportion of swimmers was significantly higher at Cochrane than anywhere else (Figure 3.18, Appendix 7). Swimming taxa have the greatest motility, and thus would be best able to deal with the dynamic flow and water level fluctuations at this site.

Clinger organisms hold their position on the bottom substrate in flowing water. Greater numbers and proportions of clinger taxa are expected under conditions subject to less impact from physical disturbance or pollution. Cochrane and Ronalane had significantly fewer clinger taxa than the other sites (Figure 3.19, Appendix 7). In terms of proportion, Stier's Ranch had significantly more clingers and Ronalane significantly less, than the other sites (Figure 3.20, Appendix 7). Sprawler taxa, which hold on to both the substrate and submerged vegetation, showed a similar pattern, with the highest mean proportion found at Stier's and the lowest at Ronalane (Figure 3.21, Appendix 7). In contrast, the greatest number of burrowing taxa, which live in the sediment, occurred at Ronalane (Figure 3.22). The proportion of burrowers was lowest at Stier's Ranch, and highest at Ronalane, where on average 95% of the organisms present were burrowers (Figure 3.23, Appendix 7).

Given the pattern shown for benthic invertebrate habits, it would be expected that habitat preference (whether erosional or depositional) would also be a useful metric for describing longitudinal patterns in the Bow River. However, based on the taxonomic units used for comparison with the historical data, habitat preference was misleading. There were no interpretable differences among sites based on the mean proportion of organisms preferring depositional habitats; Ronalane, which is clearly a slower-flowing depositional site, showed the lowest proportion of depositional organisms (Figure 3.24, Appendix 7). However, when taxonomic detail was added back in, Ronalane stood out from the other sites as the location where the greatest proportion of the benthos preferred depositional habitats, consistent with the nature of this site (Figure 3.25). This difference was driven by the specific preferences of various chironomid genera.

3.2.1.5 <u>Tolerance</u>

The tolerance or sensitivity of many benthic invertebrates to pollution and other perturbation is fairly well known. For this report, pollution tolerance and pollution sensitivity grades were assigned to taxa based on tables in Mandaville (2002), which were drawn from a number of original sources. Tolerance values, whether at the species/genus level or the family level, range from 0 (very intolerant) to 10 (very tolerant) and are based primarily on response to organic pollution. These values can be combined into a biotic index (BI) or a family biotic index (FBI) to give a range of values between 0 and 10, where 0 represents excellent water quality and 10 represents very poor water quality. Pollution sensitivity grades are assigned on a family basis or higher. These values range from 1 to 10, where 1 is least sensitive and 10 is most sensitive. The sensitivity grades can be examined as the cumulative score of all taxa (referred to as the Biological Monitoring Working Party number, BMWP) or can be divided by the number of taxa to yield an average score per taxon (ASPT).

The number of pollution intolerant taxa (score of 0, 1, or 2) was lowest at Ronalane, followed by Cochrane (Figure 3.26, Appendix 7). There were no significant differences between the other three sites, although Carseland had the highest mean number of intolerant taxa, and was tied with Cluny for the highest total number of intolerant taxa.

.

.

.

.

.

.

.

.

•

•

•

•

.

•

•

••••••

.

The mean Family Biotic Index (FBI) scores for the 5 Bow River sites ranged from 7.8 (Cochrane) to 5.8 (Stier's Ranch). Scores at Cochrane and Ronalane were significantly higher than at the other three sites indicating that these two sites sustained the most negative impact (Figure 3.27, Appendix 7). Although schemes exist for translating BI and FBI scores into water quality ratings (*e.g.* Hilsenhoff 1987, 1988), the values calculated for the Bow sites should be interpreted as relative rankings only. Attributing the scores to specific water quality ratings can only be done after extensive calibration for the region in which they are to be used.

Mean cumulative sensitivity (BMWP) scores were significantly lower at Cochrane than all other sites except for Ronalane (Figure 3.28, Appendix 7). The general paucity of fauna at the Cochrane site had some bearing on this result. Once the effect of the number of taxa was eliminated by calculating the average sensitivity score per taxon, the gap between Cochrane and the other sites was narrowed, and the significance of the difference between Cochrane and Stier's Ranch was eliminated. Both Cochrane and Ronalane had significantly lower ASPT than Cluny and Carseland (Figure 3.29, Appendix 7). These results suggest that although nutrient enrichment at Stier's Ranch resulted in a rich and abundant benthic community, there may be a slight tendency for those organisms to be less sensitive to organic pollution than those in adjacent downstream communities, farther from Calgary's direct influence.

3.2.2 Longitudinal trends in Depositional Habitat (2006) – 210 µm Kick Net Samples

Most of the benthic invertebrate monitoring programs by Alberta Environment have focused on erosional habitat and the benthic data collected from depositional areas at Bow River LTRN sites are among the first for such habitat.

In many ways the longitudinal patterns exhibited by benthic invertebrate metrics in depositional areas mirror those observed in erosional areas. For example, the number of invertebrates collected downstream of Calgary was considerably higher than upstream (Figure 4.1), indicating that responses to enrichment are also measurable in depositional areas.

The number of taxonomic groups collected in depositional areas tended to be lower than in erosional areas sampled with the same mesh size (Figure 4.2). This is particularly noticeable for some taxa such as mayflies, stoneflies, and caddisflies which were considerably less diverse and less abundant in depositional areas (Figures 4.3 and 4.4). As expected, the proportion of taxa which are known to prefer depositional habitats was greater in depositional samples than in erosional samples (Figure 5) and taxa which burrow in sediments were more prevalent in this habitat (Figure 6). Swimmers, which

are quite mobile (over the sediment and in the water column), also tended to be relatively more abundant in depositional areas.

Unlike erosional habitats where diversity indices change relatively little along the length of the Bow River, there was a fairly sharp longitudinal decline in index values in depositional habitats downstream of Calgary and recovery was only apparent at the most downstream site (Figure 4.5 and 4.6). By nature, depositional areas have slower flow velocities. Dissolved oxygen fluctuations may be more pronounced than in faster flowing waters, particularly in areas that are very rich in nutrients, and/or have high algal and macrophyte biomass. Subsequent decomposition of primary producers may lead to excessive oxygen consumption from the water column. The decline in diversity indices may be an indication of more stressful conditions in depositional than erosional areas. If this can be verified, it may be judicious to continue monitoring such depositional areas to assess responses to nutrient management in the basin.

3.2.3 Historical Longitudinal and Temporal Trends for Invertebrates in Erosional Habitat

Many of the patterns described from the 2006 data, including evidence of perturbation at Cochrane, organic enrichment at Carseland, and depositional conditions at Ronalane are consistent with the longitudinal differences in the Bow River benthic community discussed in Anderson (1991). This historical work was based on data collected between 1983 and 1987 at Cochrane, Carseland and Ronalane. For the current report, these data were combined with occasional data from Stier's Ranch and Cluny and data collected in 1989, 1993, and 2006 in order to examine overall differences among sites and over time using a number of different techniques, including multivariate analyses.

3.2.3.1 <u>Stepwise Discriminant Analysis – All sites and Years</u>

Stepwise discriminant analysis was performed using counts of the top 25 taxa (out of a total of 64). Four canonical discriminant functions were used in the analysis, the first three of which accounted for about 96% of the variance among samples. The correlations for these functions are shown in Appendix 8. Of the 25 taxa used in the discriminant analysis, 14 were associated with the first 3 functions.

Samples from Cochrane were clearly separated from the rest of the Bow River sites along function 1, based primarily on fewer Chironomini, Tubificidae, and Simulidae at this site than others (Figure 7). All sites showed more separation along function 2, which was positively correlated with the mayflies *Stenonema* and *Tricorythodes*, and negatively with *Hydra* and Ephemerellidae. Cochrane and Stier's Ranch held a neutral position along this axis, while Carseland had a negative score and both Ronalane and Cluny had positive scores for this function (Figure 7). Discriminant function 3 was positively correlated with the caddis fly family Helicopsychidae and to a lesser extent with the chironomid tribe Tanytarsini. Carseland, Cluny, and Ronalane scored higher on this function and Cochrane occasionally scored lower, while Stier's Ranch samples scored negatively (Figure 7). Considering all three functions, Ronalane and Cluny were the most similar, showing the most overlap, and the other three sites each formed distinct separate groups (Figure 7).

The fairly good separation of the five sites based on this analysis suggests that many of the basic longitudinal differences in the zoobenthic community of the Bow River remained consistent over the 23 year period of study. However, to better detect significant trends over time within sites, analysis of variance (ANOVA) was performed using the discriminant function scores. The hypothesis was that no change had occurred in the taxa influencing the function in question, while the alternate hypothesis was that significant change had occurred. For DF-1, only Stier's Ranch showed a significant increasing change over time (Figure 8). The taxa most strongly associated with this function tend to be pollution tolerant, suggesting a trend towards more tolerant organisms at this site. For DF-2, scores at Ronalane decreased significantly over time. Taxa associated with this function were less tolerant to pollution than those for DF-1, suggesting a trend towards fewer sensitive organisms at this site. For DF-3, Carseland's scores significantly decreased over time, while Cluny's scores increased significantly. DF-3 was most strongly associated with the presence of helicopsychid caddisflies which prefer erosional habitats. Overall, these analyses suggest some change over time at all sites except for Cochrane. At all sites, it appears that conditions may have been more favourable to pollution-sensitive organisms in the middle of the period studied than in the early eighties or at present, with some minor exceptions.

3.2.3.2 Comparison: 1985, 1993 and 2006

•

••••

•••••••••••••

•

•

•

•

9

There are only three years with data at all five sites: 1985, 1993, and 2006. These three years represent fairly well-spaced time periods: post-phosphorus removal (1980s), post-nitrogen removal (1990s), and present (2000s).

Reductions in nutrient loading would be expected to result in less primary production and improved dissolved oxygen conditions. Depending on the degree of these changes, benthic invertebrate communities would be expected to show increased taxonomic richness, particularly for 'sensitive' taxa. If nutrient reductions were sufficient to result in a decline of invertebrate food resources, a decline in overall population densities might also be seen.

The flow history that precedes invertebrate sampling can have a determining influence on benthic invertebrate distribution and, in this context, an evaluation of flows has been included in Appendix 9. Flow conditions were quite different in the three years. Flows preceding the sampling in 1985 were generally low, but a sharp peak occurred a month earlier in September. Flows for the 2006 sampling were higher, but had remained fairly stable for much of the summer and fall; very high flows occurred in June 2006. The September 1993 samples represent the highest monthly and daily flows of all years and numerous high flow events occurred during the summer. The higher flows experienced in 1993, in many ways could have favoured 'sensitive' taxa.

A graphical comparison of benthic invertebrate metrics for 1985, 1993 and 2006 follows. This comparison is supported by a series of ANOVAs, examples of which are provided in Appendix 10).

3.2.3.3 Counts and Indices

In spite of some site-to-site differences, overall abundance (measured as the mean of the five sites) was similar for 1993 and 2006, while it was much lower in 1985 (Figure 9-1). It is possible that high flows prior to sampling resulted in lower benthos numbers in that year. However, in terms of richness (shown for number of families), 1985 and 2006 were similar, while the number of taxa was generally higher in 1993, which could be an indication of more favourable conditions (Figure 9-2). Both abundance and richness were significantly lower at Cochrane in 2006 than in the previous years. At Stier's Ranch, abundance was much lower in 1985 than in 2006, while the number of families found in these two years was not significantly different.

Although the overall Simpson diversity index was highest in 1993, the only significant difference between years was at Cluny, which had a much less diverse benthic community in 1985 than in the two other years (Figure 9-3). The overall Shannon diversity index was highest in 1993 (Figures 9-4). The 2006 index value at Cochrane was significantly lower than it had been in 1993, and at Ronalane the 2006 index was significantly lower than in both other years. The Shannon index was most variable at Cluny; all three years were different, with 1985 having the lowest value and 2006 the highest.

Greater community richness throughout the Bow River in 1993 was reflected in overall higher numbers of taxa (genera or families) in various categories, whether based on feeding groups, behaviour, or pollution sensitivity. However, the patterns at individual sites varied. For Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera, numbers were significantly higher in 1993 at all sites than in 2006, and higher at Stier's Ranch and Cluny in 1993 than in 1985 (Figure 9-5). At Cochrane and Ronalane, the number of genera of these three "sensitive" groups was also larger in 1985 than in 2006. In terms of families within the orders Ephemeroptera, Trichoptera, and Odonata (ETO, another metric for grouping sensitive organisms), there was no difference among years for Stier's Ranch or for Carseland, while counts in 1985 and 1993 were significantly higher than those in 2006 for both Cochrane and Ronalane (Figure 9-6). Numbers for Cluny were significantly higher in 1993 than in both other years.

Numbers of various taxa at Cochrane often showed the largest differences, particularly between 1985 and 2006. For example, the largest number of predator taxa for all sites and years was found at Cochrane in 1985, while the lowest number occurred at the same site in 2006 (Figure 9-7). At Carseland and Cluny, the highest number of predator taxa occurred in 1993, contributing to high overall numbers at this site, while at Stier's Ranch and Ronalane, there were no significant differences among years. The pattern for clinger taxa was similar; the highest overall numbers occurred in 1993, while the highest and lowest number of clinger taxa occurred at Cochrane in 1985 and 2006, respectively (Figure 9-8). The Cochrane site was not affected by the same September peak flow that the downstream sites experienced before sampling in 1985 (Appendix 9), which may have displaced taxa at these sites. Lower flows in 1985 may also have allowed samplers to access an area of the river bed at Cochrane that was not as much disturbed by discharge fluctuations resulting from operation of the Ghost Dam, and had a more representative fauna than the 2006 samples.

The overall number of pollution intolerant taxa was almost twice as high in 1993 as in the other two years. In 1985, pollution intolerant taxa were more common at Cochrane than

at any other site, but in 2006, the number of intolerant taxa at this site was second only to Ronalane's count that year as the lowest for all years (Figure 9-9). The only site that did not differ significantly among years was Carseland. This was the case also for the average pollution sensitivity score per taxon, which showed similar year-to-year and site-to-site patterns (Figure 9-10).

The Biotic Index (based on data at the genus level or higher) produces scores between 1 and 10 where higher scores correspond to poorer water quality. The highest biotic index scores occurred at Carseland and Cluny in 1985; these were significantly higher (poorer) than in 1993 or 2006. At Cochrane, the index score in 2006 was significantly higher than in the previous years. At Stier's and Ronalane differences among years were not statistically significant (Figure 9-11). As for most other metrics, the overall biotic index results were lowest (best) in 1993. High flows throughout the summer may have constantly refreshed the substrate and kept oxygen levels high in that year (Appendix 9). In 1993 both phosphorus and nitrogen removal were fully implemented, but the population of Calgary was less than three quarters of what it was in 2006 (City of Calgary 2007). The alum treatment and resulting effluent phosphorus reduction may have helped to offset the loading increase due to population growth (A. Sosiak, pers. comm.).

3.2.3.4 Proportions and Ratios

The proportion of Oligochaeta in the samples differed little at each site over time, except for being lower in 2006 than 1993 at Stier's Ranch, and lower in 1985 than 1993 at Ronalane (Figure 9-12). The proportion of Nematoda differed more appreciably among years, with the overall proportion being much lower in 1993 samples than in other years (Figure 9-13). The overall proportion of Chironomidae was also lower in 1993 samples (Figure 9-14), although differences at Stier's Ranch and Carseland were not statistically significant. The overall proportion of EPT organisms and the corresponding EPT-to-Chironomidae ratio showed the opposite trend; these two measures were much higher in 1993 than in the other years (Figures 9-15 and 9-16). Stier's Ranch had slightly higher proportions of EPT compared to the other sites in all years, except for Cluny in 1993. Cluny had one of the lowest EPT-to-chironomid ratios in 1985 (mean of 0.11), while in 1993 the mean ratio at this site was 6.25 (Figure 9-16).

The percent by which one type of organism dominates in a sample provides an indication of balance in the community. The contribution of the dominant order of insects at each site as a percentage of total insect abundance was generally higher in 1985 and 2006. In these two years, maximum contributions at some sites were upwards of 90%, while in 1993, the maximum percent contribution was 78% at Cluny (Figure 9-17).

The ratio of relatively tolerant hydropsychid caddisflies to total Trichoptera tends to increase in response to organic enrichment. Hydropsychids are net spinning (filter feeding) caddisflies which are one of the most notable invertebrates at Stier's Ranch because of their abundance and size. The ratio of hydropsychids to caddisflies at this site was somewhat lower in 1993 than in the two other years (Figure 9-18). At Carseland that ratio was considerably higher in 2006.

The longitudinal differences in the proportions of filtering collectors was preserved between years, with Stier's Ranch having the greatest proportion of filterers in each year

(Figure 9-19). Proportions of gathering collectors were always much higher than those for filtering collectors; this metric tended to be highest in all years at Ronalane (Figure 9-20).

The ratio of scrapers, which prefer areas with a large amount of algae, to filterers, which feed on fine particulate organic matter and are sensitive to any toxic material bound to these particles, can provide information about aquatic conditions. This ratio changed noticeably at some sites between years, particularly at Ronalane and Cluny (Figure 9-21), but did not appear to follow any particular pattern, nor was there any association between this metric and algal data.

The overall proportion of clinger taxa, which grasp onto rocks, plants, and debris, was greatest in 1993. In each year, the mean proportion of the invertebrate community made up by clingers was highest at Stier's Ranch, although in 1993 the maximum proportion was found at Cochrane (Figure 9-22). In contrast, the overall proportion of animals that burrow into the substrate was lowest in 1993, perhaps reflecting the fact that high flows kept the river bed more clear of sediment in that year. The largest difference between years was seen at Cluny where, in 1985, burrowers comprised 87% of the organisms present, while in 1993 only 14% of the organisms were burrowers (Figure 9-23). This difference, along with others such as the increase in EPT organisms at this site between 1985 and 1993 indicate that the nature of this site changed markedly in the intervening years, perhaps due to displacement of sediment from the river bed and/or decreased algal biomass as a result of flushing flows (see Appendix 9). Another possibility is that there were differences in the exact location from where samples were collected.

Changes in the condition of a site between years could be revealed further by an examination of habitat preference. For example, it appears Cluny may have changed from a depositional site to an erosional site between 1985 and 1993. However, as indicated in the previous analysis of the 2006 data, many of the invertebrate identifications for the historical data are not specific enough for adequate assignment of habitat preference.

3.3 Assessment Of Longitudinal Trends In Epilithic Algal Data

3.3.1 Epilithic Algae – 2006

3.3.1.1 Community Analysis

A total of 104 epilithic algae taxa, the majority of which were diatoms, were identified from the five Bow River sites in October of 2006 (Appendix 3). The greatest algal density (units/cm²) was recorded at Carseland and was primarily due to diatoms (Figure 10-1). Diatoms made up the greatest portion of density at all sites. Cyanobacteria were the second largest contributor to density at all sites except for Cluny, where Chlorophyceae was the second densest group. The highest density of cyanobacteria occurred at Stier's Ranch (Figure 10-1).

Diatoms made up the majority of the biomass (µg/cm², estimated based on cell volume) at all sites; biomass calculated by this method was much higher at Carseland than at the

other sites (Figure 10-2). Stier's Ranch and Carseland had the highest biomasses of cyanobacteria, while Cochrane and Ronalane had the highest biomasses of Chlorophyceae. Higher density and biomass of cyanobacteria is consistent with organic enrichment, while Chlorophyceae can be indicative of cleaner water sites. At Stier's Ranch, cyanobacteria made up 23% of the total biomass, while at Carseland, cyanobacteria contributed only 3% of the total biomass (Figure 10-3).

The fewest taxa were found at Cochrane (24), while Ronalane had the greatest taxa richness (50) (Figure 10-4). In terms of unique genera, richness was again lowest at Cochrane (15), while Carseland had the highest number (22) (Figure 10-5). Taxa were used to calculate the Shannon index at each site, which followed the general pattern for taxon richness (Figure 10-6).

Information on algal community composition can be used in a manner similar to the benthic invertebrate community for assessing environmental conditions. Although algal classes broadly suggest whether conditions are relatively "clean" or subject to nutrient enrichment, taxa within each class exhibit a range of responses to nutrient levels. These properties have been used to develop a number of water quality/nutrient indices. including some based on the taxonomic composition of cyanobacteria (Douterelo, Perona, and Mateo 2004) and diatoms (Kelly 1998, Jüttner et al. 2003, Potapova and Charles 2007). The dominance of diatoms at all the Bow River sites make these algae attractive as indicator taxa. Based on data from U.S. rivers, Potapova and Charles (2007) compiled a list of diatom species, indicating whether they were associated with low or high total phosphorus ($\leq 10 \,\mu g/L$, $\geq 100 \,\mu g/L$) and with low or high total nitrogen (≤ 0.2 $\mu g/L$, $\geq 3.0 \, \mu g/L$). Since these concentration ranges are applicable to the Bow River (e.g., Sosiak 2002), the broad preference ranges were used at a scoping level to classify Bow River diatom species simply as either 'low' or 'high' TP species, and 'low' or 'high' TN species. Actual indicator values provided in Potapova and Charles (2007) were not used in this analysis.

By number of taxa and by biomass, the greatest proportion of diatoms preferring both low TP and TN (unclassified taxa excluded) were found at Cochrane, consistent with this site's location upstream from major sources of enrichment. Carseland had the next highest proportion of diatom taxa and biomass preferring lower nutrients (Figures 11-1 to 11-4). The greatest densities of low nutrient-preferring taxa, however, appeared at Cluny and Ronalane. At Ronalane, the densities of nutrient-tolerant and intolerant taxa were equal, while at all other sites the tolerant taxa were found at greater densities (Figures 11-5 and 11-6).

Chlorophyll-a and Phaeophytin-a

•

:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chlorophyll-*a* provides a reliable indicator of algal biomass; phaeophytin-*a* is a breakdown product of chlorophyll-*a*. Between 3 and 9 samples for chlorophyll-*a* and phaeophytin-*a* were collected at each site. At Stier's Ranch, Carseland, and Cluny, more than one person collected the samples, adding to the range of variation seen at these sites and illustrating the value of consistency in field staff and training for spatial and temporal evaluations (Figure 12-1). In each case, the samples have been pooled for analysis. The

highest mean chlorophyll-a (299 mg/m²) was found at Stier's Ranch, while the lowest was 18.46 mg/m² at Cochrane (Figure 12-2). Mean phaeophytin-a was highest at Carseland, indicating a high amount of turn-over at this site, and suggesting that a large amount of dead cells contributed to the high density and biomass noted by the taxonomic analysis at this site (Figure 12-3). The chlorophyll-to-phaeophytin ratio was highest at Stier's Ranch, indicating rapid growth at this site. This ratio was lowest at Cochrane and Ronalane, suggesting a slower rate of growth in comparison to algal decline (Figure 12-4).

Correlations with Invertebrate Data

Epilithic algal community metrics, including density, biomass, taxa richness, and the Shannon index, along with chlorophyll-a data, were compared to the 2006 invertebrate abundance, taxa richness, and Shannon index data using simple correlation. The strongest relationships were between chlorophyll-a and invertebrate abundance (Figure 13-1, r = 0.87), the chlorophyll-a to phaeophytin-a ratio and the invertebrate Shannon index (Figure 13-2, r = 0.85), and algal richness and invertebrate richness (Figure 13-3, r = 0.85). These relationships are not unexpected since periphyton is a major food source for many invertebrate taxa.

3.3.2 Comparison with Historical Data

Limited historical epilithic chlorophyll-a data are available for most of the Bow River sites. Data from 2006 were compared with data collected in September of 1993 (three replicates per site) and pooled data for autumn samples from 1983 through 1986. Data were pooled to represent conditions in the mid-eighties (after phosphorus removal but before nitrogen reduction) because only one sample was collected for each sampling month during this period. No fall data are available for Cochrane from this period.

The highest mean and maximum chlorophyll-*a* levels occurred at Carseland and Cluny in the 1980s. Algal biomass at these two sites was lower in 1993 and 2006. In both 1993 and 2006, the largest mean Chl-*a* values were found at Stier's Ranch, followed by Carseland (Figure 14). These results are consistent with those of Sosiak (2002), who found that periphytic biomass did not change directly downstream from Calgary in response to enhanced phosphorus removal, but declined at sites further downstream where total dissolved phosphorus levels were lower.

The chlorophyll results relate well to the invertebrate findings for these three periods. In particular, the lower amounts of algae in 1993, perhaps in part a result of higher flows throughout the summer, are consistent with the abundance of "clean water" taxa in that year. Also, the much lower levels of Chl-a at Cluny in 1993 and 2006 as compared to the 1980s supports the change in fauna at this site between these periods.

A small amount of epilithic community data is also available. In this case, data from October 1980 and 1981 (averaged) were compared to data from October 1994 and 2006. For the historical data, samples from Bowness and Bow City were used in place of Cochrane and Cluny. Overall, densities were lower in 2006 than for the other two periods. Carseland had the highest total cell densities of all sites in 1994 and 2006, while Bow City followed by Stier's Ranch had the highest densities in the early 80s (Figure

15). Diatoms made up the greatest percentage of density at most sites with the exception of Bowness in 80/81 and Ronalane in 1994 (Figure 16). Green algae were more prevalent in the 80/81 samples than in 1994 or 2006. Overall, cyanobacteria contributed more to the algal density at Stier's Ranch in 2006 than historically.

4.0 GENERAL DISCUSSION AND CONCLUSIONS

Although there are some municipal discharges upstream of Cochrane (i.e., Banff, Canmore) the sampling site at Cochrane, in the foothills upstream from Calgary, experiences low nutrient levels and showed few signs of nutrient enrichment. Epilithic algal chlorophyll-a and biomass levels were low and a large proportion of the diatoms present were taxa which prefer low levels of nutrients. The benthic invertebrate community at this site was impoverished in 2006, having the lowest abundance and diversity of all sites. The abundance of invertebrates was low, in particular the number and variety of mayflies and stoneflies was much lower than would be expected at a "clean water" site. Rather than being related to water quality, this situation is likely the result of rapidly changing flow levels from the operation of the Ghost Dam for hydropower generation. Diurnal fluctuations in discharges from the dam can expose and flood the riverbed within short periods of time, making the access to a constantly submerged sampling site difficult. In addition, and perhaps also as a result of flow regulation (e.g., Kirkwood et al. 2007), Didymosphenia geminata, a colonial diatom, frequently forms extensive mats of cotton-like material at this site and contributes further to poor habitat for invertebrates. The effects of these perturbations were evident in some of the zoobenthic samples from previous years (Anderson 1991). Overall benthic invertebrate numbers were quite variable and no clear temporal trend emerged.

In contrast, Stier's Ranch, immediately downstream from two wastewater treatment plants, showed vivid signs of organic nutrient enrichment. It had the highest abundance of organisms and the richest, most diverse benthic community. However, the numbers of pollution-intolerant taxa tended to be slightly lower at this site than at sites further downstream from Calgary's influence. Nutrient enrichment was also apparent in the higher epilithic chlorophyll-a levels, larger proportions of cyanobacteria, and higher number of diatom taxa preferring greater nutrient concentrations at this site. The invertebrate community at Stier's Ranch in 2006 was more similar to samples taken in the 1980s (i.e., after implementation of phosphorus removal at Calgary's wastewater treatment plants) than to the sample taken in 1993 (i.e., after further implementation of phosphorus and nitrogen removal). In 1993 taxonomic diversity, number of EPT taxa, and ratio of EPT to chironomids were higher, and the biotic index, proportion of nematodes and chironomids, and proportion of hydropsychids to Trichoptera were lower. These are all signs that conditions were better in 1993 than in the other years that were examined in detail. While invertebrates clearly respond to the great abundance of food, responses to diurnal oxygen deficit, a recurring summer issue in the Bow River (A. Sosiak, 2007 pers. comm.), were not apparent at the erosional sampling location. However, an indication of such response to stress was apparent in the low benthic invertebrate diversity indices calculated for the Stier's Ranch depositional site.

Carseland also showed the effects of nutrient enrichment. Invertebrate abundance, periphytic algal biomass, cell density, and chlorophyll-a levels were relatively high at this site in 2006. However, the numbers of pollution-sensitive zoobenthic taxa were slightly higher, and the proportions of cyanobacteria and diatoms preferring high nutrient levels were slightly lower, than at Stier's Ranch. This site benefited significantly from nutrient removal in the 1980s (Sosiak 2002). Based on available data, the invertebrate community, although it still exhibits responses to nutrient enrichment, has remained in

relatively healthy condition since that time. Given its location, the response at this site to Calgary's expansion should be monitored closely in the future.

While invertebrate abundance was lower at Cluny than at Carseland in 2006, community composition was similar. Epilithic chlorophyll-a was also lower at this site than at Carseland; in the 1980s, chlorophyll-a levels tended to be higher. Zoobenthic abundance has been historically higher at this site; however, most metrics from 1985 suggest that conditions at this site were poor, or more typical of depositional conditions. This site exhibits changes over time which suggest a shift from a depositional to an erosional environment. Essentially, zoobenthos from Cluny has become more like that from Carseland and less like that from Ronalane. Such changes may be quite independent of water quality and could be related to the effect of flushing flows experienced in 2005 (Appendix 9) and to differences in the exact sampling location historically and in 2006.

.

•

•

.

•

.

.

In 2006, Ronalane was defined by a large proportion of burrowers and other depositional fauna. This finding is consistent with this site's location near the mouth of the Bow River and is reflected in historical conditions. There is some indication that this site may be experiencing deterioration. While flow regulation and discharges of municipal effluents have well-documented impacts on benthic invertebrate distribution, the effects of other potential stressors, such as irrigation return flows, need to be evaluated, particularly at lower sites on the Bow River.

Despite the temporal changes observed at some of the sites, the consistent way in which sites are separated by multivariate analysis suggests that many of the basic longitudinal differences in the zoobenthic community of the Bow River remained constant over the 23 year period of study. This is an indication of the strong influence of physical and chemical ecoregional differences on river dynamics and benthic invertebrate distribution – an observation which has been made in previous studies on rivers from the South Saskatchewan River basin (e.g., Culp and Davies 1982, Anderson 1991, Powell 2008).

Aside from substrate type, flow conditions have a definite influence on benthic invertebrate and algal population density and taxa distribution. Biological responses to man-made improvements such as nutrient load reductions from municipal wastewater discharges may be overshadowed by responses to flow fluctuations. This is particularly so for the Bow River benthic invertebrate data set which had too few collections (time and space) to adequately tease out the sometimes confounding influence of flow and responses to municipal wastewater treatment plant improvements.

In order to build on these data, a regular sampling schedule should be established. More frequent sampling would make determination of trends in biological communities due to natural and human-induced variations in flow easier to determine. In addition, more intensive spatial sampling would facilitate the interpretation of longitudinal trends in water quality and biota as they relate to point-source management changes in the basin.

Overall, benthic invertebrate and epilithic algae data collected from the Bow River provided useful and complementary information about longitudinal and temporal trends at Bow River long-term monitoring sites. A large number of metrics was used and it is evident that they each provide different information, some being more indicative of the general nutrient status of a site, others of the physical habitat conditions. These different

but important features need to be recognized and metrics for analysis selected accordingly.

Detailed identification and enumeration of invertebrate and algal samples is labour intensive, but essential for extracting the maximum value from the samples collected. Rapid assessment techniques generally rely on invertebrate data at higher taxonomic levels (i.e., family). While some useful information can be derived from this type of analysis, more detailed taxonomy is often necessary for describing certain trends. The need for greater detail was apparent for habitat preference information. The evaluation of metrics based on other classifications such as behaviour or feeding group was more successful at the level of taxonomic detail available for this study, but might also have been improved by greater taxonomic detail. Species-level identification proved important for evaluating the epilithic algal community data, as this allowed the classification of diatoms according to their preferences for phosphorus and nitrogen levels.

5.0 LITERATURE CITED

:

•

••••

••••••••

•

•

:

•

••••

•

•

.

•

- Alberta Environment. 2002. Water Quality Sampling Methods. Water Monitoring Group, Compliance Branch, Alberta Environment. 76 pp.
- Alberta Environment. 2006. Aquatic Ecosystems Field Sampling Protocols. Environmental Monitoring and Evaluation Branch, Environmental Assurance Division, Alberta Environment. 137 pp.
- Anderson, A.M. 1991. An Overview of Long-term Zoobenthic Monitoring in Alberta Rivers (1983-1987). Environmental Quality Monitoring Branch, Alberta Environment. Edmonton, Alberta. 98 pp. + Appendices.
- Anderson, W.J., personal communication regarding changes in taxonomy for the genus Baetidae from the 1980's to present. 2007.
- Anton, A. and H. C. Duthie. 1981. Use of cluster analysis in the systematics of the algal genus *Cryptomonas*. Can J. Bot. 59: 992-1002.
- Bahls, L. 2004. Northwest Diatoms: A photographic catalogue of species in the Montana Diatom Collection, with ecological optima, associates, and northern distribution records for the nine northwestern United States.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment
 Protocols for Use in Streams and Wadeable Rivers: Periphyteon, Benthic
 Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S.
 Environmental Protection Agency, Office of Water, Washington, D.C.
- Baumann, R.W., A.R. Gaufin, and R.F. Surdick 1977. The stoneflies (Plecoptera) of the Rocky Mountains. Mem. Am. Ent. Soc. 31: 1-208.
- Beals, M., L. Gross and S. Harrell. 1999. http://www.tiem.utk.edu/~mbeals/simpsonDI.html
- Beals, M., L. Gross and S. Harrell. 2000. http://www.tiem.utk.edu/~mbeals/shannonDI.html
- Camburn, K. and D. F. Charles. 2000. Diatoms of low-alkalinity lakes in the northeastern United States. The Academy of Natural Sciences of Philadelphia. 152 pp.
- City of Calgary. 2007. Civic Census Summary. 13 pp. http://www.calgary.ca/DocGallery/BU/cityclerks/city.pdf
- Charlton, S.E.D. 1986. The ecology of five rivers. Ph.D. thesis, University of Alberta, Edmonton, Alberta.

- Charlton, S.E.D., Hamilton, H.R. and Cross, P.M. 1986. The limnological characteristics of the Bow, Oldman and South Saskatchewan rivers (1979-82). Part II. The primary producers. Pollution Control Division, Alberta Environment, Edmonton, Alberta.
- Clifford, H.C. 1991. Aquatic Invertebrates of Alberta. The University of Alberta Press. Edmonton, Alberta. 538 pp.
- Cuffney, T.F., Gurtz, M.E., and Meador, M.R., 1993, Methods for collecting benthic invertebrate samples as part of the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 93-406, 66 pp.
- Cumming, B.F., Wilson, S.E. and J.P. Smol. 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica. Band 31. J. Cramer, Berlin, Stuttgart. 207 pp.
- Culp, J.M. and R.W. Davies. 1982. Analysis of longitudinal zonation and the river continuum concept in the Oldman-Saskatchewan River system. Canadian Journal of Fisheries and Aquatic Sciences 39: 1258-1266.
- Davis, W.S. and T.P. Simon, Eds. 1995. Biological Assessment and Criteria Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton. 415 pp.
- Douterelo, I., E. Perona and P. Mateo. 2004. Use of cyanobacteria to assess water quality in running waters. Environmental Pollution. 127(3): 377-384.
- Edmunds, G.F., Jr., S.L. Jensen and L. Berner. 1976. The Mayflies of North and Central America. University of Minnesota Press. Minneapolis, Minnesota. 330 pp.
- Efron, B. and R. Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. Statistical Science 1: 54-77.
- Efron, B. and R. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman and Hall/CRC. Boca Raton, USA.
- Entwisle, T. J., Skinner, S. Lewis, S. H. and H.J. Foard. 2007. Algae of Australia: Batrachospermales, Thoreales, Odeogoniales and Zygnemacae. ABRS, Caberra; CSIRO Publishing, Melbourne. 191 pp.
- Fallu, M.-A, N. Allaire and R. Pienitz. 2000. Freshwater Diatoms from northern Québec and Labrador (Canada). Bibliotheca Diatomologica. Band 45. J. Cramer, Berlin, Stuttgart. 200 pp.
- Findlay, D. L. and H. J. Kling. 1976. A species list and pictorial reference to the phytoplankton of central and northern Canada. Fisheries and Environment Canada, Fisheries and Marine Service, Manuscript Report No. 1503. 619 pp.

- Government of Alberta. 2003. Water for Life Alberta's Strategy for Sustainability. http://www.waterforlife.gov.ab.ca/docs/strategyNov03.pdf
- Hamilton, P. 1990. The revised edition of a computerized counter for plankton, periphyton and sediment diatom analysis. Hydrobiologia. 194: 23-30.
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. Great Lakes Entomol. 20(1): 31-36.
- Hilsenhoff, W.L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 7(1): 65-68.
- Huber-Pestalozzi, G. 1961. Das phytoplankton des Süβwassers. Systematik und Biologie. 5 Teil, Chlorophyceae (Grünalgen), Ordnung: Volvocales Die Binnengewäser (Band XVI). E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart. 728 pp.
- Huber-Pestalozzi, G. 1972. Das phytoplankton des Süβwassers. Systematik und Biologie. 6 Teil, Chlorophyceae (Grünalgen), Ordnung: Tetrasporales von B. Fott. Die Binnengewäser (Band XVI). - E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart. 47 pp

•

••••••

- Huber-Pestalozzi, G. 1982. Das phytoplankton des Süβwassers. Systematik und Biologie. 8 Teil, 1 Halfte. Conjugatophyceae Zygnematales und Desmidiales von Kurt Förster, Pfronten/Allgäu Die Binnengewäser (Band XVI). E.
 Schweizerbart'sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart. 543 pp.
- Huber-Pestalozzi, G. 1983. Das phytoplankton des Süβwassers. Systematik und Biologie. 7 Teil, 1 Halfte. Chlorophyceae (Grünalgen), Ordnung: Chlorococcales von J. Komarek und B. Fott. Die Binnengewäser (Band XVI). - E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart. 1044 pp.
- Jones, C., K.M. Somers, B. Craig, and T.B. Reynoldson. 2005. Ontario Benthic Biomonitoring Network Protocol Manual, Version 1.0. Ontario Ministry of the Environment and Environment Canada. 111 pp.
- Jüttner, I., S. Sharma, B.M. Dahal, S.J. Omerod, P.J. Chimonides and E.J. Cox. 2003. Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biol. 48: 2065-2084.
- Kelly, M.G. 1998. Use of the diatom index to monitor eutrophication in rivers. Wat. Res. 32(1): 236-242.

- Kirkwood, A. E., T. Shea, L.J. Jackson, and E. McCauley. 2007. Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Can. J. Fish. Aquat. Sci. 64:1703-1709.
- Komàrek J. and K. Anagnostidis. 1998. Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Begründet von A. Pascher. Band 19/1. Gustav Fischer. 584 pp.
- Komàrek J. and K. Anagnostidis. 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. Süswasserflora von Mitteleuropa. Founded by A. Pascher. Edited by Burkhard Büdel, Lothar Krientiz, Georg Gärtner and Michael Schagerl. Volume 19/1. Elsevier Spektrum Akademischer Verlag. 759 pp.
- Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Begründet von A. Pascher. Band 2/1. Stuttgart-Jena. 876 pp.
- Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae. 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Begründet von A. Pascher Band 2/2. Stuttgart-Jena. 596 pp.
- Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae. 3 Teil: Centrales,
 Fragilariaceae, Eunotiaceae. Unter Mitarbet von H. Häkansson & M. Nörpel. In:
 In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Begründet von A.
 Pascher Band 2/3. Stuttgart-Jena. 576 pp.
- Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae. 4 Teil: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Band 2/4. Stuttgart-Jena. 437 pp.
- Lund, J. W. G., Kippling, C. and E. D. le Cren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis for the estimation by counting. Hydrobiol. 11: 144-170.
- Mackie, G. 2004. Applied Aquatic Ecosystem Concepts. 2nd Edition. Kendall/Hunt Publishing Company. 784 pp.
- Mandaville, S.M. 2002. Benthic Macroinvertebrates in Freshwaters Taxa Tolerance Values, Metrics, and Protocols. Project H-1. Soil and Water Conservation Society of Metro Halifax. 48 pp. + Appedices.
- Manly, B.F.J. 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall. London (UK). 281 pp.
- Manly, B.F.J. 2001. Statistics for Environmental Science and Management. Chapman and Hall/CRC. Boca Raton, USA. 326 pp.

- Mason, W.T. and P.P. Yevich. 1967. The use of phloxine B and Rose Bengal stains to facilitate sorting of benthic samples. Trans. Amer. Microsc. Soc. 56(2): 221-223.
- Merritt, R.W. and K.W. Cummins. 1984. An Introduction to the Aquatic Insects of North America. Kendell/Hunt Publishing Company. Dubuque, Iowa. 2nd Edition. 722 pp.
- Merritt, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America. Kendell/Hunt Publishing Company. Dubuque, Iowa. 3rd Edition. 862 pp.

••••

•••••••••••••

•

•

•

- North South Consultants Inc., Clearwater Consultants Inc. and Patricia Mitchell Environmental Consulting. 2007. Information synthesis and initial assessment of the status and health of aquatic ecosystems in Alberta: Surface water Quality, sediment quality and non-fish biota. Prepared for Alberta Environment, Edmonton, Alberta. http://environment.gov.ab.ca/info/library/7861.pdf
- Patrick, R. and C.W. Reimer. 1966. The Diatoms of the United States Exclusive of Alaska and Hawaii. Vol. 1. The Academy of Natural Sciences of Philadelphia. 688 pp.
- Patrick, R. and C.W. Reimer. 1975. The Diatoms of the United States Exclusive of Alaska and Hawaii. Vol. 2, Part 1. The Academy of Natural Sciences of Philadelphia. 213 pp.
- Pennak, R.W. 1978. Fresh-Water Invertebrates of the United States. A Wiley Interscience Publication. John Wiley & Sons, Toronto. 2nd Edition. 803 pp.
- Potapova, M. and D.F. Charles. 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators. 7: 48-70.
- Powell, H.M. 2008. Riverine community structure, biotic and abiotic drivers, and the modifying impact of impoundment. Ph.D. Thesis. University of Calgary.
- Prescott, G. W. 1982. Algae of the western Great Lakes. Otto Koeltz Science Publishers. 977 pp.
- Reavie, E.D. and J.P. Smol. 1998. Freshwater diatoms from the St. Lawrence River. Bibliotheca Diatomologica. Band 41. J. Cramer, Berlin, Stuttgart. 136 pp.
- Resampling Stats, Inc., Resampling Stats, version 5.0.2, Arlington, VA, USA, 22201.
- Rott, E. 1981. Some results from phytoplankton counting inter-calibrations. Schweiz Z. Hydrol. 24: 15-24.
- Siver, P.A. and H. Kling. 1997. Morphological observations of *Aulacoseira* using scanning microscopy. Can. J. Bot. 75: 1807-1835.

- Siver, P.A., P.B. Hamilton, K. Stachura-Suchoples and J.P. Kociolek. 2005. Diatoms of North America: The Freshwater Flora of Cape Cod, Massachusetts, USA. Iconographia Diatomologica. 463 pp.
- Sosiak, A. 2002. Long-term response of periphyton and macrophytes to reduced municipal nutrient loading to the Bow River (Alberta, Canada). Can. J. Fish. Aquat. Sci. 59: 987-1001.
- Sosiak, A. Environmental Integration, Southern Region, Alberta Environment. Personal comment to Anne-Marie Anderson. 2007.
- Starmach, K. 1985. Chrysophyceae und Haptophyceae. In: Ettl, H. et al. (eds.): Süswasserflora von Mitteleuropa. Begründet von A. Pascher Band 1. VEB Gustav Fischer Verlag, Jena. 515 pp.
- Taylor, B.R. 1997. Optimization of Field and Laboratory Methods for Benthic Invertebrate Biomonitoring, Final Report. *Prep. for* Canada Centre for Mineral and Energy Technology, Ottawa, Ontario. 67 pp. + Appendices.
- Thorp, J.H. and A.P. Covich. 2001. Ecology and Classification of North American Freshwater Invertebrates. Academic Press. San Diego, California. 2nd Edition. 1056 pp.
- Tikkanen, T. 1986. Kasviplantonopas. Suomen Luonnosuojelun Tuki Oy. 278 pp.
- Waterwatch Australia Steering Committee. 2004. Waterwatch Australia National Technical Manual, Module 3 Biological Parameters. Department of the Environment and Heritage, Australia Government. 44 pp.
- Wehr, J. D. and R. G. Sheath. 2003. Freshwater Algae of North America. Academic Press. 918 pp.
- Whitford, L. A. and G. J. Schumacher. 1984. A manual of Freshwater Algae. Sparks Press, N.C. 337 pp.
- Wiggins, G.B. 1977. Larvae of the North American Caddisfly Genera. University of Toronto Press. Toronto, Ontario. 401 pp.
- Wrona, F.G., M.G. Culp and R.W. Davies. 1982. Macroinvertebrate subsampling: A simplified apparatus and approach. Can. J. Fish. Aquat. Sci. 39: 1051-1054.

Figure 1 Map of study area

1. Abundance

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006)

4. EPT Genera

•••••••••••••••

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

5. Clinger Species

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

7. Gatherer Species

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

9. Erosional Species

10. Intolerant Species (rated 0,1, or 2)

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

11. Oligochaeta Percentage

•••••••••••••••

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

15. Clinger Percentage

••••••••••••••••

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

17. Predator Percentage

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

19. Biotic Index - Species

Figure 2 Comparison of benthic invertebrate data obtained with a Neill cylinder and kick nets (210 and 400µm mesh size) in erosional areas from the Bow River (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006)

••••••••••••••

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)

Figure 3 Bow River benthic invertebrate metrics depicting longitudinal trends in erosional habitats (October 2006) (con't)Figure 3

Figure 4 Comparison of various benthic invertebrate metrics depicting longitudinal trends in erosional (E) and depositional (D) areas (October 2006)

••••••••••••••••

Figure 4 Comparison of various benthic Invertebrate metrics depicting longitudinal trends in erosional (E) and depositional (D) areas (October 2006) (con't)

Figure 5 Comparison of habitat preferences of invertebrates in erosional and depositional areas from the Bow River (October 2006)

•••••••••••••••••••

Figure 6 Comparison of habits of invertebrates in erosional and depositional areas from the Bow River (October 2006)

Discriminant Function Scores amng Five Sites

Discriminant Function Scores amng Five Sites

Discriminant Function Scores amng Five Sites

Figure 7 Plots for Discriminant Functions 1, 2, and 3 (each symbol represents data from 1 Neill sample)

Cochrane Stiers Ranch Carseland Cluny Ronalane

	Function 1			
Linear I	Regression	ANOVA		
r ²	slope	Significance (p		
0.004		0.715		
0.385 (1) increase (2)		0.004(3)		
0.006		0.666		
0.178		0.118		
0.021		0.440		

	Function 2			
Linear R	egression	ANOVA		
r ²	slope	Significance (p		
0.062		0.121		
0.035		0.426		
0.071		0.123		
0.002		0.963		
0.293	decline	0.002		

	Function 3			
Linear F	Regression	ANOVA		
r ²	slope	Significance (p)		
0.051		0.162		
0.035		0.431		
0.400	increase	0.000		
0.499	decline	0.003		
0.071		0.154		

Notes:

- (1) A significant r^2 (bold) indicates that scores have changed in a consistent way over time
- (2) An increase in slope implies that taxa with positive scores have increased in importance, and vice versa
- (3) The ANOVA confirms the significance of differences in scores among years

Figure 8 Summary of linear regression and ANOVAs on discriminant scores by year

(Straight line indicates the mean of the 5 sites)

Figure 9-1 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006

Total refers to the count of total unique taxa per site (replicates pooled)

Site average is the mean of these values.

Figure 9-2 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-3 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-4 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-5 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-6 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-7 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Clinger Taxa 2006

30
25
25
20
15
10
5
Cochrane Steirs Ranch Carseland Cluny Ronalane

Figure 9-8 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-9 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-10 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-11 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Straight line indicates the mean of the 5 sites

.....

•••••••••

Figure 9-12 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-13 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

•••••••••••••

Figure 9-14 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-15 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-16 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-17 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-18 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-19 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

•••••••••••••

•••••••

•••••••

Figure 9-20 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-21 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-22 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

Figure 9-23 Comparison of benthic invertebrate metrics at erosional sites on the Bow River for 1985, 1993 and 2006 (con't)

••••••••••••

Figure 10 Summary of metrics for epilithic algae collected from the Bow River in 2006

Figure 10 Summary of metrics for epilithic algae collected from the Bow River in 2006 (con't)

Figure 11 Longitudinal trends in epilithic diatoms classified according to broad preference ranges for phosphorus and nitrogen concentrations

89

Figure 11 Longitudinal trends in epilithic diatoms classified according to broad preference ranges for phosphorus and nitrogen concentrations (con't)

••••••••••••••••••••

•••••

Figure 12 Longitudinal trends in chlorophyll-a in epilithic algal samples from the Bow River (Oct 2006)

4. Ratio of Epilithic Chlorophyll-a to Phaeophytin-a 8 7 Chl-a to Pha-a Ratio 6 5 4 3 2 0 0 Cochrane Stiers Ranch Caresland Cluny **Ronalane**

Figure 12 Longitudinal Trends in chlorophyll-a in epilithic algal samples from the Bow River (Oct 2006) (con't)

Figure 13 Comparison of longitudinal trends for a selection of benthic invertebrate and epilithic algal metrics in the Bow River (Oct 2006)

Figure 14 Comparison of longitudinal trends in epilithic chlorophyll-a for the Bow River in 1983-1986, 1993 and 2006

Figure 15 Comparison of epilithic algal density in the Bow River in 1980-81, 1994, and 2006

20% Green Algae ■ Cyanobacteria Diatoms 0% Cochrane Stier's Ranch Carseland Cluny Ronalane

Figure 16 Comparison of the relative density (%) of epilithic algal taxa in the Bow River in 1980-81, 1994 and 2006

Appendix 1 Summary of field data from the Bow River, October 2006

Site	Site Location	Sampling Date	Erosio	onal site	Depositional site		
			Lats	Longs	Lats	Longs	
Cochrane	LB, u/s Bridge	16-Oct-06	51 11 00	114 29 18	51 11 129	114	
Stier's Ranch	RB, d/s Boat launch	17-Oct-06	50 50 55.4	113 56 35.5	50 50 46.6	113 56 43.7	
Carseland	RB, d/s Weir	17-Oct-06	50 49 40.3	113 26 32.1	50 49 56.9	113 25 12.7	
Cluny	LB, d/s Boat launch	18-Oct-06	50 46 14.8	113 50 38.2	50 46 10.6	112 50 38.2	
Ronalane	RB, u/s Old Bridge	19-Oct-06	50 02 40.7	111 34 56.2	50 02 42.4	111 34 58.3	

Information Pertaining to Erosional Site

Site Flow v	Flow velocity (m/sec)	Depth (m)		ion		Substrate Embeddedness		
			%Boulder	%Cobble	%Gravel	%Sand	%Fines	
Cochrane	0.27	0.51		15	80	5		28.33
Stier's Ranch	0.26	0.49		10	85	5		58.33
Carseland	0.24	0.37		10	80	10		31.67
Cluny	0.55	0.39		7.5	82.5	10		16.67
Ronalane	0.27	0.43		45	55	NA	cover substr.	63.00

Site Primary Producer Coverage 0-25% 25-50% 50-75% 75-100%		Primary Produce	r Coverage	Comments Pertaining to Primary Producers			
Cochrane	0				none visible		
Stier's Ranch				X	Potamogeton spp. Epilithic algae, Mosses		
Carseland	X				Potamogeton spp. And epilithic algae		
Cluny	X				Epilithic algae		
Ronalane	X	X			Epilithic algae, bits of Potamogeton spp		

Flow velocity: average of 5 measurements

Depth: average of 5 measurements

Embeddedness: % of large substrate (e.g., cobble) covered in fines (average of 2 to 6 observations)

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006

Cochrane

			Neill Cylinder	Kick				
Sample Number	06SWB0002	06SWB0003	06SWB0004	06SWB0005	06SWB0006	06SWB0031	06SWB00032	06SWB0053
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm
CNIDARIA								
Hydra sp.	8	0	28	17	12	15	4	15
TURBELLARIA								
Microturbellaria	0	0	0	0	4	0	0	15
Dugesia tigrina	0	0	0	0	0	1	8	1
NEMATODA	264	285	95	275	388	357	15	194
TARDIGRADA	0	0	0	0	0	0	0	25
OLIGOCHAETA								
Enchytraeidae	187	77	95	125	110	226	32	89
Lumbricidae	55	15	21	26	5	62	21	0
Naididae	58	28	16	83	69	214	75	304
Tubificidae	0	0	0	0	0	2	0	487
GASTROPODA								
Fossaria sp.	7	0	0	0	0	0	1	2
Physa sp.	0	0	0	0	0	0	0	1
PELECYPODA								
Pisidium sp.	0	0	0	0	0	1	0	0
ARACHNIDA								
Hydracarina	0	4	0	0	24	40	2	15
Oribatei	12	0	4	0	0	10	2	0
CRUSTACEA								
OSTRACODA								
Candona sp.	96	16	32	44	24	190	2	85
llyocypris sp.	0	0	0	0	0	0	0	5
CLADOCERA								
Bosmina sp	0	0	4	0	8	10	0	0
Ceriodaphnia sp	0	0	0	0	0	10	0	0
llyocryptus sp.	0	0	0	0	0	0	0	5
Chydoridae	0	0	0	0	0	65	0	15
COPEPODA								
Calanoida	0	8	0	0	0	0	1	0
Cyclopoida	0	4	24	16	12	20	2	20
Harpacticoida	4	0	28	168	76	295	0	191
AMPHIPODA								
Hyalella azteca	0	0	0	0	0	0	0	2

			Neill Cylinder				Kick	
Sample Number	06SWB0002	06SWB0003	06SWB0004	06SWB0005	06SWB0006	06SWB0031	06SWB00032	06SWB0053
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm
HEXAPODA								
Ephemeroptera								
Acerpenna sp.	0	4	0	0	0	0	0	0
Baetis sp.	4	0	4	0	0	0	10	0
Ephemerella sp.	1	0	0	0	1	5	12	1
Stenonema sp.	0	0	0	0	0	0	0	1
Piecoptera	0	0	0	0	0	0	0	0
Taenionema sp.	0	0	0	0	0	0	1	0
Trichoptera	0	0	0	0	0	0	0	0
Hydroptila sp.	2	4	0	0	1	12	3	5
Hydropsyche sp.	0	0	0	0	0	0	4	0
Lepidostoma sp.	0	0	0	1	0	0	1	0
Ceraclea sp.	1	0	0	0	0	0	0	0
Nectospsyche s.p.	0	0	0	0	0	0	0	1
Hemiptera	0	0	0	0	0	0	0	0
Callicorixa audeni	31	12	1	27	0	242	58	62
Hesperocorixa atopodonta	0	0	0	0	0	1	0	5
Sigara alternata	0	1	0	0	0	0	1	7
S. bicoloripennis	0	0	0	0	0	5	1	13
S. conocephala	0	0	0	0	0	6	0	20
S. decoratella	0	0	0	0	0	5	0	4
S. grossolineata	0	0	0	0	0	0	1	0
S. solensis	5	2	1	0	2	146	5	103
Coleoptera	0	0	0	0	0	0	0	0
Liodessus sp.	17	5	0	4	0	28	9	26
Optioservus sp.	2	0	0	0	0	1	3	1
Diptera								
Atherix sp.	0	0	0	0	0	0	1	0
Bezzia / Palpomyia gp sp.	4	0	0	0	0	0	0	0
Chelifer sp.	0	0	0	0	0	5	1	0
Simulium sp.	0	0	0	0	0	0	4	0
Antocha sp.	0	0	0	0	0	5	0	0
Dicranota sp.	0	0	0	1	0	0	0	1
Tipula sp.	1	1	0	0	0	0	0	0
Tipulidae	0	0	0	0	0	0	1	0
Chironomidae								

			Neill Cylinder			Kick			
Sample Number	06SWB0002	06SWB0003	06SWB0004	06SWB0005	06SWB0006	06SWB0031	06SWB00032	06SWB0053	
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm	
Chironomini									
Dicrotendipes sp.	0	1	0	0	0	0	0	0	
Microtendipes sp.	0	0	0	1	1	6	3	22	
Paratendipes sp.	0	0	0	0	0	0	0	60	
Phaenopsectra sp.	0	0	0	0	0	0	1	0	
Polypedilum spp.	20	8	12	4	0	0	1	0	
Tanytarsini	0	0	0	0	0	0	0	0	
Cladotanytarsus sp.	0	0	0	4	0	5	0	5	
Micropsectra sp.	13	1	0	4	0	15	5	99	
Rheotanytarsus sp.	0	0	0	0	0	0	0	5	
Sublettea sp.	0	0	0	4	0	0	0	0	
Tanytarsus sp.	12	0	0	0	4	5	0	20	
Diamesinae									
Diamesa sp.	0	0	0	0	0	0	1	0	
Pagastia sp.	0	0	0	4	4	0	0	0	
Potthastia gaedii gp.	0	0	0	0	1	1	0	0	
Potthastia longimana gp.	5	0	1	5	6	20	10	15	
Orthocladiinae									
Cricotopus/Orthocladius spp.	0	16	4	9	41	37	18	10	
Eukiefferiella sp.	0	0	0	0	8	5	0	0	
Nanocladius sp.	0	4	0	0	0	0	0	0	
Parametriocnemus sp.	5	0	4	0	4	14	6	10	
Tvetenia sp.	0	0	0	0	0	7	5	0	
Prodiamesinae									
Monodiamesa sp.	0	0	0	0	0	0	0	5	
Tanypodinae									
Thienemannimyia gp.	9	0	4	5	6	18	6	1	
Total Taxa	25	20	18	21	23	39	39	43	
Total Numbers	823	496	378	827	811	2112	337	1973	
OTHERS									
Carabidae (terrestrial)	1	2	2	1	1	15	5	0	

Bryozoa present in sample but not counted

Oligochaeta egg capsules present in sample but not counted

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006 Stier's Ranch

			Neill Cylinder	Kick				
Sample Number	06SWB008	06SWB0009	06SWB0010	06SWB0011	06SWB0012	06SWB0033	06SWB0034	06SWB0054
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210μm
CNIDARIA								
Hydra sp.	0	0	10	0	40	0	0	40
TURBELLARIA								
Microturbellaria	0	20	40	0	0	0	0	1000
Dugesia tigrina	1	4	0	8	0	0	0	43
NEMATODA	359	1170	1441	424	5998	40	20	81
OLIGOCHAETA								
Enchytraeidae	1	20	31	160	0	0	40	0
Lumbricidae	2	2	8	1	0	10	0	0
Naididae	131	60	70	40	40	200	0	6007
Tubificidae	216	1250	1202	914	1447	290	459	365
HIRUDINEA								
Dina parva	0	0	0	1	0	0	1	0
Erpobdella punctata	0	0	1	1	1	0	0	0
Nephelopsis obscura	0	9	2	0	1	0	0	0
Erpobdellidae	0	0	0	0	0	0	0	1
Glossiphonia complanata	0	0	0	1	0	0	0	0
GASTROPODA								
Fossaria sp.	0	0	0	0	0	0	1	0
Gyraulus sp.	1	0	1	1	0	0	21	17
Physa sp.	181	330	418	904	340	630	1023	605
PELECYPODA								
Pisidium sp.	0	0	0	20	0	1	65	8
ARACHNIDA								
Hydracarina	100	40	80	40	40	240	0	40
Oribatei	0	0	0	0	0	40	0	0
CRUSTACEA								
OSTRACODA								
Candona sp.	0	0	0	0	0	400	220	400
llyocypris sp.	90	60	100	280	240	40	0	0
CLADOCERA								
llyocryptus sp.	0	0	0	0	0	0	0	40
COPEPODA								
Cyclopoida	0	40	40	0	0	40	0	1240
Harpacticoida	40	220	290	120	80	120	0	80
AMPHIPODA								
Gammarus lacustris	0	1	0	4	0	2	22	7
Hyalella azteca	0	15	0	1	0	0	0	2

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006 (con't)

			Neill Cylinder			Kick				
Sample Number	06SWB008	06SWB0009	06SWB0010	06SWB0011	06SWB0012	06SWB0033	06SWB0034	06SWB0054		
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm		
HEXAPODA										
Ephemeroptera										
Baetis sp.	107	167	220	396	506	1260	1892	1		
Callibaetis sp.	0	0	0	0	0	0	8	1		
Caenis sp.	0	0	0	0	0	0	0	41		
Ephemerella sp.	163	70	126	390	211	1050	897	139		
Epeorus sp.	71	0	46	60	0	0	128	0		
Heptagenia sp.	12	1	30	1	0	234	13	0		
Ahithrogena sp.	1	1	0	0	0	0	0	0		
Stenonema sp.	0	0	0	0	0	0	16	0		
Leptophlebia sp.	0	0	0	0	0	0	0	2		
Paraleptophlebia sp.	8	4	8	16	5	170	114	0		
Plecoptera										
Claassenia sp.	0	0	3	1	0	0	0	0		
Isoperla sp.	0	0	0	0	1	10	10	1		
Trichoptera	0	0	0	0	0	0	0	0		
Brachycentrus sp.	0	0	5	16	1	9	11	0		
Cheumatopsyche sp.	65	4	40	150	7	158	76	1		
Hydropsyche sp.	2269	547	2199	2826	759	8491	3330	37		
Lepidostoma sp.	1	4	1	9	0	12	10	2		
Ceraclea sp.	5	65	60	10	0	0	0	0		
Oecetis sp.	0	2	1	5	0	1	5	0		
Neureclipsis sp.	1	5	1	3	0	1	0	0		
Psychomyia sp.	13	4	2	0	0	0	0	0		
Hemiptera	0	0	0	0	0	0	0	0		
Callicorixa audeni	6	5	0	650	18	32	1421	3		
Cenocorixa bifida	0	1	0	0	0	0	0	0		
Sigara alternata	0	1	1	0	0	0	0	1		
S bicoloripennis	0	0	1	0	0	0	0	0		
S. solensis	0	0	1	0	1	1	0	1		
S. washingtonensis										
Coleoptera	0	0	0	0	0	0	0	0		
Liodessus sp.	0	8	1	0	0	0	8	0		
Oreodytes sp.	0	0	0	1	0	0	0	0		
Stictotarsus sp.	0	0	0	4	0	13	9	0		
Optioservus sp	876	409	1232	723	105	2085	1060	1		
Diptera										
Hemerodromia sp.	9	4	13	8	0	40	8	0		
Simulium sp.	53	1952	1900	456	2560	2280	3950	41		
Chironomidae										

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006) (con't)

			Neill Cylinder			Kick				
Sample Number	06SWB008	06SWB0009	06SWB0010	06SWB0011	06SWB0012	06SWB0033	06SWB0034	06SWB0054		
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm		
Chironomini										
Chironomus sp.	0	0	0	0	0	0	0	726		
Cryptochironomus sp.	10	84	91	0	50	80	181	2		
Demicryptochironomus sp	0	0	5	0	0	0	0	0		
Dicrotendipes sp.	0	0	0	20	1	0	0	6		
Microtendipes sp	71	680	339	232	714	64	514	114		
Paratendipes sp.	40	200	220	60	240	120	0	80		
Phaenopsectra sp.	93	285	310	248	295	170	394	1602		
Polypedilum spp	913	290	859	700	320	3360	301	40		
Tribelos sp.	0	13	2	0	5	0	5	0		
Tanytarsini	0	0	0	0	0	0	0	0		
Cladotanytarsus sp	0	0	0	16	0	0	8	0		
Micropsectra sp	11	149	151	20	45	80	49	48		
Paratanytarsus sp.	10	0	14	20	5	0	0	4		
Rheotanytarsus sp.	0	0	10	20	0	40	120	0		
Sublettea sp.	0	0	0	0	0	0	0	40		
Tanytarsus sp	50	80	80	20	0	40	80	216		
Diamesinae										
Diamesa sp	1	255	226	321	160	682	492	1		
Potthastia longimana gp sp	0	4	1	0	0	0	20	45		
Orthocladiinae										
Cardiocladius sp.	101	64	91	288	50	2710	291	0		
Cricotopus/Orthocladius spp	683	1486	2380	780	215	5821	152	122		
Nanocladius sp.	20	0	30	80	40	200	0	0		
Parametriocnemus sp.	0	0	0	0	0	0	20	0		
Synorthocladius sp.	40	0	20	20	40	160	0	0		
Thienemanniellas sp.	0	20	20	8	0	0	0	0		
Tvetenia sp.	182	41	131	196	85	1200	162	40		
Tanypodinae										
Procladius sp.	0	0	0	0	0	0	0	3		
Thienemannimyia gp.sp.	832	839	1530	1294	479	3613	811	603		
Total Taxa	42	49	56	54	37	45	45	48		
Total Numbers	7839	10975	16135	12988	15145	36240	18438	13940		
OTHERS										
Longnose Dace		T				4	2	0		

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006

			Neill Cylinder	r			Kick	
Sample Number	06SWB0014	06SWB0015	06SWB0016	06SWB0017	06SWB0018	06SWB0035	06SWB0036	06SWB0055
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm
CNIDARIA								
Hydra sp.	60	20	140	80	100	584	140	0
TURBELLARIA								
Microturbellaria	0	0	0	20	40	280	0	400
Dugesia tigrina	0	0	0	2	0	0	0	4
NEMATODA	849	310	516	183	88	570	112	1160
OLIGOCHAETA								
Enchytraeidae	20	0	0	1	0	0	0	0
Lumbricidae	0	0	0	0	0	0	0	7
Naididae	1826	883	1042	1849	2090	30465	2826	48860
Tubificidae	94	28	40	51	28	41	1	178
HIRUDINEA								
Erpobdella punctata	1	0	0	1	0	0	0	0
Nephelopsis obscura	0	1	0	0	0	0	0	2
GASTROPODA								
Fossaria sp.	0	0	0	0	0	1	0	0
Gyraulus sp.	0	0	0	0	1	1	1	1
Physa sp.	62	4	21	1	0	159	40	10
PELECYPODA								
Pisidium sp.	0	0	1	1	0	0	0	0
ARACHNIDA								
Hydracarina	20	0	20	20	40	80	10	0
CRUSTACEA								
OSTRACODA								
Candona sp.	40	40	0	0	0	80	0	280
Cypridopsis sp.	0	0	0	0	0	0	0	120
llyocypris sp	0	0	0	0	0	0	0	40
Limnocythere sp.	0	0	0	0	0	40	0	120
CLADOCERA								
Ceriodaphnia sp.	0	0	0	0	0	0	0	40
llyocryptus sp.	0	0	0	0	0	0	0	280
Chydoridae	100	0	0	40	20	560	0	280
COPEPODA								
Cyclopoida	140	30	0	40	0	360	20	3360
Harpacticoida	40	20	200	80	160	320	0	320
AMPHIPODA								
Gammarus lacustris	0	0	0	0	0	3	0	9
Hyalella azteca	1	0	0	0	0	34	0	47

Carseland

			Neill Cylinder			Kick				
Sample Number	06SWB0014	06SWB0015	06SWB0016	06SWB0017	06SWB0018	06SWB0035	06SWB0036	06SWB0055		
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm		
HEXAPODA										
Ephemeroptera										
Acentrella sp.	0	0	0	0	0	0	5	0		
Baetis sp.	65.	134	772	121	104	2545	727	40		
Callibaetis sp.	0	0	0	0	0	0	0	1		
Caenis sp.	0	1	0	0	0	0	1	0		
Ephemerella sp.	13	13	25	4	3	215	198	8		
Epeorus sp.	0	0	0	0	0	40	40	0		
Heptagenia sp	0	0	26	3	4	11	44	1		
Rhithrogena sp.	1	2	17	8	7	10	99	0		
Stenonema sp.	0	0	1	1	0	0	0	0		
Paraleptophlebia sp.	2	0	5	0	3	49	37	0		
Tricorythodes sp.	0	1	1	0	0	8	6	0		
Plecoptera										
Claassenia sp.	0	0	3	1	0	17	19	0		
Isogenoides sp.	0	0	1	0	0	1	0	0		
Isoperla sp.	1	5	10	0	2	45	100	0		
Skwala sp.	0	0	0	0	1	1	5	0		
Trichoptera										
Brachycentrus sp.	1	1	7	i	1	0	5	0		
Cheumatopsyche sp.	2	1	12	1	0	2	5	0		
Hydropsyche sp.	99	704	1708	113	63	1324	1719	5		
Helicopsyche sp.	1	0	1	0	0	0	0	0		
Lepidostoma sp.	3	1	0	0	0	1	12	0		
Ceraclea sp.	9	0	2	23	20	8	5	0		
Oecetis sp.	20	3	3	2	2	1	1	0		
Polycentropus sp.	1	0	0	0	0	0	0	0		
Psychomyia sp.	12	5	11	5	5	33	52	0		
Odonata										
Ophiogomphus sp.	0	0	0	0	0	0	1	0		
Hemiptera										
Callicorixa audeni	0	0	0	0	0	1	0	137		
Cenoconxa bilida	0	0	0	0	0	0	0	16		
C. dakotensis	0	0	0	0	0	0	0	1		
Hesperoconxa vulgans	0	0	0	0	0	0	0	1		
Sigara alternata	0	0	0	0	0	5	0	31		
S. bicoloripennis	0	0	0	0	0	0	0	42		
S. conocephala	0	0	0	0	0	0	0	2		
S. decoratella	0	0	0	0	0	0	0	2		

105

Appendix 2 Raw benthic invertebrate data from the Bow River, October 2006 (con't)

			Neill Cylinder				Kick	
Sample Number	06SWB0014	06SWB0015	06SWB0016	06SWB0017	06SWB0018	06SWB0035	06SWB0036	06SWB0055
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm
S. grossolineata	1	0	0	0	0	1	0	1
S. mathesoni	0	1	0	0	0	0	0	0
S. solensis	0	0	0	0	0	2	0	46
S. trilineata	0	0	0	0	0	0	0	1
S.washingtonensis	0	0	0	0	0	0	0	69
Trichocorixa borealis	0	0	0	0	0	0	0	9
Coleoptera								
Liodessus sp.	2	0	0	1	0	0	10	4
Colymbetes sp.	0	0	1	0	0	0	0	0
Nebrioporus sp.	0	0	0	0	0	0	0	2
Oreodytes sp.	0	0	0	0	0	0	10	0
Stictotarsus sp.	0	0	0	0	0	1	5	0
Helichus sp.	0	0	0	0	0	1	0	0
Optioservus sp.	138	287	396	198	167	835	407	50
Diptera								
Atherix sp.	0	1	2	1	0	1	3	0
Bezzia / Palpomyia gp sp.	0	0	0	0	0	0	0	4
Hemerodromia sp.	0	0	0	0	0	40	0	0
Simulium sp.	3	0	20	0	0	184	205	0
Hexatoma sp.	0	0	1	0	0	0	0	0
Tipula sp.	1	2	0	0	0	7	1	0
Chironomidae								
Chironomini								
Chironomus sp.	1	0	0	0	1	5	6	17
Cryptochironomus sp.	195	82	40	1	20	242	80	0
Dicrotendipes sp.	1023	540	89	174	136	1088	542	82
Microtendipes sp.	843	596	264	236	79	278	86	52
Nilothauma sp.	3	0	0	0	0	0	0	0
Phaenopsectra sp.	81	10	0	80	40	1378	240	1461
Polypedilum spp.	820	1251	1502	349	301	4741	570	404
Sergentia sp.	0	0	0	0	0	0	0	1
Stictochironomus sp.	0	0	0	0	0	8	0	0
Tribelos sp.	81	18	1	9	20	10	5	0
Tanytarsini								
Cladotanytarsus sp.	140	0	40	80	40	920	20	81
Micropsectra sp.	309	66	60	331	50	1857	503	1286
Paratanytarsus sp.	217	174	127	565	250	907	629	226
Rheotanytarsus sp.	0	71	40	42	0	176	106	0
Tanytarsus sp.	1240	391	60	620	120	3232	140	480

			Neill Cylinde			Kick				
Sample Number	06SWB0014	06SWB0015	06SWB0016	06SWB0017	06SWB0018	06SWB0035	06SWB0036	06SWB0055		
TAXA						Erosional 210µm	Erosional 400µm	Depositional 210µm		
Diamesinae										
Diamesa sp.	35	2	5	29	23	169	56	50		
Pagastia sp.	20	0	0	0	0	0	0	0		
Potthastia longimana gp.	85	53	64	158	111	638	322	82		
Orthocladiinae										
Corynoneura sp.	0	0	0	0	0	40	0	0		
Cricotopus/Orthocladius spp.	1802	1185	1738	1676	2066	15650	4976	1371		
Cricotopus sp.	2	6	0	55	101	120	105	4		
Eukiefferiella sp.	20	20	1	21	40	120	20	0		
Nanocladius sp.	0	10	0	0	0	160	0	0		
Parakiefferriella sp.	40	0	0	0	20	120	0	0		
Parametriocnemus sp.	20	10	0	0	0	0	20	0		
Pseudosmittia sp.	0	1	0	0	0	0	0	40		
Synorthocladius sp.	0	10	0	0	0	0	0	0		
Thienemanniella sp.	106	61	240	90	323	552	426	0		
Tvetenia sp.	41	132	363	42	60	912	370	0		
Tanypodinae										
Procladius sp.	0	0	0	0	0	0	0	1		
Thienemannimyia gp. sp.	258	322	575	55	165	1385	477	5		
Total Taxa	55	47	47	48	42	68	56	59		
Total Numbers	11010	7509	10214	7465	6915	73675	16571	61634		
OTHERS										
Longnose Dace	0	0	1	0	0	5	9	1		
Catostomus sp.	0	0	0	0	0	0	0	1		

Cluny

			Neill Cylinde	7		Kick						
Sample Number	06SWB0020	06SWB0021	06SWB0022	06SWB0023	06SWB0024	06SWB0038	06SWB0039	06SWB0040	06SWB0042	06SWB0043	06SWB0044	06SWB0056
TAXA						Erosional 210µm	Erosional 210µm	Erosional 210µm	Erosional 400µm	Erosional 400µm		Depositional 210µ
CNIDARIA							E-conorma E-copin					
	0	0	0	0		40	0	0	0	0	20	41
Hydra sp. TURBELLARIA	0	0	0	0	0	40	U	0	0	0	20	41
	-	-	-					100	_	0	0	0
Microturbellana	0	0	8	0	0	480	0	120	0			
Dugesia tigrina NEMATODA	2	2	8	- 0	0	42	0	0	9	0	24	0
	381	273	298	430	249	500	43	160	21	20	0	3722
OLIGOCHAETA	-											4
Enchytraeidae	0	0	250	93	24	0	0	0	0	0	0	
Lumbricidae	2	34	4	12	5	1	3	0	1	1	5	0
Naididae	451	963	857	1325	1168	15043	6580	15207	1910	1265	685	31611
Tubificidae	0	0	0	1	1	89	2	0	4	4	20	133
HIRUDINEA			-									
Erpobdella punctata	0	0	0	0	0	1	0	0	3	0	. 2	0
Nephelopsis obscura	0	1	0	0	1	0	0	1	0	6	1	0
GASTROPODA						-						
Physa sp.	0	0	0	0	0	0	0	0	1	0	0	0
PELECYPODA												
Pisidium sp.	0	0	1	0	0	40	0	1	0	0	2	0
ARACHNIDA												
Hydracarina	60	60	24	0	1	160	40	0	0	0	0	40
CRUSTACEA												
OSTRACODA												
Candona sp	10	20	56	20	20	40	0	80	0	0	40	120
Cypridopsis sp	0	0	0	0	0	0	0	0	0	0	20	0
llyocypris sp.	0	0	0	0	0	80	42	120	40	0	160	0
Limnocythere sp	10	0	0	10	0	0	0	40	0	0	0	0
CLADOCERA												
llyocryptus sp.	0	0	0	0	0	0	0	0	0	0	60	40
Chydoridae	0	0	0	0	0	0	0	0	0	0	0	40
COPEPODA												
Cyclopoida	30	20	16	30	20	120	80	200	0	0	40	1000
Harpacticoida	0	0	0	20	10	0	0	0	0	0	0	0
AMPHIPODA												
Hyalella azteca	0	0	0	0	0	0	0	40	1	0	0	0
HEXAPODA								1				
Ephemeroptera												
Acentrella sp	0	1	0	0	24	7	20	2	4	140	19	0
Acerpenna sp												
Baetis sp.	246	463	41	6	127	1158	1759	650	1096	1598	402	41
Caenis sp.	0	0	0	2	0	0	0	0	4	1	4	0
Ephemerella sp.	1	0	0	0	0	3	40	2	21	65	4	0
Ephemera sp												
Epeorus sp	0	0	0	0	0	1	0	0	0	0	0	0
Heptagenia sp	46	26	0	10	11	269	32	114	444	164	199	2
Rhithrogena sp.	68	35	1	2	3	115	11	2	272	36	41	0
Stenonema sp.	89	32	30	60	103	447	200	382	713	363	634	3
Paraleptophiebia sp.	0	1	0	0	0	0	0	0	24	5	0	0
	44	1	1	4			1		1	1	138	0
Tricorythodes sp.	44	12	3	4	36	146	56	54	384	52	138	1

Cluny

		1	Veill Cylinder						Kick			
Sample Number	06SWB0020	06SWB0021	06SWB0022	06SWB0023	06SWB0024	06SWB0038	06SWB0039	06SWB0040	06SWB0042	06SWB0043	06SWB0044	06SWB0056
TAXA						Erosional 210µm	Erosional 210µm	Erosional 210µm	Erosional 400µm	Erosional 400µm	Erosional 400µm	Depositional 210µr
Plecoptera												
Claassenia sp	4	2	0	1	0	10	2	1	34	1	2	0
Cultus sp												
Isogenoides sp	1	0	0	0	0	1	2	1	1	1	0	0
Isoperla sp	28	73	2	9	22	166	22	130	257	76	121	0
Skwala sp	0	0	0	0	0	0	0	0	0	0	1	0
Taenionema sp		-	-	-								
Trichoptera												
Brachycentrus sp	1	13	0	13	5	12	5	7	22	9	20	0
Culoptila sp							-					
Hydrophia sp	0	0	Ď.	Ó	0		0	. 0	0	0	0	0
Cheumatopsyche sp	79	92	22	39	46	59	24	6	80	17	18	1
Hydropsyche sp	168	357	19	42	121	386	188	75	513	74	62	0
Helicopsyche sp	3	9	8	4	26	2	0	5	7	0	9	0
Lepidostoma sp	0	0	0	1	1	5	0	0	23	0	4	0
Nectopsyche sp	0	0	0	3	3	1	0	9	2	28	19	1
Oecetis sp	5	4	2	27	25	2	2	3	2	20	31	0
	0	0	0	14	7	0	0	0	0	0	0	Ò
Neureclipsis sp. Psychomyia sp.	1	0	0	11	1	0	0	0	20	0	4	0
Odonata				1.		1	,		20			
	0	0	0	0	0	0	0	0	0	0	0	0
Ophiogomphus sp.	U	U	0	0	0	-						
Hemiptera	0	1	0	0	0	0	0	0	,	1	1	9
Callicorixa audeni	0	0	0	0	0	0	0	0	0	0	1	13
Cenocorixa bifida	0	0	0	0	0	0	0	0	0	0	0	5
Hesperocorixa vulgaris	0	0	0	1	0	0	0	0	0	0	0	6
Sigara alternata	-	-	1	0	0	0	0	0	0	0	0	3
S. bicoloripennis	0	0	0			0	0	0	0	0	0	2
S conocephala	0	0	0	0	0	0	0	0	0	0	0	8
S grossolineata	0	0		0	- 0						0	0
S lineata						0	0	0	0	0	0	9
S solensis	0	0	0	0	0	0	0	0	0	0	0	12
S washingtonensis		1	1		0	0	0	0	0	0	0	5
Trichoconxa borealis	0	0	0	0	0	0			-		-	
Coleoptera		0	1	0		2	6	7	4	21	8	0
Liodessus sp	0	1	1		0		1	0	0	0	0	0
Stictotarsus sp	1	0	0	0	0	0	0	0	0	0	0	1
Dubiraphia sp	0	0	0	1	0			344	799	651	597	0
Optioservus sp	512	304	130	274	204	1080	446	344	199	001	231	H
Diptera										0	0	0
Atherix sp	0	0	0	0	0	0	0	0	0	0	0	,
Bezzia Palpomyia gp spp	0	0	10	3	.0	0	0	0	0	1	64	0
Hemerodromia sp	15	62	21	23	2	157	44	3	168	28	0	0
Simulium sp	0	10	0	0	0	0	40	0	20	40		0
Dicranota sp	1	0	2	1	0	0	0	0	1	0	4	0
Hexatoma sp	1 1	0	0	0	0	0	0	0	0	0	0	0

Cluny

		1	leill Cylinder	r		Klek							
Sample Number	06SWB0020	06SWB0021	06SWB0022	065WB0023	06SWB0024	06SWB0038	06SWB0039	06SWB0040	06SWB0042	06SWB0043	06SWB0044	06SWB0056	
TAXA						Erosional 210µm	Erosional 210um	Erosional 210µm	Erosional 400µm	Erosional 400µm	Erosional 400µm	Depositional 210µn	
Chironomini													
Chironomus sp	0	0	0	0	0	0	0	0	0	0	0	101	
Cryptochironomus sp	12	0	24	32	26	40	0	0	0	20	40	0	
Cyphomella sp													
Demicryptochironomus sp													
Dicrotendipes so	0	1	9	10	0	0	0	0	0	4	0	1	
Microtendipes sp	44	8	55	59	56	48	41	44	41	24	74	0	
Phaenopsectra sp	10	0	0	0	0	40	0	40	0	0	80	2	
Polypedilum spp.	226	101	242	432	261	1120	320	600	250	20	120	40	
Sergentia sp	0	. 0	0	0	0	0	0	0	0	0	0	11	
Tribelos sp	1	0	0	0	0	0	0	0	0	0	0	1	
Tanytarsini													
Cladotanytarsus sp	243	90	233	612	230	681	242	40	320	130	340	0	
Micropsectra sp.	30	0	0	0	0	0	122	- 0	40	60	61	42	
Paratanytarsus sp.	1	0	0	0	0	0	360	0	0	0	0	0	
Rheotanytarsus sp	755	424	203	12	222	694	3	42	416	287	105	0	
Stempelinella sp									0	20	0	40	
Tanytarsus sp	50	60	88	230	80	2760	1320	3960	340	100	284	81	
Diamesinae													
Diamesa sp.	0	10	0	0	0	0	0	0	0	0	0	0	
Potthasta longimana go	0	0	0	0	0	0	1	0	0	0	0	0	
Orthociadiinae													
Brillia sp	0	0	0	1	0	0	0	0	0	20	0	0	
Cricotopus Orthocladius spp	824	1019	728	505	488	3509	2249	1785	2662	2625	2541	47	
Eukiefferiella sp.	0	0	0	0	0	40	0	0	0	0	0	0	
Nanocladius sp	0	0	0	0	1	40	0	80	0	0	20	0	
Parakieffernella sp.	0	10	0	0	10	0	1	40	0	0	40	0	
Thienemanniella sp	.1	10	0	0	0	161	42	80	50	69	80	40	
Tvetenia sp.	133	235	20	0	41	87	244	80	0	0	0	0	
Tanypodinae													
Procladius sp.	0	0	0	0	0	0	0	0	0	0	0	5	
Thienemannimyia gp. sp.	265	136	126	260	284	1160	393	297	194	216	321	0	
Total Taxa	42	38	34	42	39	48	36	41			51	39	
Total Numbers	4855	4974	3542	4645	3965	30748	15027	24854			7589	37274	

 OTHERS

 Longnose Dace
 0
 0
 0
 0
 2
 0
 1
 5
 4
 1
 2

Bryozoa present in sample but not counted

Oligochaeta egg capsules present in sample but not counted

110

Ronalane

			Neill Cylinde	r					Kick			
Sample Number	06SWB0026	06SWB0027	06SWB0028	06SWB0029	06SWB0030	06SWB0046	06SWB0047	06SWB0048	06SWB0050	06SWB0051	06SWB0052	06SWB0057
TAXA	1					Erosional 210µm	Erosional 210µm	Erosional 210µm	Erosional 400µm	Erosional 400µm	Erosional 400µm	Depositional 210µn
CNIDARIA						0	0	0	0	0	0	0
Hydra sp.	0	0	20	0	0	0	U	-	· ·	0		
TURBELLARIA	-								0	0	0	160
Microturbellaria	20	100	40	50	80	40	360	720		105	428	6
Dugesia tigrina	161	55	120	91	97	457	135	782	495	-	44	680
NEMATODA	576	241	223	293	122	524	240	322	83	126	44	000
OLIGOCHAETA										0.7		0
Enchytraeidae	0	0	0	0	40	4	42	1	2	85	1	0
Lumbricidae	0	0	0	0	0	0	1	1	0	1	0	0
Naididae	1947	2220	2471	1216	2488	10943	11878	10066	10106	12857	9285	1048
Tubificidae	161	708	137	142	324	1145	229	994	1066	443	2058	6729
HIRUDINEA												
Helobdella stagnalis	0	0	0	0	0	0	0	0	1	0	0	0
Nephelopsis obscura	0	1	0	0	0	0	0	0	. 0	0	0	0
GASTROPODA												
Fossana sp.	0	0	0	0	0	0	0	0	0	1	2	0
Ferrissia sp	0	0	0	1	0	0	0	0	1	1	40	0
Physa sp.	0	0	1	0	1	3	1	2	7	3	43	0
PELECYPODA			1									
Lampsilis radiata siliquoidea	0	0	0	0	0	0	0	0	0	0	1	0
Pisidium sp	30	6	3	2	2	122	50	159	270	79	149	268
Sphaerum sp	0	0	0	3	14	9	1	3	10	16	10	0
ARACHNIDA	1	1	1									
Hydracarina	80	0	20	0	20	120	40	40	0	0	40	0
CRUSTACEA	- 50	-	20	-	- 20	12.0						
OSTRACODA	1											
	20	20	40	10	60	40	161	280	0	0	40	480
Candona sp.	60 20	0	0	0	0	0	0	0	0	0	0	40
Cypridopsis sp	440	490	540	100	800	11564	7203	9766	5840	3040	4480	2128
llyocypris sp	_		-	380	500	2840	2640	3640	0	0	0	1120
Limnocythere sp	260	210	360	1	0	0	0	0	0	0	0	0
Unidentified Ostracoda	20	0	0	0	0	1		1				11
CLADOCERA	-					1		0	0	0	0	0
Bosmina sp	20	0	0	0	0	0	0	600	600	1000	360	200
llyocryptus sp	60	50	80	20	120	440	1160	40	0	0	0	40
Macrothrur sp	20	20	0	10	0	40	40	1		0	0	40
Chydoridae	20	0	20	0	20	40	0	0	0	0		1
COPEPODA		-			-		-			-	0	11240
Cyclopoida	220	110	280	100	300	1160	1761	840	40	0	1	11240
AMPHIPODA											100	1
Gammarus lacustris	0	0	0	0	1	1	2	1	4	4	10	
Hyaiella azteca	42	49	23	4	5	158	165	109	316	525	341	6
DECAPODA										1		
Orconectes vinits	1	0	0	0	0	0	0	0	0	0	0	0
HEXAPODA										-	-	-
Collembolia	0	0	0	0	0	4	0	0	0	0	0	40

Ronalane

			Neill Cylinde	f					Kick			
Sample Number	06SWB0026	06SWB0027	06SWB0028	065WB0029	06SWB0030	06SWB0046	06SWB0047	06SWB0048	06SWB0050	06SWB0051	06SWB0052	06SWB0057
TAXA	_					Erosional 210µm	Erosional 210um	Erosional 210µm	Erosional 400µm		Erosional 400µm	Depositional 210µ
Ephemeroptera						Crosional Zropin	Liouville Liopin	Liberona Liopini	Crosional 400gini	Liberonia respiri	En ordinate Transport	
Acentrella so	0	0	0	0	0	4	2	,	6	4	0	0
	0	0		0	0	120	1	40	0	0	0	0
Acerpenna sp			0	0	0	53	3	0	41	87	1	0
Baetis sp	0	0	0	1			1		12	5	44	0
Fallceon sp	0	10	0		0	88	45	43	0	0	0	40
Procloson sp	0	0	0	0	0	0	0	0	4	0	1	0
Caenis sp.	0	0	0	0	0	0	0	0			0	0
Ephemerella sp.	0	0	0	0	0	0	40	0	0	0		0
Ephemera sp	3	0	5	1	0	0	40	0	0	0	0	0
Epearus sp	0	0	0	0	0	0	0	0	0	0	0	
Heptagenia sp	0	1	0	0	0	5	0	1	6	15	4	0
Stenonema sp	23	0	1	0	0	1.4	4	5	23	138	16	1
Leptophiebia sp	0	0	0	0	0	0	1	0	0	0	0	0
Tricorythades sp	9	0	3	0	0	0	0	0	8	9	4	0
Plecoptera							1					
Acroneuria sp	0	0	0	0	0	0	0	0	0	1	0	0
Claassenia sp	0	0	0	0	0	0	0	0	0	1	1	0
isoperia so	0	0	0	0	0	4	0	1	0	0	0	0
Trichoptera												
Agraylea sp									8	0	4	0
Mydrophia sp	63	10	40	0	40	40	80	41	80	1	16	0
Cheumatopsyche sp	5	0	1	0	0	3	4	1	1	13	45	. 0
Hydropsyche sp	1	1	2	0	0	0	2	2	0	3	3	1
Helicopsyche sp	0	0	0	0	0	0	0	0	0	0	1	0
Neclopsyche sp	0	0	1	0	0	1	0	0	4	5	2	0
Clecens sp.	2	0	0	0	0	1	0	0	8	0	0	0
Polycentropus sp	0	0	0	0	1	0	0	0	0	0	1	0
Odonata												
Ophiogomphus 10	2	0	0	0	0	0	0	0	1	0	1	0
Coenagnonidae sp.	0	0	0	0	0	0	0	0	0	0	0	1
Hemiptera												
Conxidae sp	0	0	0	0	0	0	0	0	0	0	0	1
Calliconia audeni	0	0	0	0	0	0	0	0	3	1	0	2
Cenoconia brida	0	0	0	0	0 +	0	0	0	0	0	0	2
Hesperocorixa vulgans	0	0	0	0	0	0	0	0	0	0	0	10
	0	0	0	0	0	0	0	0	1	0	0	18
Sigara alternata	0	0	0	0	2	0	0	0	0	0	0	32
S bicoloripennis	0	0	1	0	0	1	0	0	0	0	0	0
S conocephala			0				0	0	0	0	0	1 ,
S grossolneata	0	0	0	0	0	0	0	0	0	0	0	24
S lineata	0	0	0	1	1		1	1	0	0	0	55
S salensis	1	0	0	Ō	Q	ū	1	0	11	1	1	10
S tritrieata	0	0	0	0	0	0	0	0	0	0	0	11
5 washingtonensis	0	0	0	0	0	0	0	0	0	0	0	10
Sigara sp	0	0	0	0	0	0	0	0	0	0	0	1
Trichocorixa borealis	0	0	1	0	0	0	0	0	0	0	0	49

Ronalane

			Neill Cylinde	r					Kick			
Sample Number	06SWB0026		06SWB0028	06SWB0029	06SWB0030		06SWB0047	06SWB0048	06SWB0050	06SWB0051	06SWB0052	06SWB0057
TAXA						Erosional 210µm	Erosional 210µm	Erosional 210µm	Erosional 400µm	Erosional 400µm	Erosional 400µm	Depositional 210µm
Coleoptera												
Liodessus sp	3	0		4								
Haliplus sp.	0	0		0	0							
Dubiraphia sp	0		0	1	1							
Optioservus sp	10	2	WB0027 065WB0028 065WB0029 065WB0036 Erosional 210µm Erosional 210µm Erosional 210µm Erosional 210µm Erosional 210µm Erosional 210µm Erosional 400µm E	160	0							
Lepidoptera												
Petrophila sp	1	0	0	0	0	0	1	0	4	0	1	0
Diptera												
Ceratopogonidae sp.	0	0	0	0	0	44	0	43	124	0	120	40
Bezzia / Palpomyia gp spp.	46	32	2	3	2	128	10	115	255	197	267	103
Culicoides sp.	81	50	0	20	60	332	324	123	406	246	128	0
Rhaphium sp	0	0	0	0	1	6	1	3	4	11	9	0
Ephydridae sp	0	0	0	0	0	0	0	0	0	0	0	1
Simulium sp	20	0	0	0	0	0	0	0	1	46	0	0
Tipulidae sp	0	0	0	0	0	0	0	0	0	. 0	9	0
Dicranota sp	0	0	0	0	0	1	0	0	0	0	0	. 0
Ormosia sp.	0	0	0	0	0	1	0	0	2	4	1	0
Tipula sp.	0	0	0	0	1	0	0	0	1	1	0	0
Muscidae sp.	0	0	0	0	0	0	0	1	0	0	1	0
Brachycera Diptera sp	0	0	0	0	0	0	Description Description	0				
Chironomidae					New New							
Chironomini												
Chironomus sp.	2	12	0	4	4	0	1	0	3	3	1	2
Cryptochironomus sp.	211	50	66	81	80	97	43	85	237	142	270	0
Demicryptochironomus sp.	2		-	10		0	0	0	0	0	0	. 0
Dicrotendipes sp	0	1		1	0	0	2	1	0	.0	0	0
Microtendipes sp	5	0	1	1	1	1	0	1	50	17	5	0
Paralauterborniella sp.	0	0	0	0	0	40	0	40	0	0	120	0
Phaenopsectra sp.	0	1		0	0	0	0	40	0	0	0	0
Polypedilum spp.	426	0	1	1	20	12	1	161	44	81	80	0
Stictochironomus sp	24	-	1			34	5	6	100	25	36	0
Tanytarsini												
Cladotanytarsus sp.	4764	634	3363	331	620	5821	2248	3174	6280	4892	4991	81
Micropsectra sp.	0	1	1				1	1	48	54	90	41
Paratanytarsus sp	21	1		10	-	121	200	121	200	80	205	0
Rheotanytarsus sp.	20			1		40	0	80	40	0	0	0
Tanytarsus sp.	200	1	1	1	1	124	320	245	212	81	96	40
Diamesinae			1									
Potthastia longimana go	0	0	0	0	0	0	0	0	4	0	0	0

Ronalane

Secretary Name of the Control of the			Neill Cylinde	r					Kick			
Sample Number 0	6SWB0026	06SWB0027	06SWB0028	06SWB0029	06SWB0030	06SWB0046	06SWB0047	06SWB0048	06SWB0050	06SWB0051	06SWB0052	06SWB0057
AXA						Erosional 210µm	Erosional 210µm	Erosional 210µm	Erosional 400µm	Erosional 400µm	Erosional 400µm	Depositional 210µn
Orthocladiinae												
Cricotopus/Orthocladius spp	1475	176	1254	99	254	931	699	1322	671	1327	778	4
Parakiefferriella sp.	0	40	140	70	120	200	360	640	248	400	444	40
Parametriocnemus sp	0	0	20	0	0	0	2	0	0	0	0	0
Pseudosmittia sp	0	0	20	0	0	0	41	81	40	84	56	0
Smittia sp	0	10	0	0	0	0	0	0	0	0	0	0
Synorthocladius sp.	20	0	0	0	0	0	0	0	0	0	0	0
Thienemanniella sp	0	0	0	0	0	0	42	40	44	0	0	0
Unidentified Orthocladiinae sp.	0	0	0	0	0	40	0	0	0	0	0	0
Tanypodinae												
Thienemannimyia gp sp	192	20	131	3	60	127	161	268	68	186	81	40
Total Taxa	47	31	40	34	40	56	53	54	57	49	57	46
Total Numbers	11790	5425	10460	3162	6400	38288	30899	35176	28366	26898	25482	24881

Bryozoa present in sample but not counted

Appendix 3 Raw epilithic algal data for the Bow River (Fall 2006)

Epilithic algal density (number of units/cm²) and biomass (micrograms/cm²) at sampling sites on Bow River

Site ID	Coch	rane	Stier's	Ranch	Carse	eland			Ch	iny					Rone	lane		
									Downsti	ream of	Downstr	eam of			Downst	ream of	Downs	stream of
							Upstream	of bridge	bridge/Ri	ght bank	bridge/Le	eft bank	Upstream	of bridge	bridge/F	Rt. Bank	bridge/l	Left Bank
Sample Number	06SW	EE006	06SWE	E007	06SW	EE008	06SW	EE010	06SWI	EE011	06SWE	E0009	06SWI	EE0013	06SWE	E0015	06SW	EE0016
Sampling Date	16-0	ct-06	17-00	ct-06	17-0	ct-06	18-C	ct-06	18-0	ct-06	18-00	ct-06	19-C	ct-06	19-0	ct-06	19-0	Oct-06
	Density aep-06	Biomass aep-06	Density aep-07	Biomass aep-07	Density aep-08	Biomass aep-08	Density aep-09	Biomass aep-09	Density aep-10	Biomass aep-10	Density aep-11	Biomass aep-11	Density aep-12	Biomass aep-12	Density aep-13	Biomass aep-13	Density aep-14	
DIATOMS	dop oo	acp co	uop or	dop or	acp oo	acp oo	acp-05	acp os	acp 10	aep-10	dep-11	аертт	acp 12	dep-12	acp-15	acp 10	аср	acp 14
Achnanthes flexella (Kuetzing) Braun	6673	1.201	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
Achnanthes lanceolata (Brebisson) Grunow	0	0	0	0	0	0	0		0	0	0	0	2919	0.292	0	0	0	
Achnanthes minutissima Kuetzing	1955281	79.189	1221217	35.721	2462454	157.597	930927	59.579	588920	18.551	1574902	88.195	592673	18.669	464907	14.645	745075	
Amphora pediculus (Kuetzing) Grunow	0	0.100	32031	0.596	26693	0.466	6005	0.098	3336	0.05	26693	0.435	5839	0.109	8452	0.118	-	0.41
Anomoeoneis vitrea (Grunow) Ross	106773	13.347	12011	1.501	20019	3.964	6005	0.863	3336	0.751	0	0.400	0	0.103	0	0.110	0	
Caloneis bacillum (Grunow) Cleve	13346	2.502	0	1.501	20019	1.441	6005	0.676	0	0.731	5338	0.342	0	0	0	0	0	- (
Cocconeis pediculus Ehrenberg	0	0	0	0	146812		42041	197.071	0	0	21354	14.212		310.847	33811	171.424	5505	32.372
Cocconeis placentula var lineata (Ehrenberg) Van	- 0		- 0	-	140012	330.333	45041	137.071	U	U	21004	14.212	01311	310.047	33011	171.424	3303	32.372
Heurck	0	0	96095	43.243	213546	129.195	6005	3.634	13346	8.882	0	0	20437	17.715	2113	1.826	5505	6.048
Titulia	U	V	30033	40.240	213340	129.193	0005	3.034	13340	0.002	U	0	20437	17.713	2113	1.020	3303	0.046
Cocconeis placentula var. euglypta (Ehrenberg) Grunow	0	0	4003	2.883	0	0	0	0	0	0	0	0	2919	2.312	2113	1.674	0	
Cyclotella atomus Hustedt	0	0	0	2.000	0	0	0	0	1668	0.018	0	0	0	0.012	0	1.074	0	
Cyclotella distiguenda (Hustedt) Hakansson & Carter	13346	5.241	0	0	0	0	0	-	0	0.010	0	0	0	0	0	0	0	
Cyclotella hakanssoniae Wendker	0	0.2.41	0	0	0	0	0	_	0	0	0	0	0	0	2113	0.104	0	
Cyclotella meneghiniana Kuetzing	0	0	0	0	13346	9.057	3002	3.236	0	0	0	0	0	0	0	0.104	1835	1.245
Cyclotella ocellata Pantocsek	0	0	0	0	13340	9.037	3002	0.147	0	0	0	0	0	0	0	0	0	the same of the sa
Cyclotella pseudostelligera Hustedt	0	0	0	0	0	0	0	0.147	0	0	0	0	2919	0.143	2113	0.104	0	
Cymbella affinis Kuetzing	0	0	0	0	33366	2.378	18017	2.653	3336	0.704	26693	5.824	2919	0.143	0	0.104	0	
Cymbella caespitosa (Kuetzing) Brun	0	0	0	0	427092	134.175	282281	88.681	61728	19.392	101434	31.867	55471	17.427	19018	5.975	20186	6.765
Cymbella microcephala Grunow	373705	10.871	12011	0.349	46713	1.359	114113	3.319	31698	0.922	80079	2.184	735733	21.402	215548	5.878	234900	6.833
Cymbella minuta Hilse	13346	0.485	48047	2.516		3.774		6.742				3.044	8758	0.624	2113	0.111	5505	0.392
Cymbella perpusilla Cleve Euler	46713	1.699	40047	2.310	80079	3.774	105104	0.742	31698	2.259	42709	3.044	0/30	0.024	2113	0.111	0	
Cymbella silesiaca Bleisch ex. Rabenhorst	13346	3.106	12011	2.446		5 500	-	1.21		0.587	0	0	0	0	0	0	0	
Cymbella sinuata Gregory	13340	3,100	12011		33366	5.503	6005	1.31	1668			0.466		0.191		0.058	1835	
Denticula subtilis Grunow	33366	3.754	8007	0.328	26693	0.582	12011	0.262	11678	0.276	21354	0.466	8758	0.191	2113	0.056	1035	0.05
Diatoma moniliformis Kuetzing		20.604	-			40.700		45 444	0	0.500	~	60 700		0.100	35924	4.491	-	5.23
Diatoma tenuis Agardh	173506		128127	15.215	113446	12.763	222221	15.111	76743	9.593	501833	62.729	87587	3.162	35924	4.491	7340	0.826
Diatoma vulgaris Bory	20019	3.604	0	5 205	6673	0.901	0	0	0	0	21354	1.297	11070	20.10		17 751	23857	42.943
			4003	5.205	220219		0	0	0	0	0	0	11678	20.18	14792	17.751		42.943
Didymosphaeria germinata (Lyngyb.) M. Schmidt Fragilaria brevistriata Grunow	6673		0	0	13346	418.125		0	0	0	0	0	47547	0.011	0	0	0	
Fragilaria capucina Desmazieres	13346 186852	0.32 67.267	0	0	0	0	0	0	0	. 0	0	20.272	17517	0.911	101434	22.316	31197	5.241
Fragilaria pinnata (Ehrenberg)	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, wh	-	0	0		0	0	0		0	282948	20.372	11678	0.788		22.310	31197	5.24
Fragilaria vaucheriae (Kuetzing) Petersen	20019	0.48	0	0	0			40.745	0	7.007	0	0	0	0 007	48603	2.004	14681	1.835
	13346	0.427	0	0.047	6673	0.4	246245	16.745	100099	7.207	0	0	96346	6.937		3.694		1.035
Gomphonema minutum (Agardh) Agardh	0	0	4003	0.847	0	0	0	0.004	0	0	0	0.04	0	5.000	0	4.404	0	2.200
Gomphonema olivaceum (Hornemann) Brebisson Gomphonema parvulum Kuetzing	0		20019	10.996	46713	11.9	12011	2.661	0	0.000	16015	8.21	8758	5.939	2113	1.161	5505	2.389
Gomphonema pumilum (Grunow) Reichardt & Lange-	0	U	4003	0.717	0	0	3002	0.489	1668	0.339	26693	4.779	14597	2.97	4226	0.757	0	-
	100000	25.005	04000		00000	0.040					5000	0.000	44070	0.70	_	0		
Bertalot Gomphonema sp	166832	25.025	24023	1.564	26693	3.318	0	0	0	0	5338	0.603	11678	0.76	2113	0.516	0	
the state of the s	0		0	0	0	50.410	0	0	0	0	0	0	0	0		0.516		
Melosira varians (Agardh)	0	0	0	0 404	33366	52.412	0	10.050	0	0 000	0	0 700	0	04.004	0	C 400	0	
Naviucula capitatoradiata Germain	0	0	4003	2.434	266932	189.189	30029	18.258	10009	6.086	16015	9.738	35034	21.301	8452	5.139	-	8.92
Navicula cincta (Ehrenberg) Ralfs	0	0	0	0	0	0	0	0	0	0	0	0	26276	5.912	4226	2.029	3670	0.92
Navicula cryptocephala Kuetzing	0		4003	2.05	6673	3.203	0	0	0	0	0	0	0	0	0	0	1835	0.71
Navicula cryptotenella (Lange-Bertalot)	26693	3.337	208207	37.477	240239	43.243	60059	11.892	6673	1.201	64063	11.531	72989	9.124	54943	6.868	139472	25.10
Navicula gregaria Donkin	0	0	12011	3.679	0	0	0	0	0	0	0	0	2919	0.683	0	0	1835	0.413

Appendix 3 Raw epilithic algal data for the Bow River (Fall 2006) (con't)

Appendix 3 Raw epi	lithic a	Igal	data fo	or the	Bow	River	(Fall	2006) (con	't)								
Site ID	Cochr	ane	Stier's	Ranch	Carse				Clu						Rona	lane		
									Downstr	eam of	Downstro	eam of			Downstr	ream of	Downst	tream of
							Upstream	of bridge	bridge/Rig	ght bank	bridge/Le	eft bank	Upstream	of bridge	bridge/F	Rt. Bank	bridge/L	eft Bank
Sample Number	06SWE	E006	06SWE	E007	06SW	EE008	06SWE	E010	06SWE	E011	06SWE	E0009	06SWE	E0013	06SWE	E0015	-	EE0016
Sampling Date	16-Oc		17-00		17-0		18-0		18-C		18-Oc		19-00		19-0			Oct-06
	Density I	Biomass	Density	Biomass	Density	Biomass	Density	Biomass	Density	Biomass	Density	Biomass	Density i	Biomass	Density	Biomass	Density	Biomas
	aep-06	aep-06	aep-07	aep-07	aep-08	aep-08	aep-09	aep-09	aep-10	aep-10	aep-11	aep-11	aep-12	aep-12	aep-13	aep-13	aep-14	aep-14
Navicula margalithii Lange-Bertalot	0	0	76075	89.389	260259	338.337	9008	11.712	3336	4.338	5338	6.673	5839	7.299	0	0	1835	2.29
Navicula menisculus Schumann	0	0	0	0	0	0	3002	0.405	0	0	0	0	0	0	0	0	1835	2.14
Navicula miniscula Grunow	0	0	0	0	0	0	0	0	1668	0.104	0	0	0	0	0	0	0	
Navicula notha Wallace	0	0	0	0	113446	14.181	18017	2.595	1668	0.188	5338	0.601	2919	0.511	4226	0.475	3670	0.41
Navicula schroeterii Meister	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2113	1.014	0	
Navicula subminiscula Mangiun	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2113	0.132	0	
Navicula veneta Kuetzing	0	0	4003	0.721	0	0	3002	0.338	0	0	0	0	72989	9.124	19018	2.377	20186	2.52
Nitzschia acicularis (Kuetzing) W. Smith	0	0	0	0	0	0	0	0	0	0	0	0	8758	1.331	4226	0.558	0	
Nitzschia amphibia Grunow	0	0	28027	3.153	0	0	0	0	0	0	0	0	0	0	0	0	3670	0.45
Nitzschia angustata Grunow	0	0	0	0	0	0	0	0	0	0	0	0	5839	1.277	4226	1.057	3670	0.82
Nitzschia angustatula Lange-Bertalot	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2113	0.264	3670	0.26
Nitzschia dissipata (Hantzsch) Grunow	0	0	0	0	60059	15.015	30029	5.631	8341	1.168	0	0	5839	0.584	8452	2.219	14681	3.85
Nitzschia fonticola Grunow	0	0	84083	5.381	73406	8.258	0	0	0	0	0	0	5839	0.42	0	0	0	
Nitzschia frustulum (Kuetzing) Grunow	0	0	16015	2.002	0	0	12011	0.865	0	0	0	0	58391	4.204	14792	1.757	3670	0.41
Nitzschia gracilis Hantzsch	0	0	0	0	0	0	6005	1.153	0	0	0	0	11678	2.803	0	0	9175	2 49
Nitzschia heufleriana Grunow	0	0	0	0	6673	5 839	0	0	0	0	0	0	0	0	0	0	0	
Nitzschia inconspicua Grunow	0	0	24023	0.378	0	0	6005	0.068	0	0	0	0	14597	0.197	0	0	0	
Nitzschia palea (Kuetzing) W. Smith	0	0	0	0	0	0	18017	2.595	0	0	0	0	0	0	8452	1.082	3670	0.61
Nitzschia perminuta Lange-Bertalot	20019	1.842	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
Nitzschia paleacae Grunow	13346	0.721	88087	8.456	93426	5.045	18017	6 284	8341	0.45	5338	0.288	40874	2.207	12679	0.685	22021	2.02
Nitzschia sinuata var tabellaria (Grunow) Grunow	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1835	0.4
Rhoicosphenia abbreviata (Agardh) Lange-Bertalot	0	0	44043	7.885	33366	3.205	15014	2.291	6673	1.412	0	0	0	0	0	0	0	
Rhopalodia gibba var minuta Krammer	0	0	0	0	0	0	0	0	0	0	0	0	2919	0.604	0	0	0	
Stephanodiscus minutulus (Kuetzing) Cleve & Mueller	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Stephanodiscus parvus Stoermer & Hakansson	0	C	0	0	0	0	0	0	0	0	0	0	2919	1.526	0	0	0	
Surirella minuta Brebisson	0	0	0	0	0	0	0	0	0	0	0	0)	0	2113	1.337	0	
Synedra filiformis Grunow	0	0	0		0	0	3002	0.192	0	0	0	0	75908	9.394		1.065	11010	1.48
Synedra filiformis var. exilis CI -Eul.	0	0	0	0	0	0	0		0		0	0	0	0	2113	0.152	0	
Synedra tenera W. Smith	0	0	0	0	0	0	3002	0.473	0	0	0	0	0	0	0		0	
Synedra ulna (Nitzsch) Ehr.	13346	15.616	4003	3.924	26693	30.03	0	0	0	0	0	0	0	0	0	0	0	1
CYANOBACTERIA																		
Gloeotrichia sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18351	7.53
Leibleinia sp	533865	6.709	520518	6.541	0	0	0		0		0	0	0	0	63396	0.797	0	
Merismopedia elegans A. Braun	0	0	0	0	0	0	0	0	0		0	0	0	0	16905	1,912	55054	3.60
Merismopedia glauca (Ehrenberg) Naegeli	0	0	0	0	106773	3.578	0	0	0	0	0	0	0	0	0		0	
Merismopedia tenusissima Lemmermann	0	-	0	0	. 0	0	0	0	0	0	0	_ 0	81748	1.156	0	0	0	
Oscillatoria limnetica Lemmerman	0	(80079	1.006	0	0	66065	0 83	0	0	0	0	551799	6.934	84528	1.062	110109	1.38
Phormidium formosum (Bory ex Gomont) Anagnostidis																		
et Komarek	0	(1033029	77.889	613945	61.721	-0	0	0	0	0	0	0	0	0	0	0	
Phormidium sp1	0	(0	0	0	0	0	0	33366	3.354	0	0	0	0	21132	2.124	0	
Pseudanabaena limnetica Komarek	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	22021	0.27

Appendix 3 Raw epilithic algal data for the Bow River (Fall 2006) (con't)

Site ID Raw epil		enen		Ranch		eland				uny					Roni	alane		
									Downst	ream of	Downstr	ream of			Downst	ream of	Downs	tream of
							Upstream	of bridge	bridge/R	ight bank	bridge/L	eft bank	Upstream	n of bridge	bridge/F	Rt. Bank	bridge/	Left Bank
Sample Number	06SW	EE006	06SW	EE007	06SW	EE008	06SW	EE010	06SW	EE011	06SWE	E0009	06SW	EE0013	06SWE	E0015	06SW	EE0016
Sampling Date	16-0	ct-06	17-0	ct-06	17-0	ct-06	18-0	ct-06		ct-06		ct-06		Oct-06		ct-06		Oct-06
	Density	Biomass	Density	Biomass		Biomass		Biomass			Density							
	aep-06	aep-06	aep-07	ae; 07	aep-08	аер-08	аер-09	aep-09	aep-10	aep-10	aep-11	aep-11	aep-12	aep-12	#ep-13	aep-13	aep-14	aep-14
CHLOROPHYCEAE																		
Ankistrodesmus fakcatus var. mirabilis West	0	0	0	0	0	0	0	0	1668	0.224	. 0	0	0	0	0	0	0	(
Ankistrodesmus gracilis (Reinsch) Kors.	0	0	0	0	6673	0.503	0	0	0	0	0	0	0	0	2113	0.049	0	(
Cosmanum meneghinii Brebisson	0	0	0	0	0	0	0	0	0	0	0	0	2919	5.992	0	0	0	(
Monoraphidium contortum (Thuret) Komarkova-																		
Legenerova	0	0	. 0	0	0	0	15014	0.495	1668	0.063	5338	0.075	8758	0.33	2113	0.027	0	(
Monoraphidium griffithii (Berkeley) Komarkova-																		
Legenerova	0	0	0	0	6673	0.629	3002	0.283	10009	1.677	0	0	2919	0.489	10566	0.996	7340	0.726
Monoraphidium minutum (Nag.) Komarkova-Legenerova	0	0	0	0	6673	0.094	0	0	0	0	0	0	0	0	0	0	0	(
Monoraphidium pusillum (Printz) Kom-Legn	0	0	0	0	0	0	0	0	5004	0.419	0	0	0	0	0	0	0	(
Mougeotia sp.	20019	110.694	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3670	121.418
Oocystis solitaria Wittrock	0	0	0	0	0	0	0	0	0	0	5338	1.208	0	0	0	0	0	(
Pediastrum boryanum (Turpin) Meneghini	0	0	0	0	0	0	0	0	. 0	0	.0	0	2919	41.275	4226	607.733	1835	207.55
Pediastrum tetras (Ehrenberg) Ralfs	0	0	0	0	0	0	0	0	0	0	0	0	2919	16.277	0	0	0	(
Scenedesmus acutiformis Schroeder	0	0	0	0	0	0	12011	0.453	0	0	0	. 0	0	0	0	0	0	(
Scenedesmus acutus Meyen	0	0	0	0	53386	4.472	78077	6.541	6673	0.447	154820	12.97	163496	25.682	25358	2.549	58725	4.93
Scenedesmus bijuga (Turp.) Lagerheim	0	0	0	0	0	0	0	0	0	0	0	0	5839	0.587	8452	0.567	7340	0.738
Scenedesmus obliquus (Turpin) Kuetzing	0	0	0	0	0	0	0	0	0	0	0	0	55471	5.577	48603	4.072	38538	3.55
Scenedesmus opoliensis P. Richter	0	0	16015	0.604	80079	8.05	12011	1.208	6673	0.671	0		52552	9.631	6339	0.85	40373	9.893
Scenedesmus quadricauda (Turpin) Brebisson	0	0	0	0	0	0	0	0	0	0	0	0	29195	2.446	42264	9.56	3670	0.8
Scenedesmus sempervirens Chodat	0	0	0	0	26693	2.684	0	0	0	0	0	0	0	0	0	0	0	(
Scenedesmus sp	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	16905	1.133	0	
Stigeoclonium sp.	0	0	0	0	0	0	0	0	0	0	53386	18.114	0	0	0	0	0	
CRYPTOPHYCEAE																		
Cryptomonas sp	0	0	0	0	0	0	0	0	1668	1.118	0	0	0	0	0	0	0	
Rhodomonas minuta Skuja	0	0	0	0	0	0	6005	1.359	1668	0.377	5338	1.208	2919	0.66	0	0	0	
EUGLENOPHYCEAE																		
Euglena ct. minuta Prescott	0	0	0	0	6673	3.578	0	0	0	0	0	0	0		0	0	0	

117

Appendix 4 Metrics derived from benthic invertebrate data collected with a Neill cylinder and kick nets (210 and 400 µm mesh size) in erosional and depositional areas from the Bow River in Fall 2006

		Coch	rane			Stie	er's			Care	seland	
Metrics/Indices	NEILL	210E	400E	210D	NEILL	210E	400E	210D	NEILL	210E	400E	210D
Abundance (total count)	667	2112	337	1973	14811	36240	18438	13940	8623	73675	16571	61634
Richness (total species)	43	39	39	43	70	45	45	48	75	68	56	59
Total Taxa (genus and higher)	41	35	36	39	68	45	45	47	74	66	56	51
Total Taxa (family and higher)	25	24	26	27	37	29	25	28	39	36	28	29
Simpson's Diversity Index D	0.80	0.90	0.90	0.88	0.92	0.88	0.89	0.78	0.90	0.77	0.86	0.37
Shannon Diversity Index H	2.18	2.60	2.78	2.57	2.84	2.55	2.64	2.16	2.78	2.20	2.59	1.05
Number of Coleoptera genera	2	2	2	2	4	2	3	1	3	3	4	3
Number of Diptera genera (non												
Chironomidae)	3	2	4	1	2	2	2	1	4	4	3	1
Number of Chironomid genera	1.4	10	10	11	22	15	16	17	27	24	21	17
Number of Hemiptera genera	2	3	2	3	3	2	1	2	1	2	0	5
Number of Odonata genera	0	0	0	0	0	0	0	0	0	0	1	0
Number of Ephemeroptera genera	3	1	2	2	6	4	7	5	8	7	9	4
Number of Plecoptera genera	0	0	1	0	2	1	1	1	4	4	3	0
Number of Trichoptera genera	3	1	3	2	8	6	5	3	9	6	7	1
Number of EPT genera	6	2	6	4	16	11	13	9	21	17	19	5
Number of Coleoptera families	2	2	. 2	2	2	2	2	1	2	3	2	2
Number of Diptera (non												
Chironomidae) families	2	2	4	1	2	2	2	1	3	4	3	1
Number of Chironomid subfamilies	5	5	5	6	5	5	5	5	5	5	5	5
Number of Hemiptera families	1	1	1	1	1	1	1	1	1	1	0	1
Number of Odonata families	0	0	0	0	0	0	0	0	0	0	1	0
Number of Ephemeroptera families	2	1	2	2	4	4	A	A	6	6	6	9
Number of Plecoptera families	0	0	1	0	2	1	1	1	2	2	2	0
Number of Trichoptera families	3	1	3	2	6	5	4	2	7	4	5	1
Number of EPT families	5	2	6	4	12	10	9	7	15	11	13	4
Number of ETO families	5	2	5	4	10	9	8	6	13	9	12	4
Proportion of Oligochaetes	0.2908546	0.2386364	0.379822	0.4460213	0.093536	0.013797	0.027064	0.457102	0.1844455	0.4140618		0.7957459
Proportion of Gastropods	0.002099	0	0.0029674							0 0021853		0.0001785
Proportion of Pelecypods	0	0.0004735	0	0	0.00027	2.76E-05	0.003525			0	0	0
Proportion of Amphipods	0	0	0	0.0010137	0.0005	5.52E-05	0.001193		2.319E-05	0.0005022	0	0.0009086
Proportion of Coleoptera	0 0083958	0.0137311	0.0356083	0.0136847			0.058412		0 0276019		0 0260696	0.0009086
Proportion of Diptera	0.0722639			0.1282311					0.6079837	0.474245		0.0916215
Proportion of Diptera (non								0.20.101			0.00,016	0.0010210
Chironomidae)	0.002099	0.0047348	0.0207715	0.0005068	0.120326	0.064018	0.214665	0.002941	0 000719	0.003149	0.0126124	6 49E-05
Proportion of Chironomids	0.0701649	0.0629735		0.1277243			0.195249		0.6072646			0.0915566
Proportion of Hemiptera	0.0245877	0 1917614		0 1084643			0 077069		4.639E-05	0.0001222	0	0.0058085
Proportion of Odonata	0	0	0	0	0	0	0	0	0	0	6.035E-05	0
Proportion of Ephemeroptera	0 0041979	0 0023674	0 0652819	0.0010137	0.038659	0 07489	0.166395	0 013199	0 0310115	0.0390635	0 0698208	0.0008112
Proportion of Plecoptera	0	0	0.0029674	0	6 75E-05	0.000276	0.000542	7.17E-05	0.0005567	0.0008687	0.007483	0
Proportion of Trichoptera	0.0026987	0.0056818		0.0030411				0.002869	0.065943			8 112E-05
Proportion of EPT	0.0068966	0.0080492	0 0919881	0 0040547				0 016141	0 0975112			0 0008924
Ratio of EPT to Chironomidae	0.0982906	0.1278195				0.621374	1 808333			0.1242077	0.3175585	0.0097466
contribution by dominant												
family(insects only)	0.644385	0.6818182	0.3837209	0.5039841	0.669452	0 604323	0.456236	0.941726	0.8292837	0.8713869	0.738246	0.9233159
Proportion of Filterers	0.0335832			0 0968069		0.309161	0 444896		0 2307889		0.206264	0.0442937
Filterer Taxa	7	9	5	8	13	11	10	11	12	10	10	9
Proportion of Gatherers	0.4818591	0.5127841	0 5727003	0 6482514	0.297339	0.323538	0 244224	0.650287	0.5330411	0.7323108	0 640939	0.9004932
Gatherer Taxa	21	14	11	14	23	15	14	20	29	27	20	23
Proportion of Parasites	0.391904	0 1690341	0.0445104	0.0983274	0 14262	0.001104	0.001085	0.005811	0.0451372	0.0077367	0 0067588	0.0188208
Parasite Taxa	1	1	1	1	1	1	1	1	1	1	1	1
Proportion of Piercing Herbivores	0.0002999	0.0004735	0.0029674	0.0187532	4 05E-05	0	0	7 17E-05	0	6 787E-05	0	0 0005192
Piercing Herbivore Taxa	1	1	1	3	1	0	0	1	0	1	0	2
Proportion of Predators	0 0734633	0.2466856	0.2908012	0.1322859	0.107849	0.187086	0.148877	0.052869	0.0529771	0 0326026	0.0519582	0.0045267
Predator Taxa	9	12	12	11	21	11	10	10	19	15	13	17
Proportion of Scrapers	0.0047976	0.0061553	0.0237389	0.0050684	0.108038	0.086065	0 14405	0.159613	0.0361376	0.0330641	0.0525617	0.0247266
Scraper Taxa	3	2	4	5	7	4	8	4	8	9	7	6
Proportion of Shredders	0.014093	0	0.0118694	0 0005068	0.045519	0.093046	0.016867	0.003013	0.1019182	0.0660875	0.0415183	0.0066197
Shredder Taxa	3	0	4	1	2	2	2	2	4	4	4	2
Scraper/Filterer Ratio	0 1428571	0.0948905	0.4444444	0.052356	0.361823	0 278383	0 323784	1.243712	0.1565829	0.2580508	0 2548274	0.5582418
Shredders/Total Ratio	0.014093	0	0.0118694	0.0005068	0 045519	0.093046	0.016867	0.003013	0.1019182	0.0660875	0.0415183	0.0066197
Total Insects	75	594	172	502	10314	34187	16566	3964	6322	40097	13421	6116
Total Insect Taxa	29	23	27	25	49	32	35	31	57	52	48	39
Proportion of Burrowers	0.0187166	0	0.005814	0.1195219	0 023404	0 00819	0.000302	0.204844	0 0926981	0.041649	0 0730944	0.0168411
Burrower Taxa	3	0	1	1	6	2	1	3	8	6	6	3
Proportion of Climbers	0.1042781	0.0420875	0.0348837	0.249004	0.01687	0.003861	0.008874	0.067104	0 112345	0 1498865	0.0502943	0.3019948
Climber Taxa	4	3	2	4	4	3	4	3	4	4	4	3
Proportion of Clingers	0.1657754	0.0488215	0.1802326	0.0697211	0.618553	0.604411	0 671013	0.509586	0.3892053	0.2575754	0.3457268	0.3616743
Clinger Taxa	7	5	8	6	21	15	16	11	24	22	21	10
Proportion of Sprawlers	0.3903743	0.1801347	0.2848837	0.0836653	0.296149	0.340363	0.111433	0.216196	0.367407	0 4859466	0.4717234	0.2532701
Sprawler Taxa	9	8	9	6	8	7	8	8	15	13	11	6
Proportion of Swimmers	0 3208556	0.7289562	0.494186	0.4780876	0.045024	0.043174	0.208379	0 00227	0.0383447	0.0649425	0.059161	0.0662198
Swimmer Taxa	6	7	7	8	10	5	6	6	6	7	6	17
Proportion with Depositional pref.	0.0935829	0.3265993	0.0988372	0.6733068	0.088885	0.010472	0.046239	0.256307	0.1142749	0.0842208	0.0530512	0.2671681

Appendix 4 Metrics derived from benthic invertebrate data collected with a Neill cylinder and kick nets (210 and 400 µm mesh size) in erosional and depositional areas from the Bow River in Fall 2006 (con't)

		Coch	rane			Stie	r's			Care	eland	
Metrics/Indices	NEILL	210E	400E	210D	NEILL	210E	400E	210D	NEILL	210E	400E	210D
Depositional Taxa	5	9	7	10	11	6	6	9	12	13	9	15
Proportion with Erosional pref.	0.4304813	0.1767677	0.2906977	0.1314741	0.657547	0 715155	0.579983	0.270434	0.5507466	0.6042846	0.6688026	0.3629823
Erosional Taxa	9	8	8	7	20	14	15	10	25	22	20	8
Proportion Erosional - Depositional												
pref.	0.1631016	0.0774411	0 2325581	0.0717131	0.124738	0.1304	0.235784	0.046418	0.0844406	0.0950196	0.117726	0.0179856
Erosional - Depositional Taxa	11	4	8	7	9	7	9	6	12	10	13	6
Proportion with Lentic pref	0.3101604	0.4074074	0 3488372	0.123506	0.108101	0.104192	0.128214	0.416751	0.2023538	0.1797641	0.1007376	0.3453237
Lentic Taxa	3	1	3	1	5	3	4	5	3	4	3	9
Proportion with Lotic (general) pref.	0.0026738	0.0117845	0.0290698	0	0.020728	0.039781	0.009779	0.010091	0.048184	0.036711	0.0596826	0.0065402
Lotic (general) Taxa	1	1	1	0	4	2	1	1	5	3	3	1
Proportion with Margin habitat pref.	0	0	0	0	0	0	0	0	0	0	0	
Margin Taxa	0	0	0	0	0	0	0	0	0	0	0	
Biotic Index (species)	7.81	7.09	6.21	7.86	5.84	5.16	5.10	7.41	6.23	6.78	5.91	7.81
BI Arthropods Only	6.88	6.48	4.87	6.47	5.23	5.05	4.77	7.19	5.80	5.93	5.47	7.06
Bi Insects Only	5.28	5 01	4.75	5.50	5.12	4.99	4.73	6.84	5.73	5.86	5.47	6.31
Family Biotic Index (Modified)	7.16	6.35	6.15	7.11	5.95	5.38	5.19	7.28	6.54	6.89	6.03	7.81
FBI Arthropods only	5.59	5.09	4.93	5.76	5.62	5 32	4.99	7.07	6.20	6.10	5.62	6.57
FBI Insects Only	5.78	5 18	4.95	5.80	5 63	5 33	4.99	7.10	6.21	6.11	5.62	6.56
Number of Intolerant Taxa (0.1.2)	5	3	4	2	9	5	7	4	12	10	11	2
BMWP Score (Sensitivity)	90	68	107	85	162	119	115	110	180	160	150	78
Average Score Per Taxon (ASPT)	5.00	4.25	5.10	4.47	4.91	5.17	5.00	4.78	5.29	5.33	5.77	4.11

Appendix 4 Metrics derived from benthic invertebrate data collected with a Neill cylinder and kick nets (210 and 400 µm mesh size) in erosional and depositional areas from the Bow River in Fall 2006 (con't)

Metrice & disco	MEH	Ch		2100	MEH	Rene		2400
Metrics/Indices Abundance (total count)	NEILL 4396	210E 23542	400E 9027	2100	7447	210€ 34788	400E 26915	210D 24881
Richness (total species)	65	56	9027	37274	68	71	71	24881
Total Taxa (genus and higher)	65	56	60	34	67	70	71	39
Total Taxa (family and higher)	37	32	36	18	43	40	41	27
Simpson's Diversity Index D	0.90	0.70	0.87	0.27	0.84	0.80	0.77	0.71
Shannon Diversity Index H	2.71	1.93	2.59	0.63	2.35	2.13	2.01	1.69
Number of Coleoptera genera	4	2	2	1	3	4	3	1.00
Number of Diptera genera (non	1			-	1	1	1	
Chironomidae)	5	2	3	,	5		10	
Number of Chironomid genera	19	17	16	12	18	20	17	
Number of Hemiptera genera	2	0	2	5	2	1	2	
Number of Odonata genera	0	0	0	0	9	0	1	
Number of Ephemeroptera genera	9	8	9	3	5	9	7	
Number of Plecoptera genera	3	3	4	0	0	1	2	
Number of Trichoptera genera	9	8	8	2	6	5	8	
Number of EPT genera	21	19	21	5	11	15	17	
Number of Coleoptera families	2	2	2	1	2	3	2	
Number of Diptera (non								
Chironomidae) families	4	2	3	1	4	5	6	
Number of Chironomid subfamilies	5	5	4	4	4	4	5	
Number of Hemiptera families	1	0	1	1	1	1	1	
Number of Odonata families	0	0	0	0	1	0	1	
Number of Ephemeroptera families	6	4	6	2	4	5	4	
Number of Plecoptera families	2	2	2	0	0	1	1	
Number of Trichoptera families	7	6	6	2	4	3	5	
Number of EPT families	15	12	14	4	8	9	10	
Number of ETO families	13	10	12	4	9	8	10	
Proportion of Oligochaetes	0.236113	0.522817	0.143833	0.851666	0.3183393	0.3382712	0.444654	0.312567
Proportion of Gastropods	0	0	3.69E-05	0	8.057E-05	5.749E-05	0.001214	
Proportion of Pelecypods	4.55E-05	0.000581	7.39E-05	0		0.0032962	0.006626	
Proportion of Amphipods	0	0.000566		0		0.0041777	0.014861	
Proportion of Coleoptera	0.06492	0.02669				0.0031045	0.011121	0.00050
Proportion of Diptera	0.474501	0.326362	0.455281	0.011053	0.4487204	0.1841457	0.306529	0.015758
Proportion of Diptera (non								
Chironomidae)	0.00687	0.003455				0.0108659		
Proportion of Chironomids	0.467631	0.322908				0.1732798		0.009967
Proportion of Hemiptera	9.1E-05	0	0.000148	0.001744	0.0001074	1.916E-05		0.008641
Proportion of Odonata	0	0	0	0	5.371E-05	0		4.019E-0
Proportion of Ephemeroptera	0.069469			0.001234	0.0014502	0.0048868		0.001647
Proportion of Plecoptera	0.00646			0	0	4.791E-05	3.72E-05	
Proportion of Trichoptera	0.053319					0.0016768		
Proportion of EPT	0.129248					0.0066115	0.007753	0.00168
Ratio of EPT to Chironomidae	0.276389	0.289266	0.691603	0.116788	0.013483	0.0381553	0.02732	0.169354
contribution by dominant	0.700004	0.794009	0.540700	A 20037	0.0000000	0.0400000	0.044000	0.000000
family(insects only) Proportion of Filterers	0.709524					0.9495528		
Filterer Taxa	0.225194	0.164243	0.131056	0.005473	0.3339152	0.1824306	0.247542	0.480326
Proportion of Gatherers	0.475638	0.712235	0.601625	0.889333	0.5490775	0.7670247	0.682857	0.47626
Gatherer Yaxa	0.473030	18	21	0.009333	24	30	25	0.47026
Proportion of Parasites	0.0742	0.005706	0.001514	0 099855	0.039074	0.010406	0 003133	0.027330
Parasite Taxa	1	0.003700	0.001014	1	0.003074	0.010400	0 000135	0.021230
Proportion of Piercing Herbivores	4.55E-05	0	0	0.000295	o	0	1.24E-05	0.001165
Piercing Herbivore Taxa	4.000-00	0	0	2	Ö	0	1.242-03	9.001103
Proportion of Predators	0.076111	0.038725	0.062962	0.003461	0.0493864	0.0347058	0.050318	0.014870
Predator Taxa	16	13	16	11	16	15	9.7	94
Proportion of Scrapers	0.090988	0.049995	0.185007	0.000483	0.0067675	0.0036986	0.013264	4.019E-08
Scraper Taxa	6	8	7	4	6	6	8	
Proportion of Shredders	0.057823	0.029097	0.017836	0.0011	0.0217794	0.0017343	0.002873	-
Shredder Taxa	4	3	4	2	5	4	5	
Scraper/Filterer Ratio	0.40404	0.304397	1.411665	0.088235	0.020267	0.0202742	0.053582	8.368E-05
Shredders Total Ratio	0.057823	0.029097		0.0011				(
Total Insects	2940	10511	7572	526	3408	6745	8762	653
Total Insect Taxa	51	40	44	29	42	50	51	25
Proportion of Burrowers	0.003197	0.008975			0.0265876			0.1618321
Burrower Taxa	6	2	3	5	10	9	9	
Proportion of Climbers	0.132925	0.289864	0.076513	0.235741	0.6271276	0.593279	0.638034	0.248855
Olimber Faxa	5	5	5	3	5	6	6	
Proportion of Clingers	0.433265	0.253457	0.346995	0.114068	0.0764761	0.0640969	0.076844	0.004580
Olinger Taxa	22	21	20	7	14	16	18	
Proportion of Sprawlers	0.368503		0.420295	0.174905	0.2685174		1.00	0.189313
Sprawler Taxa	9.9	10	10	3	8	11	12	-
Proportion of Swimmers	0.062109	0.114519	0.146379	0.201521	0.0012912	0 0262417		0.3954196
Swimmer Taxa	2	9	6	9.5	4	8	6	9.0
and the same of th			- 4		0.6098134	- 0	- 0	7.0

Appendix 4 Metrics derived from benthic invertebrate data collected with a Neill cylinder and kick nets (210 and 400 µm mesh size) in erosional and depositional areas from the Bow River in Fall 2006 (con't)

		Clu	ny			Ronal	ane	
Metrics/Indices	NEILL	210E	400E	210D	NEILL	210E	400E	210D
Depositional Taxa	9	5	6	11	11	10	9	13
Proportion with Erosional pref.	0.551973	0.637575	0.541977	0.326996	0.306374	0.2975537	0.200708	0.1923664
Erosional Taxa	21	19	19	6	13	12	17	6
Proportion Erosional - Depositional pref.	0.203741	0.225168	0.352366	0.087452	0.0209532	0.0575241	0.080762	0.2274809
Erosional - Depositional Taxa	15	12	13	4	10	15	14	5
Proportion with Lentic pref.	0.087959	0.067233	0.021043	0.153992	0.0474821	0.0148258	0.012858	0.080916
Lentic Taxa	4	2	5	7	3	6	5	3
Proportion with Lotic (general) pref.	0.029932	0.022009	0.008761	0.076046	0.0023477	0.0120583	0.008521	0
Lotic (general) Taxa	2	2	1	1	2	3	2	0
Proportion with Margin habitat pref.	0	0	0	0	0.0130297	0.0433407	0.040134	0.0625954
Margin Taxa	0	0	0	0	3	4	4	2
Biotic Index (species)	6.10	6.87	5.58	7.98	6.82	7.47	7.20	8.43
BI Arthropods Only	5.41	5.64	5.17	7.52	6.14	7.20	6.41	7.89
Bl Insects Only	5.36	5.57	5.13	6.56	5.50	5.46	5.40	5.46
Family Biotic Index (Modified)	6.21	6.85	5.50	7.96	6.81	7.12	7.12	7.73
FBI Arthropods only	5.59	5.57	5.07	6.12	6.13	5.98	6.06	5.53
FBI Insects Only	5.61	5.58	5.07	6.28	6.13	5.95	5.98	5.51
Number of Intolerant Taxa (0.1,2)	9	8	9	0	2	3	3	0
BMWP Score (Sensitivity)	172	143	160	55	141	153	160	73
Average Score Per Taxon (ASPT)	5.38	5.30	5.33	4.23	4.55	4.78	4.44	4.06

•

••••••••••••

•

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006)

												aeta												_																
	4887	replicate	fydra sp.	TURBELLARIA	ficroturbellaria	Dugesia tigrina	olycelis coronata	IEMATODA	VEMERTEA	TARDIGRADA	OLIGOCHAETA	in - identified Oligochaeta	nchytraeidae	umbricidae	umbriculidae	aididae	ubficidae	HIRUDINEA	rpobdellidae (misc.)	Dina sp.	rpobdella sp.	ephelopsis obscura	Mooreobdella sp	Glossiphonidae (misc.)	lelobdella stagnalis	60	l'acobdella ornata	iscicolidae (misc.)	GASTROPODA	ymnaeidae (misc.)	Fossaria sp.	ymnaea sp	errissia sp.	ncylidae (misc.)	lanorbidae (misc.)	yraulus sp.	lelisoma sp	hysidae (misc.)	Physa sp.	
	year	replicate	I	1	15	0	0	Z	Z	F	0	2	w	1 -	1 5	Z	F	I	(iii	10	W	2	5	0	I	9	0	2	9	2	14	2	IL.	1	0.	0	I	0	10	1
1		Rep 1	127	6				248	T		73		0	7	1	9808	0	_		_							_	-		17	-	_			1					_
ŀ		Rep 2	103	11				745	-	\vdash	341		124	77	-	11804	0	+	-	-					-	-	+	+	-	29	-	-	-		0	\vdash	\vdash	-	\vdash	+
h		Rep 3	116	51				160	-	\vdash	0		36	26	_	4160	0	+		-					-	-	+	+	-	1	-	-	-		2				-	+
h		Rep 4	12	3				56		\vdash	0		28	1	-	2116	0	+		-					_	_	+	+	\rightarrow	6	-	\rightarrow	_		0				1	+
ľ			42	1				42		\vdash	0		28	1	1	1248	2	1							-	_	+	+	_	0	-	-			0					+
r		Average	80	14.4				250.2		\vdash	82.8		43.2	22.4	1	5827.2	0.4	1		1					-	-	+	+	\rightarrow	10.6	-	-			0.6					+
	1984	Rep 1	99	1				350					571	6	12	4263	160	0								_	\rightarrow	1	_	26	_	\rightarrow	0		0			0		†
1	1984		105	3				426					97	9	5	2140	200	1								1	1	1	1	36			2		0			0		1
	1984		20	2				528					253	11	5	3853	324	0											1	8			0		2			0		1
		Rep 4	40	3				542					499	6	10	1978	225	0												17			3		1			0		1
E		Rep 5	6.1	3				1519					885	16	44	4370	165	0												26			0		1			2		٦
E		Average	65	2.4			0	673				0	461	9.6	15.2	3320.8	214.8	0.2											0	22.6		0	1		0.8	0		0.4	0	
L			17	15				84						66	200	739	115												0			0				0			0	1
L			32	12				83						45	190	1078	9												2			0				0			2	
L	1985	Rep 3	40	17				48						54	137	1956	42												1			1				1			3	
Į,			30	8				63						65	42	1018	33												0			0				0			1	
L		Rep 5	9	31				9						139	222	1359	23												5			0				.0			2	
L		Average	25.6	16.6			0	57.4				0	0	73.8	158.2	1230	44.4	0											1.6	0		0.2	0		0	0.2		0	1.6	į.
L		Rep 1	27	12				147					234	25	17	1052	7																		2					
1		Rep 2	1	15				149					109	18	4	709	0																		0					
ŀ		Rep 3	56	122				65					158	27	80	2603	0										_		_						1				-	4
ļ.	1986	Rep 4	32	16				175					22	7	33	1188	0																		0				-	
ŀ	1986	Rep 5	12	21				203					20	31	47	1321	0										_	-	_			_			0		_		-	_
ŀ		Average	25.6	37.2		\vdash	0	147.8	-			0	108.6	21.6		1374.6	1.4	0							_		_		0	0	_	0	0		0.6	0		0	0	4
ŀ	1987	Rep 1	31	-	-	\vdash	2	17	_	\vdash		246	26		86	425	0	-							-	-	-	1	-	0	-	-						_	-	4
ŀ			32	_	-	\vdash	4	51	_			142	13		83	1321	2	-							-	_	-	-	-	2	-	-	_	\Box					-	4
ŀ			38 27	_		\vdash	2	32	-	-		208	33	_	54	1159	0	-							-	-	-	-	-	0	-	-					\vdash		-	-
H			38				7	8 24	-	-		176	0	-	51	413	0	-		-	-			-	-	-	-	+	-	0	-	-	_	-				_	-	-
ŀ		Average	33.2	0	-	\vdash	2		-	-		180	0	-	29	502	2	1		-					-	+	+	+	0	0	-	0	-	\rightarrow	-			0	10	-
H	1989	Rep 1	24	35	-	-	3.4	26.4 47	-	-		190.4	931	34	30	764 1437	0.8 57	0	-	-	-			-	-	-	-	+	0	12	0	0	0	-	9	0	-	U	0	-
			7	34	-			48	-				966	96	63	818	68	-		-					-	-	-	+	-	12	-	-			6			-	-	-
		Rep 3	26	27				56			-		82	13	16	624	98	+-		-			-		-	-	+	+	+	1	-	-			1			-	-	i
۲			39	34				84					64	6	14	633	4	-		-					-	-	+	+	-	9	-	-			16			-	1	i
r		Rep 5	25	38				110					468	16	22	1530	8	-	-			-		1		+	+	+	1	8	1		-		1					f
1		Average	24.2				0	69	-			0	502.2	33	29	1008.4	27.6	0								-	+	+	0	6.2	0	0	0		6.6	0		0	0	ń
۲		Rep 1	187	21				31				-	31	11	1	240	1	-								-	1		1	2		-	-							f
ľ		Rep 2	223	29				263					290	28	7	2298									1	1			1			1			1					Í
	1993	Rep 3	436	43				90					316	71	6	729												_	1											Ĭ
ľ	1993	Rep 4	89	38				47					540	60	14	549									1				1	2			-							1
ľ	1993	Rep 5	253	33				102					247	17	6	1424																	-						1	1
ľ	1993	Average	237.6	32.8			0	106.6				0	284.8	37.4		1048	0.2	0										1	0.8	0.8	0	0	0		0.2	0		0	0.2	Ē
ľ	2006	Rep 1	8		0			264					187	55		58															7									ı
ľ		Rep 2	0		0			285					77	15		28											1	1			0									Ĭ
ĺ	2006	Rep 3	28		0			95					95	21		16															0									1
ĺ		Rep 4	17		0			275					125	26		83															0									1
ĺ	2006		12		4			388					110	5		69															0									
l	2006	Average	13	0	0.8		0	261			0	0	119	24	0	51	0	0											0	0	1	0	0		0	0		0	0	ĵ

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

					(1								ris									(misc)					(SC.)						(misc.)		ds				
	year	replicate	Pisidium sp	Sphaenum sp.	Sphaenidae (misc	Hydracarina	Oribatei	CRUSTACEA	OSTRACODA	CLADOCERA	COPEPODA	AMPHIPODA	Gammarus Iacusi	Hyalella azteca	Orconectes virilis	Collembolla	Ephemeroptera	Baetidae (misc.)	Baetis sp	Dactylobaetis sp.	Caenis sp.	Ephemerellidae (r	Ephemerella sp	Drunella sp.	Serratella sp	Ephemera sp	Heptageniidae (m	Epeorus sp.	Heptagenia sp	Rhithrogena sp.	Stenonema sp.	Cinygma sp.	Leptophiebiidae (i	Leptophiebia sp.	Paraleptophlebia	Isonychia sp.	Ephoron sp	Siplonuridae misc	Ameletus sp. Triconthodes sp.
	me						-	-							-			-			-																		
T	1983	Rep 1	1			7			0		0								8				252				4	8		8				3	1				
	1983	Rep 2	1			14			13		2								- 1				13				0	1		0				0	0				
	1983		2			146			50		6								164				199				0	31		151				0	8				
	1983		2			8			0		0								11				16				0	7		7				0	0				_
L	1983	Rep 5	0			1			2		1								2				7				0	0		0				0	0	\rightarrow		_	
	1983	Average	1.2			35.2			13		1.8								37.2				97.4				0.8			33.2				0.6	1.8	\rightarrow		_	-
		Rep 1	1			37		-	42		369								1				1					0		0								0	-
		Rep 2	8			20		-	13	36	542								2	_	-		3					0		0				-		-		0	-
	1984		4			110		-	15	55	350	\vdash			-				2	-	-		0					1		0				-		-	_	0	-
	1984		4			0		-	6	37	298	\vdash			\vdash				0	-	-		0					0		1				-		-	-	0	+-
	1984	Average	4.2	-	0	33.4	\vdash	+	54	54 96.6	1046 521	1	_		-	_	0		1.2	-	-	0	1	0	0		0	0.2	-	0.2			0	-	0	-		0.2	0
-	1985	Rec 1	1	\vdash	U	51	\vdash	+	41	0.0	2	\vdash			\vdash	\rightarrow		220	18	-	-	0	29	0	U		2	14	0	16	-	\vdash	0	-	0	\rightarrow	-	0.2	-
	1985		2	\vdash		81	\vdash	-	1	1	0	\mapsto			\vdash	\rightarrow	0	85	7	-	-		32	\vdash	-	-	0	2	0	19		-	\rightarrow	\rightarrow	5	\rightarrow	-	-	+
	1985		1			178	Н	-	3	0	0	\vdash	-		-	-	1	1297	70	-	+-		185	\vdash			8	196	0	30				\rightarrow	24		\rightarrow	_	_
\vdash	1985	Rep 4	1		-	49	\vdash	+	4	1	6	1	-		\vdash	-	0	13	3	-	+	-	9	\vdash			0	1 1	0	0				-	2		-	-	-
	1985		2	\vdash	_	87	\vdash	-	2	0	2	\vdash		_	\vdash	-	0	306	28	-	-		65				5	64	4	11	-		$\overline{}$	\rightarrow	17		-	-	+
\vdash	1985	Average	1.4	\vdash	0	89.2	\vdash	-	2.2		2	\rightarrow		_	-	\rightarrow	0.2	384.2	25.2	-	+	0	64	0	0	-		55.4		15.2			0	\vdash	9.6		-	0	0
H	1986	Ren 1	1.4		11	243	\vdash	-	7	0	1	1			\vdash	\rightarrow	0	82	65		+		37	-	0		3	20.4	0	41		\vdash	-	-	1		\rightarrow	1	+-
H	1986	Ren 2			8	113	\vdash	-	7	0	2	-		-	\vdash		0	89	63	-	+		27				4		0	13		\vdash		\rightarrow	2		_	0	
H	1986	Ren 3			2	246		-	11	0	1	\vdash			\vdash		0	200	134	-	-		62				7		1	51	_				0		-	0	_
	1986				7	275		-	7	1	0	\vdash			\vdash		2	281	117				115				14		0	104					7			0	
H	1986	Rep 5			5	226	\vdash	-	23	0	0	\vdash			\vdash		0	188	100				94				12		0	44					4			0	
1	1986	Average	0			221		-	11	0.2	0.8	\vdash					0.4	168	95.8	1		0	67	0	0		8	0	0.2	50.6			0		2.8			0.2	0
	1987	Rep 1	2			0			9	1	1												1							0									
	1987	Rep 2	0			0			0	0	4	\Box											2							1									
	1987		0			3			2	1	6	\Box											2							0									
	1987		0			2			0	0	1			-									0							0									
	1987	Rep 5	2			0			0	0	2												1							1									
	1987	Average	8.0		0	1			0.6	0.4	2.8						0	0	0			0	1.2	0	0		0	0	0	0.4			0		0			0	0
	1989				44	210			135		21							624					532							93					4				2
	1989				28	40			10		28							204					302							118					6				
	1989				17	120			84		71							344					247							112					6				
	1989				18	206			18		29							432	2				636							92					8			_	
L	1989	Rep 5			17	284			150		76							576					512	1						100					-				-
-	1989	Average	0		24.8				79.4		45						0	436	0.4			0	445.8	0.2			0	0	0	103			0		4.8			0	0.4
-	1993	Hep 1			21	123			64	2	11						2	18	2			25			54		3			30					1			-	4
	1993		_		39	506			45		243						9	104	8		1	73			182			4		13						-		-	1
	1993				94	419		-	129	2	220						6	59	7	-	-	92	1	1	99		6		-	34			4	-	1			-	-
	1993		-	-	52	130		-	96	1	89							16	2			10	-		32		2			52		-	2	-	2	-		-	-
1	1993	mep 5	-		4	631		-	41	100	150	\vdash					6	124	2	-	-	50	0.0	1	192		1	2	- 0	21 30			1.2	-	1	-	-	0	1
1	2006	Average	0		42	362	100	-	75		142.6	\vdash			-		4.6	64.2	4.2	-	-	50	0.2	0.4	111.8		2.4	1.2	U	30			1.2	-	1	\rightarrow	-	0	-
1	2006	Rep 1	-			0	12	-	96	0	4	\vdash			-		-		4	-	1			-								\vdash					-	-	-
1	2006	Rep 2	-	-		4	0	-	16	0	12	\vdash							4	-	-	-	0				-		_		_			-				-	-
	2006		-			0	0	1	32	4	52	\vdash			-	_			4	-	-		0	-			-							-				-	-
		Rep 4 Rep 5	-	-		24	0	-	24	0	184	\vdash	-			_			0	-	+		_											-				-	-
						64	1 U								1 1				1 13				1																

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

T	hra		Т				_			_																															
	year	replicate	Plecoptera	Capnidae (misc.)	Chloroperlidae (misc.)	Swellsa sp	Suwallia sp.	Perlidae (misc.)	Claassema sp	Hesperoperta sp	Perlesta sp	Perlodidae (misc.)	Cultus sp	ds sepiouelos	soperta sp.	Skwala sp.	Plenonarcys sp	Taenonema sp	Demopleryx sp	Trichoptera	Brachycentrus sp	Glossosomatidae (misc.)	Anagapetus sp	Giossosoma sp	Helicopsychidae (misc.)	Helicopsyche sp	Hydropsychidae (misc.)	Arctopsyche sp.	Cheumatopsyche sp	Hydropsyche sp.	Hydrophilidae (misc.)	Hydroptila sp.	eptocendae (misc.)	Ceraclea sp.	Mystacides sp	Vectopsyche sp.	Decents sp	Triaenodes sp.	Lepidosloma sp.	imnephilidae (misc.)	Phryganea sp.
	ne		1	-	_			-		-	-	-		-			_	1	-		_	10		-	-	_	-			_	-				-		1 9	-	-	-	-
Т	1983	Rep 1	0		0		T	0	T	T	T			0								T					1	0		0		3		1			10				
Г	1983	Rep 2	1		0			0		1				0		_											1	0		0		1		1			1				
Г	1983	Rep 3	0		83			1						12										\neg			0	5		66		77		0			0				
r	1983	Rep 4	0		0			1						1				\vdash	_			1					2	0		3		3		0			0				
	1983	Rep 5	0		0		1	0	1	+	+			0								1					0	0		0		1		0			0				
		Average	0.2		16.6		1	0.4		1				2.6				\vdash	_			1					0.8	1		13.8		17		0.4			0.2				
	1984	Rep 1					1				_					_											0		1	3		5			\Box		-				
Г	1984	Rep 2																\vdash									1		8	11		4									
Г	1984	Rep 3																\vdash				1					1		2	3		1									
ī	1984	Rep 4																									0		0	0		2									
Ī	1984	Rep 5																									0		0	1		3									
	1984	Average	0		0	0	0	0	0	0	0	0			0	0	0		_	0	0		0				0.4	0	2.2	3.6	0	3		0					0		
	1985	Rep 1	0		3	7		0	4			2			4	14											11	18	41	28		0		0					0		Γ
П	1985	Rep 2	0		4	8		14	3	0	0	0			1	14											1	4	19	2		55		5					3		
	1985	Rep 3	1		10	16		32	6	5	4	0			11												33	15	104	167		36		1					12		
П	1985	Rep 4	0		1	2	1	12	0	0	0	0			0	2											1	0	25	0		29		0					0		Г
	1985	Rep 5	0		0	28		17	7	2	3	0			7	15											28	5	61	6		129		8					5		
Ĩ	1985	Average	0.2		3.6	12.2	0		4	2.2	2.4					14.2	0	\Box		0	0		0				14.8			40.6	0	49.8		2.8					4		
	1986	Rep 1	0		2			0	1	0		3				3					1						8	4	0	0		14							2		
	1986	Rep 2	1		1			1	1	0		3				1					1						3	0	0	1		12							0		
Г	1986	Rep 3	6		6			3	1	3		10				5					1						101	25	22	12		2							0		
	1986	Rep 4	4		27			2	4	3		1				8					3						77	17	35	6		4							4		
	1986	Rep 5	6		47			2	0	1		1				5					0						39	10	16	1		17							0		
	1966	Average	3.4		16.6	0	0		1.4	1.4	0	3.6			0	4.4	0	\Box		0	1.2		0				45.6		14.6	4	0	9.8		0					1.2		
	1987	Rep 1					0																																		
	1987	Rep 2					0																									_ 1									
	1987	Rep 3					0									-																									
		Rep 4					1																																		
	1987	Rep 5					0																											-							
	1987	Average	0		0	0	0.2	0	0	0	0	0			0	0	0			0	0		0				0	0	0	0	0	0		0					0		
		Rep 1			40					1		2				4											7			1		564		2					7		
	1989	Rep 2			15											5														1		252							3		
	1989	Rep 3			72											1											1					327							3		
	1989	Rep 4			100			1				2				1											6			5		654							6		
	1989	Rep 5			65				1							1	1										3			5		632							5		
	1989	Average	0		58.4	0	0	0.2			0	0.8			0	1.8	0.2			0	0		0				3.4	0	0	2.4	0	505.8		0.4					4.8		
		Rep 1	2		29			6	14			1				1							1							4									1		
		Rep 2			13			11	5			5					1			1			1				47			44		5							1		
		Rep 3			76			11	12			5											1				13			3		1		1					2		
	1993	Rep 4			78			5	11			1															3			2									2		
		Rep 5	-		35			19	14			5											1				13		1	4	1	21							1		
		Average	0.4		46.2	0	0	10.4	11.2	1.8	0	1.6			0	0.2	0.2			0.2	0		0.8				15.2	0	0.2	11.4	0.2			0.2					1.4		
	2006	Rep 1	1																													2		1					0		
	2006	Rep 2	-			-	-		-	1																						4		0					0		
	2006	Rep 3	-				-																									0		0					0		
	2006	Rep 4	-				-	-	-	1																						0		0					1		
	2006	Rep 5	-				-																									1		0					0		-
	2006	Average	0		0	0	1 0	0	1 0	0	1 0	0		0	0	0	0	1		0	0		0				0	0	0	0	0	1		0.2		6	0		0.2		4

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

																										das de										T							
	replicate	Neureclipsis sp	Polycentropus sp.	Psychomyra sp.	Dhuntanethia en	Anisoptera	Ophicacomphus sc	ionid	1.0	Conxidae sp.	Сайсопка sp	Cenocorixa sp.		Sigara sp. Trichoconixa so.		Dytiscidae (misc.) Colymbetes sp.	Hydroporus sp. Liodessus sp.	Oreodytes sp	Shortofarsus sp.	Dubinaphia sp	Optioservus sp	Gyrindae (misc.) Pyralidae (misc.)	Petrophila sp	Diptera	Athena sp.	Bezza Paponya	Cuicoides sp	Rhaphum sp	Empididae (misc.) Chelifera sp.	Hemerodromia sp.	Wedemannu sp.	Simulidae (misc.)	Simulium sp	Antocha sp.	Dicranota sp.		ripula sp.	Chironomidae	Chironomini	Tanytarsini	Diamesinae	Orthocladiinae	Prodiamesinae
ane	Iman I	-		-	-		_	_	_	-				-																													
	Rep 1	+	-	+		0	+	+	+	1		-	-	-	1	9				1					- 0				9 0					8				24	- 2	185			2
1983	Rep 3	+	-	+	1		+	+	+	0		-	+	++	+	9	-		-	++			-	-	- 2	-	1		1 4					2	_			39	0	152		1853	0
	Rep 4		_	+	1		+	+	+	0	\vdash	+	+	++-	++	9	+	\mapsto	-	++	-	-	-	\rightarrow	- 0	+	\vdash		6 0	-	-	-	_	93	-	-		25	0	508		3812	0
1983	Rep 5				1		-	_	+	0	1	-	+	++-	++	0	+	-	+	+	-	-	\vdash	+	1.0	+	++		8 0	-	-	-	-	2	-	-	-	18	0	84	-	380	0
1983	Average				0	2				0.2			-		++	2	-	\vdash	+	++		-	-	+	0	+	+		7 1	\vdash	-	-	-	21	-	+	-	21.6	0.4	32 192.2	-	92 1435.6	0
1984				0											\Box				\rightarrow	++			0	\vdash	10	1	+		2	+		-	-		+	+	+	11	22	7	41	1435.0	0
1984				1																\Box			0		0		\vdash		1					-	+	\rightarrow	+	16	4	3	10	190	-
	Rep 3	-	_	1	-	_	_																0		0				0							_		10	0	4	12	48	
	Rep 4	+	-	0	+	+	+	-	-	-			-	\vdash	1								0		0				0									6	6	27	0	136	
	Rep 5 Average	+	-	0.4	+	+	+	+	-			-	-	-	1	-	-		-	-			1		1			_	2									6	39	105	4	235	
	Rep 1	+	-	1	+	+	+	+	+	0	0	- 0	0	+	0	0	-	\rightarrow			0	-	0.2	0	0 0	-	1	-	1 0	0	0	0		0	0			9.8	14.2	29.2	13.4		
1985	Rep 2			5	+	-	+	+	+	0	\vdash	+	+	+-	131	0	-	-	_	++	-	-	-	-	-	+	\mapsto	-	0	0	5	1	-	18	-			81	35	465		378	_
1985	Rep 3			1 4	1		+	+	+	0		+	+	++	101	2	-	-		+	-	-	-	+	+	+	+-+	+	-	1	2	0	-	33	-			28	28	153	-	484	
1985	Rep 4			0						1	\Box	-	+		0	2	-	\rightarrow	10	1		-		\vdash	+	+	+	+	+	0	8	0	-	36	+	-		136	60	625		977 345	-
	Rep 5			0						0					1	0				1					+	1	+	-	4	0	_	0	-	27	+	-		78	69	431	-	899	
1985	Average			2						0.2	0	0	0		0	1			1		0		0	0	0 0		\vdash		_		5.4			33	0				39.4	381.2	0	616.6	
1986		-	_	0	_	_															1				0				1 1	1	6	0			0			60	148	104		1492	_
1986	Rep 2	+	-	1	+	-	+	-	-			-	-								1				0				0 3	0	3	0			0			32	65	57		1092	
	Rep 4	+	-	0	+	+	+	+-	-		-	-	+	-	1	+			_	11	0				0				0 1	0	4	8			1			1	525	205		537	
	Rep 5	-	-		+	+	+-	+	-		-	+	+	-	++	++	-	-	-	+	0	_			11	-			3	0	2	1			0		_	27	326	362		902	
	Average			0.4	+	+	+	+	-	0	0	0	0	++-	0		+	-	-	1	0.4	+	-		0 0	+	\vdash		1 1	0	2	3	-		0	-		40	331	250	-	1435	
1987	Rep 1			1			+	+		7	8	3		++-	1	4	+-	-	-	++	0.4	-	0	1	0 0	+	++		0	0	3.4	2.4	-	0	0.2	+	0	32	279	195.6	0	1091.6	_
1987	Rep 2									5	4	0			++	++	+		+	+	-	$\overline{}$		3	+	+-	+-+	+	0	\vdash	-	-	\rightarrow	+	+	+	+	-	_	1	-	6	_
	Rep 3									4	0	0	1			11			1	++				2	+	+	+	+	1	\vdash	-	+	-	+	+	+	+	-		0		6	-
	Rep 4									12	1	7	0							\Box				0					0	\Box		1		1	\rightarrow	+		1		0		3	-
	Rep 5	-		1	+	-	-	-		7	0	2	0											0					0											0		9	_
	Average Rep 1	-	-	0	+	+	+	-	-	7	2.6	2.4	0.4		0	0			0		0		0	1	0 0				0	0	0	0		0	0		0	0	0	0.2	0	4.8	
	Rep 2	+		+	+	+	+	+-	-	-	-	-	+	-	++	++	-		-	1	-								4		2	4		11				60	34	217		3092	
	Rep 3			+	+	+	+	+	+	-	-	+	+	-	+	++	+	-	+	++	-	-	_	-	+	-	\vdash	-	-	-		-	-	-	-	-		64		7		1036	_
	Rep 4			1	+	+	+	+			-	+	+	++-	+	++	+	-	+	+	-	+	-	\vdash	+	+	+	+	- 3	-	2	4	-	5	+	+		48	69	92	40	1608	_
1989	Rep 5												1		11	11	+	-	+	+	1	-		-	+	1	++	+	6	=	4	-		14	1	-	+	32	8 24	219 362	8 26	1491 3354	-
1969	Average			0						0.2	0	0	0		0	0			10	1	0.4		0	0	0 0	1	1	1		0	1.8	1.6		7 1	0.2	1	0 4	49.6	27			2116.2	
1993																									1				4		1			2		1	-	1	22	99	1	32	
	Rep 2	-		-	-	1	-	-								1			12										16		21			62				17	78	340		723	
	Rep 3	-	-	+	+	+	-	-				-	-						2						2				9		В			20				3	120	206	2	309	
	Rep 4 Rep 5	-	-	-	+	+	+	+-	-	1	-	-	-	-	-	-	-		1						11				1	2	2			5				3	86	83	1	143	
1993	Average			0	+	+	+	+	-	0.2	0	-	0	-	10		-	-	1	++	-		-		-	-	-	-	19		12			45		-		4	85	384		479	
2006	Rep 1			1	+	+	+	+	-	0.2	31	-	0	-	0	0	1.7	-	1	++	0	-	0	0	1 0	-	1	1	10	0	8.8	0	_	27				5.6	78.2			337.2	
2006					1	1	1	1			12	-	-	3	++	++	6	+	+	++	0	-		-	+	4	+	+	+	+	-	+	-		0		1	-	20	25	5	5	_
2006	Rep 3				T		1				1			1	1	+	0	-	+	++	0	+		-	-	0	+	+	+	-	-	-	-		_		-	-	9	0	0	20	-
2006	Rep 4						1				27			0	1	1	4	-	+	++	0	+		-	+	0	+	+	-	-	-	+	-		1		-	-	12	12	9	8	-
2006											0		T	2		1	-0		1	11	0				-	10	1	1	1	-	-	+	-	-	0	+	-	-	1	4	11	53	-
2006	Average			0	0) [0	14	10	0	2	0	0	5		0		0.4	-		-	-	0.8	1	1	0	0	0	0	-	0 1			4	-	9.4	8.4	5.2		0

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) Stier's Ranch

	replicate	Hydra sp.	TURBELLARIA	Microturbellana	Dugesia figrina	Polycels coronata	NEMATODA	NEMERTEA	TARDIGRADA	OLIGOCHAETA	Un - identified Oligochanta	Enchytraeidae	Lumbricidae	Lumbriculidae	Nachdae	Tubeloutae	HIRUDINEA	Erpobdelidae (msc.)	Dura sp.	Espuédella sp.	Nephelopsis obscura	Afroneobdolia sp.	Glossiphenidae (misc.)	Helothdella stagmalis	Glossphona sp.	Placobdella omata	Peccolidae (msc.)	GASTROPODA	Cytrinaeidae (misc.)	Fossara sp.	Lymnaea sp.	Ferrissia sp.	Ancylidae (misc.)	Planorbidae (misc.)	Gyraulus sp.	Helisoma sp.	Physidae (misc.)	Physa sp.	PELECYPODA
Rench		-						-	\sqcup																														
1985 1985		2	-				11	-	\vdash				0	1	48	40	0		3					0	0			1						0	1			0	
		3		-	_		19	-	\vdash				1	1	184	159	0		13					0				0						0	16			0	
1985		6			_		37	-	\vdash				0	0	152	767	0		11					1	.0			0						0	9			0	
1985		79.	-	-			2	-	\Box				0	0	121	33	0		3					-0	1			3						0	9			1	
1985		20.8	-			-	24	-	-				2	0	175	391	2		2					0	0			0						1	5			0	
1989	Average	20.6	0		\vdash	-	10.6	- Commissions	0			0	0.6	0.4	136	278	0.4		6.4	0	0			0.2	0.4			0.8			0			0.2	8			0.2	
1989		-	-	-	_	-	88	1 1	-				3		2440	2400		11			1													2					
1989		-	-	-	_		167	1	120			-	2		1901	968		18																7					
1989		8	-	-	-	-	77	1	\vdash	_		24	10		904	427		25									_	_		_									_
	Rep 5	- 0	_	-	-	-	30	-	\vdash		_	1	1		539	463		4								_	_			_	_			7				\Box	
	Average	2	0		-	-	80.6	0.0	-		_	-	-	-	560	1696	_	3	-		3				1	_	_	_		_	-			9					
1993		5	0	-	-	-	27	0.0	-	-	-	14	3.2	0	1268.8		0		0	0	0.8	0		0	0.2	-		0		_	0	-	-	5	0			0	_
1993		9	-	-	\vdash	-	18	-	\vdash				5	-	785	1118	_	7	-	-	_	_	-	_	_	_		45	_	_	-	-		35	\vdash	\vdash		3	_
1993		8	1			-	41	+	\vdash	-	-	3	2	-	786	886	-	13	-	-	_	_		_	-	-		28		-	-	-		39	\vdash	\vdash	-	1	-
1993		7	5	-			23	+	+	-		9	10	-	1072	1507	-	-	-	-	-		-	-	-	-	-	26	-	-	-	-		43		\vdash		3	
1993		8	2				40	-	\vdash	-		35	2	1	608	1562 1358	_	9	-	1		-	-	-	-	-	-	13	-	-	1	-		62	\vdash		-	1	-
	Average	7.4	1				29.8	0	0	-		13	4.2	0.2	874	1286.2	0	1	-	0.0	-	-	-	-	-	-		27.0	-	-	0.0	-		18	-		$\overline{}$	2	_
2006		0	-	0	1		359	1	1			1	2	22	131	216	0	6	0	0.2	0	-	-	0	0	-	-14	0.13	-	-	0.2	-	-	39.4	0			181	-
2006		0		20	4		1170		1			20	2		60	1250	-	0	0		-	-	-	-	0	-	+	-	-	8	-	-	-	-	0		_	330	-
2006		10		40	0		1441	1	\vdash			31	8		70	1202	-	0	0	1	_		-	-	~	-	-		\rightarrow	-	-	-	-	-	4		-	418	-
	Rep 4	0		0	8		424					160	1		40	914	-	0	1	-	-	-	-	-	-	-	+	-	-	0	-	-	-	-	-			904	-
2006		40		-0	0		5998		\vdash			0	0		40	1447		0	0	+	-	-	-	-	0	+	+	-	-	허	-	-	-		0	-		340	-
	Average	10		16		-	2112	-	0	-	-	46	3	-	80	1256	_			0.6	_		_	0		_	_	-		0	-	0	-	_	0.6	_	-	501	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

Site		replicate	Pisidium sp.	Sphaenum sp.	Sphaeriidae (misc.)	Hydracarina	Oribatei	C HUSTACEA	OSTRACODA	CLADOCERA	COPEPODA	AMPHIPODA	Gammarus lacustris	Hyalella azteca	Orconectes virilis	Collembolla	Ephemeroptera	Baetidae (misc.)	Baens sp.	Dactylobaetis sp	Caenis sp.	Ephemerellidae (misc.)	Ephemerella sp.	Drunella sp	Serratelia sp.	Ephemera sp.	Heptageniidae (misc.)	Epeorus sp.	Heptagenia sp	Rhithrogena sp.	Stenonema sp	Cinygma sp.	Leptophlebiidae (misc.)	Leptophiebia sp.	Paraleptophilebia sp	Isonychia sp	Ephoron sp.	Siplonundae misc.	Ameletus sp	Tricorythodes s.p.
Stier's	Ranch		-			-	-		_																														_	
	1985		4	1		10	-	-	0	0	1	\vdash		2	-		0	35	99	-	-	_	7	-				0	2	0	0	-	-	-	2				-	4
	1985		4	0		2	+	-	7	0	24	\vdash		2	-		1	15	24	-	-		9	-	-	-	_	0	6	1	0	-	-	-	6	-	-		-	4
	1985 1985		8	0	-	35	\rightarrow	_	6	0	40	\vdash		2	-	-	0	18	27	-	-	_	4	-	-			2	1	0	1	-	-	-	9	-	_	\vdash	\rightarrow	37
	1985		3	0	-	4	+	_	13	0	232	\vdash		3	-		0	164	163	-	-		89	-	-	-		0	2	0	0	-	-	-	0	-		\vdash	-	37
		Average	3.8		0	11	\mapsto			0.2	122.8	\vdash	0	2	-		0.2	6 47.6	73.2	-	-	0	22.8	-	0	-	0	0.4	2.2	1	0.4	-	0	0		-	_	\vdash	-	11.2
	1989		3.0	0.2	45	168	+++		330	7	156	\vdash	0	2	+	-	0.2	208	13.2	-	-	U	201	-	-		U	0.4	10	0.2	1	-	0	-	23		_		-	14
	1989		+		25	63	++		122	4	380				+	-	\vdash	119		-	+		117	-	-	-		1	6	1	-	-		-	1			\vdash	-	13
	1989		+		28	244	\rightarrow		65	-	212	\vdash		_	-	-		196		-	+-		880	-				-	7	2		-	-	1	96				-	16
	1989				21	207	+		215	13	139	\vdash			+	\vdash		202		-	+		302	_		_			13	-	_	1	-		27				-	28
	1989				43	116	\vdash		488		120	\vdash						68		_			109	_					4			1			4				-	10
		Average	0	0	32.4	160	\vdash		244	4	201.4	\vdash	0	0		0	0	158.6	0	-		0	321.8		0	-	0	0.2	8	0.6	0.2	1	0	0	30.2					16.2
	1993				22	56	\vdash		120	2	44			1		1	1	444	6	_		78	-		413		4	-	9	1			54		39		-			24
	1993				26	40			95	5	25						2	391	5			30			332				14	2			10		17					7
	1993	Rep 3	9		16	100		- 2	233	1	176		3				1	708	12			134			406		4		9	4			29		88					8
	1993		5		56	105			111		121				I		1	920	9			47			1050				7	7			15	1	59					5
	1993				23	70			79		74							489	6			30	3		495		1		12	9			8		73					4
		Average	2.8	0	28.6	74.2			27.6	1.5	88		0.6	0.2		0.2	1	590.4	7.6			63.8	0.6		539.2		1.8	0	10.2	4.6	0		23.2	0.2	55.2					9.6
	2006		0			100	0		90		40		0	0					107		0		163					71	12	1	0			0	0					
	2006		0			40	0		60		260		1	15					167		0		70					0	1	1	0			0	4					
		Rep 3	0			80	0		100		330		0	0					220		0		126					46	30	0	0			0	8					
		Rep 4	20			40	0		280		120		4	1					396		0		390					60	1	0	0			0	16					
		Rep 5	0			40	0		240		80		0	0					508		0		211					0	0	0	0			0					_	
	2006	Average	4	0		68	0	1	166		166.0		1	6	0	0			313	1	0		206			0		35	9	0.6	0			0	9					0

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

T							1		_	_	_						1																									_
					msc.)							-									d	(misc.)			(misc.)		(misc.)		ds a		sc.)		sc.)							isc.)		(noim) or
	year	replicate	Plecoptera	Capnidae (misc	Chloroperlidae (r	Swellsa sp	Suwallia sp.	Perildae (misc.)	Claassema sp	Hesperoperta sp.	Feriesta sp	Perfodidae (mac	Cultus sp	Isogenoides sp	Isoperla sp.	Skwala sp	Pteronarcys sp	Taenionema sp.	Oemopteryx sp	Trichoptera	Brachycentrus sp	Glossosomatidae	Anagapetus sp.	Glossosoma sp	Helicopsychidae	Helicopsyche sp	Hydropsychidae	Arctopsyche sp	Cheumatopsyche	Hydropsyche sp	Hydroptilidae (mi	Hydroptila sp	Leptocendae (mi	Ceraclea sp.	Mystacides sp.	Nectopsyche sp	Oecetis sp.	Triaenodes sp.	Lepidostoma sp.	Limnephilidae (m	Phryganea sp.	
	Ranch																																									
	1985														0					0	0						29		2	148		1		0			0		1			
	1985														1					0	1						32		21	297		0		1			0		5			
	1985														0					0	0						89		3	215		0		1			0		2			
	1985														5					1	0						236		12	392		0		0			2		32			
	1985														0					0	2						6		1	78		0		1			0		0			
		Average						0				0			1.2					0.2	0.6		0				78.4		7.8	226		0.2		0.6			0.4		8			
	1989																										200			31				5			1		39			
	1989											1															100			10							1		35			
	1989											3															204		12	76				13					120			
	1989									I																	106		7	23							8		59			
	1989																										45			4				7			1		17			
	1989	Average						0				0.8			0					0	0		0				131		3.8	28.8		0		5			2.2		54			
	1993	Rep 1						3				13			3					1	2						62		7	485									88			
	1993	Rep 2						1				3			4					6	2		1				100		16	577				2					40			
	1993	Rep 3						1				22			3						8						258		33	1132							3		171			
	1993							2				10								1	1						157		25	971									79			
	1993	Rep 5					T					12											1				175		28	1086									56			
		Average						1.4				12	1		2					1.6	2.6		0.4				150.4		21.8	850.2		0		0.4			0.6		86.8			
	2006	Rep 1							0		1				0					0	0								65	2269				5			0		1			
	200€	Rep 2							0						0					0	0								4	547				65			2		4			
	2006								3						0					0	5								40	2199				60			1		1			
	2006	Rep 4							1		T				0					0	16								150	2826				10			- 5		9			
	2006	Rep 5							0						1					0	1								7	759				0			0		0			
		Average							0.8	T	T		10	0	0.2	0		0			4					0			54	1829		0		41		0	2		4			

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

year	replicate	Neureclipsis sp.	Polycentropus sp.	Psychomyia sp.	Rhyacophilia sp.	Anisoptera	ds snydwoboiydo	Coenagrionidae sp.	Hemiptera	Conxidae sp.	Callicorixa sp	Cenocorixa sp.		Palmacorixa sp	Trichocorixa sp.		Dytiscidae (misc.) Colymbetes sp			Stictotarsus sp	Elmidae (misc.)	Dubiraphia sp.	Optioservus sp.	Ayrınıdae (misc.) Pyralidae (misc.)	Petrophila sp	Diptera	Athenx sp. Ceratopogonidae sp.	Bezzia / Palpomyia gp spp	Culicoides sp.	Rhaphium sp.	Emplididae (misc.) Chelitera sp.	Hemerodromia sp	Wiedemannia sp	Simulidae (misc.)	Simulium sp.	Antocha sp.	Dicranota sp.	Hexatorna sp	Tipula sp.	Chironomidae	Chironomini	Tanytarsini	Diamesinae	Orthocladiinae	Prodiamesinae	
Ranc												\neg	1	\perp		П	\perp	П	\perp	I	\Box						\perp				\perp															Ŧ
	Rep 1	-		0			_				-	-	-	-	-	0	0	\vdash	-	-	1	-	\rightarrow	\perp		-	-	-	\vdash	_	-	-		40				_	_		33	0	6	344		+
	Rep 2			2							-	-	-	-	-	11	2	\vdash	-	-	2	-	_	\perp			-	-	1	-	-		36					_	-		146	16	12	233	+-	+
	Rep 3	-		0							-	-	-	-	-	0	0	\vdash	-	-	0	-	-	\perp			_	-	\vdash	-	-			21				-	_		58	16	0	120	+	4
	Rep 4			41								-	_	-		0	1	\sqcup	_	_	0						_						51	_					_		42	6	16	584	+	4
	Rep 5			2												0	0				1													4				_			36	4	1	214	_	4
	Average			9					0	0						0	1				1		0			0	0 0				0		24.6			0				0	63	8.4	7	299	_	1
	Rep 1			4																			9											69						17	1396	124	88	1364		1
	Rep 2			28						3													1			1								11						17	1586	104	72	2445		1
	Rep 3			68																	2	5	52								2			49						36	2048	56	8	984		7
	Rep 4			14												П		П			1	1	12											97						4	1067	59	14	397		1
	Rep 5																			T														115							748	28	32	1068		1
1989	Average			22.8					0	0.6						0	0	\Box			1	10	4.8			0	0 0				0		0	68		0				14.8	1369	74.2	42.8	1251.6	5	I
1993	Rep 1			36					1	4								П			15							T			3			2		1				25	1500	34	4	949		1
1993	Rep 2			43																	21						1				1			17		1				30	669	28	2	726		1
1993	Rep 3			23													1	П			18													36						43	1508	82	8	1117		1
1993	Rep 4			49																	33						1							17						21	1266	50		1076	T	1
1993	Rep 5			15																	17													31						21	1448	21		702		1
1993	Average			33.2					0.2	0.8						0	0				21		0			0	0 0				1		0	21		0.4				28	1278.2	43	2.8	914		1
2006	Rep 1	1		13					0		6	0		0		0			0 0	0		8	76									9			53						1127	71	1	1026		-
	Rep 2	5		4					0		5	1		1		0			8	0 0		4	09									4			1952						1542	229	259	1611		1
	Rep 3	1		2					0		0	0		3	3	0			1 (0		12	232									13			1900						1826	255	227	2672		1
	Rep 4	3		0					0		650	0		0		0			0	4		7	23									8			456						1260	98	321	1372		Ī
2006		0		0					0		18	0		1	1	0			0 1	0 0		1	05									0			2560						1625	50	160	430		Ī
	Average	3	0	- 5			0	0		0	137	0.4	-	-	10	1	10	1	2 0	210		0 7	51	-	0	-	0 0	0	0	0	10	8			1775	10	0	0	0		1784.4	186	246	1744.4	4 0	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006)

Carseland

				ARIA	llaria	grina	oronata	AC.	A	ADA	AETA	identified Oligochaeta	dae	91	Jae			A	fae (misc.)		.ds	iis obscura	ella sp.	Glossiphonidae (misc.)	stagnalis	na sp.	a ornata	ie (misc.)	AOOA	ae (misc.)	sb.	sp.	(misc.)	ie (misc.)	sb.	sp.	(misc.)		ODA
e	year	replicate	Hydra sp.	TURBELLARIA	Microturbellaria	Dugesia tign	Polycelis coronala	NEMATODA	NEMERTEA	TARDIGRADA	OLIGOCHAETA	Jn - identif	Enchytraeidae	umbricidae	umbriculidae	Naididae	Tubificidae	HIRUDINEA	Erpobdellidae	Dina sp.	Erpobdella	Nephelopsis	Mooreobdella	Glossipho	Helobdella stagnalis	Glossiphonia	Placobdella omafa	Piscicolidae (misc.)	GASIMOPODA			Lymnaea Fernssia s	Ancylidae	Planorbidae	Gyraulus	Helisoma	Physidae (misc.	Physa sp.	PELECYPODA
rei	eland																																						
		Rep 1	33					25					5	4		809	758		9	0			2							0		8		52			7		
	1983	Rep 2	30					269	1				0	0		1044	223		1	0			0	- ;						0		13		82			3		
	1983	Rep 3	28					188					20	0		1756	1680		14	0			0							0		9		54			20		
	1983		86					252	1				60	0		1192	1455		26	0			0							6		4		290			21		
	1983	Rep 5	102					316					160	0		1648	172		3	0			0							0		2		68			13		
	1983		55.8	0				210				0	49	0.8	0	1289.8	857.6	0	10.6	0	0	0	0.4	0	0	0		0	0	1.2		7.2		109.2	0		12.8	0	
	1984	Rep 1	128					209					0	0		755	826		1	0				0				1		11		11		115			5		
	1984	Rep 2	69					70					13	2		688	283		2	0				1				0		26		44		55			10		
	1984	Rep 3	40					200					0	2		791	291		5	0				1				0		22		31		70			0		
	1984	Rep 4	128					110					0	3		940	183		4	0				4				0		39		26		61			2		
	1984		87					292					13	5		737	75		4	0				1				0		30		10		45			5		
	1984		90.4	0				176.2				0	5.2	2.4	0	782.2	331.6	0	3.2	0	0	0	0	1.4	0	0	(0.2	0 2	5.6		24.4	-	69.2	0		4.4	0	
	1985	Rep 1	2	1				1596						43		360	1341			6					9	2						0			0				
	1985	Rep 2	0	0				1888						91		980	1074			6					0	0						0			0				
	1985	Rep 3	0	0				1304						36		410	433			5					0	2						2			1				
	1985	Rep 4	0	0				1396						141		552	1081			7					0	5						0			0				
	1985	Rep 5	0	0				325						15		153	1698			24					0	3						14			0				
	1985	Average	0.4	0.2				1301.8				0	0	65.2	0	491	1125.4	0	0	9.6	0	0	0	0	0.2	2.4		0	0	0		3.2		0	0.2		0	0	
	1986		2					816					508	124		322	74		2	0	1	0			1	0						7							
	1986		2					570					35	24		275	130		0	0	0	0			0	2						2							
	1986	Rep 3	1					840					254	64		80	87		1	0	3	2			0	3						0							
	1986	Rep 4	1					339					434	81		666	99		0	0	0	3			0	0						3							
	1986		0					423					75	5		178	76		1	0	0	1			0	0						0							
	1986	Average	1.2	0				597.6				0	261.2	59.6	0	304.2	93.2	0	0.8	0	0.8	1.2	0	0	0.2	1		0	0	0		2.4		0	0		0	0	
	1987	Rep 1	10					70				54			0	287	135	2		0						1						11					0		
	1987	Rep 2	5					13				52			0	319	139	4		1						1						18					0		
		Rep 3	15					16				50			1	319	465	6		0						0						7	_				0		
	1987		10					18				53			1	596	206	2		0						0						0					0		
	1987		12					75				106			3	680	316	1		1						0						7	_				1		
	1987	Average	10.4	0				38.4				63	0	0	1	440.2	252.2	3	0		0	0	0	0	0	0.4			0	0		8.6		0	0		0.2	0	-
	1993	Rep 1	7	6				120					30	8		222	1627		3	0		1							3					1			-	-	-
		Rep 2	2	10				176					52	11	1	383	860		7	0	2	2								3		-	-	-			-	2	-
		Rep 3	2	10				228					38	3		253	1949		2	0	2	1							1	2	1	-		2				1	-
	1993	Rep 4	2	7				221					63	9		347	798		4	0		2											-	-			-	-	-
	1993		5	20				298					42	13	4	527	981		3	0	3								3	3	-	-	-	1	-	-	5	1	-
	1993	Average	3.6	10.6				208.6				0	45	8.8	1	346.4	1243	0	3.8	0		1.2	0	0	0	0		0 '	.4	1.6		0	-	0.8	0		1	0.8	+-
	2006		60		0			849					20	0		1826	94				1	0									0		1	-	0	-	_	62	-
	2006		20		0			310					0	0		883	28				0	-1								\rightarrow	0	-	1	-	0	-		4	-
	2006	Rep 3	140		0	0		516					0	0		1042	40				0	0								-	0		-	-	0			21	-
	2006	Rep 4	80		20			183					1	0		1849	51				1	0								\rightarrow	0		-	-	0			1	-
	2006	Rep 5	100		40			88					0	0		2090	28				0	0									0		-		1			0	-
	2006	Average	80	1	12	0		389		0			4	0		1538	48		0	0	0.4	0.2			0	0					0	0			0.2	1		18	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

																					0											77						
			sp.	(misc.)			A	A	4		-	acustris	ca	situis		tera	sc.)		ds s		dae (misc.)	ds			ъ.	e (misc.)		sp.	.ds	sp.		dae (misc.)	ds	ebia sp.			misc.	
		ds mnip	mnıı	Sphaeriidae	Hydracarina	Oribatei	CRUSTACEA	OSTRACODA	CLADOCERA	COPEPODA	AMPHIPODA	nmarus	lella azte	Orconectes	Collembolla	Ephemeroptera	Baetidae (misc	is sp.	Dactylobaetis	nis sp.	emerelle	emerella	Drunella sp.	Serratella sp	emera sp	feptageniidae	Epeorus sp.	leptagenia	Rhithrogena	Stenonema	Cinygma sp.	eptophlebiidae	Leptophlebia	Paraleptophlebia	sonychia sp	Ephoron sp.	Siplonuridae	eletus sp.
year	replicate	Pisie	Sphae	hdo	tyd	1	E	S	2	Ö	ξ	Gan	Нуа	00	0	lg.	Зае	Baetis	Jac	Sae	Eph	Eph	Drun C	Seri	Ephei	deb	ed	tep	3hit	Ster	Siny	eb	ep.	Par	son	-bh	ldis	Ame
land	Trephodic	-		0)	-	1	1			-	1			1		-		-	-	-	-	-	7	- 47	7	-	9	-	-		Ŭ		~			~		
	Rep 1	23						461		1			0					18				25				0			0		0			2				
1983	Rep 2	17						20		2			0					63				22				1			1		9			0				
1983		34						112		0			2					30				30				0			2		0			0				
1983	Rep 4	26						132		16			2					2				0				0			0		14			0				
1983	Rep 5	11						80		20			0					74				20				3			1		14			0				
1983	Average	22.2		0	0			161	0	7.8			8.0		0	0	0	37.4		0	0	19.4		0	0	0.8	0	0	0.8	0	7.4	0		0.4				
1984	Rep 1	40			27			189	386	378			46					112				63				0		1	0	0				0				
1984	Rep 2	17			82			54	26	85			2					216				106				0		10	2	2				0				
1984	Rep 3	13			82			81	0	36			3					174				97				0		0	0	0				2				
1984	Rep 4	32			122			112	121	155			1					119				161				2		2	0	5				0				
1984	Rep 5	28			81			40	27	323			3					318				55				0		10	2	10				0				
1984	Average	26		0	78.8				112	195.4			11		0	0	0	187.8			0	96.4		0	0	0.4		4.6	0.8	3.4	0	0		0.4				
1985	Rep 1	0			0			5		14			6				52	242		1		6				1	4	12	1	0				0				
1985	Rep 2	3			0			7		0			2				4	16		0		0				1	0	2	1	3				1				
1985	Rep 3	9			7			6		19			4				117	390		0		79				0	0	1_	1	14				7				
1985	Rep 4	16			1			13		12			0				8	24		0		4				0	0	1	0	0				0				
1985	Rep 5	5			4			6		7			6				8	291		0		33				1	6	12	0	5				2				
1985	Average	6.6		0	2.4			7.4	0	10.4			3.6		0	0	37.8	192.6		0.2	0	24.4		0	0	0.6	2	5.6	0.6	4.4	0	0		2				
1986	Rep 1			4	12			2		1						4	230	57				565			0	0		6	8	5		4		0				
1986	Rep 2			2	23			5		7						0	555	92				1376			0	7		23	0	1		21		2				
1986	Rep 3			1	8			1		1						0	88	7				413			1	1		0	0	5		0		0				
1986	Rep 4			4	7			0		2						0	177	36				615			0	4		0	8	0		0		4				
1986	Rep 5			4	9			1		2						0	193	31				340			0	1		1	0	1		0		3				
1986	Average	0		3	11.8			1.8	0	2.6			0		0	0.8	248.6	44.6		0	0	661.8		0	0.2	2.6	0	6	3.2	2.4	0	5		1.8				
1987	Rep 1	0			14			0		26							229	18				155				2	0	1	7	3				6				
1987	Rep 2	2			2			1		16							271	18				149				1	2	5	9	2				9				
1987	Rep 3	0			0			0		4							399	13				63				3	0	7	20	4				8				
1987	Rep 4	0			10			0		6							1079	3				146				0	0	3	2	3				1				
1987	Rep 5	0			10			0		26							730	12				149				0	0	3	6	5				0				
1987	Average	0.4		0	7.2			0.2	0	15.6			0		0	0	541.6	12.8		0	0	132.4		0	0	1.2	0.4	3.8		3.4	0	0		4.8				
1993	Rep 1			10	20			14		3					1	2	59	0			16			89		34		6	32			4		11				
1993	Rep 2			9	28			31		6							71	4			20			183		19		4	57					26				-
1993				10	54			14		1						1	116	8			57	3		221		41	4	5	74			1		18				-
1993	Rep 4			4	28			7		1							128	3			15			109		16			90			2		51				
1993	Rep 5			6	79			67		9					1		52	2			22			176		26		3	64			4		28				-
1993		0		7.8	41.8			26.6		4			0		0.4	0.6	85.2	3.4		0	26	0.6		155.6	0	27.2		3.6	63.4		0	2.2		26.8				
2006	Rep 1	0			20			40	100	180		0	1					65		0		13					0	0	1	0				2				
2006	Rep 2	0			0			40	0	50		0	0					134		1		13					0	0	2	0				0				-
2006	Rep 3	1			20			0	0	200		0	0					772		0		25					0	26	17	1				5				_
2006	Rep 4	1			20			0	40	120		0	0					121		0		4					0	3	8	1				0				
2006	Rep 5	0			40			0	20	160		0	0					104		0		3					0	4	7	0				3				
2006	Average	0.4	0		20	0		16	32	142.0		0	0.2	0	0			239		0.2		12			0		0	7	7	0.4			0	2				

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

					NSC 1																	(mesc.)			(misc.)	İ	(misc.)		ds .		36		(25)							usc.)		
			tera	ae (misc.)	erlidae im	.ds	ds r		ds and	operfit so	ds	Sae (misc	ds	ds sapi	ds sb	ds	ds skan	де вше	ds x/uu	olera	gs surfree	containdae	etus sp.	ds muos	sychidae	syche sp	sychidae	ds ayah	atopsyche	syche sp	thidae (m	ds sp	eridae (mr	ds en	ds sap	ds aupris	ds s	ds sepo	ds amots	m) epppy	On koo	ried by
-	vear	replicate	Jecop	aphiid	Chiorog	Swertsa	Sumall	ortidae	Chalssa	- insper	Periosta	Perlode	Cultus	sogen	sopersa	Sanala	heroru	Laemor	Demop	richo	Brachy	Slossoe	Arragas	Glosso	Helicop	Helicop	tydrop	Avctops	Cheum	Hydrop	Hydrop	Hydrop	Ceptor	Cerack	Mystac	Nectop	Oecen	Traent	Lepida J	Limnes	Director	State of
_	and					-	1	1	1	+	-	1	1			-		-		-					-																	
-	the state of the s	Rép. 1						0	1			1								0	0					258	2		1		27								1	7		
	1983				-	-	1	1 2	+	+	-	1						-	-	1	2		-		1	670	125		8		37								2	0		
	1983		-				+	1	+	+	_	1				_		_	_	0	0		-			777	128		37		55								.5	0		
		Rep 4			-		+-	0	+	+	+	1	-			-		-	-	0	0		-	-	_	104	7		0		55 200								0	0		
		Rep 5	1	-	1054000	-	+	1	-	-	+	1	-		-	to the same of		-	-	0	1		-	-	-	235	BO		1.4	-	74	-							2	0		
		Average	0	0	0		1	1.4	-	1		0	0	0	0			-		0.2	0.6	0	0	0		408.8	68.4		12		78.6	0	0	0			0		2	1.4	10	0
		Rep.1			-		1	1	0		1	0	-			-				2						51	8		11			32		7			14		36		1	
		Rep 2							1			0								4						445	129		259			313		9			9		47		- 5	0
	1984	Rep 3					1	1	0	1	1	11						-	ainean an Aire	0	-		1		1	881	206		245			360		16			13		32		0	
-	1984	Rep 4					1	1	0		1	1							_	6						359	45		204			377		7			10		53		0	
-	1984	Rep 5						1	0			1.2								4						517	243		275			250		4.7			4		24		0	ä
		Average	0	0	0		1	0	0.2	2	1	0.8	0	0	0						0	0	0	0		450.6	126.2		198.8		0	266.4	0	17.2			10		38.4	0	0	3
		Rep 1	1	-	-		+	+	1	1	+	1	-	-	3				-	-	0					11	6		-4			17		29			0		11			Ξ
		Rep 2					1	1	1	1	+	1			1						0					11	5		25			1		8			0		19			
-	1985	Rep 3					1	1	1		1				3						1				1	84	118		79			63		17			1		60			
	1985	Rep 4					1	1	1			1			3					1	- 0					10	1		-0			16		13			3		14			Ξ
		Rep 5					1	1	1	1	1	1			5				-	1	. 2					131	155		276			57		46			3		54			
		Average	0	0	0			0	0			10	0	0	2.8					0	0.6	0	0	0		49.4	57		76.8		0	30.8	0	21.8			1.4		31.6	0	10	0
-	1986	Rep 1	1				1	0	1			B		0						0	0					317	786		174			Ą		0					0			
		Rep 2	0				1	0	1 2			11		1						1	3					910	808		310			0		13					16			
		Rep 3	0					0	0			0		0						2	4				1	390	185		75			4		0					0			
		Rep.4	0					1	1			1 5		3					1	0	-2					361	576		199			8		4					4			
		Rep 5	0				+	3	0			1 1		-0.						0	0				-	1487	546		280			0		1					4			
		Average	0.2	0	0	-	1	0.8			1	-	0	-	0				-	0.6	1.8	0	0	0	7	693	580.2		207.6		0	3.2	0	3.5			0		4.8	0	15	ō
H	1987	Rep 1	-	-	-	-	1	1	1		+-	1	10	-		-		-			-	0		2	-	1110	16		88										0			
		Rep 2					1	1	1	-	-	1	13			-				-	-	3		0		800	18	-	14										2			
1	1987	Rep 3					1	1	12				1 2							1		0	1	2		734	0		32										0			
Г	1987	Rep 4					1	1	0			1	13									0		3		1436	20		44										0			
	1987				-		1	1	1 6	-	-	1	0									.0		0	-	480	34		24										6			
		Average	0	0	0	1	1	0	2			0	1.5	0	0					0	0	0.4	0	1.4		912	17.6		40.4		0	0	0	0			0		1.6	0	1	
	1993	Rep 1		1	1		1	15		1	-	14	1							5			3		1	220	126		5				3				3		27			
		Rep 2						37				17								15						317	114		3					11					68			1
		Rep 3			4	1		31			1	21		1	1				1				2			566	331		3										56			1
		Rep 4		1	4	Î		43			1	119							1	40 I			1	1		510	345		8										52			
	1993	Rep 5			-2			34				33		1						4						370	194		1					12			-3		21		1	1
		Average	0	0.4	2.2	1	1	32		5		20.8	0	0.4	0.2					12.8	0	0	1.2	0		396.6	222		4		0	0	0.6	4.6			1.4		44.8	0	11	0
		Rep 1							0				1	0		0		-		1	1					1			2	99				13			20		3			
-		Rep 2					1		0					0	5	0					1					0			1	704				0			3		1		1	
-		Rep 3						1	3					1	10	0				Ì	T					1			12	1708				5			3		0			
-	2006	Rep 4					1		1		Ť		Ì	0	0	0			1	1	1					0			1	113				23			2		()			
-		Rep 5					1		10					0	2	1					1					Ď.			0	63				20			2		0		1	1
-		Average	1			1	1	1	0.6	8			0	0.2	4	0.2		0			2					0.4			1 3	537		0		11		0	6		0.8		1	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

				9	9																	8 7 6				0												
	di establica sp	potemya sa	sandoes sandoes	hogorpha	spooteus	on school of		moones so	PETATORIA NO	para sp. chocoma sp.	steoptera	do sepectudo	distributes at	de présant	opposite spirit	nidae (misc.) de achta so		reday (msc.	Oli Plubbia	plera	di sue	era Papen	ds saprony	Uphlam sp	verifiera sp.	7	edemanna is	months (misc	decha se	caneta sp.	ds runters	only lip.	nironomidae	uronomini	nytarsini	amesinae	Thocladiinae	odiamesinae
year regicate	3 5	15	8 3	0	دلت	10	0	210	15	6 5	1219	5 0	Ξ.	1 6	18	0 0	6	513	1 5	8	3 1	া ব	101	2 19	10	3 1	5 1	110	113	U.G.	3	E	0	0	-	ō	Ö	à
and Inne	-	62	-	\vdash	-	+	\rightarrow	-	+-+	-	-	-	-	-	-	_	-	\vdash	+	-	-	-	-	-	-	-	-	7	-	-		-	-	154	149	\vdash	121	+
1983 Rep 1	-	43	_	\vdash	-	1	-	+	+	-	+++	+	-	+	\rightarrow	34	-	\rightarrow	+	+34	-	+	↔	-	-	-	-	4	+	+	\rightarrow	-	19	93	60	\rightarrow	113	
1983 Rep.3	-	47	+	-	-	13	-	+	+	-	+++	-	+	+-	+	22	-	+	+	+34	-	+	\rightarrow	-	-	-	-	-	+	-	-	+	14	128	68	$\overline{}$	260	
1983 Rep 4	-	137	-	\rightarrow	-	16	-	-	\rightarrow	+	100	-	+	+	\rightarrow	10.1	-	\rightarrow	+	+	-	+	\rightarrow	-	-	-	-	-	+	+	-	-	3	348 T	304	\rightarrow	80	+
1983 Rep 5	-	45	_	\rightarrow	-	-	\rightarrow	-	+-+	+	100	+	+	+	\rightarrow	12.1	-	-	+	10	-	+	++	-	-	-	-	-	+	-	-	+	13	248	152	$\overline{}$	164	+
1983 Average		65.8	_	1	-	2.8	-	-	+-+	+	101	-	0	+-	+	19	0	\vdash	10	l ö	7	+	++	-	10	0	0 6	0	-	-	-	01	11		146.6	0	147.6	
1984 Rep 1		1	-	-	-	100	-	-	1	-	+	1	-	-	+	16	1		10	1	-	+	+-+	-	-	-	-	-	-	1	-	-	34	937	429		421	+
1984 Rep 2		45	_	\vdash	-	1	-	+	+	_	++	-	+	+	++	73	+	-	-	+	-	+	\rightarrow	+	-	-	-	-	-	+	-	+	12	443	411	32	455	+
1984 Rep 3		74	-		-	13		1	11	1	11	1		-	1	26	1		1.	1	-	-	1	-	+-	-	-	-	-	1		-	23	948	382		1252	+
1984 Rep.4		45	-		-	18		+	1	_	11	1	-	+	11	53	-		1	\vdash	-	-	++	-	+	-	-	7	-	_		-	6	1051	723		878	
1984 Rep.5		5.7			_	10		1	$\overline{}$				\vdash		\vdash	80.1		$\overline{}$	0	\vdash	\rightarrow		1	-			_		_	-		-	24	651	258	70	791	+
1984 Average		44.4			-	0.6		1	1	1	010		0			50	10		104	0	0.1	+	1	-	10	0	0 11	917		-		0	19.8		440.6			1
1985 Rep 1		16				-		-						_		4			1			1	1	-			incred con	91	-	1			115	725	122		774	
1985 Rep 2		0.1	-											-	7 *	12								-								0.1	13	256	20	8	121	1
1985 Rep 3		55												7	TI	24							11					1				T	49	566	111	16	589	
1985 Rep-4		14										1				6							1				1	0				01	61	278	102	8	294	
1984 Rep 5		34									\Box					18												0				0 [81	1466	159	7	602	
1985 Average		23.8				0					101		0			13.	0		1 0	10	0			10	0 0	0	0 13	2 (0.2	63.8	658.2	102.8	21	476	
1986. Rep.1		170 I														21	5.0				11												205	925	7	0	2617	T
1986 Rep 2		293														6.1	133				1							4					201	2410	13	13	2680	T
1986 Rep. 3		402														4	. 92				1							2.					185	813	13	13	3189	
1986 Rep-4		99														2.	1.81				0		TT					01					197	1547	0	0	1931	
1986. [Rep.5.		81														9	48				31												85	1281	0	0	1234	
1986 Average		209				0					0 0		0			4.6]	82.4		1 0	0	1			10	0	0	0:17	21 6				0		1395.2		5.2	2330.2	
1987 Rep.1		1 2 1											UL			65.1	37	decoration .		[6]													86	144	40		927	_
1987 Rep 2		6	_			_		_				_	0			68	34			10		_			\perp		_			-		_	156	217	1	$\overline{}$	362	
1987 Rep 3		11	-			_			-			-	0	_		27.	16	-	_	101					-			ш	4	_		_	162	103	15		922	
1987 Fiep 4		- 76							\perp		1	-	1	_	1	64.	1.25		_	11	_				\perp				3	-		_	226	98	0		1043	
1987 Rep 5	-	20			_	_		_	-	_	1	-	0		-	42	13		_		_	_	4	_			_	نبلنا	4	-		_	236	124	20		647	
1987 Average	-	14.6	-	-	-	0	-	-	-	-	01	2	0	-	-	53	25	-	0	3	0	-	-		10	0	0 11	2 4	4	-	-	9	173.2	137.2	15.2	0		
1993 Rep 1	-	250	-	-	-	-	-	-	-	-	-	-	-	-	-	11	-	-	-	1	-			_	-		-	-	-	-	-	-	34	386	116	-	2106	
1993 Rep 2	-	264	-	-	-	-	-	-	-	-	-	-	-	-	-	20	-	-	-	-	_	-	-	-	-	-		-	-	-	-	-	117	873	162	-	2933	
1993 Rep 3	-	1	-	-	-	-	-	-	-	-	-	+	-	-	-	23	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	51	676	155 283	-	2787	
1993 Rep 4 1993 Rep 5	-	290	-	-	-	-	-	-	+	-	++	-	-	-	+-	-	-	-	-	+-	-	-	-	-	+	-	-	-	-	-	-	-	79	577	283 76	1		
1993 Average	-	250.6	-	-	-	0	-	-	+-+	-	10	+	-	+	+	16.	1	-	+	11	-	-	-	-	+-	1 0	-	-	-	+	-	0		591.6			2643	
2006 Rep 1	-	12	-		-	-	-	-	-	-	00	4	0	-	-	10	0	-	0	-	4	-	-	-	44	1 0	410	-	-	-	-	-	0.10	3047	1906			
2006 Bur 2	1	-	-	1	-	-	1	-	+	-	++	1	-	-	+	-	138		+	+	-	+	++	+	+-	-	-	+	-	-	-	-		2497	702		1435	
2006 Reg. 7	-	11	-	-	-	-	-	-	+	-	+-+	+	-	-	1	-	287		-	+-	-	-	-	-	-	-	-	-	-	-	-	-	-	1896	327	69	_	
2006 Rep 3 2006 Rep 4		1 5	-	1	-	-	-	-	-	5 8	+	+	-	-	1	-	198	-	-	-	-	+	-	-	+	-	-	-	-	-	-	1		849	1638		1884	
2006 Rep 5	1	1	-	10	-	+	1	-	+		+-	1	-	-	1	-	117	-	+	+-	-	1	+	-	-	-	-	-	-	-	-	-	-		460			
1006 Average	0 0.2	-	-	0	-	-	0		-	0.4 0	-	-	-	6 0	لمنسف		237		-	-		-	-	0	10			+		0	-	-	\rightarrow				2060.4	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006)

9		replicate	Hydra sp.	TURBELLARIA	Microturbellana	Dugesia figma	Polyceis coronata	NEMATODA	NEMERTEA	TARDIGRADA	OLIGOCHAETA	Un - identified Otgochaeta	Enchytraendae	Lumbricidae	Lumbriculidae	Naudidae	Tubificidae	HIRUDINEA	Erpabdellidae (misc.)	Diras sp	Erpobdella sp.	Nepheliypsis obscura	Mooreobdella sp	Crossophonidae (misc.)	Herotulenia stagmans	Orosspriand sp. Placobdella ornata	Prscicolidae (misc.)	GASTROPODA	Lymnaeidae (misc.)	Fossaria sp.	Lymnaea sp.	Ferrissus sp	Ancylidae (misc.)	Planorbidae (misc.)	Gyraulus sp	Heisoma sp.	Physidae (misc.)	Physa sp	DELECYDODA
uny																																							
		Rep 1						562						0		99	1256			1					0						0	1			0			1	
								1249						0		142	929			3					0 (0					0	0			0			0	
		Rep 3						1681						4		88	1829			11					5	1					0	0			0			1	
	1985							1081						0		253	1085			3					1 (0					0	0			0			0	
	1985	Rep 5						1019						0		155	2230			1						0					1	0			2			1	
	1985	Average		0				1118.4					0	0.8		147.4	1465.8		0	3.8	0	0		1	.4 0	.4					0.2	0.2			0.4		0	0.6	
	1993	Rep 1						124					32			475	770		4		2																		_
	1993	Rep 2		1				279					24			413	1440		4																				
	1993	Rep 3						432					195	2		3151	807																						
	1993	Rep 4						149					48			895	297		2		2																1		
	1993	Rep 5						302					66			1033	895				1	2															1		
	1993	Average		0.2				257.2					73	0.4		1193.4	841.8		2	0	1	0.4			0 1	0					0	0			0		0.4	0	
			0		0	2		381					0	2		451	0				0	0																0	
		Rep 2	0		0	2		273					0	34		963	0				0	1																0	
	2006	Rep 3	0		8	8		298					250	4		857	0				0	0																0	
		Rep 4	0.		0	0		430					93	12		1325	1				0	0																0	
	2006		0		0	0		249					24	5		1168	1				0	1																0	
	2006	Average	0		2	2		326		0			73	11		953	0.4		0	0	0	0.4			0 0	0				0		0			0			0	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

Cluny

	waar	requir ate	ge mobal	ds umueruds	Sphaeridae (misc.)	Hydracarina	Oribatei	CRUSTACEA	DSTRACODA	CLADOCERA	COPEPODA	AMPHIPODA	Gammarus iaquetris	Hyalella azteca	Orconectes virilis	embolla	phemer	Baelidae (misc.)	Baens sp	Dactylobaetis sp	Caerus sp	Ephemerelidae (misc.)	Ephemerelia sp	Drunella sp	Serratella sp.	Ephemera sp	Heptagerudae (msc.)	Epecrus sp	Heptagema sp	Rhithrogena sp	Stenonema sp	Cinygma sp	Leptophiebudae (misc.)	Leptophlebia sp	Parateptophiebia sp	Isonychia sp	Ephoron sp	Siplonundae misc	Ameletus sp Triconthodes sp
my	-																																						
	1985	Rep 1	- 3			12			3		1			1				0	14							0	1		4		51								22
	1985	Rep 2	5			21			2		-6			11				2	35							0	1		0		18								33
	1985	Rep 3	5			3			0		0			36				8	29							0	1		0		17								21
		Rep 4	0.			2			0		. 0			5				4	50							0	1		0		9								1(
	1985	Rep 5	9.	1		17			0		0.			0				8	7							1	1		1		53								22
	1985	Averag	e 6.2		0	11			1		1.4			10.6			0 6	.4	21			0			0	0.2	1		1	0	29.6		0	0			0		23
	1993	Rep 1	1		8	221			1		0.			1			42	231	59			36			119		15		1	1									210
	1993	Rep 2	5		6	126			1		0			1			3 2	103	76			2			110		5		5	1	1			1					144
	1993	Rep 3			5	156			2		0						38	303	62			35			148		2				1								180
	1993	Rep 4			14	323			- 3		0			1			3 3	572	66			11			198		23		8	1			16	1					14
	1993	Rep 5			10	116			1		0			1			33	205	69			23			205		9		3		3						1		22
	1993	Averag	e 1.2		8.6	186			1.6		0			0.8			1.2 34	42.8	66.4			21.4			156	0	10.8		3.4	0.6	1		3.2	0.4			0.2		181
	2006		0			60			20	0	30			0					246		0		1					0	46	68	89				0				12
	2006	Rep 2	0	T		60			20	0	20			0					464		0		0					0	26	35	32				1				
		Rep 3	1			24			56	0	16			0					41		0		0					0	0	1	30				0				3
		Rep 4	0	1		0			30	0	50			0					6		2		0					0	10	5	60				0				4
	2006		0	1		1			20	0	30			0					151		.0		0					0	11	3	103				0				36
		Average	0.2	0		29	0		29.2	0	29.2		0	0	0	0			182		0.4		0.2			0		0	19	22	63			0	0.2				20

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't))

_	Ciu	шу	_			_	_	_	_	_	_		_				_	-				_								1		1										
ıte	year	replicate	Plecoptera	Capmdae (misc.)	Chloroperlidae (msc.)	Swellsa sp	Suwallia sp.	Perlidae (misc.)	Claassema sp	Hesperoperta sp	Perlesta sp.	Periodidae (msc.)	Cultus sp	ds sapionaeosi	Isoperta sp	Skwala sp	Preronarcys sp	Taenonema sp	Demopleryx sp.	Trichoptera	Brachycentrus sp	Glossosomandae (msc.)	Anagapetus sp	Glossosoma sp	Helicopsychidae (misc.)	Helicopsyche sp	Mydropsychidae (misc.)	Arctopsyche sp	Cheumatopsyche sp	Mydropsyche sp	Mydroptilidae (misc.)	Hydrophia sp	Leptocendae (misc.)	Ceraclea sp	Mystacides sp.	Nectopsyche sp.	Oecens sp	Triaenodes sp	Lepidostoma sp	Limnephilidae (misc.)	Phryganea sp	
luny																																										1
		Rep 1													2						2						12		2	384		1				0	18	-		_	\vdash	1
	1985	Rep 2													1						0						16		4	510		14				20	20	-			_	Ŧ
	1985	Rep 3													2						0						5		4	223		0				37	4	-			_	Ŧ
	1985	Rep 4													0						5						2		0	134		0				41	2	-			-	Ŧ
		Rep 5													0						1						7		3	202		0		_		17		-	-		-	ł
	1985	Average	0					0	0			0		0	1				0	0	1					0	8.4		2.6	290.6	0	3	0				10.6	-	0		-	Ŧ
	1993	Rep 1	1						1			41			5				1		16					6	112		6	569	5	22		-		5	38	-	2		-	ł
	1993	Rep 2					-	1				21	_		1			-			42		_			13	121		2	480	8	15	-	-	\vdash	2	51	-	4	-	-	ł
- 1	1993	Rep 3					-		-	1		43	-	-	2		-	-		5	27	-	-			5	253		7	1148	2	38	-	-	-	-	18	+	11	-	-	ł
- }	1993	Rep 4				-	-	1	-	-	-	54	-	-	3		-	-		1	10	-	-			6	218		9	692	7	15	2	-	-	-3	47	-	- 11		-	ł
- 1	1993	Rep 5	_				-	-	-	-		34	-	1	1		-	-	-	1	9	-	-			10	127		2	434	5.2	34	0.4	-	\vdash	2.4	41.4	-	5.8	-	-	ł
-	1993	Average	0.2	-	-	-	-	0.4	-	-	-	38.6	-	0.2	2.4	-	-	-	0.2	1.4	20.8	-	-	_		8	166.2	-	5.2	664.6	3.2		0.4	-	-	0	5	-	0.0		-	ł
1	2006		-	-	-	-	+	-	4	+	-	-	+	1	28	0	-	-	-		10	-	-	_		3	-	-	79	168 357	-	0	-	-	-	0	4	-	0			1
		Rep 2	-	-	-	-	-	-	2	-	-	-	-	0	73	0	-	-	-		13	-	-	-		9	-		22	19	-	0		-		0	2	-	0			İ
-		Rep 3	-	-	-	-	+	-	0	-	-	-	+	0	9	0	+	+	-		13	-	-	-		4	-	-	39	42	-	0		1		3	27	-	1			1
	2006		-	-	-	-	+	+-	0	+	-	-	+	0	22	0	+	-	-		5	-	-	-		26	-	-	46	121	-	0	-			3	25		1			1
		Average	-	-	-	-	+	+	1	1	-	-	10	100	27		-	0			6	-	-	-		10			56	141		0	1	0		1	13		0.4			Ť

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

(lun	y																										_						_						_								
Site	year	replicate	Neurechpsis sp.	Polycentropus sp	Psychomyia sp.	Rhyacophila sp.	Anisoptera	Ophiogomphus sp	Coenagrionidae sp	Hemiptera	Conxidae sp.	Calliconxa sp		Corisella sp	Sigara sp	Trichocorixa sp.			Hydroporus sp	Liodessus sp.	Oreodytes sp.		Dubriaphia sp.		Gynndae (misc.)	Pyralidae (misc.)	Petrophila sp.	Diptera	Spinoro	Bezzia Palpomyia ap spo	Culicoides sp.	Rhaphum sp		Hemerodromia sp.	Wiedemannia sp	Simulidae (misc.)	Simulium sp.	Antocha sp.	Dicranota sp.	Hexatoma sp.	Tipula sp.	Chironomidae	Chironomini	Tanytaraini	Diamesinae	Orthocladiinae	Prodiamesinae	Tanypodinae
Clum																		I		I																												
	1985	Rep 1			0													0				3	3						1	0				0		0						20	3870	126	0	110	\vdash	135
	1985	Rep 2			1	L												1				11	1							2				0		13						24	4324	222	0	159		155
	1985	Rep 3			0													0				1	0							0				0		23						20	3739	64	7	118	\Box	70
	1985	Rep 4			0												П	0				5							. (0				0		18						7	2650	37	0	92		118
	1985	Rep 5			3													0				1								0				1		19						7	2597	27	0	88	1	162
	1985	Average			0.8			0										0				7.	2					0	- (0			0	0 0		15						15.6	3436	95.2	1.4	113.4	\vdash	128
	1993	Rep 1			14	1.													П			19	97											5		3						4	159	66	8	517	1	44
	1993	Rep 2			8			1								I						16	52											2 2		11						20	245	98	9	478	\perp	20
	1993	Rep 3			10											1		1				12	28											1 9		4						15	501	168	9	1061	1	64
	1993	Rep 4			10											T		3	П			11	4										1	5		6						16	135	93	11	594	\vdash	34
	1993	Rep 5			20													3				116	32					1						1 9	_	8						18	440	140	14	682	\vdash	42
	1993	Average			12.4			0.2										1		T		15	3	1				0		0			0	1 6		6.4						14.6	296	113	10.2			40.8
	2006	Rep 1	0		1			10				0	0		0	0				0	1		0	51	2				0	0				115			0		1	1			293	1079	0	958	-	265
		Rep 2	0		0			0				1	0		0	0				0	(0	30	4				0	. 0				62			10		0	0			110	574	10	1274	1	136
	2006	Rep 3	0		0			0				0	0		0	0				1	(0	13	0				0	1(0			21			0		2	0			330	524	0	748	-	126
	2006	Rep 4	14		11			0				0	0		1 1	0				0	()	1 1	27	4				0	3				23			0	-	1	0			533	854	0	506		260
			7		1			0				0	0		0	0				0	(0	20	4				0	0				2			0	-	0	0			343	532	0	540		284
	2006	Average	4	0	3		1	0	0		0	0.2	0		0.3	2 0		0		0.2	0 0	2	0.	2 28	5		0		0 1	0 3	0	0		0 25		1	2	0	0.8	0.2	0		321.8	712.6	2	805.2	10	214

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

83					
к	or	ıa	la	n	6

												ochaeta							sc.)			ura		nisc.)			7		sc.)					77					
	vear	replicate	Hydra sp.	TURBELLARIA	Microturbellaria	Ougesia figrina	Polycelis coronala	NEMATODA	NEMERTEA	TARDIGRADA	OLIGOCHAETA	Un - identified Oligochaeta	Enchytraeidae	umbricidae	umbriculidae	Naididae	Tubificidae	HIRUDINEA	Erpobdellidae (misc.)	Dina sp.	Erpobdella sp.	Nephelopsis obsc	Mooreobdella sp.	Glossiphonidae (mis	O ciocophoroso C	Giossiphoma sp. Placobdella omala	Piscicolidae (misc.)	GASTROPODA	ymnaeidae (misc	Fossana sp.	Lymnaea sp.	Ferrissia sp.	Ancylidae (misc.)	Planorbidae (misc	Gyraulus sp.	Helisoma sp.	Physidae (misc.)	Physa sp.	PEI ECVBODA
ala																																							
T	1983	Rep 1	4					96			480							7														36				9	6		I
	1983		0					16			200							7										I				85				0	5		I
	1983	Rep 3	0					96			432							11														56				4	8		I
	1983	Rep 4	.0					48			592							28														36				4			I
			0					80			224							11														52				0		-	1
	1983	Average	0.8					67.2			385.6	0	0	0		0	0	12.8		0	0			(0 0		0	0		0	53	0	0	0	3.4		0	Ţ
	1984	Rep 1	0					46					10	0		56	51												0			12		1			0	-	1
	1984	Rep 2	1					59					0	0		155	33								_		-		0		-	23		6	_		0	-	+
	1984	Rep 3	2					49					0	0		38	56												0			21		7			0	_	+
	1984	Rep 4	20					77					2	1		163	91										-		0			34		1	_	_	0	-	4
	1984	Rep 5	1					120					1	0		71	64												1			20		2			1	-	4
		Average	4.8					70.2			0	0	2.6	0.2		96.6	59	0		0	0					0 0		0	0.2		0	22	0	3.4	0	0	0.2	-	-+
	1985	Rep 1	1					495								25	811			2					-	0	-	0			0	8			5	-		0	-
		Rep 2	5					432								62	1102			7						2	-	4			1	1			4	-		2	+
		Rep 3	0					315								29	1015			8			-		6	1	+	0		-	1	6			1	-	_	1	ł
		Rep 4	0					224								50	1267			2			-			2	-	1	-	\vdash	0	6			0	-		1	+
	1985	Rep 5	0					95	1							57	825			12			-			0	-	0	-		0	11		-	0	0	0	1	+
		Average	1.2					312.2			0	0	0	0		44.6	1004	0		6.2	0		-		-	1 0	-	1	0		0.4	6.4	0	0		0	1	-	+
		Rep 1			-	_		168	-			4				3	88	1	-	0			-			1	+	-	-	-	-	10	\vdash		3	-	5	-	+
_		Rep 2						167	-			0		-	-	0	91	0	-	0	-	\rightarrow	-		\rightarrow	0	+-	-	-	\vdash	-	19			1		1	-	+
Second		Rep 3		_		-		206	-			26		-	-	0	467	2	-	0	_	-	-			0	-	-	-	\vdash		18			0		3	-	1
James	1987	Rep 4		_	-	-		146	-	-		33	-	-	-	6	812	0	-	0	-	\vdash	-		_	1	-	+		\vdash	-	54			0	-	2	-	+
	1987	Rep 5						201	-	1		0	-	-	-	6	1008	0	-	5	-		-			0	-	10	0	\vdash	0	28.6	0	0		0	2.4	0	+
_		Average	0	-	-	-	-	177.6	-	-	0	12.6	0	0	-	3	493.2	0.6	-	1		-	-	1	8 0	1.4 0	-	0	0		0	10	9	U	1.4	0	1	-	+
h		Rep 1		-	-	-	-	151	-	-		-	381	-	-	1360	630	-	-	-	1		-	-	+	-	+	-	-			10	11		-	-	1	2	1
i-		Rep 2		-	-	-	-	145	-	-			652	-	-	2879	344	-	-	-	-	-	-	-	+	-	+	-		-	-	5	10		-	-	2	-	+
		Rep 3		-	-	-	-	103	-	-			387	-		1263	378	-	-	-	-	-	-	-	-	-	-	-				5	5		-		2		+
		Rep 4		-	-	-	-	99	+	-		-	216	-	-	1049	439	-	-	-	-		-	-+-	+	1	-	-	-	-		4	9		-		3	-	1
-	1993	Rep 5	0	-	-	-	-	128	-	-	-		482	10	-	1805	446	0	-	0	0.2		-	-	1	0 0.	2	0	0		0	4.8		0	0	0		0.4	đ
		Average	0	-	-	1.01	-	125.2	-	-	0	0	423.6		-	1671.2	161	0	-	0	0.2	-	-			0 0.	-	10	-	0	9	0	0.0	-	-	1	1.0	0	
		Rep 1	0	-		161	-	576	+	-		1	0	0	+	1947	708	-	-	-		0	-)	-	-	1		0		0						0	-
		Rep 2	0	-	100		-	241	+	+		1	0	0	-	2220	137	-	-	-		0	-		0	-	-	-		0		0						1	
		Rep 3	20	-	40	120	-	223	-	-		-	0	0	-	1216	142	-	-	-	-	0	-)	-	-	+	-	0		1		-	-			0	-
-	2006	Rep 5	0	-	50	-	+-	122	+	+		-	0	-	-	2488	324	-	-	-	-	0	-		0	-	-	-		0		0						1	-0
	2006	Average		-	80	98	-	291	+	0		+	8	0	-	2068	294	-	0	0	0	0.2	-			0	-	1	1	0	-	0.2			0			0.4	

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

Ronalane

																					()5c)					C.)						(misc.)		ds				
waar	replicate	ds winder	Sphaenum sp.	phaerudae (misc.)	Hydracarina	Oribatei	CRUSTACEA	OSTRACODA	CLADOCERA	COPEPODA	АМРНІРОВА	adminarus lacusins	tyalella azteca	Orconectes virilis	Collembolla	Ephemeroptera	Baetidae (misc.)	Baetis sp	Dactylobaetis sp	Gaerns sp.	phemerelidae (m:	sphemerella sp	Orunella sp.	Serratella sp.	Ephemera sp	leptageniidae (mis	ds snuoada	feptagenia sp	Anthrogena sp	Stenonema sp.	Cinygma sp.	eptophlebiidae (m	eptophiebia sp.	Paraleptophlebia si	sonychia sp	Ephoron sp.	Siplonundae misc.	Ameletus sp.
ane	Treplicate	4	0,	02	-	1	4	-	-	0		-	-	~	~	-	ш	40	7	_	-		-		-		~											
	Rep 1					1	_	8	0	4		6				0		4				17			11			216										0
1983	Rep 2				-	++	+	0	0	32		1				48		0				8			11			336										0
	Rep 3					\vdash	\rightarrow	12	0	8		6				0		0				0			25			184										0
1983	Rep 4					\vdash	_	8	0	16		6				0		1				1			8			112										1
	Rep 5					1	_	64	16	60		3				0		4				4			17			320										0
1983	Average	0		0	0	\vdash			3.2	24		2.4	0		0	9.6	0	1.8	0	0	0	6		0	14.4	0		233.6		0		0	0	0	0	0	0	0.2
1984		1			289			27	0	18			2					394				10			4	65		3		340				8				0
1984		5			209			45	9	76			24					158				16			2	46		0		255				0				0
1984		14			154			36	9	9		1	4					223				4			18	78		1		354				0				4
1984		1			327			36	9	82			5					285				40			6	58		0		395				0				0
1984	Rep 5	6			100			72	0	36			3					259				25			5	66		0		276				0				0
1984		5.4		0	216			43.2	5.4	44.2		0	7.6		0	0	0	263.8	0	0	0	19		0	7	62.6		0.8		324		0	0	1.6	0	0	0	8.0
1985	Rep 1	10			27			8	1	14			187			0	13	12		6		8			27	4				31								
1985		7			36			2	0	13			286			1	4	18		38		1			12	0				46								
1985	Rep 3	16			72			7	0	8			231			0	3	0		11		0			10	2				36								
1985	Rep 4	9			30			6	0	6			266			0	0	0		18		0			10	2				23								
1985		10			74			7	0	6			296			0	1	1		17		0			20	0				21								_
	Average	10.4		0	47.8			6	0.2	9.4		0 ;	253.2		0	0.2	4.2	6.2	0	18	0	1.8		0	15.8			0		31.4		0	0	0	0	0		0
1987		1			68			4		0		1	13				100	9				0			9	2		0		34					-		-	
1987		3			44			0		4		0	8				56	4				0			8	1		1		29							-	-
1987	Rep 3	14			70			1		0		0	7				176	3				2			5	0		0		33						-	\rightarrow	-
1987		6			70			0		0		0	7				22	4				0			10	0		0		29					-		-	
1987		13			92			4		2		2	25				146	6				0			15	2		0		54				-	-	-	-	-
1987		7.4		0	68.8			1.8	0	1.2	0	.6	12			0	100	5.2	0	0	0	0.4		0	9.4			0.2		35.8	-	0	0	0	0		-	0
1993				1	137		_	4		0			1		6	1	539	58	39			1	-	30	5	27		1		108		4	2		-	35	\leftarrow	7
1993		2		6	186		-	15		1		1	6		8	1	457	58	28		3		-	45	1	21		-	-	35	-	1	7		1	47		-
1993		-		7	137	-	-	11		0	\rightarrow	1	3		2		805	50	30	-	13		-	44	-	56	_	16		59 98	-		14		-		-	+
1993		2	-	1	99		-	3		0	-	1	3		1	5	201	50	37		7	-	-	10	4	16		- 0			-	-	3		-	32		+
1993		2		1	197		-	1		0		1	1		-		426	56	24		49	4	-	27.6	1	42	-	3.8	-	70	-	1	5.4	0	0.2	29.6		0
1993		1.2		3.2	151	1		6.8	0	0.2	_		2.8			1.4	485.6	54.4	31.6		14.4	1	-	21.6	3	32.4	0	0		23	-	-	0	-	0.2	23.0	-	-
2006		30		-	80	1		800	120			0	42	1	0			0	-	0		0	-	-	0	-	0	1	-	0	-	-	0	-	1	-		+
2006		6	0	-	0	+		720	70	110		0	49	\rightarrow	0			10	-	0		0	-	-	2		0	0		1	-	-	0		-	-		+
2006		3	0		20	H		940	100		-	0	23	0	0			0	-	0	-	0	-	-	1	-	0	0	-	0		-	0		1		1	1
2006	Rep 4 Rep 5	2	14	-	20	-		490 1360	140	100		0	5	0	0	-		0	-	0	-	0	-		0		0	0	-	0	1	-	0		-			-
2006			3		24					300		1.2		0.2				2	-	0	-	0	1	-	1	-	0	0	0	5	-	-	0	0	+	-	1	-

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

Ron	alane				_																			_																
waar	replicate	Hecoptera	apmdae (msc.)	Chloroperlidae (misc.)	Swellsa sp	Suwallia sp	Perlidae (misc.)	Jaassema sp	resperoperta sp	ds estesta sp	Perlodidae (misc.)	Cultus sp	ds saprouados	soperla sp	Skwala sp	Preronarcys sp	aemonema sp	Эеторгегуя sp	frichoptera	Brachycentrus sp	alossosomatidae (misc.)	Anagapetus sp	Glossosoma sp	felicopsychidae (misc.)	Helicopsyche sp	tydropsychidae (misc.)	Arctopsyche sp	Cheumatopsyche sp	Hydropsyche sp	Hydrophidae (msc.)	Hydrophila sp.	Leptocendae (mac.)	Ceraclea sp	Mystacides sp.	Nectopsyche sp	Oecetis sp.	Triaenodes sp	Lepidostoma sp	Limnephilidae (misc.)	Phryganea sp.
ane	replicate	1			-	-	-	-	1						-																									
	Rep 1																		24					12				64	68		16	92		1						
1983	Rep 2																		80					10				8	49		96	9		0						
	Rep 3																		32					0				0	24		32	76		3						
1983	Rep 4																		16					20				0	12		0	68		5						
	Rep 5																		64					0				16	116		25	56		1						-
1983	Average										0								43.2	0	0	0		8.4	0	0		17.6	53.8	0	33.8	60.2		2	0		0	0		
1984	Rep 1										1											4			104	67		65	210		59					29				
	Rep 2										0											5			202	40		31	70		71					89				
	Rep 3										0											27			35	29		38	66		127					21				
1984											2											4			84	101		80	64		126					26				
1984											0											4			2	38		37	32		41					29			1	
1984	Average										0.6								0	0	0	8.8		0	85.4	55		50.2	88.4	0	84.6	0		0	0	38.8	0	0		-
1985	Rep 1																								0	10		2	15		247			0		8			-	-
1985	Rep 2																								0	0		2	5		310			0		12			-	-
1985																									0	3		1	17		144			0		8	-	_	-	1
1985	Rep 4																								1	4		2	3		124			1		6			-	-
1985																									0	0		0	5		119			1		5			-	-
	Average										0								0	0	0	0		0	0.2	3.4		1.4	9	0	188.8	0		0.4	0	7.8	0	0	-	-
1987																				1	0				29	24		17	43	108						9	-	_	-	-
1987	Rep 2																			0	4				129	74		25	63	16				\square		11	-	_	-	-
1987																				0	18				133	42		30	107	66						16	-		-	-
1987	Rep 4																			0	0				16	6		11	45	108					-	3			-	-
1987																				0					60	88		24	53	60						3	-	-	-	-
1987	Average										0								0	0.2	5.6	0		0	73.4	46.8		21.4	62.2			0		0			0	0	-	-
	Rep 1										12								3			3			18	14		115	103	2	20				6		-	-	-	+
	Rep 2										10								1	3		1			18	12		44	107	-	20	1		-	46			1	-	-
1993	Rep 3										15											5			11	26		164	196		21	-		-	4			-	-	+
	Rep 4																				1	1			23	12		15	20	1	33	-		-	9 59			-	-	+
1993											20									2		4			2	15		54	139		10	0.5	-					0.0	-	+
1993	Average										11.4								0.8	1	0.2	2.8		0	14.4	15.8	-	78.4		1.4	20.8	0.2	-	0	0	11.4	0.2	0.2	-	+
2006	Rep 1							0						0							-	-			0			5	1	-	63	-	-	-		_	-	-	+	+
2006								0						0							-				0	-	-	0	1	-	10	-	-	-	0		1	-	+	+
2006		1						0						0							-	-			0	-	-	1	2	-	40	-	-	+	1		-	-	+	+
2006								0					-	0							-				0	-	-	0	0	-	0	-	-	-	0		+	-	-	+
2006								0						0							-	-			0	-	-	0	0	-	40	-	-	-	0	0	-	-	+	+
2006	Average	e	1					0				0	0	0	0		0			0					0			1	0.8		31		0		0.2	0.4	1	0		

Appendix 5 Benthic invertebrate data collected with a Neill cylinder sampler from the Bow River (1983 to 2006) (con't)

Ro	nalane																																												_
vear	replicate	Neurecipsis sp	Polycentrapus sp	Psychomya sp	Anyacophilia sp	Anisoptera	ds snudwodowdo	Coenagnonidae sp	Hemiptera	Conxidae sp.	Calhcoring sp	Cenocorixa sp	Palmaconka sp	Sigara sp.	Trichocorixa sp	Dytiscidae (misc.)	Colymbetes sp Hydroporus sp	Liodessus sp	Oreodytes sp	Snctotarsus sp	Elmidae (misc.) Dubrachia so		Gyrinidae (misc.)	Pyralidae (misc.)	Petrophila sp	Diptera	Atherix sp.	Bezzia Palpomyia gp spp	Cuircoides sp	Rhaphum sp	Empididae (misc.) Cheifera so	Hemerodroma sp	Wiedemanna sp	Simulidae (misc.)	Simulium sp.	Antocha sp	Dicranota sp.	Нехагота sp	Tipula sp.	Chironomidae	Chironomini	Tanytarsini	Diamesinae	Orthocladinae	Prodiamesinae
ane	reginate						1			Ĭ																																			-
1983	Rep 1								1	2											28			0															-	3344	160	16	-	-	+
1983	Rep 2					T			0	7											10			24															_	5953	200	0	-	-	+
1983	Rep 3								0	23											20			14															-	6880	160	0	-	-	+
1983	Rep 4								0	8											16			16															_	4432	144	0	-	-	+
1983	Rep 5									3											8			28																6832	112	0	-	-	+
1983	Average	0	0	0		0	0	0	0.2	8.6						0	0				16	0	0	16	0	0	0							0						5488.2	155.2	3.2	0	0	+
1984	Rep 1	1		14		0	T			0						0					57				39									15						0	216	278	-	848	
1984	Rep 2	0		21		1				1						0					0				33									0						0	505	786		693	
1984		0		14		3				0						0					17				35									22						13	318	345		1129	
1984		1		5		0				0						0					6				13									1						5	205	301		1021	
1984		0		32		0				0				\Box		1					14				33									2						2	562	334		519	
1984			0	17.2		0.6	0	0	0	0.2						0 0	0				19	0	0	0	30.6	0	10).[8						4	361.2	408.8		842	
1985	Rep 1	1	17	3				0		0				\Box							3		0	8			- 0							0						134	843	579	20	130	
1985		1	25	1		1		0	1	0											8		0	1			1							3						49	529	380	27	243	
1985	Rep 3		18	17				0		0						0					4		0	12			10							. 0						123	1078	480	7	611	
1985		+	12		+			1		0											3		. 0	5			10	0						0						38	425	364	20	365	
1985		1		21	+	+	1	1		1		_	+								6	1	1	6			1.0	0						0						165	1118	668	220	730	
	Average	10		9		10	0		0	0.2		-		\vdash		0 0	0			1	4.8	0	0	6	0	0	10							0.6						101.8	798.6	494.2	58.8	415.8	
1987			0			Ť	+-	1	1	0	\vdash	1	_			1	0				0	9			27															146	249	320		662	
1987			0		+	+	+	+	+	0	$\overline{}$	_	_	1	-	\vdash	0			-	4	1			40															165	330	20		346	
1987		1 4	1	12	+	+	-	+	_	0		+	_	\vdash	\rightarrow		1			_	0	6			43															433	541	73		541	
1987		0	2			+	+	+	1	0	1	_	+	+	\rightarrow	+	0			1	0	8			27															246	553	186		680	
1987			2	14		+	+	+	+-	1		$\overline{}$		1	-	\vdash	0			_	0	10	0	\Box	34															280	571	166		488	
1987				14.4		10	0	10	0			+	+	+	-	0 0	0	_			0.8	6.	8 0	0	34.2	0	1	0						0						254	448.8	153	0	543.4	4
1993		Ť	+	55		Ť	+-	+-	+-	1	\vdash	+	+	+	-	1	-				14			1	18	4								18						6	211	154		408	
1993		+	+	15		+-	+-	-	+	+	1	-	+	+	-	+	+				9	_	+	+-+	5		1							15						- 8	168	353	1	482	
1993		+	+	47		+-	+	+	+	-	1	-	+	+	-	+	-	-	\vdash		22	_	_	++	16	2	-	+	+					21						12	33	315		343	
		+	+-	7		+	+	+	1	1 2		+	+	+	+	-	-	-			5	-	1	1	29	2	1	-						1						50	166	265		580	
1993		+	+	30		+	1.	+	-	15		+	+	+	-	+	+		-	_	11	-	+	++	20	-	-	1	-	1		1		12						18	108	228		836	
1993		10	10	30.8		10	0.2	10	10	0.6	-	-	-	+	-	0 0	0	+	-		12	10	1 0	10	17.6	2	1	0	+			-		13						12.8	137.2	263	0.2	529.8	8
	Average	0		30.8	+	- 0	0.2	0	10	0.0	-	0	+	+.	0	0 0	-	-	-	-	16	0 1/	_	1	17.0	-	1	0 46	6 81	0	-	-	1	1	20		0		0		670	5005		1495	
2006		+	0	-	+	+	1 5	0	-	0	0	0	+	10	U	+	-	3		+	-	0 0	2	+	0	-	-	0 3	2 50	0		1	1	1	D	-	0		0		82	744	0	226	
2006		-	0		+	+	0		+	U	0	0	-	0	U	-	+	0		+	-	V 2	0	+	0	-		0 0	0	0	-	+	-	1	0		0		0		411	4003		1434	
2006		-	0		+	+	0	-	+	0	0	0	+	0	0	+	-	3	-	+	- 2	1 2	1	++	0	-	-	0 2	2 20	0	-	-	-	-	0		0		0		139	392	10	169	
2006		-	0		+	-	0	-	-	0	0	0	+	0	0	-	-	0		+	+	1 7	2	++	0	-	-	0 0	60	0		+	-	1	0	1	0		1		121	720	0	374	
2006	Rep 5		1	1		1	0	0		0	0	0		2	0		1	1 1				1 2		1. 1	0.0			W 6	100	0.2		0 0	-	+		-		-	0.2			2172.8			

Appendix 6 Summary of results of the Bootstrap assessment of differences among sampling approaches

Variable	Site		Neil		"Total"	Kick Samples (210 µm mesh)	Kick Samples (400 µm mesh)	Variable	Site	me	Neill		"Total" Neill	Kick Samples (210 µm mesh)	Kick Samples (400 μm mesh)
Abundan								Turidate							
	Cochrane	667	±	214.15	667	2112 (1)	337	Ratio Sc	raper to Filtere	,					
	Stiers Ranch	12616.4	*	3332.8	14811	36240	18438		Cochrane	0.256	±	0.356	0.143	0.095	0.444
	Carseland	8622.6	*	1852.58	8623	73675	16571		Stiers Ranch	0.38	±	0.139	0.362	0.278	0.324
	Cluny	4396.2	*	616.81	4396	24854	8272		Carseland	0.186	*	0.1	0.157	0.258	0.255
	Ronalane	7447.4	*	3587.68	7447	35176	26898		Cluny	0.387	±	0.098	0.404	0.284	1.463
						1			Ronalane	0.025	±	0.016	0.02	0.025	0.047
Richness															
	Cochrane	21.4	£	2.7	43	39	39	Proportio	on with Deposit	tonal prefe	rence	15			
	Stiers Ranch	47.6	2	8.02	70	45	45		Cochrane	0.08	±	0.048	0.094	0.327	0.099
	Carseland	47.8	2	4.66	75	68	56		Stiers Ranch	0.083	±	0.063	0.089	0.01	0.046
	Cluny	39	*	3.32	65	41	44		Carseland	0.111	±	0.064	0.114	0.084	0.053
	Ronalane	38.4	全	6.19	68	54	57		Cluny	0.137	±	0.085	0.126	0.056	0.085
				•					Ronalane	0.597	±	0.045	0.61	0.489	0.662
Ratio Hy	dropsychid to	Trichoptera	a												
	Cochrane	no analysi	is du	ie to zero co	ounts for all r	nethods		Proporti	on with Erosion		nces				
	Stiers Ranch	0.964	*	0.052	0.97	0.997	0.992		Cochrane	0.498	±	0.2733	0.43	0.177	0.291
	Carseland	0.827	*	0.151	0.951	0.969	0.958		Stiers Ranch	0.703	±	0.024	0.658	0.715	0.58
	Cluny	0.789	*	0.18	0.84	0.951	0.615		Carseland	0.6	±	0.089	0.551	0.604	0.669
	Ronalane	0.049	*	0.045	0.06	0.068	0.667		Cluny	0.598	±	0.117	0.552	0.782	0.664
									Ronalane	0.318	±	0.044	0.306	0.384	0.209
Proportio	-					,		_							
	Cochrane	0.008	*	0.0062	0.007	0.008	0.092	Proporti	on Erosional to				0.400	T 0.077	1 0 000
	Stiers Ranch	0.199	*	0.119	0.17	0.314	0.353		Cochrane	0.103	*	0.0911	0.163	0.077	0.233
	Carseland	0.092	*	0.099	0.098	0.059	0.186		Stiers Ranch	0.077	*	0.045	0.125	0.13	0.236
	Cluny	0.124	*	0.079	0.129	0.091	0.32		Carseland	0.047	±	0.015	0.084	0.095	0.118
	Ronalane	0.005	±	0.003	0.006	0.007	0.007		Cluny	0.142	±	0.027	0.204	0.1	0.218
									Ronalane	0.027	±	0.015	0.021	0.036	0.065
Ratio EP	T to Chironom		_	0.404	0.000	1 0 400	0.554	Decembe	an with Lantin I	Dreference					
	Cochrane Stiers Ranch	0.121	*	0.101	0.098	0.128	0.554	Proporti	Cochrane	0.317		0.1795	0.31	0.407	0.349
	and a comment	0.588	*	0.303	0.491	0.621	1.808		Stiers Ranch	0.317	±	0.1795	0.108	0.407	0.128
	Carseland	0.164	±	0.196	0.161	0.124	0.318			0.114	±	0.039	0.108	0.104	0.101
	Cluny	0.271	±	0.184	0.276	0.269	0.739		Carseland		±	0.053	0.202	0.18	0.027
	Ronalane	0.016	±	0.011	0.013	0.044	0.024		Cluny	0.092	±	0.053	0.088	0.072	0.027
Contribu	tion by domina	ent family (ines	ects only)					onarane	0.031	1	0.023	0.047	0.000	0.01
- Jilli 100	Cochrane	0.673	2	0.194	0.644	0.682	0.384								
	Stiers Ranch	0.644	*	0.167	0.699	0.604	0.456		(1)	numbers	that a	re bold and	underline	d identify a s	ignificant
	Carseland	0.843	*	0.107	0.829	0.871	0.738		(.)			the Neill sa			3
	Cluny	0.728	*	0.127	0.029	0.731	0.736			direction	- 441111	140111 30	anipio ilioa		
						1									
	Ronalane	0.976	*	0.013	0.981	0.944	0.954								

Appendix 7 Summary of ANOVAS performed on 2006 benthic invertebrate data to assess longitudinal trends in the Bow River

Test	p for ANOVA	Bonferroni (p<0.05)
Matric Tourish		Cochrane Stiers Ranch Carseland Cluny Ronalane
Metric Tested	0.000	0 0 0 0
Abundance	0.000	
Richness	0.000	
Simpson Diversity Index	0.017	
Shannon Diversity Index	0.000	
EPT genera	0.000	
EPT to chironomid ratio	0.000	
Contribution by Dominant order (insect)	0.000	
Number of Filter Taxa	0.000	
Proportion of Filterers	0.000	
Proportion of Gatherers	0.000	
Proportion of Shredders	0.427	no significant differences
Proportion Scrapers	0.000	
Proportion Predators	0.000	
Proporation Swimmers	0.000	
Number of Clinger Taxa	0.000	

Appendix 7 Summary of ANOVAS performed on 2006 Benthic Invertebrate Data to Assess Longitudinal Trends in the Bow River(con't)

Test	p for ANOVA	Bonferror	ni (p<	0.05)
Metric Tested		Cochrane Stiers Ranch	Carseland	Cluny	Ronalane
Number of Clinger Taxa	0.000	0 0,			-
Proportion Sprawlers	0.005				
Number of Burrower Taxa	0.000				
Proportion Burrowers	0.000				
Proportion with Depositional Preference (Historic Data)	0.000				
Number of Pollution Intolerant Taxa	0.000				
Family Biotic Index	0.000			*****	
Sensitivity (BWMP) Score	0.000				*******
Average Score per Taxon	0.000				

⁽¹⁾ Horizontal lines join 2 sites that differ significantly (p<0.05)

Appendix 8 Summary of results of Step-wise Discriminant Analysis on historical benthic invertebrate Neill cylinder data for the Bow River

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	12.934	43.4	43.4	0.963
2	8.872	29.8	73.2	0.948
3	6.845	23.0	96.2	0.934
4	1.142	3.8	100.0	0.730

••••••

••••••••••••••

•

Correlations for individual taxa by function

Taxon	Function -1	Function -2	Function -3	Function -4
Chironomini	0.33	0.001	0.043	-0.011
Tubificidae	0.248	-0.04	-0.024	0.109
Simulidae	0.203	-0.108	-0.175	-0.062
Coleoptera	0.185	-0.024	0.098	-0.154
Tanypodinae	0.163	-0.001	0.009	0.115
Hydropsychidae	0.121	-0.09	-0.005	-0.005
Stenonema	0.122	0.271	0.191	0.115
Hydra	-0.208	-0.255	-0.053	0.022
Tricorythodes	0.211	0.218	0.136	-0.027
Ephemerellidae	0.068	-0.162	-0.027	-0.117
Orthocladiinae	0.078	-0.091	-0.013	-0.063
Helicopsychidae	0.192	-0.201	0.36	0.23
Hydracarina	-0.026	0.067	-0.088	-0.006
Tanytarsini	0.038	0.06	0.077	-0.005
Naididae	-0.074	-0.135	-0.013	-0.337
Hydroptilidae	-0.042	0.099	0.163	0.329
Hydropsyche	0.187	0.235	-0.239	-0.324
Chironomidae	0.014	0.003	0.123	0.259
Psychomyia	0.226	-0.175	0.127	0.23
NEMATODA	0.045	0.002	0.124	-0.22
Baetidae	0.112	-0.061	-0.03	-0.208
OSTRACODA	0.024	-0.007	-0.124	0.188
COPEPODA	0.022	-0.057	-0.15	0.165
Enchytraeidae	-0.124	-0.036	-0.001	-0.164

Variables ordered by absolute size of correlation within function.

Highlighted numbers indicate the largest absolute correlation between each variable and any discriminant function

Appendix 9 Discussion on the influence of discharge on variability in the historical benthic invertebrate data from the Bow River

CONSIDERATIONS ABOUT THE INFLUENCE OF RIVER FLOW ON BENTHIC INVERTEBRATE DISTRIBUTION

Differences in benthic fauna among years may be the result of changes to water quality over time. However, the effect of flow on invertebrate community structure must be considered as well. Hydrometric data which correspond to the period studied are available from the Water Survey of Canada on-line archives for a limited number of Bow River sites. Bow River below Bearspaw Dam (05BH009), downstream of Carseland Dam (05BM002), and near the mouth (at the confluence of the Oldman River) (05BN012) were chosen to represent flow conditions over the range of sites where invertebrates were collected. These stations roughly correspond to the Cochrane, Carseland, and Ronalane sampling locations.

Flows from the dates sampled ranged from 45 to 103 m³/s downstream from the Bearspaw Dam. Downstream from the Carseland Dam, daily flows on the sample dates ranged more widely, between 41 and 155 m³/s. Near the confluence with the Oldman River, samples were collected over the greatest range of flows, between 13 and 143 m³/s. In all cases, the highest flows were in September of 1993, while the date of the lowest flow was different for all sites (Figure A9-1). The highest daily flow for each site occurred in the sample month with the highest mean monthly flows. However, the lowest mean monthly flows did not correspond to lowest daily flows (Figure A9-2).

Hydrometric conditions prior to the day or month in which the invertebrates were sampled can have an important effect on the benthic invertebrate community. The scouring action of high flows may reduce invertebrate abundance and diversity in the short-term, but by removing algal over-growth and sediments may leave a substrate that is more favourable for colonization by clinging and sprawling taxa that are associated with "cleaner" water conditions. Daily flows for April through October for the years sampled are graphed in the Appendix (Figures A 9-3). These data were examined for incidents of "high" flow, arbitrarily defined as flows over 300 m³/s. The first such peak occurred downstream of the Carseland Dam and near the confluence with the Oldman River in mid-September of 1985, just two weeks before invertebrate sampling occurred. On this occasion, flows rose from 40 m⁵/s to about 330 m⁵/s over one day. In early June of 1986, spring flows peaked at over 400 m³/s at all three hydrometric stations. Flows in 1993 were generally high; measurements over 300 m³/s occurred numerous times at the two downstream stations throughout June, July and August. The maximum daily flow downstream of the Carseland Dam was 490 m³/s during this period, while flows near the mouth peaked at 477 m³/s. The highest levels of all the years sampled occurred in 2006. when, in mid-June, maximum flows reached 820 m³/s downstream of the Carseland Dam and 778 m³/s near the confluence.

Although no benthic samples were collected in 2005, it is important to note that in June of that year, the Bow River experienced a significant flood event. No flows are available from the station below the Bearspaw Dam, but the highest daily flow downstream at

Calgary (05BH004) was 602 m³/s. Flows were highest downstream of the Carseland Dam, reaching 1710 m³/s. Near the mouth of the Bow River, the maximum daily flow was 1530 m³/s. Flows of these magnitudes would be expected to cause physical alteration to the bed and banks of the river, decimation of macrophyte and algae populations, and significant drift and displacement of benthic invertebrates.

Ecological conditions in the Bow River in the fall of 2004 and 2005 were compared in a project by University of Calgary Environmental Sciences students (ENSC502 2006). From an examination of four sites within the City of Calgary, they concluded that while epilithic algae had already begun to recover to pre-flood levels, aquatic macrophyte biomass, sediment nutrient levels, and benthic invertebrate diversity (richness) were all lower than in the previous year. Given the relatively short life-spans of most benthic invertebrates, recovery should be expected by the following year (i.e. by the 2006 sampling dates). Indeed, anecdotal reports from fly-fishermen claim that the trout fishery between Calgary and Carseland was excellent in 2006 (Big Rock Fly Guides 2007), suggesting an adequate supply of invertebrate prey.

Literature Cited

••••••••••••

Big Rock Fly Guides 2007. Web Archives. January 22, 2007. http://www.bigrockflyguides.com/

Environmental Sciences 502. 2006. Bow River Ecological Changes Following the 2005 Flood. *In* Flood 2005: Lessons Learned. Presented by K. Carter and R. Willson, June 14, 2006. http://www.ucalgary.ca/ensc/files/ensc/ENSC502%2005-06%20Living%20with%20Our%20Rivers%20BRBC%20Combined.pdf

Line indicates median

Figure A 9-1 Daily flows in the Bow River which correspond to benthic invertebrate sampling dates, 1983-2006

Line indicates median

•••••••••••••••••

Figure A 9-2 Monthly flows in the Bow River which correspond to benthic invertebrate sampling months, 1983-2006

DS Carseland 1983

Confluence 1983

Figure A 9-3 Daily Flows at several locations in the Bow River

DS Carseland 1984

Confluence 1984

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

DS Carseland 1985

Confluence 1985

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

DS Caresland 1986

Confluence 1986

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

DS Carseland 1987

Confluence 1987

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

DS Carseland 1989

Confluence 1989

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

DS Caresland 1993

Confluence 1993

Pink square indicates benthic invertebrate sampling day

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

156

DS Caresland 2006

Confluence 2006

Pink square indicates benthic invertebrate sampling day

•••••••••••••

Figure A 9-3 Daily Flows at several locations in the Bow River (con't)

Appendix 10 Comparisons among years: examples of results of Bonferroni test performed on samples collected in 1985, 1993, and 2006

Example applies to selected metrics			
Metric Tested	1985	1993	2006
Abundance			
Richness			
Simpson Diversity Index		_	
Shannon Diversity Index			
No. Predatory Taxa			
No. Scraper Taxa			
No. Shredder taxa			
No. Filter Taxa			
No. Gatherer Taxa		_	
No. Clinger Taxa			
No. Climbing Taxa			
No. Burrowing Taxa			
No. Sprawling Taxa			
No. Swimming Taxa			
No. Erosional Taxa			
No. Lentic Taxa			
No. Intolerant Taxa		-	
Total No. Families			
No. Ephemeroptera Genera			
No. Plecoptera Genera			
No. Trichoptera Genera		_	
No. Tricrioptera defiera			

Full line joins years significantly (p<0.05) different

