Numele și prenumele	
---------------------	--

EXAMEN la SISTEME AVANSATE DE CODARE SI COMPRESIE A DATELOR MULTIMEDIA (SACCDMM)

27 Ianuarie 2012

- 1. Ce se înțelege prin redundanța codării? Dar prin entropia sursei? Care este modul de abordare pentru eliminarea acestei redundanțe? Dacă, pentru reprezentarea unei imagini de 10×10 pixeli, în care pixelii sunt reprezentați prin luminanțele lor în domeniul {0,1,...,255}, se foloseste o schemă de codare a luminanțelor din imagine pe un număr mediu de biți egal cu 2, care este redundanța codării față de schema de codare clasică în care fiecare luminanță este codată pe 8 biți?
- 2. Descrieți modul de codare a imaginilor prin transformări. Care este transformata care stă la baza formatului de compresie a imaginilor statice JPEG? Care este spațiul de reprezentare a culorii utilizat la codarea JPEG? Care este diferența la compresia celor 3 componente pentru reprezentarea culorii (luând în considerare și sistemul vizual uman) și care este ordinea de codare a acestora.
- 3. Care sunt factorii care au dus la dezvoltarea standardului de compresie MPEG. Descrieți pe scurt tipurile de cadre din standardul MPEG. Explicați ce se înțelege prin estimarea mișcării.
- 4. Matricea $U_{dct}[8\times8]$ reprezintă coeficienții transformatei DCT a blocului de 8×8 pixeli dintr-o imagine digitală pe nivele de gri și matricea $\mathbf{Q}[8\times8]$ este matricea de cuantizare folosită pentru cuantizarea acestor coeficienți într-o schemă de codare bazată pe DCT 2-D.
 - a) Cum arată matricea coeficienților DCT cuantizați (valorile rezultate în urma cuantizării se vor rotunji la cel mai apropiat întreg)?
 - b) Reprezentați șirul coeficienților DCT cuantizați obținut în urma unei ordonări în zig-zag. Care este rolul ordonării în zig-zag?
 - c) Dacă valoarea cuantizată a coeficientului DC din blocul anterior este -10, prin ce valoare se reprezintă coeficientul DC cuantizat din blocul curent în conformitate cu standardul JPEG?
 - d) Care este codarea utilizată în standardul JPEG pentru codarea entropică a datelor?
 - e) Care este forma analitică a operației de negativare a imaginilor direct în domeniul comprimat? Aplicați operația de negativare pe matricea coeficienților DCT cuantizați obținută la punctul (a).

	-227,00	40,71	66,32	-0,21	5,75	-0,60	2,02	-0,94
	-164,88	64,14	70,93	6,57	5,45	-1,96	-1,59	1,07
	-37,63	20,70	19,44	4,69	3,06	3,36	0,91	2,22
	4,28	-2,34	-1,03	-0,38	-3,50	-3,65	-6,25	2,13
$\mathbf{U}_{\mathbf{dct}} =$	2,25	-0,11	-5,07	-5,63	-4,50	-2,16	-1,15	-0,11
	8,49	-7,23	-0,67	-7,00	-1,88	-0,44	4,34	-0,62
	9,09	2,35	1,91	-4,28	-0,46	-0,79	1,06	1,51
	6,02	3,72	2,34	-1,27	-3,17	2,18	1,18	-1,32

	16	11	10	16	24	40	51	61
Q =	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
Q –	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

- 5. Fie **U**₁ de 8×8 pixeli un bloc codat și reconstruit dintr-un cadru de referință, și respectiv **U**₂ blocul de pe aceeași poziție spațială de 8×8 pixeli din cadrul curent care urmează a fi codat. Asupra secvenței video se aplică o codare cu înlocuire condiționată cu pragul η.
 - a) Daca $\eta = 15$, cum arată matricea de eroare $\mathbb{E}[8 \times 8]$ transmisă decodorului?
 - b) Cum arată blocul de 8×8 pixeli din cadrul curent codat la punctul a), reconstruit la decodor? Calculați MSE (eroarea medie pătratică) dintre blocul decodat (reconstruit) din cadrul curent și blocul original din cadrul curent.
 - c) Ce valoare ar trebui sa aiba valoarea de prag de codare a erorii, η, pentru a coda cadrul curent fără a transmite nici un semnal de eroare? Calculați și în acest caz MSE la redarea cadrului curent.

 $\mathbf{U}_2 =$

	120	110	80	50	50	50	60	90
	120	90	60	50	50	50	60	70
	120	100	80	60	60	60	70	90
	120	110	100	90	90	90	100	110
$\mathbf{U}_1 =$	120	120	120	120	120	120	120	120
	120	120	120	120	120	120	120	120
	110	110	120	120	120	120	120	120
	110	110	120	120	120	120	120	120