

Winning a space Race with data science

Outline

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems to find answers to:

- What are the factors needed to be determined in case the rocket landed successfully?
- The interaction amongst different features that decide the success rate,
- What're the operating conditions we need to ensure a successful landing program.

Section 1 Methodology:

Data Collection

 Different approaches were utilized to gather information. The data was obtained by issuing a get request to the SpaceX API. The response content was subsequently decoded as a Json by invoking the .json() function and then transformed into a pandas dataframe by using .json normalize(). After that, the data was scrubbed, assessed for absent values, and these were substituted where appropriate. Additionally, web scraping was carried out on Wikipedia for Falcon 9 launch details using BeautifulSoup. The aim was to retrieve the launch data as an HTML table, extract the data from the table, and change it into a pandas dataframe to facilitate subsequent examination.

Data Collection - SpaceX API

 To gather the necessary information, we employed the get request function from the SpaceX API. Subsequently, we performed some basic data cleaning and reorganization, including data wrangling and formatting.

```
1. Get request for rocket launch data using API
          spacex url="https://api.spacexdata.com/v4/launches/past"
           response = requests.get(spacex url)
   2. Use json normalize method to convert json result to dataframe
In [12]:
           # Use json normalize method to convert the json result into a dataframe
           # decode response content as json
           static json df = res.json()
           # apply json normalize
           data = pd.json_normalize(static_json_df)
   3. We then performed data cleaning and filling in the missing values
In [30]:
           rows = data falcon9['PayloadMass'].values.tolist()[0]
           df rows = pd.DataFrame(rows)
           df rows = df rows.replace(np.nan, PayloadMass)
           data falcon9['PayloadMass'][0] = df rows.values
           data falcon9
```

Data Collection - Scraping

• We utilized web scraping with BeautifulSoup to extract Falcon 9 launch records from a website. After parsing the data table, we transformed it into a pandas dataframe for further analysis.

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
        static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922"
          # use requests.get() method with the provided static_url
          # assign the response to a object
          html data = requests.get(static url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html data.text, 'html.parser')
         Print the page title to verify if the BeautifulSoup object was created properly
           # Use soup.title attribute
           soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
        Extract all column names from the HTML table header
         column_names = []
         # Apply find all() function with "th" element on first launch table
         # Iterate each th element and apply the provided extract column from header() to get a column name
         # Append the Non-empty column name ('if name is not None and Len(name) > \theta') into a list called column names
         element = soup.find all('th')
          for row in range(len(element)):
                 name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0);
                     column names.append(name)
    4. Create a dataframe by parsing the launch HTML tables
    Export data to csv
```

Data Wrangling

• We conducted exploratory data analysis to determine the training labels, which involved calculating the quantity of launches that occurred at each site, as well as the number and frequency of orbits. Additionally, we generated a landing outcome label based on the outcome column, and subsequently saved the outcomes as a csv file.

EDA with Data Visualization

 To gain insight into the data, we utilized data visualization to examine the connection between flight number and launch site, payload and launch site, success rate of each orbit type, flight number and orbit type, as well as the yearly trend of launch success.

EDA with SQL

 We imported the SpaceX dataset into a PostgreSQL database directly from the Jupyter Notebook without exiting it. Using SQL for exploratory data analysis, we gained insight into the data. We composed queries to discover information such as the distinct names of launch sites involved in space missions, the total payload mass transported by boosters launched by NASA's CRS program, the average payload mass transported by the F9 v1.1 booster version, the overall number of successful and failed mission outcomes, and details about failed landing outcomes on drone ships, including the booster version and launch site names.

Build an Interactive Map with Folium

 We designated all of the launch sites and utilized map objects such as markers, circles, and lines to indicate the success or failure of launches for each site on the folium map. Launch outcomes were classified as 0 or 1, with 0 representing failure and 1 representing success. By utilizing color-coded marker clusters, we were able to identify which launch sites had a higher rate of success. We also calculated the distances between each launch site and its surrounding areas, answering questions such as whether the launch sites were located near railways, highways, and coastlines, as well as if there was a certain distance maintained between the launch sites and nearby cities.

Build a Dashboard with Plotly Dash

We developed an interactive dashboard using Plotly dash. This dashboard displayed pie charts to depict the total launches from specific sites, as well as scatter graphs that depicted the relationship between outcome and payload mass (measured in kilograms) for different booster versions.

Predictive Analysis (Classification)

• First, we imported and processed the data using numpy and pandas. Next, we separated our data into training and testing sets. We then constructed multiple machine learning models and optimized them by adjusting various hyperparameters through GridSearchCV. To evaluate our models, we utilized accuracy as the performance metric, and improved the models by refining feature engineering and algorithm tuning. Finally, we identified the highest performing classification model.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Section 2 Insights from EDA

Flight Number vs. Launch Site

 From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

 We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

All Launch Site Names

We used the key word
 DISTINCT to show only
 unique launch sites from the
 SpaceX data.

Display the names of the unique launch sites in the space mission

Out[10]:	launchsite				
	0	KSC LC-39A			
	1	CCAFS LC-40			
	2	CCAFS SLC-40			
	3	VAFB SLC-4E			

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'											
In [11]:	<pre>task_2 = '''</pre>										
Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

 We used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

'''

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

```
In [13]:
    task_4 = '''
        SELECT AVG(PayloadMassKG) AS Avg_PayloadMass
        FROM SpaceX
        WHERE BoosterVersion = 'F9 v1.1'
        '''
        create_pandas_df(task_4, database=conn)
```

Out[13]: avg_payloadmass
0 2928.4

First Successful Ground Landing Date

 We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Out[15]: boosterversion 0 F9 FT B1022 1 F9 FT B1026 2 F9 FT B1021.2 3 F9 FT B1031.2

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000 List the total number of successful and failure mission outcomes

```
In [16]:
          task 7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task_7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create pandas df(task 7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create_pandas_df(task_7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

 We used wildcard like '%' to filter for WHERE MissionOutcome was a success or a failure.

Boosters Carried Maximum Payload

 We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

Out[17]:		boosterversion	payloadmasskg
	0	F9 B5 B1048.4	15600
	1	F9 B5 B1048.5	15600
	2	F9 B5 B1049.4	15600
	3	F9 B5 B1049.5	15600
	4	F9 B5 B1049.7	15600
	5	F9 B5 B1051.3	15600
	6	F9 B5 B1051.4	15600
	7	F9 B5 B1051.6	15600
	8	F9 B5 B1056.4	15600
	9	F9 B5 B1058.3	15600
	10	F9 B5 B1060.2	15600
	11	F9 B5 B1060.3	15600

2015 Launch Records

 We used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

Out[19]:		landingoutcome	count
	0	No attempt	10
	1	Success (drone ship)	6
	2	Failure (drone ship)	5
	3	Success (ground pad)	5
	4	Controlled (ocean)	3
	5	Uncontrolled (ocean)	2
	6	Precluded (drone ship)	1
	7	Failure (parachute)	1

- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

Section 3 Launch sites Proximites Analysis

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Section 4 Dashboard with plotly dash

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Section 4: Classification

The decision tree classifier is the model with the highest classification accuracy

Best params is : {'criterion': 'gini', 'max depth': 6, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 5, 'splitter': 'random'}

Confusion Matrix

 Upon analyzing the confusion matrix for the decision tree classifier, we discovered that the classifier is capable of accurately differentiating between various classes. However, a significant issue exists with false positives, where the classifier incorrectly identifies unsuccessful landings as successful landings.

Conclusions

- Based on our analysis, we have determined that:
- Launch sites with higher flight amounts tend to have higher success rates.
- The launch success rate has been steadily increasing since 2013 and through 2020.
- Orbits such as ES-L1, GEO, HEO, SSO, and VLEO had the highest success rates.
- KSC LC-39A had the most successful launches compared to any other site.
- The decision tree classifier is the most effective machine learning algorithm for this particular task.

Thank you!