F. LAn, Torelli Humafor K3s

- 1) Bastics
- 2) Torelli theorems
- 3) Moduli spaces, period map

§1. Let X be a cplx. surface. Say X is K3 if $H^{2}(X, \mathcal{O}_{X}) = 0$ and $K_{X} \cong \mathcal{O}_{X}$ [canon. bundle trival]

Facts: a) X K3 \Rightarrow X is Kähler (but not necessarily projective).

b) All K3s are diffeomorphic (will follow from description of models space.).

Examples' • quertic $\subset \mathbb{P}^3$ (i) $\left\{\begin{array}{c} (2,3) \text{ complete intersection in } \mathbb{P}^4 \\ (2,2)\end{array}\right.$ in in \mathbb{P}^5 .

(ii) Kummer surfaces: Say T a complex forus, meaning C2/1 lattice

The action {21-2} has 16 fixed points on T, the 2-tessus points on T
2) T/21-2 has 16 nodel singularities - (each of type A.)

Tresolution is a K3 surface. (Radi: con blow up T first Barque Z/2 action
With to blow up, fixing exceptual
(for a gueral cplx. tons, this need not be projective).

devices).

Seach notal singularity goes a (-2) vatual cure

(alled the nodal cones).

(b) they're smoothly exhedded

spheres, resolution of
A, showlesty)

Topology (Hodge theory

 $\pi_{\lambda}(\chi) = 0.$

Hodge dramond 1 20 1

condeduce va computing $\mathcal{X}(X)$, $\mathcal{X}_h(X)$, g Novether; formula. ever, i.e., (x,x) = 2 7 (b/cits Spin; c, = 0, so we vanisher).

Complex line bundles

Recall the exponential sequence of sheares 6-> Z -> 0. exp 0 x -> 6

 $H^{2}(X; \mathcal{O}_{X}) \longrightarrow H^{2}(X; \mathcal{O}_{X}^{*}) \xrightarrow{q} H^{2}(X; \mathbb{Z}) \longrightarrow H^{2}(X; \mathcal{O})$ Mances 14 LES (P) Hol3 (X, €) Pic (X)

by definition ; hence (a) = Pic(X) () H2(X, Z) for Xak3

and, (b) => Pic(X) (+12,2(X; 1R), v) b/c fixed under conjugation Hodge index thearen: => u has signature (1,29). by

deH2,2 (uses fact X is kahler)

is divisoral (it it cases for a divisor); effective (cons for an effective of divisor))

imednible (if it canes from an irreducible divisor)," moder (cons from a (-2) come.).

Picture: (of H")

Kähler one. Ex

(complicatly, we proke to be ablanciers in advance)

) cone where (x,x)=0. Inside cone: (x,x)=0.

Kähler cone = {x | (x,d) 70 & delective}?; denok it ex.

Fact: If x,y & & Ex, then <x,y>7,0, (linear algebral Cardy-schwarz)

and if one is in the orknor, then <x, y7 >0. (Think of Px as closed; includes bornday)

Lenma 1: If de Pic \ 903, saturies (d,d) = 2, there other d or -d is effective.

The holomophic Enter characteristic
$$\chi_h(\chi) = h^o(\chi) - h^1(\chi) + h^2(\chi)$$
 $\leq h^o(\chi) + h^o(\chi_{\chi} \otimes \chi^{\vee})$

(by Serie durly) (b/c $k_{\chi} = 0_{\chi}$) of top Eler char.

 $= \frac{1}{2} d(c_2(\chi) + d) + \frac{1}{2} + \chi(\chi)$

(Rieman, Rach)

 $= \frac{1}{2} (d,d) + 2 > 1$.

Lemma: If dis ineducible => (d,d) = -2.

Proof: By adjunction,

$$K_{X} + D |_{1D} = K_{D} > -2$$
. (if D is smooth) then become to lds regardless).

11

 D^{2} (blc $K_{X} = Q_{X}$)

Cori The semigroup of effective classes is generated by nodal conner and integral points in Cx. (need to shar that if have an ined. class, the notal or in here)

Pt: (a) I we decible $g(d,d) = 2 \Rightarrow (d,d) = 0$ (b/c lattice is even).

(or: f(d,d) = 0 (or: f(d,d) = 0)

(or: f(d,d) = 0)

(or: f(d,d) = 0)

illoralli theorems: rough Q: When are two K3. X, X' isomorphic?

If there exists a biholonorphum f: X -> X', then induces

$$H^2(X, \mathbb{Z}) \xrightarrow{\varphi} H^2(X, \mathbb{Z}).$$
 1) φ preserves cup product

2) φ preserves φ by φ a Hodge is sanding

In fact, conver is true

3) effective >> effective 3 six l'is effective

Thm: (Forellithm") If 4: 42(X; Z) -> H2(X; Z) Ts a Hodge Tomety which is effective, [Shafarevich, Pratetski-shapiro] it is induced by a unique biholomorphism.

```
If die nodal, can define:
       S1: H2(x, Z) > x -> x + (x,d)d.
   Because I is nodel & sente I is in H' (so orthogonal to H2,0)
      => So is a Hodge isometry. ( reflecting a ross place orthogonal to d ]
  Sd:= a Picard-Lefschetz reflection. Have an action
   Wx = {Syldis nodal} C. Ex.
 Fact: Ex is a fundamental domain for this action.
φ: H(X, Z) -> H(X, Z), a Hodge is snowly, is effective if and only if
fearher: + maps one element of et into et.
       Sketch: Just need to show of (nodal class) is effective.
              But either op (nodel) or -op (nodel) is effective.
            The hypothesis that one eff. of ex - are ext implies ob (nodel) is obtaine).
            If x \in C_X^+ has \phi(x) \in C_X^+, then (\phi(x), \phi(nodel) = (x, nodel) = 0
                                                            =) $\phi(nodel) is effective & - \phi(nodel) is ast.
 All of this together implies
All of this together impries

Then (weak Torelli theorem): X \cong X' \iff \exists a \text{ Hodge isometry}

H^2(X, \mathbb{Z}) \xrightarrow{\cong} H^2(X', \mathbb{Z})
 Pf: After applying some Proved - Latischetz Sai, can wrange my such &
    becomes effective.
83. Moduli spaces.
211 (X,4), X = K3, 4: H2(X,Z) => L=(-2E8)03(10)
            a nated K3 s-sface.
```

The marking gives of: 1+2(x,'C) -> LC.

Define $\tau(X,\phi) = \{\phi_{\mathbb{C}}(\omega_{X})\} \in P(L_{\mathbb{C}})$ Actually $T \in \Omega = \{ [\omega] \mid (\omega, \omega) = 0 \}$ $\{ [\omega, \omega) \neq 0 \}$ $\{ [\omega, \omega) \neq 0 \}$ (note I has dim 20, b/c La has dim. 22, P(La) has din. 21, 6 have imposed one equation) This is alled the period map. (the elevent $c(X, \phi)$ associated to (X, ϕ)). To settlin up 40 an actual map: Look of the The kuranushis space of X (the by defendin space) has tangents pace.

(space of integrable I's mad dolf.) $H^{2}(X;T_{X}) \stackrel{\sim}{=} H^{2}(X;\Omega_{X}^{2}) = H^{\prime\prime}(X;C)$ & $h^{\prime\prime}=a_{0}$ $T_{\mathsf{x}} = \Omega_{\mathsf{x}}'$ Now known in gerent: X CY => Kuranushi spice is smooth (but simple for X a K 3)), unvesal, Call M (43,4) this moduli space of 1635 w/ markings. (point: 100 K35 may hove global entemphons, but so marking helps get rid of thex; but (& is discretely more data) - picture and $c: \mathcal{M}_{(k3,\phi)} \longrightarrow \mathcal{D}_{c} P(L_{c})$ is a local isomorphism.

Give a family bre maybe no local aut.), ~ perod map 7:5 -> 12, perod map YoK

and Te D = Hom (l, l/2).

7

S = 0

Can compute dz: ToS -> Tz(0) 52. as follows: To S $\frac{KS}{1}$ $H^{2}(Y_{0}, T_{V}) \sim Hom(H^{2,0}, H^{1,1})$ | (who marking H^{2})

| Kodaira-Specer inap

| Hom($\tau(0)$, $\tau(0)^{2}/\tau(0)$) which = $H^{2}(T_{V}) \otimes H^{0}(\Omega^{2}) \Rightarrow H^{2}(\Omega^{1})$, or dually, H2(Tyo) -> How(H9(D2)) lusing this, its very stary befored to check Z: M(u3, p) → S is a local 30.). Facts: 1) T is sweetie (indeed, one can show kumme surfices are dense (this is used to prove Torelli infact; chedit for Krumes & then a degree tre / 4 pproxumetre a) I determines the Hodge should. =) all the fibers are isomorphic. In particular, $T^{-2}(p) \iff Chambers of W_X () (X)$ for any X in the fiber fray maked (X; 4)

(or rather; W_X , C_X are in fact sust determed by 3) M(13,0) is not Have doiff. in the limit of a family, a (-2) come call pop out; & charles cald split). E.g., "Atryah flop" (two explicit families of K35 over drish which coincide away from