Arhitekture i algoritmi DSP II

Projektni zadatak: **Mixer NxM**

Student: Aleksa Arsić Mentor: Dejan Bokan

Novi Sad, 2018.

Sadržaj

1.	Opis zadatka
2.	Opis realizacije
	Ispitivanje i verifikacija

1. Opis zadatka

Potrebno je realizovati module 0, 1 i 2 na osnovu datog koda mixera NxM, gde N predstavlja broj ulaznih, a M broj izlaznih kanala. Sam mixer svaki odbirak ulaznog signala množi sa članovima njegove strukture mixerNxM_data, output_gain i gain_matrix[N][M] i takvog ga predstavlja na 6 izlaznih kanala. Takođe moguće je zaobići mixer prosleđivanjem logicki netačnog ulaznog parametra enable. Tada je signal preslikan onakav kakav je na ulazu na onoliko kanala od koliko se sastoji (maksimalno šest).

U datom rešenju predstavljeni su modeli 0, 1 i 2 u potpunosti, dok je model 3 delimično završen (do optimizacije asmeblerom). Počev od modela 0, processing funkcija se uspešno poziva i obavlja traženi posao bez deformacija signala. Razlike između modela 0 i modela 1 kroz sve test modele ne postoje. Razlike između modela 1 i modela 2, za sve test primere koji su dati, su na nivou bit-razlike, dok razlike između modela 2 i modela 3 ne postoje.

Rešenje ovog programa može da radi u pet različitih modova. Modovi predstavljaju kombinacije kanala koji su uključeni i na kojima će se pojaviti signal na izlazu.

Problem koji se provlaci kroz resenje jeste problem izlaska van opsega koji se resava klipovanjem signala.

Ispitivanje programa vrši se putem Test.bat skripte, o kojoj će biti više reči u poglavlju 3. Ispitivanje i verifikacija.

2. Opis realizacije

Dati opis realizacije zadatka i navesti sve izvršene korake po modelima, kao i analizu potrošnje resursa (memorija za podatke, programska memorija, instrukcijski ciklusi, ...)

Model 0 se sastoji od datog referentnog koda koji je inicijalizovan dodatno napisanom funkcijom i pozvan kao blok obrade.

U modelu 1 optimizovale su se programske petlje, svi suvišni delovi koji su se mogli izmestiti izmešteni su van njih. Prešlo se iz običnog indeksiranja u aritmetiku pokazivača kako bi obrada bila brža, a suvišni delovi koda izmešteni su u common.h zaglavlje. Izmešteni su makroi i deklaracije globalnih promenjivih.

Prelaskom sa modela 1 na model 2 sa aritmetike u pokretnom zarezu prešlo se na aritmetiku u fiksnom zarezu i to vrlo uspešno, na nivou bit-razlike za sve date test ulaze. Pored toga ništa se ostalo nije promenilo.

U modelu 3 programski kod prilagodio se CCC kompajleru, kao što je urađeno i smeštanje po memorijskim zonama X i Y. Dodatno većina petlji je prepravljena kako bi CCC generisao asemblerski kod koji će koristiti hardverske petlje, u cilju bržeg izvršavanja programa. Ono što je dodatno potrebno jeste pregledati generisani asemblerski kod i dodanto ga optimizovati, takođe u cilju smanjenja instrukcijskih ciklusa.

Iz sledeće slike vidi se da i dalje nakon nepotpune optimizacije funkcija processing() je najzahtevnija i zahteva najviše procesorskog vremena.

ymbols	Source File	Line Num	Address	Base Time	Average Base	Cumulative Time	Calls
✓ root			0x0000	8	8.00	25526977	1
→ main	\\src\main.c	121	0x0001	4834694	4834694.00	25526972	1
mixerNxM_processing	\\src\main.c	48	0x016b	17944796	12646.09	17944796	1419
mixerNxM_init	\\src\main.c	12	0x012b	416	416.00	416	1
_strcpy_x2x			0x0318	442	221.00	442	2
_cl_wavwrite_sendsample			0x0342	816768	6.00	816768	136128
_cl_wavwrite_open			0x033f	6	6.00	6	1
_cl_wavread_recvsample			0x0339	136224	6.00	136224	22704
_cl_wavread_open			0x0336	6	6.00	6	1
_cl_wavread_number_of_frames			0x0333	6	6.00	6	1
_cl_wavread_getnchannels			0x0330	6	6.00	6	1
_cl_wavread_frame_rate			0x032d	6	6.00	6	1
_cl_wavread_bits_per_sample			0x0327	6	6.00	6	1
> _div			0x02de	83721	59.00	1793616	1419

Slika 1. Profiling prozor CLIDE okruženja

3. Ispitivanje i verifikacija

Provera ispravnosti zadatka sastoji se od pokretanja test skripte Test.bat koja pokreće model 0, 1 i 2 za sve ulazne primere koji su dati i na osnovu njih, uz pomoć PCMCompare alata generiše .txt fajlove koji sadrže informacije o razlikama izlaza imeđu modela 0 i 1, i modela 1 i 2, kao i modela 2 i 3. Dodatno skripta prosleđuje argumente modelima. I to redom: gain mode enable. Tekstualne fajlove koji se nalaze u OutCmp folderu lako je analizirati. Između modela 0 i 1 ne sme da postoji razlika. Između modela 1 i 2 dozvoljena razlika je maksimalno 1 bit, a između modela 2 i 3 razlika takođe ne sme postojati.

Moduli su ispitani za različite ulazne parametre (različit gain, kao i različiti modovi) i nije uočeno nikakvih odudaranja od gore pomenutih pravila.