

FIGURE A-27 The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$.

TABLE 14-4 (CONCLUDED)

90° miter bend (without vanes): $K_L = 1.1$

90° miter bend (with vanes): $K_l = 0.2$

45° threaded elbow: $K_{I} = 0.4$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

TABLE 15-2

Representative drag coefficients $\mathcal{C}_{\mathcal{D}}$ for various three-dimensional bodies based on the frontal area for Re $> 10^4$ unless stated otherwise (for use in the drag force relation $F_D = C_D A \rho V^2/2$ where V is the upstream velocity)

Cube, $A = D^2$

 $C_D = 1.05$

Thin circular disk, $A = \pi D^2/4$

Cone (for $\theta = 30^{\circ}$), $A = \pi D^2/4$

 C_D

1.1

0.9

0.9

0.9

1.0

Sphere, $A = \pi D^2/4$

Laminar:

See Fig. 11–36 for C_D vs. Re for smooth and rough spheres. Ellipsoid, $A = \pi D^2/4$

	C_D	
L/D	Laminar	Turbulent
	$Re \lesssim 2 \times 10^5$	$Re \gtrsim 2 \times 10^6$
0.75	0.5	0.2
1	0.5	0.2
2	0.3	0.1
4	0.3	0.1
8	0.2	0.1

Hemisphere, $A = \pi D^2/4$

 $C_D = 0.4$

 $C_D = 1.2$

Finite cylinder, vertical, A = LD

Values are for laminar flow $(Re \leq 2 \times 10^5)$

Finite cylinder, horizontal, $A = \pi D^2/4$

