Basic Knowledge

HAlg Note

Lagrange's Theorem: If $H \subseteq G$ is a subgroup, then |H| divides |G|.

I: If G is finite, then $g^{|G|} = e \ \forall g \in G$. II: o(g) | |G| III: If |G| = p prime, G is cyclic.

Complement-wise Operations: $\phi: V_1 \times V_2 \rightarrow V_1 \oplus V_2$ by $\underline{\mathbf{l}}: (\vec{v_1}, \vec{u_1}) + (\vec{v_2}, \vec{u_2}) := (\vec{v_1} + \vec{v_1}, \vec{u_1} + \vec{u_2})$, $\lambda(\vec{v_1}, \vec{u}) := (\lambda \vec{v_1}, \lambda \vec{u})$ (ps: V_1, V_2 通过 ϕ 定义的 map 所形成的 vector space 记作 $V_1 \oplus V_2$)

External Direct Sum: 一个" 代数结构"(Vector Space), 定义为 set 是 $V_1 \oplus \cdots \oplus V_n := V_1 \times \cdots \times V_n$ 且有一组运算法则 component-wise operations

Projections: $pr_i: X_1 \times \cdots \times X_n \to X_i$ by $(x_1, ..., x_n) \mapsto x_i$ **Canonical Injections**: $in_i: X_i \to X_1 \times \cdots \times X_n$ by $x \mapsto (0, ..., 0, x, 0, ..., 0)$

Useful Way of Thinking Matrix: $A_{n \times m} B_{m \times n} = A \begin{pmatrix} b_{*1} & b_{*2} & \cdots b_{*n} \end{pmatrix} = \begin{pmatrix} A b_{*1} & A b_{*2} & \cdots A b_{*n} \end{pmatrix}$ $rank(\mathbf{a}_{*k} \mathbf{b}_{k*}^T) \le 1$

$$A_{n \times m} B_{m \times n} = \begin{pmatrix} \mathbf{a}_{1*}^T \\ \vdots \\ \mathbf{a}_{n*}^T \end{pmatrix} B = \begin{pmatrix} \mathbf{a}_{1*}^T B \\ \vdots \\ \mathbf{a}_{n*}^T B \end{pmatrix} \qquad \qquad A_{n \times m} = A_{n \times m} I_m \qquad = A(\vec{e_1} \qquad \vec{e_2} \qquad \cdots \qquad \vec{e_n}) \\ \vdots \\ \mathbf{a}_{n}^T B \qquad \qquad A_{n \times m} B_{m \times n} = \begin{pmatrix} \mathbf{a}_{1*} & \mathbf{a}_{1*} & \mathbf{a}_{1*} \\ \vdots \\ \mathbf{b}_{n}^T B \end{pmatrix} = \sum_{k=1}^m \mathbf{a}_{nk} \mathbf{b}_{k*}^T \mathbf{b}_{k*}^T \mathbf{b}_{k*}^T \mathbf{b}_{k*}^T \mathbf{b}_{n*}^T \mathbf{b}$$

 $^{\oplus}$ **Division Ring**: If *R* is ring and it's multiplicative inverse $\forall a \in R \setminus \{0_R\}$ $^{\oplus}$ **Characteristic of Field**: *F* is field, char(F) = p if 可以有 1/p 的操作.

Summary

Name	Group (<i>G</i> , *)	Ring $(R, +, \cdot)$	Vector Space $(F - V)$	Module $(R - M)$
Def	Closure : $g * h \in G$ $\forall g, h, k \in G$	$(R,+)$ is abelian group with $0_R \forall a,b,c \in R$	$(V, \dot{+})$ is abelian group $\forall \vec{v}, \vec{w} \in V$	$(M, \dot{+})$ is abelian group $\forall m_1, m_2 \in M$
	Associativity: $(g * h) * k = g * (h * k)$	(R,\cdot) is monoid with 1_R (monoid is closure)	$\exists \; \mathrm{map} \; F \times V \to V : (\lambda, \vec{v}) \to \lambda \vec{v} \qquad \qquad \forall \; \lambda, \mu \in F$	$\exists \; \mathrm{map} R \times M \to M : (r,m) \to rm \qquad \qquad \forall r_1, r_2 \in R$
	Identity : $\exists e \in G, e * g = g * e = g$	i.e. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$	$\mathbf{I}: \lambda(\vec{v} \dotplus \vec{w}) = (\lambda \vec{v}) \dotplus (\lambda \vec{w})$	$\mathbf{I}: r(m_1 \dotplus m_2) = (\lambda m_1) \dotplus (\lambda m_2)$
	Inverse: $\exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e$	Identity: $1_R \cdot a = a \cdot 1_R = a$	II: $(\lambda + \mu)\vec{v} = (\lambda\vec{v}) \dotplus (\mu\vec{v})$	$\mathbf{H}: (r_1 + r_2)m_1 = (r_1m_1) \dotplus (r_1m_1)$
		Distributive : $a \cdot (b + c) = a \cdot b + a \cdot c$	$\mathbf{III}: \lambda(\mu\vec{v}) = (\lambda\mu)\vec{v}$	III: $r_1(r_2m_1) = (r_1r_2)m_1$
		$(b+c)\cdot a = b\cdot a + c\cdot a$	$IV: 1_F \vec{v} = \vec{v}$	$IV: 1_R m_1 = m_1$
Prop	$I: (gh)^{-1} = h^{-1}g^{-1}$	$\mathbf{I.}\ 0 \cdot a = a \cdot 0 = 0 \qquad \forall a, b \in R$	$\mathbf{I.} \ 0\vec{v} = 0 \ \text{and} \ \vec{0}\lambda = \vec{0} \qquad \forall \vec{v} \in V, \lambda \in F$	I. $0_R m = 0_M$; $r0_M = 0_M \forall r \in R, m \in M$
		$\mathbf{II.} (-a) \cdot b = a \cdot (-b) = -(a \cdot b)$	$II. (-1)\vec{v} = -\vec{v}$	II. (-r)m = r(-m) = -(rm)
		Commutative Ring: add $\forall a, b \in R, ab = ba$	III. $\lambda \vec{v} = \vec{0} \Leftrightarrow \lambda = 0 \text{ or } \vec{v} = \vec{0} \star$	
Remark	$G, H \text{ groups} \Rightarrow G \times H \text{ also.}$	For ring R [1 _R = 0 _R \Leftrightarrow R = {0}]		
e.g.	Cyclic group; GL_n ; D_n ; $\mathbb Z$	$Mat(n,F)$; $R[X]$; $\mathbb{Z}/m\mathbb{Z}$; \mathbb{Z}	$\mathbb{R}[x]_{\leq n}$; $Mat(n,F)$; $Hom(V,W)$	$R=\mathbb{Z}$ Abelian Group; $R=F$ Vector Space
Sub	Subgroup (H) : $\forall h_1, h_2 \in H$	Subring (R') : $\forall a,b \in R'$	Subspace (U): $\forall \vec{v}, \vec{u} \in U, \lambda, \mu \in F$	Submodule (M') : $\forall m_1, m_2 \in M'$
objects	I : <i>H</i> ≠ Ø;	$I. 1_R \in R'$	$\vec{I}.\vec{0} \in U$	$\mathbf{I.} \ 0_{M} \in M' \qquad \forall r_{1}, r_{2} \in R$
	$\mathbf{II}: h_1 * h_2 \in H;$	II. $a - b \in R'$	II. $\vec{u} + \vec{v} \in U$ and $\lambda \vec{u} \in U$	II. $m_1 - m_2 \in M'$ and $r_1 m_1 \in M'$
	III: $h_1^{-1} \in H$.	III. $ab \in R'$	(or: $\lambda \vec{u} + \mu \vec{v} \in U$)	(or: $r_1 m_1 - r_2 m_2 \in M'$)
Create	H, K subgroups $\Rightarrow H \cap K$ also.	$R, S \text{ subring} \Rightarrow R \cap S \text{ also.}$	$V, W \text{ subspaces} \Rightarrow V \cap W, V + W \text{ also.}$	M, N submodules $\Rightarrow M \cap N, M + N$ also.
Generate	Generated Group $\langle T \rangle$:	Generated Ideal $_R\langle T\rangle$: R is commutative ring	Generated subspaces $\langle T \rangle$:	Generated submodules $_R\langle T\rangle$
objects	$\langle T \rangle := \{ g_1^{a_1} g_k^{a_k} k \in \mathbb{N}, g_i \in T, a_i \in \mathbb{N} \}$	$_{R}\langle T\rangle := \{\sum_{i=1}^{n} r_{i}t_{i} : n \in \mathbb{N}, r_{i} \in R, t_{i} \in T\}$	$\langle T \rangle := \{\alpha_1 \vec{v_1} + \dots + \alpha_n \vec{v_n} : \alpha_{\vec{i}} \in F, \vec{v_{\vec{i}}} \in T, n \in \mathbb{N}\}$	$\langle T \rangle := \{ r_1 t_1 + \dots + r t_n : r_i \in R, t_i \in T, n \in \mathbb{N} \}$
Special	Cyclic Group : $\langle g \rangle = \{g^k k \in \mathbb{Z}\}$	Principal Ideal : $_R\langle a\rangle$ i.e. aR	$\langle \emptyset \rangle := \{\vec{0}\}$	Cyclic submodule : If $M =_R \langle t \rangle$
Prop	$\langle T \rangle$ is the smallest the {generated things} containing T . ps: $\Re ^2T \subseteq R$ $^4T \subseteq M$			
Homo	Homomorphism: $\phi: G \to H \qquad \forall g_1, g_2 \in G$	$f: R \to S \text{ hom}: \forall a, b \in R$	$f: V \to W$ $\forall \vec{v}_1, \vec{v}_2 \in V, \lambda \in F$	R-Hom : $f: M \to N \qquad \forall a, b \in M, r \in R$
	I. $\phi(g_1 * g_2) = \phi(g_1) * \phi(g_2)$	$\mathbf{I}. f(a+b) = f(a) + f(b)$	I. $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$	I. f(a+b) = f(a) + f(b)
		$\mathbf{II}.f(ab) = f(a)f(b)$	$II. f(\lambda \vec{v}_1) = \lambda f(\vec{v}_1)$	$\mathbf{II}.f(ra)=rf(a)$
Prop A				
TTOPA	$\mathbf{I}:\phi(e_G)=e_H$	$I. f(0_R) = 0_S \qquad f(1_R) = 1_S \text{ NOT need}$	$\mathbf{I}.f(\vec{0})=\vec{0}$	$I. f(0_M) = 0_N \qquad f(1_R) = 1_S \text{ NOT need}$
Порл	I: $\phi(e_G) = e_H$ II: $\phi(g^{-1}) = \phi(g)^{-1}$	I. $f(0_R) = 0_S$ $f(1_R) = 1_S$ NOT need II. $f(x - y) = f(x) - f(y)$	I. $f(\vec{0}) = \vec{0}$ II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$	I. $f(0_M) = 0_N$ $f(1_R) = 1_S$ NOT need II. $f(a - b) = f(a) - f(b)$
TiopA	, , , , , , ,	7 (10)	, , ,	
Порх	, , , , , , ,	II. $f(x - y) = f(x) - f(y)$	II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$	
Ker/Im	II: $\phi(g^{-1}) = \phi(g)^{-1}$	II. $f(x - y) = f(x) - f(y)$ III. $f(a^n) = (f(a))^n f(mx) = mf(x)$	II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$ III. $f \circ g$ is linear map.	$\mathbf{II.} f(a-b) = f(a) - f(b)$
-	II: $\phi(g^{-1}) = \phi(g)^{-1}$ III. ϕ is 1-1 \Leftrightarrow ker $\phi = \{e_G\}$	II. $f(x - y) = f(x) - f(y)$ III. $f(a^n) = (f(a))^n$ $f(mx) = mf(x)$ Iv. f is $1-1 \Leftrightarrow \ker f = \{0_R\}$	II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$ III. $f \circ g$ is linear map. IV. f is 1-1 iff ker $f = \{\vec{0}\}$	II. $f(a - b) = f(a) - f(b)$ III. f is 1-1 iff ker $f = \{0\}$
	II: $\phi(g^{-1}) = \phi(g)^{-1}$ III. ϕ is 1-1 \Leftrightarrow ker $\phi = \{e_G\}$ I. $Im(\phi)$ subgroup $\ker(\phi) \lhd G$ normal.	II. $f(x - y) = f(x) - f(y)$ III. $f(a^n) = (f(a))^n f(mx) = mf(x)$ Iv. $f \text{ is } 1\text{-}1 \Leftrightarrow \ker f = \{0_R\}$ I. $Im(f)$ subring. $\ker(f) \trianglelefteq R$ ideal.	II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$ III. $f \circ g$ is linear map. IV. f is 1-1 iff ker $f = \{\vec{0}\}$ I. $\ker(f)$; $Im(f)$ are subspaces.	II. $f(a - b) = f(a) - f(b)$ III. f is 1-1 iff ker $f = \{0\}$
	II: $\phi(g^{-1}) = \phi(g)^{-1}$ III. ϕ is 1 -1 \Leftrightarrow ker $\phi = \{e_G\}$ I. $Im(\phi)$ subgroup $\ker(\phi) \lhd G$ normal. II. $K \subseteq G$ is subgroup $\Rightarrow \phi(K) \subseteq H$ also. III. $Ker(\phi)$ subgroup.	II. $f(x - y) = f(x) - f(y)$ III. $f(a^n) = (f(a))^n f(mx) = mf(x)$ Iv. $f \text{ is } 1\text{-}1 \Leftrightarrow \ker f = \{0_R\}$ I. $Im(f)$ subring. $\ker(f) \trianglelefteq R$ ideal.	II. $f(\lambda \vec{v} + \mu \vec{u}) = \lambda f(\vec{v}) + \mu f(\vec{u})$ III. $f \circ g$ is linear map. IV. f is 1-1 iff $\ker f = \{\vec{0}\}$ I. $\ker(f)$; $Im(f)$ are subspaces. II. Rank-Nullity Theorem	II. $f(a-b) = f(a) - f(b)$ III. f is 1-1 iff ker $f = \{0\}$ I.ker f , Imf are submodules.

Normal $(H \triangleleft G)$: $H \subseteq G$ is normal if: $\forall g \in G, gH = Hg$

Property: I: $Ker\phi \triangleleft G$ II: ϕ is 1-1 $\Rightarrow G \cong im\phi$

Ideal $(I \subseteq R)$: A subset $I \subseteq R$ (ring) is an ideal if: $I.I \neq \emptyset$ $II. \forall a, b \in I, a - b \in I$ $III. \forall i \in I, \forall r \in R, ri, ir \in I$ eg.mZ

Property: If I,J are ideals of R. Then I+J; $I\cap J$ are also ideals. $\| \|$ Property of $m\mathbb{Z}$: $a\mathbb{Z}+b\mathbb{Z}=\gcd(a,b)\mathbb{Z}$; $a\mathbb{Z}\cap b\mathbb{Z}=\ker(a,b)\mathbb{Z}$ Not Principal Ideal: $\mathbb{Z}[X]^{(2,X)}$

Field (F): A set F is a field with two operators: (addition) $+: F \times F \to F$; $(\lambda, \mu) \to \lambda + \mu$ (multiplication) $: F \times F \to F$; $(\lambda, \mu) \to \lambda \mu$ if:

(F,+) and $(F\setminus\{0_F\},\cdot)$ are abelian groups with identity $(0_F,1_F)$. and $\lambda(\mu+\nu)=\lambda\mu+\lambda\nu$ $e.g.Fields:\mathbb{R},\mathbb{C},\mathbb{Q},\mathbb{Z}/p\mathbb{Z}=\mathbb{F}_n$

Field: For a ring R: Commutative ring + R has multiplicative inverse = Field.

3 **Vector Spaces/Subspaces | Generating Set | Linear Independent | Basis**

Linearly Independent: $L = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_r}\}$ is linearly independent if: $\forall c_1, ..., c_r \in F, c_1\vec{v_1} + \cdots + c_r\vec{v_r} = \vec{0} \Rightarrow c_1 = \cdots = c_r = 0$. **Basis & Dimension**: If V is finitely generated. $\Rightarrow \exists$ subset $B \subseteq V$ which is both LI and GS. (B is basis) **Dim**: dim V := |B|

Relation|**GS,LI,Basis,dim**: Let *V* be vector space. *L* is linearly independent set, *E* is generating set, *B* is basis set.

- 1. **GS**[LI: $|L| \le |E|$ (can get: dim unique) **LI** \to **Basis**: If V finite generate $\Rightarrow \forall L$ can extend to a basis. If $L = \emptyset$, prove $\exists B \quad kerf \cap imf = \{0\}$
- 2. **Basis|max,min**: $B \Leftrightarrow B$ is minimal GS $(E) \Leftrightarrow B$ is maximal LI (L). **Uniqueness|Basis**: 每个元素都可以由 basis 唯一表示.
- 3. **Proper Subspaces**: If $U \subset V$ is proper subspace, then dim $U < \dim V$. \Rightarrow If $U \subseteq V$ is subspace and dim $U = \dim V$, then U = V.
- 4. **Dimension Theorem**: If $U, W \subseteq V$ are subspaces of V, then $\dim(U+W) = \dim U + \dim W \dim(U\cap W)$
- 5. **Isomorphism**: For *finitely generated* vector spaces $V \Rightarrow \text{Two } F$ -vector spaces V, W are isomorphic $\Leftrightarrow \dim V = \dim W$.

Complementary: $U, W \subseteq V, U, V$ subspaces are complementary $(V = U \oplus W)$ if: $\exists \phi : U \times W \to V$ by $(\vec{u}, \vec{w}) \to \vec{u} + \vec{w}$ is isom. i.e. $\forall \vec{v} \in V$, we have unique $\vec{u} \in U$, $\vec{w} \in W$ s.t. $\vec{v} = \vec{u} + \vec{w}$. ps: It's a linear map.

Criteria Lemma: If U, W are subspace of V, then $V = U \oplus W \Leftrightarrow V = U + W$ and $U \cap W = \{0\}$. (需要证明/只能两个向量空间)

Linear Mapping | Rank-Nullity | Matrices | Change of Basis

4.1 Linear Mapping | Rank-Nullity

Property of Linear Map: Let $f, g \in Hom$

- **1. Determined**: f is determined by $f(\vec{b_i})$, $\vec{b_i} \in \mathcal{B}_{basis}$ (* i.e. $f(\sum_i \lambda_i \vec{v_i}) := \sum_i \lambda_i f(\vec{v_i})$)
- 2. **Classification of Vector Spaces**: dim $V = n \Leftrightarrow f : F^n \xrightarrow{\sim} V$ by $f(\lambda_1, ..., \lambda_n) \mapsto \sum_{i=1}^n \lambda_i \vec{v_i}$ is isomorphism.
- 3. **Left/Right Inverse**: f is $1-1 \Rightarrow \exists$ left inverse g s.t. $g \circ f = id$ 考虑 direct sum f is onto $\Rightarrow \exists$ right inverse g s.t. $f \circ g = id$
- 4. Θ More of Left/Right Inverse: $f \circ g = id \Rightarrow g$ is 1-1 and f is onto. 使用 kernel=0 来证明

Rank-Nullity Theorem: For linear map $f: V \to W$, dim $V = \dim(\ker f) + \dim(Imf)$ Following are properties:

- 1. **Injection**: f is 1-1 \Rightarrow dim $V \le \dim W$ **Surjection**: f is onto \Rightarrow dim $V \ge \dim W$ Moreover, dim $W = \dim imf$ iff f is onto.
- 2. **Same Dimension**: f is isomorphism $\Rightarrow \dim V = \dim W$ **Matrix**: $\forall M$, column rank c(M) = row rank r(M).
- 3. **Relation**: If V, W finite generate, and dim $V = \dim W$, Then: f is isomorphism $\Leftrightarrow f$ is $1-1 \Leftrightarrow f$ is onto.

4.2 Matrices | Change of Basis | Similar Matrices | Trace

Matrix: For $A_{n\times m}$, $B_{m\times p}$, $AB_{n\times p} := (AB)_{ij} = \sum_{k=1}^{m} a_{ik}b_{kj}$ **Transpose**: $A_{m\times n}^{T} := (A^{T})_{ij} = a_{ji}$

Invertible Matrices: A is invertible if $\exists B, C$ s.t. BA = I and AC = I $\exists B, BA = I \Leftrightarrow \exists C, AC = I \Leftrightarrow \exists A^{-1}$ $_{\mathcal{B}}[f^{-1}]_{\mathcal{A}} =_{\mathcal{A}}[f]_{\mathcal{B}}^{-1}$

Representing matrix of linear map $_{\mathcal{B}}[f]_{\mathcal{A}}: f: V \to W$ be linear map, $\mathcal{A} = \{\vec{v_1}, ..., \vec{v_n}\}$ is basis of $V, \mathcal{B} = \{\vec{w_1}, ..., \vec{w_m}\}$ is basis of W.

- $\exists M_{\mathcal{B}}^{\mathcal{A}}: Hom_F(V,W) \rightarrow Mat(n \times m;F)$ 1. $_{\mathcal{B}}[f]_{\mathcal{A}} := A \text{ (matrix) where } f(\vec{v}_i) = \sum_i A_{ii} \vec{w}_i$
- 2. If $\vec{v} \in V$, then $\mathcal{A}[\vec{v}] := \mathbf{b}$ (vector) where $\vec{v} = \sum_i b_i \vec{v}_i$
- $_{\mathcal{C}}[f\circ g]_{\mathcal{A}} =_{\mathcal{C}}[f]_{\mathcal{B}}\circ_{\mathcal{B}}[g]_{\mathcal{A}} \qquad _{\mathcal{B}}[f(\vec{v})] =_{\mathcal{B}}[f]_{\mathcal{A}}\circ_{\mathcal{A}}[\vec{v}] \qquad _{\mathcal{A}}[f]_{\mathcal{A}} = I \Leftrightarrow f = id$ 3. **Theorems**: $[f \circ g] = [f] \circ [g]$
- 4. Change of Basis: Define Change of Basis Matrix:= $_{\mathcal{A}}[id_V]_{\mathcal{B}}$ $_{\mathcal{B}'}[f]_{\mathcal{A}'}=_{\mathcal{B}'}[id_W]_{\mathcal{B}}\circ_{\mathcal{B}}[f]_{\mathcal{A}}\circ_{\mathcal{A}}[id_V]_{\mathcal{A}'}$ $_{\mathcal{A}'}[f]_{\mathcal{A}'}=_{\mathcal{A}}[id_V]_{\mathcal{A}'}\circ_{\mathcal{A}}[f]_{\mathcal{A}}\circ_{\mathcal{A}}[id_V]_{\mathcal{A}'}$

Elementary Matrix: $I + \lambda E_{ij}$ (cannot $I - E_{ii}$) 就是初等矩阵, 左乘代表 j 行乘 λ 倍加到第 i 行, 右乘代表 j 列乘 λ 倍加到第 i 列 \Rightarrow Invertible!

- 1. 交换 i, j 列/行: $P_{ij} = diag(1, ..., 1, -1, 1, ..., 1)(I + E_{ij})(I E_{ji})(I + E_{ij})$ where -1 in jth place.
- 2. Row Echelon Form Smith Normal Form: A: REF 通过左乘初等矩阵可以实现 A: S(n,m,r) 通过 $\stackrel{\sim}{A}$ 右乘初等矩阵可以实现

Smith Normal Form: $\forall A$, \exists invertible P, Q s.t. $PAQ = S(n, m, r) := n \times m$ 的矩阵, 对角线前 r 个是 1, 后面 0. Lemma: r = r(A) = c(A)

· Every linear map $f: V \to W$ can be representing by $_{\mathcal{B}}[f]_{\mathcal{A}} = S(n, m, r)$ for some basis \mathcal{A}, \mathcal{B} of V, W.

Similar Matrices: $N = T^{-1}MT \Leftrightarrow M$, N are similar. Special Case: If $N = {}_{\mathcal{B}}[f]_{\mathcal{B}}$, $M = {}_{\mathcal{A}}[f]_{\mathcal{A}}$, then $N = T^{-1}MT$. where $T = {}_{\mathcal{A}}[id_V]_{\mathcal{B}}$

- 1. If $A \sim B$ iff A is similar to B, then \sim is an equivalence relation. $_{\mathcal{A}'}[f]_{\mathcal{A}'} \sim_{\mathcal{A}} [f]_{\mathcal{A}}$
- 2. If $\mathcal{B} = \{p(\vec{v_1}), ..., p(\vec{v_n})\}$ and $\mathcal{A} = \{\vec{v_1}, ..., \vec{v_n}\}$ where $p: V \to V$. Then $\mathcal{A}[id_V]_{\mathcal{B}} = \mathcal{A}[p]_{\mathcal{A}}$
- 3. If *V* is a vector space over *F*, [*A*, *B* are *similar* matrices. $\Leftrightarrow A =_{\mathcal{A}} [f]_{\mathcal{A}}$, $B =_{\mathcal{B}} [f]_{\mathcal{B}}$ for some basis $\mathcal{A}, \mathcal{B}; f : V \to V$]
- 4. Set of End is in a bijection correspondence with the equivalence class of matrices under ~. 一个自同态 End 就对应一个相似矩阵的等价类

Trace: $tr(A) := \sum_i a_{ii}$ and $tr(f) := tr(A[f]_A) \mid tr(AB) = tr(BA) \quad tr(\lambda A + \mu B) = \lambda tr(A) + \mu tr(B) \quad tr(N) = tr(M)$ if M, N similar.

Rings | Polynomials | Ideals | Subrings

5.1 Rings | Polynomial Rings

2nd Def of Ring Homomorphism: f is ring homomorphism if: 1. $f:(R,+) \to (S,+)$ is group homomorphism and 2. f(xy) = f(x)f(y).

Unit: $a \in R$ is unit if it's *Invertible*. i.e. $\exists a^{-1} \in R$ s.t. $aa^{-1} = a^{-1}a = 1_R$ **Group of Unit** $(R^{\times}, \cdot) := \{a \in R : a \text{ is unit}\}$

· **Lemma**: If ${}^1f: R \to S$ homo, ${}^2f(1_R) = 1_S$, 3x is unit of R. $\Rightarrow {}^1f(x)$ is unit of S. ${}^2f|_{R^\times}: R^\times \to S^\times$ is group homomorphism.

Zero-divisors: $a \in R$ is zero-divisor if $\exists b \in R, b \neq 0$ s.t. ab = 0 or ba = 0Field has no zero-divisors. \cdot e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$; $\mathbf{1}_R$ is a unit.

Integral Domain: A *commutative* ring *R* is an integral domain if it has no zero-divisors. e.g. $\mathbb{Z}/p\mathbb{Z}$, \mathbb{R} , \mathbb{Q} , \mathbb{Z} , ... **Properties of Integral Domain**: $\forall a, b \in R$. I. $ab = 0 \Rightarrow a = 0$ or b = 0 II. $a, b \neq 0 \Rightarrow ab \neq 0$ III. ab = ac, $a \neq 0 \Rightarrow b = c$ $\mathbb{Z}/p\mathbb{Z}$ is field iff p is prime. e.g.(integral domain) \mathbb{Z} ; $\mathbb{Z}/p\mathbb{Z}$

Every finite integral domain is a field

Polynomial Ring $R[X]: R[X] := \{a_n X^n + \dots + a_1 X + a_0 : a_i \in R, n \in \mathbb{N}\}$ where X is **indeterminate** $\Leftarrow X \notin R$ and $\forall x \in R, Xa = aX$

- 1. **Degree**: $deg(P) := max\{n \in \mathbb{N} : a_n \neq 0\}$ **Leading Coefficient**: a_n **Monic**: $a_n = 1$ ps: Polynomial NOT a function
 - 2. **Lemma**: ${}^{1}R$ integral domain/no zero-divisors $\Rightarrow R[X]$ also. and deg(PQ) = deg(P) + deg(Q) if $P, Q \neq 0$.
- 3. Division and Remainder: If R is integral domain and $P, Q \in R[X], Q \text{ monic } \exists ! A, B \in R[X] \text{ s.t. } P = AQ + B \text{ and } \deg(B) < \deg(Q)$
- 4. **Function** | **Factorize**: If R is commutative ring \Rightarrow $^1R[X] \rightarrow Maps(R,R)$ (可以视作函数) $^2\lambda \in R$ is root of $P \Leftrightarrow (X \lambda) \mid P(X)$
- 5. **Roots**: If R is *Integral domain*: P has at most deg(P) roots.

Algebraically Closed: R = F field is *algebraically closed* if every non-constant polynomial has a root in F.

• **Decomposes**: If *F* field is algebraically closed \Rightarrow *P* decomposes into: $P(X) = a(X - \lambda_1) \cdots (X - \lambda_n)$, $a \in F^{\times}$ i.e. $a \neq 0$

Equivalence Relation

Equivalence Relation: Reflexive: xRx ($x \sim x$) Symmetric: $xRy \Rightarrow yRx$ ($x \sim y \Rightarrow y \sim x$) Transitive: xRy, $yRz \Rightarrow xRz$ ($x \sim y$, $y \sim z \Rightarrow x \sim z$)

Partial Order: Reflexive: xRx ($x \sim x$) **Anti-symmetric:** xRy, $yRx \Rightarrow x = y$ ($x \sim y$, $y \sim x \Rightarrow x = y$) **Transitive:** xRy, $yRz \Rightarrow xRz$ ($x \sim y$, $y \sim z \Rightarrow x \sim z$)

Copyright By Jingren Zhou | Page 2

```
Property of Equivalence Relation: If R (\sim) is equivalence relation on X.
      1. \sim Define the equivalence classes of x \in X as E(x) := \{y \in X : x \sim y\}
      2. ~ Partition X into disjoint subsets X = \bigcup_i X_i, X_i is equivalence class of x \in X.
      3. x \sim y \iff E(x) = E(y) \iff E(x) \cap E(y) \neq \emptyset.
                                                                                Canonical Projection: can : X \to (X/\sim) by x \mapsto E(x)
  Set of Equivalence Classes (X/\sim): (X/\sim) := \{E(x) : x \in X\}
     System of Representatives: Z \subseteq X is a system of representatives if 每个等价类都恰好有一个元素代表在 Z 中
   Universal Property of the set of Equivalence Classes: If f: X \to Z is a map s.t. x \sim y \Leftrightarrow f(x) = f(y). (~ is Equivalence relation) Important
     Then, \exists ! \text{ map } \overline{f} : (X/\sim) \to Z \text{ s.t. } f = \overline{f} \circ can \text{ with } \overline{f}(E(x)) = f(x) \text{ is well-defined.}
                                                                                                                Further more, \overline{f}:(X/\sim)\to Im(f)
     ps: Often, if we want to prove g:(X/\sim)\to Z is well-defined, we need to prove x\sim y\Leftrightarrow g(x)=g(y) holds.
5.3 Factor Ring | First Isomorphism Theorem
  Coset of Ideal: Let I be an ideal of R. Then a+I is a coset of I. The \sim is defined by a \sim b \Leftrightarrow a-b \in I is an equivalence relation.
   Factor Ring: Let I be ideal of R. R/I := \{a + I : a \in R\} is the set of cosets of I. (i.e. R/I is the set of equivalence classes of R under \sim)
      1. By well-defined operators: (x+I) \dotplus (y+I) = (x+y) + I and (x+I) \cdot (y+I) = xy + I \implies R/I is a ring.
      2. x + I = y + I \Leftrightarrow x \sim y \Leftrightarrow x - y \in I
                                                                            R is commutative \Rightarrow R/I also.
                                                                                                             Ш
                                                                                                                  R/I \neq \{0 + I\} \text{ iff } I \neq R
                                                                   3. *The Identity of R/I: 1_R + I The Zero of R/I: 0_R + I
```

Universal Property of Factor Ring: Let *R* be a ring and *I* be an ideal of *R*.

- 1. **can**: Mapping $can : R \to R/I$ by $x \mapsto x + I$ is ¹ surjection, ² ker(can) = I, ³ can is ring homomorphism.
- 2. **f**: If ${}^1f: R \to S$ is ring homomorphism and ${}^2I \subseteq ker(f)$, then $\exists ! {}^1\overline{f}: R/I \to S$ s.t. $f = \overline{f} \circ can$ is ring homomorphism.
- 3. **First Isomorphism Theorem**: If $f: R \to S$ is ring homomorphism $\Rightarrow \exists ! \overline{f}: R/ker(f) \xrightarrow{\sim} im(f)$ is (ring isomorphism).

Universal Property of Quotient Group: Let G be a group and H be a normal subgroup of G.

- 1. **can**: Mapping $can : G \to G/H$ by $x \mapsto xH$ is ¹ surjection, ² ker(can) = H, ³ can is group homomorphism.
- 2. **f**: If ${}^1f:G\to S$ is group homomorphism and ${}^2H\subseteq ker(f)$, then $\exists! \, {}^1\overline{f}:G/H\to S$ s.t. $f=\overline{f}\circ can$ is group homomorphism.
- 3. **First Isomorphism Theorem**: If $f: G \to S$ is group homomorphism $\Rightarrow \exists ! \overline{f}: G/ker(f) \xrightarrow{\sim} im(f)$ is (group isomorphism).

5.4 Modules | Submodules | All of That

Create Modules: Let $f: R \to S$ is a ring homomorphism, $f(1_R) = 1_S$ and M is a S-Module, then M is also a R-Module by: Define the restrict our scalar: $rm := f(r)m \quad \forall r \in R, m \in M \quad \text{ps: } f(1_R) = 1_S$

Free Module: Let M be a R-Module. M is free if: $\forall m \in M$, $\exists ! r_1, ..., r_n \in R$ s.t. $m = r_1 m_1 + \cdots + r_n m_n$ ps: $m_1, ..., m_n$ is basis of M**Coset of Submodule**: Let *N* submodule of *M*. Then m + N coset of *N*. \sim is defined by $m \sim n \Leftrightarrow m - n \in N$ is an equivalence relation. **Factor Module**: Let N submodule of M. $M/N := \{m + N : m \in M\}$ is the set of cosets of N.

Universal Property of Module Quotient: Let M be a module and N be a submodule of M. $ps:\overline{f}(x+N) = f(x)$

- 1. **can**: Mapping $can : M \to M/N$ by $x \mapsto x + N$ is ¹ surjection, ² ker(can) = N, ³ can is module homomorphism.
- 2. **f**: If ${}^1f: M \to S$ is module homomorphism and ${}^2N \subseteq ker(f)$, then $\exists ! {}^1\overline{f}: M/N \to S$ s.t. $f = \overline{f} \circ can$ is module homomorphism.
- 3. **First Isomorphism Theorem**: If $f: M \to S$ is module homomorphism $\Rightarrow \exists ! \overline{f}: M/ker(f) \xrightarrow{\sim} im(f)$ is (module isomorphism).
- [⊖] **Second Isomorphism Theorem for Modules**: Let N, K be submodules of R-module $M \Rightarrow N/(N \cap K) \cong (N + K)/K$

 $\textbf{pS:} \uparrow \text{consider } f: N \to (N+K)/K \text{ and then we can find } ker(f) = N \cap K \\ \downarrow \text{consider } f: M/K \to M/N \text{ and then we can find } ker(f) = N/K$

[⊕] **Third Isomorphism Theorem for Modules**: Let N, K be submodules of R-module M; $K \subseteq N$ $\Rightarrow \frac{M/K}{N/K} \cong M/N$

Permutation | Determinants | Eigenvalues and Eigenvectors

Permutation | Determinants

Review of Permutation: A bijection $\sigma: \{1,...,n\} \to \{1,...,n\}$ is a permutation. All permutations of n elements form a group \mathfrak{S}_n . **Inversion**: A pair of elements (i, j) is an inversion of $\sigma \in \mathfrak{S}_n$ if i < j but $\sigma(i) > \sigma(j)$ $\operatorname{sgn}(a_1 a_2) = -1$

Alternating Group: $A_n := \{ \sigma \in \mathfrak{S}_n : \operatorname{sgn}(\sigma) = 1 \}$ Graph Meaning of Inversion: Inversion is # 画出的图中, 线段交叉的次数 $\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$

Determinant: For matrix $A_{n \times n}$, with $A_{ij} = a_{ij}$. $\det(A) := \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$ (**Leibniz Formula**) $\det(I_0) := 1$ or: $\det(A) := \sum_{\sigma^{-1} \in \mathfrak{S}_n} \operatorname{sgn}(\sigma^{-1}) a_{\sigma^{-1}(1)1} \cdots a_{\sigma^{-1}(n)n}$

Geometric Meaning of Determinant: Let area(U) denote the area|volume of U. Let A denote a matrix.

1. det(A) 对 U 操作后的面积 | 体积 = | det(A) | × area(U) 2. sgn(det A) 决定了方向是否改变 (+1 不变,-1 变). (i.e. 顺逆时针变化, 左右 | 上下变化, 手性变化)

Bilinear | Multilinear form: U, V, V_i, W be F-vector space. A mapping $H: U \times V \to W$ or $H: V_1 \times \cdots \times V_n \to W$ is *bilinear | multilinear* if:

- 1. $H(\lambda u, v) = \lambda H(u, v)$
- 2. H(u + v, w) = H(u, w) + H(v, w)
- 3. $H(u, \lambda v) = \lambda H(u, v)$
- 4. H(u, v + w) = H(u, v) + H(u, w)
- 1. $H(u_1, ..., \lambda v_i, ..., u_n) = \lambda H(u_1, ..., v_i, ..., u_n) \quad \forall i$
- 2. $H(u_1, ..., v_i + v_i, ..., u_n) = H(u_1, ..., v_i, ..., u_n) + H(u_1, ..., v_i, ..., u_n)$ (左边 bilinear, 右边 multilinear)
- Copyright By Jingren Zhou | Page 3

[⊖] For Vector Space: $\dim(V/U) = \dim V - \dim U$ Hint: Consider $can : V \to V/U$ by $v \mapsto v + U$ is surjection, $\ker(can) = U$

```
3. Similar on Field: For F field. A \sim B \Rightarrow \det(A) = \det(P^{-1}BP) = \det(B)
                                                                                                                                                                                                                                     Thus, we can define: det(f) for f: V \to V
  4. Operations: If R is commutative ring, then \det(AB) = \det(A) \det(B) = \det(A^T) = \det(A) = \det(A^T) = \det(A) = \det
 5. Block Triangular: If A is block triangular, then \det(A) = \prod_{i=1}^n \det(A_i) 即矩阵分块后如果是对角阵, 行列式等于各个块的行列式乘积
Common Theorems in Determinant: Let A be n \times n matrix. F be field. R be commutative ring.
  1. Cofactor: In R, C_{ij} := (-1)^{i+j} \det(A(i,j)) where A(i,j) 是 A 去掉第i 行第j 列的矩阵. Laplace's Expansion: In R, \det(A) = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}
  2. Adjugate Matrix: \ln R adj(A) matrix, \mathrm{adj}(A)_{ij} := C_{ji} Cramer's Rule: \ln R A \cdot \mathrm{adj}(A) = (\det A)I_n \ln F, x_i = \frac{\det(A_i)}{\det(A)} A_i 代表A 的第i 列替换为b
  3. Theorem | Need proof: In R, \operatorname{adj}(A^T) = \operatorname{adj}(A)^T Hint: \operatorname{adj}(A^T)_{i,i} = c_{i,i}^{A^T} = (-1)^{i+j} \operatorname{det}(A^T(i,j)) = (-1)^{i+j} \operatorname{det}(A(j,i)^T) = (-1)^{i+j} \operatorname{det}(A(j,i)) = c_{i,i}^A = \operatorname{adj}(A)_{i,i}^T = \operatorname
  4. Invertibility of Matrix: In R, matrix A is invertible \Leftrightarrow det(A) \in R^{\times}
                                                                                                                                                                                                             \text{e.g. } \mathbb{Z}^\times = \{\pm 1\} \ ; \ \mathbb{C}^\times, \mathbb{R}^\times, \mathbb{Q}^\times = \mathbb{C}^*, \mathbb{R}^*, \mathbb{Q}^* \ ; \ \mathbb{F}_p^\times = \mathbb{F}_p \setminus \{0\} \ ; \ \mathbb{Z}[i] = \{\pm 1, \pm i\}
  5. Jacobi's Formula, Let matrix A s.t. a_{ij}(t) are functions of t. Then, \frac{d}{dt} \det(A) = \operatorname{tr}\left(\operatorname{adj} A \cdot \frac{dA}{dt}\right)
            Eigenvalues | Eigenvectors | Diagonalization
Eigenspace E(\lambda, f): Let f: V \to V linear map (End), \lambda \in F. E(\lambda, f) := \{\vec{v} \in V : f(\vec{v}) = \lambda \vec{v}\}. \lambda is eigenvalue if E(\lambda, f) \neq \{0\}
      ps: \ker(f - \lambda i d_V) is the eigenspace of E(\lambda, f) and it has a basis of eigenvectors \{\vec{v}_1, ..., \vec{v}_r\}.
Existence of Eigenvalues: For all f: V \to V linear map. ^1V is finite-dimensional. ^1F is algebraically closed. \Rightarrow \exists eigenvalues.
  Characteristic Polynomial \chi_A(x): Let R be commutative ring. A \in Mat(n; R). \chi_A(x) := \det(x I_n - A) \in R[x]
        Relation with Eigenvalues: If F is field, A \in Mat(n; F). \lambda is eigenvalue of A \Leftrightarrow \chi_A(\lambda) = 0
       Similar Matrix: If R is commutative ring, A, B \in Mat(n; R) similar. \Rightarrow \chi_A(x) = \chi_B(x)
                                                                                                                                                                                                                                                                              Thus: \chi_f(x) := \chi_{\mathcal{A}[f]_{\mathcal{A}}}(x)
                                                       Moreover, if _{\mathcal{A}}[f]_{\mathcal{A}} = A and A is similar to B. Then, \exists basis \mathcal{B} s.t. _{\mathcal{B}}[f]_{\mathcal{B}} = B
        Remark: If W \subseteq V is subspace. f: V \to V is End. f(W) \subseteq W. Let \mathcal{A} = (\vec{w}_1, ..., \vec{w}_m) basis W. \mathcal{B} = (\vec{w}_1, ..., \vec{w}_m, \vec{v}_{m+1}, ..., \vec{v}_n) basis V. \mathcal{C} = (\vec{v}_{m+1} + W, ..., \vec{v}_n + W) basis V/W.
                                   \text{Suppose } f(\vec{v_k}) = \sum_{i=1}^m c_{ik} \vec{w_i} + \sum_{j=m+1}^n b_{jk} \vec{v_j} \quad \text{Let } g: W \to W \text{ by } w \mapsto f(w) \quad h: V/W \to V/W \text{ by } v + W \mapsto f(v) + W \quad e: V/W \to W \text{ by } v_k + W \mapsto \sum_{i=1}^m c_{ik} \vec{w_i}
                                   Then: \chi_f(x) = \chi_g(x)\chi_h(x) and _{\mathbb{B}}[f]_{\mathbb{B}} = \begin{pmatrix} \mathcal{A}[g]_{\mathcal{A}} & \mathcal{A}[e]_{\mathcal{C}} \\ 0 & c[h]_{\mathcal{C}} \end{pmatrix} = \begin{pmatrix} a_{ij} & c_{ik} \\ 0 & b_{jk} \end{pmatrix} ps: f(\vec{w_j}) = \sum_{i=1}^m a_{ij}\vec{w_i}
  Triangularisability |A: \text{Let } A \in Mat(n; F), it is triangularisable if \exists P invertible s.t. P^{-1}AP = U is upper triangular.
  Triangularisability|f: Let f: V \to V be End. V is finite-dimensional. the following are equivalent:
         1. \exists \mathcal{B} = (\vec{v}_1, ..., \vec{v}_n) basis s.t. f(\vec{v}_i) = \sum_{i=1}^i a_{ji} \vec{v}_j (i.e. \mathcal{B}[f]_{\mathcal{B}} is upper triangular.)
                                                                                                                                                                                                                              we say f is triangularisable
         2. The characteristic polynomial \chi_f(x) can be factored into linear factors over F.
                                                                                                                                                                                                                                                (ps: If F is algebraically closed, then f is triangularisable)
        Corollary I: Let A, B \in Mat(n; F). A is triangularisable \Leftrightarrow A is similar (Conjugate) to a upper triangular matrix B.
        Corollary II: Let f: V \to V be End. V is finite-dim. f is triangularisable \Leftrightarrow \exists subspaces V_0 = \{0\} \subset V_1 \subset \cdots \subset V_n = V s.t. f(V_i) \subseteq V_i.
       Corollary III|nilpotent: For A \in Mat(n; F). A is nilpotent (i.e. A^k = 0 for some k) \Leftrightarrow \chi_A(x) = x^n
       Application: 将矩阵 A 进行三角化,可以通过:1. 求特征值,特征向量; 2. 选择一个特征向量; 2. 选择一个特征向量为基(通常选最大的; 3. 拓展为V 的基; 4. 求 A 在新基下的矩阵 B, 此时 B 按分块矩阵看应有一部分三角化; 5. 对 B 未三角化的部分重复
  Diagonalisable A: Let A \in Mat(n; F). A is diagonalisable iff \exists matrix P s.t. P^{-1}AP = diagonalisable
  Diagonalisable f: V \to V be End, V is diagonalisable iff \exists basis of V consisting of eigenvectors of f.
        Diagonalisable | Finite: For V is finite-dimensional. V is diagonalisable \Leftrightarrow \exists basis \mathcal{B} s.t. _{\mathcal{B}}[f]_{\mathcal{B}} = diag(\lambda_1, ..., \lambda_n), where: f(\vec{v}_i) = \lambda_i \vec{v}_i
        Property: In finite case, \exists P consisting of eigenvectors s.t. P^{-1}AP = diag(\lambda_1, ..., \lambda_n)
       Corollary: If all roots of \chi_f(x) are distinct, then f is diagonalisable.
  LI of Eigenvectors: Let f: V \to V be End. V is finite-dimensional. If \lambda_1, ..., \lambda_n are distinct \Rightarrow Corresponding eigenvectors are linearly independent.
  Cayley-Hamilton Theorem: Let R be commutative ring. A \in Mat(n; R). Then: for \chi_A(x) = \chi_A(x) = 0
  对于 Jordan 块, 考虑 J - \lambda I \rightarrow nilpotent. 可以得到一些多项式的性质 =0
  ^{\Theta} 此框为一些有关前面 Ring 的性质: by Euclidean algorithm
  Bézout's identity: if gcd(f,g) = 1, then \exists a, b \in R[x] s.t. af + bg = 1.
  About Ideal: _{R[X]}\langle f,g\rangle=\gcd(f,g)R[X] _{R[X]}\langle f\rangle+_{R[X]}\langle g\rangle=_{R[X]}\langle\gcd(f,g)\rangle _{R[X]}\langle f\rangle\cap_{R[X]}\langle g\rangle=_{R[X]}\langle\gcd(f,g)\rangle
  About Quotient: 通过欧几里得算法,可以寻找到商空间中的元素的代表. e.g. \mathbb{F}_2[X]/\langle X^2+1 \rangle = \{I,1+I,X+I,X+1+I\} (即所有小于 Ideal deg 元素 | 欧几里得算法得到的余数)
  Find Units in Quotient: g \in R/I is a unit iff gcd(f,g) = 1
       (Hint: (\Rightarrow) fg + I = 1 + I \rightarrow fg - 1 \in I \rightarrow fg - 1 = h \cdot 1 | h \cdot i \rightarrow \text{Euclidean algorithm}; (\Leftarrow) Bézout's identity + Euclidean algorithm)
                                                                                                                                Copyright By Jingren Zhou | Page 4
```

H is **Symmetric** if (bilinear): ${}^1U = V$, ${}^2H(u,v) = H(v,u) \ \forall u,v \in U$

H is **Alternating**|**Antisymmetric** if (bilinear): ${}^{1}U = V$, ${}^{2}H(u,u) = 0 \quad \forall u \in U$

if (multilinear): ${}^{1}V_{i}$ same, ${}^{2}H(v_{1},...,v_{n})=H(v_{\sigma(1)},...,v_{\sigma(n)}) \ \forall \sigma \in \mathfrak{S}_{n}$

Example: If $H(\vec{u}, \vec{v}) = \vec{u}^T A \vec{v} \Rightarrow$ multilinear form. If $A^T = A$, symmetric. If $A^T = -A$, antisymmetric.

Lemma II: If H is alternating, then $H(v_1,...,v_n) = \operatorname{sgn}(\sigma)H(v_{\sigma(1)},...,v_{\sigma(n)})$ (σ is a permutation)

Property of Determinant: Let A, B be $n \times n$ matrices. F be field. R be *commutative ring*.

Lemma I: If *H* is alternating, then H(u, v) = -H(v, u) $H(v_1, ..., v_i, ..., v_i, ..., v_n) = -H(v_1, ..., v_i, ..., v_n)$

1. **Unique on Field**: $\det: F^n \times \cdots \times F^n \to F$ or $\det: Mat(n; F) \to F$ is the $\frac{1}{unique} \frac{2}{alternating} \frac{3}{multilinear}$ form s.t. $\det(I_n) = 1_F$ 2. **Invertible on Field**: For Mat(n; F), A is invertible $\Leftrightarrow \det(A) \neq 0$ $\det(A^{-1}) = \det(A)^{-1}$ 交换环, 结论成立如果 $\det(A) \in R$ 中有逆

if (multilinear): 1V_i same, ${}^2H(v_1,...,v_n)=0$ $\forall v_i=v_j$ (i.e. 只要存在两个及以上相同的, H 结果为 0)

Inner Product Spaces | Orthogonal Complement / Proj | Adjoints and Self-Adjoint

7.1 Inner Product Spaces | Orthogonal Complement / Proj

Real|Complex Inner Product Space: Let V vector space over $F = \mathbb{R} | \mathbb{C}$. It is an *inner product space* if \exists mapping $V \times V \to \mathbb{R} | \mathbb{C}$ s.t.

- 1. Linear in 1st Variable: $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$ $\forall \lambda, \mu \in F, \hat{x}, \hat{y}, \hat{z} \in V$
- 2. **(Conjugate) Symmetric**: $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$ for real, $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$ Real: *linear* in 2nd variable. Complex: conjugate linear in 2nd variable.
- 3. **Positive Definite**: $(\vec{x}, \vec{x}) \ge 0$ and $(\vec{x}, \vec{x}) = 0$ iff $\vec{x} = \vec{0}$ Complex: $(\vec{z}, \lambda \vec{x} + \mu \vec{y}) = \overline{\lambda}(\vec{z}, \vec{x}) + \overline{\mu}(\vec{z}, \vec{y})$ ps: Standard Inner Product in $\mathbb{R}^n | \mathbb{C}^n$: $(\vec{x}, \vec{y}) = \sum_{i=1}^n x_i y_i \quad (\vec{x}, \vec{y}) = \sum_{i=1}^n x_i \overline{y_i}$ (i.e. dot product $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$)

Special Inner Product: If $(\vec{x}, \vec{y}) = \sum_{i,j} a_{ij} x_i \overline{y_j} = \vec{x}^T A \vec{y}$ where $A_{ij} = a_{ij}$

$$\Rightarrow \text{ It is an inner product if:} \quad {}^1\overline{A^T} = A \qquad {}^2\vec{x}^TA\vec{x} \ge 0, \forall \vec{x} \in \mathbb{R}^n | \mathbb{C}^n \qquad {}^3(\vec{x}, \vec{x}) = 0 \text{ iff } \vec{x} = \vec{0}$$

Norms: For $\vec{x}, \vec{y} \in V$ in inner product space. $||\vec{x}|| := \sqrt{(\vec{x}, \vec{x})} \ge 0$ **Orthogonal**: $\vec{x} \perp \vec{y}$ iff $(\vec{x}, \vec{y}) = 0$

- 1. **Pythagoras' Theorem**: If $\vec{x} \perp \vec{y}$, then $||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$. Metric Space: $d(\vec{x}, \vec{y}) := ||\vec{x} - \vec{y}||$.
- 2. Cauchy-Schwarz Inequality: $|(\vec{x}, \vec{y})| \le ||\vec{x}|| ||\vec{y}||$ Triangle Inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$

ps: Cauchy-Schwarz Inequality, "=" iff \vec{x} , \vec{y} are linearly dependent. Triangle Inequality, "=" iff \vec{x} , \vec{y} are linearly dependent, and they have same direction. (i.e. $\vec{x} = \lambda \vec{y}$, $\lambda \ge 0$)

Orthonormal Family: $\{\vec{v}_1, ..., \vec{v}_n\}$ is orthonormal if $\|\vec{v}_i\| = 1$ and $\|\vec{v}_i\| = 1$ and $\|\vec{v}_i\| = 1$. (i.e. $(\vec{v}_i, \vec{v}_j) = \delta_{ij}$) If it is basis, then it is orthonormal basis.

- 1. **Observations**: **I.** For $\{\vec{v}_1, ..., \vec{v}_n\}$ orthonormal basis. $\vec{v} = \sum_{i=1}^n (\vec{v}, \vec{v}_i) \vec{v}_i$. **II**. For orthonormal Family, 可直接用勾股定理, and 很明显 LI
- 2. **Theorem**: Every finite-dimensional inner product space has an orthonormal basis.
- 3. **Gram-Schmidt Process**: Let $\{\vec{v}_1, ..., \vec{v}_n\}$ be basis of V. By using following way to get orthonormal basis:

$$\begin{array}{lll} \textbf{a.} \ \vec{e}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} & \text{Proj}_{\vec{e}_k} \vec{v}_j = (\vec{v}_j, \vec{e}_k) \vec{e}_k \\ \textbf{b.} \ \vec{u}_2 = \vec{v}_2 - \text{Proj}_{\vec{e}_1} \vec{v}_2 & \vec{e}_2 = \frac{\vec{u}_2}{\|\vec{u}_2\|} \\ \textbf{c.} \ \vec{u}_3 = \vec{v}_3 - \text{Proj}_{\vec{e}_1} \vec{v}_3 - \text{Proj}_{\vec{e}_2} \vec{v}_3 & \vec{e}_3 = \frac{\vec{u}_3}{\|\vec{u}_3\|} \\ \textbf{d.} \ \vec{u}_n = \vec{v}_n - \sum_{i=1}^{n-1} \text{Proj}_{\vec{e}_i} \vec{v}_n & \vec{e}_n = \frac{\vec{u}_n}{\|\vec{u}_n\|} \\ \textbf{egonal Set:} \ \text{For subset } T \ \text{of vector space } V. \ \textbf{Set Orthogonal to } A \ \text{is } A^{\perp} := \{ \vec{v} \in V : \vec{v} \perp \vec{a}, \forall \vec{a} \} \\ \end{array}$$

Orthogonal Set: For subset T of vector space V. **Set Orthogonal to** A is $A^{\perp} := \{\vec{v} \in V : \vec{v} \perp \vec{a}, \forall \vec{a} \in A\}$

- 1. **I**. A^{\perp} is always subspace of V. II. $A^{\perp} = \langle A \rangle^{\perp}$
- 2. **Orthogonal Decomposition Theorem**: Let *V* be inner product space. *W* be subspace of *V*. Then: $V = W \oplus W^{\perp}$ **Orthogonal Projection**: Let *V* be inner product space. *U* be subspace of *V*, with orthonormal basis $\{\vec{e}_1, ..., \vec{e}_m\}$.
- 1. Then: orthogonal projection $\pi_U: V \to V$ by $\vec{v} \mapsto \sum_{i=1}^m (\vec{v}, \vec{e}_i) \vec{e}_i$
- II. $\ker(\pi_U) = U^{\perp}$ and $\operatorname{Im}(\pi_U) = U$ III. $\pi_U|_U = id_U$ 2. **I**. $\pi_U^2 = \pi_U$
- 3. **Orthogonal Decomposition**: For all $\vec{v} \in V$, $\vec{v} = (\vec{v} \pi_U(\vec{v})) + \pi_U(\vec{v})$ where $(\vec{v} \pi_U(\vec{v})) \perp \pi_U(\vec{v})$.
- 4. Closest Approximation: Since $\|\vec{v} \vec{u}\|^2 = \|\vec{v} \pi_U(\vec{v})\|^2 + \|\pi_U(\vec{v}) \vec{u}\|^2 \implies \vec{u} = \pi_U(\vec{v})$ is the closest vector in U to \vec{v} .

Basic Properties of Adjoint and Self-Adjoint 7.2

Orthogonal: matrix A is orthogonal if $A^TA = I_n$. (i.e. $A^{-1} = A^T$) **Unitary**: matrix A is unitary if \overline{A}^TA or $A^T\overline{A} = I_n$. (i.e. $A^{-1} = \overline{A}^T$) **Hermitian**: matrix A is Hermitian if $\overline{A}^{T} = A$. (i.e. A is Self-adjoint in \mathbb{C}) **Symmetric**: matrix A is Self-adjoint in \mathbb{C})

Useful Tool: If $T: V \to W$ is linear map. For matrix $_{\mathcal{B}}[T]_{\mathcal{A}}$, The entry $[_{\mathcal{B}}[T]_{\mathcal{A}}]_{ij} = (T\vec{e}_i, \vec{f}_i)$

IPS isomorphism of V: A linear map $T: V \to W$ is *IPS isomorphism* of V (and W) if: T is isomorphism $T: V \to W$ is T is isomorphism. **Properties of IPS isomorphism**: Let V, W be inner product spaces, $\mathcal{A} = \{\vec{e}_1, ..., \vec{e}_m\}, \mathcal{B} = \{\vec{f}_1, ..., \vec{f}_n\}$ are orthonormal basis of V, W.

- 1. Linear map $T:V \to W$ is IPS isomorphism of V (i.e. τ is iso & $(\tau \vec{v}_1, \tau \vec{v}_2) = (\vec{v}_1, \vec{v}_2)$) \iff Linear map $T:V \to W$ maps some orthonormal basis to another.
- 2. **IPS isomorphism**: $T: V \to V$ is *IPS isomorphism* \Leftrightarrow $TT^* = T^*T = \mathrm{id}_V \Leftrightarrow {}_{\mathcal{A}}[T]_{\mathcal{A}}$ is $unitary_{\mathbb{C}}$ or $orthogonal_{\mathbb{R}}$ matrix.

T, S are called *adjoint* to one another if $(T\vec{v}, \vec{w}) = (\vec{v}, S\vec{w}) \quad \forall \vec{v}, \vec{w} \in V$. **Adjoint:** *V* is inner product space. $T, S: V \rightarrow V$ are linear maps.

Self-adjoint: If $T = T^*$, then T is *self-adjoint*. (i.e. $(T\vec{v}, \vec{w}) = (\vec{v}, T\vec{w})$)

Properties of Adjoint: Let *V* be *inner product spaces*, $\mathcal{A} = \{\vec{e}_1, ..., \vec{e}_n\}$ are orthonormal basis of *V*. $T: V \to V$ is linear map.

- 1. Then, $\exists !$ linear map $T^*: V \to V$ s.t. $(T\vec{v}, \vec{w}) = (\vec{v}, T^*\vec{w}) \quad \forall \vec{v}, \vec{w} \in V$.
- 2. $\mathbf{I}_{\cdot,\sigma}[T^*]_{\cdot,\sigma} = \overline{(_{\cdot,\sigma}[T]_{\cdot,\sigma})}^T$ $\mathbf{II}_{\cdot}(T^*)^* = T$
- 3. **Self-Adjoint**: \exists orthonormal basis of eigenvectors|Finite V (Spectral) \Leftrightarrow If $T = T^*$ (self-adjoint) \Leftrightarrow ${}_{\mathcal{A}}[T]_{\mathcal{A}} = \overline{({}_{\mathcal{A}}[T]_{\mathcal{A}})}^T$ Hermitian/Symmetric
- 4. * Similar: If matrix $A =_{\mathcal{A}} [f]_{\mathcal{A}}$ and $B =_{\mathcal{B}} [f]_{\mathcal{B}} \iff B = P^{-1}AP$ and P is is $orthogonal_{\mathbb{R}}$ or $unitary_{\mathbb{C}}$ matrix.

Normal: Linear map $T: V \to V$ is normal if $TT^* = T^*T$.

Properties of Normal: Let V be inner product spaces, $\mathcal{A} = \{\vec{e}_1, ..., \vec{e}_n\}$ are orthonormal basis of V. $T: V \to V$ is linear map.

- 1. T is $normal \Leftrightarrow \overline{{}_{\mathcal{A}}[T]_{\mathcal{A}}}^T \cdot_{\mathcal{A}} [T]_{\mathcal{A}} =_{\mathcal{A}} [T]_{\mathcal{A}} \cdot \overline{{}_{\mathcal{A}}[T]_{\mathcal{A}}}$
- 2. **I**.*T* is self-adjoint \Rightarrow *T* is normal **II**. *T* is *IPS* isomorphism \Rightarrow *T* is normal.

7.3 Advanced Properties of Adjoint and Self-Adjoint

Properties of Self-adjoint: Let $T:V\to V$ be a *self-adjoint* linear map on *inner product space* V. Then: $\mathbb{R}^{\mathbb{R}}$ inner product space $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ 1. **Spectral Theorem**: If *V* is *finite-dimensional*, then *T* has *orthonormal basis* of *eigenvectors*. 存在特征值/向量,且正交为基. 2. **Real**: Every eigenvalues of *T* are real. **Orthogonal** λ : Eigenvectors of *distinct eigenvalues* are orthogonal. 3. **Orthogonal**|T: If $\vec{v} \perp \vec{w}$, and \vec{v} is *eigenvector* of T. Then, $T\vec{w} \perp \vec{v}$. $^{\ominus}$ also: $\vec{w} \perp T\vec{v}$ **Spectral for** $\mathbb{R} \mid \mathbb{C}$ **Matrix**: If $A \in \text{Mat}(n, \mathbb{R} \mid \mathbb{C})$ *symmetric hermitian*. Then A has n real eigenvalues $\lambda_1, ..., \lambda_n$ (can be repeated). Moreover, \exists orthogonal|Unitary matrix P s.t. $P^TAP|\overline{P}^TAP = P^{-1}AP = diag(\lambda_1,...,\lambda_n)$.

Real Quadratic forms: $Q(x_1, ..., x_n) := \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j = \vec{x}^T A \vec{x}$ where A is real symmetric matrix, variables $\vec{x} \in \mathbb{R}^n$ Can be written as $Q(\vec{x}) = (A\vec{x}, \vec{x})$ where $(\vec{x}, \vec{y}) = \vec{x}^T \vec{y}$ is standard inner product. **Corollary**: If A is real symmetric matrix. $\Rightarrow A = P^T \Lambda P \Rightarrow Q(\vec{x}) = \sum_{i=1}^n \lambda_i y_i^2$ where $\vec{y} = P\vec{x}$ **Theorem**: $Q(\vec{x}) = (A\vec{x}, \vec{x}) \ge 0$ (positive definite) \Leftrightarrow all eigenvalues of A are positive. **Level Set**: The set $\{\vec{x} \in \mathbb{R}^n : Q(\vec{x}) = (A\vec{x}, \vec{x}) = 1\}$ \Rightarrow is the image of ellipsoid, 轴为 $\sqrt{\frac{1}{\lambda_1}}$, ..., $\sqrt{\frac{1}{\lambda_n}}$ ps: A is real symmetric matrix, λ_i 为 A 的特征向量. 意思是: $A = P^T \Lambda P \Rightarrow Q(\vec{x}) = \sum_{i=1}^n \lambda_i y_i^2 \Rightarrow Q(\vec{x}) = 1$ 是一个"椭圆" ellipsoid, "轴"(e.g. 半长轴, 半短轴) 为 $\sqrt{\frac{1}{\lambda_1}}, ..., \sqrt{\frac{1}{\lambda_n}}$.

Iordan Normal Form 默认 F:algebraically closed

 2×2 **Matrices**: If $A \in Mat(2; F)$, F field. Then: A is diagonalisable $\Leftrightarrow A$ has distinct eigenvalues or $A = \lambda I$.

Matrix Exponential: $e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$ **Properties:** I.If $AB = BA \Rightarrow e^{A+B} = e^A e^B$ II. $e^{P^{-1}AP} = P^{-1}e^A P$ III. $e^{\text{diag}(\lambda_1,...,\lambda_n)} = \text{diag}(e^{\lambda_1},...,e^{\lambda_n})$

Nilpotent Jordan Block: $J(r)^k = 0$ **Useful Properties**: $J(r) \coloneqq \begin{pmatrix} 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{r \times r}$ Superdiagonal: $x_{l,l+1}$ 对角线上面的元素 **Generalised Eigenspace**: For $\phi: V \to V$ linear map with eigenvalue λ . $E^{\text{gen}}(\lambda_i, \phi) := \{\vec{v} \in V : (\phi - \lambda_i \operatorname{id}_V)^{\alpha_i}(\vec{v}) = 0\}$

Arithmetic Multiplicity: dim $E^{\text{gen}}(\lambda_i, \phi) \geq \text{Geometric Multiplicity}$: dim $E(\lambda_i, \phi)$ ps: If $\chi_{\phi}(x) = \prod_{i=1}^{s} (x - \lambda_i)^{a_i}$, then dim $E^{\text{gen}}(\lambda_i, \phi) = a_i$ Θ 对于 linear map/matrix, $\{0\} \subseteq \ker(f) \subseteq \ker(f^2) \subseteq \cdots \subseteq \ker(f^n)$. If $\ker(f^k) = \ker(f^{k+1})$, then $\ker(f^k) = \ker(f^{k+1}) = \cdots = \ker(f^n)$. 由此 B^{gen} 的 a_i 是一个上界 (当等于 characteristic 对应的), 但不一定是最小的.

Stable: Let $f: X \to X$ be mapping from a set X to itself. If $Y \subseteq X$ and $f(Y) \subseteq Y$, then Y is stable under f.

The Direct Sum Decomposition: For $\phi: V \to V$ linear map. The characteristic polynomial of ϕ is $\chi_{\phi}(x) = \prod_{i=1}^{s} (x - \lambda_i)^{a_i}$.

Then: I. $V = \bigoplus_{i=1}^{s} E^{\text{gen}}(\lambda_i, \phi)$ II. $\phi(E^{\text{gen}}(\lambda_i, \phi)) \subseteq E^{\text{gen}}(\lambda_i, \phi)$ (stable)

III. Let $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_s$ where \mathcal{B}_i is basis of $E^{\text{gen}}(\lambda_i, \phi) \Rightarrow \mathcal{B}[\phi]_{\mathcal{B}} = \text{diag}(\mathcal{B}_1[\phi]_{\mathcal{B}_s}, \dots, \mathcal{B}_s[\phi]_{\mathcal{B}_s})$

 $\Theta \\ \textbf{Properties of Nilpotent:} \text{ if } \phi: V \rightarrow V \text{ is linear map and } \phi^m \vec{v} = 0, \phi^{m-1} \vec{v} \neq 0. \quad \text{Then: } L.\vec{v}, \phi \vec{v}, ..., \phi^{m-1} \vec{v} \text{ is linearly independent.} \quad II._{\mathcal{B}}[\phi]_{\mathcal{B}} \text{ is nilpotent Jordan block where } \mathcal{B} = \{\phi^{m-1} \vec{v}, \phi^{m-2} \vec{v}, ..., \vec{v}\}$

Jordan Normal Form: Let F be an algebraically closed field. Let V be finite dimensional vector space. Let $\phi: V \to V$ s.t. $\chi_{\phi} = \prod_{i=1}^{S} (x - \lambda_i)^{a_i}$.

I.∃ basis \mathcal{B} of V s.t. $_{\mathcal{B}}[\phi]_{\mathcal{B}} = \text{diag}(J(r_{11}, \lambda_1), ..., J(r_{1m_1}, \lambda_1), J(r_{21}, \lambda_2), ..., J(r_{s1}, \lambda_s), ..., J(r_{sm_s}, \lambda_s))$

II. $\exists ! \phi_D : V \to V$ and $\phi_N : V \to V$ s.t. $\phi = \phi_D + \phi_N$ where ϕ_D is diagonalisable and ϕ_N is nilpotent. Furthermore, $\phi_D \phi_N = \phi_N \phi_D$. III. \exists basis \mathcal{B} of V s.t. $\mathcal{B}[\phi]_{\mathcal{B}} = D + N$ where D diagonalisable and N nilpotent, and DN = ND.

ps:Jordan form 的形状为一, 但里面的顺序不一定要一样. (J is unique up to reordering of the Jordan blocks.)

Grading Decomposition: Let $A \in Mat(n; F)$, F algebraically closed field. Then: $\exists ! D, N \text{ s.t. } A = D + N, D \text{ diagonalisable, } N \text{ nilpotent, } DN = ND.$

曲 Direct Sum Decomposition \rightarrow $P^{-1}AP = \text{diag}(B_1,...,B_S)$ where $B_{\hat{l}} = B_{\hat{l}} [\phi]_{B_{\hat{l}}} \rightarrow$ 根据 nilpotent 的性质, $B_{\hat{l}}$ 是 nilpotent + diag \rightarrow $B_{\hat{l}} = D_{\hat{l}} + N_{\hat{l}} \rightarrow D = P \text{diag}(D_1,...,D_S)P^{-1}$ $N = P \text{diag}(N_1,...,N_S)P^{-1}$

Description of Jordan Normal Form: Let $A \in \text{Mat}(n; F)$, F algebraically closed field. The $\chi_A(x) = \prod_{i=1}^{s} (x - \lambda_i)^{a_i}$.

对于一个
$$\lambda_i$$
, 考虑 n_1 , ..., n_{a_i} :

 $n_1 = \dim \ker(A - \lambda_i I)$
 $n_2 = \dim \ker(A - \lambda_i I)^2 - n_1$
 \vdots
 $n_{a_i} = \dim \ker(A - \lambda_i I)^{a_i} - n_{a_i-1}$

4. n_i

1. n_1 代表 size 不小于 1 的 Jordan block 个数

2. n₂ 代表 size 不小于 2 的 Jordan block 个数

4. n_{a_i} 代表 size 不小于 a_i 的 Jordan block 个数

1. exact $n_1 - n_2$ Jordan blocks of size 1

2. exact $n_2 - n_3$ Jordan blocks of size 2

4. exact $n_{a_{i-1}} - n_{a_{i}}$ Jordan blocks of size $a_{i} - 1$

Relate to Exponential: If A = D + N, D diagonalisable, N nilpotent, DN = ND.

Then:
$$e^A = e^D e^N = P^{-1} \operatorname{diag}(e^{\lambda_1}, ..., e^{\lambda_n}) P e^N$$
 and $e^{At} = P^{-1} \operatorname{diag}(e^{t\lambda_1}, ..., e^{t\lambda_n}) P e^{tN}$

For Triangularisable/More Generally Case: For $f: V \to V$ linear map. V is finite dimensional vector space.

If $\chi_f(x)$ can be factored into linear factors over F. Then: f has a *Jordan normal form*.

Corollary: If f is triangularisable Matrix A is triangularisable. Then: $f \mid M$ has a Jordan normal form.

Appendix

Vieta's formulas: For polynomial $P(x) = a_n x^n + \dots + a_1 x + a_0$. Let x_1, \dots, x_n be roots of P(x).

$$x_1 + \dots + x_n = -\frac{a_{n-1}}{a_n} \quad x_1 \dots x_n = (-1)^n \frac{a_0}{a_n} \quad x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \frac{a_{n-2}}{a_n}$$

$$\mathbf{Determinant\ of\ Vandermonde\ Matrix:\ Let\ x_1, ..., x_n\ be\ distinct\ elements\ of\ F. \quad Then \quad \det\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\mathbf{Relate\ Matrix\ to\ Linear\ Map:\ For\ a\ Matrix\ A,\ define\ T: F^n \to F^n\ by\ T\vec{v} = A\vec{v}.\ Then\ [T] = A\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

Def of Direct Sum: $U_1, ..., U_k$ subspaces of V. $V = U_1 \oplus \cdots \oplus U_k$ if ${}^1V = U_1 + U_2 + \cdots + U_k$ ${}^2U_1 + U_2 + \cdots + U_k = 0$ $\Rightarrow u_1 = u_2 = \cdots = u_k = 0$ $u_i \in U_i$ *Useful Tool: $A\vec{v} = \vec{0}$ for $\vec{v} \neq \vec{0} \Leftrightarrow \det(A) = 0$