ECONOMIC ANALYSIS ON BIO-BUTANOL PRODUCTION PLANT

Prepared by

Name: Spyros Ploussiou (sp872) College: Wolfson College Date: 04/06/2020

Executive Summary

The objective of this study is to critically analyse the costs associated with developing and operating a chemical plant for producing 100 000 t y⁻¹ of bio-butanol by use of ABE fermentation. Operating and capital costs relevant to the plant estimated at the FEED stage were used to assess the viability of the design and decide whether to proceed to the next detailed design phase.

Based on this analysis, the conversion of wheat to but anol via ABE fermentation does not appear to be a viable process under current market pricing conditions. The proposed design produces but anol at a yield of 20 % by use of the bacterium *Clostridium acetobutylicum*.

The economic analysis presented in table 1 shows 2 scenarios. Scenario 1 represents the associated costs of the design prior to cost reduction recommendations whereas scenario 2 takes them into account. The analysis clearly demonstrates that, in both scenarios, the total annual revenue is significantly less than the total annual operating costs.

Table 1: Economic summary for scenarios 1 and 2

Economics Summary	Scenario 1	Scenario 2
Plant Operating lifetime (years)	15	15
Total Capital Investment (£ million)	268	216
Total Revenue (£ million/year)	125	125
Total Operating Costs (£ million/year)	387	347
Net Loss (£ million/year)	-266	-226
Cash Flow (£ million/year)	-301	-251
DCFRR (%)	N/A	N/A
Cash Flow Payback Period (years)	N/A	N/A
Return on Investment (%)	N/A	N/A
Net Present Value of Plant (£ million) - $i = 10\%$	-3 532	-3 048

2 Plant-wide cost summary

For an expected plant service life of 15 years, the total capital investment for scenario 1 is £ 268 million. This includes fixed capital of £ 215 million and working capital of £ 53 million. The proposed plant design has the capacity to produce $100\ 000\ t\ y^{-1}$ of butanol, $10\ 692\ t\ y^{-1}$ of ethanol and $47\ 136\ t\ y^{-1}$ of acetone. These combined quantities amount to an annual revenue of

£ 125 million. Variable costs including raw material and utility costs amount to £ 305 million per year. Fixed costs for the plant include annual operating expenses, overheads, and depreciation. Depreciation was calculated using straight line depreciation over a period of 10 years with no salvage nor scrap value.

Annual indirect costs amount to £31 million and include general overheads and sales expenses.

The main components of the total capital costs where estimated using Lang factors as detailed in figure 5 in appendix 6.4. The method employed in estimating all other relevant components of the total operating costs can be found in figure 6 in appendix 6.4. Equipment, and utility costs for each Area of the plant can be found in tables 4 & 5 of appendix 6.1.

Tables 2 and 3 below list the overall capital and operating costs associated with the bio-butanol production plant.

Table 2: Plant-wide cost summary of CAPEX

CAPEX	£ millions	% to total
Fixed capital		
Equipment cost	72	34%
Equipment erection and structural work	33	15%
Piping insulation and painting	33	15%
Instrumentation and control equipment	11	5%
Electrical power and lighting	7	3%
Process buildings and structures	7	3%
Land	3	1%
Design and engineering costs	41	19%
Contractor's fees	8	4%
Total fixed capital	215	100%
Working capital		
Start-up	3	6%
Initial catalyst charges	1	3%
Raw materials and intermediates in the process	22	40%
Finished product inventories	11	20%
Contingency allowance	17	31%
Funds to cover outstanding accounts from customers	0	0%
Total working capital	53	100%
Total capital investment	268	

Table 3: Plant-wide cost summary of OPEX

OPEX	£ millions	% to total
Variable costs		
Raw materials	164	54%
Miscellaneous materials	2	0%
Utilities	139	46%
Total variable costs	305	100%
Fixed costs		
Maintenance	15	29%
Operating labour	15	30%

Laboratory costs	3	6%
Supervision	2	4%
Plant overheads	8	15%
Capital charges - buildings	1	1%
Capital charges - equipment	7	14%
Tax – gaseous emissions	0	0%
Tax – corporation tax	0	0%
Total fixed costs	51	100%
Total variable & fixed costs	356	
Indirect costs		
Sales expense	15	49%
Insurance	4	14%
Royalties and licence fees	2	8%
General overheads	9	29%
R&D	0	0%
Total indirect costs	31	100%
Total operating costs	387	

3 Profitability analysis on bio-butanol production plant

3.1 Information relevant to the analysis

Revenue and variable costs are the key factors that determine the plant's economic performance. The largest capital and operating costs associated with the production plant were identified in scenario 1. In terms of capital costs, these include the process equipment in Areas 3 & 4 which account for 27 % and 60 % of total process equipment cost, respectively. The major components of variable costs include the annual electricity cost which accounts for 58 % of the total utility costs, and 21 % of total operating costs and the annual cost of wheat which accounts for 96 % of the raw material requirements of the plant and 41 % of total operating costs. These details can be found in tables 8 & 9 of appendix 6.3.

Revenue mainly comes from the sale of butanol which accounts for 81.6 % of total revenue and by-products produced by the plant, ethanol, acetone, and hydrogen which account for the remaining 18.4 %. Annual revenue from sales based on market prices (University of Cambridge Design Project 2020, In: Project brief, p.4-5) totals £ 125 million whereas annual purchases of wheat total £ 158 million. Clearly this indicates that the yield of butanol achieved by the process of 20 % is sub-optimal.

The price and cost profiles used to estimate the market over the lifetime of the plant are consistent and represent the most likely market trends. The variable and fixed costs associated with the plant were inflated over its operating lifetime by assuming annual inflation rates of 4 % and 6 %, respectively. The selling prices of the plant's products were also inflated over this time-period by assuming an annual inflation rate of 5 % (www.accaglobal.com/uk/specific inflation, accessed 01/06/2020).

3.2 DCF, NPV and Breakeven analyses

Tables 6 and 7 which can be found in appendix 6.2, list the discounted cash flows for scenarios 1 & 2, respectively. In both circumstances, the working capital was assumed to be employed at the end of year 0 and as a result, was included in the year 1 net cash flow.

The detailed cash flows for each of the 15 years of plant operation for both scenarios 1 & 2 can be found in figures 7 & 8 of appendix 6.5, respectively.

Under both scenarios 1 & 2, the bio-butanol plant is not profitable. On the contrary, it is generating billions of GBP in losses. For an annual discount rate of 10 %, the NPV_{t=0} of scenario 1 is £ -3.532 billion whereas that of scenario 2 is £ -3.048 billion.

In performing the calculations, capital allowances were ignored since, huge losses are generated each year. In addition, even though, subsidies of up to £ 500 million are available in the area (Department for Business, Energy & Industrial Strategy, In: Industrial clusters in England, 2017 p. 60) where the plant will be located, these were also ignored for the purposes of the preliminary design phase. They should both however be considered in the case that it proceeds to the next design stage.

Figure 1: Discounted cumulative cash flow against time for scenarios 1 & 2. A breakeven scenario is also included

In figure 1, neither scenarios 1 nor 2 demonstrate a breakeven point. The cumulative cash flow in each case declines consistently up to the point where the plant reaches the end of its operating lifetime. Figure 1 reinforces the notion that the plant is not profitable.

The breakeven scenario as depicted in figure 1, has been estimated by computing a set of parametric values of product prices that result in the $NPV_{t=0}$ of revenues equalling the $NPV_{t=0}$

of costs. In this scenario, the plant demonstrates a breakeven point after 14 years of operation. A detailed cash flow for the breakeven scenario can be found in figure 9 in appendix 6.6.

All product prices have been increased by a factor of 2.5. Moreover, the annual electricity requirement was reduced by 50 %. Annual requirements of towns water and low-pressure steam were also reduced by 15 and 10 %, respectively. These reductions were made relative to the relevant utility and raw material requirements of scenario 1. The utility and raw material requirement alterations are feasible whereas the assumed change in product selling prices is less likely to occur at any point during the operating lifetime of the plant.

4 Sensitivity analysis on the economic performance of the plant

The sensitivity analysis was performed to comprehend how sensitive the plant's profitability is to changes in the parameters that drive cost and revenue identified so far. This analysis focused on butanol yield and utility requirements as the main plant parameters as well as the selling prices of the products as the main market parameters.

The effect the yield of butanol produced by the process has on the economics of the plant was examined. Figures 2 and 3 depict the influence that changes in the plant's annual wheat requirement have on the total operating costs and NPV_{t=0} associated with the plant. An overall decrease in wheat requirement of 25 % corresponding to an increase in butanol yield of approximately 20 %, reduced the total operating costs from £ 382 million to approximately £ 340 million. The effects of this reduction are clearer in figure 3, which demonstrates that the overall NPV_{t=0} increased by approximately 18 %. Even though this is a significant increase in absolute terms, under current market pricing conditions it is still not sufficient to make the plant profitable, other things being equal.

Figure 2: Total operating costs against % reduction in annual wheat requirement for scenario 1

Figure 3: Net Present Value at a discount rate of 10% against % reduction in annual wheat requirement for scenario 1

The effects the selling prices of ethanol and butanol have on the plant economic performance are demonstrated in figure 4. A decrease in selling prices of 20 %, reduced the NPV $_{t=0}$ by 7 %. A corresponding 20 % increase in product selling prices, increased the NPV $_{t=0}$ by approximately 10 %. According to figures 2, 3 & 4, the plant parameter that affects the plant's economic performance the most is the yield of butanol.

Figure 4: Net Present Value at a discount rate of 10 % against % change in butanol and ethanol selling prices for scenario 1

The major economic risks to the plant include, increases in the purchase price of wheat (https://ahdb.org.uk/news/usda-forecast-big-stocks-on-the-horizon-grain-market-daily) and loss in product purity. Loss in product purity will render the product wholly unsaleable and will thus generate even larger financial losses.

In addition, mainland competition in the biofuels industry by companies such as DuPont and BP which are also heavily investing in processes that produce bio-butanol will also pose a major economic threat to the plant. Its local market share will be at risk because of this competition. And while ethanol refining facilities far outnumber those for biobutanol, and as refinements continue with genetically modified microorganisms, the possibility of retrofitting ethanol plants to biobutanol is feasible.

5 Revisions and recommendations on cost reduction

In the design review meeting, a strategy on reducing the costs associated with the design was devised without compromising its inherent and engineered safety aspects.

Capital cost reductions discussed during the meeting include, the fermenters in Area 4 and the liquefaction as well as saccharification reactors in Area 3. These reactors were overdesigned and with excess storage volume. In addition, it was decided to eliminate a heat exchanger from Area 3 since, the required duty could be more than met by the overdesigned liquefaction reactors which include external heating jackets.

As far as operating costs are concerned, potential reductions in electricity requirements in Areas 2 and 3 were discussed. These reductions are possible since, the Area 3 engineer overestimated the electricity requirement by assuming a motor efficiency of 0.1 for the agitation units of the reactors.

Cost reduction recommendations stemming from the design review meeting include, a 24 % decrease in overall electricity consumption and a 15 % decrease in low pressure steam consumption, as far as total operating costs are concerned. In addition, a 17 % decrease in total process equipment cost is recommended prior to engaging in process revision 2. The recommendations were accounted for in scenario 2.

6 Appendix

$\underline{6.1 \; \text{Total process equipment and annual utility costs estimated for scenario}}$

Table 4: Associated process equipment costs for scenario 1

AREA	PROCESS EQUIPMENT	No. of units	Total cost £
Area 1	Storage silo	2	518 000
	Wheat tempering unit	20	78 400
	Water pump	1	3 000
	Air blower	50	25 000
	Screw conveyor	2	24 350

	Bucket elevator	8	296 000
	Magnetic separator	4	16 000
	Aspiration channel	5	10 000
	Combi cleaner	5	150 000
	Scourer	5	100 000
	Breaker roller	145	2 175 000
	Reduction roller	145	1 450 000
	Cyclone separator	50	88 250
	Rotary sifter	290	3 100
		SUB TOTAL	4.937.100
	Positive displacement		
Area 2	pump	4	129.015
	Mixing vessel	1	114.800
	Mixing vessel	1	149.240
		SUB TOTAL	457.595
Area 3	Centrifugal pump	4	57 007
	Centrifugal pump	4	64 654
	Heat exchanger	2	143 645
	Liquefaction reactors	4	4 970 000
	Saccharification reactors	16	14 400 000
		SUB TOTAL	19 635 307
Area 4	Heat exchanger	20	2 600 000
	Heat exchanger	10	550 000
	Heat exchanger	1	630 990
	Centrifugal pump	21	121 730
	Fermenter reactors	50	36 610 410
	Vessel	6	1 584 370
	Separator decanter	1	164 200
	Centrifuge	5	1 166 500
		SUB TOTAL =	43 428 200
Area 5	Centrifugal pump	2	54 000
	Stirred tank mixer vessel	1	38 000
	Continuous gravity		
	decanter	1	226 000
	Distillation column	2	1 718 000
	Reboiler absorber column	1	628 000
	Kettle reboiler	3	524 000
	Condenser	2	260 000
		SUB TOTAL =	3 448 000
Area 6	Heat exchanger	2	14 850
	Sieve plate column	2	52 750
	Condenser	2	21 100
	Reboiler	2	79 300
	Centrifugal pump	4	4 640
	Reflux drum	2	12 800
	Acetone storage unit	1	70 000
	Ethanol storage unit	1	54 000
	Slop cut storage unit	1	12 400

	SUB TOTAL =	321 840
	<u>TOTAL</u> =	72 228 042

Table 5: Associated utility costs per annum for scenario 1

AREA	UTILITY		ANNUAL COST £
Area 1	Towns water, 20 °C		91.679
	Electricity		13.581.228
		SUB TOTAL =	13 672 907
Area 2	Towns water, 20 °C		2 550 000
	LPS, 131 °C		1.830.000
	Electricity		29 100 000
		SUB TOTAL =	33 480 000
Area 3	Towns water, 20 °C		10 362 816
	Cooling water, 18 °C		886.000
	LPS, 131 °C		7 970 000
	Electricity		28 458 900
		SUB TOTAL =	47 677 716
Area 4	LPS, 131 °C		1 728 000
	Nitrogen		10 408 000
	Aqueous effluent disposal		17 924 961
	Electricity		9 450 127
		SUB TOTAL =	39 511 088
Area 5	Cooling water, 18 °C		30 240
	Electricity		11 760
	IPS, 201 °C		1 740 720
	LPS, 131 °C		1 673 840
	Aqueous effluent disposal		679 488
		SUB TOTAL =	4 136 048
Area 6	Cooling water, 18 °C		181 428
	LPS, 131 °C		322 072
	Electricity		3 412
	Nitrogen		2 793
	Towns water, 20 °C		260
	Compressed air		5
		SUB TOTAL =	509 970
		<u>TOTAL</u> =	138 987 729

6.2 DCF and NPV analyses for scenarios 1 & 2 at 2 different discount rates

Table 6: Cash flows, discounted cash flows and Net Present Value for scenario 1 where, f_d^n represents the discount factor and i represents the discount rate

•	Scenario 1		i = 5%		= 10%
Year n	Cash flow / million £	$\mathbf{f^n_d}$	$\mathbf{f^n_d}$ DCF / million £ $\mathbf{f^n_d}$		DCF / million £
0	-215	1.000	-215	1.000	-215

1	-310	0.952	-295	0.909	-282
2	-268	0.907	-243	0.866	-232
3	-279	0.864	-241	0.825	-230
4	-290	0.823	-239	0.785	-228
5	-302	0.784	-237	0.748	-226
6	-314	0.746	-235	0.712	-224
7	-327	0.711	-233	0.678	-222
8	-341	0,677	-231	0.646	-220
9	-355	0.645	-229	0.615	-218
10	-369	0.614	-227	0.586	-216
11	-384	0.585	-225	0.558	-214
12	-400	0.557	-223	0,532	-213
13	-416	0.530	-221	0.506	-211
14	-433	0.505	-219	0.482	-209
15	-429	0.481	-206	0.459	-197
16	56	0.458	26	0.437	24
Total CF	-5 376	$NPV_{t=0}$	-3 690	$NPV_{t=0}$	-3 532

Table 7: Cash flows, discounted cash flows and Net Present Value for scenario 2 where, f_d^n

represents the discount factor and i represents the discount rate

	Scenario 2		i = 5%		i = 10%
Year n	Cash flow / million £	$\mathbf{f^n_d}$	DCF / million £	$\mathbf{f^n_d}$	DCF / million £
0	-180	1.000	-180	1.000	-180
1	-259	0.952	-246	0.909	-235
2	-232	0.907	-211	0.866	-201
3	-242	0.864	-209	0.825	-199
4	-252	0.823	-207	0.785	-198
5	-262	0.784	-205	0.748	-196
6	-272	0.746	-203	0.712	-194
7	-283	0.711	-201	0.678	-192
8	-295	0.677	-199	0.646	-190
9	-307	0.645	-198	0.615	-189
10	-319	0.614	-196	0.586	-187
11	-332	0.585	-194	0.558	-185
12	-345	0.557	-192	0.532	-183
13	-359	0.530	-190	0.506	-182
14	-373	0.505	-188	0.482	-180
15	-379	0.481	-182	0.459	-174
16	38	0.458	18	0.437	17
Total CF	-4 650	$NPV_{t=0}$	-3 184	$NPV_{t=0}$	-3 048

6.3 Utilities and raw materials cost/area analysis for scenarios 1 & 2

Table 8: Utilities cost/area analysis for scenario 1

Ref. no	UTILITIES - COST/AREA ANALYSIS	AREA 1	AREA 2	AREA 3	AREA 4	AREA 5	AREA 6	UTILITY TOTAL (£)	% OF PLANT TOTAL
1	Towns water, 20 °C	91 679	2 550 000	10 362 816	0	0	260	13 004 754	9%
2	Air	0	0	0	0	0	0	0	0%
3	Electricity	13 581 228	29 100 000	28 458 900	9 450 127	11 760	3 412	80 605 427	58%
4	LPS, 131 °C	0	1 830 000	7 970 000	1 728 000	1 673 840	322 072	13 523 912	10%
5	Cooling water, 18 °C	0	0	886 000	0	30 240	181 428	1 097 668	1%
6	IPS, 201 °C	0	0	0	0	1 740 720	0	1 740 720	1%
7	Compressed air	0	0	0	0	0	5	5	0%
8	Nitrogen	0	0	0	10 408.000	0	2 793	10 410 793	7%
9	Aqueous effluent disposal	0	0	0	17 924 961	679 488	0	18 604 449	13%
AREA AND PLANT TOTALS		13 672 907	33 480 000	47 677 716	39 511 088	4 136 048	509 970	138 987 729	100%

Table 9: Raw materials cost/area analysis for scenario 1

Ref. no	RAW MATERIAL- PLANT COSTS	AREA 1	AREA 2	AREA 3	AREA 4	AREA 5	AREA 6	RAW MATERIAL TOTAL (£)	% OF PLANT TOTAL
1	Wheat	158 041 600	0	0	0	0	0	158 041 600	96%
2	α-amylase	0	0	60 960	0	0	0	60 960	0%
3	Glucoamylase	0	0	2 910 800	0	0	0	2 910 800	2%
4	Sulfuric acid	0	0	5 245	0	0	0	5 245	0%
5	Caustic soda	0	0		3 415 854	0	0	3 415 854	2%
AREA A	AND PLANT TOTALS	158 041 600	0	2 977 005	3 415 854	0	0	164 434 458	100%

Table 10: Utilities cost/area analysis for scenario 2

Ref. no	UTILITIES - COST/AREA ANALYSIS	AREA 1	AREA 2	AREA 3	AREA 4	AREA 5	AREA 6	UTILITY TOTAL (£)	% OF PLANT TOTAL
1	Towns water, 20 °C	91 679	2 550 000	10 362 816	0	0	260	13 004 754	11%
2	Air	0	0	0	0	0	0	0	0%
3	Electricity	13 581 228	20 370 000	18 498 285	9.450.127	11 760	3 412	61 914 812	52%
4	LPS, 131 °C	0	1 830 000	5 770 000	1 728 000	1 673 840	322 072	11 323 912	10%
5	Cooling water, 18 °C	0	0	886 000	0	30 240	181 428	1 097 668	1%
6	IPS, 201 °C	0	0	0	0	1 740 720	0	1 740 720	1%
7	Compressed air	0	0	0	0	0	5	5	0%
8	Nitrogen	0	0	0	10 408 000	0	2 793	10 410 793	9%
9	Aqueous effluent disposal	0	0	0	17 924 961	679 488	0	18 604 449	16%
AREA	AND PLANT TOTALS	13 672 907	24 750 000	35 517 101	39 511 088	4 136 048	509 970	118 097 114	100%

Table 11: Raw materials cost/area analysis for scenario 2

Ref. no	RAW MATERIAL COSTS	AREA 1	AREA 2	AREA 3	AREA 4	AREA 5	AREA 6	RAW MATERIAL TOTAL (£)	% OF TOTAL
1	Wheat	158 041 600	0	0	0	0	0	158 041 600	96%
2	α-amylase	0	0	60 960	0	0	0	60 960	0%
3	Glucoamylase	0	0	2 910 800	0	0	0	2 910 800	2%
4	Sulfuric acid	0	0	5 245	0	0	0	5 245	0%
5	Caustic soda	0	0	0	3 415 854	0	0	3 415 854	2%
AREA A	AND PLANT TOTALS	158 041 600	0	2 977 005	3 415 854	0	0	164 434 458	100%

6.4 Assumptions employed in completing the cost summaries for scenarios 1 & 2

FIXED CAPITAL INVESTMENT - Estimate	Lang factor (Fluids-Solids type	S1	S2
	processing plant) (Sinnott et al., 2005 p252)	Relevant Cost	Relevant Cost
A. DIRECT COSTS		£	£
Equipment erection	0.45	32 502 619	27 103 813
Piping	0.45	32 502 619	27 103 813
Instrumentation	0.15	10 834 206	9 034 604
Electrical	0.10	7 222 804	6 023 070
Buildings	0.10	7 222 804	6 023 070
Land		2 876 500	2 876 500
Equipment		72 228 042	60 230 697
SUB TOTAL		165 389 593	138 395 567
B. INDIRECT COSTS			
Design and engineering	0.25	41 347 398	34 598 892
Contractor's fees	0.05	8 269 480	6 919 778
Contingency allowance (Incl. in working capital)	0.10	16 538 959	13 839 557
SUB TOTAL		66 155 837	55 358 227
TOTAL FIXED CAPITAL INVESTMENT (A+B)	1.40	231 545 431	193 753 794

Notes:

- 1. Estimates made from total equipment cost
- 2. S1: Scenario 1 Original estimates
- 3. S2: Scenario 2 Revised estimates following feasible cost reduction

Figure 5: Fixed capital investment estimate using Lang factors (Sinnott et al., 2005 p.261-267)

CAPEX	SCENARIO 1		SCENARIO 2	S2/S1
FIXED CAPITAL	£	Factor used %	£	%
Equipment cost	72 228 042		60 230 697	83.4%
Equipment erection and structural work	32 502 619		27 103 813	83.4%
Piping insulation and painting	32 502 619		27 103 813	83.4%
Instrumentation and control equipment	10 834 206		9.034 604	83.4%
Electrical power and lighting	7 222 804		6 023 070	83.4%
Process buildings and structures	7 222 804		6 023 070	83.4%
Land	2 876 500		2 876 500	100.0%
SUB-TOTAL	165 389 593		138 395 567	83.7%
Design & engineering costs	41 347 398		34 598 892	83.7%
Contractor's fees	8 269 480		6 919 778	83.7%
SUB-TOTAL	49 616 878		41 518 670	83.7%
TOTAL FIXED CADITAL	215.007.451		150 014 225	02.70/
TOTAL FIXED CAPITAL	215 006 471		179 914 237	83.7%
WORKING CAPITAL	£		£	%
Start-up	3 000 000		2 300 000	76.7%
Initial catalyst charges	1 485 880		1 485 880	100.0%
Raw materials and intermediates in the process	21 500 647	5%	8 995 712	41.8%
Finished product inventories	10 750 324	5%	8 995 712	83.7%
Contingency allowance	16 538 959		13 839 557	83.7%
Funds to cover outstanding accounts from customers	0	0%	0	
TOTAL WORKING CAPITAL	53 275 810	20%	35 616 860	66.9%
TOTAL CAPITAL INVESTMENT	268 282 282		215 531 098	80.3%
OPEX	£	%	£	%

VARIABLE COSTS				
Raw materials	164 434 458		164 434 458	100.0%
Miscellaneous materials [10% (2)]	1 505 045	10%	899 571	59.8%
Utilities	138 987 729		118 097 114	85.0%
TOTAL VARIABLE COSTS	304 927 232		283 431 143	93.0%
FIXED COSTS	£	%	£	%
Maintenance [5-10% (1)] used 7%	15 050 453	5%	8 995 712	59.8%
Operating labour [max 15% (3)] used 5%	15 171 109	5%	14 126 579	93.1%
Laboratory costs [20-30% (4)] used 20%	3 034 222	20%	2 825 316	93.1%
Supervision (estimated assuming personnel for 6 Areas)	2 063 100		2 063 100	100.0%
Plant overheads [50-100% (3)] used 50%	7 585 555	50%	7 063 289	93.1%
Capital charges - Buildings	722 280	10%	602 307	83.4%
Capital charges - Equipment	7 222 804	10%	6 023 070	83.4%
Tax - Gaseous emissions	232 480	10%	232 480	100.0%
Tax – Corporation tax (19%)	0		0	
TOTAL FIXED COSTS	51 082 003		41 931 852	82.1%
TOTAL VARIABLE & FIXED COSTS	356 009 236		325 362 995	91.4%
INDIRECT [20-30 % (5)]	£	%	£	9/0
Sales expense (5 % of indirect costs)	15 246 362	3%	8 502 934	55.8%
Insurance (2% of indirect costs)	4 300 129	2%	3 598 285	83.7%
Royalties and licence fees (2% of indirect costs)	2 499 316	1%	1 249 658	50.0%
General overheads (3% of indirect costs)	9 147 817	3%	8 502 934	93.0%
R&D *	0	0%	0	
	31 193 624		21 853 811	70.1%
TOTAL INDIRECT COSTS				

- (1) of total fixed capital
- (2) of maintenance costs
- (3) of total operating costs
- (4) of total operating labour
- (5) of total direct production costs
- (6) of total sales
- * Assumed no R&D as royalties and fees are paid

Figure 6: Cost summary breakdown for scenarios 1 & 2 including key assumptions employed (Sinnott et al., 2005 p.261-267)

6.5 Cash flow statements for both scenarios 1 & 2 including discounted cash flow calculations at two different discount rates

CASH-FLOW STATEMENT - PERIOD: 15 YEARS																	
(SCENARIO 1)	YR0	YR1	YR2	YR3	YR4	YR5	YR6	YR7	YR8	YR9	YR10	YR11	YR12	YR13	YR14	YR15	YR16
CURRENCY: £ Millions	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
1 ANNUAL INCREASE - estimate FOR VARIABLE COSTS		104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%
1 ANNUAL INCREASE - estimate FOR FIXED COSTS		106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%
1 ANNUAL INCREASE - estimate FOR SALES		105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%
CASH OUTFLOW																	
FIXED CAPITAL																	
EQUIPMENT COST	72																
EQUIPMENT ERECTION, FOUNDATIONS AND																	
STRUCTURAL WORK	33																
PIPING INSULATION AND PAINTING	33																
INSTRUMENTATION AND CONTROL EQUIPMENT	11																
ELECTRICAL POWER AND LIGHTING	7																
PROCESS BUILDINGS AND STRUCTURES	7																
LAND	3																
DESIGN AND ENGINEERING COSTS	41																
CONTRACTOR'S FEES	8																
TOTAL CASH OUTFLOW FROM FIXED CAPITAL	215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A WODWING CARPEAL																	
2 WORKING CAPITAL		2															
START-UP		3															
INITIAL CATALYST CHARGES		1															
RAW MATERIALS FOR INTERMEDIATES IN THE PROCESS		22															
FINISHED PRODUCT INVENTORIES		11															
CONTIGENCY ALLOWANCE		17															
FUNDS TO COVER OUTSTANDING ACCOUNTS FROM		1/															
CUSTOMERS	0	0	0	0	0	0	0	0	o	0	0	0	o	0	0	0	0
TOTAL CASH OUTFLOW FROM WORKING	U		0	U	0	U	- 0	U			-					-	
CAPITAL CASH OUT LOW FROM WORKING	0	53	0	0	0	0	0	0	0	0	0	О	0	0	0	0	0

OPEX																	
VARIABLE COSTS																	
RAW MATERIALS		171	178	185	192	200	208	216	225	234	243	253	263	274	285	274	0
MISCELLANEOUS MATERIALS		2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	0
UTILITIES	0	145	150	156	163	169	176	183	190	198	206	214	223	231	241	250	0
TOTAL CASH OUTFLOW VARIABLE COSTS	0	317	330	343	357	371	386	401	417	434	451	469	488	508	528	527	0
FIXED COSTS																	
MAINTENANCE		16	17	18	19	20	21	23	24	25	27	29	30	32	34	36	
OPERATING LABOUR		16	17	18	19	20	22	23	24	26	27	29	31	32	34	36	
LABORATORY COSTS		3	3	4	4	4	4	5	5	5	5	6	6	6	7	7	
SUPERVISION		2	2	2	3	3	3	3	3	3	4	4	4	4	5	5	
PLANT OVERHEADS (65% OF LABOUR COSTS)		8	9	9	10	10	11	11	12	13	14	14	15	16	17	18	
CAPITAL CHARGES - BUILDINGS		0															
CAPITAL CHARGES - EQUIPMENT		0															
3 TAX - GASEOUS EMISSIONS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 TAX - CORPORATION TAX		0															
TOTAL FIXED COSTS	0	45	48	51	54	58	61	65	69	73	77	82	87	92	97	103	0
TOTAL VARIABLE & FIXED COSTS	0	363	378	394	411	429	447	466	486	507	528	551	575	599	625	630	0
INDIRECT																	
SALES EXPENSE 0,25 OF DIRECT PRODUCTION COST		16	16	17	18	19	19	20	21	22	23	23	24	25	26	27	
GENERAL OVERHEADS		10	10	10	11	11	12	12	13	13	14	14	15	15	16	16	
R&D		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL INDIRECT COSTS	0	25	26	27	29	30	31	32	33	35	36	38	39	41	42	44	0
TOTAL CASH OUTFLOW FROM OPEX	0	388	405	422	440	458	478	498	519	541	565	589	614	640	668	674	0
TOTAL CASH OUTFLOW	215	441	405	422	440	458	478	498	519	541	565	589	614	640	668	674	0
CASH INFLOW																	
BUTANOL		107	112	118	124	130	137	144	151	158	166	174	183	192	202	212	
ETHANOL		8	9	9	10	10	11	11	12	12	13	14	14	15	16	17	
ACETONE		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	

HYDROGEN			1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	
TOTAL CASH INFLOW FROM SALES		0	131	137	143	150	156	163	171	179	187	195	204	214	224	234	245	0
WORKING CAPITAL RELEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53
LAND REALEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
TOTAL CASH INFLOW		0	131	137	143	150	156	163	171	179	187	195	204	214	224	234	245	56
NET CASH INFLOW / -OUTFLOW		-215	-310	-268	-279	-290	-302	-314	-327	-341	-355	-369	-384	-400	-416	-433	-429	56
					-1	-1	-1	-1	-2	-2	-3	-3	-3	-4	-4	-5	-5	-5
NET CASH INFLOW / -OUTFLOW CUMULATIVE		-215	-525	-793	071	361	663	978	305	646	001	370	754	154	570	003	432	376
7 DISCOUNT RATE (i)	5%		105%	110%	116%	122%	128%	134%	141%	148%	155%	163%	171%	180%	189%	198%	208%	218%
DISCOUNT FACTOR			0,952	0,907	0,864	0,823	0,784	0,746	0,711	0,677	0,645	0,614	0,585	0,557	0,530	0,505	0,481	0,458
DCF		-215	-295	-243	-241	-239	-237	-235	-233	-231	-229	-227	-225	-223	-221	-219	-206	26
						-1	-1	-1	-1	-2	-2	-2	-2	-3	-3	-3	-3	-3
CUMULATIVE DCF		-215	-510	-753	-994	232	469	704	936	167	395	622	847	070	290	509	715	690
O DICCOLDEDATE (A	100/		1100/	11/0/	1010/	1250/	1240/	1400/	1.450/	4550/	4.630/	4740/	4700/	4000/	4000/	2070/	24.00/	2200/
8 DISCOUNT RATE (i)	10%		110%	116%	121%	127%	134%	140%	147%	155%	163%	171%	179%	188%	198%	207%	218%	-
DISCOUNT FACTOR			0,909	0,866		0,785	0,748	0,712	0,678	0,646	0,615	0,586	0,558	0,532	0,506	0,482	0,459	0,437
DCF	1	-215	-282	-232	-230	-228	-226	-224	-222	-220	-218	-216	-214	-213	-211	-209	-197	24
			40-		0.50	-1	-1	-1	-1	-2	-2	-2	-2	-2	-3	-3	-3	-3
CUMULATIVE DCF		-215	-497	-729	-958	186	412	636	858	078	296	513	727	940	150	359	556	532

NOTES:

1 Estimated Inflation rate per year used as follows:

ANNUAL INCREASE - estimate FOR VARIABLE COSTS

ANNUAL INCREASE - estimate FOR FIXED COSTS

6%

ANNUAL INCREASE - estimate FOR SALES

5%

- Working capital included in year 1 and not in year 0 as it is assumed that it will be incurred at the end of year 0 (Dec 2020) and after completion of construction of plant Emissions tax (Gaseous emissions) is paid 1 year in
- 3 arrears
- 4 There is no corporation tax liability
- 5 VAT is ignored for simplicity

It is assumed that equipment/buildings have	e no scrap value at the end of the	
6 project		
7 DISCOUNT RATE (i) %	5	
1. INTEREST RATE	3%	
2. INFLATION	2%	
8 DISCOUNT RATE (i) %	10	
1. INTEREST RATE	8%	
2. INFLATION	2%	

Figure 7: Cash flow statement assuming 15-year operating life for plant, including DCF analysis for scenario 1

CASH-FLOW STATEMENT - PERIOD: 15 YEARS (SCENARIO 2)	YR0	YR1	YR2	YR3	YR4	YR5	YR6	YR7	YR8	YR9	YR10	YR11	YR12	YR13	YR14	YR15	YR16
CURRENCY: £ Millions	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
ANNUAL INCREASE - estimate FOR VARIABLE COSTS		104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%
ANNUAL INCREASE - estimate FOR FIXED COSTS		106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%
ANNUAL INCREASE - estimate FOR SALES		105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%
CASH OUTFLOW																	i
FIXED CAPITAL																	
EQUIPMENT COST	60																i
EQUIPMENT ERECTION, FOUNDATIONS AND																	1
STRUCTURAL WORK	27																
PIPING INSULATION AND PAINTING	27																
INSTRUMENTATION AND CONTROL EQUIPMENT	9																I
ELECTRICAL POWER AND LIGHTING	6																I
PROCESS BUILDINGS AND STRUCTURES	6																ı
LAND	3																1
DESIGN AND ENGINEERING COSTS	35																
CONTRACTOR'S FEES	7																
TOTAL CASH OUTFLOW FROM FIXED CAPITAL	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WORKING CAPITAL																	
START-UP		2															
INITIAL CATALYST CHARGES		1															ı

RAW MATERIALS FOR INTERMEDIATES IN THE		0															
PROCESS		9															
FINISHED PRODUCT INVENTORIES		9															
CONTIGENCY ALLOWANCE		14															
FUNDS TO COVER OUTSTANDING ACCOUNTS FROM		•												•	•		0
CUSTOMERS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL CASH OUTFLOW FROM WORKING		26												0	0		0
CAPITAL	0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OPEX																	
VARIABLE COSTS																	
RAW MATERIALS		171	178	185	192	200	208	216	225	234	243	253	263	274	285	287	0
MISCELLANEOUS MATERIALS		1/1	1/0	103	1)2	1	1	1	1	1	1	1	1	1	203	207	0
UTILITIES UTILITIES	0	123	128	133	138	144	149	155	162	168	175	182	189	197	205	213	0
TOTAL CASH OUTFLOW VARIABLE COSTS	0	295	307	319	332	345	359	373	388	403	420	436	454	472	491	501	0
TOTAL CASH OUTLOW VARIABLE COSTS		275	307	317	332	343	337	313	300	405	420	430	757	7/2	7/1	301	
FIXED COSTS																	
MAINTENANCE		10	10	11	11	12	13	14	14	15	16	17	18	19	20	22	
OPERATING LABOUR		15	16	17	18	19	20	21	23	24	25	27	28	30	32	34	
LABORATORY COSTS		3	3	3	4	4	4	4	5	5	5	5	6	6	6	7	
SUPERVISION		2	2	2	3	3	3	3	3	3	4	4	4	4	5	5	
PLANT OVERHEADS (65% OF LABOUR COSTS)		7	7	8	8	9	9	10	11	11	12	13	13	14	15	16	
CAPITAL CHARGES - BUILDINGS		0															
CAPITAL CHARGES - EQUIPMENT		0															
TAX - GASEOUS EMISSIONS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAX - CORPORATION TAX		0															
TOTAL FIXED COSTS	0	37	39	42	44	47	49	52	55	59	62	66	70	74	79	83	0
TOTAL VARIABLE & FIXED COSTS	0	332	346	360	376	391	408	425	443	462	482	502	524	546	569	584	0
INDIRECT																	
SALES EXPENSE 0,25 OF DIRECT PRODUCTION COST		9	9	10	10	10	11	11	12	12	13	13	14	14	15	15	
INSURANCE		4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	
ROYALTIES & LICENSE FEES		1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	
GENERAL OVERHEADS		9	9	10	10	10	11	11	12	12	13	13	14	14	15	15	

R&D			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL INDIRECT COSTS		0	23	24	25	26	27	28	29	30	31	32	34	35	36	38	39	0
TOTAL CASH OUTFLOW FROM OPEX		0	354	369	385	401	418	436	454	473	493	514	536	559	583	607	624	0
		100		2.50											=0.5			
TOTAL CASH OUTFLOW		180	390	369	385	401	418	436	454	473	493	514	536	559	583	607	624	0
CASH INFLOW																		
BUTANOL			107	112	118	124	130	137	144	151	158	166	174	183	192	202	212	
ETHANOL			8	9	9	10	10	11	11	12	12	13	14	14	15	16	17	
ACETONE			15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	<u> </u>
HYDROGEN			1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	İ
TOTAL CASH INFLOW FROM SALES		0	131	137	143	150	156	163	171	179	187	195	204	214	224	234	245	0
																		
WORKING CAPITAL RELEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36
LAND REALEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
TOTAL CASH INFLOW		0	131	137	143	150	156	163	171	179	187	195	204	214	224	234	245	38
NET CASH INFLOW / -OUTFLOW		-180	-259	-232	-242	-252	-262	-272	-283	-295	-307	-319	-332	-345	-359	-373	-379	38
NET CASH INFLOW / -OUTFLOW CUMULATIVE		-180	-439	-671	-913	-1164	-1426	-1698	-1982	-2276	-2583	-2902	-3233	-3578	-3937	-4310	-4689	-4650
DISCOUNT RATE (i)	5%		105%	110%	116%	122%	128%	134%	141%	148%	155%	163%	171%	180%	189%	198%	208%	218%
DISCOUNT FACTOR			0,952	0,907	0,864	0,823	0,784	0,746	0,711	0,677	0,645	0,614	0,585	0,557	0,530	0,505	0,481	0,458
DCF		-180	-246	-211	-209	-207	-205	-203	-201	-199	-198	-196	-194	-192	-190	-188	-182	18
CUMULATIVE DCF		-180	-426	-637	-846	-1053	-1258	-1461	-1663	-1862	-2060	-2255	-2449	-2641	-2832	-3020	-3202	-3184
DISCOUNT RATE (i)	10%		110%	116%	121%	127%	134%	140%	147%	155%	163%	171%	179%	188%	198%	207%	218%	229%
DISCOUNT FACTOR			0,909	0,866	0,825	0,785	0,748	0,712	0,678	0,646	0,615	0,586	0,558	0,532	0,506	0,482	0,459	0,437
DCF		-180	-235	-201	-199	-198	-196	-194	-192	-190	-189	-187	-185	-183	-182	-180	-174	17
CUMULATIVE DCF		-180	-415	-616	-816	-1013	-1209	-1403	-1595	-1786	-1974	-2161	-2346	-2529	-2711	-2891	-3065	-3048
																		
NOTES:																		

NOTES:

Same as for Scenario 1 Cash Flow Statement

Figure 8: Cash flow statement assuming 15-year operating life for plant, including DCF analysis for scenario 2

6.6 Cash flow statement for breakeven scenario including discounted cash flow calculations at two different discount rates

CASH-FLOW STATEMENT - PERIOD: 15 YEARS																	
(BREAKEVEN SCENARIO)	YR0	YR1	YR2	YR3	YR4	YR5	YR6	YR7	YR8	YR9	YR10	YR11	YR12	YR13	YR14	YR15	YR16
CURRENCY: £ Millions	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
ANNUALY INCREASE - estimate FOR VARIABLE COSTS		104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%	104%
ANNUALY INCREASE - estimate FOR FIXED COSTS		106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%	106%
ANNUALY INCREASE - estimate FOR SALES		105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%	105%
CASH OUTFLOW																	
FIXED CAPITAL																	
EQUIPMENT COST	60																
EQUIPMENT ERECTION, FOUNDATIONS AND STRUCTURAL WORK	27																
PIPING INSULATION AND PAINTING	27																
INSTRUMENTATION AND CONTROL EQUIPMENT	9																
ELECTRICAL POWER AND LIGHTING	6																
PROCESS BUILDINGS AND STRUCTURES	6																
LAND	3																
DESIGN AND ENGINEERING COSTS	35																
CONTRACTOR'S FEES	7																
TOTAL CASH OUTFLOW FROM FIXED CAPITAL	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WORKING CAPITAL																	
START-UP		2															
INITIAL CATALYST CHARGES		1															
RAW MATERIALS FOR INTERMEDIATES IN THE																	
PROCESS		9															
FINISHED PRODUCT INVENTORIES		9															
CONTIGENCY ALLOWANCE		14															
FUNDS TO COVER OUTSTANDING ACCOUNTS FROM CUSTOMERS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TOTAL CASH OUTFLOW FROM WORKING CAPITAL		26		0	0	0	0	0	0	0	0	0	0	0	0	0	0
CAPITAL	0	36	0	0	U	0	U	U	U	U	U	0	U	U	U	U	
OPEX																	
VARIABLE COSTS																	
RAW MATERIALS		171	178	185	192	200	208	216	225	234	243	253	263	274	285	287	0
MISCELLANEOUS MATERIALS		1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	0
UTILITIES	0	88	92	96	99	103	107	112	116	121	126	131	136	141	147	153	0
TOTAL CASH OUTFLOW VARIABLE COSTS	0	260	271	282	293	304	317	329	342	356	370	385	401	417	433	441	0
FIXED COSTS																	
MAINTENANCE		10	10	11	11	12	13	14	14	15	16	17	18	19	20	22	
OPERATING LABOUR		13	14	15	16	17	18	19	20	21	22	24	25	27	28	30	
LABORATORY COSTS		3	3	3	3	3	4	4	4	4	4	5	5	5	6	6	
SUPERVISION		2	2	2	3	3	3	3	3	3	4	4	4	4	5	5	
PLANT OVERHEADS (65% OF LABOUR COSTS)		6	7	7	7	8	8	9	9	10	11	11	12	13	13	14	
CAPITAL CHARGES - BUILDINGS		0															
CAPITAL CHARGES - EQUIPMENT		0															
TAX - GASEOUS EMISSIONS		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TAX - CORPORATION TAX		0															
TOTAL FIXED COSTS	0	34	36	38	41	43	45	48	51	54	57	61	64	68	72	77	0
TOTAL VARIABLE & FIXED COSTS	0	294	307	320	333	347	362	378	394	410	428	446	465	485	506	518	0
INDIRECT																	
SALES EXPENSE 0,25 OF DIRECT PRODUCTION COST		8	8	8	9	9	9	10	10	11	11	12	12	13	13	14	
INSURANCE		4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	
ROYALTIES & LICENSE FEES		1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	
GENERAL OVERHEADS		8	8	8	9	9	9	10	10	11	11	12	12	13	13	14	
R&D		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL INDIRECT COSTS	0	21	21	22	23	24	25	26	27	28	29	31	32	33	34	36	0
TOTAL CASH OUTFLOW FROM OPEX	0	315	328	342	357	372	387	404	421	439	457	477	497	518	540	554	0

TOTAL CASH OUTFLOW		180	350	328	342	357	372	387	404	421	439	457	477	497	518	540	554	
CASH INFLOW																		
BUTANOL			268	281	295	310	325	342	359	377	396	415	436	458	481	505	530	
ETHANOL			21	22	23	24	26	27	28	30	31	33	34	36	38	40	42	
ACETONE			37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	
HYDROGEN			2	2	2	2	3	3	3	3	3	3	3	4	4	4	4	
TOTAL CASH INFLOW FROM SALES		0	328	343	358	374	391	408	427	446	467	488	511	535	560	586	613	
WORKING CAPITAL RELEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
LAND REALEASE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>
TOTAL CASH INFLOW		0	328	343	358	374	391	408	427	446	467	488	511	535	560	586	613	
NET CASH INFLOW / -OUTFLOW		-180	-22	14	16	17	19	21	23	26	28	31	34	38	42	46	59	
NET CASH INFLOW / -OUTFLOW CUMULATIVE		-180	-202	-188	-172	-155	-136	-114	-91	-65	-37	-6	28	66	108	153	213	,
DISCOUNT RATE (i)	5%		105%	110%	116%	122%	128%	134%	141%	148%	155%	163%	171%	180%	189%	198%	208%	218
DISCOUNT FACTOR			0,952	0,907	0,864	0,823	0,784	0,746	0,711	0,677	0,645	0,614	0,585	0,557	0,530	0,505	0,481	0,
DCF		-180	-21	13	14	14	15	16	17	17	18	19	20	21	22	23	29	
CUMULATIVE DCF		-180	-201	-188	-175	-160	-145	-129	-113	-96	-77	-58	-38	-17	5	28	57	
DISCOUNT RATE (i)	10%		110%	116%	121%	127%	134%	140%	147%	155%	163%	171%	179%	188%	198%	207%	218%	229
DISCOUNT FACTOR			0,909	0,866	0,825	0,785	0,748	0,712	0,678	0,646	0,615	0,586	0,558	0,532	0,506	0,482	0,459	0,
DCF		-180	-20	12	13	14	14	15	16	17	17	18	19	20	21	22	27	"
CUMULATIVE DCF		-180	-200	-188	!	-161	-147	-132	-116	-99	-82	-64	-44	-24	-3	19	46	†

Figure 9: Cash flow statement assuming 15-year operating life for plant, including DCF analysis for breakeven scenario

7 References

- [1] University of Cambridge Design Project 2020, In: Project brief, Department of Chemical Engineering & Biotechnology, p.4-5.
- [2] R. K. Sinnott et al., In: Chemical Engineering Design, Elsevier, 2005, Vol. 6, 4th edition, p. 261-267.
- [3] www.accaglobal.com/uk/specific inflation, accessed 01/06/2020.
- [4] Department for Business, Energy & Industrial Strategy, In: Industrial clusters in England, 2017, p. 60.
- [5] https://ahdb.org.uk/news/usda-forecast-big-stocks-on-the-horizon-grain-market-daily, accessed 02/06/2020.