Assignment methods of Phospecting Electrical

Mikoush Taismail [8EX20030

Schlimberger variay

Potential at P, due to C1 and C2 with be
$$V_{P_1} = \frac{f_T}{2T} \cdot \begin{pmatrix} \bot \\ \bot - L \end{pmatrix} - \frac{f_T}{2T} \cdot \begin{pmatrix} \bot \\ \bot + \ell \end{pmatrix}$$

Polential at P2 due JT C1 and C2 will be

différence at $VP_1 - VP_2 = VV \triangle V$ Poential

$$f = fa = \left\{ \frac{\Pi(L^2 - \ell^2)}{2\ell} \right\} \stackrel{\Delta V}{=}$$

$$G = \left\{ \frac{\pi \left(L^2 - L^2\right)}{2L} \right\}$$

Sounding Layer Interpretation

Fig 1. 4 Layer interpretation

Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is AK Type [$\rho 1 < \rho 2 < \rho 3 > \rho 4$], where, $\rho 1 = 100$ ohm-m, $\rho 2 = 1000$ ohm-m, $\rho 3 = 2600$ ohm-m, $\rho 4 = 2300$ ohm-m. The Values of Thicknesses are found to be, h1 = 1.6 m, h2 = 2 m, h3 = 8 m.

Error: 19.29%

For a 5 Layered Model, type of Master Curve obtained is AAK Type [ρ 1 < ρ 2 < ρ 3 < ρ 4 > ρ 5],where, ρ 1=100 ohm-m, ρ 2=800 ohm-m, ρ 3=1800 ohm-m, ρ 4=3000 ohm-m and ρ 5 = 2600. The Values of Thicknesses are found to be, h1 = 1.5 m, h2 = 0.2 m, h3=2.5m, h4=2

Misfit Error: 13.61 %

The Concept of Equivalence: Dierent layers of dierent resistivities can produce the same or similar sounding curve which creates ambiguity in interpretation. This can be due to the presence of a conductive layer between two resistive layers or vice-versa.

The Concept of Suppression: According to the principle of suppression, a skinny layer with resistivity values that lies between the overlying and underlying resistivity values might produce no eect at the resistivity curves; thereby such skinny layers would be neglected at some point of resistivity sounding information interpretation. This can be seen in figure 1 and figure 2 shown above.

• Problem of Equivalence in S1 sounding: For the above AK-type curve, for any values of h3 and ρ 3 will satisfy as long as h3 * ρ 3 is steady.

Figure 2: 5 Layer interpretation:

Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is HA Type [ρ 1 > ρ 2 < ρ 3 < ρ 4], where, ρ 1=105 ohm-m, ρ 2=60 ohm-m, ρ 3=450 ohm-m, ρ 4=850 ohm-m. The Values of Thicknesses are found to be, h1 = 1.7 m, h2 = 2.25 m, h3 = 2.75 m.

Misfit Error: 8.42%

- **Problem of Equivalence in S2 sounding:** For the HA-type sounding curve obtained above, any values of h2 and ρ 2 would satisfy as long as the h2/ ρ 2 is constant. Any variation in the values of h2 and ρ 2 by its mean value leads to a very negligible change in the error.
- Problem of Suppression in S2 sounding: When the number of layers become accelerated to 5 such that fee of $\rho 4$ is close to $(\rho 3 + \rho 5)/2$. The misfit error was about 9.23%. Therefore, we can face the problem of suppression in this sounding data.

Sounding 3:
Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is HK-Type [$\rho 1 > \rho 2 < \rho 3 > \rho 4$], where, $\rho 1= 95$ ohm-m, $\rho 2=13$ ohm-m, $\rho 3=80$ ohm-m, $\rho 4=25$ ohm-m. The Values of Thicknesses are found to be, h1=3.8 m, h2=4 m, h3=23 m.

Misfit Error: 8.29%

- Problem of Equivalence in S3 sounding: For the HK-type curve, any values of h2, h3, ρ 2, and ρ 3 would validate as long as the h2/ ρ 2 and h3 * ρ 3 is constant. The curve will fit exactly the same. Any variation in the values of h1, ρ 1, h2 and ρ 2 by its mean value leads to a very negligible change in the error.
- Problem of Suppression in S3 sounding: When the number of layers was increased to 5 such that value of $\rho 4$ is close to $(\rho 3 + \rho 5)/2$. The misfit error was about 8.90%. Therefore, we can face the problem of suppression in this sounding data.

Sounding 4

Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is HK-Type [$\rho 1 > \rho 2 < \rho 3 > \rho 4$], where, $\rho 1$ =52 ohm-m, $\rho 2$ =34 ohm-m, $\rho 3$ =450ohm-m, $\rho 4$ =180 ohm-m. The Values of Thicknesses are found to be, h1 = 4 m, h2 = 4 m, h3 = 1 m.

Misfit Error: 5.94%

- **Problem of Equivalence in S4 sounding:** For the HK-type curve, any values of h2, h3, ρ 2, and ρ 3 would validate as long as the h2/ ρ 2 and h3 * ρ 3 is constant. The curve will fit exactly the same. Any variation in the values of h1, ρ 1, h2 and ρ 2 by its mean value leads to a very negligible change in the error.
- Problem of Suppression in S4 sounding: When the number of layers was increased to 5 such that value of $\rho 4$ is close to $(\rho 3 + \rho 5)/2$. The misfit error was about 8.90%. Therefore, we can face the problem of suppression in this sounding data.

Sounding 5

Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is HA-Type [$\rho 1 > \rho 2 < \rho 3 < \rho 4$], where, $\rho 1 = 100$ ohm-m, $\rho 2 = 14$ ohm-m, $\rho 3 = 50$ ohm-m, $\rho 4 = 350$ ohm-m. The Values of Thicknesses are found to be, h1 = 4 m, h2 = 3.5 m, h3 = 0.5 m.

Misfit Error: 8.65%

- **Problem of Equivalence in S5 sounding:** For the HA-type sounding curve obtained above, any values of h2 and ρ 2 would satisfy as long as the h2/ ρ 2 is constant. Any variation in the values of h2 and ρ 2 by its mean value leads to a very negligible change in the error.
- **Problem of Suppression in S5 sounding:** If the number of layers become accelerated to 5 such that fee of $\rho 3$ is close to $(\rho 2 + \rho 4)/2$. The misfit error was about 7.83%. Therefore, we can face the problem of suppression in this sounding data.

Sounding 6

Apparent resistivity vs AB/2 plot

For a 4 Layered Model, type of Master Curve obtained is KH-Type [$\rho 1 < \rho 2 > \rho 3 < \rho 4$], where, $\rho 1$ =380hm-m, $\rho 2$ =180 ohm-m, $\rho 3$ =22 ohm-m, $\rho 4$ =850 ohm-m. The Values of Thicknesses are found to be, h1 = 1.25 m, h2 = 1.5 m, h3 = 6 m.

Misfit Error: 5.35%

- **Problem of Equivalence in S6 sounding**: For the KH-type curve, any values of h2, h3, ρ 2, and ρ 3 would validate as long as the h3/ ρ 3 and h2 * ρ 2 is constant. The curve will fit exactly the same. Any variation in the values of h1, ρ 1, h2 and ρ 2 by its mean value leads to a very negligible change in the error.
- Problem of Suppression in S6 sounding: If the number of layers was increased to 5 such that value of $\rho 4$ is close to $(\rho 3 + \rho 5)/2$. The misfit error was about 6.21%. Therefore, we can face the problem of suppression in this sounding data.

Sounding (4 Layer Model)	ρ1 ohm- m	ρ2 ohm- m	ρ3 ohm- m	ρ4 ohm- m	H1 (m)	H2 (m)	H3 (m)	Misfit Error
S1	100	1000	2600	2300	1.6	2	8	19.29%
S2	105	60	450	850	1.7	2.25	2.75	8.42%
S3	95	13	80	25	3.8	4	23	8.29%
S4	52	34	450	180	4	4	1	5.94%
S5	100	14	50	350	4	3.5	0.5	8.65%
S6	38	180	22	850	1.25	1.5	6	5.35%

Geoelectrical section

