Course Schedule (course notes for each section should be read before each class)

Week	Date	Topic
1	Friday January 15	Linear models revisited
2	Friday January 22	Maximum likelihood estimation
3	Friday January 29	Bayesian inference
4	Friday February 5	Poisson models
5	Friday February 12	Binomial models
6	Friday February 19	Introduction to hierarchical models part 1
7	Friday February 26	Introduction to hierarchical models part 2
8	Friday March 4	Project proposals (student presentations)
9	Friday March 11	Project proposals (student presentations)
10	Friday March 18	Constructing hierarchical models (proposal summaries due)
11	Friday March 25	SPRING BREAK
12	Friday April 1	Work on independent projects
13	Friday April 8	Work on independent projects
14	Friday April 15	Work on independent projects
15	Friday April 22	Final student presentations
16	Friday April 29	Final student presentations
17	Friday May 6	Final student presentations

Course Schedule (course notes for each section should be read before each class)

Week	Date	Topic
1	Friday January 15	Linear models revisited
2	Friday January 22	Maximum likelihood estimation
3	Friday January 29	Bayesian inference
4	Friday February 5	Poisson models
5	Friday February 12	Binomial models
6	Friday February 19	Introduction to hierarchical models part 1
7	Friday February 26	Introduction to hierarchical models part 2
8	Friday March 4	Project proposals (student presentations)
9	Friday March 11	Project proposals (student presentations)
10	Friday March 18	Constructing hierarchical models (proposal summaries due)
11	Friday March 25	SPRING BREAK
12	Friday April 1	Work on independent projects
13	Friday April 8	Work on independent projects
14	Friday April 15	Work on independent projects
15	Friday April 22	Final student presentations
16	Friday April 29	Final student presentations
17	Friday May 6	Final student presentations

One week after the initial presentation students will be required to submit a 1-page project proposal that incorporates feedback from the class and

Goals for projects:

- use your own data (or data you know well)
- write out your model (by hand + LaTeX)
- understand all the parameters in your model
- fit the model using Stan
- assess the model
- interpret (and plot) the parameter estimates
- we don't really care about biological implications of you model

Things to keep in mind:

- (1) hierarchical data
- (2) keep it (relatively) simple
- (3) do I have any prior information?
- (4) assessing your model

The Experiment

Taricha torosa

Ribeiroia ondatrae

$$n = 364$$
 $n_{\text{families}} = 30$

$$k = 25$$
 parasites

The Question

How much variation in resistance can be attibuted to family relatedness (i.e. heritability)?

The Data

The Data

The Model

```
y_i \sim Binomial(k, p_i)
logit (p_i) = \beta_0 + X_i \beta + \alpha_i + \alpha_{j[i]} + \alpha_{wave[i]} + \alpha_{block[i]}
                    \beta_0 \sim Normal (logit (0.22), 0.7)
                            \beta \sim Normal(0, \phi)
                            \alpha \sim Normal(0, \sigma)
                           \phi \sim halfNormal(0, 5)
                          \sigma \sim halfNormal(0, 5)
```

The Model

repeatability (upper bound estimate on heritability)

$$\sigma_j^2/(\sigma_i^2+\sigma_j^2)$$