一、选择题

)1. 设 $A \times B$ 是两个事件,若 $A \subset B$,则下列性质**错误**的是

A. $P(A \cup B)=P(A)+P(B)$

B. P(B-A)=P(B)-P(A)

C. $P(\overline{A})=1-P(A)$

D. $P(A) \ge 0$

) 2. 一个盒子中有9只红球,3只白球。在盒中取球5次,每次1只,其中恰有2只 白球 3 只红球的概率为

C.7/22

D.1/8

) 3. 若随机变量 $X \sim N(1,4)$,则 $\frac{X-1}{2}$ 服从分布

A. $N(\mu, \sigma^2)$ B. $N(1, \sigma^2)$ C. N(0,1) D. $N(\mu,1)$

)4. 设随机变量 X 与 Y 相互独立,且 $X\sim P(\lambda_1)$, $Y\sim P(\lambda_2)$, $\lambda_1>0,\lambda_2>0$

EX = 2, EY = 3, $\emptyset E(X + Y)^2 =$

A. 51

B.10

C.30

D.25

)5. 设 X_1,X_2 是取自总体 $N(\mu,1)$ 的样本,未知参数 μ 有以下无偏估计,则较有效 的估计是

A.
$$\hat{\mu}_1 = \frac{1}{3}X_1 + \frac{2}{3}X_2$$

$$B. \, \hat{\mu}_2 = \frac{1}{4} X_1 + \frac{3}{4} X_2$$

C.
$$\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{2}X_2$$
 D. $\hat{\mu}_4 = \frac{2}{5}X_1 + \frac{3}{5}X_2$

D.
$$\hat{\mu}_4 = \frac{2}{5}X_1 + \frac{3}{5}X_2$$

() 6. 在假设检验中,记 H_0 为原假设,则犯受伪错误是指

A. H_0 为假,接受 H_0 B. H_0 为真,接受 H_0

C. H_0 为假,拒绝 H_0 D. H_0 为真,拒绝 H_0

() 7. 设总体 $X\sim N(\mu,\sigma^2)$, σ^2 已知,通过样本 X_1,X_2,\cdots,X_n 检验原假设

 $H_0: \mu = \mu_0$ 时,需要使用的统计量是

$$A.U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$

A.
$$U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$
 B. $U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n-1}$

$$C.t = \frac{\overline{X} - \mu_0}{S*} \sqrt{n}$$

$$D.t = \frac{\overline{X} - \mu_0}{S*}$$

$$D.t = \frac{\overline{X} - \mu_0}{S^*}$$

共7页

	A. $n\overline{X}$	B. \overline{X}	C. $\frac{\overline{X}}{3}$	D. $\frac{\overline{X}}{2}$						
() 9. 若随机事件 A 与随机事件 B 是相互独立的,则以下式子 错误 的是										
	$A. P(A \mid B)$	B) = P(A)	$B. P(B \mid A) = P(B)$							
	C.P(AB)	$= P(A) \cdot P(B)$	$D. P(AB) = P(B) \cdot P(B \mid A)$							
(() 10. 设标准正态分布的上 0.10 分位点为 z=1.28,则分布函数在该点的函数值为									
	A.0.10		.28	C.0.90	D.0.28					
	二、填空题									
1.	设离散随机变	泛量 X 的分布列为								
	X	0	2	4	6					
	P	0. 1	0. 3	0. 4	0. 2					
	则 $E(X) = $	o								
2.	若 $X \sim U(0,5)$,则其概率密度函数为									
3.	己知 $D(X) = 25$, $D(Y) = 49$, $\rho_{XY} = 0.4$,则 $D(X - Y) =$									
4.	若 $X \sim \chi^2(n)$,	,则 D(X)=								
5.	设 F _{0.05} (9,12) =	= 2.80,则 F _{0.95} (12,	9) =	o						
6.		$.5^2$) 中简单随机执(已知 $\Phi(1) = 0.84$			$\langle \overline{X} \langle 20.3 \rangle =$					
7.		, 3, 4 的四个球随 ‡成 1, 2, 3, 4 的顺		试问事件"各球	自左至右或自					

() 8. 设 X ~ B(1,p),其样本: X_1,X_2,\cdots,X_n ,其参数 p 的矩估计为 $\hat{p}=$

9. 随机变量 X_1 与 X_2 的概率密度函数分别为

8. 设A, B为随机事件, $P(A) = 0.6, P(B) = 0.8, P(B \mid \overline{A}) = 0.85$,则 $P(B \mid A) = \underline{}$

则
$$E(X_1 + X_2) =$$
 ;

三、简答题

1、当前智能手机市场上是苹果、安卓和微软的天下,2013年Q3统计市场占有率得到:安卓机81.9%、苹果iOS为12.1%、微软的WP8的6%。现已知三种智能手机的次品率为:安卓机5%、苹果机3%、WP87%。试求市场上智能手机的次品率。

2. 已知**本福特定律**是数字统计的一种内在规律,指所有自然随机变量,只要样本空间足够 大,每一样本首位数字为1至9个数字的概率在一定范围内具有稳定性,如下表。

在十进制首位数字的出现机率(%,小数点后一个位):

数字	1	2	3	4	5	6	7	8	9
概率	30.1	17.6	12.5	9.7	7.9	6.7	5.8	5.1	4.6

现某日,你在某购物网上闲逛,看到一个猜价格首数字的活动,而游戏规则是:如果你猜出 是该商品的价格首位数是就获得该奖品,请问现你看到一套家庭影院参加该活动,为了保证 最大可能性中奖,你会猜该套家庭影院价格首位数字是多少?为什么?

3. 设随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2(x+y) & , & 0 \le x \le 1, & 0 \le y \le x \\ 0 & , & 其它 \end{cases}$$

求E(X).

4. 已知男子有 5%是色盲患者,女子有 0.25%是色盲患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男性的概率是多少?

四、计算题

1. 某厂生产一批内径为 20mm 的铜管,设铜管内径 $X \sim N(\mu, \sigma^2)$,随机抽取 16 根铜管,测得样本均值 $\bar{x} = 20.47mm$,修正过的样本标准差 $s^* = 0.92mm$.求均值 μ 的置信度为 90% 的置信区间及其长度. (已知 $\alpha = 0.05$, $t_{0.95}(15) = 1.7531$)

2. 设随机变量 X 服从均值为 10, 标准差为 0.02 的正态分布, 已知

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt. \quad \Phi(2.5) = 0.9938.$$

求 X 落在区间 (9.95, 10.05) 内的概率有多大.

3. 两人约定于 8 点至 9 点在某地会面. 先到者等候 20 分钟,过时就离去. 求这两人能见面的概率?

五、证明题

已知 X_1 , X_2 是总体 X 的一个样本,证明统计量 $2X_1-X_2$ 与 $\frac{1}{3}X_1+\frac{2}{3}X_2$ 都是总体 数学期望 E(X) 的无偏估计量,评价它们中哪一个更有效.