

GEOMETRÍA Capítulo 13 SESIÓN II

CIRCUNFERENCIA II

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y, por lo tanto, el conocimiento de sus teoremas, clases, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

<u>Definición</u>: Es aquella figura geométrica formada al unir 3 puntos no colineales mediante segmento de recta.

- VÉRTICES: A, B y C
- LADOS : \overline{AB} , \overline{BC} y \overline{AC}

TEOREMAS

$$\alpha + \beta + \theta = 180^{\circ}$$

$$\omega + \phi + \gamma = 360^{\circ}$$

$$\omega = \alpha + \beta$$

$$\phi = \alpha + \theta$$

$$\gamma = \beta + \theta$$

Teorema de la correspondencia

Teorema de la existencia

Si: $\beta < \alpha$

b < a

donde: c < b < a

Clasificación

1. Según las medidas de los lados.

∆ Escaleno

Δ Isósceles

∆ Equilátero

2.Clasificación según las medidas de sus ángulos.

∆ Rectángulo

∆ Oblicuángulo

∆ Acutángulo

∆ Obtusángul

Resolución

4. Del gráfico, calcule a + b

01

5. Del gráfico, halle el valor de x.

CPQD : Inscrito.

$$2x + 1^{\circ} + 87^{\circ} = 180^{\circ}$$

 $2x + 88^{\circ} = 180^{\circ}$
 $2x = 92^{\circ}$

- ABCD : Inscrito.
 - PQDC: Inscrito.

- $50 = 100^{\circ}$
 - e = 20°
- $4x = 84^{\circ} + \theta$
- $4x = 84^{\circ} 20^{\circ}$
- $4x = 104^{\circ}$

8. Se muestra un parque circular con una vereda diametral AB y en el centro O un poste. Si OD = DC y mBC =40°, halle mAE.

