

CALCULUS

Prof. Liang ZHENG

Spring 2025

• We have seen how the first derivative tells us where a function is increasing, where it is decreasing, and whether a local maximum or local minimum occurs at a critical point. In this section we see that the second derivative gives us information about how the graph of a differentiable function bends or turns.

1 Concavity

DEFINITION The graph of a differentiable function y = f(x) is

- (a) concave up on an open interval I if f' is increasing on I;
- (b) **concave down** on an open interval I if f' is decreasing on I.

A function whose graph is concave up is also often called convex.

2 The Second Derivative Test for Concavity

- Let y = f(x) be twice-differentiable on an interval I.
 - 1. If f'' > 0 on I, the graph of f over I is concave up (convex).
 - 2. If f'' < 0 on I, the graph of f over I is concave down (concave).

Concave up

Concave down

Example 1

- (a) The curve $y = x^3$ is concave down on $(-\infty, 0)$, where y'' = 6x < 0, and concave up on $(0, \infty)$, where y'' = 6x > 0.
- (b) The curve $y = x^2$ is concave up on $(-\infty, \infty)$ because its second derivative y'' = 2 is always positive.

Example 2

Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$.

• The curve $y = 3 + \sin x$ changes concavity at the point $(\pi, 3)$. Since the first derivative $y' = \cos x$ exists for all x, we see that the curve has a tangent line of slope -1 at the point $(\pi, 3)$. This point is called a **point of inflection** of the curve.

3 Points of Inflection

DEFINITION A point (c, f(c)) where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

• At a point of inflection (c, f(c)), either f''(c) = 0 or f''(c) fails to exist.

Example 3

Determine the concavity and find the inflection points of the function

$$f(x) = x^3 - 3x^2 + 2.$$

Example 4 Find the inflection point of $f(x) = x^{5/3}$.

Example 5 The curve $y = x^4$ has no inflection point at x = 0.

Example 6 The graph of $y = x^{1/3}$ has a point of inflection at the origin because the second derivative is positive for x < 0 and negative for x > 0:

However, both y' and y'' fail to exist at x = 0, and there is a vertical tangent there.

4 Second Derivative Test for Local Extrema

THEOREM 5 – Second Derivative Test for Local Extrema

Suppose f'' is continuous on an open interval that contains x = c.

- 1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- 3. If f'(c) = 0 and f''(c) = 0, then the test fails. The function f may have a local

maximum, a local minimum, or neither.

⑤ Sketch a graph of the function that captures its key features:

Procedures to sketch the graph of f(x):

- 1. Identify the domain of f and any symmetries the curve may have.
- 2. Find f' and f''.
- 3. Find the critical points of f, if any, and identify the function's behavior at each one.
- 4. Find where the curve is increasing and where it is decreasing.
- 5. Find the points of inflection, if any occur, and determine the concavity of the curve.
- 6. Identify any asymptotes that may exist.
- 7. Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve together with any asymptotes that exist.

⑤ Graphical Behavior of Functions from Derivatives

• This figure indicates how the first two derivatives of a function affect the shape of its graph.

Example 7 Sketch a graph of the function

$$f(x) = x^4 - 4x^3 + 10$$

x < 0	0 < x < 2	2 < x < 3	3 < <i>x</i>
decreasing	decreasing	decreasing	increasing
concave up	concave down	concave up	concave up

Example 8 Sketch the graph of

$$f(x) = \frac{(x+1)^2}{1+x^2}$$

	$x < -\sqrt{3}$	$-\sqrt{3} < x < -1$	-1 < x < 0	0 < <i>x</i> < 1	$1 < x < \sqrt{3}$	$x > \sqrt{3}$
f'(x)	< 0	< 0	> 0	> 0	< 0	< 0
f''(x)	< 0	>0	>0	< 0	< 0	>0

Example 9 Sketch the graph of

$$f(x) = \frac{x^2 + 4}{2x}$$

	<i>x</i> < -2	-2 < x < 0	0 < <i>x</i> < 2	<i>x</i> > 2
f'(x)	> 0	< 0	< 0	< 0
f''(x)	< 0	< 0	>0	>0