

#### ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY, GUWAHATI

Semester III: Electrical Engineering/ B Tech

| Sl.  | Sub Code           | Subject                             | L | T | P | Credit |
|------|--------------------|-------------------------------------|---|---|---|--------|
| No.  |                    |                                     |   |   |   |        |
|      | Theory             |                                     |   |   |   |        |
| 1    | MA131301           | Mathematics-III                     | 3 | 2 | 0 | 4      |
| 2    | EE131302           | Circuits Analysis                   | 3 | 2 | 0 | 4      |
| 3    | EE131303           | Material Science                    | 3 | 0 | 0 | 3      |
| 4    | EE131304           | Electrical Machines I               | 3 | 0 | 0 | 3      |
| 5    | ET131305           | Analog Electronics                  | 3 | 2 | 0 | 4      |
| 6    | HS131306           | Sociology                           | 2 | 0 | 0 | 2      |
|      | <b>Practical</b>   |                                     |   |   |   |        |
| 7    | EE131312           | Circuits Analysis Lab               | 0 | 0 | 2 | 1      |
| 8    | EE131314           | Electrical Machines I Lab           | 0 | 0 | 2 | 1      |
| 9    | ET131315           | Analog Electronics Lab              | 0 | 0 | 2 | 1      |
| 10   | EE131317           | Electrical Machine Drawing/ Autocad | 0 | 0 | 4 | 2      |
| Tota | Total 17 6 10 25   |                                     |   |   |   | 25     |
| Tota | l Contact Hou      | rs = 33                             |   |   |   |        |
| Tota | Total Credits = 25 |                                     |   |   |   |        |

Course Title: MATHEMATICS III

Course Code: MA131301 L-T-:: C 3-2=4

**Abstract:** 

This course of Mathematics is important for almost all the engineering disciplines. It deals with the partial differential equations of first order and  $2^{nd}$  order.

**Prerequisites:** Concept of solution of ODE, Elementary complex numbers and properties, Elementary probability and statistics ? measures of central tendency, dispersions. Basic differentiation and integration [ HS / diploma level]

#### **Course Outcomes:**

The students will

- ❖ Be able to apply the fundamental concepts of Partial differential Equations.
- ❖ Get familiarised with the applications of Ordinary Differential Equations and Partial Differential Equations.

❖ Be able to apply different techniques of integration, including partial fractions, integration by parts and recurrence formulae, to solve problems.

| Module | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No of<br>hours | Marks |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 1      | First order Partial differential equation: Partial differential equation of first order, Linear partial differential equation, Non-linear partial differential equation, Homogenous and non-homogeneous partial differential equation with constant coefficient, Cauchy type, Monge§ method.  Second order Partial differential equation: Second order partial differential equation The vibrating string, the wave equation and its solution, the heat equation and its solution, Two dimensional wave equation and its solution, Laplace equation in polar, cylindrical and spherical coordinates, potential. | 15             | 30    |
| 2      | Complex Analysis: Analytic function, Cauchy-Riemann equations, Laplace equation, Conformal mapping, Complex integration: Line integral in the complex plane, Cauchy\(^3\) integral theorem, Cauchy\(^3\) integral formula, Derivatives of analytic functions.  Mathematical Series: Power Series, Taylor\(^3\) series, Laurent\(^3\) series, Singularit ies and zeros, Residue integration method.                                                                                                                                                                                                              | 15             | 30    |
| 3      | Probability and statistics:  (i)Definition of probability, Laws of probability, Bays theorem, random variables, probability distributions and characteristics, binomial distribution, poissons distributions and Normal distribution.  (ii) elementary sampling theory, tests of hypothesis (statistical inference), Standard error, Fudicial (Confidence) limits, Tests of significance- Students? T-tests, Chi square tests and Z?tests.                                                                                                                                                                      | 10             | 25    |

|   | Laplace Transform                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 4 | Definition of Laplace transform, Laplace transform of elementary functions, inverse of Laplace transforms. Properties of Laplace Transform- Linearity, multiplication by t <sup>n</sup> and division by t. Laplace Transform of derivatives and integrals. Shifting theorems, Laplace transform of (i) periodic function (ii) unit step function, (iii) Dirac-delta function. Covolution theorem, Application of Laplace transform to initial value problems. | 8 | 15 |

#### **Reference books:**

- 1. E. Kreyszig, Advanced Engineering Mathematics:, Eighth Edition, Wiley India.
- 2. B.V. Ramana, Higher Engineering Mathematics? McGraw Hil Education.
- 3. N.P.Bali and Manish Goel, 'A text book of Engineering mathematics? Laxmi Publication.
- 4. B. S. Grewal, Higher Engineering Mathematics? Khanna Publication, Delhi.
- 5. Babu Ram, Engineering Mathematics? Pearson .

#### **CIRCUIT ANALYSIS**

| SUBJECT:              | :CIRCUIT ANALYSIS |
|-----------------------|-------------------|
| CODE:                 | :EE131302         |
| L-TC:                 | :3-2-4            |
| CLASS HOUR:           | :4 hrs/week       |
| TOTAL NO OF CLASSES:  | : 36              |
| EXPECTED NO OF WEEKS: | : 9 weeks         |
|                       |                   |

| MODULE | TOPICS          | COURSE CONTENT                              | HOURS |
|--------|-----------------|---------------------------------------------|-------|
| 1      | NETWORK         | The resistor: Practical engineering         | 2     |
|        | <b>ELEMENTS</b> | devices. Solid & wire frame of common       |       |
|        | (FUNDAMENTALS)  | resistive materials, carbon film and metal  |       |
|        |                 | film resistors                              |       |
|        | Marks: 15       | Heat dissipating area (wattage), tolerance  | 2     |
|        |                 | and temperature stability of resistors. the |       |
|        |                 | capacitor: Comparison of properties of      |       |
|        |                 | different traditional & modern dielectric   |       |
|        |                 | materials                                   |       |
|        |                 | Short description of electrolytic           | 2     |
|        |                 | capacitor- wet & solid dielectrics, solid   |       |
|        |                 | tantalum & aluminum capacitors              |       |
|        |                 | Mathematical models, the inductors,         | 2     |
|        |                 | energy stored in an inductor.               |       |
| 2      | TRANSIENTS IN   | Concept of circuit transient; Transient     | 2     |
|        | ELECTRIC        | response & steady state response;           |       |

|   | CIRCUITS             | Forcing functions-impulse, step and ramp         | 2  |
|---|----------------------|--------------------------------------------------|----|
|   | CIRCUID              | functions Study and solution of simple           | 2  |
|   | Marks:15             | circuits undergoing transient                    |    |
|   | Warks.15             | disturbances,                                    |    |
|   |                      | A.C. transients, Time domain equations           | 2  |
|   |                      | and solutions by Lap lace transforms             | 2  |
| 3 | NETWORK              | Graph of a network and its parts;                | 2  |
| 3 | GRAPH THEORY         | Elementary graph theory as applied to            | 2  |
|   | GRAITI THEORY        | electrical networks, Oriented graph; Tree;       |    |
|   | (Marks: 15)          |                                                  | 2  |
|   | (IVIAIKS, 13)        | Co-tree; Loops; Tie-set; Cut-set matrix;         | 2  |
|   |                      | Incidence matrices; Network equilibrium          |    |
| 4 | METHODS FOD          | equations.                                       | 3  |
| 4 | METHODS FOR          | Solution of network equations by matrix methods. | 3  |
|   | SOLVING<br>NETWORK   |                                                  | 2  |
|   |                      | Methods suitable for simulating electric         | 2  |
|   | EQUATIONS (Marks 15) | circuits on digital computers.                   |    |
| ~ | (Marks-15)           | D : (1 : (1 /TI :                                | 2  |
| 5 | NETWORK              | Review of basic theorems (Thevenins,             | 2  |
|   | THEOREMS             | Nortons, Superposition and Maximun               |    |
|   | (3.5 ) 15)           | power Transfer) Millman theorem,                 |    |
|   | (Marks-15)           | Reciprocity theorem, Compensation &              | 2  |
|   |                      | Tellegens theoremsetc.                           |    |
|   |                      | Analysis of coupled circuits. The dot rule       | 2  |
|   |                      | & equivalent conductivity coupled forms          |    |
|   |                      | of magnetically coupled circuits                 |    |
| 6 | TWO PORT             | Impedance; Admittance; Transmission              | 1  |
|   | NETWORK              | (T) and hybrid (h) parameters of two port        |    |
|   | ANALYSIS             | network;                                         |    |
|   |                      | Condition for reciprocity & symmetry;            | 1  |
|   |                      | Relation between the parameter sets;             |    |
|   | (Marks-15)           | Equivalent T & $\Pi$ section representation.     | 1  |
|   |                      |                                                  |    |
| 7 | NETWORK              | Foster and Cour forms of realization of          | 2  |
|   | SYNTHESIS            | network for given driving point                  |    |
|   | (Marks-10)           | impedance function,                              |    |
|   |                      | Foster-I & Foster-II forms, Cour-I &             | 2  |
|   |                      | Cour-II forms                                    |    |
|   |                      |                                                  |    |
|   |                      | TOTAL                                            | 36 |
|   |                      |                                                  | -  |
| l | 1                    |                                                  |    |

#### **Books**:

- 1. Electric Circuits ? E.J Edminister (McGrow Hill)
- 2. Engineering Circuit Analysis- Hayt ,Kemmerly &Durbin (TMH)
- 3. Network & Systems- D.Roy Choudhury (Wily Eastern)
- 4. Network Analysis and Synthesis- C.L. Wadhwa (New Age International)
- 5. Circuit Theory- A.Chakraborty (Dhanpat Rai)
- 6. Circuits & Networks: Analysis & Synthesis? Sudhakar, Shyammohan (TMH)

# THIRD SEMESTER MATERIAL SCIENCE

| SUBJECT           | MATERIAL SCIENCE |
|-------------------|------------------|
| CODE              | EE 131303        |
| L-T-C             | 3-03             |
| CLASS HOUR        | 4 hrs/week       |
| TOTAL NO OF CLASS | 38 (APPROX)      |
| EXPECTED NO OF    | 10 (APPROX)      |
| WEEKS             |                  |

| MODULE | CHAPTER                                                                      | CONTENTS                                                                                                                                                                                                                                                                                                                                       | HOURS |
|--------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | CRYSTAL<br>STRUCTURE AND<br>DEFECTS<br>(15 marks)                            | Review of crystal structure, space lattice, atomic packing factor for SC, BCC, FCC, Miller indices for a cubic crystal, Bragg8 law and its applications, Review of inter atomic bonding-Ionic, covalent, metallic and vander waals, Crystal imperfections, Grain boundaries & effects of imperfections on metal properties                     | 5     |
| 2      | BEHAVIOUR OF<br>DIELECTRIC<br>MATERIALS IN AC<br>AND DC FIELDS<br>(25 marks) | i) Types of Polarization and Mechanism, Static dielectric constant for mono atomic gases and polyatomic molecules, internal or local fields (one dimensional case), Clausius-Mossotti relation, spontaneous polarization, piezo electricity ii) Dielectric loss, frequency dependence of ionic and electronic polarization, dipolar relaxation | 11    |
| 3      | MAGNETIC<br>PROPERTIES<br>(20 marks)                                         | Origin of magnetism, magnetism and related parameters, Elementary Ideas of classification of magnetic materials (Dia, Para, Ferro, antiferro & Ferri), Domain Theory of Hysteresis, soft and hard magnetic materials and their applications, magnetic anisotropy and magnetostriction                                                          | 5     |
| 4      | CONDUCTORS<br>(20 marks)                                                     | Free electron theory of metals-Ohm? law, Joule? law of heating, Widemann -Franz law, Effects of various parameters in electrical conductivity, Electrical conducting materials (Cu, Al), Superconductivity and effect of magnetic field, Contact resistance and contact potential                                                              | 4     |
| 5      | SEMICONDUCTORS<br>AND FABRICATION<br>(20 marks)                              | Types of semiconductor, Derivation of Carrier concentration in intrinsic and extrinsic semiconductor, Hall Effect and its applications, Conductivity of semiconductor- Drift and Diffusion mechanism, Einstein relation, Fabrication of BJTs                                                                                                   | 6     |
|        |                                                                              | TOTAL                                                                                                                                                                                                                                                                                                                                          | 31    |

#### THIRD SEMESTER

#### **ELECTRICAL MACHINES - I**

**SUBJECT** Electrical Machines - I

CODE : EE131304 : 3-0--3 / CLASS HOUR : 3 hrs / Week

**TOTAL NO OF** 

CLASS : 36 (APPROX)

**EXPECTED NO OF** 

WEEKS : 12 (APPROX)

| 1 |       | Electro-mechanical Energy Conversion : Marks: 16                                                                                                                                                 |         |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | (i)   | Principle of energy conversion, Field magnets (stationary/rotating), Induced e.m.f. and torque in rotating machines                                                                              | 3 hrs.  |
|   | (ii)  | Simple commutator and slip rings for supply and collection of current, Magnetically coupled circuits, principles of operation of transformer, voltage and current ratios.                        | 2 hrs.  |
| 2 |       | D C Machines:                                                                                                                                                                                    |         |
|   | (i)   | Constructional features, Details of Lap and Wave windings, Principle of operation, Methods of excitations? shunt, series and compound.                                                           | 3 hrs.  |
|   | (ii)  | E.M.F. equation, Armature reaction, Inter-poles and compensation windings, Commutation, Characteristic curves of D.C. Generators                                                                 | 3 hrs.  |
|   | (iii) | Efficiency and Regulation, Parallel operation of D.C. Generators.                                                                                                                                | 2 hrs.  |
| 3 |       | D C Motors :                                                                                                                                                                                     |         |
|   | (i)   | Principle of operation, Speed and Torque characteristic curves of shunt, series and compound motors.                                                                                             | 3 hrs.  |
|   | (ii)  | Starting of D.C. motors? Starters and grading of starting resistance, Speed control, Choice of motors for different duties, Losses and efficiency                                                | 3 hrs.  |
|   | (iii) | Testing? Swinburnes test, Back to back test, Retardation test and Brake test.                                                                                                                    | 2 hrs.  |
| 4 |       | Transformer:                                                                                                                                                                                     |         |
|   | (i)   | Construction? shell type and core type, single phase and poly phase transformers. EMF equation and output equation, Magnetic circuit, leakage flux and leakage reactance.                        | 3 hrs.  |
|   | (ii)  | Phasor diagram, per unit values of resistance and reactance. Open circuit and short circuit tests, back to back test, Regulation, losses and efficiency, maximum efficiency, all-day efficiency. | :4 hrs. |

|   | (iii) | Auto-transfer, 3-phase transformer, Phase transformation and connections.                                                            | 2 hrs. |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------|--------|
|   | (iv)  | Parallel operation of transformer, Vector grouping of three-phase transformers, Effects of transformer Harmonics.                    | 3 hrs. |
| 5 |       | Special Machines:                                                                                                                    |        |
|   | (i)   | <b>Stepper motor:</b> Construction and principle of operation, Types, Characteristics, Selection and Application.                    | 2 hrs. |
|   | (ii)  | <b>Servomotors:</b> Construction and principle of operation of AC and DC servomotors. Types, Damping in AC servomotors, Application. | 1 hrs. |
|   | (iii) | Brushless DC Motor: Construction and principle of operation                                                                          | 1 hrs. |

#### Reference Books

- i) Electrical Machines D P Kothari, I J Nagrath ? Mc Graw Hill.
- ii) Electrical Machines Deepa el.al ? SCITECH. Electric Machinery - A Fitzgerald, Charles Kingsley Jr.,
- iii) Stephen D Umans Mc Graw Hill.
- iv) Advanced Electrical Technology H Cotton CBS Publication.
- v) Electrical Machinery P S Bimbhra? Khanna Publication.
- vi) Electrical Machines R K Rajput ? Laxmi Publication.

### **ANALOG ELECTRONICS**

| SUBJECT              | ANALOG ELECTRONICS |
|----------------------|--------------------|
| CODE                 | ET 131305          |
| L-T-P-C              | 3-2-0-4            |
| CLASS HOUR           | 4 HRS/WEEK         |
|                      |                    |
| TOTAL NO OF CLASSES  | 39 (APPROX)        |
| EXPECTED NO OF WEEKS | 10 (APPROX)        |

| CHAPTER | TOPIC                                           | COURSE CONTENT                                                                                                                                                                                                                                                                                                            | HOUR   |
|---------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1       | Conductors,<br>Insulators and<br>semiconductors | Intrinsic carrier concentration, Effect of doping on carrier concentration, Majority and Minority carriers, Mobility and diffusion constants, Transport of carriers by drift and diffusion, Recombination and carrier life time, Carrier concentration in intrinsic semiconductor, Fermi level in intrinsic semiconductor | 8      |
| 2       | P-N Junction                                    | Graded and Abrupt junction approximations, Built-in field and depletion region approximation, Forward and reversed biased diodes, Diode current equation, Injection of carriers, Analysis of the passage of current through a p-n junction                                                                                | 5      |
| 3       | The Bipolar<br>junction<br>Transistor           | Construction, The currents in a BJT and their relationship, Analysis of IC - VCE characteristics, The Ebers-Moll equations, Transistor biasing, DC load line and thermal stabilizatrion, Transistor as an amplifier                                                                                                       | 12     |
| 4       | Feedback<br>Amplifiers                          | General theory of feedback, Negative and Positive feedback,<br>Their effects on the performance of amplifiers, Overview of<br>negative feedback topologies                                                                                                                                                                | 6      |
| 5       | Operational<br>Amplifier<br>Fundamentals        | Introduction, equivalent circuit of op-amp, characteristics of ideal op-amp, Open loop op-amp configurations ( Differential, Inverting & Non-inverting), Closed loop op-amp configurations(Inverting & Non-inverting)                                                                                                     | 8      |
|         |                                                 |                                                                                                                                                                                                                                                                                                                           | 39 Hrs |

# **REFERENCES**

- 1 Integrated Electronics ? Millman- Halkias (PHI)
- 2 Electronic devices and circuits: J.B. Gupta
- 3 Electronic devices and circuits: S Salivahanan, N Suresh Kumar, A Vallavaraj
- 4 Electronic devices and circuits: Sanjeev Gupta, Santosh Gupta

| HS131306   | SOCIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L = 2 $T = 0$ $C = 2$ |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Module-I   | Module-I  Sociology in the Industrial Perspective: Concept of sociology/ Sociology as a science?/ Sociology of work and industry/ Perspectives for sociological analysis of work/ Class conflict in industry/ Social impact of industrialization  Work and Social Change: Nature of modern societies/ Emergence of industrial capitalism/ Technology and social change/ The information society after the industrial society/ Postmodernity/ Globalization and convergence/ Significance of the service sector today/ Work restructuring and corporate management |                       |
| Module-II  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| Module-III | Work Experiences in Industry: The concept of alienation/ Work satisfaction/ Technology and work experience/ Social background of workers/ Work orientations/ Stress and anxiety of the worker/ Work and leisure/ Unemployment/ Conflicts in the workplace                                                                                                                                                                                                                                                                                                         | 12 Hours              |
|            | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36 Hours              |

#### Reference Books

- 1. Miller and Form, Industrial Sociology (London: Harper & Row, 1968)
- 2. N. R. Sheth, Social Framework of Indian Factory (Bombay: Oxford University Press, 1968)
- 3. Gisbert, Fundamentals of Industrial Sociology (New Delhi: Oxford University Press, 1971)
- 4. P. Gisbert, Fundamentals of Industrial Sociology (New Delhi: Oxford University Press, 1971)
- 5. Tony J. Watson, Sociology, Work and Industry (New York: Routledge, 2004 reprint)

| SUBJECT:       | :CIRCUIT ANALYSIS LAB |
|----------------|-----------------------|
| CODE:          | :EE131312             |
| L-T-P-C:       | :0-0-2-1              |
| CLASS HOUR:    | :4 hrs/week           |
|                |                       |
| TOTAL NO OF    | :7                    |
| CLASSES:       | •1                    |
| EXPECTED NO OF | :8 weeks              |
| WEEKS:         | .o weeks              |

| Experiment No | Aim                                                      | Hours |
|---------------|----------------------------------------------------------|-------|
|               | To study the following passive circuit components:       |       |
| 1             | i) Resistors                                             | 3     |
| 1             | ii) Capacitors                                           | 3     |
|               | iii) Magnetic core material                              |       |
|               | i) To study the characteristics of a R-C low pass filter |       |
| 2             | ii) To design a R-C low pass filter                      | 3     |

| 2 | i) To study the characteristics of a R-C high pass filter         | 2 |
|---|-------------------------------------------------------------------|---|
| 3 | ii) To design a R-C high pass filter                              | 3 |
| , | i) To study the characteristics of a R-C Integrating Circuit.     |   |
| 4 | ii) To design a simple R-C integrator.                            | 3 |
| 5 | i) To study the characteristics of a R-C Differentiating Circuit. | 2 |
| 5 | ii) To design a simple R-C differentiator.                        | 3 |
| 6 | To study the phenomenon of series resonance in a RLC circuit      | 3 |
| 7 | To study the phenomenon of parallel resonance in a RLC circuit    | 3 |

# THIRD SEMESTER ELECTRICAL MACHINE? I LAB

| SUBJECT              | Electrical Machine - I Lab |
|----------------------|----------------------------|
| CODE                 | : EE131314                 |
| L-T-P-C              | : 0-0-2-1 / Week           |
| CLASS HOUR           | : 3 hrs / Week             |
|                      |                            |
| TOTAL NO OF CLASS    | : 8 (APPROX)               |
| EXPECTED NO OF WEEKS | : 8 (APPROX)               |

TOTAL MARKS: 50

| 1 | Open circuit characteristic of a DC shunt generator.                | 3 hrs. |
|---|---------------------------------------------------------------------|--------|
| 2 | Load test on a DC Shunt generator.                                  | 3 hrs. |
| 3 | Load test on DC series motor.                                       | 3 hrs. |
| 4 | Speed control of a DC Shunt motor.                                  | 3 hrs. |
| 5 | Open circuit and short circuit test for a single-phase transformer. | 3 hrs. |
| 6 | Load test on a single-phase transformer.                            | 3 hrs. |
| 7 | Parallel operation of two dc shunt generators.                      | 3 hrs. |

# ANALOG ELECTRONICS LAB

| SUBJECT           | ANALOG ELECTRONICS Lab |
|-------------------|------------------------|
| CODE              | ET 131315              |
| L-T-P-C           | 0-0-2-1                |
| <b>CLASS HOUR</b> | 3 HRS/WEEK             |
|                   |                        |
| TOTAL NO          |                        |
| OF CLASSES        | 09 (APPROX)            |
| <b>EXPECTED</b>   |                        |
| NO OF             |                        |
| WEEKS             | 09 (APPROX)            |

| EXPERIMENT<br>NO | AIM OF THE EXPERIMENTS                                                                                                                                            | HOUR   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1                | To study the forward static characteristics of the diodes                                                                                                         | 3      |
| 2                | To study the static characteristics of a Zener Diodes                                                                                                             | 3      |
| 3                | <ul><li>a) To study a simple shunt type voltage regulator circuit based on a Zener Diode</li><li>b) To find the voltage regulation of the above circuit</li></ul> | 3      |
| 4                | To study rectifier circuits                                                                                                                                       | 3      |
| 5                | To study the biasing techniques of single stage BJT amplifiers (Fixed Bias)                                                                                       | 3      |
| 6                | To study the forward static characteristics of the diodes (Fixed Bias with Feedback)                                                                              | 3      |
| 7                | To study the forward static characteristics of the diodes (Voltage divider Bias)                                                                                  | 3      |
| 8                | To study the forward static characteristics of the diodes (Dual supply)                                                                                           | 3      |
|                  |                                                                                                                                                                   | 24 Hrs |

# THIRD SEMESTER ELECTRICAL MACHINE DRAWING/ Auto Cad

SUBJECT : ELECTRICAL Machine DRAWING/Auto Cad

: 16 (APPROX)

CODE : EE131317

: 0-0-2-1 / Week L-T-P-C CLASS HOUR : 3 hrs / Week

TOTAL NO OF CLASS

EXPECTED NO OF

WEEKS : 16(APPROX)

| 1 |       | Unit 1                                                                                                                                                      |         |
|---|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | (i)   | Standard symbols used in Electrical and Electronics Engineering.                                                                                            | 3 hrs.  |
|   | (ii)  | Insulators used in power transmission and distribution systems                                                                                              | 3hrs.   |
|   | (iii) | Different types of underground cables and overhead conductors used in power transmission and distribution systems. (Only X-sectional view)                  | 3hrs.   |
|   | (iv)  | Various transmission and distribution towers                                                                                                                | 3hrs.   |
| 2 |       | Unit2                                                                                                                                                       |         |
|   | (i)   | D.C Armature windings- Simplex lap and wave windings.                                                                                                       | 3hrs.   |
|   | (ii)  | Sectional front and side elevation of the yoke and pole assembly with field                                                                                 | 3hrs.   |
|   |       | winding.                                                                                                                                                    |         |
| 3 |       | Unit3                                                                                                                                                       |         |
|   | (i)   | Transformers: Sectional plan and elevation of core type and shell type single-phase transformer. Sectional plan and elevation of a three-phase transformer. | : 6hrs. |
|   | (ii)  | induction motor Sectional front and side elevation of slip ring and squirrel cage induction motor.                                                          | 6hrs.   |
|   | (iii) | Alternators Sectional front and side elevation of salient pole and turbo alternators.                                                                       | 6hrs.   |
| 4 |       | Unit4                                                                                                                                                       |         |
|   | (i)   | Three-phase AC windings                                                                                                                                     | 3hrs.   |
|   | (ii)  | Single layer windings- Mush windings and concentric windings.                                                                                               | 3hrs.   |
|   | (iii) | Double layer lap windings- Full pitched, short pitched and fractional slot windings.                                                                        | 6hrs.   |