ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований имени Ландау

Лабораторная работа № 5.1.2 Исследование эффекта Комптона

> Полубояринов Иван Соколов Игорь Группа Б02-210с

Долгопрудный, 2024 г.

1 Аннотация

Исследовано комптоновское рассеяние фотонов. Подтверждено теоретическое описание явления и проверено, что рассеяние происходит на электронах.

2 Теоретическое описание

Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился (его энергия покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$; пусть также после соударения электрон приобрел некоторую энергию γmc^2 и импульс ${\bf p}$, где $\gamma=(1-(v/c)^2)^{-1/2}$ (v – приобретённая электроном скорость), а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения, а его энергия становится равной $\hbar\omega_1$. Введём ортонормированный базис в трёхмерном пространстве, считая ось x сонаправленной с первоначальным направлением движения.

Пусть p^{μ} – 4-вектор импульса электрона до соударения, K^{μ} - 4-вектор импульса γ -кванта до соударения, а p'^{μ} – 4-вектор импульса электрона после соударения, K'^{μ} - 4-вектор импульса γ -кванта после соударения. Тогда:

$$p^{\mu} = \begin{pmatrix} mc \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad K^{\mu} = \begin{pmatrix} \hbar\omega_0/c \\ \hbar\omega_0/c \\ 0 \\ 0 \end{pmatrix}, \quad p^{\mu} = \begin{pmatrix} mc \\ p_x \\ p_y \\ p_z \end{pmatrix}, \quad K^{\mu} = \begin{pmatrix} \hbar\omega_1/c \\ \hbar\omega_1\cos(\theta)/c \\ \hbar\omega_1\sin(\theta)/c \\ 0 \end{pmatrix}.$$

Пользуясь законом сохранения 4-импульса для всей системы из электрона и γ -кванта и переходя к длинам волны λ , мы получаем:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos(\theta)) = \Lambda_c (1 - \cos(\theta)), \tag{1}$$

где $\Lambda_c = \frac{h}{mc} = 2,4$ пм – комптоновская длина волны электрона.

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта данную формулу следует преобразовать от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos(\theta),\tag{2}$$

где $\varepsilon_0 = E_0/mc^2$ – выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

Отметим, что всё вышесказанное применительно в том случае, когда электрон свободный, что справедливо для лёгких атомов, где энергия связи не больше нескольких килоэлектрон-вольт (а чаще всего меньше), и γ -квантов с энергией в несколько десятков-сотен килоэлектрон-вольт.

3 Описание установки

На рис. 1 изображена блок-схема установки.

Рис. 1: Блок-схема установки по изучению рассеяния γ -квантов

Рис. 2: Блок-схема измерительного ком плекса

Источником (1) служит 137Cs , испускающий γ -лучи с энергией 662 кэВ, который помещён в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень (2), испытывает рассеяние и регистрируется сцинтилляционным счётчиком, состоящим из фотоэлектронного умножителя (ФЭУ) и сцинтиллятора – выходное окно сцинтиллятора находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие в аноде ФЭУ, подаются на компьютер для амплитудного анализа. Кристалл NaI(Tl (играющий роль сцинтиллятора) и ФЭУ расположены в светонепроницаемом блоке, укреплённого на горизонтальной штанге, которая может вместе с ним вращаться, угол поворота отсчитывается по лимбу (6). Головная часть сцинтилляционного блока закрыта свинцовым коллиматором (5), который формирует входной пучок и защищает детектор от постороннего излучения, в основном γ -квантов, проходящих через стенки защитного контейнера источника. При больших углах измерения для дополнительной защиты между контейнером и источником и детектором ставился свинцовый экран.

На рисунке $\frac{2}{2}$ представлена функциональная блок-схема измерительного комплекса, который состоит из ФЭУ, питаемого от высоковольтного выпрямителя ВСВ, обеспечивающего работу ФЭУ в спектрометрическом режиме, усилителя-анализатора УА, являющегося входным интерфейсом ЭВМ, управляемой с клавиатуры КЛ. В ходе проведения эксперимента информация отражается на экране дисплея Д. При работе ФЭУ в спектрометрическом режиме величина выходного электрического импульса, снимаемого с анода ФЭУ, пропорциональна энергии регистрируемого γ -кванта, при этом световая вспышка в сцинтилляторе вызывается не самими γ -квантами, а образующимися в кристалле под действием γ -квантов электронами.

В итоге на выходе ФЭУ возникает распределение электрических импульсов, показанное на 3. В амплитудном распределении импульсов имеется так называемый фотопик, возникающий в результате фотоэффекта, и обязанное комптоновскому рассеянию сплошное распределение. Часто фотопик называется также пиком полного поглощения, его положение однозначно связана с энергией регистрируемого γ -излучения. Нас будет интересовать положение (номер канала) вершины этого пика в зависимости от угла поворота детектора. Точность определения положения фотопика составляет примерно 1%.

Рис. 3: Амплитудное распределение импульсов, возникающих под действием монохроматических γ -квантов в сцинтилляторе NaI(Tl

Заменим в формуле (2) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдём:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos(\theta)). \tag{3}$$

Отсюда может быть найдена энергия покоя электрона по формуле:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)},$$
 (4)

где $E_{\gamma}=E_0$ – энергия испускаемых источником γ -квантов.

4 Результаты и обсуждение

По измеренным значениям (табл. 1) построим график зависимости ((рис. 4).

Рис. 4: Зависимость номера канала детектора N от угла рассеяния θ

Видно, что экспериментальные точки достаточно хорошо ложатся на прямую, что подтверждает теоретическое описание явления. Методом МНК уравнение аппроксимирующей прямой

$$\frac{1}{N} = 0.00142 * (1 - \cos \theta) + 0.00108.$$
 (5)

Подстановкой в это уравнение $\theta=0^\circ$ и $\theta=90^\circ$, найдем N(0) и N(90) соответственно:

$$N(0) = 925 \text{ кэB},\tag{6}$$

$$N(90) = 399 \text{ kgB}.$$
 (7)

Наконец, по формуле (4) найдем энергию покоя рассеивающей частицы (учитывая, что энергия фотонов, испускаемых источником $E_{\gamma}=622$ кэВ):

$$mc^2 = 502$$
 кэВ. (8)

Энергия покоя электрона равна $m_{\rm эл}c^2=510$ кэВ. Следовательно, в данном опыте рассеивание производится на электронах, как и предполагалось.

5 Вывод

Исследовано комптоновское рассеяние фотонов на графите. Подтверждено теоретическое описание явления, вычислена энергия покоя рассеивающих частиц, которая оказалась крайне близка к энергии покоя электронов. Следовательно, подтверждено предположение, что рассеивание происходит на электронах.

Приложение

θ°	N	σ_N
0	951	6
10	956	5
20	869	10
30	774	8
40	690	5
50	638	10
60	550	10
70	488	4
80	435	7
90	397	8
100	360	5
110	337	5
120	317	2

Таблица 1: Экспериментальные данные