Applications du produit scalaire Équaliers de à: oiles

Adirile d'introduction

Jans un repère orbinonnel du plan, soit les pourbs A(6;5) B(7;-1) et C(2;3) Q1) Déterminer une Equation de la droite CAB)

(AB): -6x-1/2 +41=0 Par exemple - 6 xA - MA +41=-6x6-5-41=0 M.(x rg) E (AB) soi -6x-ry+41=0 De peteur directeur de (AB) déries oursi la droite Dyrossont-for Cet parallele à (AB) $\begin{pmatrix} -b_1 \end{pmatrix} = \begin{pmatrix} 1 \\ -6 \end{pmatrix}$ donc on peut prendre comme coefficients $\begin{cases} -b_1 = 1 \\ 6 \end{cases} \begin{cases} b_1 = -1 \\ a_1 = -6 \end{cases}$ four une de la forme: D₁: -6 x-ry+C₁=0 Pour colculer le coefficient er il suffit de prendre un pount de Dr. En prend le point ((2:3)

 $-6 \times 2 - 3 + 9 = 0 = 1 = 15$ Une équation de la droite D, norablèle à 2 passant par C est donc: -6x - y + 15 = 0Rous: 1: -6x-y+41=0 De pour équation réduite: coefficient a l'original De a pour équation réduite ry = -6x + 5

(B3) Déterminans une équation de la droite D2 perpendicer lauré à D et passe par C M(xxy) ED2 => CM . AB = 0 vedeur directeur de (AB) et pour 20 cost lonnon CM (2-3) AB (-6) M(n:1) = 2 (2-2)×1+(y-3)×(6)=0 (=) 2-2-6 y +18=0 (=) faz 62 + 18=0 Gionnote (92) les coordannées du verleur normal AB à la divide 22 ils apparais rent dans une équation de 22

Propriété 6

1. Soit \mathcal{D} une droite de vecteur normal $|\overrightarrow{n}(a;b)|$ Il existe un réel c tel que pour tout point M(x; y) du plan :

M appartient à \mathcal{D} si et seulement si ax + by + c = 0

ax + by + c = 0 est une **équation cartésienne** de la droite \mathcal{D} .

2. Réciproquement, si $(a; b) \neq (0; 0)$, alors ax + by + c = 0 est une **équation cartésienne** d'une droite de vecteur normal $|\overrightarrow{n}(a;b)|$

🥵 Propriété 5

Soit \mathscr{D} une droite de vecteur normal \overrightarrow{n} et A un point de \mathscr{D} . Un point M du plan appartient à \mathcal{D} si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

😥 Définition 1

- 1. Un vecteur directeur à une droite \mathscr{D} est un vecteur non nul \overrightarrow{u} qui est colinéaire à un vecteur \overrightarrow{AB} où A et B sont deux points distincts de \mathcal{D} .
- **2.** Un **vecteur normal** à une droite \mathscr{D} est un vecteur non nul \overrightarrow{n} qui est orthogonal à un vecteur directeur de ∅.

Applications (inercices du manuel

Emercice 1 n. 236

1 1. Soit \mathfrak{D} la droite passant par le point A(-1; 2) et de vecteur directeur $\vec{u} \begin{pmatrix} 4 \\ -3 \end{pmatrix}$. Soit $\vec{n} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ un vecteur du plan.

Le vecteur \vec{n} est-il normal à \mathfrak{D} ?

2. Soit \mathfrak{D} la droite passant par le point A(-1; 2) et le point B(0; -1).

Le vecteur $\vec{n} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ est-il un vecteur normal de \mathfrak{D} ?

3. Soit \mathfrak{D} la droite d'équation -5x + 7y - 2 = 0.

Le vecteur $\vec{n} \begin{pmatrix} 10 \\ 14 \end{pmatrix}$ est-il un vecteur normal de \mathfrak{D} ?

 $\lambda)$ π $\Delta = 3 \times 4 + 4 \times (-3) = 12 + (-12) = 0$ danc n'et te sont altrogonaux Er ti est un vecteur directeur de D denc moumal à D. Rque: Dd'équation æntbyt(=0 re (-b) redeur directeur de 1 mo (a) vecleur roumal a) 2) FB (NB-NA) AB (-3) AB set un vectour directeur de le Droite (AB). AB). m = 1x5 + 2x(-3)=5-6=-1 FB. K to done AB et n' ne sent per ochrogonaum denc m'est var

3) 0:-5x+7y-2=0 $\frac{1}{m} \begin{pmatrix} 10 \\ 14 \end{pmatrix}$ $\alpha = -5$ b = 7dence m (-5) est un vecteur . Ca lemon Deux rectours sont normain Ansa di ira gisonbonnémen en i object de l'arione de la constant d $\frac{1}{m} = \frac{1}{k} = \frac{1}{m} = \frac{1}$ Le ougste ma n'e pas de solution denc met m ne sont par chineavier et n'est pas nouvel

Enervice 6 N.256

Le plan est muni d'un repère orthonormé,

- Soit une droite de vecteur normal $\vec{n} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et passant par le point A (4 ; 3).
 - 1. Déterminer une équation de d.
 - 2. Déterminer une équation de la droite d' perpendiculaire à d passant par A.
 - 3. Déterminer une équation de la droite d_2 parallèle à d et passant par l'origine du repère.

1) Da nom rectan normal = (2) donc une êquation de D'est de laforma axtby t c=0 avec a = 2 lb b = -1 De plus A(4:3) arrantiont , D Soi 2×4+ (-1)×3+ c=0 2×4-3+C=0 (=> C= 3-8=-5 Une Equation de Dest donc: $2nc - \frac{n}{3} - 5 = 0$

Csi D'est perpendiculaire à Dalois mon round a 2 ost directeur pour D - ~ (-x) D'd'èquation vix t b py t c' = 0 i. T ? (2x.) à bant redon direden de D', on peul pase -b = 2 Une equetton de D'est-alars de le forme = -x -2 vy + c =0 A (4:3) appartient à D'esi $-4-2\times3+c=0$

11+0=0 (=> 0=11 Une équation de D'est-Jene: -x-2x+11=0 rail origine du replu. Deux droiles rarellèles ont les memes vedeurs mormour , m normal å Det-dene a De. m? (2) denc une équation de De est de la forme 2 x-1/4 c2=0 O(GO) apportiont à De ssi $2 \times 6 - 0 + (5 = 0)$ on 2x0-0+ c2=0 (=> c2=0 D2d/équation 2n-ry=0

Rpue: les droiles possant par l'ouigine ont une Equation de le forms a X + b y =0

Enervice 7 p. 256

rere usi et pussuitt par i origine uu repere.

Soit \mathfrak{D} la droite dont une équation cartésienne est 3x - 5y + 1 = 0. Soit \mathfrak{D} ' la droite de vecteur normal $\vec{n} \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ qui passe par l'origine du repère. • Les droites \mathfrak{D} et \mathfrak{D} ' sont-elles perpendiculaires ?

D: 3x-5x+1=0

D' de vectour mound $m_2(-\frac{1}{2})$ $m_1 \cdot m_2 = 3 \times (-4) + (-5) \times (-2)$ $m_1 \cdot m_2 = -2 \neq 6$ $m_1 \cdot m_2 = -2 \neq 6$ $m_1 \cdot m_2 \cdot m_2 \cdot m_2 \cdot m_3 \cdot m_4 \cdot m_4 \cdot m_5 \cdot m_5 \cdot m_6 \cdot$

Enercia 1 n. 251

- 2. \mathfrak{D} passe par le point A(5;1) et a pour vecteur directeur le vecteur $\overrightarrow{u}\begin{pmatrix} -1\\3 \end{pmatrix} = \begin{pmatrix} -b\\a \end{pmatrix}$ danc $\overrightarrow{m}^2\begin{pmatrix} a\\b \end{pmatrix} = \begin{pmatrix} 3\\4 \end{pmatrix}$
- Une équation cartésienne de
 ⊕ est :
 5x 4y + 6 = 0.

$$y = -\frac{1}{2}x + \frac{7}{4}$$

Everice 2 n. 251 Soient les points A (0 ; -2), B (3 ; -1) et C(2 ; 1). Déterminer une équation de la hauteur issue de B dans le triangle ABC.

Da une équation de la forms 2n+3ny+c=0B (3:,-1) apportient à 3 801 2×3 +3×(-1)+(=0 $2 \times 3 + 3 \times (-1) + (-2) = (-3)$ Une equation de la Prantour i sur de Best donc: 2x + 3y - 3 = 0