

SafeML: An Approach for Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure

Koorosh Aslansefat, Ioannis Sorokos, Declan Whiting, Ramin Tavakoli Kolagari, and Yiannis Papadopoulos

Email: k.aslansefat-2018@hull.ac.uk

Table of Content

What I am going to discuss

Introduction

Brief Introduction on Al Safety

Statistical Distance Measures

ECDF-based Statistical Distance Measures

SafeML Idea

SafeML: An Approach for Safety Assurance of Machine Learning Classifiers through Statistical Difference Measure

Numerical Results and Conclusion

Case studies, Numerical Results and Conclusion

Revenues from the artificial intelligence for enterprise applications market worldwide, from 2016 to 2025 (in million U.S. dollars)

Uber self-driving car kills a pedestrian

2018 in Review: 10 AI Failures, https://medium.com/syncedreview/2018-in-review-10-ai-failures-c18faadf5983

SafeML Problem Statement

(b) Input 2 (darker version of 1)

K. Pei, et al. K., Cao, Y., Yang, J., & Jana, S. (2017). Deepxplore: Automated whitebox testing of deep learning systems. In *proceedings of the 26th Symposium on Operating Systems Principles* (pp. 1-18).

SafeML Problem Statement

https://openai.com/blog/adversarial-example-research/

♥® ★ ****UNIVERSITY OF HULL

SafeML Problem Statement

https://www.reddit.com/r/ProgrammerHumor/c omments/cl2rve/so_a_friend_of_mine_was_wor king_on_an_opencvml/

SafeML Project Goal

Accuracy Estimation

Estimating the ML Classifier Accuracy through Statistical Differences

Safety Monitoring

Safety Monitoring through a proposed human-in-loop procedure

XAI: Explainable Artificial Intelligence

Providing Explainable Artificial Intelligence using Statistical Differences

♥ ② ★ ❖ UNIVERSITY OF HULL

An Example

(Class 1: $x(t) \sim N(3,1)$ $t_0 < 20h$ (Class 2: $x(t) \sim N(5,1)$ $t_0 > 40h$

$$FDR(T_d) = q_1(T_d) = \int_{T_d}^{+\infty} q(x) dx$$

$$MDR(T_d) = p_2(T_d) = \int_{-\infty}^{T_d} p(x) dx$$

Probability Density Functions

Consider a hypothetical one dimensional data with nine classes

Probability Density Functions and Cumulative Functions

Cumulative Distribution Function (CDF) Distance Measures

Wasserstein

Kolmogorov-Smirnov

Kuiper

Anderson-Darling

Cramer-Von Mises

Wasserstein + Cramer-Von Mises (DTS)

Cross-Validation and ML Classifiers

Example 1: 1D Normal Distributed Data in Two Classes

 $\begin{cases} Class 1: x(t) \sim N(3,1) & t_0 < 1000h \\ Class 2: x(t) \sim N(5,1) & t_0 > 1000h \end{cases}$

`	Kolmogorov- Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS	True Accuracy (Mean)	True Accuracy (Min)
LDA	0.9125000	0.8375000	0.9885137	0.8764794	0.9595329	0.9691176	0.9375000
CART	0.9110729	0.8405049	0.9896898	0.8801418	0.9620993	0.9569853	0.8750000
KNN	0.9053426	0.8356562	0.9868039	0.8771581	0.9608425	0.9691176	0.8750000
SVM	0.9053426	0.8356562	0.9868039	0.8771581	0.9608425	0.9569853	0.8750000
RF	0.8530239	0.7897328	0.9686393	0.7933787	0.9346339	0.9386029	0.8235294

	Difference with True Accuracy (Min)						
	Kolmogorov-Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS		
LDA	0.025000	0.100000	0.051014	0.061021	0.022033		
CART	0.036073	0.034495	0.11469	0.005142	0.087099		
KNN	0.030343	0.039344	0.111804	0.002158	0.085843		
SVM	0.030343	0.039344	0.111804	0.002158	0.085843		
RF	0.029495	0.033797	0.145110	0.030151	0.111105		
Max Difference	0.036073	0.100000	0.145110	0.061021	0.111105		

♥® **★** UNIVERSITY OF HULL

Example 2: 2D XOR Dataset

Example 2: 2D XOR Dataset

	Kolmogorov-Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS	True Accuracy (Mean)	True Accuracy (Min)
LDA	0.7722165	0.7706001	0.9028175	0.7550639	0.9856662	0.5912107	0.5083333
CART	0.9281788	0.9219821	0.9877216	0.9254581	0.9952106	0.9941579	0.9874477
KNN	0.9305751	0.9130628	0.9931512	0.9587683	0.9970757	0.9866649	0.9748954
SVM	0.9310446	0.9175864	0.9934891	0.9581909	0.997064	0.9879166	0.9791667
RF	0.9296264	0.9107489	0.9927418	0.9578211	0.9970175	0.9983333	0.9958333

	Difference with True Accuracy (Min)						
	Kolmogorov-Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS		
LDA	0.263883	0.262267	0.394484	0.246731	0.477333		
CART	0.059269	0.065466	0.000274	0.06199	0.007763		
KNN	0.04432	0.061833	0.018256	0.016127	0.02218		
SVM	0.048122	0.06158	0.014322	0.020976	0.017897		
RF	0.066207	0.085084	0.003092	0.038012	0.001184		
Max Difference	0.263883	0.262266	0.394484	0.246730	0.477333		

♥® ★ ★ N UNIVERSITY OF HULL

Example 2: 2D Spiral Dataset

Example 2: 2D Spiral Dataset

	Kolmogorov-Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS	True Accuracy (Mean)	True Accuracy (Min)
LDA	0.950757	0.915021	0.998485	0.981323	0.998443	0.506250	0.454167
CART	0.964542	0.951250	0.998444	0.979598	0.998355	0.890833	0.837500
KNN	0.946680	0.933058	0.997262	0.966426	0.997802	0.999167	0.995833
SVM	0.947437	0.933940	0.997356	0.967035	0.997835	0.999167	0.995833
RF	0.946821	0.934418	0.997062	0.965102	0.997728	0.990833	0.979167

	Kolmogorov-Smirnov	Kuiper	Anderson-Darling	Wasserstein	DTS
LDA	0.496590	0.460854	0.544319	0.527156	0.544277
CART	0.127042	0.113750	0.160944	0.142098	0.160855
KNN	0.049153	0.062775	0.001429	0.029407	0.001969
SVM	0.048397	0.061893	0.001523	0.028798	0.002002
RF	0.032346	0.044748	0.017896	0.014065	0.018562
Max Difference	0.0994468	0.0882515	0.2699748	0.2483959	0.528852

Application of SafeML in Security

♥® ★ ***** NUNIVERSITY

Example 4: Security Dataset

Intrusion Detection Evaluation Dataset (CIC-IDS2017)

Example 4: Security Dataset

Example 4: Security Dataset

Applications of SafeML

Applications of SafeML

Applications of SafeML

SafeML Toward eXplainable AI (XAI)

SafeML Reproducibility

https://github.com/ISorokos/SafeML

MATLAB Implementation

Python Implementation

R Implementation

© ★ ★ Conclusion OF HULL

- * Through modifying the existing statistical distance and error bound measures, the proposed method enables to estimate the accuracy bound of the trained ML algorithm in the field with no label on the incoming data.
- ❖ A novel proposed human-in-loop procedure is made to certify the ML algorithm in a real-time manner. The procedure has three levels of operation: I) runtime estimated accuracy, II) Lack of enough data and need for buffering more samples (it may cause a delay in decision-making), and III) No low runtime estimated accuracy and a human agent is needed.
- The proposed approach is easy to implement, and it can support a variety of distribution (Exponential and normal distribution families).

UNIVERSITY Future Works OF HULL

- * Extending the SafeML Idea for Machine Learning Regression and Prediction Algorithms
- * Considering Recurrent Methods and Dealing with Time Series.
- * Improving the method for adaptive and online-learning algorithms.
- ❖ Integrating the feature importance to the exiting algorithm.
- ❖ Implementing the SafeML XAI for Image classification.

Selected ReferencesUNIVERSITY OF HULL

- Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). *Concrete Problems in Al Safety*. http://arxiv.org/abs/1606.06565
- Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., & Porter, Z. (2020). Mind the gaps: Assuring the safety of autonomous systems from an engineering, ethical, and legal perspective. *Artificial Intelligence*, *279*, 103201. https://doi.org/10.1016/j.artint.2019.103201
- Davenport, T. H., Brynjolfsson, E., McAfee, A., James, H., & Wilson, R. (2019). *Artificial Intelligence: The Insights You Need from Harvard Business Review*. Harvard Business Review.
- Fukunaga, K. (1992). *Introduction to Statistical Pattern Recognition (Second Edition)*. Academic Press.
- Nielsen, F. (2018). **The Chord Gap Divergence and a Generalization of the Bhattacharyya Distance**. *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings, 2018-April,* 2276–2280. https://doi.org/10.1109/ICASSP.2018.8462244
- Quiñonero-Candela, J., & Schwaighofer, A. (2009). Dataset Shift in Machine Learning. MIT Press.
- Schulam, P., & Saria, S. (2019). *Can You Trust This Prediction? Auditing Pointwise Reliability After Learning*. http://arxiv.org/abs/1901.00403
- Zahm, O., Cui, T., Law, K., Spantini, A., & Marzouk, Y. (2018). *Certified dimension reduction in nonlinear Bayesian inverse problems*. http://arxiv.org/abs/1807.03712

Thank You

If you have any question, please feel free to ask

