

TEST REPORT For FCC

Test Report No.	:	2008070003

Date of Issue July 8, 2008 :

FCC ID V6Q8015-2B

Model/Type No. 8015-2B

Kind of Product Training PAD Base station System

Alchemy Systems LP **Applicant**

Applicant Address 8015 Shoal Creek Blvd., Suit 100 Austin, TX78757, USA

Manufacturer Tianjin Samji Electronics Co., LTD.

Manufacturer Address : Gangbei Road, Dagang Qu, Tianjin China

Contact Person Mr. Archie Barrett / CTO

Telephone 512-637-5100

Received Date June 30, 2008

Test period Start : June 30, 2008 End: July 8, 2008

Test Results In Compliance ■ Not in Compliance

The test results presented in this report relate only to the object tested.

Tested by

Hyun-Chae, You Test Engineer Date: July 8, 2008 Reviewed by

Young-Joon, Park Technical Manager

Date: July 8, 2008

Test Report No.: 2008070003 Page 1 of 22 Date: July 8, 2008

Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

REPORT REVISION HISTORY

Date	Revision	Page No
July 8, 2008	Issued (2008070003)	All

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Test Report No.: 2008070003 Page 2 of 22

TABLE OF CONTENTS

REPORT	REVISION HISTORY	2
1.0	General Product Description	4
1.1	Tested Frequency	4
1.2	Model Differences	4
1.3	Device Modifications	4
1.4	Peripheral Devices	5
1.5	Calibration Details of Equipment Used for Measurement	5
	Test Facility	
	Laboratory Accreditations and Listings	
2.0	Summary of tests	7
2.1.	1 Band-edge	8
2.1.		13
2.1.	2 AC Conducted Emissions	19
APPEND	IX A – Test Equipment Used For Tests	. 22

Test Report No.: 2008070003

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

1.0 General Product Description

Equipment model name : 8015-2B

Serial number : Prototype

EUT condition : Pre-production, not damaged

Antenna type : Pattern antenna Gain -2.78dBi

Frequency Range : 2405 ~ 2480 MHz

Number of channels : 16

Channel Spacing : 3MHz

Type of Modulation : GFSK

Power Source : USB 5 Vdc

1.1 Tested Frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2444	2480

1.2 Model Differences

Not applicable

1.3 Device Modifications

Not applicable

Test Report No.: 2008070003 Page 4 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

1.4 Peripheral Devices

Device	Manufacturer	Model No.	Serial No.	FCC ID or DoC
Notebook Computer	TOSHIBA	PSL48K-00L00K	27037769R	DoC
AC/DC ADAPTER	DELTA ELECTRONICS	ADP-75SB BB	T8W0746329935	-

1.5 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

1.6 Test Facility

The measurement facility is located at 386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea.

Test Report No.: 2008070003 Page 5 of 22

Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	FC 93250
JAPAN	VCCI	10 meter Open Area Test Site and one conducted site.	P -948, C-986
KOREA	MIC	EMI (10 meter Open Area Test Site and two conducted sites) EMS (ESD, RS, EFT/Burst, Surge, CS, Magnetic, Dips and interruptions)	No. 51, KR0025
International	KOLAS	EMC	KOLAS DE TESTING NO. 119 STO
Europe GLAS EMC EN 55011, EN 55022, EN 61000-6- EN 61000-6-4, EN 61000-3-2, EN 61000-3-3, EN 61000-6-1, EN 61000-6-2, EN 50130-4, EN 55024, EN 61204-3, EN 60601-1-2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11		EN 55011, EN 55022, EN 61000-6-3, EN 61000-6-4, EN 61000-3-2, EN 61000-3-3, EN 61000-6-1, EN 61000-6-2, EN 50130-4, EN 55024, EN 61204-3, EN 60601-1-2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8,	TÜV No.13000796-02

Test Report No.: 2008070003 Page 6 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Ĝyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

2.0 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.249 /15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

- FCC Part 15.247, ANSI C63.4-2003

Test Report No.: 2008070003 Page 7 of 22

2.1.1 Band-edge

Test Location

Testing was performed at a test distance of 3 meter Open Area Test Site

Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal form an external generator.
- 2. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 5. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 6. PEAK: RBW / VBW=1MHz / Sweep=AUTO / SPAN=3MHz; AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO / SPAN=3MHz
- 7. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured. with highest data rate (worst case) are chosen for full testing.

Test Configuration

Limit

According to §15.249(d), Emissions radiated outside of the specified frequency band, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in section15.209, whichever is the lesser attenuation.

Test Results

Refer to attached spectrum analyzer data chart

Test Report No.: 2008070003 Page 8 of 22

Band - edge(CH Low)

Detector mode: peak

Polarity: Vertical

Polarity: Vertical Detector mode: Average

Test Report No.: 2008070003

Date: July 8, 2008

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

Band - edge(CH Low)

Detector mode: peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

Test Report No.: 2008070003 Page 10 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Band - edge(CH high)

Detector mode: peak **Polarity: Vertical**

Detector mode: Average Polarity: Vertical

Test Report No.: 2008070003

Date: July 8, 2008

Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

Page 11 of 22

Band - edge(CH high)

Detector mode: peak

Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Test Report No.: 2008070003

Date: July 8, 2008

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

2.1.2 Field Strength of Emissions

Test Location

Testing was performed at a test distance of 3 meter Open Area Test Site

Test Procedures

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity. The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 30 MHz ~ 10th harmonic

 $RBW = 120 \text{ kHz} (30 \text{ MHz} \sim 1 \text{ GHz})$ **RBW**

= 1 MHz (1 GHz \sim 10th harmonic)

Span = 100 MHzDetector function = Quasi-peak

Trace = max hold

Below 1 GHz

Above 1 GHz

Test Report No.: 2008070003 Page 13 of 22

Date: July 8, 2008

Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Limit

- 15.209(a)

Frequency(MHz)	Field Strength uV/m@3m	Field Strength dBuV/m@3m
30-88	100**	40
88-216	150**	43.5
216-960	200**	46
Above 960	500	54

^{**} Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Test Report No.: 2008070003 Page 14 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Test Results

EUT	Training PAD Base station System	Measurement Detail	
Model	8015-2B	Frequency Range	Below 1000MHz
Channel	-	Detector function	Quasi-Peak

The requirements are:

□ Complies

Frequency (MHz)	Measured Data (dBuV/m)	Margin (dB)	Remark
49.68	34.2	5.8	Quasi-Peak

Test Data

Frequency	Reading	Pol.	Height		ection etor	Limits	Result	Margin
[MHz]	[dBuV/m]		[m]	Antenna	Cable	[dBuV/m]	[dBuV/m]	[dB]
49.52	22.4	Н	1.0	7.9	0.3	40.0	30.6	9.4
49.68	26.0	V	1.0	7.9	0.3	40.0	34.2	5.8
367.05	15.6	V	1.0	12.7	2.7	46.0	31.0	15.0
384.00	21.6	V	1.2	12.9	2.7	46.0	37.2	8.8
435.21	15.7	V	2.0	14.3	3.1	46.0	33.1	12.9
534.25	11.6	Н	1.5	15.9	3.6	46.0	31.1	14.9

 $H:\ Horizontal,\ V:\ Vertical$

Remark:

The field strength of spurious emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.

Test Report No.: 2008070003 Page 15 of 22

Date: July 8, 2008

This Report shall not be reproduced except in full without the written approval of CTK

Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Test Results

EUT	Training PAD Base station System	Measurement Detail	
Model	8015-2B	Frequency Range	1-25GHz
Channel	Channel 5	Detector function	Peak, Average

Test Data

Francisco de la constantina della constantina de	Frequency Reading [dBuV/m] [MHz] AV / Peak			Correction			Limits		Result		Margin		
Frequency			Pol.		Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]				Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak		
1260.00	47.0	51.6	V	23.6	36.0	5.2	54.0	74.0	39.8	44.4	14.2	29.6	
2752.00	34.6	38.9	V	28.5	35.4	8.1	54.0	74.0	35.8	40.1	18.2	33.9	
2405.00	90.5	91.7	V	28.2	35.3	7.4	94.0	114.0	90.8	92.0	3.2	22.0	

Fraguenay	Reading [dBuV/m]				Correction		Limits		Result		Margin	
Frequency			Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV	/ Peak		Antenna Amp. Gain Cable		Cable	AV / Peak		AV / Peak		AV / Peak	
1260.00	45.9	51.0	Н	23.6	36.0	5.2	54.0	74.0	38.7	43.8	15.3	30.2
2752.00	33.8	38.2	Н	28.5	35.4	8.1	54.0	74.0	35.0	39.4	19.0	34.6
2405.00	89.8	91.1	Н	28.2	35.3	7.4	94.0	114.0	90.1	91.4	3.9	22.6

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

Test Report No.: 2008070003 Page 16 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Test Results

EUT	Training PAD Base station System	Measurement Detail				
Model	8015-2B	Frequency Range	1-25GHz			
Channel	Channel 44	Detector function	Peak, Average			

Test Data

Francisco de la constantina della constantina de	Frequency Reading [dBuV/m] [MHz] AV / Peak			Correction			Limits		Result		Margin	
Frequency			Pol.		Factor		[dBu	AV / Peak		V/m]	[dB]	
[MHz]				Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak	
1280.00	46.9	50.6	V	23.6	36.0	5.2	54.0	74.0	39.7	43.4	14.3	30.6
2796.00	35.5	38.9	V	28.5	35.4	8.1	54.0	74.0	36.7	40.1	17.3	33.9
2444.00	88.0	89.8	V	28.2	35.3	7.4	94.0	114.0	88.3	90.1	5.7	23.9

Fragueray	Reading [dBuV/m] Pol.			Correction			Limits		sult	Margin		
Frequency			Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV	/ Peak		Antenna	Amp. Gain	Cable	AV A	AV / Peak		/ Peak	AV / Peak	
1280.00	46.4	50.2	Н	23.6	36.0	5.2	54.0	74.0	39.2	43.0	14.8	31.0
2796.00	34.5	38.3	Н	28.5	35.4	8.1	54.0	74.0	35.7	39.5	18.3	34.5
2444.00	87.7	89.4	Н	28.2	35.3	7.4	94.0	114.0	88.0	89.7	6.0	24.3

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

Test Report No.: 2008070003 Page 17 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Test Results

EUT	Training PAD Base station System	Measurement Detail	
Model	8015-2B	Frequency Range	1-25GHz
Channel	Channel 80	Detector function	Peak, Average

Test Data

Frequency	Reading				Correction			Limits		sult	Margin	
[dBuV/m		V/m]	Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV	/ Peak		Antenna	Amp. Gain	Cable	AV / Peak AV / Peak		AV / Peak			
1300.00	48.6	52.9	V	23.6	36.0	5.2	54.0	74.0	41.4	45.7	12.6	28.3
2840.00	34.7	37.9	V	28.5	35.4	8.1	54.0	74.0	35.9	39.1	18.1	34.9
2480.00	88.6	90.1	V	28.2	35.3	7.4	94.0	114.0	88.9	90.4	5.1	23.6

Fragueray	Frequency Reading [dBuV/m] Pol			Correction			Limits		Result		Margin	
Frequency			Pol.		Factor			V/m]	[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna	na Amp. Gain Cab		AV / Peak		AV / Peak		AV / Peak	
1300.00	47.3	50.8	Н	23.6	36.0	5.2	54.0	74.0	40.1	43.6	13.9	30.4
2840.00	33.5	36.9	Н	28.5	35.4	8.1	54.0	74.0	34.7	38.1	19.3	35.9
2480.00	87.5	88.9	Н	28.2	35.3	7.4	94.0	114.0	87.8	89.2	6.2	24.8

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

Test Report No.: 2008070003 Page 18 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

2.1.2 AC Conducted Emissions

Test Location

Shielded Room

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

- 15.207(a)

Frequency	Conducted	Conducted Limit (dBuV)						
(MHz)	Quasi-peak	Average						
0.15 ~ 0.5	66 to 56*	56 to 46*						
0.5 ~ 5	56	46						
5 ~ 30	60	50						

^{*} Decreases with the logarithm of the frequency.

Test Results

The requirements are:

□ Complies

Frequency (MHz)	Measured Data (dBuV/m)	Margin (dB)	Remark
4.70	53.0	3.0	Quasi-peak

Test Report No.: 2008070003 Page 19 of 22

Test Data

Frequency	Corre	ection			Quasi	-peak			Ave	rage	
, ,	Fac	tor	Line	Limit	Reading	Result	Margin	Limit	Reading	Result	Margin
[MHz]	LISN	Cable		[dBuV]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dB]
0.20	0.1	0.5	N	63.6	54.7	55.3	8.3	53.6	26.2	26.8	26.8
3.58	0.2	0.7	N	56.0	49.4	50.3	5.7	46.0	30.2	31.1	14.9
3.60	0.2	0.7	Н	56.0	51.8	52.7	3.3	46.0	32.6	33.5	12.5
3.72	0.2	0.7	N	56.0	49.2	50.1	5.9	46.0	29.9	30.8	15.2
3.74	0.2	0.7	Н	56.0	50.8	51.7	4.3	46.0	32.4	33.3	12.7
4.70	0.2	0.7	Н	56.0	52.1	53.0	3.0	46.0	33.4	34.3	11.7

H: HOT, N: NEUTRAL

Test Report No.: 2008070003 Page 20 of 22

386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

Test Report No.: 2008070003

Date: July 8, 2008

8, 2008

This Report shall not be reproduced except in full without the written approval of CTK

Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

APPENDIX A – Test Equipment Used For Tests

	Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
1	Spectrum Analyzer	Agilent	8564E	3551A0041	2008-11-01
2	Spectrum Analyzer	HP	E4403B	US39440619	2008-09-03
3	Spectrum Analyzer	Rohde & Schwarz	FSP-30	100994	2008-11-19
4	EMI Test Receiver	Rohde & Schwarz	ESVS30	826638/008	2009-03-07
5	ULTRA Broadband Antenna	Rohde & Schwarz	HL562	361324/014	2009-06-12
6	LOOP ANTENNA	EMCO	6502	9107-2652	2008-10-17
7	LOOP ANTENNA	EMCO	6502	9607-3020	2009-03-06
8	System Power Supply	HP	6032A	3440A-10521	2008-07-16
9	EPM Series Power Meter	HP	E4418A	GB38272734	2008-11-03
10	Power Sensor	HP	8481A	331BA92056	2008-11-03
11	Power Sensor	HP	8482B	331BA05406	2008-11-03
12	Audio Analyzer	HP	8903B	2747A03432	2008-11-01
13	ESG-D Series Signal Generator	Agilent	E4432B	US40054094	2008-11-01
14	SYNTHESIZED SWEEPER	HP	8341B	2819A01563	2008-11-22
15	Modulation Analyzer	HP	8901B	3438A05228	2008-11-08
16	Attenuator	HP	8494A	3308A33351	2008-11-06
17	Attenuator	HP	8496A	3308A15142	2008-11-06
18	Temp&Humi Chamber	Kunpoong	KP-1000	2002KP050041	2009-01-21
19	Temp&Humi Chamber	Kunpoong	KP-RC2000	2002KP650042	2009-01-21
20	EMC Analyzer	Agilent	E7405A	MY45110859	2008-01-09
21	Horn Antenna	ETS-Lindgren	3115	00078894	2008-11-29
22	Horn Antenna	ETS-Lindgren	3115	00078895	2008-11-29
23	Horn Antenna	ETS-Lindgren	3116	00062504	2008-11-27
24	Horn Antenna	ETS-Lindgren	3116	00062916	2008-11-27
25	Dipole Antenna	SCHWARZBECK	VHA 9103	VHA91032557	2009-11-27
26	Dipole Antenna	SCHWARZBECK	UHA 9105	UHA91052417	2009-11-27
27	OPT H64 AMPLIFIER	HP	8447F	3113A06814	2009-02-28
28	PREAMPLIFIER	Agilent	8449B	3008A02307	2008-11-05
29	Radio Communication Tester	Rohde & Schwarz	CMU200	106765	2009-02-09
30	Band Reject Filter	Wainwright Instruments	WRCG824	-	2009-04-16
31	Band Reject Filter	Wainwright Instruments	WRCG1750	-	2009-04-13

Test Report No.: 2008070003 Page 22 of 22