Not yet answered

Marked out of 2.00

Test the convergence of the series

$$\sum \frac{n^3 + a}{2^n + a}$$

- O a. Convergent
- O b. Divergent
- O c. Both
- O d. None

	9
Duestion	_

Marked out of 1.00

The series
$$\sum \frac{n^2}{n!}$$
 is

Select one:

- convergent
- $\bigcirc \ \, \text{divergent}$
- oscillatory
- O none of these

Question $\bf 3$

Not yet answered

Marked out of 1.00

Test for convergence $\int_0^\infty \frac{dx}{x^3}$

- O a. Integral diverges
- O b. Integral converges
- O c. Both
- O d. None

Question +	Question	4
------------	----------	---

Marked out of 1.00

Find the value of k so that the equations x + y + 3z = 0, 4x + 2y + kz = 0, and 2x + y + 2z = 0 have a non-trivial solution?

- 0 8
- 0 -8
- \bigcirc 0
- O None of these

Question 5	
Not yet answered	
Marked out of 1.00	
For what value of k, the equations	
x+y+z=1,	
2x+2y+2z=k,	
$4x+y+10z=k^2$	
have a sloution?	
Select one:	
○ k=1 or k=2	
○ k=-1 or k=-2	
O k other than 1 and 2	
O None of these	

Not yet answered

Marked out of 1.00

What is 'a', if

$$B = \begin{bmatrix} 1 & 4 \\ 2 & a \end{bmatrix}$$
 is a singular matrix?

- O 7
- 0 8
- 0 6
- 0 5

Not yet answered

Marked out of 1.00

Evaluate $\int_0^\infty \sqrt[4]{x} e^{-\sqrt{x}} dx$

- $\bigcirc \ \ \tfrac{3}{2}\sqrt{\Pi}$
- $\bigcirc \ \ \tfrac{2}{3}\sqrt{\Pi}$
- $\bigcirc \ \ \tfrac{1}{2} \sqrt{\Pi}$
- $\bigcirc \frac{3}{2}\Pi$

Not yet answered

Marked out of 1.00

 $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$ The sum of its eigen values is _____.

- 0 4
- O 12
- 0 8
- 0 6

_	estion	\sim
\cap	action	-ч

Marked out of 1.00

Test for the convergence $\int_0^\infty e^{-x} dx$

Select one:

- O a. Integral converges
- \bigcirc b. Integral diverges
- O c. Both
- O d. None

Question 10

Not yet answered

Marked out of 2.00

If f(x)=x^3+8x^2+15x-24 , then the value of $f(\frac{11}{10})$ using Taylor theorem is

- O a. 2.511
- O b. 4.511
- O c. 1.511
- O d. 3.511

Duestion	1	1
Juestion	- 1	- 11

Marked out of 1.00

The Eigen values of the following matrix

 $|1 \ 1 \ 3|$

 $|1 \ 5 \ 1|$

 $|3 \ 1 \ 1|$

are

Select one:

0 2,3,-6

0 2,3,6

0 -2,-3,-6

O -2,3,6

Not yet answered

Marked out of 1.00

The given matrix
$$B = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is orthogonal.

- True
- O False

Not yet answered

Marked out of 2.00

Find the eigen vector of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ corresponding to the eigen value 5.

- $\bigcirc \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$

Not yet answered

Marked out of 1.00

Evaluate
$$\lim_{x \to \infty} \frac{(3x-1)(4x-2)}{(x+8)(x-1)}$$

- O a. 12
- O b. 21
- O c. 0
- O d. ∞

Not yet answered

Marked out of 2.00

Expand $tan^{-1}x$ in powers of (x-1).

$$\bigcirc$$
 a. $\frac{1}{2} \left[\frac{\pi}{2} - \frac{(x-1)}{1!} - \frac{(x-1)^2}{2!} - \frac{(x-1)^3}{3!} - \dots \right]$

O b.
$$\frac{1}{2} \left[\frac{\pi}{2} + \frac{(x-1)}{1!} - \frac{(x-1)^2}{2!} + \frac{(x-1)^3}{3!} - \dots \right]$$

$$\circ$$
 c. $\frac{1}{2} \left[\frac{\pi}{2} + \frac{(x-1)}{1!} + \frac{(x-1)^2}{2!} + \frac{(x-1)^3}{3!} + \dots \right]$

O d.
$$\frac{1}{2} \left[\frac{\pi}{2} - \frac{(x-1)}{1!} + \frac{(x-1)^2}{2!} - \frac{(x-1)^3}{3!} + \dots \right]$$

	_	-
Question	1	6

Marked out of 1.00

$$\lim_{x\to\infty}\frac{x-\sin x}{x+\cos x} \text{ equals }$$

- \bigcirc 1
- O -1
- Infinity
- O None of these

Not yet answered

Marked out of 1.00

Evaluate
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{x}$$

- O a. 0
- $\bigcirc \ \ \mathsf{b.} \ \tfrac{1}{\sqrt{2}}$
- \bigcirc c. $\frac{1}{2\sqrt{2}}$
- $\bigcirc \ \mathsf{d.} \, \tfrac{1}{2}$

Question	1	8
Juestion	-	~

Marked out of 1.00

If $\sum u_n$ is convergent series of positive terms then $\lim_{n\to\infty} u_n$ is

- ∞
- 0 1
- 0
- O ±1

Not yet answered

Marked out of 1.00

Evaluate $\int_0^1 x^4 (1-\sqrt{x})^5 dx$

- $\bigcirc \ \ \text{a.} \ \frac{1}{15}$
- $\bigcirc \ \ \text{b.} \ \tfrac{1}{15015}$
- \bigcirc c. $\frac{1}{15005}$
- \bigcirc d. $\frac{1}{51015}$

Not yet answered

Marked out of 1.00

$$\lim_{x\to 0} \left(\frac{x\cos x - \log(1+x)}{x^2} \right) =$$

<

- O -1/2
- O -1/4
- 0 1/4
- 0 1/2