Datenstrukturen und effiziente Algorithmen Blatt 5

Markus Vieth, David Klopp, Christian Stricker 27. November 2015

Teil I

Vorlesung 12

1 (a,b)-Suchbäume

Blattorientierte Speicherung der Elemente

Innere Knoten haben mindestens a und höchstens b Kinder und tragen entsprechende Schlüsselwerte, um die Suche zu leiten.

Beispiel:

$$h = \text{Tiefe} \Rightarrow a^h \leq n \leq b^h \Rightarrow \log_b n \leq h \leq \log_a n$$

1.1 Aufspaltung bei Einfügen

1.2 Verschmelzen von Knoten beim Löschen

Aufspalte- und Verschmelze-Operationen können sich von der Blattebene bis zur Wurzel kaskadenartig fortpflanzen. Sie bleiben aber auf den Suchpfad begrenzt.

 \Rightarrow Umbaukosten sind beschränkt durch die Baumtiefe $= O(\log n)$

2 Amortisierte Analyse

	000		
	001	Kosten(1) = 1	
	010	=2	
	011	=1	
Beispiel: Binärzähler	100	=3	Kosten der Inkrement-Operation $\hat{=}$ Zahl der Bit-Flips
	101	=1	
	110	=2	
	111	=1	
		$\overline{11}$	

Naive Analyse $2^k = n$

$$1 \cdot \frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + \dots + k \cdot \frac{n}{2^k} = \frac{n}{2} \sum_{i=1}^k i(\frac{1}{2})^{i-1} = 2^{k+1} - k - 2 = 2n - k - 2$$

Von 0 bis n im Binärsystem zu zählen kostet $\leq 2n$ Bit-Flips

Sprechweise: amortisierte Kosten einer Inkrement-Operation sind 2 Folge von n-Ops kostet 2n

2.1 Bankkonto-Methode

$$\begin{aligned} \operatorname{Konto}(i+1) &= \operatorname{Konto}(i) - \operatorname{Kosten}(i) + \operatorname{Einzahlung}(i) \\ \sum_{i=1}^n \operatorname{Kosten}(i) &= \operatorname{tats\"{a}chliche} \operatorname{Gesamtkosten} = \sum_{i=1}^n (\operatorname{Einzahlung}(i) + \operatorname{Konto}(i - \operatorname{Konto}(i+1)) \\ &= \sum_{i=1}^n \operatorname{Einzahlung}(i) + \operatorname{Konto}(1) - \operatorname{Konto}(n+1) \end{aligned}$$

Kosten(1) = 1
=2
=1
=3
=1
=2
=1
$\overline{11}$

2.1.1 Kontoführungsschema: für Binärzähler

1€ pro 1 in der Binärdarstellung

Jeder Übergang $1 \in \to 0$ kann dann mit dem entsprechenden Euro Betrag auf dieser 1 bezahlt werden. Es gibt pro Inkrement Operation nur einen $0 \to 1$ Übergang

- 2 € Einzahlung für jede Inc-Operation reichen aus um:
 - 1. diesen $0 \to 1$ Übergang zu bezahlen
 - 2. die neu entstanden
e $1_{\mbox{\ensuremath{\in}}}$ mit einem Euro zu besparen.

$$GK = 2(2^k - 1) + 0^1 - k^2 = 2n - k - 2$$

 $^{^{1}}$ Zählerstand(000)

 $^{^2}$ Zählerstand $(111\dots 1)$