RESEARCH ARTICLE

Fully secure ciphertext policy attribute-based encryption with constant length ciphertext and faster decryption

Nishant Doshi* and Devesh C. Jinwala

Sardar Vallabhbhai National Institute of Technology, Surat, India

ABSTRACT

In PKC 2010, Herranz *et al.* proposed the first fully threshold ciphertext policy attribute-based encryption (CP-ABE) scheme with constant length ciphertext. However, their scheme is selectively secure with respect to the chosen plaintext attack. They have left three open problems for CP-ABE with constant ciphertext length, that is, Security against the Chosen Ciphertext Attacks, Security Reduction to a better mathematical problem and to make the scheme Fully Secure. Indeed, in ACISP 2012, Ge *et al.* proposed the solutions to the first two problems but left their proposed scheme selective secure. This makes their scheme weaker because it is secure only for a particular policy. With an aim to propose a fully secure constant ciphertext length CP-ABE scheme, in this paper, we discuss our attempts at extending the approach of Lewko *et al.* (in EUROCRYPT 2010). The scheme that we propose here allows any subset of attributes of the secret key as a part of the ciphertext policy. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

attribute-based encryption; constant length ciphertext; chosen plaintext security; fully secure

*Correspondence

Nishant Doshi, Sardar Vallabhbhai National Institute of Technology, Surat, India.

E-mail: doshinikki2004@gmail.com

1. INTRODUCTION

In distributed file systems, complex access-control mechanisms are commonly required to protect various resources. There have been various mechanisms devised that use either cryptographic or non-cryptographic approaches for access-control. Among the cryptographic approaches, one of the popular approaches exploits the association of the identity of a user with the resource to be protected, enabling mere identity checks to allow/reject further access to the resource. However, a user's identity can be described only by defining appropriate associated attributes. Hence, the notion of using a user's identity as the basis of a key, that is, identity-based encryption [1], led eventually to the notion of the attribute-based encryption (ABE) [2]. The use of ABE also enabled its use in a multicast setup that its predecessors viz. the public key cryptosystems [3] and the identity-based encryption systems lacked.

In [4], the authors proposed the first ABE scheme in two different variants viz. *key policy* attribute-based encryption (KP-ABE) and *ciphertext policy* attribute-based encryption (CP-ABE). In KP-ABE, a ciphertext is associated with a defined set of attributes, and user's secret key is associated

with a defined policy containing those attributes. Hence, the secret key could be used successfully, only if the attributes in an access policy (aka. Access structure) defined in the key match the attributes in the ciphertext. In [5], the authors proposed a fully functional CP-ABE in which a user's secret key is associated with a defined set of attributes and the ciphertext is associated with a defined policy.

Subsequently, there have been various efforts made to improve the basic CP-ABE scheme too [6–17]. However, all these approaches essentially use *variable* length ciphertext, that is, the size of ciphertext in all these approaches increases linearly w.r.t. the number of attributes in the policy. This not only increases the *communication overhead* but also increases the *computational overhead* during *Decrypt* operation, on the receiver side because of the expensive pairing operations to be carried out there. In order to achieve *faster decryption*, (in terms of execution time), constant length of the ciphertext is to be ensured, giving fixed number of pairing operations. This reduces the execution time of *Decrypt* and makes it faster as compared to *variable length* approaches.

Upon our search for the approaches that offer *constant* length ciphertext, we observe that indeed, an extensive

set of attempts can be found in the literature that support constant length ciphertext-based systems [17–27]. However, we also observe that all of these are only selectively secure [17–23] [27,28]. On the other hand, numerous approaches that offer full security suffer from variable length ciphertext [29–32].

Because of the advantages associated, our primary observation is that it is desirable to ensure not only *constant length ciphertext* in a CP-ABE scheme but also full security of the system. We indeed found one such scheme due to Ren *et al.* in [33], which is the first *fully secure* CP-ABE scheme with *constant length* ciphertext. This scheme is (s,s) threshold scheme. This means that the number of attributes in a receiver's (decryptor) secret key and that in the ciphertext policy must contain *the same s* attributes for successful decryption.

However, we observe that this constraint restricts the application of the scheme to some specific setups. For example, consider a multicast scenario wherein each user in a group has $\langle p_i, x_1, x_2, x_3, \dots x_n \rangle$ attributes with the subset $\langle x_1, x_2, x_3, \dots x_n \rangle$ being common across all the users, whereas the attribute p_i serves as a distinguisher among the elements in the group. Then, because of the restriction of being a (s, s) threshold scheme, the scheme [33] would fail (having no scope for supporting the distinguisher element).

In real life, a user by default is expected to play different roles, for example, being a student and a bank account holder. Consider a case where Alice, say, is a student of university ABC and the account holder for Bank XYZ. Messages (ciphertext) from ABC entitled to students do not contain attributes for XYZ (as student may have account in any bank) and vice versa. However, according to Ren et al. [33]. Alice would able to decrypt only if the policy of received ciphertext contains the attributes ABC and XYZ. Therefore, even though Alice is a valid user, she would not be able to decrypt individual messages from ABC and/or XYZ. Thus, the scheme in [33] would not be applicable in all scenarios in real life. This can be ameliorated if a subset of the attributes in the user's secret key is sufficient (to be used as a threshold) for establishing the match with the ciphertext policy.

In this backdrop, we propose a fully secure ABE scheme with a constant length ciphertext that can be used in a multicast setup also. Our scheme also supports collusion resistance using a single authority approach. In addition, the proposed approach uses a fixed number of pairing operations during the decryption, irrespective of the number of attributes in the policy. We consider the attributes that contain many values (aka multivalued), and during encryption, we multiply them (ANDing) to make the constant ciphertext. Therefore, our proposed scheme is based on AND gate with multivalued attributes.

To the best of our knowledge, ours is the first scheme that supports *fully secure* ABE scheme with *constant* ciphertext length for multicast setup.

The rest of the paper is organized as follows: in Section 2, we present a detailed discussion of various approaches

Figure 1. Schematic for the example.

in CP-ABE. In Section 3, we discuss the notations, composite bilinear groups, the basic *three* assumptions for the security and the proposed construction of the scheme. In Section 4, we discuss the proposed approach for constant length ciphertext. In Section 5, we give the full security proof based on the *three* assumptions (as in Section 3). The performance analysis is given in Section 6, whereas the conclusion with the scope for the future work is given in Section 7.

2. RELATED WORK

To exemplify the need for constant length ciphertext as well as full security, we take the help of an illustration in our further discussion that goes as follows:

Say a user *Bob* wants to encrypt some message (like invitation) to all fresh PhD students in the Computer Department of University *X*. Assume one of the users in this system is Alice with the attributes viz. ["Name=Alice", "ID=D12CO951", "Branch=Computer", "Designation=PhDStudent", "University=X", "Joining=2012"}. If Bob wishes to address all the fresh PhD students as mentioned before, he has to use the policy viz. {"Branch=Computer" AND "Designation=PhDStudent" AND "University=X" AND "Joining=2012"} as shown in Figure 1.

2.1. Constant length ciphertext

The motivation for the constant length ciphertext can best be understood by looking at the limitation of the scheme [5] in which the size of the ciphertext increases linearly with the number of attributes in the policy. We attempt to do so by using an example and the CP-ABE toolkit [34] that provides a set of programs implementing a ciphertext policy attribute-based encryption scheme. We input a sample message text of the size 369 KB by using the CP-ABE scheme as in [5] and obtain the various operational parameter values as shown in Table I using the following notations:

P denotes the number of Pairing operations, E denotes the number of Exponents used, M denotes the number of multiplication operations required at decryptor side for a (t, n) threshold scheme (t or more attributes are required) out of total n attributes to decrypt), and S denotes the size of the ciphertext in KB.

Table I. Analyzing the CP-ABE scheme in [5] for different values of $\langle t, n \rangle$.

n	<i>t</i> = 1	2	3	4	5
4 5	P=27 E=13 M=149 S=382.6 P=27 E=13 M=149 S=385	P=29 E=14 M=157 S=382.2 P=29 E=14 M=157 S=384.7	P=31 E=15 M=169 S=381.9 P=31 E=15 M=169 S=384.4	P=33 E=16 M=307 S=381.5 P=33 E=16 M=185 S=384	P=35 E=17 M=355 S=383.7

Table II. A comparison based on number of policies supported.

Scheme	Policies that can be decrypted by Alice	Possible number of policies
[33] This work	{"Name = Alice", "ID = D12CO951", "Branch = Computer", "Designation = PhDStudent", "University = X", Joining = 2012"} ("Name = Alice"), {"ID = D12CO951",,("Name = Alice" , "ID = D12CO951",,("Name = Alice" , "ID = D12CO951", "Branch = Computer", "Designation = PhDStudent", "University = X", "Joining = 2012"\$	1 2 ⁶ – 1

Thus, for the example illustrated earlier, with four attributes in a policy, Alice requires 33 pairing operations (t=4, n=4 in Table I). In addition, the number of pairing operations increases during the decryption that increases the computational overhead on the receiver [21].

To achieve faster decryption using fixed number of pairing operations, in [19], the authors propose a constant length ciphertext by using the (t, t) threshold system, that is, the number of attributes in user's secret key is the same as the number of attributes in the policy. In [20–28], the authors propose different schemes to deal with the constant length ciphertext.

However, none of these approaches achieve fully secure scheme – the motivation for which is discussed in the following section.

2.2. Fully secure CP-ABE schemes

All of the approaches discussed in previous sections provide the selective security. In the selective security model, attacker announces the target access structure (policy) before the Setup phase, which makes the selective security model a weaker model as compared to fully secure [30,33]. More precisely, in selective secure schemes, simulator knows the target access structure before he generates the public parameters. However, the simulator can allow to generate public and to be able to generate private parameters except attributes in target access structure. Therefore, when the simulator generates public parameters, the underlying hard problem is embedded into the secret parameters for target access structure. This makes the selective secure scheme to work for specific access structure and lead to a weaker model. In fully secure model, attacker announces the target access structure after seeing the public parameters that make the scheme secure against any access structure.

The notion of the fully secure model started with [35]. In [35], the authors propose a dual system encryption method in which keys and ciphertext can be of two forms, that is, normal and semi-functional. Semi-functional keys can decrypt only normal ciphertext. However, normal keys can be used to decrypt both types of ciphertext. Semi-functional key and semi-functional ciphertext is used only for proof of the security.

In [29], the authors propose a fully secure CP-ABE scheme based on the dual encryption method [35,36]. In [30–32], the authors propose different schemes to deal with the fully secure notion.

However, in these schemes, if system contains the N attributes, then decryption procedure requires N pairing operations, which makes the system inefficient for larger attribute sets.

2.3. Fully secure CP-ABE with the constant length ciphertext scheme

The first fully secure CP-ABE scheme with constant length ciphertext was proposed in [33]. This scheme is based on the approach proposed in [19] discussed earlier. However, as mentioned earlier, this scheme requires identical and an equal number of attributes in the ciphertext policy as well as in the secret key for successful decryption. In other words, out of all subsets of attribute set s in (s, s) scheme, only one subset, that is, set itself, must be matched with the attribute set of user's secret key (that also has the same set of attributes).

We further illustrate the advantage derived in our scheme in Table II by comparing our approach with the one in [33] in terms of the number of ciphertext policies. It can be perceived from Table II that our approach allows a larger number of possibilities for selecting the ciphertext policy for the sender (encryptor). Therefore, different/same sender can use different policies that suit their requirements.

Specifically, with respect to the illustration that we have discussed earlier, the approach in [33] fails because Alice would not be able to decrypt the ciphertext because of Name and ID attributes in her secret key (the (s, s) threshold not being satisfied). However, in our scheme, Alice would be able to do so, as our approach allows the attributes in the ciphertext policy to be the subset of the secret key.

In [37], the authors proposed an approach using *inner-product encryption* (IPE) to achieve the constant length ciphertext with fully secure notion. However, the size of the secret key in [37] is more than double the size of the same, in our scheme. In addition, if we consider a system with *n* attributes in the universe, then the *KeyGen*, *Encrypt*

and *Decrypt* of [37] require *n* attributes to calculate the vector of size *greater* than *n*, even though fewer attributes are used in the ciphertext or the secret key.

The entire evolution in the research from the basic CP-ABE scheme to that with the support for a CP-ABE scheme with the support for multi-authority, constant length ciphertext, selective secure or fully secure albeit individually has been summarized for a quick reference in Table III. In Table III, fully secure model refers to the dual encryption technique by [36], and IPE model refers to the underlying assumption of the IPE scheme as mentioned in [37].

3. PRELIMINARIES

3.1. Composite order bilinear groups

Definition 1. (Bilinear map) [38]. Assume G and G1 are two multiplicative cyclic group of some order N=pqr where p, q and r are distinct large prime numbers. Z_N is set of all positive numbers. G_p , G_q and G_q are subgroup of order p, q and r, respectively. G_{pq} is the subgroup of order pq and so on. Here, G_{pq} can be defined as the $G_{pq} = \{ab \mid a \in G_p, b \in G_q\}$. Here, $G = G_pG_qG_r$. Assume g_1 is a generator of G. A bilinear map $g_1 \in G$ is a deterministic function, which takes as input two elements from G and output an element in group G_1 , which satisfies the following criteria:

- Bi-linearity: For all $a,b \in Z_N$, $e\left(g_1^a, g_1^b\right) = e\left(g_1, g_1\right)^{ab}$.
- Non-degeneracy: $e(g_1, g_1) \neq 1$.
- e must be computed efficiently.
- For $g_p \in G_p$, $g_r \in G_r$ and $g_q \in G_q$, $e\left(g_p,g_r\right) = e\left(g_p,g_q\right) = e\left(g_q,g_r\right) = 1$. To see this, assume that $h_1 \in G_p$ and $h_2 \in G_q$. Here, g_1^{pq} generates G_r , g_1^{pr} generates G_q and g_1^{rq} generates G_p . Hence, for some a_1,a_2 , $h_1 = \left(g_1^{qr}\right)^{a_1}$ and $h_2 = \left(g_1^{pr}\right)^{a_2}$. Then $e\left(h_1,h_2\right) = e\left(g_1^{qra_1},g_1^{pra_2}\right) = e\left(g_1^{ra_1},g_1^{a_2}\right)^{pqr} = 1$. We will use this orthogonal property to implement semi-functionality of the proposed system.

Definition 2. (Access Structure/Policy).[5] Let (A1, A2,...,An) be a set of attributes. The collection $A \subseteq 2^{\{A1,A2,...,An\}}$ is monotone if $\forall B,C$: if $B \in A$ and $B \subseteq C$, then $C \in A$. An (monotone) access structure is a (monotone) collection A of non-empty subsets of (A1,A2,...,An), that is, $A \subseteq 2^{\{A1,A2,...,An\}} \setminus \{\phi\}$. The sets in A are called authorized, and the sets that are not in A are called unauthorized sets. We have used monotonic access structure in the proposed scheme that support AND gate.

3.2. Complexity assumptions [35 - 36]

In the following assumptions, we assume that G_{pq} denotes subgroup of order pq in G, G_{pr} denotes subgroup of order pr in G and so on. All these assumptions are of constant length and secure as given in [35].

Assumption 1. (Subgroup decision problem for three primes). Given a group generator X, we define the distribution as in Equation (1).

$$(N = pqr, G, G_1, e) \longleftarrow X,$$

 $g \in_R G_p, X_3 \in_R G_r, D = (N, G, G_1, e, g, X_3),$ (1)
 $T_1 \in_R G_{pq}, T_2 \in_R G_p$

We define the advantage of an algorithm A in breaking Assumption 1 to be

$$Adv1_{G,A}(\lambda) := Pr[A(D, T_1) = 1] - Pr[A(D, T_2) = 1].$$

We note that T_1 can be written (uniquely) as the product of an element of G_p and an element of G_q . We refer to these elements as the " G_p partof T_1 " and the " G_q partof T_1 ", respectively. We use this terminology in our proofs.

Definition 3. We say that G satisfies Assumption 1 if $Adv1_{G,A}(\lambda)$ is a negligible function of λ for any polynomial time algorithm A.

Assumption 2. Given a group generator X, we define the distribution as in Equation (2).

$$(N = pqr, G, G_1, e) \longleftarrow X,$$

$$g, X_1 \in_R G_p, X_2, Y_2 \in_R G_q,$$

$$X_3, Y_3 \in_R G_r, D = (N, G, G_1, e, g, X_1X_2, X_3, Y_2Y_3),$$

$$T_1 \in_R G, T_2 \in_R G_{pr}$$

$$(2)$$

We define the advantage of an algorithm A in breaking Assumption 2 to be

$$Adv2_{G,A}(\lambda) := Pr[A(D, T_1) = 1] - Pr[A(D, T_2) = 1].$$

We use G_{pr} to denote the subgroup of order pr in G. We note that T_1 can be (uniquely) written as the product of an element of G_p , an element of G_q and an element of G_r . We refer to these as the " G_p partof T_1 ", the " G_q partof T_1 " and the " G_r partof T_1 ", respectively. T_2 can similarly be written as the product of an element of G_p and an element of G_r . Note: It is emphasized that Assumption 2 is violated if X_2 is known. However, in our case, the parameter D contains the value of X_2 , and there is no way by which an adversary can known X_2 , given D.

Definition 4. We say that G satisfies Assumption 2 if $Adv2_{G,A}(\lambda)$ is a negligible function of λ for any polynomial time algorithm A.

Assumption 3. Given a group generator X, we define the distribution as in Equation (3).

$$(N = pqr, G, G_1, e) \longleftarrow X,$$

$$y, s \in_R Z_N,$$

$$g \in_R G_p, X_2, Y_2, Z_2 \in_R G_q,$$

$$X_3 \in_R G_r, D = (N, G, G_1, e, g, g^y X_2, X_3, g^s Y_2, Z_2),$$

$$T_1 = e(g, g)^{ys}, T_2 \in_R G_1$$
(3)

 Table III.
 Comparison of different schemes.

Scheme	Expressiveness of policy	Complexity assumption	Adding of attributes after setup	Constant length ciphertext	Fully secure
[2]	Any Boolean formula	Generic group	Yes	oN N	No
[7]	Any Boolean Formula	ВДН	Yes	٥ <u>٧</u>	o N
[8]	Any Boolean Formula	Fully secure model	Yes	٥ <u>٧</u>	Yes
[6]	Any Boolean Formula	рврн	Yes	٥N	N _o
[10,11]	Disjunctive Normal Form	Generic Group	Yes	°N	N _o
[12]	Any Boolean Formula	рврн	No	°Z	o N
[16]	Any Boolean Formula	PBDHE	Yes	°Z	o N
[19]	AND gate multivalued	рврн	No	Yes	o N
[20]	Any Boolean Formula	aMSE-DDH	No	Yes	o N
[21]	AND gate multivalued	K-BDHE	Yes	Yes	o N
[22]	Any Boolean Formula	q-DBDHE and aMSE-DDH	Yes	Yes	o N
[23]	AND gate multivalued	K-BDHE	Yes	Yes	No
[59]	Any Boolean Formula	Fully secure model	No	°Z	Yes
[30]	AND gate multivalued	Fully secure model	No	°Z	Yes
[31]	Any Boolean Formula	Fully secure model	Yes	°Z	Yes
[33]	AND gate multivalued	ABDHE	Yes	Yes	Yes
[37]	Any boolean formula	IPE	Yes	Yes	Yes
[32]	AND gate multivalued	Fully secure model	Yes	°Z	Yes
[25]	AND gate multivalued	рврн	Yes	Yes	o N
[56]	AND gate with positive, negative and wildcard attribute	рврн	Yes	Yes	o N
[27]	Any Boolean Formula	q-BDHE	Yes	Yes	o N
[28]	Any Boolean Formula	aMSE-DDH	Yes	Yes	No
Our scheme	AND gate with multivalued	Fully Secure Model	Yes	Yes	Yes

We define the advantage of an algorithm A in breaking Assumption 3 to be

$$Adv3_{GA}(\lambda) := Pr[A(D, T_1) = 1] - Pr[A(D, T_2) = 1]$$

Definition 5. We say that G satisfies Assumption 3 if $Adv3_{G,A}(\lambda)$ is a negligible function of λ for any polynomial time algorithm A.

3.3. Proposed construction

The proposed scheme consists of four polynomial algorithms as follows.

- (1) Setup(1^{γ}): Central Authority (CA) runs this algorithm. It will take implicit security parameter γ , that is, Bit security level as input and output public parameter MPK and master key MSK.
- (2) Keygen (MSK, L): The key generation algorithm run by CA takes as input the master key of the CA and the set of attributes list L for a user and then generates the secret key SK.
- (3) Encrypt (MPK, M, W): The encryption algorithm takes as input the message M, public parameter MPK and access policy W over the universe of attributes. It generates the output CT such that only those users who have a valid set of attributes that satisfy the access policy can decrypt. Assume that the CT implicitly contains access policy W.
- (4) Decrypt (CT, SK): The decryption algorithm run by the user takes as input the ciphertext CT containing access policy W and the secret key SK containing attribute set L. If L satisfies the access policy, then algorithm decrypts the CT and gives M, otherwise decryption fails.

3.4. Security game

- (1) Setup: The challenger runs Setup and gives public parameters to the attacker *A*.
- (2) Phase 1: The attacker A sends a query for attribute sets $S_1, S_2, ..., S_{k'}$. The challenger answers with a secret key. Note that these queries can be repeated adaptively.
- (3) Challenge: The attacker A sends two equal-length messages M_0 and M_1 and challenges access structure W^* (such that $\forall i \in [1, k'], S_i \not\models W^*$) to the challenger. The challenger selects $\mu \in_R \{0, 1\}$ and runs $CT^* = Encrypt(MPK, M_{\mu}, W^*)$. The challenger gives the ciphertext CT^* to A.
- (4) Phase 2: Phase 1 is repeated with a query for attribute sets $S_{k'+1}, S_{k'+2}, ..., S_{q'}$ (such that $\forall i \in [k'+1, q'], S_i \not\models W^*$). The challenger answers with a secret key.
- (5) Guess: A outputs a guess $\mu' \in \{0, 1\}$.

The advantage of A in breaking the Indistinguishability under selective chosen plaintext attacks (IND-sCPA) security of the scheme is defined as

$$Adv(A) := |Pr(\mu' = \mu) - 1/2|$$

The ABE scheme is said to be IND-sCPA secure if Adv(A) is negligible (say ϵ) with respect to security parameter for any polynomial time adversary.

As we can see, A announces the target access structure after seeing the public parameters, which formally proves the fully secure notion of the proposed scheme.

4. THE PROPOSED SCHEME

The proposed scheme consists of four algorithms.

(1) Setup (γ): This algorithm is run by the CA. Based on the security parameter γ, the CA takes the bilinear group G and G₁ of order N, where G = GpGqGr and N = pqr. The bilinear map function is e: G × G → G₁. Then, the CA chooses the set of attributes in universe U = {attr₁, attr₂, ..., attrռ}. Each attribute contains nᵢ possible values. vᵢ, represents the jth value of attribute i. We have used the double index, that is, one for attribute and the other for its possible value for better readability with real life. In the example of Section 2, attribute Branch has different values like Computer, Electrical and Mechanical. The MPK and MSK are given in Equation (4).

$$g \in G_p, X_3 \in_R G_r, \left\{ t_{i,j} \in_R Z_N \right\}_1 \le i \le n, 1 \le j \le n_i, y, \beta \in_R Z_N$$

$$MPK = \left\{ G_r, N, e, g, g^{\beta}, Y = e(g, g)^{y}, \right.$$

$$T_{i,j} = g^{t_{i,j}} (i \in [1, n], j \in [1, n_i]) \right\}$$

$$MSK = \{ y, X_3, \beta \}$$

$$(4)$$

(2) KeyGen (MSK, L, MPK): Based on MSK, MPK and attribute list $L = \{v_{1,j_1}, v_{2,j_2}, \dots, v_{n',j_{n'}}\}$ where $n' \le n$, CA generates $t \in RZ_N, R_0, R'_0, R_{i,j} \in RG_r$ and calculates the SK of user u as in Equation (5).

$$SK_{L} = \left\{ \forall v_{i,j_{i}} \in L \ D_{i,j} = \left(T_{i,j} R_{i,j} \right)^{t}, \\ D = (gR_{0})^{y+\beta t}, D' = (gR'_{0})^{t}, L \right\}$$
 (5)

(3) Encrypt (MPK,M,W): Based on the MPK, message M and access policy W, the sender selects $s \in_R Z_N$ and calculates ciphertext CT as in Equation (6).

$$C_{1} = MY^{s}$$

$$C_{2} = g^{\beta s} \left(\prod_{v_{i,j} \in W} T_{i,j}^{s} \right) = \left(g^{s} \right)^{\beta} \left(g^{s} \right)^{\sum_{v_{i,j} \in W} t_{i,j}}$$

$$C_{3} = g^{s}$$

$$CT = \left\{ C_{1}, C_{2}, C_{3}, W \right\}$$
(6)

(4) Decrypt (CT, SK_L): User (Receiver) has to identify the AS (such that $(AS \subseteq L) \bigwedge (AS \models W)$) and then has to multiply all the related values, which are given in the secret key, that is, $\prod_{v_{i,j} \in AS} D_{i,j}$. Finally, compute as the following.

$$\frac{C_1 \ e(C_2, D')}{e\left(C_3, D \ \prod_{v_{i,j} \in AS} D_{i,j}\right)}$$

$$= \frac{M \ e(g, g)^{y \ s} \ e(g^{\beta s} \left(\prod_{v_{i,j} \in W} T_{i,j}^{s}\right), g^t R'_0)}{e\left(g^s, g^{y+\beta t} \prod_{v_{i,j} \in AS} \left(g^t\right)^{t_{i,j}} R_{i,j}\right)}$$

$$= \frac{M \ e(g, g)^{y \ s} e(g, g)^{ts\beta} e(g, g)^{t \ s} \ p_1}{e(g, g)^{y \ s} e(g, g)^{ts\beta} e(g, g)^{t \ s} \ p_2}$$

$$= M$$
Here, $p_1 = \sum_{v_{i,j} \in W} t_{i,j}$ and $p_2 = \sum_{v_{i,j} \in AS} t_{i,j}$

As we can see that the size of MPK is O(n), the size of secret key is O(n') and the size of ciphertext is O(1).

Note : $\not\models$ refers to not satisfy symbol, \models refers to satisfy symbol.

4.1. Construction of the secret keys ti,i

Here, we assume that $\sum v_{i,j \in L_1} t_{i,j} \neq \sum v_{i,j \in L_1'} t_{i,j}$. If there exists $L_1 \subseteq L$ and $L_1' \subseteq L'$ such that $\sum v_{i,j \in L_1} t_{i,j} = \sum v_{i,j \in L_1'} t_{i,j}$, then L' can decrypt W, where $L' \not\models W$ and $L \models W$. This assumption holds with probability $\frac{N(N-1)...(N-(N-1))}{N^\delta} > \frac{(N-(N-1))^\delta}{N^\delta} = \left(1 - \frac{\delta-1}{N}\right)^\delta > \left(1 - \frac{\delta(\delta-1)}{N}\right) > \left(1 - \frac{\delta^2}{N}\right)$, where $\delta = \prod_{i=1}^n n_i$ and N is the group order of G. Therefore, if we select each $t_{i,j}$ as random form Z_N , then our assumption is natural.

5. SECURITY ANALYSIS

In this section, we discuss the full security model based on Assumptions 1, 2 and 3. First, we look at the semifunctional keys and semi-functional ciphertext that we will subsequently use in the proof. Thereafter, we discuss the sequence of hybrid games that we will use to prove the full security of the system. The normal operation of our scheme essentially occurs in G_p . The secret keys are additionally randomized in the subgroup of G_r , while the subgroup of G_q is used for semi-functional space (which is not used in the real system). When a normal key is paired with semifunctional ciphertext or a semi-functional key is paired with normal ciphertext, then the element from G_q will not contribute in pairing as it is orthogonal to G_p and G_r . When we decrypt semi-functional ciphertext with semifunctional key, the extra term from G_q will arise, which

makes the decryption fail. When the decryption works, we call it *nominally* semi-functional secret key (say type 1). In that, the G_q term of *nominally* semi-functional key cancels the G_q term of semi-functional ciphertext when paired. If decryption fails, then that key is called the semi-functional secret key of type 2.

5.1. Construction of the semi-functional ciphertext

Let g_q denote the generator of G_q . A semi-functional ciphertext is created as given in the following.

• First, the normal ciphertext is generated based on Encrypt algorithm

$$CT' = \left\{ C_{1}^{'}, C_{2}^{'}, C_{3}^{'}, W \right\}.$$

- It selects random exponent $c, Z_{i,j} \in_R Z_N$.
- The semi-functional ciphertext is as in Equation (7).

$$CT = \left\{ C_1 = C_1', C_3 = \left(g_q^c \right)^{\beta} C_3', \\ C_2 = C_2' \left(\prod_{v_{i,j} \in W} \left(g_q^c \right)^{Z_{i,j}} \right), W \right\}$$
(7)

5.2. Construction of the semi-functional secret key

A semi-functional secret key can take any of two types as follows:

Type 1: It generates exponents t, $b \in_R Z_N$, R_0 , R_0' , $R_{i,j} \in_R G_r$

$$SK : \left\{ \forall v_{i,j_i} \in L \, D_{i,j} = \left(T_{i,j} R_{i,j} \right)^t g_q^{Z_{i,j}}, D = (gR_0)^{y+\beta t} g_q^b, \\ D' = (gR_0')^t g_q^{\beta}, L \right\}.$$

Type 2: It can generate from type-1 by removing $g_q^{\pmb{\beta}}$ and $g_q^{Z_{i,j}}$

$$\begin{cases} SK : D = (gR_0)^{y+\beta t} g_q^{\beta}, \forall v_{i,j_i} \in L \ D_{i,j} = (T_{i,j}R_{i,j})^t, \\ D' = (gR_0')^t, L \end{cases}.$$

Here, when we decrypt the semi-functional ciphertext with type 1, then it is successfully decrypted. As compared with type 2, the decryption fails because of the term $e(g_q, g_q)^{cb\beta}$ being left in the denominator.

5.3. Security Proof

We have proven the security based on the sequence of hybrid games. We will use the same structure of hybrid games and lemmas as in [29]. The $Game_{Real}(Game_0)$ is the real security game, that is, all the ciphertext and secret keys are in normal form. Let q' denote the total number

of secret key queries (during *phase 1* and *phase 2* in the security game of Section 3.4).

Then, for k from 1 to q'.

In $Game_k$, 1, the first k-1 keys are semi-functional of type 2, the k^{th} key is semi-functional of type 1 and the remaining keys are normal. The challenge ciphertext is semi-functional.

In $Game_k$, 2, the first k keys are semi-functional of $type\ 2$ and the remaining keys are normal. The challenge ciphertext is semi-functional.

In the $Game_{\mathbf{q}}^{\prime}$, 2, all the keys are semi-functional of type 2. In $Game_{\mathbf{F}inal}$, all the keys are semi-functional of type 2, while challenge ciphertext is semi-functional with encryption of a random message, that is, independent of two messages provided by attacker. We show that in $Game_{\mathbf{F}inal}$, the advantage of the attacker is negligible based on the games that are indistinguishable as we show later in four lemmas. For notational purposes, we have used $Game_{0,2}$ as another way of denoting $Game_0$. In lemmas, a simulator generates the parameters based on Assumptions 1,2 and 3, and gives it to the Algorithm B, which will use the output of Algorithm A (attacker) to break the underlying assumptions with negligible advantage ϵ .

One can see that we start with real game that contains a normal key and normal ciphertext, and then in each subsequent game, we change one key from normal to semifunctional with negligible advantage for A. In the final game, all the keys are semi-functional with semi-functional ciphertext.

Lemma 1. If there exists a polynomial time algorithm A with $Game_{Real}Adv_A - Game_0Adv_A = \epsilon$, then we can construct algorithm B in polynomial time with advantage ϵ in breaking Assumption 1.

Proof. Simulator gives g, X_3, T to B. B simulates $Game_{Real}$ or $Game_0$ with A. B generates exponents $\{t_{i,j} \in_R Z_N\}_{1 \le i \le n, 1 \le j \le n_i}, y, \beta \in_R Z_N$. B calculates MPK as in Equation (8).

$$MPK = \left\{ G_r, N, e, g, g^{\beta}, Y = e(g, g)^{y}, \right.$$

$$T_{i,j} = g^{t_{i,j}} (i \in [1, n], j \in [1, n_i]) \right\}$$
(8)

B sends the MPK to A. B can generate normal keys to the response of A's secret key query, using *KeyGen* as it knows $MSK = y, X_3, \beta$.

A sends M_0, M_1 and policy W to B. To make challenge ciphertext, B will implicitly set g^s as G_p part of T (as T is the product of $g^s \in G_p$ and possibly an element of G_q). It selects $\mu \in_R \{0,1\}$, $Z_{i,j} \in_R Z_N$ and sets

$$C1 = M_{ii}e(g^{y}, T), C2 = T^{\beta + \sum_{i,j} \in W} Z_{i,j}, C3 = T$$

If $T \in G_p$, then this is normal ciphertext.

If $T \in G_{pr}$, then we let g_q^c denote G_q part of T (i.e., $T = g^s g_q^c$). Then we have semi-functional ciphertext that

implicitly sets $Z_{i,j} = t_{i,j}$. By re-using the values of G_p part here, we prevent unwanted correlations. The values of $c, t_{i,j} \mod q$, $\forall v_{i,j} \in W$ are uncorrelated to their $mod \ p$ values because of the *Chinese Reminder* theorem. Hence, this is a properly distributed semi-functional ciphertext. Therefore, B will use the output of A to have ϵ advantage in breaking Assumption 1.

Lemma 2. If there exists a polynomial time algorithm A with $Game_{k-1,2}Adv_A - Game_{k,1}Adv_A = \epsilon$, then we can construct algorithm B in polynomial time with advantage ϵ in breaking Assumption 2.

Proof. Simulator gives $g, X_1X_2, X_3, Y_2Y_3, T$ to B. B simulates $Game_{k-1,2}$ or $Game_{k,1}$ with A. B generates exponents $\{t_{i,j} \in_R Z_N\}_{1 \le i \le n, 1 \le j \le n_i}$, y, $\beta \in_R Z_N$. B calculates MPK as in Equation (9).

$$MPK = \left\{ G_r, N, e, g, g^{\beta}, Y = e(g, g)^{y}, \right.$$

$$T_{i,j} = g^{t_{i,j}} (i \in [1, n], j \in [1, n_i]) \right\}$$
(9)

B sends the MPK to A. To make first k-1 semi-functional secret key of type 2, B answers each query (with attribute list say L that is different for each query) by selecting exponents $t \in RZ_N, R_0, R_0', R_{i,j} \in RG_r$ and sets

$$\begin{split} D &= (gR_0)^{y+\beta t} g_q^\beta, \forall v_{i,j_i} \in L \ D_{i,j} = \left(T_{i,j} R_{i,j}\right)^t, \\ D^{'} &= (gR_0^{'})^t, L \end{split}$$

Here, D is properly distributed as its value $mod\ q$ and r are uncorrelated to its value $mod\ p$. To make a normal key for > k queries, B can run the KeyGen algorithm, as it knows MSK.

To make key k, B implicitly sets g^t as G_p part of T. B selects exponents $R_0, R'_0, R_{i,j} \in RG_r$ and sets

$$\begin{split} D &= g^y T^{\beta} R_0^{y+\beta t} g_q^{\beta}, \forall v_{i,j_i} \in LD_{i,j} = (T)^{t_{i,j}} R_{i,j}{}^t, \\ D^{'} &= T (R_0^{'})^t, L \end{split}$$

If $T \in G_{pr}$, then this properly distributes normal secret key. If $T \in G$, then this is a semi-functional secret key of type 1 that implicitly sets $Z_{i,j} = t_{i,j}$. If we denote g_q^b to be G_q part of T, then we are left with $b\beta \mod q$. Here, G_q part of D is g_q^b , G_q part of D' is g_q^β and G_q part of $D_{i,j}$ is $g_q^{Z_{i,j}}$. The values of $Z_{i,j} \mod q$ are uncorrelated from the $t_{i,j} \mod p$.

A sends M_0, M_1 and policy W to B. To make challenge semi-functional ciphertext, B will implicitly set $g^s = X_1$ and $g_q^c = X_2$. It selects $\mu \in \{0, 1\}, Z_{i,j} \in \mathbb{R}$ and sets

$$C1 = M_{\mu}e\left(g^{y}, X_{1}X_{2}\right), C2 = (X_{1}X_{2})^{\beta + \sum_{v_{i,j} \in W} Z_{i,j}},$$
 $C3 = X_{1}X_{2}$

Here, s is shared in the G_p subgroup and cy is shared in the G_q subgroup. If k^{th} key could decrypt the challenge ciphertext, then we will have $cb\beta = 0 \mod q$. Therefore, the k^{th} key is either normal or nominally semi-functional secret key. One can see that as long as values of c, b, β mod q are non-zero, the value shared in G_q subgroup is information theoretically hidden from A's viewpoint. Thus, for the random values of c, b and β mod q, this leads to a negligible advantage from A's viewpoint. Hence, the ciphertext and k^{th} key are properly distributed from A's viewpoint with negligible advantage. Thus, if $T \in G_{pr}$, then B has properly simulated $Game_{k-1,2}$, or if (with c, b and β values are non-zero), B has properly simulated $Game_{k,1}$. Therefore, B will use the output of A to have ϵ advantage in breaking Assumption 2.

Lemma 3. If there exists a polynomial time algorithm A with $Game_{k,1}Adv_A - Game_{k,2}Adv_A = \epsilon$, then we can construct an algorithm B in polynomial time with an advantage ϵ in breaking Assumption 2.

Proof. The proof of this lemma is similar to previous lemma but without information theoretically hidden argument.

Simulator gives $g, X_1X_2, X_3, Y_2Y_3, T$ to B. B simulates $Game_{k,1}$ or $Game_{k,2}$ with A. B generates exponents $\{t_{i,j} \in_R Z_N\}_{1 \le i \le n, 1 \le j \le n_i}$, $y, \beta \in_R Z_N$. B calculates MPK as in Equation (10).

$$MPK = \left\{ G_r, N, e, g, g^{\beta}, Y = e(g, g)^{y}, \right.$$

$$T_{i,j} = g^{t_{i,j}} (i \in [1, n], j \in [1, n_i]) \right\}$$
(10)

B sends the MPK to A. To make first k-1 semi-functional secret key of type 2, this works the same as of Lemma 2. To make a normal key for > k queries, B can run the *KeyGen* algorithm, as it knows MSK.

For the k^{th} query, it will add one additional term $f \in Z_N$ and sets

$$D = g^{y} T^{\beta} R_{0}^{y+\beta t} (Y_{2} Y_{3})^{f} g_{q}^{\beta}, D^{'} = T(R_{0}^{'})^{t},$$

$$\forall v_{i,i} \in L D_{i,i} = (T)^{t_{i,j}} R_{i,i}^{t}, L$$

The additional term $(Y_2Y_3)^f$ will randomize the G_q part of D; so now, key is no longer semi-functional of type 1. Thus, decryption would fail for semi-functional ciphertext (we no longer have $cb\beta \equiv 0 \ mod \ q$).

If $T \in G_{pr}$, then this is normal semi-functional secret key of type 2. If $T \in G$, then this is semi-functional secret key of type 1. Therefore, B will use the output of A to have ϵ advantage in breaking Assumption 2.

Lemma 4. If there exists a polynomial time algorithm A with $Game_{q',2}Adv_A - Game_{Final}Adv_A = \epsilon$, then we can construct algorithm B in polynomial time with advantage ϵ in breaking Assumption 3.

Proof. Simulator gives $g, X_3, T, g^y X_2, g^s Y_2, Z_2$ to B. B simulates $Game_{q',2}$ or $Game_{Final}$ with A. B generates exponents $\{t_{i,j} \in_R Z_N\}_{1 \le i \le n, 1 \le j \le n_i}$, $\beta \in_R Z_N$. B calculates MPK as in Equation (11).

$$MPK \left\{ = G_r, N, e, g, g^{\beta}, Y = e(g, g^{\gamma}X_2), \\ T_{i,j} = g^{t_{i,j}} (i \in [1, n], j \in [1, n_i]) \right\}$$
 (11)

B sends the MPK to A. In order to make semi-functional secret key of type 2, B answers each query (with attribute list say L that is different for each query) by selecting exponents $t \in_R Z_N, R_0, R'_0, R'_{i,j} \in_R G_r$ and sets

$$\forall v_{i,j_i} \in L \ D_{i,j} = (T_{i,j}R_{i,j})^t, D = (gR_0)^{y+\beta t} Z_2^t g_q^{\beta},$$
$$D' = (gR_0')^t, L$$

As in the previous lemmas, A sends M_0 , M_1 and policy W to B. To make challenge semi-functional ciphertext, B selects $\mu \in \mathbb{R} \{0, 1\}$, $Z_{i,j} \in \mathbb{R} Z_N$ and sets

$$C1 = M_{\mu}T$$
, $C2 = (g^{s}Y_{2})^{\beta + \sum_{v_{i,j} \in W} Z_{i,j}}$, $C3 = g^{s}Y_{2}$

If $T = e(g, g)^{ys}$, then this properly distributes semi-functional encryption of message M_{μ} . If $T \in G_1$, then this properly distributes semi-functional encryption of some random message from G_1 . Therefore, B will use the output of A to have ϵ advantage in breaking Assumption 3.

Theorem 1. If Assumptions 1, 2 and 3 hold, then the proposed constant length ciphertext CP-ABE scheme is fully secure.

Proof. We have shown that if Assumptions 1, 2 and 3 hold, then $Game_{Real}$ is indistinguishable from $Game_{Final}$ based on the aforementioned lemmas, and the value of μ is information theoretically hidden from the attacker's viewpoint. Hence, the attacker has negligible advantages in breaking the proposed CP-ABE system.

6. PERFORMANCE EVALUATION

In this section, we discuss the implementation and the evaluation of the scheme in [33] and compare it against our scheme. For the practical performance, we have used the single threshold gate to represent the access structure of the proposed as well as that of scheme in [33].

In order to compare our performance and that of [33] in detail, we have implemented both the schemes and compared them empirically based on their running times. The results are shown in Tables IV–VI. The scheme of [33] requires the same set of attributes in the policy and ciphertext, that is, m = n'. Therefore, in Tables IV–VI, we have written "NO" for m < n' as the decryption fails for the scheme of [33], where n' represents the total number of

Table IV. Time in milliseconds for keyGen, at various security levels, for selected values of m and n'.

	50	262	362	523	1691
	4,	27	47	54	358
	45	240 263	321 328	469 521	1518 1652
	4	25 NO	75 NO	NO N	352 NO
	C	227 236 254	294 322 357	429 457 518	1334 1507 1654
. 11 01 11	40	27 00 00 00	7 7 7 8 9 9	4 Z Z 0 O O	361 NO NO
	35	102 214 238 259	252 302 339	379 427 463 524	1230 1362 1686
200	3	29 NO NO NO	4000 4000	NN N S 55	355 NO NO NO
,	30	87 97 222 240 255	222 257 288 323 352	335 383 422 469 510	1070 1230 1395 1522 1691
14 104010		25 N N N N N N N N N N N N N N N N N N N	4 N N N N N N N N N N N N N N N N N N N	NZZZZ	0000 NNNN NNNNN
5000	25	78 79 96 222 235 235	197 221 260 288 316 348	279 332 383 420 471	919 1096 1243 1367 1478 1745
, 25		27 NN NN	20000 22222 20000	00000 XXXXX	00000 NNNN358
200	20	61 76 82 110 217 237 259	163 190 220 258 294 337	236 284 336 411 522	779 915 1079 1241 1355 1508
2000		000000 NZZZZZ	4000000	# ZZZZZZ 4000000	357 NNNNNN NNO NNO NNO NNO NNO NNO NNO NNO
	15	51 62 75 87 106 212 235 269	131 160 197 219 253 289 320 342	235 235 287 326 380 418 460 535	626 798 935 1078 1259 1388 1502 1666
2	-	0000000 NZZZZZZ	0000000 NZZZZZZZ	mOOOOOOO	ZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
2025	10	38 48 63 74 83 107 218 240 266	103 129 192 226 257 309 318 363	145 233 287 332 385 474 474	473 630 784 934 1071 1230 1412 1521 1679
	10	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-00000000 -00000000	20000000000000000000000000000000000000	%XXXXXXXX 200000000
	m = 5	36 52 60 78 85 101 198 244	102 144 167 195 228 280 320 371	147 190 238 276 332 376 420 476 506	473 643 784 903 1081 1218 1382 1527 1675
		000000000 ZZZZZZZZZ	000000000 ZZZZZZZZZ	000000000 ZZZZZZZZZ	000000000
	n'	10 20 25 30 35 40 45	011 022 032 044 045 054 054	011020330000000000000000000000000000000	011 022 030 030 044 050 050
		80 bit	112 bit	128 bit	256 bit

First number in each column is for [33], second number is for our scheme. "NO" means decryption is not possible with given m and m' values.

Table V. Time in milliseconds for *Encrypt*, at various security levels, for selected values of m and n'.

_					
50	15	20	24	16	
	33	16	09	430	
	40	20	30	96 94	
45	NO N	85 NO NO	49 N	425 NO	
	5 7 5	20 20 19	31 30 25	90 93 91	
40	000 000	88 N N 0 O O	800 NN 68	426 NO NO	
m alla m	4245	0707	27 28 28 28	9 9 E 8 6 6 6 8	
35	0000 8000	000 8 Z Z Z	6 X X X 1 0 0 0	432 000 000	
30 35	4 £ 7 £ £ £	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 300 300 300	92 124 95 93	
	00000 8ZZZZ	0000 2222	00000 9ZZZZ	424 424 0000	
20 25	<u> </u>	20 00 00 00 00 00	20 30 30 30 30 30 30 30	93 94 94 91 93	
various s	m00000 m22222	900000 200000	000000 22222	432 00000 0000	
) (Cl ypt, at	9 1 2 2 2 2 1 1 9	00000000	30 28 31 28 28 28	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	000000 800000 800000	%ZZZZZZ 4000000	000000 000000	428 80000000	
15	8 6 2 2 2 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	000000000	7000000 7000000 7000000	106 992 993 993	(
15	00000000	%XXXXXXX 40000000	0000000 0222222	4 N N N N N N N N N N N N N N N N N N N	
<u>e</u>	7 × × × × × × × × × × × × × × × × × × ×	70 70 70 70 70 70 70 70 70 70 70 70 70 7	788 330 330 54 54 54 54 54 54 54 54 54 54 54 54 54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
10	00000000000000000000000000000000000000	m00000000 wzzzzzzz	000000000 0ZZZZZZZZ	4 X X X X X X X X X X X X X X X X X X X	
5:	V 8 0 0 5 5 5 4 4 5 5	001200000000000000000000000000000000000	28 27 29 30 31 31 31 31	99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
= <i>m</i>	000000000	000000000	000000000	000000000	
n'	10 20 30 30 30 40 45 50	0110 2020 300 440 5044 605	0110 2020 300 440 5044 605	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	80 bit	112 bit	128 bit	256 bit	

First number in each column is for [33], second number is for our scheme. "NO" means decryption is not possible with given m and n' value.

Table VI. Time in milliseconds for Decrypt, at various security levels, for selected values of m and n'.

	l				ı	
	50	6	9	30	85	
levels, for selected values of m and n .	5	12	9	28	88	
	45	57	1	24 30	98 86	
	4	N 2 2 0 N	N 0 75	N 23	92 NO	
		27 27	9 1 1 9	24 20 26	82 82 82	
	40	N N N N N N N N N N N N N N N N N N N	0 N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N 855	
	16	07220	6 5 to to	24 20 20 26	94 91 86 82	
	35	0000	9000 NZZZ	N N N N N N N N N N N N N N N N N N N	8 N N N O O O	
		~ o€	<u> </u>	23 23 23	86 94 87 92	onley /
	30	~ 0000 ~ 2222 ~ 0000	ZZZZ 20000	2 N N N N N N N N N N N N N N N N N N N	8 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
security	16	907222	71 71 15 15 15	22 22 19 21 21	87 88 96 87 84 89	vie d+ive
he in milliseconds for $Decrypt$, at various security levels, for	25	ω00000 ZZZZZ	00000 00000	00000 NZZZZZ	8 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ldiogod +o
	0	1790222	1 1 <td>22 22 22 22 22 23 24</td> <td>988 985 985 985</td> <td></td>	22 22 22 22 22 23 24	988 985 985 985	
ds tor <i>D</i> e	20	© N N N N N N N N N N N N N N N N N N N	000000 2XXXXX	000000 XXXXXX	000000 VXXXXX	or o
IIIIsecon	16	937222222	<u> </u>	2220113 22220113	888888888888888888888888888888888888888	"NO"
_	15	00000000000000000000000000000000000000	ω Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	0000000	#2000000 #000000	duchoo
≣ 	(70/028222	<u> </u>	77777777777777777777777777777777777777	88888888888888888888888888888888888888	ان لود
lable	10	ZZZZZZZ OOOOOOO	ZZZZZZZZ 00000000	m00000000 NZZZZZZZZ	000000000 8ZZZZZZZZ	d mind
	5	192222222	01101101100000000000000000000000000000	301222003	8888888888 8888888888888	[22] cooo
	= <i>m</i>	000000000	000000000	000000000	000000000	no io for
	n'	10 10 10 10 10 10 10 10 10 10 10 10 10 1	01122220 012220 012020 01200	01122220000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	i loo doco
		80 bit	112 bit	128 bit	256 bit	First pumbor in

First number in each column is for [33], second number is for our scheme. "NO" means decryption is not possible with given m and n' value.

attributes in secret key of the user and *m* represents the total number of attributes in the policy of the ciphertext.

The implementation is based on Ben Lynn's PBC library (version 0.5.12) [39] that is publically available. For the pairing, we have used the Type A1 curve where the order of subgroup (G, G_1) is N = pqr. We have evaluated the performance of both schemes at 80, 112, 128 and 256 bits security levels, as per NIST standard [[40], Table 2]. All the tests were run on Intel Core i5 with 1 GB RAM and 32-bit mode Ubuntu 10.4 operating system.

For *KeyGen*, the asymptotic complexity of the proposed scheme is $O(n')(T_1 + T_2 + T_3)$ and $O(n')T_1 + O(1)(T_2 + T_3)$ for [33]. Therefore, we can see that in Table IV, the execution time of the proposed scheme is *lesser* as compared to that in [33]. The T_1, T_2, T_3 and T_4 are the cost of addition, multiplication, exponentiation and pairing operation, respectively.

For *Encrypt*, the asymptotic complexity of the proposed scheme is $O(m)T_2 + O(1)T_3 +$ and $O(n')T_2 + O(1)(T_3 + T_4)$ for [33]. This shows that the scheme of [33] uses extra *pairing* operations and *multiplication* operations as compared to the proposed scheme. Therefore, we can see that in Table V, the execution time of the proposed scheme is *lesser* as compared to that in [33].

For Decrypt, the asymptotic complexity of the proposed scheme is $O(m)T_2+O(1)T_4$ and $O(1)(T_2+T_3+T_4)$ for [33]. As can be seen, in the proposed scheme, there are multiplication operations as compared to exponentiation operation in [33]. Therefore, we can see that in Table VI, the execution time of the proposed scheme is nearly equal to that in [33].

As can be seen, the number of decryption policies supported by our scheme is greater than that in [33]. The resulting advantage is that the number of policies decrypted by user is higher.

7. CONCLUSION AND FUTURE WORK

As is commonly understood, in order to reduce the associated overhead in CP-ABE schemes, it is desirable to design fully secure CP-ABE schemes that offer a constant length ciphertext. Although one can find numerous approaches in the literature that support constant length ciphertext and are full secure individually, there is only one prevalent attempt that supports a fully secure constant length ciphertext CP-ABE scheme due to Ren et al. However, this scheme entails the limitation that it is a (s,s)threshold scheme and hence cannot be applied in certain restricted setups that demand multicast communication. We argue that in such setups, it is desirable to have a CP-ABE scheme that allows the number of attributes in the ciphertext to be a subset of the attributes in the receiver key. In this paper, we propose a constant length ciphertext CP-ABE scheme for a single authority system under the constraint that the number of attributes in the ciphertext policy is a subset of attributes in the receiver's secret key.

Our approach is based on the AND gate with multivalued attribute. One can extend our scheme for fully threshold constant length ciphertext with fully secure setup.

ACKNOWLEDGEMENTS

The authors are thankful to *Dr. Wei Wang* for the painstaking efforts and to *anonymous reviewers* for their valuable suggestions to improve the quality of this paper. Without their support, this paper would not be in shape, it is, as of now.

REFERENCES

- Shamir A. Identity-based cryptosystems and signature schemes. In *Advances in Cryptology*, vol. 196,
 Blakley G, Chaum D (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer,
 Heidelberg, 1985; 47–53.
- Sahai A, Waters B. Fuzzy identity-based encryption. In *Advances in Cryptology EUROCRYPT 2005*, vol. 3494, Cramer R (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2005; 557–557.
- Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM* Feb.1978; 21(2): 120–126.
- Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-grained access control of encrypted data. In *Proceedings of the 13th ACM Conference on Computer and Communications Security*, CCS '06. ACM: ACM New York, NY, USA, 2006; 89–98.
- Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption, Security and Privacy, 2007. SP '07. IEEE Symposium on, The Claremont Resort, Oakland, California, USA, May 2007; 321–334.
- Goyal V, Jain A, Pandey O, Sahai A. Bounded ciphertext policy attribute based encryption. In *Automata*, *Languages and Programming*, vol. 5126, Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2008; 579–591.
- Chase M. Multi-authority attribute based encryption. In *Theory of Cryptography*, vol. 4392, Vadhan S (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2007; 515–534.
- 8. Lewko A, Waters B. Decentralizing attribute-based encryption. In *Advances in Cryptology EUROCRYPT* 2011, vol. 6632, Paterson K (ed), Lecture Notes

- in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2011; 568–588.
- Bovi V, Socek D, Steinwandt R, Villnyi V I. Multiauthority attribute-based encryption with honestbut-curious central authority. *International Journal of Computer Mathematics* 2012; 89(3): 268–283.
- Muller S, Katzenbeisser S, Eckert C. Distributed attribute-based encryption. In *Information Security* and Cryptology ICISC 2008, vol. 5461, Lee P, Cheon J (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2009; 20–36.
- Müller S, Katzenbeisser S, Eckert C. On multiauthority ciphertext-policy attribute-based encryption. Bulletin of the Korean Mathematical Society 2009; 46(4): 803–819.
- 12. Lin H, Cao Z, Liang X, Shao J. Secure threshold multi authority attribute based encryption without a central authority. *Information Sciences* 2010; **180**(13): 2618–2632.
- Cheung L, Newport C. Provably secure ciphertext policy abe. In *Proceedings of the 14th ACM Con*ference on Computer and Communications Security, CCS '07. ACM: ACM New York, NY, USA, 2007; 456–465.
- 14. Kapadia A, Tsang PP, Smith SW. Attribute-based publishing with hidden credentials and hidden policies, In The 14th Annual Network and Distributed System Security Symposium (NDSS 07), Catamaran Resort Hotel - San Diego, CA, USA, 2007; 179–192.
- Lubicz D, Sirvent T. Attribute-based broadcast encryption scheme made efficient. In *Progress in Cryptology AFRICACRYPT 2008*, vol. 5023, Vaudenay S (ed), Lecture Notes in Computer Science. Springer Berlin/Heidelberg: Springer, Heidelberg, 2008; 325–342. 10.1007/978-3-540-68164-9_22.
- Waters B. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In *Public Key Cryptography PKC 2011*, vol. 6571, Catalano D, Fazio N, Gennaro R, Nicolosi A (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2011; 53–70. 10.1007/978-3-642-19379-8_4.
- Hur J, Park C, Hwang S. Fine-grained user access control in ciphertext-policy attribute-based encryption. Security and Communication Networks 2012; 5(3): 253–261.
- Daza V, Herranz J, Morillo P, Rfols C. Extensions of access structures and their cryptographic applications. Applicable Algebra in Engineering, Communication and Computing 2010; 21: 257–284, 10.1007/s00200-010-0125-1.

- Emura K, Miyaji A, Nomura A, Omote K, Soshi M. A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In *Information Security Practice and Experience*, vol. 5451, Bao F, Li H, Wang G (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2009; 13–23. 10.1007/978-3-642-00843-6 2.
- Herranz J, Laguillaumie F, Rfols C. Constant size ciphertexts in threshold attribute-based encryption. In *Public Key Cryptography PKC 2010*, vol. 6056, Nguyen P, Pointcheval D (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010; 19–34. 10.1007/978-3-642-13013-7_2.
- Zhou Z, Huang D. On efficient ciphertext-policy attribute based encryption and broadcast encryption: extended abstract. In *Proceedings of the 17th ACM Conference on Computer and Communications Security*, CCS '10. ACM: New York, NY, USA, 2010; 753–755.
- 22. Attrapadung N, Herranz J, Laguillaumie F, Libert B, de Panafieu E, Rfols C. Attribute-based encryption schemes with constant-size ciphertexts. *Theoretical Computer Science* 2012; **422**(0): 15–38.
- Chen C, Zhang Z, Feng D. Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In *Provable Security*, vol. 6980, Boyen X, Chen X (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2011; 84–101. 10.1007/978-3-642-24316-5_8.
- Venugopalan S. Attribute based cryptology. M.Tech. Dissertation, Indian Institute of Technology, IIT Madras, 2011. Available from: https://researcher.ibm. com/files/in-subhvenu/thesis.pdf.
- Doshi N, Jinwala D. Constant ciphertext length in multi-authority ciphertext policy attribute based encryption, *Computer and Communication Technol*ogy (ICCCT), 2011 2nd International Conference on, Motilal Nehru National Institute of Technology, Allahabad (U.P.), INDIA, sept.2011; 451–456.
- Döshi N, Jinwala D. Hidden access structure ciphertext policy attribute based encryption with constant length ciphertext. In *Advanced Computing, Networking and Security*, vol. 7135, Thilagam P, Pais A, Chandrasekaran K, Balakrishnan N (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2012; 515–523. 10.1007/978-3-642-29280-4_60.
- 27. Ge A, Zhang R, Chen C, Ma C, Zhang Z. Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In *Information Security and Privacy*, vol. 7372, Susilo W, Mu Y, Seberry J (eds),

- Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2012; 336–349. 10.1007/978-3-642-31448-3_25.
- 28. Kitak Kim JHP, Koo WK, Lee DH. Chosen ciphertext secure ciphertext-policy attribute-based encryption with constant ciphertext length and threshold policy. In *International Conference on Information Science and Technology (IST 2012)*, vol. 3, Adrian S, Jeong J K, Sabah Mohammed E G and Yvette, Ronnie DC (eds), Information Science and Technology: SERSC, Sandy Bay, Tasmania, Australia, 2012. Available from: http://onlinepresent.org/proceedings/vol3_2012/88.pdf.
- Lewko A, Okamoto T, Sahai A, Takashima K, Waters B. Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In *Advances in Cryptology EUROCRYPT 2010*, vol. 6110, Gilbert H (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2010; 62–91. 10.1007/978-3-642-13190-5_4.
- Lai J, Deng R, Li Y. Fully secure cipertext-policy hiding cp-abe. In *Information Security Practice and Experience*, vol. 6672, Bao F, Weng J (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2011; 24–39. 10.1007/978-3-642-21031-0_3.
- 31. Qian Jl, Dong Xl. Fully secure revocable attribute-based encryption. *Journal of Shanghai Jiaotong University (Science)* 2011; **16**: 490–496, 10.1007/s12204-011-1178-4.
- 32. Liu Z, Cao Z, Huang Q, Wong D, Yuen T. Fully secure multi-authority ciphertext-policy attribute-based encryption without random oracles. In *Computer Security ESORICS 2011*, vol. 6879, Atluri V, Diaz C (eds), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2011; 278–297. 10.1007/978-3-642-23822-2_16.
- 33. Ren Y, Wang S, Zhang X, Qian Z. Fully secure ciphertext-policy attribute-based encryption with

- constant size ciphertext, *Multimedia Information Networking and Security (MINES)*, 2011 Third *International Conference on*, Nanjing Huamao International Hotel, Nanjing, China, nov.2011; 380–384.
- 34. Bethencourt J, Sahai A, Waters B. *The cp-abe toolkit, advanced crypto software collection*, December 1, 2006. Available from: http://acsc.cs.utexas.edu/cpabe/.
- 35. Lewko A, Waters B. New techniques for dual system encryption and fully secure hibe with short ciphertexts. In *Theory of Cryptography*, vol. 5978, Micciancio D (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2010; 455–479. 10.1007/978-3-642-11799-2_27.
- 36. Waters B. Dual system encryption: realizing fully secure ibe and hibe under simple assumptions. In *Advances in Cryptology CRYPTO 2009*, vol. 5677, Halevi S (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2009; 619–636. 10.1007/978-3-642-03356-8_36.
- 37. Chen C, Chen J, Lim H, Zhang Z, Feng D, Ling S, Wang H. Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures. In *Topics in Cryptology CT-RSA 2013*, vol. 7779, Dawson E (ed), Lecture Notes in Computer Science. Springer Berlin Heidelberg: Springer, Heidelberg, 2013; 50–67.
- 38. Boneh D, Goh E J, Nissim K. Evaluating 2-DNF formulas on ciphertexts. In *Theory of Cryptography*, vol. 3378, Kilian J (ed), Lecture Notes in Computer Science. Springer Berlin / Heidelberg: Springer, Heidelberg, 2005; 325–341. 10.1007/978-3-540-30576-7_18.
- Lynn B. PBC library, 2006. Available from: http:// crypto.stanford.edu/pbc.
- Barker E, Barker W, Burr W, Polk W, Smid M. NIST special publication 800-57. recommendation for key management part 1: General(revised). NIST Special Publication. National Institute of Standards and Technology (NIST) 2007; 800(57): 1–142.