11/13/21, 11:44 AM ES Examination

Exam: MST-II_Nov-2021_CA3CO11_Mathematics-III_Reschedule

	Not Answered
or large	e values of n and small values of Probability of success P Binomial distribution
Α.	loses its discreteness
⊘ B.	tends to Poisson distribution
C.	stays as it is

Not Answer	ered
n and variance of distribution are same.	
Poisson Distribution	
Normal Distribution	
Exponential Distribution	
Binomial distribution	
n	and variance of distribution are same. Poisson Distribution Normal Distribution Exponential Distribution

Not Answered

If the function y=f(x) is defined in the interval [0,2] which is divided into 6 equal parts, then the value of h is

A. 0

⊘ B.	1/3
C.	4/5
D.	1/6

The standard normal variate formula for normal distribution is given by

A.
$$Z = \frac{X}{\sigma}$$

$$Z = \frac{\mu}{\sigma}$$

c.
$$Z = \frac{X + \mu}{\sigma}$$

$$extstyle extstyle Z = rac{ extstyle X - \mu}{\sigma}$$

5 Not Answered

The mean and variance of _____ distribution are same.

⊘ A.	Poisson Distribution
В.	Normal Distribution
C.	Exponential Distribution
D.	Binomial distribution

The value of k for the p.d.f $f(x) = \begin{cases} kx^2, 0 \le x \le 3 \\ 0, otherwise \end{cases}$ is

- A. 2/9
- B. 1/3
- **⊘**C. 1/9
- D. 1

7 Not Answered

The points of inflexion of normal curve are -

⊘A. <u>+</u>σ

B. σ^2

C. $-\sigma^2$

8 Not Answered

If dydx=y-xy+x with y(0)=1, then by Using Euler's method, the first approximation value of y corresponding to x=0.1 is

- A. 1
- B. 1.3

⊘ C.	1.02
D.	2.1

 $y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$, where $k_1 = hf(x_n, y_n)$ and $k_2 = hf[x_n + h, y_n + hf(x_n, y_n)]$ is a Runge's formula of order _____.

A.	1
⊘ B.	2
C.	3
D.	4

10 Not Answered

The formula for Euler's method is given by y_{n+1} =

11 Not Answered

To solve ordinary differential equation $\frac{dy}{dx} = f(x, y)$ in which of the following

method the value of y is first predicted and then corrected

A.	Euler's Modified method
В.	Taylor's series method
C.	Runge kutta method
⊘ D.	None of these

In Binomial distribution, the value of variance is

A. \sqrt{np} B. \sqrt{npq} C. npOne of these

If range [-3,3] is divided in to six equal part then inter length h=

One A. 1

B. 2

C. 3

D. None

14 Not Answered

The Poisson distribution is defined as (where symbols have their usual meaning in probability)

⊘ A.	$e^{-m_m r}$
	r!

B.
$$\frac{e^m m^r}{r!}$$

c.
$$\lambda e^{-\lambda x}$$

D.
$$n_{c_r}q^{n-r}p^r$$

15 Not Answered

Which of the following methods is a multi-step method?

A.	Euler	
В.	Runge-Kutta	
C.	Taylor series	

⊘ D. None of these

16 Not Answered

The curve y = f(x) is assumed to be a straight line in ____rule.

⊘A. Trapezoidal

В.	Simpson's 1/3
C.	Simpson's 3/8
D.	None of these

.7		Not Answered
Veddle F	Rule is used to find the solution of	
A.	Ordinary differential equation	
⊘ B.	Numerical Integration	
C.	Partial differential equation	
D.	Both Ordinary and partial differential equation	

	Not Answered
ess of numerical integration is called	
Quadrature	
Curvature	
Truncation	
All are true	
	Quadrature Curvature Truncation

The value of k for the p.d.f

$$f(x) = \begin{cases} kx^2, 0 \le x \le 3 \\ 0, otherwise \end{cases}$$
 is

A.	2/9
⊘ B.	1/3
C.	1/9
D.	1

Not Answered

Picard's method belongs in the category of

⊘ A.	single step method
В.	double step method
C.	Multi step method
D.	None of these.

21 Not Answered

Using Runge-Kutta method of fourth order find the value of k_1 , if y' = xy, for x = 1.1 and y(1) = 2 by taking h = 0.1

- A. 1
- **⊘** B. 0.2
- C. 2

D.	3

A variable that can assume any value between two given points is called ______

⊘ A.	Continuous random variable
В.	Discrete random variable
C.	Irregular random variable
D.	None of these

Not Answered

Weddle Rule is used to find the solution of

⊘ A.	Numerical Integration
В.	Ordinary differential equation
C.	Partial differential equation
D.	Both Ordinary and partial differential equation

24 Not Answered

The polynomial of order 1 is integrated by ____ rule.

A. Simpson's 1/3

⊘B. Trapezoidal

C.	Simpson's 3/8
D.	Weddle

In which formula the number of sub-intervals should be taken as multiple of 6

A. Trapezoidal rule

B. Simpson's 3/8 rule

C. Simpson's 1/3 rule

✔ D. Weddles Rule

Not Answered

What does (1-p) stand for in the binomial distribution?

A.	number of trials
B.	number of success
C.	Probability of success
⊘ D.	Probability of failure

Not Answered

To solve ordinary differential equation using Euler's Modified method $\frac{dy}{dx} = f(x, y)$, y (0) = 1 at x = 1 with h = 0.1, how many steps (n) are required?

A.	1
⊘ B.	10
C.	3
D.	5

8		Not Answered
n trapez	oidal rule h is divided by	
A.	3	
⊘ B.	2	
C.	4	
	None	

9		Not Answered
variabl	e which can assume finite or countably infinite number of values is known as	
A.	Continuous	
⊘ B.	Discrete	
C.	Qualitative	
	None of these.	

Using Picard's method, find the first approximation of $\frac{dy}{dx} = x + y$ when $x_0 =$

 $0, y_0 = 1$.

A.	x ²
	•

$$\bigcirc$$
 C. $xy + \frac{x^2}{2}$

31 Not Answered

The Binomial distribution is defined as (where symbols have their usual meaning in probability)

A.

В.

C. $\lambda e^{-\lambda x}$

⊘ D. $n_{c_r}q^{n-r}p^r$

32 Not Answered

A variable that can assume any value between two given points is called ______

⊘ A.	Continuous random variable
В.	Discrete random variable
C.	Irregular random variable
D.	None of these

33 Not Answered The variance of exponential distribution is $\frac{1}{\lambda}$ A.

- **⊘** B. $\frac{1}{\lambda^2}$
- C. . λ
- λ^2 D.

34 Not Answered

To solve ordinary differential equation using Euler's Modified method $\frac{dy}{dx} = f(x, y)$, y (0) = 1 at x = 1 with h = 0.5, how many steps (n) are required?

A. 1 **⊘** B. 2 C. 3 None of these D.

Which of the following continuous distribution is a limiting form of Binomial distribution?

- A. Poisson distribution
- B. Exponential distribution
- C. Gamma distribution
- **②** D. Normal distribution

Not Answered

The relation of mean and variance for the binomial distribution is -

Where m = mean and σ^2 = variance

- A. $m = \sigma$
- Θ B. $m < \sigma^2$
- C. $\sigma^2 = m^2$
- D. None

Not Answered

Which of the following continuous distribution is a limiting form of Binomial distribution?

A. Poisson distribution

В.	Exponential distribution
C.	Gamma distribution
⊘ D.	Normal distribution

38		Not Answered
For a Poisson Distribution, if mean(m) = 1, then P(1) is?		
A.	е	
В.	e/2	
⊘ C.	1/e	
D.	Indeterminate	

39		Not Answered
Which of	f the following is a continuous theoretical distribution?	
A.	Poisson Distribution	
⊘ B.	Normal Distribution	
C.	Binomial Distribution	
D.	None of these.	

For derivation of Trapezoidal rule from cote's formula we put n =

B. 2C. 3D. None	⊘ A.	1
	В.	2
D. None	C.	3
	D.	None