作者华校专,曾任阿里巴巴资深算法工程师,现任智易科技首席算法研究员,《Python 大战机器学习》的作者。

这是作者多年以来学习总结的笔记,经整理之后开源于世。目前还有约一半的内容在陆续整理中,已经整理好的内容放置在此。 曾有出版社约稿,但是考虑到出版时间周期较长,而且书本购买成本高不利于技术广泛传播,因此作者采取开源的形式。 笔记内容仅供个人学习使用,非本人同意不得应用于商业领域。

笔记内容较多,可能有些总结的不到位的地方,欢迎大家探讨。联系方式:huaxz1986@163.com

数学基础

- 1.线性代数基础
 - 。一、基本知识
 - 。二、向量操作
 - 。三、矩阵运算
 - 。 四、特殊函数
- 2.概率论基础
 - 。一、概率与分布
 - 。二、期望和方差
 - 。 三、大数定律及中心极限定理
 - 。 五、常见概率分布
 - 。 六、先验分布与后验分布
 - 。七、信息论
 - 。八、其它
- 3.数值计算基础
 - 。一、数值稳定性
 - 。 二、梯度下降法
 - 。 三、二阶导数与海森矩阵
 - 。四、牛顿法
 - 。 五、拟牛顿法
 - 。六、约束优化

统计学习

- 0.机器学习简介
 - 。一、基本概念
 - 。二、监督学习
 - 。三、机器学习三要素
- 1.线性代数基础
 - 。一、线性回归
 - 。二、广义线性模型
 - 。 三、对数几率回归

- 。四、线性判别分析
- 。 五、感知机

• 2.支持向量机

- 。一、线性可分支持向量机
- 。 二、线性支持向量机
- 。 三、非线性支持向量机
- 。四、支持向量回归
- 。 五、SVDD
- 。 六、序列最小最优化方法
- 。七、其它讨论

• 3.朴素贝叶斯

- 。一、贝叶斯定理
- 。二、朴素贝叶斯法
- 。三、半朴素贝叶斯分类器
- 。四、其它讨论

• 4.决策树

- 。一、原理
- 。二、特征选择
- 。三、生成算法
- 。四、剪枝算法
- 。 五、CART 树
- 。 六、连续值、缺失值处理
- 。七、多变量决策树

• <u>5.knn</u>

- 。 一、k 近邻算法
- 。二、kd树

• 6.集成学习

- 。一、集成学习误差
- ∘ 三、Bagging
- 。四、集成策略
- 。 五、多样性分析

• 7.梯度提升树

- 。一、提升树
- ∘ =\ xgboost
- ∘ 三、LightGBM

• 8.特征工程

- 。 一、缺失值处理
- 。二、特征编码
- 。 三、数据标准化、正则化
- 。 四、特征选择
- 。 五、稀疏表示和字典学习
- 。 六、多类分类问题

。七、类别不平衡问题

• 9.模型评估

- 。一、泛化能力
- 。 二、过拟合、欠拟合
- 。 三、偏差方差分解
- 。 四、参数估计准则
- 。 五、泛化能力评估
- 。 六、训练集、验证集、测试集
- 。七、性能度量
- 。七、超参数调节
- 。 八、传统机器学习的挑战

• 10.降维

- 。一、维度灾难
- 。 二、主成分分析 PCA
- 。 三、核化线性降维 KPCA
- 。四、流形学习
- 。 五、度量学习
- 。 六、概率PCA
- 。 七、独立成分分析
- 。 八、t-SNE
- 。 九、LargeVis

• 11.聚类

- 。一、性能度量
- 。二、原型聚类
- 。三、密度聚类
- 。 四、层次聚类
- 。五、谱聚类

• 12.半监督学习

- 。半监督学习
- 。 一、生成式半监督学习方法
- 。 二、半监督 SVM
- 。 三、图半监督学习
- 。 四、基于分歧的方法
- 。 五、半监督聚类
- 。六、总结

• <u>13.EM算法</u>

- 。一、示例
- 。 二、EM算法原理
- 。 三、EM算法与高斯混合模型
- 。 四、EM 算法与 kmeans 模型
- 。 五、EM 算法的推广

• 14.最大熵算法

。一、最大熵模型MEM

- 。二、分类任务最大熵模型
- 。 三、最大熵的学习
- 15.隐马尔可夫模型
 - 。一、隐马尔可夫模型HMM
 - 。 二、HMM 基本问题
 - 。 三、 最大熵马尔科夫模型MEMM
- 16.概率图与条件随机场
 - 。 一、概率图模型
 - 。二、贝叶斯网络
 - 。 三、马尔可夫随机场
 - 。 四、条件随机场 CRF

深度学习

- 0.深度学习简介
 - 。一、介绍
 - 。二、历史
- 1.机器学习基础
 - 。一、基本概念
 - 。 二、点估计、偏差方差
 - 。三、最大似然估计
 - 。四、贝叶斯估计
 - 。 五、随机梯度下降
 - 。 七、传统机器学习的挑战
 - 。 八、低维流形
- 2.深度前馈神经网络
 - 。一、基础
 - 。二、损失函数
 - 。 三、输出单元
 - 。四、隐单元
 - 。 五、结构设计
 - 。六、历史小记
- 3.反向传播算法
 - 。一、链式法则
 - 。 二、反向传播
 - 。 三、深度前馈神经网络
 - 。四、实现
 - 。 五、应用
 - 。 六、自动微分
- 4.正则化
 - 。一、基本概念
 - 。 二、 参数范数正则化
 - 。三、约束正则化

- 。 四、 数据集增强
- 。 五、 噪声鲁棒性
- 。六、早停
- 。七、参数共享
- 。 八、 dropout
- 。 九、 稀疏表达
- 。 十、 半监督学习与多任务学习
- 。 十一、对抗训练
- 。十二、正切传播算法
- 。 十三、 正则化和欠定问题

• 5.最优化础

- 。一、代价函数
- 。 二、神经网络最优化挑战
- ∘ 三、mini-batch
- 。四、基本优化算法
- 。 五、自适应学习率算法
- 。 六、二阶近似方法
- 。七、共轭梯度
- 。 八、优化策略和元算法
- 。九、参数初始化策略

• 6.卷积神经网络

- 。一、卷积运算
- 。二、卷积层、池化层
- 。三、基本卷积的变体
- 。四、算法细节
- 。 五、 历史和现状

• 7.循环神经网络

- 。 一、RNN计算图
- 。 二、循环神经网络
- 。三、长期依赖
- 。 四、序列到序列架构
- 。 五、递归神经网络
- 。六、回声状态网络
- 。 七、LSTM 和其他门控RNN
- 。 八、外显记忆

• 8.工程实践指导原则

- 。一、性能度量
- 。 二、默认的基准模型
- 。 三、决定是否收集更多数据
- 。四、选择超参数
- 。 五、调试策略
- 。 六、示例: 数字识别系统
- 。七、数据预处理

- 。 八、变量初始化
- 。九、结构设计

自然语言处理

- 主题模型
 - ∘ —、Unigram Model
 - ∘ 二、pLSA Model
 - 。 三、LDA Model
 - 。四、模型讨论
- 词向量
 - 。一、向量空间模型 VSM
 - ∘ 二、LSA
 - ∘ ≡、Word2Vec
 - 。 四、GloVe

计算机视觉

- 图片分类网络
 - —, LeNet
 - ∘ 二、AlexNet
 - ∘ 三、VGG-Net
 - 。 四、Inception
 - ∘ 五、ResNet
 - 。 六、SENet
 - 。七、DenseNet
 - 。 八、小型网络
 - 。九、趋势

工具

CRF

- <u>CRF++</u>
 - 。一、安装
 - 。二、使用
 - 。 三、Python接口
 - 。 四、常见错误

lightgbm

- <u>lightgbm使用指南</u>
 - 。一、安装
 - 。二、调参

- 。三、进阶
- 。 四、API
- 。 五、Docker

xgboost

- xgboost使用指南
 - 。一、安装
 - 。二、调参
 - 。三、外存计算
 - 。四、GPU计算
 - 。 五、单调约束
 - 。 六、 DART booster
 - 。七、Python API

scikit-learn

- <u>1.预处理</u>
 - 。一、特征处理
 - 。二、特征选择
 - 。三、字典学习
 - 。 四、PipeLine
- 2.降维
 - - PCA
 - ∘ 二、MDS
 - 。 三、Isomap
 - 。 四、LocallyLinearEmbedding
 - 。 五、FA
 - 。 六、FastICA
 - 。七、t-SNE
- 3.监督学习模型
 - 。 一、线性模型
 - 。二、支持向量机
 - 。三、贝叶斯模型
 - 。四、决策树
 - 。 五、KNN
 - 。 六、AdaBoost
 - 。 七、梯度提升树
 - 。 八、Random Forest
- 4.模型评估
 - 。一、数据集切分
 - 。二、性能度量
 - 。三、验证曲线 && 学习曲线
 - 。 四、超参数优化

• 5.聚类模型

- —、KMeans
- ∘ □、DBSCAN
- ∘ 三、MeanShift
- 。 四、AgglomerativeClustering
- 。 五、BIRCH
- 。 六、GaussianMixture
- 。 七、SpectralClustering
- 6.半监督学习模型
 - 。 一、标签传播算法
- 7.隐马尔可夫模型
 - ∘ —、Hmmlearn
 - ∘ 二、seqlearn

spark

- 1.基础概念
 - 。 一、核心概念
 - 。二、安装和使用
 - ∘ 三、pyspark shell
 - 。四、独立应用
- 2.rdd使用
 - 。一、概述
 - 。 二、创建 RDD
 - 。 三、转换操作
 - 。 四、行动操作
 - 。 五、其他方法和属性
 - 。六、持久化
 - 。七、分区
 - 。八、混洗
- 3.dataframe使用
 - 。 一、概述
 - ∘ = SparkSession
 - 。 三、DataFrame 创建
 - 。 四、 DataFrame 保存
 - 。 五、DataFrame
 - ∘ 六、Row
 - 。七、Column
 - 。 八、GroupedData
 - 。 九、functions
- 4.累加器和广播变量
 - 。一、累加器
 - 。二、广播变量

numpy

- numpy 使用指南
 - ∘ —、ndarray
 - 。二、ufunc 函数
 - 。三、函数库
 - 。 四、数组的存储和加载

scipy

- scipy 使用指南
 - 。 一、 常数和特殊函数
 - 。二、拟合与优化
 - 。三、线性代数
 - 。 四、 统计
 - 。 五、数值积分
 - 。 六、 稀疏矩阵

matplotlib

- matplotlib 使用指南
 - 。 一、matplotlib配置
 - ∘ 二、matplotlib Artist
 - 。三、基本概念
 - 。四、布局
 - 。五、Path
 - o 六、path effect
 - 。七、坐标变换
 - 。 八、 3D 绘图
 - 。九、技巧

pandas

- pandas 使用指南
 - 。 一、基本数据结构
 - 。二、内部数据结构
 - 。三、下标存取
 - 。四、运算
 - 。 五、变换
 - 。 六、数据清洗
 - 。七、字符串操作
 - 。八、聚合与分组
 - 。九、时间序列
 - 。十、DataFrame 绘图
 - 。 十一、 移动窗口函数

。十二、数据加载和保存