March 31, 2023

An Introduction to Climate Modeling

Milestone 1 - Geography and Visualization

1 Read-in and Plot Geography

In this milestone, the goal is to read-in the geography information of planet Earth and plot it as a two-dimensional world map. We consider an equirectangular grid of the Earth, i.e., an equidistant rectangular grid in spherical coordinates, where the grid point (i,j) has the spherical coordinates (φ_i,θ_j) , where φ_i is the longitude between -90° south and 90° north (including the poles) and θ_j the latitude between -180° west and 180° east. The basis for this is the input file The_World128x65.dat, which describes the distribution of the different Earth surface types. This file contains a matrix $G \in \mathbb{N}^{65 \times 128}$ with entries $g_{ij} \in \{1,2,3,5\}$, where the entry g_{ij} stores the Earth surface type at grid point (i,j). Here, 1 represents the Earth surface type land, 2 represents sea ice, 3 represents snow, and 5 represents ocean. The grid resolution in longitude and latitude direction is 2.8125° . The basis for this distribution and grid is from Zhuang et al. You can proceed as follows:

- 1. Write a function read_geography, which reads the file The_World128x65.dat from the folder input and outputs a matrix $T \in \mathbb{N}^{65 \times 128}$ with the classification of the earth surface types.
- 2. Write a function robinson_projection, which maps an equirectangular grid in spherical coordinates to the plane. For simplicity use the approximate formula by Beineke for the Robinson projection,

$$\begin{split} x\left(\varphi,\theta\right) &= \frac{\varphi}{\pi} \left(0.0379 \, \theta^6 - 0.15 \, \theta^4 - 0.367 \, \theta^2 + 2.666 \right), \\ y\left(\varphi,\theta\right) &= 0.96047 \, \theta - 0.00857 \, \mathrm{sign} \left(\theta\right) \left|\theta\right|^{6.41}, \end{split}$$

where φ is the longitude and θ the latitude in radians. This function should return two matrices $X=x_{ij}$ and $Y=y_{ij}$, where $x_{ij}=x(\varphi_i,\theta_j), y_{ij}=y(\varphi_i,\theta_j)$.

Figure 1: Robinson projection of the world ²

- 3. Write a function plot_geo that creates a plot of the Earth surface type g_{ij} against the mapped coordinates (x_{ij}, y_{ij}) .
- 4. Use these functions in a program and run it to check your results.

¹K. Zhuang, G.R. North, M.J. Stevens, A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm, SoftwareX, Vol. 6, pp. 198-202, July 7, 2017.

²Daniel R. Strebe, https://en.wikipedia.org/wiki/File:Robinson_projection_SW.jpg

2 Control Solutions

Figure 2: Robinson projection output