Solution for LAB 2 P1

Apply Nodal Analysis @ Vo

$$\frac{V_o - V_{cc+}}{R_1} \frac{V_o}{R_2} + I_L = 0$$

$$V_o = \frac{R_1 R_2}{R_1 + R_2} \left[\frac{V_{cc}}{R_1} - I_L \right]$$

Using above equation, we will get following values of V0

iL(m	nA)	0	1	2	3	4	5	6	7	8
Vo ((V)	6.19	5.84	5.50	5.15	4.80	4.46	4.11	3.76	3.42

Solution for LAB 2 P2

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{2$$

The Apply Nodal Analysis Q Vo

S60 R1
$$I_L V_0$$
 $V_0 - V_{CC} + V_0 - V_Z^0 + I_L = 0$

2 282

Thus, $I_L V_0$ $V_0 - V_{CC} + V_0 - V_Z^0 + I_L = 0$
 $I_L V_0 - V_0 - V_0 + V_0 - I_0 + I_0$

ON $I_L \leq 6.93 \text{ mA}$: $I_L = \frac{Vcc - Vo}{R_1}$ FOY $I_L > 6.93 \text{ mA}$: Zener diede will be reversed Biased $V_{cc} = V_{cc} - I_{LR_1} \rightarrow EQ2$

Using EQ1 & EQ2, we will get following values of V0

iL(mA)	0	1	2	3	4	5	6	7	8
Vo (V)	6.132	6.130	6.128	6.126	6.124	6.122	6.120	6.08	5.52

