

Lab 9 - OJ Divide and Conquer (p2)

CS208 Algorithm Design and Analysis

Instructor: Yang Xu, xuyang@sustech.edu.cn

Q1: FFT

Description

Given a polynomial of degree n called $F(x)=a_0+a_1x+\cdots+a_nx^n$, and a polynomial of degree m called $G(x)=b_0+b_1x^1+\cdots+b_mx^m$.

Calculate the coefficients of the resulting polynomial by convolving F(x) and G(x), $F(x)*G(x)=c_0+c_1x^1+c_2^x2+\cdots+c_{n+m}x^{n+m}$.

Input Format

The first line contains two integers n, m.

The second line contains n+1 integers, representing the coefficients of F(x) from low to high.

The third line contains m+1 integers, representing the coefficients of G(x) from low to high.

Output Format

One line with n+m+1 integers, representing the coefficients of $F(x)\ast G(x)$ from low to high.

Q1: FFT

Output Format

One line with n+m+1 integers, representing the coefficients of F(x) st G(x) from low to high.

Sample Input 1

1 2

2 5

2 4 3

Sample Output 1

4 18 26 15

Explanation

$$(5x+2)(3x^2+4x+2)=15x^3+20x^2+10x+6x^2+8x+4=15x^3+26x^2+18x+4$$

So the output will be 4 18 26 15.

Question: How to deal with the unequal lengths? $m \neq n$

Pad to equal lengths (of 2 to the power of some number)

Q1: FFT

Can add ω_n to the argument

```
RECURSIVE-FFT(a)
    n = a.length
 2 if n == 1
           return a
     \omega_n = e^{2\pi i/n}
 5 \omega = 1
 6 a^{[0]} = (a_0, a_2, \dots, a_{n-2})
    a^{[1]} = (a_1, a_3, \dots, a_{n-1})
    y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]})
     y^{[1]} = RECURSIVE-FFT(a^{[1]})
10 for k = 0 to n/2 - 1
     y_k = y_k^{[0]} + \omega y_k^{[1]}
11
     y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}
13
           \omega = \omega \omega_n
14 return y
```

```
• Let F_A = FFT(A, \omega_n) // time O(n log n)

• Let F_B = FFT(B, \omega_n) // time O(n log n)

• For i=1 to m, let F_C[i] = F_A[i]*F_B[i] // time O(n)

• Output C = 1/m * FFT(F_C, \omega_n^{-1}). // time O(n log n)
```

Handle complex numbers:

https://introcs.cs.princeton.edu/java/32class/Complex.java.html

Q2: Urban Construction

Sjkmost persuaded Justin to force his citizens to trip with zipline. However, the citizens are not strong enough that they often fell from the zipline. Therefore, they decided to provide the citizens with some cable cars.

↑ zipline

There are n cable cars on the cable, each has an index a_i . Sijmost is trying to put them in order.

You can spend c justin (a type of currency) to cut down a segment of rope of length c, rotate it and splice back. That is, he can spent r-l+1 justin to rotate the cable cars in an interval.

Sjkmost has a budget of 2×10^7 *justin*. He should sort the cable cars with some operations with a total cost no more than 2×10^7 *justin*. Can you help him?

Q2: Urban Construction

Sample Input1:

Left and right ends of the rotation:

-1 -1 denoting end of output:

An empty line:

Sample output 1:

Q2: Urban Construction

Sample Input2:

Step 1

$$spend 3 - 1 + 1 = 3 justin$$

Step 2

Spend
$$4-1+1=4$$

Step 3

Spend
$$4-2+1=3$$

Sample output 2:

13

14

2 4

-1 -1

Total cost: $3+4+3=10<2\times10^7$