Problem 1

Ha Vu Anh

Let X, Y, Z be the reflection of I through the perpendicular bisector of BC, CA, AB respectively we get X, Y, Z, I lies on a circle with center O. Let H, N, E, F_E be the orthocenter, Nagel point, Nine-point-center and Feuerbach point of ABC respectively, W, G' be the Feuerbach point, centroid of the triangle XYZ.

Claim: I, P, W, G' are collinear.

Consider homothety center G with scaling factor -2, it sends $E \mapsto O, I \mapsto N, F_E \mapsto J$ then we have $OJ = 2 \cdot EF_E = R$ therefore J lies on (O). We also have:

$$ON \cdot OJ = 4 \cdot EI \cdot EF_E = 4 \cdot (EF_E - IF_E) \cdot EF_E = 4 \cdot \left(\frac{R}{2} - r\right) \cdot \frac{R}{2} = R \cdot (R - 2r) = OI^2.$$

It is well known that F_E is the Anti-Steiner point of medial triangle of ABC wrt OI therefore J is the Anti-Steiner point of ABC wrt HN, therefore AJ and the line through A perpendicular to HN, which parallel to OI, are isogonal wrt $\angle BAC$. Simple angle chasing yields

 $\angle JBC = \angle JAC = 90^{\circ} - \angle OIZ = \angle IYZ$ therefore $\triangle IYZ \sim \triangle JBC$.

We have $\angle XYZ = \angle XIZ = \angle ABC$; similiarly, we get $\triangle XYZ \sim \triangle ABC$. Denote N' as the incenter of XYZ we get $\triangle XYZ \cup (O,I,N') \sim \triangle ABC \cup (O,J,I)$ therefore $\triangle OIN' \sim \triangle OJI$ therefore N' lies on N' and N' = N hence N' is the incenter of N'.

Therefore we get $\triangle XYZ \cup (O, N, W) \sim \triangle ABC \cup (O, I, F_E)$ and so $\angle ONW = \angle OIF_E$. Combine this with the fact that $IF_E \parallel ON$ we get $NW \parallel OI$. Also, we have $\frac{NW}{IF_E} = \frac{OI}{OJ}$ and $\frac{GP}{OI} = \frac{r}{3R}$ therefore

$$\frac{GP}{NW} = \frac{GP}{OI} \cdot \frac{OI}{NW} = \frac{r}{3R} \cdot \frac{R}{r} = \frac{1}{3} = \frac{IG}{IN}.$$
Combine this with the fact that $GP \parallel OI \parallel NW$ we get P lies on IW . Also, since

 $\triangle XYZ \cup (W,G',I) \sim \triangle ABC \cup (F_E,G,J)$ and F_E,G,J are collinear we get W,G',I are collinear therefore I, P, G', W are collinear.

Back to the main problem, Any case of triangle ABC being isosceles is trivial. Hence, WLOG, assume that AB < BC < AC.

since we need to prove P lies on IL, we will prove I, L, G' are collinear, which is equivalent to $\overrightarrow{LI} \parallel \overrightarrow{IG'}$. Denote a, b, c as the length of BC, CA, AB respectively we get c < a < b We have:

Let
$$D, D'$$
 be the projection of I, X on BC respectively then $IX = DD' = DB - DC = \frac{b-c}{2}$

$$\overrightarrow{IG'} = \overrightarrow{IX} + \overrightarrow{IY} + \overrightarrow{IZ} = \frac{b-c}{2a} \overrightarrow{BC} + \frac{a-c}{2b} \overrightarrow{AC} + \frac{b-a}{2a} \overrightarrow{BA} \text{ therefore}$$

$$2abc \cdot \overrightarrow{IG'} = (a^2c - c^2a) \cdot \overrightarrow{AC} + (b^2a - a^2b) \cdot \overrightarrow{BA} + (b^2c - c^2b) \cdot \overrightarrow{BC}(1)$$

$$(a^2 + b^2 + c^2) \cdot \overrightarrow{LI} = (a^2 \cdot \overrightarrow{LA} + b^2 \cdot \overrightarrow{LB} + c^2 \cdot \overrightarrow{LC}) + (a^2 \cdot \overrightarrow{AI} + b^2 \cdot \overrightarrow{BI} + c^2 \cdot \overrightarrow{CI}) = a^2 \cdot \overrightarrow{AI} + b^2 \cdot \overrightarrow{BI} + c^2 \cdot \overrightarrow{CI}.$$
Let AI cut BC at T , we have $\frac{IA}{IT} = \frac{BA}{BT} = \frac{CA}{CT} = \frac{AB + AC}{BC} = \frac{b+c}{a}$ therefore $\frac{AI}{AT} = \frac{b+c}{a+b+c}$.

Therefore:
$$a^2 \cdot \overrightarrow{AI}$$
 = $\frac{a^2 \cdot (b+c)}{a+b+c} \cdot \overrightarrow{AT}$ = $\frac{a^2 \cdot (b+c)}{a+b+c} \cdot (\frac{BT}{BC} \cdot \overrightarrow{AC} + \frac{CT}{CB} \cdot \overrightarrow{AB})$ = $\frac{a^2 \cdot (b+c)}{a+b+c} \cdot (\frac{c}{b+c} \cdot \overrightarrow{AC} + \frac{b}{b+c} \cdot \overrightarrow{AB})$ = $\frac{a^2 \cdot (b+c)}{a+b+c} \cdot (a^2c \cdot \overrightarrow{AC} + a^2b \cdot \overrightarrow{AB})$. Similiarly we get $(a^2+b^2+c^2) \cdot \overrightarrow{LI} = a^2 \cdot \overrightarrow{AI} + b^2 \cdot \overrightarrow{BI} + c^2 \cdot \overrightarrow{CI} = \frac{1}{a+b+c} \cdot \left((a^2c-c^2a) \cdot \overrightarrow{AC} + (b^2a-a^2b) \cdot \overrightarrow{BA} + (b^2c-c^2b) \cdot \overrightarrow{BC}\right)$ (2). From (1), (2) we get $(a^2+b^2+c^2) \cdot \overrightarrow{LI} = \frac{1}{a+b+c} \cdot 2abc \cdot \overrightarrow{IG'}$ therefore $\overrightarrow{LI} \parallel \overrightarrow{IG'}$, which imply I, L, G' are

collinear, as desired.

Hence the problem is proved.