GROUP NUMBER: SEPT SUN GROUP 4 B

Natural Language Processing

AUTOMATIC IT SUPPORT TICKET ASSIGNMENT

TEAM

RADHIKA KULKARNI SYED TALIBUDDIN SAIFI TANVEER QURAISHI SHANMUGAM SAMPATH KANWAL RAI

MENTOR ASHISH VYAS

Table of Content

Part 1: Project Planning Phase 1. Problem Background, Data and Objectives 1.1 Project Objectives 1.2 Exploratory Data Analysis 1.3 Features and Target Variables 2. Model Selection Interim Part 2: Project Execution Phase 3. Dataset Preparation 3.1 Data Pre-Processing 3.2 Data Cleaning 3.3 Translation 3.4 Lemmatization & Stop Words Removal 3.5 Topic Modelling 3.6 Word Cloud Visualization 3.7 Word Embedding/Vectorization 4. Model Development 4.1 Machine Learning: SVM, RFC, NB 4.2 Deep Learning: LSTM, GRU, RNN 4.3 Transformers: BERT 5. Model Evaluation **Comparative Benchmarking Implications** Limitations Closing Reflection

Project Background, Data and Objectives

Background

One of the key activities of any IT function is to "Keep the lights on" to ensure there is no impact to the Business operations. IT leverages **Incident Management** process to achieve the above Objective. An incident is something that is unplanned interruption to an **IT service** or reduction in the quality of an IT service that affects the Users and the Business. The main **goal** of Incident Management process is **to provide a quick fix / workarounds or solutions that** resolves **the interruption and restores the service to its full capacity to ensure no business impact**. In most of the organizations, incidents are created by various Business and IT Users, End Users/ Vendors if they have access to ticketing systems, and from the integrated monitoring systems and tools.

Assigning the incidents to the appropriate person or unit in the support team has critical importance to provide improved user satisfaction while ensuring better allocation of support resources. The assignment of incidents to appropriate IT groups is still a manual process in many of the IT organizations. Manual assignment of incidents is time consuming and requires human efforts. There may be mistakes due to human errors and resource consumption is carried out ineffectively because of the misaddressing. On the other hand, manual assignment increases the response and resolution times which result in user satisfaction deterioration / poor customer service.

In the support process, incoming incidents are analyzed and assessed by organization's support teams to fulfill the request. In many organizations, better allocation and effective usage of the valuable support resources will directly result in substantial cost savings. Currently the **incidents** are created by various stakeholders (Business Users, IT Users and Monitoring Tools) within IT Service Management Tool and **are assigned to Service Desk teams (L1 / L2 teams).** This team will review the incidents for right ticket categorization, priorities and then carry out initial diagnosis to see if they can resolve. Around ~54% of the incidents are resolved by L1 / L2 teams. In case L1 / L2 is unable to resolve, they will then escalate / assign the tickets to Functional teams from Applications and Infrastructure (L3 teams). Some portions of incidents are directly assigned to L3 teams by either Monitoring tools or Callers / Requestors. L3 teams will carry out detailed diagnosis and resolve the incidents. Around ~56% of incidents are resolved by Functional / L3 teams. Incase if vendor support is needed, they will reach out for their support towards incident closure.

L1 / L2 needs to spend time reviewing Standard Operating Procedures (SOPs) before assigning to Functional teams (Minimum ~25-30% of incidents needs to be reviewed for SOPs before ticket assignment). 15 min is being spent for SOP review for each incident. Minimum of ~1 FTE effort needed only for incident assignment to L3 teams. During the process of incident assignments by L1 / L2 teams to functional groups, there were multiple instances of incidents getting assigned to wrong functional groups. Around ~25% of Incidents are wrongly assigned to functional teams. Additional effort needed for Functional teams to re-assign to right functional groups. During this process, some of the incidents are in queue and not addressed timely resulting in poor customer service. Guided by powerful AI techniques that can classify incidents to right functional groups can help organizations to reduce the resolving time of the issue and can focus on more productive tasks.

Data

Details about the data and dataset files are given in below link: https://drive.google.com/file/d/10ZNJm81JXucV3HmZroMq6qCT2m7ez7IJ/view

Objectives

In this capstone project, the goal is to build a classifier that can classify the tickets by analyzing text. The objective of the project is, (a) Learn how to use different classification models. (b) Use transfer learning to use pre-built models. (c) Learn to set the optimizers, loss functions, epochs, learning rate, backpointing, early stopping etc. (d) Read different research papers of given domain to obtain the knowledge of advanced models for the given problem. As per the background, the existing system assigns 70-75% of the support tickets effectively. Our objective in terms of effectiveness would be to build AI models to classify these tickets with an accuracy of at lest 80-85%.

Exploratory Data Analysis

- Dataset: Dataset Structure (4 Variables, 8500 Incident Records): Caller, Short Description, Description and Assignment Group
 - Data Features: Caller (2950 unique count), Short Description, Description
 - Label/Target Class: Assignment Group (74)

Features

- Caller names are ad-hoc and without proper references to any master data. It is not advised to be used as a feature as it will amount to overfitting the
 data. We expect these user or call names to be anything in the current scope of themes as making a prediction or classification of a ticket based on the
 caller names is not justifiable rationally. We plan to consider Short Description, Description as the data for feature engineering and ignore Caller related
 information in the dataset.
- Description are predominantly in English with words from other European languages as well. We plan to keep the data unmodified as received from the source. However for the sake of learning and experimentation, we plan to detect the languages and try to convert certain words into English.
- Descriptions are unstructured akin to reviews, chats, e-mails or tweets and its not clean. There are for instance special characters, emails, dates, symbols, hyper links, URL, IP Addresses and missing values or excessive whitespaces and stop words. We plan to remove the stop words and unnecessary noise through regular expression before vectorization of the feature data.
- We planned to use information in the Short Description along with the information in the Description column by concatenation of the data. Descriptions in some cases are though same as the data in the Short Description.
- Description contains conjugated words i.e. they are not properly separated and the text is submitted without prior spell corrections (spelling errors) including the fact that there are descriptions that contain sentences which are not grammatically obvious or otherwise meaningful to be analyzed through human intervention.

Labels/Target Class

The label data provided in the target class is imbalanced and skewed. Most of the tickets (3976, almost 50%) are being assigned to a single group (GRP_0). There are also assignment groups which have been assigned only a single ticket in the given dataset. We are earlier planned to merge these smaller groups into a single group to reduce the imbalance. This could have solved the imbalance problem. However, we are avoiding add-on group creations as we want the models to predict on the feature data as it is because these assignment groups are dynamic data and would keep changing. Hence using group names as a basis of reclassification will only serve a temporary purpose and even otherwise, it will lead to overfitting of the data. Hence we have kept the data as it is and addressed the imbalance through methods like SMOTE and RESAMPLING. In some cases the number of incident records are less than six in a target class and hence SMOTE can not be applied as it is. We need a suitable combination of sampling methods to prepare the dataset which is balanced and right one to be fed to the models.

Incident Frequency By Assignment Groups

Data Pre-Processing & Input Dataset

• Feature Set: We have dropped the Caller information and concatenated the two description columns. Also there were 25 assignment groups having less than 10 incidents. However we not regrouped them and kept the assignment groups intact as provided in the dataset and planned to used resampling methods to make them balanced. We also measured the length of the text used in the incidents across the assignment groups. The length varied from 1 (after the null value being replaced with a space) to 13001 words with an average length of 217 words. There were 5 incidents with less than 3 words. We kept them as included in the dataset as an input to the models.

Data Pre-Processing & Input Dataset

- Missing Values & Duplicates: We have dropped duplicate records as they don't additional information or value for classification. We have replaces the null values a space. There were 83 duplicate records across all columns, 682 duplicate records by the value in Description column and 661 duplicate records having same values in Description and Assignment Group together. This basically means there were 27 incidents which were same but were assigned to different assignment group. After removing duplicate records we had a dataset reduced from 8500 to 7839. There were 5 incidents without any short description and 1 incident without a description. We converted these null values into spaces.
- **Upper & Lower Case Text:** We have converted the feature set in lower case as this helps simplify addressing the cleaning function through regular expression. Otherwise we would land up building more and more filtering criteria to account for the two different cases. Also the feature data based prediction as such does not influence the classification methods in any way.
- Special Characters & Stop Words: We have removed various characters like hashtags and kept many of them in the
 concatenated feature set to subject to the cleaning using regular expression. We planned to use the NLTK for removal of stop
 words.
- Language & Spelling Errors & Lemmatization: We have kept the text as it is. However for experimentation and learning perspective we have tried to translate some of the words from non-English to English. We have also tried correcting some of the typical spelling errors. We have then used lemmatization on the processed or clean text.
- Word Cloud & Topic Modeling & N-Grams: We have used word cloud to visualize the frequently existing words and have also performed topic modeling (using Gensim LDA Model) to understand the correlated words in the text across the incident reports i.e. grouping the tickets or incidents based on the words used in the text. We have also tried to plot the number of words used in each of the tickets to study the outliers.
- Word Embedding & Vectorization: We plan to use N-Grams (bi and tri) from the bag of words along with Word2Vec and Glove Embedding for vectorization and preparation of dataset.

1.1

Dataset Preparation

Data Pre-Processing

The target class is imbalanced. We have many classes with less than 10 incidents. We have avoided the temptation to group such scantly populated classes in order to balance the input dataset. Instead we planned to use the resampling and SMOTE and class weights to address the target class imbalance. Our earlier plan was to build three different dataset. First to have GRP_0 and rest of the records classified into one and use two step classification model and the second one to have non-GRP_0 groups resampled for the second order classification and third dataset in which we keep all the groups (74) as it is and address the imbalance issue. After due considerations and discussions, we finally decided to pursue only the third dataset so that we don't tend to force fit the data into model. In future, these group names could be changed any time and fulcrum of imbalance could shift to some other group. In such a situation, this hard coded approach as followed in case of the first two datasets, we fail to deliver the right classification. It could fail miserably. However, all the data related views are presented below.

Data Cleaning

- We created a function to clean the dataset using regular expressions after converting the feature data into lower case. We removed various unwanted text or characters as identified noise in the information. We initially thought to use translation and spell correction function as well as there were many non-English words and typing errors. However we decided not to touch the actual data and leave these actions to be undertaken at the source. At the same time converting the data from one form to another, wont have any significant impact on the classification model. At the same time, we planned to use BERT and try the same dataset with it compare the performance of the models on the uniform or same dataset. We also did not filter the records having less than certain threshold value. However we analyzed the same and the details are provided below. The code used a variable to define this threshold value and hence could be used in future in case one wants to filter the records based on the number of words in the feature data. We used NLTK to remove the stop words and later analyzed the same to see these are not appearing the word cloud.
- Lemmatization was carried out subsequently before tokenization for vectorization using word embeddings. We limited ourselves to use lemmatization instead of stemming based on the quality of the data to avoid further dilution of the input feeds. Spacy was used for lemmatization. PyLDAvis was used to plot the topics and analyze the texts using N-Gram models for clustering relevant data using Gensim.
- We also restricted usage of spelling errors on the same ground as there are multi-lingual texts which might as well are not spelled accurately. Hence both the translation and spelling corrections might not be effective at the stage from classification perspective. Based on our research, we have found that these two aspect of language processing wont provide any substantial improvement in the model accuracy.

Word Cloud

We used word cloud visualization for checking if the stop words are removed effectively as well as identify the words that represent the particular target class based on the frequency or importance. We generated the word cloud for the groups, however we are sharing a snapshot in the report for few of them having texts with certain threshold value as set as a criteria while generating them.

BI-GRAMS

```
gmail' com'

job' job' job'

job_' fail' company' com'
job_scheduler' receive' monitoring_tool'
monitoring_tool' company'
fail' job_scheduler'

gmail' com'
job' job_'
job' job_'
receive'
issue'
```

TRI-GRAMS

```
fail' job_scheduler'
receive' issue'

gmail' com'

job_' fail'

receive' monitoring_tool'
pron'
monitoring_tool' company'
job' job_'
```

```
Most common 50 words of GRP 0
gmail' com'
                                    receive'
      com' job' mpany'
                           y' com'
fail' job_scheduler'
receive' monitoring_tool'
monitoring_tool' company'
                     Most common 50 words of GRP_24
     fa¼r'
                                        ewew'
rechner'
                             install'
setup' new ws
                        und'
```

N-Gram Visualization

Commmon Words in Text

issue

user

email unable

work

0

500

password

COMMON WORDS, BI-GRAMS & TRI-GRAMS

1500

1000

Common_words receive com gmail receive company amail please 2016 company 00 job 2016 00 monitoring_tool job job_scheduler 10 pron monitoring tool erp job_scheduler

2000

Count

2500

3000

Commmon Bigrams in Text

Commmon Trigrams in Text

fail

erp

3500

pron

issue

password

Topic Modeling

Typically in a text domain, EDA can have many meanings: What are the topics? How frequent they are? The process will involve some level of preprocessing steps. We analyzed the incidents based on the number of words present in them. We plan to extend its utility in dimensionality reduction in next iteration.

Word Embedding

Word Embedding is the efficient way for text data vectorization and we have used both Word2Vec and GloVe embedding to experiment with the models. The first one is shallow two layer NN trained on large corpus of text to produce a vector for a text (each word) in the corpus. GloVe is unsupervised learning based vector representation of words. The training is performed on an aggregated global word-word co-occurrence statistics from a corpus and the resulting representations have linear substructures of the words in the vector space. We have explored both the types of embedding with LSTM model. We have not encountered significant difference in terms of its impact on the model performance.

1.2

Model Development

Model Selection & Development

We planned to use both Deep Learning and Machine Learning models for classifying the incidents by assignment groups with the existing and same dataset after suitable cleaning and vectorization.:

- Deep Learning
 - Bidirectional LSTM With Word2Vec and Glove Embedding
 - GRU
 - RNN
 - BERT
- Machine Learning Models
 - Random Forest Classifier With and Without Class Weight
 - Support Vector Machine
 - Naïve Bayes
 - Adaboost
 - Bagging
 - GradientBoost
 - KNN

1.3

Model Evaluation

Bi-Directional LSTM Model [Word2Vec]

LSTM stands for "long short-term memory" and it's a type of recurrent unit that has become very popular in recent years due to its superior performance and the fact that it doesn't as easily succumb to the vanishing gradient problem.

Bi-Directional LSTM are a variant of traditional LSTM but improve the model performance by using the training inputs (texts/words) in a sequence (sentence) first as a normal sentence and then reading the tokens in the sentence in a reverse order. In short, for every token, in the sentence, there is a data about the tokens ahead as well as behind it with a memory parameters as defined in the model. This improves the effectiveness of the classification.

We have received an accuracy of 97% in first iteration with Word2Vec based embeddings for vectorization of the cleaned dataset.

Number of Samples: 47730 Number of Labels: 47730 Number of train Samples: 38184 Number of val Samples: 9546 Model: "functional 9"

Layer (type)	Output Shape	Param #
input_5 (InputLayer)	[(None, 300)]	0
embedding_4 (Embedding)	(None, 300, 100)	900100
bidirectional_4 (Bidirection	(None, 256)	234496
dropout_4 (Dropout)	(None, 256)	0
dense_8 (Dense)	(None, 100)	25700
dense_9 (Dense)	(None, 74)	7474

Total params: 1,167,770 Trainable params: 1,167,770 Non-trainable params: 0

All Data, Labels and Resampled/Balanced Class) LSTM Model model loss

Bi-Directional LSTM Model [GloVe]

LSTM stands for "long short-term memory" and it's a type of recurrent unit that has become very popular in recent years due to its superior performance and the fact that it doesn't as easily succumb to the vanishing gradient problem. Directional LSTM are a variant of traditional LSTM but improve the model performance by using the training inputs (texts/words) in a sequence (sentence) first as a normal sentence and then reading the tokens in the sentence in a reverse order. In short, for every token, in the sentence, there is a data about the tokens ahead as well as behind it with a memory parameters as defined in the model.

The accuracy of the model was 97.2 % which is not much different from the same model fed with Word2Vec vectors for training.

All Data, Labels and Resampled/Balanced Class) LSTM Model - Glove Embedding model loss

Number of Samples: 47730 Number of Labels: 47730 Number of train Samples: 30547 Number of val Samples: 7637 Model: "functional 11"

Layer (type)	Output Shape	Param #
input_6 (InputLayer)	[(None, 300)]	0
embedding_5 (Embedding)	(None, 300, 200)	1800200
bidirectional_5 (Bidirection	(None, 256)	336896
dropout_5 (Dropout)	(None, 256)	0
dense_10 (Dense)	(None, 100)	25700
dense_11 (Dense)	(None, 74)	7474

Total params: 2,170,270 Trainable params: 2,170,270 Non-trainable params: 0

GRU

GRU (Gated Recurrent Unit) aims to solve the vanishing gradient problem which comes with a standard recurrent neural network. It can also be considered as a variation on the LSTM because both are designed similarly and, in some cases, produce equally excellent results.

This model got rid of the cell state and used the hidden state to transfer information. It uses only 2 gates, update gate and reset gate. Basically, these are vectors which decide what information should be passed to the output. The update gate acts similar to the forget and input gate of an LSTM. It decides what information to throw away and what new information to add. The reset gate is another gate used to decide how much past information to forget. GRU's has fewer tensor operations; Number of train Samples: 30547 therefore, they are a little speedier to train than LSTM's. We have received an accuracy of 97 % which is way above RNN model architecture.

All Data, Labels and Resampled/Balanced Class) GRU Model - Glove Embedding model accuracy

Number of Samples: 47730 Number of Labels: 47730 Number of val Samples: 7637 Model: "functional_15"

Layer (type)	Output Shape	Param #
input_8 (InputLayer)	[(None, 300)]	0
embedding_7 (Embedding)	(None, 300, 200)	1800200
gru_1 (GRU)	(None, 128)	126720
dropout_7 (Dropout)	(None, 128)	0
dense_14 (Dense)	(None, 100)	12900
dense_15 (Dense)	(None, 74)	7474

Total params: 1,947,294 Trainable params: 1,947,294 Non-trainable params: 0

RNN

Recurrent Neural Networks (RNNs) are a family of neural networks designed specifically for sequential data processing. The RNN model does prediction of the next word in a sequence based on the previous ones. This operation is performed recurrently which is why it is called as Recurrent Neural Networks. It repetitively performs the same task for every element of a sequence, with the output being dependent on the previous computations. In short it has a memory of the text used in a sequence used for classification of the text both from the type of texts and the sequence of appearance as well. There are known inherent issues in RNN which are addressed in the subsequent model of LSTM.

We have received an accuracy of 42% but we would like further tweak with its architecture in the next iteration.

Number of Samples: 1432 Number of Labels: 1432 Number of train Samples: 1145 Number of val Samples: 287 Model: "sequential"

Layer (type)	Output	Shape	Param #
embedding_8 (Embedding)	(None,	300, 200)	1800200
conv1d (Conv1D)	(None,	291, 100)	200100
max_pooling1d (MaxPooling1D)	(None,	145, 100)	0
dropout_8 (Dropout)	(None,	145, 100)	0
conv1d_1 (Conv1D)	(None,	136, 100)	100100
max_pooling1d_1 (MaxPooling1	(None,	68, 100)	0
bidirectional_6 (Bidirection	(None,	256)	234496
dropout_9 (Dropout)	(None,	256)	0
dense_16 (Dense)	(None,	100)	25700
dense 17 (Dense)	(None,	74)	7474

Total params: 2,368,070 Trainable params: 2,368,070 Non-trainable params: 0

Random Forest Classifier

Tree based models work by learning in hierarchical manner. Random forests is a supervised learning algorithm which can be used both for classification as well as regression. It is also the most flexible and easy to use algorithm. It creates decision trees on randomly selected data samples, gets prediction from each tree and selects the best solution by means of voting. It also provides a pretty good indicator of the feature importance. We have received good accuracy using RFC. Also there is not much difference between with and without assigning the class weights which we plan to explore further.

0.5073 0.5099

	precision	recall	f1-score	support				_		precision	recall	f1-score	support
_					RFC		RF	$\boldsymbol{\Gamma}$	0	0.8929	0.5137	0.6522	146
0	0.0103 0.7609	0.0137	0.0117	146 115	IVI C		171		1 2	0.9746	1.0000	0.9871	115
2	0.3529	0.0472	0.0833	127					3	0.9695	1.0000	0.9845	127 127
3	0.1686	0.2283	0.1940	127					4	0.9137	0.9270	0.9203	137
4	0.0642	0.0511	0.0569	137			Wi	th	5	0.9030	0.9918	0.9453	122
5	0.1575	0.1639	0.1606	122			VVI	CII	6	0.9431	1.0000	0.9707	116
6 7	0.0593 0.1677	0.1810 0.2074	0.0894 0.1854	116 135					7	1.0000	1.0000	1.0000	135
8	0.1168	0.1185	0.1176	135			\sim 1		8	0.9507	1.0000	0.9747	135 142
9	0.3043	0.0986	0.1489	142			Cla	CC	10	0.9851	1.0000	0.9925	132
10	0.5714	0.1515	0.2395	132			CIC	133	11	0.8966	0.9541	0.9244	109
11	0.1667	0.0367	0.0602	109					12	0.8651	0.9316	0.8971	117
12 13	0.0600 0.1316	0.1282	0.0817	117 132					13	0.9925	1.0000	0.9962	132
14	0.7000	0.1500	0.2471	140			\// <i>i</i>	ontc	14 15	1.0000	1.0000	1.0000	140 118
15	0.0357	0.0085	0.0137	118			VV	eights	16	1.0000	1.0000	1.0000	128
16	0.1224	0.2266	0.1589	128				_	17	1.0000	0.9478	0.9732	115
17	0.0587	0.7913	0.1092	115					18	0.9531	0.9919	0.9721	123
18 19	0.6364 0.2764	0.0569 0.2656	0.1045 0.2709	123 128					19	1.0000	1.0000	1.0000	128
20	0.5672	0.3065	0.3979	124					20 21	0.9688	1.0000	0.9841	124
21	0.2577	0.2137	0.2336	117					22	0.9669 1.0000	1.0000	0.9832 1.0000	117 147
22	0.5385	0.0952	0.1618	147					23	0.9444	0.9225	0.9333	129
23 24	0.0769 0.0874	0.0853 0.3597	0.0809 0.1406	129 139					24	0.9929	1.0000	0.9964	139
25	0.0874	0.0889	0.1406	135					25	0.9640	0.9926	0.9781	135
26	0.6733	0.5354	0.5965	127					26 27	1.0000	1.0000	1.0000 0.9915	127 117
27	0.1765	0.1538	0.1644	117					28	1.0000	0.9915	0.9915	122
28	0.1517	0.1803	0.1648	122					29	1.0000	1.0000	1.0000	132
29 30	0.9565 0.8214	1.0000 0.1901	0.9778 0.3087	132 121					30	1.0000	1.0000	1.0000	121
31	1.0000	0.0483	0.0921	145					31	1.0000	1.0000	1.0000	145
32	0.8667	0.3023	0.4483	129					32	1.0000	1.0000	1.0000	129
33	0.9815	0.4077	0.5761	130					33 34	0.9924	1.0000 0.9561	0.9962	130 114
34 35	0.7778 0.3488	0.0614	0.1138 0.1754	114 128					35	1.0000	1.0000	1.0000	128
36	0.3488	0.1172	0.1/54	128					36	1.0000	1.0000	1.0000	123
37	0.4500	0.0672	0.1169	134					37	0.9926	1.0000	0.9963	134
38	0.7605	0.8639	0.8089	147					38	1.0000	1.0000	1.0000	147
39	0.5165	0.3507	0.4178	134					39 40	1.0000	1.0000	1.0000	134 122
40	0.8261	0.1557	0.2621	122 122					41	1.0000	1.0000	1.0000	122
41 42	0.0000 0.9630	0.0000	0.0000	130					42	1.0000	1.0000	1.0000	130
43	1.0000	0.0472	0.0902	127					43	1.0000	1.0000	1.0000	127
44	0.2812	0.3025	0.2915	119					44	1.0000	1.0000	1.0000	119
45	0.1166	0.3562	0.1757	146					45 46	0.9295 0.9925	0.9932 1.0000	0.9603	146 132
46 47	0.6230 0.0000	0.2879	0.3938	132 124					47	1.0000	1.0000	1.0000	124
48	0.2826	0.2185	0.2464	119					48	1.0000	1.0000	1.0000	119
49	0.0512	0.2303	0.0838	152					49	1.0000	1.0000	1.0000	152
50	0.0000	0.0000	0.0000	117					50	1.0000	1.0000	1.0000	117
51 52	0.5060 0.9921	0.3387	0.4058 0.9960	124 126					51 52	1.0000	1.0000	1.0000	124 126
53	0.0000	0.0000	0.0000	141					53	1.0000	1.0000	1.0000	141
54	0.8889	0.3279	0.4790	122					54	1.0000	1.0000	1.0000	122
55	0.9818	0.4122	0.5806	131					55	1.0000	1.0000	1.0000	131
56	1.0000	0.0072	0.0144	138					56 57	0.9704	0.9493	0.9597	138
57 58	1.0000 0.9795	0.1141	0.2048	149 143					58	0.9933	1.0000	1.0000	149
59	1.0000	0.1228	0.2188	114					59	0.9913	1.0000	0.9956	114
60	0.9512	0.2955	0.4509	132					60	1.0000	1.0000	1.0000	132
61	1.0000	1.0000	1.0000	119					61	1.0000	1.0000	1.0000	119
62 63	1.0000 0.1786	0.1716 0.2734	0.2930 0.2160	134 128					62 63	1.0000	1.0000	1.0000 1.0000	134 128
64	1.0000	1.0000	1.0000	115					64	1.0000	1.0000	1.0000	128
65	1.0000	1.0000	1.0000	127					65	1.0000	1.0000	1.0000	127
66	1.0000	1.0000	1.0000	133					66	1.0000	1.0000	1.0000	133
67	0.6250	0.0725	0.1299	138					67	0.9718	1.0000	0.9857	138
68 69	0.9122 0.9683	1.0000 0.4388	0.9541	135 139					68 69	1.0000	1.0000	1.0000	135 139
70	0.0000	0.0000	0.0000	133					70	0.9779	1.0000	0.9888	133
71	1.0000	1.0000	1.0000	128					71	1.0000	1.0000	1.0000	128
72	0.1621	0.3361	0.2187	122					72	0.9903	0.8361	0.9067	122
73	1.0000	0.0236	0.0462	127					73	0.9680	0.9528	0.9603	127
		0.29	81	9546		3000	eacv				0.983	7	9546
a	. 2980	0.30		9546		accur							
_	.2981	0.31		9546		macro weighted	-	0.9834 0.9835	0.98	-	0.982		9546 9546
						weighten	avg	0.5033	0.98	37	0.562	.0	3340

SVM

A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems. After giving an SVM model sets of labeled training data for each category, they're able to categorize the new text.

It is a fast and dependable classification algorithm that performs very well with a limited amount of data. A popular algorithm for this technique is penalized SVM.

We plan to further explore this model in next iteration for hyper parameter based optimization. As this model was taking more time for training, we have prioritized development on this front to second iteration.

	precision	recall	f1-score	support
0	0.0000	0.0000	0.0000	146
1	0.0000	0.0000	0.0000	115
2	0.0000	0.0000	0.0000	127
3	0.0000	0.0000	0.0000	127
4	0.0000	0.0000	0.0000	137
5	0.0000	0.0000	0.0000	122 116
7	0.0000	0.0000	0.0000	135
Ř	0.0000	0.0000	0.0000	135
9	0.0000	0.0000	0.0000	142
10	0.0000	0.0000	0.0000	132
11	0.0153	1.0000	0.0301	109
12	0.0000	0.0000	0.0000	117
13	0.0000	0.0000	0.0000	132
14	0.0000	0.0000	0.0000	140
16	0.0000	0.0000	0.0000	118 128
17	0.0000	0.0000	0.0000	115
IR	0.0000	0.0000	0.0000	123
19	0.0000	0.0000	0.0000	128
20	0.0000	0.0000	0.0000	124
21	0.0000	0.0000	0.0000	117
22	0.0000	0.0000	0.0000	147
23	0.0000	0.0000	0.0000	129
24	0.0000	0.0000	0.0000	139
25	0.0000	0.0000	0.0000	135
26	1.0000	1.0000	1.0000	127
27	0.0000	0.0000	0.0000	117
28 29	0.0000 1.0000	0.0000	0.0000 1.0000	122 132
30	0.0000	0.0000	0.0000	121
11	0.0000	0.0000	0.0000	145
32	1.0000	1.0000	1.0000	129
33	0.0000	0.0000	0.0000	130
34	0.0000	0.0000	0.0000	114
35	0.0000	0.0000	0.0000	128
36	0.0000	0.0000	0.0000	123
37	0.0000	0.0000	0.0000	134
38	1.0000	0.5918	0.7436	147
39 10	0.0000	0.0000	0.0000	134
10	0.0000	0.0000	0.0000	122 122
12	0.0000	0.0000	0.0000	130
13	0.0000	0.0000	0.0000	127
14	0.0000	0.0000	0.0000	119
15	0.0000	0.0000	0.0000	146
46	0.0000	0.0000	0.0000	132
17	0.0000	0.0000	0.0000	124
48	0.0000	0.0000	0.0000	119
19	0.0000	0.0000	0.0000	152
50	1.0000	1.0000	1.0000	117
51	0.0000 1.0000	0.0000	0.0000 1.0000	124 126
53	1.0000	1.0000	1.0000	141
54	1.0000	1.0000	1.0000	122
55	0.0000	0.0000	0.0000	131
56	0.0000	0.0000	0.0000	138
57	0.0000	0.0000	0.0000	149
58	1.0000	1.0000	1.0000	143
59	0.0000	0.0000	0.0000	114
50	1.0000	1.0000	1.0000	132
51 52	1.0000	1.0000	1.0000	119
53	0.0000 1.0000	0.0000	0.0000 1.0000	134 128
54	1.0000	1.0000	1.0000	115
55	1.0000	1.0000	1.0000	127
56	1.0000	1.0000	1.0000	133
57	0.0000	0.0000	0.0000	138
58	1.0000	1.0000	1.0000	135
59	1.0000	1.0000	1.0000	139
70	0.9852	1.0000	0.9925	133
71	1.0000	1.0000	1.0000	128
72	0.0000	0.0000	0.0000	122
73	0.0000	0.0000	0.0000	127
		0.20	642	9546
	0.2648	0.25	536	9546
	0.2642	0.25		9546
	0.2042	6.2	334	9340

0.2568

0.2590

weighted avg

Adaboost, Bagging, KNN & NB

Adaboost	precision recall f1-score		Bag	ging	precision	recall f1-score	support	KN	NI P	orecision	recall	f1-score	support	NB -	precision	recall	f1-score	support
Auaboost	0 0.0599 0.3904 0.1038 1 0.0000 0.0000 0.0000	146 115	Dag	BIIIB	0 0.8533 1 0.9746	0.4384 0.5792 1.0000 0.9871	146 115	IZIVI	IV ,	0.6364	0.1438	0.2346	146 115	טעו	0.0000	0.0000	0.0000	146
	2 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 4 0.0314 0.1241 0.0501	127 127 137			2 0.9845 3 1.0000	1.0000 0.9922 1.0000 1.0000	127 127		2	0.6496	0.5984	0.6230	127	1	0.4038	0.1826	0.2515	115
	5 0.0183 0.0820 0.0299 6 0.0252 0.0690 0.0370	122 116 135			4 0.8741 5 0.9528	0.9124 0.8929 0.9918 0.9719	137 122		3 4	0.8194 0.3111	0.1022	0.9007 0.1538	127 137	2	0.1081 1.0000	0.0315 0.1102	0.0488 0.1986	127 127
	7 0.0000 0.0000 0.0000 8 0.0162 0.0296 0.0209	135			6 0.9667 7 0.9926	1.0000 0.9831 1.0000 0.9963	116		5	0.5000	0.3361 0.5000	0.4020	122 116	4	0.1667	0.0073	0.0140	137
	9 0.0000 0.0000 0.0000 10 0.0558 0.0999 0.0692	135 142 132			8 0.9643 9 0.9861	1.0000 0.9818 1.0000 0.9930	135 135 142		7	0.7895	1.0000	0.8824	135	5	0.0952	0.0820 0.0086	0.0881 0.0168	122 116
	11 0.1250 0.0183 0.0320 12 0.0429 0.1197 0.0632	109 117 132			10 0.9851 11 0.8898	1.0000 0.9925 0.9633 0.9251	132 189		8	0.6357 0.7634	0.6074	0.6212 0.8659	135 142	7 8	0.3297	0.2222	0.2655	135
	13 0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000	132 140 118			12 0.9478 13 0.9925	0.9316 0.9397 1.0000 0.9962	117 132		10 11	0.7752 0.3810	0.7576 0.1468	0.7663 0.2119	132 109	9	0.1176 0.0555	0.0296 0.2887	0.0473	135 142
	15 0.0335 0.2119 0.0578 16 0.0000 0.0000 0.0000	128			14 0.9929 15 0.9833	1.0000 0.9964 1.0000 0.9916	140 118		12 13	0.5581 0.8199	0.2051	0.3000 0.9010	117 132	10 11	0.3171 0.0417	0.0985 0.0092	0.1503 0.0150	132 109
	17 0.0000 0.0000 0.0000 18 0.0000 0.0000 0.0000	115 123 128			16 0.9846	1.0000 0.9922	128		14	0.8861	1.0000	0.9396	140	12	0.6000	0.0256	0.0492	117
	19 0.0316 0.0703 0.0436 20 0.0000 0.0000 0.0000	128 124			17 0.9910 18 0.9606	0.9919 0.9760	115 123		15 16	0.8429 0.8828	1.0000	0.9147 0.9377	118 128	13 14	0.7778 0.5455	0.1061 0.1286	0.1867 0.2081	132 140
	21 0.0000 0.0000 0.0000 22 0.2500 0.0204 0.0377 23 0.0000 0.0000 0.0000	124 117 147			19 0.9846 20 0.9688	1.0000 0.9922 1.0000 0.9841	128 124		17 18	0.8116 0.4646	0.4870	0.6087 0.4144	115 123	15	0.0312	0.0085	0.0133	118
	24 0.0000 0.0000 0.0000	129 139 135			21 0.9915 22 0.9866	1.0000 0.9957 1.0000 0.9932	117 147		19	0.7971	0.8594	0.8271	128	16 17	0.5556 0.0667	0.1172 0.4348	0.1935 0.1156	128 115
	25 0.0000 0.0000 0.0000 26 0.7564 0.4646 0.5756 27 0.0000 0.0000 0.0000	127 117			23 0.9453 24 0.9929	0.9380 0.9416 1.0000 0.9964	129 139		20 21	0.8611 0.7355	1.0000 0.9744	0.9254 0.8382	124 117	18	0.0000	0.0000	0.0000	123
	28 0.0000 0.0000 0.0000 29 0.0000 0.0000 0.0000	122 132			25 0.9571 26 1.0000	0.9926 0.9745 1.0000 1.0000	135 127		22 23	0.6542	0.4762	0.5512 0.2873	147 129	19 20	0.1628 0.3095	0.0547 0.1048	0.0819 0.1566	128 124
	30 0.0000 0.0000 0.0000 31 0.1228 0.0483 0.0693	121 145			27 0.9667 28 0.9835	0.9915 0.9789 0.9754 0.9794	117 122		24	0.8968	1.0000	0.9456	139	21	0.0000	0.0000	0.0000	117
	32 0.0000 0.0000 0.0000 33 0.1064 0.1538 0.1258	129			29 1.0000 30 1.0000	1.0000 1.0000 1.0000 1.0000	132 121		25 26	0.7342 0.9845	0.8593 1.0000	0.7918 0.9922	135 127	22 23	0.2653	0.0884	0.1327	147 129
	34 0.0000 0.0000 0.0000 35 0.0328 0.0156 0.0212	114			31 1.0000 32 0.9923	1.0000 1.0000	145 129		27 28	0.6146 0.7303	0.5043	0.5540 0.8102	117 122	24	0.0000	0.0000	0.0000	139
	36 0.0364 0.1545 0.0589 37 0.0000 0.0000 0.0000	128 123 134			33 0.9848 34 0.9820	1.0000 0.9924 0.9561 0.9689	130 114		29	0.9851 0.9237	1.0000	0.9925 0.9603	132 121	25 26	1.0000 0.3864	0.0148 0.8031	0.0292	135 127
	38 0.3333 0.6327 0.4366 39 0.0000 0.0000 0.0000	147 134			35 0.9846 36 0.9919	1.0000 0.9922 1.0000 0.9960	128 123		31	0.8683	1.0000	0.9295	145	27	0.1818	0.0171	0.0313	117
	40 0.0000 0.0000 0.0000 41 0.1802 0.4918 0.2637	122 122 130			37 1.0000	1.0000 1.0000	134		32 33	0.9923 0.9091	1.0000	0.9961 0.9524	129 130	28 29	0.0000 0.5077	0.0000 1.0000	0.0000	122 132
	42 0.0000 0.0000 0.0000 43 0.0000 0.0000 0.0000	127			38 1.0000 39 1.0000	1.0000 1.0000 1.0000 1.0000	147 134		34 35	0.5766	0.5614	0.5689 0.8705	114 128	30	0.6522	0.1240	0.2083	121
	44 0.2137 0.8151 0.3386 45 0.1612 0.6781 0.2605 46 0.0000 0.0000 0.0000	119 146			40 0.9919 41 1.0000	1.0000 0.9959 1.0000 1.0000	122 122		36 37	0.7961 0.8874	0.9837	0.8800	123 134	31 32	0.7209 0.6500	0.2138 0.3023	0.3298 0.4127	145 129
	47 0.0000 0.0000 0.0000	132 124 119			42 0.9848 43 1.0000	1.0000 0.9924 1.0000 1.0000	130 127		38	0.9735	1.0000	0.9866	147	33	0.3836	0.2154	0.2759	130
	48 0.0000 0.0000 0.0000 49 0.1224 0.1184 0.1204 50 0.0000 0.0000 0.0000	152			44 1.0000 45 0.9732	1.0000 1.0000 0.9932 0.9831	119 146		39 40	0.9116 0.8133	1.0000	0.9537 0.8971	134 122	34 35	0.0000 0.6250	0.0000 0.0391	0.0000	114 128
	51 0.0000 0.0000 0.0000 52 0.8200 0.6508 0.7257	117 124 126			46 0.9925 47 1.0000	1.0000 0.9962 1.0000 1.0000	132 124		41 42	0.9839 0.9155	1.0000	0.9919 0.9559	122 130	36	1.0000	0.0163	0.0320	123 134
	52 0.8200 0.0008 0.7257 53 0.0000 0.0000 0.0000 54 0.0000 0.0000 0.0000	141 122 131			48 1.0000 49 0.9806	1.0000 1.0000 1.0000 0.9902	119 152		43	0.9137	1.0000	0.9549	127	37 38	0.0000 0.5167	0.0000 0.6327	0.5688	147
	55 0.0000 0.0000 0.0000 56 0.1121 0.2754 0.1593	131			50 1.0000 51 1.0000	1.0000 1.0000 1.0000 1.0000	117 124		44 45	0.9835 0.5714	0.5753	0.9917 0.5734	119 146	39 40	0.6912	0.3507 0.0738	0.4653	134
	57 0.0000 0.0000 0.0000 58 0.0000 0.0000 0.0000	138 149 143			52 1.0000 53 1.0000	1.0000 1.0000 1.0000 1.0000	126 141		46 47	0.9103	1.0000	0.9531	132 124	40	0.6000 0.1658	0.8033	0.1314 0.2749	122 122
	59 0.0000 0.0000 0.0000 60 0.3771 1.0000 0.5477	114			54 0.9919	1.0000 0.9959 1.0000 0.9962	122		48	0.9597	1.0000	0.9794	119	42 43	0.9600	0.1846	0.3097	130 127
	61 0.0000 0.0000 0.0000 62 0.0852 0.4552 0.1435	119 134			56 0.9640	0.9710 0.9675	131 138		49 50	0.8994 0.9915	1.0000	0.9470 0.9957	152 117	44	0.1822	0.6555	0.2852	119
	63 0.3647 0.7578 0.4924 64 0.0000 0.0000 0.0000	134 128 115			57 0.9868 58 1.0000	1.0000 0.9933 1.0000 1.0000	149 143		51 52	0.9466 0.9474	1.0000	0.9725 0.9730	124 126	45 46	0.1579 1.0000	0.0411 0.1970	0.0652 0.3291	146 132
	65 0.0000 0.0000 0.0000 66 0.0000 0.0000 0.0000	127 133			59 0.9744 60 0.9925	1.0000 0.9870 1.0000 0.9962	114 132		53 54	0.9792	1.0000	0.9895	141	47	0.2418	0.2984	0.2671	124
	67 0.0446 0.1087 0.0633 68 0.0000 0.0000 0.0000	138 135 139			61 1.0000 62 1.0000	1.0000 1.0000 1.0000 1.0000	119 134		55	0.9919 0.9097	1.0000	0.9527	122 131	48 49	0.8571 0.3750	0.1008 0.1184	0.1805 0.1800	119 152
	69 0.7596 1.0000 0.8634 70 0.0000 0.0000 0.0000 71 0.0000 0.0000 0.0000	133			63 1.0000 64 0.9914	1.0000 1.0000 1.0000 0.9957	128 115		56 57	0.5323	0.4783	0.5038 0.9521	138 149	50	0.3535	1.0000	0.5223	117
	72 0.0000 0.0000 0.0000 73 0.0000 0.0000 0.0000	128 122 127			65 1.0000 66 1.0000	1.0000 1.0000 1.0000 1.0000	127 133		58 59	0.9931 0.8906	1.0000	0.9965 0.9421	143 114	51 52	1.0000	0.1290 0.6508	0.2286 0.7885	124 126
					67 0.9718 68 1.0000	1.0000 0.9857 1.0000 1.0000	138 135		60	0.9635	1.0000	0.9814	132	53	0.2889	1.0000	0.4483	141
accuracy	0.1256	9546			69 1.0000 70 0.9779	1.0000 1.0000 1.0000 0.9888	139 133		61 62	1.0000 0.9241	1.0000	1.0000 0.9606	119 134	54 55	0.1920 0.6389	0.7459 0.1756	0.3054	122 131
macro avg 0.0719 weighted avg 0.0738	0.1223 0.0785 0.1256 0.0807	9546 9546			71 1.0000 72 0.9533	1.0000 1.0000 0.8361 0.8908	128 122		63 64	0.9697 1.0000	1.0000	0.9846 1.0000	128 115	56	0.0882	0.0435	0.0583	138
netalited and otto	0.2250	2340			73 0.9839	0.9686 0.9721	127		65	0.9621	1.0000	0.9807	127	57 58	0.4957 0.5417	0.3893 1.0000	0.4361 0.7027	149 143
			accuracy			0.9831	9546		67	0.9568 0.6471	0.7174	0.6804	133 138	59	0.0000	0.0000	0.0000	114
			macro avg	0.9823	0.9838	0.9820	9546		68 69	0.9926 0.9720	1.0000	0.9963 0.9858	135 139	60 61	0.3426 0.9154	0.6515 1.0000	0.4491	132 119
			weighted avg	0.9823	0.9831	0.9816	9546		70 71	0.9779	1.0000	0.9888 0.9961	133 128	62	0.3333	0.1716	0.2266	134
									72	0.5926	0.3934	0.4729	122	63 64	0.1422	0.4844 1.0000	0.2199 0.9787	128 115
									73	0.4948	0.3780	0.4286	127	65 66	0.6865 0.8526	1.0000	0.8141	127 133
							accur	racv			а	.8409	9546	67	0.0256	0.0145	0.0185	138
							macro		0.8173	0.838		.8188	9546	68 69	0.5315 0.7316	1.0000	0.6941	135 139
							weighted		0.8185	0.840		.8204	9546	70	0.1557	1.0000	0.2695	133
								-						71 72	0.6667 0.6170	1.0000 0.2377	0.8000	128 122
														73	0.2500	0.3465	0.2904	127
26													accuracy			0.3		9546
20												ma	acro avg	0.4047	0.3160	0.2	544	9546

Comparative Model Performance

	model	Pred_Accuracy	descriptions
1	LSTM_Model_data_3_resamp1ed	0.974963	LSTM Model + Word2Vec Embedding on data_3_resa
1	LSTM_Model_data_3_resamp1ed_Glove	0.972449	LSTM Model + Glove Embedding on data_3_resampl
1	LSTM_Model_data_3_resamp1ed_Glove_GRU	0.972449	GRU Model + Glove Embedding on data_3_resample
1	RNN_Model_data_3_resamp1ed_Glove	0.425087	RNN Model + Glove Embedding on data_3_resample

	Model	accuracy
1	Random Forest	0.983658
1	Random Forest Classifier - Weighted	0.984706
1	Adaboost Classifier	0.125602
1	Bagging Classifier	0.983134
2	MultinomialNB Classifier	0.317620
2	ComplementNB Classifier	0.136706
1	KNN Classifier	0.840876

1.4

What Are Next Steps?

Potential Model Performance Improvements

- We have focused on various aspects of the NLP process starting from studying the data to selecting all possible or feasible models and then processing the features and training the models. The initial results have been documented and presented in this interim report. As a next step between now and the final submission of reports and findings, we plan to further explore some of the areas where we want to go deeper to see a potential benefit:
 - **Imbalanced Data:** We have already explored resampling and SMOTE options, however we would like to get deeper in these two as well as other potential sampling and data augmentation methods.
 - BERT: We have worked on BERT for multi-label classification and the model is showing its initial results. As a next step we want to fine tune this model. Running these models on the dataset has been a time consuming activity for the team. This model being new with multiple possible implementation scenarios and libraries, is research intensive topic for us. We would like to spend some time on it subsequently.
 - Fine Tuning DL and ML Model Based on Hyper Parameters: We have played with the hyper parameters initially while building them. There are certain models which have yielded results beyond our expectations both on training and testing data. However some to the models have not performed as we hoped for. We would like to explore the possibility of further tuning them.
 - Dimensionality Reduction: We have done extensive analysis of the text data in the tickets. We have used topic modelling from Gensim to categorize and cluster the words that appear together most often and hence indicates substitutability of these words by the corresponding topics. This will reduce the number of dimensions and the vector space for computation. We would like to explore this aspect as a next step and document our findings with respect to its impact on the model performance.
 - Language Translation and Spelling Checks: We have peripherally explore this aspect. We have not find this as a critical aspect of the classification process as some models are yielding good results. However we would like to still explore this perspective in whatever limited way possible. On the same lines we want improve the effectiveness of the cleaning function using regular expression.

thank you!

RADHIKA KULKARNI[Radhikakulkarni844@gmail.com]
SYED TALIBUDDIN SAIFI [letters.syed@gmail.com]
TANVEER QURAISHI[tanveer.quraishi@gmail.com]
SHANMUGAM SAMPATH [shanmugam.Sampath@gmail.com]
KANWAL RAI [raikanwalrai@gmail.com]