CFD for Aerospace Applications Course Outline

Dr. Ziad Boutanios

Concordia University - MIAE

January 6, 2022

Course Outline Instructor

- Dr. Boutanios is a Concordia alumnus (Beng and MASc in mechanical engineering).
- Professional mechanical engineer with 25+ years of industrial and research experience.
- Specialized in Computational Fluid Dynamics (CFD) and High Performance Computing (HPC).
- Further specialized in multiphase flow (flow transporting droplets, bubbles, aerosols, solid particles, etc.).

Course Outline Instructor

- PhD in CFD of flow laden with solid particles (drifting snow, sand dune erosion, sediment transport, etc.).
- Master of applied science in mechanical engineering on CFD analysis of in-flight icing.
- Bachelor of mechanical engineering (thermofluids and propulsion).

Course Outline Teacher's Assistant

- Ms. Christina Kolokotronis is a Concordia graduate (Beng in mechanical engineering).
- She is currently enrolled in the MASc program in mechanical engineering working on a CFD thesis.
- Christina has taken AERO 455 during her Beng studies and is fully qualified to TA this course.
- Christina is experienced in opensource and commercial CFD software and pre/post-processors.

Course Outline Objectives

- This course is meant to introduce undergraduate engineering students to CFD.
- In the first half we start with a review of fluid dynamics, namely the Navier-Stokes equations.
- Then we will study CFD theory in general, with emphasis on the finite volume method which is the industry workhorse.
- We will also spend a week on preparation work for CFD analysis, namely CAD and meshing.
 - This is called *pre-processing*.

Course Outline Objectives

- In the second half we switch to an industry perspective by examining industry workflows and use cases.
- This is where you will put your newly acquired CFD skills to good use in the course projects.
- By the end of this course you will have acquired entry-level CFD skills as required for industry jobs.
- This will hopefully help you decide whether you want to pursue jobs in CFD or even deepen your knowledge of it with future research (master, PhD).

Course Outline Grading Policy

GOOD NEWS: no final exam!

Component	Weight
Assignments	15%
Labs	20%
Midterm	25%
Group Project	40%
Bonus Personal Projects	2 x 5%
Total	110/100

Course Outline Grading Policy

- You need a minimum of 50% to pass the course.
- You need to pass every component, with the exception of the midterm which you can makeup for with bonus personal projects.
- The bonus personal projects can be used regardless of the midterm though.
- The only optional component is the bonus personal project.

Course Outline Grading Policy

Assignments,

- We will have up to 7 assignments covering the lectures of weeks 1 to 9.
- A minimum cumulative grade of 50% is required on the assignment component.

Course Outline Grading Policy

Labs.

- We will have up to 7 labs covering the lectures of weeks 5 to 11.
- They will be done in groups of about 5 students.
- A minimum cumulative grade of 50% is required on the lab component.

Course Outline Grading Policy

Midterm.

- The midterm will cover the theoretical component of the course (lectures of weeks 1 to 6).
- It will be written in class or live online, subject to prevailing restrictions.
- A minimum grade of 50% is required to pass the midterm.
- Students who fail the midterm have the option to make it up with bonus personal projects.

Course Outline Grading Policy

Term Project,

- The term project will be carried out in groups of roughly 5 students.
- The students can choose the software stack to be used (CAD and meshing software, CFD solver, visualization software).
- Project themes will be chosen and assigned after week 7.
- Each team will submit a written report of 7500 to 12500 words of their findings.

Course Outline Grading Policy

Term Project,

- Students can/should consult the instructor and the TA on the term projects.
- Each team will present their project in a 20 minutes presentation in class or live online, and will answer questions by the instructor and classmates in a 10 minutes question period.
- A degree of difficulty may be assigned to each project with respect to grading.

Course Outline Grading Policy

Bonus Personal Projects,

- Each student has the possibility to do up to 2 personal projects on any theoretical or applied component of the course.
- The student can choose the software stack to be used, if needed.
- Personal project themes can be suggested by the student, to be approved by the instructor.

Course Outline Grading Policy

Bonus Personal Projects,

- Students can consult the instructor and the TA on the personal projects.
- The student will submit a written report of 2500 to 5000 words of their findings.
- The student will present their findings in a 10 minutes presentation to the instructor and will answer questions by the instructor in a 5 minutes question period.