```
Question 1
(i) \neg (A \vee X)
\equiv {Substitution}
\neg (True \lor False)
\equiv \{\vee\}
¬ True
\equiv \{ \neg \}
False
(ii) \neg (A \vee X) \wedge \neg (A \vee Y)
\equiv {Substitution}
\neg (True \lor False) \land \neg (True \lor False)
\equiv \{ \lor \}
\neg True \land \neg True
\equiv \{ \neg \}
False ∧ False
\equiv {Constants}
True
(iii) [(X \land Y) \Rightarrow A] \Rightarrow [X \Rightarrow (Y \Rightarrow A)]
\equiv {Substitution}
[(False \land False) \Rightarrow True] \Rightarrow [False \Rightarrow (False \Rightarrow True)]
\equiv \{ \land \}
[False \Rightarrow True] \Rightarrow [False \Rightarrow (False \Rightarrow True)]
\equiv \{ \Rightarrow \}
[False \Rightarrow True] \Rightarrow [False \Rightarrow True]
\equiv \{ \Rightarrow \}
True ⇒ True
```

 $\equiv \{ \Rightarrow \}$ True

(i)
$$p \Rightarrow \neg p$$

p	¬р	$p \Rightarrow \neg p$
t	f	f
f	t	t

This is a contingent.

(ii)
$$(\neg p \land q) \land (q \Rightarrow p)$$

p	q	¬р	$\neg p \wedge q$	$q \Rightarrow p$	$(\neg p \land q) \land (q \Rightarrow p)$
t	t	f	f	t	f
t	f	f	f	t	f
f	t	t	t	f	f
f	f	t	f	t	f

This is contradictory statement.

Question 3

(a)
$$X \vee (Y \vee X) \vee \neg Y$$

 $\equiv \{Associativity\}$

$$X \vee Y \vee X \vee \neg Y$$

 $\equiv \{Commutativity\}$

$$X \lor X \lor Y \lor \neg Y$$

≡ {Law of Exclude Middle}

 $X \lor X \lor True$

 $\equiv \{Constants\}$

True

(b)
$$(X \lor Y) \land (X \lor \neg Y) \land (\neg X \lor Y) \land (\neg X \lor \neg Y)$$

 $\equiv \{\text{Distribution}\}\$
 $X \lor (Y \land \neg Y) \land (\neg X \lor Y) \land (\neg X \lor \neg Y)$
 $\equiv \{\text{Distribution}\}\$
 $X \lor (Y \land \neg Y) \land \neg X \lor (Y \lor \neg Y)$
 $\equiv \{\text{Contradiction}\}\$
 $X \lor \text{False} \land \neg X \lor \text{False}$
 $\equiv \{\text{Constants}\}\$
 $X \land \neg X$
 $\equiv \{\text{Contradiction}\}\$

False

(c)
$$\neg X \Rightarrow (\neg X \Rightarrow (\neg X \land Y))$$

 $\equiv \{\Rightarrow X 2\}$
 $\neg \neg X \lor (\neg \neg X \lor (\neg X \land Y))$
 $\equiv \{\neg \neg\}$
 $X \lor (X \lor (\neg X \land Y))$
 $\equiv \{\text{Distribution}\}$
 $X \lor ((X \lor \neg X) \land (X \lor Y))$
 $\equiv \{\text{Law of Exclude Middle}\}$
 $X \lor (\text{True} \land (X \lor Y))$
 $\equiv \{\text{Constants}\}$
 $X \lor (X \lor Y)$
 $\equiv \{\text{Associativity}\}$
 $X \lor X \lor Y$
 $\equiv \{\text{Constants}\}$
 $X \lor Y$

(a)
$$[P \land (P \Rightarrow Q)] \Rightarrow Q$$

$$\equiv \{ \Longrightarrow \}$$

$$[P \land (\neg P \lor Q)] \Rightarrow Q$$

 \equiv {Distribution}

$$[P \land \neg P) \lor (P \land Q)] \Rightarrow Q$$

 \equiv {Contradiction}

$$[False \lor (P \land Q)] \Rightarrow Q$$

 \equiv {Constants}

$$(P \land Q) \Rightarrow Q$$

$$\equiv \{ \Longrightarrow \}$$

$$\neg (P \lor Q) \lor Q$$

= De Morgan's Law}

$$\neg\: P \lor \neg\: Q \lor Q$$

= {Law of Exclude Middle}

$$\neg P \lor True$$

 $\equiv \{Constants\}$

True

(b)
$$[(P \Rightarrow Q) \land \neg Q] \Rightarrow \neg P$$

$$\equiv \{ \Longrightarrow \}$$

$$[(\neg\:P\lor Q)\land\neg\:Q] \Rightarrow \neg\:P$$

 \equiv {Distribution}

$$[(\neg\ Q \land \neg\ P) \lor (\neg\ Q \land Q)] \Longrightarrow \neg\ P$$

 \equiv {Contradiction}

$$[(\neg Q \land \neg P) \lor False] \Rightarrow \neg P$$

 $\equiv \{Constants\}$

$$(\neg Q \land \neg P) \Rightarrow \neg P$$

$$\equiv \{ \Longrightarrow \}$$

$$\neg (\neg Q \land \neg P) \lor \neg P$$

■ De Morgan's Law}

$$Q \vee P \vee \neg \ P$$

= {Law of Exclude Middle}

Q v True

 $\equiv \{Constants\}$

True

(c)
$$[(P \Rightarrow Q) \Rightarrow Q] \Rightarrow Q$$

 $\equiv \{\Rightarrow\}$
 $[\neg (\neg P \lor Q) \lor Q] \Rightarrow Q$
 $\equiv De Morgan's Law\}$
 $[P \land \neg Q \lor Q] \Rightarrow Q$
 $\equiv \{Law \text{ of Exclude Middle}\}$
 $[P \land True] \Rightarrow Q$
 $\equiv \{Implication\}$
 $P \Rightarrow Q$
 $\equiv \{\Rightarrow\}$
 $\neg P \lor Q$
Question 5
(a) $(P \lor Q) \land Q \equiv Q$
 $\equiv \{Absorption\}$
Q
(b) $[(P \land Q) \lor (\neg P \land Q) \lor (P \land \neg Q)] \equiv P \lor Q$
 $\equiv \{Associativity\}$
 $[(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q)]$
 $\{Distribution\}$
 $P \land (Q \lor \neg Q) \lor (\neg P \land Q)$
 $\equiv \{Law \text{ of Exclude Middle}\}$
 $P \land True \lor (\neg P \land Q)$
 $\equiv \{Constants\}$
 $P \lor (\neg P \land Q)$
 $\{Distribution\}$
 $(P \lor \neg P) \land (P \lor Q)$
 $\equiv \{Law \text{ of Exclude Middle}\}$
 $True \land (P \lor Q)$
 $\equiv \{Constants\}$
 $P \lor Q$

$\forall x P(x)$

 \equiv {Substitution}

 $2 \mod 2 = 0 \land 4 \mod 2 = 0 \land 6 \mod 2 = 0$

 \equiv {Arithmetic}

True \wedge True \wedge True

 $\equiv \{Constants\}$

True

$\exists x P(x)$

 \equiv {Substitution}

 $2 \mod 2 = 0 \lor 4 \mod 2 = 0 \lor 6 \mod 2 = 0$

 \equiv {Arithmetic}

True ∨ True ∨ True

 \equiv {Constants}

True

Question 7

(i)
$$\forall x[x > 0]$$

 $U = \{1, 2, 3, 4, ...\}$

(ii)
$$\forall x[x=3]$$

 $U = \{3\}$

(iii) $\exists x \forall x [x + y < 0]$

 $U = \{-1, -2, -3, -4, \ldots\}$

Question 8

(i) x is a multiple of k

 $\exists x \ \forall k \ [x = k \ * t], t \in N$

(ii) x is a power of 2

$$x > 0 \land (x - 1) = 0$$

(iii) x is divisible by 3

 $x > 0 \land x \mod 3 = 0$

(i) All elements of A are in the range 1..100

 $\forall x: 0 \le x < N: A.x > 0 \land A.x \le 100$

(iii) A[j..k] contains an even integer value

 $0 \leq j \leq N \land 0 \leq k \leq N \land \ \forall x \colon j \leq x \leq k \colon A.x \ mod \ 2 = 0$

(v) Max is the largest value in A

 $\forall x : 0 \le x < N : A.x \le Max$

(vii) j = index of smallest element in A

 $0 \le i \le N \land 0 \le j \le N \land \forall x: i \le x \le N: A.x \ge A.j$