IS4301 Agile IT with DevOps – Lecture 9

Adjunct Professor Foong Sew Bun
Department of Information Systems and Analytics
National University of Singapore

Learning Objectives

At the end of this lecture, you will understand:

- Introduction of DevOps
- Overview of Continuous Deployment,
 Continuous Delivery, Continuous Integration
- What is Continuous Delivery?
- Value of continuous delivery
- Principles of Continuous Delivery

State of Enterprise Project Development and

Operations

Compliance

Business

Engineering

IT Operations

Infrastructure team

QΑ

DBAs

Service Desk

Product Support team

Operations Team

State of Enterprise Project Development and Operations

State of Enterprise Project Development and Operations

Business

IT Operations

Infrastructure team

QA

DBAs

Service Desk

Product Support team

Operations Team

What Happens: Product Creation Taking too FINANCE

Compliance

Long – Go Agile

What Happens: Product Creation Taking too Long – Go Agile

WATER - SCRUM - FALL

Water-

Scrum-

Fall

Challenges Faced by IT Operations

- Maintaining Legacy applications, heterogeneous platforms
- Prefers evolutionary architectural changes
- New software and services hard to accommodate
- Spend time fire fighting and troubleshooting
- Conservative, process heavy and driven
- Typically 80% of IT budget spent on operations

DevOps Movement – still evolving

- Not a fixed methodology or process
- Cross functional Community of Practice and set of principles
- What is DevOps? CAMS

Dev and Ops Collaboration

Supports changes Alerts broadcasted if software failed Creates deployable software Access to requirements tool
Part of sprint team
Participates at sprint kickoffs, retrospectives, demos

Top Predictions of IT Performance

- Peer-reviewed change approval process
- Version control everything
- Proactive monitoring
- High trust organizational culture
- Win-win relationship between dev and ops
- Comprehensive configuration management
- Continuous integration
- Automated testing

Measuring IT Performance

- Throughput of code
 - Deployment frequency how frequently a team is able to deploy code
 - Change lead time how fast it can move from committing code to deploying it
- Stability of system
 - Mean time to recover (MTTR) how quickly can a system recover from downtime
 - Change failure rate how many changes succeed versus how many fail

Lead Time

"How long would it take your organization to deploy a change that involves just a single line of code? Do you do this on a repeatable, reliable basis?"

-- Mary and Tom Poppendieck

Lead Time

- How quickly can I restore my services?
- How quickly can I get a critical fix to users?
- How quickly can I validate whether a feature is valuable?

Cycle for Restoring Services

working in small batches

John Allspaw: "Ops Metametrics" | http://slidesha.re/dsSZIr

@jezhumble | chief software

Continuous Integration and Continuous Delivery (CI/CD)

12 Principles Behind Agile Manifesto

- 1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
- 2. Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
- 3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
- 4. Business people and developers must work together daily throughout the project.
- 5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
- 6. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- 7. Working software is the primary measure of progress.
- Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
- 9. Continuous attention to technical excellence and good design enhances agility.
- 10. Simplicity--the art of maximizing the amount of work not done--is essential.
- 11. The best architectures, requirements, and designs emerge from self-organizing teams.
- 12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

Amazon May 2011 Deployment Stats

11.6 seconds

Mean time between deployments (weekday)

1,079

Max# of deployments in a single hour

http://assets.en.oreilly.com/1/event/60/Velocity%20Culture%20Presentation.pdf

Amazon May 2011 Deployment Stats

10,000

Mean# of hosts simultaneously receiving a deployment

30,000

Max# of hosts simultaneously receiving a deployment

http://assets.en.oreilly.com/1/event/60/Velocity%20Culture%20Presentation.pdf

Why Microservices?

75,000 production deploys per year

Services 900 300 4k developers services deploys per week

Practices in Continuous Delivery

- "Our code, app configurations and system configurations are in version control system."
- "We get failure alerts from logging and monitoring systems"
- "Developers merge their code into trunk daily"
- "Developers break up large features into small, incremental changes."
- "Development and operations interact, outcome is generally win/win"

Your First Hands-on Lab: Get started on a simple "hello, world" microservice development with DevOps toolchain using popular open sources

