第三讲 圆的基本性质

模块一圆的基本性质

知识要点

一、圆的定义

- 1. 几何定义: 平面上到定点的距离等于定长的所有点所成的图形
- 2. 轨迹定义: 平面上到定点的距离等于定长的点的轨迹
- 3. 集合定义: 平面上到定点的距离等于定长的点的集合
- 4. 在圆所在的平面上,以圆周为分界线,含圆心的部分叫做圆的内部(简称圆内),不含圆心的部分叫做圆的外部(简称圆外).

二、点与圆的位置关系:

设一个圆的半径为r, 点P到圆心的距离为d, 则

位置关系	图形	性质及判定
点在圆外	r O	d>r ⇔点P在⊙O外.
点在圆上	r P O	d=r ⇔点P在⊙O上.
点在圆内		0≤d <r⇔点p在⊙0内.< td=""></r⇔点p在⊙0内.<>

三、确定圆的条件

1. 确定一个圆有两个条件: ①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.

经过点 A 的圆:

以点 A 以外的任意一点 O 为圆心,以 OA 的长为半径,即可作出过点 A 的圆,这样的圆有无数个.

经过两点A、B的圆:

以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A、B的圆,这样的圆也有无数个。

过三点的圆:

① $A \times B \times C$ 三点共线时,过三点的圆不存在;

②若A、B、C三点不共线时, 圆心是线段AB与BC的中垂线 的交点(交轨法),而这个交点O是 唯一存在的,这样的圆有唯一一个.

2. 定理:不在同一直线上的三点确定一个圆.

注意:(1)"不在同一直线上"换句话说,在同一直线上的三点不能作圆;

(2)"确定",即"唯一存在".

3. 三角形的外接圆

(1)三角形的三个顶点确定一个圆. 经过一个三角形各顶点的圆叫做这个三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.

- (2)三角形外心的性质:
- ①三角形的外心是三角形三条边的垂直平分线的交点,它到三角形各顶点的距离相等;
- ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.
- (3)锐角三角形外接圆的圆心在它的内部;

直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径长为斜边的一半);

钝角三角形外接圆的圆心在它的外部.

4. 多边形的外接圆

如果一个圆经过一个多边形的各个顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做 这个圆的内接多边形。

模块二

圆的有关概念

知识要点

一、同心圆、同圆、等圆:

圆心相同、半径不相等的两个圆叫做同心圆.

圆心相同、半径相等的圆叫做同圆.

能够重合的两个圆叫做等圆.

注: 同圆或等圆的半径相等.

二、弧和弦:

圆上任意两点之间的部分叫做圆弧,简称弧(arc);

联结圆上任意两点的线段叫做弦(chord); 过圆心的弦是直径

圆心到弦的距离叫做弦心距 (apothem)

圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆

大于半圆的弧叫做优弧: 小于半圆的弧叫做劣弧

由弦及其所对的弧组成的图形叫做弓形

- 1. 圆心角:以圆心为顶点的角;
- 2. 圆心角、弧、弦、弦心距之间的关系定理:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等.

推论:在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦或两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量分别相等.

即: 在同圆或等圆中,圆心角相等⇔ 劣弧(或优弧)相等⇔ 弦相等⇔ 弦心距相等

注意: ①前提条件是在同圆或等圆中;

- ②在由等弦推出等弧时应注意: 优弧与优弧相等: 劣弧与劣弧相等.
- 3. 圆周角:顶点在圆上,并且两边都和圆相交的角

圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半(中考不能直接用,需要证明)

证明定理:已知在 $\odot O$ 中, $\angle BOC$ 与圆周角 $\angle BAC$ 同对弧BC,求证: $\angle BOC = 2\angle BAC$

如图, 当O在 $\angle BAC$ 的一边上时,

即A、O、B在同一直线上时:

- ∵OA、OC 是半径,即OA=OC
- ∴ ∠BAC = ∠ACO (等边对等角)
- **∵** ∠BOC 是 △OAC 的外角
- $\therefore \angle BOC = \angle BAC + \angle ACO = 2\angle BAC$

联结AO并延长交⊙O于D

- ∵OA、OB、OC 是半径
- $\therefore OA = OB = OC$
- ∴ ∠BAD = ∠ABO, ∠CAD = ∠ACO (等边对等角)
- ∴ ∠BOD、∠COD 分别是 △AOB、△AOC 的外角
- $\therefore \angle BOD = \angle BAD + \angle ABO = 2\angle BAD$

 $\angle COD = \angle CAD + \angle ACO = 2\angle CAD$

 $\therefore \angle BOC = \angle BOD + \angle COD = 2(\angle BAD + \angle CAD) = 2\angle BAC$

联结AO并延长交⊙O于D

- ∵ OA、OB、OC 是半径
- ∴ ∠BAD = ∠ABO、∠CAD = ∠ACO(等边对等角)
- $\because \angle DOB$ 、 $\angle DOC$ 分别是 $\triangle AOB$ 、 $\triangle AOC$ 的外角
- $\therefore \angle DOB = \angle BAD + \angle ABO = 2\angle BAD$

 $\angle DOC = \angle CAD + \angle ACO = 2\angle CAD$

 $\therefore \angle BOC = \angle DOC - \angle DOB = 2(\angle CAD - \angle BAD) = 2\angle BAC$

推论 1: 同弧或等弧所对的圆周角相等;

同圆或等圆中,相等的圆周角所对的弧相等.

推论 2: 半圆(或直径) 所对的圆周角是直角, 90°的圆周角所对的弦是直径

推论 3: 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

(拓)由圆周角定理,还可得到圆内接四边形的性质定理:

圆内接四边形的对角互补,并且任一外角都等于它的内对角.

例题精讲

【例题1】

作出 \widehat{AB} 所在圆的圆心,并补全整个圆.

- 【分析】 1. 取 \widehat{AB} 上任意一点C, 联结 $AB \setminus BC$
 - 2. 作线段 AB 的垂直平分线 L
 - 3. 作线段BC的垂直平分线 I_2 ,设 I_2 与 I_1 相交于点O
 - 4. 以点O为圆心, OA为半径作⊙O
 - ⊙O 就是所求作的圆

【例题2】

(1)在坐标平面内, $A(4, -\tan 60^\circ)$, $B\left(\frac{\sqrt{a^2}}{|a|}, 0\right)$, $\odot A$ 的半径为 4,则点 B 与 $\odot A$ 的位置关系为______.

(2)已知以原点为圆心,半径为 5 的圆,则二次函数 $y = x^2 - 6x + 13$ 的顶点与圆的位置关系为______.

(3)一个点到圆的最大距离为13,最小距离为5,则圆的半径为_____.

【分析】 (1)点B在⊙A内; (2)顶点在圆上; (3)4或9;

【例题3】

(1)如图, $\bigcirc O$ 是 $\triangle ABC$ 的外接圆,已知 $\angle ABO = 50^{\circ}$,则 $\angle ACB$ 的大小为_____.

(2)已知: 如图, 四边形 ABCD 是 $\odot O$ 的内接正方形, 点 P 是劣弧 $\stackrel{\frown}{CD}$ 上不同于点 C 的任意一点, 则 $\angle BPC$ 的度数是(

- $A. 45^{\circ} \qquad B. 60^{\circ} \qquad C. 75^{\circ} \qquad D. 90^{\circ}$

(3)如图, $AB \in O$ 的直径, $CD \in O$ 的弦, 联结 $AC \setminus AD$, 若 $\angle CAB = 35^{\circ}$, 则 $\angle ADC$ 的度数为_____.

(4)如图, 四边形 ABCD中, AB = AC = AD, 若 ∠CAD = 76°, ∠BDC = 13°, 则 ∠CBD = _____, ∠BAC =

【分析】 (1) 40° (2) A (3) 55° (4) $\angle CBD = \frac{1}{2} \angle CAD = 38^{\circ}$, $\angle BAC = 2 \angle BDC = 26^{\circ}$.

【例题4】

(1)如图,延长圆内接四边形 ABCD 的边 $AB \setminus DC$ 相交于 E , $AD \setminus BC$ 的延长线相交于 F , 若 $\angle E = 50^\circ$, $\angle F = 30^\circ$, 则 $\angle A =$ ______.

(2)如图,已知 AB 为 $\odot O$ 的直径, $\angle E = 20^{\circ}$, $\angle DBC = 50^{\circ}$, 则 $\angle CBE =$ ______.

(3)如图所示, $\odot O_1$ 与 $\odot O_2$ 相交于C 、D 两点,且 $\odot O_1$ 过 $\odot O_2$ 的圆心 O_2 ,若 $\angle B=32^\circ$,则 $\angle A$ 的度数为______.

【分析】 (1)50°; (2)联结AC, 60°或联结OC、OD; (3)74°, 辅助线: 联结CO2, DO2.

模块三 垂径定理

知识要点

- 一、圆的对称性
- 1. 圆的轴对称性: 圆是轴对称图形,对称轴是经过圆心的任意一条直线.
- 2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.
- 3. 圆的旋转对称性: 圆是旋转对称图形, 无论绕圆心旋转多少角度, 都能与其自身重合.
- 二、垂径定理(圆心到弦的距离叫做弦心距)
- 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
- 2. 推论 1: (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
 - (2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
 - (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
- 3. 推论 2: 圆的两条平行弦所夹的弧相等.

注意: 若"过圆心的直线"、"垂直于弦"、"平分弦(非直径)"、"平分弦所对的优弧"、"平分弦所对的劣弧"中的任意两个成立,则另外三个都成立.

例题精讲

【例题5】

(1)如图所示,在 $\triangle ABC$ 中, $\angle A=90^\circ$,以 A 为圆心,以 AB 为半径的圆分别交 BC 、 AC 于点 D 、 E ,若 BD=10 , DC=6 ,则 $AC^2=$ ______.

(2)如图所示,AD//BC, \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{BC} ,若 AD = 4 , BC = 6 ,则四边形 ABCD 的面积是______

【分析】 (1)176, 过A作BD的垂线, 利用射影定理. (2)25, 三垂直全等

【例题6】

(1)已知 $\odot O$ 半径 OB = 13,AB、CD 是弦,AB//CD,AB = 10,CD = 24,则 AB 与 CD 的距离是______. (2)在半径为1的 $\odot O$ 中,弦 AB , AC 的长分别为 $\sqrt{2}$ 和 $\sqrt{3}$, $\angle BAC$ 的度数是______.

【分析】 (1) AB、CD之间的距离为7或者17.

(2)15°或75°.

【例题7】

(1)如图所示,AB 是 $\odot O$ 的直径,CD 是弦, $AE \perp CD$ 于 E , $BF \perp CD$ 于 F ,AB = 26 厘米,CD = 24 厘米,则 AE - BF =______.

(2)如图所示, AB 是半圆 O 的直径, AC = AD, OD = 2, ∠CAB = 30°,则点 O 到 CD 的距离 OE = _____.

【分析】 $(1)10 厘米; (2) \frac{\sqrt{6} + \sqrt{2}}{2}.$

【例题8】

如图, $AE \setminus CD$ 是 $\odot O$ 的两条直径, 弦 $AB \perp CD$, $BC \setminus DE$ 交于点 F, 求证: OF // AB.

【分析】 联结 BE , \because AE 是直径 , \therefore $BE \perp AB$. \because $\widehat{BC} = \widehat{DE}$, \therefore $\widehat{CBE} = \widehat{DEB}$, \therefore $\angle C = \angle D$. 又 \because O 为 CD 中点 , \therefore $OF \perp CO$, \therefore OF // AB .

本讲巩固

【巩固1】

(1)已知 $\odot O$ 外一点 A 和圆上的点最大距离为23 厘米,最小距离为10 厘米,则 $\odot O$ 的半径为______. (2)已知以点(2,0) 为圆心,半径为3 的圆,则二次函数 $y=x^2-5x+3$ 的顶点与圆的位置关系为______. (3)在 $Rt \triangle ABC$ 中, $\angle C=90^\circ$,D 、E 分别是 AB 、AC 的中点,AC=7 ,BC=4 . 若以点C 为圆心,BC 为半径作圆,则点D 、E 与 $\odot C$ 的位置关系分别为______,_____. (4)若 $\odot O$ 的半径为5 ,圆心O 的坐标为(1,1) ,点A(1,y) 在圆上,y=______.

【分析】 (1) 6.5 厘米; (2)顶点在圆外. 顶点 $\left(\frac{5}{2}, -\frac{13}{4}\right)$, 顶点到圆心距离 $\sqrt{\left(\frac{5}{2} - 2\right)^2 + \left(\frac{13}{4}\right)^2} > 3$ (3)点D在 \odot C 外,点E在 \odot C 内;(4) 6 或-4 .

【巩固2】

已知直线a和直线外的两点A、B,经过A、B作一圆,使它的圆心在直线a上.

【分析】 如图

【巩固3】

(1)如图,CD 是半圆的直径,O 是圆心,E 是半圆上一点,且 $\angle EOD = 45^{\circ}$,A 是 DC 延长线上一点,AE 与半圆交于 B ,若 AB = OC ,则 $\angle EAD =$ ______.

(2)如图所示, AD 是直径, 且 AD = 3, CD = 2, 则 sin B = _____.

(3)如图, $\bigcirc O$ 是 $\triangle ABC$ 的外接圆,CD 是直径, $\angle B = 40^{\circ}$,则 $\angle ACD$ 的度数是______

(4)已知:如图,AB是 $\odot O$ 的直径,半径 $OC \perp AB$,过OC的中点D作EF//AB.

求证: $\angle ABE = \frac{1}{2} \angle CBE$.

【分析】 (1)联结OB, $OB = OC = AB \Rightarrow \angle EBO = 2\angle A$

$$OB = OE \Rightarrow \angle EBO = \angle OEB \Rightarrow \angle EOD = \angle OEB + \angle A = 3\angle A \Rightarrow \angle A = 15^{\circ}$$

$$(2)\frac{\sqrt{5}}{3}$$
.

(3)联结 BD (或 AD) , $\angle ACD = \angle ABD = \angle DBC - \angle ABC = 90^{\circ} - 40^{\circ} = 50^{\circ}$

(4) 易证
$$\triangle OCE$$
 为正三角形, $\angle CBE = \frac{1}{2} \angle COE = 30^{\circ}$, $\angle ABE = \angle OBC - \angle CBE = 15^{\circ}$

【巩固4】

如图所示, 在 $Rt \triangle ABC$ 中 $\angle C = 90^\circ$, $AC = \sqrt{2}$, BC = 1,若以 C 为圆心、CB 的长为半径的圆交 $AB \mp P$,则 AP =

【分析】 过C作 $CM \perp PB$ 于M, 即MP = MB, 设为MB = x,

$$Rt$$
Δ ABC $+$, $有 AB = \sqrt{AC^2 + BC^2} = \sqrt{3}$, $\triangle ABC$ $\triangle BMC$,

得
$$BC^2 = BM \cdot AB$$
 , 即 $1^2 = \sqrt{3}x$, $\therefore x = \frac{\sqrt{3}}{3}$ 故 $AP = AB - 2x = \frac{\sqrt{3}}{3}$.

【巩固5】

如图所示,AB 是 $\odot O$ 的直径,CD 是弦, $AE \perp CD$ 于 E , $BF \perp CD$ 于 F ,求证: CE = DF .

【分析】 提示: 过O作 $OM \perp CD \vdash M$,则CM = DM,根据平行线分线段成比例,EM = FM

【巩固6】

已知 $\bigcirc O$ 的直径是 50 , $\bigcirc O$ 的两条平行弦 AB = 40 , CD = 48 , 求弦 AB 与 CD 间的距离.

【分析】 分类讨论,本题有两种情况:

(1) AB, CD在圆心O的同侧,作 $OF \perp AB \vdash F$,交 $CD \vdash E$ 如图所示.

 \therefore AB // CD, \therefore $OE \perp CD$ 由垂径定理知: $AF = \frac{1}{2}AB = 20$, $CE = \frac{1}{2}CD = 24$.

联结 OA = OC = 25. $:OE = \sqrt{25^2 - 24^2} = 7$, $OF = \sqrt{25^2 - 20^2} = 15$

∴ AB 与 CD 之间的距离 EF = 15-7=8

(2) AB, CD在圆心O的两侧, 如右图所示, AB与CD之间的距离EF=15+7=22.