姓名:	班级:	学早.
好句:		

《计算机网络》2008 年期末考试试题(A卷)

以下已经预备好表格的题目请直接在试卷上填表作答,其余问题则在答题纸上 回答,试卷必须同答题纸一并交回;答题纸封面请务必也写明姓名、班级和学 号。

(2008年12月31日14:30-16:00)

一、(10 分)假设 CRC 校验生成多项式为 $G(X) = x^5 + x^4 + x^2 + 1$,计算原始比特序列 11001011 的 CRC 校验码。

答案: 11001011 的 CRC 校验码为 1100101101110。

二、(10分)已知发送方使用海明码发送数据(使用偶校验),如果接收方收到的海明码为11010110001010000,则传输结果是否正确?若正确,给出原始数据比特序列。若发生错误(假设一比特错误),错误发生在哪一位?解出原始数据比特序列。

答案: 传输结果正确,原始数据比特为: 001100101000。

11010110001010000 ab0c011d0010100e0 11010110001010000 0 11010110001010000 0 11010110001010000 0 11010110001010000 三、一个网络的拓扑结构如图一所示,一台路由器连接三个以太网,每个以太网连接 60 台计算机。

1、(10 分)现有一个 IP 地址块 202.112.35.0/24,请合理划分子网,给出网络掩码和主机 A、主机 B、主机 C、DNS 服务器、WWW 服务器和路由器三个端口(三个子网的缺省网关)的 IP 地址。

答案(不唯一):

主机 A 所在子网网络地址 202.112.35.64/26, IP 地址范围 (202.112.35.65-126) 主机 A 的 IP 地址 202.112.35.65, DNS 的 IP 地址 202.112.35.125, 路由器在该子网的端口地址为 202.112.35.126;

主机 B 所在子网网络地址 202.112.35.128/26, IP 地址范围(202.112.35.129-190) 主机 B 的 IP 地址 202.112.35.129,

路由器在该子网的端口地址为 202.112.35.190;

主机 C 所在子网网络地址 202.112.35.192/26, IP 地址范围 (202.112.35.193-254) 主机 C 的 IP 地址 202.112.35.193, www 服务器的 IP 地址为 202.112.35.194, 路由器在该子网的端口地址为 202.112.35.254.

2、(10 分)假设WWW服务器的域名为<u>www.edu.cn</u>,请分别叙述主机A和主机B通过域名访问WWW服务器分组交互过程。

答案:

主机 A 访问 www 服务器的分组交互过程:

主机 A 发送 ARP 地址解析请求分组,请求解析 DNS 服务器 MAC; DNS 服务器应答:

主机A发送DNS域名解析请求分组,请求解析www.edu.cn的域名;

DNS 服务器经过迭代或者递归查询,将域名解析结果返回给主机 A;

主机 A 发送 ARP 地址解析请求分组,请求解析路由器在该子网端口的 MAC 地址;

路由器应答,将自己的MAC地址返回给主机A:

主机 A 向 www 服务器的 80 端口建立 TCP 连接:

连接建立后, 主机 A 向 www 服务器发送 http 请求;

www 服务器应答主机 A 的请求,将主机 A 请求的数据返回给主机 A。

主机 B 访问 www 服务器的分组交互过程:

主机 B 发送 ARP 地址解析请求分组,请求解析路由器在该子网端口的 MAC 地址;

路由器应答,将自己的 MAC 地址返回给主机 B;

主机B发送DNS域名解析请求分组,请求解析www.edu.cn的域名;

DNS 服务器经过迭代或者递归查询,将域名解析结果返回给主机 B;

主机 B 向 www 服务器的 80 端口建立 TCP 连接;

连接建立后, 主机 B 向 www 服务器发送 http 请求;

www 服务器应答主机 B 的请求,将主机 B 请求的数据返回给主机 B。

收发包序 号	源 IP 地址	目的 IP 地址	源端口号	目的端口号	序号 SEQ	确认序号 ACK	控制位	备注	主机 C 的 cwnd	主机 C 的 threshold
1	С	S	1077	20	1000		Syn=1	连接请求		
2	S	С	20	1077	3000	1001	Syn=1 Ack=1			
3	C	s	1077	20	1001	3001	Ack=1			
4	С	S	1077	20	1001	3001		数据传输	1000	5000
5	S	C	20	1077	3001	2001	Ack=1		2000	5000
6	С	S	1077	20	2001	3001			2000	5000
7	C	S	1077	20	3001	3001			2000	5000
8	S	C	20	1077	3001	3001	Ack=1		3000	5000
9	C	S	1077	20	4001	3001			3000	5000
10	C	S	1077	20	5001	3001			3000	5000
11	S	C	20	1077	3001	5001	Ack=1		5000	5000
12	C	S	1077	20	6001	3001			5000	5000
13	C	S	1077	20	7001	3001			5000	5000
14	C	S	1077	20	8001	3001			5000	5000
15	С	S	1077	20	9001	3001			5000	5000
16	S	C	20	1077	3001	10001	Ack=1		6000	5000
17	С	S	1077	20	10001	3001			6000	5000
18	C	S	1077	20	11001	3001			6000	5000
19	С	S	1077	20	10001	3001		序号为 10001 的包超时重传	1000	3000

四、主机 C 通过 FTP 向服务器 S 传送文件,双方建立 TCP 连接,采用慢启动 算法和拥塞避免算法进行拥塞控制。初始阈值 threshold 为 5000 字节,主机 C 发送的 TCP 段的数据长度固定为 1000 字节,初始拥塞窗口大小为 1000 字节。使用网络临听工具对主机 C 的 FTP 传输过程中的收发包进行临听。

- 1、(20 分)表一给出了该 FTP 数据通道的建立连接和数据传输的部分过程,请将相关内容填入空白处,并给出收发包事件发生后主机 C 的 TCP 实体的拥塞窗口 cwnd 和阈值 threshold 的大小。"---"表示该空格不需要填写,确认序号等于希望接收的下一个字节的序号。
- 2、(10 分)假设客户机 C 的 IP 地址为 59.66.24.51,服务器 S 的 IP 地址为 166.111.8.229,试将上面收发包序号为 2 的分组翻译成用十六进制表示的 IP 分组。为简单起见,有的信息已经给出,已知 IP 头不包含选项,而阴影格子表示整个分组已经结束。请填写出其它的部分(表二),每个格子填写一个十六进制数(请填写清晰,明显模棱两可的字迹不算对)。

4	5	0	0	0	0	3	c	0	0	0	0	4	0	0	0
3	0	0	6	d	d	a	7	a	6	6	f	0	8	e	5
3	b	4	2	1	8	3	3	0	0	1	4	0	4	3	5
0	0	0	0	0	b	b	8	0	0	0	0	0	3	e	9
a	0	1	2	4	f	f	f	5	7	b	b	0	0	0	0
0	2	0	4	0	5	a	0	0	1	0	3	0	3	0	0
0	1	0	1	0	8	0	a	1	e	4	4	d	e	5	5
0	0	0	0	0	0	0	0								

表二

五、主机 H1、主机 H2 和主机 H3 之间的网络包含若干个转发设备,其拓扑结构如图二。

1A、(10 分)如果图中 S1、S2、S3、S4、S5、S6 为网桥设备(交换机),且各个网桥设备的网桥 ID 满足 S1<S2<S3<S4<S5<S6,各个链路的传输代价相同,如果在所有交换机启动后进行生成树协议的计算,试标出各个网桥的端口在生成树协议计算结束后的转发状态(转发还是阻塞)。

生成树协议计算完成后各个网桥端口的状态 (转发还是阻塞)

				* - * * * * * * * * * * * * * * * * * *	. ,	
端口	S1	S2	S3	S4	S5	S6
1	转发	转发	转发	转发	转发	转发
2	转发	转发	转发	阻塞	转发	阻塞
3	转发	转发		转发		转发
4	转发					

1B、(10 分)在 1A 的基础上,假设初始状态下所有网桥设备的转发表都是空的,然后依次发生以下事件,试回答其中每一步传送过程中,每个网桥是否能接收到相应的数据;每个网桥对相应数据帧的处理是洪泛(flooding)还是转发;这一步完成后 S1~S6 各网桥上的转发表情况如何?请对表 5-1~表 5-4 所列每一步填空(表格中给出了一个例子)。

a、H1 发送数据帧给 H2: 表 5-1

	网桥	S1	S2	S3	S4	S5	S6					
对该帧	接收与否	接收	接收	接收	接收	接收	接收					
的处理	转发还是洪泛	洪泛	洪泛	洪泛	洪泛	洪泛	洪泛					
杜尖宝	主机/端口	H1/1	H1/1	H1/1	H1/1	H1/1	H1/1					
转发表 情况	主机/端口											
月灯	主机/端口											

b、H2 发送数据帧给 H1: 表 5-2

	网桥	S1	S2	S3	S4	S5	S6
对该帧	接收与否	接收	接收	不接收	接收	不接收	不接收
的处理	转发还是洪泛	转发	转发	_	转发		
杜尖宝	主机/端口	H1/1	H1/1	H1/1	H1/1	H1/1	H1/1
转发表 情况	主机/端口	H2/3	H2/2		H2/3		
旧忧	主机/端口						

c、H3 发送数据帧给 H2: 表 5-3

	网桥	S1	S2	S3	S4	S5	S6
对该帧	接收与否	不接收	接收	不接收	接收	不接收	接收
的处理	转发还是洪泛	_	转发	_	转发	_	洪泛
杜尖主	主机/端口	H1/1	H1/1	H1/1	H1/1	H1/1	H1/1
转发表 情况	主机/端口	H2/3	H2/2		H2/3		H3/3
间仍	主机/端口		H3/3		H3/1		

d、H1 发送数据帧给 H3: 表 5-4

	网桥	S1	S2	S3	S4	S5	S6						
对该帧	接收与否	接收	接收	接收	不接收	接收	接收						
的处理	转发还是洪泛	洪泛	转发	洪泛	_	洪泛	转发						
转发表	主机/端口	H1/1	H1/1	H1/1	H1/1	H1/1	H1/1						
校 <i>及衣</i> 情况	主机/端口	H2/3	H2/2		H2/3		H3/3						
月九	主机/端口		H3/3		H3/1								

2、(10 分)假定所有这些转发设备(S1、S2、S3、S4、S5、S6)都是运行同一距离向量路由协议的路由器,并且已经达到收敛状态。这时主机 H3 所在的网络突然发生故障,并且引起路由器 S6 的 3 号端口故障,试分析如果所有路由器使用"水平分割"(Split Horizon)技术,能否有效避免路由环路(Route Loop)的发生,并具体说明理由。

答案:可以避免路由环路,但是路由表不收敛。

原因: 假设所有路由器的更新周期为 30 秒,且路由更新顺序为 S6、S2、S3、S1、S5、S4。各个路由器对于 H3 所在网络(假设为 L3)的路由表项为:

	S1	S1 S2			S3			S4				S5		S6			
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	2	3	L3	1	3	L3	4	2	L3	2	1	L3	1	2	L3	0	3

S6 的 3 号端口故障后, S6 将 L3 对应的代价改为无穷大:

	S1			S2		S3		S4			S5		S6				
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	2	3	L3	1	3	L3	4	2	L3	2	1	L3	1	2	L3	8	3

S6 的更新周期到达后:

	S1			S2		S3				S4			S5		S6		
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	2	3	L3	∞	3	L3	4	2	L3	2	1	L3	∞	2	L3	8	3

S2 的更新周期到达后:

	S1			S2		S3			S4				S5		S6		
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	8	3	L3	8	3	L3	4	2	L3	8	1	L3	8	2	L3	8	3

S3 的更新周期到达后:

S1			S2			S3			S4				S5		S6		
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	5	2	L3	8	3	L3	4	2	L3	8	1	L3	8	2	L3	00	3

S1 的更新周期到达后:

S1			S2			S3			S4				S5		S6		
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	5	2	L3	6	1	L3	4	2	L3	00	1	L3	6	1	L3	00	3

S5 的更新周期到达后:

S1			S2			S3			S4				S5		S6		
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	5	2	L3	6	1	L3	4	2	L3	∞	1	L3	6	1	L3	7	2

S4 的更新周期到达后:

S1		S2			S3			S4				S5		S6			
网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口	网络	代价	端口
L3	5	2	L3	6	1	L3	∞	2	L3	8	1	L3	6	1	L3	7	2

而当新的一轮更新周期到达后,该过程将继续下去,由此可以看出,路由表将 经历计数到无穷大的过程,而在此过程中,路由环路可以避免,但是路由表不 收敛。