Trig Final (SLTN v634)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 2.5 meters. The arc length is 2.2 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 0.88$ radians.

Question 2

Consider angles $\frac{8\pi}{3}$ and $\frac{-11\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{8\pi}{3}\right)$ and $\sin\left(\frac{-11\pi}{4}\right)$ by using a unit circle (provided separately).

$$\cos(8\pi/3) = \frac{-1}{2}$$

Find $sin(-11\pi/4)$

$$\sin(-11\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $tan(\theta) = \frac{-12}{5}$, and θ is in quadrant II, determine an exact value for $cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$5^{2} + 12^{2} = C^{2}$$

$$C = \sqrt{5^{2} + 12^{2}}$$

$$C = 13$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\cos(\theta) = \frac{-5}{13}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -6.11 meters, an amplitude of 8.74 meters, and a frequency of 3.52 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -8.74\cos(2\pi 3.52t) - 6.11$$

or

$$y = -8.74\cos(7.04\pi t) - 6.11$$

or

$$y = -8.74\cos(22.12t) - 6.11$$