Lực Điện – Điện Trường

- Định luật Coulomb

$$F = k \frac{q_1 q_2}{\varepsilon r^2} \text{ (N)}$$

$$k = 9.10^9 \frac{Nm^2}{C^2}$$
: hệ số tỷ lệ

q₁; q₂ (C): độ lớn hai điện tích điểm ε: hằng số điện môi

r (m): khoảng cách giữa hai điện tích

- Cường đô điện trường

$$E = \frac{F}{q} = k \frac{Q}{\varepsilon r^2}$$
 (N/C = V/m)

F (N): lực điện tại điểm khảo sát

q (C): điện tích thử dương

Q (C): điện tích khảo sát.

- Nguyên lý chồng chất điện trường

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

$$\vec{E}_{1} / / \vec{E}_{2}$$
: E = E₁ + E₂

$$\vec{E}_1 \nearrow \checkmark \vec{E}_2$$
: $E = |E_1 - E_2|$

$$\vec{E}_1 \perp \vec{E}_2$$
: $E = \sqrt{E_1^2 + E_2^2}$

CÔNG – THẾ NĂNG – ĐIỆN THẾ HIỆU ĐIỆN THẾ

- Công của lực điện

$$A_{MN} = q.E.d$$
 (d = s.cos α)

- Thế năng của một điện tích điểm q tại điểm M trong điện trường:

$$W_M = A_{M\infty} = V_M q$$

- Điên thế tại một điểm M trong điện trường:

$$V_M = \frac{W_M}{q} = \frac{A_{M\infty}}{q}$$

- Hiệu điện thế: $U_{MN} = V_M - V_N = \frac{A_{MN}}{a}$

- Liên hệ giữa hiệu điện thế và cường độ điện trườna: U = E.d

TŲ ĐIỆN

- Điện dung của tụ điện: $C = \frac{Q}{TT}$ (F)

Q (C): điện tích trên tụ điện

U (V): hiệu điện thế giữa hai đầu tụ điện.

- Năng lượng điện trường trong tụ điện

$$W = \frac{Q^2}{2C} = \frac{1}{2}QU = \frac{1}{2}CU^2$$
 (J)

MACH ĐIỆN

- Cường độ dòng điện: $I = \frac{q}{t}$ (A = C/s)

q (C) là điện lượng chuyển qua tiết diện thẳng của vật dân trong khoảng thời gian t (s)

Điện năng tiêu thụ của đoạn mạch

$$A = U.q = U.I.t (J = V.C)$$

- Công suất điện của đoạn mạch

$$\mathscr{P} = \frac{A}{t} = U.I$$
 (W = J/s = V.A)

- Nhiệt lượng tỏa ra ở vật dẫn

$$Q = R.I^2.t$$
 (J)

- Công suất tỏa nhiệt của vật dẫn

$$\mathscr{P} = \frac{Q}{t} = R.I^2 = \frac{U^2}{R} = U.I$$

- Định luật OHM đối với toàn mạch

$$I = \frac{\mathscr{E}}{R_N + r}$$
; $U_N = \mathscr{E} - I.r$; $\mathscr{E} = I.(R_N + r)$

- Đoạn mạch chứa nguồn điện

$$\mathsf{U}_{\mathsf{AB}} = \mathscr{E} - \mathsf{I.R}_{\mathsf{AB}} \quad \mathsf{hay} \quad I = \frac{\mathscr{E} - U_{AB}}{R_{AB}}$$

GHÉP CÁC ĐIỀN TRỞ

- Ghép nổi tiếp

 $I = I_1 = I_2 = ...$ $U = U_1 + U_2 + ...$ $R = R_1 + R_2 + ...$

- Ghép song song

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2}; R_{123} = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_3 R_1}$$

NGUÔN ĐIỆN

- Suất điện động của nguồn điện

$$\mathscr{E} = \frac{A}{a} \quad (V = J/C)$$

A (J) là công của lực lạ dịch chuyến một điện tích dương q (C) ngược chiều điện trường.

- Công của nguồn điện: $A_{n\sigma}=q\mathscr{E}=\mathscr{E}.I.t$

- Công suất của nguồn điện: $\mathscr{P} = \frac{A_{\rm ng}}{I} = \mathscr{E} I$

Hiệu suất của nguồn điện

$$H = \frac{A_{ci}}{A} = \frac{U_{N}It}{\mathscr{E}It} = \frac{U_{N}}{\mathscr{E}} = \frac{R_{N}}{R_{N} + r}$$

- Bộ nguồn nối tiếp

$$\mathscr{E}_b = n.\mathscr{E}$$
; $r_b = n.r$

- Bộ nguồn song song

$$\mathscr{E}_b = \mathscr{E}$$
 ; $r_b = \frac{r}{r}$

- Bộ nguồn hỗn hợp đôi xứng (n dãy, mỗi dãy có m nguồn)

$$\mathscr{E}_{b} = m.\mathscr{E}$$
 ; $r_{b} = \frac{m}{n}r$

SỰ PHỤ THUỘC CỦA ĐIỆN TRỞ VÀO NHIỆT ĐỘ

$$\rho = \rho_0 [1 + \alpha (t - t_0)] \qquad R = R_0 [1 + \alpha (t - t_0)]$$

$$R = \rho \frac{l}{S}$$

 $ρ_o$: điện trở suất ở t_o °C (Ω.m)

I : chiều dài dây dẫn (m)

ρ: điện trở suất ở t °C S: tiết diện dây dẫn (m²)

 α : hê số nhiệt điện trở (K⁻¹)

HIÊN TƯƠNG NHIỆT ĐIỆN

$$\mathscr{E} = \alpha_T (T_1 - T_2)$$

 ${\mathscr E}$ là suất điện động nhiệt điện (V)

 $\alpha_{\scriptscriptstyle T}$ là hệ số nhiệt điện động (V.K⁻¹)

 $T_1 - T_2$ là hiệu nhiệt độ ở đầu nóng và đầu lạnh

DÒNG ĐIỆN TRONG CHẤT ĐIỆN PHÂN

m = k.q
$$k = \frac{1}{F} \frac{A}{n}$$

 $m = \frac{1}{F} \frac{A}{n} I.t$

m: khối lượng vật chất được giải phóng ở điện cực (g)

k: đương lượng điện hóa

 $F = 9,65.10^4$: hằng số Faraday (C/mol)

 $\frac{A}{n}$: đương lượng gam của nguyên tố

A: khối lượng mol nguyên tử (g/mol)

n: hóa trị của nguyên tố làm điện cực

I: cường độ dòng điện qua bình điện phân (A) t: thời gian dòng điện qua bình điện phân (s)

mili : m ... = 10^{-3} ...; micro : μ ... = 10^{-6} ...; nano : n ... = 10^{-9} ...; pico : p ... = 10^{-12} ...

BẢNG TÓM TẮT DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG

МТ	Hạt tải điện	Bản chất	Đường đặc trung V - A	ÚNG DỤNG
1. Kim loại	electron tự do	Dòng điện trong kim loại là dòng chuyển dời có hướng của các electron tự do dưới tác dụng của điện trường.	Tuân theo định luật OHM khi nhiệt độ của kim loại được giữ không đổi	- Siêu dẫn - Nhiệt điện
2. Chất điện phản	ion dương ion âm	Dòng điện trong chất điện phân là dòng chuyển dời có hướng của các ion trong điện trường.	Tuân theo định luật OHM	- Luyện nhôm - Mạ điện
3. Chất khí	electron ion được tạo nhờ tác nhân ion hóa	Dòng điện trong chất khí là dòng chuyển dời có hướng của electron và các ion trong điện trường.	Không tuân theo định luật OHM.	- Tia lửa điện - Hồ quang điện
4. Chân không	<i>electron</i> đưa vào	Dòng điện trong chân không là dòng chuyển dời có hướng của các electron	Không tuân theo định luật OHM. I _A (mA) 20 5) 5) 6) Hình 16.2	- Tia catôt
5. Chất bán dẫn	electron tự do lỗ trống	Dòng điện trong chất bán dẫn là dòng chuyển dời có hướng của các electron tự do và lỗ trống dưới tác dụng của điện trường.	Không tuân theo định luật OHM.	- Điôt bán dẫn - Transistor

Lực từ tác dụng lên đoạn dây dẫn mang dòng điện:

 $F = B.I.l.\sin\alpha$ (Quy tắc bàn tay trái 1)

B (T): cảm ứng từ.

I (A): cường độ dòng điện qua dây dẫn.

l (m): chiều dài đoạn dây dẫn.

 α : góc hợp bởi $\vec{\mathbf{B}}$ và \vec{l} .

Cảm ứng từ của dòng điện chạy trong

+ dây dẫn thẳng:
$$B = 2.10^{-7} \frac{I}{r}$$

(Quy tắc nắm tay phải 1)

r (m): khoảng cách từ dòng điện đến điểm khảo sát.

I (A): cường độ dòng điện qua dây dẫn.

+ vòng dây tròn:
$$B = 2\pi . 10^{-7}.N \frac{I}{R}$$

(Quy tắc nắm tay phải 2)

R (m): bán kính vòng dây. N (vòng): số vòng dây.

I (A): cường độ dòng điện qua vòng dây.

+ ống dây hình trụ:
$$B = 4\pi.10^{-7} \frac{N}{I} I$$

(Quy tắc nắm tay phải 3)

I (A): cường độ dòng điện qua ống dây.

N (vòng): số vòng dây; / (m): chiều dài ống dây

 $n = \frac{N}{I}$: số vòng dây trên 1m chiều dài.

Từ trường của nhiều dòng điện:

$$\vec{B} = \vec{B}_1 + \vec{B}_2$$

 $\vec{B}_1 \nearrow \nearrow \vec{B}_2$: B = B₁ + B₂

 $\vec{B}_1 \nearrow \checkmark \vec{B}_2$: $B = |B_1 - B_2|$

song:

 $\vec{B}_1 \perp \vec{B}_2$: $B = \sqrt{B_1^2 + B_2^2}$

Lực tương tác giữa hai dòng điện song

$$F = 2.10^{-7} \frac{I_1 I_2}{r} I$$

 I_1 và I_2 là cường độ dòng điện gua hai dây dẫn.

r: khoảng cách giữa hai dây dẫn.

1: chiều dài đoạn dây dẫn tính lực tương tác.

Lực Lorentz: $f = q.v.B.\sin\alpha$

(Quy tắc bàn tay trái 2)

q (C): điện tích của hạt mang điện chuyển động.

v (m/s): vân tốc của hat mang điện.

B (T): từ trường nơi hạt mang điện chuyển đông.

 α : góc hợp bởi \vec{v} và \vec{B} .

Chuyển động của hạt điện tích trong từ

trường đều: $\vec{v} \perp \vec{B}$

Bán kính quỹ đạo: $R = \frac{mv}{q.B}$

Chu kỳ chuyển động: $T = \frac{2\pi R}{v}$

Từ thông: $\Phi = B.S.cos\alpha$ (Wb)

B (T): cảm ứng từ xuyên qua vòng dây.

S (m²): diện tích vòng dây.

 α : góc hợp bởi \vec{B} và pháp tuyến \vec{n} .

Suất điện động cảm ứng

$$e_{c} = -\frac{\Delta\Phi}{\Delta t}$$
 (V)

 $\Delta\Phi$: độ biến thiên từ thông.

Δt: khoảng thời gian từ thông biến thiên.

 $\frac{\Delta\Phi}{\Delta t}$: tốc độ biến thiên của từ thông.

Từ thông riêng của mạch

$$\Phi = L.i$$

Độ tự cảm của ống dây:

$$L = 4\pi.10^{-7} \frac{N^2}{I} S \text{ (H)}$$

N (vòng): số vòng dây.

I (m): chiều dài ống dây.

S (m²): tiết diện ống dây.

Suất điện động tự cảm

$$e_{tc} = -L \frac{\Delta i}{\Delta t}$$
 (V)

L (H): hệ số tự cảm của ống dây.

Δi : độ biến thiên c.độ dòng điện trong mạch Δt : khoảng thời gian dòng điên biến thiên.

 $\frac{\Delta i}{\Delta t}$: tốc độ biến thiên của cường độ dòng điện.

Năng lượng từ trường của ống dây

$$W = \frac{1}{2}L.i^2 \text{ (J)}$$

L (H): hệ số tự cảm của ống dây.

i (A): cường độ dòng điện qua ống dây.

Định luật khúc xạ ánh sáng

$$n_1.\sin i = n_2.\sin r$$
 hay $\frac{\sin i}{\sin r} = \frac{n_2}{n_1} = n_{21}$

Chiết suất tỷ đối

$$n_{21} = \frac{n_2}{n_1}$$
 ; $n_{12} = \frac{1}{n_{21}}$

Góc giới hạn phản xạ toàn phần

$$\sin i_{gh} = \frac{n_2}{n_1}$$

Điều kiện để có phản xạ toàn phần

$$n_2 < n_1$$
 ; $i \ge i_{\sigma h}$

Công thức lăng kính

 $sini_1 = n.sinr_1$ $A = r_1 + r_2$ $sini_2 = n.sinr_2$ $D = i_1 + i_2 - A$

Nếu các góc i và A nhỏ

 $i_1 = n.r_1$ $A = r_1 + r_2$. ; Độ tụ của thấu kính $i_2 = n.r_2$ D = (n - 1).A

$$D = \frac{1}{f} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2})$$

D : đô tu (dp) f: tiêu cư thấu kính (m)

R₁; R₂: bán kính các mặt cong (m)

n : chiết suất chất làm thấu kính.

Thấu kính hôi tu : f > 0 ; D > 0Thấu kính phân kỳ: f < 0; D < 0

Vị trí ảnh

$$\frac{1}{f} = \frac{1}{d} + \frac{1}{d'}$$
; $f = \frac{d \cdot d'}{d + d'}$
 $d = \frac{d' \cdot f}{d' - f}$; $d' = \frac{d \cdot f}{d - f}$

Vật thật: d > 0; trước kính Vật ảo: d < 0; sau kính Ånh thật: d' > 0; sau kính

Ånh ảo: d' < 0; trước kính Số phóng đại ảnh

$$|k| = \frac{A'B'}{AB}$$
; $k = -\frac{d'}{d} = \frac{f}{f-d} = \frac{f-d'}{f}$

Hệ hai thấu kính đồng trục ghép sát

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$
 ; $D = D_1 + D_2$

Hệ hai thấu kính đồng trục ghép cách nhau

Quan hê giữa hai vai trò ảnh và vật của A₁'B₁':

AB
$$\xrightarrow{L_1}$$
 $A_1'B_1' \xrightarrow{L_2}$ $A_2'B_2'$
 $d_1 \quad d_1' \quad d_2 \quad d_2'$
 $d_2 = l - d_1' \quad ; \quad d_1' + d_2 = l$

Số phóng đại ảnh sau cùng:

$$k = k_1.k_2$$

Số bội giác

$$G = \frac{\alpha}{\alpha_0} \approx \frac{\tan \alpha}{\tan \alpha_0}$$

Kính lúp: ngắm chừng ở vô cực

$$G_{\infty} = \frac{OC_{c}}{f} = \frac{D}{f}$$

Kính hiển vi: ngắm chừng ở vô cực

$$G_{\infty} = \left| k_1 \right| . G_2 = \frac{\delta . D}{f_1 . f_2}$$

Kính thiên văn: ngắm chừng ở vô cực

$$G_{\infty} = \frac{f_1}{f_2}$$

SƯ TAO ẢNH BỞI THẦU KÍNH

THẤU KÍNH HỘI TỤ (f > 0)									
VÂT			ÅNH						
Tính chất	V	trí	Tính chất	Vị trí	Chiêu và độ lớn				
	d ≥ 0	d > 2f	THẬT	f < d' < 2f	-1 < k < 0				
		d = 2f		d' = 2f	k = -1				
TILÂT		f < d < 2f		d' > 2f	k < -1				
THẬT		d = f	ko xác định	$d' o \infty$	ko xác định				
		0 < d < f	ÅO	d' < 0	k > 1				
		d = 0	ko xác định	d' = 0	k = 1				
ÅO	d < 0		THẬT	0 < d' < f	0 < k < 1				
	THÁ	ÚU KÍNH F	PHÂN KỲ ((f < O)					
	VẬT		ÅNH						
Tính chất	V	trí	Tính chất	Vị trí	Chiều và độ lớn				
THẬT	d > 0		ÁO	f < d' < 0	0 < k < 1				
	d ≤ 0	d = 0	ko xác định	d' = 0	k = 1				
		f < d < 0	THẬT	d' > 0	k > 1				
ÅO		d = f	ko xác định	$d' o \infty$	ko xác định				
AU		2f < d < f		d' < 2f	k < -1				
		d = 2f	ÅO	d' = 2f	k = -1				

2f < d' < f