Prestazioni CDMA

Andrea Savastano Francesco Musto Mario Zito

December 26, 2024

Contents

1	Cal	colo teorico media e varianza	2
	1.1	Calcolo di $E[X_k]$ e $VAR[X_k]$	2
	1.2	Calcolo di $E[n]$ e $VAR[n]$	2
2 Grafici		3	
	2.1	Distribuzione somma di X_k	3
		Distribuzione somma di X_k	

1 Calcolo teorico media e varianza

 \bullet N: numero di utenti

• \mathcal{E}_s : Energia del segnale trasmesso s

• s_1 : segnale aspettato

• c_n : chirping code dell'utente n-esimo

• L_c : lunghezza del chirping code

$$s_1 = \mathcal{E}_s \pm \sum_{k=1}^{L_c} \left(\sum_{n=2}^{N} c_{1k} \cdot c_{nk} \right) = \mathcal{E}_s \pm \sum_{k=1}^{L_c} X_k$$

• $\{X_k\}_{k=1,\dots,L_c}$: variabili aleatorie indipendenti

1.1 Calcolo di $E[X_k]$ e $VAR[X_k]$

$$\left(c_{nk} \in [-1, 1]\right) \implies \left(E[c_{nk}] = 0\right)$$

$$E[X_k] = E\left[\sum_{n=2}^{N} c_{1k} \cdot c_{nk}\right] = c_{1k} \cdot E\left[\sum_{n=2}^{N} c_{nk}\right] = c_{1k} \cdot \sum_{n=2}^{N} E[c_{nk}] = 0$$

$$VAR[X_k] = E[X_k^2] - E^2[X_k] = E[X_k^2] = E\left[\left(\sum_{n=2}^{N} c_{1k} \cdot c_{nk}\right)^2\right] = E\left[c_{1k}^2 \cdot \sum_{n=2}^{N} c_{nk}^2\right] = E\left[\sum_{n=2}^{N} 1\right] = N - 1$$

1.2 Calcolo di E[n] e VAR[n]

$$E[n] = E\left[\sum_{k=1}^{L_c} X_k\right] = \sum_{k=1}^{L_c} E\left[X_k\right] = \sum_{k=1}^{L_c} 0 = 0$$

$$\left(\{X_k\}_{k=1,\dots,L_c} \text{indipendenti}\right) \implies \left(\text{VAR}[X_1 + X_2 + \dots + X_{L_c}] = \text{VAR}[X_1] + \text{VAR}[X_2] + \dots + \text{VAR}[X_{L_c}]\right)$$

$$\implies \text{VAR}[n] = \text{VAR}\left[\sum_{k=1}^{L_c} X_k\right] = \sum_{k=1}^{L_c} \text{VAR}[X_k] = \sum_{k=1}^{L_c} (N-1) = L_c \cdot (N-1)$$

Applicando il Teorema Centrale del Limite,

essendo $\{X_k\}_{k=1,\dots,L_c}$ indipendenti con $\mathrm{E}[X_k]=0$ e $\mathrm{VAR}[X_k]=(N-1)$ la loro somma genera una variabile aleatoria n con distribuzione Gaussiana e questa è il rumore che si aggiunge in ricezione.

$$\sum_{k=1}^{L_c} X_k = n, \quad \boxed{n \sim \mathcal{N}\left(0, L_c(N-1)\right)} \implies \left(s_1 = \mathcal{E}_s \pm \sum_{k=1}^{L_c} X_k = \mathcal{E}_s \pm n\right)$$

2 Grafici page 3

2 Grafici

2.1 Distribuzione somma di X_k

2 Grafici page 4

2.2 Prestazioni CDMA al variare di SNR_{dB}

2 Grafici page 5

2.3 Prestazioni CDMA al variare di N

