Splash Pad Controller Notes

Aug 13, 2024

Rebuilding The Vault Machinery

- Old System based on Raspberry Pi 3 and two relay banks of 8 relays each.
- Decided to completely redo electronics, but keep the design based on relays instead of a custom circuit board with Mosfets.

Splash Pad Layout

In Vault (B) (G)

Power Control

Power Supply in Wall under Window in Dinning Room

ON / OFF Control

- The toggle switch in the Dining room cabinet controls power to the vault.
- When the splash pad is NOT in use, the switch should be off. This will shut down all power to the vault.
- When the system is off, a master solenoid valve is shut off which shuts down all water into the system.
- When the system is on, a sump pump is activated if there is accumulated water in the vault. Therefore, turn the system on for a few minutes to clear water in the vault.

System Diagram

Notes:

- The Master Solenoid is controlled directly by the input power. If the power dies, water is shut off.
- The system pressure is controlled by the Ball Valve. This means all waterspouts are supplied the same pressure at the same time.
- All pipes from the supply to the channel solenoids are 1/2-inch PVC. Tubes are used after the channel solenoids.

Water Sensor

- If water accumulates (from a leak or rain) in the bottom of the vault, it has no-where to go.
- If accumulated water rises too high, it can destroy the machinery in the vault.
- To mitigate against this, a battery powered water sensor has been installed. If more than about 1 inch of water accumulates, the sensor will emit a loud twerping sound.
- To clear the water, enable the sump pump by turning on the system.

Raspberry Pi Setup

- Using Raspberry Pi 5
- Installed "Raspberry Pi OS with Desktop" version 6.6, Debian 12
- Comes with Python 3.11.2
- Added 192.168.3.23 to DCHP Reservations in beach house router.
- Host name of pi is "SplashVault"
- Used "splash" and pw "hockeypuck" as main account in Raspberry.
- Enabled SSH. Did this by using ssh-keygen on Windows, and coping the .pub file to authorized_keys on pi.
- Able to SSH into pi with "ssh splash@192.168.3.23"
- Did more configurations, so now able to SSH from my office computer with just: ssh splash@SplashVault (no password necessary)

Using Pi Pico (RP2040) to Read Pressure Sensors

• Using Micro Python. Editor: Thorny.

Pressure Sensor

100 psi	
Input: 0-100 psi	
Output: 0.5V~4.5V	linear voltage output. 0 psi outputs 0.5V, 50 psi outputs 2.5V, 100 psi outputs 4.5V.
Accuracy: within 2	% of reading (full scale).
Thread: 1/8"-27 N	PT
Wiring Connector:	Water sealed quick disconnect. Mating connector and wire harness (pigtail) is included.
Wiring: Red for +5\	/; Black for ground; Blue for signal output.
Specifications:	
Material: Stainless	steel
Voltage: DC 5V	
Thread Type: 1/8"	NPT

About \$15 from Amazon

Code in Pico for Pressure Sensors

```
# For Reading Pressure in splash pad vault at the Beach House.
# DLB, Aug 2024
```

The splash pad machine has two pressure sensors. Each sensor # reads PSI from 0 to 100, and outputs the reading in volts over # the range 0.5 to 4.5 volts, where 0 psi is 0.5 volts, and 100 # psi is 4.5 volts.

The signals from the pressure sensors are routed through a # resistor network (2.2K/4.7K) to reduce the maximum voltage # to about 3.1 volts, and then presented to GPIO Pins 26 and 27.

The ADC is used to produce 16 bit readings. These readings # are encoded as follows: "xxxxx,yyyyy/n" where x and y are # digits of the two readings. This string is sent over a # 921600 baud link to the host computer, each time the host # requests the reading by sending a "?".

```
from machine import ADC
from machine import UART, Pin
from time import sleep
vpin1 = ADC(26)
vpin2 = ADC(27)
u = UART(0, baudrate=921600, tx=Pin(0), rx=Pin(1))
buf input = bytearray(10)
v1 = 0
v2 = 0
def run():
  while True:
    sendit = False
    nwaiting = u.any()
    if nwaiting > 0:
     u.readinto(buf_input, nwaiting)
      #print("Received: ", buf_input)
     for i in range(nwaiting):
       if buf_input[i] == b'?'[0]:
         sendit = True
         break
    if sendit:
     s = b"%05d,%05d\n"% (v1, v2)
     u.write(s)
     #print("Sent: " + str(s))
    v1 = vpin1.read_u16()
    v2 = vpin2.read_u16()
```

Raspberry Pi 5 Pinout Diagram

Pico Pinout

Power Connections

(As routed from D	C-DC Convertor)	
,	,	Number of Wires to
Grounds	Terminations at Destination	Power Supply
Pi, Pin 6	1 Terminal, Force Connection	1
Pi, Pin 9	1 Terminal, Force Connection	1
Pico	Force Plug	1
DB25 - A	9 Terminals, Screw Connections	9
DB25 - B	5 Terminals, Screw Connections	5
Relay Board A	Force Plug	1
Relay Board B	Force Plug	1
5 Volts		
Pi, Pin 2	1 Terminal, Force Connection	1
Pi, Pin 4	1 Terminal, Force Connection	1
Pico	Force Plug	1
DB25-B, Pin 12	1 Terminal, Screw Connection	1
DB25-B, Pin 15	1 Terminal, Screw Connection	1
Relay Board A	Force Plug	1
Relay Board B	Force Plug	1
12 Volts		
Relays	2 Wires Jumped to all 16 Relays	2
DB25-B, Pin 9	1 Terminal, Screw Connection	1
DB25-B, Pin 23	1 Terminal, Screw Connection	1

DB25 Connections

DB25 Connector A		DB25 Connector B		
1	Ground		1	
2	Ground		2	
3	Ground		3	
4	Ground		4	
5	Ground		5	
6	Ground		6	
7	Ground		7	
8	Ground		8	
9	Relay 1-A	Solenoid A	9	12 Volts for Master Solenoid
10	Relay 2-A	Solenoid B	10	Ground for Master Solenoid
11	Relay 3-A	Solenoid C	11	
12	Relay 4-A	Solenoid D	12	5 volts for Pressure Sensor 1
13	Relay 5-A	Solenoid E	13	Signal for Pressure Sensor 1
14	Relay 6-A	Solenoid F	14	Ground for Pressure Sensor 1
15	Relay 7-A	Solenoid G	15	5 volts for Pressure Sensor 2
16			16	Signal for Pressure Sensor 2
17	Relay 1-B	Solenoid H	17	Ground for Pressure Sensor 2
18	Relay 2-B	Solenoid I	18	Open Sensor from Ball Valve
19	Relay 3-B	Solenoid J	19	Close Sensor from Ball Valve
20	Relay 4-B	Solenoid K	20	Ground to Ball Valve Sensors
21	Relay 5-B	Solenoid L	21	Relay 8-A: Ball Valve Open
22	Relay 6-B	Solenoid M	22	Relay 8-B: Ball Valve Close
23	Relay 7-B	Solenoid N	23	12 Volts for Sump Pump
24			24	Ground for Sump Pump
25	Ground		25	

Raspberry Pi GPIO Connections

Header Pin	Pi Function	New Connections	Old Connections	
1	3.3v DC	Power for opto-isolators on relay boards	Power for Relay Board	
3	GPIO 02 (SDA, I2C1)	Relay 1-A	Relay 1-A	
5	GPIO 03 (SCL, I2C1)	Relay 2-A	Relay 2-A	
7	GPIO 04 (GPCLK0)	Relay 3-A	Relay 3-A	
9	Gnd	Supply Ground #1		
11	GPIO 17 (SPI1, CE1)	PIO 17 (SPI1, CE1) Relay 4-A		
13	GPIO 27			
15	GPIO 22	Relay 6-A	Relay 6-A	
17	3.3v DC	To LED, Red on LED1. Always On with Power.		
19	GPIO 10 (SPI0 MOSI)	Relay 7-A	Relay 7-A	
21	GPIO 09 (SPI0 MISO)	Relay 8-A	Relay 8-A	
23	GPIO11 (SPI0 SCLK)			
25	Gnd	Gnd for Relay Logic, Bank B		
27	GPIO 00 (SCA0, I2C)	Ball Valve Open Switch		
29	GPIO 05	Ball Valve Close Switch		
31	GPIO 06			
33	GPIO 13 (PWM1)	LED, Green on LED1. High = On.		
35	GPIO 19 (SPI1 MISO)	LED, Red on LED2. High=On		
37	GPIO 26	LED, Green on LED2. High=On		
39	Gnd	Gnd for LED2		
2	5.0 v DC	Input 5 volts to power Pi		
4	5.0 v DC	Input 5 volts to power Pi		
6	Gnd	Supply Ground #2		
8	GPIO 14 (TXD)	To Pico for Serial Com	Relay 1-B	
10	GPIO 15 (RXD)	To Pico for Serial Com	Relay 2-B	
12	GPIO 18 (SPI1 CE0)	Relay 1-B	Relay 3-B	
14	Gnd	To Pico for Serial Gnd		
16	GPIO 23	Relay 2-B	Relay 4-B	
18	GPIO 24	Relay 3-B	Relay 5-B	
20	Gnd	Supply Ground #3		
22	GPIO 25	Relay 4-B	Relay 6-B	
24	GPIO 08 (SPI0 CE0)	Relay 5-B	Relay 7-B	
26	GPIO 07 (SPI0 CE1)	Relay 6-B	Relay 8-B	
28	GPIO 01 (SCL0, I2C)	Relay 7-B		
30	Gnd	Gnd for LED1		
32	GPIO 12 (PWM0)	Relay 8-B		
34	Gnd	Gnd for Relay Logic, Bank A		
36	GPIO 16 (SPI1, CE2)			
38	GPIO 20 (SPI1 MOSI)			
40	GPIO 21 (SPI1 CLK)			

Relay Module Schematic

Power Conversion in Splash Controller Box

- Power Input is 12 volts at up to 30 Amps
- 12 Volts used for all Solenoids
- 5 Volts used for Pi, Pico, Relay Boards and Pressure Sensors
- 3.3 Volts (Produced by Pi) used for Logic side of Relay Boards
- Almost all current carrying wire used in the controller box is 20 AWG Silicon wire.
- 20 AWG wire is rated to 5 Amps.
- 20 AWG silicon wire has a resistance of 62.50 ohms per km, or about 0.01 ohms in a foot. At 30 Amps, Voltage drop would be 0.3 volts. Wire would need to dissipate 9 Watts. (Not good)

DC-DC convertor. Input: 12-24 volts.

Output: 5 Volts at 10 Amps

Spash Pad Control Website

Access this website at: 192.168.3.23:5000

Stops a running program

Runs the program indicated by the pulldown below.

Program selection pulldown

Note: the flow, cadence and duration controls do not work with all programs. That is, some programs take over control of these parameters.

Note: The status numbers only update on a page refresh.

