

REPORTE PRÁCTICA. AFD y AFND

PRÁCTICA. AFD y AFND

ALUMNO: Paredes Cruz Sergio Yael Profesor: Dr. Eduardo Cornejo Veláquez

Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que inician en "0".

```
AFD = (\Sigma, Q, f, q_0, F)

\Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_1\}

Funciones de transición:

f(s_0, 0) = s_1

f(s_0, 1) = s_2

f(s_1, 0) = s_1

f(s_1, 1) = s_1

f(s_2, 0) = s_2

f(s_2, 1) = s_2
```

Table 1: Tabla de transiciones.

Estado	0	1
q 0	q 1	q 2
q 1	q 1	q 1
q ₂	q 2	q 2

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que terminan en "1".

```
AFD = (\Sigma, Q, f, q_0, F)

\Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_1\}

Funciones de transición:

f(s_0, 0) = s_2

f(s_0, 1) = s_1

f(s_1, 1) = s_{s_1}

f(s_1, 0) = s_2

f(s_2, 1) = s_1

f(s_2, 0) = s_2
```

Table 2: Tabla de transiciones.

Estado	0	1
q_0	q ₂	q_1
q 1	q ₂	q_1
q_2	q ₂	q 1

1111100

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que contiene la subcadena "01".

```
AFD = (\Sigma, Q, f, q_0, F)

\Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2, s_3\}

q_0 es el estado inicial.

F = \{s_3\}

Funciones de transición:

f(s_0, 0) = s_1

f(s_0, 1) = s_2

f(s_1, 1) = s_3

f(s_1, 0) = s_1

f(s_2, 1) = s_2

f(s_2, 0) = s_1

f(s_3, 0) = s_3

f(s_3, 1) = s_3
```

Table 3: Tabla de transiciones.

Estado	0	1
q_0	q ₁	q_2
q ₁	q ₁	q 3
q ₂	q ₁	q_2
q ₃	q 3	q 3

Palabras rechazadas:

Ejercicio 4. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

```
AFD = (\Sigma, Q, f, q_0, F)

\Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_1, s_2\}

Funciones de transición:

f(s_0, 0) = s_1

f(s_0, 1) = s_2

f(s_1, 0) = s_1

f(s_2, 1) = s_2

f(s_2, 0) = s_1
```

Table 4: Tabla de transiciones.

Estado	0	1
q 0	q 1	q ₂
q 1	q 1	Х
q ₂	q 1	q ₂

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab'.

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}
s_0 es el estado inicial.
F = \{s_3, s_4\}
Funciones de transición:
f(s_0, a) = s_2
f(s_0, b) = s_5
f(s_0, c) = s_5
f(s_1, a) = s_2
f(s_1, b) = s_4
f(s_1, c) = s_3
f(s_2, a) = s_2
f(s_2, b) = s_2
f(s_2, c) = s_2
f(s_3, a) = s_4
f(s_3, b) = s_5
f(s_3, c) = s_5
f(s_4, a) = s_4
f(s_4, b) = s_3
f(s_4, c) = s_5
f(s_5, a) = s_4
f(s_5, b) = s_5
f(s_5, c) = s_5
Palabras acptadas:
acb
aaab
acbb
```

Table 5: Tabla de transiciones.

Estado	а	b	С
<i>s</i> ₀	<i>S</i> ₁	S 5	S 5
<i>S</i> ₁	<i>S</i> ₄	s 3	s ₂
s ₂	s ₂	s ₂	s ₂
s 3	S 4	S 5	S 5
<i>S</i> ₄	S 4	s 3	S 5
S 5	S 4	S 5	S 5

aab acbb Palabras rechazadas: aaaaaa bbbb abaaaa abbbb cccca

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminen con la subcadena "ab'.

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}
s_0 es el estado inicial.
F = \{s_0, s_1, s_2, s_3, s_4\}
Funciones de transición:
f(s_0, a) = s_1
f(s_0, b) = s_3
f(s_0, c) = s_3
f(s_1, a) = s_6
f(s_1, b) = s_6
f(s_1, c) = s_3
f(s_2, a) = s_3
f(s_2, b) = s_5
f(s_2, c) = s_2
f(s_3, a) = s_3
f(s_3, b) = s_4
f(s_3, c) = s_2
f(s_4, a) = s_3
f(s_4, b) = s_5
f(s_4, c) = s_2
f(s_5, a) = s_3
f(s_5, b) = s_5
f(s_5, c) = s_2
f(s_6, a) = s_6
f(s_6,b)=s_6
f(s_6, c) = s_6
```

Table 6: Tabla de transiciones.

Estado	а	b	С
<i>s</i> ₀	<i>S</i> ₁	s 6	s 6
<i>S</i> ₁	s 6	s 6	s ₂
s ₂	s 3	S 5	S 4
S 3	s 3	<i>S</i> ₄	s ₂
<i>S</i> ₄	s 3	S 5	s ₂
S 5	s 3	S 5	s ₂
<i>S</i> ₆	S 6	S 6	S 6

Palabras acptadas:

ac

acb

acca

acaaa

acbcbc

Palabras rechazadas:

ab

acbababab acab acabab cacab

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4\}
q_0 es el estado inicial.
F = \{s_2, s_3, s_4\}
Funciones de transición:
f(s_0, a) = s_1
f(s_0, b) = s_4
f(s_0, c) = s_4
f(s_1, c) = s_2
f(s_1, a) = s_4
f(s_1, b) = s_4
f(s_2, a) = s_2
f(s_2, b) = s_2
f(s_2, c) = s_2
f(s_3, a) = s_3
f(s_3, c) = s_3
f(s_3, b) = s_4
f(s_4, a) = s_3
f(s_4, b) = s_4
f(s_4,c)=s_4
```

Table 7: Tabla de transiciones.

Estado	а	b	С
q ₀	q_1	q ₄	q ₄
q 1	q 4	q ₄	q ₂
q ₂	q_2	q ₂	q ₂
q 3	q 3	q ₄	q 3
q ₄	q 3	q ₄	q ₄

Palabras aceptadas: ac, aca, cab, bca, cca Palabras rechazadas: ab, bab, acab, aab, acb

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3\}
q_0 es el estado inicial.
F = \{s_0, s_1, s_3\}
Funciones de transición:
f(s_0, a) = s_1
f(s_0, b) = s_3
f(s_0, c) = s_3
f(s_1, a) = s_1
f(s_1, b) = s_1
f(s_1, c) = s_2
f(s_2, a) = s_2
f(s_2, b) = s_2
f(s_2, c) = s_2
f(s_3, a) = s_3
f(s_3, b) = s_3
f(s_3, c) = s_3
```

Table 8: Tabla de transiciones.

Estado	а	b	С
q_0	q 1	q 3	q 3
q 1	q ₁	q ₁	q ₂
q 2	q 2	q 2	q 2
q 3	q 3	q 3	q 3

Palabras aceptadas: b, c, baa, caa, cca

Palabras rechazadas: ac, acab, aab, cab, acb

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

```
AFND = (\Sigma, Q, f, q_0, F)

\Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_0, s_1\}

Funciones de transición:

f(s_0, 0) = s_0

f(s_0, 1) = s_1

f(s_1, 1) = s_1

f(s_1, 0) = s_2

f(s_2, 0) = s_2

f(s_2, 1) = s_2
```

Table 9: Tabla de transiciones.

Estado	0	1
q 0	q 0	q 1
q 1	q 2	q 1
q 2	q 2	q 2

Palabras aceptadas: 0, 00, 111, 000, 111111 Palabras rechazadas: 01, 001, 101, 1101, 10001

