

UNIVERSIDAD DE GRANADA

BIG DATA II MÁSTER CIENCIA DE DATOS E INGENIERÍA DE COMPUTADORES

PRÁCTICA

Análisis de datos en Big Data

Autor

Ignacio Vellido Expósito ignaciove@correo.ugr.es

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

 $Curso\ 2020\hbox{-}2021$

Índice

1.	Intr	roducción
	1.1.	Conjunto de datos
	1.2.	Técnicas aplicadas
2.	Aná	alisis de resultados
	2.1.	Sobre las técnicas de aprendizaje
		Sobre las técnicas de selección de características
	2.3.	Sobre las técnicas de balanceo de datos
	2.4.	Sobre las técnicas de reducción de ruido
	2.5.	Sobre las técnicas de reducción de instancias

1. Introducción

1.1. Conjunto de datos

Para esta práctica tenemos un subconjunto de SUSY Data Set (https://archive.ics.uci.edu/ml/datasets/SUSY), un problema de clasificación binaria donde existe un ratio de desbalanceo de 10-90. La tarea consiste en distinguir la señal que produce una partícula supersimétrica frente a una posible señal cde fondo que se puede captar.

El dataset cuenta con dos millones de datos (1.000.000 de entrenamiento, 1.000.000 de test) con 18 características numéricas reales, y las siguientes medidas estadísticas:

	Train			Test				
Columna	Max	Min	Mean	Variance	Max	Min	Mean	Variance
1	16.89	0.25	1.23	0.62	15.65	0.25	1.23	0.62
2	2.10	-2.10	-9.92e-4	0.79	2.10	-2.10	-4.19e-4	0.79
3	1.73	-1.73	-5.97e-4	1.00	1.73	-1.73	0.00	1.00
4	17.73	0.42	1.11	0.53	18.18	0.42	1.11	0.53
5	2.05	-2.05	-3.46e-4	0.83	2.05	-2.05	7.25e-5	0.83
6	1.73	-1.73	6.71	1.00	1.73	-1.73	0.00	1.00
7	21.00	9.42	1.34	1.14	21.00	7.19	1.33	1.14
8	1.74	-1.72	0.00	1.00	1.74	-1.72	0.00	1.00
9	23.38	7.69	1.22	1.16	22.56	9.23	1.22	1.16
10	16.93	-15.33	0.06	1.73	17.69	-13.10	0.06	1.74
11	14.93	0.26	1.14	0.43	15.73	0.26	1.14	0.43
12	14.36	0.00	1.21	0.45	14.99	0.00	1.21	0.45
13	5.81	0.00	1.04	0.23	6.03	0.00	1.04	0.23
14	20.68	0.00	1.05	0.92	14.57	0.00	1.06	0.92
15	14.89	0.05	1.14	0.42	15.78	0.05	1.14	0.42
16	15.61	0.00	1.15	0.47	11.33	0.00	1.15	0.47
17	1.59	8.22	1.01	0.18	1.59	2.57	1.01	0.18
18	1.0	3.52	0.27	0.04	1.0	5.89	0.27	0.04

Cuadro 1: Medidas estadísticas del conjunto de datos.

En base a la descripción del dataset en la página de la UCI, las primeras 8 características reflejan propiedades de las partículas medidas en un acelerador, y las 10 siguientes indican el resultado de diferentes funciones a partir de estas variables. Estas variables derivadas no aportan información nueva pero indica que puede resultar de ayuda en la clasificación de la fila.

Tal y como vemos en la Tabla 1, las columnas del conjunto de datos se distribuyen en rangos diferentes, aunque de manera similar entre entrenamiento y test. Por ello, normalizaremos los datos antes de pasarlos por los algoritmos, haciendo uso del conjunto de funciones de KeelParser.

1.2. Técnicas aplicadas

Las diferentes técnicas aplicadas en esta práctica son:

- De aprendizaje:
 - Árboles de decisión (MLlib.tree.DecisionTree).
 - Random Forest (MLlib.tree.RandomForest).
 - PCARD (MLlib.tree.PCARD).
 - kNN-IS (MLlib.classification.kNN IS).
- De preprocesamiento:
 - Selección de características:
 - o Principal Component Analysis.
 - Ajuste de desbalanceo:
 - Random Oversampling.
 - Random Undersampling.
 - Filtrado de ruido:
 - Homogeneous Ensemble (HME).
 - o NCNEdit.
 - Selección de instancias:
 - o FCNN.
 - SSMA-SFLSDE.

La metodología seguida durante la práctica consistió comparar el mayor número de combinaciones posibles, no por ello reflexionando sobre la coherencia en el uso conjunto de algunas de ellas. En este caso, puesto que en el algoritmo PCARD aplica a los datos de entrada PCA, no se ha aplicado ninguna técnica de reducción de características en sus experimentos.

Para hacer esta exploración de flujos los algoritmos fueron entrenados con unos parámetros por defecto. Finalmente, a partir de los mejores resultados obtenidos para cada método, se realizó una optimización de los hiperparámetros para alcanzar el mayor valor de TPR x TNR posible.

El flujo de técnicas de preprocesamiento de acorde a su uso es el siguiente:

- 1. Selección de características
- 2. Under Over-sampling
- 3. Filtrado de ruido
- 4. Selección de instancias

La justificación es la siguiente: En base al conjunto de datos de entrenamiento con el que contamos, pretendemos reducir la dimensionalidad sin perder excesiva información. Puesto que el dataset cuenta con un ratio de desbalanceo del 90 %, RO y RU ajustan los datos para evitar un sesgo en las técnicas de clasificación. El uso de estas técnicas puede

generar ruido adicional además del propio ruido inherente que debemos suponer que existe en nuestros datos, por lo que aplicamos técnicas de filtrado para eliminarlo. Finalmente, para agilizar el proceso de clasificación, seleccionamos el conjunto de instancias con mayor varianza del conjunto.

A continuación se indican los parámetros utilizados en cada una de las técnicas:

De aprendizaje:

- Árboles de decisión: Se entrenan árboles con medida GINI, máxima profundidad de 5 y número de particiones a 32.
- Random Forest: De igual manera, los árboles se entrenan con medida GINI, máxima profundidad de 5 y número de particiones a 32. Se limita el número máximo de árboles entre 100 y 150.
- PCARD: El número de cortes se fija a 5, y el número de árboles entre 10 y 15.
- kNN-IS: Utilizando distancia euclídea, movemos el valor de k entre 5 y 7 y el de particiones a 10.

■ De preprocesamiento:

- Selección de características:
 - o Principal Component Analysis: Reducción al 50 % (9 características).
- Ajuste de desbalanceo:
 - Random Oversampling: Incremento del 50 %.
 - Random Undersampling: Decremento hasta alcanzar igualdad en el número de instancias por clase.

• Filtrado de ruido:

- Homogeneous Ensemble (HME): Número de árboles fijado a 100, con máxima profundidad de 10 y 4 particiones.
- o NCNEdit: Se consideran los 3 vecinos más cercanos.
- Selección de instancias:
 - o FCNN: Se consideran los 3 vecinos más cercanos.
 - $\circ \ \mathbf{SSMA\text{-}SFLSDE}.$

2. Análisis de resultados

En esta sección se pretende analizar aquellos resultados obtenidos más relevantes. Algunos argumentos también se sustentan sobre las tablas completas de experimentos (con información adicional sobre ellos) que se encuentran en la sección *Tablas de resultados*.

Algoritmo	Selección de características	$egin{array}{c} { m Under/Over} \ { m sampling} \end{array}$	Filtrado de ruido	Selección de instancias	TPR x TNR
Decision Tree	No	RUS	HME	FCNN	0.606
Random Forest	No	RUS	HME	FCNN	0.607
PCARD	-	RUS	No	No	0.598
kNN-IS	No	RUS	HME	No	0.526

Cuadro 2: Flujo de preprocesamiento para los mejores resultados de cada algoritmo tras la optimización de parámetros.

2.1. Sobre las técnicas de aprendizaje

En términos de los algoritmos de clasificación, tal y como se muestra en la tabla 2, obtenemos prácticamente la misma calidad con cualquiera de ellos (variando en las milésimas), siendo ligeramente superior Random Forest y Árboles de Decisión. Para ambas técnicas el flujo de preprocesamiento coincide, reduciendo el tamaño del conjunto de datos a un 10 % del tamaño original.

Mediante las tablas 4 y 5 vemos que independientemente del preprocesamiento los resultados son muy similares en los dos casos, probablemente debido al estar un algoritmo formado como ensamblado del otro. A pesar de eso, en media vemos RF ser más robusto con RUS mientras que DT funciona bien con ROS.

Sobre PCARD, aunque se alcanza el máximo con las mínimas técnicas de preprocesamiento (ajustar el desbalanceo es imprescindible en este problema, y los resultados lo demuestran) no llega a ser malo

Respecto a kNN, notamos peor calidad independientemente de la técnica y parámetros con los que se ha probado.

2.2. Sobre las técnicas de selección de características

Como se dijo anteriormente, hemos aplicado PCA únicamente a los algoritmos donde tiene sentido, pero a partir de las tablas vemos que los resultados empeoran tras su uso.

Hacemos notar que PCARD se comporta mejor que los árboles de decisión con PCA, a pesar de acabar teniendo un flujo similar. El razonamiento lo achacamos a la discretización aleatoria (RD) de PCARD, que elija el tamaño de los intervalos de manera más inteligente que el de 32 con el que se han entrenado los árboles.

A pesar de todo, podríamos considerar si la reducción de dimensionalidad conseguida es aceptable a costa de la cantidad de empeoramiento obtenida. En este problema, pasando de una media de 0.593 a 0.584, que corresponde a una clasificación errónea de 593000 – 584000 = 9000 instancias más, dada la semántica del problema no parece una pérdida substancial (si en otro caso tratáramos con un problema médico habría que considerar independientemente el TPR y el TNR antes de tomar esta decisión).

		Average	STD	Max
	No	0.282	0.234	0.565
Filtrado de ruido	HME	0.339	0.226	0.575
	NCNEdit	0.273	0.249	0.564
Selección de instancias	No	0.321	0.244	0.575
Selection de instancias	FCNN	0.277	0.219	0.574
Selección de características	No	0.328	0.214	0.593
Selección de características	PCA	0.252	0.225	0.584
	No	0.070	0.092	0.208
Balanceo de datos	ROS	0.415	0.229	0.521
	RUS	0.373	0.210	0.575

Cuadro 3: Media de resultados de las diferentes técnicas de preprocesamiento.

2.3. Sobre las técnicas de balanceo de datos

No solo RUS ayuda a acelerar la tarea de aprendizaje, también nos da los mejores resultados. En media vemos que se comporta peor que ROS, debido probablemente a que su combinación con técnicas de selección de instancias reduce en algunos casos de manera excesiva el conjunto de datos.

2.4. Sobre las técnicas de reducción de ruido

Respecto al filtrado de ruido, los resultados dan a entender de que el dataset no es de por sí bastante ruidoso, y el posible ruido introducido por las otras técnicas no influyente. No por ello vemos que HME ayuda en la obtención de los mejores valores de TPR x TNR y funciona mejor en este conjunto de datos que NCNEdit

2.5. Sobre las técnicas de reducción de instancias

Vemos que el uso de FCNN apenas altera los resultados, pero no por ello deja de ser útil, pues en reduce en torno al $50\,\%$ el conjunto de datos, y una situación de big data como la que nos encontramos esto es totalmente deseable, ya que reducimos tiempo de cómputo y carga en el sistema.

Finalmente, indicamos que aunque la técnica SSMA sobrepasa el límite de 4GB de memoria impuesto en la práctica, en base a las dos ejecuciones con las que contamos (de los primeros días cuando el límite estaba en 46GB) vemos que la reducción en el número de instancias es extremadamente grande, llegando a obtener subconjuntos de 12.000 y 20.000 instancias. A pesar de ello no se obtienen resultados de relevancia, siendo peores que los conseguidos mediante otras técnicas.

		Average	STD	Max
	No	0.288	0.253	0.589
Filtrado de ruido	HME	0.339	0.231	0.593
	NCNEdit	0.292	0.255	0.584
Selección de instancias	No	0.333	0.256	0.597
Selection de instancias	FCNN	0.289	0.231	0.593
Selección de características	No	0.341	0.241	0.593
Selection de caracteristicas	PCA	0.272	0.242	0.584
	No	0.066	0.070	0.215
Balanceo de datos	ROS	0.426	0.136	0.542
	RUS	0.284	0.273	0.593

Cuadro 4: Efectos de las diferentes técnicas de preprocesamiento para árboles de decisión.

		Average	STD	Max
	No	0.239	0.250	0.583
Filtrado de ruido	HME	0.294	0.238	0.587
	NCNEdit	0.222	0.252	0.585
Selección de instancias	No	0.278	0.257	0.585
Selection de instancias	FCNN	0.224	0.229	0.587
Selección de características	No	0.316	0.258	0.587
Selection de caracteristicas	PCA	0.187	0.211	0.511
	No	0.039	0.184	0.196
Balanceo de datos	ROS	0.353	0.273	0.532
	RUS	0.362	0.179	0.587

Cuadro 5: Efectos de las diferentes técnicas de preprocesamiento para Random Forest.

		Average	STD	Max
	No	0.309	0.273	0.597
Filtrado de ruido	HME	0.369	0.241	0.595
	NCNEdit	0.286	0.290	0.593
Selección de instancias	No	0.362	0.268	0.597
Selection de instancias	FCNN	0.281	0.252	0.595
	No	0.072	0.076	0.186
Balanceo de datos	ROS	0.496	0.325	0.542
	RUS	0.397	0.220	0.597

Cuadro 6: Efectos de las diferentes técnicas de preprocesamiento para PCARD.

		Average	STD	Max
	No	0.292	0.159	0.491
Filtrado de ruido	HME	0.354	0.193	0.525
	NCNEdit	0.294	0.200	0.492
Selección de instancias	No	0.313	0.195	0.525
Selection de instancias	FCNN	0.313	0.165	0.521
Selección de características	No	0.328	0.177	0.525
Selection de caracteristicas	PCA	0.299	0.188	0.516
	No	0.103	0.038	0.235
Balanceo de datos	ROS	0.386	0.180	0.432
	RUS	0.448	0.167	0.525

Cuadro 7: Efectos de las diferentes técnicas de preprocesamiento para kNN.

3. Tablas de resultados

Algorithm	Noise Filtering	Instance selection	Under/Oversampling	Instance selection	Final training instances	Accuracy	TPR x TNR
				No	1,000,000	0.900	0.000
			No	ROS	1,350,901	0.788	0.578
		No		RUS	200,160	0.753	0.589
		No		No	1,000,000	0.900	0.000
			PCA	ROS	1,350,854	0.805	0.442
	No			RUS	200,171	0.644	0.503
	No			No	327,863	0.890	0.215
			No	ROS	754,343	0.800	0.563
		ECNINI		RUS	10	0.900	0.000
		FCNN		No	327,947	0.887	0.127
			PCA	ROS	758,771	0.807	0.438
				RUS	10	0.900	0.000
				No	903,094	0.902	0.049
			No	ROS	836,576	0.841	0.502
		N-		RUS	157,627	0.727	0.592
	НМЕ	FCNN -	PCA	No	901,966	0.901	0.041
				ROS	807,345	0.896	0.072
				RUS	151,299	0.690	0.519
БТ			No	No	30,577	0.898	0.142
DT				ROS	450,797	0.831	0.520
				RUS	105,534	0.736	0.593
			PCA	No	23,870	0.892	0.122
				ROS	431,957	0.826	0.399
				RUS	101,441	0.698	0.519
			NI-	ROS	22,395	0.865	0.260
		SSMA	No	RUS	12,104	0.603	0.516
				No	878,496	0.901	0.015
			No	ROS	981,405	0.816	0.548
		No		RUS	200,047	0.758	0.584
		No		No	878,286	0.900	0.005
			PCA	ROS	977,415	0.784	0.452
	NCNES			RUS	200,235	0.634	0.496
	NCNEdit			No	80,104	0.901	0.052
			No	ROS	340,780	0.817	0.551
		ECNIAL		RUS	10	0.900	0.000
		FCNN		No	78,203	0.900	0.018
			PCA	ROS	340,699	0.822	0.424
				RUS	10	0.900	0.000
							0.593

Figura 1: Tabla de resultados del algoritmo Decision Tree.

Algorithm	Noise Filtering	Instance selection	Under/Oversampling	Instance selection	Final training instances	Accuracy	TPR x TNR
				No	1,000,000	0.900	0.000
			No	ROS	1,350,214	0.819	0.530
	No -	No		RUS	199,746	0.736	0.583
		NO	PCA	No	1,000,000	0.900	0.000
				ROS	1,349,043	0.890	0.129
				RUS	200,103	0.653	0.503
	140			No	327,863	0.894	0.182
			No	ROS	754,464	0.821	0.521
		FCNN		RUS	10	0.900	0.000
		TCIVIV		No	327,947	0.900	0.000
			PCA	ROS	759,247	0.825	0.419
				RUS	10	0.900	0.000
				No	903,094	0.901	0.011
			No	ROS	813,512	0.871	0.347
	НМЕ	No FCNN		RUS	158,309	0.731	0.585
			PCA	No	901,966	0.900	0.000
				ROS	817,594	0.900	0.007
RF				RUS	151,891	0.649	0.511
NF.			No	No	30,577	0.895	0.196
				ROS	451,715	0.817	0.532
				RUS	105,913	0.739	0.587
			PCA	No	23,875	0.899	0.083
				ROS	427,801	0.891	0.188
				RUS	101,747	0.619	0.477
				No	878,496	0.900	0.000
			No	ROS	981,334	0.831	0.512
		No		RUS	199,074	0.725	0.585
		INO		No	878,286	0.900	0.000
			PCA	ROS	979,265	0.884	0.200
	NCNEdit			RUS	199,605	0.658	0.509
	INCINEUIL			No	80,104	0.900	0.000
			No	ROS	340,931	0.824	0.523
		ECNINI		RUS	10	0.900	0.000
		FCNN		No	78,203	0.900	0.000
			PCA	ROS	342,209	0.854	0.333
				RUS	10	0.900	0.000
							0.587

Figura 2: Tabla de resultados del algoritmo Random Forest.

Algorithm	Noise Filtering	Instance selection	Under/Oversampling	Instance selection	Final training instances	Accuracy	TPR x TNR
				No	1,000,000	0.901	0.018
			No	ROS	1,349,105	0.838	0.515
		No		RUS	199,843	0.738	0.597
		NO	PCA	No	Х	X	X
				ROS	Х	X	X
	No			RUS	Х	X	X
	INO			No	327,863	0.897	0.186
			No	ROS	754,526	0.826	0.539
		FCNN		RUS	10	0.900	0.000
		PCININ		No	X	X	X
			PCA	ROS	X	X	X
				RUS	X	X	X
				No	903,094	0.902	0.037
			No	ROS	800,941	0.879	0.358
		No		RUS	158,588	0.718	0.594
	нме		PCA	No	Х	Х	X
				ROS	Х	Х	X
DCARD				RUS	Х	Х	X
PCARD		FCNN	No PCA	No	30,577	0.901	0.124
				ROS	438,282	0.843	0.507
				RUS	106,099	0.730	0.595
				No	Х	X	X
				ROS	Х	X	X
				RUS	Х	X	X
				No	878,496	0.900	0.001
			No	ROS	982,131	0.831	0.542
		No		RUS	199,965	0.726	0.593
		INO		No	Х	Х	X
			PCA	ROS	Х	Х	X
	NONEJA			RUS	Х	Х	X
	NCNEdit			No	80,104	0.902	0.069
			No	ROS	342,103	0.838	0.513
		ECNIN		RUS	10	0.900	0.000
		FCNN		No	Х	Х	X
			PCA	ROS	Х	Х	Х
				RUS	Х	Х	Х
							0.597

Figura 3: Tabla de resultados del algoritmo PCARD.

Algorithm	Noise Filtering	Instance selection	Under/Oversampling	Instance selection	Final training instances	Accuracy	TPR x TNR
				No	1,000,000	0.887	0.134
		N-	No	ROS	1,351,028	0.775	0.389
				RUS	199,961	0.652	0.491
		No		No	1,000,000	0.887	0.125
			PCA	ROS	1,350,241	0.776	0.379
	No			RUS	200,157	0.657	0.490
	INO			No	327,863	0.849	0.235
			No	ROS	754,740	0.735	0.374
		FCNN		RUS	10		
		PCININ		No	327,947	0.850	0.231
			PCA	ROS	760,288	0.734	0.366
				RUS	10	0.900	0.000
				No	903,094	0.901	0.024
			No	ROS	849,438	0.805	0.342
		No		RUS	158,009	0.635	0.525
			PCA	No	901,966	0.900	0.017
	нме			ROS	818,533	0.818	0.310
KNN				RUS	151,560	0.633	0.516
KININ		FCNN	No PCA	No			
				ROS	449,224	0.757	0.392
				RUS	106,229	0.636	0.521
				No			
				ROS	436,610	0.763	0.382
				RUS	101,019	0.634	0.512
				No	878,496	0.900	0.030
			No	ROS	981,398	0.810	0.432
		No		RUS	199,834	0.652	0.492
		No		No	878,286	0.900	0.027
			PCA	ROS	976,648	0.813	0.416
	NCNEdit			RUS	199,712	0.656	0.490
	INCINEUIT			No	80,104	0.891	0.107
			No	ROS	340,985	0.784	0.432
		FCNN		RUS	10		
		FCININ		No	78,203	0.891	0.099
			PCA	ROS	342,429	0.785	0.420
				RUS	10		
							0.525

Figura 4: Tabla de resultados del algoritmo kNN-IS.