AD/A-000 452

CHARACTERISTICS OF THE AREAS IN WHICH FAST CURRENT OIL CONTROL IS NEEDED

W. F. Hammer, et al

Coast Guard Washington, D. C.

November 1973

DISTRIBUTED BY:

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof.

The contents of this report of not necessarily reflect the official view or policy of the Coast Guard, and they do not constitute a standard, specification or regulation.

This report, or portions thereof, may not be used for advertising, publication, or promotional purposes. Citation of trade names and manufacturers does not constitute endorsements or approval of such products.

White Section	B
Buli Section	

AVAILABILITY CO	
1	
	Buli Section

J. BUDRIDGE

Commander, U. S. Coast Guard
Acting Chief, Environmental and
Transportation Technology Division
Office of Research and Development
U. S. Coast Guard Headquarters
Washington. D. C. 20590

work

ia

			Technical Report Documentation rage				
1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog No.				
CG-D-103-74			AD/A-000 45-2				
4. Title and Subtitle			5. Report Date				
Characteristics of the	e Areas in whi	ch Fast	November 1973 6. Performing Organization Code				
Current Oil Control is Needed							
7. Author(s)			8. Performing Organization Report No.				
Hammer, Koburger, and	Jensen						
9. Performing Organization Name and Addres			10. Work Unit No. (TRAIS)				
			744.111.4				
Pollution Prevention		h	11. Contract or Grant No.				
Office of Research and	d Development						
10.6		· - · · · · · · · · · · · · · · · · · ·	13. Type of Report and Period Covered				
12. Sponsoring Agency Name and Address			Final Report				
U. S. Coast Guard			Parket Report				
Office of Research and			14 Sponsoring Agency Code				
Washington, D. C. 2059	90		G-DET-1/62				
15. Supplementary Notes							
Reprod best av	Reproduced from best available copy.						
16. Abstract							
Fresent oil spill control measures are effective only in currents up to between 0.3 and 1.0 knet, depending on the characteristics of the oil and ocean conditions. There are, however, a number of high oil pollution risk areas in which faster currents prevail, or where it is desirable to tow control equipment at higher speeds. The Atlantic, Pacific and Gulf Coasts, the Inland Area, and the Great Lakes were examined. Forty-four high risk areas were located, determined on the basis of a composite of oil concentration and spill frequency. These included inland rivers (12 of them), open rivers (13), bays (5), channels (5), harbors (4), canals (3), and intracoastal waterways (2). Their specific environmental characteristics current, tide, water and lair temperature, wave heights, and wind are identified, discussed and analyzed. From this, the necessary environmental performance characteristics of fast current oil spill control systems are described, in relation to their expected use.							
17. Key Words		18, Distribution State	ment				
Oil Polantion, Environ Criteria, Fast Current System			Conies may be obtained from L Technical Information				
19. Security Classif. (of this report)	20. Security Class	if. (of this page)	21- No. of Pages 22. Price				
			102				
Unclassified	Unclas	ssified	5.25				

Form DOT F 1700.7 (8-72)

CHARACTERISTICS OF THE AREAS IN WHICH FAST CURRENT OIL CONTROL IS NEEDED

bу

CAPT W. F. Hammer USCGR, CDR C. W. Koburger USCGR, and LT. D. S. Jensen USCG

POLLUTION PREVENTION PROJECTS BRANCH Office of Research and Development U. S. Coast Guard Washington, D. C. 20590

November 1973

TABLE OF CONTENTS

SUMMARY OF FINDINGS)
APPROACH TO THE PROBLEM AND METHODS UTILIZED	9
FINDINGS · · · · · · · · · · · · · · · · · · ·	15
CONCLUSIONS · · · · · · · · · · · · · · · · · · ·	22
LIMITS OF THE STUDY AND FUTURE WORK	23
ACKNOWLEDGEMENTS · · · · · · · · · · · · · · · · · · ·	26
RAW DATA: TABLES	27
FIGURES · · · · · · · · · · · · · · · · · · ·	56
REFERENCES - Literature · · · · · · · · · · · · · · · · · · ·	79
Personal Interviews · · · · · · · · · · · · · · · · · · ·	32
Marine Environmental Protection Officers · · · · · · · · · · · · · · · · · · ·	33
Telephone Interviews · · · · · · · · · · · · · · · · · · ·	34
APPENDICES - I. Study System Phases · · · · · · · · · · · · · · · · · ·	36
II. Environmental Criteria Worksheet · · · · · · · · · · · · · · · · · ·	38

LIST OF TABLES

		PAGE
Α.	Selected Sample of Areas of High Risk Pollution	29
в.	Rank Order of Petroleum Concentration	33
С.	Spill Quanticies of Oil Per Spill	36
D.	Spill Quantities by Size and Source	38
Ε.	Environmental Criteria Results Areas	40
E2.	Environmental Criteria Results Waters	41
Е3.	Comparison Environmental Criteria - Results Geographic Areas and Waters	42
F.	Environmental Criteria - Currents and Tides - Atlantic - · · ·	44
G.	Environmental Criteria - Temperatures, Water and Air - Atlantic	46
н.	Environmental Criteria - Waves and Wind - Atlantic \cdot · · · ·	48
I.	Environmental Criteria - Currents and Tides - Gulf and Pacific	50
J.	Environmental Criteria - Temperatures, Water and Air - Gulf and Pacific · · · · · · · · · · · · · · · · · · ·	52
к.	Environmental Criteria - Waves and Wind, Gulf and Pacific · ·	54
L.	Environmental Criteria - Currents and Tides, Inland and Great Lakes	56
М.	Environmental Criteria - Temperatures, Water and Air, Inland and Great Lakes · · · · · · · · · · · · · · · · · · ·	58
N.	Environmental Criteria - Waves and Wind, Inland and Great Lakes · · · · · · · · · · · · · · · · · · ·	60
0.	Support Criteria - Aircraft Availability	61
P.	Support Criteria Vessel Availability - Atlantic	62
Q.	Support Criteria Vessel Availability - Gulf & Inland	64
R.	Support Criteria Vessel Availability - Pacific & Great Lakes .	65

LIST OF FIGURES

		PAGE
1.	SPILL HISTORY - Geographic Areas	67
2.	SPILL HISTORY - Waters within Areas · · · · · · · · · · · · · · · · · · ·	69
3.	SOURCE OF POLLUTING SPILLS	71
4.	SPILLS BY DISTRICT - RANK ORDER	73
5.	SPILL CONTROL AREAS - HIGH RISK	75

SUMMARY OF FINDINGS

The general purpose of this study is to survey the characteristics of the geographic areas in which fast current oil control systems are currently required, in order to define the requirements for such a system. More specifically, the objectives of this study are:

- 1. Examine the natural geographic areas of the U. S., establishing those with high oil concentrations and spill frequencies, using data available as of mid-1973.
- 2. Identify a representative sample of present high pollution risk areas, and categorize them by hydrographic type.
- 3. Define the environmental characteristics within each selected risk area and hydrographic type.
- 4. Provide results which can be used to help define requirements to be used in development of a fast current oil control system.

High Risk Areas:

An original 131 specific geographic areas showed a concentration of oil (combined production, traffic and storage) mounting to more than 3 million barrels each. These were compared with areas showing a high spill frequency, and therefore a high spill potential. Geographic characteristics were fed into the calculation, and a representative sample of 44 high risk areas were chosen:

General Areas	High Risk Locations
Atlantic	17 areas
Gulf	5 areas
Pacific	10 areas
Inland	9 areas
Great Lakes	3 areas
	44 areas

Sorted another way -- by type of water body -- the breakdown is as follows:

Waters

Inland Rivers	12
Open Rivers	13
Bays	5
Channels	5
Harbors	4
Canals	3
Intracoastal Waterways	_2

44

The Atlantic Coast area experiences almost half (44.3 percent) of all oil spilled, by volume. The Gulf Coast, Great Lakes, Inland area, and Pacific Coast account for about 14 percent each. Rivers were found to be the waters with the greatest quantities of pollutant oil, carrying 40 percent of the total volume. Harbors were next with almost 15 percent; followed by bays, estuaries and sounds with 13 percent; and the contiguous zone open waters with 10 percent. Channels and other miscellaneous waters

such as beaches and non-navagable streams accounted for the remaining 22 percent between them.

The statistics on spill frequency show that the Gulf Coast averages the greatest <u>number</u> of spills, with almost half (44.8 percent) of the total. The Atlantic Coast was second, with a quarter (24.3 percent) of the spills, and the Pacific Coast had a fiftle. It was found that the harbors had the greatest spill frequency, almost a third (31.2 percent) of the total. Bays, estuaries and sounds were a high second (28.1 percent). Rivers and contiguous open waters followed with a little over 14 percent each.

It should be noted that the statistical positioning above could be either in whole or part the combined result of better reporting procedures in one area over another, greater volume of oil flow, and/or operational carelessness. Since these relationships have continued for years, however, they appear to be valid characteristics of the geographic areas in question.

Environmental Characteristics:

Next in this study, environmental parameters in the selected high risk areas were identified, as were those in the hydrographic categories ("waters") within the areas. The study reveals sets of applicable and significant data relative to each parameter.

The average of the highest currents in the areas was found to be 5.8 knots. The extreme high current was 12 knots. The tide results show extremes of as high as 15.3 feet; average highs of from 9.5 feet to 7.2 feet were found. The water temperatures (F) reveal extremes of as high as 93° and as low as 33° . The air temperature (F) ranged in its

extremes from 114° to -39°, with record average mean temperatures of 58°-59°. The data shows that the waves can be expected to be less than 5-6 feet 79 to 80 percent of the time. The highest wind found was 104 knots; a wind of between 7 and 17 knots can be expected 51 to 52 percent of the time.

Nothing in this study deals with future long-range shifts in the oil concentration areas. These shifts may be major, and they could significantly modify the findings of this paper. Battelle Columbus Labs is conducting two studies that consider the effects of these changes, and the results will be combined with the present paper to develop the notual oil control design goals.

The study also does not attempt to categorize the types of oils shipped or otherwise handled in the selected high risk areas. Battelle, in its two oil traffic pattern studies conducted for the Coast Guard, analyzes four petroleum commodities (gasoline, distillate fuel oils, residual fuel oils and crude oil) for several of the high risk locations. These reports are available to the public through the National Technical Information Service, Springfield, Virginia 22151.

APPROACH TO THE PROBLEM AND METHODS UTILIZED

Research, tests and evaluations by the Office of Research and Development indicate that in high currents, oil cannot now successfully be either contained or recovered from the ocean surface. The maximum current in which oil can be contained is about one knot, dependent on the ocean environment and the type of oil spilled. High pollution risk areas exist where either the currents are greater than one knot or it may be desirable to tow response equipment at fast speeds. Performance of existing off-the-shelf and developed prototype equipment has proven inadequate in these situations. Equipment whose operational envelope permits higher speeds is necessary.

Specifically, the methodology for this project included the following tasks:

- 1. Determination of the high risk oil pollution areas.
- 2. Determination of those environmental characteristics of interest.
- Identification of data resources; formulation of a search system; and extraction of the data.
- 4. Development of documentation, analysis and synthesis techniques; and summarization of the findings.

Procedure:

The object of the project being to develop environmental design goals for a fast current oil control system, first, those geographic areas in which such a system was required were determined. The procedure followed in selecting these areas involved an analysis of a composite called oil concentration areas, through a review of annual volumes of oil handled,

oil stored, and oil transit traffic. The base years for this were 1970-1971. This analysis was contrasted with annual oil spill frequency in 1970-71-72.

These years represent the latest available data. This data is the result of at least five years of intensive oil pollution data collection experience. The data -- and conclusions properly drawn therefrom -- should be valid.

The contrast of oil concentration areas with oil spill frequency allowed for a rank ordering of geographic areas and a selection of high risk areas. It was assumed that where high oil concentrations and high spill frequencies coincided, these were the high risk areas. Thus a high risk area was one where the objective evidence indicated a fast current control system might be needed.

Environmental parameters were selected such that the widest environmental data past or present could be shown. The resources used to obtain data were in-house literature, in-house interview, other agencies, district marine environmental protection officers, and regional oil cooperatives.

Finally, a synthesis of the documented evidence was made, through a series of graphs, tables, and figures illustrating the results of the study. The data was summarized textually, with the object of providing the executive reader with the findings in a convenient form. What emerged was a foundation from which environmental design goals for a fast current control system could be established.

GEOGRAPHICAL AREAS

The geographical areas were determined according to the general marine areas of the United States. These areas included the Atlantic Coast from Maine to Florida's East coast, Gulf Coast from Florida's West Coast to the Texas - Mexico border, Pacific Coast from Southern California to the Washington - Canadian border, Great Lakes area at the U. S. border, and the Inland Water area from Minneapolis-St Paul, Minn. to Baton Rouge, Louisiana.

OIL CONCENTRATION AREAS

To develop the composite called oil concentration areas, the volume of oil handled, stored, or transported was considered. The principle sources of data were: The Corps of Engineers annual five volume publication titled Waterborne Commerce of the United States (1970-71); Corps of Engineers "Port Series" publications; the American Petroleum Institute's Information on Offshore and Inland Facilities and Pipeline Crossings (1972). Further data was extracted from in-house publications such as the Dillingham Analysis of Oil Spills Study of 1970; Analysis of Coastal Tank Vessel & Barge Traffic (1973); The Purdue Study in Internal Movements, Imports & Exports of Petroleum Products (1973); Where Trends the Flow of Merchant Ships - Bates Paper (1973); Water Transportation of Petroleum Products in the Future - Ames Paper (1973); Report in U. S. Energy Outlook - National Petroleum Council (1972); and Support Systems to Deliver and Maintain Oil Recovery Systems and Disposal of Recovered Oil -Battelle (Draft) (1973). An investigation was also made into the reprocessing or re-refining of used oil.

The areas of oil concentration were categorized into five general groups according to concentrations per year of 100 million barrels or over, 50-100 million barrels, 25-50 million barrels, 10-25 million barrels and 3-10 million barrels. One hundred and thirty one locations were determined under these categories. When areas with concentrations of less than 3 million barrels per year were considered, an additional 140 locations were identified.

OIL SPILL FREQUENCY

The publication titled Polluting Incidents In and Around U. S. Waters, COMDT (G-WEP) U. S. Coast Guard, calendar years 1970-71-72 was used to determine spill frequency. Figure 1 reveals the averages of spill history for 1971-72, showing the percent of spills and percent of volume in the five geographic areas. The same data for types of waters within the areas, including rivers, contiguous open waters, harbors, bays, estuaries, sounds, channels & canals and non-navigable waters are reflected in Figure 2. Sources of polluting spills may be found in Figure 3. The average percentage of spills by Coast Guard District, including percentage of volume is further refined in Figure 4. This compilation allowed for a ranking of the districts according to percent of volume. The ranking shows the Eighth Coast Guard District to be number one, followed by the Third District and the others as shown. Number of spills was assumed to be more important than volume of spills in making the rankings. This assumption was made on the basis that 6 out of 10 of the districts had a combined volume of only 3,+ percent of the total volume of oil spilled, whereas each of the 10 districts considered had a percentage of total number of spills greater than 3.+ percent. This assumption allowed a wider geographical representation of high risk areas.

CONTRASTING SFILL FREQUENCY WITH OIL CONCENTRATION

A comparison of oil spill frequency with locations of high oil concentrations is reflected in Table B. High risk areas were selected in terms of (1) the established evidence, (2) the short term projections of oil concentration development, (3) the various and differing marine environments, (4) recommendations of the district marine environmental protection offices, and (5) in consultation with the project manager of the fast current oil control system. Out of the 131 original locations 44 were selected as high risk areas. Those areas are shown in Table A, as the sample used in the study. Locations are subheaded by the type of water involved. Limits of area miles to be considered in each location are approximate points and figures, used in the context that within the limits required data would be found.

Figure 5 illustrates the principal oil spill control areas, and the general volume of traffic and locations of the selected high-risk locations. Referring to Table A, it is noted that each location is numbered and indicated in graphic display in the figure mentioned.

THE ENVIRONMENTAL PARAMETERS

The environmental parameters to be concidered included currents, waves, temperature, wind and tides. Gathering of the data was accomplished through use of a work sheet shown in Appendix 2. For each item, where applicable, the annual high-low-mean values were determined. Otherwise the record annual data was determined on average maximums, average minimums, and average means.

The basic sources for waves, sea temperatures and winds were Tables 1,9,20,3A and 15 respectively, from the <u>Summary of Synoptic</u>

Meteorlogical Observations - USN Weather Command, 1970. Where contained amplification, the following sources were consulted: The Oceanographic Atlas - USNOO Pub. No. 700; Graphic Construction of Wave Refraction Diagrams - H. O. Pub. No. 605; Serial Atlas of the Marine Environment - Folio 15 - American Geo. Society, 1973; Local Climatology Data - USDC NOAA, 1972; and, Corps of Engineers, San Francisco Bay Model, Sauselito Ca. The sources for tides and currents were the Tidal Current Tables and Tide Tables, and Marine Weather Service Charts, USDC NOAA, 1973. In computing tides and currents, standard conversion procedures were used in identifying figures away from given reference points.

Annual high-low figures were obtained by an inspection of the annual tables for 1972. Air temperatures were obtained from the publication:

Local Climatological Data, USDC MOAA, 1972. Average maximums, minimums and means were from the record over the years, as were the extreme high and lows.

The <u>Summary of Synoptic Neteorological Observations</u> as a basic source of reference material needs comment. The data compiled in this publication is gathered in 1° quadrants. Thus it is conceivable that shoreside data may be a composite of data anywhere within 60 miles. To assure a better measure of accuracy, the following publications were reviewed, namely <u>Oceanographic Report #53</u>, C. G. 373-53 (East Coast) 1973; <u>Climatological Study Southern California Operating Area</u>, NWSED - Asheville N. C., 1971; and Corps of Engineers periodicals.

Where information appeared unavailable from published and documented sources, contact was made with the Corps of Engineers Hydrology Offices in each of the locations concerned. The U. S. Geodetic Survey was also contacted, usefully.

FINDINGS

Summarization of environmental parameters for input into the design of fast current oil control system requires a knowledge of the geographic areas in which such a system is needed. To determine the geographic areas of concern, the areas of heavy oil concentration (production, traffic and storage) were contrasted with oil spill frequency. This permitted the identification of high risk oil control locations within geographic areas.

The high risk oil control locations were further identified by hydrographic categories ("waters"): harbors, bays, inland rivers, open (tidal) rivers, canals, channels and inter-coastal waterways.

Environmental data were obtained for the high risk geographic locations. From this, design parameters resulted. The data is presented here in sets and subsets, descriptive of the areas studied.

GEOGRAPHIC AREAS

Table A shows the sample of areas of high oil pollution risk that was selected. These 44 areas were chosen from an original 131 areas which showed combined concentrations of oil amounting to more than 3 million barrels per year each. A categorization by hydrographic type shows:

WATERS SELECTED FOR ENVIRONMENTAL ANALYSIS

Map Ref	Region	Location	Map Ref	Region	Location
30	Inland Rivers	Portland(Oreg	on) 3	Open Rivers	Albany
31	11	Tri-Cities	4	11	Newburgh
33	11	Pittsburgh	5	11	East R.
34	11	Huntington	6	11	N. London
35	11	Cincinnatti	7	11	Delaware
36	11	Louisville	10	**	Washington(D.C)
37	11	Evansville	11	II .	Richmond (VA)

Map Ref	Region		fap Ref	Region	Location
37 38 39 40 41	Inland Riv	Evansville Nashville Memphis Helena Minn- St.Paul St. Clair	12 14 15 16 19 25	Open Rivers	York R. Wilminton Savannah Jacksonville N. Orleans Suisan
1 9 13 23	Harbors " "	Portland, ME Baltimore Norfolk LA/LB	2 8 18 26 29	Bays " " "	Penobscot Delaware Tampa Benécia San Francisco
17 42 43	Canals "	PortEverglades Chicago Indiana	21 24 27 28 32	Channels "" "" ""	Houston Santa Barbara Carquine z Richmond Rosario
20 22	I WW	Morgan City Corpus Christi			

OIL SPILL DISTRIBUTION

Oil spill history is reflected in Figures 1,2,3,4 and Tables C and D. This data shows the averages of spills by geographic area, region, source and district. An examination of the spill data allowed for a ranking of districts in respect to percent of total spills and percent of total volume. Figure 4 shows the rank order, placing District 8 as first with 46.6% of all spills and District 3 ac second with 12.2%. Table C indicates that nearly 52% of all spills reported during 1971-1972 were of less than 100 gallons in volume, whereas only 0.2% were reported in the over 100,000 gallon size category. Spill quantities by size, number of incidents and source are reflected in Table D. This data shows tank ships and tank barges to be the greatest sources of pollution in terms of total volume spilled.

Quantities of pollutant oil are greatest in the area of the Atlantic Coast where 44.8 percent of the total volume is spilled. The Gulf Coast area accounts for 15 percent of the total and next highest is the Great Lakes where 14.7 percent has been reported. The Inland area is responsible for 14 percent and the Pacific Coast accounts for the remaining 13 percent. Figure 1 shows this data in graph form.

Refering to Figure 2, where "waters" are considered, it is shown that rivers are the source of the greatest quantites of pollutant oil at 39.9 percent of the total volume. The second category of greatest concern is the harbors (ports, docks, terminals) at 14.4 percent, closely followed by bays, estuaries and sounds with 13 percent of the total volume. The contiguous zone of open waters including the Great Lakes accounts for 10 percent of quantites spilled and channels, coastal inlets and inland

waterways account for 8.9 percent. The remainder occurs on beaches or non-navagable waters.

Onshore oil facilities produce nearly one-half the quantity of pollutant oil (49.5%), whereas vessels contribute 39.3 percent of the total quantity. In Figure 3, the all vessel breakdown of quantities is: tank ships at 16.3 percent, tank barges at 16.8 percent and other vessels at a quantity of 6.3 percent.

CONTRAST OF OIL SPILL FREQUENCY AND OIL CONCENTRATION

Table B indicates the contrast of oil concentration and oil spill frequency. The rank order derived is shown by district. Coast Guard District Eight has over 4 times as many spills as the second ranking district which is shown to be District Three. The second ranking district has almost twice as many spills as District 11, the 3rd ranked district. The remaining rankings were determined on much narrower differences.

Figure 5 graphically illustrates the high risk areas by oil concentration, and by geographical location. Table A provides the map references, locations, districts and other study information related to the map.

ENVIRONMENTAL PARAMETERS

The results of the environmental study may be found in Tables E through R, and Figures 6 and 7. For the purposes of this study the area and waters high-low and average (av), high-low and extremes (ex) are given. The locations of the selected waters within geographic areas may be found in Table E3.

CURRENTS	(Knots)	(Tables	E, E2, E3,	F, I, L)		
Locations	HI	<u>ro</u>	AvHI	AvLO	<u>ExHI</u>	ExLO
Areas Waters	5.8 4.7	0.2 0.2	3.2 2.7	0.6 0.4	12 12	0. 0.

The currents results indicate that the design criteria would be between 5.8 and 4.7 knots if averages of the high figures of areas and waters are considered, and between 3.2 and 2.7 knots if averages all high figures of the areas and waters are considered.

TIDES (Fe	et) (T	ables ,	E2, E3, F,	I, L)		
Location	HI	<u>LO</u>	AvHI	AvLO	ExHI	ExLO
Areas Waters	9.5 7.2	-1.8 -1.3	4.5 4.9	1.1 0.6	15.3 15.3	-2.9 -2.9

The tides results show that the system must be able to withstand tide effects as extreme as 15.3 feet, as average high as from 9.5 to 7.2 feet and an average of all high figures between 4.9 to 4.5 feet.

TEMPERATURES (Sea F°) (Tables E, E2, E3, G, J, M)

Location	HI	LO	AvHI	AvLO	ExHI	ExLO
Areas	86	33	81	39	93	27
Waters	91	39	81	38	93	27

Water temperatures show that the system should be capable of operation in temperatures as high as 93° as well as those sub freezing; as high or average as $86^{\circ}-91^{\circ}$.

TEMPFRATURES (Air FO) (Tables E, E2, E3, G, J, M)

Air temperatures to be considered in the design of the system range from an extreme high of 114° to a low of -39° . The maximum average for areas and waters was $67^{\circ}-68^{\circ}$, the minumum average was $49^{\circ}-50^{\circ}$ and the record average mean temperature was $58^{\circ}-59^{\circ}$.

WAVES (Feet) (Tables E, E2, E3, H, K, N)

The waves data is reliable. It was derived from 60 mile area quadrants, contiguous to the continental shores of the U.S. The results show that the designer of the system can assume that in areas and waters studied that the mean height of the waves may be 3.1 feet. Waves will be 3-4 feet, or less, 61 percent of the time and 5-6 feet, or less, 79 to 80 percent of the time.

WINDS (Knot	s) (Tal	oles E,	E2, E3, H,	K, N)	
Location	HI	LO	Annual Mean	ExHI	Av % of Speed
Areas Waters	78 73	43	7.8 8.5	104 104	52 at 7-16 41 at 7-16

Wind data was derived from figures based on the fastest mph recorded and converted to knots. If extreme winds are considered the system must be able to survive in winds as high as 104 knots.

Otherwise the fastest average high for areas and waters was 78-73 knots and the fastest average lower limits of wind were 43-42 knots. Within the areas, the annual mean wind was 7.8 knots and within the waters, 8.5 knots. The designer can assume that 51 to 52 percent of the time the wind will have a force of from 7-16 knots.

CONCLUSIONS

On the basis of the risk areas investigated in this study, the following fast current oil control system design requirements can be specified:

- 1. The system should be capable of effective operation on rivers, bays, harbors, channels, canals, and intracoastal waterways.
- 2, The system should perform effectively in current velocities ranging from 1 to at least 6 knots.
- 3. The system should be capable of operating effectively through a complete reversal of tidal current with a maximum value of from 1 to 8 knots in either direction.
- 4. The system should perform effectively in sea states ranging from those with no waves and extreme surface turbulence, as found on fast moving rivers, to a sea state 5, as found on bays.
- 5. The system should perform effectively in winds of up to 20 knots.
- 6. The system should perform effectively in air temperatures ranging from $-39^{\circ}F$ to $+114^{\circ}F$, and in sea temperatures ranging from $+33^{\circ}F$ to $+93^{\circ}F$.

LIMITS OF THE STUDY AND FUTURE WORK

This study has so far focused on oil pollution risk areas selected on the basis of 1970-72 data. It has not attempted to analyze future energy demands, refinery or port growth and expansions. Such long-run changes will alter the pollution risk areas considerably, and in view of the normal 8 to 10 year R&D cycle, must be considered now.

At the present time, the major refinery locations in the continental U. S. are:

1. East Coast:

- a. Arthur Kill (N.Y.)
- b. Delaware River

2. Gulf Coast:

- a. Houston-Baytown
- b. Beaumont-Port Arthur
- c. New Orleans
- d. Baton Rouge
- e. Corpus Christi
- f. Lake Charles
- g. Pascagoula

3. West Coast:

- a. Los Angeles-Long Beach
- b. Richmond-Avon

It is expected that increases in refinery capacity throughout the U.S. through the year 2000 will occur primarily through expansion of existing refining complexes, rather than by construction of new refineries. A Battelle study cites the problems Shell Oil has had in finding a site for a new refinery anywhere in the Middle Atlantic area as symptomatic of the environmental problems all along the East Coast. The Army Corps of Engineers predicts that Gulf Coast refining capacity will increase by 300 percent by the year 2000, chiefly through expansion of present complexes. The Corps of Engineers estimates a 400 percent increase in Pacific Coast capacity by 2000, again through expansion.

In order to supply these increased refinery demands, either N.S. crude oil production must be increased or foreign crude oil imports will have to be markedly stepped up. The scope of this report does not cover an analysis of the potential sources of this crude oil. The assumption is made that through the year 2000 substantial crude oil will be imported to the continental United States and that in order to keep transportation costs to a minimum, this crude will be brought into the U.S. in very large crude carriers (VLCC's).

Several studies have been conducted that investigate the feasibility of various deepwater port alternatives. The Nathan study lists the deepwater port possibilities, and the rationale for each. According to Nathan, the following area seem the most promising:

- 1. New York Area
 - a. Romer Shoal (off Sandy Hook)
 - b. Long Branch (N. J.)
- 2. Delaware Bay
 - a. Big Stone Beach
 - b. area ten miles off Delaware Capes
- 3. Mobile-Pascagoula Area
- 4. Mississippi River Delta (Garden Island Bay)
- Freeport (Texas)
- 6. Los Angeles-Long Beach Area
- 7. San Francisco Bay
- 8. Ferndale-Bellingham (Wash)

For each of these locations, offshore artificial islands, single point mooring systems, and dredged channels are considered.

The areas described above represent likely future high oil apill risk areas. A subsequent independent Coast Guard study will investigate these future risk areas and determine the key environmental parameters associated with them. The present study and the follow-on will then be correlated. Final design goals for the fast current oil control system will then be established.

ACKNOWLEDGEMENTS

This report presents work accomplished under the SHORT TERM STUDY TASKS PROGRAM of the Pollution Prevention Projects Branch, Office of Research and Development, U. S. Coast Guard. The study was performed at Coast Guard Headquarters during the period June-November 1973, by CAPT W. F. HAMMER USCGR, CDR C. W. KOBURGER USCGR, and LT. D. S. JENSEN USCG.

Appreciation is expressed for detailed information obtained for this study from the officers of the Office of Research and Development, U. S. Coast Guard, as well as all others listed in the reference section. The Hydrology District Officers of the U. S. Corps of Engineers and the Marine Environmental Protection Officers of each Coast Guard District were significantly helpful in refinement of data. Assistance through the oceanographic offices of the U. S. Coast Guard and the U. S. Navy was outstanding.

The majority of data for this study was obtained from Coast Guard Headquarters and field personnel, Coast Guard-funded studies and other developmental efforts, and the Department of Transportation Library.

The reference section of this study provides complete information on data sources.

RAW DATA

TABLE A

SELECTED SAMPLE OF GEOGRAPHIC AREAS OF HI-RISK OIL POLLUTION

Sources: U. S. Army Corps of Engineers, <u>Waterborne Commerce of the United States</u> (1970-71)

U. S. Army Corps of Engineers, Port Series

American Petroleum Institute, <u>Information on Offshore and</u> Inland Facilities and Pipeline Crossings (1972)

U. S. Coast Guard, <u>Polluting Incidents In and Around U. S.</u>
Waters (1970-71-72)

Table A

SELECTED SAMPLE OF GEOGRAPHIC AREAS OF HI-RISK OIL POLLUTION

Area Study Limits	Pemaquid Pt. to Cape Elizabeth	Bangor to Rockland	Island Creek to Troy Locks	Cornwall to North Pough- keepsie	Bklyn. Batt. Tum to Tro- burgh Br. &Thross Neck Br.		Trenton to Philadelphia	Darby Creek to Poquessing Creek	Sparrows Pt to Hawkins Pt.	Key Bridge to Alexandria	James River, Falling Creek to Richmond	West Point to Yorktown	Norfolk/Portsmouth Harbor, Hampton Roads	Cape Fear&N.E.Cape Fear Rivers	St. Augustine Creek to Fort Jackson
(miles) Area Study	35	50	12	21	15	25	20	25	15	15	10	2	20	15	10
# of Terminals	14	5	19	13	17	12	union	10	39	10	14	3	22	15	6
Traffic&Storage (bbls x 10-3)	216,440	16,408	73,528	3,840	124,110	26,880	2,074	169,974	110,920	12,838	5,432	23,309	96,873	27,251	24,920
District	г	1	က	က	٣	က	m	ĸ	2	'n	5	50	'n	٠,	^
State	ME	ME	NY	NY	MY	CONN	PA	PA	MD	DC	VA	VA	VA	NC	GA
Area	Portland (Harbor)	Penobscot (Bay)	Albany (Hudson River)	Newburgh (Hudson River)	East River	New London (Thames River/Bay)	Delaware (River)	Philadelphia (Delaware Bay)	Baltimore (Harbor)	Wash. D. G. (Potomac River)	Richmond (River)	York (River)	Norfolk (Harbor/Roadstead)	Wilmington (Bay/River)	Savannah (Harbor/river)
Map Reference	1	2	က	7	5	9	7 ,	∞ 29	6	10	=	12	13	14	15

Table A con't

Area Study Limits	St. Johns River, Jax vicinity	Ft.Lauderdale-Everglades	Tampa Bay, Tampa-St.Peters- burg	Miss.R;IWW, Harvey Canal,St.	Gulf to Plaquemine; IWW, Lake Hackberry to W.Cate Blanche	bay, dapaila Kiver to basin Houston Turning Basin to	Port Ingleside to Rt.P22	Pt. Fermin to Anaheim	Pt. Concepion East 18 miles	Antioch Lift Bridge to Suisan Pt.	West End Suisan Bay, Benedia Bridge to Martinez	Suisan Pt.to Pinole Pt.	Pinole Pt. to Berkeley Pier	5 miles E-W Golden Gate	Willemette River, Kelby Pt. to Stevens Pt;Confluence with Columbia
(miles) Area Study	20	10	30	25	20	20	30	15	s 18	20	10	15	15	10	15
# of Terminals	18	14	15	16	20	25	20	61	Platforms	7	tion	12	13	ation	15
Traffic&Storage (bbls x 10 ⁻³)	57,274	65,898	66,661	130,767	78,043	274,568	138,838	191,656		26,978	MEP Recommendation	103,887	108,444	MEP Recommendation	37,828
District	7	7	7	œ	∞	s	œ	11	11	12	12	12	12	12	13
State	FLA	FLA	FLA	1	41	χŗ	TX	cA (s	CA	CA	CA	CA	Y	CA	OR
Area	Jacksonville (Harbor/River)	Port Everglades (Harbor/Canal)	Tampa (Bay/Estuary)	New Orleans (River, Canal, IWW)	- 33	Houston (channel)	Corpus Christi (IWW/Canal)	LA/Long Beach (Harbor/BayApproaches)	Santa Barbara (Channel)	Suisan Bay (River,Delta)	Benecia Bay	Carquinez St. (Strait)	Richmond (Channel)	San Trancisco (Bay)	Portland (River)
Map Reference	16	17	18	19	20	21	22	73 00	54	25	56	27	28	29	90

Table A con't

Area Study Limits		Snake River Confluence	Bellingham Bay to Fidalgo	Bay to Sound approaches	Dams #2 on Allegheny &	Monongahela Rv.toDashiell Dam	Ohio Rv., Mile 302-Greenup	Dam	Ohio Rv. Mile 450-500		Ohio Rv, Mile 600-644		Ohio Rv, Mile 790-832		Cumberland River-Miles	220-165	Miss. R. CovesId Bend to	Loosatchia River	Miss. R. Stumpy Pt to Old	Town Bend	Miss. R, Miles 156859-811		Chicago, Ashland St. to	State Hwy #83 Bridge	Lake Michigan, Illinois	line to E, Chicago Beach	Blue Water Bridge South to	Lake St. Clair
(miles) Area Study		100	35		೫		38		20		77		42		25		20		24		35		20		10		30	
# of Terminals	lon		9		13		13		23		16		11		11		13		4		13		12		œ		dation	
Traffic&Storage (bbls x 10 ⁻³)	MEP Recommendation	3,300	34,828		7,511		59,262		26,348		28,980		20,559		10,423		32,802		9,324		10,241		62,895		55,111		MEP Recommendation	
District	 - -	13	13		2		2		2		2		2		2		2		2		2		6		6		6	
State		MA	WA		PA		WVA		но		НО		IND		TENN		TENN		ARK		MINN		ILL		IND		MICH	
Area		Tri-Cities (Riupr)	Rosario	(Strait)	Pittsburgh	(Rivers)	Huntington	(River)	Cincinnatti	(River)	Louisville	(River)	Evansville	(River)	Nashville	(Kiver)	Memphis	(River)	Helena	(River)	Minn-St.Paul	(Rivers)	Chicago	(San. Ship Canal)	Indiana	(Canal)	St. Clair	(River)
Map Reference		31	32		33		34		35		36		37	31	38		39		07		41		42		43		77	

Table B

RANK ORDER OF PETROLEUM CONCENTRATION AREAS BY VOLUME, DISTRICT AND SPILL INCIDENT (% totals 1971-72)

Sources: U.S. Army Corps of Engineers, Waterborne Commerce of the United States (1970-71)

U.S. Army Corps of Engineers, Port Series

American Petroleum Institute, Information on Offshore and Inland Facilities and Pipeline Crossings (1972)

U.S. Coast Guard, Polluting Incidents In and Around U.S. Waters (1970-71-72)

Table B
RANK ORDER OF PETROLEUM CONCENTRATION AREAS BY VOLUME, DISTRICT
AND SPILL INCIDENT (% totals 1971-72)

Total Areas = 131

[Total Districts = 16

Total % Spills = 100

Vol.&Traf. >3-10 mil.bbls Area 52)	Birmingham, ALA St.Bernand LA Raceland, LA Lafayette, LA Johnsons Bayou, LA Freeport, TX Laguna Madre, TX Vicksburg, La Port Lavada, TX	Stamford, CT Burlington, VT Plattsburgh, Plushing Bay, Manhassett Ba Camden, NJ Hempstead, NY Kingston, NY	Sen Diego, CA Palm Beach, FL Charlotte Hbr, FL Panama City, FL Pensacola, FL St.Marks, FL Port St.Joe, FL	. (20 이번 1명 보통하고 Jee (20 19 1 년)
Vol.&Traf. >10-25 mil.bbls Area 29)	Plaquemines, LA Baratavia, LA Houma, LA Lake Arthur, LA	Raritan,NJ Bridgeport,CT Wilmington,DEL Newtown Cr.,NY Oceanside,NY Jamaica Bay,NY Hackensack R.NJ Mt.Vernon,NY Brooklyn,NY	Savannah,GA Canaveral,FL Miami,FL	SanFrancisco,CA Sulsan Bay,CA nal,IL
Vol.&Traf. Vol.&Traf. >50-100 mil.bbls 725-50 mil bbls Area (15) Area 21)	Morgan City, LA Mobile, AL Lake Charles, LA Pascagoula, MISS Texas City, TX Aransas Ch., TX Brownsville, TX X	New Haven, CT Fall River, MASS Albany, NY New London, CT Passaic River, NJConn. River, CT Chester-Marcus, PAPt.Jefferson, NY	Pt.Everglades,FL Tampa,FL Jacksonville,FL	CA Richmond, CA Mare Island, CA SanF Suls Indiana Hbr, IL Sanitary Ship Canal, IL
Vol.&Traf. >100 mil. bbls Area (14)	New Orleans, LA Baton Rouge, LA Pt. Arthur, TX Beaumont, TX Houston, TX Corpus Christi, TX	East River,NY Bayonne,NJ Arthur Kill,NJ Phila., PA	Los Angles, CA	Carquinez Strait
% of Total Spills 1971- 1972	47.7%	11.7%	6.8% 5.7%	5.3%
District	8th	3rd	11th 7th	12th 9th
Rank Order	-	33	m 4	٥ ك

	Vol.&Traf.	73-10 mil.bbls	Area (52)	Helena, ARK Greenville, ARK	Charleston, WVA	Lower Monongahelaki.FA Pittsburgh,PA	Aliquippa, PA	1) Salem, MASS(1)	Portsmouth, NH(I) NewBedford, MASS(I)	Salisbury, MD(5)	Richmond, VA(5)	Wilmington, NC(5) The Dalles, OR(13)	Anchorage, ALASKA(17)	
	Vol.&Traf.	710-25 mil.bbls	Area (29)	St.Louis,MO Paducah,KY	Minneapolis, MINN Charleston, WVA	Nashville, TENN Evansville, IND				Quincy, MASS(1)	Wash.D.C (5)	Wilmington, NC(5)	Tacoma, WN(13)	
ب	Vol.&Traf.	>25-50 mil.bbls	Area (21)	Louisville;KY Memphis,TENN	Cincinnati, CH	Owensboro, KY		Charleston, SC(5)	Fortland, OK(13)	Seattle, WA(13)	Anaccrtes, WN (13) Wash. D.C (5)	Oahu, HA(14)	YorkRiver, VA(5)	
Table B con't	f. Vol.&Traf.	1s 7	Area (15)	Huntinton, WVA				Portland, ME(1) Providence, RI(1)	Boston, MASS(1) Baltimore, MD(5)	Norfolk, VA(5)				
	Vol.&Traf.	>100 mil. bb	Area (14						Boston, M					
	%of Total	Spills 1971-	1972	4.1%				13.9%/5dist.	2.8%/Dist.					
			District	2nd				Other (Non-Corre.	Lated)Districts	ens (1)				
		Rank	Order	7				Other	lated)	in parens(1)				

Table C

QUANTITIES OF OIL PER SPILL 1971-1972

Source: U.S. Coast Guard, Polluting Incidents In and Around
U.S. Waters (1971-72)

TABLE C

QUANTITIES OF OIL PER SPILL
1971-1972

Year	Size Gallons	Number Incidents	% Total	Volume Gallons	% of Total	Gal Per Spill
71 72	Unknown	2,867 2,791	32.9 28.2	-		-
	Totals	5,658	50.5			
71 72	1-99	4,272 5,412	49.1 54.7	94,322 107,729	$\frac{1.1}{0.6}$	22 + 19 +
	Tota l s	9,684	51.9	202,051	.85	20 +
71 72	100-999	1,203 1,309	13.8 13.2	336,640 356,474	3.8 1.9	279 + 27° +
	Totals	2,512	13.5	693,114	2.85	275 +
71 72	1K-9,999	285 299	3.3 3.0	830,595 866,645	9.4 4.6	2914 + 2898 +
	Totals	584	3.2 1	,697,240	7.0	2906 +
71 72	10K-99,999	65 <u>63</u>		,604,580 ,086,684	18.1 11.1	24,685+ 33,121+
	Totals	128	0.7 3	,691,264	14.6	28,838+
71 72	<u>100K</u> +	17 19		5,973,386 5,388,200	67.6 81.8	351,375+ 809,905+
	Totals	36	0.2 2	1,361,586	74.7	593,377+

Average Quantity/Spill = 125,083 + gallons

Table D

SPILL QUANTITIES BY SIZE AND SOURCE (Marine Oriented Only) 1971 and 1972

Source: U.S. Coast Guard, Polluting Incidents in and Around U.S. Waters (1971-72)

TARLE D

SPILL QUANTITIES BY SIZE & SOURCE
(Marine Oriented Only)
1971 & 1972

Source	No. of Incidents	Volume Gallons	Gal Per Spill
<u>Vessels</u>			
Tankships 71	386	1,665,264	4314 +
72	453	2,583,952	5704 +
Total	839	4,249,216	5064 +
Tankbarges	000	1 107 010	1446
71 72	828 <u>830</u>	1,197,819 3,739,144	1446 + 4504 +
Total	1658	4,936,963	2977 +
Combatant	1444		1400
71 72	261 294	440,849	1689 + 139 +
Total	555	481,772	868 +
Waterfront Transport Facilities			
71	382	613,970	1607 +
72	<u>478</u>	943,264	1973 +
Total	860	1,557,234	1810 +
Offshore Facilities			
71	2595	662,203	255 +
72	<u>2317</u>	237,063	102 +
Total	4912	899,266	183 +

Average Quantity per Spill = 2180 gals.

Table E

ENVIRONMENTAL CRITERIA RESULTS (Averages)

- Sources: U.S. Navy, Summary of Synoptic Meteorlogical Observations (1970)
 - U.S. Department of Commerce, Tidal Current Tables (1973)
 - U.S. Department of Commerce, <u>Tide Tables</u> (1973)
 - U.S. Department of Commerce, <u>Marine Weather Service Charts</u> (1973)
 - U.S. Department of Commerce, Local Climatological Data (1972)

TABLE E

ENVIRONMENTAL CRITERIA RESULTS (Averages)
GEOGRAPHIC AREAS

	_		CURR	ENT (I	nots)				Т	IDE (Fe	et)		
AREA	ні		<u>LO</u>	Av.	Av.	Av. Mean Flood	Av. Mean Ebb	HI	LO	Av.	Av.	Av. Mean	Av. Range	
Atlanti	c 4.7	0	. 2	1.9	0.6	1.1	1.4	15.3	-1.	7 5.7	-0.6	2.6	6.6	
Gulf	3.5	0	. 2	2.9	0.2	1.1	1.3	3.5	-0.9	2.3	-0.9	0.8	3.1	
Pacific	5.6	0	. 2	3.0	0.5	1.5	2.1	9.6	-2.9	5.5	-1.7	3.2	7.9	
Inland	12.0	0		6.2	0.8	1.6	N/A		N/A		N/A	N/A	N/A	
G.Lakes				2.0	0.8	0.9	N/A		N/A		N/A	N/A	N/A	•
Areas A	v 5.8	0	. 2	3.2	0.6	1.2	1.6	9.5	-1.8	3 4.5	1.1	2.2	5.9	
		T	EMP	(Sea	F ^o)				7	TEMP (A	ir F ^O)			
			Av	A			Rec	ord (······································	Extre	me Av.	Av.
AREA	<u>HI</u>	<u>LO</u>	HI	LC	Me	<u>an</u>	Max		in	Mean	HI	LO	HI	<u>LO</u>
Atlanti	c 93	27	87	33	62		65	4	7	57	107	-39	102	-04
Gulf	92	41	90	49	72		79	6	0	70	102	10	100	18
Pacific	76	35	72	42	56		67	4	8	57	114	-16	107	15
Inland	87	30	85	37	54		66	4	7	56	109	-20	102	-13
G.Lakes	80	32	73	32	49		57	4	1	49	101	-14	100	-15
AreasAv	. 86	33	81	39	59		67	4	9	58	107	-20	102	.05
	WA	VES	(fe	et)						WIND	(Kno	ts)_	_	
						Mean	Fas	stest	Mile	2	Ave	rage o	f	
AREA	Av.%	& H	<u> </u>	Av.%	& Ht	Ht.	HI	LO	Av.	Mean	% of	Speed	<u> </u>	
Atlanti				83 <		3.3	77	52	64	8.4	53	7-16		
Gulf		3-4		87 <		3.0	104	40	62	7.7	58	7-16		
Pacific		•		67 <	5-6	2.9	77	38	48	6.3	45	7-16		
Inland	N/A			A\r			80	41	54	7.4	N/A			
G.Lakes	N/A		1	N/A			52	45	50	9.0	N/A			

Areas Av. 61 < 3-4 79 < 5-6 3.1 78 43 56 7.8 52 7-16

TABLE EE
ENVIRONMENTAL CRITERIA RESULTS (Averages)
WATERS

		CU	RREN'	r (Kı	not	s)				TIDE	(fee	t)	
						Av	Av						
			A	v A	AV.	Mean	Mean			Av	Av	Av	Av
WATERS	HI	LO	H	1 1	LO	Flood	d Ebb	HI	LO	HI	LO	Mean	Range
								_					
Inland													
Rivers 2	12:0	0.0	5.6	6 0	. 6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Open													
River (1	2)4.7	0.1	2.2	2 0.	. 6	1.2	1.5	9.2	0.4	4.9	-0.4	2.0	5.0
Canals (3)2:0	0.0	1.6	5 0.	. 3	0.7	0.5	2.8	-0.9	0.9	0.4	0.4	:1:2
Channel /	5)4.2	0.2	2.9	9 0.	. 3	1.1	1.4	9.6	-2.9	7.6	072	2.8	8.7
Inland													
W Way (1)	2.1	0.2	2.1	L 0.	. 2	0.9	1.2	2.1	-0.8	2.1	-0.8	0.8	2.9
Harbor (4)	2.6	0.2	1.8	3 0.	. 3	0.9	1.0	11.2	-1.8	5.9	1.2	3.2	7.0
Bays (5)	5.6	0.2	2.6	5 0.	. 5	1.5	1.4	15.3	-1.7	8.1	1.2	6.2	9.3
RegionAv	4.7	0.2	2.7	7 0.	4	1.0	1.1	7.2	-1.3	4.9	0.6	2.6	5.7
T		TEM	P (Se	a F	<u>') </u>			TE	MP (A:	lr F	<u>') </u>		
			Av	Av	A۱	J	Re	cord (A	<u>v)</u> ,		Ext	reme Av	Av
WATERS	HI	<u>ro</u>	HI	LO	Me	an	Ma	K Mir	<u>1 M</u>	ean	HI	TO HI	<u>LO</u>
I-Rivers	88	30	75	34	49		64	46	5.			-34 103	
0-Rivers	93	27	86	35	6.		67	48	60			-28 103	
Canals	92	70	71	42	59		66	50	58		101 -		
Channels	92	35	76	43	60		68	50	59			-07 102	
IWW	90	57	N/A		7		78	64	7:		101	25 N/A	•
Harbors	93	27	83	34	57		65	45	5.5			-39 104	
Bays	92	27	82	39	60)	67	48	58	3	114 -	-39 85	06
										_			
RegionAv.	91	39	81	38	61	L	68	50	59	•	109 -	-36 99	07
	(-								_		/**		
WAV	/ES (1	eet,)					=		VIND	(Knot		
	4 9/		.	A 60	, ,		Mean		est M		Annı		erage of
VATERS	Av %	<u>& I</u>	<u>nt</u>	Av %	- 6	Ht	Ht	HI	LO	\underline{Av} .	Mea	in 4	of Speed
I-Rivers	NT / A			N/A			N/A	80	41	55	7.2	,	N/A
		2_/		80 <	5_4					61	8.4		at 7-16
()-Rivers) -4			3- 0		3.2	77	40				
	N/A)_/.		N/A	5 4		N/A	64 52	52 40	56 46	8.7 6.4		N/A at 7-16
Channels				714			3.2	52	40 N/A				
	67 43			86 <			3.0	104	N/A		10.3		at 7-16
	68 < 3			83 <			3.3	70	38	61	7.8		at 7-16
Bays	62 < 3	-4		78 <	3- 6)	3.0	66	40	54	7.5	49	at 7-16
Direct on Ar-	61 /)_ <i>L</i>		907	5_4		2 1	72	42	54	0 6	51	at 7_16
RegionAv	OT C	7-4		80 <	J- 0	,	3.1	73	44	56	8.5	, 21	at 7-16

TABLE KEE

ENVIRONMENTAL CRITERIA RESULTS (Averages)
GIOGRAPHICAL AREAS AND WATERS

1		Av.	Range	5.9	5.7		Av	2	.05	7.0					
			۵i				Av	띪	102	66		Average of	Speed	7-16	7-16
		Av	Mea	2.2	2.6	ъ. С	Extreme	3	-20	-36	s)	Aver	8	52	51
TIDE (Feet)		Av	의	1.1	9.0	TEMP (Air FO)	Ext	빎	107	109	WIND (Knots)		Mean	80	.5
TIDE		Av	띪	4.5	6.4	TEME		Mean	58	29	MINI			7	80
			의	-1.8	-1.3		verage	Min	67	50	,	- Vi 10	O AV	3 56	42 56
			崩	.5	.2		Record Average	Мах	29			Pactor	HI TO TO AV	78 4	73 4
	Av	Mean	qqa	1.6	1.1		, 1					**			
	Av	Mean	Flood	1.2	1.0		Ave	an 	o	. 1		Mean		3.1	3.1
(s)		Av	의	9.0	7.0	_		LO Mean		38 61			% & Ht	9-6 >	80 < 5-6
(Knot		Av	Ħ	3.2	2.7	TEMP (Ses FO)	Vaca t		2	81	(Feet)		Av %	79	8
CURRENTS (Knots)			잌	0.2	0.2	TEMP (7	임	α	36.	WAVES		& Ht	4	- 4
S			崩	5.8	4.7			H	26	3 13	2		Av 2 &	, , 19	61 < 3-4
			Location	Area	Waters			Location	000	Waters			Location	Aron	Waters

Table F

ENVIRONMENTAL CRITERIA - ATLANTIC (Current and Tide)

Sources: U.S. Department of Commerce, <u>Tidal Current Tables</u> (1973)

U.S. Department of Commerce, <u>Tide Tables</u> (1973)

U.S. Department of Commerce, Marine Weather Service Charts (1973)

TABLE F

ENVIRONMENTAL CRITERIA ATLANTIC

ما	Rng.	12.9	17.0	8,9	5.8	7:3	3.9	0.6	8.1	2.1	4.6	5.0	4.1	4.0	5.2	10.4	3.1	3.7
Tide (feet)	Mean	6.5	6.5	2.3	1.5	2.2	2.0	3.4	4.1	1.4	1.4	1.6	1.2	2.0	5.6	3.8	0.7	1.2
Tide	2	-1.7	-1.7	5	-1.3	-1.2	8.0-	9.0	-0.5						-0.8	-1.2	-0.4	6.0-
	HI	11.2	15.3	6.3	4.5	6.1	3.1	8.5	7.6	2.0	3.7	4.1	3.4	3.3	4.4	9.2	2.6	2.8
(5)	Ebb	1.1	9.0	8.0	1.1	3.5	0.2	1.8	1.6	6.0	6.0	6.	1.6	2.0	1.5	2.2	1.7	1.7
Current (Knots)	Flood	1.0	0.3	0.3	6.0	5.9	0.1	6.0	1.7	0.7	1.0	∞.	1.2	1.3	1.7	1.6	1.6	1.3
irrent	9	7.0	0.2	0.2	0.5	2.5	0.5	1.0	1.0	0.2	0.2	0.2	0.3	0,4	0.5	9.0	0.7	6.0
5	Ħ	2.0	0.5	0.5	1.3	4.7	0.5	1.1	2.0	1.3	2.0	1.6	2.4	5.6	3.0	3.3	2.3	2.0
	Dist.	7	-	e	3	n	က	3	3	5	S	5	5	5	2	7	7	7
	State	ÄE	Æ	MY	NY	NY n	CI	PA	a PA	ð	DC	VA	VA	VA	NC	GA		
	Location	Portland	Penobscot	Albany	Newburg	East R-Bklyn	NewLondon	DelawareR	Philadelphi	Baltimore	Washington	Richmond	Yorkriver	Norfolk	Wilmington	Savannah	Jacksonville	PtEverglades
Map	Ref	1	7	က	4	2	9	7	œ	6	10	11	12	13	14	15	16	17
Geog.	Area	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL

Table G

ENVIRONMENTAL CRITERIA - ATLANTIC (Sea and Air Temperature)

Sources: U.S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

U.S. Department of Commerce, Local Climatological Data (1972)

TABLE G

ENVIRONMENTAL CRITERIA - ATLANTIC

	Extreme	2	-39	-39	-28	- 2	- 2	- 3	-14	- 5	ا	- 3	-12	∞	00	13	6	12	34
	Exti	H	100	100	86	107	107	100	106	104	101	101	104	103	103	100	102	105	96
r (F ^O)	3ge	Mean	94	97	87	54	55	54	24	99	51	57	28	09	9	63	71	89	75
Temp Air (FO)	Record Average	Min	37	37	20	47	47	42	45	94	45	48	47	52	52	54	28	29	29
I	Recor	Max	54	54	57	62	62	9	62	63	65	99	69	89	89	72	29	9/	83
		-1																	
		Mean	87	48	55	55	53	55	59	59	59	63	63	63	63	14	77	80	80
Temp Sea (FO)		3]	27	27	27	27	36	27	27	27	38	27	27	27	27	33	65	59	63
Temp		H	84	84	84	84	20	84	89	89	77	93	93	8 3	93	93	91	90	92
		State	ME	ME	M														
		Location	Portland	Penobscot	Albany	Newburg	East R Bkly	NewLondon	Delaware R	Philadelphi	Baltimore	Washington	Richmond	YorkRiver	Norfolk	Wilmington	Savannah	Jacksonville	PtEverglades
	Map	Ref	1	7	3	7	'n	9	7	œ	6	10	11	12	13	14	15	16	17
	Geog.	Area	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL

Table H

ENVIRONMENTAL CRITERIA - ATLANTIC (Waves and Wind)

Source: U.S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

TABLE H

ENVIRONMENTAL CRITERIA- ATLANTIC

(knots)	Average	Z & Speed			50 7-16								•					•	
MIND	1	Mean	7.6	7.6	7.6	10.7	10.7	10.4	7.8	8.4	8.4	8.0	9.9	9.2	9.5	8.0	7.2	7.7	7.8
	Fastest	Mile	99	99	62	61	61	58	52	9	20	89	59	89	89	77	57	71	9
	Mean	뵈	3.0	3.0	3.0	3.0	3.0	3.0	3.5	4.0	3.0	3.0	3.0	3.0	3.0	. 7	. 7	4.	3,
et)		% & Ht	9-6	9-9	2-6	- ,	_ •	- •		_ ,		- •			2-6	9-9	9-9	2-6	
WAVES (feet)		241	95	95	86	98	86	86	80	80	83	83	83	83	83	72	71	75	84
WAVE	Averages	& Ht	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4
	Av	94	82	87	71	71	71	17	62	62	69	69	69	69	69	51	65	53	99
		Dist	Н	1	•	ო	٣	٣	m	ო	'n	5	Ŋ	5	S	Ŋ	7	7	7
		State	ME	Æ	M	M	M	IJ	PA	a PA	Ð	DC	VA	VA	VA	NC	СA	F. F.	五元
		Location	Portland	Penobscot	Albany	Newburg	EastRBklyn	NewLondon	Delaware	Philadelphia	Baltimore	Washington	Richmond	Yorkriver	Norfolk	Wilmington	Savannah	Jacksonville	RtEverglades
	Map	Ref	-	2	m	7	2	9	7	80	6	10	11	12	13	14	1.5	16	17
	Geog.	Area	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL	ATL

Table I

ENVIRONMENTAL CRITERIA - GULF AND PACIFIC (Current and Tide)

Sources: U. S. Department of Commerce, <u>Tidal Current Tables</u> (1973)
U. S. Department of Commerce, <u>Tide Tables</u> (1973)
U. S. Department of Commerce, Marine Weather Service

Charts (1973)

TABLE I CRITERIA-GULES PACIFIC

	Rng	4.4	2.6	2.7	N/A	2.9		8.8	5.0	6.9	8.7	8.8	8.5	8.4	N/A	N/A	12.5
(Feet)	Mean	1.3	0.5	0.7	N/A	8.0		2.8	2.8	2.2	3.2	3.3	3.1	3.1	N/A	N/A	6.4
TIDE	9	-0.9	6.0-	-0.8	N/A	-0.8		1.8	1.8	-0.8	-1.6	1.5	* 1.5	-1.5	N/A	N/A	-2.9
	HI	3.5	1.7	1.9	N/A	2.1		7.0	8.9	5.1	7.1	7.3	7.0	6.9	N/A	N/A	9.6
1	Epp	0.9	1.5	N/A	1.4	1.2		0.7	0.5	1.4	2.2	1.7	1.6	2.3	9:0	N/A	2.2
(Knots)	Flood	0.9	1.1	N/A	1.3	0.9		0.7									
URRENT (잌							0.2	012	7.0	9.0	0.5	0.5	0.7	0.5	8.0	0.2
S	副	3.5	2.8	N/A	3.5	2.1		1.2	1.2	2.5	1.3	3.1	2.5	5.6	5.3	3.5	4.2
	Dist.	7	80	80	∞	8		11	11	12	12	12	12	12	13	13	13
	State	FL	FA FA	LA	TX	TX	plicable.	CA	CA	C A	CA	CA	CA	CA	OR	MN	MN
	Location	Тащра	New Orleans	Morgan City	Houston	Corpus Chris	N/A = Data Unreliable Not applicab	LA/LB CA	SB Channel	Suisan Bay	Martinez	Carquinez St.	Richmond	SF Bay	Portland	Tricities	Rosario
Мар	Ref	18	19	20	21	22	data Unre	23	77	25	56	27	28	29	8	31	32
Geog	Area	GLF	GLF	GLF	GLF	GLF	N/A = 1	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC

Table J

ENVIRONMENTAL CRITERIA - GULF and PACIFIC (Sea and Air Temperature)

Sources: U. S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

U. S. Department of Commerce, Local Climatological Data (1972)

TABLE J ENVIRONMENTAL CRITERIA-GULF&PACIFIC

	e e	3	23	14	10	19	25		25	8	19	19	56	5 6	ଞ	-3	-16	-7
(Extreme	Ħ	16	100	102	100	101		111	110	114	114	66	66	101	107	113	100
TEMP (Air F ^o)	age	Mean	72	69	89	89	71		63	62	6k	61	57	57	57	52	54	20
TE	Record Average	Min	63	09	57	57	99		53	54	48	48	65	67	48	43	77	39
	Rec	Мах	81	78	78	79	78		73	20	74	74	99	99	65	61	63	09
a F ^O)		Mean	78	9	65	9/	77		59	57	57	57	57	57	57	55	53	52
TEMP (Sea F		ro Lo	55	41	42	65	57		45	45	43	43	43	43	43	37	40	35
TE		H	92	87	87	92	90		9/	9/	72	72	72	72	72	72	89	20
		Dist	7	∞	80	ø	œ		11	11	12	12	12	12	12	13	13	13
		State	F	LA	1	ΤĀ	TX	icable	Ş	5	క	CA CA	S.	C _A	CA	OR	NA	M
		Location	Tampa	New Orleans	Morgan City	Houston	Corpus Chris	N/A = Data Unreliable Not Applicable	LA/LB	SB Channel	Suisan Bay	Martinez	Carquinez St	Richmond	SF Bay	Portland	Tri Cities	Rosario St
	Мар	Ref	18	19	20	21	22	Data Unrel	23	24	25	56	27	28	29	9	31	32
	Geog	Area	GLF	GLF	GLF	GLF	GLF	N/A =	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC	PAC

Table K

ENVIRONMENTAL CRITERIA - GULF and PACIFIC (Waves and Wind)

Source: U.S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

TABLE K

ENVIRONMENTAL CRITERIA - GULF & PACIFIC

Wind (Knots) it Average <u>Mean % & Speed</u>	56 7-16 58 7-16 58 7-16 58 7-16 58 7-16				45 /-16 45 7-16 N/A N/A N/A N/A 43 7-16
Wind (st Mean	7.7 7.3 6.9 6.3		8.9	6.3	7.0 7.6 6.7 5.8
Win Fastest <u>Mile</u> <u>Mea</u>	58 60 50 40 104		38 54 40	04	43 77 58 52
Mean	നെനനന		7 7 7	177	7 K N N 4
% & Ht	87 < 5-6 86 < 5-6 86 < 5-6 88 < 5-6 86 < 5-6		70 < 5-6 70 < 5-6 70 < 5-6 70 < 5-6	65 < 5-6 65 < 5-6 65 < 5-6	65 < 5-6 65 < 5-6 N/A N/A 69 < 5-6
Waves(feet) Averages % & Ht.	72 < 3-4 67 < 3-4 67 < 3-4 70 < 3-4 67 < 3-4		50 < 3-4	46 \ 3-4 46 \ 3-4 46 \ 3-4	46 < 3-4 46 < 3-4 N/A N/A 52 < 3-4
Dist.	× 8 8 8 8 8 7		11 12	12	12 13 13 13
State	FL LA IX IX IX	olicable	4 4 5	8 8	W W G G G
Location	Tampa New Orleans Morgan City Houston Corpus Chris	N/A = Data Unreliable Not Applicable	LA/LB SB Channel SuisanBay	Marinez Carquinez St	Richmond SF Bay Portland Tri Cities Rosario St.
Map Ref	18 19 20 21 22	ata Unrel	23 24 25	26 27	33 33 33 33 33 33 33 33 33 33 33 33 33
Geog Area	GLF GLF GLF GLF	N/A = D.	PAC PAC	PAC	PAC PAC PAC PAC

Table L

ENVIRONMENTAL CRITERIA - INLAND and GREAT LAKES (Current and Tide)

Sources: U. S. Department of Commerce, Tidal Current Tables (1973)

U. S. Department of Commerce, Tide Tables (1973)

U. S. Department of Commerce, Marine Weather Service Charts (1973)

TABLE L

ENVIRONMENTAL CRITERIA - INLAND & GREAT LAKES

		N/A									N/A	N/A	N/A
(Feet)	MEAN	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TIDE	3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	빎	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ts)	Ebb	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Current (Knots)	Flood	N/A	2.3	N/A	N/A	N/A	N/A	N/A	N/A	6.0	9.0	0.1	2.2
Curren	1	0.2	2.1	0.5	0.7	0.7	0.0	0.8	1.1	0.5	0.2	0.0	1.4
Ħ	- J	12.0	3.4	8.0	8.0	7.5	3.5	4.3	4.8	4.0	1.6	1.2	3.2
	DISTRICT	2	2	2	2	2	2	2	2	2	6	6	6
	STATE	PA	W.VA	НО	K	ID	IN	TN	AR	MIN	III	ID	MICH
	LOCATION	PITTSBURG PA	HUNTINGTON	CINCY	LOUISVILLE	EVANSVILLE	NASHVILLE	MEMPHIS	HELENA	MINN-ST.PAUL	CHICAGO	IND-HARBOR	ST CLAIR
MAP	REF	33	34	35	36	37	38	39	40	41	42	43	77
GEOG.	AREA	INL	INL	INI	INI	INL	INL	INI	INL	INT	GL	GL	GL

Table M

ENVIRONMENTAL CRITERIA - INLAND and GREAT LAKES
(Sea and Air Temperature)

Sources: U.S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

U.S. Department of Commerce, $\underline{\frac{\text{Local Climatological}}{\text{Data (1972)}}}$

TABLE M

ENVIRONMENTAL CRITERIA - INLAND & GREAT LAKES

21	-18	-15	-17	-20	-18	9-	-13	20	-34		-16	-16	-14
H	86	100	109	101	104	103	106	76	66		101	101	66
MEAN	53	26	55	57	57	09	62	62	45		20	20	84
MIN	77	45	45	47	47	20	53	53	%		42	42	33
MAX	62	29	64	99	99	69	71	71	24		57	57	28
MEAN	52	55	25	24	55	55	24	54	84		20	84	N/A
2	8	40	40	40	40	42	33	34	32		32	32	33
	88	80	84	84	84	98	88	87	84		80	20	69
DISTRICT	2	2	2	2	2	2	2	2	2		6	6	6
STATE	PA	W.VA.	ОН	KY	ID	IN	IN	AK	MINN		ILL	TD 01	MC
LOCATION								HELENA	MINN-ST.PAUL		CHICAGO	IND-HARBOR	ST.CLAIR
REF	33	34	35	36	37	38	39	40	41		42	43	77
AREA	INL	INI	INL	INL	INL	INL	INL	INL	INL		GF.	GF.	T5
	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI MEAN HI HI HI HI HI HI HI H	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 84 40 55 64 45 56 100 35 CINCY OH 2 84 40 54 66 47 57 101	National State DISTRICT HI LO MEAN MAX MIN MEAN HI MEAN MEAN	A REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY OH 2 84 40 55 64 45 55 109 36 LOUISVILLE KY 2 84 40 55 64 47 57 101 37 EVANSVILLE ID 2 84 40 55 66 47 57 104 38 NASHVILLE TN 2 86 42 55 69 50 60 103	A REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY OH 2 84 40 55 64 45 55 109 36 LOUISVILLE KY 2 84 40 54 66 47 57 101 37 EVANSVILLE IN 2 84 40 55 66 47 57 104 38 NASHVILLE IN 2 86 42 55 69 50 60 103 39 MEMPHIS IN 5 71 53 62 106	A REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY 0H 2 84 40 55 64 45 55 109 36 LOUISVILLE KY 2 84 40 54 66 47 57 101 37 EVANSVILLE ID 2 84 40 55 66 47 57 104 38 NASHVILLE IN 2 86 42 55 69 50 60 103 39 MEMPHIS IN 2 88 33 54 71 53 62 94 40 HEL	REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY 0H 2 84 40 55 64 45 55 109 36 LOUISVILLE KY 2 84 40 54 66 47 57 101 37 EVANSVILLE ID 2 84 40 55 66 47 57 104 38 NASHVILLE IN 2 84 42 55 69 50 60 103 40 HELENA AK 2 84 42 54 71 53 62 94 40 HELENA <td< td=""><td> A REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY OH 2 84 40 55 64 45 55 109 36 LOUISVILLE ID 2 84 40 55 66 47 57 101 37 EVANSVILLE ID 2 84 40 55 66 47 57 101 38 NASHVILLE TN 2 88 33 54 71 53 62 106 40 HELENA AK 2 84 54 71 53 62 94 41 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 42 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 43 MEACH MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 44 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 45 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 46 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 47 MINN-ST.PAUL MINN 3 48 48 54 36 45 99 48 MARCH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 49 MEACH MINN-ST.PAUL MINN 3 48 48 54 36 45 99 40 MEACH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 40 MEACH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 41 MINN-ST.PAUL MINN 3 48 48 48 48 48 48 48</td><td> REF LOCATION STATE DISTRICT H LO MEAN MAX MIN MEAN H LOCATION STATE DISTRICT H LO MEAN MAX MIN MEAN H LOCATION W.VA. 2 88 30 52 62 44 53 98 100 10</td><td> Name</td></td<>	A REF LOCATION STATE DISTRICT HI LO MEAN MAX MIN MEAN HI 33 PITTSBURG PA 2 88 30 52 62 44 53 98 34 HUNTINGTON W.VA. 2 80 40 55 67 45 56 100 35 CINCY OH 2 84 40 55 64 45 55 109 36 LOUISVILLE ID 2 84 40 55 66 47 57 101 37 EVANSVILLE ID 2 84 40 55 66 47 57 101 38 NASHVILLE TN 2 88 33 54 71 53 62 106 40 HELENA AK 2 84 54 71 53 62 94 41 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 42 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 43 MEACH MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 44 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 45 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 46 MINN-ST.PAUL MINN 2 84 32 48 54 36 45 99 47 MINN-ST.PAUL MINN 3 48 48 54 36 45 99 48 MARCH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 49 MEACH MINN-ST.PAUL MINN 3 48 48 54 36 45 99 40 MEACH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 40 MEACH MINN-ST.PAUL MINN 3 48 48 48 54 36 45 99 41 MINN-ST.PAUL MINN 3 48 48 48 48 48 48 48	REF LOCATION STATE DISTRICT H LO MEAN MAX MIN MEAN H LOCATION STATE DISTRICT H LO MEAN MAX MIN MEAN H LOCATION W.VA. 2 88 30 52 62 44 53 98 100 10	Name

Table N

ENVIRONMENTAL CRITERIA - INLAND and GREAT LAKES (Waves and Wind)

Source: U. S. Navy, Summary of Synoptic Meteorlogical Observations (1970)

TABLE N

ENVIRONMENTAL CRITERIA- INLAND & GREAT LAKES

					WAV	WAVES (Feet)		IIM	ND (Knots)	(s)	
goes	Map				Averages			Fastest		Av	werage
Area	Ref	Location	State	Dist.	Z & Ht.	X & Ht	Mean	Mile	Mean	×	& Speed
INI	33	Pittsburg		2	N/A	N/A	N/A	51	6 8 2	A/N	N/N
TNI	37	Untipoton		۰ ۱	N/N	V/N	V/N	7.7		W/W	W/W
INI	, Y	Cincingcon		4 6	4/X	V/N	G /N	74		6 / N	V/N
INI	3 8	Louisville	.	7 7	N/A	N/A	N/N	23	7.2	N/A	N/N
INL	37	Evansville		7	N/A	N/A	N/A	51	7.2	N/A	N/A
INL	38	Nashville		7	N/A	N/A	N/A	99	6.9	N/A	N/A
INL	39	Memphis		2	N/A	N/A	N/A	20	0.8	N/A	N/A
INL	0,7	Helena		2	N/A	N/A	N/A	20	8.0	N/A	N/A
INL	41	Minn-StPaul		2	N/A	N/A	N/A	80	9.1	N/A	N/A
GF.	42	Chicago	II.	6	N/A	N/A	N/A	52	9.2	N/A	N/A
덩	43	Ind-Harbor	ID	6	N/A	N/A	N/A	52	9.2	N/A	N/A
GL	77	St Clair	MC	6	N/A	N/A	N/A	45	8.7	N/A	N/A

TABLE 0

SUPPORT CRITERIA-AIRCRAFT AVAILABILITY

	123B	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
	130B									0									
AILABLE	130E	0	0	0	0	н	0	0	0	0	0	0	0	0	0	0	0	0	0
NUMBER AVAI	VC 4A	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AIRCRAFT & 1	VC 11A	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TYPES AI	HH5 2A	4	4	П	0	ო	7	4	0	18	0	m	2	0	7	4	m	m	2
	HW 16E	0	0	0	0	က	0	5	0	e	0	0	e	0	0	e	က	0	0
	HH-3F	3	e	0	0	0	0	0	4	eή	က	0	0	4	0	0	0	0	0
	Dist.	1	3	3	ΉÓ	2	7	7	7	HQ	&	œ	80	11	11	12	13	6	6
	State	MA	M	N	oc	NC	СА	Ę	F	ĄŢ	s LA	ΤX	TX	CA	CA	CA	S WA	Œ	11
	Location	Otis AFB	Brooklyn	Cape May	Washington	Eliz City	Savannah	Mami	St Pete	Mobile	New Orleans	Houston	Corpus C.	S. Diego	LA/LB	SFO	PortAngele:	Detroit	Chicago
Map	Ref	-1	2	2	10	14	15	17	18	19	19	21	22	23	23	53	32	77	42
Geog	Area	ATL	ATL	ATL	ATL	ATL	ATL	ATL	GLF	GLF	GLF	GLF	GLF	PAC	PAC	PAC	PAC	INL	IN

TABLE P

SUPPORT CRITERIA VESSEL AVAILABILITY ATLANTIC

SELS	10-25'MSB 27-PEOIN 7-17'UTL 4-18'UTL 1-44'MLB 1-56' LCM 13-SKM 4-25'MCB 1-20'DIN 11-46'BUSL10-SKB 1-31'Barge 1-20'DIN 10-40'UTB 4-44'MSB 1-40'BU 1-SKL	1-44'UTB 2-25 MCB 3-44'MLB 5-SKB 4-30'UTM 6-SKM 3-SKL 1-70'Barge	4-64'YL 1-30'UTM 2-17'UTL	1-46'BUSL 1-23'MON 4-SKB 8-SKM 4-25'MSB 1-44'MLB 10-30'UTM	1-110'Barge 2-17'UTL 1-60'AB 2-40'UTB 3-WP 1-40' Barge 1-40'UTM 4-35'LCUP 9-SKM 7-30'UTM 2-39'ASB 6-SKB 3-44MLB 2-25'MSB 1-SKI 6-TICWAN 2-26'MON	4-31'PSB 1-SKM 2-26'MON 2-25'PSB	1-84'Barge7-SKB 2-SKL 3-40'UTB 1-44'MLB 14-25'MSB 1-35'Larc2-Ticwan 2-WP 1-46'Dory
OTHER VESSELS	10-25 MSB 27-PEO. 1-56 LCM 13-SKM 11-46 BUSL10-SKB 10-40 UTB 4-44 M	3-46'BUSL 14-25'MSB 1-22'MRB 7-17'UTL	4-64'CT 1-25'MCB 1-SKM	3-40' UTB 2-SKL 2-25'MCB	1-110'Barg 1-40' Barg 7-30'UTM 2-25'MSB	2-40'UTB	9-18' ull 3-46'BU 3-25'MCB 9-SKM 8-30'UTM
SELS	1-WLB 2-WMEC 3-WHEC	1-4LB 1-4LM 3-4VTL 4-4VTL 1-4LI	1-WLB 1-WPB 95 1-WPB 82	1-WPB 95 1-WPB 82 1-WYTL	1-WLM 1-WLI	1-WTR	3-WHEC 1-WAGW 1-WMEC 1-WLM
FLEET VESSELS	1-WPB 82 1-WYTM 1-WYTL	1-WPB 82 1-WPB 93 4-WHEC 1-WAGO	1-WHEC 1-WHEC 1-WIN	1-WTR 1-WMEC 1-WLB	3-WYM 2-WAGB	1-WIX	1-WYTL 4-WPB 82 1-WYTM 2-WLB 1-WLIC
Dist		٣	m	က	٧	5	5
State	WE WE	YN .	CI	ĹN	MD	VA	A
Location	Portland Penobscot	New York	New London	Cape May	Baltimore	Yorktown	Norfolk
Map	H	'n	9	œ	6	12	13
Geog	ATL	AIL	ATL	A ATL	ATL	ATL	ATL

Other Vessels	1-40'UTB 1-SKB 1-30'UTM	1-17'UTL -SKB 2-40'UTB 1-TICWAN 2-SKM	1-21'JB 1-44'MLB 1-18'ML 6-SKB 1-60'HB 3-25'MCB 4-TICWAN 4-30'UTM 6-27'ML 6-SKM 4-25'MSB 6-40'UTB 1-68'Bargel-SKB
Fleet Vessels	1-WPB 95	1-WLB 1-WLIC 1-WPB 82	1-WHEC 3-WPB 95 1-WMEC 1-WPB 82 2-WIM 1-WLC
Dist	7	7	
State	Q	邑	료
Location	Savannah	Jacksonville	Mani
Map Ref	15	16	17
Geog	ATL	ATL	ATL 63

63

÷

TABLE Q

SUPPORT CRITERIA VESSEL AVAILABILITY GULF & INLAND

Other Vessels	2-SKM 1-60'HB 2-25'MCB 4-TICWAN 2-SKB 1-18'UTL 2-30'UTM 2-40'UTB 2-25'MSB 2-68' Barge	1-17'UTL 6-45'BU 1- 68'Barge 1-45'Barge6-45'UTB 1-30'UTM 5-WP 1-27'ML 4-TICWAN 1-56'LCM 8-SKM	7-25'MSB 2-25'MCB 3-SKB 7-17'UTL2-20'MCBL 3-40'UTB 5-barges 5-30'UTM1-53'CB 5-WP 5-WP 3-SKB 1-45'BU	7-30'UTM 4-25'MSB 3-WP 2-TICMAN 2-SKM 4-SKB 2-barges2-40'UTB	2-40'UTB 3-30'UTM 2-TICWAN 1-SKM 1-36'MLB 4-WP 2-45'MSB 2-barges 3-SKB	1-17'UTL 1-76'barge 1-100'barge 1-90'HB 1-125'barge 4-WP 2-TICWAN 2-90'barge 4-100'barge 2-100'barge 1-90'barge
Fleet Vessels	1-WMEC 1-WLI 1-WLM 2-WPB 82 1-WLIC	1-WLI 1-WPB 82 1-WLIC(panama c.)	4-WLI 1-WLIC 3-WPB 82	1-WMER 1-WPB 82 2-WLB 2-WLIC	1-WPB 82 1-WMEC 1-WLI 1-WLIC	4-WLR 3-WLR 4-WLR(area)
te Dist.	T /	ALA 8	8 8	TX 8	TX 8	WVA 2 OH 2 KY 2 TN 2 ARK 2
Location State	Tampa/StPete FL	Mobile	New Orleans I	Houston	Corpus C.	Huntington Cincinnatti Louisville Memphis Helena
Geog Map Area Ref	GULF 18	GULF 19	GULF 19	GULF 21	GULF 22	INLAND 34 INLAND 35 INLAND 36 INLAND 39 INLAND 40

TABLE R

SUPPORT CRITERIA-VESSEL AVAILABILITY
PACIFIC & GREAT LAKES

	1-45'BU 1-30'UTM	11-SKM 4-30'UTM	2-26 'MON	-30 TUTM			
	COL	9-40'UTB 11-SKM 1-20'DIN 4-30'U	1-SKM 2	1-TICWAN 1-30'UTM 1-SKB	2-TICWAN	CG 244)	2-17'UTL
sels	6-40'UTB 8-17'UTL 4-36'1 2-39'ASB 7-25'MSB 8-SKM		1-11cwan 2-25.MCB 4-30'UTM 2-25'MSB	7-FR 3-SKM	e 3-SKM	(Seattle see OPFAC CG 244)	2-SKI
Other Vessels	6-40'UTB 2-39'ASB	2-SKM 4-44 MLB 9-25 MSB	4-30'UTM	1-40'UTB 7-FR 1-45'BU 3-SKM	1-60'barge 3-SKM	(Seattle	2-30 'UTM
Fleet Vessels	2-WAG 1-WMEC 5-WPB 822-WHEC 3-WAG 1-WTM	\circ	. 1-WTR	1-Wil	1-WLI	<pre>1-WPB 82(Ancortes) 1-WYTL(Bellingham)</pre>	
Dist.	11	11	12	13	13	13	6
State	S	e e	క	OR	N.	IEM	MC
Location	LA/LB	SantaBarbara SanFrancisco	Alameda	Portland	Tr1-Cities	Rosario	StClair
Map	23	24	29	30	31	32	77
Geog	PAC	PAC PAC	PAC	PAC	PAC	PAC	G.Lakes 44

Figure 1

AVERAGES OF SPILL HISTORY 1971 and 1972 (Geographic Areas)

Source: U.S. Coast Guard, Polluting Incidents In and Around U.S. Waters (1971-72)

FIG. 1. AVERAGES OF SPILL HISTORY 1971 \$ 1972 - % OF SPILLS \$ % OF VOLUME

AVERAGE # SPILLS = 9335/4r; AVERAGE Vol. (QALS x 10-3) = 13,828/4r.

Figure 2

AVERAGES OF SPILL HISTORY 1971 and 1972 (Waters within Areas)

Source: U.S. Coast Guard, Polluting Incidents In and Around
U.S. Waters (1971-72)

FIG. 2 AVERAGES OF SPILL HISTORY 1971 \$ 1972 - % OF SPILLS \$ % OF VOLUME AVERAGE # SPILLS = 9335/yr; AVERAGE Vol. (gals x 10-3)=13,828/yr

Figure 3

AVERAGE OF SOURCES OF POLLUTING SPILLS 1971-72

Source: U.S. Coast Guard, Polluting Incidents In and Around
U.S. Waters (1971-72)

FIG. 3 AVERAGE OF SOURCES OF POLLUTING SPILLS 1971-72

% OF INCIDENTS & % OF VOLUME (GALS. X 10-3) =

VOL. = 18,808 MILLION GALS.

* BREAKDOWN OF ALL VESSELS, COLUMN #4

Figure 4

AVERAGE PERCENTAGE OF SPILLS BY DISTRICT 1971-1972 and PERCENTAGE OF TOTAL OIL VOLUME OF SPILLS 1972

Source: U.S. Coast Guard, Polluting Incidents In and Around
U.S. Waters (1971-72)

FIG. 4 AVERAGE PERCENTAGE OF SPILLS BY DISTRICT 1971-1972 & PERCENTAGE OF TOTAL OIL VOLUME OF SPILLS 1972.

	RANK	ORDE	2	
	%- SPILLS	5 %	WOLUME	
1	BTH		3RD	
2	320		BTH	
3	ПТН		5 TH	
4	7TH		2ND	
5	13TH		ST	
6	12TH		9TH	
7	9TH		12TH	
8	2ND		7 TH	
9	514		13TH	
10	IST		11 TH	
11	14TH		14TH	
12	ITTH		ITTH	73

Figure 5

PRINCIPAL U.S. OIL SPILL CONTROL AREAS

Sources: U.S. Army Corps of Engineers, Waterborne Commerce of the United States (1970-71)

U.S. Army Corps of Engineers, Port Series

American Petroleum Institute, <u>Information on Offshore</u> and <u>Inland Facilities and Pipeline Crossings</u> (1972)

U.S. Coast Guard, Polluting Incidents In and Around U.S. Waters (1970-71-72)

REFERENCES

REFERENCES

LITERATURE

- API; <u>Publications & Materials</u>; American Petroleum Institute, 1801 K Street, Washington, D. C. 20006 1973
- 2. Annual Report; Environmental Research; American Petroleum Institute 1801 K Street, Washington, D. C. 20006 January 1973
- 3. A Staff Paper; Oil Spills Cleanup Cooperatives; American Petroleum Institute, 1801 K Street Washington, D. C. 20006 February 1973
- 4. Analysis of the Coastal Tank Vessel & Barge Traffic; Report DOT-CG-23,560-A-USCG-(GWEP) Washington, D. C. 20590 April 1973
- 5. Support Systems to Deliver & Maintain Oil Recovery Systems and Dispose of Recovered Oil (Draft) Report DOT-CG-23,223-A Task No. 5

 USCG (GDET) Washington, D. C. 20590 June 1973
- 6. Proceedings; Conference on Prevention & Control of Oil Spills; API, EPA, USCG, Washington, D. C. 20590 March 13-15, 1973
- 7. Pollution Detection & Prevention System; Appendix P: Internal Movements, Imports and Exports of Petroleum Products (draft) Purdue Research Foundation USCG (GWEP), Washington, D. C. 20590 May 1973
- 8. Pollution Detection & Prevention System: Purdue Research Foundation (Draft) USCG (GWEP) Washington, D. C. 20590 May 1973
- 9. Polluting Spills in U.S. Waters 1970; USCG (GWEP) Washington, D. C. September 1971
- 10. Polluting Incidents in & around U.S. Waters, calendar year, 1971; USCG (GWEP) Washington, D. C. 20590
- 11. Polluting Incidents in & around U.S. Waters, calendar year, 1972; USCG (GWEP) Washington, D. C. 20590
- 12. U.S. Requirements for Oil Spill Cleanup Cooperatives (draft) Marine Management Services for the American Petroleum Industries. Washington D. C. February 1973.
- 13. Oil Spill Control on the Lower Mississippi (Partial Draft), Marine fanagement Services for the American Petroleum Institute, Washington D. C. June 1973
- 14. Analysis of Oil Spills; Applied Oceanography Division of Dillingham Corp; Lacolla, California 1970

LITERATURE. (CON'T)

- 15. Bates, Chas. C. & Yost, Paul: Where Trends the Flow of Merchant Ships; a paper for inclusion in the Proceedings of the Eighth Annual Conference, Law of the Sea Institute, 18-21 June 1973, University of Rhode Island, Kingston, Rhode Island 02881
- 16. <u>Tide Tables East Coast of N & S America</u>. U.S. Department of Commerce Washington, D. C. 1973
- 17. Tide Tables Pacific Coast of N. America & Asia; U.S. Department of Commerce, Washington, D. C. 1973
- 18. <u>Tidal Current Tables, Atlantic Coast of N. America;</u> U.S. Department of Commerce, Washington, D. C. 1973
- 19. <u>Tidal Current Tables, Pacific Coast of N. America & Asia</u>, U.S. Department of Commerce, Washington, D. C. 1973
- 20. Heiner, W. R.: A Partial Bibliography Inshore Survey Problem Along
 Atlantic & Gulf Coast, National Oceanographic Office, Washington, D. C.
 20390 September 1967
- 21. Oceanographic Report N. 53 (CG-373-53); U.S. Coast Guard Oceanographic Office, Navy Yard, Washington, D. C. 1970
- 22. Johnson, J. W. et. el.: <u>Graphical Construction of Wave Refraction Diagrams</u>; H. O. Pub. #605, USN Oceanographic Office, Washington, D. C. 1966 Reprint
- 23. Oceanographic Atlas of the North Atlantic Ocean: Section 1-Tides & Currents; USN Oceanographic Office, Washington, D. C.
- 24. Surmary of Synoptic Meteorlogical Observations; U. S. Navy Weather Command, Washington, D. C. 1970 Volumes 1-12
- 25. Serial Atlas of the Marine Environment; American Geographic Society, Broadway at 156th Street. New York, New York 10032 1968 - Vols. 7, 15
- 26. Tidal Current Charts 2nd Edition: Upper Chesapeake Bay Department of Commerce 1973
- 27. Port of Corpus Christi, Nucces County Navigation District # 1; File # p-1-04(EE) Apolication Letter to Work in Navigable Waters of Texas.

 Coxpus Christi, June 20, 1973 (Concerning Inshore Superport 72 foot by 600 ft channel to accommodate 275,000 OWT Vessels OBO, VLCC; to be ready December 1976.)
- 28. SMITH, F. Ames. Water Transportation of Petroleum and Petroleum Products in the Future, A paper presented to Committee on Hazardous Materials, July 9, 1973. (Conference July 18-19, College Park, Md.)

LITERATURE (CON'T)

- 29. Nathan, Robert R. Associates, Inc; U. S. Deepwater Port Study; Institute for Water Resources, Alexandria, Virginia August 1972
- 30. Battelle Columbus Labs; Oil Transport Traffic Study; DOT-CG-23,223-A October 1973
- 31. Climatological Study of the Southern California Operating Area.
 Naval Weather Service Command, Ashville, North Carolina 1971
- 32. Local Climatological Data, Annual Summary of Comparative Data.

 U.S. Department of Compare at National Climatic Center, Asheville,
 North Carolina 2880 1972
- 33. Water Discharge Determinations for the Tidal Reach of the Willamette River. Geologic Survey Water Supply Paper 1586-H U.S. Department of Interior Government Printing Office Washington, D. C. 1968
- 34. Report on U. S. Energy Outlook. National Petroleum Council, 1625 K Street, N. W., Washington, D. C. 20006 1972
- 35. U.S. Energy Outlook. 1971-1985, An Initial Appraisal. (An Interim Report):
 National Petroleum Council, 1625 K Street, N. W., Washington, D. C.
 20006 1972
- 36. Crookshank, N. L. Containment Oil Slicks on The St. Clair & Detroit Rivers, Division of Mechanical Engineering, Department of Environment, Ottowa, Canada 1973
- 37. Public Hearing on Gulf Coast Deepwater Port Facilities, by the Corps of Engineers, Held in Mobile, Alabama, May 24, 1973
- 38. Battelle Columbus Labs; Analysis of Inland Waterways Oil Transport
 Traffic Density Patterns; DOT-CG-73,223-A, December 1973

PERSONAL INTERVIEWS

- 1. Staff, Office of Research and Development, U. S. Coast Guard
- 2. LTJG D. WILLIAMS (GWEP-3)
- 3. LTJG P. GOLDEN (GWEP-4)
- 4. LT C. WILLIS (GWEP-4)
- 5. CDR K. PALFREY (GOOO)
- 6. Mr. George GILMORE, Marine Management Services, 1050 Potomac Street, Washington, D. C.
- 7. Mr. Art RESCOALA, American Petroleum Institute, 1804 K Street, Washington, D. C.
- 8. Mr. Robert HEINER, Near Shore Survey Branch, Navy Oceanographic Office, Navy Yard, Washington, D. C. Phone 433-4187
- 9. Mr. Ted FRONTENAC, Wave Section, Navy Oceanographic Office, Suitland, Md. Phone 763-1192
- Mr. BOISVERT, Current Section, Navy Oceanographic Office, Suitland, Md. Phone 763-1139
- 11. Mr. BOYD, Tide Section, Navy Oceanographic Office Suitland, Md. Phone 763-1091
- 12. Mr. TOBIAS, Army Corps of Engineers, Forrestal Building, Washington, D. C. Phone 693-6995 (Info DOD LI56700) (also Mr. Millard for info on C of E)
- 13. CDR DRIGGER, USCG, Oceanographic Unit, Navy Yard, Washington, D. C. Building 159 E Phone 426-4631

CHIEFS, MEPS, BY DISTRICT

DISTRICT	CHIEF	PHONE
lst	LT Dick JONES USCG	617-223-6917
2nd	CDR James WEBB USCG	314-622-5053
3rd	CDR Earnest BIZZOZERO USCG	212-264-4916
5th	CDR DIERSEN USCG	804-393-9315
7th	ENS LAPORTE USCG	305-350-5€51 5276 5640
8th(oil)	CAPT H.S. MUNDY USCG	504-527-6296
9th(oil)	CDR MASON USCG	216-522-3918
11th	CDR JANACEK USCG	213-590-2216 2301
12th	CDR DICKMAN USCG	415-556-0715
13th	LCDR GORDON USCG	206-624-2902 X343
14th(oi1)	LCDR Marshall SHYTLE USCG	415-556-0220 Ask 808-546-7121 ID 7DC 6903 831-3460 or 831-3710
17th(o11)	LT Roger BEVING USCG	206-442-0150 ID 7DC 6903 317-388-1121 X363

NATIONAL STRIKE FORCE

ATLANTIC STRIKE TEAM -LCDR S. WILLIAMS ---MR. WIRT(WO)---804-620-3268

GULF STRIKE TEAM --- LCDR WM. C. PARK III --- 601-688-2380

PACIFIC STRIKE TEAM --- LCDR JOHN H. WIECHERT --- 415-556-0729

TELECON INTERVIEWS

- 1. Lt. Jones, MEP, 1st District Boston Phone 617-6917
- 2. CDR. Webb, MEP, 2nd District St. Louis Phone 314-622-5053
- 3. CDR. Bizzozero, MEP, 2nd District New York Phone 212 264-4916 LCDR Moe - Asst. COTP -New Haven CDR. Wood - COTP Albany
- 4. CDR Dierson, MEP, 5t- District Norfolk Phone 804-393-9315
- 5. Ens La Porte, MEP, 7th District Miami Phone 305-350-5651
- 6. Lt Ford, MEP, 8th District New Orleans Phone 504-527-6296
- 7. CDR Mason, MEP, 9th District Cleveland Phone 216-522-3918
- 8. CDR Janacek, MEP, 11th District Long Beach Phone 213-590-2216
- 9. CDR Dickman, MEP, 12th Discrict San Francisco Phone 415-556-0715
- 10. LCDR Gordon, MEP, 13th District Seattle Phone 206-624-2902 x 343
- 11. CWO Wert, Atlantic Strike Team CGAS Eliz. City, N.C. Phone 804-628-3268
 Bay St. Louis
- 12. LCDR Park, Gulf Strike Team NASA; Miss. Phone 601-688-2380
 Yerba Buona Island
- 13. LCDR Weichert, Pacific Strike Team -San Francisco Phone 415-556-0729
- 14. Mr. Holmes, Corps of Engineers Portland OR Dist Phone 503-777-4441
- 15. Mr. Garrett, " " New Orleans Dist Phone 504-865-1121
- 16. Mr. Salesky, Corps of Engineers, Hydrology Off., Pittsburgh, Dist Ph. 644-6829
- 17. Mr. Hayni, " " Huntington Dist Ph. 304-529-2318
- 18. Mr. Sander, " " Louisville Dist Ph. 502-582-5640
- 19. Mr. Pendergrass, " " Memphis Dist Ph. 901-534-3221
- 20. Mr. Pera, " " " St. Paul Dist Ph. 612-725-2501
- 21. Mr. Tomando, " " Detroit Dist Ph. 313-226-6440
- 22. Mr. Lanham, " " Walla Walla Dist Ph 590-525-5500
- 23. Mr. Connor, " " " Nashville Dist Ph. 615-749-5632
- 24. Mr. Lipski, " " " " Phila. Dist Ph. 215-597-4810

- 25. Mr. Kolessar, Corps of Engineers, Hydrology Office, Chesepeake Dist-Ph. 301-962-4600
- 26. Mr. Orzehoski, " " " Chicago Dist. Ph.312-353-6470
- 27. Mr. Buchwald, Nat'l Crimactic Weather Center, Ashville, N. C. Ph.-704-254-0683 or 427-7919
- 28. Mr. Robinson, Planning Study Group-Chesepeake Dist. Ph- 301-962-2512
- 29. Mr. Johnson, San Francisco Bay Model, Sauselito Co. Ph.-415-332-3870 must dial 8-415-556-9000
- 30. Mr. Hosee, Oregon Dept. of Environmental Quality Phone 503-229-5983
- 31. Dr. Saylor, Great Lakes Survey Research Center Phone 313-226-6408 or 6400
- 32. Mr. Susag, Metro Water Board St. Paul Minn. Phone 612-222-8423
- 33. Mr. Bouslag, National Weather St. Paul Minn. Phone 612-725-3401

APPENDIX I STUDY SYSTEM PHASES

APPENDIX II

ENVIRONMENTAL CRITERIA WORKSHEET

APPENDIX-11

ENVIRONMENTAL CRITERIA WORKSHEET										
AREA			<u>s</u>	TUDY MA	P REFE	RENCE	#			
REGION			 							
DATA REFEREI	NCES:							···		
	_									
	-			·····						
			,							
Criteria Item	HI	Lo	MEAN	RANGE	FORCE	PRE- VAIL	HEIGHT	OTHER		
Current										
Tide										
Temp.										
Wind										
Wave.					,					
SUMMARY (COMMENT									
•										
			•							
						Ì	Temp. E	l Extreme. Extreme.		
							Tidal/C	Current. ence/Vortex.		
							Oscilla Frequen	ition.		

APPENDIX III

Appendix III 1972

INCIDENTS BY SIZE

SIZE IN GALLONS	Number of incidents	% of total	Volume in gallons	% of total
Unknown	2,791	28.2		
1-99	5,412	54.7	107,729	0.6
100-999	1,309	13.2	356,474	1.9
1,000-9,999	299	3.0	866,645	4.6
10,000-99,999	· 63	0.7	2,086,684	11.1
100,000+ TOTAL	19 9,893*	$\frac{0.2}{100.0}$	15,388,200 18,805,732	81.8 100.0

^{*} Number of incidents does not include 38 reported discharges which indicated quantity of material discharged in pounds.

APPENDIX IV

\$0 U	RCE	AND	CAUSI

Number of incidents Volume in Gallons

		4.			1.	•				
13. V.	ollision	Grounding	Capstring/ Overturning	Fire/Explosion	Other Casualty	Tank Rupture	Hull Structural Fallure	Storage Tank Rupture or Leak	Hose Rupture	Line Leak
SOURCE										
Vessels			*							
Dry Cargo	125	5 705	<u>1</u> 500	10 821	3 5	10	$\frac{2}{102}$	3 1,262	6	7 253
Tankships	$\frac{7}{105,315}$	9 319,100	x	10	3 212	13 2,877	18 23,326	17	2,206	5 130
Tank Barges	1,294,732	23 422,207	10	2 92	15	81 46,825	70	35 11,259	31 8,361	19 8,861
Combatant	- <u>1</u>	x	x	x	3 53	2 2,045	2 22	415	7 406	<u>8</u> 55
Other	$\frac{10}{1,118}$	8	1/37	1,000	7,930	2,030	<u>6</u> 299	5 92	4 375	7
Land Vehicles	$\frac{22}{17,943}$	×	$\frac{37}{91,613}$	$\frac{1}{250}$	5 15,030	$\frac{7}{31,110}$	5 3,250	<u>1</u>	x	2/20
HORE FACILITIES										
Refineries	x	x	x	×	1 50	300	x	x	6 952	502
Bulk Storage	100	1 20,000	$\frac{1}{3,000}$	10	<u>1</u>	7 42,505	x	17 58,429	3 193	20 5,941
Waterfront Transportation Facilities	on 1,263	x	x	1 ,	<u>2</u> 50	7 446,615	2 280	10 267	16,464	35 29,575
Non-Transport. Facilities	$\frac{1}{20}$	x	1 800	$\frac{5}{7,275}$	4,005	7 25,350	10	13 2,781	13 742	50 8,192
Other Land Transportation Facilities	X on	X	x	x	3 167	x	x	10	2 55	2 400
Fipelines	6 33,910	x	x	10	$\frac{2}{24}$	x	x	x	$\frac{1}{1}$	6,035
OFFSHORE FACILITIES	901	x	X	5 21,300	18,077	5 477	2.47	18 3,805	19 - 575 -	$\frac{791}{42,157}$
M: SCFLLANEOUS	$\frac{1}{20}$	x	x	<u>2</u>	$\frac{2}{400}$	2 400	x	43,820	2 30	7
UNKNOWN	x	×	x	x	x	x	x	x	x	x
TOTAL	111 1,455,467	763,682	95,950	33,738	128 1,736,25	7 600,534	108 148,787	129 123,98	1 30,404	104,037

Pipe Rupture or Leak	Other Rupture Or Leak	Valve Failure	Pump Pailure	Other Equipment Fallure	Tank Overflow	Inproper Valve Handling	Improper Hose Connection	Other Personnel Error	Intentional Discharge	Matural Phenomenon	Unknown	Total
<u>4</u> 52	8 78	9 329	<u>1</u> 30	10	68 9,433	- <u>14</u>	9 123	39 2,250	100	5 6	95 2,749	402
1,281	39 2,002,007	$\frac{30}{1,577}$	8 1,333	$\frac{9}{1,302}$	$\frac{77}{75,530}$	8,204	1,619	35 11,784	1,605	<u>5</u> 869	80 21,674	453 2,583,952
12 542	8,448	4,507	734	1,072	202 53,339	3,953	$\frac{13}{17,062}$	5,598	<u>5</u>	70	70 40,232	830 3,739,144
$\frac{2}{230}$	301	11 563	x	8 425	9,858	2,908	8 475	$-\frac{32}{8,298}$	<u>20</u> 949	$\frac{6}{1,903}$	94	40,923
15	12 602	513	3 70	366	53 [64,213	14 389	5 120	-31 863	$\frac{137}{8,711}$	<u>6</u>	-1 <u>01</u> 5,894	96,508
- 1 10	$\frac{3}{12}$	1,000	x	<u>1</u>	3,370	3,040	3 96	1,613	$\frac{12}{2,105}$	205	1,802	145
											-	
12	4							•	4	24	45	185
2,546	769	$\frac{12}{1,103}$	314		16,440	9 796	106	5 335			14,585	
256,946	4,023	8,146	$-\frac{6}{421}$	3,056	8,238	$\frac{11}{221,786}$	30,008	4,257	1,806	3,343	$\frac{75}{20,467}$	692,670
47 268,829	3,715	1,434	9 959	33 3,840	29 153,654	1,393	20 646	$\frac{64}{3,332}$	$\frac{23}{1,519}$	$\frac{26}{312}$	9,218	943,264
46	$\frac{23}{96,114}$	$\frac{31}{10,494}$	18,905	50 9,278	18,472	• 161,213	2 60	$\frac{38}{1,533}$	23,465	44 9,001,68	37,699	715 8,610,250
3 650	2 35	2 5 0	x	7 261	<u>5</u> 6,675	x	x	1/5	12 567	9 1,840	19 2,606	68 13,331
83 854,797	40 62,893	6 163	34	159,714	1 80	$\frac{2}{410}$	3 40	. <u>10</u>	$\frac{2}{1,010}$	7 25,445	83,650	216
115 46,048	72	403 19,743	$\frac{233}{7,775}$	$\frac{433}{45,542}$	62 3,123	23 9,496	3 26	- <u>27</u>	$\frac{6}{211}$	$\frac{38}{3,064}$	36 7,324	2,317
$\frac{10}{1,305}$	$\frac{1}{20}$	<u>2</u> 950	2 70	19 301	7 625	$\frac{3}{114}$	x	15 577	24 6,078	56 5,928	$\frac{69}{13,246}$	229 75,668
x	x	x	x	x	x	x	x	x	x	x	2,811 278,415	2,1811 278,.415
368 1,632,419	306 2,183,160	584 50,572	302 15,595	656 227,588	640 423,050	1 <u>93</u> 271,530	<u>83</u> 50,381	371 50,355	457 68,515	257 3,045,97	3,827 551,758	9,931

APPENDIX V

INCIDENTS BY SIZE

SIZE IN GALLONS	NUMBER OF INCIDENTS	% OF TOTAL	VOLUME IN GALLONS	% OF TOTAL
UNKNOWN	2,867	32.9	***	
1-99	4,272	49.1	94,322	1.1
100-999	1,203	13.8	336,640	3.8
1,000-9,999	285	3.3	830,595	9.4
10,000-99,999	6 5	0.7	1,604,580	18.1
100,000+	1?	0.2	5,973,386	67.6
				
TOTAL	8,709*	100.0	8,839,523	100.0

^{*} Number of incidents does not include 27 reported discharges which indicated quantity of material discharged in pounds.

IV XICMAPPA

		Source 4.	AND CAUSE		Number of Volume i	incidenta n Gal'ons	4			
OURGE	Collision	Ground ing	Cepsizing/ Overturning	Fire/Explosion	Other Casualty	Cank Rupture	Hull Structurel Failure	Storage Tank Rupture or Leak	Hose Rupture	Line Leak
Vensels Dry Corre	1,2 ,	176		1 393,	<u>6</u> 3,000	x 8	51	19_	16 19,269	8 8,51>
Tick Durges	6 1,095,400 307,5,5	18 430,535	x 2 75	x x	2 240 4 104	8 1,557 48 60,015	1,110 1,221	19 3,519 38 2,499	19,269 24 2,719	127 45,2.5
. ombritant	2 16,500	2 100	x	x '		x	10	2,400	<u>3</u> 55	5 210
Other	7 2, 010	27,755	4	400	42 123,458	$\frac{1}{10}$	X	5	215	1447
LAP THOUSE	22,970	X	15 32,500	x	3,700	x	x	x	x	<u>1</u> 5∪
004088. FACT: 17182					•				2	s.e
Refineries Bulk Morage	225	x x	x x	y 1	x x	1 2,550,555 4 15,666	x x	115 - 12 - 27,490	2,360 4 1,480	115,4.5 - 6 - 1,355
Fac.lities Weterfront	1								1,460 19 19,351	25 5,366
Transportation Failures Non-Transport.	5	x	x x	x x	2 135 X	5 14,120	1	9 99,529 10 8,724	9 2,212	5,366 24 1,497
Facilities Other Land	X	X					X 1			
Transportation Facilities	X	X	x x	X		X	4.60r			X 1,267
FACILITIES OFF SHORE	ন্ ক্ৰ	Х		X	5 143	75	109	10 457	21 2,078	1,267 350,662
HISCELL ANEOUS	х	x	x	x	3 30	x	x	10 2,035	x	2
ELIKHO*!	x	x	x	X	x	X	x	x	x	X
TCTAL	1,455.90	598,38 9	· 31	9 797,L	26 , 5.5	? 81,443	- <u>76</u>	196,015	50+347	1,539 50a.096

Appendix VI Con't.

•			8	OURCE AND CA	Ause	_ N	umber of In Volume in G	cionn's allons			
P.pe Rupture or Leak	Other Rupture or Leak	Valve Failure	Pump Failure	Other Equipment Failure	Tank Overflow	Improper Hose Connection	Other Personnel Fallure	Intentional Discharge	Natural Phenomenon	Unknown	Total
2 16	<u>6</u> 226	9 3,194	1 5	13	37 4,072	6	50 1,942	75 2,504	2	46 2,826	271 416,6t
16 3,085 54 29,407	34 27,815 88 11,955	17 12,841 56 24,39%	8 988 19 388	27,959 28 8,000	5,324 69 1,266	5 637 18 4,01,	58 11,567 65 231,015	22 1,973 14 2 1	104 2 2	97 10,607 125 14,967	786 1,665,164 654 1,19 ,619
2.1	983	5 1,735	Х	x	18 41,057	<u> 3</u>	52 240,291	1,764	х	107 5,573	2 <u>(1</u>
161 184	8 503 x	3 75	x X	14 12,270 4 7,100	21 1,101 10 4,627	$\frac{1}{1}$	2,087 	71 2,49 12 2,159	26	121 6,521 2,321	15 ,1.
						,			ŕ		
28 62.9.: 11 56.07:	16 2,44,2	15 11,279 3 45,250	226 1	57 14,479	15 5,6,6 5 537	X	12 644 27 175,47	2 84 3	8 1,074 25 1,787		182 2.2 5.781 796 1.7.76
56 (° 2°) 	74	45,750 16 17,175	4 		52°		$-\frac{56}{9,191}$		2 1,500		12. 61/13
27	· 12	11,547	- 5	33 2,259		1,2;	34		1ª c	159 43,516	1,25 , 9 2
											153.3.1
											36,117
											9
											2020 22 2020 22
£	14,00	141,5-3	1 342	116.75	1 , 3	*, ** *.	· · · · · · ·	3 672	5,05	120. 12	\$,790 \$,700