I pynna	Стуоент	<u> д</u> ата		
Лабораторная работа № 4 Рабочее задание				
1. Параметры схемы:				
$R_{\Gamma} = , R_{H} =$	$, C_{p1} = , C_{Bx} = , C_{p2} =$, $C_{\scriptscriptstyle \mathrm{H}}$ =		
2.Проверка работоспособ	ности усилителя. Форма сигнала	•		
f =к Γ ц.	Определить $E_{\text{г макс}}$: $E_{\text{г макс}} = $	3.		
Установить (на генератор	е) амплитуду <u>не больше</u> $E_{\text{г макс}}/2$.			
Сохранить осциллограмм	у в электронном виде.			
Добавить обработанную	осциллограмму в протокол.			
Определить коэффициент	усиления.			
$U_{\scriptscriptstyle \Gamma}$ =, $U_{\scriptscriptstyle m Bbix}$ =	$K_{u0} = $			
3. АЧХ усилителя (программа <i>ACH</i>). Установить <u>закрытые входы</u> по каналам OSC (значок « ~ »).				
Установить на генераторе: форма сигнала, амплитуда $U_{\rm m}$ = 0,1 В.				
<i>f</i> , Γ u 46 100 220 4	60 1000 2200 4600 10000 22000 4600	00 100000 220000		
Добавить обработанную характеристику в протокол.				
Нижняя граничная частота пропускания усилителя	n = , $a = $ MM, $b = $ MM	$f_{\scriptscriptstyle m H}$ =		
Верхняя граничная частота пропускания усилителя	n = , $a = $ MM, $b = $ MM	$f_{ ext{\tiny B}} =$		
Логарифмический коэффициент усиления в полосе пропускания (средние частоты) $LK_{u0}=$				
Коэффициент усиления в полосе пропускания	Расчетная формула $ extbf{\emph{K}}_{u\theta} =$	$K_{u0} =$		
Время установления усилителя	$m{p}$ Расчетная формула $m{t}_{ m y} =$	$t_{ m y} =$		

6. Исследование временной характеристики усилителя. Амплитуда $U_m = 0,1$ В. Форма сигнала ______, $t_{\text{и вх}} =$ ______ мкс, f = _____ кГц.

Расчетная формула $\delta u =$

 $\delta u =$

Относительный спад плоской

вершины ($t_{\text{и вх}} =$

Определение времени установления (режим «Измерения» параметр «Время нарастания»).

Добавить обработанную осциллограмму в протокол.

$$U_{\Gamma}=$$
 _______, $U_{ ext{BbIX}}=$ _______, $t_{ ext{y}}=$ _______, $K_{u0}=$ _______.

Расчетная формула	Расчет
$f_{ extsf{\tiny B}} =$	$f_{ exttt{ iny B}}=$

Определение относительного спада плоской вершины (режим «Курсоры»). Сохранить осциллограмму в электронном виде.

Добавить обработанную осциллограмму в протокол.

$$\Delta u$$
= _____, U_{m} = _____

Расчет относительного спада плоской вершины:

 $\delta u =$

Расчетная формула	Расчет
$f_{\scriptscriptstyle m H}=$	$oldsymbol{f_{ ext{H}}} =$

Сводная таблица:

Параметр		K_{u0}	$f_{\scriptscriptstyle m H}$, Гц	$f_{\scriptscriptstyle m B}$, к Γ ц	δ <i>u</i> , %	t _y , мкс
Расчет						
Эксперимент	п. 3					
	п. 4					

5. Определение входного сопротивления усилителя.

Расчетная формула: $R_{\text{вх}} =$

$U_{ ext{вых1}}, \mathbf{B}$ $(R_{ ext{r1}} = 10 ext{кОм})$	$U_{\text{вых2}}, B \ (R_{\text{r2}} = 20 \text{кОм})$	$R_{\scriptscriptstyle m BX}$, кОм

6. Определение выходного сопротивления усилителя.

Расчетная формула: $R_{\text{вых}} =$

$U_{ ext{вых1}}, \mathbf{B} \ (R_{ ext{H1}} = 40 ext{кOm})$	$U_{{ t Bыx2}}, { t B} \ (R_{{ t H2}} = 20 \ { t кOm})$	$R_{\scriptscriptstyle m BMX}$, кОм