2D NMR

Chris Waudby

c.waudby@ucl.ac.uk

Recap: aq, td, sw and spectrum resolution

2D NMR

- Many spin systems and pulse sequences to choose between!
 Focus on general aspects first...
- sw, td, aq
- · Field strength, resolution and sensitivity

2D NMR t₁ preparation mixing

 t_2

detection

· Analysis of sw and resolution exactly the same as 1D

evolution

• Key difference from direct detection – long aq in t1 isn't free!

(+ obvious extension to 3D etc.)

Quadrature detection in 2D

2 seperate expt needed, unlike direct dimension

hypercomplex data RR, RI, IR, II

2D Fourier transformation

(Keeler, Understanding

Multiplet structures

Resolution in the indirect dimension

Sw(Hz) =
$$\frac{y B_0}{2\pi i}$$
. Sw(ppm) × 10⁻⁶
 $\Delta t = \frac{1}{\text{Sw}(Hz)} \propto \frac{1}{B_0}$ Stronger fields

resolution(Hz) = $\frac{1}{\text{tag}} = \frac{1}{N \cdot \Delta t} \propto \frac{\text{Sw}(ppm) \cdot B_0}{N}$

resolution (ppm) $\approx \frac{\text{Sw}(ppm)}{N}$ (independent of B_0)

Spectrum width in the indirect dimension: folding / aliasing

 Maximise resolution in indirect dimension by optimising the offset and minimising the spectrum width

Resolution, sensitivity and field strength

Automated Spectral Compression for Fast Multidimensional NMR and Increased Time Resolution in Real-Time NMR Spectroscopy

Ewen Lescop, Paul Schanda, Rodolfo Rasia, and Bernhard Brutscher*

Sensitivity

signal $\propto \sum e^{-R_z t_i} \approx \int_{0}^{t_{aq}} e^{-R_z t_{aq}} = \frac{1 - e^{-R_z t_{aq}}}{R_z}$

same amount of noise in each FID

-, noise & Vtaq

-, noise & Vtaq

-, noise & Vtaq

-, noise & Vtaq

NHEN SPECTROMETER TIME

RZ Vtaq OR SAMPLE LIFETIME

N.B. weirdunits [Hz*1/2]!

For fixed amount of wall-clock time: $SNR \propto \frac{1-e^{-R_c t_{aq}}}{R_c t_{aq}}$ 2D experiments: COSY

2D experiments: NOESY

Sensituity signal $\propto \sum_{e} e^{-R_z \cdot t_{ag}} \approx \int_{e}^{iag} e^{-R_z t} = \frac{1 - e^{-R_z \cdot t_{ag}}}{R_z}$ on resonance (w=0): same amount of noise in each FID =) noise & Vtag · Bally sensitivity of $\frac{1-e^{-k_z t_{aq}}}{R_z \sqrt{t_{aq}}}$ (NB units: $s^{-1/2}$) For fixed amount of wall-clock time: SNR ~ 1-e- kz tag.

Rz tag. [-t,-)] SH(1) -+,-) Tm /-+2-)

full connectionty within spin system within within of of or or within the Z (eg) 14 -> 13C -> detect SNR2 Yex Yobs HETCOR - Setter than direct detection SH (indirect) 13C / 12 Sc (direct) HMQC/HSQC $'H \rightarrow X \rightarrow 'H$ SNR & Yer Jobs 3/2 8H/8c = 4 = 500 x HSQC YH/YN=10 =)50,000x 17/17/17 pm