1.2 - Errors

PJ Gibson - Peace Corps Tanzania May 2020

- (2000) What is an error? Mention two causes of systematic and two causes of random errors.
- (2000) The pressure P is calculated from the relation $P = F/(\pi R^2)$ where F is the force and R the radius. If the percentage possible errors are +2% for F and +1% for R. Calculate the possible percentage error for P.
- (2007) What is systematic error?
- (2007) The smallest divisions for the voltmeter and ammeter are 0.1 V and 0.01 A respectively. If V = IR, find the relative error in the resistance R, when V = 2 V and I = 0.1 A.
- (2010) Define an error.
- (2010) In an experiment to determine the acceleration due to gravity g, a small ball bearing is timed while falling freely from rest through a measured vertical height. The following data were obtained: vertical height $h = (600 \pm 1)$ mm, time taken $t = (350 \pm 1)$ ms. Calculate the numerical value of g from the experimental data, clearly specify the errors.
- (2013) What is the difference between degree of accuracy and precision.
- (2013) In an experiment to determine Young's modulus of a wooden material the following measurements were recorded:
 - length $l = 80.0 \pm 0.05$ cm
 - breadth $b = 28.65 \pm 0.03 \text{ mm}$
 - thickness $t = 6.40 \pm 0.03$ mm and
 - slope $G = 0.035 \pm 0.001 \text{ cm/gm}$
 - Given that the Youngs modulus Y is given by:
 - $-Y = (4/Gb)(l/t)^3$
 - Calculate the maximum percentage error in the value of \boldsymbol{Y} .
- (2014) Distinguish random error from systematic error.
 - Give a practical example of random error and systematic error and briefly explain how they can be reduced or eliminated.
- (2014) Define the terms error and mistake.

- (2014) An experiment was done to find the acceleration due to gravity by using the formula: $T=2\pi\sqrt{l/g}$, where all symbols carry their usual meaning. If the clock losses 3 seconds in 5 minutes, determine the error in measuring g given that, T=2.22 sec, l=121.6 cm, $\Delta T_1=0.1$ sec, and $\Delta l=\pm 0.05$.
- (2014) The following measurements were taken by a student fort he length of a piece of rod: 21.02, 20.99, 20.92, 21.11 and 20.69. Basing on error analysis find the true value at the length of a piece of rod and its associated error.
- (2015) What is meant by random errors?
 - Briefly explain two causes of random errors in measurements.
- (2015) The period T of oscillation of a body is said to be 1.5 ± 0.002 s while its amplitude A is 0.3 ± 0.005 m and the radius of gyration k is 0.28 + 0.004 m. If the acceleration due
 - to gravity g was found to be related to T , A and k by the equation $(gA)/(4\pi^2) = (A^2 + k^2)/T^2$, find the:
 - Numerical value of g in four decimal places
 - Percentage error in g.
- (2016) The period of oscillation of a simple pendulum is given by $T=2\pi\sqrt{l/g}$ where by 100 vibrations were taken to measure 200 seconds. If the least count for the time and length of a pendulum of 1 m are 0.1 sec and 1 mm respectively, calculate the maximum percentage error in the measurement of g.
- (2017) Give the meaning of the following terms as used in error analysis:
 - Absolute error.
 - Relative error.
- (2017) The force F acting on an object of mass m, travelling at velocity v in a circle of radius r is given by: $F = \frac{mv^2}{r}$ If the measurements are recorded as: $m = (3.5 \pm 0.1)$ kg, $V = (20 \pm 1)$ m/s, $r = (12.5 \pm 0.5)m$; find the maximum possible
 - Fractional error.
 - Percentage error in the measurement of force.
 - Show how you will record the reading of force, F in the question above.
- (2018) How can random and Systematic errors be minimized during an experiment?
- (2018) Estimate the precision to which the Youngs modulus, γ of the wire can be determined from the formula $\gamma = (4Fl)/(\pi d^2 e)$, given that the applied tension, F = 500 N, the length of the loaded wire, l = 3 m, the diameter of the wire, d = 1 mm, the extension of the wire, e = 5 mm and the errors associated with these quantities are 0.5 N, 2 mm, 0.01 mm and 0.1 mm respectively.
- (2019) What causes systematic errors in an experiment? Give four points.
- (2019) Estimate the numerical value of drag force $D=1/2C\rho AV^2$ with its associated error given that the measurements of the quantities C, A, ρ and v were recorded as (10 \pm 0.00) unit less (5 \pm 0.2) cm², (15 \pm 0.15) g/cm³ and (3 \pm 0.5) cm/sec² respectively.