Problem §1

Indicate if each statement is true or false.

- (a) A statement and its negation may be both false.
- (b) $3 \le 5$ and 10 is odd.
- (c) x > 0 or $x^3 \le 0$.
- (d) If 2 is odd, then 10 is even.
- (e) 2 is odd \iff 4 is odd.
- (f) xy > 0 whenever x > 0 and y > 0.

Solution:

- (a) false; a statement must be either true or false, so its negation must be the opposite.
- (b) false; 10 is not odd.
- (c) true; any x is either positive, or its cube is non-positive (the domain of x^3 is \mathbb{R} , so $x \leq 0$ is contained in x^3).
- (d) true; since 2 is not odd, the statement is always true regardless of the conclusion.
- (e) true; both statements are false, so the biconditional is true.
- (f) true; if x and y are both positive, then xy must also be positive.

Problem §2 Construct truth tables to show that:

1.
$$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$$

2.
$$\neg (p \rightarrow q) \equiv p \land (\neg q)$$

Solution:

 $\S 2.1$

p	q	$\neg p$	$\neg q$	$(\neg p) \wedge (\neg q)$	$\neg \left(p \vee q \right)$
Т	Т	F	F	F	F
T T F	F	F F	T	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	Т	F	\mathbf{F}	\mathbf{F}
F	F	Γ	T	${ m T}$	T

 $\S 2.2$

p	q	$p \wedge (\neg q)$	$\neg (p \rightarrow q)$
Т	Т	F	F
\mathbf{T}	F	$^{\rm T}$	${ m T}$
F	Т	F	F
F	F	F	F

Problem §3 Write the negation of each statement:

- (a) A circle of radius 1 has smaller area than a square of side 1.
- (b) It is sunny and windy.
- (c) I can finish the homework provided that I attend the class.
- (d) I can speak Spanish or Japanese.

Solution:

- (a) A circle of radius 1 does not have a smaller area than a square of side 1.
- (b) It is not sunny or not windy.
- (c) I attend the class and I cannot finish the homework (D:).
- (d) I cannot speak Spanish and I cannot speak Japanese.

Problem §4 Rewrite the following statements using quantifiers, then write the negation first using quantifiers and then in common English:

- (a) If x > 3, then there exists y > 0 such that $x^2 > 9 + y$.
- (b) For every $x \in A$ and $y \in B$, $|x y| \ge 1$.
- (c) For every M > 0, there exists A > 0 such that if |x| > A then |f(x)| > M.

Solution:

- (a) Rewrite using quantifiers: x > 3, $\exists y > 0$, $x^2 > 9 + y$. Negation using quantifiers: x > 3, $\forall y > 0$, $x^2 \le 9 + y$. Negation in common English: x > 3, and for every positive y, $x^2 \le 9 + y$.
- (b) Rewrite using quantifiers: $\forall x \in A, y \in B, |x-y| \ge 1$. Negation using quantifiers: $\exists x \in A, y \in B \text{ s.t. } |x-y| < 1$. Negation in common English: There exists an $x \in A$ and $y \in B$ where |x-y| < 1.
- (c) Rewrite using quantifiers: $\forall M>0, \exists A>0 \ s.t. \ |x|>A\to |f(x)|>M.$ Negation using quantifiers: $\exists M>0, \forall A>0 \ s.t. \ |x|>A\wedge |f(x)|\leq M.$ Negation in common English: There exists an M>0 where for all A>0, |x|>A and $|f(x)|\leq M.$

Problem §5 A function f is periodic if there exists a T > 0 such that for every x, f(x+T) = f(x).

- (a) Write the above definition using quantifiers.
- (b) By taking the negation, give the definition of *non* periodic functions.

Solution:

- (a) $\exists T > 0 \text{ s.t. } \forall x, f(x+T) = f(x) \to f \text{ is periodic.}$
- (b) A function is non periodic if for all T > 0, there exists an x such that $f(x+T) \neq f(x)$.