Introduction to Signals and Systems: V216

Lecture #8

Chapter 4: The Continuous-Time Fourier Transform

Fourier Series

This periodic signal x(t) repeats every T seconds. x(t)=1, for $|t| < T_1$, and x(t)=0, for $T_1 < |t| < T/2$

Fundamental period= T,

Fundamental frequency $\omega_0 = 2\pi/T$.

Choosing the period of integration to be between -T/2 and +T/2. Use eqn 3.39 to get at Fourier Series Coefficients.

Fourier Series

$$a_{k} = \frac{1}{T} \int_{T} x(t)e^{-jk\omega_{0}t} dt = \frac{1}{T} \int_{T} x(t)e^{-jk\frac{2\pi}{T}t} dt$$

Let us get the dc, constant term or average value over a period, first, i.e. k = 0

$$a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T}$$

Fourier Series

$$a_{k} = \frac{1}{T} \int_{T} x(t)e^{-jk\omega_{0}t} dt = \frac{1}{T} \int_{T} x(t)e^{-jk\frac{2\pi}{T}t} dt$$

For fundamental first order and higher order harmonics: - we have $k \neq 0$.

$$a_{k} = \frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-jk\omega_{0}t} dt = -\frac{1}{jk\omega_{0}T} e^{-jk\omega_{0}t} \Big|_{-T_{1}}^{T_{1}},$$

$$a_{k} = \frac{2}{k\omega_{0}T} \left[\frac{e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}}}{2j} \right] = \frac{2\sin(k\omega_{0}T_{1})}{k\omega_{0}T} = \frac{\sin(k\omega_{0}T_{1})}{k\pi}$$

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

$$a_k = \frac{2\sin(kw_0T_1)}{kw_0T}$$

$$Ta_k = \frac{2\sin(wT_1)}{w}\bigg|_{w=kw_0}$$

Fourier series coefficients

 \boldsymbol{w} as a continuous variable

$$w = kw_0 = k\frac{2\pi}{T}$$

$$T \to \infty \Rightarrow \{Ta_k\} \to \frac{2\sin(wT_1)}{w}\Big|_{w=kw_0}$$

an aperiodic signal

a periodic signal

$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$\frac{a_k}{T} = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{\mathbf{x}}(t) e^{-jkw_0 t} dt$$

$$\Rightarrow a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_{-\infty}^{+\infty} x(t) e^{-jkw_0 t} dt$$

 \bullet Define the envelope X(jw) of Ta_k as

$$Ta_k = \frac{2\sin(wT_1)}{w}$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

Then,

$$a_{k} = \frac{1}{T}X(jkw_{0})$$

Hence,

$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} X(jkw_0) e^{jkw_0t}$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0t} w_0$$

$$w_0 = \frac{2\pi}{T}$$

$$\frac{1}{T} = \frac{1}{2\pi} w_0$$

also
$$w_0 \rightarrow 0$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

- inverse Fourier transform eqn
- synthesis eqn

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

- X(jw): Fourier Transform of x(t) spectrum

analysis eqn

$$\frac{a_k}{T} = \frac{1}{T} X(jw) \Big|_{w = kw_0}$$

Sufficient conditions for the convergence of FT

$$x(t) \xrightarrow{\mathcal{C}T\mathcal{F}T} X(jw)$$
 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$ $\widehat{x}(t) \xleftarrow{\mathcal{C}T\mathcal{F}T} X(jw)$ $\widehat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $e(t) = \widehat{x}(t) - x(t)$

• If x(t) has finite energy

i.e., square integrable,
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$$

- $\Rightarrow X(jw)$ is finite
- $\Rightarrow \int_{-\infty}^{+\infty} |e(t)|^2 dt = 0$

- Sufficient conditions for the convergence of FT
 - Dirichlet conditions:
 - 1.x(t) be absolutely integrable; that is, $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$
 - 2.x(t) have a finite number of maxima and minima within any finite interval
 - 3.x(t) have a finite number of discontinuities within any finite interval Furthermore, each of these discontinuities must be finite

• Example 4.1:

$$x(t) = e^{-at} u(t), \quad a > 0$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-jwt} dt$$

$$= \int_0^\infty e^{-at} e^{-jwt} dt$$

$$= \int_0^\infty e^{-(\mathbf{a} + \mathbf{w})t} dt$$

$$= -\frac{1}{a+jw}e^{-(a+jw)t}\bigg|_{0}^{\infty}$$

$$= 0 - \left(-\frac{1}{a + jw} e^{-(a + jw)0} \right)$$

$$=\frac{1}{a+iw}, \quad a>0$$

• Example 4.1:

$$\Rightarrow X(jw) = \frac{1}{a+jw}, \quad a > 0$$

$$\Rightarrow |X(jw)| = \frac{1}{\sqrt{a^2 + w^2}}$$

$$\Rightarrow \angle X(jw) = -\tan^{-1}\left(\frac{w}{a}\right)$$

• Example 4.2:

$$x(t) = e^{-a|t|}, \quad a > 0$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-jwt} dt$$

$$= \int_{-\infty}^{0} e^{at} e^{-jwt} dt + \int_{0}^{\infty} e^{-at} e^{-jwt} dt$$

$$= \frac{1}{a - jw} + \frac{1}{a + jw}$$

$$= \frac{2a}{a^2 + w^2}$$

• Example 4.4:

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases}$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt = \int_{-T_1}^{T_1} e^{-jwt}dt$$

$$= \frac{1}{-jw} e^{-jwt} \Big|_{-T_1}^{T_1}$$

$$= \frac{1}{-jw} \left(e^{-jwT_1} - e^{jwT_1} \right)$$

$$= \frac{1}{jw} \left(e^{jwT_1} - e^{-jwT_1} \right)$$

$$= 2 \frac{\sin(wT_1)}{w}$$

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

Example 4.5:

$$X(jw) = \begin{cases} 1, & |w| < W \\ 0, & |w| > W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{jwt} dw$$

$$=\frac{\sin(Wt)}{\pi t}$$

sinc functions:

$$\operatorname{sinc}(\theta) = \frac{\sin(\pi\theta)}{\pi\theta}$$

$$\frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$$

• Example 4.3:

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$x(t) = \delta(t)$$
, i.e., unit impules

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} \delta(t) e^{-jwt} dt = 1$$

Fourier Transform from Fourier Series:

$$X(jw) = 2\pi \quad \delta(w - w_0)$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \quad \delta(w - w_0) e^{jwt} dw$$

$$= e^{j w_0 t}$$

more generally,

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0)$$

$$\Rightarrow x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$
 Fourier series repression of a periodic signal

Fourier series represntation

Example 4.6:

$$=\sum_{k=-\infty}^{+\infty}\frac{2\sin(kw_0T_1)}{k}\,\delta(w-kw_0)$$

Example 4.7:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$x(t) = \sin(w_0 t) = \frac{e^{jw_0 t} - e^{-jw_0 t}}{2j}$$

$$\Rightarrow a_1 = \frac{1}{2j}$$
 $a_{-1} = -\frac{1}{2j}$ $a_k = 0, k \neq 1, -1$

$$a_k = 0, \quad k \neq 1, -1$$

$$x(t) = \cos(w_0 t) = \frac{e^{jw_0 t} + e^{-jw_0 t}}{2}$$

$$\Rightarrow a_1 = \frac{1}{2}$$

$$a_{-1} = \frac{1}{2}$$

$$\Rightarrow a_1 = \frac{1}{2}$$
 $a_{-1} = \frac{1}{2}$ $a_k = 0, k \neq 1, -1$

Example 4.8:

$$x(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT)$$

$$\Rightarrow a_k = \frac{1}{T} \int_{-T/2}^{+T/2} \delta(t) e^{-jkw_0 t} dt = \frac{1}{T}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$a_{k} = \frac{1}{T} \int_{-T/2}^{+T/2} \tilde{x}(t) e^{-jkw_{0}t} dt$$

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0)$$

$$\Rightarrow X(jw) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(w - \frac{2\pi}{T}k)$$

Fourier Transform Pair:

- Synthesis equation: $x(t)=rac{1}{2\pi}\int_{-\infty}^{+\infty}X(jw)e^{jwt}dw$
- Analysis equation: $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Notations:

$$X(jw) = \mathcal{F}\{x(t)\}$$

$$\frac{1}{a+jw} = \mathcal{F}\{e^{-at}u(t)\}$$

$$x(t) = \mathcal{F}^{-1}\{X(jw)\}$$

$$e^{-at}u(t) = \mathcal{F}^{-1}\{\frac{1}{a+jw}\}$$

$$x(t) \stackrel{\mathcal{CTFT}}{\longleftarrow} X(jw)$$

$$e^{-at}u(t) \stackrel{\mathcal{CTFT}}{\longleftarrow} \frac{1}{a+jw}$$

Linearity:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t) e^{-jwt} dt$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw)$$

$$\Rightarrow a x(t)+b y(t) \longleftrightarrow a X(jw)+b Y(jw)$$

Time Shifting:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\Rightarrow x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{iwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$Y(jw) = \int_{-\infty}^{+\infty} x(t-t_0)e^{-jwt}dt$$

$$x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jw(t-t_0)}dw$$

$$= \int_{-\infty}^{+\infty} x(\tau)e^{-jw(\tau+t_0)}d\tau$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(e^{-jwt_0}X(jw)\right)e^{jwt}dw$$

$$= e^{-jwt_0} \int_{-\infty}^{+\infty} x(\tau)e^{-jw\tau}d\tau$$
26

■ Time Shift → Phase Shift:

$$\mathcal{F}{x(t)} = X(jw) = |X(jw)|e^{j \not \subset X(jw)}$$

$$\mathcal{F}\{x(t-t_0)\} = e^{-jwt_0}X(jw) = |X(jw)|e^{j[X(jw)-wt_0]}$$

Example 4.9:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$X(jw) = \int_{-\infty}^{\infty} x(t) e^{-jwt} dt$$

$$x(t) = \frac{1}{2}x_1(t-2.5) + x_2(t-2.5)$$

$$X_1(jw) = \frac{2\sin(w/2)}{w}$$

$$X_2(jw) = \frac{2\sin(3w/2)}{w}$$

$$\Rightarrow X(jw) = e^{-j5w/2} \left\{ \frac{\sin(w/2) + 2\sin(3w/2)}{w} \right\}$$

3. Conjugation property

FT
$$x^*(t) \leftrightarrow X^*(-j\omega)$$

FS $x^*(t) \leftrightarrow X^*[-k]$

FS
$$x^*(t) \leftrightarrow X^*[-k]$$

Proof:

$$X^*(j\omega) = \left[\int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt\right]^* = \int_{-\infty}^{\infty} \left(x(t)e^{-j\omega t}\right)^* dt$$

$$=\int_{-\infty}^{\infty}x^{*}(t)e^{j\omega t}dt$$

$$X^*(-j\omega) = \int_{-\infty}^{\infty} x^*(t)e^{-j\omega t}dt$$

4. Conjugate symmetry property

If the signal is $\underline{x(t)}$ real, then the Fourier representation is complex-conjugate symmetric.

FT
$$X^*(j\omega) = X(-j\omega)$$

$$FS X^*[k] = X[-k]$$

Proof:

$$x(t) \leftrightarrow X(j\omega), x^*(t) \leftrightarrow X^*(-j\omega)$$

$$x(t) = x^*(t) \Rightarrow X(j\omega) = X^*(-j\omega)$$

$$X^*(j\omega) = X(-j\omega)$$

Conjugation & Conjugate Symmetry:

If x(t) is a real function

$$x(t) = \mathcal{E}v\{x(t)\} + \mathcal{O}d\{x(t)\} = x_e(t) + x_o(t)$$

- $\bullet \Rightarrow \mathcal{F}\{x(t)\} = \mathcal{F}\{x_e(t)\} + \mathcal{F}\{x_o(t)\}$
 - $\Rightarrow \mathcal{F}\{x_e(t)\}$: a real function
- $\Rightarrow \mathcal{F}\{x_o(t)\}$: a purely imaginary function

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\mathcal{E}v\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\{X(jw)\}$$

 $\bullet \quad \mathcal{O}d\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} \quad j \; \mathcal{I}m\{X(jw)\}$

Example 4.10:

$$e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+jw}$$

$$e^{-a|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} ?$$

$$x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$$

$$= 2 \left[\frac{e^{-at}u(t) + e^{at}u(-t)}{2} \right]$$

$$\mathcal{E}v\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{R}e\left\{\frac{1}{a+jw}\right\}$$

$$\mathcal{O}d\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} j\,\mathcal{I}m\left\{\frac{1}{a+jw}\right\}$$

$$X(jw) = 2\Re \left\{\frac{1}{a+jw}\right\} = \frac{2a}{a^2+w^2}$$

$$= 2 \mathcal{E} v \left\{ e^{-at} u(t) \right\}$$

Differentiation & Integration:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$
 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$

$$\frac{d}{dt}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jwX(jw)$$

$$\int_{-\infty}^{t} x(\tau) d\tau \iff \frac{1}{jw} X(jw) + \pi X(0) \delta(w)$$

dc or average value

$$\operatorname{sign}(t) \overset{FT}{\longleftrightarrow} \frac{2}{j\omega}$$

Proof:

$$\operatorname{sign}(t) = 2u(t) - 1$$

$$u(t) \leftrightarrow U(j\omega) = \frac{1}{j\omega} + \pi \delta(\omega); 1 \leftrightarrow 2\pi \delta(\omega)$$

$$2u(t)-1 \leftrightarrow 2\left(\frac{1}{j\omega} + \pi\delta(\omega)\right) - 2\pi\delta(\omega)$$

Example 4.11:

$$x(t) = u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw) = ?$$

$$g(t) = \delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} G(jw) = 1$$

$$x(t) = \int_{-\infty}^{t} g(\tau) d\tau \qquad X(jw) = \frac{1}{jw} G(jw) + \pi G(0) \delta(w)$$

$$= \frac{1}{jw} + \pi \delta(w)$$

$$\delta(t) = \frac{d}{dt} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw \left[\frac{1}{jw} + \pi \delta(w) \right] = 1$$

Example 4.12:

$$G(jw) = \frac{2\sin(w)}{w} - e^{jw} - e^{-jw}$$

$$\Rightarrow X(jw) = \frac{G(jw)}{jw} + \pi G(0)\delta(w)$$

$$= \frac{2\sin(w)}{jw^2} - \frac{2\cos(w)}{jw}$$

■ Time & Frequency Scaling:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{jw}{a}\right)$$

$$\frac{1}{|b|}x\left(\frac{t}{b}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(jbw\right)$$

$$x(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(-jw)$$

Duality:

$$x_1(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \xrightarrow{\mathcal{F}} X_1(jw) = \frac{2\sin(wT_1)}{w}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$x_{2}(t) = \frac{\sin(Wt)}{\pi t} \stackrel{\mathcal{F}}{\longleftrightarrow} X_{2}(jw) = \begin{cases} 1, & |w| < W \\ 0, & |w| > W \end{cases}$$

Duality:

$$x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\frac{d}{dt}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jwX(jw)$$

$$\int_{-\infty}^{t} x(\tau)d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{jw}X(jw) + \pi X(0)\delta(w)$$

$$-jtx(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{dw}X(jw)$$

$$e^{jw_0t}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(w-w_0))$$

$$-\frac{1}{it}x(t) + \pi x(0)\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^w X(\eta)d\eta$$

Parseval relationships (Parseval's Theorem)

The Parseval relationships state that the energy (or power) in the time-domain representation of a signal is equal to the energy (or power) in the frequency-domain representation.

$$W_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^{2} d\omega$$

$$\frac{1}{2\pi} |X(j\omega)|^2$$
: the energy spectrum of $x(t)$

Parseval relationships (Parseval's Theorem)

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$

Parseval's relation:

Parseval relationships (Parseval's Theorem)

FT
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$
FS
$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |X[k]|^2$$

Section	Property	Aperiodic signal	Fourier transform
		x(t)	$X(j\omega)$
		y(t)	$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im e\{X(j\omega)\} = -\Im e\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \langle X(j\omega) = -\langle X(-j\omega) \end{cases}$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} \mathfrak{G}m\{X(j\omega)\} = -\mathfrak{G}m\{X(-j\omega)\} \\ (Y(j\omega)) = - Y(j\omega) \end{cases}$
	Tot Iven Digitals		$ X(j\omega) = X(-j\omega) $
4.3.3	Symmetry for Real and	x(t) real and even	$\{ \langle X(j\omega) \rangle = -\langle X(-j\omega) \rangle$ $X(j\omega)$ real and even
7.3.3	Even Signals	A(t) Icai and even	A(Jw) Icai allu eveli
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and ode

4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \leq X(j\omega) = - \not \leq X(-j\omega) \end{cases}$		
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even		
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd		
4.3.3	Even-Odd Decompo-	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real] $x_o(t) = \mathcal{O}d\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$		
4.3.3	sition for Real Sig- nals	$x_o(t) = \mathfrak{O}d\{x(t)\}$ [x(t) real]	j \$m{ $X(j\omega)$ }		
4.3.7	4.3.7 Parseval's Relation for Aperiodic Signals $\int_{-\infty}^{+\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$				

Basic Continuous-Time Fourier Transform Pairs

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_

Basic Continuous-Time Fourier Transform Pairs

$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),}{\Re e\{a\} > 0}$	$\frac{1}{(a+j\omega)^n}$	