Research project on graph transformer networks

Micahel Fotso - Hassan MKhallati - Abderrahim Mama X2019

> Ecole Polytechnique January 2022 - March 2022

Outline

I - Introduction

Preliminary tests
Setup
Results

II - Different SBM datasets

Setup SBM generation

III - Some experiences on small generated dataset

Replication of experiments from the original research paper on the generated dataset Modification of the network architecture Comparison of the two architectures

Conclusion

I - Introduction

Setup

- PATTERN dataset (2 communities/graph)
- $\frac{q}{p} = 0.25$
- $\frac{p}{n} = 0.5$
- ► Train set size = 10000 graphs
- ► Test set size = 2000 graphs
- ► Validation set size = 2000 graphs
- ▶ hidden dimension \in 40, 80, 120, 160
- Without Positional Encoding/ with Laplacian Positional Encoding/ with Weisfeiler Lehman Positional encoding
- ▶ Graphs size $n \in [60, 160]$

Preliminary tests

Figure: Test accuracy trained on 10 epochs

II - Different SBM datasets

Setup

- 2 communities/graph
- ▶ Graphs size $n \in [80, 120]$
- $\frac{q}{n} = 0.1$
- $\frac{p}{n} \in [0.1, 1]$
- ► Train set size = 1000 graphs
- ► Test set size = 200 graphs
- ► Validation set size = 200 graphs

SBM generation

Figure: Adjacency matrix for $\frac{p}{n} = 0.5$

Figure: Adjacency matrix for $\frac{p}{n} = 0.8$

Signal noise ratio

$$SNR(k) = \frac{(p-q)^2}{k(p+(k-1)q)}$$
 for a $SSBM(n, k, \frac{p}{n}, \frac{q}{n})$

Figure: Signal noise ratio SNR(2)

Accuracy for different SNR

Figure: Accuracy as a function of SNR (semi-log scale) ~ 3

Accuracy for different SNR

- \triangleright o(n) vertices are misclassified = almost exact partition
- strictly less than half of the vertices are misclassified = positively correlated partition

```
 \begin{tabular}{ll} if $SNR \le 1:$ almost exact partition: not reached.\\ positively correlated partition: reached.\\ \end{tabular}
```

Test generalization

Figure: Test accuracy for fixed training size and different testing sizes

III - Some experiences on small generated dataset

Replication of experiments from the original research paper on the generated dataset

LanDE	Sparse	Graph	Full graph				
LapPE	Test Perf	Train Perf	Test Perf	Train Perf			
Batch Norm:False; Layer Norm:True							
false	82.28	83.22	53.98	54.80			
true	81.27	80.50	50.933	53.10			
Batch Norm:True; Layer Norm:False							
false	81.98	86.66	53.87	55.07			
true	91.38	89.93	86.13	84.12			

				Sparse Graph			Full Graph				
Dataset	LapPE	L	#Param	Test Perf.±s.d.	Train Perf.±s.d.		Epoch/Total	Test Perf.±s.d.	Train Perf.±s.d.	#Epoch	Epoch/Total
Batch Norm: False; Layer Norm: True											
ZINC	х	10	588353	0.278±0.018	0.027±0.004	274.75	26.87s/2.06hr	0.741±0.008	0.431±0.013	196.75	37.64s/2.09hr
ZINC	✓	10	588929	0.284±0.012	0.031 ± 0.006	263.00	26.64s/1.98hr	0.735±0.006	0.442 ± 0.031	196.75	31.50s/1.77hr
CLUSTER	х	10	523146	70.879±0.295	86.174±0.365	128.50	202.68s/7.32hr	19.596±2.071	19.570±2.053	103.00	512.34s/15.15hr
CLUSTER	✓	10	524026	70.649±0.250	86.395±0.528	130.75	200.55s/7.43hr	27.091±3.920	26.916±3.764	139.50	565.13s/22.37hr
PATTERN	×	10	522742	73.140±13.633	73.070±13.589	184.25	276.66s/13.75hr	50.854±0.111	50.906±0.005	108.00	540.85s/16.77hr
PATTERN	✓	10	522982	71.005±11.831	71.125±11.977	192.50	294.91s/14.79hr	56.482±3.549	56.565±3.546	124.50	637.55s/22.69hr
Batch Norm: True; Layer Norm: False											
maio	X	10	588353	0.264±0.008	0.048±0.006	321.50	28.01s/2.52hr	0.724±0.013	0.518±0.013	192.25	50.27s/2.72hr
ZINC	✓	10	588929	0.226±0.014	0.059 ± 0.011	287.50	27.78s/2.25hr	0.598±0.049	0.339 ± 0.123	273.50	45.26s/3.50hr
CLUSTER	х	10	523146	72.139±0.405	85.857±0.555	121.75	200.85s/6.88hr	21.092±0.134	21.071±0.037	100.25	595.24s/17.10hr
CLUSTER	✓	10	524026	73.169±0.622	86.585±0.905	126.50	201.06s/7.20hr	27.121±8.471	27.192±8.485	133.75	552.06s/20.72hr
PATTERN	×	10	522742	83.949±0.303	83.864±0.489	236.50	299.54s/19.71hr	50.889±0.069	50.873±0.039	104.50	621.33s/17.53hr
PATTERN	<u> </u>	10	522982	84,808±0,068	86.559±0.116	145.25	309.95s/12.67hr	54.941±3.739	54.915±3.769	117.75	683.53s/22.77hr

Modification of the network architecture

Before:

$$h_i^0 = \mathbf{h_i^0} + \lambda_i$$

After:

 $h_i^0 = \operatorname{concat}([\mathbf{h_i^0}, \lambda_i]) \mathbf{W}$ where W is a weight of some linear layer with $\operatorname{input_{dim}} = 2*h_{\operatorname{dim}}$ and $\operatorname{output_{dim}} = h_{\operatorname{dim}}$

Comparison of the two architectures

PE	Sparse	Graph	Full graph				
P E	Test Perf	Train Perf	Test Perf	Train Perf			
Batch Norm:False; Layer Norm:True							
sum	81.27	80.50	50.93	53.10			
concat	85.11	85.09	52.63	54.83			
Batch Norm:True; Layer Norm:False							
sum	91.38	89.93	86.13	84.12			
concat	83.29	84.14	75.92	82.68			

Conclusion