GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering - SEMESTER - 1 (NEW) - EXAMINATION - Winter-2024

14

Subject Code: DI01000021 Date: 02-01-2025 **Subject Name: Mathematics-I** Time: 10:30 AM TO 01:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make Suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Use of simple calculators and non-programmable scientific calculators are permitted. 5. English version is authentic. Q.1 Fill in the blanks/MCOs using appropriate choice from the given options. (યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો/ બહુવિકલ્પ પ્રશ્નોનાં જવાબ આપો) $(1)\begin{vmatrix} 5 & 1 \\ 2 & 3 \end{vmatrix} = \underline{\qquad}$ (a) 12 (b) 13 (c) 5 (d) 1 $(\mathbf{9})\begin{vmatrix} 5 & 1 \\ 2 & 3 \end{vmatrix} = \underline{\qquad}$ (b) 13 (d) 1 (2) If $\begin{vmatrix} x & 1 \\ 2 & 1 \end{vmatrix} = 0$ then x =______ (b) 2 (c) 5 (a) 1 (d) -1 $(\mathbf{R}) \, \, \mathbf{\widehat{Y}} \, \, \begin{vmatrix} x & 1 \\ 2 & 1 \end{vmatrix} = 0 \, \, \, \mathbf{\widehat{G}} \, \, x = \underline{\qquad}$ (b) 2 (c) 5 (d) -1(3) If $f(x) = x^2$ then $f(-1) = \underline{\hspace{1cm}}$ (b) 0 (a) 1 (c) -1(d) 2(3) $\Re f(x) = x^2 \operatorname{dl} f(-1) = \underline{\hspace{1cm}}$ (c) -1 (b) 0 (d) 2 (4) $\log_{10} 1 =$ _____ (c) 10 (b) 0(a) 1 (d) -1**(8)** $\log_{10} 1 =$ (b) 0(a) 1 (c) 10 (d) -1(5) $\sin \frac{\pi}{2} + \cos \frac{\pi}{2} =$ (a) 2 (b) 3 (c) 1 (d) -2

(4) $\sin \frac{\pi}{2} + \cos \theta$	$\frac{\pi}{2} = $		
(a) 2	(b) 3	(c) 1	(d) -2
(6) $\tan^{-1}(1) = $			
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) 0	(d) $\frac{\pi}{3}$
(§) tan ⁻¹ (1)=_			
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) 0	(d) $\frac{\pi}{3}$
(7) $\frac{2\pi}{3}$ radian =	degre	e	
(a) 30	(b) 45	(c) 60	(d) 120
(૭) $\frac{2\pi}{3}$ રેડિઅન	=કિર્ગ	J	
3	(b) 45	(c) 60	(d) 120
(8) $\hat{i} \cdot \hat{j} = $			
(a) \hat{i}	(b) \hat{j}	(c) \hat{k}	(d) 0
(6) $\hat{i} \cdot \hat{j} = \underline{\hspace{1cm}}$			
(a) \hat{i}	(b) \hat{j}	(c) \hat{k}	(d) 0
$(9) \left \hat{i} + \hat{j} + \hat{k} \right =$			
1 1	(b) 2	(c) $\sqrt{2}$	(d) $\sqrt{3}$
$(\mathbf{c}) \left \hat{i} + \hat{j} + \hat{k} \right = 1$			
(a) 3	(b) 2	(c) $\sqrt{2}$	(d) $\sqrt{3}$
	e $2x + y - 3 = 0$ i	is	
(a) -2		(c) -1	(d) 2
	-3=0 નો ઢાળ _	છે.	
(a) -2	` ′	(c) -1	(d) 2
	rcle $x^2 + y^2 = 81$		
(a) 3		(c) 81	(d) 0
	y² = 81 ની ત્રિજ્યા _.		
	` '	(c) 81	(d) 0
(12) $\lim_{n\to\infty}\frac{1}{n} = $			
(a) ∞		(c) 0	(d) 1
$(92) \lim_{n\to\infty}\frac{1}{n} = \underline{\hspace{1cm}}$			
(a) ∞	(b) -1	(c) 0	(d) 1
$\mathbf{(13)} \ \lim_{x \to 1} \left(x^2 + x \right)$	+1)=	-	

(93)
$$\lim_{x\to 1} (x^2 + x + 1) = \underline{\hspace{1cm}}$$

$$(14) \quad \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \underline{\hspace{1cm}}$$

06

08

(98)
$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \underline{\qquad}$$

Q.2 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) Find the value of
$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & 0 \\ 4 & -2 & 5 \end{vmatrix}$$

(9)
$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & 0 \\ 4 & -2 & 5 \end{vmatrix}$$
 ની કિમંત શોધો.

(2) If
$$f(x) = x^3 + 5$$
 then find $f(0)$, $f(1)$ and $f(-1)$

(૨) જો
$$f(x) = x^3 + 5$$
 તો $f(0)$, $f(1)$ અને $f(-1)$ શોધો.

(3) Prove that
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$

(3) સાબિત કરો
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$

(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) If
$$f(x) = \frac{x-1}{x+1}$$
 then prove that $f(x) f(-x) = 1$

(૧) જો
$$f(x) = \frac{x-1}{x+1}$$
 તો $f(x) f(-x) = 1$ સાબિત કરો.

(2) If
$$\log\left(\frac{x+y}{2}\right) = \frac{1}{2}(\log x + \log y)$$
 then prove that $x = y$

(૨) જો
$$\log\left(\frac{x+y}{2}\right) = \frac{1}{2}(\log x + \log y)$$
 તો $x = y$ સાબિત કરો.

(3) Solve
$$\log(x+3) + \log(x-3) = \log 27$$

(3) Gight
$$\log(x+3) + \log(x-3) = \log 27$$

Q.3 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)	06		
(1) Prove that $\frac{\sin\left(\frac{\pi}{2} + \theta\right)}{\cos\left(\pi - \theta\right)} + \frac{\tan\left(\pi - \theta\right)}{\cot\left(\frac{3\pi}{2} - \theta\right)} + \frac{\csc\left(\frac{\pi}{2} - \theta\right)}{\sec\left(\pi + \theta\right)} = -3$			
(૧) સાબિત કરો $\frac{\sin\left(\frac{\pi}{2} + \theta\right)}{\cos(\pi - \theta)} + \frac{\tan(\pi - \theta)}{\cot\left(\frac{3\pi}{2} - \theta\right)} + \frac{\csc\left(\frac{\pi}{2} - \theta\right)}{\sec(\pi + \theta)} = -3$			
(2) Prove that $\tan 55^{\circ} = \frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}}$			
(૨) સાબિત કરો $\tan 55^\circ = \frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ + \sin 10^\circ}$			
(3) If $\overline{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\overline{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overline{c} = 3\hat{i} + \hat{j} + \hat{k}$ then find $2\overline{a} + \overline{b} - \overline{c}$			
(3) જો $\overline{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\overline{b} = \hat{i} + \hat{j} + \hat{k}$ અને $\overline{c} = 3\hat{i} + \hat{j} + \hat{k}$ તો $2\overline{a} + \overline{b} - \overline{c}$ શોધો.			
	08		
(1) Prove that $\frac{\sin(x-y)}{\cos x \cos y} + \frac{\sin(y-z)}{\cos y \cos z} + \frac{\sin(z-x)}{\cos z \cos x} = 0$			
(૧) સાબિત કરો $\frac{\sin(x-y)}{\cos x \cos y} + \frac{\sin(y-z)}{\cos y \cos z} + \frac{\sin(z-x)}{\cos z \cos x} = 0$			
(2) Draw graph of $y = \cos x$; $0 \le x \le \pi$			
$(ર) y = \cos x ; 0 \le x \le \pi$ નું આવેખ દોરો.			
(3) Find equation of line passing through (1, 2) and (-3, 1) (3) (1, 2) અને (-3, 1) માંથી પ્રસાર થતી રેખાનું સમીકરણ મેળવો.			
Q.4 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)	06		
(1) Find unit vector perpendicular to $\overline{a} = \hat{i} - 3\hat{j} + \hat{k}$ and $\overline{b} = 2\hat{i} + \hat{j} + 2\hat{k}$			
(૧) $\bar{a}=\hat{i}-3\hat{j}+\hat{k}$ અને $\bar{b}=2\hat{i}+\hat{j}+2\hat{k}$ ને લંબ એકમ સિંદશ શોધો.			
(2) Forces (1, 2, 1) and (2, -1, 3) act on a particle and the particle moves from a point (2, 3, 1) t (4, 6, 2). Find the work done.	to		
(૨) એક કણ પર બળ (1, 2, 1) અને (2, -1, 3) લાગતા તે બિંદુ (2, 3, 1) થી (4, 6, 2) સુધી ખસે છે તો થયેલ કાર્ય શોધો.			
(3) Show that lines $2x-3y+5=0$ and $8x-12y-3=0$ are parallel lines.			
(3) બતાવો કે રેખાઓ $2x-3y+5=0$ અને $8x-12y-3=0$ સમાંતર રેખાઓ છે.			
(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)			
(1) Show that angle between $\overline{a} = \hat{i} + \hat{j} - \hat{k}$ and $\overline{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ is $\sin^{-1}\left(\sqrt{\frac{26}{27}}\right)$			

(૧) બતાવો કે
$$\bar{a} = \hat{i} + \hat{j} - \hat{k}$$
 અને $\bar{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ વચ્ચેનો ખૂણો $\sin^{-1}\left(\sqrt{\frac{26}{27}}\right)$ છે.

(2) If
$$\overline{a} = (1, 1, 1)$$
, $\overline{b} = (2, 0, 1)$ and $\overline{c} = (-2, 1, 0)$ then find $\overline{a} \cdot (\overline{b} \times \overline{c})$

(૨) જો
$$\overline{a} = (1, 1, 1), \ \overline{b} = (2, 0, 1)$$
 અને $\overline{c} = (-2, 1, 0)$ તો $\overline{a} \cdot (\overline{b} \times \overline{c})$ મેળવો.

(3) Evaluate
$$\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta}$$

(૩) કિંમત મેળવો
$$\lim_{\theta \to 0} \frac{\sin 4\theta}{\theta}$$

Q.5 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

06

(1) Evaluate
$$\lim_{x \to 9} \frac{x^2 - 81}{x - 9}$$

(૧) કિંમત મેળવો
$$\lim_{x\to 9} \frac{x^2 - 81}{x - 9}$$

(2) Evaluate
$$\lim_{x\to\infty} \left(1+\frac{3}{x}\right)^{2x}$$

(૨) કિંમત મેળવો
$$\lim_{x\to\infty} \left(1+\frac{3}{x}\right)^{2x}$$

(3) Evaluate
$$\lim_{x \to 1} \frac{x-1}{x^2 + x - 2}$$

(3) કિંમત મેળવો
$$\lim_{x\to 1} \frac{x-1}{x^2+x-2}$$

(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

08

- (1) Find the equation of line passing through the point (2, -3) and having slope 4.
- (૧) (2, -3) માંથી પ્રસાર થતી અને 4 ઢાળ વાળી રેખોનું સમીકરણ શોધો.
- (2) For what value of m, lines 7x + y 1 = 0 and 3x my + 2 = 0 are perpendicular to each other.
- (૨) m ની કઇ કિંમત માટે, રેખાઓ 7x + y 1 = 0 અને 3x my + 2 = 0 એકબીજા ને લંબ થશે.
- (3) Find the centre and radius of the circle $4x^2 + 4y^2 + 8x 12y 3 = 0$
- (3) વર્તુળ $4x^2 + 4y^2 + 8x 12y 3 = 0$ નું કેંદ્ર અને ત્રિજ્યા શોધો.
