

План

Линейная регрессия
Решение проблемы вырожденности
Регуляризация, гребневая регрессия, LASSO, Elastic Net
Устойчивая регрессия
Orthogonal matching pursuit
Градиентный метод обучения
Линейные скоринговые модели в задаче бинарной классификации
Логистическая регрессия

Линейные решающие модели в задаче бинарной классификации
Идея максимального зазора

SVM

Линейный дискриминант Фишера

Линейная регрессия

Гипотеза о линейной зависимости целевой переменной, ищем решение в виде:

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Практика:

- часто неплохо работает и при монотонных зависимостях
- хорошо работает, когда есть много «однородных» зависимостей:

цель - число продаж

признак 1 – число заходов на страницу продукта

признак 2 – число добавлений в корзину

признак 3 – число появлений продукта в поисковой выдачи

$$a(X_1) = w_0 + w_1 X_1$$

обучение: $\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}$

хотели бы...

$$\begin{cases} w_0 + w_1 x_1 = y_1 \\ \cdots \\ w_0 + w_1 x_m = y_m \end{cases}$$

невязки / отклонения (residuals):

$$e_1 = y_1 - w_0 - w_1 x_1$$

$$e_m = y_m - w_0 - w_1 x_m$$

Задача минимизации суммы квадратов отклонений (residual sum of squares)

$$RSS = e_1^2 + \ldots + e_m^2 \longrightarrow \min$$

На это можно смотреть как на минимизацию эмпирического риска по параметрам $w = (w_0, w_1)$

$$L(w) = \sum_{i=1}^{m} (y_i - a_w(x_i))^2 = \sum_{i=1}^{m} (y_i - (w_0 + w_1 x_i))^2$$

тут конкретная функция ошибки

потом вероятностное обоснование, пока... довольно логично мы пытаем мы пытаемся описать геометрию данных гиперплоскостью

«Регрессия к посредственности при наследовании роста» Francis Galton, 1877

Линейная регрессия от одной переменной: геометрический смысл ошибки

$$a(X_1) = w_0 + w_1 X_1$$

$$\sum_{i=1}^{m} (y_i - w_0 - w_1 x_i)^2$$

Отличается от суммы расстояний до поверхности!

Нетрудно показать (Д3):

$$w_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2}} = \frac{\text{cov}(\{x_{i}\}, \{y_{i}\})}{\text{var}(\{x_{i}\})},$$

$$w_{0} = \overline{y} - w_{1}\overline{x},$$

где
$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i, \ \overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i.$$

Полученное уравнение прямой (проходит через «центр масс»):

$$(y - \overline{y}) = \frac{\operatorname{cov}(\{x_i\}, \{y_i\})}{\operatorname{var}(\{x_i\})} (x - \overline{x})$$

Общий случай (многих переменных)

$$a(X_1,\dots,X_n)=w_0+w_1X_1+\dots+w_nX_n=x^{ \mathrm{\scriptscriptstyle T} }w$$
 веса (параметры) – $w=(w_0,w_1,\dots,w_n)^{ \mathrm{\scriptscriptstyle T} }$ объект – $x=(X_0,X_1,\dots,X_n)^{ \mathrm{\scriptscriptstyle T} }$

для удобства записи вводим фиктивный признак $X_0\equiv 1$

обучение:
$$\{(x_1, y_1), \dots, (x_m, y_m)\}$$
, $x_i \in \mathbf{R}^{n+1}$,

опять хотим решить Xw = y:

$$x_1^{\mathrm{T}} w = y_1$$
 ... как решать? $x_m^{\mathrm{T}} w = y_m$

Общий случай (многих переменных): в матричной форме

$$Xw = y$$

в матрице X по строкам записаны описания объектов, в векторе y значения их целевого признака

(здесь есть коллизия в обозначении у)

будем решать так:

$$||Xw - y||_2^2 \rightarrow \min_{w}$$

$$||Xw - y||_2^2 = \sum_{i=1}^m (x_i^T w - y_i)^2 \rightarrow \min_w$$

Общий случай (многих переменных): геометрический смысл

Кстати, полученная задача оптимизации выпукла, единственный глобальный минимум

(кроме вырожденного случая)

Решение задачи минимизации: прямой метод

$$||Xw - y||_2^2 \rightarrow \min_{w}$$

$$||Xw - y||_2^2 = (Xw - y)^{\mathrm{T}}(Xw - y) = w^{\mathrm{T}}X^{\mathrm{T}}Xw - w^{\mathrm{T}}X^{\mathrm{T}}y - y^{\mathrm{T}}Xw + y^{\mathrm{T}}y$$

$$\nabla ||Xw - y||_2^2 = 2X^TXw - 2X^Ty = 0$$

$$X^{\mathrm{T}}Xw = X^{\mathrm{T}}y$$

 $W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$

решение существует, если столбцы л/н

помним, что $\operatorname{rg}(X^{\mathrm{T}}X) = \operatorname{rg}(X)$

 $(X^{\mathrm{\scriptscriptstyle T}}X)^{-1}X^{\mathrm{\scriptscriptstyle T}}$ – псевдообратная матрица Мура-Пенроуза обобщение обратной на неквадратные матрицы

Обобщённая линейная регрессия: вместо X – что угодно

выражаем целевое значение через л/к базисных функций

(они фиксированы)

$$a(X_1,...,X_n) = w_0 + w_1 \varphi_1(X_1,...,X_n) + \cdots + w_k \varphi_k(X_1,...,X_n)$$

$$w = (w_0, w_1, ..., w_k)^T$$

 $x = (X_0, X_1, ..., X_n)^T$

$$\varphi(x) = (\varphi_0(x), \varphi_1(x), \dots, \varphi_k(x))^{\mathrm{T}}$$

$$a(x) = \sum_{i=0}^{k} w_i \varphi_i(x) = \varphi(x)^{\mathrm{T}} w$$

$$\|\varphi(X)w - y\|_2^2 \rightarrow \min_{w}$$

$$\varphi(X) = \begin{bmatrix} \varphi_0(x_1) & \cdots & \varphi_k(x_1) \\ \cdots & \cdots & \cdots \\ \varphi_0(x_m) & \cdots & \varphi_k(x_m) \end{bmatrix}$$

Подробности в нелинейных методах...

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Только ли вырожденность плоха?

Что делать?

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Проблемы, когда матрица $X^{\mathrm{\scriptscriptstyle T}}X$ плохо обусловлена...

$$\mu(X^{\mathsf{T}}X) = \|X^{\mathsf{T}}X\| \cdot \|(X^{\mathsf{T}}X)^{-1}\| = \frac{\lambda_{\max}(X^{\mathsf{T}}X)}{\lambda_{\min}(X^{\mathsf{T}}X)}$$

Решения:

- 1. Регуляризация здесь и в «сложности»
- 2. Селекция (отбор) признаков «селекция»
- 3. Уменьшение размерности (в том числе, PCA) USL
- 4. Увеличение выборки

если объектов много – то работать с гигантской матрицей невозможно... но выдели как это делается в оптимизации онлайн-методами

Регуляризация: упрощённое объяснение смысла

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

если есть два похожих объекта, то должны быть похожи метки, пусть отличаются в ј-м признаке, тогда ответы модели отличаются на

$$\mathcal{E}_j W_j$$

Поэтому не должно быть очень больших по модулю весов

(у признаков, по которым могут отличаться похожие объекты)

Поэтому вместе с
$$||Xw - y||_2^2 \rightarrow \min$$
 хотим $||w||_2^2 \rightarrow \min$

Не на все коэффициенты нужна регуляризация! Почему?

Регуляризация: упрощённое объяснение смысла

Пусть есть какая-то зависимость и лишние признаки, например

$$y=X_1$$
 in $X_2=X_3$

Можно получить ответ в таком виде:

$$a = X_1 + w'X_2 - w'X_3$$

Если теперь
$$X_2 pprox X_3$$
, тогда $\mathcal{E} = X_2 - X_3$

$$a = X_1 + w'\varepsilon$$

– может быть сколь угодно большим при больших (по модулю) w^{\prime}

аналогично при линейных зависимостях! автоматически, когда объектов мало (сколько?)

Регуляризация

Иванова

Тихонова

$$\begin{cases} ||Xw - y||_2^2 \rightarrow \min \\ ||w||_2^2 \le \lambda \end{cases}$$

$$||Xw - y||_2^2 + \lambda ||w||_2^2 \rightarrow \min$$

Удобнее: безусловная оптимизация

$$||w||_2^2 = w_1^2 + w_2^2 + \ldots + w_n^2$$
 – Het w_0^2

эти две формы эквивалентны: решение одного можно получить как решение другого

Всё это справедливо и для общих задач минимизации!

$$\begin{cases} L(a) \to \min \\ \text{complexity}(a) \le \lambda \end{cases}$$

$$L(a) + \lambda \operatorname{complexity}(a) \rightarrow \min$$

Есть ещё регуляризация Морозова...

Регуляризация и гребневая регрессия

$$\displaystyle rg\min_{w} \| \ Xw - y \|_2^2 + \lambda \| \ w \|_2^2 = (X^{ \mathrm{\scriptscriptstyle T}} X + \lambda I)^{-1} X^{ \mathrm{\scriptscriptstyle T}} y$$
 Д3 Доказать! $\lambda \geq 0$

Такая регрессия называется гребневой регрессией (Ridge Regression)

Виден другой смысл регрессии: складываем две матрицы Грама, неотрицательно определённая + положительно определённая

- боремся с вырожденностью матрицы потом вернёмся к этому

коэффициент регуляризации (shrinkage penalty)

 $\lambda=0$ – получаем классическое решение $\lambda \to +\infty$ – меньше «затачиваемся на данные» и больше регуляризуем

значение параметра регуляризации можно выбрать на скользящем контроле

Регуляризация и гребневая регрессия

https://stats.stackexchange.com/questions/151304/why-is-ridge-regression-called-ridge-why-is-it-needed-and-what-happens-when

Минутка кода: регуляризация и гребневая регрессия


```
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.0) # ридж-регрессия
# обучение
model.fit(x_train[:, np.newaxis], y_train)
# обратите внимание: np.newaxis
# контроль
a_train = model.predict(x_train[:, np.newaxis])
a_test = model.predict(x_test[:, np.newaxis])
```

Кажется, что при регуляризации отклоняемся к выбросам, но дело не в этом

Регуляризация и гребневая регрессия

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} w_j^2 \to \min$$

$$\lambda \ge 0$$

добавление shrinkage penalty (регуляризатора)

параметр регуляризации может подбираться с помощью скользящего контроля

Регуляризация и гребневая регрессия

Для ridge-регрессии нужна правильная нормировка признаков! Нет инвариантности (в отличие от линейной) от умножения признаков на скаляры

Перед регуляризацией – стандартизация!!!

LASSO (Least Absolute Shrinkage and Selection Operator)

Попробуем другой «штраф за сложность» (сейчас поймём название)

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} |w_j| \to \min$$

$$\lambda \ge 0$$

Здесь значения коэффициентов существенно меньше (т.к. при $\Sigma |\cdot|$, а не $\Sigma (\cdot)^2$) Здесь коэффициенты интенсивнее зануляются при увеличении $\lambda \geq 0$

здесь была задача

зависит от масштаба признаков,

но из-за предварительной нормировки этот эффект не наблюдается

Масштаб очень важен! см. дальше


```
np.random.seed(10)
X = np.random.rand(1000, 6)
X[:,1] = X[:,0]
X[:,2] = X[:,3]
X[:,0] = 1 * X[:,0]
X[:,1] = 2 * X[:,1]
X[:,2] = 1 * X[:,2]
X[:,3] = 3 * X[:,3]
X[:,4] = 1 * X[:,4]
X[:,5] = 2 * X[:,5]
y = 1.5 * X[:,0] + 2*X[:,2] +
0.5*np.random.randn(1000)
```

$$Y = 1.5X_1 + 2X_3 = 0.75X_2 + 0.66X_4$$

$$\lambda = 1$$

$$Y = 0.31X_1 + 0.61X_2 + 0.19X_3 + 0.58X_4 + 0.01X_5 + 0.0X_6$$

$$\lambda \sim 10500$$

$$Y = 0.06X_1 + 0.12X_2 + 0.06X_3 + 0.19X_4 + 0.05X_5 + 0.1X_6$$

$$\lambda = 10^{-5}$$

$$Y = 1.53X_1 + 1.94X_3$$

$$\lambda \sim 0.01 Y = 0.76X_2 + 0.65X_4$$

веса зависят от масштаба признаков

при сильной регуляризации меняется распределение весов зависимых признаков

Пусть
$$Y = 4X_1$$
, $X_1 = X_2$

w_1	W_2	$\ w\ _1$	$ w _2^2$
5	- 1	6	26
4	0	4	16
3	1	4	10
2	2	4	8

Эксперименты с одинаковыми и зависимыми признаками: L₂-регуляризация

fit_intercept=True

Эксперименты с одинаковыми и зависимыми признаками: L₂-регуляризация

fit_intercept=True, normalize=True

fit_intercept=True

Эксперименты с одинаковыми и зависимыми признаками: L₁-регуляризация

fit_intercept=True

Эксперименты с одинаковыми и зависимыми признаками: L₁-регуляризация

2.0 1.5 веса 1.0 0.5 0.0 -5 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10° 10¹ 1.0 0.8 0.6 \mathbb{R}^2 0.4 0.2 0.0 10⁻⁵ 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10° 10¹

fit_intercept=True, normalize=True

Часто важно

- использовать свободный член
- предварительно нормировать данные

Семейство регуляризированных линейных методов

Ridge

$$||y - Xw||_2^2 + \lambda ||w||_2^2 \rightarrow \min_{w}$$

LASSO (Least Absolute Shrinkage and Selection Operator)

$$||y - Xw||_2^2 + \lambda ||w||_1 \rightarrow \min_{w}$$

Elastic Net = LASSO + Ridge

$$||y - Xw||_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2 \rightarrow \min_{w}$$

Геометрический смысл Ridge и LASSO

$$\sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} w_j^2 \le s$$

$$\sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} |w_j| \le s$$

Геометрический смысл Elastic Net

на практике часто модель и не может зависеть от небольшого числа переменных

Эффект разреженности

если линии уровня оптимизируемой функции - концентрические окружности...

David S. Rosenberg «Foundations of Machine <u>Learning</u>» https://bloomberg.github.io/foml/

Почему L1-норма ⇒ разреженность

1. Больше вероятность, что линии уровней функции ошибки касаются области ограничений в точках с нулевыми координатами, см. рис.

2. L1-норма больше похожа на L0, чем L2

При увеличении коэффициента регуляризации веса стремятся к нулю Обеспечивается автоматическая селекция признаков!

Регуляризация ⇒ **упрощение**

Соблюдение принципа Оккама

регуляризация ⇒ зануление коэффициентов ⇒ упрощение модели

В целом, неверно, что чем меньше коэффициентов, тем проще модель, но у нас линейная модель...

потом будет обоснование регуляризации с помощью вероятностных предположений

Проблема вырожденности / плохой обусловленности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

Селекция признаков в линейной регрессии отдельная тема

Какие признаки включить в модель

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Маленький обзор стратегий:

1 стратегия – перебор – умный перебор подмножества признаков 2 стратегий – оценка – оценка качества признаков (фильтры)

3 стратегия – автомат – встроенные методы (ex: LASSO)

Обоснование необходимости селекции

- Проблема вырожденности в линейной регрессии
 - Проблема «почти дубликатов»
 - Уменьшение модели и интерпретация
 - Уменьшение стоимости данных

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

обоснование необходимости аналогично селекции

Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

на модельном примере:

$$m \le n \implies \operatorname{rg}(X^{\mathrm{T}}X)_{(n+1)\times(n+1)} < n+1$$

+ при увеличении выборки могут исчезнуть линейные зависимости между столбцами

Линейная регрессия: градиентный метод обучения

недостатки прямого....

работа с большими матрицами (тем более обращение)

В лекции «оптимизация»...

$$\frac{1}{2} \sum_{i=1}^{m} (a(x_i \mid w) - y_i)^2 \rightarrow \min$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) \frac{\partial a(x_i \mid w^{(t)})}{\partial w}$$

$a(x \mid w) = w^{\mathrm{T}} x$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) x_i$$

Stochastic Gradient Descent

$$w^{(t+1)} = w^{(t)} - \eta_t (a(x_i \mid w^{(t)}) - y_i) x_i$$

Линейная регрессия: градиентный метод обучения

Реализация в scikit-learn

sklearn.linear model.Ridge

alpha=1.0	Коэффициент регуляризации, больше – сильнее
	(в отличие от других функций)
fit_intercept=True	Использовать ли свободный член
normalize=False	Нормализация данных
	Игнорируется без свободного члена
solver="auto"	Метод оптимизации
	"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag",
	"saga"
copy X=Tr	ue, max iter=None, tol=0.001, random state=None

sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True,
normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001,
warm_start=False, positive=False, random_state=None, selection="cyclic")

Две регрессии

Чем отличаются модели 1 и 2?

Две регрессии: y(x) vs x(y)

разные задачи y(x) и x(y), хотя зависимость линейная

$$Y = w_0 + w_1 X_1$$

$$\begin{bmatrix} x_1 & 1 \\ \cdots & x_m & 1 \end{bmatrix} \begin{pmatrix} w_1 \\ w_0 \end{pmatrix} - \begin{pmatrix} y_1 \\ \cdots \\ y_m \end{pmatrix} \Big|_2^2 \rightarrow \min$$

$$\begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ \vdots &$$

$$X_{1} = w_{0} + w_{1}Y$$

$$\begin{bmatrix} y_{1} & 1 \\ \vdots & \vdots \\ y_{m} & 1 \end{bmatrix} \begin{pmatrix} w_{1} \\ w_{0} \end{pmatrix} - \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \end{pmatrix} \Big|_{2}^{2} \rightarrow \min$$

$$\begin{bmatrix} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 1.0 \end{bmatrix} \xrightarrow{-0.5} \begin{bmatrix} 0.0 \\ 0.5 \end{bmatrix} \xrightarrow{0.5} \begin{bmatrix} 1.0 \\ 1.5 \end{bmatrix} \xrightarrow{1.5} \begin{bmatrix} 2.0 \\ 2.0 \end{bmatrix}$$

есть и «промежуточная стратегия» – дальше РСА

Линейная регрессия – неустойчивость к выбросам

Ошибка с весами

Если у каждого объекта есть цена ошибки...

$$\sum_{i=1}^{m} v_i^2 \left(y_i - w^{\mathrm{T}} x_i \right)^2 + \dots = \sum_{i=1}^{m} \left(v_i y_i - w^{\mathrm{T}} (v_i x_i) \right)^2 + \dots \to \min$$

небольшая переформулировка задачи:

$$\{(x_{1}, y_{1}), \dots, (x_{m}, y_{m})\} \rightarrow \{(v_{1}x_{1}, v_{1}y_{1}), \dots, (v_{m}x_{m}, v_{m}y_{m})\}$$

$$(y - Xw)^{\mathsf{T}}V^{\mathsf{T}}V(y - Xw) = ||Vy - VXw||_{2}^{2} \rightarrow \min_{w}$$

$$V = \operatorname{diag}(v_{1}, \dots, v_{m})$$

$$w = (X^{\mathsf{T}}VX)^{-1}X^{\mathsf{T}}Vy$$

Ошибка с весами

$$\{(x_1, y_1), \dots, (x_m, y_m)\} \rightarrow \{(v_1 x_1, v_1 y_1), \dots, (v_m x_m, v_m y_m)\}$$

Как реализовать:

- 1) перейти к новым данным («испорченными весам»)
- 2) если веса целые числа можно продублировать объекты
- 3) если веса из отрезка [0, 1] при численном градиентном решении можно выбирать следующий объект с соответствующей вероятностью

Устойчивая регрессия (Robust Regression)

0. Инициализация весов объектов

$$v = (v_1, ..., v_m) = (1/m, ..., 1/m)$$

1. Цикл

1.1. Настроить алгоритм, учитывая веса объектов

$$a = fit(\{x_i, y_i, v_i\})$$

1.2. Вычислить ошибки на обучении

$$\varepsilon_i = a(x_i) - y_i$$

1.3. Пересчитать веса объектов

$$v_i = \exp(-\varepsilon_i^2)$$

нормировать на сумму

можно использовать любую регрессионную модель

при пересчёте весов можно использовать другую невозрастающую функцию; можно (иногда нужно) нормировать

RANdom SAmple Consensus (RANSAC)

•несколько раз

- о выбрать случайное подмножество точек базовое (inliers)
- о обучить модель на базовом подмножестве
- найти все точки, которые хорошо предсказываются моделью например, ошибка не больше ε
- о пополнить ими базовое множество
- (если добавили много) переобучить модель на новом множестве
 выбрать модель с наименьшей ошибкой

Минутка кода: RANSAC в scikit-learn


```
from sklearn.linear_model import RANSACRegressor
# Robustly fit linear model with RANSAC algorithm
ransac = RANSACRegressor()
ransac.fit(x[:, np.newaxis], y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
```

Минутка кода: RANSAC в scikit-learn

sklearn.linear_model import RANSACRegressor

base_estimator=None	Базовый алгоритм (по умолчанию – линейная регрессия)
min_samples=None	Число / доля базовых объектов (<i>n</i> +1)
residual_threshold=None	Порог для пополнения базового множества (MAD(y))
max_trials=100	Число итераций
stop_n_inliers	Остановить вычисления, если найдено столько базовых точек
loss="absolute_loss"	Как оценивать ошибку

is_data_valid=None, is_model_valid=None, max_skips=inf,
stop_score=inf, stop_probability=0.99, lossrandom_state=None

Реализация в scikit-learn немного отличается от некоторых описаний:

Качество = число базовых (inliers) объектов; лучшая модель выбирается по числу базовых, если у нескольких моделей число совпадает, тогда сравнивается ошибка на всей выборке.

Ошибка и её оценка (невязка)

вернёмся к линейной регрессии: есть линейная зависимость с точностью до шума

$$y = Xw^* + \varepsilon$$

потом рассмотрим такую вероятностную постановку, сами решаем так:

$$y \approx a = Xw$$

с точностью до оценки шума

$$\hat{\varepsilon} = y - a$$

для нашего (оптимального) решения $w = (X^{\mathrm{\scriptscriptstyle T}} X)^{-1} X^{\mathrm{\scriptscriptstyle T}} y$ оценка ошибки (невязка)

$$\hat{\varepsilon} = y - a = y - Xw = y - \underbrace{X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}}_{H} y = (I - H)y =$$

$$= (I - H)(Xw^{*} + \varepsilon) = \underbrace{Xw^{*} - HXw^{*}}_{Xw^{*} - Xw^{*} = 0} + (I - H)\varepsilon = (I - H)\varepsilon$$

Ошибка и её оценка (невязка)

получили, что

$$\hat{arepsilon} = (I-H)arepsilon$$
, где $H = X(X^{ ext{ iny T}}X)^{-1}X^{ ext{ iny T}}$

- projection (hat) matrix

Кстати,
$$a = Hy$$

таким образом,

- невязки коррелируют (даже если «истинные ошибки» нет)
- но нет корреляции с целевым значением! (если ошибка не коррелирует)
 - невязки в разном масштабе

иногда стандартизуют (во многих пакетах, но за этим следить!)

$$\hat{\varepsilon}_{[t]} / \sqrt{1 - h_{tt}}$$

справедливости ради – м.б. не слишком заметный эффект

Ошибка и её оценка (невязка)

Для справки:

$$h_{tt} = \frac{1}{m} + \frac{(x_t - \bar{x})^2}{\sum_{i=1}^{m} (x_i - \bar{x})^2}$$

тут Х распределён равномерно, шум нормальный

Если ввести Cook's distance – как сильно точка влияет на решение (зачем?)

$$D_{j} = \operatorname{const} \cdot \sum_{i=1}^{m} (a(x_{i} \mid X_{\operatorname{train}}) - a(x_{i} \mid X_{\operatorname{train}} \setminus \{x_{j}\}))^{2}$$

то можно вывести:
$$D_j = \mathrm{const} \cdot \frac{h_{jj}}{\left(1 - h_{jj}\right)^2} \hat{\mathcal{E}}_{[j]}^2$$

Проекционная (hat) матрица

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$
$$L(X)$$

 $a=Hy\in L(X)$ – из линейной комбинация столбцов матрицы X

проверьте проекцию на ортогональность

Линейная регрессия: связь с SVD

Рассмотрим сразу гребневую регрессию:

оптимальные веса
$$w = (X^{\mathrm{T}}X + \lambda I)^{-1}X^{\mathrm{T}}y$$

воспользуемся SVD (в полном разложении $(m \times m) \cdot (m \times n) \cdot (n \times n)$):

$$X = U\Lambda V^{\mathrm{\scriptscriptstyle T}}$$
, тогда

$$w = (V\Lambda^{\mathsf{T}}U^{\mathsf{T}}U\Lambda V^{\mathsf{T}} + \lambda I)^{-1}V\Lambda^{\mathsf{T}}U^{\mathsf{T}}y = (V(\Lambda^{\mathsf{T}}\Lambda + \lambda I)V^{\mathsf{T}})^{-1}V\Lambda^{\mathsf{T}}U^{\mathsf{T}}y =$$

$$= V \underbrace{(\Lambda^{\mathsf{T}} \Lambda + \lambda I)^{-1} \Lambda^{\mathsf{T}}}_{\text{diag}(\lambda/(\lambda^{2} + \lambda))} U^{\mathsf{T}} y = \sum_{j=1}^{k} \frac{\lambda_{j} \cdot u_{j}^{\mathsf{T}} y}{\lambda_{j}^{2} + \lambda} v_{j}$$

$$k = \min(m, n)$$

Пояснение про матрицу $(\Lambda^{\mathrm{T}}\Lambda + \lambda I)^{-1}\Lambda^{\mathrm{T}}$

$$\left(\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ 0 & 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1}{\lambda_1^2 + \lambda} & 0 & 0 \\ 0 & \frac{\lambda_2}{\lambda_1^2 + \lambda} & 0 \end{bmatrix}$$

$$\left(\begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{\lambda_{1}}{\lambda_{1}^{2} + \lambda} & 0 \\ 0 & \frac{\lambda_{2}}{\lambda_{1}^{2} + \lambda} \\ 0 & 0 \end{bmatrix}$$

Линейная регрессия: связь с SVD

$$w = \sum_{j=1}^{k} \frac{\lambda_{j} \cdot u_{j}^{\mathrm{T}} y}{\lambda_{i}^{2} + \lambda} v_{j}$$

веса – линейные комбинации столбцов V коэффициенты – скалярное произведение столбцов U и целевого столбца

виден эффект от регуляризации! при больших λ зануляются коэффициенты без регуляризации, когда $\lambda_{_j} pprox 0$, веса м.б. большими!

Число обусловленности матрицы $(X^{T}X + \lambda I)$

$$\frac{\lambda_{\max}(X^{\mathsf{T}}X + \lambda I)}{\lambda_{\min}(X^{\mathsf{T}}X + \lambda I)} = \frac{\lambda_{\max}^{2} + \lambda}{\lambda_{\min}^{2} + \lambda} \xrightarrow{\lambda \to +\infty} 1$$

Линейная регрессия: связь с SVD

Ещё одно упражнение – посмотрим на проекционную матрицу

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

$$H = U\Lambda V^{\mathsf{T}} (V\Lambda^{\mathsf{T}}U^{\mathsf{T}}U\Lambda V^{\mathsf{T}})^{-1}V\Lambda^{\mathsf{T}}U^{\mathsf{T}} =$$

$$= U\Lambda V^{\mathsf{T}} (V\Lambda^{\mathsf{T}}\Lambda V^{\mathsf{T}})^{-1}V\Lambda^{\mathsf{T}}U^{\mathsf{T}} =$$

$$= U\Lambda V^{\mathsf{T}}V(\Lambda^{\mathsf{T}}\Lambda)^{-1}V^{\mathsf{T}}V\Lambda^{\mathsf{T}}U^{\mathsf{T}} =$$

$$= U\Lambda (\Lambda^{\mathsf{T}}\Lambda)^{-1}\Lambda^{\mathsf{T}}U^{\mathsf{T}}$$

и тут тонкость (мы её пользовались на предыдущем слайде), что зелёная матрица может не быть единичной!

$$\begin{bmatrix}
\lambda_{1} & 0 \\
0 & \lambda_{2} \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0
\end{bmatrix}
\begin{bmatrix}
\lambda_{1} & 0 \\
0 & \lambda_{2} \\
0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} \\
0 & 0
\end{bmatrix}$$

Поиск ортогонального соответствия (Orthogonal matching pursuit)

Пусть X_J – матрица, образованная столбцами из множества $J\subseteq\{1,2,\ldots,n\}$ Изначально $J=\varnothing$ (т.е. входит лишь нулевой столбец или ничего не входит)

на каждой итерации решаем задачу

$$||y - X_{J \cup \{j\}} w||_2^2 \rightarrow \min_{w,j}$$

(тут возможны модификации)

и наращиваем множество используемых признаков

$$J \leftarrow J \cup \{j\}$$

пока
$$\parallel y - X_I w \parallel_2^2 \ge \varepsilon$$
 или $\mid J \mid \le k$

идею можно применять и для других семейств алгоритмов

Поиск ортогонального соответствия (Orthogonal matching pursuit)

Пусть изначально из матрицы удалены столбцы-дубликаты, все столбцы пронормированы

вместо
$$||y - X_{J \cup \{j\}} w||_2^2 \to \min_{w,j}$$

решаем такую последовательность задач

$$j = \underset{j \notin J}{\operatorname{arg\,max}} (X[:,j]^{\mathsf{T}} (y - X_{J}w))$$

$$J \leftarrow J \cup \{j\}$$

$$w \leftarrow \underset{w}{\operatorname{arg\,min}} ||y - X_{J}w||_{2}^{2}$$

Линейные скоринговые модели в задаче бинарной классификации

Пусть
$$X = \mathbb{R}^n$$
, $Y = \{0, 1\}$

Как решать задачи классификации с помощью линейной модели: будем получать вероятность принадлежности к классу 1

$$a(x) \in [0, 1]$$

Любая линейная функция на \mathbb{R}^n будет получать значения в \mathbb{R} , поэтому нужна деформация (transfer function):

$$\sigma: \mathbb{R} \to [0,1]$$

Решаем задачу так:

$$\sigma(w^{\mathrm{T}}x)$$

проекция на одномерное пространство и деформация

Функции деформации

В логистической регрессии

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Логистическая функция (сигмоида)

В Probit-регрессии

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-t^2/2) \partial t$$

Normal Cumulative distribution function

Логистическая регрессия

$$P(Y=1 \mid x) = \sigma(z) = \frac{1}{1+e^{-z}} \in (0,1),$$

$$z = w^{\mathrm{T}} x = w_0 + w_1 X_1 + \ldots + w_n X_n$$

$$\log\left(\frac{\sigma(z)}{1-\sigma(z)}\right) = z$$

- монотонное преобразование, которое называют logit-transformation

Решаем задачу классификации, но метод называется логистическая регрессия

Логистическая регрессия: интересные свойства сигмоиды

оценка вероятности принадлежности к классу 0 будет «симметрично записываться»

$$\sigma(z) + \sigma(-z) = \frac{1}{1 + e^{-z}} + \frac{1}{1 + e^{+z}} = \frac{e^{+z}}{1 + e^{+z}} + \frac{1}{1 + e^{+z}} = 1$$

поскольку
$$P(Y = 1 \mid x) + P(Y = 0 \mid x) = 1$$
, то

$$P(Y=0 \mid x) = \sigma(-z)$$

производная выражается через функцию

$$\frac{\partial \sigma(z)}{\partial z} = \left(\frac{1}{1+e^{-z}}\right)' = \frac{-(-e^{-z})}{(1+e^{-z})^2} = \frac{1+e^{-z}-1}{(1+e^{-z})^2} = \frac{1}{1+e^{-z}} \left(1 - \frac{1}{1+e^{-z}}\right) = \sigma(z)(1-\sigma(z))$$

нам пока это свойство не понадобится

Геометрический смысл логистической регрессии

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
a = model.predict_proba(X_test)[:,1]
```


 $z = w_0 + w_1 X_1 + \ldots + w_n X_n$ – проекция на прямую (один признак) в однопризнаковом случае надо решить задачу классификации

Чем логистическая регрессия лучше регрессии

Откуда берётся сигмоида

$$p(x \mid y = t) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_t)^{\mathrm{T}} \Sigma^{-1} (x - \mu_t)\right)$$

нормальное распределение с одинаковыми матрицами ковариации

$$p(y=t \mid x) = \frac{p(x \mid y=t)p(y=t)}{p(x \mid y=0)p(y=0) + p(x \mid y=1)p(y=1)}$$

Откуда берётся сигмоида

считаем классы равновероятными

$$p(y=t \mid x) = \frac{\frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_{t})^{T} \Sigma^{-1}(x-\mu_{t})\right)}{\sum_{t} \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_{t})^{T} \Sigma^{-1}(x-\mu_{t})\right)} =$$

$$= \frac{1}{1 + \exp\left(+\frac{1}{2}(x-\mu_{t})^{T} \Sigma^{-1}(x-\mu_{t}) - \frac{1}{2}(x-\mu_{t-t})^{T} \Sigma^{-1}(x-\mu_{t-t})\right)} =$$

$$= \frac{1}{1 + \exp\left(-\frac{1}{2}\mu_{t}^{T} \Sigma^{-1} x - \frac{1}{2}x^{T} \Sigma^{-1} \mu_{t} + \frac{1}{2}\mu_{t}^{T} \Sigma^{-1} \mu_{t} + \frac{1}{2}\mu_{t-t}^{T} \Sigma^{-1} x + \frac{1}{2}x^{T} \Sigma^{-1} \mu_{t-t} - \frac{1}{2}\mu_{t-t}^{T} \Sigma^{-1} \mu_{t-t}\right)} =$$

$$= \sigma(w^{T} x + w_{0})$$

Обучение логистической регрессии

Метод максимального правдоподобия

$$L(w_0,...,w_n) = \prod_{i:y_i=1} \sigma(w^{\mathsf{T}} x_i) \prod_{i:y_i=0} (1 - \sigma(w^{\mathsf{T}} x_i)) \to \max$$

здесь тоже выпуклая задача оптимизации логирифмируем....

$$\log L(w_0, \dots, w_n) = \sum_{i: y_i = 1} \log(\sigma(w^{\mathsf{T}} x_i)) \sum_{i: y_i = 0} \log(\sigma(-w^{\mathsf{T}} x_i)) \longrightarrow \max$$

для удобства записи
$$y_i' = 2y_i - 1$$
, тогда

$$\log L = \sum_{i} \log(\sigma(y_i' w^{\mathsf{T}} x_i)) = -\sum_{i} \log(1 + \exp(-y_i' w^{\mathsf{T}} x_i)) \to \max$$

Обучение логистической регрессии

$$\log L = -\sum_{i} \log(1 + \exp(-y_i' w^{\mathsf{T}} x_i)) \to \max$$

Полученное выражение называют «логистической функцией ошибки» (logistic loss)

Вычислим градиент

$$\nabla_{w} \log L = -\sum_{i} \nabla_{w} \log(1 + \exp(-y_{i}'w^{T}x_{i})) =$$

$$= -\sum_{i} \frac{\exp(-y_{i}'w^{T}x_{i})}{1 + \exp(-y_{i}'w^{T}x_{i})} (-y_{i}'x_{i}) = \sum_{i} \frac{y_{i}'x_{i}}{1 + \exp(+y_{i}'w^{T}x_{i})} = \sum_{i} \sigma(-y_{i}'w^{T}x_{i})y_{i}'x_{i}$$

Качество логистической регрессии

– логарифм правдоподобия

(потом будет соответствующая функция ошибки logloss)

метод SGD (запомним):

$$w \leftarrow w + \eta \sigma(-y_i' w^{\mathsf{T}} x_i) y_i' x_i$$

Многоклассовая логистическая регрессия: Multiclass logreg / multinomial regression

Для j-го класса имеем свою функцию $w_j^{^{\mathrm{T}}} {\it \chi}$

хотим такие значения превращать в респределения

$$(w_1^{\mathsf{T}}x, w_2^{\mathsf{T}}x, ..., w_l^{\mathsf{T}}x) \in \mathbb{R}^l \to (p_1(x), p_2(x), ..., p_l(x)) \in [0, 1]_{\Sigma=1}^l$$

в glmnet такой «симметричный вариант»:

$$P(Y = k \mid x) = \frac{\exp(w_{0k} + w_{1k}X_1 + \dots + w_{nk}X_n)}{\sum_{j=1}^{l} \exp(w_{0j} + w_{1j}X_1 + \dots + w_{nj}X_n)}$$

Такая функция называется softmax:

softmax
$$(a_1,...,a_l) = \frac{1}{\exp(a_1) + ... + \exp(a_l)} [\exp(a_1),...,\exp(a_l)]$$

Реализация в scikit-learn

sklearn.linear_model.LogisticRegression

penalty="12"	Тип регуляризации	
	Не все солверы поддерживают все типы	
dual=False	Переход к двойственной задачи	
C=1.0	Обратная величина к коэффициенту регуляризации	
fit_intercept=True	Свободный член	
class_weight=None	Веса классов	
solver="warn"	Солвер	
	"newton-cg", "lbfgs", "liblinear", "sag", "saga"	
warm_start=False	Использовать ли предыдущие начальные условия	
l1_ratio	Формализация штрафов для ElasticNet	

Приложения

Банковский скоринг

Задачи с текстами

Бенчмарк для дебита нефти

Прогнозирование спроса

Почти любые индустриальные задачи!

Банковский скоринг

Name	Description	Туре
TCS_CUSTOMER_ID	Идентификатор клиента	ID
BUREAU_CD	Код бюро, из которого получен счет	
BKI_REQUEST_DATE	Дата, в которую был сделан запрос в бюро	
CURRENCY	Валюта договора (ISO буквенный код валюты)	string
RELATIONSHIP	Тип отношения к договору	string
	1 - Физическое лицо	
	2 - Дополнительная карта/Авторизованный пользователь	1
	4 - Совместный	1
	5 - Поручитель	1
	9 - Юридическое лицо	1
OPEN_DATE	Дата открытия договора	date
FINAL_PMT_DATE	Дата финального платежа (плановая)	date
TYPE	Код типа договора	string
	1 — Кредит на автомобиль	
	4 — Лизинг. Срочные платежи за наем/пользование транспортным средством, предприятием или оборудованием и т.п.	
	6 — Ипотека — ссудные счета, имеющие отношение к домам, квартирам и прочей недвижимости. Ссуда выплачивается циклично согласно договоренности до тех пор, пока она не будет полностью выплачена или возобновлена.	
	7 — Кредитная карта	1
	9 — Потребительский кредит	1
	10 — Кредит на развитие бизнеса	1
	11 — Кредит на пополнение оборотных средств	1
	12 — Кредит на покупку оборудования	1
	13 — Кредит на строительство недвижимости	1
	14 — Кредит на покупку акций (например, маржинальное кредитование)	1
	99 — Другой	1
	Дисциплина (своевременность) платежей. Строка составляется из кодов состояний счета на	
PMT_STRING_84M	моменты передачи банком данных по счету в бюро, первый символ - состояние на дату	string
	PMT_STRING_START, далее последовательно в порядке убывания дат.	
	0 — Новый, оценка невозможна	
	Х – Нет информации	1
	1 — Оплата без просрочек	1
	А — Просрочка от 1 до 29 дней	1

Банковский скоринг

По описанию и истории клиента o вероятность (оценка) возврата кредита

Нужна логистическая регрессия

есть возможность получать вещественное число в виде ответа есть более мощные методы (на решающих деревьях), но здесь полезна интерпретация

Все категориальные признаки – ОНЕ-перекодировка

Банковский скоринг

Если решение сводится к

$$a(x) = 1/(1 + \exp(-(w_0 + w_1 X_1 + \dots + w_n X_n))$$

где все признаки бинарные, то мы составляем скоринговую карту

Показатель	Значение показателя	Скоринг-балл
Возраст	До 30 лет От 30 до 50 лет Старше 50 лет	0 35 28
Образование	Среднее Среднее специальное Высшее	0 29 35
Состоит ли в браке	Да Нет	25 0
Брал ли кредит ранее	Да Нет	41 0
Трудовой стаж	Менее 1 года От 1 до 5 лет От 5 до 10 лет Более 10 лет	0 19 24 31

https://wiki.loginom.ru/articles/scorecard.html

Задачи с текстами

Соревнование «Topical Classification of Biomedical Research Papers»

Данные

Логика решения

$$X_{q \times n} \cdot W_{n \times l} = Y_{q \times l}$$

 $q = 10000, n = 25000, l = 83$

нельзя решать напрямую

Упрощение: SVD

$$X_{q \times n} \approx U_{q \times k} L_{k \times k} V_{k \times n}$$

$$U_{q \times k} \cdot W_{k \times l} = Y_{q \times l}$$

500

0

-80

-60

Бенчмарк прогнозирования дебита нефти

-40

время после смены насоса

-20

Бенчмарк прогнозирования дебита нефти

$$y_t = \sum_{i=0}^k w_{ti} y_{-i}, \quad w_{t0} \ge w_{t1} \ge \dots$$

соревнование на платформе boosters.pro

https://dyakonov.org/2018/12/23/

Прогнозирование спроса

Спрос товара конкретного id (покупок за следующую неделю)

- # покупок за k дней
- # просмотров за k дней
 - # корзин за k дней
 - # дней без покупок
- изменение цены за последние к дней
 - есть ли маркетинговая акция

$$Y = \max \left[\sum_{t} w_{t} X_{t}, 0 \right]$$

Прогнозирование раскупаемости

Остатки товара на складе:

Прогноз точки раскупаемости

Линейный метод прогнозирования

Пусть существует линейный оператор

Обучающая выборка

т.е. данных много!

Это матричное уравнение!

Александр Дьяконов (dyakonov.org)

$$A*X = b$$

Можно также

применять нелинейные операторы (как?)

Накладывать ограничения стабильности: $A(A(\tilde{x}_{t})) \approx A(\tilde{x}_{t+1})$

Делать регуляризацию (и тут её надо правильно сделать – нормировки)

Линейный метод прогнозирования

точность от коэф. регуляризации

Плюсы и минусы линейных алгоритмов

- + простой, надёжный, быстрый, популярный метод
- **+** интерпретируемость (\Rightarrow нахождение закономерностей)
 - + интерполяция и экстраполяция
- + может быть добавлена нелинейность, с помощью генерации новых признаков

(дальше – это можно автоматизировать)

- + хороши для теоретических исследований (в Ridge есть явная формула)
 - + коэффициенты асимптотически нормальны

(можно тестировать гипотезы о влиянии признаков)

- + глобальный минимум в оптимизируемом функционале
 - линейная гипотеза вряд ли верна
- **в теоретическом обосновании ещё предполагается нормальность ошибок**

(зависит от функции ошибок)

- «страдает» из-за выбросов
- признаки в одной шкале и однородные (см. успешные примеры)
 - проблема коррелированных признаков
 - ⇒ необходимость регуляризации, селекции, PCA, data ̂

Проблемы мультиколлинеарности

- большие коэффициенты
- большие изменения коэффициентов при добавлении/удалении признаков
- нелогичности (чем больше доход, меньше вероятность дать кредит)
- большое число статистически незначимых оценок коэффициентов

Зависимость от масштабирования

пайплайн: нормировка + простая модель с регуляризацией линейная нет есть нет

Итог

Линейная регрессия ~ матричное уравнение
Но проблема вырожденности
Много методов решают эту проблему с разных сторон

Погистическая регрессия- деформирование линейной **Есть вероятностная трактовка!**

Интересные ссылки

Песня о RANSAC

https://www.youtube.com/watch?v=1YNjMxxXO-E

Kypc Ramesh Sridharan «Statistics for Research Projects: IAP 2015»

http://www.mit.edu/~6.s085/

Про расстояние Кука

https://en.wikipedia.org/wiki/Cook%27s_distance

Про линейную регрессию

https://dyakonov.org/2019/10/31/линейная-регрессия/