Do investors care about carbon risk?

Patrick Bolton, Marcin Kacperczyk . Journal of Financial Economics, 2021

解读者: 屠雪永

2021.01.09

Outline

- Introduction
- Data and sample
- Empirical results
- Conclusion

1. Introduction-- Background

The Paris COP 21 climate agreement of December 2015, with 195 signatories committing to limit global warming to well below 2 °C above preindustrial levels.

 The rising engagement of the finance industry with climate change, largely as a result of the call to non-governmental actors to join the fight against climate change at the COP 21.

1. Introduction-- Motivation

- Considerable skepticism remains, not least in the US where the Trump administration had worked to upend regulations that limit CO2 emissions.
- The lack of consensus among institutional investors around climate change naturally raises the possibility that carbon risk may not yet be reflected in asset prices.
- ➤ Whether carbon emissions represent a material risk for investors that is reflected in the cross-section of stock returns and portfolio holdings.

1. Introduction—Research assumptions

- The carbon risk premium hypothesis:
 - positive relation in the cross-section between a firm's own CO2 emissions and its stock returns.
 - CO₂ → fossil-fuel energy prices and commodity price risk
 - →carbon pricing risk and other regulatory interventions.
 - →lower-cost renewable energy
- Market inefficiency, or carbon alpha, hypothesis:
 - Financial markets are pricing carbon risk inefficiently and the risk associated with carbon emissions is underpriced.
- A third hypothesis is that the stocks of firms with high emissions are like other "sin stocks"

1. Introduction—main results

- Carbon emissions significantly and positively affect stock returns.
- Investors are discerning these cross-sectional differences and are pricing in carbon risk.
- The carbon premium cannot be explained through a sin stock divestment effect.

1. Introduction-- Contribution

- Carbon emissions significantly affect stock returns.
- Our study is related to a rapidly growing literature on climate change and financial markets.

2. Data and sample

- Database :2005–2017, Trucost and FactSet in the US
 - Trucost provides information on corporate carbon and other greenhouse gas emissions.
 - FactSet provides data on stock returns, corporate fundamentals, and institutional ownership

 Seven main carbon emissions providers: CDP, Trucost, MSCI, Sustainalytics, Thomson Reuters, Bloomberg, and ISS.

Fig. 2. Carbon emissions: sample selection.

2. Data and sample

- Three different sources of emissions:
 - Scope 1 emissions: direct emissions and fossil fuel used in production.
 - Scope 2 emissions: purchased heat, steam, and electricity.
 - Scope 3 emissions: sources not owned or controlled by the company.
- Three categories of measurements:
 - Log (Carbon Emissions Scope (tons CO2e))
 - Growth Rate in Carbon Emissions Scope
 - Carbon Intensity Scope (tons CO2e/USD m.)/100

2. Data and sample

- Other variables
 - Cross-sectional return variables
 - RET、LOGSIZE、B/M、LEVERAGE、MOM、INVEST/A、ROE、 HHI、LOGPPE、BETA、VOLAT、SALESGR、EPSGR
 - Time-series variables
 - MKTRF、HML、SMB、MOM、CMA、BAB、LIQ、NET ISSUANCE、IDIO VOL
 - Ownership variables
 - IO , IO_BANKS , IO_INSURANCE , IO_INVESTCOS , IO_ADVISERS , IO_PENSIONS , IO_HFS , PRINV , VOLAT , VOLUME , NASDAQ , SP500

3. Results-- Determinants of carbon emissions

Variables	(1) LOG (SCOPE 1)	(2) LOG (SCOPE 2)	(3) LOG (SCOPE 3)
LOGSIZE	0.438***	0.571***	0.572***
	(0.036)	(0.032)	(0.022)
B/M	0.464***	0.555***	0.562***
	(0.060)	(0.059)	(0.054)
ROE	0.006***	0.006***	0.007***
	(0.001)	(0.001)	(0.001)
LEVERAGE	0.531**	0.625***	0.574***
	(0.196)	(0.188)	(0.162)
INVEST/A	-2.026***	-1.950***	-2.457***
	(0.489)	(0.460)	(0.432)
HHI	-1.044***	-0.569***	-0.499***
	(0.119)	(0.081)	(0.063)
LOGPPE	0.376***	0.372***	0.317***
	(0.036)	(0.037)	(0.023)
SALESGR	0.237***	0.190**	0.231**
	(0.059)	(0.062)	(0.077)
EPSGR	0.137**	0.146**	0.144**
	(0.049)	(0.049)	(0.050)
Year/month F.E.	Yes	Yes	Yes
Industry F.E.	Yes	Yes	Yes
Observations	189,187	189,115	189,283
R-squared	0.899	0.849	0.905

 All three categories of emission levels, and changes in emissions, are significantly positively related to LOGSIZE.

3. Results--Evidence on cross-sectional returns

		Pan	el A: Total emissions			
Variables	(1)	(2)	(3)	(4)	(5)	(6)
LOG (SCOPE 1 TOT)	0.043**			0.164***		
	(0.023)			(0.036)		
LOG (SCOPE 2 TOT)		0.098**			0.167***	
		(0.042)			(0.048)	
LOG (SCOPE 3 TOT)			0.135**			0.312***
,			(0.046)			(0.071)
		Panel B: Gi	rowth rate in total em	issions		
Variables	(1)	(2)	(3)	(4)	(5)	(6)
ΔSCOPE 1	0.641***			0.627***		
	(0.153)			(0.144)		
ΔSCOPE 2	(/	0.345**		(2,2,2,3)	0.321**	
200122		(0.125)			(0.120)	
ΔSCOPE 3		(0.123)	1.203***		(0.120)	1.186***
ZSCOLE 5			(0.318)			(0.314)
			(0.510)			(0.514)
		Panel	C: Emission intensity	1		
Variables	(1)	(2)	(3)	(4)	(5)	(6)
SCOPE 1 INT	-0.010			0.005		
	(0.012)			(0.006)		
SCOPE 2 INT	(/	0.145		(/	0.081	
555.2.2 1111		(0.121)			(0.074)	
SCOPE 3 INT		(0.121)	0.055		(0.07-1)	0.048
SCOLE S IIVI			(0.033)			(0.075)
			(0.033)			(0.073)

 $RET_{i,t} = a_0 + a_1 LOG \ (TOT \ Emissions)_{i,t} + a_2 Controls_{i,t-1} + \mu_t + \varepsilon_{i,t},$

12

3. Results--Carbon premium and risk factors

		Par	nel A: Total emissions			
	LOG (SCC	LOG (SCOPE 1 TOT)		OPE 2 TOT)	LOG (SCOPE 3 TOT)	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
MKTRF		-1.176		3.298***		3.429**
		(0.714)		(1.084)		(1.357)
HML		-6.020***		-4.284**		-6.444**
		(1.598)		(1.759)		(2.537)
SMB		-0.331		1.184		1.539
		(0.887)		(2.858)		(1.840)
Constant	0.058**	0.053**	0.085**	0.070***	0.103***	0.065**
	(0.026)	(0.023)	(0.037)	(0.027)	(0.035)	(0.027)
		Panel B: Gr	owth rate in total emi	ssions		
	ΔSCC	OPE 1	ΔSCC	OPE 2	ΔSCOPE 3	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.640***	0.643***	0.435***	0.463***	1.559***	1.424***
	(0.089)	(0.120)	(0.065)	(0.063)	(0.237)	(0.250)
		Panel	C: Emission intensity			
	SCOP	SCOPE 1 INT SCOPE 2 INT			SCOPE 3 INT	
Variables	(1)	(2)	(3)	(4)	(5)	(6)

$$a_{1,t} = c_0 + cF_t + \varepsilon_t,$$

-0.004

(0.007)

Constant

-0.006

(0.008)

0.121

(0.102)

0.181*

(0.097)

0.018

(0.027)

0.012

(0.028)

3. Results-- The divestment hypothesis

Panel A: Aggregate ownership (Emission intensity)								
Variables	(1)	(2)	(3)	(4)	(5)	(6)		
	(0.085)	(0.083)						
SCOPE 2 INT			-0.383	-0.381				
			(1.621)	(1.610)				
SCOPE 3 INT					0.094	-0.130		
					(0.550)	(0.581)		
		Panel B: D	isaggregate ownership			,		
	443	(0)	(0)	(4)	(5)	(2)		
	(1)	(2)	(3)	(4)	(5)	(6)		
Variables	Banks	Insurance	Invest. Cos.	Advisers	Pensions	Hedge Funds		
SCOPE 1 INT	0.001**	-0.011*	0.026	-0.258***	-0.009*	0.033		
	(0.000)	(0.005)	(0.022)	(0.056)	(0.004)	(0.028)		
SCOPE 2 INT	0.009	-0.253	-0.139	-0.156	0.049	0.108		
	(0.006)	(0.144)	(0.406)	(0.992)	(0.097)	(0.441)		
SCOPE 3 INT	0.004*	-0.021	0.038	0.052	0.028	-0.230		
	(0.002)	(0.071)	(0.115)	(0.409)	(0.030)	(0.151)		

$$IO_{i,t} = d_0 + d_1 Emission_{j,t} + d_2 Controls_{j,t} + \varepsilon_{i,t}$$

3. Results-- Coarse categorization

Panel A: Total emissions							
Variables	(1)	(2)	(3)	(4)	(5)	(6)	
LOG (SCOPE 1 TOT)	0.072** (0.025)			0.177*** (0.044)			
LOG (SCOPE 2 TOT)		0.097** (0.039)			0.227*** (0.057)		
LOG (SCOPE 3 TOT)			0.117** (0.048)			0.324*** (0.074)	
		Panel B: Growt	th rate in total emissi	ons			
Variables	(1)	(2)	(3)	(4)	(5)	(6)	
ΔSCOPE 1	0.657*** (0.151)			0.630*** (0.142)			
ΔSCOPE 2		0.463*** (0.117)			0.438*** (0.112)		
ΔSCOPE 3			1.480*** (0.321)			1.456*** (0.322)	
		Panel C:	Emission intensity				
Variables	(1)	(2)	(3)	(4)	(5)	(6)	
SCOPE 1 INT	0.004 (0.016)			-0.012 (0.016)			
SCOPE 2 INT		0.154 (0.102)			0.150 (0.112)		
SCOPE 3 INT		,	0.054 (0.035)		,	0.160* (0.078)	

Excludes companies in the oil and gas (gic=2), utilities (gic=65–69), and transportation (gic=18, 19, 23) industries

3. Results-- Investor awareness(sub-periods)

		Panel A:	Total emissions			
		2005-2015		2016–2017		
Variables	(1)	(2)	(3)	(4)	(5)	(6)
LOG (SCOPE 1 TOT)	0.127***			0.205**		
	(0.037)			(0.075)		
LOG (SCOPE 2 TOT)		0.127***			0.233**	
		(0.042)			(0.087)	
LOG (SCOPE 3 TOT)			0.265***			0.340***
			(0.086)			(0.107)
		Panel B: Growt	h rate in total emissi	ons		
		2005-2015			2016-2017	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
ΔSCOPE 1	0.610***			0.629**		
	(0.161)			(0.249)		
ΔSCOPE 2		0.265***			0.459**	
		(0.097)			(0.193)	
ΔSCOPE 3			1.259***			1.032**
			(0.355)			(0.436)
		Panel C:	Emission intensity			
		2005–2015			2016-2017	
Variables	(1)	(2)	(3)	(4)	(5)	(6)
SCOPE 1 INT	0.005			0.010		
	(0.007)			(0.019)		
SCOPE 2 INT		0.091			0.117	
		(0.094)			(0.125)	
SCOPE 3 INT			0.030			0.040
			(0.091)			(0.087)

3. Results-- Investor awareness(Paris Agreement)

Panel A: Total emissions Variables (1) (2)(3)(4)(5)(6)TREAT1*AFTER 10.615*** 10.705*** (1.200)(1.175)-1.783TREAT2*AFTER -1.681(5.861)(5.821)TREAT3*AFTER -8.917-8.782(6.127)(6.081)Panel B: Growth rate in total emissions Variables (1) (2)(4)(5)(3) (6)TREAT1*AFTER 0.438 4.425 (4.426)(3.373)-3.712TREAT2*AFTER 0.361 (3.541)(2.592)TREAT3*AFTER 0.396 3.671 (4.338)(3.927)Panel C: Emission intensity Variables (1) (2)(4)(5)(6)(3) TREAT1*AFTER 2.825 2.855 (5.876)(5.994)TREAT2*AFTER -0.0160.021 (5.344)(5.417)-7.614*** -7.749*** TREAT3*AFTER (2.070)(2.128)

$$RET_{\underline{i},t} = e_0 + e_1 TREAT * AFTER_{\underline{j},t} + e_2 Controls_{\underline{i},t} + e_3 \mu_{\underline{i}} + e_4 \mu_{\underline{t}} + \varepsilon_{\underline{i},t},$$

3. Results-- Investor awareness(imputed emissions)

Panel A: (2005-2017)								
Variables	(1)	(2)	(3)	(4)	(5)	(6)		
LOG (SCOPE 1 TOT)	0.097*** (0.024)			0.291*** (0.046)				
LOG (SCOPE 2 TOT)	V	0.186*** (0.043)		V	0.336*** (0.065)			
LOG (SCOPE 3 TOT)		,,,,,	0.245*** (0.043)		,,	0.585*** (0.127)		
	Panel B: (1990-1999)							
Variables	(1)	(2)	(3)	(4)	(5)	(6)		
LOG (SCOPE 1 TOT)	-0.037 (0.034)			0.082 (0.078)				
LOG (SCOPE 2 TOT)	, ,	0.033 (0.045)		, ,	0.236 (0.134)			
LOG (SCOPE 3 TOT)			0.005 (0.059)			0.318* (0.162)		
Controls Year/month F.E.	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Industry F.E.	No	No	No	Yes	Yes	Yes		

 Investors did not yet internalize carbon risk over the 1990s, but began to do so in the last two decades, as reporting on climate change.

Conclusion

- Carbon emissions significantly and positively affect stock returns.
- Investors are discerning these cross-sectional differences and are pricing in carbon risk.
- The carbon premium cannot be explained through a sin stock divestment effect.

Idea

- 碳排放交易市场对碳溢价的影响。
- Wen, Fenghua, Nan Wu and Xu Gong. China's Carbon Emissions Trading and Stock Returns. Energy Economics, 2020.