Basics of Signals and Systems

Feb 1st, 2007

Random Variables and Random Processes

Some basics of probability theory are discussed before going to random variables.

Basics of Probability Theory

Probability of an event A represented by P(A) is given by

$$P(A) = \frac{N_A}{N_S}$$

where, N_S is the number of times the experiment is carried and N_A is number of times the event A occured. Probability of any event can be exactly calculated only when the number of experiments is huge ideally infinity. Hence, we generally go for relative probability which is given above. Clearly, $0 \le P(A) \le 1$.

Let 'S' be the sample space having N events $A_1, A_2, A_3, \dots A_N$. Two events are said to be mutually exclusive or statistically independent if $A_i \cap A_j = \phi$ and $\bigcup_{i=1}^N A_i = S$ for all i and j.

Joint Probability:

Joint probability of two events A and B which is defined as the probability of the occurrence of both the events A and B is given by

$$P(A \cap B) = \frac{N_{A \cap B}}{N_S}$$

Conditional Probability

Conditional probability of two events A and B represented as P(A/B) and defined as the probability of the occurrence of event A after the occurrence of B is given by

$$P(A/B) = P(A \cap B)/P(B)$$

$$P(B/A) = P(A \cap B)/P(A)$$

$$\implies P(A/B).P(B) = P(B/A).P(A) = P(A \cap B)$$

Chain rule

Let us consider a chain of events $A_1, A_2, A_3, \dots A_N$ which are dependent on each other. Then the probability of occurrence of the sequence

$$P(A_N, A_{N-1}, A_{N-2}, \cdots A_1) = P(A_N/A_{N-1}, A_{N-2}, \cdots A_1) \cdot P(A_{N-1}/A_{N-2}, A_{N-3}, \cdots A_1) \cdot \cdots P(A_2/A_1) \cdot P(A_1/A_{N-2}, A_1/A_{N-2}, \cdots A_1) \cdot \cdots P(A_2/A_1) \cdot P(A_1/A_{N-1}, A_1/A_{N-2}, \cdots A_1) \cdot \cdots P(A_1/A_{N-1}, A_1/A_{N-1}, \cdots A_1/A_{N-1}, \cdots A_1) \cdot \cdots P(A_1/A_{N-1}, A_1/A_{N-1}, \cdots A_1/A_{$$

Bayes Rule

Figure 1: Partition space

In the above figure, if $A_1, A_2, A_3, \dots A_5$ partition the sample space S, then $A_1 \cap B, A_2 \cap B, A_3 \cap B, A_4 \cap B, and A_5 \cap B$ partition B. therefore,

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B)$$
$$= \sum_{i=1}^{n} P(B/A_i).P(A_i)$$

$$P(A_i/B) = P(A_i \cap B)/P(B)$$

$$= \frac{P(B/A_i).P(A_i)}{\sum_{i=1}^{n} P(B/A_i).P(A_i)}$$

In the above equation, $P(A_i/B)$ is called posterior probability, $P(B/A_i)$ is called likelihood, $P(A_i)$ is called prior probability and $\sum_{i=1}^{n} P(B/A_i).P(A_i)$ is called evidence.

Random Variable

Random variable is a function whose domain is sample space and whose range is the set of real numbers.

Probabilistic description of a Random Variable

Cumulative Probability Distribution: It is represented as $F_X(x)$ and defined as

$$F_X(x) = P(X \le x)$$

If $x_1 < x_2$ then $F_X(x_1) < F_X(x_2)$ and $0 \le F_X(x) \le 1$.

Probability Density Function: It is represented as $f_X(x)$ and defined as

$$f_X(x) = \frac{d}{dx} F_X(x)$$

$$\implies P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$$