1/30/2020

Control Strategy (CS)

- Desired Characteristics
 - 1) Systematic
 - A sequence of moves that transforms the state space in a manner that is not random and hopefully leads to a goal
 - 2) Cause motion
 - (Do not want to end up with infinite loop)
 Example of that is the water jugs problem
 [Fill up the jug and pour the water out and so on]
 - 3) Efficient
 - ➤ Minimize "cost"

Example

A traveling Salesman Problem (TSP)

A starting city (A) have to visit each city exactly once and return to start city.

- 1. Systematic (enumerate all paths)
- 2. Cause motion
- 3. Efficient?

Propose the following

- Control strategy
 - Solution generation

Search process that is based on expanding the state space

Traveling Salesman Problem (TSP)

- Start with city A and expand this node
- At each child node compute the accumulated distances so far
- Select partial path whose accumulated distances is the minimum

Branch and bound algorithm (B&B)

Stop the search process if there is a full path whose total cost is <= the cost of all the remaining partial paths

■ Number of node (1.26 ^ n)

Does this technique guarantee the optimality?

Heuristic

A measure technique that allows to solve the problem more efficient sometime at expense of optimality (sometime not so)

- Branch and bound (B&B)
- Greedy → nearest neighbor

Classification of Control Strategy

- Irrevocable
- Tentative
 - Graph search
 - backtracking

Irrevocable

• A production rule is applied and cannot be undone (such as chess)

Tentative

• A provision is made to go back to previous state(s) and apply different move.

Question

What are the different between backtracking tentative and graph search?

Irrevocable

Example

8 puzzle problem

CS define the following function

initial state				
2	8	3		
1	6	4		
7		5		

goal state				
_1	2	3		
8		4		
7	6	5		

f(s) = 7 (# of misplaced tiles with respect to the goal state description)

Negative

number

How many tiles misplaced!

The value of function f(s) = -4

Classification of Control Strategy (CS)

- *Irrevocable*
- **Tentative**
 - o Graph search
 - backtracking

initial state

Irrevocable

Example

8 puzzle problem

CS define the following function

- f (n) = (# of misplaced tiles)
- n board configuration

goal state				
_1	2	3		
8		4		
7	6	5		

$$f(n) = -4$$

└-▶ heuristic merit of a node in tree graph

initial state		ate	gor	goal	
2	8	3_	1	2	
1	6	4	8		
7		5	7	6	

Hill climbing

- local min/max
- plateau

ridges

Tentative

- Backtracking
 - o Criteria for backtracking
 - 1. If you encounter a state on your current Path that's already on it

- 2. You have applied a certain numbers of moves (6 or 5 or 4) and that does not result in the goal state or improvement
- 3. There are no more rules to apply to the current state

Example

8 puzzles

Initial state

 $L U R D \rightarrow Order which moves are made$

- always move L (left) first, then if possible, go U (up) then R (right) then D (down)
- use the backtracking criteria that we have defined

Queen Problem

- Present as AI production systemDatabase (DB)

 - Operators
 - o Control Strategy (CS)

