Beginnings of Complex Analysis

Professor David Barrett Transcribed by Thomas Cohn

Recall,
$$dz = dx + idy$$
 \Rightarrow $dx = \frac{dz + d\overline{z}}{2}$ $dy = \frac{dz - d\overline{z}}{2i}$.

 $\mathbb{R}^2 \xrightarrow{f} \mathbb{C}$
 $\begin{pmatrix} u \\ v \end{pmatrix} \xrightarrow{\mathbb{R}^2} \mathbb{R}^2$

So we have $\mathbb{R}^2 \leftrightarrow \mathbb{C}$, with $\begin{pmatrix} x \\ y \end{pmatrix}$ mapping to x + iy.

When is fdz closed? Well, fdz = (u+iv)(dx+idy) = (u+iv)dx + (-v+iu)dy.

So we need $D_1(-v+iu) = D_2(u+iv)$, i.e., $D_1u = D_2v$ and $D_2u = -D_1v$. This is equivalent to $\begin{pmatrix} u \\ -v \end{pmatrix}$ is incompressible and irrotational.

This is also equivalent to $(u+iv)d\overline{z}$ is closed.

From §J, we have

Thm: Given $f \in C^1(A^{\text{osso}\mathbb{R}^2}, \mathbb{C})$, A diffeomorphic to a convex set, then f(z)dz is exact if and only if f satisfies the CR equations.

Ex:
$$\frac{dz}{z} = \left(\frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}\right) dz.$$
 Check that the CR equations hold.

$$\frac{dz}{z} = \left(\frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy\right) + i\left(-\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy\right) = d\ln(\sqrt{x^2 + y^2}) + \text{``}id\theta\text{''}.$$

Choose a ray X starting at 0. Then θ_X is the anti-derivative for the above on $\mathbb{R}^2 \setminus X$.

We get $\frac{dz}{z} = d(\ln(r) + i\theta_X)$ on $\mathbb{R}^2 \setminus X$.

This suggests $\ln_X(z) \stackrel{\text{def}}{=} \ln(r) + i\theta_X$.

Consider V, W finite-dimensional \mathbb{R} -v.s., $f: A^{\operatorname{osso} V} \to W$ diffeomorphic at $\vec{x}_0 \in A$. Then we have the affine approximation $\star f(\vec{x}) \approx f(\vec{x}_0) + Df(\vec{x}_0)(\vec{x} - \vec{x}_0)$.

Defn: For V, W \mathbb{C} -v.s., $f: V \to W$ is \mathbb{C} -linear $\stackrel{\text{def}}{\Leftrightarrow} f(\vec{v_1} + \vec{v_2}) = f(\vec{v_1}) + f(\vec{v_2})$ and $f(\lambda \vec{v}) = \lambda f(\vec{v})$ for $\lambda \in \mathbb{C}$.

More formally, $Df(\vec{x_0}) = T \in \operatorname{Hom}_{\mathbb{R}}(V, W)$ means $\lim_{\vec{x} \to \vec{x_0}} \frac{f(\vec{x}) - f(\vec{x_0}) - T(\vec{x} - \vec{x_0})}{||\vec{x} - \vec{x_0}||} = 0$. The definition of \mathbb{C} -differentiation is exactly the same, except for $T \in \operatorname{Hom}_{\mathbb{C}}(V, W)$. So f is \mathbb{C} -differentiable at \vec{p} if and only if f is \mathbb{R} -differentiable at \vec{p} and $Df(\vec{p})$ is \mathbb{C} -linear.

Now, let $V = W = \mathbb{R}^2 \simeq \mathbb{C}$. Then $Df \begin{pmatrix} u \\ v \end{pmatrix} = \begin{bmatrix} D_1 u & D_2 v \\ D_1 v & D_2 v \end{bmatrix}$. Multiplying by $\alpha + i\beta$ is equivalent with multiplying by $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$.

f is \mathbb{C} -differentiable at $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \Leftrightarrow f$ is \mathbb{R} -differentiable and the CR equations hold.

If f is \mathbb{C} -differentiable at \vec{p} , let $f'_{\mathbb{C}}(z_0) = (D_1 u + i D_1 v)(z_0)$. So we have the C-affine approximation $f(z) \approx f(z_0) + f'_{\mathbb{C}}(z_0)(z-z_0)$.

Exer: For $f: A^{\text{osso}\mathbb{C}} \to \mathbb{C}$, we have f \mathbb{C} -differentiable at $z_0 \in A$ iff $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists (is finite). In this case, we call that limit $f'_{\mathbb{C}}(z_0)$.

Thm: For $f=u+iv:A^{\operatorname{osso}\mathbb{C}}\to\mathbb{C}$, the following are equivalent: 1) f is C^1 (in the real sense) and fdz is closed.

- 2) $u, v \in C^1(A, \mathbb{R})$ satisfies the CR equations.
- 3) f is \mathbb{C} -differentiable at each point of A and $f'_{\mathbb{C}}: A \to \mathbb{C}$ is continuous.

Defn: If the above holds, we say f is holomorphic (or analytic, complex-analytic) on A.

Cauchy's Integral Theorem (v.1)

Given $A^{\text{osso}\mathbb{C}}$ diffeomorphic to a convex set, f holomorphic on A, $\alpha:[a,b]\to A$ piecewise C^1 , and $\alpha(a) = \alpha(b)$, then $\int_{Y_{\alpha}} f dz = 0$.

Proof: Hyp $\stackrel{J.8}{\Rightarrow} fdz$ exact $\stackrel{J.1}{\Rightarrow} \int_{Y_0} f dz = 0$. \square

Ex: Some holomorphic functions:

- (1) f(z) = C (for constant C).
- (2) f(z) = z = x + iy.
- (3) $f(z) = z^{-1} = \frac{x}{x^2 + y^2} i \frac{y}{x^2 + y^2}$.
- (4) $f(z) = \log_X(z) = \log|z| + i\theta_X(z)$. Note that the inverse of \log_X is $\exp: x + iy \mapsto \cos y + ie^x \sin y$, and does not depend on X.
- (5) $f(z) = e^z$ (verify using method 1 or method 2).

Ex: Some not holomorphic functions:

- (1) $f(z) = \overline{z}$.
- (2) $f(z) = \operatorname{Re}(z)$.
- (3) f(z) = Im(z).

Thm: If f, g holomorphic, then the following are holomorphic wherever defined:

- (a) f+g
- (b) f-g
- (c) fg
- (d) f/g
- (e) $f \circ g$

Proof: Method 1

Alternative methods: (a)(b) using CR equations, and (e) using the fact that the \mathbb{R} -affine approximation for $f \circ g$ is the composition of the corresponding R-affine approximations. If these are, in fact, C-affine,

then so is the first one.

Cor: From (e), g holomorphic $\Rightarrow 1/g$ holomorphic where defined.

Lemma: $f(z)=z^2=(x^2-y^2)+i2xy$ is holomorphic. Proof: Use CR equations. **Cor:** f,g holomorphic $\Rightarrow fg=\frac{(f+g)^2-(f-g)^2}{2}$ holomorphic.

Cor: f,g holomorphic $\Rightarrow f/g$ holomorphic where defined.