Soluzione di Fully Fuzzy Linear Systems

Gambuti G.P., Di Nuzzi P., Libardi M., Russo A.

Cos'e' la logica Fuzzy?

La **logica fuzzy** (o logica sfumata) e' una logica in cui si puo' attribuire a ciascuna proposizione un grado di verita' diverso da 0 e 1 e compreso tra di loro. E' una logica polivalente, ossia un'estensione della logica booleana. E' legata alla teoria degli insiemi sfocati.

Con grado di verita' o valore di appartenenza si intende quanto e' vera una proprieta', che puo' essere, oltre che vera (= a valore 1) o falsa (= a valore 0) come nella logica classica, anche parzialmente vera e parzialmente falsa.

Logica Fuzzy

Nella logica classica, un caso puo' avere due valori, Vero o Falso;

Nella logica fuzzy invece i valori possono essere **Vero**, **Falso oppure un valore intermedio tra i due**.

I connettivi che si usano nella logica fuzzy sono i seguenti:

- AND \(\)
- OR ∨
- NOT ¬
- IF-THEN \Rightarrow
- IF-AND-ONLY-IF ⇔

Connettivi logica Fuzzy

Il risultato dei connettivi logici Fuzzy e' descritto dalle tabelle di verita':

р	q	p AND q	p OR q	p IF-THEN q	p IF-AND-ONLY-IF q
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	0	1
1	1	1	1	0	0

Numeri Fuzzy

Un numero fuzzy e' la generalizzazione di un numero reale, nel senso che non riferisce un preciso valore ma un range di possibili valori. un qualsiasi numero fuzzy, \tilde{A} = (p, q, r), ha determinate proprieta' e operazioni possibili.

Operazioni aritmetiche sui numeri Fuzzy triang.

$$\textit{Molt. per uno scalare: } \lambda \otimes \tilde{A} = \lambda \otimes (p,q,r) = \begin{cases} (\lambda p, \lambda q, \lambda r) \ se \ \lambda \geq 0 \\ (-\lambda p, -\lambda q, -\lambda r) \ se \ \lambda < 0 \end{cases}$$

Sistemi lineari e FFLS

Le equazioni lineari vengono utilizzate per descrivere molte tra le relazioni e progressi nel mondo reale, come ad esempio:

- predire profitti (e altre applicazioni in economia)
- calcolare la velocita' di una reazione, in chimica
- molti problemi di Fisica, come ad esempio il moto di un proiettile
- ecc.

In particolare, un sistema lineare dove gli elementi della matrice dei coefficienti e quelli del vettore dei termini noti sono numeri fuzzi, si definisce Fully Fuzzy Linear System (FFLS)

Metodi di risoluzione

Per risolvere il sistema abbiamo due metodi:

- Utilizzando l'eliminazione di Gauss Jordan, dopo aver ridotto il sistema in matrici.
 K. Abdul Razak S. Muruganandam and K.Rajakumar. "Solving fully fuzzy linear systems by Gauss Jordan Elimination Method". In: Journal of Physics: Conference Series 1362 (2019) 012087 ()
- utilizzando il metodo della ST Decompopsition.
 A.Karpagam V.Vijayalakshmi S. Surabhi. "Fully Fuzzy Linear Systems in Python Programming". In: International Journal of Engineering and Advanced Technology (IJEAT) (2020)

noi utilizzeremo il primo metodo, dato che lo conosciamo gia' dalle precedenti lezioni, applicato ai sistemi di equazioni lineari.

 \rightarrow Esaminiamo meglio il metodo con un esempio:

4. Numerical Example

Consider the following FFLS (taken from [5]) and solve it by proposed method.

 $(6, 1, 4) \otimes (x_1, y_1, z_1) \oplus (5, 2, 2) \otimes (x_2, y_2, z_2) \oplus (3, 2, 1) \otimes (x_3, y_3, z_3) = (58, 30, 60)$

 $(12, 8, 20) \otimes (x_1, y_1, z_1) \oplus (14, 12, 15) \otimes (x_2, y_2, z_2) \oplus (8, 8, 10) \otimes (x_3, y_3, z_3) = (142, 139, 257)$

 $(24, 10, 34) \otimes (x_1, y_1, z_1) \oplus (32, 30, 30) \otimes (x_2, y_2, z_2) \oplus (20, 19, 24) \otimes (x_3, y_3, z_3) = (316, 297, 514)$ Solution

The given FFLS may be written as

$$\begin{pmatrix} (6,1,4) & (5,2,2) & (3,2,1) \\ (12,8,20) & (14,12,15) & (8,8,10) \\ (24,10,34) & (32,30,30) & (20,19,24) \end{pmatrix} \begin{pmatrix} (x_1,y_1,z_1) \\ (x_2,y_3,z_2) \\ (x_3,y_3,z_3) \end{pmatrix} = \begin{pmatrix} (58,30,60) \\ (142,139,257) \\ (316,297,514) \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 5 & 3 \\ 12 & 14 & 8 \\ 24 & 32 & 20 \end{pmatrix}, \, M = \begin{pmatrix} 1 & 2 & 2 \\ 8 & 12 & 8 \\ 10 & 30 & 19 \end{pmatrix}, \, N = \begin{pmatrix} 4 & 2 & 1 \\ 20 & 15 & 10 \\ 34 & 30 & 24 \end{pmatrix}$$

$$b = \begin{pmatrix} 58\\142\\316 \end{pmatrix}, h = \begin{pmatrix} 30\\139\\297 \end{pmatrix}, g = \begin{pmatrix} 60\\257\\514 \end{pmatrix}$$

The augmented matrix

$$(A, b) = \begin{pmatrix} 6 & 5 & 3 & 58 \\ 12 & 14 & 8 & 142 \\ 24 & 32 & 20 & 316 \end{pmatrix}$$

Applying elementary row operations on matrix (A, b)

First
$$R_1 \to \frac{R_1}{6}$$
, we get
$$\begin{bmatrix} 1 & \frac{5}{6} & \frac{3}{6} & \frac{58}{6} \\ 12 & 14 & 8 & 142 \\ 24 & 32 & 20 & 316 \end{bmatrix}$$

Again we apply elementary operations in sequence

$$R_2 \rightarrow R_2 - 12 R_1, R_3 \rightarrow R_3 - 24 R_1, R_2 \rightarrow \frac{R_2}{4}, R_3 \rightarrow R_3 - 12 R_2,$$

$$R_3 \rightarrow \frac{R_3}{2}, R_2 \rightarrow R_2 - \frac{1}{2}R_3, R_1 \rightarrow R_1 - \frac{5}{6}R_2, R_1 \rightarrow R_1 - \frac{1}{2}R_3$$

ly, we get
$$\begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

From this row reduced form of augmented Matrix (A, b),

we have $x_1 = 4$, $x_2 = 5$, $x_3 = 3$.

The augmented matrix

$$(A, h - Mx) = \begin{pmatrix} 6 & 5 & 3 & 10 \\ 12 & 14 & 8 & 23 \\ 24 & 32 & 20 & 50 \end{pmatrix}$$

Similarly, applying elementary row operations on Matrix (A, h - Mx) in sequence

$$R_1 \rightarrow \frac{R_1}{4}$$
, $R_2 \rightarrow R_2 - 12$ R_1 , $R_3 \rightarrow R_3 - 24$ R_1 , $R_2 \rightarrow \frac{R_2}{4}$, $R_3 \rightarrow R_3 - 12$ R_2 ,

$$R_3 \rightarrow \frac{R_3}{2} \,,\, R_2 \rightarrow R_2 \, \cdot \, \frac{R_3}{2} \,,\, R_1 \rightarrow R_1 \, \cdot \, \frac{5}{6} \,\, R_2 \,,\, R_1 \rightarrow R_1 \, \cdot \, \frac{R_3}{2}$$

Finally, we get
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix}$$

From this row reduced form of augmented matrix (A, h - Mx),

we have
$$y_1 = 1, y_2 = \frac{1}{2}, y_3 = \frac{1}{2}$$
.

Similarly, applying elementary row operations on augmented matrix

$$A, g - Nx) = \begin{pmatrix} 6 & 5 & 3 & 31 \\ 12 & 14 & 8 & 72 \\ 24 & 32 & 20 & 156 \end{pmatrix}$$

Finally, we get
$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

From this row reduced form of augmented matrix (A, g - Nx),

we have $z_1 = 3$, $z_2 = 2$, $z_3 = 1$.

Substituting the values of x_i , y_i , z_i where i = 1, 2, ..., n in the FFLS solution

 $\tilde{\mathbf{x}}_{i} = (x_{i}, y_{i}, z_{i}), \text{ for all } i = 1, 2, ..., n$

$$\tilde{\mathbf{x}}_{1} = (\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}) = (4, 1, 3)$$

$$\tilde{\mathbf{x}}_2 = (\mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2) = (5, 1/2, 2)$$

and $\tilde{\mathbf{x}}_2 = (\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_2) = (3, 1/2, 1)$

We have the same solution with this method as the system given in [5].

Bibliografia

- S. Muruganandam, K. Abdul Razak and K.Rajakumar. "Solving fully fuzzy linear systems by Gauss Jordan Elimination Method". In: Journal of Physics: Conference Series 1362 (2019) 012087 ().
- V.Vijayalakshmi S. Surabhi, A.Karpagam. "Fully Fuzzy Linear Systems in Python Programming". In: International Journal of Engineering and Advanced Technology (IJEAT) (2020).

Gambuti G.P., Di Nuzzi P., Libardi M., Russo A.