

B2 - Analytische Geometrie

1.1 Koordinaten angeben

1. Schritt: Koordinaten von B und D angeben

2. Schritt: z_{D_1} berechnen

Das Gefälle der Kante D_1A_1 gegnüber der x-y-Ebene beträgt 1,5%. und das Dreieck D_1DA_1 besitzt einen rechten Winkel bei D.

Ein Gefälle von 1,5% bedeutet eine vertikale Differenz von 1,5 LE auf einer horizontalen Strecke der Länge 100 LE. Die Strecke $\overline{DA_1}$ besitzt eine Länge von 12 LE, somit muss die vertikale Differenz hier 0,18 LE betragen, da pro Längeneinheit ein Gefälle von 0,015 LE in vertikale Richtung erfolgt. Es folgt damit für D_1 :

$$D_1(6 \mid 0 \mid 0, 18)$$

1.2 Lage der Oberfläche zeigen

Die Oberfläche ist eben und wird von den vier Eckpunkten A_1, B_1, C_1 und D_1 begrenzt. Mit Hilfe von Punktproben zeigen, dass die vier Eckpunkte in der Ebene liegen:

1. Schritt: A_1 einsetzen

$$T: 3x + 3y + 200z = 54$$

$$3 \cdot 6 + 3 \cdot 12 + 200 \cdot 0 = 54$$

$$18+36 = 54$$

$$54 = 54$$

 A_1 liegt in T.

2. Schritt: B_1 einsetzen:

$$T: 3x + 3y + 200z = 54$$

$$3 \cdot 0 + 3 \cdot 12 + 200 \cdot 0,09 = 54$$

$$36 + 18 = 54$$

$$54 = 54$$

 B_1 liegt in T.

3. Schritt: C_1 einsetzen:

$$T: 3x + 3y + 200z = 54$$

$$3 \cdot 0 + 3 \cdot 0 + 200 \cdot 0,27 = 54$$

$$54 = 54$$

 ${\it C}_1$ liegt in ${\it T}.$

4. Schritt: D_1 einsetzen:

$$T: 3x + 3y + 200z = 54$$

$$3 \cdot 6 + 3 \cdot 0 + 200 \cdot 0, 18 = 54$$

$$18 + 36 = 54$$

$$54 = 54$$

 D_1 liegt ebenfalls in T. Somit liegt die komplette Oberfläche der Terasse in T.

1.3 Ein Normalenvektor der $x ext{-}y ext{-}$ Ebene ist $\overrightarrow{n}_1=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Einen Normalenvektor von T wird aus der Ebenengleichung abgelesen: $\overrightarrow{n}_2 = \begin{pmatrix} 3 \\ 3 \\ 200 \end{pmatrix}$.

Es folgt für den Schnittwinkel der Ebenen:

$$\cos(lpha) = rac{\left|\overrightarrow{n}_1 \circ \overrightarrow{n}_2
ight|}{\left|\overrightarrow{n}_1\right| \cdot \left|\overrightarrow{n}_2\right|}$$

$$\cos(\alpha) = \frac{\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \circ \begin{pmatrix} 3 \\ 3 \\ 200 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 3 \\ 3 \\ 200 \end{vmatrix}}$$

$$\cos(\alpha) = \frac{200}{1 \cdot \sqrt{3^2 + 3^2 + 200^2}}$$

Mithilfe des Tangens wird aus diesem die Prozentangabe des Gefälles bestimmt:

$$\tan(\alpha) \approx 0,0212 = 2,12\% > 2\%$$

 $\alpha \approx 1,215^{\circ}$

Damit ist die Bedingung erfüllt.

2.1 Bohrungspunkt bestimmen

Der Punkt G, in dem gebohrt werden soll, liegt in der Terrassenoberfläche, also in der Ebene T und vertikal unter dem Punkt P_1 , das heißt er besitzt die gleiche x- und y-Koordinate wie dieser. Einsetzen der x- und y-Koordinaten von $P_1(3 \mid 1 \mid 2, 4)$ in die Ebenengleichung von T und auflösen nach z liefert:

$$T: 3x + 3y + 200z = 54$$
 $3 \cdot 3 + 3 \cdot 1 + 200z = 54$
 $12 + 200z = 54$
 $|-12|$
 $200z = 42$
 $|: 200|$
 $| 200z = 20|$

Somit ergeben sich die Koordinaten $G(3 \mid 1 \mid 0, 21)$.

2.2 Koordinaten des Verankerungspunkts untersuchen

Die Hauswand liegt in der y-z-Ebene. Ein Normalenvektor dieser ist $\overrightarrow{n}=egin{pmatrix}1\\0\\0\end{pmatrix}$.

Als Richtungsvektor der Geraden kann $\overrightarrow{P_1S_1}$ verwendet werden. Da S_1 vertikal über dem Punkt H_1 liegt hat S_1 die gleichen x- und y-Koordinaten wie dieser: $S_1(0\mid 1\mid z_{S_1})$.

Für den Richtungsvektor folgt damit:

$$\overrightarrow{r}=egin{pmatrix} -3 \ 0 \ z_{S_1}-2,4 \end{pmatrix}$$

Einsetzen und nach z_{S_1} umformen liefert:

$$\sin(60^{\circ}) = \frac{\left|\overrightarrow{n} \circ \overrightarrow{r}\right|}{\left|\overrightarrow{n}\right| \cdot \left|\overrightarrow{r}\right|}$$

$$\sin(60^{\circ}) = \frac{\left|\begin{pmatrix} 1\\0\\0 \end{pmatrix} \circ \begin{pmatrix} -3\\0\\z_{S_{1}} - 2, 4 \end{pmatrix}\right|}{\left|\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right| \cdot \left|\begin{pmatrix} -3\\0\\z_{S_{1}} - 2, 4 \end{pmatrix}\right|}$$

$$\sin(60^{\circ}) = \frac{3}{1 \cdot \sqrt{(-3)^{2} + 0^{2} + (z_{S_{1}} - 2, 4)^{2}}}$$

$$\sin(60^{\circ}) = \frac{3}{\sqrt{9 + (z_{S_{1}} - 2, 4)^{2}}} \qquad | \cdot \frac{\sqrt{9 + (z_{S_{1}} - 2, 4)^{2}}}{\sin(60^{\circ})}$$

$$\sqrt{9 + (z_{S_{1}} - 2, 4)^{2}} = \frac{3}{\sin(60^{\circ})}$$

$$9 + (z_{S_{1}} - 2, 4)^{2} = \frac{9}{(\sin(60^{\circ}))^{2}}$$

$$9 + z_{S_{1}}^{2} - 4, 8z_{S_{1}} + 5, 76 = \frac{9}{(\sin(60^{\circ}))^{2}}$$

$$| -\frac{9}{(\sin(60^{\circ}))^{2}}$$

$$z_{S_{1}}^{2} - 4, 8z_{S_{1}} + 14, 76 - \frac{9}{(\sin(60^{\circ}))^{2}} = 0$$

Mithilfe der *pq*-Formel folgt:

$$egin{array}{lll} z_{1/2} &=& -rac{-4,8}{2} \pm \sqrt{\left(rac{-4,8}{2}
ight)^2 - \left(14,76 - rac{9}{\left(\sin(60^\circ)
ight)^2}
ight)} \ &=& 2,4 \pm \sqrt{5,76 - 14,76 + rac{9}{\left(\sin(60^\circ)
ight)^2}} \ &=& 2,4 \pm \sqrt{-9 + rac{9}{\left(\sin(60^\circ)
ight)^2}} \ &=& 2,4 \pm \sqrt{3} \ z_1 &pprox & 4,132 \ z_2 &pprox & 0,67 \ \end{array}$$

Die z-Koordinate von S_1 muss größer sein als die von H_1 , da S_1 vertikal über H_1 liegt. z_1 ist somit die für den Sachverhalt richtige Lösung.

Es gilt: $S_1(0 \mid 1 \mid 4, 132)$.

Abbildungsmatrix bestimmen

Bei einer Projektion aller Punkte auf T_1 , die parallel zur z-Achse durchgeführt wird, bleiben die x- und y-Koordinaten der Punkte erhalten, es ändern sich nur die z-Koordinaten so, dass die Punkte in T_1 liegen.

1. Schritt: Ebenengleichung von T_1 aufstellen

 T_1 liegt parallel zu T und besitzt somit den gleichen Normalenvektor. Einsetzen der Koordinaten von C für die Bestimmung der rechten Seite von T_1 liefert:

$$3 \cdot 0 + 3 \cdot 0 + 200 \cdot 0 = 0$$

Die Ebenengleichung lautet $T_1: 3x + 3y + 200z = 0$.

2. Schritt: Projektionsgleichung aufstellen

Es soll $M \cdot \overrightarrow{p} = \overrightarrow{p}'$ gelten, das heißt:

$$M \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

Wie oben beschrieben gilt x'=x und y'=y. Auflösen der Ebenengleichung von T_1 nach z' liefert:

$$T_1: 3x' + 3y'; +200z' = 0$$
 $|-3x - 3y|$ $|-3x - 3y|$

Durch Einsetzen in die Projektionsgleichung folgt:

$$M \cdot egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} x \ y \ -0,015x-0,015y \end{pmatrix}$$

3. Schritt: Einträge der Matrix bestimmen

Die x- bzw. y-Werte sollen jeweils auf sich selbst abgebildet werden, somit folgt für die ersten beiden Zeilen von M:

$$M=egin{pmatrix}1&0&0\0&1&0\a&b&c\end{pmatrix}$$

Die letzte Zeile muss $egin{pmatrix} x \\ y \\ z \end{pmatrix}$ auf -0,015x-0,015y abbilden. Ausmultiplizieren liefert:

$$a\cdot x + b\cdot y + c\cdot z = -0,015x-0,015y$$

Durch Koeffizientenvergleich folgt a=-0,015, b=-0,015 und c=0. M ist damit gegeben durch:

$$M = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ -0,015 & -0,015 & 0 \end{pmatrix}$$

3.2 Abbildung darstellen

Die im Aufgabenteil zuvor bestimmte Abbildungsmatrix M wird nun verwendet, um die gesuchte Abbildung der Form $\overrightarrow{x}' = M \cdot \overrightarrow{x} + \overrightarrow{k}$ zu benennen.

Da die Ebene T parallel zur Ebene T_1 steht, müssen die Punkte nach der Abbildung auf die Ebene T_1 nur noch mit Hilfe des Vektors k verschoben werden. Da T_1 und T die gleichen x- und y-Werte besitzen, findet diese Verschiebung entlang der z-Achse statt.

Da der Punkt C in T_1 vertikal unter dem Punkt C_1 der Ebene T liegt, folgt durch Vergleich der Koordinaten der beiden Punkte und der Parallelität der Ebenen, dass T aus T_1 durch eine Verschiebung um 0,27 LE in z-Richtung entsteht. Insgesamt ergibt sich damit folgende Gleichung:

$$\overrightarrow{x}' = M \cdot \overrightarrow{x} + egin{pmatrix} 0 \ 0 \ 0,27 \end{pmatrix}$$