Abel Doñate Muñoz abel.donate@estudiantat.upc.edu

Contents

1	Elec	Electrostática 2			
	1.1	Triángulo eléctrico	2		
	1.2	Dipolos	2		
		1.2.1 Puntual	2		
		1.2.2 Lineal	2		
	1.3	Conductores	2		
	1.4	Método de las cargas imagen	2		
2	Die	léctricos y medios polarizados	3		
3	Med	edios polarizados 3			
	3.1	Dieléctricos lineales	3		
4	Can	mpo de desplazamiento \overline{D}	3		
	4.1	Condensadores	4		
5	Mag	gnetostática	4		
6	Cor	riente	4		
	6.1	Currents of free and bound charges	4		
	6.2	Ohm's law	4		
	6.3	Laws for magnetism and current	4		
	6.4	Analogy Electric and Magnetic circuits	5		

1 Electrostática

1.1 Triángulo eléctrico

Podemos relacionar las variables eléctricas E, V, ρ con las siguientes fórmulas

$$\begin{cases} \nabla \cdot E = \frac{\rho}{\varepsilon_0} \\ E = -\nabla V \\ \nabla^2 V = -\frac{\rho}{\varepsilon_0} \end{cases} \implies \begin{cases} E = \frac{1}{4\pi\varepsilon_0} \int \frac{\hat{r}}{r^2} \rho d\tau \\ V = -\int E dr \\ V = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho}{r} d\tau \end{cases}$$

1.2 Dipolos

1.2.1 Puntual

Un dipolo puntual consta de dos cargas iguales y opuestas. Por simplicidad las ponemos en el eje z a una distancia de $\pm \frac{d}{2}$ del origen. Definimos $\overline{p} = q\overline{d}$ como el momento dipolar. Calculando el potencial y el campo en el punto \overline{r}

$$V = \frac{q}{4\pi\varepsilon_0}(\frac{1}{r_+} - \frac{1}{r_-}) \approx \frac{\overline{p} \cdot \overline{r}}{4\pi\varepsilon_0} \implies \overline{E} = \frac{3\overline{p} \cdot \overline{r}}{4\pi\varepsilon_0} \frac{\overline{r}}{r^5} - \frac{\overline{p}}{4\pi\varepsilon_0 r^3}$$

donde la aproximación es válida para $r\gg d$

1.2.2 Lineal

Un dipolo lineal consta de dos barras con carga uniforme y opuesta. Por simplicidad ponemos las barras a distancia $\frac{d}{2}$ del origen paralelas al eje z. Definimos $\overline{\overline{\mathcal{P}} = \lambda \overline{d}}$. Calculamos el potencial y el campo en el punto \overline{r}

$$V = \frac{\lambda}{2\pi\varepsilon_0} \ln(\frac{s_-}{s_+}) \approx \frac{\overline{\mathcal{P}} \cdot \overline{s}}{2\pi\varepsilon_0 s^2} \implies \overline{E} = \frac{1}{2\pi\varepsilon_0} \left(\frac{2\overline{\mathcal{P}} \cdot \overline{s}}{s^4} \overline{s} - \frac{\overline{\mathcal{P}}}{s^2} \right)$$

1.3 Conductores

Theorem. Propiedad electrostática de los conductores. Dentro de un conductor se cumple $\overline{E} = 0$

Theorem. Teorema de unicidad. Si se conoce V el una superficie que encierra una región y la distribución de cargas, entonces la ecuación de Laplace $\nabla^2 V = 0$ dentro de la región tiene una única solución

1.4 Método de las cargas imagen

Bloque conductor

Tenemos una configuración con una carga q en la posición $h\hat{z}$ y un bloque conductor en $z \leq 0$. La carga inducirá una distribución de carga σ_f en la superficie del conductor, y entre q y la carga superficial se creará un campo eléctrico \overline{E}

Para resolver este problema aprovechamos el teorema de unicidad y planteamos una situación equivalente donde tenemos la carga q en $h\hat{z}$ y una carga ficticia -q en $-h\hat{z}$. Observamos que:

1. El potencial en el plano z=0 y en el infinito es el mismo en ambos problemas

2. La distribución de cargas en $z \geq 0$ es la misma en ambos problemas

Por tanto por el teorema de unicidad el potencial es el mismo en $z \ge 0$ en ambos problemas. Calcularemos \overline{E} con la ley de Coulomb y la σ_f con el Teorema de Gauss en $z = 0 \implies \sigma f = \varepsilon_0 E_0$.

Esfera conductora

Si tenemos una esfera conductora bajo un campo eléctrico uniforme $E_0\hat{z}$ la imagen será un dipolo puntual \bar{p}_{IM} paralelo al campo tal que genere el mismo potencial en todos los puntos de la superficie de la esfera.

Cilindro conductor

Si tenemos un cilindro conductor bajo un campo eléctrico uniforme $E_0\hat{z}$ perpendicular al eje del cilindro, la imagen será un dipolo lineal $\overline{\mathcal{P}}_{IM}$ paralelo al campo tal que genere el mismo potencial en todos los puntos de la superficie del cilindro.

2 Dieléctricos y medios polarizados

3 Medios polarizados

Definimos el momento dipolar por unidad de volumen $\overline{P} = \frac{\sum \overline{p_i}}{d\tau}$

En un medio polarizado con \overline{P} se tienen dos densidades de carga que generan un potencial:

$$\begin{cases} \rho_b = -\nabla \cdot P \\ \sigma_b = P \cdot \hat{n} \end{cases} \implies V(r) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho_b}{|r' - r|} d\tau + \frac{1}{4\pi\varepsilon_0} \int_S \frac{\sigma_b}{|r' - r|} da$$

3.1 Dieléctricos lineales

En un dieléctrico lineal se cumple $P = \varepsilon_0 \chi E_{tot} = \varepsilon_0 \chi (E_{ext} + E_{dep})$ donde E_{ext} es el campo externo dado y E_{dep} el campo creado por P (sentido contrario a P).

Cuando aplicamos un campo E_{ext} al dieléctrico lineal se crea un momento dipolar \overline{P} que crea una distrbución de carga σ_b, ρ_b . Esta distribución de carga crea un campo opuesto a \overline{P} .

Dependiendo de la geometría del dieléctrico definimos γ tal que

$$E_{dep} = -\gamma \frac{\overline{P}}{\varepsilon_0} \implies \left[\overline{P} = \frac{\chi}{1 + \chi \gamma} \varepsilon_0 E_{ext} \right]$$

4 Campo de desplazamiento \overline{D}

Si ahora tenemos en cuenta las cargas libres en un dieléctrico, podemos definir el campo de desplazamiento como

$$\boxed{\overline{D} = \varepsilon_0 \overline{E} + \overline{P}} \implies \begin{cases} \nabla \cdot D = \rho_f \\ \nabla \times D = \nabla \times P \end{cases}$$

En un dieléctrico lineal tenemos

$$\overline{D} = \chi \varepsilon_0 \overline{E} \implies \boxed{D = \varepsilon_r \varepsilon_0 \overline{E}} \text{con } \varepsilon_r = 1 + \chi$$

3

4.1 Condensadores

5 Magnetostática

Podemos establecer la siguiente analogía con el campo eléctrico

Campo eléctrico

Campo magnético

$$\overline{F_e} = q\overline{E}$$

$$\overline{p} = q\overline{d}$$

$$\overline{\Gamma} = \overline{p} \times \overline{E}$$

$$U = -\overline{p} \cdot \overline{E}$$

$$\overline{P} = \frac{\sum \overline{p}}{d\tau}$$

$$\rho_b = -\nabla \cdot \overline{P}, \ \sigma_b = \overline{P} \cdot \hat{n}$$

$$\overline{P} = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho_b}{|r' - r|} d\tau + \frac{1}{4\pi\varepsilon_0} \int_S \frac{\sigma_b}{|r' - r|} da$$

$$\overline{E} = -\nabla V$$

$$\overline{D} = \varepsilon_0 \overline{E} + \overline{P}$$

$$\overline{E}_{dep} = -\gamma \overline{M}$$

$$\overline{F_m} = q_m \overline{B}$$

$$\overline{m} = q_m \overline{d}$$

$$\overline{U} = -\overline{m} \times \overline{B}$$

$$U = -\overline{m} \cdot \overline{B}$$

$$U = -\overline{m} \cdot \overline{B}$$

$$\overline{M} = \frac{\sum \overline{m}}{d\tau}$$

$$\rho_m = -\nabla \cdot \overline{M}, \ \sigma_m = \overline{M} \cdot \hat{n}$$

$$\Xi(r) = \frac{1}{4\pi} \int_V \frac{\rho_m}{|r' - r|} d\tau + \frac{1}{4\pi} \int_S \frac{\sigma_m}{|r' - r|} da$$

$$\overline{H}_{dep} = -\gamma \overline{M}$$

6 Corriente

We begin with the definitions of Current density \overline{J} , average or drift velocity $\langle v \rangle = \overline{v}_{drift}$

$$\overline{J} = -e \frac{\sum \overline{v_1}}{d\tau} = -e n \overline{v}_{drift} \qquad v_{drift} = \frac{\sum \overline{v}_i}{\delta N} \qquad \text{con } n = \frac{dN}{d\tau}$$

4

Theorem (Continuity equation). $\nabla \cdot JJ + \frac{\partial \rho}{\partial t} = 0$

6.1 Currents of free and bound charges

$$J = J_f + J_b$$
 with $\nabla \cdot J_i + \partial_t \rho_f = 0$

Note that in steady conditions $J_b=0 \implies \nabla \cdot J_f=0 \implies J_{f,1} \cdot \hat{n}=J_{f,2} \cdot \hat{n}$

We found for the bound charge $J_b = \frac{\partial P}{\partial t}$

6.2 Ohm's law

$$J_f = gE \implies \Delta V = IR \text{ con } G = R^{-1} = \frac{gA}{I}$$

6.3 Laws for magnetism and current

Biot-Savart Law
$$B(r) = \frac{\mu_0}{4\pi} \int I d\bar{l} \times \frac{\overline{r} - \overline{r'}}{|\overline{r} - \overline{r'}|^3}$$

Ampere's Law
$$\nabla imes \overline{B} = \mu_0 \overline{J} \iff \oint \overline{B} \cdot d\overline{l} = \mu_0 I$$

6.4 Analogy Electric and Magnetic circuits

Electric Circuit	Magnetic Circuits
$\mathcal{E} = \int \overline{E} \cdot d\overline{l}$	$\mathcal{M}=\int \overline{H}\cdot dar{l}$
$\mathcal{E} = -\frac{d\Phi}{dt}$	$\int Generated by coil \mathcal{M} = NI$
$\mathcal{C} = -\frac{1}{dt}$	Generated by magnet $\mathcal{M} = ML$
$I = \iint_{S} \overline{J} \cdot d\overline{a}, I = JA$	$\Phi = \iint \overline{B}_i \cdot d\overline{a} \Phi = BA$
J = gE	$B = \mu_0 \mu_r H$
$\mathcal{E} = RI$	$\mathcal{M}=R\Phi$
$R = \frac{l}{gA}$	$R = \frac{l}{\mu_0 \mu_r A}$