UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

7___

 语言模型
 问答系统
 文本生成
 BERT

 语义解析
 GPT-3

 知识推理
 模型蒸馏

transformer 注列

注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复[添砖加瓦]

Retrieval-augmented language models

CS 685, Fall 2020

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

Bob went to the <MASK>
to get a buzz cut

BERT
(teacher):
24 layer
Transformer

barbershop: 54%
barber: 20%
salon: 6%
stylist: 4%
...

World knowledge is *implicitly* encoded in BERT's parameters! (e.g., that barbershops are places to get buzz cuts)

In these language models, the learned world knowledge is stored *implicitly* in the parameters of the underlying neural network. This makes it difficult to determine what knowledge is stored in the network and where. Furthermore, storage space is limited by the size of the network—to capture more world knowledge, one must train ever-larger networks, which can be prohibitively slow or expensive.

One option: condition predictions on explicit *knowledge graphs*

Pros / cons

- Explicit graph structure makes KGs easy to navigate
- Knowledge graphs are expensive to produce at scale
- Automatic knowledge graph induction is an open research problem
- Knowledge graphs struggle to encode complex relations between entities

Another source of knowledge: unstructured text!

- Readily available at scale, requires no processing
- We have powerful methods of encoding semantics (e.g., BERT)
- However, these methods don't really work with larger units of text (e.g., books)
- Extracting relevant information from unstructured text is more difficult than it is with KGs

Unlabeled text, from pre-training corpus (\mathcal{X}) The [MASK] at the top of the pyramid (x)

REALM decomposes $p(y \mid x)$ into two steps: retrieve, then predict. Given an input x, we first retrieve possibly helpful documents z from a knowledge corpus \mathcal{Z} . We model this as a sample from the distribution $p(z \mid x)$. Then, we condition on both the retrieved z and the original input x to generate the output y—modeled as $p(y \mid z, x)$. To obtain the overall likelihood of generating y, we treat z as a latent variable and marginalize over all possible documents z, yielding

$$p(y \mid x) = \sum_{z \in \mathcal{Z}} p(y \mid z, x) p(z \mid x)$$

REALM decomposes $p(y \mid x)$ into two steps: retrieve, then predict. Given an input x, we first retrieve possibly helpful documents z from a knowledge corpus \mathcal{Z} . We model this as a sample from the distribution $p(z \mid x)$. Then, we condition on both the retrieved z and the original input x to generate the output y—modeled as $p(y \mid z, x)$. To obtain the overall likelihood of generating y, we treat z as a latent variable and marginalize over all possible documents z, yielding

Knowledge Retriever The retriever is defined using a dense inner product model:

$$\begin{split} p(z \,|\, x) &= \frac{\exp f(x,z)}{\sum_{z'} \exp f(x,z')}, \\ f(x,z) &= \texttt{Embed}_{\texttt{input}}(x)^{\top} \texttt{Embed}_{\texttt{doc}}(z), \end{split}$$

where $\operatorname{Embed_{input}}$ and $\operatorname{Embed_{doc}}$ are embedding functions that map x and z respectively to d-dimensional vectors. The relevance score f(x,z) between x and z is defined as the inner product of the vector embeddings. The retrieval distribution is the softmax over all relevance scores.

Embed function is just BERT!

$$\mathtt{join}_{\mathtt{BERT}}(x) = \mathtt{[CLS]}x\mathtt{[SEP]}$$
 $\mathtt{join}_{\mathtt{BERT}}(x_1, x_2) = \mathtt{[CLS]}x_\mathtt{1}\mathtt{[SEP]}x_\mathtt{2}\mathtt{[SEP]}$

$$\begin{split} \texttt{Embed}_{\texttt{input}}(x) &= \mathbf{W}_{\texttt{input}} \texttt{BERT}_{\texttt{CLS}}(\texttt{join}_{\texttt{BERT}}(x)) \\ &\quad \texttt{Embed}_{\texttt{doc}}(z) = \mathbf{W}_{\texttt{doc}} \texttt{BERT}_{\texttt{CLS}}(\texttt{join}_{\texttt{BERT}}(z_{\texttt{title}}, z_{\texttt{body}})) \end{split}$$

Knowledge-Augmented Encoder Given an input x and a retrieved document z, the knowledge-augmented encoder defines p(y | z, x). We join x and z into a single sequence that we feed into a Transformer (distinct from the one used in the retriever).

$$\begin{split} p(y \,|\, z, x) &= \prod_{j=1}^{J_x} p(y_j \,|\, z, x) \\ p(y_j \,|\, z, x) &\propto \exp\left(w_j^\top \texttt{BERT}_{\texttt{MASK}(j)}(\texttt{join}_{\texttt{BERT}}(x, z_{\texttt{body}}))\right) \end{split}$$

where $BERT_{MASK(j)}$ denotes the Transformer output vector corresponding to the j^{th} masked token, J_x is the total number of [MASK] tokens in x, and w_j is a learned word embedding for token y_j .

Isn't training the retriever extremely expensive?

The key computational challenge is that the marginal probability $p(y \mid x) = \sum_{z \in \mathcal{Z}} p(y \mid x, z) \, p(z \mid x)$ involves a summation over all documents z in the knowledge corpus \mathcal{Z} . We approximate this by instead summing over the top k documents with highest probability under $p(z \mid x)$ —this is reasonable if most documents have near zero probability.

Imagine if your knowledge corpus was every article in Wikipedia... this would be super expensive without the approximation

Maximum inner product search (MIPS)

- Algorithms that approximately find the top-k documents
- Scales *sub-linearly* with the number of documents (both time and storage)
 - Shrivastava and Li, 2014 ("Asymmetric LSH...")
- Requires precomputing the BERT embedding of every document in the knowledge corpus and then building an index over the embeddings

Need to refresh the index!

- We are training the parameters of the retriever, i.e.,
 the BERT architecture that produces Embeddoc(z)
- If we precompute all of the embeddings, the search index becomes stale when we update the parameters of the retriever
- REALM solution: asynchronously refresh the index by re-embedding all docs after a few hundred training iterations

Figure 3. REALM pre-training with asynchronous MIPS refreshes.

Other tricks in REALM

- Salient span masking: mask out spans of text corresponding to named entities and dates
- Null document: always include an empty document in the top-k retrieved docs, allowing the model to rely on its implicit knowledge as well

Evaluation on open-domain QA

- Unlike SQuAD-style QA, in open-domain QA we are only given a question, not a supporting document that is guaranteed to contain the answer
- Open-domain QA generally has a large retrieval component, since the answer to any given question could occur anywhere in a large collection of documents

Name	Architectures	Pre-training	NQ (79k/4k)	WQ (3k/2k)	CT (1k /1k)	# params
BERT-Baseline (Lee et al., 2019)	Sparse Retr.+Transformer	BERT	26.5	17.7	21.3	110m
T5 (base) (Roberts et al., 2020) T5 (large) (Roberts et al., 2020) T5 (11b) (Roberts et al., 2020)	Transformer Seq2Seq Transformer Seq2Seq Transformer Seq2Seq	T5 (Multitask) T5 (Multitask) T5 (Multitask)	27.0 29.8 34.5	29.1 32.2 37.4	- - -	223m 738m 11318m
DrQA (Chen et al., 2017) HardEM (Min et al., 2019a) GraphRetriever (Min et al., 2019b) PathRetriever (Asai et al., 2019) ORQA (Lee et al., 2019)	Sparse Retr.+DocReader Sparse Retr.+Transformer GraphRetriever+Transformer PathRetriever+Transformer Dense Retr.+Transformer	N/A BERT BERT MLM ICT+BERT	28.1 31.8 32.6 33.3	20.7 31.6 - 36.4	25.7 - - - 30.1	34m 110m 110m 110m 330m
Ours (\mathcal{X} = Wikipedia, \mathcal{Z} = Wikipedia) Ours (\mathcal{X} = CC-News, \mathcal{Z} = Wikipedia)	Dense Retr.+Transformer Dense Retr.+Transformer	REALM REALM	39.2 40.4	40.2 40.7	46.8 42.9	330m 330m

Table 3. An example where REALM utilizes retrieved documents to better predict masked tokens. It assigns much higher probability (0.129) to the correct term, "Fermat", compared to BERT. (Note that the blank corresponds to 3 BERT wordpieces.)

x:	An equilateral triangle is easily constructed using a straightedge and compass, because 3 is a prime.				
(a) BERT	$p(y = \text{``Fermat''} x) = 1.1 \times 10^{-14}$	(No retrieval.)			
(b) REALM	p(y=``Fermat'' x,z)=1.0	(Conditional probability with document $z = 257$ is a Fermat prime. Thus a regular polygon with 257 sides is constructible with compass")			
(c) REALM	$p(y= ext{``Fermat''} x) = 0.129$	(Marginal probability, marginalizing over top 8 retrieved documents.)			

Can retrieval-augmented LMs improve other tasks?

Test Input x	Generated tokens $\hat{y}_{1:i-1}$	Representation $q = f(x, \hat{y}_{1:i-1})$	Target y_i
J'ai été dans ma propre chambre.	I have		?

Training Translation	Datastore		
$(s^{(n)}, t_{i-1}^{(n)})$	Representation $k_j = f(s^{(n)}, t_{i-1}^{(n)})$	$\begin{array}{c} \textbf{Target} \\ v_j = t_i^{(n)} \end{array}$	
J'ai été à Paris. J'avais été à la maison. J'apprécie l'été. J'ai ma propre chambre. I have			been been summer my
Test Input x	Generated tokens $\hat{y}_{1:i-1}$	Representation $q = f(x, \hat{y}_{1:i-1})$	Target y_i
J'ai été dans ma propre chambre.	I have		?

Training Translation	Datastore				
$(s^{(n)},t_{i-1}^{(n)})$		Representation $k_j = f(s^{(n)}, t_{i-1}^{(n)})$	$\begin{array}{ c c }\hline \textbf{Target}\\ v_j = t_i^{(n)} \\ \end{array}$		$d_j = d(k_j, q)$
J'ai été à Paris. J'avais été à la maison. J'apprécie l'été. J'ai ma propre chambre.	I have I had I enjoy I have		been been summer my	→ →	4 3 100 1
Test Input x	Generated tokens $\hat{y}_{1:i-1}$	Representation $q = f(x, \hat{y}_{1:i-1})$	Target y_i		
J'ai été dans ma propre chambre.	I have		?		

Interpolate between kNN prediction and decoder's actual prediction

Unlike REALM, this approach doesn't require any training! It retrieves the kNNs via L2 distance using a fast kNN library (FAISS)

This is quite expensive!

Computational Cost While kNN-MT does not add trainable model parameters, it does add some computational overhead. The primary cost of building the datastore is a single forward pass over all examples in the datastore, which is a fraction of the cost for training on the same examples for one epoch. During inference, retrieving 64 keys from a datastore containing billions of items results in a generation speed that is two orders of magnitude slower than the base MT system.

But also increases translation quality!

Test set sizes	de-en 2,000	ru-en 2,000	zh-en 2,000	ja-en 993	fi-en 1,996	lt-en 1,000	de-fr 1,701	de-cs 1,997	en-cs 2,000
Base MT +kNN-MT	34.45 35.74	36.42 37.83	24.23 27.51	12.79 13.14	25.92 26.55	29.59 29.98	32.75 33.68	21.15 21.62	22.78 23.76
Datastore Size	5.56B	3.80B	1.19B	360M	318M	168M	4.21B	696M	533M
Test set sizes	en-de 1,997	en-ru 1,997	en-zh 1,997	en-ja 1,000	en-fi 1,997	en-lt 998	fr-de 1,701	cs-de 1,997	Avg.
Test set sizes Base MT +kNN-MT				•					

Can make it faster by using a smaller datastore

UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

7___

 语言模型
 问答系统
 文本生成
 BERT

 语义解析
 GPT-3

 知识推理
 模型蒸馏

transformer 注列

注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复[添砖加瓦]