深度學習 之 と Keras 高級技巧

林澤佑 政治大學應用數學系 博士候選人

Outline

- Sequential Review
- Model (Functional API)
- Final Challenge

Sequential Review

```
In [2]: model = Sequential()
```

 When enter a Keras syntax and execute it, what would you think?

model

In [2]: model = Sequential()

In [3]:

 When enter a Keras syntax and execute it, what would you think?

model

In [2]: model = Sequential()

In [3]: model.add(Dense(3, input_shape=(2,)))

 When enter a Keras syntax and execute it, what would you think?

model


```
In [2]: model = Sequential()
```

In [3]: model.add(Dense(3, input_shape=(2,)))

In [4]: model.summary()

 When enter a Keras syntax and execute it, what would you think?

model

In [2]: model = Sequential()

In [3]: model.add(Dense(3, input_shape=(2,)))

In [4]: model.summary()

In [5]: model.add(Dense(2))

 When enter a Keras syntax and execute it, what would you think?

model

In [2]: model = Sequential()

In [3]: model.add(Dense(3, input_shape=(2,)))

In [4]: model.summary()

In [5]: model.add(Dense(2))

In [6]: model.add(Dense(3))

 When enter a Keras syntax and execute it, what would you think?

model

In [2]: model = Sequential()
In [3]: model.add(Dense(3, input_shape=(2,)))
In [4]: model.summary()
In [5]: model.add(Dense(2))
In [6]: model.add(Dense(3))
In [7]: model.summary()

- How many parameters we have when a layer is added?
 - e.g., Dense, Conv1D, Conv2D, SimpleRNN, LSTM
- To simplify your observation, use simple model w/o hidden layer and set unit = 1, 2 or 3 to see how the # of parameters changed?

- How many parameters we have when a layer is added?
 - e.g., Dense, Conv1D, Conv2D, SimpleRNN, LSTM
- To simplify your observation, use simple model w/o hidden layer and set unit = 1, 2 or 3 to see how the # of parameters changed?

```
In []: model _1 = Sequential()
In []: model_1.add(Dense(2, input_shape=(2, )))
In []: model_1.summary()

In []: model_2 = Sequential()
In []: model_2.add(Dense(3, input_shape=(2, )))
In []: model_2.summary()
```

- How many parameters we have when a layer is added?
 - e.g., Dense, Conv1D, Conv2D, SimpleRNN, LSTM
- To simplify your observation, use simple model w/o hidden layer and set unit = 1, 2 or 3 to see how the # of parameters changed?

```
In []: model _3 = Sequential()
In []: model_3.add(Dense(3, input_shape=(2, )))
In []: model_3.summary()

In []: model_4 = Sequential()
In []: model_4.add(Dense(2, input_shape=(3, )))
In []: model_4.summary()
```

 You must try conv1D and Conv2D to see how they work in your model.

SimpelRNN and LSTM is relative easy to understand.

However, I suggest you to go through it by yourself.

Activation unction doesn't affect the # of parameters.


```
model = Sequential()
model.add(Dense(3, input_shape=(2, )))
model.add(Dense(2))
model.add(Dense(3))
model.add(Activation('sigmoid'))
model.summary()
```

Conclusion

The Sequential model is a linear stack of layers.

 Pros: You can define your network layer-by-layer, you don't need to take care those layers we have already defined.

 Cons: When you want to modified some layers, you need to re-defined EVERYTHING in your model from the very beginning!

Some Black Magic – Shared Layer

- If we want first 9 weights and last 9 weights to be the same.
- We have no idea how to formulate using Sequential API.

model

Some Black Magic – Branch or Merge

 If we want our model has branch in some place and merge together in other place.

We have no idea how to formulate using Sequential API.

Some Black Magic – Branch or Merge

model

Model (Functional API)

Sequential v.s. Model

 Sequential: create a "sandbox", then build your NN model layerby-layer.

 Model: create the connection between layers (and I/O on each layer), then "model" them as a NN model.

 Some Pros: only need to define the relation of I/O on each layer, easy to create sub-models.

What does Functional means?

We can use Keras syntax as well as function composition!

 If you like mathematical notations (especial, functions) more than Keras syntax.

You're welcome!

 When enter a Keras syntax and execute it, what would you think?

 \mathbb{R}^2

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$u = f(x) = \sigma(W^{(1)}x + b^{(1)})$$

$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

$$v = g(u) = \sigma(W^{(2)}u + b^{(2)})$$

$$h: \mathbb{R}^2 \to \mathbb{R}^3$$
$$y = h(v) = \sigma(W^{(3)}v + b^{(3)})$$

Let's see how it works!

 \mathbb{R}^2

 χ

 \bigcup

In []: x = Input(shape=(2,))

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3$$

$$x \mapsto u$$

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$u = f(x) = \sigma(W^{(1)}x + b^{(1)})$$

In []: f = Dense(3, activation='relu')

In []: u = f(x)

or

In []: u = Dense(3, activation='relu')(x)

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2$$

$$x \mapsto u \mapsto v$$

$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

$$v = g(u) = \sigma(W^{(2)}u + b^{(2)})$$

In []: g = Dense(2, activation='relu')

In []: v = g(u)

or

In []: v = Dense(2, activation='relu')(u)

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2 \xrightarrow{h} \mathbb{R}^3$$

$$x \mapsto u \mapsto v \mapsto y$$

$$h: \mathbb{R}^2 \to \mathbb{R}^3$$
$$y = h(v) = \sigma(W^{(3)}v + b^{(3)})$$

In []: h = Dense(3, activation='sigmoid')
In []: y = h(v)

or

In []: y = Dense(3, activation='sigmoid')(v)

model

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2 \xrightarrow{h} \mathbb{R}^3$$

$$x \mapsto u \mapsto v \mapsto y$$

$$h: \mathbb{R}^2 \to \mathbb{R}^3$$
$$y = h(v) = \sigma(W^{(3)}v + b^{(3)})$$

In []: model = Model(x, y)

model

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2 \xrightarrow{h} \mathbb{R}^3$$

$$x \mapsto u \mapsto v \mapsto y$$

```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
In []: h = Dense(3, activation='sigmoid')
In []: y = h(v)
In []: model = Model(x, y)
```

model

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2 \xrightarrow{h} \mathbb{R}^3$$

$$x \mapsto u \mapsto v \mapsto y$$

```
In []: x = Input(shape=(2,))

In []: u = Dense(3, activation='relu')(x)

In []: v = Dense(2, activation='relu')(u)

In []: y = Dense(3, activation='sigmoid')(v)

In []: model = Model(x, y)
```

This is the same as what you did when using

Sequential API

model

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^2 \xrightarrow{h} \mathbb{R}^3$$

$$x \mapsto u \mapsto v \mapsto y$$

```
In []: x = Input(shape=(2,))
In []: u = Dense(3, activation='relu')(x)
In []: v = Dense(2, activation='relu')(u)
In []: y = Dense(3, activation='sigmoid')(v)
In []: model = Model(x, y)
```

This is the same as what you did when using Sequential API

Conclusion

- Model Functional API defines the relation of I/O of each layer as well as a function.
- Variables from each layer are all available in Model case other than only I/O in Sequential case.
- Latent variables can be manipulated by user.

Black Magic Revisit – Shared Layer

- If we want first 9 weights and last 9 weights to be the same.
- How to formulate using Model API?

Black Magic Revisit – Shared Layer

- If we want first 9 weights and last 9 weights to be the same.
- How to formulate using Model API?

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$u = f(x) = \sigma(W^{(1)}x + b^{(1)})$$

$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

$$v = g(u) = \sigma(W^{(2)}u + b^{(2)})$$

$$y = f(v) = \sigma(W^{(3)}v + b^{(3)})$$

Black Magic Revisit – Shared Layer

- If we want first 9 weights and last 9 weights to be the same.
- How to formulate using Model API?


```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
       h = Dense(3, activation='sigmoid')
       model = Model(x, y)
```



```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u_1 = f(x)
In []: g = Dense(2, activation='relu')
In []: u_2 = g(u)
```



```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u_1 = f(x)
In []: g = Dense(2, activation='relu')
In []: u = 2 = g(u)
In []: merged_v = concatenate([u_1, u_2])
```



```
In []: x = Input(shape=(2,))
In []: f = Dense(1, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: u = 2 = g(u)
In []: merged_v = concatenate([u_1, u_2])
      h = Dense(1, activation='softmax')
ln[]: y = h(merged v)
In []: model = Model(x, y)
```

Black Magic Revisit - Challenge

Hint: \mathbb{R}^2 $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g_1^b} \mathbb{R}^2 \stackrel{=\mathbb{R}^4}{\longrightarrow} \mathbb{R}^3$

Black Magic Revisit – Conclusion

 A common application of Brach-and-Merge is to build Multi-input and multi-output models.

Ref: https://keras.io/getting-started/functional-api-guide/#multi-input-and-multi-output-models

Customized Layer

 For example, we want a layer which output the average of the input neurons

Customized Layer

- Lambda layer transfers customized function as a layer.
- This could be also used when using Sequential API.


```
def my_avergae(args):
    return K.mean(args)

x = Input(shape=(3,), name='x_is_input')

f = Lambda(my_avergae, output_shape=(1,))

y = f(x)
model = Model(x, y)
```

Customized Layer

- Lambda layer is used for customized function as layer behavior.
- This could be also used when using Sequential API.


```
def my_spell(args):
    xxx
    return black_magic
    x = Input(shape=(3,), name='x_is_input')

f = Lambda(my_spell, output_shape=(1,))

y = f(x)
model = Model(x, y)
```

Can we use user-defined loss function?


```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
In []: h = Dense(3, activation='sigmoid')
In []: y = h(v)
In []: model = Model(x, y)
In []: model.compile(loss='mse')
```

- Can we use user-defined loss function?
- Yes, as shown below. Another example is VAE.

```
model
```

```
ln []: x = lnput(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
In []: h = Dense(3, activation='sigmoid')
In []: y = h(v)
In []: model = Model(x, y)
In [ ]: def my_loss(y_true, y_pred):
          return K.mean(y_true - y_pred)
       model.compile(loss=my_loss)
```

- In most case, the order of y_true and y_pred is not important
- However, for cross-entropy-like loss function, it's IMPORTANT

```
model
```

```
ln []: x = lnput(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
In []: h = Dense(3, activation='sigmoid')
       y = h(v)
In []: model = Model(x, y)
In [ ]: def my_loss(y_true, y_pred):
          return K.mean(y_true - y_pred)
       model.compile(loss=my_loss)
```

 Now, try to define some loss function using functions provided from backend.


```
In []: x = Input(shape=(2,))
In []: f = Dense(3, activation='relu')
In []: u = f(x)
In []: g = Dense(2, activation='relu')
In []: v = g(u)
In []: h = Dense(3, activation='sigmoid')
In []: y = h(v)
In []: model = Model(x, y)
In [ ]: def my_loss(y_true, y_pred):
          XXX
          return ooo
       model.compile(loss=my_loss)
```

Submodels

- When we define a NN model, sometimes, we don't care about output value or class.
- Usually, neurons in the hidden layers are of interesting.

Submodels – Autoencoder as Example

Submodels – Autoencoder as Example

 Variational Autoencoder (VAE) is a variant of AE which randomize latent vector from deterministic one. (Don't worry, I will explain what it means)

 VAE can be constructed using all tips we learned above: Model, Branch-and-Merge, Customized Layers, Customized Loss Function.

- So, we need to define two things:
 - Sampling from Normal distribution where mean and covariance are given by previous two layers.
 - Loss function defined by sum of MSE between I/O and KL-divergence between N(μ , σ^2) and N(0,I_n).

- So, we need to define two things:
 - Sampling from Normal distribution where mean and covariance are given by previous two layers.
 - Loss function defined by sum of MSE between I/O and KL-divergence between N(μ , σ^2) and N(0,I_n).
- Recall in probability, if X~N(0,1), then μ + σ X~N(μ , σ ²).
- For higher dimensional Normal distribution, we have similar result.

- So, we need to define two things:
 - Sampling from Normal distribution where mean and covariance are given by previous two layers.
 - Loss function defined by sum of MSE between I/O and KL-divergence between N(μ , σ^2) and N(0,I_n).

```
def sampling(args):
   z_mean, z_log_var = args
   epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=epsilon_std)
   return z_mean + K.exp(z_log_var / 2) * epsilon
```

- So, we need to define two things:
 - Sampling from Normal distribution where mean and covariance are given by previous two layers.
 - Loss function defined by sum of MSE between I/O and KL-divergence between $N(\mu, \sigma^2)$ and $N(0,I_n)$.

```
def vae_loss(y_true, y_pred):
    mse_loss = K.square(y_true - y_pred)
    kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
    return K.mean(xent_loss + kl_loss)
```

Review the code of VAE!

Final Challenge

 For the remaining time, I want you all to build up a model which is a combination of what we learned today.

 You might use Model, Branch-and-Merge, Customized Loss Function in this model.

Final Challenge - Structure

Congratulations!

• If you can finish this final challenge, then you are one step closer to ...

Congratulations!

 If you can finish this final challenge, then you are one step closer to ...

Berkeley Al Research (BAIR) Laboratory!

Real World Implementation

Ref: R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. CoRR, abs/1611.09842, 2016.

Real World Implementation

Acknowledgement

 Special thanks to Yen Jan who provides me some suggestion about this talk.

BCË