

Design Calculation Sheet for fgdg

Designer: fgf

Location: fgf

City: fgf

Country: gfg

Date: 2020-06-22 10:09:49

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

• Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
8	(20,4,6)	(20,8,6)	4	0.07	0.07
7	(20,0,6)	(20,4,6)	4	0.07	0.07
1	(0,0,6)	(0,4,6)	4	0.07	0.07

Design Limit state:

Combo: D+L

Md: 0.07 t.m

Vd: 0.07 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: 0 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 15.58 < 81.98 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 59.39 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 0.36 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.02 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd = 0.07 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.01 \text{ t/cm}^2 \text{ a q} = 0 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.01 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0 t/cm^2$ $qmt = 0.01 t/cm^2 => qres = (q^2 + qmt^2)^0.5 = 0.01 t/cm^2 < 0.2Fu = 0.72 t/cm^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.01 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
13	(10,3,6)	(14,3,6)	4	3.04	3.04
12	(10,1,6)	(14,1,6)	4	3.04	3.04
11	(6,2,6)	(10,2,6)	4	3.04	3.04
10	(8,6,6)	(12,6,6)	4	3.04	3.04
6	(18,4,6)	(18,8,6)	4	3.07	3.07
5	5 (16,4,6)	(16,8,6)	4	3.07	3.07
4	(14,4,6)	(14,8,6)	4	3.07	3.07
3	(4,0,6)	(4,4,6)	4	3.07	3.07
2	(2,0,6)	(2,4,6)	4	3.07	3.07

Design Limit state:

Combo: D+L

Md: 3.07 t.m

Vd: 3.07 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -1 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.22 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.24 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.57 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=3.07 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.22 \text{ t/cm}^2 \text{ a} = 0.14 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.32 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.14 \text{ t/cm}^2 \text{ a qmt} = 0.22 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.26 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.26 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
9	(0,6,6)	(6,6,6)	6	6.85	4.57

Design Limit state:

Combo: D+L

Md: 6.85 t.m

Vd: 4.57 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -1 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 36.23 < 81.98 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 193.65 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE300

fact= 1.23 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.21 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.96 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=4.57 ton

Rleast= 3.07 ton

N= 3 with Pitch= 70 mm & Full Layout: (35;70 70 35)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.26 \text{ t/cm}^2 \text{ a} = 0.18 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.41 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.18 \text{ t/cm}^2 \text{ a qmt} = 0.26 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.32 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.31 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 210 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
14	(0,8,6)	(6,8,6)	6	0.1	0.07
10	(14,0,6)	(20,0,6)	6	0.1	0.07

Design Limit state:

Combo: D+L

Md: 0.1 t.m

Vd: 0.07 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: 0 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 15.58 < 81.98 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 59.39 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 0.5 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.02 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd = 0.07 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0 \text{ t/cm}^2 \text{ } q = 0 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.01 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0 t/cm^2$ $qmt = 0 t/cm^2 => qres = (q^2 + qmt^2)^0.5 = 0.01 t/cm^2 < 0.2Fu = 0.72 t/cm^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.01 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
5	(8,4,6)	(8,8,6)	4	3.12	1.59
4	4 (12,4,6)	(12,8,6)	4	3.12	1.59
3 (6,0,6)	(6,4,6)	4	3.12	1.59	
1	(14,0,6)	(14,4,6)	4	3.12	3.12
15	(6,8,6)	(14,8,6)	8	3.37	1.68
7	(0,4,6)	(0,8,6)	4	4.64	2.36
6	(6,4,6)	(6,8,6)	4	4.64	2.36

Design Limit state:

Combo: D+L

Md: 4.64 t.m

Vd: 2.36 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.25 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 34.73 < 81.98 => Compact Web

c/tf= 5.3 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 174.28 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.08 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.1 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.36 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.17 \text{ t/cm}^2 \text{ a} = 0.11 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.25 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.11 \text{ t/cm}^2 \text{ a qmt} = 0.17 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.2 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.2 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
2	(10,0,6)	(10,4,6)	4	6.16	4.64
16	(14,8,6)	(20,8,6)	6	6.25	3.14
13	(14,4,6)	(20,4,6)	6	6.25	3.14
11	(0,4,6)	(6,4,6)	6	6.25	3.14
8	(0,0,6)	(6,0,6)	6	6.25	3.14

Design Limit state:

Combo: D+L

Md: 6.25 t.m

Vd: 3.14 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.67 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 34.73 < 81.98 => Compact Web

c/tf= 5.3 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 174.28 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.46 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.18 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.93 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=3.14 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.22 \text{ t/cm}^2 \text{ a} = 0.14 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.33 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.14 \text{ t/cm}^2 \text{ a qmt} = 0.22 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.26 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.26 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID Start Point End Point Span (m) Mmax (t.m) Vmax (ton)

9	(6,0,6)	(14,0,6)	8	9.46	2.41
12	(6,4,6)	(14,4,6)	8	12.65	4

Design Limit state:

Combo: D+L

Md: 12.65 t.m

Vd: 4 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.38 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 38.65 < 81.98 => Compact Web

c/tf= 5.38 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 219.47 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE360

fact= 1.4 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.59 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 4 ton

Rleast= 3.46 ton

N= 3 with Pitch= 84 mm & Full Layout: (42;84 84 42)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.16 \text{ t/cm}^2 \text{ a} = 0.13 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.28 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.13 \text{ t/cm}^2 \text{ a qmt} = 0.16 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.21 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.19 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 252 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
7	(14,4,0)	(14,4,6)	6	-13.59
6	(6,4,0)	(6,4,6)	6	-11.35
11	(14,8,0)	(14,8,6)	6	-8.15
2	(6,0,0)	(6,0,6)	6	-7.4
3	(14,0,0)	(14,0,6)	6	-5.85
5	(0,4,0)	(0,4,6)	6	-5.82
10	(6,8,0)	(6,8,6)	6	-4.36
8	(20,4,0)	(20,4,6)	6	-3.54

page 14 of 15

1	(0,0,0)	(0,0,6)	6	-3.46
12	(20,8,0)	(20,8,6)	6	-3.46
9	(0,8,0)	(0,8,6)	6	-2.68
4	(20,0,0)	(20,0,6)	6	-0.39

Design Limit state:

Combo: D+L

Nd: -13.59 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 179.1 > 100

fc= 0.25 t/cm^2 < Fc= 0.23 t/cm^2