INSTITUTO SUPERIOR TÉCNICO

Análise e Síntese de Algoritmos

Ano Lectivo 2017/2018

Exame Época Especial- versão A

25 de Julho de 2018

Duração: 3:00

- A prova é sem consulta.
- Telemóveis devem estar **desligados** em cima da mesa.
- O tempo mínimo de permanencia na sala é 1 hora. Não serão permitidas entradas após 30 minutos do início da prova.
- Só serão avaliadas as respostas legíveis apresentadas nas grelhas desta página e da seguinte, com a excepção das perguntas com (XXX), que serão corrigidas na folha do enunciado respectiva e será avaliado o desenvolvimento da resposta.
- Nas questões de verdadeiro, deconhecido ou falso, cada resposta errada desconta meia certa.
- Certifique-se que a sua identificação está legível nas folhas com as suas soluções.

I. (1,25 + 1,25 + 1,25 + 1,25 + 1,25 + 1,25 = 7,5 val.)

		A	В	С	D	Е	F
I.a)	d						
	π						

		A	В	C	D	E	F
I.b)	d						
1.0)	f						
	Numero de Ordenações:						

I c)		A	В	С	D	Е
1.0)	key					

1.d) $ D^{(2)}(3,1) = $ $ D^{(2)}(3,2) = $ $ D^{(2)}(3,3) = $

I.e) Expressão:
Majorante:

I.f)		Primeira	Segunda	Terceira
1.1)	$c_f(C,t)$			

II. (1.0 + 1.5 = 2.5 val.)

II.a) $\langle XXX \rangle$

II.b) $\langle XXX \rangle$

Número:	Nome:	1/12
---------	-------	------

III. (1,5 + 1,5 = 3,0 val.) III.a) $\langle XXX \rangle$

III.b)	Objectivo	x_1	x_2	<i>x</i> ₃
111.0)				

IV. (1,25 + 1,25 = 2,5 val.)

IV.a) $\langle XXX \rangle$

IV.b)	Greedy:	
1 (.0)	Programação Dinâmica:	

V. (1,25 + 1,25 = 2,5 val.)

V.a) Expressão

V.b)		$\pi[3]$	$\pi[6]$	$\pi[8]$	$\pi[12]$	$\pi[15]$
v. D)	Valor					

VI. (1,0 + 1,0 = 2,0 val.)

VI.a)		a)	b)	c)	d)	e)
v 1. a)	Resposta					

VI.b) $\langle XXX \rangle$

I. (1,25 + 1,25 + 1,25 + 1,25 + 1,25 + 1,25 = 7,5 val.)

I.a) Considere o grafo dirigido:

Execute uma procura em largura (BFS) com início em A. Indique os valores de d e π para cada um dos vértices.

Nota: As distâncias de uma BFS começam em 0.

I.b) Considere o grafo dirigido acíclico (DAG):

Aplique uma procura em profundidade primeiro (DFS) com início no vértice A e que visita os adjacentes por ordem lexicográfica. Os recomeços da DFS escolhem o vértice não visitado com a menor letra, de acordo com a ordem lexicográfica.

Indique os valores de descoberta (d) e fim (f), para cada um dos vértices. Indique quantas ordenações topológicas existem para este grafo.

Nota: Os tempos de uma DFS começam em 1.

Número:	NI a see a s	
Numero:	Nome:	

I.c) Considere o grafo pesado da figura.

Considere a execução do algoritmo de Prim a partir do vértice A. Indique os valores do vector key após ter sido processado o vértice D.

I.d) Considere o grafo dirigido e pesado da figura.

Considere a aplicação do algoritmo de Floyd-Warshall ao grafo. Indique os valoes $D^{(2)}(3,1)$, $D^{(2)}(3,2)$ e $D^{(2)}(3,3)$.

I.e) Considere a função recursiva:

```
int f(int n)
{
  int j, i;

i = 0;
  while(i < n)
  {
    j = i;
    while(j < n)
        j++;
    i++;
  }

if(n > 1)
    i = f(n/2) + f(n/2) + f(n/2);

return i;
}
```

Indique a expressão (recursiva) que descreve o tempo de execução da função em termos do número n, e de seguida, utilizando os métodos que conhece, determine o menor majorante assimptótico.

I.f) Aplique o algoritmo de Edmonds-Karp à seguinte rede:

Indique o valor da capacidade residual do arco (C,t) após cada iteração do algoritmo, i.e. após o aumento de fluxo usando o caminho de aumento.

II. (1,0 + 1,5 = 2,5 val.)

II.a) Considere uma árvore abrangente de menor custo, sobre um grafo, conexo não dirigido e pesado. Considere a seguinte repesagem: w'(u,v) = w(u,v) + d, onde (u,v) é um arco e d>0 é uma constante arbitrária mas fixa. Assuma que todos os arcos são repesados, utilizando os mesmos valores de d.

Argumente que uma árvore abrangente de menor custo do grafo repesado também é abrangente de menor custo no grafo original.

Número:	Nome	6/1/

- **II.b)** Neste problema queremos determinar a fiabilidade de uma rede de transportes. Um rede de transportes é composta por diversos locais e transportes que podem ligar de um local de origem para um local de destino. Vamos assumir que cada transporte tem uma certa fiabilidade, que corresponde à probabilidade de que o transporte seja bem sucedido. Assuma que as fiabilidades dos transportes são independentes, ou seja se $p_{u,v}$ for a fiabilidade do local u para o local v e $p_{v,w}$ for a fiabilidade do local v para o local v então v0, v1, v2, v3, v4, v5, v6, v7, v8, v8, v9, v9,
 - 1) Modele este problema, utilizando estruturas que conhece.
 - Proponha um algoritmo eficiente que determina o caminho mais fiável entre dois locais.
 Indique as complexidades dos algoritmos propostos.

Número:	Nome:	7/1

III. (1,5 + 1,5 = 3,0 val.)

III.a) Indique o dual do seguinte programa linear:

$$\begin{array}{lll} \min & -3x_1 + 2x_2 - 5x_3 \\ s.a. & x_1 + x_2 - 6x_3 & \geq & -3 \\ & 2x_1 - x_3 & \geq & 6 \\ & 3x_1 + 4x_2 - 3x_3 & \leq & 10 \\ & x_2 - 4x_3 & \leq & -1 \\ & x_1, x_2, x_3 & \geq & 0 \end{array}$$

Número:	Nome:	8/12
Numero:	Nome:	8/12

III.b) Calcule o valor óptimo da função objectivo e o respectivo valor das variáveis x_1 , x_2 e x_3 para o seguinte programa linear:

$$\begin{array}{llll} \max & x_1 + 2x_2 + 3x_3 \\ s.a. & x_1 - x_2 + x_3 & \leq & 4 \\ & 3x_1 + 3x_2 + 2x_3 & \leq & 10 \\ & & x_1, x_2, x_3 & \geq & 0 \end{array}$$

Número: Nome:

IV.
$$(1,25 + 1,25 = 2,5 \text{ val.})$$

IV.a) Dado um conjunto S de números inteiros positivos e um valor K, o objectivo é identificar um subconjunto S' de S tal que a soma dos elementos de S' seja o mais próximo possível de K, sem ultrapassar K.

Por exemplo, se $S = \{1, 3, 5, 8, 13\}$ e K = 20, então a solução seria $S' = \{1, 5, 13\}$ dado que a soma dos elementos de S' é 19.

Indique um modelo de programação dinâmica para resolver este problema. Analise a complexidade da solução proposta.

IV.b) Considere uma instância do problema da mochila não fraccionário com 5 objectos. A mochila tem capacidade 14 e os objectos a considerar têm os seguintes valores e pesos:

- $v_1 = 2; w_1 = 2$
- $v_2 = 9; w_2 = 3$
- $v_3 = 12; w_3 = 5$
- $v_4 = 18; w_4 = 8$
- $v_5 = 19; w_5 = 10$

Indique os valores máximos conseguidos por:

- um algoritmo greedy com base na ordenação dos objectos por v_i/w_i ;
- um algoritmo baseado em programação dinâmica;

Número:	Noma	10/12
Numero:	Nome:	10/12

V	(1	25	_	1	25	_	2	5	val	١
v. 1	ıъ	23	_	1	-23	_	4		vai.	.,

V.a) Considere o algoritmo de autómatos finitos para o emparelhamento de caracteres. Seja $n \in \mathbb{N}$ e P o padrão $bab^2ab^3a\dots b^{n-2}ab^{n-1}ab^na$ tal que $a \neq b$, $a,b \in \Sigma$ e $n \geq 2$. Sendo $\delta: Q \times \Sigma \to Q$ a função de transição do autómato, indique a expressão que denota o número de transições para o estado inicial.

V.b) Considere o algoritmo de Knuth-Morris-Pratt. Dado o padrão P = aaabbaabaaaaabba, calcule a função de prefixo $\pi[k]$ para o padrão P. Indique os valores de $\pi[3]$, $\pi[6]$, $\pi[8]$, $\pi[12]$ e $\pi[15]$.

VI. (1,0 + 1,0 = 2,0 val.)

VI.a) Para cada uma das afirmações seguintes, indique se é verdadeira (**V**), falsa (**F**) ou se não se sabe (**D**).

- a. Se existir um problema X tal que $X \in NP$ -Completo e X é resolúvel em tempo polinomial, então P = NP
- b. Se $X \in NP$ -Difícil, qualquer $Y \in NP$ verifica $Y \leq_p X$
- c. P = co-NP
- d. $P \subseteq (NP \cap co-NP)$
- e. Se para qualquer $Y \in NP$ -Completo temos que $X \leq_p Y$, então $X \in NP$ -Difícil

Número:______ Nome:______ 11/12

VI.b) Dada uma matriz A de $m \times n$ valores inteiros e um vector de inteiros b de dimensão m, o problema de Programação Linear Inteira 0-1 (ILP 0-1) consiste em verificar se existe um vector x de dimensão n tal que os elementos de x pertencem a $\{0,1\}$ e $Ax \le b$.

Dado um grafo não dirigido G=(V,E) e uma constante K, o problema VERTEX-COVER pode ser definido como identificar um subconjunto de vértices U ($U\subseteq V$) tal que o número de vértices de U não é superior a K ($|U|\le K$) e para todos os arcos $(u,v)\in E$ temos que $u\in U$ ou $v\in U$.

Sabendo que o problema VERTEX-COVER é NP-Completo, prove que o problema ILP 0-1 é NP-Completo usando uma redução a partir de VERTEX-COVER.

(Nota: Prove primeiro que ILP $0-1 \in NP$.)

Número:	Nome:	12/12