DPENCLASSROOMS

Kevin

Parcours Data Scientist

Problématique

L'entreprise

- Marketplace e-commerce

Objectifs de la marketplace

- Rencontre entre vendeurs et acheteurs
- Demande d'informations concernant les produits en vente
- Erreurs humaines éventuelles
- Développer un avantage concurrentiel et une meilleure satisfaction client

Mission

- Etudier la faisabilité de l'automatisation et sa précision
- Catégorisation via description/image
- Des contraintes dans le process...

Jeu de données

Process

Faisabilité / Recommandations

Fichier Data

Contenu

1 fichier CSV Dossier image

Catégorie

7 catégories150 produits

Données

1050 produits 15 variables

Données manquantes

Dataset de qualité

Variables

Nom du produit
Date sur le marché
Prix de vente
Description
Image
Arbre de Catégorie

Préparation de la data

Suppression Préparation du texte

Catégories

Données manquantes

Bonne qualité

Description des produits

Tokenisation

- Chaque mot / punctuation est un token
- Pas d'espace

Stopwords

- Mots qui n'ont pas d'intérêt
- Déterminants, ponctuations, pronoms...

Lemmatizer Forme canonique

Supprime le genre / pluriel

Minuscule

Bag of Words

Global

Bags of Words par catégorie

Kitchen & Dining

Watches

Créer des visualisations

- Groupe 1/4/5 ont des points communs et seront peut-être plus difficiles à clusteriser.
- Groupe 2 unique

Fichier Data

Contenu

1 fichier CSV Dossier image

Catégorie

7 catégories150 produits

Données

1050 produits 15 variables

Données manquantes

Dataset de qualité

Variables

Nom du produit
Date sur le marché
Prix de vente
Description
Image
Arbre de Catégorie

Préparation de la data

Suppression Préparation du texte

12

CountVectizer

Hello my name is james, this is my python notebook

	hello	is	james	my	name	notebook	python	this
0	1	2	1	2	1	1	1	1

Procédés (

TF-IDF

TF = occurrences du mot / nombre de mots dans le document

IDF = nombre de documents / nombre de documents où apparait le mot

TF-IDF = TF * IDF

Procédés 🔵

BERT

Transformation des phrases en vecteurs

1050 vecteurs de taille 768

Procédés 💮

Word2Vec 4646 vecteurs de taille 300

Bank:

an organization where people and businesses can invest or borrow money, change it to foreign money, etc., or a building where these services are offered:

Process

Application des algorithmes de transformation

TSNE / Pas de reduction

Etape 1

Kmeans: 7 Clusters

ARI

K-means

Etape 3

Etape 2

Stopwords / Liste perso

Liste perso: Flipkart, shipping ...

Apporte peu d'intérêt aux visuels

Etape 4

Visualisation

Scatterplot avec les categories réelles

Scatterplot K-means

Matrice de confusion

Camember

RÉSULTAT

TF-IDF

5 Points importants

Résultats du texte

	ARI
Nom	
TF-IDF sans liste perso(TSNE)	0.5727
TF-IDF liste perso(TSNE)	0.5061
CountVectizer sans liste perso(TSNE)	0.4344
CV liste perso(TSNE)	0.3772
BERT sans liste perso(TSNE)	0.375
BERT liste perso(TSNE)	0.375
Word2Vec avec liste perso (TSNE)	0.36
USE sans liste perso (TSNE)	0.35
USE avec liste perso (TSNE)	0.35
USE avec liste perso	0.33
USE sans liste perso	0.33
TF-IDF sans liste perso	0.2943
Word2Vec avec liste perso (TSNE)	0.2803
BERT liste perso	0.2712
BERT sans liste perso	0.2712
TF-IDF liste perso	0.2622
Word2Vec avec liste perso	0.2077
Word2Vec avec liste perso	0.1995
CountVectizer sans liste perso	0.0555
CV liste perso	0.0549

- 1 T-SNE Efficace
- 2 Liste personnalisée contre-productive pour le clustering
- 3 Les méthodes de comptage > DeepLearning
- 4 Autre méthode effectuée : Nom + description
- 5 TF-IDF Meilleur

PRODUITS

IMAGES

Image 1 C1 C2 C3 C4 C5 C6 Image 2 C1 C2 C3 C4 C5 C6 Histogrammes

Etape 1

Descripteurs

Descripteurs = Décrit une image à partir d'un certain nombre de vecteurs

Etape 3

Traitement des images

Listes de descripteurs

517351 descripteurs de taille 128

Etape 5

Feature img

Création des histogrammes

Test sans reduction de dimension / PCA (99% variance : 498 dim) / T-SNE

Préprocess

Passage au gris

Normaliser la luminosité

Améliorer le contraste

Etape 2

Entrainement Kmeans

Choix des clusters:

Racine carré des descripteurs = 719

Label * 10 = 70

Etape 4

ARI

0,07

Transfert Learning

- 2 En libre téléchargement
- 3 Transfert
- 4 Couches

 Flexible
- 5 Adapté aux nouveaux problèmes
- Modèles choisis

 VGG16 / VGG19 / RESNET / InceptionV3

Test des modèles

13%: montre

19%: montre digitale

Extraction de features

Couches convolutionnelles

Proches des input

Reconnaissent des caractéristiques "faibles"

Couches du milieu

Caractéristiques abstraites plus

Couches proches du

Couches du modèle

2 couches avant la fin

Format précis en 4 dimensions :

Echantillon – Lignes – Colonne - Channel

Features

Dimensions:

VGG: (1050,1,4096) | RESNET/Inception: (1050,1,2048)

Différents modèles

VGG16

1050,4096

Dimensions PCA: 803

Rien: 0,466

ACP/TSNE: 0,4597

ACP: 0,4639

VGG19

1050,4096

Dimensions PCA: 796

Rien: 0,4759

ACP/TSNE: 0,4464

ACP: 0,4753

RESNET50

1050,2048

Dimensions PCA: 44

Inférieur à 0,07

InceptionV3

1050, 2048

Dimensions PCA: 248

Inférieur à 0,06

Catégories

Catégories

Meilleurs algorithmes

	ARI
Nom	
VGG19	0.4759
VGG19 (ACP)	0.4753
VGG16	0.466
VGG16 (ACP)	0.4639
VGG16 (TSNE)	0.4608
VGG16 (ACP/TSNE)	0.4597
VGG19 (ACP/TSNE)	0.4464
VGG19 (TSNE)	0.4345
SIFT max clusters (TSNE)	0.0713
SIFT max clusters	0.0663
Inception (TSNE)	0.0632
Inception(ACP/TSNE)	0.0531
SIFT clusters restreints	0.0525
SIFT clusters restreints (TSNE)	0.0518
Inception	0.0405
Inception(ACP)	0.0405
RESNET(TSNE)	0.0366
RESNET (APC/TSNE)	0.0343
RESNET	0.0169
RESNET (ACP)	0.0168

RÉSULTAT

Clustering final

Comparaison

Catégorie BabyCare

Bons clusters

Mauvais clusters

Strategies pour le Success

