Overview

1) Importing relevant Libraries/data ● Understanding the shape of the data 2) Data Cleaning ● A quick overview of the shape of the data using describe method. ● checking for null values ● lighter look at the data info ● observing distribution of data in order to fill the null values 3) Data Exploration ● checking for outliers ● Correlation between the metrics ● Plotting heatmaps to check for correlations 4) Feature Engineering ● Exploring relevant feature to bring important insights 5) Analysis based on gender of the users 6) Analysis based on the least active users on Facebook 7) Analysis based on the user accessibility (Mobile Devices vs. Web Devices)

NOTE

In [1]:

I am not doing the model pre-processing steps like:Feature scalling, data spliting, Feature/label Encoding because we are not building the model(as per the requirement).

Assignment:

import numpy as np

Exploratory Data Analysis(EDA) on Facebook Utilization Data

Problem Statement:

The objective of the proposed framework is to study and analyse the differences in the way users are using Facebook based on their gender, age-group, etc. and Identify a pattern out of it.

```
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings

In [2]:

# Hides warning
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)

In [3]:

df = pd.read_csv('facebook user data - facebook user data.csv')
```

```
userid age dob_day dob_year dob_month gender tenure friend_count friendships_initiated likes likes_received mol
0 2094382
             14
                       19
                                1999
                                              11
                                                            266.0
                                                                              0
                                                                                                   0
                                                                                                         0
                                                                                                                        O
                                                    male
1 1192601
             14
                        2
                                1999
                                                  female
                                                              6.0
                                                                              0
                                                                                                         0
                                                                                                                        0
                                                                                                   0
2 2083884
                       16
                                1999
                                                                                                         O
             14
                                              11
                                                    male
                                                             13.0
                                                                              O
                                                                                                   0
  1203168
             14
                       25
                                1999
                                              12 female
                                                             93.0
                                                                              0
                                                                                                   0
                                                                                                         0
                                                                                                         0
  1733186
             14
                        4
                                1999
                                              12
                                                    male
                                                             82.0
                                                                              0
                                                                                                   0
```

In [4]:

Out[4]:

df.head()

```
df.shape
Out[5]:
  (99003, 15)

In [6]:

# taking few numeric columns to see their basic statistics
df_data = df[['age', 'tenure', 'friend_count', 'likes', 'likes_received']]
```

Data Cleaning & Analysis

```
In [7]:

df_data.describe()
```

Out[7]:

	age	tenure	friend_count	likes	likes_received
count	99003.000000	99001.000000	99003.000000	99003.000000	99003.000000
mean	37.280224	537.887375	196.350787	156.078785	142.689363
std	22.589748	457.649874	387.304229	572.280681	1387.919613
min	13.000000	0.000000	0.000000	0.000000	0.000000
25%	20.000000	226.000000	31.000000	1.000000	1.000000
50%	28.000000	412.000000	82.000000	11.000000	8.000000
75%	50.000000	675.000000	206.000000	81.000000	59.000000
max	113.000000	3139.000000	4923.000000	25111.000000	261197.000000

Here's a quick breakdown of the above describe table: ● count: there are around 99000 rows in the dataset, which is filtered to these columns. ● mean: the average value of these features.(e.g average age is 37, avg friend_count is 196 etc.) ● std: measures the dispersion(spread) of a dataset relative to its mean. ● min: the minnimum values in the dataset for these perticular columns. ● 25%: the 25th percentile. 25% of values corresponding to these columns were lower than these stated values(eg. 25% of user's age is less than 20 years). ● 50%: the 50th percentile, or the median.50% of values corresponding to these columns were lower than these stated values. ● 75%: the 75th percentile. 75% of values corresponding to these columns were lower than these stated values. ● max: the maximum :-age, tenure,friend_count,total likes given, total likes_received are:113 ,3139, 4923, 25111, 261197 respectively. .

```
In [8]:
```

```
# Checking for null values and we can see gender has-175 null values and tenure has 2. df.isnull().sum()
```

Out[8]:

т... гол.

```
0
userid
age
                             0
dob day
                             0
dob year
                             0
dob month
                             0
gender
                           175
                             2
tenure
friend count
                             0
friendships initiated
                             0
                             0
likes
likes received
                             0
mobile likes
                             0
mobile likes received
                             0
                             0
www likes
www likes received
dtype: int64
```

looking at first 5 rows of the dataset df.head()

Out[9]:

	userid	age	dob_day	dob_year	dob_month	gender	tenure	friend_count	friendships_initiated	likes	likes_received	mol
0	2094382	14	19	1999	11	male	266.0	0	0	0	0	
1	1192601	14	2	1999	11	female	6.0	0	0	0	0	
2	2083884	14	16	1999	11	male	13.0	0	0	0	0	
3	1203168	14	25	1999	12	female	93.0	0	0	0	0	
4	1733186	14	4	1999	12	male	82.0	0	0	0	0	
4												Þ

In [10]:

```
# quick info of the data
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99003 entries, 0 to 99002
Data columns (total 15 columns):
```

	COLUMNIS (COLAI 13 COLUM	IIIIIS):						
#	Column	Non-Null Count	Dtype					
0	userid	99003 non-null	int64					
1	age	99003 non-null	int64					
2	dob_day	99003 non-null	int64					
3	dob year	99003 non-null	int64					
4	dob_month	99003 non-null	int64					
5	gender	98828 non-null	object					
6	tenure	99001 non-null	float64					
7	friend count	99003 non-null	int64					
8	friendships_initiated	99003 non-null	int64					
9	likes	99003 non-null	int64					
10	likes_received	99003 non-null	int64					
11	mobile likes	99003 non-null	int64					
12	mobile_likes_received	99003 non-null	int64					
13	www_likes	99003 non-null	int64					
14	www_likes_received	99003 non-null	int64					
dtype	dtypes: $\overline{float64}(1)$, int64(13), object(1)							
memo	ry usage: 11.3+ MB							

1) Load the data and impute missing values

In [11]:

```
# Checking Data Distribution for 'Tenure' by ploting boxplot sns.boxplot(df.tenure)
```

Out[11]:

<AxesSubplot:xlabel='tenure'>

tenure

```
In [12]:
```

```
# Checking Data Distribution for 'Tenure' by ploting distribution plot sns.distplot(df.tenure)
```

Out[12]:

<AxesSubplot:xlabel='tenure', ylabel='Density'>

As from the above distribution plot we can easily conclude that it is Right-skewed b/c: For a normal distribution, 68% of the observations are within +/- one standard deviation of the mean, 95% are within +/- two standard deviations, and 99.7% are within +- three standard deviations.skewness of data: Data are skewed right when most of the data are on the left side of the graph and the long skinny tail extends to the right. Data are skewed left when most of the data are on the right side of the graph and the long skinny tail extends to the left.

```
In [13]:
```

```
#tenure imputation with median as it is right-skwed
df['tenure'].fillna(df['tenure'].median() , inplace=True)
```

In [14]:

```
#imputing with mode b/c it is a catagorical value
df['gender'].fillna(df['gender'].mode()[0] , inplace=True)
```

In [15]:

```
# Now after imputing the values we have zero null values. df.isnull().sum()
```

Out[15]:

```
0
userid
                           0
age
dob day
dob year
                           0
dob month
                           0
gender
                           0
                           0
tenure
friend count
                           0
friendships initiated
                           0
likes
                           0
likes received
                           0
                           0
mobile_likes
mobile likes received
                           0
www likes
                           0
www_likes_received
                           0
dtype: int64
```

In [16]:

```
df.shape
```

Out[16]:

Checking for outliers

In [17]:

```
# As we can se there are very few values which are greater than 50k and they may distort the model accuracy in future, so we will remove them.

df.boxplot(column=['age','tenure','friend_count','friendships_initiated','likes','likes_r eceived','mobile_likes','mobile_likes_received','www_likes','www_likes_received'], figsiz e=(14, 7))
```

Out[17]:

<AxesSubplot:>

In [18]:

```
# removing values greater than 50000
df = df[df['likes_received'] <= 50000]
df = df[df['mobile_likes'] <= 50000]
df = df[df['mobile_likes_received'] <= 50000]
df = df[df['www_likes'] <= 50000]
df = df[df['www_likes_received'] <= 50000]
# df = df[df[['likes_received', 'mobile_likes', 'mobile_likes_received', 'www_likes', 'www_likes_received']] <= 50000]</pre>
```

In [19]:

```
df.boxplot(column=['likes','likes_received','mobile_likes','mobile_likes_received','www_
likes','www_likes_received'], figsize=(14, 7))
```

Out[19]:

<AxesSubplot:>

In [20]:

```
# checking outliers for age
df.boxplot(column=['age'])
```

Out[20]:

<AxesSubplot:>

In [21]:

```
# removing users having age greater than 90 b/c they don't affect the model much as they are few in numbers df = df[df['age'] \le 90]
```

In [22]:

```
df.boxplot(column=['age']) #93280-shape 93273- 94090
```

Out[22]:

<AxesSubplot:>

In [23]:

```
df.shape
```

Out[23]:

/04000 151

Data manipulation and Feature Engineering

Dividing the age into several age groups and creating relavent features Defining the dataset with respective age groups: Youth - less than equal to 30 years old Millennials - from 30-50 years old Boomers - from 50-70 years old Post War - from 70-90 years old

```
In [24]:
```

```
df['Youth'] = df.age.apply(lambda x:1 if x<=30 else 0)
df['Millennials'] = df.age.apply(lambda x:1 if 30<x<=50 else 0)
df['Boomers'] = df.age.apply(lambda x:1 if 50<x<=70 else 0)
df['Post_War'] = df.age.apply(lambda x:1 if 70<x<=90 else 0)</pre>
```

For numeric data

Made histograms to understand distributions Corrplot Pivot table comparing survival rate across numeric variables

For Categorical Data

Made bar charts to understand balance of classes Made pivot tables to understand relationship with gender catagory and other numerical features.

```
In [25]:
```

```
# Defining Catagorical features
df_cat = df[['gender','Youth','Millennials','Boomers','Post_War']]
# Defining Numerical features
df_num = df[['age','tenure','friend_count','friendships_initiated','likes','likes_receive
d','mobile_likes','mobile_likes_received','www_likes','www_likes_received']]
```

2) Plot heatmap / correlation matrix on all the columns

In [26]:

```
#distributions for all numeric variables
for i in df_num.columns:
    plt.hist(df_num[i])
    plt.title(i)
    plt.show()
```



```
In [27]:
```

```
# correlation of all the columns w.r.t. each other
corr_matrix = pd.DataFrame(df_num.corr())
corr_matrix
```

	age	tenure	friend_count	friendships_initiated	likes	likes_received	mobile_likes	mobile_lik
age	1.000000	0.406893	-0.151008	-0.176141	0.016628	-0.049414	-0.031845	
tenure	0.406893	1.000000	0.141175	0.111912	0.064040	0.067679	0.034294	
friend_count	- 0.151008	0.141175	1.000000	0.831734	0.308546	0.450663	0.245434	
friendships_initiated	- 0.176141	0.111912	0.831734	1.000000	0.293173	0.355394	0.236549	
likes	- 0.016628	0.064040	0.308546	0.293173	1.000000	0.629483	0.870918	
likes_received	- 0.049414	0.067679	0.450663	0.355394	0.629483	1.000000	0.487553	
mobile_likes	- 0.031845	0.034294	0.245434	0.236549	0.870918	0.487553	1.000000	
mobile_likes_received	0.056368	0.058620	0.442382	0.349781	0.619494	0.949604	0.537852	
www_likes	0.016163	0.074771	0.235869	0.218930	0.647419	0.501637	0.189313	
www_likes_received	0.032532	0.069074	0.391293	0.307365	0.544474	0.910502	0.345150	
4)

In [28]:

sns.heatmap(df_num.corr())

Out[28]:

<AxesSubplot:>

In [29]:

Out[29]:

<AxesSubplot:>

In [30]:

```
pd.pivot_table(df, index = 'gender', values = ['age', 'tenure', 'friend_count', 'likes', 'li
kes_received'])
```

Out[30]:

	age friend_count		likes	likes_received	tenure	
	gender					
•	female	36.229788	233.217052	263.762409	238.027585	559.997599
	male	32.170928	153.469680	81.970612	62.253801	473.570250

In [31]:

```
for i in df_cat.columns:
    sns.barplot(df_cat[i].value_counts().index,df_cat[i].value_counts()).set_title(i)
    plt.show()
```


In [32]:

```
# Percentage of Boomers(age-[50-70]), Millennials([30-50]), Post_War([more than 70]) ,You
th([upto 30]) among female, male gender catagory
pd.pivot_table(df, index = 'gender', values = ['Youth', 'Millennials', 'Boomers', 'Post_War
'])
```

Out[32]:

	Boomers	Millennials	Post_War	Youth
gender				
female	0.223916	0.224933	0.042121	0.509030
male	0.136162	0.230223	0.026035	0.607581

3) Analysis based on gender of the users

In [33]:

```
df.describe()
```

Out[33]:

	userid	age	dob_day	dob_year	dob_month	tenure	friend_count	friendships_initiate
count	9.409000e+04	94090.000000	94090.000000	94090.000000	94090.000000	94090.000000	94090.000000	94090.0000
mean	1.597187e+06	33.823892	14.529068	1979.176108	6.287097	508.767648	185.946668	103.1673
std	3.441226e+05	17.153293	8.992253	17.153293	3.521267	427.932070	371.645301	184.3418
min	1.000008e+06	13.000000	1.000000	1923.000000	1.000000	0.000000	0.000000	0.0000
25%	1.298914e+06	20.000000	7.000000	1967.000000	3.000000	221.000000	29.000000	16.0000
50%	1.596143e+06	27.000000	14.000000	1986.000000	6.000000	399.000000	78.000000	44.0000
75%	1.896004e+06	46.000000	22.000000	1993.000000	9.000000	640.000000	195.000000	111.0000
max	2.193542e+06	90.000000	31.000000	2000.000000	12.000000	2595.000000	4917.000000	4144.0000
4]				Þ

• What is composition of male and female users?

```
In [34]:
```

```
df.columns
Out[34]:
'mobile likes', 'mobile likes received', 'www likes',
    'www likes received', 'Youth', 'Millennials', 'Boomers', 'Post War'],
    dtype='object')
In [35]:
```

```
# Number of males and females
df.gender.value counts()
```

Out[35]:

55772 male female 38318

Name: gender, dtype: int64

In [36]:

```
# quick look at the statistics values
df.agg(
            "age": ["min", "max", "median", "mean"],
            "tenure": ["min", "max", "median", "mean"],
            "friend_count": ["min", "max", "median", "mean"],
           "likes": ["min", "max", "median", "mean"],
"likes_received": ["min", "max", "median", "mean"],
"mobile_likes": ["min", "max", "median", "mean"],
          "www likes": ["min", "max", "median", "mean"]
```

Out[36]:

		age	tenure	friend_count	likes	likes_received	mobile_likes	www_likes
	min	13.000000	0.000000	0.000000	0.000000	0.00000	0.00000	0.000000
	max	90.000000	2595.000000	4917.000000	25111.000000	45633.00000	25111.00000	14865.000000
me	edian	27.000000	399.000000	78.000000	10.000000	8.00000	4.00000	0.000000
r	nean	33.823892	508.767648	185.946668	156.005027	133.83739	106.47665	49.528313

In [37]:

calculating average values of users on basis of their gender for reference
df.groupby(['gender']).mean()

Out[37]:

	userid	age	dob_day	dob_year	dob_month	tenure	friend_count	friendships_initiated	lik
gende	r								
femal	e 1.597815e+06	36.229788	15.047054	1976.770212	6.438384	559.997599	233.217052	111.719323	263.7624
mal	e 1.596755e+06	32.170928	14.173187	1980.829072	6.183156	473.570250	153.469680	97.291723	81.970€
4									Þ

Which category of gender has more friends?

In [38]:

```
# We can see from the table that Female-Youth catagory has the highest friend_count and M
ale-Millennials has least
pd.pivot_table(df, index=['gender','Youth','Millennials','Boomers','Post_War'] ,values =
['friend_count'])
```

Out[38]:

friend_count

gender	Youth	Millennials	Boomers	Post_War	
female	0	0	0	1	148.134449
			1	0	120.656993
			1	0	0
	1	0	0	0	337.323507
male	0	0	0	1	187.473829
		1	1	0	117.945878
			0	0	92.313162
	1	0	0	0	183.146934

Which category of gender initiated more friendships?

In [39]:

```
# We can see from the table that Female-Youth catagory has the highest friendships_initia
ted
pd.pivot_table(df, index=['gender','Youth','Millennials','Boomers','Post_War'] ,values =
'friendships_initiated')
```

Out[39]:

friendships_initiated

	gender	Youth	Millennials	Boomers	Post_War																		
	female	0	0	0	1	65.798017																	
				1	0	63.031002																	
			1	0	0	70.051166																	
		1	1	1	1	1	1	1	0	0	0	155.349193											
	male	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	91.732782
											1	0	64.744930										
			1	0	0	55.102414																	

1 0 0 0 120.810069 friendships_initiated

What is the distribution of tenure across different categories of gender?

```
In [40]:
```

```
# As we can see both female/male-Post war group has been on facebook around same tenure(n
o of days)
pd.pivot_table(df, index=['gender','Youth','Millennials','Boomers','Post_War'] ,values =
'tenure')
```

Out[40]:

n	

gender	Youth	Millennials	Boomers	Post_War	
female	0	0	0	1	977.755886
			1	0	823.037296
		1	0	0	543.437754
	1	0	0	0	417.038708
male	0	0	0 0	1	998.880165
		1	1	0	766.218199
			0	0	473.839875
	1	0	0	0	385.375111

4) Analysis based on the least active users on Facebook

How many users have no friends?

```
In [41]:
```

```
(df['friend_count'] == 0).sum()
```

Out[41]:

1952

How many users did not like any posts?

```
In [42]:
```

```
(df['likes'] == 0).sum()
Out[42]:
```

21831

How many users did not receive any likes

```
In [43]:
```

```
(df['likes_received'] == 0).sum()
```

Out[43]:

23923

5) Analysis based on the user accessibility (Mobile Devices vs. Web Devices)

what is the average number of posts liked by users (based on gender) through web vs. mobile devices?

In [44]:

We can see significantly there are much more mobile users than web users, hence posts l
iked by mobile user are more.
pd.pivot_table(df, index=['gender','Youth','Millennials','Boomers','Post_War'] ,values =
['likes','mobile_likes','www_likes'])

Out[44]:

likes mobile_likes www_likes

gender	Youth	Millennials	Boomers	Post_War			
female	0	0	0	1	161.353160	85.483271	75.869888
			1	0	229.993240	124.070280	105.922960
		1	0	0	237.690567	175.563058	62.127277
	1	0	0	0	298.611997	206.509972	92.101923
male	0	0	0	1	84.835399	38.168733	46.666667
			1	0	94.271794	56.190809	38.080985
			0	0	63.476324	50.161215	13.315031
	1	0	0	0	86.098920	63.404828	22.694062

What is the average number of likes received by users (based on gender) through web vs. mobile devices?

In [45]:

Similary we can see likes received via mobile apps are significantly more.
pd.pivot_table(df, index=['gender','Youth','Millennials','Boomers','Post_War'] ,values =
['likes','mobile_likes_received','www_likes_received'])

Out[45]:

likes mobile_likes_received www_likes_received

gender	Youth	Millennials	Boomers	Post_War			
female	0	0	0	1	161.353160	42.689591	36.060719
			1	0	229.993240	67.609790	68.699883
		1	0	0	237.690567	102.573500	73.888966
	1	0	0	0	298.611997	193.296950	129.859523
male	0	0	0	1	84.835399	37.994490	45.059229
			1	0	94.271794	32.277719	26.910719
			0	0	63.476324	29.734579	18.404128
	1	0	0	0	86.098920	41.735614	25.662338

In []: