

PRODUCTION DES RAYONS X:

1)Définitions:

-Des rayonnements électromagnétiques situés entre les rayons gamma et les rayons UV utilisée en diagnostic et traitement sont à l'origine d'interaction électron-atome cible.

2) Types des rayonnements :

Caractéristiques (par collision) :	Freinage :
 Possible si Ec > EL Spectre de raies Caractéristique de la cible Produit d'un réarrangement 	.Au voisinage du noyau .Une grande énergie .Spectre continu → Si la cible mince(1 couche atomique): .E(hv)entre 0 et Ec1 ne peux pas la dépasser . Les photons de faible énergie sont beaucoup plus nombreux que les photons d'énergie élevée.
	Si la cible épaisse (superposition du plusieurs cible mince) : . L'énergie émise sera la somme des termes E0, E1, E2, . Flux énergétique ou puissance
	rayonnée : $\phi = \frac{1}{2}$ KIZ V ² $\phi = \frac{1}{2}$ KIZ E ₀ ² . I/ : ϕ / mais E=Cte . V/ : ϕ / et E/ . Rendement ρ d'émission X : ρ
	=φ/P = φ/V.I=1/2KZV .Direction de l'émission des rayons X de freinage : .Faible énergie :Production ⊥ .Haute énergie :Production //

Spectre vrai : .une **superposition** entre des photons de freinage et des photons caractéristique, consommée a la matière et mesurée **expérimentalement**.

Intérêt du filtre : .Permet l'absorption des faibles énergies sans sans contribuer a l'image

.Posées a **la sortie** des rayons