Trabajo 1

Estudiantes

Juan Camilo Gutierrez Martinez Maria Fernanda Calle Agudelo Jaider Castañeda Villa

Equipo 8

Docente

Julieth Veronica Guarin Escudero

Asignatura

Estadística II

Sede Medellín 30 de marzo de 2023

Índice

1.	Pre	gunta 1	3
	1.1.	Modelo de regresion	3
	1.2.	Significancia de la regresión	3
	1.3.	Significancia de los parámetros	4
	1.4.	Interpretación de los parámetros	5
	1.5.	Coeficiente de determinación múltiple \mathbb{R}^2	5
2.	Pre	gunta 2	6
	2.1.	Planteamiento pruebas de hipótesis y modelo reducido	6
	2.2.	Estadístico de prueba y conclusión	6
3.	Pre	gunta 3	7
	3.1.	Prueba de hipótesis y prueba de hipótesis matricial	7
	3.2.	Estadístico de prueba	7
4.	Pre	gunta 4	8
	4.1.	Supuestos del modelo	8
		4.1.1. Normalidad de los residuales	8

Índice de figuras

Índice de cuadros

1.	Valores coeficientes	3
2.	Tabla ANOVA para el modelo	4
3.	Resumen de los coeficientes	5
4.	Resumen tabla de todas las regresiones posibles	6

Se toma la base de datos 8, en la cual hay 5 variables regresoras, denominadas como:

Y: Riesgo de infección

 X_1 : Duración de la estadía

 X_2 : Rutina de cultivos

 X_3 : Número de camas

 X_4 : Censo promedio diario

 X_5 : Número de enfermeras

A partir de ello se plantea el siguiente modelo incial:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \beta_5 X_{5i} + \varepsilon_i; \ \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2); \ 1 \le i \le 65$$

1.1. Modelo de regresion

Al realizar el ajuste al modelo con el fin de obtener la relacion de la variable respuesta con las variables regresoras obtenemos los siguientes coeficientes respectivamente:

Cuadro 1: Valores coeficientes

	Valor del parametro
β_0	-0.7194
β_1	0.0986
β_2	0.0274
β_3	0.0628
β_4	0.0146
β_5	0.0024

La ecuación de la regresión ajustada es:

$$\hat{Y}_i = -0.7194 + 0.0986X_{1i} + 0.0274X_{2i} + 0.0628X_{3i} + 0.0146X_{4i} + 0.0024X_{5i}; \ 1 \le i \le 65X_{1i} + 0.0024X_{2i} + 0.0024X_{2$$

1.2. Significancia de la regresión

Se realizara un análisis de varianza para probar la significancia de los parametros, el cual se establece con el siguiente juego de hipotesis:

$$\begin{cases} H_0: \beta_1=\beta_2=\beta_3=\beta_4=\beta_5=0\\ H_a: \text{Algún } \beta_j \text{ distinto de 0 para j=1, 2,..., 5} \end{cases}$$

Cuyo estadístico de prueba es:

$$F_0 = \frac{MST}{MSE} \stackrel{H_0}{\sim} f_{5,59} \tag{1}$$

Se hace la comparacion con la distribucion f debido a que F_0 es un analisis de significancia globlal del modelo, o sea, que tanto cambia el modelo segun las variables regresoras, la distribucion f es un analisis de varianza segun la cantidad de parametros y datos, si $f \leq F_0$ significa que el modelo tiene una varianza mayor, por lo que, tiene alguna relacion con al menos una de las variables regresoras.

Ahora, se presenta la tabla Anova:

Cuadro 2: Tabla ANOVA para el modelo

	Sumas de cuadrados	Grados de libertad	Cuadrado medio	F_0	P-valor
Regresión Error	57.1974 58.4204	5 59	11.439480 0.990177	11.553	8.42693e-08

De la tabla Anova, se observa un valor P casi igual a 0, lo que permite rechazar la hipótesis nula en la que $\beta_j = 0$ con $1 \leq j \leq 5$, aceptando la hipótesis alternativa en la que algún $\beta_j \neq 0$, esto nos dice que hay al menos una relacion entre las variable respuesta y las regresoras permitiendonos asi concluir la significancia del modelo.

1.3. Significancia de los parámetros

Antes se realizo una prueba general del modelo con el fin de saber si nos proporcionaba alguna informacion, ahora se realizara una prueba de hipotesis sobre los coeficientes individuales del modelo con el fin de saber cuales son significativos o no, se establece primero el juego de hipotesis:

$$\begin{cases} H_0: \beta_j = 0 \\ H_a: \beta_j \neq 0 \ j = 1, 2, ..., 5 \end{cases}$$

El estadistico es el siguiente:

$$T_{j,0} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \stackrel{H_0}{\sim} t_{59} \tag{2}$$

En el siguiente cuadro se presenta información de los parámetros:

	\hat{eta}_j	$se(\hat{\beta_j})$	T_{0j}	P-valor
β_0	-0.7194	1.5430	-0.4662	0.6428
β_1	0.0986	0.0791	1.2462	0.2176
β_2	0.0274	0.0286	0.9580	0.3419
β_3	0.0628	0.0153	4.1097	0.0001
β_4	0.0146	0.0075	1.9512	0.0558
β_5	0.0024	0.0008	2.9449	0.0046

Cuadro 3: Resumen de los coeficientes

Usando el criterio de rechazo del valor-P $\alpha > Val - P$ determinaremos que valores son significativos y cuales no, dado que no nos dan un valor especifico para α diremos que $\alpha = 0.05$ viendo la tabla solo hay dos valores significativos, o sea, que rechazamos su hipotesis nula que son β_3 y β_5 ya que sus P-valores son menores que α .

1.4. Interpretación de los parámetros

 $\hat{\beta}_3$: Significa que por cada unidad que aumente X_3 la variable respuesta estimada \hat{Y}_i aumenta en 0.0628 unidades, esto en otras palabras es que a medida que hayan mas camas mas aumenta la riesgo de infeccion.

 $\hat{\beta}_5$: Significa que por cada unidad que aumente X_5 la variable respuesta estimada \hat{Y}_i aumenta en 0.0024 unidades, aqui nos dice que segun el aumento de la cantidad de enfermeras aumenta el riesgo de infeccion.

1.5. Coeficiente de determinación múltiple R^2

El modelo tiene un coeficiente de determinación múltiple $R^2 = 0.4947$, lo que significa que aproximadamente el 49.47 % esto nos dice la variabilidad del modelo, esto nos dice que tanto varia la variable dependiente esto se explica por las variables independientes del modelo el resto de la variabilidad es explicada por la variabilidad residual, o sea, $1 - R^2$.

2.1. Planteamiento pruebas de hipótesis y modelo reducido

Según el Cuadro 3, las covariables que tienen el valor-P más alto en el modelo son X_1, X_2, X_4 . Por medio de la tabla de todas las regresiones posibles se quiere hacer la siguiente prueba de hipótesis que permita concluir si el subconjunto de variables es significativo:

$$\begin{cases} \mathbf{H}_0: \beta_1=\beta_2=\beta_4=0\\ \mathbf{H}_1: \mathbf{Algún}\ \beta_j\ \mathrm{distinto}\ \mathrm{de}\ 0\ \mathrm{para}\ j=1,2,4 \end{cases}$$

Cuadro 4: Resumen tabla de todas las regresiones posibles

	Suma cuadratica de error	Covariables en el modelo
Modelo completo	58.420	X1 X2 X3 X4 X5
Modelo reducido	69.028	X3 X5

Un modelo reducido para la prueba de significancia del subconjunto es:

$$Y_i = \beta_0 + \beta_3 X_{3i} + \beta_5 X_{5i} + \varepsilon; \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 65$$

2.2. Estadístico de prueba y conclusión

Se construye el estadístico de prueba:

$$F_{0} = \frac{(SSE(\beta_{0}, \beta_{3}, \beta_{5}) - SSE(\beta_{0}, \dots, \beta_{5}))/3}{MSE(\beta_{0}, \dots, \beta_{5})} \stackrel{H_{0}}{\sim} f_{3,59}$$

$$= \frac{[69.028 - 58.420]/3}{0.990177}$$

$$= 3.5711$$
(3)

Si se compara el F_0 con $f_{0.95,3,59} = 2.7608$, se puede ver que $F_0 > f_{0.95,3,59}$.

Usando $\alpha = 0.05$:

Como $F_0 > f_{0.95,3,59}$, entonces se rechaza H_0 , por lo tanto, el subconjunto es significativo, en presencia de los demás parámetros.

Por lo anterior, llegamos a la conclusión que las variables no se pueden descartar del modelo porque el riesgo promedio de infección depende de al menos una de las variables presentes en el subconjunto.

3.1. Prueba de hipótesis y prueba de hipótesis matricial

Queremos probar si:

$$2\beta_1 = \beta_2$$
; $5\beta_3 = \beta_4$; $\beta_4 = \beta_5$

Para esto tenemos la siguiente prueba de hipótesis:

$$\begin{cases} H_0: 2\beta_1 = \beta_2; \ 5\beta_3 = \beta_4; \ \beta_4 = \beta_5 \\ H_1: 2\beta_1 \neq \beta_2 \ \text{\'o} \ 5\beta_3 \neq \beta_4 \ \text{\'o} \ \beta_4 \neq \beta_5 \end{cases}$$

Podemos reescribirlas de la siguiente manera:

$$\begin{cases}
H_0: 2\beta_1 - \beta_2 = 0; 5\beta_3 - \beta_4 = 0; \beta_4 - \beta_5 = 0 \\
H_1: 2\beta_1 - \beta_2 \neq 0; 5\beta_3 - \beta_4 \neq 0; \beta_4 - \beta_5 \neq 0
\end{cases}$$

Y ahora en términos matriciales:

$$\begin{cases} H_0 : \mathbf{L}\underline{\beta} = \underline{\mathbf{0}} \\ H_1 : \mathbf{L}\beta \neq \underline{\mathbf{0}} \end{cases}$$

Donde la matriz L está dada por:

$$L = \begin{bmatrix} 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Para obtener el modelo reducido operamos:

$$Y_i = \beta_0 + \beta_1 X_{1i} + 2\beta_1 X_{2i} + \beta_3 X_{3i} + 5\beta_3 X_{4i} + 5\beta_3 X_{5i} + \varepsilon_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 65$$

Agrupando, el MR estará dado por:

$$Y_i = \beta_0 + \beta_1 X_{1,2i}^* + \beta_3 X_{3,4,5i}^* + \varepsilon_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 65$$

Donde
$$X_{1,2i}^* = X_{1i} + 2X_{2i}$$
 y $X_{3,4,5i}^* = X_{3i} + 5X_{4i} + 5X_{5i}$

3.2. Estadístico de prueba

El estadístico de prueba F_0 es el siguiente:

$$F_0 = \frac{(SSE(MR) - SSE(MF))/3}{MSE(MF)} \stackrel{H_0}{\sim} f_{3,59}$$
 (4)

Reemplazando el SSE(MF) y el MSE(MF) conocidos:

$$F_0 = \frac{(SSE(MR) - 58.420)/3}{0.990177} \stackrel{H_0}{\sim} f_{3,59}$$
 (5)

- 4.1. Supuestos del modelo
- 4.1.1. Normalidad de los residuales