Taller #2 "Introducción a Arduino"

Estructura Básica para realizar los primeros ejemplos, en el taller utilizamos el arduino duemilanov ATmega 328, pero los pines son los mismos.

La interfaz se baja de http://arduino.cc/en/Guide/Windows. y seguir las instrucciones de http://arduino.cc/en/Guide/Windows.

Programación

```
1. Principal
void setup()
/*Aquí se anotan como va a iniciar el arduino, por ejemplo definir los
pines que son salidas y los que son entradas*/
}
void loop()
/*Aquí se escribe el programa*/
2. Digital
Para definir si un pin digital es entrada o salida se ocupa el comando
pinMode(N°Pin, INPUT/OUTPUT)
Ej:
        pinMode(9, INPUT);
                                       //Para Entrada
                                       //Para Salida
        pinMode(10, OUTPUT);
Para escribir en la salida digital se ocupa el comando digitalWrite(N°Pin, HIGH/LOW)
Ej:
        digitalWrite(10, HIGH);
                                       //Para 1
        digitalWrite(10, LOW);
                                       //Para 0
Para leer la entrada digital se ocupa el comando digitalRead(N°Pin)
Ej:
        digitalRead(9);
```

3. Análogo

Para utilizar las entradas análogas, no es necesario definir en el void setup() que es entrada. Para leer los datos se utiliza el comando analogRead(N°Pin), hay que tener en cuenta que los datos leídos están en el rango [0-1024].

```
Ej: analogRead(A0);
```

4. PWM (Pulse-Width Modulation)

Los pines [3,5,6,9,10,11] pueden ser utilizados como PWM. Para esto, al igual que la entrada analógica no se debe definir que es una salida en el void setup(), se usa el comando analogWrite(duty-cycle), donde el duty-cycle o ciclo de trabajo es definido en arudino por la siguiente tabla.

5. Extras

Para que el programa espere un tiempo antes de ejecutar la siguiente acción se puede utilizar el comando delay(tiempo_en_milisegundos), por ejemplo para esperar 1,5 segundos -> delay(1500);

Para cambiar de rango una variable se puede ocupar el comando map(variable_a_escalar, rango_inferior, rango_superior, rango_inferior_nuevo, rango_superior_nuevo), por ejemplo si ocupamos una entrada análoga, sabemos que su rango es [0-1024] y si necesitamos ocuparlas para cambiar el tiempo de encendido de un led y que varié entre 0.01s a 10s, entonces utilizaríamos

```
map(variable, 0, 1024, 10, 10000);
```

Siempre es bueno saber el valor de las variables cuando el programa se esta ejecutando, para esto hay que abrir el puerto serie

```
void setup() {
Serial.begin(9600);  //abre el puerto a 9600 bps
}
```

Luego escribiendo en el void loop() el comando Serial.print(lo_que_queremos_ver) podremos verlo en la consola. La consola se abre en la interfaz donde tiene una forma de lupa en la esquina superior derecha, se llama serial monitor.

*En el siguiente link podrán ver todos los comandos y funciones que hay http://arduino.cc/es/Reference/HomePage, pero con esto es suficiente para realizar los primeros ejemplos del taller.

Ejemplos

1. Elegir con un interruptor si controlar la intensidad o frecuencia de encendido de un led (Potenciometro de 10K- resistencia de 1K-2 Leds-1 interruptor)

2. Control de un Servo utilizando la librería (servo-potenciómetro de 10K)

- 3. Controlar velocidad de un motor con un potenciómetro (Transistor 2N2222-resistencia 1K-diodo 1N4148-potenciometro de 10K-Motor DC-batería para alimentar el motor)
- *Mucho cuidado al conectar los cables

