Generative Adversarial Network (GAN)

An evolution process

Algorithm

- Initialize generator and discriminator
- In each training iteration:

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects and low scores to generated objects.

Algorithm

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator

Algorithm Initialize θ_d for D and θ_g for G

- In each training iteration:
 - Sample m examples $\{x^1, x^2, ..., x^m\}$ from database
 - Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

- Learning Obtaining generated data $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}, \tilde{x}^i = G(z^i)$
 - Update discriminator parameters $heta_d$ to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^i) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^i)\right)$$

•
$$\theta_d \leftarrow \theta_d + \eta \nabla \tilde{V}(\theta_d)$$

• Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

Learning

• Update generator parameters $heta_g$ to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log \left(D\left(G(z^{i}) \right) \right)$$

• $\theta_{g} \leftarrow \theta_{g} - \eta \nabla \tilde{V}(\theta_{g})$

•
$$\theta_g \leftarrow \theta_g - \eta \nabla \tilde{V}(\theta_g)$$

GAN is sensitive to hyper-parameter tuning and its performance range is large. Different GANs' performances are similar

🕜 8.1. GAN.ipynb

sample_data

當案編輯檢視畫面插入執行階段工具說明無法儲存變更

generated-images-0201.png

8.1. GAN.ipynb

co 共用

檔案 編輯 檢視畫面 插入 執行階段 工具 說明 無法儲存變更

8.1. GAN.ipynb

CD 共用

檔案編輯檢視畫面插入執行階段工具說明無法儲存變更

Unsupervised conditional generation

Two approaches for unsupervised conditional generation

For texture or color change

Approach 2: Projection to Common Space

Larger change, only keep the semantics

Direct transform

Cycle GAN

