

IVS – Profilovanie programu

Projekt: Výpočet výberovej smerodajnej odchýlky

Tím:

OOP haters

Dávid Vihonský – xvihond00 Ľubomír Durkáč – xdurkal00 Pavol Mihálik – xmihalp01

Obsah

1	Úvod	2				
2	Použité nástroje					
3	Vizualizácia profilovania 3.1 Vstup: 10 čísel					
4	Analýza výsledkov					
5	Možnosti optimalizácie					
6	Záver					

1 Úvod

Cieľom tejto úlohy bolo vytvoriť program na výpočet výberovej smerodajnej odchýlky zo vstupnej postupnosti čísel. Program bol napísaný v jazyku C++ a profilovaný pomocou nástrojov **gprof** a **Callgrind**. Profilovanie prebiehalo pre vstupy rôznej veľkosti: 10, 1000 a 1000 000 čísel.

2 Použité nástroje

Profilovanie bolo realizované pomocou nasledujúcich nástrojov: **gprof** (základné profilovanie na úrovni funkcií), **valgrind** –**tool=callgrind** (detailná analýza počtu inštrukcií), **KCachegrind** (vizuálne zobrazenie volaní funkcií a ich záťaže).

3 Vizualizácia profilovania

3.1 Vstup: 10 čísel

3.2 Vstup: 1000 čísel

$3.3\quad {\rm Vstup:}\ 1\,000\,000\ {\rm \check{c}\acute{i}sel}$

Incl.	Self	Called	Function	Location
99.95	1.07		□ calculate_stddev()	stddev: stddev.cpp
3.25	0.66	2 000 000	■ Calculator::add(double,	stddev: mathlibrary.cpp
1.62	0.33	1 000 002	Calculator::mul(double,	stddev: mathlibrary.cpp
0.00	0.00	1	■ Calculator::root(double,	stddev: mathlibrary.cpp
0.00	0.00	23	■ Calculator::power(doubl	stddev: mathlibrary.cpp
0.00	0.00	24	■ Calculator::isInteger(do	stddev: mathlibrary.cpp
0.00	0.00	2	■ Calculator::div(double, d	stddev: mathlibrary.cpp
0.00	0.00	1	■ Calculator::sub(double,	stddev: mathlibrary.cpp

4 Analýza výsledkov

Z výstupov gprof aj Callgrind je zrejmé nasledovné:

- Pri malom počte vstupov je výpočtová záťaž zanedbateľná, strom volaní je malý a prehľadný.
- Pri 1000 vstupoch sa začínajú objavovať vyššie nároky na vstupnovýstupné operácie, no stále je výpočet dominantný.
- Pri 1 milióne vstupov dominuje čítanie vstupov cez std::cin, ktoré tvorí väčšinu vykonaných inštrukcií.
- Funkcia calculate_stddev() volá najčastejšie add() a mul(), čo je prirodzené pri výpočte priemeru a odchýlky.
- Výpočtové funkcie z knižnice sú efektívne, ale čítanie dát predstavuje najväčší problém z hľadiska výkonu.

5 Možnosti optimalizácie

- Nahrad'me pomalé čítanie std::cin za getline() + std::istringstream, čo by znížilo počet volaní I/O operácií.
- V prípade veľmi veľkých dát by pomohlo načítanie blokov naraz do pamäte.
- Výpočet súčtov a priemerov by mohol byť rozdelený do paralelných častí napríklad pomocou OpenMP.

6 Záver

Profilovanie potvrdilo, že výpočtová časť programu je efektívna, avšak pri veľkých dátach sa ako hlavný problém ukázalo pomalé načítavanie vstupov. Napriek tomu program zvláda aj milión vstupov bez problémov a jeho výstupy sú správne. S navrhnutými optimalizáciami by bolo možné ešte výraznejšie zlepšiť výkon pri spracovaní veľkých súborov.