Greeting

- Good morning, dear members of the examination committee (and dear audience).
- My name is Martin Beneš.
- Welcome to my bachelor thesis defense.

Assignment

- Study the PIR sensors and recognition/classification.
- Design the theoretical system, using the PIR sensor data, scanning the situation, possibly the count of people.
 - Predefined fuzzy logic system
 - Artificial learning system
- Implement the described algorithm.
 - Verify its functionality on real situation.
- Sum up the result.

Design

Hardware

- Sensor device (B+B Sensors:PIR STD, NodeMCU)
 - ESP8266 (WiFi), mDNS, HTTP
- Classification server (software implemented)

Software

- Sensor device (C++/Arduino)
 - Sensing, homogenous segmentation
- Monitor
 - Python3 = easy prototyping
 - NumPy, SciPy, scikit
 - MatPlotLib, PySerial
 - Presentation, (fusion)

Feature extraction

- CWT = edge function
- Segment borders (extremes), segmentation
- Artefacts
 - Merging the segments using fuzzy system
- Features
 - Mean
 - Variance
 - Scale of interpolated line
 - Length of artefact

Classifier

- Based on linear regression
 - Multiple classifiers, each determining one attribute
 - Distance
 - Orientation
 - Side
 - **-** ...
- Spacial model of sensed area = matrix of fuzzy values
 - o Formula for the index value from the classifier outputs
 - Index has unique vector of coefficients for each classifier
 - Indices do not separate the space homogenously

Training

- Manual labelling
 - Reference of synchronized video frame
- Rather inaccurate
- Definitely a room for improvement

Postprocessing

- Localization = cluster analysis
 - o K-means vs. Partitioning around medoids
- Counting the people = minimal within-cluster sum of squares

Implementation

- Sensor device
 - \circ Sensor = PIR STD (B+B Sensors)
 - MCU = NodeMCU
 - ESP8266 = WiFi
 - mDNS and HTTP
 - Programmed in C++/Arduino
- Classification server
 - O Monitor (software) = Python
 - Number of libraries = easy prototyping
 - NumPy, SciPy, scikit
 - MatPlotLib
 - PySerial
 - Linux/Bash used as well

Results

- Posterior probability (percentage) of partial classifiers
- Evaluation:
 - O How many positive samples were classified positive?
- Possible improvements to the future
 - Change the labelling method
 - Usage of multiple sensors
 - Fusion described theoretically, but not implemented