Spark for Big Data

Nicolas Courty Master 1 info

Outline

- Apache Spark and Spark Resilient Distributed Datasets (RDD)
- Spark context, Transformation and Actions
- RDD Partitions
- Page rank (again)

What is Spark?

- Fast, expressive cluster computing system compatible with Apache Hadoop
 - Works with any Hadoop-supported storage system (HDFS, S3, Avro, ...)
- Improves efficiency through:
 - In-memory computing primitives

→ Up to 100× faster

- General computation graphs
- Improves usability through:
 - Rich APIs in Java, Scala, Python

→ Often 2-10× less code

Interactive shell

Apache Spark and PySpark

- Apache Spark is written in Scala programming language that compiles the program code into byte code for the JVM for spark big data processing.
- The open source community has developed a wonderful utility for spark python big data processing known as PySpark.
- How to run it ?
 - Local multicore: just a library in your program
 - EC2: scripts for launching a Spark cluster
 - Private cluster: Mesos, YARN, Standalone Mode

Key Idea

Work with distributed collections as you would with local ones

- Concept: resilient distributed datasets (RDDs)
 - Immutable collections of objects spread across a cluster
 - Built through parallel transformations (map, filter, etc)
 - Automatically rebuilt on failure
 - Controllable persistence (e.g. caching in RAM)

Transformation and Actions in Spark

- RDDs have actions, which return values, and transformations, which return pointers to new RDDs.
- RDDs' value is only updated once that RDD is computed as part of an action

- Lazy operations to build RDDs from other RDDs
- Lazy Evaluation: the ability to lazily evaluate code, postponing running a calculation until absolutely necessary.

Example: Mining Console Logs

Load error messages from a log into memory, then interactively search for patterns

RDD Fault Tolerance

RDDs track the transformations used to build them (their *lineage*) to recompute lost data

E.g:

Learning Spark

- Easiest way: Spark interpreter (spark-shell or pyspark)
 - Special Scala and Python consoles for cluster use
- Runs in local mode on 1 thread by default, but can control with MASTER environment var:

```
MASTER=local ./spark-shell # local, 1 thread
MASTER=local[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # Spark standalone cluster
```

Outline

- Apache Spark and Spark Resilient Distributed Datasets (RDD)
- Spark context, Transformation and Actions
- RDD Partitions
- Page rank (again)

SparkContext

- SparkContext is the object that:
 - manages the connection to the clusters in Spark
 - coordinates running processes on the clusters
 - connects to cluster managers, which manage the actual executors that run the specific computations

Scala

Python

Create a SparkContext

```
import spark.SparkContext
import spark.SparkContext.
val
                        SparkContext("masterUrl",
                                                                    "sparkHome",
                                                        "name",
                 new
Seq("app.jar"))
                                                                       Spark install
                           Cluster URL, or local
                                                          App
    List of JARs with
                                                                      path on cluster
                                / local[N]
                                                         name
    app code (to ship)
import spark.api.java.JavaSparkContext;
```

```
JavaSparkContext sc = new JavaSparkContext(
          "masterUrl", "name", "sparkHome", new String[] {"app.jar"}));
```

```
from pyspark import SparkContext
sc = SparkContext("masterUrl", "name", "sparkHome", ["library.py"]))
```

Complete App: Python

```
import sys
from pyspark import SparkContext

if __name__ == "__main__":
    sc = SparkContext( "local", "WordCount", sys.argv[0], None)
    lines = sc.textFile(sys.argv[1])

lines.flatMap(lambda s: s.split(" ")) \
    .map(lambda word: (word, 1)) \
    .reduceByKey(lambda x, y: x + y) \
    .saveAsTextFile(sys.argv[2])
```

Creating RDDs

```
# Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

# Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
```

Transformation and Actions

```
Spark Transformations
                             Spark Actions
                             reduceByKey()
map()
flatMap()
                             collect()
filter()
                             count()
mapPartitions()
                             take()
                             takeOrdered()
```

map() and flatMap()

• map()

map() transformation applies changes on each line of the RDD and returns the transformed RDD as iterable of iterables i.e. each line is equivalent to a iterable and the entire RDD is itself a list

flatMap()

This transformation apply changes to each line same as map but the return is not a iterable of iterables but it is only an iterable holding entire RDD contents.

(disgression) Iterables, generator in Python

A generator is an on the fly list

```
mygenerator = (x*x for x in range(3))
  for i in mygenerator:
    print(i)
0
1
4
```

- Cannot perform mygenerator = (x*x for x in range(3)) for a second time!
- Yield is the key word for defining function as generator

(disgression) Iterables, generator in Python

 An iterable is an object where you can read its items one by one

```
mylist = [1, 2, 3]
for i in mylist:
   print(i)
1
2
3
```

Same for a a list comprehension

```
mylist = [x*x for x in range(3)]
for i in mylist:
   print(i)
0
1
4
```

map() and flatMap() examples

```
• lines.take(2)
['#good d#ay #','#good #weather']
• words=lines.map(lambda lines: lines.split(' '))
[['#good', 'd#ay', '#'],
    ['#good', '#weather']]
• words=lines.flatMap(lambda lines: lines.split(' '))
['#good', 'd#ay', '#', '#good', '#weather']
```

Instead of using an anonymous function (with the lambda keyword in Python), we can also use named function

anonymous function is easier for simple use

Filter()

 Filter() transformation is used to reduce the old RDD based on some condition.

How to filter out hashtags from words

```
hashtags = words.filter(lambda word: "#" in word)
['#good', 'd#ay', '#', '#good', '#weather']
Which is wrong.
```

```
hashtags = words.filter(lambda word:
word.startswith("#")).filter(lambda word: word != "#")
['#good', '#good', '#weather']
```

reduceByKey()

 reduceByKey(f) combines tuples with the same key using the function we specify f.

```
hashtagsNum = hashtags.map(lambda word: (word, 1))
[('#good',1), ('#good', 1), ('#weather', 1)]
hashtagsCount = hashtagsNum.reduceByKey(lambda a,b: a+b)
or
hashtagsCount = hashtagsNum.reduceByKey(add)
[('#good',2), ('#weather', 1)]
```

Example: Word Count

Multiple Datasets

Controlling the Level of Parallelism

 All the pair RDD operations take an optional second parameter for number of tasks

```
words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)
```

Using Local Variables

 External variables you use in a closure will automatically be shipped to the cluster:

```
query = raw_input("Enter a query:")
pages.filter(lambda x: x.startswith(query)).count()
```

- Some caveats:
 - Each task gets a new copy (updates aren't sent back)
 - Variable must be Serializable (Java/Scala) or Pickle-able (Python)
 - Don't use fields of an outer object (ships all of it!)

Outline

- Apache Spark and Spark Resilient Distributed Datasets (RDD)
- Spark context, Transformation and Actions
- RDD Partitions
- Page rank (again)

RDD Partitions

- Map and Reduce operations can be effectively applied in parallel in apache spark by dividing the data into multiple partitions.
- A copy of each partition within an RDD is distributed across several workers running on different nodes of a cluster so that in case of failure of a single worker the RDD still remains available.

mapPartitions()

 mapPartitions(func) transformation is similar to map(), but runs separately on each partition (block) of the RDD, so func must be of type Iterator<T> => Iterator<U> when running on an RDD of type T.

Example-1: Sum Each Partition

```
def f(iterator):
    for x in iterator:
        print(x)
        print "==="
def adder(iterator):
    yield sum(iterator)
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
rdd = sc.parallelize(numbers, 3)
rdd.foreachPartition(f)
10
5
rdd.mapPartitions(adder).collect()
[6, 15, 34]
```

Example-2: Find Minimum and Maximum

```
def minmax(iterator):
    firsttime = 0
    min = 0;
    max = 0;
    for x in iterator:
        if (firsttime == 0):
            min = x;
            max = x;
            firsttime = 1
        else:
            if x > max:
               max = x
            if x < min:
                min = x
    return (min, max)
data = [10, 20, 3, 4, 5, 2, 2, 20, 20, 10]
print minmax(data)
[2, 20]
```

```
def f(iterator):
    for x in iterator:
        print(x)
    print "==="
data = [10, 20, 3, 4, 5, 2, 2, 20, 20, 10]
rdd = sc.parallelize(data, 3)
rdd.foreachPartition(f)
10
20
3
4
5
2
2
20
20
10
minmaxlist = rdd.mapPartitions(minmax).collect()
minmaxlist
[3, 20, 2, 5, 2, 20]
min(minmaxlist)
max(minmaxlist)
20
```

Outline

- Apache Spark and Spark Resilient Distributed Datasets (RDD)
- Spark context, Transformation and Actions
- RDD Partitions
- Page rank (again)

Why PageRank?

- Good example of a more complex algorithm
 - Multiple stages of map & reduce
- Benefits from Spark's in-memory caching
 - Multiple iterations over the same data

Basic Idea

- Give pages ranks (scores) based on links to them
 - Links from many pages → high rank

Link from a high-rank page → high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / |neighbors_p| to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / |neighbors_p| to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / |neighbors_p| to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / |neighbors_p| to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / |neighbors_p| to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times \text{contribs}$

Python Implementation

PageRank Performance

Other Iterative Algorithms

