Question number	Scheme	Marks
4 (a)	$\alpha + \beta = -2 \qquad \alpha \beta = \frac{3}{2}$ $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$	B1
		M1
A.T. T.	$(-2)^2 - 2\left(\frac{3}{2}\right) = 4 - 3 = 1 *$	M1 A1cso (4)
ALT	$2\alpha^2 + 4\alpha + 3 = 0$ and $2\beta^2 + 4\beta + 3 = 0$	{B1}
	$2 \alpha^2 + \beta^2 + 4 \alpha + \beta + 6 = 0$	{M1}
	$\alpha^2 + \beta^2 = -2 -2 -3 = 1*$	{M1} {A1cso} (4)
(b)	$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)(\alpha^2 + \beta^2) - 2\alpha^2\beta^2$	M1
	$1 \times 1 - 2\left(\frac{3}{2}\right)^2 = -\frac{7}{2}$	M1 A1 (3)
ALT	$\alpha^{2} + \beta^{2}^{2} = 1 = \alpha^{4} + 2\alpha^{2}\beta^{2} + \beta^{4} = \alpha^{4} + \beta^{4} + 2 \times \frac{9}{4}$	{M1}
	$\alpha^4 + \beta^4 = 1 - \frac{9}{2} = -\frac{7}{2}$	{M1} {A1} (3)
(c)	Product of the roots: $\alpha^4 \beta^4 = \left(\frac{3}{2}\right)^4 = \frac{81}{16}$	M1
	(Sum of the roots: $\alpha^4 + \beta^4 = -\frac{7}{2}$)	
	$16x^2 + 56x + 81 = 0$	M1 A1ft (3)
	Total 10 ma	

Part	Mark	Notes
(a)	B1	For $\alpha + \beta = -2$ and $\alpha\beta = \frac{3}{2}$
	M1	For $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$ This must be correct
	M1	For substituting their sum and product into their expansion for $\alpha^2 + \beta^2$ $(-2)^2 - 2\left(\frac{3}{2}\right)$
	A1cso	For obtaining the given expression $\alpha^2 + \beta^2 = 1$
	ALT	
	B1	For $2\alpha^2 + 4\alpha + 3 = 0$ and $2\beta^2 + 4\beta + 3 = 0$
	M1	For $2 \alpha^2 + \beta^2 + 4 \alpha + \beta + 6 = 0$
	M1	For $-2 - 2 - 3$
	A1cso	For obtaining the given expression $\alpha^2 + \beta^2 = 1$
(b)	M1	For $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)(\alpha^2 + \beta^2) - 2\alpha^2\beta^2$ This must be correct
	M1	For substituting $\alpha^2 + \beta^2 = 1$ and their product from (a) into their expansion for $\alpha^4 + \beta^4$ $\alpha^4 + \beta^4 = 1 \times 1 - 2\left(\frac{3}{2}\right)^2$
	A1	For the correct value $\alpha^4 + \beta^4 = -\frac{7}{2}$
ALT		
	M1	For $1 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$
	M1	For $1 = \alpha^4 + \beta^4 + 2 \times \frac{9}{4}$
	A1	For $\alpha^4 + \beta^4 = -\frac{7}{2}$
(d)	M1	For product of the roots: $\alpha^4 \beta^4 \left(= \left(\frac{3}{2} \right)^4 = \frac{81}{16} \right)$
	M1	For use of x^2 – (their sum) x + (their product) = [0]
	A1	For $16x^2 + 56x + 81 = 0$ Must include = 0