FCC PART 15.249 EMI MEASUREMENT AND TEST REPORT For

Shenzhen Juneed Technology Co., Ltd. Rm 20C,Guang Hao International Center,Mei Long Rd.,Longhua New Dist. Shenzhen,China

FCC ID:2ACOVMAIN

Trade: N/A

This Report Con- Original Report	cerns:	Equipment Type: 2.1CH Wireless subwoofer soundbar		
Test Engineer:	Lisa Chen	Lish Chon		
Report No.:	BSL20150919-2			
Receive EUT	September 01, 2015/			
Date/Test Date:	September 01- September 19, 2015			
Reviewed By:	Mike moo	dukemoo		
Prepared By:	BSL Testing (NO. 24, ZH Park Tel: 86- 755-265 Fax: 86- 755-265	, Nantou, Shenzhen, 518000 China 08703		

TABLE OF CONTENTS

1.	GEN	ERAL INFORMATION	3
	1.1.	Report information	3
	1.2.	Measurement Uncertainty	3
2.	PRO	DUCT DESCRIPTION	4
	2.1.	EUT Description	4
	2.2.	Block Diagram of EUT Configuration	5
	2.3.	Support Equipment List	
	2.4.	Test Conditions	
3.	TEST	T RESULTS SUMMARY	6
	Modi	ifications	6
4.	TEST	Γ EQUIPMENT USED	7
5.	ANT	ENNA REQUIREMENT	8
	5.1.	Standard Applicable	8
	5.2.	Antenna Connected Construction	
	5.3.	Result	8
6.	CON	IDUCTED POWER LINE TEST	9
	6.1.	Test Equipment	9
	6.2.	Test Procedure	
	6.3.	Test Setup.	
	6.4.	Conducted Power line Emission Limits	
	6.5.	Conducted Power Line Test Result	
7.		OIATED EMISSION TEST	
	7.1.	Test Equipment	
	7.2.	Test Procedure	
	7.3.	Radiated Test Setup	
	7.4. 7.5.	Radiated Emission Limit	
0		D EDGE	
8.			
	8.1. 8.2.	Test Presedure	
	8.2. 8.3.	Test Procedure	
	8.4.	Band Edge Test Result	
9.		B BANDWIDTH	
J.	9.1.	Test Equipment	
	9.1. 9.2.	Test Procedure	
	9.2. 9.3.	Limit	
	9.4.	Test Result /Plots	
	~···	/	· · · · — —

1. GENERAL INFORMATION

1.1. Report information

- 1.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that BSL approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that BSL in any way guarantees the later performance of the product/equipment.
- 1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, BSL therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 1.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through BSL, unless the applicant has authorized BSL in writing to do so.

Test Facility -

The test site used to collect the radiated data is located on the address of

BSL Testing Co.,LTD.

(FCC Registered Test Site Number: 191509) on

NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

The Test Site is constructed and calibrated to meet the FCC requirements.

1.2. Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	+/-1.25dB
2	RF Power, Conducted	+/-0.20dB
3	Spurious emissions, conducted	+/-0.33dB
4	All emissions, radiated (<1G)	+/-3.47dB
5	All emissions, radiated (>1G)	+/-3.82dB
6	Temperature	+/-0.5°CdB
7	Humidity	+/-2%

2. PRODUCT DESCRIPTION

2.1. EUT Description

Description : 2.1CH Wireless subwoofer soundbar

Applicant : Shenzhen Juneed Technology Co., Ltd.

Rm 20C, Guang Hao International Center, Mei Long Rd., Longhua New Dist. Shenzhen, China

Manufacturer : Dongguan Juneed Technology Co., Ltd

4th Flr,Bldg A6,Tai He Mei Industrial Park,Chun Feng Road 128,Long Bei

Ling, Tangxia, Dongguan, China

Model Number : JN-1032,Bauhn SB-1

Modulation type : GFSK

BT version : 2.1 standard BT GFSK (1MBit/s, 79 channels), software not supported EDR.(disabled by software)

Antenna gain : 0dBi

Antenna type : PCB Antenna

Frequency : 2402-2480MHz

Number of Channels : 79 Channels

Power Supply : DC 21V adapter

Hardware version : POWER PCB V0.1, 2.4G RF PCB V4.0, BT PCB V1.1,OTHER PCB V0.2

Software version : V1.1
Serial Number : 20150919

Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2402	27	2429	54	2456			
01	2403	28	2430	55	2457			
02	2404	29	2431	56	2458			
03	2405	30	2432	57	2459			
04	2406	31	2433	58	2460			
05	2407	32	2434	59	2461			
06	2408	33	2435	60	2462			
07	2409	34	2436	61	2463			
08	2410	35	2437	62	2464			
09	2411	36	2438	63	2465			
10	2412	37	2439	64	2466			
11	2413	38	2440	65	2467			
12	2414	39	2441	66	2468			
13	2415	40	2442	67	2469			
14	2416	41	2443	68	2470			
15	2417	42	2444	69	2471			
16	2418	43	2445	70	2472			
17	2419	44	2446	71	2473			
18	2420	45	2447	72	2474			
19	2421	46	2448	73	2475			
20	2422	47	2449	74	2476			
21	2423	48	2450	75	2477			
22	2424	49	2451	76	2478			
23	2425	50	2452	77	2479			
24	2426	51	2453	78	2480			
25	2427	52	2454					
26	2428	53	2455					

The series products, model name: JN-1032,Bauhn SB-1 have the same circuit diagram,PCB layout, software, RF Module, Features and functionality. The differences are the model name, so, we select JN-1032 to test.

2.2. Block Diagram of EUT Configuration

Figure 1 EUT Setup

2.3. Support Equipment List

Name	Model No	S/N	Manufacturer	Used (Y/N)
AC/DC adapter	ZF120A-2103000	-	Juneed	Y
-	-	-	-	-

2.4. Test Conditions

It must provide an operational voltage (21V DC by adapter) to turn on the 2.1CH Wireless subwoofer soundbar and on one certain channel in service mode by means of company proprietary software.

the test software name: 5876a test Software.

After the preliminary test, we found to emit the worst emissions and therefore had been tested under operating condition.

The EUT Themselves can enter the test mode.

Power setting parameters For mode:

GFSK (PK Power:0dbm).

For the EUT was tested with Channel Frequency 2402MHz, 2440MHz and 2480MHz.

3. TEST RESULTS SUMMARY

FCC 15 Subpart C, Paragraph 15.249:2013

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	Compliant
Section 15.249(a)	The fundamental field strength and the harmonics	Compliant
Section 15.209 Section 15.249(d)	Radiated Emission	Compliant
Section 15.249(d)	Band Edge	Compliant
Section 15.203	Antenna Requirement	Compliant
Section 15.249	20dB Bandwidth	Compliant

Remark: "N/A" means "Not applicable".

Statement: All testing was performed using the test procedures found in ANSI C63.4-2003.

Modifications

No modification was made.

4. TEST EQUIPMENT USED

EQUIPMENT/FACI LITIES	MANUFACTUR ER	MODEL	SERIAL NO.	DATE OF CAL.	CAL. INTERV AL
3m Semi-Anechoic Chamber	Chengyu Electron	9 (L)*6 (W)* 6 (H)	BSL086	Aug. 23 2015	1 Year
EMI Test Receiver	Rohde & Schwarz	ESCI3	BSL001	Sep. 28 2014	1 Year
BiConiLog Antenna	Rohde & Schwarz	HL562 (30MHz-3GHz)	BSL009	Sep. 28 2014	1 Year
Double -ridged waveguide horn	Rohde & Schwarz	BBHA9120D (1-18GHz)	BSL008	Aug. 27 2015	1 Year
Horn Antenna	AHS	SAS-574 (18GHz-40GHz)	BSL072	Dec. 28 2014	1 Year
Cable	PUTIANLE	BSL045 (9 kHz-40GHz)	BSL045	Aug. 27 2015	1 Year
Cable	PUTIANLE	BSL046 (9 kHz-40GHz)	BSL046	Aug. 27 2015	1 Year
Cable	PUTIANLE	BSL047 (9 kHz-40GHz)	BSL047	Aug. 27 2015	1 Year
Amplifier(100kHz-40GH z)	R&S	SMR40	BSL007	Sep. 28 2014	1 Year
Band filter	Amindeon	82346	BSL049	Aug. 27 2015	1 Year
Active Loop Antenna	Schwarzbeck	FMZB1519 (9 kHz - 30 MHz)	BSL011	Sep. 28 2014	1 Year
Coaxial Switch	YUANFANG	TA218B	BSL004	Aug. 27 2015	1 Year
Spectrum analyzer	Rohde & Schwarz	FSP40	BSL049	Sep. 28 2014	1 Year
Shielding Room	zhongyu Electron	7.0(L)x3.0(W)x3.0(H)	BSL085	Sep. 28 2014	1 Year
EMI Test Receiver	R&S	ESPI	BSL002	Sep. 28 2014	1 Year
10dB Pulse Limita	R&S	BSL003	BSL003	Sep. 28 2014	1 Year
Coaxial Switch	PUTIANLE	TA218B	BSL004	Aug. 27 2015	1 Year
LISN	Rohde & Schwarz	ESH3-Y5	BSL005	Sep. 28 2014	1 Year
Coaxial Cable	PUTIANLE	BSL048 (9 kHz-40GHz)	BSL048	Aug. 27 2015	1 Year
EMI TEST SOFTWARE	AUDIX	E3	N/A	N/A	N/A
the temporary antenna connector	BSL	BSL1005	BSL1005	Aug. 27 2015	1 Year

the temporary antenna connector model number BSL1005, impedance 50Ω , cable loss 0.5 dB. Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2. Antenna Connected Construction

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The antenna used for this product is a PCB ANT .The antenna is permanently attached. Refer to the product photo.

5.3. Result

Compliance

6. CONDUCTED POWER LINE TEST

6.1. Test Equipment

Please refer to section 4 this report.

6.2. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uh coupling inpedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uh coupling inpedance with 50ohm termination.

Both sides of A.C. Line are check for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ASIN C63.4:2003 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

6.3. Test Setup

For the actual test configuration, Please refer to the related items-Photos of testing

6.4. Conducted Power line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)				
Frequency Range (MHZ)	Class A OP/AV	Class B OP/AV		
0.15-0.5	79/66	65-56/56-46		
0.5-5.0	73/60	56-46		
5.0-3.0	73/60	60-50		

Note: In the above table, the tighter limit applies at the band edges.

6.5. Conducted Power Line Test Result

Pass 2441MHz Transmitting(Worst case mode)

power test voltage:AC 120V/60Hz

Condition: : RBW:9.000KHz VBW:30.000KHz

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
<u> </u>	MHz	dBuV	dBuV	dB		
1 2 3 Max 4 5	0. 150 0. 216 0. 377 0. 611 0. 697 3. 293	39.6 37.5 44.2 38.6 40.7 36.9	53.0 48.3	-15.5 -4.1 -7.4 -5.3	Average Average Average Average Average Average	LINE LINE LINE LINE LINE LINE LINE

Condition: : RBW:9.000KHz VBW:30.000KHz Limit Over

	Freq	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dBuV	dB		
1 2 3 4 5 Max 6 7	0. 152 0. 168 0. 202 0. 377 0. 771 3. 224 24. 790	49.9 52.0 49.3 52.0 50.7 48.8 45.8	65.1 63.5 58.3 56.0 56.0	-16.0 -13.1 -14.2 -6.3 -5.3 -7.2 -14.2	QP QP QP QP QP	LINE LINE LINE LINE LINE LINE LINE LINE

Condition: : RBW:9.000KHz VBW:30.000KHz

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
_	MHz	dBuV	dBuV	dB		
1 2 3 Max 4 5 6 7	0. 150 0. 226 0. 377 0. 614 0. 743 2. 809 24. 529	37.3 33.8 39.7 37.2 35.8 33.1 33.7	52.6 48.3 46.0 46.0 46.0	-18.8 -8.6 -8.8 -10.2 -12.9	Average Average Average Average Average Average Average	NEUTRAL NEUTRAL NEUTRAL NEUTRAL NEUTRAL NEUTRAL NEUTRAL NEUTRAL

Condition: : RBW:9.000KHz VBW:30.000KHz Limit Over

	Freq	Level	Line	Limit	Remark	Pol/Phase
_	MHz	dBuV	dBuV	dB		_
1 2 3 Max	0. 164 0. 228 0. 377	55. 1 53. 4 53. 6	62.5 58.3	-10.2 -9.1 -4.7	QP QP	NEUTRAL NEUTRAL NEUTRAL
4 5 6 7	0.654 2.554 14.828 24.529	50.1 48.6 42.7 47.9		-5.9 -7.4 -17.3 -12.1	QP QP	NEUTRAL NEUTRAL NEUTRAL NEUTRAL

7. RADIATED EMISSION TEST

7.1. Test Equipment

Please refer to section 4 this report.

7.2. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level.

Calibrated Loop antenna is used as receiving antenna for frequencies below 30MHz, Calibrated Bilog antenna is used as receiving antenna for frequencies between 30 MHz and 1 GHz, Calibrated Horn antenna is used as receiving antenna for frequencies above 1000MHz. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Peak detector and Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

Through three orthogonal axes to determine which attitude and equipment arrangement produces the highest emission relative to the limit. And X direction is worst mode.

7.3. Radiated Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.4. Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A. Fundamental and Harmonics Radiated Emissions 15.249(a) Limit

Fundamental Frequency	Field as treng	gth of Fundamental(3	3m)	Field as trength of Harmonics(3m)		
(MHZ)	mV/m	dBuV/m	dBuV/m		dBuV/m	
902-928	50	94(QP)	94(QP) 114(Peak)		54(AV)	74(Peak)
2400-2483.5	50	94(AV)	114(Peak)	500	54(AV)	74(Peak)

Note: (1) RF Voltage (dBuV)=20 log Voltage(uV)

- (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (3) The emission limit in this paragraph os based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

B. Spurious Radiated Emissions.

	Limit							
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	Measurement distance (m)	The final measurement in band 9-90kHz,				
0.009 - 0.490	2400/F(kHz)	/	300	110-490kHz and above 1000MHz is				
0.490 - 1.705	24000/F(kHz)	/	30	performed with				
1.705-30	30	29.5	30	Average detector. Except those				
30 - 88	100	40	3	frequency bands mention above, the				
88 - 216	150	43.5	3	final measurement for frequencies				
216 - 960	200	46	3	below 1000MHz is				
Above 960	500	54	3	performed with Quasi Peak detector.				

Note: (1) RF Voltage (dBuV)=20 log Voltage(uV)

- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distagnce refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.5. Radiated Emission Test Result

Pass

A. Fundamental Radiated Emissions Data

CH Low

Freq. (MHz)	Read Level (dBuV) AV/PK	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission (dBuV/m) AV/PK	HORIZ/ VERT	Limits (dBuV/m) AV/PK	Margin (dB)
2402	80.45/90.52	27.47	5.42	30.17	83.17/93.24	VERT	94/114	-10.83/-20.76
2402	82.56/92.41	27.47	5.42	30.17	85.28/95.13	HORIZ	94/114	-8.72/-18.87

CH Middle

Freq. (MHz)	Read Level (dBuV) AV/PK	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission (dBuV/m) AV/PK	HORIZ/ VERT	Limits (dBuV/m) AV/PK	Margin (dB)
2440	81.61/91.02	27.40	5.40	30.15	84.26/93.67	VERT	94/114	-9.74/-20.33
2440	82.79/92.63	27.40	5.40	30.15	85.44/95.28	HORIZ	94/114	-8.56/-18.72

CH High

Freq. (MHz)	Read Level (dBuV) AV/PK	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission (dBuV/m) AV/PK	HORIZ/ VERT	Limits (dBuV/m) AV/PK	Margin (dB)
2480	80.31/89.75	27.50	5.46	29.98	83.29/91.62	VERT	94/114	-10.71/-21.27
2480	82.25/91.7	27.50	5.46	29.98	85.23/94.68	HORIZ	94/114	-8.77/-19.32

Remark:

Final Emission = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

-	0 1	D .	1				D .
к	General	Rac	hatec	ΙHm	100	inne	I lata

For below 9kHz-30MHz Spurious

Freq. (MHz)	Emission(dBuV/m) PK / AV	Limits(dBuV/m) PK / AV	Margin (dB)
-	-	-	-
-	-	-	-

NI	~	+~
IN	()	10

	Emissions attenuated	l more than 20 dB	below the	permissible va	lue are not reported.
--	----------------------	-------------------	-----------	----------------	-----------------------

For 30M-1000MHz Spurious

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

2402MHz Transmitting(Worst case mode)

Freq	Line	Level	Limit	Kemark	Pol/Phase
MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		Hills (a)
30.853	40.0	36.2	-3.8	QP	HORIZONTAL
31.955	40.0	37.5	-2.5	QP	HORIZONTAL
122.834	43.5	30.2	-13.3	QP	HORIZONTAL
290.017	46.0	32.1	-13.9	QP	HORIZONTAL
341.979	46.0	34.7	-11.3	QP	HORIZONTAL
390.723	46.0	32.8	-13.2	QP	HORIZONTAL
893.857	46.0	38.3	-7.7	QP	HORIZONTAL
982.620	54.0	39.2	-14.8	QP	HORIZONTAL
	30, 853 31, 955 122, 834 290, 017 341, 979 390, 723 893, 857	MHz dBuV/m 30.853 40.0 31.955 40.0 122.834 43.5 290.017 46.0 341.979 46.0 390.723 46.0 893.857 46.0	MHz dBuV/m dBuV/m 30.853 40.0 36.2 31.955 40.0 37.5 122.834 43.5 30.2 290.017 46.0 32.1 341.979 46.0 34.7 390.723 46.0 32.8 893.857 46.0 38.3	MHz dBuV/m dBuV/m dB 30.853 40.0 36.2 -3.8 31.955 40.0 37.5 -2.5 122.834 43.5 30.2 -13.3 290.017 46.0 32.1 -13.9 341.979 46.0 34.7 -11.3 390.723 46.0 32.8 -13.2 893.857 46.0 38.3 -7.7	MHz dBuV/m dBuV/m dB 30.853 40.0 36.2 -3.8 QP 31.955 40.0 37.5 -2.5 QP 122.834 43.5 30.2 -13.3 QP 290.017 46.0 32.1 -13.9 QP 341.979 46.0 34.7 -11.3 QP 390.723 46.0 32.8 -13.2 QP 893.857 46.0 38.3 -7.7 QP

For 1000MHz-25000MHz Spurious

CH Low

Freq. (MHz)	Emission(dBuV/m) AV/PK	HORIZ/ VERT	Limits(dBuV/m) AV/PK	Margin (dB)
4804	37.66/47.59		54.0/74.0	-16.34/-26.41
7206	41.62/51.59	VERT	54.0/74.0	-12.38/-22.41
9608	39.61/49.61		54.0/74.0	-14.39/-24.39
4804	36.53/48.2		54.0/74.0	-17.47/-25.8
7206	44.07/54.07	HORIZ	54.0/74.0	-9.93/-19.93
9608	45.56/55.56		54.0/74.0	-8.44/-18.44

CH Middle

Freq. (MHz)	Emission(dBuV/m) AV/PK	HORIZ/ VERT	Limits(dBuV/m) AV/PK	Margin (dB)
4880	32.86/42.94		54.0/74.0	-21.14/-31.06
7320	38.75/48.7	VERT	54.0/74.0	-15.25/-25.3
9760	37.68/47.71		54.0/74.0	-16.32/-26.29
4880	32.94/42.97		54.0/74.0	-21.06/-31.03
7320	41.01/51.01	HORIZ	54.0/74.0	-12.99/-22.99
9760	45.75/55.74		54.0/74.0	-8.25/-18.26

CH High

11gii				
Freq. (MHz)	Emission(dBuV/m) AV/PK	HORIZ/ VERT	Limits(dBuV/m) AV/PK	Margin (dB)
4960	35.79/45.83		54.0/74.0	-18.21/-28.17
7440	39.66/49.66	VERT	54.0/74.0	-14.34/-24.34
9920	40.7/50.79		54.0/74.0	-13.3/-23.21
4960	35.06/45.06		54.0/74.0	-18.94/-28.94
7440	39.75/48.6	HORIZ	54.0/74.0	-14.25/-25.4
9920	41.75/50.68		54.0/74.0	-12.25/-23.32

Note:

- 1. The average measurement was not performed when the peak measured data under the limit of average detection.
- 2. Emissions attenuated more than 20 dB below the permissible value are not reported.

8. BAND EDGE

8.1. Test Equipment

Please refer to Section 4 this report.

8.2. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated measurement. The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz respectively.

8.3. Band Edge FCC 15.249(d) Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level
of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

8.4. Band Edge Test Result

Pass

ALL of the restriction bands were tested, and only the data of worst case was exhibited.

CH Low

Freq. (MHz)	Emission(dBuV/m) AV/PK	HORIZ/ VERT	Limits(dBuV/m) AV/PK	Margin (dB)
2390	43.96/51.75		54.0/74.0	-10.04/-22.25
2400	49.23/58.65	VERT	54.0/74.0	-4.77/-15.35
2390	44.69/53.76		54.0/74.0	-9.31/-20.24
2400	46.92/59.87	HORIZ	54.0/74.0	-7.08/-14.13

CH High

· <u>5··</u>				
Freq. (MHz)	Emission(dBuV/m) AV/PK	HORIZ/ VERT	Limits(dBuV/m) AV/PK	Margin (dB)
2483.5	45.32/56.65		54.0/74.0	-8.68/-17.35
2500.00	42.35/52.24	VERT	54.0/74.0	-11.65/-21.76
2483.5	46.68/57.24		54.0/74.0	-7.32/-16.76
2500.00	43.24/51.39	HORIZ	54.0/74.0	-10.76/-22.61

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

9. 20-DB BANDWIDTH

9.1. Test Equipment

Please refer to Section 4 this report.

9.2. Test Procedure

- $1. \ Remove \ the \ antenna \ from \ the \ EUT \ and \ then \ connect \ a \ low \ loss \ RF \ cable \ from \ the \ antenna \ port \ to \ the \ spectrum \ analyzer.$
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. The spectrum analyzer as RBW=100 KHz, VBW=300 KHz, Sweep=6ms.
- 4. Mark the peak frequency and –20dB (upper and lower) frequency.

9.3. Limit

Please refer section 15.249

9.4. Test Result /Plots

Limit	Channel Frequency (MHz)	20dB Bandwidth (MHz)
/	2402	0.9379
/	2440	0.9339
/	2480	0.9379

End Of The Report