Lógica intuicionista

Elias Gabriel Amaral da Silva

UFRN - Estratégia, cognição e tomada de decisão (2025.2)

Apresentação em PDF

A matemática foi descoberta ou inventada?

A matemática foi descoberta ou inventada?

VS

Platão (séc. IV a.C.)

L.E.J. Brouwer (1907)

Intuicionismo **Platonismo**

Platonismo A matemática foi descoberta

Platonismo	Intuicionismo
A matemática foi	A matemática foi
descoberta	inventada

Platonismo	Intuicionismo
A matemática foi	A matemática foi
descoberta	inventada
A matemática existe	
independente do ser	
humano	

Platonismo	Intuicionismo
A matemática foi	A matemática foi
descoberta	inventada
A matemática existe	A matemática existe só
independente do ser	na mente humana
humano	

Platonismo Intuicionismo A matemática foi A matemática foi descoberta inventada A matemática existe A matemática existe só na mente humana independente do ser humano

A verdade matemática é objetiva

Platonismo Intuicionismo A matemática foi A matemática foi descoberta inventada A matemática existe A matemática existe só na mente humana independente do ser humano

A verdade matemática é objetiva

A verdade matemática é uma experiência subjetiva

Platonismo	Intuicionismo
A matemática foi descoberta	A matemática foi inventada
A matemática existe independente do ser humano	A matemática existe só na mente humana
A verdade matemática é	A verdade matemática é

Pergunta: que diferença isso faz?

uma experiência

subjetiva

objetiva

No intuicionismo, só podemos afirmar a existência do que podemos construir na nossa mente.

No intuicionismo, só podemos afirmar a existência do que podemos construir na nossa mente.

Mas a lógica clássica permite provar coisas não construtivas.

(ou seja, provar existência de um objeto matemático que não construímos em nossa mente.) Exemplo: Em 1949, John Nash provou que o primeiro jogador no jogo de Hex tem uma estratégia pra sempre vencer.

Mas até hoje ninguém sabe que estratégia é essa!

https://en.wikipedia.org/wiki/Hex_(board_game)

O filme "Uma mente brilhante" (2001) é sobre a vida de John Nash

1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)

- 1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)
- 2. Suponha que o segundo jogador tenha uma estratégia vencedora.

- 1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)
- 2. Suponha que o segundo jogador tenha uma estratégia vencedora.
- 3. Então o primeiro jogador pode fazer uma jogada qualquer, e adotar a mesma estratégia do segundo jogador.

- 1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)
- 2. Suponha que o segundo jogador tenha uma estratégia vencedora.
- 3. Então o primeiro jogador pode fazer uma jogada qualquer, e adotar a mesma estratégia do segundo jogador.
- 4. Isso contradiz o fato de que o segundo jogador tem uma estratégia para vencer.

- 1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)
- 2. Suponha que o segundo jogador tenha uma estratégia vencedora.
- 3. Então o primeiro jogador pode fazer uma jogada qualquer, e adotar a mesma estratégia do segundo jogador.
- 4. Isso contradiz o fato de que o segundo jogador tem uma estratégia para vencer.
- 5. Portanto, o primeiro jogador tem uma estratégia vencedora.

- 1. Foi provado anteriormente que o jogo nunca pode empatar. (um dos dois jogadores tem uma estratégia vencedora)
- 2. Suponha que o segundo jogador tenha uma estratégia vencedora.
- 3. Então o primeiro jogador pode fazer uma jogada qualquer, e adotar a mesma estratégia do segundo jogador.
- 4. Isso contradiz o fato de que o segundo jogador tem uma estratégia para vencer.
- 5. Portanto, o primeiro jogador tem uma estratégia vencedora.

??? que estratégia é essa exatamente?

A prova por redução ao absurdo levou o Nash a afirmar a existência de uma estratégia vencedora mesmo sem ter construído ela em sua mente.

A prova por redução ao absurdo levou o Nash a afirmar a existência de uma estratégia vencedora mesmo sem ter construído ela em sua mente.

Brouwer queria rejeitar esse tipo de raciocínio, mas ele segue as regras da lógica!

A prova por redução ao absurdo levou o Nash a afirmar a existência de uma estratégia vencedora mesmo sem ter construído ela em sua mente.

Brouwer queria rejeitar esse tipo de raciocínio, mas ele segue as regras da lógica!

... mas talvez podemos mudar as regras da lógica?

Intuicionismo

Intuicionismo

Primeiro veio a lógica, depois a matemática

Primeiro veio a lógica, depois a matemática

Intuicionismo

As regras da lógica foram criadas para refletir nossa intuição matemática

Intuicionismo

Primeiro veio a lógica, depois a matemática As regras da lógica foram criadas para refletir nossa intuição matemática

Os fatos matemáticos se resumem a fatos lógicos

Intuicionismo

Primeiro veio a lógica, depois a matemática As regras da lógica foram criadas para refletir nossa intuição matemática

Os fatos matemáticos se resumem a fatos lógicos As construções matemáticas não dependem da lógica, e sim de nossa intuição A lógica intuicionista não é a lógica do verdadeiro ou falso, e sim do "posso provar" ou "posso refutar"

Proposição

P

 $\neg P$ (não P)

(também escrito ~P)

Proposição Lógica clássica

P

P é verdade

 $\neg P$ (não P)

P é falso

(também escrito ~P)

Proposição	Lógica clássica	Lógica intuicionista
P	P é verdade	Posso provar P
$\neg P$ (não P) (também escrito \sim P)	P é falso	Posso refutar P

Lei do terceiro excluído

Na lógica clássica, $P \lor \neg P$ é uma tautologia

Significa "P é verdade ou P é falso", para qualquer P - não tem uma terceira opção

Lei do terceiro excluído

Na lógica clássica, $P ee \neg P$ é uma tautologia

Significa "P é verdade ou P é falso", para qualquer ${\it P}$ - não tem uma terceira opção

Mas na lógica intuicionista, tem outro significado: "posso provar P ou posso refutar P"

Há uma terceira opção!

Negação intuicionista

Na lógica intuicionista, a negação $\neg P$ é definida como

$$P o oldsymbol{\perp}$$

Onde __, chamado "bottom" ou "absurdo", é uma proposição que nunca pode ser provada.

Na lógica intuicionista, a negação $\lnot P$ é definida como $P
ightarrow \bot$

Onde __, chamado "bottom" ou "absurdo", é uma proposição que nunca pode ser provada.

Afirmar $\neg P$ significa que se, hipoteticamente, pudessemos provar P, então teríamos uma prova do absurdo.

Na lógica intuicionista, a negação $\neg P$ é definida como $P o oldsymbol{\perp}$

Onde __, chamado "bottom" ou "absurdo", é uma proposição que nunca pode ser provada.

Afirmar $\neg P$ significa que se, hipoteticamente, pudessemos provar P, então teríamos uma prova do absurdo.

Mas isso é o mesmo que refutar P!

Do mesmo modo, para provar uma negação $\neg P$, tomamos P como hipótese, e a partir daí derivamos um absurdo ou contradição.

Do mesmo modo, para provar uma negação $\neg P$, tomamos P como hipótese, e a partir daí derivamos um absurdo ou contradição.

Mas isso não é o mesmo que a prova por redução ao absurdo?

Do mesmo modo, para provar uma negação $\neg P$, tomamos P como hipótese, e a partir daí derivamos um absurdo ou contradição.

Mas isso não é o mesmo que a prova por redução ao absurdo?

Não: quando esse raciocínio é usado pra provar uma proposição negativa, chamamos de "prova de negação" e não "redução ao absurdo"

Na redução ao absurdo, tomamos $\neg P$ como hipótese e chegamos numa contradição. E daí concluímos que P é verdade.

Na redução ao absurdo, tomamos $\neg P$ como hipótese e chegamos numa contradição. E daí concluímos que P é verdade.

Mas na lógica intuicionista, esse raciocínio só pode ser usado pra concluir uma negação. Portanto, concluímos apenas $\neg \neg P$.

Na redução ao absurdo, tomamos $\neg P$ como hipótese e chegamos numa contradição. E daí concluímos que P é verdade.

Mas na lógica intuicionista, esse raciocínio só pode ser usado pra concluir uma negação. Portanto, concluímos apenas $\neg\neg P$.

Mas $\neg \neg P$ não é a mesma coisa que P?

Na redução ao absurdo, tomamos $\neg P$ como hipótese e chegamos numa contradição. E daí concluímos que P é verdade.

Mas na lógica intuicionista, esse raciocínio só pode ser usado pra concluir uma negação. Portanto, concluímos apenas $\neg\neg P$.

Mas eg P não é a mesma coisa que P?

Na lógica intuicionista não é!

Na lógica clássica, $\neg \neg P$ significa "não é verdade que P é falso", e, por conta do terceiro excluído, podemos concluir que P é verdade.

Na lógica clássica, $\neg \neg P$ significa "não é verdade que P é falso", e, por conta do terceiro excluído, podemos concluir que P é verdade.

Mas na lógica intuicionista, $\neg \neg P$ significa "não posso refutar P". Mas isso é diferente de provar P.

A partir de P podemos concluir $\neg \neg P$ na lógica intuicionista: se eu posso provar, então eu não posso refutar.

Ou seja, P
ightarrow
eg
eg P

A partir de P podemos concluir $\neg \neg P$ na lógica intuicionista: se eu posso provar, então eu não posso refutar.

Ou seja,
$$P
ightarrow
eg
eg P$$

Mas não podemos concluir $\neg \neg P \to P$, porque o fato de não podermos refutar não é suficiente pra de fato ter uma prova.

É por isso que a prova por redução ao absurdo não é válida na lógica intuicionista!

É por isso que a prova por redução ao absurdo não é válida na lógica intuicionista!

Dum ponto de vista intuicionista, Nash apenas provou que não podemos refutar que o primeiro jogador tem uma estratégia vencedora. É por isso que a prova por redução ao absurdo não é válida na lógica intuicionista!

Dum ponto de vista intuicionista, Nash apenas provou que não podemos refutar que o primeiro jogador tem uma estratégia vencedora.

Só podemos afirmar que o jogador de fato tem essa estratégia se pudermos dizer exatamente no que consiste essa estratégia.

Teorema de Glivenko (tradução da dupla negação)

Se P pode ser provado na lógica clássica, $\neg \neg P$ pode ser provado na lógica intuicionista (e vice versa)

Isso ocorre porque talvez a redução por absurdo possa ter sido usada durante a prova

Teorema de Glivenko (tradução da dupla negação)

Se P pode ser provado na lógica clássica, $\neg \neg P$ pode ser provado na lógica intuicionista (e vice versa)

Isso ocorre porque talvez a redução por absurdo possa ter sido usada durante a prova

Ou em outras palavras:

Se P é verdade na lógica clássica, não podemos refutar P na lógica intuicionista (e vice versa)

Por exemplo: a lei do terceiro excluído $P \lor \neg P$ não pode ser refutada na lógica intuicionista

Ou seja, $eg
eg (P \lor
eg P)$ é válido intuicionisticamente

Podemos interpretar P o extstyle o extstyle P como "se P pode ser provado na lógica intuicionista, P pode ser provado na lógica clássica", o que está correto

Podemos interpretar P o extstyle op P como "se P pode ser provado na lógica intuicionista, P pode ser provado na lógica clássica", o que está correto

Mas o contrário, $\neg\neg P\to P$ seria "se P vale classicamente, P também vale intuicionisticamente", o que não é o caso

Podemos interpretar P o extstyle op P como "se P pode ser provado na lógica intuicionista, P pode ser provado na lógica clássica", o que está correto

Mas o contrário, $\neg\neg P\to P$ seria "se P vale classicamente, P também vale intuicionisticamente", o que não é o caso

... mas $\neg\neg(\neg\neg P\to P)$, que é "na lógica clássica, podemos eliminar a dupla negação", pode ser provado na lógica intuicionista!

A lógica intuicionista é mais expressiva: expressa tanto o pensamento clássico (pela transformação da dupla negação), quanto o intuicionista

A lógica intuicionista é mais expressiva: expressa tanto o pensamento clássico (pela transformação da dupla negação), quanto o intuicionista

E ela nunca contradiz a lógica clássica: apenas diz que não há fundamentos para certos resultados, mas sem os refutar