Techniques d'apprentissage

IFT 603 / IFT 712

Combinaison de modèles

Pierre-Marc Jodoin

Hugo Larochelle

Pourquoi utiliser un seul modèle?

- Pourquoi utiliser un seul modèle?
 - un système combinant une multitude de modèles différents ne serait-il pas meilleur?
- En pratique, la réponse est presque toujours oui!
 - > le résultat de la combinaison de plusieurs modèles est appelé ensemble ou comité

Pourquoi utiliser un seul modèle?

- La façon la plus simple d'obtenir M modèles est d'utiliser Malgorithmes d'apprentissage différents :
 - ➤ POUR i = 1 à m
 - o Entraı̂ner un modèle $y_{W,i}(\vec{x})$ à l'aide du i-ième algo d'entraı̂nement
- Retourner le modèle ensemble (ou comité)
 - > Pour la régression
 - $\circ \quad y_{COM}\left(\vec{x}\right) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}\left(\vec{x}\right)$
 - > Pour la classification
 o vote majoritaire

Pourquoi utiliser un seul modèle?

- Les M algorithmes pourraient être le même algorithme avec avec M sélections d'hyperparamètres différents.
 - > POUR i = 1 à m • Entraîner un modèle $y_{W,i}(\vec{x})$ à l'aide du i-ième algo d'entraînement
- Retourner le modèle ensemble (ou comité)
 - > Pour la régression
 - $\circ \quad y_{COM}\left(\vec{x}\right) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}\left(\vec{x}\right)$
 - > Pour la classification
 o vote majoritaire

Δ

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

5

5

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - ➤ Bagging : approprié pour combiner des modèles avec une forte capacité
 - \succ Boosting: approprié pour combiner des modèles avec une faible capacité

Boostrap: réduction de la variance • Régression polynomiale de degré 25 100 modèles entrainés sur 100 ensembles d'entraînement différents Ensemble des 100 modèles vs. vrai modèle

7

Boostrap: réduction de la variance • Régression polynomiale de degré 25 100 modèles entraînés sur 100 ensembles d'entraînement diffèrents Ensemble des 100 modèles vs. vrai modèle La variance d'un ensemble de M modèles est plus petite que celle de chacun des M modèles

8

Boostrap

 \grave{A} part pour des données synthétiques, on ne peut pas produire des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{ \}$$

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$
- $D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$

retourner $D_{bootstrap}$

Boostrap

À part pour des données synthétiques, on ne peut pas générer des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{ \}$$

échantillonne N exemples avec remplacement

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$ $D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$

retourner $D_{bootstrap}$

10

Bagging (Boostrap AGGregatING)

1. Générer m ensembles d'entraı̂nement avec **Boostrap** $\{D_1, D_2, ..., D_m\}$

2. Entraı̂ner m modèles $y_{W,i}(\vec{x})$ (un pour chaque ensemble)

3. Combiner les m modèles

Régression: $y_{com}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}(\vec{x})$

Classification: $y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} y_{W,i}(\vec{x})\right)$

 $y_{com}(\vec{x}) = \arg\max_{c} \left(\sum_{i=1}^{m} y_{W,i}(\vec{x}) \right)$

11

Illustration: classification 2Classes

1- échantillonnage avec replacement (Boostrap)

Note: un échantillon \vec{x}_i peut apparaître plusieurs fois dans un même ensemble d'entraînement D_i

_		_	
		_	
	Bagging	-	
	Analyse théorique de l'erreur : au tableau	_	
		_	
		_	
	16	-	
L 1	.6	_	
Γ		1	
		_	
		_	
		_	
		_	
		_	
		_	
	17	_	
1	.7		
[Pourquoi utiliser un seul modèle?		
	1 outquot utiliset uli seut modele!	_	
	Même avec un seul algorithme sans hyper-paramètres, on peut améliorer sa performance à l'aide d'un ensemble.	_	
	> Bagging : approprié pour combiner des modèles avec une forte capacité	_	

> Boosting: approprié pour combiner des modèles avec une faible capacité

AdaBoost

La méthode du boosting a pour objectif de **combiner plusieurs modèles faibles** (week learners) afin d'obtenir un classifieur avec une plus grande capacité.

Trois (3) différences majeures avec le Bagging.

1. Implémente une combinaison pondérée de modèles. Ex. 2 classes

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

- 2. Pas de bootstrap: chaque donnée \vec{x}_n est utilisée pour entraı̂ner les modèles
- 3. Les données mal classées par un modèle $y_{W,t}(\vec{x})$ auront plus de poids lors de l'entraînement du prochain modèle $y_{W,t+1}(\vec{x})$

R. Schapire and Y. Freund A decision theoretic generalization of on-line learning and an application to Boosting Journal of Computer and System Sciences, 1997, 55: 119-139.

19

20

AdaBoost

(illustration 2 classes)

Le modèle combiné implémente une combination pondérée des 3 classifieurs faibles

$$y_{com}(\vec{x}) = sign\left(\alpha_1 y_{w,1}(\vec{x}) + \alpha_2 y_{w,2}(\vec{x}) + \alpha_3 y_{w,3}(\vec{x})\right)$$

NOTE: plus un classifieur a une **exactitude élevée**, plus son α_i sera élevé. 21

AdaBoost

Idée fondamentale: chaque donnée \vec{x}_i a un **poids** β_i

Lorsque les données ont toutes un **poids égale**, alors le **modèle faible** devient un classifieur linéaire comme un **perceptron** ou une regression logistique.

Poids égaux Vs poids non égaux

22

22

AdaBoost

Les modèles de type stump sont des classifieurs perpendiculaires à un axe La combinaison de modèles stump mène à des frontières de décision "crénelées"

Au lieu de

2 advantages: très rapide et permet d'identifier les caractéristiques utiles:

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

Les caractéristiques utiles sont celles pour lesquelles α_i est élevé

23

Adaboost

1- initialiser le poids des N données d'apprentissage: $\beta_i = \frac{1}{N}$ $\forall i$

POUR i=1 à m

2- Entraı̂ner le modèle $y_{w,i}(\vec{x})$ avec les données D et les poids $\{\beta_1,...,\beta_N\}$ 3- Calculer l'erreur d'entraı̂nement: ε_i

 $\varepsilon_i = \frac{\sum_{k \in \Psi} \beta_k}{\sum_{i=1}^N \beta_i} \qquad \text{où Ψ l'ensemble des données mal classées}$

4- calculer $\alpha_i = \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$

5- mise à jour du poids des données mal classées par $y_{\scriptscriptstyle W,l}(\vec{x})$

 $\beta_n = \beta_n \exp{\{\alpha_i\}}$

6- Normaliser les poids afin qu'ils somment à 1

 $\beta_k = \frac{r_k}{\sum \beta_j}$

Le classifieur combiné: $y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$

..

Arbres de décision Le plus gros problème des arbres de decision est qu'ils ont tendance à sur-apprendre	
Example avec deux données aberrantes:	
Grosse question : soit le noeud d'un arbre dont l'erreur d'entraînement n'est pas nulle devons-nous le subdiviser ou non?	
33	

Arbres de décision La décision de subdiviser ou non un noeud depend d'une notion d' "impureté" d'un noeud Si l'impureté d'un nœud est élevée → alors on subdivise Si l'impureté d'un nœud est faiblee → alors on ne subdivise pas Deux mesures d'impureté fréquemment utilisées 1. L'entropie i(node) = -\sum_{j=\frac{1}{2}} P(c_j) log_2(P(c_j)) où P(c_j) est la proportion de données dans la classe c_j 2. L'indice de Gini i(node) = 1 - \sum_{j=\frac{1}{2}} P^2(c_j) 34

Métriques d'évaluation

