DD2370 Computational Methods for Electromagnetics

Boundary Conditions for Open Regions

Stefano Markidis, KTH Royal Institute of Technology

Motivation for Open Boundary Conditions

The FDTD is often applied to microwave problems such as calculation of:

- Radiation patterns from antennas
- Radar cross sections (RCS)
- These problems involve *open regions*
 - the computational domain extends to infinity
- It is not feasible to discretize an infinite region
 - Special boundary conditions can be applied to terminate the computational region.

Absorbing Boundary Conditions

Such boundary conditions serve to absorb outgoing waves, and are called <u>absorbing boundary</u> <u>conditions</u> (ABC).

The Perfectly Matched Layer to Damp Waves

- The perfectly matched layer (PML) was invented by Berenger
- The PML is a layer of <u>artificial material</u> surrounding the computational region
 - designed to damp waves propagating in the normal direction
 - If the waves are sufficiently damped out in the absorbing layer, very little reflection will occur at this PEC surface
- The region is then terminated by a PEC.
- The thicker the absorbing layer is, the more efficient is the damping

Absorbing Layer – Electric and Magnetic Conductivities

The basic idea behind the method is to introduce both an <u>electric</u> conductivity and a <u>magnetic conductivity</u> in the absorbing layer

$$\epsilon_0 \frac{\partial \pmb{E}}{\partial t} + \sigma \pmb{E} = \nabla \times \pmb{H},$$
 $\mu_0 \frac{\partial \pmb{H}}{\partial t} + \sigma^* \pmb{H} = -\nabla \times \pmb{E}$
PEC

Wave Impedance in the Absorbing Material

We define a <u>wave impedance</u> as the ratio of the transversal electric and magnetic fields for the artificial material

$$Z_{PML} = \left(\frac{\mu_0 + \sigma^*/j\omega}{\epsilon_0 + \sigma/j\omega}\right)^{1/2}$$

For a wave that is normally incident on such a layer, the <u>wave reflection</u> coefficient is

$$\Gamma_0 = rac{Z_0 - Z_{PML}}{Z_0 + Z_{PML}}$$
 Where $Z_0 \equiv \sqrt{\mu_0/\epsilon_0}$

Free space impedance

Setting-up Zero Reflection in the PML

if the magnetic and electric conductivities are related as

$$\frac{\sigma^*}{\mu_0} = \frac{\sigma}{\epsilon_0}$$

$$\Gamma_0 = \frac{Z_0 - Z_{PML}}{Z_0 + Z_{PML}}$$

we get $Z_{PML} = Z_0$, and there is no reflection at any frequency.

Oblique Incidence -PML

- For oblique incidence and it is harder to avoid reflection
- Berenger found a trick that achieves this.
- We split each component of <u>E and H into</u> two parts.
- For example:
 - $E_x = E_{xy} + E_{xz}$ according to the direction of the curl operator that contributes to $\partial E/\partial t$
- Then, one uses nonzero σ and σ^* only for the derivative in the direction normal to the absorbing layer.

Oblique Incidence - Example

- As an example, let us assume that the PML has z as the normal direction.
- The two equations for Ex and Ey are split into four
- The evolution equation for E_z is not modified for a layer with z as normal.
- The <u>layer modifies the propagation only in</u> <u>the z-direction</u>, normal direction of the PML, not in the tangential directions x and y.
 - Therefore, no reflection occurs even for waves obliquely incident on the PML

$$\epsilon \frac{\partial E_{xy}}{\partial t} = \frac{\partial (H_{zx} + H_{zy})}{\partial y},$$

$$\epsilon \frac{\partial E_{xz}}{\partial t} = -\frac{\partial (H_{yz} + H_{yx})}{\partial z} - \sigma_z E_{xz},$$

$$\epsilon \frac{\partial E_{yz}}{\partial t} = \frac{\partial (H_{xy} + H_{xz})}{\partial z} - \sigma_z E_{yz},$$

$$\epsilon \frac{\partial E_{yx}}{\partial t} = -\frac{\partial (H_{zx} + H_{zy})}{\partial x}.$$