LECTURE 19: The Central Limit Theorem (CLT)

• WLLN:
$$\frac{X_1 + \cdots + X_n}{n} \longrightarrow \mathbf{E}[X]$$

- CLT: $X_1 + \cdots + X_n \approx \text{normal}$
 - precise statement
 - universality, usefulness
 - many examples
 - refinement for discrete r.v.s
 - application to polling

Different scalings of the sum of i.i.d. random variables

• X_1, \ldots, X_n i.i.d., finite mean μ and variance σ^2

•
$$S_n = X_1 + \dots + X_n$$

variance: $n\sigma^2$

•
$$M_n = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n}$$

variance: $\frac{\sigma^2}{n} \longrightarrow 0$

The Central Limit Theorem (CLT)

• X_1, \ldots, X_n i.i.d., finite mean μ and variance σ^2

•
$$S_n = X_1 + \dots + X_n$$
 variance: $n\sigma^2$

•
$$\frac{S_n}{\sqrt{n}} = \frac{X_1 + \dots + X_n}{\sqrt{n}}$$
 variance: σ^2

$$Z_n = \frac{S_n - n\mu}{\sqrt{n} \sigma}$$
 $\mathbf{E}[Z_n] = \mathbf{O}$ $\operatorname{var}(Z_n) = \mathbf{I}$

Let Z be a standard normal r.v. (zero mean, unit variance)

Central Limit Theorem: For every z: $\lim_{n\to\infty} \mathbf{P}(Z_n \le z) = \mathbf{P}(Z \le z)$

• $P(Z \le z)$ is the standard normal CDF, $\Phi(z)$, available from the normal tables

Usefulness of the CLT

$$S_n = X_1 + \dots + X_n$$
 $Z_n = \frac{S_n - n\mu}{\sqrt{n} \sigma}$ $Z \sim N(0, 1)$

Central Limit Theorem: For every z: $\lim_{n\to\infty} \mathbf{P}(Z_n \le z) = \mathbf{P}(Z \le z)$

- universal and easy to apply; only means, variances matter
- fairly accurate computational shortcut
- justification of normal models

What exactly does the CLT say? — Theory

$$S_n = X_1 + \dots + X_n$$
 $Z_n = \frac{S_n - n\mu}{\sqrt{n} \sigma}$ $Z \sim N(0, 1)$

Central Limit Theorem: For every z: $\lim_{n\to\infty} \mathbf{P}(Z_n \le z) = \mathbf{P}(Z \le z)$

- CDF of Z_n converges to normal CDF
- results for convergence of PDFs or PMFs (with more assumptions)
- \bullet results without assuming that the X_i are identically distributed
- results under "weak dependence"
- proof: uses "transforms": $\mathbf{E}[e^{sZ_n}] \to \mathbf{E}[e^{sZ_n}]$, for all s

What exactly does the CLT say? — Practice

$$S_n = X_1 + \dots + X_n$$
 $Z_n = \frac{S_n - n\mu}{\sqrt{n} \sigma}$ $Z \sim N(0, 1)$

Central Limit Theorem: For every z:
$$\lim_{n\to\infty} P(Z_n \le z) = P(Z \le z)$$

- The practice of normal approximations:
 - treat Z_n as if it were normal

- hence treat S_n as if normal: $\mathcal{N}(n\mu, n\sigma^2)$
- Can we use the CLT when n is "moderate"? n = 30?
 - usually, yes
 - symmetry and unimodality help

- $P(S_n \le a) \approx b$ given two parameters, find the third
- Package weights X_i , i.i.d. exponential, $\lambda = 1/2$;

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\,\sigma}$$

$$\mu = \sigma = 2$$

• Load container with n = 100 packages

$$P(S_n \ge 210)$$

$$= \int \left(\frac{S_m - 200}{20} > \frac{210 - 200}{20} \right)$$

$$= \int \left(\frac{Z_m}{20} > 0.5 \right) \approx \int \left(\frac{Z}{2} > 0.5 \right)$$

$$= 1 - \int \left(\frac{Z}{2} < 0.5 \right) = 1 - \Psi(0.5)$$

$$= 1 - .6915 = 0.3085$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	(6915)	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

- $P(S_n \le a) \approx b$ given two parameters, find the third
- Package weights X_i , i.i.d. exponential, $\lambda = 1/2$;
- Let n = 100. Choose the "capacity" a, so that $P(S_n \ge a) \approx 0.05$.

$$0.05 \approx P\left(\frac{5n-200}{20} > \frac{a-200}{20}\right)$$

$$\approx 1 - 9\left(\frac{a-200}{20}\right)$$

$$0.95$$

$$\frac{a-200}{20} = 1.645$$

$$\alpha = 232.9$$

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\,\sigma}$$
$$\mu = \sigma = 2$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

- $P(S_n \le a) \approx b$ given two parameters, find the third
- Package weights X_i , i.i.d. exponential, $\lambda = 1/2$;

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\,\sigma}$$
$$\mu = \sigma = 2$$

 How large can n be, so that $P(S_n \ge 210) \approx 0.05$?

$$\frac{P\left(\frac{5n-2n}{2\sqrt{n}} > \frac{210-2n}{2\sqrt{n}}\right)}{2\sqrt{n}} \approx 1 - \frac{P\left(\frac{210-2n}{2\sqrt{n}}\right) \approx 0.05}{2\sqrt{n}} \approx 0.05$$

$$\frac{210-2n}{2\sqrt{n}} = 1.645 \qquad \boxed{n=89}$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	7.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

- $P(S_n \le a) \approx b$ given two parameters, find the third
- Package weights X_i , i.i.d. exponential, $\lambda = 1/2$;

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\,\sigma}$$
$$\mu = \sigma = 2$$

- Load container until weight exceeds 210 N: number of packages loaded
- P(N > 100)

$$= P\left(\frac{500}{5}X_{i} \le 210\right)$$

$$\approx P\left(\frac{210 - 200}{20}\right) = P(0.5)$$

$$= 0.6975$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Normal approximation to the binomial

- X_i : independent, Bernoulli(p); 0
- $S_n = X_1 + \cdots + X_n$: Binomial(n, p)
- mean np, variance np(1-p)
- n = 36, p = 0.5; find $P(S_n \le 21)$

$$np = 18 \qquad \sqrt{np(1-p)} = 3$$

$$P\left(\frac{5n-18}{3} \leq \frac{21-18}{3}\right)$$

• CDF of
$$\frac{S_n-np}{\sqrt{np(1-p)}}$$
 — standard normal

$$\sum_{k=0}^{21} {36 \choose k} \left(\frac{1}{2}\right)^{36} = 0.8785$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319

The 1/2 correction for integer random variables

• 0.8413
$$\approx P(S_n \le 21) = P(S_n < 22)$$
, because S_n is integer

$P(S_n \le 21.5) = P(Z_n \le \frac{21.5 - 18}{3})$
≈9(1.17)=.8790
18 19 20 21 22

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	8007	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082).9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319

De Moivre-Laplace CLT to the binomial

$$P(S_n = 19) = P(18.5 \le S_m \le 19.5)$$

$$= P(\frac{18.5 - 18}{3} \le Z_m \le \frac{19.5 - 18}{3})$$

$$= P(0.17 \le 2m \le 0.5)$$

$$\approx P(0.5) - P(0.17)$$

$$= 0.6915 - 0.5675 = 0.124$$

Exact answer:

$$\binom{36}{19} \left(\frac{1}{2}\right)^{36} = 0.1251$$

 When the 1/2 correction is used, the CLT can also approximate the binomial PMF (not just the binomial CDF)

The pollster's problem revisited

- p: fraction of population that will vote "yes" in a referendum
- ith (randomly selected) person polled: $X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases} E[X_i] = P = P$
- $M_n = (X_1 + \cdots + X_n)/n$: fraction of "yes" in our sample
- Would like "small error," e.g.: $|M_n p| < 0.01$ $P(|M_n p| \ge .01) = P(|Z_n| \ge .01 \sqrt{n}) \approx P(|Z_n| \ge .01 \sqrt{n})$ $Z_n = \frac{S_n n\mu}{\sqrt{n} \sigma} \qquad \left| \frac{S_n n\mu}{n} \right| \ge .01$

The pollster's problem revisited

$$\mathbf{P}\left(|M_n - p| \ge .01\right) \approx \mathbf{P}\left(|Z| \ge \frac{.01\sqrt{n}}{\sigma}\right) \leqslant \mathbf{P}\left(|Z| \ge .02\sqrt{n}\right) = 2\left(1 - \mathcal{P}\left(.02\sqrt{n}\right)\right) = 0.05$$

• Try
$$n = 10,000$$

.975

.975

.025

.015

.025

Prob
$$\leq 2(1-9(2)) =$$

$$= 2(1-.9772) = 0.046$$
• Specs: $P(|M_n-p| \geq .01) \leq .05$

$$9(.09\sqrt{n}) = 0.975$$
• 02 $\sqrt{n} = 1.96 \implies n = 9604$

					9							
	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359		
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753		
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141		
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517		
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879		
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224		
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549		
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852		
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133		
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389		
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621		
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830		
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901		
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177		
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319		
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441		
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545		
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633		
1.8	.9641	.9649	.9656	.9664	.9671	.9678	0686	.9693	.9699	.9706		
1.9	.9713	.9719	.9726	.9732	.9738	.9744	9750	.9756	.9761	.9767		
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817		

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.