

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Magnetic 3: Applications

Instructor: Dikun Yang Feb – May, 2019

Quiz

Draw a diagram similar to the figure on the left but with different inclinations

Option 1: inc = 80°

Option 2: inc = 0°

Option 3: inc = -70°

Option 4: inc = -90°

Heat and Disorientation

Magnetic Anomaly – Magnetized Objects

Sources of Magnetization

UXO (Unexploded Ordnance)

Magnetic Survey

Induced or Remanent?

A UXO anomaly map:

- Dipole field on the surface
- Induced or remanent?
- How can we tell it's a UXO?

Parameterization

Following parameters uniquely define a dipole:

- Position (X, Y, Z)
- Total dipole moment vector (M_T) from induced and remanent (Mx, My, Mz)

Dipole Model Inversion

- Six parameters m = [X, Y, Z, Mx, My, Mz]
- Data inversion: search the parameter space to find a particular combination of [X, Y, Z, Mx, My, Mz] that reproduces the dipole pattern on the map
- Automatic search or manual data fitting

Easting = -0.13 m; Northing = 0.16 m

Depth = 0.26 m; Moment = 0.0226 Am^2

Azimuth = 37° ; Dip = 28.8°

Fit quality = 0.95

Use the recovered dipole parameters to identify UXO

Practical Issues

Magnetic Anomaly

- **Digging**: 4+ hours, 60 (sweating) people, failed!
- Magnetic: 1 hour, 2 people, recovered the lost re-bar!
- Why single peak without sign changes?

Build a Long Rod using Dipoles

- N and S inside the rod cancel out
- Net negative and positive charge at two ends
- Only "see" one change if the rod is vertical and long
- A **monopole** anomaly (field lines determined by a single magnetic charge)
- What if the remanence makes the magnetization not uniform inside the pipe?

Build a Complex Body

Superposition: Sum up contribution from each dipole

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left(rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3}
ight)$$

Arbitrarily Shaped Objects

Can you think of any potential problem with this integration approach?

Arbitrary Magnetic Dipole Applet

Divide the earth into many cells that contribute to the data on surface

- Each cell has a constant but unknown susceptibility (induced magnetization only)
- Each cell has an unknown magnetization vector (induced and/or remanent magnetization)

Ekati Diamond Property, Northwest Territories

Data Processing: Regional Removal

Misery Pipe

Data Around Misery Pipe

After regional removal

- Local anomaly showing reversely magnetized body (remanent)
- Removal of the regional field to enhance the target (ready for inversion)

Inversion Result

Geology from drilling

Inverted model

Nowicki et al. (2004)

Summary

- Two types of magnetization
- Dipole model builds everything
- UXO
- Re-bar
- Mineral (diamond) exploration

Magnetic Assignment – Block

Magnetic anomaly from a susceptible block

$$\mathbf{M} = \kappa \mathbf{H_0} = \kappa \mathbf{B_0} / \mu_0$$

$$\mathbf{m} = \mathbf{M}V$$

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{m}}{r^3} \right).$$

