TC2009B: Digital design Multiplication and Division

Isaac Pérez Andrade

ITESM Guadalajara
School of Engineering & Science
Department of Computer Science
August – December 2021

References

The following material has been adopted and adapted from

Patterson, D. A., Hennessy, J. L., Computer Organization and design: The hardware/software interface – ARM edition, Morgan Kaufmann, 2017.

S. L. Harris and D. M. Harris, *Digital design and computer architecture - ARM edition*, Morgan Kaufmann, 2016.

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

Representation and operations

Integer operations

Two's complement review

Assume two's complement format

• Q: What's the range (minimum and maximum values that can be represented) of an N-bit two's complement number?

A:
$$\left[-(2^{(N-1)}), 2^{(N-1)} - 1\right]$$

• For example, an 8-bit two's complement number may represent values in the range

$$[-2^{8-1}, 2^{8-1} - 1] = [-2^7, 2^7 - 1] = [-128, 127]$$

Overflow & underflow

• Q: What is **overflow**?

A: A condition when the result of a calculation **exceeds** the **maximum** value that can be represented in a numeric format.

• Q: What is **underflow**?

A: A condition when the result of a calculation is **smaller** than the **minimum** value that can be represented in a numeric format.

• Sometimes, the term overflow is used for describing both conditions.

Addition

Integer addition

Example: 7 + 6

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
 Overflow if result sign is 1
- Adding two –ve operands
 Overflow if result sign is 0

Integer addition

• Example: Adding two 4-bit two's complement numbers

$$5+1$$
 $+5: 0101$
 $+1: 0001$
 $+6: 0110$
 $3+6$
 $-7+(-1)$
 $-7: 1001$
 $-7: 1001$
 $-7: 1000$

Overflow: $+9$ and -9
can not be represented in 4-bit two's complement.

 $-2 + 5$
 $-2: 1110$
 $+5: 0101$
 $+5: 0101$
 $-7+(-1)$
 $-7: 1001$
 $-7: 1001$
 $-3: 1101$
 $-6: 1010$
 $+7: 0111$

Subtraction

Integer subtraction

Addition with negation of second operand

```
Example: 7 - 6 = 7 + (-6)
+7: 0000 0000 ... 0000 0111
-6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
```

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from -ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Integer subtraction

• Example: Subtracting two 4-bit two's complement numbers

Overflow: -9 and +8 can not be represented in 4-bit two's complement.

Addition & subtraction overflow summary

• Overflow conditions for additions and subtraction in two's complement.

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥0	< 0
A + B	< 0	< 0	≥0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥0	≥0

Multiplication

Multiplier

- Partial products formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result

$$230 \times 42 = 9660$$

$$5 \times 7 = 35$$

Parallel multiplication

Parallel multiplication

Sequential multiplication

• Start with long-multiplication approach

Assume we want to multiply two 64-bit numbers

$$A_{M-bits} \times B_{N-bits} = X_{(M+N)-bits}$$

lengths.

Multiplication hardware

There's one error in the flow chart. Can you spot it?

What can be improved in this architecture?

Multiplication hardware

This architecture has a major flaw. Can you spot it?

For multiplying two N-bit number, it requires:

- Two 2N-bit registers
- One N-bit register
- A 2N-bit ALU

This is a waste of resources!

Optimised multiplier

• Perform steps in parallel: add/shift

One cycle per partial-product addition

That's ok, if frequency of multiplications is low

Optimised multiplier

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

- Multiplicand = 15_{10} : 1111
- Multiplier = 13_{10} : 1101

Signed multiplication

- So far, we've only dealt with unsinged operands.
- What happens in signed multiplication?
- For adding two signed N-bit numbers:
 - 1. Convert both multiplicand and multiplier to positive numbers and keep track of their respective sign.
 - 2. Apply multiplication algorithm N-1 times.
 - 3. Negate product if signs are not the same.
 - Alternatively, previous algorithm works for signed numbers if shifts are performed using sign extension.

Division

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
 - Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Divider

$$A/B = Q + R$$

Decimal Example: 2584/15 = 172 R4

Long-Hand:

Divider

$$A/B = Q + R$$

Decimal:

$$2584/15 = 172 \text{ R4}$$

$$\begin{array}{c|c}
0025 \\
 \hline
 & 15 \\
\hline
 & 10
\end{array}$$

$$\begin{array}{ccc}
0108 \\
-105 \\
\hline
3
\end{array} \qquad \begin{array}{ccc}
0 & 1 & 7 \\
\hline
3 & 2 & 1 & 0
\end{array}$$

$$\begin{array}{c}
0034 \\
-30 \\
4
\end{array}$$

$$\begin{array}{c}
0 & 1 & 7 & 2 \\
\hline
^3 & 2 & 1 & 0
\end{array}$$

Binary:

$$1101/10 = 0110 \text{ R}1$$

$$\begin{array}{ccc}
0001 \\
-0010 \\
\hline
1111 \\
\end{array}$$

$$\begin{array}{ccc}
0011 \\
-0010 \\
\hline
0001
\end{array}$$

$$\begin{array}{ccc}
0 & 1 \\
\hline
0 & 2 \\
\hline
0 & 1
\end{array}$$

$$\begin{array}{ccc}
0010 \\
-0010 \\
\hline
0000
\end{array}$$

$$\begin{array}{ccc}
0 & 1 & 1 \\
3 & 2 & 1 & 0
\end{array}$$

Divider

$$A/B = Q + R/B$$

$$R' = 0$$
for $i = N-1$ to 0
 $R = \{R' << 1, A_i\}$
 $D = R - B$
if $D < 0$, $Q_i = 0$; $R' = R$
else $Q_i = 1$; $R' = D$

Binary: 1101/10 = 0110

R1

4x4 Divider

Division: A/B = Q + R/B
R' = 0
for
$$i = N-1$$
 to 0
R = {R' << 1, A_i}
D = R - B
if D < 0, Q_i=0, R' = R
else Q_i=1, R' = D
R' = R

Each row computes one iteration of the division algorithm.

Sequential division

Optimized divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers generate multiple quotient bits per step
 - Still require multiple steps