Solución Parcial

Listado 2 : Espacios vectoriales

- 2. Si \mathbb{K} es un cuerpo, diremos que un subconjunto \mathbb{F} de \mathbb{K} es un subcuerpo de \mathbb{K} si:
 - $\blacksquare \,\, 0$ y 1 (neutros para la suma y el producto en $\mathbb{K})$ están en \mathbb{F} y
 - dados x e y, dos elementos de \mathbb{F} , entonces x+y,-x,xy y x^{-1} (si $x\neq 0$) también están en \mathbb{F} .

Demuestre que si \mathbb{F} es un subcuerpo, entonces es un cuerpo.

Solución: Sea (#, +, -) un subcuerpo de (1K, +, -) cuerpo. Probemos qui (F, + .) satisfa e las condicionis para ser cuerpo.

· Como F submerpo, sahisface que:

(∀x,y∈ F) (x+y ∈ F), es deur F es cemado para la suma + (∀x,y∈ F) (x·y∈ F), es deur F es cemado para el producto.

- · Por otro lado, los condiciones de connectatividad y asociatividad de suma y producto, y la dustributividad de respecto de +, al satisfacerse en K también se satisfacen en FF (pues FS K).
- · Como F subcuerpo de K, los elementos neutros 0. y 1 están en F, los que son neutros de F.

 Además satisface que el opuesto y recipro de 9 elemento de F también está en F. Esto es

 (**X \in F \): *X \in F

 (**X \in F \): *X \in F

De los puntos anknones se preba que (F,+, ·) es también cuerpo.

- 3. Sea \mathbb{F} un subcuerpo cualesquiera de \mathbb{C} .
 - (a) Justifique por qué $2 \in \mathbb{F}$.
 - (b) Demuestre que F contiene a todos los números enteros.
 - (c) Demuestre que para cualquier número racional $\frac{m}{n}$ se cumple que $\frac{m}{n}$ es elemento de \mathbb{F} .

Dhición

- (a) Como # subcuerpo de C, Ros neutros (de + y ·) de C también estañ en F, es de cir {0,17 s F.
 - Además, F es cerrado para la suma, y por lo tanto 1+1 € F, es decir 2€ F.
- (b) Por inducción se pueda probar que MS FF. Sabemos que 1 E FF.
 Suponemos que ne N es tal que n E FF. Como FF cerrado para la suma
 - n+1 ∈ F. De est modo se tiens que MSF. • O ∈ F.
 - · Por último, como (txe F): -xe F, entonces Z = F.
 - De los 3 puntos antenous probamos que Z EF.
- (c) Sea $q \in \mathbb{Q}$, entonus $q = m = m \cdot n^{-1}$, para algún $m, n \in \mathbb{Z}$, $n \neq 0$.

Como m, n ∈ Z entonces m, n ∈ F. Como n ∈ F \ 10 9 entonces n-1 ∈ F.
Y como TT cerra do para el producto m·n-1 ∈ F.

3. Para cada par de vectores $(a,b)^{\mathrm{T}}, (x,y)^{\mathrm{T}} \in \mathbb{R}^2$ y cada $\alpha \in \mathbb{R}$ se definen las operaciones

$$(x,y)^{\mathrm{T}} \oplus (a,b)^{\mathrm{T}} = (x+a,y+b)^{\mathrm{T}}$$

 $\alpha \odot (x,y)^{\mathrm{T}} = (\alpha x,y)^{\mathrm{T}}$

Analice si $(\mathbb{R}^2, \oplus, \odot)$ es un \mathbb{R} -espacio vectorial.

Saución:

Es dans que si (a,b) Ty (x,y) T∈ R² y x∈R entonces x+a∈ R, y+b∈ R, xx∈R e y∈ R, entonces ⊕: R² x R² → R² y ⊙: Rx x R² → R²

Podmos observar que la suma o es la usual de R2, por lo que las primeras cuatro condiciones para que (R2, O, ·) sea espació vectorial se van a satisfacer.

De los siguientes, veamos la 7. Sea $(x,y)^T \in \mathbb{R}$ y sean $\alpha, \beta \in \mathbb{R}$ Por un Lado, $(\alpha+\beta) \odot (x,y)^T = ((\alpha+\beta)x,y)^T$ $= (\alpha x + \beta x, y)^T$

Por other lade, $\begin{bmatrix} \alpha \odot (x, y)^T \end{bmatrix} \oplus \begin{bmatrix} \beta \odot (x, y)^T \end{bmatrix}$ = $(\alpha x, y)^T \oplus (\beta x, y)^T$ = $(\alpha x + \beta x, 2y)^T$

Observamos que si y 70 no se cumple la 7ma condición de e.v

: (R², €) no es un espació vectorial sobre Pr.