RESUMEN TEORÍA FUNDAMENTOS DE LA AUTOMÁTICA:

TEMA 2: MODELADO DE SISTEMAS DINÁMICOS (FUNDAMENTOS MATEMÁTICOS, FUNCIÓN DE TRANSFERENCIA Y DIAGRAMAS DE BLOQUES)

- 2.1 TRANSFORMADA DE LAPLACE
- 2.2 DESCOMPOSICIÓN EN FRACCIONES SIMPLES
- 2.3 MODELADO DE SISTEMAS ELÉCTRICOS Y MECÁNICOS
- 2.4 ÁLGEBRA DE BLOQUES

TEMA 3 (PARTE 1): IDENTIFICACIÓN DE LA RESPUESTA TEMPORAL DE SISTEMAS DE CONTROL (RESPUESTA TRANSITORIA)

- 3.1.1 FUNCIÓN DE TRANSFERENCIA Y ESTABILIDAD
- 3.1.2 SISTEMAS DE PRIMER ORDEN
- 3.1.3 SISTEMAS DE SEGUNDO ORDEN
- 3.1.4 ESTABILIDAD DE UN SISTEMA DE SEGUNDO ORDEN
- 3.1.5 PARÁMETROS CARACTERÍSTICOS DE UN SISTEMA DE SEGUNDO ORDEN

TEMA 3 (PARTE 2): IDENTIFICACIÓN DE LA RESPUESTA TEMPORAL DE SISTEMAS DE CONTROL (RESPUESTA ESTACIONARIA)

- 3.2.1 CRITERIO DE ESTABILIDAD DE ROUTH HURWITZ
- 3.2.2 CASOS ESPECIALES
- 3.2.3 ERROR (FUNCIÓN DE TRANSFERENCIA Y TIPOS)
- 3.2.4 ERROR FRENTE A PERTURBACIÓN

TEMA 4: ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL MEDIANTE EL MÉTODO DEL LUGAR DE LAS RAÍCES (LDR)

- **4.1 CONDICIONES IMPORTANTES**
- 4.2 PROPIEDADES DE CONSTRUCCIÓN DEL LUGAR DE LAS RAÍCES
- 4.3 COMPENSADORES DE ADELANTO Y RETARDO

TEMA 5: ACCIONES BÁSICAS DE CONTROL (CONTROLADORES PID)

- **5.1 EFECTOS DE CADA CONTROLADOR**
- 5.2 TIPOS DE CONTROLADORES (ECUACIÓN Y FUNCIONES)
- **5.3 MÉTODO DE ZIEGLER-NICHOLS**

[] TEMA 2: MODELADO DE SISTEMAS DINÁMICOS (FUNDAMENTOS MATEMÁTICOS, FUNCIÓN DE TRANSFERENCIA Y DIAGRAMAS DE BLOQUES)

} 2.1 TRANSFORMADA DE LAPLACE

Transformada de Laplace (definición): $F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$

Transformada inversa de Laplace (definición): $f(t) = \frac{1}{2\pi i} \int_{-\infty}^{\sigma + j\infty} F(s)e^{st}ds$

$\delta(t)$ (unit impulse)	1
u(t) (unit step)	$\frac{1}{s}$
t (unit ramp)	$\frac{1}{s^2}$
t* (n>-1)	$\frac{n!}{s^{n+1}}$
e ^{-at}	$\frac{1}{s+a}$
sin <i>bt</i>	$\frac{b}{s^2+b^2}$
cos bt	$\frac{s}{s^2+b^2}$

$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$	$\frac{\omega_{\alpha}}{\sqrt{1-\xi^{2}}}e^{-j\alpha_{s'}}\sin\omega_{\alpha}\sqrt{t-\xi^{2}}t (\xi < t)$
$\frac{\omega_n^2}{s(s^2+2\xi\omega_n s+\omega_n^2)}$	$1 - \frac{\omega_a}{\sqrt{1 - \xi^2}} e^{-\xi u_{sf}} \sin\left(\omega_n \sqrt{1 - \xi^2} t + \theta\right)$ where $\theta = \cos^{-1} \xi$ $(\xi < 1)$
$\frac{df(t)}{dt}$	sF(s)-f(0)
$\int_0^t f(t)dt$	$\frac{1}{s}F(s)$
f(t-a)	$e^{-as}F(s)$

Teorema del valor inicial: $\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$

Teorema del valor final: $f(t) = \lim_{x \to \infty} sF(s)$

} 2.2 DESCOMPOSICIÓN EN FRACCIONES SIMPLES

Raíces reales simples: $\frac{5s+10}{s(s+3)(s+5)} = \frac{A}{s} + \frac{B}{(s+3)} + \frac{C}{(s+5)}$ Raíces reales múltiples: $\frac{5s+10}{(s+3)^2} = \frac{A}{(s+3)} + \frac{B}{(s+3)^2}$

Raíces complejas simples: $\frac{5s+10}{s(s^2+1)} = \frac{A}{s} + \frac{Bs+C}{(s^2+1)}$

} 2.3 MODELADO DE SISTEMAS ELÉCTRICOS Y MECÁNICOS

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$
	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	1 Cs
-\\\\- Resistor	v(t)=Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2q(t)}{dt^2}$	Ls

alcos	masa M F(t)	$F(t) = M \frac{d^2}{dt^2} x(t)$	F: fuerza M: masa x: desplazamiento
SISTEMAS MECÁNICOS TRASLACIÓN	F(t) X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$F(t) = K \cdot x(t)$	F: fuerza K: constante del muelle x: desplazamiento
SISTEMA	F(t) B amortiguador	$F(t) = B\frac{d}{dt}x(t)$	F: fuerza B: coeficiente de fricción viscosa x: desplazamiento
sicos	Momento de inercia $T(t)$ $\theta(t)$	$T(t) = I \frac{d^2}{dt^2} \theta(t)$	T: par I: momento de inercia θ: desplazamiento angular
SISTEMAS MECÁNICOS ROTACIÓN	Rigidez K T(t)	$T(t) = K \cdot \theta(t)$	T: par K: constante del muelle θ: desplazamiento angalar
SISTEM	Rozamiento viscoso T(t)	$T(t) = B\frac{d}{dt}\theta(t)$	T: par B: coeficiente de fricción viscosa θ: desplazamiento angalar
SISTEMAS MECÁNICOS ENGRANAJES	**************************************	$\frac{T_1(t)}{T_2(t)} = \frac{N_1}{N_2} = \frac{\theta_2(t)}{\theta_1(t)}$ $r_1\theta_1 = r_2\theta_2$	T: par N número de dientes θ: desplazamiento angular r: radio

Función de transferencia de un sistema eléctrico RLC: $G(s) = \frac{1/LC}{s^2 + R/Ls + 1/LC}$

Función de transferencia de un sistema eléctrico con tensión Vs(s): $G(s) = \frac{Vs(s)}{Ve(s)} = \frac{Componente en Vs(s)}{\Sigma(todos los componentes)}$

Constante de tiempo de un sistema eléctrico: Y = RC, criterio del 95% (3Y), 98% (4Y), 99% (5Y).

Constante de movimiento: $x(t) = x(0) * e^{-\zeta \omega nt} [cos(\omega dt) + \frac{\zeta}{1-\zeta^2} sen(\omega dt)].$

Función de transferencia para un circuito con elementos en paralelo (impedancia):
$$G(s) = \frac{1}{\Sigma(1/Comp)} = \frac{1}{(1/Comp1) + ... + (1/CompN)} \circ \frac{Comp1 * ... * CompN}{Comp1 + ... + CompN}$$

Función de transferencia de un sistema mecánico básico: $G(s) = \frac{1}{Ms^2 + fvs + K}$

Condiciones iniciales no nulas: $\frac{d^2x(t)}{dt^2} = s^2X(s) - sx(0) - \frac{dx(t)}{dt}$; $\frac{dx(t)}{dt} = sX(s) - x(0)$.

} 2.4 ÁLGEBRA DE BLOQUES

Bloques en cascada: x

Realimentación: $G(s) = \frac{G}{1 \mp GH}$

Mover punto de suma a la derecha: x Mover punto de bifurcación a la izquierda: x Mover punto de suma a la izquierda: // Mover punto de bifurcación a la derecha: //

[] TEMA 3 (PARTE 1): IDENTIFICACIÓN DE LA RESPUESTA TEMPORAL DE SISTEMAS DE CONTROL (RESPUESTA TRANSITORIA)

3.1.1 FUNCIÓN DE TRANSFERENCIA Y ESTABILIDAD

Función de transferencia (estructura): $G(s) = \frac{Ceros}{Polos}$, donde el denominador se denomina "polinomio característico".

Estabilidad: Estable (todos los polos en el semiplano izquierdo), inestable (algún polo en el semiplano derecho), marginalmente / críticamente estable (uno o más polos en el eje imaginario).

3.1.2 SISTEMAS DE PRIMER ORDEN

Función de transferencia de un sistema de primer orden: $G(s) = \frac{K}{1+Ts}$

Parámetros característicos: K (ganancia estática / valor en régimen permanente), T (constante de tiempo), $\sigma = 1/T$ (factor de decrecimiento), ts = 4T (tiempo de asentamiento).

3.1.3 SISTEMAS DE SEGUNDO ORDEN

Función de transferencia de un sistema de segundo orden: $G(s) = \frac{K\omega n^2}{s^2 + 2\zeta\omega n + \omega n^2}$

Elementos de la función de transferencia: K (ganancia estática), ωn (frecuencia natural no amortiguada), ζ (coeficiente de amortiguamiento), $\sigma = \zeta \omega n$ (factor de decrecimiento), $\omega d = wn\sqrt{1-\zeta^2}$ (frecuencia amortiguada).

3.1.4 ESTABILIDAD DE UN SISTEMA DE SEGUNDO ORDEN

Sistema sobreamortiguado (ζ >1): $s = -\zeta \omega n \pm \omega n \sqrt{\zeta^2 - 1}$

Sistema críticamente amortiguado (ζ =1): $s = -\zeta \omega n$

Sistema subamortiguado (0< ζ <1): $s = -\zeta \omega n \pm j \omega n \sqrt{1-\zeta^2}$

Sistema oscilador (ζ =0): $s = \pm j\omega n$

Sistema inestable (ζ <0): $s = -\zeta \omega n \pm j \omega n \sqrt{\zeta^2 - 1}$

3.1.5 PARÁMETROS CARACTERÍSTICOS DE UN SISTEMA DE SEGUNDO ORDEN

Tiempo de establecimiento: $ts = \frac{4}{\sigma} = \frac{4}{\zeta \omega n}$

Tiempo de subida: $tr = \frac{\pi - \theta}{\omega d} = \frac{\pi - cos^{-1}(\zeta)}{\omega n \sqrt{1 - \zeta^2}}$

Tiempo de pico: $tp = \frac{\pi}{\omega d} = \frac{\pi}{\omega n \sqrt{1-\zeta^2}}$

Valor de pico: Yp = 1 + Mp

Sobreoscilación: $Mp = e^{-\frac{\pi\sigma}{\omega d}} = e^{-\frac{\pi}{tg(\vartheta)}}$

PROPIEDAD Mp: $e^x = k \Rightarrow x^* \ln(e) = \ln(k)$

[] TEMA 3 (PARTE 2): IDENTIFICACIÓN DE LA RESPUESTA TEMPORAL DE SISTEMAS DE CONTROL (RESPUESTA ESTACIONARIA)

3.2.1 CRITERIO DE ESTABILIDAD DE ROUTH HURWITZ

Criterio de estabilidad de Routh-Hurwitz: Si algún coeficiente del polinomio característico es nulo o negativo el sistema es inestable; pero si todas las raíces son negativas, o lo que es lo mismo, todos los coeficientes del polinomio característico existen y son positivos, aplicamos el criterio de Routh-Hurwitz.

s^4	a_4	42	a_0
P	<i>a</i> ₃	a ₁	0
, ²	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$
gl.	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$
50	$\frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix}b_1 & 0\\c_1 & 0\end{vmatrix}}{c_1} = 0$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$

3.2.2 CASOS ESPECIALES

El primer elemento de una fila es nulo: Se sustituye por un número muy pequeño cercano a él $(\pm \epsilon)$ y se continúa realizando el método.

La fila completa es nula: Se construye la fila derivando el polinomio de la fila superior.

Índice de estabilidad del sistema: Una vez se ha hallado el valor de K positivo que hace que todos los elementos de la fila sean 0, se tiene que el sistema es estable para 0 < K < valor, críticamente estable para <math>K > valor, e inestable para K > valor y K < 0.

NOTA: Hay casos en los que la primera cota no está en 0, y deben sustituirse por otro valor de K positivo que también cumple la condición que hace que todos los elementos de la fila sean 0.

3.2.3 ERROR (FUNCIÓN DE TRANSFERENCIA Y TIPOS)

Error real o verdadero: $\lim_{s\to 0} s * Entrada * (1 - \frac{GH}{1\mp GH})$

Error de actuación o de control: $\lim_{s\to 0} s * Entrada * \frac{1}{1\mp GH}$

IMPORTANTE: Número de polos en el origen de la planta = Tipo del sistema, y ambos errores coinciden cuando H(s) = 1.

Tipo 0	$\lim_{s\to 0} G(s)H(s) = K$	$k_p = \lim_{s \to 0} G(s)H(s)$	$e_{ss} = \frac{M}{1 + k_p}$
Tipo 1	$\lim_{s \to 0} G(s)H(s) = \lim_{s \to 0} \frac{K}{s}$	$k_v = \lim_{s \to 0} s \cdot G(s) H(s)$	$e_{ss} = \frac{M}{k_{v}}$
Tipo 2	$\lim_{s \to 0} G(s)H(s) = \lim_{s \to 0} \frac{K}{s^2}$	$K_a = \lim_{s \to 0} s^2 \cdot G(s)H(s)$	$e_{ss} = \frac{M}{k_a}$

	Constantes		Error para diferentes entra		s entradas	
Tipo	k _p	k,	k _a	Salto	Rampa	Parábola
0	K	0	0	M/(1+K)	oc .	œ
1	∞	K	0	0	M/K	00
2	00	œ	К	0	0	M/K

3.2.4 ERROR FRENTE A PERTURBACIÓN

Función de transferencia de un sistema con perturbación: $E(s) = \frac{1}{1+G1(s)G2(s)H(s)}R(s) - \frac{G2(s)}{1+G1(s)G2(s)H(s)}D(s)$ Sistema con perturbación: $C(s) = Cr(s) + Cd(s) = \frac{G1(s)G2(s)}{1+G1(s)G2(s)H(s)}R(s) + \frac{G2(s)}{1+G1(s)G2(s)H(s)}D(s)$

Error frente a perturbación:

$$e(\infty) = er(\infty) + ed(\infty) = \lim_{s \to 0} s * \frac{1}{1 + G1(s)G2(s)H(s)} R(s) - \lim_{s \to 0} s * \frac{G2(s)}{1 + G1(s)G2(s)H(s)} D(s)$$

Error frente a perturbación de tipo escalón: $ed(\infty) = -\frac{1}{\lim_{s \to 0} \frac{1}{G2(s)} + \lim_{s \to 0} G1(s)}$

TEMA 4: ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL MEDIANTE EL MÉTODO DEL LUGAR DE LAS RAÍCES (LDR)

} 4.1 CONDICIONES IMPORTANTES

Condición de ángulo: $G(s)H(s) = \pm 180(2K + 1)$ donde K = 0, 1, 2, ...

Condición de magnitud (sustituir s por los polos): |G(s)H(s)| = 1/K (importante saber que $i^2 = -1$).

} 4.2 PROPIEDADES DE CONSTRUCCIÓN DEL LUGAR DE LAS RAÍCES

Paso 1 (Identificación y ubicación de polos y ceros en lazo abierto): Polos y ceros de la función G(s)*H(s). Paso 2 (Número de ramas): max(nºpolos,nºceros) de la función G(s)*H(s).

Paso 3 (Identificación de segmentos sobre el eje real): Segmentos que tienen un número impar de polos y ceros a su derecha.

Paso 4 (Cálculo de asíntotas): Número de asíntotas (nºpolos-nºceros), ángulos (1 asíntota => 180º; 2 asíntotas => 90º, 270º; 3 asíntotas => 60º, 180º, 300º; 4 asíntotas => 45º, 135º, 225º, 315º), centroide ($\sigma = \frac{(Suma\ polos) - (Suma\ ceros)}{n^2polos - n^2ceros}$).

Paso 5 (Puntos de corte con el eje imaginario): 1+G(s)H(s) (aplicar Routh-Hurwitz, obtener el valor de K que anule una fila y obtener los valores de s que anulan el polinomio superior a la fila de ceros).

Paso 6 (Puntos de ruptura o salida del eje real): 1+G(s)H(s)=0 (hallar K, derivarla y hallar los valores de s que cumplan con dK/ds=0).

Paso 7 (Ángulos de salida / Ilegada de las raíces): Polos complejos ($\sigma + \Sigma \acute{a}ngulos polos - \Sigma \acute{a}ngulos ceros = \pm 180$), ceros complejos ($\sigma + \Sigma \acute{a}ngulos ceros - \Sigma \acute{a}ngulos polos = \pm 180$) donde σ es el ángulo que tenemos que calcular.

} 4.3 COMPENSADORES DE ADELANTO Y RETARDO

Efectos de adición: Polos (desplaza el LDR a la derecha y disminuye su estabilidad), ceros (desplaza el LDR a la izquierda y aumenta su estabilidad).

Compensador de adelanto-retardo: $Gc(s) = Kc \frac{s+zc}{s+pc}$, donde, donde el compensador de adelanto el cero se encuentra más cerca del origen que el polo, mientras que en el de retardo es justo lo contrario.

[] TEMA 5: ACCIONES BÁSICAS DE CONTROL (CONTROLADORES PID)

} 5.1 EFECTOS DE CADA CONTROLADOR

CL RESPONSE	RISE TIME	OVERSHOOT	SETTLING TIME	S-S ERROR
Кр	Decrease	Increase	Small Change	Decrease
Ki	Decrease	Increase	Increase	Eliminate
Kd	Small Change	Decrease	Decrease	Small Change

3.2 TIPOS DE CONTROLADORES (ECUACIÓN Y FUNCIONES)

Controlador PID: Dominio de t (Kp*e(t)+Ki* $\int_{0}^{t} e(t)+Kd*\frac{de(t)}{dt}$), dominio de s (Kp*E(s)+Ki* $\frac{E(s)}{s}$ +Kd*sE(s)).

Controlador PID (Ti y Td): $G(s) = Kp^*(1 + \frac{1}{Ti^*s} + Td^*s) = Kp^* \frac{Ti^*Td^*s^2 + Ti^*s + 1}{Ti^*s}$, donde Ti=Kp/Ki y Td=Kp/Kd.

Controlador P: Ganancia K.

Controlador PD: Cero en -1/Td.

Controlador PI: Polo en el origen y cero en -1/Ti (anula el error en estado estacionario).

Controlador PID: Polo en el origen y dos ceros (-1/Ti y -1/Td) (anula el error en estado estacionario).

} 5.3 MÉTODO DE ZIEGLER-NICHOLS

Primer método de Ziegler-Nichols: T (constante de tiempo), L (tiempo de retardo experimental).

Tipo de controlador	K _p	Ti	T_d
P	$\frac{T}{L}$	œ	0
PI	$0.9\frac{T}{L}$	<u>L</u> 0.3	0
PID	$1.2\frac{T}{L}$	2L	0.5L

Segundo método de Ziegler-Nichols: Pcr (periodo de oscilación crítico), Kcr (ganancia crítica).

Tipo de controlador	K_{p}	ři	T _d
P	0.5K _{cr}	Φ	0
PI	0.45K _{cr}	$\frac{1}{1.2}P_{cr}$	0
PID	0.6K _{cr}	0.5P _{cr}	0.125P _{cr}

Tipos de respuesta: Transitoria (ubicación de polos dominantes en lazo cerrado), estacionaria (tipo de sistema / ganancia en lazo abierto).

No cumple transitorio: Añadir un polo en lazo abierto (controlador PD).

No cumple estacionario: Añadir un polo en el origen y un cero a ¼ de la distancia de los polos dominantes (controlador PI).

No cumple transitorio ni estacionario: Ubicar polos y ceros según el error y el tipo del sistema.