Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №2

Разложение в ряд Фурье

Выполнил		
студент гр. в $3530904/00030$		В.С. Баганов
Рукоролитоли		
Руководитель		В.С. Тутыгин
доцент, к.т.н.		в.С. тутыгин
	« »	202 г.

 $ext{Caнкт-} \Pi$ етербург 2023

Содержание

1.	Цел	ь работы. Разложение в ряд Фурье	3
2.	Про	ограмма работы	3
3.	Резу	ультаты работы	4
	3.1.	Зависимость погрешности с целым количеством периодов $f(x)=\sin(x)$	4
		3.1.1. При разложении в действительный ряд Фурье $f(x) = \sin(x)$	4
	3.2.	Зависимость погрешности с нецелым количеством периодов $f(x)=\sin(x)$.	5
		3.2.1. При разложении в действительный ряд Фурье $f(x) = \sin(x)$	5
		3.2.2. При разложении в комплексный ряд Фурье $f(x) = \sin(x)$	6
	3.3.	Зависимость погрешности от количества членов ряда Фурье $f(i)=abs(x(i))$	7
		3.3.1. При разложении в действительный ряд Фурье $f(i) = abs(x(i))$ при	
		N=2048	7
		3.3.2. При разложении в действительный ряд Фурье $f(i) = abs(x(i))$ при	
		N=8192	8
		3.3.3. При разложении в комплексный ряд Фурье $f(i)=abs(x(i))$ при $N=2048$	9
		3.3.4. При разложении в комплексный ряд Фурье $f(i)=abs(x(i) \text{ при N}=8192$	10
4.	Вын	вод	11
5.	Лис	стинг Matlab. Разложение в действительный ряд Фурье.	12
6.	Лис	стинг Matlab. Разложение в комплексный ряд Фурье.	14

1. Цель работы. Разложение в ряд Фурье

Цель данной работы — исследовать зависимость погрешности восстановления значений нескольких функций от количества членов ряда Фурье и количества отсчетов при заданной допустимой погрешности.

2. Программа работы

Задача 2 лабораторной работы - определить зависимости погрешности восстановления значений

- гармонической функции с целым количеством периодов $f(x) = \sin(x)$;
- гармонической функции с не целым количеством периодов $f(x) = \sin(x)$;
- заданной функции f(i)=abs(x(i));

от количества членов ряда Фурье и количества отсчетов.

Интересующий диапазон допустимых погрешностей (СКО) - не более 5% Последовательность действий:

- 1. Задать большое количество отсчетов N 1024;
- 2. Увеличивать количество членов K ряда Фурье и фиксировать погрешности восстановления. Значение K д.б. меньше, чем N/2.
- 3. Выбрать оптимальное количество членов K ряда Фурье и уменьшать количество отсчетов N.

Крайние значения восстановленной функции при расчете погрешности исключить.

Сверхзадача: определить причину значительной погрешности в начале и конце восстановенной функции.

3. Результаты работы

3.1. Зависимость погрешности с целым количеством периодов $f(x) = \sin(x)$

3.1.1. При разложении в действительный ряд Фурье $f(x) = \sin(x)$

Разложение в действительный ряд Фурье гармонической функции $f(x)=\sin(x)$ с целым числом периодов.

При разложении в действительный ряд Фурье гармонической функции $f(x)=\sin(x)$ с целым числом периодов околонулевая погрешность достигается уже при начальных входных данных (N=1024, KP=4, K=16). Она составляет 0.000000000003.

Фактически, гармоническая функция раскладывается в ряд Фурье без погрешности, и ненулевым членом будет только тот, что равен числу периодов.

3.2. Зависимость погрешности с нецелым количеством периодов $f(x) = \sin(x)$

3.2.1. При разложении в действительный ряд Фурье $f(x) = \sin(x)$

При разложении функции с N=1024, KP=2.4 в действительный ряд Фурье получаем следующую зависимость погрешности отклонения от количества членов ряда:

Разложение в действительный ряд Фурье функции f(x) = sin(x) с нецелым количеством периодов, N = 1024

3.2.2. При разложении в комплексный ряд Фурье $f(x) = \sin(x)$

При разложении той же самой функции с N=1024, KP=2.4 в комплексный ряд Фурье получаем следующую зависимость погрешности отклонения от количества членов ряда:

Разложение в комплексный ряд Фурье функции $f(x) = \sin(x)$ с нецелым количеством периодов, N = 1024

3.3. Зависимость погрешности от количества членов ряда Фурье f(i) = abs(x(i))

3.3.1. При разложении в действительный ряд Фурье f(i)=abs(x(i)) при N=2048

График зависимости погрешности восстановления от количества членов ряда для разложения в действительный ряд Фурье показан ниже.

Количество членов ряда Фурье	2	4	8	16	32	64	128	256
Погрешность (СКО), % при 2048	3,4711	1,3876	0,5413	0,3253	0,3876	0,5342	0,7304	0,9570

Разложение в действительный ряд Фурье функции abs(x(i)), N = 2048

В результате перебора, были получены данные зависимости погрешности восстановления. Требуемая погрешность восстановления не более 5~% для N=2048 точек, достигается при $K=2,\,4,\,8,\,16,\,32,\,64,\,128,\,256$. Оптимальным количеством членов ряда Фурье с самой низкой погрешностью являются $K=16,\,32$.

3.3.2. При разложении в действительный ряд Фурье f(i)=abs(x(i)) при N=8192

График зависимости погрешности восстановления от количества членов ряда для разложения в действительный ряд Фурье показан ниже.

Кол-во членов ряда Фурье	2	4	8	16	32	64	128	256	512	1024
Погрешность (СКО), % при 8192	3,4715	1,3837	0,5109	0,1940	0,1161	0,1385	0,1921	0,2673	0,3653	0,4784

В результате перебора, были получены данные зависимости погрешности восстановления. Требуемая погрешность восстановления не более 5~% для N=8192 точек, достигается при $K=2,\,4,\,8,\,16,\,32,\,64,\,128,\,256,\,512,\,1024$. Оптимальным количеством членов ряда Фурье с самой низкой погрешностью являются K=32.

3.3.3. При разложении в комплексный ряд Фурье f(i)=abs(x(i)) при N=2048

График зависимости погрешности восстановления от количества членов ряда для разложения в комплексный ряд Фурье показан ниже.

Кол-во членов ряда Фурье	2	4	8	16	32	64	128	256
Погрешность (СКО), % при 2048	3,4682	1,3876	0,5443	0,3309	0,3922	0,5373	0,7323	0,9579

Разложение в комплексный ряд Фурье функции abs(x(i)), N = 2048

В результате перебора, были получены данные зависимости погрешности восстановления. Требуемая погрешность восстановления не более 5~% для N=2048 точек, достигается при $K=2,\,4,\,8,\,16,\,32,\,64,\,128,\,256.$ Оптимальным Кол-вом членов ряда Фурье с самой низкой погрешностью являются $K=32,\,64.$

3.3.4. При разложении в комплексный ряд Фурье f(i)=abs(x(i)) при N=8192

График зависимости погрешности восстановления от количества членов ряда для разложения в комплексный ряд Фурье показан ниже.

Кол-во членов ряда Фурье	2	4	8	16	32	64	128	256	512	1024
Погрешность (СКО), % при 8192	3,4707	1,3835	0,5110	0,1945	0,1171	0,1393	0,1927	0,2677	0,3656	0,4786

Разложение в комплексный ряд Фурье функции abs(x(i)), N = 8192

В результате перебора, были получены данные зависимости погрешности восстановления. Требуемая погрешность восстановления не более 5 % для N=8192 точек, достигается при $K=2,\,4,\,8,\,16,\,32,\,64,\,128,\,256,\,512,\,1024,\,2048.$ Оптимальным количеством членов ряда Фурье с самой низкой погрешностью являются $K=32,\,64.$

4. Вывод

Кол-во										
членов	2	4	8	16	32	64	128	256	512	1024
комплекс.		-11	8	10	32	04	120	200	012	1024
ряда Фурье										
Погрешность										
(CKO), %	3,4711	1,3876	0,5413	0,3253	0,3876	0,5342	0,7304	0,9570	1,1052	
при 2048										
Погрешность										
(CKO), %	3,4715	1,3837	0,5109	0,1940	0,1161	0,1385	0,1921	0,2673	0,3653	0,4784
при 8192										
Кол-во										
членов										
действит.	2	4	8	16	32	64	128	256	512	1024
ряда Фурье										
Погрешность										
_										
\perp (CKO) %	3 4682	1 3876	0.5443	0.3309	ი 3922	0.5373	0.7323	0 9579	1 1055	
(CKO), %	3,4682	1,3876	0,5443	0,3309	0,3922	0,5373	0,7323	0,9579	1,1055	
при 2048	3,4682	1,3876	0,5443	0,3309	0,3922	0,5373	0,7323	0,9579	1,1055	
	3,4682	1,3876	0,5443	0,3309	0,3922	0,5373	0,7323	0,9579	1,1055 0,3656	0,4786

При разложении гармонической функции с целым числом периодов погрешность порядка 10-13 достигается уже при любых входных данных, учитывая N/4>=K>KP. Фактически, гармоническая функция раскладывается в ряд Фурье без погрешности, и ненулевым членом будет только тот, что равен числу периодов.

В случае нецелого количества периодов, требуемая погрешность (не выше 1%) для взятой гармонической функции достигается при K=64, N=1024 (CKO=0.71%), как при разложении в комплексный, так и при разложении в действительный ряд Фурье.

Как видно из таблиц и графиков, для действительного и комплексного ряда Фурье значения погрешности функции Фурье f(i)=abs(x(i)) совпадают.

При разложении функции f(i)=abs(x(i)) в действительный и комплексный ряды Фурье, минимальных значений погрешности удается достигнуть при K= от 16 до 32.

Для гармонической функции с целым числом периодов погрешность восстановления значений от количества членов ряда Фурье и количества отсчетов зависит незначительно.

Для произвольной функции, для которой возможно построить разложение в ряд Фурье, погрешность восстановления значений от количества членов ряда Фурье и количества отсчетов может существенно зависеть, разложение отдельных разложимых в ряд Фурье функций может быть нецелесообразно на практике в связи с низкой скоростью сходимости ряда.

5. Листинг Matlab. Разложение в действительный ряд Фурье.

```
% Разложение функции t в ряд Фурье
    %в дискретизированном виде на интервале [-Т,Т], например,[-рі,рі]
2
3
    clc;
4
    N = 8192; %Количество отсчетов (элементов массива y(t))
    К = 2048; %Количество членов ряда Фурье
    T=pi;
    %T=5;
    T=0.9*pi; %диапазон изменения функции f(i) равен +/-Т
    кр=1.1; %количество периодов гармонической функции
10
    v=zeros(1,N+1);
11
    Sa = zeros(1,K);
12
    Sb = zeros(1,K);
13
    p=1;% показатель степени функции t^p
14
    f=zeros(1,N+1);
15
    Sa0=0;
16
    %for i=1:N+1
17
    for i=2:N
18
    % f(i)=\sin(2*pi*kp*(i-1)/N); % гармоническая функция
19
    x(i)=(2*T*(((i-1-N/2))/N));
20
    %f(i)=sign(sin(2*pi*kp*(i-1)/N));
21
    % f(i)=x(i)*cos(x(i));
22
    %f(i)=(-tan(x(i)/2))/2;
23
    % f(i) = log(2 + cos(x(i)/2));%вариант 10
    %f(i)=log(2+cos(x(i)/2));%вариант 10
25
    % f(i) = log(1+x(i)^p);
26
    % f(i) = (2*T*(((i-1-N/2))/N))^p; %функция t^p
27
    % f(i)=x(i)^3-1;
28
    % f(i)=x(i)^p;
29
    % f(i) s(x(i));
    % f(i)=sinh(x(i));
31
    % f(i)=sin(x(i));
32
    %f(i) = \cosh(x(i)); %Вариант 14 - f(x) = \cosh(x)
    % f(i)=x(i)*exp(x(i));
34
    %f(i)=exp(x(i));
35
    %f(i)=x(i)*sin(x(i));
36
37
    Sa0=Sa0+f(i);
38
    end
39
    Sa0=Sa0/N; %вычисленный коэф. a0/2
40
    %Saa0=pi^2/3 %%теоретически определенные коэф. a0/2 для функции t^2
41
    figure
42
    i=1:N;
43
    plot(i,f(i));
44
    title('f(i)');
45
    axis tight;
    for i=1:N+1
47
    for j=1:K
48
    49
    end
51
52
    end
53
    for j=1:K
Sa(j)=Sa(j)*(1/(N/2));
54
```

```
Sb(j)=Sb(j)*(1/(N/2));
56
     % Saa(j)= 4*(-1)^j/(j^2);%теоретически определенный коэф. ak для функции
57

→ t^2

     end
58
     SSa=Sa; %коэффициенты ak
59
     SSb=Sb %коэффициенты bk
60
     %SSaa=Saa %теоретически определенные коэф. ak для функции t^2
     % i=1:K;
62
     % figure
63
     % plot(i,Sa);
64
     % title('Коэффициенты Sa');
65
     «Вычисление и отображение спектра амплитуд (начало)
66
     for i=1:K
67
     Sab(j)=sqrt(Sa(j)^2+Sb(j)^2);
     end
69
     K1=K;
70
     i=1:K1;
71
     figure
     plot(i,Sab(i));
73
     stem(Sab(1:K1)); %вывод графика дискретной последовательности данных
74
     axis([1 8 -0.2 1.2]); «задание осей: [xmin xmax ymin ymax]
75
     title('Амплитуды частотных составляющих спектра');
76
     xlabel('Количество периодов')
77
     axis tight;
78
     «Вычисление и отображение спектра амплитуд (конец)
79
     v=zeros(1,N+1):
80
     for i=1:N+1
     for j=1:K
82
     y(i) = y(i) + Sa(j) * cos(j*2*T*(i-1-N/2)/N) + Sb(j) * sin(j*2*T*(i-1-N/2)/N);
83
     end
     y(i)=(Sa0+y(i));
85
     end
86
     i=1:N+1;
87
     figure
88
     plot(i,f);
89
     axis tight;
90
     hold on;
91
     plot(i,y,'r-')
92
     hold off;
93
     for i=2:N
95
     dy(i)=y(i)-f(i);%абсолютная погрешность восстановления
96
     end
97
     dy_proc=dy/(max(f)-min(f))*100;
98
     CKO=std(dv);
99
     CKO proc=std(dy proc)%СКО в процентах
100
     pause;
102
     close all;
103
     clear;
104
```

6. Листинг Matlab. Разложение в комплексный ряд Фурье.

```
%Разложение функции t^p в комплексный ряд Фурье
     %в дискретизированном виде на интервале [-T,T]
2
     clear;
3
     clc;
     N=8192; %количество значений функции на интервале [-T,T]
    М=16; %количество членов ряда Фурье
    %T=pi;
    %T=0.9*pi;
     T=pi;
     %р=4; %показатель степени функции х^р
10
    %kp=2.4; %количество периодов гармонического сигнала
11
     C0=0;
12
13
     for i=1:N+1 %генерация модельной функции
14
    %f(i)=sin(2*pi*kp*(i-1)/N); %гармоническая функция
15
     x(i) = 2*T*((i-1-N/2)/N);%для интервала от -Т до Т
16
    %f(i)=sin(x(i));
17
    % f(i)=(x(i)*cos(x(i)));
18
     f(i)=abs(x(i));
19
    %f(i) = (x(i))^p; %функция t^p
20
    % f(i)=x(i)*exp(x(i));
21
    % f(i)=sinh(x(i));
22
     C0 = C0 + f(i);
23
     end
24
     C0=C0*(2/N);
25
     for k=1:M
26
        C(k)=0;
27
     end
28
     for i=1:N+1
29
         for k=1:M
30
         31
         end
32
     end
33
     for k=1:M
34
         C(k)=C(k)*(2/N);
35
     end
36
    «Вычисление и отображение спектра амплитуд (начало)
37
     for k=1:M
38
     Cab(k)=abs(C(k)); %коэффициенты Cab(k)- комплексные числа вида a+jb,
39
    %функция abs вычисляет sqrt(a^2+b^2)
40
     end
41
     k=1:M;
42
     figure
43
     plot(k,Cab);
44
     stem(Cab(1:M)); %вывод графика дискретной последовательности данных
45
     axis([1 8 -0.2 1.2]); %задание осей: [xmin xmax ymin ymax]
46
     title('Амплитуды частотных составляющих спектра');
47
     xlabel('Количество периодов')
     axis tight;
49
     «Вычисление и отображение спектра амплитуд (конец)
50
     for i=1:N+1
51
         y(i)=0;
52
         for k=1:M
53
             y(i)=y(i)+C(k)*exp(j*2*T*k*(i-1)/N);
54
         end
```

```
y(i)=C0/2+y(i);
56
     end
57
     i=1:N+1;
58
     figure
59
     plot(i,f);
60
     axis tight;
61
     title('Исходная и восстановленная функция')
62
     xlabel('Номер элемента массива')
63
     hold on;
64
     plot(i,real(y),'r-');
65
     axis tight;
66
     hold off;
67
68
69
70
     for i=2:N
71
         dy(i)=real(y(i))-f(i); %абсолютная погрешность восстановления
72
73
     dy_proc=dy/(max(f)-min(f))*100;
74
     CKO=std(dy);
75
     CKO_proc=std(dy_proc) %СКО в процентах
76
77
     pause
78
     close all;
79
     clear;
80
```