Introduction to Compute Canada Cloud

Venkat Mahadevan

Cloud Architect

UBC Advanced Research Computing

June 22nd, 2021

Introduction

https://commons.wikimedia.org/wiki/File:Cloud_computing.svg

Author: Sam Johnston

Introduction (cont.)

 Delivers high level services and access to system resources over the Internet.

• Services: collaboration (E-mail, calendaring, etc.), web, Dropbox-like file hosting, etc.

• System resources i.e. infrastructure: compute, disk, networking, load balancing, etc.

Introduction (cont.)

https://commons.wikimedia.org/wiki/File:Cloud_computing_layers.png

Compute Canada Cloud

Arbutus cloud (arbutus.cloud.computecanada.ca ₽)

Node count ♦	CPU \$	Memory (GB) +	Local (ephemeral) storage \$	Interconnect +	GPU \$	Total CPUs \$	Total vCPUs \$
156	2 x Gold 6248&	384	2 x 1.92TB SSD in RAID0₺	1 x 25GbE	N/A	6,240	12,480
8	2 x Gold 6248&	1024	2 x 1.92TB SSD in RAID1₺	1 x 25GbE	N/A	320	6,400
26	2 x Gold 6248&	384	2 x 1.6TB SSD in RAID0₺	1 x 25GbE	4 x V100 32GB&	1,040	2,080
32	2 x Gold 6130&	256	6 x 900GB 10k SAS in RAID10₺	1 x 10GbE	N/A	1,024	2,048
4	2 x Gold 6130&	768	6 x 900GB 10k SAS in RAID10₺	2 x 10GbE	N/A	128	2,560
8	2 x Gold 6130&	256	4 x 1.92TB SSD in RAID5₺	1 x 10GbE	N/A	256	512
240	2 x E5-2680 v4&	256	4 x 900GB 10k SAS in RAID5₺	1 x 10GbE	N/A	6,720	13,440
8	2 x E5-2680 v4	512	4 x 900GB 10k SAS in RAID5	2 x 10GbE	N/A	224	4,480
2	2 x E5-2680 v4	128	4 x 900GB 10k SAS in RAID5	1 x 10GbE	2 x Tesla K80&	56	112

Location: University of Victoria Total CPUs: 16,008 (484 nodes)

Total vCPUs: 44,112

Total GPUs: 108 (28 nodes) Total RAM: 157,184 GB

5.3 PB of Volume and Snapshot Ceph storage.12 PB of Object/Shared Filesystem Ceph storage.

Cedar cloud (cedar.cloud.computecanada.ca⊮)

Node count	CPU	Memory (GB)	Local (ephemeral) storage	Interconnect	GPU	Total CPUs	Total vCPUs
28	2 x E5-2683 v4&	256	2 x 480GB SSD in RAID1 ₺	1 x 10GbE	N/A	896	1,792
4	2 x E5-2683 v4&	256	2 x 480GB SSD in RAID1₺	1 x 10GbE	N/A	128	2,560

Location: Simon Fraser University

Total CPUs: 1,024 Total vCPUs: 4,352 Total RAM: 7,680 GB

Graham cloud (graham.cloud.computecanada.ca☑)

Node count	CPU	Memory (GB)	Local (ephemeral) storage	Interconnect	GPU	Total CPUs	Total vCPUS
6	2 x E5-2683 v4	256	2x 500GB SSD in RAID0	1 x 10GbE	N/A	192	
2	2 x E5-2683 v4	512	2x 500GB SSD in RAID0	1 x 10GbE	N/A	64	
8	2 x E5-2637 v4	128	2x 500GB SSD in RAID0	1 x 10GbE	N/A	256	
8	2 x Xeon(R) Gold 6130 CPU	256	2x 500GB SSD in RAID0	1 x 10GbE	N/A	256	
3	2 x E5-2640 v4	256	2x 500GB SSD in RAID0	1 x 10GbE	N/A	120	
12	2 x Xeon(R) Gold 6248 CPU	768	2x 1TB SSD in RAID0	1 x 10GbE	N/A	480	

Location: University of Waterloo

Total CPUs: 1,368

Total vCPUs:

Total RAM: 15,616 GB

Béluga cloud (beluga.cloud.computecanada.ca☑)

Node count	CPU	Memory (GB)	Local (ephemeral) storage	Interconnect	GPU	Total CPUs	Total vCPUs
96	2 x Intel Xeon Gold 5218	256	N/A, ephemeral storage in ceph	1 x 25GbE	N/A	3,072	6,144
16	2 x Intel Xeon Gold 5218	768	N/A, ephemeral storage in ceph	1 x 25GbE	N/A	512	10,240

Location: École de Technologie Supérieure

Total CPUs: 3,584
Total vCPUs: 16,384
Total RAM: 36,864 GiB

200 TiB of replicated persistent SSD Ceph storage.

1.7 PiB of erasure coded persistent HDD Ceph storage.

 There is also the NextCloud service which provides 50GB of backed up Dropbox-like storage

(https://docs.computecanada.ca/wiki/Nextcloud).

The laaS clouds are built on OpenStack.

 OpenStack is an open-source software platform for deploying clouds i.e. build your own cloud environment.

• Can work with a variety of hardware, network switches, hypervisors.

- Various commercial vendors provide OpenStack:
 - SUSE
 - Redhat
 - Ubuntu
 - Mirantis

- Also exists a free implementation called OpenStack-Ansible which is in use by Compute Canada:
 - https://github.com/openstack/openstack-ansible

Cloud Resources

Attributes	Compute Cloud ^[1]	Persistent Cloud ^[1]		
Who can request	Pls only	Pls only		
VCPUs (see VM flavours)	80	25		
Instances ^[2]	20	10		
Volumes ^[2]	2	10		
Volume snapshots ^[2]	2	10		
RAM (GB)	300	50		
Floating IP	2	2		
Persistent storage (TB)	10			
Object storage (TB) ^[3]	10			
Shared filesystem storage (TB) ^[3]	10			
Default duration	1 year ^[4] , with 1 month wall-time	1 year (renewable) ^[4]		
Default renewal	April ^[4]	April ^[4]		

Cloud Resources (cont.)

 You can request resources via the Rapid Access Service (RAS) or Resource Allocation Competition (RAC):

 https://www.computecanada.ca/research-portal/accessingresources/rapid-access-service/

Other Free Services

• https://www.infoworld.com/article/3179785/aws-vs-azure-vs-google-cloud-which-free-tier-is-best.html

• Amazon Web Services: https://aws.amazon.com/free/; 1-2 VCPU free for 12 months (t2.micro or t3.micro instances depending on region).

Data egress is typically charged.

Time to login

• https://arbutus.cloud.computecanada.ca

Use the guest account "wgtrainingXX".

Password will be provided in class.

• Don't use Safari; use Firefox or Chrome.

Hands-On

Create SSH Key Pair and Download Private Key

Create Key Pair

Key Pairs are how you login to your instance after it is launched. Choose a key pair name you will recognize. Names may only include alphanumeric characters, spaces, or dashes.

Key Pair Name *

coursekey

Key Type*

SSH Key

Create Keypair

Copy Private Key to Clipboard

Done

Launch Instance of a Virtual Machine

Details Source *

Flavor *

Networks

Network Ports

Security Groups

Key Pair

Configuration

Please provide the initial hostname for the instance, the availability zone where it will be deployed, and the instance count. Increase the Count to create multiple instances with the same settings.

Source

Flavor *

Networks

Network Ports

Security Groups

Instance source is the template used to create an instance. You can use an image, a snapshot of an instance (image snapshot), a volume or a volume snapshot (if enabled). You can also choose to use persistent storage by creating a new volume.

Select Boot Source

Create New Volume

Allocated

Name	Updated	Size	Туре	Visibility	
> CentOS-7-x64-2020-11	5/26/21 4:01 PM	847.81 MB	qcow2	Public	•

Details

Source

Flavor

Networks

Flavors manage the sizing for the compute, memory and storage capacity of the instance.

Allocated

	Name	VCPUS	RAM	Total Disk	Root Disk	Ephemeral Disk	Public	
>	p1-1.5gb	1	1.5 GB	20 GB	20 GB	0 GB	No	•

Details

Source *

Flavor *

Networks

Network Ports

Security Groups

Key Pair

Configuration

Server Groups

A key pair allows you to SSH into your newly created instance. You may select an existing key pair, import a key pair, or generate a new key pair.

+ Create Key Pair

≛ Import Key Pair

Allocated

Displaying 1 item

Name Type

➤ mobaxterm key ssh

Displaying 1 item

✔ Available ①

Select one

×

Q Click here for filters or full text search.

Displaying 0 items

Launch the Instance

 Click Launch Instance to launch the virtual machine. Make sure to note the name of your instance.

OpenStack will boot the VM and insert the SSH key into it.

• Once the VM is booted, we can try to access it remotely.

But need to configure security and public networking first.

Configuring Remote Access

	Instance Name	Image Name	IP Address	Flavor	Key Pair	Status		Availability Zone	Task	Power State	Age	Actions
	myinstance	CentOS-7-x6 4-2020-11	192.168.181.218	p1- 1.5gb	coursekey	Active	<u> </u>	Persistent_01	None	Running	0 minutes	Create Snapshot ▼
Disnl	aying 1 item										A	Associate Floating IP
ызы	aying Titem										A	Attach Interface
											[Detach Interface
											E	Edit Instance
											A	Attach Volume
											[Detach Volume
											ι	Jpdate Metadata
											F	Retrieve Password
											E	Edit Security Groups
											E	Edit Port Security Groups

Manage Floating IP Associations

206.12.88.135 **▼ +**

Select the IP address you wish to associate with the selected instance or port.

Port to be associated *

myinstance: 192.168.181.218

Cancel

Associate

Description:

Rules define which traffic is allowed to instances assigned to the security group. A security group rule consists of three main parts:

Rule: You can specify the desired rule template or use custom rules, the options are Custom TCP Rule, Custom UDP Rule, or Custom ICMP Rule.

Open Port/Port Range: For TCP and UDP rules you may choose to open either a single port or a range of ports. Selecting the "Port Range" option will provide you with space to provide both the starting and ending ports for the range. For ICMP rules you instead specify an ICMP type and code in the spaces provided.

Remote: You must specify the source of the traffic to be allowed via this rule. You may do so either in the form of an IP address block (CIDR) or via a source group (Security Group). Selecting a security group as the source will allow any other instance in that security group access to any other instance via this rule.

Add

Network	~								+ Add Rule	☐ Delete Rules
Network To	opology									
N	etworks	Displ	laying 7 items							
,	Routers		Direction	Ether Type	IP Protocol	Port Range	Remote IP Prefix	Remote Security Group	Description	Actions
Security			Egress	IPv4	Any	Any	0.0.0.0/0	-	-	Delete Rule
Floa	iting IPs		Egress	IPv6	Any	Any	::/0	-	-	Delete Rule
Orchestration	>		Ingress	IPv4	Any	Any	-	default	-	Delete Rule
Share Identity	>		Ingress	IPv4	TCP	22 (SSH)	0.0.0.0/0	-	-	Delete Rule
			Ingress	IPv4	TCP	80 (HTTP)	0.0.0.0/0	-	-	Delete Rule
			Ingress	IPv4	TCP	443 (HTTPS)	0.0.0.0/0	-	-	Delete Rule
			Ingress	IPv6	Any	Any	-	default	-	Delete Rule
		Displ	laying 7 items							

Connect to the Instance via SSH

ssh -i <key>.pem centos@<public ip>

If using MobaXTerm, see:

https://docs.computecanada.ca/wiki/Connecting with MobaXTerm#U sing a Key Pair

If using Windows Subsystem for Linux, you may need to do:

chmod 600 <name of private key file>

Installing RStudio

```
sudo yum install epel-release -y
sudo yum install R -y
<< will take a while >>
```

```
sudo yum install wget -y
wget https://download2.rstudio.org/server/centos7/x86_64/rstudio-
server-rhel-1.4.1717-x86_64.rpm
sudo yum install rstudio-server-rhel-1.4.1717-x86_64.rpm -y
```

sudo systemctl status rstudio-server.service sudo systemctl enable rstudio-server.service

Add Security Rule

Add User

sudo useradd rstudiouser

sudo passwd rstudiouser

Done

	Sign in to RStudio
Jserna	nme:
Passwo	ord:
Sta	ay signed in when browser closes
ou will	automatically be signed out after 60 minutes of
nactivit	у.
	Sign In

Maintaining Your Instance

• Install updates to the OS, e.g. for CentOS do "yum -y update".

• Install application updates regularly for RStudio and other applications.

Resources

- Compute Canada Cloud
 - https://www.computecanada.ca/research-portal/national-services/computecanada-cloud/
 - https://docs.computecanada.ca/wiki/Creating a Linux VM

- UBC Advanced Research Computing
 - https://www.arc.ubc.ca
- WestGrid
 - https://www.westgrid.ca

