CONTENTS

Inte	Interval Estimation	2
7.1	7.1 Confidence Intervals	$\mathcal{C}_{\mathcal{I}}$
7.2	7.2 Pivotal Quantity Method	10
7.3	7.3 Aproximate Confidence Intervals .	20
7.4	7.4 Credible Interval	22

Chapter 7 Interval Estimation

7 Interval Estimation

7.1 Confidence Intervals

Definition 1. Confidence Interval

An interval

$$(l(x_1,\ldots,x_n),u(x_1,\ldots,x_n))$$

is called a $100\gamma\%$ confidence interval for θ if

$$P[l(x_1, \dots, x_n) < \theta < u(x_1, \dots, x_n)] = \gamma$$

where $0 < \gamma < 1$.

The observed values $l(x_1, \ldots, x_n)$ and $u(x_1, \ldots, x_n)$ are called lower and upper confidence limits, respectively.

Definition 2. One-Sided Confidence Limits If

$$P[l(x_1,\ldots,x_n)<\theta]=\gamma$$

then $l(x_1, \ldots, x_n)$ is called a one-sided lower $100\gamma\%$ confidence limit for θ .

$$P[u(x_1,\ldots,x_n)>\theta]=\gamma$$

then $u(x_1, \ldots, x_n)$ is called a one-sided upper $100\gamma\%$ confidence limit for θ .

val for a parameter θ , and if $\tau(\theta)$ is a monotonic In general, if (θ_L, θ_U) is a $100\gamma\%$ confidence interincreasing function of $\theta \in \Omega$, The $(\tau(\theta_L), \tau(\theta_U))$ is a $100\gamma\%$ confidence interval for $\tau(\theta)$.

Example 1. Consider a random sample of size nfrom an exponential distribution, $X_i \sim Exp(\theta)$. (a) Construct a one-sided lower $100\gamma\%$ confidence limit for θ .

(c) Construct a $100\gamma\%$ confidence interval for θ .

Chapter 7 Interval Estimation

(b) Construct a one-sided upper $100\gamma\%$ confidence limit for θ .

(d) Find a one-sided lower $100\gamma\%$ confidence limit for $P(X > t) = e^{-t/\theta}$.

Chapter 7 Interval Estimation

Example 2.

gamma distributions, $X \sim gamma(4, \beta_1)$ and $Y_j \sim gamma(10, \beta_2)$; $i = 1, \dots, n_1, j = 1, \dots, n_2$. Consider independent random samples from two

- (a) Find the distribution of $\left(\frac{\beta_2}{\beta_1}\right)\left(\frac{5\bar{X}}{2Y}\right)$.
- (b) Derive a $100(1-\alpha)\%$ confidence for $\frac{\beta_2}{\beta_1}$.

Example 3.

form distribution, $X_i \sim U(0,\theta), \, \theta > 0$, and let $X_{n:n}$ be the largest order statistic. Find the constant c such that $(x_{n:n}, cx_{n:n})$ is a 92% confidence Consider a random sample of size 40 from a uniinterval for θ .

Chapter 7 Interval Estimation

7.2 Pivotal Quantity Method

If $Q = q(X_1, ..., X_n; \theta)$ is a random variable that is a function only of $(X_1, ..., X_n)$ and θ , parameters. That is, if $X \sim F(\mathbf{x}|\theta)$, then Q has then Q is called a pivotal quantity if its distribution does not depend on θ or any other unknown the same distribution for all values of θ . Definition 3. Pivotal Quantity

Example 4. (Gamma pivot)

Suppose that X_1, \ldots, X_n are iid $Exp(\theta)$, find the pivotal quantity based on the sufficient statistics $T = \sum X_i$.

Example 5.

Consider a random sample from a normal distribution, $X \sim N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. If $\hat{\mu}$ and $\hat{\sigma}$ are the MLEs of μ and σ , (a) show that $\frac{\hat{\mu} - \mu}{\hat{\sigma}}$ and $\hat{\sigma} / \sigma$ are pivotal quantities;

(b) find a $100(1-\alpha)\%$ confidence interval for μ .

Chapter 7 Interval Estimation

(c) find an equal tail $100(1-\alpha)\%$ confidence interval for σ^2 .

MEME15203 STATISTICAL INFERENCE©DR YONG CHIN KHIAN

202401

Example 6.

Let X_1, X_2, \ldots, X_n be a random sample from a Weibull distribution, $X \sim WEI(\theta, 4)$.

- (a) Show that $Q = 2\sum_{i=1}^{n} X_i^4 / \theta^4 \sim \chi^2(2n)$.
- (b) Use Q to derive an equal tailed $100\gamma\%$ confidence interval for θ .

Chapter 7 Interval Estimation

Example 7.

Let X_1, \ldots, X_n , be a random sample from a gamma distribution with parameters $\alpha = 5$ and unknown

- (a) Find a pivotal quantity for the parameter θ based on the sufficient statistic.
- for θ based on the pivotal qualtity from part (b) Derive an equal tail 92% confidence interval

 $\frac{18}{8}$

quatity, but for a sample from a continuous distribution with a single unknown parameter, at least one pivotal quantity can always be derived It may not always be possible to find a pivotal by use of the probability integral transform.

$$X \sim f(x;\theta)$$

and if

$$F(x;\theta)$$

is the CDF of X, then

$$F(X;\theta) \sim U(0,1)$$

and consequently

$$Y_i \sim -\ln F(X_i, \theta) \sim EXP(1).$$

For a random sample X_1, \ldots, X_n , it follows that

$$-2\sum_{i=1}^{n} \ln F(X_i; \theta) \sim \chi^2(2n)$$

so that

$$P[\chi_{\alpha/2}^2(2n) < -2\ln F(X_i;\theta) < \chi_{1-\alpha/1}^2(2n)] = 1-\alpha$$

Chapter 7 Interval Estimation

and inverting this statement will provide a confidence region for θ . If the CDF is not in closed form or if it is too complicated, then the inversion may have to be done numerically.

ing) function of θ , then the resulting confidence If $F(x;\theta)$ is a monotonic increasing (or decreasregion will be an interval.

Notice also that $1 - F(X_i; \theta) \sim U(0, 1)$ and

$$-2\sum_{i=1}^{n} \ln[1 - F(X_i; \theta)] \sim \chi^2(2n)$$

Example 8.

Consider a random sample from a Pareto distribution, $X \sim PAR(\alpha, \theta = 300)$, find a 100(1 - α)% confidence interval for α .

7.3 Aproximate Confidence Intervals

Chapter 7 Interval Estimation

vious chapter, MLEs are asymptotically normal ist. However, an approximate pivotal quantity tys. Let X_1, \ldots, X_n be a random sample from rameter problems, a pivotal quantity may not exoften can be obtained based on asymptotic resula distribution with pdf $f(x;\theta)$. As noted in pre-For discrete distributions, and for some multipaunder certain condition.

Example 9.

Consider a random sample from a Bernoulli distribution, $X \sim BIN(1,p)$. Find an approximate confidence limits for p.

7.4 Credible Interval

A $100(1-\alpha)\%$ credible set C is a subset of Θ A credible interval (or in general, a credible set) is the Bayesian analogue of a confidence interval. such that

$$\int_C \pi(\theta|\mathbf{x})d\theta = 1 - \alpha$$

If the parameter space Θ is discrete, a sum replaces the integral.

Definition 4.

the $1 - \frac{\alpha}{2}$ posterior quantile for θ , then (a, b) is a $100(1 - \alpha)\%$ equal probability credible If a is the $\frac{\alpha}{2}$ posterior quantile for θ , and b is interval for θ .

Example 10.

The following amounts were paid on a hospital liability policy:

125, 138, 142, 103, 137, 311, 127, 102, 144, 231.

 α unknown. The prior distribution has the gamma distribution with $\alpha = 3$ and $\theta = 1$. Determine parameter Pareto distribution with $\theta = 102$ and the 96% equal probability credible interval for α . The amount of a single payment has the single-

Chapter 7 Interval Estimation

when the posterior distribution is symmetric. If The equal-tail credible interval approach is ideal $\pi(\theta|\mathbf{x})$ is skewed, a better approach is to create an interval of θ —values having the Highest Posterior Density (HPD).

Definition 5.

A $100(1-\alpha)\%$ HPD region for θ is a subset $C \in$ Θ defined by

$$C = \{\theta : \pi(\theta|\mathbf{x}) \ge k\}$$

where k is the largest number such that

$$\int_{\theta:\pi(\theta|\mathbf{x})\geq k} \pi(\theta|\mathbf{x})d\theta = 1 - \alpha$$

line placed over the posterior density whose intersection(s) with the posterior define regions with The value k can be thought of as a horizontal probability $1 - \alpha$.

Theorem 1.

If the posterior random variable $\theta|\mathbf{x}$ is continuous and unimodal, then the $100(1-\alpha)\%$ HPD credible interval is the unique solution to

$$\int_{a}^{b} \pi(\theta|\mathbf{x})d\theta = 1 - \alpha$$
$$\pi(a|\mathbf{x}) = \pi(b|\mathbf{x})$$

Example 11.

You are given the following:

$$f(x|\theta) = \frac{5x^4}{\theta^5}, 0 < x < \theta.$$

$$\pi(\theta) = \frac{6}{\theta^7}, \theta > 1.$$

Three observations were observed: 500, 600, 1300. Find a 95% "HPD" credible set for θ .

Example 12.

The following amounts were paid on a hospital liability

Pareto distribution with $\theta = 100$ and α unknown. The prior distribution has the gamma distribution with $\alpha = 2$ and $\theta = 1$. Determine the 95% HPD credible interval for The amount of a single payment has the single-parameter

a=1.1832, b=3.9384

Chapter 7 Interval Estimation

```
y[1] = pgamma(x[2], 12, 4.801121) - pgamma(x[1], 12, 4.801121) - 0.95
                                                                                                    y[2] = dgamma(x[1], 12, 4.801121) - dgamma(x[2], 12, 4.801121)
                                                                                                                                                                                                                                                                                          nleqslv(xstart, f, control=list(btol=.01),
                                                                                                                                                                                                                                                                                                                        method="Newton")
f = function(x){
                                                                                                                                                                                                                 library(nleqslv)
                                                                                                                                                                                                                                                    xstart = c(1,3)
                                     y = numeric(2)
```

Example 13.

Let X_1, \ldots, X_n , be a random sample from $N(\theta, 1)$. Assume that the prior distribution of Θ is $N(\mu, \sigma^2)$ with known μ and σ^2 .

- (a) Derive the posterior distrbution of $\Theta.$
- (b) Find a Bayesian interval of θ with confidence coefficient $1-\alpha.$
- (c) Find the corresponding non-Bayesian confidence interval of θ using pivotal quantity method.