Departamento de Matemáticas. Universidade de Vigo. Análise Matemática. Grao en Enxenería Informática. Curso 2022-2023.

Entrega 5: Para entregar en los grupos reducidos del 03 al 08 de noviembre.

- 1. Calcular el valor de los siguientes límites:
 - a) $\lim_{n\to\infty} \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{2n}$ (Indicación: usar sumas de Riemann).
 - $b) \lim_{x\to 0^+} \frac{\int_0^x (\mathrm{e}^{3t^2}-1)\,dt}{x^2} \text{ (Indicación: usar la Regla de L'Hôpital y el TFC)}.$
- 2. Estudiar la convergencia o divergencia de las siguientes integrales impropias:

a)
$$\int_{-\infty}^{0} \frac{dx}{4x^2 + 1}$$
 b) $\int_{0}^{1} \ln(x) dx$

- 3. Calcular el área limitada por la curva $y = \text{sen}(x)\cos(x)^2$ y el eje OX en el intervalo $[0, 2\pi]$.
- 4. Se considera la región \mathcal{R} limitada por la curva $y=x\,\mathrm{e}^{-x}$ y el eje OX en el intervalo [0,1]. Halla el volumen del cuerpo de revolución obtenido al hacer girar dicha región alrededor del eje OY (Fórmula: $V_{OY}=2\pi\int_a^b|xf(x)|\,dx$).