Local spur の星形成

2018/8/9 西村 星形成プロポーザルセミナー #9

銀河における星形成

- 星はガスがあるところでできる
 - SFE は一定らしい (KS law)
- 銀河構造の影響は?

1 Mo pc⁻² = $1.25 \times 10^{20} \text{ cm}^{-2}$

銀河構造と星形成

Ragan+2018

- Massive な cluster は arm にしかない
- その他の星は、arm / inter-arm 関係なさそう
 - SFE は一定

Sagittarius arm の例

- Total Mgas: 1.1 x 10⁷ Msun
- GMC: 17 個 (うち、HII領域が付随 15)
- N: $10^{22} 10^{23}$ cm⁻²

Inter arm のガス

- Arm はガスが濃い
- Interarm はうすい

arm / interarm の星形成

- Interarm でも星形 成はある
- Interarm の星形成 は、armの星形成と 同じだろうか?

arm の大質量星形成

- Sagittarius: l=+/-20 deg の 1 kpc の範囲のうち ~90% の OB stars は CCC トリガ の可能性がある
- Local : 主要な大質量星形成 領域 (Orion, Cygnus) は CCC トリガとして理解可能
- Perseus:観測できた大半の HII領域で CCC トリガの可能 性 (昨シーズンの共同利用)

- 2016 年に発見された新しい spur
 - 同時に、Local arm 自体は、pitch angle が小さく、星形成も活発で、通常の arm だろうとされた
- Tangent point 上に位置するので、観測しやすい

The Infrared Milky Way: GLIMPSE/MIPSGAL Spitzer Space Telescope • IRAC • MIPS

NASA / JPL-Caltech / E. Churchwell (Univ. of Wisconsin), GLIMPSE Team & S. Carey (SSC-Caltech), MIPSGAL Team

観測提案

NRO45/FOREST

- FUGIN / Cygnus-survey モード
- ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0)
- 20", 0.3 km/s
- Trms : 0.5 K
- $-30 deg^2$
- 180 hour
- LST 21-01

• サイエンス

- 質量があるのになぜ星形成は不活発?
 - 高密度ガスの割合: 13CO, C18O
 - 動的状態:ビリアル解析、PDF
 - CCC ?
- Spur 内でのガス進化
 - Cloud / inter cloud
 - Sagittarius arm からの距離