

Introduction to Data Science

(BAZG523 / CSIZG523)

Tirtharaj Dash Dept. of Comp. Sc. and APP Center for A.I. Research BITS Pilani, K.K. Birla Goa Campus

Introduction to Data Science Lecture No. 04 (C.H.: 7, 8)

Previous Lecture:

- Various roles in a data science project
 - Project sponsor
 - Client
 - Data scientist
 - Data architect
 - Operations
- Stages of a data science project
 - Define the goal
 - College and manage data
 - Build the model
 - Evaluate and critique model
 - Present results and documents
 - Deploy model
 - [Repeat the stages in sequence, if needed]

innovate achieve lead

Data

- Key ingredient of any analytical exercise.
- A rule: "The more data, the better"
- A principle: "Garbage In, Garbage Out (GIGO)"

Types of Data Sources

Transactions

- Consist of structured, low-level, detailed information capturing the key characteristics of a customer transaction (e.g., purchase, claim, cash transfer, credit card payment).
- This type of data is usually stored in massive online transaction processing (OLTP) relational databases.

Unstructured data

- Embedded in text documents (e.g., emails, web pages, claim forms) or multimedia content
- These sources typically require extensive preprocessing.

Qualitative, expert-based data

- An expert is a person with a substantial amount of subject matter expertise within a particular setting (e.g., credit portfolio manager, brand manager).
- E.g. One would expect a priori that higher debt has an adverse impact on credit risk.

Cont.

- Publicly available data
 - Data originating from social networks (e.g. Facebook, Twitter)
 - Data originating from government sources (e.g. unemployment data, inflation data)

Sampling

- Drawing a subset of data instances (sample) from a pool of data (source)
- Source → (sampling procedure) → Sample
- Avoid sampling bias
- Stratified sampling
 - maintain the same predefined distribution of classes in the sample

Types of Data Elements

Continuous:

- These are data elements that are defined on an interval that can be limited or unlimited.
- Example: income, sales, monetary.

Categorical:

- Nominal: These are data elements that can only take on a limited set of values with no meaningful ordering in between. (Example: marital status, profession, purpose of loan)
- Ordinal: These are data elements that can only take on a limited set of values with a meaningful ordering in between. (Example: credit rating; age coded as young, middle aged, and old.)
- Binary: These are data elements that can only take on two values. (Example: gender, employment status)

Visualizing Data

- Exploration: Plotting
 - Getting to know data in an "informal" way.
 - Different plots and graphs can be useful.
- Analysis: Inspect basic statistical measurements
 - Averages
 - Standard deviations
 - Minimum
 - Maximum
 - Percentiles
 - Confidence intervals

Missing Values

Replace (impute)

- Replacing the missing value with a known value
- Usually: mean, median, mode, etc. of the features/attribute
- E.g. marital status if empty can be replaced by mode of the column (the most repeated status)

Delete

- Most straightforward option
- Deleting observations or variables with lots of missing values
- Assumes: information is missing at random, no meaningful interpretation

Keep

- Missing values can be meaningful
- E.g., a customer did not disclose his or her income because he or she is currently unemployed.

Today's Practical

- We will learn about numpy
 - This is the core library for scientific computing in Python
 - some basic operations and functions
- We will learn about pandas
 - Fast, powerful, flexible, open data analysis and manipulation tool.

For your practice

If you have not done:

•	Install Python 3.x	[<u>Link</u>]
---	--------------------	---------------	---

- Install anaconda environment [Link]
- Install jupyter notebook environment [<u>Link</u>]
- Install library numpy [Link]
- Install library pandas [Link]
- Install library scipy [not included today] [Link]

[See the pipeline next]

Cont.

I would follow the following pipeline for installation:

- Python (Download the file and install; or use command)
- Anaconda (File based installation)
 - Pip (conda install pip)
 - Scipy (pip install scipy)
 - jupyter (conda install -c conda-forge jupyterlab)
 - numpy (conda install numpy)
 - pandas (conda install pandas)

Lab repo

- Take the Jupyter notebooks from our lab repo and practice. This is useful:
 - https://github.com/tirtharajdash/IntroductionToDataScience/tree/master/L04