AI基础: 机器学习和深度学习的练习数据

原创 机器学习初学者 机器学习初学者 前天

0.导语

初学者学习机器学习和深度学习的时候,经常会找不到练习的数据,本文提供了获取数据的 一些方法。

目前我在编写AI基础系列,目前已经发布:

AI 基础:简易数学入门

AI 基础: Python开发环境设置和小技巧

AI 基础: Python 简易入门

AI 基础: Numpy 简易入门

AI 基础: Pandas 简易入门

AI 基础: Scipy(科学计算库) 简易入门

AI基础:数据可视化简易入门(matplotlib和seaborn)

AI基础: 机器学习库Scikit-learn的使用

AI基础: 机器学习简易入门

AI基础: 机器学习的损失函数

AI基础:特征工程-类别特征

AI基础:特征工程-数字特征处理

AI基础:特征工程-文本特征处理

AI基础:词嵌入基础和Word2Vec

AI基础: 图解Transformer

AI基础:一文看懂BERT

AI基础:入门人工智能必看的论文

AI基础: 走进深度学习

AI基础: 卷积神经网络

AI基础:深度学习论文阅读路线(127篇经典论文下载)

AI基础:数据增强方法综述

后续持续更新

一、scikit-learn自带数据集

Scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。

一、自带数据集

自带的小的数据集为: sklearn.datasets.load_<name>

load_boston	Boston房屋 价格	回归	506*13
fetch_california_housing	加州住房	回归	20640*9
load_diabetes	糖尿病	回归	442*10
load_digits	手写字	分类	1797*64
load_breast_cancer	乳腺癌	分类、聚类	(357+212)*30
load_iris	鸢尾花	分类、聚类	(50*3)*4
load_wine	葡萄酒	分类	(59+71+48)*13
load_linnerud	体能训练	多分类	20

怎么用:

数据集的信息关键字:

- DESCR: 数据集的描述信息
- data: 内部数据(即: X)
- feature_names:

数据字段名

• target:

数据标签(即: y)

target names:

标签字段名(回归数据集无此项)

使用方法(以load iris为例)

数据介绍:

- 一般用于做分类测试
- 有150个数据集, 共分为3类, 每类50个样本。每个样本有4个特征。
- 每条记录都有 4 项特征:包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽 度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单 位为厘米。
- 可以通过这4个特征预测鸢尾花卉属于(iris-setosa(山鸢尾), iris-versicolour(杂色鸢 尾), iris-virginica(维吉尼亚鸢尾))中的哪一品种。

第一步:

导入数据

第二步:

定义X和v

此外,可以看下数据的维度:

输出为:

((150, 4), (150,))

杳看特征名:

输出为:

```
['sepal length (cm)',
```

- 'sepal width (cm)',
- 'petal length (cm)',
- 'petal width (cm)']

查看标签名:

输出为:

```
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
```

划分训练集和测试集:

这样就把训练集和测试集按照3比1划分了,接下来就可以用机器学习算法进行训练和测试了。

小技巧:将数据转换为Dataframe格式(两种方法都可以):

```
df y = pd. DataFrame(iris. target, columns=["target"])
df=pd.concat([df X, df2], axis=1)#横向合并
df. head()
```

或者:

输出结果一致:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

二、可在线下载的数据集(需要下载)

下载的数据集为: sklearn.datasets.fetch_<name>

这类数据需要在线下载,有点慢

fetch_20newsgroups	用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器
fetch_20newsgroups_vectorized	这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器

/1/0	AI基础: 机奋子刁和床及子刁的练刁数据
fetch_california_housing	加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_calif ornia_housing()['DESCR']了解每个属性的具体含义;
fetch_covtype	森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype() ['DESCR']了解每个属性的具体含义
fetch_kddcup99	KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征
fetch_lfw_pairs	该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人。
fetch_lfw_people	打好标签的人脸数据集
fetch_mldata	从 mldata.org 中下载数据集
fetch_olivetti_faces	Olivetti 脸部图片数据集
fetch_rcv1	路透社新闻语聊数据集
fetch_species_distributions	物种分布数据集

使用方法与自带数据集一致,只是多了下载过程(示例: fetch_20newsgroups)

```
news = fetch 20newsgroups(subset='all') #本次使用的数据需要到互联网上下载
```

三、生成数据集

可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解 任务的,用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集 合

- make_blobs: 多类单标签数据集,为每个类分配一个或多个正态分布的点集
- make_classification: 多类单标签数据集,为每个类分配一个或多个正态分布的点集,提供 了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等
- make_gaussian-quantiles: 将一个单高斯分布的点集划分为两个数量均等的点集,作为两 类

- make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度
- make_circle和make_moons:产生二维二元分类数据集来测试某些算法的性能,可以为数 据集添加噪声,可以为二元分类器产生一些球形判决界面的数据

举例:

```
import matplotlib.pyplot as plt
```


深度学习数据集

MS-COCO

COCO是一个可用于object detection, segmentation and caption的大型数据集。

http://cocodataset.org/#home

ImageNet

图像总数约1,500,000;每个都有多个边界框和相应的类标签。

大小:约150GB

http://www.image-net.org

Yelp Reviews

它由数百万用户评论、商业类型和来自多个大型城市的超过20万张照片组成。这在全球都是一 个非常常用的NLP挑战级数据集。

大小: 2.66 GB JSON, 2.9 GB SQL and 7.5 GB Photos (全部已压缩)

数量: 5,200,000条评论, 174,000条商业类型, 20万张图片和11个大型城市

https://www.yelp.com/dataset

......待补充

其它数据集

kaggle:

https://www.kaggle.com

天池:

https://tianchi.aliyun.com/dataset

搜狗实验室:

http://www.sogou.com/labs/resource/list_pingce.php

DC竞赛:

https://www.pkbigdata.com/common/cmptIndex.html

DF竞赛:

https://www.datafountain.cn/datasets

Google数据集

[需要科学上网]

https://toolbox.google.com/datasetsearch

科赛网

https://www.kesci.com/home/dataset

微软数据集

https://msropendata.com/

......待补充

本文为机器学习初学者提供了使用scikit-learn内置数据的方法,用两行代码就可以使用这些数 据,可以进行大部分的机器学习实验了。

https://scikit-learn.org/stable/datasets/index.html

https://blog.csdn.net/fendouaini/article/details/79871922

备注:公众号菜单包含了整理了一本AI小抄,非常适合在通勤路上用学习。

往期精彩回顾

- 2019年公众号文章精选
- 适合初学者入门人工智能的路线及资料下载
- 机器学习在线手册
- 深度学习在线手册
- o AI基础下载(第一部分)

备注:加入本站微信群或者qq群,请回复"加群"

加入知识星球(4500+用户, ID: 92416895),请回复"知识星球"

喜欢文章,点个在看🛟