Exercise Session n. 1 21.02.2024, 3:26 PM

Exercise Session n. 1

Algorithms and Data Structures

We start with a couple of exercises with variables and simple expressions. We then turn sequences of instructions into functions. We then work with conditional instructions.

Rotation

Assume that you have variables x,y that represent the Cartesian coordinates of a point P. Write Python instructions that move P by rotating the plane by 90 degrees counterclockwise.

Examples

```
>>> x = 1
>>> y = 1
>>> # <<< your instructions go here...
>>> x
-1
>>> y
1
```

Simple, Linear Transformation

Assume that you have variables x, y that hold numeric values. For example, x = 7, y = 2. Write Python instructions that update x and y according to this linear map (you'll learn all about this kind of operations in Linear Algebra):

$$x'=2x \ y'=x+y$$

Notice that, in these equations, x' and y' represent the updated values of x and y, respectively. However, there are only two variables. So, in fact, x' and y' represent the values of x and y after the update operation.

Examples

Exercise Session n. 1 21.02.2024, 3:26 PM

```
>>> x = 7
>>> y = 2
>>> # <<< your instructions go here...
>>> x
14
>>> y
9
```

Half Adder with Simple Arithmetic Expressions

Write the instructions that, given two bits a,b, meaning two variables a and b each holding a binary value 0 or 1, compute two binary values s and c representing the sum and the carry values of a+b, respectively. Do this using only simple arithmetic expressions with addition, subtraction, and multiplication. You are not allowed to use other operations or conditional instructions.

Examples

```
>>> a = 0

>>> b = 1

>>> # <<< your instructions go here...

>>> s

1

>>> c

0

>>> a = 1

>>> b = 1

>>> # <<< your instructions go here...

>>> s

0

>>> c
```

Defining Functions

Write the instructions of the previous exercises as three functions rotate 90(x,y), linear_map(x,y) and half_adder(a,b), respectively.

Examples

```
>>> half_adder(1,0) (1,0)
```

Exercise Session n. 1 21.02.2024, 3:26 PM

Hint: in Python, you can return a pair of values, or more generally a tuple, meaning a list of values. You can do that by simply returning the values separated by commas. For example, the instruction return 2.3 returns the pair (2.3).

Adder with Conditional Instructions

Write a variant of the half_adder(a,b) function—that, given two bits a,b returns a "tuple" (s,c) where s and c are the sum and the carry values of a+b, respectively. Do this using only simple conditional instructions and no arithmetic expressions at all.

Full Adder with Conditional Instructions

Write a function full_adder(a,b,c) that, given three bits a,b,c, returns a pair of binary values (s,c) representing the *sum* and the *carry* values of a+b+c, respectively. Do this using only simple conditional instructions and no arithmetic expressions.

Examples

```
>>> full_adder(1,0,1)
(0,1)
```