

الامتحان الوطني الموحد للبكالوريا

الدورة العادية **2014** الموضوع O\$304 \$1 #60H0304 0\$306 \$2X08 1 #60H0304 0\$8XX6 ¥W\$⊙\$ ∧

المركز الوطنى للتقويم والامتحانات والتوجيه

NS 25

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- o Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- Le premier exercice se rapporte à l'arithmétique.....(3 pts)
- Le deuxième exercice se rapporte aux structures algébriques.....(3.5 pts)
- Le quatrième exercice se rapporte à l'analyse.....(8 pts)
- Le cinquième exercice se rapporte à l'analyse......(2pts)

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas permis

الامتدان الوطني الموحد للبالوريا – الدورة العادية 2014 – الموضوع – ماحة : الرياضيات – شعبة العلوم الرياضية (أ) و(ببم) (الترجمة الغرنسية)

Exercice 1: (3 pts)

Pour tout n de Ψ^* , on pose : $a_n = \underbrace{333......31}_{n \text{ fois}}$ (n fois le chiffre 3)

- 0.5 | 1-Vérifier que les deux nombres a_1 et a_2 sont premiers.
- 0.5 2- Montrer que pour tout $n \text{ de } \mathbb{Y}^*$: $3a_n + 7 = 10^{n+1}$
- 0.75 | 3 -Montrer que pour tout k de Y : $10^{30k+2} = 7$ [31]
- 0.75 4 -Montrer que pour tout k de Ψ : $3a_{30k+1}$: 0 [31] ,puis en déduire que : 31 divise a_{30k+1}
- 5- Montrer que pour tout n de Ψ^* , si n: 1 [30] alors l'équation $a_n x + 31y = 1$ n'admet pas de solutions dans ϕ^2

Exercice 2:(3.5pts)

On rappelle que $(\Box, +, \times)$ est un corps commutatif et que $(M_2(\Box), +, \times)$ est un anneau unitaire de zéro $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et d'unité $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Pour tout a et b de \cdot ,on pose : $M(a,b) = \begin{pmatrix} a & a-b \\ b & a+b \end{pmatrix}$ et on considère l'ensemble

$$E = \left\{ M\left(a,b\right) / \left(a,b\right) \in \square^{2} \right\}$$

- 0.5 | 1-Montrer que E est un sous-groupe du groupe $(M_2(\square),+)$
- 2- Calculer $J^2 = J'$ J sachant que $J = \begin{cases} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{cases}$, puis en déduire que E n'est pas stable

dans $(M_2(\square),\times)$

3-On définit sur $M_2(\square)$ la loi de composition interne * par :

$$A * B = A \times N \times B$$
 avec $N = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$

On considère l'application φ de \square^* vers $M_2(\square)$ qui associe à chaque nombre complexe non nul a+ib (a et b étant deux nombres réels) la matrice M(a,b).

- a)Montrer que φ est un homomorphisme de (\square^*, \times) vers $(M_2(\square), *)$
- 0.25 b)On pose: $E^* = E \{O\}$. Montrer que: $\varphi(\Box^*) = E^*$

الامتدان الوحني الموحد للبكالوريا – الحورة العاحية 2014 – الموضوخ ربيم (الترجمة الغرنسية) (ماحة : الرياخيات – هعبة العلوم الرياخية (أ) وربيم) (الترجمة الغرنسية – ماحة : الرياخيات – هعبة العلوم الرياخية (ث) والمحال ($E^*,*$) est un groupe commutatif.

- 0.5
- 4-Montrer que : $(\forall (A, B, C) \in E^3)$ A * (B + C) = A * B + A * C0.5
- 5-En déduire de ce qui précède que (E,+,*) est un corps commutatif. 0.5

Exercice 3:(3.5pts)

Le plan complexe étant rapporté à un repère orthonormé direct (O, u, v)

 $q - \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}}$ Soit q un nombre réel tel que :

- 1-On considère dans £ l'équation suivante : (E) $z^2 \sqrt{2}e^{iq}z + e^{2iq} = 0$
- a) Vérifier que le discriminant de l'équation (E) est : D = $(\sqrt{2}ie^{iq})^2$ 0.25
- b) Ecrire sous forme trigonométrique les deux racines z_1 et z_2 de l'équation (E) dans £ 0.75
 - 2- On considère les points I, J, T_1 , T_2 et A d'affixes respectives

1, -1,
$$e^{i\xi q + \frac{p_{\pm}}{4^{\pm}}}$$
, $e^{i\xi q - \frac{p_{\pm}}{4^{\pm}}} et \sqrt{2}e^{iq}$

- a) Montrer que les deux droites (OA)et (T_1T_2) sont perpendiculaires. 0.5
- b) Soit K le milieu du segment $[T_1T_2]$. Montrer que les points O, Ket A sont alignés. 0.25
- c) En déduire que la droite (OA) est la médiatrice du segment $[T_1T_2]$. 0.25
 - 3- Soit r la rotation de centre T_1 et d'angle $\frac{p}{2}$
- a) Donner l'expression complexe de la rotation r0.25
- b) Vérifier que l'affixe du point B image du point I par la rotation r est : $b = \sqrt{2}e^{iq} + i$ 0.5
- c) Montrer que les deux droites (AB) et (IJ) sont perpendiculaires. 0.25
- 4-Déterminer l'affixe du point C image du point A par la translation de vecteur (-v)0.25
- 5-Montrer que A est le milieu du segment [BC]0.25

Exercice 4:(8 pts)

- 1-a)Montrer que f est continue sur $[0,+\infty[$. 0.5
- 0.25 b)Etudier le signe de f(x) sur $[0,+\infty[$.
- 2-a)Montrer que : $(\forall x \in \square^*_+)$ $f(\frac{1}{x}) = -f(x)$ 0.25

b) Montrer que la fonction f est dérivable sur p,+

0.5 c)Montrer que :
$$(\exists \alpha \in]0,1[)$$
 $f'(\alpha)=0$

0.5 d)En déduire que :
$$f'\left(\frac{1}{\alpha}\right) = 0$$

II - On considère la fonction
$$F$$
 définie sur $[0,+\infty[$ par : $F(x) = \int_0^x f(t) dt$

et soit (C) sa courbe représentative dans un repère orthonormé.

0.5 1-a) Vérifier que :
$$(\forall t \in [1, +\infty[)]$$
 $\frac{1}{2} \le \frac{t^2}{1+t^2} \le 1$

b) Montrer que :
$$(\forall x \in [1, +\infty[))$$
 $F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1) - \frac{1}{4}(\ln x)^2$

(On remarquera que:
$$F(x) = \int_0^1 f(t)dt - \int_1^x \frac{t^2}{1+t^2} \cdot \frac{\ln t}{t} dt$$
)

c)Calculer
$$\lim_{x\to +\infty} F(x)$$
 et $\lim_{x\to +\infty} \frac{F(x)}{x}$ puis donner une interprétation géométrique du résultat obtenu.

- 0.5 2-a)Montrer que F est dérivable sur $[0,+\infty[$ puis calculer F'(x)
- 0.25 b) Etudier les variations de $F \sup [0, +\infty]$

0.5
$$III$$
 -1-a)Montrer que : $(\forall t \in]0, +\infty[)$ $-t \ln t \le \frac{1}{e}$

0.25 b)En déduire que :
$$(\forall t \in [0, +\infty[)] f(t) \le \frac{1}{e}$$

0.25 c)Montrer que : ("
$$x
ightharpoonup \begin{picture}(10,0) \put(0,0){\line(1,0){10}} \put(0,0){\line($$

2-On considère la suite
$$(u_n)_{n\geq 0}$$
 définie par : $u_0 \in]0,1[$ et $("n \not \in Y)$ $u_{n+1} = F(u_n)$

a)Montrer que : ("
$$n \dot{z}$$
¥) $u_n \dot{z}$ [p ,1[

b) Montrer que la suite
$$(u_n)_{n\geq 0}$$
 est strictement décroissante et en déduire qu'elle est convergente.

$$0.5$$
 c)Déterminer $\lim_{n \to +\infty} u_n$

0.5

Exercice 5 :(2 pts)

On considère la fonction
$$g$$
 définie sur $[0,+\infty[$ par : $\int_{1}^{\infty} g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$; $x > 0$

0.5 | 1- Montrer que
$$g$$
 est continue sur $[0,+\infty[$.

NS 25				
a) Montrer que L est continue sur $[0,+\infty[$. b) Calculer $L(x)$ pour $x>0$ c) Calculer $\lim_{x\to 0^+} L(x)$ et en déduire la valeur de $L(0)$ 3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$ Montrer que la suite $(s_n)_{n\geq 1}$ est convergente puis déterminer sa limite.	لصفحة 5	NS 25	الامتدان الوطني الموحد للبكالوريا – الحورة العاحية 2014 – الموضوع	
a) Montrer que L est continue sur $[0,+\infty[$. b) Calculer $L(x)$ pour $x>0$ c) Calculer $\lim_{x\to 0^+} L(x)$ et en déduire la valeur de $L(0)$ 3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$ Montrer que la suite $(s_n)_{n\geq 1}$ est convergente puis déterminer sa limite.	5	시	ماحة : الرياضيان <i>ت - هعبة العلوم الرياخية (۱) و(بم) (الترجمة الفرنسية)</i>	
b) Calculer $L(x)$ pour $x > 0$ c) Calculer $\lim_{x \to 0^+} L(x)$ et en déduire la valeur de $L(0)$ 3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$ Montrer que la suite $(s_n)_{n \ge 1}$ est convergente puis déterminer sa limite.		2-Pour	cout réel x de l'intervalle $[0,+\infty[$ on pose : $L(x)=\int_{-\infty}^{\infty}g(t)dt$	
c) Calculer $\lim_{x\to 0^+} L(x)$ et en déduire la valeur de $L(0)$ 3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$ Montrer que la suite $(s_n)_{n\geq 1}$ est convergente puis déterminer sa limite.	0.25			
3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$ Montrer que la suite $\left(s_n\right)_{n\geq 1}$ est convergente puis déterminer sa limite.	0.25			
Montrer que la suite $(s_n)_{n\geq 1}$ est convergente puis déterminer sa limite.	0.5	c) Calculer $\lim_{x\to 0^+} L(x)$ et en déduire la valeur de $L(0)$		
		3-Pour tout entier naturel non nul n , on pose : $s_n = \frac{1}{n} \sum_{p=0}^{p=n-1} g\left(\frac{p}{n}\right)$		
FIN	0.5	Monti	er que la suite $(s_n)_{n\geq 1}$ est convergente puis déterminer sa limite.	
			FIN	
			ı	