MAT02036 - Amostragem 2

Aula 09 - Amostragem Estratificada - Estimação de Proporções

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 📀

Exercícios para entregar 1 💝

- Exercício 4.1 (Bolfarine e Bussab)
- Exercício 11.10 (Amostragem: Teoria e Prática Usando o R)
- Exercício 11.7 (Amostragem: Teoria e Prática Usando o R)

Estimação de Proporções na **AES**

Estimação de Proporções na AES

Um caso especial do que já vimos ocorre quando a variável y indicadora de uma unidade populacional i tem ou não uma determinada **característica** ou **atributo** de **interesse**, ou pertence a um determinado grupo especificado de unidades da população:

- Migrantes entre os habitantes de determinada região.
- Estabelecimentos agropecuários de produção leiteira numa localidade.
- Estudantes do sexo feminino em escolas.
- Sondagens eleitorais, parcela dos eleitores pretende votar em determinado candidato.

Definimos a variável y, para cada unidade i da população, assumindo um de dois valores possíveis:

$$y_i = I(i \in A) = \left\{ egin{aligned} 1, ext{ se a unidade } i ext{ do estrato } h ext{ possui o atributo, } A \subset U; \ 0, ext{ caso contrário.} \end{aligned}
ight.$$

Parâmetros populacionais no estrato h

• O **total** populacional da variável y no estrato h é

$$T_{h,y} = \sum_{i \in U_h} y_i = N_{h,A},$$

onde $N_{h,A}$ representa o **número de unidades populacionais** com o **atributo** de interesse.

• A **média populacional** no estrato *h* é dada por:

$$\overline{\overline{Y}}_{h,y} = rac{1}{N_h} \sum_{i \in U_h} y_i = rac{T_h}{N_h} = rac{N_{h,A}}{N_h} = P_h$$

- P_h corresponde à **proporção** P de unidades da população que têm o atributo de interesse.
 - O parâmetro proporção é aqui representado pela letra P maiúscula, lembrando que P() maiúscula denota probabilidade.
- Uma *proporção* pode assumir valores variando entre 0, quando nenhuma unidade da população tem o atributo investigado, até 1, quando todas as unidades possuem esse atributo.

Parâmetros populacionais no estrato h

• A **variância** populacional para *y* assumindo somente valores 0 ou 1 pode ser simplificada:

$$S_{h,y}^2 = rac{1}{N_h - 1} \Biggl(\sum_{i \in U_h} y_i^2 - N_h \overline{Y}_h^2 \Biggr) = rac{1}{N_h - 1} \bigl(N_h P_h - N_h P_h^2 ig) = rac{N_h}{N_h - 1} P_h \left(1 - P_h
ight)$$

• A variância populacional de y pode também ser definida como

$$Var_{h,y} = P_h(1 - P_h).$$

- Tanto $S_{h,y}^2$ como $Var_{h,y}$ representam a dispersão da distribuição dos valores de y na população do estrato h.
- Para populações grandes $(N_h o \infty)$, (é fácil verificar que) $S_{h,y}^2 \doteq P_h(1-P_h) = Var_y$.

Parâmetros populacionais globais

Na **AES** podemos escrever os parâmetros populacionais globais como abaixo.

• o total populacional de elementos com o atributo

$$T=\sum_{h=1}^{H}N_{h}P_{h}=N_{A}.$$

• A proporção populacional

$$P = \sum_{h=1}^H W_h P_h.$$

• A variância populacional sob AASc dentro dos estratos

$$Var_y = \sum_{i \in U} rac{(y_i - \overline{Y})^2}{N} = \sum_{h=1}^H W_h Var_h + \sum_{h=1}^H W_h (P_h - P) = \sum_{h=1}^H W_h P_h (1 - P_h) + \sum_{h=1}^H W_h (P_h - P),$$

ou (lembrando)

$$S_y^2 = rac{N}{N-1} Var_y.$$

Estimadores de parämetros globais

• Para o total populacional global de elementos com o atributo

$$\widehat{T} = \sum_{h=1}^H N_h \widehat{P}_h = N_A,$$

- onde $\widehat{P}_h = rac{t_{h,y}}{n_h}$ é a proporção estimada no estrato h,
- ullet e $t_{h,y}=\sum i\in s_hy_i$ o total de elementos com o atributo na amostra.
- A proporção populacional

$$P = \sum_{h=1}^H W_h \widehat{P}_h.$$

- Variância do estimador da proporção nos estratos.
 - \circ Sob **AASs** dentro, $Var(\widehat{P}_h) = \left(\frac{1}{n_h} \frac{1}{N_h}\right) \frac{N_h}{N_h 1} P_h (1 P_h)$.
 - $\circ \; \mathsf{Sob} \; \mathbf{AASc} \; \mathsf{dentro}, \, Var(\widehat{P}_h) = rac{\widehat{P}_h(1-\widehat{P}_h)}{n_h}.$

Variancia do estimador da proporção global

A variância do estimador da proporção populacional global é dada,

sob AASs dentro dos estratos

$$Var_{AES_s}({\widehat P}_{AES}) = \sum_{h=1}^H W_h^2\left(rac{N_h-n_h}{N_h-1}
ight)rac{P_h(1-P_h)}{n_h};$$

sob AASc dentro dos estratos

$$Var_{AES_c}({\widehat P}_{AES}) = \sum_{h=1}^H W_h^2 rac{P_h(1-P_h)}{n_h}.$$

Estimador da variância do estimador da proporção

Usando os resultados acima podemos mostrar que o **estimador da variância** do estimador da proporção são dados abaixo.

sob AASs dentro dos estratos

$$\widehat{V}ar_{AES_s}(\widehat{P}_{AES}) = \sum_{h=1}^H W_h^2\left(rac{N_h-n_h}{N_h-1}
ight)rac{\widehat{P}_h(1-\widehat{P}_h)}{n_h-1}.$$

sob AASc dentro dos estratos

$$\widehat{V}ar_{AES_c}(\widehat{{P}}_{AES}) = \sum_{h=1}^H W_h^2 rac{\widehat{{P}}_h(1-\widehat{{P}}_h)}{n_h-1}.$$

Exemplo 1 🏃

Exercício 4.4 (Bolfarine e Bussab)

4.4 Planejou-se uma amostragem estratificada com reposição para estimar a porcentagem de famílias tendo conta em caderneta de poupança e também da quantidade investida. De uma pesquisa passada, têm-se estimativas para as proporções P_h e para os desvios padrões das quantidades investidas, σ_h , conforme descrito na tabela abaixo.

h	W_h	P_h	σ_h
1	0,6	0,20	9
2	0,3	$0,\!40$	18
3	0,1	0,60	52

Calcule os menores n e n_h que satifaçam, com custo constante:

- a. A proporção populacional dever ser estimada com erro padrão igual a 0,02;
- b. A quantidade média investida deve ser estimada com erro padrão igual a R\$ 2,00.

Qual dos tamanhos, em (a) ou em (b), você usaria na pesquisa? Por quê?

Exemplo 1 💪

Exercício 4.4 (Bolfarine e Bussab)

a. Erro padrão (\ref{p}): No caso de \overline{y} ,

$$EP(\overline{y}) = \sqrt{Var(\overline{y})} = DP(\overline{y}).$$

- Como definir V em função de $EP_{AES}(\widehat{P}_{AES})$?
- Derivar uma expressão para n mínimo usando

$$V \geq Var_{AES}(\widehat{P}_{AES}).$$

b. Como definir V em função de $EP_{AES}(\overline{y}_{AES})$? Interpretação e conclusão.

Exercício 4.20 (Bolfarine e Bussab)

4.20 Uma cadeia de lojas está interessada em estimar, dentro das contas a receber, a proporção das que dificilmente serão recebidas. Para reduzir o custo da amostragem, usou-se AE com cada loja num estrato. Os dados obtidos foram os seguintes:

h	N_h	n_h	\hat{P}_h
1	60	15	0,30
2	40	10	$0,\!20$
3	100	20	$0,\!40$
4	30	6	0,10

onde N_h é o número de contas a receber, n_h é o tamanho da amostra e \hat{P}_h é a proporção de contas problemáticas. Dê uma estimativa para a proporção total de quatro lojas e um intervalo de confiança de 95% para a mesma.

Exemplo 2 🏂

Exercício 4.20 (Bolfarine e Bussab)

- Estimativa pontual \widehat{P}_{AES} . Qual o valor? Interprete.
- Para o intervalo de confiança:
 - erro absoluto:

$$e=z_{lpha/2} imes\sqrt{{\widehat P}_{AES}}.$$

• Quais os limites?

$$IC\left(\widehat{P}_{AES};1-lpha
ight)=\left[oldsymbol{?};oldsymbol{?}
ight].$$

• Interprete.

Para casa 🏦

- Se preparar para a avaliação parcial da área.
- Continuar exercícios do livro 'Amostragem: Teoria e Prática Usando R' https://amostragemcomr.github.io/livro/estrat.html#exerc11
- Fazer exercícios da lista 1.
- Rever os slides.

Próxima aula IIII

- Amostragem Estratificada
 - Avaliação
 - Laboratório de

Muito obrigado!

Fonte: imagem do livro *Combined Survey Sampling Inference: Weighing of Basu's Elephants: Weighing Basu's Elephants.*

Estimação de Proporções na AES

Parâmetros	no estrato h
total	$T_{h,y} = \sum_{i \in U_h} y_i = N_{h,A}$
proporção	$\overline{Y}_{h,y} = rac{1}{N_h} \sum_{i \in U_h} y_i = rac{T_h}{N_h} = rac{N_{h,A}}{N_h} = P_h$
variância	$Var_{h,y} = P_h(1-P_h)$
variância	$S_{h,y}^2=rac{N_h}{N_h-1}P_h\left(1-P_h ight)$

Parâmetros	globais
total	$T = \sum_{h=1}^H N_h P_h = N_A$
proporção	$P = \sum_{h=1}^H W_h P_h$
variância	$Var_y = \sum_{h=1}^H W_h P_h (1-P_h) + \sum_{h=1}^H W_h (P_h-P)$
variância	$S_y^2 = rac{N}{N-1} Var_y$

Estimadores	de parämetros globais
total	$\widehat{T} = \sum_{h=1}^H N_h \widehat{P}_h = N_A$
proporção	$\widehat{P} = \sum_{h=1}^H W_h \widehat{P}_h$

Variância do estimador	da proporção nos estratos.	
Sob AASs dentro	$Var({\widehat P}_h) = \left(rac{1}{n_h} - rac{1}{N_h} ight)rac{N_h}{N_h-1}P_h(1-P_h)$	
Sob AASc dentro	$Var({\widehat P}_h)=rac{{\widehat P}_h(1-{\widehat P}_h)}{n_h}$	

Variância	do estimador da proporção global
sob AASs dentro dos estratos	$Var_{AES_s}(\widehat{P}_{AES}) = \sum_{h=1}^{H} W_h^2 \left(rac{N_h - n_h}{N_h - 1} ight) rac{P_h(1 - P_h)}{n_h}$
sob AASc dentro dos estratos	$Var_{AES_c}(\widehat{P}_{AES}) = \sum_{h=1}^H W_h^2 rac{P_h(1-P_h)}{n_h}$
Estimador da variância	do estimador da proporção global
	do estimador da proporção global $\widehat{V}ar_{AES_s}(\widehat{P}_{AES}) = \sum_{h=1}^H W_h^2\left(rac{N_h-n_h}{N_h-1} ight)rac{\widehat{P}_h(1-\widehat{P}_h)}{n_h-1}$

• Tamanho mínimo de amostra para **estimação da proporção** populacional

Alocação	AASc dentro dos estratos
AES_{un}	$n \geq rac{H\sum_{h=1}^H W_h^2 P_h (1-P_h)}{V}$
AES_{pr}	$n \geq rac{\sum_{h=1}^H W_h P_h (1-P_h)}{V}$
AES_{ne}	$n \geq rac{\left(\sum_{h=1}^H W_h \sqrt{P_h(1-P_h)} ight)^2}{V}$
AES_{ot}	$n \geq rac{\left(\sum_{h=1}^H W_h \sqrt{P_h(1-P_h)} \sqrt{C_h} ight)\left(\sum_{h=1}^H W_h \sqrt{P_h(1-P_h)}/\sqrt{C_h} ight)}{V}$

• Tamanho mínimo de amostra para **estimação da proporção** populacional

Alocação	AASs dentro dos estratos
AES_{un}	$n \geq rac{H \sum_{h=1}^{H} W_h^2 P_h (1 - P_h)}{V + rac{1}{N} \sum_{h=1}^{H} W_h P_h (1 - P_h)}$
AES_{pr}	$n \geq rac{\sum_{h=1}^{H} W_h P_h (1 - P_h)}{V + rac{1}{N} \sum_{h=1}^{H} W_h P_h (1 - P_h)}$
AES_{ne}	$n \geq rac{\left(\sum_{h=1}^{H} W_h \sqrt{P_h(1 - P_h)} ight)^2}{V + rac{1}{N} \sum_{h=1}^{H} W_h P_h(1 - P_h)}$
AES_{ot}	$n \geq rac{\left(\sum_{h=1}^{H} W_h \sqrt{P_h(1{-}P_h)} \sqrt{C_h} ight) \left(\sum_{h=1}^{H} W_h \sqrt{P_h(1{-}P_h)} / \sqrt{C_h} ight)}{V{+}rac{1}{N} \sum_{h=1}^{H} W_h P_h(1{-}P_h)}$

Referências

- Amostragem: Teoria e Prática Usando o R
- * Cochran(1977)

Revisão Estimação de Proporções na AAS

Estimação de Proporções

Um caso especial do que já vimos ocorre quando a variável y indicadora de uma unidade populacional i tem ou não uma determinada **característica** ou **atributo** de **interesse**, ou pertence a um determinado grupo especificado de unidades da população:

- Migrantes entre os habitantes de determinada região.
- Estabelecimentos agropecuários de produção leiteira numa localidade.
- Estudantes do sexo feminino em escolas.
- Sondagens eleitorais, parcela dos eleitores pretende votar em determinado candidato.

Definimos a variável y, para cada unidade i da população, assumindo um de dois valores possíveis:

$$y_i = I(i \in A) = \left\{ egin{aligned} 1, ext{ se a unidade } i ext{ possui o atributo, } A \subset U; \ 0, ext{ caso contrário.} \end{aligned}
ight.$$

Parâmetros populacionais

• O **total** populacional da variável *y* é

$$T = \sum_{i \in U} y_i = N_A,$$

onde N_A representa o **número de unidades populacionais** com o **atributo** de interesse.

- Variáveis indicadoras são usadas quando se quer tabular frequências de respostas a uma pergunta categórica.
- Para respostas sendo valores inteiros de 1 a *H*, onde *H* representa o número de categorias de resposta da pergunta.
 - Ex.: na pergunta 'Qual é o sexo do morador', há duas categorias de resposta (H=2): 1 (=Feminino) e 2 (=Masculino).
 - o Para contar o número de pessoas por sexo na população, definimos: $y_{1i} = I[Sexo(i) = 1]$ e $y_{2i} = I[Sexo(i) = 2]$.

Parâmetros populacionais

Sabemos que quando a variável y é do tipo indicadora, a **média populacional** dada por:

$$\overline{Y} = rac{1}{N} \sum_{i \in U} y_i = rac{T}{N} = rac{N_A}{N} = P$$

- *P* corresponde à **proporção** *P* de unidades da população que têm o atributo de interesse.
 - O parâmetro proporção é aqui representado pela letra P maiúscula, lembrando que P() maiúscula denota probabilidade.
- Uma *proporção* pode assumir valores variando entre 0, quando nenhuma unidade da população tem o atributo investigado, até 1, quando todas as unidades possuem esse atributo.
 - Muitas vezes é interessante expressar a proporção sob forma de porcentagem podendo então variar de 0% até 100%.

Parâmetros populacionais

• A **variância** populacional para *y* assumindo somente valores 0 ou 1 pode ser simplificada:

$$S_y^2 = rac{1}{N-1} \Biggl(\sum_{i \in U} y_i^2 - N \overline{Y}^2 \Biggr) = rac{1}{N-1} \bigl(NP - NP^2 ig) = rac{N}{N-1} P \left(1 - P
ight)$$

- A **variância** populacional de y pode também ser definida como $Var_y = P(1-P)$.
 - Tanto S_y^2 como Var_y representam a dispersão da distribuição dos valores de y na população.
 - \circ Para populações grandes $(N o \infty)$, (é fácil verificar que) $S_{v}^{2} \doteq P(1-P) = Var_{v}$.
- O Coeficiente de Variação (CV),

$$CV_y = rac{\sqrt{var_y}}{\overline{Y}} = \sqrt{P(1-P)/P^2} = \sqrt{(1-P)/P}$$
 .

- Seja s uma amostra observada sob **AAS** de tamanho n de uma população com N unidades, onde se observa uma variável indicadora y.
 - \circ Podemos obter estimadores para os parâmetros populacionais de y adaptando os estimadores gerais de total e média apresentados no capítulo anterior.
- O total de unidades da amostra com o atributo de interesse, n_A , será dado pela soma amostral:

$$t_y = \sum_{i \in \, s} y_i = n_A$$

• O **total estimado** de unidades na população com o **atributo** de interesse, N_A , é estimado usando:

$$\widehat{T}_{AAS} = N imes t_y/n = N imes n_A/n = \widehat{N}_A$$

• Como sabemos este estimador é não viciado sob AASC para qualquer variável y, logo é **ENV** também quando y é do tipo indicadora.

• A **proporção amostral** de unidades que possuem o atributo de interesse é dada pela **média amostral**:

$$\overline{y} = rac{1}{n} \sum_{i \in s} y_i = rac{n_A}{n} = \widehat{P}$$

• Pode-se facilmente verificar que \hat{p} é um *estimador não viciado* para a *proporção* populacional p, pois:

$$E_{AAS}(\widehat{P})=E_{AAS}(\overline{y})=\overline{Y}=P$$

• Mostrar (**?**)

COM REPOSIÇÃO - AASc

• sob amostragem aleatória simples com reposição **AAS

A variância da proporção amostral sob AASC é dada por:

$$Var_{AASC}(\widehat{P}) = rac{Var_y}{n} = rac{P(1-P)}{n}$$

ou

$${\widehat S}_y^2 = rac{n}{n-1} {\widehat P} (1-{\widehat P})$$

• Sob **AASc**, $\widehat{\boldsymbol{S}}_{y}^{2}$ é um **ENV** para Var_{y} . Assim

$$\widehat{Var}_{AASc}(\widehat{P}) = rac{\widehat{P}(1-\widehat{P})}{n-1}$$

COM REPOSIÇÃO - AASc

• O **estimador** do **total** de unidades na população que possuem o **atributo** de interesse, $N_A = NP$ é dado por

$$\widehat{N}_A = N\widehat{P}.$$

• A variância do estimador de N_A ,

$$V_{AASc}(\widehat{N}_A) = N^2 rac{P(1-P)}{n}$$

pode ser estimada por

$$\widehat{V}ar_{AASc}(\widehat{N}_{A})=N^{2}rac{\widehat{P}(1-\widehat{P})}{n-1}.$$

SEM REPOSIÇÃO AASs

- No caso de s ser obtida por seleção do tipo **AASs**,
 - o a soma amostral t_y , a proporção amostral \hat{p} e a variância amostral \hat{S}_y^2 têm a mesma forma que na AASC.
 - As estimadores para o total populacional N_A e a proporção populacional P são os mesmo.
- A **diferença** é que na **AASs** a variância amostral \widehat{S}_y^2 é um **ENV** para S_y^2 e não para Var_y .
 - Também são diferentes as expressões para as variâncias dos estimadores amostrais e seus correspondentes estimadores não viciados.

SEM REPOSIÇÃO AASs

• Sabemos que as variâncias dos estimadores do total e da média são

$$Var_{AASs}(\widehat{Y}) = N^2 \left(rac{1}{n} - rac{1}{N}
ight) S_y^2 \;\; \mathrm{e} \;\; Var_{AASs}(\overline{y}) = \left(rac{1}{n} - rac{1}{N}
ight) S_y^2.$$

• No caso de variáveis y do tipo indicadoras, tem-se que as **variâncias** do **estimador** do **total** e da **proporção populacionais** são dadas por:

$$Var_{AASs}(\widehat{N}_A) = N^2 \left(rac{1}{n} - rac{1}{N}
ight) rac{N}{N-1} P(1-P) \;\; \mathrm{e} \;\; Var_{AASs}(\widehat{P}) = \left(rac{1}{n} - rac{1}{N}
ight) rac{N}{N-1} P(1-P).$$

- Se o número de unidades N é suficientemente grande, tem-se que $Var_{AAS}(\hat{p}) \doteq \frac{P(1-P)}{n}$, resultando em desempenhos similares entre **AASs** e AASC na estimação da proporção populacional.
 - Intuitivamente, isso ocorre porque a probabilidade de seleção repetida sob AASc tende a ser muito pequena no caso de populações muito grandes.

SEM REPOSIÇÃO AASs

Utilizando \widehat{S}_y^2 como estimador não viciado para S_y^2 chega-se aos estimadores para as variâncias dos estimadores de total e proporção:

$$\widehat{V}ar_{AAS}(\widehat{N}_{A}) = N^{2}\left(rac{1}{n} - rac{1}{N}
ight)rac{n\widehat{P}(1-\widehat{P})}{n-1}$$

e

$$\widehat{V}ar_{AAS}(\widehat{P}) = \left(rac{1}{n} - rac{1}{N}
ight)rac{n\widehat{P}(1-\widehat{P})}{n-1}$$

Distribuição amostral EXATA de estimadores

COM REPOSIÇÃO AASc

• Na **AASc**, a **soma amostral** $t_y = n_A \sim Bernoulli(P)$, portanto, $t_y = n_A \sim Binomial(n, P)$,

$$E_{AASc}(n_A) = np$$
 e $V_{AASc}(n_A) = nP(1-P)$

• Da mesma forma o valor esperado e a variância de \widehat{P} :

$$E_{AASc}(\widehat{P}) = E_{AASc}\left(rac{n_A}{n}
ight) = P \quad ext{e} \quad Var_{AASc}(\widehat{P}) = rac{P(1-P)}{n}$$

Outro resultado importante da **distribuição** de probabilidades **exata** de \widehat{P} ,

$$P\left(\widehat{P}=rac{v}{n}
ight)=P(n_A=v)=inom{n}{v}P^v(1-P)^{n-v},\quad orall\,v=0,1,2,\ldots,n.$$

Esta distribuição corresponde apenas a uma transformação escalar da distribuição Binomial(n, p), onde a contagem de sucessos (n_A) é dividida pelo número de sorteios (n).

Distribuição amostral EXATA de estimadores

SEM REPOSIÇÃO AASs

- Sob **AASs**, temos $n_A \sim Hipergeom\'etrica(N, N_A, n)$, n sorteios são feitos da população sem reposição.
 - O **número total de amostras** aleatórias simples sem reposição de tamanho n, $\binom{N}{n}$;
 - o número dessas amostras com exatamente v unidades com a característica em estudo e n-v unidades sem essa característica pode ser calculado por $\binom{N_A}{v}\binom{N-N_A}{n-v}$, assim a **distribuição** de probabilidades de $t_y=n_A$ é dada por:

$$P\left(n_A=v
ight)=rac{inom{N_A}{v}inom{N-N_A}{n-v}}{inom{N}{v}}, \quad orall\,v=0,1,2,\ldots,min(n;N_A)$$

Distribuição amostral EXATA de estimadores

SEM REPOSIÇÃO AASs

• Assim fica também determinada a distribuição exata de probabilidades do estimador \hat{p} , que é a mesma de n_A com os valores possíveis divididos pelo tamanho da amostra n.

Consequentemente tem-se que o valor esperado de unidades com o atributo de interesse na amostra e sua variância serão dados por:

$$E_{AASs}(n_A) = n \ frac N_A N = n P \quad ext{e} \quad Var_{AAS}(n_A) = n P (1-P) rac{N-n}{N-1}$$

Para o estimador, $\hat{p} = n_A/n$, da proporção de unidades com o atributo de interesse na população tem-se:

$$E_{AAS}(\hat{p}) = p \quad \mathrm{e} \quad V_{AAS}(\hat{p}) = \left(rac{1}{n} - rac{1}{N}
ight) S_y^2$$

Intervalos de confiança para proporções na amostragem aleatória simples

- Na AAS, tanto com ou sem reposição, são conhecidas as distribuições exatas para o estimador \hat{p} .
 - Portanto, é possível obter os limites inferior e superior para intervalos de confiança para a proporção p, com um nível de significância α fixado.

Para isso, no caso de **AASc**, é necessário resolver o sistema de equações determinando os valores de \hat{p}_I e \hat{p}_S que satisfaçam:

$$\left\{egin{array}{l} \sum_{v=0}^{n_A} inom{n}{v} \hat{p}_S^v (1-\hat{p}_S)^{n-v} = lpha/2 \ \sum_{v=n_A}^n inom{n}{v} \hat{p}_I^v (1-\hat{p}_I)^{n-v} = lpha/2 \end{array}
ight.$$

No caso da **AASs**, o sistema a ser resolvido é baseado na distribuição Hipergeométrica como se segue:

$$\left\{egin{array}{l} \sum_{v=0}^{n_A} rac{{N\hat{p}_S\choose v}{N-N\hat{p}_S\choose n-v}}{{N\choose n}} = lpha/2 \ \sum_{v=n_A}^n rac{{N\hat{p}_I\choose v}{N-N\hat{p}_I\choose n-v}}{{N\choose n}} = lpha/2 \end{array}
ight.$$

Em ambos os casos $1 - \alpha$ é o *nível de confiança* desejado. Por exemplo, para intervalos de 95% de confiança, deve-se usar $\alpha = 0,05$.

Intervalos de confiança para proporções na amostragem aleatória simples

- A solução desses sistemas costumava ser trabalhosa, exigindo aplicação de métodos iterativos que consumiam quantidade razoavelmente grande de recursos computacionais.
 - Atualmente, com o avanço dos métodos computacionais, esse problema pode facilmente ser resolvido, por exemplo, com o uso do R. Uma maneira é utilizar as funções *qbinom* e *qhyper* que podem calcular os quantis das distribuições Binomial e Hipergeométrica para $\alpha/2$ e $1-\alpha/2$.
- Além disso, há outros programas prontos facilmente utilizávies como, por exemplo, as funções *binconf* e *confCI* incluídas, respectivamente, nos pacotes *Hmisc* e *prevalence* do R.
 - Essas funções estimam intervalos de confiança para vários métodos além do mostrado acima, como o da aproximação Normal, apresentado na próxima seção, além de outras abordagens.
- Há, também, no pacote *survey* uma função específica, *svyciprop*, para calcular intervalos de confiança para proporções. Uma característica interessante do pacote *survey* é que é possível determinar a utilização do

Intervalos de confiança utilizando a aproximação Normal

- A distribuição do estimador da proporção, \widehat{P} , pode ser aproximada pela distribuição Normal de probabilidade.
 - o Pode ser utilizada mesmo no caso da **AAS** onde os y_i observados na amostra não são independentes, desde que se tenha valores de N e n suficientemente grandes e valor da fração amostral, $f = \frac{n}{N}$, pequeno.
- Sob estas condições pode-se considerar que:

$$rac{\hat{p}-p}{\sqrt{V_{p(s)}(\hat{p})}}pprox N(0;1)$$

Intervalos de confiança utilizando a aproximação Normal

Os histogramas abaixo mostram os valores estimados da proporção P de unidades com uma determinada característica de interesse, a partir de 1.000 amostras aleatórias simples de tamanho n=100, de uma população de tamanho N=5.000, onde exatamente metade das unidades tem a característica de interesse (p=1/2). Valores normalizados de acordo com a aproximação acima.

Cochran(1977) mostra uma tabela, com alguns valores mínimos do total de unidades observadas na amostra, n_A , onde a aproximação Normal pode ser utilizada.

p	n_A	n
0,50	15	30
0,40	20	50
0,30	24	80
0,20	40	200
0,10	60	600
0,05	70	1.400
≐ 0	80	∞

A Tabela \@ref(tab:tabprop3) foi construída considerando um nível de significância de $\alpha=0,05$, que é um valor comumente utilizado em muitas situações práticas. Tem-se, a partir daí, critérios práticos para assumir a utilização da aproximação Normal, notando-se que o tamanho mínimo da amostra requerido é de n=30.

Nas condições estabelecidas para a validade da aproximação Normal, tem-se que $S_y^2 \doteq \sigma_y^2 = p(1-p)$, portanto, $V_{AAS}(\hat{p}) \doteq V_{AASC}(\hat{p})$. Então, para os dois tipos de seleção, pode-se considerar o intervalo de confiança para a proporção como:

$$IC(p;1-lpha) = \left[\hat{p} - z_{lpha/2} \sqrt{rac{p(1-p)}{n}}\,;\,\hat{p} + z_{lpha/2} \sqrt{rac{p(1-p)}{n}}\,
ight]$$

Caso se deseje considerar o fator de correção para populacões finitas, quando a fração amostral não possa ser considerada pequena e a seleção for sem reposição, a expressão do intervalo de confiança passa a ser:

$$IC(p;1-lpha) = \left[\hat{p} \mp z_{lpha/2} \sqrt{\left(rac{N-n}{N-1}
ight)rac{p(1-p)}{n}} \;
ight]$$

Em Cochran(1977) também é apresentada uma correção de continuidade acrescentando a fração 1/2n à margem de erro do intervalo de confiança pelo fato de se fazer uma aproximação de uma distribuição discreta (Binomial ou Hipergeométrica) pela distribuição Normal, que é contínua. Desse modo a expressão do intervalo de confiança passa a ser:

$$IC(p;1-lpha) = \left[\hat{p} \mp \left(z_{lpha/2} \sqrt{rac{p(1-p)}{n}} + rac{1}{2n}
ight)
ight]$$

Ou considerando a correção para população finita:

$$IC(p;1-lpha) = \left[\hat{p} \mp \left(z_{lpha/2} \sqrt{\left(rac{N-n}{N-1}
ight)rac{p(1-p)}{n}} + rac{1}{2n}
ight)
ight]$$

Nas aplicações práticas o valor da variância do estimador da proporção p, geralmente, não é conhecido. Assim o que se pode fazer é estimar um intervalo de confiança, substituindo S_y^2 por \widehat{S}_y^2 na expressões anteriores:

$$egin{aligned} \widehat{IC}(p;1-lpha) &= \left[\hat{p}\mp\left(z_{lpha/2}\sqrt{rac{\hat{p}\hat{q}}{n-1}}+rac{1}{2n}
ight)
ight] \ \widehat{IC}(p;1-lpha) &= \left[\hat{p}\mp\left(z_{lpha/2}\sqrt{\left(rac{N-n}{N}
ight)rac{\hat{p}\hat{q}}{n-1}}+rac{1}{2n}
ight)
ight] \end{aligned}$$

Note que o efeito da correção de continuidade tende rapidamente a ser nulo quando o tamanho da amostra, n, cresce. Para uma amostra de tamanho n=50 esse fator já é de apenas 1%, o que pode ser desprezível dependendo da proporção que estiver sendo estimada, porém é preciso muito cuidado pois quando se está trabalhando com proporções são valores, às vezes, bastante pequenos.

Cálculo do tamanho da amostra

O tamanho de uma amostra aleatória simples a ser selecionada, como já foi visto no capítulo anterior, é calculado a partir da definição do erro amostral ou margem de erro admissível para o caso, do nível de confiança desejado e se a seleção for com ou sem reposição.

No caso de seleção com reposição, considerando uma margem de erro máxima admissível D com um nível de confiança $1-\alpha$, basta utilizar a expressão da margem de erro:

$$D \leq z_{lpha/2} \sqrt{rac{p(1-p)}{n}} \implies n \geq rac{z_{lpha/2}^2 p(1-p)}{D^2}$$

Para a seleção sem reposição, o tamanho da amostra é calculado como:

$$D \leq z_{lpha/2} \sqrt{\left(rac{N-n}{N-1}
ight) rac{p(1-p)}{n}} \implies n \geq rac{z_{lpha/2}^2 p(1-p)}{D^2 rac{N-1}{N} + rac{1}{N} z_{lpha/2}^2 p(1-p)}$$

Considerando $\frac{N-1}{N} \doteq 1$, tem-se que:

$$D \leq z_{lpha/2} \sqrt{\left(rac{N-n}{N-1}
ight) rac{p(1-p)}{n}} \implies n \geq rac{Np(1-p)}{ND^2/z_{lpha/2}^2 + p(1-p)}$$

Uma maneira prática de calcular o tamanho da amostra para uma *AAS* em dois passos é calcular primeiro:

$$n_0=rac{z_{lpha/2}^2p(1-p)}{D^2}$$

E depois fazer:

$$n \geq \frac{n_0}{1 + n_0/N}$$

Note que n_0 é equivalente ao tamanho da amostra para uma AASC e o valor de n para a AAS é obtido pela correção para população finita do valor n_0 . Também pode-se concluir que quando o tamanho da população, N, é grande o fator n_0/N tende a se anular fazendo com que $n \doteq n_0$, ou seja, quando o tamanho da população é grande as amostras aleatórias simples com ou sem reposição são equivalentes.