How to use MicroPython for GR_ROSE

MicroPython for GR_ROSE

- This is a port of MicroPython's STM32 implementation to GR_ROSE (RX65N).
- The ported features are mostly compliant with the STM32 implementation (pyboard).
- See the pyboard manual (https://docs.micropython.org/en/latest/)
 for details on how to use it.
- However, USB, CAN, WDT… are not implemented.
- Some Pyboard module parameters are not implemented. See the source code for details.
- The module is different from MicroPython's implementation for ESP8266 and ESP32.

What to prepare

- PC running Windows 10
 - Terminal software (Tera Term or Putty is used here.)
- GR_ROSE
- Other gadgets
- This document covers the following sample gadgets:
 - OMRON 2JCIE board

How to use

- Connect the USB micro connector of GR-ROSE and the USB connector of Window 10 PC.
- It is recognized as a USB serial device by the port of Device Manager.

How to use

- Start Tera Term, select the recognized COM port, select Setup Serial port menu, select 115200 for Baud rate, and press the Enter key. The >> MicroPython REPL prompt should appear.
- MicroPython programs can be executed from this console.

First Sample LED blink

- As the first sample, let's turn on the LED on the GR-ROSE board.
- Enter the program below.
- Enter the Enter key several times.
- Press Ctrl-C to end the program.

```
import pyb
while True:
    pyb.LED(1).toggle()
    pyb.delay(50)
```

REPL notes

- To Cut & Paste an indented program, press Ctrl-E and then Paste.
- Run the program with Ctrl-D.
- Stop the program with Ctrl-C.
- Then use Ctrl-D to reboot the software.

Storage

- With the GR_ROSE implementation, the built-in Flash and SD card can be used as storage.
- The built-in flash reserves 256KB from 0xfffa0000.
- At startup, it becomes the "/flash" default folder, and after initialization there are two files, boot.py and main.py.
- You can execute the program at startup by updating main.py.
- If the SD card is inserted at startup, the "/sd" folder will be the default folder.

```
MicroPython v1.12-816-g4573864c0-dirty on 2020-05-09; GR-MANGO with RZA2M
Type "help()" for more information.
>>> import uos
>>> uos.listdir("")
['boot.py', 'main.py']
>>> uos.listdir("/")
['flash']
```

Program editing with Visual Studio Code + PyMakr

Install Visual Studio Code + PyMakr

- Install Visual Studio Code
 - https://visualstudio.microsoft.com/ja/
- Install Nodejs (6.9.5 or later) Maybe the latest version is fine
 - https://nodejs.org/en/
- Install PyMaker plugin in Visual Studio Code
 - Click the extension menu icon in the lower left corner, type PyMakr in the search box for EXTENSIONS: MARKET PLACE, and install.
- Register GR_ROSE COM port etc. in PyMaker plugin
 - From the View Command Palette menu, select PyMakr Global settings and set the COM port to xxxx of "address": "xxxx" in the pymakr.json file.

PyMakr – Global settings

PyMakr Tips

- PyMakr files are stored in the following folders.
 - C: ¥Users ¥username ¥.vscode ¥extensions ¥pycom.pymakr-1.1.6
- PyMakr configuration file is placed in the following folder.
 - C: ¥Users ¥Username ¥.AppData ¥Roaming ¥Code ¥User
- If the COM port connection is intermittent in Windows environment, line 139 of C: ¥Users ¥username ¥.vscode ¥extensions ¥pycom.pymakr-1.1.6 ¥lib (and ¥src) ¥connections ¥pyserial.js Comment out from about.
- If Upload fails, set upload_chunk_size from 512 to 256 in config.js.

```
sendPing(cb) {
  //if (process.platform == 'win32') {
  // avoid MCU waiting in bootloader on hardware restart by setting both dtr and rts high
  // this.stream.set({ rts: true });
  ///
  // not implemented
  if (this.dtr_supported) {
    this.stream.set({ dtr: true }, function (err) {
      if (cb) {
        cb(err);
        return err ? false : true;
      }
    });
    } else {
      cb();
    return true;
    }
}
```


Pin Assign Information

Available Pins

Pin Name	CPU Pin	Pin Name	CPU Pin	Pin Name	CPU Pin
SER1_TX	P20	DAC	P05	ETH_MDIO	PA3
SER1_RX	P21	A0	PD2	ETH_TXEN	PB4
SER1_SEL	P22	A1	PD3	ETH_TXD0	PB5
SER2_TX	P13	A2	PD4	ETH_TXD1	PB6
SER2_RX	P12	A3	PD5	ETH_RXD0	PB1
SER2_SEL	P14	A4	PD6	ETH_RXD1	PB0
SER3_TX	PC3	A5	PD7	ETH_RXER	PB3
SER3_RX	PC2	ACC_SCL	P52	ETH_CRS	PB7
SER3_SEL	PC4	ACC_SDA	P50	ETH_CLK	PB2
SER4_TX	P32	ACC_INT	P07	LED1	PA0
SER4_RX	P33	ESP_RES	P17	LED2	PA1
SER4_SEL	P34	ESP_IO0	P27	A_WIRE_SC L	
SPI_SS	PE4	ESP_IO15	P31	A_WIRE_SD A	PE1
SPI_MO	PE6	ESP_EN	P24	A_ESP_CK	PC5
SPI_MI	PE7	SER6_RX	P25	A_ESP_MI	PC7
SPI_CK	PE5	SER6_TX	P23	A_ESP_MO	PC6
SER5_RX	P30	SER7_TX	PC7	A_ESP_SS	PC4
SER5_TX	P26	SER7_RX	PC6	A_ESP_IO0	P15
WIRE_CL	P52	SER7_DIR	PC5		<u> </u>
WIRE_DA	P50	ETH_MDC	PA4		

Pin interrupt

Pin Name	CPU Pin	INT	
SER1_TX	P20	IRQ8	
SER1_RX	P21	IRQ9	
SER2_TX	P13	IRQ3	
SER2_RX	P12	IRQ2	
SPI_MO	PE6	IRQ6	
SPI_MI	PE7	IRQ7	
SPI_CK	PE5	IRQ5	
SER5_RX	P30	IRQ0	
DAC	P05	IRQ13	
A0	PD7	IRQ7	
A1	PD6	IRQ6	
A2	PD5	IRQ5	
A3	PD4	IRQ4	
A4	PD3	IRQ3	
A5	PD2	IRQ2	
SER7_TX	PC7	IRQ14	
SER7_RX	PC6	IRQ13	

PWM pin

Pin Name	CPU Pin	PWM	
SER1_TX	P20	MTIOC1A	
SER4_TX	P32	MTIOC0C	
SPI_CK	PE5	MTIOC4C	
SER7_TX	PC7	MTIOC3A	
SER7_RX	PC6	MTIOC3C	
ED1	PA0	MTIOC4A	

Module

Pyboard pyb modules	GR Rose pyb(rxb) modules	Description	
Accel	Not implemented	Accelerometer	
ADC	ADC	A/D Conversion	
CAN	Not implemented	CAN (controller area network communication bus)	
DAC	DAC	D/A Conversion	
ExtInt	ExtInt	I/O pin interrupt	
I2C	I2C	I2C (a two-wire serial protocol)	
LCD	Not implemented	LCD	
LED	LED	LED	
Pin	Pin	I/O pin	
PinAF	Not implemented	Pin Alternative Function	
RTC	RTC	Real time timer	
Servo	Servo	Servo (PWM)	
SPI	SPI	SPI (a master-driven serial protocol)	
Switch	Switch	Switch	
Timer	Timer	Timer	
TimerChannel	No same functionality	Timer channel	
UART	UART	Serial communication	
USB_HID	Not implemented	USB Human Interface Device (HID)	
USB_VCP	Not implemented	USB virtual com port	

Sample Code

- File access
- Pin interrupt
- Timer (software)
- I2C-Device Scan
- I2C-SH30 Temperature Humidity Sensor
- I2C OMRON 2SMPB-02E MEMS Absolute Pressure Sensor
- network

File Access

Display the contents of main.py in the default /flash folder.

```
f = open('main.py', 'r')
f.read()
f.close()
```

```
MicroPython v1.12-571-gfaae6b130-dirty on 2020-05-24; GR-ROSE with RX65N

Type "help()" for more information.

>>> f = open('main.py', 'r')

>>> f.read()

'# main.py -- put your code here!\r\n'

>>> f.close()
```

Reading/writing to the /flash and /sd file systems is normally done by calling the file input/output library of MicroPython.

Pin Interrupt-Switch Detect

- Connect a switch to P32 pin and GND pin
- Press Switch (P32) to execute print ("intr").
- IRQx can be executed only on pins that can be assigned.

from pyb import Pin, ExtInt
callback = lambda e: print("intr")
ext = ExtInt(Pin(Pin.cpu.P32, Pin.IN, Pin.PULL_UP),
ExtInt.IRQ RISING, Pin.PULL UP, callback)

Timer-timer interrupt

The software timer function calls print (2) every 2 seconds.

```
from machine import Timer
tim = Timer(-1)
tim.init(period=2000, mode=Timer.PERIODIC,
callback=lambda t:print(2))
```

```
>>> from machine import Timer
>>> tim = Timer(-1)
>>> tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))
>>> 2
2
2
2
2
```

I2C – SH30 temperature and humidity sensor

- Displays temperature and humidity.
 - After uploading the sh30.py module to /flash (via PyMakr etc.), execute the following code.

```
from sht30 import SHT30

sensor = SHT30(scl_pin=machine.Pin.cpu.P52,
sda_pin=machine.Pin.cpu.P50,
i2c_address=0x44)

temperature, humidity = sensor.measure()

print('Temperature:', temperature, 'ºC, RH:',
humidity, '%')
```

The machine pins can be replaced with pyb.Pin definition.

```
machine.Pin.cpu.P52 -> pyb.Pin('WIRE_CL') machine.Pin.cpu.P50 -> pyb.Pin('WIRE_DA')
```

```
[1/9] Writing file blink.py (0kb)
[2/9] Writing file boot.py (0kb)
[3/9] Writing file i2c_scan.py (0kb)
[4/9] Writing file main.py (0kb)
[5/9] Writing file max7219.py (4kb)
[6/9] Writing file opt3001.py (0kb)
[7/9] Writing file opt3001_sample.py (0kb)
[8/9] Writing file sht30.py (7kb)
[9/9] Writing file sht30_sample.py (0kb)
Upload done, resetting board...
OK
MicroPython v1.12-816-g4573864c0-dirty on 2020-05-09; GR-MANGO with RZA2M
Type "help()" for more information.
>>>
```

The above picture is taken using GR-MANGO

Network-HTTP access

- Use the socket module to access http://micropython.org.
- It is unstable, but https access is also possible.

```
import network
net=network.Ethernet()
net.ifconfig()
net.active(True)
net.ifconfig("dhcp")
net.ifconfig()
import usocket as socket
s = socket.socket()
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s.connect(addr)
s.send(b'GET / HTTP/1.1\forall r\forall nHost:
micropython.org\u00e4r\u00e4n\u00e4r\u00e4n')
data = s.recv(1000)
s.close()
data
```

```
import network
>>> net=network.Ethernet()
 >> net.ifconfig()
 '0.0.0.0', '0.0.0.0', '0.0.0.0', '0.0.0.0')
>>> net.active(True)
>>> net.ifconfig("dhcp")
 '192.168.0.47', '255.255.255.0', '192.168.0.1', '192.168.0.1')
>>> import usocket as socket
>>> s = socket.socket()
>>> addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
>>> s.connect(addr)
>>> s.send(b'GET / HTTP/1.1¥r¥nHost: micropython.org¥r¥n¥r¥n')
>>> data = s.recv(1000)
>>> s.close()
>>> data
        .1 200 OK¥r¥nServer: nginx/1.12.2¥r¥nDate: Sat, 12 Jan 2019 03:27:43 GM/
 r¥nContent-Type: text/html; charset=utf-8¥r¥nContent-Length: 16839¥r¥nConnecti
n: keep-alive¥r¥nVary: Accept-Encoding¥r¥nX-Frame-Options: SAMEORIGIN¥r¥n¥r¥n<![
DCTYPE html>¥n¥n¥n4n4html lang="en">¥n <head>¥n <meta charset="utf-8">¥n
<meta http-equiv="X-UA-Compatible" content="IE=edge">¥n |
                                                            <meta name="viewport</pre>
content="width=device-width, initial-scale=1">\mathbf{y}n
                                                    <!-- The above 3 meta tags
*must* come first in the head -->¥n¥n     <link rel="icon" href="/static/img/favi
con.ico
```

Network-HTTPS access

Use the socket module to access https://micropython.org.

```
import network
net=network.LAN()
net.active(True)
net.ifconfig("dhcp")
net.ifconfig()
import socket
import ussl
s = socket.socket()
addr = socket.getaddrinfo("micropython.org", 443)[0][-
1]
s.connect(addr)
ss = ussl.wrap socket(s)
ss.write(b"GET / HTTP/1.0\fr\fr\fr\fr\fr\fr\fr\fr
data=ss.read(4096)
s.close()
print(data)
```

```
import network
   net=network.LAN()
   net.active(True)
 > net.ifconfig("dhcp")
 > net.ifconfig()
 '192.168.0.73', '255.255.255.0', '192.168.0.1', '192.168.0.1')
   import socket
   import ussl
 >> s = socket.socket()
   addr = socket.getaddrinfo("micropython.org", 443)[0][-1]
   s.connect(addr)
>>> ss = ussl.wrap socket(s)
>>> ss.write(b"GET / HTTP/1.0\r\n\r\n")
>>> data=ss.read(4096)
 >> s.close()
 >> print(data)
HTTP/1.1 200 OK\r\nServer: nginx/1.10.3\r\nDate: Sun, 24 May 2020 04:09:00 GM7
\r\nContent-Type: text/html\r\nContent-Length: 11482\r\nLast-Modified: Fri, 20
ay 2016 09:54:37 GMT\r\nConnection: close\r\nVary: Accept-Encoding\r\nETag: "57
ededd-2cda"\r\nStrict-Transport-Security: max-age=15768000\r\nAccept-Ranges: by
es\r\n\r\n<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"\n"http://www
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n\n<html>\n\n<head>\n<title>Damien
eorge</title>\nh<link rel="shortcut icon" type="image/x-icon" href="/fa
```

Network-HTTP access via ESP8266

Use the socket module to access http://micropython.org.

```
import network
  esp = network.ESP8266()
  esp.connect("xxxxxx", "xxxxxxxxxx")
esp.ifconfig()
import wsocket as socket
s = socket.socket()
addr = socket.getaddrinfo('www.micropython.org',
80)[0][-1]
s.connect(addr)
s.send(b"GET / HTTP/1.0\forall r\forall n\forall r\forall n\forall r\forall n\forall r\forall n\forall r\forall n\forall r\forall n\forall n\forall
data=s.recv(8192)
s.close()
  print(data)
```

```
>> import network
>> esp = network.ESP8266()
AT ver=1.6.2.0(Apr 13 2018 11:10:59)
SDK ver=2.2.1(6ab97e9)
>> esp.connect("
>>> esp.ifconfig()
'192.168.0.75', '192.168.0.1', '255.255.255.0')
>> import wsocket as socket
>>> s = socket.socket()
>>> addr = socket.getaddrinfo('www.micropython.org', 80)[0][-1]
>> s.connect(addr)
>>> s.send(b"GET / HTTP/1.0\r\n\r\n")
>>> data=s.recv(8192)
>>> s.close()
>>> print(data)
'HTTP/1.1 200 OK\r\nServer: nginx/1.10.3\r\nDate: Sun, 24 May 2020 04:00:12 GMT
\r\nContent-Type: text/html\r\nContent-Length: 54\r\nLast-Modified: Sat, 04 Oct
2014 21:54:13 GMT\r\nConnection: close\r\nVary: Accept-Encoding\r\nETag: "54306c
85-36"\r\nAccept-Ranges: bytes\r\n\r\nServer down for maintenance.\n\nPlease che
ck back soon.\n'
```

GC Memory Information

Display GC Memory information.

import micropython
micropython.mem_info()

```
MicroPython v1.12-571-gfaae6b130-dirty on 2020-05-24; GR-ROSE with RX65N
Type "help()" for more information.
>>> import micropython
>>> micropython.mem_info()
stack: 960 out of 23552
GC: total: 250368, used: 1552, free: 248816
No. of 1-blocks: 21, 2-blocks: 8, max blk sz: 40, max free sz: 15541
```

Notice

- See the book 「GR-ROSE」ではじめる電子工作 (Japanese)
 - http://www.kohgakusha.co.jp/books/detail/978-4-7775-2084-8
- See the MicroPython documentation for usage details.
 - https://docs.micropython.org/en/latest/
- The ported source code will be placed on the rx branch of Github below.
 - https://github.com/ksekimoto/micropython
 - git clone https://github.com/ksekimoto/micropython -b rx
 - The pre-built binary files will be stored under the rx_release folder.

See the book 「GR-ROSE」ではじめる電子工作 (Japanese)

http://www.kohgakusha.co.jp/books/detail/978-4-7775-2084-8

Other restrictions

- The build method will be described in the readme.md file on Github.
 - Build definition file for USB drive copy to Boards ¥ GR_ROSE_DD
 - Boards ¥ GR_ROSE folder is build definition file for E1 debugging
- If the internal flash drive becomes inconsistent, connect a user-prepared switch to P32 and GND and press the switch for 3 seconds at startup to recreate boot.py and main.py.
- There is a bug in the processing of serial communication. Problems can occur with communication beyond the 4K byte receive buffer.
- The timer has a significantly different implementation of the MicroPython module from STM32. Please check the source file for details.
- The function of each class parameter may be largely omitted from the original.
- The print method of each class may have largely omitted the function from the original.

Backup Slide

Program editing, execution environment

Tool	Install	How to use	
Visual Studio Code + PyMakr (Windows / Linux /Mac(??))	Install by typing PyMakr in the extension menu. Nodejs 6.9.5 or later installed. For the setting method, set the COM port to be used in the Pymakr> Global setting menu.	You can execute, upload, and download Python programs from the menu	
uPyCraft v.1.1 (Windows) # uPyCraft v1.1 File Edit Tools Help device sd uPy_lib workSpace	Download the executable file from the link below and execute it. https://randomnerdtutorials.com/uPyCraftWindows	You can execute, upload, and download Python programs from the menu https://randomnerdtutorials.com/ https://randomnerdtutorials.com/ https://install-upycraft-ide-windows-pc-instructions/	
MU Editor (Windows/Linux) P + 2	Download the source from Github and change it to recognize GR_ROSE USB (https://github.com/ksekimoto/mu/tree/pyboard)	Used as an editor for Microbit https://codewith.mu/	

OMRON 2JCIE-EV sensor board

Sensor	Part Number	Model	Maker	Interface	
Temperature / Humidity	U1	SHT30-DIS-B	Sensirion	I2C (0x44)	
Ambient light sensor	U2	OPT3001DNP	Texas Instruments	I2C (0x45)	
MEMS Pressure	U3	2SMPB-02E	OMRON	I2C (0x56)	
MEMS Motion	U5	LIS2DW12	STMicroelec tronics	SPI (SPI0 - CS:P84)	
MEMS Mic	U6	SPH0645LM4H-B	Knowles	I2S	