

Wireless Sensor Network Localization: April Monthly Check-in

Trevor Fung WES Spring 2022

High level idea:

- 1. We want to measure something in an area
 - o i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- 5. Process and visualize data

Goal of this project:

High level idea:

- We want to measure something in an areai.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- 5. Process and visualize data

Goal of this project:

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- 5. Process and visualize data

Goal of this project:

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- Process and visualize data

Goal of this project:

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- Process and visualize data

Goal of this project:

 Deploy Pluto-based sensors that form a wireless ad-hoc network in order to graphically report audio levels

Measure link distances...

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- Process and visualize data

Goal of this project:

 Deploy Pluto-based sensors that form a wireless ad-hoc network in order to graphically report audio levels

...to calculate topologies.

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- Process and visualize data

Goal of this project:

High level idea:

- We want to measure something in an area
 i.e., sunlight across an open field
- 2. Place sensors across area
- 3. Record and report values
- 4. Localize values in environment
- 5. Process and visualize data

Goal of this project:

Schedule

Overall summary: slight slippage, still (pre-planned) slack remaining

- Previous sprint goals:
 - Scale up to 3 nodes: success, but some debugging remains
 - Finish ToF measurements: works, but needs calibration
- Coming sprint:
 - Complete open tasks above
 - Migrate cMDS from MATLAB sims to Python on Plutos
 - o GUI?

Category	Task	Quarter 1			Quarter 2		
		Jan	Feb	Mar	Apr	May	June
Project Management							
	Project scoping						
	Final presentation						
Systems Engineering							
	Operational requirements analysis						
	System/Sub-System Specs + Architecture						
Development							
	Sensor evaluation						
	Algorithmic development (simulation)						
	Pluto bringup						
	Network setup						
	Link distance measurement						
	Algorithmic implementation				X		
	Sensor interface + calibration						
Test and Evaluation							
	Small scale indoor tests (+ debug)						
	Large scale field tests (+ debug)						

Scaling Up

Recommendation last time was to start scaling up

- Exposed CFO synchronization problems in library
 - Led to somewhat finicky 2-way comms, almost completely fragmented 3-way comms
 - Pluto's 25ppm*915 MHz = ±22.9 kHz, carrier spacing is only 19 kHz
 - Original author mostly employed guess-and-check hand-tuning
 - Steps to fix
 - Increased training sequence length for better fine freq correction
 - Allocated more subcarriers to pilots (low throughput needed anyway)
- BATMAN broadcast messages overwhelming network
 - More nodes = more broadcasts = more contention
 - Scaled back individual reporting rate, but may need to scale based on network size
- Set up simple Python web server to aggregate link data

BATMAN-ADV Technical Overview

- Better Approach to Mobile Ad-hoc Networking
- OSI Layer 2 protocol
 - Uses Ethernet frames and bridges
 - Acts as a virtual switch
 - Hides mesh behavior from all upper layers
- Heavily routed
 - End goal: track fastest routes to non-mesh (endpoint) users to maintain switch appearance
 - Broadcast messages serve 3 purposes:
 - Track single hop neighbors
 - Track best route to broadcast originator
 - Populate "translation tables" indicating where non-mesh users are attached
- Bonus features:
 - Bridge loop avoidance
 - Packet fragmentationni

Questions?