Data Encryption Standard (DES)

One of the early, and still well-regarded block ciphers

Feistel Cipher

- Forms basis of most block ciphers, including DES
- Series of steps based on substitutions and permutations
 - Substitution: Each plaintext bit or group of bits replaced by ciphertext
 - Permutations: Order of plaintext bits is changed

Feistel Cipher

- Shannon's terminology: diffusion and confusion
- Diffusion achieved through permutation
 - Make each block of ciphertext derived from many bits of plaintext
 - Complex statistical relationship between plaintext and ciphertext
- Confusion achieved through substitution
 - Many rounds of substitution
 - Complex statistical relationship between ciphertext and encryption key

Feistel Encryption and Decryption Rounds

Figure 3.3 Feistel Encryption and Decryption (16 rounds)

Generalizing Feistel Cipher Round

Round of Encryption

Round of Decryption

Metrics for Feistel Ciphers (and more generally for Block Ciphers)

- Block size
 - Larger block size = more permutations = more security.
 But less speed
 - Block size inversely proportional to speed
 - Standard block size 128 bits
- Key size
 - Larger key size = more keyspace = more resistant to brute force attacks. But less speed
 - Key size inversely proportional to speed
 - Standard key size 128 bits

Metrics for Feistel Ciphers (and more generally for Block Ciphers)

- Number of rounds
 - More rounds = more security
 - Typical for Feistel ciphers 16 rounds
- Ease of analysis: heads-I-win-tails-you-lose
 - We want easy-to-analyze algorithms, but will be easy-tocryptanalyze for adversary too
 - Hard-to-understand and hard-to-examine algorithms for attacker are ideal, but will be so for us too

Metrics for Feistel Ciphers (and more generally for Block Ciphers)

- Other metrics
 - Key (and subkey) generation algorithm -- must be complex
 - Function F must be complex
- High speed
 - Speed important metric
 - Decryption slower than encryption (especially in PKC)
 - Algorithms implemented in hardware faster than software-only implementations

History of DES

- Started with NIST putting out a request, circa 1973
- 1974 IBM's Lucifer chosen
- 1976 Lucifer renamed as Data Encryption Standard (DES), FIPS 46
- 1992 DES broken in principle (in theory) by Shamir-Biham
 - Differential cryptanalysis
- 1998 EFF break DES in around 2 days
 - Linear cryptanalysis
- 1999 EFF with collaborators break DES in under a day
- 2000 NIST puts out request for a new standard
- 2004-2005 NIST retires DES after AES becomes new standard

Key Length and Block Length

Recall this

$$E: \{0,1\}^k \times \{0,1\}^l \rightarrow \{0,1\}^l$$

and this

$$E_{K} \qquad (M) \qquad = (K, M)$$
k bits | bits | bits |

- In DES k = 56 bits, l = 64 bits
- k = key length, l = block length

Cryptographic Strength of DES

- 56-bit keys, so keyspace is $2^{56} \approx 7.2 \times 10^{16}$ keys
- Current speeds of multicore processors = 10¹² encryptions/second
 - Breaking time = 2-3 hours
- On supercomputers, 10¹⁷ encryptions/second
 - Breaking time = 0.25-0.5 hour

Cryptographic Strength of DES

- Actually DES was broken way back in 90's
 - Michael Weiner, 1993 3.5 hours, cost \$1 million (impractical)
 - EFF, 1999 56 hours, \$250,000
- Other avenues of attack?
 - S-boxes design criteria made public in '94; possible weaknesses?... maybe, maybe not¹
- Brute forcing key only way to break DES till date. No algorithmic weaknesses ever found

2DES

- Double DES key length
- k = 56*2 = 112 bits, l = 64 bits
- So, 2DES: $\{0,1\}^{112} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$
- In other words

$$E_K \qquad (M) \qquad = (K, M)$$
112 bits 64 bits 64 bits

• How does it work?

2DES: E_{K2} (E_{K1} (M)) = C; where E = DES

How Secure is 2DES?

- 2DES: E_{K2} (E_{K1} (M)) = C
- $E_{K1}(M) = D_{K2}(C)$; where E = D = DES
- Pick a (M,C) pair, construct a table:

M	С	
$EK_1^1(M) = 0x2cdf$	DK_2^1 (C) = 0x23de	
EK_1^2 (M)=0x32df	DK_2^2 (C) = 0x42ef	
EK_1^3 (M)=0x41a2	DK_2^3 (C) = 0x21ad	
$EK_1^x (M) = 0x3f;$ $x = 2^{55}$	DK_2^x (C) = $0x3f$; $x=2^{55}$	Match!
EK ₁ ^y (M)=0x2d; y=2 ⁵⁶	DK_2^y (C) = 0xac21; y=2 ⁵⁶	_

Man-in-the-middle attack idea:

- Deduce that
- $EK_{1}^{x}(M) = DK_{2}^{x}(C)$
- Test if EK₁^x (M') = DK₂^x
 (C'). If yes, K₁^x, K₂^x is what
 we are looking for.
 - We've broken 2DES, Yay!
 - On an average takes 2⁵⁵ trials.

3DES

- Triple DES key length
- k = 56*3 = 168 bits, l = 64 bits
- So, 3DES: $\{0,1\}^{168} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$
- In other words

$$E_K \qquad (M) \qquad = (K, M)$$
168 bits 64 bits 64 bits

• How does it work?

3DES: $E_{K3}(D_{K2}(E_{K1}(M))) = C$, where E = DES

Triple Encryption with Two Keys

Discovered by Tuchman

$$C = E_{K1}(D_{K2}(E_{K1}(M)))$$

 $M = D_{K1}(E_{K2}(D_{K1}(C)))$

- No known practical attacks on 3DES (with 2 or 3 keys)
- Brute force attack needs to try 2¹¹¹ keys, while keyspace = 2¹¹²
- Merkle and Hellman's attack needs 2⁵⁶ key searches, but requires 2⁵⁶ (M,C) pairs to be provided to attacker – unlikely to happen

DESX

DESX:
$$K_2 \oplus E_K (K_1 \oplus M) = C$$

- k = 56 + 64 + 64 = 184 bits, l = 64 bits
- DESX : $\{0,1\}^{184} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$
- Usable key length = 120 bits
- Less computationally expensive than 2DES, 3DES

DES in Hindsight

- DES is an extremely well-designed algorithm
- Very well-scrutinized too
- From 1976 on, best known (practical) attack still only brute-forcing key
- No algorithmic/structural weaknesses
- Serves as template/inspiration for algorithms after it

Key Recovery Security

- So far, "breaking" an encryption algorithm:
 - Cryptanalysis goal = Guessing key
 - Brute Force Attack goal = Guessing key
- Is this enough? Consider this:

E:
$$\{0,1\}^{512} \times \{0,1\}^{256} \rightarrow \{0,1\}^{256}$$

- *k* = 512 bits, *l* = 256 bits
- Brute force attack try out 2⁵¹¹ keys key guaranteed not recoverable

Key Recovery Security

What if we define the encryption algorithm as:

$$E_{K}(P) = P$$

$$E_{K}(P) = P \cdot 2$$

$$E_{K}(P) = P^{2}$$

$$E_{K}(P) = P \times N \times 1$$

$$E_{K}(P) = V \times P$$
...

Secure, ain't it?

So what do we Learn

- Security against key recovery alone not enough
- Necessary, but not sufficient
- Strength of encryption algorithm matters too
- Structure and design of encryption algorithm must resist reverse-engineering, or any other attack

Symmetric Crypto Security

- Not based on an underlying hard math problem (unlike public-key crypto)
- Symmetric crypto relies on less well-known assumptions
 - Existence of PRF, pseudo-random permutations
- Security guarantee: Output of DES/AES, etc. indistinguishable from output of a good PRF