Tutorial 01 Solutions

1. **Solution.** Let x be the rate of the ship in still water and y be the rate of the current. Since rate times time is distance, we can write the system of equations:

$$4(x+y) = 60, \quad 5(x-y) = 60.$$

Solve the system:

$$20(x+y) = 300, \quad 20(x-y) = 240.$$

Adding these gives 40x = 540, so x = 13.5. Substituting x = 13.5 back, we find y = 1.5. The rate of the ship is x = 13.5 km/h, and the rate of the current is y = 1.5 km/h.

- 2. **Solution.** To match up the sets, we evaluate each set:
 - (a) $\{x^2 : x \in Z\}$ is the set of integers divided by 2.
 - (b) $\{\cos^2(x) + 1 : x \in R\} = [1, 2].$
 - (c) $Z \cap \{x \in R : -\frac{1}{2} \le x \le \frac{9}{2}\} = \{0, 1, 2, 3, 4\}.$
 - (d) $\{x \frac{1}{2} : x \in Z\} \cup Z$ is the set of integers and half-integers.
 - (e) $\{|x|: x \in \mathbb{Z}, -4 \le x \le 4\} = \{0, 1, 2, 3, 4\}.$
 - (f) $\{2(x-1): \frac{3}{2} \le x \le 2\} = [1, 2].$

Thus, the sets match as follows: (a) \leftrightarrow (d), (b) \leftrightarrow (f), (c) \leftrightarrow (e).

- 3. **Solution.** To prove $A \cap B = A$ when $A \subset B$:
 - (a) By definition of intersection, $A \cap B \subset A$.
 - (b) Since $A \subset B$, any $x \in A$ is also in B, so $A \subset A \cap B$.

Combining, $A \cap B = A$.

- 4. **Solution.** For each case:
 - (a) $f: N \to N$ defines a surjective but not injective function.
 - (b) $f: Z \to Z$ defines a bijective function.
 - (c) $g:Z\to Z$ is neither injective nor surjective.

- (d) $g:Z\to Z$ is surjective but not injective.
- (e) $g:R\to R^2$ is injective but not surjective.
- (f) $h: Q^+ \to N$ does not define a function due to non-uniqueness.