

TL084, TL084A, TL084B

General purpose JFET quad operational amplifiers

Datasheet — production data

Features

- Wide common-mode (up to V_{CC}⁺) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 16 V/µs (typical)

Description

The TL084, TL084A, and TL084B are high-speed, JFET input, quad operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

Contents

1	Schematic diagram 3
2	Absolute maximum ratings and operating conditions4
3	Electrical characteristics6
4	Parameter measurement information
5	Typical applications
6	Package information
	6.1 DIP14 package information
	6.2 TSSOP14 package information
	6.3 SO-14 package information
7	Ordering information17
8	Revision history

1 Schematic diagram

Figure 1. Circuit schematics (for each amplifier)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±18	
V _{in}	Input voltage ⁽²⁾	±15	V
V _{id}	Differential input voltage ⁽³⁾	±30	
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾⁽⁵⁾ DIP14 TSSOP14 SO-14	80 100 105	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾⁽⁵⁾ DIP14 TSSOP14 SO-14	33 32 31	- C/VV
P _{tot}	Power dissipation	680	mW
	Output short-circuit duration ⁽⁶⁾	Infinite	
т	Operating free-air temperature range: for TL084I/TL084AI/TL084BI	-40 to +105	
T _{oper}	Operating free-air temperature range: for TL084C/TL084AC/TL084BC	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	
ESD	HBM: human body model ⁽⁷⁾	1000	
	MM: machine model ⁽⁸⁾	150	V
	CDM: charged device model ⁽⁹⁾	1500	

All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

- 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. R_{th} are typical values.
- 6. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
 pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
 combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

4/19 Doc ID 2301 Rev 5

^{2.} The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

Table 2. Operating conditions

Symbol	Parameter	TL084I/AI/BI	TL084C/AC/BC	Unit
V _{CC}	Supply voltage range	6	to 36	V
T _{oper}	Operating free-air temperature range	-40 to +105	0 to +70	°C

3 Electrical characteristics

Table 3. V_{CC} = ±15 V, T_{amb} = +25 °C (unless otherwise specified)

Symbol	Parameter -	TL084	I/AI/AC/	BI/BC	TL084C			Unit
Symbol	i didiletei		Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_s = 50 \Omega$) $T_{amb} = +25 ^{\circ}\text{C} \text{TL}084$ $T_{amb} = +25 ^{\circ}\text{C} \text{TL}084A$ $T_{amb} = +25 ^{\circ}\text{C} \text{TL}084B$ $T_{min} \le T_{amb} \le T_{max} \text{TL}084$ $T_{min} \le T_{amb} \le T_{max} \text{TL}084A$ $T_{min} \le T_{amb} \le T_{max} \text{TL}084B$		3 3 1	10 6 3 13 7 5		3	10	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift		10			10		μV/°C
l _{io}	Input offset current $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$		5	100 4		5	100 4	pA nA
I _{ib}	Input bias current ⁽¹⁾ $T_{amb} = +25 \text{ °C}$ $T_{min} \le T_{amb} \le T_{max}$		20	200 20		30	200 20	pA nA
A _{vd}	Large signal voltage gain (R _L = 2 k Ω , V _o = ±10 V) T_{amb} = +25 °C $T_{min} \le T_{amb} \le T_{max}$	50 25	200		25 15	200		V/mV
SVR	Supply voltage rejection ratio ($R_S = 50 \Omega$) $T_{amb} = +25 ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	80 80	86		70 70	86		dB
Icc	Supply current, no load $T_{amb} = +25 ^{\circ}\text{C}$ $T_{min} \leq T_{amb} \leq T_{max}$		1.4	2.5 2.5		1.4	2.5 2.5	mA
V _{icm}	Input common mode voltage range	±11	+15 -12		±11	+15 -12		V
CMR	Common mode rejection ratio ($R_S = 50 \ \Omega$) $T_{amb} = +25 \ ^{\circ}C$ $T_{min} \le T_{amb} \ \le T_{max}$	80 80	86		70 70	86		dB
I _{os}	Output short-circuit current $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	10 10	40	60 60	10 10	40	60 60	mA
±V _{opp}	Output voltage swing $ \begin{array}{l} T_{amb} = +25 \ ^{\circ}C \ \ R_{L} = 2 \ k\Omega \\ R_{L} = 10 \ k\Omega \\ T_{min} \leq T_{amb} \ \leq T_{max} \ \ R_{L} = 2 \ k\Omega \\ R_{L} = 10 \ k\Omega \end{array} $	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew rate V_{in} = 10 V, R_L = 2 k Ω , C_L = 100 pF, unity gain	8	16		8	16		V/μs

Table 3. $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = +25 ^{\circ}\text{C}$ (unless otherwise specified) (continued)

Symbol	Parameter		TL084I/AI/AC/BI/BC			TL084C		
Symbol			Тур.	Max.	Min.	Тур.	Max.	Unit
t _r	Rise time V_{in} = 20 mV, R_L = 2 k Ω , C_L = 100 pF, unity gain		0.1			0.1		μs
K _{ov}	Overshoot V_{in} = 20 mV, R_L = 2 k Ω , C_L = 100 pF, unity gain		10			10		%
GBP	Gain bandwidth product V_{in} = 10 mV, R_L = 2 k Ω C_L = 100 pF, F= 100 kHz		4		2.5	4		MHz
R _i	Input resistance		10 ¹²			10 ¹²		Ω
THD	Total harmonic distortion F= 1 kHz, R_L = 2 k Ω C _L = 100 pF, A_V = 20 dB, V_o = 2 V_{pp})		0.01			0.01		%
e _n	Equivalent input noise voltage $R_S = 100 \Omega$, $F = 1 \text{ kHz}$		15			15		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase margin		45			45		degree s
V ₀₁ /V ₀₂	Channel separation $A_v = 100$		120			120		dB

^{1.} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

Figure 2. Maximum peak-to-peak output voltage vs. frequency $(R_L = 2 k\Omega)$

Figure 3. Maximum peak-to-peak output voltage vs. frequency ($R_1 = 10 \text{ k}\Omega$)

Figure 4. Maximum peak-to-peak output voltage vs. frequency and temp.

Figure 5. Maximum peak-to-peak output voltage vs. free air temp.

Figure 6. Maximum peak-to-peak output voltage vs. load resistance

Figure 7. Maximum peak-to-peak output voltage vs. supply voltage

8/19 Doc ID 2301 Rev 5

Figure 8. Input bias current vs. free air temp.

Figure 9. Large signal differential voltage amplification vs. free air temp.

Figure 10. Large signal differential voltage amplification and phase shift vs. frequency

Figure 11. Total power dissipation vs. free air temp.

Figure 12. Supply current per amplifier vs. free air temp.

Figure 13. Supply current per amplifier vs. supply voltage

Figure 14. Common mode rejection ratio vs. free air temp.

Figure 15. Voltage follower large signal pulse response

Figure 16. Output voltage vs. elapsed time

Figure 17. Equivalent input noise voltage vs. frequency

Figure 18. Total harmonic distortion vs. frequency

10/19 Doc ID 2301 Rev 5

4 Parameter measurement information

Figure 19. Voltage follower

Figure 20. Gain-of-10 inverting amplifier

Typical applications 5

Figure 21. Audio distribution amplifier

Figure 22. Positive feeback bandpass filter

Figure 23. Output A

Second order bandpass filter fo = 100 kHz; Q = 30; Gain = 4

Figure 24. Output B

Cascaded bandpass filter fo = 100 kHz; Q = 69; Gain = 16

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

6.1 DIP14 package information

Figure 25. DIP14 package mechanical drawing

Table 4. DIP14 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

6.2 TSSOP14 package information

Figure 26. TSSOP14 package mechanical drawing

Figure 27. TSSOP14 package mechanical data

Ref.		Millimeters			Inches	
Rei.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L1	0.45	0.60	0.75	0.018	0.024	0.030

6.3 SO-14 package information

Figure 28. SO-14 package mechanical drawing

Table 5. SO-14 package mechanical data

Dimensions						
		Millimeters			Inches	
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
Е	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k		ı	8° (ı	max.)		ı
ddd			0.10			0.004

7 Ordering information

Table 6. Order codes

Order code	Temperature range	Package	Packing	Marking
TL084IN TL084AIN TL084BIN		DIP14	Tube	TL084IN TL084AIN TL084BIN
TL084ID/IDT TL084AID/AIDT TL084BID/BIDT	-40°C, +105°C	SO-14	Tube or tape & reel	084I 084AI 084BI
TL084IYDT ⁽¹⁾ TL084AIYDT ⁽¹⁾ TL084BIYDT ⁽¹⁾	-40 C, +105 C	SO-14 (Automotive grade)	Tube or tape & reel	084IY 084AIY 084BIY
TL084IP/IPT TL084AIP/AIPT TL084BIP/BIPT		TSSOP14	Tube or tape & reel	084I 084AI 084BI
TL084CN TL084ACN TL084BCN		DIP14	Tube	TL084CN TL084ACN TL084BCN
TL084CD/CDT TL084ACD/ACDT TL084BCD/BCDT	0°C, +70°C	SO-14	Tube or tape & reel	084C 084AC 084BC
TL084CP/CPT TL084ACP/ACPT TL084BCP/BCPT		TSSOP14	Tube or tape & reel	084C 084AC 084BC

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

8 Revision history

Table 7. Document revision history

Date	Revision	Changes
28-Mar-2001	1	Initial release.
30-Jul-2007	2	Added values for R _{thja} , R _{thjc} and ESD in <i>Table 1: Absolute maximum ratings</i> . Added <i>Table 2: Operating conditions</i> . Expanded <i>Table 6: Order codes</i> . Template update.
15-Jul-2008	3	Removed information concerning military temperature ranges (TL084Mx, TL084AMx, TL084BMx). Added automotive grade order codes in <i>Table 6: Order codes</i> .
05-Jul-2012	4	Removed commercial types TL084IYD, TL084AIYD and TL084BIYD. Updated <i>Table 6: Order codes</i> .
29-Jan-2013	5	Added part numbers TL084A and TL084B. Added SO-14 package silhouette. Updated layout of <i>Table 1: Absolute maximum ratings</i> . Updated of <i>Table 3: V_{CC} = ±15 V, T_{amb} = +25 °C (unless otherwise specified)</i> . Replaced SO-14 package mechanical drawing (<i>Figure 28: SO-14 package mechanical drawing</i>). Replaced SO-14 package mechanical data (<i>Table 5: SO-14 package mechanical data</i>).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 2301 Rev 5