Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Ricardo Menares

Curso: Teoría de Números **Fecha:** 3 de octubre de 2025 Ayudante: José Cuevas Barrientos

Sigla: MAT2814

Caracteres primitivos y la función Gamma

La función Gamma

1. a) Pruebe que $E(z) := (1-z)e^z$ satisface que

$$\forall z \in \mathbb{C} : |z| < 1, \qquad |1 - E(z)| \le |z|^2.$$

b) Pruebe que el siguiente producto infinito

$$\prod_{n\geq 1} E(-z/n) = \prod_{n\geq 1} \left(1 + \frac{z}{n}\right) e^{-z/n}$$

define una función entera (i.e., holomorfa en todo \mathbb{C}).

Para este inciso podría ser útil el siguiente criterio:

Teorema 1.1: Un producto de funciones holomorfas $(f_n)_n \in \mathcal{H}(A)$ en un abierto conexo A converge a una función holomorfa $F(z) = \prod_{n=1}^{\infty} f_n(z)$ si

$$\sum_{m=1}^{\infty} \|1 - f(z)\|_K < \infty,$$

para todo compacto $K \subseteq A$. (Aquí $\| \|_K$ denota la norma supremo en K.)

c) Defina la función de Weierstrass

$$\Delta_{\xi}(z) := z e^{\xi z} \prod_{n \ge 1} \left(1 + \frac{z}{n} \right) e^{-z/n},$$

donde $\xi \in \mathbb{C}$ es una constante a elección. Pruebe que $\Delta_{\xi}(z+1) = \frac{1}{z}\Delta_{\xi}(z)$ para exactamente un único número complejo ξ ; tal valor es la constante de Euler-Mascheroni

$$\gamma = \lim_{n} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right).$$

d) Pruebe que $\Gamma(z) := 1/\Delta_{\gamma}(z)$ es una función meromorfa que tiene polos exclusivamente en los enteros negativos

$$0, \qquad -1, \qquad -2, \qquad -3, \qquad \dots$$

y sus polos son simples.

Para el siguiente problema, será útil el siguiente criterio de unicidad:

Teorema 1.2 (Wielandt): Sea f una función holomorfa en el semiplano derecho $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ 0} tal que f(z+1)=zf(z), entonces admite extensión meromorfa a todo $\mathbb C$ con polos posiblemente en los enteros negativos $\mathbb{Z}_{\leq 0}$. Si además, f es acotada en la franja $\{z \in \mathbb{C} : 1 \leq \operatorname{Re} z \leq 2\}$, entonces $f(z) = f(1)\Gamma(z)$.

2. Fórmula de duplicación de Legendre: Pruebe que la función Γ satisface

$$\Gamma(2z)\Gamma\left(\frac{1}{2}\right) = 2^{2z-1}\Gamma(z)\Gamma\left(z + \frac{1}{2}\right).$$

 \odot

3. Aproximación de Stirling:

a) Pruebe que

$$\log(n!) = \left(n + \frac{1}{2}\right) \log n - n + 1 + \int_{1}^{n} \frac{P_1(t)}{t} dt,$$

donde $P_1(t) := t - \lfloor t \rfloor + 1/2$ es la «función serrucho». Esta función es 1-periódica y toma valores en $\lceil -1/2, 1/2 \rceil$.

b) Pruebe que

$$\int_{1}^{n} \frac{P_1(t)}{t} dt = -\int_{1}^{n} \frac{P_1(t)^2}{t(|t| + 1/2)} dt.$$

c) Concluya que

$$n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$$
.

Pista: Defina

$$C_n := \frac{n!}{n^{n+1/2}e^{-n}}$$

y pruebe que $C_{\infty} := \lim_n C_n$ existe y es un real estrictamente positivo. Luego considere el límite de $C_n^4/(C_{2n}C_{2n+1})$.

2. Caracteres

4. Sea $\chi \colon (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ un caracter. Pruebe que existe un mínimo entero $f \geq 0$ tal que $f \mid m$ y existe un caracter $\bar{\chi}$ de modo que el siguiente diagrama conmuta

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$$

$$(\mathbb{Z}/f\mathbb{Z})^{\times}$$

Dicho f se conoce como el **conductor** de χ . Se dice que χ es **primitivo** si f = m.

5. Pruebe que si $\chi: (\mathbb{Z}/f\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ es primitivo y $f \mid m$, entonces el caracter $\chi^* := \rho \circ \chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ satisface

$$L(\chi^*, s) = L(\chi, s) \prod_{p|m} (1 - p^{-s}).$$

A. Comentarios adicionales

La función Γ tiene una larga y fascinante historia, sus propiedades fueron estudiados por varios de los matemáticos más importantes incluyendo (pero no limitado) a L. Euler, C.F. Gauss, K. Weierstrass y A.-M. Legendre.

Hay varios resultados que apuntan a la naturalidad y/o unicidad de la función Γ , incluyendo:

Teorema A.1 (Bohr-Mollerup): Si $f:(0,\infty)\to(0,\infty)$ es una función continua tal que:

- (a) f(z+1) = zf(z).
- (b) Es log-convexa, es decir,

$$\forall x, y \in (0, \infty), \ t \in [0, 1], \qquad f(tx + (1 - t)y) \le f(x)^t \cdot f(y)^{1 - t}.$$

Entonces $f(z) = f(1)\Gamma(z)$.

Teorema A.2: Sea f una función meromorfa en \mathbb{C} , que manda $(0,\infty) \to (0,\infty)$ y tal que

$$f(z+1) = zf(z), \qquad \sqrt{\pi}f(2z) = 2^{2z-1}f(z)f(z+\frac{1}{2}).$$

Entonces $f(z) = \Gamma(z)$.

Puede leer pruebas de estos datos en [3], §2.2.

El tratamiento de la función Γ es sumamente clásico. Puede leer al respecto en [4], [2] y en el conciso libro de ARTIN [1].

Los caracteres no primitivos (y sus funciones L) tienen usos en la teoría de números. Debido a que el factor de corrección es sumamente sencillo, podemos calcular residuos y otros invariantes en caracteres no primitivos. Vea WASHINGTON [5].

Referencias y lecturas adicionales

- 1. ARTIN, E. The Gamma function (Holt, Rinehart y Winston, 1964).
- 2. Lang, S. Complex Analysis (Springer-Verlag, 1999).
- 3. Remmert, R. Classical topics in complex function theory (Springer-Verlag, New York, 1998).
- 4. Simon, B. Basic Complex Analysis (American Mathematical Society, 2015).
- 5. Washington, L. C. Introduction to Cyclotomic Fields Graduate Texts in Mathematics 83 (Springer-Verlag New York, 1982).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-2-num/