(9,4,4) Code

Review: (8,4,3) Code

- Arrange the message block to a 2x2 square.
- Add a parity bit (P_i) to each row or column, so that it has even parity.
 - Choose P₁ so row 1 has even parity.
 - Choose P₂ so row 2 has even parity.
 - Choose P₃ so column 1 has even parity.
 - Choose P₄ so column 2 has even parity.
- Rearrange the bits to form the final codeword.

code rate =
$$\frac{1}{2}$$

A (9,4,4) Code

D_1	D ₂	P ₁
D ₃	D_4	P ₂
P ₃	P ₄	P ₅

D_1	D_2	D_3	D_4	P_1	P ₂	P_3	P_4	P ₅
		ر ا	_)	7	ا ک

We can increase the minimum
Hamming distance in the (8,4,3) code
to 4 by adding an overall parity bit,
which is chosen so that the codeword
always has even parity.

- The (9,4,4) code allows us to either
 - Correct 1 bit errorsand detect 2 bit errors

OR

Detect 1, 2 and 3 bit errors

Example

Arrange the message block to a 2x2 square.

- Parity bits
 - P₁: parity for D₁,D₂
 - P₂: parity for D₃,D₄
 - P_3 : parity for D_1, D_3
 - P₄: parity for D₂,D₄
 - P_5 : parity for $D_1, D_2, D_3, D_4, P_1, P_2, P_3, P_4$
- Rearrange the bits to form the final codeword.

Compute Syndrome Bits

1	1	0
1	0	0
0	1	
0		0
	1 0	1 0 0 1

0	1	1	0
1	0	0	1
1	0	1	
0	1		1

0	1	1	0
1	1	1	1
1	0	1	
0	0		1

D_1	D ₂	P_1	S ₁
D_3	D_4	P ₂	S ₂
P_3	P_4	P ₅	
S ₃	S ₄		S ₅

 To correct errors, we assume at most 2 bits have errors.

- Compute 5 syndrome bits by checking
 - the first two rows for even parity (S_1,S_2)
 - the first two columns for even parity (S_3,S_4)
 - the entire codeword for even parity (S₅)

Performing Error Correction

• Check the syndrome bits.

if all $S_i = 0$ no error

else if $S_5 = 1$, % error in one bit check the other syndrome bits to see which bit to correct

else % error in more than one bit we can only detect this.

Detecting Two Bit Errors

 We cannot correct 2 bit errors because there are two valid codewords that differ from the received codeword by 2 bits.