(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22210

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Marking Scheme	Δnswers	Sub Q.N.	Q. No.
		ζ	
10	Solve any <u>FIVE</u> of the following:		1.
02	If $f(x) = 3x^2 - 5x + 7$ show that $f(-1) = 3f(1)$	a)	
1	f(-1)=15	Ans	
1/2	f(1) = 5		
1/2	$\therefore 3f(1) = 15$		
/2	$\therefore f(-1) = 3f(1)$		
02	Define odd and even function with suitable examples.	b)	
		,	
1/2		Ans	
1/2	$e.g.f(x) = x^3 + x$		
, -	$f\left(-x\right) = \left(-x\right)^3 + \left(-x\right)$		
	$\therefore f(-x) = -(x^3 + x)$		
	$\therefore f(-x) = -f(x)$		
1./	If $f(-x) = f(x)$ then the function is an even function		
1/2	$e.g.f(x) = x^2 + 1$		
1/2	$\therefore f(-x) = (-x)^2 + 1$		
	$\therefore f(-x) = x^2 + 1$		
	$\therefore f(-x) = f(x)$		
	$\therefore J(-x) = J(x)$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION
Subject Name: Applied Mathematics Model Answer Subject Code:

22210

Subj	ect ivai	ne: Applied Mathematics <u>Model Answer</u> Subject Code:	
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c) Ans	Find $\frac{dy}{dx}$ if $y = a^x + x^a + a^a + \sqrt{x}$ $y = a^x + x^a + a^a + \sqrt{x}$ $\therefore \frac{dy}{dx} = a^x \log a + ax^{a-1} + 0 + \frac{1}{2\sqrt{x}}$	2
	d) Ans	$\therefore \frac{dy}{dx} = a^x \log a + ax^{a-1} + \frac{1}{2\sqrt{x}}$ Evaluate $\int \frac{1}{x^2 + 4} dx$ $\int \frac{1}{x^2 + 4} dx$	02
		$=\int \frac{1}{x^2 + (2)^2} dx$	1/2
		$= \frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) + c$	1½
	e)	Evaluate $\int x \cdot e^x dx$	02
	Ans	$\int x e^{x} dx$ $= x \left(\int e^{x} dx \right) - \int \left(\int e^{x} dx \frac{d}{dx}(x) \right) dx$ $= x e^{x} - \int e^{x} .1 dx$ $= x e^{x} - \int e^{x} dx$ $= x e^{x} - e^{x} + c$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
	f) Ans	If $z_1 = 4 - 5i$ and $z_2 = 3 + 7i$ find $ z_1 + z_2 $ $z_1 + z_2 = 4 - 5i + 3 + 7i$ $\therefore z_1 + z_2 = 7 + 2i$ $\therefore z_1 + z_2 = \sqrt{(7)^2 + (2)^2}$	02 1
			1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	22210
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	g)	Find the area bounded by the curve $y = 3x^2$, the lines $x = 1$, $x = 3$ and $x - axis$	02
	Ans	Area $A = \int_{a}^{b} y dx$ $= \int_{1}^{3} 3x^{2} dx$	
		$= 3 \left[\frac{x^3}{3} \right]_1^3$	1
		$= 3\left(\frac{3^3}{3} - \frac{1^3}{3}\right)$ = 26	1
2.		Solve any <u>THREE</u> of the following:	12
	a)	Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3axy$	04
	Ans	$x^{3} + y^{3} = 3axy$ $\therefore 3x^{2} + 3y^{2} \frac{dy}{dx} = 3a\left(x \frac{dy}{dx} + y.1\right)$	2
		$\therefore 3x^2 + 3y^2 \frac{dy}{dx} = 3ax \frac{dy}{dx} + 3ay$	1/2
		$\therefore (3y^2 - 3ax) \frac{dy}{dx} = 3ay - 3x^2$	1/2
		$\therefore \frac{dy}{dx} = \frac{3ay - 3x^2}{3y^2 - 3ax}$	
		$\therefore \frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$	1
	b)	Find $\frac{dy}{dx}$ if $x = \frac{1}{t}$ and $y = 1 - \frac{1}{t}$	04
	Ans	$x = \frac{1}{t}$ and $y = 1 - \frac{1}{t}$	
		$\therefore \frac{dx}{dt} = -\frac{1}{t^2} \text{and} \frac{dy}{dt} = \frac{1}{t^2}$	1+1
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

22210 **Subject Code: Model Answer**

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	.2210
Q.	Sub	Answers	Marking
No.	Q. N.	7413WC13	Scheme
2.	b)	$\therefore \frac{dy}{dx} = \frac{\frac{1}{t^2}}{-\frac{1}{t^2}}$ $\therefore \frac{dy}{dx} = -1$	1
	c)	A bullet is fired into a mud bank and penetrates $(120t - 3600t^2)$ m. in 't' sec. after impact.	1
		Calculate maximum depth of penetration. Let $s = 120t - 3600t^2$	04
	Ans	$\therefore \frac{ds}{dt} = 120 - 7200t$	1
		$\frac{dt}{dt^2} = -7200$	1
		Consider $\frac{ds}{dt} = 0$	
		$\therefore 120 - 7200t = 0$ $\therefore 120 = 7200t$	
		$\therefore t = \frac{1}{60}$ at $t = \frac{1}{60}$	1
		$\therefore \frac{d^2s}{dt^2} = -7200 < 0$	1/2
		\therefore The maximum depth of penetration is,	
		$s = 120 \left(\frac{1}{60}\right) - 3600 \left(\frac{1}{60}\right)^2$ $\therefore s = 1 \text{ meter}$	1/2
	d)	Find radius of curvature to the curve $y = x^3$ at $(2,8)$	04
	Ans	$y = x^{3}$ $\therefore \frac{dy}{dx} = 3x^{2}$ $\therefore \frac{d^{2}y}{dx^{2}} = 6x$	1
		$\therefore \frac{d^2 y}{dx^2} = 6x$	1

	WINTER- 18 EXAMINATION		22210
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22210

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u>	Subject Code:	22210
Q. No.	Sub Q.N.	Answers		Marking Scheme
2.	d)	at (2,8)		
		$\frac{dy}{dx} = 3(2)^{2} = 12$ $\frac{d^{2}y}{dx^{2}} = 6(2) = 12$		1/2
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$		
		$\therefore \rho = \frac{\left[1 + \left(12\right)^2\right]^{\frac{3}{2}}}{12}$		1/2
		$\therefore \rho = 145.50$		1/2
				/2
3.		Solve any <u>THREE</u> of the following:		12
	a)	Find the equation of the tangent to the curve $4x^2 + 9y^2 = 40$ at $(3,2)$		04
	Ans	$4x^2 + 9y^2 = 40$		
		$8x + 18y \frac{dy}{dx} = 0$		1
		$\therefore \frac{dy}{dx} = \frac{-8x}{18y}$		1/2
		$\therefore \frac{d}{dx} = \frac{18y}{18y}$		
		at $(3,2)$		
		$\therefore \frac{dy}{dx} = \frac{-8(3)}{18(2)}$		
		$\therefore \frac{dy}{dx} = \frac{-2}{3}$		1
		an S		
		∴ slope of tangent, $m = \frac{-2}{3}$		
		Equation of tangent at $(3,2)$ is		
		$y-2=\frac{-2}{3}(x-3)$		1
		$\therefore 3y - 6 = -2x + 6$		
		$\therefore 2x + 3y - 12 = 0$		1/2

	WINTER- 18 EXAMINATION		22210	
-414:	Madel Assures	Cubinat Codo.		

Subje	ect Nan	ne: Applied Mathematics <u>Model Answer</u> Subject Code:	210
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)	Find $\frac{dy}{dx}$ if $y = \sec^{-1} \left[\frac{1}{4x^3 - 3x} \right]$	04
	Ans	$y = \sec^{-1}\left[\frac{1}{4x^3 - 3x}\right]$	
		Put $x = \cos \theta \implies \theta = \cos^{-1} x$	
		$\therefore y = \sec^{-1} \left[\frac{1}{4\cos^3 \theta - 3\cos \theta} \right]$	1
		$\therefore y = \sec^{-1} \left[\frac{1}{\cos 3\theta} \right]$	1/2
		$\therefore y = \sec^{-1} \left[\sec 3\theta \right]$	1/2
		$\therefore y = 3\theta$	1/2
		$\therefore y = 3\cos^{-1} x$	1/2
		$\therefore \frac{dy}{dx} = 3\left(\frac{-1}{\sqrt{1-x^2}}\right)$	1
		$\therefore \frac{dy}{dx} = \frac{-3}{\sqrt{1-x^2}}$	
	c)	If $y^x = e^y$ prove that $\frac{dy}{dx} = \frac{(\log y)^2}{\log y - 1}$	04
	Ans	$y^x = e^y$	
		taking log on both sides,	
		$\therefore \log y^x = \log e^y$	
		$\therefore x \log y = y \log e$	1
		$\therefore x \log y = y$	1
		$\therefore x = \frac{y}{\log y}$	1/2
		diff.w.r.t.y	
		$\therefore \frac{dx}{dy} = \frac{\log y(1) - y\frac{1}{y}}{\left(\log y\right)^2}$	2
		$\therefore \frac{dx}{dy} = \frac{\log y - 1}{\left(\log y\right)^2}$	

	WINTER- 18 EXAMINATION		22210
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22210

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	.210
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	c)	$\therefore \frac{dy}{dx} = \frac{\left(\log y\right)^2}{\log y - 1}$ $\frac{\mathbf{OR}}{y^x} = e^y$	1/2
		taking log on both sides,	
		$\therefore \log y^x = \log e^y$	1
		$\therefore x \log y = y \log e$	1
		$\therefore x \log y = y \qquad(i)$ diff.w.r.t.x	1/2
		$\therefore x \frac{1}{y} \frac{dy}{dx} + \log y(1) = \frac{dy}{dx}$	1
		$\therefore \log y = \left(1 - \frac{x}{y}\right) \frac{dy}{dx}$ $\therefore \frac{\log y}{\left(1 - \frac{x}{y}\right)} = \frac{dy}{dx}$	1/2
		$\therefore \frac{\log y}{\left(1 - \frac{1}{\log y}\right)} = \frac{dy}{dx} \qquad\left(\because eq^{n}.(i)\right)$	1/2
		$\therefore \frac{(\log y)^2}{(\log y - 1)} = \frac{dy}{dx}$ $\therefore \frac{dy}{dx} = \frac{(\log y)^2}{\log y - 1}$	1/2
	d)	Evaluate $\int \frac{(x-1)e^x}{x^2 \sin^2(e^x/x)} dx$	04
		$\int \frac{(x-1)e^x}{x^2 \sin^2\left(\frac{e^x}{x}\right)} dx$	
		Put $\frac{e^x}{x} = t$	1/2

	WINTER- 18 EXAMINATION	_	22210
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22210

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$\therefore \frac{xe^x - e^x(1)}{x^2} dx = dt$ $\therefore \frac{(x-1)e^x}{x^2} dx = dt$	1/2
		$\therefore \int \frac{1}{\sin^2 t} dt$	1/2
		$= \int \cos ec^2 t \ dt$	1
		$=-\cot t+c$	1
		$=-\cot\left(\frac{e^x}{x}\right)+c$	1/2
			12
4.		Solve any <u>THREE</u> of the following:	
	a)	Evaluate $\int dx$	04
	α,	Evaluate $\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$	
	Ans	$\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$	
		$= \int \frac{\frac{dx}{\cos^2 x}}{\frac{4\cos^2 x + 9\sin^2 x}{\cos^2 x}}$	1/2
		$= \int \frac{\sec^2 x dx}{4 + 9\tan^2 x}$	1/2
		Put $\tan x = t$ $\sec^2 x dx = dt$	1/2
		$=\int \frac{dt}{4+9t^2}$	1/2
		$\int_{c}^{3} 4+9t^{2}$	1/2
		$= \int \frac{dt}{(2)^2 + (3t)^2} \qquad \text{or} \qquad = \frac{1}{9} \int \frac{dt}{\left(\frac{2}{3}\right)^2 + t^2}$	72
		$= \int \frac{dt}{(2)^{2} + (3t)^{2}} \qquad \text{or} \qquad = \frac{1}{9} \int \frac{dt}{\left(\frac{2}{3}\right)^{2} + t^{2}}$ $= \frac{1}{2} \frac{\tan^{-1} \left(\frac{3t}{2}\right)}{3} + c \qquad \text{or} \qquad = \frac{1}{9 \left(\frac{2}{3}\right)} \tan^{-1} \left(\frac{t}{\frac{2}{3}}\right) + c$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subject Code: 22210 **Model Answer**

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	22210
Q.	Sub	Answers	Marking
No.	Q.N.	Allsweis	Scheme
4.	a)	$=\frac{1}{6}\tan^{-1}\left(\frac{3\tan x}{2}\right)+c$	1/2
	b)	Evaluate: $\int \frac{\log x}{x[2 + \log x][3 + \log x]} dx$	04
	Ans	$\int \frac{\log x}{x[2+\log x][3+\log x]} dx$	
		Put $\log x = t$ $\therefore \frac{1}{x} dx = dt$ $\int \frac{t}{(2+t)(3+t)} dt$	1/2
		consider $\frac{t}{(2+t)(3+t)} = \frac{A}{2+t} + \frac{B}{3+t}$ $\therefore t = A(3+t) + B(2+t)$	1/2
		Put $t = -2$ $A = -2$	1/2
		Put $t = -3$	
		B=3	1/2
		$\therefore \frac{t}{(2+t)(3+t)} = \frac{-2}{2+t} + \frac{3}{3+t}$	1/2
		$\therefore \int \frac{t}{(2+t)(3+t)} dt = \int \left(\frac{-2}{2+t} + \frac{3}{3+t}\right) dt$	1
		$= -2\log(2+t) + 3\log(3+t) + c$ = $-2\log(2+\log x) + 3\log(3+\log x) + c$	1/2
	c)	Evaluate $\int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7-x} + \sqrt{x}} dx$	04
	Ans	$I = \int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7 - x} + \sqrt{x}} dx - \dots (1)$	
		$\therefore I = \int_{2}^{5} \frac{\sqrt{(2+5-x)}}{\sqrt{7-(2+5-x)} + \sqrt{(2+5-x)}} dx$	1
		$\therefore I = \int_{2}^{5} \frac{\sqrt{7 - x}}{\sqrt{x} + \sqrt{7 - x}} dx - \dots (2)$	1/2

	WINTER- 18 EXAMINATION		22210
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22210

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	.2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	add (1) and (2) $I + I = \int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7 - x} + \sqrt{x}} dx + \int_{2}^{5} \frac{\sqrt{7 - x}}{\sqrt{x} + \sqrt{7 - x}} dx$	
		$\therefore 2I = \int_{2}^{5} \frac{\sqrt{x} + \sqrt{7 - x}}{\sqrt{7 - x} + \sqrt{x}} dx$	1/2
		$\therefore 2I = \int_{2}^{5} 1 dx$ $\therefore 2I = \left[x\right]_{2}^{5}$	1
		$\therefore 2I = [x]_2$ $\therefore 2I = 5 - 2$ $\therefore 2I = 3$	
		$\therefore I = \frac{3}{2}$	1
	d)	Evaluate $\int x \cdot \tan^{-1} x dx$	04
	Ans	$\int \tan^{-1} x.xdx$	
		$= \tan^{-1} x \int x dx - \int \left(\int x dx \frac{d}{dx} \left(\tan^{-1} x \right) \right) dx$	1/2
		$= \tan^{-1} x \frac{x^2}{2} - \int \frac{x^2}{2} \frac{1}{1+x^2} dx$	1
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1+x^2} dx$ $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{1+x^2-1}{1+x^2}\right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{1+x^2}{1+x^2} - \frac{1}{1+x^2} \right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1 + x^2} \right) dx$	1/2
		$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) + c$	1
	e)	Evaluate $\int \frac{x}{(x+1)(x+2)} dx$	04

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22210

Jubje	ct nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	Consider $\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$ $\therefore x = A(x+2) + B(x+1)$ Put $x = -1$	1/2
		A = -1 $A = -1$ $A = -1$ Put $x = -2$	1
		$\therefore -2 = B(-2+1)$ $\therefore B = 2$ $\frac{x}{(x+1)(x+2)} = \frac{-1}{x+1} + \frac{2}{x+2}$	1
		$\therefore \int \frac{x}{(x+1)(x+2)} dx = -\int \frac{1}{x+1} dx + 2\int \frac{1}{x+2} dx$	1/2
		$=-\log(x+1)+2\log(x+2)+c$	1
5.		Solve any <u>TWO</u> of the following:	12
	a)	Find by integration the area between the curves $y = x^2 + 1$ and line $y = 2x + 1$	06
	Ans	$y = x^2 + 1$ (1)	
		y = 2x + 1	
		$\therefore eq^{n}.(1) \Rightarrow 2x+1=x^{2}+1$	
		$\therefore 2x + 1 - x^2 - 1 = 0$	
		$\therefore 2x - x^2 = 0$ $\therefore x = 0, 2$	1
			1
		Area $A = \int_{a}^{b} (y_1 - y_2) dx$	
		$\therefore A = \int_0^2 \left(x^2 + 1 - \left(2x + 1 \right) \right) dx$	1
		$\therefore A = \int_0^2 \left(x^2 - 2x \right) dx$	
		$\therefore A = \left[\frac{x^3}{3} - x^2\right]_0^2$	2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subie	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	22210
Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
5.	a)	$\therefore A = \left[\frac{(2)^3}{3} - (2)^2 \right]$ $\therefore A = \frac{-4}{3}$ $\therefore \text{ area } A = \frac{4}{3} \text{or} 1.333$	1
		$\therefore \operatorname{area} A = \frac{4}{3} \text{or} 1.333$	1
	b)	Solve the following.	06
	(i)	Verify that $y = \log x$ is a solution of differential equation $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$	03
	Ans	$y = \log x$ $\frac{dy}{dx} = \frac{1}{x}$	1
		$\frac{d^2y}{dx^2} = -\frac{1}{x^2}$	1
		$L.H.S. = x \frac{d^2 y}{dx^2} + \frac{dy}{dx}$ $= x \left(-\frac{1}{x^2} \right) + \frac{1}{x}$ $= -\frac{1}{x^2} + \frac{1}{x^2}$	1/2
			1/2
		$ \frac{\mathbf{OR}}{y = \log x} $	
		$\therefore \frac{dy}{dx} = \frac{1}{x}$	1
		$\therefore x \frac{dy}{dx} = 1$	1/2
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} (1) = 0$	1
		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subje	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject C	iode: LZZ	210
Q. No.	Sub Q.N.	Answers		Marking Scheme
5.	b)(ii) Ans	The velocity of a particle is given by $v = t^2 - 6t + 7$. Find distance covered in 3 sec initially $x = 0$ when $t = 0$	ond,	03
		$v = t^2 - 6t + 7$ $\therefore \frac{dx}{dt} = t^2 - 6t + 7$		1/2
		$\therefore dx = (t^2 - 6t + 7)dt$ $\therefore \int dx = \int (t^2 - 6t + 7)dt$		1/2
		$\therefore x = \frac{t^3}{3} - 3t^2 + 7t + c$		1
		Initially $x = 0$ when $t = 0$ $\therefore c = 0$		
		$\therefore x = \frac{t^3}{3} - 3t^2 + 7t$		1/2
		Distance covered in 3 sec, $\therefore x = \frac{(3)^3}{3} - 3(3)^2 + 7(3)$		
		$\therefore x = 3$		1/2
	c)	Solve the following.		06
	(i)	Solve $(1+x^2)dy - (1+y^2)dx = 0$		03
	Ans	$\left(1+x^2\right)dy - \left(1+y^2\right)dx = 0$		
		$\therefore (1+x^2)dy = (1+y^2)dx \qquad \qquad \therefore \frac{dy}{1+y^2} = \frac{dx}{1+x^2}$ $\therefore \int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$		1
				1
		$\therefore \tan^{-1} y = \tan^{-1} x + c$		1
	c)(ii)	Solve $\frac{dy}{dx} + y \cot x = \cos x$		03
	Ans	$\frac{dy}{dx} + y \cot x = \cos x$		
		$\therefore \text{ Comparing with } \frac{dy}{dx} + Py = Q$		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

ct Nam	e: Applied Mathematics Model Answer Subject Code:	22210
Sub		Marking
Q.N.	Answers	Scheme
	$P = \cot x$. $O = \cos x$	
c)(ii)		
		1
	$y.IF = \int Q.IFdx + c$	
	$\therefore y \sin x = \int \cos x \cdot \sin x dx$	1/2
	·	
	$\therefore y \sin x = \frac{1}{2} \int 2\cos x \cdot \sin x dx$	
	$v\sin x = \frac{1}{2} \int \sin 2x dx$	1/2
	2	1
	$\therefore y \sin x = \frac{1}{2} \left(\frac{-\cos 2x}{2} \right) + c$	1
	$\therefore y \sin x = \frac{-\cos 2x}{4} + c$	
	·	
	<u>OK</u>	
	$\frac{dy}{dx} + y \cot x = \cos x$	
	$\therefore \text{ Comparing with } \frac{dy}{dx} + Py = Q$	
	$P = \cot x$, $Q = \cos x$	
	Integrating factor $IF = e^{\int \cot x dx} = e^{\log(\sin x)} = \sin x$	1
	$y.IF = \int Q.IFdx + c$	
	$\therefore y \sin x = \int \cos x \cdot \sin x dx$	
	Put $\sin x = t$	1/2
	$\therefore \cos x \ dx = dt$	72
	$=\int t dt$	
		1/2
	$=\frac{\iota}{2}+c$	
		1
	$\therefore y \sin x = \frac{1}{2} + c$	
	Solve any <u>TWO</u> of the following:	12
a)	If $\omega_1 = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, $\omega_2 = \frac{-1}{2} - i\frac{\sqrt{3}}{2}$ show that $\omega_1 2 = \omega_2$	06
	Sub Q.N. c)(ii)	coverage and the matter and the matter and the problem of the pro

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subie	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	22210
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	a)	$(-1, \sqrt{3})^2$	
	Ans	$\omega_1^2 = \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)^2$	
		$= \frac{1}{4} - 2\left(\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right) + i^2\left(\frac{\sqrt{3}}{2}\right)^2$	2
		$= \frac{1}{4} - i\frac{\sqrt{3}}{2} - \frac{3}{4}$ $= \frac{-1}{2} - i\frac{\sqrt{3}}{2}$	
		$= \frac{1}{2} - i \frac{\sqrt{2}}{2}$ $= \omega_2$	2
		$\therefore \omega_1^2 = \omega_2$	2
	b)	Find L $\left\{e^3t\left(t^2+t\right)\right\}$	06
	Ans	$L\left\{e^3t\left(t^2+t\right)\right\}$	
		$= L\left\{e^3\left(t^3+t^2\right)\right\}$	1
		$=e^3L\{t^3+t^2\}$	1
		$=e^{3}\left\{L\left(t^{3}\right)+L\left(t^{2}\right)\right\}$	1
		$=e^{3}\left(\frac{3!}{s^{3+1}}+\frac{2!}{s^{2+1}}\right)$	2
		$=e^3\left(\frac{6}{s^4}+\frac{2}{s^3}\right)$	1
	c)	Find $L^{-1}\left\{\frac{2s^2-4}{(s+1)(s-2)(s-3)}\right\}$	06
	Ans	Let	
		$\frac{2s^2 - 4}{(s+1)(s-2)(s-3)} = \frac{A}{s+1} + \frac{B}{s-2} + \frac{C}{s-3}$	
		$2s^{2}-4=(s-2)(s-3)A+(s+1)(s-3)B+(s+1)(s-2)C$	
		Put $s = -1$	
		$\therefore 2(-1)^2 - 4 = (-1-2)(-1-3)A$	
	I		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subje	ect Nam	ne: Applied Mathematics <u>Model Answer</u> Subject Code:	2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	$\therefore A = -\frac{1}{6}$	1
		Put $s = 2$ $2(2)^2 - 4 = (2+1)(2-3)B$	
		$\therefore B = \frac{-4}{3}$	1
		Put $s = 3$	
		$2(3)^{2} - 4 = (3+1)(3-2)C$ $\therefore c = \frac{7}{2}$	1
		2	
		$\therefore \frac{2s^2 - 4}{(s+1)(s-2)(s-3)} = \frac{-\frac{1}{6}}{s+1} + \frac{-\frac{4}{3}}{s-2} + \frac{\frac{7}{2}}{s-3}$	
		$\therefore L^{-1}\left\{\frac{2s^2-4}{(s+1)(s-2)(s-3)}\right\} = -\frac{1}{6}L^{-1}\left\{\frac{1}{s+1}\right\} - \frac{4}{3}L^{-1}\left\{\frac{1}{s-2}\right\} + \frac{7}{2}L^{-1}\left\{\frac{1}{s-3}\right\}$	
		$= -\frac{1}{6}e^{-t} - \frac{4}{3}e^{2t} + \frac{7}{2}e^{3t}$	1+1+1
	d)	Solve differential equation using Laplace Transform.	06
		$\frac{dy}{dt} + 2y = e^{-t}$, given $y(0) = 2$	
	Ans	$\frac{dy}{dt} + 2y = e^{-t}$	
		Apply Laplace Transform on both sides,	
		$\therefore L\left\{\frac{dy}{dt} + 2y\right\} = L\left\{e^{-t}\right\}$	1
		$\therefore sL(y) - y(0) + 2L(y) = \frac{1}{s+1}$	1/2
		$\therefore sL(y) - 2 + 2L(y) = \frac{1}{s+1}$	1/2
		$\therefore (s+2)L(y)-2=\frac{1}{s+1}$	
		$\therefore (s+2)L(y) - 2 = \frac{1}{s+1}$ $\therefore (s+2)L(y) = \frac{1}{s+1} + 2$ $\therefore (s+2)L(y) = \frac{2s+3}{s+1}$	
		$\therefore (s+2)L(y) = \frac{2s+3}{s+1}$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subie	ct Nam	e: Applied Mathematics <u>Model Answer</u> Subject Code:	2210
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	Q.N.	$\therefore (s+2)L(y) = \frac{2s+3}{s+1}$ $\therefore L(y) = \frac{2s+3}{(s+1)(s+2)}$ $\therefore y = L^{-1} \left\{ \frac{2s+3}{(s+1)(s+2)} \right\}$ $\therefore \frac{2s+3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2}$ $\therefore 2s+3 = A(s+2) + B(s+1)$ Put $s = -1$ $\therefore A = 1$ Put $s = -2$ $\therefore B = 1$ $\therefore \frac{2s+3}{(s+1)(s+2)} = \frac{1}{s+1} + \frac{1}{s+2}$ $\therefore L^{-1} \left\{ \frac{2s+3}{(s+1)(s+2)} \right\} = L^{-1} \left\{ \frac{1}{s+1} + \frac{1}{s+2} \right\}$ $= L^{-1} \left\{ \frac{1}{s+1} \right\} + L^{-1} \left\{ \frac{1}{s+2} \right\}$ $= e^{-t} + e^{-2t}$ In the solution of the question paper, wherever possible all the possible alternative methods of	1 1 1 1
		solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	