Definition: Sources and Codes

We start by investigating symbol codes: codes that encode a source P_X , one symbol at a time. Later on, we will also see codes that group the source symbols together into blocks.

Definition: Symbol code

Let P_X be the distribution of a random variable X (with image \mathcal{X}), and let \mathcal{A} be a finite set. A symbol code for the source P_X and with alphabet \mathcal{A} is an injective function $C: \mathcal{X} \to \mathcal{A}^*$.

Here, $\mathcal{A}^* = \bigcup_{n \in \mathbb{N}} \mathcal{A}^n \cup \bot$, and \bot is the empty string. That is, \mathcal{A}^* is the set of finite sequences of elements from \mathcal{A} : this operation on sets is called the Kleene star.

We often refer to the set of codewords, $\mathcal{C}=\operatorname{im}(C)$, as code and leave the actual encoding function C implicit.

In many instances, the alphabet $\mathcal A$ is fixed to be the set $\{0,1\}$ of size 2. In that case, we speak of a **binary symbol code**. The codewords of a binary code are simply binary strings.

Definition: Codeword length

Let $C:\mathcal{X}\to\mathcal{A}^*$ be an encoding function. For any $x\in\mathcal{X}$, the length $\ell(C(x))$ of the codeword C(x) is the length of the sequence of symbols from \mathcal{A} . That is, if $C(x)\in\mathcal{A}^k$, then $\ell(C(x))=k$.

For practical applications, it is important that the codewords are (on average) short: that way, the transmission or storage of a message is as efficient as possible.

created: 2019-10-21