TICNI					
U.S.N.					

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS4PCADA

Course: Analysis and Design of Algorithms

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

<u> </u>			UNIT - I	со	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	 i. Design a recursive algorithm for computing 2ⁿ for any nonnegative integer n that is based on the formula: 2ⁿ = 2ⁿ⁻¹ + 2ⁿ⁻¹ ii. Set up a recurrence relation for the number of additions made by the algorithm and solve it. iii. Draw a tree of recursive calls for this algorithm and count the number of calls made by the algorithm. 	CO3	PO3	08
l cross lines malpractic		b)	Discuss the general plan to find the efficiency of recursive algorithms. Apply the same to find the efficiency of solving Tower of Hanoi problem.	CO1	PO1	08
w diagona treated as		c)	Apply Master's Theorem for the following i) $T(n) = 2T(n/4) + n$ ii) $T(n) = 8T(n/2) + n^3$	CO2	PO2	04
y dra ill be			UNIT - II			
compulsoril evaluator w	2	a)	Design an algorithm used to perform partition in Quick Sort. Discuss with recurrences the efficiency of Quick Sort in Best and Worst case.	СОЗ	PO3	08
swers, c		b)	Define Spanning Tree. Discuss with time complexity the Prim's algorithm to construct Minimum Spanning Tree.	CO1	PO1	08
ting your an		c)	Design an algorithm to find the position of maximum element in an array using Divide and Conquer. Comment on its time complexity.	CO3	PO3	04
mplet identi			OR			
tant Note: Completing your answers, compulsorily draw diagonal cross lines Revealing of identification, appeal to evaluator will be treated as malpractice	3	a)	Write the Bubble Sort algorithm. Find the number of swaps done while sorting the following set of elements in ascending order using Bubble Sort. 6 2 11 7 5	CO2	PO2	08
Import pages.)	b)	Explain Dijkstra's shortest path algorithm. Using the same, find the shortest path from vertex A to the remaining vertices.	CO2	PO2	12

		A 2 4 F F C 10 E 5			
		UNIT - III			
4	a)	Write algorithms to perform DFS and BFS traversal. Apply DFS method to find the topological order for the graph given below.	CO3	PO3	12
		C E			
	b)	Write the Horspool's algorithm. How many character comparisons will be made using Horspool's algorithm in searching for each of the following patterns in a text of 1000 A's? i) AAAAB ii) BAAAA	CO2	PO2	08
		OR			
5	a)	Write the Johnson Trotter algorithm for generating permutations. Apply the same for an input {5,6,7,8}.	CO2	PO2	08
	b)	With Pseudocode, discuss Horspool's String matching algorithm and analyze its time complexity.	CO2	PO2	08
	c)	Design an algorithm to compute the value of the smallest element in a given array using Decrease and Conquer. Comment on its time complexity.	СОЗ	PO3	04
	9	UNIT – IV			
6	a)	Write the algorithm for computing binomial coefficient $C(n,k)$ using dynamic programming approach. Draw the binomial coefficient table for $C(8,3)$.	CO2	PO2	08
	b)	Design an algorithm to construct a max heap using bottom up approach. Trace by applying the same to sort the following elements SORTING	СОЗ	PO3	12

		UNIT – V			
7	a)	Consider the graph given below representing an instance of TSP, where source vertex is "a". Solve the problem instance using Branch and Bound technique.			
		8 5 6 7 9 c 4 d	CO2	PO2	08
	b)	Differentiate between promising and non-promising node. Construct the state-space tree using backtracking strategy to solve the following instance of the subset sum problem: $A = \{1,3,5,8,9\}$ and $Sum = 12$	CO3	PO3	08
	c)	Define NP, NP-complete class of problems with examples.	CO1	PO1	04

	8				

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

ank			UNIT - I	co	PO	Marks
aining bl	1	a)	Derive the best case, average case and worst-case time complexities of Binary search algorithm.	CO 1	PO 2	5
the rem		b)	Differentiate among different types of asymptotic notations with suitable example.	CO 1	PO 2	10
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		c)	Find time complexity for the below algorithm: ALGORITHM UniqueElements(A[0n - 1]) //Determines whether all the elements in a given array are distinct //Input: An array A[0n - 1] //Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if A[i]= A[j] return false return true	CO 1	PO 2	5
ompul valuat			UNIT - II			
r answers, cc, appeal to ev	2	a)	"Johnson Trotter method is efficient method for generating permutation"? Justify the statement. Generate all permutation for the following set using Johnson Trotter algorithm: {1,3,5,7}	CO 2	PO 1	6
Important Note: Completing you pages. Revealing of identification		b)	Find topological ordering of the vertices for the below directed acyclic graph using DFS method and Source removal method.	CO 2	PO 1	8

c)	Write an algorithm for computing the median using Decrease and Conquer technique.	CO 2	PO 1	6
	UNIT - III			
3 a)	Discuss Divide and Conquer strategy. Explain Merge sort algorithm with example and give its recurrence relation.	CO 2	PO 1	10
b)	Apply bottom up heap sort technique to sort the following list of elements. Also write an algorithm for the same. { 2, 9, 7, 6, 5, 8}	CO 2	PO 1	10
	OR			
4 a)	Strassen's matrix multiplication method is efficient compare to traditional matrix multiplication? Justify the statement with an example scenario.	CO 1	PO 2	10
b)	Demonstrate all the cases of Horspool pattern matching technique. Apply the technique to search for the pattern "ALGORITHMS" in the text "ANALYSIS AND DESIGN OF ALGORITHMS". Also find its time efficiency.	CO 1	PO 2	10
	UNIT - IV			
5 a)	Find the minimum spanning tree for the following graph using Kruskal's algorithm. Also write an algorithm for the same.	CO 2	PO 1	10
b)	Solve the following instance of Knapsack by Dynamic programming technique:	CO 2	PO 1	10
	Profits (P _i) = {3, 4, 5, 6} Knapsack Capacity C=5			
	OR			
6 a)	Find the transitive closure for the relation $R=\{(2,1),(2,3),(3,1),(3,4),(4,1),(4,3) \text{ on set } A=\{1,2,3.4\} \text{ using Warshall's algorithm. Also write an algorithm for the same and find its time complexity.}$	CO 2	PO 1	10

	b)	Consider the following occursymbols.	=	_				CO 2	PO 1	10
		Symbol	A	В	C	D	_			
		Frequency	0.35	0.1	0.2	0.2	0.15			
		Construct Huf Also write Hut		_		code for tl	he symbols.			
				UNI	T - V					
7	a)	Solve the trav				r the follo	wing graph	CO 2	PO 1	10
			10	2	6 3	7 9	707			
	b)	Apply Backtra set s={3,5,6,7}					osets for the	CO 2	PO 1	10
	Q			**	***					

U.S.N.					

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

ank			UNIT - I	со	PO	Marks
he remaining bl	1	a)	Explicate a general plan for analyzing the time efficiency of Nonrecursive algorithms. List the following functions according to their order of growth from the lowest to the highest: $(n-2)!$, $5 \lg(n+100)^{10}$, $0.001n^4 + 3n^3 + 1$, $ln^2 n$, 3^n	CO2	PO2	10
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		b)	Consider the algorithm given below and answer the questions that follow: $ ALGORITHM \ Enigma(A[0n-1,0n-1]) $ //Input: A matrix $A[0n-1,0n-1]$ of real numbers for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if $A[i,j]!=A[j,i]$ return false return true i) What does this algorithm compute? ii) What is its basic operation? iii) How many times is the basic operation executed? iv) What is the efficiency class of this algorithm? v) Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.	CO2	PO2	10
leting !			UNIT - II			
Comp g of ide	2	a)	Write the Selection Sort algorithm. Sort the list {E, X, A, M, P, L, E} in alphabetical order by selection sort.	CO2	PO2	10
Important Note pages. Revealin		b)	Write Dijikstra's algorithm to find all the shortest paths from a given source vertex to all other vertices in a graph. Trace the following graph to get shortest path from vertex 'a' to all other vertices.	CO3	PO3	10

		3 2 5 6 a 7 4 d			
		OR			
3	a)	Write the quick sort algorithm. Apply the algorithm to sort the list {5, 3, 1, 9, 8, 2, 4, 7}.	CO1	PO1	10
	b)	Write the brute force string matching algorithm. Determine the number of character comparisons made by the brute-force string matching algorithm in searching for the pattern GANDHI in the text {THERE IS MORE TO LIFE THAN INCREASING ITS SPEED}. Assume that the length of the text is 47 characters long and is known before the search starts.	CO2	PO2	10
		UNIT - III			
4	a)	Apply Horspool's algorithm to search for the pattern BARBER in some text considering the following cases. i) No match at all ii) Match found but not with last character iii) Only last (1 or more) character is matching iv) Match found with last as well as with other characters	CO3	PO3	12
	b)	With suitable example, explain the depth first search and breadth first search algorithms.	CO1	PO1	08
		OR			
5	a)	Write an algorithm for breadth first search. Apply the DFS-based algorithm to solve the topological sorting problem for the following digraph.	CO2	PO2	08
	b)	For the input {30, 20, 56, 75, 31, 19} and hash function h(K) = K mod 11 i) construct the open hash table. ii) find the largest number of key comparisons in a successful search in this table.	CO2	PO2	08

		iii) find the average number of key comparisons in a successful search in this table.			
	c)	Generate all permutations of the given set {3, 5, 7} using Johnson-Trotter algorithm.	CO2	PO2	04
		UNIT - IV			
6	a)	Solve the all-pairs shortest-path problem for the digraph with the following weight matrix: a b c d a b c d b 6 0 3 2 c ∞ ∞ 0 4 d ∞ ∞ 0 3 e 3 ∞ ∞ 0	CO2	PO2	10
	b)	Write the two-stage heapsort algorithm. Apply the same to sort the list {2, 9, 7, 6, 5, 8}.	СОЗ	PO3	10
		UNIT - V			
7	a)	Write the decision tree for three-element selection sort.	CO1	PO1	06
	b)	Distinguish between P, NP and NP-Complete problems. Give example for each category.	CO1	PO1	06
	c)	Solve the following job assignment problem using branch and bound design technique. job 1 job 2 job 3 job 4	CO2	PO2	08

						ì
U.S.N.						
						ı

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science & Engineering

Course Code: 22CS4PCADA

Course: Analysis and Design of Algorithms

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

es.			UNIT - I	co	PO	Marks
ınk pag	1	a)	Describe Asymptotic notations with an example, equation and graph.	CO1	PO1	6
ining bla		b)	Design a recursive algorithm to find maximum and minimum element in an array and derive its time complexity.	CO1	PO1,2,3	8
e: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Intification, appeal to evaluator will be treated as malpractice.		c)	Analyze the code given below and find the time complexity: void function (int n)	COI	PO2	6
our answers, compulsorily draveal to evaluator will be treated	2	a)	Mention the applications of Depth First Search (DFS) algorithm. Apply DFS method to find the topological sequence for the graph shown below. Also write an algorithm for the same.	CO2,4	PO1,2,3	10
Important Note: Completing your answers, compulsorily draw diagonal cro Revealing of identification, appeal to evaluator will be treated as malpractice		b)	Solve the following assignment problem using Exhaustive Search technique, whose matrix for assigning four jobs to four persons are given: J1 J2 J3 J4 Person A 3 21 7 9 Person B 18 13 10 15 Person C 29 19 17 12 Person D 32 30 26 28	CO2,4	PO1,2,3	10

		OR			
3	a)	Demonstrate with an example Brute Force pattern matching technique. Write an algorithm for the same and find its time complexity.	CO2,4	PO1,2,3	10
	b)	Write a program to check whether a particular given node is reachable from a given source node using DFS traversal technique. If yes, print "Node is accessible", otherwise print "Node is not accessible".	CO2	PO1	10
		UNIT - III			
4	a)	Apply Merge sort to sort the list {E, X, A, M, P, L, E} in alphabetical order.	CO2,4	PO1,2,3	10
	b)	Construct a Max Heap for the following list of keys and sort the list using Heap Sort technique. Write the algorithm for Max Heap. {2,9,7,6,5,8}	CO2,4	PO1,2,3	1(
		OR	V		
5	a)	State Horner's rule with an algorithm. Apply Horner's rule to evaluate the following polynomial: $5x^4 + 2x^3 - 3x^2 + x$ -7 at the point x=3.	CO2	PO1,2	10
	b)	Demonstrate the Strassen's Matrix Multiplication method with an example. UNIT - IV	CO2	PO2	1(
		UNII - IV			
6	a)	Analyze time efficiency of Prim's algorithm. Apply Prim's algorithm to find the minimum cost spanning tree for the graph shown below: B 49 E 7 D 26 4 F 5	CO2,4	PO1,2,3	1(
	b)	Construct a Huffman tree and find the code word for the following data: Character A B C D E - Frequency 0.5 0.35 0.5 0.1 0.4 0.2 Using above code, Encode the text DAD_CBE and decode the text 1000010111001010.	CO2,4	PO1,2	1(
		UNIT - V			
7	a)	Solve the following instance of 0/1 Knapsack problem using Branch and Bound with capacity C=10. Items={1,2,3,4} Weights={4,7,5,3} Values={\$40, \$42, \$25,\$12}	CO2,4	PO1,2	10
	ı				

U.S.N.					
- 1.5 t= tt					

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

			UNIT - I	co	PO	Marks
olank	1	a)	Explain different asymptotic notations used to represent the time complexities with suitable examples.	CO1	-	10
ning l		b)	Outline selection sort and Bubble sort algorithms with example.	CO2	PO1	10
remai			UNIT - II			
s on the e.	2	a)	Write the quick sort algorithm. Apply the same to sort the list {E, X, A, M, P, L, E} in alphabetical order.	CO2	PO1	12
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		b)	Apply source removal method to solve the following topological sorting problem.	CO2	PO1	08
wers,			OR			
Important Note: Completing your ansupages. Revealing of identification, app	3	a)	Find the BFS and DFS traversals starting from vertex 6 for the following Graph. Also, write the BFS and DFS Algorithms.	CO2	PO1	12

	b)	Apply Merge sort algorithm to sort the numbers {14, 91, 07, 01, 10, 29, 08, 02}. Show the Merge call tree for the same.	CO2	PO1	08
		UNIT - III			
4	a)	Write the Prim's algorithm. Apply Prim's algorithm to the following graph. Start from vertex 'a'.	CO3	PO1	10
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		\	
		4			
	b)	Solve the following instance of Knapsack problem using dynamic programming. Knapsack Capacity M=10 Item 1 2 3 4 Weight 4 7 5 3 Profit 40 42 25 12	CO2	PO1	10
		OR			
5	a)	Apply Floyd's algorithm to find all pairs shortest path for the	CO2	P01	10
		given adjacency matrix. 1 2 3 4 5 1 0 1 ∞ 1 5 W = 2 9 0 3 2 ∞ 3 ∞ ∞ 0 4 ∞ 4 ∞ ∞ 2 0 3 5 3 ∞ ∞ ∞ 0 0			
	b)	Using Dijkstra's algorithm, trace the following graph to get shortest path from vertex 'a' to all other vertices. Also, write the algorithm.	СОЗ	PO1	10
	9	3 2 5 6 a 7 a 4			
		UNIT - IV			
6	a)	Write the Heap Sort Algorithm. Show how the following numbers are sorted using Heap Sort {11, 44, 10, 65, 50, 6, 88, 3}.	СОЗ	PO1	12

_		b)	mod 11 i) Construii) Find th	put {30, 20 ct the close te largest at search for	ed hash ta nd averag	ble ge numbe				CO2	PO1	08
					UN	NIT - V						
	7	a)	Differentia	ate betweer	n NP Hard	d and NP	Comple	te Problei	ns.	CO2	PO2	06
		b)		one solutionstate-space	_	ueens pro	blem us	ing back	tracking.	СОЗ	PO1	05
		c)		ne optimal sing Branc				job ass	ignment	CO2	P01	09
					JOB1	JOB2	JOB3	JOB4				
				Person A	9	2	7	8				
				Person B	6	4	3	7				
				Person C	5	8	1	8	7			
				Person D	7	6	9	4				
		6										

U.S.N.					

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 22CS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

, a			UNIT - I	со	PO	Marks
lank	1	a)	Demonstrate worst case best case and average case scenario	CO1	PO	8
g gu			complexity of an algorithm with an example.		1	
imir		b)	With the help of a flowchart, explain the various stages of algorithm	CO1	PO1	8
ems			design process.			
he r		c)	Solve the following recurrence relation using backward substitution	CO1	PO1	4
on t			method.			
nes ice.			i. $x(n)=x(n/2)+n$ for $n>1$, $x(1)=1$			
ss lin ract			ii. $x(n)=x(n-1)+5$ for $n>1$ and $x(0)=0$			
cros nalp			OR			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	By applying the steps in finding out the time complexity of non-recursive algorithm shown below. Find the time complexity for the following code.	CO2	POI	4
Completing of identifica		b)	Write recursive algorithm for Towers of Hanoi problem for "n" disks. Draw the recursion tree for n=3 and showing the order of moves	CO2	PO1	6
Important Note: 0		c)	Apply selection sort technique to sort the list {O, N, L, I, N, E, T, E, S, T} in alphabetical order showing the output of each pass during the sorting process. Write an algorithm for the same and find its time complexity	CO2	PO1	10

		UNIT - II			
3	a)	Apply exhaustive search technique to list all tours starting from city	CO2	PO1	4
		'p' and find the minimum cost route among them.			
		p 3 q 6 8 9 4 r 2			
	b)	Differentiate between different variations of Decrease and Conquer	CO2	PO2	6
	,	technique with an example			
	c)	Determine the number of character comparisons made by the Brute-Force pattern matching algorithm in searching for the pattern "WOOD" in the text "TWO_ROADS_DIVERGED_IN_A_YELLOW_WOOD". Also write an algorithm for the same and derive the best-case and worst-case time complexities.	CO1	PO2	10
		OR			
4	a)	Apply Decrease and Conquer technique to find Topological order for the following graph using DFS method and Source Removal method with the source vertex '1'.	CO2	PO1	10
	b)	Apply Johnson Trotter method to generate permutations for the following set. 1,2,3,4	CO2	PO1	6
	c)	Apply Exhaustive Search technique to solve the following instance of Knapsack problem: Number of objects N=4, weights of four objects= {7, 3, 4, 5} and profits= {42, 12, 40, 25} with the capacity of Knapsack W=10	CO2	PO1	4
		UNIT - III			
5	a)	Given the numbers {10,34,22,11,54,66,33,24,25,56,77,21}. Construct MergeSort tree to sort these numbers in the ascending order. Also write an algorithm for Merge sort.	CO2	PO2	8
	b)	For the given array, write an algorithm to determine mode using the concept of presorting and analyze its time complexity	COI	PO1	6
	c)	Briefly explain different variations of Transform and Conquer technique, explain each with an example.	CO2	PO1	6
		OR			
6	a)	Is merge sort is better than quick sort in the worst case, justify your answer by deriving the time complexities for both in worst case.	CO1	PO2	8

	b)	Create a min heap tree for the following list of elements and sort an array. Also, write the algorithm for the same. {58, 25, 35, 38, 110, 48, 18}	CO2	PO1	8
	c)	Apply divide and conquer technique to multiply the following two long integers: 2547 and 1605	CO2	PO1	4
		UNIT - IV			
7	a)	Suppose the knapsack problem is solved by Dynamic programing technique and the solution table is given below. Explain step by step process of selecting objects to get optimal solution. Consider number of objects=4, Weight={1,5,3,4} for the items with the number (1,2,3,4), Capacity of Knapsack=8	CO2	PO1	6
		0 1 2 3 4 5 6 7 8			
		0 0 0 0 0 0 0 0 0			
		1 0 15 15 15 15 15 15 15 15			
		2 0 15 15 15 15 25 25 25 3 0 15 15 15 24 24 25 25 25			
		4 0 15 15 15 24 24 25 25 29			
	b)	Apply Krushkals's algorithm to find minimum spanning tree for the following graph. Also write an algorithm for the same	CO2	PO1	8
		a b 1 c 6 6 6 6 6 6 6 8			
	c)	Suppose the string below is to be sent over a network. Construct a	CO2	PO1	6
		Huffman tree and find the code word for each character. Justify how			
		Huffman tree reduces the string size through encoding compare to sending original string.			
		BCAADDDCCACACAC			
		OR			
8	a)	Design Dynamic programming based algorithm to find all pair shortest paths. Apply the same to the below graph	CO2	PO1	10

	b)	Design a Greedy algorithm for finding single source shortest paths. Apply the same on the below graph to find shortest paths from vertex 'A' to all other nodes.	CO2	PO1	10
		4 1 8 2 6 f	5		
		UNIT - V			
9	a)	Write the state space tree for finding sum of subset for the set	CO2	PO1	6
		X={5,8,13} with d=13 using Backtracking technique.			
	b)	Distinguish between P, NP and NP completeness problem	CO3	PO2	6
	c)	Apply Branch and Bound approach to solve the Knapsack problem	CO2	PO1	8
		for the following data.			
		Number objects n=4, Knapsack Capacity M=10			
		Item No. Profit Weight			
		1 40 4			
		2 42 7			
		3 25 5			
		4 12 3			
		OR			
10	a)	Apply backtracking approach to write state space tree to find sum of	CO2	PO1	10
	Q	subsets for set $S=\{5, 5, 10\}$ and $d=10$.			
	b)	Apply branch and bound technique for the travelling salesman problem to the below graph.	CO2	PO1	10

U.S.N.					

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

ages.			UNIT - 1	CO	PO	Marks
unk pa	1	a)	Discuss the Asymptotic Notations with their definitions.	CO2	PO1	6
naining bla		b)	Find the Time Complexity for the following Algorithms: (i) Factorial of a given number (ii) Tower of Hanoi	CO2	PO1	8
the re		c)	Compare Bubble Sort and Selection Sort in the Best and Worst cases.	CO2	PO2	6
IO Sa			OR			
diagonal cross line as malpractice.	2	a)	Design a recursive algorithm for computing 2^n for a non-negative integer n, based on the formula $2^n = 2^{n-1} + 2^{n-1}$. Setup a recurrence relation for the number of additions made by the algorithm and solve it.	CO3	PO3	8
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.		b)	Find algorithm efficiency with respect to time for the following algorithms: 1.	CO2	POI	8
Note: C		c)	Use recursion tree to solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.	CO2	PO1	4
tant ling			UNIT - 2			
Impor	3	a)	Show how the following numbers gets sorted using Merge Sort:	CO1	PO2	8

		72 46 24 57 12 68 07 18			
		Also, write the Merge sort Algorithm.			
	b)	Find the BFS traversals starting from vertex 7 for the following Graph. Also, write the BFS Algorithm.	СОЗ	PO3	7
		4 6			
		7	~		
	c)	Find the Topological Sequence for the following Graph [using any method].	CO3	PO3	5
		3 3 5 5			
		OR			
4	a)	Show how the following numbers gets sorted using Quick Sort: 84 23 68 09 96 66 05 25 Also, write the Quick Sort Algorithm.	COI	PO1	12
	b)	Find the DFS traversal starting from vertex 2 for the following Graph. Also, write the DFS Algorithm.	СОЗ	PO3	8
	٥.	5 6 7			

		U	NIT - 3				
5	a)	Find the Minimum Spannin using Prim's Algorithm and		mowing Graph	CO3	PO3	10
	b)	Solve the following 0/1 Kr programming: P= (11, 7, 9, 14) W= (1,	5, 4, 6) C=1	using dynamic	CO2	P01	10
6	a)	Apply Dijkstra's algorithm vertex 1 to all other vertices		path from the	CO3	PO3	6
	b)	A B C D E F G	Frequency 10 15 12 3 4 13	in code for each	COI	POI	7
	c)	Apply Floyd's Algorithm to for the following: 1	3 4 ∞ ∞ 15 5 0 15	ir Shortest Path	CO3	PO3	7

		UNIT - 4			
7	a)	Apply Boyer Moore algorithm to search the given substring	CO3	PO3	8
		in the main string. Also, write the number of shifts required			
		during searching.			
		Main String = "MISS MISS IN MISSISSIPPI"			
	1 \	Substring = "MISSI"	CO1	PO1	
	b)	Show how the following numbers are sorted by Heap Sort.		101	6
	2)	23 74 06 68 12 66 10 16 Construct a Hash Table by Linear Probing/Closed Hashing for	CO1	PO1	-
	c)	the following words. Consider the size and the hash table as 10.	001	101	6
		WHERE, IS, NOW, THIS, AN, THAT, HOW, AND			
		OR			
8	a)	Construct an AVL tree for the list: {6, 5, 4, 3, 2, 1} by	CO2	PO1	6
		inserting their elements successively, starting with an empty			Ů
		tree.	1, 6	P	
	b)	Differentiate between open hashing and separate chaining.	CO1	PO2	6
	c)	Given the input {30, 20, 56, 75, 31, 19} and hash function	COI	PO1	8
	-	$h(K) = K \mod 11$, answer the following questions:			Ü
		i) Construct the open hash table.			
		ii) Find the largest number of key comparisons in a successful			
		search in this table.			
		iii) Find the average number of key comparisons in a			
		successful search in this table.			
		UNIT - 5			
9	a)	Show the solution for 4-Queens problem using Backtracking	CO3	PO3	8
		and write an algorithm for n-Queens problem using			
		Backtracking.			
	b)	Solve the following Job Assignment Problem using the	СОЗ	PO3	7
		branch-and-bound technique:			
		Job 1 Job 2 Job 3 Job 4			
		Person 1 5 6 9 7			
		Person 2 8 4 2 6			
		Person 3 1 3 7 9			
		Person 4 9 6 7 4			
	,		CO2	PO2	
	c)	Discuss the concept of P, NP, NP-Complete and NP-Hard	602	102	5
		Problems. OR	 		
10		Apply backtracking to solve the following instance of the	CO2	PO1	8
10	a)	subset-sum problem $S = \{3, 5, 6, 7\}$ and $d = 15$.			o
	b)	With the help of a state space tree, solve the following	CO1	PO1	8
	U)	instance of Knapsack problem by the branch and bound			o
		algorithm. Knapsack Capacity W = 10			
		Item No. 1 2 3 4			
		Weight 4 7 5 3			
		Veight 4 7 3 3 Value 40 42 25 12			
	6)		CO1	PO2	
	c)	Distinguish between P, NP and NP-Complete problems. Give		102	4
	<u> </u>	example for each category.			

U.S.N.					

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Engineering

Course Code: 23CS4PCADA

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

			UNIT - I	СО	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	By applying the steps in finding out the time complexity of non-recursive, find the time complexity for the following code: fun(a) { int x=0; for(i=1;<=n;i++) { if(i==j) { x=x+a[i][j]; } } printf("%d",x); }	COI	PO2	6
answers, ation, app		b)	Demonstrate with an example scenario the Worst case, Best case and Average case time complexity of an algorithm.	CO2	PO1	8
e: Completing your		c)	Solve the following recurrence relation using backward substitution method: i. $x(n)=x(n/2)+n$ for $n>1$, $x(1)=1$ ii. $x(n)=x(n-1)+5$ for $n>1$ and $x(0)=0$	CO2	PO1	6
ant Note			OR			
Imports blank pa	2	a)	Linear Search varies its time complexity for the best case and worst case. Justify your answer.	CO1	PO1	6

	b)	Consider the following algorithm.	CO2	PO1	8
		Procedure Secret(A[0n-1])			
		// Input: An arrayA[0n-1] of integers			
		$minval \leftarrow A[0]; maxval \leftarrow A[0]$			
		fori←1 to n-1do			
		if A[i] <minval< td=""><td></td><td></td><td></td></minval<>			
		minval←A[i]			
		if A[i]>maxval			
		maxval—A[i]			
		return maxval—minval			
		i. What does this algorithm compute?			
		ii. What is its basic operation?			
		iii. How many times is the basic operation executed?			
		iv. Provide an exact expression for the running time T(n) of the			
		algorithm.	` \		
		v. What is the order of T(n)?			
	c)	Consider the following recursive algorithm computing the sum of	CO2	PO1	6
		the first n cubes			
		$S(n)=1 \ 3+2 \ 3+n \ 3$			
		Algorithm S(n)			
		//Input: A positive integer n			
		//Output: The sum of the first n cubes			
		if $n = 1$ return 1			
		else return $S(n-1) + n * n * n$			
		Set up and solve a recurrence relation for the number of times the			
		algorithm's basic			
		operation is executed.			
		UNIT - II			
	3 a)	Apply Decrease and Conquer technique to find Topological order	CO2	PO1	8
		for the following graph using DFS method and Source Removal			
		method with the source vertex '1':			
		(⁴)← (²) → (³)			
		$\stackrel{\star}{\sim}$			
		(5) (6)			
		(7)			
-	L)	Determine the number of the nature of the na	CO1	PO2	0
	b)	Determine the number of character comparisons made by the	001	102	8
		Brute-Force pattern matching algorithm in searching for the			
		pattern "WOOD" in the text			
		"TWO_ROADS_DIVERGED_IN_A_YELLOW_WOOD".			
		Also write an algorithm for the same and derive the best-case and			
		worst-case time complexities.			
		· ·			

	c)	Johnson Trotter is an efficient method to generate the permutations? Justify your answer with an example.	CO2	PO2	4
		OR			
4	a)	You are given an unsorted list of distinct integers: [12, 3, 5, 7, 19, 26, 1, 8]. Use decrease and conquer algorithm to demonstrate the finding of 3rd smallest element in the list. Write the algorithm for the same	CO2	PO2	8
	b)	Discuss the advantages and Disadvantages of Brute force technique. Apply Brute force technique to list all tours starting from city p and find the shortest among them	C02	PO2	8
	c)	Demonstrate the multiplication of two n digit numbers using decrease by constant factor technique. Apply the same to multiply the numbers 85*18	COI	PO1	4
		UNIT - III			
5	a)	Is merge sort is better than quick sort in the worst case? justify your answer by deriving the time complexities for both in worst case.	COI	PO2	8
	b)	Create a min heap tree for the following list of elements and sort an array: {58, 25, 35, 38, 110, 48, 18}	CO2	PO1	8
	c)	Apply Divide and Conquer technique to multiply the following two long integers: 2547 and 1605	CO2	PO1	4
_		OR			
6	a)	For the given array, write an algorithm to determine mode using the concept of presorting and analyze its time complexity.	CO1	PO2	(
	b)	Construct Merge Sort tree to sort the following list of elements in the ascending order:	CO2	P01	8
		{10,34,22,11,54,66,33,24,25,56,77,21}			

	c)		oly Stress matrices		atrix	multiplic	ation to	mul	tiply th	e foll	owing	CO2	PO1	
			5	6	1	2	1	2	3	4]			
			3	4	5	6	2	5	7	9	1			
			1	2	3	4	3	4	7	8	_			
			5	6	7	8	1	3	5	7				
						UNIT	- IV							
7	a)	than of th and mov loca pick	one choose one board, bring the ve either ation. What is up that	needs to the needs to choose the needs to th	per conto colore book in the total to the total to the total ect a	laced in ce ell. A kid i llect as ma ottom right or isits a cell Find the mand a path	is stand ny of the cell. Of one ce with a c naximum	ing are choose c	t the up ocolates th step, wn from late, he mber of	per les as por the ken its comments continued the continued to the continued the conti	eft cell essible id can urrent lways colates	CO2	POI	
		1	_				Chocol	ate	N					
		2		Choco	olate			Ch	ocolate	Cho	colate			
		3	Chocolat	te		Chocolate								
		4		Choc	olate		V	Cł	ocolate					
		5					Chocol	ate		Cho	colate			
	b)					nm to find the steps co	3/		panning	tree	for the	CO2	POI	
				(·)	1	**	· (v:	3					
	c)	_	lain Spa nple.	/		and Min	imum	Span	ning tr	ree w	ith an	CO2	POI	

8	a) b)	Dynamic program optimal solution. Number of object	Also write a ets n=5, Kn Item No. 1 2 3 4 5 algorithm tertices for the	rique. Fir an algori apsack (Profit 25 20 15 40 50 co find slane follow	weight Weight 3 2 1 4 5 nortest pathing graph:	for the vertex	CO2	POI	8
	c)	Differentiate between with an example.		s algorith	b m and Di	jkstra's algorithm	CO2	PO2	4
		1	T	JNIT - V					
9	a)	Distinguish betwe				s problem	CO3	PO2	6
	b)	Apply Backtrack: S= {12, 16, 27,	CO2	PO1	6				
	c)	Apply Branch a problem for the form	nd Bound ollowing da	approacta:	h to solve	e the Knapsack Capacity M=10	CO2	PO1	8
			Item No.	Profit	Weight				
		"	1	40	4				
		all.	2	42	7				
	0		3	25	5				
			4	12	3				
				OR	1	·			
10	a)	Explain n-queens with a example.	s problem a		olution usi	ng backtracking	CO2	PO1	6
	b)			ue proble	em and also	o find solution for	СОЗ	PO2	6
		CNF=(x1Vx2	∨ <u>x3)</u> ^	(<u>x1</u> V	x2 V x3) ^ (x1 V x2 V			
	c)	Describe branch problem with exa		d solution	on to trav	elling Salesman	CO2	PO1	8
	1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		****			<u> </u>	<u>ı</u>	