机器学习导论 习题五

141210016, 刘冰楠, bingnliu@outlook.com

2017年5月31日

1 [25pts] Bayes Optimal Classifier

试证明在二分类问题中,但两类数据同先验、满足高斯分布且协方差相等时,LDA可产生贝叶斯最优分类器。

Solution.

We prove that under the presuppositions stated in the problem, classification criteria of LDA and Bayes optimal classifier are the same.

The presuppositions are:

Equal Prior The number of samples in two classes are the same: $|D_{c_1}| = |D_{c_2}|$;

Gauss Distribution We use multivariate Gaussian distribution $\mathcal{N}(\mu, \Sigma)$ when calculating likelihood;

Equal Covariance We use the same covariance matrix Σ in two gauss distribution. Additionally, we assume sample covariances of two classes are close.

1.1 Bayes optimal classifier

Bayes optimal classifier satisfies, $\forall \mathbf{x} \in D$,

$$h^*(\mathbf{x}) = \min_{c \in Y} R(c, \mathbf{x}),\tag{1.1}$$

where $R(c, \mathbf{x})$ is Bayesian risk:

$$R(c, \mathbf{x}) = \sum_{i=1}^{N} f(c_i, \mathbf{x}) P(c_i \mid \mathbf{x}).$$
(1.2)

Here we assume $f(c, \mathbf{x})$ is 0-1 loss, then Eq.(1.1) is equivalent to

$$h^*(\mathbf{x}) = \max_{c \in Y} P(c \mid \mathbf{x}). \tag{1.3}$$

Under assumption 1: equal prior, Eq.(1.3) is equivalent to

$$h^*(\mathbf{x}) = \max_{c \in Y} P(\mathbf{x} \mid c). \tag{1.4}$$

Under assumption 2: normal distribution, Eq.(1.4) is equivalent to

$$h^*(\mathbf{x}) = \max_{c \in Y} \phi_k(\mathbf{x} \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}), \tag{1.5}$$

where μ , Σ is mean vector and covariance matrix respectively, and ϕ_k is probability density function (PDF) for k-dimension multivariate normal distribution:

$$\phi_k(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}}$$
(1.6)

Then we use Maximum Likelihood Estimation (MLE) to estimate parameters of normal distribution. The log likelihood is:

$$\mathcal{LL}(D_c \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}) = \sum_{\mathbf{x}_i \in D_c} \ln \phi(\mathbf{x}_i \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}).$$
 (1.7)

After some algebra, we get the estimates:

$$\hat{\boldsymbol{\mu}}_{c} = \frac{1}{|D_{c}|} \sum_{\mathbf{x} \in D_{c}} \mathbf{x}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{|D_{c}|} \sum_{\mathbf{x} \in D_{c}} (\mathbf{x} - \hat{\boldsymbol{\mu}}_{c}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{c})^{\mathrm{T}}$$
(1.8)

Now training of the Bayesian classifier is completed. Then for a new sample \mathbf{x} , **prediction** c_{pred} is

$$c_{\text{pred}} = \begin{cases} c_1, & \phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}}) > \phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}) \\ c_2, & \phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}}) < \phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}). \end{cases}$$
(1.9)

Define $F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}})$ as:

$$F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}) = \ln \frac{\phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}})}{\phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}})}.$$
 (1.10)

Then to compare $\phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}})$ with $\phi_k(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}})$ is equivalent to compare $F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}})$ with 0.

Simplify Eq.(1.10):

$$F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_{1}, \hat{\boldsymbol{\mu}}_{2}, \hat{\boldsymbol{\Sigma}}) = \ln \frac{\exp \left(-\frac{1}{2}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})\right) / \sqrt{(2\pi)^{k} |\hat{\boldsymbol{\Sigma}}|}}{\exp \left(-\frac{1}{2}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{2})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{2})\right) / \sqrt{(2\pi)^{k} |\hat{\boldsymbol{\Sigma}}|}}$$

$$= \ln \frac{\exp \left(-\frac{1}{2}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})\right)}{\exp \left(-\frac{1}{2}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})\right)}$$

$$= -\frac{1}{2} \left[(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{1}) - (\mathbf{x} - \hat{\boldsymbol{\mu}}_{2})^{T} \hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x} - \hat{\boldsymbol{\mu}}_{2})\right]$$

$$= \mathbf{x}^{T} \hat{\boldsymbol{\Sigma}}^{-1} (\hat{\boldsymbol{\mu}}_{1} - \hat{\boldsymbol{\mu}}_{2}) - \frac{1}{2} (\hat{\boldsymbol{\mu}}_{1} + \hat{\boldsymbol{\mu}}_{2})^{T} \hat{\boldsymbol{\Sigma}}^{-1} (\hat{\boldsymbol{\mu}}_{1} - \hat{\boldsymbol{\mu}}_{2})$$

$$= (\mathbf{x} - \frac{1}{2} (\hat{\boldsymbol{\mu}}_{1} + \hat{\boldsymbol{\mu}}_{2}))^{T} \hat{\boldsymbol{\Sigma}}^{-1} (\hat{\boldsymbol{\mu}}_{1} - \hat{\boldsymbol{\mu}}_{2}).$$
(1.11)

Therefore we classify \mathbf{x} into c_1 when $F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}) > 0$ or c_2 when $F_{\text{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}) < 0$.

1.2 LDA classifier

According to Eq.(3.33) in textbook 3.4, we can calculate the within-class scatter matrix \mathbf{S}_w :

$$\mathbf{S}_{w} = \sum_{i=1}^{2} \sum_{\mathbf{x} \in D_{c_{i}}} (\mathbf{x} - \hat{\boldsymbol{\mu}}_{i}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{i})^{\mathrm{T}}$$

$$= \sum_{i=1}^{2} |D_{c_{i}}| \frac{1}{|D_{c_{i}}|} \sum_{\mathbf{x} \in D_{c_{i}}} (\mathbf{x} - \hat{\boldsymbol{\mu}}_{i}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{i})^{\mathrm{T}}$$

$$= \sum_{i=1}^{2} |D_{c_{i}}| \hat{\boldsymbol{\Sigma}}_{i}$$

$$= 2|D_{c_{1}}| \hat{\boldsymbol{\Sigma}}$$

$$= |D| \hat{\boldsymbol{\Sigma}},$$

$$(1.12)$$

where we have implicitly used assumptions 1 and assumptions 2.

According to Eq. (3.39) in textbook 3.4, we can calculate projection matrix **w**:

$$\mathbf{w} = \mathbf{S}_w^{-1} (\hat{\boldsymbol{\mu}}_1 - \hat{\boldsymbol{\mu}}_2)$$

= $|D|^{-1} \hat{\boldsymbol{\Sigma}}^{-1} (\hat{\boldsymbol{\mu}}_1 - \hat{\boldsymbol{\mu}}_2).$ (1.13)

Now training of the LDA model is completed. Then for a new sample \mathbf{x} , we investigate whether \mathbf{x} is closer to $\hat{\boldsymbol{\mu}}_1$ or $\hat{\boldsymbol{\mu}}_2$, or equivalently consider projection of $\mathbf{x} - (\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2)/2$ on \mathbf{w} , i.e. **prediction** c_{pred} is

$$c_{\text{pred}} = \begin{cases} c_1, & (\mathbf{x} - \frac{1}{2}(\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2))^{\text{T}} \mathbf{w} > 0 \\ c_2, & (\mathbf{x} - \frac{1}{2}(\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2))^{\text{T}} \mathbf{w} < 0. \end{cases}$$
(1.14)

Note $(\mathbf{x} - \frac{1}{2}(\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2))^{\mathrm{T}}\mathbf{w} = (\mathbf{x} - \frac{1}{2}(\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2))^{\mathrm{T}}|D|^{-1}\hat{\boldsymbol{\Sigma}}^{-1}(\hat{\boldsymbol{\mu}}_1 - \hat{\boldsymbol{\mu}}_2)$. Compare this with Bayesian classifier, which is $F_{\mathrm{Bayes}}(\mathbf{x} \mid \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}) = (\mathbf{x} - \frac{1}{2}(\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2))^{\mathrm{T}}\hat{\boldsymbol{\Sigma}}^{-1}(\hat{\boldsymbol{\mu}}_1 - \hat{\boldsymbol{\mu}}_2)$, we found that they always have **the same sign** (|D| > 0).

Therefore, the LDA model will always have the same classification with the Bayesian optimal classifier.

2 [25pts] Naive Bayes

考虑下面的 400 个训练数据的数据统计情况,其中特征维度为 2($\mathbf{x}=[x_1,x_2]$),每种特征取值 0 或 1,类别标记 $y\in\{-1,+1\}$ 。详细信息如表1所示。

根据该数据统计情况,请分别利用直接查表的方式和朴素贝叶斯分类器给出 $\mathbf{x} = [1,0]$ 的测试样本的类别预测,并写出具体的推导过程。

Solution.

表 1: 数据统计信息

$\overline{x_1}$	x_2	y = +1	y = -1
0	0	90	10
0	1	90	10
1	0	51	49
1	1	40	60

2.1 Refer to the table directly

We do not make any simplification assumptions. And we do not need to use the Bayes Rule because we can directly estimate *posterior probability* from the table:

$$P(\mathbf{x} = [1; 0] \mid y = +1) = \frac{51}{51 + 49} = 51\%$$

$$P(\mathbf{x} = [1; 0] \mid y = -1) = \frac{49}{51 + 49} = 49\%.$$
(2.1)

Therefore the classification result is: y = +1.

2.2 Naive Bayes

We assume that all features are mutually independent, thus simplifying joint distribution to univariate distribution.

First we calculate *prior*, see Table.(2):

表 2: Prior Probability (Estimated)

$$y = +1 y = -1$$

$$0.6775 0.3225$$

Next we count $P(x = i \mid y = j)$ for i = 0, 1 and j = 0, 1, see Table.(3) and Table.(4):

表 3: Likelihood Count for x_1 in Naive Bayes

x_1	y = +1	y = -1
0	180	20
1	91	109

表 4: Likelihood Count for x_2 in Naive Bayes

x_2	y = +1	y = -1
0	141	59
1	130	70

Then we calculate *likelihood*, see Table.(5) and Table.(6) (here we **didn't use** *Laplace Correction* since it is **not needed** for this specific dataset and we do not want to introduce **extra noise** into the dataset.)

表 5: Likelihood for x_1 in Naive Bayes

x_1	y = +1	y = -1
0	0.6642	0.1550
1	0.3358	0.8450

表 6: Likelihood for x_2 in Naive Bayes

Finally we calculate *posterior probability* using the Bayes Rule:

$$P(y = +1 \mid \mathbf{x} = [1; 0]) = P(y = +1)P(\mathbf{x} = [1; 0] \mid y = +1)/P(\mathbf{x} = [1; 0])$$

$$\propto P(y = +1)P(\mathbf{x} = [1; 0] \mid y = +1)$$

$$= P(y = +1)P(x_1 = 1 \mid y = +1)P(x_2 = 0 \mid y = +1)$$

$$\approx 0.1184$$

$$(2.2)$$

$$P(y = -1 \mid \mathbf{x} = [1; 0]) = P(y = -1)P(\mathbf{x} = [1; 0] \mid y = -1)/P(\mathbf{x} = [1; 0])$$

$$P(y = -1 \mid \mathbf{x} = [1; 0]) = P(y = -1)P(\mathbf{x} = [1; 0] \mid y = -1)/P(\mathbf{x} = [1; 0])$$

$$\propto P(y = -1)P(\mathbf{x} = [1; 0] \mid y = -1)$$

$$= P(y = -1)P(x_1 = 1 \mid y = -1)P(x_2 = 0 \mid y = -1)$$

$$\approx 0.1246$$

Therefore the classification result is: y = -1.

3 [25pts] Bayesian Network

贝叶斯网 (Bayesian Network) 是一种经典的概率图模型,请学习书本 7.5 节内容回答下面的问题:

(1) [5pts] 请画出下面的联合概率分布的分解式对应的贝叶斯网结构:

$$Pr(A, B, C, D, E, F, G) = Pr(A) Pr(B) Pr(C) Pr(D|A) Pr(E|A) Pr(F|B, D) Pr(G|D, E)$$

(2) [5pts] 请写出图3中贝叶斯网结构的联合概率分布的分解表达式。

图 1: 题目 3-(2) 有向图

(3) [**15pts**] 基于第 (2) 问中的图3, 请判断表格7中的论断是否正确,只需将下面的表格填完整即可。

表 7: 判断表格中的论断是否正确

—————————————————————————————————————					
序号	关系	True/False	序号	关系	True/False
1	$A \perp \!\!\! \perp B$		7	$F \perp B C$	
2	$A \perp B C$		8	$F \perp B C,D$	
3	$C \perp \!\!\! \perp \!\!\! D$		9	$F \perp B E$	
4	$C \perp D E$		10	$A \perp \!\!\! \perp F$	
5	$C \perp D B, F$		11	$A \perp F C$	
6	$F \perp \!\!\! \perp B$		12	$A \perp F D$	

Solution.

Conditional independence implied by DAG:

$$x_s \perp \!\!\!\perp x_{\operatorname{pred}(s)\backslash \operatorname{pa}(s)} \mid x_{\operatorname{pa}(s)}$$
 (3.1)

and

$$P(x_1, x_2, \dots, x_n \mid G) = \prod_{i=1}^n P(x_i \mid x_{pa(s)}).$$
 (3.2)

Here n is the number of nodes in G, $x_{pa(s)}$ are x_s 's parent nodes and $x_{pred(s)}$ are x_s 's predecessors in topological order.

3.1 Problem (1)

Just use Eq.(3.1) and (3.2). See Fig.(3.1) for the result:

图 2: Problem 3-(1) DAG

3.2 Problem (2)

Just use Eq.(3.1) and (3.2). See Eq.(3.3):

$$P(A, B, C, D, E, F) = P(A)P(B)P(C \mid A, B)P(D \mid B)P(E \mid C, D)P(F \mid E).$$
(3.3)

3.3 Problem (3)

Use *D-separation* to get correct relationships. See Table.(8) for the answer:

序号 关系 True/False 序号 关系 True/False $A \underline{\! \perp \!\!\! \perp} B$ $F \perp B|C$ \mathbf{F} 1 \mathbf{T} 7 2 $A \perp B|C$ \mathbf{F} 8 $F \perp B|C, D$ \mathbf{T} 3 $C \bot\!\!\!\!\bot D$ \mathbf{F} 9 $F \perp B|E$ \mathbf{T} $C \perp D|E$ $\dot{\mathbf{F}}$ $A \perp \!\!\! \perp \!\!\! \perp \!\!\! F$ \mathbf{F} 4 10 $C \perp D|B, F$ \mathbf{F} $A \perp F|C$ \mathbf{F} 11 5 \mathbf{F} \mathbf{F} 6 $F \underline{\perp\!\!\!\perp} B$ 12 $A \perp F|D$

表 8: 判断表格中的论断是否正确

4 [25pts] Naive Bayes in Practice

请实现朴素贝叶斯分类器,同时支持离散属性和连续属性。详细编程题指南请参见链接: http://lamda.nju.edu.cn/ml2017/PS5/ML5_programming.html.

同时,请简要谈谈你的感想。实践过程中遇到了什么问题,你是如何解决的?

Solution.

感想:

4.1 关于 Modeling

4.1.1 连续分布的选择

针对这次的连续数据,用的正态分布是不太合适的,因为离散的特征均大于等于零,而 正态分布则是分布于整个横轴,可以考虑从-1 处截断的正态分布,或者卡方分布等。

4.1.2 两个概率的 trade-off

可以发现,预测时不计算先验和离散特征的概率,只用连续特征的概率,得到的精度是一样的。这是由于由于连续特征算得的 \log 概率 (的绝对值) 非常大从而 dominate 了后验 概率。只使用离散特征,得到精度 0.65 左右;只使用连续特征,得到精度 0.68 左右,若对连续特征算得的对数概率统一放缩到和离散特征一个 scale 上 (本数据可使用 1e-5),则能得到 0.71 的精度。

4.1.3 std zero 的处理

对连续 feature 的 log 概率排序,发现最小的(绝对值最大的)就正好对应那些 std=0 的,事实对每一类,上 std=0 的占所有 feature 的一半以上,因而连续 feature 算得的 log 概率又是被这些 std=0 的 dominate

所以精度对于我们处理 std=0 的方式非常敏感

五个类别的 stds.max() 分别是,从每一类 2500 个 std 中取出的最大值是非常不 robust 的,无论是你说的某些特征限定的大波动,或者某个 feature 成为 oulier 或者 feature 中某个值成为 outlier,都会直接影响这个 max 的选取

而对五类,引入相同的 std 增量,就不会引入上述的这种不稳健性

4.2 关于 Algorithm

4.2.1 取对数遇到零

浮点数绝对值太小而被 round 到 0, 进而影响取对数。

解决方案一:对所有要取对数的值加上一个小量,这个小量的合适取值可以:

from sys import float_info; SMALL_FLOAT = float_info.min

解决方案二:直接写 log 概率密度函数,我采用了这种解决方案。

4.2.2 定义一些常量

定义如 LAPLACE_CORRECTION_ALPHA, STD_RATIO 等常量。

4.2.3 性能优化

一般准则是预先建立好矩阵,尽量向量化。预测时需要对每一个 sample 循环,再对每一类循环,再对每一个 feature 循环。其中只有对 sample 循环的时候无法向量化,其余两个都可以向量化实现。这可提升性能 50 倍左右。对于 sample 的循环,虽然不可以向量化,但可以考虑并行 (本实现未做这个)。

不知道性能瓶颈的时候,用 line_profiler 和 snackviz 等工具进行 profile,再针对结果优化。

参考文献

[1] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.