Population moments

Let X be a rv with a pdf or pmf f and let k be a positive integer. The k-th (population) moment of X, denoted by $\mathrm{E}\left(X^k\right)$, is defined as follows:

If X is a discrete rv and

$$\sum_{x \in supp(f)} |x|^k f(x) < \infty, \qquad \text{then} \qquad \operatorname{E}\left(X^k\right) = \sum_{x \in supp(f)} x^k f(x).$$
 If X is a continuous rv and
$$\sum_{x \in supp(f)} |x|^k f(x) dx < \infty, \qquad \text{then} \qquad \operatorname{E}\left(X^k\right) = \sum_{x \in supp(f)} x^k f(x).$$

Important: in general, rvs need not have all or any moments to "exist" (i.e., be well-defined).

Law of large numbers: X_1, X_2, \dots le iid Let $X_n = + \frac{2}{n} X_i$ (indep.) from distribution F) LLN: Xn = E(X_L) for large n Xn acts as a

sample mean population mean. const. Q: How does \overline{X}_n (arr) behave when $E(|X|) = \infty$; A: does not converge; as we collect more and more data, the sample mean X_n never stabilizes. LLN requires that E(1×11) < 00 (strong LLN) ξ and often that $E(X_1^2)$ (weak LLN).

Example: non-existence of moments

= Student's + distr. with 1 degree of freedom

Consider a <u>Cauchy</u> distribution with pdf

X ~ f

 $f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \text{ defined for all } x \in \mathbb{R}.$ 1. Check $E(|X|) = \int |x| \frac{1}{11} \frac{1}{1+x^2} dx < \infty$ $E(|X|) = \lim_{n \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx = \infty$ = $\frac{1}{1/x + x}$ = $\frac{1}{x}$ for large x. Since $\int dx = N$.

=7 sanity check E(1x1) < 00 failed.

Hence there is no expectation. (no population mean!

<u>(Mathematical) expectation</u> (aka <u>expected value</u>) of a rv X is E(X), the first (population) moment, provided it is well-defined.

Convention/shortcut: let's denote by $\mathrm{E}\left(|X|^k\right)$ the k-th moment of the rv |X|, the absolute value of X, assuming that the expectation is finite.

Proposition: Let p be a positive real number. If $\mathrm{E}(|X|^p) < \infty$, then $\mathrm{E}(|X|^q) < \infty$ for every $q \in [0,p]$.

Properties of Expected Values (Expectations), I

Let X_1, X_2, \ldots, X_n be rvs with well-defined expectations $\mathrm{E}\left(X_1\right), \mathrm{E}\left(X_2\right), \ldots, \mathrm{E}\left(X_n\right)$. Let b_1, b_2, \ldots, b_n be any constants. Assume that the rvs X_i are continuous (have pdfs). In the discrete case, replace the integrals by sums (left as an exercise).

Linearity of expectations:

$$\overline{\mathrm{E}(b_1 X_1 + b_2 X_2)} = b_1 \,\mathrm{E}(X_1) + b_2 \,\mathrm{E}(X_2)$$

$$\frac{\mathbf{0.} \ \mathbf{E}(b_1) = b_1.}{\mathbf{1.} \ \mathbf{E}(b_1 X_1) = b_1 \mathbf{E}(X_1).}$$

$$\mathbf{E}(b_1 X_1) = b_1 \mathbf{E}(X_1).$$

$$\mathbf{E}(b_1 X_$$

Properties of Expected Values (Expectations), II

2.
$$E(X_1 + X_2) = E(X_1) + E(X_2)$$
.

 $f(x_1 + x_2) = E(X_1) + E(X_2)$.

 $f(x_1 + x_2) + f(x_1) + f(x_2) = f(x_1) + f(x_1) = f(x$

Properties 3-5 below follow from properties 0, 1 and 2.

Q:
$$E(X_1) = \int_{-\infty}^{\infty} x_1 \cdot f_1(x_1) dx_1$$
 $= \int_{-\infty}^{\infty} x_1 \cdot f_1(x_1) dx_1 \cdot \dots dx_n$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 \cdot f_1(x_1, \dots, x_n) dx_1 \cdot \dots dx_n$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 \cdot f_1(x_1) dx_1 \cdot \dots dx_n dx_n$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 \cdot f_1(x_1) dx_1 \cdot \dots dx_n dx_n$