General Purpose Transistors NPN Silicon

2N3903 2N3904*

*Motorola Preferred Device

CASE 29-04, STYLE 1 TO-92 (TO-226AA)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	40	Vdc	
Collector-Base Voltage	Vсво	60	Vdc	
Emitter-Base Voltage	VEBO	6.0	Vdc	
Collector Current — Continuous	IC	200	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

THERMAL CHARACTERISTICS(1)

Characteristic	Symbol	Мах	Unit	
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	200	°C/W	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbo	l Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (2) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CI	EO 40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CI	8O 60	_	Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0)	V(BR)E	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc)	ICEX	_	50	nAdc

^{1.} Indicates Data in addition to JEDEC Requirements.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 2

^{2.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTIC	cs				•	•
DC Current Gain ⁽¹⁾ (I _C = 0.1 mAdc, V _{CE} =	= 1.0 Vdc)	2N3903 2N3904	hFE	20 40	_ _	_
(IC = 1.0 mAdc, V_{CE} =	= 1.0 Vdc)	2N3903 2N3904		35 70	_ _	
(IC = 10 mAdc, V_{CE} =	1.0 Vdc)	2N3903 2N3904		50 100	150 300	
(I _C = 50 mAdc, V_{CE} =	1.0 Vdc)	2N3903 2N3904		30 60	_	
$(I_C = 100 \text{ mAdc}, V_{CE})$	= 1.0 Vdc)	2N3903 2N3904		15 30	_ _	
Collector-Emitter Satura (I _C = 10 mAdc, I _B = 1. (I _C = 50 mAdc, I _B = 5.	0 mAdc)		VCE(sat)		0.2 0.3	Vdc
Base-Emitter Saturation ($I_C = 10 \text{ mAdc}$, $I_B = 1$. ($I_C = 50 \text{ mAdc}$, $I_B = 5$.	0 mAdc)		VBE(sat)	0.65 —	0.85 0.95	Vdc
SMALL-SIGNAL CHA	ARACTERISTICS					
Current-Gain — Bandw (I _C = 10 mAdc, V _{CE} =		2N3903 2N3904	fΤ	250 300	_ _	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0), f = 1.0 MHz)		C _{obo}	_	4.0	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0), f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} =	= 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} =	= 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small–Signal Current Ga (I _C = 1.0 mAdc, V _{CE} =		2N3903 2N3904	h _{fe}	50 100	200 400	_
Output Admittance (I _C = 1.0 mAdc, V _{CE} =	= 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μAdc, V _{CE} =	= 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF	_	6.0 5.0	dB
SWITCHING CHARAC	CTERISTICS					
	V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		^t d		35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		t _r		35	ns
	$V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc},$ $I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _S	_	175 200	ns
Fall Time			t _f		50	ns

^{1.} Pulse Test: Pulse Width $\leq 300~\mu s$; Duty Cycle $\leq 2.0\%$.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 4. Charge Data

2N3903 2N3904

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

 $(VCE = 10 Vdc, f = 1.0 kHz, TA = 25^{\circ}C)$

100 h_{0e}, OUTPUT ADMITTANCE (μmhos) 50 20 10 5 2 1 - 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 IC, COLLECTOR CURRENT (mA)

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

2N3903 2N3904

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients