컴퓨터 개론

03. 디지털 정보의 표현

- 1. 컴퓨터 단위
- 2. 진법과 진법 변환
- 3. 컴퓨터 내부의 데이터 표현
- 4. 논리 연산자

- 컴퓨터의 저장 용량 단위와 처리 속도 단위를 알아본다.
- 2진법과 16진법을 이해하고, 진법 변환 방법을 살펴본다.
- 컴퓨터 내부의 데이터 표현 방법을 살펴본다.
- 논리 연산자(AND, OR, XOR, NOT)의 연산 방법을 알아본다.

Section 1 컴퓨터 단위

- □ (bit)
 - 컴퓨터에서 데이터를 표시할 때 사용하는 최소 단위
 - 2진법을 사용하기 때문에 1비트로 표현할 수 있는 수는 0과 1

- 바이트(byte)
 - 비트 8개를 묶어 사용하는 단위
 - 1바이트 = 8비트

• CPU 데이터 처리 속도

• 초기: 한 번에 8비트를 처리하는 CPU 사용 (예: 개인용 컴퓨터 애플 II)

• 이후: 32비트 CPU 등장

• 현재 : 64비트 CPU 대중화

- 워드(word)
 - 컴퓨터가 한 번에 처리할 수 있는 데이터 크기를 나타내는 단위
 - 32비트 CPU: 한 번에 32비트 데이터 처리, 1워드=32비트
 - 64비트 CPU: 한 번에 64비트 데이터 처리, 1워드=64비트

• 요약

표 3-1 컴퓨터 용량 단위

용량 단위	설명
비트(bit)	데이터를 표현하는 최소 단위
바이트(byte)	8비트를 하나로 모은 것
워드(word)	컴퓨터가 한 번에 처리할 수 있는 데이터 단위 예 32비트 CPU의 1워드는 32비트

큰 용량을 표현하는 단위

표 3-2 큰 용량을 표현하는 단위

용량 단위	표기	2진 크기	10진 크기	바이트 대비 크기	10진 단위
바이트(Byte)	В	1	1	1B	일
킬로바이트(Kilo Byte)	KB	2 ¹⁰	10 ³	1,000B	일천
메가바이트(Mega Byte)	MB	2 ²⁰	10 ⁶	1,000,000B	일백만
기가바이트(Giga Byte)	GB	2 ³⁰	10 ⁹	1,000,000,000B	일십억
테라바이트(Tera Byte)	TB	240	10 ¹²	1,000,000,000,000B	일조
페타바이트(Peta Byte)	PB	2 ⁵⁰	10 ¹⁵	1,000,000,000,000B	일전조

- 큰 용량 단위는 바로 한 단계 낮은 단위보다 1,024(2¹⁰)배 큼
- 1킬로바이트(1KB)는 정확히 1,024바이트(2¹⁰B)
- 그러나 사람은 2진수보다 10진수에 더 익숙하므로 보통 1KB를 약 1,000B(10³B)로 씀

- CPU 속도
 - 클록(clock)
 - 컴퓨터에서 일정한 박자를 만들어 내는 장치
 - 컴퓨터 내 모든 부품은 클록이 일정한 간격으로 틱을 만들면 거기에 맞추어 작업

- CPU 속도
 - 헤르츠(hertz)
 - CPU 성능을 나타내는 단위(표시 단위 : Hz)
 - 1초 동안 클록 틱이 몇 번 발생했는지 나타냄(1번: 1Hz, 1,000번: 1KHz)
 - CPU 속도 3GHz → 1초 동안 작업이 약 3×109(30억)번
 - 메인메모리 속도 1.6GHz → 1초 동안 1.6×109번 데이터를 저장

• 1헤르츠와 2헤르츠

그림 3-4 헤르츠

- 하드디스크 속도 (rpm)
 - 디스크 원반이 1분 동안 회전하는 수
 - 7,200rpm → 디스크 원반이 1분에 7,200번 회전
 - 숫자가 클수록 데이터를 저장하거나 읽는 속도가 빠름 (5,400rpm < 7,200rpm)

- 네트워크 전송량 (bps)
 - 'bit per second'의 약어로 네트워크상에서 1초 동안 보내는 데이터의 양
 - 파일 용량 표기 vs 네트워크 전송량 표기
 - 파일 용량 표기 : 단위가 바이트(byte)며 대문자 B로 표기
 - 네트워크 전송량 표기 : 단위가 비트(bit)며 소문자 b로 표기

** 1바이트는 8비트이므로 10MB는 기본적으로 10Mbps보다 8배 큼

파일 크기: 10MB 대문자 Byte
전송량: 10Mbps 소문자 bit

그림 3-5 파일 크기와 네트워크 전송량 표기 차이

Section 2 진법과 진법 변환

2진법과 10진법

- 컴퓨터가 2진법을 사용하는 이유
 - 컴퓨터는 0과 1로 표현하는 2진법 사용
 - 인간은 0부터 9까지 숫자 10개로 표현하는 10진법 사용
 - 컴퓨터가 2진법을 사용하게 된 것은 최초의 컴퓨터가 켜기와 끄기만 할 수 있는 진공관을 사용했기 때문(꺼지면 0, 켜지면 1로 인식)
 - 10진법을 사용하는 컴퓨터를 만들 수도 있으나 빠르게 계산하려면 2진법을 사용하는 것이 유리

그림 3-6 2진법 개념

2진법과 10진법

- 2진법의 식당 메뉴 비유
 - 두 가지 음식만 팔면 음식을 만드는 속도를 올릴 수 있고 테이블 회전율도 높일 수 있음

그림 3-7 2진 식당과 10진 식당

진법변환

• 10진수 표현의 원리

$$237 = 2 \times 10^{2} + 3 \times 10^{1} + 7 \times 10^{0}$$
$$= 2 \times 100 + 3 \times 10 + 7 \times 1$$
$$= 237$$

그림 3-8 10진수 표현

- 2진수 → 10진수 변환
 - 2진수의 각 자릿수를 곱한 후 모두 더함

** 숫자 아래의 밑첨자는 진법을 나타냄, 10진수는 표기 생략

$$11101101_{2} = 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{0}$$

$$= 128 + 64 + 32 + 8 + 4 + 1$$

$$= 237$$

그림 3-9 2진수의 10진수 변환

진법 변환

- 10진수 → 2진수 변환
 - 10진수를 계속 2로 나누면서 몫은 아래에, 나머지는 오른쪽에 기록한 후 더 이상 나누어지지 않을 때 나머지를 거꾸로 읽음

 $237 = 11101101_2$

그림 3-10 10진수의 2진수 변환

- 16진법
 - 0~F까지 숫자 16개를 사용
 - 1~9는 10진수와 같고 이후 숫자 6개는 알파벳 사용 (10은 A, 11는 B, 12는 C, 13은 D, 14는 E, 15는 F로 표기)

- 16진법을 사용하는 이유
 - 컴퓨터에서는 16진법은 바이트를 좀 더 적은 숫자로 표현하는 데 사용
 - 2진수 1111111을 표현하려면 8자리가 필요하지만,
 - 16진수로 표현하면 FF의 2자리로 표현 가능

그림 3-11 4자리 2진수에 대응하는 1자리 16진수

- 문제
 - 2진수 11101101을 16진수로 변환하면?

정답 : ED

- 16진수 → 10진수 변환
 - 각 자리의 숫자와 해당 위치의 단위 값을 곱한 후 모두 더하면 됨

$$ED_{16} = E \times 16^{1} + D \times 16^{0}$$

= $14 \times 16 + 13 \times 1$
= $224 + 13$
= 237

그림 3-12 16진수의 10진수 변환

- 10진수 → 16진수 변환
 - 10진수를 계속 16로 나누면서 몫은 아래에, 나머지는 오른쪽에 기록한 후 더 이상 나누어지지 않을 때 나머지를 거꾸로 읽음

그림 3-13 10진수의 16진수 변환

- 16진수 사용 예
 - RGB는 컴퓨터에서 이미지의 점 색상 하나를 표현할 때 사용
 - ** RGB는 빛의 삼원색인 빨간색(Red), 녹색(Green), 파란색(Blue)을 뜻함
 - RGB는 각각 1바이트 크기를 가지므로 1바이트가 표현할 수 있는 값은 0에서 255까지 총 256(28)단계
 - 컴퓨터에서 하나의 색상을 표현할 때는 빨간색(R), 녹색(G), 파란색(B)을 256단계로 섞어 사용
 - RGB(0, 0, 0) : 검은색
 - RGB(255, 255, 255) : 흰색
 - RGB(255, 0, 0): 빨간색
 - RGB(0, 255, 0) : 녹색
 - RGB(0, 0, 255) : 파란색

그림 3-14 RGB와 CMYK

- 포토샵의 컬러 피커
 - 빨간색(R), 녹색(G), 파란색(B) 입력란에 0부터 255까지 숫자를 입력
 - 아래쪽 입력란에 16진수를 넣어도 됨(녹색은 #00ff00이라고 작성)

그림 3-15 포토샵에서 녹색 RGB 값을 10진수와 16진수로 설정하는 모습

- CMYK
 - 이미지를 종이에 출력하거나 인쇄할 때는 RGB 대신 CMYK를 사용
 - CMYK : 시안(Cyan), 마젠타(Magenta), 옐로(Yellow), 블랙(Black=key)

그림 3-14 RGB와 CMYK

Section 3 컴퓨터 내부의 데이터 표현

문자표현

- 아스키코드
 - 컴퓨터는 문자를 처리하려고 숫자와 문자를 하나씩 대응하는 코드를 사용, 아스키코드(ASCII code)가 대표적
 - 7비트로 구성되기 때문에 아스키코드로 표현할 수 있는 문자는 0~127,
 총 128(2⁷)개

문자표현

표 3-3 아스키코드 일부

10 진수	16 진수	부호									
032	20	SP	056	38	8	080	50	Р	104	68	h
033	21	!	057	39	9	081	51	Q	105	69	i
034	22	п	058	ЗА	:	082	52	R	106	6A	j
035	23	#	059	3B	;	083	53	S	107	6B	k
036	24	\$	060	3C	<	084	54	Т	108	6C	1
037	25	%	061	3D	=	085	55	U	109	6D	m
038	26	&	062	3E	>	086	56	V	110	6E	n
039	27	ı	063	3F	?	087	57	W	111	6F	0
040	28	(064	40	@	088	58	X	112	70	р

무자 표현 표 3-3 아스키코드 일부(계속)

10 진수	16 진수	부호									
041	29)	065	41	Α	089	59	Y	113	71	q
042	2A	*	066	42	В	090	5A	Z	114	72	r
043	2B	+	067	43	С	091	5B	[115	73	S
044	2C	,	068	44	D	092	5C	₩	116	74	t
045	2D	_	069	45	Е	093	5D]	117	75	u
046	2E		070	46	F	094	5E	٨	118	76	V
047	2F	/	071	47	G	095	5F	_	119	77	W
048	30	0	072	48	Н	096	60	١,	120	78	X
049	31	1	073	49	1	097	61	а	121	79	У
050	32	2	074	4A	J	098	62	b	122	7A	Z
051	33	3	075	4B	K	099	63	С	123	7B	{
052	34	4	076	4C	L	100	64	d	124	7C	I
053	35	5	077	4D	М	101	65	е	125	7D	}
054	36	6	078	4E	N	102	66	f	126	7E	~
055	37	7	079	4F	0	103	67	g	127	7F	DEL

문자표현

- 아스키코드의 저장과 변환
 - 사람이 'YOU'라고 입력하면 컴퓨터는 '89, 79, 85'의 2진수 값 저장
 - 저장된 내용을 사용자에게 보여 줄 때는 숫자를 다시 문자로 바꾸어 보여줌

문자표현

- 유니코드
 - 전 세계 모든 문자를 컴퓨터에서 일관되게 표현하고 다룰 수 있도록 설계된 산업 표준 문자코드
 - 10만 개가 넘는 문자를 표현할 수 있기 때문에 대부분의 언어 표현이 가능
 - 한글 '가'의 유니코드 값은 AC00, 컴퓨터 내부에는 2진수 10101100000000000으로 저장

	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	ACA	ACB	ACC	ACD	ACE	ACF
0	가	감	갠	갰	갿	걐	걠	거	검	겐	겠	결	곀	곐	고	곰
	AC00	AC10	AC20	AC30	AC40	AC50	AC60	AC70	AC80	AC90	ACA0	ACB0	ACC0	ACD0	ACE0	ACF0
1	각	갑	갡	갱	걁	걑	걡	걱	겁	겑	겡	겱	곁	곑	곡	곱
	AC01	AC11	AC21	AC31	AC41	AC51	AC61	AC71	AC81	AC91	ACA1	ACB1	ACC1	ACD1	ACE1	ACF1
2	갂	값	갢	갲	걂	걒	걢	걲	겂	겒	겢	겲	곂	곒	곢	끖
	AC02	AC12	AC22	AC32	AC42	AC52	AC62	AC72	AC82	AC92	ACA2	ACB2	ACC2	ACD2	ACE2	ACF2

그림 3-17 한글 유니코드

Section 4 논리 연산자

- AND 연산자
 - 두 조건이 모두 참(true)일 때만 결과가 참

영자 그리고(AND) 미숙이 가면, 부산 간다.

그림 3-25 AND 논리 연산

영자	미숙	부산
OK	OK	간다
OK	NO	못 간다
NO	OK	못 간다
NO	NO	못 간다

- OR 연산자
 - 두 조건이 모두 거짓(false)일 때만 결과가 거짓

영자 혹은(OR) 미숙이 가면, 부산 간다.

그림 3-26 OR 논리 연산

영자	미숙	부산
OK	OK	간다
OK	NO	간다
NO	OK	간다
NO	NO	못 간다

- XOR 연산자
 - 두 조건이 서로 다를 때만 결과가 참

그림 3-27 XOR 논리 연산 결과

- NOT 연산자
 - 참과 거짓을 바꾸어 주는 연산

미숙이와 반대로(NOT) 한다.

그림 3-28 NOT 논리 연산 결과

미숙	부산
OK	못 간다
NO	간다

• 정리

• AND 연산 : 값 2개가 모두 참일 때만 참이 되는 연산

• OR 연산: 값 2개 중 하나라도 참이면 참이 되는 연산

• XOR 연산 : 값 2개 중 하나라도 다르면 참이 되며, 값 2개가 같으면 거짓이 되는 연산

• NOT 연산 : 반대 값을 만드는 연산

표 3-4 논리 연산의 진리표

AND 연산			OR 연산				XOR 연신	NOT 연산		
입	력	출력	입	력	출력	입	력	출력	입력	출력
Т	Т	Т	Т	Т	Т	Т	Т	F	Т	F
Т	F	F	Т	F	Т	Т	F	Т	F	Т
F	Т	F	F	Т	Т	F	Т	Т		
F	F	F	F	F	F	F	F	F		