

No = so (He Tege Her. exprid)

$$U_{\pm} = V(0)$$

$$I_{I} = \frac{V_0 - 0, 7V}{RB}$$

Vide N2 70.

Vo= VEC-RC. In >1V

$$4V\left(1+\frac{R_{8}}{R_{C}-N_{2}}\right) \ge 4,3V$$

$$\frac{R^{6}}{R^{6} \cdot N^{2}} \geq \frac{4^{3}}{4} - 1 = 0,075$$

$$N_2 \leq \frac{R_B}{0.015 R_c} = 83.3 \text{ KO13}$$

BO UDERICH CBET:
$$t_1'=t_1$$
 $t_2'=t_2$

BO PENEH CRET:
$$t_1' = t_1 + t_{PHL}$$

$$t_2' = t_2 + t_{PLH}$$

$$P_{C} = 5V$$

$$P_{C} \ge 160 \pi$$

$$C_{P} = 100 pF$$

$$U_{I}(0-) = gV \Rightarrow U_{0}(0-) = 5V (T+off) \Rightarrow Q_{cp} = V_{0} \cdot Cp = 500 pC$$

$$U_{I}(0+) = 5V \Rightarrow T \rightarrow NAP \left(\text{He Mode Borham SAT Gurzjin Cp, ppxiii} \right)$$

$$U_{0} > 0,2V$$

$$I_{0} = \frac{5-0,7}{1\times 52} = 4,3mA \Rightarrow I_{0} = 430 mA \left(\begin{array}{c} \text{Inperturation signata} & I_{0} \\ \text{Position op CP, Hus Pc} \end{array} \right)$$

$$\Delta V_{\circ} \cdot C_{P} = T_{CP} \cdot \Delta t \implies \ell_{PHL} = \frac{-4V \cdot 100pF}{-0.43 A} = 0.93 \text{ ms}$$

$$U_{\pm}(0) = 5V \implies U_{0}(0) = 0.2 V (T - 5AT) = V_{CP}$$
 $U_{\pm}(0) = 0V \implies T \Rightarrow 0FF \implies U_{0}(0) = 0.2 V (CP TO (PPXY))$
 $V_{0}(\infty) = 5V \implies U_{0}(+) = 5V - [5V - 0.2V] = \frac{t}{T}$
 $V_{0}(+) = 0.7V = 5V - [4.8V] = \frac{t_{PLH}}{16ms}$
 $V_{0}(+) = 16ms - U_{0}(+) = 1.76 ms$

а) Логичката функција што ја врши ова коло.

- б) Опсегот на вредности на отпорникот R_{ON} за кои колото работи исправно (колото треба да дава на својот излез коректно напонско ниво, независно од тоа дали се приклучени потрошувачите).
- в) Факторот на разгранување (fan-out).

$$R_{OFF} = 50 \text{ k}\Omega$$

 $V_{DD} = 5 \text{ V}$

$$R_i = 200 \text{ k}\Omega$$

 $V(0) \le 0.5 \text{ V}$

$$R = 5 \text{ k}\Omega$$

$$R = 5 \text{ k}\Omega$$
 $V(1) \ge 3.0 \text{ V}$

a) RONG ROFF

V(1)
$$V_{PP}$$
 V_{PP}
 V_{PP}

TPEGE
$$Vo = V(0) \le 0.5V$$

$$V(0) = V_{DD} \frac{R_{ON}}{R + R_{ON}} \leq 0.5 V$$

(*) DORABERE HE N KOTE HE USLESOT HE MORE DE 18 "PECANE" LOFUYKETE "O", 64 PECK YCHOBOT

VTEV = VOO : ROFF = 4,55 V

B) Choper
$$(*)$$
, Treba Rd CR Halle Fam-out, CAMO ROTE
$$V_i = V(0)$$
, d $V_0 = V(1)$

$$R_{TEV} = R_{OEF}/IR = 4,55 \text{ kSZ}$$

$$V(1) = V_{TEV} \cdot \frac{R_{I/N}}{R_{I/N} + R_{TEV}} \ge 3V$$

$$=)$$
 $N \leq 22$

3. На сликата е прикажан еквивалентен модел на едно NMOS логичко коло. Вкупната внатрешна капацитивност на сите елементи од колото е моделирана со кондензаторот C_{TOT} . Влезната отпорност R_i може да се смета за бесконечно голема. Да се одредат времињата на пропагација t_{pHL} и t_{pLH} кои настануват при преод на колото помеѓу двете логички состојби на неговиот излез. Да се смета дека промената на влезниот напон настанува бесконечно брзо.

Познато е:

$$R_{DSON} = 50 \text{ k}\Omega$$

$$R_{ON} = 1 \text{ k}\Omega$$

$$C = 1 \mu F$$

$$V_{DD} = 5 \text{ V}$$

$$V(1) = V_{DD} = 5V$$

$$\frac{V(0) + V(1)}{2} \approx \frac{V_{DD}}{2} = 2.5 \text{ V}$$

Vo (00) = 98 mV = Ø
$$T = (R_{ON} || R_{DSON}) \cdot C \approx R_{ON} \cdot C$$

$$V_o(t) = O - \left[O - V_{DD}\right] e^{-\frac{t}{C}}$$

$$V_{0}(t) = 0 - [0 - V_{00}]e^{-\frac{t}{T}}$$
 $V_{0}(t_{PHL}) = V_{00}e^{-\frac{t_{PHL}}{T}} = \frac{V_{00}}{2}$

$$V_{0}(t_{PHL}) = V_{00}e^{-\frac{t_{PHL}}{T}} = \frac{V_{00}}{2}$$

$$V_{0}(t_{PHL}) = V_{00}e^{-\frac{t_{PHL}}{T}} = \frac{V_{00}}{2}$$

tolH :

Vo (€) = Voo - [Voo - Ø]e - €

2. Колото на сликата а) го претставува еквивалентниот модел на едно логичко коло - инвертор. Да се пресмета фреквенцијата на излезниот сигнал кај колото прикажано на сликата б).

$$R_{DD} = 100 \text{ k}\Omega$$
$$V_{DD} = 5 \text{ V}$$

$$R_{ON} = 1 \text{ k}\Omega$$

 $V(1) > 2.5 \text{ V}$

$$R_i \to \infty$$

 $V(0) \le 2.5 \text{V}$

$$C_{TOT} = 10 \text{ nF}$$

Слика а)

Pewethe:

ce opperat OP VOIOTO HE CAURE a), TPRES 20

$$V_0(0) = V_{DD} \cdot \frac{P_{ON}}{P_{ON} + P_{DD}} = 0.05 \text{ V}$$

- ppy preod of 1 -> 0:

$$V_{o}(0) = V_{pp} \cdot \frac{e_{oN}}{e_{oN+R_{DD}}} = 0.05 V$$

$$V_{o}(t_{PHL}) = 2.5 V$$

$$V_{o}(t_{PHL}) = 7.5 V$$

$$V_{o}(t_{PHL}) = 7.5 V$$

$$T_2 = C_{TOT} \cdot (R_{DD} / | R_{ON}) = 9,9 \mu S$$

$$V_o(t) = 5 - [5 - 0.05] e^{-\frac{t}{\tau_A}}$$

$$t_{PLH} = T_1 lm \frac{4,95}{2,5} = 0,68 ms$$

$$V_0(t) = 0.05 - [0.05 - 5]e^{-\frac{t}{52}}$$

$$T = 3.4pHL + 3.4pLH = 2,061ms$$

 $f = 485 Hz$

Vo = V(1), Here U, = V(0) BO TO, MOMENT HERE De CTAHYBO Va) Tod nperusbukyBd: - to 22 ce chetty noche text - no On la rechetty porce tech - 172 V2 D2 CO MAGE. .. - na Up . --- na Ui

4 TOKA HATOMY

HEVA BO MOMEHTOT t= \$

3. За TTL колото прикажано на сликата 3 да се определи логичката функција што ја врши, и факторот на разгранување.

Познато е:

$$R_1 = 4.1 \text{ k}\Omega$$

$$R_2 = 3.3 \text{ k}\Omega$$

$$R_3 = 500 \Omega$$

$$V_{CC} = 5 \text{ V}$$
 $V_{CE,SAT} = 0.2 \text{ V}$

$$V_{CE,SAT} = 0,2$$

$$V_{BE,ON} = V_{D,ON} = 0.7 \text{ V}$$
 $\beta_N = 100$

$$\beta_I = 0.2$$

Бонус (4п/8п): Ако влезовите на колото се остават отворени (ништо не е поврзано ниту на А ниту на В), тогаш какво логичко ниво ќе дава ова коло на својот излез. Дали таквиот начин на користење ќе го

промени факторот на разгранување на ова коло?

та факторот на разгранување на ова коло.					
	COCTOSEA	Ta	Τ ₂	+3	Y
	VA = V3 = V(1)	$T_A \rightarrow TAP$ $T_{BA} = \frac{Vec - 2, 1}{R_A}$ $T_{BA} = 0,707 \text{ mA}$ $T_{EA} = BT \cdot T_{BA}$ $T_{EA} = 0,144 \text{ mA}$ $T_{CA} = 0,848 \text{ mA}$	$T_{2} \rightarrow SAT$ $I_{62} = 0.8484A$ $I_{62} = \frac{Vcc - 0.9}{R_{2}}$ $I_{62} = 4.24 \text{ M}$ $I_{62} \leq RN \cdot I_{62} (SAT)$ $I_{62} = 2.09 \text{ mA}$	$T_3 \rightarrow SAT$ $T_{B3} = 2,09 \text{ mA}$ $T_{C3 \text{ mAX}} = T_{B3} \text{ (BN)}$ $T_{C3 \text{ mAX}} = 209 \text{ mA}$ $T_{B3} = \frac{V_{CC} - 0,2}{B_3}$ $T_{B3} = 9,6 \text{ mA}$	$V_{y} = 0.2 V$ $\sqrt{(0)}$
	БАРЕМ ЕДНА НУЛА	$T_{A} \rightarrow SAT$ $I_{BA} = \frac{V_{CC} - 0.9}{R_{1}}$ $I_{BA} = A_{M}A$ $I_{EA} = A_{M}A$ $I_{CA} = \emptyset$	T2 → OFF	T3 → OFF	Vy = 5V V(1)
	and the second of the second o		"		

Pan
$$V_y = V(\emptyset)$$
: $I_{c3} = I_{e3} + N_L \cdot I_{IL} \le I_{c3} MAX$
 $9,6 \cdot A + N_L \cdot 1 \cdot A = 209 \cdot MA$

$$N_L \leq 193$$

$$V_y = V_{cc} - R_3 \cdot N_H \cdot I_{IH} \ge 2.1 V$$

5-0.5 · N_H · 0.141 $\ge 2.1 V$

BOAXC: AKO HE TERE CTEXIC HUS ANB, TOROW TO SAT, HO CO

IBI = 0,+0+mA = ICI = IBZ =) IEZ = IB3 = 1,947 mA

NL = 185 x012 npomethy

BRYMHOTO LE OMEHE HENPOMEHETO

3dbeneurd: "Henobesthate" Blesoby Kd) Dd WM2 DOHECEHO AUTUYK2 "1"

- 3. За TTL колото прикажано на сликата да се одреди:
- а) логичката функција која ја врши колото Y = f(A,B).
- б) факторот на разгранување N.

Забелешка: при одредување на N, да се испитаат и двете можни состојби на излезниот напон, и потоа да се посочи кој од двата резултати треба да се одбере и зошто.

Познато е:

$$R_1 = 4 \text{ k}\Omega$$

$$R_2 = 2.2 \text{ k}\Omega$$

$$R_3 = 220 \Omega$$

$$V_{CC} = 5 \text{ V}$$

$$V_{CE,SAT} = 0.2 \text{ V}$$
 $V_{BE,ON} = V_{D,ON} = 0.7 \text{ V}$

$$\beta_N = 30 \qquad \beta_I = 0.5$$

Решение:

V_{B1} = 0,9 V ; I_{B1} =
$$\frac{V_{ec} - 0,9}{R_1}$$
 = 1,025 mA ; D, T₂ → OFF

$$V_{B3} = 0.7V$$
; $I_{B3} = \frac{V_{CC} - 0.7}{R_2} = 1.95 \text{ mA}$

$$T_3 \rightarrow SAT$$
 TREBO:
 $T_{R3} \rightarrow SAT$ TREBO:

$$N_{\Lambda} < 35,8 \qquad \Longrightarrow \qquad \boxed{N_{\Lambda} \leq 35}$$

$$T_A \rightarrow TAP$$
; D, $T_Z \rightarrow ON$ $V_{BA} = 2, 1 V$ $T_{BA} = \frac{V_{CC} - 2, \Lambda}{P_A} = 725_{AA}$

33 CLERHOTO KOLO
$$V(1) \geq 2,1 \ V$$
; 3H244 $V_y = V_{cc} - R_3 \cdot N_2 \cdot I_{IA} > 2,1 V$

$$N_2 < \frac{Vcc - 2,1}{R_3 \cdot I_{51}} =)$$
 $N_2 \leq 36$

$$N = \min(N_1, N_2) = 35$$

- 2. За влезот на CMOS колото прикажано на сликата 2 е доведен напонот $v_i(t)$, кој во моментот t=0 се менува од логичка нула (0 V) во логичка единица (5 V). Да се скицира излезниот напон $v_o(t)$ и да се определат:
- а) време на пораст или опаѓање (зависно од конкретниот излезен напон што се добива).
- б) време на пропагација (t_{pLH} или t_{pHL} , пак зависно од изгледот на излезниот напон).

Познато е: $V_{SS} = 5V$; $C_L = 25$ pF; $k_n W/L = k_p W/L = 200 \mu A/V^2$; $|V_{TH}| = 2.5 \text{ V};$

*
$$V_{DSP}$$
 ? $V_{SSP} - V_{THP}$

5v ? $5V - 2.5V$
 $AV = 2.5V$
 $AV = 2.5V$

(3d $G_{th} \rightarrow \mathcal{R}$)

$$CL \cdot \Delta V = I_0 \cdot t_1 =) \quad t_i = \frac{C.\Delta V}{I_0} = 50 \text{ ms}$$

$$t_1 \le t \le \infty$$
 $U_I = 5V \Rightarrow QPOFF$, $Q_{11} ON(R)$
 $Roson_{11} = \frac{1}{\kappa_{11} \frac{W}{L}(V_{SSN} - V_{THN})} = 2 \nu SZ$
 $V \circ M$
 $C_L = V_{THN} \circ V_{TH$

$$V_o(t'=0) = 2.5V$$

$$V_o(t') = 2.5V \cdot e^{-\frac{t'}{T}}$$

$$V_o(t') = 0 \quad \text{if } T = 250.$$

30
$$V_0 = 4.5 \text{ V} \left(10\% \text{ op negretate} \right) \Rightarrow t_{10\%} = \frac{C_L \cdot 0.5 \text{ V}}{I_0} = 10 \text{ ms}$$

30 $V_0 = 0.5 \text{ V} \left(90\% \text{ op negretate} \right) \Rightarrow t'_{30\%} = T \ln \frac{2.5}{0.5} = 80 \text{ ms} \left(\frac{t_{30\%} = t'_{30\%} + t_{10\%}}{t_{30\%} = 130 \text{ ms}} \right)$

30 $V_0 = 2.5 \text{ V} \left(50\% \text{ sp negretate} \right) \Rightarrow t_{50\%} = t_1 = 50 \text{ ms}$

$$V_{SS}$$
 Q_p
 Q_n
 C_L