

Course	Specialist	Year _	_12
Student name:	Teacher nam	ne:	
Date: 21 Aug Fri			
Task type:	Response		
Time allowed for this ta	sk:45 mins		
Number of questions:	6		
Materials required:	NO CLASSPADS/CALS		
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters		
Special items:	Drawing instruments, templates, , and up to three calculators approved for use in the WACE examinations		
NO NOTES ALL	OWED		
Marks available:	39 marks		
Task weighting:	_12%		
Formula sheet provided	: Yes		
Note: All part question	s worth more than 2 marks require v	working to obtain fu	II marks.

Q1 (4.1.2)

(3, 3 & 3 = 9 marks)

Determine the following integrals showing full working.

a)
$$\int \frac{5x}{\sqrt{7x^2 - 3}} dx$$
 $u = 7x^2 - 3$

b)
$$\int (3x+2)(5x-1)^7 dx$$
 $u = 5x-1$

$$c) \quad \int \frac{\sqrt{x}}{\sqrt{x} + 7} dx$$

(3, 3 & 3 = 9 marks)

Q2 (4.1.1 -4.1.3)
Determine the following definite integrals showing full working.

$$a) \quad \int_{0}^{\pi} \cos^2 4x \, dx$$

 $b) \quad \int_0^{\pi} \sin^3 2x \, dx$

c) $\int_{1}^{\infty} -12 \tan^2 5x \, dx$

Q3
Determine the following integral showing full working.

(4 marks)

$$\int \frac{x+7}{(x+1)(x-3)^2} dx$$

Q4 (4.1.5-4.1.6) (5 marks) Consider a cylindrical drill of width 2 cm that carves a cavity inside a solid sphere of radius 5 cm as shown below. Determine the volume of the sphere remaining.(Simplify)

(4 marks)

Q5 (4.2.4)

$$yx^2 \frac{dy}{dx} = \frac{x + x^3}{(5y^2 + 1)^4}$$

Determine the solution to the following differential equation known point.(No need to simplify)

given that (1,1) is a

Q6 (4.2.6)

Consider the differential equation $\frac{dN}{dt} = aN - bN^2$ with $a \otimes b$ positive constants.

a) Determine the limiting value for N as $t \to \infty$

b) Show how to derive using integration and partial fractions that the general solution is a

$$N = \frac{a}{b + Ce^{-at}}$$

a) Consider
$$\frac{dN}{dt}$$
 =5 N - 3 N^2 with an initial value of N =1. Determine N when t=50. (No need to simplify)

Perth Modern

.