### (19) 日本国特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平10-90599

(43)公開日 平成10年(1998) 4月10日

| (51) Int.Cl. <sup>5</sup><br>G 0 2 B | 15/16           | 識別記号            | F I<br>G O 2 B 1 | 5/16                  |                |              |          |
|--------------------------------------|-----------------|-----------------|------------------|-----------------------|----------------|--------------|----------|
| 0022                                 | 15/167<br>27/64 |                 |                  | 5/167<br>7/ <b>64</b> |                |              |          |
| G03B                                 | 5/00<br>17/00   |                 | 17               | 5/00<br>7/00<br>未請求   |                | J<br>Z<br>FD | (全 12 頁) |
| (21)出願番号                             | <del></del>     | 特願平8-265263     | (71)出顧人          | 00000411<br>株式会社      |                |              |          |
| (22)出顧日                              |                 | 平成8年(1996)9月12日 | (72)発明者          | 鈴木 差                  | <b>F代田区丸の内</b> |              |          |
|                                      |                 |                 | (74)代理人          | 弁理士                   | 猪熊 克彦          |              |          |
|                                      |                 | ·               |                  |                       |                |              |          |
|                                      |                 |                 |                  |                       |                |              |          |

### (54) 【発明の名称】 防扱機能を備えたズームレンズ

#### (57)【要約】

【課題】一眼レフ用にも適用可能であって、かつ特に内 焦式の長焦点のズームレンズに対応可能な高性能な写真 用やビデオ用ズームレンズを提供する。

【解決手段】物体側から順に第1レンズ群 $G_1$ と負の屈折力を有する第2レンズ群 $G_2$ とを有し、最も像側に最終レンズ群 $G_1$ を有するズームレンズにおいて、第1レンズ群 $G_1$ は負の屈折力を有する合焦レンズ群 $G_1$ を含み、最終レンズ群 $G_1$ は防振レンズ群 $G_2$ を含み、合焦に際して、合焦レンズ群 $G_1$ のを光軸方向に移動し、変倍に際して、少なくとも第2レンズ群 $G_2$ を光軸とほぼ直交する方向に移動することを特徴とする。



#### 【特許請求の範囲】

【請求項1】物体側から順に第1レンズ群G1と負の屈 折力を有する第2レンズ群G2とを有し、最も像側に最 終レンズ群G1を有するズームレンズにおいて、

前記第1レンズ群 $G_1$ は負の屈折力を有する合焦レンズ群 $G_{1N}$ を含み、前記最終レンズ群 $G_L$ は防振レンズ群 $G_V$ を含み、

合焦に際して、前記合焦レンズ群G<sub>1N</sub>を光軸方向に移動 し、

変倍に際して、少なくとも前記第 2 レンズ群 G₂を光軸 方向に移動し、

防振に際して、前記防振レンズ群Gvを光軸とほぼ直交 する方向に移動することを特徴とする、防振機能を備え たズームレンズ。

【請求項2】広角端から望遠端への変倍に際して、前記第1レンズ群 $G_1$ と第2レンズ群 $G_2$ との間隔が増大し、前記第2レンズ群 $G_2$ とその像側に位置するレンズ群との間隔が変化する、請求項1記載の防振機能を備えたズームレンズ

【請求項3】以下の条件を満足する請求項1又は2記載 の防振機能を備えたズームレンズ。

 $\Delta S / | f_L | < 0. 1 \tag{1}$ 

但し、ΔS:防振に際して移動する前記防振レンズ群G vの光軸とほぼ直交する方向への最大変位量

 $f_L$ : 前記最終レンズ群 $G_L$ の焦点距離である。

【請求項4】以下の各条件を満足する請求項1、2又は 3記載の防振機能を備えたズームレンズ。

0.  $2 < | f_v | / f_L < 10$ 

(2)

0.  $0.5 < |f_{1N}| / f_{1} < 1.0$ 

(3)

但し、fv:前記防振レンズ群Gvの焦点距離

fı: 前記最終レンズ群GLの焦点距離

f ın:前記合焦レンズ群Gınの焦点距離

 $f_1$ : 前記第 1 レンズ群  $G_1$  の焦点距離である。

【請求項 5】前記第 2 レンズ群  $G_2$  と最終レンズ群  $G_1$  との間に、正の屈折力を有する第 3 レンズ群  $G_3$ を少なくとも有する、請求項 1 、 2 、 3 又は 4 記載の防振機能を備えたズームレンズ。

【請求項6】変倍に際して、前記第3レンズ群Gsとその像側に位置するレンズ群との間隔が変化する、請求項5記載の防振機能を備えたズームレンズ。

【請求項7】前記第1レンズ群 $G_1$ と最終レンズ群 $G_2$ は、変倍に際して光軸方向に固定されている、請求項 $G_1$ 記載の防振機能を備えたズームレンズ。

【請求項8】光軸上に固定された固定絞りを有する、請求項1、2、3、4、5、6又は7記載の防振機能を備えたズームレンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は写真用レンズ、ビデオ用ズームレンズ等の防振技術に関し、特に防振機能を備えた長焦点のズームレンズに関する。

#### [0002]

【従来の技術】防振機能を備えたズームレンズとしては、例えば特開平1-191113号公報に開示されたものがある。これは、2群以上のレンズ群で構成されるズームレンズにおいて、ズーミングの際に移動するレンズ群ないしは一部のレンズ群で防振するものである。

#### [0003]

【発明が解決しようとする課題】しかしながら上記従来の技術では、望遠側の焦点距離が短いことから長焦点のズームレンズに不適であった。また、一眼レフ用や電子画像機器用に十分なバックフォーカスが得られないこと等の欠点も有していた。従って、本発明は、一眼レフ用にも適用可能であって、かつ特に内焦式の長焦点のズームレンズに対応可能な高性能な写真用や電子画像機器用ズームレンズの提供を課題としている。

#### [0004]

【課題を解決するための手段】このような課題を解決するために、本発明では、物体側から順に第1レンズ群 $G_1$ と負の屈折力を有する第2レンズ群 $G_2$ とを有し、最も像側に最終レンズ群 $G_1$ を有するズームレンズにおいて、第1レンズ群 $G_1$ は負の屈折力を有する合焦レンズ群 $G_1$ がを含み、最終レンズ群 $G_1$ は防振レンズ群 $G_2$ を含み、合焦に際して合焦レンズ群 $G_1$ がを光軸方向に移動し、変倍に際して少なくとも第2レンズ群 $G_2$ を光軸方向に移動し、防振に際して防振レンズ群 $G_2$ を光軸とほぼ直交する方向に移動することを特徴とする、防振機能を備えたズームレンズとした。

【0005】本発明は、写真用やビデオ用のズームレン ズに適するように、基本的には物体側より順に、正の屈 折力を持つ第1レンズ群G1と、負の屈折力を持つ第2 レンズ群G₂とを有し、最も像側には正の屈折力を持つ 最終レンズ群GLを有し、広角端から望遠端への変倍時 には、少なくとも第2レンズ群G₂を像側に移動する方 式を採用している。さらには、有限距離への合焦は、第 1 レンズ群G1中の一部の負のレンズ群G1Nを光軸上に 移動させて行うものである。さらには、第2レンズ群G 2と最終レンズ群G<sub>1</sub>との間に、正の屈折力を有する第3 レンズ群G。を配設する構造とすれば、高倍率化、高性 能化が達成出来るのでより好ましい。ここで、本発明に 係るズームレンズの防振機能の手法を説明すると、レン ズ群またはその一部のレンズを防振変位手段によって光 軸とほぼ直交する方向に移動させることにより、カメラ の揺れや振動に起因する結像状態の変動を補正する方式 を採用している。

【0006】さて、初めに、このタイプのズームレンズ の特徴及び利点について簡単に説明すると、長焦点のズ ームレンズを達成可能なことと、各焦点距離で良好な結 像性能を得られることがあげられる。例えば、写真用ズームレンズの場合には短焦点側で150mm程度、長焦点側で500mm程度のものが知られている。このような優れた性質により、写真用およびビデオ用等の長焦点のズームレンズとして広く用いられている。このように、最も物体側の第1レンズ群G1内で合焦する場合は、一定撮影距離の被写体に対して合焦群G1Nの繰り出し量がズームポジションによらず一定となるため、合焦のための機構が簡素にでき、好都合である。また、合焦時の収差変動も概ね小さく好ましいのである。

【0007】一般的に、凸レンズ群が先行するズームレ ンズは、第1レンズ群G1が最も大型のレンズ群であ り、このため、第1レンズ群G1やその一部を防振のた めに光軸と直交する方向に移動する補正光学系にするこ とは、保持機構及び駆動機構が大型化し好ましくない。 また、本発明のズームタイプのように、第1レンズ群G 1内で合焦をする場合は、合焦のための機構が第1レン ズ群G1近くに組み込まれるため、構造が複雑になりや すく、防振のための保持機構及び駆動機構が複雑化し好 ましくない。従って、本発明におけるズームレンズも同 様に、第1レンズ群G<sub>1</sub>を防振補正光学系にするのは好 ましくない。また本発明の第2レンズ群G2、第3レン ズ群Gaのように、変倍時に光軸方向へ移動するレンズ 群も機構が複雑になるため好ましくない。そこで、本発 明においては、このような理由と防振時の収差特性の良 好なことから、最終レンズ群Gz中に防振レンズ群Gvを 設けた。このとき、画面中心近くと周辺で画質の変化に 差をつけずに防振できるため、開口絞りは、防振レンズ 群Gvの近くに設置することが望ましい。

【0008】本発明においては、広角端から望遠端への変倍に際して、第1レンズ群 $G_1$ と第2レンズ群 $G_2$ との間隔が増大し、第2レンズ群 $G_2$ とその像側に位置するレンズ群との間隔が変化することが好ましい。防振レンズ群 $G_2$ と開口絞りは、機構の簡素化のため、ズーミング時に固定とすることが望ましい。また開口絞りとは別に光軸上に固定の固定絞りを設ければ、防振レンズ群 $G_2$ 、が変位する際の不用なフレア光線を遮蔽するのに、より効果的である。

【0009】また本発明においては、

Δ S:防振に際して移動する防振レンズ群Gvの光軸と ほぼ直交する方向への最大変位量

f,:最終レンズ群GLの焦点距離

fv:防振レンズ群Gvの焦点距離

fıx: 合焦レンズ群Gıxの焦点距離

f1:第1レンズ群G1の焦点距離

 $\Delta S / | f_{L} | < 0.1$ 

としたとき、

(1)

 $0.2 < |f_v| / f_L < 10$ 

(2)

0.  $0.5 < |f_{1N}| / f_{1} < 1.0$  (3)

なる各条件式を満たすのが好ましい。

【0010】(1)式は、防振レンズ群 $G_v$ の光軸と直交する方向の最大変位量 $\Delta$  S を、最終レンズ群 $G_L$ の焦点距離  $f_L$ との比で適切な範囲を定めたものである。条件式(1)の上限を越えると、防振レンズ群 $G_v$ の最大変位量 $\Delta$  S が大きくなりすぎ、その結果、防振時の収差変動量が大きくなり、不都合である。特に、像面上の周辺位置における、メリディオナル方向の最良像面とサジタル方向の最良像面の光軸方向の差が広がり、不都合である。加えて、機構上も、複雑となるため、好ましくない。また言うまでもなく、移動しなければ防振の作用は得られないのであるから $\Delta$  S は 0 よりも大きい( $\Delta$  S > 0)のである。なお、条件式(1)の上限を0. 0 5 とすれば、より好ましい効果が得られる。

【0011】条件式(2)は、防振レンズ群Gvの焦点 距離 f vを、最終レンズ群 $G_L$ の焦点距離 f Lとの比で、 適切な範囲を定めたものである。条件式(2)の上限を 越えると、防振レンズ群Gvの焦点距離 fvの大きさが大 きくなりすぎるため、防振時の移動量が大きくなりす ぎ、この結果、光軸と直交する方向に移動する際、光束 がけられないようにするために、防振レンズ群Gvのレ ンズ径を過度に大きくする必要があり、好ましくない。 また、ズームレンズ全体の全長が長くなり、不都合であ る。逆に条件式(2)の下限を越えると、防振レンズ群 Gvの焦点距離 fvの大きさが小さくなりすぎるため、球 面収差が負側に過大となる傾向になり、不都合である。 また、防振時の像の移動量が大きくなりすぎ、この結 果、防振のため、光軸と直交する方向に移動する際、そ の方向での微細な位置決めのための制御が困難となるた め、不都合である。なお、条件式(2)の下限を0.8 とし、上限を4.0とすれば、より好ましい効果が得ら れる。

【0012】なお、防振レンズ群Gvの焦点距離fvは正であっても、負であっても良いが、明るい光学系を構成するには正である方が好ましい。この場合には、条件式(2)は、

0.  $2 < f_v / f_L < 10$  (2 P)

となる。そして、防振レンズ群Gvは最も物側に凸レンズを有し、少なくとも1枚の凹レンズを有することが好ましい。また、防振レンズ群Gvの焦点距離fvが負の場合は、防振レンズ群Gvを小型にし易く、全長を短縮し易い利点がある。そして、防振レンズ群Gvは最も像側に凹レンズを有し、少なくとも1枚の凸レンズを有することが好ましい。なお、条件式(2P)も同様に、下限を0.8とし、上限を4.0とすれば、より好ましい効果が得られる。

【0013】条件式(3)は、第 $1\nu\nu$ ズ群 $G_1$ 中の負の屈折力を有する合焦 $\nu\nu$ ズ群 $G_{1N}$ の焦点距離  $f_{1N}$ と、第 $1\nu\nu$ ズ群 $G_1$ の焦点距離  $f_1$ との適切な屈折力の割合を定めたものである。この式は、合焦時の、良好な結像性能を達成するために重要である。条件式(3)の上限

を越えると、球面収差が負側に過大となり易く、また全長が長くなりコンパクト化に向かない。加えて、ペッツバール和が正側に過大となりやすくなるばかりか、非点隔差と像面の曲がりが大きくなり、良好な結像性能は得られない。逆に条件式(3)の下限を越えると、十分な長さのバックフォーカスを確保することが困難となり、不都合である。また、球面収差が負側に過大となり易くなり、主光線よりも上側の光線に外向性のコマ収差が生じやすくなるため、不都合である。なお、条件式(3)の下限を0.1とし、上限を1.0とすれば、より好ましい効果が得られる。

【0014】更に、良好な性能を得るためには、(1)  $\sim$  (3) 式に加えて、以下の条件式 (4) 、(5) を満たすことが望ましい。

0. 
$$3 < | r_{VL} / f_{V} | < 30.0$$
 (4)

0. 
$$0.2 < L/f_L < 0.35$$

但し、 r vL: 防振レンズ群Gvの最も像側の面の曲率半径

(5)

## L:防振レンズ群Gvの光軸上の厚さ

である。(4)式の上限を越えても下限を越えても、防振時に球面収差の変動と像面湾曲、非点収差の変動が過大となってしまうため、不都合である。なお、条件式(4)の下限を0.4とし、上限を20.0とすれば、より好ましい効果が得られる。条件式(5)は、防振レンズ群 $G_V$ の光軸上の厚さしを、最終レンズ群 $G_V$ の光軸上の厚さしを、最終レンズ群 $G_V$ の光軸上の厚さしが大きると、防振レンズ群 $G_V$ の光軸上の厚さしが大きくなりすぎ、防振レンズ群 $G_V$ が大型化しズームレンズ全体の全長が長くなりすぎ、不都合であるばかりか、防振機構が複雑となるため、不都合である。なお、条件式(5)の下限を0.03とし、上限を0.15とすれば、より好ましい効果が得られる。

【0015】実際に防振レンズ群Gvを構成する際は、 前述の諸条件に加えて、以下の条件式(6)、(7)を 満たすことが望ましい。

0.  $0.6 < \Delta n$  (6)

 $5. \quad 0 < \Delta \nu \tag{7}$ 

但し、 $\Delta$  n:防振レンズ群 $G_v$ 中の最も物体側の凸レンズと、最も物体側の凹レンズとの屈折率の差

Δν:防振レンズ群Gv中の最も物体側の凸レンズと、 最も物体側の凹レンズとのアッペ数の差

である。条件式(6)の下限を越えると、望遠端での球面収差の補正が困難となり、その結果、良好な結像性能が得られなくなるため、不都合である。なお、このとき最も物体側の凸レンズの屈折率よりも、最も物体側の凹レンズの屈折率の方が高い。条件式(7)の下限を越えると、軸上色収差の発生が過大となり、その結果、良好な結像性能が得られなくなるため、不都合である。

【0016】さらに、ズームレンズの構成上、第2レン

ズ群 $G_2$ と第3レンズ群 $G_3$ は変倍系を構成するため、次の条件も重要である。

0.  $1 < |f_2| / f_1 < 0.45$  (8)

0.  $8 < f_L / f_S < 1.7$  (9)

但し、 f ₂:第2レンズ群G₂の焦点距離

f a:第3レンズ群Gaの焦点距離

である。条件式(8)の上限を越えると、望遠端での球面収差が負方向に甚大となるばかりか、コマ収差の変動が過大となって、不都合である。条件式(8)の下限を越えると、広角端での非点隔差が大となり、広角端と望遠端で歪曲収差が負方向に大きく移動し、ペッツパール和が負側に変移しやすくなり、不都合である。条件式

(9) の上限を越えると、球面収差が負方向に甚大となるばかりか、コマ収差の変動が過大となるため、不都合である。また、ペッツバール和も正側に変移しやすくなり、不都合である。条件式(9)の下限を越えると、ズームレンズ全体の全長が長くなり不都合であるばかりか、望遠端で歪曲収差が正方向に過大となり易く、不都合である。また、第3レンズ群Gaよりも物体側のレンズ群の径が大きくなり、不都合である。

【0017】また、第1レンズ群 $G_1$ は、合焦のための 負レンズ群 $G_{1N}$ の物側に、凸レンズ群 $G_{11}$ を有すること が望ましい。そして、以下の条件式を満たすことが望ま しい。

0.  $1.5 < L_{1N} / f_1 < 0.8$  (10)

但し、 $L_{1N}$ :  $\Box \nu \nu \vec{x}$  群 $G_{11}$  と合焦 $\nu \nu \vec{x}$  群 $G_{1N}$  との無限遠撮影時の空気間隔である。条件式(10)の上限を越えると、第 $1\nu \nu \vec{x}$  群 $G_{10}$  全長が大きくなりすぎるため、不都合である。また、ペッツバール和も正側に変移しやすくなり、不都合である。条件式(10)の下限を越えると、合焦 $\nu \nu \vec{x}$  群 $G_{1N}$  の $\nu \nu \vec{x}$  群 $G_{1N}$  のレンズ群 $G_{1N}$  なりすぎて不都合であるばかりか、合焦 $\nu \nu \vec{x}$  群 $G_{1N}$  なり、不都合である。さらには、第 $1\nu \nu \vec{x}$  群 $G_{11}$  は、合焦 $\nu \nu \vec{x}$  群 $G_{1N}$  の像側にものレンズ群 $G_{12}$  を有することが望ましい。このような構成により、第 $1\nu \nu \vec{x}$  群 $G_{1N}$  に対する屈折力配分の自由度が増すため、優れた合焦性能を達成するために好ましいのである。

【0018】また本発明においては、以下の条件式を満たすことが望ましい。

0. 2 < f<sub>1</sub>/(f<sub>w</sub>·Z) < 0. 8 (11)</li>但し、f<sub>w</sub>: ズームレンズ全体の広角端での焦点距離

2: ズームレンズ全体のズーム比である。条件式(11)の上限を越えると、第1レンズ群 $G_1$ の焦点距離  $f_1$ の大きさが大きくなりすぎるため、ズームレンズ全体の長さが大きくなってしまい不都合である。また、第2レンズ群 $G_2$ よりも像側のレンズの径が大きくなりがちとなり、不都合である。条件式(1)の下限を越えると、第1レンズ群 $G_1$ の焦点距離  $f_1$ の大きさが小さくなりすぎるため、変倍時の球面収差が

負方向に甚大となるばかりか、コマ収差の変動が過大となるため、不都合である。また、ペッツバール和も正側 に過度に変移しやすくなり、不都合である。

【0019】さて、このようなタイプは長焦点のズームレンズに向いており、以下の条件式を満たすことが望ましい。

 $f_{t}/L_{A} > 7.0$  (12)

 $f_{W}/L_{A}>3.5$  (13)

但し、f<sub>+</sub>: ズームレンズ全体の望遠端での焦点距離 L<sub>A</sub>: 画面対角長

である。条件式(11)、(12)をはずれると、本発明の狙いを逸脱するばかりか、諸収差をバランス良く補正することが困難となる。特に、像面湾曲とコマ収差の補正が困難となる。

【0020】実際に、ズームレンズを構成するときは、以上に述べた条件に加えて、第1レンズ群 $G_1$ と最終レンズ群 $G_2$ と固定とし、第2レンズ群 $G_2$ と第3レンズ群 $G_3$ との移動により、または、第2レンズ群 $G_2$ と最終レンズ群 $G_1$ との移動により、ズーミンクを行う構成とすることが望ましい。また、第3レンズ群 $G_3$ を配置するときには、第3レンズ群 $G_3$ と最終レンズ群 $G_1$ との間をほぼアフォーカルとすることが望ましい。このような構成を取ることにより変倍のための機構を簡素な構成とすることが可能である。

【0021】さて、ここで、具体的に各群を構成するときの各群の形状について述べると、最終レンズ群 $G_L$ については、防振レンズ群 $G_V$ を最終レンズ群 $G_D$ の最も像側に位置させるか、または凸レンズ群の像側に位置させることが好ましい。凸レンズ群の像側に位置させると、凸レンズ群の収斂作用により、防振レンズ群 $G_V$ のレンズ径を小型に出来るので好都合である。また、最終レンズ群 $G_L$ の全長やレンズ径を小さく構成出来る場合は、最終レンズ群 $G_L$ の全体を防振レンズ群 $G_V$ としても良い。

【0022】防振レンズ群Gvを2枚のレンズで構成して正屈折力とするときは、両凸レンズと物側に強い凹面を向けた凹メニスカスレンズとすることが望ましい。防振レンズ群Gvを3枚のレンズで構成して正屈折力とするときは、両凸レンズと両凹レンズと凸レンズにより構成することが好ましい。防振レンズ群Gvを2枚のレンズで構成して負屈折力とするときは、防振レンズ群Gvは少なくとも1枚の凹レンズを有し、且つ少なくとも1枚の凸レンズを有することが好ましい。

【0023】また、本発明のズームレンズを構成する何れかのレンズに屈折力分布型レンズや非球面レンズを用いれば、さらに良好な結像性能や防振性能が得られる。なお、本発明では、防振レンズ群Gvを光軸とほぼ直交

[レンズ諸元]

No r d v<sub>d</sub> n<sub>d</sub> n<sub>g</sub>
1 662.5300 15.5000 82.52 1.497820 1.505265 G<sub>11</sub>

する方向に移動させる方法を述べているが、防振レンズ群Gvを光軸上または光軸近傍の所定の点を中心に旋回運動させても良い。つまり、シフト成分以外にチルト成分を加えて防振駆動することにより、更に良好な防振光学性能が得られる。加えて、防振レンズ群Gv中の一部のレンズ群を偏心駆動させて、防振することも可能である。なお、第1レンズ群中のいずれかの凸レンズ群を光軸上に動かして合焦しても良い。

#### [0024]

【発明の実施の形態】以下に、本発明の実施の形態について説明する。図1、図4及び図7は、それぞれ本発明の第1、第2及び第3実施例にかかるズームレンズのレンズ構成を示す図である。各実施例のズームレンズとも、本発明を非常に長焦点の超望遠ズームレンズに適用したものである。第1実施例のズームレンズは、物体側から順に、第1レンズ群 $G_1$ と、負の屈折力を有する第2レンズ群 $G_2$ と、最終レンズ群 $G_1$ とからなる。また第2実施例と第3実施例のズームレンズは、物体側から順に、第1レンズ群 $G_1$ と、負の屈折力を有する第2レンズ群 $G_2$ と、正の屈折力を有する第3レンズ群 $G_3$ と、最終レンズ群 $G_1$ とからなる。

【0025】各実施例とも、第 $1\nu\nu$ ズ群 $G_1$ は物体側から順に、凸 $\nu\nu$ ズ群 $G_{11}$ と、負の屈折力を有する合焦 $\nu\nu$ ズ群 $G_{1N}$ と、凸 $\nu\nu$ ズ群 $G_{12}$ とからなる。最終 $\nu\nu$ ズ群 $G_{L}$ は、防振 $\nu\nu$ ズ群 $G_{V}$ を含んでいる。各実施例とも、合焦 $\nu\nu$ ズ群 $G_{N}$ を光軸方向に移動することによって合焦を行い、防振 $\nu\nu$ ズ群 $G_{V}$ を光軸とほぼ直交する方向に移動することによって防振補正を行っている。また第1実施例では、第 $2\nu\nu\nu$ ズ群 $G_{L}$ とを光軸方向に移動することによって変倍を行っており、第2実施例と第3実施例では、第 $2\nu\nu$ ズ群 $G_{2}$ と第 $3\nu\nu$ ズ群 $G_{3}$ とを光軸方向に移動することによって変倍を行っている。

【0026】以下の表  $1 \sim$ 表 3 に、それぞれ第  $1 \sim$ 第 3 実施例の諸元を示す。各表の  $[\nu \nu \varkappa$ 諸元]中、第 1 欄 N o は物体側からの各  $\nu \nu \varkappa$ 面の番号、第 2 欄 r は各  $\nu \nu \varkappa$ 面の曲率半径、第 3 欄 d は各  $\nu \nu \varkappa$ 面の間隔、第 d 欄  $\nu \omega d$  は d d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d e d

(1)~(13)の値とを示す。

[0027]

【表 1 】

```
2.0000
2
   -1317.3200
                                                1.505265 G11
                                    1.497820
                            82.52
                 27.0000
3
      366.1710
                  8.2000
     -595, 5800
4
                                                1.776948 G11
                                     1.749501
                            35.19
                  7.0000
5
     -550. 7400
                   0.3000
      936.3600
6
                                     1.497820
                                                 1.505265 G11
                            82.52
                  19.0000
7
      269.9760
                    (ab)
     4433. 9970
8
                                                 1.846310
                                                           Gin
                   4. 5000
                                     1.804581
                            25.50
     -721. 9200
9
                                                 1.712319
                                                           Gin
                                     1.696800
                   3.8000
                            55.60
10
     -331.9570
                   9.0000
      147.0490
11
                                                           Gin
                                     1.804581
                                                 1.846310
                   9.8000
     -708. 3800
                            25.50
12
                                                            G_{1N}
                                                 1.821068
                                     1.796310
                             40.90
                   2.8000
13
      -93.4900
                   (d_{14})
      574.5604
14
                                                 1.776948 G12
                                     1.749501
                             35. 19
                   4.2000
     2151.5997
15
                                                 1.505265 G<sub>12</sub>
                                     1.497820
                             82.52
      279.0760
                  11.6000
16
                   (d<sub>17</sub>)
     -133.6300
17
                                                 1.774461 G<sub>2</sub>
                                      1.740000
                             28.19
                   7.3000
       145.2250
18
                                                            G2
                                                 1.751403
                                      1.733500
                             51.09
                   2.9000
      -190.6860
19
                   7.0000
       103.6120
20
                                                  1.818801 G<sub>2</sub>
                                      1.796681
                   3.7000
                             45.37
      -165.4190
21
                    0.1000
22
       338.4810
                                                           G2
                                                  1.699894
                                      1.672700
                    4.0000
                             32.17
        88.7090
23
                    (d_{24})
        91.6570
24
                                                  1.653133 G<sub>L</sub>
                                      1.640000
                    8.9000
                             60.03
       107.8234
 25
                                                  1.821068
                                                             G_{L}
                                      1.796310
                             40.90
                    4.0000
     -1108. 1819
 26
       108.4408
                    5.0000
 27
                                                  1.495932
                    8.1000
                                      1.487490
                              70.41
       195. 2262
 26
                    3.0000
      -183.0491
 29
                                      1.487490
                                                  1.495932 GL Gv
                    5.7000
                              70.41
        364. 4336
 30
                    4.0000
 31
       -492.4989
                                                  1.616844 GL Gv
                                      1.595071
                              35.51
                    1.0000
       -220.0000
 32
                    2.0000
        263.8906
 33
                                                   1.748045 GL Gv
                              37.90
                                      1.723421
                    5.7000
        224.0339
 34
                     (d 35)
       -427.9968
 35
                    87.7401
       (開口絞り)
  36
                    93.5094
       (固定絞り)
  37
                                                   1.526703
                                       1.516800
                     2.0000
                              64.10
           \infty
  38
                   119.7163
           ∞
  39
   [可変間隔]
                       望遠端
          広角端
                      174. 55565
          174. 55565
  dв
                       16. 15305
           16. 15305
  d 14
                       99.46369
           84.61909
  d 17
                        1.58577
           53.41727
   d 24
           25.68265
                       62,66245
   d 35
   [防振データ]
  防振レンズ群Gν移動量:ΔS=+5
                   広角端: +3.970
  像の移動量
```

望遠端:+4.395

| [レンズ諸元]                |             |                    |        |           |           |                  |  |
|------------------------|-------------|--------------------|--------|-----------|-----------|------------------|--|
| Νo                     | r           | d                  | να     | n a       | n 🕳       |                  |  |
| 1                      | 308. 9479   | 12. 0000           | 82. 52 | 1. 497820 | 1.505260  | $G_{11}$         |  |
| 2                      | -789. 7229  | 0.5000             |        |           |           |                  |  |
| 3                      | 138. 1325   | 5. 6000            | 31.62  | 1.756920  | 1. 787940 | G11              |  |
| 4                      | 94. 2767    | 20. 0000           | 82. 52 | 1. 497820 | 1.565260  | G 1 1            |  |
| 5                      | 538. 8153   | (ds)               |        |           |           |                  |  |
| 6                      | -2329. 7471 | 3. 5000            | 53. 93 | 1. 713000 | 1. 729410 | Gin              |  |
| 7                      | 163. 1848   | 5. 0000            |        |           |           |                  |  |
| 8                      | -400. 1187  | 3. 5000            | 49. 52 | 1. 744430 | 1. 763210 | Gin              |  |
| 9                      | 142. 8639   | 1. 5000            |        |           |           |                  |  |
| 10                     | 147. 9907   | 6. 7000            | 31.08  | 1. 688930 | 1. 717750 | Gin              |  |
| 11                     | -903. 7688  | (d11)              |        |           |           |                  |  |
| 12                     | 234. 0780   | 5. 5000            | 60. 14 | 1. 620410 | 1. 633140 | G12              |  |
| 13                     | -708. 1720  | 0.2000             |        |           |           |                  |  |
| 14                     | 186. 2251   | 3.6000             | 27. 61 | 1. 755200 | 1. 791120 | G12              |  |
| 15                     | 125. 5000   | 7. 2000            | 82. 52 | 1. 497820 | 1.505260  | G12              |  |
| 16                     | -452. 3328  | (d <sub>18</sub> ) |        |           |           |                  |  |
| 17                     | 7497. 9146  | 2. 1000            | 58. 50 | 1. 651600 | 1.665380  | G <sub>2</sub>   |  |
| 18                     | 70. 7008    | 5. 0000            |        |           |           |                  |  |
| 19                     | -75. 6345   | 2. 3000            | 53. 93 | 1.713000  | 1. 729410 | G2               |  |
| 20                     | 65. 0000    | 4. 0000            | 23. 01 | 1. 860740 | 1. 910650 | G <sub>2</sub>   |  |
| 21                     | 332. 1910   | (d <sub>21</sub> ) |        |           |           |                  |  |
| 22                     | 182. 5239   | 7. 2000            | 58. 54 | 1.612720  | 1.625690  | Gз               |  |
| 23                     | -50. 2000   | 2. 4000            | 31.62  | 1. 756920 | 1. 787940 | Gз               |  |
| 24                     | -130. 1925  | (d <sub>24</sub> ) |        |           |           |                  |  |
| 25                     | (開口絞り)      | 0. 5000            |        |           |           |                  |  |
| 26                     | 112. 9942   | 4. 6000            | 82. 52 | 1. 497820 | 1. 505260 | $G_{\mathtt{L}}$ |  |
| 27                     | 245. 8845   | 2.0000             |        |           |           |                  |  |
| 28                     | 158. 9831   | 3.0000             | 54. 55 | 1. 514540 | 1. 526319 | $G_L$ $G_V$      |  |
| 29                     | 477. 1798   | 4.8000             | •      |           |           |                  |  |
| 30                     | 300.0000    | 3.0000             | 38. 03 | 1.603420  | 1. 623810 | $G_L$ $G_v$      |  |
| 31                     | 118. 8950   | 4.0000             |        |           |           |                  |  |
| 32                     | 150. 8241   | 4. 0000            | 47. 07 | 1. 670030 | 1.688063  | $G_L$ $G_V$      |  |
| 33                     | -4987. 1629 |                    |        |           |           |                  |  |
| 34                     | (固定絞り)      | 34.6000            |        |           |           |                  |  |
| 35                     | 153. 6804   |                    | 53.48  | 1. 547390 | 1.560219  | $G_{\mathtt{L}}$ |  |
| 36                     | 42. 5831    | 2.0000             |        |           |           |                  |  |
| 37                     | 50. 1508    |                    | 45. 37 | 1. 796680 | 1.818790  | $G_{\mathtt{L}}$ |  |
| 38                     | 47. 4766    | 5. 5000            | 69. 98 | 1.518601  | 1.527667  | $G_{\mathtt{L}}$ |  |
| 39                     | 152. 6898   | 131.3130           |        |           |           |                  |  |
| [可変間隔]                 |             |                    |        |           |           |                  |  |
|                        | 広角端         | 望遠端                | 1      |           |           |                  |  |
| dь                     | 68. 43775   |                    |        |           |           |                  |  |
|                        | 26. 85652   |                    |        |           |           |                  |  |
| d 18                   |             | 50. 919            |        |           |           |                  |  |
| d 21                   |             |                    |        |           |           |                  |  |
| d 24 10.00216 38.15796 |             |                    |        |           |           |                  |  |
| [防振データ]                |             |                    |        |           |           |                  |  |
| [内加スナーク]               |             |                    |        |           |           |                  |  |

防振レンズ群Gν移動量: ΔS=+2

像の移動量: 広角端:-1.404

望遠端:-1.404

[0029]

【表3】

| . ۲ ت <i>ـ</i> ۲                 | ンズ諸元]                  |                    |                |           |           |                               |
|----------------------------------|------------------------|--------------------|----------------|-----------|-----------|-------------------------------|
| No                               | r                      | d                  | να             | n a       | n 🕳       |                               |
| 1                                | 308. 9479              | 12.0000            | 82. 52         | 1. 497820 | 1.505260  | G 11                          |
| 2                                | -789. 7229             | 0.5000             |                | •         | L.        | _                             |
| 3                                | 138. 1325              | 5.6000             | 31.62          | 1.756920  | 1. 787940 | G11                           |
| 4                                | 94. 2767               | 20.0000            | 82. 52         | 1. 497820 | 1. 505260 | G <sub>11</sub>               |
| 5                                | 538. 8153              | (ab)               |                |           | . 500410  | C                             |
| 6                                | -2329. 7471            | 3.5000             | 53. 93         | 1. 713000 | 1. 729410 | Gin                           |
| 7                                | 163. 1848              | 5. 0000            |                | . 544400  | 1 762210  | Gin                           |
| 8                                | -400. 1187             | 3. 5000            | 49. 52         | 1. 744430 | 1. 763210 | GIN                           |
| 9                                | 142. 8639              | 1. 5000            | 01 00          | 1. 688930 | 1. 717750 | Gin                           |
| 10                               | 147. 9907              | 6. 7000            | 31. 08         | 1. 000930 | 1. 11.100 | O III                         |
| 11                               | -903. 7688             | (d <sub>11</sub> ) | 60 14          | 1.620410  | 1. 633140 | G 12                          |
| 12                               | 234. 0780              | 5. 5000            | 60. 14         | 1.020410  | 2,0000    |                               |
| 13                               | -708. 1720             | 0. 2000<br>3. 6000 | 27. 61         | 1.755200  | 1. 791120 | G 12                          |
| 14                               | 186. 2251<br>125. 5000 | 7. 2000            | 82. 52         | 1. 497820 | 1. 505260 | G 12                          |
| 15                               | -452. 3328             | (d <sub>16</sub> ) | <b>52</b> , 52 |           |           |                               |
| 16<br>17                         | 7497. 9146             | 2. 1000            | 58. 50         | 1.651600  | 1.665380  | $G_{\mathbf{z}}$              |
| 18                               | 70. 7008               | 5, 0000            |                |           |           |                               |
| 19                               | -75. 6345              | 2.3000             | 53. 93         | 1.713000  | 1. 729410 | G2                            |
| 20                               | 65. 0000               | 4. 0000            | 23. 01         | 1.860740  | 1. 910650 | G <sub>2</sub>                |
| 21                               | 332. 1910              | (d <sub>21</sub> ) |                |           |           | _                             |
| 22                               | 182. 5239              | 7. 2000            | 58. 54         | 1.612720  | 1. 625690 | _                             |
| 23                               | -50. 2000              | 2.4000             | 31.62          | 1.756920  | 1. 787940 | Gз                            |
| 24                               | -130. 1925             | ( d 24)            |                |           |           |                               |
| 25                               | (開口絞り)                 | 0.5000             |                | 105000    | 1 505060  | GL                            |
| 26                               | 101. 9817              | 4. 6000            | 82. 52         | 1. 497820 | 1.505260  | GL                            |
| 27                               | 393. 7533              | 2. 0000            | 00.15          | 1 679700  | 1. 699894 | G <sub>L</sub> G <sub>v</sub> |
| 28                               | 275. 7897              | 3. 0000            | 32. 17         | 1. 672700 | 1. 05505  |                               |
| 29                               |                        | 2.0000             | 39. 82         | 1.869940  | 1. 897730 | G <sub>L</sub> G <sub>V</sub> |
| 30                               |                        | 3.0000             | 39. 62         | 1. 005510 | 2, 22     |                               |
| 31                               | 142. 7415              | 4. 0000<br>4. 0000 | 47. 07         | 1. 670030 | 1. 688063 | G <sub>L</sub>                |
| 32                               |                        |                    | 41.01          | .,        |           | 4                             |
| 33                               |                        |                    |                |           |           |                               |
| 34                               |                        |                    |                | 1. 516800 | 1.52670   | 3 G <sub>L</sub>              |
| 35<br>36                         |                        |                    |                |           |           |                               |
| 37                               |                        |                    |                | 1.772789  | 1. 79232  | 4 G <sub>L</sub>              |
| 36                               |                        |                    | 54. 55         | 1. 514540 | 1. 52631  | 9 G <sub>L</sub>              |
| 39                               |                        |                    | <b>i</b>       |           |           |                               |
| 「可変間隔」                           |                        |                    |                |           |           |                               |
| •                                | 広角端                    | 望遠                 | 端              |           |           |                               |
| d                                | 68. 437                | 775 68. 4          | 13775          |           |           |                               |
| d                                | 26.850                 | 652 26.8           | 85652          |           |           |                               |
| d <sub>16</sub> 4.68513 50.91943 |                        |                    |                |           |           |                               |
| c                                | 75.62                  | 639 1.             | 23629          |           |           |                               |
|                                  |                        |                    |                |           |           |                               |

d 24 14. 49508 42. 65088

[防振データ]

防振レンズ群Gv移動量: △S=+1.5

像の移動量: 広角端:+0.896

望遠端:+0.896

| [0030] |
|--------|
|--------|

|      |                                 |           | 【表          | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|---------------------------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 実施例番号                           | 1         | 2           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | ΔS                              | 5         | 2           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | f L                             | 171. 689  | 225. 000    | 225. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | f v                             | 433. 887  | 272.470     | -312. 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | f in                            | -122. 298 | -160. 000   | -160. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | f 1                             | 895. 485  | 235. 000    | 235. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | f 2                             | -116. 401 | -51.500     | -51. 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | fз                              | _         | 160.000     | 160. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | r vL                            | -427. 997 | -4987. 1629 | 142. 7415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | L                               | 18. 4     | 18.8        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Z                               | 1. 417    | 3.000       | 3. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Lin                             | 174. 556  | 68. 438     | 68. 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | f w                             | 1200. 15  | 200.000     | 200. 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | f <sub>T</sub>                  | 1699. 706 | 599. 998    | 599. 998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | LA                              | 43. 2     | 43. 2       | 43. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1)  | $\Delta S/ f_L $                | 0.0291    | 0. 00889    | 0.00667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)  | $ f_{v} /f_{L}$                 | 2. 527    | 1. 211      | 1. 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (3)  | $ f_{1N} /f_1$                  | 0. 137    | 0. 681      | 0.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (4)  | rvL/fv                          | 0. 986    | 18. 304     | 0. 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (5)  | L/f <sub>L</sub>                | 0. 107    | 0. 0836     | 0. 0356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (6)  | Δn                              | 0. 107581 | 0. 08888    | 0. 19724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (7)  | Δν                              | 34. 9     | 16. 52      | 7. 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (8)  | f 2   / f 1                     | 0. 130    | 0. 219      | 0. 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (9)  | f <sub>L</sub> /f <sub>3</sub>  | _         | 1. 406      | 1. 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (10) | L <sub>in</sub> /f <sub>i</sub> | 0. 195    | 0. 291      | 0. 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (11) | $f_{1}/(f_{w}\cdot Z)$          | 0. 527    | 0. 392      | 0. 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (12) | f t/LA                          | 39. 345   | 13. 889     | 13. 889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (13) | f w/LA                          | 27. 781   | 4. 630      | 4. 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                 |           |             | and the first term to the state of the state |

【0031】図2と図3に、それぞれ第1実施例の広角端と望遠端での球面収差、非点収差、歪曲収差、及び横収差を示す。横収差(A)は防振レンズ群Gvを光軸上に配置した状態を示し、横収差(B)は防振レンズ群Gvを光軸と直交する方向にΔSだけ移動して防振補正を行った状態を示す。同様に図5と図6に、それぞれ第2実施例の広角端と望遠端での諸収差を示し、図8と図9に、それぞれ第3実施例の広角端と望遠端での諸収差を示す。各収差図において、FroはFナンバー、Yは像高を表す。非点収差図中、実線Sはサジタル像面を示し、破線Mはメリディオナル像面を示す。各収差図から明らかなように、各実施例とも、各焦点距離状態において防振時も含めて諸収差が良好に補正されていることがわかる。

#### [0032]

【発明の効果】本発明によれば防振機能を備え、長焦点

を有し、写真用およびビデオ用等に好適な高性能のズー ムレンズを提供することができる。

#### 【図面の簡単な説明】

【図1】本発明による第1実施例のレンズ構成図

【図2】本発明による第1実施例の広角端での諸収差図

【図3】本発明による第1実施例の望遠端での諸収差図

【図4】本発明による第2実施例のレンズ構成図

【図5】本発明による第2実施例の広角端での諸収差図

【図6】本発明による第2実施例の望遠端での諸収差図

【図7】本発明による第3実施例のレンズ構成図

【図8】本発明による第3実施例の広角端での諸収差図

【図9】本発明による第3実施例の望遠端での諸収差図 【符号の説明】

G1…第1レンズ群

Gın…合焦レンズ群

G<sub>11</sub>、G<sub>12</sub>…凸レンズ群

G2…第2レンズ群

Ga…第3レンズ群

GL…最終レンズ群

Gv…防振レンズ群

S…開口絞り

FS…固定絞り

【図1】



[図2]



【図4】



【図5】





【図7】



