

Final Presentation: Car Safety

ALI

JYOTI

MADHAN

TAREK

Outline

Problem Statement & Dataset

Problem Statement

- What factors lead to severe road accidents?
- How relevant should standardized crash tests be?
 - How do they relate to the real world?
- Generally pursue anything interesting relating to car safety.

UK Road Safety

- Consists of 3 tables:
 - Vehicles
 - Accidents
 - Casualties
- Attributes Vehicle_Make and Vehicle_Model retrieved from Kaggle
 - Accident_Index and Vehicle_Reference for mapping

NHTSA

- 4 tables out of 6 were used:
 - Test data
 - Vehicle data
 - Barrier data
 - Occupant data
- Removed unrelated technical attributes
- Removed outliers
- API calls to get overall and crash specific star rating
 - Done for each test
 - Returned as JSON text.

Cars in advertisements

Premise was all about car safety quality.

Expectation

• Straightforward direct relationship between car ratings and average accident severeness.

TECHNOLOGY NEWS DECEMBER 4, 2019 / 11:20 AM / 2 MONTHS AGO

Tesla Model X gets 5-star rating from European safety agency

1 MIN READ

Reality

Lots of subtle factors affecting outcome.

SELF-DRIVING TESLA 'KILLS' ROBOT IN LAS VEGAS CRASH, RAISING SUSPICIONS

ABOUT RUSSIAN FIRM

Russian-made Promobot robot has previously met and shaken hands with Vladimir Putin

Anthony Cuthbertson | @ADCuthbertson Wednesday 9 January 2019 13:07

Am I a joke

to you?

Descriptive Mining

Top tested car models

- CHEVROLET
- FORD
- TOYOTA
- BMW
- NISSAN
- MERCEDES-BENZ
- AUDI
- HONDA
- DODGE
- HYUNDAI
- VOLKSWAGEN
- MAZDA
- VOLVO
- KIA
- INFINITI
- MITSUBISHI
- OTHERS

Analysis of car ratings

- NCAP ratings not on the same scale across the years
- Rating system revised in 2011
- Two solutions:
 - Chunk data to pre-2011 & post-2011
 - Normalize the car ratings

Linking UK Road Safety and NHTSA

• Out of 108,668 distinct vehicle (car and van) model/year combinations in UK data, 15,308 (14%) unique model/year were matched with an NCAP rating.

Severe casualties vs NCAP ratings

- No direct correlation between % of severe casualties and car ratings in the real world.
- Driver demographics and car type are the most influencing factors to safety in a vehicle.
- To determine the 'correctness' of the safety rating, accidents were grouped based on these factors.
- Significant negative correlations obtained between % of severe casualties and NCAP ratings upon grouping.

Maneuvre vs Severeness

Rating distribution

Accident Severity vs Body type

Predictive Mining

Predictive Mining

- Focus was on 3 distinct predictions:
 - Predicting NCAP star ratings from crash test data.
 - Predicting number of casualties for a given accident.
 - Predicting casualty/accident severities for given accidents.
- Multiple machine learning methods applied.

Predicting the NCAP Star Ratings

- On what basis is a star rating given?
 - Can we predict the missing star ratings from the NCAP tests?
- Multiple challenges:
 - NCAP rating system change chunk the data or use the normalization method?
 - Is it a linear or non-linear relationship?
 - Heavy class imbalances:

Predicting the NCAP Star Ratings

Before 2011

	Overall stars	Overall front stars	Front driver stars	Front passenger stars	Overall side stars	Side driver stars	Side passenger stars	Rollover stars	Side pole stars
Log Regr	0.69	0.28	0.17	0.2	0.47	0.19	0.19	0.26	0.28
Decision Tree	0.73	0.9	0.34	0.38	1.0	0.33	0.3	0.51	0.72
Random Forest	0.73	0.96	0.38	0.46	1.0	0.42	0.38	0.62	0.72
SVM	0.73	0.96	0.34	0.46	1.0	0.4	0.34	0.53	0.72

After 2011

	Overall stars	Overall front stars	Front driver stars	Front passenger stars	Overall side stars	Side driver stars	Side passenger stars	Rollover stars	Side pole stars
Log Regr	0.25	0.22	0.17	0.24	0.24	0.3	0.31	0.28	0.17
Decision Tree	0.83	0.69	0.81	0.68	0.72	0.7	0.8	0.77	0.53
Random Forest	0.8	0.72	0.81	0.69	0.8	0.75	0.78	0.75	0.64
SVM	0.79	0.66	0.75	0.68	0.8	0.75	0.77	0.72	0.64

Normalized ratings

	Overall stars	Overall front stars	Front driver stars	Front passenger stars	Overall side stars	Side driver stars	Side passenger stars	Rollover stars	Side pole stars
Log Regr	0.17	0.14	0.14	0.16	0.15	0.16	0.27	0.2	0.15
Decision Tree	0.43	0.42	0.41	0.38	0.38	0.37	0.44	0.64	0.7
Random Forest	0.48	0.47	0.44	0.39	0.44	0.47	0.51	0.69	0.74
SVM	0.45	0.47	0.41	0.35	0.41	0.47	0.46	0.65	0.74

Prediction of Accident Severity

- Given the attributes of a particular accident:
 - Can we predict whether the it was slight, severe, or fatal?
- Multiple machine learning methods applied:
 - Skope rules
 - Decision trees
 - Random forests
- Sampling techniques:
 - \circ Group fatal & serious accidents \rightarrow under sample the slights

Prediction of Accident Severity

Random forest performed the best:

	Precision	Recall	F1 score
Severe	0.70	0.71	0.71
Slight	0.71	0.70	0.70

Most interesting findings in the feature importance.

Feature	Importance
Engine_Capacity_(CC)	0.164214
Age_of_Vehicle	0.125550
Day_of_Week	0.085836
Age_Band_of_Driver	0.077059
Vehicle_Manoeuvre	0.071134
1st_Point_of_Impact	0.062993
Number_of_Casualties	0.054869
Number_of_Vehicles	0.049742
1st_Road_Class	0.037799
Speed_limit	0.037605

Prediction of Casualty Severity

- Now able to include significant attributes:
 - Age of the casualty
 - Sex of the causality
 - Whether they where a pedestrian, car occupant, cyclist, etc.
- Two classes: severe casualty or slight casualty
- Model used: Logistic Regression
- After some additional preprocessing and using SMOTE sampling \rightarrow 88% accuracy reached

One Additional Predictive Task – Casualty Severity

- → Highest casualty prediction accuracy: 88%.
 - → Augment NCAP ratings with the accident data.
 - → Accuracy rose to 92%.
- → Most important feature: *Rollover Stars*

One Additional Predictive Task – Casualty Severity

 \rightarrow Rollover Stars \cong Body Type

Dataset Conclusions

Main Conclusions

Most important accident severity predictors:

 Driver age Driving style Driver sex Performance car vs. family car • Speed limit Collision speed Road type Occupant car's body type Opponent car's body type Collision type Point of Impact

- Factor in: age of vehicle, casualty age, weather conditions, etc.
- → Standardized safety ratings are not so significant in real world collisions.

Main Conclusions

Insurance companies are well aware of this.

High safety rating ≠ immunity on the roads.

- Still, do not completely disregard cars safety rating.
 - But put a higher emphasis on your driving style and drive defensively.

Challenges faced

Challenges faced

- Multiple Datasets
 - Data standardization specific to dataset
 - Revisited the merging of datasets
 - Too much data to discard
- Missing values, mostly categorical
- Failed attempts:
 - Initial hypothesis did not hold true
 - PCA, Clustering
 - Predicting number of casualties

Tools Used

Tools Used

- Python
- Jupyter Notebook
- Google Colab
- Matplotlib, Seaborn, Pyplot
- Scikit-learn
- GitLab
- Whatsapp
- Slack?

Learning Outcomes

Learning Outcomes

- Experience with <u>real-world</u> data from <u>multiple</u> sources
- Proper linkages across multiple data sources must be maintained
- Not just finding answers, but asking the right questions
- Not to be biased with an initial hypothesis
- Assessing the raw data and processing it for further descriptive and predictive phases
- Descriptive Mining plays an important role in:
 - Understanding the data
 - Discovering underlying patterns
 - Finding hidden correlations

Learning Outcomes (contd.)

- Selecting and applying proper visualization methods for reporting analytical findings
- Systematically apply supervised and unsupervised algorithms
- Not all algorithms work for every dataset (eg. clustering in our case)
- Points to bear in mind before Predictive Mining:
 - Class imbalance
 - Overall Accuracy not a true measure
- Accuracy vs. computational cost trade-off
- Accuracy vs. comprehensibility trade-off

Thank You