## Introduction to Deep Learning

#### Mnacho Echenim

Grenoble INP-Ensimag

2022-2023



Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 1 / 30 >

## A beginner's trap

- It is standard to initialize all biases to 0
- What if we initialize all weights to 0?
  - More generally, what if we initialize all weights at layer j to the same value  $o^j$ ?
- Forward propagation: for all layers j, net input and activation components have the same value:  $\forall k,p \in \{1\dots,n_j\},\ \zeta_k^j=\zeta_p^j,\ \text{hence}\ \alpha_k^j=\alpha_p^j\ \text{(induction)}$
- Backpropagation: for all layers j, error components have the same value:  $\forall k,p \in \{1\dots,n_j\}, \ \mathcal{B}_k^j = \mathcal{B}_p^j = \mathfrak{b}^j \ \text{(backward induction)}$
- ullet Gradient computation: for all layers j we have

$$\nabla_{W^j} \mathcal{C} = \alpha^{j-1} \cdot \left[ \mathcal{B}^j \right]^{\mathrm{T}} = \alpha^{j-1} \cdot (\mathfrak{b}^j, \dots, \mathfrak{b}^j),$$

so that the weight upgrade for each neuron in layer j is  $\mathfrak{b}^j \cdot \alpha^{j-1}$ 



Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 3 / 30

| lotes |  |  |  |  |
|-------|--|--|--|--|
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
|       |  |  |  |  |
| Notes |  |  |  |  |
| lotes |  |  |  |  |
| Votes |  |  |  |  |
| Notes |  |  |  |  |

### Initial weights

- The network obtained after the training phase can strongly depend on the initial weights
  - ▶ If the initial network is at a local minimum, training will be useless
  - If all initial weights in a layer are equal, they will be updated in the same way
- Standard technique: random initialization
  - ▶ But depends on the architecture of the network
  - ▶ Gaussian initialization: weights of layer i are initialized with a value drawn from a Gaussian distribution with 0 mean and  $1/\sqrt{n_{i-1}}$  standard deviation, where  $n_{i-1}$  is the size of layer i-1
  - ▶ Xavier initialization: weights of layer i are initialized with a value drawn from the Uniform distribution on  $\left[-\frac{\sqrt{6}}{\sqrt{n_i+n_{i+1}}},\frac{\sqrt{6}}{\sqrt{n_i+n_{i+1}}}\right]$

#### Note

- Initialization schemes frequently depend on the activation function that is used
- For example, biases are sometimes initialized to a small value when using ReLU activations



Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023

< 4 / 30 >

### Activation functions

- Theoretically, any nonpolynomial (derivable) function could be used
- Issues to consider:
  - ► Computation cost of applying the function
  - ► Computation cost of applying the derivative of the function
  - ► The issue of vanishing/exploding gradients
  - ► The issue of dead neurons
- See also Stanford lecture: https://www.youtube.com/watch?v=wEoyxEOGP2M



Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 6 /

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

# Sigmoid (logistic) activation function

• 
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

• 
$$\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x))$$

• Used to be popular: biological interpretation

Output is always strictly positive



INP Ensima

Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 7 / 30

## The problem with positive inputs

- Assume  $\alpha^j$ , the input to layer j+1, is always positive
- ullet Recall that the weight vector of neuron  $u_k^{j+1}$  is updated by  $\mathcal{B}_k^{j+1}\cdot lpha^j$
- $\bullet$  Thus, all its components are updated in the same direction, depending on the sign of  $\mathcal{B}_k^{j+1}$

| Notes |  |
|-------|--|
| Notes |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

## Vanishing gradients: illustration



We have:

$$\mathcal{B}^{L} = \Phi'(\zeta^{L}) \cdot \mathcal{C}'(\alpha^{L}, \rho) \leq \frac{\mathcal{C}'(\alpha^{L}, \rho)}{4} 
\mathcal{B}^{L-1} = \Phi'(\zeta^{L-1}) \cdot \omega^{L} \cdot \mathcal{B}^{L} \leq \omega^{L} \cdot \frac{\mathcal{C}'(\alpha^{L}, \rho)}{4^{2}} 
\vdots 
\mathcal{B}^{i} = \Phi'(\zeta^{i}) \cdot \omega^{i+1} \cdot \mathcal{B}^{i+1} \leq \left(\prod_{j=L}^{i+1} \omega^{j}\right) \cdot \frac{\mathcal{C}'(\alpha^{L}, \rho)}{4^{L-i+1}}$$

- ullet Except in the case where the weights are large, the 4<sup>L-i+1</sup> denominator will cause the gradients to be very small
- This is a general problem for very deep neural networks



Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 9 / 30 >

### tanh activation function

- $tanh(x) = \frac{exp(x) exp(-x)}{exp(x) + exp(-x)}$
- $\tanh'(x) = 1 (\tanh(x))^2$
- Centered around 0
- There is still the vanishing gradient problem





| -     |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| -     |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |

# Rectified Linear Unit (ReLU) activation function

- $\operatorname{ReLU}(x) = \max(0, x)$
- $\operatorname{ReLU}'(x) = \mathbb{1}_{\{x>0\}}$  (debatable)
- A. Krizhevsky: ImageNet Classification with Deep Convolutional Neural Networks (2012): image classifier trained six times faster with  $\operatorname{ReLU}$  than with tanh



Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023

### On dead neurons

- ullet Assume the weights and bias of a neuron are such that  $\omega^{\mathrm{T}}\alpha + \beta < 0$  during the training phase
- This can happen when:
  - ▶ The input to the neuron is always positive and the weights are negative
  - ▶ The weights are small and the bias is negative
    - \* Such a case could occur if a large learning rate is used
- The activation of this neuron will always be 0
- The gradient for this neuron will always be 0
- The neuron has no contribution and cannot be updated



| Notes |  |  |
|-------|--|--|
| Notes |  |  |

# Leaky ReLU

- LeakyReLU(x) =  $\mathbb{1}_{\{x<0\}} \cdot \alpha x + \mathbb{1}_{\{x>0\}} \cdot x$
- LeakyReLU'(x) =  $\alpha \mathbb{1}_{\{x<0\}} + \mathbb{1}_{\{x>0\}}$
- The value of  $\alpha$  is small (generally 0.01)



INP Ensimag

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 13 / 30 >

### Recommendations on activation functions

- Many activation functions
  - ightharpoonup In particular, many variants of  ${
    m ReLU}$
- Choose one that is popular and stick to it
  - ► Uniformly on all layers



## What should the goal of training a neural network be?

- At each epoch, weights are updated to reduce the training error
- The goal of training should be to obtain a network that performs well on unknown
  - ▶ Given a fresh set of samples, the error on this set should be as low as possible
- The goal of training should be to minimize this test error



Notes

Notes

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 16 / 30 >

### What can happen when training a neural network

- At the beginning, the neural network is completely off and the training error is large, as the network parameters have not been updated yet (underfitting)



|      | After some time, the training error has been reduced and the network starts behaving nicely                      |                     |                      | - |      |  |
|------|------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---|------|--|
|      | As we keep training the network, the training error is close to 0, but the test error will increase: the network | ·····               | <b>-</b>             | - |      |  |
|      | is <b>overfitting</b> the data                                                                                   |                     |                      | _ |      |  |
|      |                                                                                                                  |                     |                      | - | <br> |  |
|      |                                                                                                                  |                     | « GRENOBLE           | _ | <br> |  |
| acho | D Echenim (Grenoble INP-Ensimag) Introduction t                                                                  | to Deep Learning 20 | 022-2023 < 17 / 30 > |   |      |  |
|      |                                                                                                                  |                     |                      |   |      |  |

### Detecting overfitting

- Separate samples into (at least) two sets:
  - ▶ The training set, which is used to learn the parameters of the neural network
  - ► The validation set, which is used to evaluate the network
- When the loss on the validation set stops decreasing, the network is probably overfitting the data ("learning noise")



Ensimag

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 18 / 30 >

### Regularization techniques

- Techniques designed to ensure the gap between training and generalization errors is not too large
- General principle: impose preferences on the optimal weights that are computed
  - ▶ By constraining the form of these weights (e.g. weight penalties)
  - ▶ By restricting the computation resources (e.g. early stopping)
  - ▶ By modifying the way weights are updated (e.g. dropout)
- A lot of ongoing research on this topic

### Importance of regularization

In practice, deep learning architectures that give good results are large, and have had proper regularization techniques applied to them



Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 19 / 30 >

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |
| Notes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

# Penalties on weights

#### Assumption

• It is standard to impose penalties on weights, but not on biases

Large weights make minor changes in inputs have a major effect

Biases are not affected by these minor changes

• For the sake of clarity, we assume we have a network with no biases

• Principle: update the loss function to include a norm penalty

$$\mathcal{E}'(S,\theta) \stackrel{\text{\tiny def}}{=} \mathcal{E}(S,\theta) + \kappa \mathcal{P}(\theta)$$

 $\triangleright$   $\kappa$  is a hyperparameter used to specify how much importance the penalty term should have

▶ If it is too low, the network will probably overfit the data

▶ If it is too large, the network will probably underfit the data

INP Ensimad

Mnacho Echenim (Grenoble INP-Ensimag)

•  $\mathcal{P}(\theta) \stackrel{\text{def}}{=} \frac{\|\theta\|_2^2}{2}$ 

Also known as Tikhonov

learning rate becomes

Introduction to Deep Learning

2022-2023

< 20 / 30 >

 $L^2$  regularization



 $\theta \leftarrow (1 - \eta \kappa)\theta - \eta \nabla_{\theta} \mathcal{E}(S, \theta)$  Tends to output networks with small weights

regularization or ridge regularization

▶ Illustration: ©F. Bourgey

Gradient descent rule with a fixed

• Irrelevant inputs are still taken into account, with small weights

|           | INP<br>UGA | Ensimag   |
|-----------|------------|-----------|
| 0022-2023 | -          | 21 / 30 > |

Notes Notes

# $L^1$ regularization



- Also called Lasso regularization
- Gradient descent rule becomes  $\theta \leftarrow \theta - \eta \kappa \cdot \text{sign}(\theta) - \eta \nabla_{\theta} \mathcal{E}(S, \theta)$
- Tends to output sparse networks (many weights equal to 0)
  - ▶ Illustration: ©F. Bourgey
- Can be used for **feature selection**
- Issue for problems with many dimensions but few samples





Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023

< 22 / 30 >

Elastic net regularization

- $\mathcal{P}(\theta) \stackrel{\text{def}}{=} \kappa' \|\theta\|_1 + \frac{(1-\kappa')}{2} \cdot \|\theta\|_2^2$ , for  $0 \le \kappa' \le 1$
- Convex combination of  $L^1$  and  $L^2$  regularization
- Introduced in 2005 to overcome limitations of  $L^1$  regularization
- Often a good default choice
  - ▶ But there is a new hyperparameter to tune



Notes Notes

# A layer for $L^2$ regularization

- Constructor parameters:
  - Hyperparameter  $\kappa$
  - Underlying layer
- Forward propagation
  - ▶ Invoke forward propagation on the underlying layer
- Backpropagation
  - ▶ Invoke backpropagation and compute weight gradients on the underlying layer
  - ightharpoonup Multiply weights of the underlying layer by the penalty coefficient  $\kappa$
  - ▶ Add the result to the weight gradient of the underlying layer
- Parameter update
  - ▶ Invoke parameter update on the underlying layer (with the updated weight gradients)



Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 24 / 30 >

Notes

# On weight decay

- Another regularization technique designed to compute networks with small weights
- Update rule:  $\theta \leftarrow (1 \lambda)\theta \eta \nabla_{\theta} \mathcal{E}(S, \theta)$

• Adam appears to perform much better with weight decay than with  $L^2$ -regularization (Loshchilov & Hutter - Decoupled weight decay regularization. 2019)



| Notes |  |  |
|-------|--|--|
| Notes |  |  |

### Early stopping

- Quite popular: unobtrusive, simple to implement, can be used with other techniques
- Principle: train while monitoring validation error; stop when validation error has not improved for some time

**Input:** *n*, number of steps between validation error evaluations

**Input:** p, number of observations of worsening validation errors before stop

**Input:**  $\theta_0$ , initial parameters

```
\theta \leftarrow \theta_0, \ \theta^* \leftarrow \theta;
 2 bestError \leftarrow +\infty;
j \leftarrow 0;
 4 while i < p do
           Perform n updates of \theta;
           j \leftarrow j + 1;
          if ValidationError(\theta) < bestError then
                 bestError \leftarrow ValidationError(\theta);
                 j \leftarrow 0;
                 \theta^* \leftarrow \theta;
10
           end
12 end
13 return \theta^*
```

Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 26 / 30 >

### Dropout: intuition

• A network can be viewed as a compact representation of the set of all its subnetworks





- These subnetworks are not independent: they share weights
- Why not train these subnetworks separately and average their predictions during the test phase?



| Votes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

### Practical dropout

#### Training

- ► For each mini-batch, kill off some neurons, except for output neurons
- ► Keep a neuron with probability *p*
- ▶ In total, we will be training as many subnetworks as we consider mini-batches, each with a single update step

#### Testing

- ► Averaging predictions over all subnetworks is not practical at all
- ► Approximation of the average: weight scaling
- Activation of layer *i* is  $p \cdot \alpha^i$
- ▶ No theoretical argument for accuracy in the general case, but good results in practice



Mnacho Echenim (Grenoble INP-Ensimag)

Introduction to Deep Learning

2022-2023 < 28 / 30 >

Notes

| Inverted dropout                                                                                                                                                       | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Goal: Avoid scaling the activations of layers during test phase                                                                                                        |       |
| How:                                                                                                                                                                   |       |
| <ul> <li>During training phase, scale activation by a factor 1/p</li> <li>During test phase, return normal activation on network</li> </ul>                            |       |
| • Implementation                                                                                                                                                       |       |
| <ul> <li>Create a specialized Dropout layer, to be inserted between standard layers</li> <li>Weights of the layer: Ω = Id</li> <li>Bias of the layer: β = 0</li> </ul> |       |
| Activation per mini-batch and per neuron:                                                                                                                              |       |
| $\Phi_D(x) = \left\{egin{array}{ll} rac{x}{p} & 	ext{with probability } p \ 0 & 	ext{with probability } 1-p \end{array} ight.$                                        |       |
|                                                                                                                                                                        |       |
|                                                                                                                                                                        |       |
| <b>INTERPL</b> ENSIMAG                                                                                                                                                 |       |
| Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 29 / 30 >                                                                              |       |

# On forward and backpropagation with dropout

ullet Inverted dropout layer between layers j and j+1 acts as a mask  $\mu \in \{0,1/p\}^{n_j}$ 



Mnacho Echenim (Grenoble INP-Ensimag) Introduction to Deep Learning 2022-2023 < 30 / 30 >

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| otes  |  |  |  |
| iotes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |