Prototyping a Secure Controller for Trusted Heterogeneous Disaggregated Architectures

Felix Gust

Advisor: Dr. Atsushi Koshiba

Chair of Distributed Systems and Operating Systems

https://dse.in.tum.de/

Motivation

- Data center architectures are becoming more
 - Heterogeneous: CPUs, GPUs, FPGAs, ASICs, ...
 - Disaggregated: Devices in racks connected to the network
- Workloads involve sensitive data
- New security challenges
- Trusted isolated environment?

State-of-the-art

Trusted Execution Environments

- CPU-centric and vendor-specific (Intel SGX/TDX, AMD SEV, ARM TrustZone)
- Device-specific (Graviton [1], ShEF [2])

Distributed operating systems

- LegoOS [3]: Supports Linux applications, CPU-centric
- FractOS [4]: Own programming model, execution graph

Distributed TEEs

- HETEE [5]: Centralized security controller, limited to one rack
- [6]: Similar to HETEE with multiple security controllers

Research gap

How to establish virtual Trusted Execution Environments spanning multiple heterogeneous disaggregated resources?

Problem statement

Develop a prototype of a secure controller for trusted heterogeneous disaggregated architectures

Background

OpenTitan

- Open-source silicon Root of Trust
- Officially supports one FPGA development board

AES accelerator

- Performance of the OpenTitan AES module is insufficient
- Two modes: communication with OpenTitan and passthrough

Xilinx Alveo U280

- PCIe FPGA card
- 100 Gbit/s network interface

Design Goals

- Implementation on the U280
- OpenTitan as Root of Trust and main CPU
- High-speed symmetric encryption
 - vTEE management (OpenTitan ⇔ OpenTitan)
 - vTEE execution (passthrough, e.g. CPU ⇔ GPU)

Design

- OpenTitan as Root of Trust
- OpenNIC for communication via PCIe and network
- AES modules controlled by OpenTitan

Implementation

Implementation

- Porting the OpenTitan to U280
 - Change config files and constraints
 - Package as Vivado IP ⇒ easy integration into a larger project
- OpenTitan AXI4 module
 - Based on ToAXI4 module from Rocket Chip project¹
 - Converts internal TL-UL bus to external AXI4 bus
- AXI4-Lite crossbar to connect multiple modules to OpenTitan

Implementation

AES module

- Based on AES module form Xilinx Vitis RTL kernel tutorial¹
- Operates on AXI4-Stream traffic
- AES function only ⇒ ECB mode!

Data width converters

AXI4-Stream data widths: FIFOs 32 bit, AES 128 bit

Evaluation: FPGA Utilization

Utilization is low enough to add additional modules (e.g. OpenNIC)

Evaluation: Performance

- OpenTitan AXI4 module: 40 MB/s
 - o Limited by 10 MHz TL-UL bus
 - Sufficient for intended use case
- AES module: 40 MB/s
 - Limited by 10 MHz AXI4 clock
 - Too slow for high-speed network traffic
 - Xilinx benchmark with higher clock: 390 MB/s

AES performance is sufficient for OpenTitan but insufficient for communication between worker elements

Evaluation: Performance

- Full prototype: 210 KB/s
 - OpenTitan \Rightarrow FIFO \Rightarrow AES \Rightarrow FIFO \Rightarrow OpenTitan
 - Extrapolated from 4 KB per run
 - Limited by
 - AXI4 clock
 - Data width converters
 - FIFO copying

Full prototype performance limited by multiple factors, greatly lags behind raw AES module performance

Summary

Data center architectures are becoming more heterogeneous and disaggregated

Goal: distributed virtual Trusted Execution Environments (vTEEs)

Secure controller prototype

- Root of Trust OpenTitan ported to U280 & extended with AXI4 module
- AES module for encrypting network traffic controlled by OpenTitan
- Evaluation: resource utilization low, AES performance lacking

Code

- OpenTitan: https://github.com/TUM-DSE/TDA-opentitan
- Full prototype: https://github.com/TUM-DSE/TDA-testbed

References

- [1] S. Volos, K. Vaswani, and R. Bruno. "Graviton: Trusted Execution Environments on GPUs." In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 2018, pp. 681–696. isbn: 978-1-939133-08-3.
- [2] M. Zhao, M. Gao, and C. Kozyrakis. "ShEF: Shielded Enclaves for Cloud FPGAs." In: Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. Feb. 28, 2022, pp. 1070–1085. doi:10.1145/3503222.3507733. arXiv: 2103.03500 [cs].
- [3] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. "LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation." In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 2018, pp. 69–87. isbn: 978-1-939133-08-3.
- [4] L. Vilanova, L. Maudlej, S. Bergman, T. Miemietz, M. Hille, N. Asmussen, M. Roitzsch, H. Härtig, and M. Silberstein. "Slashing the Disaggregation Tax in Heterogeneous Data Centers with FractOS." In: Proceedings of the Seventeenth European Conference on Computer Systems. EuroSys '22. New York, NY, USA: Association for Computing Machinery, Mar. 28, 2022, pp. 352–367. isbn: 978-1-4503-9162-7. doi: 10.1145/3492321.3519569.
- [5] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang, J. Ying, L. Zhang, and D. Meng. "Enabling Rack-scale Confidential Computing Using Heterogeneous Trusted Execution Environment." In: 2020 IEEE Symposium on Security and Privacy (SP). 2020 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May 2020, pp. 1450–1465. isbn: 978-1-72813-497-0. doi: 10.1109/SP40000.2020.00054.
- [6] A. Dhar, S. Sridhara, S. Shinde, S. Capkun, and R. Andri. Empowering Data Centers for Next Generation Trusted Computing. Nov. 1, 2022. doi: 10.48550/arXiv.2211.00306. arXiv: 2211.00306 [cs]. url: http://arxiv.org/abs/2211.00306. preprint.