Your Document Title

Your Name

November 1, 2024

Problem 1

Write the addition and multiplication tables for \mathbb{Z}_2 .

Problem 2

Write the addition and multiplication tables for \mathbb{Z}_3 .

Problem 3

Write the addition and multiplication tables for \mathbb{Z}_4 .

Problem 4

Write the addition and multiplication tables for \mathbb{Z}_6 .

+	0	1	2	3	4	5	X	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1,	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

Problem 5

Suppose $[a], [b] \in \mathbb{Z}_5$ and $[a] \cdot [b] = [0]$. Is it necessarily true that either [a] = [0] or [b] = [0]?

Yes because we can see from its multiplication chart that the only products becoming [0] come from factors of [0]. More generally any member of [5] = 5x for some integer x. In the prime factorization of 5x, the prime 5 has at least a power of 1. And if $5x = a \cdot b$ for some integers a and b, it would require that either a or b have a factor of 5 which would require [a] = 0 or [b] = 0.

Problem 6

Suppose $[a], [b] \in \mathbb{Z}_6$ and $[a] \cdot [b] = [0]$. Is it necessarily true that either [a] = [0] or [b] = [0]? What if $[a], [b] \in \mathbb{Z}_7$?

No, we saw from its multiplication table that nonzero classes could multiply to [0] such as $[2] \cdot [3] = [0]$. More generally, the prime factorization of any element in [0] looks like $2 \cdot 3 \cdot x$ for some integer x. This means if $2 \cdot 3 \cdot x = a \cdot b$ for some integers a and b, it could be that a provides the factor of 2 and b provides the factor of 3. For example, a = 2, b = 3, x = 1.

If we're in \mathbb{Z}_7 we might observe that we're in a field which would require that [a] = [0] or [b] = [0]. If we don't make that observation again we could argue using prime decomposition. The prime factorization of any number in [0] = 7n for some integer n. If $7n = a \cdot b$ for integers a and b, then either a or b must have a factor of 7, since 7 is prime and cannot be the product of smaller factors. And if a or b has a factor of 7 then it is a multiple of 7 and belongs to [0].

Problem 7

Do the following calculations in \mathbb{Z}_9 , in each case expressing your answer as [a] with $0 \le a \le 8$.

- 1. [8] + [8]
- 2. [24] + [11]
- $3. [21] \cdot [15]$

4. $[8] \cdot [8]$

- 1. [8] + [8] = [16] = [7]
- 2. [24] + [11] = [35] = [8]
- 3. $[21] \cdot [15] = [3] \cdot [6] = [18] = [0]$
- 4. $[8] \cdot [8] = [64] = [1]$

Problem 8

Suppose $[a], [b] \in \mathbb{Z}_n$ and [a] = [a'] and [b] = [b']. Alice adds [a] and [b] as [a] + [b] = [a+b]. Bob adds them as [a'] + [b'] = [a'+b']. Show that their answers [a+b] and [a'+b'] are the same.

Since $a \in [a]$ we can write it as a = xn + c where c is the remainder. Likewise $a' \in [a]$ so a' = x'n + c. Also write b = yn + d, b' = y'n + d.

Now a+b=(x+y)n+(c+d) so it is in the equivalence class [c+d]. Likewise a'+b'=(x'+y')n+(c+d) so it is in the equivalence class [c+d]. Therefore Alice and Bob's answers are the same.