Noise-Tolerant Transforming Function

2017-05-14

- 1. Let $n \in \mathbb{Z}^+$.
- 2. Let set $E = \{E_1, E_2, \dots, E_n\}$ where $E_i \in \mathbb{R}$ for each $i \in \{1, 2, \dots, n\}$.
- 3. Define function $T: \mathbb{R} \to \mathbb{R}$ where

$$T(E_i) = \frac{E_i - k}{m}$$

in which:

- 3.1. $1 \le i \le n$
- 3.2. $k, m \in \mathbb{R}^+$ are to be determined from the set E such that:
 - 3.2.1. $T(E_i)$ is "noise-tolerant" for each $E_i \in E$
 - 3.2.2. the set $\{T(E_i): E_i \in E\}$ is "roughly uniformly-distributed"
- 4. Note: the pair (k, m) is likely different for each $E \in \{x_1, \alpha_{min}, \alpha_{med}\}$.

[Han et al., 2007, page 5/7, equation (5)]

References

F. Han, J. Hu, L. He, and Y. Wang. Generation of reliable pins from fingerprints. In 2007 IEEE International Conference on Communications, pages 1191–1196, June 2007. doi: 10.1109/ICC.2007.202.