Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Eksamensdato	2. desember 2008					
Eksamenstid	0900–1300 23. desember					
Sensurdato Språk/målform	Bokmål					
Kontakt under eksamen						
Tillatte hjelpemidler	Ingen trykte/håndskrevne; bestemt, enkel kalkulator					
til eksamenslokalet. Gjør anta	et før du begynner, disponer tiden og forbered evt. spørsmål til faglærer kommer gelser der det er nødvendig. Skriv kort og konsist. Lange forklaringer og øesvarer oppgaven tillegges liten eller ingen vekt.					
	tekst, pseudokode eller programkode, etter eget ønske, så lenge det klart fremgår tmen fungerer. Korte, abstrakte forklaringer kan være vel så gode som utførlig esise nok.					
Oppgave 1 (47%)						
Anta at en probleminstan	s med størrelse n skal løses algoritmisk.					
a) Skriv eksempler på føl	gende typer kjøretider som funksjon av n , uttrykt med Θ -notasjon.					
Logaritmisk (2%)						
Lineær (2%)						
Kvadratisk (2%)						
Polynomisk (2%)						
Eksponentiell (2%)						
Quicksort når det er i	bruke O -notasjon for å beskrive den generelle kjøretiden til mulig å bruke denne notasjonen for å beskrive både <i>best-case-,</i> t-case-kjøretidene hver for seg? Svar så kort som mulig.					
Svar (8%):						

Betrakt følgende algoritme:

```
for i = 1 \dots n

for j = i \dots n/100

print "Hello, World!"

for i = 1 \dots n

for j = 1 \dots \lg n
```

print "Goodbye, World!"

Merk: Du kan anta at en løkke **for** $j = a \dots b$ ikke utføres hvis a > b.

c) Hva blir kjøretiden til algoritmen, som funksjon av n, uttrykt med Θ -notasjon? Begrunn svaret svært kort.

Svar (10%):

d) Hva er løsningen på følgende rekurrens? Oppgi svaret i Θ -notasjon.

$$T(1) = 1$$

$$T(n) = T(n/2) + n$$

Svar (8%):

Betrakt følgende algoritme:

MYALGORITHM(n)

if n = 1 return TRUE

for
$$i = 1 \dots 4$$

MYALGORITHM($n/2$)

e) Hva blir kjøretiden til algoritmen, som funksjon av n, uttrykt med Θ -notasjon? Begrunn svaret svært kort.

Svar (5%):			

Du står overfor de tre problemene A, B og C. Alle tre befinner seg i mengden NP. Du vet at A er i mengden P og at B er i mengden NPC. Anta at du skal bruke polynomiske reduksjoner mellom disse problemene til å vise ulike egenskaper.

Merk: Enkelte av egenskapene kan selvfølgelig vises på andre måter. Du kan se bort fra det i denne oppgaven.

f) Fullfør følgende utsagn.
For å bevise at C er i P må reduseres til i polynomisk tid. (2%)
For å bevise at C er i NPC må reduseres til i polynomisk tid. (2%)
Hvis kan reduseres til i polynomisk tid, så er P = NP. (2%)
Oppgave 2 (26%)
a) Anta at du har en binær heap lagret i en tabell, som beskrevet i pensum. Anta at rotnoden ligger på indeks 1. Hvor (det vil si, i hvilken posisjon i tabellen) ligger foreldrenoden til elementet med indeks <i>i</i> ?
Svar (6%):
b) Hvor mange interne noder har et binærtre med n løvnoder, hvis alle interne noder har to barn?
Svar (7%):
c) Hva er forskjellen mellom en maksimal (<i>maximum</i>) matching og en perfekt matching? Merk : Det er her snakk om bipartitt matching.
Svar (5%):
d) Hva er en Hamilton-sykel?
Svar (8%):
Oppgave 3 (17%)
a) Beskriv kort, med egne ord, hvordan RADIX SORT fungerer.
Svar (9%):

TDT4120 · 2008–12–02	Stud.nr.:
LELOVO WARGUALI brukog uttrukkot d(k) til å bo	ckrive lacningen på et delproblem

I FLOYD-WARSHALL brukes uttrykket $d^{(k)}_{ij}$ til å beskrive løsningen på et delproblem.

b) Hva er den re	kursive f	ormelen	for	$d^{(k)}_{ij}$?
------------------	-----------	---------	-----	------------------

Svar (8%):			

Oppgave 4 (10%)

Svar (5%):

Anta at du har en rettet graf med positive heltallskantvekter. Hvis du skal finne den korteste veien fra u til v så kan det eksistere flere svar, det vil si flere stier som har samme (minimale) lengde.

a) Hvordan vil du effektivt finne den av de korteste stiene fra *u* til *v* som består av færrest kanter?

Svar (5%):		

b) Hvordan vil du effektivt finne ut hvor mange korteste stier (det vil si hvor mange stier med minimal lengde) det finnes fra *u* til *v*?