Lecture 06

조합논리회로

조합논리회로

- 조합논리회로란?
 - 논리곱(AND), 논리합(OR), 논리 부정(NOT)의 3가지 기본 논리회로의 조 합으로 만들어짐
 - 구성 요소
 - ① 입력 신호
 - ② 논리 게이트
 - ③ 출력 신호
 - 예,
 - 가산기(adder)
 - 비교기(comparator)
 - 디코더(decoder)
 - 멀티플렉서(multiplexer)
 - ...

- 가산기란?
 - 2진 입력 데이터를 더하는 조합논리회로임
 - 반가산기(HA: half adder)와 전가산기(FA: full adder)의 2개가 있음
- 반가산기(half-adder)
 - 한 자리 2진수 2개를 입력하여 합(sum: S)과 캐리(carry: C)를 계산하는 덧셈회로임

■ 반가산기(half adder)

진리표

입	력	출력		
A	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$S = \bar{A}B + A\bar{B} = A \oplus B$$
$$C = AB$$

B

- 전가산기(full adder)
 - 반가산기는 아랫자리에서 발생한 캐리를 고려하지 못하므로 2비트 이상 의 2진수 덧셈은 할 수 없음
 - 전가산기는 2개의 2진수 입력 A, B와 아랫자리부터 올라온 캐리 C_i 를 포함하여 한 자리 2진수 3개를 더하는 조합회로임

C_i	0	1	0	1	0	1	0	1
Α	0	0	1	1	0	0	1	1
+ B	+ 0	+ 0	+ 0	+ 0	+ 1	+1	+ 1	+ 1
					0 1			

■ 전가산기(full adder)

진리표

	입력	출력		
A	В	C_i	S	C_o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C_i$$

$$C_o = C_i(A \oplus B) + AB$$

- 병렬 가산기(parallel adder)
 - 전가산기 여러 개를 병렬로 연결하여 2비트 이상인 가산기를 만들 수 있으며, 이를 병렬 가산기라고 함
 - 예, $A = A_3 A_2 A_1 A_0$ 와 $B = B_3 B_2 B_1 B_0$ 가 각각 4비트이며, 전가산기의 최하위 비트의 캐리는 0을 입력하며, 계산 결과 합은 $S = S_3 S_2 S_1 S_0$ 이며, 마지막 캐리는 C_4 임

- 병렬 가감산기(parallel adder/subtractor)
 - $T = 0 \Longrightarrow S = A + (B \oplus 0) + 0 = A + B$
 - $T = 1 \Longrightarrow S = A + (B \oplus 1) + 1 = A + \overline{B} + 1 = A B$

- 병렬 가산기의 속도가 느림
 - 아랫단 가산기에서 캐리가 나와야만 바로 윗단을 계산 할 수 있기 때문임
 - 리플-캐리(ripple carry)라고 함
- 고속 가산기
 - 캐리 예측 가산기(CLA: carry look-ahead adder)를 사용함
 - *i*단에서 발생하는 캐리의 논리식은 다음과 같음

$$C_{i+1} = A_i B_i + (A_i + B_i) C_i \quad \text{ } \underline{\Box} \quad C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

C_i	0	1	0	1	0	1	0	1
A_i	0	0	1	1	0	0	1	1
$+B_i$	+ 0	+ 0	+ 0	+ 0	+ 1	+1	+ 1	+ 1
		0 1						

- 고속 가산기
 - *i*단에서 발생하는 캐리의 논리식은 다음과 같음

- Propagate : $P_i = A_i \oplus B_i$ 또는 $P_i = A_i + B_i$
- Generate : $G_i = A_i B_i$
- 예, 4비트 가산기

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$C_4 = G_3 + P_3C_3 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0) = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

$$S_i = A_i \oplus B_i \oplus C_i = P_i \oplus C_i$$

- 고속 가산기
 - 예, 4비트 가산기

- 고속 가산기
 - 예, 4비트 캐리 예측 가산기로부터 16비트 캐리 예측 가신기를 말들 수 있음

- 고속 가산기
 - IC 7483 : 4비트 캐리 예측 가산기

Source: STMicroelectronics, Datasheet, https://www.alldatasheet.com/datasheet-pdf/view/23067/ (accessed on 2024.08.23).

- BCD(Binary Coded Decimal) 가산기
 - BCD는 2진수를 10진수로 변환할 때 많이 쓰임
 - RTC(Real-Time Clock) 칩에서 많이 활용됨
 - BCD 코드 표현 범위가 0에서 9까지

	BCD	10진값		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9

■ BCD(Binary Coded Decimal) 가산기

	2	2진힙	ŀ			BCD합				40XIZE
K	Z_3	Z_2	Z_1	Z_0	С	S_3	S ₂	S ₁	S_0	10진값
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9

		2진힙	<u> </u>			BCD합				 - 10진값	
K	Z_3	Z_2	Z_1	Z_0	С	S_3	S_2	S_1	S_0		
0	1	0	1	0	1	0	0	0	0	10	
0	1	0	1	1	1	0	0	0	1	11	
0	1	1	0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	1	1	1	0	1	0	1	0	0	14	
0	1	1	1	1	1	0	1	0	1	15	
1	0	0	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1	1	0	0	0	18	
1	0	0	1	1	1	1	0	0	1	19	

- BCD(Binary Coded Decimal) 가산기
 - BCD합의 캐리 비트 C는 K가 1일 때 항상 1이 되며, 2진합 (Z_3, Z_2, Z_1, Z_0) 에도 기반함

$$C = K + F(Z_3, Z_2, Z_1, Z_0) = K + Z_3Z_2 + Z_3Z_1$$

- BCD 연산 offset
 - 예,

$$6 + 7 = 0110_{(2)} + 0111_{(2)} = 01101_{(2)}$$

 $0\,1101_{(2)}$ 결과는 BCD가 아니므로 BCD로 만들어야 함

BCD 표현을 위해 4비트를 사용하지만 BCD 범위가 0부터 9까지 때문에 $0110_{(2)} = 6$ 인 offset를 더해주면 됨

따라서 0 1101₍₂₎ + 0110₍₂₎ = 1 0011₍₂₎이 됨

■ BCD(Binary Coded Decimal) 가산기

- 반감산기(half subtractor)
 - 한 자리 2진수 2개를 입력하여 차(difference, *D*)와 빌림 수(borrow, *K*)를 계산하는 뺄셈 회로임

입	력	출력		
A	В	D	K	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

- 전감산기(full subtractor)
 - 2비트 이상의 2진수 입력 A, B와 아래 단으로 빌려주는 수 K_i 를 포함하여 $A-B-K_i$ 를 계산하는 조합회로임

	입력	출력		
A	В	K_i	D	Ko
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D = A \oplus B \oplus K_i$$

$$K_o = (\overline{A \oplus B})K_i + \overline{A}B$$

20

■ 비교기는 두 2진수 값의 크기를 비교하는 회로임

입력		출력				
A	В	$A = B$ F_1	$A \neq B$ F_2	$A > B$ F_3	$A < B$ F_4	
0	0	1	0	0	0	
0	1	0	1	0	1	
1	0	0	1	1	0	
1	1	1	0	0	0	

$$F_1 = \overline{A \oplus B}$$

$$F_3 = A\bar{B}$$

$$F_2 = A \oplus B$$

$$F_4 = \bar{A}B$$

■ 비교기는 두 2진수 값의 크기를 비교하는 회로임

입	력	출력				
A	В	$A = B$ F_1	$A > B$ F_3	$\begin{bmatrix} A < B \\ F_4 \end{bmatrix}$		
0	0	1	0	0		
0	1	0	0	1		
1	0	0	1	0		
1	1	1	0	0		

$$F_1 = \overline{A \oplus B}$$
 $F_2 = A\overline{B}$ $F_3 = \overline{A}B$

■ 2비트 비교기

	입	력			출력	
A_1, B_1	$AGBI \\ A_0 > B_0$	$ALBI \\ A_0 < B_0$	$AEBI \\ A_0 = B_0$	AGBO $A > B$	ALBO A < B	$AEBO \\ A = B$
$A_1 > B_1$	×	×	×	1	0	0
$A_1 < B_1$	×	×	×	0	1	0
$A_1 = B_1$	1	0	0	1	0	0
$A_1 = B_1$	0	1	0	0	1	0
$A_1 = B_1$	0	0	1	0	0	1
$A_1 = B_1$	0	0	0	1	1	0
$A_1 = B_1$	0	1	1	0	0	1
$A_1 = B_1$	1	0	1	0	0	1
$A_1 = B_1$	1	1	0	0	0	0
$A_1 = B_1$	1	1	1	0	0	1

- 회로가 정상 동작하면 발생하지 않은 경우
- 비정상적으로 동작하면 사용자에게 알려주기 위 한 출력 패턴을 제조사 가 정의함
- 여기서 이러한 경우들을 고려하지 않음

■ 2비트 비교기

$$AEBO = AEBI \cdot (A_1 = B_1) = AEBI \cdot (\overline{A_1 \oplus B_1})$$

$$AGBO = AGBI \cdot (A_1 = B_1) + (A_1 > B_1)$$

= $AGBI \cdot (\overline{A_1 \oplus B_1}) + A_1 \overline{B_1}$

$$ALBO = ALBI \cdot (A_1 = B_1) + (A_1 < B_1)$$

= $ALBI \cdot (\overline{A_1 \oplus B_1}) + \overline{A_1}B_1$

■ 4비트 비교기 : IC 7485

Source: Texas Instruments, Datasheet, https://www.alldatasheet.com/datasheet-pdf/view/833263/ (accessed on 2024.08.23).

■ 4비트 비교기로부터 16비트 비교기 만들기

- n비트로 된 2진 코드는 서로 다른 2^n 개의 정보를 표현할 수 있음
- 디코더는 입력선에 나타나는 n비트 2진 코드를 최대 2^n 가 지 정보로 바꿔주는 조합논리회로임

- 1×2 디코더
 - 입력 1개와 출력 2개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

입력	출력				
A	<i>Y</i> ₁	Y_o			
0	0	1			
0	1	0			

$$Y_0 = \bar{A}$$

$$Y_1 = A$$

입	력	출력			
E	A	- 1 -			
0	0	0	0		
0	1	0	0		
1	0	0	1		
1	1	1	0		

$$Y_0 = E\bar{A}$$

$$Y_1 = EA$$

- 2×4 디코더
 - 입력 2개와 출력 4개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

입	력	출력						
В	A	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	Yo			
0	0	0	0	0	1			
0	1	0	0	1	0			
1	0	0	1	0	0			
1	1	1	0	0	0			

$$Y_3 = BA$$
 $Y_2 = B\bar{A}$

$$Y_1 = \bar{B}A$$
 $Y_0 = \bar{B}\bar{A}$

- 2×4 디코더
 - 입력 2개와 출력 4개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

	입력		출력					
E	В	A	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	Yo		
0	×	×	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

$$Y_3 = EBA$$
 $Y_2 = EB\bar{A}$

$$Y_1 = E\bar{B}A$$
 $Y_0 = E\bar{B}\bar{A}$

- 3×8 디코더
 - 입력 3개와 출력 8개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

입력			출력							
С	В	A	Y ₇	<i>Y</i> ₆	<i>Y</i> ₅	<i>Y</i> ₄	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	Yo
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

- 3×8 디코더
 - 입력 3개와 출력 8개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

 2×4 디코더 입력 A, B와 출력 Y_{3-0} 인에이블 신호 \bar{C}

	입력		출력							
С	В	A	Y.7	<i>Y</i> ₆	<i>Y</i> ₅	<i>Y</i> ₄	<i>Y</i> ₃	Y_2	Y_1	Y_o
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

- 3×8 디코더
 - 입력 3개와 출력 8개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

2 × 4 디코더 입력 *A*, *B*와 출력 *Y*₇₋₄ 인에이블 신호 *C*

	입력		출력							
С	В	A	Y ₇	<i>Y</i> ₆	<i>Y</i> ₅	Y ₄	Y ₃	Y ₂	<i>Y</i> ₁	Y_o
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	.0	1	0	0
0	1	1	<u>_</u> 0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

- 3×8 디코더
 - 입력 3개와 출력 8개로 구성됨
 - 인에이블(enable) 신호를 포함할 수 있음

- 디코더를 이용한 조합논리회로
 - 디코더의 출력을 최소항으로 볼 수 있으므로 원하는 조합논리회로를 쉽게 구성할 수 있음

입	입력		출	력	최소항/	
В	A	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	Yo	최고항
0	0	0	0	0	1	$Y_0 = \bar{B}\bar{A} = m_0 = \overline{M_0}$
0	1	0	0	1	0	$Y_1 = \bar{B}A = m_1 = \overline{M_1}$
1	0	0	1	0	0	$Y_2 = B\bar{A} = m_2 = \overline{M_2}$
1	1	1	0	0	0	$Y_3 = BA = m_3 = \overline{M_3}$

예,

$$F_1 = \sum m(0,2,3) = m_0 + m_2 + m_3 = Y_0 + Y_2 + Y_3$$

$$F_2 = \prod M(1,3) = M_1 M_3 = \overline{M_1 M_3} = \overline{M_1} + \overline{M_3} = \overline{m_1 + m_3}$$

■ BCD-7-세그먼트 디코더

■ BCD-7-세그먼트 디코더

입력				출력						
а	b	С	d	A	В	C	D	Е	F	G
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	0	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0

	입	력					출력			
а	b	С	d	A	В	С	D	Е	F	G
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	Χ	Х	Х	Χ	Χ	Х	Х
1	0	1	1	Χ	Х	Х	Χ	Χ	Х	Х
1	1	0	0	Χ	Х	Х	Χ	Χ	Х	Х
1	1	0	1	Χ	Х	Х	Χ	Χ	Х	Х
1	1	1	0	Χ	Х	Х	Х	Χ	Х	Х
1	1	1	1	Х	Х	Х	Х	Х	Х	Х

인코더(Encoder)

- 인코더는 신호 2^n 개를 입력 받아 출력 신호 n개를 만들어 내는 조합논리회로임
- 2^n 개 중 활성화된 1비트 입력 신호를 받아서 그 숫자에 해당하는 n비트 2진 정보를 출력함

인코더(Encoder)

■ 2×1 인코더: 입력 2개와 출력 1개로 구성됨

■ 4 × 2 인코더 : 입력 4개와 출력 2개로 구성됨

입	출력			
D_1	B_o			
0	1	0		
1	1 0			

$$B_0 = D_1$$

	입	출	력		
D_3	D_2	D_1	B_1	$\boldsymbol{B_o}$	
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$B_1 = D_2 + D_3$$
$$B_0 = D_1 + D_3$$

인코더(Encoder)

- 우선순위 인코더(priority encoder)
 - 입력에 우선순위를 정하여 입력이 여러 개 있을 때 우선순위가 높은 입력 값에 해당하는 출력 신호를 만들어내는 조합논리회로임

	입	출	력		
D_3	D_2	D_1	B_1	$\boldsymbol{B_o}$	
0	0	0	1	0	0
0	0	1	X	0	1
0	1	X	X	1	0
1	X	X	X	1	1

$$B_1 = D_3 + D_2$$

 $B_0 = D_3 + \overline{D}_3 \overline{D}_2 D_1$

- 멀티플렉서
 - 여러 개의 입력선 중에서 하나를 선택하여 출력선에 연결하는 조합논리회 로이며, 선택선의 값에 따라 입력선을 선택함
 - 데이터 선택기(data selector)라고도 함
- 디멀티플렉서(demultiplexer)
 - 멀티플렉서와 반대로 정보를 한 선으로 받아서 2^n 개의 가능한 출력선들 중 하나를 선택하여 받은 정보를 전송하는 조합논리회로임
 - 데이터 분배기(data distributor)라고도 함

- 멀티플렉서 ⇔ MUX(먹스)
- □ 디멀티플렉서 ⇔ DEMUX(디먹스)

- 2×1 멀티플렉서
 - 입력 2개 중 하나를 선택선 S에 입력된 값에 따라 출력으로 보내주는 조합 논리회로임

선택선	출력
S	F
0	D_0
1	D_1

$$F = \bar{S}D_0 + SD_1$$

- 4×1 멀티플렉서
 - 입력 4개 중 하나를 선택선 S_1 과 S_0 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

선틱	출력	
S_1	S_0	F
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

- 8 × 1 멀티플렉서
 - 입력 8개 중 하나를 3개의 선택선 (S_2, S_1, S_0) 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

	선택선				
S_2	S_1	S_0	F		
0	0	0	D_0		
0	0	1	D_1		
0	0 1 0		D_2		
0	1	1	D_3		
1	0	0	D_4		
1	0	1	D_5		
1	1	0	D_6		
1	1	1	D_7		

- 8 × 1 멀티플렉서
 - 입력 8개 중 하나를 3개의 선택선 (S_2, S_1, S_0) 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

	선택선					
S_2	S_1	S_0	F			
0	0	0	D_0			
0	0	1	D_1			
0	0 1 0		D_2			
0	1	1	D_3			
1	0	0	D_4			
1	0	1	D_5			
1	1	0	D_6			
1	1	1	D_7			

 4×1 멀티플렉서 입력 (D_3, D_2, D_1, D_0) 선택선 (S_1, S_0) 출럭 F_0

- 8 × 1 멀티플렉서
 - 입력 8개 중 하나를 3개의 선택선 (S_2, S_1, S_0) 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

	선택선					
S_2	S_1	S_0	F			
0	0	0	D_0			
0	0	1	D_1			
0	0 1 0		D_2			
0	1	1	D_3			
1	0	0	D_4			
1	0	1	D_5			
1	1	0	D_6			
1	1	1	D_7			

 4×1 멀티플렉서 입력 (D_7, D_6, D_5, D_4) 선택선 (S_1, S_0) 출럭 F_1

- 8 × 1 멀티플렉서
 - 입력 8개 중 하나를 3개의 선택선 (S_2, S_1, S_0) 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

	선택선					
S_2	S_1	F				
0	0					
0	0	1	E			
0	1	0	F_0			
0	1	1				
1	0	0				
1	0	1	E			
1	1	0	F_1			
1	1	1				

- 8 × 1 멀티플렉서
 - 입력 8개 중 하나를 3개의 선택선 (S_2, S_1, S_0) 에 입력된 값에 따라 출력으로 보내주는 조합논리회로임

- 멀티플렉서를 이용한 조합논리회로 구현
 - 선택선과 입력선의 일부를 입력으로 사용하고 입력선을 V_{cc}(5V 또는 3.3V) 나 GND(0V)와 연결하면 조합논리회로를 구현할 수 있음
 - Θ , $F(A, B, C) = \sum m(0,1,5,7)$

입력			출락	4	
A	В	С	F		
0	0	0	ח – 1	1	
	U	1	$D_0 = 1$	1	
0	1	0	D - 0	0	
U	I	1	$D_1 = 0$	0	
4	0	0	D = C	0	
'	U	1	$D_2 = C$	1	
1	1	0	D - C	0	
'	1	1	1	$D_3 = C$	1

■ 2진 코드 – 그레이 코드 변환

2진 코드(입력)			ند	레이코	크드(출	력)	
B_3	\boldsymbol{B}_2	B_1	\boldsymbol{B}_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0

2	2진 코드(입력)			ュ	레이 코	크드(출	·력)
B_3	\boldsymbol{B}_2	B_1	$\boldsymbol{B_0}$	G_3	G_2	G_1	G_0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

■ 2진 코드 – 그레이 코드 변환

$$G_3 = B_3$$

$$G_2 = B_3 \oplus B_2$$

$$G_1 = B_2 \oplus B_1$$

$$G_1 = B_2 \oplus B_1$$

$$G_0 = B_1 \oplus B_0$$

■ 그레이 코드 – 2진 코드 변환

그레이 코드(입력)				2진 코드(출력)			
G ₃	G_2	G_1	G_0	B_3	\boldsymbol{B}_2	$\boldsymbol{B_1}$	$\boldsymbol{B_0}$
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1

그레이 코드(입력)				2진 코드(출력)			
G ₃	G_2	G_1	G_0	B_3	\boldsymbol{B}_2	$\boldsymbol{B_1}$	\boldsymbol{B}_0
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

■ 그레이 코드 – 2진 코드 변환

$$B_3 = G_3$$

$$B_2 = G_3 \oplus G_2$$

$$B_1 = G_2 \oplus G_1$$

$$B_0 = G_1 \oplus G_0$$

패리티 발생기/검출기

- 패리티(parity) 발행
 - 원래의 데이터에 1비트 패리티를 추가하여 1의 개수를 짝수 또는 홀수로 맞춤
 - 1의 개수를 짝수로 맞추면 **짝수 패리티**, 홀수로 맞추면 **홀수 패리티**가 됨
- 패리티 검출
 - 패리티가 추가된 데이터에서 1의 개수가 짝수인지 홀수인지를 검사함
 - XOR/XNOR를 사용하여 짝수/홀수 패리티를 발생할 수 있음

