Tidsharmoniska fält

Plan, sinusformad våg

 $\boldsymbol{E} = \hat{E}\cos(\omega t - \boldsymbol{k}\cdot\boldsymbol{r} + \phi)\boldsymbol{e}_{E}$ ögonblicksvärde

 $\boldsymbol{E} = E_0 e^{-j\boldsymbol{k}\cdot\boldsymbol{r}} \boldsymbol{e}_E$ complex värde

 $E_0 = \hat{E}e^{j\phi}$ topvärdesskala

 $E_0 = \frac{\hat{E}}{\sqrt{2}} e^{j\phi} \quad \text{effektivvärdesskala}$

Utbredningshastighet

$$v = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$$
 $v = \frac{\omega}{k}$ $k = |\mathbf{k}|$

Vågimpedans, oledande rymd

$$\eta = \sqrt{\frac{\mu_r \mu_0}{\epsilon_r \epsilon_0}}$$

Regeln om högersystem

$$e_k = e_E \times e_H$$
 $E = \eta H$ $e_k = e_E \times e_B$ $E = vB$

$$e_k = e_E \times e_B$$
 $E = vI$

; Missing Translation ¿

$$\mathbf{E} = E_0 e^{\gamma z} \mathbf{e}_x$$

Komplexa utbredningskonstanten

$$\gamma = \sqrt{j\omega\mu_r\mu_0(\sigma + j\omega\epsilon_r\epsilon_0)} \qquad \gamma = \alpha j\beta$$

Vågimpedans, rymd med given conduktivitet

$$\eta = \sqrt{\frac{j\omega\mu_r\mu_0}{\sigma + j\omega\epsilon_r\epsilon_0}}$$

Inträngningsdjup

$$\delta = \sqrt{\frac{2}{\omega \mu_r \mu_0 \sigma}}$$