Билеты Дискректая Математика Преподаватель: Востров А. В.

Сверстал: Четввергов Иван | telegram, github

Содержание

1	множества. Задание множеств. Парадокс Рассела.	J
2	Алгебра подмножеств. Сравнение множеств. Мощность множества. Операции над множествами.	6
3	Разбиения и покрытия. Булеан. Свойства операций над множествами. Диаграммы Эйлера-Венна.	S
4	Счетные и несчетные множества. Теоремы о счетных множествах. Представление множеств в программах.	11
5	Мультимножества. Операции над мультимножествами.	14
6	Отношения (бинарное, n-apное). Связь множеств и упорядоченной пары. Прямое произведение множеств. Композиция отношений. Степень отношения. Ядро отношения. Примеры.	17
7	Свойства отношений. Представление отношений, операций над ними и их свойств матрицами. Примеры.	21
8	Замыкание отношений. Транзитивное и рефлексивное замыкание. Алгоритм Уоршалла. Представление отношений в программах.	23
9	Функциональное отношение. Инъекция, сюръекция, биекция, тотальность. Образы и прообразы. Суперпозиция функций. Представление функций в программах. Примеры.	2 5
10	Отношение эквивалентности. Классы эквивалентности. Факто множества. Ядро функционального отношения и множества уровня.	p- 28
11	Отношение порядка. Минимальные элементы. Верхние и нижние границы. Монотонность. Вполне упорядоченные множества. Диаграммы Хассе. Примеры.	30
12	Характеристические функции множеств и отношений. Функции максимума и минимума.	32

13 Алгебры. Носители и сигнатура. Замыкания и подалгебры.	
Система образующих. Свойства операций. Примеры.	34
14 D	0.0
14 Виды морфизмов. Гомоморфизм, изоморфизм. Примеры.	36

1 Множества. Задание множеств. Парадокс Рассела.

Множества

При построении доступной для рационального анализа картины мира часто ис- пользуется термин **«объект»** для обозначения некой сущности, отделимой от остальных. Выделение объектов — это не более чем произвольный акт нашего сознания.

Элементы и множества Понятие множества принадлежит к числу фундаментальных понятий матема- тики. Можно сказать, что множество — это любая определённая совокупность объектов. Объекты, из которых составлено множество, называются его элемента- ми. Элементы множества различны и отличимы друг от друга.

Если объект x является элементом множества M, то говорят, что x принадлежит M. Обозначение: $x \in M$. В противном случае говорят, что x не принадлежит M. Обозначение: $x \notin M$.

Примеры

- \bullet Множество S страниц в данной книге.
- Множество $\mathbb N$ натуральных чисел $\{1,2,3,\ldots\}$.
- Множество P простых чисел $\{2, 3, 5, 7, 11, \ldots\}$.
- ullet Множество $\mathbb Z$ целых чисел $\{\ldots, -2, -1, 0, 1, 2, \ldots\}.$
- Множество \mathbb{R} вещественных чисел.

Множество, не содержащее элементов, называется **пустым**. **Обозначение:** \emptyset .

Множества как объекты могут быть элементами других множеств. Множество, элементами которого являются множества, иногда называют **семей-ством**.

Совокупность объектов, которая не является множеством, называется **классом**.

Задание множеств

Чтобы задать множество, нужно указать, какие элементы ему принадлежат. Это указание заключают в пару фигурных скобок, оно может иметь одну из следующих основных форм:

перечисление элементов: $M := \{a, b, c, \dots, z\};$

характеристический предикат: $M := \{x \mid P(x)\}$;

порождающая процедура: $M := \{x \mid x := f\}.$

При задании множеств перечислением обозначения элементов разделяют за- пятыми. **Характеристический предикат** — это некоторое условие, выраженное в форме логического утверждения или процедуры, возвращающей логическое значение.

Примеры задания множеств

1.
$$M_9 := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$
 (Перечисление)

2.
$$M_9 := \{ n \mid n \in \mathbb{N} \land n < 10 \}.$$
 (Характеристический предикат)

3. $M_9 := \{n \mid n := 0; \text{ for } i \text{ from 1 to 9 do } n := n+1; \text{ yield } n \text{ end for}\}.$ (Порождающая процедура)

Парадокс Рассела

Возможность задания множеств характеристическим предикатом зависит от пре- диката. Использование некоторых предикатов для этой цели может приводить к противоречиям.

Рассмотрим множество Y всех множеств, **не** содержащих себя в качестве элемента:

$$Y:=\{X\mid X\notin X\}$$

Если множество Y существует, то возникает вопрос: $Y \in Y$?

- Пусть $Y \in Y$, тогда по определению Y, должно следовать $Y \notin Y$. (Противоречие)
- Пусть $Y \notin Y$, тогда по определению Y (как множества всех множеств, не содержащих себя), должно следовать $Y \in Y$. (Противоречие)

Получается неустранимое логическое противоречие, известное как парадокс Рассела.

Способы избежать парадокса Рассела

1. Ограничить характеристические предикаты: Предикат должен быть вида $P(x) = x \in A \land Q(x)$, где A — известное, заведомо существующее множество (универсум). Используют обозначение $\{x \in A \mid Q(x)\}$. Для Y универсум не указан, а потому Y множеством не является.

- 2. **Теория типов:** Объекты имеют тип 0, множества элементов типа 0 имеют тип 1, множества элементов типа 0 и 1 тип 2 и т. д. Y не имеет типа и множеством не является.
- 3. Явный запрет принадлежности множества самому себе: $X \in X$ недопустимый предикат. При аксиоматическом построении теории множеств соответствующая аксиома называется аксиомой регулярности.

2 Алгебра подмножеств. Сравнение множеств. Мощность множества. Операции над множествами.

Сравнение множеств

Для конструирования новых множеств из имеющихся определяются **операции над множествами**.

Подмножество и Надмножество Множество A **содержится** в множестве B (или B **включает** A), если каждый элемент множества A есть элемент множества B:

$$A \subset B \iff \forall x (x \in A \implies x \in B).$$

В этом случае A называется **подмножеством** B, B — **надмножеством** A. По определению, $\forall M(\emptyset \subset M)$.

Равенство множеств Два множества **равны**, если они являются подмножествами друг друга:

$$A = B \iff (A \subset B \land B \subset A).$$

Свойства включения множеств (Теорема) Включение множеств обладает следующими свойствами:

- 1. Рефлексивность: $\forall A (A \subset A)$.
- 2. Антисимметричность: $\forall A, B(A \subset B \land B \subset A \implies A = B)$.
- 3. Транзитивность: $\forall A, B, C(A \subset B \land B \subset C \implies A \subset C)$.

Мощность множества

Равномощные множества Говорят, что между множествами A и B установлено взаимно-однозначное соответствие (или они изоморфны, $A \sim B$), если:

- ullet Каждому элементу $a \in A$ соответствует один и только один элемент $b \in B$.
- Для каждого элемента $b \in B$ соответствует один и только один элемент $a \in A$.

Если $a \in A$ соответствует $b \in B$, обозначают $a \mapsto b$.

Пример: Соответствие $n\mapsto 2n$ устанавливает взаимно-однозначное соответствие между множеством натуральных чисел $\mathbb N$ и множеством чётных натуральных чисел $2\mathbb N$. ($\mathbb N\sim 2\mathbb N$)

Одинаковая мощность Если между двумя множествами A и B может быть установлено взаимно-однозначное соответствие, то говорят, что множества имеют **одинаковую мощность** или **равномощны**, и записывают это как |A| = |B|.

$$|A| = |B| \iff A \sim B.$$

Свойства равномощности (Теорема) Равномощность множеств обладает следующими свойствами:

- 1. Рефлексивность: $\forall A(|A| = |A|)$.
- 2. Симметричность: $\forall A, B(|A| = |B| \implies |B| = |A|)$.
- 3. Транзитивность: $\forall A, B, C(|A| = |B| \land |B| = |C| \implies |A| = |C|)$.

Конечные и бесконечные множества

Конечное множество Множество A называется **конечным**, если у него нет равномощного **собственного** подмножества ($B \subset A$ и $B \neq A$):

$$\forall B((B \subset A \land |B| = |A|) \implies B = A).$$

Обозначение: $|A| < \infty$.

Бесконечное множество Множество A называется **бесконечным**, если оно равномощно некоторому своему собственному подмножеству:

$$\exists B(B \subset A \land |B| = |A| \land B \neq A).$$

Обозначение: $|A| = \infty$.

Пример: Множество \mathbb{N} бесконечно, $|\mathbb{N}| = \infty$, так как оно равномощно своему собственному подмножеству чётных чисел $2\mathbb{N}$.

Теорема: Множество, имеющее бесконечное подмножество, бесконечно:

$$(B \subset A \land |B| = \infty) \implies (|A| = \infty).$$

Мощность конечного множества Теорема: Любое непустое конечное множество равномощно некоторому отрезку натурального ряда:

$$\forall A(A \neq \emptyset \land |A| < \infty \implies \exists k \in \mathbb{N}(|A| = |\{1, \dots, k\}|)).$$

Операции над множествами

Обычно рассматриваются следующие операции над множествами:

Объединение (Union): $A \cup B \stackrel{\text{def}}{=} \{x \mid x \in A \lor x \in B\}$

Пересечение (Intersection): $A \cap B \stackrel{\text{def}}{=} \{x \mid x \in A \land x \in B\}$

Разность (Difference): $A \setminus B \stackrel{\text{def}}{=} \{x \mid x \in A \land x \notin B\}$

Симметрическая разность (Symmetric Difference): $A\Delta B \stackrel{\text{def}}{=} (A \cup B) \setminus (A \cap B) = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$

Дополнение (Complement): $\overline{A} \stackrel{\text{def}}{=} \{x \mid x \notin A\}$

ЗАМЕЧАНИЕ: Операция дополнения \overline{A} определена только при заданном **универсуме** U: $\overline{A} = U \setminus A$.

Формулы для мощностей (для конечных множеств)

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \setminus B| = |A| |A \cap B|$
- $|A\Delta B| = |A| + |B| 2|A \cap B|$

3 Разбиения и покрытия. Булеан. Свойства операций над множествами. Диаграммы Эйлера-Венна.

Разбиения и покрытия

Пусть $\mathcal{E} = \{E_i\}_{i \in I}$ — некоторое **семейство подмножеств** множества M, $E_i \subset M$.

Покрытие Семейство \mathcal{E} называется **покрытием** множества M, если каждый элемент $x \in M$ принадлежит хотя бы одному из множеств E_i :

$$\forall x \in M(\exists i \in I(x \in E_i)).$$

Дизъюнктное семейство Семейство \mathcal{E} называется **дизъюнктным**, если элементы этого семейства **попарно не пересекаются**:

$$\forall i, j \in I (i \neq j \implies E_i \cap E_j = \emptyset).$$

Разбиение Дизъюнктное покрытие называется разбиением множества M. Элементы разбиения (подмножества E_i) часто называют блоками разбиения.

Пример: Пусть $M = \{1, 2, 3\}$.

- \bullet {{1,2}, {2,3}, {3,1}} покрытие, но не разбиение (есть пересечения).
- $\{\{1\},\{2\},\{3\}\}$ разбиение (и покрытие).
- \bullet $\{\{1\},\{2\}\}$ дизъюнктное, но не покрытие, следовательно не разбиение.

Булеан (Множество подмножеств)

Определение Булеана Множество всех подмножеств множества M называется булеаном множества M и обозначается $\mathbf{2}^{\mathbf{M}}$ или $\mathcal{P}(M)$:

$$\mathbf{2}^{\mathbf{M}} \stackrel{\mathrm{def}}{=} \{ A \mid A \subset M \}.$$

Теорема о мощности Булеана Если множество M конечно, то мощность его булеана равна 2 в степени мощности M:

$$|\mathbf{2^M}| = 2^{|M|}.$$

Алгебра подмножеств Множество всех подмножеств универсума U, снабженное операциями пересечения, объединения, разности и дополнения, образует **алгебру подмножеств** множества U.

Свойства операций над множествами

Пусть задан универсум U. Тогда $\forall A, B, C \subset U$ выполняются следующие равенства (где \overline{A} — дополнение A до U, т.е. $U \setminus A$):

1. Идемпотентность:

$$A \cup A = A$$
, $A \cap A = A$

2. Коммутативность:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

3. Ассоциативность:

$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C$$

4. Дистрибутивность:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

5. Поглощение:

$$(A \cap B) \cup A = A, \quad (A \cup B) \cap A = A$$

6. Свойства нуля (∅):

$$A \cup \emptyset = A, \quad A \cap \emptyset = \emptyset$$

7. Свойства единицы (U):

$$A \cup U = U, \quad A \cap U = A$$

8. Инволютивность (двойное дополнение):

$$\overline{\overline{A}} = A$$

9. Законы де Моргана:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}, \quad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

10. Свойства дополнения:

$$A \cup \overline{A} = U, \quad A \cap \overline{A} = \emptyset$$

11. Выражение для разности:

$$A \setminus B = A \cap \overline{B}$$

4 Счетные и несчетные множества. Теоремы о счетных множествах. Представление множеств в программах.

Счетные и Несчетные множества.

Счетное множество Множество A называется **счетным**, если оно равномощно множеству натуральных чисел \mathbb{N} (т.е., $|A| = |\mathbb{N}| = \aleph_0$). Элементы счетного множества могут быть перечислены в последовательность a_1, a_2, a_3, \ldots

Несчетное множество Множество B называется **несчетным**, если оно не является ни конечным, ни счетным (т.е., $|B| > |\mathbb{N}|$). **Пример:** Множество вещественных чисел \mathbb{R} .

Теорема Кантора Мощность булеана любого множества A всегда строго больше мощности самого множества:

$$|2^{\mathbf{A}}| > |A|$$
.

Это доказывает, что несчетные множества существуют.

Теорема Кантора-Бернштейна Если существует инъекция (вложение) множества A в B и инъекция B в A, то множества A и B равномощны:

$$(A \hookrightarrow B \land B \hookrightarrow A) \implies |A| = |B|.$$

Представление множеств в программах

Определение представления Представить объект (множество) в программе — значит описать:

- 1. Структуру данных, используемую для хранения информации о множестве (например, о принадлежности элементов).
- 2. Алгоритмы над этими структурами, реализующие операции над множествами (объединение, пересечение и т.д.).

Выбор представления (например, битовые шкалы, списки, хеш-таблицы) зависит от особенностей множества, состава и частоты использования операций.

Битовые шкалы (Set as Bit Array)

Пусть задан конечный универсум $U = \{u_1, \ldots, u_n\}$, где $|U| \leq n$ (разрядности компьютера). Подмножество $A \subset U$ представляется кодом (битовой шкалой) C: array[1..n] of 0..1, где:

$$C[i] = 1 \iff u_i \in A.$$

Операции над битовыми шкалами Операции над небольшими множествами в этом представлении выполняются весьма эффективно (часто одной машинной командой):

- Пересечение $(A \cap B)$: поразрядное логическое И кодов C_A и C_B .
- Объединение $(A \cup B)$: поразрядное логическое ИЛИ кодов C_A и C_B .
- Дополнение (\overline{A}) : поразрядная ИНВЕРСИЯ кода C_A .

ЗАМЕЧАНИЕ: Если |U| превосходит размер машинного слова, используются массивы битовых шкал (массивы машинных слов), а операции реализуются циклами по элементам массива.

Генерация всех подмножеств универсума

Для генерации всех 2^n подмножеств n-элементного множества $\{a_1,\ldots,a_n\}$ используется соответствие: каждое целое число i от 0 до 2^n-1 представляет одно подмножество.

Алгоритм 1.1 Генерация всех подмножеств Вход: $n \ge 0$ — мощность множества. Выход: последовательность кодов подмножеств i.

```
for i from 0 to 2^n - 1 do yield i \{ код очередного подмножества \} end for
```

Алгоритм построения бинарного кода Грея

Алгоритм генерирует последовательность всех подмножеств так, что каждое следующее подмножество получается из предыдущего **изменением в точности одного элемента** (удалением или добавлением).

Алгоритм 1.2 Построение бинарного кода Грея Вход: $n \ge 0$ — мощность множества. Выход: последовательность кодов подмножеств B.

```
B : array [1..n] of 0..1 { битовая шкала }
for i from 1 to n do
    B[i] := 0 { инициализация }
end for

yield B { пустое множество }
for i from 1 to 2^n - 1 do
    p := Q(i) { номер элемента для изменения }
    B[p] := 1 - B[p] { инверсия бита }
    yield B { очередное подмножество }
end for
```

Функция Q Функция Q(i) возвращает номер разряда p, подлежащего изменению. Q(i) определяется как количество нулей на конце двоичной записи числа i, увеличенное на 1.

Алгоритм 1.3 Функция Q определения изменяемого разряда Вход: i — номер подмножества. Выход: номер изменяемого разряда q.

```
q := 1; j := i
while j четно do
    j := j / 2
    q := q + 1
end while
return q
```

5 Мультимножества. Операции над мультимножествами.

Мультимножества

В отличие от обычного множества, где все элементы различны и входят ровно один раз, **мультимножество** допускает, что элементы могут входить в совокупность **по несколько раз**.

Определение Пусть $X = \{x_1, \dots, x_n\}$ — некоторое (конечное) множество, и пусть $\alpha_1, \dots, \alpha_n$ — неотрицательные целые числа.

Мультимножеством \mathcal{X} над множеством X называется совокупность элементов множества X, в которую элемент x_i входит α_i раз, $\alpha_i \geq 0$.

Обозначения мультимножеств Мультимножество \mathcal{X} обозначается одним из следующих способов:

• С использованием показателей (степеней):

$$\mathcal{X} = [x_1^{\alpha_1}, \dots, x_n^{\alpha_n}]$$

• Перечислением элементов (где x_i повторяется α_i раз):

$$\mathcal{X} = (x_1, \dots, x_1, \dots, x_n, \dots, x_n)$$

• С использованием пары (показатель, элемент):

$$\mathcal{X} = (\alpha_1(x_1), \dots, \alpha_n(x_n))$$

Пример: Пусть $X = \{a, b, c\}$. Тогда $\mathcal{X} = [a^0b^3c^4] = (b, b, b, c, c, c, c) = (0(a), 3(b), 4(c)).$

Основные характеристики Пусть $\mathcal{X} = (\alpha_1(x_1), \dots, \alpha_n(x_n))$ — мультимножество над $X = \{x_1, \dots, x_n\}$.

- Показатель (кратность) элемента x_i : Число α_i .
- Носитель мультимножества: Множество X, над которым определено \mathcal{X} .
- Мощность мультимножества $|\mathcal{X}|$: Общее число элементов с учетом кратности:

$$m = \alpha_1 + \alpha_2 + \cdots + \alpha_n$$
.

• Состав мультимножества: Множество элементов, имеющих положительный показатель (кратность $\alpha_i > 0$):

$$X' = \{x_i \in X \mid \alpha_i > 0\}.$$

ЗАМЕЧАНИЕ: Элементы мультимножества, равно как и элементы множества, считаются **неупорядоченными**.

Операции над мультимножествами

Пусть $\mathcal{A} = (\alpha_i(x_i))$ и $\mathcal{B} = (\beta_i(x_i))$ — два мультимножества над одним носителем $X = \{x_1, \dots, x_n\}$, где α_i и β_i — кратности элемента x_i в \mathcal{A} и \mathcal{B} соответственно. U — универсум с кратностью u_i для элемента x_i .

Логические (Теоретико-множественные) операции

В основе этих операций лежат функции тах и тах и тах кратностей:

1. Объединение ($\mathcal{A} \cup \mathcal{B}$): Кратность элемента x_i равна максимуму из кратностей:

$$C = A \cup B \implies \gamma_i = \max(\alpha_i, \beta_i).$$

2. Пересечение ($\mathcal{A} \cap \mathcal{B}$): Кратность элемента x_i равна минимуму из кратностей:

$$C = A \cap B \implies \gamma_i = \min(\alpha_i, \beta_i).$$

3. Разность ($\mathcal{A} \setminus \mathcal{B}$): Кратность элемента x_i равна разности кратностей, ограниченной снизу нулем:

$$C = A \setminus B \implies \gamma_i = \max(\alpha_i - \beta_i, 0).$$

4. Симметрическая разность ($\mathcal{A}\Delta\mathcal{B}$): Кратность элемента x_i равна модулю разности кратностей:

$$C = A\Delta B \implies \gamma_i = |\alpha_i - \beta_i|.$$

5. Дополнение (\overline{A}): Дополнение относительно универсума \mathcal{U} :

$$C = \overline{A} = \mathcal{U} \setminus A \implies \gamma_i = \max(u_i - \alpha_i, 0).$$

Арифметические операции

Эти операции используют арифметические правила для кратностей, часто с ограничением сверху кратностью в универсуме (u_i) .

1. Арифметическая сумма ($\mathcal{A}+\mathcal{B}$): Кратность элемента x_i равна сумме кратностей, ограниченной u_i :

$$C = A + B \implies \gamma_i = \min(\alpha_i + \beta_i, u_i).$$

2. **Арифметическая разность** ($\mathcal{A} - \mathcal{B}$): Кратность элемента x_i равна **разности кратностей**, ограниченной снизу нулем:

$$C = A - B \implies \gamma_i = \max(\alpha_i - \beta_i, 0).$$

3. Арифметическое произведение ($\mathcal{A} \times \mathcal{B}$): Кратность элемента x_i равна произведению кратностей, ограниченному u_i :

$$\mathcal{C} = \mathcal{A} \times \mathcal{B} \implies \gamma_i = \min(\alpha_i \cdot \beta_i, u_i).$$

4. Арифметическое деление ($\mathcal{A} \div \mathcal{B}$): Кратность элемента x_i равна целой части от деления кратностей:

$$\mathcal{C} = \mathcal{A} \div \mathcal{B} \implies \gamma_i = \begin{cases} \lfloor \alpha_i / \beta_i \rfloor, & \text{если } \beta_i \neq 0 \\ 0, & \text{если } \beta_i = 0 \end{cases}$$

(С учетом ограничения универсума: $\gamma_i = \min(\lfloor \alpha_i/\beta_i \rfloor, u_i)$ при $\beta_i \neq 0$).

6 Отношения (бинарное, n-арное). Связь множеств и упорядоченной пары. Прямое произведение множеств. Композиция отношений. Степень отношения. Ядро отношения. Примеры.

Упорядоченные пары и наборы

Упорядоченная пара Для объектов a и b упорядоченная пара обозначается (a,b). Равенство упорядоченных пар:

$$(a,b) = (c,d) \iff a = c \land b = d.$$

B общем случае $(a, b) \neq (b, a)$.

Упорядоченный набор (n-ка, кортеж) Упорядоченный набор из n элементов обозначается (a_1, \ldots, a_n) . Набор может быть определен рекурсивно: $(a_1, \ldots, a_n) \stackrel{\text{def}}{=} ((a_1, \ldots, a_{n-1}), a_n)$. Длина набора: $|(a_1, \ldots, a_n)| = n$.

Теорема о равенстве наборов: Два набора одной длины равны, если равны их соответствующие элементы:

$$\forall n \geq 1 : (a_1, \dots, a_n) = (b_1, \dots, b_n) \iff \forall i \in \{1, \dots, n\} (a_i = b_i).$$

Прямое произведение множеств

Прямое (декартово) произведение двух множеств Для множеств A и B прямым произведением $A \times B$ называется множество всех упорядоченных пар, в которых первый элемент принадлежит A, а второй принадлежит B:

$$A \times B \stackrel{\text{def}}{=} \{(a, b) \mid a \in A \land b \in B\}.$$

Теорема о мощности: Для конечных множеств A и B мощность произведения равна произведению мощностей: $|A \times B| = |A| \cdot |B|$.

n-кратное прямое произведение Прямое произведение n множеств A_1, \ldots, A_n — это множество наборов (кортежей):

$$A_1 \times \cdots \times A_n \stackrel{\text{def}}{=} \{(a_1, \dots, a_n) \mid a_1 \in A_1 \wedge \cdots \wedge a_n \in A_n\}.$$

Степень множества Степенью множества A называется его n-кратное прямое произведение самого на себя:

$$A^n \stackrel{\text{def}}{=} \underbrace{A \times \cdots \times A}_{n \text{ pas}}.$$

Следствие: $|A^n| = |A|^n$.

Отношения (Бинарное и *n*-арное)

Бинарное отношение Бинарным отношением \mathcal{R} между множествами A и B называется тройка (A,B,R), где R — подмножество прямого произведения $A \times B$:

$$R \subset A \times B$$
.

- \bullet R называется **графиком отношения**.
- A область отправления (домен), B область прибытия (кодомен).
- ullet Если A=B $(R\subset A^2),$ то ${\mathcal R}$ называется **отношением на множестве** A.

Для бинарных отношений используется **инфиксная форма записи**: $a\mathcal{R}b \iff (a,b) \in R$.

Характеристики бинарного отношения Пусть $R \subset A \times B$.

• Область определения (Dom R): Множество элементов A, участвующих в парах отношения:

Dom
$$R \stackrel{\text{def}}{=} \{ a \in A \mid \exists b \in B((a, b) \in R) \}.$$

• Область значений (Im R): Множество элементов B, участвующих в парах отношения:

Im
$$R \stackrel{\text{def}}{=} \{b \in B \mid \exists a \in A((a, b) \in R)\}.$$

• Обратное отношение $(R^{-1} \subset B \times A)$:

$$R^{-1} \stackrel{\text{def}}{=} \{(b, a) \mid (a, b) \in R\}.$$

• Дополнение отношения $(\overline{R} \subset A \times B)$:

$$\overline{R} \stackrel{\text{def}}{=} \{(a,b) \mid (a,b) \notin R\} = (A \times B) \setminus R.$$

n-арное отношение n-местное (n-арное) отношение \mathcal{R} — это подмножество прямого произведения n множеств:

$$R \subset A_1 \times A_2 \times \cdots \times A_n \stackrel{\text{def}}{=} \{(a_1, \dots, a_n) \mid a_i \in A_i\}.$$

Композиция отношений и Степень

Композиция отношений Пусть $R_1 \subset A \times C$ и $R_2 \subset C \times B$. **Композицией** отношений R_1 и R_2 называется отношение $R = R_1 \circ R_2 \subset A \times B$, определяемое:

$$a(R_1 \circ R_2)b \iff \exists c \in C(aR_1c \wedge cR_2b).$$

Теорема: Композиция отношений ассоциативна:

$$\forall R_1 \subset A \times B, R_2 \subset B \times C, R_3 \subset C \times D : (R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3).$$

ЗАМЕЧАНИЕ: Композиция отношений, в общем случае, **не коммутатив- на** $(R_1 \circ R_2 \neq R_2 \circ R_1)$.

Степень отношения Пусть R — отношение на множестве A ($R \subset A^2$). **Степенью** отношения R называется его n-кратная композиция с самим собой:

$$R^n \stackrel{\text{def}}{=} \underbrace{R \circ R \circ \cdots \circ R}_{n \text{ pa3}}.$$

По определению: $R^0 \stackrel{\text{def}}{=} I$ (тождественное отношение), $R^1 \stackrel{\text{def}}{=} R$, и $R^n \stackrel{\text{def}}{=} R^{n-1} \circ R$.

Ядро отношения

Определение Ядра Пусть $R \subset A \times B$ — отношение между множествами A и B. Ядром отношения R называется композиция отношения R с его обратным отношением R^{-1} :

$$\ker R \stackrel{\text{def}}{=} R \circ R^{-1} \subset A^2$$
.

Другими словами, a_1 находится в отношении $\ker R$ с a_2 тогда и только тогда, когда существует хотя бы один общий элемент $b \in B$, связанный с обоими:

$$a_1 \ker Ra_2 \stackrel{\text{def}}{\iff} \exists b \in B(a_1Rb \wedge a_2Rb).$$

Ядро отношения R между A и B является **отношением на** A: $R \subset A \times B \implies \ker R \subset A^2$.

Свойства Ядра (Теорема) Ядро любого отношения рефлексивно и симметрично на своей области определения (Dom R):

- 1. Рефлексивность: $\forall a \in \text{Dom } R(a \ker Ra)$.
- 2. Симметричность: $\forall a, b \in \text{Dom } R(a \ker Rb \implies b \ker Ra)$.

Примеры

- 1. Пусть $R \subset U \times \mathbf{2}^U$ отношение принадлежности \in . Ядро отношения \in универсально: $\ker(\in) = U \times U$.
- 2. Отношение N_1 на \mathbb{Z} : $N_1 = \{(n,m) \mid |n-m| \leq 1\}$. Ядром этого отношения является отношение N_2 (находиться на расстоянии не более 2):

$$\ker N_1 = N_1 \circ N_1^{-1} = N_2 = \{(n, m) \mid |n - m| \le 2\}.$$

3. Ядром отношения «тесного включения» $(X \subset Y \iff X \subset Y \land |X| + 1 = |Y|)$ является отношение «отличаться не более чем одним элементом»:

$$\ker(\subset_1) = \{(X, Y) \in \mathbf{2}^{U} \times \mathbf{2}^{U} \mid |X| = |Y| \land |X \cap Y| \ge |X| - 1\}.$$

ЗАМЕЧАНИЕ: Ядро отношения $\ker R$ всегда является **отношением то- лерантности** на $\operatorname{Dom} R$, так как оно рефлексивно и симметрично.

7 Свойства отношений. Представление отношений, операций над ними и их свойств матрицами. Примеры.

Свойства бинарных отношений

Пусть R — отношение на множестве A ($R \subset A^2$), а $a,b,c \in A$. Отношение R называется:

Рефлексивным: если $\forall a \in A : (aRa)$.

Антирефлексивным: если $\forall a \in A : (\neg aRa)$.

Симметричным: если $\forall a,b \in A: (aRb \implies bRa)$.

Антисимметричным: если $\forall a, b \in A : (aRb \land bRa \implies a = b).$

Транзитивным: если $\forall a,b,c \in A: (aRb \land bRc \implies aRc).$

Линейным (Полным): если $\forall a, b \in A : (a = b \lor aRb \lor bRa)$.

Свойства, выраженные через операции (Теорема) Пусть $R \subset A^2$. I — тождественное отношение на $A, U = A^2$ — универсальное отношение.

- 1. R рефлексивно $\iff I \subset R$.
- 2. R симметрично $\iff R = R^{-1}$ (отношение равно своему обратному).
- 3. R транзитивно $\iff R \circ R \subset R$ (содержится в самом отношении).
- 4. R антисимметрично $\iff R \cap R^{-1} \subset I$.
- 5. R антирефлексивно $\iff R \cap I = \emptyset$.
- 6. R линейно $\iff R \cup I \cup R^{-1} = U$.

Матричное представление отношений

Пусть R — отношение на конечном множестве $A = \{a_1, \ldots, a_n\}, |A| = n$. Отношение R представляется **булевой матрицей** \mathbf{R} : array[1..n, 1..n] of 0..1:

$$\mathbf{R}[i,j] = 1 \iff a_i R a_j.$$

Матричное представление свойств Для булевой матрицы ${\bf R}$ отношения R на A:

- R рефлексивно \iff Главная диагональ ${\bf R}$ состоит из единиц ($\forall i: {\bf R}[i,i]=1$).
- R антирефлексивно \iff Главная диагональ $\mathbf R$ состоит из нулей ($\forall i: \mathbf R[i,i]=0$).
- \bullet R симметрично \iff $\mathbf{R} = \mathbf{R}^T$ (матрица симметрична).
- ullet R антисимметрично \iff Для $i \neq j$: $\mathbf{R}[i,j] = 1 \implies \mathbf{R}[j,i] = 0.$
- ullet **R транзитивно** \iff $\mathbf{R} \cdot \mathbf{R} \subset \mathbf{R}$ (где \cdot булево умножение матриц).

Операции над отношениями через матрицы (Теоремы) Пусть ${f R}_1$ и ${f R}_2$ — булевы матрицы отношений R_1 и R_2 .

1. Обратное отношение (R^{-1}) : Матрица обратного отношения равна транспонированной матрице:

$$\mathbf{R}^{-1} = \mathbf{R}^T$$
.

2. Дополнение отношения (\overline{R}): Матрица дополнения получается инвертированием всех элементов (замена $1 \to 0, 0 \to 1$):

$$\overline{\mathbf{R}}[i,j] = 1 - \mathbf{R}[i,j].$$

3. Объединение $(R_1 \cup R_2)$: Матрица объединения равна булевой дизъюнкции (логическое \vee) матриц:

$$\mathbf{R_1} \cup \mathbf{R_2} = \mathbf{R_1} \vee \mathbf{R_2}.$$

4. Пересечение $(R_1 \cap R_2)$: Матрица пересечения равна булевой конъюнкции (логическое \land) матриц:

$$\mathbf{R_1} \cap \mathbf{R_2} = \mathbf{R_1} \wedge \mathbf{R_2}.$$

5. **Композиция** $(R_1 \circ R_2)$: Матрица композиции равна **булевому произведению** матриц:

$$\mathbf{R_1} \circ \mathbf{R_2} = \mathbf{R_1} \cdot \mathbf{R_2}.$$

(Булево произведение: $(\mathbf{R}_1 \cdot \mathbf{R}_2)[i,j] = \bigvee_{k=1}^n (\mathbf{R}_1[i,k] \wedge \mathbf{R}_2[k,j])$).

8 Замыкание отношений. Транзитивное и рефлексивное замыкание. Алгоритм Уоршалла. Представление отношений в программах.

Замыкание отношений

Пусть R и R' — отношения на множестве M. Отношение R' называется **замыканием** R относительно свойства \mathcal{C} , если:

- 1. R' обладает свойством \mathcal{C} ($\mathcal{C}(R')$).
- 2. R' является надмножеством R ($R \subset R'$).
- 3. R' является **наименьшим** таким объектом: если $\mathcal{C}(R'')$ и $R \subset R''$, то $R' \subset R''$.

Транзитивное и Рефлексивное замыкание

Для отношения R на множестве M вводятся объединения его положительных и неотрицательных степеней (композиций):

Транзитивное замыкание (R^+) **Транзитивное замыкание** R^+ — это объединение всех **положительных** степеней R:

$$R^{+} \stackrel{\text{def}}{=} \bigcup_{i=1}^{\infty} R^{i} = R^{1} \cup R^{2} \cup R^{3} \cup \cdots$$

Теорема: R^+ является **наименьшим транзитивным надмножеством** R. R^+ содержит пару (a,b) тогда и только тогда, когда существует путь из a в b по отношению R (длиной ≥ 1).

Рефлексивно-транзитивное замыкание (R^*) Рефлексивно-транзитивное замыкание R^* — это объединение всех **неотрицательных** степеней R:

$$R^* \stackrel{\text{def}}{=} \bigcup_{i=0}^{\infty} R^i = R^0 \cup R^1 \cup R^2 \cup \cdots$$

Поскольку $R^0 = I$ (тождественное отношение), то $R^* = R^+ \cup I$. **Теорема:** R^* является **наименьшим рефлексивным и транзитивным надмножеством** R. R^* содержит пару (a,b) тогда и только тогда, когда существует путь из a в b по R (длиной ≥ 0).

Алгоритм Уоршалла

Алгоритм Уоршалла (Warshall's Algorithm) используется для эффективного вычисления **транзитивного замыкания** R^+ отношения R на множестве M, |M| = n. Он имеет сложность $O(n^3)$.

Алгоритм работает с булевой матрицей ${f R}$ отношения.

Алгоритм 1.11 Вычисление транзитивного замыкания Вход: Булева матрица отношения $\mathbf{R}:[1..n,1..n]$. **Выход:** Булева матрица транзитивного замыкания \mathbf{T} (т.е., \mathbf{R}^+).

Смысл: На k-й итерации внешний цикл гарантирует, что если есть путь из i в j, проходящий только через промежуточные вершины с номерами $\leq k$, то $\mathbf{T}[i,j]$ устанавливается в 1.

Представление отношений в программах

Булева матрица (Матрица смежности) Отношение R на множестве $A = \{a_1, \ldots, a_n\}$ представляется булевой матрицей $\mathbf{R}[n \times n]$, где:

$$\mathbf{R}[i,j] = 1 \iff (a_i, a_j) \in R.$$

Матричное представление эффективно для:

- Проверки свойств: Симметричность ($\mathbf{R} = \mathbf{R}^T$), Рефлексивность (диагональ из 1).
- Операций: Композиция $R_1 \circ R_2$ булево произведение $\mathbf{R}_1 \cdot \mathbf{R}_2$.
- Замыкания: Алгоритм Уоршалла работает непосредственно с этой матрицей.

ЗАМЕЧАНИЕ: Для больших разреженных отношений часто используются другие представления, например, **списки смежности** (см. Графы).

9 Функциональное отношение. Инъекция, сюръекция, биекция, тотальность. Образы и прообразы. Суперпозиция функций. Представление функций в программах. Примеры.

Функциональное отношение (Функция)

Определение Функция f из A в B ($f:A\to B$) — это бинарное отношение $f\subset A\times B$, обладающее свойством однозначности (функциональности):

$$\forall a \in A, b, c \in B : ((a, b) \in f \land (a, c) \in f \implies b = c).$$

То есть, каждому элементу области отправления соответствует не более одного элемента области прибытия.

Терминология

- A Область отправления (Домен).
- B Область прибытия (Кодомен).
- Область определения (Dom f) множество $a \in A$, для которых f(a) определено.
- Область значений (Im f) множество $b \in B$, являющихся значениями функции: Im $f = \{b \in B \mid \exists a \in A(b = f(a))\}$.

Тотальность и Частичность

- Функция $f: A \to B$ называется **тотальной**, если Dom f = A. (Определена для всех элементов A).
- ullet Функция f:A o B называется **частичной**, если Dom $f\subsetneq A$.

Преобразование: Тотальная функция $f:M\to M$ называется преобразованием над M.

Инъекция, Сюръекция и Биекция

Пусть $f: A \to B$ — тотальная функция.

Инъективная (Инъекция): Если разным аргументам соответствуют разные значения:

$$f(a_1) = f(a_2) \implies a_1 = a_2.$$

Сюръективная (Сюръекция): Если область значений совпадает с областью прибытия (каждый элемент B является образом хотя бы одного элемента A):

$$\forall b \in B(\exists a \in A(b = f(a))).$$

Биективная (Биекция): Если функция является одновременно **инъектив- ной** и **сюръективной**. Биекция также называется **взаимно-однозначным соответствием**.

Образы и Прообразы

Пусть $f: A \to B$ — функция, $A_1 \subset A$, $B_1 \subset B$.

• Образ множества A_1 ($f(A_1)$): Множество значений B, полученных из элементов A_1 :

$$f(A_1) \stackrel{\text{def}}{=} \{ b \in B \mid \exists a \in A_1(b = f(a)) \}.$$

• **Прообраз множества** B_1 ($f^{-1}(B_1)$): Множество аргументов A, отображающихся в B_1 :

$$f^{-1}(B_1) \stackrel{\text{def}}{=} \{ a \in A \mid \exists b \in B_1(b = f(a)) \}.$$

Теорема: Переход к образам $(F: \mathbf{2^A} \to \mathbf{2^B})$ и прообразам $(F^{-1}: \mathbf{2^B} \to \mathbf{2^A})$ также являются функциями.

Суперпозиция функций

Композиция функций называется **суперпозицией** и обозначается о (как и композиция отношений).

Определение Если $f:A\to B$ и $g:B\to C$, то суперпозиция $g\circ f$ — это функция $g\circ f:A\to C$, определяемая как:

$$(g \circ f)(x) \stackrel{\text{def}}{=} g(f(x)).$$

Теорема: Суперпозиция функций является функцией:

$$f: A \to B \land g: B \to C \implies g \circ f: A \to C.$$

Представление функций в программах

Массивы (Табулирование) Если область отправления A конечна и не очень велика, функция представляется массивом (array[A] of B).

- Значение функции f(a) вычисляется как M[a] (обращение по индексу).
- Эффективность: Вычисление значения происходит за O(1) (константное время).
- Функции нескольких аргументов $(f(a_1, \ldots, a_n))$ представляются **многомерными массивами**.

Процедуры (Алгоритмическое представление) Если множество A велико или бесконечно, функция представляется процедурой (блоком кода), которая вычисляет значение b по заданному аргументу a.

- В языках программирования такие процедуры также называются функциями (ключевое слово function).
- Свойство функциональности (однозначность) обеспечивается оператором return (возврат единственного значения).

10 Отношение эквивалентности. Классы эквивалентности. Фактор-множества. Ядро функционального отношения и множества уровня.

Отношение эквивалентности

Определение Отношение $\approx \subset M^2$ на множестве M называется отношением эквивалентности, если оно одновременно:

- 1. Рефлексивно: $\forall x \in M(x \approx x)$.
- 2. Симметрично: $\forall x, y \in M(x \approx y \implies y \approx x)$.
- 3. **Транзитивно:** $\forall x, y, z \in M(x \approx y \land y \approx z \implies x \approx z)$.

Примеры

- Равенство чисел (\mathbb{R}^2), равенство множеств ($\mathbf{2}^{\mathbf{M}^2}$).
- ullet Равномощность множеств (${f 2}^{{f M}^2}$).

Классы эквивалентности и Фактор-множество

Класс эквивалентности Пусть \approx — отношение эквивалентности на M. **Классом эквивалентности** для элемента $x \in M$ называется подмножество элементов M, эквивалентных x:

$$[x]_{\approx} \stackrel{\text{def}}{=} \{ y \in M \mid y \approx x \}.$$

Свойства классов эквивалентности

- **Непустота:** $\forall a \in M([a] \neq \emptyset)$. (Следует из рефлексивности).
- Равенство: $a \approx b \implies [a] = [b]$.
- Дизъюнктность: $a \not\approx b \implies [a] \cap [b] = \emptyset$.

Теорема о разбиении Если \approx — отношение эквивалентности на M, то классы эквивалентности $[x]_{\approx}$ образуют **разбиение** множества M. И обратно, всякое разбиение множества M определяет отношение эквивалентности, классами которого являются блоки разбиения.

Фактор-множество Если R — отношение эквивалентности на M, то фактор-множеством M относительно R называется множество всех классов эквивалентности по R:

$$M/R \stackrel{\mathrm{def}}{=} \{ [x]_R \mid x \in M \}.$$

Фактор-множество является подмножеством булеана: $M/R \subset \mathbf{2^M}$.

Отождествление Функция $\operatorname{nat}_R: M \to M/R$, определяемая как $\operatorname{nat}_R(x) \stackrel{\text{def}}{=} [x]_R$, называется **отождествлением** (естественной сюръекцией).

Ядро функционального отношения

Ядро функционального отношения Всякое функциональное отношение (функция) $f: A \to B$ имеет **ядро**, которое является отношением на области определения Dom f:

$$\ker f \stackrel{\text{def}}{=} f \circ f^{-1} \subset (\text{Dom } f)^2.$$

Ядро $\ker f$ связывает два элемента $a_1, a_2 \in A$ тогда и только тогда, когда они имеют **одинаковые значения** при отображении f:

$$a_1 \ker f a_2 \iff f(a_1) = f(a_2).$$

Теорема Ядро функционального отношения $\ker f$ является **отношением эквивалентности** на его области определения $\operatorname{Dom} f$.

Множества уровня Множества, на которые разбивает Dom f ядро ker f, являются классами эквивалентности ker f. Эти классы называются **множествами уровня** (или **слоями**) функции f.

$$Dom f / \ker f = \{ [a]_{\ker f} \mid a \in Dom f \}.$$

Каждый класс $[a]_{\ker f}$ состоит из всех элементов, которые отображаются функцией f в одно и то же значение f(a).

$$[a]_{\ker f} = \{x \in \text{Dom } f \mid f(x) = f(a)\}.$$

Множества уровня функции f образуют разбиение области определения $\operatorname{Dom}\ f.$

11 Отношение порядка. Минимальные элементы. Верхние и нижние границы. Монотонность. Вполне упорядоченные множества. Диаграммы Хассе. Примеры.

Отношение порядка

Определение Отношение \prec на множестве M называется **отношением порядка**, если оно одновременно:

- 1. Антисимметрично: $\forall a, b \in M(a \prec b \land b \prec a \implies a = b)$.
- 2. **Транзитивно:** $\forall a, b, c \in M(a \prec b \land b \prec c \implies a \prec c)$.

Типы порядка

- **Нестрогий порядок** (\preceq): Отношение порядка, которое **рефлексивно** ($\forall a: a \preceq a$).
- Строгий порядок (\prec): Отношение порядка, которое антирефлексивно ($\forall a: \neg a \prec a$).
- Линейный порядок (Полный): Отношение порядка, которое линейно $(\forall a,b:a=b\lor a\prec b\lor b\prec a).$
- Частичный порядок: Отношение порядка, которое не является линейным.

Границы и специальные элементы

Минимальные и максимальные элементы *(В представленном фрагменте нет явного определения минимальных элементов, но они подразумеваются в разделе о вполне упорядоченных множествах.)*

Пусть M — частично упорядоченное множество.

- Элемент $m \in M$ называется **минимальным**, если $\neg \exists x \in M(x \prec m)$.
- Элемент $m \in M$ называется **максимальным**, если $\neg \exists x \in M (m \prec x)$.

Верхние и нижние границы Пусть $X \subset M$ — подмножество упорядоченного множества M.

- Элемент $m \in M$ **Нижняя граница** X, если $\forall x \in X (m \leq x)$.
- Элемент $m \in M$ Верхняя граница X, если $\forall x \in X(x \leq m)$.

Инфимум (inf X): Наибольшая нижняя граница множества X. Супремум (sup X): Наименьшая верхняя граница множества X.

Монотонные функции

Пусть A и B — упорядоченные множества с отношением \leq , и $f: A \to B$.

Монотонно возрастающая: Если $a_1 \leq a_2 \implies f(a_1) \leq f(a_2)$.

Строго монотонно возрастающая: Если $a_1 \prec a_2 \implies f(a_1) \prec f(a_2)$.

Монотонно убывающая: Если $a_1 \leq a_2 \implies f(a_2) \leq f(a_1)$.

Строго монотонно убывающая: Если $a_1 \prec a_2 \implies f(a_2) \prec f(a_1)$.

Монотонные функции — это монотонно возрастающие или убывающие функции.

Вполне упорядоченные множества

Определение Частично упорядоченное множество X называется вполне упорядоченным, если любое его непустое подмножество имеет минимальный элемент.

Следствие: Вполне упорядоченное множество всегда линейно упорядочено, поскольку для любых двух элементов $a, b \in X$, подмножество $\{a, b\}$ должно иметь минимальный элемент, что означает, что $a \leq b$ или $b \leq a$.

Диаграммы Хассе

Диаграмма Хассе — это графическое представление конечного частично упорядоченного множества (M, \preceq) , где:

- 1. Элементы M представлены узлами.
- 2. Элементы, связанные отношением рефлексивности и транзитивности, не отображаются (транзитивное сокращение).
- 3. Если $a \prec b$ и нет c такого, что $a \prec c \prec b$, то b располагается выше a и соединяется с ним линией.

Диаграмма Xacce наглядно показывает **непосредственное следование** элементов в порядке.

12 Характеристические функции множеств и отношений. Функции максимума и минимума.

Характеристическая функция множества

Я ХУЙ ЗНАЕТ НОРМ НЕ НОРМ. Я НЕ НАШЕЛ (найдете киньте ISSUE)

Определение Пусть U — универсум (конечное или бесконечное множество), и A — любое его подмножество ($A \subset U$). Характеристическая функция χ_A множества A — это тотальная функция $\chi_A : U \to \{0,1\}$, которая принимает значение 1, если элемент принадлежит A, и 0, если не принадлежит:

$$\chi_A(x) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{если } x \in A \\ 0, & \text{если } x \notin A \end{cases}$$

Характеристическая функция устанавливает взаимно-однозначное соответствие между элементами булеана $\mathbf{2}^{\mathbf{U}}$ и множеством функций $U \to \{0,1\}$.

Характеристическая функция операций над множествами Пусть A и B — подмножества U. Операции над множествами выражаются через логические операции над их характеристическими функциями:

- Дополнение (\overline{A}) : $\chi_{\overline{A}}(x) = 1 \chi_A(x)$.
- Пересечение $(A \cap B)$: $\chi_{A \cap B}(x) = \chi_A(x) \wedge \chi_B(x) = \chi_A(x) \cdot \chi_B(x)$.
- Объединение $(A \cup B)$: $\chi_{A \cup B}(x) = \chi_A(x) \vee \chi_B(x) = \chi_A(x) + \chi_B(x) \chi_A(x) \cdot \chi_B(x)$.
- Симметрическая разность $(A\Delta B)$: $\chi_{A\Delta B}(x) = \chi_A(x) \oplus \chi_B(x) \oplus \chi_B(x)$ исключающее "ИЛИ").

Характеристическая функция бинарного отношения

Определение Пусть A и B — множества, и R — бинарное отношение между ними ($R \subset A \times B$). Характеристическая функция отношения χ_R — это тотальная функция $\chi_R : A \times B \to \{0,1\}$, которая определена на декартовом произведении и принимает значение 1, если пара принадлежит R, и 0, если не принадлежит:

$$\chi_R(a,b) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{если } (a,b) \in R \\ 0, & \text{если } (a,b) \notin R \end{cases}$$
 (т.е., aRb)

Для конечных множеств A и B характеристическая функция отношения эквивалентна его **булевой матрице** (см. Билет 7), где $\mathbf{R}[i,j] = \chi_R(a_i,b_j)$.

Функции максимума и минимума

Функции максимума (max) и минимума (min) используются для определения кратностей элементов при теоретико-множественных операциях над мультимножествами (см. Билет 5).

Функция максимума (для мультимножеств) Пусть \mathcal{A} и \mathcal{B} — мультимножества, и α_x, β_x — кратности элемента x в \mathcal{A} и \mathcal{B} соответственно. Кратность элемента x в $\mathcal{A} \cup \mathcal{B}$:

$$count_{\mathcal{A}\cup\mathcal{B}}(x) = \max(\alpha_x, \beta_x).$$

Определение max: Для двух элементов a, b в упорядоченном множестве M (например, \mathbb{N} или \mathbb{R}):

$$\max(a,b) \stackrel{\text{def}}{=} \begin{cases} a, & \text{если } a \ge b \\ b, & \text{если } a < b \end{cases}$$

Функция минимума (для мультимножеств) Кратность элемента x в $\mathcal{A} \cap \mathcal{B}$:

$$\operatorname{count}_{\mathcal{A} \cap \mathcal{B}}(x) = \min(\alpha_x, \beta_x).$$

Определение min: Для двух элементов a, b в упорядоченном множестве M:

$$\min(a,b) \stackrel{\text{def}}{=} \begin{cases} a, & \text{если } a \leq b \\ b, & \text{если } a > b \end{cases}$$

ЗАМЕЧАНИЕ: Функции тах и также используются для определения **верхних** (супремум, sup) и **нижних** (инфимум, inf) границ в частично упорядоченных множествах (см. Билет 11).

13 Алгебры. Носители и сигнатура. Замыкания и подалгебры. Система образующих. Свойства операций. Примеры.

Алгебры, Носители и Сигнатура

Определение Операции n-арная (n-местная) операция φ на множестве M — это всюду определённая (тотальная) функция $\varphi: M^n \to M$.

• Для бинарных операций $(\varphi: M \times M \to M)$ используется инфиксная форма записи, например, a*b.

Алгебраическая структура (Универсальная алгебра) Алгебра \mathcal{A} — это множество M вместе с набором операций $\Sigma = \{\varphi_1, \dots, \varphi_m\}$, где $\varphi_i : M^{n_i} \to M$.

$$\mathcal{A} = (M; \Sigma) = (M; \varphi_1, \dots, \varphi_m).$$

- **Носитель** (Основа) M: Основное множество, на котором определены операции.
- Сигнатура Σ : Множество всех операций $\{\varphi_1, \ldots, \varphi_m\}$.
- Тип: Вектор арностей (n_1, \ldots, n_m) .

Замыкания и Подалгебры

Замкнутое подмножество Подмножество носителя $X \subset M$ называется **замкнутым** относительно операции φ (с арностью n), если:

$$\forall x_1, \dots, x_n \in X \implies \varphi(x_1, \dots, x_n) \in X.$$

Множество X замкнуто относительно сигнатуры Σ , если оно замкнуто относительно всех $\varphi \in \Sigma$.

Подалгебра Алгебра $\mathcal{X} = (X; \Sigma_X)$ называется **подалгеброй** алгебры $\mathcal{A} = (M; \Sigma)$, если:

- 1. $X \subset M$.
- 2. X замкнуто относительно всех операций $\varphi_i \in \Sigma$.
- 3. Σ_X это ограничения операций Σ на X.

Примеры Подалгебр

- Кольцо целых чисел ($\mathbb{Z};+,\cdot$) является подалгеброй поля рациональных чисел ($\mathbb{Q};+,\cdot$).
- Алгебра полиномов \mathcal{P}_x является подалгеброй алгебры гладких функций \mathcal{F} по операции дифференцирования.

Система образующих

Определение Подмножество $M' \subset M$ называется системой образующих алгебры $(M; \Sigma)$, если M является наименьшим замкнутым подмножеством, содержащим M'.

Алгебра, порождённая M' (обозначается $[M']_{\Sigma}$), равна M.

Конечно-порождённая алгебра: Алгебра, имеющая конечную систему образующих.

Пример Алгебра натуральных чисел $(\mathbb{N}; +)$ конечно-порождённая, так как имеет систему образующих $M' = \{1\}$.

Свойства бинарных операций

Пусть $\mathcal{A} = (M; \Sigma), a, b, c \in M$, и $\circ, \bullet \in \Sigma$ — бинарные операции.

1. Ассоциативность (0):

$$(a \circ b) \circ c = a \circ (b \circ c).$$

2. **Коммутативность** (⋄):

$$a \circ b = b \circ a$$
.

3. Дистрибутивность (∘ относительно • слева):

$$a \circ (b \bullet c) = (a \circ b) \bullet (a \circ c).$$

4. **Поглощение** (◦ поглощает •):

$$(a \circ b) \bullet a = a.$$

5. **И**демпотентность (\circ):

$$a \circ a = a$$
.

14 Виды морфизмов. Гомоморфизм, изоморфизм. Примеры.

Гомоморфизм

Определение Пусть $\mathcal{A} = (A; \Sigma_{\mathcal{A}})$ и $\mathcal{B} = (B; \Sigma_{\mathcal{B}})$ — две алгебры одного типа (т.е., сигнатуры имеют одинаковое количество операций с одинаковыми арностями). Функция $f: A \to B$ называется гомоморфизмом из \mathcal{A} в \mathcal{B} , если она согласована с операциями φ_i и ψ_i (где ψ_i соответствует φ_i):

$$\forall i \in \{1, \ldots, m\} : f(\varphi_i(a_1, \ldots, a_{n_i})) = \psi_i(f(a_1), \ldots, f(a_{n_i})).$$

Образно говоря, гомоморфизм «уважает» операции: результат операции над аргументами в A и последующее отображение в B равносильно отображению аргументов в B и последующей операции в B.

Коммутативная диаграмма Условие гомоморфизма для одной бинарной операции φ может быть записано через суперпозицию:

$$f \circ \varphi_{\mathcal{A}} = \varphi_{\mathcal{B}} \circ (f \times f).$$

Виды гомоморфизмов Термин **морфизм** используется как собирательное понятие для всех следующих видов отображений:

- Эндоморфизм: Гомоморфизм $f: \mathcal{A} \to \mathcal{A}$ (отображение алгебры на саму себя).
- Мономорфизм: Гомоморфизм, который является инъекцией.
- Эпиморфизм: Гомоморфизм, который является сюръекцией.

Пример Гомоморфизма Пусть $\mathcal{A} = (\mathbb{N}; +)$ и $\mathcal{B} = (\mathbb{N}_{10}; +_{10})$ (сложение по модулю 10). Функция $f(a) = a \mod 10$ является гомоморфизмом из \mathcal{A} в \mathcal{B} .

$$f(a_1 + a_2) = (a_1 + a_2) \bmod 10$$

$$f(a_1) +_{10} f(a_2) = (a_1 \mod 10 + a_2 \mod 10) \mod 10$$

Обе стороны равны, что доказывает гомоморфизм.

Изоморфизм

Определение Изоморфизм $f: \mathcal{A} \to \mathcal{B}$ — это гомоморфизм, который является биекцией (одновременно инъекцией и сюръекцией). Если между алгебрами \mathcal{A} и \mathcal{B} существует изоморфизм, они называются изоморфными $(\mathcal{A} \cong \mathcal{B})$.

Свойства Изоморфизма

- Обратный изоморфизм: Если $f: \mathcal{A} \to \mathcal{B}$ изоморфизм, то обратная функция $f^{-1}: \mathcal{B} \to \mathcal{A}$ также является изоморфизмом.
- Эквивалентность: Отношение изоморфизма (\cong) на множестве однотипных алгебр является отношением эквивалентности.
- **Автоморфизм:** Изоморфизм $f: \mathcal{A} \to \mathcal{A}$ называется **автоморфизмом**.

Значение Изоморфизма Изоморфные алгебры имеют одинаковую структуру с точки зрения алгебраических свойств. Любое свойство, выраженное в сигнатуре Σ , верное в \mathcal{A} , автоматически верно и в \mathcal{B} . Это позволяет изучать алгебраические структуры с точностью до изоморфизма.

Примеры Изоморфизма

1. Алгебра положительных вещественных чисел по умножению изоморфна алгебре всех вещественных чисел по сложению:

$$\mathcal{A} = (\mathbb{R}^+; \cdot) \cong \mathcal{B} = (\mathbb{R}; +).$$

Изоморфизм задается функцией $f(x) = \ln(x)$.

2. Алгебра натуральных чисел по сложению изоморфна алгебре четных натуральных чисел по сложению:

$$\mathcal{A} = (\mathbb{N}; +) \cong \mathcal{B} = (\{2k \mid k \in \mathbb{N}\}; +).$$

Изоморфизм задается функцией f(k) = 2k.