CMSE 820 HW7

This HW is due on Nov 3rd at 11:59 pm.

Question 1: (Closedness of null space). Let L be a bounded linear functional on a Hilbert space \mathcal{H} . Show that its null space null(L) = { $f \in \mathcal{H} : L(f) = 0$ } is closed.

Question 2: Show that the kernel function associated with any reproducing kernel Hilbert space must be unique. Namely, given a RKHS \mathcal{H} , if there are two kernels, k_1 and k_2 , assosciate with \mathcal{H} (with the reproducing property), then $k_1(x,y) = k_2(x,y)$ for all $x,y \in \mathbb{X}$.

Question 3: Let $k: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a positive semidefinite kernel, and let $f: \mathbb{X} \to [0, \infty)$ be an arbitrary function. Show that $\widetilde{k}(x,y) = f(x)k(x,y)f(y)$ is also a positive semidefinite kernel.

Question 4: Show that the kernel $k:[0,1][0,1]\to\mathbb{R}$ given by $k(x,z)=\min\{x,z\}$ is positive semi-definite.

Question 5: A function f over [0,1] is said to be absolutely continuous if its derivative f' satisfies $\int_0^1 f'(x)dx \leq \infty$, and we have $f(x) = f(0) + \int_0^x f'(z)dz$ for all $x \in [0,1]$. Now consider the set of functions $\mathcal{H}^1[0,1] = \{f:[0,1] \to \mathbb{R} | f(0) = 0$, and f is absolutely continuous with $f' \in L_2([0,1])\}$. We define an inner product on this space via $\langle f,g\rangle_{\mathcal{H}}^1 = \int_0^1 f'(z)g'(z)dz$, and claim that the resulting Hilbert space is an RKHS. (Hint: the evaluation functional for \mathcal{H} is $\delta_x(z) = \min\{x,z\}$).