IN THE NAME OF ALLAH

SOIL-FOUNDATION-STRUCTURE INTERACTION USING OPENSEES

SOIL SIMULATED WITH SIMPLE SPRINGS AND THE SOIL SPRINGS VALUES IS NOT EXACT.
WRITTEN BY SALAR DELAVAR GHASHGHAEI (QASHQAI)

CORE AND COVER CONCRETE REALTION

WITHOUT HARDENING AND ULTIMATE STRAIN

WITH HARDENING AND ULTIMATE STRAIN

COLUMN SECTION

BEAM SECTION

FOUNDATION DEPTH

FOUNDATION SECTION

Structure Ductility Damage Index = $\frac{\Delta_d - \Delta_y}{\Delta_u - \Delta_y}$ $\Delta_d = \text{Lateral Displaement from Dynamic Analysis}$ $\Delta_y = \text{Lateral Yield Displaement from Pushover Analysis}$ $\Delta_u = \text{Lateral Ultimate Displaement from Pushover Analysis}$

Spyder (Python 3.12) File Edit Search Source Run Debug Consoles Projects Tools View Help RAME EXAMPLES\SOIL-FOUNDATION\SOIL-FOUNDATION-STRUCTURE 02 C:\Users\Dell\Desktop\OPENSEES FILES\CONCRETE FRA...02\CONCRETE FRAME SOIL-FOUNDATION-STRUCTURE 02.py а = CONCRETE_FRAME_SOI...ON-STRUCTURE_02.py X Displacement vs Axial Base-reaction - MAX. ABS: 0.0024697915505548637 IN THE NAME OF ALLAH SOIL-FOUNDATION-STRUCTURE INTERACTION USING OPENSEES EXAMPLE 02: SOIL SIMULATED WITH SIMPLE SPRINGS AND THE SOIL SPRINGS VALUES IS NOT EXACT. THIS PROGRAM WRITTEN BY SALAR DELAVAR GHASHGHAEI (QASHQAI) EMAIL: salar.d.ghashghaei@gmail.com 1 Nonlinear Frame Modeling: 2D RC frame with distributed plasticity (fiber sections) using `nonlinearΒε - *Concrete*: `Concrete01` with confined (core) and unconfined (cover) properties. -0.0020 -0.0015 -0.0010 Displacement in Y [mm] - *Steel*: `Hysteretic` model with pinching, hardening, and cyclic degradation. 1 Seismic Loads: - Pushover: Displacement-controlled lateral loading to failure. Help Variable Explorer Debugger Plots Dynamic: Uniform excitation with user-defined ground motions (X/Y components). 7 Damping: Rayleigh damping (a0, a1) calibrated via eigenvalue analysis (modes 1-2). 1 Performance Metrics: Ba . Console 1/A X - Ductility Ratio (µ): Derived from bilinearized pushover curves. End 1 Forces (P V M): 2.45202 2.88952 0.120247 1 Advanced Solver: HHT-α integrator (unconditionally stable) with Newton-Raphson iterations. End 2 Forces (P V M): -2.45202 -2.88952 8669.64 1 Outputs: 26 Element: 3 Type: ForceBeamColumn2d Connected Nodes: 3 4 - Time-history plots (displacement, base shear). Number of Sections: 5 Mass density: 3.75 - Stiffness degradation tracking. Lobatto End 1 Forces (P V M): 0.361746 -2.0028 -5349.95 | Ductility Damage Index (DDI) Implementation: End 2 Forces (P V M): -0.361746 2.0028 -8669.64 In [2]: IPython Console History

LL Inline Conda: anaconda3 (Python 3.12.7) ✓ LSP: Python Line 26, Col 33 UTF-8 CRLF RW Mem 44%

NONLINEAR STATIC ANALYSIS (PUSHOVER)

ROTATIONAL STIFFNESS-LATERAL STIFFNESS DIAGRAM

NONLINEAR DYNAMIC ANALYSIS

Time vs Displacement - MAX. ABS: 0.012426530254973176 | ξ (Calculated): 8.84944e+00 %

