

Multimodal Object Detection via Probabilistic Ensembling

Yi-Ting Chen* Jinghao Shi* Zelin Ye* Christoph Mertz Deva Ramanan# Shu Kong#

Motivation

- RGB and thermal modalities are complementary
- Different scenarios

Proposed Method

Score fusion NMS

Probabilistic Ensembling

ProbEn

p(z|x2)

 $p(y|x_1)$ $p(y|x_2)$ Late fusion ___

Measurement

Pooling

 Assume conditional independence $p(x_1, x_2|y) = p(x_1|y)p(x_2|y)$

Avg

Given multimodal measurement

$$p(y|x_1, x_2) = \frac{p(x_1, x_2|y)p(y)}{p(x_1, x_2)} \propto p(x_1, x_2|y)p(y)$$

ProbEn

Bayes rule

 $p(y|x_1,x_2) \propto p(x_1|y)p(x_2|y)p(y)$ $\propto \frac{p(x_1|y)p(y)p(x_2|y)p(y)}{p(y)}$ $\propto rac{p(y|x_1)p(y|x_2)}{2}$

Box fusion

p(z|x1)

 Assume Gaussian posterior $p(\mathbf{z}|x_i) = \mathcal{N}(\boldsymbol{\mu}_i, \sigma_i^2 \mathbf{I})$

Conform with conditional independence

Experiment

FLIR (Unaligned / multiclass(3) / high resolution)

KAIST (Aligned / one class / low resolution)

KAIST Dataset Comparison

Conclusion

- ProbEn is significantly better than heuristic methods (e.g., Avg fusion and NMS).
- ProbEn still improves when the conditional independence assumption does not hold.
- ProbEn outperforms significantly than other fusion methods.

Multimodal Fusion Strategy

