Avaliação de Desempenho em Bioinformática: Estudo de caso de sistemas computacionais para a investigação de microRNAs

Rosana R. Aguiar¹, Leandro A. Ambrosio¹, Gonzalo Sepúlveda-Hermosilla², Vinicius Maracaja-Coutinho^{2,3,4}, Alexandre Rossi Paschoal^{1,*}

* paschoal@utfpr.edu.br

Abstract. This paper describe in details the computational evaluation of the miRQuest (http://mirquest.integrativebioinformatics.me/) system which is a webserver and middleware architecture integrating different standardized softwares for microRNA (miRNA) investigation.

Resumo. Este artigo apresenta em detalhes a avaliação do sistema web miRQuest (http://mirquest.integrativebioinformatics.me/) que foi implementado e fez a integração dos principais preditores de microRNAs (miRNAs) em uma arquitetura de middleware, aplicado em um estudo com de caso em bioinformática.

1. Introdução

A bioinformática é uma área interdisciplinar a fim de auxiliar as pesquisas para analisar e interpretar a informação de valor contida na massa de dados biológicos que vem sendo gerados [ARAÚJO et al., 2005; PADILHA et al., 2008]. Na bioinformática tem-se o estudo dos RNAs não-codificadores, do inglês *non-coding RNAs* (ncRNAs), que são sequências de ácidos ribonucleicos transcritas, e que diferentemente dos mais conhecidos RNAs mensageiros (mRNA), não são traduzidos em proteínas, mas ainda assim possuem funções importantíssimas para a regulação e manutenção dos processos biológicos celulares [MACHADO-LIMA et al., 2008; OLIVEIRA et al., 2011].

O miRNA ou microRNA é uma classe de ncRNA que desperta maior interesse de pesquisa pela comunidade científica. miRNAs são pequenos RNAs, contendo cerca de 22 nucleotídeos (nt), responsáveis pelo controle pós-transcricionais dos níveis de RNA mensageiro nas células via o pareamento estrutural complementar entre as duas moléculas de RNAs: miRNA-mRNA [ZHANG et al., 2007]. Este interesse se deve pelo papel de controle e regulação das redes gênicas dentro das células, estando assim envolvidas em diversos processos biológicos e doenças como câncer ou em planta, por exemplo [BARROS-CARVALHO et al. 2014; SEVERINO et al., 2013]. Outro exemplo é que de acordo com o banco de dados NRDR (*The Non-coding RNA Databases Resource*) [PASCHOAL *et al.*, 2012], 51% (70 de 137, versão 2.0) dos bancos indexados que são referentes as moléculas de RNAs são específicos apenas para a classe de miRNAs.

¹Federal University of Technology - Paraná, Brazil.

² Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile.

³ Beagle Bioinformatics, Santiago, Chile.

⁴ Instituto Vandique, João Pessoa, Brazil.

Atualmente, se sabe que existem diversos programas para identificação de miRNA, que foram desenvolvidos utilizando as mais diferentes linguagens e métodos computacionais como: o agrupamento (*cluster*) ou aprendizagem de máquina [MACHADO-LIMA et al., 2008]. Entretanto, entender o funcionamento de cada um deles e aplicá-los torna-se uma tarefa complexa. Este artigo apresenta a avaliação de desempenho do middleware miRQuest um Web Server que integra quatro dos principais preditores para investigação de miRNAs.

2. ncRNAs e miRNAs

A partir dos resultados da análise de projetos de transcriptomas, se descobriu que grande parte do que era transcrito nos genomas (p.ex. camundongo e humano) eram regiões não traduzidas, ou seja, que não geravam proteínas como um produto final. Evidências apontam que o aumento na complexidade dos organismos vivos, observados ao longo do processo evolutivo, parece estar diretamente associado à quantidade e variedade de ncRNAs, indicando que quanto mais próximo dos eucariotos superiores, maior a quantidade de ncRNAs [TAFT et al., 2007]. Em 1993, Lee e colaboradores (1993) caracterizaram e descreveram uma classe específica de ncRNA definida como miRNA ou miRNA, responsáveis por regular negativamente os níveis de expressão mRNAs nas células. O banco de dados miRBase [KOZOMARA e GRIFFITHS-JONES, 2014] sendo o estado da arte em informações referente a miRNAs, é um repositório que descreve essas moléculas como grandes responsáveis por diversos processos biológicos e doenças, resultando na classe de ncRNA mais estudada [PASCHOAL et al., 2012].

3. Trabalhos relacionados

Em 2008, Machado-Lima e colaboradores (2008) descreveram uma extensa lista de abordagens e técnicas computacionais para pesquisa de ncRNAs e que possuem uma relação direta com os miRNA, visto que o entendimento a respeito da modelagem computacional associada à biologia de RNAs é a base para os algoritmos de identificação deste tipo molécula. Já em 2012, Allmer e Yousef (2012) comentaram sobre algumas ferramentas e abordagens para predição de miRNAs, discutindo também os aspectos e padrões utilizados para predição de miRNAs (p. ex. estrutura, sequência, tamanho). Em linha similar, Gomes e colaboradores (2013) discorrem em uma revisão sobre ferramentas computacionais para identificação miRNAs quinze abordagens e técnicas de diferentes programas de predição. Apesar do grande número de revisões bibliográficas publicadas, verificou-se a falta e necessidade de um sistema integrado de modo a facilitar o uso de preditores para identificação de miRNAs, em especial para profissionais com poucos conhecimentos de ambientes computacionais não amigáveis, como o caso dos biólogos.

4. Materiais e metodologias

4.1. Busca dos preditores de miRNA

Foi realizada nos mecanismos de busca PubMed, ACM, IEEE e Google Scholar uma investigação por programas de identificação de miRNA. Os resultados foram analisados e os seguintes preditores escolhidos: Triplet-SVM [XUE et al., 2005]; MiPred [JIANG et al., 2007]; HHMMiR [KADRI et al., 2009] e NovoMIR [TEUNE e STEGE, 2010].

4.2. Conjunto de dados e experimentos para avaliação de desempenho

Foram usados 1872 sequencias miRNAs de *Homo sapiens* e 298 de *Arabidopsis thaliana* do miRBase versão 19. Na avaliação de desempenho, primeiramente foi

analisado o tempo de execução. Dados com sequências de distintos tamanhos foram usados. Para humano usou-se 10, 50, 100, 500 e 1.000 sequências e planta de 10, 30, 50, 100 e 200 sequências. O segundo experimento foi de performance. As sequências de ambos genomas foram usadas como conjunto de dados positivo (os dados de treinamento foram retirados). Já o conjunto de dados negativo foi extraído de um estudo publicado por Janssen e colaboradores (2008), que contém sequências de proteínas e um grupo de sequências randômicas aleatórias que sabidamente não correspondem miRNAs. Para medir o desempenho usou-se as seguintes métricas: sensibilidade; sensibilidade; precisão; acurácia e F1-Score (Powers, 2011).

4.3. Desenvolvimento do miRQuest

O miRQuest foi desenvolvido como aplicação web na linguagem Java com o emprego do conceito em camadas utilizando o Tomcat versão 8 como Web Server. O XML é usado como formato padrão para comunicação entre as etapas de processamento do middleware e Shell Scripts, em linguagem PERL, foram desenvolvidos para execução de etapas específicas como RNAfold [BRAMEIER e WIUF, 2007] e RNAshapes [STEFFEN et al., 2006]. RNAfold e RNAshapes são programas de predição de estrutura secundária, uma etapa usada por alguns preditores para identificação de características referentes à estrutura dos miRNAs identificados.

O miRQuest foi também implementado usando *Contexts and Dependency Injection* (CDI) para integração das camadas, Apache Shiro Framework para administração de seção e *Commons Email API* para envio de email. Cada ferramenta de predição foi instalada conforme as regras descritas em suas documentações. E ainda, para a execução das ferramentas foram aplicados os parâmetros e padrões conforme recomendado no manual de uso de cada ferramenta.

5. Resultados e discussão da avaliação do miRQuest

As tabelas 1 e 2 apresentam os resultados para humano e a tabela 3 para planta. Analisando-se os dados destas tabelas observou-se a diferença no tempo de execução quando comparamos a execução *stand-alone* com a execução via web.

Tabela 1. Resultado do teste de tempo dos programas Triplet-SVM (**A**) e HHMMiR (**B**) com 10, 50, 100, 500 e 1.000 sequências em humano. Em **azul** o tempo executando comandos *stand-alone*; **vermelho** via web com miRQuest.

a	10		50		100		500		1000	
b	1,1 KB		5,4	,4 KB 10,		7 KB 54,6		i KB	107,5 KB	
	A	В	A	В	A	В	A	В	A	В
1	0m0.051s	0m0.053s	0m0.183s	0m0.193s	0m0.343s	0m0.360s	0m1.849s	0m1.962s	0m3.689s	0m3.692s
2	0m0.049s	0m0.092s	0m0.086s	0m0.107s	0m0.132s	0m0.139s	0m0.510s	0m0.094s	0m0.939s	0m0.205s
3	0m0.011s	0m0.092s	0m0.015s	0m0.144s	0m0.016s	0m0.422s	0m0.036s	0m0.908s	0m0.046s	0m1.754s
	0m0.111s	0m0.237s	0m0.284s	0m0.444s	0m0.491s	0m0.921s	0m2.395s	0m2.964s	0m4.674s	0m5.651s
	0m3.00s	0m2.00s	0m4.00s	0m3.00s	0m4.00s	0m4.00s	0m5.00s	0m5.00s	0m10.00s	0m9.00s

Fonte: o autor.

Notas. ^{a e b} significam respectivamente tamanho da sequência e tamanho do arquivo. E os números 1, 2 e 3 correspondem ao conjunto de comandos que cada ferramenta possui para o processamento das sequencias. Na execução *stand-alone* cada comando precisa ser processado separadamente, o resultado em azul corresponde a soma desses tempos.

Tabela 2. Resultado do teste de tempo do preditor MiPred

Tabela 2. Resultado do teste de tempo do preditor win red.							
a	10	50	100	500	1000		
b	1,1 KB	5,4 KB	10,7 KB	54,6 KB	107,5 KB		
Local	1m44.183s	11m17.601s	25m48.489s	148m30.318s	278m11.054s		
Web	2m33.00s	15m5.00s	27m47s	189m25.00s	329m04.00s		

Fonte: o autor.

Nota. a e b tem o mesmo significado da tabela 1.

O sistema miRQuest expressou um tempo maior de execução devido a integração dos Preditores - que é um custo normal necessário. E, nos testes *stand-alone*, não foi avaliado o tempo que o usuário leva para escrever os comandos, foi considerado apenas a execução real dos comandos. Outro aspecto perceptível é que o MiPred (Tabela 2) é a ferramenta que mais demanda tempo de execução. HHMMiR (Tabela 1) é a ferramenta mais rápida para execução, em geral, quando comparada ao Triplet- SVM e ao NovoMIR (Tabela 1 e 3, respectivamente).

Tabela 3. Teste de tempo utilizando organismo de planta na ferramenta NovoMIR

com 10, 50, 50, 100 e 200 sequencias.								
a	10	30	50	100	200			
b	2,2 KB	5,5 KB	8,8 KB	19,3 KB	42,6 KB			
Local	0m2.203s	0m4.328s	0m7.338s	0m.18.539s	0m.44.789s			
Web	0m.3.00s	0m.7.00s	0m10.00s	0m24.00s	0m56.00s			

Fonte: o autor.

Nota. a e b tem o mesmo significado da tabela 1.

Na análise de performance - comparação entre as ferramentas (*benchmarking*) - os resultados demonstram que o NovoMIR é o melhor preditor para plantas e o MiPred para humano, conforme dados da Tabela 4. A surpresa foram os resultados obtidos para o preditor HHMMiR, uma vez que essa ferramenta foi desenvolvida e treinada, principalmente, para predição de miRNAs em humanos.

Tabela 4. Resultado do *benchmarking* dos preditores. Testes feitos em humano e planta utilizando o sistema miRQuest. Em verde está destacado as melhores pontuações.

	Triplet-SVM	MiPred	HHMMiR	NovoMIR	
	64,09%	34,90%	9,06%	77,27%	Sensibilidade
A .1 1'	87,47%	96,48%	91,91%	99,50%	Acurácia
A.thaliana	16,99%	51,49%	6,32%	90,27%	Precisão
	26,86%	41,60%	7,45%	83,27%	F1-Score
	59,42%	92,81%	0,66%	40,28%	Sensibilidade
TT '	83,20%	97,72%	79,95%	88,56%	Acurácia
H. sapiens	52,42%	94,18%	2,44%	98,56%	Precisão
	55,70%	93,49%	1,04%	57,19%	F1-Score
Ambos	98,78%	99,86%	95,00%	98,78%	Especificidade

Fonte: o autor.

6. Conclusão

Os resultados apresentaram um tempo maior para execução via web, mas o miRQuest, mostrou-se viável por não apresentar grande discrepância de tempo com relação a execução *stand-alone*. No que se refere ao *benchmarking*, realizado pelo miRQuest, demonstrou-se os bons resultados para o NOVOMIR e o MiPred. Tem-se interesse futuro de adicionar outros preditores ao miRQuest e testar o seu desempenho em arquitetura *Cloud Computing*.

7. Agradecimentos

ARP agradece pelo suporte do projeto ao CNPq - Edital MCTI/CNPQ/Universal 14/2014 - Faixa A - até R\$ 30.000,00 Processo: 454505/2014-0. Esta pesquisa é parte do resultado de mestrado da aluna RRA do Programa de Pós-Graduação em Informática (Profissional) UTFPR Cornélio Procópio, PR, Brasil.

Referências

- Allmer J1, Yousef M. Computational methods for ab initio detection of microRNAs. Front Genet. 2012 Oct 10; 3:209. doi: 10.3389/fgene.2012.00209. eCollection 2012.
- Araújo DAM, Maracaja-Coutinho V, Padilha IQM, Rego TG. (2005) Genômica e Bioinformática: importância e perspectivas para o Nordeste. Ciência e Cotidiano. 1:5-9.
- Barros-Carvalho GA, Paschoal AR, Marcelino-Guimarães FC, Hungria M. (2014) Prediction of potential novel microRNAs in soybean when in symbiosis. Genet Mol Res. 13(4):8519-29. doi: 10.4238/2014.October.20.28.
- Brameier M, Wiuf C (2007). Ab initio identification of human microRNAs based on structure motifs. BMC Bioinformatics, 8:478.
- Gomes CP1, Cho JH, Hood L, Franco OL, Pereira RW, Wang K. (2013) A Review of Computational Tools in microRNA Discovery. Front Genet. 15; 4:81. doi: 10.3389/fgene.2013.00081.
- Janssen S. et. al. (2008). Shape based indexing for faster search of RNA family databases. BMC Bioinformatics, 9:131.
- Jiang P. et. al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids, 35:339-344.
- Kadri S. et al. (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics. 10 Suppl 1:S35.
- Kozomara A. and Griffiths-Jones S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. NAR 42: D68-D73
- Lee RC, Feinbaum RL, Ambros V; Feinbaum; Ambros (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell 75 (5): 843–54. Doi: 10.1016/0092-8674(93)90529-Y. PMID 8252621.
- Machado-Lima, A.; del Portillo, H.A.; DURHAM, A.M. (2008) Computational methods in noncoding RNA research. Journal of Mathematical Biology, v. 56, p. 15-49.
- Oliveira KC, Carvalho MLP, Maracaja-Coutinho V, Kitajima JP, Verjovski-Almeida S (2011). Non-coding RNAs in schistosomes: an unexplored world. Anais da Academia Brasileira de Ciências, 83(2): 673-694.
- Padilha IQM, Durbano JPM, Martins AB, Almeida RS, Maracaja-Coutinho V, Araújo DAM. (2008) A bioinformática como instrumento de inserção digital e difusão da biotecnologia. Revista Eletrônica Extensão Cidadã, 5.
- Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZL, Verjovski-Almeida S, Durham AM. (2012) Non-coding transcription characterization and annotation: A guide and web resource for non-coding RNA databases. RNA BIOL, 9:274-282.
- Powers, D.M.W. (2011) Evaluation: FromPrecision, Recall and F-Measureto ROC, Informedness, Markedness e Correlation. Journal of Machine Learning Technologies, 2 (1) 37-63.
- Severino P, Oliveira LS, Torres N, Andreghetto FM, Klingbeil Mde F, Moyses R, Wünsch-Filho V, Nunes FD, Mathor MB, Paschoal AR, Durham AM. (2013) High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research. BMC Genomics. 14:735. doi: 10.1186/1471-2164-14-735.
- Steffen P. et al. (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics. 22(4):500-3.
- Taft RJ, Pheasant M, Mattick JS. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays. 29(3):288-99.
- Teune J.-H. and Steger, G. (2010) NOVOMIR: De Novo Prediction of MicroRNA-Coding Regions in a Single Plant-Genome. Journal of Nucleic Acids.
- Xue C. et al. (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6:310.
- Zhang, B. et al. (2007) MicroRNAs and their regulatory roles in animals and plants. J. Cell. Physiol., 210:279–289.