Билеты по Матану, прости Господи

Илья Михеев

last upd 5 января 2021 г.

Часть І

Свёртки и приближение функций бесконено гладкими

1 Свёртка функций и её асоциативность. Дифференцирование свёртки

1.1 Определение

Свёрткой функции h(x) назовем такой интеграл:

$$h(x) = \int_{\mathbb{P}^n} f(x-t)g(t) dt = \int_{\mathbb{P}^n} f(t)g(x-t) dt$$
 (1)

или h = f * g.

1.2 Немного о существовании интеграла

Theorem 1. Если функции f и g имеют конечные интегралы, то f * g определена почти всюду и выполняется неравенство

$$\int_{\mathbb{R}^n} |f * g| \, dx \le \int_{\mathbb{R}^n} |f| \, dx \cdot \int_{\mathbb{R}^n} |g| \, dx \tag{2}$$

и равенство

$$\int_{\mathbb{R}^n} f * g \, dx = \int_{\mathbb{R}^n} f \, dx \cdot \int_{\mathbb{R}^n} g \, dx \tag{3}$$

Доказательство. Функция f(y)g(x) измерима по Лебегу и интеграл ее модуля равен произведению интегралов модулей f и g по теореме Фубини. Тогда выражение

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x-t)g(t)| dt dx \tag{4}$$

также равно произведению модулей f и g, так как различается от |f(y)g(x)| линейной заменой с ед. детерминантом. Отсюда можно понять, что интегралы в неравенстве

$$\left| \int_{\mathbb{R}^n} f(x-t)g(t) \, dt \, \right| \le \int_{\mathbb{R}^n} |f(x-t)g(t)| \, dt \tag{5}$$

определены почти для всех x и требуемое неравенство получается из интегрирования по x. Последнее равенство получается из теоремы Фубини линейной заменой x-t=y.

1.3 Ассоциативность

Theorem 2. Свёртка ассоциативна, то есть:

$$f * (g * h) = (f * g) * h$$
 (6)

Доказательство.

$$f*(g*h) = f* \int_{\mathbb{R}^n} g(x-t)h(t) dt = f*k = \int_{\mathbb{R}^n} f(x-u) \int_{\mathbb{R}^n} g(u-v)h(v) dv du$$

$$(7)$$

$$(f*g)*h = \int_{\mathbb{R}^n} f(x-t)g(t) dt*h = k*h = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x-u-v)g(v)h(u) dv du$$

$$(8)$$

Становится понятно, что первое равно второму после замены s=u+v во втором равенстве. Также надо в верхнем переставить второй интеграл в начало (имеем право). Ну сами попробуйте короче. \Box

1.4 Дифференцирование свёртки

Theorem 3. Если в свёртке функция g интегрируема c конечным интегралом, а f ограничена, также как u ее частная производная $\frac{\partial f}{\partial x_i}$. Тогда можем дифференцировать под знаком интеграла (по теореме из 20го сема, которая имеет буквально те условия, что описаны выше)

$$\frac{\partial (f * g)}{\partial x_i} = \int_{\mathbb{R}^n} \frac{\partial f(x - t)}{\partial x_i} g(t) dt = \frac{\partial f}{\partial x_i} * g$$
 (9)

Доказательство. Следует из теоремы, доказанной ранее (прошлый семестр), не уверен, что ее требуется передоказывать. \Box

2 Бесконечно гладкие функции с компактным носителем, примеры

Давайте для начала посмотрим на некоторую бесконечно гладкую функцию

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-1/x}, & x > 0. \end{cases}$$
 (10)

Она бесконечно дифференцируема везде, кроме мб точки 0. Всякая производная справа от нуля у функции имеет вид $P(1/x)e^{(-1/x)}$, где P — многочлен. Отсюда следует, что предел ее производной в нуле справа равен нулю. Также имеет место (Лопиталь)

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \frac{f^{(n+1)}(x)}{1} = 0$$
 (11)

Поэтому функция f бесконечно дифференцируема (бесконечно гладкая) на всей прямой. Тогда введем функцию $\varphi(x)$

$$\varphi(x) = f(x+1)f(x-1) \tag{12}$$

Которая будет бесконечно гладкой на всей прямой и будет отлична от нуля только на интервале (-1,1), на котором она будет положительна.

Lemma 4. Для всякого $\varepsilon > 0$ существует бесконечно гладкая функция $\varphi_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}^+$, отличная от нуля только в $U_{\varepsilon}(0)$ и такая, что

$$\int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) \, dx = 1 \tag{13}$$

Для всяких $\varepsilon > \delta > 0$ существует бесконечно гладкая функция $\psi_{\varepsilon,\delta}$: $\mathbb{R}^n \to [0,1]$, отличная от нуля только в $U_{\varepsilon}(0)$ тождественно равная 1 в $U_{\delta}(0)$.

Доказательство. В первом случае пойдет функция вида

$$\varphi_{\varepsilon}(x_1, \dots, x_n) = A\varphi(\frac{\sqrt{n}x_1}{\varepsilon}) \dots \varphi(\frac{\sqrt{n}x_n}{\varepsilon})$$
 (14)

для уже известной функции φ и некоторой константы A. Способ построения функции указывает, что в пределе одного аргумента функция ненулевая при $|x_i| \leq \frac{\varepsilon}{\sqrt{n}}$.

Во втором случае сначала рассмотрим функцию одной переменной

$$\psi(x) = B \int_{-\infty}^{x} \varphi(t) dt, \qquad (15)$$

Где константу выбираем так, чтобы $\psi(x)\equiv 0$ при $x\leq -1$ и $\psi(x)\equiv 1$ при $x\geq 1.$ Тогда достаточно положить

$$\psi_{\varepsilon,\delta}(x) = \psi\left(\frac{\delta + \varepsilon - |x|}{\varepsilon - \delta}\right) \tag{16}$$

Такая вот прикольная псевдо-ступенька.

3 Приближение функций в \mathbb{R}^n (вместе с производными) бесконечно гладкими функциями

3.1 Простое приближение

Theorem 5. Пусть $\varphi: \mathbb{R}^n \to R$ — неотрицательная бесконечно гладкая функция, отличная от нуля только при $|x| \le 1$ и пусть $\int_{\mathbb{R}^n} \varphi(x) dx = 1$. Положим

$$\varphi_k(x) = k^n \varphi(kx), \tag{17}$$

эти функции тоже имеют единичные интегралы и φ_k отлична от нуля только при $|x| \leq 1/k$. (Попробуйте эту лабуду представить сначала без k^n , а потом поймите зачем k^n нужно). Теперь для непрерывной $f: \mathbb{R}^n \to \mathbb{R}$ определим свёртки

$$f_k(x) = \int_{\mathbb{R}^n} f(x-t)\varphi_k(t) dt = \int_{\mathbb{R}^n} f(t)\varphi_k(x-t) dt$$
 (18)

Функции f_k бесконечно дифференцируемые и $f_k \to f$ равномерно на компактных подмножествах \mathbb{R}^n .

Доказательство. Выпишем разность

$$f_k(x) - f(x) = \int_{\mathbb{D}_n} (f(x-t) - f(x))\varphi_k(t) dt$$
 (19)

Пусть f равномерно непрерывна в δ окрестности компакта $K \subset \mathbb{R}^n$ и пусть $|f(x)-f(y)|<\varepsilon$ при $|x-y|<\delta$ в этой окрестности. Выберем k

настолько большим, чтобы $1/k < \delta$. Тогда в интеграле $\varphi_k(t)$ отлична от нуля только при $|t| < \delta$, и тогда $|f(x-t) - f(x)| < \varepsilon$, при $x \in K$. Тогда при $x \in K$ верна оценка

$$|f_k(x) - f(x)| \le \varepsilon \int_{\mathbb{R}^n} \varphi_k(x) dx = \varepsilon$$
 (20)

Это показывает равномерную сходимость на компактах. Дифференцируемость можно доказать, используя дифференцирование интеграла

$$\int_{\mathbb{R}^n} f(t)\varphi_k(x-t) dt.$$
 (21)

по параметру по той же теореме из прошлого сема. Производная при $x \in K$ будет зависеть только от значения f в 1/k-окрестности K, то есть f можно считать интегрируемой при дифференцировании по параметру, что позволяет применить теорему.

Theorem 6. В условиях предыдущей теоремы, если исходная функция f имеет непрерывные производные до m-го порядка, то производные f_k до m-го порядка равномерно на компактах сходятся κ соответствующим производным f.

Доказательство. Давайте дифференцировать $f * \varphi_k$ по нескольким x_i точно также, как описано выше. Тогда получится

$$\frac{\partial^m (f * \varphi_k)}{\partial x_{i_1} \dots x_{i_n}} = \frac{\partial^m f}{\partial x_{i_1} \dots x_{i_n}} * \varphi_k$$
 (22)

Таким образом, последовательность производных свёртки является последовательностью свёрток производной f с теми же функциями φ_k . А значит для этой последовательности тоже имеет место верна равномерная сходимость к производной f.

3.2 Лебег!

Theorem 7. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет конечный интеграл Лебега. Тогда свёртки $f * \varphi_k$ сколь угодно близко приближают f в среднем.

Доказательство. Возьмём $\varepsilon > 0$ и представим по теореме из 20го сема (о приближении ступенчатой в среднем)

$$f = g + h \tag{23}$$

где g — элементарно ступенчатая и

$$\int_{\mathbb{R}^n} |h(x)| \, dx < \varepsilon \tag{24}$$

Тогда по теореме 1

$$\int_{\mathbb{R}^n} |h * \varphi_k| \, dx < \varepsilon \tag{25}$$

Что значит, что если будет так, что

$$\int_{\mathbb{R}^n} |g - g * \varphi_k| \, dx < \varepsilon \tag{26}$$

То будет выполняться

$$\int_{\mathbb{R}^n} |f - f * \varphi_k| \, dx \le \int_{\mathbb{R}^n} |h(x)| \, dx + \int_{\mathbb{R}^n} |h * \varphi_k| \, dx + \int_{\mathbb{R}^n} |g - g * \varphi_k| \, dx < 3\varepsilon$$
(27)

Таким образом, достаточно доказать утверждение для элементарно ступенчатой g. Раскладывая g в сумму характеристических функций параллелепипеда с некоторыми коэффициентами, можно видеть, что достаточно доказать утверждение для одной характеристической функции параллелепипеда χ_P . Но разность $\chi_P - \chi_P * \varphi_k$ будет отлична от нуля только в 1/k-окрестности ∂P и будет там по модулю не более 1, то естьпосле интегрирования модуля разности мы получим не более $\mu(U_{1/k}(\partial P))$. Прямым вычислением можно убедиться, что эта мера стремится к нулю при $k \to \infty$

Если говорить проще, то мы смотрим на одну ступеньку и говорим, что ее характеристическая функция отлично приближается свертками. Причем мера точности приближения будет обратно пропорциональна $k \to$ всё по кайфу.

Часть II

Дифференцируемые отображения и криволинейные системы координат

Дифференцируемые отображения и про-4 изводная композиции отображений

Дифференцируемые отображения 4.1

Definition 4.1 (Дифференцируемое отображение). Отображение $f: U \to \mathbb{R}$ \mathbb{R}^m , где $U \subset \mathbb{R}^n$ и открытое, называется дифференцируемым, если представимо как

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|)$$
(28)

при $x \to x_0$

где $Df_{x_0}: \mathbb{R}^n \to \mathbb{R}^m$ — линейное отображение, называемое производной в точке $x_0 \in U$.

[Непрерывно дифференцируемое отображение]

Definition 4.2. $f:U\to\mathbb{R}^m$ называется Непрерывно дифференцируемым, если $\forall x_0 \in U \exists Df_{x_0}$, которое непрерывно и непрерывно зависит от $x_0 \in U$.

Вот эта вот D де-факто — матрица $m \times n$, в которой каждая ячейка выглядит как $\left(\frac{\partial f_i}{\partial x_j}\right)$, и для проверки последнего определения достаточно проверить все эти ячейки на непрерывность.

4.2Норма матрицы

Докажем существование "нормы" у матриц линейных отображений:

Lemma 8. \forall линейного $A: \mathbb{R}^n \to \mathbb{R}^m \exists ||A|| \in \mathbb{R}$ т.ч. $\forall x \in \mathbb{R}^n$

$$|Ax| \le ||A|| \cdot |x| \tag{29}$$

Доказательство. Ax непрерывно зависит от x. Рассмотрим n-1-мерную сферу $S^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1\}$

 S^{n-1} компактно $\to |Ax|$ достигает максимума на S^{n-1} .

Пусть $\max_{|x|=1} |Ax| = ||A|| \in \mathbb{R}.$

 $|Ax| \le ||A|| \cdot |x|$ верно при |x| = 1 . При x = 0 всё так же очевидно, при y = tx всё будет очевидно после вынесение t за скобки везде. \square

4.3 Производная композиции

Theorem 9. Пусть у нас есть $f: U \to \mathbb{R}^m$ и $g: V \to \mathbb{R}^k$, где $U \in \mathbb{R}^n$, а $V \in \mathbb{R}^m$. Обозначим также $f(x_0) = y_0 \in V$, $x_0 \in U$

Пусть также f дифференцируема в x_0 и g дифференцируема в y_0 . Тогда $g \circ f$ дифференцируемо в x_0 и $D(g \circ f)_{x_0} = Dg_{y_0} \circ Df_{x_0}$

Доказательство. Обозначим $A = Df_{x_0}$ и $B = Dg_{x_0}$. Тогда

$$f(x) = f(x_0) + A(x - x_0) + o(|x - x_0|)$$

$$g(x) = g(y_0) + B(y - y_0) + o(|y - y_0|)$$

$$g(f(x)) = g(f(x_0)) + B(A(x - x_0) + o(|x - x_0|)) + o(A(|x - x_0|) + o(|x - x_0|))$$
(30)

это же выражение равно

$$g(f(x)) = g \circ f(x_0) + B \cdot A(x - x_0) + Bo(|x - x_0|) + o(A|x - x_0|)$$
 (31)

которое используя тот факт, что Co(x) = o(Cx) = o(x) преобразовывается как:

$$g(f(x)) = g \circ f(x_0) + B \cdot A(x - x_0) + o(|x - x_0|)$$
(32)

5 Теорема о существовании обратного отображения. Локальные системы криволинейных координат.

Сразу скажу, что здесь много и долго, настройтесь на это. Ну а теперь начнем с небольшой, простенькой =) леммы.

Lemma 10. Пусть открытое множество $U \subset \mathbb{R}^n$ выпукло. Для непрерывно дифференцируемого отображения $\varphi: U \to \mathbb{R}^m$ найдётся непрерывное отображение $A: U \times U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, такое что для любых $x', x'' \in U$

$$\varphi(x') - \varphi(x'') = A(x', x'')(x'' - x') \tag{33}$$

 $u\ A(x,x) = D\varphi_x$. Здесь $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ — линейные отображения из \mathbb{R}^n в \mathbb{R}^m с топологией в пространства матриц \mathbb{R}^{nm} .

Доказательство. Рассмотрим такую $f(t) = \varphi(tx'' + (1-t)x')$ Тогда очевидно, что

$$\varphi(x'') - \varphi(x') = \int_0^1 \frac{\partial f}{\partial t} dt = \int_0^1 D\varphi_{tx'' + (1-t)x'}(x'' - x') dt$$
 (34)

(Взяли производную сложной функции)

Теперь мы скажем, что наша матрица A(x', x'') это именно этот интеграл

$$A(x', x'') = \int_0^1 D\varphi_{tx''+(1-t)x'}(x'' - x') dt$$
 (35)

(так как (x''-x') не зависит от t, то имеем право вынести за интеграл) Непрерывность A следует из равномерной непрерывности подынтегрального выражения по переменным x' и x'', рассматриваемым как параметры, меняющиеся в рамкахнекоторого компакта $K \subset U \times U$, содержащего маленькую окрестность данной пары(x',x''). При изменении x' и x'' не более чем на $\delta>0$ из равномерной непрерывности значение под интегралом будет меняться не более чем на $\varepsilon>0$, а значит и сам интеграл будет меняться не более чем на ε . При x'=x''=x из явной формулы мы будем иметь $A(x,x)=D\varphi_x$.

Вроде как это утверждение следует из теорем прошлого сема, так что не нужно бояться, что попросят доказать (хотя тут всего-то равномерная непрерывность интеграла).

И собственно теперь поговорим о том, ради чего собрались:

Theorem 11. Если отображение $\varphi: U \to \mathbb{R}^n$ непрерывно дифференцируемо в окрестности точки x и его дифференциал $D\varphi_x$ является невырожденным линейным преобразованием, то это отображение взаимно однозначно отображает некоторую окрестность $V \ni x$ на окрестность $W \ni y$, где $y = \varphi(x)$, и обратное отображение $\varphi^{-1}: W \to V$ тоже непрерывно дифференцируемо.

Доказательство. После сдвига координат будем считать, что мы работаем в окрестности точки x=0 и $y=\varphi(x)=0$. Заменив φ на его композицию с линейным отображением $D\varphi_0^{-1}$, будем считать, что $D\varphi$ в нуле является единичным линейным преобразованием, запишем тогда

$$\varphi(x) = x + \alpha(x) \tag{36}$$

Что тут произошло? Мы хотим работать так, чтобы было удобно, поэтому делаем сдвиг (лин замена, ничего не портит) и приводим матрицу преобразования в нуле к единичной численно (по теореме о производной композиции), всё хорошо, потому что там тоже лин. преобразование. Как-то так.

Тогда $D\alpha = D\varphi - id$ в нуле — нулевой оператор, а в его окрестности очень мал, мал настолько, что верна такая оценка

$$|D\alpha(v) \le ||D\alpha|| \cdot |v| \le 1/2|v|. \tag{37}$$

Тогда мы можем применить ту самую лемму в δ -окрестности нуля:

$$|\alpha(x'') - \alpha(x')| = |\int_0^1 \frac{d}{dt} \alpha((1-t)x' + tx'') dt| = |\int_0^1 D\alpha_{(1-t)x' + tx''}(x'' - x') dt| \le 1/2|x'' - x'|$$
(38)

Далее начнем решать задачу

$$x = y - \alpha(x) = f(x, y)$$

При $|y| \leq \delta/2$ и $|x| \leq \delta$ из-за предыдущего неравенства на α получим

$$|f(x,y)| < \delta$$

И, что самое важное, наше отображение сжимаемое, то есть

$$|f(x'', y) - f(x', y)| \le 1/2|x'' - x'| \tag{39}$$

Далее по индукции попробуем решить уравнение, положим $\psi_1(y)=0$, далее определим

$$\psi_k(y) = f(\psi_{k-1}(y), y)$$

В силу того, что отображение сжимаемое выполняется

$$|\psi_{k+1}(y) - \psi_k(y)| = |f(\psi_k(y), y) - f(\psi_{k-1}(y), y)| < 1/2|\psi_k(y) - \psi_{k-1}(y)|$$
 (40)

Откуда по индукции можно понять, что

$$|\psi_{k+1}(y) - \psi_k(y)| \le \delta 2^{2-k} \tag{41}$$

То есть $\psi_k(y)$ сходятся к некоторому непрерывному отображению $\psi(y)$ непрерывно по признаку Вейерштрасса и переходя к пределу $k \to \infty$ в определении ψ_k получим

$$\psi(y) = f(\psi(y), y) = y - \alpha(\psi(y)) = y - \varphi(\psi(y)) + \psi(y) \tag{42}$$

То есть, $y = \varphi(\psi(y))$. Из того, что α сжимаемое также следует, что $\forall y: |y| \leq \delta/2$ найдётся не более одного $x: |x| \leq \delta$, для которого $\varphi(x) = y$, и на самом деле мы его уже нашли как $x = \psi(y)$.Взяв окрестность $W \ni y$, меньшую по сравнению с $\delta/2$, и взяв открытое $V = \varphi^{-1}(W)$ мы видим, что φ и ψ являются взаимно обратными на этих окрестностях. Установим дифференцируемость ψ . По "простенькой" лемме можно написать.

$$\varphi(x) = \varphi(x) - \varphi(0) = A(x)x \tag{43}$$

где линейный оператор A(x) непрерывно зависит от xи равен id при x=0. Подставим в эту формулу $x=\psi(y)$ и получим

$$y = A(\psi(y))\psi(y) \Rightarrow \psi(y) = A(\psi(y))^{-1}y \tag{44}$$

Где линейный оператор $B(y) = A(\psi(y))^{-1}$ непрерывен по y и равен тождественному при y=0. Из выражения $\psi(y)=B(y)y$ тогда следует дифференцируемость ψ в нуле с дифференциалом B(0), дифференцируемость в остальных точках проверяется послесдвига начала координат в соответствующую точку повторением тех же рассуждений.

Добавить можно лишь, что тут важна невырожденность матрицы Якоби $(D\varphi)$.

Definition 5.1. Криволинейной системой координатв окрестности точки $p \in \mathbb{R}^n$ мы будем называть набор таких функций, которые являются координатами гладкого отображения окрестности p на некоторое открытое множество в \mathbb{R}^n с гладким обратным отображением.

По теореме об обратном отображении для того, чтобы гладкие y_1, \ldots, y_n в некоторой окрестности p давали КСК необходима невырожденность матрицы Якоби в точке p, иначе говоря, линейная независимость дифференциалов dy_1, \ldots, dy_n в точке p.

6 Теоремы о системе неявных функций, определяемых системой уравнений (случай гладких уравнений).

Theorem 12. Пусть функции f_1, \ldots, f_k непрерывно дифференцируемы в окрестности $p \in \mathbb{R}^n$ и определитель

$$\det\left(\frac{\partial f_i}{\partial x_j}\right)_{i,j=1}^k$$

не равен нулю в этой окрестности. Пусть также $f_i(p) = y_i$. Тогда найдётся окрестностьточки p вида $U \times V, U \subset \mathbb{R}^k, V \subset \mathbb{R}^{n-k}$, такая что в этой окрестности множество решений системы уравнений

$$f_1(x) = y_1, \dots, f_k(x) = y_k$$

совпадает с графиком непрерывно дифференцируемого отображения $\varphi:V \to U$, заданного в координатах как

$$x_1 = \varphi_1(y_1, \dots, y_k, x_{k+1}, \dots, x_n)$$

$$\dots$$

$$x_k = \varphi_1(y_1, \dots, y_k, x_{k+1}, \dots, x_n)$$

Пояснение: тут и далее x_i — функции, которые возвращают от точки p одну координату, как бы это очевидно не было. и первые k аргументов - константы, потому являются параметрами.

Доказательство. Условия теоремы означают, что дифференциалы

$$df_1, \ldots, df_k, dx_{k+1}, \ldots, dx_n$$

являются линейно независимыми и из функций $f_1, \ldots, f_k, x_{k+1}, \ldots, dx_n$ можно составить отображение, локально имеющее непрерывно дифференцируемое обратное, то есть они дают криволинейную систему координат в окрестности p. Следовательно, в этой окрестности старые координаты x_1, \ldots, x_k можно непрерывно дифференцируемо выразить через новые координаты

$$x_i = \varphi_i(f_1, \dots, f_k, x_{k+1}, \dots, x_n)$$

и поставить в этом выражении вместо f_i константы y_i .

Это рассуждение доказывает, что множество решений системы уравнений содержится в графике отображения $\varphi: V \to U$ при достаточно малых V и U, таких что $\varphi(V) \in U$. Но и обратное верно, так как значения

 f_1, \dots, f_k на точке вида

$$(\varphi_1(y_1,\ldots,y_k,x_{k+1},\ldots,x_n),\ldots,\varphi_k(y_1,\ldots,y_k,x_{k+1},\ldots,x_n),x_{k+1},\ldots,x_n)$$

обязаны совпадать с y_1, \ldots, y_k , так как φ_i были выбраны как компоненты отображения, обратного к отображению, описанному выше.

7 Теорема о расщеплении гладкого отображения на простые гладкие отображения.

Theorem 13. Если отображение φ непрерывно дифференцируемо в окрестности точки $p \in \mathbb{R}^n$ и имеет обратимый $D\varphi_x$, то его можно представить в виде композиции перестановки координат, отражений координат и элементарных отображений, непрерывно дифференцируемо и возрастающим образом меняющих только одну координату $y_i = \psi_i(x_1, \dots, x_n)$.

Доказательство. Доказательство этой теоремы имитирует приведение матрицы к гауссовому виду, то есть разложение матрицы в произведение матрицы перестановки, матриц умножений координаты на число, и элементарных матриц. Пусть компоненты φ являются функциями y_1,\ldots,y_n в окрестности точки p. Некоторая y_i имеет ненулевую производную $\frac{\partial y_i}{\partial x_1}$. Переставив y (и запомнив эту перестановку) мы можем считать, что это y_1 . Поменяв при необходимости знак y_1 , можно считать ту производную положительной. Тогда y_1, x_2, \ldots, x_n (в силу нетривиальности якобиана) дают криволинейную систему координат в некоторой окрестности p и эта система отличается от исходной возрастающей заменой первой координаты. Далее какая-то из оставшихся y_2, \dots, y_n уже в новой системе координат y_1, x_2, \ldots, x_n имеет ненулевую $\frac{\partial y_i}{\partial x_2}$, иначе $dy_i (i=1,\ldots,n)$ не были бы линейно независимыми. Переставив у (и запомнив и эту перестановку), можно считать, что это y_2 . Также можно считать эту производную положительной, поменяв при необходимости знак y_2 . Тогда можно заменить y_1, x_2, \ldots, x_n на систему координат y_1, y_2, \ldots, x_n . Делая в том же духе n раз, мы сделаем n замен координат (отображений), меняющих возрастающим образом только одну координату, а в конце нам останется поменять знаки у некоторых y_i и переставить их.

Часть III

Дифференциал, гессиан и исследование функции на экстремум

- 8 Дифференциал функции как линейный функционал. Корректность определения второго дифференциала (гессиана) функции как квадратичной формы на касательных векторах для случая, когда первый дифференциал функции равен нулю.
- 8.1 Дифференциал функции как линейный функционал

Definition 8.1. Пусть $U \subset \mathbb{R}^n$ — открытое множество. Отображение $f: U \to \mathbb{R}^m$ называется дифференцируемым в точке $x_0 \in U$, если

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|), x \to x_0$$
(45)

где $Df_{x_0}: \mathbb{R}^n \to \mathbb{R}^m$ является линейным отображением. Далее оговариваемся, что для функций $f: U \to \mathbb{R}^m$ мы вводим обозначение $Df_x = df_x$ и называть это дифференциалом функции. По определению это линейная форма из $\mathbb{R}^n \to \mathbb{R}$.

8.2 Корректность определения второго дифференциала (гессиана) функции как квадратичной формы на касательных векторах для случая, когда первый дифференциал функции равен нулю

Тут скорее всего идет речь о том, что при замене координат гессиан ведет себя как квадратичная форма.

Lemma 14. Если $df_{x_0}=0$, то при любой замене координат x=arphi(t)

гессиан в точке $x_0 = \varphi(t_0)$ меняется так:

$$d_2(f \circ \varphi)_{t_0}(\Delta t) = d_2 f_{x_0}(D\varphi_{t_0}(\Delta t)) \tag{46}$$

Доказательство. Для нахождения элементов второго дифференциала (как матрицы) надо дифференцировать композицию один раз, а потом ещё один раз. Помимо выписанных слагаемых со вторыми производными f и первыми производными φ могли бы появиться слагаемые с первыми производными f и вторыми производными φ . Но по условию в точке x_0 первые производные f равны нулю, а значит выражение содержит только вторые производные f.

- 9 Локальные максимумы и минимумы функций многих переменных. Необходимое условие экстремума непрерывно дифференцируемой функции.
- 9.1 Локальные максимумы и минимумы функций многих переменных.

Definition 9.1 (Локальный экстремум функции). Точка p называется локальным экстремумом функции f, если является строгим ее экстремумом (max || min) при ограничении f на некоторую окрестность p.

9.2 Необходимое условие экстремума непрерывно дифференцируемой функции.

Theorem 15. Если f дифференцируема в точке p и имеет локальный экстремум в p, то $df_p = 0$.

Доказательство. $f(x_0 + te_i) = g(t)$ имеет экстремум в t = 0, откуда получаем

$$\frac{\partial g}{\partial t} = \frac{\partial f}{\partial x_i}(x_0) = 0 \tag{47}$$

$$\forall x_i \Rightarrow df_p = 0 \text{ ЧТД.}$$

10 Необходимые и достаточные условия экстремума дважды непрерывно дифференцируемых функций.

10.1 Необходимое условие экстремума дважды непрерывно дифференцируемой функции

Theorem 16. Если f дважеды непрерывно дифференцируема в окрестности точки p, то $d_2 f_p \ge 0$ для минимума и $d_2 f_p \le 0$ для максимума.

 Доказательство. Б.о.о. рассмотрим минимум. Запишем формулу тейлора для $\xi = p + tv$

$$f(p+tv) = f(p) + \frac{1}{2}d_2f_p(tv) + o(t^2|v|^2) = f(p) + t^2(\frac{1}{2}d_2f_p(v) + o(1))$$
(48)

А так как в точке p экстремум, то при пределе $t \to 0$ второй дифференциал должен быть положителен или равен нулю.

10.2 Достаточное условие экстремума дважды непрерывно дифференцируемой функции

Сначала докажем одну лемму

Lemma 17. Если квадратичная форма Q положительно определена, то найдётся $\varepsilon > 0$, такой что

$$Q(v) \ge \varepsilon |v|^2 \tag{49}$$

для любого v

Доказательство. Положим ε равным минимуму Q на единичной сфере. Так как единичная сфера является компактом, а квадратичная форма является непрерывной функцией, то этот минимум достигается и положителен. Тогда неравенство верно для единичной сферы. Из этого следует неравенство для всех векторов, так как при умноже-нии вектора на t обе части неравенства умножаются на t^2

Theorem 18. Если f дважеды непрерывно дифференцируема в окрестностир, $df_p = 0$ и $d_2 f_p > 0$, то p — точка строгого локального минимума. Если неравенство в другую сторону, $d_2 f_p < 0$, то p — точка строгого локального максимума.

Доказательство. Докажем без ограничения общности для минимума. Для $\xi=p+v$ запишем по формуле Тейлора с использованием предыдущей леммы:

$$f(p+v) = f(p) + \frac{1}{2}d_2f_p(v) + o(|v|^2) \ge f(p) + \left(\frac{\varepsilon}{2} + o(1)\right)|v|^2$$
 (50)

По определению o(1) при достаточно малом |v| (независимо от направления v) выражение в скобках будет положительным.

11 Условные экстремумы. Необходимое условие условного экстремума в терминах первых производных. Метод множителей Лагранжа.

11.1 Условные экстремумы

Definition 11.1 (Условный экстремум). экстремума ограничения функции
fна множество S, задаваемое системой непрерывно дифференцируемых (как минимум) уравнений

$$\varphi_1(x) = \cdots = \varphi_m(x) = 0$$

Также требуется линейная независимость дифференциалов

$$dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m$$

11.2 Необходимое условие условного экстремума в терминах первых производных

Theorem 19. Если f и $\varphi_1, \ldots, \varphi_m$ непрерывно дифференцируемы в окрестности p, дифференциалы φ линейно не зависимы и f имеет условный экстремум в p при условии $\varphi_1(x) = \cdots = \varphi_m(x) = 0$, то в точке p выполняется

$$df_p = \lambda_1 d\varphi_{1,p} + \dots + \lambda_m d\varphi_{m,p} \tag{51}$$

для некоторых $\lambda_1, \ldots, \lambda_m$.

Доказательство. Заметим, что нахождение df в линейной оболочке $d\varphi_i$ инвариантно относительно криволинейных замен координат по формуле дифференциала композиции. Согласно этой формуле, при замене координат строка чисел $\frac{\partial f}{\partial x_i}$ получается из строки чисел $\frac{\partial f}{\partial y_j}$ умножением

справа на матрицу с элементами $\frac{\partial y_j}{\partial x_i}$.

Тогда мы можем считать $\varphi_1 = y_1, \dots, \varphi_m = y_m$ в системе координат y_1, \dots, y_n . В этом случае мы имеем экстремум функции по остальным переменным при условии $y_1 = \dots = y_m = 0$, что даёт равенства $\frac{\partial f}{\partial y_i} = 0$ при i > m. Тогда можно составить линейную комбинацию

$$df_p = \lambda_1 dy_1 + \dots + \lambda_m dy_m \tag{52}$$

11.3 Метод множителей Лагранжа

1. Составим функцию Лагранжа в виде линейной комбинации функции f и функций φ_i , взятых с коэффициентами, называемыми множителями Лагранжа — λ_i :

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i \varphi_i(x)$$
 (53)

- 2. Составим систему из n+m уравнений, приравняв к нулю частные производные функции Лагранжа $L(x,\lambda)$ по x_j и λ_i .
- 3. Если полученная система имеет решение относительно параметров x'_j и λ'_i , тогда точка x' может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер.

12 Необходимые и достаточные условия условного экстремума с использованием вторых производных.

12.1 Необходимое условие условного экстремума с использованием вторых производных

Theorem 20. Если f и $\varphi_1, \ldots, \varphi_m$ дважды непрерывно дифференцируемы в окрестности p, выполняется линейная независимость дифференциалов u f имеет условный экстремум в p при условии $\varphi_1(x) = \cdots = \varphi_m(x) = 0$, то

$$df_p = \lambda_1 d\varphi_{1,p} + \dots + \lambda_m d\varphi_{m,p}$$

и второй дифференциал функции Лагранжа положительно полуопределён (для минимума) или отрицательно полуопределён (для максимума) на векторах v, удовлетворяющих линейным уравнениям

$$d\varphi_{1,p}(v) = \cdots = d\varphi_{m,p}(v) = 0$$

Доказательство. Заметим, что при выполнении условий $\varphi_1(x) = \cdots = \varphi_m(x) = 0$ функции f и L равны. Но функция Лагранжа удобнее тем, что $dL_p = 0$. Лемма о корр. кв формыпозволяет в этом случае считать d_2L_p корректно определённой квадратичной формой и сделать замену координаттак, чтобы $\varphi_1 = y_1, \ldots, \varphi_m = y_m$, при этом d_2L_p преобразуется так, как положено преобразовываться квадратичной форме при линейном преобразовании, которое является производной замены координат. После замены координат мы фактически рассматриваем функцию L при фиксированных первых m переменных. Допустимые приращения соответствуют векторам v, первые m координат которых равны нулю, то есть

$$dy_1(v) = \dots = dy_m(v) = 0 \tag{54}$$

Но тогда теорема о необходимом условии экстремума без условий показывает, что d_2L_p должна быть полуопределена на допустимых приращениях v, что после обратной замены координат превращается в утверждение теоремы.

12.2 Достаточное условие условного экстремума с использованием вторых производных

Theorem 21. Если f и $\varphi_1, \ldots, \varphi_m$ дважды непрерывно дифференцируемы в окрестности p, выполняется линейная независимость дифференциалов

$$df_p = \lambda_1 d\varphi_{1,p} + \dots + \lambda_m d\varphi_{m,p} \Leftrightarrow dL_p = 0$$

и второй дифференциал функции Лагранжа положителен (для минимума) или отрицателен (для максимума) на ненулевых векторах v, удовлетворяющих линейным уравнениям

$$d\varphi_{1,p}(v) = \cdots = d\varphi_{m,p}(v) = 0$$

то f имеет строгий условный экстремум в p на ограничении S.

Доказательство. Аналогично предыдущей теореме, взяв φ_i за первые m координат ивоспользовавшись леммой о корр. опр. гессиана, мы сводим задачу к случаю экстремума без условий.

Часть IV

Векторы и дифференциальные формы первой степени

13 Касательные векторы к открытому подмножеству \mathbb{R}^n в точке. Определение через дифференцирование функций в точке и явный вид

13.1 Касательные векторы к открытому подмножеству \mathbb{R}^n в точке

Докажем лемму, которая будет нужна далее:

Lemma 22. Всякую гладкую функцию, определённую в некоторой окрестности $x_0 \in \mathbb{R}^n$, в возможно меньшей окрестности x_0 можно представить в виде

$$f(x) = f(x_0) + \sum_{k=1}^{n} (x_k - x_{0,k}) g_k(x)$$
 (55)

Доказательство. Это следует из леммы 10 и её доказательства. Бесконечная дифференцируемость функций g_k (которые в той лемме были компонентами отображения A) следует из возможности бесконечно дифференцировать определяющий их интеграл по параметрам

Definition 13.1 (Касательные векторы к открытому подмножеству \mathbb{R}^n в точке). Определим касательный векторв точке $p \in U$ открытого множества $U \subset \mathbb{R}^n$ как \mathbb{R} -линейное отображение $X: C^\infty(U) \to \mathbb{R}$, удовлетворяющее

$$X(fg) = X(f)g(p) + X(g)f(p)$$
(56)

13.2 Определение через дифференцирование функций в точке и явный вид

Запишем используя Лемму 22, запишем

$$X(f) = X(f(p)) + \sum_{i=1}^{n} (x_i - p_i)X(g_i) + \sum_{i=1}^{n} X(x_i - p_i)g_i(p)$$
 (57)

Что равно

$$X(f) = \sum_{i=1}^{n} X(x_i)g_i(p) = \sum_{i=1}^{n} X_i \frac{\partial f}{\partial x_i}$$
 (58)

14 Касательное пространство в точке и дифференциал отображения как отображение касательных пространств. Векторные поля на открытых областях в \mathbb{R}^n .

14.1 Касательное пространство в точке

Definition 14.1. Касательное пространство к U в точке p состоит из всех касательных векторов в точке p и обозначается как T_pU

14.2 Дифференциал отображения как отображение касательных пространств

Можно также корректно определить образ касательного вектора при произвольном гладком отображении $\varphi: U \to V$, не обязательно обратимом, следующим образом. Пусть у нас есть вектор $X \in T_pU$, $q = \varphi(p)$, тогда прямой образ вектора, $\varphi_*(X)$, определяется по формуле

$$\varphi_*(X)f = X(f \circ \varphi) \tag{59}$$

Можно выписать координаты этого вектора

$$\varphi_*(X) = \sum_{i=1}^n \sum_{j=1}^m \frac{\partial \varphi_j}{\partial x_i} X_i \frac{\partial}{\partial y_j}$$
 (60)

Таким образом мы можем бескоординатно определить производную отображения φ в точке p как линейное отображение $\varphi_*: T_pU \to T_qV$ при $q=\varphi(p)$. Его также можно обозначать как $D\varphi_p$, так как в силу своего выражения в координатах оно на самом деле совпадает с введённый ранее производной в смысле линейного приближения отображения, что проясняет геометрический смысл конструкции прямого образа вектора.

14.3 Векторные поля на открытых областях в \mathbb{R}^n

Definition 14.2 (Векторное поле на открытом $U \subset \mathbb{R}^n$). X — гладкое сопоставление $\forall p \in U$ вектора в точке p. Вектор в $p \in U - T_pU$.

Definition 14.3 (Векторное поле на открытом $U \subset \mathbb{R}^n$). Векторное поле на $U^{\text{откр}} \subset \mathbb{R}^n$ — это \mathbb{R} -линейное $X : C^{\infty}(U) \to C^{\infty}(U)$ т.ч.

$$X(f \cdot g) = X(f)g + X(g)f \tag{61}$$

15 Дифференциальные формы первой степени и дифференциалы функций. Замена координат в дифференциальной форме первой степени.

15.1 Дифференциальные формы первой степени и дифференциалы функций

Для всякой функции $f \in C^\infty(U)$ её дифференциал как отображения $U \to \mathbb{R}$ можно считать формой первой степени в соответствии с формулой

$$df(X) = X(f) (62)$$

действительно, это выражение линейно относительно умножения X на бесконечно гладкие функции и в координатах компоненты df оказываются равны $\frac{\partial f}{\partial x_i}$, то есть это уже известный нам дифференциал функции, но определённый по-новому.

15.2 Замена координат в дифференциальной форме первой степени

Дифференциалы координатных функций dx_1,\dots,dx_n в любой точке дают базис пространства T_p^*U , двойственный к базису $\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_n}$ в смысле

$$dx_i \left(\frac{\partial}{\partial x_j}\right) = \frac{\partial x_i}{\partial x_j} = \delta_{ij} \tag{63}$$

По этому базису можно разложить любую форму в точке, а применяя это во всех точках области $U \subset \mathbb{R}^n$ обнаруживаем, что всякая дифференциальная форма на U первой степени выражается как

$$\alpha_1 dx_1 + \dots + \alpha_n dx_n \tag{64}$$

где $\alpha_i \in C^{\infty}(U)$. При замене координат компоненты дифференциальной формы первой степени ведут себя так же, как компоненты дифференциала функции, то есть преобразование от новой к старой системе координат

выглядит как

$$\alpha_j = \sum_j \widetilde{\alpha}_i \frac{\partial y_i}{\partial x_j} \tag{65}$$

Часть V

Дифференциальные формы высших степеней

16 Дифференциальные формы произвольной степени на открытых множествах в \mathbb{R}^n , их определение и свойства.

16.1 Определение

Сначала введем некоторые обозначения: V — векторное пространство. V^* — двойственное $V = \{$ линейное $\lambda : V \to \mathbb{R} \}$ существует такая полилинейная форма ω , что

$$\omega:(\upsilon_1,\ldots,\upsilon_k)\mapsto\omega(\upsilon_1,\ldots,\upsilon_k)\in\mathbb{R}$$
 $\Lambda^kV^*\subset\omega$, k -ой степени

с правилом кососимметрии

Definition 16.1. В $U \subset \mathbb{R}^n$ $\Omega^k(U)$ (дифф. форма kой степени) — это выбор формы в $\Lambda^k T_p^* U \ \forall p \in U$ гладко зависящего от p

Definition 16.2. $\omega \in \Omega^k(U)$ — это $C^\infty(U)$ -линейное сопоставление набору из k векторных полей $f \in C^\infty(U)$ + кососимметричное.

$$\omega(f_1 X_1, \dots, f_k X_k) = f_1, \dots, f_k \omega(X_1, \dots, X_k)$$

$$\omega(X_{\sigma(1)}, \dots, X_{\sigma(k)}) = sgn(\sigma) \cdot \omega(X_1, \dots, X_k)$$

16.2 Свойства

Lemma 23. Значение выражения $\alpha(X_1, \dots, X_k)$ в точке p зависит только от значений векторных полей X_i в точке p.

Доказательство. Представим каждое поле X_i в виде $\Sigma_j X_i^j \frac{\partial}{\partial x_j}$. Применив линейность α , разложим выражение на слагаемые, в каждом из которых α применяется к векторным полям $\frac{\partial}{\partial x_i}$ (это будет не зависящая от векторных полей часть), а множители X_i^j вынесены из α как функции. Значение этого выражения в точке p будет зависеть только отзначений X_i^j в точке p.

вроде больше свойств нет ...