Quantum Circuit Design Optimization

Jiaqi Weng, Chunlin Feng

Optimization Methods

- Gate Fusion and Simplification
- Gate Decomposition
- Resource-Constrained Optimization
- Machine Learning Optimization for Circuit Design
- Variational Techniques

Gate Fusion and Simplification

Combining multiple gates into fewer gates.

Gate Decomposition

Breaking down complex gates into simpler gates

[1	0	0	0	0	0	0	0 0 0 0 0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

Resource-Constrained Optimization

Optimizing use of available resources

Why do we want to optimize?

- Reduce resource (#gates; depth)
- Minimize error (NISQ)
- Decrease execution time

DQN for Quantum Circuit Design

□CLASSIQ

- Employ machine learnil configurations, enhance
- Process:
 - Environment: Define t
 - Agent: Develops a stra
 - Rewards: Set rewards
- $Q(s,a) \leftarrow Q(s,a) + d$
- Where Q(s,a) is the qua discount factor.

Model-Free Deep Recurrent Q-Network Reinforcer Quantum Circuit Architectures Design

by Tomah Sogabe 1,2,3,* ☑, Tomoaki Kimura 1, Chih-Chieh Chen 2,* ☑ ⑩, Kol Nobuhiro Kasahara 1, Masaru Sogabe 2 and Katsuyoshi Sakamoto 1,3

- ¹ Engineering Department, The University of Electro-Communications, Tokyo 1
- ² Grid Inc., Tokyo 107-0061, Japan
- ³ i-Powered Energy Research Center (i-PERC), The University of Electro-Com
- * Authors to whom correspondence should be addressed.

Quantum Rep. 2022, 4(4), 380-389; https://doi.org/10.3390/quantum4040027

Submission received: 31 August 2022 / Revised: 16 September 2022 / Accepted: 19 September 2022 / Published: 21 September 2022

(a)

COMPANY >

LET'S TALK

(b)

GA for Quantum Circuit Design (Cont.)

- Genetic Algorithms: Use principles of natural selection to find optimal quantum circuits.
- Process:
 - o Population: Start with a diverse population of random circuit designs.
 - Fitness Evaluation: Evaluate each circuit based on its performance (e.g., operational cost, fidelity).
 - Selection and Reproduction: Select the best-performing circuits to "breed" new circuits by combining features of parent circuits.
 - Mutation: Introduce random changes to new circuits to explore a broader design space.
- ullet Fitness $(C) = rac{1}{\operatorname{Cost}(C) + \lambda imes \operatorname{Error}(C)}$
- Where Fitness(C) is the fitness of circuit C, Cost(C) represents the operational cost (like gate count or depth), Error(C) quantifies the error rate, and λ is a penalty coefficient.

Figure 1: Optimization of quantum circuits in the GA4QCO framework.

Variational Quantum Eigensolver (VQE)

- A hybrid algorithm that uses both classical computers and quantum computers
- To find a set of quantum operations that prepares the lowest energy state of a close approximation to some target quantity.
- Iteratively explores different quantum states by adjusting θ , searching for the state that minimizes the Hamiltonian's expectation value

References

- "Model-Free Deep Recurrent Q-Network Reinforcement Learning for Quantum Circuit Architectures Design."
 Quantum Reports, MDPI, www.mdpi.com. Accessed 25 June 2024.
- "Practical and Efficient Quantum Circuit Synthesis and Transpiling with Reinforcement Learning." arXiv, ar5iv.org,
 2024. Accessed 25 June 2024.
- "Compiler Optimization for Quantum Computing Using Reinforcement Learning." arXiv, ar5iv.org, 2024. Accessed 25
 June 2024.
- "Classiq Quantum Algorithm Design Platform." Classiq Technologies, classiq.io. Accessed 25 June 2024.
- "OpenAl ChatGPT." *OpenAl*, <u>www.openai.com/chatgpt</u>. Accessed 25 June 2024.