Riešenie systému rovníc

Newtonova metóda

Riešte sústavu rovníc Newtonovou metódou

$$2x - y + \frac{1}{9}e^{-x} - 1 = 0$$
$$-x + 2y + \frac{1}{9}e^{-y} = 0$$

s presnosťou 10⁻¹⁵.

ContourPlot[$\{2x-y+1/9 Exp[-x]-1=0, -x+2y+1/9 Exp[-y]=0\}, \{x, -5, 5\}, \{y, -5, 5\}]$

Zadáme sústavu rovníc do počítača, vypočítame Jacobiho maticu - matica A a inverznú Jacobiho maticu. Obe matice budeme počítať symbolicky. Na záver si vizuálne skontrolujeme, či sú obe matice vypočítané správne.

A[x, y] // MatrixForm INV[x, y] // MatrixForm

$$\begin{pmatrix} 2 - \frac{e^{-x}}{9} & -1 \\ -1 & 2 - \frac{e^{-y}}{9} \end{pmatrix}$$

$$\begin{pmatrix} \frac{2-\frac{\mathrm{e}^{-y}}{9}}{3-\frac{2\,\mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{-x-y}}{81}-\frac{2\,\mathrm{e}^{-y}}{9}} & \frac{1}{3-\frac{2\,\mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{-x-y}}{81}-\frac{2\,\mathrm{e}^{-y}}{9}} \\ \frac{1}{3-\frac{2\,\mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{-x-y}}{81}-\frac{2\,\mathrm{e}^{-y}}{9}} & \frac{2-\frac{\mathrm{e}^{-x}}{9}}{3-\frac{2\,\mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{-x-y}}{81}-\frac{2\,\mathrm{e}^{-y}}{9}} \end{pmatrix}$$

Definujeme štartovanie body a spustíme výpočet podľa schémy

$$(x_{n+1}, y_{n+1}) = (x_n, y_n) - A_f^{-1}(x_n, y_n) \cdot \{f_1(x_n, y_n), f_2(x_n, y_n)\}.$$

Výpočet realizujeme tak, že využívame symbolicky predvypočítanú inverznú maticu a v konkrétnej iterácii do nej dosadzujeme len číselné hodnoty.

```
Clear[x, y]
x[0] = 1;
y[0] = 1;
pocetopakovani = 10;
tolerancia = 10^{(-15)};
Do [
  {x[i+1], y[i+1]} =
   {x[i], y[i]} - INV[x[i], y[i]] . {f1[x[i], y[i]], f2[x[i], y[i]]} // N;
 If [Max[Abs[x[i+1]-x[i]], Abs[y[i+1]-y[i]]] < tolerancia, Break[]],
 {i, 0, pocetopakovani}]
Vypočítané hodnoty vypíšeme do tabuľky
TableForm[Table[{i, NumberForm[x[i], 16], NumberForm[y[i], 16],
    Max[Abs[x[i] - x[i-1]], Abs[y[i] - y[i-1]]], {i, 0, pocetopakovani}],
       \label{eq:tableHeadings} \begin{split} &\text{TableHeadings} \rightarrow \{\text{None, } \{"i", "x_i", "y_i", "|\overline{x}_{i+1} - \overline{x}_i|"\}\}, \end{split}
       TableSpacing \rightarrow {1, 5}]
           x_i
                                                                             " \mid \overline{x}_{i+1} - \overline{x}_i \mid "
```

0	1	1	$Max\left[Abs\left[1-x\left[-1\right]\right]\right]$, $Abs\left[1-y\left[-1\right]\right]$
1	0.6050426381469061	0.2671048468200905	0.732895
2	0.5972201551351595	0.255587267973464	0.0115176
3	0.5972167517616359	0.2555825304966388	4.73748×10^{-6}
4	0.5972167517610295	0.2555825304958175	$\textbf{8.21287} \times \textbf{10}^{-13}$
5	0.5972167517610295	0.2555825304958175	5.55112×10^{-17}
6	x[6]	y [6]	Max[Abs[-0.597217 + x[6]], Abs[
7	x[7]	y [7]	Max[Abs[-x[6] + x[7]], Abs[-y[6]]
8	x[8]	y[8]	Max[Abs[-x[7] + x[8]], Abs[-y[7]]
9	x[9]	y[9]	Max[Abs[-x[8] + x[9]], Abs[-y[8]]
10	x[10]	y [10]	Max[Abs[-x[9] + x[10]], Abs[-y]

Ten istý výpočet môžeme zrealizovať aj tak, že v každom kroku iteračného procesu najskôr dosadíme iteračné hodnoty do Jacobiho matice A a potom vypočítame inverznú maticu ku tejto číselnej matici.

```
Clear[x, y]
x[0] = 1;
y[0] = 1;
pocetopakovani = 10;
tolerancia = 10^{(-15)};
Do[
 {x[i+1], y[i+1]} =
  {x[i], y[i]} - Inverse[A[x[i], y[i]]] .{f1[x[i], y[i]], f2[x[i], y[i]]} // N;
 If[Max[Abs[x[i+1]-x[i]] , Abs[y[i+1]-y[i]]] < tolerancia, Break[]],
 {i, 0, pocetopakovani}]
```

Vypočítané hodnoty vypíšeme do tabuľky

```
TableForm[Table[{i, NumberForm[x[i], 16], NumberForm[y[i], 16],
    Max[Abs[x[i]-x[i-1]], Abs[y[i]-y[i-1]]]\}, \{i, 0, pocetopakovani\}],
      TableHeadings \rightarrow {None, {"i", "x<sub>i</sub>", "y<sub>i</sub>", "|\overline{X}_{i+1}-\overline{X}_i|"}},
      TableSpacing → {1, 5}]
```

i	"X _i "	"y _i "	$" \mid \overline{X}_{i+1} - \overline{X}_i \mid "$
0	1	1	Max[Abs[1-x[-1]], Abs[1-y[-1]]
1	0.6050426381469061	0.2671048468200905	0.732895
2	0.5972201551351595	0.255587267973464	0.0115176
3	0.5972167517616359	0.2555825304966388	4.73748×10^{-6}
4	0.5972167517610295	0.2555825304958175	$\textbf{8.21287} \times \textbf{10}^{-13}$
5	0.5972167517610295	0.2555825304958175	5.55112×10^{-17}
6	x[6]	y[6]	Max[Abs[-0.597217 + x[6]], Abs[
7	x[7]	y[7]	Max[Abs[-x[6] + x[7]], Abs[-y[6]]
8	x[8]	y[8]	Max[Abs[-x[7] + x[8]], Abs[-y[7]]
9	x[9]	y[9]	Max[Abs[-x[8] + x[9]], Abs[-y[8]]
10	x[10]	y [10]	Max[Abs[-x[9] + x[10]], Abs[-y]

Prvý spôsob počítania nesie so sebou to riziko, že sa Mathematice nepodarí v zložitejších prípadoch symbolicky vypočítať inverznú maticu.

Druhý spôsob výpočtu zas vyžaduje vypočítanie inverznej matice z nejakej číselnej matice v každom kroku iteračného výpočtu, čo je výpočtovo zložitejšie a teda to so sebou prináša nielen väčšiu časovú náročnosť, ale aj možnosť rýchlejšieho šírenia numerických chýb v dôsledku množstva vykonávaných aritmetických operácií.

Kompletný program na riešenie - verzia I

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] =;
f2[x_, y_] =;
A[x_{y}] = D[f, \{\{x, y\}\}];
INV[x_, y_] = Inverse[A[x, y]];
x[0] =;
y[0] =;
pocetopakovani =;
tolerancia =;
Do [
  {x[i+1], y[i+1]} =
  {x[i], y[i]} - INV[x[i], y[i]] . {f1[x[i], y[i]], f2[x[i], y[i]]} // N;
 If[Max[Abs[x[i+1]-x[i]], Abs[y[i+1]-y[i]]] < tolerancia, Break[]],
 {i, 0, pocetopakovani}]
TableForm[Table[{i, NumberForm[x[i], 16], NumberForm[y[i], 16],
   Max[Abs[x[i] - x[i-1]], Abs[y[i] - y[i-1]]], {i, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"i", "x_i", "y_i", "|\overline{X}_{i+1}-\overline{X}_i|"}},
      TableSpacing \rightarrow {1, 5}]
```

Kompletný program na riešenie - verzia II

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] =;
f2[x_, y_] =;
A[x_{y}] = D[f, \{\{x, y\}\}];
x[0] =;
y[0] =;
pocetopakovani =;
tolerancia = ;
Do [
  {x[i+1], y[i+1]} =
   {x[i], y[i]} - Inverse[A[x[i], y[i]]] .{f1[x[i], y[i]], f2[x[i], y[i]]} // N;
 If[Max[Abs[x[i+1]-x[i]] , Abs[y[i+1]-y[i]]] < tolerancia, Break[]],
 {i, 0, pocetopakovani}]
TableForm[Table[{i, NumberForm[x[i], 16], NumberForm[y[i], 16],
    \label{eq:max_abs_x_i} \text{Max}[\text{Abs}[x[i]-x[i-1]], \text{Abs}[y[i]-y[i-1]]]\}, \{i, 0, \text{pocetopakovani}\}],
      TableHeadings \rightarrow {None, {"i", "x<sub>i</sub>", "y<sub>i</sub>", "|\overline{X}_{i+1}-\overline{X}_i|"}},
      TableSpacing \rightarrow {1, 5}]
```

Chord metóda

Verzia využívajúca aj zastavovaciu podmienku a fixujeme inverznú maticu na štartovací bod

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] = 2x - y + 1/9 Exp[-x] - 1;
f2[x_, y_] = -x + 2y + 1/9 Exp[-y];
A[x_{y}] = D[f, \{\{x, y\}\}];
INV[x_, y_] = Inverse[A[x, y]];
x[0] = 1;
y[0] = 1;
pocetopakovani = 20;
Do [
   {x[n+1], y[n+1]} =
    {x[n], y[n]} - INV[x[0], y[0]] . {f1[x[n], y[n]], f2[x[n], y[n]]} // N;
  If [Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
   {n, 0, pocetopakovani}];
TableForm[Table[{n, NumberForm[x[n], 16], NumberForm[y[n], 16],
    Max[Abs[x[n]-x[n-1]], Abs[y[n]-y[n-1]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{x}_{n+1}-\overline{x}_n|"}},
      TableSpacing \rightarrow {1, 5}]
           "x<sub>n</sub>"
n
                                         "y<sub>n</sub>"
                                                                        ||\overline{x}_{n+1}-\overline{x}_n||
0
           1
                                         1
                                                                        Max[Abs[1-x[-1]], Abs[1-y[-1]]
1
           0.6050426381469061
                                         0.2671048468200905
                                                                        0.732895
2
           0.597506380968332
                                                                        0.0111117
                                         0.255993159449313
                                                                        0.000395761
3
           0.5972273367474145
                                         0.2555973985591037
                                                                        0.0000143288
4
           0.5972171365460355
                                         0.2555830697459018
5
                                                                        5.19685 \times 10^{-7}
           0.5972167657292903
                                         0.2555825500604325
6
           0.5972167522679239
                                         0.2555825312057005
                                                                        1.88547 \times 10^{-8}
7
           0.5972167517794227
                                         0.2555825305215754
                                                                        6.84125 \times 10^{-10}
                                                                        \textbf{2.48233} \times \textbf{10}^{-11}
8
           0.597216751761697
                                         0.2555825304967522
                                                                        9.00779 \times 10^{-13}
q
                                         0.2555825304958514
           0.5972167517610537
                                                                        3.26406 \times 10^{-14}
10
           0.5972167517610306
                                         0.2555825304958188
                                                                        1.16573 \times 10^{-15}
11
           0.5972167517610297
                                         0.2555825304958176
                                                                        5.55112 \times 10^{-17}
           0.5972167517610297
                                         0.2555825304958175
12
13
          x[13]
                                         y [13]
                                                                        Max[Abs[-0.597217 + x[13]], Abs
14
           x [ 14 ]
                                         y[14]
                                                                        Max[Abs[-x[13] + x[14]], Abs[-y]
15
          x [15]
                                         y[15]
                                                                        Max[Abs[-x[14] + x[15]], Abs[-y]
16
          x[16]
                                         y [16]
                                                                        Max[Abs[-x[15] + x[16]], Abs[-y]
17
                                                                        Max[Abs[-x[16] + x[17]], Abs[-y]
          x[17]
                                         y [17]
18
           x[18]
                                         y [18]
                                                                        Max[Abs[-x[17] + x[18]], Abs[-y]
19
          x[19]
                                                                        Max[Abs[-x[18] + x[19]], Abs[-y]
                                         y [19]
20
                                                                        \mbox{Max}\left[\mbox{Abs}\left[\mbox{-}x\left[\mbox{19}\right]\mbox{ }+x\left[\mbox{20}\right]\mbox{ }\right] , \mbox{Abs}\left[\mbox{-}y\right]
           x [ 20 ]
                                         y [ 20 ]
```

Tu bola zastavovacia podmienka odstránená pre urýchlenie výpočtu. Potrebná je však manuána kontrola veľkosti chyby.

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] = 2x - y + 1/9 Exp[-x] - 1;
f2[x_, y_] = -x + 2y + 1/9 Exp[-y];
A[x_{y}] = D[f, {\{x, y\}\}}];
INV[x_, y_] = Inverse[A[x, y]];
x[0] = 1;
y[0] = 1;
pocetopakovani = 20;
Do [
   {x[n+1], y[n+1]} =
    {x[n], y[n]} - INV[x[0], y[0]] . {f1[x[n], y[n]], f2[x[n], y[n]]} // N,
   {n, 0, pocetopakovani}];
TableForm[Table[{n, NumberForm[x[n], 16], NumberForm[y[n], 16],
    Max[Abs[x[n] - x[n-1]], Abs[y[n] - y[n-1]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{x}_{n+1}-\overline{x}_n|"}},
      TableSpacing \rightarrow {1, 5}]
          "x<sub>n</sub>"
                                        "y<sub>n</sub>"
                                                                     ||\overline{x}_{n+1}-\overline{x}_n||
n
                                                                     Max[Abs[1-x[-1]], Abs[1-y[-1]]
0
          1
1
          0.6050426381469061
                                       0.2671048468200905
                                                                     0.732895
2
          0.597506380968332
                                       0.255993159449313
                                                                     0.0111117
3
          0.5972273367474145
                                       0.2555973985591037
                                                                     0.000395761
4
          0.5972171365460355
                                       0.2555830697459018
                                                                     0.0000143288
                                                                     5.19685 \times 10^{-7}
5
          0.5972167657292903
                                       0.2555825500604325
                                                                     1.88547 \times 10^{-8}
6
          0.5972167522679239
                                       0.2555825312057005
                                                                     6.84125 \times 10^{-10}
7
          0.5972167517794227
                                       0.2555825305215754
                                                                     2.48233 \times 10^{-11}
ጸ
          0.597216751761697
                                       0.2555825304967522
9
                                                                     9.00779 \times 10^{-13}
          0.5972167517610537
                                       0.2555825304958514
          0.5972167517610306
                                       0.2555825304958188
                                                                     3.26406 \times 10^{-14}
10
11
          0.5972167517610297
                                       0.2555825304958176
                                                                     1.16573 \times 10^{-15}
                                                                     \textbf{5.55112} \times \textbf{10}^{-17}
12
          0.5972167517610297
                                       0.2555825304958175
                                                                     \textbf{1.11022} \times \textbf{10}^{-16}
13
          0.5972167517610295
                                       0.2555825304958175
14
          0.5972167517610295
                                       0.2555825304958175
15
          0.5972167517610295
                                       0.2555825304958175
16
          0.5972167517610295
                                       0.2555825304958175
                                                                     0.
17
          0.5972167517610295
                                       0.2555825304958175
                                                                     0.
          0.5972167517610295
18
                                       0.2555825304958175
                                                                     α.
19
          0.5972167517610295
                                       0.2555825304958175
20
          0.5972167517610295
                                       0.2555825304958175
```

Chord metóda - upravená verzia - po každej 3. iterácii updatujeme deriváciu

V metóde bola odstránená zastavovacia podmienka, je potrebná manuálna kontrola počtu realizovaných operácií.

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] = 2x - y + 1/9 Exp[-x] - 1;
f2[x_, y_] = -x + 2y + 1/9 Exp[-y];
A[x_{y}] = D[f, \{\{x, y\}\}];
INV[x_, y_] = Inverse[A[x, y]];
x[0] = 1;
y[0] = 1;
pocetopakovani = 11;
Do [
 Do [
   {x[n+1], y[n+1]} = {x[n], y[n]} -
      INV[x[p], y[p]] . \{f1[x[n], y[n]], f2[x[n], y[n]]\} // N, \{n, p, p+2\}],
 {p, 0, pocetopakovani, 3}]
TableForm[Table[{n, NumberForm[x[n], 16], NumberForm[y[n], 16],
   \label{eq:max_abs_x_n} \text{Max}[\text{Abs}[x[n]-x[n-1]]], \text{ Abs}[y[n]-y[n-1]]]\}, \text{ $\{n,\,0$, pocetopakovani$\}],}
      TableHeadings → {None, {"n", "x_n", "y_n", "|\overline{x}_{n+1}-\overline{x}_n|"}},
      TableSpacing \rightarrow \{1, 5\}]
          "x<sub>n</sub>"
                                                                    |\overline{x}_{n+1} - \overline{x}_n|
n
0
          1
                                                                   Max[Abs[1-x[-1]], Abs[1-y[-1]]
                                                                   0.732895
1
          0.6050426381469061
                                       0.2671048468200905
2
          0.597506380968332
                                      0.255993159449313
                                                                   0.0111117
          0.5972273367474145
                                      0.2555973985591037
                                                                   0.000395761
3
4
          0.5972167517669567
                                      0.2555825305038837
                                                                   0.0000148681
                                                                   8.06621 \times 10^{-12}
5
          0.5972167517610295
                                      0.2555825304958175
6
          0.5972167517610295
                                      0.2555825304958175
                                                                   0.
7
          0.5972167517610295
                                      0.2555825304958175
                                                                   0.
8
          0.5972167517610295
                                      0.2555825304958175
                                                                   0.
9
                                      0.2555825304958175
                                                                   0.
          0.5972167517610295
10
          0.5972167517610295
                                      0.2555825304958175
                                                                   0.
          0.5972167517610295
                                      0.2555825304958175
                                                                   0.
11
```

Zastavovaciu podmienku musíme v tomto prípade umiestniť do vonkajšieho cyklu.

```
Clear[A, f, f1, f2, x, y];
f = \{f1[x, y], f2[x, y]\};
f1[x_, y_] = 2x - y + 1/9 Exp[-x] - 1;
f2[x_{y}] = -x + 2y + 1/9 Exp[-y];
A[x_{y}] = D[f, {\{x, y\}\}}];
INV[x_, y_] = Inverse[A[x, y]];
x[0] = 1;
y[0] = 1;
pocetopakovani = 15;
Do [
 Do [
   {x[n+1], y[n+1]} = {x[n], y[n]} -
      INV[x[p], y[p]] . \{f1[x[n], y[n]], f2[x[n], y[n]]\} // N, \{n, p, p+2\}];
 If [Max[Abs[x[p+3]-x[p+2]], Abs[y[p+3]-y[p+2]]] < 10^(-15), Break[]],
 {p, 0, pocetopakovani, 3}]
TableForm[Table[{n, NumberForm[x[n], 16], NumberForm[y[n], 16],
   Max[Abs[x[n] - x[n-1]], Abs[y[n] - y[n-1]]], {n, 0, pocetopakovani}],
     TableHeadings → {None, {"n", "x_n", "y_n", "|\overline{x}_{n+1}-\overline{x}_n|"}},
     TableSpacing \rightarrow \{1, 5\}]
                                                                 "\mid \overline{x}_{n+1} - \overline{x}_n \mid "
         "x<sub>n</sub>"
n
                                                                 Max[Abs[1-x[-1]], Abs[1-y[-1]]
0
                                     0.2671048468200905
                                                                 0.732895
1
         0.6050426381469061
2
         0.597506380968332
                                     0.255993159449313
                                                                 0.0111117
         0.5972273367474145
                                     0.2555973985591037
                                                                 0.000395761
3
4
         0.5972167517669567
                                     0.2555825305038837
                                                                 0.0000148681
         0.5972167517610295
                                     0.2555825304958175
                                                                 8.06621 \times 10^{-12}
5
         0.5972167517610295
                                     0.2555825304958175
                                                                 0.
7
                                                                 Max[Abs[-0.597217 + x[7]], Abs[
         x [7]
                                     y[7]
8
                                                                 Max[Abs[-x[7] + x[8]], Abs[-y[7]]
         x[8]
                                     y[8]
9
         x[9]
                                     y[9]
                                                                 Max[Abs[-x[8] + x[9]], Abs[-y[8]]
                                                                 Max[Abs[-x[9] + x[10]], Abs[-y]
10
         x[10]
                                     y[10]
11
         x[11]
                                     y [11]
                                                                 Max[Abs[-x[10] + x[11]], Abs[-y]
12
                                                                 Max[Abs[-x[11] + x[12]], Abs[-y]
         x[12]
                                     y [12]
13
                                                                 Max[Abs[-x[12] + x[13]], Abs[-y]
         x [13]
                                     y [13]
                                                                 Max[Abs[-x[13] + x[14]], Abs[-y]
14
         x [ 14 ]
                                     y [ 14 ]
                                                                 Max[Abs[-x[14] + x[15]], Abs[-y]
         x [15]
                                     y [15]
```

Metóda pevného bodu

Nájdite riešenie nelineárneho systému rovníc metódou pevného bodu s presnosťou 10⁻¹⁵.

$$f(x, y) = 2x - y + \frac{1}{9}e^{-x} - 1 = 0$$

$$g(x, y) = -x + 2y + \frac{1}{9}e^{-y} = 0$$

Najskôr musíme zostaviť iteračnú schému

$$x = \frac{+y - \frac{1}{9}e^{-x} + 1}{2}$$

$$F(x, y) = \frac{x^2 - y + 0.5}{2}$$

$$x = F(x, y)$$

$$y = \frac{+x - \frac{1}{9}e^{-y}}{2}$$

$$G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8}$$

$$y = G(x, y)$$

$$F(x, y) = \frac{x^2 - y + 0.5}{2} \qquad x = F(x, y)$$

$$G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad y = G(x, y)$$

Definujeme pôvodné rovnice, ktoré máme riešiť. Túto definíciu budeme používať len pre overenie správnosti výpočtu.

```
Clear[f, g, x, y]
f[x_y] = 2x - y + 1 / 9 Exp[-x] - 1;
g[x_{y}] = -x + 2y + 1/9 Exp[-y];
ContourPlot[\{2x-y+1/9 Exp[-x]-1=0, -x+2y+1/9 Exp[-y]=0\},
 \{x, -5, 5\}, \{y, -5, 5\}
-2
```

Definujeme si navrhnuté iteračné schémy

```
Clear[F, G, x, y]
F[x_y] = 0.5 * (y-1/9 Exp[-x] + 1);
G[x_{y_{1}}] = 0.5 * (x-1/9 Exp[-y]);
x[0] = 2;
y[0] = 2;
pocetopakovani = 35;
tolerancia = 10^{(-15)};
```

Pre úplnosť a korektnosť výpočtu by sme mali overiť, či sú v okolí štartovacieho bodu iteračné schémy vybraté správne

```
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
\{0.0555556 \, e^{-x}, \, 0.5\}
0.507519
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
\{0.5, 0.0555556 e^{-y}\}
0.507519
Do[
 x[i+1] = F[x[i], y[i]] // N;
 y[i+1] = G[x[i], y[i]] // N;
 If[Max[Abs[x[i+1]-x[i]] , Abs[y[i+1]-y[i]]] < 10^{(-15)}, Break[]],
 {i, 0, pocetopakovani}]
```

TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10], $\label{eq:max_abs_x_i} \text{Max}[\text{Abs}[x[i+1]-x[i]] \text{, Abs}[y[i+1]-y[i]]] \}, \text{ $\{i,0,pocetopakovani$\}],}$ $\label{eq:tableHeadings} \begin{center} \textbf{TableHeadings} \begin{center} \begin{$ TableSpacing \rightarrow {1, 5}]

i	"x _i "	"y _i "	$ \overline{x}_{i+1} - \overline{x}_i $
0	2	2	1.00752
1	1.492481373	0.9924813732	0.50873
2	0.9837510135	0.7256486969	0.260663
3	0.8420517963	0.464986035	0.133494
4	0.7085582592	0.3861290161	0.06961
5	0.665711534	0.3165189724	0.0360025
6	0.6297090565	0.2923734789	0.0189906
7	0.6165896962	0.273382879	0.00988615
8	0.6067035438	0.2660281016	0.00525508
9	0.6027282199	0.2607730169	0.00274818
10	0.5999800419	0.258561011	0.00146887
11	0.5987903617	0.2570921366	0.000770732
12	0.5980196293	0.2564342385	0.000413639
13	0.5976671435	0.2560205991	0.00021759
14	0.5974495535	0.2558265705	0.00011714
15	0.5973458887	0.2557094301	0.0000617391
16	0.5972841496	0.2556525586	0.0000333163
17	0.5972538264	0.2556192423	0.0000175852
18	0.5972362412	0.2556026473	9.50659×10^{-6}
19	0.5972274061	0.2555931408	5.02342×10^{-6}
20	0.5972223826	0.2555883142	2.71938×10^{-6}
21	0.5972198158	0.2555855948	$\textbf{1.43817}\times\textbf{10}^{-6}$
22	0.5972183776	0.2555841943	7.7934×10^{-7}
23	0.5972176334	0.255583415	$\textbf{4.12423}\times\textbf{10}^{-7}$
24	0.597217221	0.2555830094	$\textbf{2.23664}\times\textbf{10}^{-7}$
25	0.5972170055	0.2555827857	$\textbf{1.18419}\times\textbf{10}^{-7}$
26	0.5972168871	0.2555826684	$\textbf{6.42577} \times \textbf{10}^{-8}$
27	0.5972168248	0.2555826041	$\textbf{3.40333}\times\textbf{10}^{-8}$
28	0.5972167908	0.2555825702	$\textbf{1.84756}\times\textbf{10}^{-8}$
29	0.5972167728	0.2555825517	9.79242×10^{-9}
30	0.597216763	0.2555825419	5.31532×10^{-9}
31	0.5972167578	0.2555825366	2.82643×10^{-9}
32	0.597216755	0.2555825338	$\textbf{1.52986}\times\textbf{10}^{-9}$
33	0.5972167535	0.2555825323	$\textbf{8.15489} \times \textbf{10}^{-10}$
34	0.5972167527	0.2555825314	4.40474×10^{-10}
35	0.5972167523	0.255582531	2.35218×10^{-10}
	2.52.225		= 3 0 0 = = 0 = 0

Vidíme, že získaný výsledok ešte nezodpovedá presnosti, ktorú sme požadovali v cykle 10⁻¹⁵, potrebovali by sme podstatne viac iterácií na dosiadnutie požadovanej presnosti.

Kompletný program na riešenie

```
Clear[f, g, x, y]
f[x_, y_] = ;
g[x_{y}] = ;
ContourPlot[\{f[x, y] = 0, g[x, y] = 0\}, \{x, -5, 5\}, \{y, -5, 5\}]
Clear[F, G, x, y]
F[x_{y_{1}}] = ;
G[x_{y_{1}} = ;
x[0] = ;
y[0] = ;
pocetopakovani = ;
tolerancia = ;
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
Do [
 x[i+1] = F[x[i], y[i]] // N;
 y[i+1] = G[x[i], y[i]] // N;
 If [Max[Abs[x[i+1] - x[i]], Abs[y[i+1] - y[i]]] < 10^{(-15)}, Break[]],
 {i, 0, pocetopakovani}]
TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10],
    Max[Abs[x[i+1] - x[i]], Abs[y[i+1] - y[i]]], {i, 0, pocetopakovani}],
      TableHeadings → {None, {"i", "x_i", "y_i", "|\overline{X}_{i+1}-\overline{X}_i|"}},
      TableSpacing \rightarrow {1, 5}]
```

Seidlova metóda pre riešenie nelineárnych systémov

Postup výpočtu môžeme aj urýchliť. Obvykle sa používa Seidlovo urýchlenie, rovnaké ako pri iteračných metódach na riešenie lineárnych systémov. Zmena v programe je vyznačená farebne. Na výpočet novšej iterácie použijeme to najlepšie, čo máme k dispozícii. Nie vždy však toto urýchlenie funguje, pričom v mnohých prípadoch záleží aj na poradí rovníc.

V nasledujúcom príklade vidíte, že "urýchlenie" pomohlo sústavu vyriešiť rýchlejšie, pričom na poradí rovníc nezáleží.

Prvý spôsob urýchlenia

```
Clear[F, G, x, y]
F[x_{y_{1}} = 0.5 * (y - 1 / 9 Exp[-x] + 1);
G[x_{y_{1}} = 0.5 * (x - 1 / 9 Exp[-y]);
x[0] = 2;
y[0] = 2;
pocetopakovani = 35;
tolerancia = 10^{(-15)};
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
\{0.0555556 e^{-x}, 0.5\}
0.507519
\{0.5, 0.0555556 e^{-y}\}
0.507519
Do [
 x[i+1] = F[x[i], y[i]] // N;
 y[i+1] = G[x[i+1], y[i]] // N;
 If[Max[Abs[x[i+1]-x[i]] \ , \ Abs[y[i+1]-y[i]]] < 10^{(-15)} \ , \ Break[]],
 {i, 0, pocetopakovani}]
```

TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10], $\label{eq:max_abs_x_i} \text{Max}[\text{Abs}[x[i+1]-x[i]] \text{, Abs}[y[i+1]-y[i]]] \}, \text{ $\{i,0$, pocetopakovani}\}],$
$$\label{eq:tableHeadings} \begin{split} &\text{TableHeadings} \rightarrow \{\text{None, } \{\text{"i", "}x_i\text{", "}y_i\text{", "}|\overline{x}_{i+1}\text{-}\overline{x}_i|\text{"}\}\}, \end{split}$$
TableSpacing → {1, 5}]

i	"x _i "	"y _i "	" $ \overline{x}_{i+1} - \overline{x}_i $ "
0	2	2	1.26128
1	1.492481373	0.7387220597	0.63561
2	0.8568713568	0.4018954546	0.179506
3	0.6773650563	0.3015130455	0.0548282
4	0.622536875	0.2701740943	0.0172599
5	0.6052769655	0.2602358936	0.00548809
6	0.5997888799	0.2570683443	0.00175068
7	0.5980381992	0.2560571351	0.00055904
8 9	0.5974791591	0.2557341496	0.000178576
9 10	0.5973005832 0.5972435342	0.2556309693 0.2555980058	0.0000570491 0.0000182259
11	0.5972253082	0.2555874746	5.82284 × 10 ⁻⁶
12	0.5972194854	0.25558411	1.86029×10^{-6}
13	0.5972176251	0.2555830351	5.94331×10^{-7}
14	0.5972170308	0.2555826917	1.89879×10^{-7}
15	0.5972168409	0.255582582	6.06629×10^{-8}
16	0.5972167802	0.255582547	1.93808×10^{-8}
17	0.5972167609	0.2555825358	$\textbf{6.19182} \times \textbf{10}^{-9}$
18	0.5972167547	0.2555825322	$\textbf{1.97818} \times \textbf{10}^{-9}$
19	0.5972167527	0.255582531	6.31994×10^{-10}
20	0.5972167521	0.2555825307	$\textbf{2.01911} \times \textbf{10}^{-10}$
21	0.5972167519	0.2555825306	6.45072×10^{-11}
22	0.5972167518	0.2555825305	2.0609×10^{-11}
23	0.5972167518	0.2555825305	6.58407×10^{-12}
24	0.5972167518	0.2555825305	2.10365×10^{-12}
25	0.5972167518	0.2555825305	$\textbf{6.72018} \times \textbf{10}^{-13}$
26	0.5972167518	0.2555825305	2.14717×10^{-13}
27	0.5972167518	0.2555825305	$\textbf{6.86118} \times \textbf{10}^{-14}$
28	0.5972167518	0.2555825305	$\textbf{2.18714} \times \textbf{10}^{-14}$
29	0.5972167518	0.2555825305	6.99441×10^{-15}
30	0.5972167518	0.2555825305	$\textbf{2.22045} \times \textbf{10}^{-15}$
31	0.5972167518	0.2555825305	7.77156×10^{-16}
32	0.5972167518	0.2555825305	Max[Abs[-0.597217 + x[33]], Abs[-0.255583 +
33	x[33]	y[33]	Max[Abs[-x[33] + x[34]], Abs[-y[33] + y[34]]
34	x[34]	y [34]	Max[Abs[-x[34] + x[35]], Abs[-y[34] + y[35]
35	x [35]	y [35]	Max[Abs[-x[35] + x[36]], Abs[-y[35] + y[36]

Druhý spôsob urýchlenia

```
Clear[F, G, x, y]
F[x_{y_{1}} = 0.5 * (y - 1 / 9 Exp[-x] + 1);
G[x_{y_{1}} = 0.5 * (x - 1 / 9 Exp[-y]);
x[0] = 2;
y[0] = 2;
pocetopakovani = 35;
tolerancia = 10^{(-15)};
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
\{0.0555556 e^{-x}, 0.5\}
0.507519
\{0.5, 0.0555556 e^{-y}\}
0.507519
Do [
 y[i+1] = G[x[i], y[i]] // N;
 x[i+1] = F[x[i], y[i+1]] // N;
 If[Max[Abs[x[i+1]-x[i]] \ , \ Abs[y[i+1]-y[i]]] < 10^{(-15)} \ , \ Break[]],
 {i, 0, pocetopakovani}]
```

```
TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10],
      \label{eq:max_abs_x_i} \text{Max}[\text{Abs}[x[i+1]-x[i]] \text{, Abs}[y[i+1]-y[i]]] \}, \text{ $\{i,0,pocetopakovani$\}],}
          \label{eq:tableHeadings} \begin{split} &\text{TableHeadings} \rightarrow \{\text{None, } \{\text{"i", "}x_i\text{", "}y_i\text{", "}|\overline{x}_{i+1}\text{-}\overline{x}_i|\text{"}\}\}, \end{split}
          TableSpacing \rightarrow {1, 5}]
```

i	"x _i "	"y _i "	" $ \overline{X}_{i+1} - \overline{X}_i $ "
0	2	2	1.01128
1	0.9887220597	0.9924813732	0.518712
2	0.716214973	0.4737690402	0.150253
3	0.6346135411	0.3235157619	0.046409
4	0.6091011296	0.2771067398	0.0146658
5	0.6010071555	0.2624409211	0.00466911
6	0.5984270623	0.2577718108	0.00149003
7	0.597603358	0.2562817784	0.00047587
8	0.5973402589	0.2558059088	0.000152015
9	0.5972562095	0.255653894	0.0000485643
10	0.5972293578	0.2556053297	0.0000155153
11	0.5972207792	0.2555898144	4.95685×10^{-6}
12	0.5972180384	0.2555848576	1.58363×10^{-6}
13	0.5972171628	0.255583274	5.05941×10^{-7}
14	0.5972168831	0.255582768	1.61639×10^{-7}
15	0.5972167937	0.2555826064	$\textbf{5.1641} \times \textbf{10}^{-8}$
16	0.5972167652	0.2555825547	1.64984×10^{-8}
17	0.597216756	0.2555825382	5.27096×10^{-9}
18	0.5972167531	0.255582533	$\textbf{1.68398} \times \textbf{10}^{-9}$
19	0.5972167522	0.2555825313	5.38003×10^{-10}
20	0.5972167519	0.2555825307	$\textbf{1.71883} \times \textbf{10}^{-\textbf{10}}$
21	0.5972167518	0.2555825306	5.49135×10^{-11}
22	0.5972167518	0.2555825305	$\textbf{1.75439} \times \textbf{10}^{-11}$
23	0.5972167518	0.2555825305	$\textbf{5.60502} \times \textbf{10}^{-12}$
24	0.5972167518	0.2555825305	$\textbf{1.79068} \times \textbf{10}^{-12}$
25	0.5972167518	0.2555825305	$\textbf{5.72098} \times \textbf{10}^{\textbf{-13}}$
26	0.5972167518	0.2555825305	$\textbf{1.82798} \times \textbf{10}^{-13}$
27	0.5972167518	0.2555825305	5.83977×10^{-14}
28	0.5972167518	0.2555825305	$\textbf{1.86517} \times \textbf{10}^{-14}$
29	0.5972167518	0.2555825305	$\textbf{5.93969} \times \textbf{10}^{-15}$
30	0.5972167518	0.2555825305	$\textbf{1.94289} \times \textbf{10}^{-15}$
31	0.5972167518	0.2555825305	$\textbf{5.55112} \times \textbf{10}^{-16}$
32	0.5972167518	0.2555825305	Max[Abs[-0.597217 + x[33]], Abs[-0.255583 +
33	x[33]	y[33]	Max[Abs[-x[33] + x[34]], Abs[-y[33] + y[34]
34	x[34]	y [34]	Max[Abs[-x[34] + x[35]], Abs[-y[34] + y[35]
35	x[35]	y [35]	Max[Abs[-x[35] + x[36]], Abs[-y[35] + y[36]

Kompletný program na riešenie - prvý spôsob

```
Clear[f, g, x, y]
f[x_, y_] = ;
g[x_{,} y_{]} = ;
ContourPlot[\{f[x, y] = 0, g[x, y] = 0\}, \{x, -5, 5\}, \{y, -5, 5\}]
```

```
Clear[F, G, x, y]
F[x_{y_{1}} = ;
G[x_{y_{1}}] = ;
x[0] = ;
y[0] = ;
pocetopakovani = ;
tolerancia = ;
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
Do [
 x[i+1] = F[x[i], y[i]] // N;
 y[i+1] = G[x[i+1], y[i]] // N;
 If [Max[Abs[x[i+1] - x[i]], Abs[y[i+1] - y[i]]] < 10^{(-15)}, Break[]],
 {i, 0, pocetopakovani}]
TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10],
    Max[Abs[x[i+1]-x[i]], Abs[y[i+1]-y[i]]], {i, 0, pocetopakovani}],
      TableHeadings → {None, {"i", "x_i", "y_i", "|\overline{X}_{i+1}-\overline{X}_i|"}},
      TableSpacing \rightarrow {1, 5}]
```

Kompletný program na riešenie - druhý spôsob

```
Clear[f, g, x, y]
f[x_{y_{1}} = ;
g[x_{y}] = ;
ContourPlot[\{f[x, y] = 0, g[x, y] = 0\}, \{x, -5, 5\}, \{y, -5, 5\}]
Clear[F, G, x, y]
F[x_{y_{1}} = ;
G[x_{y_{1}} = ;
x[0] = ;
y[0] = ;
pocetopakovani = ;
tolerancia = ;
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
```

```
Do [
 y[i+1] = G[x[i], y[i]] // N;
 x[i+1] = F[x[i], y[i+1]] // N;
 If [Max[Abs[x[i+1] - x[i]], Abs[y[i+1] - y[i]]] < 10^{(-15)}, Break[]],
 {i, 0, pocetopakovani}]
TableForm[Table[{i, NumberForm[x[i], 10], NumberForm[y[i], 10],
    Max[Abs[x[i+1]-x[i]], Abs[y[i+1]-y[i]]], {i, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"i", "x<sub>i</sub>", "y<sub>i</sub>", "|\overline{x}_{i+1}-\overline{x}_i|"}},
      TableSpacing \rightarrow {1, 5}]
```

Metóda eliminácie počtu rovníc

Nájdite riešenie nelineárneho systému rovníc metódou eliminácie počtu rovníc s presnosťou 10^{-15} .

$$f(x, y) = 2x - y + \frac{1}{9}e^{-x} - 1 = 0$$

$$g(x, y) = -x + 2y + \frac{1}{9}e^{-y} = 0$$

Sústavu dvoch rovníc musíme upraviť

ContourPlot[$\{2x-y+1/9 \ Exp[-x]-1=0, -x+2y+1/9 \ Exp[-y]=0\}$,

 $\{x, -5, 5\}, \{y, -5, 5\}$

rovnica = Eliminate[
$$\{f[x, y] = 0, g[x, y] = 0\}, y$$
]

Eliminate::ifun: Inverse functions are being used by Eliminate, so some solutions may not be found; use Reduce for complete solution information. \gg

$$9 \log \left[\frac{1}{18 - 2 e^{-x} - 27 x} \right] = -9 + e^{-x} + 18 x$$

lavastrana = rovnica[1]

$$9 \; Log \left[\frac{1}{18 - 2 \; \mathrm{e}^{-x} - 27 \; x} \, \right]$$

pravastrana = rovnica[2]

$$-9 + e^{-x} + 18 x$$

Clear[f, g]

Plot[f[x], {x, -5, 5}]

Newtonova metóda pre funkciu f(x)

```
Clear[f, x]
f[x_] = lavastrana - pravastrana;
x[0] = -2.5;
pocetopakovani = 15;
tolerancia = 10^{(-8)};
Do[x[i+1] = x[i] - f[x[i]] / f'[x[i]] // N;
 If[Abs[f[x[i+1]]] < tolerancia, Break[]],</pre>
 {i, 0, pocetopakovani}]
```

 $Table Form [Table [\{i, Number Form [x[i], 8], Abs [x[i+1]-x[i]]\}, \{i, 0, pocetopakovani\}], \{i, 0, pocetopakovani], \{i, 0, pocetopakovani],$ $\label{eq:tableHeadings} \begin{subarray}{ll} \be$ TableSpacing → {1, 5}]

i	"x _i "	" $ x_{i+1}-x_i $ "
0	-2.5	0.883997
1	-1.616003	0.242789
2	-1.8587917	0.0088034
3	-1.8675951	0.0000157492
4	-1.8676108	Abs[1.86761+ x[5]]
5	x [5]	Abs $[-x[5] + x[6]]$
6	x[6]	Abs $[-x[6] + x[7]]$
7	x[7]	Abs $[-x[7] + x[8]]$
8	x[8]	Abs $[-x[8] + x[9]]$
9	x[9]	Abs $[-x[9] + x[10]]$
10	x[10]	Abs [- x [10] + x [11]]
11	x[11]	Abs [- x [11] + x [12]]
12	x[12]	Abs [- x [12] + x [13]]
13	x [13]	Abs $[-x[13] + x[14]]$
14	x [14]	Abs $[-x[14] + x[15]]$
15	x [15]	Abs $[-x[15] + x[16]]$

2. spôsob eliminácie

rovnica = Eliminate[$\{f[x, y] = 0, g[x, y] = 0\}, x$]

Eliminate::ifun: Inverse functions are being used by Eliminate, so some solutions may not be found; use Reduce for complete solution information. \gg

$$9 \ \text{Log} \left[\frac{1}{9 - 2 \ e^{-y} - 27 \ y} \right] \ == \ e^{-y} + 18 \ y$$

lavastrana = rovnica[1]

$$9 \, Log \Big[\frac{1}{9 - 2 \, \operatorname{e}^{-y} - 27 \, y} \, \Big]$$

pravastrana = rovnica[2]

$$e^{-y}$$
 + 18 y

Clear[f, g]

 $f[x_] = lavastrana - pravastrana /. y \rightarrow x$

$$-e^{-x} - 18 x + 9 log \left[\frac{1}{9 - 2 e^{-x} - 27 x} \right]$$

Plot[f[x], {x, -5, 5}]

Príklady na samostatné riešenie

ÚLOHA 1

Nájdite riešenie nelineárneho systému rovníc Newtonovou metódou, metódou pevného bodu, Seidlovou metódou a metódou eliminácie s presnosťou 10⁻¹⁵.

$$x^2 + y^2 - 4 = 0$$

$$x * y - 1 = 0$$

ÚLOHA 2

Nájdite riešenie nelineárneho systému rovníc s presnosťou 10⁻⁷

$$3x - \cos(y) - \frac{1}{2} = 0$$

$$x^2 - 4(y + 0.1)^2 + 1.06 = 0$$

$$10^{-7}$$

$$3x - \cos(y) - \frac{1}{2} = 0$$
$$x^2 - 4(y + 0.1)^2 + 1.06 = 0$$

Pre riešenie metódou pevného bodu musíme zostaviť iteračnú schému

$$x = \frac{1}{3} \left(\cos(y) + \frac{1}{2} \right)$$

$$y = \sqrt{\frac{1}{4} \left(x^2 + 1.06 \right)} - 0.1$$

$$F(x, y) = \frac{1}{3} \left(\cos(y) + \frac{1}{2} \right)$$

$$G(x, y) = \sqrt{\frac{1}{4} \left(x^2 + 1.06 \right)} - 0.1$$

$$x = F(x, y)$$

$$y = G(x, y)$$

Riešenie

```
Clear[f, g, F, G]
f[x_{y}] = 3x - Cos[y] - 1/2;
g[x_{y}] = x^2 - 4(y + 0.1)^2 + 1.06;
F[x_{y}] = 1/3 * (Cos[y] + 1/2);
G[x_, y_] = Sqrt[1/4*(x^2+1.06)] - 0.1;
x[0] = 1;
y[0] = 0;
DoΓ
 x[n+1] = F[x[n], y[n]] // N;
 y[n+1] = G[x[n], y[n]] // N;
 If [Max [Abs [x[n+1]-x[n]] , Abs [y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
 {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
   Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "max{|x<sub>n+1</sub>-x<sub>n</sub>|,|y<sub>n+1</sub>-y<sub>n</sub>|}"}},
      TableSpacing \rightarrow {1, 5}]
```

Overíme presnosť výpočtu dosadením buď do pôvodných rovníc, alebo do rovníc iteračnej schémy

```
f[0.464641, 0.464777]
g[0.464641, 0.464777]
f[x[21], y[21]]
g[x[21], y[21]]
```

Vidíme, že získaný výsledok zodpovedá presnosti, ktorú sme požadovali v cykle 10⁻¹⁵.

Skúsime na výpočet použiť aj Seidlovo urýchlenie

```
F[x_{y}] = 1/3 * (Cos[y] + 1/2);
G[x_, y_] = Sqrt[1/4*(x^2+1.06)] - 0.1;
x[0] = 1;
y[0] = 0;
Do [
 x[n+1] = F[x[n], y[n]] // N;
 y[n+1] = G[x[n+1], y[n]] // N;
 If [Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
 {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
    Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "max{|x<sub>n+1</sub>-x<sub>n</sub>|,|y<sub>n+1</sub>-y<sub>n</sub>|}"}},
      TableSpacing \rightarrow {1, 5}]
```

ÚLOHA 3

Nájdite riešenie systému rovníc

$$3x - \cos(y * z) - 0.5 = 0$$

$$x^{2} - 81(y + 0.1)^{2} + \sin(z) + 1.06 = 0$$

$$e^{-x*y} + 20z + \frac{10\pi^{-3}}{3} = 0$$

t.j. modifikujte použitý algoritmus na 3 rovnice

Riešenie

Ak úlohu budeme riešiť metódou pevného bodu, tak odporúčaná iteračná schéma je

$$x_{n+1} = \frac{1}{3}\cos(y_n * z_n) + \frac{1}{6}$$

$$y_{n+1} = \frac{1}{9}\sqrt{x_n^2 + 1.06 + \sin(z_n)} - 0.1$$

$$z_{n+1} = -\frac{1}{20}\left(e^{-x_n * y_n}\right) - \frac{1}{20}\frac{10\pi - 3}{3}$$

rovníc

```
Clear [F, G, H, x, y, z]
F[x_, y_, z_] = 1/3 (Cos[y*z]+1/2);
G[x_, y_, z_] = 1/9 Sqrt[x^2 + Sin[z] + 1.06] - 0.1;
H[x_, y_, z_] = -1/20 * (Exp[x * y] + (10 Pi - 3)/3);
x[0] = 1;
y[0] = 0;
z[0] = 0;
pocetopakovani = 15;
Do [
 x[n+1] = F[x[n], y[n], z[n]] // N;
 y[n+1] = G[x[n], y[n], z[n]] // N;
 z[n+1] = H[x[n], y[n], z[n]] // N;
 If[Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]], Abs[z[n+1]-z[n]]] < 10^{(-15)},
  Break[]], {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10], NumberForm[y[n], 10],
   Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]], Abs[z[n+1]-z[n]]]
   {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "z<sub>n</sub>",
     "max{|x_{n+1}-x_n|,|y_{n+1}-y_n|,|z_{n+1}-z_n|}"}},
      TableSpacing \rightarrow \{1, 5\}]
Teraz algoritmus upravíme tak, aby sme metódu urýchlili
F[x_{y_{z}}, y_{z_{z}}] = 1/3 (Cos[y*z] + 1/2);
G[x_{y_{z}}] = 1/9 Sqrt[x^2 + Sin[z] + 1.06] - 0.1;
H[x_{y}, y_{z}] = -1/20 * (Exp[x * y] + (10 Pi - 3)/3);
x[0] = 1;
y[0] = 0;
z[0] = 0;
pocetopakovani = 15;
Do [
 x[n+1] = F[x[n], y[n], z[n]] // N;
 y[n+1] = G[x[n+1], y[n], z[n]] // N;
 z[n+1] = H[x[n+1], y[n+1], z[n]] // N;
 If [Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]], Abs[z[n+1]-z[n]]] < 10^(-15),
  Break[]], {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10], NumberForm[y[n], 10],
   Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]], Abs[z[n+1] - z[n]]]
   {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "z<sub>n</sub>",
     "max{|x_{n+1}-x_n|,|y_{n+1}-y_n|,|z_{n+1}-z_n|}"}},
      TableSpacing \rightarrow {1, 5}]
Urobíme skúšku správnosti - dosadíme do pôvodnej sústavy
```

$$3x - \cos(y*z) - 0.5 = 0$$

$$x^{2} - 81 (y + 0.1)^{2} + \sin(z) + 1.06 = 0$$

$$e^{-x*y} + 20z + \frac{10 \pi - 3}{3} = 0$$

$$f[x_{,}, y_{,}, z_{,}] = 3x - \cos[y*z] - 1/2;$$

$$g[x_{,}, y_{,}, z_{,}] = x^{2} - 81 (y + 0.1)^{2} + 1.06 + \sin[z];$$

$$h[x_{,}, y_{,}, z_{,}] = \exp[-xy] + 20z + \frac{10\pi - 3}{3};$$

$$f[x[12], y[12], z[12]]$$

$$g[x[12], y[12], z[12]]$$

$$h[x[12], y[12], z[12]]$$

ÚLOHA 4

Nájdite riešenie systému rovníc

$$5x^2 - y^2 = 0$$

y - 0.25 (sin(x) + cos(y)) = 0

ÚLOHA 5

Riešte systém rovníc

$$x^2 + y^2 = 4$$

$$x + y = 1$$

Ako štartovacie body použite napr. $x_0 = -0.75$, $y_0 = 1.8$. Porovnajte výsledky jednotlivých metód (tento príklad bol uvedený aj v iných notebookoch).

ÚLOHA 6

Riešte systém rovníc

$$x^2 \cdot y = 1$$

y + 20 x - 10 $x^2 = 10$

$$x_0 = 2 \ y_0 = 1$$

Ako štartovacie body použite napr. $x_0 = 2$, $y_0 = 1$.

ÚLOHA7

Riešte systém dvoch nelineárnych rovníc s presnosťou 10 ^ (-10):

$$x^2 - x + y^2 = 0$$

$$x^2 - y^2 - y = 0$$

ÚLOHA8

Riešte systém dvoch nelineárnych rovníc s presnosťou 10^(-10):

$$x^2 + 2y^2 - y - 2z = 0$$

$$x^2 - 8y^2 + 10z = 0$$

$$\frac{x^2}{7 v z} = 0$$

ÚLOHA9

Riešte systém dvoch nelineárnych rovníc s presnosťou 10⁻¹⁰

$$3x - \cos y - \frac{1}{2} = 0$$

$$x^2 - 4(y + 0.1)^2 + 2.06 = 0$$

ÚLOHA 10

Riešte systém rovnic

$$xe^x + y^2 = 3$$

$$x + y = 0$$

$$y + \sin(t) = 0$$

Systém rovnic je možné zredukovať na menší počet rovníc. Vyskúšajte tento príklad vyriešiť pomocou Newtonovej metody pre systém 3 rovníc o troch neznámych, potom systém zredukujte na 2 rovnice o 2 neznámych a opäť ho vyriešte Newtonovou metodou. Úplne na záver sa pokúste o redukciu až na jednu rovnicu o jednej neznámej. Sú ziskané výsledky v tychto troch prípadoch porovnateľné?

Kontrola spravnosti riesenia - navody:

Urobim eliminaciu systemu rovnic

Clear[x, y, t]

sustava1 = Eliminate[
$$\{x \ Exp[x] + y^2 = 3, x + y = 0, y + Sin[t] = 0\}, y$$
]

sustava1[1]

Clear[rov]

 $sustava1[1]/.x \rightarrow Sin[t]$

Plot[
$$e^{\sin[t]}$$
 Sin[t] + Sin[t]² - 3, {t, -5, 10}]

Najdeme korene rovnice

t1 = FindRoot
$$\left[e^{Sin[t]}Sin[t] + Sin[t]^2 - 3, \{t, 0\}\right]$$

t2 = FindRoot
$$\left[e^{Sin[t]}Sin[t] + Sin[t]^2 - 3, \{t, 2\}\right]$$

Spätne budeme dosadzovat, plati sin(t) = x

$$x2 = Sin[t2[1, 2]]$$

Z druhej rovnice vieme, ze plati x+y==0

$$y1 = -x1$$

$$y2 = -x2$$

Riešením sústavy rovníc budú $\{x_1, y_1, t_1\}$ a $\{x_2, y_2, t_2\}$

Riešenie systému možeme skúsiť nájsť aj priamo, ale v tomto pripade ľahko overíte, že nájsť vhodné štartovacie body môže byť velký problém

FindRoot[
$$\{x \ Exp[x] + y^2 = 3, x + y = 0, y + Sin[t] = 0\}, \{\{x, 1\}, \{y, 1\}, \{t, 1\}\}\}$$

Úloha 11

Riešte systém rovníc

$$e^x + \ln y = 0$$

$$y + 20x - 10x^2 = 10$$

Ako štartovacie body použite napr. $x_0 = 2$, $y_0 = 1$. Porovnajte výsledky oboch metód.

1. Eliminacia systemu na jednu rovnicu

rov1 = Eliminate[
$$\{Exp[x] + Log[y] = 0, y + 20x - 10x^2 = 10\}, y$$
]

Takto vyberieme jednotlivé časti ronice - ľavú aj pravú stranu

rov1[1]

rov1[2]

Smeruje to na násobný koreň - vyskúšajte algoritmy, ktoré sme za týmto učelom preberali

Úloha 12 - z prednášky

Nájdite riešenie nelineárneho systému rovníc s presnosťou 10^(-10):

$$f(x, y) = x^2 - 2x - y + 0.5 = 0$$

$$q(x, y) = x^2 + 4y^2 - 4 = 0$$

Najskôr musíme zostaviť iteračnú schému

$$X = \frac{x^2 - y + 0.5}{2}$$

$$F(x, y) = \frac{x^2 - y + 0.5}{2}$$

$$x = F(x, y)$$

$$y = \frac{-x^2 - 4y^2 + 8y + 6}{8}$$

$$x = \frac{x^2 - y + 0.5}{2} \qquad F(x, y) = \frac{x^2 - y + 0.5}{2} \qquad x = F(x, y)$$
$$y = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad y = G(x, y)$$

$$x = \frac{x^2 - y + 0.5}{2} \qquad F(x, y) = \frac{x^2 - y + 0.5}{2} \qquad x = F(x, y)$$
$$y = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad y = G(x, y)$$

Definujeme pôvodné rovnice, ktoré máme riešiť. Túto definíciu budeme používať len pre overenie správnosti výpočtu.

```
Clear[f, g, x, y]
f[x_, y_] = x^2 - 2x - y + 0.5;
g[x_{y_{1}}] = x^{2} + 4y^{2} - 4;
```

ContourPlot[$\{f[x, y] = 0, g[x, y] = 0\}, \{x, -3, 3\}, \{y, -2, 2\}$] 3

Definujeme si navrhnuté iteračné schémy

Pre úplnosť a korektnosť výpočtu by sme mali overiť, či sú v okolí štartovacieho bodu iteračné schémy vybraté správne

```
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
Do [
 x[n+1] = F[x[n], y[n]] // N;
 y[n+1] = G[x[n], y[n]] // N;
 If [Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
  {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
    Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{x}_{n+1}-\overline{x}_n|"}},
       TableSpacing \rightarrow \{1, 5\}
```

Overíme presnosť výpočtu dosadením buď do pôvodných rovníc, alebo do rovníc iteračnej schémy

```
f[x[18], y[18]]
g[x[18], y[18]]
```

Vidíme, že získaný výsledok zodpovedá presnosti, ktorú sme požadovali v cykle 10⁻¹⁵.

Metóda pevného bodu

Nájdite riešenie nelineárneho systému rovníc s presnosťou 10^(-10):

$$f(x, y) = x^2 - 2x - y + 0.5 = 0$$
$$g(x, y) = x^2 + 4y^2 - 4 = 0$$

Najskôr musíme zostaviť iteračnú schému

$$x = \frac{x^2 - y + 0.5}{2} \qquad F(x, y) = \frac{x^2 - y + 0.5}{2} \qquad x = F(x, y)$$
$$y = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad y = G(x, y)$$

$$x = \frac{x^2 - y + 0.5}{2} \qquad F(x, y) = \frac{x^2 - y + 0.5}{2} \qquad x = F(x, y)$$
$$y = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad G(x, y) = \frac{-x^2 - 4y^2 + 8y + 4}{8} \qquad y = G(x, y)$$

Definujeme pôvodné rovnice, ktoré máme riešiť. Túto definíciu budeme používať len pre overenie správnosti výpočtu.

ContourPlot[$\{f[x, y] = 0, g[x, y] = 0\}, \{x, -3, 3\}, \{y, -2, 2\}$] 3

Definujeme si navrhnuté iteračné schémy

Pre úplnosť a korektnosť výpočtu by sme mali overiť, či sú v okolí štartovacieho bodu iteračné schémy vybraté správne

```
der1 = D[F[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der1]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
der2 = D[G[x, y], \{\{x, y\}\}]
Apply[Plus, Abs[der2]] /. \{x \rightarrow x[0], y \rightarrow y[0]\}
Do [
 x[n+1] = F[x[n], y[n]] // N;
 y[n+1] = G[x[n], y[n]] // N;
 If [Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]]] < 10^{(-15)}, Break[]],
 {n, 0, pocetopakovani}]
```

```
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
    Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{X}_{n+1}-\overline{X}_n|"}},
      TableSpacing \rightarrow {1, 5}]
```

n	\mathbf{x}_{n}	\mathbf{y}_{n}	$ \overline{\mathbf{X}}_{n+1} - \overline{\mathbf{X}}_{n} $
0	1	1	0.732895
1	0.6050426381	0.2671048468	0.0111117
2	0.597506381	0.2559931594	0.000395761
3	0.5972273367	0.2555973986	0.0000148681
4	0.5972167518	0.2555825305	$\textbf{8.06621} \times \textbf{10}^{-12}$
5	0.5972167518	0.2555825305	0.
6	0.5972167518	0.2555825305	Max [Abs [$-0.597217 + x[7]$], Abs [$-0.255583 + y$
7	x[7]	y[7]	Max[Abs[-x[7] + x[8]], Abs[-y[7] + y[8]]]
8	x[8]	y [8]	Max[Abs[-x[8] + x[9]], Abs[-y[8] + y[9]]]
9	x[9]	y [9]	Max [Abs [$-x[9] + x[10]$], Abs [$-y[9] + y[10]$]]
10	x[10]	y [10]	Max [Abs $[-x[10] + x[11]]$, Abs $[-y[10] + y[11]$
11	x [11]	y [11]	Max [Abs $[-x[11] + x[12]]$, Abs $[-y[11] + y[12]$
12	x [12]	y [12]	Max [Abs [$-x[12] + x[13]$], Abs [$-y[12] + y[13]$
13	x[13]	y [13]	Max [Abs [$-x[13] + x[14]$], Abs [$-y[13] + y[14]$
14	x [14]	y [14]	Max [Abs $[-x[14] + x[15]]$, Abs $[-y[14] + y[15]$
15	x [15]	y [15]	Max[Abs[-x[15] + x[16]], Abs[-y[15] + y[16]]

Overíme presnosť výpočtu dosadením buď do pôvodných rovníc, alebo do rovníc iteračnej schémy

```
f[x[18], y[18]]
g[x[18], y[18]]
```

Vidíme, že získaný výsledok zodpovedá presnosti, ktorú sme požadovali v cykle 10⁻¹⁵.

Seidlova metóda pre riesenie nelineárnych systémov

Postup výpočtu môžeme aj urýchliť. Obvykle sa používa Seidlovo urýchlenie, rovnaké ako pri iteračných metódach na riešenie lineárnych systémov. Zmena v programe je vyznačená farebne. Na výpočet novšej iterácie použijeme to najlepšie, čo máme k dispozícii. Nie vždy však toto urýchlenie funguje, pričom v mnohých prípadoch záleží aj na poradí rovníc.

V nasledujúcom príklade vidíte, že "urýchlenie" nepomohlo sústavu vyriešiť rýchlejšie a spôsobilo dokonca aj spomalenie. Ani zmena poradia výpočtu situáciu neurýchlila

```
Clear[F, G, x, y]
F[x_{y_{1}}] = (x^{2} - y + 0.5) / 2;
G[x_{y_{1}}] = (-x^{2} - 4y^{2} + 8y + 4) / 8;
x[0] = -0.2;
y[0] = 1.0;
pocetopakovani = 25;
Do [
 x[n+1] = F[x[n], y[n]] // N;
 y[n+1] = G[x[n+1], y[n]] // N;
 If [Max [Abs [x[n+1]-x[n]] , Abs [y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
 {n, 0, pocetopakovani}]
```

```
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
    Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{X}_{n+1}-\overline{X}_n|"}},
      TableSpacing → {1, 5}]
Clear[F, G, x, y]
F[x_{y_{1}}] = (x^{2} - y + 0.5) / 2;
G[x_, y_] = (-x^2 - 4y^2 + 8y + 4) / 8;
x[0] = -0.2;
y[0] = 1.0;
pocetopakovani = 25;
Do [
 y[n+1] = G[x[n], y[n]] // N;
 x[n+1] = F[x[n], y[n+1]] // N;
 If [Max[Abs[x[n+1]-x[n]], Abs[y[n+1]-y[n]]] < 10^{(-15)}, Break[]],
 {n, 0, pocetopakovani}]
TableForm[Table[{n, NumberForm[x[n], 10], NumberForm[y[n], 10],
    Max[Abs[x[n+1] - x[n]], Abs[y[n+1] - y[n]]], {n, 0, pocetopakovani}],
      TableHeadings \rightarrow {None, {"n", "x<sub>n</sub>", "y<sub>n</sub>", "|\overline{X}_{n+1}-\overline{X}_n|"}},
      TableSpacing → {1, 5}]
```