# Inverse Trigonometric Function Derivatives

#### Logan Grosz

October 21, 2017

#### Abstract

The derivatives of inverse trigonometric derivatives are very different than their basic trigonometric counterparts. The following document will describe the process of getting such a visually unorthodox solution to  $\frac{d}{dx} f$ , where f is an inverse trigonometric function.

#### 1 Declarations

```
x; parameter passed into inverse trigonometric function, measured in radians; For \sin^{-1}x, x \in [-1, 1] For \cos^{-1}x, x \in [-1, 1] For \tan^{-1}x, x \in [-\infty, \infty] For \cot^{-1}x, x \in [-\infty, \infty] For \cot^{-1}x, x \in [-\infty, \infty] For \sec^{-1}x, x \in (-\infty, -1] \cup [1, \infty) For \csc^{-1}x, x \in (-\infty, -1] \cup [1, \infty) \theta \triangleq x; used in place of x at times to not confused reader; \operatorname{arc} f \triangleq f^{-1}; arc and -1 convention equivalence; \operatorname{arcsin} x \equiv \sin^{-1}x hypotenuse; Latin for "stretching under", the line connecting both catheti; Short: hyp adjacent; Cathetus closest or next to the observed angle; Short: adj opposite Cathetus furthest from or opposite of the observed angle; Short: opp
```

# 2 Rule

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
 (1)

$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$
 (2)

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{x^2 + 1}\tag{3}$$

$$\frac{d}{dx}\cot^{-1}x = \frac{-1}{x^2 + 1}\tag{4}$$

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}\tag{5}$$

$$\frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2 - 1}}\tag{6}$$

# 3 Pre-Derivation

The following notation is the inverse of its subscribed function:

$$\sin^{-1}(\sin\theta) = \theta$$

Pythagorean Trigonometric Identity:

$$\sin^2\theta + \cos^2\theta = 1$$

The following defines sides of triangle given angle measure  $\theta$ .



The following are the graphs of all six inverse trigonometric functions for reference:













# 4 Derivation

### 4.1 Inverse Sine

$$y = \sin^{-1} x$$

$$\sin y = x$$

$$\frac{d}{dx} \sin y = \frac{d}{dx} x$$

$$\frac{dy}{dx} \cos y = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

Using 
$$\sin^2 y + \cos^2 y = 1...$$
  
 $\cos y = \sqrt{1 - \sin^2 y}$ 

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 y}}$$

Recall 
$$\sin y = x...$$

$$\therefore \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

Id Est



$$\sin y = x \Rightarrow \frac{opp}{hyp} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{1}{\cos x}$$

$$\cos y = \sqrt{1 - x^2}$$

$$\therefore \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

### 4.2 Inverse Cosine

$$y = \cos^{-1} x$$

$$\cos y = x$$

$$\frac{d}{dx}\cos y = \frac{d}{dx}x$$

$$\frac{dy}{dx} - \sin y = 1$$

$$\frac{dy}{dx} = \frac{-1}{\sin y}$$

Using 
$$\sin^2 y + \cos^2 y = 1...$$
  

$$\sin y = \sqrt{1 - \cos^2 y}$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \cos^2 y}}$$

Recall  $\cos y = x...$ 

$$\therefore \frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$

Id Est



$$\cos y = x \Rightarrow \frac{adj}{hyp} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{-1}{\sin y}$$

$$\sin y = \sqrt{1 - x^2}$$

$$\therefore \frac{d}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1 - x^2}}$$

# 4.3 Inverse Tangent

$$y = \tan^{-1} x$$

$$\tan y = x$$

$$\frac{d}{dx} \tan y = \frac{d}{dx} x$$

$$\frac{dy}{dx} \sec^2 y = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec^2 y}$$

Using 
$$\sin^2 y + \cos^2 y = 1$$
...  
 $\sec^2 y = \tan^2 y + 1$ 

$$\frac{dy}{dx} = \frac{1}{\tan^2 y + 1}$$

Recall  $\tan y = x...$ 

$$\therefore \frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}$$

Id Est



$$\tan y = x \Rightarrow \frac{opp}{adj} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{1}{\sec^2 y}$$

$$\sec^2 y = x^2 + 1$$

$$\therefore \frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}$$

# 4.4 Inverse Cotangent

$$y = \cot^{-1} x$$

$$\cot y = x$$

$$\frac{d}{dx} \cot y = \frac{d}{dx} x$$

$$\frac{dy}{dx} - \csc^2 y = 1$$

$$\frac{dy}{dx} = \frac{-1}{\csc^2 y}$$

Using 
$$\sin^2 y + \cos^2 y = 1...$$
  

$$\csc^2 y = \cot^2 y + 1$$

$$\frac{dy}{dx} = \frac{-1}{\cot^2 y + 1}$$

$$\operatorname{Recall} \cot y = x...$$
 
$$\therefore \frac{d}{dx} \cot^{-1} x = \frac{-1}{x^2 + 1}$$

Id Est



$$\cot y = x \Rightarrow \frac{adj}{opp} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{-1}{\csc^2 y}$$

$$\csc^2 y = x^2 + 1$$

$$\therefore \frac{d}{dx} \cot^{-1} x = \frac{-1}{x^2 + 1}$$

### 4.5 Inverse Secant

$$y = \sec^{-1} x$$

$$\sec y = x$$

$$\frac{d}{dx} \sec y = \frac{d}{dx} x$$

$$\frac{dy}{dx} \sec y \tan y = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}$$

Id Est



$$\sec y = x \Rightarrow \frac{hyp}{adj} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}$$

See figure at left...

$$\tan y = \sqrt{x^2 + 1}$$

Recall  $\sec y = x$ 

And note 
$$\frac{d}{dx} \sec^{-1} \theta > 0$$
, so,  $|x| = \{x|x > 0\}$   

$$\therefore \frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}$$

#### 4.6 Inverse Cosecant

$$y = \csc^{-1} x$$
$$\csc y = x$$
$$\frac{d}{dx} \csc y = \frac{d}{dx} x$$
$$\frac{dy}{dx} - \csc y \cot y = 1$$
$$\frac{dy}{dx} = \frac{1}{\csc y \cot y}$$

Id Est



$$\csc y = x \Rightarrow \frac{hyp}{opp} = \frac{x}{1}$$

See above that...

$$\frac{dy}{dx} = \frac{-1}{\csc y \cot y}$$

See figure at left...

$$\cot y = \sqrt{x^2 + 1}$$

Recall  $\csc y = x$ 

And note, 
$$\frac{d}{dx}\csc^{-1}\theta < 0$$
, so,  $|x| = \{x|x > 0\}$   

$$\therefore \frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2 - 1}}$$

# 5 Exempli Gratia

Examples of important instances