Lipschitz Periodic Shadowing

Aleksei V. Osipov¹
Joined research with Sergei Yu. Pilyugin¹ and Sergei B. Tikhomirov².

 1 Saint-Petersbourg State University

²National Taiwan University

January 2010

Shadowing and Lipschitz Shadowing

- $f: M \mapsto M, f \in C^1, M \in C^\infty$, dist
- ullet $\xi = \{x_n\}$ is a d-pseudotrajectory, if

$$\mathsf{dist}(x_{n+1}, f(x_n)) < d.$$

• Shadowing property (POTP) $\forall \epsilon > 0 \; \exists d > 0 \; \text{such that} \; \forall d\text{-pseudotrajectory} \; \xi \; \text{there exists an exact trajectory} \; \{p_n\} \; \text{such that}$

$$\operatorname{dist}(x_n, p_n) < \epsilon$$
.

• Lipschitz shadowing property (LipSP) $\exists L, d_0 > 0$ such that $\forall d < d_0$ and d-pseudotrajectory ξ there exists an exact trajectory $\{p_n\}$ such that

$$dist(x_n, p_n) < Ld$$
.

Periodic shadowing and structural stability

• Periodic shadowing (PerSh) $\forall \epsilon > 0 \; \exists d > 0 \; \text{such that} \; \forall \; \text{periodic} \; d\text{-pseudotrajectory} \; \xi \; \text{there} \; \text{exists a periodic exact trajectory} \; \{p_n\} \; \text{such that}$

$$\operatorname{dist}(x_n, p_n) < \epsilon.$$

- Lipschitz periodic shadowing (LipPerSh) PerSh with $\epsilon = Ld$
- S the set of structurally stable diffeomorphisms There exists a neighborhood U of f in the C^1 -topology such that $\forall g \in U$ the diffeomorphisms f and g are topologically conjugate.
- ΩS the set of Ω -stable diffeomorphisms There exists a neighborhood U of f in the C^1 -topology such that $\forall g \in U$ the diffeomorphisms f and g are topologically conjugate on their nonwandering sets.

Known Facts and Results

- $Int^1(POTP) = S$ (Sakai, 1994)
- POTP ≠ S
- PerSh $\neq \Omega S$
- LipSP = S (Pilyugin, Tikhomirov, 2009)
- variational shadowing is equivalent to structural stability (Pilyugin, 2009)

Main results

Theorems (Osipov, Pilyugin, Tikhomirov, 2009)

- $Int^1(PerSh) = \Omega S$
- LipPerSh = ΩS

General Scheme of the Proof

- $\Omega S \subset \mathsf{LipPerSh}$
- $\operatorname{Int}^1(\operatorname{PerSh}) \subset \Omega S$
- $f \in \mathsf{LipPerSh} \Rightarrow f \in \Omega S$
 - Step 1. hyperbolicity of periodic points
 - Step 2. uniform hyperbolicity of periodic points
 - Step 3. f has the Axiom A
 - Step 4. f satisfies the no-cycle condition

Proof of $\Omega S \subset \mathsf{LipPerSh}$

- Spectral decomposition theorem: $\Omega(f) = \Omega_1 \cup \ldots \cup \Omega_m$, Ω_j is hyperbolic and has a dense semi-trajectory
- ullet is a periodic d-pseudotrajectory, $\xi\subset U(\Omega_i)$ for some j
- Shadowing lemma: if Λ is hyperbolic then f has LipSh and is expansive in some $U(\Lambda)$

- HP set of diffeomorphisms f such that every periodic point of f is hyperbolic Lemma (Aoki, 1992, Hayashi, 1992). Int $^1(HP) = \Omega S$
- It is enough to prove that $Int^1(PerSh) \subset HP$
- h is a C^1 -small pertubation of f that is linear in U(p), p is a nonhyperbolic periodic point for h

Proof of LipPerSh $\subset \Omega S$, Steps 1 and 2

- ullet $f,f^{-1}\in\mathsf{LipPerSh}$ with L>1
- Lemma: Every periodic point is hyperbolic
- Key lemma: Set of all periodic points of f has all properties of a standart hyperbolic set except compactness.

$$|Df^{j}(p)v_{s}| \leq C\lambda^{j}|v_{s}|, \quad |Df^{-j}(p)v_{u}| \leq C\lambda^{j}|v_{u}|,$$

where $j \geq 0$, $v_s \in S(p)$, $v_u \in U(p)$

• p is an m-periodic point, let $v_0 = v_u \in U(p)$, $v_{i+1} = Df^i(p)v_i$,

$$\lambda_i = |v_{i+1}|/|v_i|, \quad a_0 = \tau, \quad a_{i+1} = \lambda_i a_i - 1,$$

where τ is chosen such that $a_m = 0$

- $w_i = a_i v_i / |v_i|$ for $0 \le i \le m-1$, $\{w_i\}$ is an m(n+1)-periodic
- $|Df^{i}(p)v_{u}| = \lambda_{0} \cdot ... \lambda_{i-1} > \frac{1}{16I} \left(1 + \frac{1}{8I}\right)^{i} |v_{u}|, \quad 0 \le i \le m-1.$

Proof of LipPerSh $\subset \Omega S$, Steps 3 and 4

- Lemma: f satisfies the Axiom A
 - P_I the set of periodic points of index I
 - ClP_I is a hyperbolic set.
 - density of periodic points in $\Omega(f)$
- Lemma: f has no cycles
 - any cycle is approximated by periodic pseudotrajectories
 - any cycle is approximated by periodic exact trajectories

Conclusion

Theorems (Osipov, Pilyugin, Tikhomirov, 2009)

- $Int^1(PerSh) = \Omega S$
- LipPerSh = ΩS

Thank you very much for your attention!