Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 1

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@ unige.ch ou Jhih-Huang.Li@unige.ch. Les exercices en gras comptent pour le bonus et les séries sont à rendre avant le vendredi de chaque semaine dans le casier de votre assistant (à la section

Rappel : L'ensemble des nombres complexes noté \mathbb{C} , et pour $\alpha = a + ib \in \mathbb{C}$ avec a, b réels on définit $Re(\alpha) = a$, $Im(\alpha) = b$.

1. Exprimer les nombres complexes suivants sous la forme x + iy, avec x et *y* réels :

(a)
$$(-1+3i)^{-1}$$

(e)
$$(7 + i\pi)(\pi + i)$$

(b)
$$(1+i)(1-i)$$

(f)
$$\sqrt{2}i(\pi+3i)$$

(c)
$$(1+i)(2-i)$$

(g)
$$(i+1)(i-2)(i+3)$$

(d)
$$(1+i\sqrt{3})^3$$

(h)
$$1 + e^{2i\pi/3} + e^{-2i\pi/3}$$

2. Écrie chacun de ces nombres complexes en coordonnées polaires :

(a)
$$4i$$

(d)
$$\sqrt{2} + i\sqrt{2}$$

(b)
$$1 + e^{2i\pi/3}$$

(e)
$$e^{-i\pi/2}$$

(c)
$$i\sqrt{3} + 1$$

(f)
$$5\cos\left(\frac{2}{7}\pi\right) + 5i\sin\left(\frac{2}{7}\pi\right)$$

3. Écrire les nombres complexes suivants sous forme cartésienne (x+iy):

(a)
$$e^{3i\pi}$$

(d)
$$e^{2i\pi/6}$$

(g)
$$e^{-i\pi}$$

(b)
$$3e^{i\pi/4}$$

(e)
$$e^{-i\pi/2}$$

(h)
$$e^{-5i\pi/4}$$

(c)
$$\pi e^{-i\pi/3}$$

(f)
$$e^{i\pi/7} + e^{-i\pi/7}$$

(e)
$$e^{-i\pi/2}$$
 (h) $e^{-5i\pi/4}$ (f) $e^{i\pi/7} + e^{-i\pi/7}$ (i) $e^{i\pi/9} + e^{-8i\pi/9}$

4. Calculer les racines des polynômes suivants :

(a)
$$z^3 - 5$$

(d)
$$z^7 - 1$$

(b)
$$z^4 + 1$$

(e)
$$z^2 + 3z + 1$$

(c)
$$z^4 + 2z^2 + 2$$

(f)
$$z^6 - 3z^3 + 2$$

- 5. Soient $\alpha, \beta \in \mathbb{C}$. Montrer que $\overline{\alpha}\overline{\beta} = \overline{\alpha}\overline{\beta}$ et que $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$.
- 6. Soit $\alpha = a + ib \in \mathbb{C}$. Exprimer $\operatorname{Re}(\alpha)$ et $\operatorname{Im}(\alpha)$ en fonction de $\alpha, \overline{\alpha}$, puis montrer que $\operatorname{Im}(\alpha) \leq |\operatorname{Im}(\alpha)| \leq |\alpha|$.
- 7. Décrire géométriquement les ensemble de points z satisfaisant les conditions suivantes et dire lesquels sont ouverts, fermés, bornés, compacts :

(a) |z - i + 3| = 5

(f) Im z > 0

(b) |z - i + 3| > 5

(g) $\operatorname{Im} z \geq 0$

(c) $|z - i + 3| \le 5$

(h) Re z > 0

(d) $|z + 2i| \le 1$

(i) $\operatorname{Re} z \geq 0$

(e) $|\arg z| \ge \pi/3$

(j) $2 \operatorname{Re} z + 3 \operatorname{Im} z \ge 4$

- 8. (Formules trigonométriques) Soient $\alpha, \beta \in \mathbb{R}$. Le but de l'exercice est de développer $\sin(\alpha + \beta)$ et $\cos(\alpha + \beta)$.
 - (a) Justifier $e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$.
 - (b) Transformer l'égalité précédente en coordonnées cartésiennes et simplifier. Que peut-on dire?
 - (c) En déduire une formule de $tan(\alpha+\beta)$ en fonction de $tan(\alpha)$ et $tan(\beta)$.
- 9. Soit $\alpha \in \mathbb{C}^*$. Montrer que l'équation $x^2 = \alpha$ admet deux solutions distinctes.
- 10. Décrire l'ensemble $\{z \in \mathbb{C} | e^z = 1\}$, puis pour $\alpha \in \mathbb{C}$, trouvez les solutions $z \in \mathbb{C}$ de l'équation $e^z = \alpha$.
- 11. Soit f(z) = 1/z. Décrire l'action de f sur les points à l'intérieur, à l'extérieur puis sur le cercle unité. On appele cette application l'invertion par rapport au cercle unité.
- 12. Soit $f(z) = 1/\overline{z}$. Décrire l'action de f sur les points à l'intérieur, à l'extérieur puis sur le cercle unité. On appele cette application la **réflextion** par rapport au cercle unité.