

NASA's Cloud Absorption Radiometer:

Miguel O. Román
GSFC Terrestrial Information Systems Laboratory

Overview of the CAR Instrument

Sensor Characteristics:

- 14 spectral bands (0.34 to 2.29 μm)
- scan $\pm 95^\circ$ from horizon on right-hand side of aircraft or image 190° horizon-to-horizon
- field of view 17.5 mrad (1°)
- scan rate 1.67 Hz (100 rpm)
- data system 9 channels @ 16 bit
- 395 pixels in scan line
- Platform: NASA P-3B

CAR Quick-Look Image: CLASIC Flight #1928

CLASIC'07

IKONOS 2.4 m RGB

Coincident

Surface BRDF and Albedo from
Ground, Aircraft, and Satellite.

Best ever

Multi-scale observations
of the Surface BRDF.

Cloud Absorption Radiometer: BRDF Sampling

Relative azimuth ($\phi_{\text{view-sun}}$)

CAR high angular and spatial resolution (1° IFOV) coupled with a high SNR and dynamic range provides unmatched details of the radiance field above clouds and various surfaces.

CAR Science Focus Areas

Focus Area	Current and Potential Applications	Campaign/ Project	Key Players [†]
Cryospheric Science	<ul style="list-style-type: none"> • Retrieval of BRDF/albedo/snow grain size; • Satellite aerosol retrieval over snow; • Surface energy balance of seasonal snow cover for snowmelt estimation. • Characterize the effects of blowing snow & cloud forward scattering on altimetry (Lidar) measurements to evaluate the imprint of climatic changes on ice dynamics (e.g., flow of ice & mass balance). 	ARCTAS, IceBridge [§] , ICESat	<p>Lyapustin et al. (2010) Gatebe et al. (2010) Arnold et al. (2002)</p> <p>Collaborators: Marshak, Yang, Hall, Kahn, Schaaf</p>
Terrestrial Ecology & Biospheric Science	<ul style="list-style-type: none"> • MODIS/MISR Land and Aerosol Product Cal/Val efforts; • Diurnal-to-seasonal characteristics of surface energy balance; • Retrieval of surface biophysical parameters (e.g., BRDF-Albedo, VI, and Clumping index) at multiple spatial scales and angular distributions; • Retrieval of vegetation structural parameters (e.g., leaf size, canopy height, and canopy roughness) over complex heterogeneous surfaces. 	ARCTAS, CLASIC, INTEX-B, Skukuza, CLAMS, SAFARI 2000, TARFOX, SCAR-B, CLAMS	<p>Román et al. (2011;2013) Gatebe et al. (2003; 2010) Soulen et al. (2000), Tsay et al. (1998)</p> <p>Collaborators: Schaaf, Wang, Shuai, Masek, Butler, Georgiev, Cooper, King, Ni-Meister, Varnai, Marshak</p>
Freshwater/Coastal & Marine Climate Science	<ul style="list-style-type: none"> • Retrieval of surface BRDF/albedo over aquatic biomes (e.g., coastlines, estuaries, ponds, and lakes) under clear and turbid waters. • Impact of anthropogenic forcing (e.g., ship wakes) on ocean energy balance. 	ARCTAS-CARB, CLAMS, ARCTAS	<p>Gatebe et al. (2005;2010)</p> <p>Collaborators: Lyapustin, Stamnes, Wilcox, Wang</p>
Cloud & Smoke Radiative Properties	<ul style="list-style-type: none"> • Cloud/Smoke interior: Energy budget; Actinix flux; • Wildfire smoke: Effects of boreal/savanna fire regimes on atmospheric chemistry, global carbon cycling, and climate; • Precipitating cloud: Impact on land-atmosphere interactions and locally generated cumulus convection. • Retrieval of Cloud Effective Radius. 	SCAR-B, SAFARI 2000, Skukuza, CLASIC, ARCTAS	<p>Gatebe et al. (2003;2011) King (1992)</p> <p>Collaborators: Ichoku, Kahn, Melnikova, Marshak, Ewald, Zinner, Varnai, Ewald</p>

[†]Cited publications are available at: <http://car.gsfc.nasa.gov/publications/>

ARCTAS'08: Barrow/Elson Lagoon 15 April 2008

Lat 71.3° Lon -156.7° ; SZA 61.1° [Terra at 22:30 UTC]

Coincident

Snow Albedo & BRF
from Surface, Aircraft,
and Satellite.

Best ever multi-scale
observations over
snow-covered areas.

— P-3 Flight Path

○ Barrow AERONET Site

○ Ground Measurements

ECO/3D: Canopy height estimation (Harvard Forest LTER)

Correlation coefficient:
Multi angles surface reflectance 0.65
Escape probability 0.76
Maple leaf reflectance and broadleaf pixels

Credit: Zhuosen Wang (UMB)

Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo (Román et a., 2013 – TGRS)

Measurement configuration for multiscale assessment of MODIS- and Landsat-albedos.

Pixel-specific accuracy of MODIS- and Landsat-derived albedos.

▲ Tower albedos vs. CAR, MODIS, and Landsat.

Summary + Final Thoughts...

- Previous and ongoing efforts offer a unique set of tools and capabilities for ensuring mission readiness.
 - **CLASIC'07**: First comprehensive assessment BRDF/albedo at different spatial scales (30 – 500m).
 - **ARCTAS'08**: Best ever multi-scale observations over snow-covered areas.
 - **ECO/3D'11**: Capability for mapping canopy physiognomy/structure (e.g., BRDF shape & tree height) from multiangle BRF data.
- From a scientific perspective, **SnowMASS is the next logical milestone for the CAR.**