# Unsupervised Learning with discrete latent variable models

### Nicolas Jouvin

nicolas.jouvin@inrae.fr https://nicolasjouvin.github.io/

M2 Data-Science 2023-2024



### **Organization**

Thursdays 8h30 - 11h45, this room.

 $6 \times 3h$  classes

1h30 class + 1h30 practical session (except today)

Important: you need one computer/person for practical sessions

### **Evaluation**

- 1 CC: assiduity, practical session
- 2 Final exam on Friday 12th January, 2024
- $\mathbf{3} \max(\mathrm{Exam}, \mathrm{mean}(\mathrm{Exam}, \mathrm{CC}))$

### **Bibliography & relevant sources**

- Kevin P. Murphy (2022). Probabilistic Machine Learning: An introduction. MIT Press
- Trevor Hastie et al. (2001). *The Elements of Statistical Learning*. Springer Series in Statistics. New York, NY, USA
- Christopher M. Bishop (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer

Some relevant lecture/slides on the topic for a different point-of-view (♠notations)

S. Robin lectures

## Introduction

### Types of statistical learning

### Supervised

Data  $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$  with  $y_i$  an output (response) and  $x_i$  some features (covariates). The goal is to learn a good predictor  $\hat{f}$  such that  $y_i \approx \hat{f}(x_i)$  that generalizes well on new data.

### Unsupervised (this course)

The data  $\mathcal{D}=\{x_i\}_{i=1}^n$  The goal is to learn "interesting" and hidden structure in the data to

- partition the data, aka clustering
- visualize/compress the data, aka dimension reduction

**Generative models:** posit a statistical model on the distribution of  $(X_i)$ 

#### Many flavors in modern ML

semi-supervised, self-supervised, reinforcement learning, multi-task, etc.

(Discrete) latent variables models for unsupervised learning

ightharpoonup we will assume the generative process of X involves an unobserved (latent) variable Z

(Discrete) latent variables models for unsupervised learning

ightharpoonup we will assume the generative process of X involves an unobserved (latent) variable Z

### Clustering

 $\boldsymbol{X}$  is an unlabeled observation and  $\boldsymbol{Z}$  its group membership





(Discrete) latent variables models for unsupervised learning

ightharpoonup we will assume the generative process of X involves an unobserved (latent) variable Z

### Time series segmentation

X is the temporal signal and Z the cardiac phase



Example of ECG annotation, source: https://medium.com/data-analysis-center/56f8b9abd83a

(Discrete) latent variables models for unsupervised learning

ightharpoonup we will assume the generative process of X involves an unobserved (latent) variable Z

### Node clustering in a network





X is the graph (connection between node) and Z the group of the node (community)

### **Course outline**

- 1 Fundamentals of Bayesian statistics
- 2 Clustering with mixture models
- 3 Inference in latent variable models: the EM algorithm
- 4 Hidden Markov Models (HMMs)
- 5 Stochastic Block Model: an introduction to variational inference

# **Fundamentals of Bayesian statistics**

Bayes formula

### Frequentist inference

**Assumption:** the observation  $\boldsymbol{x}=(x_1,\ldots,x_n)\in\mathcal{X}^n$  is a realization of a random vector  $\boldsymbol{X}=\{X_1,\ldots,X_n\}$  with distribution  $p_{\theta^\star}$ .

**Posit:** a statistical model  $\{p_{\theta}, \ \theta \in \Theta\}$ , *i.e.* a family of parametric distribution on  $\mathcal{X}^n$ 

**Goal:** Provide an estimate  $\hat{\theta}$  of  $\theta^*$ . <sup>1</sup>

#### Maximum-likelihood estimation

Find the model, hence  $\theta$ , that maximizes the probability of having seen the data

$$\hat{\theta}_n \in \operatorname*{arg\,max} \log p_{\theta}(x_1, \dots, x_n)$$
 (MLE)

11/98

<sup>&</sup>lt;sup>1</sup>and eventually derive theoretical guarantees such as convergence and confidence intervals on  $\hat{\theta}_n(X_1,\ldots,X_n)$  (e.g. via central limit theorem)

### The Bayesian paradigm

Maximum-likelihood and frequentist statistics produces point estimates

#### Paradigm shift: random parameters

Parameters  $\theta$  are no longer treated as deterministic but as random quantities. The prior distribution, denoted as  $\pi(\theta)$ , encodes knowledge & uncertainty we have on the parameters **before** seeing new data.

→ the goal is to update this a priori knowledge when new data comes: this is the essence of Bayes formula.

### A bit of history...

The terminology *Bayesian* has been coined that way thanks to the work of Reverend Thomas Bayes (1701-1761) and his posthumous *essay in view of solving the doctrine of chance*. Pierre-Simon Laplace independently proposed a version in 1774.

N.B.: this course will not settle the somewhat sterile debate "Bayesian VS Frequentist".

### **Bayes formula**

Equipped with a prior  $\pi(\theta)$ , we posit an observational model on  $X \mid \theta \iff$  the likelihood. Bayesian modelization essentially adds one layer to frequentist models : the prior.

1. 
$$\theta \sim \pi$$
, (prior)

$$2. \quad X \mid \theta \sim p(\cdot \mid \theta) = p_{\theta} \quad \text{(likelihood)}.$$

### The posterior

Given a realization x, we update our prior via a new distribution called the *posterior*:

$$\pi(\theta \mid x) = \frac{p(x \mid \theta)\pi(\theta)}{Z},$$
 (Bayes formula)

Here,  $Z=\int_{\Theta}p(x\mid\theta)\pi(\theta)\,\mathrm{d}\theta$  is a normalization constant, independent of  $\theta$ . Thus, it is common to write

$$\pi(\theta \mid x) \propto p(x \mid \theta)\pi(\theta)$$

<sup>&</sup>lt;sup>a</sup>Although computing this normalization constant is generally a challenging task in Bayesian statistics.

### **Choosing a prior**

### **Expert knowledge**

The prior  $\pi$  may be used to represent any available expert knowledge on  $\theta$ .

#### **Conjugate priors**

When the prior  $\pi$  and the posterior  $\pi(\cdot \mid x)$  belong to the same family of distributions (e.g. Gaussian, Beta, etc.), then we say that the prior is *conjugate* to the observational model  $p(x \mid \theta)$ .  $\longrightarrow$  Skip to an example

Conjugate priors are widely used as they greatly simplify computations.

#### **Uninformative prior**

When the prior equally charges  $\Theta$  we say that the prior is uninformative, noted  $\pi(\theta) \propto 1$ . Obviously,  $\pi \propto 1$  does not always define a proper p.d.f. (consider  $\Theta = \mathbb{R}$ ). Still, as long as the posterior is well defined (*i.e.* the normalization constant Z exists and is finite) then we can still use the posterior  $\pi(\theta \mid x)$  and the prior is improper.

### Example of conjugacy: the Beta-Binomial model (1)

**Experiment & question** Given a sequence of independent coin flips  $x = \{x_1, \dots, x_n\}$ , determine the probability of getting tail.

#### Observational model: the likelihood

Given a probability of tail  $\theta$ , we model the random vector  $\boldsymbol{X}=(X_1,\ldots,X_n)$  as i.i.d. Bernoulli  $X_i\sim Ber(\theta)$  so that

$$p(\boldsymbol{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{n} Ber(x_i \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\sum_i x_i} (1 - \boldsymbol{\theta})^{\sum_i 1 - x_i}.$$

#### Choice of a prior

We use Beta distribution with support  $\Theta = [0, 1]$ 

$$\pi(\theta) = Beta(a,b) \propto \mathbf{1}_{[0,1]}(\theta)\theta^{a-1}(1-\theta)^{b-1}.$$

a and b are called *hyper-parameters* and they control our level of a priori

- a = b = 1: uniform on [0, 1] (uninformative)
- $\blacksquare$  a=b>1: in favor of a balanced coin, the greater a, the stronger the prior
- $\blacksquare$  a > b (resp. a < b): in favor of tail (resp. head).

### Example of conjugacy: the Beta-Binomial model (2)



**Figure:** Graph of the p.d.f.  $Beta(\cdot \mid a, b)$  for different values of a and b.

### Example of conjugacy: the Beta-Binomial model (3)

We seek to derive the posterior, and we directly have

$$\pi(\theta \mid \boldsymbol{X}) \propto p(\boldsymbol{X} \mid \theta)\pi(\theta),$$

$$\propto \theta^{\sum_{i} x_{i}} (1 - \theta)^{\sum_{i} 1 - x_{i}} \theta^{a-1} (1 - \theta)^{b-1} \mathbf{1}_{[0,1]}(\theta),$$

$$\propto \theta^{a + \sum_{i} x_{i} - 1} (1 - \theta)^{b + n - \sum_{i} x_{i} - 1} \mathbf{1}_{[0,1]}(\theta).$$

We recognize the p.d.f of a Beta distribution

$$\theta \mid \boldsymbol{X} \sim Beta\left(a + \sum_{i} X_{i}, b + n - \sum_{i} X_{i}\right)$$

#### Remarks:

- 1 a and b act as *pseudo-counts* for head and tails, smoothing the estimates when n is small.
- 2 This conjugacy between the Beta prior and the binomial model always hold : property of the model (prior + likelihood) and not our specific experiment.



### **Bayesian point estimates**

Having derived the posterior: how do we provide point estimates  $\hat{\theta}$  ?

#### Cost function

A cost function is a function  $C: \Theta \times \Theta \in \mathbb{R}_+$  where  $C(\eta, \theta)$  is the "cost of predicting  $\eta$  for a parameter  $\theta$ . Some examples

- $C(\eta,\theta) = (\eta \theta)^p (L^p \text{-loss})$
- $\qquad \qquad C(\eta,\theta) = \mathbf{1}_{\eta \neq \theta} \text{ (0-1 loss)}$

#### **Bayesian estimator**

**Remember that**  $\theta$  is random. For a given model and observation x, the Bayesian estimator is the one that minimizes the average cost under the posterior distribution:

$$\hat{\theta} \in \operatorname*{arg\,min}_{\eta} \left\{ \mathbb{E}_{\theta \sim \pi(\cdot \mid x)} \left[ C(\eta, \theta) \right] = \int_{\Theta} C(\eta, \theta) \pi(\theta \mid x) \, \mathrm{d}\theta \right\}. \tag{Bayes estimator}$$

### Posterior Mean, Median & Mode

Different cost functions leads to different Bayes estimator among which

- 1 posterior mean  $\hat{\theta} = \mathbb{E}[\theta \mid x]$  corresponds to the  $L^2$ -loss
- 2 posterior median  $\hat{\theta}$  such that  $\pi(\theta \geq \hat{\theta} \mid x) = \pi(\theta \leq \hat{\theta} \mid x) = 0.5$  ( $L^1$ -loss)
- **3 posterior mode (aka MAP)**:  $\hat{\theta} \in \arg \max_{\theta} \pi(\theta \mid x)$  (0-1 loss)

Maximum a posteriori is one of the most popular

- reduces to an optimization problem
- log-prior can be interpreted in a frequentist setting as a regularizer for MLE

$$\log \pi(\theta \mid x) = cte + \underbrace{\log p_{\theta}(x)}_{\text{likelihood}} + \underbrace{\log \pi(\theta)}_{\text{regularizer}}$$

#### Credibility regions

The posterior may also be used for uncertainty quantification by computing regions  $\mathcal{R} \subset \Theta$  s.t.  $\pi(\theta \in \mathcal{R} \mid x) = \int_{\mathcal{R}} \pi(\theta \mid x) \, \mathrm{d}\theta = 1 - \alpha$ 



### Incomplete data models

Most often, the observations are involved in complicated (biological, ecological, physical) processes, with many unobserved variables and complex dependency structure.

- X observed random variables
- Z unobserved (latent/hidden) variables
- $\blacksquare$   $\theta$  unknown parameters

### An attempt at defining latent variables (creds. to S. Robin)

■ Frequentist setting:

latent variables = random but unobserved, parameters = fixed

■ Bayesian setting:

both latent variables and parameters = random

but

# latent variable  $\simeq \#$  data, # parameters  $\ll \#$  data

### Different types of likelihoods

**In this course**, we place ourselves in the frequentist setting, using MLE inference. Although Bayesian extension of the proposed models are common.

#### Complete data likelihood

Joint likelihood of the whole random process  $(\pmb{X}, \pmb{Z})$  with given parameters  $\theta$ .

$$p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) = p_{\theta}(\boldsymbol{X} \mid \boldsymbol{Z}) p_{\theta}(\boldsymbol{Z}).$$

ightsquigar tractable in many models, but we do not observe Z !

#### Observed data likelihood

Marginal likelihood of the observed random variables X

$$p_{ heta}(oldsymbol{X}) = \int_{\mathcal{Z}} p_{ heta}(oldsymbol{X}, oldsymbol{z}) \, \mathrm{d}oldsymbol{z}^{oldsymbol{a}}$$

 $\rightsquigarrow$  only involves the observed X, but not always tractable.

 ${}^a\mathsf{When}\ \mathcal{Z}$  is discrete, replace  $\int$  by  $\sum$ 

# Clustering with mixture models

### **Motivation**

Sometimes our data is organized in sub-population: groups of individuals we call clusters.

#### Example

In modern biology, discovering cell-types via their gene expression profile is an important task.



When the groups are unknown, we call the task of discovering them clustering<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>as opposed to classification in a supervised context

### Mathematical context

We search for an optimal partition of  $x = \{x_1, \dots, x_n\}$  into K groups.

#### **Definition:** partition

A partition  $C = \{C_1, \dots, C_K\}$  of  $\{1, \dots, n\}$  is a set of sets s.t.

$$\bigcup_{k} C_{k} = \{1, \dots, n\}, \qquad \forall k \neq l, \quad C_{k} \cap C_{l} = \emptyset$$

#### Alternative encoding of the partition

For each individual  $i=1,\ldots,n$ , we define its *cluster membership*  $z_i\in\{0,1\}^K$ 

$$k=1,\ldots,K, \quad z_{ik}=\left\{ egin{array}{ll} 1 & \mbox{if i belongs to cluster k}, \\ 0 & \mbox{otherwise} \end{array} \right.$$

The set  $Z = \{z_1, \dots, z_n\}$  represents a partition of  $\{1, \dots, n\}$ . This particular encoding is sometimes referred to as one-hot encoding.

### **Clustering criteria**

"Optimality" implies the definition of some criterion  $L \iff$  assumptions on the nature of clusters. Methods can be roughly split in two

#### Similarity-based methods

Design L via geometric notions of similarity between  $x_i$ 's, favoring e.g.

- elliptic clusters
- convex clusters
- connected clusters

#### Statistical methods

Consider the partition  ${m Z}$  as a latent variable and posit a generative model  $p_{ heta}({m X},{m Z})$ 

 $\leadsto$  Clustering becomes an inference problem of finding  $\hat{Z}$ .

There are connections between both!

### K-means

### The K-means problem

K-means seeks clusters well concentrated around their centroids  $\mu_k \coloneqq \frac{1}{|C_k|} \sum_{i \in C_k} x_i$  by minimizing

$$\underset{\boldsymbol{C}}{\arg\min} \left\{ L(\boldsymbol{C}, \boldsymbol{X}) = \sum_{k=1}^K \sum_{i \in C_k} \|x_i - \mu_k\|_2^2 \right\}$$
 (K-means problem)

- lacksquare Good news: discrete problem  $\leadsto$  there exists an optimum  $C^{\star}$ .
- Bad news: there are  $K^n$  possible partitions  $\rightsquigarrow$  enumeration is not an option.

In fact, K-means problem is a **nonconvex NP-hard** problem and one need to resort to fast heuristics.

Mith a slight abuse, we drop distinction between K-means problem and heuristics to solve it. ∧

### The K-means algorithm (MacQueen 1967)

Draw centroids  $\mu_1, \ldots, \mu_K$  at random among the sample  $\boldsymbol{X}$  and

1 Assign each point to its closest centroid

$$C_k \leftarrow \left\{ i : \|x_i - \mu_k\|_2^2 = \min_j \|x_j - \mu_k\|_2^2 \right\}$$

2 recompute centroids as the barycenter of each center

$$\mu_k \coloneqq \frac{1}{|C_k|} \sum_{i \in C_k} y_i$$

3 Go to 1 until clusters (hence barycenters) are unchanged

### Properties of the algorithm

K-means is a greedy algorithm which

- monotonically decreases the criterion
- converges in a finite number of iterations
- lacktriangle will get stuck in local minima of L (non-convex)
- $\leadsto$  In practice, we try several restarts with different random inits.

### **Extensions**

Kmeans++ initialization matter ! → stop drawing centroids at random

- Choose  $\mu_1$  uniformly among the sample
- $\blacksquare$  then sequentially do for each  $k=2,\dots,K$ 
  - compute weight  $w_i := \min_{j < k} ||x_i \mu_j||_2^2$
  - lacktriangle Choose  $\mu_k$  among the sample with proba  $\propto w_i$

Optimality bounds can be obtained (Arthur et al. 2007)

**Sparse K-means** include variable selection, useful when  $x_i$  in dimension  $d \gg n$ 

**Kernel K-means** compute distance between  $\phi(x_i)$  with  $\phi: \mathcal{X} \to \mathcal{H}$  a feature map.

### Mixture models

### Probabilistic view on clustering

The partition is now seen as a set of discrete latent variables  $\mathbf{Z} = \{z_1, \dots, z_n\}$ 

Denote  $\pi = (\pi_1, \dots, \pi_K)$  the (unknown) cluster proportions, we have

$$p_{\pi}(z_{ik}=1)=\pi_k \iff z_i \sim \mathcal{M}(1,\pi)$$

#### Mixture models

For all  $i=1,\ldots,n$ , mixture models suppose that  $(z_i,x_i)$  are drawn i.i.d. according to the two-stage hierarchical model

- 1  $Z_i \sim \mathcal{M}_K(1,\pi)$ 2  $X_i \mid \{z_{ik}=1\} \sim p_{\gamma_k}$

The model parameters are  $\theta = \{\pi_k, \gamma_k\}_{k=1}^K$  and  $p_\gamma$  can be any parametric distribution over  $X_i$ .

Clusters are sometimes called components

→ general and flexible framework, adapt to nature of the data (discrete, continuous, mixed-type)via  $p_{\gamma}$ 

## Observed (marginal) likelihood

#### Properties: independence

In a mixture model,  $(Z_i)_i$  are i.i.d. and  $(X_i)_i$  also are i.i.d.

#### Observed likelihood

$$p_{\theta}(X) = \sum_{z_{1},...,z_{n}} p_{\theta}(Z, X) = \sum_{z_{1},...,z_{n}} \prod_{i=1}^{n} p_{\theta}(X_{i} \mid z_{i}) p_{\theta}(z_{i}),$$

$$= \prod_{i=1}^{n} \sum_{z_{i}} p_{\gamma}(X_{i} \mid z_{i}) p_{\theta}(z_{i}),$$

$$= \prod_{i=1}^{n} \left( \sum_{k=1}^{K} \pi_{k} p_{\gamma_{k}}(X_{i}) \right).$$

 $\leadsto$  the marginal distribution of  $X_i$  is a convex combination (*mixture*) of the K base distributions  $(p_{\gamma_k})_k$ , with weights  $\pi_k$ .

## Complete likelihood

#### Properties: conditional independence

In a mixture model,  $(X_i)_i \perp \mid Z$  and  $(Z_i)_i \perp \mid X$ , but not identically distributed

#### Complete log-likelihood

$$\log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) = \log p_{\theta}(\boldsymbol{Z}) + \log p_{\theta}(\boldsymbol{X} \mid \boldsymbol{Z}) = \sum_{i=1}^{n} \log p_{\pi}(Z_i) + \log p_{\gamma}(X_i \mid Z_i),$$
$$= \sum_{k=1}^{K} \sum_{i=1}^{n} Z_{ik} \left[ \log \pi_k + \log p_{\gamma_k}(X_i) \right].$$

#### Posterior distribution of $Z \mid X$

For i = 1, ..., n,  $Z_i \mid X_i \sim \mathcal{M}_K(1, \tau_i)$  with

$$\tau_{ik} \coloneqq p_{\theta}(z_{ik} = 1 \mid X_i) \propto \pi_k p_{\gamma_k}(X_i)$$

Notice that  $\tau_i$  also depends on the parameters  $\theta$ .

## A note on identifiability

#### **Definition: identifiability**

A statistical model  $p_{\theta}$  is said to be identifiable iff the mapping  $\theta \mapsto p_{\theta}$  is injective.

**Intuition:** the labels of the clusters  $1, \ldots, K$  should have no impact on the marginal likelihood

$$\pi_1 p_{\gamma_1}(x) + \pi_2 p_{\gamma_2}(x) = \pi_2 p_{\gamma_2}(x) + \pi_1 p_{\gamma_1}(x)$$

#### **Label switching**

Let  $\sigma$  be a permutation of  $[\![1,K]\!]$ , then for a mixture model with parameters  $\pi,\gamma$  we have

$$p(X \mid \pi, \gamma) = p(X \mid \sigma(\pi), \sigma(\gamma))$$

Hence, there are K! equivalent formulations of a mixture model.

 $\leadsto$  conceptually not a problem, it simply states that there are K! different encoding Z of a given partition  $C = \{C_1, \dots, C_K\}$ .

→ can cause problems in Bayesian inference procedure since the posterior is highly multimodal.

## Gaussian Mixture Models (GMM)

Continuous data:  $x = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ 

**Model:** Mixture of Gaussians  $p_{\gamma_k}(x) = \mathcal{N}(x \mid \mu_k, \Sigma_k)$ , with  $\gamma_k = (\mu_k, \Sigma_k)$ 

Multimodal marginal density around the  $(\mu_k)_k$ 's





Number of free parameters:  $K-1+Kd+K\frac{d(d+1)}{2}=\mathcal{O}(Kd^2)$  to estimate

#### Maximum-likelihood estimation

Non-convex MLE problem

$$\underset{\pi_k, \mu_k, \Sigma_k}{\operatorname{arg max}} \sum_{i=1}^n \log \left( \sum_{k=1}^K \pi_k \log \mathcal{N}(x_i \mid \mu_k, \Sigma_k) \right).$$

- Much more complex to maximize than in standard Gaussian models (K = 1)
- No closed-form solution, gradients can be derived but
  - 1 they are not cheap to compute at each iteration (although one could resort to stochastic optimization to leverage this issue).
  - **2** Requires re-projecting on the cone of p.d. matrices  $\Sigma_k \succ 0$ .

By contrast, the complete log-likelihood is much simpler to handle

$$\log p_{\theta}(\boldsymbol{x}, \boldsymbol{Z}) = \sum_{k=1}^{K} \sum_{i=1}^{n} Z_{ik} \left[ \log \pi_k + \log \mathcal{N}(x_i \mid \mu_k, \Sigma_k) \right].$$

 $\rightsquigarrow$  But we do not observe the Z!

## Maximum-likelihood estimation (cont'd)

#### A chicken-and-egg problem

1 If we knew Z we could maximize  $p_{\theta}(X,Z) \leadsto$  amount to compute MLE  $\hat{\gamma}_k$  in each cluster. In the Gaussian case we'd have cluster's empirical means and covariance

$$n_k = \sum_{i} z_{ik}, \qquad \hat{\mu}_k = \sum_{i} z_{ik} x_i / n_k, \qquad \hat{\Sigma}_k = \sum_{i} z_{ik} \frac{(x_i - \hat{\mu}_k)(x_i - \hat{\mu}_k)^{\top}}{n_k}$$

2 If we knew  $\theta^*$ , we could find the best estimate of Z via the posterior distribution

$$\tau_{ik}(\theta) = p_{\theta}(z_{ik} = 1 \mid x_i) = \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_l \pi_l \mathcal{N}(x_i \mid \mu_l, \Sigma_l)}$$

→ this suggest an iterative scheme between 1) & 2) to solve MLE.

# Inference in latent variable models: the EM algorithm



## Jensen's inequality

**Quizz!** Which is larger:  $\mathbb{E}[Z^2]$  or  $\mathbb{E}[Z]^2$  ?

## Jensen's inequality

**Quizz!** Which is larger:  $\mathbb{E}[Z^2]$  or  $\mathbb{E}[Z]^2$ ?  $\longrightarrow \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 = \mathbb{V}(Z) \geq 0$ 

## Jensen's inequality

**Quizz!** Which is larger: 
$$\mathbb{E}[Z^2]$$
 or  $\mathbb{E}[Z]^2$ ?  $\longrightarrow \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 = \mathbb{V}(Z) \geq 0$ 

#### **General result: Jensen's inequality**

Let Z be a random vector in  $\mathcal{Z} \subset \mathbb{R}^d$  and  $\phi : \mathbb{R}^d \to \mathbb{R}$  a convex function, then

$$\mathbb{E}_{Z}\left[\phi(Z)\right] \geq \phi\left(\mathbb{E}_{Z}[Z]\right). \tag{Jensen}$$

 $\leadsto$  the inequality is reversed with  $\phi$  concave  $(\phi \leftarrow -\phi)$ 

#### Proof:

lacktriangledown  $\phi$  convex  $\Longrightarrow$  it is above its tangents, hence at any point  $z_0 \in \mathbb{R}^d, \exists a \text{ s.t.}$ 

$$\forall z \in \mathbb{R}^d, \quad \phi(z) \ge \phi(z_0) + a(z - z_0).$$

lacksquare Take  $z_0=\mathbb{E}_Z[Z]$ , since the above inequality is true for all z, it generalizes to  $\mathbb{E}_Z$ 

$$\mathbb{E}_{Z}\left[\phi(Z)\right] \ge z_0 + a\underbrace{\left(\mathbb{E}_{Z}[Z] - z_0\right)}_{=0} = z_0 = \phi\left(\mathbb{E}_{Z}[Z]\right)$$

## **Entropy of a random variable**

#### **Definition: entropy**

For a discrete random variable Z with distribution q(Z=z) we define its entropy as

$$\mathcal{H}(Z) = \mathcal{H}(q) = -\mathbb{E}\left[\log q(Z)\right] = -\sum_{z \in \mathcal{Z}} q(z)\log q(z)$$

with the convention that  $0 \times \log 0 = 0$ 

#### **Properties**

- $\blacksquare \mathcal{H}(q) \geq 0$
- Continuous formulation: Let Z be a r.v. with distribution Q. If there exist a measure  $\mu$  such that  $\mathrm{d}Q = q\,\mathrm{d}\mu$  then we can define

$$\mathcal{H}(Q) = \mathcal{H}_{\mu}(q) = -\int \log q(z)q(z) \,\mathrm{d}\mu(z)$$

Now depends on the base measure  $\mu$ .

## Kullback-Leibler (KL) divergence

#### Definition: KL divergence (discrete case)

Let p and q be two distribution over discrete set  $\mathcal{Z}$ , we define the KL-divergence as

$$\mathrm{KL}(p \parallel q) \coloneqq \mathbb{E}_{Z \sim p} \left[ \log \frac{p(Z)}{q(Z)} \right] = \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}$$

#### **Properties**

- $\mathrm{KL}(p \parallel q) \geq 0$  with equality iff p = q (proof: Jensen on  $\frac{q}{p}(Z)$  with convex  $\phi(x) = -\log x$ )
- Diverges if  $\exists z_0$  such that  $q(z_0) = 0$  when  $p(z_0) = 0$
- Not a distance (not symmetric)
- Continuous formulation: For two distribution P and Q, if there exists a measure  $\mu$  such that  $dP = p d\mu$  and  $dQ = q d\mu$ , then

$$\mathrm{KL}(P \parallel Q) = \int \log \frac{\mathrm{d}P}{\mathrm{d}Q} \, \mathrm{d}P = \int \log \frac{p(z)}{q(z)} p(z) \, \mathrm{d}\mu(z).$$

 $\leadsto$  invariant w.r.t. the choice of  $(p,q,\mu)$  since the ratio  $\mathrm{d}P/\mathrm{d}Q$  is invariant.

The evidence lower bound (ELBO)

#### Minorizer of the observed-likelihood

#### **Evidence lower bound**

Let q be a distribution over  $\mathcal Z$  absolutely continuous with respect to  $p_{\theta}(X,Z)$ . Then,

$$\log p_{\theta}(\boldsymbol{X}) \ge \mathcal{L}(q, \theta) \coloneqq \mathbb{E}_q \left[ \log p_{\theta}(X, Z) \right] + \mathcal{H}(q). \tag{ELBO}$$

The quantity  $\mathcal{L}$  is called the evidence lower-bound, moreover the gap is expressed as

$$\log p_{\theta}(X) - \mathcal{L}(q, \theta) = \mathrm{KL}(q \parallel p_{\theta}(\cdot \mid X)).$$

Proof: 
$$\log p_{\theta}(X) = \log \int p_{\theta}(X, z) \, \mathrm{d}z = \log \mathbb{E}_q \left[ \frac{p_{\theta}(X, Z)}{q(Z)} \right] \stackrel{\text{\tiny Jensen}}{\geq} \mathbb{E}_q \left[ \log \frac{p_{\theta}(X, Z)}{q(Z)} \right] = \mathcal{L}(q, \theta)$$

#### Comments

- The ELBO holds for any distribution q on Z
- For a given  $\theta$ , the gap is 0 iff

$$q(z) = p_{\theta}(z \mid X)$$

## **Expectation-maximization (EM, Dempster et al. 1977)**

## EM: a universal algorithm for latent variables

Intuition: chicken-and-egg

- 1 if we knew Z, we could easily work with  $f(\theta) = \log p_{\theta}(X, Z)$
- 2 *if we knew* heta, the best representation of  $m{Z}$  is via its posterior  $p_{ heta}(m{Z} \mid m{X})$

#### **Expectation-Maximization algorithm**

Starting from  $\theta^{(0)}$ , iterate between

#### **Expectation step**

Use  $q^{(t+1)}(\boldsymbol{Z}) = p_{\theta^{(t)}}(\boldsymbol{Z} \mid \boldsymbol{X})$  to form the objective function

$$f(\theta) = Q(\theta, \theta^{(t)}) = \mathbb{E}_{\boldsymbol{Z} \sim q^{(t+1)}} \left[ \log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \right].$$

It involves (generalized) moments of Z under  $q^{(t+1)}$ .

#### **Maximization step**

Solve  $\theta^{(t+1)} \in \arg \max_{\theta} Q(\theta, \theta^{(t)})$ 

In practice, EM stop after likelihood gaps fall below a given threshold  $\epsilon$ 

$$|\mathcal{L}(q^{(t+1)}, \theta^{(t)}) - \mathcal{L}(q^{(t)}, \theta^{(t-1)})| = |\log p_{\theta^{(t)}}(\boldsymbol{X}) - \log p_{\theta^{(t-1)}}(\boldsymbol{X})| < \epsilon$$

### Rewriting EM: coordinate ascent on the ELBO

#### EM algorithm (equivalent formulation)

Starting from  $\theta^{(0)}$ , iterate between

$$q^{(t+1)} = \arg\max_{q} \mathcal{L}(q, \theta^{(t)}), \tag{E-step}$$

$$\begin{split} q^{(t+1)} &= \argmax_{q} \mathcal{L}(q, \theta^{(t)}), \\ \theta^{(t+1)} &= \argmax_{\theta} \mathcal{L}(q^{(t+1)}, \theta). \end{split} \tag{E-step}$$

- E-step is equivalent to  $\min_q \mathrm{KL}(q \parallel p_{\theta^{(t+1)}}(\cdot \mid X)) \implies q^{(t+1)} = p_{\theta^{(t+1)}}(\cdot \mid X)$
- basis of inference in latent variable models, many extensions: see e.g. Peel et al. (2000) for mixture models

#### Monotonic increase of the observed likelihood

#### **Property of EM algorithm**

The sequence of iterates  $\{\theta^{(t)}\}_t$  returned by EM verifies

$$\forall t \geq 0, \quad \log p_{\theta^{(t+1)}}(\boldsymbol{X}) \geq \log p_{\theta^{(t)}}(\boldsymbol{X})$$

Proof:

$$\log p_{\theta^{(t+1)}}(\boldsymbol{X}) \underbrace{\geq}_{\text{ELBO}} \mathcal{L}(q^{(t+1)}, \theta^{(t+1)}) \underbrace{\geq}_{\text{M-step}(t+1)} \mathcal{L}(q^{(t+1)}, \theta^{(t)}) \underbrace{=}_{\text{E-step}(t)} \log p_{\theta^{(t)}}(\boldsymbol{X})$$

- Guarantees EM converges with the likelihood gaps criterion
- In general, only converges to local maxima of the likelihood
- $\blacksquare$  Does not guarantee convergence of the sequence of parameters  $\{\theta^{(t)}\}_t$  itself.

## A graphical illustration of EM algorithm (cred: G. Obozinski)





## **Expected complete log-likelihood**

Denote 
$$au_{ik}^{(t)} \coloneqq p_{\theta^{(t-1)}}(Z_{ik} = 1 \mid x_i) = \mathbb{E}_{q^{(t)}}[Z_{ik}]$$
, then

$$f(\theta) = \mathbb{E}_{q^{(t)}} \left[ \log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \right],$$

$$= \mathbb{E}_{q^{(t)}} \left[ \sum_{i=1}^{n} \log p_{\theta}(x_{i}, Z_{i}) \right],$$

$$= \mathbb{E}_{q^{(t)}} \left[ \sum_{k=1}^{K} \sum_{i=1}^{n} Z_{ik} \left[ \log \pi_{k} + \log \mathcal{N}_{q}(x_{i} \mid \mu_{k}, \Sigma_{k}) \right] \right],$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n} \mathbb{E}_{q_{i}^{(t)}} \left[ Z_{ik} \right] \left[ \log \pi_{k} + \log \mathcal{N}_{d}(x_{i} \mid \mu_{k}, \Sigma_{k}) \right],$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n} \tau_{ik}^{(t)} \left[ \log \pi_{k} + \log \mathcal{N}_{d}(x_{i} \mid \mu_{k}, \Sigma_{k}) \right],$$

It involves  $\tau_{ik}^{(t)}$ : (first) moments of Z under  $q^{(t)}$ .

## E-step for GMM

Compute the posterior given  $\theta^{(t-1)}$ ,  $q^{(t)} = p_{\theta^{(t-1)}}(\boldsymbol{Z} \mid \boldsymbol{X})$ 

As seen previously, the posterior for mixture model always writes

$$p_{\theta}(\boldsymbol{Z}) = \prod_{i=1}^{n} \mathcal{M}_{K}(1, \tau_{i}(\theta)), \text{ with: } \tau_{ik}(\theta) \propto \pi_{k} p_{\gamma_{k}}(x_{i}).$$

So that

$$\tau_{ik}^{(t)} = \tau_{ik}(\theta^{(t-1)}) = \frac{\pi_k \mathcal{N}_d(x_i \mid \mu_k^{(t-1)}, \Sigma_k^{(t-1)})}{\sum_{l=1}^K \pi_l \mathcal{N}_d(x_i \mid \mu_l^{(t-1)}, \Sigma_l^{(t-1)})}.$$

**Careful** with numerical underflow  $\leadsto$  better to work with in log-space with  $\log \tau$ .

## M-step for GMM

**Solve** 

$$(\boldsymbol{\pi}_k^{(t)}, \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})_{k=1}^K \in \arg\max_{\boldsymbol{\theta}} \left\{ f(\boldsymbol{\theta}) = \mathbb{E}_{q^{(t)}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{X}, \boldsymbol{Z})] \right\}$$

For GMM, the updates are

$$\begin{cases} \tilde{n}_k^{(t)} = \sum_{i=1}^n \tau_{ik}^{(t)}, \\ \pi_k^{(t)} = \frac{\tilde{n}_k^{(t)}}{n}, \\ \mu_k^{(t)} = \frac{1}{\tilde{n}_k^{(t)}} \sum_{i=1}^n \tau_{ik}^{(t)} x_i, \\ \sum_k = \frac{1}{\tilde{n}_k^{(t)}} \sum_{i=1}^n \tau_{ik}^{(t)} (x_i - \mu_k^{(t)}) (x_i - \mu_k^{(t)})^\top \end{cases}$$

We recognize standard Gaussian MLE in each cluster, using soft probability memberships  $\tau$  in place of unknown Z.

## Link with K-means algorithm

The K-means algorithm can be interpreted as an EM algorithm for a constrained GMM with equal proportions  $\pi_k = 1/K$ , known isotropic covariance  $\Sigma_k = \sigma^2 \operatorname{Id}_d$ . Dropping the known quantities, the criterion is

$$\underset{\mu_1,...,\mu_K,\mathbf{Z}}{\arg\min} - \log p_{\mu}(\mathbf{X},\mathbf{Z}) = cte + \sum_{k} \sum_{i \in C_k} ||x_i - \mu_k||_2^2.$$

#### Rewriting K-means (Classification-EM for GMM)

- 1 Hard E-step: set partition  $C^{(t+1)}$  via MAP  $\arg\max_{l} \tau_{il}^{(t+1)} = \arg\min_{l} \|x_i \mu_l^{(t)}\|_2^2$
- 2 *M-step*: update the centroids  $\mu_k^{(t+1)} \leftarrow (1/n_k) \sum_{i \in C_k^{(t+1)}} x_i$

#### Comments

- highlight connections between similarity-based and probabilistic methods
- unveil hypothesis behind K-means criterion: spherical, equal-volume and equal-size clusters.

## Choosing the number of components K

**Challenge:** how to choose the number of clusters K?

**Intuition:** the larger the likelihood, the better our model fits the data X

Caveat: complex models tend to provide larger likelihood, for example

- lacktriangle mixture models with K-1 components are nested in models with K components.
- models with constraints (diagonal, spherical) are nested in unconstrained ones.

→ we need to account for "model complexity"

#### Definition: dimension/size of a model

Let  $\mathcal{M} = \{p_{\theta}, \theta \in \Theta_{\mathcal{M}}\}$ , we denote  $d_{\mathcal{M}}$  the number of free parameters in the model. For unconstrained mixtures, it is  $d_K = K - 1 + K d_{\Gamma}$ ,  $\gamma_k \in \Gamma$ .

#### Penalized likelihood criterion

For a mixture model with K components, denote  $\hat{\theta}_K = \arg \max_{\theta \in \Theta_K} \log p_{\theta}(X)$ . A penalized likelihood estimate of K is given by

$$\hat{K} = \underset{K}{\operatorname{arg\,max}} \left\{ \log p_{\hat{\theta}_K} - pen(K) \right\}.$$

## Different penalties leads to different criterion

#### Definitions: AIC, BIC, ICL

For a model  ${\mathcal M}$  and observations X, we have several choice of penalize likelihood criteria

$$\begin{split} AIC(K) &\coloneqq \log p_{\hat{\theta}_K}(\boldsymbol{X}) - d_K, \\ BIC(K) &\coloneqq \log p_{\hat{\theta}_K}(\boldsymbol{X}) - \frac{d_K}{2} \log(n), \\ ICL(K) &\coloneqq \mathbb{E}_{Z \sim p_{\hat{\theta}_K}(\cdot | \boldsymbol{X})} \left[ \log p_{\hat{\theta}_K}(\boldsymbol{X}, \boldsymbol{Z}) \right] - \frac{d_K}{2} \log(n) \end{split}$$

Note: the ELBO property gives

$$ICL(K) = BIC(K) - \mathcal{H}(p_{\hat{\theta}_K}(\cdot \mid X)).$$

Hence, ICL is more focused on models with strongly separable clusters (peaked posterior  $\implies$  low entropy), while BIC is more focused on fitting the marginal density of X.

## Focus on BIC: Bayesian information criterion

Put a prior p(K) on K, and the model:  $p(\theta \mid K)$  and  $p(X \mid \theta)$ . Bayes rule suggests choosing

$$\begin{split} \hat{K} &= \operatorname*{arg\,max}_{K} \left\{ p(K \mid \boldsymbol{X}) \propto p(K) p(\boldsymbol{X} \mid \boldsymbol{\theta}) \right\}, \\ &= \operatorname*{arg\,max}_{K} \log p(K) + \log p(\boldsymbol{X} \mid K), \\ &= \operatorname*{arg\,max}_{K} \log p(K) + \log \int p(\boldsymbol{X} \mid \boldsymbol{\theta}, K) p(\boldsymbol{\theta} \mid K) \, \mathrm{d}\boldsymbol{\theta}. \end{split}$$

Dropping the prior term  $\log p(K)$  which is constant with n, we need to compute the integral in the second term  $\leadsto$  difficult in general !

Under regularity assumptions (see Lebarbier et al. 2004, for details), we have

$$\log p(\boldsymbol{X} \mid K) = \log p_{\hat{\boldsymbol{\theta}}_K}(\boldsymbol{X}) - \frac{d_K}{2} \log(n) + \mathcal{O}_P(1).$$

This justifies the formula of BIC.

# Hidden Markov Models (HMMs)

What if observations  $X = \{x_i\}_i$  are ordered ? e.g.

- time series
- genomic data: observations collected at precise locations in the genome
- etc.
- → it is likely that "past" influences the "future".

Need to introduce dependence between observations/latent variables in the model

What if observations  $X = \{x_i\}_i$  are ordered ? e.g.

- time series
- genomic data: observations collected at precise locations in the genome
- etc.

→ it is likely that "past" influences the "future".

Need to introduce dependence between observations/latent variables in the model

#### **Example 1: time series segmentation**



Source: https://medium.com/data-analysis-center/56f8b9abd83a

What if observations  $X = \{x_i\}_i$  are ordered ? e.g.

- time series
- genomic data: observations collected at precise locations in the genome
- etc.
- $\leadsto$  it is likely that "past" influences the "future".

Need to introduce dependence between observations/latent variables in the model

#### Example 2: part-of-speech tagging

## **POS Tagging**



What if observations  $X = \{x_i\}_i$  are ordered ? e.g.

- time series
- genomic data: observations collected at precise locations in the genome
- etc.

→ it is likely that "past" influences the "future".

Need to introduce dependence between observations/latent variables in the model

#### **Example 3: protein coding**



From Yoon (2009)



## Markov Chains (discrete)

Suppose we observe a sequence  $y_{1:n} :== \{y_1, \dots, y_n\}$  at discrete time<sup>3</sup> steps  $1, \dots, n$ , with discrete outcomes  $y_i \in \{1, \dots, K\}$ 

#### Markov chain (MC)

We say that the sequence  $y_{1:n}$  is a Markov Chain if for all  $i=1,\ldots,n$ ,

$$p(y_{i+1} \mid y_{1:i}) = p(y_{i+1} \mid y_i)$$

"The future is independent from the past knowing the present."

#### Joint distribution of the sequence

$$p(y_{1:n}) = p(y_1)p(y_2 \mid y_1)p(y_3 \mid y_2) \dots p(y_n \mid y_{n-1}) = p(y_1) \prod_{i=2} p(y_i \mid y_{i-1}).$$

Proof of the all the statements made about Markov Chains can be found in Sophie Lemaire's course.

<sup>3&</sup>quot; Time" may also refer to locations within a sequence of words/genes/etc.

## Vocabulary around MC

#### Homogeneous Markov chain

We say that a markov chain is homogeneous (or time invariant) if the transition probability  $p(y_{i+1} \mid y_i)$  is independent time (of i).

#### Initial distribution

We denote as  $\nu = (\nu_1, \dots, \nu_K)$  the vector  $\nu_k \coloneqq p(y_1 = k)$ 

#### Marginal distribution

We denote as  $\nu_i = (\nu_{i1}, \dots, \nu_{iK})$  the vector  $\nu_{ik} \coloneqq p(y_i = k)$ 

#### **Transition matrix**

We denote A the  $K \times K$  matrix with  $A_{kl} = p(z_{i+1} = l \mid z_i = k)$  and properties:

- stochastic matrix: each row sum to  $1 \sum_{l=1}^{K} A_{kl} = 1$
- $\blacksquare$  eigenvalue 1 associated to the column vector  $e = (1, \dots, 1)^{\top}$ :  $Ae = 1 \cdot e$
- For any  $m, n \in \mathbb{N}$ ,  $p(y_{n+m} = l \mid y_m = k) = A_{kl}^{(m)}$  (m-th matrix power)
- Moreover  $\nu_i = \nu_1 A^{(i-1)}$

Notation:  $y_{1:n} \sim MC(\nu, A)$ 

## Diagram representation: a toy example

$$A = E_1 \begin{pmatrix} E_1 & E_2 \\ 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$



Graphical representation of a 2-state homogeneous Markov chain

## A second example: modeling nucleotide transition

$$A = \begin{array}{c} A & T & G & C \\ T & & & \\ G & & \\ C & & & \\ \end{array} \qquad \begin{array}{c} A & T & G & C \\ & & & \\ D_{10,4} & & \\ & & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0.1 & & \\ 0.1 & & \\ \end{array} \qquad \begin{array}{c} 0$$

Source: https://www.r-bloggers.com/2012/04/introduction-to-markov-chains-and-modeling-dna-sequences-in-r/

## A third example: Ehrenfest's urn model

- 4 balls distributed across 2 urns
- Each turn, we pick a ball and change its urn
- Let A be the transition of one urn (symmetric problem) :
  - $\rightarrow$  State = number of balls in this urn

## A third example: Ehrenfest's urn model

- 4 balls distributed across 2 urns
- Each turn, we pick a ball and change its urn
- Let A be the transition of one urn (symmetric problem) :
  - $\rightarrow$  State = number of balls in this urn

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

## Stationary distribution & how to find them

### Stationary distribution

Let A be a transition matrix over  $[\![1,K]\!]$ , we say that a vector  $\pi$  such that

$$\pi^{\top} A = \pi^{\top} \qquad \sum_{k=1}^{K} \pi_k = 1, \quad \pi_k \ge 0$$

is a **stationary** (or **invariant**) distribution for the homogeneous chain  $MC(\nu, A)$ .

### **Properties**

- **1**  $\pi$  is a discrete probability vector & eigenvector of  $A^{\top}$  associated to the eigenvalue  $\lambda = 1$
- 2 if  $y_1 \sim \pi$ , then  $\forall n \in \mathbb{N}$ ,  $y_n \sim \pi$  (hence the name stationary)
- **3 Existence:** for discrete MC it is an application of Perron-Frobenius theorem to A
- **4 Uniqueness & convergence:** if there exists some power  $q \in \mathbb{N}^{\star}$  such that  $A^{(q)} > 0$  then
  - $\blacksquare$   $\pi$  is unique and  $\pi_k > 0$ .
  - $p(y_n = \overset{\cdot}{l} \mid y_1 = \overset{\cdot}{k}) = A_{kl}^{(n)} \xrightarrow[n \to +\infty]{} \pi_l, \text{ whatever the initial distribution } \nu \text{ is.}$

Such chains "forget their past" after enough steps.

## **Computing the stationary distribution**

### First strategy: eigenvector

We know that  $A^{\top}\pi=1\cdot\pi$ , so that  $\pi$  is an eigenvector associated to the unit<sup>a</sup> eigenvalue. **Careful**, most scientific softwares give eigenvector such that  $\|v\|_2=1$ , so we need to post process  $\pi:=v/(\sum_k v_k)$ .

When K is big, there are efficient algorithms to find only largest eigenvector under conditions on A (e.g. Lanczos algorithm for symmetric matrices)

<sup>a</sup>Recall that eigenvalues (but not eigenvectors) of A and  $A^{\top}$  are the same.

### Second strategy: linear system

We have K unknown  $\pi_1,\ldots,\pi_K$  and K+1 equations  $\pi^\top(A-I)=\mathbf{0}_{1\times K}$  &  $\sum_k \pi_k=1$   $\leadsto$  over-determined linear system.

Thus, we can create a new matrix M by arbitrarily replace a column (say last one) in (A-I) by  $\mathbf{1}_{K\times 1}$  and solve for  $\pi^\top M=(0,\dots,0,1)$ .

## 2-state example

Compute the stationary distribution of

$$A = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

## 2-state example

Compute the stationary distribution of

$$A = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

$$A^{-}I = \begin{pmatrix} -\alpha & \alpha \\ \beta - \beta & \end{pmatrix}$$

Replacing last column by  $(1,1)^{T}$  and solving the linear system when

$$\begin{pmatrix} \pi_1 & \pi_2 \end{pmatrix} \begin{pmatrix} -\alpha & 1 \\ \beta & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

leads to  $\pi = (\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta})$  provided  $\alpha + \beta \neq 0$ .

**Question (at home):** when do we have convergence of  $A^n$  ? (Consider the matrix A on limit cases  $\alpha = \beta = r, r \in \{0,1\}$ )

## **Numerical example**

Find the stationary distribution of 
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A \leftarrow matrix(c(0, 1/2, 1, 1, 0, 0, 0, 1/2, 0), 3, 3)$$

#### Eigenvector

```
eigen.res <- eigen(t(A))
Pi <- eigen.res$vectors[,1]
Pi/sum(Pi)
[,1]  [,2]  [,3]
[1.]  0.4+0i  0.4+0i  0.2+0i</pre>
```

```
Sanity check > (pi - t(pi)\%*\%A) < 1e-15
```

### Linear system

```
M<-diag(1, 3, 3) - A
M[,3] <- rep(1,3)
Pi <- solve(t(M),b=c(0,0,1))
Pi
[1] 0.4 0.4 0.2</pre>
```

# Hidden Markov Models (HMMs)

### HMM: the model

#### Generative model

A general (discrete) hidden Markov model is defined as

1 
$$z_{1:n} \sim MC(\nu, A)$$

2 
$$(x_i)_i$$
 independent  $\mid (z_i)_i$  and for all  $i \in [1, n]$ ,  $x_i \mid \{z_{ik} = 1\} \sim p_{\gamma_k}(\cdot)$ 

The model parameters are  $\theta=(\nu,A,\gamma)$  and  $p(x_i\mid z_i=k)=p_{\gamma_k}(x_i)$  are called *emission probability* 

### Marginal likelihood of $x_i$

Denote  $\nu_i = (\nu_{i1}, \dots, \nu_{iK})$ , such that  $\nu_{ik} = p_{\theta}(z_{ik} = 1)$  <sup>a</sup>. Then,

$$p_{\theta}(x_i) = \sum_{k} \nu_{ik} p_{\gamma_k}(x_i)$$

Moreover, if  $\nu_1=\pi$  (the chain's stationary distribution) then  $p_\theta(x_i)=\sum_k \pi_k p_{\gamma_k}(x_i)$ 

→ HMMs can be thought of as a generalization of mixture introducing dependency!

 $^{\text{a}}$ For homogeneous MC we know that  $\nu_i = \nu^{\top} A^{(i-1)}$ .

## **Graphical model representation**



- Empty circle represents unobserved random variable
- Gray circles represents observed random variables

## **Conditional independence**



Looking at the DAG, we have the three fundamental properties of HMM

- **1**  $Z_{i+1} \perp \!\!\! \perp Z_{1:(i-1)} \mid Z_i \text{ (i.e. } Z_{1:n} \text{ is a MC)}$
- $Z_{i+1} \perp X_{1:i} \mid Z_i$
- **3**  $X_{i+1} \perp \!\!\! \perp X_{1:i} \mid Z_{i+1}$  (and also  $\mid Z_i$ )

This basically states that knowing the hidden state at step i captures all relevant information about the past.

## Complete-data likelihood

#### Complete-data log-likelihood for HMMs

$$\log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) = \log p_{\theta}(\boldsymbol{X} \mid \boldsymbol{Z}) \times p_{\theta}(\boldsymbol{Z}),$$

$$= \log \left[ \prod_{k=1}^{K} \prod_{i=1}^{n} p_{\gamma_{k}}(x_{i})^{z_{ik}} \times \prod_{k=1}^{K} \nu_{k}^{z_{1k}} \prod_{i=1}^{K} \prod_{i=2}^{n} A_{k,l}^{z_{(i-1)k}z_{il}} \right],$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n} z_{ik} \log p_{\gamma_{k}}(x_{i}) + \sum_{k=1}^{K} z_{1k} \log \nu_{k} + \sum_{k,l=1}^{K} \sum_{i=2}^{n} z_{(i-1)k}z_{il} \log A_{k,l}.$$

76/98

### Observed-data likelihood

### Observed-data log-likelihood for HMMs

$$p_{\theta}(\mathbf{X}) = \log \sum_{\mathbf{Z}} p_{\theta}(\mathbf{X} \mid \mathbf{Z}) \times p_{\theta}(\mathbf{Z}),$$

$$= \log \left[ \sum_{z_1, \dots, z_n} \prod_{i=1}^n \prod_{k=1}^K p_{\gamma_k}(x_i)^{z_{ik}} \times \prod_{k=1}^K \nu_k^{z_{1k}} \prod_{k,l=1}^K \prod_{i=2}^n A_{k,l}^{z_{(i-1)k}z_{il}} \right].$$

Brute force computation involves  $\mathcal{O}(K^n)$  operations !

### Posterior distribution

Denote

$$\tau_{ik} \coloneqq p_{\theta}(z_{ik} = 1 \mid X)$$

### Important: posterior dependencies

Contrary to mixture models

- 1  $\tau_{ik} \neq p(z_{ik} = 1 \mid x_i) \rightsquigarrow$  we need the whole set of observations
- 2 More generally,  $p_{\theta}(\boldsymbol{Z} \mid \boldsymbol{X})$  does not factorizes over i anymore

$$p_{\theta}(\boldsymbol{Z} \mid \boldsymbol{X}) \neq \prod_{i} \prod_{k} \tau_{ik}^{z_{ik}}$$

 $oxed{3}$   $(z_i)_i$  are not independent  $\mid (x_i)_i$  but rather  $(z_{1:n}) \mid (x_{1:n})$  is an inhomogeneous Markov C

### **Posterior distribution**

Denote

$$\tau_{ik} := p_{\theta}(z_{ik} = 1 \mid X)$$

#### Important: posterior dependencies

Contrary to mixture models

- 1  $\tau_{ik} \neq p(z_{ik} = 1 \mid x_i) \rightsquigarrow$  we need the whole set of observations
- 2 More generally,  $p_{ heta}(oldsymbol{Z} \mid oldsymbol{X})$  does not factorizes over i anymore

$$p_{\theta}(\boldsymbol{Z} \mid \boldsymbol{X}) \neq \prod_{i} \prod_{k} \tau_{ik}^{z_{ik}}$$

 $(z_i)_i$  are not independent  $|(x_i)_i|$  but rather  $(z_{1:n})$   $|(x_{1:n})|$  is an inhomogeneous Markov C

$$\begin{split} p_{\theta}(z_{i+1} \mid z_{1:i}, x_{1:n}) = & p_{\theta}(z_{i+1} \mid z_{1:i}, x_{(i+1):n}), & (z_{i+1} \perp x_{1:i} \mid z_{i}) \\ & \propto & p_{\theta}(x_{(i+1):n} \mid z_{i}, z_{i+1}) p_{\theta}(z_{i+1} \mid z_{j:i}), & (\mathsf{Bayes} + \mathsf{HMM}) \\ & \propto & p_{\theta}(x_{(i+1):n}, z_{i+1} \mid z_{i}), \\ & = & p_{\theta}(z_{i+1} \mid z_{i}, x_{(i+1):n}), \\ & = & p_{\theta}(z_{i+1} \mid z_{i}, x_{1:n}). & (z_{i+1} \perp x_{1:i} \mid z_{i}) \end{split}$$

## The "three" HMM problems

Following Rabiner (1989), there are three problems related to HMMs:

**1** Given  $\theta$  the model parameters, compute the probability of observing  $x_{1:n}$  (i.e. the observed likelihood)

$$p_{\theta}(x_{1:n})$$

**2 Decoding** given  $\theta$  the model parameters and observations  $x_{1:n}$ , find the most probable sequence of hidden states

$$\hat{z}_{1:n} = \arg\max_{z_{1:n}} p_{\theta}(z_{1:n} \mid x_{1:n})$$

3 Inference: estimate the model parameters, e.g. by MLE

$$\hat{\pi}, \hat{A}, \hat{\gamma} \in \arg\max_{\theta} p_{\theta}(x_{1:n})$$

Actually, many others linked problems...

- Prediction:  $p_{\theta}(z_{n+m} \mid x_{1:n})$  for  $m \geq 1$
- Filtering:  $p_{\theta}(z_i \mid x_{1:i})$
- **Smoothing:**  $p_{\theta}(z_i \mid x_{1:n}) \neq \text{filtering, notice the conditioning on all the evidence}$

## **Inference in HMMs**

### Reminder on MLE & EM

$$\hat{\theta} \in \arg\max_{\theta} p_{\theta}(\boldsymbol{X})$$

#### **EM** algorithm

Start with  $\theta^{(0)}$  and repeat until convergence

■ E-step: given the current estimate  $\theta^{(t)}$ , compute the posterior  $p_{\theta^{(t)}}(Z \mid X)$ , or at least all its necessary moments to compute

$$\mathbb{E}_{\theta(t)} \left[ \log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \mid \boldsymbol{X} \right] = \mathbb{E}_{\boldsymbol{Z} \sim p_{\theta^{(t)}}(\cdot \mid \boldsymbol{X})} \left[ \log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \right].$$

■ M-step: update the estimate of  $\theta$  with

$$\theta^{(t+1)} \in \arg\max_{\theta} \mathbb{E}_{\theta(t)} \left[ \log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \mid \boldsymbol{X} \right]^{\cdot}$$

# E-step: compute $\mathbb{E}_{Z \sim p_{o(t)}(\cdot | X)} \left[ \log p_{\theta}(X, Z) \right]$

In Slide 76 we derived the expression of  $\log p_{\theta}(X, Z)$ , hence using linearity of  $\mathbb{E}$  we get:

$$\mathbb{E}\left[\log p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}) \mid \boldsymbol{X}\right] = \mathbb{E}\left[\sum_{k=1}^{K} z_{1k} \log \nu_{k} + \sum_{k,l=1}^{K} \sum_{i=2}^{n} z_{(i-1)k} z_{il} \log A_{k,l} \mid \boldsymbol{X}\right]$$

$$+ \mathbb{E}\left[\sum_{k=1}^{K} \sum_{i=1}^{n} z_{ik} \log p_{\gamma_{k}}(x_{i}) \mid \boldsymbol{X}\right],$$

$$= \sum_{k=1}^{K} \tau_{1k} \log \nu_{k} + \sum_{k,l=1}^{K} \sum_{i=2}^{n} \xi_{i,k,l} \log A_{k,l} + \sum_{k=1}^{K} \sum_{i=1}^{n} \tau_{ik} \log \Psi_{i}(k).$$

Where:

$$\begin{split} \Psi_i(k) &\coloneqq p_{\gamma_k}(x_i), \\ \tau_{ik} &\coloneqq p_{\theta^{(t)}}(z_{ik} = 1 \mid \boldsymbol{X}) = \mathbb{E}\left[z_{ik} \mid \boldsymbol{X}\right], \\ \xi_{i,k,l} &\coloneqq p_{\theta^{(t)}}(z_{(i-1)k} = 1, z_{il} = 1 \mid \boldsymbol{X}) = \mathbb{E}\left[z_{(i-1)k}z_{il} \mid \boldsymbol{X}\right] \end{split}$$

Hence, we need to compute "smoothed" posterior of all unigrams  $z_i$  and bi-grams  $(z_{i-1}, z_i)$   $\rightarrow$  no straight-forward closed form as in mixture since  $p(z_i \mid X) \neq p(z_i \mid x_i)$  anymore

## Intuition: "breaking" the chain

The smoothed posteriors can be computed thanks to a recursion called forward-backward.

The key decomposition lies with the fact that the chain can be  ${\sf split}^4$  into two distinct parts - past and future - conditionally on  $z_i$ 

$$\begin{split} p(z_i = k, x_{1:n}) = & p\left(z_i = k, x_{1:i}, x_{(i+1):n}\right), \\ = & p\left(x_{(i+1):n} \mid z_i = k, \underbrace{x_{1:i}}\right) p\left(x_{1:i}, z_i = k\right). \end{split}$$

<sup>&</sup>lt;sup>4</sup>As opposed to Fleetwood Mac's famous song

## The forward-backward algorithm

#### **Proposition**

For a given parameter  $\theta$ , the posterior probabilities  $\tau_{ik}$  and  $\xi_{i,k,l}$  can be computed by the two following recursions (we drop the  $\theta$  dependencies for readability,  $p=p_{\theta}$ )

**Forward-step** filtering step  $\alpha_i = (\alpha_i(1), \dots, \alpha_i(K))$  with

$$\alpha_i(k) = p(z_i = k, x_{1:i}) \longrightarrow \begin{cases} \alpha_1 = & \nu_1 \odot \Psi_1, \\ \alpha_i = & \Psi_i \odot (A^\top \alpha_{i-1}). \end{cases}$$
 (Forward recursion)

**Backward** compute likelihood of future evidence given that  $z_i = k$ 

$$\beta_i(k) = p(x_{(i+1):n} \mid z_i = k) \longrightarrow \begin{cases} \beta_n = 1, \\ \beta_{i-1} = A(\Psi_i \odot \beta_i). \end{cases}$$
 (Backward recursion)

Then the smoothed posteriors are obtained with

$$\tau_{ik} = p(z_i = k \mid \mathbf{X}) \propto \alpha_i(k)\beta_i(k),$$
  
$$\xi_{i,k,l} = p(z_i = k, z_{i+1} = l \mid \mathbf{X}) \propto \alpha_i(k)\Psi_{i+1}(l)\beta_{i+1}(l)A_{kl}$$

### Proof of the forward recursion

$$\alpha_{i}(k) = p(x_{1:i}, z_{i} = k) = \sum_{l=1}^{K} p(x_{1:i}, z_{i-1} = l, z_{i} = k),$$

$$= \sum_{l=1}^{K} p(x_{1:i-1}, x_{i}, z_{i-1} = l, z_{i} = k),$$

$$= \sum_{l=1}^{K} p(x_{i}, z_{i} = k \mid x_{1:i-1}, z_{i-1} = l)p(x_{1:i-1}, z_{i-1} = l),$$

$$= \sum_{l=1}^{K} p(x_{i} \mid z_{i} = k, \underbrace{x_{1:i-1}, z_{i-1} = l})p(z_{i} = k \mid \underbrace{x_{1:i-1}, z_{i-1} = l})p(x_{1:i-1}, z_{i-1} = l),$$

$$= p(x_{i} \mid z_{i} = k) \sum_{l=1}^{K} p(z_{i} = k \mid z_{i-1} = l)p(x_{1:i-1}, z_{i-1} = l), \qquad \text{(HMM model)}$$

$$= \Psi_{i}(k) \sum_{l=1}^{K} A_{lk} \alpha_{i-1}(l).$$

$$\Rightarrow \alpha_{i} = \Psi_{i} \odot (A^{T} \alpha_{i-1}).$$

### Proof of the backward recursion

$$\beta_{i-1}(k) = p(x_{i:n} \mid z_{i-1} = k) = \sum_{l=1}^{K} p(x_{i:n}, z_i = l \mid z_{i-1} = k),$$

$$= \sum_{l=1}^{K} p(x_i, x_{(i+1):n}, z_i = l \mid z_{i-1} = k),$$

$$= \sum_{l=1}^{K} p(x_{(i+1):n} \mid z_i = l, z_i = k, y_i) p(z_i = l, x_i \mid z_{i-1} = k),$$

$$= \sum_{l=1}^{K} p(x_{(i+1):n} \mid z_i = l) p(x_i \mid z_i = l, z_i = k) p(z_i = l \mid z_{i-1} = k),$$

$$= \sum_{l=1}^{K} \beta_i(l) \Psi_i(k) A_{kl},$$

$$\implies \beta_{i-1} = A(\Psi_i \odot \beta_i).$$

# Proof for the one-slice smoothed marginal $au_{ik}$

We previously saw Slide 82 that

$$\tau_{ik} = p(z_i = k \mid \boldsymbol{X}),$$

$$= \frac{p(z_i = k, x_{1:n})}{p(x_{1:n})},$$

$$= \frac{p\left(x_{(i+1):n} \mid z_i = k\right)}{p\left(x_{(i+1):n} \mid z_i = k\right)} \underbrace{p\left(x_{1:i}, z_i = k\right)}_{p(x_{1:n})},$$

$$\propto \alpha_i(k)\beta_i(k).$$
(Slide 82)

In addition, we get that the normalization factor (i.e. the observed likelihood) is

$$p(x_{1:n}) = \sum_{l} \alpha_i(l)\beta_i(l)$$
, at any time step  $i = 1, \dots, n$ 

# Proof for the two-slice smoothed marginal $\xi_{i,k,l}$

Using the HMM conditional independencies we can simplify

$$\begin{aligned} \xi_{i,k,l} &= p(z_i = k, z_{i+1} = l \mid x_{1:n}) = \frac{p(x_{1:n}, z_i = k, z_{i+1} = l)}{p(x_{1:n})}, \\ &\propto p(x_{1:n}, z_i = k, z_{i+1} = l), \\ &\propto p(x_{1:i} \mid z_i = k, \underline{z_{i+1}} = \underline{l, x_{(i+1):n}}) p(z_i = k, z_{i+1} = l, x_{(i+1):n}), \\ &\propto p(x_{1:i} \mid z_i = k) p(z_i = k, z_{i+1} = lx_{i+1}, x_{(i+2):n}), \\ &\propto p(x_{1:i} \mid z_i = k) p(x_{(i+2):n} \mid z_{i+1} = l, \underline{x_{i+1}, z_i} = k)} p(z_i = k, z_{i+1} = l, x_{i+1}), \\ &\propto p(x_{1:i} \mid z_i = k) p(x_{(i+2):n} \mid z_{i+1} = l) p(x_{i+1} \mid z_{i+1} = l, \underline{z_i} = k) p(z_{i+1} = l \mid z_i = k) p(z_i = k), \\ &\propto p(x_{1:i} \mid z_i = k) \beta_{i+1}(l) \Psi_{i+1}(l) A_{kl}, \\ &\propto p(x_{1:i}, z_i = k) \beta_{i+1}(l) \Psi_{i+1}(l) A_{kl}, \\ &\propto \alpha_i(k) \beta_{i+1}(l) \Psi_{i+1}(l) A_{kl}. \end{aligned}$$

## Additional properties of the forward-backward messages

### Computational complexity

The FB procedure is in  $\mathcal{O}(nK^2)$ 

In addition to  $\tau_{ik}$  and  $\xi_{i,k,l}$ 

- The observed likelihood can be computed in two equivalent ways:
  - **1** with a single forward pass as  $p_{\theta}(x_{1:n}) = \sum_{l} \alpha_n(k)$
  - 2 at any step i:  $p_{\theta}(x_{1:n}) = \sum_{k} \alpha_i(k)\beta_i(k)$

Using 1 is called a *forward* algorithm.

 $\blacksquare$  The *filtered* marginal at step i is

$$p(z_i = j \mid x_{1:i}) = \alpha_i(k) / \sum_{l} \alpha_i(l)$$

### Some remarks on forward-backward

Not complicated to implement but

- 1 Careful with indices, notations easily get mixed up
- 2 Numerical error: code in log-space  $\log \alpha$ ,  $\log \tau$  and  $\log \xi$  with the "log-sum-exp trick" for computing the normalizing constant. An example

$$\log \alpha_i = \log \Psi_i + \log A^{\top} \alpha_{i-1} - cte_i$$

with  $cte_i := \log \sum_k e^{\log \alpha_i(k)}$ . When computing  $cte_i$ , we use

$$\log \sum_{k} e^{y_k} = m^* + \log \underbrace{\sum_{k} e^{y_k - m^*}}_{>1},$$

with  $y_k = \log \alpha_i(k)$  to ensure there is at least one  $e^0 = 1$  in the sum for numerical stability.

## M-step

Assume  $au_{ik}^{(t)}$  and  $\xi_{i,k,l}^{(t)}$  have been computed by FB recursion (E-step). We need to solve

$$\theta^{(t)} \in \operatorname*{arg\,max}_{\boldsymbol{\theta} = (\boldsymbol{\nu}, \boldsymbol{A}, \boldsymbol{\gamma})} \left\{ f_t(\boldsymbol{\theta}) \coloneqq \mathbb{E}_{\boldsymbol{Z} \sim p_{\boldsymbol{\theta}^{(t-1)}}} \left[ \log p_{\boldsymbol{\theta}}(\boldsymbol{X}, \boldsymbol{Z}) \right] \right\}.$$

With

$$f_t(\boldsymbol{\theta}) = \underbrace{\sum_{k=1}^K \tau_{1k}^{(t)} \log \nu_{k}}_{\text{Markov part}} + \underbrace{\sum_{k,l=1}^K \sum_{i=2}^n \xi_{i,k,l}^{(t)} \log A_{k,l}}_{\text{Emission part}} + \underbrace{\sum_{k=1}^K \sum_{i=1}^n \tau_{ik}^{(t)} \log p_{\gamma_k}(x_i)}_{\text{Emission part}},$$

and constraints

$$\sum_{k=1}^K 
u_k = 1$$
 and  $\sum_{l=1}^K A_{kl} = 1, \quad orall l = 1, \ldots, K$  and  $\gamma_k \in \Gamma$ 

91/98

## M-step for the Markov Chain part

Introducing Lagrange multipliers  $\lambda_0,\dots,\lambda_K$  associated to the K+1 equality constraints we seek stationary points of

$$\mathcal{L}(\nu, A; \lambda) = \sum_{k=1}^{K} \tau_{1k}^{(t)} \log \nu_k + \sum_{k,l=1}^{K} \sum_{i=2}^{n} \xi_{i,k,l}^{(t)} \log A_{k,l} + \lambda_0 (1 - \sum_k \nu_k) + \sum_k \lambda_k (1 - \sum_l A_{kl}).$$

This leads for  $\forall k, l \in [1, K]$ :

$$\hat{\nu}_k^{(t)} = \frac{\tau_{1k}^{(t)}}{\lambda_0}, \qquad \hat{A}_{kl} = \frac{\sum_{i=1}^{n-1} \xi_{i,k,l}^{(t)}}{\lambda_k}.$$

Injecting into the K+1 constraints we get the Lagrange multipliers

$$\lambda_0 = \sum_k \tau_{1k}^{(t)} = 1$$

$$\forall k = 1, \dots, K, \quad \lambda_k = \sum_{i=1}^{n-1} \sum_{l=1}^K \xi_{i,k,l} = \sum_{i=2}^n \tau_{ik}^{(t)}.$$

## M-step for the emission model part

Obviously dependent on the emission model  $p_{\gamma_k}$ 

## M-step for the emission model part

### Obviously dependent on the emission model $p_{\gamma_k}$

Still, there are 2 interesting cases we can think about

**1** Discrete emissions  $x_i \in \{1, \dots, V\}$  and  $x_i \mid \{z_{ik} = 1\} \sim \mathcal{M}_V(1, \gamma_k)$  with each  $\gamma_k$  a probability vector over V outcomes. Minimizing the Lagrangian accounting for  $\sum_v \gamma_v = 1$ , we then have

$$\hat{\gamma}_{kv} = \sum_{i=1}^n \tau_{ik} x_{iv} / \tilde{n}_k, \quad \text{with: } \tilde{n}_k = \sum_{i=1}^n \tau_{ik}.$$

**2** Exponential family if  $\log p_{\eta_k}(x_i) = \eta_k^\top T_k(x_i) - a_k(\eta_k) - b_k(x_i)$ , then we seek to solve this implicit equation in  $\eta_k$ 

$$\nabla a(\eta_k) = \frac{\sum_{i=1}^n \tau_{ik} T_k(x_i)}{\tilde{n}_k}$$

I is a particular case since  $\mathcal{M}_V(1,\gamma)$  can be cast in the exponential family. Its minimal form involves  $\eta = \log \gamma/\gamma_V$ ,  $a(\eta) = \log \sum_v e^{\eta_v}$  and T(x) = x. Notice that  $\nabla a(\eta) = softmax(\eta) = \gamma$ .

# Final comment: prediction of $Z_{i+1} \mid Z_i, X_{1:(i+1)}$

Recall the DAG



Hence, in a HMM we have that for all k:

$$\begin{split} p(z_{i+1} = l \mid z_i = k, \, X_{1:(i+1)}) &= p(z_{i+1} = l \mid z_i = k, \, X_{1:(i+1)}), \\ &\propto p(X_{(i+1)} \mid z_i = k, \, z_{i+1} = l) p(z_{i+1} = l \mid z_i = k) \\ &\propto p_{\gamma_l}(x_{i+1}) A_{kl}, \\ &= \frac{p_{\gamma_l}(x_{i+1}) A_{kl}}{\sum_l p_{\gamma_l}(x_{i+1}) A_{kl}}. \end{split} \tag{HMM}$$

 $\leadsto (Z_{1:n} \mid X_{1:n})$  is an inhomogeneous MC with the transition probability at step i that are biased according to the likelihood of the data under the arrival state  $\exp(\Psi_i(l))$