Examenul de bacalaureat național 2018

Proba E. c)

Matematică *M_mate-info*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

	`	
1.	$a = 5 + \sqrt{5}$	2p
	Cum $2 < \sqrt{5} < 3$, obţinem $[a] = 5 + [\sqrt{5}] = 7$	3 p
2.	$(f \circ f)(x) = x + 2m, \ f(x+1) = x + 1 + m$	2p
	x + 2m = x + 1 + m, deci $m = 1$	3р
3.	$\left(\frac{2}{3}\right)^{4x+1} \le \left(\frac{2}{3}\right)^{3x+5} \Leftrightarrow 4x+1 \ge 3x+5$	3p
	$x \in [4, +\infty)$	2 p
4.	Numărul de submulțimi cu cel puțin 3 elemente ale mulțimii A este $C_{10}^3 + C_{10}^4 + \cdots + C_{10}^{10} =$	3 p
	$=2^{10} - C_{10}^{0} - C_{10}^{1} - C_{10}^{2} = 1024 - 1 - 10 - 45 = 968$	2p
5.	$\vec{u} = \overrightarrow{MN} + \overrightarrow{MP} = \overrightarrow{MQ}$, unde $MNQP$ este paralelogram	2p
	$m(\ll M) = 90^{\circ}$, deci $MNQP$ este dreptunghi și $MQ = NP = 10$	3 p
6.	$tg x + \frac{1}{tg x} + 2 = 0 \Leftrightarrow \frac{\left(tg x + 1\right)^2}{tg x} = 0$	2p
	$\operatorname{tg} x = -1 \text{ și, cum } x \in \left(\frac{\pi}{2}, \pi\right), \text{ obținem } x = \frac{3\pi}{4}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(x)) = \begin{vmatrix} x & 0 & 2x - 1 \\ 0 & \frac{1}{2} & 0 \\ 2x - 1 & 0 & x \end{vmatrix} = \frac{x^2}{2} + 0 + 0 - \frac{(2x - 1)^2}{2} - 0 - 0 = \frac{-3x^2 + 4x - 1}{2}$	3 p
	$x = \frac{1}{3} \text{ sau } x = 1$	2p
b)	$A(x) + A(1-x) = \begin{pmatrix} x & 0 & 2x-1 \\ 0 & \frac{1}{2} & 0 \\ 2x-1 & 0 & x \end{pmatrix} + \begin{pmatrix} 1-x & 0 & 1-2x \\ 0 & \frac{1}{2} & 0 \\ 1-2x & 0 & 1-x \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$	3p
	$= 2 \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} = 2A \left(\frac{1}{2}\right), \text{ pentru orice număr real } x$	2 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

c)	$\begin{pmatrix} -5x^2 + 5x - 1 & 0 & -4x^2 + 4x - 1 \\ 0 & \frac{1}{4} & 0 \\ -4x^2 + 4x - 1 & 0 & -5x^2 + 5x - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$	3р
	$x = \frac{1}{2}$	2p
2.a)	$x \circ y = \left(xy + \hat{3}x\right) + \left(\hat{3}y + \hat{9}\right) =$	2p
	$= x\left(y+\hat{3}\right) + \hat{3}\left(y+\hat{3}\right) = \left(x+\hat{3}\right)\left(y+\hat{3}\right), \text{ pentru orice } x, y \in \mathbb{Z}_{20}$	3p
b)	$(a+\hat{3})(x+\hat{3}) = \hat{0}$, pentru orice $x \in \mathbb{Z}_{20}$	2p
	$a + \hat{3} = \hat{0} \Rightarrow a = \hat{17}$	3p
c)	$\left(a+\hat{3}\right)\left(b+\hat{3}\right) = \hat{0}$	2p
	De exemplu, pentru $a = \hat{1}$ şi $b = \hat{2}$, obţinem $a + \hat{3} = \hat{4}$ şi $b + \hat{3} = \hat{5}$, deci $a \circ b = \hat{0}$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 4x - \frac{1}{2\sqrt{x}}, \ x \in (0, +\infty)$	2p
	$\lim_{x \to 1} \frac{f(x) - 1}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = \frac{7}{2}$ $f'(x) = 0 \Leftrightarrow x = \frac{1}{4}$	3 p
b)	$f'(x) = 0 \Leftrightarrow x = \frac{1}{4}$	1p
	$f'(x) \le 0$, pentru orice $x \in \left(0, \frac{1}{4}\right]$, deci f este descrescătoare pe $\left(0, \frac{1}{4}\right]$ și $f'(x) \ge 0$, pentru orice $x \in \left[\frac{1}{4}, +\infty\right)$, deci f este crescătoare pe $\left[\frac{1}{4}, +\infty\right)$	2 p
	$ f \text{ continuă pe } (0,+\infty), \lim_{x\to 0} f(x) = 0, \lim_{x\to +\infty} f(x) = +\infty, f(x) \ge f\left(\frac{1}{4}\right) \text{ si, cum } f\left(\frac{1}{4}\right) = -\frac{3}{8}, $	2p
	obţinem Im $f = \left[-\frac{3}{8}, +\infty \right]$	2p
c)	$e^x > 0$, deci $f(e^x) \ge -\frac{3}{8}$, pentru orice $x \in \mathbb{R}$	3p
	$2(e^x)^2 - \sqrt{e^x} \ge -\frac{3}{8}$, deci $2e^{2x} - e^{\frac{x}{2}} + \frac{3}{8} \ge 0$, pentru orice număr real x	2 p
2.a)	$\int_{0}^{1} f(\operatorname{tg} x) dx = \int_{0}^{1} \operatorname{arctg}(\operatorname{tg} x) dx = \int_{0}^{1} x dx =$	3 p
	$=\frac{x^2}{2}\Big _0^1 = \frac{1}{2}$	2 p
b)	$\int_{0}^{1} \frac{\arctan x}{x^{2} + 1} dx = \int_{0}^{1} (\arctan x)' \arctan x dx = \frac{1}{2} \arctan x^{2} x \Big _{0}^{1} =$	3 p
	$= \frac{1}{2} \operatorname{arctg}^2 1 = \frac{1}{2} \cdot \left(\frac{\pi}{4}\right)^2 = \frac{\pi^2}{32}$	2 p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

c) $(n+1)\int_{0}^{1} x^{n} f(x) dx = \int_{0}^{1} (x^{n+1})' \operatorname{arctg} x dx = x^{n+1} \operatorname{arctg} x \Big _{0}^{1} - \int_{0}^{1} \frac{x^{n+1}}{x^{2} + 1} dx = \frac{\pi}{4} - \int_{0}^{1} \frac{x'}{x^{2}} dx$	$\frac{-1}{-1}dx$ 2p	$x^{n+1}\operatorname{arctg} x \begin{vmatrix} 1 - \int_{0}^{1} \frac{x^{n+1}}{x^{2} + 1} dx = \frac{\pi}{4} - \int_{0}^{1} \frac{x^{n+1}}{x^{2} + 1} dx $ 2p
$x \in [0,1] \Rightarrow \frac{1}{2} \le \frac{1}{x^2 + 1} \le 1 \Rightarrow \frac{1}{2} \int_0^1 x^{n+1} dx \le \int_0^1 \frac{x^{n+1}}{x^2 + 1} dx \le \int_0^1 x^{n+1} dx \text{si, cum } \int_0^1 x^n dx$	$^{+1}dx = \frac{1}{n+2}$,	$\int_{0}^{1} \frac{x^{n+1}}{x^2 + 1} dx \le \int_{0}^{1} x^{n+1} dx \text{si, cum} \int_{0}^{1} x^{n+1} dx = \frac{1}{n+2} ,$
obţinem $\frac{\pi}{4} - \frac{1}{n+2} \le (n+1) \int_0^1 x^n f(x) dx \le \frac{\pi}{4} - \frac{1}{2(n+2)}$, pentru orice număr na	Sp	