Apostol p.278 no.5

We have from Apostol that if we have that if $f(x) = P_n(x) + x^n g(x)$, where $P_n(x)$ is a polynomial of degree n, and $\lim_{x\to 0} g(x) = 0$, then we have that $P_n(x)$ is the Taylor polynomial of f of degree n.

It is proved in class that

$$(1-x)\sum_{k=0}^{n} x^k = 1 - x^{n+1}$$

Substituting x^2 for x,

$$\implies (1 - x^2) \sum_{k=0}^{n} x^{2k} = 1 - x^{2n+2}$$

$$\implies \frac{1}{1 - x^2} = \sum_{k=0}^{n} x^{2k} + \frac{x^{2n+2}}{1 - x^2}$$

$$\implies \frac{x}{1 - x^2} = \sum_{k=0}^{n} x^{2k+1} + x^{2n+2} \frac{x}{1 - x^2}$$

$$= P_{2n+1}(x) + x^{2n+2} \frac{x}{1 - x^2}$$

Since we have that $\frac{x}{1=x^2}$ is continuous, we have that it approaches zero when x approaches zero.

From the above, we have that

$$P_{2n+1} = T_{2n+1}(\frac{x}{1-x^2}) = \sum_{k=0}^{n} x^{2k+1}$$

.

Apostol p.430 no.17

Claim. Let $f_n(x) = nxe^{-nx^2}$ for $x \in \mathbb{R}$, $n \in \mathbb{Z}_{>0}$.

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n \to \infty} f_n(x) dx$$

Proof. Let us compute the left side first.

$$\lim_{n \to \infty} \int_0^1 nx e^{-nx^2} = \lim_{n \to \infty} \left(-\frac{1}{2} e^{-nx^2} \Big|_0^1 \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{2} (1 - e^{-n}) \right)$$

$$= \lim_{n \to \infty} \frac{1}{2} - \lim_{n \to \infty} \frac{1}{2} e^{-n}$$

$$= \frac{1}{2}$$

Taking the limit $\lim_{n\to\infty} f_n(x)$, we see that $\lim_{n\to\infty} nxe^{-nx^2} = 0$, as for all $\epsilon > 0$, pick

$$\int_0^1 \lim_{n \to \infty} \left(nxe^{-nx^2} \right) = \int_0^1 0 = 0$$

The limit is proved in the Apostol reading as Theorem 7.11 (and is also entirely believable).

Problem 1

Claim. Let $f_n:[a,b]\to\mathbb{R}$ be a sequence of integrable functions converging uniformly to $f:[a,b]\to\mathbb{R}$. f is integrable and

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

Proof. A function f is only integrable if any ϵ there exist step functions s,t such that $s \leq f \leq t$ and $\int_a^b (t-s) < \epsilon$.

Let $\epsilon' = \frac{\epsilon}{3(b-a)}$. Since f_n uniformly converges to f, we have that $\exists N \mid n > N \implies \forall x \in [a,b], |f(x)-f_n(x)| < \epsilon'$. Then, since f_n is integrable, we have s_n, t_n such that $\int_a^b (t_n-s_n) < (b-a)\epsilon'$. Now, consider $\int_a^b ((t_n+\epsilon')-(s_n-\epsilon')) = \int_a^b (t_n-s_n) + 2(b-a)\epsilon' < 3(b-a)\epsilon' = \epsilon$. We have that $s_n - \epsilon' \le f_n(x) - \epsilon' \le f(x) \le f_n(x) + \epsilon' \le t_n$.

We see that there exist step functions $t = t_n + \epsilon'$, $s = s_n - \epsilon'$ such that $\int_a^b (t - s) < \epsilon$ for any $\epsilon > 0$.

To show the given identity, for any $\epsilon > 0$, let $\epsilon' = \frac{\epsilon}{b-a}$. Then, $\exists N \mid n > N \implies \forall x \in [a,b], |f(x)-f_n(x)| < \epsilon' \implies \int_a^b |f(x)-f_n(x)| dx < (b-a)\epsilon' = \epsilon$.

Since $\left| \int_a^b f(x) dx - \int_a^b f_n(x) dx \right| = \left| \int_a^b (f(x) - f_n(x)) dx \right| \le \int_a^b |f(x) - f_n(x)| dx < \epsilon$ for all n > N, we have that $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Problem 2

 \mathbf{a}

We have that $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{1 + nx^2} = 0$, which will be shown in part b as $|f_n(x)| \le \frac{1}{\sqrt{n}}$, and so $\lim_{n \to \infty} |f_n(x)| \le \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \implies \lim_{n \to \infty} f_n(x) = 0$. For g(x), we have that $f'_n(x) = -\frac{2nx^2}{(1 + nx^2)^2} + \frac{1}{1 + nx^2} = -\frac{1}{n} \frac{2x^2}{\frac{1}{n^2} + \frac{2x^2}{n} + x^4} + \frac{1}{1 + nx^2}$. For all $x \neq 0$, we have that $g(x) = \lim_{n \to \infty} f'(x) = 0$ as well; however, at x = 0, we have that $f'_n(0) = 1$, and so $\lim_{n \to \infty} f'_n(0) = 1$.

b

We find the local extrema of f by taking the zeros of the derivative of f. We see then that this occurs when $2nx^2=1+nx^2 \implies nx^2=1 \implies x=\pm \frac{1}{\sqrt{n}} \implies f(x)=\pm \frac{1}{2\sqrt{n}}$ as the maxima and minima. Since we see that $\lim_{x\to\infty} f(x)=0, \lim_{x\to-\infty} f(x)=0, |f_n(x)|<\frac{1}{\sqrt{n}}$. This means that for any $\epsilon>0$, we have that $\forall x\in\mathbb{R}, |f_n(x)|<\epsilon$ if $n>N=\left\lceil \frac{1}{\epsilon^2}\right\rceil$ and so f_n converge uniformly to 0.

 \mathbf{c}

f is constant and so differentiable everywhere. Then, we have that $f'(x) = g'(x) \iff x \neq 0$.

Problem 5

Claim. If f_n, g_n are sequences of bounded functions on an interval I, and $f_n \to f$ and $g_n \to g$ both uniformly, then $f_n + g_n \to f + g$ uniformly.

Proof. Since f_n, g_n uniformly converge to f, g, we have that for $\frac{\epsilon}{2} > 0$, $\exists N_f, N_g \mid n > N_f \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2}, n > N_g \Longrightarrow |g_n(x) - g(x)| < \frac{\epsilon}{2}$. Then, for $x > \max\{N_f, N_g\}$, we have that $|f_n(x) + g_n(x) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon$.

Problem 7

Claim.

$$\sum_{n=0}^{\infty} \frac{1}{2^n + x^{2n}}$$

is everywhere convergent to a continuous function that can be integrated term by term.

Proof. Uniform convergence follows from the Weierstrass M-test. Note that we have that $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (x^n)^2 \geq 0 \implies 2^n + x^{2n} \geq 2^n \implies \frac{1}{2^n + x^{2n}} \leq \frac{1}{2^n}$. Thus, let $M_n = \frac{1}{2^n}$. We have that $\sum_{n=0}^{\infty} M_n$ is a convergent geometric series and thus $\sum_{n=0}^{\infty} \frac{1}{2^n + x^{2n}}$ is uniformly convergent everywhere.

The claim about integrability will follow immediately from application of problem 1 as we have that the individual terms of the series are integrable, and we have that each partial sum is then integrable, and thus the function can be integrated term by term. \Box

Problem 9

\mathbf{a}

g(x) is positive on $(0, \infty)$ since we have that $\exp(t)$ is positive, and $g(x) = \exp(\frac{-1}{x^2})$ on $(0, \infty)$. g(x) is clearly smooth for x < 0 as it is constant; in fact on this domain the k^{th} derivative is 0.

For x > 0, we will show that $g^{(n)}(x)$ is a function of the form $P(\frac{1}{x})g(x)$, where P(t) is a polynomial in t. Consider first the base case of n = 0, which has $P(\frac{1}{x}) = 1$. Then, in the inductive case, we have $f^{(k)}(x) = P(\frac{1}{x})e^{-\frac{1}{x^2}} \implies f^{(k+1)}(x) = P'(\frac{1}{x})e^{-\frac{1}{x^2}} + (\frac{2}{x^3})P(\frac{1}{x})e^{-\frac{1}{x^2}} = (P'(\frac{1}{x}) + (\frac{2}{x^3})P(\frac{1}{x}))e^{-\frac{1}{x^2}}$. However, we have that $P'(\frac{1}{x})$ is still a polynomial in $\frac{1}{x}$ by the power rule, and so $f^{(k+1)}(x) = P(\frac{1}{x})e^{-\frac{1}{x^2}}$ as well.

The final case is that g must be infinitely differentiable at x=0. To do this, we will show that $g^{(n)}(x)=0$ for all n. We first show that $\lim_{x\to 0}\frac{e^{-\frac{1}{x^2}}}{x^m}=0$ for all m>0. Putting t to $\frac{1}{x^2}$, the limit becomes $\lim_{t\to\infty}\frac{t^{\frac{m}{2}}}{e^t}$, which is shown to be 0 in Apostol (as mentioned above). Extending, we see that for any polynomial $P(\frac{1}{x})$ we have that $\lim_{x\to 0}P(\frac{1}{x})e^{-\frac{1}{x^2}}=0$, as the sum of limits is the limit of the sum.

We now proceed with induction. The base case is n=0, and we see that g(0)=0 by definition. We compute the inductive step as follows: assume that $g^{(k)}(0)=0$. Then, $g^{(k+1)}(0)=\lim_{h\to 0}\frac{g^{(k)}(h)}{h}=\lim_{h\to 0}\frac{g^{(k)}P(\frac{1}{x})}{h}=\lim_{h\to 0}e^{-\frac{1}{h^2}}P(\frac{1}{x})=0$, which holds since for h<0, we have that the derivative is also 0. The derivative is then 0 at x=0, and the function is then smooth.

b

We will show here that the product of smooth functions is itself smooth. Let a,b be smooth functions on an interval I. Then the n^{th} derivative is given by $\sum_{k=0}^{n} \binom{n}{k} a^{(k)} b^{(n-k)}$. To show this identity, we can induct on n, as the base case holds with n=0. Then, consider that if $(ab)^{(k)} = \sum_{k=0}^{n} \binom{n}{k} (a^{(k+1)}b^{(n-k)} + a^{(k)}b^{(n-k+1)}) = \sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} a^{(k)}b^{(n+1-k)} + a^{(n+1)}b + a^{(n+1)}b$

 $ab^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^{(k)} b^{n+1-k}$. These all exist by the fact that a, b are themselves smooth. We have that h(x) = g(1-x)g(1+x) as the product of smooth functions is itself smooth, and since $F'(x) = \frac{1}{A}h(x)$ by the fundamental theorem of calculus, we have that F also must be smooth.

Further, we have that since h(x) = 0 for x < -1 as g(1+x) = 0 and h(x) = 0 for x > 1 as g(1-x) = 0, for x < -1, $\int_{-1}^{x} h(t)dt = -\int_{x}^{-1} h(t)dt = \int_{x}^{-1} 0dt = 0$. Similarly, we have that for x > 1, $\int_{-1}^{x} h(t)dt = \int_{-1}^{1} h(t)dt + \int_{1}^{x} h(t)dt = A + \int_{1}^{x} 0dt = A$.

This gives us that for x < -1, F(x) = 0, for x > 1, $F(x) = \frac{1}{A}A = 1$.

This gives us that for x < -1, F(x) = 0, for x > 1, $F(x) = \frac{1}{A}A = 1$.

 \mathbf{c}

Consider

$$\phi(x) = F(2-x)F(2+x)$$

For $x \in \mathbb{R}$, we have that $0 \le F(2-x), |F(2+x) \le 1 \implies 0 \le \phi(x) \le 1$..

For x < -3, $F(2+x) = 0 \implies \phi(x) = 0$. For x > 0, $F(2-x) = 0 \implies \phi(x) = 0$.

For
$$x \in (-1, 1)$$
, $F(2 - x) = F(2 + x) = 1 \implies \phi(x) = 1$.

 ϕ is smooth as the product of smooth functions.

Problem 10

Consider

$$f(x) = \phi(\frac{6}{|c-d|}(x-c))g(x) + \phi(\frac{6}{|c-d|}(x-d))h(x)$$

For $x \in (c - \frac{|c - d|}{6}, c + \frac{|c - d|}{6})$, we have that $\frac{6}{|c - d|}(x - c) \in (-1, 1)$ and for $x \notin (c - \frac{|c - d|}{2}, c + \frac{|c - d|}{2})$, we have that $\frac{6}{|c - d|}(x - c) \notin (-3, 3)$ and $f(x) = \phi(\frac{6}{|c - d|}(x - d))h(x)$.

For $x \in (d - \frac{|c - d|}{6}, d + \frac{|c - d|}{6})$, we have that $\frac{6}{|c - d|}(x - d) \in (-1, 1)$ and for $x \notin (d - \frac{|c - d|}{2}, d + \frac{|c - d|}{2})$, we have that $\frac{6}{|c - d|}(x - d) \notin (-3, 3)$ and $f(x) = \phi(\frac{6}{|c - d|}(x - c))g(x)$.

Furthermore, we have that $(d - \frac{|c-d|}{2}, d + \frac{|c-d|}{2}) \cup (c - \frac{|c-d|}{2}, c + \frac{|c-d|}{2}) = \emptyset$, so within $\delta = \frac{|c-d|}{6}$ of c, we have that f(x) = g(x) and within δ of d, we have that f(x) = h(x).

Problem 11

We will first prove a couple lemmas:

Lemma. Let $U = \{x \in [c, b) \mid \forall y \in [c, x), f(y) = g(y)\}$. Then the supremum u of this set exists and $\exists u' > u \mid f(x) = g(x)$ on $[c, \min(b, u'))$.

Proof. We know that $c + \delta \in U$, and the supremum exists as it is bounded above by b. Thus, $\sup(U) = u$ exists.

Consider that f - g is also analytic at u. Thus, we have that for R > 0, within (u - R, u + R), f - g is equal to some power series $\sum_{n=0}^{\infty} a_n (x - u)^n$.

Now we show that if a power series f is convergent on (c - R, c + R) is zero on a sequence $\{x_n\}$ that converges to c on that interval, then the power series must be the zero function. Similarly, since f - g is analytic and thus smooth, we must have that $f^{(k)}(x)$ is continuous, and also has as $\lim_{n\to\infty} f^{(k)}(x_n) = f^{(k)}(c) = 0$ by the definition of sequential continuity.

We now apply the above fact to the power series centered at u, which now must vanish as the approximation property furnishes such a sequence converging to u, as for any $\epsilon > 0$, $\exists x \in U \mid u - x < \epsilon$ and (f - g)(x) = 0. Thus, we have that on (u - R, u + R), f - g = 0. The lemma is satisfied with u' = u + R.

Lemma. Let $V = \{x \in (a, c] \mid \forall y \in (x, c], f(y) = g(y)\}$. Then the infimum v of this set exists and $\exists v' < v \mid f(x) = g(x)$ on $(\max(a, v'), c]$.

Proof. We know that $c - \delta \in V$, and the infimum exists as it is bounded below by b. Thus, $\inf(V) = v$ exists.

Consider that f-g is also analytic at v. Thus, we have that for R>0, within (v-R,v+R), f-g is equal to some power series $\sum_{n=0}^{\infty} a_n(x-u)^n$.

Since we have a sequence within V converging to v from the approximation property, we have that that power series is 0 and thus the lemma is satisfied with v' = v - R.

Claim. Let $f, g: (a, b) \to \mathbb{R}$ be analytic functions. $\exists c \in (a, b), \delta > 0 \implies |x - c| < \delta \implies f(x) = g(x)$. Then f = g.

Proof. Let U, V, u, v, u', v' be as above. We know that $u \leq b$. Suppose that u < b. Then we have from the first lemma that f = g on $[c, \min(b, u'))$, and so $\min(b, u') \in U$ but also $\min(b, u') > \sup(U)$ as well. $\Rightarrow \leftarrow$, so u = b.

Similarly, we know that $v \ge a$. Suppose that v > a. Then we have from the second lemma that f = g on $(\max(a, v'), c]$, and so $\max(a, v') \in V$ but also $\min(a, v') < \inf(V)$ as well. $\Rightarrow \leftarrow$, so v = a.

Thus, we have that f = g on (a, b).