Challenge

Conformity/quality asessement of products

Key Process Parameter identification Identification of relationships between process parameters and the considered product characteristic

All PP and the considered KC

Processing

Interpretation

Missing Values?
Outliers?
Correlation analysis?

...

KNN application, why not?

PCA SHAP!

Key Process Parameter identification Extraction of rules

Decision Tree ? Accuracy ? Rules ? Compared to PCA Results ? Other clasifications? Why not?

Key Process Parameter identification

Definition of a regression model – assessment of the accuracy of the model

Rgression model, confusion matrix?
Accuracy?
Model reduction?

Comments for PCA Use in R


```
setwd("D:/Enseignement/Enseignement ENSAM/Maths/Formation Data science/ACP")
rm(list=ls())
                                                                    Working directory address
chooseCRANmirror(ind=29)
install.packages("FactoMineR")
install.packages("factoextra")
install.packages("corrplot")
library("FactoMineR")
library("factoextra")
                                                                    Data file name (.csv)
library("corrplot")
donnee<-read.csv("factory process ACP5 KC4.csv", header=TRUE, sep=";")
res<-PCA(donnee,axes=c(1,5), graph=F)
                                                                    PCA projection axis
vp<-fviz_eig(res)
var<-fviz pca var(res,axes=c(1,5))</pre>
ind<-fviz pca ind(res,axes=c(1,5),col.ind=donnee$KC4,label="none",gradient.cols="red")
bip<-fviz pca biplot(res,axes=c(1,5),col.ind=donnee$KC4,label="var",gradient.cols="red")
M <- cor(donnee)
corrplot(M, order = "hclust", addrect = 5)
                                                                    Name of the considered KC
print(ind)
print(vp)
print(bip)
                                                                    Number of clusters for the
print(var)
                                                                    correlation analysis
pdf("ACP15 KC4.pdf")
print(vp)
print(var)
                                                                    Result file name (.pdf)
print(ind)
print(bip)
corrplot(M, order = "hclust", addrect = 5)
dev.off()
```