Elaborato Calcolo numerico 2020 Autori: Emanuele Brizzi, Massimo Hong

August 16, 2020

Contents

1	Esercizio1	3
2	Esercizio2	3
3	Esercizio3	4
4	Esercizio 4	4
5	Esercizio 6	5
6	Esercizio 7	6
7	Esercizio 10	7
8	Esercizio 13	8
9	Esercizio 14	9

Verificare che, per h sufficientemente piccolo, si ha

$$\frac{f(x-h) - 2f(x) + f(x+h)}{h^2} = O(h^2)$$

Per la dimostrazione utilizziamo il polinomio di taylor di grado n centrato in x_0 :

$$P_n(x; x_0) = \sum_{k=0}^n \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)$$
$$R_n(x; x_0) = O(x - x_0)^{(n+1)}$$

Per cui possiamo calcolare f(x+h) e f(x-h) sviluppando il polinomio di Taylor centrato in x:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + O(h^4)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + O(h^4)$$

Sostituendo all'equazione iniziale otteniamo:

$$\frac{f(x-h) - 2f(x) + f(x+h)}{h^2} = \frac{(h^2)f''(x) + O(h^4)}{h^2} = f''(x) + O(h^2)$$

2 Esercizio2

Spiegare cosa calcola il seguente script Matlab: u = 1; while 1, if 1+u==1, break, end, u = u/2; end, u

Teoricamente questo script non dovrebbe mai terminare poichè dividendo per 2 il valore u, non si dovrebbe mai raggiungere lo 0, tuttavia il seguente script termina. Più precisamente, alla fine dell'esecuzione risulta che $u=1.1102\cdot 10^-16$, che è minore del valore $d=eps=2.2204\cdot 10^-16$ (che rappresenta la distanza da 1.0 al valore in doppia precisione immediatamente successivo) e quando andiamo a sommare ad un numero n un valore ujeps, non verrà effettuata alcuna modifica sul valore.

- 1. a = 1e20; b = 100; a-a+b
- 2. a = 1e20; b = 100; a+b-a

Spiegare i risultati ottenuti.

- 1. a= 1e20; b = 100; a-a+b Questo script restituisce il valore 100, in quanto a-a=0 e 0+100=100.
- 2. a= 1e20; b = 100; a+b-a Matlab ha il valore $eps=2.2204\cdot 10^-16$, che corrisponde a circa 15-16 cifre di precisione (che 1e20 supera facilmente), per cui quando andiamo ad affettuare a+b=c, otterremo un valore approssimato c con le prime 15-16 cifre equivalenti ad a, e di conseguenza c-a=0.

4 Esercizio 4

A quanto pare si deve usare la formula di newton (Modificandola un po').

Tolleranza	Bisezione	Newton	Secanti
10^{-3}	7.392578125000000e-01	7.390851333852840e-01	7.390851121274639e-01
10^{-6}	7.390851974487305e-01	7.390851332151607e-01	7.390851332150012e-01
10^{-9}	7.390851331874728e-01	7.390851332151607e-01	7.390851332151607e-01
10^{-12}	7.390851332156672e-01	7.390851332151607e-01	7.390851332151607e-01

Tolleranza	Corde
10^{-3}	7.395672022122561e-01
10^{-6}	7.390845495752126e-01
10 ⁻⁹	7.390851327392538e-01
10^{-12}	7.390851332157368e-01

La molteplicità m di $f(x) = x^2 tan(x)$ è m=3. Sostituendo a x il valore zero otteniamo: $(0)^2 * tan(0)$; 0 annulla due volte il primo termine del prodotto mentre annulla una volta il secondo termine, in quanto tan(0)=0;

Tolleranza	Newton	Newton Modificato	Aitken
10^{-3}	1.994002961956096e-03	6.617444900424221e-24	-1.570796335324655e+00
10^{-6}	1.349222209381150e-06	6.617444900424221e-24	-1.570796356741072e+00
10^{-9}	1.369405530548002e-09	0	-1.570796314458764e+00
10^{-12}	1.389890778595252e-12	0	Il metodo non converge

Iterazione	Sigma	Norma
1	$0.1000 = 10^{-1}$	8.9839e-15
2	10	1.4865e-14
3	$1000 = 10^3$	1.3712e-12
4	$100000 = 10^5$	1.2948e-10
5	$10000000 = 10^7$	5.3084e-09
6	10^9	1.0058e-06
7	10^{11}	8.5643e-05
8	10^{13}	0.0107
9	10^{15}	0.9814
10	10^{17}	4.1004e+03

Eseguendo lo script:

```
A = [1\ 2\ 3\ ;\ 1\ 2\ 4\ ;\ 3\ 4\ 5\ ;\ 3\ 4\ 6\ ;\ 5\ 6\ 7];\ b = [14\ 17\ 26\ 29\ 38]; QR = myqr(A); disp(QR); sol = qrsolve(QR,b); disp(sol); Otteniamo: La Matrice QR:
```

$$\begin{bmatrix} -6.7082 & -8.6461 & -11.1803 \\ 0.1297 & -1.1155 & -2.9881 \\ 0.3892 & -0.0827 & 1.0351 \\ 0.3892 & -0.0827 & -0.8037 \\ 0.6487 & -0.5222 & -0.4346 \end{bmatrix}$$

Soluzione del sistema lineare:

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Dati i seguenti comandi:

A = rot90(vander(1:10)); A = A(:,1:8); x = (1:8)'; b = A*x; Le operazioni:

- $A \ b$: da come risultato il vettore x, che rappresenta la soluzione del sistema lineare Ax = b; Questa operazione da lo stesso risultato di inv(A)*b se la matrice A ha rango massimo ed è non singolare.

 $\begin{bmatrix}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{bmatrix}$

- $(A'*A)\setminus (A'*b)$: poichè stiamo lavorando con una matrice mal condizionata, il vettore x risultante presenta un errore di approssimazione;

 $\begin{bmatrix} 3.5759 \\ -3.4624 \\ 9.5151 \\ -1.2974 \\ 7.9574 \\ 4.9125 \\ 7.2378 \\ 7.9765 \end{bmatrix}$

Questo è il warning che segnala Matlab :

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.393980e-19.