

Medios de Transmisión

Achury Juan Camilo - 258210

Noguera Alejandro - 258250

Zapata Juan David - 285868

Redes de Computadores - Universidad Nacional de Colombia

Medios de Transmisión

Formas en que se transmite la señal.

Medios Guiados.

Medios no Guiados.

Medios Guiados

- Señales guiadas a través de un medio físico.
 - Cable Coaxial.
 - Cable de Par Trenzado.
 - Cable Eléctrico (PLC).
 - Fibra Óptica.

Medios no Guiados

- · Señales propagadas libremente en el medio.
 - Ondas de Radio.
 - Microondas Terrestres.
 - Microondas por Satélite.
 - Infrarrojos.
 - Ondas de luz.

Medios Guiados

Los medios guiados son todos aquellos que se basan en la conexión física (cableado) para transmitir datos a través de señales electromagnéticas, por esto mismo, son conocidos también como medios de transmisión por cable.

Cable Coaxial

- Es muy resistente a las interferencias y atenuaciones que puedan ocasionar los diferentes campos eléctricos y magnéticos que se encuentren cerca.
- Debido a su apantallamiento el ruido es absorbido para evitar la distorsión en los paquetes de datos que viajan a través del mismo.
- Es un sistema sencillo, pero es capaz de soportar largas distancias (380 m de alcance), y grandes cantidades de datos (160Mbps).

El material de los aislantes puede ser:

- PVC (más común), más barato, flexible, tenaz, y dúctil.
- Plénum (más costoso) de materiales especiales, resistente al fuego, y menos flexible que el PVC

Cable Coaxial

Cable de Par Trenzado

 Un par trenzado se compone de dos conductores eléctricos aislados y entrelazados de forma helicoidal, constituyendo, así, un circuito de transmisión de datos. El par trenzado es similar al cable telefónico (éste tiene 4 hilos y utiliza unos conectores un poco más anchos, RJ11). El par trenzado para redes tiene 4 pares de hilos y se usa el conector RJ45.

 Los pares sin apantallar son los más baratos aunque los menos resistentes a interferencias (aunque se usan con éxito en telefonía y en redes de área local). A velocidades de transmisión bajas, los pares apantallados son menos susceptibles a interferencias, aunque son más caros y más difíciles de instalar.

Cable Eléctrico

- Power Line Communications.
- Señales de radio.
 - 50 Hz 220 V.
 - 100 MHz, V menor.
 - IEEE 1901-2010(500Mbits capa física).

HomePlug 85 Mbit/s Adaptador

Fibra Óptica

- Fibra de plástico o vidrio.
- Bits se codifican como impulsos de luz.
- Mayores costos, equipo, manejo cuidadoso.
- Cableado Backbone.
 - Monomodo.
 - Multimodo.

Fibra Óptica

- Hasta 100km.
- Láseres como fuente de luz.
- Mayor dispersión, perdida de señal.
- Hasta ~2 km.
- LED como fuente de luz.

Conectores de Fibra

Conector ST

El conector de punta recta (ST) es ampliamente usado con la fibra multimodo

Conector SC

El conector suscriptor (SC) es ampliamente usado con la fibra monomodo

Monomodo (LC)

Conector Lucent (LC) monomodo

Multimodo (LC)

Conector LC multimodo

Multimodo duplex (LC)

Conector LC multimodo duplex

Medios No Guiados

Son los que no confinan las señales mediante ningún tipo de cable, sino que las señales se propagan libremente a través del medio. Entre los medios más importantes se encuentran el aire y el vacío.

Características

La transmisión y recepción se realiza por medio de antenas, las cuales deben estar alineadas cuando la transmisión es direccional, o si es omnidireccional la señal se propaga en todas las direcciones y puede ser recibida por varias antenas.

Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres tipos: radio, microondas y luz (infrarrojos/láser).

Banda de Frecuencia	Nombre	Modulación	Razón de Datos	Aplicaciones Principales
30-300 kHz	LF (low frequency)	ASK, FSK, MSK	0,1-100 bps	Navegación
300-3000 kHz	MF (medium frequency)	ASK, FSK, MSK	10-1000 bps	Radio AM Comercial
3-30 MHz	HF (high frequency)	ASK, FSK, MSK	10-3000 bps	Radio de onda corta
30-300 MHz	VHF (very high frequency)	FSK, PSK	Hasta 100 kbps	Television VHF, Radio FM
300-3000 MHz	UHF (ultra high frequency)	PSK	Hasta 10 Mbps	Television UHF, Microondas Terrestres
3-30 GHz	SHF (super high frequency)	PSK	Hasta 100Mbps	Microondas terrestres y por satélite
30-300 GHz	EHF (extremely high frequency)	PSK	Hasta 750 Mbps	Enlaces cercanos con punto a punto experimentales

Medios inalámbricos

- Ondas de radio:
- Ondas electromagnéticas omnidireccionales.
- No son necesarias antenas parabólicas.
- La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas.
- Espectro radioeléctrico de 30 3000000 Hz.
- VLF (comunicaciones en navegación y submarinos), LF (radio AM de onda larga), MF (radio AM de onda media), HF (radio AM de onda corta), VHF (radio FM y TV), UHF (TV).

- Microondas terrestres:
- Utilizan antenas parabólicas.
- Cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados.
- La atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada.
- Frecuencias desde 1 hasta 300 GHz.
- Bluetooth o ZigBee para interconectar ordenadores portátiles, PDAs, teléfonos, (detección de velocidad u otras características de objetos remotos) y para la televisión digital terrestre.

- Microondas por satélite:
- El satélite funciona como un espejo donde la señal rebota, su principal función es la de amplificar la señal corregirla y retransmitirla a una o más antenas.
- Difusión de televisión, transmisiones telefónicas de larga distancia y redes privadas entre otras, enlaces punto a punto entre las centrales telefónicas en las redes públicas.
- Rango de frecuencia comprendido entre 1 y 10 GHz.

Infrarrojos:

- Transmisores y receptores que modulan la luz deben estar alineados directamente.
- desde 300 GHz hasta 384 THz.
- la comunicación a corta distancia de los ordenadores con sus periféricos, técnicas como la termografía, la cual permite determinar la temperatura de objetos a distancia.
- Uno de los estándares más usados en estas comunicaciones es el IrDA (Infrared Data Association).

- Ondas laser:
- Son unidireccionales.
- conexión de las redes LAN de dos edificios por medio de laceres montados en sus respectivas azoteas.
- Un costo muy bajo.

Referencias

- Búsqueda de información. Disponible en: http://www.monografias.com/trabajos37/mediostransmision/mediostransmision2.shtml#mediosno#ixzz2gKscLF6T
- [2] CISCO NETWORKING ACADEMY, MODULO 1, CAPÍTULO 8, SECCIÓN 3. PHYSICAL MEDIA.

GRACIAS