

CS 584 Natural Language Processing

Introduction to Transformer and BERT

Department of Computer Science Yue Ning Yue.ning@stevens.edu

Transformer

Vaswani, Ashish, et al. "Attention is all you need." NeurlPS 2017.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

- ... to attend to all positions in the decoder up to and including that position. We need to prevent
- ... We implement this inside of scaled dot-product attention by masking out (setting to -∞) ...

Save

☐ Cited by 66749 Related articles All 46 versions

▷

Transformer: Overview

❖ BLEU score: EN-FR

English French Translation Quality

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer: Overview

- ❖ Seq2seq: Encoder + Decoder
- Encoder: Self-attention
- Decoder: Self-attention
 - + Cross-attention

Output Probabilities

Figure 1: The Transformer - model architecture.

Recall: RNN + Attention

Encoder: RNN

Decoder: RNN + Attention

❖ Problem:

 Gradient vanishing / exploding, i.e., forget on long inputs

RNN is slow

Idea of Transformer

Use Attention to replace RNN

Every token can see all other/previous tokens

Source sentence (input)

- Scaled dot-product attention: query, key, value
- Example: book search

Scaled dot-product attention: query, key, value

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- $Q, K, V: R^{n \times T \times d}$, (batch_size x seq_len x embedding_size)
- d_k : scaling factor, embedding size

Explanation:

- QK^T : $R^{n \times T \times T}$, dot product between query and key
- Softmax: $R^{n \times T \times T}$, probability distribution α
- Weighted average of values

Inputs:

Output of self-attention layer:

Multi-head attention

- ightharpoonup Project Q, K, V for h times -> self-attention -> concat
- Allow model focus on different subspace

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-head attention

Scaled Dot-Product Attention

• *Q,K,V* of self-attention: embedding of input tokens or outputs from previous attention layers

Cross-attention

- RNN part is replaced in both Encoder and Decoder by self-attention
- ❖ What is next?
 - Decoder attention with encoder contexts

Cross-attention

Scaled Dot-Product Attention

- Q: Output of decoder self-attention
- K, V of cross attention: Encoder output
- Query which source token is important to the current target token

Feed-forward

Dense layers after self-attention/cross-attention

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

1870

Transformer: Overview

- ❖ Seq2seq: Encoder + Decoder
- Encoder: Self-attention
- Decoder: Self-attention
 - + Cross-attention

 Stack N times for each (attention + feed-forward)

Output Probabilities

Figure 1: The Transformer - model architecture.

Positional Encoding

Self-attention does not consider ordering in a sequence

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- "tom likes eating apples" = "apples like eating tom"
- Add position information in word embedding

Fixed or trainable

BERT

- ❖ Bidirectional Encoder Representations from Transformers
- Kenton, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." NAACL 2019.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Bert: Pre-training of deep bidirectional transformers for language understanding

```
J Devlin, MW Chang, K Lee, K Toutanova - arXiv preprint arXiv ..., 2018 - arxiv.org
... deep bidirectionality of BERT by evaluating two pretraining objectives using exactly the same pretraining ... No NSP: A bidirectional model which is trained using the "masked LM" (MLM) ...

☆ Save ワワ Cite Cited by 60250 Related articles All 39 versions ≫
```

BERT

- Goals:
 - Provide a universal pretrained language model
 - Easily fine-tune on downstream tasks
- Contribution: Lead the scheme of "Pre-training + fine-tuning" in NLP

BERT: Structure

- Transformer Encoder
- Why bidirectional?
 - Every token can see previous and following tokens

Source sentence (input)

BERT: Structure

- Bidirectional (Encoder)
 - Every token can see previous and following tokens
- ❖ Recursive (Decoder), such as GPT
 - Every token can only see previous tokens

BERT

- Pretraining Goals:
 - Let the model understand natural languages
- ❖ Tasks:
 - Masked token prediction
 - Next sentence prediction

Masked Token Prediction

- Randomly mask some tokens in the dataset
 - Mask rate: 15%
- Let the model predict the masked tokens in a sentence

Next Sentence Prediction

- Given two sentences A and B, let the model predict whether B is the next sentence of A
 - True/False = 50% / 50%

Positional Encoding

- Word embedding
- Segment embedding
- Position Embedding

Wordpiece: frequent subword

GLUE: The General Language Understanding Evaluation benchmark on various tasks

Q&A