

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Оптимальное управление»

Студент 315 группы М.Г. Зинченко

Руководитель практикума П. А. Точилин

1 Постановка задачи

Задано обыкновенное дифференциальное уравнение:

$$\ddot{x} + 2x^3\cos(\dot{x}) + \sin(2x) + \dot{x} = u,$$

где $x \in \mathbb{R}, u \in \mathbb{R}$. На возможные значения управляющего параметра u наложено ограничение: $u \in [-\alpha, \alpha]$. Задан начальный момент времени $t_0 = 0$ и начальная позиция $x(t_0) = \dot{x}(t_0) = 0$. Необходимо построить множество достижимости $X(t, t_0, x(t_0), \dot{x}(t_0))$ (множество пар $(x(t), \dot{x}(t))$) в классе программных управлений в заданный момент времени $t \geqslant t_0$.

- 1. Необходимо написать в среде MatLab функцию **reachset**(alpha, t), которая по заданным параметрам $\alpha > 0, t \geqslant t_0$ рассчитывает приближенно множество достижимости $X(t,t_0,x(t_0),\dot{x}(t_0))$. На выходе функции два массива X,Y с упорядоченными координатами точек многоугольника, образующего границу искомого множества. Точки в этих массивах должны быть упорядочены так, чтобы результаты работы функции без дополнительной обработки можно было подавать на вход функциям визуализации(например, **plot**). Предусмотреть такой режим работы функции, при котором она возвращает также координаты линий переключения оптимального управления (с возможностью их визуализации).
- 2. Необходимо реализовать функцию reachsetdyn(alpha, t_1, t_2 , N, filename), которая, используя функцию reachset (alpha, t), строит множества достижимости для моментов времени $\tau_i = t_1 + \frac{(t_2 t_1)i}{N}, i = 0, 1, \dots, N$. Здесь $t_2 \geqslant t_1 \geqslant t_0$, N— натуральное число. Для каждого момента времени τ_i функция должна отобразить многоугольник, аппроксимирующий границу множества достижимости. Результат работы функции должен быть сохранен в виде видео-файла filename.avi. Необходимо также предусмотреть вариант работы функции (при отсутствии параметра filename) без сохранения в файл, с выводом непосредственно на экран. Как частный случай, функция должна иметь возможность строить границу множества достижимости в один фиксированный момент времени (при $t_2 = t_1$).
- 3. В соответствующем заданию отчете необходимо привести все теоретические выкладки, сделанные в ходе построения множества достижимости программой, привести примеры построенных множеств достижимости (с иллюстрациями), исследовать зависимость множеств достижимости от величины параметра α . Все вспомогательные утверждения(за исключением принципа максимума Понтрягина), указанные в отчете, должны быть доказаны.

2 Теоретические выкладки

Рассмотрим систему

$$\begin{cases} \dot{x_1} = x_2, \\ \dot{x_2} = -f(x_1, x_2) + u, \end{cases}$$
 (1)

где $u \in [-\alpha, \alpha]$.

Определение 1. *Множеством достижимости в момент* $t \geqslant 0$ *назовём множество*

$$X[t] := X(t, t_0, x_0) =$$

$$= \left\{ (x_1, x_2) \in \mathbb{R}^2 : \exists u(\cdot) : |u(\tau)| \leqslant \alpha \, \dot{\forall} \tau \in [0, t] : (x_1, x_2) = (x_1(t, t_0, x_0), x_2(t, t_0, x_0)) \, \Big|_{u(\cdot)} \right\}.$$

Сформулируем принцип максимума для задачи достижимости.

Теорема 1. Пусть $(x^*(\cdot), u^*(\cdot)) - napa \ maкая, что \ x^*(t_1^*) \in \partial \mathcal{X}[t_1^*]$. Тогда существует функция $\psi^*(\cdot) : [0, t_1^*] \to \mathbb{R}^2 \ makas, что$

- 1. $\psi^* \not\equiv 0$ (из этого следует, что $\psi^*(t) \not\equiv 0$ для всех $t \in [0, t_1^*]$) условие нетривиальности.
- 2. $\dot{\psi}^*(t) = -\frac{\partial \mathcal{H}}{\partial x}\bigg|_{\substack{\psi=\psi^*(t)\\ x=x^*(t)\\ u=u^*(t)}} conpяжённая система.$
- 3. $u^*(t) \in \operatorname*{Argmax}_{u \in [\alpha,\alpha]} \mathcal{H}(\psi^*(t),x^*(t),u)$ для почти всех $t \in [0,t_1^*]$ условие максимума.
- 4. $\mathcal{M}(\psi^*(t), x^*(t)) \equiv \text{const} \geqslant 0$,

$$ede \mathcal{M}(\psi, x) = \sup_{u \in [-\alpha, \alpha]} \mathcal{H}(\psi, x, u).$$

Сформулируем еще одну теорему (о том, как соотносятся нули x_2 и ψ_2).

Теорема 2. Пусть $\tau_1 < \tau_2 \ u$

- 1. $\psi_2(\tau_1) = \psi_2(\tau_2) = 0$ $u \ x_2(\tau_1) = 0 \Rightarrow x_2(\tau_2) = 0$:
- 2. $\psi_2(\tau_1) = \psi_2(\tau_2) = 0$ u $x_2(\tau_1) \neq 0 \Rightarrow x_2(\tau_2) \neq 0$, no $\exists t' \in (\tau_1, \tau_2) : x_2(t') = 0$;
- 3. $x_2(\tau_1) = x_2(\tau_2) = 0$, $x_2(t) \neq 0$ npu $t \in (\tau_1, \tau_2)$ u $\psi_2(\tau_1) = 0 \Rightarrow \psi_2(\tau_2) = 0$;
- 4. $x_2(\tau_1) = x_2(\tau_2) = 0$, $x_2(t) \neq 0$ npu $t \in (\tau_1, \tau_2)$ u $\psi_2(\tau_1) \neq 0 \Rightarrow \psi_2(\tau_2) \neq 0$, no $\exists t'' \in (\tau_1, \tau_2) : \psi_2(t'') = 0$.

Доказательство. Функция Гамильтона-Понтрягина $\mathcal{H}(\psi, x, u)$ и функция $\mathcal{M}(\psi, x)$ системы (1) принимают следующий вид:

$$\mathcal{H} = \psi_1 x_2 + \psi_2 (-f(x_1, x_2) + u),$$

$$\mathcal{M}(\psi, x) = \psi_1 x_2 - \psi_2 f(x_1, x_2) + \alpha |\psi_2|.$$

1.
$$\mathcal{M}\Big|_{t=\tau_1} = 0,$$
 $\mathcal{M}\Big|_{t=\tau_2} = \psi_1(\tau_2) x_2(\tau_2) = 0.$
Следовательно, $x_2(\tau_2) = 0.$

2.
$$\mathcal{M}\Big|_{t=\tau_1} = \psi_1(\tau_1) x_2(\tau_1) \neq 0,$$

 $\mathcal{M}\Big|_{t=\tau_2} = \psi_1(\tau_2) x_2(\tau_2) \neq 0.$

Пусть τ_1 и τ_2 — последовательные нули ψ_2 . Тогда $\psi_1\left(\tau_1\right)\psi_1\left(\tau_2\right)<0$, $\dot{\psi}_2\left(\tau_1\right)\dot{\psi}_2\left(\tau_2\right)<0$. Тогда $x_2\left(\tau_1\right)x_2\left(\tau_2\right)<0$, а значит, в какой-то точке на отрезке (τ_1,τ_2) x_2 обнулится.

Для доказательства пунктов 3) и 4) введем функцию $y(t) = \psi_1(t)x_2(t) + \psi_2(t)\frac{dx_2(t)}{dt}$. Рассмотрим $\frac{dy(t)}{dt}$ между переключениями.

$$\frac{dy(t)}{dt} = \frac{df}{dx_1}\psi_2x_2 + \psi_1(-f+u) + (-\psi_1 + \frac{df}{dx_2}\psi_2)(-f+u) + \psi_2(-\frac{df}{dx_1}x_2 - \frac{df}{dx_2}(-f+u)) = 0.$$

Пусть τ — момент переключения. Рассмотрим $y(\tau - 0)$ и $y(\tau + 0)$.

$$y(\tau - 0) = \psi_1(\tau)x_2(\tau) + 0\frac{dx_2}{dt}(\tau - 0)y(\tau + 0) = \psi_1(\tau)x_2(\tau) + 0\frac{dx_2}{dt}(\tau + 0) = y(\tau - 0).$$

Таким образом, $y \equiv \text{const.}$

- 3. $y(\tau_1)=\psi_1(\tau_1)x_2(\tau_1)=0,$ $y(\tau_2)=\psi_1(\tau_2)x_2(\tau_2)+\psi_2(\tau_2)\frac{dx_2}{dt}(\tau_2)=0.$ Так как $x_2(\tau_2)=0$, а $\frac{dx_2}{dt}(\tau_2)\neq 0$ получаем $\psi_2(\tau_2)=0.$
- 4. $(x_2(t))^2 + (\frac{dx_2(t)}{dt})^2 \neq 0, t \in [\tau_1, \tau_2]$ $y(\tau_1) = \psi_2(\tau_1) \frac{dx_2(\tau_1)}{dt},$ $y(\tau_2) = \psi_2(\tau_2) \frac{dx_2(\tau_2)}{dt}.$ Из того, что $y(\tau_1) = y(\tau_2)$ и $\frac{dx_2(\tau_1)}{dt} \frac{dx_2(\tau_2)}{dt} < 0$ получаем, что $\psi_2(\tau_1)\psi_2(\tau_2) < 0.$

Утверждение 1. В решении задачи (1) не может существовать особого режима на отрезке положительной длины.

ot Доказательство. Из теоремы 1 для системы (1) получим:

$$\begin{cases}
\dot{\psi}_1 = \frac{\partial f}{\partial x_1} \psi_2, \\
\dot{\psi}_2 = -\psi_1 + \frac{\partial f}{\partial x_2} \psi_2,
\end{cases}$$
(2)

Для существования особого режима необходимо, чтобы на интервале положительной длины $\psi_2=0$, а также $\dot{\psi}_2=0$. Но тогда в силу (2) следует, что $\psi_1=0$. Это противоречит условию невырожденности.

3 Решение

Перепишем исходное уравнение в виде системы:

$$\begin{cases} \dot{x_1} = x_2, & x_1(0) = 0, \\ \dot{x_2} = -2x_1^3 \cos(x_2) - \sin(2x_1) - x_2 + u, & x_2(0) = 0. \end{cases}$$

Функция Гамильтона-Понтрягина для нее примет вид:

$$H = \psi_1 x_2 - 2\psi_2 x_1^3 \cos x_2 - \psi_2 \sin(2x_1) - \psi_2 x_2 + \psi_2 u.$$

Теперь выпишем для нее сопряженную систему:

$$(CC): \begin{cases} \dot{\psi}_1 = -6\psi_2 x_1^2 \cos x_2 - 2\psi_2 \cos(2x_1), \\ \dot{\psi}_2 = \psi_1 + 2\psi_2 x_1^3 \sin x_2 - \psi_2. \end{cases}$$

Управление примет вид:

$$u^* = \begin{cases} \alpha, & \psi_2 > 0, \\ [-\alpha, \alpha], & \psi_2 = 0, \\ -\alpha, & \psi_2 < 0. \end{cases}$$

В начальный момент времени верно $\psi_2 < 0$ либо $\psi_2 > 0$, то есть справедлива одна из систем S_+ или S_- :

$$S_{+}: \begin{cases} \dot{x_{1}} = x_{2}, \\ \dot{x_{2}} = -2x_{1}^{3}\cos(x_{2}) - \sin(2x_{1}) - x_{2} + \alpha, \end{cases}$$

$$S_{-}: \begin{cases} \dot{x_1} = x_2, \\ \dot{x_2} = -2x_1^3 \cos(x_2) - \sin(2x_1) - x_2 - \alpha. \end{cases}$$

Переключения происходят при $\psi_2 = 0$.

Программа работает следующим образом:

- 1. Решаем систему S_+ на отрезке $[t_0, t_1]$, где t_1 такое, что $x_2(t_1) = 0$.
- 2. Согласно теореме 2 в промежуток времени (t_0, t_1) должно произойти хотя бы одно переключение.
- 3. Перепараметризуем систему по моменту первого переключения. То есть зададим сетку по времени на интервале (t_0, t_1) . Каждое значение t^1_{switch} на сетке это возможный момент первого переключения, то есть $\psi_2(t^1_{switch}) = 0$.
- 4. Нормируем систему, взяв $\psi_1(t^1_{switch})=1.$
- 5. Решаем системы $S_-, (CC)$ с начальными условиями $\psi_1(t^1_{switch}) = 1, \psi_2(t^1_{switch}) = 0$. Значения $x_1(t^1_{switch}), x_2(t^1_{switch})$ находим из пункта 1.
- 6. Интегрируем эти системы до момента $t^2_{switch} > t^1_{switch}$, в который $\psi_2(t^2_{switch}) = 0$.
- 7. Интегрируем S_+ , (CC) до момента, когда ψ_2 снова станет 0. Начальные условия для уравнений берем из решения пункта 5.
- 8. Продолжаем выполнять эти действия в цикле.
- 9. Выходим из цикла, когда момент следующего переключения будет больше чем Т.
- 10. Аналогичную процедуру проделываем для случая, когда в начальный момент времени $\psi_2 < 0$ и справедлива система S_- .
- 11. Точки $x_1(T), x_2(T)$ (концы траекторий) и будут образовывать границу множества достижимости.

4 Стационарные точки

Неподвижными точками называются такие точки (x_1, x_2) , что

$$\begin{cases} \dot{x_1} = 0, \\ \dot{x_2} = 0. \end{cases}$$

Чтобы их найти используем функцию vpasolve. На следующем графике эти точки выделены черным цветом:

Красным цветом обозачена граница множества достижимости.

5 Примеры

В следующих примерах красным цветом обозначена граница множества достижимости, синим цветом обозначены траектории системы. Рассмотрим пример работы программы c параметрами alpha $=1.1,\,T=5$:

На следующем графике красными точками обозначены переключения системы. Параметры alpha $=0.3,\, T=5.$

На этом графике приведены границы трех множеств достижимости для T=5. Для красной кривой alpha =0.2.

Для зеленой кривой alpha=0.5.

Для серой кривой alpha = 1.

Список литературы

[1] Рублев И. В. Лекции по курсу Оптимальное управление. 2019