

PROGRAMA DE MATERIA

DATOS DE IDENTIFICACIÓN

MATERIA:	TEORÍA DE LA COMPLEJIDAD COMPUTACIONAL				
CENTRO ACADÉMICO:	CIENCIAS BÁSICAS				
DEPARTAMENTO ACADÉMICO:	CIENCIAS DE LA COMPUTACIÓN				
PROGRAMA EDUCATIVO:	INGENIERÍA EN COMPUTACIÓN INTELIGENTE				
AÑO DEL PLAN DE ESTUDIOS:	2017	SEMESTRE:	6°	CLAVE DE LA MATERIA:	25785
ÁREA ACADÉMICA:	IAyFC		PERIODO EN QUE SE IMPARTE:	ENERO-JULIO	
HORAS SEMANA T/P:	2T/3P		CRÉDITOS:	7	
MODALIDAD EDUCATIVA EN LA QUE SE IMPARTE:	PRESENCIAL		NATURALEZA DE LA MATERIA:	TEÓRICO- PRÁCTICO	
ELABORADO POR:	EEPL, FSQA, FJOZ, JCPG				
REVISADO Y APROBADO POR LA ACADEMIA DE:	IAyFC		FECHA DE ACTUALIZACIÓN:	Enero 2024	

DESCRIPCIÓN GENERAL

En este curso teórico-práctico el estudiante entenderá los elementos fundamentales de la teoría de la Computación y límites del uso de las computadoras en la solución de problemas, usando los conceptos de máquina de Turing y los resultados básicos de este esquema de computación, las técnicas más usadas en el diseño de algoritmos y por último la revisión de algunas clases de complejidad de problemas. Se desarrollarán las habilidades de interpretar y manejar símbolos abstractos, deducir e inducir utilizando lenguaje matemático; identificar, modelar e implementar la solución de problemas. Esta materia es simultánea a Aprendizaje Inteligente y Minería de Datos y es antecedente de Metaheurísticas I y Metaheurísticas II.

OBJETIVO (S) GENERAL (ES)

Al finalizar el curso, el estudiante interpretará las teorías sobre la que se fundamentan las Ciencias de la Computación en cuanto al manejo de la máquina de Turing y los resultados básicos de este esquema de computación; asimismo, aplicará las técnicas más usadas para el diseño de algoritmos, calculará la complejidad de tiempo de un algoritmo e identificará y categorizará los problemas de acuerdo a su complejidad con la finalidad de poseer recursos para la medida de la complejidad de los problemas y sus soluciones computacionales con actitudes y valores como colaboración, crítica, organización, compromiso, disciplina, creatividad y autonomía.

CONTENIDOS DE APRENDIZAJE

UNIDAD TEMÁTICA I: Funciones de orden y análisis de algoritmos (25 horas aprox.)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
Que el alumno evalúe la eficiencia de algoritmos mediante el uso de funciones,	Introducción. 1.1. Definición de algoritmo. 1.2. Compatibilidad.	2,4,7,9.	

*En caso de no aplicar algún elemento, escribir N/A

Código: FO-030200-13 Revisión: 02 Emisión: 13/12/11

PROGRAMA DE MATERIA

con la finalidad de determinar su complejidad.		1.3. Elección de un algoritmo. 1.4. Límites de tiempo.
Que el alumno compare dos algoritmos en función del espacio (memoria que utiliza) y/o tiempo (lo que tarda en ejecutarse).	2. Mé	1.5. Tamaño de una instancia. todos para el análisis de la complejidad. 2.1. Tiempo de ejecución de un algoritmo. 2.2. Mejor caso, caso medio y peor caso. 2.3. Notación asintótica.
Determinar el peor caso, mejor caso y el caso promedio de un algoritmo, así como los problemas con los que se comporta de alguna de las tres formas mencionadas.	3. Eje	2.4. Funciones de orden. (Órdenes de eficiencia) 2.5. Notación O grande, Ω, Θ. rcicios.

UNIDAD TEMÁTICA II: Clasificación de los problemas (25 horas aprox.)			
OBJETIVOS PARTICULARES	CONTENIDOS	FUENTES DE CONSULTA	
Que el alumno conozca y entienda los fundamentos del modelo de la máquina de Turing y comprenda su importancia en la formalización del concepto de algoritmo. Que el alumno identifique los problemas no tratables. Que el alumno pueda diseñar e implementar un algoritmo para resolver los problemas no tratables.		1,2,3	

UNIDAD TEMÁTICA III: Técnicas de diseño de algoritmos y estudio de su complejidad (30 horas aprox.)			
OBJETIVOS PARTICULARES		CONTENIDOS	FUENTES DE CONSULTA
Que el alumno conozca y aplique técnicas	1.	Introducción	
de diseño de algoritmos.	2.	Enfoque Divide y Vencerás (Divide and Conquer algorithms).	2,4,5,6,7.
Que el alumno conozca la complejidad de		2.1. Características generales.	
los diferentes algoritmos.		2.2. Modelo.	
		2.3. Ejemplos.	
Que el alumno identifique el mejor	3.	Algoritmo Voraz (Greedy algorithms).	
algoritmo/técnica para la solución de un		3.1. Características generales.	
determinado problema.		3.2. Modelo.	
		3.3. Ejemplos.	

*En caso de no aplicar algún elemento, escribir $\,$ N/A $\,$

Código: FO-030200-13 Revisión: 02 Emisión: 13/12/11

PROGRAMA DE MATERIA

4.	Programación Dinámica (Dynamic Programming). 4.1. Características generales. 4.2. Modelo. 4.3. Ejemplos.	
----	--	--

METODOLOGÍA DE ENSEÑANZA - APRENDIZAJE

Dadas las características del curso, el maestro utilizará una metodología analítica y lógica, presentando conceptos y principios que parten de lo simple a lo complejo, motivando al alumno a una constante participación en clase; apoyándose con tareas dirigidas y el uso del laboratorio para practicar los conocimientos teóricos, donde la coordinación y guía del maestro es fundamental.

RECURSOS DIDÁCTICOS

El maestro hará uso del equipo computacional ubicado en el laboratorio asignado, así como del manejo de pantallas, aula virtual, pizarrón, páginas de Internet y software que puedan ser de utilidad para la impartición de la materia.

EVALUACIÓN DE LOS APRENDIZAJES

La evaluación tiene los siguientes lineamientos:

Dos evaluaciones parciales, cada uno con una ponderación del 25% de la calificación final Una tercera evaluación con ponderación del 30% de la calificación final. Trabajo final que representa el 20% de la calificación final.

Nota: Cada evaluación parcial está conformada por 80% del examen y 20% de tareas y participación en clase.

FUENTES DE CONSULTA

BÁSICAS:

- 1. Computers and Intractability: a Guide to the theory of Np-Completeness. Michael R. Garey y David S. Johnson. 1979. Clasificación 005.1 G229c. (AE)
- 2. Introduction to Algorithms. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. The MIT Press and McGraw-Hill Higher Education. Tercera Edición. 2009. Clasificación 005.1 C811i, (MLZ)
- 3. Teoría de Autómatas, lenguajes y computación. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Pearson, Addison Wesley. Tercera edición. 2008. Clasificación. 511.3 H7911i, (AE)
- 4. The Algorithm Design Manual. Steven S. Skiena. Springer. Segunda Edición. 2008. Colocación 005.1 S6281a 23

COMPLEMENTARIAS:

- 5. Combinatorial Optimization: Algorithms and Complexity. Christos H. Papadimitriou, Kenneth Steiglitz. Dover publication Inc. 1998.
- 6. Practical Analysis of Algorithms. Dana Vrajitoru, William Knight. Springer. 2014.
- 7. Elements of Theory Computation Harry R. Lewis, Christos H. Papadimitriou. Prentice-Hall, Segunda edición.1998
- 8. Computational Complexity: A Modern Approach. Sanjeev Arora, Boaz Barak. Cambridge University Press. Online draft. January 2007.
- 9. Algorithms. Erickson Jeff. Primera Edición. Online free book. Junio 2019.

Código: FO-030200-13 Revisión: 02 Emisión: 13/12/11

*En caso de no aplicar algún elemento, escribir N/A