PROJECT REPORT ON

INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM

INTERNET OF THINGS

THANTHAI PERIYAR GOVERNMENT INSTITUTE OF TECHNOLOGY-VELLORE

TEAM ID: PNT2022TMID29717

Submitted by:

SUMATHI M -513119106085 NANDHINI S -513119106058 NETHAJI PM-513119106060 SONIYA MP-513119106080

	Title	Page No
1.	INTRODUCTION	3
	Project Overview	3
	Purpose	
2.	LITERATURE SURVEY	3
	Existing problem	
	References	
	Problem Statement Definition	
3.	IDEATION & PROPOSED SOLUTION	
	Empathy Map Canvas	
	Ideation & Brainstorming	
	Proposed Solution	
	Problem Solution fit	
4.	REQUIREMENT ANALYSIS	9
	Functional requirement	9
	Non-Functional requirements	9
5.	PROJECT DESIGN	10
	Data Flow Diagrams	10
	Solution & Technical Architecture	11
	User Stories	12
6.	PROJECT PLANNING & SCHEDULING	12
	Sprint Planning & Estimation	12
	Sprint Delivery Schedule	13
	Reports from JIRA	13
7.	CODING & SOLUTIONING	15
	Feature 1	15
	Feature 2	
	Feature 3	20
8.	TESTING	22
	Test Cases	22
	User Acceptance Testing	22
9.	RESULTS	23
	Performance Metrics	23
10.	ADVANTAGES & DISADVANTAGES	25
11.	CONCLUSION	26
	FUTURE SCOPE	
	APPENDIX	
-•	Source Code	
	GitHub & Project Demo Link	

1. Introduction

Project Overview

The smart fire management system includes a gas, flame, and temperature sensor to detect any environmental changes. Based on the temperature readings and if any gases are present the exhaust fans are powered ON. If any flame is detected the sprinklers will be switched on automatically. Emergency alerts are notified to the authorities and the Fire station. The primary purpose of fire alarm system is to provide an early warning of fire so that people can be evacuated & immediate action can be taken to stop or eliminate of the fire effect as soon as possible. The system shall include a control panel, alarm initiating devices, notification appliances, and the accessory equipment necessary for a complete functioning fire alarm system. Internet of Things (IoT)-based intelligent fire detection and emergency response system that can control directional guidance intelligently according to the time and location of a disaster using fuzzy logic and the design of an integrated control system using sensor networks to address the problems with existing fire emergency response systems in times of fire disaster. The proposed IOT based fire alarm system basically detects fire at an early stage, generates an automatic alarm and notify the remote user or fire control station about the fire outbreak. This also tries to extinguish the fire.

Purpose

- To provide the an early warning of firexz
 - To give a detect the status of the room with IoT devices
 - To turn on sprinkler and exhaust fan when there is fire accident
 - To alert the occupants of the fire condition.
 - To send and store the temperature status in a cloud storage
 - To give a easy management system on dashboard
 - To give a overview of what's happening to the user
 - To send a sms to the authorities when there is a fire accident
 - To increase the response times.
 - To provide the both prevention and protection

2. Literature survey

The situation is not ideal because the fire management system in houses and industries are not very reliable, efficient, cost-effective and does not have any advanced processing and does not have any features like an automatic alert system for admin and authorities and in many buildings. They are using older fire safety systems that doesn't can even activate the sprinkler system and all of they don't communicate with each other properly to prevent false alarm also monitor the entire system using applications.

Reference

https://www.nbmcw.com/article-report/others/intelligent-fire-alarm-systems-for-new-age-smart-buildings.html

https://www.researchgate.net/publication/280620907_Developed_Intelligent_Fire_alarm_system

https://pdfs.semanticscholar.org/f3e7/a7c0cf2d448be592421045033506e_ 845e6c2.pdfhttps://www.mdpi.com/2224-2708/7/1/11

https://www.britsafe.in/publications-and-blogs/safety-management-magazine/safety-management-magazine/2021/intelligent-fire-alarm-systems-for-new-age-smart-buildings

https://www.researchgate.net/publication/353205967_IOT_Based_Fire_Detection_System

3. Ideation and Proposed solution

3.1 Empathy map canvas

- The empathy map canvas to capture the user Pains & Gains
- An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes
- It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it
- The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation and Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. The optimum size for a brainstorming group seems to be four members, and the optimum group consists of women as well as men. Brainstorming is a total-group effort. Breaking into smaller groups would defeat the purpose of the brainstorming session.

step 1: Team Gathering, Collaboration and Select the Problem Statement

The problem should be simple rather than complex, so that the group can focus on a single target. The leader should have a list of categories, classifications, or leads (new uses, adaptation, modification, increase, decrease, substitute, rearrange, combine) that can be suggested to the group members if they seem to be getting off track. The leader also can have a few ideas about solutions ready to throw in when the group seems to lag.

Team was gathered in mural app for collaborationThe team members are

Sumathi M

Nandhini S

Nethaji PM

Soniya MP

step 2 :Brainstorm, Idea Listing and Grouping

step 3:

Step4: Idea Prioritization

Problem Statement Definition

The fire management system in houses and industries are not very reliable, efficient, costeffective and does not have any advance processing and does not have any features like automatic alert system for admin and authorities and in many buildings there are using older firesafety system that doesn't can even activate the sprinkler system and all of they don't communicate with each other properly to prevent false alarm also monitor the entire system using a applications.

Problem Statement (PS)	lam (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	Fire accident detector	Detect the fire accidents in industry	Small amount of sparkle also feeds	They are flammable and act as to become fire accident	It affect materials and human
PS-2	Industry medical officer	Flammable fire extinguisher using two component	But more than material using so high cost	Because of material separated	The flammable fire fast in extinguisher
PS-3	An electrician	Test the fire detection system	Couldn't detect	Sensitivity of the sensor is low	incredulous
PS-4	Fire accident detector	To hire experienced employees in industry	Careless mistake will affect	Because They are flammable	It will affect the whole industry and surroundings.

Proposed Solution

The project is designed with a low cost and all level users can have one for a safety purpose. This project therefore seeks to design a fire alarm system that will continuously monitor the presence of significant amount of heat and activate an alarm simultaneously switch off the mains of the building, send a Short Message Service(SMS) alert and extinguish the fire as a safety measure to contain the situation

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Safety is a crucial consideration in the design of residential and commercial buildings to safeguard against the loss of life and damage to property. The existing fire alarm system on market nowadays is too complex in terms of its design and structure. Since the system is too complex, it needs regular maintenance to be carried out to make sure the system operates well. Meanwhile, when the maintenance is being done to the existing system, it could raise the cost of the system.
2.	Idea / Solution description	If the system detects the fire , the signals will be transmitted to a monitoring center, which will employ intelligent computer vision and pattern recognition algorithms. The control centre will be capable of generating automatic warning signals whenever a dangerous situation arises.
3.	Novelty / Uniqueness	 The proposed IOT based fire detection system basically detects fire at an early stage, generates an automatic alarm and notify the remote user or fire control station about the fire outbreak. This also tries to extinguish the fire. More multi sensors technology and provide several database storage.
4.	Social Impact / Customer Satisfaction	 To detect fire and protect a building, its occupants and contents from fire damage. These leaks cause safety threads for those working in industry and the environment. More accidents can be prevent and exact location it will be shown if any fire occurs.

Problem statement:

When fire alarm panels are in trouble condition, it can be difficult to find the root cause of the problem. Trouble signals occur due to ground faults, circuit problems, battery faults, or other failures within the system.

Safety is a crucial consideration in the design of residential and commercial buildings in order to safeguard against loss of life and damage to property.

The existing fire alarm system in market nowadays is too complex in terms of its design and structure. Since the system is too complex, it needs regular maintenance to be carried out to make sure the system operates well. Meanwhile, when the maintenance is being done to the existing system, it could raise the cost of the system.

Solution architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions.

GOALS:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Customer journey:

4. Requirement analysis

Functional Requirements

- A functional requirement defines a function of a system or its component, where afunction is
- described as a specification of behaviour between inputs and outputs.
- It specifies "what should the software system do?"
- Defined at a component level
- Usually easy to define
- Helps you verify the functionality of the software

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
As a vision ,I wa screen so tl		As a user who has trouble reading due to flow vision, I want to be able to make the text larger on the screen so that I can reading. Registration through Gmail
FR-2	User Confirmation	IMPAIRED USER: As a user who is hearing impaired, I want a turn on video captions so that I can understand what is being said in videos. Confirmation via Email

Non Functional Requirements

- A non-functional requirement defines the quality attribute of a software system
- It places constraint on "How should the software system fulfil the functional requirements?"
- It is not mandatory
- Applied to system as a whole
- Usually more difficult to define

• Helps you verify the performance of the software

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	 ♦ Visual and audio signalization ♦ It provide zonal coverage ♦ Protect your property
NFR-2	Security	Maintain the enabling detection Warn people when smoke ,fire ,carbon monoxide Detector instruction such as unauthorized
NFR-3	Reliability	The listing process, the manufacturing process and the code requirements are all significant contributors to reliable fire alarm systems.
NFR-4	Performance	Detect a fire. Aiert occupants of the fire condition. Activate safety control functions. Alert the local fire department.
NFR-5	Availability	Wireless Alarm Systems. Wired Alarm Systems. Monitored Alarm Systems. Unmonitored Alarm Systems

		 Alarm Systems from Four Walls Security
NFR-6	Scalability	Addressable systems provide a great deal of flexibility in comparison to conventional systems. While the number of devices either system can accommodate is determinant on the manufacturer of the alarm panels, every type of device added to a conventional system requires a new circuit.

5. PROJECT DESIGN:

Dataflow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can download the application	I can view the data sent by the hardware.	High	Sprint-3
Customer (Web user)	Registration	USN-1	As a user, I can view the application web page	I can view the data sent by the hardware.	High	Sprint-3
Customer (Data types)	Data viewing	USN-1	As a user, I can view Temperature readings	Data by the hardware	High	Sprint-1
		USN-2	As a user, I can view level of gas content	Data by the hardware	High	Sprint-1
		USN-3	As a user, I can view if any flame is detected.	Data by the hardware	High	Sprint-1
Customer	Actions	USN-1	As a user, I will have exhaust fan on and off button	Based on temperature and level of gas content data, actions are taken by the user	Medium	Sprint-2
		USN-2	As a user, I will have sprinkler on and off button	Based on the flame detected data, actions are taken by the user.	Medium	Sprint-2

Technical Architecture

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with the Web UI	App development
2.	Application Logic	Logic for a process in the application	appinventor.mit.edu
3.	Database	Data Type, Configurations etc.	Cloud database
4.	Cloud Database	Database Service on Cloud	IBM Cloudant
5.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
6.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Cloud Foundry
7.	Protocol	How data exchanged on web	HTTP

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Security Implementations	List all the security / access controls implemented.	As we are using IBM cloud, there is continuous edge-to-cloud protection for data and applications with regulatory compliance
2.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	As we are using IBM cloud, there will be seamless and automatic scaling up of instances when more resources are required due to demand.
3.	Availability	Justify the availability of applications (e.g. use of load balancers, distributed servers etc.)	This system has end-user experience monitoring, analytics and log monitoring.
4.	Performance	Design consideration for the performance of the application	As we are using HTTP, for every second the data about temperature, level of gas content, flame detection are received.

6. Project design and planning

Sprint planning and estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Login	USN-1	As a customer, I might ensure login credential through gmail ease manner for the purpose of sending alert message to the owner.	2	High	Sumathi M Soniya MP
Sprint-1	Registration	USN-2	As a user, I have to registered my details and tools details in a simple and easy manner in case of fire incident, this registered system sends notification to the industrialist	2	High	Nandhini S Nethaji PM
Sprint-2	Dashboard	USN-3	As a user, In case of Fire in the industry I need the sprinkler to spray water on the existing fire automatically.	3	Medium	Sumathi M Nethaji PM

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Dashboard	USN-4	As a user, I need to safeguard my properties as well as and it will be better to send alert message to the fire department.	2	High	Nandhini S Soniya MP
Sprint-3	Dashboard	USN-5	As a user, Its good to have a IOT based system to extinguish the fire without human presence.	2	High	Sumathi M Nandhini S
Sprint -4	Monitoring the environment	USN 1	User can monitor the situation of the environment from a dashboard that displays sensor information about the environment	2	High	Nethaji PM Soniya MP
Sprint- 4	Event Notification	USN 6	Sending an alert SMS to the fire authority in case of fire	2	High	Sumathi M

Sprint delivery schedule

	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	4	6 Days	24 Oct 2022	29 Oct 2022	4	29 Oct 2022
Sprint-2	1	6 Days	31 Oct 2022	05 Nov 2022	1	05 Nov 2022
Sprint-3	4	6 Days	07 Nov 2022	12 Nov 2022	4	12 Nov 2022
Sprint-4	5	6 Days	14 Nov 2022	19 Nov 2022	5	19 Nov 2022

Reports from JIRA

Sprint 1

Sprint 2

Sprint 3

Sprint 4

7. Coding and Solutioning

Feature 1: False alarm checking

}

```
if(temp < 45 ) {
    if(flame > 650 ) {
        accidentstatus = "Need Auditing";
        if(canfanoperate)
        isfanon = true;
    else
        isfanon = false;
    issprinkon = false;
```

```
else if(flame <= 10){</pre>
   accidentstatus = "nothing happened";
   isfanon = false;
   issprinkon = false;
 }
else if(temp >= 45 && temp <= 55){
 if(flame <=650 && flame >100 ){
   if(cansprinkoperate)
     issprinkon = true;
   else
     issprinkon = false;
   accidentstatus = "moderate";
   if(gas > 160 && canfanoperate ){
     isfanon = true;
   }
   else{
     isfanon = false;
   }
 else if(flame <= 100 && flame > 10) {
  if(cansprinkoperate)
      issprinkon = true;
   else
     issprinkon = false;
   isfanon = false;
```

```
accidentstatus = "moderate";
  }
else if(temp > 55){
 if(flame > 650){
   gas = 500 + rand() %500;
   accidentstatus = "severe";
   if(cansprinkoperate)
      issprinkon = true;
   else
      issprinkon = false;
   if(canfanoperate)
     isfanon = true;
   else
      isfanon = false;
  }
 else if(flame < 650 && flame > 400 ){
   gas = 300 + rand() %500;
   accidentstatus = "severe";
   if(cansprinkoperate)
     issprinkon = true;
   else
      issprinkon = false;
    if(canfanoperate)
     isfanon = true;
    else
```

```
isfanon = false;
 }
}
else {
 accidentstatus = "Need moderate Auditing";
 isfanon = false;
 issprinkon = false;
}
if(issprinkon){
 if(flow) {
   sprinkstatus = "working";
  }
 else{
   sprinkstatus = "not working";
 }
}
else if(!issprinkon){
 sprinkstatus = "ready";
}
else {
 sprinkstatus = "something's wrong";
}
```

Explanation

- This set of code checks for false alarm
- It also sets the current status
- This also handles the permission management of whether a device would work or not

Feature 2

```
void PublishData(float temp, int gas ,int flame ,int flow,bool
isfanon,bool issprinkon) {
 mqttconnect();
 String payload = "{\"temp\":";
 payload += temp;
 payload += "," "\"gas\":";
 payload += gas;
 payload += "," "\"flame\":";
 payload += flame;
 payload += "," "\"flow\":";
 payload += ((flow)?"true":"false");
 payload += "," "\"isfanon\":";
 payload += ((isfanon)?"true":"false");
 payload += "," "\"issprinkon\":";
 payload += ((issprinkon)?"true":"false");
 payload += "," "\"cansentalert\":";
 payload += ((cansentalert)?"true":"false");
 payload += "," "\"accidentstatus\":";
 payload += "\""+accidentstatus+"\"";
 payload += "," "\"sprinkstatus\":";
 payload += "\""+sprinkstatus+"\"";
 payload += "}";
```

```
if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");// if it successfully upload data on the
} else {
    Serial.println("Publish failed");
}
```

Explanation

• It sends the data to IBM IoT Watson platform

Feature 3

```
if (mjson_find(s, strlen(s), "$.command", &buf, &len))
{
    String command(buf,len);
    if(command=="\"cantfan\""){
        canfanoperate = !canfanoperate;
    }
    else if(command=="\"cantsprink\""){
        cansprinkoperate = !cansprinkoperate;
    }else if(command=="\"sentalert\""){
        resetcooldown();
    } } }

data3="";
```

Explanation

- The action taken by the user is received as a command and stored in a buffer
- The event in the device is done according to the command
- It checks for a secret encrypted pin for performing that event

8. TESTING

a. Testcases

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Commnets	TC for Automation(Y/N)	BUG	Executed By
Sensor_001	Functional	Microcontroller	Sensor data is properly taken	The connections to the circuit	1.Open the simulator in wokwi.	Random values generated,	Get the values and print it in the	Working as	Pass		N		Akshaya
Sensor_002	Functional	Microcontroller	Sensor data is parsed as json	The microcontroller should	1.Open the simulator in wokwi.	Random values generated,	Get the values and print it in the	Working as	Pass		N		Karthick
Work_001	Functional	Microcontroller	To check for fake alarm	The sensor values are taken	1.Simulate the device(do a practical	Random values generated,	Accident status is properly updated	Working as	Pass		N		Ajin
Work_002	Functional	Microcontroller and	The data should be sent to IBM	The device setup is completed	1.Start the simulation in wokwi.	Random values generated,	The values are shown in recent	Working as	Pass		N		Akshaya
Work_003	Functional	Node-red	The data should be sent to	The necessary packages	1.Login to node red editor	values got from the iot	The debug area should show the	Working as	Pass		N		Yoonus
Work_004	Functional	Node-red	Verify that the json data is parsed	A configured node-red with	1.Login to node red editor	values got from the lot	the debug menu shows the output	Working as	Pass		N		Yoonus
Database_001	Storage	Cloudant	The received data is stored in database in a key value pair	The node red is connected with cloudant node	login to cloudant dashboard. 2.create new database. 3. connect the database with node red and then give the database name in required field	values got from the lot device	After sending the data the data is stored in cloudant	Working as expected	Pass		N		Karthick
SMS_001	API	sms API	The sms is sent when there is fire alert	The node red should be configured to send a post request	Simualte the fire in the simulator(if real hardware is used real fire is used). Or click the sent alert button in	"Fire alert at xyz industries Hurry" And the trigger inputs	sms receiving to the given phonenum	Working as expected	Pass		N		Ajin
Work_005	Functional	UI	Even at times of emergency sometimes manual control is required	the dashboard interaction elements is connected to the node-red	in the dashboard enter the correct pin Click the action to be done	The action by user	manual command system works only	Working as expected	Pass		N		yoonus
Auth_001	Functional	UI	Verify that the correct pin is entered	text filed is given in dashboard to enter pin	1.The correct pin is entered 2.then necessary action is required	1234	command is sent successfull	working as expected	Pass		N		Akshaya
Auth_002	Functional	UI	Verify that it handles when wrong pin is entered	text filed is given in dashboard to enter pin	1.The correct pin is entered 2.then necessary action is required	141324 63363 1 001 fds	Show a message that the entered pin is wrong	Working as expected	Pass		N		Karthick
SMS_002	Functional	Microcontroller	Verify that the message is not sent continuously when there is fire it sends a message then waits for 10 minutes even after that if the fire exists it sends again	the sms funtionality should be implemented	1.Simulate a fire accident scenario 2.or click the send alert button on the dashboard 3.wait for the message to be sent	the event is simulated or triggered	The service should not spam continuous messages to authorities as fire won't be down within fraction of seconds	Working as expected	Pass		N		Ajin

b. UAT

Defect analysis

Resolution	Severity 1 Severity 2		Severity 3	Severity 4	Subtotal	
By Design	9	0	2	1	12	
External	0	0	1	0	1	
Fixed	19	24	25	14	82	
Not Reproduced	0	0	2	0	2	
Skipped	0	0	0	0	0	
Won't Fix	0	0	0	0	0	
Totals	28	24	30	15	97	

Test case analysis

Section	Total Cases	Not Tested	Fail	Pass
Client Application	4	0	0	4
Security	2	0	0	2
Exception Reporting	11	0	0	11
Final Report Output	5	0	0	5

9. Results

a. Performance

metricsCPU usage

The micro version of c++ is make the best use of the CPU. For every loop the program runs in O(1) time, neglecting the network and communication. The program sleeps for every 1 second for better communication with MQTT. As the program takes O(1) time and the compiler optimizes the program during compilation there is less CPU load for each cycle. The upcoming instructions are on the stack memory, so they can be popped after execution.

Memory usage:

The sensor values , networking data are stored in sram of the ESP32 . It's a lot of data because ESP32 has only limited amount of memory (520 KB) . For each memory cycle the exact addresses are overwritten with new values to save memory and optimal execution of the program

Error rates:

The errors rates are very low as the backend and dashboard is handled with node-red. The exceptions are handled in a proper way as it does not affect the usability of the system

Latency and Response Time:

The DOM handling of the received data is optimal and latency is low .After the DOM is loaded the entire site is loaded to the browser

The server also responses quickly. The average time of response is respectable

For the data sent from the IoT device (considering the sleep of one second from the IoT), the response is much quicker . We can easily see the delay caused by the sleep function

The average time is well over optimal value

Average time =
$$(5ms + 2600ms)/2$$

= 1302.5

Garbage collection:

In the server-side garbage collection is done by the Node framework. In the IoT device, c++ does not have any garbage collection features. But it is not necessary in this scenario as the memory is used again for storing the data. Any dangling pointer or poorly handled address space is not allocated.

10. Advantages and Disadvantages

Advantages

- Active monitoring for gas leakage and fire breakout
- Automatic alerting of admin as well as fire authorities using SMS
- Automatically turning on/off sprinkler as well as exhaust fan
- Authentication is required to turn on/off of sprinkler and exhaust fan as well as sendingSMS alert manually
- It automatically detect false fire breakout reducing unnecessary panic
- by using flow sensors we can confirm that the sprinkler system is working as it intended
- All device status can be shown in a dashboard
- Users can see the dashboard using a web application

Disadvantages

- Always need to connect with the internet [Only to Send the SMS alert]
- If the physical device is damaged the entire operation is collapsed
- Need large database since many data is stored in cloud database every second

11. CONCLUSION

So in conclusion our problem premise is solved using Iot devices by creating a smart management system that solves many inherent problems in the traditional fire management system like actively monitoring for fire breakouts as well as gas leakage and sending SMS alerts to the admin as well as to the fire authorities.

12. FUTURE SCOPE

The existing devices can be modified to work in different specialized environment as well as scale to house use to big labs[Since fire accidents can cause major loss in human lives in homes to big industries] as well as it can be used in public places, vehicles.

13.APPENDIX

Esp32 - Microcontroller:

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-Fi and dual-mode Bluetooth

Memory: 320 KiB SRAM

CPU: Tensilica Xtensa LX6 microprocessor @ 160 or 240 MHz

Power: 3.3 V DC

Manufacturer: Espressif Systems

Predecessor: ESP8266

Sensors:

DHT22 - Temperature and Humidity sensor

The DHT22 is a basic, low-cost digital temperature and humidity sensor. It uses a capacitive humidity sensor and a thermistor to measure the surrounding air and spits out a digital signal on the data pin (no analog input pins needed).

Flow Sensors

A flow sensor (more commonly referred to as a "flow meter") is an electronic device that measures or regulates the flow rate of liquids and gasses within pipes and tubes.

MQ5 - Gas sensor

Gas sensors (also known as gas detectors) are electronic devices that detect and identify different types of gasses. They are commonly used to detect toxic or explosive gasses and measure gas concentration.

Flame sensors

A flame-sensor is one kind of detector which is mainly designed for detecting as well as responding to the occurrence of a fire or flame. The flame detection response can depend on its fitting

Source code:

```
#include <WiFi.h>//library for wifi
#include <PubSubClient.h>//library for MQtt
#include "DHT.h"// Library for dht11
#include <cstdlib>
#include <time.h>
#include <mjson.h>
#define DHTPIN 15 // what pin we're connected to
#define DHTTYPE DHT22 // define type of sensor DHT 11
DHT dht (DHTPIN, DHTTYPE);// creating the instance by passing pin
and typr of dht connected
void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "fvs923"
#define DEVICE TYPE "zenabc"
#define DEVICE ID "221"
#define TOKEN "12345678"
String data3 = "";
```

```
String accidentstatus ="";
String sprinkstatus = "";
float temp =0;
bool isfanon = false;
bool issprinkon = false;
bool cansprinkoperate = true;
bool canfanoperate = true;
bool cansentalert = false;
int gas = 0;
int flame = 0;
int flow = 0;
long int cooldown= 600;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/data/fmt/json";
char subscribetopic[] = "iot-2/cmd/command/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
//----
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, callback ,wifiClient); //calling
the predefined client id by passing parameter like server id, portand
wificredential
void setup()// configureing the ESP32
```

```
{
  Serial.begin(115200);
 dht.begin();
  //if real gas sensor is used make sure the senor is heated up for
acurate readings
  /*
    - Here random values for readings and stdout were used to show
the
     working of the devices as physical or simulated devices are
not
     available.
  */
 delay(10);
  Serial.println();
 wificonnect();
 mqttconnect();
}
void loop()
{
  temp = dht.readTemperature();
  //setting a random seed (only for random values not in real life
scenarios)
  srand(time(0));
  //initial variable activities like declaring , assigning
 gas = rand()%400;
```

```
int flamereading = rand()%1024;
  flame = map(flamereading, 0, 1024, 0, 1024);
  int flow = ((rand()%100)>50?1:0);
  //find the accident status 'cause fake alert may be caused by some
mischief activities
  if(temp < 45)
    if(flame > 650 ) {
      accidentstatus = "Need Auditing";
      if(canfanoperate)
        isfanon = true;
      else
        isfanon = false;
      issprinkon = false;
    }
    else if(flame <= 10){</pre>
      accidentstatus = "nothing happened";
      isfanon = false;
      issprinkon = false;
    }
  else if(temp >= 45 && temp <= 55){
    if(flame \leq 650 \&\& flame > 100) {
      if(cansprinkoperate)
```

```
issprinkon = true;
   else
     issprinkon = false;
   accidentstatus = "moderate";
   if(gas > 160 && canfanoperate ){
     isfanon = true;
    }
   else{
     isfanon = false;
   }
  }
 else if(flame <= 100 && flame > 10){
  if(cansprinkoperate)
     issprinkon = true;
   else
     issprinkon = false;
   isfanon = false;
   accidentstatus = "moderate";
  }
else if(temp > 55){
 if(flame > 650) {
   gas = 500 + rand() %500;
```

```
accidentstatus = "severe";
 if(cansprinkoperate)
    issprinkon = true;
 else
    issprinkon = false;
 if(canfanoperate)
    isfanon = true;
 else
    isfanon = false;
}
else if(flame < 650 \&\& flame > 400){
 gas = 300 + rand() %500;
 accidentstatus = "severe";
 if(cansprinkoperate)
   issprinkon = true;
 else
    issprinkon = false;
 if(canfanoperate)
    isfanon = true;
 else
    isfanon = false;
```

```
}
else {
  accidentstatus = "Need moderate Auditing";
  isfanon = false;
 issprinkon = false;
}
if(issprinkon){
 if(flow) {
   sprinkstatus = "working";
  }
 else{
   sprinkstatus = "not working";
 }
else if(!issprinkon){
 sprinkstatus = "ready";
}
else {
  sprinkstatus = "something's wrong";
PublishData(temp, gas, flame, flow, isfanon, issprinkon);
```

```
//a cooldown period is set as the values and situations are random
in real life sceanarios the time can be reduced or neclected
  if(accidentstatus=="severe" && cooldown >= 600) {
   cooldown = 0;
   sendalert();
   PublishData(temp, gas, flame, flow, isfanon, issprinkon);
   cansentalert = false;
  }
  if(cooldown > 999999) {
   cooldown = 601;
  }
  delay(1000);
  ++cooldown;
 if (!client.loop()) {
   mqttconnect();
}
/*....retrieving to
Cloud. */
void PublishData(float temp, int gas ,int flame ,int flow,bool
isfanon,bool issprinkon) {
 mqttconnect();//function call for connecting to ibm
  /*
    creating the String in in form JSon to update the data to ibm
cloud
```

```
*/
  String payload = "{\"temp\":";
 payload += temp;
  payload += "," "\"gas\":";
 payload += gas;
 payload += "," "\"flame\":";
 payload += flame;
 payload += "," "\"flow\":";
 payload += ((flow)?"true":"false");
  payload += "," "\"isfanon\":";
 payload += ((isfanon)?"true":"false");
 payload += "," "\"issprinkon\":";
 payload += ((issprinkon)?"true":"false");
 payload += "," "\"cansentalert\":";
 payload += ((cansentalert)?"true":"false");
  payload += "," "\"accidentstatus\":";
 payload += "\""+accidentstatus+"\"";
 payload += "," "\"sprinkstatus\":";
 payload += "\""+sprinkstatus+"\"";
 payload += "}";
 if (client.publish(publishTopic, (char*) payload.c str())) {
    Serial.println("Publish ok");// if it sucessfully upload data on
the cloud then it will print publish ok in Serial monitor or else it
will print publish failed
```

```
} else {
    Serial.println("Publish failed");
 }
}
void mqttconnect() {
  if (!client.connected()) {
    Serial.print("Reconnecting client to ");
    Serial.println(server);
    while (!!!client.connect(clientId, authMethod, token)) {
      Serial.print(".");
      delay(500);
    }
     initManagedDevice();
     Serial.println();
 }
}
void wificonnect() //function defination for wificonnect
{
  Serial.println();
  Serial.print("Connecting to ");
  WiFi.begin("Wokwi-GUEST", "", 6);
  while (WiFi.status() != WL_CONNECTED) {
    delay(100);
```

```
Serial.print(".");
  }
  Serial.println("");
  Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
}
void initManagedDevice() {
 if (client.subscribe(subscribetopic)) {
    Serial.println((subscribetopic));
    Serial.println("subscribe to cmd OK");
  } else {
    Serial.println("subscribe to cmd FAILED");
 }
}
//handles commands from user side
void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength)
{
  Serial.print("callback invoked for topic: ");
  Serial.println(subscribetopic);
  for (int i = 0; i < payloadLength; i++) {</pre>
   data3 += (char)payload[i];
  }
```

```
Serial.println("data: "+ data3);
  const char *s =(char*) data3.c_str();
  double pincode = 0;
  if(mjson get number(s, strlen(s), "$.pin", &pincode)){
    if(((int)pincode) ==137153) {
        const char *buf;
        int len;
        if (mjson find(s, strlen(s), "$.command", &buf, &len)) //
And print it
          String command(buf,len);
          if (command=="\"cantfan\"") {
            //this works when there is gas sensor reads high value
and if there should be a
            //manual trigger else it will be automate
            canfanoperate = !canfanoperate;
          else if(command=="\"cantsprink\""){
            cansprinkoperate = !cansprinkoperate;
          }else if(command=="\"sentalert\""){
            //this works when there is accident status is severe and
if there should be a
            //manual trigger else it will be automate
            resetcooldown();
```

```
}
}

data3="";

void resetcooldown() {
  cooldown = 0;
}

//sent alert request to node-red

void sendalert() {
  cansentalert = true;
  cooldown = 0;
}
```

Github Link: https://github.com/IBM-EPBL/IBM-Project-10534-1659185049

Demo: https://youtu.be/zZnD5GRbDIw