CLAIMS

 1. A layer structure comprisi

- 2 a semi-conductor heterostructure;
- at least one metallic interlayer deposited next to at least one surface
- 4 and in at least one region of said heterostructure; and
- 5 a dielectric layer coated next to said interlayer.
- 1 2. A layer structure according to claim 1 wherein only one surface is
- 2 deposited with said metallic interlayer.
- 1 3. A layer structure according to claim 1 wherein only the top surface is
- 2 deposited with said metallic interlayer.
- 1 4. A layer structure according to claim 1 further comprising an oxide
- 2 layer between said heterostructure and said interlayer.
- 1 5. A layer structure according to claim 2 further comprising an oxide
- 2 layer between said heterostructure and said interlayer.
- 1 6. A layer structure according to claim 2 wherein said heterostructure is a
- 2 single quantum well structure, and multiple quantum well structure, a
- 3 superlattice structure or a quantum dot structure.
- 1 7. A layer structure according to claim 2 wherein said heterostructure
- 2 comprises
- a AlGaAs/GaAs quantum well structure having a plurality of alternating
- 4 AIGaAs and GaAs layers; or

- an InGaAs/GaAs quantum well structure having a plurality of alternating InGaAs and GaAs layers.
- 1 8. A layer structure according to claim 2 wherein said interlayer
- comprises a single layer of metal, a single layer of alloyed metal,
- multiple layers of metal, multiple layers of alloyed metal, or multiple
- 4 layers of metal and alloyed metal.
- 1 9. A layer structure according to claim 2 wherein said interlayer is 1 to 10,000 angstrom thick.
- 1 10. A layer structure according to claim 2 wherein said interlayer is 10 to 500 angstrom thick.
- 1 11. A layer structure according to claim 2 wherein a plurality of interlayers
 2 are deposited in different regions of said heterostructure.
- 1 12. A layer structure according to claim 2 wherein a plurality of interlayers
 2 are deposited in different regions of said heterostructure, and at least
 3 two of said interlayers have different thicknesses.
- 1 13. A layer structure according to claim 2 wherein said dielectric layer is made from silica oxide or silica.
- 1 14. A layer structure according to claim 5 wherein said heterostructure is a
 2 single quantum well structure, and multiple quantum well structure, a
 3 superlattice structure or a quantum dot structure.
- 1 15. A layer structure according to claim 5 wherein said heterostructure comprises

- a AlGaAs/GaAs quantum well structure having a plurality of alternating
- 4 AlGaAs and GaAs layers; or
- 5 an InGaAs/GaAs quantum well structure having a plurality of
- 6 alternating InGaAs and GaAs layers.
- 1 16. A layer structure according to claim 5 wherein said interlayer
- comprises a single layer of metal, a single layer of alloyed metal,
- multiple layers of metal, multiple layers of alloyed metal, or multiple
- 4 layers of metal and alloyed metal.
- 1 17. A layer structure according to claim 5 wherein said interlayer is 1 to
- 2 10,000 angstrom thick.
- 1 18. A layer structure according to claim 5 wherein said interlayer is 10 to
- 2 500 angstrom thick.
- 1 19. A layer structure according to claim 5 wherein a plurality of interlayers
- are deposited in different regions of said heterostructure.
- 1 20. A layer structure according to claim 5 wherein a plurality of interlayers
- 2 are deposited in different regions of said heterostructure, and at least
- two of said interlayers have different thicknesses.
- 1 21. A layer structure according to claim 5 wherein said heterostructure is
- 2 made from elements from column III to V of the periodic table of
- 3 elements.
- 1 22. A layer structure according to claim 5 wherein said dielectric layer is
- 2 made from silica oxide or silica.

1	23.	A method of post-growth turning of an optical bandgap of a semi-
2		conductor heterostructure comprising:
3		forming an oxide layer on the top-surface of said heterostructure;
4		depositing at least one metallic interlayer on at least one region of
5		said oxide layer; and
6	-	post-annealing said dielectric layer onto said heterostructure.
1	24.	A method according to claim 23 wherein said oxide layer is formed by
2		heating said heterostructure in the presence of pure oxygen;
3		heating said heterostructure in the presence of oxygen and at least
4	٠	one inert gas;
5	,	heating said heterostructure in the presence of water-saturated pure
6		oxygen;
7		heating said heterostructure in the presence of water-saturated
8		oxygen and inert gas;
9		heating said heterostructure in the presence of H2O2-saturated pure
10		oxygen;
11.		heating said heterostructure in the presence of H ₂ O ₂ -saturated oxygen
12		and inert gas; or
13		heating said heterostructure in the presence of H2O2-saturated inert
14		gas.

A method of post-growth tuning of an optical bandgap of a semi-

conductor heterostructure comprising:

25.

1

2

3		a) forming an oxide layer on the top-surface of said
4		heterostructure;
5		b) masking said heterostructure with a mask of a predetermine
6		pattern such that said heterostructure is exposed in unmasked
7		regions;
8		c) depositing at least one metallic interlayer on said unmasked
9		regions;
10		d) lifting-off said mask;
11		e) post-annealing said dielectric layer onto said heterostructure.
1 -	26.	A method according to claim 25 wherein steps (c) and (d) are
2		repeated to produce additional interlayers according to additional
3		specific patterns.
1	27.	A layer structure comprising :
2	٠.	a semi-conductor heterostructure;
3		at least one oxide layer formed on at least one surface of said
.4		heterostructure; and
5		a dielectric layer coated next to said oxide layer.
1	28	A layer structure according to claim 27 wherein said oxide layer is

formed by the oxidation of said surface of said heterostructure.