Algoritmo de Dijkstra

Alejandro Strejilevich de Loma

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Septiembre de 2015

Introducción

- Problemas de camino mínimo:
 - uno a uno;
 - uno a todos;
 - todos a todos;
 - todos a uno;
 - **.** . . .
- Representación de grafos:
 - listas de adyacentes/sucesores;
 - matriz de adyacencia;
 -

Dijkstra - Características

- ¿Qué problema de camino mínimo resuelve? Desde un vértice dado a todos los vértices (uno a todos).
- ¿Sirve desde un vértice dado a otro específico (uno a uno)? SÍ. √

 Se puede interrumpir el algoritmo cuando se calcula el vértice deseado.
- ¿Sirve entre todo par de vértices (todos a todos)? Sí. $\sqrt{}$ Se corre el algoritmo empezando desde cada vértice.
- ¿Sirve para grafos no dirigidos? SÍ. $\sqrt{\ }$
- ¿Sirve para grafos dirigidos? Sĺ. √
- ¿Sirve para grafos con circuitos negativos? NO. × No existe camino mínimo para los vértices del circuito.
- ¿Sirve para grafos con ejes negativos? NO. ×
 El algoritmo puede dar resultados incorrectos.

Dijkstra - Funcionamiento (ejercicio) y complejidad

- Bases: Alien (A), Barbarella (B), Challenger (C), Duran-Duran (D) y Enterprise (E).
- Dispositivos robóticos: R1 y R2.
- R1 debe ir a reparar a R2.
- Distancias:

	В	С	D	Е	R1	R2
Α	1	1	2	4	1	7
В		1	2	5	4	6
С			2	3	5	5
D				2	3	6
E					5	3
R1						14

R1 consume:

- 2 unidades de energía por unidad de distancia recorrida;
- 1 unidad de energía cada vez que ingresa o egresa de una base;
- 0 unidades de energía mientras está dentro de alguna base.
- Determinar el recorrido que debe seguir R1 para minimizar su consumo de energía.

G = (V, E); n = V ; m = E	G: listas de adyacentes/sucesores			
$\ell: E o \mathbb{R}_{\geq 0}$ (longitud ejes)	S: vector de bool; ant: vector			
$\overline{\text{Dijkstra}(G, v)}$	$\pi()$ vector	$\pi()$ heap		
$\pi() \leftarrow +\infty; \ \pi(v) \leftarrow 0$	O(n)			
$S \leftarrow \emptyset$; $ant() \leftarrow nil$	O(n)			
$para\ i \leftarrow 1, 2, \dots n$				
$w^* \leftarrow \operatorname{argmin}_{w \in V - S} \pi(w)$	$O(n) \stackrel{n}{\longrightarrow} O(n^2)$			
$S \leftarrow S \cup \{w^*\}$	$O(1) \stackrel{n}{\longrightarrow} O(n)$			
para $w \in \Gamma(w^*) \cap (V-S)$				
$x \leftarrow \pi(w^*) + \ell(w^*, w)$	$O(1) \stackrel{m}{\longrightarrow} O(m)$			
$\mathbf{si} \ \pi(\mathbf{w}) > \mathbf{x}$	$O(1) \stackrel{m}{\longrightarrow} O(m)$			
$\pi(w) \leftarrow x$; ant $(w) = w^*$	$O(1) \stackrel{m}{\longrightarrow} O(m)$			
fin si				
fin para				
fin para				
devolver $\pi()$, ant $()$				
TOTAL	$O(n^2)$			
AS	Alexanters de Dilleste			

G = (V, E); n = V ; m = E	G: listas de adyacentes/sucesores			
$\ell: E o \mathbb{R}_{\geq 0}$ (longitud ejes)	S: vector de bool; ant: vector			
$\overline{Dijkstra(G,v)}$	$\pi()$ vector	$\pi()$ heap		
$\pi() \leftarrow +\infty; \ \pi(v) \leftarrow 0$	O(n)	<i>O</i> (<i>n</i>)		
$S \leftarrow \emptyset$; $ant() \leftarrow nil$	O(n)	O(n)		
$para\ i \leftarrow 1, 2, \dots n$				
$w^* \leftarrow \operatorname{argmin}_{w \in V - S} \pi(w)$	$O(n) \stackrel{n}{\longrightarrow} O(n^2)$	$O(\lg n) \stackrel{n}{\longrightarrow} O(n \lg n)$		
$S \leftarrow S \cup \{w^*\}$	$O(1) \stackrel{n}{\longrightarrow} O(n)$	$O(1) \stackrel{n}{\longrightarrow} O(n)$		
para $w \in \Gamma(w^*) \cap (V-S)$				
$x \leftarrow \pi(w^*) + \ell(w^*, w)$	$O(1) \stackrel{m}{\longrightarrow} O(m)$	$O(1) \stackrel{m}{\longrightarrow} O(m)$		
$si\ \pi(w) > x$	$O(1) \xrightarrow{m} O(m)$	$(i!) O(1) \xrightarrow{m} O(m)$		
$\pi(w) \leftarrow x$; ant $(w) = w^*$	$O(1) \xrightarrow{m} O(m)$	$O(\lg n) \xrightarrow{m} O(m \lg n)$		
fin si				
fin para				
fin para				
devolver $\pi()$, ant $()$				
TOTAL	$O(n^2)$	$O((m+n)\lg n)$		
ACLL ALL ALL ALL ALL ALL ALL ALL ALL ALL				
ASdeL Algoritmo de Dijkstra				

G = (V, E); n = V ; m = E	G: listas de adyacentes/sucesores			
$\ell: E o \mathbb{R}_{\geq 0}$ (longitud ejes)	S: vector de bool; ant: vector			
Prim(G, v)	$\pi()$ vector	$\pi()$ heap		
$\pi() \leftarrow +\infty; \ \pi(v) \leftarrow 0$	O(n)	O(n)		
$S \leftarrow \emptyset$; $ant() \leftarrow nil$	O(n)	O(n)		
$para\ i \leftarrow 1, 2, \dots n$				
$w^* \leftarrow \operatorname{argmin}_{w \in V - S} \pi(w)$	$O(n) \stackrel{n}{\longrightarrow} O(n^2)$	$O(\lg n) \stackrel{n}{\longrightarrow} O(n \lg n)$		
$S \leftarrow S \cup \{w^*\}$	$O(1) \stackrel{n}{\longrightarrow} O(n)$	$O(1) \xrightarrow{n} O(n)$		
para $w \in \Gamma(w^*) \cap (V-S)$				
$x \leftarrow \frac{\pi(w^*)}{\ell(w^*, w)}$	$O(1) \stackrel{m}{\longrightarrow} O(m)$	$O(1) \xrightarrow{m} O(m)$		
$si\ \pi(w) > x$	$O(1) \stackrel{m}{\longrightarrow} O(m)$	$(i!)\ O(1) \stackrel{m}{\longrightarrow} O(m)$		
$\pi(w) \leftarrow x$; $ant(w) = w^*$	$O(1) \stackrel{m}{\longrightarrow} O(m)$	$O(\lg n) \stackrel{m}{\longrightarrow} O(m \lg n)$		
fin si				
fin para				
fin para				
devolver $\pi()$, ant $()$				
TOTAL	$O(n^2)$	$O((m+n)\lg n)$		
ASdeL Algoritmo de Dijkstra				
M3	Algorithio de Dijkstra			