Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом А-вычисли-

д-вы числимые нумерации

Аппроксима-

Лекция С7 Относительная вычислимость, ${ m I}$

Вадим Пузаренко

26 февраля 2024 г.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

Аппроксимации Пусть $A\subseteq \omega$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации

Пусть $A \subseteq \omega$.

Определение С7.1.

Частичная функция ψ называется **частично вычислимой относительно A** или **частично A**-вычислимой (**A**-чвф), если существует последовательность $f_0, f_1, \ldots, f_n = \psi$ частичных функций такая, что каждая из них либо простейшая или χ_A , либо получена из предыдущих с помощью операторов S, R, M.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Пусть $A \subseteq \omega$.

Определение С7.1.

Частичная функция ψ называется **частично вычислимой относительно A** или **частично A**-вычислимой (**A**-чвф), если существует последовательность $f_0, f_1, \ldots, f_n = \psi$ частичных функций такая, что каждая из них либо простейшая или χ_A , либо получена из предыдущих с помощью операторов S, R, M.

Определение С7.2.

Функция ψ называется вычислимой относительно A или A-вычислимой (A-вф), если она является частично A-вычислимой и всюду определённой.

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-MOCTH C оракулом

Примеры С7.1.

Следующие функции являются А-чвф:

- любая чвф;
- \bullet $\chi_A(x)$;
- $\chi_A^*(x) = \mu_Y[\chi_A(x) = 0];$
- $oldsymbol{\circ} g(x) \leftrightharpoons egin{cases} f_0(x), & ext{если } x \in A; \ f_1(x), & ext{если } x \in \overline{A}; \end{cases}$ где $f_0(x)$ и $f_1(x)$ — чвф.

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Команды.

INC I Как содержимое I-го регистра, так и счётчик команд увеличивает на единицу; содержимое остальных регистров остаётся неизменным.

DEC I, n Если содержимое I-го регистра больше нуля, то уменьшает содержимое I-го регистра на единицу и помещает в счётчик команд число n; если же содержимое I-го регистра равняется нулю, то содержимое I-го регистра не меняется, а счётчик команд увеличивается на единицу. Во всех случаях содержимое регистра $J \neq I$ остаётся неизменным.

SET I, n Если содержимое I-го регистра попадает в A, то помещаем в счётчик команд число п; в противном случае счётчик команд увеличивается на единицу. Содержимое всех регистров остаётся неизменным

Лекция С7 Относительная вычислимость, І

Вадим Пузаренк

Вычислимость с оракулом

> λ-вычислииые пумерации

нумерации Аппроксима Программа.

Программа имеет вид

 $0 : P_0$

 $1 : P_1$

-

 $n: P_n$

Здесь число k в записи $k:\ldots$ означает значение счётчика команд, а P_k — одна из команд, описанных выше $(0 \le k \le n)$.

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Программа.

Программа имеет вид

 $0: P_0$

 $1: P_1$

 $n: P_n$

Здесь число k в записи $k:\ldots$ означает значение счётчика команд, а P_k — одна из команд, описанных выше $(0 \le k \le n)$.

Машина Шёнфилда с оракулом A.

Однозначно задаётся следующими атрибутами:

1) потенциально бесконечным множеством регистров. занумерованными натуральными числами. Каждый регистр — это ячейка памяти, способная содержать любое натуральное число.

Лекция С7 Относительная вычислимость. І

Пузаренко

Вычисли-MOCTH C оракулом

Машина Шёнфилда с оракулом A.

Содержимое регистров может меняться в процессе вычислений. Отметим, что каждая фиксированная машина Шёнфилда использует в своих вычислениях только конечное число регистров. Основное назначение регистровой памяти — это хранение входных, промежуточных и выходных данных.

- 2) счётчиком команд, являющимся особой ячейкой памяти, которая в каждый момент времени содержит некоторое натуральное число. Счётчик команд указывает на номер команды, которая исполняется в данный момент. В начальный момент времени счётчик команд равняется нулю.
- 3) программой, содержащейся в выделенной ячейке памяти машины. Программа не меняется в процессе вычисления. Шаг машины состоит в выполнении команды, на которую указывает счётчик команд. Если команды с таким номером нет, то программа останавливается.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аввекания

Определение С7.3.

Частичная числовая функция $f(x_1, x_2, \ldots, x_k)$ называется вычислимой на машине Шёнфилда с оракулом A с программой P, если выполняются следующие условия (здесь $n_1, n_2, \ldots, n_k \in \omega$):

- если $f(n_1, n_2, \ldots, n_k) \downarrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \le i \le k)$ и остальными регистрами, содержащими 0, останавливается, а $f(n_1, n_2, \ldots, n_k)$ находится в [0]-м регистре;
- (i) если $f(n_1, n_2, \ldots, n_k) \uparrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \le i \le k)$ и остальными регистрами, содержащими 0, не останавливается и работает бесконечно.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима Определение С7.3.

Частичная числовая функция $f(x_1, x_2, \ldots, x_k)$ называется вычислимой на машине Шёнфилда с оракулом A с программой P, если выполняются следующие условия (здесь $n_1, n_2, \ldots, n_k \in \omega$):

- если $f(n_1, n_2, \ldots, n_k) \downarrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \leqslant i \leqslant k)$ и остальными регистрами, содержащими 0, останавливается, а $f(n_1, n_2, \ldots, n_k)$ находится в [0]-м регистре;
- ② если $f(n_1, n_2, \ldots, n_k) \uparrow$, то машина P, начиная работу с содержимым [i]-го регистра n_i $(1 \le i \le k)$ и остальными регистрами, содержащими 0, не останавливается и работает бесконечно.

Пример С7.2.

Следующая программа вычисляет $\chi_A(x)$:

A-ЧВФ $\mapsto A$ -МШ

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.1.

Любая частично A-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом A.

A- $\mathsf{YB}\Phi \mapsto A$ - $\mathsf{M} \coprod$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

....нумерации •

Теорема С7.1.

Любая частично А-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом А.

Доказательство.

Следует повторить рассуждения из доказательства теоремы ${\sf C1.2},$ а также использовать пример ${\sf C7.2}.$

A- $\mathsf{YB}\Phi \mapsto A$ - MIII

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Теорема С7.1.

Любая частично *А*-вычислимая функция вычислима на некоторой машине Шёнфилда с оракулом A.

Доказательство.

Следует повторить рассуждения из доказательства теоремы С1.2, а также использовать пример C7.2.

Коды операторов (команд).

$$cd(INC[i]) = code(\langle 0, i \rangle),$$

$$cd(DEC[i], j) = code(\langle 1, i, j \rangle),$$

$$cd(SET[i], j) = code(\langle 2, i, j \rangle).$$

Лекция С7 Относительная вычислимость. І

Вычислимость с оракулом

Код программы.

Пусть программа P имеет вид:

 $0: P_0$

 $1 : P_1$

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle \operatorname{cd}(P_0), \operatorname{cd}(P_1), \dots, \operatorname{cd}(P_{k-1}) \rangle).$

Лекция С7 Относительная вычислимость. І

Вычислимость с оракулом

Код программы.

Пусть программа P имеет вид:

 $0: P_0$

 $1 : P_1$

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle \operatorname{cd}(P_0), \operatorname{cd}(P_1), \dots, \operatorname{cd}(P_{k-1}) \rangle).$

Лемма С7.1.

Множество Com(x) кодов команд примитивно рекурсивно.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

4-вычислииые нумерации

чумерации Аппроксима:

Код программы.

Пусть программа P имеет вид:

 $0: P_0$

1 : P_1

٠.

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle\operatorname{cd}(P_0),\operatorname{cd}(P_1),\dots,\operatorname{cd}(P_{k-1})\rangle).$

Лемма С7.1.

Множество $\mathrm{Com}(x)$ кодов команд примитивно рекурсивно.

Лемма С7.2.

Множество $\operatorname{Prog}(x)$ кодов программ примитивно рекурсивно.

A-MIII $\mapsto A$ -4B Φ

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-MOCTH C оракулом

Код программы.

Пусть программа P имеет вид:

 $0: P_0$

 $1 : P_1$

 $k-1: P_{k-1}$

Тогда положим $\operatorname{code}(P) = \operatorname{code}(\langle \operatorname{cd}(P_0), \operatorname{cd}(P_1), \dots, \operatorname{cd}(P_{k-1}) \rangle).$

Лемма С7.1.

Множество Com(x) кодов команд примитивно рекурсивно.

Лемма С7.2.

Множество Prog(x) кодов программ примитивно рекурсивно.

Замечание С7.1.

Коды программ машин Шёнфилда с оракулом не зависят от оракула.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом А-вычисли

А-вычислимые нумерации

нумерации Аппроксима-

- $\operatorname{ct}^A(e,x,n)$ выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.
- ② $\operatorname{rg}^A(e,x,n)$ выдаёт код последовательности $\langle r_0,r_1,\ldots,r_{e+k-1}\rangle$ содержимых регистров после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом А-вычисли-

А-вычислимые нумерации

Аппроксима

- $\operatorname{ct}^A(e,x,n)$ выдаёт содержимое счётчика команд после n шагов вычисления с программой с кодом e и содержимых x_1, x_2, \ldots, x_k регистров с 1-го по k-ый, если $x = \operatorname{code}(\langle x_1, x_2, \ldots, x_k \rangle)$.
- ② $\operatorname{rg}^A(e,x,n)$ выдаёт код последовательности $\langle r_0,r_1,\ldots,r_{e+k-1}\rangle$ содержимых регистров после n шагов вычисления с программой с кодом e и содержимых x_1,x_2,\ldots,x_k регистров с 1-го по k-ый, если $x=\operatorname{code}(\langle x_1,x_2,\ldots,x_k\rangle)$.

$$\mathrm{ct}^A(e,x,n) = \begin{cases} y, & \text{если выполняется следующее:} \\ (\imath) \ e - \text{код программы } P, \\ (\imath\imath) \ x = \mathrm{code}(\langle x_1, x_2, \dots, x_k \rangle), \\ (\imath\imath\imath) \ y - \mathrm{содержимое c чётчика команд после} \\ n \ \text{шагов выполнения программы } P, \ \text{начатой c} \\ \mathrm{codeржимыми peructpos } 0, x_1, x_2, \dots, x_k, 0, \dots, 0; \\ 0 \ \ \text{в противном случае.} \end{cases}$$

Лекция С7 Относительная вычислимость. І

Вычисли-MOCTH C оракулом

 $\operatorname{code}(\langle r_0,\ldots,r_{e+k-1}\rangle),$ если выполняется следующее: (i) e — код программы P, $(ii) x = \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle),$ (iii) r_i — содержимое i-го регистра после *п* шагов $\operatorname{rg}^{A}(e, x, n) =$ выполнения программы P, начатой с содержимыми регистров $0, x_1, x_2, \ldots, x_k, 0, \ldots, 0;$ в противном случае.

Аппроксима-

$$\operatorname{rg}^A(e,x,n) = \begin{cases} \operatorname{code}(\langle r_0,\dots,r_{e+k-1}\rangle), & \operatorname{если выполняется следующее:} \\ (\imath) \ e-\kappa \operatorname{ode}(\langle x_1,x_2,\dots,x_k\rangle), \\ (\imath\imath) \ x = \operatorname{code}(\langle x_1,x_2,\dots,x_k\rangle), \\ (\imath\imath\imath) \ r_i - \operatorname{codepжимое} i\text{-го} \\ \operatorname{регистра после} n \ \operatorname{шагов} \\ \operatorname{выполнения} \\ \operatorname{программы} P, \ \operatorname{начатой} \ c \\ \operatorname{codepжимыми регистров} \\ 0,x_1,x_2,\dots,x_k,0,\dots,0; \\ 0 \ \operatorname{в противном случае}. \end{cases}$$

Лемма С7.3.

Функции $\operatorname{ct}^A(e,x,n)$ и $\operatorname{rg}^A(e,x,n)$ являются A-вычислимыми.

Лекция С7 Относительная вычислимость. І

Вычислимость с оракулом

Упражнение С7.1.

Докажите леммы С7.1, С7.2 и С7.3.

Лекция С7 Относительная вычислимость. I

Вадим

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Упражнение С7.1.

Докажите леммы С7.1, С7.2 и С7.3.

Определение С7.4.

Предикат $B\subseteq \omega^n$ называется вычислимым относительно A или A-вычислимым (и обозначается как $B\leqslant_T A$), если функция $\chi_B(x_1,x_2,\ldots,x_n)$ является A-вычислимой.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Упражнение С7.1.

Докажите леммы С7.1, С7.2 и С7.3.

Определение С7.4.

Предикат $B\subseteq \omega^n$ называется вычислимым относительно A или A-вычислимым (и обозначается как $B\leqslant_T A$), если функция $\chi_B(x_1,x_2,\ldots,x_n)$ является A-вычислимой.

Определим предикат $\mathrm{Stop}^A(e,x,n)$ как отношение, удовлетворяющее следующим условиям в точности:

- (ι) e код некоторой программы (скажем, P);
- (11) $x = \operatorname{code}(\langle x_1, x_2, \dots, x_k \rangle)$
- ($\imath\imath\imath$) программа P, начав работу с содержимым регистров 0, $x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0$, останавливается к шагу n.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Лемма С7.4.

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

лумерации Аппроксима Лемма С7.4.

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение С7.2.

Докажите лемму С7.4.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Лемма С7.4.

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение С7.2.

Докажите лемму С7.4.

Пусть натуральные числа e, x и n таковы, что $\operatorname{Stop}^A(e,x,n)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации ^ ___ Лемма С7.4.

Отношение $\operatorname{Stop}^A(e,x,n)$ является A-вычислимым.

Упражнение С7.2.

Докажите лемму С7.4.

Пусть натуральные числа e, x и n таковы, что $\operatorname{Stop}^A(e,x,n)$.

Определение С7.5.

Кодом вычисления на машине Шёнфилда с оракулом A с программой P, имеющей код e, и начальной конфигурацией содержимого регистров $0, (x)_0, (x)_1, \ldots, (x)_{\mathrm{lh}(x)-1}, 0, \ldots, 0$, будем называть $\mathrm{code}(\langle \mathrm{rg}^A(e,x,0), \mathrm{rg}^A(e,x,1), \ldots, \mathrm{rg}^A(e,x,n) \rangle)$.

Лекция С7 Относительная вычислимость. I

> Вадим Пузаренко

Вычислимость с оракулом А-вычисли-

А-вычислимые нумерации

Аппроксима-

Определение С7.6.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф $U(y) = ((y)_{1h(y) \stackrel{\bullet}{=} 1})_0$.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Определение С7.6.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф

$$U(y)=((y)_{\mathrm{lh}(y)\stackrel{\bullet}{-}1})_0.$$

Если $e, x \in \omega$ не удовлетворяют $\operatorname{Stop}^A(e, x, n)$ ни для какого $n \in \omega$, то считаем код вычисления не определённым.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

Аппроксимации

Определение С7.6.

Если y — код вычисления, то результат вычисления содержится в 0-м регистре и, следовательно, вычисляется с помощью прф $U(y) = ((y)_{1b(y)} \stackrel{\bullet}{=} _1)_0$.

Если $e, x \in \omega$ не удовлетворяют $\mathrm{Stop}^A(e, x, n)$ ни для какого $n \in \omega$, то считаем код вычисления не определённым.

Определение С7.7.

Пусть $k\geqslant 1$; определим k+2-арный **предикат Клини** $T_k^A(e,x_1,x_2,\ldots,x_k,y)$ как отношение, удовлетворяющее в точности следующим условиям:

- ② y код вычисления программы P с начальной конфигурацией содержимого регистров $0, x_1, x_2, \ldots, x_k, 0, \ldots, 0$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

Д-вычислииые чумерации

нумерации Аппроконна Лемма С7.5.

Для любого $k\geqslant 1$ предикат $T_k^A(e,x_1,\ldots,x_k,y)$ является A-вычислимым.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

нумерации

Лемма С7.5.

Для любого $k\geqslant 1$ предикат $T_k^A(e,x_1,\ldots,x_k,y)$ является A-вычислимым.

Теорема С7.2.

Любая частичная функция, вычислимая на машине Шёнфилда с оракулом A, частично A-вычислима.

Теорема С7.3(Клини о нормальной форме).

Существует примитивно рекурсивная функция U такая, что для любого $k\geqslant 1$ найдётся A-вычислимое отношение $T_k^A(e,x_1,x_2,\ldots,x_k,y)$, для которого выполняется следующее: для любой k-местной частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_k)$ найдётся e_0 , для которого имеет место $\varphi(x_1,x_2,\ldots,x_k)=U(\mu y.T_k^A(e_0,x_1,x_2,\ldots,x_k,y))$.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом А-вычисли

А-вычислимые нумерации

Аппроксима-

Предложение С7.1.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Предложение С7.1.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Предложение С7.2.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных вычислимых функций, принимающих значения $\subseteq\{0;1\}$.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

Аппроксимации

Предложение С7.1.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных A-вычислимых функций.

Предложение С7.2.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, не существует частично A-вычислимой функции, универсальной для семейства всех k-местных вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Теорема С7.4.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.5.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Универсальная *А*-чвф

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Теорема С7.5.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично А-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0; 1\}$.

Следствие С7.1.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует всюду определённая k-местная функция, принимающая значения $\subset \{0;1\}$, не являющаяся *A*-вычислимой.

Универсальная A-чвф

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппрокания

Теорема С7.5.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует k+1-местная частично A-вычислимая функция, универсальная для семейства всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$.

Следствие С7.1.

Каковы бы ни были $k\geqslant 1$ и $A\subseteq \omega$, существует всюду определённая k-местная функция, принимающая значения $\subseteq \{0;1\}$, не являющаяся A-вычислимой.

Упражнение С7.3.

Докажите лемму С7.5, предложения С7.1, С7.2, теоремы С7.2–С7.5 и следствие С7.1.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Лемма С7.6.

Пусть $A\subseteq \omega$, $\psi-k$ -местная функция, а $B\subseteq \omega^k-$ множество. Тогда

- ullet ψ частично A-вычислима, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ частично A-вычислима;
- ② ψA -вычислимая функция, если и только если $\psi(c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x))$ также A-вычислима;
- igoplus B A-вычислимое множество, если и только если $c^k(B)$ также A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации

Лемма С7.6.

Пусть $A\subseteq \omega$, $\psi-k$ -местная функция, а $B\subseteq \omega^k-$ множество. Тогда

- ullet ψ частично A-вычислима, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ частично A-вычислима;
- ullet ψ A-вычислимая функция, если и только если $\psi(c_{k,1}(x),c_{k,2}(x),\ldots,c_{k,k}(x))$ также A-вычислима;
- lacktriangledown B-A-вычислимое множество, если и только если $c^k(B)$ также A-вычислимо.

Лемма С7.7.

Пусть $A\subseteq \omega$, ψ — унарная функция, а $B\subseteq \omega$ — множество. Тогда

- ① ψ частично A-вычислима, если и только если $\psi(c^k(x_1,x_2,\ldots,x_k))$ частично A-вычислима:
- ② ψ A-вычислимая функция, если и только если $\psi(c^k(x_1, x_2, \dots, x_k))$ также A-вычислима:
- igoplus B A-вычислимое множество, если и только если $\{\langle c_{k,1}(x), c_{k,2}(x), \dots, c_{k,k}(x) \rangle | x \in B\}$ также A-вычислимо.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Лемма С7.8.

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации ^ ====

Лемма С7.8.

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лемма С7.9.

Пусть $A\subseteq \omega,\ k\geqslant 1$, а $\varphi(x_0,x_1,x_2,\ldots,x_k)$ частично A-вычислима. Тогда $\varphi(x_0,x_1,\ldots,x_k)$ универсальна для класса всех k-местных частично A-вычислимых функций, если и только если $\varphi(x_0,c_{k,1}(x_1),c_{k,2}(x_1),\ldots,c_{k,k}(x_1))$ также универсальна для класса всех унарных частично A-вычислимых функций.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Лемма С7.8.

Пусть $A\subseteq \omega$, $\varphi(x_0,x_1)$ — частично A-вычислимая функция, а $k\geqslant 1$. Тогда $\varphi(x_0,x_1)$ универсальна для класса всех унарных частично A-вычислимых функций, если и только если $\varphi(x_0,c^k(x_1,x_2,\ldots,x_k))$ также универсальна для класса всех k-местных частично A-вычислимых функций.

Лемма С7.9.

Пусть $A\subseteq \omega$, $k\geqslant 1$, а $\varphi(x_0,x_1,x_2,\ldots,x_k)$ частично A-вычислима. Тогда $\varphi(x_0,x_1,\ldots,x_k)$ универсальна для класса всех k-местных частично A-вычислимых функций, если и только если $\varphi(x_0,c_{k,1}(x_1),c_{k,2}(x_1),\ldots,c_{k,k}(x_1))$ также универсальна для класса всех унарных частично A-вычислимых функций.

Упражнение С7.4.

Докажите леммы С7.6-С7.9.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Определение С7.8.

Предикат $B\subseteq \omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\rm CE} A$, если $B=\delta \varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Определение С7.8.

Предикат $B\subseteq \omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\mathrm{CE}}A$, если $B=\delta \varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Определение С7.9А.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto |A_n|-A$ -вычислимая функция.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима ции

Определение С7.8.

Предикат $B\subseteq \omega^n$ называется вычислимо перечислимым относительно A или A-вычислимо перечислимым (A-вп) и обозначается как $B\leqslant_{\mathrm{CE}}A$, если $B=\delta\varphi$ для некоторой частично A-вычислимой функции $\varphi(x_1,x_2,\ldots,x_n)$.

Определение С7.9А.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto |A_n|-A$ -вычислимая функция.

Определение C7.9D.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если существует **А**-вычислимая функция f такая, что $A_n=\gamma(f(n))$ для всех $n\in\omega$.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом А-вычисли-

А-вычислимые нумерации

Определение С7.9В.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})$ A-вычислимая функция.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

> \-вычислииые ≀умерации

Аппроксима-

Определение С7.9В.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})-A$ -вычислимая функция.

Определение С7.9С.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А-вычислимой**, если выполняются следующие условия:

- $(m,n)|m \in A_n \} A$ -вычислимый предикат;
- ullet существует A-вычислимая функция f(n) такая, что имеет место $(m \in A_n) o (m \leqslant f(n))$, для всех $m,n \in \omega$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом А-вычисл

А-вычислимые нумерации

Аппроксимации

Определение С7.9В.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- ullet $\{(m,n)|m\in A_n\}-A$ -вычислимый предикат;
- ullet $n\mapsto \max(A_n\cup\{0\})-A$ -вычислимая функция.

Определение С7.9С.

Последовательность $\{A_n\}_{n\in\omega}$ конечных множеств называется сильно **А**-вычислимой, если выполняются следующие условия:

- $\{(m,n)|m\in A_n\}$ A-вычислимый предикат;
- ullet существует A-вычислимая функция f(n) такая, что имеет место $(m \in A_n) o (m \leqslant f(n))$, для всех $m,n \in \omega$.

Предложение С7.3.

$$(C7.9A) \Leftrightarrow (C7.9B) \Leftrightarrow (C7.9C) \Leftrightarrow (C7.9D).$$

Лекция С7 Относительная вычислимость. І

Вычисли-MOCTH C оракулом

Теорема С7.6. Для $A, B \subseteq \omega$ следующие утверждения эквивалентны:

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.6.

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $B=\delta arphi$, arphi A-ч.в.ф.;
- $2 \chi_B^* A$ -ч.в.ф.;

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислииые нумерации

Аппроксима-

Теорема С7.6.

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $B=\delta arphi$, arphi A-ч.в.ф.;
- $\mathbf{Q} \chi_B^* A$ -ч.в.ф.;

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-.....

Теорема С7.6.

Для $A,B\subseteq\omega$ следующие утверждения эквивалентны:

- $oldsymbol{0}$ $B=\delta arphi$, arphi A-ч.в.ф.;
- $\chi_B^* A$ -ч.в.ф.;
- $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **9** B конечно или $B = \rho f$, f инъективная A-в.ф.;

<u> А-вычислимо перечислимые множества</u>

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Теорема С7.6.

Для $A, B \subseteq \omega$ следующие утверждения эквивалентны:

- \bullet B = δ φ , φ A-ч в Φ .;
- χ_{B}^{*} A-ч в.ф.;
- $\mathbf{O} B = \rho \varphi, \varphi A$ -4.B. $\mathbf{\Phi}$.;
- **9** $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **5** В конечно или $B = \rho f$, f инъективная A-в.ф.;
- \bigcirc $B = \exists y Q(x, y), Q A$ -вычислимый предикат;

Теорема С7.6.

Для $A, B \subseteq \omega$ следующие утверждения эквивалентны:

- \bullet B = δ φ , φ A-ч в Φ .;
- χ_{B}^{*} A-ч в.ф.;
- $B = \rho \varphi, \varphi A$ -ч.в.ф.;
- **9** $B = \emptyset$ или $B = \rho f$, f A-в.ф.;
- **5** В конечно или $B = \rho f$, f инъективная A-в.ф.;
- ullet $B = \exists y Q(x,y), Q A$ -вычислимый предикат;
- существует сильно А-вычислимая последовательность $\{B_n\}_{n\in\omega}$ такая, что $\emptyset = B_0 \subseteq B_1 \subseteq \ldots \subseteq B_s \subseteq B_{s+1} \subseteq \ldots \subseteq \bigcup_s B_s = B;$
- существует сильно А-вычислимая последовательность, удовлетворяющая условию (7) и дополнительно условию $|B_{s+1}-B_s|\leqslant 1,\ s\in\omega$

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.7.

Пусть $B\subseteq\omega^n$. Тогда B является A-вычислимым, если и только если B и $\overline{B}=\omega^n\setminus B$ являются A-вычислимо перечислимыми.

<u> А-вычислимо перечислимые множества</u>

Лекция С7 Относительная вычислимость. І

Вадим

Вычисли-MOCTH C оракулом

Теорема С7.7.

Пусть $B\subseteq\omega^n$. Тогда B является A-вычислимым, если и только если Bи $\overline{B} = \omega^n \setminus B$ являются A-вычислимо перечислимыми.

Теорема С7.8.

Пусть $\psi(x_1, x_2, \dots, x_k)$ — частичная функция. Тогда ψ частично А-вычислима, если и только если её график $\Gamma_{\psi} = \{\langle x_1, x_2, \dots, x_k, y \rangle | \psi(x_1, x_2, \dots, x_k) = y \} - A$ -вычислимо перечислим.

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-MOCTH C оракулом

Теорема С7.7.

Пусть $B\subseteq\omega^n$. Тогда B является A-вычислимым, если и только если Bи $\overline{B} = \omega^n \setminus B$ являются A-вычислимо перечислимыми.

Теорема С7.8.

Пусть $\psi(x_1, x_2, \dots, x_k)$ — частичная функция. Тогда ψ частично А-вычислима, если и только если её график $\Gamma_{\psi} = \{\langle x_1, x_2, \dots, x_k, y \rangle | \psi(x_1, x_2, \dots, x_k) = y \} - A$ -вычислимо перечислим.

Следствие С7.2.

Существует A-вычислимо перечислимое, но не A-вычислимое множество.

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-MOCTH C оракулом

Теорема С7.7.

Пусть $B\subseteq\omega^n$. Тогда B является A-вычислимым, если и только если Bи $\overline{B} = \omega^n \setminus B$ являются A-вычислимо перечислимыми.

Теорема С7.8.

Пусть $\psi(x_1, x_2, \dots, x_k)$ — частичная функция. Тогда ψ частично А-вычислима, если и только если её график $\Gamma_{\psi} = \{\langle x_1, x_2, \dots, x_k, y \rangle | \psi(x_1, x_2, \dots, x_k) = y \} - A$ -вычислимо перечислим.

Следствие С7.2.

Существует A-вычислимо перечислимое, но не A-вычислимое множество.

Упражнение С7.5.

Докажите предложение С7.3, теоремы С7.6-С7.8 и следствие С7.2.

Основные понятия

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Определение С7.10.

Нумерация ν называется **А-вычислимой**, если Γ^*_{ν} является **А-**в.п. Семейство $\mathcal S$ называется **А-вычислимым**, если оно имеет хотя бы одну **А-**вычислимую нумерацию.

Основные понятия

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-.....

Определение С7.10.

Нумерация ν называется **А-вычислимой**, если Γ^*_{ν} является **А-**в.п. Семейство $\mathcal S$ называется **А-вычислимым**, если оно имеет хотя бы одну **А-**вычислимую нумерацию.

Определение С7.11.

Пусть \mathcal{S} — семейство n-арных частичных функций. Тогда нумерация ν называется A-вычислимой, если нумерация $(\Gamma \nu)(x) \leftrightharpoons \Gamma \nu(x)$ является A-вычислимой.

Основные понятия

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

А-вычисли-

нумерации

Определение С7.10.

Нумерация ν называется A-вычислимой, если Γ_{ν}^{*} является A-в.п. Семейство S называется A-вычислимым, если оно имеет хотя бы одну A-вычислимую нумерацию.

Определение С7.11.

Пусть S — семейство n-арных частичных функций. Тогда нумерация ν называется A-вычислимой, если нумерация $(\Gamma \nu)(x) \leftrightharpoons \Gamma \nu(x)$ является A-вычислимой.

Предложение С7.4.

Пусть \mathcal{S} — семейство n-арных частичных функций. Нумерация ν является A-вычислимой, если и только если функция $F_{\nu}(x_0, x_1, \dots, x_n) \leftrightharpoons \nu(x_0)(x_1, \dots, x_n)$ частично A-вычислима.

Лекция С7 Относительная вычисли-

> мость, I Вадим

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Примеры С7.3 (всюду $A\subseteq \omega,\ k\geqslant 1$).

Любое вычислимое семейство А-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- **②** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- **1** Семейство всех k-местных A-вычислимых множеств A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом А-вычисли-

мые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- \odot Семейство всех k-местных A-вычислимых множеств A-вычислимо.
- $oldsymbol{\circ}$ Семейство всех k-местных A-вычислимых функций не A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- **③** Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- Оемейство всех k-местных A-вычислимых множеств A-вычислимо.
- Семейство всех k-местных A-вычислимых функций не A-вычислимо.
- Семейство всех (ко)бесконечных k-местных A-вычислимо перечислимых предикатов не A-вычислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом А-вычисли-

д-вычислимые нумерации

Аппроксима-

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- ② Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- Ответить в поставов в поставов поставов в поставов п
- Семейство всех k-местных A-вычислимых функций не A-вычислимо.
- lacktriangled Семейство всех бесконечных k-местных A-вычислимых предикатов не A-вычислимо.

A-вычислимые семейства,

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

мость с оракулом

А-вычислимые нумерации

Аппроксима-

Примеры С7.3 (всюду $A \subseteq \omega, \ k \geqslant 1$).

- Любое вычислимое семейство А-вычислимо.
- Семейство всех k-местных частично A-вычислимых функций A-вычислимо.
- ③ Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- **②** Семейство всех k-местных A-вычислимых множеств A-вычислимо.
- lacktriangle Семейство всех k-местных A-вычислимых функций не A-вычислимо.
- Семейство всех (ко)бесконечных k-местных A-вычислимо перечислимых предикатов не A-вычислимо.
- lacktriangled Семейство всех бесконечных k-местных A-вычислимых предикатов не A-вычислимо.
- Семейство всех кобесконечных k-местных A-вычислимых предикатов A-вычислимо.

A-вычислимые семейства

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычисли мость с оракулов

А-вычислимые нумерации

Аппроксима-

Примеры C7.3 (всюду $A \subseteq \omega, k \geqslant 1$).

- Любое вычислимое семейство А-вычислимо.
- Семейство всех к-местных частично А-вычислимых функций А-вычислимо.
- ② Семейство всех k-местных частично A-вычислимых функций, принимающих значения $\subseteq \{0;1\}$, A-вычислимо.
- Семейство всех k-местных A-вычислимо перечислимых множеств A-вычислимо.
- Ответительных № Семейство всех к-местных А-вычислимых множеств А-вычислимо.
- Семейство всех k-местных A-вычислимых функций не A-вычислимо.
- Семейство всех (ко)бесконечных k-местных A-вычислимо перечислимых предикатов не A-вычислимо.
- lacktriangled Семейство всех бесконечных k-местных A-вычислимых предикатов не A-вычислимо.
- ② Семейство всех кобесконечных k-местных A-вычислимых предикатов A-вычислимо.
- Семейство всех k-местных A-вычислимых множеств A-вычислимо.

Лекция С7 Относительная

вычислимость, І

Вадим Пузаренк

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Пусть $A\subseteq\omega$.

Лекция С7 Относительная вычислимость. І

Вычисли-

нумерации

А-вычисли-

Пусть $A \subseteq \omega$.

Предложение С7.5.

- lacktriangle Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- ullet если u A-вычислимая нумерация и $u' \leqslant
 u$, то u' будет также **А**-вычислимой нумерацией.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычисли мость с оракулом

А-вычислимые нумерации

Аппроксима-

Пусть $A \subseteq \omega$.

Предложение С7.5.

- f 1 Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- ② если $\nu-A$ -вычислимая нумерация и $\nu'\leqslant \nu$, то ν' будет также A-вычислимой нумерацией.

Определение С7.12.

Пусть $k\geqslant 1$ и пусть $\mathcal{S}\subseteq\mathcal{P}(\omega^k)$. Тогда A-вычислимая нумерация ν_0 семейства \mathcal{S} называется главной, если $\nu\leqslant\nu_0$ для любой A-вычислимой нумерации ν семейства \mathcal{S} .

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычисли мость с оракулом

А-вычислимые нумерации

Аппроксима-

Пусть $A \subseteq \omega$.

Предложение С7.5.

- f 0 Если u_0 и $u_1 A$ -вычислимые нумерации, то $u_0 \oplus
 u_1$ также A-вычислима;
- 2 если $\nu-A$ -вычислимая нумерация и $\nu'\leqslant \nu$, то ν' будет также A-вычислимой нумерацией.

Определение С7.12.

Пусть $k\geqslant 1$ и пусть $\mathcal{S}\subseteq \mathcal{P}(\omega^k)$. Тогда A-вычислимая нумерация ν_0 семейства \mathcal{S} называется **главной**, если $\nu\leqslant\nu_0$ для любой A-вычислимой нумерации ν семейства \mathcal{S} .

Теорема С7.9.

Семейство PCF_n^A всех *п*-арных частично *A*-вычислимых функций имеет главную *A*-вычислимую нумерацию.

Лекция С7 Относительная вычислимость. І

Вадим

А-вычислинумерации

Обозначение С7.1.

Как и при доказательстве оригинальной теоремы Сб.2, любая A-вычислимая нумерация семейства PCF_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных частично A-вычислимых функций. Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa^A вместо $\varkappa^{A,1}$. Зачастую через $\{e\}^A(x)$ будем обозначать $\varkappa_e^A(x)$.

Кроме того, часто вместо $\varkappa^{A,n}(m)$ будем писать $\varkappa^{A,n}_{m}$.

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-

А-вычисли-

нумерации

Обозначение С7.1.

Как и при доказательстве оригинальной теоремы Сб.2, любая A-вычислимая нумерация семейства PCF_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных частично A-вычислимых функций. Если n=1, то верхний символ клиниевской нумерации будем опускать и использовать обозначение \varkappa^A вместо $\varkappa^{A,1}$. Зачастую через $\{e\}^A(x)$ будем обозначать $\varkappa_e^A(x)$.

Кроме того, часто вместо $\varkappa^{A,n}(m)$ будем писать $\varkappa^{A,n}_{m}$.

s-m-n-Теорема С7.10.

Для любых $n,m\geqslant 1$ существует m+1-местная инъективная вычислимая (даже примитивно рекурсивная) функция \boldsymbol{s}_n^m такая, что $\varkappa_e^{A,m+n}(y_1,y_2,\ldots,y_m,x_1,x_2,\ldots,x_n) = \varkappa_{s_m^m(e,v_1,v_2,\ldots,v_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $e, x_1, x_2, ..., x_n, y_1, y_2, ..., y_m \in \omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная

ная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.11.

Для каждой m+1-местной частично A-вычислимой функции h найдётся m-местная инъективная вычислимая функция g такая, что $\varkappa_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{g(y_1,y_2,\ldots,y_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычисли мость с оракулом

А-вычислимые нумерации

Аппроксима. ...ии

Теорема С7.11.

Для каждой m+1-местной частично A-вычислимой функции h найдётся m-местная инъективная вычислимая функция g такая, что $\varkappa_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{g(y_1,y_2,\ldots,y_m)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1, x_2,\ldots,x_n, y_1, y_2,\ldots,y_m\in\omega$.

Следствие С7.3.

Для любой унарной частично A-вычислимой функции h найдётся число a такое, что $\varkappa_a^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{h(a)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1,x_2,\ldots,x_n\in\omega$.

Теорема Клини о неподвижной точке

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычисли мость с оракулов

А-вычислимые нумерации

Аппроксима

Теорема С7.11.

Для каждой m+1-местной частично A-вычислимой функции h найдётся m-местная инъективная вычислимая функция g такая, что $\varkappa^{A,n}_{h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))}(x_1,x_2,\ldots,x_n)=\varkappa^{A,n}_{g(y_1,y_2,\ldots,y_m)}(x_1,x_2,\ldots,x_n)$ для всех $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_m\in\omega$.

Следствие С7.3.

Для любой унарной частично A-вычислимой функции h найдётся число a такое, что $\varkappa_a^{A,n}(x_1,x_2,\ldots,x_n)=\varkappa_{h(a)}^{A,n}(x_1,x_2,\ldots,x_n)$ для всех $x_1,x_2,\ldots,x_n\in\omega$.

Замечание С7.2.

Индекс функции g или число a не зависят от оракула A, а только от индекса функции h.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.12.

Семейство ${\rm CEP}_n^A$ всех n-арных A-вычислимо перечислимых предикатов обладает главной A-вычислимой нумерацией для любого $n\geqslant 1$.

Лекция С7 Относительная вычислимость. І

Пузаренко

Вычисли-

А-вычисли-

нумерации

Теорема С7.12.

Семейство CEP_n^A всех n-арных A-вычислимо перечислимых предикатов обладает главной А-вычислимой нумерацией для любого $n \geqslant 1$.

Обозначение С7.2.

Как и при доказательстве оригинальной теоремы Сб.5, любая A-вычислимая нумерация семейства CEP_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\pi^{A,n}(m) = \delta \varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных A-вычислимо перечислимых предикатов. Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π^A вместо $\pi^{A,1}$. Кроме того, часто вместо $\pi^{A,n}(m)$ будем писать $\pi^{A,n}_m$.

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычисли мость с оракулом

А-вычислимые нумерации

нумерации

Теорема С7.12.

Семейство ${\rm CEP}_n^A$ всех \emph{n} -арных \emph{A} -вычислимо перечислимых предикатов обладает главной \emph{A} -вычислимой нумерацией для любого $n\geqslant 1$.

Обозначение С7.2.

Как и при доказательстве оригинальной теоремы Сб.5, любая A-вычислимая нумерация семейства CEP_n^A сводится к главной нумерации посредством инъективной вычислимой функции. Через $\pi^{A,n}(m) \leftrightharpoons \delta \varkappa^{A,n}(m)$ будем обозначать главную A-вычислимую нумерацию семейства всех n-арных A-вычислимо перечислимых предикатов. Если n=1, то верхний символ постовской нумерации будем опускать и использовать обозначение π^A вместо $\pi^{A,1}$. Кроме того, часто вместо $\pi^{A,n}(m)$ будем писать $\pi^{A,n}_a$.

Упражнение С7.6.

Докажите предложения С7.4, С7.5 и теоремы С7.9-С7.12.

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.13.

Для каждого A-вычислимо перечислимого предиката $P \subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x, y_1, y_2, \ldots, y_m) \Leftrightarrow x \in \pi^A(h(y_1, y_2, \ldots, y_m)).$

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима:

Теорема С7.13.

Для каждого A-вычислимо перечислимого предиката $P \subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x, y_1, y_2, \ldots, y_m) \Leftrightarrow x \in \pi^A(h(y_1, y_2, \ldots, y_m)).$

Теорема С7.14.

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что $P(x,y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))\Leftrightarrow x\in \pi^A(g(y_1,y_2,\ldots,y_m)).$

Неподвижные точки и А-ВПМ

Лекция С7 Относительная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

нумерации Аппроксима

Теорема С7.13.

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+1}$ найдётся m-арная инъективная вычислимая функция h такая, что $P(x,y_1,y_2,\ldots,y_m)\Leftrightarrow x\in \pi^A(h(y_1,y_2,\ldots,y_m)).$

Теорема С7.14.

Для каждого A-вычислимо перечислимого предиката $P\subseteq \omega^{m+2}$ найдётся m-арная инъективная вычислимая функция g такая, что $P(x,y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m))\Leftrightarrow x\in \pi^A(g(y_1,y_2,\ldots,y_m)).$

Теорема С7.15.

Для любой m+1-арной частично A-вычислимой функции h найдётся m-арная инъективная вычислимая функция g такая, что $\pi^A(h(y_1,y_2,\ldots,y_m,g(y_1,y_2,\ldots,y_m)))=\pi^A(g(y_1,y_2,\ldots,y_m)).$

В частности, при m=0 имеем следующее: для любой унарной частично A- вычислимой функции h найдётся число n_0 такое, что $\pi^A_{n_0}=\pi^A_{h(n_0)}$.

Снова полные множества

Лекция С7 Относительная вычислимость. I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Обозначение С7.3.

Определим А-вычислимо перечислимые множества так:

$$K^A = \{x \mid x \in \pi^A(x)\}, K_0^A = \{c(x, y) \mid y \in \pi^A(x)\}, K_1^A = \{x \mid \pi^A(x) \neq \varnothing\}.$$

Снова полные множества

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима

Обозначение С7.3.

Определим *A*-вычислимо перечислимые множества так: $K^A \leftrightharpoons \{x \mid x \in \pi^A(x)\}, \ K_0^A \leftrightharpoons \{c(x,y) \mid y \in \pi^A(x)\},$

 $K_1^A \leftrightharpoons \{x \mid \pi^A(x) \neq \varnothing\}.$

Определение С7.13.

A-вычислимо перечислимое множество M называется A-полным, если $B\leqslant_1 M$ для любого A-вычислимо перечислимого множества B.

А-вычисли-

Обозначение С7.3.

Определим А-вычислимо перечислимые множества так:

$$K^A = \{x \mid x \in \pi^A(x)\}, K_0^A = \{c(x, y) \mid y \in \pi^A(x)\}, K_1^A = \{x \mid \pi^A(x) \neq \emptyset\}.$$

Определение С7.13.

A-вычислимо перечислимое множество M называется **А-полным**, если $B \leqslant_1 M$ для любого **А-**вычислимо перечислимого множества B.

Теорема С7.16.

Множества K^A , K_0^A и K_1^A являются A-полными.

Снова полные множества

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

А-вычисли-

нумерации

Обозначение С7.3.

Определим А-вычислимо перечислимые множества так:

$$K^A \leftrightharpoons \{x \mid x \in \pi^A(x)\}, K_0^A \leftrightharpoons \{c(x,y) \mid y \in \pi^A(x)\}, K_1^A \leftrightharpoons \{x \mid \pi^A(x) \neq \varnothing\}.$$

Определение С7.13.

A-вычислимо перечислимое множество M называется **А-полным**, если $B \leqslant_1 M$ для любого **А-**вычислимо перечислимого множества B.

Теорема С7.16.

Множества K^A , K_0^A и K_1^A являются A-полными.

Упражнение С7.7.

Докажите теоремы С7.13-С7.16.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

Аппроксимации

Основная информация.

Отметим, что строки $\sigma\in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubset A$, если $\sigma(x)=\chi_A(x)$ для всех $x\in \delta\sigma$. Длиной строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma\in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A\upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y\in\omega\mid y< x\}$ и $\sigma\upharpoonright x$ — строка длины x, являющаяся начальной подстрокой строки σ . Заметим, что $\sigma=\sigma\upharpoonright \mathrm{Lh}(\sigma)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычисли мые нумерации

Аппроксимации

Основная информация.

Отметим, что строки $\sigma\in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubset A$, если $\sigma(x)=\chi_A(x)$ для всех $x\in \delta\sigma$. Длиной строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma\in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A\upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y\in\omega\mid y< x\}$ и $\sigma\upharpoonright x$ — строка длины x, являющаяся начальной подстрокой строки σ . Заметим, что $\sigma=\sigma\upharpoonright \mathrm{Lh}(\sigma)$.

Зафиксируем машину Шёнфилда P с оракулом A, на которой вычисляется функция $\{e\}^A(x)$. Отметим, что программа P не зависит от выбора оракула.

Лекция С7 Относительная вычислимость. І

Вадим Пузаренко

Вычисли-

Аппроксима-

Основная информация.

Отметим, что строки $\sigma \in 2^{<\omega}$ могут рассматриваться как конечные начальные сегменты характеристических функций. Будем отождествлять A с его характеристической функцией и пишем $\sigma \sqsubseteq A$, если $\sigma(x) = \chi_A(x)$ для всех $x \in \delta \sigma$. Длиной строки σ (записывается как $\mathrm{Lh}(\sigma)$) называется число $|\delta\sigma|$, т.е. $n_0\in\omega$ таково, что $\sigma\in 2^{n_0}$. Заметим, что $\mathrm{Lh}(\sigma)=\mu x[\sigma(x)\uparrow]$. Зафиксируем каноническую нумерацию строк $\sigma \in 2^{<\omega}$ и в дальнейшем будем отождествлять σ с его номером. Положим $A \upharpoonright x \leftrightharpoons \chi_A \upharpoonright \{y \in \omega \mid y < x\}$ и $\sigma \upharpoonright x$ — строка длины x, являющаяся

начальной подстрокой строки σ . Заметим, что $\sigma = \sigma \upharpoonright \mathrm{Lh}(\sigma)$.

Зафиксируем машину Шёнфилда P с оракулом A, на которой вычисляется функция $\{e\}^A(x)$. Отметим, что программа P не зависит от выбора оракула.

Определение С7.14.

Определяем $\{e\}_{s}^{A}(x) = y$, если x, y, e < s, s > 0, и $\{e\}_{s}^{A}(x) = y$ вычисляется за < s шагов программой P, причём в процессе вычисления используются только числа z < s.

Определение С7.15.

Определим функцию использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)$ \downarrow ; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A;e,x) = egin{cases} u(A;e,x,s), & \text{если } \{e\}_s^A(x)\downarrow \text{ для некоторого } s; \ \uparrow, & \text{если } \{e\}^A(x)\uparrow. \end{cases}$$

А-вычисли мые нумерации

Аппроксимации

Определение С7.15.

Определим функцию использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)\downarrow$; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A;e,x) = egin{cases} u(A;e,x,s), & \text{если } \{e\}_s^A(x)\downarrow \text{ для некоторого } s; \ \uparrow, & \text{если } \{e\}^A(x)\uparrow. \end{cases}$$

Определение С7.16.

Будем писать $\{e\}_s^\sigma(x) = y$, если $\{e\}_s^A(x) = y$ для некоторого $A \sqsupset \sigma$, причём в процессе вычисления используются только числа $z < \mathrm{lh}(\sigma)$. Запись $\{e\}_s^\sigma(x) = y$ означает, что $\exists s[\{e\}_s^\sigma(x) = y]$.

А-вычисли мые нумерации

Аппроксима-

Определение С7.15.

Определим функцию использования u(A;e,x,s) как 1+ наибольшее число, использованное в вычислении $\{e\}_s^A(x)$, если $\{e\}_s^A(x)\downarrow$; и u(A;e,x,s)=0 в противном случае. Определим также функцию использования

$$u(A;e,x) = egin{cases} u(A;e,x,s), & \text{если } \{e\}_s^A(x)\downarrow \text{ для некоторого } s; \ \uparrow, & \text{если } \{e\}^A(x)\uparrow. \end{cases}$$

Определение С7.16.

Будем писать $\{e\}_s^\sigma(x) = y$, если $\{e\}_s^A(x) = y$ для некоторого $A \supset \sigma$, причём в процессе вычисления используются только числа $z < \mathrm{lh}(\sigma)$. Запись $\{e\}_s^\sigma(x) = y$ означает, что $\exists s[\{e\}_s^\sigma(x) = y]$.

Заметим, что если
$$\{e\}_s^A(x) = y$$
, то $\{e\}_s^\sigma(x) = y$, где $\sigma = A \upharpoonright u(A; e, x, s)$.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Определения выше гарантируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s,$$
 (1)

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)],$$
 (2)

так что определение u(A;e,x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Определения выше гарантируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s,$$
 (1)

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)], (2)$$

так что определение u(A; e, x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Главная теорема С7.17 о перечислении.

- **1** Множество $\{\langle e, \sigma, x, s \rangle : \{e\}_s^{\sigma}(x) \downarrow \}$ вычислимо.
- $oldsymbol{Q}$ Множество $L = \{\langle e, \sigma, x \rangle : \{e\}^{\sigma}(x) \downarrow \}$ вычислимо перечислимо.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Определения выше гарантируют, что

$$\{e\}_s^A(x) = y \implies x, y, e < s; \ u(A; e, x, s) \leqslant s, \tag{1}$$

$$\{e\}_{s}^{A}(x) = y \implies \forall t \geqslant s[\{e\}_{t}^{A}(x) = y \land u(A; e, x, t) = u(A; e, x, s)],$$
 (2)

так что определение u(A;e,x) не зависит от выбора s.

Если A вычислимо, то u(A;e,x,s) является вычислимой функцией, и её индекс может быть найден равномерно по Δ_0 -индексу множества A.

Главная теорема С7.17 о перечислении.

- **1** Множество $\{\langle e, \sigma, x, s \rangle : \{e\}_s^{\sigma}(x) \downarrow \}$ вычислимо.
- ullet Множество $L = \{\langle e, \sigma, x \rangle : \{e\}^{\sigma}(x) \downarrow \}$ вычислимо перечислимо.

Доказательство.

2) $\langle e,\sigma,x\rangle\in L\Leftrightarrow \{e\}^\sigma(x)\downarrow\Leftrightarrow\exists s[\{e\}_s^\sigma(x)\downarrow]$ и, следовательно, L в.п.

Доказательство (окончание).

- 1) Сначала отметим, что $\{e\}_s^\sigma(x)\downarrow\Leftrightarrow\exists y< s[\{e\}_s^\sigma(x)=y],$ поэтому достаточно доказать, что отношение $\{e\}_s^\sigma(x)=y$ вычислимо (отметим, что оно даже примитивно рекурсивно). Пусть $e_0=\operatorname{code}(P)$ и $z=\operatorname{code}(\langle e_0,x\rangle)$; тогда $\{e_0\}_s^\sigma(x)=y$, если и только если выполняются одновременно следующие условия:
 - $e_0, x, y < s$;
 - **2** $lh(e_0) < s$;
 - $oldsymbol{\circ}$ $(\operatorname{rg}^{\sigma}(e_0,z,t))_i < s$ для всех t < s и $i < \operatorname{lh}(\operatorname{rg}^{\sigma}(e_0,z,t))_i$
 - если $((e_0)_{\operatorname{ct}^{\sigma}(e_0,z,t)})_0 = 2$, то $(\operatorname{rg}^{\sigma}(e_0,z,t))_{((e_0)_{\operatorname{ct}^{\sigma}(e_0,z,t)})_1} < \operatorname{Lh}(\sigma);$
 - $\exists t < s[\operatorname{ct}^{\sigma}(e_0, z, t) \geqslant \operatorname{lh}(e_0) \wedge (\operatorname{rg}^{\sigma}(e_0, z, t))_0 = y].$

Лекция С7 Относительная

ная вычислимость, І

Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.18.

Лекция С7 Относительная

ная вычислимость, І

Вадим Пузаренко

Вычисли мость с оракулом

А-вычислимые нумерации

Аппроксима-

Теорема С7.18.

Доказательство.

Пусть всюду рассматривается машина P с кодом e_0 и входными данными $z=\operatorname{code}(\langle e_0,x\rangle).$

1) Достаточно положить $s \leftrightharpoons \max\{s_0, s_1\} + 1$, где $\operatorname{Stop}^A(e_0, z, s_0)$ и $s_1 \leftrightharpoons \max\{(\operatorname{rg}^A(e_0, z, t))_i \mid i < \operatorname{lh}(\operatorname{rg}^A(e_0, z, t)), \ t \leqslant s_0\}$; тогда имеем $\{e_0\}_s^\sigma(x) = y$ для $\sigma = A \upharpoonright u(A; e_0, x, s)$.

Условия 2) и 3) следуют непосредственно из определения.

Лекция С7 Относительная

ная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации

Теорема С7.18.

Доказательство.

Пусть всюду рассматривается машина P с кодом e_0 и входными данными $z = \operatorname{code}(\langle e_0, x \rangle)$.

1) Достаточно положить $s \leftrightharpoons \max\{s_0, s_1\} + 1$, где $\operatorname{Stop}^A(e_0, z, s_0)$ и $s_1 \leftrightharpoons \max\{(\operatorname{rg}^A(e_0, z, t))_i \mid i < \operatorname{lh}(\operatorname{rg}^A(e_0, z, t)), \ t \leqslant s_0\}$; тогда имеем $\{e_0\}_s^\sigma(x) = y$ для $\sigma = A \upharpoonright u(A; e_0, x, s)$.

Условия 2) и 3) следуют непосредственно из определения.

Принцип использования оказывается весьма полезным, поскольку 1 утверждает, что если $\{e\}^A(x)=y$, то $\{e\}^\sigma(x)=y$ для некоторого $\sigma \sqsubset A$, причём можно считать, что $\sigma=A \upharpoonright u(A;e,x)$.

Лекция С7 Относитель-

ная вычислимость, І

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксима-

Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \sqsupset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_s^A(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_s^B(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Лекция С7 Относительная вычисли-

вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \supset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_s^A(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_s^B(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Теорема С7.19.

Для любых множеств $A, B \subseteq \omega$ выполняется следующее: $B \leqslant_T A$, если и только если существуют вычислимые функции f и g такие, что $x \in B \iff \exists \sigma [\sigma \in \pi(f(x)) \land \sigma \sqsubset A],$ $x \in \overline{B} \iff \exists \sigma [\sigma \in \pi(g(x)) \land \sigma \sqsubset A].$

$$x \in B \iff \exists \sigma [\sigma \in \pi(g(x)) \land \sigma \vdash A]$$

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычислимость с оракулом

А-вычислимые нумерации

Аппроксимации Более того, 3 утверждает, что $\{e\}^B(x)=y$ для любого $B \sqsupset \sigma$. Из соотношения (1) и теоремы C42 вытекает

$$[\{e\}_s^A(x) = y \land A \upharpoonright u = B \upharpoonright u] \Rightarrow \{e\}_s^B(x) = y, \tag{3}$$

где u=u(A;e,x,s), поскольку соотношение (1) утверждает, что в процессе вычисления используются только числа z< u.

Теорема С7.19.

Для любых множеств $A, B \subseteq \omega$ выполняется следующее: $B \leqslant_T A$, если и только если существуют вычислимые функции f и g такие, что $x \in B \iff \exists \sigma [\sigma \in \pi(f(x)) \land \sigma \sqsubseteq A],$ $x \in \overline{B} \iff \exists \sigma [\sigma \in \pi(g(x)) \land \sigma \sqsubseteq A].$

Упражнение С7.8.

Докажите теорему С7.19.

Лекция С7 Относительная вычислимость, I

Вадим Пузаренко

Вычисли: мость с оракулом

А-вычислимые

Аппроксимации

Спасибо за внимание.