CityScapes Semantic Segmentation

M.I.A. ML Project 2024/25

Introduction

- Who is this team?
- What is the Aim of the Project?

Group 4

- Names
- Roles
- Day 1 to

The Project

- CityScapes Dataset
 - Released in 2016.
 - Contains 50,000 images.
 - Captured in 50 different cities in Germany.
- Semantic Segmentation
 - Types Of Segmentation.
 - How to approach?

Data Pipeline

- Data Analysis
- Data Augmentations & Preprocessing
- Data Challenges

Data Analysis

Data Augmentation & Preprocessing

- Resize
 - 2048x1024 is too big for our training.
 - Used both 1024x512 and 512x256 for several training loops.
- Rotation
 - Random from -12° to 12°.
- Gaussian Blur
 - Removing the noise from the images.
- Horizontal Flips
 - Random Horizontal Flips.
- Mask Encoding
 - Unlabeled in mask from 255 -> 20.
 - One Hot Encoding the mask to suit our model.

The Model

- Model Selection
- U-net
- SiLU vs ReLU

Models Considered

- FCN
 Relatively weak performance.
- **DeepLabv3+** *Gigantic number of parameters.*
- Segformer
 Needed Nvidia API key.
- **U-Net** *Relatively slow to train.*

U-Net

- Performance from 1st epoch!
- CNN enc/dec Architecture.
- Input and Output.
- Coding Process.

SiLU vs ReLU

- ReLU
 - F(x) = max(0,x)
 - The one U-Net originally used.
- SiLU
 - F(x) = x * sigmoid(x)
 - Introduced by Google in 2017.
 - Found to be the best practice in our task.
- Comparison
 - ReLU can cause a vanishing gradient problem.
 - SiLU accommodates negative values.
 - SiLU is differentiable at Zero.

Training

- Training Setup
- Loss function journey
- How long? { 4 Days }

Training Setup

- Early Stopping.
 - Using early Stopping to control overfitting, while Saving the best model.
- Optimizer.
 - Usage of AdamW to achieve faster convergence.
- Training loop.
 - 100 epochs, patience = 5, batch-size = 4.
 - Plotting Image, Prediction, and Ground Truth each 5 epochs.
 - Monitoring train_loss, val_loss, dice_score, and IoU_score for each epoch.
- Loss function.
 - Next Slide, But we settled on nn.CrossEntropyLoss.

Loss function Journey

- Dice Loss
 - Failure.
- Focal Loss
 - Failure.
- Combined Loss
 - Another Failure.
- Cross Entropy Loss
 - What we Began with and ended up with.

Prediction

Ground Iruth

Ground Truth

Ground Truth

Results & Conclusion

- Final Output performance
- Challenges and difficulties
- Conclusion

Final Output

Final Output

lmage

Prediction Mask (Colored)

Overlay

Image

Prediction Mask (Colored)

Overlay

Image

Prediction Mask (Colored)

Overlay

Conclusion

- Learning needs trying, Like our model.
- Our First Segmentation Project!
- It's finally over, right?

▼ Thank you ▼

