

Al Final Project Spring 2022

Yi-Ting Chen

Week	Date	Topic	Note
1	2/14~2/18	Introduction	No class on 2/18
2	2/21~2/25	Machine Learning I	
3	2/28~3/4	Machine Learning II	HW1 announce (3/1)
4	3/7~3/11	Problem Solving by Searching	
5	3/14~3/18	Adversarial Search	HW1 due (3/15) and HW2 announce (3/18)
6	3/21~3/25	Markov Decision Process	
7	3/28~4/1	Reinforcement Learning	HW2 due and HW3 announce (4/1)
8	4/4~4/8	Spring Break	
9	4/11~4/15	Constraint Satisfaction Problems	HW3 due and Final project announce (4/12)
10	4/18~4/22	Bayesian Network	HW4 announcement (4/19)
11	4/25~4/29	Knowledge, Reasoning, and Planning	Final project proposal due (4/26)
12	5/2~5/6	3D Computer Vision	HW4 due and HW5 announce (5/3)
13	5/9~5/13	Robot Navigation	
14	5/16~5/20	Intelligent Driving Systems	HW5 due (5/17)
15	5/23~5/27	Guest Talk (TBA)	Final project checkpoint report (5/24) No class on 5/27
16	5/30~6/3	Guest Talk (TBA)	No class on 6/3
17	6/6~6/10	No class	
18	6/13~6/17	*Final Project Demo*	Final video and report (6/14)

Final Project Announcement

Main Purpose

- Apply what you learned in lectures/HWs
- Hands-on experience of problem solving
- Get a chance to work on important problems (you will choose a problem of interest)
- Work in groups of up to 3
- Grading
 - Final Project: 40%
 - 15-min recorded presentation (30%)
 - 2-page report (5%)
 - Online demo (5%)

Three Milestones

- Final Project Proposal
 - Due: 4/26
 - Link
- Checkpoint Report
 - 1-page slide that summarizes your progress
 - Please prepare your slide on Google Slide and share your link on this link
 - Due: 5/24
- Final
 - A 15-min recorded presentation of your final project
 - A 2-page written report (a report template has been uploaded)
 - Online Latex editor: Overleaf
 - learning how to write a report using Latex
 - Due: 6/14

Final Project Examples

- AAAI'22 AI for Social Impact
 - https://aaai.org/Conferences/AAAI-22/aiforsocialimpactcall/
- Kaggle Competition
 - https://www.kaggle.com/competitions
- Stanford Al
 - https://github.com/stanford-cs221/sample-projects
 - https://stanford-cs221.github.io/autumn2019/2018/project-list.html
- NYCU Spring 2021 Al Final Project
 - https://docs.google.com/spreadsheets/d/1HaPaR3Emus4O6Qukdj8QR cN-SAhd43Ok_xfhe7z1f2o/edit?usp=sharing

Github Repo

"This project follows the description of the Deep Q Learning algorithm described in Playing Atari with Deep Reinforcement Learning [2] and shows that this learning algorithm can be further generalized to the notorious Flappy Bird."

https://github.com/yenchenlin/DeepLearningFlappyBird

Survey

• Neural Volume Rendering: NeRF And Beyond, Dellaert and Yen-Chen, Arxiv 2020 | blog | github | bibtex

Papers

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020 | github | bibtex

Faster Inference

- Neural Sparse Voxel Fields, Liu et al., NeurlPS 2020 | github | bibtex
- AutoInt: Automatic Integration for Fast Neural Volume Rendering, Lindell et al., CVPR 2021 | github | bibtex
- DeRF: Decomposed Radiance Fields, Rebain et al. Arxiv 2020 | bibtex
- DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks, Neff et al., CGF 2021 | bibtex
- FastNeRF: High-Fidelity Neural Rendering at 200FPS, Garbin et al., Arxiv 2021 | bibtex
- KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs, Reiser et al., Arxiv 2021 | github |
 bibtex
- PlenOctrees for Real-time Rendering of Neural Radiance Fields, Yu et al., Arxiv 2021 | github | bibtex
- Mixture of Volumetric Primitives for Efficient Neural Rendering, Lombardi et al., SIGGRAPH 2021 | bibtex
- Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering, Sitzmann et al., Arxiv 2021
 I bibtex

Faster Training

- Depth-supervised NeRF: Fewer Views and Faster Training for Free, Deng et al., Arxiv 2021 | github | bibtex
- Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction, Sun et al., Arxiv 2021 | github | bibtex

Unconstrained Images

- NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections, Martin-Brualla et al., CVPR 2021 |
 bibtex
- Ha-NeRF
 =: Hallucinated Neural Radiance Fields in the Wild, Chen et al., Arxiv 2021 | github | bibtex

Neural Radiance Field

Open-sourced Project (CARLA)

https://youtu.be/S2VIP0qumas

Visible Impact

- A contribution to a Github repo or a written blog that summarizes recent progress of a topic are ways to demonstrate your impact
 - https://github.com/yenchenlin
 - https://github.com/yenchenlin/awesome-NeRF
 - https://dellaert.github.io/NeRF/
- Find a topic of interest and start contributing :-)