TUGAS BESAR KOMUKASI AKSES WIRELESS ANALISIS PERENCANAAN JARINGAN LTE PADA KECAMATAN ALUH-ALUH KABUPATEN BANJAR

OLEH:

Kelas TT-42-10 (Kelompok 18)

Joseph Bagas Prakosa (1101184193)

I Putu Raka Dharmasadhana (1101184109)

S1 TEKNIK TELEKOMUNIKASI UNIVERSITAS TELKOM BANDUNG

2021

DAFTAR ISI

DAFTA	AR ISI	i
DAFTA	AR GAMBAR	ii
DAFTA	AR TABEL	iii
BAB I I	PENDAHULUAN	1
1.1	Kondisi Geografis	1
1.2	Kependudukan	2
BAB II	PERANCANGAN PARAMETER	3
2.1	Parameter Yang Akan Digunakan	4
BAB II	I PERHITUNGAN CAPACITY PLANNING	5
3.1	Forecasting User	5
3.2	Single User Throughput	6
3.3	Network Throughput	9
3.4	Kapasitas Sel arah Downlink & Uplink	10
3.5	Total Site Calculation	12
BAB IV	V COVERAGE PLANNING	14
4.1	Link Budget	14
4.2	Model Propagasi	15
4.2	2.1 Model Propagasi Cost 231	15
4.2	2.2 Perhitungan Total Site	16
BAB V	HASIL PERENCANAAN	17
5.1	Perbandingan Capacity dan Coverage Planning	17
5.2	Hasil Simulasi	18
BAB V	T KESIMPULAN DAN SARAN	21
6.1	Kesimpulan	21
6.2	Saran	21

DAFTAR GAMBAR

Gambar 1. 1 Peta Kecamatan Aluh-Aluh	1
Gambar 5. 1 Penempatan site	18
Gambar 5. 2 Histogram rata-rata Coverage by Signal Level sisi downlink	19
Gambar 5. 3 CDF Persentase Coverage by Signal Level sisi downlink	19
Gambar 5. 4 Histogram rata-rata effective signal analysis	20
Gambar 5. 5 Persentase Effective Signal Analysis	20

DAFTAR TABEL

Tabel 1. 1 Jumlah dan Laju Pertumbuhan Penduduk Kecamatan Aluh-Aluh	2
Tabel 2. 1 Data Kependudukan Kecamatan Aluh-Aluh	3
Tabel 2. 2 Parameter LTE Kecamatan Aluh-Aluh	4
Tabel 3. 1 Service Model Parameter	7
Tabel 3. 2 Nilai SIngle User Throughput darah Sub-Urban	8
Tabel 3. 3 Nilai Network Throughput	10
Tabel 3. 4 Nilai Modulasi	
Tabel 3. 5 Nilai Kapasitas SEL	11
Tabel 3. 6 Nilai Hasil Perhitungan Capacity Planning	13
Tabel 4. 1 Nilai Link Budget Downlink	14
Tabel 4. 2 Nilai Link Budget Uplink	15
Tabel 4. 3 Nilai a(hr) dan Nilai d	16
Tabel 4. 4 Hasil Perhitungan Coverage Planning	16
Tabel 5. 1 Hasil Perbandingan MAPL	17

BAB I

PENDAHULUAN

1.1 Kondisi Geografis

Kecamatan Aluh-Aluh adalah merupakan salah satu wilayah Kecamatan yang terletak di Kabupaten Banjar. Kabupaten Banjar sendiri memiliki 20 wilayah Kecamatan, meliputi: Kecamatan AluhAluh, Kertak Hanyar, Gambut, Sungai Tabuk, Martapura, Karang Intan, Astambul, Simpang Empat, Pengaron, Sungai Pinang, Aranio, Mataraman, Beruntung Baru, Martapura Barat, Martapura Timur, Sambung Makmur, Paramasan, Telaga Bauntung, Tatah Makmur, dan Cintapuri Darussalam. Wilayah Kecamatan Aluh-Aluh secara geografis terletak pada 114 53' 0" Bujur Timur dan 3 27' 5" Lintang Selatan. Tinggi rata-rata dari permukaan laut sekitar 1,3 meter. Adapun Kota Kecamatan Aluh-Aluh terletak di Desa Aluh-Aluh Besar. Luas wilayah Kecamatan Aluh-Aluh secara keseluruhan adalah 82,93 Km2 dan terdiri dari 19 desa.

Gambar 1. 1 Peta Kecamatan Aluh-Aluh

1.2 Kependudukan

Berdasarkan data dari Badan Pusat Statistik Kabupaten Banjar tahun 2021, diketahui bahwa penduduk Kecamatan Aluh-Aluh seluruhnya berjumlah 28.363 jiwa. Berikut adalah jumlah keseluruhan penduduk perdesa dan tingkat laju pertumbuhan penduduk pertahunnya:

Desa	Penduduk (ribu) ¹	Laju Pertumbuhan Penduduk per Tahun 2010-2020 ^{2,3}
(1)	(2)	(3)
01. Sungai Musang	1 443	-0,79
02. Bakambat	1 430	0,25
03. Labat Muara	1 083	-0,68
04. Tanipah	1 792	0,52
05. Pemurus	2 876	0,66
06. Bunipah	1 682	0,73
07. Simp.Warga Dalam	1 541	-0,36
08. Pulantan	1 041	-0,4
09. Aluh-Aluh Besar	3 230	-0,22
10. Simpang Warga	2 301	1,98
11. Balimau	679	2,71
12. Aluh-Aluh Kecil	1 389	-0,66
13. Aluh2 Kecil Muara	1 092	0,08
14. Podok	2 428	0,58
15. Terapu	499	1,8
16. Kuin Besar	1 444	0,24
17. Handil Bujur	1 111	1,26
18. Handil Baru	443	1,22
19. Kuin Kecil	859	0,86
Jumlah	28 363	0,38

Tabel 1. 1 Jumlah dan Laju Pertumbuhan Penduduk Kecamatan Aluh-Aluh

BAB II PERANCANGAN PARAMETER

Perencanaan yang dilakukan adalah untuk 3 tahun mendatang, yaitu sampai pada tahun 2024. berikut ini parameter yang digunakan dalam perancanaan jaringan seluler di Kecamatan Aluh-Aluh kabupaten:

- 1. Perancanaan dilakukan untuk 3 (tiga) tahun mendatang, yaitu sampai tahun 2023.
- 2. Kategori wilayah adalah Sub-Urban.
- 3. Perencanaan berdasarkan frekuensi dan bandwidth yang dimiliki Telkomsel, yaitu frekuensi sebesar 1870 MHz, dan bandwidth sebesar 22,5 MHz.
- 4. Tinggi UE (hr) adalah 1,75 m.
- 5. Tinggi EnodeB (ht) adalah 35 m.
- 6. Antena yang digunakan adalah antena omnidireksional.
- 7. Usia produktif (15-54 tahun).
- 8. Market Share Telkomsel 58,90%.
- 9. LTE Penetration 69,90%.

Berikut adalah data kependudukan yang diperlukan nantinya dalam perancangan jaringan LTE pada kecamatan Aluh-Aluh:

Data	Nilai	Satuan
Luas Wilayah	82.93	km^2
Jumlah penduduk saat ini pada	28363	jiwa
kecamatan Aluh- Alih 2020 (Po)		
Usia Produktif (15-54 tahun)	19,865	jiwa
	(70,03%)	
Grow Factor (Gf)	0,38%	persen

Tabel 2. 1 Data Kependudukan Kecamatan Aluh-Aluh

2.1 Parameter Yang Akan Digunakan

Dalam perencanaan dan analisis jaringan Long Term Evolution (LTE) di Kecamatan Aluh-Aluh, Kabupaten Banjar ini, ditentukan beberapa parameter forcasting dan spesifikasi umumnya, yaitu:

Data	Nilai	Satuan	Keterangan
Jenis Wilayah	Sub-Urban		Daerah yang merupakan daerah yang berada di pinggiran kota
ht	35	Meter	Tinggi eNodeB
hr	1,75	Meter	Tinggi UE
Market Share	58,90%	Persen	https://www.telkom.co.id/sites/about-telkom/id_ID/page/ir-laporan-tahunan-150
LTE Penetration	69,90%	Persen	Telkomsel
Frekuensi	1870	MHz	Telkomsel
Bandwidth	22.5	MHz	Karena menggambil nilai resource block 100 dan menggunakan syarat dari provider telkomsel

Tabel 2. 2 Parameter LTE Kecamatan Aluh-Aluh

BAB III PERHITUNGAN CAPACITY PLANNING

Capacity Planning Merupakan salah satu tolak ukur untuk merencanakan seberapa besar kapasitas jaringan agar dapat menampung seluruh user dengan berbagai macam layanan. Jaringan dirancang agar dapat menampung kebutuhan user selama 3 tahun kedepan. Tahapan untuk menentukan capacity planning sebagai berikut:

3.1 Forecasting User

Sebelum menentukan jumlah forecasting user terlebih dahulu memperkirakan jumlah penduduk 3 tahun kedepan dari tahun dilakukannya perancangan jaringan menggunakan persamaan sebagai berikut :

$$P_n = P_0(1 + Gf)^n$$

Dimana:

 P_n = Jumlah Penduduk Tahun ke-n

 P_0 = Jumlah Penduduk Tahun ke-0(saat dilakukannya perancangan jaringan)

Gf = Faktor Pertumbuhan jumlah penduduk

n = Tahun Perencanaan

Berikut adalah hasil perhitungan untuk kecamatan Aluh-Aluh:

$$P_n$$
 = 28363 (1 + 0,0038)³
= 28363 (1.011443)
= 28688 jiwa

Langkah selanjutnya adalah menghitung jumlah forecasting user dari daerah yang akan menjadi target perancangan jaringan dengan menggunakan persamaan berikut :

$$Total\ Target\ User = P_n \times A \times B \times C$$

Dimana:

 P_n = Jumlah Penduduk Tahun ke-n

A = Jumlah Penduduk Usia Produktif/ Penduduk Pengguna Jaringan Seluler

B = *Market Share* dari Operator Jaringan Seluler

C = Penetrasi *User* LTE

Dengan hasil perhitungan sebagai berikut:

3.2 Single User Throughput

Sebelum mencari nilai *single user throughput* kita perlu mencari nilai *throughput uplink* dan *downlink* dari tiap layanan terlebih dahulu. Berikut adalah persamaan yang digunakan dalam menentukan throughput dari tiap layanan:

$$Throughput = ST \times SDR \times Baerer\ rate \times \left[\frac{1}{(1 - BLER)}\right]$$

Dimana:

Throughput = Throughput yang harus tersedia agar kualitas jaringan baik(Kbit)

ST = Durasi dari tiap sesi layanan (s)

SDR = Sesion Duty Radio, rasio data transmisi setiap sesi

BLER = Block Error Rate yang diizinkan di tiap sesi

Bearer Rate = Nilai data rate yang dimiliki dari layanan aplikasi layer (IP)

Nantinya akan didapatkan nilai dari throughput tiap layanan yang sudah tertera dalam tabel service model parameter yang dapat dilihat pada tabel berikut ini

		UL				DL			UL	DL
Traffic Paramete rs	Bearer Rate (Kbps)	PPP Sessi on Time (S)	PPP Sessi on Duty Ratio	BLER	Bearer Rate (Kbps)	PPP Sessi on Time (S)	PPP Sessi on Duty Ratio	BLER	Throughtput Per Session (Kbit)	Throughtput Per Session (Kbit)
VoIP	26,9	80	0,4	1%	26,9	80	0,4	1%	869,49	869,49
Video Phone	62,53	70	1	1%	62,53	70	1	1%	4421,31	4421,31
Video Conferen ce	62,53	1800	1	1%	62,53	1800	1	1%	113690,91	113690,91
Real Time Gaming	31,26	1800	0,2	1%	125,06	1800	0,4	1%	11367,27	90952,73
Streamin g Media	31,26	3600	0,05	1%	250,11	3600	0,95	1%	5683,64	864016,36
IMS Signaling	15,63	7	0,2	1%	15,63	7	0,2	1%	22,10	22,10
Web Browsing	62,53	1800	0,05	1%	250,11	1800	0,05	1%	5684,55	22737,27
File Transfer	140,69	600	1	1%	750,34	600	1	1%	85266,67	454751,52
Email	140,69	50	1	1%	750,34	15	1	1%	7105,56	11368,79
P2P File Sharing	250,11	1200	1	1%	750,34	1200	1	1%	303163,64	909503,03

Tabel 3. 1 Service Model Parameter

Setelah mendapatkan nilai *throughput* pada tiap layanan, kemudian dilakukan perhitungan untuk mencari nilai *single user throughput* . Dengan menggunakan persamaan berikut :

$$SUT = \frac{(\sum Throughput \times BHSA \times Penetration \ rate \times (1 + PAR))}{3600}$$

Dimana:

SUT = Single User Throughput (Kbps)

BHSA = Inisiasi Penggunanaan Layanan Selama Jam Sibuk

Penetration Rate = Penetrasi Penggunaan Layanan jaringan PAR = Perentasi Lonjakan Trafik di jam sibuk

3600 = Jumlah 1 jam dalam detik

Dan karena wilayah yang dilakukan perancangannya merupakan daerah dengan kategori sub-urban jadi menggunakan nilai 10% sebagai asumsi untuk nilai *peak to average ratio*. Nilai hasil perhitungannya dapat dilihat tabel berikut ini :

	Sub-Urban			UL	DL	Single User	Single User
Traffic Parameter	Traffic Penetration Ratio	BHSA	Peak to Average Ratio	Throughput/ Session(Kbit)	Throughput/ Session(Kbit)	Throughput (SUT) UL (Kbps)	Throughput (SUT) DL (Kbps)
VoIP	50%	1	10%	869,49	869,49	0,13283875	0,13283875
Video Phone	10%	0,1	10%	4421,31	4421,31	0,013509558	0,013509558
Video Conference	10%	0,1	10%	113690,91	113690,91	0,347388892	0,347388892
Real Time Gaming	10%	0,1	10%	11367,27	90952,73	0,034733325	0,277911119
Streaming Media	5%	0,1	10%	5683,64	864016,36	0,008683339	1,320024994
IMS Signaling	25%	3	10%	22,1	22,1	0,005064583	0,005064583
Web Browsing	40%	0,3	10%	5684,55	22737,27	0,2084335	0,8336999
File Transfer	20%	0,2	10%	85266,67	454751,52	1,042148189	5,558074133
Email	10%	0,2	10%	7105,56	11368,79	0,043422867	0,069475939
P2P File Sharing	20%	0,2	10%	303163,64	909503,03	3,705333378	11,11614814
	Total (Kbit	22333,51					
	Total Si	5,541556381	19,67413601				

Tabel 3. 2 Nilai SIngle User Throughput darah Sub-Urban

3.3 Network Throughput

Persamaan UL dan DL Network Throughput yaitu:

$$UL \ Network \ Throughput \ (MAC \ LAYER) = \frac{UL \ Network \ Throughput \ (IP)}{0,98}$$

$$= \frac{45,83551254 \ Mbps}{0,98}$$

$$= 46,77093116 \ Mbps$$

$$DL \ Network \ Throughput \ (MAC \ LAYER) = \frac{DL \ Network \ Throughput \ (IP)}{0,98}$$

$$= \frac{162,7293933 \ Mbps}{0,98}$$

$$= 166,0504014 \ Mbps$$

Dimana ; A x B x C = 0.98, berdasarkan table berikut:

Item	SubUrban			
	UL	DL		
Total target User	8271.2	3454		
Single User Throughput	5,541556381	19,67413601		
(kbps) Network Throughput (IP) (kbps)	45835,51254	162729,3933		
Network Throughput (IP) (Mbps)	45,83551254	162,7293933		
Network Throughput MAC layer (Mbps)	46,77093116	166,0504014		

Tabel 3. 3 Nilai Network Throughput

3.4 Kapasitas Sel arah Downlink & Uplink

Untuk mendapatkan cell average throughput pada DL dan UL atau kapasitas sel, maka disesuaikan dengan jenis modulasi unit code bit, code rate, SINR, dan SINR probability.

Modulation	code bit	code rate	SINR Prob
QPSK 1/3	2	0,3	0,28
QPSK 1/2	2	0,5	0,25
QPSK 2/3	2	0,67	0,17
16 QAM 1/2	4	0,5	0,13
16 QAM 2/3	4	0,67	0,1
16 QAM 4/5	4	0,8	0,05
64 QAM 1/2	6	0,5	0,01
64 QAM 2/3	6	0,67	0,01

Tabel 3. 4 Nilai Modulasi

Tugas Besar kali ini hanya menggunakan modulasi pada tabel dengan menggunakan antenna MIMO 2x2. Berikut adalah persamaan untuk menentukan kapasitas sel:

$$Cell \, Thr_{Ul} + CRC = (168 - 24) \times (CB) \times (CR) \times (Nrb) \times C \times 1000$$

$$Cell\ Thr_{DL} + CRC = (168 - 36 - 12) \times (CB) \times (CR) \times (Nrb) \times C \times 1000$$

Dimana:

CRC = 24, dalam 1 resource elements (RE)

168 = Jumlah *Resource Elemen* (RE) dalam 1 ms

36 = jumlah *Control Channel* RE dsalam 1 ms

= Jumlah Referensi Sinyal RE dalam 1 ms (untuk *Uplink*)

24 = Jumlah Referensi Sinyal RE dalam 1 ms (untuk *Downlink*)

CB = *Code Bite*, efisiensi modulasi

Nrb = Jumlah *Resource Block* yang digunakan

CD = Coding Rate kanal

C = Model antenna MIMO

Modulation	Code Bit	Code Rate	UL Cell Capacity (Mbps)	DL Cell Capacity (Mbps)	SINR Probability	UL Cell Average Throughput (Mbps)	DL Cell Average Throughput (Mbps)
QPSK 1/3	2	0,3	17,279976	14,399976	0,28	4,83839328	4,03199328
QPSK 1/2	2	0,5	28,799976	23,999976	0,25	7,199994	5,999994
QPSK 2/3	2	0,67	38,591976	32,159976	0,17	6,56063592	5,46719592
16QAM 1/2	4	0,5	57,599976	47,999976	0,13	7,48799688	6,23999688
16QAM 2/3	4	0,67	77,183976	64,319976	0,1	7,7183976	6,4319976
16QAM 4/5	4	0,8	92,159976	76,799976	0,05	4,6079988	3,8399988
64QAM 1/2	6	0,5	86,399976	71,999976	0,01	0,86399976	0,71999976
64QAM 2/3	6	0,67	115,775976	96,479976	0,01	1,15775976	0,96479976
		40,435176	33,695976				

Tabel 3. 5 Nilai Kapasitas SEL

3.5 Total Site Calculation

Berikut adalah persamaan yang akan digunakan dalam mencari Total Site Calculation:

Site Capacity = Cell Throughput
$$\times$$
 3

$$Jumlah \ site = \frac{Network \ Throughput}{Site \ Capacity}$$

$$Cell\ Covarage = rac{Are\ Wide}{Jumlah\ site}$$

Cell Radius =
$$\sqrt{\frac{Cell\ Coverage}{2,6}}$$

Cell Radius (Atool) =
$$\sqrt{\frac{Cell\ Coverage}{2,6 \times 1,95}}$$

Berikut adalah hasil perhitungan yang diperoleh:

Parameter	UL	DL
Total LTE Provider User	8271,	23454
Luas Area (km^2)	82,	,93
Network Throughput (MAC Layer)		
(Mbps)	46,77093116	166,0504014
Cell Average Throughput (Mbps)	40,435176	33,695976
Site Capacity (Mbps)	121,305528	101,087928
Number of Site	0,385563065	1,642633346
Cell Coverage (km^2)	215,0880298	50,48600786
Cell Radius (km)	9,095392532	4,40655141
Cell Radius (km) (atoll)	15,75368198	7,632370929

Tabel 3. 6 Nilai Hasil Perhitungan Capacity Planning

BAB IV COVERAGE PLANNING

Pada tahap selanjutnya yaitu coverage planning, direncanakan sebuah jaringan seluler untuk memastikan jaringan dapat memberikan layanan pada seluruh area tinjauan.

4.1 Link Budget

DL Link Budget			
Transmitter	Value	Calculation	
Max Total Tx Power (dBm)	46	А	
RB to Distribute Power	100	С	
Subcarriers Distribute to Power (dBm)	1200	D=12*C	
Subcarrier Power (dBm)	15,20818754	E=A-10*log(D)	
Tx Antenna Gain (dBi)	18	F	
EIRP (dBm)	0.5	G	
Feeder Loss (dB)	32,70818754	J=E+F-G	
Receiver	Value	Calculation	
SINR (dB)	-3,5	K	
Rx Noise Figure (dB)	7	L	
	-	M=K+L-	
Receiver Sensitivity (dBm)	138,7390874	174+10*log(1500)	
Rx Cable Loss (dB)	0	Р	
Interfernce Margin (dB)	3,67	Ø	
	-		
Min. Signal Reception Strenghth (dBm)	135,0690874	R=M-P+Q	
Path Loss & Shadow Fading Margin	Value	Formula	
Penetration Loss (dB)	15	S	
Shadow Fading Margin (dB):	8	T	
MAPL (dB)	144,7772749	U=J-R-S-T	

Tabel 4. 1 Nilai Link Budget Downlink

UL Link Budget			
Transmitter	Value	Calculation	
Max Total Tx Power (dBm)	23	А	
RB to Distribute Power	8	С	
Subcarriers Distribute to Power (dBm)	96	D=12*C	
Subcarrier Power (dBm)	3,17728767	E=A-10*log(D)	
Tx Antenna Gain (dBi)	0	F	
EIRP (dBm)	0	G	
Feeder Loss (dB)	3,17728767	J=E+F-G	
Receiver	Value	Calculation	
SINR (dB)	-2,5	К	
Rx Noise Figure (dB)	2,3	L	
Receiver Sensitivity (dBm)	- 142,4390874	M=K+L-174+10*log(1500)	
Rx Cable Loss (dB)	18	P	
Interfernce Margin (dB)	0,87	Q	
Min. Signal Reception Strenghth (dBm)	- 159,5690874	R=M-P+Q	
Path Loss & Shadow Fading Margin	Value	Formula	
Penetration Loss (dB)	15	S	
Shadow Fading Margin (dB):	8	T	
MAPL (dB)	139,7463751	U=J-R-S-T	

Tabel 4. 2 Nilai Link Budget Uplink

4.2 Model Propagasi

Karena wilayah merupakan daerah berkategori sub-urban maka konfigurasi planning berdasarkan coverage memerlukan kanal propagasi sebagai berikut :

4.2.1 Model Propagasi Cost 231

Karena pada peranangan jaringan LTE kali ini menggunakan frekuensi 1860 MHz, maka diperlukan model propagasi cost 231 sebagai pengaplikasian jaringan nantinya. Model propagasi cost 231 menggunakan persamaan sebagai berikut untuk menentukan pathloss nya:

$$a(hr) = 3.2 (\log(11.75 hr))^2 - 4.97$$

$$L_{path} = 46.33 + 33.9 \log(f_c) - 13.82 \log(h_t) - a(h_r) + [44.9 - 6.55 \log(h_t)] \log(d) + CM(db)$$

Dimana:

 L_{path} = path loss di daerah Sub urban (dB) a(hr) = faktor koreksi ketinggian antena UE f_c = Frekuensi yang digunakan (Mhz)

 h_t = Tinggi eNodeB (m)

 h_r = Tinggi UE (m)

d = jarak antara eNodeB dengan UE

CM = nilainya adalah 0 untuk kategori wilayah sub-urban

NILAI a(hr)	Nilai d	
0,54733875	1,336969195 km	

Tabel 4. 3 Nilai a(hr) dan Nilai d

4.2.2 Perhitungan Total Site

Untuk menentukan luas sel dari yang menggunakan Omnidirectional, dapat diperhitungkan dengan menggunakan persamaan berikut:

$$\label{eq:cell_coverage} \begin{split} \textit{Cell Coverage} &= 1,95 \, \times 2,6 \times d^2 \\ \textit{Number of cell} &= \frac{\textit{Area Wide}}{\textit{Cell Coverage}} \\ \textit{Cell Coverage (Atoll)} &= 3 \times 2,6 \times d^2 \\ \textit{Number of cell (Atoll)} &= \frac{\textit{Area Wide}}{\textit{Cell Coverage (Atoll)}} \end{split}$$

Keterangan	Nilai	Satuan
luas wilayah	82,93	km^2
radius sel (d)	0,54733875	km
cell coverage	1,518869115	km
number of cell	56	site
cell coverage (atoll)	13,94239571	km
number of cell (atoll)	6	site

Tabel 4. 4 Hasil Perhitungan Coverage Planning

BAB V HASIL PERENCANAAN

5.1 Perbandingan Capacity dan Coverage Planning

Setelah mendapatkan hasil dari kedua perhitungan tersebut, seperti capacity planning, didapatkan kapasitas sel, jumlah sel, dan radius sel yang dibutuhkan untuk dapat melayani setiap user pada tiap kecamatan. Dari hasil ini dihitung MAPL dari Capacity Planning dan dibandingkan dengan MAPL dari Coverage Planning untuk mengetahui apakah nilai pathloss yang ada sudah memenuhi standar dari coverage planning

Hasil perhitungan pathloss berdasarkan capacity planning tiap kecamatan dibandingkan dengan MAPL berdasarkan coverage planning dapat dilihat pada Tabel 5.1. Dapat dilihat bahwa hasil planning Kecamatan Aluh – Aluh Kalimantan Selatan sudah memenuhi standar dan coverage serta capacity planning sudah sesuai.

Item	Downlink	
Area Wide (Km²)	82,93	
Site Coverage (Km²)	50,486	
Cell Radius (Km)	4,4065	
Number of Site	$1,642 \pm 2$	
Coverage Planning MAPL	144,77 dB	
Capacity Planning MAPL	142,43 dB	
Selisih	3,34 dB	
Target	Tercapai	

Tabel 5. 1 Hasil Perbandingan MAPL

5.2 Hasil Simulasi

Dari hasil yang didapatkan dapat dibuat sebuah peta alokasi dari penempatan site. Pada area perencanaan di Kecamatan Aluh Aluh diperoleh 2 site seperti ditunjukkan pada Gambar 5.1.

Gambar 5. 1 Penempatan site

Adapun daya terima yang diperoleh memiliki nilai rata-rata -75,64 dBm. Hasil yang didapatkan terbilang baik karena berada diatas threshold minimum yaitu -127.239 dBm. Rata-rata daya terima dapat dilihat melalui histogram pada Gambar 5.2.

Gambar 5. 2 Histogram rata-rata Coverage by Signal Level sisi downlink

Gambar 5. 3 CDF Persentase Coverage by Signal Level sisi downlink

Adapun nilai RSRP yang diperoleh untuk planning ini memiliki nilai rata- rata – 112,69 dBm. Hasil yang didapatkan terbilang cukup baik karena nilai berada dibawah nilai optimumnya yaitu -80 dBm. Rata-rata nilai RSRP dapat dilihat melalui histogram pada Gambar 5.4.

Gambar 5. 4 Histogram rata-rata effective signal analysis

Gambar 5. 5 Persentase Effective Signal Analysis

BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan, hasil dari Capacity Planning dan Coverage Planning di atas maka dapat diambil beberapa kesimpulan, yaitu:

- 1. Perencanaan jaringan LTE ini dilakukan di kecamatan Aluh-Aluh, kabupaten Banjar dengan total luas wilayah sebesar 82,93 km2, perencanaa jaringan LTE berfokus pada kecamatan Aluh-Aluh yang termasuk kategoti daerah sub-urban dengan Bandwidth yang digunakan adalah sebesar 22,5 MHz, dan frekuensi yang digunakan dalam perancangan yaitu 1870 MHz sesuai dengan frekuensi yang digunakan yaitu Telkomsel.
- 2. Untuk capacity planning, dilakukan perhitungan manual untuk mengetahui nilai dari radius cell, jumlah site, dan lain-lain. Dari hasil perhitungan didapatkan bahwa radius cell sebesar 9,095 km pada sisi uplink dan 4,406 pada sisi downlink dengan jumlah site yang digunakan adalah 2 site.
- 3. Untuk coverage planning, data yang didapatkan dari capacity planning dimasukkan kedalam perencanaan LTE pada software Atoll. Dari hasil simulasi, didapatkan ratarata kekuatan sinyal sebesar -75,64 dBm dan rata-rata nilai RSRP sebesar 112,69 dBm. Nilai tersebut terbilang cukup baik untuk planning pada wilayah sub urban seperti pada kecamatan Aluh-aluh yang terletak pada kabupaten Banjar.

6.2 Saran

Dalam melakukan perancangan jaringan LTE pada suatu daerah, disarankan menggunakan data terbaru yang lebih akurat dari daerah yang akan dijadikan target perancangan jaringan, contoh tempat untuk mengambil data yang akurat adalah Badan Pusat Statistik . Dan juga dalam mengambil data parameter layanan sebaiknya menggunakan data yang disediakan oleh vendor atau operator yang ingin di planning contohnya seperti telkomsel ataupun huwawei.