Chapter 5: Mining Frequent Patterns, Association and Correlations

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

MaxMiner: Mining Max-patterns

- □ Review: max pattern
 - An itemset X is a max-pattern if X is frequent and there exists no **frequent** super-pattern $Y \supset X$
 - □i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is greater than minSup (=frequent)
 - The support of Y can be smaller than the support of X

```
CF) closed pattern: The Super-pattern Y should be the same with the Support of X 2737
Y & closed pattern. X & Not closed pattern
```

- MaxMiner is based on the Apriori algorithm
 - It tries to find only max-patterns, not all the frequent patterns
 - Naïve approach: too much costly!

MaxMiner: Mining Max-patterns

- □ 1st scan: find frequent items and sort them (ascending order)
 - □ Assume the order is A, B, C, D, E (E is most frequently occurring)
- 2nd scan: find support for 2-itemsets with potential maxpatterns

	_
Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F,E

- Reduce a lot of candidates in <u>later stages</u>
 - □ If BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan

MaxMiner: Mining Max-patterns

- Construct set-enumeration tree over four items
 - Assume order is A B C D
 - □ It helps the process of **finding max pattern candidates**

Mining Closed Patterns: CLOSET

- **Review: closed pattern**
 - □An itemset X is closed if X is *frequent* and there exists no super-pattern $Y \supset X$, with the same support as X
 - □i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is should be the same as that of X
- CLOSET finds the closed patterns while running FPgrowth
 - The algorithm of FP-growth naturally supports finding closed patterns

Mining Closed Patterns: CLOSET

- Naïve approach: again, too much costly!
- Find only the closed itemsets recursively during the mining process of FP-growth
 - □ The transactions having **m** also has **fca** => **fcam** is a frequent **closed** pattern!

min sup = 3*m-conditional* pattern base: Conditional pattern bases fca:2, fcab:1 item cond. pattern base freq All frequent patterns related to *m* f:3 cf: potential closed pattern *f*:3 m, fc:3 afc 3 \boldsymbol{a} fm, cm, am, c:3 fca:1, f:1, c:1 h fcm, fam, cam, fca:2, fcab:1 *a:3* m fcam fcam:2, cb:1 CP3 p *m-conditional* FP-tree

CHARM: Mining by Exploring Vertical Data Format

□ Vertical format: $t(A) = \{T_{11}, T_{25}, ...\}$

1	A	TI,	
I	6		MM. F
	0	T1,T2,T3,	Column4

now' itemsets, Columns: Transaction ID

Represent each itemset as a list of transaction IDs containing the corresponding itemset

ace f K

Algorithm

- □ Transform a horizontally formatted data to a vertical format by scanning the dataset once, considering only frequent size-1 itemsets.
 - Easy: the number of items is much smaller than that of transactions
- □ Starting with k=1, find (k+1) size frequent itemsets from frequent k-size itemsets
 - Using the intersection operation and Apriori property
- Repeat this process until no frequent itemsets can be found in the next k+1 step

CHARM: Mining by Exploring Vertical Data Format

ITEMSET	TID SET
I1	{T101, T401, T501, T701, T801, T901}
I2	{T101,T201,T301,T401,T601,T801,T901}
I3	{T301,T501,T601,T701,T801,T901}
I4	{T201,T401}
I5	$\{T101,T801\}$ \rightarrow Transection ID $\frac{7}{20}$ = frequency of each itemset

CHARM: Mining by Exploring Vertical Data Format

□ Effectiveness:

- The frequency of each itemset is equal to the length of its TID list
- \square The simple **intersection operation** brings us the k+1 length candidates

ITEMSET	TID SET				
{I1,I2}	{T101,T401	1,T801,T901}			
{I1,I3}	{T501,T701	1,T801,T901}			
{ 11, 1 4}	{T401}	_			
{I1,I5}	{T301,T601	1,T801,T901}			
{I2,I3}	{T201,T401	1}			
{12,15}	{T101,T801}				
{13,15}	{T801}				
Size 2		ITEMSET		TID SET	
Size Z		{I1,I2,I3}		{T801,T901}	
Min sun – 2	Size 3	{I1,I2,I5}		{T101,T901}	
$Min_sup = 2$		•••			

Association Rules

- Mining multilevel association
- Miming multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

Mining Multiple-Level Association Rules

- □Items often form hierarchies (assume that it is given)
- Flexible support settings will be needed
 - □ Items at the **lower level** are expected to have **lower support**
 - Make the probability of lower-level items and higher-level items being included in frequent patterns as similar as possible

uniform setting

Level 1 min_sup = 5%

Level 2 min_sup = 5%

Milk [support = 10%]

2% Milk [support = 6%] Skimed Milk
[support = 4%]

flexible setting

Multi-level Association: Redundancy Filtering

- □Some rules may be redundant due to "ancestor" relationships between items.
- Example

```
☐ milk \Rightarrow wheat bread [support = 8%, confidence = 70%] 
☐ 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
```

- ■We say the first rule is an ancestor of the second rule.
- ■A (descendent) rule is redundant if
 - Its support is close to the <u>expected</u> <u>value</u>, based on the ancestor rule's support value → अला लांक्ष वस्ता विश्व अल्लिन क्षेत्र क्षेत्र अल्लिन क्षेत्र अल्लिन क्षेत्र क्षेत्र अल्लिन क्षेत्र अल्लिन क्षेत्र अल्लिन क्षेत्र क्षेत्र अल्लिन क्षेत्र क्षेत

Mining Multi-Dimensional Associations

Single-dimensional rules:

7 Customer

```
buys(X, "milk") \Rightarrow buys(X, "bread"): milk \Rightarrow bread then, highly likely
```

- ■Multi-dimensional rules: ≥ 2 dimensions
 - □Inter-dimension assoc. rules (*no repeated dimensions*)

```
age(X," 19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
```

□ Hybrid-dimension assoc. rules (*repeated dimensions*)

```
age(X," 19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
```


Attribute (Feature, Dimension), Types

Categorical Attributes

□ Finite number of possible values, no ordering among values

Quantitative Attributes

- Numeric, implicit ordering among values
- Typically discretization is required (will be explained in the next several chapters)

Quantitative Association Rules

Numeric attributes are discretized

70-80K

60-70K

50-60K

40-50K

30-40K

20-30K

<20K

If needed, we cluster adjacent association rules to form

general rules.

Example

income

age

catagorical

 $age(X,"34-35") \land income(X,"30-50K")$ ⇒ buys(X,"high resolution TV")

From Association Mining to Correlation Analysis

- □ play basketball ⇒ eat cereal [40%, 66.7%] is misleading! Not meaningful!
 - □ Because, the overall % of students eating cereal is 75% (> 66.7%) general thend
- support & confidence framework)
- Measure of interestingness of correlated events: lift

Contingency table

Sum (row)

		_		
$P(\Lambda \text{ and } P)$		Basketball	Not basketball	Sum (r
$lift = \frac{P(A \text{ and } B)}{I}$	Cereal	2000	1750	3750
P(A)P(B) Tiff=1: Event A, B = completely independent No correlation at all Tiff () The properties correlation	Not cereal	1000	250	1250
No correlation at all /ift < 1: Two events have negative correlation		3000	2000	5000
positive "	> hegative	Correlation com	pare to the general tren	d
$lift(B,C) = \frac{2000/5000}{2000/5000}$		$ift(B, \neg C) =$	1000 / 5000)
$\frac{iift(B,C)}{3000/5000*3750/5000}$	$0^{-0.05}$		3000/5000*1250	0/5000

Summary

- Frequent pattern & association rule mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (the basic candidate generation & test approach)
 - **FP-growth** (without the candidate generation & test)
 - Minor improvements (DIC, Partition, Sampling, MaxMiner, CHARM, etc...)
- Mining a variety of rules and interesting patterns
 - Hierarchy and multi-attribute settings, Lift, etc...

Thank You

