SOLUCIONS

SOLUCIÓ EXERCICI 1. Planificació de la producció*.

(EXERCICI 1)

- a) Formulació: veure apunts de IIO.
- b) Implementació i resolució amb OPTMODEL

```
proc optmodel presolver = 0;
/* Paràmetres */
set<string> PRODUCTE = {'A','B'};
set<string> RECURS = {'ma', 'fusta', 'plastic'};
number consum{ RECURS, PRODUCTE} = [ 1 2 3 2 2 0 ];
number disp{RECURS} = [150 300 100];
number benefici{PRODUCTE} = [300 250];
/* Model d'optimització */
var Produc {PRODUCTE} >= 0;
max Total benefici = sum {i in PRODUCTE} benefici[i]*Produc[i];
con Consum recurs {j in RECURS}:
      sum {i in PRODUCTE} consum[j,i]*Produc[i] <= disp[j];</pre>
/* Model extens */
expand;
/* Optimització i resultats */
solve;
print Produc.lb Produc.sol Produc.ub Produc.rc Produc.status;
print Consum_recurs.lb Consum_recurs.body Consum_recurs.ub Consum_recurs.dual
Consum recurs.status;
                                   The OPTMODEL Procedure
                                              Solution Summary
                                         Solver
                                      Algorithm
                                                  Dual Simplex
                              Objective Function Total_benefici
                                 Solution Status
                                                       Optimal
                                 Objective Value
                                                        27500
                                     Iterations
                                                            0
                            Primal Infeasibility
                              Dual Infeasibility
                                                            0
                             Bound Infeasibility
                                                            0
         [1]
               Produc.LB
                            Produc.SOL
                                          Produc.UB
                                                       Produc.RC
                                                                     Produc.STATUS
                      0
                                         1.7977E+308
                                                                                В
                                   50
                      0
                                   50
                                         1.7977E+308
                                                                                В
           Consum_recurs
                        Consum_recurs.
                                                                           Consum_recurs
      [1]
                                                        Consum_recurs.DUAL
                                        Consum_recurs.UB
                                                                                 .STATUS
                    .LB
                                 BODY
    fusta
            -1.7977E+308
                                  250
                                                   300
                                                                      0.0
                                                                                      В
            -1.7977E+308
                                   150
                                                   150
                                                                     125.0
                                                                                      L
   plastic
            -1.7977E+308
                                   100
                                                    100
                                                                     87.5
```


c) Informació sobre la solució:

$$\begin{cases} \mathcal{B}^* = \{A, B, fusta\} \\ x_B^{*'} = [50 \ 50 \ 50] \end{cases}, \begin{cases} \mathcal{N}^* = \{ma, plastic\} \\ r^{*'} = [-125.0 \ -87.5] \end{cases}$$

Els costos reduïts de les variables de folga coincideixen sempre amb les variables duals o preus ombra de les constriccions de \leq associades (sufix .DUAL) canviats de signe: $r_j^* = -\lambda_j^*$, j = ma, plastic. Aquests costos reduïts son negatius a l'òptim del problema resolt perquè està plantejat com a problema de maximització. Podeu provar a formular-lo com a problema de minimització i veureu com el signe de les variables duals i, conseqüentment, el dels costos reduïts, canvien, tot i que la relació $r_j^* = -\lambda_j^*$ continua sent vàlida.

SOLUCIÓ EXERCICI 2. Problema de la dieta.

(EXERCICI 2)

- a) Formulació: veure apunts de IIO.
- b) Implementació i resolució amb OPTMODEL

```
proc optmodel presolver = 0;
/* Paràmetres */
set<string> NUTRIENTS = {'V','HC', 'O', 'P'};
set<string> MENJARS = {'carn', 'peix', 'cereals', 'fruita', 'pa'};
number contingut{ MENJARS, NUTRIENTS} =
       25 20
                   10 150
      200
                        200
            50
                    10
      300
            300
                   10
                          50
                   50
        0
             160
                          20
        0
             120
                   100
                        20];
number apor{NUTRIENTS} = [60 40 100 100];
number preu{MENJARS}
                       = [8 10 2 1.5 0.5];
/* Model d'optimització */
var Quantitat {MENJARS} >= 0;
min Total_cost = sum {i in MENJARS} preu[i]*Quantitat[i];
con Aportacio_min {j in NUTRIENTS}:
      sum {i in MENJARS} contingut[i,j]*Quantitat[i] >= apor[j];
/* Model extens */
expand;
/* Optimització i resultats */
solve;
print Quantitat.lb Quantitat.sol Quantitat.ub Quantitat.rc Quantitat.status;
print Aportacio min.lb Aportacio min.body Aportacio min.ub Aportacio min.dual
Aportacio min.status;
                                 The OPTMODEL Procedure
                                             Solution Summary
                                        Solver
                                                         I P
                                     Algorithm
                                                Dual Simplex
                             Objective Function
                                                  Total_cost
                                Solution Status
                                                     Optimal
                                Objective Value
                                                       2.65
                                     Iterations
                                                          6
                            Primal Infeasibility
                                                          0
                             Dual Infeasibility
                                                          0
                             Bound Infeasibility
                                                                        Quantitat
          [1]
                Quantitat.LB
                              Quantitat.SOL
                                             Quantitat.UB
                                                           Quantitat.RC
                                                                          .STATUS
                                              1.7977E+308
                         0
                                       0.0
                                                                 4.1875
                                                                               L
         carn
       cereals
                         0
                                       0.2
                                              1.7977E+308
                                                                0.0000
                                                                               В
       fruita
                         0
                                       0.0
                                              1.7977E+308
                                                                1.0000
                                                                               L
                          0
                                       4.5
                                              1.7977E+308
                                                                -0.0000
                                                                               В
           pa
         peix
                         0
                                       0.0
                                              1.7977F+308
                                                                 4.5000
                                                                               T
```

[1]	Aportacio_min.LB	Aportacio_min.	Aportacio_min.UB	Aportacio_min.DUAL	Aportacio_min.	
3.5	, po. 00000	BODY			STATUS	
HC	40	600	1.7977E+308	0.0000	В	
0	100	452	1.7977E+308	0.0000	30°E	
Р	100	100	1.7977E+308	0.0250	į Š	
V	60	60	1.7977E+308	0.0025	" S " (

c) Informació sobre la solució:

$$\begin{cases} \mathcal{B}^* = \{cereals, pa, HC, 0 \} \\ x_B^{*'} = [0.2 \quad 4.5 \quad 560 \quad 352] \end{cases}, \begin{cases} \mathcal{N}^* = \{carn, fruita, peix, P, V \} \\ r^{*'} = [4.1875 \quad 1 \quad 4.5 \quad 0.025 \quad 0.0025] \end{cases}$$

En aquest cas els costos reduïts de les variables d'escreix de les contriccions P i V coincideixen amb les variables duals o preus ombra d'aquestes constriccions: $r_i^* = \lambda_i^*, j = P, V$

SOLUCIÓ EXERCICI 3. Problema de mescla.

(EXERCICI 3)

- a) Formulació: veure apunts de IIO.
- b) Implementació i resolució amb OPTMODEL

```
proc optmodel;
/* Paràmetres */
number nD=4;
set<number> DISOLVENTS = 1..nD;
set<string> COMPONENTS MIN = {'Clor'};
set<string> COMPONENTS_MAX = {'Amoniac'};
set<string> COMPONENTS = COMPONENTS MIN UNION COMPONENTS MAX;
number contingut{ COMPONENTS, DISOLVENTS} =
      180
           120
                   90
                         60
      3
                   6
                         5];
number mescla{COMPONENTS} = [90 4];
number cost{DISOLVENTS} = [16 12 10 11];
/* Model d'optimització */
var Proporcio {DISOLVENTS} >= 0;
min Total cost = sum {i in DISOLVENTS} cost[i]*Proporcio[i];
con Contingut minim {j in COMPONENTS MIN}:
      sum {i in DISOLVENTS} contingut[j,i]*Proporcio[i] >= mescla[j];
con Contingut_maxim {j in COMPONENTS MAX}:
      sum {i in DISOLVENTS} contingut[j,i]*Proporcio[i] <= mescla[j];</pre>
con Cons mescla: sum{i in DISOLVENTS} Proporcio[i] = 1;
/* Model extens */
expand;
/* Optimització i resultats */
print Proporcio.lb Proporcio.sol Proporcio.ub Proporcio.rc Proporcio.status;
print Contingut minim.lb Contingut minim.body Contingut minim.ub
Contingut minim.dual Contingut minim.status;
print Contingut_maxim.lb Contingut_maxim.body Contingut_maxim.ub
Contingut_maxim.dual Contingut_maxim.status;
print Cons_mescla.lb Cons_mescla.body Cons_mescla.ub Cons_mescla.dual
Cons mescla.status;
                                 The OPTMODEL Procedure
                                   Solution Summary
                          Solver
                                               Dual Simplex
                          Objective Function
                                                 Total cost
                          Solution Status
                                                   Optimal
                          Objective Value
                          Iterations
                          Primal Infeasibility
                          Dual Infeasibility
                                                        0
                          Bound Infeasibility
                                                        0
                                         Proporcio.
                Proporcio.
                            Proporcio.
                                                     Proporcio.
                                                                 Proporcio.
          [1]
                       LB
                                  SOL
                                                            RC
                                                                 STATUS
                        0
                                  0.0
                                        1.79769E308
                                                           4.5
                                                                 L
                                  0.5
                                        1.79769E308
                                                           0.0
```

۴ .	3	0	0.5	1.79769E308	0.0	В
	4	0	0.0	1.79769E308	0.5	L
						Contingut_
		Contingut_	Contingut_	Contingut_	Contingut_	minim.
	[1]	minim.LB	minim.BODY	minim.UB	minim.DUAL	STATUS
	Clor	90	105	1.79769E308	0	В
						Contingut_
		Contingut_	Contingut_	Contingut_	Contingut_	maxim.
	[1]	maxim.LB	maxim.BODY	maxim.UB	maxim.DUAL	STATUS
	Amoniac	-1.7977E308	4	4	-0.5	L _a
		Cons_	Cons_	Cons_ Co	ns_ Cons_	
		mescla.	mescla.	mescla. mesc	la. mescla.	
		LB	BODY	UB D	UAL STATUS	
		1 0	1	1 (©	13 U	
- No.	//39//			30"	8.	A7 B1

c) Informació sobre la solució:

$$\begin{cases} \mathcal{B}^* = & \{2, \quad 3 \quad Clor\} \\ {x_B^*}' = & [0.5 \quad 0.5 \quad 15] \end{cases}, \begin{cases} \mathcal{N}^* = & \{1, \quad 4, \quad Amoniac\} \\ {r^*}' = & [4.5 \quad 0.5 \quad 0.5] \end{cases} (r_{Amoniac}^* = -\lambda_{Amoniac}^*)$$

SOLUCIÓ EXERCICI 4. Problema de transport.

(EXERCICI 4)

- a) Formulació: veure apunts de IIO.
- b) Implementació i resolució amb OPTMODEL

```
proc optmodel;
/* Parametres */
set<number> REFINERIES = 1..3;
set<number> MERCATS
                       = 1..4;
number produccio{ REFINERIES } = [ 6 10 4 ];
number demanda { MERCATS } = [5 3 8 4 ];
number cost
                 { REFINERIES, MERCATS } =
[4
      7
                   10
 6
      4
            3
                   6
                   8];
/* Optimization model */
var Trans { REFINERIES, MERCATS } >= 0;
min Total_cost = sum {i in REFINERIES, j in MERCATS} cost[i,j] * Trans[i,j];
con Produccio_cons {i in REFINERIES}:
      sum {j in MERCATS}
                              Trans[i,j] <= produccio[i];</pre>
con Demanda cons {j in MERCATS}
      sum {i in REFINERIES} Trans[i,j] >= demanda[j];
/* Formulacío estensa */
expand;
/* Optimització i resultats */
print Trans.lb Trans.sol Trans.ub Trans.rc Trans.status;
print Produccio cons.lb Produccio cons.body Produccio cons.ub
Produccio cons.dual Produccio cons.status;
print Demanda_cons.lb Demanda_cons.body Demanda_cons.ub Demanda_cons.dual
Demanda cons.status;
                                 The OPTMODEL Procedure
                                    Solution Summary
                                                Dual Simplex
                           Solver
                                                 Total_cost
                           Objective Function
                           Solution Status
                                                    Optimal
                           Objective Value
                                                         87
                           Iterations
                           Primal Infeasibility
                           Dual Infeasibility
                                                         0
                           Bound Infeasibility
                                                         0
           [1]
                 [2]
                       Trans.LB
                                  Trans.SOL
                                                Trans.UB
                                                          Trans.RC
                                                                     STATUS
                                         5
                                             1.79769E308
                                                                0
                                                                     В
                             0
                                             1.79769E308
                                         1
                             0
                                             1.79769E308
                                                                    L
            1
                  4
                                             1.79769E308
                                                                1
                                                                    L
                  1
                                             1.79769E308
                                                                5
                                             1.79769E308
```

Y	2		3		0	4	1.79769	E308		0	В	A-2
	2		4		0	4	1.79769	E308		0	В	
	3		1		0	0	1.79769	E308		7	L	
	3		2		0	0	1.79769	E308		1	L	
	3		3		0	4	1.79769	E308		0	В	
	3		4		0	0	1.79769	E308		1	L	
		Р	roduccio_		Produccio_	Pr	oduccio_	Produ	iccio_	Р	roduccio_	
	[1]		cons.LE	3	cons.BODY		cons.UB	cons	.DUAL	С	ons.STATUS	
	1	-1	.7977E308	3	6		6		0	В	80 4	
	2	- 1	.7977E308	3	10		10		-3	- É		
	3		.7977E308		4		4		-2	L		
					Demanda			Demar	nda	Dem	anda_	
			Demanda	a	cons.		Demanda_		ns.	con		
		[1]	cons.l	_	BODY		cons.UB		UAL		TUS	
		1		5	5	1.7	9769E308		4	U		
		2		3	3		9769E308		7	U		
		3		8	8		9769E308		6	U		
		4		4	4		9769E308		9	U		

c) Informació sobre la solució:

SOLUCIÓ EXERCICI 5. Prodem S.L.

(EXERCICI 5)

Model de producció i demanda:

```
Fitxer Prodem.sas
proc optmodel presolver = 0;
/* Paràmetres */
set<str> PRODUCTE = {'A','B', 'C'};
number consum{PRODUCTE} = [ 3 2 1 ];
number disp = 40;
number dem = 33;
number cost{PRODUCTE} = [ 10 2 3 ];
/* Model d'optimització */
var Produc {PRODUCTE} >= 0;
max Total benefici =
      sum {i in PRODUCTE} cost[i]*Produc[i];
con Consum recurs:
      sum {i in PRODUCTE} consum[i]*Produc[i] <= disp;</pre>
con Demanda : sum{i in PRODUCTE} Produc[i] >= dem;
/* Model extens */
expand;
/* Optimització i resultats */
solve;
print _var_.name _var_.lb _var_.sol _var_.ub _var_.rc _var_.status;
print _con_.name _con_.lb _con_.body _con_.ub _con_.dual _con_.status;
```

Solució:

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB	_VARRC	_VARSTATUS
1	Produc[A]	0	3.5	1.7977E+308	9.9920E-16	В
2	Produc[B]	0	0.0	1.7977E+308	-4.5000E+00	L
3	Produc[C]	0	29.5	1.7977E+308	1.1102E-16	В

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB	_CONDUAL	_CONSTATUS
1	Consum_recurs	-1.7977E308	40	40	3.5	L
2	Demanda	33	33	1.7977E308	-0.5	Ū

Informació sobre l'òptim:

Variables	x_1	x_2	x_3
Valor a l'òptim x*	3.5	0.0	29.5
Estat (B, N)	\mathcal{B}	\mathcal{N}	\mathcal{B}
Cost reduït (r_i^*)	0.0	-4.5	0.0
Costos de producció (z*)	4.70	123.5	910°

Constriccions	Recurs	Demanda
Valor folga/escreix a l'òptim	0.0	0.0
Estat $(\mathcal{B}, \mathcal{N})$	${\mathcal N}$	\mathcal{N}
Variable dual (λ_j^*)	3.5	-0.5

SOLUCIÓ EXERCICI 6. Coalco.

(EXERCICI 5)

• Fitxers: Coalco.sas

Paràmetres:		
Nombre de mines	$n^M = 2$	<pre>number nM = 2;</pre>
Nombre de clients	$n^{C}=2$	<pre>number nC = 2;</pre>
Components carbó	$C = \{cendra, sulfur\}$	<pre>set <string> C ={'cendra', 'sulfur'};</string></pre>
Cost transport mina $i \rightarrow$ client j (ϵ /Tm)	t_{ij} $i = 1,, n^{M}$ $j = 1,, n^{C}$ $t = \begin{bmatrix} 4 & 6 \\ 9 & 6 \end{bmatrix}$	<pre>number t{ 1nM , 1nC } = [4 6 9 6];</pre>
Per a cada mina $i = 1,, n^M$	Marie Physics	
 Cost producció (€/Tm) 	$p_i , p = [50 55]'$	<pre>number p{ 1nM } = [50 55];</pre>
• Capacitat mina <i>i</i> (Tm)	b_i , $b = [120 \ 100]'$	number b{ 1nM } = [120 100];
• Contingut component $k \in \mathcal{C}$ (Tm/Tm carbó):	$\alpha_{ik}, \alpha = \begin{bmatrix} 0.1 & 0.04 \\ 0.05 & 0.09 \end{bmatrix}$	<pre>number al{ 1nM , C } = [0.10 0.04 0.05 0.09];</pre>
Contingut màxim component $k \in \mathcal{C}$ carbó mescla (Tm/Tm mescla):	$\overline{\alpha}_k, \overline{\alpha} = [0.08 0.07]$	<pre>number almax{ C } = [0.08 0.07];</pre>
Demanda client j (Tm)	d_j , $j = 1,, n^C$ d = [90 110]'	<pre>number d{ 1nC } = [90 110];</pre>

Variables		
Tones a transportar mina $i \rightarrow$ client j :	$x_{ij} \ge 0$ $i = 1,, n^{M}$ $j = 1,, n^{C}$	<pre>var X { 1nM, 1nC } >= 0;</pre>

Model de program	mació lineal	
Cost total producción més transport:	min $z = \sum_{i=1}^{n^M} \sum_{j=1}^{n^C} (p_i + t_{ij}) x_{ij}$	<pre>min Cost_total = sum{ i in 1nM , j in 1nC } (p[i]+t[i,j])*X[i,j];</pre>
Capacitat mines:	s.a: $\sum_{j=1}^{n^{C}} x_{ij} \le b_{i}$ $i = 1,, n^{M}$	<pre>con Capacitat { i in 1nM } : sum{ j in 1nC } X[i,j] <=b[i];</pre>
Demanda clients:	$\sum_{i=1}^{n^{M}} x_{ij} \ge d_{j}$ $j = 1,, n^{C}$	<pre>con Demanda { j in 1nC } : sum{ i in 1nM }X[i,j] >= d[j];</pre>
Continguts màxims:	$\frac{\sum_{i=1}^{n^M} \alpha_{ik} x_{ij}}{\sum_{i=1}^{n^M} x_{ij}} \leq \bar{\alpha}_k \to$ $\to \sum_{i=1}^{n^M} (\alpha_{ik} - \bar{\alpha}_k) x_{ij} \leq 0$ $k \in \mathcal{C}, j = 1,, n^C$	<pre>con Contingut { j in 1nC, k in C} : sum{ i in 1nM } (al[i,k]-almax[k])*X[i,j] <= 0;</pre>
	$x_{ij} \ge 0$ $i = 1,, n^M, j = 1,, n^C$	

Solució òptima

```
solve;
print X.lb X.sol X.rc X.status;
print Capacitat.lb Capacitat.body Capacitat.ub Capacitat.dual
Capacitat.status;
print Demanda.lb Demanda.body Demanda.ub Demanda.dual Demanda.status;
print Contingut.lb Contingut.body Contingut.ub Contingut.dual
Contingut.status;
```

The OPTMODEL Procedure

Solution Summary

20TAGL.	Dual Stillbrex
Objective Function	Cost_total
Solution Status	Optimal
Objective Value	11600
Iterations	4
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0

e e	- 5		[1]	[2]	X.LB	X.SOL	Χ.	RC	X.STATU	IS	V	, - T
			1	1	0	54		0	В			
			1	2	0	66		0	В			
			2	1	0	36		0	В			
			2	2	0	44		0	В			
		Capa	citat.	Capa	citat.	Capac	itat.	C	apacitat.	Cap	oacitat.	
	[1]		LB		BODY		UB		DUAL	STA	ATUS	
	1	-1.79	77E308		120		120		0	В		
	2	-1.79	77E308		80		100		0	В		
		(C)	emanda.	Dem	anda.			D	emanda.	Demar	nda.	
		1]	LB		BODY	Deman	da.UB		DUAL	STATU	JS	
		1	90		90	1.7976	9E308		58	U		
		2	110		110	1.7976	9E308		58	U		
			Contingu		Conting		Contin	•		•	Contingut.	
	[1] [2]			LB		BODY		UB		DUAL	STATUS	
		dra	-1.7977E3			0.0		0	700.	-200	/ L	
		fur	-1.7977E3			0.9		0		0	В	
		dra	-1.7977E3			0.0		0		-100	LO	
	2 sul	fur	-1.7977E3	308	- Total -	1.1		0		0	В	

SOLUCIÓ EXERCICI 7. CSL

(EXERCICI 7)

• Fitxers: CSL.sas

Paràmetres:				
Nombre de mesos	m = 5	number m = 5;		
Demanda projectes mes i (h)	$d_i, i = 1, 2,, m$ $b = \begin{bmatrix} 3000 \\ 4000 \\ 7500 \\ 10000 \\ 15000 \end{bmatrix}$	<pre>number d{ i in 1m } = [3000 4000 7500 10000 15000];</pre>		
Consultors qualificats:	100° 100° 100° 100° 100° 100° 100° 100°			
 Nre. inicial Hores treball Cost (€) Fracció continuitat 	$n^{Q} = 35$ $h^{Q} = 160$ $c^{Q} = 1800$ $\alpha = 0.95$	<pre>number nq = 35; number hq = 160; number cq = 1800; number alpha = 0.95;</pre>		
Consultors en formació:				
 Hores supervisió <i>i</i>-èssim mes en formació Cost (€) 	$h^F = [50 \ 10]'$ $c^F = 900$	<pre>number hf {12} = [50 10]; number cf = 900;</pre>		

Variables					
Nombre de consultors nous contractats el mes <i>i</i> (en primer mes de formació)	$x_i \ge 0$ $i = 0, 1, \dots, m$	<pre>var X { 0m } >= 0;</pre>			
Nombre de consultors en segon mes de formació en el mes <i>i</i>	$y_{i-} \ge 0$ $i = 0, 1, \dots, m$	<pre>var Y { 0m } >= 0;</pre>			
Nombre de consultors qualificats mes <i>i</i>	$z_i \ge 0$ $i = 0, 1, \dots, m$	<pre>var Z { 0m } >= 0;</pre>			

Model de programac	ió lineal	
Cost total nòmina	$\min z = \sum_{i=1}^{m} [c^{Q} z_{i} + c^{F} (x_{i} + y_{i})]$	<pre>min Cost_nomina = sum{ i in 1m} (cq*Z[i] + cf*(X[i]+Y[i]));</pre>
Els consultors qualificats han de fer front als projectes més formació	s.a: $h^Q z_i - h_1^F x_i - h_2^F y_i \ge d_i$ $i = 1, 2,, m$	<pre>con Hores_mes { i in 1m }: hq*Z[i]-hf[1]*X[i]-hf[2]*Y[i] >= d[i];</pre>
Cada més es disposa del 95% dels consultors qualificats al final del mes anterior	$z_i - \alpha(z_{i-1} + y_{i-1}) \le 0$ i = 1, 2,, m	<pre>con Cons_qualif { i in 1m }: Z[i] - alpha*(Z[i-1]+Y[i-1]) <= 0;</pre>
Els consultors del mes i en primer mes de formació pasen a segon al mes $i + 1$	$y_i - x_{i-1} = 0, i = 1,, m$	<pre>con Cons_form { i in 1m }: Y[i] - X[i-1] = 0;</pre>
Valors inicials:	$z_0 = n^Q$ $x_0 = y_0 = 0$	<pre>fix Z[0] = nq; fix X[0] = 0; fix Y[0] = 0;</pre>
	$x_i, y_i, z_i \ge 0, i = 1, 2,, m$	

```
Solució òptima
number total_hq{ i in 1..m} = hq*Z[i].sol;
number total_d { i in 1..m} = d[i]+hf[1]*X[i].sol+hf[2]*Y[i].sol;
print X Y Z total_hq total_d;
                                        Solution Summary
                              Solver
                                                     Dual Simplex
                              Objective Function
                                                      Cost_nomina
                              Solution Status
                                                          Optimal
                                                     635903.97939
                              Objective Value
                              Iterations
                              Primal Infeasibility
                                                     9.094947E-13
                              Dual Infeasibility
                              Bound Infeasibility
                                                          total_hq
                                                                       total_d
                  0
                                      0.0000
                                                 35.000
                          0.0000
                                      0.0000
                  1
                         31.1564
                                                 31.620
                                                            5059.2
                                                                        4557.8
                                                            4806.3
                                                                        4806.3
                          9.8942
                                     31.1564
                                                 30.039
                  3
                                      9.8942
                                                 58.136
                                                            9301.7
                                                                        9301.7
                         34.0557
                                                                       10340.6
                  4
                          0.0000
                                     34.0557
                                                 64.628
                                                           10340.6
                                      0.0000
                                                 93.750
                                                            15000.0
                                                                       15000.0
                          0.0000
```

SOLUCIÓ EXERCICI 8. Hospital del Mar

(EXERCICI 8)

a) Fitxers: HMa.sas, HMb.sas, HMDB.sas

Paràmetres:		
Conjunt de mostres	$\mathcal{M} = \{1,2,\dots,5\}$	<pre>set<string> MOSTRES= {'1', '2', '3', '4', '5'};</string></pre>
Conjunt de màquines	$Q = \{A, B, C\}$	<pre>set<string> MAQUINES= {'A','B','C'};</string></pre>
Temps de processat d'un mililitre de la mostra tipus <i>i</i> si s'assigna a la màquina <i>j</i> (minuts)	$t_{ij}, i \in \mathcal{M}, j \in Q$ $T = \begin{bmatrix} 3 & 5 & 2 \\ 4 & 3 & 5 \\ 4 & 5 & 3 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$	<pre>number temps_proc{ MOSTRES, MAQUINES } = [3 5 2 4 3 5 4 5 3 5 4 3 3 5 4];</pre>
Volum de mostres a analitzaar del tipus <i>i</i> (ml)	$v_i, i \in \mathcal{M}$ v = [80 75 80 12 60]'	<pre>number volum_mostra{ MOSTRES } = [80 75 80 12 60];</pre>
Temps diari disponible de les màquines (minuts)	$d_j = 480, j \in \mathcal{Q}$	<pre>number temps{ MAQUINES }= [480 480 480];</pre>

Variables		
Nombre d'unitats de la mostra tipus <i>i</i> assignats a la màquina <i>j</i>	$x_{ij} \ge 0$ $i \in \mathcal{M}, j \in \mathcal{Q}$	<pre>var Volum {MOSTRES,MAQUINES} >= 0;</pre>

Model de programació lineal					
Temps total de processat de totes les mostres (minuts)	$\min z = \sum_{i \in \mathcal{M}, j \in \mathcal{Q}} t_{ij} x_{ij}$	<pre>min Total_temps = sum {i in MOSTRES, j in MAQUINES} temps_proc[i,j] * Volum[i,j];</pre>			
	s.a:	<pre>con Temps_maq {j in MAQUINES}: sum {i in MOSTRES} temps_proc[i,j]*Volum[i,j] <= temps[j];</pre>			
Es processa el volum total de cada mostra (ml)	$\sum_{j \in Q} x_{ij} \geq v_i$, $i \in \mathcal{M}$	<pre>con Proces_mostra {i in MOSTRES}: sum {j in MAQUINES} Volum[i,j] >= volum_mostra[i];</pre>			
	$x_{ij} \ge 0, i \in \mathcal{M}, j \in \mathcal{Q}$				

Solució òptima (taula HM. Maquines) solve; print Volum.sol ; Volum.SOL 0 80 75 0 3 0 80 4 0 0 12 5 60 0 0

S'haurien d'afegir els següents paràmetres i constriccions:

Paràmetres:					
Fràcció màxima de temps de funcionament: Fràcció màxima de volum:		$\alpha = 0.5$	number al	pha = 0.5;	aledio.
		$\beta = 0.4$ number beta = 0.4			The same of
Constriccions:		28c.	4° (\$	14,115	Xe ^{ree}
b.1) Cap mostra més d'una fracció α del temps total de funcionament d'una màquina	$t_{ij}x_{ij} \le \alpha \sum_{k \in \mathcal{M}} t_{kj}x_{kj}$ $i \in \mathcal{M}, j \in \mathcal{Q}$	-alpha*sum{	i,j]*Volum[k in MOSTRE	i,j]	
b.2) Cap màquina més d'una fracció β del volum total de les proves:	$\sum_{i \in \mathcal{M}} x_{ij} \le \beta \sum_{i \in \mathcal{M}} v_i$ $j \in \mathcal{Q}$	<pre>con Limit_b: sum{i in MO: Volum[i,j] deta*sum{i in mo: con Limit_b: sum{i in mo: con Limit_</pre>	STRES } <=		ra[i];

```
Comparativa:
set CAS = {'a', 'b1', 'b2'};
                                           /* Conjunt de casos a comparar */
string c;
drop Limit_b1; /* Es desactiven cons. Limit_b1 */
drop Limit_b2; /* Es desactiven cons. Limit_b2 */
do c=CAS;
      if c='b1' then restore Limit_b1; /* s'activa Limit_b1 */
      if c='b2' then restore Limit_b2; /* s'activa Limit_b1 */
      solve;
      print Volum.sol ;
end;
Resultat:
Cas a) Volum.SOL
                            Cas b.1) Volum.SOL
                                                        Cas b.2) Volum.SOL
            В
                  С
                                          В
                                                                    В
                                                                            С
      0
            0
                 80
                            1 0.0000 0.0000 80.0000
                                                          6.320 0.000 73.680
2
      0
           75
                  0
                            2 45.0000 30.0000 0.0000
                                                        2 27.988 47.013
                                                                        0.000
3
      0
            0
                 80
                            3 0.0000 16.5185 63.4815
                                                        3 12.273 18.608
                                                                        49.120
4
     0
            0
                 12
                            4 0.0000 1.8519 10.1481
                                                           0.000 12.000
                                                                         0.000
     60
                            5 60.0000
                                                                         0.000
                                     0.0000
                                                        5 60.000 0.000
```

SOLUCIÓ EXERCICI 9. Pelletier***.

• Fitxers: Pelletier.sas

Paràmetres:				
Nombre de mesos	m = 5	number m init 5;		
Espai adicional mes i (en 10^3m^2)	b_i , $i = 1, 2,, m$ b = [25 10 20 10 5]'	<pre>number b{ i in 1m } = [25 10 20 10 5];</pre>	1519° 00°	
Preu lloguer espai adicional durant mes j mesos $(€)$	$c_j, j = 1, 2,, m$ c = [300 525 775 850 975]'	<pre>number c{ j in 1m} = [300 525 775 850 975];</pre>		

Variables		
Espai adicional (m^2) llogats al començament mes i durant j mesos.	$x_{ij} \ge 0$ i = 1, 2,, m, j = 1, 2,, m - i + 1	<pre>var X { i in 1m ,</pre>

Cost total lloguer	$\min z = \sum_{j=1}^{m} c_j \sum_{i=1}^{m-j+1} x_{ij}$	<pre>min Cost_lloguer = sum{ j in 1m} c[j]* sum{i in 1(m-j+1)} x[i,j];</pre>
Espai necessari cada mes	s.a: $\sum_{j=1}^{m-i+1} x_{ij} + \sum_{k=1}^{i-1} \left(\sum_{l=i-k+1}^{m-k+1} x_{kl} \right) \ge b_i$ $i = 1, 2,, m$	<pre>con Espai_mes {i in 1m}: sum{ j in 1(m-i+1)} x[i,j] + sum{ k in 1(i-1) } sum{ l in (i-k+1)(m-k+1)} x[k,l] >= b[i];</pre>

Solució òptima

Solution Summary				
Solver	LP			
Algorithm	Dual Simplex			
Objective Function	Cost_lloguer			
Solution Status	Optimal			
Objective Value	16625			
Iterations	8			
Primal Infeasibility	0			
Dual Infeasibility	0			
Bound Infeasibility	0			

[1]	[2]	X.LB	X.SOL	X.UB	X.RC	X.STATUS
1	1	0	15	1.7977E+308	0	В
1	2	0	0	1.7977E+308	50	L
1	3	0	0	1.7977E+308	0	В
1	4	0	5	1.7977E+308	0	В
1	5	0	5	1.7977E+308	0	В
2	1	0	0	1.7977E+308	125	L
2	2	0	0	1.7977E+308	50	L
2	3	0	0	1.7977E+308	225	L
2	4	0	0	1.7977E+308	175	L
3	1	0	10	1.7977E+308	0	В
3	2	0	0	1.7977E+308	150	L
3	3	0	0	1.7977E+308	275	L
4	1	0	0	1.7977E+308	225	L
4	2	0	0	1.7977E+308	325	L
5	1	0	0	1.7977E+308	175	L

[1]	Espai_mes.LB	Espai_mes.BODY	Espai_mes.UB	Espai_mes.DUAL	Espai_mes.STATUS
1	25	25	1.7977E+308	300	U
2	10	10	1.7977E+308	175	U
3	20	20	1.7977E+308	300	U
4	10	10	1.7977E+308	75	U
5	5	5	1.7977E+308	125	U

SOLUCIÓ EXERCICI 10. Optirisk

(EXERCICI 10)

• Fitxers: Optirisk.sas

Paràmetres:		
Nombre de d'anys	$n^A = 8$	<pre>number nA = 8;</pre>
Conjunt anys inversió	$\mathcal{A}=1,2,\ldots,n^A$	<pre>set A = {1nA};</pre>
Cartera productes financers ("Portfolio")	$\mathcal{P} = \{A, B, C, D\}$	<pre>set P = {'A', 'B', 'C', 'D'};</pre>
Per a cada producte $k \in \mathcal{P}$	25° 24° 21°	Y 4" 8" 6"
• Termini venciment:	$v_k, \\ v = [1 \ 2 \ 3 \ 4]'$	<pre>number venc{P} = [1 2 3 4];</pre>
Anys venciment:	\mathcal{AV}_{k} $\mathcal{AV}_{A} = \{1,2,3,4,5,6,7,8\}$ $\mathcal{AV}_{B} = \{1,3,5,7\}$ $\mathcal{AV}_{C} = \{1,4,7\}$ $\mathcal{AV}_{D} = \{1,5\}$	<pre>set A_venc{k in P} = {i in 1nA by venc[k]};</pre>
• Rendiment (tant per u):	r_k , $r = [0.01 \ 0.035 \ 0.04 \ 0.05]'$	<pre>number rend{P} = [0.01 0.035 0.04 0.05];</pre>
• Índex de risc:	$s_k, s = [1 \ 3 \ 6 \ 8]$	<pre>number risc{P} = [1 3 6 8];</pre>
Màxim índex risc inversió:	$\bar{s} = 2.5$	<pre>number risc_max = 2.5</pre>
Pagaments anuals (10 ³ €)	p_j , $j = 1,2,,n^A$ $p = [0\ 0\ 0\ 12\ 14\ 16\ 18]'$	<pre>number pagaments{2nA} = [0 0 0 12 14 16 18];</pre>

Variables		
Capital invertit en el producte k a l'inici de l'any i i rescatat al començament de l'any j ($10^3 \in$):	$x_{ij}^k \ge 0$ $k \in \mathcal{P}$	<pre>var Capital { k in P ,</pre>
	$i \in \mathcal{AV}_k$ $j = i + v_k : i + v_k \le n^A$	<pre>i in A_venc[k],</pre>

El problema de flux de caixa correspon en realitat a un problema de fluxos en xarxes. La xarxa associada al cas concret de les dades de l'enunciat seria:

Model de progr	ramació lineal	
Capital total invertit	$\min z = \sum_{k \in \mathcal{P}} x_{1,1+v_k}^k$	<pre>min Inversio = sum{k in P} Capital[k,1,1+venc[k]];</pre>
Constricció de flux de caixa a començament de cada any (tret del primer):	s.a: $\sum_{k \in \mathcal{P}: j \in \mathcal{AV}_k} (1 + r_k) x_{(j-v_k)j}^k + \cdots$ $- \sum_{\substack{k \in \mathcal{P}: j \in \mathcal{AV}_k, \\ j+v_k \leq n^A}} x_{(j-v_k)j}^k$ $= p_j, j = 2, \dots, n^A$	<pre>con Flux_caixa {any in 2nA}: /* Rescat capital principi any i */ sum{k in P : any in A_venc[k]} (1+rend[k])*Capital[k,any-venc[k],any] /* Inversió capital inici any i */ - sum{k in P : any in A_venc[k] AND any+venc[k]<= nA } Capital[k,any,any+venc[k]] = pagaments[any];</pre>
Constricció de limit de risc ponderat:	$\sum_{\substack{k \in \mathcal{P}: j \in \mathcal{A}\mathcal{V}_k, \\ j+v_k \leq n^A}} (s_k - \bar{s}) x_{j(j+v_k)}^k + \\ + \sum_{\substack{k \in \mathcal{P}: j \notin \mathcal{A}\mathcal{V}_k: \\ i < j, \\ i+v_k > j, \\ i+v_k \leq n^A \\ \leq 0}} \sum_{\substack{i \in \mathcal{A}\mathcal{V}_k: \\ i < j, \\ i+v_k \leq n^A \\ \leq 0}} (s_k - \bar{s}) x_{i(i+v_k)}^k$	<pre>con Risc_promig {any in 1nA-1}: /* Inversió al començament any */ sum{ k in P : any in A_venc[k] AND</pre>
	$x_{ij}^{k} \ge 0$ $k \in \mathcal{P}, i \in \mathcal{AV}_{k},$ $j = i + v_{k}: i + v_{k} \le n^{A}$	

Comparativa

```
/* COMPARATIVA */
/* Declaració paràmetres auxiliars */
set M = {'arriscat', 'conservador'};/* Conjunt de models a analitzar */
                                /* Capital total rescatat començament any */
/* Capital total reinvertit començament any */
/* Total invertit durant any */
number rescatat{2..nA, M};
number reinvertit{2..nA, M};
number invertit{A,M};
                                     /* Risc promig any */
number risc_sol{A,M};
                                   /* Total pagaments */
number pagaments total{ M };
                                    /* Estalvi */
number estalvi{ M };
number inversio mod{ M };
                                     /* Total inversió */
number Capital_mod(k in P , i in A_venc[k], j in {{i+venc[k]} : i+venc[k] <= nA}, M};</pre>
string mod;
do mod=M;
       if mod='arriscat' then
             drop Risc promig;
                                    /* Es desactiva la constricció */
       else
              restore Risc promig; /* S'activa la constricció */
       expand;
       solve:
       /* Càlcul de resultats */
       for\{k in P, i in A\_venc[k], j in \{i+venc[k]\} : i+venc[k] \le nA\}
              Capital_mod[k,i,j,mod] = Capital[k,i,j].sol;
       /* Capital total rescatat començament any */
       for {any in 2..nA}
              rescatat[any,mod] =
                     sum{k in P : any in A venc[k]}
                            (1+rend[k])*Capital[k, any-venc[k] , any].sol;
       /* Capital total reinvertit començament any */
       for {any in 2..nA}
              reinvertit[any,mod] =
                    sum{k in P : any in A venc[k] AND any+venc[k] <= nA}</pre>
                           Capital[k, any , any+venc[k]].sol;
       /* Total invertit durant any */
       for {any in A}
              invertit[any,mod] =
                     sum{ k in P : any in A venc[k] AND any+venc[k] <= nA}</pre>
                           Capital[k,any,any+venc[k]].sol
                     + sum{ k in P : any not in A_venc[k]}
                            sum{iin A\_venc[k] : i < any AND i+venc[k] > any}
                           AND i+venc[k] <= nA }
                                  Capital[k,i,i+venc[k]].sol;
       /* Risc promig any */
       for{any in A}
              risc_sol[any,mod] = if invertit[any,mod] > 0 then
                     sum{ k in P : any in A_venc[k] AND any+venc[k] <= nA}</pre>
                                  risc[k] *Capital[k,any,any+venc[k]].sol
                     + sum{ k in P : any not in A venc[k]}
                            sum{ i in A_venc[k] : i < any AND i+venc[k] > any AND
                            i+venc[k] <= nA}
                                  risc[k] *Capital[k,i,i+venc[k]].sol
                     )/invertit[any,mod];
       /* Inversió total i estalvi */
      pagaments_total[mod] = sum{any in 2..nA} pagaments[any];
       estalvi[mod] = pagaments_total[mod] - Inversio.sol;
       inversio_mod[mod] = Inversio.sol;
end;
/* Sortida resultats */
print rescatat reinvertit Flux caixa.body risc sol risc max;
```

```
print pagaments_total Inversio estalvi;
print Capital mod;
                                        The OPTMODEL Procedure
                                           Solution Summary
                                Solver
                                                          Dual Simplex
                                Objective Function
                                                              Inversio
                                 Solution Status
                                                               Optimal
                                Objective Value
                                                          55.152832859
                                 Iterations
                                 Primal Infeasibility
                                                          1.065814E-14
                                Dual Infeasibility
                                                                      0
                                Bound Infeasibility
                                                                      0
                                    [2]
                                                                reinvertit
                            [1]
                                                    rescatat
                                                                     0.0000
                             2
                                    arriscat
                                                       0.000
                             2
                                                                    13.9261
                                                      13.926
                                    conservador
                             3
                                                      56.560
                                                                    56.5598
                                    arriscat
                             3
                                                      56.878
                                                                    56.8777
                                    conservador
                                                                    0.0000
                                                       0.000
                             4
                                    arriscat
                             4
                                                      14.362
                                                                    14.3616
                                    conservador
                                                      58.539
                                                                    46.5394
                             5
                                    arriscat
                                                      58.657
                                                                    46.6566
                             5
                                    conservador
                                                      14.000
                                                                     0.0000
                             6
                                    arriscat
                             6
                                                                     8.2191
                                    conservador
                                                      22.219
                             7
                                                                    17.8218
                                    arriscat
                                                      33.822
                             7
                                    conservador
                                                      33.822
                                                                    17.8218
                                                                     0.0000
                             8
                                    arriscat
                                                      18.000
                                                                     0.0000
                                                      18.000
                             8
                                    conservador
                                                      Flux_
                                                     caixa.
                                                       BODY
                                              [1]
                                              2
                                                          0
                                              3
                                                         - 0
                                                          0
                                              4
                                                         12
                                              5
                                              6
                                                         14
                                              7
                                                         16
                                                         18
                                               risc_sol
                                                        conservador
                                           arriscat
                                             3.0000
                                                             2.5000
                                      2
                                                             2.4963
                                             3.0000
                                      3
                                             3.0000
                                                             2.5000
                                             3.0000
                                                             2.4963
                                      5
                                             2.4043
                                                             2.0570
                                      6
                                             3.0000
                                                             2.5000
                                             1.0000
                                                             1.0000
                                             0.0000
                                                             0.0000
                                                risc_max
                                                     2.5
                                                       pagaments
                                                            total
                                       [1]
                                                               60
                                       arriscat
                                       conservador
                                                               60
```

		I	nversio	
			55.153	
	[1]	estalvi	
		ırriscat	5.3528	
	C	onserva	dor 4.8472	
				Capital_
[1]	[2]	[3]	[4]	mod
Α	1	2	arriscat	0.0000
Α	1	2	conservador	13.7882
Α	2	3	arriscat	0.0000
Α	2	3	conservador	13.9261
Α	3	4	arriscat	0.0000
A	3	4	conservador	14.2194
A	4	5	arriscat	0.0000
Α	4	5	conservador	14.3616
Α	5	6	arriscat	13.8614
A	5	6	conservador	21.9992
Α	6	7	arriscat	0.0000
Α	6	7	conservador	8.2191
Α	7	8	arriscat	17.8218
Α	7	8	conservador	17.8218
В	1 🛒	3	arriscat	54.6472
В	1	3	conservador	41.3646
В	3	5	arriscat	56.5598
В	3	5	conservador	42.6583
В	5	7	arriscat	32.6781
В	5	7	conservador	24.6574

SOLUCIÓ EXERCICI 11. Coalco (2).

(EXERCICI 11)

a) Els unics canvis entre el model Coalco i Coalco(2) a) afecten al valor dels parèmetres. Aixó vol dir que tant el model matemàtic com el codi codi OPTMODEL són els mateixos. Només cal canviar el valor numèric d'alguns paràmetres:

```
Paràmetres fitxer Coalco(2) a.sas
set <string> C ={'cendra', 'sulfur', 'nitrats'};
number nM = 3;
number nC = 2;
number t{1..nM, 1..nC} = [4 6]
number p\{1..nM\} = [10 55 80];
number b{ 1..nM } = [ 200 100 80];
number al{ 1..nM , C } = [ 0.10 \ 0.04 \ 0.01
                                0.05 0.09 0.007
                                0.03 0.02 0.005];
                              [ 0.07 0.08 0.009];
number almax{ C } =
number d{ 1..nC } = [150 110];
Resultats:
                                          Solution Summary
                                Solver
                                                        Dual Simplex
                                Objective Function
                                                          Cost total
                                Solution Status
                                                             Optimal
                                Objective Value
                                                        11137.142857
                                Iterations
                                Primal Infeasibility
                                                        1.561251E-17
                                Dual Infeasibility
                                                                   0
                               Bound Infeasibility
                                                                   0
                       [1]
                               [2]
                                      X.LB
                                                X.SOL
                                                            X.RC
                                                                     X.STATUS
                               1
                                         0
                                               85.714
                                                          -0.0000
                        1
                               2
                                         0
                                               44.000
                                                          0.0000
                                                                     В
                        2
                               1
                                         0
                                                0.000
                                                          2.1429
                                                                     L
                        2
                               2
                                         0
                                               66.000
                                                          -0.0000
                                                                     В
                        3
                               1
                                         0
                                               64.286
                                                          -0.0000
                                                                     В
                        3
                                         0
                                                0.000
                                                          3.0000
                                                                     L
                    Capacitat.
                                   Capacitat.
                                                 Capacitat.
                                                                Capacitat.
                                                                              Capacitat.
            [1]
                                         BODY
                                                                      DUAL
                                                                              STATUS
                    -1.7977E308
                                      129.714
                                                        200
                                                                         0
             2
                   -1.7977E308
                                       66.000
                                                        100
                                                                         0
                                                                              В
                    -1.7977E308
                                       64.286
                                                         80
                                                                         0
                                                                              В
                                                                            Demanda.
                       Demanda.
                                    Demanda.
                                                                Demanda.
                                                                            STATUS
                [1]
                             LB
                                        BODY
                                                 Demanda.UB
                                                                   DUAL
                            150
                                                                  42.714
                                         150
                                                1.79769E308
                                                                 43.000
                            110
                                         110
                                                1.79769E308
                          Contingut.
                                         Contingut.
                                                       Contingut.
                                                                      Contingut.
                                                                                    Contingut.
                                                                                    STATUS
       [1]
              [2]
                                  LB
                                               BODY
                                                               UB
                                                                            DUAL
                                                                         -957.14
              cendra
                          -1.7977E308
                                            0.00000
                                                                 0
                                                                                    L
                                                                            0.00
        1
              nitrats
                          -1.7977E308
                                           -0.17143
                                                                 0
                                                                                    В
              sulfur
                          -1.7977E308
                                           -7.28571
                                                                 0
                                                                            0.00
```

9	2 c	endra	-1.7977E308	-0.00000	- 65%	0	-900.00	L	20.5
	2 n	itrats	-1.7977E308	-0.08800		0	0.00	В	
2	sulfur	-1.7977	7E308 -1.10000	0	0.00	В			

Informació sobre la solució:

- $\mathcal{B}^*: x_{11}, x_{12}, x_{22}, x_{31}$, folgues cons. Capacitat, folgues Contingut[1,nitrats], Contingut[1,sulfur], Contingut[2,nitrats].
- $\begin{cases} \mathcal{N}^*: & x_{21} & x_{32} & x_{\text{Demanda}[1]} & \text{Demanda}[2] & \text{Contingut}[1, \text{cendra}] & \text{Contingut}[2, \text{nitrats}] \\ r^*' = \begin{bmatrix} 2.1429 & 3.0 & 42.714 & 43.0 & 957.14 & 900.0 \end{bmatrix} \end{cases}$
- b) En aquest cas només cal modificar el paràmetre $\overline{\alpha}$ (almax) per fer que depengui tant de la component com del client (fitxer Coalco(2) b.sas):

Modificació dels paràmetres:		
Per a cada client $j = 1 n^C$ contingut màxim component $k \in C$ carbó mescla (Tm/Tm mescla):	$\overline{\alpha}_{jk}, j = 1 \dots n^{C}, k \in C$ $\overline{\alpha} = \begin{bmatrix} 0.08 & 0.05 & 0.01 \\ 0.06 & 0.07 & 0.007 \end{bmatrix}$	<pre>number almax{ 1nC, C } =[0.08 0.05 0.01 0.06 0.07 0.007];</pre>

Modificació del model de programació lineal

Continguts màxims:	$\sum_{i=1}^{n^{M}} (\alpha_{ik} - \bar{\alpha}_{jk}) x_{ij} \le 0$ $k \in \mathcal{C}, j = 1,, n^{C}$	<pre>con Contingut { j in 1nC, k in C} : sum{ i in 1nM } (al[i,k]-almax[j,k])*X[i,j] <= 0;</pre>
--------------------	--	--

Solució:

9	350	_6	Solution S	ummary	90	19
	So	lver		Dual Simplex		
	0b	jective	Function	Cost_total		
	So	lution S	status	Optimal		
	0b	jective	Value	11190		
	It	erations		7		
			easibility	4.422461E-16		
			sibility	0		
	Во	und Infe	asibility	0		
[1]	[2]	X.LB	X.SOL	X.RC	X.STATUS	
1	1	0	96.6667	-7.3238E-15	B	
1	2	0	42.2222	9.3675E-16	В	
2	⁹ 1 /	0	36.6667	3.5009E-15	В	
2	2	0	4.4444	0.0000E+00	В	
3	1	0	16.6667	1.3787E-14	В	
3	2	0	63.3333	-6.2450E-16	В	

El cost total d'extracció i transport amb el canvi introduït és de $z^* = 11.190 \in$ mentre que cost sense el canvi era de $\approx 11.137 \in$. Veiem doncs com aquest canvi encareix els costos totals en 53 \in

SOLUCIÓ EXERCICI 12. Coalco (3)

(EXERCICI 12)

Cal modificar el model matemàtic i la implementació de la següent forma (fitxer Coalco(3).sas):

Paràmetres:						
Conjunt d'operacions	$O = \{arran$	c, càrrega, i	transport}	set <st O={'ar</st 		rrega','transport'
Hores necessàries per extreure una tona		$= 1,, n^{M}, k$ $\begin{bmatrix} 10 & 11 \\ 10 & 13 \\ 25 & 20 \end{bmatrix}$		[10 1 10 1		O} =
Hores totals disponibles		$h_k^T, k \in \mathcal{O},$ 3600	2200]	number	hT{O} =	[3300 3600 2200];
Constriccions:			N. Philippi	70,4		
Hores total operacions $\sum_{i=1}^{n} \frac{1}{i}$	$\sum_{i=1}^{M} h_{ik} \sum_{j=1}^{n^C} x_{ij} \le$	$\{h_k^T, k \in \mathcal{O}\}$	sum{ i :	in 1nl		}X[i,j] <= hT[k];
Solució:	gha.		10.		90,90	7 Hg. 1 Hg.
	160	110	Solution Sum	mary	kg. 78	No. of the last
		Solver		Dual Si	mplex	
		Objective			total	
		Solution S			timal	
		Objective Iterations			11210 5	
		recrations				
		Primal Inf	easibility		0	
		Dual Infea			0	
		Bound Infe	asibility		0	
	[1]	[2] Y	IR Y SOL	Y RC	Y STATUS	
	[1]	[2] X 1	.LB X.SOL 0 76		X.STATUS B	
				0		
	1 1 2	1 2 1	0 76	0	В	
	1 1 2 2	1 2 1 2	0 76 0 44 0 34 0 66	0 0 0 0	B B B	
	1 1 2 2 3	1 2 1 2 1	0 76 0 44 0 34 0 66 0 40	0 0 0 0	B B B B	
	1 1 2 2	1 2 1 2	0 76 0 44 0 34 0 66	0 0 0 0	B B B	
	1 1 2 2 3 3	1 2 1 2 1 2	0 76 0 44 0 34 0 66 0 40	0 0 0 0 0	B B B B	
[1]	1 1 2 2 3	1 2 1 2 1 2 2 Capacit	0 76 0 44 0 34 0 66 0 40	0 0 0 0 0	B B B B L	Capacitat. STATUS
1	1 1 2 2 3 3 Capacitat. LB -1.7977E308	1 2 1 2 1 2 2 Capacit	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac	0 0 0 0 0 6 itat. UB 200	B B B B L Capacitat.	Capacitat. STATUS B
1 2	1 1 2 2 3 3 3 Capacitat. LB -1.7977E308	1 2 1 2 1 2 2 Capacit	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac ODY 120 100	0 0 0 0 0 6 itat. UB 200 100	B B B B L Capacitat. DUAL 0	Capacitat. STATUS B B
1	1 1 2 2 3 3 Capacitat. LB -1.7977E308	1 2 1 2 1 2 2 Capacit	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac	0 0 0 0 0 6 itat. UB 200	B B B L Capacitat. DUAL O	Capacitat. STATUS B
1 2	1 1 2 2 3 3 Capacitat. LE -1.7977E308 -1.7977E308	1 2 1 2 1 2 Capacit B B	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac ODY 120 100 40	0 0 0 0 0 6 itat. UB 200 100 80	B B B L Capacitat. DUAL 0 0	Capacitat. STATUS B B B
1 2 3	1 1 2 2 3 3 Capacitat. LB -1.7977E308 -1.7977E308	1 2 1 2 1 2 1 2 Capacit B	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac ODY 120 100 40	0 0 0 0 0 6 itat. UB 200 100 80	B B B B L Capacitat. DUAL 0 0 0	Capacitat. STATUS B B B
1 2 3	1 1 2 2 3 3 Capacitat. LB -1.7977E308 -1.7977E308	1 2 1 2 1 2 2 Capacit B B B B B B B B B B B B B B B B B B B	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac ODY 120 100 40	0 0 0 0 0 6 itat. UB 200 100 80	B B B L Capacitat. DUAL 0 0	Capacitat. STATUS B B B
1 2 3	1 1 2 2 3 3 Capacitat. LB -1.7977E308 -1.7977E308 -1.7977E308	1 2 1 2 1 2 Capacit B B B B B B B B B B B B B B B B B B B	0 76 0 44 0 34 0 66 0 40 0 0 at. Capac ODY 120 100 40 a. DY Deman	0 0 0 0 0 6 itat. UB 200 100 80	B B B B Capacitat. DUAL 0 0 0 Demanda. DUAL	Capacitat. STATUS B B B Commanda.

1	[1]	[2]	LB	BODY	UB	DUAL	STATUS	A.º
	1	cendra	-1.7977E308	-0.000	0	-988.89	L	
	1	nitrats	-1.7977E308	-0.152	0	0.00	В	
	1	sulfur	-1.7977E308	-5.100	0	0.00	В	
	2	cendra	-1.7977E308	-0.000	0	-888.89	L	
	2	nitrats	-1.7977E308	-0.088	0	0.00	В	
	2	sulfur	-1.7977E308	-1.100	0	0.00	В	
			Operacio.	Operacio.	Operacio.	Operacio.		
		[1]	Operacio.LB	BODY	UB	DUAL S	STATUS	
		arranc	-1.7977E308	3200	3300	0.00000 E	3	
		carrega	-1.7977E308	3420	3600	0.00000 E	3	
		transport	-1.7977E308	2200	2200	-0.27778 L	- 580	

SOLUCIÓ EXERCICI 13. Pelletier i base de dades*.

(EXERCICI 13)

a) El codi modificat és:

```
Fitxer Pelletier_DB.sas (parcial)
proc optmodel;
/* Parameter definition */
set <num> MESOS;
number m;
number b{ MESOS };
number c{ MESOS };
/* Read data from datasets */
read data Pelletier into MESOS=[mes] b c;
m = CARD (MESOS);
(la resta és equivalent al codi original)
```

b) El codi que cal incloure al final del codi original per ampliar el conjunt de dades original amb la solució òptima és:

```
Fitxer Pelletier_DB.sas (parcial)
/* 1.- A temporary data set is created with the optimal solution */
number sol{MESOS,MESOS} init 0;
for {i in MESOS, j in 1..m-i+1} sol[i,j]=X[i,j].sol;
create data Pelletier sol
      from [ mes ] = MESOS {j in MESOS} <col("m2 "||j||"m")=sol[mes,j]>;
/* 2.- The optimal solution is incorporated ino the original data set */
proc sort data=Pelletier; by mes; run;
proc sort data=Pelletier sol; by mes; run;
data Pelletier; merge Pelletier Pelletier sol; by mes;
/* 3.- The temporary data set is deleted */
proc datasets library=work; delete Pelletier sol; run;
(la resta és equivalent al codi original)
```

La taula final és:

Obs	mes	b	С	m2_1m	m2_2m	m2_3m	m2_4m	m2_5m
1	1	25	300	15	0	0	5	5
2	2	10	525	0	0	0	0	0
3	3	20	775	10	0	0	0	0
4	4	10	850	0	0	0	0	0
5	5	5	975	0	0	0	0	0

SOLUCIÓ EXERCICI 14. Hospital del Mar i bases de dades.

(EXERCICI 14)

a) **Fitxers:** HMaBD.sas, HMbBD.sas, HMDB.sas

```
Creació BD amb SAS:
LIBNAME HM ".";
data HM.Maquines;
input maquina $ tp_1 tp_2 tp_3 tp_4 tp_5 temps;
datalines;
                                           480
                                           480
            В
                                           480
data HM.Mostres;
input     mostra $ volum_mostra;
datalines;
              1 80
                 75
              2
                80
              4
                 12
              5 60
```

Lectura BD amb SAS:

```
/* Lectura dels paràmetres del model */
/* Mostres */
read data HM.Mostres into MOSTRES=[mostra] volum mostra;
/* Maquines */
read data HM.Maquines
     into
           MAQUINES=[maquina]
            {mostra in MOSTRES}
<temps_proc[mostra,maquina]=col("tp_"||mostra)>
            temps
```

Escriptura de resultat a la BD

```
/* 1.- Es crea la base de dades temporal amb la solució */
create data HM sol
      from [ maquina ] = MAQUINES
      {mostra in MOSTRES} <col("volum "||mostra)=Volum[mostra, maquina]>;
/* 2.- Les BD s'ordenen i mesclen */
proc sort data=HM.Maquines; by maquina; run;
proc sort data=HM sol; by maquina; run;
data HM.Maquines; merge HM.Maquines HM_sol; by maquina; run;
/* 3.- S'elimina la BD temporal */
proc datasets library=work; delete HM_sol; run;
Solució òptima (taula HM. Maquines)
```

0bs	maqı	uina	volum	1	volum 2	volum :	3	volum 4	١	volum 5	
1		Α	- Sico -	0	_ 0	57// -	0	_ c)	-60	0
2	<u> </u>	В		0	75		0	C)		0
3	3	С		80	0	1	30	12	<u>.</u>		0

b) Fitxers: HMbBD.sas, HMbBD.sas, HMDB.sas

b.1) Car	o mostra	més	del 50%	del	temps	total	de	funcionament	ďi	una màquina

Solució òptima (taula HM. Maquines)

0bs	maquina	volum_1	volum_2	volum_3	volum_4	volum_5	//3// E V 8
1	Α	0	45	0.0000	0.0000	60	
2	В	0	30	16.5185	1.8519	0	
3	С	80	0	63.4815	10.1481	0	
			100	10.000			

b.2) Cap màquina més del 40% de volum total de les proves:

Solució òptima (taula HM. Maquines)

0bs	maquina	volum_1	volum_2	volum_3	volum_4	volum_5	5
1	Α	6.32	27.9875	12.2725	0	60	
2	В	0.00	47.0125	18.6075	12	0	
3	С	73.68	0.0000	49.1200	0	0	

SOLUCIÓ EXERCICI 15. SBF inicial del problema de transport*.

(EXERCICI 15)

a) En primer lloc, obtenim el conjunt total d'iteracions per identificar l'última iteració de fase I:

```
Transport sbfi.sas:
proc optmodel;
                               /* Llavor del generador de nombres
call streaminit(1123581321);
aleatòris */
/* Parametres */
number nREF = 5;
                                  /* Nre. de refineries */
                                  /* Nre. de mercats */
number nMER = 10;
set<number> REFINERIES = 1..nREF; /* Cjt. de refineries */
set<number> MERCATS = 1..nMER; /* Cjt. de mercats
number demanda { j in MERCATS } = 100*rand('uniform'); /* demanda
generada aleatòriament */
number dem tot = sum{j in MERCATS} demanda[j];
                                                        /* Demanda total
number produccio{ i in REFINERIES } = dem_tot/nREF;
                                                      /* Es distribueix
la demanda entre les refineries */
number cost { i in REFINERIES, j in MERCATS } = 10*rand('uniform'); /*
Costos generats aleatòriament */
/* Optimization model */
var Trans { REFINERIES, MERCATS } >= 0;
min Total_cost = sum {i in REFINERIES, j in MERCATS} cost[i,j]
Trans[i,j];
con Produccio cons {i in REFINERIES}:
     sum {j in MERCATS} Trans[i,j] <= produccio[i];</pre>
con Demanda_cons {j in MERCATS}
     sum {i in REFINERIES} Trans[i,j] >= demanda[j];
/* Optimització i resultats */
solve with LP / presolver =0 solver = primal printfreq = 1;
```

Log:

2/6	72.4	Objective	Entering	Leaving
Phase	Iteration	Value	Variable	Variable
1	1	521.113734	Trans[1,1]	Produccio_cons[1](S)
1	2	464.006826	Trans[5,10]	Produccio_cons[5](S)
1	3	425.003119	Trans[5,5]	Demanda_cons[10] (S)
1	4	400.146933	Trans[1,2]	Demanda_cons[1] (S)
1	5	375.471567	Trans[4,6]	Produccio_cons[4](S)
1	6	329.948917	Trans[4,2]	Demanda_cons[6] (S)
1	7	252.862617	Trans[3,8]	Produccio_cons[3](S)
1	8	205.884530	Trans[3,4]	Demanda_cons[8] (S)
1	9	128.597900	Trans[2,3]	Produccio_cons[2](S)
1 8	10	109.977908	Trans[2,7]	Demanda_cons[3] (S)
1	11	82.024136	Trans[5,9]	Demanda_cons[5] (S)
1	12	69.882844	Trans[2,4]	Demanda_cons[7] (S)
1	13	45.026658	Trans[1,10]	Trans[1,2] (S)
1 📎	14	29.010185	Trans[3,5]	Demanda_cons[4] (S)
1	15	6.022950	Trans[4,5]	Trans[5,5] (S)
2	16	2541.014117	Trans[4,10]	Demanda_cons[2] (S)
2	17	2474.527711	Trans[3,10]	Trans[4,10] (S)
2	18	2227.679927	Trans[1,7]	Trans[2,7] (S)
2	19	2156.420174	Trans[1,5]	Trans[1,10] (S)

	2	20	2120.381065	Trans[5,5]	Trans[3,5]	(S)	100
19/4	2	21	1945.576323	Trans[4,3]	Trans[3,4]	(S)	
60	2	22	1818.866979	Trans[2,8]	Trans[5,10]	(S)	
Q0	2	23	1744.153642	Trans[2,1]	Trans[4,5]	(S)	
100	2	24	1579.340930	Trans[1,6]	Trans[4,6]	(S)	
	2	25	1443.554395	Trans[3,2]	Trans[2,3]	(S)	
8	2	26	1293.992599	Trans[5,8]	Trans[5,5]	(S)	
	2	27	1261.701180	Trans[1,8]	Trans[2,8]	(S)	
	2	28	1012.200055	Trans[4,1]	Trans[1,1]	(S)	
10	2	29	1012.200055	Produccio_cons[2](S)	Demanda_cons[9]	(S)	
0,00	2	30	981.478981	Trans[4,6]	Trans[3,8]	(S)	
	2	31	975.810995	Trans[2,10]	Trans[4,2]	(S)	

Observem que a l'acabament de la iteració 15 encara hi ha una infactibilitat de 6.022950, mentre que a l'acabament de la iteració 16 la solució és factible (primera iteració de fase II) Així doncs, és a l'acabament de la iteració 16 que es troba la primera s.b.f. del nostra problema. Per a obtenir l'última s.b.f. de fase I cal imprimir la solució després d'haver-se realitzat 15 iteracions (maxiter = 15):

```
Transport sbfi.sas:
/* Optimització */
solve with LP / presolver = 0 solver = primal printfreq = 1 maxiter=15;
/* Solució */
print Trans.lb Trans.sol Trans.ub cost Trans.rc Trans.status;
print Produccio cons.lb Produccio cons.body Produccio cons.ub
Produccio cons.dual Produccio cons.status;
print Demanda cons.lb Demanda cons.body Demanda cons.ub Demanda cons.dual
Demanda cons.status;
Output:
                                  The OPTMODEL Procedure
                                   Resumen de la solución
                       Solver
                                                      Primal Simplex
                       Objective Function
                                                          Total_cost
                       Solution Status
                                              Iteration Limit Reached
                       Objective Value
                                                        2527.5359407
                       Iterations
                       Primal Infeasibility
                                                        6.0229502385
                       Dual Infeasibility
                                                                   1
                                                                   0
                       Bound Infeasibility
                                                                                Trans.
                                                                                STATUS
            [2]
                  Trans.LB
                             Trans.SOL
                                             Trans.UB
                                                           cost
                                                                    Trans.RC
                         0
                                99.208
                                          1.7977E+308
                                                        5.80970
                                                                   5.8097038
             1
                                                                                В
             2
                         0
                                 0.000
                                          1.7977E+308
                                                        7.04448
                                                                   8.0444765
                                                                                L
             3
                         0
                                 0.000
                                          1.7977E+308
                                                        8.01985
                                                                   9.0198462
                         0
                                 0.000
                                          1.7977E+308
                                                        1.51945
                                                                   2.5194513
             4
                         0
                                 0.000
                                          1.7977E+308
                                                        2.69484
                                                                   3.6948362
             5
                         0
                                 0.000
                                          1.7977E+308
                                                        2.85087
                                                                   3.8508732
             6
             7
                                 0.000
                                          1.7977E+308 1.96401
                                                                   2.9640077
                         0
                         0
                                 0.000
                                          1.7977E+308
                                                        1.59417
                                                                   2.5941711
             8
                         0
                                                        7.64935
                                                                   7,6493535
             9
                                 0.000
                                          1.7977E+308
            10
                                          1.7977E+308 5.32879
                                                                   5.3287908
                         0
                                24.856
                                                                                В
     2
                                                                   2.0764615
                         0
                                 0.000
                                          1.7977E+308
                                                      3.07646
             1
```

2

2

2

2

2

3

4

5

0

0

0

0

0.000

77.287

28.158

0.000

0.000

1.7977E+308

1.7977E+308

1.7977E+308

1.7977E+308

1.7977E+308

4.04414

6.30396

1.03090

8.28660

8.45627

4.0441421

6.3039586

1.0309019

8.2865960

8.4562719

R

R

L

2	2	7	0	18.620	1.7977E+308	7.91345	7.9134533	В	400
	2	8	0	0.000	1.7977E+308	3.16523	3.1652302	L	
	2	9	0	0.000	1.7977E+308	5.91207	4.9120727	L	
	2	10	0	0.000	1.7977E+308	0.99610	-0.0038971	.oo L	
	3	1	0	0.000	1.7977E+308	4.20076	3.2007573	L	
	3	2	0	0.000	1.7977E+308	1.90485	1.9048503	L	
	3	3	0	0.000	1.7977E+308	4.39794	4.3979374	L	
	3	4	0	30.962	1.7977E+308	3.85283	3.8528305	В	
	3	5	0	16.016	1.7977E+308	9.63588	9.6358750	В	
	3	6	0	0.000	1.7977E+308	7.31212	7.3121199	L	
	3	7	0	0.000	1.7977E+308	4.83150	4.8315001	L	
	3	8	0	77.086	1.7977E+308	4.33310	4.3331043	В	
	3	9	0	0.000	1.7977E+308	1.48524	0.4852409	L	
	3	10	0	0.000	1.7977E+308	0.84303	-0.1569720	L	
	4	1	0	0.000	1.7977E+308	1.27357	0.2735708	Ē	
	4	2	0	76.402	1.7977E+308	1.91168	1.9116834	В	
	4	3	0	0.000	1.7977E+308	1.72526	1.7252621	L	
	4	4	0	0.000	1.7977E+308	9.36719	9.3671885	L	
	4	5	0	22.987	1.7977E+308	6.80740	6.8074042	В	
	4	6	0	24.675	1.7977E+308	2.21818	2.2181754	В	
	4	7	0	0.000	1.7977E+308	8.81424	8.8142373	L	
	4	8	0	0.000		5.91093		L	
		9			1.7977E+308	9.10324	5.9109264		
	4		0	0.000	1.7977E+308		8.1032354	SOL.	
	4	10	0	0.000	1.7977E+308	9.05340	8.0534008	L	
	5	1	0	0.000	1.7977E+308	7.40073	7.4007341	L	
	5	2	0	0.000	1.7977E+308	9.35000	10.3500049	/L	
	5	3	0	0.000	1.7977E+308	9.27484	10.2748410	C.L	
	5	4	0	0.000	1.7977E+308	6.65152	7.6515248	L	
	5	5	0	0.000	1.7977E+308	4.36341	5.3634125	L	
	5	6	0	0.000	1.7977E+308	9.75805	10.7580458	L	
	5	7	0	0.000	1.7977E+308	9.71527	10.7152730	L	
	5	8	0	0.000	1.7977E+308	1.86463	2.8646276	V L	
	5	9	0	91.814	1.7977E+308	0.25834	0.2583350	В	
	5	10	0	32.251	1.7977E+308	5.16225	5.1622494	В	
			Produccio	Produccio	Produccio	Producci	io_ Producc	io	
		[1]	cons.LB	cons.BODY	cons.UB	cons.Dl		_	
		1	-1.7977E+308	124.06	124.06		-1 L		
		2	-1.7977E+308	124.06	124.06		0 L		
		3	-1.7977E+308	124.06	124.06		0 L		
		4	-1.7977E+308	124.06	124.06		0 L		
		5	-1.7977E+308	124.06	124.06		-1 L		
				Demanda_		Demanda	Demanda_		
			Demanda_	cons.	Demanda_	cons			
		1.	1] cons.LB	BODY	cons.UB	DUAL			
			1 99.208	99.208	1.7977E+308				
			2 70.379	76.402	1.7977E+308) B		
			3 77.287	77.287	1.7977E+308) U		
			4 59.119	59.119	1.7977E+308) U		
			5 39.004	39.004	1.7977E+308) U		
			39.004 6 24.675	24.675	1.7977E+308	(
			7 18.620	18.620	1.7977E+308				
			77.086	77.086	1.7977E+308	(
			97.837	91.814	1.7977E+308		l B		
	- 6	10	57.107	57.107	1.7977E+308	//289//	I U		

Es pot observar com la única constricció no satisfeta és Demanda_cons[9], amb una infactibilitat de 97.837-91.814=6.023.

b) Si repetim les operacions de l'apartat anterior amb maxiter=16 i imprimim l'estat de les constriccions observarem que la base a l'acabament de la iteració 15 ja és factible:

Output:										
39			200	The OPTM	MODEL Procedur	е	38			
				Resumen	de la solució	n				
			Solver		10	Primal Simplex				
				ive Function		Total_cost				
			-	on Status	Iteration	Iteration Limit Reached				
			Object	ive Value						
			Iterat			2541.014117 16				
			Part and	T. C	(6	0.0404745.44				
				Infeasibility	, o	2.842171E-14				
				nfeasibility		0				
			Bound	Infeasibility		0				
		Pro	duccio_	Produccio_	Produccio_	Produccio_	Produccio_			
	[1]		cons.LB	cons.BODY	cons.UB	cons.DUAL	cons.STATUS			
	1 50	-1.7	977E+308	124.06	124.06	0	L			
	2	-1.7	977E+308	124.06	124.06	0	L			
	3	-1.7	977E+308	124.06	124.06	0	L			
	4	-1.7	7977E+308	124.06	124.06	0	L			
	5	-1.7	977E+308	124.06	124.06	0	L % 1			
				Demanda_		Demanda_	Demanda_			
			Demanda_	cons.	Demanda_	cons.	cons.			
		[1]	cons.LB	BODY	cons.UB	DUAL	STATUS			
		1	99.208	99.208	1.7977E+308	0	U			
		2	70.379	70.379	1.7977E+308	0	U			
		3	77.287	77.287	1.7977E+308	0	U			
		4	59.119	59.119	1.7977E+308	0	U			
		5	39.004	39.004	1.7977E+308	0	U			
		6	24.675	24.675	1.7977E+308	0	U			
		7	18.620	18.620	1.7977E+308	0	U			
		8	77.086	77.086	1.7977E+308	0	U			
		9	97.837	97.837	1.7977E+308	0	В			

SOLUCIÓ EXERCICI 16. Planificació de la producció: taxació-eficiència computacional*.

Amb l'ajut del següent codi:

```
Producció rand.sas:
proc optmodel presolver = 0 printlevel=2;
call streaminit(DNI);
/* Paràmetres */
set PRODUCTE = 1..10000;
set RECURS = 1..100;
number consum{ j in RECURS, i in PRODUCTE} = 100*rand('uniform');
number benefici{i in PRODUCTE} = 200*rand('uniform');
number disp{j in RECURS} = sum{i in PRODUCTE} consum[j,i]*10;
/* Model d'optimització */
var Produc {PRODUCTE} >= 0;
max Total benefici = sum {i in PRODUCTE} benefici[i]*Produc[i];
con Consum recurs {j in RECURS}: sum {i in PRODUCTE} consum[j,i]*Produc[i]
<= disp[j];
/* Optimització i resultats */
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 0;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 1;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 2;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 3;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 4;
```

S'obté la taula:

printfre	q =	Nre. ITER	temps/iter. (sec.)	Temps execució (sec.)
STEEPESTEDGE	(4)	420	0.00469	1.97
HYBRID	(0)	932	0.00299	2.79
DEVEX	(3)	932	0.00299	2.79
PARTIAL	(1)	4913	0.00295	14.51
FULL	(2)	4913	0.00298	14.66

S'observa que la opció 4 realitza un nombre molt inferior d'iteracions que la resta de mètodes de forma que, tot i que quasi duplica el temps per iteració, la velocitat de millora de la funció objectiu és tal que compensa el temps dedicat a cada iteració. HYBRID i DEVEX redueixen a quasi 1/5 part el nombre d'iteracions (o el que és el mateix, quintupliquen la millora de la funció objectiu $\Delta z = \theta^* r_q$ per iteració) en comparació a PARTIAL i FULL, amb pràcticament el mateix cost per iteració.

SOLUCIÓ EXERCICI 17. Coalco: estudi taxació-eficiència computacional**.

```
Coalco rand.sas:
proc optmodel printlevel=2;
/* Llavor del generador de nombres aleatòris */
call streaminit(1123581321);
/* Definició de paràmetres */
                                                        /* Nre de component */
number nCOM = 10;
set <number> C = 1..nCOM;
                                                        /* Components carbó */
                                                        /* Nombre de mines */
number nM = 100;
                                                        /* Nre de clients */
number nC = 2000;
number t{ 1..nM , 1..nC } = 10+10*rand('uniform'); /* Cost transport
number p{ 1..nM } = 30+20*rand('uniform'); /* Cost producció */
number al{ 1..nM , C } = 0.7*rand('uniform'); /* Contingut */
                                                       /* Contingut */
number almax{ i in C } = 0.6+0.3*rand('uniform'); /* Contingut maxim
component mescla (Tm/Tm mescla)*/
number d{ 1..nC } = 5+10*rand('uniform');
                                                       /* Demanda */
number b{ 1..nM } = 200+200*rand('uniform'); /* Producció */
/* Variables de decisió */
var X \{ 1..nM, 1..nC \} >= 0; /* Tones a transportar mina i-> client j */
/* Formulació del model d'optmització*/
min Cost_total = sum{ i in 1..nM , j in 1..nC } (p[i]+t[i,j])*X[i,j];
/* Cost total producción més transport */
con Capacitat { i in 1..nM } : sum{ j in 1..nC } X[i,j] <= b[i];</pre>
con Demanda { j in 1..nC } : sum{ i in 1..nM } X[i,j] >= d[j];
con Contingut { j in 1..nC, k in C} :
    sum{iin 1..nM} (al[i,k]-almax[k])*X[i,j] <= 0;
/* Optimització */
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 0;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 1;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 2;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 3;
solve with LP / presolver =0 solver = primal printfreq = 0 pricetype = 4;
```

printfre	q =	Nre. ITER	temps/iter. (sec.)	Temps execució (sec.)
STEEPESTEDGE	(4)	13901	0.004461	62.01
HYBRID	(0)	12349	0.004148	51.22
DEVEX	(3)	25765	0.002812	72.45
FULL	(2)	36171	0.002682	97.02
PARTIAL	(1)	36171	0.002687	97.19

SOLUCIÓ EXERCICI 18. Analisi de sensibilitat problema Pelletier**

a) Ordre de les variables de decisió i vector c:

```
10 11 12 13 14
                                                                                                                             19
                                           6
                                                       8
                                                                                                 15
                                                                                                        16
                                                                                                               17
                                                                                                                    18
                                                                                                                                   s_5 ]<sup>T</sup>
                                                                                                                      s_3
                                                                                                                             S_4
x = [ x_{1,1} \ x_{1,2} \ x_{1,3} \ x_{1,4} \ x_{1,5} \ x_{2,1} \ x_{2,2} \ x_{2,3} \ x_{2,4} \ x_{3,1} \ x_{3,2} \ x_{3,3} \ x_{41} \ x_{42} \ x_{5,1} \ s_1
                                                                                                                                    0 ]^T
c = [\ 300\ 525\ 775\ 850\ 975\ 300\ 525\ 775\ 850\ 300\ 525\ 775\ 300\ 525\ 300\ 0
                                                                                                                       0
                                                                                                                              0
```

b) Ordre de les constriccions i components vector *b* i matriu *A*:

c) Fitxer PelletierLP.sas:

```
Fitxer RemingtonDB.sas
data PelletierLP;
 input _row_ $ x11 x12 x13 x14 x15 x21 x22 x23 x24 x31 x32 x33 x41 x42 x51 _type_ $ _rhs_;
     datalines;
             300 525 775 850 975 300 525 775 850 300 525 775 300 525 300
                                                                    MIN
       Cost
             Espai_m1
    Espai m2
                                                                     GE 10
                                                                    GE 20
    Espai_m3
    Espai m4
                                                                     GE 10
    Espai_m5
                                                                     GΕ
                                                                        5
    Non neg
                                                           0 0 lowerbd
run:
proc print data=PelletierLP;
proc lp data=PelletierLP rangeprice rangerhs;
```

Solució:

Solution Summar	У
Terminated Success	sfully
Objective Value	16625
Phase 1 Iterations	3
Phase 2 Iterations	4
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	7
Time Used (seconds)	0
Number of Inversions	3
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

		Va	ariable Summ	пагу		
Co	Variable Name	Status	Туре	Price	Activity	Reduced Cost
	1 x11	BASIC	LOWERBD	300	15	0
	2 x12		LOWERBD	525	0	225
	3 x13		LOWERBD	775	0	175
	4 x14	BASIC	LOWERBD	850	5	0
	5 x15	BASIC	LOWERBD	975	5	0
	6 x21		LOWERBD	300	0	300
	7 x22		LOWERBD	525	0	225
	8 x23		LOWERBD	775	0	225
	9 x24		LOWERBD	850	0	175
1	0 x31	BASIC	LOWERBD	300	10	0
1	1 x32		LOWERBD	525	0	275
1	2 x33		LOWERBD	775	0	400
1	3 x41		LOWERBD	300	0	50
1	4 x42		LOWERBD	525	0	150
1	5 x51		LOWERBD	300	0	175
1	6 Espai_m1		SURPLUS	0	0	300
1	7 Espai_m2	DEGEN	SURPLUS	0	0	0
1	B Espai_m3		SURPLUS	0	0	300
1	9 Espai_m4		SURPLUS	0	0	250
2	0 Espai_m5		SURPLUS	0	0	125

	Constraint Summary												
Row	Constraint Name	Туре	S/S Col	Rhs	Activity	Dual Activity							
1	Cost	OBJECTVE		0	16625								
2	Espai_m1	GE	16	25	25	300							
3	Espai_m2	GE	17	10	10	0							
4	Espai_m3	GE	18	20	20	300							
5	Espai_m4	GE	19	10	10	250							
6	Espai_m5	GE	20	5	5	125							

Intervals d'estabilitat:

		RHS	Range Anal	ysis				
		Minimum Ph	i	Maximum Phi				
Row	Rhs	Leaving	Objective	Rhs	Leaving	Objective		
Espai_m1	10	x11	12125	INFINITY	-			
Espai_m2	-INFINITY			10	Espai_m2	16625		
Espai_m3	10	x31	13625	INFINITY				
Espai_m4	10	Espai_m2	16625	20	x31	19125		
Espai_m5	0	x15	16000	10	x14	17250		

			Price Ran	ige Analysis	6		
			Minimum I	Phi	N	Naximum F	Phi
Col	Variable Name	Price	Entering	Objective	Price	Entering	Objective
1	x11	250	x41	15875	475	x13	19250
2	x12	300	x12	16625	INFINITY		16625
3	x13	600	x13	16625	INFINITY		16625
4	x14	675	x51	15750	900	x41	16875
5	x15	850	Espai_m5	16000	1125	x42	17375
6	x21	0	x21	16625	INFINITY		16625
7	x22	300	x22	16625	INFINITY		16625
8	x23	550	x23	16625	INFINITY		16625
9	x24	675	x24	16625	INFINITY		16625
10	x31	250	x41	16125	475	x13	18375
11	x32	250	x32	16625	INFINITY		16625
12	x33	375	x33	16625	INFINITY		16625
13	x41	250	x41	16625	INFINITY		16625
14	x42	375	x42	16625	INFINITY		16625
15	x51	125	x51	16625	INFINITY		16625
16	Espai_m1	-300	Espai_m1	16625	INFINITY		16625
17	Espai_m2	-175	x13	16625	50	x41	16625
18	Espai_m3	-300	Espai_m3	16625	INFINITY		16625
19	Espai_m4	-250	Espai_m4	16625	INFINITY		16625
20	Espai_m5	-125	Espai_m5	16625	INFINITY		16625
	W 1019		1939				

d) Sabem quines són les variables bàsiques a partir de la següent taula **Variable Summary**, $\mathcal{B}^* = \{1,4,5,10,17\}$, corresponent a les variables $x_{1,1}$, $x_{1,4}$, $x_{1,5}$, $x_{3,1}$ i s_2 . La matriu A corresponent al nostre problema es pot consultar a la finestra **SAS output**:

Obs	_row_	x11	x12	x13	x14	x15	x21	x22	x23	x24	x31	x32	x33	x41	x42	x51	_type_	_rhs_
1	Cost	300	525	775	850	975	300	525	775	850	300	525	775	300	525	300	MIN	
2	Espai_m1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	GE	25
3	Espai_m2	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	GE	10
4	Espai_m3	0	0	1	1	1	0	1	1	1	1	0	0	0	0	0	GE	20
5	Espai_m4	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	GE	10
6	Espai_m5	0	0	0	0	1	0	0	0	1	0	0	1	0	1	1	GE	5
7	Non_neg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	lowerbd	

La matriu bàsica B està formada per les columnes 1 $(x_{1,1})$, 4 $(x_{1,4})$, 5 $(x_{1,5})$ i 10 $(x_{3,1})$ d'aquesta matriu, conjuntament amb la columna associada a la variable d'escreix de la segona constricció s_2 $(A_{17} = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 \end{bmatrix}^T)$:

$$B = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix}$$

- e) Amb la matriu bàsica obtinguda a l'apartat anterior, comproveu que els valors de Φ_{b_1} , Φ_{c_2} i Φ_{c_4} de les taules **RHS** and **Price Range Analysis** coincideixen amb les obtingudes aplicant les expressions derivades a classe.
 - Φ_{b_1} :per a calcular aquest interval necessitem conèixer

$$b = \begin{bmatrix} 25\\10\\20\\10\\5 \end{bmatrix}, x_B = \begin{bmatrix} 15\\5\\5\\10\\0 \end{bmatrix}, \gamma_1 = B^{-1} \cdot e_1 = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$$

Fem els càlculs:

$$\begin{cases} \phi_{b_1}^{min} = \max_{k=1,\dots,5} \left\{ b_1 - \frac{x_{B(k)}}{\gamma_{k1}} : \gamma_{k1} > 0 \right\} = b_1 - \frac{x_{B(1)}}{\gamma_{11}} = 25 - \frac{15}{1} = 10 \\ \phi_{b_1}^{max} = \min_{k=1,\dots,m} \left\{ b_1 - \frac{x_{B(k)}}{\gamma_{k1}} : \gamma_{k1} < 0 \right\} = +\infty \text{ (no existeix fita superior)} \\ \boxed{\Phi_{b_1} = \left[\phi_{b_1}^{min}, \phi_{b_1}^{max} \right] = [10, +\infty[]} \end{cases}$$

Observem com el valor coincideix amb el trobat per PROC LP:

	RHS Range Analysis												
		Minimum Ph	Maximum Phi										
Row	Rhs	Leaving	Objective	Rhs	Leaving	Objective							
Espai_m1	10	x11	12125	INFINITY									

• Φ_{c_2} : com que x_2 és variable no bàsica l'expressió de l'interval d'estabilitat és:

$$\Phi_{c_i} = \left[\phi_{c_i}^{min}, \phi_{c_i}^{max}\right] = \left[c_i - r_i, +\infty\right[$$

amb $c_2 = 525$ i $r_2 = 225$, és a dir, $\Phi_{c_2} = [300, +\infty[$, que també coincideix amb el valor calculat per **PROC** LP:

	Price Range Analysis											
			Minimum I	Phi	Maximum Phi							
Col	Variable Name	Price	Entering	Objective	Price	Entering	Objective					
1	x11	250	x41	15875	475	x13	19250					
2	x12	300	x12	16625	INFINITY		16625					

• Φ_{c_4} : en aquest x_4 és la segona variable bàsica (p=2). La matriu V és calcula fent

Llavors $v_2 = [0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ -1 \ 0 \ 0 \ -1 \ 1]$. El vector de costos reduïts (columna Reduced Cost de la taula Variable Summary) és:

$$r'$$
 = [225 175 300 225 225 175 275 400 50 150 175 300 300 250 125]. Ara ja podem calcular l'interval d'estabilitat $\Phi_{c_4} = \left[\Phi_{c_4}^{min}, \Phi_{c_4}^{max}\right]$

$$\begin{cases} \phi_{c_4}^{min} = \max_{j \in \mathcal{N}^*} \left\{ c_4 + \frac{r_j}{v_{2j}} : v_{2j} < 0 \right\} = 850 + \max \left\{ \frac{175}{-1}, \frac{250}{-1} \right\} = 675 \\ \phi_{c_4}^{max} = \min_{j \in \mathcal{N}^*} \left\{ c_4 + \frac{r_j}{v_{2j}} : v_{2j} > 0 \right\} = 850 + \min \left\{ \frac{225}{1}, \frac{275}{1}, \frac{50}{1}, \frac{125}{1} \right\} = 900 \\ \rightarrow \boxed{\Phi_{c_4} = \left[\Phi_{c_4}^{min}, \Phi_{c_4}^{max} \right] = \left[675, 900 \right]} \end{cases}$$

que coincideix de nou amb el valor proporcionat per PROC LP:

	Price Range Analysis											
			Minimum I	Phi	Maximum Phi							
Col	Variable Name	Price	Entering	Objective	Price	Entering	Objective					
1	x11	250	x41	15875	475	x13	19250					
2	x12	300	x12	16625	INFINITY		16625					
3	x13	600	x13	16625	INFINITY		16625					
4	x14	675	x51	15750	900	x41	16875					

f) Els intervals d'estabilitat que mostra PROC LP són:

	RHS Range Analysis											
		Minimum Ph	i	Maximum Phi								
Row	Rhs	Leaving	Objective	Rhs	Leaving	Objective						
Espai_m1	10	x11	12125	INFINITY	-	-						
Espai_m2	-INFINITY	-	-	10	Espai_m2	16625						
Espai_m3	10	x31	13625	INFINITY	-	-						
Espai_m4	10	Espai_m2	16625	20	x31	19125						
Espai_m5	0	x15	16000	10	x14	17250						

Observem que el valor dels nous elements $\phi_{b_1} = 40$ i $\phi_{b_5} = 0$ estan dins dels seus respectius intervals d'estabilitat. Així doncs, la base òptima del problema modificat $(P)_{\phi_b}$ coincideix amb la del problema original, és a dir $\mathcal{B}_{\phi_b}^* = \mathcal{B}^* = \{1,4,5,10,17\}$. Per tal de calcular el nou valor de $x_{\phi_b}^*$ i $z_{\phi_b}^*$ apliquem les expressions del símplex:

$$x_{\phi_b}^* = \begin{bmatrix} x_{1,1} \\ x_{1,4} \\ x_{1,5} \\ x_{3,1} \\ x_{s_2} \end{bmatrix} = B_{\phi_b}^{-1} \phi_b = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 40 \\ 10 \\ 20 \\ 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 30 \\ 10 \\ 0 \\ 10 \\ 0 \end{bmatrix}, z_{\phi_b}^* = c_B' x_{\phi_b}^* = 20500$$

Podem calcular també el nou valor de la funció objectiu fent us dels preus ombra λ^* (columna **Dual Activity** de la taula **Constraints Summary**):

$$z_{\phi_b}^* = z^* + \lambda_1^* \cdot \Delta b_1 + \lambda_5^* \cdot \Delta b_5 = 16625 + 300 \cdot 15 + 125 \cdot (-5) = 20500$$

Si ara introduïm el nou valor del vector de termes independents ϕ_b al fitxer **PelletierLP.sas** i calculem el bnou òptim obtenim:

		Va	riable Summ	агу		
Col	Variable Name	Status	Туре	Price	Activity	Reduced Cos
1	x11	BASIC	LOWERBD	300	30	(
2	x12		LOWERBD	525	0	225
3	x13		LOWERBD	775	0	175
4	x14	BASIC	LOWERBD	850	10	(
5	x15		LOWERBD	975	0	125
6	x21		LOWERBD	300	0	300
7	x22		LOWERBD	525	0	225
8	x23		LOWERBD	775	0	225
9	x24		LOWERBD	850	0	300
10	x31	BASIC	LOWERBD	300	10	(
11	x32		LOWERBD	525	0	275
12	x33		LOWERBD	775	0	525
13	x41		LOWERBD	300	0	50
14	x42		LOWERBD	525	0	275
15	x51		LOWERBD	300	0	300
16	Espai_m1		SURPLUS	0	0	300
17	Espai_m2	DEGEN	SURPLUS	0	0	(
18	Espai_m3		SURPLUS	0	0	300
19	Espai_m4		SURPLUS	0	0	250
20	Espai_m5	DEGEN	SURPLUS	0	0	(

		RHS	Range Anal	ysis				
		Minimum Ph	i	Maximum Phi				
Row	Rhs	Leaving	Objective	Rhs	Leaving	Objective		
Espai_m1	10	x11	11500	INFINITY				
Espai_m2	-INFINITY			10	Espai_m2	20500		
Espai_m3	10	x31	17500	INFINITY				
Espai_m4	10	Espai_m2	20500	20	x31	23000		
Espai_m5	-INFINITY			0	Espai_m5	20500		

Observem que, malgrat que el valor de la funció objectiu i variables és el predit, s'ha produït un canvi de base obtenint-se la nova SBF òptima $\mathcal{B}_{\phi_b}^* = \{1,4,10,17,20\}$, malgrat que les coordenades del punt extrem solució són les mateixes.

Això no repressenta cap contradicció, doncs sabem que, quan fem coincidir el valor de d'alguns elements de ϕ_{b_j} amb el d'un dels extrems dels seus intervals d'estabilitat (aquí, $\phi_{b_5} = \phi_{b_5}^{min} = 0$) la nova base és degenerada primal. Això vol dir que el canvi ϕ_b situa la nova solució òptima sobre el punt extrem $x_{\phi_b}^*$ que té més d'una SBF associada. Finalment, fixem-nos que en l'intercanvi de VB que s'ha produït ha sortit la variable 5 $x_{1,5}$, tal com indica la taula **RHS Range Analysis**.

SOLUCIÓ EXERCICI 19. Remington Manufacturing: problemes de càrrega fixa * .

(EXERCICI 19)

• Model matemàtic:

Paràmetres:		
Conjunt de productes	\mathcal{P}	<pre>set <num> PRODUCTS;</num></pre>
Conjunt de processos	0	<pre>set <str> OPERATIONS;</str></pre>
Per a cada producte $i \in \mathcal{P}$:	40,000	
 Benefici unitari (€) 	b_i	<pre>number incomes{PRODUCTS};</pre>
• Costos fixos (€)	f_i	<pre>number fix_cost{PRODUCTS};</pre>
Hores disponibles operació $j \in \mathcal{O}$ (h).	h_j	<pre>number h_avail{OPERATIONS};</pre>
Hores consumides d'operació $j \in \mathcal{O}$ per unitat de producció producte $i \in \mathcal{P}$ (h).	a_{ji}	<pre>number h_req{OPERATIONS, PRODUCTS};</pre>

Variables		
Quantitat producte $i \in \mathcal{P}$	$x_i \in \mathbb{Z}^{\geq 0}$	<pre>Var Amount{PRODUCTS} >=0 integer;</pre>
Fabricació producte $i \in \mathcal{P}$ (1 es fabrica, 0 no es fabrica).	$y_i \in \{0,1\}$	Var Make{PRODUCTS} binary;

Model de progra	Model de programació lineal entera			
Maximització del benefici total:	$\max_{x,y\in\mathbb{Z}} z = \sum_{i\in\mathcal{P}} (b_i x_i + f_i y_i)$	<pre>max Total_profit = sum{ i in PRODUCTS} (incomes[i]*Amount[i] - fix_cost[i]*Make[i]);</pre>		
	s.a:			
Disponibilitat hores operació:	$\sum_{i\in\mathcal{P}} a_{ji} x_i \le h_j j\in\mathcal{O}$	<pre>con Limit_hours {j in OPERATIONS}: sum{ i in PRODUCTS} h_req[j,i]*Amount[i] <= h_avail[j];</pre>		
Acoblament $x_i - y_i$:	$x_i \leq M_i y_i i \in \mathcal{P}$	<pre>con Coupling { i in PRODUCTS}: Amount[i] <= (min{j in OPERATIONS} (h_avail[j]/h_req[j,i])) *Make[i];</pre>		
	$x_i \ge 0, y_i \in \{0,1\} i \in \mathcal{P}$			

Codi SAS/OR:

```
Fitxer RemingtonDB.sas
LIBNAME Reming ".";
data Reming.Product;
input
      product incomes fix cost;
datalines;
                      48
                             1000
                              800
                      50
                              900
data Reming.Operation;
input
           operation $ h_avail h_req_p1 h_req_p2 h_req_p3;
datalines;
                        600
                                    2
              Mach
                                             3
                        300
              Grin
                                    6
                                             3
                                                       4
              Asse
                        400
                                    5
                                             6
                                                       2
```

```
Fitxer Remington_DB.sas
proc optmodel presolver = 0;
/* Parameters of the model */
set <num> PRODUCTS;
number incomes{PRODUCTS};
number fix_cost{PRODUCTS};
set <str> OPERATIONS;
number h_avail{OPERATIONS};
number h_req{OPERATIONS, PRODUCTS};
/* Products */
read data Reming.Product into PRODUCTS=[product] incomes fix_cost;
/* Processes */
read data Reming.Operation
       into
              OPERATIONS=[operation]
              h_avail {i in PRODUCTS} <h_req[operation,i]=col("h_req_p"||i)>
var Amount{PRODUCTS} >=0 integer;
      Make{PRODUCTS} >=0 binary;
var
max Total_profit = sum{ i in PRODUCTS} (incomes[i]*Amount[i] - fix_cost[i]*Make[i]);
con Limit_hours {j in OPERATIONS}:
       sum{ i in PRODUCTS} h_req[j,i]*Amount[i] <= h_avail[j];</pre>
con Coupling { i in PRODUCTS}:
       Amount[i] <= (min{j in OPERATIONS}(h_avail[j]/h_req[j,i])) *Make[i];</pre>
/* Extended model */
expand;
/* Optimize and output */
solve with MILP / presolver = 0;
number total_incomes = sum{ i in PRODUCTS} incomes[i]*Amount[i].sol;
number total costs = sum{ i in PRODUCTS} fix cost[i]*Make[i].sol;
print Total profit total incomes total costs;
print _var _.name _var _.lb _var _.sol _var _.ub;
print _con _.name _con _.lb _con _.body _con _.ub;
```

• Solució optimal mostrada a la finestra SAS Output:

Solution Summary		
Solver	MILP	
Algorithm	Branch and Cut	
Objective Function	Total_profit	
Solution Status	Optimal	
Objective Value	2980	
Iterations	44	
Best Bound	2980	
Nodes	5	
Relative Gap	0	
Absolute Gap	0	
Primal Infeasibility	0	
Bound Infeasibility	0	
Integer Infeasibility	1.421085E-14	

Total_profit	total_incomes	total_costs
2980	4680	1700

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Amount[1]	0	0	1.7977E308
2	Amount[2]	0	56	1.7977E308
3	Amount[3]	0	32	1.7977E308
4	Make[1]	0	0	1
5	Make[2]	0	1	1
6	Make[3]	0	1	1

[1]	_CONNAME	_CONLB	_CONBODY	_coi
1	Limit_hours[Mach]	-1.7977E+308	360.000	
2	Limit_hours[Grin]	-1.7977E+308	296.000	
3	Limit_hours[Asse]	-1.7977E+308	400.000	
4	Coupling[1]	-1.7977E+308	0.000	
5	Coupling[2]	-1.7977E+308	-10.667	
6	Coupling[3]	-1.7977E+308	-43.000	

• Dataset ampliat amb la solució òptima:

Obs	product	incomes	fix_cost	amount	make	
1	1	48	1000	0	0	
2	2	55	800	56	1	
3	3	50	900	32	1	

SOLUCIÓ EXERCICI 20. Air-Express: problemes de planificació de plantilles**.

(EXERCICI 20)

• Model matemàtic:

Paràmetres:		
Conjunt de dies	\mathcal{D}	<pre>set <str> DAYS;</str></pre>
Conjunt de torns	S	<pre>set <num> SHIFTS;</num></pre>
 Per a cada torn i ∈ D: Dies de descans Salari treballador (€) 	$\mathcal{H}_i \subset \mathcal{D}$ c_i	<pre>string holy{SHIFTS, 12}; number lab costs{SHIFTS};</pre>
Demanda treballadors dia $j \in \mathcal{D}$	d_j , $j \in \mathcal{D}$	<pre>number workforce{DAYS};</pre>

Variables		
Nre. de treballadors a contractar torn <i>i</i>	$x_i \in \mathbb{Z}^{\geq 0}$, $i \in \mathcal{S}$	<pre>var Workers{SHIFTS} >=0 integer;</pre>

Model de progra	mació lineal	
Cost total nòmina mes fix:	$\min_{x \in \mathbb{Z}} z = \sum_{i \in \mathcal{S}} c_i x_i$	<pre>minimize Tot_labcost= sum{ i in SHIFTS} lab_costs[i]*Workers[i];</pre>
Demanda diaria:	s.a: $\sum_{i:j\notin\mathcal{H}_i} x_i \geq b_j j\in\mathcal{D}$	<pre>con Workforce_con{j in DAYS}: sum{ i in SHIFTS : and{k in 12} j NE holy[i,k] } Workers[i] >= workforce[j];</pre>
	$x_i \ge 0, y_i \in \{0,1\} i \in \mathcal{D}$	

• Codi SAS/OR:

```
Fitxer AirexpressDB.sas
LIBNAME Airexp ".";
data Airexp.Days;
       day $ workforce ;
input
datalines;
        Sun
               18
               27
        Mon
        Tue
               22
        Wed
               26
               25
        Thu
        Fri
               21
               19
        Sat
data Airexp.Shifts;
input
           shift
                     lab_costs holy1 $ holy2 $;
datalines;
                     680
                               Sun
                                        Mon
```

```
705
2
                Mon
                         Tue
3
     705
                Tue
                         Wed
4
     705
                Wed
                         Thu
5
     705
                Thu
                         Fri
6
     680
                Fri
                         Sat
                Sat
                         Sun
```

```
Fitxer Airexpress DB.sas
proc optmodel;
/* Parameters of the model */
set <str> DAYS;
set <num> SHIFTS;
string holy{SHIFTS, 1..2};
number lab costs{SHIFTS};
number workforce{DAYS};
/* Gathering data parameters from datasets */
read data Airexp.Days into DAYS=[day] workforce;
/* SHIFTS */
read data Airexp.Shifts
       into
             SHIFTS=[shift]
             lab_costs {i in 1..2} <holy[shift,i]=col("holy"||i)>
var Workers{SHIFTS} >=0 integer;
minimize Tot_labcost= sum{ i in SHIFTS} lab_costs[i]*Workers[i];
con Workforce con{j in DAYS}:
sum{ i in SHIFTS : and{k in 1..2} j NE holy[i,k]} Workers[i] >= workforce[j];
/* Show the model */
expand;
/* Optimize and output */
solve with MILP / presolver = 0 printfreq=1 allcuts=0; /* cutgomory=-1
print Tot labcost;
print _var_.name _var_.lb _var_.sol _var_.ub;
print _con_.name _con_.lb _con_.body _con_.ub;
/* Storing the solution to a DB */
 create data Airexp.Sol
      from [ shift ] = SHIFTS
      workers = Workers;
create data Airexp.workforce
      from [ day ] = DAYS
      workers = Workforce_con.body;
run;
/* Merging the optimal solution with the parameters datasets */
/* Workers by shift */
proc sort data=Airexp.Shifts; by shift; run;
proc sort data=Airexp.Sol; by shift; run;
data Airexp.Shifts; merge Airexp.Shifts Airexp.Sol; by shift; run;
proc datasets library=Airexp; delete Sol; run;
/* Workers by day */
```

```
proc sort data=Airexp.Days; by day; run;
proc sort data=Airexp.Workforce; by day; run;
data Airexp.Days; merge Airexp.Days Airexp.Workforce; by day; run;
proc datasets library=Airexp; delete Workforce; run;

/* Printing the extended dataset */
proc print; run;
```

Solució optimal mostrada a la finestra SAS Output:

Solution Su	mmary
Solver	MILP
Algorithm	Branch and Cut
Objective Function	Tot_labcost
Solution Status	Optimal
Objective Value	22540
Iterations	239
Best Bound	22540
Nodes	47
Relative Gap	0
Absolute Gap	0
Primal Infeasibility	0
Bound Infeasibility	0
Integer Infeasibility	0

Tot	labcost
	22540

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Workers[1]	0	4	1.7977E+308
2	Workers[2]	0	2	1.7977E+308
3	Workers[3]	0	6	1.7977E+308
4	Workers[4]	0	1	1.7977E+308
5	Workers[5]	0	6	1.7977E+308
6	Workers[6]	0	3	1.7977E+308
7	Workers[7]	0	11	1.7977E+308

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Workforce_con[Fri]	21	24	1.7977E+308
2	Workforce_con[Mon]	27	27	1.7977E+308
3	Workforce_con[Sat]	19	19	1.7977E+308
4	Workforce_con[Sun]	18	18	1.7977E+308
5	Workforce_con[Thu]	25	26	1.7977E+308
6	Workforce_con[Tue]	22	25	1.7977E+308
7	Workforce_con[Wed]	26	26	1.7977E+308

• Dataset ampliat amb la solució òptima:

Obs	day	workforce	workers
1	Fri	21	24
2	Mon	27	27
3	Sat	19	19
4	Sun	18	18
5	Thu	25	26
6	Tue	22	25
7	Wed	26	26

SOLUCIÓ EXERCICI 21. CRT-Technologies: problemes de selecció de projectes**.

(EXERCICI 21)

- a) Model bàsic:
- Model matemàtic:

Paràmetres:						
Conjunt d'anys.	y	set <num> YEAR;</num>				
Conjunt de projectes.	\mathcal{P}	<pre>set <num> PROJECTS;</num></pre>				
NPV projecte $i \in \mathcal{P} (k \in)$.	n_i	<pre>number npv{PROJECTS};</pre>				
Pressupost any $j \in \mathcal{Y}(k \in)$.	b_j	<pre>number budget{YEARS};</pre>				
Inversió necessària projecte $i \in \mathcal{P}$ any $j \in \mathcal{Y}(k \in)$.	a_{ji}	<pre>number investment{PROJECTS,YEARS};</pre>				

Variables		
Decisió de seleccionar (1) o descartar (0) el projecte $i \in \mathcal{P}$.	$y_i \in \{0,1\}$	<pre>var Selected{PROJECTS} binary;</pre>

Model de progra	mació lineal	
Es maximitza el NPV total de la inversió:	$\min_{x \in \mathbb{Z}} z = \sum_{i \in \mathcal{P}} n_i y_i$	<pre>maximize Total_npv = sum{ p in PROJECTS} npv[p]*Selected[p];</pre>
Pressupost anual:	s.a: $\sum_{i\in\mathcal{P}}a_{ji}y_i\leq b_j j\in\mathcal{Y}$	<pre>con Limit_budget {y in YEARS}: sum{ p in PROJECTS} investment[p,y]*Selected[p] <= budget[y];</pre>
	$y_i \in \{0,1\} i \in \mathcal{Y}$	

• Codi SAS/OR:

```
Fitxer CRTDB.sas

LIBNAME CRT ".";
data CRT.Years;
input years budget;
datalines;

1 250
2 75
3 50
4 50
5 50;
data CRT.Projects;
```

```
input
         project npv inv y1 inv y2 inv y3 inv y4 inv y5;
datalines;
                        75
                               25
                                     20
                                           12
                                                  20
               1 141
                        90
               2 187
                               35
                                     0
                                            0
                                                  30
               3 121
                        60
                               15
                                     15
                                           15
                                                  15
               4 83
                        30
                                    10
                                            5
               5 265
                        100
                               25
                                     20
                                           20
                                                  20
               6 127
                               20
                                     10
                                                  40
```

```
Fitxer CRT DB.sas
proc optmodel presolver = 0;
/* Parameters of the model */
set <num> YEARS;
set <num> PROJECTS;
number npv{PROJECTS};
number budget{YEARS};
number investment{PROJECTS,YEARS};
read data CRT.Years into YEARS=[years] budget;
/* Projects */
read data CRT.Projects
       into
             PROJECTS=[project]
             npv {i in YEARS} <investment[project,i]=col("inv_y"||i)>
var Selected{PROJECTS} binary;
maximize Total_npv = sum{ p in PROJECTS} npv[p]*Selected[p];
con Limit budget {y in YEARS}:
      sum{ p in PROJECTS} investment[p,y]*Selected[p] <= budget[y];</pre>
/* Show the model */
expand;
/* Optimize and output */
solve with MILP / presolver = 0;
print Total_npv;
print _var_.name _var_.lb _var_.sol _var_.ub;
print _con_.name _con_.lb _con_.body _con_.ub;
/* Storing the solution to a DB */
create data CRT.Sol from [ project ] = PROJECTS
                                                       sel = Selected;
/* Merging the optimal solution with the parameters datasets */
proc sort data=CRT.Sol; by project; run;
proc sort data=CRT.Projects; by project; run;
data CRT.Projects; merge CRT.Projects CRT.Sol; by project; run;
proc datasets library=CRT; delete Sol; run;
/* Printing the extended dataset */
proc print; run;
```

Solució optimal mostrada a la finestra SAS Output:

Solution Summary				
Solver	MILP			
Algorithm	Branch and Cut			
Objective Function	Total_npv			
Solution Status	Optimal			
Objective Value	489			
Iterations	25 489			
Best Bound				
Nodes	1			
Relative Gap	0			
Absolute Gap	0			
Primal Infeasibility	0			
Bound Infeasibility	0			
Integer Infeasibility	0			

Total	_npv
	489

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Selected[1]	0	1	1
2	Selected[2]	0	0	1
3	Selected[3]	0	0	1
4	Selected[4]	0	1	1
5	Selected[5]	0	1	1
6	Selected[6]	0	0	1

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Limit_budget[1]	-1.7977E+308	205	250
2	Limit_budget[2]	-1.7977E+308	70	75
3	Limit_budget[3]	-1.7977E+308	50	50
4	Limit_budget[4]	-1.7977E+308	37	50
5	Limit_budget[5]	-1.7977E+308	45	50

• Dataset ampliat amb la solució òptima:

Obs	project	npv	inv_y1	inv_y2	inv_y3	inv_y4	inv_y5	sel
1	1	141	75	25	20	12	20	1
2	2	187	90	35	0	0	30	0
3	3	121	60	15	15	15	15	0
4	4	83	30	20	10	5	5	1
5	5	265	100	25	20	20	20	1
6	6	127	50	20	10	30	40	0

- b) CRT, model ampliat:
- Model matemàtic: els elements nous del model són:

Paràmetres:	100	
Incompatibilitat entre projectes $i - j$ (1 incompatibles, 0 compatibles).	d_{ji}	<pre>number incomp{PROJECTS, PROJECTS};</pre>

Model de programació lineal: s'afegeix la constricció				
Incompatibilitats:	$y_i + y_j \le 1 (i,j) d_{ij} = 1$	<pre>con Incomp_con { i in PROJECTS, j in PROJECTS : incomp[i,j]=1}: Selected[i]+Selected[j] <= 1;</pre>		

Codi SAS/OR:

Afegim a la llibreria CRT la informació sobre incompatibilitat entre projectes:

```
Fitxer CRTDB_Incomp.sas
data CRT.Incomp;
input
                     ip1 ip2 ip3 ip4 ip5 ip6;
             proj
datalines;
                                         0
                                             0
                 1
                                0
                            1
                                1
                                     0
                                         0
                 3
                                     0
                                         0
                                             0
                                         0
                                             0
```

```
Fitxer CRT DB b.sas
proc optmodel presolver = 0;
/st Parameters of the model st/
set <num> YEAR;
set <num> PROJECTS;
number npv{PROJECTS};
number budget{YEAR};
number investment{PROJECTS,YEAR};
number incomp{PROJECTS, PROJECTS};
/* Years */
read data CRT.Years into YEAR=[years] budget;
/* Projects */
read data CRT.Projects
      into
             PROJECTS=[project]
        {i in YEAR} <investment[project,i]=col("inv_y"||i)>
/* Incompatibilities among projects */
number proj;
read data CRT.Incomp
      into [proj] {p IN PROJECTS} <incomp[proj, p]=col("ip"||p)>
```

```
print budget npv investment;
print incomp;
var Selected{PROJECTS} binary;
maximize Total_npv = sum{ p in PROJECTS} npv[p]*Selected[p];
con Limit_budget {y in YEAR}:
      sum{ p in PROJECTS} investment[p,y]*Selected[p] <= budget[y];</pre>
con Incomp_con {i in PROJECTS}:
       \overline{Selected[i]} + sum{ j in PROJECTS : j>i} incomp[i,j]*Selected[j] <= 1;
/* Show the model */
expand;
/* Optimize and output */
solve with MILP / presolver = 0;
print Total_npv;
print _var_.name _var_.lb _var_.sol _var_.ub;
print _con_.name _con_.lb _con_.body _con_.ub;
/* Storing the solution to a DB */
create data CRT.Sol from [ project ] = PROJECTS
                                                         sel = Selected;
/* Merging the optimal solution with the parameters datasets */
proc sort data=CRT.Sol; by project; run;
proc sort data=CRT.Projects; by project; run;
data CRT.Projects; merge CRT.Projects CRT.Sol; by project; run;
proc datasets library=CRT; delete Sol; run;
/* Printing the extended dataset */
proc print; run;
```

Solució optimal mostrada a la finestra SAS Output:

Solution Summary			
Solver	MILP		
Algorithm	Branch and Cut		
Objective Function	Total_npv		
Solution Status	Optimal		
Objective Value	469.00000022		
Iterations	14		
Best Bound	469.00000022		
Nodes	1		
Relative Gap	0		
Absolute Gap	0		
Primal Infeasibility	0		
Bound Infeasibility	0		
Integer Infeasibility	9.0000005E-9		

Total_npv 469

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Selected[1]	0	5.0E-09	1
2	Selected[2]	0	4.0E-09	1
3	Selected[3]	0	1.0E+00	1
4	Selected[4]	0	1.0E+00	1
5	Selected[5]	0	1.0E+00	1
6	Selected[6]	0	0.0E+00	1

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Limit_budget[1]	-1.7977E+308	190	250
2	Limit_budget[2]	-1.7977E+308	60	75
3	Limit_budget[3]	-1.7977E+308	45	50
4	Limit_budget[4]	-1.7977E+308	40	50
5	Limit_budget[5]	-1.7977E+308	40	50
6	Incomp_con[1]	-1.7977E+308	1	1
7	Incomp_con[2]	-1.7977E+308	1	1
8	Incomp_con[3]	-1.7977E+308	1	1
9	Incomp_con[4]	-1.7977E+308	1	1
10	Incomp_con[5]	-1.7977E+308	1	1
11	Incomp_con[6]	-1.7977E+308	0	1

• Dataset ampliat amb la solució òptima:

Obs	project	npv	inv_y1	inv_y2	inv_y3	inv_y4	inv_y5	sel
1	1	141	75	25	20	12	20	0.00000
2	2	187	90	35	0	0	30	0.00000
3	3	121	60	15	15	15	15	1.00000
4	4	83	30	20	10	5	5	1.00000
5	5	265	100	25	20	20	20	1.00000
6	6	127	50	20	10	30	40	0.00000

SOLUCIÓ EXERCICI 22. Airexpress (2): planificació de plantilles amb cost fix *.

(EXERCICI 22)

• Model matemàtic:

Paràmetres:		
Conjunt de dies	\mathcal{D}	<pre>set <str> DAYS;</str></pre>
Conjunt de torns	S	<pre>set <num> SHIFTS;</num></pre>
Per a cada torn $i \in \mathcal{D}$: • Dies de descans • Salari treballador (\in) • Costos fixos torn (\in):	$\mathcal{H}_i \subset \mathcal{D}$ c_i k_i	<pre>string holy{SHIFTS, 12}; number lab_costs{SHIFTS}; number fix costs{SHIFTS};</pre>
• Fita superior x_i :	$M_i = \max_{j \in \mathcal{D} \setminus \mathcal{H}_i} b_j$	<pre>number IIX_costs(SHIIIS); number M{i in SHIFTS} = max{ j in DAYS : and{k in 12} j NE holy[i,k] } workforce[j];</pre>
Demanda treballadors dia $j \in \mathcal{D}$	d_{j}	<pre>number workforce{DAYS};</pre>

Variables		
Nre. de treballadors a contractar torn $i \in \mathcal{S}$.	$x_i \ge 0$	<pre>var Workers{SHIFTS} >=0 integer;</pre>
Contractació torn $i \in \mathcal{S}$ (1 es contracta, 0 no es contracta)	$y_i \in \{0,1\}$	<pre>var Select{SHIFTS} binary;</pre>

Model de progra	mació lineal	
Cost total nòmina més fix:	$\min_{x,y} z = \sum_{i \in \mathcal{S}} (c_i x_i + k_i y_i)$	<pre>minimize tot_cost= sum{ i in SHIFTS} (lab_costs[i]*Workers[i] + fix_costs[i]*Select[i]);</pre>
	s.a:	
Demanda diaria:	$\sum_{i:j\notin\mathcal{H}_i} x_i \geq b_j j\in\mathcal{D}$	<pre>con Workforce_con{j in DAYS}: sum{ i in SHIFTS : and{k in 12} j NE holy[i,k] } Workers[i] >= workforce[j];</pre>
Acoblament $x_i - y_i$:	$x_i \le M_i y_i i \in \mathcal{D}$	<pre>con Coupling_con{i in SHIFTS}: Workers[i] <= M[i] *Select[i];</pre>
	$x_i \ge 0, y_i \in \{0,1\} i \in \mathcal{D}$	

• Codi SAS/OR:

Fitxer Airexpress (2) DB. sas

```
LIBNAME Airexp ".";
data Airexp.Days;
input
       day $ workforce ;
datalines;
        Sun
               18
        Tue
               22
        Wed
               26
        Thu
               25
               21
        Fri
        Sat
data Airexp.Shifts;
           shift lab_costs fix_costs holy1 $ holy2 $;
datalines;
                       680
                                 1000
                                          Sun
                       705
              2
                                  950
                                          Mon
                                                  Tue
              3
                       705
                                  950
                                          Tue
                                                  Wed
              4
                       705
                                  950
                                          Wed
                                                  Thu
                       705
              5
                                 950
                                          Thu
                                                  Fri
              6
                       680
                                 1000
                                          Fri
                                                  Sat
                       655
                                 1000
                                          Sat
                                                  Sun
```

```
Fitxer Airexpress (2) . sas
proc optmodel;
/* Parameters of the model */
                           /* Set of days */
set <str> DAYS;
                           /* Set of shifts */
set <num> SHIFTS;
string holy{SHIFTS, 1..2}; /* Pair of non-working days per shift */
number workforce{DAYS};
                          /* Daily workforce requirement */
number M{i in SHIFTS}
                          /* Coupling x-y contraint constant s.t. x_i <= M_i */</pre>
      = max{j in DAYS : and{k in 1..2} j NE holy[i,k]}workforce[j];
/* Parameters reading */
/* DAYS */
read data Airexp.Days into DAYS=[day] workforce;
/* SHIFTS */
read data Airexp.Shifts
      into
            SHIFTS=[shift]
            lab_costs fix_costs {i in 1..2} <holy[shift,i]=col("holy"||i)>
/* Decision variables */
var Workers{SHIFTS} >=0 integer; /* Number of workers per shift */
var Select{SHIFTS} binary;
                                /* Selection of shift i */
/* Objective function: to minimize labour and fix costs */
minimize tot cost= sum{ i in SHIFTS} (lab costs[i]*Workers[i] +
fix costs[i]*Select[i]);
/* Subject to daily workforce requirements. */
con Workforce con{j in DAYS}:
      sum{ i in SHIFTS : and{k in 1..2} j NE holy[i,k]} Workers[i] >= workforce[j];
/* x-y coupling constraints */
con Coupling_con{i in SHIFTS}:
      Workers[i] <= M[i] *Select[i];</pre>
```

```
/* Extended model */
expand;
/* Optimize and output */
solve:
/* Display */
number cost_lab = sum{ i in SHIFTS} lab_costs[i]*Workers[i].sol;
number cost_fix = sum{ i in SHIFTS} fix_costs[i]*Select[i].sol;
print tot_cost cost_lab cost_fix;
print _var _.name _var _.lb _var _.sol _var _.ub;
print _con _.name _con _.lb _con _.body _con _.ub;
/* Solution writing to data sets */
 create data Airexp.Sol
      from [ shift ] = SHIFTS
      workers = Workers select=Select;
create data Airexp.workforce
      from [ day ] = DAYS
      workers = Workforce con.body; run;
/* Merging the optimal solution with the parameters datasets */
/* Writing optimal shifts's related information to data sets. */
proc sort data=Airexp.Shifts; by shift; run;
proc sort data=Airexp.Sol; by shift; run;
data Airexp.Shifts; merge Airexp.Shifts Airexp.Sol; by shift; run;
proc datasets library=Airexp; delete Sol; run;
/* Writing optimal worker's related information to data sets. */
proc sort data=Airexp.Days; by day; run;
proc sort data=Airexp.Workforce; by day; run;
data Airexp.Days; merge Airexp.Days Airexp.Workforce; by day; run;
proc datasets library=Airexp; delete Workforce; run;
/* Printing the extended dataset */
proc print; run;
```

Solució optimal mostrada a la finestra SAS Output:

Solution Summary			
Solver	MILP		
Algorithm	Branch and Cut		
Objective Function	tot_cost		
Solution Status	Optimal		
Objective Value	26415		
Iterations	146		
Best Bound	26415		
Nodes	9		
Relative Gap	0		
Absolute Gap	0		
Primal Infeasibility	0		
Bound Infeasibility	0		
Integer Infeasibility	0		

tot_cost	cost_lab	cost_fix
26415	22565	3850

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Workers[1]	0	0	1.7977E308
2	Workers[2]	0	4	1.7977E308
3	Workers[3]	0	7	1.7977E308
4	Workers[4]	0	0	1.7977E308
5	Workers[5]	0	8	1.7977E308
6	Workers[6]	0	0	1.7977E308
7	Workers[7]	0	14	1.7977E308
8	Select[1]	0	0	1
9	Select[2]	0	1	1
10	Select[3]	0	1	1
11	Select[4]	0	0	1
12	Select[5]	0	1	1
13	Select[6]	0	0	1
14	Select[7]	0	1	1

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Workforce_con[Fri]	21	25	1.7977E308
2	Workforce_con[Mon]	27	29	1.7977E308
3	Workforce_con[Sat]	19	19	1.7977E308
4	Workforce_con[Sun]	18	19	1.7977E308
5	Workforce_con[Thu]	25	25	1.7977E308
6	Workforce_con[Tue]	22	22	1.7977E308
7	Workforce_con[Wed]	26	26	1.7977E308
8	Coupling_con[1]	-1.7977E308	0	0
9	Coupling_con[2]	-1.7977E308	-22	0
10	Coupling_con[3]	-1.7977E308	-20	0
11	Coupling_con[4]	-1.7977E308	0	0
12	Coupling_con[5]	-1.7977E308	-19	0
13	Coupling_con[6]	-1.7977E308	0	0
14	Coupling_con[7]	-1.7977E308	-13	0

• Solució optima al conjunt de dades:

Obs	day	workforce	workers
1	Fri	21	25
2	Mon	27	29
3	Sat	19	19
4	Sun	18	19
5	Thu	25	25
6	Tue	22	22
7	Wed	26	26

SOLUCIÓ EXERCICI 23. Coalco (4): transport i mescla amb costos fixos*.

(EXERCICI 23)

a) Elements modificats/afegits a la formulació Coalco (2) (fitxer Coalco (4).sas):

Paràmetres:		
Nombre mínim de mines en funcionament	$n_{min}^M = 2$	<pre>number nM_min = 2;</pre>
Per a cada mina $i = 1,, n^M$		F /67/ 25 BY 65
• Costos fixos de tancament [equivalent €/mes]	$c_i^T, c^T = \begin{bmatrix} 1000 \\ 1000 \\ 2000 \end{bmatrix}$	<pre>number ct{ 1nM } = [1000 1000 2000];</pre>
• Costos fixos de funcionament [€/mes]	$c_i^F, c^F = \begin{bmatrix} 4000 \\ 3000 \\ 1000 \end{bmatrix}$	<pre>number cf{ 1nM } = [4000 3000 1000];</pre>

Variables		
Variable de decisió tancament mina i ($y_i = 0 \Rightarrow \text{tanca}$, $y_i = 1 \Rightarrow \text{no tanca}$:	V:	<pre>var Y { 1nM } binary;</pre>

Model de programació	lineal:	
Cost total producció més transport	min $z = \sum_{i=1}^{n^M} \sum_{j=1}^{n^C} (p_i + t_{ij}) x_{ij}$	<pre>min Cost_total = sum{ i in 1nM , j in 1nC } (p[i]+t[i,j])*X[i,j]</pre>
més costos de tancament	$+ \sum_{i=1}^{n^M} c_i^T (1 - y_i)$	+ sum{ i in 1nM } ct[i]*(1-Y[i])
més costos de funcionament	$+\sum_{i=1}^{n^M}c_i^Fy_i$	+ sum{ i in 1nM } cf[i]*Y[i];
Constricció sindical:	$\sum_{i=1}^{n^M} y_i \ge n_{min}^M$	<pre>con Sindical: sum{ i in 1nM } Y[i] >= nM_min;</pre>
Acoblament $x - y$ (b_i fa el paper de M_i)	$\sum_{j=1}^{n^C} x_{ij} \le b_i y_i$ $i = 1,, n^M$	<pre>con Acoblament{ i in 1nM}: sum{j in 1nC} X[i,j] <= b[i]*Y[i];</pre>

b) Solució amb i sense constricció sindical:

	x*amb costos de funcionament i tancament (Tm)			x*amb costos de funcionament + tancament i constricció sindical (Tm)		
Mina	1 2 3		1	2	3	
Client 1	0 Tm	0 Tm	40 Tm	22.857 Tm	0 Tm	17.143 Tm

Client 2	0 Tm	0 Tm	30 Tm	17.143 Tm	0 Tm	12.857 Tm
Costos totals (€/mes)	4.0	87.000'00	20 m		90.037'142	600

SOLUCIÓ EXERCICI 24. Prodem S.L. $(2)^{**}$.

(EXERCICI 24)

a) Model de selecció de procés de manufactura (Fitxer Prodem (2).sas).

Paràmetres:		
Conjunt de productes	$\mathcal{P} = \{A, B, C\}$	<pre>set<str> PRODUCTE = {'A','B','C'};</str></pre>
Conjunt de processos de manufactura	$\mathcal{M} = \{1,2\}$	<pre>set<num> PROCES = 12;</num></pre>
 Per a cada procés p ∈ M i producte i ∈ P: Consum de recurs [Tm/unitat] Costos de producció [u.m./unitat] 	60 (100)	<pre>number consum{PROCES, PRODUCTE} = [3.0 2.0 1.0 1.5 1.0 0.5]; number cost{PROCES,PRODUCTE} = [10 2 3 15 2 4];</pre>
Disponibilitat recurs [Tm]:	b = 40	<pre>number disp = 40;</pre>
Demanda [Tm]:	d = 40	number dem = 33;

Variables					
Per a cada procés $p \in \mathcal{M}$: • Quantitat fabricada producte $i \in \mathcal{P}$ [Tm]:	$x_{pi} \ge 0$	<pre>var Produc {PROCES,PRODUCTE} >= 0;</pre>			
Selecció procés manufactura:	$y_p = \begin{cases} 1 & \text{es selecciona} \\ 0 & \text{no es selecciona} \end{cases}$	<pre>var Activa {PROCES} binary;</pre>			

Model de program	ació lineal entera:	
Cost total producció [u.m.]:	$\min z = \sum_{p \in \mathcal{M}} \sum_{i \in \mathcal{P}} c_{pi} x_{pi}$	<pre>max Total_benefici = sum {p in PROCES, i in PRODUCTE} cost[p,i]*Produc[p,i];</pre>
Disponibilitat recurs:	s.a: $\sum_{p \in \mathcal{M}} \sum_{i \in \mathcal{P}} a_{pi} x_{pi} \le b$	<pre>con Consum_recurs: sum {p in PROCES, i in PRODUCTE} consum[p,i]*Produc[p,i] <= disp;</pre>
Satisfacció demanda:	$\sum_{p \in \mathcal{M}} \sum_{i \in \mathcal{P}} x_{pi} \ge b$	<pre>con Demanda : sum{p in PROCES, i in PRODUCTE} Produc[p,i] >= dem;</pre>
Incompatibilitat processos:	$\sum_{p\in\mathcal{M}}y_p=1$	<pre>con Incompatibilitat: sum{p in PROCES} Activa{p] = 1;</pre>
Acoblament $x - y$ (b fa el paper de M_i)	$\sum_{i \in \mathcal{P}} x_{pi} \le b y_p p \in \mathcal{M}$	<pre>con Acoblament {p in PROCES}: sum{i in PRODUCTE} Produc[p,i] <= disp*Activa[p];</pre>

Solució:

Solution Summary				
Solver	MILP			
Algorithm	Branch and Cut			
Objective Function	Total_cost			
Solution Status	Optimal			
Objective Value	66			
Iterations	23			
Best Bound	66			
Nodes	1			
Relative Gap	0			
Absolute Gap	0			
Primal Infeasibility	2.538509E-11			
Bound Infeasibility	5.385089E-12			
Integer Infeasibility	7.692544E-13			

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Produc[1,A]	0	0	1.7977E+308
2	Produc[1,B]	0	-0	1.7977E+308
3	Produc[1,C]	0	0	1.7977E+308
4	Produc[2,A]	0	0	1.7977E+308
5	Produc[2,B]	0	33	1.7977E+308
6	Produc[2,C]	0	0	1.7977E+308
7	Activa[1]	0	-0	1.0000E+00
8	Activa[2]	0	1	1.0000E+00

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Consum_recurs	-1.7977E+308	33	40
2	Demanda	3.30000E+01	33	1.7977E308
3	Incompatibilitat	1.00000E+00	1	1
4	Acoblament[1]	-1.7977E+308	0	0
5	Acoblament[2]	-1.7977E+308	-7	0