

Foose Case n=1 When n=1.((m+1)-1) = m. which m/m is True. I've proved that the bose case is True. Induction Step: Let neW. n=1. Induction Hypothesis: Assume P(n) is True which I pie Z. s.t. P, m = (m+1) x-1. (m+1) n+1 -1 = (m+1) n. (m+1) - 1. (clef of exponential number). = m· (m+1) n + (m+1) n-)- (distributivity for addition). = m· (m+1) n+ ((m+1) n-1) (associativity for addition) = m·(m+1) n + p, m (Induction Dypothesis). = m · ((m+1) 1 + p1). Thus. Ip=6 Z. s.t. k2 = (m+1) n+p, which m/((m+1) n+1-1) We've prived P(r) => P(n+1) -3 True Therefore. In & M. Im Ell. m/((m+1)^n-1). 3.a) / is not in S. / #S. Assume for contracliction: 1 & S. Since 1 is the smallest natural number, 4365, 155' which means I is the smallest element in S. contradicts to the assumption of S. b) Yes, (K+1)&S°. Assume (k+1) & Sc. Since (k+1) & /N, gives. (k+1) & S. Since its "ES, Ck+1) = 3' as all the natural numbers that are less or equal to (k+1) are in SC, which means (k+1) is the smallest element in S, contradicts to the assumption of S.

C). To	prove a	S Is a	in empt	y set,	ibs t	e some	as pro	virg all	natural
numbers WTP		N. ne	SC.						
			on n.						
	ne IM								
Bose	Case:	n=1.							
				e've pri	rved Ha	t 1#5	3. Since	1 & M	thus.
		les"	,						
	1 21			tat bose	e case i	3 True.			
		1	t ke M		0 4/	4 1		0	
Indu	ction H	ypothesis	: Assur	ie all i	of the i	natural	number	from 1	though t
are	in S	, which	7,2,	k 68	1 -4-1	+ Ch 11	1 CC		
		Trom	DD). U	perve pro	ried in		065 .Q	8 Well	
There	fine 0:	ile prime	of that	that k-	ateral	usimberc	caro in	CC	
Line	e S S	W. S	c = /N	gives.	S = (D.			
								illy.	