Problem Set 3
Due Fri Mar 8, 2019
Submit through bCourses

1. Amplifier Noise

For the circuit below calculate the transconductance g_m that minimizes the minimum detectable signal (when I_{in} equals to input-referred current noise) as a function of γ , ω_T and C_s . In the plot of MDS vs g_m , comment briefly on why there is a minimum and how the slope relates to g_m . (Consider C_{GS} and ignore C_{GD} .)

2. Amplifier Design

(a) What is the total noise at the output of the common-source-common drain cascade shown below? Ignore flicker noise, r_o , and capacitor except those explicitly drawn in the diagram. You should provide your answer in terms of $kT, C_1, C_2, \gamma, A_{v1}, A_{v2}, \omega_{p1}$, and ω_{p2} . $A_{v1,v2}$ and $\omega_{p1,p2}$ are the low-frequency voltage gains and dominant poles of the two stages.

(b) We have a fixed power budget for the two stages of amplifer and we would like to minimize the total noise at the output. To simplify the analysis, we can assume the V^* 's and GBW's of the two stages are identical, $R_1C_1 = R_2C_2$, and $g_{m1}R_1, g_{m2}R_2 >> 1$. What potion of the power would you allocate to the M_1 in order to minimize the total noise at the output? (Hint: In order to maintain fixed GBW, the power consumption of each stage is linearly proportional to its load capacitance.)

3. Filter Noise.

You are given an active RC low pass filter with noisy resistors and noisy op-amp shown below.

- (a) Assume the op-amp has infinite dc gain and infinite GBW(ω_u). Calculate v_0/v_i and total output noise. What issue did you find?
- (b) Assume the op-amp has infinite dc gain and finite GBW(i.e. You can model the op-amp gain $A(s) = -\omega_u/s$, where $\omega_u >> 1/RC$). Calculate v_0/v_i and total output noise. How does the noise relate to ω_u ?