Exercise: Evaluate the Feynman path integral for the free particle by means of discretization. Why is the result independent of the number N of discretization steps?

Solution:

The discretized version of the propagator of a free particle is given by

$$K(q_{\rm f}, q_{\rm i}, t) = \sqrt{\frac{m}{2\pi i\hbar \Delta t}} \int_{-\infty}^{+\infty} \prod_{n=1}^{N-1} \left(\sqrt{\frac{m}{2\pi i\hbar \Delta t}} dq_n \right) \exp\left(\frac{i}{\hbar} \sum_{n=1}^{N} \frac{m}{2} \frac{(q_n - q_{n-1})^2}{\Delta t}\right). \tag{1}$$

Here, $q_N = q_f$ and $q_0 = q_i$.

For a multidimensional Gaussian integral, we have

$$\int_{-\infty}^{+\infty} \mathrm{d}x^N \mathrm{e}^{-\mathbf{x}^T \mathbf{A} \mathbf{x}} = \sqrt{\frac{\pi^N}{\det(\mathbf{A})}}.$$
 (2)

Without loss of generality, the matrix \mathbf{A} can be assumed to be symmetric, because an antisymmetric matrix will not contribute to the bilinear form. The relation (2) can then be proven by transforming into the eigenbasis of \mathbf{A} and carrying out the individual integrals. The right-hand side is then obtained by realizing that the product of eigenvalues equals the determinant of the corresponding matrix.

The same line of reasoning can be applied to a Fresnel integral and we find

$$\int_{-\infty}^{+\infty} dx^N e^{i\mathbf{x}^T \mathbf{A} \mathbf{x}} = \sqrt{\frac{(i\pi)^N}{\det(\mathbf{A})}}.$$
 (3)

We thus aim at bringing (1) into such a form.

In a first step, we consider the sum in the exponent.

$$\sum_{n=1}^{N} (q_n - q_{n-1})^2 = q_{N-1}^2 + q_1^2 + \sum_{n=2}^{N-1} (q_n - q_{n-1})^2 - 2q_f q_{N-1} - 2q_i q_1 + q_f^2 + q_i^2.$$
 (4)

Realizing that all squares of q_i , i = 1, ..., N-1 appear twice and that the mixed terms arising from the squares in the sum have to be splitted into two contributions in a bilinear form, we obtain

$$\sum_{n=1}^{N} (q_n - q_{n-1})^2 = \mathbf{x}^T \mathbf{A} \mathbf{x} - 2\mathbf{b}^T \mathbf{x} + q_f^2 + q_i^2.$$
 (5)

Here, we have introduced the tridiagonal $(N-1) \times (N-1)$ matrix

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$
 (6)

and the vectors

$$\mathbf{x} = \begin{pmatrix} q_{N-1} \\ q_{N-2} \\ \vdots \\ q_2 \\ q_1 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} q_{\mathbf{f}} \\ 0 \\ \vdots \\ 0 \\ q_{\mathbf{i}} \end{pmatrix}$$
 (7)

In (5) we can now complete the square to obtain

$$\sum_{n=1}^{N} (q_n - q_{n-1})^2 = (\mathbf{x}^T - \mathbf{b}^T \mathbf{A}^{-1}) \mathbf{A} (\mathbf{x} - \mathbf{A}^{-1} \mathbf{b}) - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b} + q_f^2 + q_i^2.$$
 (8)

Carrying out the Fresnel integrals with the help of (3) we find as a first result

$$K(q_{\rm f}, q_{\rm i}, t) = \sqrt{\frac{m}{2\pi i\hbar \Delta t \det(\mathbf{A})}} \exp\left(\frac{im}{2\hbar \Delta t} (q_{\rm f}^2 + q_{\rm i}^2 - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b})\right). \tag{9}$$

In order to proceed further, we need to evaluate the determinant of the matrix \mathbf{A} defined in (6). One possibility is to realize that \mathbf{A} is a tridiagonal Toeplitz matrix for which the eigenvalues are known analytically. For our special case, the eigenvalues read

$$\lambda_k = 2\left(1 + \cos\left(\frac{\pi k}{N}\right)\right) \qquad k = 1, \dots, N - 1 \tag{10}$$

The determinant D_{N-1} of the $(N-1)\times(n-1)$ matrix **A** then becomes

$$D_{N-1} = \det(\mathbf{A}) = \prod_{k=1}^{N-1} 2\left(1 + \cos\left(\frac{\pi k}{N}\right)\right)$$

$$= \lim_{x \to -1} \prod_{k=1}^{N-1} \left(x^2 - 2x\cos\left(\frac{\pi k}{N}\right) + 1\right)$$

$$= \lim_{x \to -1} \frac{x^{2N} - 1}{x^2 - 1}$$

$$= N$$
(11)

This result can also be obtained by induction. The determinant of A satisfies the recursion relation

$$D_n = 2D_{n-1} - D_{n-2} (12)$$

with the initial conditions

$$D_1 = 2, D_2 = 3. (13)$$

It can easily be checked that this recursion problem is indeed solved by $D_{N-1} = N$.

In view of the exponent of (9), we need the entries in the corners of the matrix \mathbf{A}^{-1} which can easily be obtained by directly determining the corresponding elements of the adjugate matrix. On the diagonal, we find

$$(\mathbf{A}^{-1})_{11} = (\mathbf{A}^{-1})_{N-1,N-1} = \frac{D_{N-2}}{D_{N-1}} = 1 - \frac{1}{N}.$$
 (14)

In the off-diagonal corners, the adjugate matrix takes the value 1 and we obtain

$$(\mathbf{A}^{-1})_{N-1,1} = (\mathbf{A}^{-1})_{1,N-1} = \frac{1}{D_{N-1}} = \frac{1}{N}.$$
 (15)

In the exponent of (9), we thus have

$$\mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b} = \left(1 - \frac{1}{N}\right)(q_{\rm f}^{2} + q_{\rm i}^{2}) + \frac{2}{N}q_{\rm f}q_{\rm i} = q_{\rm f}^{2} + q_{\rm i}^{2} - \frac{(q_{\rm f} - q_{\rm i})^{2}}{N}$$
(16)

Inserting this result together with (11) into (9), we arrive at

$$K(q_{\rm f}, q_{\rm i}, t) = \sqrt{\frac{m}{2\pi i\hbar N\Delta t}} \exp\left(\frac{im}{2\hbar} \frac{(q_{\rm f} - q_{\rm i})^2}{N\Delta t}\right). \tag{17}$$

Since we had divided the original time interval of length t into N equidistant pieces, we have $\Delta t = t/N$ and thus find the exact propagator of the free particle

$$K(q_{\rm f}, q_{\rm i}, t) = \sqrt{\frac{m}{2\pi i\hbar t}} \exp\left(\frac{im}{2\hbar} \frac{(q_{\rm f} - q_{\rm i})^2}{t}\right). \tag{18}$$

The fact that we obtain the correct result for any value of N and do not need to take the limit $N \to \infty$ is exceptional. The reason is that for vanishing potential energy V = 0, the Lie-Trotter formula is exact not only in the limit $N \to \infty$ but also for any finite N. Another way of viewing it is that the decomposition in the initial expression (1) is nothing else than a multiple application of the semigroup property which we had proven in another exercise.