

# IFSBM Module 11



24/01/2024

IFSBM INSTITUT DE FORMATION SUPÉRIEURE BIOMÉDICALE

Factorisation matricielle non-négative et analyse de survie Yoann Pradat 1

# Sommaire

- 1. Factorisation matricielle non négative
  - 1 Factorisations matricielles
  - 2. Factorisation non négative
  - 3. Applications NMF
- 2. Analyse de survie
  - 1. Concepts
  - 2. Modèle de Cox

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension



 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

<u>Idée</u> Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension



 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

<u>Idée</u> Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension



 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension



Intrinsèquement 1D!

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension



 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P
Les observations sont bien approchées par une représentation en basse dimension



 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

<u>Idée</u> Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

| $\lceil v_{11} \rceil$ | $v_{12}$ | • • • | $v_{1N}$         |           | $\lceil w_{11} \rceil$   | • • • | $w_{1K}$         | $\lceil h_{11} \rceil$  | • • • | $h_{1N}$        |  |
|------------------------|----------|-------|------------------|-----------|--------------------------|-------|------------------|-------------------------|-------|-----------------|--|
| $v_{21}$               | $v_{22}$ | • • • | $v_{2N}$         | $\approx$ | $w_{21}$                 | • •   | $w_{2K}$         | •                       | • •   | •               |  |
| •                      | •        | • •   | •                |           | •                        | •     | •                | $\lfloor h_{N1}  floor$ | • • • | $h_{KN}  floor$ |  |
| $v_{P1}$               | $v_{p2}$ | • • • | $v_{PN} \rfloor$ |           | $\lfloor w_{P1} \rfloor$ | • • • | $w_{PK} \rfloor$ |                         |       |                 |  |

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

| $\lceil v_{11} \rceil$  | $v_{12}$ | • • • | $v_{1N}$ |           |          |       | $w_{1K}$        | $\lceil h_{11} \rceil$ | • • • | $h_{1N}$        |
|-------------------------|----------|-------|----------|-----------|----------|-------|-----------------|------------------------|-------|-----------------|
| $v_{21}$                | $v_{22}$ | • • • | $v_{2N}$ | $\approx$ | $w_{21}$ | • •   | $w_{2K}$        | •                      | •     | •               |
| •                       | •        | •     | •        |           |          | • •   | •               | $h_{K1}$               | • • • | $h_{KN}  floor$ |
| $\lfloor v_{P1}  floor$ | $v_{p2}$ | • • • | $v_{PN}$ |           | $w_{P1}$ | • • • | $w_{PK}  floor$ |                        |       |                 |

Source 1 ou Axe 1

Notations  $N \in \mathbb{N}^*$ : nombre d'observations (=individus, échantillons)  $P \in \mathbb{N}^*$  : nombre de variables (=covariables, prédicteurs, features)  $\mathbf{V} \in \mathbb{R}^{\mathrm{P} imes \mathrm{N}}$  : ensemble d'observations (=dataset)

<u>Idée</u> Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

| $v_{11}$ | $v_{12}$ | • • • | $v_{1N}$         |       | $w_{11}$ | • • • | $w_{1K}$    | $\lceil h_{11} \rceil$ |       | $h_{1N}$ |
|----------|----------|-------|------------------|-------|----------|-------|-------------|------------------------|-------|----------|
| $v_{21}$ | $v_{22}$ | • • • | $v_{2N}$         | pprox | $w_{21}$ | • • • | $ w_{2K}  $ | •                      | •     | •        |
| •        | •        | • •   | •                |       | •        | • •   | •           | $h_{K1}$               | • • • | $h_{KN}$ |
| $v_{P1}$ | $v_{p2}$ | • • • | $v_{PN} \rfloor$ | L     | $w_{P1}$ | • •   | $w_{PK}$    |                        |       |          |

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P
Les observations sont bien approchées par une représentation en basse
dimension

Poids source 1 ou coord axe 1

 $egin{bmatrix} v_{11} & v_{12} & \cdots & v_{1N} \ v_{21} & v_{22} & \cdots & v_{2N} \ dots & dots & dots \ v_{P1} & v_{p2} & \cdots & v_{PN} \end{bmatrix} pprox egin{bmatrix} w_{11} & \cdots & w_{1K} \ w_{21} & \cdots & w_{2K} \ dots & dots & dots \ w_{2K} \ dots & dots & dots \ w_{PK} \end{bmatrix} egin{bmatrix} h_{11} & \cdots & h_{1N} \ dots & \ddots & dots \ h_{K1} & \cdots & h_{KN} \end{bmatrix}$ 

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P
Les observations sont bien approchées par une représentation en basse
dimension

Poids source 1 ou coord axe 1

 $\begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1N} \\ v_{21} & v_{22} & \cdots & v_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ v_{P1} & v_{p2} & \cdots & v_{PN} \end{bmatrix} \approx \begin{bmatrix} w_{11} & \cdots & w_{1K} \\ w_{21} & \cdots & w_{2K} \\ \vdots & \ddots & \vdots \\ w_{P1} & \cdots & w_{PK} \end{bmatrix} \begin{bmatrix} h_{11} & \cdots & h_{1N} \\ \vdots & \ddots & \vdots \\ h_{K1} & \cdots & h_{KN} \end{bmatrix}$ 

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

$$\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + \dots + v_{P-1} \mathbf{e_{P-1}} + v_P \mathbf{e_P}$$
 Data dimension = P

$$\mathbf{v}_{\text{approx}} = h_1 \mathbf{w_1} + \dots + h_K \mathbf{w_K}$$

Approx dimension = K << P

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* \text{ : nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* \text{ : nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} \text{ : ensemble d'observations (=dataset)} \end{array}$ 

Idée Les observations sont générées par un petit nombre processus K << P Les observations sont bien approchées par une représentation en basse dimension

$$\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + \dots + v_{P-1} \mathbf{e_{P-1}} + v_P \mathbf{e_P}$$
 Data dimension = P

$$\mathbf{v}_{\text{approx}} = h_1 \mathbf{w_1} + \dots + h_K \mathbf{w_K}$$

Approx dimension = K << P

<u>Clé:</u> distance  $d(v, v_{\mathrm{approx}})$ 

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

"Bien approchée" étant quantifié par  $D(\mathbf{V}||\mathbf{W}\mathbf{H}) = \sum_{n=1}^{n} D(\mathbf{v_n}||(\mathbf{W}\mathbf{H})_n)$ 

24/01/2024

19

 $\begin{array}{c} \textbf{Notations} & N \in \mathbb{N}^* : \text{nombre d'observations (=individus, \'echantillons)} \\ & P \in \mathbb{N}^* : \text{nombre de variables (=covariables, pr\'edicteurs, features)} \\ & \mathbf{V} \in \mathbb{R}^{P \times N} : \text{ensemble d'observations (=dataset)} \end{array}$ 

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

"Bien approchée" étant quantifié par  $D(\mathbf{V}||\mathbf{W}\mathbf{H}) = \sum_{n=1}^{N} D(\mathbf{v_n}||(\mathbf{W}\mathbf{H})_n)$ Où  $D: \mathbb{R}^P \times \mathbb{R}^P \to \mathbb{R}$  fonction telle

$$\forall \mathbf{x}, \mathbf{y}, \quad D(\mathbf{x}||\mathbf{y}) = \sum_{p=1}^{P} d(x_p||y_p) \qquad D(\mathbf{x}||\mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$$

<u>Notations</u>  $N \in \mathbb{N}^*$ : nombre d'observations (=individus, échantillons)  $P \in \mathbb{N}^*$ : nombre de variables (=covariables, prédicteurs, features)  $\mathbf{V} \in \mathbb{R}^{\mathrm{P} imes \mathrm{N}}$  : ensemble d'observations (=dataset)

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

"Bien approchée" étant quantifié par  $D(\mathbf{V}||\mathbf{W}\mathbf{H}) = \sum_{n=1}^{N} D(\mathbf{v_n}||\mathbf{W}\mathbf{H})_n)$   $\mathbb{R} \text{ fonction telle}$ 

$$\forall \mathbf{x}, \mathbf{y}, \quad D(\mathbf{x}||\mathbf{y}) = \sum_{p=1}^{P} d(x_p||y_p) \qquad D(\mathbf{x}||\mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$$

Notations  $N \in \mathbb{N}^*$ : nombre d'observations (=individus, échantillons)

 $P \in \mathbb{N}^*$ : nombre de variables (=covariables, prédicteurs, features)

 $\mathbf{V} \in \mathbb{R}^{\mathrm{P} imes \mathrm{N}}$  : ensemble d'observations (=dataset)

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

$$\hat{\mathbf{W}}, \hat{\mathbf{H}} \underset{\mathbf{W}, \mathbf{H} \in \mathcal{W} \times \mathcal{H}}{\operatorname{argmin}} \quad D(\mathbf{V} || \mathbf{W} \mathbf{H})$$

 $\mathcal{W} \subset \mathbb{R}^{P \times K}$ ,  $\mathcal{H} \subset \mathbb{R}^{K \times N}$  des ensembles (convexes) de matrices.

Notations  $N \in \mathbb{N}^*$  : nombre d'observations (=individus, échantillons)

 $P \in \mathbb{N}^*$  : nombre de variables (=covariables, prédicteurs, features)

 $\mathbf{V} \in \mathbb{R}^{\mathrm{P} imes \mathrm{N}}$  : ensemble d'observations (=dataset)

#### Formulation mathématique Factorisation matricielle

 $\mathbf{V} \in \mathbb{R}^{P \times N}$  est "bien approchée" par le produit de  $\mathbf{W} \in \mathbb{R}^{P \times K}$  et  $\mathbf{H} \in \mathbb{R}^{K \times N}$ 

$$\mathbf{V} pprox ilde{\mathbf{V}} = \mathbf{W}\mathbf{H}$$

$$\hat{\mathbf{W}}, \hat{\mathbf{H}} \underset{\mathbf{W}, \mathbf{H} \in \mathcal{W} \times \mathcal{H}}{\operatorname{argmin}} \quad D(\mathbf{V}||\mathbf{W}\mathbf{H})$$

Divergence

 $\mathcal{W} \subset \mathbb{R}^{P \times K}$ ,  $\mathcal{H} \subset \mathbb{R}^{K \times N}$  des ensembles (convexes) de matrices.

#### Différentes formes de factorisation

- 1. Analyse en composante principales (PCA)
  - $D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} \mathbf{y}||_2$
  - $\mathcal{W} = \mathbb{R}^{P \times K}$ ,  $\mathcal{H} = \mathbb{R}^{K \times N}$ .

#### Différentes formes de factorisation

- 1. Analyse en composante principales (PCA)
  - $D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} \mathbf{y}||_2$  -> « facilement » résolu par SVD (Eckart-Young, 1936)
  - $\mathcal{W} = \mathbb{R}^{\mathrm{P} \times \mathrm{K}}, \ \mathcal{H} = \mathbb{R}^{\mathrm{K} \times \mathrm{N}}.$   $\mathbf{V} = \mathbf{P} \mathbf{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$

#### Différentes formes de factorisation

1. Analyse en composante principales (PCA)

• 
$$\mathrm{D}(\mathbf{x}||\mathbf{y}) = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|_2$$
 -> « facilement » résolu par SVD (Eckart-Young, 1936)

• 
$$\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \ \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$$
  $\mathbf{V} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$ 

#### NOTE 1: invariance d'échelle

$$\begin{bmatrix} \overline{w_{11}} & \cdots & w_{1K} \\ w_{21} & \cdots & w_{2K} \\ \vdots & \ddots & \vdots \\ w_{P1} & \cdots & w_{PK} \end{bmatrix} \begin{bmatrix} h_{11} & \cdots & h_{1N} \\ \vdots & \ddots & \vdots \\ h_{N1} & \cdots & h_{KN} \end{bmatrix} = \begin{bmatrix} \lambda_1 w_{11} & \cdots & \lambda_K w_{1K} \\ \lambda_1 w_{21} & \cdots & \lambda_K w_{2K} \\ \vdots & \ddots & \vdots \\ \lambda_1 w_{P1} & \cdots & \lambda_K w_{PK} \end{bmatrix} \begin{bmatrix} \lambda_1^{-1} h_{11} & \cdots & \lambda_1^{-1} h_{1N} \\ \vdots & \ddots & \vdots \\ \lambda_K^{-1} h_{N1} & \cdots & \lambda_K^{-1} h_{KN} \end{bmatrix}$$

 $\mathbf{w} = \lambda \mathbf{w}$ 

#### Différentes formes de factorisation

1. Analyse en composante principales (PCA)

• 
$$D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} - \mathbf{y}||_2$$
 -> « facilement » résolu par SVD (Eckart-Young, 1936)

• 
$$\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \, \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$$
  $\mathbf{V} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$ 

NOTE 1: invariance d'échelle

NOTE 2: invariance de rotation

$$\begin{bmatrix} w_{11} & \cdots & w_{1K} \\ w_{21} & \cdots & w_{2K} \\ \vdots & \ddots & \vdots \\ w_{P1} & \cdots & w_{PK} \end{bmatrix} \begin{bmatrix} h_{11} & \cdots & h_{1N} \\ \vdots & \ddots & \vdots \\ h_{N1} & \cdots & h_{KN} \end{bmatrix} = \begin{bmatrix} w_{1q} & \cdots & w_{s1} \\ w_{2q} & \cdots & w_{s2} \\ \vdots & \ddots & \vdots \\ w_{Pq} & \cdots & w_{sK} \end{bmatrix} \begin{bmatrix} h_{q1} & \cdots & h_{qN} \\ \vdots & \ddots & \vdots \\ h_{Ns} & \cdots & h_{sN} \end{bmatrix}$$

$$\begin{bmatrix} w_{1q} & \cdots & w_{s1} \\ w_{2q} & \cdots & w_{s2} \\ \vdots & \ddots & \vdots \\ w_{Pq} & \cdots & w_{sK} \end{bmatrix} \begin{bmatrix} h_{q1} & \cdots & h_{qN} \\ \vdots & \ddots & \vdots \\ h_{Ns} & \cdots & h_{sN} \end{bmatrix}$$

 $1 \le s, q \le K, \quad s \ne q$ 

#### Différentes formes de factorisation

1. Analyse en composante principales (PCA)

• 
$$D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} - \mathbf{y}||_2$$
 -> « facilement » résolu par SVD (Eckart-Young, 1936)

• 
$$\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \, \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$$
  $\mathbf{V} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$ 

NOTE 1: invariance d'échelle

NOTE 2: invariance de rotation

#### Fixations des invariances:

- rotation, axes triés par valeur propre dec.  $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_K \geq 0$
- échelle, axes "unitaires" i.e.  $\mathbf{w_k}^{\top}\mathbf{w_k} = 1, \quad 1 \leq k \leq K$

#### Différentes formes de factorisation

- 1. Analyse en composante principales (PCA)
  - $\mathrm{D}(\mathbf{x}||\mathbf{y}) = \frac{1}{2}\|\mathbf{x} \mathbf{y}\|_2$  -> « facilement » résolu par SVD (Eckart-Young, 1936)
  - $\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \ \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$   $\mathbf{V} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$

Propriétés PCA  $\mathbf{w_q}^{\top}\mathbf{w_s} = 0, \quad 1 \le s, q \le K, \quad s \ne q$ 

#### Différentes formes de factorisation

- 1. Analyse en composante principales (PCA)
  - $D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} \mathbf{y}||_2$  -> « facilement » résolu par SVD (Eckart-Young, 1936)
  - $\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \, \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$   $\mathbf{V} = \mathbf{P} \mathbf{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K,:}$

Propriétés PCA  $\mathbf{w_q}^{\top}\mathbf{w_s} = 0, \quad 1 \le s, q \le K, \quad s \ne q$ 



#### Différentes formes de factorisation

- 1. Analyse en composante principales (PCA)
  - -> « facilement » résolu par SVD (Eckart-Young, 1936) •  $D(\mathbf{x}||\mathbf{y}) = \frac{1}{2}||\mathbf{x} - \mathbf{y}||_2$
  - $\mathcal{W} = \mathbb{R}^{\mathrm{P} imes \mathrm{K}}, \ \mathcal{H} = \mathbb{R}^{\mathrm{K} imes \mathrm{N}}.$   $\mathbf{V} = \mathbf{P} \mathbf{\Lambda} \mathbf{Q}$  alors  $\hat{\mathbf{W}} \propto \mathbf{P}_{:,1:K}$   $\hat{\mathbf{H}} \propto \mathbf{Q}_{1:K:}$

Propriétés PCA  $\mathbf{w_q}^{\mathsf{T}} \mathbf{w_s} = 0, \quad 1 \leq s, q \leq K, \quad s \neq q$ 





#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Paatero et Tapper.

Environmentrics. 1994.

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_F = \sqrt{\sum_{p=1}^{P} (x_p - y_p)^2}$ 

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Paatero et Tapper.

Environmentrics. 1994.

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_F = \sqrt{\sum_{p=1}^{P} (x_p - y_p)^2}$ 

Lee et Seung. 2001.

• 
$$D(\mathbf{x}||\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_F = \sqrt{\sum_{p=1}^{P} (x_p - y_p)^2}$$

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{KL}(\mathbf{x}|\mathbf{y}) = \sum_{p=1}^{r} x_p \log(\frac{x_p}{y_p}) - x_p + y_p$$

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Paatero et Tapper. Environmentrics. 1994.

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_F = \sqrt{\sum_{p=1}^{P} (x_p - y_p)^2}$ 

Lee et Seung. 2001.

• 
$$D(\mathbf{x}||\mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_F = \sqrt{\sum_{p=1}^{P} (x_p - y_p)^2}$$

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{KL}(\mathbf{x}|\mathbf{y}) = \sum_{p=1}^{\infty} x_p \log(\frac{x_p}{y_p}) - x_p + y_p$$

$$\mathbf{D}(\mathbf{x}||\mathbf{y}) = \mathbf{D}_{\mathrm{KL}}(\mathbf{x}|\mathbf{y}) = \sum_{p=1}^{P} x_p \log(\frac{x_p}{y_p}) - x_p + y_p$$
 Cichocki, Zdunek, et Amari.

| Colonocki, Zdunek Phan, et Amari. | D(x||y) = D\_{\alpha}(\mathbf{x}|\mathbf{y}) = \frac{1}{\alpha(1-\alpha)} \sum\_{p=1}^{P} \alpha x\_p + (1-\alpha)y\_p - x\_p^{\alpha}y\_p^{1-\alpha} | Leba Wiley S. Sans, 2009

John Wiley & Sons. 2008

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y}) = \frac{1}{\beta(\beta-1)} \sum_{p=1}^{P} \left( x_p^{\beta} + (\beta-1) y_p^{\beta} - \beta x_p y_p^{\beta-1} \right)$$

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Févotte et Idier. arXiv. 2011

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$ 

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$$

$$D_{\beta=0}(\mathbf{x}|\mathbf{y}) = D_{\text{Itakura-Saito}},$$

$$D_{\beta=1}(\mathbf{x}|\mathbf{y}) = D_{\text{Kullback-Leibler}},$$

$$D_{\beta=2}(\mathbf{x}|\mathbf{y}) = D_{\text{Euclidean}}$$

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Févotte et Idier. arXiv. 2011

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$ 

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$$

#### Algorithme de résolution

$$C(\mathbf{W}, \mathbf{H}) := D_{\beta}(\mathbf{V} || \mathbf{W} \mathbf{H})$$
 non convexe mais ...

$$D_{\beta=0}(\mathbf{x}|\mathbf{y}) = D_{\text{Itakura-Saito}},$$

$$D_{\beta=1}(\mathbf{x}|\mathbf{y}) = D_{\text{Kullback-Leibler}},$$

$$D_{\beta=2}(\mathbf{x}|\mathbf{y}) = D_{\text{Euclidean}}$$

# 1.2 Factorisation non négative

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Févotte et Idier. arXiv. 2011

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$ 

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$$

 $D_{\beta=0}(\mathbf{x}|\mathbf{y}) = D_{\text{Itakura-Saito}},$ 

 $D_{\beta=1}(\mathbf{x}|\mathbf{y}) = D_{\text{Kullback-Leibler}},$ 

$$D_{\beta=2}(\mathbf{x}|\mathbf{y}) = D_{\text{Euclidean}}$$

#### Algorithme de résolution

 $C(\mathbf{W}, \mathbf{H}) := D_{\beta}(\mathbf{V} || \mathbf{W} \mathbf{H})$  non convexe mais ...  $C(\mathbf{W}, \cdot)$  et  $C(\cdot, \mathbf{H})$  convexes

# 1.2 Factorisation non négative

#### Différentes formes de factorisation

#### 2. Factorisation matricielle non-négative (NMF)

Févotte et Idier. arXiv. 2011

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$ 

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$$

#### $D_{\beta=0}(\mathbf{x}|\mathbf{y}) = D_{\text{Itakura-Saito}},$

$$D_{\beta=1}(\mathbf{x}|\mathbf{y}) = D_{\text{Kullback-Leibler}},$$

$$D_{\beta=2}(\mathbf{x}|\mathbf{y}) = D_{\text{Euclidean}}$$

#### Algorithme de résolution

$$C(\mathbf{W}, \mathbf{H}) := D_{\beta}(\mathbf{V} || \mathbf{W} \mathbf{H})$$
 non convexe mais ...  $C(\mathbf{W}, \cdot)$  et  $C(\cdot, \mathbf{H})$  convexes

#### Algorithm 1: algorithme NMF générique

```
Result: W, H solving NMF
initialisation W^1, H^1;
for t = 1:T do
      \mathbf{H}^{t+1} = \operatorname{argmin}_{\mathbf{H} < 0} \mathcal{D}_{\beta}(\mathbf{V} || \mathbf{W}^{t} \mathbf{H});
    \mathbf{W}^{t+1} = \operatorname{argmin}_{\mathbf{W} < 0} D_{\beta}(\mathbf{V} || \mathbf{W} \mathbf{H}^{t+1});
end
```

# 1.2 Factorisation non négative

#### Différentes formes de factorisation

2. Factorisation matricielle non-négative (NMF)

Févotte et Idier. arXiv. 2011

• 
$$\mathcal{W} = \mathbb{R}_{+}^{P \times K}$$
,  $\mathcal{H} = \mathbb{R}_{+}^{K \times N}$   
•  $D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$ 

• 
$$D(\mathbf{x}||\mathbf{y}) = D_{\beta}(\mathbf{x}|\mathbf{y})$$

$$D_{\beta=0}(\mathbf{x}|\mathbf{y}) = D_{\text{Itakura-Saito}},$$

$$D_{\beta=1}(\mathbf{x}|\mathbf{y}) = D_{\text{Kullback-Leibler}},$$

$$D_{\beta=2}(\mathbf{x}|\mathbf{y}) = D_{\text{Euclidean}}$$

### Algorithme de résolution

 $C(\mathbf{W}, \mathbf{H}) := D_{\beta}(\mathbf{V} || \mathbf{W} \mathbf{H})$  non convexe mais ...  $C(\mathbf{W}, \cdot)$  et  $C(\cdot, \mathbf{H})$  convexes

#### Propriétés:

- invariances d'échelle et de rotation
- pas de minimum global assure
- coefficients positifs
- axes non orthogonaux

Différentes applications

Comment determiner le nombre optimal de sources K?!

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.

```
Algorithm 1: Selection de K dans la NMF
```

```
Result: Matrice de consensus pour K donné
```

for m = 1 : M do

initialisation  $\mathbf{W}^{(\mathbf{m},\mathbf{K})}, \mathbf{H}^{(\mathbf{m},\mathbf{K})};$ 

 $\mathbf{H}^{*,(m,K)}, \mathbf{W}^{*,(m,K)} \leftarrow \text{NMF}(\mathbf{V}, K, \mathbf{W}^{(\mathbf{m},\mathbf{K})}, \mathbf{H}^{(\mathbf{m},\mathbf{K})});$ 

assignation éch. i à un cluster en prenant max de la colonne  $\mathbf{H}_{:,i}$ ;

calcul matrice  $\mathbf{C}^{(m,K)}$  avec  $\mathbf{C}_{i,j}^{(m,K)}=1$  si i et j même cluster;

end

$$\mathbf{C}^{(m,K)} = egin{bmatrix} 1 & 1 & 0 & \cdots & 0 \ 1 & 1 & 0 & \cdots & 1 \ dots & dots & dots & \ddots & dots \ 0 & 1 & \cdots & \cdots & 1 \end{bmatrix}$$

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs

Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.

**Algorithm 1:** Selection de K dans la NMF

Result: Matrice de consensus pour K donné

for 
$$m = 1 : M \text{ do}$$

initialisation  $\mathbf{W}^{(\mathbf{m},\mathbf{K})}, \mathbf{H}^{(\mathbf{m},\mathbf{K})};$ 

$$\mathbf{H}^{*,(m,K)}, \mathbf{W}^{*,(m,K)} \leftarrow \text{NMF}(\mathbf{V}, K, \mathbf{W}^{(\mathbf{m},\mathbf{K})}, \mathbf{H}^{(\mathbf{m},\mathbf{K})});$$

assignation éch. i à un cluster en prenant max de la colonne  $\mathbf{H}_{:,i};$ 

calcul matrice  $\mathbf{C}^{(m,K)}$  avec  $\mathbf{C}_{i,j}^{(m,K)}=1$  si i et j même cluster;

#### end

$$\bar{\mathbf{C}}^{(K)} = \frac{1}{m} \sum_{m=1}^{M} \mathbf{C}^{(m,K)};$$

clustering hiérarchique pour réordonner la matrice  $\bar{\mathbf{C}}^{(K)}$ ;

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs

Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.

$$\mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,38} \\ \vdots & \ddots & \vdots \\ v_{999,1} & \cdots & v_{999,38} \end{bmatrix}$$

38 éch. moelle

-> 11 AML

-> 8 T-ALL

-> 19 B-ALL

999 genes (HU6800)



#### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs

Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.

$$\mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,38} \\ \vdots & \ddots & \vdots \\ v_{999,1} & \cdots & v_{999,38} \end{bmatrix}$$

38 éch. moelle

- -> 11 AML
- -> 8 T-ALL
- -> 19 B-ALL

999 genes (HU6800)



**AML** + (2 ALL)

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs

(2 ALL)

Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.



### Nouvelle sous-division?

### Différentes applications

Comment determiner le nombre optimal de sources K?!

1. Classification de tumeurs

Brunet, Tamayo, Golub, et Mesirov. PNAS, 2004.



(2 ALL)





#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Idée: Il existe un petit nombre de processus mutagéniques (endogène ou exogène) ayant chacun une empreinte particulière.

Chaque processus affecterait des contextes particuliers

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

```
Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes
```

12 x 16 = 192 mutations monobase

5' + strand 3'

AATCGCGTTA

TTAGCGCAAT

3' - strand 5'

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase



#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase



Mutation T>G on + strand T - A => G - C

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

24/01/2024

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase



Mutation T>G on + strand T - A => G - C

Mutation A>C on - strand

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase



Mutation T>G on + strand T - A => G - C

Mutation A>C on - strand T-A => G-C

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 16 = 192 mutations monobase





Mutation T>G on + strand T - A => G - C

Categorized it as G [T>G] T

Pyrimidine first

Mutation A>C on - strand T - A => G - C

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

<u> Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013</u>

```
Contexte? 4 nucleotides A, C, G, T donc 4x3 = 12 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes
```

12 x 16 = 192 mutations monobase

$$4x3/2 = 6$$
 mutations monobase + 1 nucl. à g. et 1 nucl. à d. donc  $4x4 = 16$  contextes

\_ 12 x 8 = **96** mutations monobase

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

#### **Contexte?**

4x3/2 = 6 mutations monobase

+ 1 nucl. à g. et 1 nucl. à d. donc 4x4 = 16 contextes

12 x 8 = **96 mutations** monobase



#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

$$\mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,N} \\ \vdots & \ddots & \vdots \\ v_{96,1} & \cdots & v_{96,N} \end{bmatrix}$$

Exemple: N=4 génomes



#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

$$\mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,N} \\ \vdots & \ddots & \vdots \\ v_{96,1} & \cdots & v_{96,N} \end{bmatrix}$$

Exemple: N=4 génomes









#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

$$\mathbf{V} = egin{bmatrix} v_{1,1} & \cdots & v_{1,N} \ dots & \ddots & dots \ v_{96,1} & \cdots & v_{96,N} \end{bmatrix}$$

Exemple: N=4 génomes



 $\begin{bmatrix} h_{1,1} & \cdots & h_{1,N} \\ h_{K,1} & \cdots & h_{K,N} \end{bmatrix} = \mathbf{H}$ 

24/01/2024

Signature 2

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles

Nik-Zainal, Alexandrov, Wedge, et al. Cell 2012

Alexandrov, Nik-Zainal, Wedge, Campbell, Stratton. Cell Reports 2013

Alexandrov, Nik-Zainal, Wedge, et al.. Nature 2013

-> 4,9M de mutations, 7k exomes de cancers, 30 signatures

Alexandrov, Kim, Haradvala, et al. Nature 2020

-> 79,8M de mutations, 19k exomes de cancers, 4k genomes de cancers, 65 signatures SBS

https://cancer.sanger.ac.uk/signatures/sbs/

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles <a href="https://cancer.sanger.ac.uk/signatures/sbs/">https://cancer.sanger.ac.uk/signatures/sbs/</a>



24/01/2024

62

#### Différentes applications

Comment determiner le nombre optimal de sources K?!

2. Signatures mutationnelles <a href="https://cancer.sanger.ac.uk/signatures/sbs/">https://cancer.sanger.ac.uk/signatures/sbs/</a>



Exposition au tabac

### Sommaire

- 1. Factorisation matricielle non négative
  - 1 Factorisations matricielles
  - 2. Factorisation non négative
  - 3. Applications NMF
- 2. Analyse de survie
  - 1. Concepts
  - 2. Modèle de Cox

#### **Notations**

- 1.  $T_D, T_C$  variable aléatoires positives, temps à l'évènement et temps à la censure respectivement;
- 2.  $\Delta$  variable aléatoire binaire indiquant l'occurrence de l'évènement;
- 3.  $T = min(T_D, T_C)$  variable aléatoire observée;
- 4. Z vecteur aléatoire des covariables;

#### **Notations**

- 1.  $T_D, T_C$  variable aléatoires positives, temps à l'évènement et temps à la censure respectivement;
- 2.  $\Delta$  variable aléatoire binaire indiquant l'occurrence de l'évènement;
- 3.  $T = min(T_D, T_C)$  variable aléatoire observée;
- 4. Z vecteur aléatoire des covariables;

#### Définition fonction survie

La fonction de survie est donnée par

$$\mathcal{S} \colon egin{array}{cccc} \mathbb{R}_+ & 
ightarrow & [0,1] \ t & 
ightarrow & \mathbb{P}(\mathrm{T_D} \geq t), \end{array}$$

#### Définition taux de risque instantané

La taux de risque (instantané) est donné par

$$\lambda : \begin{array}{ccc} \mathbb{R}_{+} & \rightarrow & \mathbb{R}_{+} \\ t & \mapsto & \lim_{h \to 0} \mathbb{P}(\mathrm{T_D} \leq t + h | \mathrm{T_D} \geq t) \end{array}$$

Soit:  $f_D$  (resp  $F_D$ ) densité (resp f.r.) de  $T_D$ . Alors

$$\lambda(t) = \frac{f_D(t)}{1 - F_D(t)}$$

#### Définition taux de risque instantané

La taux de risque (instantané) est donné par

$$\lambda \colon \begin{array}{ccc} \mathbb{R}_{+} & \rightarrow & \mathbb{R}_{+} \\ t & \mapsto & \lim_{h \to 0} \mathbb{P}(\mathrm{T_D} \leq t + h | \mathrm{T_D} \geq t) \end{array}$$

Soit:  $f_D$  (resp  $F_D$ ) densité (resp f.r.) de  $T_D$ . Alors

$$\lambda(t) = \frac{f_D(t)}{1 - F_D(t)}$$
$$= \frac{-S'(t)}{S(t)}$$

#### Définition taux de risque instantané

La taux de risque (instantané) est donné par

$$\lambda \colon \begin{array}{ccc} \mathbb{R}_{+} & \rightarrow & \mathbb{R}_{+} \\ t & \mapsto & \lim_{h \to 0} \mathbb{P}(\mathrm{T_D} \leq t + h | \mathrm{T_D} \geq t) \end{array}$$

Soit:  $f_D$  (resp  $F_D$ ) densité (resp f.r.) de  $T_D$ . Alors

$$\lambda(t) = \frac{f_D(t)}{1 - F_D(t)}$$
$$= \frac{-S'(t)}{S(t)}$$

d'où 
$$\int_0^t \lambda(s)ds = -\log(S(t)) \quad (\operatorname{car} S(0) = 1)$$

### 2.2 Modèle de Cox

#### Le modèle

Soient  $\delta_{1:n}$ ,  $\mathbf{z_{1:n}}$  n-échantillon de  $\Delta_{1:n}$ ,  $\mathbf{Z_{1:n}}$ . Le modèle de Cox modélise  $T_{D,1:n}$ , à  $\mathbf{z_{1:n}}$  fixés, via le taux de risque selon la relation

$$\lambda_i(t) = \lambda_0(t) e^{\mathbf{z_i}^{\top} \beta}$$

### 2.2 Modèle de Cox

#### Le modèle

Soient  $\delta_{1:n}$ ,  $\mathbf{z_{1:n}}$  n-échantillon de  $\Delta_{1:n}$ ,  $\mathbf{Z_{1:n}}$ . Le modèle de Cox modélise  $T_{D,1:n}$ , à  $\mathbf{z_{1:n}}$  fixés, via le taux de risque selon la relation

$$\lambda_i(t) = \lambda_0(t) e^{\mathbf{z_i}^{\top} \beta}$$

#### **Explications**

-> **Proportionnalité** ou "risques proportionnels"?

Supposons  $\mathbf{z}=1$  pour le groupe traité et  $\mathbf{z}=0$  pour le groupe de contrôle. Alors,

$$\forall t \ge 0, \qquad \frac{\lambda(t,1)}{\lambda(t,0)} = \frac{\lambda_0(t)e^{\beta}}{\lambda_0(t)} = e^{\beta}$$

### 2.2 Modèle de Cox

#### Le modèle

Soient  $\delta_{1:n}$ ,  $\mathbf{z_{1:n}}$  n-échantillon de  $\Delta_{1:n}$ ,  $\mathbf{Z_{1:n}}$ . Le modèle de Cox modélise  $T_{D,1:n}$ , à  $\mathbf{z_{1:n}}$  fixés, via le taux de risque selon la relation

$$\lambda_i(t) = \lambda_0(t) e^{\mathbf{z_i}^{\top} \beta}$$

#### **Explications**

-> **Proportionnalité** ou "risques proportionnels"?

Supposons  $\mathbf{z}=1$  pour le groupe traité et  $\mathbf{z}=0$  pour le groupe de contrôle. Alors,

$$\forall t \ge 0, \qquad \frac{\lambda(t,1)}{\lambda(t,0)} = \frac{\lambda_0(t)e^{\beta}}{\lambda_0(t)} = e^{\beta}$$

-> <u>Linéarité</u>  $\log \lambda$  est une combinaison linéaire des covariables  $\mathbf{z} = (z^1, \cdots, z^p)$ 

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$ 

$$\mathbb{P}(\mathcal{T}_{i} = t_{i} | \Delta_{i} = \delta_{i}) = \lambda(t_{i})^{\delta_{i}} S_{i}(t_{i})$$

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_i(t_i)}{\sum_{j \in R(t_i)} \lambda_j(t_j)} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_i) \right]^{\delta_i} S_i(t_i)$$

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_i(t_i)}{\sum_{j \in R(t_i)} \lambda_j(t_j)} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_i) \right]^{\delta_i} S_i(t_i)$$

#### Patients encore à risque au temps i

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i}S_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_i(t_i)}{\sum_{j \in R(t_i)} \lambda_j(t_j)} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_i) \right]^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_0(t_i)e^{z_i^{\top}\beta}}{\sum_{j \in R(t_i)} \lambda_0(t_i)e^{z_j^{\top}\beta}} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_j) \right]^{\delta_i} S_i(t_i)$$

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_i(t_i)}{\sum_{j \in R(t_i)} \lambda_j(t_j)} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_i) \right]^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_0(t_i) e^{z_i^{\top} \beta}}{\sum_{j \in R(t_i)} \lambda_0(t_i) e^{z_j^{\top} \beta}} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_j) \right]^{\delta_i} S_i(t_i)$$

#### Entrainement par maximum de vraisemblance

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$

• 
$$\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \mathcal{S}_i(t_i)$$
  
•  $\mathbb{P}(T_i = t_i | \Delta_i = 1) = \mathbb{P}(T_{D,i} = t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$   
•  $\mathbb{P}(T_i = t_i | \Delta_i = 0) = \mathbb{P}(T_{D,i} \ge t_i) = \lambda_i(t_i)\mathcal{S}_i(t_i)$ 

$$\mathbb{P}(T_i = t_i | \Delta_i = \delta_i) = \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$\mathcal{L}(\beta; \mathbf{z_{1:n}}, \mathbf{t_{1:n}}, \delta_{\mathbf{1:n}}) = \prod_{i=1}^{n} \lambda(t_i)^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_i(t_i)}{\sum_{j \in R(t_i)} \lambda_j(t_j)} \right]^{\delta_i} \left[ \sum_{j \in R(t_i)} \lambda_j(t_i) \right]^{\delta_i} S_i(t_i)$$

$$= \prod_{i=1}^{n} \left[ \frac{\lambda_{o}(t_{i}) e^{z_{i}^{\top} \beta}}{\sum_{j \in R(t_{i})} \lambda_{o}(t_{i}) e^{z_{j}^{\top} \beta}} \right]^{\delta_{i}} \left[ \sum_{j \in R(t_{i})} \lambda_{j}(t_{j}) \right]^{\delta_{i}} S_{i}(t_{i})$$

### **Exemple**

| individual | $T_i$ | $\delta_i$ | $Z_i$ |
|------------|-------|------------|-------|
| 1          | 9     | 1          | 4     |
| 2          | 8     | 0          | 5     |
| 3          | 6     | 1          | 7     |
| 4          | 10    | 1          | 3     |

### **Exemple**

| individual | $T_i$ | $\delta_i$ | $Z_i$ |
|------------|-------|------------|-------|
| 1          | 9     | 1          | 4     |
| 2          | 8     | 0          | 5     |
| 3          | 6     | 1          | 7     |
| 4          | 10    | 1          | 3     |

ordered failure

Likelihood contribution

time 
$$T_i - R(T_i)$$

$$j$$
 time  $T_i$   $R(T_i)$   $i_j$   $\left[e^{\beta Z_i}/\sum_{j\in\mathcal{R}(T_i)}e^{\beta Z_j}\right]^{\delta_i}$ 

1 6 
$$\{1,2,3,4\}$$
 3  $e^{7\beta}/[e^{4\beta}+e^{5\beta}+e^{7\beta}+e^{3\beta}]$ 

#### **Exemple**

| individual | $T_i$ | $\delta_i$ | $Z_i$ |
|------------|-------|------------|-------|
| 1          | 9     | 1          | 4     |
| 2          | 8     | 0          | 5     |
| 3          | 6     | 1          | 7     |
| 4          | 10    | 1          | 3     |

ordered failure

 $8 \{1,2,4\} 2$ 

failure Likelihood contribution  $j \text{ time } T_i \quad R(T_i) \quad i_j \quad \left[e^{\beta Z_i} / \sum_{j \in \mathcal{R}(T_i)} e^{\beta Z_j}\right]^{\delta_i}$   $1 \quad 6 \quad \{1,2,3,4\} \quad 3 \quad e^{7\beta} / [e^{4\beta} + e^{5\beta} + e^{7\beta} + e^{3\beta}]$ 

### **Exemple**

| individual | $T_i$ | $\delta_i$ | $Z_i$ |
|------------|-------|------------|-------|
| 1          | 9     | 1          | 4     |
| 2          | 8     | 0          | 5     |
| 3          | 6     | 1          | 7     |
| 4          | 10    | 1          | 3     |

ordered failure

Likelihood contribution

$$6 \qquad \{1,2,3,4\}$$

j time  $T_i$   $R(T_i)$   $i_j$   $\left[e^{\beta Z_i}/\sum_{j\in\mathcal{R}(T_i)}e^{\beta Z_j}\right]^{\delta_i}$ 

1 6 
$$\{1,2,3,4\}$$
 3  $e^{7\beta}/[e^{4\beta}+e^{5\beta}+e^{7\beta}+e^{3\beta}]$ 

$$8 \{1,2,4\} 2$$

$$9 \{1,4\} 1$$

$$e^{4\beta}/[e^{4\beta}+e^{3\beta}]$$

### **Exemple**

| individual | $T_i$ | $\delta_i$ | $Z_i$ |
|------------|-------|------------|-------|
| 1          | 9     | 1          | 4     |
| 2          | 8     | 0          | 5     |
| 3          | 6     | 1          | 7     |
| 4          | 10    | 1          | 3     |

| ordered |
|---------|
| failure |

$$9 \{1,4\} 1$$

1 
$$e^{4\beta}/[e^{4\beta}+e^{3\beta}]$$

$$\{4\}$$
 4

$$e^{3\beta}/e^{3\beta} = 1$$