Pertemuan 10 Class Diagram

Class Diagram

Class Diagram mendeskripsikan jenis-jenis objek dalam sistem dan berbagai macam hubungan statis yang terdapat diantara mereka. Class diagram juga menunjukkan properti dan operasi sebuah class dan batasan-batasan yang terdapat dalam hubungan-hubungan objek tersebut. UML menggunakan istilah fitur sebagai istilah umum yang meliputi properti dan operasi sebuah class.

Properti, Atribut dan Asosiasi (lanjutan)

Asosiasi merupakan sebuah garis solid antara dua class, ditarik dari class sumber ke class target. Nama properti bergerak sampai tujuan akhir sebuah asosiasi bersama dengan multiplicity. Tujuan akhir sebuah asosiasi menghubungkan dengan class yang merupakan jenis properti.

Properti dalam susunan atribut dapat digambarkan sebagai berikut:

Order

- +dateReceived:Date[0..1]
- +isPrepaid:Boolean[1]

Multiplicity

Multiplicity merupakan indikasi tentang berapa banyak objek yang akan mengisi properti. Multiplicity yang sering digunakan adalah:

- ➤ 1 (contoh: satu pesanan hanya bisa untuk seorang pelanggan)
- > 0..1 (contoh: pelanggan perusahaan dapat memiliki seorang sales rep)
- * (contoh: tidak ada jumlah maksimal / tidak terbatas berapa jumlah pesanan yang dapat dibuat oleh pelanggan)

Generalisasi

Contoh dari gambar class sebelumnya yang merupakan generalisasi melibatkan pelanggan perorangan dan pelanggan perusahaan. Keduanya mempunyai persamaan dan perbedaan. Persamaan tersebut dapat dimasukkan kedalam class pelanggan umum (supertype) dengan pelanggan perorangan dan pelanggan perusahaan sebagai subtype.

Dengan menggunakan perspektif perangkat lunak, interpretasi tersebut sudah termasuk: pelanggan perusahaan merupakan subclass dari pelanggan. Dalam object oriented subclass mewarisi semua fitur superclass dan dapat melakukan semua metode superclass.

System Analysis and Design with UML

1. System Analysis

- 1. Business Process Identification
 - Use Case Diagram
- Business Process Modeling
 - Activity Diagram or Business Process Modeling Notation (BPMN)
- Business Process Realization
 - Sequence Diagram (Buat untuk setiap use case dengan menggunakan pola Boundary-Control-Entity)

1. System Design

- 1. Program Design
 - 1. Class Diagram (Gabungkan Boundary-Control-Entity Class dan susun story dari sistem yang dibangun)
 - **2.** Package Diagram (Gabungan class yang sesuai, boleh menggunakan pola B-C-E)
 - **3. Deployment Diagram** (arsitektur software dari sistem yang dibangun)
- 2. User Interface Design (Buat UI design dari Boundary Class)
- 3. Entity-Relationship Model (Buat ER diagram dari Entity Class)

Class Diagram Elements

- 1. Classes
- 2. Attributes
- 3. Operations
- 4. Relationships

Classes

- Templates for creating instances or objects
- All objects of a class have same structure and behavior, but contain different attributes
 - 1. Concrete: used to create actual objects
 - 2. Abstract: extended to create other classes

Attributes

- Units of information relevant to the description of the class
- Only attributes important to the task should be included
- Attributes should be primitive types (integers, strings, doubles, date, time, Boolean, etc.)

Operations (Methods)

- Defines the behavior of the class
- Action that instances/objects can take
- Focus on relevant problem-specific operations (at this point)

Relationships

Generalization

- "Is-A" relationship
- Enables inheritance of attributes & oper's
- Subclasses and superclasses
- Principle of substitutability
 - Subclass be substituted for superclass

Aggregation

- "Has-A" relationship
- Relates parts to wholes
- Uses decomposition

Association

- Relationships that don't fit "Is-A" or "Has-A"
- Often a weaker form of "Has-A"
- Miscellaneous relationships between classes
- Example:
 - Patient schedules an appointment
 - So the appointment has a patient
 - This is weak

Agregasi

- Agregasi sebuah relasi yang menyatakan bahwa satu kelas "utuh (whole)" yang lebih besar memuat satu atau lebih kelas "bagian (part)" yang lebih kecil. Sebaliknya, kelas "bagian" adalah bagian dari kelas "utuh"
- Dalam UML 2.0 notasi agregasi sudah tidak dipakai lagi

Contoh Agregasi

Contoh Agregasi

Figure 3.10. Aggregations, compositions, and generalizations between classes.

Example Class Diagram

More on Attributes

- Derived attributes
 - /age, for example can be calculated from birth date and current date
- Visibility of attributes
 - +Public: not hidden from any object
 - #Protected: hidden from all but immediate subclasses
 - Private: hidden from all other classes
- Default is private

More on Operations

- Constructor: creates object
- Query: see class state
- Update: change attribute values
- Operations can also be public, protected, or private
 - Default for operations is public

More on Relationships

- A primary purpose of class diagrams is to show relationships, or associations, between classes
- Class can be related to itself (role)
 - Use a "+" sign to show it's a role and not the name of a relationship

Relationship Multiplicity

Exactly one	Dept 1 Boss
Zero or more	Employee 0* Child
One or more	Boss 1* Employee
Zero or one	Employee 01 Spouse
Specified range	Employee 24 Vacation
Disjoint ranges	Employee 13, 5 Committee

Class

Class with Attribute and Method

Dialler

digits : VectornDigits : int

+ digit(n:int)

recordDigit(n : int) : boolean

```
public class Dialler
{
   private Vector digits;
   int nDigits;
   public void digit(int n);
   protected boolean recordDigit(int n);
}
```

Class Association

Multiplicity

```
Phonebook

* Phone Number

public class Phonebook
{
 private Vector itsPnos;
}
```

Inheritance

Interface

Class Diagram: Internet Order Project

Class Diagram: Sistem ATM

Class Diagram – Case Study

DATA MODEL (ERD)

Data Model Sistem ATM

