FrontISTR Ver.4.5 (3.7) Cheat Sheet (2016/8/11)

インストール

\$./setup.sh -p --with-tools --with-metis

\$ make

\$ make install

並列実行

\$ hecmw_part1

\$ mpiexec -np <4> fistr1

入出力

ファイルの種類	ファイル名	入出力
全体制御ファイル	hecmw_ctrl.dat	入
メッシュデータ	<modelname>.msh</modelname>	入
解析制御データ	<modelname>.cnt</modelname>	入
領域分割制御データ	hecmw_part_ctrl.dat	入
ログファイル	<0>.log	出
解析結果ファイル	<modelname>.res</modelname>	出

全体制御ファイル (hecmw_ctrl.dat)

!MESH,NAME=part in,TYPE=HECMW-ENTIRE

<ModelName>.msh

!MESH,NAME=part_out,TYPE=HECMW-DIST

<ModelName p4>

!MESH, NAME=fstrMSH,TYPE=HECMW-DIST

<ModelName_p4>

!CONTROL,NAME=fstrCNT

<ModelName>.cnt

!RESULT,NAME=fstrRES,IO=OUT

<ModelName>.res

領域分割制御データ(hecmw part ctrl.dat)

!PARTITION,TYPE=NODE-BASED,METHOD=PMETIS,DOMAIN=<4>

|メツンユフアイル

!HEADER

<TITLE>

!NODE

NODE_ID, x, y, z

!ELEMENT.TYPE=<341>

ELEM ID, node1, node2, node3, ...

!SECTION.TYPE=<SOLID>,EGRP=<EG1>,MATERIAL=<MAT1>

!NGROUP,NGRP=<NG1>

node1, node2, ...

!SGROUP.SGRP=<SG1>

elem1, localsurf1, elem2, localsurf2, ...

!EGROUP.EGRP=<EG1>

elem1, elem2, ...

!CONTACT PAIR,NAME=<CP1>

<Slave_NodeGroup>, <Master_SurfaceGroup>

!AMPLITUDE,NAME=<AMP1>,VALUE=<RELATIVE|ABSOLUTE>

value1, time1, value2, time2, ...

!INITIAL CONDITION.TYPE=TEMPERATURE

NODE_ID, value

!EQUATION

<項数>, <右辺値>

NODE_ID, <dof>, <係数>, ...

!ZERO

!END

解析制御ファイル (共通)

!VERSION

3.7

!WRITE,VISUAL,FREQUENCY=<出力間隔>

!WRITE,RESULT,FREQUENCY=<出力間隔>

!OUTPUT_VIS

<出力変数名>, <ON|OFF>

!OUTPUT RES

<出力変数名>, <ONIOFF>

!RESTART,FREQUENCY=<出力間隔>

!END

変数名	物理量	対象
DISP	変位	VIS,RES
ROT	回転	VIS,RES
REACTION	節点反力	VIS,RES
NSTRAIN	節点ひずみ	VIS,RES
NSTRESS	節点応力	VIS,RES
NMISES	節点Mises応力	VIS,RES
ESTRAIN	要素ひずみ	RES
ESTRESS	要素応力	RES
EMISES	要素Mises応力	RES
ISTRAIN	積分点ひずみ	RES
ISTRESS	積分点応力	RES
PL_ISTRAIN	積分点塑性ひずみ	RES
VEL	速度	VIS,RES
ACC	加速度	VIS,RES

解析制御ファイル (静解析)

!SOLUTION,TYPE=<STATIC|NLSTATIC>

!STATIC

!BOUNDARY,GRPID=<1>

NODE ID, <開始自由度>, <終了自由度>, <拘束値>

!CLOAD,GRPID=<1>

NODE_ID, <自由度>, <荷重值>

!DLOAD,GRPID=<1>

SGRP, <荷重タイプ>, <荷重パラメータ>

!SPRING,GRPID=<1>

NODE ID, <拘束自由度>, <ばね定数>

解析制御ファイル (接触)

!CONTACT_ALGO,TYPE=<SLAGRANGE|ALAGRANGE>

!CONTACT,GRPID=<1>,NTOL=<法線方向閾値>,TTOL=<接線方向閾

値>,NPENALTY=<法線方向ペナルティ>,TPENALTY=<接線方向ペナルティ>

<接触ペア名>, <摩擦係数>, <摩擦のペナルティ剛性>

解析制御ファイル (熱応力)

!REFTEMP

<温度>

!TEMPERATURE,READRESULT=<結果ステップ数>,SSTEP=<開始ステッ

プ>,INTERVAL=<ステップ間隔>

解析制御ファイル (固有値)

!EIGEN

<固有値数>, <許容差>, <最大反復数>

!BOUNDARY

解析制御ファイル (熱伝導)

IHFAT

<DT>, <計算時間>, <時間增分>, <許容変化>, <最大反復>, <判定値>

!FIXTEMP

NODE ID, <温度>

!CFLUX

NODE ID, <熱流束>

!DFLUX

ELEMENT_ID, <荷重タイプ>, <熱流束>

!SFLUX

SGRP, <熱流束>

!FILM

ELEMENT_ID, <荷重タイプ>, <熱伝達係数>, <雰囲気温度>

!SFLIM

SGRP, <熱伝達係数>, <雰囲気温度>

!RADIATE

ELEMENT_ID, <荷重タイプ>, <輻射係数>, <雰囲気温度>

!SRADIATE

SGRP, <輻射係数>, <雰囲気温度>

解析制御ファイル (動解析共通)

!BOUNDARY

!CLOAD

!VELOCITY.TYPE=<INITIAL|TRANSIT>,AMP=<NAME>

Node ID, <自由度>, <自由度>, <拘束値>

!ACCELERATION,TYPE=<INITIAL|TRANSIT>,AMP=<NAME>

Node_ID, <自由度>, <自由度>, <拘束値>

解析制御ファイル (動解析時刻歴応答)

!DYNAMIC,TYPE=NONLINEAR

<陰解法1|陽解法11>, <時刻歴1>

<開始時刻>, <終了時刻>, <全ステップ数>, <時間増分>

<γ>, <β>

<集中質量|consistent質量2>, 1, <Rm>, <Rk>

1, <モニタリング節点>, <モニタリング出力間隔>

<変位>, <速度>, <加速度>, <反力>, <ひずみ>, <応力>

解析制御ファイル (動解析周波数応答)

!DYNAMIC,TYPE=NONLINEAR

<陰解法1|陽解法11>, <周波数2>

<下限周波数>, <上限周波数>, <応答計算点数>, <変位測定周波数>

<振動開始時刻>, <振動終了時刻>

<集中質量1>, 1, <Rm>, <Rk>

<サンプリング数>, <モード空間1|物理空間2>, <モニタリング節点>

<変位>, <速度>, <加速度>, 0, 0, 0

!FIGENREAD

<固有値解析のログファイル>

<モード始点>, <モード終点>

!FLOAD

NODE ID, <自由度>, <荷重值>

|解析ステップ

!STEP,TYPE=<STATIC|VISCO>,SUBSTEPS=<分割数>,CONVERG=<判定值>

<時間増分値>, <時間増分終値>

BOUNDARY, <GRPID>

LOAD, <GRPID>

CONTACT, <GRPID>

境界条件種類	属するカード
BOUNDARY	!BOUNDARY, !SPRING
LOAD	!CLOAD, !DLOAD, !TEMPERATURE
CONTACT	!MATERIAL

材料物性值

!MATERIAL,NAME=<材料名>

!ELASTIC,TYPE=<ISOTROPIC|ORTHOTROPIC>,DEPENDENCIES=<0>

<ヤング率>, <ポアソン比>

!DENSITY

<質量密度>

!EXPANSION_COEFF,TYPE=<ISOTROPIC|ORTHOTROPIC>,DEPENDENCIES=<0>

<線膨張係数>

!PLASTIC,YIELD=MISES,HARDEN=BILINEAR,DEPENDENCIES=<0> <初期降伏応力>, <硬化係数>

!PLASTIC,YIELD=MISES,HARDEN=MULTILINEAR,DEPENDENCIES=<0>

<降伏応力>, <塑性ひずみ>

<降伏応力>, <塑性ひずみ>

!PLASTIC,YIELD=MISES,HARDEN=SWIFT,DEPENDENCIES=<0> <60>, <K>, <n>

!PLASTIC,YIELD=<Mohr-Coulomb|Drucker-

Prager>,HARDEN=BILIENAR,DEPENDENCIES=<0>

<粘着力>, <内部摩擦角>, <硬化係数>

!HYPERELASTIC,TYPE=NEOHOOKE

<C10>, <D>

!VISCOELASTIC

<せん断緩和弾性率>, <緩和時間>

!CREEP,TYPE=Norton,DEPENDENCIES=<0>

<A>, <n>, <m>

ソルバ―制徿

!SOLVER,METHOD=<CG>,PRECOND=<1>,MPCMETHOD=<3> <反復回数>, <前処理繰り返し数>, <クリロフ>, <目標色数>

<打切り誤差>, <対角成分倍率>, 0.0

クリロフ部分空間数を設定すること
接触解析で使う

値	前処理
1,2	SSOR
3	Diagonal Scaling
5	AMG
10	Block ILU(0)
11	Block ILU(1)
12	Block ILU(2)

値	MPC手法
1	ペナルティ法
2	MPC-CG法
3	陽的自由度消去法

ポスト処理 (AVS用データ出力)

!VISUAL

!output_type=COMPLETE_REORDER_AVS

ポスト処理 (境界面BMP画像出力)

!VISUAL.method=PSR

!surface_num=1

!surface

!surface_style=1

!display method=1

!color_comp_name=STRESS

!color comp=7

!x resolution=800

.x_resolution=666

!y_resolution=600 !output_type=BMP

- 4白 ガイタカナビ

非線形解析 解析の種類 関連するカード 静解析 !SOLUTION, TYPE=NLSTATIC | ISTEP 動解析 !DYNAMIC, TYPE=NONLINEAR | ISTEP IMATERIAL | IPLASTIC | IHYPERELASTIC | IVISCOELASTIC | ICREEP