Welcome!

While you're waiting... I've prepared a Jupyter notebook that we will use to explore our data and build a machine learning algorithm from scratch. In order to get the notebook up and running on your computer:

- 1.) Head to https://github.com/collinprather
- Click on the "BDI-2018-JupyterHub" repository
- 3.) Scroll down and follow the step-by-step instructions in the readme.md

Machine Learning From Scratch

Collin Prather

September 21st, 2018

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

What is Machine Learning?

Machine Learning

Arthur Samuel:

Machine learning is "Field of study that gives computers the ability to learn without being explicitly programmed".

According to Google...

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Identify the Problem

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Get the Data

In our case, we'll head to GRData

Get the Data

In our case, we'll head to GRData

	X	Y	OBJECTID	ROADSOFTID	BIKE	CITY	CRASHDATE	CRASHSEVER	CRASHTYPE	WORKZNEACT
0	-85.639647	42.927216	6001	929923	No	Grand Rapids	2007-02-16	Property Damage Only	Side-Swipe Same	Uncoded & Errors
1	-85.639487	42.927213	6002	935745	No	Grand Rapids	2007-06-22	Property Damage Only	Side-Swipe Same	Uncoded & Errors
2	-85.639387	42.927212	6003	926813	No	Grand Rapids	2007-01-08	Property Damage Only	Head-on	Work on Shoulder / Median
3	-85.639288	42.927210	6004	943813	No	Grand Rapids	2007-11-12	Property Damage Only	Side-Swipe Same	Uncoded & Errors
4	-85.639288	42.927210	6005	943791	No	Grand Rapids	2007-11-09	Property Damage Only	Parking	Uncoded & Errors

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Explore the Data

- Verify data
- Visualize data
- Identify patterns
- Give direction to analysis

	X	Y
0	-85.639647	42.927216
1	-85.639487	42.927213
2	-85.639387	42.927212
3	-85.639288	42.927210
4	-85.639288	42.927210
5	-85.639188	42.927208
6	-85.639168	42.927208
7	-85.639108	42.927207

Machine Learning From Scratch

Steps in the Machine Learning Process

Step 2: Data Exploration

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Feature Engineering

'Coming up with features is difficult, time-consuming, requires expert knowledge. Applied machine learning is basically feature engineering.' Prof. Andrew Ng

'At the end of the day, some machine learning projects succeed and some fail. What makes the difference?

Easily the most important factor is the features used.'

Prof. Pedro Domingos

```
\begin{array}{c|c}
\hline
12 \\
2 \\
4 \\
18 \\
19 \\
6 \\
\vdots
\end{array}

\Rightarrow f(hour) = \frac{2 \cdot \pi \cdot (hour)}{24}
```

$$\begin{bmatrix} 12 \\ 2 \\ 4 \\ 18 \\ 19 \\ 6 \\ \vdots \end{bmatrix} \implies f(hour) = \frac{2 \cdot \pi \cdot (hour)}{24} \implies \begin{bmatrix} 3.14 \\ 0.52 \\ 1.03 \\ 4.71 \\ 4.98 \\ 1.57 \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix}
3.14 \\
0.52 \\
1.03 \\
4.71 \\
4.98 \\
1.57 \\
\vdots
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0.00 \\
0.47 \\
0.86 \\
-0.99 \\
-0.97 \\
1.0 \\
\vdots
\end{bmatrix},
\begin{bmatrix}
-1.0 \\
0.87 \\
0.51 \\
-0.002 \\
-0.26 \\
0.001 \\
\vdots
\end{bmatrix}$$

$$sin(f(hour))$$

$$cos(f(hour))$$

```
In [193]: crash['HOUR_X']=np.sin(2. * np.pi * crash.HOUR / 24.)
           crash['HOUR_Y']=np.cos(2. * np.pi * crash.HOUR / 24.)
In [194]: # Hence, the time of day is now cyclic (just as in reality)
           plt.figure(figsize = (5,5))
           plt.scatter(crash.HOUR_X, crash.HOUR_Y)
Out[194]: <matplotlib.collections.PathCollection at 0x1a0daeca20>
            1.00
            0.75
            0.50
            0.25
            0.00
           -0.25
           -0.50
           -0.75
           -1.00
                -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
```

Data Processing

Two general types of data to deal with:

Data Processing

Two general types of data to deal with:

- Numerical variables (Quantitative)
 - ▶ Driver 1 age, number of injuries, etc

Data Processing

Two general types of data to deal with:

- Numerical variables (Quantitative)
 - Driver 1 age, number of injuries, etc
- Categorical variables (Qualitative)
 - ▶ Hit and run, motorcycle involved, etc

Step 4: Model Selection

Machine Learning Overview

Steps in the Machine Learning Process

Step 4: Model Selection

Building a Support Vector Machine from Scratch

└Step 4: Model Selection

Choosing a Model/Representation

	Classification	Regression
Supervised	Logistic Regression	 Linear Regression
	 Naive-Bayes 	 Decision Trees
	• KNN	 Random Forests
	• SVM	
Unsupervised	Apriori	• PCA
	Hidden Markov Model	 K-means
		• SVD

Step 4: Model Selection

Bias-Variance Tradeoff

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

Steps in the Machine Learning Process

Step 0: Identify The Problem

Step 1: Get the Data

Step 2: Data Exploration

Step 3: Data Preparation

Step 4: Model Selection

Building a Support Vector Machine from Scratch

Representation

Evaluation

Optimization

- https://www.sisense.com/glossary/data-exploration/
- https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
- http://scott.fortmann-roe.com/docs/BiasVariance.html