Conceitos Preliminares

Alfabeto (Σ)

• É um conjunto finito e não vazio de símbolos. Assim são alfabetos os conjuntos:

```
{0, 1}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
{a, b, ab, abc}
{♣, ♠, ♥, ♠}
```

Cada elemento no alfabeto pode ser chamado de uma letra, a qual tem um significado diferente do usual. O terceiro alfabeto apresentado possui 4 letras.

Palavra

• Uma palavra ou cadeia sobre um alfabeto Σ é uma tupla ordenada de letras de Σ . Assim:

```
\langle 0, 1, 0, 1, 1, 0 \rangle é uma palavra sobre \{0, 1\}

\langle 2, 1, 0, 8 \rangle é uma palavra sobre \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

\langle c, o, m, p, i, l, a, d, o, r \rangle é uma palavra sobre \{a, b, ..., z\}

\langle a, ab, b, abc \rangle é uma palavra sobre \{a, b, ab, abc\}
```

Em geral, pode-se representar uma palavra apenas aglutinando, na ordem correta, as letras que a compõem. Assim:

$$\langle 0, 1, 0, 1, 1, 0 \rangle$$
 como 010110
 $\langle 2, 1, 0, 8 \rangle$ como 2108
 $\langle c, o, m, p, i, l, a, d, o, r \rangle$ como $compilador$
E a palavra $\langle a, ab, b, abc \rangle$?

Porém, (a, ab, b, abc) não pode ser representada simplesmente por aabbabc, pois essa representação poderia indicar outras palavras além daquela que se deseja representar.

Neste caso, pode-se utilizar espaços entre as letras para indicar como "separar" as letras da palavra.

A palavra (a, ab, b, abc) seria representada como a ab b abc

A palavra (a, a, b, b, abc) seria representada como a a b b abc.

Deve-se ressaltar que os espaços NÃO fazem parte das palavras.

Tamanho de uma Palavra - |x|

Define-se o tamanho de uma palavra x, denotado por |x| como o número de letras de x. Assim:

$$|010110| = 6$$

Cadeia Vazia - λ ϵ

Sobre qualquer alfabeto Σ , define-se uma única palavra de tamanho 0 (zero) que é denotada por λ ou ϵ .

Definem-se, também, os conjuntos:

$$\sum_{k=1}^{k} = \{ \text{ palavras } x \text{ sobre } \sum_{k=1}^{k} \text{ tal que, } |x| = k \}$$

$$\sum^* = \bigcup_{k=0}^{\infty} \sum^k = \sum^0 \bigcup \sum^1 \bigcup \sum^2 \dots$$
 (Fecho de Kleene)

$$\sum\nolimits^{+}=\sum\nolimits^{*}-\left\{ \mathcal{\lambda}\right\}$$

Fecho de Kleene

$$\{ab, c\}^* = ?$$

$${a, b, c}^+ = ?$$

Fecho de Kleene

```
\{ab, c\}^* = \{\epsilon, ab, c, abab, abc, cab, cc, ababab, ababc, abcab, ... \}
```

```
\{a, b, c\}^+ = \{a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, abc, ...\}
```

Linguagem

• Dado um alfabeto Σ , uma linguagem L sobre um alfabeto Σ é um subconjunto qualquer de Σ^* . Assim:

{ 0, 1, 00, 01, 10, 11} é uma linguagem sobre **{ 0, 1}** que contém 6 palavras

 $\{x \in \{0,1,2,3,4,5,6,7,8,9\}^* \text{ tal que } x \text{ representa um número decimal impar} \} é uma linguagem sobre <math>\{0,1,2,3,4,5,6,7,8,9\}$ com um número infinito de palavras

o conjunto de todos os programas C++ válidos (sintaticamente corretos) é uma linguagem sobre um alfabeto Σ composto de:

- palavras reservadas como for, while, if, etc
- símbolos especiais como {, }, *, +, etc
- nomes de variáveis, métodos, classes, etc.

Operações sobre Linguagens

- União (\cup): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se $L_1 \cup L_2$ como { $x \in \Sigma^*$ tal que $x \in L_1 \vee x \in L_2$ }
- Concatenação (): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se L_1 L_2 como { x y \in Σ^* tal que x \in L_1 \land y \in L_2 }
- Fecho de Kleene (*): dada uma linguagem L sobre o alfabeto Σ , define-se L^* como sendo $\lambda \cup L \cup (L.L) \cup (L.L.L) \cup (L.L.L) \cup ...$

Operações sobre Linguagens

• União (\cup): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se $L_1 \cup L_2$ como { $x \in \Sigma^*$ tal que $x \in L_1 \vee x \in L_2$ }

$$\{a, b\} \cup \{c, d\} = ?$$

$$\{100, 010, 110\} \cup \{00, 01, 11\} = ?$$

Operações sobre Linguagens

• União (\cup): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se $L_1 \cup L_2$ como { $x \in \Sigma^*$ tal que $x \in L_1 \vee x \in L_2$ }

$$\{a, b\} \cup \{c, d\} = \{a, b, c, d\}$$

$$\{100, 010, 110\} \cup \{00, 01, 11\} = \{100, 010, 110, 00, 01, 11\}$$

Operações sobre Linguagens

• Concatenação (•): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se L_1 • L_2 como { x • y \in Σ^* tal que x \in L_1 \land y \in L_2 }

```
\{101, 110\} \cdot \{00, 11\} = ?
```

Operações sobre Linguagens

• Concatenação (.): dadas as linguagens L_1 e L_2 , sobre o alfabeto Σ , define-se L_1 • L_2 como { x • y \in Σ^* tal que x \in L_1 \land y \in L_2 }

```
\{101, 110\} \cdot \{00, 11\} = \{10100, 10111, 11000, 11011\}
```

Operações sobre Linguagens

• Fecho de Kleene (*): dada uma linguagem L sobre o alfabeto Σ , define-se L^* como sendo $\lambda \cup L \cup (L.L) \cup (L.L.L) \cup (L.L.L) \cup ...$

$${abc}^* = ?$$

Operações sobre Linguagens

• Fecho de Kleene (*): dada uma linguagem L sobre o alfabeto Σ , define-se L^* como sendo $\lambda \cup L \cup (L.L) \cup (L.L.L) \cup (L.L.L) \cup ...$

```
\{abc\}^* = \{\lambda, abc, abcabc, abcabcabc, abcabcabc, ...\}
```

Análise Léxica

Fluxo do Compilador

Linguagem de Programação

Uma linguagem de programação, de uma forma genérica, pode ser definida como uma linguagem $L \subseteq \Sigma^*$, onde o alfabeto Σ é formado pelos símbolos da tabela ASCII e as palavras $x \in L$, são formadas de acordo com regras específicas de cada linguagem de programação.

- Recebe uma sequência de caracteres e produz uma sequência de palavras chaves, pontuação e nomes
- Descarta comentários e espaços em branco
- Cada elemento produzido pelo analisador léxico recebe o nome de TOKEN
- Cada **TOKEN** é uma cadeia que pertence a linguagem que se deseja compilar, onde a construção de cada TOKEN obedece a regras que são aplicadas ao alfabeto Σ
- Cada instância de um TOKEN recebe o nome de lexema

Tokens

Tipos de Tokens	Exemplos (lexemas)	
ID	foo n14 last	
NUM	73 0 00 515 082	
REAL	66.1 .5 10. 1e67 5.5e-10	
IF	if	
COMMA	,	
NOTEQ	! =	
LPAREN	(

Não-Tokens

comment	/* try again */
preprocessor directive	#include <stdio.h></stdio.h>
preprocessor directive	#define NUMS 5, 6
macro	NUMS
blanks, tabs, and newlines	

Obs.: O pré-processador passa pelo programa antes do léxico

Exemplo

```
float match0(char *s) /* find a zero */
    {if (!strncmp(s, "0.0", 3))
    return 0.;
}
```

Retorno do analisador léxico:

FLOAT	ID(match0)	LPAREN	CHAR	STAR	ID(s)
RPAREN	LBRACE	IF	LPAREN	BANG	ID(strncmp)
LPAREN	ID(s)	COMMA	STRING(0.0)	COMMA	NUM(3)
RPAREN	RPAREN	RETURN	REAL(0.0)	SEMI	RBRACE
EOF			, ,		

- Alguns tokens têm um valor semântico associados a eles:
 - IDs e NUMs (identificadores e números)
- Como são descritas as regras léxicográficas?
 Descrição de identificadores em C++ na língua portuguesa:
 - Um IDENTIFICADOR é uma seqüência de letras e dígitos; o primeiro caractere deve ser uma letra. O símbolo underscore _ conta como uma letra. Maiúsculas e minúsculas são diferentes.
 - Se uma dada cadeia foi analisada para formar tokens até um dado caractere, o próximo token é tal que deve incluir a maior cadeia de caracteres que podem possivelmente formar um token.
 - Espaços, tabulações, fim-de-linha e comentários são ignorados, pois os mesmos servem para separar *tokens*.
 - Alguns espaços em branco são necessários para separar identificadores, palavras reservadas e constantes que estejam próximos.
- Como os tokens são especificados?

- Um linguagem L é um conjunto de *strings* (palavras) ($L \subseteq \Sigma^*$)
- Uma string (palavra) é uma sequência de símbolos (cadeia)
- Estes símbolos estão definidos em um alfabeto finito (Σ)
- Ex: Linguagem C ou Pascal, linguagem dos primos, etc
- Deseja-se poder dizer se uma string (palavra) está ou não em uma linguagem, isto é:

```
dada uma cadeia x sobre \Sigma;
dada uma linguagem L sobre \Sigma^{*};
será que x \in L?
```

- Um linguagem L é um conjunto de *strings* (palavras) ($L \subseteq \Sigma^*$)
- Uma string (palavra) é uma sequência de símbolos (cadeia)
- Estes símbolos estão definidos em um alfabeto finito (Σ)
- Ex: Linguagem C ou Pascal, linguagem dos primos, etc
- Deseja-se poder dizer se uma string (palavra) está ou não em uma linguagem, isto é:

dada uma cadeia x sobre Σ ; dada uma linguagem L sobre Σ^{*} ; será que $x \in L$?

Uma expressão regular (ER) utiliza linguagens regulares "primitivas" e combina-as por meio de alguns operadores.

Essa expressão formada define, então, uma outra linguagem

Pode-se utilizar um autômato finito para dizer se uma determinada palavra pertence ou não a linguagem gerada por uma expressão regular.

Símbolo: Para cada símbolo *a* no alfabeto da linguagem, a expressão regular *a* representa a linguagem contendo somente a string *a*.

Alternação: Dadas duas expressões regulares *M* e *N*, o operador de alternação (|) gera uma nova expressão *M* | *N*. Uma string está na linguagem de *M* | *N* se ela está na linguagem de *M* ou na linguagem de *N*.

Concatenação: Dadas duas expressões regulares $M \in N$, o operador de concatenação (\cdot) gera uma nova expressão $M \cdot N$. Uma string está na linguagem de $M \cdot N$ se ela é a concatenação de quaisquer duas strings $\alpha \in \beta$, tal que α está na linguagem de $M \in \beta$ está na linguagem de N.

Símbolo: Para cada símbolo *a* no alfabeto da linguagem, a expressão regular *a* representa a linguagem contendo somente a string *a*.

Dado um alfabeto $\Sigma = \{a_1, a_2, ..., a_n\}$, os símbolos $a_1, a_2, ..., a_n$ são Expressões Regulares que correspondem às linguagens $\{a_1\}, \{a_2\}, ..., \{a_n\}$, respectivamente.

Alternação: Dadas duas expressões regulares *M* e *N*, o operador de alternação (|) gera uma nova expressão *M* | *N*. Uma string está na linguagem de *M* | *N* se ela está na linguagem de *M* ou na linguagem de *N*.

Se e_1 e e_2 são ER que correspondem às linguagens L_1 e L_2 , então $e_1 \mid e_2$ é igual a $e_1 \cup e_2$ que é uma expressão regular que corresponde a $L_1 \cup L_2$.

$$(a | b) = ?$$

Alternação: Dadas duas expressões regulares **M** e **N**, o operador de alternação (|) gera uma nova expressão **M** | **N**. Uma string está na linguagem de **M** | **N** se ela está na linguagem de **M** ou na linguagem de **N**.

Se e_1 e e_2 são ER que correspondem às linguagens L_1 e L_2 , então $e_1 \mid e_2$ é igual a $e_1 \cup e_2$ que é uma expressão regular que corresponde a $L_1 \cup L_2$.

$$(a|b) = \{a, b\}$$

Concatenação: Dadas duas expressões regulares $M \in N$, o operador de concatenação (·) gera uma nova expressão $M \cdot N$. Uma string está na linguagem de $M \cdot N$ se ela é a concatenação de quaisquer duas strings $\alpha \in \beta$, tal que α está na linguagem de $M \in \beta$ está na linguagem de N.

Se e_1 e e_2 são ER que correspondem às linguagens L_1 e L_2 , então $e_1 \cdot e_2$ é uma expressão regular que corresponde a $L_1 \cdot L_2$.

$$(\mathbf{a} \mid \mathbf{b}) \cdot \mathbf{a} = ?$$

Concatenação: Dadas duas expressões regulares $M \in N$, o operador de concatenação (·) gera uma nova expressão $M \cdot N$. Uma string está na linguagem de $M \cdot N$ se ela é a concatenação de quaisquer duas strings $\alpha \in \beta$, tal que α está na linguagem de $M \in \beta$ está na linguagem de N.

Se e_1 e e_2 são ER que correspondem às linguagens L_1 e L_2 , então $e_1.e_2$ é uma expressão regular que corresponde a $L_1.L_2$.

$$(a \mid b) \cdot a = \{ aa, ba \}$$

• **Epsilon**: A expressão regular ε representa a linguagem cuja única string é a vazia. Ex.:

$$(\mathbf{a} \cdot \mathbf{b}) \mid \mathbf{\varepsilon} = ?$$

Repetição: Dada uma expressão regular M, seu fecho de Kleene é
 M*. Uma string está em M* se ela é a concatenação de zero ou mais strings, todas em M. Ex.:

$$((\mathbf{a} \mid \mathbf{b}) \cdot \mathbf{a})^* = ?$$

• **Epsilon**: A expressão regular ε representa a linguagem cuja única string é a vazia. Ex.:

```
(a \cdot b) | \varepsilon = {"", "ab"}
```

Repetição: Dada uma expressão regular M, seu fecho de Kleene é
 M*. Uma string está em M* se ela é a concatenação de zero ou mais strings, todas em M. Ex.:

```
((a \mid b) \cdot a)^* = {"", "aa", "ba", "aaaa", "baaa", "aaba", "baba", "aaaaaaa", ...}
```

Expressões Regulares

Informalmente, o que gera cada uma das expressões regulares a seguir?

•
$$(0 | 1)^* \cdot 0 = ?$$

•
$$b^*(abb^*)^*(a|\varepsilon) = ?$$

•
$$(a|b)^*aa(a|b)^* = ?$$

Expressões Regulares

Informalmente, o que gera cada uma das expressões regulares a seguir?

- · (0 | 1)* · 0
 - Números binários múltiplos de 2.
- $b^*(abb^*)^*(a|\varepsilon)$
 - Strings de a's e b's sem a's consecutivos.
- (a|b)*aa(a|b)*
 - Strings de a's e b's com a's consecutivos.

Notação para Expressões Regulares

- a An ordinary character stands for itself.
- ε The empty string.
- Another way to write the empty string.
- **M** | **N** Alternation, choosing from *M* or *N*.
- M · N Concatenation, an M followed by an N.
- MN Another way to write concatenation.
- **M*** Repetition (zero or more times).
- **M**⁺ Repetition, one or more times.
- **M?** Optional, zero or one occurrence of **M**.
- [a zA Z] Character set alternation.
- A period stands for any single character except newline.
- "a.+*" Quotation, a string in quotes stands for itself literally.

Como seriam as expressões regulares para os seguintes tokens?

Como seriam as expressões regulares para os seguintes tokens?

• ID =
$$[a-z][a-z0-9]*$$

• NUM =
$$[0-9]$$
+

Quais tokens representam as seguintes expressões regulares?

```
    ([0-9]*"."[0-9]*) | ([0-9]*"."[0-9]*)
```

```
• ("//"[a-z]*"\n")|(" "|"\n"|"\t")+
```

•

Quais tokens representam as seguintes expressões regulares?

```
• ([0-9]*"."[0-9]*)|([0-9]*"."[0-9]*)

- Números Reais
```

- ("//"[a-z]*"\n")|(" "|"\n"|"\t")+
 - nenhum token: somente comentário, brancos, nova linha e tabulação
- - qualquer coisa, menos nova linha (\n)

Anlisador Léxico

Ambiguidades

- if8 é um ID ou dois tokens: IF e NUM(8)?
- if 89 começa com um ID ou uma palavra-reservada?

Duas regras:

- Maior casamento: o próximo token sempre é a substring mais longa possível de ser casada.
- Prioridade: Para uma dada substring mais longa, a primeira regra a ser casada produzirá o token

Anlisador Léxico

A especificação deve ser completa, sempre reconhecendo uma substring da entrada

- Mas quando estiver errada? Use uma regra com o "."
- Em que lugar da sua especificação deve estar esta regra?
 - Esta regra deve ser a última! (Por que?)

 Expressões Regulares são convenientes para especificar os tokens

 Precisamos de um formalismo que possa ser convertido em um programa de computador

• Este formalismo são os autômatos finitos

Um autômato finito possui:

- Um conjunto finito de estados
- Arestas levando de um estado a outro, anotada com um símbolo
- Um estado inicial
- Um ou mais estados finais
- Normalmente os estados são numerados ou nomeados para facilitar a manipulação e discussão

Deterministic Finite Automata (DFA)

- DFAs não podem apresentar duas arestas que deixam o mesmo estado, anotadas com o mesmo símbolo
- Saindo do estado inicial, o autômato segue exatamente uma aresta para cada caractere da entrada
- O DFA aceita a string se, após percorrer todos os caracteres, ele estiver em um estado final
- Se em algum momento não houver uma aresta a ser percorrida para um determinado caractere ou ele terminar em um estado não-final, a string é rejeitada
- A linguagem reconhecida pelo autômato é o conjunto de todas as strings que ele aceita

Nondeterministic Finite Automata (NFA)

 Pode existir mais de uma aresta saindo de um determinado estado com o mesmo símbolo

- Podem existir arestas anotadas com o símbolo E
 - Essa aresta pode ser percorrida sem consumir nenhum caractere da entrada!

- Não são apropriados para serem transformados em programas de computador
 - "Adivinhar" qual caminho deve ser seguido não é uma tarefa facilmente executada pelo hardware dos computadores

Nondeterministic Finite Automata (NFA)

Que linguagem este autômato reconhece?

Obs: Ele é obrigado a aceitar a *string* se existe alguma escolha de caminho que leva à aceitação

Nondeterministic Finite Automata (NFA)

Que linguagem este autômato reconhece?

• É possível combinar os autômatos definidos para cada *token* de maneira a ter um único autômato que possa ser usado como analisador léxico?

Autômato Combinado

Autômato Combinado: if8

Autômato Combinado

- Estados finais nomeados com o respectivo *token*
- Alguns estados apresentam características de mais de um autômato anterior. Ex.: 3
- Como ocorre a quebra de ambiguidade entre ID e IF?

Convertendo ER's para NFA's

- NFAs se tornam úteis porque é fácil converter expressões regulares (ER) para NFA
- Exemplos:

Convertendo ER's para NFA's

De maneira geral, toda ER terá um NFA com uma cauda (aresta de entrada) e uma cabeça (estado final).

Pode-se definir essa conversão de maneira indutiva pois uma ER é primitiva (único símbolo ou vazio) ou é uma combinação de outras ERs.

O mesmo vale para NFAs.

Convertendo ER's para NFA's

ERs para IF, ID, NUM e error

