## Zadanie 12 (problemy z warunkami brzegowymi).

Rozważmy problem wyznaczenia temperatury w cienkiej metalowej płytce o rozmiarach  $20 \times 20$ . Rozkład temperatury płytki w stanie ustalonym można w przybliżeniu opisać za pomocą następującego cząstkowego równania różniczkowego:

$$0 = \frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} + h'(T_a - T(x,y))$$
(1)

gdzie:

- T(x,y) to temperatura w punkcie x,y płytki,
- $T_a = 100$  to (stała) temperatura otoczenia,
- h' = 0.05 to (stały) parametr związany z przewodzeniem ciepła przez płytkę.

Na Rysunku 1 przedstawiono siatkę do dyskretnego przybliżenia problemu za pomocą  $11 \times 11$  węzłów wraz z warunkami brzegowymi Dirichleta (zadany rozkład temperatury na krawędziach płytki).



Rysunek 1: Siatka dla problemu wyznaczania temperatury płytki

Dla powyższej siatki zakłada się, że odległość pomiędzy węzłami w poziomie  $(\Delta x)$  i w pionie  $(\Delta y)$  jest taka sama i wynosi  $\Delta x = \Delta y = 2.0$ 

Równanie (1) opisujące rozkład temperatury płytki należy przybliżyć, zastępując pochodne drugiego rzędu odpowiednimi różnicami skończonymi. Zatem dla skończonych przyrostów  $\Delta x$  oraz  $\Delta y$  otrzymujemy:

$$\frac{\partial^2 T(x,y)}{\partial x^2} \approx \frac{T(x-\Delta x,y) - 2T(x,y) + T(x+\Delta x,y)}{(\Delta x)^2}$$

$$\frac{\partial^2 T(x,y)}{\partial y^2} \approx \frac{T(x,y-\Delta y) - 2T(x,y) + T(x,y+\Delta y)}{(\Delta y)^2}$$

gdzie:

- $\bullet$  T(x,y) to temperatura w danym węźle siatki,
- $T(x-\Delta x,y)$  to temperatura w węźle bezpośrednio na lewo,
- $T(x + \Delta x, y)$  to temperatura w węźle bezpośrednio na prawo,
- $T(x, y \Delta y)$  to temperatura w węźle bezpośrednio poniżej,
- $T(x, y + \Delta y)$  to temperatura w węźle bezpośrednio powyżej.

Po podstawieniu powyższych przybliżeń do równania (1), po prostych przekształceniach możemy zapisać równania dla wszystkich wewnętrznych węzłów siatki. Otrzymamy układ równań liniowych z 81 niewiadomymi ( $9 \times 9$  węzłów wewnętrznych siatki z Rysunku 1).

Zadania do wykonania:

- 1. Skonstruować macierz A oraz wektor b opisujący zadany problem (macierz A ma wymiar  $81 \times 81$ , wektor b ma wymiar  $81 \times 1$ ).
- 2. Znaleźć 81 nieznanych temperatur dla wewnętrznych punktów siatki (rozwiązać układ Ax = b).
- 3. Wykreślić kolorowy rozkład temperatury w stanie ustalonym.