บทที่ 3 วิธีการดำเนินงาน

การวิจัยนี้ได้ดำเนินงานโดยประยุกต์ตามแนวทางในการทำเหมืองข้อมูล เป็น กระบวนการในการวิเคราะห์ข้อมูลและสร้างตัวแบบที่ได้รับความนิยมมากในปัจจุบัน เรียกว่า แนวคิด กระบวนการมาตรฐานอุตสาหกรรม หรือ CRIPS-DM (Cross Reference Industry Standard for Data Mining) (Chapman et al. 2000) ผู้วิจัยได้กำหนดขั้นตอนของการดำเนินงาน ดังภาพที่ 3.1 รายละเอียดการทำงานแต่ละขั้นตอน มีดังนี้

ภาพที่ 3.1 กรอบการดำเนินงานวิจัย

จากภาพที่ 3.1 เป็นกระบวนการพัฒนาหาตัวแบบที่เหมาะสมกับการจำแนกประเภท ข้อมูลสภาพทางเศรษฐกิจครัวเรือน โดยมีกระบวนการดังนี้

3.1 การทำความเข้าใจข้อมูล (Data Understanding)

ข้อมูลที่ใช้ในการศึกษาครั้งนี้ คือข้อมูลประชากรจากภาคครัวเรือนเฉพาะครัวเรือนใน เขตพื้นที่ชนบท ของจังหวัดสกลนคร ซึ่งมี 20 หมู่บ้าน 12 ตำบล 12 อำเภอ โดยช่วงเวลาที่ทำการเก็บ รวบรวมข้อมูล คือ ปี พ.ศ. 2563 – 2564 และจากฐานข้อมูลสภาพทางเศรษฐกิจครัวเรือน (สำนัก วิทย¬บริการและเทคโนโลยีสารสนเทศ, 2563: ออนไลน์) โดยในฐานข้อมูลนี้เป็นข้อมูลจากโครงการ ศาสตร์พระราชาซึ่งมีการเก็บข้อมูลออกเป็น 10 ส่วน รวมทั้งหมด 136 แอททริบิวต์ ได้มา 17,933 ครัวเรือน ดังนี้

ส่วนที่ 1 ข้อมูลทั่วไปครัวเรือน

ส่วนที่ 2 ทรัพย์สินของครัวเรือน

ส่วนที่ 3 อาชีพและรายได้ของครัวเรือน

ส่วนที่ 4 รายจ่ายของครัวเรือน

ส่วนที่ 5 หนี้สินของครัวเรือน

ส่วนที่ 6 ผลกระทบจากสถานการณ์การระบาดของโรคติดเชื้อไวรัสโคโรน่า

2019 (COVID - 19)

ส่วนที่ 7 การใช้เทคโนโลยีสารสนเทศ

ส่วนที่ 8 การเข้าร่วมการละเล่น การฟ้อน การรำ พิธีกรรมตามวิถีวัฒนธรรม

ชุมชน

ส่วนที่ 9 การเข้าร่วมโครงการที่ผ่านมาย้อนหลัง 3 ปี ส่วนที่ 10 ข้อคิดเห็นและข้อเสนอแนะเพิ่มเติม

3.2 การเตรียมข้อมูลสำหรับพัฒนาตัวแบบ (Data Preprocessing)

การเตรียมข้อมูลก่อนการประมวลผลเป็นขั้นตอนสำคัญในกระบวนการทำเหมืองข้อมูล ซึ่งหากกระบวนการเตรียมข้อมูลไม่ได้ทำอย่างรอบคอบแล้ว จะทำให้ไม่ได้ชุดข้อมูลที่เป็นตัวแทนที่ เหมาะสมสำหรับการสร้างโมเดลการทำนายซึ่งจะทำให้ผลลัพธ์การทำนายที่ได้ไม่มีความแม่นยำ ดังนั้นการเตรียมข้อมูลจึงเป็นขั้นตอนที่มีความสำคัญมาก ซึ่งประกอบด้วย 4 ขั้นตอน ได้แก่ การ รวบรวมข้อมูล (Data Compilation) การทำความสะอาดข้อมูล (Data Cleansing) การคัดเลือก ข้อมูล (Data Selection) และการเปลี่ยนแปลงรูปแบบของข้อมูล (Data Transformation)

1.3.2.1 การรวบรวมข้อมูล (Data Compilation)

ในส่วนนี้ใช้ข้อมูลเศรษฐกิจครัวเรือนในช่วงปี พ.ศ. 2561-2563 ที่ สามารถวิเคราะห์ข้อมูล ได้มาจากการเลือกแบบเจาะจง (Purposive Sampling) จำนวน 2,909 ครัวเรือน ดังตัวอย่างแสดงข้อมูลตามตารางที่ 3.1

_!	- 01		-14 04		
maga 2 1	0001001000	ຸດຂັດເອີດາ	131 2010	000000100011011000100	
M1214M 2.T	ัจเป็นไม้สมาเยโมโ	4612,712,614	ามเดเมา. เ	จากการเลือกแบบเจาะจง	
	0 . 10 0 10 0 0 0 0			0 11 11 1 1 0 0 0 1 0 1 1 0 1	

ลำดับที่	ตำบล	จำนวนครัวเรือน
1	ค้อเขียว	102
2	แพด	120
3	โคกศิลา	93
4	ท่าก้อน	354
5	นาหัวบ่อ	518
6	พันนา	305
7	สร้างค้อ	450
8	วัฒนา	99
9	ม่วง	336
10	หนองสนม	189
11	บ้านแป้น	211
12	อุ่มจาน	132
รวม (ค	รัวเรือน)	2,909

เมื่อได้จำนวนครัวเรือนแล้วจากนั้นทำการคัดเลือกแอททริบิวต์ สำหรับใช้สร้างตัวแบบการพยากรณ์ ซึ่งในจำนวนครัวเรือนเหล่านี้มีข้อมูลบางแอททริบิวต์ไม่สมบูรณ์ เช่น ค่าใช้จ่ายในการทำไร่ รายได้จากการจักรสาน ราคาจำหน่ายผลผลิต รายได้จากการทอผ้า ซึ่งได้ ตัดแอททริบิวต์ออกไป จะได้แอททริบิวต์ทั้งหมด 15 แอททริบิวต์ ดังต่อไปนี้

ส่วนที่ 1 ข้อมูลทั่วไปครัวเรือน มีทั้งหมด 7 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมที่คาดว่าจะมีส่วนเกี่ยวข้องกับเศรษฐกิจครัวเรือน (นิภารัตน์ นักตรีพงศ์, 2561: 196; สมยศ ประจันบาล, 2548-2555: 5) ทั้งหมด 3 แอททริบิวต์ ได้แก่ อายุ อาชีพ และรายได้เฉลี่ย/เดือน

ส่วนที่ 2 ทรัพย์สินของครัวเรือน มีทั้งหมด 24 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับเศรษฐกิจ ครัวเรือน (นิภารัตน์ นักตรีพงศ์, 2561) ทั้งหมด 2 แอททริบิวต์ ได้แก่ มูลค้าทรัพย์สิน และ วัตถุประสงค์การเลี้ยงสัตว์

ส่วนที่ 3 อาชีพและรายได้ของครัวเรือน มีทั้งหมด 68 แอททริบิวต์ 2,915 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับ เศรษฐกิจครัวเรือน (สุวรัฐ แลสันกลาง, พิบูลย์ ชยโอว์สกุล, ฐิฏิกานต์ สุริยะสาร และชุตินิษฐ์ ปานคำ, 2563) ทั้งหมด 3 แอททริบิวต์ ได้แก่ ผลผลิต/ไร่ ต้นทุน และจำนวนไร่

ส่วนที่ 4 รายจ่ายของครัวเรือน มีทั้งหมด 3 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับเศรษฐกิจ ครัวเรือน (นิภารัตน์ นักตรีพงศ์, 2561: 196) ทั้งหมด 1 แอททริบิวต์ ได้แก่ ค่าใช้จ่าย/เดือน

ส่วนที่ 5 หนี้สินของครัวเรือน มีทั้งหมด 3 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับเศรษฐกิจ ครัวเรือน (นิภารัตน์ นักตรีพงศ์, 2561: 196; สุวรัฐ แลสันกลาง, พิบูลย์ ชยโอว์สกุล, ฐิฏิกานต์ สุริยะ สาร, และชุตินิษฐ์ ปานคำ, 2563: 40-43) ทั้งหมด 2 แอททริบิวต์ ได้แก่ แหล่งเงินกู้ และปริมาณเงินกู้ ส่วนที่ 6 ผลกระทบจากสถานการณ์การระบาดของโรคติดเชื้อไวรัส

โคโรน่า 2019 (COVID - 19) มีทั้งหมด 8 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับเศรษฐกิจครัวเรือน (นิภารัตน์ นักตรีพงศ์, 2561: 196) ทั้งหมด 2 แอททริบิวต์ ได้แก่ ผลกระทบ และรายได้ลดลง

ส่วนที่ 7 การใช้เทคโนโลยีสารสนเทศ มีทั้งหมด 15 แอททริบิวต์ 2,909 ครัวเรือน ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับ เศรษฐกิจครัวเรือน (อัครนันท์ คิดสม, 2561: 97-98) ทั้งหมด 2 แอททริบิวต์ ได้แก่ การใช้อินเทอร์เน็ต และช่องทางการขายสินค้า

ในส่วนที่ 8 การเข้าร่วมการละเล่น การฟ้อน การรำ พิธีกรรมตามวิถี วัฒนธรรมชุมชน ส่วนที่ 9 การเข้าร่วมโครงการที่ผ่านมาย้อนหลัง 3 ปี และส่วนที่ 10 ข้อคิดเห็นและ ข้อเสนอแนะเพิ่มเติม ผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูลที่คาดว่าจะมีส่วนเกี่ยวข้องกับ เศรษฐกิจครัวเรือน พบว่าทั้ง 3 ส่วน ไม่มีปัจจัยไหนที่ส่งผลต่อสภาพเศรษฐกิจครัวเรือน

จากข้อมูลครัวเรือนผู้วิจัยได้ทำการวิเคราะห์ข้อมูลเพื่อเตรียมข้อมูล ให้เหมาะสมเพื่อนำมาใช้ในการสร้างตัวแบบการพยากรณ์ข้อมูลเศรษฐกิจครัวเรือน รวมได้ทั้งหมด 15 แอททริบิวต์ ดังแสดงในตารางที่ 3.2

ตารางที่ 3.2 แสดงแอททริบิวต์ที่ส่งผลต่อสภาพเศรษฐกิจครัวเรือน

ลำดับ	รายละเอียด						
ส่วนที่ 1	ข้อมูลทั่วไปครัวเรือน						
1	อายุ						
2	อาชีพ						
3	รายได้เฉลี่ย/เดือน						
ส่วนที่ 2	ทรัพย์สินของครัวเรือน						
4	มูลค้าทรัพย์สิน						
5	วัตถุประสงค์การเลี้ยงสัตว์						
ส่วนที่ 3	อาชีพและรายได้ของครัวเรือน						
6	ผลผลิต/ไร่						
7	ต้นทุน						
8	จำนวนไร่						
ส่วนที่ 4	รายจ่ายของครัวเรือน						
9	ค่าใช้จ่าย/เดือน						
ส่วนที่ 5	หนี้สินของครัวเรือน						
10	แหล่งเงินกู้						
11	ปริมาณเงินกู้						
ส่วนที่ 6	ส่วนที่ 6 ผลกระทบจากสถานการณ์การระบาดของโรคติดเชื้อไวรัสโคโรน่า 2019 (COVID - 19)						
12	ผลกระทบ						
13	รายได้ลดลง						

ตารางที่ 3.2 แสดงแอททริบิวต์ที่ส่งผลต่อสภาพเศรษฐกิจครัวเรือน (ต่อ)

ลำดับ		รายละเอียด
ส่วนที่ 7	การใช้เทคโนโลยีสารสนเทศ	
14	การใช้อินเทอร์เน็ต	
15	ช่องทางการขายสินค้า	

จากนั้นผู้วิจัยได้ทำการทำความสะอาดข้อมูล (Data Cleansing) และแปลงรูปแบบข้อมูล (Data Transformation) เพราะข้อมูลครัวเรือนทั้งหมดที่ได้ทำการเก็บมา นั้นมีรูปแบบครัวเรือนที่ยังไม่สมบูรณ์ ซึ่งในงานวิจัยนี้จะเน้นและคัดเลือกเฉพาะข้อมูลครัวเรือนที่ สมบูรณ์จำนวน 1,751 ครัวเรือน แล้วทำให้ได้แอททริบิวต์ ในการสร้างตัวแบบจำนวน 18 แอททริบิวต์ เพื่อใช้ในการสร้างตัวแบบการพยากรณ์ที่เหมาะสม จากนั้นทำการแปลงรูปแบบข้อมูล ดังแสดง ในตารางที่ 3.3

ตารางที่ 3.3 รายละเอียดของตัวแปรที่เป็นคุณลักษณะของกลุ่มตัวอย่างสภาพเศรษฐกิจครัวเรือน

ลำดับ	คุณลักษณะ	รายละเอียด	ชนิดข้อมูล
1	Education Age	วัยเรียน	Numeric
2	Working Age	วัยทำงาน	Numeric
3	Old Age	วัยสูงอายุ	Numeric
4	Occupation	อาชีพ	Nominal
5	Average	รวมรายได้เฉลี่ย/ปี ของครัวเรือน	Numeric
	Income/Year		
6	Asset Value	มูลค้าทรัพย์สิน	Numeric
7	Animal Husbandry	วัตถุประสงค์การเลี้ยงสัตว์	Nominal
8	Area	พื้นที่ก่อให้เกิดรายได้	Numeric
9	Production Costs	ต้นทุนการผลิตการทำการเกษตร	Numeric
10	Product	ผลผลิตที่ได้จากการทำเกษตร	Numeric
11	Total Expenses/Year	รวมค่าใช้จ่าย/ปี ของครัวเรือน	Numeric
12	Loan Bank	หนี้ในระบบ	Nominal
13	Loan Shark	หนี้ในระบบ	Nominal
14	Total Liabilities	รวมปริมาณหนี้สินของครัวเรือน	Numeric
15	Effect	ผลกระทบจากสถานการณ์การระบาดของโรคติดเชื้อ	Nominal
		ไวรัสโคโรน่า 2019 (COVID - 19)	
16	Lower Income	รายได้ลดลงจากสถานการณ์การระบาดของโรคติดเชื้อ	Nominal
		ไวรัสโคโรน่า 2019 (COVID - 19)	
17	Internet Use	การใช้อินเทอร์เน็ตที่ก่อให้เกิดรายได้	Nominal
18	Sales Channel	ช่องทางการขายสินค้าที่ก่อให้เกิดรายได้	Nominal
	Classification	การจัดหมวดหมู่	Nominal
		คลาสคำตอบ Low Income = รายได้น้อย	
		Middle income = รายได้ปานกลาง	
		High Income = รายได้สูง	

ลำดับ	Education	Working	Old Age	•••	Lower	Internet	Sales
	Age	Age			Income	Use	Channel
1	0	3	0		Yes	Yes	Yes
2	0	2	0		Yes	Yes	Yes
3	1	4	1	•••	Yes	Yes	Yes
:	:	:	:	:	:	:	i
1,749	2	2	0		Yes	Yes	No
1,750	0	1	0		Yes	Yes	No

Yes

Yes

No

ตารางที่ 3.3 ข้อมูลเศรษฐกิจครัวเรือนที่ผ่านการทำความสะอาดและแปลงรูปแบบข้อมูล

จากที่ได้ทำความสะอาดข้อมูล (Data Cleansing) และแปลงรูปแบบ ข้อมูล (Data Transformation) ดังแสดงในตารางที่ 3.3 พบว่า ในส่วนที่ 1 ได้มีการเปลี่ยนรูปแบบ แอททริบิวต์ เช่น อายุ ได้ทำการแยกแอททริบิวต์ออกมาเป็น 3 แอททริบิวต์ คือ วัยเรียน วัยทำงาน และวัยสูงอายุ เพราะบางครัวเรือนนั้นมีสมาชิกในครัวเรือนมากกว่า 1 คน (ระเบียน) จึงทำการ เปลี่ยนแปลงรูปแบบข้อมูลให้เหลือครัวเรือนละ 1 ระเบียน ส่วนที่ 2 ได้มีการลดจำนวนระเบียนใน ครัวเรือน โดยการใช้สูตร SUM เพื่อหาผลบวกของทรัพย์สินครัวเรือนทั้งหมดให้เหลือ 1 ระเบียน ส่วน ที่ 3 ได้เปลี่ยนแปลงหน่วยจากงาน ให้เป็นหน่วยไร่ เช่น 4 งาน = 1 ไร่ เพราะจะได้ง่ายต่อการนำเข้า โปรแกรม ส่วนที่ 4 ได้เปลี่ยนแปลงข้อมูลค่าใช้จ่าย/เดือนของครัวเรือนให้เป็นรายจ่ายเฉลี่ย/ปี โดย การใช้สูตร (ค่าใช้จ่ายแต่ละคน * 12 นำมาบวกกัน) จะได้ค่าใช้จ่ายเฉลี่ย/ปี ของครัวเรือน ส่วนที่ 5 ได้ มีการเปลี่ยนรูปแบบแอททริบิวต์ของแหล่งเงินกู้ แยกออกมาเป็น 2 แอททริบิวต์ ได้แก่ หนี้ในระบบ และหนี้นอกระบบ ตัวแปรของ 2 แอททริบิวต์ คือ Yes/No และยังมีข้อมูลที่ขาดหายไปจึงพิจารณา จากค่าข้อมูลที่ปรากฏซ้ำกันมากที่สุดแล้วเติมค่าขอมูลที่ขาดหายไป ส่วนที่ 6 ได้มีการเปลี่ยนรูปแบบ ตัวแปรของแอททริบิวต์ ผลกระทบ และรายได้ลดลง ส่วนที่ 7 ได้มีการเปลี่ยนรูปแบบตัวแปรของแอทหริบิวต์ การใช้อินเทอร์เน็ต และช่องทางการขายสินค้า

3.3 การแบ่งชุดข้อมูลเพื่อใช้ในการสร้างตัวแบบ

1,751

0

ผู้วิจัยจะทำการทดสอบค่าความถูกต้องในการพยากรณ์ด้วยวิธี Cross Validation Test โดยทำการแบ่งข้อมูลออกเป็น 10 ส่วน (10-Fold Cross Validation) จากตัวแบบการพยากรณ์ที่ได้ จากการใช้เทคนิคการจำแนกประเภทข้อมูล ด้วยตัวแบบต้นไม้ตัดสินใจ โครงข่ายประสาทเทียมแบบ แพร่กลับ และนาอีฟเบย์ จะทำการทดสอบทั้ง 3 ตัวแบบให้ครบทั้ง 10 ส่วน จากนั้นจะทำการ ปรับปรุงวิธีการทดสอบให้มีความถูกต้องที่ดี่ขึ้น โดยการแบ่งชุดข้อมูลเพื่อใช้ในการสร้างตัวแบบแบ่ง ออกเป็น 2 ส่วน คือ 1) ข้อมูลเรียนรู้ (Training Data) 2) ข้อมูลทดสอบ (Testing Data) (Data Set = Training Set + Test Set) โดยจะรักษาสัดส่วนของข้อมูล และจะทำการสุ่มข้อมูลตามค่าสัดส่วน ร้อยละ 60:40, 70:30 และ 80:20 ของข้อมูลจำนวน 1,751 ครัวเรือน ดังแสดงในภาพที่ 3.2 แล้วจะ ทำการทดสอบจากตัวแบบต้นไม้ตัดสินใจ โครงข่ายประสาทเทียมแบบแพร่กลับ และนาอีฟเบย์

ภาพที่ 3.2 แสดงการแบ่งข้อมูลในโปรแกรม RapidMiner Studio

3.4 การสร้างตัวแบบ (Modeling)

ผู้วิจัยได้เลือกใช้โปรแกรม RapidMiner Studio เพื่อสร้างตัวแบบการพยากรณ์ที่ เหมาะสมสำหรับการจำแนกสภาพเศรษฐกิจครัวเรือน โดยใช้ข้อมูลปัจจัย 18 ปัจจัย จำนวน 1,751 ครัวเรือน 18 แอททริบิวต์ และใช้เทคนิคการจำแนกประเภทข้อมูล ด้วยตัวแบบต้นไม้ตัดสินใจ โครงข่ายประสาทเทียมแบบแพร่กลับ และนาอีฟเบย์ หลังจากนั้นผู้วิจัยทำการวัดประสิทธิภาพของ แบบจำลองทั้ง 3 แบบแล้วทำการนำแบบจำลองที่มีประสิทธิภาพที่ดีที่สุดไปใช้งาน

3.4.1 ตัวแบบต้นไม้ตัดสินใจ (Decision Tree)

เริ่มต้นด้วยการนำข้อมูลที่ทำการแบ่งข้อมูลออกเป็น 2 ส่วน เข้าสู่ตัว แบบจำลองดังแสดงในภาพที่ 3.3 ทำการกำหนดค่าความลึกของโหนดใบ (Maximal Depth) มีค่า เท่ากับ 10 ดังแสดงในภาพที่ 3.5 ทำการพยากรณ์ความเหมาะสมของสภาพเศรษฐกิจครัวเรือน โดยมี แผนภาพต้นไม้ตัดสินใจจากการสร้างแบบจำลอง มีข้อมูลที่แบบจำลองได้พยากรณ์ออกมาด้วย แผนภาพต้นไม้ตัดสินใจ และได้ค่าประสิทธิภาพของแบบจำลองต้นไม้ตัดสินใจมีค่าความถูกต้อง

ภาพที่ 3.3 แสดงการนำข้อมูลเข้าสู่แบบแผนภาพต้นไม้ตัดสินใจ

3.4.1.1 Retrieve ข้อมูลสำหรับนำไปสร้างตัวแบบจากไฟล์ .CSV

3.4.1.2 Cross Validation ทำการทดสอบค่าความถูกต้องในการ

พยากรณ์ด้วยวิธี Cross Validation Test โดยทำการแบ่งข้อมูลออกเป็น 10 ส่วน (10-Fold Cross Validation) จากตัวแบบการพยากรณ์ที่ได้จากการใช้เทคนิคการจำแนกประเภทข้อมูล ด้วยตัวแบบ ต้นไม้ตัดสินใจ ดังแสดงในภาพที่ 3.4

ภาพที่ 3.4 แสดงโอเปอเรเตอร์ Cross Validation เพื่อสร้างตัวแบบ

3.4.1.3 Split Data การแบ่งชุดข้อมูลเพื่อใช้ในการสร้างตัวแบบ แบ่งออกเป็น 2 ส่วน คือ 1) ข้อมูลเรียนรู้ (Training Data) 2) ข้อมูลทดสอบ (Testing Data) (Data Set = Training Set + Test Set) โดยจะรักษาสัดส่วนของข้อมูล และจะทำการสุ่มข้อมูลตามค่า สัดส่วนร้อยละ 60:40, 70:30 และ 80:20 ของข้อมูลจำนวน 1,751 ครัวเรือน

3.4.1.4 Decision Tree ตัวแบบต้นไม้ตัดสินใจที่ใช้ในการพยากรณ์ การจำแนกประเภทข้อมูล

ภาพที่ 3.4 แสดงการกำหนดค่าความลึกของโหนดใบ

3.4.1.5 Apply Model การนำโมเดลไปใช้งาน เป็นการนำโมเดลที่ สร้างได้ไปใช้ทำการพยากรณ์หรือหาคำตอบให้กับข้อมูลใหม่ซึ่งยังไม่รู้คลาสคำตอบ

3.4.1.6 Performance การประเมินประสิทธิภาพ แสดงรายการ ค่าเกณฑ์ประสิทธิภาพ เกณฑ์ประสิทธิภาพเหล่านี้กำหนดโดยอัตโนมัติเพื่อให้เหมาะสมกับประเภท งานการเรียนรู้

3.4.2 ตัวแบบโครงข่ายประสาทเทียมแบบแพร่กลับ (Backpropagation

Neural Network: BPNN)

เริ่มต้นด้วยการนำข้อมูลที่ทำการแบ่งข้อมูลออกเป็น 2 ส่วน เข้าสู่ตัว แบบจำลองแสดงดังภาพที่ 3.5 ทำการปรับตั้งค่า จำนวนชั้นซ่อน (Hidden Layer Node) คือ 13, 6 ดังแสดงในภาพที่ 3.7 และทำการปรับตั้งค่า พารามิเตอร์ ของโครงข่ายประสาทเทียมแบบแพร่กลับ ให้กลับโปรแกรม ดังนี้ การแบ่งข้อมูล (Number of Folds) 10 ส่วน จำนวนรอบที่ใช้ในการฝึกสอน (Training Cycles) 1,000 อัตราการเรียนรู้ (Learning Rate) 0.1-0.5 และ ค่าสัมประสิทธิ์โมเมนตัม (Momentum) 0.1-0.5 ดังแสดงในภาพที่ 3.8

ภาพที่ 3.5 แสดงการนำข้อมูลเข้าสู่แบบจำลองโครงข่ายประสาทเทียมแบบแพร่กลับ

3.4.1.1 Retrieve ข้อมูลสำหรับนำไปสร้างตัวแบบจากไฟล์ .CSV

3.4.1.2 Cross Validation ทำการทดสอบค่าความถูกต้องในการ

พยากรณ์ด้วยวิธี Cross Validation Test โดยทำการแบ่งข้อมูลออกเป็น 10 ส่วน (10-Fold Cross Validation) จากตัวแบบการพยากรณ์ที่ได้จากการใช้เทคนิคการจำแนกประเภทข้อมูล ด้วยตัวแบบ ต้นไม้ตัดสินใจ ดังแสดงในภาพที่ 3.6

ภาพที่ 3.6 แสดงโอเปอเรเตอร์ Cross Validation เพื่อสร้างตัวแบบ

3.4.1.3 Split Data การแบ่งชุดข้อมูลเพื่อใช้ในการสร้างตัวแบบ แบ่งออกเป็น 2 ส่วน คือ 1) ข้อมูลเรียนรู้ (Training Data) 2) ข้อมูลทดสอบ (Testing Data) (Data Set = Training Set + Test Set) โดยจะรักษาสัดส่วนของข้อมูล และจะทำการสุ่มข้อมูลตามค่า สัดส่วนร้อยละ 60:40, 70:30 และ 80:20 ของข้อมูลจำนวน 1,751 ครัวเรือน

3.4.1.4 Neural Network ตัวแบบโครงข่ายประสาทเทียมแบบ แพร่กลับที่ใช้ในการพยากรณ์การจำแนกประเภทข้อมูล

3.4.1.5 Apply Model การนำโมเดลไปใช้งาน เป็นการนำโมเดลที่ สร้างได้ไปใช้ทำการพยากรณ์หรือหาคำตอบให้กับข้อมูลใหม่ซึ่งยังไม่รู้คลาสคำตอบ

3.4.1.6 Performance การประเมินประสิทธิภาพ แสดงรายการ ค่าเกณฑ์ประสิทธิภาพ เกณฑ์ประสิทธิภาพเหล่านี้กำหนดโดยอัตโนมัติเพื่อให้เหมาะสมกับประเภท งานการเรียนรู้

ภาพที่ 3.7 แสดงการตั้งค่าจำนวน Laver ในแบบจำลองโครงข่ายประสาทเทียมแบบแพร่กลับ

Parameters	×		
Neural Net			
hidden layers		Edit List (2)	1
training cycles	1000		1
learning rate	0.2		1
momentum	0.1		(1)
decay			(1)
✓ shuffle			1
✓ normalize			1
error epsilon	1.0E-4	ı	1
use local randor	n seed		(1)

ภาพที่ 3.8 แสดงการนำข้อมูลเข้าสู่แบบจำลองโครงข่ายประสาทเทียมแบบแพร่กลับ

หลักจากทำการปรับตั้งค่าตัวแบบจำลองแล้ว จากนั้นทำการใช้งาน แบบจำลอง<mark>โครงข่ายประสาทเทียมแบบแพร่กลับ</mark> เพื่อพยากรณ์ความเหมาะสมของสภาพเศรษฐกิจ ครัวเรือน และวัดประสิทธิภาพของแบบจำลอง<mark>ด้วย</mark>ค่าความถูกต้องเป็นร้อยละ

3.4.3 ตัวแบบนาอีฟเบย์ (Naive Bayes)

เริ่มต้นด้วยการนำข้อมูลที่ทำการแบ่งข้อมูลออกเป็น 2 ส่วนแล้ว เข้าสู่ ตัวแบบจำลอง<mark>ดังแสดงในภาพที่</mark> 3.9 ทำการพยากรณ์ความเหมาะสมของสภาพเศรษฐกิจครัวเรือน และวัดประสิทธิภาพของแบบจำลองวิธีการเรียนรู้เบย์อย่างง่ายเพื่อให้ได้ค่าความถูกต้องเป็น<mark>ร้</mark>อยละ

ภาพที่ 3.9 แสดงการนำข้อมูลเข้าสู่แบบวิธีการเรียนรู้เบย์อย่างง่าย

3.4.1.1 Retrieve ข้อมูลสำหรับนำไปสร้างตัวแบบจากไฟล์ .CSV

3.4.1.2 Cross Validation ทำการทดสอบค่าความถูกต้องในการ

พยากรณ์ด้วยวิธี Cross Validation Test โดยทำการแบ่งข้อมูลออกเป็น 10 ส่วน (10-Fold Cross Validation) จากตัวแบบการพยากรณ์ที่ได้จากการใช้เทคนิคการจำแนกประเภทข้อมูล ด้วยตัวแบบ ต้นไม้ตัดสินใจ ดังแสดงในภาพที่ 3.10

ภาพที่ 3.10 แสดงโอเปอเรเตอร์ Cross Validation เพื่อสร้างตัวแบบ

3.4.1.3 Split Data การแบ่งชุดข้อมูลเพื่อใช้ในการสร้างตัวแบบ แบ่งออกเป็น 2 ส่วน คือ 1) ข้อมูลเรียนรู้ (Training Data) 2) ข้อมูลทดสอบ (Testing Data) (Data Set = Training Set + Test Set) โดยจะรักษาสัดส่วนของข้อมูล และจะทำการสุ่มข้อมูลตามค่า สัดส่วนร้อยละ 60:40, 70:30 และ 80:20 ของข้อมูลจำนวน 1,751 ครัวเรือน

3.4.1.4 Naive Bayes ตัวแบบนาอีฟเบย์ที่ใช้ในการพยากรณ์การ จำแนกประเภทข้อมูล

3.4.1.5 Apply Model การนำโมเดลไปใช้งาน เป็นการนำโมเดลที่ สร้างได้ไปใช้ทำการพยากรณ์หรือหาคำตอบให้กับข้อมูลใหม่ซึ่งยังไม่รู้คลาสคำตอบ

3.4.1.6 Performance การประเมินประสิทธิภาพ แสดงรายการ ค่าเกณฑ์ประสิทธิภาพ เกณฑ์ประสิทธิภาพเหล่านี้กำหนดโดยอัตโนมัติเพื่อให้เหมาะสมกับประเภท งานการเรียนรู้

3.5 การประเมินตัวแบบ (Evaluation)

ในงานวิจัยนี้ใช้การทดสอบแบบไขว้ทบแบบ 10 ส่วน (10-Fold Cross Validation) แล้วทำการทดสอบเพื่อประเมินประสิทธิภาพ การวัดค่าประสิทธิภาพของเทคนิควิธีต่าง ๆ จะต้องทำ การเลือกข้อมูลสำหรับเรียนรู้ (Training Data) และข้อมูลสำหรับทดสอบ (Testing Data) และ เลือกใช้วิธีแบบสุ่มเลือกแบ่งข้อมูลโดยจะรักษาสัดส่วนของข้อมูล และจะทำการสุ่มข้อมูลตามค่า สัดส่วนร้อยละ 60:40, 70:30 และ 80:20 ต่อจากนั้นให้นำข้อมูลบางส่วนมาทำการเรียนรู้ และนำข้อมูลบางส่วนมาทำการทดสอบแบบจำลองที่ได้จากการเรียนรู้ โดยในการทำงานจะทำการเลือกสุ่มข้อมูลออกเป็น k ชุด ในการทดลองครั้งแรก ข้อมูลชุดที่ 1 เป็นข้อมูลชุดทดสอบและข้อมูลชุดที่เหลือ เป็นข้อมูลชุดเรียนรู้ ในการทดลองครั้งที่ 2 ข้อมูลชุดที่ 2 เป็นข้อมูลชุดทดสอบและข้อมูลชุดที่เหลือ เป็นข้อมูลชุดเรียนรู้ ทำจนกระทั่งข้อมูลทุกชุดได้ถูกนำมาเป็นข้อมูลชุดทดสอบและข้อมูลชุดเรียนรู้ ซึ่งจะมีการทดลองทั้งหมด k ครั้ง ในงานวิจัยนี้ได้เลือกใช้ค่า k = 10 ดังแสดงในภาพที่ 11

				ข้อมูล	าชุดเรี	ยนรู้				ข้อมูลชุดทดสอบ
รอบที่ 1	2	3	4	5	6	7	8	9	10	1
รอบที่ 2	1	3	4	5	6	7	8	9	10	2
รอบที่ 3	1	2	4	5	6	7	8	9	10	3
รอบที่ 4	1	2	3	5	6	7	8	9	10	4
รอบที่ 5	1	2	3	4	6	7	8	9	10	5
รอบที่ 6	1	2	3	4	5	7	8	9	10	6
รอบที่ 7	1	2	3	4	5	6	8	9	10	7
รอบที่ 8	1	2	3	4	5	6	7	9	10	8
รอบที่ 9	1	2	3	4	5	6	7	8	10	9
รอบที่ 10	1	2	3	4	5	6	7	8	9	10

ภาพที่ **11** 10-Fold Cross Validation

การคำนวณประสิทธิภาพของตัวแบบจำลอง สามารถคำนวณได้จากตาราง Confusion Matrix ซึ่งเป็นตารางสรุปจำนวนข้อมูลที่ตัวแบบมีการจำแนกได้อย่างถูกต้องและไม่ถูกต้อง

ตารางที่ 3.4 The Confusion Matrix

ค่าที่แท้จริง	ค่าที่ทำนายได้ (Predicted Class)					
(Actual Class)	Class YES	Class NO				
Class YES	True Positive: TP	False Negative: FN				
Class NO	False Positive: FP	True Negative: TN				

แล้วทำการประเมินประสิทธิภาพของการพยากรณ์โดยใช้เกณฑ์การวัดประสิทธิภาพของ ตัวแบบเรียนรู้ด้วยวิธี Predictive Model ซึ่งประกอบด้วยค่าความถูกต้อง (Accuracy) ค่าความ แม่นยำ (Precision: P) ค่าความระลึก (Recall: R) และค่าถ่วงดุล (F-Measure) ซึ่งมีค่าอยู่ระหว่าง 0 – 1 หมายถึงประสิทธิภาพดี ดังแสดงในสมการที่ (1) (2) (3) และ (4) ตามลำดับ

$$Accuracy = \frac{(TP+TN)}{(TP+FP+FN+TN)} \tag{1}$$

$$Precision = \frac{TP}{TP + FP} \tag{2}$$

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

$$F - measure = 2 \frac{PR}{P+R}$$
 (4)

โดยที่

TP คือ ค่าที่พยากรณ์ถูกต้อง (ข้อมูลบอกว่าจริง พยากรณ์ว่าจริง)
TN คือ ค่าที่พยากรณ์ถูกต้อง (ข้อมูลบอกว่าไม่จริง พยากรณ์ว่าไม่จริง)
FP คือ ค่าที่พยากรณ์ไม่ถูกต้อง (ข้อมูลบอกว่าจริง พยากรณ์ว่าไม่จริง)
FN คือ ค่าที่พยากรณ์ไม่ถูกต้อง (ข้อมูลบอกว่าไม่จริง พยากรณ์ว่าจริง)

ในงานวิจัยนี้ได้เลือกใช้วิธีประเมินประสิทธิภาพของการพยากรณ์ด้วยค่าความถูกต้อง โดยใช้ข้อมูลสำหรับเรียนรู้ทดลองปรับค่าพารามิเตอร์ที่เหมาะสมของทั้งตัวแบบต้นไม้ตัดสินใจ โครงข่ายประสาทเทียมแบบแพร่กลับ และนาอีฟเบย์ ได้นำมาทดลองกับข้อมูลชุดทดสอบเปรียบเทียบ ประสิทธิภาพการทำงานของข้อมูลทั้งสองชุดเพื่อป้องกันการเกิด Over-Fitting นอกจากนั้นยังได้ทำ การทวนสอบผลการทดลองกับข้อมูลอีกชุดหนึ่ง คือ ชุดตรวจสอบ เพื่อเพิ่มความเชื่อมั่นของตัวจำแนก ประเภท ดังแสดงในตารางที่ 3.5

ตารางที่ 3.4 ค่าความถูกต้องของข้อมูลชุดทดสอบ และชุดตรวจสอบ

•••••••••••••••••••••••••••••••••••••	Decision Tree	BPNN	Naive Bayes	
ชุดทดสอบ	ค่าร้อยละ	ค่าร้อยละ	ค่าร้อยละ	
ชุดตรวจสอบ	ค่าร้อยละ	ค่าร้อยละ	ค่าร้อยละ	

3.6 การนำไปใช้งาน (Deployment)

หลังจากทำการประเมินผลตัวจำแนกของข้อมูลชุดเรียนรู้ข้อมูลชุดทดสอบ และข้อมูล ชุดตรวจสอบเรียบร้อยแล้วได้ผล สามารถนำตัวแบบที่ได้สร้างขึ้นมาใช้ประโยชน์จริงในการจำแนก ประเภทข้อมูลสภาพเศรษฐกิจครัวเรือน สำหรับสนับสนุนหรือเป็นข้อมูลประกอบการตัดสินใจในการ วิจัยในลำดับต่อไป