CLAIMS

What is claimed is:

5UM	A3

1.	A method for routing network switching information, comprising:
	generating at least one data frame of a second type from at least one
data fr	ame of a first type, wherein the at least one data frame of a second
type co	omprises switching event information;

5

transferring and storing the at least one data frame of a second type among a plurality of network elements using a second network;

6 7

3

performing at least one compare operation among prespecified data frames of a second type;

8

generating at least one interrupt signal in response to at least one detected change resulting from the at least/one compare operation; and

10 11

controlling information routing in at least one network in response to the at least one interrupt signal.

12

1

2. The method of claim 1, wherein generating at least one interrupt

2

signal comprises:

generating at least one unit interrupt signal in response to the at least one detected change;

4 5

3

generating at least one memory map in response to the at least one unit interrupt signal; and

6 7

generating at least one massive interrupt signal in response to the at least one unit interrupt signal.

8

1

2

3. The method of claim 2, further comprising distributing the at least one memory map among the plurality of network elements.

- 1 4. The method of claim 2, wherein the at least one memory map
- 2 comprises memory maps among three areas of a random access memory.
- 1 5. The method of claim 1, further comprising:
- 2 navigating among a plurality of memory locations using a plurality
- of memory maps in response to the at least one interrupt signal;
- 4 reading data from the plurality of memory locations relating to the
- 5 switching event information; and
- 6 evaluating the switching event information.
- 1 6. The method of claim 1, further comprising coupling an output of
- 2 each of the plurality of network elements to an input of the plurality of
- 3 network elements.
- The method of claim 1, wherein the at least one data frame of a first
- 2 type comprises a synchronous optical network data frame.
- 1 8. The method of claim 1, wherein the at least one data frame of a
- 2 second type comprises approximately \$\displays{7.5}\$ bytes transferred as a serial bit
- 3 stream at a rate of approximately 4.32 megahertz.
- 1 9. The method of claim 8, wherein the at least one data frame of a
- 2 second type comprises status bytes and Synchronous Optical Network
- 3 (SONET) bytes including K1, K2, F1, and F1 bytes.
- 1 10. The method of claim 1, wherein the second network comprises a 16-
- 2 channel bus.
- 1 11. The method of claim 1, wherein the at least one detected change is
- an inequality among bits of the at least one data frame of a second type.

l

2

	D
1	12. The method of claim 1, further comprising generating a plurality of
2	control and clock signals.
1	13. The method of claim 1, wherein the storing comprises multiplexing
2	the at least one data frame of a second type from a plurality of ports into a
3	memory area of a dual port random access memory.
,	memory area or a data port random access memory.
1	14. The method of claim 1, further comprising receiving the at least one
2	data frame of a first type from a plurality of network ports distributed
3	among a plurality of switch cards.
1	15. The method of claim 1, further comprising distributing processing o
2	switching event information among the plurality of network elements.
1	16. A method of communicating among a plurality of network elements
1	
2	comprising:
3	capturing at least one network data frame from at least one network;
4	generating at least one backplane data frame from the at least one
5	network data frame, wherein the at least one backplane data frame
6	comprises switching event information;
7	transferring and storing the at least one backplane data frame among
8	the plurality of network elements using a backplane network;
9	performing at least one compare operation among at least one
10	transferred backplane data frame and at least one stored backplane data
11	frame at prespecified intervals; and
12	generating at least one interrupt signal in response to at least one
13	detected change in switching event information resulting from the at least
14	one compare operation

signal comprises:

The method of claim 16, wherein generating at least one interrupt

3	generating at least one unit interrupt signal in response to the at least		
4	one detected change;		
5	generating at least one memory map in response to the at least one		
6	unit interrupt signal; and		
7	generating at least one massive interrupt signal in response to the at		
8	least one unit interrupt signal.		
1	18. The method of claim 17, further comprising distributing the at least		
2	one memory map among the plurality of network elements.		
1	19. The method of claim 16, further comprising:		
2	navigating among a plurality of memory locations using a plurality		
3	of memory maps in response to the at least one interrupt signal;		
4	reading data from the plurality of memory locations relating to the		
5	switching event information; and		
6	evaluating the switching event information.		
1	20. The method of claim 16, further comprising coupling an output of		
2	each of the plurality of network elements to an input of the plurality of		
3	network elements using the backplane network, wherein the backplane		
4	network includes at least one 16-channel bus.		
1	21. The method of claim 16, wherein the at least one network data frame		
2	comprises a synchronous optical network data frame, wherein the at least		
3	one backplane data frame comprises approximately 67.5 bytes transferred as		
4	a serial bit stream at a rate of approximately 4.32 megahertz.		
1	22. The method of claim 16, wherein the at least one detected change is		
2	an inequality among bits of the at least one network data frame.		

1	23. The method of claim 16, wherein the storing comprises multiplexing
2	the at least one backplane data frame from a plurality of ports into a
3	memory area of a dual port random access memory.
	j
1	24. The method of claim 16, further comprising receiving the at least
2	one network data frame from a plurality of network ports distributed among
3	a plurality of switch cards.
1	25. The method of claim 16, further comprising distributing processing
2	of switching event information among the plurality of network elements.
1	26. A computer readable medium containing executable instructions
2	which, when executed in a processing system, cause the processing system
3	to route network switching event information, comprising:
4	generating at least one data frame of a second type from at least one
5	data frame of a first type, wherein the at least one data frame of a second
6	type comprises switching event information;
7	transferring and storing the at least one data frame of a second type
8	among a plurality of network elements using a second network;
9	performing at least one compare operation among prespecified data
10	frames of a second type;
11	generating at least one interrupt signal in response to at least one
12	detected change resulting from the at least one compare operation; and
13	controlling information routing in at least one network in response to
14	the at least one interrupt signal.
1	27. The computer readable medium of claim 26, wherein generating at
2	least one interrupt signal comprises:
3	generating at least one unit interrupt signal in response to the at least
4	one detected change:

)	generating at least one memory map in response to the at least one
6	unit interrupt signal; and
7	generating at least one massive interrupt signal in response to the at
8	least one unit interrupt signal.
1	28. The computer readable medium of claim 27, further comprising
2	distributing the at least one memory map among the plurality of network
3	elements.
1	29. The computer readable medium of claim 26, further comprising:
2	navigating among a plurality of memory locations using a plurality
3	of memory maps in response to the at least one interrupt signal;
4	reading data from the plurality of memory locations relating to the
5	switching event information; and
6	evaluating the switching event information.
1	30. The computer readable medium of claim 26, further comprising
2	coupling an output of each of the plurality of network elements to an input
3	of the plurality of network elements
1	31. The computer readable medium of claim 26, wherein the at least one
2	data frame of a first type is a Synchronous Optical Network (SONET) data
3	frame, wherein the at least one data frame of a second type comprises
4	approximately 67.5 bytes comprising status bytes and SONET bytes
5	including K1, K2, E1, and F1 bytes transferred as a serial bit stream at a rate
6	of approximately 4.32 megahertz.
1	32. The computer readable medium of claim 26, wherein the at least one
2	detected change is an inequality among bits of the at least one data frame of
3	a second type.

1	33. The computer readable medium of claim 26, wherein the storing
2	comprises multiplexing the at least one data frame of a second type from a
3	plurality of ports into a memory area of a dual port random access memory.
1	34. The computer readable medium of claim 26, further comprising
2	receiving the at least one data frame of a first type from a plurality of
3	network ports distributed among a plurality of switch cards.
1	35. The computer readable medium of claim 26, further comprising
2	distributing processing of switching event information among the plurality
3	of network elements.
1	36. An electromagnetic medium containing executable instructions
2	which, when executed in a processing system, cause the processing system
3	to route network switching event information, comprising:
4	generating at least one data frame of a second type from at least one
5	data frame of a first type, wherein the at least one data frame of a second
6	type comprises switching event information;
7	transferring and storing the at least one data frame of a second type
8	among a plurality of network elements using a second network;
9	performing at least one compare operation among prespecified data
10	frames of a second type;
11	generating at least one interrupt signal in response to at least one
12	detected change resulting from the at least one compare operation; and
13	controlling information routing in at least one network in response to
14	the at least one interrupt signal.
1	37. The electromagnetic medium of claim 36, wherein generating at
2	least one interrupt signal comprises:
3	generating at least one unit interrupt signal in response to the at least
4	one detected change;

5	£	generating at least one memory map in response to the at least one
6	unit inte	errupt signal; and
7	Į.	generating at least one massive interrupt signal in response to the at
8	least on	e unit interrupt signal.
1	38.	The electromagnetic medium of claim 36, further comprising:
2	1	navigating among a plurality of memory locations using a plurality
3	of mem	ory maps in response to the at least one interrupt signal;
4	1	reading data from the plurality of memory locations relating to the
5	switchir	ng event information; and
6	•	evaluating the switching event information.
1	39.	The electromagnetic medium of claim 36, further comprising
2	coupling	g an output of each of the plurality of network elements to an input
3	of the pl	lurality of network elements.
1	40.	The electromagnetic medium of claim 36, wherein the at least one
2	data fra	me of a first type is a Synchronous Optical Network (SONET) data
3	frame, v	wherein the at least one data frame of a second type comprises
4	approxi	mately 67.5 bytes comprising status bytes and SONET bytes
5	includin	ng K1, K2, E1, and F1 bytes transferred as a serial bit stream at a rate
6	of appro	eximately 4.32 megahertz.
1	41.	The electromagnetic medium of claim 36, wherein the at least one
2	detected	l change is an inequality among bits of the at least one data frame of
3	a second	d type.
1	42.	The electromagnetic medium of claim 36, wherein the storing
2	compris	ses multiplexing the at least one data frame of a second type from a
3	plurality	y of ports into a memory area of a dual port random access memory.

- 1 43. The electromagnetic medium of claim 36, further comprising
- 2 receiving the at least one data frame of a first type from a plurality of
- 3 network ports distributed among a plurality of switch cards.