APM 2013

The Advanced Process Modelling Forum

17-18 April 2013, London

Optimising compression train design and operation for flexible design

Mario Calado – Consultant, Power & CCS

Overview

Overview

Model development

gCCS Compression-Liquefacion

Component models

Main specifications

- Detailed compressor modelling
 - know-how & expertise supplied by Rolls-Royce
- Different types of performance map

Specification preview: CompressorSection						
		-				
Mode	Performance only ▼					
Performance specification	Compressor maps ▼					
Map type	1-D (H_p(Q) and η(Q)) ▼					
Specify Map	1-D (H_p(Q) and η(Q)) 1-D dimensionless (Ψ(Φ) and η(Φ)) 2-D (H_p(Q,ω) and η(Q,ω))					
✓ Gear speed multip✓ Design speed	lier 1.0	Hz				
OK Cancel Reset All Help						

0.065

Performance maps

0.08

Fv

0.095

- Performance map based on flow/head and flow/efficiency curves
- Design point corresponds to the maximum efficiency
- Compressor has a flow operating range

Surge: distance from minimum flow

Choke: distance from maximum flow

Both need to be controlled in order to maintain operability

0.35

0.3

0.05

Performance maps

1D maps

- Efficiency/flow curve
- Head/Flow curve
- Uses affinity laws to extrapolate for different speeds

2D maps

- Same type of curve as 1D map
- Multiple curves corresponding to different speeds
- Interpolates between curves to determine operation for different speeds

Dimensionless maps

- Curve based on dimensionless flow (ϕ) and head (ψ)
- Contains same information as 2D maps

APM2013

Compressor design

Design heuristics

With the diameter, calculate efficiency penalty (eta_d)

Calculate design eta

Calculate design psi

Using the design point and the normalised map, establish performance map

Performance vs Design mode

Design

- Inlet conditions
- Speed
- Design discharge pressure

Performance

- Inlet conditions
- Speed
- Design parameters
- Performance maps (1D or 2D)

Design

- Outlet conditions
- Power requirement
- Design parameters
- Performance maps

Performance

- Outlet conditions
- Power requirement

Overview

Model development

Model verification

IEAGHG Case A0

Model verification

Ref: "International Energy Agency Greenhouse Gas" (IEA GHG) report (August, 2010)

Сотопиологи	Discharge temperature (°C)				Discharge pressure (bar)				
Compressor	Report	gCCS	Deviation (%)		Report	gCCS	Deviation (%)		
K100 ₁	83.6	83.7		0.05		3.65	3.64		0.3
K100 ₂	45.7	45.7		0.1		5.00	4.98		0.4
K101 ₁	69.1	70.1		1.5		10.5	10.4		1.1
K101 ₂	68.3	68.5		0.4		18.8	18.5		1.4
K102	69.1	69.5		0.6		34.0	33.3		1.9
K103	90.1	88.4		1.9		70.0	69.9		0.2
K104	79.2	79.4		0.3		111.2	110.7		0.4

- Deviation between simulation results and data is lower than 2%.
- Good accuracy from all the compression system models.
- Accuracy condition needed for optimisation is satisfied.

Overview

Compressor train – control strategies

IEAGHG Case B0

Overview

Compressor train design - conventional

Design methodology

For a given train configuration,

- First, design the compressor for a specified discharge pressure, where the inlet conditions come from upstream equipment.
- Then, run a simulation in performance mode introducing the diameter and design point calculated in the previous design.
- The user can skip the first step by using design/performance mode by giving the design conditions while operating at off-design.

Compressor train design - conventional

Design methodology

For a given train configuration,

- First, design the compressor for a specified discharge pressure, where the inlet conditions come from upstream equipment.
- Then, run a simulation in performance mode introducing the diameter and design point calculated in the previous design.
- The user can skip the first step by using design/performance mode by giving the design conditions while operating at off-design.

Concept

Here focus on optimising the "first half" of the train (before dehydration)

Problem description (Based on Case A0 from the IEA GHG report)

Objective: Minimize total cost

- CAPEX (Peters & Timmerhaus)
 - Compressors
 - Coolers
 - Electric Drive
 - Instrumentation and control
 - Project
 - Spare parts
- OPEX
 - Electricity
 - Cooling water
 - Maintenance
 - Interest

Degrees of freedom

- Number of compressor sections
- Pressure ratio of each compressor

Constraints

 Final discharge pressure specification

Superstructure

- Binary "flip variables" Z_k
 - Z_k determines whether compressor k is included or bypassed
 - e.g. $Z_5 = 1 \rightarrow 5$ compressors in train
- Number of coolers = Number of compressors
- By-passed compressors and coolers have zero cost

Total cost, CAPEX and OPEX

Operating cost, efficiency

New formulation

CCS chain

Overview

Design flexibility

OPEX stability

- Compressor efficiency greatly decreases when operating in "off-design" conditions
- Major increment of OPEX
- Important if the compression train operates in "off-design" conditions for a significant amount of time

Safety limits

- Discharge temperature limit determined by materials of construction
- Electric drive can only operate within a certain range of speeds
 - range may not be sufficient to maintain desired discharge pressure
- Above issues are already known at the design stage
 - → Avoid relying on control system or safety procedures for resolving them
- Design system to operate over set of anticipated scenarios
 - Scenario probabilities taken into account in determining expected value of OPEX in objective function

Scenarios

*U.S. Energy Information Administration (EIA)

Total cost = $CAPEX_{100\%} + 0.5*OPEX_{100\%} + 0.5*OPEX_{75\%}$

- Power plant load changes during the year
 - Electricity demand fluctuations
 - Optimising design for only 100% load might not be the best approach
- Two scenarios (100% load and 75% load) with equal probability were taken into account in the multi-period design optimisation

Formulation

Decision variables

- Number of compressors
- Pressure ratio of each individual compressor
- Speed of drive in "off-design" scenario

Safety limits (for both scenarios)

- Maximum discharge temperature
- Minimum surge margin
- Final discharge pressure specification

Results

	Previous train	New train	△ (%)
Load	100%	75%	-
N _{compressor}	5	5	-
Nu _{100%} (Hz)	80	80	-
Nu _{75%} (Hz)	76.6	76.2	-0.5%
C _{cap} (M\$/yr)	0.85	0.86	0.5%
C _{ope} (M\$/yr)	1.78	1.80	1.3%
C _{tot} (M\$/yr)	2.63	2.66	1.0%

	Pressure ratio				
Compressor	1	2	3	4	5
Previous train	3.33	1.88	1.56	1.53	1.87
New train	4.05	1.89	1.61	1.33	1.75

	Surge (%)					
Compressor	1	2	3	4	5	
Previous traip	8.1	8.3	8.4	8.3	8.4	
New train	10	10.3	10.7	11.4	12	

- New train design is 1% more expensive than previous design
 - due to the surge lower limit constraint (10% minimum)
- HOWEVER, previous train design doesn't satisfy all operational constraints for the "off-design" scenario
- The train work balance changed, compressing more in the first 3 compressor due to the efficiency penalty in the "off-design" scenario
- Significantly increase in processflexibility with a small cost penalty

Full train optimisation

Results – IEA GHG Case AO

9 compressors

$$C_{cap} = 16.4 \text{ M}$$
\$

Conclusions

Summary

- Rigorous compressor model
 - Performance maps (1D, 2D and dimensionless)
 - Design heuristics
- Compression train simulation
 - Model verification (steady state)
 - Control system implementation
- Rigorous multi-period mixed-integer optimisation
 - Design the train considering a set of anticipated scenarios
 - Minimises total cost (CAPEX + OPEX)
 - Ensures all operational constraints are met under all scenarios
- Techno-economical decisions based on a rigorous design modelling tool
- Applicable to any range of conditions and gases (CO₂, LNG, etc.)

Acknowledgements

This work was carried out as part of a £3m project led by PSE and commissioned and cofunded by the Energy Technologies Institute (ETI) and project participants E.ON, EDF, Rolls-Royce, Petrofac (via subsidiary CO2DeepStore), PSE and E4tech.

Technical support and guidance provided by Instituto Superior Tecnico (IST) Lisbon

Thank you!

APM 2013

The Advanced Process Modelling Forum