Introducción Expresiones y Fórmulas Ejercicios

Cálculo Relacional de Tuplas

31/Marzo/2017

Cálculo Relacional de Tuplas

Introducción
Expresiones y Fórmulas
Ejercicios
Para terminar

Marco General Expresión Fiemplo

CRT - Expresión

Expresión

 $\{t \mid COND(t)\}$

- t es una variable de tipo tupla
- lacktriangle COND(t) es una expresión booleana condicional que afecta a t
- Resultado. Conjunto TODAS las tuplas t tal que evaluadas bajo COND(t) son verdaderas (satisfacen COND(t))

Introducción Expresiones y Fórmulas Ejercicios Para terminar...

Marco General Expresión Ejemplo

CRT - Marco General

- Consultas. Al igual que el Álgebra Relacional, el Cálculo Relacional de Tuplas (CRT) es un lenguaje de consultas asociado al Modelo Relacional (MR)
- Declarativo. No existe una descripción de "en qué orden" es evaluada la consulta (no es procedural)
- Poder de Expresividad. Idéntico a Álgebra Relacional (bajo ciertas condiciones).
 Explicación más adelante
- Importante. Existen ciertas consultas de BDs que requieren de un mayor poder de expresividad que la provista por AR y CRT. Lo vamos a ver en una clase más adelante
- Importancia del Cálculo Relacional.
 - Tiene un sólido fundamento en Lógica Matemática
 - SQL tiene sus bases fundacionales en CRT

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar...

Marco General Expresión Ejemplo

CRT - Ejemplo 1

EMPLEADO

2 22.150				
DNI	Nombre	Salario	Depto	Supervisor
20222333	Diego	\$20.000,00	IN	33456234
33456234	Laura	\$25.000,00	IN	
45432345	Marina	\$10.000,00	IN	33456234
12323212	Beatriz	\$12.000,00	RH	12323212
34323232	Pedro	\$17.000,00	RH	
11232123	María	\$55.000,00	GG	

DEPARTAMENTO

IDD	Detalle
IN	Investigación
RH	RRHH
GG	Gerencia Gral.

• Listar empleados cuyo salario es mayor a \$22.000

 $\{t \mid t \in EMPLEADO \land t.Salario > \$22.000\}$

CRT - Expresiones del CRT

Expresión General

 $\{t | COND(t)\}$

donde

- t es una variables de tipo tupla
- t es la <u>única variable libre</u> de la expresión
- COND es una fórmula bien formada de CRT

Cálculo Relacional de Tuplas

Introducción
Expresiones y Fórmulas
Ejercicios

Expresiones
Fórmulas bien formadas

CRT - Fórmula bien formada

- Una fórmula bien formada se define recursivamente de la siguiente manera:
 - 1 Todo predicado atómico es una fórmula
 - $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$, $(\neg F_1)$ son fórmulas, donde F_1 y F_2 son fórmulas. Su valor de verdad es:
 - $(F_1 \wedge F_2)$ es verdadera si F_1 y F_2 son verdaderas; si no es falsa
 - 2 $(F_1 \vee F_2)$ es verdadera si F_1 o F_2 son verdaderas; si no es falsa
 - $(\neg F_1)$ es verdadera si F_1 es falsa; caso contrario es falsa
 - ③ (∃r)(F). Si F es una fórmula en la que la variable de tipo tupla r aparece al menos una vez de manera libre, entonces (∃r)(F) es una fórmula. (∃r)(F) es verdadera si, para algún valor de r, cuando es reemplazado en todas las ocurrencias libres de r en F, hace que el valor de verdad de la fórmula sea verdadera; caso contrario es falsa
 - **③** $(\forall r)(F)$. Si F es una fórmula en la que la variable de tipo tupla r aparece al menos una vez de manera libre, entonces $(\forall r)(F)$ es una fórmula. $(\forall r)(F)$ es verdadera si cada valor de r, cuando es reemplazado en todas las ocurrencias libres de r en F, hace que el valor de verdad de la fórmula sea verdadera; caso contrario es falsa

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar...

Expresiones
Fórmulas bien formadas

CRT - Fórmula bien formada

 Una fórmula bien formada puede estar compuesta por alguno de los siguientes predicados atómicos:

① $r \in R$ Ejemplo: $r \in EMPLEADO$ ② r.A op s.B Ejemplo: r.Depto=s.IDD③ r.A op c (c op r.A) Ejemplo: r.Salario>\$22.000

donde R es una relación, r y s son variables de tipo tupla, A y B son atributos asociados a r y a s respectivamente, c es un valor constante y \mathbf{op} es un operador del conjunto $\{=,<,\leq,>,\geq,\neq\}$

• Cada predicado atómicos tiene un valor de verdad (verdadero o falso)

① Si r toma el valor de una tupla que pertenece a la relación R, entonces el predicado es verdadero; caso contrario es falso

② y ③ si el valor que toman los atributos de r (y s) satisfacen la condición, entonces el predicado es verdadero; caso contrario es falso

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Ejercicio 1
Ejercicio 2
Ejercicio 3
Ejercicio 4
Ejercicio 5

CRT - Ejercicio 1

EMPLEADO

DNI	Nombre	Salario	Depto	Supervisor
20222333	Diego	\$20.000,00	IN	33456234
33456234	Laura	\$25.000,00	IN	
45432345	Marina	\$10.000,00	IN	33456234
12323212	Beatriz	\$12.000,00	RH	12323212
34323232	Pedro	\$17.000,00	RH	
11232123	María	\$55.000,00	GG	

DEPARTAMENTO

IDD	Detalle
IN	Investigación
RH	RRHH
GG	Gerencia Gral.

 Listar nombre y salario de aquellos empleados que trabajan en el Departamento de Recursos Humanos

 $\{t \mid (\exists e)(\exists d) \ (e \in EMPLEADO \land d \in DEPARTAMENTO \land d.Detalle='RRHH' \land e.Depto=d.IDD \land t.Nombre=e.Nombre \land t.Salario=e.Salario\}$

Importante

- Sólamente se permite una variable libre: t
- Los atributos que tendrán las tuplas devueltas son solamente los que aparecen alguna vez en la consulta

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5

CRT - Ejercicio 2

EMPLEADO

DNI	Nombre	Salario	Depto	Supervisor
20222333	Diego	\$20.000,00	IN	33456234
33456234	Laura	\$25.000,00	IN	
45432345	Marina	\$10.000,00	IN	33456234
12323212	Beatriz	\$12.000,00	RH	12323212
34323232	Pedro	\$17.000,00	RH	
11232123	María	\$55.000,00	GG	

DEPARTAMENTO

IDD	Detalle
IN	Investigación
RH	RRHH
GG	Gerencia Gral.

 Listar nombre, salario y nombre de Departamento de aquellos empleados que ganan más de \$15.000

 $\{t \mid (\exists e)(\exists d) \ (e \in EMPLEADO \land e.Salario > \$15.000 \land d \in DEPARTAMENTO \land e.Depto = d.IDD \land t.Nombre = e.Nombre \land t.Salario = e.Salario \land t.Departamento = d.Detalle\}$

Cálculo Relacional de Tuplas

Introducción
Expresiones y Fórmulas
Ejercicios

Ejercicio 1
Ejercicio 2
Ejercicio 3
Ejercicio 4
Ejercicio 5

CRT - Ejercicio 4

EMPLEADO

DNI	Nombre	Salario	Depto	Supervisor
20222333	Diego	\$20.000,00	IN	33456234
33456234	Laura	\$25.000,00	IN	
45432345	Marina	\$10.000,00	IN	33456234
12323212	Beatriz	\$12.000,00	RH	12323212
34323232	Pedro	\$17.000,00	RH	
11232123	María	\$55.000,00	GG	

DEPARTAMENTO

 Listar el nombre de los empleados que trabajan en el Departamento de RRHH o su supervisor gana más de \$15.000

```
 \begin{cases} t \mid (\exists e)(e \in EMPLEADO \land \\ ( & (\exists d)(d \in DEPARTAMENTO \land e.Depto = d.IDD \land d.Detalle = "RRHH") \\ \lor \\ & (\exists s) (s \in EMPLEADO \land e.Supervisor = s.DNI \land s.Salario > \$15.000) \\ ) \land t.Nombre = e.Nombre \end{cases}
```

• En este caso, el OR funciona como el UNION

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5

CRT - Ejercicio 3

EMPLEADO

DNI	Nombre	Salario	Depto	Supervisor
20222333	Diego	\$20.000,00	IN	33456234
33456234	Laura	\$25.000,00	IN	
45432345	Marina	\$10.000,00	IN	33456234
12323212	Beatriz	\$12.000,00	RH	12323212
34323232	Pedro	\$17.000,00	RH	
11232123	María	\$55.000,00	GG	

DEPARTAMENTO

IDD	Detalle	
IN	Investigación	
RH	RRHH	
GG	Gerencia Gral.	

• Listar el nombre de cada empleado junto al de su supervisor $\{t \mid (\exists e)(\exists s) \ (e \in EMPLEADO \land s \in EMPLEADO \land e.Supervisor=s.DNI \land t.Nombre=e.Nombre \land t.Supervisor=s.Nombre\}$

 Listar el nombre de cada empleado del Departamento de Investigación junto al de su supervisor

 $\label{eq:total_energy} \{t \mid (\exists e)(\exists s)(\exists d) \ (e \in EMPLEADO \land s \in EMPLEADO \land d \in DEPARTAMENTO \land d. Detalle=' Investigacion' \land e. Supervisor=s. DNI \land e. Depto=d. IDD \land t. Nombre=e. Nombre \land t. Supervisor=s. Nombre\}$

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Ejercicio 1
Ejercicio 2
Ejercicio 3
Ejercicio 4
Ejercicio 5

CRT - Ejercicio 5

EMPLEADO

	DNI	Nombre	Salario	Depto	Supervisor
	20222333	Diego	\$20.000,00	IN	33456234
	33456234	Laura	\$25.000,00	IN	
	45432345	Marina	\$10.000,00	IN	33456234
	12323212	Beatriz	\$12.000,00	RH	12323212
	34323232	Pedro	\$17.000,00	RH	
П	11232123	María	\$55.000,00	GG	

DEPARTAMENTO

	IDD	Detalle
	IN	Investigación
	RH	RRHH
Ī	GG	Gerencia Gral.

● Tarea: Listar el nombre de los empleados que no tienen Supervisor asignado $\{t \mid (\exists e) (e \in EMPLEADO \land (\forall s) (s \in EMPLEADO \implies e.Supervisor \neq s.DNI) \land t.Nombre=e.Nombre\}$

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar...

Equivalencias

Expresiones Seguras
Cálculo Relacional de Dominio
Bibliografía

CRT - Equivalencias

Algunas equivalencias útiles

$(\forall x) (P(x))$	=	$\neg (\exists x) (\neg (P(x)))$
$(\exists x) (P(x))$	=	$\neg (\forall x) (\neg (P(x)))$
$(\forall x) (P(x) \wedge Q(x))$	=	$\neg (\exists x) (\neg (P(x)) \lor \neg (Q(x)))$
$(\forall x) (P(x) \lor Q(x))$	=	$\neg (\exists x) (\neg (P(x)) \land \neg (Q(x)))$
$(\exists x) (P(x) \lor Q(x))$	=	$\neg (\forall x) (\neg (P(x)) \land \neg (Q(x)))$
$(\exists x) (P(x) \land Q(x))$	=	$\neg (\forall x) (\neg (P(x)) \lor \neg (Q(x)))$
$(\forall x) (P(x)) \implies (\exists x) (Q(x))$	=	$\neg (\exists x) (Q(x)) \implies \neg (\forall x) (P(x))$

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Equivalencias Expresiones Seguras Cálculo Relacional de Dominio Bibliografía

Cálculo Relacional de Tuplas

DRC - Cálculo Relacional de Dominio

- CRT. Utiliza tuplas a modo de variables
- CRD. Utiliza atributos a modo de variables
- Expresividad. CRD tiene el mismo poder de expresividad que CRT

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Equivalencias
Expresiones Seguras
Cálculo Relacional de Dominio
Bibliografía

CRT - Expresiones Seguras

- Expresión Segura. En Cálculo Relacional es aquella que garantiza producir una cantidad finita de tuplas como resultado. Caso contrario se denomina Expresión Insegura
- Ejemplo: {t|¬(t∈ EMPLEADO)} es una Expresión Insegura porque produce una cantidad infinita de tuplas: Todo el universo de posibles empleados que no forman parte de la relación EMPLEADO
- Dominio de una Expresión del CRT. Sea E una expresión del CRT, dom(E) es el conjunto de valores que aparecen tanto a) como valores constantes en E, como b) los valores pertenecientes a cualquier atributo de cualquier tupla de las relaciones mencionadas en E
- Ejemplo: $dom(\{t | (t \in EMPLEADO)\})$ es el conjunto de todos los valores que toman los atributos en todas las tuplas de la relación EMPLEADO
- Definición alternativa. Una Expresión es Segura si todos los valores en el resultado son parte del dominio de la expresión
- Observación. Notar que el resultado de {t|¬(t ∈ EMPLEADO)} es una Expresión Insegura, ya que incluye valores por fuera de los incluídos en la relación EMPLEADO. Dichos valores no pertenecen al dominio de la expresión
- Expresividad. CRT restringido a expresiones seguras es equivalente en poder de expresividad al Álgebra Relacional básica

Cálculo Relacional de Tuplas

Introducción Expresiones y Fórmulas Ejercicios Para terminar... Equivalencias Expresiones Seguras Cálculo Relacional de Dominio Bibliografía

CRT - Bibliografía

Capítulo 8 (a partir de sección 8.6) Elmasri/Navathe - Fundamentals of Database Systems, 7th Edition Pearson, 2015.

Capítulo 3 (a partir de sección 3.8) Ullman - Principles of Database and Knowledge-Base Systems Computer Science Press, 1988

Cálculo Relacional de Tuplas