W4240/W6240

Data Mining/ Statistical Machine Learning

Frank Wood

January 17, 2012

Introduction

- Data mining is the search for patterns in large collections of data
 - Designing models
 - Fitting models to data
 - Using models to perform inference/prediction
- Pattern recognition is concerned with automatically finding patterns in data / learning models
- Machine learning is pattern recognition with concern for computational tractability and full automation
- ▶ Data mining = Machine Learning = Applied Statistics
 - Scale
 - Computation

High Level Course Goals

Problem formulation

- Starting from data and/or a question, you will learn how to create and design a model that will answer the question(s) of interest.
- You will learn how to formally, mathematically codify a model.
- You will learn how to fit models.
- You will learn to think about computational/inferential trade-offs.

▶ Tool Creation

- You will learn how to design and implement general purpose learning algorithms
- You will implement inference algorithms for several models such as latent Dirichlet allocation, Bayesian logistic regression, Gaussian mixture models and more.

Practice

Through your homework and final project you will be evaluated on how well you can put into practice the theory that will be taught in class.

Style of Instruction

- Great textbook (Bishop, Pattern Recognition and Machine Learning, required!)!
 - Will follow second half of text closely.
- ► Class time will be spent on *theory* and "*proof*," explaining the tricky parts of the text by doing math on the board.
- ▶ Homework (extensive and hard) will be spent on practice.
- Team-based final project
- ► This is not a "What tool do we use and how do we use it?" course!

Grading - What you should expect.

Figure: Fall 2010 Grade Distribution

Links and Syllabus

- ► Course home page : http://www.stat.columbia.edu/~fwood/w4240/
- Bookmark this page (not courseworks)
- ► Guest lectures may be sprinkled throughout the course.

Prerequisites

- Linear algebra
- Multivariate calculus (matrix and vector calculus)
- Probability and statistics at a masters level
- ▶ Programming experience in some language like pascal, matlab, c++, java, c, fortran, scheme, etc.
- ► Some algorithmic complexity theory (basics) useful
- Information theory (entropy, KL-divergence)

Review

Good idea to familiarize yourself with PRML [1] Chapter 1 and 2 and Appendices B,C,D, and E. In particular:

- Information theory
- Multivariate Gaussian distribution
- ▶ Discrete, multinomial, and Dirichlet distributions
- Lagrange multipliers
- Matlab

We will offer extra Matlab programming sections, a review of both the multivariate Gaussian and information theory.

Homework (from anonymous student feedback)

The assignments were challenging and probably the best part of the course. It was with bated breath, and nervous anticipation - almost like a blind date with someone you knew would be pretty - that we waited for the homework ok, maybe that was 10% exaggerated.

The assignments in this course were more challenging than any other course I have taken in the past.

Really enjoyed the assignments in this class. Excellent job putting them together.

Very difficult programming assignments, and I learned a lot doing them,

The homework in this course is *programming*. You will *implement* various data mining / machine learning algorithms. If you have not programmed before the course is doable but difficult.

Project

The final project is a semester-long, significant piece of team-based work that demonstrates your data mining / statistical machine learning knowledge on a problem domain of interest to you (and hopefully also of interest to a larger academic, governmental, or industry community). The deliverables include a 2-3 page proposal; a short, publication-quality paper; and a 10-20 minute presentation.

Syllabus

- Review
- Graphical models
 - Belief propagation
- Expectation Maximization
- Variational Inference
- Sampling
- Misc.

Along the way you will implement estimation and inference procedures for the following models (minimally)

- Gaussian mixture model
- Bayesian linear regression
- Bayesian logistic regression
- Latent Dirichlet allocation
- **.**..

Past Example Projects

See website for links to related talks.

Bibliograpy I

[1] Christopher M Bishop. Pattern Recognition and Machine Learning, volume 4 of Information science and statistics.

Springer, 2006. ISBN 0387310738. doi: 10.1117/1.2819119. URL http:

//www.library.wisc.edu/selectedtocs/bg0137.pdf.