Algorithms Design Chap03-Graphs

College of Computer Science

Nankai University

Tianjin, P.R.China

Chap03-Graphs Outline

- 3.1 Basic Definitions and Applications
- 3.2 Graph Traversal and Graph Connectivity
- 3.3 Testing Bipartiteness
- 3.4 Connectivity in Directed Graphs
- 3.5 DAGs and Topological Ordering

Undirected graph. G = (V, E)

- $\blacksquare V = \text{nodes}.$
- $\blacksquare E = \text{edges between pairs of nodes.}$
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

Application 1: Web graph

- Node: web page
- Edge: hyperlink from one page to another.

Application 2: Social network graph

- Node: users
- Edge: relationship between two users

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2 .
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n. degree=# neighbors of u
- Checking if (u, v) is an edge takes $O(\deg(u))$ time
- Identifying all edges takes $\Theta(m+n)$ time.

Def(3-1). A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, \dots, v_{k-1}, v_k$ with the property that each consecutive pair (v_i, v_{i+1}) is joined by an edge in E.

Def(3-2). A path is simple if all nodes are distinct.

Def(3-3). An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Def(3-4). A cycle is a path $v_1, v_2, \dots, v_{k-1}, v_k$ in which $v_1 = v_k, k > 2$, and the first k - 1 nodes are all distinct.

Def(3-5). A cycle is simple if all nodes are distinct (except

for v_1 and v_k).

Def(3-6). An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem(3-1). Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- *G* is connected.
- *G* does not contain a *cycle*.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1

Phylogeny trees.

• Describe evolutionary history of species.

Chap03-Graphs Outline

- 3.1 Basic Definitions and Applications
- 3.2 Graph Traversal and Graph Connectivity
- 3.3 Testing Bipartiteness
- 3.4 Connectivity in Directed Graphs
- 3.5 DAGs and Topological Ordering

Connectivity

- •s-t connectivity problem. Given two node s and t, is there a path between s and t?
- •s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications

- Kevin Bacon number
- Fewest hops in a communication network

Breadth-First Search(BFS)

- •BFS intuition.
 - Explore outward from *s* in all possible directions, adding nodes one "layer" at a time.
- •BFS algorithm.
 - $L_0 = \{s\}$
 - L_1 = all neighbors of L_0 .
 - L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

```
Input: s,G=(V,E)
Output: L, BFS tree T
Initialize visited and visited[s]=true
for v in V-s:
  visited[v] = false
End for
Initialize L and add s into L[0]
i = 0
Initialize T
while L[i] is not empty:
                                        L
  initialize L[i]
  for u in L[i]
     select (u, v) \in E
     if visited(v) == false:
        visited(v) = true
        add (u,v) into T
        add v into L[i+1]
     end if
  end for
  i = i + 1
end while
```

Breadth-First Search

- Theorem(3-2). For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
- Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then, the levels of x and y differ by at most 1.

(a)

(b)

(c)

 L_1

Theorem(3-3). The above BFS algorithm runs in O(m + n) time if the graph is given by its adjacency representation. Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m+n) time:
 - when we consider node u, there are degree(u) incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} degree(u) = 2m$

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Application

- Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
- Node: pixel.
- Edge: two neighboring lime pixels.
- •Blob: connected component of lime pixels.

Flood fill

Flood fill

Connected component. Find all nodes reachable from *s*.

```
R will consist of nodes to which s has a path Initially R = \{s\}
```

While there is an edge (u, v) where $u \in R$ and $v \notin R$

Add v to R

Endwhile

Theorem(3-4). Upon termination, R is the connected component containing s.

- •BFS = explore in order of distance from s.
- •DFS = explore in a different way.

Chap03-Graphs Outline

- 3.1 Basic Definitions and Applications
- 3.2 Graph Traversal and Graph Connectivity
- 3.3 Testing Bipartiteness
- 3.4 Connectivity in Directed Graphs
- 3.5 DAGs and Topological Ordering

Def(3-7). An undirected graph G = (V, E) is bipartite if the nodes can be colored blue or white such that every edge has one white and one blue end.

a bipartite graph

Applications.

- Stable matching: med-school students= blue, hospitals = white.
- Scheduling: machines = blue, jobs = white.

Testing Bipartiteness

- Given a graph G, is it bipartite?
- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

For example

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma(3-1). If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone *G*.

For example

bipartite (2-colorable)

not bipartite (not 2-colorable)

Lemma(3-2). Let G be a connected graph, and let L_0, \dots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- •(i) No edge of *G* joins two nodes of the same layer, and *G* is bipartite.
- •(ii) An edge of *G* joins two nodes of the same layer, and *G* contains an odd-length cycle (and hence is not bipartite).

For example

Lemma(3-2).

same layers.

Pf.

(i)

Case (i)

• Suppose no edge joins two nodes in

- •By previous lemma, this implies all edges join nodes on same level.
- •Bipartition: red = nodes on odd levels, blue = nodes on even levels.

3.3 Testing Bipartiteness

z = lca(x, y)Layer L_i z

Lemma(3-2).

Pf.(ii)

- Suppose (x, y) is an edge with x, y in same level L_i .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j i) + (j i), which is odd.

3.3 Testing Bipartiteness

The only obstruction to bipartiteness

Corollary (3-1). A graph G is bipartite iff it contains no odd-length cycle.

Chap03-Graphs Outline

- 3.1 Basic Definitions and Applications
- 3.2 Graph Traversal and Graph Connectivity
- 3.3 Testing Bipartiteness
- 3.4 Connectivity in Directed Graphs
- 3.5 DAGs and Topological Ordering

Directed graphs. G = (V, E)

• Edge (u, v) goes from node u to node v.

E.g. Web graph: hyperlink points from one web page to another.

- Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.

Food web graph.

- Node = species.
- •Edge =

from prey to predator.

Some directed graph applications

directed graph	node	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Graph search

Directed reachability.

• Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem.

• Given two node *s* and *t*, what is the length of the shortest path between *s* and *t*?

Graph search.

• BFS extends naturally to directed graphs.

Web crawler.

• Start from web page s. Find all web pages linked from s, either directly or indirectly.

Def(3-8). Nodes u and v are mutually reachable if there is both a path from u to v and also a path from v to u.

Def(3-9). A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma(3-3). Let *s* be any node. *G* is strongly connected iff every node is reachable from *s*, and *s* is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

Theorem(3-5). Can determine if G is strongly connected in O(m + n) time.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev} .
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

E.g.

Chap03-Graphs Outline

- 3.1 Basic Definitions and Applications
- 3.2 Graph Traversal and Graph Connectivity
- 3.3 Testing Bipartiteness
- 3.4 Connectivity in Directed Graphs
- 3.5 DAGs and Topological Ordering

Def(3-10). An Directed Acyclic Graphs (DAG) is a directed graph that contains no directed cycles.

Def(3-11). A topological order of a directed graph G = (V, E) is an ordering of its nodes as v_1, v_2, \dots, v_n so that for every edge (v_i, v_j) we have i < j.

E.g.

Precedence constraints

• Edge (v_i, v_j) means task v_i must occur before v_i .

Applications

- Course prerequisite graph: course v_i must be taken before v_i .
- Compilation: module v_i must be compiled before v_i .
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_i .

Lemma(3-4). If G has a topological order, then G is a DAG.

Pf. [by contradiction]

- Suppose that G has a topological order v_1, v_2, \dots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_j, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and v_1, v_2, \dots, v_n is a topological order, we must have j < i, a contradiction.

E.g.

Lemma(3-5). If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

Lemma(3-6). If G is a DAG, then G has a node with no incoming edges.

Pf. [by contradiction]

- Suppose that *G* is a *DAG* and every node has at least one entering edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u.
- Then, since u has at least one entering edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let *C* denote the sequence of nodes encountered between successive visits to *w*. *C* is a cycle.

Lemma(3-7). If G is a DAG, then G has a topological ordering.

Pf. [by induction on *n*]

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no entering edges.
- $G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \{v\}$
- in topological order. This is valid since v has no entering edges.

The inductive proof contains the following algorithm to compute a topological ordering of G.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Theorem(3-6). Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count(w) = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete *v*
 - remove *v* from *S*
 - decrement count(w) for all edges from v to w; and add w to S if count(w) hits 0
 - this is O(1) per edge

Thanks for Listening

College of Computer Science
Nankai University
Tianjin, P.R.China