

Sorting Algorithms

Outline

- Merge Sort
- Quick Sort
- Bucket-Sort
- Radix Sort
- Sorting Lower Bound

Merge Sort

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It has *O*(*n* log *n*) running time
- Unlike heap-sort
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S₁ and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

```
Algorithm mergeSort(S)
   Input sequence S with n
   elements
   Output sorted sequence S
   if (S.size() > 1)
      (S_1, S_2) = partition(S, n/2);
      mergeSort(S_1);
      mergeSort(S_2);
      S = merge(S_1, S_2);
```

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)
    Input sequences \boldsymbol{A} and \boldsymbol{B} with \boldsymbol{n}/2 elements each
   Output sorted sequence of A \cup B
   S = empty sequence;
   while (\neg isEmpty(A) \land \neg isEmpty(B))
       if (firstElement(A) < firstElement(B))
         insertLast(S, removeFirst(A));
       else
         insertLast(S, removeFirst(B));
   while (\neg isEmpty(A))
       insertLast(S, removeFirst(A));
   while (\neg isEmpty(B))
       insertLast(S, removeFirst(B));
   return S;
                                                       6
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example (1/10)

Partition

Execution Example (2/10)

Recursive call, partition

Execution Example (3/10)

Recursive call, partition

Execution Example (4/10)

Recursive call, base case

Execution Example (5/10)

Recursive call, base case

Execution Example (6/10)

Merge

Execution Example (7/10)

Recursive call, ..., base case, merge

Execution Example (8/10)

Merge

Execution Example (9/10)

Recursive call, ..., merge, merge

Execution Example (10/10)

Merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we halve the sequence,
- The overall amount of work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	 fast sequential data access for huge data sets (> 1M)

Recursive Merge-Sort on Array (1/3)

Recursive Merge-Sort on Array (2/3)

```
// Sort the given run of array A[] using array B[] as a source.
// iBegin is inclusive; iEnd is exclusive (A[iEnd] is not in the set).
void TopDownSplitMerge(B[], iBegin, iEnd, A[])
                               // if run size == 1
  if(iEnd - iBegin < 2)
                               // consider it sorted
    return;
  // split the run longer than 1 item into halves
  iMiddle = (iEnd + iBegin) / 2;
                                        // iMiddle = mid point
  // recursively sort both runs from array A[] into B[]
  TopDownSplitMerge(A, iBegin, iMiddle, B); // sort the left run
  TopDownSplitMerge(A, iMiddle, iEnd, B); // sort the right run
  // merge the resulting runs from array B[] into A[]
  TopDownMerge(B, iBegin, iMiddle, iEnd, A);
```

Recursive Merge-Sort on Array (3/3)

```
// Left source half is A[ iBegin:iMiddle-1].
// Right source half is A[iMiddle:iEnd-1].
// Result is B[iBegin:iEnd-1].
void TopDownMerge(A[], iBegin, iMiddle, iEnd, B[])
\{ i = iBegin, j = iMiddle; \}
  // while there are elements in the left or right runs
  for (k = iBegin; k < iEnd; k++)
     // If left run head exists and is <= existing <u>right run head</u>.
     if (i < iMiddle && (j >= iEnd || A[i] <= A[j])) {
       B[k] = A[i];
       i = i + 1;
     } else {
       B[k] = A[i];
       i = i + 1;
```

Nonrecursive Merge-Sort on Array (1/2)

```
// array A[] has the items to sort; array B[] is a work array
void BottomUpMergeSort(A[], B[], n)
{ // Each 1-element run in A is already "sorted".
  // Make successively longer sorted runs of length 2, 4, 8, 16... until whole array is sorted.
  for (width = 1; width < n; width = 2 * width)
  { // Array A is full of runs of length width.
    for (i = 0; i < n; i = i + 2 * width)
     { // Merge two runs: A[i:i+width-1] and A[i+width:i+2*width-1] to B[]
       // or copy A[i:n-1] to B[] ( if(i+width \geq= n) )
       BottomUpMerge(A, i, min(i+width, n), min(i+2*width, n), B);
    // Now work array B is full of runs of length 2*width.
    // Copy array B to array A for next iteration.
     // A more efficient implementation would swap the roles of A and B.
     CopyArray(B, 0, n, A);
     // Now array A is full of runs of length 2*width.
```

Nonrecursive Merge-Sort on Array (2/2)

```
// Left run is A[iLeft :iRight-1].
// Right run is A[iRight:iEnd-1].
void BottomUpMerge(A[], iLeft, iRight, iEnd, B[])
  i = iLeft, j = iRight;
  // While there are elements in the left or right runs...
  for (k = iLeft; k < iEnd; k++) {
     // If left run head exists and is <= existing right run head.
     if (i \le iRight && (j \ge iEnd || A[i] \le A[j]))  {
       B[k] = A[i];
       i = i + 1;
     } else {
       B[k] = A[j];
       i = i + 1;
```

Quick-Sort

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - *E* elements equal *x*
 - *G* elements greater than *x*
 - Recur: sort L and G
 - Conquer: join L, E and G

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time

Algorithm *partition(S, p)*

```
Input sequence S, position p of pivot
  Output subsequences L, E, G of the
      elements of S less than, equal to,
      or greater than the pivot, resp.
{ L, E, G = empty sequences;
  x = S.remove(p);
  while (\neg S.isEmpty())
    \{ y = S.remove(S.first()); \}
     if (y < x)
        L.insertLast(y);
      else if (y = x)
        E.insertLast(y);
      else // y > x
        G.insertLast(y);}
   return L, E, G;
```

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example (1/7)

Pivot selection

Execution Example (2/7)

Partition, recursive call, pivot selection

Execution Example (3/7)

Partition, recursive call, base case

Execution Example (4/7)

Recursive call, ..., base case, join

Execution Example (5/7)

Recursive call, pivot selection

Execution Example (6/7)

Partition, ..., recursive call, base case

Execution Example (7/7)

Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + \dots + 2 + 1$$

Thus, the worst-case running time of quick-sort is $O(n^2)$ depth time

Expected Running Time (1/2)

- Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

- A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time (2/2)

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- For a node of depth i, we expect
 - *i*/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we rearrange the elements of the input sequence such that
 - the elements less than the pivot have indices less than p
 - the elements equal to or greater than the pivot have indices between p+1 and r
- The recursive calls consider
 - elements with indices less than
 p.
 - elements with indices greater than p

```
Algorithm inPlaceQuickSort(S, l, r)
   Input sequence S, indices l and r of
          the first and last elements
   Output sequence S with the
       elements of indices between l and r
       rearranged in increasing order
   if l \ge r
      return;
   k = a random integer between l and r;
   pivot=S[k];
   Swap pivot and S[r];
   // pivot is the last element now
   p = inPlacePartition();
   inPlaceQuickSort(S, l, p-1);
   inPlaceQuickSort(S, p+1, r);
```



```
inPlacePartition()
 { left = I;
           // scan right to locate the end of G U E
                   // scan left to locate the end of L
   right = r;
   while left < right
       while left < right and S[left] < pivot
          left ++; // insert into L
       while left < right and S[right] ≥ pivot
          right --; // insert into G
       if left < right</pre>
          Swap S[left] and S[right];
   Swap S[left] and pivot;
   return left;
```

In-Place Partitioning (2/3)

Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G). left right

$$(pivot = 6)$$

- Repeat until *left* and *right* meet:
 - Scan left to the right until finding an element > pivot.
 - Scan right to the left until finding an element < pivot.
 - Swap elements at indices *left* and *right*

Swap the element at *left* and pivot

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	 sequential data access fast (good for huge inputs)

Bucket-Sort and Radix-Sort

Bucket-Sort

- Let be S be a sequence of n (key, value) entries with keys in the range [0, N-1]
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)

Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]

Phase 2: For i = 0, ..., N-1, move the entries of bucket B[i] to the end of sequence S

- Analysis:
 - Phase 1 takes *O*(*n*) time
 - Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

```
Algorithm buckerSort(S, N
    Input sequence S of (key, value)
    items with keys in the range [0, N-1]
    Output sequence S sorted by increasing
    keys
  \{ B = \text{array of } N \text{ empty sequences}; \}
   while (\neg isEmpty(S))
      \{ f = first(S); \}
        (k, o) = remove(S, f);
        insertLast(B[k], (k, o)); 
    for (i = 0; i++; i \le N-1)
       while (\neg isEmpty(B[i])
          \{ f = first(B[i]); \}
            (k, o) = remove(B[i], f);
            insertLast(S, (k, o)); \}
```

Example

• Key range [0, 9]

Properties and Extensions

Key-type Property

 The keys are used as indices into an array and cannot be arbitrary objects

Stable Sort Property

 The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range [a, b]
 - Put entry (k, o) into bucket B[k-a]
- String keys from a set D of possible strings, where D has constant size (e.g., names of the 50 U.S. states)
 - Sort D and compute the rank
 r(k) of each string k of D in the sorted sequence
 - Put entry (k, o) into bucketB[r(k)]

Lexicographic Order

- A *d*-tuple is a sequence of *d* keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the *i*-th dimension of the tuple
- Example:
 - The Cartesian coordinates of a point in space are a 3-tuple
- The lexicographic order of two *d*-tuples is recursively defined as follows

$$(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d)$$
 \Leftrightarrow
 $x_1 < y_1 \lor x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d)$

i.e., the tuples are compared by the first dimension, then by the second dimension, etc.

Lexicographic-Sort

- Let stableSort(S) be a stable sorting algorithm
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension, from least significant element to most significant element
- Lexicographic-sort runs in O(dT(n)) time, where T(n) is the running time of stableSort

Algorithm *lexicographicSort(S)*

Input sequence **S** of **d**-tuples **Output** sequence **S** sorted in

lexicographic order

```
{ for ( i = d; i >=1; i--; ) 
    stableSort(S, i); 
}
```

Example:

$$(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)$$

$$(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)$$

$$(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)$$

Radix-Sort

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
- Radix-sort is applicable to tuples where the keys in each dimension *i* are integers in the range [0, N-1]
- Radix-sort runs in time O(d(n+N))

Algorithm radixSort(S, N)

```
Input sequence S of d-tuples such that (0, ..., 0) \le (x_1, ..., x_d) and (x_1, ..., x_d) \le (N-1, ..., N-1) for each tuple (x_1, ..., x_d) in S

Output sequence S sorted in lexicographic order

{ for (i = d; i \ge 1; i-)

bucketSort(S, N);
```

Radix-Sort for Binary Numbers

Consider a sequence of nb-bit integers

$$x = x_{b-1} \dots x_1 x_0$$

- We represent each element as a b-tuple of integers in the range [0, 1] and apply radix-sort with N = 2
- This application of the radix-sort algorithm runs in O(bn) time
- For example, we can sort a sequence of 32-bit integers in linear time

```
Algorithm binaryRadixSort(S)
   Input sequence S of b-bit
      integers
   Output sequence S sorted
   replace each element x
      of S with the item (0, x)
 { for ( i = 0; i <= b-1; i++)
     \{ replace the key k of
       each item (k, x) of S
       with bit x_i of x_j
      bucketSort(S, 2);
```


Example

Sorting a sequence of 4-bit integers

Sorting Lower Bound

- Many sorting algorithms are comparison based.
 - They sort by making comparisons between pairs of objects
 - Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Counting Comparisons

- Let us just count comparisons then.
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

The height of this decision tree is a lower bound on the running time Every possible input permutation must lead to a separate leaf output.

If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong.

Since there are n!=1*2*...*n leaves, the height is at least log (n!)

- Any comparison-based sorting algorithms takes at least log (n!) time
- Therefore, any such algorithm takes time at least

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log (n/2).$$

• That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.

Summary

- Merge sort
- Quick sort
- Lexicographic sort
- Bucket sort
- Radix sort

Suggested reading: Sedgewick, Chapters 7, 8, 10