Коллоквиум №1 (20.11.2019)

GROUPS №19137,№19144

2019

- 1. Множество: способы задания, операции над множествами Не существует явного определения множества.
 - Пусть А некоторое мн-во, тогда существует 2 способа задания мн-ва
 - (a) $A = \{1,2,3,4,5\}$ явное задание эл-тов мн-ва
 - (b) Пусть $\Phi(x)$ некоторое условие, тогда $A = \{x \mid \Phi(x)\}$ - Задание множествами с помощью некоторого условия $\Phi(x)$

Пусть А, В- некоторые множества

Обозначение (Подмножетсво). А - подмножетсво B, если $A \subseteq B = \{x \mid x \in A \Rightarrow x \in B\}$

Обозначение (Собстевнное подмножетсво). А - собстевнное подмножетсво B, если $A \subset B$, если $A \subseteq B$ и $A \neq B$

Обозначение (Пустое множество). ∅ - множество, не содержащее элтов ("Пустое множество")

Обозначение (Множество всех подмножетсв множества A). $P(A) = \{ C \mid C \subseteq A \}$

Обозначение (Универсум). Универсум (условное множество все множеств) U

Операции над множествами:

- Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Разность множеств: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Дополнение множества: $\neg A = \{ \ x \mid x \in \ U \land x \notin A \}$
- Симметрическая разность множеств: $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cup A)$

Пусть S - семейство множеств:

- Объединение семейства множеств $\bigcup S = \{ x \mid \exists A_i \in S : x \in A_i \}$
- Пересечение семейства множеств $\bigcap S = \{ \ x \mid \forall A_i \in S : x \in A_i \ \}$
- 2. Упорядоченный набор (кортеж), предложение о равенстве п-ок, декартово произведение, декартова степень.

Определение (Упорядоченный набор (кортеж)). Упорядоченный набор (кортеж) длинны n определяется по индукции

$$\langle a \rangle = a$$

$$< a,b> = \{\{a\},\{a,b\}\}$$

•••

$$\langle a_1, a_2, ..., a_{n-1}, a_n \rangle = \langle \langle a_1, a_2, ..., a_{n-1} \rangle \rangle, a_n \rangle$$

Определение (пара). Набор < a, b > длинны 2 называют *парой*

Теорема (Предложение о равенстве n-ок). $Ecnu < a_1, ..., a_n > = < b_1, ..., b_n >$, $mo\ a_1 = b_1, ..., a_n = b_n$

 \mathcal{A} оказательство. ...

Определение (Декартово произведение). Пусть даны множества $A_1, ..., A_n$, тогда их декартовым произведением называют

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, ..., a_n \rangle \mid \forall i \in \{1, ..., n\} \ a_i \in A_i \}$$

Определение (Декартова степень). В случае, если $A_1 = A_2 = ... = A_n$, тогда $A_1 \times A_2 \times ... \times A_n$ называют декартовой степенью и обозначают, как $A^n = A_1 \times A_2 \times ... \times A_n$

3. Бинарные отношения, обратное отношение, произведение отношений, лемма о бинарных отношениях.

Определение. Бинарным отношением между элементами множеств A и B называется произвольное подмножество $C \subseteq A \times B$

Определение. Обратным бинарным отношением называется $R^{-1} = \{ < y; x > | < x; y > \in R \}$

Определение. Произведением бинарных отношений называется $R_1 \times R_2 = \{ < x; z > |\exists z| < x; y > \in R_1 \land < y; z > \in R_2 \}$

Лемма (Лемма о бинарных отношениях). Для любых бинарных отношений R_1, R_2, R_3 :

(a)
$$R_1 \cdot (R_2 \cdot R_3) = (R_1 \cdot R_2) \cdot R_3$$

(b)
$$(R_1 \cdot R_2)^{-1} = R_2^{-1} \cdot R_1^{-1}$$

- Доказательство. (a) Покажем, что $R_1\cdot (R_2\cdot R_3)\subseteq (R_1\cdot R_2)\cdot R_3$. Пусть $< x; t>\in R_1\cdot (R_2\cdot R_3)$, тогда существует y такое, что $< x; y>\in R_1$ и $< y; t>\in R_2\cdot R_3$. Далее существует z такое, что $< y; z>\in R_2$ и $< z; t>\in R_3$. Получаем, что $< x; z>\in R_1\cdot R_2$ и $< x; t>\in (R_1\cdot R_2)\cdot R_3$. Обратное включение доказывается аналогично.
- (b) Покажем, что $(R_1\cdot R_2)^{-1}\subseteq R_2^{-1}\cdot R_1^{-1}$. Пусть $< z;x>\in (R_1\cdot R_2)^{-1}$, тогда существует y такое, что $< x;y>\in R_1$ и $< y;z>\in R_2$. Тогда $< y;x>\in R_1^{-1}$ и $< z;y>\in R_2^{-1}$. Получаем, что $< z;x>\in R_2^{-1}\cdot R_1^{-1}$. Обратное включение доказывается аналогично.