

Trabajo Práctico 1: Especificación y Correctitud

Subtítulo del tp

12 de septiembre de 2024

Algoritmos y Estructuras de Datos

Grupo ElDobleMenosUno

Integrante	LU	Correo electrónico
Deukmedjian, Iván	001/01	email1@dominio.com
Stescovich Curi, Agustín Ezequieñ	184/24	agustinstescovichcuri@gmail.com
Feito, Agustín	236/24	agustinfeito@hotmail.com
Raffo, Pedro	004/01	email4@dominio.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:fax: problem} \begin{split} & \text{Tel/Fax: (++54 +11) 4576-3300} \\ & \text{http://www.exactas.uba.ar} \end{split}$$

1. Especificación

1.1. grandesCiudades

```
proc grandesCiudades (in ciudades: seq\langle \mathsf{Ciudad}\rangle) requiere {noHayNombresRepetidos(ciudades) \land \mathsf{todasPoblacionesPositivas}(ciudades)} asegura \{((c \in ciudades \land c_1 > 50000) \leftrightarrow c \in res) \land \mathsf{noHayNombresRepetidos}(res)\} pred noHayNombresRepetidos (s: seq\langle \mathsf{Ciudad}\rangle) \ \{(\forall i: \mathbb{Z})(0 \le i < |s| \to_L \neg (\exists j: \mathbb{Z})(0 \le j < |s| \land_L s \ne j \land s[i]_0 = s[j]_0))\} pred todasPoblacionesPositivas (s: seq\langle \mathsf{Ciudad}\rangle) \ \{(\forall i: \mathbb{Z})(0 \le i < |s| \to_L s[i]_1 \ge 0)\}
```

1.2. sumaDeHabitantes

Para una mejor legibilidad de la especificacion se sustituye a menoresDeCiudades por men y a mayoresDeCiudades por may, es decir:

menoresDeCiudades = men y mayoresDeCiudades = may

```
 \begin{array}{l} \operatorname{proc\ sumaDeHabitantes\ (in\ men,\ may:} seq\langle Ciudad\rangle): seq\langle Ciudad\rangle \\ \operatorname{requiere\ } \{noHayRepetidos(men) \wedge todasPoblacionesPositivas(men)\} \\ \operatorname{requiere\ } \{noHayRepetidos(may) \wedge todasPoblacionesPositivas(may)\} \\ \operatorname{requiere\ } \{mismasCiudades(may,men) \\ \} \\ \operatorname{asegura\ } \{mismasCiudades(res,men)\} \\ \operatorname{asegura\ } \{(\forall i,j:\mathbb{Z})\ ((0\leq i<|men| \wedge 0\leq j<|may| \wedge_L men[i]_0=may[j]_0) \rightarrow_L \\ ((\exists k:\mathbb{Z})\ (0\leq |res| \wedge_L res[k]_0=men[i]_0 \wedge_L men[i]_1+may[j]_1=res[k]_1))) \\ \} \\ \operatorname{pred\ } \operatorname{comparteTodosLosElem\ (in\ c_1,c_2:seq\langle Ciudad\rangle)\ \{ \\ (\forall i:\mathbb{Z})\ (0\leq i<|c_1| \rightarrow_L (\exists j:\mathbb{Z})\ (0\leq j<|c_2| \wedge_L c_1[i]_0=c_2[j]_0)) \\ \} \\ \operatorname{pred\ } \operatorname{mismasCiudades\ (in\ } c_1,c_2:seq\langle Ciudad\rangle)\ \{ \\ \operatorname{comparteTodosLosElem\ } (c_1,c_2) \wedge_L \operatorname{comparteTodosLosElem\ } (c_2,c_1) \\ \} \\ \end{array}
```

1.3. hayCamino

```
\begin{array}{l} \operatorname{proc \ hayCamino \ (in \ distancias : seq\langle seq\langle \mathbb{Z}\rangle\rangle, \ in \ desde, hasta : \mathbb{Z}) : \operatorname{Bool} \\ \operatorname{requiere} \ \{\operatorname{esMatrizCuadrada}(\operatorname{distancias}) \land \operatorname{esMatrizDiagonal}(\operatorname{distancias})\} \\ \operatorname{requiere} \ \{\operatorname{ningunElementoNegativo}(\operatorname{distancias}) \land 0 \leq \operatorname{desde}, hasta < |\operatorname{distancias}|\} \\ \operatorname{asegura} \ \{res = \operatorname{true} \leftrightarrow (\exists i : seq\langle \mathbb{Z}\rangle) (\operatorname{esCaminoValido}(i, \operatorname{desde}, hasta, \operatorname{distancias})\} \\ \operatorname{pred} \ \operatorname{esMatrizCuadrada} \ (m : seq\langle seq\langle \mathbb{Z}\rangle\rangle) \ \{ \\ (\forall i : \mathbb{Z})(0 \leq i < |m| \rightarrow_L |m| = |m[i]|) \} \\ \operatorname{pred} \ \operatorname{esMatrizDiagonal} \ (m : seq\langle seq\langle \mathbb{Z}\rangle\rangle) \ \{ \\ (\forall i,j : \mathbb{Z})(0 \leq i,j < |m| \rightarrow_L m[i][j] = m[j][i]) \} \\ \operatorname{pred} \ \operatorname{ningunElementoNegativo} \ (s : seq\langle seq\langle \mathbb{Z}\rangle\rangle) \ \{ \\ (\forall i,j : \mathbb{Z})(0 \leq i,j < |\operatorname{distancias}| \rightarrow_L \operatorname{distancias}[i][j] \geq 0) \} \\ \operatorname{pred} \ \operatorname{esCaminoValido} \ (\operatorname{camino} : \operatorname{seq}\langle \mathbb{Z}\rangle, \operatorname{origen} : \mathbb{Z}, \operatorname{destino} : \mathbb{Z}, m : \operatorname{seq}\langle \langle \mathbb{Z}\rangle\rangle) \ \{ \\ |\operatorname{camino}| \geq 2 \land_L \operatorname{camino}[0] = \operatorname{origen} \land \operatorname{camino}[|\operatorname{camino}| - 1] = \operatorname{destino} \\ \land (\forall i : \mathbb{Z})(0 \leq i < |\operatorname{camino}| - 1 \rightarrow_L (\operatorname{camino}[i] \neq \operatorname{camino}[i + 1] \rightarrow m[i][i + 1] > 0)) \} \\ \end{array}
```

1.4. cantidadCaminosNSaltos

```
\begin{split} & \text{proc cantidadCaminosNSaltos (inout conexion} : seq \langle seq \langle \mathbb{Z} \rangle \rangle, & \text{in n} : \mathbb{Z}) \\ & \text{requiere } \{ (\forall i,j:\mathbb{Z}) \; (0 \leq i,j < |conexion| \rightarrow_L 0 \leq conexion[i][j] \leq 1) \} \\ & \text{requiere } \{ esMatriz cuadrada(conexion) \land conexion = C_0 \land n \geq 1 \} \\ & \text{asegura } \{ esMatrizN - Esima(conexion, c_0, n) \\ & \} \\ & \text{pred esMatrizN-Esima} \; (c,c_0: seq \langle seq \langle \mathbb{Z} \rangle, n:\mathbb{Z} \rangle) \; \{ \\ & (\exists s: seq \langle seq \langle seq \langle \mathbb{Z} \rangle \rangle \rangle) \; (|s| = n \ \land s[0] = c_0 \ \land s[n-1] = c \ \land_L \\ & (\forall i:\mathbb{Z}) \; (1 \leq i < n \rightarrow_L esProducto(s[i], s[i-1], s[0]))) \end{split}
```

```
} pred esProducto (in t, s_1, s_2: seq\langle seq\langle \mathbb{Z}\rangle\rangle) {  (\forall i,j:\mathbb{Z}) \ (0 \leq i,j < |t| \rightarrow_L t[i][j] = \sum_{k=0}^{|t|-1} s_1[i][k] * s_2[k][j])  }
```

1.5. caminoMinimo

```
 \begin{array}{l} \operatorname{proc} \ \operatorname{caminoMinimo} \ (origen: \mathbb{Z}, destino: \mathbb{Z}, distancias: seq\langle\langle\mathbb{Z}\rangle\rangle): seq\langle\mathbb{Z}\rangle \ \{ \\ \ \operatorname{requiere} \ \{0 \leq origen, destino < | distancias| \wedge \operatorname{esMatrizCuadrada} (distancias) \wedge \operatorname{esMatrizDiagonal} (distancias) \} \\ \ \operatorname{asegura} \ \{res = \langle\rangle \leftrightarrow \neg(\exists i: seq\langle\mathbb{Z}\rangle)(\operatorname{esCaminoValido}(i, origen, destino, distancias) \} \\ \ \operatorname{asegura} \ \{res \neq \langle\rangle \leftrightarrow \operatorname{esCaminoMaximo}(res, origen, destino, distancias) \} \\ \ \operatorname{aux} \ \operatorname{distanciaCamino} \ (camino: seq\langle\mathbb{Z}\rangle, m: seq\langle\langle\mathbb{Z}\rangle\rangle) = \sum_{i=0}^{|camino|-1} m[i][i+1] \\ \ \operatorname{pred} \ \operatorname{esCaminoMaximo} \ (camino: seq\langle\mathbb{Z}\rangle, origen: \mathbb{Z}, destino: \mathbb{Z}, m: seq\langle\langle\mathbb{Z}\rangle\rangle) \ \{ \\ \ \operatorname{esCaminoValido}(res, origen, destino, m) \wedge_L \\ \ (\forall i: seq\langle\mathbb{Z}\rangle)(\operatorname{esCaminoValido}(i, origen, destino, m) \rightarrow_L \operatorname{distanciaCamino}(i, m) \leq \operatorname{distanciaCamino}(res, m)) \} \\ \end{array}
```

2. Correctitud

2.1. Demostración de correctitud de la implementación de población Total

2.1.1. Teorema del invariante

(hay que pasar las cosas de test.tex acá)

2.1.2. Teorema de terminación

Proponemos la función variante fv = |s| - i y buscamos probar que el ciclo satisface el teorema de terminación.

Primero, verifiquemos que la tripla $\{I \wedge B \wedge fv = v_0\}s\{fv < v_0\}$ sea válida. Para ello, debemos calcular la precondición más débil del ciclo respecto de $fv < v_0$:

$$wp(\text{res} := \text{res} + \text{ciudades}[i].\text{habitantes}; i := i + 1, fv < v_0)$$

 $\equiv wp(\text{res} := \text{res} + \text{ciudades}[i].\text{habitantes}, (wp(i := i + 1, fv < v_0))$

$$(1)$$

Calculemos primero la WP anidada:

$$\begin{split} ℘(\mathbf{i} := \mathbf{i} + 1, fv < v_0) \\ &\equiv wp(\mathbf{i} := \mathbf{i} + 1, |ciudades| - i < v_0) \\ &\equiv def(i+1) \wedge_L Q_{i+1}^i \\ &\equiv True \wedge_L |ciudades| - i - 1 < v_0 \\ &\equiv |ciudades| - i - 1 < v_0 \end{split}$$

Usando esto,

$$\begin{split} ℘(\texttt{res} := \texttt{res} + \texttt{ciudades}[\texttt{i}].\texttt{habitantes}, (wp(\texttt{i} := \texttt{i} + 1, fv < v_0)) \\ &\equiv wp(\texttt{res} := \texttt{res} + \texttt{ciudades}[\texttt{i}].\texttt{habitantes}, |ciudades| - i - 1 < v_0) \\ &\equiv def(res + ciudades[i].habitantes) \land_L Q^{res}_{res + ciudades[i].habitantes} \\ &\equiv 0 \le i < |ciudades| \land_L |s| - i - 1 < v_0 \end{split}$$

Dada la precondición más débil, comprobamos ahora que $I \wedge B \wedge fv = v_0$ la fuerza:

$$I \wedge B \wedge fv = v_0$$

$$\equiv 0 \le i \le |ciudades| \wedge_L res = \sum_{j=0}^{i-1} ciudades[j].habitantes \wedge i < |ciudades| \wedge |ciudades| - i = v_0$$
(4)

Basta ver que $|ciudades| - i = v_0 \rightarrow |ciudades| - i - 1 < v_0$, pues |ciudades| - i - 1 < |ciudades| - i, o bien -1 < 0. Por lo tanto, la tripla de Hoare $\{I \land B \land fv = v_0\}$ s $\{fv < v_0\}$ es válida.

Ahora, debemos mostrar que $(I \land fv \le 0) \to \neg B$, es decir, que la guarda del ciclo deja de valer cuando la función variante es menor o igual a 0.

$$I \wedge fv \le 0 \equiv 0 \le i \le |ciudades| \wedge_L res = \sum_{j=0}^{i-1} ciudades[j].habitantes \wedge |ciudades| - i < 0$$
 (5)

Tenemos que...

$$|ciudades| - i < 0 \land 0 \le i \le |ciudades|$$

 $\rightarrow i = |ciudades|$
 $\rightarrow \neg (i < |ciudades|)$ (6)

... que es la implicación que buscábamos probar.

2.1.3. Finalización de la demostración

Sabemos que el ciclo del programa es correcto respecto de (P_c, Q_c) , pero falta demostrar la validez de $\{P\}$ res := 0; $\mathbf{i} := 0\{P_c\}$, es decir, que se llegue siempre a la precondición del ciclo partiendo de la especificación.

Comenzamos calculando la precondición más debil de las instrucciones anteriores al ciclo respecto de P_c:

$$wp(\text{res} := 0; \mathbf{i} := 0, P_c)$$

$$\equiv wp(\text{res} := 0, wp(\mathbf{i} := 0, P_c))$$
(7)

(NOTA: para ahorrar espacio, recordamos que $P_c \equiv P \land res = 0 \land i = 0$.)

$$wp(\mathbf{i} := 0, P_c))$$

$$\equiv True \wedge_L P \wedge res = 0 \wedge 0 = 0$$

$$\equiv P \wedge res = 0$$
(8)

Entonces,

$$wp(\texttt{res} := 0, wp(\texttt{i} := 0, P_c))$$

$$\equiv wp(\texttt{res} := 0, P \land res = 0)$$

$$\equiv P \land 0 = 0$$

$$\equiv P$$
(9)

Se sigue trivialmente que $P \to P$, y por lo tanto la tripla $\{P\}$ res := 0; $\mathbf{i} := 0$ { P_c } es correcta. Luego, por monotonía, tenemos que $\{P\}$ res := 0; $\mathbf{i} := 0$ { P_c } \land $\{P_c\}$ s{ $Q\}$ \to $\{P\}$ res := 0; $\mathbf{i} := 0$; s{Q}. Así, hemos demostrado que la implementación de poblaciónTotal es correcta respecto de su especificación.

2.2. ¿El valor devuelto por el programa es mayor a 50.000?

Demostramos anteriormente que la implementación s es correcta respecto de la especificación, y por tanto basta ver que la especificación cumple lo pedido.

Obtenemos de la precondición del programa que:

- Sabemos que dado un i entero tal que $0 \le i < |ciudades|$ existe al menos un elemento de ciudades tal que ciudades [i].habitantes es mayor a 50,000 (por lo que hay al menos una segunda componente de un elemento en ciudades con un valor mayor o igual a 50.000),
- Ninguna segunda componente de un elemento en ciudades es negativa

y de la postcondición que:

■ El resultado obtenido es la sumatoria de toda segunda componenete (habitantes) de un elemento en ciudades.

Por tanto, dadas estas condiciones, se garantiza que $\sum_{j=0}^{|ciudades|-1} ciudades[j].habitantes$ sea mayor a 50,000.