پردازش سیگنالهای گرافی

باسمه تعالى

دانشگاه صنعتی شریف

دانشكده مهندسي برق

پردازش سیگنالهای گرافی

استاد: دکتر امینی

تمرین سری دوم

۱ پرون-فروبینیوس

در این سوال قصد داریم قضیه پرون-فروبینیوس 1 را در حالت متقارن اثبات کنیم.

قضیه: فرض کنید G گراف ساده بدون جهت، وزندار و همبند با ماتریس مجاورت M باشد و $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ مقادیر ویژه M باشند. در این صورت داریج:

ست. است. امرار ویژه متناظر با μ_1 دارای درایههای اکیدا مثبت است.

 $\mu_1 \geq -\mu_n$ (۲)

 $\mu_1 > \mu_2$ (°)

 $\mathbf{u}(i)>0 \ \ \forall i=1,\ldots,n$ باشد و بدانیم M باشد و بدانیم $\mathbf{u}(i)\geq0 \ \ \forall i=1,\ldots,n$ نتیجه بگیرید اگر $\mathbf{u}(i)>0$

راهنمایی: فرض کنید برخی درایههای ${f u}$ صفر هستند. یال e_{ij} را پیدا کنید که ${f u}=0,$ با نوشتن رابطه ${f u}$ را به تناقض ${f u}$ به تناقض برسید.

ب) فرض کنید \mathbf{u}_1 بردار ویژه متناظر با μ_1 است و قرار دهید $\mathbf{x}_i = |\mathbf{u}_1(i)| \ \forall i = 1, \dots, n$ نشان دهید $\mathbf{x}_i = \mathbf{u}_i$ نشان دهید $\mathbf{u}_i = \mathbf{u}_i$ نشان دهید $\mathbf{u}_i = \mathbf{u}_i$ نسان دویژه متناظر با $\mathbf{u}_i = \mathbf{u}_i$ نسان دهید $\mathbf{u}_i = \mathbf{u}_i$ نسان دویژ نسان دا در ایران نسان در ایران

 $\boldsymbol{\psi}$) قسمت (۲) را ثابت کنید. (دقت کنید در این قسمت نیازی به استفاده از همبند بودن گراف نیست)

راهنمایی: اگر \mathbf{u}_n بردار ویژه متناظر با $\mu_n | = |\mathbf{u}_n^T M \mathbf{u}_n| / \|\mathbf{u}_n\|^2$ و از $\mathbf{y}(i) = |\mathbf{u}_n(i)|$ استفاده کنید.

ت) اگر ${\bf u}_2$ بردار ویژه متناظر با μ_2 باشد، ثابت کنید دارای مقادیر مثبت و منفی است.

ث) قرار دهید $\mathbf{y}(i) = |\mathbf{u}_2(i)|$. سپس از نامساوی $\mathbf{y}^T M \mathbf{u}_2 \leq \mathbf{y}^T M \mathbf{v}$ استفاده کنید و نشان دهید $\mu_1 = \mu_2$ ممکن نیست.

ج) نشان دهید اگر G همبند باشد و $\mu_1=-\mu_n$ ، آنگاه G دوبخشی است.

راهنمایی: از اثبات قسمت (پ) استفاده کنید.

۲ طیف گراف های معروف!

در این سوال قصد داریم طیف لاپلاسین برخی گراف ای مشهور را بدست آوریم. برای حل سوالات به شکل ۱ توجه کنید، گاهی کمک کننده است!

است. $\lambda_1=0, \lambda_2=\cdots=\lambda_n=n$ است. الف $\lambda_1=0, \lambda_2=\cdots=\lambda_n=0$ است.

ب) فرض کنید در گراف G رئوس u,v درجه یک داشته باشند و هر دو به رأس w متصل باشند. ثابت کنید طیف لاپلاسین گراف G یک مقدار ویژه ی 1 دارد، بردار ویژه متناظر آنرا بدست آورید.

(1

¹Perron-Frobenius

پردازش سیگنالهای گرافی

 S_n با توجه به قسمت قبل ثابت کنید گراف ستاره n رأسی که آنرا با S_n نمایش می دهیم طیف لاپلاسین به فرم $\lambda_1=0, \lambda_2=\cdots=\lambda_{n-1}=1, \lambda_n=n$

ت) اگر R_n گراف دور n رأسی باشد، رئوس آنرا با اعداد در پیمانه n نامگذاری می کنیم به طوری که یالهای گراف به فرم (x,x+1) باشند. در این حالت ثابت کنید بردار های x_k,y_k برای $k \leq n$ که به فرم زیر تعریف می شوند، بردار های ویژه ی این گراف هستند.

$$x_k(i) = \cos(\frac{2\pi ki}{n}),\tag{1}$$

$$y_k(i) = \sin(\frac{2\pi ki}{n}). \tag{7}$$

در فرم بالا بردار y_0 که تماما صفر است را درنظر نمی گیریم. همینطور بردار $y_{n/2}$ را برای n زوج در نظر نمی گیریم. همینطور ثابت کنید مقادیر ویژهی متناظر به فرم $2(1-\cos(rac{2\pi k}{n}))$ هستند.

ث) گراف مسیر n رأسی را با P_n نمایش میدهیم. میخواهیم طیف این گراف را با استفاده از طیف گراف R_{2n} بدست آوریم. ابتدا نشان دهید نمایشی از لاپلاسین این دو گراف وجود دارد که معادله ی زیر برقرار شود.

$$\begin{pmatrix} I_n & I_n \end{pmatrix} L(R_{2n}) \begin{pmatrix} I_n \\ I_n \end{pmatrix} = 2L(P_n) \tag{7}$$

که در آن I_n ماتریس همانی است. حال دقت کنید که اگر گراف R_{2n} بردار ویژهای به شکل $\psi=\begin{pmatrix}\phi\\\phi\end{pmatrix}$ داشته باشد که θ ، بردار ویژه ی که در آن θ داشته باشد که θ ، بردار ویژه ی متمایز گراف θ چنین بردار ویژه ای در فضای ویژهی متناظر (که دو بعدی است) وجود دارد وبدین θ ترتیب بردار ها و مقادیر ویژهی گراف θ را بیابید.

شكل ١: چند گراف معروف!

۳ ساخت گرافهای جدید

در این سوال با دو روش ساخت گراف های جدید از روی گراف های داده شده آشنا میشویم و طیف آنها را بررسی می کنیم.

الف) اگر G گرافی n رأسی و H گرافی m رأسی باشد، فرض کنید ψ_1,\ldots,ψ_n بردار های ویژه و $\lambda_1,\ldots,\lambda_n$ مقادیر ویژه m رأسی باشد. همینطور ψ_1,\ldots,ψ_n بردار های ویژه و ψ_1,\ldots,ψ_n مقادیر ویژه یا باشند. ثابت کنید لاپلاسین گراف G imes H (ضرب دکارتی دو گراف) مقادیر ویژه به فرم ψ_1,\ldots,ψ_m برای ψ_1,\ldots,ψ_n هستند که در آن بردار ویژه به ψ_1,\ldots,ψ_n هستند که در آن بردار ویژه به فرم ثابعی بر روی رئوس گراف نمایش داده شدهاست، یعنی برای هر ψ_1,\ldots,ψ_n یک مقدار برمی گرداند. ψ_1,\ldots,ψ_n که در شکل ۲ آمده استفاده کنید.

پردازش سیگنالهای گرافی

 $m{v}_i$ فرض کنید گراف بدون وزن G را در اختیار داریم. برای ساختن گراف جدید از روی G ابتدا به ازای هر رأس v_i در v_i یک رأس v_i' اضافه می کنیم. فرض کنید کنید A_G ماتریس مجاورت گراف G باشد، یک علامت دهی دلخواه برای یالهای G در نظر بگیرید به این صورت که هر یال علامت ± 1 داشته باشد. فرض کنید ± 1 همان ماتریس مجاورت ± 1 باشد، با این تفاوت که یالها علامتدار هستند. حال در گراف جدید ± 1 که مجموعه رئوس آن ± 1 را به یکی از دو روش مستقیم و یا ضربدری به یکدیگر وصل می کنیم. اینکه چطور آنها را به هم متصل کنیم به علامت یال ± 1 و ± 1 را به طور ضربدری متصل به علامت یال ± 1 را به طور ضربدری متصل می کنیم و اگر این علامت منفی باشد آنها را به طور ضربدری متصل می کنیم (شکل ± 1 را ببینید). به گراف ± 1 که به این صورت از گراف ± 1 بدست آید یک ± 1 را ببینید (شکل ± 1 را ببینید). به گراف ± 1 که به این صورت از گراف ± 1 بدست آید یک ± 1 را ببینید (شکل ± 1 را ببینید). به گراف ± 1 که به این صورت از گراف ± 1 بدست آید یک ± 1 را ببینید (شکل ± 1 را ببینید). به گراف ± 1 که به این صورت از گراف ± 1 بدست آید یک ± 1 را ببینید را بدتماع مقادیر ویژه می آن اجتماع مقادیر ویژه می آن اختران می آن اجتماع مقادیر ویژه می آن اجتماع مقادیر و از از از این اجتماع می آن اختران می آن اجتماع از این اختران می آن اجتماع آنه از از از از از

شکل ۲: ۲-ترفیع یک گراف (سمت راست) و حاصل ضرب دکارتی دو گراف (سمت چپ)

۴ رابطه طیف گراف و درجه رئوس

در این سوال قصد داریم چند نامساوی میان مقادیر ویژه ماتریس لاپلاسین و درجه رئوس گراف اثبات کنیم. فرض کنید G گراف بدون جهت با ماتریس لاپلاسین و در این این سوال قصد داریم چند نامساوی میان مقادیر ویژه L باشند. همچنین درجه راس i را i در نظر بگیرید.

الف) نشان دهید رابطه زیر میان بیشینه درجه رئوس d_{max} و d_{max} برقرار است:

$$\lambda_n \leq 2d_{max}$$

راهنمایی: از قضیه دایره گرشگورین ۲ استفاده کنید.

ب) فرض کنید i و j دو راس از گراف G هستند که به یکدیگر متصل نیستند. نشان دهید:

$$\lambda_2 \le \frac{d_i + d_j}{2}$$

 $m{\psi}$) فرض کنید d_{max} و حداقل و حداکثر درجات رئوس گراف باشند. نشان دهید:

$$\lambda_2 \le \frac{n}{n-1} d_{min}$$

$$\lambda_n \ge \frac{n}{n-1} d_{max}$$

ت) در این قسمت قصد داریم یک حکم در حالت کلی اثبات کنیم.

فرض کنید S یک ماتریس حقیقی متقارن باشد و مقادیر ویژه آن $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ و اعضای قطر اصلی آن $d_1 \geq d_2 \geq \ldots \geq d_n$ باشد. نشان دهید:

$$\sum_{i=1}^{t} d_i \le \sum_{i=1}^{t} \mu_i \quad \forall t = 1, \dots, n$$

²Gershgorin Circle Theorem

پردازش سیگنالهای گرافی تمرین سری دوم

۵ عدد رنگی گراف

در این سوال قصد داریم باند بالا و باند پایین برای عدد رنگی گراف بدست بیاوریم. ابتدا چند مفهوم را تعریف می کنیم.

رنگ آمیزی گراف: رنگ آمیزی گراف اختصاص دادن رنگ به رئوس یک گراف است به گونهای که رئوس مجاور رنگهای متمایز داشته باشند.

گراف \mathbf{k} -رنگ پذیر: یک گراف را \mathbf{k} -رنگ پذیر می گوییم اگر بتوان آن را با \mathbf{k} رنگ متمامیز رنگ آمیزی کرد.

عدد رنگی گراف: کوچکترین k ممکن که با آن گراف k-رنگپذیر است را عدد رنگی گراف می گویند و با $\chi(G)$ نشان میدهند.

الف) فرض کنید M ماتریس مجاورت گراف بدون جهت G باشد. نشان دهید:

$$d_{avg} \le \lambda_{max}(M) \le d_{max}$$

که در آن d_{max} و میانگین و بیشینه درجه رئوس گراف هستند.

ب) با استقرا روی تعداد رئوس گراف نشان دهید:

$$\chi(G) \le \lfloor \lambda_{max}(M) \rfloor + 1$$

راهنمایی: از نامساوی سمت چپ قسمت قبل و قضیه درهم تنیدگی در تمرین سری قبل استفاده کنید.

پ) نشان دهید:

$$\chi(G) \ge 1 + \frac{\lambda_{max}(M)}{-\lambda_{min}(M)}$$

راهنمایی: از حکم سوال ۴ تمرین سری قبل استفاده کنید.