Lecture 8

7.1

Sums of Random Variables

Lemma:

Let X, Y be 2 discrete independent RV with PMF's P_X and P_Y . Then $Y n \in IN$:

$$P(X+Y=n) = P_{X+y}(n) = \sum_{k \in \mathbb{Z}} P_{X}(k) P_{Y}(n-k)$$

$$= \sum_{k \in \mathbb{Z}} P_{X}(n-k) P_{Y}(k)$$

Proof

$$P(X+Y=n)=\sum_{k\in\mathbb{Z}}P(X=k,Y=n-k)$$

$$=\sum_{k\in\mathbb{Z}}P(X=k)P(Y=n-k)$$

Convolution

· Discrete Convolution:

Px+y(n)= Px * Py(n) for X, Y discrete, independ.

Ex)

$$\times \text{pois}(\lambda)$$
, $f_{\times}(k) = \frac{\exp(-\lambda) \lambda^{k}}{k!}$, $k = 0,1,...$
 $\times \text{pois}(\lambda)$

Let X and Y be independent.

=
$$\sum_{k=0}^{n} \frac{\exp(-2) 2^{k}}{k!} \cdot \frac{\exp(-n) n^{n-k}}{(n-k)!}$$

=
$$\frac{\exp(-(Z+u))}{n!} \cdot \sum_{k=0}^{\infty} \frac{n!}{k!(n-k)!} 2^k u^{n-k}$$

Fact:
$$(X+Y)^n = \sum_{k=0}^n \binom{n}{k} \times k \times n^{-k}$$
(Binomial Thm)

$$= \frac{(n+2)^n \exp(-(2+n))}{n!}$$

Sums of Continuous RV

Let X, Y be 2 continuous independent RV with PPF's f_x and f_y . Then $Y \ge C |R|$:

$$f_{x+y}(z) = \int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) dx$$

Convolution

$$h \neq g(z) := \int_{-\infty}^{\infty} h(z-x)g(x)dx$$

Ex)

Cars drivepast Main Ave at a rate of $\frac{1}{2}$ cars per minute.

Let T be the time till 2 cars have passed. Find $f_{\tau}(t)$.

=> Let Xi be the time you wait to see the i'th car.

So Xi~ exp(2).

So T= X1+ X2

 $f_{7}(t) = \int_{0}^{t} f_{x_{1}}(x_{1}) f_{x_{2}}(t-x_{1}) dx_{1}$

= $\int_{a}^{t} \lambda \exp(-\lambda x) \lambda \exp(-\lambda (t-x)) dx$,

= 22 \$ exp(-2(x,+t-x))dx,

= $\chi^2 \exp(-2t) \cdot \int_0^t dx$

= 2^2 texp(-2t) Gamma(2, 2)

A lan show with induction if $X_1, ..., X_n \stackrel{iid}{v} exp(Z) \Rightarrow \hat{Z} \times_i v \text{ gamma}(n, Z)$

bamma Distribution

- · Z ~ gamma(shape= x, rate=B)
- $f_{\overline{z}}(\overline{z}) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} \exp(-\beta \overline{z}), \overline{z} \in (0, \Delta)$
- => If $\alpha \in \mathbb{N}$:

$$\Gamma(\alpha) = (\alpha - 1)!$$

$$\left(\begin{array}{c} (\alpha - 1)! \\ \Gamma(\alpha) = \int_{\alpha}^{\alpha} \beta^{\alpha} z^{\alpha - 1} \exp(-\beta z) dz \end{array} \right)$$
and induction