

Il pendolo conico è costituito da una massa m, legata ad una cordicella inestensibile di lunghezza ℓ e massa trascurabile, che si muove con velocità angolare ω = costante, descrivendo una circonferenza di raggio r.

Le uniche forze che agiscono sulla massa m sono il peso P = m g e la tensione T della fune. Queste forze, perché la massa pendolare m si muova di moto circolare uniforme, devono avere per risultante la forza centripeta $F = m \cdot \omega^2 \cdot r$.

Ci proponiamo di dimostrare che l'angolo ϑ di apertura della funicella non dipende dalla massa pendolare m ma, esclusivamente, dalla lunghezza ℓ del filo e dalla velocità angolare ω . Determineremo, quindi, il periodo τ , ossia il tempo che impiega la massa a descrivere la circonferenza.

Per far ciò, introduciamo un sistema di riferimento cartesiano ortonormato come in figura. Determiniamo quindi le componenti delle forze secondo gli assi.

	modulo	anomalia	Componenti	
	modulo		х	Υ
Т	Т	90° - ϑ	T · cos(90° - ϑ)	T · sen(90° - ϑ)
Р	mg	-90°	0	-mg
F	$\mathbf{m} \cdot \mathbf{\omega}^2 \cdot \mathbf{r}$	0°	$\mathbf{m} \cdot \mathbf{\omega}^2 \cdot \mathbf{r}$	0

Poiché **F** è il risultante di **T** e **P**, osservando che $\cos(90^{\circ} - \vartheta) = \sin \vartheta$ e $\sin(90^{\circ} - \vartheta) = \cos \vartheta$, deve aversi:

$$\begin{cases} T \operatorname{sen} \vartheta = \mathbf{m} \cdot \omega^2 \cdot r \\ T \cos \vartheta - m g = 0 \end{cases}$$

Da cui:

$$\begin{cases} T \ sen \ \vartheta = \ m \cdot \omega^2 \cdot r \\ T \cos \vartheta = \ m \ a \end{cases}$$

E, dividendo membro a membro e semplificando:

$$\frac{\sin \vartheta}{\cos \vartheta} = \frac{\omega^2 r}{g}$$

Ed, essendo (triangolo giallo in figura) $r = \ell sen \vartheta$, semplificando si ha:

$$\cos\vartheta = \frac{g}{\ell\,\omega^2} \quad (*)$$

Che dimostra che ϑ non dipende da m. Ed ancora

$$\omega^2 = \frac{g}{\ell \cos \vartheta}$$

Da cui, ricordando che ω = 2 π / τ , si ha:

$$\tau = 2 \pi \sqrt{\frac{\ell \cos \vartheta}{g}}$$

Che è l'espressione del periodo. Dalla (*) ricaviamo ϑ in funzione di ω .

$$\vartheta = \arccos \frac{g}{\ell \omega^2}$$

L'andamento grafico di questa funzione è riportato sotto.

Si è supposto ℓ = 2 metri.

Dominio della funzione:
$$\left[\sqrt{\frac{g}{\ell}}\right]$$
, $+\infty$

Codominio:
$$\left[0, \frac{\pi}{2}\right]$$

Un esempio concreto lo si può osservare notando che in una giostra l'apertura del seggiolino non dipende dalla massa di chi vi sta seduto ma dalla velocità angolare della giostra.

 \diamond \diamond \diamond

Ettore Limoli