Table of Contents

Part 1	1
Part a)	
Part b)	
Part c)	3
Part 2	10

Part 1

```
v1 = [1;0;-1]
v2 = [2;2;0]
v3 = [1;1;2]
eignvalues = [1 0 0;0 .5 0;0 0 0.5]
v1 =
    1
    0
   -1
v2 =
    2
    2
    0
v3 =
    1
    1
    2
eignvalues =
            0
   1.0000
                        0
                      0
           0.5000
       0
        0
            0 0.5000
```

Part a)

```
x = [7;5;4]
m1 = [v1 v2 v3 x]
rref(m1)
c = [2;1;3]
```

```
%C is the answer from the rref of m1
x =
    7
    5
    4
m1 =
    1
        2 1
   0
         2
             1
         0
              2
                   4
   -1
ans =
    1
        0
             0
                   2
    0
         1
    0
         0
                   3
              1
c =
    2
    1
    3
```

Part b)

```
p = [v1 \ v2 \ v3]
d = eignvalues
for k = [1 2 3 4 5]
   (p * d^k * inv(p))*x
end
p =
    1 2 1
0 2 <sup>1</sup>
    -1
               2
d =
    1.0000
              0
             0.5000
         0
         0
                        0.5000
```

```
ans =
    4.5000
    2.5000
    1.0000
ans =
    3.2500
    1.2500
   -0.5000
ans =
    2.6250
    0.6250
   -1.2500
ans =
    2.3125
    0.3125
   -1.6250
ans =
    2.1563
    0.1563
   -1.8125
```

Part c)

```
for k = [1:50]
    (p * d^k * inv(p)) * x
end
%If the eignenvalues are less than one, they converge to zero, thus v2
and
%v3 become irrelevant. V1's eignenvalue is 1, so it converges to 1,
thus it
%remains as k goes to infinity. The answer then become v1 multiplied
by the
%first value in c, because that was the linear combination to get v1
to x.
ans =
4.5000
```

2.5000 1.0000 ans = 3.2500 1.2500 -0.5000 ans = 2.6250 0.6250 -1.2500 ans = 2.3125 0.3125 -1.6250 ans = 2.1563 0.1563 -1.8125 ans = 2.0781 0.0781 -1.9063 ans = 2.0391 0.0391 -1.9531 ans = 2.0195 0.0195

-1.9766

ans =

2.0098

0.0098

-1.9883

ans =

2.0049

0.0049

-1.9941

ans =

2.0024

0.0024

-1.9971

ans =

2.0012

0.0012

-1.9985

ans =

2.0006

0.0006

-1.9993

ans =

2.0003

0.0003

-1.9996

ans =

2.0002

0.0002

-1.9998

ans =

2.0001

0.0001

-1.9999

ans =

2.0000

0.0000

-2.0000

```
2.0000
0.0000
-2.0000
ans =
2.0000
-2.0000
ans =
2.0000
0.0000
-2.0000
```

ans =

Part 2

```
g1 = [0\ 0\ 1\ 0\ 1/5;1/3\ 0\ 0\ 1/2\ 1/5;1/3\ 0\ 0\ 1/2\ 1/5;\ 1/3\ 1/2\ 0\ 0\ 1/5;0
 1/2 0 0 1/5] * 0.85
p1 = [1/5 1/5 1/5 1/5 1/5;1/5 1/5 1/5 1/5 1/5;1/5 1/5 1/5 1/5 1/5 1/5;1/5
 1/5 1/5 1/5 1/5;1/5 1/5 1/5 1/5 1/5] * .15
G1 = q1 + p1
q2 = [1/6 \ 1/2 \ 1/4 \ 0 \ 0 \ 1/6; 1/6 \ 0 \ 1/4 \ 0 \ 0 \ 1/6; 1/6 \ 1/2 \ 0 \ 1/2 \ 0 \ 1/6; 1/6 \ 0
 1/4 0 0 1/6;1/6 0 1/4 1/2 0 1/6;1/6 0 0 0 1 1/6] * 0.85
p2 = [1/6 1/6 1/6 1/6 1/6 1/6;1/6 1/6 1/6 1/6 1/6 1/6;1/6 1/6 1/6 1/6
 1/6 1/6;1/6 1/6 1/6 1/6 1/6 1/6;1/6 1/6 1/6 1/6 1/6 1/6;1/6 1/6
 1/6 1/6 1/6] * 0.15
G2 = q2 + p2
%Both entries of G1 and G2 (my google matricies) are the values of the
%probability matrix, meaning that at that point, the user will then
 click
%on a random webite or look something up. The meaning of row three is
%probability that the user will either stay on that page once they are
%there, and the probability of them clicking on another page.
G1k = G1^15
G2k = G2^14
%Both entries of G1 and G2 (my google matricies as k goes to infinity)
are the values from the
%probability matrix, meaning that at that point, the user will then
 click
%on a random webite or look something up. The meaning of row three is
%probability that the user will either stay on that page once they are
```

%there, and the probability of them clicking on another page.

g1 =					
0	0	0.8500	0	0.1700	
0.2833	0	0	0.4250	0.1700	
0.2833	0	0	0.4250	0.1700	
0.2833	0.4250	0	0	0.1700	
0	0.4250	0	0	0.1700	
p1 =					
0.0300	0.0300	0.0300	0.0300	0.0300	
0.0300	0.0300	0.0300	0.0300	0.0300	
0.0300	0.0300	0.0300	0.0300	0.0300	
0.0300	0.0300	0.0300	0.0300	0.0300	
0.0300	0.0300	0.0300	0.0300	0.0300	
G1 =					
0.0300	0.0300	0.8800	0.0300	0.2000	
0.3133	0.0300	0.0300	0.4550	0.2000	
0.3133	0.0300	0.0300	0.4550	0.2000	
0.3133	0.4550	0.0300	0.0300	0.2000	
0.0300	0.4550	0.0300	0.0300	0.2000	
g2 =					
0.1417	0.4250	0.2125	0	0	0.1417
0.1417	0	0.2125	0	0	0.1417
0.1417	0.4250	0	0.4250	0	0.1417
0.1417	0	0.2125	0	0	0.1417
0.1417	0	0.2125	0.4250	0	0.1417
0.1417	0	0	0	0.8500	0.1417
p2 =					
E -					
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.0250
G2 =					
J-					
0.1667	0.4500	0.2375	0.0250	0.0250	0.1667
0.1667	0.0250	0.2375	0.0250	0.0250	0.1667
0.1667	0.4500	0.0250	0.4500	0.0250	0.1667
0.1667	0.0250	0.2375	0.0250	0.0250	0.1667

	0.1667 0.1667	0.0250 0.0250	0.2375 0.0250	0.4500 0.0250	0.0250 0.8750	0.1667 0.1667
G1k	=					
	0.2315 0.2085 0.2085 0.2085 0.1429	0.2315 0.2085 0.2085 0.2085 0.1429	0.2315 0.2085 0.2085 0.2085 0.1429	0.2315 0.2085 0.2085 0.2085 0.1429	0.2315 0.2085 0.2085 0.2085 0.1429	
G2k	=					
	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284	0.1725 0.1210 0.1847 0.1210 0.1725 0.2284

Published with MATLAB® R2020a