

Seminario2 Grafos

Estructura de Datos 2023-2024

Dijkstra

- Algoritmo de caminos mínimos
- Objetivo
 - Determinar el camino mas corto desde el nodo origen al resto de los nodos del grafo
- Aplicaciones
 - Encaminamiento de paquetes por los routers
 - Reconocimiento de lenguaje hablado
 - Enrutamiento de aviones y tráfico aéreo

Encontrar el camino mínimo entre A y F

Matriz de Pesos

	Α	В	С	D	Ε	F
Α	8	4	2	8	8	8
В	8	8	8	5	8	8
С	8	1	8	8	10	8
D	8	8	8	8	2	6
Ε	8	8	8	8	8	2
F	8	∞	8	8	8	8

Encontrar el camino de coste mínimo desde A a todos los nodos

Paso1: Inicialización

$$S = \{A\}$$

Matriz de Pesos

	Α	В	С	D	Ε	F
Α	8	4	2	8	8	8
В	8	8	8	5	8	8
С	8	1	8	8	10	8
D	8	8	8	8	2	6
Ε	8	8	8	8	8	2
F	8	8	8	8	8	8

D	А	В	С	D	Е	F
		4	2	∞	∞	∞
	А	В	С	D	Е	F
Р		А	А			

<u>Paso2</u>: Elegir un nodo $w \in (nodos - S)$ tal que D[w] sea mínimo Agregar w al conjunto solución

D	А	В	С	D	E	F
U		4	2	∞	∞	∞

$$S = \{A, C\}$$

Mínimo → C

nodos= {A, B, C, D, E, F}

Origen = A w = C v = B S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = B

D[B]
$$\leftarrow$$
 min (D[B], D[C]+pesos[C,B]
D[B] \leftarrow min(4, 2+1) = 3

	А	В	С	D	Е	F
D		4	2	∞	∞	∞

D	А	В	С	D	E	F
Ρ		А	А			

Mejora

Origen = A w = C v = B S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = B

D[B]
$$\leftarrow$$
 min (D[B], D[C]+pesos[C,B]
D[B] \leftarrow min(4, 2+1) = 3

D	А	В	С	D	Е	F
U		3	2	∞	∞	∞

Р	А	В	С	D	E	F
		С	Α			

Mejora

Origen = A w = C v = D S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = D

D[D]
$$\leftarrow$$
 min (D[D], D[C]+pesos[C,D]
D[D] \leftarrow min(∞ , 2+8) = 10

_	А	В	С	D	Е	F
U		3	2	∞	∞	∞

D	А	В	С	D	Е	F
P		С	А			

Mejora

Origen = A w = C v = D S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = D

D[D]
$$\leftarrow$$
 min (D[D], D[C]+pesos[C,D]
D[D] \leftarrow min(∞ , 2+8) = 10

D	А	В	С	D	Е	F
D		3	2	10	∞	∞

D	А	В	С	D	Е	F
P		С	А	С		

Mejora

Origen = A w = C v = E S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[C]+pesos[C,E]
D[E] \leftarrow min(∞ , 2+10) = 12

	А	В	С	D	Е	F
U		3	2	10	∞	∞

D	А	В	С	D	E	F
		С	Α	С		

Mejora

Origen = A w = C v = E S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[C]+pesos[C,E]
D[E] \leftarrow min(∞ , 2+10) = 12

D	А	В	С	D	Е	F
U		3	2	10	12	∞

D	А	В	С	D	Е	F
P		С	А	С	С	

Mejora

Origen = A w = C v = F S = {A, C}

Paso3: Para cada $v \in \{B, D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

$$D[F] \leftarrow min(D[F], D[C]+pesos[C,F]$$

 $D[F] \leftarrow min(\infty, 2+\infty) = \infty$

_	А	В	С	D	Е	F
D		3	2	10	12	∞

D	А	В	С	D	Е	F
P		С	Α	С	С	

No mejora

Origen = A w =B

<u>Paso2</u>: Elegir un nodo $w \in (nodos - S)$ tal que D[w] sea mínimo Agregar w al conjunto solución

_	А	В	С	D	Е	F
D		3	2	10	12	∞

$$S = \{A, C, B\}$$

Mínimo → B

nodos= {A, B, C, D, E, F}

Origen = A w = B v = D S = {A, C, B}

Paso3: Para cada $v \in \{D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = D

$$D[D] \leftarrow min (D[D], D[B]+pesos[B,D]$$

$$D[D] \leftarrow min(10, 3+5) = 8$$

D	А	В	С	D	Е	F
D		3	2	10	12	∞

D	А	В	С	D	E	F
		С	А	С	С	

Mejora

Origen = A w = B v = D S = {A, C, B}

Paso3: Para cada $v \in \{D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = D

$$D[D] \leftarrow min (D[D], D[B]+pesos[B,D]$$

$$D[D] \leftarrow min(10, 3+5) = 8$$

D	А	В	С	D	Е	F
D		3	2	8	12	∞

D	А	В	С	D	E	F
Ρ		С	А	В	С	

Mejora

Origen = A w = B v = E S = {A, C, B}

Paso3: Para cada $v \in \{D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[B]+pesos[B,E]
D[E] \leftarrow min(12, 3+ ∞) = 12

_	А	В	С	D	Е	F
D		3	2	8	12	∞

D	А	В	С	D	E	F
Ρ		С	А	В	С	

No mejora

Origen = A w = B v = F S = {A, C, B}

Paso3: Para cada $v \in \{D, E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

$$D[F] \leftarrow min(D[F], D[B]+pesos[B,F]$$

 $D[F] \leftarrow min(\infty, 3+\infty) = \infty$

	А	В	С	D	Е	F
D		3	2	8	12	∞

D	А	В	С	D	Е	F
P		С	А	В	С	

No mejora

<u>Paso2</u>: Elegir un nodo $w \in (nodos - S)$ tal que D[w] sea mínimo Agregar w al conjunto solución

_	А	В	С	D	Е	F
D		3	2	8	12	∞
			,			

$$S = \{A, C, B, D\}$$

Mínimo → D

Origen = A w = D v = E S = {A, C, B, D}

Paso3: Para cada $v \in \{E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[D]+pesos[D,E]
D[E] \leftarrow min(12, 8+2) = 10

_	А	В	С	D	Е	F
D		3	2	8	12	∞

D	А	В	С	D	E	F
P		С	А	В	С	

Mejora

Origen = A w = D v = E S = {A, C, B, D}

Paso3: Para cada $v \in \{E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[D]+pesos[D,E]
D[E] \leftarrow min(12, 8+2) = 10

_	А	В	С	D	Е	F
D		3	2	8	10	∞

D	А	В	С	D	E	F
		С	А	В	D	

Mejora

Origen = A w = D v = F S = {A, C, B, D}

Paso3: Para cada $v \in \{E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

D[F]
$$\leftarrow$$
 min (D[F], D[D]+pesos[D,F]
D[F] \leftarrow min(∞ , 8+6) = 14

	А	В	С	D	E	F
D		3	2	8	10	∞

D	А	В	С	D	E	F
		С	А	В	D	

Mejora

Origen = A w = D v = F S = {A, C, B, D}

Paso3: Para cada $v \in \{E, F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

D[F]
$$\leftarrow$$
 min (D[F], D[D]+pesos[D,F]
D[F] \leftarrow min(∞ , 8+6) = 14

D	А	В	С	D	Е	F
D		3	2	8	10	14

D	А	В	С	D	Е	F
P		С	А	В	D	D

Mejora

<u>Paso2</u>: Elegir un nodo $w \in (nodos - S)$ tal que D[w] sea mínimo Agregar w al conjunto solución

_	А	В	С	D	Е	F
U		3	2	8	10	14

$$S = \{A, C, B, D, E\}$$

Mínimo → E

nodos= {A, B, C, D, E, F}

Origen = A w = E v = F S = {A, C, B, D, E}

Paso3: Para cada $v \in \{F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

$$D[F] \leftarrow min(D[F], D[E]+pesos[E,F]$$

 $D[F] \leftarrow min(14, 10+2) = 12$

_	А	В	С	D	Е	F
U		3	2	8	10	14

D	А	В	С	D	E	F
		С	А	В	D	D

Mejora

Origen = A w = E v = F S = {A, C, B, D, E}

Paso3: Para cada $v \in \{F\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = F

$$D[F] \leftarrow min(D[F], D[E]+pesos[E,F]$$

 $D[F] \leftarrow min(14, 10+2) = 12$

	А	В	С	D	Е	F
D		3	2	8	10	12

D	А	В	С	D	E	F
P		С	А	В	D	Е

Mejora

<u>Paso2</u>: Elegir un nodo $w \in (nodos - S)$ tal que D[w] sea mínimo Agregar w al conjunto solución

	А	В	С	D	Е	F
U		3	2	8	10	12

$$S = \{A, C, B, D, E, F\}$$

Mínimo → F

Fin del proceso

7	А	В	С	D	Е	F
U		3	2	8	10	12

	А	В	С	D	Е	F
P		С	А	В	D	Е

Aplicar **Dijkstra** desde el nodo C y obtener los posibles caminos desde el nodo C al resto de los nodos

Aplicar **Dijkstra** desde el nodo B y obtener los posibles caminos desde el nodo B al resto de los nodos

Recorrido en profundidad – Ejercicio4

- Obtener el recorrido en profundidad desde el <u>Nodo A</u> mostrando todos los pasos intermedios
- Obtener el recorrido en profundidad desde el <u>Nodo E</u> mostrando todos los pasos intermedios