Docker - Build, Ship and Run Any App, Anywhere.

Federico Naldini

Alma Mater Studiorum - Università di Bologna, Cesena.

federico.naldini3@studio.unibo.it

30/05/2018

Overview

- 1 La piattaforma Docker
 - Introduzione ai containers
 - Docker: le basi
 - Architettura del sistema Docker
 - Costruzione di un container Docker

2 Live demo

Che cos'è un container?

Un *container* è una forma di virtualizzazione a livello di sistema operativo, in alternativa alle classiche macchine virtuali(VM).

A differenza delle VM, l'idea dietro all'approccio a containers è di virtualizzare solo i componenti necessari, condividendo le restanti risorse con altri containers, VM e sistemi operativi fisici.

Vantaggi dell'approccio a containers

- Buon supporto alla scalabilità.
- Isolamento tra i vari containers, anche se in esecuzione sullo stesso insieme di risorse(utilizzando feature come Namespaces, presente nel Kernel Linux).
- Controllo rigoroso sull'utilizzo delle risorse fisiche(sfruttando CGroups, altra feature del Kernel Linux)
- Overhead di virtualizzazione minimo, grazie alla riduzione del numero di layer necessari.

Layers di virtualizzazione necessari

Docker, che cos'è?

Il progetto open source Docker viene rilasciato nel 2013 da una compagnia chiamata dotCloud, che lavorava su software di tipo PAAS (Platform as a service) per il cloud computing.

Docker si pone come obbiettivo di automatizzare lo sviluppo di applicazioni all'interno di containers software, sfruttando tutti i vantaggi di una virtualizzazione a livello di sistema operativo; per riuscire a fare ciò, si avvale delle funzionalità di isolamento presenti nel kernel Linux, come ad esempio cgroups, utilizzato per la gestione di risorse fisiche, e namespaces, che invece garantiscono un isolamento a livello di processo.

I vantaggi della piattaforma Docker

- Open Source.
- Ogni applicazione è eseguita in una Sandbox
- Applicazioni leggere da eseguire.
- Ogni applicazione è eseguita in una Sandbox
- Ogni container è isolato da ogni altro sistema, salvo diverse istruzioni.
- Supporto diretto al Clustering, utilizzando un modulo apposito chiamato Swarm Module

Chi utlizza Docker? E come?

Gli svantaggi della piattaforma Docker

- Vincolato al kernel Linux.
- Supporto limitato allo storage permanente delle modifiche.
- Open Source.

I moduli di Docker

Lo scheletro dell'Archittettura di Docker si compone di diversi moduli, ciascuno con il suo compito ben definito:

- **Docker Engine**: Cuore del sistema Docker, si occupa di mandare in esecuzione i singoli container.
- **Docker Machine**: Modulo utilizzato per creare macchine virtuali minimali per portare Docker su sistemi senza kernel Linux(Windows, MacOs), oggi soppiantato da applicazione native per i sistemi.
- **Docker Swarm**: si occupa della gestione della *Docker Swarm Mode*, ovvero una modalità per gestire cluster di *containers* Docker.

Docker Engine

Cuore della piattaforma è il modulo *Docker Engine*, composto da tre sottomoduli:

Docker Client

Fornisce un insieme di comandi all'utente per poter istruire il *Docker Daemon* sul da farsi, utilizzando API RESTful proprietarie.

Docker Daemon

Un processo demone eseguito in background su un host locale o remoto, si occupa della maggior parte del lavoro, gestendo sotto comando tutti gli oggetti del sistema.

Docker Registry

Registro pubblico o privato, a cui *Docker Daemon* accede per recuperare le immagini necessarie al funzionamento dei container

Docker Engine

Creazione di un container

Un container deve essere sempre generato da una Docker Image. Le best practices di Docker associano ogni immagine a un Dockerfile, un file testuale che contiene le istruzioni da eseguire per generare l'immagine

Dockerfile

Ogni Dockerfile è strutturato in tre sezioni

FROM

Specifica l'immagine da utilizzare come base.

RUN

Qui vengono indicati i comandi da eseguire sull'immagine base per ottenere il risultato desiderato.

CMD

Si piò specificare una singola istruzione, tale comando sarà eseguito all'avvio del *container*

Dockerfile:un esempio

Dockerfile

```
FROM library/openjdk:latest
EXPOSE 8080
RUN git clone
https://gitlab.com/das-lab/lpaas/lpaas-ws.git &&\
cd lpaas-ws &&\
chmod u+x gradlew &&\
printf '#!/bin/bash\n' >> script.sh &&\
echo "cd /lpaas-ws\n ./gradlew run task" >> script.sh &&\
chmod u+x script.sh &&\
./gradlew build
CMD ["/lpaas-ws/script.sh"]
```


Primi passi

Installazione della piattaforma(per tutti gli OS)

https://docs.docker.com/install/

Verifica della corretta installazione(da eseguire su una shell)

docker run hello-world

Una semplice bash

Ubuntu bash

docker run -ti ubuntu

NodeJS

Un semplice container che manda in esecuzione un'app

docker run -p 3000:3000 tirocigno/nodejssampleapp

Riferimenti

- Sito ufficiale Docker: https://www.docker.com/
- Architettura di Docker: https://docs.docker.com/engine/docker-overview/

Docker - Build, Ship and Run Any App, Anywhere.

Federico Naldini

Alma Mater Studiorum - Università di Bologna, Cesena.

federico.naldini3@studio.unibo.it

30/05/2018