OPTIKAI ALAPMÉRÉSEK

Mérést végezte : Brindza Mátyás Mérés időpontja : 2020.10.01.

Jegyzőkönyv leadásának időpontja: 2020.10.08.

A mérés célja:

A mérés három főbb részre tagolható, ez a felosztás fog megjenni a továbbiakban.

GEOMETRIAI OPTIKA I.

A belépési és törési szögek közti összefüggés, azaz a Snellius-Descartes törvény igazolása a cél. Optikailag ritkább közegből optikailag sűrűbb közegbe történő, és sűrűbből ritkábba történő törés esetén is. Az utóbbi esetén megkeresendő a határszög is, melynek létezését megjósolja a Snellius-Descartes törvény - ezt a szöget meghaladva teljes visszaverődést szenved a fénysugár a közeghatáron. A Snellius-Descartes törvény értelmében:

$$\frac{\sin(\alpha)}{\sin(\beta)} = \frac{n_2}{n_1},$$

ahol α a belépési szög, β a törési szög, n_1 és n_2 pedig az adott közeg vákuumra vonatkoztatott törésmutatója. $\frac{n_2}{n_1}$ rövidebben $n_{2,1}$ -nek (a sugár az 1-es közegből jön, és a 2-esben halad tovább) is jelölhető, ez a 2-es közeg 1-esre vonatkoztatott törésmutatója. Megjegyzendő, hogy $n_{2,1}=1/n_{1,2}$.

A félkör alakú lencse esetén csak a sík oldalán történik törés, mivel a lézersugarat mindkét esetben a sík rész középpontjába irányítjuk. Első esetben a sík oldal középpontján érkezik be a sugár valamilyen beesési szöggel, megtörik egy mérhető szöggel, majd távozik a domború oldalon. Második esetben a domború oldalon lép be a sugár, eléri a sík oldal középpontját, majd valamilyen mérhető szöggel távozik törés után. A sík oldal középpontjára és a domború oldal bármely pontjára illesztett egyenes a domború közeghatár számára beesési merőleges, ezért itt sosem szenved törést a sugár. A 60°-os prizma esetén a fénysugarak két törést is szenvednek - a prizmából ki-, illetve belépve. A soksugaras fényforrás párhuzamos nyalábokat bocsájt ki, melyeket úgy állítunk be, hogy a przima egyik oldalával párhuzamosak legyenek. E kísérlet célja meghatározni, mekkora szöggel fordítsuk el a prizmát, hogy az első törés után teljes visszaverődést szenvedjenek a sugarak a prizma másik oldalán.

GEOMETRIAI OPTIKA II.

Ez a rész két kísérletből áll. Az első az adott gyűjtőlencse fókusztávolságának meghatározása. Egy gyűjtőlencse egy fix tárgy-ernyő távolság mellett két helyre is helyezhető, ha éles képet szeretnénk kapni. Ez a két hely a tárgy és a lencse szempontjából:

- a tárgy az egyszeres és a kétszeres fókusztávolság között helyezkedik el nagyított és fordított állású képet kapunk
- a tárgy a kétszeres fókusztávolságon kívül helyezkedik el kicsinyített és fordított állású képet kapunk

Különböző ernyő-tárgy távolságok mellett a különböző tárgy- és képtávolságok mérésével meghatározható a fókusztávolság az

$$\frac{1}{f} = \frac{1}{t} + \frac{1}{k}$$

összefüggés alapján.

A második kísérlet a szórólencse képalkotásával foglalkozik. A szórólencse a tárgyról virtuális képet alkot, melyet nem tudunk felfogni ernyővel. Ennek kiküszöbölésére beiktatunk egy gyűjtőlencsét, ami a virtuális képről egy valódi képet alkot. A szórólencse virtuális képe a gyűjtőlencse szempontjából egy tárgy lesz. A szórólencse eltávolítása után csúsztatással megtalálható a fényforrás azon pozíciója, ami mellett a gyűjtőlencse újra éles képet vet az ernyőre. A fényforrás új pozíciója tulajdonképpen a az előbbi virtuális kép pozíciója. Ennek ismeretében kiszámolható a szórólencse képtávolsága.

FIZIKAI OPTIKA

Itt különböző rések szélességét szeretnénk meghatározni. A fény a vékony résen áthaladva elhajlik, a diffrakciós minimumok helyzete mérhető az ernyőn. Merőleges beesés esetén az n-edik minimum távolsága a rés középpontjának ernyőre vett merőleges vetületétől y. Így az n-edik minimum esetén a rés szélessége(a) kiszámolható az

$$a = \frac{n \cdot \lambda \cdot D}{y},$$

összefüggés alapján, ahol λ a fény hullámossza, D pedig a rés és az ernyő távolsága. Csak az első és a második minimumokat vesszük figyelembe, mivel a fenti összefüggéshez úgy jutunk el, hogy egy $sin(\Theta) \approx tg(\Theta)$ közelítést használunk, ami nagyobb szögek esetén már nem lesz igaz.

Mérőeszkzök:

GEOMETRIAI OPTIKA I.

- Félkör alakú műanyag lencse
- Egyenlő oldalú háromszög alakú műanyag prizma (ezentúl 60°-os prizma)
- Forgatható kör alakú szögmérő egy mágneses rúd végén
- Lézer (rögzíthető mágnesesen)
- Soksugaras fényforrás párhuzamos fénynyalábokat bocsájt ki (rögzíthető mágnesesen)

GEOMETRIAI OPTIKA II.

- Fényforrás kereszt alakú tárggyal
- Ernyő
- 2 db gyűjtőlencse (f = 10cm, f = 20cm)
- Szórólencse (f = -15cm)
- Optikai pad sín mm beosztással, melyen csúsztathatóak a fentiek

FIZIKAI OPTIKA

- Dióda lézer
- Forgatható lemez különböző alakú és méretű résekkel
- Ernyő
- Optikai pad
- Vonalzó

A mérés rövid leírása:

GEOMETRIAI OPTIKA I.

A lézert bekapcsolás után a szögmérő rúdján található mágneses padhoz rögzítjük. Első esetben a félkör alakú lencse sík oldalának közepébe irányítjuk a lézert, azaz levegőből műanyagba lépve törik a fénysugár. A sík oldal középpontja a szögmérő középpontjába kerül, így mérhető mekkora szögben lép be a fény, és mekkora szögben lép ki. 0° beesési szöggel indulunk, majd 10°-onként növeljük a beesési szöget 80°-ig. Minden beesési szög mellett megmérjük a törési szöget.

Második esetben is a sík oldal középpontja a szögmérő középpontjába kerül, és a lézert úgyszintén ebbe a pontba irányítjuk. Így a fénysugár törés nélkül behatol a domború oldalon, és a sík oldalon való kilépés során törik meg. A beesési szöget 0° és 40° között változtatjuk 5°-os lépésekkel. Minden beesési szög mellett megmérjük a törési szöget. Ezután megkeressük a határszöget. A határszöget alulról közelítve a fénysugár törési szöge 90°-hoz tart, felülről közelítve pedig a visszaverődés után bejárt út és a beesési merőleges által bezárt szög tart 90°-hoz. Nem meglepő, hogy visszaverődés után szintén egyenesen lép ki a sugár a domború oldalon.

A lézer helyére helyezzük a soksugaras fényforrást. A 60°-os prizmát állítsuk be úgy, hogy egyik oldala párhuzamos legyen a soksugaras fényforrás által kibocsájtott párhuzamos nyalábokkal. A sugarak a fényforrás felőli és átellenes oldalon is megtörnek. Mefigyelhető érdekesség: a kromatikus diszperzió két törés után észlelhető méreteket ölt. Forgassuk a 60°-os prizmát addig, ameddig az összes belépő fénysugár teljes visszaverődést nem szenved ott, ahol eddig a sugarak másodszor törtek. Jegyezzük fel ezt a szöget.

GEOMETRIAI OPTIKA II.

Először a gyűjtőlencse fókusztávolságának meghatározásához szükséges adatokat gyűjtjük össze. Az optikai padra rögzítjuk a fényforrást és az ernyőt először $100\,cm$ -re egymástól, majd $10\,cm$ -es lépcsőkkel $50\,cm$ -re csökkentjük a távolságot. A fényforrásra rögzítve van egy kereszt alakú tárgy, mely segít abban, hogy megtaláljuk az éles képet, illetve a kép fordított vagy álló voltáról is meggyőződjünk. Minden ernyő-fényforrás távolság mellett megtaláljuk a gyűjtőlencse azon két pozícióját, melyben éles képet látunk az ernyőn. Feljegyezzük a tárgy-lencse és a lencse-kép távolságokat.

A kísérlet második része a szórólencse képalkotásával foglalkozik. A szórólencsét rögzítjük az optikai padon a 30cm-es jelzésnél, a fényforrást a 10cm-es jelzésnél - ha átnézünk rajta, egyenes állású és kicsinyített képet látunk -, a gyűjtőlencsét pedig a 60cm-es jelzésnél. Csúsztatással megkeressük az ernyő azon poziícióját, amiben rajta éles kép alakul ki, feljegyezzük ezt a pozíciót is. Végül eltávolítjuk a szórólencsét - ekkor megnő és elhomályosul a kép -, és megkeressük a fényforrás azon pozícióját, ami mellett az ernyőn újra éles képet nem látunk. Feljegyezzük a fényforrás új helyzetét is.

FIZIKAI OPTIKA

Rögzítjük a diódalézer előtt a résekkel ellátott lemezt, és az optikai pad másik oldalán az ernyőt. Feljegyezzük a lemez és az ernyő közti távolságot. A 0.04mm szélességű réssel kezdjük, az ernyőn megmérjük az első kettő és a második kettő diffrakciós minimum közti távolságot vonalzóval. A mérést megismételjük 0.08mm és 0.16mm szélességű résekkel is.

Mérési adatok

GEOMETRIAI OPTIKA I.

Levegő –> Műanyag			
Beesési szög [°]	Törési szög [°]		
0	0		
10	7		
20	14		
30	20		
40	26		
50	31		
60	36		
70	39		
80	42		

Beesési szögekhez tartozó kilépési szögek, amikor a lézer a lencse sík részébe hatol először

Műanyag –> Levegő			
Beesési szög [°]	Törési szög [°]		
0	0		
10	15		
15	23		
20	31		
25	40		
30	49		
35	60		
40	70		

Beesési szögekhez tartozó kilépési szögek, amikor a lézer a lencse domború részébe hatol először

Határszög [°]: 42				
60°-os prizma				
Elford. szöge [°]	3			

A határszög egyszeres és kétszeres törési felület esetén

GEOMETRIAI OPTIKA II.

Jelmagyarázat:

- \bullet d a fényforrás és az ernyő távolsága
- \bullet k_1 az ernyő távolsága a lencsétől éles kép esetén, amikor az a fényforráshoz van közelebb
- \bullet t_1 a fényforrás távolsága a lencsétől éles kép esetén, amikor az a fényforráshoz van közelebb
- \bullet k_2 az ernyő távolsága a lencsétől éles kép esetén, amikor az az ernyőhöz van közelebb
- \bullet t_2 a fényforrás távolsága a lencsétől éles kép esetén, amikor az az ernyőhöz van közelebb

Gyűjtőlencse fókusztávolsága

d [cm]	k ₁ [cm]	t ₁ [cm]	k ₂ [cm]	t ₂ [cm]
100	88.0	12.0	12.0	88.0
90	77.7	12.3	12.1	77.9
80	67.4	12.6	12.3	67.7
70	57.0	13.0	12.8	57.2
60	46.5	13.5	13.3	46.7
50	35.3	14.7	14.8	35.2

Gyűjtőlencse kép- és tárgytávolságai különböző tárgy-ernyő távolságok esetén

7/2	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	60,0
Ernyő helye:	98,6
Fényforrás új helye:	21,5

Szórólencse képalkotása

FIZIKAI OPTIKA

Jelmagyarázat:

- $\bullet\ r$ a rés szélessége
- \bullet m_1 a két első minimum közti távolság
- \bullet m_2 a két második minimum közti távolság
- Δm_1 és Δm_2 az m_1 és m_2 mérésekor fellépő hiba (a vonalzó legkisebb beosztásának fele)

Résen való elhajlás

r [mm]	m ₁ [cm]	Δm ₁ [cm]	m ₂ [cm]	Δm ₂ [cm]
0.04	4.5	0.05	8.3	0.05
0.08	1.9	0.05	3.8	0.05
0.16	0.9	0.05	1.8	0.05

Ernyőtávolság:	
L [cm]	104.1
ΔL [cm]	0.05

Hullámhossz:			
λ [nm] 670			

Különböző résméretek mellett az első, ill. a második minimumok távolsága

Hibaforrások

GEOMETRIAI OPTIKA I.

- 1. A félkör alakú lencsénél a határoszöget közelítve egyre vastagodik a kilépő fénysugár, ezért nehezebb leolvasni a szögmérőről (legkisebb beosztása 1°), mekkora szögben lépett ki a fénysugár mint majd láthatjuk, a 40° elég közel van a határszöghöz
- 2. A félkör alakú lencsét kezdetben nem lehet egzaktul úgy lerakni, hogy a sík oldala merőleges legyen a beeső lézersugárra
- 3. A 60°-os prizma kísérletében nem lehet egzaktul úgy elhelyezni a prizmát, hogy annak egyik oldala párhuzamos legyen a bejövő fénysugarakkal
- 4. A határszöget közelítve halványodik a fénysugár, ezért még sötétben sem lehet teljesen pontosan meghatározni a határszöget

GEOMETRIAI OPTIKA II.

- 1. Emberi szemmel nem lehet elég pontosan meghatározni, mikor éles a kép vagyis a lencsék speciális pozícióinak meghatározásra kissé szubjektív lesz
- 2. A lencsékben is vannak hibák, maszatok, ezért több olyan egymáshoz közeli pozíció is van, ahol részleges élességet tapasztalunk
- 3. A lencséket, a fényforrást és az ernyőt nem lehet egzaktul párhuzamosan beállítani ez befolyásolja a kép alakját és minőségét
- 4. Az optikai padra rögzített mérőléc legkisebb beosztása 1mm

FIZIKAI OPTIKA

- 1. A legkisebb rés esetén a diffrakciós minimumok nem elég halványak, így nehéz pontosan meghatározni, hol is vannak
- 2. Szabad szemmel nehéz eldönteni, hol van pontosan a diffrakciós minimum
- 3. Ahogy növeljük a rés méretét, a diffrakciós minimumok közti távolság páronként csökken olyannyira, hogy a vonalzó hibája már összemérhető a mérendő távolsággal
- 4. Annak érdekében, hogy jól látszódjanak a minimumok, sötétítés szükséges sötétben viszont nehezebb leolvasni a vonalzóról a pontos értéket

Kiértékelés és Hibaszámítás

GEOMETRIAI OPTIKA I.

A Snellius-Descartes törvényt praktikusabb

$$sin(\alpha) = n_{2,1} \cdot sin(\beta)$$

formában felírni, mivel ez az egyenlet fel tudja használni egy illesztőprogram, ami a mért adatokra görbét tud illeszteni - a görbe esetünkben egyenes.

Legyen $n_{m,l}$, amikor a lézer a lencse sík részébe hatol először, és $n_{l,m}$ a másik esetben.

Első lépésként a szögek színuszát számoljuk ki.

α [°]	sin(α)	β [°]	sin(β)
0	0	0	0
10	0.17364818	7	0.12186934
20	0.34202014	14	0.2419219
30	0.5	20	0.34202014
40	0.64278761	26	0.43837115
50	0.76604444	31	0.51503807
60	0.8660254	36	0.58778525
70	0.93969262	39	0.62932039
80	0.98480775	42	0.66913061

Beesési szögekhez tartozó kilépési szögek és ezek színuszai (L->M)

α [°]	sin(α)	β [°]	sin(β)
0	0	0	0
10	0.17364818	7	0.12186934
20	0.34202014	14	0.2419219
30	0.5	20	0.34202014
40	0.64278761	26	0.43837115
50	0.76604444	31	0.51503807
60	0.8660254	36	0.58778525
70	0.93969262	39	0.62932039
80	0.98480775	42	0.66913061

Beesési szögekhez tartozó kilépési szögek és ezek színuszai (M->L)

Ezekre az adatokra egy-egy egyenes illeszthető a gnuplot program segítségével. Az illesztések eredményei:

$$n_{m,l} = 1.4757$$

$$n_{l,m} = 0.6684$$

Illesztés a beesési és a törési szögek színuszaira
(L->M)

Illesztés a beesési és a törési szögek színuszaira
(M->L)

Teljes visszaverődés csak akkor történhet, amikor a fény optikailag sűrűbb közegből szeretne optikailag ritkább közegbe lépni. Hasonlítsuk össze a mért és törésmutatóból számolt határszöget.

A mért határszög : $\alpha_h^m = 42^{\circ}$.

A műanyag levegőre vonatkoztatott törésmutatója $n_{l,m}=0.6684$, ebből

 $\alpha_h^s = \arcsin(n_{l,m}) = 41.9437^\circ$. Az eltérés nagyjából 1.3%, ami kellően kicsi.

A 60°-os prizmát 3°-kkal kellett elfordítani, hogy teljes visszaverődést tapasztaljuk. Legyen ez a szög γ . Nézzük meg, elméletben mekkora γ -ára kapunk teljes visszaverődést.

A prizma belsejében a fénynek 42°-ban kell érkeznie a műanyag-levegő határfelületre. A prizma egyik csúcsa és a fény be- illetve kilépési pontja meghatároz egy háromszöget, melynek szögei a 42° pótszöge, 60° és a prizmába való belépéskor tapasztalt törési szög pótszöge. Ebből a törési szög 90° – (180° – ((90° – 42°) + 60°)) = 18°. A belépési szög színusza elosztva a törési szög színuszával $n_{m,l}$ -et fog adni, tehát:

$$\gamma = \arcsin(\sin(18^\circ)n_{m.l}) = 27.1303^\circ$$

Mivel a bejövő fénysugár és a prizma lapja kezdeti helyzetben 30°-ot zártak be egymással, ezért az elfordítás mértéke $\gamma=30^{\circ}-27.1303^{\circ}=2.8697^{\circ}$. Nagyjából 4.5% az eltérés a mért szöghöz képest - ez elég jó eredmény, ahhoz képest, hogy a szögmérő legkisebb beosztása nagyságrendlieg megegyezik a mért szöggel.

GEOMETRIAI OPTIKA II.

Gyűjtőlencse fókusztávolsága

A mért adatok az egyes tárgy- és képtávolságok. Számoljuk ki ezek reciprokát, és a illesszünk rá numerikusan egy egyenest.

$$\frac{1}{k} + \frac{1}{t} = \frac{1}{f}$$

$$\frac{1}{k} = -\frac{1}{t} + \frac{1}{f}$$

Egy $y=a\cdot x+b$ alakú egyenest kapunk. Ha minden jól megy, a-ra egy -1-hez nagyon közeli értéket kapunk. Az x és az y tengelymetszet lesz a fókusztávolság. Az illesztés eredménye:

$$\frac{1}{k}(\frac{1}{t}) = -0.985462 \cdot \frac{1}{t} + 0.0946295 \frac{1}{cm}$$

d [cm]	k₁ [cm]	t₁ [cm]	1/k ₁ [cm]	1/t ₁ [cm]
100	88.0	12.0	0.01136	0.08333
90	77.7	12.3	0.01287	0.08130
80	67.4	12.6	0.01484	0.07937
70	57.0	13.0	0.01754	0.07692
60	46.5	13.5	0.02151	0.07407
50	35.3	14.7	0.02833	0.06803

A gyűjtőlencse tárgyhoz közelebbi helyzetében mért kép- és tárgytávolságok, ill. ezek reciprokai

d [cm]	k ₂ [cm]	t ₂ [cm]	1/k ₂ [cm]	1/t ₂ [cm]
100	12.0	88.0	0.08333	0.01136
90	12.1	77.9	0.08264	0.01284
80	12.3	67.7	0.08130	0.01477
70	12.8	57.2	0.07813	0.01748
60	13.3	46.7	0.07519	0.02141
50	14.8	35.2	0.06757	0.02841

A gyűjtőlencse ernyőhöz közelebbi helyzetében mért kép- és tárgytávolságok, ill. ezek reciprokai

A gyűjtőlencse kép- és tárgytávolságainak reciprokaira illesztett egyenes

Ebből a tengelymetszetek:

Az x tengelymetszet : $\frac{1}{f_x} = \frac{-0.0946295}{-0.985462} \frac{1}{cm} => f_x = 10.4139cm$ Az y tengelymetszet : $\frac{1}{f_y} = 0.0946295 \frac{1}{cm} => f_y = 10.5675cm$

A lencsére ráírt érték f=10cm. Így f_x -nél 4.139% a hiba, f_y -nál pedig 5.675%.

Szórólencse képalkotása

A mért adatok még egyszer:

	[cm]
Szórólencse helye:	30,0
Fényforrás/tárgy helye:	10,0
Gyűjtőlencse helye:	60,0
Ernyő helye:	98,6
Fényforrás új helye:	21,5

Szórólencse képalkotása

Ebből a szólencse képtávolsága a szórólencse eredeti helye és a fényforrás végső helye

közti távolság, azaz 8.5cm. Pontosabban a képtávolság -8.5cm, ha a fenti képletet akarjuk használni.

A szórólencse tárgytávolsága a szórólencse eredeti helye és a fényforrás eredeti helye közti távolság, azaz 20cm.

Innen a szórólencse fókusztávolsága : $\frac{1}{f} = \frac{1}{20cm} - \frac{1}{8.5cm} = > f = -14.7826cm$.

FIZIKAI OPTIKA

A diffrakciós kép szimmetrikus, ezért a két minimum között mért távolság kétszerese az adott minimum középponttól mért távolságának.

n	1	1	2	2
r[mm]	2y [cm]	y [cm]	2y [cm]	y [cm]
0.04	4.5	2.25	8.3	4.15
0.08	1.9	0.95	3.8	1.90
0.16	0.9	0.45	1.8	0.90

Az egyes elhajlási rendekhez tartozó minimumok távolsága a középponttól

Nézzük meg mindhárom rés esetén, az első, illetve a második minimumok távolsága alapján mekkorának kellene lennie a résnek . Használjuk az

$$a = \frac{n \cdot \lambda \cdot D}{y}$$

képletet.

$$D = 104.1 \cdot 10^{-2} m$$
$$\lambda = 670 \cdot 10^{-9} m$$

n	1	1	2	2
r[mm]	y [cm]	a [mm]	y [cm]	a [mm]
0.04	2.25	0.03100	4.15	0.03361
0.08	0.95	0.07342	1.90	0.07342
0.16	0.45	0.15499	0.90	0.15

Az egyes elhajlási rendekhez tartozó résméret a mért adatok alapján

Itt r a rés szélességének névleges értéke, a pedig a mérési adatok alapján számolt értéke.

A relatív hibákat hat a értékre számoljuk ki, a következő jelölést alkalmazva : $a_{r,n}$, ahol r a rés sorszáma, n pedig az elhajlás rendje.

$$\begin{split} a_{1,1} &= \frac{0.03100mm}{0.04mm} = 22.5\% - a_{1,2} = \frac{0.03361mm}{0.04mm} = 15.975\% \\ a_{2,1} &= \frac{0.07342mm}{0.08mm} = 8.225\% - a_{2,2} = \frac{0.07342mm}{0.08mm} = 8.225\% \\ a_{3,1} &= \frac{0.15449mm}{0.16mm} = 3.13125\% - a_{3,2} = \frac{0.15449mm}{0.16mm} = 3.13125\% \end{split}$$

Eredmények

GEOMETRIAI OPTIKA I.

Törésmutatók

Határszög [°]:	42	
60°-os prizma		
Elford. szöge [°]	3	

Határszögek

GEOMETRIAI OPTIKA II.

f _x [cm]	10.4129
f _y [cm]	10.5675

Gyűjtőlencse fókusztávolsága, mint x és y tengelymetszet

k [cm]	-8.5
f [cm]	-14.7826

Szórólencse kép- és fókusztávolsága

FIZIKAI OPTIKA

f _x [cm]	10.4129
f _y [cm]	10.5675

Az n-edik minimumok közti távolság alapján a_n résszélesség

Diszkusszió

Összegzésképpen elmondható, hogy a törésmutatókra és a határszögekre kellő pontossággal fény derült - az előforduló szögek egy nagyságrendekkel nagyobbak voltak, mint a mérés pontossága (a prizmás mérést leszámítva). Ennek ellenére a 60°-os prizma elfordítási szöge meglepően pontos lett.

A fókusztávolságok illetve a (virtuális) képtávolság sem tér el a valóságtól, bár itt már észrevehetőbben nagyobb tendencia volt hibára. Itt főleg a kép élességének szubjektív volta befolyásolta a mérést.

A résméreteknél azonban elég nagy hibák jelentek meg - ennek ellenére megközelítik a feltüntetett névleges értékeket. A minimumok nem látszódtak olyan jól, és nehéz volt a köztük lévő távolságot megmérni.