МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

«ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Отчет по лабораторной работе №1
по дисциплине
«Управление данными»
«Основы DDL-запросов в PostgreSQL»

Выполнил студент гр. ИВТб-2301-05-00	/Макаров С.А./
Преподаватель	/Клюкин В.Л./

Цель

Цель лабораторной работы: познакомиться со схемами, пользователями и ролями в PosgreSQL, познакомиться с типами данных в PostgreSQL, освоить основные варианты DDL-запросов в PostgreSQL, закрепить знания по проектированию структуры реляционной БД, создать рабочий материал для следующих лабораторных работ.

Задание

- 1. Разработать структуру базы данных на любую выбранную тему. Структура должна отвечать следующим условиям:
 - должно быть не меньше пяти таблиц;
 - хотя бы одна таблица должна содержать колонку с числовыми данными;
 - структура БД не должна быть связь много-ко-многим.
- 2. Создать нового пользователя и пустую БД. Подключиться к созданной БД.
- 3. Написать и выполнить SQL-скрипт, создающий таблицы согласно разработанной структуре БД. Созданный в п.2 пользователь должен иметь все права на созданные объекты. В этом же скрипте должны создаваться нужные ограничения и индексы:
 - обязательно должны быть созданы внешние ключи для поддержания ссылочной целостности;
 - желательно должны быть проставлены ограничения и уникальные индексы для поддержания консистентности данных;
 - желательно должны быть проставлены индексы для производительности там, где они могут помочь.

Решение

Выберем для структуры базы данных на тему «Сервис по доставке еды». Данная тема должна содержать пользователя, продукты, способы оплаты. Каждый пользователь имеет номер телефона, имя. Также у пользователь может выбирать способы оплаты. Продукты следует разделять по категориям. Помимо этого каждый продукт может иметь несколько вариаций и свои ингридиенты (обязательные, по выбору). Пользователь может добовлять продукты в корзину и оформлять заказ.

Таблица «users» содержит пользователей. Включает в себя столбцы «id» – уникальный идентификатор пользователя «username» - имя пользователя.

Таблица «payments» содержит доступные спосопбы оплаты. Включает в себя столбцы «id» – уникальный идентификатор способа оплаты, «title» - название способа оплаты.

Таблица «user payments» реализует связь многие ко многим между пользователем и способами оплаты. Включает в себя столбцы «id» — уни-кальный идентификатор, «user id» — идентификатор пользователя, «payment id» — идентификатор способа оплаты, «card number» — номер карты пользователя.

Таблица «categories» содержит категории продкутов. Включает в себя столбцы «id» – уникальный идентификатор категории, «title» – название категории.

Таблица «products» содержит продукты. Включает в себя столбцы «id» – уникальный идентификатор продукта, «title» – название продукта, «descrip tion» – описание продукта.

Таблица «ingredients» содержит ингридиенты. Включает в себя столбцы «id» – уникальный идентификатор ингридиента, «title» – название ингридиента, «price» – цена ингридиента.

Таблица «product ingredients» реализует связь многие ко многим между продуктами и ингридиентами. Включает в себя столбцы «id» — уникальный идентификатор, «product id» — идентификатор продукта, «ingredients id» — идентификатор ингридиента, «is required» — обязателен ли ингридиент.

Таблица «product variants» содержит варианты продуктов. Включает в себя столбцы «id» — уникальный идентификатор, «product id» — идентификатор продукта, «image url» — ссылка на изображение варианта продукта, «size» — размер продукта, «volume» — объем продукта, «weight» — вес продукта, «price» — цена варианта продукта.

Таблица «carts» содержит корзины пользователей. Включает в себя столбцы «id» – уникальный идентификатор корзины, «user id» – идентификатор пользователя.

Таблица «cart products» содержит товары корзины. Включает в себя столбцы «id» — уникальный идентификатор продукта, «cart id» — идентификатор корзины, «product variant id» — идентификатор варианта продукта, «quantity» — количество продукта.

Таблица «cart product ingredients» содержит дополнительные ингридиенты для продукта. Включает в себя столбцы «id» — уникальный идентификатор, «cart product id» — идентификатор продукта в корзине, «product ingredient id» — идентификатор ингридиента продукта.

Таблица «orders» содержит заказы пользователей. Включает в себя «id» – уникальный идентификатор заказа, «user id» – идентификатор пользователя, «payment id» – идентификатор способа оплаты, «status» – статус заказа, «address» – адрес для доставки заказа, «username» – имя заказчика, «cost» – стоимость заказа, «comment» – комментарий к заказу.

Таблица «order products» содержит продукты заказа. Включает в себя столбцы «id» — уникальный идентификатор продукта, order id» — идентификатор заказа, «product variant id» — идентификатор варианта продукта, «quantity» — количество продукта.

Таблица order product ingredients» содержит дополнительные ингридиенты для продукта. Включает в себя столбцы «id» — уникальный идентификатор, «order product id» — идентификатор продукта в заказе, «product ingredient id» — идентификатор ингридиента продукта.

Для данной базы данных была разработана ER диаграмма, представленная на рисунке 1.

Рисунок 1 – ER - диаграмма базы данных

SQL-скрипт для создания таблиц базы данных представлен ниже:

```
CREATE TABLE users (
   id BIGSERIAL PRIMARY KEY,
   phone_number VARCHAR(11) NOT NULL UNIQUE,
   username VARCHAR(256),
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE payments (
   id BIGSERIAL PRIMARY KEY,
   title VARCHAR(256) NOT NULL UNIQUE,
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP);
```

```
CREATE TABLE user_payments (
   id BIGSERIAL PRIMARY KEY,
   user_id BIGINT NOT NULL,
   payment_id BIGINT NOT NULL,
   card_number VARCHAR(16),
   cvv VARCHAR(3),
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE,
   FOREIGN KEY (payment_id) REFERENCES payments(id) ON DELETE CASCADE
);
CREATE TABLE categories (
   id BIGSERIAL PRIMARY KEY,
   title VARCHAR(256) NOT NULL UNIQUE,
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE products (
   id BIGSERIAL PRIMARY KEY,
   category_id BIGINT NOT NULL,
   title VARCHAR(256) NOT NULL,
   description VARCHAR(512),
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   FOREIGN KEY (category_id) REFERENCES categories(id) ON DELETE RESTRICT
);
CREATE TABLE ingredients (
   id BIGSERIAL PRIMARY KEY,
   title VARCHAR(256) NOT NULL UNIQUE,
   image_url VARCHAR(512) NOT NULL,
   price INT NOT NULL CHECK (price >= 0),
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
```

```
CREATE TABLE product_ingredients (
    id BIGSERIAL PRIMARY KEY,
    product_id BIGINT NOT NULL,
    ingredient_id BIGINT NOT NULL,
    is_required BOOLEAN NOT NULL DEFAULT FALSE,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (product_id) REFERENCES products(id) ON DELETE RESTRICT,
    FOREIGN KEY (ingredient_id) REFERENCES ingredients(id) ON DELETE RESTRICT
);
CREATE TABLE product_variants (
    id BIGSERIAL PRIMARY KEY,
    product_id BIGINT NOT NULL,
    image_url VARCHAR(512) NOT NULL,
    size INT CHECK (size > 0),
    volume INT CHECK (volume > 0),
    weight INT NOT NULL CHECK (weight > 0),
    price INT NOT NULL CHECK (price >= 0),
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (product_id) REFERENCES products(id) ON DELETE RESTRICT
);
CREATE TABLE carts (
    id BIGSERIAL PRIMARY KEY,
    user_id BIGINT NOT NULL,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE cart_products (
    id BIGSERIAL PRIMARY KEY,
    cart_id BIGINT NOT NULL,
    product_variant_id BIGINT NOT NULL,
    quantity INT NOT NULL DEFAULT 1 CHECK (quantity >= 1),
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
```

```
FOREIGN KEY (cart_id) REFERENCES carts(id) ON DELETE RESTRICT,
    FOREIGN KEY (product_variant_id) REFERENCES product_variants(id)
      ON DELETE RESTRICT
);
CREATE TABLE cart_product_ingredients (
    id BIGSERIAL PRIMARY KEY,
    cart_product_id BIGINT NOT NULL,
    product_ingredient_id BIGINT NOT NULL,
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (cart_product_id) REFERENCES cart_products(id)
      ON DELETE RESTRICT,
    FOREIGN KEY (product_ingredient_id) REFERENCES product_ingredients(id)
      ON DELETE RESTRICT
);
CREATE TYPE ORDER_STATUS_ENUM AS ENUM (
    'pending', 'succeeded', 'canceled'
);
CREATE TABLE orders (
    id BIGSERIAL PRIMARY KEY,
   user_id BIGINT NOT NULL,
    payment_id BIGINT NOT NULL,
    status ORDER_STATUS_ENUM DEFAULT 'pending',
    address VARCHAR(256) NOT NULL,
    cost INT NOT NULL CHECK (cost >= 0),
    comment VARCHAR(255),
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE,
    FOREIGN KEY (payment_id) REFERENCES payments(id) ON DELETE CASCADE
);
CREATE TABLE order_products (
    id BIGSERIAL PRIMARY KEY,
```

```
order_id BIGINT NOT NULL,
   product_variant_id BIGINT NOT NULL,
   quantity INT NOT NULL CHECK (quantity >= 1),
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   FOREIGN KEY (order_id) REFERENCES orders(id) ON DELETE RESTRICT,
   FOREIGN KEY (product_variant_id) REFERENCES product_variants(id)
     ON DELETE RESTRICT
);
CREATE TABLE order_product_ingredients (
   id BIGSERIAL PRIMARY KEY,
   order_product_id BIGINT NOT NULL,
   product_ingredient_id BIGINT NOT NULL,
   created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
   FOREIGN KEY (order_product_id) REFERENCES order_products(id)
     ON DELETE RESTRICT,
   FOREIGN KEY (product_ingredient_id) REFERENCES product_ingredients(id)
     ON DELETE RESTRICT
);
```

Вывод

В ходе выполнения лабораторной работы освоены схемы, пользователи и роли в PosgreSQL, изучены типы данных в PosgreSQL, освоены основные варианты DDL-запросов, закреплены знания по проектированию структуры реляционной базы данных. В результате выполнения разработана база данных для сервиса по доставке еды.