සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තව தென் மாகாணக் கல்வித் திணைக்களம் **Southern Provincial Department of Education**

අධනාපන පොදු සහතික පතු (උසස් පෙළ), 12 ශුේණිය, දෙවන වාර පරීකෂණය, 2020 මාර්තු General Certificate of Education (Adv. Level), Grade 12, Second Term Test, March 2020

රසායන විදනව I Chemistry

පැය එකයි මිනිත්තු 45 යි One hour 45 minutes.

්උපදෙස් :

- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- ආවර්තිතා වගුවක් සපයා ඇත.
- මෙම පුශ්න පතුය පිටු අටකින් යුක්ත වේ.
- **සියලු ම** පුශ්න වලට පිළිතුරු සපයන්න.
- උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම හෝ **විභාග අංකය** ලියන්න.
- උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- 1 සිට **40** තෙක් එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරු වලින් **නිවැරදි හෝ ඉකාමක්** ගැළපෙන පිළිතුර තෝරා ගෙන, එය උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (×) යොදා දක්වන්න.

ඇවගාඩ්රෝ නියතය $m N_A~:~6.022 imes 10^{23}~mol^{-1}$ ආලෝකයේ පුවේගය c : $3 \times 10^8 \, \text{m s}^{-1}$ ප්ලාන්ක් නියතය h : $6.626 \times 10^{-34} \, \text{J s}$ සර්වනු වායූ නියතය $R : 8.314 \ J \ mol^{-1} K^{-1}$

0 P මෙම අණුවේ P හි ඔක්සිකරණ අංකය හා සංයුජතාව පිළිවෙලින්, H H 0−H (1) +5,5 (2) +4,4 (3) +1,5 (4) −1,4 (5) −5,4

02. Xe $0F_2$ අණුවේ හැඩයට සමාන හැඩයක් ඇත්තේ පහත කුමන අණුවට ද?

- (1) H_3O^+ (2) XeF_4 (3) NCl_3 (4) ClF_3 (5) SF_4

03. පරමාණුවක ඇති ඉලෙක්ටෝනයක අනනානාව n,l,m_l,m_s යන ක්වොන්ටම් අංක හතර යොදාගෙන පුකාශ කළ හැකිය. පහත ඒවායින් ${
m Zn}$ පරමාණුවක සංයුජතා ඉලෙක්ටුෝන සඳහා ක්වොන්ටම් අංක කුලකයක් ලෙස පිළිගත **හැක්කේ** කුමක් ද? (1) $3, 3, -1, +\frac{1}{2}$ (2) $4, 0, 0, +\frac{1}{2}$ (3) $3, 2, -2, +\frac{1}{2}$

- (4) $3, 2, +2, -\frac{1}{2}$ (5) $3, 2, -1, -\frac{1}{2}$

04. පරිපූර්ණ හැසිරීමට වඩාත්ම ආසන්න හැසිරීමක් දක්වන්නේ,

- (1) H_2
- (2) He (3) N_2 (4) O_2 (5) CO

- 05. ඒක භාෂ්මික අම්ලයක $0.20\,\mathrm{g}$ සාම්පලයක් සමග සම්පූර්ණයෙන්ම පුතිකිුයා කිරීමට, සාන්දුණය $0.2~{
 m mol~dm^{-3}}$ වූ ${
 m NaOH}$ දුාවණ $16~{
 m cm^3}$ ක් අවශා විය. අම්ලයේ සාපේක්ෂ අණුක ස්කන්ධය කොපමණ ę?
 - (1) 16
- (2) 160
- (3) 62.5
- (4) 625
- (5) 250

- 06. KCl ජලීය දුාවණයක තිබිය හැකි අන්තර් අණුක බල විය හැක්කේ,
 - (1) ද්වි ධැව ද්වි ධැව + ලන්ඩන් අපකිරණ බල
 - (2) අයන ද්වි ධුැව + ලන්ඩන් අපකිරණ බල
 - (3) ද්විධුැව ද්විධුැව + H බන්ධන + ලන්ඩන් අපකිරණ බල
 - (4) අයන ද්විධුැව + H බන්ධන + ලන්ඩන් අපකිරණ බල
 - (5) අයන ද්වි ධුැව + ද්විධුැව ද්විධුැව + H බන්ධන
- 07. **නිවැරදි** වගන්තිය තෝරන්න.
 - (1) සීමාව හරහා ස්කන්ධය පමණක් හුවමාරු වීමට ඉඩදෙන එහෙත් ශක්තියට හුවමාරු වීමට ඉඩ නොදෙන පද්ධතියක් සංවෘත පද්ධතියකි.
 - (2) සීමාව හරහා ශක්තියට පමණක් හුවමාරු වීමට ඉඩ දෙන එහෙත් ස්කන්ධයට හුවමාරු වීමට ඉඩ නොදෙන පද්ධතියක් ඒකලිත පද්ධතියකි.
 - (3) ශක්තිය හා පදාර්ථය යන දෙකම වටපිටාව හා හුවමාරු කරගත හැකි පද්ධතියක් විවෘත පද්ධතියකි.
 - (4) පොල්තෙල් හා ජලය සමාජාතීය මිශුණයකට උදාහරණයකි.
 - (5) වර්තනාංකය විත්ති ගුණයකට උදාහරණයකි.
- 08. එක්තරා විදාූත් චුම්බක විකිරණයක මවුලයක ශක්තිය $203~{
 m kJ}~{
 m mol}^{-1}$ මෙම විකිරණයේ තරංග ආයාමය nm වලින් කොපමණ ද?
 - (1) 459
- (2) 589
- (3) 671
- (4) 781 (5) 856
- 09. වායුවක වර්ග මධානා මූල පුවේගය දෙගුණයක් වනුයේ,
 - (1) වායුවේ නිරපේක උෂ්ණත්වය දෙගුණයක් වූ විට
 - (2) වායුවේ නිරපේඎ උෂ්ණත්වය හතර ගුණයක් වූ විට
 - (3) වායුවේ පරිමාව දෙගුණයක් වූ විට
 - (4) වායුවේ පීඩනය දෙගුණයක් වූ විට
 - (5) වායුවේ පීඩනය හතර ගුණයක් වූ විට
- $10.\ s$ ගොනුවේ මූලදුවා සහ ඒවායේ සංයෝග සම්බන්ධයෙන් පහත කුමන පුකාශය නිවැරදි වේ ද?
 - (1) කාණ්ඩයේ පහළට යනවිට 2 කාණ්ඩයේ සල්ෆේට වල දුාවානාව අඩුවේ.
 - (2) 2 කාණ්ඩයේ සියළුම මූලදුවා සහසංයුජ හයිඩුයිඩ සාදයි.
 - (3) 1 හා 2 කාණ්ඩ වල සියළුම මූලදුවාවල කාබනේට රත් කිරීමෙන් ඒවායේ ඔක්සයිඩ ලබා ගත හැකිය.
 - (4) කාණ්ඩයේ පහළට යනවිට 2 කාණ්ඩයේ හයිඩොක්සයිඩ වල භාෂ්මික පුබලතාව අඩු වේ.
 - (5) 2 කාණ්ඩයේ සියළුම මූලදුවා සිසිල් ජලය සමග පුතිකියා කර ${
 m H_2}$ පිට කරයි.

 $11.\ {
m NH_3},\ {
m NO_2F},\ {
m NO_4^{3-}}$ යන පුභේද වල දී ${
m N}$ හි විදාුුත් සෘණතාව අඩුවන ආකාරය නිවැරදිව දක්වා

(1) $NH_3 > NO_2F > NO_4^{3-}$ (2) $NO_2F > NO_4^{3-} > NH_3$ (3) $NO_4^{3-} > NH_3 > NO_2F$

ඇත්තේ කුමක ද?

	$(4) NO_2F > NH_3 >$	> NO ₄ ³⁻	(5) $NH_3 > NO_4^{3-2}$	> NO ₂ F	
12.	ඝන කාබන් හි සම් මවුල 2 ක් අඩංගු මි	•			මවුල 1 ක් සහ ඔක්සිජන්
	(1) 1180.5 kJ	(2) 787 kJ	(3) 196.75	kJ (4) 393.5 kJ	(5) 131.16 kJ
13.	ක්ලෝරින් හි සම්මත	ා පරමාණුකරණ එ	න්තැල්පි විපර්යාසය	නිවැරදිව දැක්වෙන	සමීකරණය වනුයේ,
					$+ e \longrightarrow Cl^{-}(g)$
	$(4) \operatorname{Cl}_2(g) \longrightarrow 2$	$Cl^{-}(g) + 2e$	$(5) \frac{1}{2} \operatorname{Cl}_2(g) \longrightarrow$	Cl(g)	
14.	27 °C දී X ₂ නම් වි	ායුවකින් 2 mol 2	ත් බඳුනක් තුල P න	ාම් පීඩනයේ තබා අ	ඇත. මෙම භාජනයට එම
	_			· · ·	ණයක් වු අතර පරිමාව ද
		-	_	වය ද වෙනස් වුයේ	ි නම් X_2 වායුව පරිපූර්ණ
	වායුවක් ලෙස සැල (1) 800 °C		ාවය වනුයෙ, (3) 400 °	C (4) 127 °C	(5) 527 °C
	(,, = = = =	(-,	(-,		
15.	Na ₂ CO ₃ හා NaHC	ΣO_3 අඩංගු මිශුණ	යකින් 4.2 g රත් ක	ළ විට 0.31 g ස්කෘ	ත්ධයක් අඩුවිය. මිශුණයේ
	ඇති Na ₂ CO ₃ : NaH	CO_3 ස්කන්ධ අනු	පාතය කොපමණ ද?	(Na = 23, H = 1)	, C = 12, O = 16)
	(1) 4:1	(2) 1:4	(3) 2:1	(4) 1 : 2	(5) 1:3
16.	2C ₂ H ₂ (g) ———	→ C ₄ H ₄ (g) යන ද	පුතිකිුයාව සඳහා Δ]	$H^{\theta} = x kJ mol^{-1}$	වේ. $C_4H_4(g)$ හි සම්මත
	දහන එන්තැල්පිය y	kJ mol ^{−1} නම්, C	₂ H ₂ (g) හි සම්මත ර	හන එන්තැල්පිය kJ	mol^{-1} වලින් වනුයේ,
	(1) x + y	(2) $y - x$	$(3) \ \frac{x+y}{2}$	(4) 2x + y	$y = (5) \frac{y - x}{2}$
17.	0.50 mol dm ⁻³ Na	nOH 200 cm ³ හ	$0.20~\mathrm{mol~dm^{-3}~I}$	H ₂ SO ₄ 200 cm ³	ශු කර පරිමාව 500 cm ³
	වනතුරු ආසුැත ජ(කොපමණ ද?	ලය එකතු කරන	ලදී. මෙම දුාවණගෙ	ඵ් OH− අයන සාන	ර්දුණය mol dm ^{–3} වලින්
	(1) 0.02	(2) 0.04	(3) 0.08	3 (4) 0.20	(5) 0.40

- $18. \ 2 {
 m MnO_4^-} + 5 {
 m H_2O_2} + 6 {
 m H^+} \longrightarrow 2 {
 m Mn^{2+}} + 5 {
 m O_2} + 8 {
 m H_2O}$ පුතිකියාව පිළිබඳ සතා වගන්තිය කුමක් ද?
 - (1) $\mathrm{H}_2\mathrm{O}_2$ වල ඔක්සිජන් පරමාණුවේ ඔක්සිකරණ අංකය -2 සිට 0 දක්වා වැඩි වේ.
 - (2) $H_2 O_2$ ඔක්සිකාරකයක් ලෙස කිුිිියා කරයි.
 - $(3)\ H_2O_2$ වල H පරමාණු ඔක්සිකරණය වේ.
 - (4) ${
 m H}_2{
 m O}_2$ ඔක්සිකරණයට මෙන්ම ඔක්සිහරණයට ද භාජනය වේ.
 - (5) $H_2 O_2$ ඔක්සිහාරකයක් ලෙස කිුයා කරයි.
- 19. $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$ යන පුතිකියාව $25\,^{\circ}\text{C}$ දී ස්වයංසිද්ධව සිදුවේ. නමුත් මෙය ඉහළ උෂ්ණත්වයේ දී ස්වයංසිද්ධ නොවේ. $25\,^{\circ}\text{C}$ දී මෙම පුතිකියාවට අදාළව සතා වනුයේ,
 - (1) ΔG , ΔH , ΔS යන සියල්ලම (-) සෘණ වේ.
 - (2) ΔG , ΔH , ΔS යන සියල්ලම (+) ධන වේ.
 - (3) ΔG (-) සෘණ වන අතර ΔH , ΔS (+) ධන වේ.
 - (4) ΔG සහ ΔH සාණ (-) වන අතර ΔS (+) ධන වේ.
 - (5) ΔG සහ ΔS (-) සෘණ වන අතර ΔH (+) ධන වේ.
- 20. ෆෙරික් ඇමෝනියම් ඇලම් $[(NH_4)_2\ SO_4.\ Fe_2\ (SO_4)_3.\ 24\ H_2O]$ (සා.අ.ස්. 852) මෙහි $85.2\ mg$ භාවිත කර දාවණ $1\ dm^3$ සාදන ලදී. එම දාවණයේ Fe^{3+} අයන පුමාණය ppm වලින් කොපමණ ද? (Fe=56)
 - (1) 56
- (2) 5.6
- (3) 1.12
- (4) 11.2
- (5) 112
- අංක 21 සිට 30 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) හා (d) යන පුතිචාර හතර අතරින් එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ නිවැරදි ය. නිවැරදි ප්‍රතිචාරය/ප්‍රතිචාර කවරේදැයි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද,
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද,
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද,
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද,

වෙනත් පුතිචාර සංඛ්යාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද,

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න. ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛ්‍යාවක් හෝ
නිවැ <i>ර</i> දිය	නිවැ <i>ර</i> දිය	නිවැ <i>ර</i> දිය	නිවැ <i>ර</i> දිය	සංයෝජනයක් හෝ නිවැරදිය

- $21. \ \mathrm{NH_4NO_3}$ සම්බන්ධයෙන් කුමන පුකාශය/පුකාශ සතා වේ ද?
 - (a) මෙය අයනික සංයෝගයකි.
 - (b) මෙහි අයන දෙක තුළම දායක බන්ධන ඇත.
 - (c) මෙහි අයන දෙකම සමමිතික හැඩයන් ගනී.
 - (d) මෙය තාප කිරීමෙන් NH_3 පිට වේ.
- 22. $N_2(g) + O_2(g) \longrightarrow 2NO(g)$: $\Delta H^{\theta} = 180.50 \text{ kJ mol}^{-1}$ යන තාප රසායනික සමීකරණය මගින් විස්තර වන කරුණ/කරුණු නම්,
 - (a) NO(g) මවුල 2 ක් සැලදන විට $180.50\,\mathrm{kJ}$ තාප පුමාණයක් අවශෝෂණය වන බවයි.
 - (b) පුතිකියා මවුලයකට $180.50\,\mathrm{kJ}$ තාප පුමාණයක් අවශෝෂණය වන බවයි.
 - (c) NO(g) මවුල 2 කින් N $_2$ (g) මවුල 1 ක් සහ O $_2$ (g) මවුල 1 ක් සෑදෙනවිට $180.50\,\mathrm{kJ}$ තාප පුමාණයක් අවශෝෂණය වන බවයි.
 - (d) $N_2(g)$ වල දහන එන්තැල්පිය $180.50 \, \text{kJ mol}^{-1}$ වන බවයි.
- 23. පහත සඳහන් පුකාශ වලින් කුමක්/කුමන ඒවා **සතා** වේ ද?
 - (a) Mg වල පළමු අයනීකරණ ශක්තිය, Al වල පළමු අයනීකරණ ශක්තියට වඩා ඉහළ අගයක් ගනී.
 - (b) ලෝහ ධන අයන වල අයනික අරය, අදාළ පරමාණුවේ පරමාණුක අරයට වඩා කුඩාය.
 - (c) Ca^{2+} අයනයේ අරය, K^+ අයනයේ අරයට වඩා විශාලය
 - (d) ඔක්සිජන් වල පළමු අයනිකරණ ශක්තිය නයිටුජන් වල පළමු අයනීකරණ ශක්තියට වඩා ඉහළ අගයක් ගනී.
- 24. පහත සඳහන් පුතිකිුයා වලින් කවරක්/කවර ඒවා තාප අවශෝෂක වේ ද?
 - (a) $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$
 - (b) $O_2(g) + 2e \longrightarrow 20^-(g)$
 - (c) $Na(g) \longrightarrow Na^+(g) + e$
 - (d) $H_2(g) \longrightarrow 2H(g)$
- 25. පරමාණුක කාක්ෂික පිළිබඳ සතා වගන්තිය/වගන්ති කවරේ ද?
 - (a) එක් එක් උප ශක්ති මට්ටමක නිශ්චිත කාකෂික සංඛාාවක් ඇත.
 - (b) දෙන ලද උප ශක්ති මට්ටමක සියළුම කාකෂික වල ශක්තිය එක සමාන නොවේ.
 - (c) බහු ඉලෙක්ටොනික පරමාණුවක l අගය (උද්දිගංශ ක්වොන්ටම් අංකය) වැඩිවත්ම කාක්ෂිකයක ශක්තිය අඩු වේ.
 - (d) පුධාන ක්වොන්ටම් අංකය n වන ශක්ති මට්ටමක ඇති මුළු කාඤික සංඛාහව n^2 වේ.

- 26. අසතා වගන්තිය/වගන්ති තෝරන්න.
 - (a) කෙතරම් පීඩනය වැඩි කළ ද යම් දුවායක වාෂ්පය දුව කළ නොහැකි උපරිම උෂ්ණත්වය එහි අවධි උෂ්ණත්වයයි.
 - (b) අවධි උෂ්ණත්වයේ දී වාෂ්පය දුව කිරීමට අවශා පීඩනය එහි අවධි පීඩනයයි.
 - (c) වැන්ඩවාල් සමීකරණය ඕනෑම උෂ්ණත්වයකදී හා පීඩනයකදී තාත්වික වායු සඳහා යෙදිය නොහැක.
 - (d) පීඩනය ඉතා අඩුවන විට තාත්වික වායුවක් පරිපූර්ණ තත්ත්වයට ළඟා වන අතර උෂ්ණත්වය සහ වායුවේ ස්වභාවය මත එය රඳා නොපවතී.
- 27. මෙම අණු අතරින් එහි ඉලෙක්ටෝන යුගල ජාාමිතිය හා අණුවේ හැඩය එකම වන අණුව/අණු කවරේ ද?
 - (a) PF₃
- (b) BF₃
- (c) CF_4
- (d) SF₄
- 28. පරිපූර්ණ ලෙස හැසිරෙන වායුවක යම් කිසි පරිමාවක පීඩනය රඳා පවතින්නේ කවරක්/කවර ඒවා මත ද?
 - (a) වායුවේ ස්කන්ධය

- (c) වායුවේ උෂ්ණත්වය
- (b) වායුවේ අණුවක ඇති පරමාණු සංඛ්යාව
- (d) වායුවේ සාපේඎ අණුක ස්කන්ධය
- 29. මෙහි දී ඇති අණුව පිළිබඳ කුමන වගන්තිය/වගන්ති සතා වේ ද?
 - (a) සියළුම කාබන් පරමාණු එකම තලයක නො පිහිටයි.
 - (b) කාබන් පරමාණු දෙකක් ${
 m sp}^3$ මුහුම්කරණයක් දක්වයි.
- H H O H H | | | | | | H-C=C-C-C-H

- (c) 0ĈC බන්ධන කෝණය 120^{0} පමණ වේ.
- (d) සියළුම C-H බන්ධන වල දිග සමානය.
- 30. Al පිළිබඳව සතා වගන්තිය/වගන්ති තෝරන්න.
 - (a) 1 හා 2 කාණ්ඩ වල මූලදවා වලට සාපේක්ව Al පුතිකියාශීලී බවින් අඩුය.
 - (b) Al නයිටුජන් සමග පුතිකියා කර AlN සාදයි.
 - (c) Al ලෝහය උභය ගුණි ලඤණ පෙන්වුවද එහි ඔක්සයිඩය උභය ගුණි නොවේ.
 - (d) Al ක්ලෝරින් සමග අයනික සංයෝගයක් සාදයි.
- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) හා (5) යන පුතිචාර වලින් කවර පුතිචාරය දැයි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමු වැනි පුකාශය	දෙවැනි පුකාශය							
(1)	සතා වේ.	සතා වන අතර, පළමු පුකාශය නිවැරදිව පහදා දෙයි.							
(2)	සතා වේ.	සතා වන නමුත්, පළමු පුකාශය නිවැරදිව පහදා නොදෙයි.							
(3)	සතා වේ.	අසතා වේ.							
(4)	අසතා වේ.	සතා වේ.							
(5)	අසතා වේ.	අසතා වේ.							

පළමු පුකාශය	ෙ දවන පුකාශය
31. සමාන උෂ්ණත්ව හා පීඩනවල දී පරිපූර්ණ	සමාන උෂ්ණත්ව හා පීඩනවල දි පරිපූර්ණ වායු
වායුවක මවුලයක පරිමාව $ m V_m = rac{RT}{P}$ යන්නෙන්	මවුලයක පරිමාව එකම අගයක් වේ.
දැක්වේ.	
32. $Ba(OH)_2(aq)$, $HCl(aq)$ වලින් උදාසීන	$\mathrm{Ba}(\mathrm{OH})_2(\mathrm{aq})$, $\mathrm{H}_2\mathrm{SO}_4(\mathrm{aq})$ වලින් උදාසීන
කිරීමේ දී ට වඩා වැඩි තාපයක් $\mathrm{H}_2\mathrm{SO}_4$ වලින්	කිරීමේ දී තාපය මුක්ත වෙමින් $\mathrm{BaSO}_4(s)$
උදාසීන කිරීමේ දී ඇතිවේ.	අවක්ෂේපයක් ඇතිවේ.
33. නියත උෂ්ණත්වයේ දී ස්ථීර වායු පුමාණයක	නියත උෂ්ණත්වයේ දී වායුවේ පීඩනය අඩක් වන
පීඩනය වායුවේ පරිමාවට අනුලෝමව	විට පරිමාව දෙගුණයක් වේ.
සමානුපාතික වේ.	
34. ජලය සමග Li පුතිකිුයා නොකරන නමුත් Na	1 කාණ්ඩයේ මුලදුවා ජලය සමග දක්වන
පුබල ලෙස පුතිකිුයා කරයි.	පුතිකිුයාකාරීත්වය කාණ්ඩයේ පහළට යනවිට වැඩි
	වේ.
35. මුලදුවා3යක සමස්ථානික වල ඇති පුෝටෝන	මුලදුවා3යක සමස්ථානික වල පරමාණුක ස්කන්ධය
සංඛාහ එකිනෙකින් වෙනස් ය.	සමාන වන නමුත් පරමාණුක කුමාංකය වෙනස්
	වේ.
36. ධුැවීකරණ බලය හා ධුැවණශිලතාව පදනම් කර	ධුැවීකරණ බලය වැඩි වන විට බන්ධනයක අයනික
ගනිමින් බන්ධනයක සහසංයුජ හෝ අයනික	ලකෂණ වැඩි වේ.
ලඎණ පැහැදිලි කළ හැකිය.	
37. 16 වන කාණ්ඩයේ මූලදුවා H සමග හයිඩුයිඩ	$ m H_2S$ අයනික හයිඩුයිඩයකි.
සාදයි.	
$38. \ \mathrm{CO_2}$ භෂ්ම සමග පුතිකිුයා කර කාබනේට් අයන	${ m CO}_2$ ආම්ලික වායුවකි.
සාදයි.	
39. හයිඩුජන් වල පරමාණුක වර්ණාවලියේ 4 වැනි	4 වන ශක්ති මට්ටමේ සිට 2 වන ශක්ති මට්ටමට
ශක්ති මට්ටමේ සිට 2 වන ශක්ති මට්ටමට	ඉලෙක්ටුෝන සංකුමණයේ දී පිටවන විකිරණය
ඉලෙක්ටුෝන සංකුමණය වූ විට රතු වර්ණය	බාමර් ශේුණියේ පිහිටයි.
ඇති වේ.	
40. ආවර්තයක් හරහා වමේ සිට දකුණට යන විට	ආවර්තයක වමේ සිට දකුණට යන විට මුලදුවා වල
ඔක්සයිඩ වල භාෂ්මික ස්වභාවය අඩු වේ.	පරමාණුක අරය අඩු වේ.

1							ආව	ර්තිතා	වගුව								2
Н													He				
3	4		5 6 7 8 9 10										10				
Li	Be		$oxed{B} oxed{C} oxed{N} oxed{O} oxed{F} oxed{Ne}$										Ne				
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uum	Uuu	Uub	Uut					
													J				

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

දකුණු පළාත් අධ හපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධනපන පොදු සහතික පතු (උසස් පෙළ), 12 ශුේණිය, දෙවන වාර පරීක්ෂණය, 2020 මාර්තු General Certificate of Education (Adv. Level), Grade 12, Second Term Test, March 2020

රසායන විදනව II Chemistry II

පැය එකයි මිනිත්තු 45 යි.

One hour and 45 minutes

- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * ඇවගාඩ්රෝ තියතය, $N_A=6.022\, imes 10^{23}\, mol^{-1}$
- * ප්ලාන්ක් නියතය, $h = 6.626 \times 10^{-34} \, \mathrm{J \, s}$
- st ආලෝකයේ පුවේගය, $c=3 imes 10^8~{
 m m~s^{-1}}$
- * සාර්වනු වායූ නියතය $R=8.314~{
 m J}~{
 m K}^{-1}~{
 m mol}^{-1}$
 - 🔲 A කොටස වාූහගත රචනා (පිටු 2 8)
- සියලුම පුශ්න වලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මෙම ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද, දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - 🔲 B කොටස රචනා (පිටු 9 12)
- * මෙම කොටසේ පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B කොටස් වල පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

පරීකෳකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලැබු ලකුණු
	01	
A	02	
	03	
	04	
В	05	
	06	
එකතුව	·	
පුතිශතය		

	අවසාන ලකුණ
ඉලක්කමෙන්	
අකුරින්	

	අත්සන
උත්තර පතු පරීකෳක	
අධීකෘණය කළේ	

A කොටස - වනුහගත රචනා

පුශ්න තුනටම මෙම පතුගේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි)

- 01. (a) පහත දැක්වෙන පුශ්න වලට දී ඇති හිස්තැන් මත පිළිතුරු ලියන්න.
 - (i) Na, Mg, Al යන මූලදුවා තුන අතරින් අඩුම දෙවෙනි අයනීකරණ ශක්තිය ඇත්තේ කුමකට ද?
 - (ii) Na $^+$, Ca $^{2+}$, Al $^{3+}$ යන කැටායන අතරින් කුඩාම අරය ඇත්තේ කුමකට ද?
 - (iii) Ar, F $^-$, Na $^+$ යන පුභේද තුන අතරින් සම ඉලෙක්ටොනික නොවන පුභේදය කුමක් ද?
 - (iv) B, C, N යන පරමාණු තුන අතරින් නාෳෂ්ටික ආරෝපණය වැඩිම කුමක ද?
 - $(v) \; \mathrm{Be^{2+}}, \; \mathrm{Mg^{2+}}, \; \mathrm{Ca^{2+}}$ යන අයන අතරින් ධුැවීකරණ බලය වැඩිම කුමක ද?

(ලකුණු 2.4)

(ii) මෙම අණුව සඳහා තවත් සම්පුයුක්ත වාුහ **දෙකක්** අඳින්න.

(iii)	පහත ස	දෙහ න්	ලුවිස්	වාූුනය	පදනම්	කරගෙන	වගුවේ	දක්වා	ඇති	පරමාණු	වල,
-------	-------	---------------	--------	--------	-------	-------	-------	-------	-----	--------	-----

- (I) පරමාණුව වටා VSEPR යුගල්
- (III) පරමාණුව වටා හැඩය
- (II) පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය (IV) පරමාණුවේ මුහුම්කරණය සඳහන් කරන්න. පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

	N^1	C^2	C^4	C ⁵
(I) VSEPR යුගල්				
(II) ඉලෙක්ටුෝන යුගල් ජාාමිතිය				
(III) හැඩය				
(IV) මුහුම්කරණය				

- (iv) ඉහත (iii) කොටසෙහි දෙන ලද ලුවිස් වූහයෙහි පහත සඳහන් σ බන්ධන සෑදිමට සහභාගි වන පරමාණුක/මුහුම් කාඤික හඳුනා ගන්න. (පරමාණු වල අංකනය (iii) කොටසෙහි ආකාරයටම වේ.)
 - (I) $N^1 C^2$
- N¹.....
- C².....

- (II) $C^2 C^3$
- C²
- C³

- (III) $C^3 C^4$
- C³
- C⁴

- (IV) $C^4 C^5$
- C⁴
- C⁵
- (v) ඉහත (iii) කොටසෙහි දෙන ලද ලුවිස් වූහයෙහි C^2-C^3 අතර ඇති ද්විත්ව බන්ධනයෙහි පරමාණුක කාඤික/මුහුම් කාඤික අතිච්ඡාදනය වී ඇති ආකාරය හා බන්ධන වර්ග නම් කරන ලද රූප සටහනකින් දක්වන්න.

(ලකුණු 6.0)

- (c) පහත සඳහන් පුකාශ **සකා** ද, නැතුහොත් **අසකා** ද යන බව සඳහන් කරන්න.
 - (i) CO_3^{2-} හා SO_3^{2-} අයන වල හැඩ සමානය.

- (ii) NH_3 වල බන්ධන කෝණවලට වඩා NF_3 වල බන්ධන කෝණ විශාලය
- (iii) NO_2F අණුවේ N වල ඔක්සිකරණ අංකය +5 හා සංයුජතාව 5 වන අතර ආරෝපණය +1 වේ.

(iv) ${
m Co}^{3+}$ අයනයේ වියුග්ම ඉලෙක්ටෝන 4 ක් ඇත.

(ලකුණු 1.6)

02. (a) (i) පහත සඳහන් පුභේද වල දී N හි ඔක්සිකරණ අංකය සොයන්න.

NH ₃	N ₂ 0	NO	NH ₂ OH	N ₂ H ₄	HNO ₃	NO ₂	NH ₄ ⁺

	ИП3	N ₂ U	NO	NH ₂ UH	N ₂ Π ₄	HNO_3	NO ₂	NH ₄	
(ii)) ආම්ලික	මාධාපයේ	₹ MnO ₄	අයන හා F	Fe ²⁺ අයන	පුතිකිුයා :	කරවන ල්ෑ	g (*	
	(I) ඉහ	ගත පුතිකිු	යාවේ දී ඔ)ක්සිකාරක	පුභේදය හ	ා ඔක්සිහා	රක පුභේ	දය නම් ක	රත්ත.
	@	ක්සිකාරක	ය :	•••••	ඔක්	්සිහාරක ය	·		•••••
		ක්සිකරණ ක්සිකරණ		ගරණ තුලිත කිුයාව	, අර්ධ පුති	කිුිිිිිිිිිිිිිිිිිිි	ත්ත. 		
	@ 	ක්සිහරණ	අර්ධ පුති	කිුයාව					
	(III) තු	ලිත අයනිඃ	ක සමීකර	ණය ලියන්	ກ.				
		_		5.00 cm ³ ෑ අවශා විය.		_			KMnO ₄
				•••••					
				•••••					
	••••				•••••		••••••	•••••	
									(ලකුණු 5.0)
(b) (i)	කරන්න.			න ක්ලෝරරි <					රයට සකස්
(ii)	ඔබේ පිළි	තුර පැහැදි	ළි කරන්න	ົວ.					
				••••••	••••••	••••••	••••••	••••••	
(iii)				අණුවල හැ	-				
	BeCl ₂ :			BCl ₃ :			CCl_4 :		

(iv) No C	U CO U CO em m ovologo C m <an a="" cologo="" cologo<="" th=""></an>
(IV) Na ₂ S, සකසෘ	$ m H_2SO_3$, $ m H_2SO_4$ යන සංයෝගවල $ m S$ පරමාණුවේ විදයුත් සෘණතාව වැඩිවන ආකාරයට ත්ත
	< <
(v) ඔබේ පි	ළිතුර පැහැදිළි කරන්න.
	(ලකුණු 3.4)
(c) දාහත්වන (1	.7) වන කාණ්ඩයේ මුල දුවා වල සංයුජතා කවචයේ ඇති ඉලෙක්ටුෝන හතෙහි
	නිකරණ ශක්තීන් පහත ශක්ති සටහනෙහි නිරූපණය කරන්න.
1	
	(ලකුණු 1.0
l	→

මෙම කීරුවේ කිසිවක් නොලියන්න

03. a) ${
m Mg_3N_2(s)}$ වල උත්පාදන එන්තැල්පි විපර්යාසය සෙවීම සඳහා අඳින ලද බෝන්- හාබර් චකුය පහත දැක්වේ. ඒ සඳහා අවශා වන දත්ත පහත වගුවේ දැක්වේ.

විපර්යාසය	$\Delta H^{\theta}/kJ \text{ mol}^{-1}$
$\mathrm{Mg_3N_2}(\mathrm{s})$ සම්මත උත්පාදන එන්තැල්පිය	-690
Mg(s) වල සම්මත පළමු සහ දෙවන අයනීකරණ එන්තැල්පිය පිළිවෙලින්	736, 1450
නයිටුජන් හි සම්මත පරමාණුකරණ එන්තැල්පිය	472.4
මැග්නීසියම් හි සම්මත ඌර්ධ්වපාතන එන්තැල්පිය	150
නයිටුජන් හි සම්මත පළමු, දෙවන හා තෙවන ඉලෙක්ටුෝන ලබා ගැනීමේ	-673. 850 <i>,</i> 1450
එන්තැල්පි පිළිවෙලින්	

- (i) අදාල අගයයන් නිවැරදිව යොදා ඉහත බෝන් හාබර් චකුය සම්පූර්ණ කරන්න.
- (ii) ඉහත චකුය ආධාරයෙන් Mg₃N₂(s) වල සම්මත දැලිස් එන්තැල්පිය සොයන්න.

(ලකුණු 3.5)

b) පහත සඳහන් පුතිකිුයා වල එන්ටොපි විපර්යාස වල සලකුණ තී්රණය කරන්න.

(i) $O_2(g)(1atm) \longrightarrow O_2(g)(2atm)$	
---	--

(ii)
$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$$

(iii)
$$AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

(v)
$$MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$$

(ලකුණු 1.0)

c) පහත දක්වා ඇත්තේ ඔක්සිජන් වල මවුලික පරිමාව සෙවීම සඳහා ශිෂායන් පිරිසක් විසින් විදාහාගාරයේ දී සකසන ලද ඇටවුමකි. එය ආධාරයෙන් අසා ඇති පුශ්න වලට පිළිතුරු සපයන්න.

(i)	අදාළ පුතිකිුයාව සඳහා තුලිත සමීකරණය	ලියන්න.

(ii) මෙහි කැකෑරුම් නලයට පුළුන් යොදන්නේ ඇයි?

ලියන්න.	iii) පරීකුණය	සැලසුම්	කිරීමේ	Ę	හා	පාඨාංක	ගැනීමේ	දී	සැලකිලිමත්	විය	යුතු	කරුණු	දෙක
	ලියන්න.												

මෙම පරීකෘණය සිදු කර සිසුන් විසින් ලබාගත් පාඨාංක පහත වගුවේ දැක්වේ.

රත් කිරීමට පෙර කැකෑරුම් නලය සහ එහි අඩංගු දුවා වල ස්කන්ධය /g	30.500
රත්කල පසු කැකැරූම් නලය සහ එහි අඩංගු දුවාවල ස්කන්ධය /g	30.119
එකතු වූ වායු පරිමාව /cm³	300
උෂ්ණත්වය/°C	27
වායු ගෝලීය පීඩනය /mm Hg	760
27 °C දී ජලයේ සංතෘප්ත වාෂ්ප පීඩනය /mm Hg	27

(1V)	වියල් O_2 හි පිඩනය Niii - වලින් සොයනන්. (760 lillii ng = 1.0 x 10 Niii -)
(v)	සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී ඔක්සිජන් වායුවේ පරිමාව ගණනය කරන්න.
(vi)	සෑදුනු ඔක්සිජන් වායු මවුල ගණන සොයන්න.
(vii) ඔක්සිජන් හි මවුලික පරිමාව ගණනය කරන්න.

(ලකුණු 5.5)

B කොටස - රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 1**5 බැගින් ලැබේ)

- 04. (a) (i) අංශුවල සැකැස්ම හා චලිතයන් ආධාර කර ගනිමින් පහත දැක්වෙන දෑ පහදා දෙන්න.
 - 1. අඩංගු භාජනය කුමක් වුව ද ඝනවලට නිශ්චිත හැඩයක් ඇත.
 - 2. දුවයක් එය අඩංගු බඳුනෙහි හැඩය ගන්නා අතර බඳුනෙහි මුළු පරිමාව පුරා නොපැතිරේ.
 - 3. වායුවක් බඳුනෙහි හැඩය ගන්නා අතරම බඳුනෙහි සමස්ථ පරිමාව ද අත්කර ගනී.
 - (ii) පදාර්ථයේ පුධාන අවස්ථා තුනෙහි හැසිරීම අන්තර් අණුක බල සහ තාපජ ශක්තිය අනුව කෙසේ වීචලනය වේ ද?

(ලකුණු 4.0)

(b) $27\,^{\circ}\text{C}$ දී පරිමාව $2\,\text{dm}^3$ වූ වීදුරු බඳුනක් තුළ ඔක්සිජන්, ඕසෝන් සහ කාබන්ඩයොක්සයිඩ් යන වායුන් අන්තර්ගත වේ. පද්ධතියේ මුළු පීඩනය $1.5\times10^5\,\text{Nm}^{-2}$ වන අතර ඔක්සිජන්හි ආංශික පීඩනය $1.2\times10^5\,\text{Nm}^{-2}$ වේ. බඳුන තුළ CO_2 $4.4\,\text{g}$ ක් ඇති අතර වායුන් එකිනෙක පුතිකිුයා නොකරන්නේ යැයි උපකල්පනය කරන්න. ඉහත දත්ත ආධාරයෙන් පහත සඳහන් දෑ ගණනය කරන්න.

$$(C = 12 \ 0 = 16)$$

- 1. CO₂ මවුල ගණන
- 2. පද්ධතියේ මුළු මවුල ගණන
- $3.~~\mathrm{CO_2}$ හි ආංශික පීඩනය
- $4. \quad 0_2$ මවුල ගණන
- $5.~~0_3$ හි ආංශික පීඩනය
- 0_3 මවුල ගණන
- $7. \quad 0_3$ හි ස්කන්ධය
- 8. CO_2 හි ඝනත්වය

(ලකුණු 8.0)

(c) ඝන $BaSO_4$, ඝන Na_2SO_4 , ඝන Na_2CO_3 , තනුක H_2SO_4 දාවණයක් සහ NaOH දාවණයක් වෙන් කර හඳුනා ගත යුතුව ඇත. මීට අමතරව Al ලෝහ කැබැලි කිහිපයක් සහ ජලය ඔබට සපයා ඇත. ඉහත සඳහන් දෑ මිශු කිරීමෙන් සහ Al හා ජලය ද උපයෝගී කර ගනිමින් ඒවා වෙන්කර හඳුනාගන්නා ආකාරය ලියන්න.

(ලකුණු 3.0)

- 05. (a) (i) පහත සඳහන් එන්තැල්පි විපර්යාස හඳුන්වන්න.
 - (I) සම්මත ඌර්ධවපාතන එන්තැල්පි විපර්යාසය
 - (II) සම්මත වාෂ්පීකරණ එන්තැල්පි විපර්යාසය
 - (III) සම්මත විලයනයේ එන්තැල්පි විපර්යාසය
 - (ii) ඉහත කිුයාවලි තුනෙහි දී එන්ටොපි විපර්යාසය වැඩිවන බව ඩයි අයඩින් උදාහරණ ලෙස ගෙන පෙන්නුම් කරන්න.

(ලකුණු 4.5)

(b) සම්මත ගිබ්ස් ශක්ති අගයයන් කිහිපයක් පහත වගුවේ ඇත.

සංගෝගය/ අයනය	සම්මත ගිබ්ස් ශක්තිය $\Delta G^{ heta}/\mathrm{kJ} \; \mathrm{mol}^{-1}$
NaCl (s)	-384.1
AgI (s)	-166.0
Na ⁺ (aq)	-261.9
Ag ⁺ (aq)	77.1
Cl ⁻ (aq)	-131.2
I ⁻ (aq)	-51.6

ඉහත දත්ත භාවිතයෙන් NaCl(s) සහ AgI(s) වලින් වඩාත් හොඳින් ජලයේ දුවණය වන්නේ කුමන සංයෝගය දැයි පෙන්වන්න.

(ලකුණු 3.0)

- (c) වරහන් තුල ඇති **ගුණය** යොදා ගනිමින් පහත වගන්ති පහදන්න.
 - 1. Kr වල මවුලික ස්කන්ධය NO වල මවුලික ස්කන්ධයට වඩා දෙගුණයකටත් වඩා වැඩි වුවද තාපාංක සමාන වේ. (පුමුබ අන්තර් කුියා)
 - 2. $25\ ^\circ C\ ^\circ C\ ^\circ C\ ^\circ C$ වායුවේ වර්ග මධානා මූල පුවේගය Cl_2 වායුවේ වර්ග මධානා මූල පුවේගයට වඩා අඩුවේ. (චාලක වායු සමීකරණය ඇසුරින්)
 - 3. S^{2-} , Cl^- , Ar යන පුභේද වල අරයයන් කුමයෙන් අඩුවේ. (පරමාණුවේ වාූහය)
 - $4.~~NO_2^+$ අයනය රේඛීය වන අතර NO_2 අණුව කෝණික වේ. (VSEPR වාදය)
 - 5. සල්ෆර් හි පුථම අයනීකරණ ශක්තිය පොස්පරස් හි පුථම අයනීකරණ ශක්තියට වඩා අඩුය. (ඉලෙක්ටුෝන විනාහසය)

(ලකුණු 7.5)

- 06. (a) ${f X}$ හා ${f Y}$ ආවර්තිතා වගුවේ අනුයාත කාණ්ඩ වලට අයත් නොවන ${f p}$ ගොනුවේ මුලදුවා දෙකකි. ${f X}$ තුන්වන ආවර්තයේ මූලදුවායක් වන අතර ${f Y}$ දෙවන ආවර්තයේ මූලදුවායකි.
 - X හා Y ක්ලෝරයිඩ වල අණුක සුතු XCl_3 හා YCl_3 වේ. XCl_3 වල හැඩය තලීය තිකෝණාකාර වන අතර YCl_3 චතුස්තලීය වේ.
 - (i) X හා Y මුලදුවා හා ඒවා අයත් කාණ්ඩ හඳුනා ගන්න.
 - (ii) $\mathbf{XCl_3}$ අණු 2 ක් එකතු වී ද්වී අවයවකයක් සාදයි. එහි වාූහය අඳින්න.
 - (iii) Y ක්ලෝරින් සමග YCl_3 සෑදුව ද YCl_5 නොසාදයි. එයට හේතුව කුමක් ද?
 - (iv) NO_3^- හඳුනා ගැනීම සඳහා ${f X}$ හා NaOH, භාවිතා කරයි. ඒ සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
 - (v) ස්වභාවයේ Y ද්වී පරමාණුක වායුවක් ලෙස පවතී. එය නිෂ්කීය ලෙස සලකනු ලබයි. එයට හේතුව කුමක් ද?
 - (vi) වාතයේ Y ඇතිබව පෙන්වීමට පරීකෘණයක් විස්තර කරන්න. අදාළ අවස්ථාවන්හි දී තුළිත රසායනික සමීකරණ දෙන්න.
 - (vii) **X** හි ක්ලෝරයිඩය හා **Y** හි හයිඩුයිඩය එකතු වී සෑදිය හැකි සංයෝගයේ වනුහය අදින්න.

(ලකුණු 8.5)

- (b) විදාහගාරයේ දී ${
 m KIO_3}$ හා ${
 m KI}$ භාවිතා කර ${
 m Na_2S_2O_3}$ දාවණයක් පුාමාණික කිරීමට පරීක්ෂණයක් සිදු කරන ලදී. එහි දී ${
 m KIO_3}$, $0.1~{
 m g}$ ක් ජලයේ දියකර $250.00~{
 m cm^3}$ දාවණයක් සාදා ඉන් $25.00~{
 m cm^3}$ ගෙන එයට ${
 m KI~1g}$ පමණ හා $1~{
 m mol~dm^{-3}~H_2SO_4}$ අම්ලය $5~{
 m cm^3}$ පමණ දමන ලදී. සාදාගත් ${
 m Na_2S_2O_3}$ දාවණය සමග එය අනුමාපනය කල විට බියුරෙට්ටු පාඨාංකය $6.00~{
 m cm^3}$ විය. $({
 m KIO_3}~214~{
 m g}~{
 m mol^{-1}})$
 - (i) පරීකෘණය සිදු කරන පියවර වල දී අදාළ පුතිකියා සඳහා තුලිත සමිකරණ ලියන්න.
 - (ii) $Na_2S_2O_3$ දාවණයේ සාත්දුණය සොයන්න.

(ලකුණු 4.5)

- (c) (i) Li හා Mg අතර සමානතා තුනක් ලියන්න.
 - (ii) Na හා Li අතර අසමානතා දෙකක් ලියන්න.

(ලකුණු 2.0)

1							ආවර්	තිතා	වගුව								2
Н																	Не
3	4											5	6	7	8	9	10
Li	Be											В	С	N	О	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uum	Uuu	Uub	Uut					
													l				

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
L	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr