WLAN Client Utility

Broadcom WLAN Client Utility Command Set

Revision History

Revision	Date	Change Description
80211-TI305-R	10/16/14	Updated:
		 General changes based on software updates.
80211-TI304-R	08/30/12	Updated:
		 General changes based on software updates.
80211-TI303-R	12/17/10	Updated:
		 General changes based on software updates.
80211-TI302-R	2/11/09	Updated:
		 General changes based on software updates.
80211-TI301-R	11/20/08	Updated:
		 General changes based on software updates.
80211-TI300-R	7/13/07	Initial release
		Sadon Contille
		Broadcom Corporation 5300 California Avenue Irvine, CA 92617

© 2014 by Broadcom Corporation All rights reserved Printed in the U.S.A.

Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners.

Table of Contents

About This Document	18
Purpose and Audience	18
Acronyms and Abbreviations	18
Document Conventions	18
Technical Support	18
Introduction	19
Command Structure	19
Syntax	19
Options	
Command Descriptions	20
Version Information and List of Commands	21
ver	
cmds	21
Association Control	22
join	22
up	23
down	23
out	24
reassoc	24
Initializing/Restarting	24
reinit	24
reboot	24
restart	24
Radio Control	25
radio	25
rrm	25
rrm_stat_rpt	25
rrm_nbr_list	25
rrm_nbr_del_nbr	25
rrm_nbr_add_nbr	25
Debugging/Status/Configuration	26
ap	26
apname	26
bi	26
bssid	26
cap	26
counters	27

cur_etneraddr	21
customvar1	27
dfs_status	28
malloc_dump	28
dump	28
fasttimer	28
fast_timer	28
slowtimer	28
slow_timer	29
glacialtimer	29
glacial_timer	29
mfp_assoc	29
mfp_auth	29
mfp_config	
mfp_deauth	
mfp_disassoc	29
mfp_reassoc	29
mfp_sa_query	30
mfp_sha256	
frag	30
fragthresh	30
rts	30
rtsthresh	
event_msgs	30
infra	
macreg	
monitor	32
msglevel	33
msglevel chanim	34
nvget	35
nvram_source	35
nvram_dump	35
nvset	35
nvram_get	35
perm_etheraddr	35
phylist	36
phymsglevel	36
phyreg	36
phytable	36

	pnytype	37
	lcnphy_papdepstbl	37
	phy_force_fdiqi	37
	pktcnt	37
	plcphdr	38
	pmset	38
	promisc	38
	radioreg	38
	revinfo	39
	scb_timeout	39
	shmem	39
	shortslot	39
	shortslot_override	39
	shortslot_restrict	
	staname	
	srclear	
	srdump	40
	sta_info	42
	ucantdiv	
	upgrade	42
	ucflags	42
Tra	nsmission Retry Control	43
	r	43
	srl	43
Rat	te Parameters	
	rate	43
	default_rateset	44
	2g_rate	44
	RATE_2G_USAGE	44
	2g_mrate	45
	RATE_2G_USAGE	45
	5g_rate	46
	RATE_5G_USAGE	46
	5g_mrate	47
	RATE_5G_USAGE	47
	bg_mrate/a_mrate	48
	a_rate	48
	mrate	48
	bg_rate	49

nrate		49
bands		49
rateparam		50
rateset		50
dump_rateset		50
suprates		51
Antenna Controls		51
antdiv_bcnloss		51
antdiv		51
phy_rssi_ant		52
•		
·		
keys		53
_	- 🗸	
· -		
_		
·		
· -		
// /		
deauthenticate		54
auth		55
wpa_auth		55
wpa_cap		56
set_pmk		56
mac		56
macmode		56
encryptstrength		57
decryptstatus		57
addkey		57
wepdefault		57
pmkid info		58

Scan Controls	58
csscantimer	
escan	58
escanabort	59
iscan_s	59
iscan_c	60
passive	60
prescanned	60
scan	61
scan_ps	61
scanabort	61
scanresults	61
scan_channel_time	61
scan_unassoc_time	62
scan_home_time	
scan_passive_time	
scan_nprobes	62
scansuppress	
extdscan	63
scan	63
iscan_s	63
iscan_c	64
iscanresults	64
obss_scan_params	64
scancache_clear	
Association and Status	65
isup	65
assoclist	65
assoc	65
disassoc	65
shownetworks	65
authe_sta_list	66
autho_sta_list	66
ssid	66
closednet	66
assoc_info	66
closed	
bss	
join pref	

assoc_pref	 67
Channel and Band Control Parameters	 67
auto	67
autochannel	67
bs_data	 67
chanspecs_defset	68
chan_info	68
channel	68
chanlist	 69
channels	 69
channels_in_country	
force_vsdb_chans	
chq_event	
Roam Controls	
roam_channels_in_cache	 70
roam_channels_in_hotlist	
roam_trigger	
roam_delta	
roamscan_parms	
roam_prof	
roam_scan_period	
prb_resp_timeout	
pfn_roam_alert_thresh	
Regulatory Test and Measurements	
band	
clk	
channel_qa	
channel_qa_start	
ccode_info	
chanspec_txpwr_max	 74
csa	
constraint	
curpower	
curppr	 75
diag	 76
dtim	 76
evm	
noise	
PM	 77

txpwr_target_max	/ /
wake	77
tssi	78
txpwr	78
txpwr1	78
txpathpwr	79
txpwrlimit	79
txchain_pwr_offset	79
powerindex	79
rssi	79
rssi_event	80
pwr_percent	80
rand	80
reset_d11cnts	80
regulatory	81
spect	81
fqacurcy	81
longtrain	82
freqtrack	
measure_req	82
quiet	82
rm_req	83
rm_rep	83
rssidump	83
interference	83
interference_override	84
itfr_get_stats	84
itfr_enab	84
itfr_detect	85
frameburst	85
rclass	85
untry and Locale	86
country	86
country_ie_override	86
autocountry_default	86
eless Distribution System	87
lazywds	87
wds	87
wds type	87

wds_remote_mac	87
wds_wpa_role_old	88
wds_wpa_role	88
Mode Controls	88
gmode	88
LegacyB	88
LRS	88
Auto [default]	89
IEEE 802.11g mode performance	89
wet	90
gmode Protection Controls	
gmode_protection	
gmode_protection_control	
gmode_protection_override	92
legacy_erp	
Radar Controls	
radar	
radarargs	93
WME Controls	
cac_addts	94
cac_delts	
cac_delts_ea	
cac_tslist	
cac_tslist_ea	
cac_tspec	
cac_tspec_ea	
tclas_add	95
tclas_del	95
tclas_list	95
wme	96
wme_apsd	96
wme_apsd_sta	96
wme_apsd_trigger	96
wme_autotrigger	96
wme_clear_counters	97
wme_counters	97
wme_dp	97
wme_maxbw_params	97
wme tx params	97

Information Element Controls	98
add_ie	98
del_ie	98
hs20_ie	98
list_ie	99
NVRAM/SROM Write Controls	99
otpw	99
nvotpw	99
legacylink	99
listen	99
rdvar	
wrvar	
NDIS Related Commands	
ndisscan	
ndis_frag	
ndis_rts	
MIMO-Specific Commands	
actframe	
ampdu_activate_test	
ampdu_cfg_txaggr	
ampdu_tid	
ampdu_retry_limit_tid	
ampdu_rr_retry_limit_tid	
ampdu_send_addba	
ampdu_send_delba	102
ampdu_txq_prof_start	
ampdu_txq_prof_dump	102
ampdu_txq_ss	
amsdu	103
bw_cap	103
chanspec	104
dfs_channel_forced	104
cur_mcsset	105
nrate	106
nphy_antsel	107
dpt_deny	107
dpt_endpoint	108
dpt_pmk	108
dpt fname	108

dpt_list	108
ampdu_clear_dump	108
bssmax	108
radarargs40	109
radarthrs	109
nphy_test_tssi	109
nphy_rssiant	109
mimo_ss_stf	110
mimo_txbw	110
obss_coex_action	110
rifs	
rifs_advert	111
rxmcsset	
txmcsset	111
spatial_policy	111
Packet Filter Related Commands	
pkt_filter_add	112
pkt_filter_clear_stats	112
pkt_filter_delete	112
pkt_filter_enable	
pkt_filter_list	
pkt_filter_mode	113
pkt_filter_ports	113
pkt_filter_stats	113
Statistics Related Commands	
bcnlenhist	114
beacon_info	114
cca_get_stats	114
chanim_acs_record	114
chanim_mode	114
intfer_params	115
pktq_stats	115
probe_resp_info	116
delta_stats_interval	116
delta_stats	116
mac_rate_histo	116
manfinfo	117
mempool	117
pktg stats	117

	sample_collect	117
	smfstats	.118
	wnm_url	118
	wnm_tfsreq_add	118
	wnm_dms_set	.118
	wnm_dms_status	119
	wnm_dms_term	119
	wnm_service_term	119
	wnm_timbc_offset	120
	wnm_timbc_set	120
	wnm_timbc_status	120
	wnm_maxidle	120
	wnm_bsstrans_query	120
	wnm_bsstrans_req	
	wnm_keepalives_max_idle	
	bss_peer_info all	.121
	drift_stats_reset	121
	bssload_static	121
CIS	Related Commands	
	srwrite	122
	srcrc	
	ciswrite	122
	cisupdate	122
	cisdump	122
	cis_source	
	cisconvert	123
Pov	ver Related Commands	123
	lpc_params	123
	maxpower	123
	mkeep_alive	123
	pavars	124
	pm_dur	124
	pm2_sleep_ret_ext	124
	povars	124
	pwrstats	125
	ratetbl_ppr	125
	wowl_keepalive	125
	wowl_wakeup_reason	125
	wowl_status	125

wowl_wakeind	1	26
wowl_pkt	1	26
Manufacturing Test Commands	1	27
crsuprs	1	27
keep_alive		27
lifetime	1	27
ota_teststop	1	27
ota_loadtest	1	27
ota_stream	1	28
ota_teststatus	1	28
patrim	1	28
rssi_cal_freq_grp_2g		
rpcalvars		
send_nulldata		29
sendprb		29
txcal_gainsweep	1	29
txcal_gainsweep_meas	1	30
txcal_pwr_tssi_tbl		30
wci2_config		
mws_params	1	30
mws_debug_msg	1	30
External Log Commands	1	31
assertlog	1	31
Address Resolution Protocol Commands	1	31
arpoe	1	31
arp_hostip	1	31
arp_hostip_clear	1	31
arp_ol	1	31
arp_peerage	1	32
arp_stats		
arp_stats_clear	1	32
arp_table_clear	1	32
Duration Information Commands	1	32
mpc_dur	1	32
pm_dur	1	32
TPC Commands	1	33
tpc_lm	1	33
tpc_mode	1	33
tpc_period	1	33

Link Quality Commands	134
monitor_lq	134
monitor_lq_status	134
Offload Commands	134
toe	134
toe_ol	134
toe_stats	134
toe_stats_clear	134
OTP Commands	135
otpdump	135
otpstat	
Batch Sequence Commands	
seq_start	
seq_stop	135
seq_delay	
seq_error_index	
BT Coexistence Commands	136
bt_regs_read	136
btc_params	
btc_flags	136
btcx_clear_dump	
LED Commands	136
ledbh	
led_blink_sync	
Miscellaneous Commands	137
aibss_bcn_force_config	137
aibss_txfail_config	137
antgain	137
ap_isolate	137
assert_type	137
atten	138
bmac_reboot	138
bmon_bssid	138
chanim_state	138
devpath	138
eventing	138
event_msgs	139
event_msgs_ext	139
fem	139

gpioout		. 139
ioctl_echo		. 139
iov		. 140
iovars		. 140
monitor_promisc_level		. 140
ns_hostip		. 140
ns_hostip_clear		. 141
otpraw		. 141
probresp_mac_filter		. 141
probresp_sw		. 141
_		
rmc_ackreq		. 142
rmc_rssi_thresh		. 142
	76.	
rmc_vsie		. 142
send_frame		. 143
sr_verify		. 143
staprio	<u> </u>	. 143
sta_monitor		. 143
taf		. 143
wlc_ver		. 143
obss_prot		. 143
dump_obss		. 144
ibss_route_tbl		. 144
ip_route_table		. 144
uartparams		. 144
Y Related Commands		. 145
phy_adj_tssi		. 145
phy_read_estpwrlut		. 145
phy_afeoverride		. 145
phy_rxiqest		. 145
phy_txiqcc		. 145
phy_txlocc		. 146
phy_rssi_gain_delta_2gb0		. 146
phy_rssi_gain_delta_2gb1		. 146
phy_rssi_gain_delta_2gb2		. 146

phy_rssi_gain_delta_2gb3	147
phy_rssi_gain_delta_2gb4	147
phy_rssi_gain_delta_2g	147
phy_rssi_gain_delta_5gl	147
phy_rssi_gain_delta_5gml	148
phy_rssi_gain_delta_5gmu	148
phy_rssi_gain_delta_5gh	148
phy_rxgainerr_2g	148
phy_rxgainerr_5gl	149
phy_rxgainerr_5gm	149
phy_rxgainerr_5gh	149
phy_rxgainerr_5gu	
phy_test_idletssi	150
phy_debug_cmd	
protection_control	
rrm_nbr_req	150
srchmem	151
tsf	151
txcore	
txcore_override	151
txfifo_sz	
wowl_pkt	152
wowl_ext_magic	152
Host Offload Commands	153
ol_clr	153
ol_cons	
ol_eventlog	153
ol_stats	153
ol wowl cons	

About This Document

Purpose and Audience

This document is intended for use by Broadcom[®] and customer engineers using the Broadcom WL tool to evaluate and test BCM43XX combo and embedded Wi-Fi chip solutions.

Acronyms and Abbreviations

In most cases, acronyms and abbreviations are defined on first use.

For a comprehensive list of acronyms and other terms used in Broadcom documents, go to: http://www.broadcom.com/press/glossary.php.

Document Conventions

The following conventions may be used in this document:

Convention	Description
Monospace	Command syntax: w1 [-1] <command/>
<>	Placeholders for required elements: w1 <command/>
[]	Indicates optional command-line parameters: w1 [-1]
	Separates two mutually exclusive choices
	Indicates that the user can type multiple arguments of the same type.

Technical Support

Broadcom provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates through its customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering support representative.

In addition, Broadcom provides other product support through its Downloads and Support site (http://www.broadcom.com/support/).

Introduction

This document describes the various commands that are available in the Broadcom WLAN Client Utility. To use the utility to start a build, the following tools must be available/installed on the build machine:

- Broadcom WLAN driver (version 5.20.18 or later).
- · The latest Broadcom BCM43xx WLAN adapter.
- Microsoft[®] Windows[®] or Linux[®] operating system.

Command Structure

Syntax

wl [-a|-i < adapter>] [-h] [-d|-u|-x] < command> [arguments]

- · h This message and command descriptions
- · h [cmd] Command description for cmd
- a, i Adapter name or number
- · d Output format signed integer
- · u Output format unsigned integer
- x Output format hexadecimal

Options

To view the list of WLAN Client Utility options, run the w1 command.

Command Descriptions

This section provides a description of the commands and supported options available in the Broadcom WLAN Client Utility. Commands are grouped as follows:

- "Version Information and List of Commands" on page 21.
- "Association Control" on page 22.
- · "Initializing/Restarting" on page 24.
- "Radio Control" on page 25.
- "Debugging/Status/Configuration" on page 26.
- "Transmission Retry Control" on page 43.
- "Rate Parameters" on page 43.
- "Antenna Controls" on page 51.
- "Security and Encryption Controls" on page 52.
- "Scan Controls" on page 58.
- "Association and Status" on page 65.
- "Channel and Band Control Parameters" on page 67.
- "Roam Controls" on page 70.
- "Regulatory Test and Measurements" on page 73.
- "Country and Locale" on page 86.
- "Wireless Distribution System" on page 87.
- "Mode Controls" on page 88.
- "gmode Protection Controls" on page 91.
- "Radar Controls" on page 93.
- "WME Controls" on page 94.
- "Information Element Controls" on page 98.
- "NVRAM/SROM Write Controls" on page 99.
- "NDIS Related Commands" on page 100.
- "MIMO-Specific Commands" on page 101.
- "Packet Filter Related Commands" on page 112.
- "Statistics Related Commands" on page 114.
- "CIS Related Commands" on page 122.
- "Power Related Commands" on page 123.
- "Manufacturing Test Commands" on page 127.
- "External Log Commands" on page 131.
- "Address Resolution Protocol Commands" on page 131.
- "Duration Information Commands" on page 132.
- "TPC Commands" on page 133.
- · "Link Quality Commands" on page 134.
- "Offload Commands" on page 134.

- "OTP Commands" on page 135.
- "Batch Sequence Commands" on page 135.
- "BT Coexistence Commands" on page 136.
- "LED Commands" on page 136.
- "Miscellaneous Commands" on page 137.
- "PHY Related Commands" on page 145.
- "Host Offload Commands" on page 153.

Version Information and List of Commands

ver

Gets the version information for the Broadcom WLAN Client Utility.

wl ver

Example return

```
7.14 RC43.22 wl0: Sep 29 2014 16:29:30 version 7.14.43.22
```

cmds

Generates a short list of available commands.

wl cmds

Association Control

join

Joins a specified network.

wl join <name|ssid> [key xxxxx] [imode bss|ibss] [amode
open|shared|auto|wpa|wpapsk|wpanone|wpa2|wpa2psk]

Example return

join Broadcom imode infra amode open

If the AP is not configured with Wired Equivalent Privacy (WEP) security, no WEP key is required. Otherwise, specify wep xxxx or wepkey xxxx.

Authentication mode (amode) choices:

- Open
- Shared

Infrastructure mode choices:

- bss
- managed
- infra

Ad hoc mode choices:

- ibss
- ad hoc

IEEE Std 802.11 supports open system and shared key network authentication services subtypes. Under open system authentication, any wireless station can request authentication. The station that attempts to authenticate with another wireless station sends an authentication management frame that contains the identity of the sending station. The receiving station then sends back a frame that indicates whether it recognizes the identity of the sending station. Under shared key authentication, each wireless station is assumed to have received a secret shared key over a secure channel that is independent from the 802.11 wireless network communications channel.

up

Reinitializes and marks the adapter as being up (operational). This command makes the interface operational. It does all the necessary initialization tasks to bring up the interface.

wl up

The following tasks are associated with this command:

- Configuring PCI/PCMCIA here to allow manufacturer hot-swap: down, hot-swap (chip power cycle), up.
- Reading the PHY revision.
- Setting the soft interrupt mask.
- · Bringing the interface up in each frequency band.
- Initializing the default rate, channel, and type-dependent information.
- Initializing the basic rate look-up.
- · Saving, suspending, disabling interrupts, and turning off the radio.
- Starting a one-second watchdog.
- · Starting the activity LED timer.

down

Resets and marks the adapter as being down (disabled). This command disables the interface.

wl down

The following tasks are associated with this command:

- Disassociate
- · Turns the radio off.
- · Cancels the watchdog timer.
- · Cancels the activity timer.
- Cancels any active scan.
- Cancels any IBSS timer.
- Cancels any association timer.
- · Flushes the TX control queue.
- Reclaims the SCBS.
- If an AP, flushes the PS-POLL response (MSDU) packet queues and also flushes PSPOLL.
- · Response (MPDU) packet queues.
- Restores to a known good default state.

out

Marks the adapter as being down but does not reset the hardware (disabled). On dual-band cards, the card must be band-locked before use.

wl out

reassoc

Initiates a reassociation request.

wl reassoc <bssid> [options]

Options:

• -c CL --chanspecs CL chanspecs (comma- or space-separated list)

Initializing/Restarting

reinit

Reinitializes the device.

wl reinit

reboot

Reboots the platform.

wl reboot

restart

Restarts the driver. The driver must already be down.

wl restart

Radio Control

radio

Turns the radio on or off using a software switch. Running wl radio returns the current state of the radio. For example, 0x0004 when ON or 0x0005 when OFF.

wl radio on | off

rrm

Enables or disables the radio resource management (RRM) feature.

wl rrm [0/1]

- 0: Disables the RRM feature.
- 1: Enables the RRM feature.

rrm_stat_rpt

Reads 11k stat measurement report from the STA.

wl rrm_stat_rpt [mac]

rrm_nbr_list

Gets 11k neighbor report list.

wl rrm_nbr_list

rrm_nbr_del_nbr

Deletes a node from the 11k neighbor report list.

wl rrm_nbr_del_nbr [bssid]

rrm_nbr_add_nbr

Adds a node to the 11k neighbor report list.

wl rrm_nbr_add_nbr [bssid] [bssid info] [regulatory] [channel] [phytype]

Debugging/Status/Configuration

ap

Sets the AP mode.

wl ap <value>

Options

- 0 = STA
- 1 = AP

apname

Gets the current associated AP name. If the client is not associated with an AP, a stale AP name may be returned. The maximum AP name length is 15 bytes.

wl apname

bi

Gets/sets the beacon interval.

wl bi

Returns the set beacon interval (BI). If the beacon interval is set for 100 ms, 100 is returned.

bssid

Gets the BSSID value. Returns an error if the STA is not associated.

The basic service set identifier is the 48-bit MAC (hardware) address of the WLAN interface in the AP that serves the stations in a basic service set (BSS).

wl bssid

cap

Returns the driver capabilities.

wl cap

counters

Returns driver counter values.

wl counters

Example return

```
txframe 92289 txbyte 7637260 txretrans 830936 txerror 0 rxframe 90957 rxbyte 665
3890 rxerror 17
txprshort 4398 txdmawar 0 txnobuf 0 txnoassoc 0 txchit 116 txcmiss 92173
reset 14926 txserr 0 txphyerr 1 txphycrs 0 txfail 689
d11_txfrag 509883 d11_txmulti 12 d11_txretry 267653 d11_txretrie 266858
d11_txrts 0 d11_txnocts 0 d11_txnoack 829661 d11_txfrmsnt 284515
rxcrc 3824120 rxnobuf 0 rxnondata 0 rxbadds 0 rxbadcm 0 rxdup 1017 rxfragerr 0
rxrunt 14 rxgiant 0 rxnoscb 0 rxbadproto 0 rxbadsrcmac 3
d11 rxfrag 2280968 d11 rxmulti 1591082 d11 rxundec 0
rxctl 2140668 rxbadda 0 rxfilter 0
rxuflo: 0 0 0 0 0 0
txallfrm 1407603 txrtsfrm 0 txctsfrm 17113 txackfrm 217150
txdnlfrm 0 txbcnfrm 0 txtplunfl 0 txphyerr 1
txfunfl: 0 0 0 0 0 0
tkipmicfaill 0 tkipicverr 0 tkipcntrmsr 0
tkipreplay 0 ccmpfmterr 0 ccmpreplay 0
ccmpundec 0 fourwayfail 0 wepundec 0
wepicverr 0 decsuccess 0 rxundec 0
rxfrmtoolong 828457 rxfrmtooshrt 8166 rxinvmachdr 1374201 rxbadfcs 3824120
rxbadplcp 5332054 rxcrsglitch 36254836 rxstrt 16714715 rxdfrmucastmbss 92241
rxmfrmucastmbss 124909 rxcfrmucast 284475 rxrtsucast 0 rxctsucast 0
rxackucast 284475 rxdfrmocast 82398 rxmfrmocast 1280135 rxcfrmocast 450757
rxrtsocast 19235 rxctsocast 137269 rxdfrmmcast 486848 rxmfrmmcast 9259123
rxcfrmmcast 4 rxbeaconmbss 1310371 rxdfrmucastobss 0 rxbeaconobss 7698574
rxrsptmout 827723 bcntxcancl 0 rxf0ovfl 0 rxf1ovfl 0
rxf2ovfl 0 txsfovfl 0 pmqovfl 0
rxcgprqfrm 0 rxcgprsqovfl 0 txcgprsfail 0 txcgprssuc 0
prs_timeout 0 rxnack 0 frmscons 0 txnack 0 txglitch_nack 0
txburst 0 txphyerror 0
txchanrej 237
```

cur etheraddr

Gets/sets the current hardware address.

wl cur_etheraddr

customvar1

Prints the value of customvar1 in hexadecimal format.

wl customvar1

dfs_status

Gets the DFS status.

wl dfs_status

Example return

state IDLE time elapsed 0ms radar channel cleared by dfs none

malloc_dump

Deprecated. Folded under wl dump malloc.

dump

Provides a list of various suboptions.

wl dump

Example return

```
wl0: June 26 2012 14:24:34 version 6.30.39.31 (r341185)
resets 190
perm_etheraddr 78:e4:00:61:ce:6d cur_etheraddr 78:e4:00:61:ce:6d
board 0x46d, board rev P406
rate_override: A 0, B 0
antrx_ovr 3 txant 3

BSS Config 0: ""
enable 0 up 0 wlif 0x00000000 "Primary"
wsec 0x7 auth 0 wsec_index -1 wep_algo 0
current_bss->BSSID 00:00:00:00:00
current_bss->SSID ""
bsscfg 0 assoc_state 0
```

fasttimer

Deprecated. Use fast_timer.

fast_timer

wl fast_timer

slowtimer

Deprecated. Use slow timer.

slow_timer

wl slow_timer

glacialtimer

Deprecated. Use glacial_timer.

glacial_timer

wl glacial_timer

mfp_assoc

Sends association.

wl mfp_assoc

mfp_auth

Sends authorization.

wl mfp_auth

mfp_config

Configures PMF capability.

wl mfp_config

mfp_deauth

wl mfp_deauth

mfp_disassoc

wl mfp_disassoc

mfp_reassoc

wl mfp_reassoc

mfp_sa_query

wl mfp_sa_query

mfp_sha256

wl mfp_sha256

frag

Deprecated. Use fragthresh.

fragthresh

wl fragthresh

rts

Deprecated. Use rtsthresh.

rtsthresh

wl rtsthresh

event_msgs

Sets/gets the 128-bit hexadecimal filter bit mask for MAC event reporting (through packet indications). Takes a 128-bit vector, which selectively enables or disables the reporting of MAC events through the packet data path. For example, setting bit locations 0 and 3 enables reporting of WLC_E_SET_SSID and WLC_E_AUTH event messages.

wl event_msgs

Default 0

List of bit vector event messages:

WLC_E_SET_SSID	0	<pre>/* indicates status of set SSID */</pre>
WLC_E_JOIN	1	<pre>/* differentiates join IBSS from found (WLC_E_START) IBSS */</pre>
WLC_E_START	2	/* STA founded an IBSS or AP started a BSS */
WLC_E_AUTH	3	/* 802.11 AUTH request */
WLC_E_AUTH_IND	4	/* 802.11 AUTH indication */
WLC_E_DEAUTH	5	/* 802.11 DEAUTH request */
WLC_E_DEAUTH_IND	6	/* 802.11 DEAUTH indication */

WLC_E_ASSOC	7	/* 802.11 ASSOC request */
WLC_E_ASSOC_IND	8	/* 802.11 ASSOC indication */
WLC_E_REASSOC	9	/* 802.11 REASSOC request */
WLC_E_REASSOC_IND	10	/* 802.11 REASSOC indication */
WLC_E_DISASSOC	11	/* 802.11 DISASSOC request */
WLC_E_DISASSOC_IND	12	/* 802.11 DISASSOC indication */
WLC_E_QUIET_START	13	/* 802.11h Quiet period started */
WLC_E_QUIET_END	14	/* 802.11h Quiet period ended */
WLC_E_BEACON_RX	15	<pre>/* BEACONS received/lost indication */</pre>
WLC_E_LINK	16	<pre>/* generic link indication */</pre>
WLC_E_MIC_ERROR	17	/* TKIP MIC error occurred */
WLC_E_NDIS_LINK	18	/* NDIS style link indication */
WLC_E_ROAM	19	<pre>/* roam attempt occurred: indicate status & reason */</pre>
WLC_E_TXFAIL	20	<pre>/* change in dot11FailedCount (txfail) */</pre>
WLC_E_PMKID_CACHE	21	/* WPA2 pmkid cache indication */
WLC_E_RETROGRADE_TSF	22	<pre>/* current AP's TSF value went backward */</pre>
WLC_E_PRUNE	23	/* AP was pruned from join list for reason */
WLC_E_AUTOAUTH	24	<pre>/* report AutoAuth table entry match for join attempt */</pre>
WLC_E_EAPOL_MSG	25	/* Event encapsulating an EAPOL message */
WLC_E_SCAN_COMPLETE	26	/* Scan results are ready or scan was aborted */
WLC_E_ADDTS_IND	27	<pre>/* indicate to host addts fail/success */</pre>
WLC_E_DELTS_IND	28	<pre>/* indicate to host delts fail/success */</pre>
WLC_E_BCNSENT_IND	29	<pre>/* indicate to host of beacon transmit */</pre>
WLC_E_BCNRX_MSG	30	<pre>/* Send the received beacon up to the host */</pre>
WLC_E_BCNLOST_MSG	31	/* indicate to host loss of beacon */
WLC_E_ROAM_PREP	32	/* before attempting to roam */
WLC_E_PFN_NET_FOUND	33	/* PFN network found event */
WLC_E_PFN_NET_LOST	34	/* PFN network lost event */

infra

Sets the infrastructure mode.

wl infra [0] [1]

Options

- ø IBSS
- 1 Infrastructure BSS

macreg

Gets/sets any MAC register (include IHR and SB).

wl macreg offset size [2,4] [value] [band]

monitor

Sets the adapter to monitor mode. When set, the address filter accepts all received frames (when cleared, the address filter accepts only those frames that match the BSSID or local MAC address), accepts all received control frames that are accepted by the address filter, and accepts all beacon and probe response frames without regard to the source address.

wl monitor <value>

Options

- ø Disable
- 1 Enable active monitor mode (interface still operates)

msglevel

Sets the driver console debugging message-bit vector.

```
wl msglevel N
```

N can be a list of numbers such as the following (Use a + or – prefix to make an incremental change.):

```
0x0001 error, err
0x0002 trace
0x0004 prhdrs
0x0008 prpkt
0x0010 inform, info, inf
0x0020 tmp
0x0040 oid
0x0080 rate
0x0100 assoc, as
0x0200 prusr
0x0400 ps
0x0800 txpwr, pwr
0x1000 port
0x2000 dual
0x4000 wsec
0x8000 wsec dump
0x10000 log
0x20000 nrssi
0x40000 loft
0x80000 regulatory
0x100000 taf
0x200000 radar
0x400000 mpc
0x800000 apsta
0x1000000 dfs
0x4000000 mbss
0x8000000 cac
0x10000000 amsdu
0x20000000 ampdu
0x40000000 ffpld
0x100000000 dpt
0x200000000 scan
0x40000000 wowl
0x800000000 coex
0x1000000000 rtdc
0x2000000000 proto
0x8000000000 chanim
0x10000000000 wmf
0x40000000000 itfr
0x80000000000 psta
0x200000000000 mcnx
0x40000000000 prot
0x40000000000000 tbtt
0x800000000000000000000 time
0x1000000000000000 lpc
0x100000000000000 txbf
```

msglevel chanim

When set, the following information is dumped on the console every second.

```
bgnoise: -92 dBm
**intf: 0 glitch cnt: 13 badplcp: 0 noise: -92 chanspec: 0x100b
***cca stats: txdur: 3, inbss: 0, obss: 3,nocat: 0, nopkt: 1, doze: 0
```

Where:

- tx/Transmission of packets: All frame transmissions fall under this category.
- inbss/Reception of *In BSS* packets: Only frames that are received from AP/STAs within the BSS of the receiving terminal come under this category.
- obss/Reception of Other BSS packets: All frames received from AP/STAs that are outside the BSS of the receiving terminal come under this category.
- nocat/Reception of *No Category* packets: All 802.11 frames that are corrupted at the receiver (bad FCS) come under this category. Some control frames are also included in this category.
- nopkt/Reception of No Packets: Received frames with invalid PLCPs and CRS glitches come under this
 category. All receptions in this category are considered to be noise.
- doze: PM mode for the MAC. If the MAC core is in power management mode, it is in doze state.
- txop: Is the percentage of time that *free slot* is available for transmit. TXOP is calculated in percentage, ranging from 0 to 100.
- goodtx/Good transmissions: Only transmissions that are followed by a good expected response from the receiving terminal come under this category.
- badtx/Bad transmissions: Transmissions that receive a bad response (unexpected or bad FCS) or do not receive any response from the receiving terminal come under this category.
- glitch: is the sum of both OFDM and BPHY glitch counts and expressed as glitch_cnt * 1000 / aci_chan_idle_dur.
- badplcp: is the sum of both OFDM and BPHY packets with badp PLCP headers.
- knoise: Addresses improved noise measurement. Knoise is a modified version of the regular noise feature
 that provides improved dynamic measurement range. It achieves this by performing minimal gain control
 before running the *iqest* phy engine. It evaluates two fixed gain values and selects the measurement that
 results in no clipping. If both gain values result in clipping, it returns the measurement with the lowest gain.
- idle/Channel Idle time: This corresponds to the time when there is no transmit or receive activity at the terminal.

nvget

Gets the value of an NVRAM variable.

wl nvget <name>

nvram_source

Displays the NVRAM source.

wl nvram_source

nvram_dump

Prints NVRAM variables to STDOUT.

wl nvram dump

nvset

Sets an NVRAM variable.

wl nvset <name=value>

nvram_get

Gets the value of an NVRAM variable (available only in manufacturing test builds).

wl nvram_get <name>

perm_etheraddr

Gets the permanent address from NVRAM.

wl perm_etheraddr

phylist

Returns the list of available PHY types.

```
wl phylist
```

Example return

g

phymsglevel

Sets the PHY debugging message-bit vector.

```
wl phymsglevel N
```

N can be a list of numbers such as the following:

```
0x0001 = error

0x0002 = trace

0x0004 = inform

0x0008 = tmp

0x0010 = txpwr

0x0020 = cal

0x0080 = radar

0x0100 = thermal
```

phyreg

Gets/sets a PHY register.

```
wl phyreg offset [value] [band]
```

phytable

Gets/sets the table element of a table with the given ID at the given offset. The supplied table width should be 8, 16, or 32. The table ID offset cannot be negative.

```
wl phytable <table_id offset> <width_of_table_element> <table_element>
```

phytype

Gets the PHY type.

wl phytype

Returns

- ø PHY Type A
- 1 PHY Type B
- 2 PHY Type G
- 4 PHY Type N
- 15 Unknown PHY

Icnphy_papdepstbl

Prints papd eps table.

wl lcnphy_papdepstbl

phy_force_fdiqi

Enables/disables FDIQI Cal/Comp.

wl phy_force_fdiqi

Options

- ø Disable
- 1 Enable

pktcnt

Gets the summary of good and bad packets.

wl pktcnt

- Receive: Good packet 0, bad packet 0.
- Transmit: Good packet 0, bad packet 0.

plcphdr

Gets/sets the PLCP header.

```
wl plcphdr <option>
```

Options

long

auto

debug

pmset

Sets driver power management mode.

```
wl pmset <value>
```

Values

- Ø Constantly awake mode (CAM)
- 1 Power-save mode (PS)
- 2 Fast power-save mode

promisc

Sets promiscuous mode Ethernet address reception. When set, the address filter accepts all received frames. When cleared, the address filter accepts only those frames that match the BSSID or local MAC address.

```
wl promisc <value>
```

Values

- ø Disable
- 1 Enable

radioreg

Gets/sets a radio register.

```
wl radioreg offset [value] [band/core]
```

For the 802.11ac PHY, use the command as follows:

```
wl radioreg [ offset ] [ cr0/cr1/cr2/pll ]
wl radioreg [ offset ] [ value ] [ cr0/cr1/cr2/pll/all ]
```

revinfo

Gets hardware revision information.

wl revinfo

Example return

vendorid 0x14e4
deviceid 0x4329
radiorev 0x42055000
chipnum 0x4321
chiprev 0x1
corerev 0xb
boardid 0x46d
boardvendor 0x14e4
boardrev 0x4b
driverrev 0x4960c00
ucoderev 0x19a00d8
bus 0x1

scb_timeout

Inactivity time-out value for authenticated STAs.

wl scb_timeout <value>

shmem

Gets/sets a shared memory location.

wl shmem offset [value] [band]

shortslot

Gets the current IEEE 802.11g short slot timing mode.

wl shortslot

Options

- Ø Long
- 1 Short

shortslot_override

Gets/sets the IEEE 802.11g short slot timing mode override.

wl shortslot_override

Options

- -1 Auto
- Ø Long
- 1 Short

shortslot_restrict

Gets/sets the AP restriction on association for the 802.11g short slot.

```
wl shortslot_restrict
```

For timing capable STAs

- 0 Does not restrict association based on short-slot capability.
- · 1 Restricts association to STAs with short-slot capability.

staname

Gets/sets the station name. Returns the machine name. If the STA name has not been set by the operating system, the staname command returns a NULL string. The maximum STA name length (set/get) is 15 bytes.

```
wl staname
```

srclear

Clears the first <len> bytes of the SROM; len is in decimal or hexadecimal.

```
wl srclear <len>
```

srdump

Prints the contents of SPROM to STDOUT (dumps 64 16-bit words of the SROM present on-board). For details of the individual locations, check the Broadcom SROM memory map for that specific design. Memory maps are different, depending on the type of the design (for example, Mini PCI, Cardbus, PCMCIA, and so on).

```
wl srdump
```

Example return

srom[008]: 0x1000 0x1800 0x0000 0x0000 0xffff 0xffff		
<pre>srom[016]: 0xffff 0xffff 0xffff 0xffff 0xffff</pre>	· Øxtttt	0xffff
<pre>srom[024]: 0xffff 0xffff 0xffff 0xffff 0xffff</pre>	0xffff	0xffff
srom[032]: 0x5372 0x004b 0x0200 0x0000 0x0003 0x0000	0x0090	0x4c99
<pre>srom[040]: 0x0235 0x0000 0x0000 0xffff 0xffff 0xffff</pre>	0x0007	0x0202
<pre>srom[048]: 0xff02 0x4a4a 0x5b5b 0xffff 0xffff</pre>	0xffff	0xffff
<pre>srom[056]: 0xffff 0xffff 0xffff 0xffff 0xffff</pre>	0xffff	0xffff

<pre>srom[064]: srom[072]: srom[080]: srom[088]: srom[096]: srom[104]: srom[112]: srom[120]: srom[128]: srom[136]: srom[144]: srom[152]: srom[160]: srom[168]:</pre>	0x0000 0xffff 0xffff 0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	0x0000 0xffff 0xffff 0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	0x0000 0xffff 0xffff 0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	0x0000 0xffff 0xffff 0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0x0000 0x0000 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0x0000 0x0000	0xffff 0xffff 0x0000 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff 0xffff	
<pre>srom[176]: srom[184]: srom[192]: srom[200]: srom[208]:</pre>	0xffff 0xffff 0xffff 0x0000 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff	0xffff 0xffff 0xffff 0xffff 0xffff	0xffff 0xffff 0x0000 0xffff 0xffff	0xffff 0xffff 0x0000 0xffff 0xffff	0xffff 0xffff 0x0000 0xffff 0xffff	
srom[216]:	0xffff	0xffff	0xffff	0xaf04					

sta_info

Gets STA information. This command is AP-specific and gets the rateset of each associated wireless station.

wl sta_infor <MAC address of the WLAN intrface of the AP>

Example return

wl sta_info 00:90:4B:7A:7A:AC STA 00:90:4B:7A:7A:AC: rateset [1 2 5.5 6 9 11 12 18 24 36 48 54] idle 0 seconds in network 38 seconds state: AUTHENTICATED ASSOCIATED flags 0x1b: BRCM WME

ucantdiv

Enables/disables ucode antenna diversity.

wl ucantdiv <option>

Options

- 0 OFF
- 1 ON

upgrade

Upgrades the firmware on an embedded device.

wl upgrade

ucflags

Gets/sets ucode flags.

wl ucflags offset [value] [band]

Value

1, 2, or 3 (16-bits each)

Transmission Retry Control

Irl

Sets the long retry limit, where limit is an integer [1, 255]. This command indicates the number of retransmission attempts for frames longer than the RTS threshold. If this number is reduced, frames are discarded more quickly, so the buffer space requirement is lower. If this number is increased, retransmitting up to the limit takes longer and might cause the TCP to throttle back on the data rate.

wl lrl <limit>

srl

Sets the short retry limit, where limit is an integer [1, 255].

This command indicates the number of retransmission attempts for frames shorter than the RTS threshold. If this number is reduced, frames are discarded more quickly, so the buffer space requirement is lower. If this number is increased, retransmitting up to the limit takes longer and might cause the TCP to throttle back on the data rate.

wl srl <limit>

Rate Parameters

rate

Forces a fixed rate.

wl rate <rate>

Valid rate values

- IEEE 802.11a operation 6, 9, 12, 18, 24, 36, 48, 54
- IEEE 802.11b operation 1, 2, 5.5, 11
- IEEE 802.11g operation 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54
- -1 (default) Automatically determines the best rate.

default_rateset

Returns supported rateset of given phy. The following arguments (args) must be set:

- Arg 1. Phy Type: Must be one of the following: [a, b, g, n, lp, ssn, ht, lcn, lcn40, ac].
- · Arg 2. Band Type: 2 for 2.4G or 5 for 5G.
- Arg 3. CCK Only: 1 for CCK Only or 0 for CCK and OFDM rates.
- Arg 4. Basic Rates: 1 for all rates WITH basic rates or 0 for all rates WITHOUT basic rates.
- Arg 5. MCS Rates: 1 for all rates WITH MCS rates or 0 for all rates WITHOUT MCS rates.
- Arg 6. Bandwidth: have to be one of the following: [10, 20, 40, 80, 160].
- Arg 7. TX/RX Stream: tx for TX streams or rx for RX streams.

Example: PHY: AC, Band 2.4G, CCK rates only, With Basec rates, WithOut MCS rates, BW: 40 and TX streams Input: default_rateset ac 2 0 1 0 40 tx.

2g_rate

Forces a fixed rate for data frames in the 2.4G band: RATE_2G_USAGE.

wl 2g_rate

RATE_2G_USAGE

Either auto, or a simple CCK/DSSS/OFDM rate value of 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, or options to specify legacy, HT, or VHT rate.

- -r R, --rate=R Legacy rate (CCK, DSSS, OFDM)
- -h M, --ht=M HT MCS index [0-23]
- -v M[xS], --vht=M[xS] VHT MCS index M [0-9] and optionally, Nss S [1-8]. e.g., 5×2 is MCS=5, Nss=2
- -c cM[sS] VHT (c notation) MCS index M [0-9], and optionally Nss S [1-8]. e.g., c5s2 is MCS=5, Nss=2.
- -s S, --ss=S VHT Nss [1-8], number of spatial streams, default is 1. Only used with -v/--vht when M×S format is not used.
- -x T, --exp=T Tx Expansion, number of Tx chains (NTx) beyond the minimum required for the space-timestreams, exp = NTx - Nsts.
- --stbc Use STBC expansion; otherwise, no STBC.
- -1, --1dpc Use LDPC encoding; otherwise, no LDPC.
- -g, --sgi SGI, Short Guard Interval; otherwise, standard GI.
- -b, --bandwidth Transmit bandwidth in MHz: 20, 40, 80

2g_mrate

Forces a fixed rate for multicast/broadcast data frames in the 2.4G band: RATE_2G_USAGE.

wl 2g_mrate

RATE_2G_USAGE

Either auto, or a simple CCK/DSSS/OFDM rate value of 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, 54, or options to specify legacy, HT, or VHT rate.

- -r R, --rate=R Legacy rate (CCK, DSSS, OFDM)
- -h M, --ht=M HT MCS index [0-23]
- -v M[xS], --vht=M[xS] VHT MCS index M [0-9] and optionally, Nss S [1-8]. e.g., 5×2 is MCS=5, Nss=2
- -c cM[sS] VHT (c notation) MCS index M [0-9], and optionally Nss S [1-8]. e.g., c5s2 is MCS=5, Nss=2.
- -s S, --ss=S VHT Nss [1-8], number of spatial streams, default is 1. Only used with -v/--vht when M×S format is not used.
- -x T, --exp=T Tx Expansion, number of Tx chains (NTx) beyond the minimum required for the space-timestreams, exp = NTx - Nsts.
- --stbc Use STBC expansion; otherwise, no STBC.
- -1, --1dpc Use LDPC encoding; otherwise, no LDPC.
- -g, --sgi SGI, Short Guard Interval; otherwise, standard GI.

31039COLL

• -b, --bandwidth Transmit bandwidth in MHz: 20, 40, 80

5g_rate

Forces a fixed rate for data frames in the 5G band: RATE_5G_USAGE

wl 5g_rate

RATE_5G_USAGE

Either auto, or a simple OFDM rate value of 6, 9, 12, 18, 24, 36, 48, 54, or options to specify legacy OFDM, HT, or VHT rate.

- -r R, --rate=R Legacy OFDM rate
- -h M, --ht=M HT MCS index [0-23]
- -v M[xS], --vht=M[xS] HT MCS index M [0-9] and optionally, Nss S [1-8]. e.g., 5×2 is MCS=5, Nss=2.
- -c cM[sS] VHT (c notation) MCS index M [0-9] and optionally, Nss S [1-8]. e.g., c5s2 is MCS=5, Nss=2.
- -s S, --ss=S VHT Nss [1-8], number of spatial streams; default is 1.
- Only used with -v/--vht when M×S format is not used.
- -x T, --exp=T Tx Expansion, number of Tx chains (NTx) beyond the minimum required for the space-time-streams, exp = NTx Nsts.
- --stbc Use STBC expansion; otherwise, no STBC.
- -1, --1dpc Use LDPC encoding; otherwise, no LDPC.
- -g, --sgi SGI, Short Guard Interval; otherwise, standard GI.

310 Sycold

• -b, --bandwidth Transmit bandwidth in MHz: 20, 40, 80

5g_mrate

Forces a fixed rate for multicast/broadcast data frames in the 5G band: RATE_5G_USAGE.

wl 5g_mrate

RATE_5G_USAGE

Either auto, or a simple OFDM rate value of 6, 9, 12, 18, 24, 36, 48, 54, or options to specify legacy OFDM, HT, or VHT rate.

- -r R, --rate=R Legacy OFDM rate
- -h M, --ht=M HT MCS index [0-23]
- -v M[xS], --vht=M[xS] HT MCS index M [0-9] and optionally, Nss S [1-8]. e.g., 5×2 is MCS=5, Nss=2.
- -c cM[sS] VHT (c notation) MCS index M [0-9] and optionally, Nss S [1-8]. e.g., c5s2 is MCS=5, Nss=2.
- -s S, --ss=S HT Nss [1-8], number of spatial streams; default is 1.
- Only used with -v/--vht when M×S format is not used.
- -x T, --exp=T Tx Expansion, number of Tx chains (NTx) beyond the minimum required for the space-timestreams, exp = NTx - Nsts.
- --stbc Use STBC expansion; otherwise, no STBC.
- -1, --1dpc Use LDPC encoding; otherwise, no LDPC.
- -g, --sgi SGI, Short Guard Interval; otherwise, standard GI.

31039COL

• -b, --bandwidth Transmit bandwidth in MHz: 20, 40, 80

bg_mrate/a_mrate

Forces a fixed multicast rate.

wl bg_mrate/a_mrate <rate>

Valid rate values

- IEEE 802.11a operation 6, 9, 12, 18, 24, 36, 48, 54
- IEEE 802.11b operation 1, 2, 5.5, 11
- IEEE 802.11g operation 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54
- -1 (default) Automatically determines the best rate.

a_rate

Forces a fixed rate for the A PHY. The rate option without any arguments returns the current negotiated rate between a STA and an AP in infrastructure mode, or the weighted average of the last 32 frames sent in ad hoc mode between two stations. The best choice is to keep the value at –1, which is the auto-negotiate mode. To override the current rate, add the required rate argument. Then, every packet sent out has this new rate stamped in it.

wl a_rate <rate>

Valid rate values

- IEEE 802.11a operation 6, 9, 12, 18, 24, 36, 48, 54
- -1 (default) Automatically determines the best rate.

mrate

Forces a fixed multicast rate.

wl mrate <rate>

Valid values

- IEEE 802.11a operation 6, 9, 12, 18, 24, 36, 48, 54
- IEEE 802.11b operation 1, 2, 5.5, 11
- IEEE 802.11g operation 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54
- -1 (default) Automatically determines the best rate.

bg_rate

Forces a fixed rate for the IEEE 802.11b/g PHY.

wl bg_rate <rate>

Valid values

- IEEE 802.11b operation 1, 2, 5.5, 11
- IEEE 802.11g operation 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54
- -1 (default) Automatically determines the best rate.

nrate

When set, this command applies to a band-specific rate override; when used to query, it gets the moving average or band-specific rate override (if it is on).

wl nrate [-r] [-m] [-s] [-w]

Use auto to clear a rate override, or use the following:

- r Legacy rate (CCK, OFDM)
- m HT MCS index
- s STF mode (0=SISO, 1=CDD, 2=STBC, 3=SDM)
- w Override MCS only to support STAs with/without STBC capability.

bands

Returns the list of available IEEE 802.11 bands.

wl bands

Bands options

- ø Auto-Select
- 1 5 GHz
- 2 2.4 GHz
- 3 All bands

rateparam

Sets driver rate selection tunables.

wl rateparam <arg1> <arg2>

- <arg 1> Tunable ID
- <arg 2> Tunable value

rateset

Returns or sets the supported and basic ratesets. With no arguments, returns the rateset.

```
wl rateset "default" | "all" | <arbitrary rateset>
```

Example return

```
[ 1(b) 2(b) 5.5(b) 6 9 11(b) 12 18 24 36 48 54 ]
```

Arguments

- default Driver defaults
- all All rates are basic rates.
- <arbitrary rateset> List of rates

Listed rates are in Mbps. Each rate is optionally followed by "(b)" or "b" for a basic rate. For example, 1(b) 2b 5.5 11.

At least one rate must be basic for a legal rateset.

Note: To change the rateset, run w1 down to take down the driver, change the rateset, and then run w1 up to bring up the driver.

dump_rateset

Prints a per-scb rate set chosen by the rate selection stdout based on remote station MAC address[xx:xx:xx:xx:xx].

Example of usage

```
# wl dump rateset 88:9F:FA:0B:82:D7AC[0] ---
state 0xc4f9982c active_rates_num 11 bwcap 1 spmode 0 use_sgi 0 antsel OFF
rate index : rate     rspec 500Kbps fbr/dn/up
rate id 0 : x02 0x10002
                         2
rate id 1 : x04 0x10004
                         4
                            0
                                0 2
rate_id 2 : x0b 0x1000b
                       11 0 1 3
rate id 3 : mx10 0x2010010 13
                                1 2 4
rate id 4 : mx11 0x2010011
                           26
                                3 3 5
rate_id 5 : mx12 0x2010012
                           39
                                3 4 6
rate_id 6 : mx13 0x2010013
                           52 4 5 7
```

```
rate_id 7 : mx14 0x2010014 78 5 6 8 rate_id 8 : mx15 0x2010015 104 6 7 9 rate_id 9 : mx16 0x2010016 117 7 8 10 rate_id 10 : mx17 0x2010017 130 7 9 10
```

suprates

Gets/sets the IEEE 802.11g override for the supported rateset. With no arguments, returns the rateset.

```
wl suprates
```

Arguments

```
A list of rates <rate1 rate2 rate3...>
0 or -1 to specify an empty rateset to clear the override
```

Listed rates are in Mbps.

Example return

1 2 5.5 11

Antenna Controls

antdiv_bcnloss

wl antdiv bcnloss <beaconloss count>

- 0: Disables Rx antenna flip feature based on consecutive beacon loss.
- X: Beacon loss count after which Rx antenna will be flipped.

antdiv

Sets the antenna diversity property for RX. An antenna diversity receiver could be receiving the wireless/RF signal on one or more antennas having distinct characteristics (for example, location, radiation pattern and/or polarization). In such situations, when one antenna is experiencing bad reception conditions (deep or flat fading), the other should probably not. Therefore, when the right antenna is set at the right moment, the diversity receiver behaves as if it is receiving a continuously perfect signal.

wl antdiv <value>

- ø Forces the use of antenna 0.
- 1 Forces the use of antenna 1.
- · 3 Automatic selection of antenna diversity.

phy_rssi_ant

Gets RSSI per antenna (only gives RSSI of current antenna for SISO PHY).

wl phy_rssi_ant

txant

Sets the transmit antenna.

wl txant <value>

- 0 Forces the use of antenna 0.
- 1 Forces the use of antenna 1.
- 3 Uses the RX antenna selection that was in force during the most recently received good PLCP header.

txchain

Sets the transmit chain.

wl txchain <txchain bitmap>

- 1 Default bitmap of txchain for single stream PHY (legacy)
- 2 or 3 (10, 11) Default bitmap of txchains for NPHY
- 7 (111) Default bitmap for HTPHY (4331)

Example

- wl txchain 0x1 Limit TX to antenna/chain 0.
- wl txchain 0x2 Limit TX to antenna/chain 1.

Security and Encryption Controls

wepstatus

Sets or gets the WEP status. (This command is deprecated. Use "wsec" on page 55.)

primary_key

Sets/gets the index of the primary key.

wl primary_key

addwep

Sets an encryption key. The OID_802_11_ADD_WEP OID requests the miniport driver to set an IEEE 802.11 Wired Equivalent Privacy (WEP) key to a specified value. The key must be 5, 13, or 16 bytes long or 10, 26, 32, or 64 hexadecimal digits long. The encryption algorithm is automatically selected based on the key size. The typed key is accepted only when the key length is 16 bytes/32 hexadecimal digits and specifies whether AES-OCB or AES-CCM encryption is used. Default is CCM.

```
wl addwep <keyindex> <keydata> [ocb | ccm] [notx] [xx:xx:xx:xx:xx]
```

rmwep

Removes the encryption key at the specified key index.

wl rmwep

keys

Prints a list of the current WEP keys.

wl keys

tsc

Prints the TX SEQ counter for the key at a specified key index.

wl tsc

wsec_test

Generates wsec errors.

```
wl wsec_test <test_type> <keyindex|xx:xx:xx:xx:xx:xx>
```

Example return

```
(wsec test_type may be a number or name from the following set):
   0x0001 mic_error
   0x0002 replay
```

tkip_countermeasures

Enables or disables TKIP countermeasures (TKIP-enabled AP only).

wl tkip_countermeasures

- ø Disable
- 1 Enable

wsec_restrict

Drops unencrypted packets if wsec is enabled.

wl wsec_restrict

- ø Disable
- 1 Enable

eap

Restricts traffic to IEEE 802.1X packets (until IEEE 802.1X authorization succeeds).

wl eap

- ø Disable
- 1 Enable

eap_restrict

Gets/sets EAP restriction.

wl eap_restrict

authorize

Restricts traffic to IEEE 802.1X packets until the 802.1X authorization succeeds.

wl authorize

deauthorize

Does not restrict traffic to IEEE 802.1X packets until the 802.1X authorization succeeds.

wl deauthorize

deauthenticate

Deauthenticates a STA from the AP with optional reason code (AP only).

wl deauthenticate

wsec

Returns/sets a value containing a bit vector representing which wireless security modes are currently enabled.

wl wsec

- 1 WEP enabled
- 2 TKIP enabled
- 4 AES enabled
- 8 WSEC in software
- 0x80 FIPS enabled
- 0x100 WAPI enabled

auth

Gets/sets the IEEE 802.11 authentication type.

wl auth

- · Ø Open system
- 1 Shared key
- · 2 Open/shared

wpa_auth

Bit vector of WPA authorization modes.

wpa_auth

- 1 WPA-NONE
- 2 WPA-802.1X/WPA-Enterprise
- 4 WPA-PSK/WPA-Personal
- 8 CCKM (WPA)
- 16 CCKM (WPA2)
- 64 WPA2-802.1X/WPA2-Professional
- 128 WPA2-PSK/WPA2-Personal
- ø Disable WPA

wpa_cap

Sets/gets IEEE 802.11i RSN capabilities.

wl wpa_cap

set_pmk

Sets the passphrase for PMK (in-driver resident supplicant).

wl set_pmk

mac

Sets or gets the list of source MAC address matches. Multiple access points having the same SSID could cause undesirable results during tests because the client and the server could intermittently roam to different access points. To gain control over such behavior, the utility supports the **mac** and **deny** commands.

For the AP driver, the list controls which stations are allowed to authenticate. For the STA driver, the list allows/ restricts association to a particular set of BSSIDs. You can add multiple MAC addresses to the list and then allow/deny access of these based on your deny status.

By default, association works normally, and all valid targets are considered. If you specify a list of BSSIDs, then all other BSSIDs will be ignored before attempting a join. If you turn the list into a deny list by specifying w1 deny 1, BSSIDs specified in the list will be ignored before a join is attempted. To clear the list and return to normal functionality, enter w1 mac none.

wl mac xx:xx:xx:xx:xx [xx:xx:xx:xx:xx:xx ...]

Values

- · Ø Allows association to stations on the MAC list.
- 1 Denies association to stations on the MAC list.

macmode

Sets the mode of the MAC list.

wl macmode

Values

- · 0 Disables MAC address matching.
- · 1 Denies association to stations on the MAC list.
- 2 Allows association to stations on the MAC list.

encryptstrength

Gets the current WEP key length.

wl encryptstrength

decryptstatus

Gets the status of WEP decryption.

wl deencryptstatus

Returns

One of:

- 1 Success
- 2 Failure
- 3 Unknown

addkey

Sets an IEEE 802.11 Wired Equivalent Privacy (WEP) key. The OID_802_11_ADD_KEY OID requests the miniport driver to set an IEEE 802.11 Wired Equivalent Privacy (WEP) key to a specified value.

wl addkey <keyindex> <keydata> [notx] [xx:xx:xx:xx:xx]

wepdefault

Resets the WEP keys to their power-on defaults.

wl wepdefault

pmkid_info

Returns the PMKID table.

wl pmkid info

Options

- · -s S, -ssid SSSID to scan
- -t ST, -scan_type ST [active|passive] scan type
- -t bss type BT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, -bssid MAC Particular BSSID MAC address to scan, xx:xx:xx:xx:xx
- -n N, -nprobes N Number of probes per scanned channel
- · -a N, -activeN Dwell time per channel for active scanning
- · -p N, -passiveN Dwell time per channel for passive scanning
- -h N, -homeN Dwell time for the home channel between channel scans
- -c L, -channelsL Comma- or space-separated list of channels to scan

Scan Controls

csscantimer

Auto channel scan timer, in minutes (0 to disable).

wl csscantimer

escan

Starts an escan. Defaults to an active scan across all channels for any SSID. Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated).

wl escan [option]

Options:

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan_type=ST [active|passive|prohibit|offchan|hotspot] scan type
- --bss_type=BT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
 -a N, --active=N dwell time per channel for active scanning
- -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans

escanabort

Aborts an escan. Defaults to an active scan across all channels for any SSID. Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated).

wl escanabort [option]

Options:

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan_type=ST [active|passive|prohibit|offchan|hotspot] scan type
- --bss_type=BT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
- -a N, --active=N dwell time per channel for active scanning
 -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans

iscan_s

Initiates an incremental scan. Defaults to an active scan across all channels for any SSID. Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated).

```
wl iscan_s [option]
```

Options:

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan type=ST [active|passive|prohibit|offchan|hotspot] scan type
- --bss_type=BT [bss/infralibss/adhoc] bss_type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
- -a N, --active=N dwell time per channel for active scanning
- -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans

iscan_c

Continues an incremental scan. Defaults to an active scan across all channels for any SSID. Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated).

wl iscan_c [option]

Options:

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan_type=ST [active|passive|prohibit|offchan|hotspot] scan type
- --bss_type=BT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
 -a N, --active=N dwell time per channel for active scanning
 -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans

passive

Puts the scan engine into passive mode.

wl passive

prescanned

Uses channel and bssid list from scanresults. Gets prescanned channels and bssids.

wl prescanned

scan

Initiates a scan. Defaults to an active scan across all channels for any SSID. Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated).

wl scan

Options

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan_type=ST [active|passive|prohibit|offchan|hotspot] scan type--bss_type=BT [bss/infra |ibss/adhoc] bss type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
- -a N, --active=N dwell time per channel for active scanning
- -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans
- -c L, --channels=L comma or space separated list of channels to scan

Option

· 1 Suppress scans.

scan_ps

Gets/Sets scan power optimization enable/disable.

wl scan_ps

scanabort

Aborts a scan.

wl scanabort

scanresults

Returns the results from the last scan.

wl scanresults

scan_channel_time

Gets/sets the scan channel time.

wl scan channel time

scan_unassoc_time

Gets/sets the unassociated scan channel dwell time.

wl scan_unaccoc_time

scan_home_time

Gets/sets the scan home channel dwell time.

wl scan_home_time

scan_passive_time

Gets/sets the passive scan channel dwell time.

wl scan_passive_time

scan_nprobes

Gets/sets the scan parameter for number of probes to use (per channel scanned).

wl scan_nprobes

scansuppress

Suppresses all scans for testing.

wl scansuppress

ø Allow scans.

extdscan

Initiates an extended scan. Defaults to an active scan across all channels for any SSID.

wl extdscan

Options

- -s S1 S2 S3-ssid S1 S2 S3 SSIDs to scan, comma- or space- separated
- -x x -split_scanST [split_scan] Scan type
- -t ST-scan typeST [background: 0/forced background: 1/foreground: 2] Scan type
- n N-nprobesN Number of probes per scanned channel per SSID
- -c L-channelsL Comma- or space-separated list of channels to scan

scan

Initiates a scan. The default scan is an active scan across all channels for any SSID. Optional argument to scan a specific SSID: SSID.

wl scan

iscan_s

Initiates an incremental scan. Defaults to an active scan across all channels for any SSID. Optional arguments: SSID (SSID to scan).

wl iscan s

Options

- -s S,-ssid SSSID to scan
- -t ST,-scan typeST[active|passive] scan type
- -bss_typeBT[bss/infra|ibss/adhoc] bss type to scan
- -b MAC, -bssidMAC Particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N,-nprobesN Number of probes per scanned channel
- -a N, -ActiveN Dwell time per channel for active scanning
- -p N, -PassiveN Dwell time per channel for passive scanning
- -h N,-HomeN Dwell time for the home channel between channel scans
- -c L,-ChannelsL Comma- or space-separated list of channels to scan

iscan_c

Continues an incremental scan. Defaults to an active scan across all channels for any SSID.

Optional arguments: SSID (SSID to scan)

wl iscan_c

Options

- · -s S, -ssid SSSID to scan
- -t ST, -scan typeST [active|passive] scan type
- bss_typeBT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, -bssidMAC Particular BSSID MAC address to scan, xx:xx:xx:xx:xx
- -n N, -nprobesN Number of probes per scanned channel
- · -a N, -activeN Dwell time per channel for active scanning
- · -p N, -passiveN Dwell time per channel for passive scanning
- -h N, -homeN Dwell time for the home channel between channel scans
- · -c L, -channelsL Comma- or space-separated list of channels to scan

iscanresults

Returns results of the last iscan. Specify a buflen (maximum of 8188) to artificially limit the size of the results buffer.

wl iscanresults [buflen]

obss_scan_params

Sets/gets overlapping BSS scan parameters.

wl obss_scan_params a b c d e f g

- a Passive Dwell, {5–1000TU}, default = 100
- b Active Dwell, {10-1000TU}, default = 20
- c Width Trigger Scan Interval, {10–900 sec}, default = 300
- d Passive Total per Channel, {200–1000 0TU}, default = 200
- e Active Total per Channel, {20–100 0TU}, default = 20
- f Channel Transition Delay Factor, {5–100}, default = 5
- g Activity Threshold, {0–100%}, default = 25

scancache_clear

Clears the scan cache.

wl scancache_clear

Association and Status

isup

Gets the operational state of the driver.

wl isup

- Ø Down
- 1 Up

assoclist

Gets the list of associated MAC addresses. AP only: Gets the list of associated MAC addresses.

wl assoclist /* AP Side

Example return

Linux */

assoc

Prints information about the current network association to the AP with the specified BSSID.

wl assoc

disassoc

Disassociate from the current BSS/IBSS.

wl disassoc

shownetworks

Pretty-prints the BSSID list.

wl shownetworks

authe_sta_list

Gets the authenticated STA MAC address list.

wl authe_sta_list

autho_sta_list

Gets the authorized STA MAC address list.

wl autho_sta_list

ssid

Sets or gets the SSID of a wireless network connection profile. This setting initiates an association attempt if in infrastructure mode, joins/creates an IBSS if in IBSS (ad hoc) mode, or creates a BSS if in AP mode.

wl ssid

closednet

Sets/gets the BSS closed network attribute. When this setting is enabled (= 1), the adapter does not send out a probe response as a result of having received a Broadcast Probe request.

wl closednet

assoc_info

Returns the association request and response information (STA only).

wl assoc_info

closed

Hides the network from active scans, 0 or 1.

wl closed

- Ø Open
- 1 Hide

bss

Sets/gets BSS Enabled status: Up/Down.

wl bss

join_pref

Sets/gets join target preferences.

wl join_pref

assoc_pref

Sets/gets the association preference.

wl assoc_pref [auto|a|b|g]

Channel and Band Control Parameters

auto

Switches between available frequency bands (default).

wl auto

- a Forces use of IEEE 802.11a band.
- · b Forces use of IEEE 802.11b band.

autochannel

Automatic channel selection. Without an argument to show only the channel selected, ssid must be set to null before this process, and RF must be up.

wl autochannel

- · 1 Issues a channel scanning.
- 2 Sets the channel based on the channel scanning result.

bs_data

Displays per station band steering data.

wl bs data [options]

Options

- comma: Use commas to separate values rather than blanks.
- tab: Use <TAB> to separate values rather than blanks.
- · raw: Displays raw values as received from the driver.
- noidle: Do not display idle stations.
- noreset: Do not reset counters after reading

chanspecs_defset

Gets default chanspecs for current driver settings.

wl chanspecs defset

Example return in 2G band within the current locale and regulatory revision

- 1 (0x1001)
- 2 (0x1002)
- 3 (0x1003)
- 4 (0x1004)
- 5 (0x1005)
- 6 (0x1006)
- 7 (0x1007) 8 (0x1008)
- 9 (0x1009)
- 10 (0x100a)
- 11 (0x100b

chan_info

Returns channel information.

wl chan_info

channel

This command sets the default channel. As an AP, the default channel is used as the channel on which the AP found the network. For a STA, the default channel is used as the channel on which the STA creates an IBSS (ad hoc) network.

Valid channels for 802.11a (5 GHz band) are 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116,120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 184, 188, 192, 196, 200, 204, 208, 212, 216.

Valid channels for 802.11b/g (2.4 GHz band) are 1 through 14.

wl channel <channel #>

chanlist

Deprecated. Use channels.

channels

Returns valid channels for the current settings.

wl channels

Example return for US country code/locale

1 2 3 4 5 6 7 8 9 10 11, and so on

channels_in_country

Returns valid channels for the country specified.

wl channels_in_country

- · Argument 1 is the country abbreviation.
- Argument 2 is the band (a or b).

force_vsdb_chans

Sets/gets channels for the forced virtual simultaneous dual-band (vsdb) mode. The parameter functions based on time division multiplexing (TDM). Within the context of single radio use, the device can be configured to operate only on a specified channel. To function simultaneously on two different channels, the radio should switch between these channels frequently so that the user is aware that both interfaces are always active.

wl force_vsdb_chans chan1 chan2

Note: Provides a channel in the same format as chanspec: eg force_vsdb_chans 1I 48u.

chq_event

Sets parameters associated with channel quality event notification.

```
wl chq_event <rate_limit> <cca_levels> <nf_levels> <nf_lte_levels>
```

rate_limit: Number of events posted to application will be limited to 1 per this rate limit. Set to 0 to disable rate limit.

csa/nf/nf_lte levels: Variable number of threshold levels (maximum 8) in pairs of hi-to-low/lo-to-hi, and in increasing order (such as -90, -85, -80). A 0 0 pair terminates level array for one metric. An event will be posted whenever a threshold is being crossed.

Roam Controls

roam_channels_in_cache

Gets a list of channels in the roam cache.

wl roam_channels_in_cache

roam_channels_in_hotlist

Gets a list of channels in the roam hot channel list.

wl roam_channels_in_hotlist

roam_trigger

Gets or sets the roam trigger RSSI threshold.

wl roam_trigger

Example

```
Get: wl roam_trigger [a|b]
Set: wl roam_trigger <integer> [a|b|all]
```

Integer

- ø Default
- 1 Optimize bandwidth.
- 2 Optimize distance.
- [-1, -99] dBm trigger value.

roam_delta

Sets the roam candidate qualification delta.

```
wl roam_delta [integer [, a/b]]
```

Example return

roam delta is 0x0014(20)

roamscan_parms

Sets/Gets roam scan parameters. Uses a standard scan parameter syntax shown below. Only active/passive/home times, nprobes, and types are used. All other values are silently discarded. Defaults to an active scan across all channels for any SSID.

```
wl roamscan_parms a|b|p| [option]
```

Optional arg: SSIDs, list of [up to 10] SSIDs to scan (comma or space separated). Options:

- -s S, --ssid=S SSIDs to scan
- -t ST, --scan type=ST [active|passive|prohibit|offchan|hotspot] scan type
- --bss_type=BT [bss/infra|ibss/adhoc] bss type to scan
- -b MAC, --bssid=MAC particular BSSID MAC address to scan, xx:xx:xx:xx:xx:xx
- -n N, --nprobes=N number of probes per scanned channel
- -a N, --active=N dwell time per channel for active scanning
- -p N, --passive=N dwell time per channel for passive scanning
- -h N, --home=N dwell time for the home channel between channel scans
- -c L, --channels=L comma or space separated list of channels to scan

roam_prof

Gets/sets roaming profiles (need to specify band).

wl roam_prof_2g a|b|2g|5g flags rssi_upper rssi_lower delta, boost_thresh boot_delta nfscan fullperiod initperiod backoff maxperiod

roam_scan_period

Sets the roam candidate qualification delta.

wl roam_scan_period <integer>

prb_resp_timeout

Gets/sets the probe response timeout.

wl prb_resp_timeout

pfn_roam_alert_thresh

Gets/sets PFN and roam alert threshold.

Broadcom Confiderital wl pfn_roam_alert_thresh [pfn_alert_thresh] [roam_alert_thresh]

Regulatory Test and Measurements

band

Returns or sets the current band.

wl band

· auto Autoswitch between available bands (default).

clk

Sets the board clock state. Returns an error for a set_clk attempt if the driver is not down.

wl clk

- Ø Clock off
- 1 Clock on

channel_qa

Gets the last channel quality measurement.

wl channel_qa

channel_qa_start

Starts a channel quality measurement.

wl channel_qa_start

ccode_info

Get country code information.

wl ccode_info

chanspec_txpwr_max

Returns valid chanspecs with max tx power settings.

wl chanspec_txpwr_max [a, b] [w]

- -b band (5(a) or 2(b/g))
- -w bandwidth, 20, 40, 80, 160 or 8080

Example

# wl	chanspec_txpwr_max	
1	(0x1001)	16.00(dbm)
2	(0x1002)	16.00(dbm)
3	(0x1003)	16.00(dbm)
4	(0x1004)	16.00(dbm)
5	(0x1005)	16.00(dbm)
6	(0x1006)	16.00(dbm)
7	(0x1007)	16.00(dbm)
8	(0x1008)	16.00(dbm)
9	(0x1009)	16.00(dbm)
10	(0x100a)	16.00(dbm)
11	(0x100b)	16.00(dbm)
5u	(0x1903)	1.00(dbm)
6u	(0x1904)	1.00(dbm)
7u	(0x1905)	1.00(dbm)
8u	(0x1906)	1.00(dbm)
9u	(0x1907)	1.00(dbm)
10u	(0x1908)	1.00(dbm)
11u	(0x1909)	1.00(dbm)
11	(0x1803)	1.00(dbm)
21	(0x1804)	1.00(dbm)
31	(0x1805)	1.00(dbm)
41	(0x1806)	1.00(dbm)
51	(0x1807)	1.00(dbm)
61	(0x1808)	1.00(dbm)
71	(0x1809)	1.00(dbm)

csa

Sends an IEEE 802.11h channel switch announcement with chanspec.

wl csa <mode> <count> <channel>[a,b][n][u,1]

- mode 0 or 1
- count 0–254
- channel 0–224

Band:

- a 5G band
- b 2G band

Bandwidth:

• n 10, non for 20 & 40

CTL sideband:

- 1 Lower
- u Upper, no CTL sideband (default)

constraint

Sends an IEEE 802.11h power constraint information element (IE).

wl constraint 1-255 db

curpower

Returns the current TX power settings.

wl curpower

• -v, --verbose Displays power settings for every rate even when every rate in group has identical power.

curppr

Returns the current TX power per rate offset.

wl curppr

diag

Diagnostic test index. Precede the diag command by the w1 down command, and then follow with w1 up.

- 1 Interrupt
- 2 Loopback
- 3 Memory
- 4 LED

dtim

Gets/sets the delivery traffic indication message (DTIM).

wl dtim

evm

Starts an EVM test on the given channel or stops an EVM test.

wl evm

- Argument 1 is the channel number 1–14, or off, or 0 to stop the test.
- Argument 2 is an optional rate (1, 2, 5.5, or 11).

To perform EVM tests using the wl:

- 1. Issue the command w1 down to disable the wireless driver.
- 2. Turn on EVM mode on any channel. To do this, issue the command w1 evm 2, where 2 is the channel on which you want to transmit.

When you are done with EVM, issue the command wl evm 0 and then wl up to return the wireless driver back to normal operation.

noise

Immediately after Tx, gets the noise level (moving average) in dBm.

wl noise

PM

Sets the driver power management mode.

wl PM

- Ø CAM (constantly awake)
- 1 PS (power-save)
- 2 FAST PS mode

In the Broadcom WLAN driver, FAST PS mode consumes slightly more power than the standard PS mode, but can operate at higher rates (close to $54g^{\$}$ rates). The difference between FAST PS and PS is very dependent on the usage model. If there is no traffic, there is no difference. If the traffic is a steady stream (some packets every DTIM), there is no difference. If the traffic is a stream that happens less often than every DTIM, then the adapter consumes more power in FAST PS mode and less power but more latency in PS mode. The amount of power difference depends on the frequency of traffic.

txpwr_target_max

Returns current max tx target power settings.

```
wl txpwr_target_max
```

Example

```
wl txpwr_target_max
Maximum Tx Power Target (chanspec:0x100b): 14.50 14.50 14.50
```

wake

Sets the driver Power-save mode sleep state.

wl wake <value>

- · ø Core-managed
- 1 Awake

For STA only:

wake

- TRUE (1Awake)
- FALSE (0Core managed)

When this field is set to 1, the MAC exits the SLEEP state immediately. When the field is set to 0, the MAC enters the SLEEP state, as appropriate. The host must write 1 to this field when the MAC is functioning as an AP.

tssi

Gets the TSSI value from the radio. The need to measure signal levels in wireless infrastructure equipment is critical to adjusting transceiver automatic gain control (AGC) circuits, in the receiver (RX) to achieving maximum sensitivity to the varying inputs from the mobile users, and in the transmitter (TX) to maintaining the output power at its optimum level for performance mask, power amplifier (PA) efficiency and linearity, and government regulations.

Within an RX, the received signal strength indication (RSSI) is used to adjust the gain of the RX to extend the dynamic range to 100 dB. For the TX, accurately controlling the transmit signal power with a transmitted signal strength indication (TSSI) at RF frequencies at the higher power levels significantly eases the implementation of controls for PA operating level for maximum efficiency.

wl tssi

txpwr

Sets Tx power in milliwatts. Range [1, 84]. When Tx power is set, it overrides the current setting (SPROM, locale, and so on) and forces the transmitter to always use this new value for power output.

wl txpwr

Note: For dual-band cards, you must bandlock to your required band to make this command work.

Example

First run wl band b to lock in the 2.4 GHz band, and then use this command.

txpwr1

Sets Tx power in various units. Choose one of:

- · d dBm (default)
- · q quarter dBm
- m milliwatt

wl txpwr1

Can be combined with:

Turns on override to disable regulatory and other limitations.

Use wl txpwr -1 to restore defaults.

txpathpwr

On BCM2050 radios, turns the Tx path power on or off.

wl txpathpwr

txpwrlimit

Returns the current Tx power limit.

wl txpwrlimit

txchain_pwr_offset

Gets/sets the current offsets for each core in qdBm (quarter dBm).

wl txchain_pwr_offset [qdBm offsets]

powerindex

Sets the transmit power for A band (0-63).

wl powerindex

· 1 Default value

rssi

Gets the current RSSI value. For an AP, the MAC address of the STA must be specified. For an AP, the MAC address of the STA must be specified.

wl rssi /*STA side */

Note: The MAC layer operates with the physical layer (PHY) by sampling the transmitted energy over the medium transmitting the data. The PHY uses a clear channel assessment (CCA) algorithm to determine if the channel is clear. This function is accomplished by measuring the RF energy at the antenna and determining the strength of the received signal. This measured signal is commonly known as RSSI. If the received signal strength is below a specified threshold, the channel is declared clear, and the MAC layer is given the clear channel status for data transmission. If the RF energy is above the threshold, data transmissions are deferred in accordance with the protocol rules. The standard provides another option for CCA that can be alone or with the RSSI measurement.

rssi_event

Sets the parameters associated with an RSSI event notification.

wl rssi_event <rate_limit> <rssi_levels>

Options

- rate_limit The number of events posted to the application are limited to 1 according to this rate limit. Set to 0 to disable rate limit.
- rssi_levels Variable number of RSSI levels (maximum 8) in increasing order (such as -85, -70, -60). An event is posted each time the RSSI of received beacons/packets crosses a particular level.

pwr_percent

Gets/sets the power output percentage.

wl pwr_percent

To set a specified percentage, such as 60 percent of the full (100%) power:

- wl pwr_percent 60 Sets the new value.
- wl pwr_percent Gets the new setting.

Example return

pwr percent is 60(0x3c)

rand

Gets a 2-byte random number from the MAC PRNG.

wl rand

reset_d11cnts

Resets the IEEE 802.11 MIB counters.

wl reset_d11cnts

regulatory

Gets/sets the regulatory domain mode (IEEE 802.11d).

Note: The driver must be down.

wl regulatory

spect

Gets/sets 802.11h spectrum management mode.

wl spect <mode>

- Ø Off
- 1 Loose interpretation of 11h spec (May join non-11h APs.)
- 2 Strict interpretation of 11h spec (May not join non-11h APs.)
- 3 Disable 11h and enable 11d
- 4 Loose interpretation of 11h+d spec (May join non-11h APs.)

fqacurcy

A manufacturing test that sets the frequency accuracy mode. This command is used to measure the center frequency of the carrier. After this mode is set, the user can use a spectrum analyzer to measure the accuracy of the frequency for a specific channel.

wl fqacurcy <channel>

The argument is the channel number 1–14, or 0 to stop the test.

longtrain

A manufacturing test that sets the longtraining mode.

wl longtrain <channel>

The argument is a band channel number, or 0 to stop the test.

freqtrack

Sets the frequency tracking mode.

wl freqtrack

- ø Auto
- 1 On
- 2 Off

measure_req

Sends an IEEE 802.11h measurement request.

wl measure_req <type> <target MAC addr>

Measurement types

- TPC
- Basic
- CCA
- RPI

The target MAC address format is: xx:xx:xx:xx:xx:xx

quiet

Sends an IEEE 802.11h quiet command.

wl quiet <TBTTs until start>, <duration (in TUs)>, <offset (in TUs)>

rm_req

Requests a radio measurement of type basic, CCA, or RPI. Defines a series of measurement types and options.

wl rm_req cca -c 1 -d 50 cca -c 6 cca -c 11

Options

- t n Numeric token ID for measurement set or measurement
- c n Channel
- d n Duration in TUs (1024 μs)
- p Parallel flag, measurement starts at the same time as previous

Each measurement specified uses the same channel and duration as the previous measurement unless a new channel or duration is specified.

rm_rep

Gets the current radio measurement report.

wl rm rep

rssidump

Dumps RSSI values from ACI scans.

wl rssidump

interference

wl interference

NON-ACPHY. Get/Set interference mitigation mode. Choices are:

- 0 = none
- 1 = non WLAN
- 2 = WLAN manual
- 3 = WLAN automatic
- 4 = WLAN automatic with noise reduction

ACPHY. Get/Set interference mitigation mode. Bit-Mask:

- 0 = desense based on glitches
- 1 = limit pktgain based on hwaci (high pwr aci)
- 2 = limit pktgain based on w2/nb (high pwr aci)
- 3 = enable preemption

So a value of 15 would enable all four.

interference_override

wl interference_override

NON-ACPHY. Get/Set interference mitigation override. Choices are:

- 0 = no interference mitigation
- 1 = non WLAN
- 2 = WLAN manual
- 3 = WLAN automatic
- 4 = WLAN automatic with noise reduction
- -1 = remove override

ACPHY. Get/Set interference mitigation mode. Bit-Mask:

- -1 = remove override, override disabled 0 = desense based on glitches
- 1 = limit pktgain based on hwaci (high pwr aci)
- 2 = limit pktgain based on w2/nb (high pwr aci)
- 3 = enable preemption

So a value of 15 would enable all four.

itfr_get_stats

Gets interference source information.

wl itfr_get_stats

itfr_enab

Gets/sets STA interference detection mode (STA only).

wl itfr_enab

Options

- ø Disable
- 1 Enables manual detection
- 2 Enables auto detection

itfr_detect

Issues an interference detection request.

wl itfr_detect

frameburst

Disables/enables frameburst mode.

wl frameburst <N>

With frame bursting enabled, multiple frames are sent with a minimum interframe gap. This enhances network efficiency and reduces overhead. Windows STA drivers can perform frame bursting which is disabled by default.

Options:

- · N: 0 disables frameburst
- 1: enables frameburst

without argument returns current FB state

rclass

Gets the regulatory operating class.

wl rclass

Country and Locale

country

Selects the country code for the region in which the driver will be operating.

For a simple country setting

wl country <country>

where <country> is either a long name or country code from ISO 3166. Germany or DE, for example.

For a specific built-in country definition

wl country <built-in> [<advertised-country>]

where <built-in> is a country code followed by a forward slash (/) and a regulatory revision number (US/3, for example), and where <advertised-country> is either a long name or country code from ISO 3166.

If <advertised-country> is omitted, the result is the same as the built-in country code.

Use w1 country list [band(a or b)] for the list of supported countries.

country_ie_override

Sets/gets the country information element.

wl country_ie_override

autocountry_default

Selects the country code for use with auto country discovery.

wl autocountry_default

Wireless Distribution System

lazywds

Sets or gets lazy WDS mode (dynamically grants WDS membership to anyone).

wl lazywds

Returns/sets the value of the lazy WDS setting.

- 0 Lazy WDS is disabled. WDS partners must be set explicitly.
- 1 Lazy WDS is enabled and the AP will accept WDS partners from any MAC address.

wds

Sets or gets the list of WDS member MAC addresses.

wl wds

Set using a space-separated list of MAC addresses.

```
wl wds xx:xx:xx:xx:xx [xx:xx:xx:xx:xx ...]
```

wds_type

Indicates whether the interface to which this IOVAR is sent is of a WDS or DWDS type.

```
wl wds_type -i <ifname>
```

ifname is the name of the interface to query the type.

Return values:

- 0: The interface type is neither WDS nor DWDS.
- 1: The interface is WDS type.
- · 2: The interface is DWDS type.

wds_remote_mac

Gets the MAC address of the WDS link remote endpoint.

wl wds remote mac

wds_wpa_role_old

Gets the WPA role (old) of the WDS link local endpoint.

wl wds_wpa_role_old

wds_wpa_role

Gets/sets the WPA role of the WDS link local endpoint.

wl wds_spa_role>

Mode Controls

gmode

Sets the 54g mode.

wl gmode <mode>

Mode = LegacyB | Auto | GOnly | BDeferred | Performance | LRS

LegacyB

- Rateset 1b, 2b, 5.5, 11
- · Preamble Long
- Short slot Off

In LegacyB g-mode operation, only CCK rates are allowed in the network, and only 1 and 2 Mbps are basic, so that legacy IEEE 802.11 devices can join (older than IEEE 802.11b). In this mode, the IEEE 802.11g AP or IBSS will not include an ERP IE or an IE. This mode is intended to look as much like an early IEEE 802.11b network as possible to allow interoperability with devices that have trouble with any of the newer specification changes. The AP advertises and uses only IEEE 802.11b CCK rates. IEEE 802.11g clients can still associate but will only operate at IEEE 802.11b rates.

Summary:

- Uses IEEE 802.11 long slot timing only.
- Only 1 and 2 Mbps rates are basic rates, so that all legacy devices can join.
- For IEEE 802.11b networks only.

LRS

Rateset: 1b, 2b, 5.5b, 11b (CCK only)

Extended rateset: 6, 9, 12, 18, 24, 36, 48, 54

Preamble: LongShortslot: Auto

In LRS g-mode operation, all IEEE 802.11g rates are available, but only CCK rates are basic to allow IEEE 802.11 devices to join. The rateset is split, with only four rates in the supported rates IE to allow interoperability with IEEE 802.11 devices that have trouble with more than four rates in the IE (take the full 12 rates, throwing away none, and split the four CCK rates into the first rate element and put all the OFDM rates in the ESR).

Summary:

- Allows both short and long slot timings (11b and 11g).
- No IEEE 802.11 devices (legacy) can join.
- Supports devices that can handle only four CCK rates in the rateset.

Auto [default]

Rateset: 1b, 2b, 5.5b, 11b, 18, 24, 36, 54

Extended rateset: 6, 9, 12, 48

Preamble: LongShort slot: Auto

This mode allows for maximum compatibility and is fully compliant with the IEEE 802.11g specification. All 12 IEEE 802.11g rates (1(b), 2(b), 5.5(b), 6, 9, 11(b), 12, 18, 24, 36, 48, and 54) will be advertised, but the basic rateset will include only 1, 2, 5.5, and 11, so that legacy IEEE 802.11b clients can associate (no-OFDM). This mode defaults to high-speed IEEE 802.11g operation by using short slot timing. The AP will switch to long slot timing if an IEEE 802.11b or an IEEE 802.11g client that does not support short slot timing enters the network.

When set to auto, the AP advertises this short slot timing in the beacon frames. As long as there are only 11g clients associated, short slot timing will be used, and throughput will be high. If a client that does not support short-slot timing (such as a legacy 11b client) joins the BSS, the AP will cease to advertise short slot. All STA devices in the BSS will then start to use the normal IEEE 802.11b interpacket timings. If all non-short-slot timing STAs leave the BSS, the AP and remaining STAs will revert to using short slot timing.

Summary:

Use of IEEE 802.11g short slot timing is automatic:

- If no IEEE 802.11b clients are associated, short slot timing will be used.
- If an IEEE 802.11b client associates, then the AP will use long slot timing.
- Because no OFDM rates are in the basic rateset, the maximum IEEE 802.11g performance cannot be achieved.

IEEE 802.11g mode performance

Rate set: 1b, 2b, 5.5b, 6b, 9, 11b, 12b, 18, 24b, 36, 48, 54

Preamble: Short requiredShort slot: On and required

In IEEE 802.11g mode operation, all 12 IEEE 802.11g rates are available, and the rates are *not* split. OFDM Basic rates are present, so CCK-only (IEEE 802.11b) devices cannot join.

The rates are not split, so that legacy 54g drivers can see all the rates, not just a good subset. Putting more than eight rates in the Supported Rates element is not included in the IEEE 802.11 specification or the IEEE 802.11(a, b, or g) specification, but the practice works with all Broadcom drivers.

As in the Auto setup, short preambles are required to join. In addition, short slot support is required to join, and short slot operation is always on in the network.

In the normal automatic setup, short slot operation attention is given to overlapping BSSs, but in this mode it is not.

Summary:

- Use of IEEE 802.11g short slot timing is mandated.
- Use of IEEE 802.11g short preamble is mandated.
- IEEE 802.11b clients cannot associate because of the above two mandates.
- Designed to use the maximum bandwidth only on an IEEE 802.11g network topology.

wet

Gets/sets the wireless Ethernet bridging mode.

```
wl wet
```

Default wet is OFF:

```
wl wet on wl wet
```

wet is 1 (ON).

To change back to the default OFF state:

```
wl wet off
```

wl wet

wet is 0 (OFF).

Note: Older IEEE 802.11 devices (supporting only 1 and 2 Mbps) cannot join in this mode.

gmode Protection Controls

gmode_protection

Gets gmode protection.

wl gmode_protection <option>

- Ø Disabled
- 1 Enabled

This command is a query command used to determine whether protection mechanisms are currently being used

- 0 Protection mechanisms are not currently being used.
- · 1 Protection mechanisms are currently being used.

The IEEE 802.11g standard uses orthogonal frequency division multiplexing (OFDM) to attain its high data speed. To protect IEEE 802.11b users, IEEE 802.11g is required to also send a protection signal based on the longer complementary code keying (CCK). Omitting the protection signal ensures high data speeds for IEEE 802.11g users at the cost of locking out IEEE 802.11b users.

Without such protection, an IEEE 802.11b user would be blocked by an invisible flow of IEEE 802.11g data and would assume that the wireless network had crashed.

Features:

- As required for Wi-Fi compliance, protection mechanisms are enabled automatically whenever an IEEE 802.11b STA joins the BSS.
- If no IEEE 802.11b STA joins the BSS, then no protection mechanism will be used, and full IEEE 802.11g performance will be attained.
- The default protection mechanism is not CTS-to-self.
- Typing this command without any parameters displays the following string on the console: gmode_protection is 0 (off)
- Mixed environments (ERP and Legacy PHYs [IEEE 802.11, IEEE 802.11b, and IEEE 802.11g coexisting])
 require a protection mechanism.
- ERP ONLY STAs use a short-slot time to improve performance.
- The IEEE 802.11g specification defines a gmode protection mechanism as one that involves prefixing each
 OFDM IEEE 802 data frame with an RTS/CTS CCK frame sequence. The duration fields of the RTS and
 CTS frames should allow the IEEE 802.11b node to correctly set its NAV and avoid collisions with the
 subsequent OFDM frames.
- In accordance with the specification, the data frames should be sent at one of the basic rates, but with a CCK-only basic rateset.
- STAs are expected to automatically honor the bit announced in BSS beacons and should require no configuration.

gmode_protection_control

Gets/sets the 11g protection mode control algorithm.

wl gmode_protection_control <option>

- Ø Always off.
- 1 Monitor local association.
- 2 Monitor overlapping BSS.

gmode_protection_override

Gets/sets 11g protection mode override.

wl gmode_protection_override <option>

- -1 AUTO. Protection will automatically be used if either an IEEE 802.11b STA associates to the AP, or the AP detects another legacy IEEE 802.11b BSS.
- 0 OFF. Turns off protection on the 54g AP. Protection mechanisms will never be used.
- 1 ON. Turns on protection on the 54g AP. Protection mechanisms will always be used.

The driver default is g_protection_override == AUTO, but can be set to 0/1 to force protection off/on. Typing this command without any parameters displays the following string on the console.

```
gmode_protection_override is -1
```

This indicates that the override is set for auto.

There are three modes:

- No protection (default in 54g). This mode is configured with wl gmode_protection_override 0.
- RTS/CTS, when legacy IEEE 802.11b STA is associated. This mode is configured with:

```
wl ignore_bcns TRUE (default)
wl gmode_protection_override -1 (AUTO /default)
```

 RTS/CTS, when overlapping legacy IEEE 802.11b operation is detected (ignore_bcns=FALSE may be required for Wi-Fi compliance for IEEE 802.11g devices). This mode is configured with:

```
wl ignore_bcns FALSE
wl gmode_protection_override -1 (AUTO /default)
```

legacy_erp

Gets/sets 11g legacy ERP inclusion.

wl legacy_erp

- ø Disable
- 1 Enable

The command gets/sets the legacy ERP inclusion flag for the driver for NonERP element advertisement. If set, include legacy ERP information element ID 47 along with IEEE 802.11g information element ID 42. The beacon sender shall set b0 (NonERP_present) and b1 (use_protection) for the use of this element. An ERP STA that is aware of a non-ERP STA shall set bit0 of NonERP information element true and transmit this information in a subsequent beacon frame.

Radar Controls

radar

Enables/disables radar.

wl radar

radarargs

Gets/sets radar parameters in order as blank, fmdemodcfg, npulses_lp, min_pw_lp, max_pw_lp, min_fm_lp, max_span_lp, min_deltat, max_deltat, autocorr, st_level_time, t2_min, fra_pulse_err, npulses_fra, npulses_stg2, npulses_stg3, percal_mask, quant, min_burst_intv_lp, max_burst_intv_lp, nskip_rst_lp, max_pw_tol, feature_mask.

wl radarargs

WME Controls

cac_addts

Adds TSPEC (an error is returned if the STA is not associated or WME (WMM) is not enabled).

wl cac_addts <arg>

arg TSPEC parameter input list

cac_delts

Deletes TSPEC (an error is returned if the STA is not associated or WME (WMM) is not enabled).

wl cac_delts <arg>

· arg TSINFO for the target TSPEC

cac_delts_ea

Deletes TSPEC (an error is returned if the STA is not associated or WME (WMM) is not enabled).

wl cac_delts_ea <arg1> <arg2>

- arg1 TSINFO for the target TSPEC
- arg2 MAC address

cac_tslist

Gets the list of TSINFO in drivereg

wl cac_tslist

cac_tslist_ea

Gets the list of TSINFO for given STA in drivereg.

wl cac_tslist_ea

cac_tspec

Gets a specific TSPEC with matching TSINFO.

wl cac_tspec <0xaa 0xbb 0xcc>

0xaa 0xbb 0xcc TSINFO octets

cac_tspec_ea

Gets specific TSPEC for given STA with matching TSINFO.

wl cac_tspec_ea <0xaa 0xbb 0xcc> <xx:xx:xx:xx:xx:xx>

- 0xaa 0xbb 0xcc TSINFO octets
- xx:xx:xx:xx:xx MAC address

tclas_add

Adds a tclas frame classifier type entry.

wl tclas add <user priority> <type> <mask>

- type 0 eth2: <src mac> <dst mac> <ether type>
- type 1/4 ipv4: <ver> <src> <dst> <s_port> <d_port> <dscp> <prot>
- type 2 802.1Q: <vlan tag>
- type 3 filter: <offset> <value> <mask>
- type 4 ipv6: <ver> <src> <dst> <s_port> <d_port> <dscp> <nxt_hdr> <flw_lbl>
- type 5 802.1D/Q: <802.1Q PCP> <802.1Q CFI> <802.1Q VID>

tclas_del

Deletes a tclas frame classifier type entry.

wl tclas_del [<idx> [<len>]]

tclas_list

Lists the added tclas frame classifier type entry.

wl tclas_list

wme

Sets Wireless Multimedia Extensions (WME) mode.

wl wme ap | sta [be|bk|vi|vo [ecwmax|ecwmin|txop|aifsn|acm <value>] ...]

- 0:OFF
- 1: ON
- -1 AUTO

wme_apsd

Sets Automatic Power Save Delivery (APSD) mode on the AP.

wl wme_apsd

- 0:OFF
- 1: ON

wme_apsd_sta

Sets APSD parameters on the STA (The driver must be down.).

```
wl wme_apsd_sta <max_sp_len> <be> <bk> <vi> <vo>
```

Options

<max_sp_len> = number of frames per USP: 0 (all), 2, 4, or 6 <xx>

- · 0: Disable
- 1: Enable U-APSD per AC

wme_apsd_trigger

Sets periodic APSD trigger frame timer timeout in ms (0 = OFF).

```
wl wme_apsd_trigger
```

wme_autotrigger

Enables/disables sending of APSD trigger frame when all ACs are delivery-enabled.

wl wme_autotrigger

wme_clear_counters

Clears WMM counters.

wl wme_clear_counters

wme_counters

Prints the WME statistics.

wl wme_counters

wme_dp

Sets AC queue discard policy.

wl wme_dp <be> <bk> <vi> <vo>

<xx>: value 0 for newest-first, 1 for oldest-first.

wme_maxbw_params

Sets the wme tx parameters.

wl wme_maxbw_params [be|bk|vi|vo <value>]

wme_tx_params

Sets the wme tx parameters.

wl wme_tx_params [be|bk|vi|vo [short|sfb|long|lfb|max_rate <value>] ...]

Information Element Controls

add_ie

Adds a vendor-proprietary information element (IE) to management packets.

wl add_ie <pktflag> length OUI hexdata <pktflag>

- Bit 0: Beacons
- Bit 1: Probe response
- Bit 2: Associate/reassociate response
- Bit 3: Authenticate response
- Bit 4: Probe request
- Bit 5: Associate/reassociate request

Example

wl add ie 3 10 00:90:4C 0101050c121a03 to add this IE to beacons and probe responses.

del_ie

Deletes a vendor-proprietary IE from management packets

wl del_ie <pktflag> length OUI hexdata <pktflag>

- · Bit 0: Beacons
- Bit 1: Probe response
- · Bit 2: Associate/reassociate response
- Bit 3: Authenticate response
- Bit 4: Probe request
- Bit 5: Associate/reassociate request

Example

wl del_ie 3 10 00:90:4C 0101050c121a03

hs20_ie

Sets the Hotspot 2.0 IE.

wl hs20_ie <length> <hexdata>

list_ie

Dumps the list of vendor-proprietary IEs.

wl list_ie

NVRAM/SROM Write Controls

otpw

Writes an SROM image to the on-chip OTP.

wl otpw

nvotpw

Writes NVRAM to the on-chip OTP.

wl nvotpw file

legacylink

Sets the IBSS legacy link behavior.

wl legacy_link

Options

- ø Disable
- 1 Enable

listen

Sets or queries the listen time in units of beacon interval.

wl listen

rdvar

Reads a named variable from the SROM (if cissource is present).

wl rdvar <variable name>

wrvar

Writes a named variable to the SROM (if cissource is present).

wl wrvar <variable name>

NDIS Related Commands

ndisscan

Initiates a broadcast SSID scan across all channels (no SSID argument).

wl ndisscan

ndis_frag

Gets/sets the fragmentation threshold.

wl ndis_frag

Range

[256–2346]

ndis_rts

Gets/sets the RTS threshold.

wl ndis_rts

MIMO-Specific Commands

actframe

It is assumed that the action frame is built by the application, so this command does not do any formatting. The only parameter besides the formatted action frame is the target MAC address.

wl actframe targetmacaddr data

Options

- targetmacaddr Target MAC address
- · data Formatted action frame

Example

```
wl actframe 00:22:68:94:E4:D4 1AF456D32B
```

ampdu_activate_test

Activates AMPDU test.

```
wl ampdu_activate_test
```

ampdu_cfg_txaggr

Enables/disables tx aggregation per all category tid's and per category tid's for specified interface.

```
wl ampdu_cfg_txaggr <0/1>
wl ampdu_cfg_txaggr [<tid> <0/1>]
```

Example

Calling the command without any arguments gets the current values.

```
# wl ampdu_cfg_txaggr
tid:0 status:1
tid:1 status:1
tid:2 status:1
tid:3 status:1
tid:4 status:1
tid:6 status:1
tid:7 status:1
```

ampdu_tid

Enables/disables PER-TID AMPDU. Enables/disables AMPDU on a per-traffic identified (TID) basis.

```
wl ampdu_tid <tid> [0/1]
```

ampdu_retry_limit_tid

Sets PER-TID AMPDU retry limit.

wl ampdu_retry_limit_tid <tid>> [0-31]

ampdu_rr_retry_limit_tid

Sets PER-TID AMPDU regular rate retry limit.

wl ampdu_rr_retry_limit_tid <tid> [0-31]

ampdu_send_addba

Sends Add Block Acknowledgement (ADDBA) to specified EA-TID.

wl ampdu_send_addba <tid> <ea>

ampdu_send_delba

Sends Delete Block Acknowledgement (DELBA) to specified EA-TID.

wl ampdu_send_delba <tid> <ea> [initiator]

ampdu_txq_prof_start

Starts sample transmit queue profiling data.

wl ampdu_txq_prof_start

ampdu_txq_prof_dump

Shows transmit queue histogram.

wl ampdu_txq_prof_dump

ampdu_txq_ss

Takes transmit queue snapshot.

wl ampdu_txq_ss

amsdu

Enables/disables AMSDU. Disable the driver with WL down, issue the command, and then enable the driver with WL up.

wl amsdu

- Ø Disable
- 1 Enable

bw_cap

Gets/sets the per-band bandwidth.

wl bw_cap <2g | 5g> [<cap>]

Broadcom 2g|5gBand: 2.4 GHz or 5 GHz, respectively cap:

- 0x1 20 MHz
- 0x3 20/40 MHz
- 0x7 20/40/80 MHz
- 0xff Unrestricted

chanspec

Sets the channel.

wl chanspec <channel> [ab][n][ul]

Options

- <channel> Channel number (0–224)
- a 5G band
- b 2G band (default is 2G if channel ≤14)
- n Bandwidth 10 (none for 20 and 40)
- · 1 Lower ctl sideband
- u Upper ctl sideband

The channel can also be set with the legacy format:

- c Channel number (0–224)
- b Band (5[a] or 2[b/g])
- w Bandwidth 10, 20, or 40
- s Ctl sideband: -1 = lower, 0 = none, 1 = upper

dfs_channel_forced

Sets the forced channel and sets the channel list.

Set <channel>[band][bandwidth][control sideband]

- <channel> Channel number (0-224)
- a 5G band
- b 2G band (default is 2G if channel ≤14)
- n Bandwidth 10 (none for 20 and 40)
- 1 Lower ctl sideband
- u Upper ctl sideband

Set the channel list using the -I option.

wl dfs_channel_forced -1 <chanspec list> | 0

- wl dfs_channel_forced -l <chanspec list> | 0
- 20 MHz: <channel>[/20]
- 40 MHz: <channel>l|u|/40
- 80 MHz: <channel>/80

Channels specified using "-I" option should be separated by "," or "/" and should be prefixed with +/-. The existing configuration is deleted when 0 is specified.

cur_mcsset

Gets the current modulation coding scheme set (MCSSET) set, if associated, else default MCSSET.

wl cur_mcsset

Example return

MCS SET: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

The modulation coding scheme includes variables such as the number of spatial streams, modulation, and the data rate on each stream. Radios establishing and maintaining a link must automatically negotiate the optimum MCS based on channel conditions and then continuously adjust the selection of MCS as conditions change due to interference, motion, fading, and other events.

The following table shows an example of how MCSs are specified.

1400	Modulation	Code Rate	N _{BPSC} ^a (iSS)			· . O		Data Rate (Mbps)	
MCS Index				N _{SD} ^c	N _{SP} ^d	N _{CBPS} ^e	N _{DPSC} ^f	800 ns GI ^g	400 ns GI
0	BPSK	1/2	1	108	6	108	54	13.5	15.0
1	QPSK	1/2	2	108	6	216	108	27.0	30.0
2	QPSK	3/4	2	108	6	216	162	40.5	45.0
3	16-QAM	1/2	4	108	6	432	216	54.0	60.0
4	16-QAM	3/4	4	108	6	432	324	81.0	90.0
5	64-QAM	2/3	6	108	6	648	432	108.0	120.0
6	64-QAM	3/4	6	108	6	648	486	121.5	135.0
7	64-QAM	5/6	6	108	6	648	540	135.0	150.0

- a. Number of coded bits per single carrier
- b. Number of coded bits per single carrier for each spatial stream, iSS
- c. Number of data subcarriers
- d. Number of pilot subcarriers
- e. Number of coded bits per symbol
- f. Number of data bits per symbol
- g. Guard interval (GI) is the time delay used by the receiver to let the reflections in the channel settle before sampling data bits.

Note: MCS indexes 0–7 default to CDD, 8–15 default to SDM.

nrate

Forces MIMO (IEEE 802.11n) rates. When set, it applies to band-specific rate_override, and when a query, it gets the moving average or band-specific rate_override (if it is on).

wl nrate -r [legacy rate] -m [mcs index] -s [stf mode 0=SISO, 1=CDD, 2=STBC, 3=SDM]

Default AUTO

For both legacy or MCS, the stf field shows the STF mode (and number of streams) in use.

- ø SISO, 1 stream
- · 1 CDD, 2 streams
- 2 STBC, 2 streams
- 3 SDM, 2 streams
- Other Invalid

Note: For 2×2 solutions, the valid nrate is 1–15 or 32.

nphy_antsel

Gets/sets the antenna configuration. This command controls the antenna selection feature in the driver. It can enable/disable the various antenna selection algorithms (explained later) and/or manually select/override antenna configurations. The default is AUTO, if SROM supports three antennas. This command is primarily for internal use. For external use, it should use simple syntax to set -1 = Auto selection.

wl nphy_antsel (to get values of [utx urx dtx drx])

Setting the antennas:

- Basic wl nphy_antsel cfg (for example, -1 or 0x01)
- Advanced wl nphy_antsel utx urx dtx drx

where the argument cfg in the basic setting controls the antenna configuration for TX and RX of frames. A value of -1 means auto selection, and a value of 0xAB means fixed antennas (A and B are the antenna numbers used for RF chain 0 and 1, respectively).

The four arguments/results [utx urx dtx drx] are as follows:

- utx Antenna configuration for transmission of unicast data frames. Set values can be either -1 (auto selection, Algorithm1) or 0xAB. The get value is the current ANTCFG selected by Algorithm1 including a flag AUTO or the user-specified TX ANTCFG override 0xAB.
- urx Antenna configuration for reception of unicast data frames protected by RTS/CTS. Set values can be either -1 (auto selection, Algorithm2) or 0xAB. The get value is the current ANTCFG selected by Algorithm2 including a flag AUTO or the user-specified RX ANTCFG override 0xAB.
- dtx Antenna configuration for transmission of frames that are *not* unicast data frames (also known as
 default tx configuration). Set values can be either -1 (auto selection, Algorithm3) or ØxAB. The get value is
 the current ANTCFG selected by Algorithm3 including a flag "AUTO" or the user-specified TX ANTCFG
 override 0xAB.
- dtx Antenna configuration for reception of all frames, except RTS/CTS protected frames (also known as
 default rx configuration). Set values can be either -1 (auto selection, Algorithm3) or ØxAB. The get value is
 the current ANTCFG selected by Algorithm3 including a flag AUTO or the user-specified RX ANTCFG
 override 0xAB.

Note: The distinction between dtx and drx is mainly for backward compatibility with 2×3 CB superswitch.

The query will also have a flag *AUTO* if auto selection is ON.

dpt_deny

Adds/removes EA to direct packet transmission (DPT) deny list usage. DPT is a mechanism through which two devices (STA) can communicate directly to each other.

wl dpt_deny <add remove> <ea?</pre>

dpt_endpoint

Creates/updates/deletes DPT endpoint for EA.

wl dpt_endpoint <create update delete> <ea>

dpt_pmk

Sets DPT preshared key.

wl dpt_pmk

dpt_fname

Sets/gets DPT friendly name.

wl dpt_fname

dpt_list

Gets status of all DPT peers.

wl dpt_list

ampdu_clear_dump

Clears AMPDU counters. This command allows users to clear AMPDU-specific statistics (WLCNT or wireless related counters), examples of which are counters for WMM and AMSDU.

wl ampdu_clear_dump

bssmax

Gets the number of BSSs.

wl bssmax

radarargs40

Gets/sets radar parameters for 40 MHz channels. Order as version, npulses, ncontig, min_pw, max_pw, thresh0, thresh1, blank, fmdemodcfg, npulses_lp, min_pw_lp, max_pw_lp, min_fm_lp, max_deltat_lp, min_deltat, max_deltat, autocorr, st_level_time, t2_min, fra_pulse_err, npulses_fra, npulses_stg2, npulses_stg3, percal_mask, quant, min_burst_intv_lp, max_burst_intv_lp, nskip_rst_lp, max_pw_tol, feature_mask.

wl radarargs40

radarthrs

Sets the radar threshold for 20 MHz and 40 MHz bandwidths. Order as thresh0_20_lo, thresh1_20_lo, thresh0_40_lo, thresh0_20_hi, thresh1_20_hi, thresh1_40_hi.

wl radarthrs

nphy_test_tssi

Sets the NPHY TSSI value.

wl nphy_test_tssi val

nphy_rssiant

Set the NPHY RSSI antenna index.

wl nphy_rssiant antindex (o-3)

mimo_ss_stf

Gets/sets SS STF mode.

wl mimo_ss_stf <value> -b <a | b>

Options

- ø SISO
- 1 CDD
- b a 5G band
- b b 2.4G band

mimo_txbw

Gets/sets the MIMO transmit bandwidth (txbw).

wl mimo_txbw [option number]

Options:

- 2: 20 MHz (lower)
- 3: 20 MHz (upper)
- 4: 40 MHz
- 5: 40 MHz (DUP)
- 6: 80 MHz (20LL) 80MHz has 4 subbands, Lower-Lower (20 MHz)
- 7: 80 MHz (20LU) Lower-Upper (20 MHz)
- 8: 80 MHz (20UL) Upper-Lower (20 MHz)
- 9: 80 MHz (20UU) Upper-Upper (20 MHz)
- 10: 80 MHz (40L) Lower 40 MHz
- 11: 80 MHz (40U) Upper 40 MHz
- 12: 80 MHz

obss_coex_action

Sends OBSS 20/40 coexistence management action frame. At least one option must be provided.

wl obss_coex_action -i <0 | 1> -w <0 | 1> -c <channel list>

- · i 40 MHz intolerant bit
- w 20 MHz width reg bit
- c Channel list 1–14

rifs

Sets/gets the relay interframe space (RIFS) status.

wl rifs <1 | 0>

- 1 ON
- ø OFF

rifs_advert

Sets/gets the RIFS mode advertisement status.

wl rifs_advert <-1 | 0>

- -1 AUTO
- ø OFF

rxmcsset

Gets the Receive MCS rateset for 802.11n devices.

wl rxmcsset <mcs rateset>

txmcsset

Gets the Transmit MCS rateset for 802.11n devices.

wl txmcsset <mcs rateset>

spatial_policy

Gets/sets spatial policy (high-throughput PHY only).

wl spatial_policy <-1: auto / 0: turn off / 1: turn on>

To control individual band/subband use

```
wl spatial_policy a b c d e
where a is 2.4 GHz band setting
where b is 5 GHz lower band setting
where c is 5 GHz middle band setting
where d is 5 GHz high band setting
where e is 5 GHz upper band setting
```

Packet Filter Related Commands

pkt_filter_add

Installs a packet filter.

wl pkt filter add <id> <polarity> <type> <offset> <bitmask> <pattern>

- <id> User specified ID (integer)
- <type> 0 (Pattern matching filter)
- <type> 1 (Magic pattern match (variable offset)
- <type> 2 (Extended pattern list)
- <offset> (type 0): Integer offset in received packets to start matching.
- <offset> (type 1): Integer offset matches here and anywhere later.
- <offset> (type 2): [<base>:]<offset>. Symbolic packet loc plus relative offset, use wl_pkt_filter_add -l for a
 <base> list.
- <polarity> Set to 1 to negate match result. 0 is default.
- <bitmask> Hexadecimal bitmask that indicates which bits of the pattern to match. Must be same size as the
 pattern. Bit 0 of bitmask corresponds to bit 0 of pattern, and so on. If bit n of bitmask is 0, then do not match
 bit n of the pattern with the received payload. If bit n of bitmask is 1, perform the match.
- <pattern> Hexadecimal pattern to match. Must be same size as <bitmask>. Syntax: same as bitmask, but for type 2 (pattern list), a '!' may be used to negate that pattern match (such as 0xff03). For type 2: [
base>:]<offset> <bitmask> [!]<pattern> triple may be repeated; all sub-patterns must match for the filter to match.

pkt_filter_clear_stats

Clears packet filter statistic counter values.

wl pkt_filter_clear_stats <id>

pkt_filter_delete

Uninstalls a packet filter.

wl pkt_filter_clear_delete <id>

pkt_filter_enable

Enables/disables a packet filter.

wl pkt_filter_enable <id> <0 | 1>

pkt_filter_list

Lists installed packet filters.

wl pkt_filter_list [val]

Value

- Ø Disabled filters
- 1 Enabled filters

pkt_filter_mode

Sets the packet filter match action.

wl pkt_filter_mode <value>

Value

- 0 Forwards packet on match, discards on nonmatch (default).
- 1 Discards packet on match, forwards on nonmatch.

pkt_filter_ports

Sets up additional port filters for TCP and UDP packets.

```
wl pkt_filter_ports [<port-number>]
wl pkt_filter_ports none (to clear/disable)
```

pkt_filter_stats

Retrieves packet filter statistic counter values.

wl pkt_filter_stats <id>

Statistics Related Commands

bcnlenhist

wl bcnlenhist [0]

This command dumps recent 10 beacon lengths received.

Example: After associating with the AP or after issuing w1 scan, if user issues w1 bcnlenhist, the result will resemble: 144 198 197 212 198 203 194 130 243 293. To clear this list, type w1 bcnlenhist 0.

beacon_info

Returns the 802.11 management frame beacon information.

wl beacon_info [-f file] [-r]

- · f Write beacon data to file
- r Raw hex dump of beacon data

cca_get_stats

Gets CCA statistics.

wl cca_stats [-c channel] [-s num seconds][-n]

Options

- c channel Specifies a channel (optional). The default is the current channel, 0 is all channels.
- s num seconds Number of seconds (optional). Default is 10, max is 60.
- · i Lists individual measurements in addition to the averages.
- curband Only recommend channels on current band.

chanim_acs_record

Gets the auto channel scan record.

wl chanim_acs_record

chanim_mode

Gets/sets channel interference measure (chanim) mode.

wl chanim mode

Options

- Ø Disabled
- 1 Detection only
- 2 Detection and avoidance

intfer_params

Sets/Gets intfer parameters.

wl intfer_params period (in sec) $cnt(0\sim4)$ txfail_thresh tcptxfail_thresh period=0: disable Driver monitor txfail

pktq_stats

Provides packet queue (pktq) statistics. Dumps packet queue log info for [C] common, [A] AMPDU, [N] NAR or [P] power save queues. A:, N: or P are used to prefix a MAC address (a colon: separator is necessary), or else C: is used alone. The '+' option after the colon provides more detail. Up to four parameters may be used. The common queue is the default when no parameters are supplied. Use '/<PREC>' as a suffix to restrict to certain prec indices; multiple /<PREC>/<PREC>/...can be used.

Also, '//' as a suffix to the MAC address or 'C://' will enable automatic logging of <> all prec as they are seen. Full automatic operation is also possible with the shorthand 'A:' (or 'A://'), 'P:' (or 'P://') which scans through all known addresses for those parameters that take a MAC address.

wl pktq_stats [C:[+]]|[A:[+]|P:[+]|N:[+]<xx:xx:xx:xx:xx:xx>][/<PREC>[/<PREC>]][//]

Example output for common queue

where:

- precedence (prec): packet precedence.
- requested (rqstd): packets requested to be stored.
- stored: packets stored.
- dropped: packets dropped because pktg per that precedence is full.
- · retried: packets resent because they were not received.
- rtsfail: count of (receive to send) rts attempts that failed to receive clear to send (cts) packets.
- · rtrydrop: count of send attempts retried and then dropped.
- ps_retry: packets retried prior to moving to power save mode.
- acked: count of packets sent (acknowledged) successfully.
- utlisatn: queue utilisation factor. A high water mark that can be used to view how much headroom of the
 queue size is being used.

- · q length: queue length in bytes.
- · Data Mbits/s: Data rate in Mbps.
- · PHY Mbits/s: PHY rate in Mbps.
- %air: percentage of air time used by the packet.
- %effcy (v5): air-time efficiency of the packets [pkt air-time/total time] * 100

Note: This feature is available with conditional compile w/ PKTQ_LOG.

probe_resp_info

Returns the 802.11 management frame probe response information.

wl probe_resp_info [-f file] [-r]

- f Write probe response data to file.
- r Raw hex dump of probe response data.

delta_stats_interval

Sets/gets the delta statistics interval, in seconds (0 to disable).

wl delta stats interval

delta stats

Gets the delta statistics for the last interval.

wl delta_stats

mac_rate_histo

Returns the MAC address rate history.

wl mac_rate_histo <mac address> <access category> <num_pkts>

- MAC address example 00:11:20:11:33:33
- Access Category (AC) 0x10 for entire MAC or 0x4 for video AC for this MAC
- num_pkts (optional) Number of packets to average. Max 64 for AC 0x10, max 32 for AC 0x4.

manfinfo

Shows the chip package information in the OTP.

wl manfinfo

mempool

Gets the memory pool statistics.

wl mempool

pktq_stats

Dumps packet queue log information for [C] common, [A] AMPDU, or [P] power-save queue.

A: or P: are used to prefix a MAC address (a colon separator is necessary), or else C: is used alone. Up to four parameters may be given. The common queue is the default when no parameters are supplied.

```
wl pktq_stats [C:] [| A: | P: <xx:xx:xx:xx:xx>]...
```

sample_collect

Optional parameters ACPHY/HTPHY/(NPHY with NREV >= 7) are:

```
-f File name to dump the sample buffer (default "sample_collect.dat")
-t Trigger condition (default now) now, good_fcs, bad_fcs, bad_plcp, crs, crs_glitch, crs_deassert
-b PreTrigger duration in us (default 10)
-a PostTrigger duration in us (default 10)
-m Sample collect mode (default 1)
     SC MODE 0 sd adc
     SC_MODE_1_sd_adc_5bits
                                              1
     SC_MODE_2_cic0
                                              2
     SC_MODE_3_cic1
                                              3
     SC_MODE_4s_rx_farrow_1core
                                              4
     SC_MODE_4m_rx_farrow
                                              5
     SC_MODE_5_iq_comp
                                              6
     SC_MODE_6_dc_filt
                                              7
     SC_MODE_7_rx_filt
                                              8
     SC_MODE_8_rssi
                                              9
     SC_MODE_9_rssi_all
                                              10
     SC_MODE_10_tx_farrow
                                              11
     SC_MODE_11_gpio
                                              12
     SC_MODE_12_gpio_trans
                                              13
     SC_MODE_14_spect_ana
                                              14
     SC_MODE_5s_iq_comp
                                              15
     SC_MODE_6s_dc_filt
                                              16
     SC_MODE_7s_rx_filt
                                              17
```

smfstats

Gets/clears selected management frame (SMF) statistics.

```
wl smfstats [-C num]|[--cfg=num] [auth]|[assoc]|[reassoc]|[clear]
```

clear Clears the statistics.

wnm_url

Sets/gets wnm (who near me/802.11v) session information URL.

```
wl wnm_url
```

To set

```
wl wnm_url length urlstring
```

To get

wl wnm_url

wnm_tfsreq_add

Adds one tfs request element and sends a tfs request frame.

```
wl wnm_tfsreq_add <tfs_id> <tfs_action_code> <tfs_subelem_id> <send>
```

- tfs id: a non-zero value (1 ~ 255).
- tfs action code bitfield: 1: delete after match, 2: notify.
- tfs_subelem_id: TFS subelement (0 for none or 1 for previous tclas_add).
- send: 0: store element, 1: send all stored elements.

wnm dms set

Optionally adds pending DMS descriptors (after tclas_add) and optionally register all descriptors on the AP side to enable the service (with send=1).

```
wl wnm_dms_set <send> [<user_id> [<tc_pro>]]
```

- send: 0: store descriptor, 1: sends all stored descriptors and enables DMS on AP.
- user_id: Adds new ID to assign to the created descriptors (if TCLAS added) or existing ID to enable on AP (if no TCLAS added), 0 for all descriptors.
- tc_pro: TCLAS processing element (if several TCLAS added).

wnm_dms_status

Lists all DMS descriptors and provides their internal and AP status.

wl wnm_dms_status

wnm_dms_term

Disables registered DMS descriptors on the AP side and optionally discards them.

wl wnm_dms_term [<user_id>]

- · del: Discards descriptors after disabling the service on the AP side.
- user_id: descriptor to disable/delete, 0 for all descriptors.

wnm_service_term

Disables service. Checks specific wnm_XXX_term for more information.

wl wnm_service_term <srv> <service related params>

- srv 1 for DMS
- srv 2 for FMS
- srv 3 for TFS

wnm_timbc_offset

Gets/Sets TIM broadcast offset by -32768 period > offset (μ s) > 32768. CAUTION. Due to resource limitations, only one radio can have one set of TIMBC offset settings. MBSS must share the same setting.

```
wl wnm timbc offset <offset> [<tsf present> [<fix interval> [<rate override>]]]
```

- Rate overrides are in units of 500k (and are a given). The max setup is 108. If set, then the override high rate is used to transmit the TIM broadcast to a high rate frame.
- The offset is in units of μs.

wnm_timbc_set

Enables/disables TIM Broadcast. Station will send appropriate request if AP supports TIMBC.

```
wl wnm_timbc_set <interval> [<flags> [<min_rate> [<max_rate>]]]
```

- Interval: Use 0 to disable the interval.
- min_rate: Minimal rate requirement, in Mbps, for TIM high rate or TIM low rate frames.
- max_rate: Maximal rate requirement in Mbps.

wnm_timbc_status

Retrieves TIM Broadcast configuration set with current AP.

```
wl wnm_timbc_status
```

wnm maxidle

Sets up WNM BSS Max Idle Period interval and option.

wnm_bsstrans_query

Sends 11v BSS transition management query.

```
wl wnm_bsstrans_query [ssid]
```

wnm_bsstrans_req

Sends a BSS transition management request frame with a BSS termination included in the bit set.

wl wnm_bsstrans_req <reqmode> <tbtt> <dur> [unicast]

- regmode: Request mode of BSS transition request.
- tbtt: time of BSS to end of life, in unit of TBTT, max to 65535.
- dur: time of BSS to keep off, in unit of minute, max to 65535.
- unicast: [1]0] unicast or broadcast to notify STA in BSS. Default in unicast.

wnm_keepalives_max_idle

Sets/Gets the number of keepalives, mkeep-alive index and max interval configured per BSS-Idle period.

wl wnm_keepalives_max_idle <keepalives_per_bss_max_idle> <mkeepalive_index> [<max_interval>]

bss_peer_info all

Gets BSS peer info of all the peer's in the individual interface. If a non-zero MAC address is specified, gets the peer info of the PEER alone.

wl bss_peer_info [MAC address]

drift_stats_reset

Reset drift statistics.

bssload_static

Gets or sets static BSS load.

wl bssload_static [off | <sta_count> <chan_util> <acc>]

CIS Related Commands

srwrite

Writes the SROM.

wl srwrite <byte offset> <value>

srcrc

Gets the CRC for the input binary file.

wl srcrc [binary_file_name]

ciswrite

Writes a specified <file> to the SDIO/PCIe CIS source (either SROM or OTP)

wl ciswrite [-p|--pciecis] <file> -p|--pciecis --

• pciecis Writes OTP for PCIe full-dongle

cisupdate

Writes a hexadecimal byte stream to a specified byte offset of the CIS source (either SROM or OTP).

wl cisupdate <byte offset> <hex byte stream> [--preview]

• preview Review the update without committing it.

cisdump

Displays the content of the SDIO CIS source.

wl cisdump -b <file> <len>

- b <file> Writes raw bytes to <file>.
- <len> Optional count of bytes to display (must be an even number).

cis_source

Displays which source is used for the SDIO CIS (SDIO mode only).

wl cis source

cisconvert

Prints the CIS tuple for given name = value pair.

wl cisconvert

Power Related Commands

lpc_params

Sets/Gets Link Power Control parameters.

wl powersel_params <tp_ratio_thresh> <rate_stab_thresh> <pwr_stab_thresh> <pwr_sel_exp_time>

maxpower

Sets the temporary MAXP2G(5G)A0(A1) value.

wl maxpower

Options

maxp2ga0 0x1
maxp2ga1 0x2
maxp5ga0 0xff
maxp5ga1 0xff
maxp5gla0 0x3
maxp5gla1 0x4
maxp5gha0 0x5
maxp5gha1 0x6

mkeep_alive

Sends a periodic keepalive packet or null data frame at the specified interval.

wl mkeep_alive <index 0-3> <period> <packet>

- index 0-3.
- period Retransmission period in milliseconds. Use an index of 0 to disable packet transmits.
- packet Hex packet contents to transmit. The packet contents should include the entire Ethernet packet
 (Ethernet header, IP header, UDP header, and UDP payload) specified in network byte order. If no packet is
 specified, a null data frame will be sent instead.

To send a keepalive packet every 30 seconds using an index of 1

wl mkeep_alive 1 30000 0x0014a54b164f000f66f45b7e08004500001e000040004011c 52a0a8830700a88302513c413c4000a00000a0d

pavars

Sets/gets temp PA parameters. Overrides the PA parameters after driver attach (SROM read), before the driver is up. These override values will be propagated to the hardware when the driver goes up. PA parameters in one band range (2g, 5gl, 5g, 5gh) must all present if one of them is specified in the command. Otherwise, it will be filled with 0.

wl pavars

Example

```
wl down
wl pavars pa2gw0a0=0x1
pa2gw1a0=0x2 pa2gw2a0=0x3 ...
wl pavars
wl up
```

pm_dur

Retrieves accumulated PM duration information (Get only).

wl pm_dur

pm2_sleep_ret_ext

Gets/sets the Dynamic Fast Return To Sleep parameters.

```
wl pm2_sleep_ret_ext
```

povars

Sets/gets temperature power offset. Overrides the power offset after driver attach (SROM read), before the driver is up. These override values will be propagated to the hardware when the driver goes up. Power offsets in one band range (2g, 5gl, 5g, 5gh) must all present if one of them is specified in the command. Otherwise, it will be filled with 0.

wl povars

Example

```
wl down
wl pavars cck2gpo=0x1 ofdm2gpo=0x2 ...
wl pavars
wl up
```

pwrstats

Get power usage statistics.

```
wl pwrstats [<type>]
```

ratetbl_ppr

Sets/gets the PPR rate table.

```
wl ratetbl_ppr
```

To get

```
wl ratetbl_ppr
```

To set

```
wl ratetbl_ppr <rate> <ppr>>
```

wowl_keepalive

Sends a specified keepalive packet periodically in WOWL mode. Use an index of 0 to disable packet transmits.

```
wl wowl_keepalive <index0-1> <period> <packet>
```

- index 0-1.
- period Retransmission period in milliseconds.
- packet Hex packet contents to transmit. The packet contents should include the entire Ethernet packet (Ethernet header, IP header, UDP header, and UDP payload) specified in network byte order.

To send a keepalive packet every 30 seconds using an index of 1

```
wl wowl_keepalive 1 30000
0x0014a54b164f000f66f45b7e08004500001e000040004011c52a0a8830700a88302513c413c4000a00000a0d
```

wowl_wakeup_reason

Returns the pattern ID and the associated wake-up reason.

```
wl wowl_wakeup_reason
```

wowl_status

Shows the last system wake-up setting.

```
wl wowl_status [clear]
```

wowl_wakeind

Shows the last system wake-up event indications from the PCI and D11 cores.

wl wowl_wakeind

clear Clears the indications.

wowl_pkt

Sends a wakeup frame to wake up a sleeping STA (station) in WAKE mode.

wl wowl_pkt <len> <dst ea | bcast | ucast <STA ea>> [magic [<STA ea>] | net <offset> <pattern>
<reason code>]

To send bcast magic frame

wl wowl_pkt 102 bcast magic 00:90:4c:AA:BB:CC

To send ucast magic frame

wl wowl_pkt 102 ucast 00:90:4c:aa:bb:cc magic

To send a frame with L2 unicast

wl wowl pkt 102 00:90:4c:aa:bb:cc net 0 0x00904caabbcc 0x03

Note: The offset for a NET pattern frame starts from <Dest EA> of the Ethernet frame. Thus, the destination Ethernet address will be used only when the offset is ≥ 6 .

To send a EAPOL identity frame with L2 unicast

wl wowl_pkt 102 00:90:4c:aa:bb:cc eapid id-string

Manufacturing Test Commands

crsuprs

A manufacturing test that sets the carrier suppression mode. This command is used to measure the lo-leakage/carrier. The carrier is required to be 15 dB below the peak power spectrum. The transmitter transmits a repetitive of data sequence with the scrambler disabled using DQPSK modulation.

wl crsuprs <channel>

The argument is channel number 1-14, or 0 to stop the test.

keep_alive

Periodically sends a specified keep-alive packet.

wl keep_alive <period> <packet>

- Period Retransmission period in milliseconds. 0 to disable packet transmits.
- Packet Hexadecimal packet contents to transmit. The packet contents should include the entire Ethernet packet (Ethernet header, IP header, UDP header, and UDP payload) specified in network byte order.

For example, to send a keep-alive packet every 30 seconds:

wl keep_alive 30000 0x0014a54b164f000f66f45b7e08004500001e000040004011c52a0a8830700a88302513c413c4000a00000a0d

lifetime

Sets the lifetime parameter (milliseconds) for each AC.

```
wl lifetime
wl lifetime be | bk | vi | vo [<value>]
```

ota teststop

OTA stands for over-the-air.

ota_teststop

ota_loadtest

Picks up ota_test.txt if file name is not provided.

ota_loadtest [filename]

ota_stream

wl ota stream [option]

Options:

- start: Starts a test.
- sync: Synchronizes an ota stream.
- test_setup: Sets up test for synchtimeout (seconds) synchbreak/loop synchmac txmac rx mac.
- ota tx chan bandwidth: contrlchan rates stf txant rxant tx ifs tx lennum pkt pwrctrl start:delta:end.
- wl ota stream ota rx chan bandwidth: contrlchan -1 stf txant rxant tx ifstx len num pkt.
- · stop: Stops a test.

ota teststatus

wl otateststatus [option]

Options:

- · Default: no entry. Displays current running test details.
- n: displays test arguments for the nth line.

patrim

Gets PA trim option.

wl patrim

rssi_cal_freq_grp_2g

Sets/gets RSSI calibration frequency grouping.

```
wl rssi_cal_freq_grp_2g [chan_1_2,chan_3_4,...,chan_13_14]
```

Each of the variables such as - chan_1_2 is a byte. Upper nibble of this byte is for chan1 and lower for chan2. MSB of the nibble tells if the channel is used for calibration. 3 LSBs tell which group the channel falls in Set/get rssi calibration frequency grouping.

rpcalvars

Sets/gets temp RPCAL parameters. Overrides the RPCAL parameters after a driver attach (srom read) and before a driver up. These override values will be propagated to the hardware when the driver goes up. Only the RPCAL parameter specified in the command is updated, while the other parameters are untouched.

```
wl down
wl rpcalvars rpcal2g=0x1
wl rpcalvars
wl up
```

send_nulldata

Sends a null frame to the specified hardware address.

```
wl send_nulldata <mac_addr>
```

sendprb

Sends a probe request.

```
wl sendprb [option]
```

Options

- · -s S, --ssid S SSIDs to scan
- -b MAC, --bssid MAC Particular BSSID MAC address, xx:xx:xx:xx:xx:xx
- · -d MAC, --da MAC Destination address

txcal_gainsweep

Starts a gain sweep for TX Cal.

```
wl txcal_gainsweep <xx:xx:xx:xx:xx:xx> [ipg] [len] [nframes] [gidx_start:step:gidx_stop]
```

Options:

- ipg: inter packet gap in μs.
- len: Packet length.
- · nframes: Number of frames; 0 indicates continuous tx test.
- · gidx_start: Starting TX gain index.
- gidx_stop: Stopping TX gain index.
- step: Step size for tx gain index increment.

txcal_gainsweep_meas

Gets TSSI/PWR measurements from last TX Cal gain sweep. Sets PWR measurements for TX Cal gain sweep.

```
wl txcal_gainsweep_meas [core p0 p1 ... p127]
```

txcal_pwr_tssi_tbl

Gets the saved consolidated TSSI/PWR table.

```
wl txcal_pwr_tssi_tbl
```

Generates consolidated TSSI/PWR table from last TX Cal Gain Sweep.

```
wl txcal_pwr_tssi_tbl <core> <Ps> <N> <Ch>
```

- Ps: Starting power in 6.3 format.
 - N: Number of entries in table covering the power range (Ps: (Ps+N-1): si tbl <core> <Ps> <N> <Ch>
- Ps: Starting power in 6.3 format.
 - N: Number of entries in the table covering the power range (Ps: (Ps+N-1))

wci2_config

Gets/sets LTE coexistence MWS signaling configuration.

wl wci2_config <rxassert_off> <rxassert_jit> <rxdeassert_off> <rxdeassert_jit> <txdeassert_jit> <txdeassert_off> <txdeassert_jit> <patassert_jit> <inactassert_off> <coanfreqassert_off> <scanfreqassert_jit>

mws_params

Gets/sets LTE coexistence MWS channel parameters.

```
wl mws_params <rx_center_freq> <tx_center_freq> <rx_channel_bw> <tx_channel_bw> <channel_en>
<channel_type>
```

mws_debug_msg

Get/sets LTE coexistence BT-SIG messages.

wl mws_debug_msg <Message> <Interval 20us-32000us> <Repeats>

Sets the consolidated TSSI/PWR table.

wl txcal_pwr_tssi_tbl <core> <Ps> <N> <Ch> <Tssi_Ps Tssi_Ps+1.. Tssi_Ps+N-1>

- Ps: Starting power in 6.3 format.
 - N: Number of entries in the table covering the power range (Ps: (Ps+N-1)).
- · Ch: Channel number.
- Tssi X: Adjusted TSSI corresponding to power X.

External Log Commands

assertlog

Gets external assert logs.

wl assertlog>

Address Resolution Protocol Commands

arpoe

Enables/disables Address Resolution Protocol (ARP) agent offload feature.

wl arpoe

arp_hostip

Adds or displays a host IP address.

wl arp_hostip

arp_hostip_clear

Clears all host IP addresses.

wl arp_hostip_clear

arp_ol

Gets/sets ARP offload components.

wl arp_ol

arp_peerage

Gets/sets age of the ARP entry, in minutes.

wl arp_peerage

arp_stats

Displays ARP off-load statistics.

wl arp_stats

arp_stats_clear

Clears ARP off-load statistics.

wl arp_stats_clear

arp_table_clear

Clears the ARP cache.

wl arp_table_clear

Duration Information Commands

mpc_dur

Retrieves the accumulated MPC duration information in ms (GET) or clear accumulator (SET).

wl mpc dur <any-number-to-clear>

pm_dur

Retrieves the accumulated PM duration information (GET) or clear accumulator (SET).

wl pm_dur <any-number-to-clear>

TPC Commands

tpc_lm

Gets the current link margins.

wl tpc_lm

tpc_mode

Enables/disables the AP TPC.

wl tpc_mode

Options

- · ø Disable
- 1 BSS power control
- 2 AP power control
- 3 Both 1 and 2

tpc_period

Sets the AP TPC periodicity, in seconds. Bilogicold

wl tpc_period

Link Quality Commands

monitor_lq

Starts/stops monitoring the link quality metrics (RSSI and SNR).

wl monitor_lq

Options

- Ø OFF
- 1 ON

monitor_lq_status

Returns averaged link quality metrics (RSSI and SNR values).

wl monitor_lq_status

Offload Commands

toe

Enables/disables TCPIP offload feature.

wl toe

toe_ol

Gets/sets TCPIP offload components.

wl toe_ol

toe_stats

Displays checksum offload statistics.

wl toe_stats

toe_stats_clear

Clears checksum offload statistics.

wl toe_stats_clear

OTP Commands

One time programmable (OTP) commands are described in this section.

otpdump

Dumps the raw OTP.

wl otpdump

otpstat

Dumps the OTP status.

wl otpstat

Batch Sequence Commands

seq_start

Initiates command batching sequence. Subsequent IOCTLs are queued until seq_stop is received.

wl seq_start

seq_stop

Defines the end of command batching sequence. Queued IOCTLs are executed.

wl seq_stop

seq_delay

Driver should spin for the indicated amount of time. Only valid within the context of batched commands.

wl seq_delay

seq_error_index

Retrieves the index (starting at 1) of the command that failed within a batch.

wl seq_error_index

BT Coexistence Commands

bt_regs_read

Reads the Bluetooth register usage.

wl bt_regs_read [option]

Options:

- start_addr: Defines the start address for the register read.
- size: Defines the register read size in bytes.

btc_params

Gets/sets the BT coexistence parameters.

wl btc_params

btc_flags

Gets/sets the BT coexistence flags.

wl btc_flags

btcx_clear_dump

Clears btcoex debug counters.

wl btcx_clear_dump

LED Commands

ledbh

Gets/sets LED behavior.

wl ledbh <0-3> <0-15>

led_blink_sync

Gets/sets LED blink sync behavior.

wl led_blink_sync <0-3> <0 | 1>

Miscellaneous Commands

aibss_bcn_force_config

Gets/sets AIBSS beacon force configuration.

wl aibss_bcn_force_config <initial_min_bcn_dur,min_bcn_dur,initial_bcn_flood_dur>

aibss_txfail_config

Set/Get txfail configuration for bcn_timeout and max tx retries.

wl aibss_txfail_config [bcn_timeout, max_retry]

antgain

Sets the temporary AG0/1 value.

wl antgain

Options

- ag0 0x1
- ag1 0x2

ap_isolate

Gets/sets AP isolation.

wl ap_isolate

assert_type

Gets/sets the assert_bypass flag.

wl assert_type

Options

- 0 OFF
- 1 ON

atten

Sets the transmit attenuation for B band.

wl atten <Args>

Argument: bb radio txctl1

Auto = Revert to automatic control.

Manual = Suspend automatic control.

bmac_reboot

Reboots BMAC.

wl bmac_reboot

bmon_bssid

Sets the monitored BSSID.

wl bmon_bssid xx:xx:xx:xx:xx:xx 0|1

chanim_state

Gets channel interference state.

wl chanim_state <channel>

- Valid channels 1–14
- Returns
 - 0: Acceptable
 - 1: Severe

devpath

Prints the device path.

wl devpath

eventing

Sets/gets hex filter bitmask for MAC event reporting up to the application layer.

wl eventing

event_msgs

Sets/gets hex filter bitmask for MAC event reporting via packet indications.

wl event_msgs

event_msgs_ext

Sets/gets bit arbitrary size hex filter bitmask for MAC.

wl event_msgs_ext

fem

Sets temp FEM 2G/5G value.

wl fem

Options

tssipos2g 0x1
 extpagain2g 0x2
 pdetrange2g 0x1
 triso2g 0x1
 antswctl2g 0
 tssipos5g 0x1
 extpagain5g 0x2
 pdetrange5g 0x1
 triso5g 0x1
 antswctl5g 0

gpioout

Sets any GPIO pins to any value (use with caution, as GPIOs would normally be assigned to chipcommon).

wl gpiomask gpioval

ioctl_echo

Checks ioctl functionality.

wl ioctl_echo

iov

Gets information on driver IOVARs.

wl iov

iovars

Gets information on driver IOVARs.

wl iovars

monitor_promisc_level

Sets a bitmap of different MAC promiscuous levels in the monitor mode.

```
wl monitor_promisc_level [<bitmap> | <+|-name>]
```

The bitmap values and corresponding name are:

Args:

- bit:0: promisc: When set, address filter accepts all received frames. When cleared, the address filter accepts only those frames that match the BSSID or local MAC address.
- bit:1: ctrl: When set, the RX filter accepts all received control frames that are accepted by the address filter. When cleared, the RX filter rejects all control frames other than PS poll frames.
- bit:3: fcs: When set, the RX filter forwards received frames with FCS errors to the driver. When cleared, frames with FCS errors are discarded.

Example: wl monitor_promisc_level +promisc

Example: wl monitor_promisc_level 0x2 **Example:** wl monitor_promisc_level 0

ns_hostip

Adds an ns-ip address or display.

If a host IP address is given, add it to the host-cache, such as:

wl ns_hostip fe00:0:0:0:0:290:1fc0:18c0.

If no address is given, dump all the addresses.

wl ns_hostip

ns_hostip_clear

Clears all ns-ip addresses.

wl ns_hostip_clear

otpraw

Read/Write raw data to on-chip otp.

wl otpraw <offset> <bits> [<data>]

probresp_mac_filter

Sets/Gets MAC filter-based probe response mode.

wl probresp_mac_filter

probresp_sw

Enables/disables the MAC filter-based probe response. The MAC filter-based software probe response is an AP feature that uses the MAC filter list to determine the *send* destination MAC for the probe response.

wl probresp_sw

Note: The probresp_sw command must be enabled separately to use this feature. WLPROBRESP_SW=1 must be set in WL configuration file during build.

Options:

- 0: Disables MAC filter-based probe response mode.
- 1: Enables MAC filter-based probe response mode.
- · No parameter: Returns the current setting.

rmc_ackmac

Sets/Gets ACK required multicast mac address.

wl rmc_ackmac -i [index] -t [multicast mac address]

rmc_ackreq

Sets/gets ACK rmc_mode.

0 disable, 1 enable transmitter, 2 enable initiator.

wl rmc_ackreq [mode]

rmc_actf_time

Sets/gets mcast action frame tx time period in ms.

wl rmc_actf_time [value]

rmc_ar_timeout

Sets/gets rmc active receiver timeout in ms.

wl rmc_ar_timeout [duration in ms]

rmc_rssi_thresh

Sets/gets the minimum RSSI required for a station to be an active receiver.

wl rmc_rssi_thresh [value]

rmc stats

Displays/clears reliable multicast client statistical counters.

wl rmc_stats [arg]

rmc_rssi_delta

Displays/sets RSSI delta to switch receive leader.

wl rmc_rssi_delta [arg]

rmc_vsie

Displays/set vendor specific IE contents.

wl rmc_vsie [OUI] [Data]

send_frame

Sends the ethernet frame provided in hex.

wl send_frame

sr_verify

Performs a string sanity check.

wl sr_verify

staprio

Sets/Gets the STA priority.

wl staprio <xx:xx:xx:xx:xx> <prio><prio>: 0~3

sta_monitor

wl sta_monitor [<add/del> <xx:xx:xx:xx:xx:xx>]

taf

Traffic airtime fairness.

```
wl taf <MAC> [<scheduler_id> [<priority>]] +-
wl taf <scheduler_id> [coeff [<coeff>]|dump|list]
wl taf enable [0|1]|order [0|1]|bypass [0|1]|high [<val>]|low [<val>]|force [<val>]|list
```

wlc_ver

Returns wlc interface version.

wl wlc_ver

obss_prot

Gets/sets OBSS protection.

wl obss_prot [option]

Options:

- -1: auto
- · 0: disable

• 1: enable

dump_obss

```
wl dump_obss [-d num msecs] to begin measurement wl dump_obss to query for the measurement results
```

ibss_route_tbl

Gets/set the ibss route table.

```
wl ibss_route_tbl num_entries [{ip_addr1, mac_addr1}, ...]
```

ip_route_table

Gets/Sets IP route table.

```
wl ip_route_tbl num_entries [{ip_addr1, mac_addr1}, ...]
```

uartparams

Sets UART baud rate for different UART interfaces.

Usage (Get):

```
wl uartparams [-i interface] -i interface: Optional, 0- UARTO, 1- UART1 etc. Default = UART0

Usage (Set): 1
```

```
wl uartparams [baudrate]
```

Usage (Set): 2.

```
wl uartparams [-i interface][-b baudrate]
-i interface: Optional, 0- UARTO, 1- UART1 etc. Default = UART0
-b baud rate
```

PHY Related Commands

phy_adj_tssi

Reads last adjusted tssi.

wl phy_adj_tssi core

phy_read_estpwrlut

Reads the estimated power lookup table (estpwrlut) for a specified core.

wl phy_read_estpwrlut core

phy_afeoverride

Gets/Sets AFE override

wl phy_afeoverride

phy_rxiqest

Gets the PHY RX IQ noise in dBm.

wl phy_rxiqest <args>

- s # of samples (2ⁿ)
- a Antenna select, 0,1, or 3
- r Resolution select, 0 (coarse) or 1 (fine)
- f LPF HPC override select, 0 (HPC unchanged) or 1 (overridden to ltrn mode)
- w Digital LPF override select, 0 (LPF unchanged) or 1 (overridden to ltrn_lpf mode) or 2 (bypass)
- g Gain-correction select, 0 (disable) or 1 (enable)
- e Extra INIT gain in dB on top of default. Valid values = {0, 3, 6, ..., 21, 24}

phy_txiqcc

Sets/gets the IQCC a b values.

wl phy_txiqcc <a b>

phy_txlocc

Sets/gets the LOCC values.

wl phy_txlocc <di dq ei eq fi fq>

phy_rssi_gain_delta_2gb0

Sets/gets RSSI gain delta values.

```
wl phy_rssi_gain_delta_2gb0 [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_2gb1

Sets/gets RSSI gain delta values.

```
wl phy_rssi_gain_delta_2gb1 [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_2gb2

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_2gb2 [val0 val1 ....]
```

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_2gb3

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_2gb3 [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_2gb4

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_2gb4 [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_2g

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_2g [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_5gl

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_5gl [val0 val1 ....]
```

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_5gml

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_5gml [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_5gmu

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_5gmu [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rssi_gain_delta_5gh

Sets/gets RSSI gain delta values.

```
phy_rssi_gain_delta_5gh [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rxgainerr_2g

Sets/gets RX gain error values.

```
phy_rxgainerr_2g [val0 val1 ....]
```

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rxgainerr_5gl

Sets/gets RX gain error values.

```
phy_rxgainerr_5gl [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rxgainerr_5gm

Sets/gets RX gain error values.

```
phy_rxgainerr_5gm [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rxgainerr_5gh

Sets/gets RX gain error values.

```
phy rxgainerr 5gh [val0 val1 ....]
```

The number of arguments can be:

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core_num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_rxgainerr_5gu

Sets/gets RX gain error values.

```
phy_rxgainerr_5gu [val0 val1 ....]
```

- 8 for single core (BCM4345 and BCM4350).
- 9 by specifying core num, followed by 8 arguments (BCM4345 and BCM4350).
- 16 for both cores (BCM4350).

phy_test_idletssi

Gets idletssi for the given core.

wl phy_test_idletssi corenum

phy_debug_cmd

General purpose command for PHY debugging. The PHY phy function call can be added to wlc phy cmn.c.

wl phy_debug_cmd <int32 var> [option]

Options:

- -s # of samples (2ⁿ)
- · -a antenna select, 0,1 or 3
- -r resolution select, 0 (coarse) or 1 (fine)
- -f lpf hpc override select, 0 (hpc unchanged) or 1 (overridden to ltrn mode)
- -w dig lpf override select, 0 (lpf unchanged) or 1 (overridden to ltrn lpf mode) or 2 bypass
- -g gain-correction select, 0 (disable), 1 (enable full correction) 2 (enable temperature correction) or 3 (verify rssi_gain_delta)
- -e extra INITgain in dB on top of default. Valid values = {0, 3, 6, ..., 21, 24}
- -i gain mode select, 0 (default gain), 1 (init gain) or 4 (clip LO gain)

protection_control

Gets/sets protection mode control algorithm.

wl protection_control <mode>

- Ø Always off.
- · 1 Monitors local association.
- 2 Monitors overlapping BSS.

rrm_nbr_req

Sends an 11k neighbor report measurement request.

wl rrm_nbr_req [ssid]

srchmem

Gets/sets ucode search engine memory.

wl srchmem

tsf

Gets/sets the TSF register.

wl tsf [<high> <low>]

txcore

Gets the txcore.

wl txcore -k <CCK core mask> -o <OFDM core mask> -s <1-4> -c <core bitmap>

- · k CCK core mask
- o OFDM core mask
- s Number of space-time-streams (1–4)
- c Active core (bitmask) to be used when transmitting frames

txcore_override

Gets the user override of txcore.

wl txcore_override

txfifo_sz

Sets/gets the Tx FIFO size.

wl txfifo_sz <fifonum> <size_in_bytes>

wowl_pkt

Sends a wake-up frame to wake up a sleeping STA in wake mode.

wl wowl_pkt <len> <dst ea | bcast | ucast <STA ea>>[magic [<STA ea>] | net <offset> <pattern>]

Examples:

To send bcast magic frame:

```
wl wowl_pkt 102 bcast magic 00:90:4c:AA:BB:CC
```

To send ucast magic frame:

```
wl wowl_pkt 102 ucast 00:90:4c:aa:bb:cc magic
```

To send a frame with L2 unicast:

```
wl wowl_pkt 102 00:90:4c:aa:bb:cc net 0 0x00904caabbcc
```


Note: Because the offset for net pattern frame starts from dest EA of the Ethernet frame, dest EA is used only when the offset is \geq 6.

To send an eapol identity frame with L2 unicast:

```
wl wowl_pkt 102 00:90:4c:aa:bb:cc eapid id-string
```

wowl_ext_magic

Sets the 6-byte extended magic pattern.

wl wowl ext magic 0x112233445566

Host Offload Commands

The following commands are part of Broadcom 802.11 host offload module.

ol_clr

Provides a list of various suboptions.

wl ol_clr

ol_cons

Displays the ARM console or issues a command to the ARM console.

```
wl ol_cons [<cmd>]
"?" Displays the list of active console commands
```

ol_eventlog

Provides a suboption list to list various suboptions.

wl ol_eventlog

ol_stats

Provides a suboption list to list various suboptions.

wl ol_stats

ol_wowl_cons

Provides a list of various suboptions.

wl ol_wowl_cons

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Broadcom Corporation

5300 California Avenue Irvine, CA 92617 © 2014 by BROADCOM CORPORATION. All rights reserved. Phone: 949-926-5000 Fax: 949-926-5203

E-mail: info@broadcom.com Web: www.broadcom.com

everything®