Architettura degli Elaboratori – II sem. AA 2018-19 Prova scritta – canale H-Z – Appello del 23.07.2019

Cognome	Nome	matr. N86	5
codice esame→	01570 (12 CFU)	U23	22 (9 CFU) 🗌
		Esonero SI	voto
Per essere ammessi all'orale	senza riserva occorre sup	erare l e ll parte co	n un voto >= 18
I	parte (3 punti n	nax per que	sito)
1- Si rappresenti in formato Bit 31 30	o IEEE754 a 32bit il numero 23 2216		
Segno esponer	te (8bit) mar	tissa	(23 bit)
2- Si rappresenti in decimal rappresentato in esadec	imale:	E754 a 32bit, di seg	
3- Si rappresenti in binario piccolo <u>in modulo</u> avend indicandone il valore in o	lo a disposizione 3 bit '1' e		•
	→		
msb	lsb decima	ale con segno	
4- L'operazione di somma a dà origine a condizioni d	· · · · · · · · · · · · · · · · · · ·	ue di -100 al numero	o prima calcolato
5- Quante sono le funzioni	distinte di 3 letterali f(A,B,	C) che hanno solo d	ue mintermini ?

6- Si scriva la forma duale della funzione:

$$F(A,B) = (A \text{ xor } B)$$

in forma canonica SOP indicando i mintermini presenti (ad esempio: $F_{duale} = m_2 + m_3$).

Note:

- si indica con A* il complemento di A, con B* il complemento di B
- si assuma $m_0 = A^* B^*$, $m_1 = A^* B$, $m_2 = A B^*$, $m_3 = A B$

F_{duale} =

7- Si minizzi la funzione la cui tabella di verità è riportata di seguito in forma di mappa di Karnaugh: disegnare i ricoprimenti, scrivere la funzione minimizzata.

8- Si completi il bubble diagram dell'automa a stati finiti il cui schema è riportato di seguito:

9- Un automa di Moore con 5 stati e due ingressi A e B e' descritto dalla seguente tabella:

			Al	3		
		00	01	10	11	
te	S0=000	SO	S0	S2	S2	
presente	S1=001	S1	S1	S3	S3	X=
	S2=010	S0	X	Υ	S1	Y=
Stato	S3=011	S2	S2	S3	S3	
Sta	S4=100	S4	S4	S2	S2	
			Stato futuro			

Si trovino gli stati futuri **X** e **Y** che rendono il comportamento dell'automa indipendente dalla variabile di ingresso B.

10- Un automa di Moore possiede tre stati (S0, S1 e S2), un ingresso e una uscita, che commuta ogni qual volta l'automa cambia stato. Disegnare un possibile bubble diagram dell'automa, evidenziando il valore dell'uscita.

Il parte (10 punti max per quesito)

1- Il datapath di un processore con architettura multicycle impiega 5 colpi di clock (t0,1,2,3,4) per eseguire una istruzione. Si assuma che il valore presente in uscita sulla RAM debba essere caricato in R4 al tempo t2 ed in R5 al tempo t4 (si veda figura). Si progetti un automa di Moore che piloti CE4 (clock enable di R4) e CE5 (clock enable di R5). Si completi il bubble diagram e si tracci l'evoluzione temporale dei segnali CE4 e CE5:

CE5=

- Si calcolino le funzioni di prossimo stato e di uscita:

Funzioni di prossimo stato:

 $Q_{0next} = F_0(Q_2, Q_1, Q_0) =$

 $Q_{1\text{next}} = F_1(Q_2, Q_1, Q_0) =$ $Q_{2\text{next}} = F_2(Q_2, Q_1, Q_0) =$

Funzioni di uscita:

CE4 = $G_0(Q_2,Q_1,Q_0)$ = ______ CE5 = $G_1(Q_2,Q_1,Q_0)$ =

- 2- Nel corso di alcune prove su di un sistema con cache, un microprocessore accede alla RAM:
 - o 7 volte, con 4 miss e 3 hit, impiegando 460ns;
 - o 15 volte, con 5 miss e 10 hit, impiegando 700ns.

Si calcoli il tempo di accesso alla memoria principale t_{RAM} e quello di accesso alla cache t_{CACHE} . In base ai dati a disposizione, si calcoli la migliore stima del tempo medio di accesso alla memoria $t_{MEM-medio}$:

- t_{RAM} = ______ - t_{CACHE} = _____ - t_{MEM-medio} = _____

3- Due sistemi a 32 bit adottano pagine di memoria virtuale con indirizzamento a 10 bit e a 12 bit. Assumendo che la tabella dei numeri di pagina che traduce gli indirizzi virtuali in indirizzi fisici sia completamente contenuta nella memoria principale e che ad ogni pagina virtuale si associ in tabella una sola locazione, indicare la dimensione delle tabelle nei due casi presentati:

dimensione della tabella con pagine da 10bit -> _____dimensione della tabella con pagine da 12bit -> _____

Alcune risposte

- 1- -50.5 → 1 10000100 1001010 00000000 00000000 → 0xc24a0000
- 2- 0xc4c08000 -> 1 10001001 1000000 10000000 00000000 -> -1540
- 3- 11100000 → -32
- 4- $-100 32 = -132 \rightarrow 101111100$ (9 bit) \rightarrow condizione di errore: con 8 bit il risultato è positivo: 01111100
- 5- 28 = 8!/(2! * 4!)
- 6- A xor B = AB* + A*B \rightarrow Fd= (A+B*)(A*+B) = AB + A*B* = m3 + m0
- 7- A* B C*
- 8- Q1Q0 -> q1q0
 - 0 0 -> 1 1
 - 0 1 -> 1 0
 - 1 0 -> 1 1
 - 1 1 -> 0 0
- 9- X = S0, Y = S1