Ingegneria del Software

Corso di Ingegneria del Software CdL Informatica Università di Bologna

Obiettivi di questa lezione

- Cos'è l'ingegneria del software?
- Il ciclo di vita del software
- Il processo di sviluppo del software
- Miti e leggende della produzione sw

From programming to development

Cosa è più difficile:

scrivere software, oppure leggerlo (per es. per modificarlo)?

Come si sviluppa il software?

Punto di vista: studente

Deliver Start What I think software Stable Team engineering is about Idea Software Requirements Product Competency Programming Language Coding Javascript Teamwork

Punto di vista: tesista in azienda

Punto di vista: professionista

Ingegneria del software

- L'Ingegneria del Sw (Software Engineering) è una disciplina metodologica, cioè studia i metodi di produzione, le teorie alla base dei metodi, e gli strumenti di sviluppo e misura della qualità dei sistemi software
- È anche una disciplina empirica, cioè basata sull'esperienza e sulla storia dei progetti passati
- NB: manca una TEORIA dell'ingegneria del sw

La professione

Technology & Telecommunications > Software

Number of software developers worldwide in 2018 to 2024

(in millions)

La professione

- Nei paesi anglosassoni "software engineer" è una professione riconosciuta
- Oltre metà di tutti gli ingegneri USA sono "sw engineers"

Fonte: https://en.wikipedia.org/wiki/Software_engineering_demographics#United_States

http://computer-careers-review.toptenreviews.com/software-engineer-review.html dati al 2015 https://evansdata.com/reports/viewRelease.php?reportID=9 dati al 2018

Produttività

- La produttività è il rapporto tra la quantità di beni o servizi prodotti ed il costo del lavoro necessario a produrli
 - Output/Input.

Esempio: produco 1000 caramelle al costo di 100 euro.

La produttività è: 10 caramelle per ogni euro speso

Produttività degli sviluppatori

- La produttività dello sviluppo software è il rapporto tra software prodotto (misurato in LoC: Lines of Code) e il costo dello sforzo (effort, misurato in giorni/persona) di produrlo
 - LoC/effort (esempio: 50 LoC per giorno/persona)

Produttività nel software

Misurare la produttività

La produttività dell'industria sw è bassa

- Da un'analisi di 13.522 progetti di costruzione sw:
 - 66% di tutti i progetti falliscono (non hanno risultato utile)
 - 82% dei progetti superano i tempi previsti
 - 48% dei progetti producono sistemi senza le funzioni richieste dai clienti
 - 55 miliardi \$ di spreco considerando solo i progetti USA

 Standish Report 2003

Standish CHAOS reports

Agile vs waterfall (CHAOS 2015)

CHAOS RESOLUTION BY AGILE VERSUS WATERFALL

SIZE	METHOD	SUCCESSFUL	CHALLENGED	FAILED
Ali Size Projects	Agile	39%	52%	9%
	Waterfall	11%	60%	29%
Large Size Projects	Agile	18%	59%	23%
	Waterfall	3%	55%	42%
Medium Size Projects	Agile	27%	62%	11%
	Waterfall	7%	68%	25%
Small Size Projects	Agile	58%	38%	4%
	Waterfall	44%	45%	11%

The resolution of all software projects from FY2011-2015 within the new CHAOS database, segmented by the agile process and waterfall method. The total number of software projects is over 10,000.

Perché falliscono i progetti sw

Perché falliscono i progetti sw: i rischi

Quali sono i rischi principali di chi sviluppa software?

- Mancanza di feedback da parte del cliente/utente
- Turnover dello staff e in particolare del team di sviluppo
- Realizzare funzioni non richieste
- Ritardi nella consegna
- Superare il budget di progetto
- Realizzare un sistema inusabile
- Realizzare un sistema incapace di funzionare insieme con altri sistemi esistenti

Turnover dello staff

Durate media degli impieghi (2017):

Facebook 2.02 anni
Google 1.90 anni
Oracle 1.89 anni
Apple 1.85 anni
Amazon 1.84 anni
Twitter 1.83 anni
Microsoft 1.81 anni
AirBnb 1.64 anni
Snap Inc. 1.62 anni
Uber: 1.23 anni

Fonte: http://www.businessinsider.com/employee-retention-rate-top-tech-companies-2017-8?IR=T&utm_content=bufferf5cb9&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Discussione

Come si costruisce un prodotto software? Come si misura?

Principi guida dello sviluppo software

Sviluppare iterativamente

Il ciclo di vita del software

- Requisiti: analisi e specifica
- La progettazione: modellazione dell'architettura e dei singoli componenti
- La codifica ed il debugging
- Il testing e la verifica
- Il deployment (= la messa in opera)
- La manutezione

I costi del software

- A causa dell' impatto dei rischi, i costi software spesso dominano i costi di produzione di un sistema; in particolare, i costi sw sono spesso maggiori dei costi dell' hardware sottostante
- È più costoso mantenere il software che svilupparlo: nel caso di sistemi con vita duratura, i costi di manutenzione sono un multiplo dei costi di sviluppo (es.: 3 volte)
- L'ingegneria del software si preoccupa di produrre software con costi "accettabili"

Costi di Sviluppo (Boehm citato da Schach)

Il costo del cambiamento

Se accettiamo questo grafico, che mostra che ogni cambiamento nel sw è tanto piu costoso quanto più tardi avviene, allora occorre prendere tutte le decisioni importanti il più presto possible all'inizio o nelle fasi iniziali dello sviluppo (modello waterfall)

Ma è davvero cosi?

Costo per linea di codice

Durata

Produttività

Fare la cosa giusta

Di tutte le funzionalità di un'applicazione sw:

- Il 7% è usato continuamente
- II 13% è usato spesso
- Il 16% è usato saltuariamente
- Il 19% è usato raramente
- II 45% non è mai usato

Fonte: Standish Group, Chaos report 2002

La manutenzione

- Tutti i prodotti hanno bisogno di manutenzione a causa del cambiamento
- I tipi principali di manutenzione:
 - Perfettiva o preventiva (65%): migliorare il prodotto
 - Adattiva (18%): rispondere a modifiche ambientali
 - Correttiva (17%): correggere errori trovati dopo la consegna

Il mondo cambia continuamente La manutenzione è "normale"

Attributi dei prodotti software

- Attributi esterni (visibili all'utente)
 - Costo (e tipo di licenza)
 - Prestazioni
 - Garanzia
- Attributi interni (visibili ai progettisti)
 - Dimensione (size)
 - Sforzo di produzione (effort)
 - Durata della produzione (dall'inizio alla consegna)
 - Mantenibilità
 - Modularità

Gli standard per lo sviluppo del software

Standard principali software engineering IEEE

- •IEEE 610 Standard glossary sw engineering
- •IEEE 828 Sw configuration management
- •IEEE 829 Sw test documentation
- •IEEE 830 Recommended practice for sw Requirements Specifications
- •IEEE 1008 Sw unit testing
- •IEEE 1219 Sw maintenance
- •IEEE 1471 Recommended practice for sw Architectural Descriptions
- •IEEE 1517 Sw reuse processes

II SWEBOK: sw engineering Body of Knowledge

Knowledge areas SWEBOK 3.0

Table I.1. The 15 SWEBOK KAs				
Software Requirements				
Software Design				
Software Construction				
Software Testing				
Software Maintenance				
Software Configuration Management				
Software Engineering Management				
Software Engineering Process				
Software Engineering Models and Methods				
Software Quality				
Software Engineering Professional Practice				
Software Engineering Economics				
Computing Foundations				
Mathematical Foundations				
Engineering Foundations				

https://dokumen.tips/reader/f/guide-to-the-software-engineering-body-of-know

Le attività di sviluppo

- Le attività di sviluppo del software differiscono in funzione dell'organizzazione che sviluppa e del sw da produrre, ma di solito includono:
 - Specifica delle funzionalità richieste (requisiti)
 - Progetto della struttura modulare e delle interfacce
 - Implementazione: codifica moduli e integrazione
 - Verifica e validazione
 - Evoluzione e manutenzione
- Per poterle gestire vanno esplicitamente modellate

Il processo di sviluppo del sw

 Processo software: insieme dei ruoli, delle attività e dei documenti necessari per creare un sistema software

Esempi: ruoli attività documenti

- Esempi di ruoli: stakeholder, progettista, sviluppatore, tester, manutentore, ecc.
- Esempi di attività: programmare, testare, fare una riunione, fare una demo, documentare
- Esempi di documenti: codice sorgente, codice eseguibile, specifica, commenti, risultati di test, ecc.

Essence: verso una teoria dell'ingegneria del sw

https://essence.ivarjacobson.com/services/what-essence

Parti interessate (stakeholders)

Tipi di stakeholders

- Progettisti professionisti
- Management
- Personale tecnico
- Decisori
- Utenti
- Finanziatori

— ...

Ad ogni stakeholder corrisponde almeno uno specifico **punto di vista** (view) e varie decisioni

Decisioni degli stakeholders

Miti e leggende dell'ingegneria del sw

- Il "silver bullet" è il proiettile d'argento che uccide i lupi mannari
- "Trovare un silver bullet" è sinonimo di "trovare una soluzione finale" ad un problema
- Costruire software è difficile: qual è il silver bullet dell'ingegneria del sw?

Fred Brooks

- Fred Brooks, premio Turing 1999, fu progettista del sistema operativo IBM 360, usato anche per la missione Apollo (cioè sulla Luna!)
- Dalle sue esperienze trasse spunto per scrivere il libro "The Mytical Man Month" e l'articolo "No silver bullet"

Miti e leggende

- Se il progetto ritarda, possiamo aggiungere programmatori e rispettare la consegna
 - Legge di Brooks: "Aggiungere personale ad un progetto in ritardo lo fa ritardare ancor di più"

Miti e leggende

- Per cominciare a scrivere un programma, basta un' idea generica dei suoi obiettivi - ai dettagli si pensa dopo
 - La cattiva definizione della specifica dei requisiti è la maggior causa di fallimenti progettuali

Miti e leggende

 Se i requisiti di un progetto cambiano, non è un problema tenerne conto perché il software è flessibile

Sommario

- Produrre software è costoso
- La produttività dell' industria del sw è bassa
 - Le consegne sono spesso in ritardo
 - I costi software spesso sforano il budget
 - La documentazione è inadeguata
 - Il software è spesso difficile da usare
- Soluzione: migliorare il processo software

Domande di autotest

- Quali sono le fasi tipiche del ciclo di vita di un sistema software? E quelle dello sviluppo?
- Qual è la fase solitamente più costosa?
- In quale fase dello sviluppo è più pericoloso commettere un errore?
- In quale fase dello sviluppo è più semplice correggere un errore?
- Cos'è un processo di sviluppo del software?
- Quali sono i tipici documenti prodotti durante un processo software?
- Cos'è la legge di Brooks?

Lettura consigliata

F.Brooks, No Silver Bullets, *IEEE Computer*, 20:4, 1987

Riferimenti

- Software Engineering Body of Knowledge, IEEE, 2014
- F.Brooks, *The Mythical Man Month*, AddisonWesley, 1995
- M.Cusumano, The Business of Software: What Every Manager, Programmer, and Entrepreneur Must Know in Good Times and Bad, Free Press, 2004
- IEEE/EIA 12207.0, "Standard for Information Technology
 - Software Life Cycle Processes"

Principali pubblicazioni scientifiche

- IEEE Transactions on Software Engineering
- ACM Transactions on Software Engineering and Methodology
- Int. Conference on Software Engineering

Pubblicazioni di ricerca sul sw engineering

Riviste:

- IEEE Transactions on sw engineering
- ACM Transactions on software engineering and methodology
- IEEE Software
- Empirical Software Engineering
- Automated Software Engineering
- Journal of Object Technology
- ACM SIGSOFT

Conferenze:

- International Conference of Software Engineering
- Fundamentals of Software engineering
- SPLASH
- International Conference on Software and System Process

Siti utili

- www.sigsoft.org/seworld
- <u>www.computer.org/web/swebok</u>
- https://dokumen.tips/reader/f/guide-to-the-software-engineering-body-of-knowledge-swebok-v3
- swebokwiki.org/Main Page
- essence.ivarjacobson.com/services/what-essence

Domande?

