

Department of Mathematics and Statistics

CSE Exercises - Week 8

- (1) Revisiting Exercise 4(6) from last week:
 - (a) Find the ML estimate of c analytically.
 - (b) Find the ML estimate of c numerically using frainband.
 - (c) Explain why, in this case, the normal approximation should not be used to obtain a confidence interval for c? In spite of this, use the normal approximation to find a 95% confidence interval for c anyway. Comment on your result.
 - (d) We can use Monte Carlo simulation to get an approximate confidence interval for C:
 - (i) Use the ML estimate, \hat{c} , in the distribution, i.e. let $c=\hat{c}$ in f(x;c).
 - (ii) Generate $X_1, X_2 \sim f(x; \hat{c})$. Recall from exercise 3 in week 3 that we can do this by the inverse CDF method.
 - (iii) Find the ML estimate of C for the values of X1 and X2 from step (ii), i.e.

find
$$\hat{c}_1 = \underset{c>0}{\text{arg max}} f(X_1, X_2; c)$$
.

- (iv) Repeat steps (ii) and (iii) N times to get ĉ., ĉ., ..., ĈN.
- (v) Sort the estimates from (iv) in increasing order to get the order statistics, $\hat{c}_{(1)}$, $\hat{c}_{(2)}$,..., $\hat{c}_{(N)}$.
- (vi) An approximate 95% confidence interval is given by (Ĉ(0.025N), Ĉ(0.975N)).

Use this procedure with N = 1000 to find an approximate 95% confidence interval for c.

Later on, you will learn about a method for constructing confidence intervals known as the bootstrap. The procedure that we have used here is sometimes called a parametric bootstrap. It is worthwhile keeping in mind that the bootstrap is simulation - based.

(e) Next, we want to check that when the sample size n is "large enough", the normal approximation confidence interval and the parametric bootstrap confidence interval are about the same.

Suppose that n = 30, $X_1, ..., X_n \stackrel{\text{(1)}}{\sim} f(x;c)$, and $\sum_{i=1}^{n} \log X_i = -7.7335$.

- (i) Find the ML estimate of c.
- (ii) Find a 95% confidence interval for c using the normal approximation for \hat{c} .
- (iii) Find a 95% confidence interval for a using the "parametric bootstrap" procedure.
- Given that $X_1, ..., X_n \stackrel{\text{(1)}}{\sim} f(x; \theta)$, where $f(x; \theta) = \frac{1}{\theta} \exp(-\frac{x}{\theta}) \exp[-\exp(-\frac{x}{\theta})]$, for $x \in \mathbb{R}$ and $\theta > 0$. Now suppose that n = 5 and that $X_1 = -0.15$, $X_2 = 0.27$, $X_3 = 1.33$, $X_4 = -1.71$ and $X_5 = -0.89$.
 - (a) Find the ML estimate of O using frainband.
 - (b) Use the "parametric bootstrap" procedure with N = 1000 to find an approximate 95% confidence interval for θ .
 - (c) Let σ^2 denote the variance of $X \sim f(x;\theta)$. Given that $\sigma^2 = \theta^2 \pi^2/6$, find the ML estimate of σ^2 .
 - (d) By noting that σ^2 is a one-to-one monotone increasing function of θ for $\theta > 0$, find an approximate 95% confidence interval for σ^2 .

(3) Given that $X_1, ..., X_n \sim f(x; \theta)$, where $f(x; \theta) = \frac{1}{4\theta} \operatorname{sech}^2(\frac{x}{2\theta}),$

for $x \in \mathbb{R}$ and 0 > 0. Now suppose that n = 6 and $X_1 = 0.32$, $X_2 = 1.56$, $X_3 = 3.11$, $X_4 = -0.01$, $X_5 = -2.27$ and $X_6 = -3.41$.

- (a) Find the ML estimate of O using frainband.
- (b) Use the 'parametric bootstrap' procedure to find an approximate 95% confidence interval for 0.
- (c) Let $\beta = \sqrt{10}$. Find the ML estimate of β .
- (d) Find an approximate 95% confidence interval for >.