HIGH-VOLTAGE MIXED-SIGNAL IC

65x132 STN Controller-Driver

MP Specifications Revision 1.3

November 27, 2009

Table of Content

INTRODUCTION	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
ORDERING INFORMATION	4
BLOCK DIAGRAM	5
PIN DESCRIPTION	6
RECOMMENDED COG LAYOUT	9
CONTROL REGISTERS	10
COMMAND TABLE	11
COMMAND DESCRIPTION	12
LCD VOLTAGE SETTING	17
V _{LCD} QUICK REFERENCE	18
LCD DISPLAY CONTROLS	20
ITO LAYOUT AND LC SELECTION	21
HOST INTERFACE	24
DISPLAY DATA RAM (DDRAM)	28
RESET & POWER MANAGEMENT	30
ESD CONSIDERATION	35
ABSOLUTE MAXIMUM RATINGS	36
SPECIFICATIONS	37
AC CHARACTERISTICS	38
PHYSICAL DIMENSIONS	42
ALIGNMENT MARK INFORMATION	43
PAD COORDINATES	44
TRAY INFORMATION	46
REVISION HISTORY	47

UC1701x

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver

INTRODUCTION

UC1701x is an advanced high-voltage mixed-signal CMOS IC, especially designed for the display needs of ultra-low power hand-held devices.

This chip employs UltraChip's unique DCC (Direct Capacitor Coupling) driver architecture to achieve near crosstalk free images.

In addition to low power column and row drivers, the IC contains all necessary circuits for high-V LCD power supply, bias voltage generation, timing generation and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

MAIN APPLICATIONS

 Cellular Phones, Smart Phones, PDA, and other battery operated palm top devices or portable Instruments

FEATURE HIGHLIGHTS

- Single chip controller-driver support 65x132 graphics STN LCD panels.
- Support both row ordered and column ordered display buffer RAM access.

- Support industry standard 8-bit parallel bus (8080 or 6800 mode) and 4-wire serial bus (S8) interface.
- Ultra-low power consumption under all display patterns.
- Selectable Mux Rate and Bias Ratio allow flexible power management options.
- 7-x internal charge pump with on-chip pumping capacitor requires only 3 external capacitors to operate.
- Very low pin count (10-pin) allows exceptional image quality in COG format on conventional ITO glass.
- Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.

V_{DD} range (Typ.): 1.8V ~ 3.3V
 V_{DD2/3} range(Typ.): 2.6V ~ 3.3V
 LCD V_{OP} range: 3.9V ~ 11.5V

• Available in gold bump dies

COM/SEG bump information

 $\begin{array}{ll} \text{Bump pitch:} & 27 \ \mu\text{M} \\ \text{Bump gap:} & 12 \ \mu\text{M} \\ \text{Bump surface:} & 2077.5 \ \mu\text{M}^2 \end{array}$

ORDERING INFORMATION

Part Number	I ² C	Description
UC1701xGAA	No	Gold Bumped Die

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 2F, No. 70, Chowtze Street, Nei Hu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com

BLOCK DIAGRAM

©1999~2009

PIN DESCRIPTION

High-Voltage Mixed-Signal IC

Name	Туре	Pins	Description
			MAIN POWER SUPPLY
			V_{DD} supplies for Display Data RAM and digital logic, V_{DD2} supplies for V_{LCD} and V_{DD2} generator, V_{DD3} supplies for V_{BIAS} and other analog circuits.
$V_{DD} \ V_{DD2}$	PWR	3 4	V_{DD2}/V_{DD3} should be connected to the same power source. But V_{DD} can be connected to a source voltage no higher than V_{DD2}/V_{DD3} .
V_{DD3}		2	Please maintain the following relationship: $V_{DD}+1.3V \ge V_{DD2/3} \ge V_{DD}$
			ITO trace resistance needs to be minimized for V _{DD2} /V _{DD3} .
V_{SS} V_{SS2}	GND	2 4	Ground. Connect V_{SS} and V_{SS2} to the shared GND pin. In COG applications, minimize the ITO resistance for both V_{SS} and V_{SS2} .
			LCD Power Supply & Voltage Control
$V_{B0+} \ V_{B0-}$	PWR	2 2	LCD Bias Voltages. These are the voltage sources to provide SEG driving currents. These voltages are generated internally. Connect capacitors of C_{BX} value between $V_{\text{BX+}}$ and $V_{\text{BX-}}$.
V_{B1+} V_{B1-}	PVK	4 2	In COG application, the resistance of these ITO traces directly affects the SEG driving strength of the resulting LCD module. Minimize these trace resistance is critical in achieving high quality image.
W		2	Main LCD Power Supply. When V _{LCD} is used, connect these pins together.
V _{LCDIN} V _{LCDOUT}	PWR	2 2	By-pass capacitor C_L is optional. It can be connected between V_{LCD} and V_{SS} . When C_L is used, keep the ITO trace resistance around 70~100 Ω .

Note

Recommended capacitor values: C_B : $2.2\mu F/5V$ or $100{\sim}250x(LCD load capacitance)$. C_L : 330nF/25V is appropriate for most applications.

Name	Туре	Pins			Description										
	.,,,,,			Host Inte											
				The interface bus the following relat	mode is determined by BM[1:0] and ionship:										
			BM[1:0]	{D7, D6}	Mode										
BM0 BM1	1	1 1	11	Data	6800/8-bit										
Biviii			10	Data	8080/8-bit										
			0x	SDA, SCK	4-wire SPI w/ 8-bit token (S8: conventional)										
CS0	ı	1		. Chip is selected g	when CS0 = "L". When the chip is not selected, D[7:0]										
RST	I	1	registers ar	e re-initialized by t	in 3 mS after V _{DD/2/3} stable. When RST="L", all control neir default states. d on-chip. There is no need for external RC noise filter.										
					data for read/write operation.										
CD	1	1	"L": Contro		play data										
				ntrols the read/wri	te operation of the host interface. See Host Interface										
WR0 WR1	I	1 1		parallel mode, the meaning of WR[1:0] depends on which interface it is in, 6800 or 80 mode. In serial interface modes, these two pins are not used, Connect them to $_{\rm S}$ or $V_{\rm DD}$.											
			Duty select	ion.											
			DT2 DT	1 Duty											
DT1		1	0 0	1/65											
DT2	ı	1	0 1	1/49											
			1 0	1/33											
			1 1	1/55											
			Bi-direction	al bus for both ser	al and parallel host interfaces.										
			In serial mo	des, connect D[7]	to SDA, D[6] to SCK.										
D7~D0	I/O	8		D7 D	6 D5 D4 D3 D2 D1 D0										
D7 D0	1/0		BM=1x	,	36 DB5 DB4 DB3 DB2 DB1 DB0										
					CK										
				·	o either V _{SS} or V _{DD} .										
0504		l		HIGH VOLTAGE LCD											
SEG1 ~ SEG132	HV	132	Leave unus	sed SEG drivers o											
COM1 ~ COM64	HV	64		driver outputs. Su sed COM drivers o	pport up to 64 rows. pen-circuit.										
CIC	HV	2	Icon driver	outputs. Leave it o	pen if not used.										

Name	Туре	Pins	Description
			Misc. Pins
V		2	Auxiliary V_{DD} . This pin is connected to the main V_{DD} bus within the IC. It's provided to facilitate chip configurations in COG application.
V _{DDX}		2	There's no need to connect V_{DDX} to main V_{DD} externally and it should $\underline{\textit{NOT}}$ be used to provide V_{DD} power to the chip.
V		2	Auxiliary V_{ss} . These pins are connected to the main V_{ss} bus within the IC, to facilitate chip configurations in COG application.
V _{SSX}		2	There's no need to connect V_{ssX} to main V_{ss} externally and they should $\underline{\textit{NOT}}$ be used to provide V_{ss} power to the chip.
TST4	I	1	Test control. There's an on-chip pull-up resistor for TST4. Leave it open during normal use.
TST2	I/O	1	Test I/O pins. Leave these pins open during normal use.
Dummy		11	Dummy pins are NOT connected inside the IC.

Note: Several control registers will specify "0 based index" for COM and SEG electrodes. In those situations, $COM\underline{x}$ or $SEG\underline{x}$ will correspond to index \underline{x} -1, and the value range for those index register will be 0~63 for COM and 0~131 for SEG.

RECOMMENDED COG LAYOUT

Notes for V_{DD} with COG:

The operation condition, V_{DD} =1.8V (typical), should be satisfied under all operating conditions. UC1701x's peak current (I_{DD}) can be up to ~15mA during high speed data-write to UC1701x's on-chip SRAM. Such high pulsing current mandates very careful design of V_{DD} and V_{SS} ITO trances in COG modules. When V_{DD} and V_{SS} trace resistance is not low enough, the pulsing I_{DD} current can cause the actual on-chip V_{DD} to drop to below 1.65V and cause the IC to malfunction.

CONTROL REGISTERS

UC1701x contains registers, which control the chip operation. The following table is a summary of these control registers, a brief description and the default values. These registers can be modified by commands, which will be described in the next two sections, Command Table and Command Description.

Name: The Symbolic reference of the register.

Note that, some symbol name refers to bits (flags) within another register.

Default: Numbers shown in **Bold** font are default values after hardware reset.

Name	Bits	Default	Description
SL	6	00H	Scroll Line. Scroll the displayed image up by <i>SL</i> rows. The valid SL value is between
			0 (for no scrolling) and 63. Setting SL outside of this range causes undefined effects
			on the displayed image. This register does not affect icon output CIC.
CA	8	00H	Column Address of DDRAM (Display Data RAM). Value range is 0~131.
0/1	O	0011	(Used in Host to access DDRAM)
PA	4	0H	Page Address of DDRAM. Value range 0~8.
' ^	7	011	(Used in Host to access DDRAM)
DD	1	0H	Bias Ratio.
BR	ı	UH	The ratio between V _{LCD} and V _{BIAS} varies according to Duty selected:
			BR=0 BR=1
			Duty=1/65 1/9 1/7
			Duty=1/49 1/8 1/6
			Duty=1/33 1/6 1/5
			Duty=1/55 1/8 1/6
PM	6	10H	Adjust contrast of LCD panel display.
PC	6	20H	Power Control.
	Ü	2011	PC [0] : Voltage Follower. (Default 0: OFF)
			PC [1]: Voltage Regular. (Default 0: OFF)
			PC [2] : Booster Ratio. (Default 0: OFF)
			PC [5:3]: Resistor Ratio for V _{LCD} . (Default 110b)
			000b~111b: Rb/Ra ratio setting
CR	8	0H	Return Column Address. Useful for cursor implementation.
AC3	1	0H	Address Control.
	•		AC3: CUM: Cursor update mode, (Default 0: OFF)
			When CUM=1, CA increment on write only, wrap around suspended
DC	3	0H	Display Control:
			DC[0]: PXV: Pixels Inverse (bit-wise data inversion. Default 0: OFF)
			DC[1]: APO: All Pixels ON (Default 0: OFF)
			DC[2]: Display ON/OFF (Default 0: OFF)
			When DC[2] is set to 0, the IC will enter Sleep Mode
LC	2	2H	LCD Control:
			LC[0]: MX, Mirror X SEG/Column sequence inversion (Default: OFF)
			LC[1]: MY, Mirror Y COM/Row sequence inversion (Default: 1:0N)
APC0	8	90H	Advanced Program Control.
APC1	8		APC0 [7]: TC, V _{BIAS} temperature compensation coefficient (%-per-°C)
			0b : TC curve definition = -0.05% / °C
			1b : TC curve definition = -0.11% / °C
			APC0 [6:2] are fixed.
			APC0 [1:0]: WA, automatic column/row Wrap Around.
			WA[0]: 0: PA wrap around disable 1: PA wrap around enable.
			WA[1]: 0: CA wrap around disable 1: CA wrap around enable.
			APC1[7:0]: For UltraChip's use only. Do NOT use.
			Status Registers
BZ,	1	0	BZ : Set to 1 when system is busy. Commands can only be accepted when BZ=0.
MX,	1		MX : Mirror X-axle (i.e. SEG or column)
DE,	1		DE: Set to 1 when display enabled.
RST	1		RST : Reset flag. RST=1 when reset is in progress.

COMMAND TABLE

The following is a list of host commands supported by UC1701x

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle # Useful Data bits – Don't Care

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
1.	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A
2.	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A
3.	Get Status	0	1	ΒZ	MX	DE	RST	0	0	0	0	Get Status	
4.	Set Column Address LSB	0	0	0	0	0	0	#	#	#	#	Set CA [3:0]	0
4.	Set Column Address MSB	ľ	U	0	0	0	1	#	#	#	#	Set CA [7:4]	0
5.	Set Power Control	0	0	0	0	1	0	1	#	#	#	Set PC[2:0]	000b
6.	Set Scroll Line	0	0	0	1	#	#	#	#	#	#	Set SL[5:0]	0
7.	Set Page Address	0	0	1	0	1	1	#	#	#	#	Set PA[3:0]	0
8.	Set V _{LCD} Resistor Ratio	0	0	0	0	1	0	0	#	#	#	Set PC[5:3]	110b
9.	Set Electronic Volume	_	_	1	0	0	0	0	0	0	1		
9.	(double-byte command)	0	0	0	0	#	#	#	#	#	#	Set PM[5:0]	10H
10.	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0b
11.	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0b
12.	Set Display Enable	0	0	1	0	1	0	1	1	1	#	Set DC[2]	0b
13.	Set SEG Direction	0	0	1	0	1	0	0	0	0	#	Set LC[0]	0b
14.	Set COM Direction	0	0	1	1	0	0	#	-	-	-	Set LC[1]	1b: MY ON
15.	System Reset	0	0	1	1	1	0	0	0	1	0	Software Reset	N/A
16.	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
17.	Set LCD Bias Ratio	0	0	1	0	1	0	0	0	1	#	Set BR	0b
18.	Set Cursor Update Mode	0	0	1	1	1	0	0	0	0	0	AC3=1, CR=CA	N/A
19.	Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0	AC3=0, CA=CR.	N/A
20.	Set Static Indicator OFF	0	0	1	0	1	0	1	1	0	0	NOP	N/A
21.	Set Static Indicator ON	0	0	1	0	1	0	1	1	0	1	NOP	N/A
۷۱.	Set Static Indicator	ľ	U	-	-	-	-	-	-	-	-	NOP	IN/A
22.	Set Booster Ratio	0	0	1	1	1	1	1	0	0	0	NOP	00b
22.	(double-byte command)	U	U	0	0	0	0	0	0	#	#	NOP	dob
23.	Set Power Save (compound command)	0	0	#	#	#	#	#	#	#	#	Display OFF & All Pixel ON	N/A
24.	Set Test Control	0	0	1	1	1	1	1	1	Т	Т	For UCI only	NI/A
24 .	(double-byte command)	U	U	-	#	#	#	#	#	#	#	Do NOT use	N/A
25.	Set Adv. Program Control 0	0	0	1	1	1	1	1	0	1	0		
	(double-byte command)	Ü	U	#	0	0	1	0	0	#	#	Set TC, WA[1:0]	90H
26.	Set Adv. Program Control 1	0	0	1	1	1	1	1	0	1	1	For UCI only	
	(double-byte command)	Ü	U	#	#	#	#	#	#	#	#	Set APC1	N/A

^{*} Other than commands listed above, all other bit patterns result in NOP (No Operation).

COMMAND DESCRIPTION

1. Write Data Byte to Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Write data	1	0	8-bit data write to SRAM							

2. Read Data Byte from Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	
Read data	1	1	8-bit data read from SRAM								

Write/Read Data Byte (Command 1,2) access Display Data RAM based on Page Address (PA) register and Column Address (CA) register. PA and CA can also be programmed directly by issuing *Set Page Address* and *Set Column Address* commands.

3. Get Status

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Get Status	0	1	BZ	MX	DE	RST	0	0	0	0

BZ: BZ=1 when busy. The system accepts commands only when BZ=0.

MX: Mirror X. Status of register LC[0]

DE: Display Enable flag. DE=1 when display is enabled.

RST: RST flag. RST=1 when reset is in progress.

4. Set Column Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Column Address LSB, CA[3:0]	0	0	0	0	0	0	CA3	CA2	CA1	CA0
Set Column Address MSB, CA[7:4]	0	0	0	0	0	1	CA7	CA6	CA5	CA4

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~131

5. Set Power Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Power Control, PC[2:0]	0	0	0	0	1	0	1	PC2	PC1	PC0

Set PC[2:0] to enable the built-in charge pump.

PC[2]: 0 – Boost OFF 1 – Boost ON

6. Set Scroll Line

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Scroll Line, SL[5:0]	0	0	0	1	SL5	SL4	SL3	SL2	SL1	SL0

Set the scroll line number. Range: 0~63

Scroll line setting will scroll the displayed image up by SL rows. Icon output CIC will not be affected by Set Scroll Line command.

7. Set Page Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Page Address, PA[3:0]	0	0	1	0	1	1	PA3	PA2	PA1	PA0

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output CIC.

Possible value = 0~8.

8. Set V_{LCD} Resistor Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V _{LCD} Resistor Ratio, PC[5:3]	0	0	0	0	1	0	0	PC5	PC4	PC3

Configure PC[5:3] to set internal Resistor Ratio, Rb/Ra, for the V_{LCD} Voltage regulator to adjust the contrast of the display panel:

 $PC[5:3]: 000b\sim111b-1+Rb/Ra$ ratio. **Default: 110b**. Refer to V_{LCD} Quick Reference for "1+Rb/Ra" ratio.

where Rb and Ra are internal resistors, V_{REF} is on-chip contrast voltage, and PM is a vaule of electronic volume

9. Set Electronic Volume

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Electronic Volume, PM[5:0]	0	0	1	0	0	0	0	0	0	1
Set Electionic Volume, Fivi[5.0]	1 "	0	0	0	PM5	PM4	PM3	PM2	PM1	PM0

Set PM[5:0] for electronic volume "PM" for VLCD voltage regulator to adjust contrast of LCD panel display

Effective range: 0~63. Default: 16 (10h)

High-Voltage Mixed-Signal IC

10. Set All Pixel ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set All Pixel ON, DC [1]	0	0	1	0	1	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM. **Default: 0**

11. Set Inverse Display

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display, DC [0]	0	0	1	0	1	0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

12. Set Display Enable

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Enable, DC[2]	0	0	1	0	1	0	1	1	1	DC2

This command is for programming register DC[2]. When DC[2] is set to 1, UC1701x will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers.

13. Set SEG Direction

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Segment Direction, LC[0]	0	0	1	0	1	0	0	0	0	MX

Set LC[0] for SEG (column) mirror (MX). Default: 0

MX is implemented by reversing the mapping order between RAM and SEG (column) electrodes. The data stored in RAM is not affected by MX command. Yet, MX has immediate effect on the display image.

14. Set COM Direction

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Common Direction, LC[1]	0	0	1	1	0	0	MY	-	-	-

Set LC[1] for COM (row) mirror (MY). Default: 1b

MY is implemented by reversing the mapping between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. Yet, MY has immediate effect on the display image.

15. System Reset (Software Reset)

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Software Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset.

Some control register values will be reset to their default values. Yet, data stored in RAM will not be affected. See the "Reset and Power Management" section for more details.

16. NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	1	1	1	0	0	0	1	1

This command is used for "no operation".

17. Set LCD Bias Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio, BR	0	0	1	0	1	0	0	0	1	BR

Select voltage bias ratio required for LCD. Default: 0

The setting of Bias ratio varies according to Duty:

DUTY	BR = 0	BR = 1
1/65	1/9	1/7
1/49	1/8	1/6
1/33	1/6	1/5
1/55	1/8	1/6

18. Set Cursor Update Mode

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Cursor Update Mode	0	0	1	1	1	0	0	0	0	0

This command is used for set cursor update mode function. When cursor update mode sets, UC1701x will update register CR with the value of register CA. The column address CA will increment with write RAM data operation but the address wraps around will be suspended no matter what WA setting is. However, the column address will not increment in read RAM data operation. The set cursor update mode can be used to implement "write after read RAM" function. The column address (CA) will be restored to the value, which is before the set cursor update mode command, when reset cursor update mode.

The purpose of this pair commands and their feature is to support "write after read" function for cursor implementation.

19. Reset Cursor Update Mode

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0

Set AC3=0 and CA=CR.

20. Set Static Indicator OFF

I	Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
I	Turn OFF Static Indicator	0	0	1	0	1	0	1	1	0	0

No Operation.

21. Set Static Indicator ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Turn ON Static Indicator	0	0	1	0	1	0	1	1	0	1
Turn ON Static indicator	0	0	-	-	-	-	-	-	-	-

No Operation.

22. Set Booster Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Booster Ratio	0	1	1	1	1	1	1	0	0	0
(Double-byte command)	Ü	'	0	0	0	0	0	0	-	-

This command is used for "No Operation".

23. Set Power Save

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Power Save (Compound Command)	0	0	#	#	#	#	#	#	#	#

24. Set Test Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set TT	0	1	1	1	1	1	1	1	Т	T
(Double-byte command)	U	l '	-	#	#	#	#	#	#	#

This command is for UltraChip's Test only. Do NOT use.

25. Set Advanced Program Control 0

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control, APC0 [7:0]	0	0	1	1	1	1	1	0	1	0
(Double-byte command)	ľ	U	TC	0	0	1	0	0	WA1	WA0

TC: APC0 [7], V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

TC : 0b = -0.05%/°C, 1b = -0.11%/°C

WA: APC0 [1:0], Automatic column/row wrap around.

WA[0]: **0: PA WA disable**WA[1]: **0: CA WA disable**1: PA WA enable.
1: CA WA enable.

26. Set Advanced Program Control 1

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control, APC1 [7:0]	0	0	1	1	1	1	1	0	1	1
(Double-byte command)	0	J			APC	1 registe	er param	eter		

For UltraChip only. Please Do NOT use.

LCD VOLTAGE SETTING

MULTIPLEX RATES

Multiplex Rate is set by DT[2:1]:

DT2	DT1	Duty
0	0	1/65
0	1	1/49
1	0	1/33
1	1	1/55

BIAS RATIO SELECTION

Bias Ratio (BR) is defined as the ratio between V_{LCD} and $V_{\text{BIAS}}, \text{i.e.}$

$$BR = V_{LCD}/V_{BIAS}$$

where
$$V_{BIAS} = V_{B1+} - V_{B1-} = V_{B0+} - V_{B0-}$$

The theoretical optimum *Bias Ratio* can be estimated by $\sqrt{Mux}+1$. *BR* of value 15~20% lower/higher than the optimum value calculated above will not cause significant visible change in image quality.

UC1701x supports four *BR* as listed below. BR can be selected by software program.

	Bias Ratio							
Duty	BR=0	BR=1						
1/65	1/9	1/7						
1/49	1/8	1/6						
1/33	1/6	1/5						
1/55	1/8	1/6						

Table 1: Bias Ratios

TEMPERATURE COMPENSATION

The temperature compensation coefficients is -0.11% per $^{\circ}$ C.

V_{LCD} GENERATION

 V_{LCD} is supplied by internal charge pump. The source of V_{LCD} is controlled by PC[2:0]. For good product reliability, it is recommended to keep V_{LCD} under 11.5V for all temperature conditions.

When V_{LCD} is generated internally, the voltage level of V_{LCD} is determined by three control registers: BR (Bias Ratio), PM (Potentiometer), and PC[5:3] (V_{LCD} Resistor Ratio) with the following relationship:

 $V_{LCD} = ((1+Rb/Ra) \times Vev) \times (1+(T-25)xC_T\%)$

Vev=(1-(63-PM)/162)xV_{REF}

where

Ra and Rb are two design constants, whose value depends on the setting of BR register, as illustrated in the table on the next page,

PM is value of electronic volume,

V_{REG} is on-chip contrast voltage,

T is the ambient temperature in ^OC, and

 C_T is temperature compensation coefficient.

V_{LCD} FINE TUNING

Black-and-white STN LCD is sensitive to even a 1% mismatch between IC driving voltage and the V_{OP} of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust V_{LCD} to match the actual V_{OP} of the LCD.

For the best result, software based approach for V_{LCD} adjustment is the recommended method for V_{LCD} fine-tuning. System designers should always consider the contrast fine tuning requirement before finalizing on the LEM design

LOAD DRIVING STRENGTH

The power supply circuit of UC1701x is designed to handle LCD panels with loading up to ~24nF using 20- Ω/Sq ITO glass with $V_{DD2/3} \geqslant 2.5V.$ For larger LCD panels, use lower resistance ITO glass packaging.

©1999~2009

V_{LCD} QUICK REFERENCE

High-Voltage Mixed-Signal IC

 V_{LCD} Programming Curve.

PC[5:3]	1+Rb/Ra	VREF	PM	VLCD Range (V)				
000b	3.769	1 60	0	3.87				
0000	3.709	1.00	1.68 63 6.33 1.68 0 4.51 63 7.38 1.68 0 5.15 63 8.43 1.68 0 5.79 63 9.48 1.68 0 6.43 1.68 0 7.08					
001b	4.396	1 60	0	4.51				
0010	4.590	1.00						
010b	5.020	1 69	0	5.15				
0100	5.020	1.00	63	8.43				
011b	5.643	1 69	0	5.79				
0110	5.045	63						
100b	6.266	1 69	0	6.43				
1000	0.200	1.00	63	10.53				
101b	6.891	1 60	0	7.08				
1015	0.091	1.00	62	11.51				
110b	7.517	1.68	0	7.72				
1100	7.517	1.00	48	11.46				
111b	8.143	1.68	0	8.36				
1110	0.143	1.00	37	7.38 7.38 7.38 7.38 7.38 7.38 7.38 8.43 7.79 9.48 9.48 10.53 7.08 11.51 7.72 8 11.46 0 8.36				

Note: For good product reliability, keep V_{LCD} under **11.5V** over all temperature.

HI-V GENERATOR AND BIAS REFERENCE CIRCUIT

FIGURE 1: Reference circuit using internal Hi-V generator circuit

Note

Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

 C_{Bx} : 2.2 μ F/5V or 100~250x LCD load capacitance. C_L : 330nF(25V) is appropriate for most applications.

 $R_L\colon \ 3.3M{\sim}10M\ \Omega$ to act as a draining circuit when V_{DD} is shut down abruptly.

LCD DISPLAY CONTROLS

CLOCK & TIMING GENERATOR

UC1701x contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

4 different frame rates are provided based on different Mux-Rate for system design flexibility.

DRIVER MODES

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When SEG and COM drivers are in idle mode, they will be connected together to ensure zero DC condition on the LCD.

DRIVER ARRANGEMENTS

The naming conventions are: COMx, where x = 1~64, refers to the row driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows is fixed and it is not affected by SL, MX or MY settings.

DISPLAY CONTROLS

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO.

DRIVER ENABLE (DE)

Driver Enable is controlled by the value of DC[2] via Set Display Enable command. When DC[2] is set to OFF (logic "0"), both COM and SEG drivers will become idle and UC1701x will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become "1", and UC1701x will first exit from Sleep Mode, restore the power (V_{LCD} , V_D etc.) and then turn ON COM and SEG drivers.

That is the display is turned ON after setting PC[2:0]=111b and DC[2]=1.

ALL PIXELS ON (APO)

When set, this flag will force all SEG drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

INVERSE (PXV)

When this flag set to ON, SEG drivers will output the inverse of the value it received from the display buffer RAM (bit-wise inversion). This flag has no impact on data stored in RAM.

ITO LAYOUT AND LC SELECTION

Since COM scanning pulses of UC1701x can be as short as $153\mu S$, it is critical to control the RC delay of COM and SEG signal to minimize crosstalk and maintain good mass production consistency.

COM TRACES

Excessive COM scanning pulse RC decay can cause fluctuation of contrast and increase COM direction crosstalk

Please limit the worst case of COM signals RC delay (RC_{MAX}) as calculated below

$$(R_{ROW} / 2.7 + R_{COM}) \times C_{ROW} < 9.23 \mu S$$

where

 C_{ROW} : LCD loading capacitance of one row of pixels. It can be calculated by C_{LCD} /Mux-Rate, where C_{LCD} is the LCD panel capacitance.

R_{ROW}: ITO resistance over one row of pixels within the active area

R_{COM}: COM routing resistance from IC to the active area + COM driver output impedance.

In addition, please limit the min-max spread of RC decay to be:

$$|RC_{MAX} - RC_{MIN}| < 2.76 \mu S$$

so that the COM distortions on the top of the screen to the bottom of the screen are uniform.

(Use worst case values for all calculations)

SEG TRACES

Excessive SEG signal RC decay can cause image dependent changes of medium gray shades and sharply increase the crosstalk of SEG direction.

For good image quality, please minimize SEG ITO trace resistance and limit the worst case of SEG signal RC delay as calculated below.

$$(R_{COL}/2.7 + R_{SEG}) \times C_{COL} < 6.30 \mu S$$

where

 C_{COL} : LCD loading capacitance of one pixel column. It can be calculated by C_{LCD} / (# of column), where C_{LCD} is the LCD panel capacitance.

R_{COL}: ITO resistance over one column of pixels within the active area

R_{SEG}: SEG routing resistance from IC to the active area + SEG driver output impedance.

(Use worst case values for all calculations)

SELECTING LIQUID CRYSTAL

The selection of LC material is crucial to achieve the optimum image quality of finished LCM.

When $(V_{90}-V_{10})/V_{10}$ is too large, image contrast will deteriorate, and images will look murky and dull.

When $(V_{90}-V_{10})/V_{10}$ is too small, image contrast will become too strong, and crosstalk will increase.

For the best result, it is recommended the LC material has the following characteristics:

$$(V_{90}-V_{10})/V_{10} = (V_{ON}-V_{OFF})/V_{OFF} \times 0.72 \sim 0.80$$

where V_{90} and V_{10} are the LC characteristics, and V_{ON} and V_{OFF} are the ON and OFF V_{RMS} voltage produced by LCD driver IC at the specific Mux-rate.

Example:

Duty	Bias	V _{ON} /V _{OFF} -1	x0.80	x0.72
1/65	1/9	10.6%	9.6%	7.5%

FIGURE 2: COM and SEG Electrode Driving Waveform

THE COMMON OUTPUT STATUS SELECT CIRCUIT

In the UC1701x chips, the COM output scan direction can be selected by the common output status select command. (See the table below for details.) Consequently, the constraints in IC layout at the time of LCD module assembly can be minimized.

Duty	Direction	COM[1:16]	I[1:16] COM COM COM COM COM [17:24] [25:27] [28:37] [38:40] [41:48]					COM[49:64]	COMS	
1/65	0				COM [1:64]				COMS	
1/03	1				COM [64:1]		COMS			
1/49	0	COM[1	:24]		NC		CON	И [25:48]	COMS	
1/49	1	COM[48	3:25]		NC		CO	M [24:1]	COIVIS	
1/33	0	COM[1:16]			NC			COM[17:32]	COMS	
1/33	1	COM[32:17]			NC			COM[16:1]	CONS	
1/55	0	С	OM [1:27]	•	NC		COM [28:	54]	COMS	
1/55	1	CC	OM [54:28]	•	NC	COM [27:1]				

Table 2: Duty Layout

HOST INTERFACE

High-Voltage Mixed-Signal IC

As summarized in the table below, UC1701x supports two 8-bit parallel bus protocols and one serial bus protocol. Designers can choose either the 8-bit parallel bus to achieve high data transfer rate, or use serial bus to create compact LCD modules and minimize connector pins.

			Bus Type							
		8080	6800	S8 (4-wire)						
,	Width	8-bit	Serial							
A	ccess	Read .	Read / Write							
S	BM[1:0]	10	11	00						
Pins	CS0		Chip Select							
Data	CD									
& D ₂	WR0	WR	R/W	_						
	WR1	RD	EN	-						
Control	DB[5:0]	Da	_							
0	DB[7:6]	Da	ata	DB[6]=SCK, DB[7]=SDA						

 $^{^{\}star}$ Connect unused control pins and data bus pins to V_{DD} or V_{SS}

	CS Disable Bus Interface	CS Init. Bus State	RESET Init. Bus State
8-bit	✓	-	✓
S8	✓	✓	✓

- CS disable bus interface CS can be used to disable Bus Interface Write / Read Access.
- RESET can be pin reset / soft reset.

Table 3: Host interfaces Summary

PARALLEL INTERFACE

The timing relationship between UC1701x internal control signal RD, WR and their associated bus actions are shown in the figure below.

The Display RAM read interface is implemented as a two-stage pipeline. This architecture requires that, every time memory address is modified, either in parallel mode or serial mode, by either Set CA or Set PA

command, a dummy read cycle need to be performed before the actual data can propagate through the pipeline and be read from data port D[7:0].

There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal RAM on the rising edges of write pulses.

Figure 3: Parallel Interface & Related Internal Signals

SERIAL INTERFACE

UC1701x supports 1 serial modes: 4-wire SPI mode (S8). Bus interface mode is determined by the wiring of the BM[1:0]. See table in last page for more detail.

S8 (4-WIRE) INTERFACE

Only write operations are supported in 4-wire serial mode. Pin CS[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse.

Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.

Figure 4: 4-wire Serial Interface (S8)

HOST INTERFACE REFERENCE CIRCUIT

FIGURE 5: 8080/8bit parallel mode reference circuit

FIGURE 6: 6800/8bit parallel mode reference circuit

65x132 STN Controller-Drivers

FIGURE 7: Serial-8 serial mode reference circuit

Note

• The ID pins are for production control. The connection will affect the content of D[7] of the 1st byte of the Get Status command. Connect to V_{DD} for "H" or V_{SS} for "L".

DISPLAY DATA RAM (DDRAM)

DATA ORGANIZATION

The input display data is stored to a dual port static DDRAM (DDRAM, for Display Data RAM) organized as 65x132

After setting CA and RA, the subsequent data write cycle will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page between the relation of COM, SEG, SRAM, and various memory control registers.

DISPLAY DATA RAM ACCESS

The Display RAM is a special purpose dual port RAM which allows asynchronous access to both its column and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Row Address (RA) and Column Address (CA) by issuing Set Row Address and Set Column Address commands.

MX IMPLEMENTATION

Column Mirroring (MX) is implemented by selecting either (CA) or (131–CA) as the RAM column address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

Row Mapping

COM electrode scanning orders are not affected by Start Line (SL), Fixed Line (FLT & FLB) or Mirror Y (MY, LC[3]). Visually, register SL having a non-zero

value is equivalent to scrolling the LCD display up or down (depends on MY) by *SL* rows.

RAM ADDRESS GENERATION

The mapping of the data stored in the display SRAM and the scanning electrodes can be obtained by combining the fixed Rm scanning sequence and the following RAM address generation formula.

During the display operation, the RAM line address generation can be mathematically represented as following:

For the 1st line period of each field

Line = SL

Otherwise

Line = Mod(Line+1, 64)

Where Mod is the modular operator, and *Line* is the bit slice line address of RAM to be outputted to column drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above *Line* generation formula produce the "loop around" effect as it effectively resets *Line* to 0 when *Line+1* reaches *64*.

MY IMPLEMENTATION

Row Mirroring (MY) is implemented by reversing the mapping order between row electrodes and RAM, i.e. the mathematical address generation formula becomes:

```
For the 1<sup>st</sup> line period of each field

Line = Mod(SL + MR -1, 64)

Otherwise

Line = Mod(Line-1, 64)
```

Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.

65x132 STN Controller-Drivers

D1 01H																									
DO OON DO OON DO OON O	DV [3·0]	0																				81-0			SI = 2F
D1 011	PA[J:U]			1	0	1		1				П									_				SL=25
Decomposition Decompositio							\vdash	\vdash	\vdash			\vdash						\vdash							C9 C8
000 03 03H 04H 05 06H 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								\vdash	Н	H		\vdash			\vdash	H		\vdash							C7
Out	0000								П				D 2					М							C6
1 1 1 1 1 1 1 1 1 1	0000				0	1							Page 0							C5			C44		C5
1		D5	05H		1	1													COM6	C6	C54	C 59	C43	C20	C4
000 09H 09H 00L 09H 00H 00H 00H 00H 00H 00H 00H 00H 00H																			COM7		C55	C 58			C3
1					1	0		匚	Ш							Ш		Щ							C2
1000 03 03 08 04 04 04 05 05 05 05 05																									C1
03 09H 00H 05 00H 07 07 07H 07 07H 08H																									
Dec							_																		
Decompton Deco	0001												Page 1												
Decompton Deco							-																		
O7 OFH O7 O7 OFH O7 O7 O7 O7 O7 O7 O7 O																									
DO																									
Dec 12H Dec 15H Dec		D0																							
010 03 13H		D1	11H																COM18	C18	C2	C47	C31	C8	
Def		D2	12H																COM19	C19	C3	C46	C30	C7	
Date 144	0010					Щ		匚	Ш				Page 2												
Def	30.0						<u> </u>	$ldsymbol{oxed}$	Щ			Щ	. ugo z	_		Ш	_	Ш							
D7 17H D1 19H D2 19H D3 29H D4 D4 D4 D4 D4 D5 D7 27H D6 28H D7 27H D8 28H D7 27H D9 33H D4 28H D7 27H D9 33H D4 28H D7 27H D7 27H D9 33H D4 28H D7 27H D8 28H D7 27H D8 28H D7 27H D8 28H D7 27H D9 33H D4 33H D4 33H D7 27H D9 33H D								_	Щ	Ш		Ш				Ш		Ш							
DO						H	_	_	H	Ш		Ш				Ш	_	\vdash							
Dig 19H Dig					Н	H		\vdash		Н		Н		_		Н	_	Н							
D2		_			Н	H		\vdash	Н	H		\vdash		-	H	H	-	\vdash							 C48*
011																									C47
Description																									C46
D6	0011												Page 3												C45
D7		D5																							C44
00 20H 010 21H 02 22H 03 23H 05 29H 06 26H 07 27H 010 23H 010 29H 010 29H 010 29H 010 33 28H 010 30H 011 31H 012 32H 000 30H 010 31H 010 3		D6	1EH																COM31	C31	C15	C34	C18	C59	C43
0100 0100 0100 0100 0100 0100 0100 010			1FH																COM32	C32	C16	C33	C17	C58	C42
D2 22H D3 23H D4 24H D5 25H D6 26H D7 27H D1 29H D1 29H D2 22H D6 22H D7 27H D7 27H D8 20H D7 27H D8 20H D9 20H D8 20H																									C41
D3								_																	C40
De De De De De De De De																									C39
D5	0100				-		_						Page 4												C38
D6																							_		C36
D7 27H D8 D8 D8 D8 D8 D8 D8 D																									C35
0101 28H D1 29H D2 2AH																									C34
D2																									C33
0101		D1	29H																COM42	C42	C26	C23	C7	C48	C32
D4 2CH D5 2DH D6 2EH D7 2FH D9 30H D1 31H D2 32H D6 36H D7 37H D0 38H D1 39H D2 3AH D1 39H D2 3AH D6 3EH D7 37H D7 37H D7 37H D8 3BH D6 3EH D7 3FH		D2	2AH																COM43	C43	C27	C22	C6	C47	C31
D4 2CH D5 2DH D6 2EH D7 2FH D8 D8 D8 D8 D8 D8 D8 D	0101	D3	2BH										Page 5						COM44	C44	C28	C21	C5	C46	C30
D6 2EH D7 2FH D7 2FH D7 2FH D7 2FH D7 37H D8 D8 38H D1 39H D2 3AH D2	0.0.												. ugo o												C29
D7 2FH D0 30H D1 31H D2 32H D3 33H D4 34H D5 35H D7 37H D1 39H D1 39H D1 39H D1 39H D2 33H D4 34H D5 35H D6 36H D7 37H D6 36H D7 37H D1 39H D1 39H D2 38H D4 3CH D5 3DH D6 3EH D7 3FH D6 3EH D7 3FH																									C28
0110 0 30H																									C27
D1 31H D2 32H D3 33H D4 34H D5 35H D6 36H D7 37H D1 39H D2 3AH D6 36H D7 37H D7 37H D8 38H D9 38H D1 39H D2 3AH D1 39H D2 3AH D1 39H D2 3AH D2 3AH D1 39H D2 3AH D2 3AH D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BH D9 3BH D1 39H D1 39H D2 3AH D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BH D1 3BH D1 3BH D2 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BH D1 3BH D1 3BH D2 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BH D9 3BH D1 3BH D1 3BH D2 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BH D1 3BH D1 3BH D2 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 3EH D9 3BB D8					Н	H	-	⊢	Н	Н		Н		_		Н	<u> </u>	\vdash							C26 C25
D2 32H D3 33H D4 34H D5 35H D6 36H D7 37H D2 3AH D1 39H D2 3AH D3 38H D4 3CH D5 3BH D6 3CH D7 37H D7 37H D8 3CH D9 3CH D9 3CH D1 39H D1 39H D2 3AH D4 3CH D5 3DH D6 3CH D7 3FH D7 3FH D8 3CH D9 3CH D9 3CH D9 3CH D1 30H D1 30H D1 30H D2 3AH D3 3BH D4 3CH D5 3DH D6 3CH D7 3FH D7 3FH D8 3CH D9					\vdash	\vdash	\vdash	\vdash	\vdash			\vdash				Н		\vdash							C25
0110 D3 33H D4 34H D5 35H D7 37H D1 39H D4 3CH D5 3DH D6 3EH D7 3FH D8 3FH D7 3								 										\vdash							C23
0110	0440							Т				П	D 2			П									C22
D5 35H D6 36H D7 37H D1 39H D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH D100 D0 40H D7 3FH D8 3 SH D9 88 8 5 5 89 C10 C36 C2 COM56 C56 C39 C10 C35 C1 COM57 C57 C41 C8 C33 C1 COM57 C57 C41 C8 C33 C1 COM58 C58 C42 C7 C32 C1 COM58 C58 C42 C7 C32 C1 COM59 C59 C43 C6 C31 C1 COM60 C60 C44 C5 C30 C1 COM60 C60 C44 C5 C30 C1 COM60 C60 C44 C5 C30 C1 COM61 C61 C45 C4 C29 C1 COM61 C61 C45 C4 C29 C1 COM62 C62 C46 C3 C27 C1 COM64 C64 C64 C48 C1 C26 C1 COM66 C66 C48 C1 C26 C1 COM66 C64 C64 C48 C1 C26 C1 COM66 C64 C64 C48 C1 C26 C1 COM66 C64 C64 C64 C68 C48 C1 C26 C1 COM66 C66 C48 C1 C26 C1 COM67 C57 C41 C8 C1	0110												Page 6												C21
D7 37H D0 38H D1 39H D2 3AH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 D7 3FH D8 88 88 88 88 88 88 88 88 88 88 88 88 8																					C38				C20
D0 38H D1 39H D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 D0 38H D0 39H D0		D6	36H																	C55	C39	C10		C35	C19
D1 39H D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH D0 D0 40H Page 8 D1 39H D6 3EH D7 3FH D7 3FH D8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8									Щ									Ш							C18
D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH D7 3FH D8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						Щ	<u> </u>	_	Щ			Ш				Ш		Ш							C17
0111 D3 38H D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 D D D D0 40H Page 8 D D D D D0 40H Page 8 D D D D D0 40H Page 8 D D D D D D D D D D D D D D D D D D																									C16
D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 Page 7 Page 7 Page 7 Page 7 COM61 C61 C45 C4 C29 C1 COM62 C62 C46 C3 C28 C1 COM63 C63 C47 C2 C27 C1 COM64 C64 C48 C1 C26 C1 COM64 C64 C48 C1 C26 C1 COM64 C64 C48 C1 C26 C1 COM65 C65 49 65 MUX						H		⊢	H			\vdash				\vdash		\vdash							C15
D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8 S8 8 8 5 5 8 5 8 5 8 5 8 8 8 8 8 8 8 8 8	0111	-			Н	H		\vdash		H		Н	Page 7			H		Н							C14 C13
D6 3EH D7 3FH 1000 D0 40H Page 8 COM63 C63 C47 C2 C27 C3 COM64 C64 C48 C1 C26 C3 COM64 C64 C48 C1 C26 C3 COM64 C64 C48 C1 C26 C3 COM64 C64 C64 C48 C1 C26 C3 COM64 C64 C64 C64 C64 C64 C64 C64 CIC						H	\vdash	\vdash	\vdash	\vdash		\vdash		-		Н	-	\vdash							C13
D7 3FH 1000 D0 40H Page 8 D D D C C C C C C C								\vdash	Н							H		\vdash							C11
1000 D0 40H Page 8 CIC CIC CIC CIC CIC CIC CIC CIC CIC CI									П									М							C10
MVX=0 65 49 65 MVX=0 8E G1 38 8E G1 38 8E G1 38	1000									П		П	Page 8			П									CIC
8EG/12 8EG/12 8EG/12 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13 8EG/13												'											49		49
				ဝူ	75	ы	ĸ	な	35	99	37	86		128	23	30	131	32					M	JX	
				¥	Ж	Ж	ЭĔG	SEG	ЭEG	SEG	ЖG	ЩG		5	5	19	5	[일							
8EG132 8EG132 8EG133 8EG128 8				_						_				SE	SE	SE	SE	SE							
				7	132	131	130	129	128	127	126	125		В	क्र	33	32	2							
				Ä	ñ	ñ	ĔĞ	ĔĞ	ĔĞ	ĕ	ĕĞ	βËG		SE(SE(SEC	SEC	SE							
					V)	(J)	(J)	(J)	(V)	U)	U)	U)					_	ш							

Example for memory mapping: let MX = 0, MY = 0, SL = 0, according to the data shown in the above table:

Page 0 SEG 1 (D7-D0): 11100000bPage 0 SEG 2 (D7-D0): 00110011b

RESET & POWER MANAGEMENT

Types of Reset

UC1701x has 2 different types of reset: Pin Reset (hardware reset) and System Reset (Software reset). Pin Reset is activated by connecting the RST pin to ground; while System Reset is performed by software

commands. After each power-up, a Pin Reset, which is in 3mS, is required. In the following discussions, reset means Pin Reset.

The differences between pin reset (hardware reset) and system reset (software reset):

Procedure	Pin Reset (hardware reset)	System Reset (software reset)
Display OFF: DC[2]=0, all SEGs/COMs output at Vss	V	X
Normal Display: DC[0]=0, DC[1]=0	V	X
SEG Normal Direction: MX=0	V	X
Clear Serial Counter and Shift Register (if using Serial Interface)	V	X
Bias Selection: BR=0	V	X
Booster Level BL[1:0]=0	V	X
Exit Power Saving Mode	V	X
Power Control OFF: PC[2:0]=000b	V	X
Exit Cursor Update mode	V	V
Scroll Line SL[5:0]=0	V	V
Column Address CA[7:0]=0	V	V
Page Address PA[3:0]=0	V	V
COM Normal Direction: MY=0	V	V
V _{LCD} Regulation Ratio PC[5:3]=100b	V	V
PM[5:0]=10 0000b	V	V
Exit Test Mode	V	V

RESET STATUS

When UC1701x enters RESET sequence:

- Operation mode will be "Reset"
- All control registers are reset to default values.
 Refer to Control Registers for details of their default values.

OPERATION MODES

UC1701x has three operating modes (OM): Reset, Sleep, Normal.

For each mode, the related statuses are as below:

Mode	Reset	Sleep	Normal
ОМ	00	10	11
Host Interface	Active	Active	Active
Clock	OFF	OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 4: Operating Modes

65x132 STN Controller-Drivers

CHANGING OPERATION MODE

There are 2 commands that will initiate OM transitions: Set Display Enable, and System Reset.

When DC[2] is modified by *Set Display Enable*, OM will be updated automatically. There is no other action required to enter sleep mode.

OM changes are synchronized with the edges of UC1701x internal clock. To ensure consistent system states, wait at least $10\mu S$ after Set Display Enable or System Reset command.

Action	Mode	OM
RST_ pin pulled "L"	Reset	00
Set Driver Enable to "0"	Sleep	10
Set Driver Enable to "1"	Normal	11

Table 5: OM changes

Both Reset mode and Sleep mode drain the charges stored in the external capacitors C_{B0} , C_{B1} , and C_{L} . When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that, Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1701x consumes very little energy in Sleep mode (typically under 5μ A).

EXITING SLEEP MODE

UC1701x contains internal logic to check whether V_{LCD} and V_{BIAS} are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1701x internal voltage sources are restored to their proper values.

POWER-UP SEQUENCE

FIGURE 8: Reference Power-Up Sequence

There's no delay needed while turning ON V_{DD} and $V_{DD2/3}$, and either one can be turned on first:

Figure 9: Power Off-On Sequence

65x132 STN Controller-Drivers

ENTER/EXIT SLEEP MODE SEQUENCE

UC1701x enters Sleep mode from Display mode by issuing Set Display Disable command and setting all-pixel-ON.

To exit Sleep mode, set All-pixel-OFF.

FIGURE 10: Reference Enter/Exit Sleep Mode Sequence

POWER-DOWN SEQUENCE

To prevent the charge stored in capacitor C_L causing abnormal residue horizontal line on display when V_{DD} is switched off, use Reset mode to enable the built-in charge draining circuit to discharge these external capacitors.

FIGURE 11: Reference Power-Down Sequence

SAMPLE COMMAND SEQUENCES FOR POWER MANAGEMENT

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

C/D The type of the interface cycle. It can be either Command (0) or Data (1) W/R The direction of data flow of the cycle. It can be either Write (0) or Read (1).

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default <u>A</u>dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

Power-Up

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	1	_	-	-	-	-	-	-	_	-	Turn ON V_{DD} and $V_{DD2/3}$	Wait until V _{DD} , V _{DD2/3} are stable
R	_	_	_	1	-	1	-	-	_	ı	Wait ≤ 3 mS	
R	_	_	_	_	_	_	_	_	_	_	Set RST pin Low	Wait 3 uS after RST is Low
R	-	_	-	-	ı	-	ı	ı	-	1	Set RST pin High	Wait 5 mS after RST is High
0	0	0	1	1	1	1	1	0	1	0	Set Adv. Program Control 0	
O	O	U	1	0	0	1	0	0	1	1	Set Adv. Flogram Control o	Set Wrap Around Enable
R	0	0	1	0	1	0	0	0	0	#	Set SEG Direction	Set up LCD format specific
R	0	0	1	1	0	0	#	-	_	1	Set COM Direction	parameters, MX, MY, etc.
R	0	0	0	0	1	0	0	#	#	#	Set V _{LCD} Resistor Ratio	
R	0	0	1	0	1	0	0	0	1	#	Set LCD Bias Ratio	LCD specific operating voltage
R	0	0	1	0	0 #	0 #	0 #	0 #	0 #	1 #	Set Electronic Volume	setting
	1	0	#	#	#	#	#	#	#	#		
	'	0	π	π	π	π	π	π	π	π		
0		•	•			•	•			•	Write display RAM	Set up display image
	1	0	#	#	#	#	#	#	#	#		
R	0	0	0	0	1	0	1	1	1	1	Set Power Control	
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

POWER-DOWN

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	1	1	0	0	0	1	0	System Reset	
R	_	_	1	_	1	ı	-	ı	ı	-	Draining capacitor	Wait ~5mS before V _{DD} OFF

DISPLAY-OFF

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	0	1	0	1	1	1	0	Set Display Disable	
С	1 1	0 0	# #	# · ·	# #	# #	# #	# #	# #	# #	Write display RAM	Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.)
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

ESD CONSIDERATION

UC1700 series products usually are provided in bare die format to customers. This makes the product particularly sensitive to ESD damage during handling and manufacturing process. It is, therefore, highly recommended that LCM makers strictly follow the "JESD 625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices" when manufacturing LCM.

The following pins in UC1701x require special "ESD Sensitivity" consideration in particular:

	Test Mode	Machine Mode		Human Body Mode	
Pins		V_{DD}	V_{SS}	V_{DD}	V _{SS}
LCD Driver		150V	150V	2000V	1500V
LCM Digital Interface		300V	250V	3000V	3000V
LCM HV Interface	TST1/2/4	300V	300V	3000V	3000V
	C _B pins	300V	300V	3000V	3000V
	V _{LCDIN}	250V	300V	3000V	3000V
	V_{LCDOUT}	300V	300V	3000V	3000V
PWR/GND			300V		3000V

According to UltraChip's Mass Production experiences, the ESD tolerance conditions are believed to be very stable and can produce high yield in multiple customer sites. However, special care is still required during handling and manufacturing process to avoid unnecessary yield loss due to ESD damages.

High-Voltage Mixed-Signal IC

©1999~2009

ABSOLUTE MAXIMUM RATINGS

In accordance with IEC134 - notes 1, 2 and 3.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	Logic Supply voltage	-0.3	+4.0	V
V_{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V_{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
$V_{DD2/3}$ - V_{DD}	Voltage difference between V_{DD} and $V_{DD2/3}$		1.2	V
V_{LCD}	LCD Generated voltage	-0.3	+13.2	V
V _{IN} / V _{OUT}	Any input/output	-0.4	V _{DD} + 0.3	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

Notes

- 1. V_{DD} is based on $V_{SS} = 0V$
- 2. Stress values listed above may cause permanent damages to the device.

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply for digital circuit		1.65	1.8~3.3	3.6	V
$V_{DD2/3}$	Supply for bias & pump		2.5	2.6~3.3	3.6	V
V_{LCD}	Charge pump output	$V_{DD2/3} \ge 2.5V, 25^{\circ}C$			11.5	V
V _D	LCD data voltage	$V_{DD2/3} \ge 2.5V, 25^{\circ}C$	0.80		1.32	V
V_{IL}	Input logic LOW				$0.2V_{DD}$	V
V_{IH}	Input logic HIGH		$0.8V_{DD}$			V
V_{OL}	Output logic LOW				$0.2V_{DD}$	V
V _{OH}	Output logic HIGH		0.8V _{DD}			V
I _{IL}	Input leakage current				1.5	μА
I _{SB}	Standby current	$V_{DD} = V_{DD2/3} = 3.3V,$ Temp = 85°C			50	μΑ
C _{IN}	Input capacitance			5	10	PF
C _{OUT}	Output capacitance			5	10	PF
R _{0(SEG)}	SEG output impedance	V _{LCD} = 11V		2000	3000	Ω
R _{0(COM)}	COM output impedance	V _{LCD} = 11V		2000	3000	Ω
		Duty=1/65		77		
	Average Frame Bate	Duty=1/49	-10%	153	+10%	Hz
F _{FR}	Average Frame Rate	Duty=1/33	-10%	76		
		Duty=1/55		136		

POWER CONSUMPTION

Bias Ratio = 0b, Frame Rate = 77Hz, Bus mode = 6800,
$$\begin{split} \text{PM = 32,} \\ \text{C}_{\text{L}} &= 330 \text{ nF,} \\ \text{All outputs are open circuit.} \end{split}$$
 V_{DD} = 2.7 V, V_{LCD} = 8.49 V Mux Rate = 65,

 $C_B = 2.2 \, \mu F$ Temperature = 25°C

Display Pattern	Conditions	Typical	Maximum	Unit
All-OFF	Bus = idle	190	304	μΑ
2-pixel checker	Bus = idle	192	308	μΑ
1-pixel checker	Bus = idle	203	325	μΑ
-	Bus = idle (standby current)	-	5	μΑ

AC CHARACTERISTICS

FIGURE 12: Parallel Bus Timing Characteristics (for 8080 MCU)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
$(2.5V \le V_{DD} < 3.$	3V, Ta= -30 to +	⊦85 [°] C)		(Read / Write)		
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 5	-	nS
tcssa80 t _{csh80}	CS1/CS0	Chip select setup time Chip select hold time		5 5	_	nS
t _{CY80}		Cycle time		150 / 110		
t _{PWR80} , t _{PWW80}	WR0, WR1	Pulse width		60 / 40	-	nS
t _{HPW80}		High pulse width		60 / 40		
t _{DS80} t _{DH80}	D7~D0 (Write)	Data setup time Data hold time		/ 30 / 0	_	nS
t _{ACC80} t _{OD80}	D7~D0 (Read)	Read access time Output disable time	C _L = 100pF	- / 20 /	60 -	nS
(1.65V ≤ V _{DD} < 2	2.5V, Ta= –30 to	+85°C)		(Read / Write)		
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 0	-	nS
t _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time Chip select hold time		5 5	_	nS
t _{CY80}		System cycle time		270 / 190		
t _{PWR80} , t _{PWW80}	WR0, WR1	Pulse width		120 / 80	-	nS
t _{HPW80}		High pulse width		120 / 80		
t _{DS80} t _{DH80}	D7~D0 (Write)	Data setup time Data hold time		/ 60 / 0	_	nS
t _{ACC80} t _{OD80}	D7~D0 (Read)	Read access time Output disable time	C _L = 100pF	- / 50 /	100 –	nS

Note: tr (rising time), tf (falling time) : ≤ 15nS

FIGURE 13: Parallel Bus Timing Characteristics (for 6800 MCU)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
$(2.5V \le V_{DD} < 3.3)$	3V, Ta= –30 to +	·85°C)		(Read / Write)		
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0 0	1	nS
t _{CSSA68} t _{CSH68}	CS1/CS0	Chip select setup time Chip select hold time		5 5	-	nS
t _{CY68} t _{PWR68} , t _{PWW68} t _{LPW68}	WR1	System cycle time Pulse width Low pulse width		150 / 110 60 / 40 60 / 40	-	nS
t _{DS68} t _{DH68}	D7~D0 (Write)	Data setup time Data hold time		/ 30 / 0	_	nS
t _{ACC68} t _{OD68}	D7~D0 (Read)	Read access time Output disable time	C _L = 100pF	/ 50 /	60 –	nS
$(1.65V \le V_{DD} \le 2)$	2.5V, Ta= -30 to	+85°C)		(Read / Write)		
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0 0	-	nS
tcssa68 t _{csh68}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS
t _{CY68}	WR1	cycle time Pulse width		270 / 190 120 / 80	_	nS
t _{LPW68}		Low pulse width		120 / 80		
t _{DS68} t _{DH68}	D7~D0 (Write)	Data setup time Data hold time		/ 60 / 0	_	nS
t _{ACC68} t _{OD68}	D7~D0 (Read)	Read access time Output disable time	C _L = 100pF	/ 100 /	100	nS

Note: tr (rising time), tf (falling time) : ≤ 15nS

FIGURE 14: Serial Bus Timing Characteristics (for S8)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
$(2.5V \le V_{DD} < 3.3)$	$(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$			(Read / Write)		
t _{ASS8} t _{AHS8}	CD	Address setup time Address hold time		0 0	-	nS
${ m t_{CSSAS8}} \ { m t_{CSHS8}}$	CS1/CS0	Chip select setup time Chip select hold time		5 5	_	nS
t _{CYS8}	SCK	Cycle time Low pulse width		130 / 60 50 / 15	-	nS
t _{нРWS8} t _{DSS8} t _{DHS8}	SDA (Write)	High pulse width Data setup time Data hold time		50 / 15 / 12 / 0	-	nS
$(1.65V \le V_{DD} < 2)$	2.5V, Ta= –30 to	+85°C)		(Read / Write)		
t _{ASS8} t _{AHS8}	CD	Address setup time Address hold time		0 0	-	nS
t _{CSSAS8} t _{CSHS8}	CS1/CS0	Chip select setup time Chip select hold time		10 10	_	nS
t _{CYS8}	SCK	Cycle time Low pulse width		160 / 90 65 / 30	_	nS
t _{HPWS8} t _{DSS8} t _{DHS8}	SDA (Write)	High pulse width Data setup time Data hold time		65 / 30 / 24 / 0	_	nS

Note: tr (rising time), tf (falling time) : ≤ 15nS

FIGURE 15: Reset Characteristics

 $(1.65V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Unit
t _{RW}	RST	Reset low pulse width		3	_	μS
t _R	RST,, Internal Status	Reset to Internal Status pulse delay		6	ı	mS

Note: For each mode, the signal's rising time (tr) and falling time (tf) are stipulated to be equal to or less than 15nS each.

PHYSICAL DIMENSIONS

DIE SIZE:

4850 μ M x 660 μ M \pm 40 μ M

DIE THICKNESS:

 $400~\mu M \pm 20~\mu M$

BUMP HEIGHT:

15 $\mu M~\pm 3~\mu M$ $(H_{MAX}-H_{MIN})~within~die~\leqslant~2~\mu M$

BUMP SIZE:

15 μ M x 138.5 μ M \pm 2.5 μ M (Typ.)

BUMP PITCH:

27 µM

BUMP GAP:

12 µM

COORDINATE ORIGIN:

Chip center

PAD REFERENCE:

Pad center

(Drawing and coordinates are for the Circuit/Bump view.)

ALIGNMENT MARK INFORMATION

SHAPE OF THE ALIGNMENT MARK:

Note:

Alignment mark is on Metal3 under Passivation.

The "+" mark is symmetric both horizontally and vertically.

COORDINATES:

	D-Left Mark (+)		D-Right Mark (+)		
	X	Y	X	Y	
1	-1984.5	-149.5	1969.5	-149.5	
2	-1969.5	-184.5	1984.5	-184.5	
3	-1994.5	-159.5	1959.5	-159.5	
4	-1959.5	-174.5	1994.5	-174.5	
С	-1977	-167	1977	-167	

TOP METAL AND PASSIVATION:

FOR MTP PROCESS CROSS-SECTION

PAD COORDINATES

#	Pad	X	Υ	W	Н
1	COM54	-2363	-227.75	15	138.5
2	COM55	-2336	-227.75	15	138.5
3	COM56	-2309	-227.75	15	138.5
4	COM57	-2282	-227.75	15	138.5
5	COM58	-2255	-227.75	15	138.5
6	COM59	-2228	-227.75	15	138.5
7	COM60	-2201	-227.75	15	138.5
8	COM61	-2174	-227.75	15	138.5
9	COM62	-2147	-227.75	15	138.5
10	COM63	-2120	-227.75	15	138.5
11	COM64	-2093	-227.75	15	138.5
12	CIC	-2066	-227.75	15	138.5
13	TST4	-1970	-274.5	50	45
14	CS0	-1905	-274.5	50	45
15	RST	-1840	-274.5	50	45
16	CD	-1775	-274.5	50	45
17	WR0	-1710	-274.5	50	45
18	WR1	-1645	-274.5	50	45
19	VDDX	-1580	-274.5	50	45
20	D0	-1515	-274.5	50	45
21	D1	-1450	-274.5	50	45
22	D2	-1385	-274.5	50	45
23	D3	-1320	-274.5	50	45
24	D4	-1255	-274.5	50	45
25	D5	-1190	-274.5	50	45
26	D6	-1125	-274.5	50	45
27	D7	-1060	-274.5	50	45
28	VDD	-995	-274.5	50	45
29	VDD	-930	-274.5	50	45
30	VDD2	-865	-274.5	50	45
31	VDD2	-800	-274.5	50	45
32	VDD2	-735	-274.5	50	45
33	VDD3	-670	-274.5	50	45
34	VSS	-605	-274.5	50	45
35	VSS	-540	-274.5	50	45
36	VSS2	-475	-274.5	50	45
37	VSS2	-410	-274.5	50	45
38	VSS2	-345	-274.5	50	45
39	VSS2	-280	-274.5	50	45
40	VB1+	-215	-274.5	50	45
41	VB1+	-150	-274.5	50	45
42	DUMMY	-85	-274.5	50	45
43	VB0+	-20	-274.5	50	45
44	VB0+	45	-274.5	50	45
45	VB0-	110	-274.5	50	45
46	VB0-	175	-274.5	50	45
-					
47	DUMMY	240	-274.5	50	45

#	Pad	Х	Υ	w	Н
49	VB1-	370	-274.5	50	45
50	VB1+	435	-274.5	50	45
51	VB1+	500	-274.5	50	45
52	VLCDIN	565	-274.5	50	45
53	VLCDIN	630	-274.5	50	45
54	VLCDOUT	695	-274.5	50	45
55	VLCDOUT	760	-274.5	50	45
56	DUMMY	820	-274.5	45	45
57	DUMMY	875	-274.5	45	45
58	DUMMY	930	-274.5	45	45
59	DUMMY	985	-274.5	45	45
60	DUMMY	1040	-274.5	45	45
61	DUMMY	1095	-274.5	45	45
62	DUMMY	1150	-274.5	45	45
63	DUMMY	1205	-274.5	45	45
64	DUMMY	1260	-274.5	45	45
65	TST2	1320	-274.5	50	45
66	VSSX	1385	-274.5	50	45
67	VDDX	1450	-274.5	50	45
68	BM0	1515	-274.5	50	45
69	BM1	1580	-274.5	50	45
70	DT1	1645	-274.5	50	45
71	VSSX	1710	-274.5	50	45
72	DT2	1775	-274.5	50	45
73	VDD	1840	-274.5	50	45
74	VDD2	1905	-274.5	50	45
75	VDD3	1970	-274.5	50	45
76	COM32	2066	-227.75	15	138.5
77	COM31	2093	-227.75	15	138.5
78	COM30	2120	-227.75	15	138.5
79	COM29	2147	-227.75	15	138.5
80	COM28	2174	-227.75	15	138.5
81	COM27	2201	-227.75	15	138.5
82	COM26	2228	-227.75	15	138.5
83	COM25	2255	-227.75	15	138.5
84	COM24	2282	-227.75	15	138.5
85	COM23	2309	-227.75	15	138.5
86	COM22	2336	-227.75	15	138.5
87	COM21	2363	-227.75	15	138.5
88	COM20	2363	227.75	15	138.5
89	COM19	2336	227.75	15	138.5
90	COM18	2309	227.75	15	138.5
91	COM17	2282	227.75	15	138.5
92	COM16	2255	227.75	15	138.5
93	COM15	2228	227.75	15	138.5
94	COM14	2201	227.75	15	138.5
95	COM13	2174	227.75	15	138.5
96	COM12	2147	227.75	15	138.5

97 COM11 2120 227.75 15 138.5 98 COM10 2093 227.75 15 138.5 99 COM9 2066 227.75 15 138.5 100 COM8 2039 227.75 15 138.5 101 COM6 1985 227.75 15 138.5 102 COM6 1985 227.75 15 138.5 103 COM4 1931 227.75 15 138.5 104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 110 SEG1 1741.5 227.75 15 138.5 111 SEG3 1714.5	#	Pad	Х	Υ	w	Н
99 COM9 2066 227.75 15 138.5 100 COM8 2039 227.75 15 138.5 101 COM7 2012 227.75 15 138.5 102 COM6 1985 227.75 15 138.5 103 COM4 1931 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 109 SEG1 1741.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1768.5 227.75 15 138.5 111 SEG4 1687.5 227.75 15 138.5 112 SEG4 1687.5 <th>97</th> <th></th> <th>2120</th> <th>227.75</th> <th></th> <th>138.5</th>	97		2120	227.75		138.5
100 COM8 2039 227.75 15 138.5 101 COM7 2012 227.75 15 138.5 102 COM6 1985 227.75 15 138.5 103 COM5 1958 227.75 15 138.5 104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1667.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 115 SEG3 1660.5 <td>98</td> <td>COM10</td> <td>2093</td> <td>227.75</td> <td>15</td> <td>138.5</td>	98	COM10	2093	227.75	15	138.5
101 COM7 2012 227.75 15 138.5 102 COM6 1985 227.75 15 138.5 103 COM5 1958 227.75 15 138.5 104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 115 SEG1 152.5 <td>99</td> <td>COM9</td> <td>2066</td> <td>227.75</td> <td>15</td> <td>138.5</td>	99	COM9	2066	227.75	15	138.5
102 COM6 1985 227.75 15 138.5 103 COM5 1958 227.75 15 138.5 104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 111 SEG4 1687.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 115 SEG7 160	100	COM8	2039	227.75	15	138.5
103 COM5 1958 227.75 15 138.5 104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1525.5 227.75 15 138.5 117 SEG9 152.	101	COM7	2012	227.75	15	138.5
104 COM4 1931 227.75 15 138.5 105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 117 SEG9 15	102	COM6	1985	227.75	15	138.5
105 COM3 1904 227.75 15 138.5 106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1600.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 117 SEG9 152.5 227.75 15 138.5 117 SEG11	103	COM5	1958	227.75	15	138.5
106 COM2 1877 227.75 15 138.5 107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 115 SEG9 1552.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12	104	COM4	1931	227.75	15	138.5
107 COM1 1850 227.75 15 138.5 108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 117 SEG9 1525.5 227.75 15 138.5 117 SEG9 1525.5 227.75 15 138.5 121 SEG11	105	COM3	1904	227.75	15	138.5
108 CIC 1823 227.75 15 138.5 109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 121 SEG11 1498.5 227.75 15 138.5 122 SEG12	106	COM2	1877	227.75	15	138.5
109 SEG1 1768.5 227.75 15 138.5 110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 117 SEG91 1525.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 <td>107</td> <td>COM1</td> <td>1850</td> <td>227.75</td> <td>15</td> <td>138.5</td>	107	COM1	1850	227.75	15	138.5
110 SEG2 1741.5 227.75 15 138.5 111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 120 SEG13 1444.5 227.75 15 138.5 121 SEG13 1363.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 122 SEG15 <td>108</td> <td>CIC</td> <td>1823</td> <td>227.75</td> <td>15</td> <td>138.5</td>	108	CIC	1823	227.75	15	138.5
111 SEG3 1714.5 227.75 15 138.5 112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 115 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 122 SEG15 1390.5 227.75 15 138.5 125 SEG17 </td <td>109</td> <td>SEG1</td> <td>1768.5</td> <td>227.75</td> <td>15</td> <td>138.5</td>	109	SEG1	1768.5	227.75	15	138.5
112 SEG4 1687.5 227.75 15 138.5 113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 122 SEG13 1390.5 227.75 15 138.5 122 SEG16 1363.5 227.75 15 138.5 125 SEG17<	110	SEG2	1741.5	227.75	15	138.5
113 SEG5 1660.5 227.75 15 138.5 114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18	111	SEG3	1714.5	227.75	15	138.5
114 SEG6 1633.5 227.75 15 138.5 115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 125 SEG18 1309.5 227.75 15 138.5 127 SEG1	112	SEG4	1687.5	227.75	15	138.5
115 SEG7 1606.5 227.75 15 138.5 116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG	113	SEG5	1660.5	227.75	15	138.5
116 SEG8 1579.5 227.75 15 138.5 117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 125 SEG18 1309.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SE	114	SEG6	1633.5	227.75	15	138.5
117 SEG9 1552.5 227.75 15 138.5 118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 131 S	115	SEG7	1606.5	227.75	15	138.5
118 SEG10 1525.5 227.75 15 138.5 119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131	116	SEG8	1579.5	227.75	15	138.5
119 SEG11 1498.5 227.75 15 138.5 120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132	117	SEG9	1552.5	227.75	15	138.5
120 SEG12 1471.5 227.75 15 138.5 121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133	118	SEG10	1525.5	227.75	15	138.5
121 SEG13 1444.5 227.75 15 138.5 122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 135	119	SEG11	1498.5	227.75	15	138.5
122 SEG14 1417.5 227.75 15 138.5 123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135	120	SEG12	1471.5	227.75	15	138.5
123 SEG15 1390.5 227.75 15 138.5 124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136	121	SEG13	1444.5	227.75	15	138.5
124 SEG16 1363.5 227.75 15 138.5 125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137	122	SEG14	1417.5	227.75	15	138.5
125 SEG17 1336.5 227.75 15 138.5 126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138	123	SEG15	1390.5	227.75	15	138.5
126 SEG18 1309.5 227.75 15 138.5 127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 140 S	124	SEG16	1363.5	227.75	15	138.5
127 SEG19 1282.5 227.75 15 138.5 128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 140 SEG31 958.5 227.75 15 138.5 141 SE	125	SEG17	1336.5	227.75	15	138.5
128 SEG20 1255.5 227.75 15 138.5 129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG	126	SEG18	1309.5	227.75	15	138.5
129 SEG21 1228.5 227.75 15 138.5 130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG3	127	SEG19	1282.5	227.75	15	138.5
130 SEG22 1201.5 227.75 15 138.5 131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35	128	SEG20	1255.5	227.75	15	138.5
131 SEG23 1174.5 227.75 15 138.5 132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	129	SEG21	1228.5	227.75	15	138.5
132 SEG24 1147.5 227.75 15 138.5 133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	130	SEG22	1201.5	227.75	15	138.5
133 SEG25 1120.5 227.75 15 138.5 134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	131	SEG23	1174.5	227.75	15	138.5
134 SEG26 1093.5 227.75 15 138.5 135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	132	SEG24	1147.5	227.75	15	138.5
135 SEG27 1066.5 227.75 15 138.5 136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	133	SEG25	1120.5	227.75	15	138.5
136 SEG28 1039.5 227.75 15 138.5 137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	134	SEG26	1093.5	227.75	15	138.5
137 SEG29 1012.5 227.75 15 138.5 138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	135	SEG27	1066.5	227.75	15	138.5
138 SEG30 985.5 227.75 15 138.5 139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	136	SEG28	1039.5	227.75	15	138.5
139 SEG31 958.5 227.75 15 138.5 140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	137	SEG29	1012.5	227.75	15	138.5
140 SEG32 931.5 227.75 15 138.5 141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	138	SEG30	985.5	227.75	15	138.5
141 SEG33 904.5 227.75 15 138.5 142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	139	SEG31	958.5	227.75	15	138.5
142 SEG34 877.5 227.75 15 138.5 143 SEG35 850.5 227.75 15 138.5	140	SEG32	931.5	227.75	15	138.5
143 SEG35 850.5 227.75 15 138.5	141	SEG33	904.5	227.75	15	138.5
	142	SEG34	877.5	227.75	15	138.5
144 SEG36 823.5 227.75 15 138.5	143	SEG35	850.5	227.75	15	138.5
	144	SEG36	823.5	227.75	15	138.5

65x132 STN Controller-Drivers

145 SEG37 796.5 227.75 15 138.5 146 SEG38 769.5 227.75 15 138.5 147 SEG39 742.5 227.75 15 138.5 148 SEG40 715.5 227.75 15 138.5 149 SEG41 688.5 227.75 15 138.5 150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 159 SEG51	#	Pad	Х	Υ	w	Н
146 SEG38 769.5 227.75 15 138.5 147 SEG39 742.5 227.75 15 138.5 148 SEG40 715.5 227.75 15 138.5 149 SEG41 688.5 227.75 15 138.5 150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 155 SEG49 472.5 227.75 15 138.5 156 SEG49 347.5 227.75 15 138.5 157 SEG49 347.5 227.75 15 138.5 160 SEG52				227 75	15	
147 SEG39 742.5 227.75 15 138.5 148 SEG40 715.5 227.75 15 138.5 149 SEG41 688.5 227.75 15 138.5 150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG46 553.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 157 SEG49 347.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 160 SEG52						
148 SEG40 715.5 227.75 15 138.5 149 SEG41 688.5 227.75 15 138.5 150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 310.5 227.75 15 138.5 161 SEG52						
149 SEG41 688.5 227.75 15 138.5 150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 310.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG52						
150 SEG42 661.5 227.75 15 138.5 151 SEG43 634.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 157 SEG50 445.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 310.5 227.75 15 138.5 162 SEG54						
151 SEG44 607.5 227.75 15 138.5 152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56					_	
152 SEG44 607.5 227.75 15 138.5 153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57			1		_	
153 SEG45 580.5 227.75 15 138.5 154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG59 202.5 227.75 15 138.5 165 SEG57					_	
154 SEG46 553.5 227.75 15 138.5 155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 169 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 167 SEG59					_	
155 SEG47 526.5 227.75 15 138.5 156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60	\vdash				_	
156 SEG48 499.5 227.75 15 138.5 157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 165 SEG58 229.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG69 175.5 227.75 15 138.5 170 SEG61	\vdash				_	
157 SEG49 472.5 227.75 15 138.5 158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 167 SEG69 175.5 227.75 15 138.5 167 SEG69 121.5 227.75 15 138.5 171 SEG62						
158 SEG50 445.5 227.75 15 138.5 159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG56 283.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63						
159 SEG51 418.5 227.75 15 138.5 160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64					_	
160 SEG52 391.5 227.75 15 138.5 161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 171 SEG64 67.5 227.75 15 138.5 172 SEG64						
161 SEG53 364.5 227.75 15 138.5 162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 171 SEG64 67.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG66	\vdash				_	
162 SEG54 337.5 227.75 15 138.5 163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 172 SEG65 40.5 227.75 15 138.5 173 SEG66 13.5 227.75 15 138.5 175 SEG67					_	
163 SEG55 310.5 227.75 15 138.5 164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 173 SEG66 13.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67					_	
164 SEG56 283.5 227.75 15 138.5 165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 175 SEG69 -67.5 227.75 15 138.5 177 SEG69					_	
165 SEG57 256.5 227.75 15 138.5 166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 175 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70						
166 SEG58 229.5 227.75 15 138.5 167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70					_	
167 SEG59 202.5 227.75 15 138.5 168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 180 SEG72						
168 SEG60 175.5 227.75 15 138.5 169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73		SEG58	229.5	227.75	15	138.5
169 SEG61 148.5 227.75 15 138.5 170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74	167	SEG59	202.5		15	
170 SEG62 121.5 227.75 15 138.5 171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75	168	SEG60	175.5	227.75	15	138.5
171 SEG63 94.5 227.75 15 138.5 172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76	169	SEG61	148.5	227.75	15	138.5
172 SEG64 67.5 227.75 15 138.5 173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77	170	SEG62	121.5	227.75	15	138.5
173 SEG65 40.5 227.75 15 138.5 174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 <td>171</td> <td>SEG63</td> <td>94.5</td> <td>227.75</td> <td>15</td> <td>138.5</td>	171	SEG63	94.5	227.75	15	138.5
174 SEG66 13.5 227.75 15 138.5 175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG89<	172	SEG64	67.5	227.75	15	138.5
175 SEG67 -13.5 227.75 15 138.5 176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 189 SEG8	173	SEG65	40.5	227.75	15	138.5
176 SEG68 -40.5 227.75 15 138.5 177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 190 SEG	174	SEG66	13.5		15	138.5
177 SEG69 -67.5 227.75 15 138.5 178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SE	175	SEG67	-13.5	227.75	15	138.5
178 SEG70 -94.5 227.75 15 138.5 179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 S	176	SEG68	-40.5	227.75	15	138.5
179 SEG71 -121.5 227.75 15 138.5 180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192	177	SEG69	-67.5	227.75	15	138.5
180 SEG72 -148.5 227.75 15 138.5 181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193	178	SEG70	-94.5	227.75	15	138.5
181 SEG73 -175.5 227.75 15 138.5 182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	179	SEG71	-121.5	227.75	15	138.5
182 SEG74 -202.5 227.75 15 138.5 183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	180	SEG72	-148.5	227.75	15	138.5
183 SEG75 -229.5 227.75 15 138.5 184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	181	SEG73	-175.5	227.75	15	138.5
184 SEG76 -256.5 227.75 15 138.5 185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	182	SEG74	-202.5	227.75	15	138.5
185 SEG77 -283.5 227.75 15 138.5 186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	183	SEG75	-229.5	227.75	15	138.5
186 SEG78 -310.5 227.75 15 138.5 187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	184	SEG76	-256.5	227.75	15	138.5
187 SEG79 -337.5 227.75 15 138.5 188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	185	SEG77	-283.5	227.75	15	138.5
188 SEG80 -364.5 227.75 15 138.5 189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	186	SEG78	-310.5	227.75	15	138.5
189 SEG81 -391.5 227.75 15 138.5 190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	187	SEG79	-337.5	227.75	15	138.5
190 SEG82 -418.5 227.75 15 138.5 191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	188	SEG80	-364.5	227.75	15	138.5
191 SEG83 -445.5 227.75 15 138.5 192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	189	SEG81	-391.5	227.75	15	138.5
192 SEG84 -472.5 227.75 15 138.5 193 SEG85 -499.5 227.75 15 138.5	190	SEG82	-418.5	227.75	15	138.5
193 SEG85 -499.5 227.75 15 138.5	191	SEG83	-445.5	227.75	15	138.5
	192	SEG84	-472.5	227.75	15	138.5
194 SEG86 -526.5 227.75 15 138.5	193	SEG85	-499.5	227.75	15	138.5
	194	SEG86	-526.5	227.75	15	138.5

#	Pad	Х	Υ	W	Н
195	SEG87	-553.5	227.75	15	138.5
196	SEG88	-580.5	227.75	15	138.5
197	SEG89	-607.5	227.75	15	138.5
198	SEG90	-634.5	227.75	15	138.5
199	SEG91	-661.5	227.75	15	138.5
200	SEG92	-688.5	227.75	15	138.5
201	SEG93	-715.5	227.75	15	138.5
202	SEG94	-742.5	227.75	15	138.5
203	SEG95	-769.5	227.75	15	138.5
204	SEG96	-796.5	227.75	15	138.5
205	SEG97	-823.5	227.75	15	138.5
206	SEG98	-850.5	227.75	15	138.5
207	SEG99	-877.5	227.75	15	138.5
208	SEG100	-904.5	227.75	15	138.5
209	SEG101	-931.5	227.75	15	138.5
210	SEG102	-958.5	227.75	15	138.5
211	SEG103	-985.5	227.75	15	138.5
212	SEG104	-1012.5	227.75	15	138.5
213	SEG105	-1039.5	227.75	15	138.5
214	SEG106	-1066.5	227.75	15	138.5
215	SEG107	-1093.5	227.75	15	138.5
216	SEG108	-1120.5	227.75	15	138.5
217	SEG109	-1147.5	227.75	15	138.5
218	SEG110	-1174.5	227.75	15	138.5
219	SEG111	-1201.5	227.75	15	138.5
220	SEG112	-1228.5	227.75	15	138.5
221	SEG113	-1255.5	227.75	15	138.5
222	SEG114	-1282.5	227.75	15	138.5
223	SEG115	-1309.5	227.75	15	138.5
224	SEG116	-1336.5	227.75	15	138.5
225	SEG117	-1363.5	227.75	15	138.5
226	SEG118	-1390.5	227.75	15	138.5
227	SEG119	-1417.5	227.75	15	138.5
228	SEG120	-1444.5	227.75	15	138.5
229	SEG121	-1471.5	227.75	15	138.5
230	SEG122	-1498.5	227.75	15	138.5
231	SEG123	-1525.5	227.75	15	138.5
232	SEG124	-1552.5	227.75	15	138.5
233	SEG125	-1579.5	227.75	15	138.5
234	SEG126	-1606.5	227.75	15	138.5
235	SEG127	-1633.5	227.75	15	138.5
236	SEG128	-1660.5	227.75	15	138.5
237	SEG129	-1687.5	227.75	15	138.5
238	SEG130	-1714.5	227.75	15	138.5
239	SEG131	-1741.5	227.75	15	138.5
240	SEG132	-1768.5	227.75	15	138.5
241	COM33	-1823	227.75	15	138.5
242	COM34	-1850	227.75	15	138.5
243	COM35	-1877	227.75	15	138.5
244	COM36	-1904	227.75	15	138.5
	5511100	.004		٠٠	. 55.5

#	Pad	Х	Υ	w	Н
245	COM37	-1931	227.75	15	138.5
246	COM38	-1958	227.75	15	138.5
247	COM39	-1985	227.75	15	138.5
248	COM40	-2012	227.75	15	138.5
249	COM41	-2039	227.75	15	138.5
250	COM42	-2066	227.75	15	138.5
251	COM43	-2093	227.75	15	138.5
252	COM44	-2120	227.75	15	138.5
253	COM45	-2147	227.75	15	138.5
254	COM46	-2174	227.75	15	138.5
255	COM47	-2201	227.75	15	138.5
256	COM48	-2228	227.75	15	138.5
257	COM49	-2255	227.75	15	138.5
258	COM50	-2282	227.75	15	138.5
259	COM51	-2309	227.75	15	138.5
260	COM52	-2336	227.75	15	138.5
261	COM53	-2363	227.75	15	138.5

High-Voltage Mixed-Signal IC

TRAY INFORMATION

REVISION HISTORY

Revision	Contents	Date
0.6	First release	Jul. 29, '08
0.7	(1) A new register, APC, is added. (Section "Control Registers", page 10)	Aug. 8, '08
	(2) Command "Set Advanced Program Control" is split into 2 commands. (Section "Command Table", - (25)(26), page 12; "Command Description" – (25)(26), page 17)	
	(3) The sample codes for Power-Up are updated. (Section "Sample Command Sequences for Power Management", page 34)	
	(4) The tray drawing is updated. (Section "Tray Information", page 46)	
	(1) V _{LCD} data are updated. (Section "V _{LCD} Quick Reference", page 19)	– Aug. 27, '08
0.8	(2) The description on Mux-Rate is updated. (Section "LCD Display Controls" – Clock & Timing Generator, page 21)	
3.0	(3) Power consumption data present. (Section "Specifications" – Power Consumption, page 37)	
	(4) Some AC timings are adjusted. (Section "AC Characteristics", Pp 38~40)	
	(1) The setting of WR[1:0] in S8 mode is updated: 0 → -(Section "Pin Description" – WR1~0, page 7;"Host Interface", page 25)	Nov. 7, '08
1.0	(2) Power Up and Enter/Exit Sleep Mode sequences are updated. (Section "Reset & Power Management", page 32)	
	(3) ESD data are corrected. (Section "ESD Consideration", page 36)	
1.1	(1) Number of Pin V _{DDX} : 4 → 2 V _{SSL} → V _{SSX} The description for V _{SSX} pins is added. V _{DD1} → V _{DD} (Section "Pin Description", page 8; "Recommended COG Layout", page 9; "Pad Coordinates", page 45)	Mar 23, '09
	(2) Figure 8 Power-up sequence and Figure 10 Power-down Sequence are updated. (Section "Reset & Power Management", Pp 33~34)	
	(1) Figures 5, 6, and 7 are corrected.(2) Note 2 and Note 3 are removed.(Section "Host interface reference circuit", Pp 27~28)	_ May 12, '09 _
1.11	 (3) The unit of power consumption, uA, is added. (Section "Specifications" – Power Consumption, page 38) (4) Bump Size Tolerance is adjusted: 2 uM → 2.5 uM (Section "Physical Dimensions", page 43) 	
	(Section Physical Dimensions , page 43) (1) V _{DD2/3} range (Typical) : 2.5V~3.3V → 2.6V~3.3V V _{DD2/3} (Minimum) : 2.4V → 2.5V	Jul. 14, '09
1.12	(2) A legacy note item on R1 and R2 is removed.	
	(3) Power-up sequence is updated.(4) Signal rising time and falling time are counted into system cycle time.	
1.2	(1) Feature Highlights are updated. (page 3)	Aug. 18, '09

Revision	Contents	Date
1.2	(2) The description of reset is updated. (overall)	- - Aug. 18, '09
	(3) The description of Operation Mode is updated. (page 32)	
	(4) The description of Power-Up/Down Sequence is updated. (page 33~35)	
	(5) The AC timing drawings are updated. (Pp 39~42)	
1.3	(1) Some default values are changed: PC[5:3] for V_{LCD} resistor ratio setting: 100b> 110b,	Nov. 27, '09
	PM[5:0] for electronic volume setting : 20h> 10h,	
	LC[1] for COM direction setting : 0b> 1b (pages 10, 11, 13, 14)	
	(2) The drawing of top metal and passivation is updated. (page 43)	