P3 - TP2

Aprendizaje Profundo y Redes Neuronales Artificiales Materia Optativa -Instituto Balseiro - 2020

P3 - TP2: Red Neuronal Densa para CIFAR-10

Armar grafo computacional

CIFAR-10

P3 - TP2: Red Neuronal Densa para CIFAR-10

Convención de "axis"

Cada fila de X es un ejemplo "xi"

Cada fila de S tiene los scores de cada clase

Definición de métricas, f. act, y gradientes axis 1: 10 #clases # métrica acc acc (scores, y_true): y_pred ← argmax(scores, axis1) **Scores** return media(y_pred == y_true) axis 0: #ejemplos # métrica MSE MSE (scores, y_true): $mse \leftarrow media(suma(scores - y_true)^2, axis1))$ Σ (axis1) return mse # Gradiente MSE grad_mse (scores, scores_true): grad_mse \leftarrow 2* (scores - y_true) (Scores - y_true)² return grad_mse

grad_sigmoid

np.exp(-x)/(1+np.exp(-x))**2

Sigmoid

1/(1+np.exp(-x))

Parámetros

```
n_clases ← 10

n_neuronas ← 100

idx ← arange(#ejemplos)

# epochs, batch_size, lr, reg_factor, dim_x, ...
```

Preprocesado

x_train, y_train, x_test, y_test ← importamos datos ... # reshape de los datos, flatten

Pasar los datos Y al formato pedido (train, test)

Para cada imagen, y_train = [0 0 1 ... 0]

Para Cada imagen, y_train = [0 0 1 ... 0]

→ yy_train ← array_zeros(#ejemplos, #clases) -

yy_train[np.arange(#ejemplos), y_train] = 1

Restamos la media del batch

 $x_{train} \leftarrow x_{train} - media(x_{train}, axis=0)$

 $x_{test} \leftarrow x_{test} - media(x_{train}, axis=0)$

10

Parámetros

```
n_clases ← 10

n_neuronas ← 100

idx ← arange(#ejemplos)

# epochs, batch_size, lr, reg_factor, dim_x, ...
```

Preprocesado

```
x_train, y_train, x_test, y_test ← importamos datos
... # reshape de los datos, flatten
```

Pasar los datos Y al formato pedido (train, test)

Para cada imagen, y_train = [0 0 1 ... 0] yy_train ← array_zeros(#ejemplos, #clases)

> yy_train[np.arange(#ejemplos), y_train] = 1

Restamos la media del batch x_train ← x_train - media(x_train, axis=0) x_test ← x_test - media(x_train, axis=0) 10

#ejemplos

Inicialización de los pesos

$$w1 \leftarrow Pesos aleatorios (dim(X) + 1, 100) = (dim (X'), 100)$$
 (3073, 100) $w2 \leftarrow Pesos aleatorios (dim(S1) + 1, 10) = (dim(S1'), 10)$ (101, 10)

#neuronas salida

W

axis 1:

Con esta convención:

La matriz de pesos siempre tiene dimensiones: (#número de columnas de la entrada + 1, número neuronas salida) **axis 0**: dim(X) + 1

loop en épocas

```
# Mezclamos índices (shuffle, por ej) loss, acc ← 0, 0
```

loop en iteraciones (#batchs)

```
# Nos quedamos con batch "it"
id_batch ← idx[it*batch_size: (it+1)*batch_size]
Xb, Yb ← X, Y evaluados en los índices
# Armamos Xb' (agregamos columna de 1s)
```

S1' ← Agregamos columna de 1s S2← dot(S1', W2) # Calculamos la regularización reg1 ← suma(W1**2)

Forward: Calculamos S1 y S2

 $S1 \leftarrow sigmoid(dot(Xb',W1))$

 $reg2 \leftarrow suma(W2**2)$

 $req \leftarrow req1 + req2$

Calculamos Loss loss ← loss + MSE(S2, Yb) + 0.5(reg)

acc ← acc + metric_acc(S2, Yb)

Backward: Gradiente global grad ← grad_MSE(S2, Yb) # No olvidar que falta el de reg

Backward: Gradiente global
grad ← grad_MSE(S2, Yb) # No olvidar que falta el de reg

Capa 2
gradW2 ← dot (S1'.T, grad) # grad_local * grad
grad ← dot (grad, W2.T) # grad * grad_local
grad ← grad [:, 1:] # quitamos la primer columna "bias"

acc ← acc + metric_acc(S2, Yb)

Nomenclatura:

dim(X): dimensión de una fila de X. Equivalente al #columnas de X

Actualizamos los pesos

W1 ← W1 - Ir * (gradW1 + reg*W1)

W2 ← W2 - Ir * (gradW2 + reg*W2)

Promediamos las loss y acc de los batchs

••

Calculamos accuracy con los datos de test

(Forward con X_test)

Printeamos por pantalla precisión

