

planetmath.org

Math for the people, by the people.

sheafification

Canonical name Sheafification1

Date of creation 2013-03-22 14:13:08 Last modified on 2013-03-22 14:13:08 Owner archibal (4430) Last modified by archibal (4430)

Numerical id 4

Author archibal (4430)

Entry type Theorem
Classification msc 14F20
Classification msc 18F10
Classification msc 18F20
Related topic Sheafification

Related topic Site
Related topic Sheaf2
Related topic Sheaf

Defines sheafification

Let T be a site. Let P_T denote the category of presheaves on T (with values in the category of abelian groups), and S_T the category of sheaves on T. There is a natural inclusion functor $\iota\colon S_T\to P_T$.

Theorem 1 The functor ι has a left adjoint $\sharp \colon P_T \to S_T$, that is, for any sheaf F and presheaf G, we have

$$\operatorname{Hom}_{S_T}(G^{\sharp}, F) \cong \operatorname{Hom}_{P_T}(G, \iota F).$$

This functor \sharp is called sheafification, and G^{\sharp} is called the sheafification of F.

One can readily check that this description in terms of adjoints characterizes \sharp completely, and that this definition reduces to the usual definition of http://planetmath.org/Sheafificationsheafification when T is the Zariski site. It also allows derivation of various exactness properties of \sharp and ι .

References

[1] Grothendieck et al., $S\'{e}minaires$ en $G\`{e}ometrie$ Algèbrique 2, available 1, and 3, on the web http://www.math.mcgill.ca/archibal/SGA/SGA.htmlhttp://www.math.mcgill.ca/archibal