Unnecessary Bias

Key Point: Averaging simulated quantities of interest roughly doubles transformation induced bias. Instead, use the invariance principle to compute maximum likelihood estimates of your quantity of interest.

$$\text{total τ-bias} = \underbrace{\mathbb{E}[\tau(\hat{\beta})] - \tau[\mathbb{E}(\hat{\beta})]}_{\text{transformation-induced}} + \underbrace{\tau[\mathbb{E}(\hat{\beta})] - \tau(\beta)}_{\text{coefficient-induced}},$$

(3) Does any of this matter?

← def. of t.i. bias

$$y_i \sim N(\mu, 1)$$
, for $i = 1, 2, ..., 100$
 $\tau(\mu) = \mu^2$
 $\mu = 0$

← stark illustration of the bias in the ML and sim. avg. estimates.

Theorem 1 (t.i. bias, Rainey 2017) Suppose a non-degenerate estimator $\hat{\beta}$. Then any strictly convex (concave) τ creates upward (downward) transformation-induced τ -bias.

Proof The proof follows directly from Jensen's inequality. Suppose that the non-degenerate sampling distribution of $\hat{\beta}$ is given by $S_{\beta}(b)$ so that $\hat{\beta} \sim S_{\beta}(b)$. Then $\mathrm{E}(\hat{\beta}) = \int_B b S_{\beta}(b) db$ and $\mathrm{E}[\tau(\hat{\beta})] = \int_B \tau(b) S_{\beta}(b) db$. Suppose first that τ is convex. By Jensen's inequality, $\int_B \tau(b) S_{\beta}(b) db > \tau \left[\int_B b S_{\beta}(b) db \right]$, which implies that $\mathrm{E}[\tau(\hat{\beta})] > \tau[\mathrm{E}(\hat{\beta})]$. Because $\mathrm{E}[\tau(\hat{\beta})] - \tau[\mathrm{E}(\hat{\beta})] > 0$, the transformation-induced τ -bias is upward. By similar argument, one can show that for any strictly $concave \ \tau, \mathrm{E}[\tau(\hat{\beta})] - \tau[\mathrm{E}(\hat{\beta})] > 0$ and that the transformation-induced τ -bias is downward.

Theorem 1 Suppose a maximum likelihood estimator $\hat{\beta}^{mle}$. Then for any strictly convex or concave τ , the transformation-induced τ -bias for $\hat{\tau}^{avg}$ is strictly greater in magnitude than the transformation-induced τ -bias for $\hat{\tau}^{mle}$.

Proof According to Theorem 1 of Rainey (2017),
$$\mathbb{E}\left(\hat{\tau}^{\mathrm{mle}}\right) - \tau\left[\mathbb{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right] > 0$$
. Lemma 1 shows that for any convex τ , $\hat{\tau}^{\mathrm{avg.}} > \hat{\tau}^{\mathrm{mle}}$. It follows that $\mathbb{E}\left(\hat{\tau}^{\mathrm{avg.}}\right) - \tau\left[\mathbb{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right] > \mathbb{E}\left(\hat{\tau}^{\mathrm{mle}}\right) > \tau\left[\mathbb{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right] > 0$. For the concave case, it follows similarly that $\mathbb{E}\left(\hat{\tau}^{\mathrm{avg.}}\right) - \tau\left[\mathbb{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right] < \mathbb{E}\left(\hat{\tau}^{\mathrm{mle}}\right) > \tau\left[\mathbb{E}\left(\hat{\beta}^{\mathrm{mle}}\right)\right] < 0$.

Lemma 1 Suppose a maximum likelihood estimator $\hat{\beta}^{mle}$. Then any strictly convex (concave) τ guarantees that $\hat{\tau}^{avg.}$ is strictly greater [less] than $\hat{\tau}^{mle}$.

Proof By definition,

$$\hat{\tau}^{\text{avg.}} = E \left[\tau \left(\tilde{\beta} \right) \right]$$

Using Jensen's inequality, we know that $\mathrm{E}\left[\tau\left(\tilde{\beta}\right)\right] > \tau\left[\mathrm{E}\left(\tilde{\beta}\right)\right]$, so that

$$\hat{\tau}^{\text{avg.}} > \tau \left[\mathbf{E} \left(\tilde{\beta} \right) \right].$$

However, because $\tilde{\beta} \sim N\left[\hat{\beta}^{\rm mle}, \hat{V}\left(\hat{\beta}^{\rm mle}\right)\right],$ E $\left(\tilde{\beta}\right) = \hat{\beta}^{\rm mle},$ so that

$$\hat{\tau}^{\text{avg.}} > \tau \left(\hat{\beta}^{\text{mle}} \right)$$
.

Of course, $\hat{\tau}^{\text{mle}} = \tau \left(\hat{\beta}^{\text{mle}} \right)$ by definition, so that

$$\hat{\tau}^{\text{avg.}} > \hat{\tau}^{\text{ml}}$$

The proof for concave τ follows similarly. \blacksquare