TRABAJO DE FIN DE MÁSTER Evaluación del riesgo de diabetes/prediabetes a través de un modelo de machine learning

FEBRERO, 2024

ÍNDICE

Evaluación del riesgo de diabetes/prediabetes a través de un modelo de machine learning	3
Introducción	3
Presentación de los datos	3
Análisis Exploratorio de Datos (EDA)	4
Preprocesamiento de datos	8
Selección de variables	8
Búsqueda de mejores hiperparámetros	10
Análisis v selección del meior modelo	11
Productivización del modelo	13
Referencias	14
Anexos	15
Diccionario de datos	
¿Cómo está compuesto el conjunto de datos?	21
Variables cuantitativas	
Variables cualitativas	27
Análisis bivariante: variables cuantitativas	
Análisis bivariante: variables cualitativas	39
Paso a paso: creación de servicio web usando FASTAPI	58
Paso a paso: despliegue en AMAZON EC2	67
Códigos y video	Error! Bookmark not defined.

EVALUACIÓN DEL RIESGO DE DIABETES/PREDIABETES A TRAVÉS DE UN MODELO DE MACHINE LEARNING

INTRODUCCIÓN

La diabetes es una "una enfermedad crónica (de larga duración) que afecta la forma en que el cuerpo convierte los alimentos en energía." (Centros para el Control y la Prevención de Enfermedades) Según la Organización Mundial de la Salud, cerca de 422 millones de personas han desarrollado diabetes. Esto supone una carga para el sistema de salud especialmente en países de ingresos medios a bajos. Por ello es importante contar con herramientas que puedan anticipar el desarrollo de diabetes para tomar medidas preventivas. Así, el principal objetivo de este trabajo es la construcción de un modelo de machine learning que permita predecir la probabilidad de que una persona desarrolle prediabetes o diabetes. Además, se pretende llevar a cabo la productivización del modelo mediante la creación de una aplicación web. Esta aplicación facilitará a los usuarios la evaluación de su riesgo de desarrollar esta condición mediante la introducción de información médica, de estilo de vida y demográfica.

PRESENTACIÓN DE LOS DATOS

Para el presente trabajo, se utilizó el conjunto de datos <u>"Diabetes Health Indicators Dataset"</u>, el cual ha sido consolidado por Alex Teboul. Este conjunto de datos se basa en la encuesta de 2015 <u>"Behavioral Risk Factor Surveillance System"</u> realizada por el Centers for Disease Control and Prevention, la agencia nacional de salud pública de Estados Unidos. Contiene información sobre factores de riesgo asociados a la diabetes.

El conjunto consta de 70692 observaciones y 22 variables, siendo "Diabetes_binary" la variable objetivo binaria. Para conocer el detalle de las variables contenidas en el conjunto de datos, así como sus respectivas definiciones y tipos de datos, revisar el diccionario de datos.

ANÁLISIS EXPLORATORIO DE DATOS (EDA)

EVALUACIÓN DE LAS VARIABLES

ANÁLISIS DESCRIPTIVO

La variable objetivo "Diabetes_binary" presenta la siguiente distribución:

- No hay presencia de valores nulos en ninguna de las 22 variables.
- Algunos tipos de datos asociados a ciertas variables son incorrectos y requieren ajustes.
- Se procede a crear una lista con las variables numéricas y una lista con las variables categóricas y asignarles el tipo correcto de dato.
- La variable "BMI" mantiene el tipo de dato float64.
- También, se observa que no es necesario la creación de variables dummies ya que las categorías están representadas por valores binarios.

Ambas clases cuentan con el mismo número de observaciones por lo cual estamos ante un conjunto de datos balanceado.

Variables cuantitativas

Se observan valores atípicos para estas tres variables: "MentHlth", "PhysHlth" y "BMI". Sin embargo, teniendo en cuenta que los valores de "MentHlth" y "PhysHlth" siguen una escala que va del 0 al 30, no se tratarán esos valores atípicos.

En el caso de "BMI", se observan valores atípicos que parecen ser errores en la entrada de datos. Se han registrado valores de "BMI" mayores a 54, lo cual parece inconsistente. Según la National Heart, Lung, and Blood Institute (NIH), los valores de BMI mayores a 35 generalmente llegan hasta 54. Basándonos en esa información estos valores atípicos deben ser tratados en el paso de preprocesamiento.

Podemos decir además que para la variable:

ENCUESTADOS

- "MentHlth": Más de la mitad de los encuestados reportaron pocos días en los que sintieron que su salud mental no fue buena.
- "PhysHlth": Más de la mitad de los encuestados reportaron pocos días en los que sintieron que su salud física no fue buena.
- "BMI": La mayor proporción de los encuestados presentan un BMI menor o igual a 29 lo que los coloca en el rango de peso "normal" y "sobrepeso".

Variables cualitativas

Del análisis de las variables cualitativas (ver anexo) se desprenden las siguientes características:

DEMOGRAFÍA

Edad: 55-69 años Género: Mujer N. educativo: Superior Ingresos anuales: \$75,000 o más

ESTILO DE VIDA

Actividad física: Últimos 30 días Consume frutas: Al menos 1 vez al

Consume verduras: Al menos 1 vez

al día

Consume alcohol en exceso: No

CONDICIONES DE SALUD

Presión arterial alta: Si
Colesterol en sangre alto: Si
Revisión del colesterol en los
últimos 5 años: Si
Fumador: No
Derrame cerebral: No
Enfermedad coronaria (CHD) o
infarto de miocardio (MI): No

ATENCIÓN MÉDICA

Alguna cobertura médica: Si Necesitaron ver a un médico, pero no pudieron hacerlo debido al costo : No

PERCEPCIONES DE SALUD

En general su salud es: buena y muy buena Dificultades graves para caminar: No

ANÁLISIS BIVARIANTE

Para obtener una mejor comprensión del conjunto de datos, se examinan la variable objetivo y las variables cuantitativas y cualitativas. Esto nos permitirá visualizar la existencia de patrones, de correlación y si alguna de las variables impacta en la variable objetivo.

Variables cuantitativas

Diabetes_binary	MentHlth	PhysHlth?	вмі
0	3.042268	3.666355	27.76996
1	4.461806	7.954479	31.944011

Se observa que en promedio las personas que presentan diabetes/prediabetes reportan:

- más días en los que su salud mental no fue buena.
- más días en los que su salud física no fue buena.
- un BMI más alto.

Variables cualitativas

Para evaluar si existe una relación significativa entre la variable objetivo y las 18 variables cualitativas se procedió a usar gráficos de barras, y la aplicación de la prueba de chi cuadrado. Se concluye que todas las variables cualitativas presentan una relación significativa con la variable objetivo. La totalidad de los gráficos, así como los valores de la prueba de chi cuadrado pueden verse en el anexo.

PREPROCESAMIENTO DE DATOS

Como señalado en el apartado "Análisis descriptivo: variables cuantitativas", se deben tratar los outliers para la variable "BMI". Primero, calcularemos la cantidad de observaciones con "BMI" mayor a 54 obteniendo:

Outliers		
Total Porcentaje		
524 0.74 %		

Dado que el total de outliers no supera el 1%, procederemos a eliminarnos y examinar la nueva distribución de clases:

Nueva distribución			
0 35208			
1	34960		

Se observa un leve desbalanceo entre las clases por lo que vamos a entrenar nuestros algoritmos con esta distribución y evaluaremos la capacidad de generalizar de los modelos.

SELECCIÓN DE VARIABLES

Trabajaremos con cinco algoritmos: Logistic Regression, Linear SVC, Decision Tree, Random Forest y XGBoost ya que nos enfrentamos a un problema de clasificación binaria. Para los cuatro primeros usaremos RFECV, una técnica de selección de características que elimina de manera iterativa aquellas que no son relevantes. Para XGBoost usaremos SelectFromModel ya que contamos con variables categóricas.

A continuación, un cuadro resumen con los resultados de la selección de variables para cada algoritmo:

Algoritmo	Técnica de selección	N° óptimo de variables	Variables seleccionadas	Accuracy
Logistic Regression	RFECV	16	BMI', 'HighBP', 'HighChol', 'CholCheck', 'Stroke', 'HeartDiseaseorAttack', 'PhysActivity', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'GenHlth', 'DiffWalk', 'Sex', 'Age', 'Education', 'Income'	0.7476
Linear SVC	RFECV	12	HighBP', 'HighChol', 'CholCheck', 'HeartDiseaseorAttack', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'GenHlth', 'DiffWalk', 'Sex', 'Age', 'Income'	0.7322
Decision Tree	RFECV	3	BMI', 'HighBP', 'GenHlth'	0.7208
Random Forest	RFECV	21	MentHlth', 'PhysHlth', 'BMI', 'HighBP', 'HighChol', 'CholCheck', 'Smoker', 'Stroke', 'HeartDiseaseorAttack', 'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth', 'DiffWalk', 'Sex', 'Age', 'Education', 'Income'	0.7356
XGBoost	SelectFromModel	12	HighBP_0.0', 'HighChol_0.0', 'CholCheck_0.0', 'HeartDiseaseorAttack_0.0', 'GenHlth_1.0', 'GenHlth_2.0', 'DiffWalk_0.0', 'Age_1.0', 'Age_2.0', 'Age_3.0', 'Age_4.0', 'Income_8.0'	0.7283

BÚSQUEDA DE MEJORES HIPERPARÁMETROS

Probaremos a buscar los valores óptimos de los hiperparámetros para cada modelo con la finalidad de verificar si estos pueden mejorar su capacidad de generalización. Además, para manejar el leve desbalanceo de clases, ajustaremos el peso de clase óptimo a través del hiperparámetro class_weight en los cuatro primeros modelos. Para el caso de XGBoost se ajustó el hiperparámetro scale_pos_weight para abordar el desbalanceo de clases.

A continuación, un cuadro resumen con los resultados de la búsqueda:

Modelo	Mejores hiperparámetros	Accuracy
Logistic Regression	C': 0.1 'class_weight': 'balanced' 'dual': False 'penalty': 'l2' 'solver': 'liblinear'	0.7489
Linear SVC	C': 0.1 'class_weight': None 'dual': False 'loss': 'squared_hinge' 'penalty': 'l1'	0.7350
Decision Tree	class_weight': 'balanced' 'criterion': 'gini' 'max_depth': None 'min_samples_leaf': 2 'min_samples_split': 10	0.7258
Random Forest	class_weight': 'balanced' 'max_depth': 10 'min_samples_leaf': 5 'min_samples_split': 2 'n_estimators': 200	0.7509
XGBoost	colsample_bytree': 0.8 'learning_rate': 0.1 'max_depth': 3 'n_estimators': 100 'scale_pos_weight': 1 'subsample': 0.8	0.7332

ANÁLISIS Y SELECCIÓN DEL MEJOR MODELO

Para analizar el rendimiento de los modelos después del ajuste de hiperparámetros, utilizaremos diversas métricas que facilitarán la elección del modelo a usar para el desarrollo del servicio web.

Así tenemos que:

Algoritmo	Accuracy	Accuracy ajuste
Logistic Regression	0.7476	0.7489
Linear SVC	0.7322	0.7350
Decision Tree	0.7208	0.7258
Random Forest	0.7356	0.7509
XGBoost	0.7283	0.7332

• Luego del ajuste de hiperparametros, el accuracy de todos los modelos ha mejorado ligeramente siendo Random Forest el que ha mostrado un incremento superior.

Informe de clasificación

Modelo	Diabetes_binary	Precision	Recall	F1-score	Support
Logistic Regression	0	0.76	0.73	0.74	7045
Logistic Regression	1	0.74	0.76	0.75	6989
Linear SVC	0	0.74	0.71	0.73	7045
Linear SVC	1	0.72	0.75	0.74	6989
Decision Tree	0	0.74	0.68	0.71	7045
Decision free	1	0.70	0.76	0.73	6989
Random Forest	0	0.78	0.71	0.74	7045
Random Forest	1	0.73	0.79	0.76	6989
XGBoost	0	0.75	0.68	0.72	7045
AGBOOST	1	0.71	0.77	0.74	6989

- El informe de clasificación muestra que en general, los modelos muestran un rendimiento aceptable.
- Logistic Regression tiende a un mejor rendimiento al predecir casos positivos que Linear SVC. Sin embargo, Random Forest y XGBoost presentan un F1-score más alto para la clase "1" lo que sugiere una mejor capacidad para predecir casos positivos.
- Decision Tree es el modelo que mayor variación entre clases presenta lo que puede indicar que presenta dificultades para mantener un equilibrio entre "Precision" y "Recall" para las dos clases.

Matriz de confusión

Modelo	Verdaderos positivos	Falsos negativos	Falsos positivos	Verdaderos negativos
Logistic Regression	5342	1647	1901	5144
Linear SVC	5252	1737	2016	5029
Decision Tree	5305	1684	2244	4801
Random Forest	5548	1441	2071	4974
XGBoost	5413	1576	2231	4814

- Se observa que los modelos Random Forest y XGBoost presentan un equilibrio solido entre las clases.
- Logistic Regression y Linear SVC presentan un buen rendimiento en la predicción de verdaderos positivos y verdaderos negativos.
- Decision Tree presenta un número superior de falsos positivos y un número menor de verdaderos negativos lo que muestra una mayor variación de clases como indicado anteriormente.

Al analizar la información obtenida de las métricas:

• Podemos descartar Decision Tree ya que este modelo presenta el accuracy más bajo (72%), una mayor variación entre clases y una cantidad significativa de falsos positivos. Además, utiliza únicamente 3 variables para realizar la predicción, lo que sugiere que podemos vernos ante un caso de underfitting.

- También, **descartamos Random Forest** ya que si bien presenta el accuracy más alto (75%), un equilibrio entre las clases y una cantidad significativa de verdaderos positivos y verdaderos negativos. Este modelo es más complejo al utilizar las 21 variables para llegar a ese grado de precisión en su predicción. Ello podría indicarnos que estamos ante un caso de sobreajuste lo que afectaría la capacidad de generalizar sobre nuevos datos.
- Tanto XGBoost como Linear SVC usan 12 variables para realizar la predicción. Sin embargo, el accuracy de Linear SVC es ligeramente superior y es un modelo más simple y con mejor velocidad de entrenamiento.
- Finalmente, seleccionamos a Logistic Regression como el mejor modelo a pesar de tener 4 características adicionales en comparación con Linear SVC. Este modelo destaca por ser simple, fácil de interpretar y con una mejor velocidad de entrenamiento en comparación con los otros modelos presentados. Además, logró un accuracy de ≈ 75%, y el informe de clasificación muestra un rendimiento equilibrado en términos de precision, recall y f1-score.

Si bien podría esperarse un accuracy mayor para un modelo de predicción de diabetes/prediabetes, es importante tener en cuenta que el conjunto de datos utilizado para el análisis no incluye variables relevantes como "glucosa basal", "insulina", "hemoglobina glicosilada", "grosor de la piel", etc. La falta de estas y otras variables importantes puede limitar la capacidad del modelo para lograr una precisión más alta.

PRODUCTIVIZACIÓN DEL MODELO

El modelo seleccionado (Logistic Regression) se guardó en un archivo pickle. Previamente, se realizaron pruebas en el notebook para corroborar que se pueden obtener predicciones.

Para productivizar el modelo primero, construiremos un servicio web usando el framework FastAPI. Una vez que corroboremos que el servicio funciona de manera local procederemos a alojarlo en una instancia de EC2. Finalmente, realizaremos pruebas adicionales para asegurarnos que el servicio se encuentre en línea y sea accesible para su consumo a través de un formulario web.

Puede encontrar los detalles técnicos de la productivización del modelo en el anexo.

REFERENCIAS

Calcagni, L. (2023, 21 de julio). *Deploy your FastAPI API to AWS EC2 using Nginx*. Medium. https://lcalcagni.medium.com/deploy-your-fastapi-to-aws-ec2-using-nginx-aa8aa0d85ec7

Data Science Duniya. (2021, 18 de abril). *How to deploy machine learning models as a microservice using fastapi*. https://ashutoshtripathi.com/2021/02/15/how-to-deploy-machine-learning-models-as-a-microservice-using-fastapi/

pixegami. (2022, 5 de mayo). *Cómo implementar FastAPI en AWS EC2: ¡pasos rápidos y sencillos!* [Video]. Youtube. https://www.youtube.com/watch?v=SgSnz7kW-Ko

Roby, Eric. (2023, 9 de julio). *Deploy FastAPI on AWS Lambda | In 9 MINUTES* [Video]. Youtube. https://www.youtube.com/watch?v=7-CvGFJNE o

scikit-learn. Sklearn.feature_selection.RFECV.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

 $scikit-learn. \ Sklearn.feature_selection. SelectFrom Model.$

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html

scikit-learn. Sklearn.linear_model.LogisticRegression.

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html#sklearn.linear model.LogisticRegression

scikit-learn. Sklearn.svm.LinearSVC.

 $\underline{https://scikit\text{-}learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html}$

Zhang, Z. (2019, 10 de agosto). Feature selection why & how explained. Medium.

https://towardsdatascience.com/feature-selection-why-how-explained-part-2-352d9130c2e1

ANEXOS

DICCIONARIO DE DATOS

A continuación, se presentan las variables contenidas en el conjunto de datos, así como sus respectivas definiciones y tipos de datos. Siendo "Diabetes_binary" la variable objetivo binaria.

Variable	Explicación	Valores	Tipo
Diabetes_binary	Presencia o ausencia de diabetes/prediabetes	0 = No diabetes 1 = Prediabetes y/o diabetes	Cualitativa categórica
HighBP	Adultos a quienes se les ha informado que tienen presión arterial alta por un médico, enfermera u otro profesional de la salud	0 = no presión aterial alta	Cualitativa categórica
		1 = presión arterial alta	
HighChol	¿Alguna vez un médico, enfermero u otro profesional de la salud le ha informado que su colesterol en la sangre está alto?	0 = no colesterol alto	Cualitativa categórica
		1 = colesterol alto	

CholCheck	Evaluación del colesterol en los últimos cinco años	0 = no se ha revisado el colesterol en los últimos 5 años 1 = sí se ha revisado el colesterol en los últimos 5 años	Cualitativa categórica
BMI	Índice de Masa Corporal	BMI > = 1	Cuantitativa continua
Smoker	¿Ha fumado al menos 100 cigarrillos en toda su vida? [Nota: 5 paquetes = 100 cigarrillos]	Rango 1 - 9999 0 = no 1 = sí	Cualitativa categórica
Stroke	(Alguna vez le dijeron) que tuvo un derrame cerebral	0 = no 1 = sí	Cualitativa categórica
HeartDiseaseorAttack	Enfermedad coronaria (CHD) o infarto de miocardio (MI)	0 = no 1 = sí	Cualitativa categórica
PhysActivity	Actividad física en los últimos 30 días, excluyendo el trabajo	0 = no 1 = sí	Cualitativa categórica
Fruits	Consume frutas 1 o más veces al día	0 = no	Cualitativa categórica

		1 = sí	
Veggies	Consume verduras 1 o más veces al día	0 = no	Cualitativa categórica
		1 = sí	
HvyAlcoholConsump	Personas que consumen alcohol en exceso (hombres adultos que tienen más de 14 bebidas por semana y mujeres adultas que tienen más de 7 bebidas por semana)	O = no	Cualitativa categórica
		1 = sí	
AnyHealthcare	Tiene algún tipo de cobertura de atención médica, incluyendo seguro de salud, planes prepagos como HMO, etc.	0 = no	Cualitativa categórica
		1 = sí	

NoDocbcCost	¿Hubo algún momento en los últimos 12 meses en que necesitó ver a un médico, pero no pudo debido al costo?	0 = no 1 = sí	Cualitativa categórica
GenHlth	¿Diría que en general su salud es: escala de 1 a 5	1 = excelente 2 = muy buena 3 = buena 4 = regular 5 = mala	Cualitativa categórica
MentHlth	Pensando en su salud mental, que incluye estrés, depresión y problemas emocionales, ¿durante cuántos días de los últimos 30 su salud mental no fue buena?	Escala de 0 - 30 días	Cuantitativa discreta
PhysHlth	Pensando en su salud física, que incluye enfermedades y lesiones físicas, ¿durante cuántos días de los últimos 30 su salud física no fue buena?	Escala de 0 - 30 días	Cuantitativa discreta
DiffWalk	¿Tiene dificultades graves para caminar o subir escaleras?	0 = no 1 = sí	Cualitativa categórica
Sex	Sexo	0 = mujer 1 = hombre	Cualitativa categórica
Age	Categoría de edad de 13 niveles	1 = 18-24 2 = 25-29	Cualitativa categórica

		3 = 30-34 4 = 35-39 5 = 40-44 6 = 45-49 7 = 50-54 8 = 55-59 9 = 60-64 10 = 65-69 11 = 70-74 12 = 75-79 13 = 80 a más	
		 1 = Nunca asistió a la escuela o solo jardín de infantes 2 = Grados 1 al 8 (Primaria) 3 = Grados 9 al 11 (Algunos años de secundaria) 	Cualitativa
Education	Nivel educativo, escala de 1 a 6	4 = Grado 12 o GED (Graduado de secundaria) 5 = Universidad 1 a 3 años (Algunos años de universidad o escuela técnica) 6 = Universidad 4 años o más (Graduado universitario)	categórica
Income	Ingresos anuales, escala de 1 a 8	1 = Menos de \$10,000 2 = Menos de \$15,000	Cualitativa categórica

3 = Menos de \$20,000 4 = Menos de \$25,000	
5 = Menos de \$35,000 6 = Menos de \$50,000	
7 = Menos de \$75,000 8 = \$75,000 o más	

CÓDIGO

¿CÓMO ESTÁ COMPUESTO EL CONJUNTO DE DATOS?

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70692 entries, 0 to 70691
Data columns (total 22 columns):
    Column
                          Non-Null Count Dtype
                          -----
    Diabetes binary
                          70692 non-null float64
    HighBP
                          70692 non-null float64
    HighChol
                          70692 non-null float64
    Cho1Check
                          70692 non-null float64
    BMI
                          70692 non-null float64
 5
    Smoker
                          70692 non-null float64
    Stroke
                          70692 non-null float64
6
    HeartDiseaseorAttack 70692 non-null float64
    PhysActivity
                          70692 non-null float64
9
    Fruits
                          70692 non-null float64
    Veggies
                          70692 non-null float64
    HvyAlcoholConsump
                          70692 non-null float64
    AnyHealthcare
                          70692 non-null float64
    NoDocbcCost
                          70692 non-null float64
    GenHlth
                          70692 non-null float64
14
15
    MentHlth
                          70692 non-null float64
    PhysHlth
                          70692 non-null float64
17
    DiffWalk
                          70692 non-null float64
18
    Sex
                          70692 non-null float64
19
    Age
                          70692 non-null float64
 20 Education
                          70692 non-null float64
21 Income
                          70692 non-null float64
dtypes: float64(22)
memory usage: 11.9 MB
```

- ➤ Compuesto de 70692 observaciones y 22 columnas.
- ➤ No hay presencia de valores nulos en ninguna de las 22 variables.
- ➤ Se observa que algunos tipos de datos asociados a ciertas variables son incorrectos y requieren ajustes.

Procedemos a cambiar el tipo de dato de las variables. Así:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70692 entries, 0 to 70691
Data columns (total 22 columns):
    Column
                          Non-Null Count Dtype
    Diabetes binary
                          70692 non-null category
    HighBP
                          70692 non-null category
1
    HighChol
                          70692 non-null category
3
    Cho1Check
                          70692 non-null category
    BMI
                          70692 non-null float64
                          70692 non-null category
    Smoker
5
    Stroke
                          70692 non-null category
    HeartDiseaseorAttack 70692 non-null category
    PhysActivity
                          70692 non-null category
    Fruits
                          70692 non-null category
9
10 Veggies
                          70692 non-null category
    HvyAlcoholConsump
                          70692 non-null category
12 AnyHealthcare
                          70692 non-null category
13 NoDocbcCost
                          70692 non-null category
14 GenHlth
                          70692 non-null category
15 MentHlth
                          70692 non-null int64
16 PhysHlth
                          70692 non-null int64
17 DiffWalk
                          70692 non-null category
18 Sex
                          70692 non-null category
19 Age
                          70692 non-null category
20 Education
                          70692 non-null category
21 Income
                          70692 non-null category
dtypes: category(19), float64(1), int64(2)
memory usage: 2.9 MB
```

Número de observaciones para la variable objetivo

Número de observaciones para la variable objetivo

```
color = '#649EAB'
diabetes_b = data["Diabetes_binary"].value_counts()
sns.barplot(x=diabetes_b.index, y=diabetes_b.values, color = color)
plt.title('Frecuencia de presencia o ausencia de diabetes/prediabetes')
plt.xlabel('Diabetes_binary')
plt.ylabel('Frecuencia')
plt.show()
```

Frecuencia de presencia o ausencia de diabetes/prediabetes

El conjunto de datos está balanceado.

ANÁLISIS EXPLORATORIO DE DATOS (EDA)

VARIABLES CUANTITATIVAS

```
""" Función para calcular estadísticas descriptivas para las variables cuantitativas
   x: Nombre de la variable (escribirla con comillas)
   var list: lista que incluye todas las variables del conjunto de datos
def quant var stats(x):
   #Definimos el tipo de variable
   var list = data.columns
   if x in var list:
       if data[x].dtype == 'object':
           print ('\033[1m' + 'Variable Cualitativa (Categórica)' + '\033[0m')
       elif data[x].dtype == 'int64':
           print ('\033[1m' + 'Variable Cuantitativa Discreta' + '\033[0m')
       elif data[x].dtype == 'float64':
           print ('\033[1m' + 'Variable Cuantitativa Continua' + '\033[0m')
   #Calculamos la media, mediana y moda
    mean=data[x].mean()
   median=data[x].median()
   mode=data[x].mode()
   print ('\033[1m' + '\nMedidas de Tendencia Central' + '\033[0m')
   print('Media: ',mean,'\nMediana: ',median,'\nModa: ',mode)
   #Calculamos el Max, Min, Primer cuartil, Tercer cuartil
    max=data[x].max()
   min=data[x].min()
   First_quartile=data[x].quantile(0.25)
   Third quartile=data[x].quantile(0.75)
   IQR=Third_quartile-First_quartile
   print ('\033[1m' + '\nMedidas de Posición' + '\033[0m')
   print('Minimo: ',min,'\nMáximo: ',max,'\nWhisker Inferior:',First_quartile-1.5*IQR,'\n1er Cuartil: ',First_quartile,'\n3er Cuartil: ',Third_quartile,'\nWhisker Superior:',Third_quartile+1.5*IQR)
   #Calculamos medidas de dispersión
   STD=data[x].std()
   print ('\033[1m' + '\nMedidas de variabilidad' + '\033[0m')
   print('Rango: ',max-min,'\nIQR: ',IQR,'\nDesviación estándar: ',STD)
```

```
"""Función para generar boxplot e histograma
   feature: dataframe con las columnas a plotear
   figsize: tamaño de la figura
   bins: número de bins
def histogram boxplot(feature, figsize=(18, 10), bins=None):
   num_cols = feature.shape[1]
   f, axes = plt.subplots(nrows=2, ncols=num cols, sharex='col',
                          gridspec kw={"height ratios": (.25, .75)},
                          figsize=figsize)
   for i, col in enumerate(feature.columns):
       sns.boxplot(feature[col], ax=axes[0, i], showmeans=True, color= color, medianprops={'color':'orange'}, boxprops=dict(facecolor='lightblue', linewidth=2), whiskerprops=dict(color='green'))
       sns.histplot(feature[col], ax=axes[1, i], bins=bins, kde=True, color= color) if bins else sns.histplot(feature[col], kde=True, ax=axes[1, i], color='lightcoral')
       axes[1, i].axvline(np.mean(feature[col]), color='green', linestyle='--')
       axes[1, i].axvline(np.median(feature[col]), color='black', linestyle='-')
       axes[1, i].legend({"Promedio": np.mean(feature[col]), "Mediana": np.median(feature[col])})
   plt.tight_layout()
   plt.show()
```

```
quant var stats('PhysHlth')
                                                                                                  quant var stats('BMI')
quant var stats('MentHlth')
                                                                                                  Variable Cuantitativa Continua
                                                  Variable Cuantitativa Discreta
Variable Cuantitativa Discreta
                                                  Medidas de Tendencia Central
                                                                                                  Medidas de Tendencia Central
Medidas de Tendencia Central
                                                  Media: 5.810417020313473
                                                                                                  Media: 29.856985231709388
Media: 3.7520370056017653
                                                  Mediana: 0.0
                                                                                                  Mediana: 29.0
Mediana: 0.0
                                                  Moda: 0 0
                                                                                                  Moda: 0 27.0
Moda: 0 0
                                                  Name: PhysHlth, dtype: int64
                                                                                                  Name: BMI, dtype: float64
Name: MentHlth, dtype: int64
                                                  Medidas de Posición
                                                                                                  Medidas de Posición
Medidas de Posición
                                                  Mínimo: 0
                                                                                                  Mínimo: 12.0
Mínimo: 0
                                                  Máximo: 30
                                                                                                  Máximo: 98.0
Máximo: 30
                                                  Whisker Inferior: -9.0
Whisker Inferior: -3.0
                                                                                                  Whisker Inferior: 13.0
                                                  1er Cuartil: 0.0
1er Cuartil: 0.0
                                                                                                  1er Cuartil: 25.0
                                                  3er Cuartil: 6.0
3er Cuartil: 2.0
                                                                                                  3er Cuartil: 33.0
                                                  Whisker Superior: 15.0
Whisker Superior: 5.0
                                                                                                  Whisker Superior: 45.0
                                                  Medidas de variabilidad
Medidas de variabilidad
                                                                                                  Medidas de variabilidad
                                                  Rango: 30
Rango: 30
                                                                                                  Rango: 86.0
                                                   IOR: 6.0
IQR: 2.0
                                                                                                  IQR: 8.0
Desviación estándar: 8.155626553608068
                                                  Desviación estándar: 10.06226053116389
                                                                                                  Desviación estándar: 7.1139538515768415
```

VARIABLES CUALITATIVAS

```
def perc on bar(feature):
    #Creamos el countplot
    sns.set(rc={'figure.figsize': (18, 5)}) #Ajustamos el ancho y alto
    ax = sns.countplot(x=feature, data=data, palette=['#649EAB'])
    total = len(data)
    for p in ax.patches:
       count = int(p.get height()) #Recuento de obs. para las categorias
       percentage = '{:.1f}%'.format(100 * count / total) #Porcentaje de cada clase por categoría
       x = p.get x() + p.get width() / 2 - 0.1 #ancho
       y = p.get_y() + p.get_height() #alto
       ax.annotate(f'{count}\n{percentage}', (x, y), ha='center', va='center', size=12) #Recuento y porcentaje
    plt.show()
var cat = ['Diabetes binary', 'HighBP', 'HighChol', 'CholCheck', 'Smoker', 'Stroke', 'HeartDiseaseorAttack',
           'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth',
           'DiffWalk', 'Sex', 'Age', 'Education', 'Income']
# Generar gráficos para cada variable en var cat
for variable in var_cat:
    perc on bar(variable)
```


ANÁLISIS BIVARIANTE: VARIABLES CUANTITATIVAS

Procederemos a observar la relación entre nuestra variable objetivo vs las variables cuantitativas para obtener mayores insights.

```
cols1 = ['Diabetes_binary','MentHlth', 'PhysHlth', 'BMI']
subset_data1 = data[cols1]
subset_data1.groupby(by='Diabetes_binary').agg('mean')[['MentHlth', 'PhysHlth', 'BMI']]

MentHlth PhysHlth BMI

Diabetes_binary

0.0 3.042268 3.666355 27.769960

1.0 4.461806 7.954479 31.944011
```

- ➤ Las personas que presentan diabetes/prediabetes reportan más días en los que su salud mental no fue buena.
- ➤ Las personas que presentan diabetes/prediabetes reportan más días en los que su salud física no fue buena.
- ➤ En promedio, las personas que presentan diabetes/prediabetes presentan un BMI más alto.

ANÁLISIS BIVARIANTE: VARIABLES CUALITATIVAS

A continuación, veremos si existe relación entre la variable target y las variables cualitativas.

```
color = '#649EAB'
paleta = sns.color_palette([color, sns.light_palette(color)[2], sns.dark_palette(color)[2]])
def grouped_bar_plot(x, flag=True):
   #sns.set(palette='nipy_spectral')
   #Tabla de frecuencia
   tab1 = pd.crosstab(x, data['Diabetes_binary'], margins=True)
   if flag:
       print(tab1)
       print('-' * 120)
   #Gráfico de barras agrupadas
   ax = tab1.iloc[:-1, :-1].plot(kind='bar', stacked=False, figsize=(12, 6), color=paleta)
   #Añadimos etiquetas y Leyenda
   ax.set_ylabel('Frecuencia')
   ax.set_xlabel(x.name)
   plt.title('Diabetes_binary y {}'.format(x.name))
   plt.legend(title='Diabetes_binary')
   #Añadimos porcentajes en Las barras
   for p in ax.patches:
       width = p.get_width()
       height = p.get_height()
       x, y = p.get_xy()
       ax.annotate(f'{height:}', (x + width / 2, y + height / 2), ha='center', va='center')
   plt.show()
```

Diabetes_binary vs HighBP

Diabetes_binary y HighBP


```
import scipy.stats as stats
#Andlisis de chi cuadrado para ver si hay una asociación significativa entre ambas variables
crosstab = pd.crosstab(data['Diabetes_binary'], data['HighBP'])
crosstab
stats.chi2_contingency(crosstab)
```

Chi2ContingencyResult(statistic=10287.972984997781, pvalue=0.0, dof=1, expected_freq=array([[15430., 19916.], [15430., 19916.]]))

Diabetes_binary vs HighChol


```
crosstab1 = pd.crosstab(data['Diabetes_binary'], data['HighChol'])
crosstab1
stats.chi2_contingency(crosstab1)
Chi2ContingencyResult(statistic=5911.8066998822505, pvalue=0.0, dof=1, expected_freq=array([[16764.5, 18581.5],
```

HighChol

> Se observa una relación significativa entre ambas variables.

[16764.5, 18581.5]]))

CholCheck

1.0

241

0.0

> Se observa quna relación significativa entre ambas variables.

5000

0

Diabetes_binary vs Smoker

Diabetes_binary vs Stroke

Diabetes_binary vs HeartDiseaseorAttack


```
crosstab5 = pd.crosstab(data['Diabetes_binary'], data['HeartDiseaseorAttack'])
crosstab5
stats.chi2_contingency(crosstab5)
```

Chi2ContingencyResult(statistic=3161.7202445322782, pvalue=0.0, dof=1, expected_freq=array([[30121.5, 5224.5], [30121.5, 5224.5]]))

Diabetes_binary vs PhysActivity


```
crosstab6 = pd.crosstab(data['Diabetes_binary'], data['PhysActivity'])
crosstab6
stats.chi2_contingency(crosstab6)
```

Chi2ContingencyResult(statistic=1778.9607035956992, pvalue=0.0, dof=1, expected_freq=array([[10496.5, 24849.5], [10496.5, 24849.5]]))

Diabetes_binary vs Fruits


```
crosstab7 = pd.crosstab(data['Diabetes_binary'], data['Fruits'])
crosstab7
stats.chi2_contingency(crosstab7)
```

Chi2ContingencyResult(statistic=206.50090830615105, pvalue=7.967064756507964e-47, dof=1, expected_freq=array([[13721.5, 21624.5], [13721.5, 21624.5]]))

Diabetes_binary vs Veggies


```
crosstab8 = pd.crosstab(data['Diabetes_binary'], data['Veggies'])
crosstab8
stats.chi2_contingency(crosstab8)
```

Chi2ContingencyResult(statistic=444.0806516898606, pvalue=1.4007103685991128e-98, dof=1, expected_freq=array([[7466., 27880.], [7466., 27880.]]))

Diabetes_binary vs HvyAlcoholConsump


```
crosstab9 = pd.crosstab(data['Diabetes_binary'], data['HvyAlcoholConsump'])
crosstab9
stats.chi2_contingency(crosstab9)
```

Chi2ContingencyResult(statistic=635.0865339749427, pvalue=3.9133962745676324e-140, dof=1, expected_freq=array([[33836., 1510.]], [33836., 1510.]]))

Diabetes_binary vs AnyHealthcare

Diabetes_binary vs NoDocbcCost

Diabetes_binary y NoDocbcCost


```
crosstab11 = pd.crosstab(data['Diabetes_binary'], data['NoDocbcCost'])
crosstab11
stats.chi2_contingency(crosstab11)
```

Chi2ContingencyResult(statistic=118.4167174482265, pvalue=1.4053255735064045e-27, dof=1, expected_freq=array([[32026.5, 3319.5], [32026.5, 3319.5]]))

Diabetes_binary vs GenHlth


```
crosstab12 = pd.crosstab(data['Diabetes_binary'], data['GenHlth'])
crosstab12
stats.chi2_contingency(crosstab12)
```

Chi2ContingencyResult(statistic=12304.318979903528, pvalue=0.0, dof=4, expected_freq=array([[4141. , 9936. , 11713.5, 6651.5, 2904.], [4141. , 9936. , 11713.5, 6651.5, 2904.]]))

Diabetes_binary vs DiffWalk

Diabetes_binary vs Sex

> Se observa una relación significativa entre ambas variables.

[19193., 16153.]]))

Diabetes_binary vs Age


```
crosstab15 = pd.crosstab(data['Diabetes_binary'], data['Age'])
crosstab15
stats.chi2_contingency(crosstab15)

Chi2ContingencyResult(statistic=6179.057132257292, pvalue=0.0, dof=12, expected_freq=array([[ 489.5, 698. , 1024.5, 1396.5, 1760. , 2324. , 3436. , 4301.5, 5056. , 5428. , 4022. , 2697. , 2713. ],
    [ 489.5, 698. , 1024.5, 1396.5, 1760. , 2324. , 3436. , 4301.5, 5056. , 5428. , 4022. , 2697. , 2713. ]]))
```

Diabetes_binary vs Education


```
crosstab16 = pd.crosstab(data['Diabetes_binary'], data['Education'])
crosstab16
stats.chi2_contingency(crosstab16)

Chi2ContingencyResult(statistic=2132.272551584347, pvalue=0.0, dof=5, expected_freq=array([[ 37.5, 823.5, 1723.5, 9736.5, 10015. , 13010.],
```

[37.5, 823.5, 1723.5, 9736.5, 10015. , 13010.]]))

[➤] Se observa una relación significativa entre ambas variables.

Diabetes_binary vs Income

PASO A PASO: CREACIÓN DE SERVICIO WEB USANDO FASTAPI

Herramientas:

IDE	Lenguaje	Librerías
Visual Studio Code	Python	FastAPI uvicorn CORSMiddleware pickle pandas scikit-learn

1. Verificar si contamos con la extensión de Python:

2. Abrir el folder en donde tenemos el archivo pickle y en el cual creamos el entorno virtual:

3. Crear entorno virtual a través de la terminal. Clic en:

4.	En la terminal ingresar las siguientes líneas: Crear ambiente virtual		
	Crear ambiente virtual	pip install virtualenv	
		virtualenv venv	
	Activar ambiente virtual		
		.\venv\Scripts\activate	
	Instalar librerias		
		pip install fastapi uvicorn pandas scikit-learn	
	Crear documento de requerimientos		
		pip freeze > requirements.txt	
	• Crear un archive .py al que nombraremos "r	nain". En el lateral izquierdo veremos los siguientes archivos:	

5. En el archivo "main" ingresaremos el siguiente código para crear la instancia de FastAPI:

```
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import pickle
import pandas as pd

# Cargamos el modelo del archivo pickle
with open('model_Logistic.pkl', 'rb') as file:
    model, selected_features = pickle.load(file)

# Creamos una instancia de FastAPI
app = FastAPI()

# Configuración de CORS
origins = ["*"]
app.add_middleware(
    CORSMiddleware,
```

```
allow origins=origins,
    allow credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
# Verificación estado de servicio
@app.options("/predict")
def options predict():
    return {"status": "ok"}
# Definimos la ruta para hacer predicciones
@app.post("/predict")
def predict(data: dict):
    print("Datos recibidos:", data) # Impresión de datos recibidos
    datos pred = pd.DataFrame({key: [value] for key, value in data.items()})
    features = datos_pred[selected_features]
    prediccion = model.predict(features)
    print("Predicción:", prediccion.tolist()) # Impresión de resultado
    return {"prediction": prediccion.tolist()}
```

• En la terminal, ingresamos la siguiente línea:

uvicorn main:app -reload

De esta manera podremos probar la API desde el navegador.

6. Probaremos el servicio en local ingresando a http://127.0.0.1:8000/docs en el navegador. Aparecerá la interfaz interactiva Swagger UI que nos permitirá llamar a la API creada y testearla en el navegador. Clic en:

7. En el campo "Request body" ingresar los valores de las variables que el modelo seleccionó, en formato JSON y clic en "Execute":

8. Verificamos en la sección "Response" que se ha realizado la predicción con los datos enviados:

9. Una vez realizada la verificación, procederemos a alojar nuestra API en una instancia EC2 de Amazon, esto con el fin de que el servicio pueda ser consumido, en nuestro caso a través de un formulario web.

PASO A PASO: DESPLIEGUE EN AMAZON EC2

1. En ingresamos nuestro usuario y contraseña. En la página de inicio de la consola buscamos EC2 y damos clic:

2. Aparecerá la siguiente pantalla, y clic en:

3. Ingresaremos los datos señalados:

Y creamos la instancia:

4. Si la instancia se ha lanzado de manera exitosa, aparecer{a el siguiente mensaje:

5. Nos conectamos a la instancia creada:

6. Veremos la siguiente pantalla:

7. Clic en la pestaña "Cliente SSH":

Y copiar la dirección de la instancia que aparece en el paso 4. Ahora la instancia se encuentra en ejecución:

fastapi	i-0ad83327ac4537e85	⊘ En ejecución ⊕ Q	t2.micro

Sin embargo, en este punto nuestra instancia está vacía. Colocaremos nuestra FAstAPI en esta instancia para que, al acceder al endpoint, podamos usar la API y realizar predicciones.

8. Creamos un repositorio en Github con los archivos :

Alojados en el folder que seleccionamos para crear nuestro entorno virtual, el txt de requirements y el archicvo .py "main".

9. Para conectarnos a la instancia usaremos PuTTY¹, un cliente SSH para Windows. Abrimos la interfaz y pegamos el DNS de la instancia que copiamos en el paso 7:

¹ https://www.putty.org/

10. Nos autenticamos usando el key file que se generó en el paso 3:

11. Clic en:

Aparece la siguiente pantalla, ingresamos "ubuntu" y enter:

12. Este terminal representa el sistema operativo Ubuntu dentro de la máquina que usa nuestra instancia. Ingresamos la siguiente línea para actualizar todos los repositorios:

sudo apt-get update

13. Instalamos python3 y nginx (que nos permite conectarnos a FastAPI) con la siguiente línea:

sudo apt install -y python3-pip nginx

14. Creamos un archivo de configuración en el directorio, con la siguiente línea:

sudo vim / etc/nginx/sites-enabled/fastapi_nginx

15. Procedemos a llenar el archivo de configuración de la siguiente manera:

```
Server {
    listen 80;
    server_name aquí se pega la dirección IPv4 pública de nuestra instancia EC2;
    location / {
        proxy_pass <a href="http://127.0.0.1">http://127.0.0.1</a>: 8000; (dirección del endpoint de nuestra FastAPI)
    }
```



```
server {
    listen 80;
    server_name 18.191.148.32;
    location / | proxy_pass http://127.0.0.1:8000;
}
```

16. Guardamos el archivo (ESC e ingresar wq y enter) y reiniciamos el servidor ngnix para que la configuración haga efecto. Para ello ingresamos esta línea:

sudo service nginx restart

17. Ahora, clonaremos el repositorio Github creado en el paso 8. Para ello damos clic en "Code" y copiamos la url de la pestaña "HTTPS":

18. Volvemos a PuTTY e ingresamos la siguiente línea para clonar el repositorio:

git clone url que copiamos en el paso anterior

```
ubuntu@ip-172-31-34-152: ~
                                                                                       \times
Feb 18 02:12:13 ip-172-31-34-152 nginx[353]: nginx: [emerg] unexpected end of file, expecting "}"
Feb 18 02:12:13 ip-172-31-34-152 nginx[353]: nginx: configuration file /etc/nginx/nginx.conf test
Feb 18 02:12:13 ip-172-31-34-152 systemd[1]: nginx.service: Control process exited, code=exited, s
Feb 18 02:12:13 ip-172-31-34-152 systemd[1]: nginx.service: Failed with result 'exit-code'.
Feb 18 02:12:13 ip-172-31-34-152 systemd[1]: Failed to start A high performance web server and a r
ubuntu@ip-172-31-34-152:~$ sudo service nginx restart
ubuntu@ip-172-31-34-152:~$ systemctl status nginx.service

    nqinx.service - A high performance web server and a reverse proxy server

    Loaded: loaded (/lib/systemd/system/nginx.service; enabled; vendor preset: enabled)
    Active: active (running) since Sun 2024-02-18 02:16:44 UTC; 2s ago
      Docs: man:nginx(8)
   Process: 784 ExecStartPre=/usr/sbin/nginx -t -q -q daemon on; master process on; (code=exited,
   Process: 785 ExecStart=/usr/sbin/nginx -g daemon on; master process on; (code=exited, status=0
  Main PID: 786 (nginx)
     Tasks: 2 (limit: 1121)
    Memory: 2.6M
       CPU: 25ms
    CGroup: /system.slice/nginx.service
            -786 "nginx: master process /usr/sbin/nginx -g daemon on; master process on;"
            Feb 18 02:16:44 ip-172-31-34-152 systemd[1]: Starting A high performance web server and a reverse
Feb 18 02:16:44 ip-172-31-34-152 systemd[1]: Started A high performance web server and a reverse p
ubuntu@ip-172-31-34-152:~$ git clone https://github.com/eloacv/FASTAPI.git
```

19. Se observa que se han clonado correctamente todos los archivos y procedemos a instalar los requerimientos con la siguiente línea:

pip3 install -r requirements.txt

```
ubuntu@ip-172-31-34-152: ~/FASTAPI
   Process: 785 ExecStart=/usr/sbin/nginx -g daemon on; master process on; (code=exited, status=0
  Main PID: 786 (nginx)
     Tasks: 2 (limit: 1121)
    Memory: 2.6M
       CPU: 25ms
    CGroup: /system.slice/nginx.service
             -786 "nginx: master process /usr/sbin/nginx -g daemon on; master process on;"
            Feb 18 02:16:44 ip-172-31-34-152 systemd[1]: Starting A high performance web server and a reverse
Feb 18 02:16:44 ip-172-31-34-152 systemd[1]: Started A high performance web server and a reverse p
ubuntu@ip-172-31-34-152:~$ git clone https://github.com/eloacv/FASTAPI.git
Cloning into 'FASTAPI'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (5/5), done.
ubuntu@ip-172-31-34-152:~$ 1s
ubuntu@ip-172-31-34-152:~$ cd FASTAPI
ubuntu@ip-172-31-34-152:~/FASTAPI$ 1s
main.py model Logistic.pkl requirements.txt
ubuntu@ip-172-31-34-152:~/FASTAPI$ pip3 install -r requirements.txt
```

20. Una vez finalizada la instalación, procedemos a correr la app contenida en el archivo "main", usando la siguiente línea:

python3 -m uvicorn main:app

21. Usamos Insomnia² e ingresamos la IPv4 pública de la instancia seguido de la ruta para hacer predicciones y pasamos valores en formato JSON para corroborar que nuestro servicio funciona correctamente:

Nuestra API ahora está lista para ser usada en un formulario web.

² https://insomnia.rest/

22. Finalmente, quiero que mi aplicación siga ejecutándose aun cuando cierre la sesión en PuTTY por lo cual ingreso la siguiente línea:

nohup pyhton3 -m uvicorn main:app > log.txt 2>&1 &

PASO A PASO: ALOJAR FORMULARIO WEB EN GITHUB PAGES

1. Creamos un repositorio en donde alojaremos el archivo "index.html"

2. Clic en Settings, luego clic en Pages. Verificar la configuración de la fuente de publicación y clic en Save:

3. Esperamos unos minutos y aparecerá la URL del sitio:

Nota: GitHub no permite conexiones HTTP para la API. Se ha utilizado un certificado auto firmado³ (self-signed SSL) para evitar errores de mezcla de contenido (mixed content⁴). Sin embargo, es importante tener en cuenta que el uso de certificados auto firmados no es una práctica segura en entornos de producción ya que se debe contar con un certificado emitido por una autoridad de certificación reconocida para garantizar la seguridad y la autenticidad de las conexiones HTTPS.

Antes de acceder al formulario web https://eloacv.github.io/db prediction/, es necesario confirmar la confianza en este servidor: https://18.191.148.32

³ Siguiendo las instrucciones de https://lcalcagni.medium.com/deploy-your-fastapi-to-aws-ec2-using-nginx-aa8aa0d85ec7

⁴ https://docs.github.com/en/pages/getting-started-with-github-pages/securing-your-github-pages-site-with-https