

Study of a Hypersonic Scramjet under thermochemical equilibrium and non-equilibrium conditions

Aditya Raman Nil Couto

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

BACKGROUND

Boeing X-51 A prototype

- Initial Project: Study of a waverider.
- Weak shocks didn't produce enough temperature jump to activate finite rate chemical reactions
- Diamond shape to further increase temperature

Scramjet's interior

OPERATING CONDITIONS

	COLD	НОТ	
Inlet Mach	5, 10, 15	5, 10, 15	
Inlet Tr [K]	386.8	800	
Inlet Pressure [Pa]	1177	2553.14	
Outlet Pressure [Pa]	1090.2	1090.2	

Bibliographic reference for cold case. Hot case done to mimic combustion

Initial Composition: 77% N₂, 23% O₂, 0% NO, 0% N, 0% O

For thermochemical nonequilibrium: Tv = 1179.6 K

GOVERNING EQUATIONS

Field Variables:
$$ho$$
, \mathbf{u} , $T^{(rt)}$, $T^{(ev)}$, Ys

Mass Balance:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

 $\frac{\partial \rho}{\partial t} Y_{\mathrm{s}}$

$$\frac{\partial \rho Y_s}{\partial t} + \nabla \cdot (\rho Y_s \mathbf{u}) = \dot{\omega}_s$$

Momentum Balance:
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p \hat{\mathbf{I}}) = \mathbf{0}$$

Energy Balance:
$$\frac{\partial}{\partial t} \left[\rho \left(\frac{1}{2} \mathbf{u}^2 + e \right) \right] + \nabla \cdot \left\{ \rho \mathbf{u} \left(\frac{1}{2} \mathbf{u}^2 + e \right) + p \mathbf{u} \right\} = 0$$

Vibrational Energy Balance:
$$\frac{dE^{(v)}}{dt} = \frac{E^*(T^{(rt)}) - E^{(v)}}{\tau_v(n,T^{(rt)})}$$

SOLVER SETUP

Software : SU2Nemo

Solver : Nemo Euler

Fluid Model: Mutation++

Mixture : Air5 species

Meshing software : Gmsh

Convective Numerical Method : AUSM

Slope Limiter: Venkatakrishnan Wang

Time Discretization: Explicit

• CFL: 0.8

Park's Two Temperature model

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

MESH INDEPENDENCE TEST

Coarse

Fine

Medium

Mesh type	Relative error		
Coarse	2.007%		
Medium	0.382%		

Performed for Ma = 15 and Tr = Tv = 800 K

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

$$Ma = 5$$
 $Tr = Tv = 386.8K$

Shock angle decreases as Ma increases

- Shock intensity after the diamond is larger as freestream Ma increases
- Lower Ma always after diamond

$$Ma = 10$$
 $Tr = Tv = 800K$

- Almost no difference between cold and hot for Ma = 5.
- Large freestream T produces larger Ma at the divergent section for the same freestream Ma

Reflections in central region are better captured as Ma reduces

$$Ma = 5$$
 $Tr = Tv = 800K$

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

CHEMICAL NON-EQUILIBRIUM

	Ma=5 (C)	Ma=10 (C)	Ma=15 (C)	Ma=5 (H)	Ma=10 (H)	Ma=15 (H)
N2	0.77	0.77	0.77	0.77	0.77	0,7699
02	0.23	0.23	0.23	0.23	0.23	0.2280
NO	0	2.8e-31	1.91e-14	9.45e-17	1.06e-10	3.03 e-4
N	0	1.91e-42	5.28e-24	4.66e-33	1.30e-18	6.06e-10
0	1.64e-34	1.14e-21	3.22e-10	4.05e-12	3.20e-7	0.0019

- For all Ma in cold condition, mass fractions of NO, N, O are extremely low
- Mass fractions of O, N, NO increase with Ma
- For the hot condition, at Ma=15 we can see the effect of diatomic oxygen dissociation in the resulting mass fraction of O2

CHEMICAL NON-EQUILIBRIUM

- Finite rate chemical reaction concentrated in the post-diamond region
- Increase of O close to the diamond edge because of O₂ dissociation
- Formation of O reduced after x = 6 m due to recombination (NO formation)
- Very low N mass fraction. Higher temperature required to dissociate N₂

CHEMICAL NON-EQUILIBRIUM

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

Larger vibrational excitation with hot gas

Shorter relaxation time as Ma increases

At the scramjet's outlet, there's still thermal nonequilibrium

- 1. Background
 - 1.1 Operating conditions
 - 1.2 Governing equations
 - 1.3 Solver Setup
- 2. Mesh Independence Test
- 3. Thermochemical equilibrium
 - 3.1 Flowfield visualization
 - 3.2 Roto-translational temperature comparison
- 4. Chemical nonequilibrium
 - 4.1 Mass fractions
 - 4.2 Roto-translational and Vibrational temperatures
- 5. Thermochemical nonequilibrium
 - 5.1 Roto-translational and Vibrational temperatures
 - 5.2 Vibrational temperature relaxation
- 6. Conclusions

CONCLUSIONS

- Similar shock patterns for the same Ma under different thermal conditions
- Stronger shock localized at the post-diamond region
- Temperature reached across the domain should be larger to better appreciate finite rate chemical reactions
- Chemical reactions observed are in accordance with the theory
- Relaxation time higher for higher Mach number
- Thermochemical non equilibrium persists throughout the geometry

THANK YOU