KICK-OFF API 3

Cliente: Parceria interna

PROJETO

- Análise de produtividade de veículos, de otimização de distribuição e de custo de rotas de uma empresa embarcadora de carga com:
 - criação e modelagem de um banco de dados em SQL
 - criação de um visualizador de indicadores em Bl
 - aplicação do método de transportes para otimização da distribuição

Requisitos Básicos do Projeto

DESENVOLVIMENTO DE ESTRUTURA RELACIONAL DE TABELAS COM BASE NOS DADOS DISPONIBILIZADOS

APLICAÇÃO DO MODELO DE OTIMIZAÇÃO

DOCUMENTAÇÃO NO GITHUB E GESTÃO DO PROJETO DESENVOLVIDA NO JIRA SOFTWARE

DOCUMENTAÇÃO DO PROJETO DE FORMA CLARA E DE FÁCIL ACESSO

Tecnologias Digitais Obrigatórias

slack Office

Conceitos específicos

Matematicamente, queremos a minimização do custo total de transporte, a qual é dada por:

Min
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

onde:

- x_{ij} é a quantidade de itens transportados da fábrica i para o destino / (variáveis de decisão);
- c_{ij} é o custo unitário de transporte da fábrica i para o destino; (constantes);
- m é o número de fábricas;
- $n \not\in o$ número de destinos (centros de consumidores).

5.2 PROBLEMAS DE TRANSPORTE

Um tipo de problema real muito especial e comum de aplicação de Programação Linear é conhecido como Problema de Transporte. Esta classe de problemas recebeu este nome porque seu método de resolução, denominado Método de Transporte, foi inicialmente utilizado para determinar o menor custo de transporte entre diversas fábricas de um produto e diversos centros consumidores. O Método de Transporte resolve esta classe de problemas de programação linear de uma maneira mais eficiente que o Simplex tradicional. Para os leitores curiosos em conhecer o método, sugerimos a leitura do capítulo referente aos problemas de transporte em Hillier & Lieberman (1995).

O Método de Transporte foi especialmente utilizado antes da era da microcomputação. Com o advento dos computadores pessoais, cada vez mais rápidos e com maior capacidade de processamento, diversos sistemas automatizados de resolução de Problemas de Programação Linear têm sido lançados, os quais tornam dispensável a aplicação do Método de Transporte em sua forma original. No entanto, a maneira como o problema pode ser equacionado permanece a mesma.

Requisitos Funcionais do projeto

- Uma estrutura de banco de dados relacional
- Uma tela de BI mostre a produtividade mensal dos veículos (relação entre outputs e inputs) e indicadores gerais
- Uma tela BI com evolução dos custos por km de cada rota, filtrando por fábricas
- Uma tela BI com evolução dos custos por unidade transportada de cada rota, filtrando por fábricas

Papel das disciplinas na API 3

Disciplinas	Função no Projeto	Tecnologias específicas para o Proje	Tecnologias de apoio para o Projeto	Contexto para o Projeto	Eixo humano do portfólio em função do Projeto
Gestão tributária nas operações logísticas	Promover tecnologia específica	Análise de custos logísticos			Agrega competência profissional específica do
					curso
Administração de Materiais	Promover tecnologia específica	Análise de produtividade			Agrega competência profissional específica do
					curso
Pesquisa Operacional	Promover tecnologia de apoio	Análise de otimização			Agrega capacidade lógica + gramática do mundo
					digital
Economia e Finanças Empresariais	Promover contexto			Conceitos de economia aplicados na análise de transportes	Agrega competência profissional
					Agrega competencia profissional
Fundamentos da gestão de qualidade	Promover contexto			Conceitos e ferramentas de gestão da qualidade (Diagrama de	Agrega competência profissional
			/	Ishikawa)	Agrega competencia profissional
Espanhol II	Promover tecnologia de apoio		Uso de termos técnicos e específicos da área		Agrega gramática de comunicação
Inglês III	Promover tecnologia de apoio	-	Uso de termos técnicos e específicos da área	<u> </u>	Agrega gramática de comunicação
1	•				

O que se espera ao final da API3

Demonstrar conhecimento dos conceitos de custos logísticos

• Aplicar conhecimento de produtividade em contexto real

- Desenvolver modelagem para problema de otimização
- Aplicar linguagem da programação (Python) para resolver problemas de otimização
- Saber usar (com ajuda ou autonomia) as tecnologias para capturar, tratar, organizar, armazenar e apresentar dados característicos

Avaliação

- Para as Hard Skills, cada sprint possui um peso específico para a média do aluno, sendo:
 - Sprint 1 = 1
 - Sprint 2 = 2
 - Sprint 3 = 2
 - Sprint 4 = 2
- Nota total de Hard Skills com os pesos de cada Sprint = 7
- Nota total de Soft Skills = 3

Soft Skills avaliadas

- ✓ Adaptabilidade
- ✓ Colaboração
- ✓ Comunicação
- ✓ Autonomia
- ✓ Proatividade