Project Planning Phase

Milestone and Activity List

Date	22 October 2022	
Team ID	PNT2022TMID18534	
Project Name	Digital Naturalist AI enabled tool for	
	Biodiversity Researchers	

Milestone and Activity List:

S.No	Milestone	Activities	Team Members
1.	Data Collection	Create Train and Test Folders	Shri Kamal S Soundhararajan S Shobanram R
2.	Image Preprocessing	Import ImageDataGenerator Library and Configure	Shankar Subramaniyam G Shri Kamal S
3.	Image Preprocessing	Apply ImageDataGenerator functionality to Train and Test set	Shri Kamal S Shankar Subramaniyam G Soundhararajan S
4.	Model Building	Import the required model building libraries	Shankar Subramaniyam G Shobanram R
5.	Model Building	Initialize the model	Shankar Subramaniyam G Shobanram R Soundhararajan S
6.	Model Building	Add the convolution layer	Shankar Subramaniyam G Soundhararajan S
7.	Model Building	Add the pooling layer	Shri Kamal S Shankar Subramaniyam G Soundhararajan S
8.	Model Building	Add the flatten layer	Shobanram R Soundhararajan S

9.	Model Building	Adding the dense layers	Shankar Subramaniyam G Shobanram R Soundhararajan S
10.	Model Building	Compile the model	Shobanram R Soundhararajan S
11.	Model Building	Fit and save the model	Shri Kamal S Shankar Subramaniyam G Soundhararajan S
12.	Test the model	Import the packages and load the saved model	Soundhararajan S Shri Kamal S

13.	Test the model	Load the test image, pre- process it and predict	Soundhararajan S Shri Kamal S Shobanram R Shankar Subramaniyam G
14.	Application Building	Build a flask application	Shri Kamal S Shobanram R
15.	Application Building	Build the HTML page	Soundhararajan S Shri Kamal S Shobanram R
16.	Application Building	Output	Soundhararajan S Shri Kamal S Shankar Subramaniyam G
17.	Train CNN Model on IBM	Register for IBM Cloud	Soundhararajan S Shri Kamal S Shankar Subramaniyam G
18.	Train CNN Model on IBM	Train Image Classification Model	Shri Kamal S Shankar Subramaniyam G