

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Fredag 18. desember 2009 kl. 9.00 – 13.00.

Oppgavesettet er på 3 sider. Tillatte hjelpemidler: lommekalkulator.

Alle oppgaver skal besvares Sensurfrist 18. januar 2010.

Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (5p + 5p + 7p)

ENTEN

Vi antar at vi har en løsning som inneholder 0,01 M toverdig bly. Denne skal titreres mot en 0,02 M standard EDTA-løsning. Titreringen utføres ved pH 10 og med Erio T som indikator. Tartrat (salt av vinsyre) kan brukes for å holde bly i løsning under hele titreringsanalysen (EDTA komplekset med bly er sterkere enn tartrat komplekset med bly). Nødvendig data er gitt i Tabell 1.

- a. Kontroller ved hjelp av beregning om det er nødvendig å benytte tartrat for å holde bly i løsning under hele titreringsanalysen ved pH 10.
- b. Beregn den teoretiske gjenværende Pb²⁺ konsentrasjonen ved ekvivalenspunktet for denne titreringen.
- c. Beregn titrerfeilen for denne titreringen hvis man antar at gjenværende blykonsentrasjon er 1 * 10⁻⁸ M, og man kan se bort fra eventuelle interferenser og kompleksdannelse med indikatoren. Kommenter resultatet.

Tabell 1. DATA $(H_4X = EDTA)$

$HX^{3-} = H^+ + X^{4-}$	$K_1 = 5.50 * 10^{-11}$
$Pb^{2+} + X^{4-} = PbX^{2-}$	$K_{PbX}^{2} = 1.10 * 10^{18}$
Pb(OH) ₂	$K_{\rm sp} = 1.43 * 10^{-20}$

ELLER

25 ml av en 0,02 M Fe²⁺ løsning skal titreres mot 0,04 M Ce⁴⁺ løsning, titreringen skjer i 1 M H₂SO₄. Reaksjonsligningen som legges til grunn er Fe²⁺ + Ce⁴⁺ = Fe³⁺ + Ce³⁺ og de gjeldene standard elektrodepotensialene er $E_{Ce}^0 = 1,44 \text{ V}$ og for $E_{Fe}^0 = 0,68 \text{ V}$ (i 1 m H₂SO₄).

- a. Beregn det teoretiske potensialet ved ekvivalenspunkt for titreringen.
- b. Beregn teoretisk gjenværende Fe(II) konsentrasjon ved ekvivalenspunkt.

c. Vi tenker oss at vi har en indikator som skifter farge ved 1,2 V (mot standard hydrogen elektroden), beregn titrerfeilen i prosent. Har vi undertitrert eller overtitrert?

Oppgave 2(6p + 4p)

Under oljeproduksjon injiseres vann eller gass i injeksjonsbrønner. Hvis sjøvann brukes for injeksjon, vil det kunne oppstå problemer om dette kommer i kontakt med vann fra oljekilden (formasjonsvann). Problemet oppstår fordi sjøvann inneholder sulfat i området 0,028 M og formasjonsvannet kan inneholde Ba²⁺ i området 0,0015 til 0,015 M, dermed kan man få utfelling av bariumsulfat i blandingsvannet. For å hindre tiltetting av røyrsystemer må det enten tilsettes kostbare kjemikalier, eller rør må skiftes ut noe som er en svært kostbar opperasjon.

Et oljeselskap ønsker å bestemme om det er Ba^{2+} (eller indirekte SO_4^{2-}) i det aktuelle vannet ved hjelp av en titreringsmetode. Tilstedeværelse av Ba^{2+} indikerer at det ikke er problemer – siden det da ikke er felt ut med sulfat. Vi tenker oss at det er mulig å bringe vannprøver opp til et lite laboratorium om bord på oljeplattformen.

- a. Foreslå en metode der det brukes komplekstitrering med EDTA til bestemmelse av Ba²⁺ for blandingsvannet, der det kan sees bort fra interferenser. Vi tenker oss imidlertid at det ikke finnes noen egnet indikator for Ba²⁺, noe det må tas hensyn til når metoden utarbeides.
- b. I metoden over kunne vi bort fra interferenser, vi får imidlertid oppgitt at vannet blant annet inneholder ionene som gitt i tabell 2. Med utgangspunkt i informasjonen i tabell 2 og de gitte stabilitetskonstantene for metall komplekser med EDTA gitt i tabell 3, forklar hvorfor metoden skissert over nå vil være lite egnet.

Tabell 2 Ioner i aktuelt formasjonsvann

	Konsentrasjon (M)			
Ca ²⁺	0,050			
Ba ²⁺	0,015			
Sr ²⁺	0,006			
Na ⁺	1,278			
K ⁺	0,010			
Mg^{2+}	0,021			

Tabell 3 Dannelseskonstanter (stabilitetskonstanter) for metall-EDTA komplekser (K_{MY})

	Ca ²⁺	Ba ²⁺	Sr ²⁺	Na ⁺	K ⁺	${ m Mg}^{2+}$
K_{MY}	5,0*10 ¹⁰	6,0*10 ⁷	4,3*10 ⁸	$0,46*10^2$	$0,006*10^2$	4,9*10 ⁸

Oppgave 3. (5p + 3p + 6p + 5p)

- a. Beskriv kort prinsippene som danner grunnlag for analytisk bruk av absorpsjon og emisjon i spektroskopi.
- b. Forklar kort hvorfor man generelt har bedre følsomhet ved bruk av elektrotermisk atomabsorpsjonsspektroskopi (AAS) sammenlignet med flamme AAS.

- c. Gi en detaljert redegjørelse for hvordan jern(III) kan bestemmes spektrofotometrisk, og angi omtrentlig deteksjonsgrense for denne metoden.
- d. Beskriv kort prinsippet for Inductively Coupled Plasma Mass Spectrometry (ICP-MS), og hva metoden benyttes til. Angi omtrentlig deteksjonsgrense.

Oppgave 4. (5p + 5p + 4p)

- a. Forklar forskjellen mellom iodometri og iodimetri, og illustrer med eksempler på begge teknikkene.
- b. Beskriv detaljert en måte å innstille standard tiosulfatløsning på. Angi sentrale reaksjonsligninger for innstillingen.
- c. Skisser prinsippene og bruksområde for Volhard titrering og Mohr titrering.

Oppgave 5. (10p)

Kryss av for riktig eller uriktig påstand

	Riktig	Galt
Potensiometri bygger på måling av ledningsevne		
Ioneselektive elektroder har typisk deteksjonsgrense i område 10 ⁻⁶ M		
Responsen til ioneselektive elektroder er uavhengige av temperaturen		
Den indre løsningen i en pH elektrode er 0.1M NaOH		
Voltammetri et en analytisk metode som spesielt egner seg godt til å bestemme alkali og jordalkaliemetaller		
I voltammetri måler vi i totalmengden av et metall		
Hvis man ikke har 100 % strømutbytte i coulometriske analyser vil man få en positiv analysefeil		
I elektrogravimetri og coulometri foregår målingen ved 0 strøm		
I elektrogravimetri uten kontroll av potensialet på arbeidselektroden holdes potensialet for cellen på et konstant nivå gjennom elektrolysen		
I potensiostatisk coulometri observeres fargeendring for en indikator og man regner seg tilbake til konsentrasjon ved å bruke endring i celle potensial før og etter analyse		