Simulations in Mechatronic Design						
Title of exercise	Ex. 4 – Modelling a stepping motor in MATLAB/Simulink environment					
Name and surname	Harshit Verma	Date	14/06/24			
Group	1					
Academic year	2023/2024	No. of points	Σ	/7		

1. Mathematical model of the stepping motor and the control system

$$M_e = -M_m \sin(\delta)$$
,
 $\delta = Z_r [\gamma - \gamma_u(t)]$

$$\gamma_u(t) = \gamma_{u0} E(1 + f_k t),$$

$$(J_s + J_{red}) \frac{d^2 \gamma}{dt^2} + D_m \frac{d \gamma}{dt} + (M_F + M_{Fred}) sgn \left\{ \frac{d \gamma}{dt} \right\} + M_{red} = M_e$$

Symbol explanation Symbol (and value) Name of the quantity / parameter Unit Yuo Basic step angle degrees fk 1/s Constant commutation frequency Zr Number of the rotor teeth Mm Maximum torque Nm Me Electromagnetic torque of the motor MF Internal friction torque N⋅m **MFred** Mechanical loads reduced to the motor shaft Nmm Damping factor $N \cdot m / rad/s$ Dm

Symbol explanation				
Symbol (and value)	ool (and value) Name of the quantity / parameter U			
Mred	Mechanical loads reduced to the motor shaft	Nmm		
Js	Mass moment of inertia of the rotor	Kg·m2		
Υ	rotor rotation angle	degrees		
Jred	Mechanical loads reduced to the motor shaft	Nmm		
delta	Incompatibility angle δ of the rotor	degrees		
t	Time	S		
E	Entier function (the integer part of the real number in parentheses)	eger part of the real number in 1		
Yu(t)	instantaneous position of stable equilibrium of the rotor	antaneous position of stable equilibrium of the rotor degrees		

L.p.	Loading torque M _{red}	Pull-in frequency f		
1	0.10	20		
2	0.20	18		
3	0.25	15		
4	0.30	12		
5	0.35	10		

4. A simulation model of the motor together with a model of the control system

