Let \mathcal{A} be a good category (abelian/exact/triangulated) and \mathcal{W} a full subcategory of \mathcal{A} closed by direct summands and extensions, and consider the category $\underline{\mathcal{A}} = \frac{\mathcal{A}}{\mathcal{W}}$.

Let $(\mathcal{X}, \mathcal{Y})$ be a orthogonal pair in $\underline{\mathcal{A}}$ and consider the following classes in $\widehat{\mathcal{A}}$:

$$\mathcal{T} = \{ T \in \mathcal{A} | \underline{T} \in \mathcal{X} \}$$
$$\mathcal{F} = \{ F \in \mathcal{A} | F \in \mathcal{Y} \}.$$

Lemma 1. In the previous notation, $(\mathcal{T}, \mathcal{T}^{\perp})$ is a orthogonal pair.

Proof. In order to prove it we need to show that $^{\perp}(\mathcal{T}^{\perp}) = \mathcal{T}$. Let $M \in ^{\perp}(\mathcal{T}^{\perp})$, this means that

$$\mathcal{A}(M,Y) = 0 \tag{1}$$

whenever

$$\mathcal{A}(T,Y) = 0 \,\forall T \in \mathcal{T}.\tag{2}$$

However, if $\mathcal{A}(T,Y)=0 \ \forall T\in\mathcal{T}$, then $\underline{\mathcal{A}}(\underline{X},\underline{Y})=0 \ \forall \underline{X}\in\mathcal{X}$. Hence, $\underline{Y}\in\mathcal{Y}$. So $\underline{\mathcal{A}}(\underline{M},\underline{Y})=0 \ \forall \underline{Y}\in\mathcal{Y}$. Hence, $\underline{M}\in\mathcal{X}$ and so $M\in\mathcal{T}$.

We have proved that $^{\perp}(\mathcal{T}^{\perp}) \subseteq \mathcal{T}$, the converse inclusion is trivial.

Remark. The dual statement holds for \mathcal{F} . Notice that have we also proved that if $\mathcal{A}(T,Y)=0 \ \forall T\in\mathcal{T}$, then $\underline{Y}\in\mathcal{Y}$ and hence $Y\in\mathcal{F}$. That is, $\mathcal{T}^{\perp}\subseteq\mathcal{F}$ and dually ${}^{\perp}\mathcal{F}\subseteq\mathcal{T}$.

Properties of $(\mathcal{T}, \mathcal{T}^{\perp})$ and $({}^{\perp}\mathcal{F}, \mathcal{F})$:

- 1. $^{\perp}\mathcal{F} \subseteq \mathcal{T}$ and $\mathcal{T}^{\perp} \subseteq \mathcal{F}$.
- 2. $\mathcal{T} \cap \mathcal{F} = \mathcal{W}$. In fact, $M \in \mathcal{T} \cap \mathcal{F}$ iff $\underline{M} \in \mathcal{X} \cap \mathcal{Y} = 0$, which happens iff $M <_{\oplus} W$ for some $W \in \mathcal{W}$, but \mathcal{W} is closed by direct summands, hence $M \in \mathcal{W}$.
- 3. If $N \in \mathcal{T}^{\perp} \cap {}^{\perp}\mathcal{F}$, then N = 0. It follows from $N \in \mathcal{T}^{\perp} \cap {}^{\perp}\mathcal{F} \subseteq \mathcal{F} \cap \mathcal{T} = \mathcal{W}$. But $\mathcal{W} \subseteq \mathcal{T}$, hence $\mathcal{A}(W', N) = 0 \ \forall W' \in \mathcal{W}$, in particular $\mathcal{A}(N, N) = 0$, i.e. N = 0.

It follows the following

Lemma 2. Let $(\mathcal{T}_1, \mathcal{F}_1)$ and $(\mathcal{T}_2, \mathcal{F}_2)$ be two orthogonal pairs in \mathcal{A} such that $\mathcal{T}_2 \subseteq \mathcal{T}_1$ and $\mathcal{T}_2 \cap \mathcal{F}_1 = 0$. Then, $\mathcal{W} = \mathcal{T}_1 \cap \mathcal{F}_2$.

add proof or at least explanation

If $\mathbb{t} = (\mathcal{T}, \mathcal{F})$ is a orthogonal pair in an abelian and locally small category \mathcal{A} , then \mathbb{t} is a torsion pair.

add proof?

Lemma 3. Let $(\mathcal{T}_1, \mathcal{F}_1)$ and $(\mathcal{T}_2, \mathcal{F}_2)$ be torsion pairs in \mathcal{A} such that $(\underline{\mathcal{T}}_1, \underline{\mathcal{F}}_2)$ is a orthogonal pair in $\underline{\mathcal{A}}$. Then $\operatorname{add}(\mathcal{T}_2 * \mathcal{W}) = \mathcal{T}_1$ and $\operatorname{add}(\mathcal{W} * \mathcal{F}_1) = \mathcal{F}_2$.

Proof. Let T_1 be in \mathcal{T}_1 and consider its approximation sequence

Explain this better

$$t_2(T_1) \to T_1 \xrightarrow{f} f_2(T_1) \xrightarrow{+} .$$
 (3)

Consider the following diagram

$$t_{2}(T_{1}) \longrightarrow \widehat{T}_{1} \longrightarrow W$$

$$\downarrow \qquad \qquad \downarrow \phi$$

$$t_{2}(T_{1}) \longrightarrow T_{1} \stackrel{f}{\longrightarrow} f_{2}(T_{1})$$

$$(4)$$

where the square on the right is a homological pullback, and the arrow $\phi: W \to f_2(T_1)$ is such that $f = \phi \circ \gamma$ for some $\gamma: T_1 \to W$, since $\underline{\mathcal{A}}(T_1, f_2(T_1)) = 0$.

Then, there exist a (non necessarely unique) $\eta: T_1 \to \widehat{T}_1$ making the following diagram commute.

Hence,
$$T_1 <_{\oplus} \widehat{T}_1 \in \mathcal{T}_2 * \mathcal{W}$$
, i.e. $\operatorname{add}(\mathcal{T}_2 * \mathcal{W}) = \mathcal{T}_1$. Dually, $\operatorname{add}(\mathcal{W} * \mathcal{F}_1) = \mathcal{F}_2$.