Mininet @ Stanford

Brian O'Connor
Te-Yuan Huang
Vimal Jeyakumar
Bob Lantz

Where Mininet is used

- Introduction to Computer Networking
 - CS144
 - In-class exercises
 - Demos
 - Assignment Platform
 - Online MOOC
 - Assignment Platform
- Advanced Topics in Networking (CS244)
 - Assignments
- Graduate Student Research

Introduction to Computer Networking

- In-class exercises
 - Bufferbloat
- Demos
 - DHCP Attack
 - BGP Spoofing
- Assignment Platform (replaced VNS)
 - Static IP Router
 - NAT
 - (Simple OSPF Router)

Assignment Platform

Assignment

 Build a simple router that handles TCP, UDP, & ICMP

Environment

- Mininet topology provided to emulate webservers and tie in students' code
- Standalone VM for online students
- EC2 for Stanford course

Assignment

- → Pick a paper
- → Reproduce a key result, or challenge it (with data)
- → You have:

\$100 EC2 credit, 3 weeks, and must use Mininet

TCP Daytona: Congestion Contro with a Misbehaving Receiver

Wide range of projects: transport protocols, data center topologies, and queueing.

CoDel HULL **MPTCP** Wireless

Project Topics Outcast

Incast

DCTCP

Jellyfish

Flow Completion Time

Hedera

DCell

TCP Initial Congestion Window Misbehaving TCP Receivers **RED**

TCP Daytona: Congestion Control with a Misbehaving Receiver

37 students, 18 projects

CoDel HULL **MPTCP** Wireless

Outcast Jellyfish

DCTCP

Incast

Flow Completion Time

Hedera

DCell

TCP Initial Congestion Window Misbehaving TCP Receivers **RED**

TCP Daytona: Congestion Contro with a Misbehaving Receiver

37 students, 18 projects 16 replicated

CoDel HULL **MPTCP Wireless**

Outcast

Jellyfish

DCTCP

Incast

Flow Completion Time

Hedera

DCell

TCP Initial Congestion Window Misbehaving TCP Receivers

RED

TCP Daytona: Congestion Contro with a Misbehaving Receiver

37 students, 18 projects 16 replicated, 4 with extra results

CoDel HULL **MPTCP Wireless**

Outcast Jellyfish

DCTCP

Incast

Flow Completion Time

Hedera

DCell

TCP Initial Congestion Window Misbehaving TCP Receivers **RED**

Exploring Outcast

Multipath TCP over WiFi and 3G

TCP Daytona: Congestion Contro with a Misbehaving Receiver

DCell: A Scalable and Fault-Tolerant Network Structure for Data Centers

Jellyfish vs. Fat Tree

Choosing the Default Initial

Seeing RED

Why Flow-Completion Time is th Right Metric for Congestion Control

MPTCP Wireless Performance

Solving Bufferbloat - The CoDel Way

ife's not fair, neither is TCP (.. nder the following conditions

Fairness of Jellyfish vs. Fat-Tre

OCTCP and Queues

DCell: A Scalable and Fault-Folerant Network Structure for Data Centers

Hede

Increasing TCP's Initial

HULL: High Bandwidth, Ultra

TCP Incast Collapse

37 students, 18 projects16 replicated, 4 with extra results2 failed to replicate

CoDel HULL

MPTCP Wireless

Outcast Jellyfish

DCTCP

Incast

Flow Completion Time

Hedera

DCell

TCP Initial Congestion Window Misbehaving TCP Receivers RED

2013

48 students, 24 projects

18 replicated, 3 partially replicated,

3 failed to replicate

Mosh

Jellyfish

TCP Rate Reduction

TCP Initial Window

TCP Fast Open

Video Streaming Rate

Switch Scheduling *

pFabric

Scaling Consistent Updates

TCP Pacing

DCell

Low Rate TCP DoS Attack

DCTCP

MPTCP

Hedera

Alfalfa

2014

31 students, 16 projects

12 replicated, 3 partially replicated,

1 failed to replicate

Sprout Misbehaving TCP receivers

Jellyfish Flow Completion Time

TCP Fast Open Video Streaming Rate

Mosh MPTCP Wireless

Bro Network Dcell

MPTCP TCP Initial Congestion Window

http://reproducingnetworkresearch.wordpress.com/

REPRODUCING NETWORK RESEARCH

network systems experiments made accessible, runnable, and reproducible

projects / about / contribute

Search ...

Can network systems research papers be replicated?

This blog details stories from Stanford CS244 students and researchers anywhere who have been inspired to share their research, largely using the Mininet-HiFi network emulator on EC2 instances.

For more details, check out the Projects gallery, the About page, or Contribute.

Tweet/post/send them to your colleagues, comment at the bottom of each post, or even replicate each blog post using the provided instructions!

CS244 '14: TCP CONGESTION CONTROL WITH A MISBEHAVING RECEIVER

June 5, 2014 by rileyclint

2 Comments

TCP Congestion Control with a Misbehaving Receiver Clint Riley (clintr@) Gavilan Galloway (gavilan@) Introduction Much of the Internet was constructed with a benevolent world in mind. The goal was to [...]

* * * * * * * * * * * * * 2 Votes

Questions?

- Introduction to Computer Networking
 - CS144
 - In-class exercises
 - Demos
 - Assignment Platform
 - Online MOOC
 - Assignment Platform
- Advanced Topics in Networking (CS244)
 - Assignments
- Graduate Student Research