

Test the Tencent Meeting or VooV meeting (https://voovmeeting.com/) • For those who are online, please turn on your video camera and microphone, and say hello to everyone

Symbols used in course slides

Symbols & Meaning

• Extensive reading suggested

· Wikipedia looking-up suggested

· Group discussion encouraged

Homework point

• In-class discussion

Course Introduction

- A comprehensive introductory course on Machine Learning
 - · for graduate students and senior undergraduate students
- The course will cover
 - basic concepts of machine learning and pattern recognition
 - basic mathematical development for some major ML methods
 - · introduction to a broad range of ML methods and theories
- A Balanced Course on Machine Learning
- Prerequisites
 - · English, calculus, linear algebra, probability and statistics, basic programming skills (in Python, C/C++, R, Matlab or Octave)

Course Introduction

- It is an EMI course, not an English course.
 - · Do not take this course for learning English,
 - · but do use this course to enhance your habit/skill of thinking/studying in English.
 - Working language in class: English (including Q&As)
 - Homework and exams: answered can be in Chinese or English

Composition of the course

- Lectures
- · In-class discussions
- · After-class discussions
- · TA office hours (appointmentbased)
- Readings and Reviews
 - · Slides, Reference books, Online materials
- Homework exercises
 - · Theoretical problems (Pr)
 - Computer exercises (Ex)

- Mid-term exam
- Course project
- Final exam

Composition of the course

- Grading (up to adjustment)
 - 40% homework (Pr+Ex)
 - 20% course project
 - 5% midterm exam
 - 35 final exam
- D

- The honor code:
 - Group learning and reference-checking encouraged, but homework must be done independently.
 - Collaborations, discussions, references must be acknowledged in the report.
 - Plagiarism and other misconducts will get negative scores.

Week	Date	Course content	動情華大学
1	09/16	Chapter 1. Introduction	
		Chapter 2. Pattern Classification	
2	09/23	Part I. Deterministic Machines for Supervised Learning	
		Chapter 3. Classical Linear Machines	
3	09/30	Chapter 4. Multi-category Classification and Nonlinear Classification	
4	10/07	Chapter 5. Classical Artificial Neural Networks	
		Course Project Introduction	
5	10/14	Chapter 6. Support Vector Machines and Kernel Machines	
6	10/21	Chapter 7. Essentials of Statistical Learning Theory	
7	10/28	Chapter 8. Feature Selection and Extraction for Classification	
		Chapter 9. Decision Trees, Random Forests and Ensemble Learning	
8	11/04	Mid-term exam	
		Part II. Probabilistic Learning Machines	
		Chapter 10. Bayesian Decision Classifiers	

Syllabus

6

	8	11/04	Part II. Probabilistic Learning Machines	(1) 消華大学		
			Chapter 10. Bayesian Decision Classifiers			
	9	11/11	Chapter 11. Probability Density Estimation			
	9	11/11	Chapter 12. Hidden Markov Models and Introduction to Graphic Models			
	10	11/18	Part III. Machines for Unsupervised Learning			
			Chapter 13. Clustering: Unsupervised Pattern Recognition			
	11	12/25	Chapter 14. Model-based Clustering and EM Algorithms			
			Chapter 15. Manifold Learning, Dimensionality Reduction and Visualization			
	12	12/02	Chapter 16. Unsupervised Learning with Neural Networks: SOM and RBM			
	13	12/09	Part IV. Deep Learning and Beyond			
			Chapter 17. Convolution Neural Networks			
	14	12/16	Chapter 18. Recurrent Neural Networks, LSTM and Transformers			
	15 12/23	12/22	Chapter 19. Deep Neural Networks and Generative Models			
		Chapter 20. Ethics Issues in Machine Learning and AI				
	16		Final Exam			
	17		Course Project Report Due	_		
Syllabus (cont'd) 13						

Reference Books

- 张学工、汪小我《模式识别(第四版):模式识别与机器学习》,清华大学出版社,2021.8
- R.O. Duda P.E. Hart, D.G. Stork, *Pattern Classification* (2nd edition), John Wiley & Sons, Inc, 2001 (Chinese translation 《模式分类》 also available)
- S. Raschka & V. Mirjalili, *Python Machine Learning* (2nd edition), Birmingham, Packt Publishing, 2017
- Y. S. Abu-Mostafa, M. Magdon-Ismail, H-T. Lin, *Learning from Data*, AMLbook.com, 2012
- Christopher M. Bishop, Pattern Recognition and Machine Learning, NY: Springer, 2006
- T. Hastie, R. Tibshirani, J. Friedman, *The Elements of Statistical Learning* (2nd edition), Springer, 2016
- S. Shalev-Shwartz & S. Ben-David, *Understanding Machine Learning: From Theory to Algorithms*, Cambridge University Press, 2014
- I. Goodfellow, Y. Bengio, A. Courville, *Deep Learning*, MIT Press, 2017
- · Xuegong Zhang, Learning Machines: a Balanced Book on Machine Learning, to be expected

14

圆浦羊大学

Lecture Slides

- Available on our course homepage in the Web Learning system
- For students of this course only
- Designed to assist teaching and after-class review
- Not designed for self-study
 - You may find the slides hard to fellow if you do not attend the lectures.

15

Course Projects

- To be assigned in Oct.
- The project can be completed in groups
 - Each group should be of 1~3 students
 - · Members of the same group may get different scores
 - Group-forming and project selection in mid-Oct.
- Project report should include
 - A formal technical report (ready for journal submission)
 - Supplementary materials: codes/scripts, technical details, all experiment results, other materials that are necessary for reproducing the work

16

about the homework

- Problem sets: one week time, deadline at 23:00pm Wed
- Computer exercises: two weeks time, deadline at 23:00pm Wed
- · Later submissions:
 - To be sent to TAs via emails, at the cost of a 10% daily deduction of the score, unless you have got written permission before the deadline.
 - e.g., If one exercise is 10 points and your completion earns 8, you will get

$$8 \times (1 - 0.1 \times 3) = 5.6$$
 points if submitted 3 days later, and

Any questions?

Can I take this course if my math/coding background is weak?

- Prerequisites
 - English

- Please quit
 if you don't know the meaning
 of the underlined words.
- Calculus: comfortable with <u>functions</u>, <u>derivatives</u> and <u>integrals</u>
- Linear algebra: comfortable with <u>vectors</u> and <u>matrixes</u>
- Probability and statistics: comfortable with <u>random variables</u> and <u>probability distributions</u>
- Basic programming skills: comfortable with <u>coding</u> in any computer language, such as Python, C/C++, R, Matlab or Octave

What you may have not heard of

@ | 捕筆大学

- Performance assessment and experiment design
- Connections among major schools of ML methods
- · Relations of machine learning, pattern recognition and Al
- Statistical learning theory and regularization
- · Learning vs. inference vs. discovery
- · Many discussions and personal views
- Ethics of AI and machine learning

