```
import numpy as np # scientific computation
import pandas as pd # data handling
import matplotlib.pyplot as plt # plotting
# The following "magic command" allows figures to be displayed automatically in notebook
%matplotlib inline
```

raw_data = pd.read_csv("average-height-of-men-for-selected-countries.csv", sep=',')
raw_data.head()

Human Height (University of Tuebingen (2015)) Entity Code Year **0** Afghanistan AFG 1870 168.4 Afghanistan AFG 1880 165.7 2 Afghanistan AFG 1930 166.8 3 ALB 1880 170.1 Albania 4 Albania ALB 1890 169.8

```
# Let create a filter where the Entity is equal to United Kingdom
filter1 = (raw_data['Entity'] == "United Kingdom")
print(filter1)
```

```
0
        False
1
        False
2
        False
3
        False
4
        False
1245
        False
1246
        False
1247
        False
        False
1248
1249
        False
```

```
Name: Entity, Length: 1250, dtype: bool
```

```
filter1 = (raw_data['Entity'] == "United Kingdom")
data = raw_data[filter1]
data.head()
```

Entity Code Year Human Height (University of Tuebingen (2015))

Let extract the increased of height from 1900 to 1980
filter2= (data['Year'] >= 1900)
data = data[filter2]
data

	Entity	Code	Year	Human	Height	(University	of	Tuebingen	(2015))
1185	United Kingdom	GBR	1900						169.4
1186	United Kingdom	GBR	1910						170.9
1187	United Kingdom	GBR	1920						171.0
1188	United Kingdom	GBR	1930						173.9
1189	United Kingdom	GBR	1940						174.9
1190	United Kingdom	GBR	1950						176.0
1191	United Kingdom	GBR	1960						176.9
1192	United Kingdom	GBR	1970						177.1
1193	United Kingdom	GBR	1980						176.8

Let set the year entity to become index of the data
data = data.set_index(['Year'])
data

Entity Code Human Height (University of Tuebingen (2015))

Year			
1900	United Kingdom	GBR	169.4
1910	United Kingdom	GBR	170.9
1920	United Kingdom	GBR	171.0
1930	United Kingdom	GBR	173.9
1940	United Kingdom	GBR	174.9
1950	United Kingdom	GBR	176.0
1960	United Kingdom	GBR	176.9
1970	United Kingdom	GBR	177.1
1980	United Kingdom	GBR	176.8

[#] Let drop irrelevant columns of the data
data.drop(['Entity', 'Code'], axis=1, inplace=True)

data

Human Height (University of Tuebingen (2015))

Year	
1900	169.4
1910	170.9
1920	171.0
1930	173.9
1940	174.9
1950	176.0
1960	176.9
1970	177.1
1980	176.8

Let rename the Human height columns
data = data.rename(columns={'Human Height (University of Tuebingen (2015))': "Height(cm)"})
data

Height(cm)

Year	
1900	169.4
1910	170.9
1920	171.0
1930	173.9
1940	174.9
1950	176.0
1960	176.9
1970	177.1
1980	176.8

```
# Let build a linear model
# let calculate first the slope of two points (1900, 169.4) and (1980, 176.8)
#height = m * year + b
m = (176.8 - 169.4)/(1980 - 1900)
print("Slope = ", m)
```

```
Slope = 0.09250000000000007
# Let calculate Y-intercept of the point (1900, 169.4)
year = 1900
m = 0.0925
height = 169.4
b = height - m * year
print("Y-intercept = ", b)
     Y-intercept = -6.349999999999994
A linear model is: height = 0.0925 * year - 6.35
# Let compute the mean square error of the model
# Fisrt let compute the error of each year
data.index
errors = []
for year in data.index:
   prediction = m * year + b
   y = data.loc[year, 'Height(cm)']
   error = (prediction - y)**2
   errors.append(error)
print(errors)
     [0.0, 0.330624999999869, 0.0625, 2.9756249999999804, 3.240000000000041, 3.9006249999999
# the mean square error of the model
MSE = 1/len(errors) * sum(errors)
print("MSE= ", MSE)
print(np.mean(errors))
     MSE= 1.7569444444444364
     1.756944444444466
# the model line together with the data points
# the data points
heights = data['Height(cm)']
years = data.index
plt.plot(years, heights, 'r.')
# the model line
years = np.array([1900, 1980])
heights = 0.0925 * years - 6.35
plt.plot(years, heights, 'b-')
```

[<matplotlib.lines.Line2D at 0x7f947625d9b0>]

