

Probability and Statistics Descriptive Statistics for grouped and ungrouped data

Lecture 4. Class 1.

Time: 8:30- 10:30 Department: Bit

Review and Introduction

What is Statistics?

Science of gathering (تجميع), analyzing, interpreting, and presenting data

Population Vs Sample

- Population the whole: a collection of persons, objects, or items under study
- Sample a portion of the whole: a subset of the population

Descriptive vs. Inferential Statistics

- **Descriptive Statistics** statistics gathered on a group to describe or reach conclusions about that same group only.
- Inferential Statistics statistics gathered on sample data to reach conclusions about the population from which the sample was taken.

Descriptive Statistics

• <u>Descriptive statistics</u> are the tabular, graphical, and numerical methods used to summarize data.

Example:

The manager of Hudson Auto would like to have a better understanding of the cost of parts used in the engine tune-ups performed in the shop. She examines 50 customer invoices for tune-ups. The costs of parts, rounded to the nearest dollar, are listed below:

91	78	93	57	75	52	99	80	97	62
71	69	72	89	66	75	79	75	72	76
104	74	62	68	97	105	77	65	80	109
85	97	88	68	83	68	71	69	67	74
62	82	98	101	79	105	79	69	62	73

Tabular Summary

	Parts					
Cost (\$)	Frequency			Frequency		
50-59	2		4			
60-69		13	26			
70-79	16		32			
80-89		7	14			
90-99	7		14			
100-109		5	10			
Total		;	50	100		
التكرار النسبي = (تكرار الفئة / التكرار الكلي) * 100						

Graphical Summary (Histogram)

Numerical Descriptive Statistics

The most common numerical descriptive statistic is the <u>average</u> (or <u>mean</u>). Others: mode, median, variance, standard deviation, etc.

Statistical Inferences

Statistical Inference

 The process of using data obtained from a small group of elements (the <u>sample</u>) to make estimates and test hypotheses about the characteristics of a larger group of elements (the <u>population</u>).

Parameter vs. Statistic

Parameter معلمة— descriptive measure of the population
Usually represented by Greek letters

Statistic احصاءة —descriptive measure of a sample
Usually represented by Roman letters

Statistical Inferences

Population Parameters:

 μ : denotes population mean (expected value)

 σ^2 : denotes population variance.

 σ : denotes population standard deviation

Sample Parameters:

_{s²}: denotes sample mean

s: denotes sample variance.

: denotes sample standard deviation

Statistical Inferences

Process of Inferential Statistics

Data Measurement

Example:

- Students of a university are classified by the school using a nonnumeric label: *Business, Humanities, Education*, and so on.
- Alternatively, a numeric code could be used (e.g. 1 denotes Business, 2 denotes Humanities, 3 denotes Education, ...).
- Employment Classification: 1 for Educator; 2 for Construction Worker; 3 for Manufacturing Worker

Data Measurement

Nonparametric statistics:

- A class of statistical techniques that make few assumptions about the population
- Used with nominal and ordinal level data

Parametric statistics:

- A class of statistical techniques that contain assumptions about the population
- Used only with interval & ratio level data

Ungrouped data

have not been summarized in any way are also called <u>raw data</u>

Grouped data

have been organized into a frequency distribution

Example: Ages of a sample of managers

•	19			\sim 1 1 1	J. V
	42	26	32	34	57
	30	58	37	50	30
	53	40	30	47	49
	50	40	32	31	40
	52	28	23**	35	25
	30	36	32	26	50
	55	30	58	64	52
	49	33	43	46	32
	61	31	30	40	60
	74*	37	29	43	54

Frequency Distribution of Manager's Ages:

Class Interval	<u>Frequency</u>
20-under 30	6
30-under 40	18
40-under 50	11
50-under 60	11
60-under 70	3
70-under 80	1

Range and Class

<u>Data Range:</u> Range = Largest – Smallest

Ex: Range = 74 - 23 = 51

Number of Classes and Class Width

• The number of classes should be between 5 and 20.

Fewer than 5 classes cause excessive مفرط summarization.

More than 20 classes leave too much detail.

Class Width

Divide the range by the number of classes for an approximate class width Round up to a convenient number

Ex: Approximate Class Width = 51/6 = 8.5 Class Width = 10

Relative Frequency

Class Interval	<u>Frequency</u>		Relative Frequency
20-under 30	6	.12	
30-under 40	18	.36	
40-under 50	11	.22	
50-under 60	11	.22	
60-under 70	3	.06	
70-under 80	1	.02	
Total 50			1.00

Cumulative Frequency

Class Interval	<u>Frequency</u>		Cumulative Frequency
20-under 30	6	6	
20-under 30	6	6	
30-under 40	18	24	
40-under 50	11	35	
50-under 60	11	46	
60-under 70	3	49	
70-under 80		1	50
<u>Total</u>	50		

• Measures of central tendency yield تسفر عـن information about "particular places or locations in a group of numbers"

Common Measures of Location

Mode, Median, Mean, Percentiles, Quartiles

Cumulative Relative Frequencies

Class Interval	<u>Frequency</u>	<u>/</u>	RF Cu. Fr	<u>equency CRF</u>
20-under 30	6	.12	6	.12
30-under 40	18	.36	24	.48
40-under 50	11	.22	35	.70
50-under 60	11	.22	46	.92
60-under 70	3	.06	49	.98
70-under 80	1	.02	50	1.00
Total	50	1.00		

Mode

The most frequently occurring value in a data set

Bimodal -- Data sets that have two modes

Multimodal -- Data sets that contain more than two
modes

Example:

	40	40	39	37	37	35
Value 44 occurs 5 times	43	43	43	43	41	41
The mode is 44	45	44	44	44	44	44
	48	46	46	46	46	45

Median

- Middle value in an ordered array of numbers.
- Unaffected by extremely large and extremely small values
- Median is determined without using all information from the data set.

Computational Procedure

- Arrange the observations in an ordered array.
- If there is an odd number of terms, the median is the middle term of the ordered array.
- If there is an even number of terms, the median is the average of the middle two terms.

Example:

- Ordered Array: 3 4 5 7 8 9 11 14 15 16 16 17 19 19 20 21 22
 - There are 17 terms in the ordered array.
 - Position of median = (n+1)/2 = (17+1)/2 = 9
 - The median is the 9th term, 15.
- Ordered Array: 3 4 5 7 8 9 11 14 15 16 16 17 19 19 20 21
 - There are 16 terms in the ordered array.
 - Position of median = (n+1)/2 = (16+1)/2 = 8.5
 - The median is between the 8th and 9th terms: 14.5.

Arithmetic Mean

- Commonly called 'the mean': the average of a group of numbers
- Affected by each value in the data set, including extreme values
- Computed by summing all values in the data set and dividing the sum by the number of values in the data set

Population Mean

$$\mu = \frac{\sum_{i=1}^{N} X_{i}}{N} = \frac{X_{1} + X_{2} + \dots + X_{N}}{N}$$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

<u>Sample Mean</u>

THANK YOU