

Internal Audit Analytics Exercise

These exercises are intended for Uber and/or Uber employees only. They are confidential and not to be circulated, shared or redistributed in any format, in part or in their entirety. This includes both the exercises and your answers, analysis and code.

Understanding the needs of key stakeholders and performing analysis/prototyping solutions to help them better perform in their role is a key undertaking of the Internal Audit Core Analytics & Science team. In this exercise, you will be using your data analysis skills to analyze EMEA rideshare data and use it to draw a conclusion for the 2020 strategy for the Riyadh market.

Part 1: SQL

In our day-to-day setting, one of the initial steps in approaching a problem is locating, cleaning, and compiling data from Uber's datastore. Using the CSV sample of trips in Riyadh as your end result and the table schema on the next page, write a single SQL query that would return the provided information. Feel free to adopt any SQL dialect.

Part 2: Analysis & Presentation

- Please perform an analysis using the dataset provided in Part 1. The goal is to suggest action(s) or change(s) to your stakeholder through your findings. Use R or Python to generate an analysis that could be shared and reviewed by other analysts.
- Prepare a presentation that clearly explains your findings, conclusions and recommendations based on this analysis.

Part 3: Tooling

- Use the data from Part 1 as an input to build a visualisation tool in R or Python that would help your stakeholders understand and monitor the suggestion that comes out of your analysis over time.
- You should be comfortable explaining how the tool would be utilised by your stakeholders, updated on an on-going basis.
- We will award bonus points to candidates who create the tool in a scaleable manner such that it can be updated on an on-going basis, will be able to handle interchangeable and full population datasets.

<u>Note:</u> If asked to come to an on-site interview, you will have the opportunity to present the tool and your process to the interview panel which will be a cross functional group of stakeholders at Uber.

Table Schema for Part 1

Table 1: trips

Column Name	Datatype
city_id	int
completed_trip	boolean
distance_to_pickup	int
driver_id	str
dropoff_geo	str
dropoff_local_time	timestamp
dropoff_utc_time	timestamp
entered_destination	boolean
esttime_to_pickup	int
pickup_geo	str
pickup_local_time	timestamp
pickup_utc_time	timestamp
request_geo	str
request_local_time	timestamp
request_type	str
request_utc_time	timestamp
rider_id	str
surged_trip	boolean
time_to_pickup	int
trip_id	str
trip_status	str
vehicle_id	int

Table 2: cities

Column Name	Datatype
city_id	int
city_name	str
country_id	int
country_name	str
distance_unit	str
lat	float
Ing	float

local_currency	str
----------------	-----

Table 3: riders

Column Name	Datatype
active_city_id	int
first_trip_id	str
preferred_language	str
rider_app	str
rider_device	str
rider_email	str
rider_id	str
rider_trip_count	int
signup_date	timestamp

Table 4: drivers

Column Name	Datatype
active_city_id	int
driver_app	str
driver_device	str
driver_email	str
driver_id	str
driver_trip_count	int
first_trip_id	str
preferred_language	str
signup_date	timestamp
vehicle_ids	array

Table 5: bills

Column Name	Datatype
bill_id	str
cancel_fee_local	float
cancel_fee_usd	float

completed_trip	boolean
driver_id	str
entered_destination	boolean
exchange_rate	float
local_currency	str
paid_cash	boolean
partner_id	str
payment_type	str
product_category	str
request_type	str
rider_id	str
surged_trip	boolean
trip_distance_miles	float
trip_duration_seconds	int
trip_fare_local	float
trip_fare_usd	float
trip_id	str

Table 6: Vehicles

Column Name	Datatype
seat_count	int
vehicle_color	str
vehicle_id	int
vehicle_trip_count	int
vehicle_type	str