

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **05-059427**

(43)Date of publication of application : **09.03.1993**

(51)Int.CI.

C21D 6/00
C23C 8/22
// C22C 38/00
C22C 38/00
C22C 38/40

(21)Application number : **03-240620**

(71)Applicant : **SUMITOMO METAL IND LTD**

(22)Date of filing : **27.08.1991**

(72)Inventor : **MURAI NOBUHIRO**

(54) PRODUCTION OF WEAR RESISTANT STEEL

(57)Abstract:

PURPOSE: To produce a wear resistant steel where the mechanical properties required of a steel for machine structural use are provided and superior wear resistance is secured in a surface layer part without causing deterioration in toughness and also sufficiently satisfactory characteristics as a sliding part member for machinery are provided.

CONSTITUTION: A steel which has a composition consisting of 0.1-0.7% C, ≤2.0% Si, 1.0-17.0% Cr, ≤5.0% Ni, and the balance Fe with inevitable impurities or further containing one or ≥2 kinds among ≤5.0% Mo, 0.01-1.0% Nb, and 0.01-1.0% V is previously carburized to undergo the regulation of carbon content in a surface layer to a value in the range [exceeding the eutectoid point and below the A transformation point]. Air cooling is done to form the surface layer into a structure composed essentially of pearlite or bainite and then spheroidizing annealing is applied to the steel to form the surface layer part into a structure of [ferrite + spheroidal cementite]. Subsequently, carburizing treatment is made at 750-1000°C to regulate the carbon content in the surface to a value of ≥Acm transformation point, and successively, the steel is hardened from a temp. between 900 and 750°C and then tempered.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-59427

(43)公開日 平成5年(1993)3月9日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
C 21 D 6/00	D	9269-4K		
C 23 C 8/22		8116-4K		
// C 22 C 38/00	3 0 1 A	7217-4K		
	3 0 2 Z	7217-4K		
		38/40		

審査請求 未請求 請求項の数 4(全 6 頁)

(21)出願番号 特願平3-240620	(71)出願人 住友金属工業株式会社 大阪府大阪市中央区北浜4丁目5番33号
(22)出願日 平成3年(1991)8月27日	(72)発明者 村井 嘉宏 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内
	(74)代理人 弁理士 今井 級

(54)【発明の名称】 耐摩耗鋼の製造方法

(57)【要約】

【目的】 機械構造用鋼としての所要機械的特性を備えていることは勿論、表層部に韌性劣化を伴うことなく優れた耐摩耗性が確保され、機械類の摺動部部材として十分に満足できる耐摩耗鋼の製造手段を確立する。

【構成】 C : 0.1~0.7%, Si : 2.0%以下, Cr : 1.0~17.0%, Ni : 5.0%以下, を含むか、或いは更に Mo : 5.0%以下, Nb : 0.01~1.0%, V : 0.01~1.0 %, の1種又は2種以上をも含み、残部がFe及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超えるAc_{cm}変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、これに球状化焼純を施して表層部を〔フェライト+球状化セメンタイト〕組織とした後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAc_{cm}変態点以上に調整し、引き続いて900~750°Cより焼入れ処理してから焼戻し処理を施す。

1

【特許請求の範囲】

【請求項1】 重量割合にて

C : 0.1~0.7%, Si : 2.0%以下, Cr : 1.0~1
7.0%, Ni : 5.0%以下

を含み、残部がFe及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超えるAcm変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、続いてこれに球状化焼純を施して表層部を〔フェライト+球状化セメンタイト〕組織と成した後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAcm変態点以上に調整し、引き続いて900~750°Cより焼入れ処理してから焼戻し処理を施すことを特徴とする、耐摩耗鋼の製造方法。

【請求項2】 重量割合にて

C : 0.1~0.7%, Si : 2.0%以下, Cr : 1.0~1
7.0%, Ni : 5.0%以下, Mo : 5.0%以下

を含み、残部がFe及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超えるAcm変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、続いてこれに球状化焼純を施して表層部を〔フェライト+球状化セメンタイト〕組織と成した後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAcm変態点以上に調整し、引き続いて900~750°Cより焼入れ処理してから焼戻し処理を施すことを特徴とする、耐摩耗鋼の製造方法。

【請求項3】 重量割合にて

C : 0.1~0.7%, Si : 2.0%以下, Cr : 1.0~1
7.0%, Ni : 5.0%以下

を含有すると共に、更に

Nb : 0.01~1.0%, V : 0.01~1.0%

の1種又は2種をも含み、残部がFe及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超えるAcm変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、続いてこれに球状化焼純を施して表層部を〔フェライト+球状化セメンタイト〕組織と成した後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAcm変態点以上に調整し、引き続いて900~750°Cより焼入れ処理してから焼戻し処理を施すことを特徴とする、耐摩耗鋼の製造方法。

【請求項4】 重量割合にて

C : 0.1~0.7%, Si : 2.0%以下, Cr : 1.0~1
7.0%, Ni : 5.0%以下, Mo : 5.0%以下

を含有すると共に、更に

Nb : 0.01~1.0%, V : 0.01~1.0%

の1種又は2種をも含み、残部がFe及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超えるAcm変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、続いてこれに球状化焼純を施して表層部を〔フェライト+球状化セメンタイト〕組織と成した後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAcm変態点以上に調整し、引き續いて900~750°Cより焼入れ処理してから焼戻し処理を施すことを特徴とする、耐摩耗鋼の製造方法。

2

化セメンタイト〕組織と成した後、750~1000°Cの温度域で浸炭処理して表面の炭素量をAcm変態点以上に調整し、引き続いて900~750°Cより焼入れ処理してから焼戻し処理を施すことを特徴とする、耐摩耗鋼の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】この発明は、各種機器類の摺動部材（ピストン、シリングー、歯車、維手）用等として好適な耐摩耗性に優れた鋼の製造方法に関するものである。

【0002】

【従来技術とその課題】近年、自動車や産業機械類を中心とした軽量化と耐久性向上施策が推進されているが、これに伴い、構成部材となる鋼部品にも一層の高強度化、長寿命化が望まれている。このような状況下で特に注目される技術の一つに、歯車、軸の維手部等といった摺動部を伴う機械部品の耐摩耗性改善技術がある。

【0003】鋼部品の耐摩耗性向上に対しては、従来から“浸炭処理”が有効であることが知られている。しかしながら、通常の浸炭処理では、耐摩耗性に最も有効な「表面硬度の上昇」に限界がある。その理由は、表面硬化が“表面層の高炭素化”と“マルテンサイト変態の機構”のみによって叶えられるからであり、通常はピッカース硬さ(Hv)で800程度が限界である。

【0004】そこで、上記問題を解決するために“高炭素浸炭技術”が生み出された。この高炭素浸炭技術を用いると、上述した通常浸炭処理での表面硬化機構に加えて、硬質の炭化物をマトリックスの高炭素マルテンサイト中に分散させる効果も確保できるのでHv 850~900程度の表面硬度が得られ、鋼の耐摩耗性が著しく向上する。しかし、この方法にも次のような問題があった。即ち、“高炭素浸炭”は通常浸炭の場合よりも雰囲気のカーボンボテンシャル(C.P.)を上昇させて炭化物を析出させる技術であるが、この際に析出する炭化物は一般に網状又は塊状の粗大なものとなりがちで、これが機械構造用鋼として必要な韌性を劣化させるという不都合が指摘されたのである。

【0005】このため、高炭素浸炭処理を行うに際して事前浸炭を行い、引き続く冷却によって表層部をベイナイト、パーライト或いはマルテンサイト組織とし、このベイナイト、パーライト中の炭化物、或いは昇温中にマルテンサイトの中から生成する炭化物を炭化物析出浸炭の際の析出核として利用することで球状の炭化物を析出させようとの提案もなされた（特開昭55-69252号）。ところが、浸炭処理の前組織をパーライトにした場合には、パーライト中の炭化物はフレーク状であるので炭化物析出浸炭過程で十分に球状化された炭化物が析出し難く、また前組織をベイナイト、マルテンサイトにした場合には硬度が高くなるので前組織での加工が困難

となり、何れも耐摩耗鋼の製造手段としては好ましいものとは言えなかった。

【0006】このようなことから、本発明が目的としたのは、母材が機械構造用鋼としての所要機械的特性を備えていることは勿論、表層部に韌性劣化を伴うことなく優れた耐摩耗性が確保され、機械類の摺動部部材として十分に満足できる耐摩耗鋼の製造手段を確立することであった。

【0007】

【課題を解決するための手段】本発明者は、上記目的を達成すべく、特に前記高炭素浸炭処理の長所を生かしつつ浸炭層の韌性改善につながると考えられる析出炭化物を微細化する手段を求めて、「浸炭により鋼の表層部に炭化物を効果的に析出・分散させるためには、原則として浸炭前の組織の中に炭化物析出浸炭時の析出サイトとなるべき核を予め分散させておく必要がある」との観点に立って鋭意研究を重ねた。即ち、「前組織の中に前記核の分散が無ければ浸炭時における炭化物の析出は優先的にオーステナイト粒界で起きることとなって機械構造部品として必要な韌性が大幅に劣化する」との認識から、高炭素浸炭処理に当ってはオーステナイト粒界への炭化物析出を極力阻止してオーステナイト粒内に炭化物を析出させることが必要であり、このためには浸炭の前組織に炭化物の析出サイトとなる核を分散させておくことが不可欠であると考えたからである。

【0008】そして、上記観点から行われた種々の研究により、本発明者は次のような事実を見出したのである。

a) 浸炭によって炭化物を析出させる際、析出サイトとして最も有効に働く核は「浸炭時に析出する炭化物の結晶構造と同じもの」であり、核としてこのようなものを選ぶことが重要である。例えば、浸炭時に析出する炭化物が M_3C 型の場合には、前組織に M_3C 型の炭化物を予め分散しておけば、浸炭にて粒内に均一に炭化物を析出させることが可能となる。

【0009】b) ところで、前記析出核は炭化物析出浸炭の際にマトリックス中へ溶解してはならない。浸炭中に核（炭化物）がマトリックス中へ溶解すると、浸炭による炭化物の析出は粒界において優先的に生じることとなる。このため、炭化物析出浸炭は、核がマトリックスに完全に溶解しない“温度一時間バランス”で行う必要がある。

【0010】c) 前記条件に沿う炭化物析出浸炭の前組織としては、球状化焼鈍組織を挙げることができる。即ち、該組織の球状化した炭化物は炭化物析出浸炭の際に不溶で安定な炭化物の析出核として有効に作用し、同一結晶構造の炭化物の析出を促す。そして、中、低炭素鋼においてこの球状化焼鈍組織を実現するには、該鋼を事前浸炭し表面を高炭素化してから球状化処理する手法が効果的である。

【0011】d) 従って、機械構造用中、低炭素鋼を事前浸炭して表層部を高炭素のパーライト或いはベイナイト主体の組織とした後、これに球状化焼鈍を施して〔フェライト+球状化炭化物〕組織とし、この後に炭化物析出浸炭を実施すると、事前浸炭部の球状化炭化物を核にして鋼表面部の結晶粒内に炭化物が微細に分散析出され、韌性の著しい劣化を伴うことなく鋼の表面硬度が顕著に上昇し耐摩耗性が向上する。

【0012】本発明は、上記知見事項等を基にして完成されたものであり、「C : 0.1~0.7% (以降、成分割合を表わす%は重量%とする), Si : 2.0%以下, Cr : 1.0~17.0%, Ni : 5.0%以下を含むか、或いは更に Mo : 5.0%以下, Nb : 0.01~1.0%, V : 0.01~1.0% の 1 種又は 2 種以上をも含み、残部が Fe 及び不可避的不純物から成る鋼を、事前浸炭して表層の炭素量を〔共析点を超える Acm 変態点未満〕の範囲に調整した後空冷して該表層をパーライト又はベイナイト主体の組織とし、続いてこれに球状化焼鈍を施して表層部を〔フェライト+球状化セメンタイト〕組織と成した後、750~1000°C の温度域で浸炭処理して表面の炭素量を Acm 変態点以上に調整し、引き続いて 900~750°C より焼入れ処理してから焼戻し処理を施すことにより、耐摩耗性に優れた機械構造用鋼部品を安定提供し得るようにした点」に大きな特徴を有している。

【0013】なお、上記本発明法においては、球状化焼鈍後の炭化物析出浸炭の前に機械加工（冷間鍛造加工等）を施しても良い。球状化焼鈍後の組織は〔フェライト+球状化セメンタイト〕組織となっているので加工性に優れており、従って、形状を整えるのが非常に容易だからである。

【0014】次に、本発明において適用鋼の化学成分組成及びその処理条件を前記の如くに限定した理由を説明する。

【0015】(A) 鋼の化学成分組成

C

C は鋼の硬度を確保する作用を有しているが、その含有量が 0.1%未満であると芯部の強度不足を招いて機械構造用鋼として必要な基本的な性能を確保できなくなる。一方、0.7%を超えて C を含有させると材料芯部の韌性を大幅に損ね、やはり機械構造用鋼としての所望性能を確保できなくなる。特に、本発明は炭化物析出により鋼の表面を強化する表面硬化手段を取り入れたものであるが、表面硬化を行う場合には硬化により著しく低下した表面の韌性を芯部の韌性で補う必要があるため芯部に十分な韌性を確保することが非常に重要であり、それ故、C 含有量の上限には十分に注意しなければならない。従って、C 含有量は 0.1~0.7% と定めた。

【0016】Si

Si には基地組織のマルテンサイトに固溶してマルテンサイトを強韌化する作用があるが、一方で炭化物析出浸炭

の際に炭化物を析出させ難くする作用をも有しており、2.0%を超えてSiを含有させると炭化物が析出しなくなる恐れがある。従って、Si含有量は2.0%以下と定めた。

【0017】Cr

Crは炭化物析出元素であり、炭化物析出浸炭の際の析出反応を促進する作用があるが、その含有量が1.0%未満では炭化物析出反応の促進作用が不十分で、浸炭処理中に核である球状化炭化物も凝集粗大化してしまい、表面硬度向上に寄与する炭化物分散組織を得ることができない。一方、17.0%を超えてCrを含有量させても上記作用による効果が飽和してしまって経済的な不利を招くようになる。従って、Cr含有量は1.0~17.0%と定めた。

【0018】Ni

Niも、Siと同様、基地組織のマルテンサイトに固溶してこれを強靭化する作用を有するが、一方で炭化物析出浸炭処理時に炭化物を析出させ難くする作用もある。特に、Ni含有量が5.0%を超えると炭化物の析出が不十分となることから、Ni含有量は5.0%以下と定めた。

【0019】Mo

Moは、Ni及びSiと同様、基地組織であるマルテンサイトに固溶して強靭化させる作用のほか、Crほどではないが浸炭地の炭化物析出反応を促進させる作用をも有していることから必要により含有せしめられるが、5.0%を超えて含有させても基地強靭化による韌性向上効果が飽和してしまうので、Mo含有量は5.0%以下と定めた。

【0020】Nb及びV

Nb並びにVには何れも浸炭中にCと結合してMC型の特殊炭化物となり、Fe,Crの炭化物と共に分散析出して耐摩耗性を向上させる作用があるので、必要により1種又は2種が添加されるが、何れも含有量が0.01%未満であると上記作用による所望の効果が得られず、一方、1.0%を超えて含有させると芯部強度が低下してしまう。従って、Nb及びVの含有量は、それぞれ0.01~1.0%と定めた。

【0021】(B) 前処理（事前浸炭、球状化焼鈍処理等）

炭化物析出浸炭によって球状化炭化物を微細分散させるためには、炭化物の析出核の存在する前組織が必要である。そして、事前浸炭は鋼の表層部を高炭素化させて析出核を形成する下地を作るために欠かせない処理である。

【0022】事前浸炭によって鋼表層のC量を共析点を超える値に調整する理由は、炭化物析出浸炭中にあっても析出核を安定に残しておくことにあり、共析点以下のC量では炭化物析出浸炭中に析出核が消失してしまって炭化物の微細分散析出が困難になる。一方、該事前浸炭によって増加する鋼表層のC量をAcm変態点未満に抑える理由は、この処理中に炭化物を析出させないことにある。即ち、析出核として好適な炭化物の析出は次プロセ

スである球状化焼鈍で行われるため、この事前浸炭処理においてはその準備として表面の固溶C量を高くしておくことが重要だからである。

【0023】事前浸炭後の空冷は、浸炭部をパーライト或いはペイナイトを主体とする組織とし、次プロセスである球状化焼鈍にて結晶粒内に炭化物を均一に分散させるために必要である。なお、この場合の冷却速度は特に制限されるものではない。

【0024】球状化焼鈍処理は、上述したように、炭化物析出浸炭の際に析出核となる好適な炭化物が均一分散した組織、即ち〔フェライト+球状化セメントタイト〕組織を得るために実施される。なお、球状化焼鈍には恒温保持法と徐冷法とがあるが、何れによって得られる炭化物も析出核としての作用は変わらないので、その処理法を格別に指定する必要はない。

【0025】(C) 炭化物析出浸炭処理

炭化物析出浸炭処理は、先立つ球状化焼鈍で生成された炭化物を核にして更なる炭化物を球状微細に析出させ、鋼表面部の硬度や軟化抵抗を増大させて耐摩耗性向上させるために施される。なお、上述のように耐摩耗性向上のためには表面硬度を上昇させることが必要であり、このためには炭化物の分散析出に加えてマトリックスをC量がAcm変態点以上の高炭素マルテンサイトにする必要がある。そして、高炭素マルテンサイトを得るためにC固溶度が大きいオーステナイト領域で浸炭する必要がある。しかし、浸炭温度が750°C未満ではオーステナイト領域での浸炭が不可能となる。一方、1000°Cを超える温度域で浸炭すると炭化物析出の核となる球状化焼鈍炭化物が消失するので、浸炭によって供給される炭化物はオーステナイト粒界に粗大化して析出することとなり、韌性を劣化させる。従って、浸炭処理温度は750~1000°Cと定めた。

【0026】浸炭処理の方法としては固体法、塩浴法、ガス法、イオン法があるが、何れの方法によても本発明の目的を達成できるので特に指定する必要はない。また、浸炭時間については、製品によって必要な炭化物分散層の濃度が変わるのでそれに応じて適正な時間を選ぶ必要がある。

【0027】(D) 焼入れ処理

焼入れ処理は、マトリックスを高炭素マルテンサイトに変態させ、炭化物析出層及び芯部の硬度を上昇させるために実施される。ここで、焼入れによって高炭素マルテンサイトを得ようと一般には高温相のオーステナイトがマトリックスの中に残留しがちである。これを“残留オーステナイト”と称するが、多量に残留すれば表面硬度の低下と寸法変化を引き起こす。そして、焼入れ温度が高くなるほど残留オーステナイトは多量に残留するようになる。特に、900°Cを超える温度域から焼入れを行うと急激に残留オーステナイトが増加し、表面硬度の低下と寸法変化が著しくなる。一方、マトリック

スを高炭素マルテンサイトにするためにはオーステナイト域から焼入れる必要があるが、焼入れ温度が750°C未満であるとオーステナイト域からの焼入れが不可能となる。従って、焼入れ温度は900~750°Cと定めた。

【0028】(E) 焼戻し処理

焼戻しは、焼入れによって生成した高炭素マルテンサイトに韌性を付与するため施される。ただ、焼戻温度については対象となる機器部材の使用温度によっても異なるので、一律に限定されるべきものではない。

* 【0029】続いて、本発明の効果を実施例によって更に具体的に説明する。

【実施例】表1に示す如き成分組成の鋼を真空溶製し、得られた鉄塊を熱間鍛造して各々直径20mmの丸棒材を作製した。次に、各丸棒材から機械加工により直径15mm、長さ20mmの円柱（円盤）状試験片を作成し、表2に示す条件の熱処理を施した。

【0030】

【表1】

* 10

供試鋼	化 学 成 分 (重量%)									
	C	Si	Mn	P	S	Cr	Ni	Mo	Nb	V
A	0.40	0.25	0.43	0.008	0.003	3.5	0.03	—	—	—
B	0.21	0.24	0.42	0.009	0.004	3.4	0.02	—	—	—
C	0.21	0.26	0.44	0.008	0.004	5.9	0.03	—	—	—
D	0.22	0.27	0.45	0.008	0.003	5.5	2.01	—	—	—
E	0.21	1.01	0.43	0.009	0.005	5.8	0.03	—	—	—
F	0.22	0.23	0.43	0.008	0.005	3.4	0.02	2.01	—	—
G	0.22	0.24	0.43	0.007	0.004	3.5	0.03	—	0.052	—
H	0.21	0.26	0.45	0.008	0.004	3.6	0.02	—	—	0.210
I	0.22	0.24	0.44	0.008	0.005	3.6	0.02	2.10	0.065	0.350
J	0.21	1.02	0.46	0.008	0.004	12.1	0.03	—	—	—
K	0.31	1.03	0.44	0.010	0.005	15.3	0.03	—	—	—
L	0.22	1.01	0.46	0.009	0.005	12.1	4.60	—	—	—
M	0.22	*2.33	0.43	0.008	0.003	3.4	0.03	—	—	—
N	0.21	0.26	0.44	0.008	0.003	3.4	*5.50	—	—	—
O	0.23	0.24	0.43	0.009	0.004	*20.2	0.02	—	—	—
P	0.23	0.28	0.46	0.008	0.006	3.8	0.03	*5.30	—	—
Q	0.22	0.26	0.45	0.007	0.005	3.6	0.03	—	*1.150	—
R	0.21	0.27	0.43	0.009	0.003	3.4	0.03	—	—	*1.06
S	0.21	0.26	0.68	0.009	0.003	2.63	0.01	—	—	—
T	*1.31	1.68	0.78	0.009	0.003	1.13	0.01	0.25	—	—

(注1) 残部成分はRe及び不可避的不純物である。

(注2) *印は、本発明で規定する条件から外れていることを示す。

【0031】

※ ※ 【表2】

試験番号	供試鋼	処理条件	表面硬さ [Hv] (0.1mm深さ測定)	炭化物の平均粒径 (μm)
本発明例	1 A	925°C × 6 hr 浸炭 (C, P=0.5~0.8%) → 空冷 → 一球状化焼鉄 → 高炭素浸炭処理 (860°C × 10hr) → 50°C油中へ焼入れ → 170°C焼戻し [処理イ]	831	16
	2 B		839	16
	3 C		849	15
	4 D		835	15
	5 E		831	16
	6 F		857	14
	7 G		851	14
	8 H		840	13
	9 I		861	13
比較例	10 J	方々浸炭炉 925°C × 6 hr 浸炭 → 扰散処理による炭化物溶体化 → 方々浸炭炉 高炭素浸炭処理 (860°C × 10hr) → 50°C油中へ焼入れ → 170°C焼戻し [処理ロ]	988	13
	11 K		991	12
	12 L		959	13
従来例	13 *M	上記の [処理イ]	768	16
	14 *N		771	16
	15 *O	上記の [処理ロ]	990	18
	16 *P	上記の [処理イ]	858	17
	17 *Q		888	16
	18 *R		879	13
従来例	19 *S	* 925°C × 6 hr 浸炭 (C, P=0.5~0.8%) → 空冷 → 高炭素浸炭処理 (860°C × 10hr) → 50°C油中へ焼入れ → 170°C焼戻し	818	38
	20 *T	* 通常浸炭 (930°C × 10hr) → 50°C油中へ焼入れ → 170°C焼戻し	753	炭化物の析出なし

(注) *印は、本発明で規定する条件から外れていることを示す。

【0032】次いで、上記熱処理を施した各試験片について表面表面（表面下0.1mm）の硬度と表面部の炭化物粒径を調査したが、これらの結果を表2に併せて示す。表2に示される結果からも明らかのように、本発明で規定する条件に従って製造された鋼材は何れも十分な表面硬度を示すと共に、表面部に析出した炭化物粒径が十分に細かくて機械構造用鋼に要求される良好な韌性を示すであろうことが確認される。これに対して、比較例及び従来例では表面硬度が十分でないか、或いは表面部に析出した炭化物粒径が粗大で十分な韌性を示さないことが知る。⁴⁰

*る。

【0033】

【効果の総括】以上に説明した如く、本発明によれば、従来の高炭素浸炭法に指摘されていた炭化物粗大析出の問題点が解消され、表面層に微細炭化物が高い濃度で析出して優れた耐摩耗性と表層部韌性を示す耐摩耗鋼を安定提供することができ、耐摩耗性が問題となる機械部品の摺動部（ピストン、シリンダー、歯車、総手部）等に適用してその性能を一段と向上させることが可能となるなど、産業上極めて有用な効果がもたらされる。