Kurs:Mathematik für Anwender/Teil I/50/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3322244328 0 5 4 0 3 1 1 3 5 55

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Der Binomialkoeffizient $\binom{n}{k}$.
- 2. Der Betrag einer reellen Zahl.
- 3. Der Körper der komplexen Zahlen (mit den Verknüpfungen).
- 4. Die höheren Ableitungen zu einer Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

(rekursive Definition).

- 5. Die durch eine Matrix festgelegte lineare Abbildung.
- 6. Eine diagonalisierbare lineare Abbildung

$$\varphi {:} V \longrightarrow V$$

auf einem K-Vektorraum V.

Lösung

1. Der Binomialkoeffizient ist durch

$$inom{n!}{k} = rac{n!}{k!(n-k)!}$$

definiert.

2. Für eine reelle Zahl $x \in \mathbb{R}$ ist der *Betrag* folgendermaßen definiert.

$$|x| = \left\{egin{aligned} x, ext{ falls } x \geq 0 \,, \ -x, ext{ falls } x < 0 \,. \end{aligned}
ight.$$

3. Die Menge

$$\mathbb{R}^2$$

mit 0 := (0,0) und 1 := (1,0), mit der komponentenweisen Addition und der durch

$$(a,b)\cdot(c,d):=(ac-bd,ad+bc)$$

definierten Multiplikation nennt man Körper der komplexen Zahlen.

4. Die Funktion f heißt n-mal differenzierbar, wenn sie (n-1)-mal differenzierbar ist und die (n-1)-te Ableitung, also $f^{(n-1)}$, differenzierbar ist. Die Ableitung $f^{(n)}(x):=(f^{(n-1)})'(x)$

nennt man dann die n-te Ableitung von f.

5. Es sei K ein Körper und sei V ein n-dimensionaler Vektorraum mit einer Basis $\mathfrak v=v_1,\ldots,v_n$ und sei W ein m-dimensionaler Vektorraum mit einer Basis $\mathfrak w=w_1,\ldots,w_m$. Zu einer Matrix $M=(a_{ij})_{ij}\in\operatorname{Mat}_{m\times n}(K)$ heißt die durch $v_j\longmapsto\sum_{i=1}^m a_{ij}w_i$

gemäß Satz 24.7 (Mathematik für Anwender (Osnabrück 2019-2020)) definierte lineare Abbildung $\varphi_{\mathfrak{m}}^{\mathfrak{v}}(M)$ die durch M festgelegte lineare Abbildung.

6. Der Endomorphismus arphi heißt diagonalisierbar, wenn $oldsymbol{V}$ eine Basis aus Eigenvektoren zu arphi besitzt.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die Interpolation durch Polynome.
- 2. Die Summenregel für reelle Folgen.
- 3. Der Satz über die Existenz von Stammfunktionen.

Lösung

- 1. Es sei K ein Körper und es seien n verschiedene Elemente $a_1,\ldots,a_n\in K$ und n Elemente $b_1,\ldots,b_n\in K$ gegeben. Dann gibt es ein Polynom $P\in K[X]$ vom Grad $\leq n-1$ derart, dass $P(a_i)=b_i$ für alle i ist.
- 2. Es seien $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Dann ist die Folge $(x_n+y_n)_{n\in\mathbb{N}}$ ebenfalls konvergent und es gilt $\lim_{n\to\infty}(x_n+y_n)=\left(\lim_{n\to\infty}x_n\right)+\left(\lim_{n\to\infty}y_n\right).$
- 3. Sei $m{I}$ ein reelles Intervall und sei

$$f:I\longrightarrow \mathbb{R}$$

eine stetige Funktion. Dann besitzt $m{f}$ eine Stammfunktion.

Aufgabe (2 (1+1) Punkte)

Wir betrachten den Satz "Nachts sind alle Katzen grau".

- Negiere diesen Satz durch eine Existenzausssage, wenn der Satz sich auf eine bestimmte Nacht bezieht.
- 2. Negiere diesen Satz durch eine Existenzausssage, wenn der Satz sich auf jede Nacht bezieht.

Lösung

- 1. In dieser Nacht gibt es eine Katze, die nicht grau ist.
- 2. Es gibt eine Nacht und eine Katze, die in dieser besagten Nacht nicht grau ist.

Aufgabe (2 Punkte)

Mustafa Müller beschließt, sich eine Woche lang ausschließlich von Schokolade seiner Lieblingssorte "Gaumenfreude" zu ernähren. Eine Tafel besitzt einen Energiewert von $2300\,$ kJ und sein Tagesbedarf an Energie ist $10000\,$ kJ. Wie viele Tafeln muss er am Tag (gerundet auf zwei Nachkommastellen) und wie viele Tafeln muss er in der Woche essen?

Lösung

Er muss pro Tag ca.

$$\frac{10000}{2300} = 4{,}35$$

Tafeln essen, in der Woche also

$$7 \cdot 4,35 = 30,45$$

Tafeln.

Aufgabe (2 Punkte)

Es seien $A,\,B$ und C Mengen. Beweise die Identität

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

Lösung

Sei $x \in A \setminus (B \setminus C)$. Das bedeutet $x \in A$ und $x \notin B \setminus C$. Dies wiederum bedeutet $x \notin B$ oder $x \in B \cap C$. Somit ist insgesamt $x \in (A \setminus B) \cup (A \cap C)$.

Sei nun umgekehrt $x \in (A \setminus B) \cup (A \cap C)$. Bei $x \in (A \setminus B)$ ist $x \in A$ und $x \notin B$ und somit ist insbesondere $x \in A \setminus (B \setminus C)$. Ist hingegen $x \in A \cap C$, so ist bei $x \in A \setminus B$ die Zugehörigkeit zur linken Menge schon erwiesen. Also müssen wir nur noch den Fall $x \in B$ betrachten. In diesem Fall ist $x \notin B \setminus C$ und somit ist ebenfalls $x \in A \setminus (B \setminus C)$.

Aufgabe (4 Punkte)

Bestimme, welche der folgenden Wertetabellen Abbildungen $\varphi\colon L \to M$ zwischen den angegebenen Mengen festlegen. Welche sind injektiv, welche surjektiv, welche bijektiv?

1.
$$L = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
, $M = \{a, b, c, d, e, f, g\}$,

x 12345678

 $\varphi(x)$ a efheacd

2.
$$L = \{1, 2, 3, 4, 5, 6, 7\}$$
, $M = \{a, b, c, d, e, f, g, h\}$,

x = 12345567

 $\varphi(x)cefdeaba$

3.
$$L=\{1,2,3,4,5,6,7,8\}$$
, $M=\{a,b,c,d,e,f,g,h\}$,

x 1234567

 $\varphi(x)cefdeba$

4.
$$L = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
, $M = \{a, b, c, d, e, f, g, h\}$,

x = 21436587

 $\varphi(x)hbfdecga$

Lösung

- 1. Das ist keine Abbildung, da laut Wertetabelle $m{4}$ auf $m{h}$ abgebildet werden soll, aber $m{h}$ nicht zur Wertemenge gehört.
- 2. Das ist keine Abbildung, da laut Wertetabelle $\bf 5$ einerseits auf $\bf e$ und andererseits auf $\bf a$ abgebildet werden soll.
- 3. Das ist keine Abbildung, da die Wertetabelle keinen Wert für 8 festlegt.
- 4. Das ist eine Abbildung. Sie ist injektiv und surjektiv, also auch bijektiv.

Aufgabe (4 Punkte)

Sei K ein Körper und sei K[X] der Polynomring über K. Sei $P \in K[X]$ ein Polynom und $a \in K$. Zeige, dass a genau dann eine Nullstelle von P ist, wenn P ein Vielfaches des linearen Polynoms X-a ist.

Lösung

Wenn $m{P}$ ein Vielfaches von $m{X}-m{a}$ ist, so kann man

$$P = (X - a)Q$$

mit einem weiteren Polynom $oldsymbol{Q}$ schreiben. Einsetzen ergibt

$$P(a) = (a-a)Q(a) = 0.$$

Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung

$$P = (X - a)Q + R,$$

wobei R=0 oder aber den Grad 0 besitzt, also eine Konstante ist. Einsetzen ergibt

$$P(a)=R$$
.

Wenn also P(a)=0 ist, so muss der Rest R=0 sein, und das bedeutet, dass P=(X-a)Q ist.

Aufgabe (3 Punkte)

Vergleiche

$$\sqrt{3} + \sqrt{8}$$
 und $\sqrt{5} + \sqrt{6}$.

Lösung

Wir fragen uns, ob

$$\sqrt{3} + \sqrt{8} < \sqrt{5} + \sqrt{6}$$

ist. Dies ist, da das Quadrieren von positiven Zahlen eine Äquivalenzumformung für die Größenbeziehung ist, äquivalent zu

$$3+8+2\sqrt{24}=\left(\sqrt{3}+\sqrt{8}
ight)^2<\left(\sqrt{5}+\sqrt{6}
ight)^2=5+6+2\sqrt{30}\,.$$

Dies ist durch Subtraktion mit 11 äquivalent zu

$$2\sqrt{24}<2\sqrt{30}\,,$$

was stimmt wegen der Monotonie der Wurzel. Also ist

$$\sqrt{3}+\sqrt{8}<\sqrt{5}+\sqrt{6}.$$

Aufgabe (2 Punkte)

In $\mathbb Q$ sei eine Folge $(x_n)_{n\in\mathbb N}$ gegeben, deren Anfangsglieder durch $x_0=0$, $x_1=0,7$, $x_2=0,73$, $x_3=0,734$ gegeben sind. Muss die Folge in $\mathbb Q$ konvergieren? Muss die Folge in $\mathbb R$ konvergieren? Kann die Folge in $\mathbb R$ konvergieren?

Lösung

Es sind nur die ersten Folgenglieder vorgegeben, die Folge kann beliebig weitergehen. Wenn beispielsweise $x_n=n$ für $n\geq 4$ ist, so konvergiert die Folge weder in $\mathbb Q$ noch in $\mathbb R$. Die

Folge muss also nicht konvergieren. Wenn hingegen $x_n=0$ für $n\geq 4$ ist, so konvergiert die Folge sowohl in $\mathbb Q$ als auch in $\mathbb R$ gegen 0. Die Folge kann also konvergieren.

Aufgabe (8 (5+3) Punkte)

Wir betrachten die durch

$$x_n = \sqrt[n]{n}$$

definierte Folge ($n \geq 1$). Zeige folgende Aussagen.

- 1. Für $n \ge 3$ ist die Folge monoton fallend.
- 2. Die Folge konvergiert gegen 1.

Lösung

Wir schreiben

$$\sqrt[n]{n} = n^{\frac{1}{n}}$$

$$= (e^{\ln n})^{\frac{1}{n}}$$

$$= e^{\frac{\ln n}{n}}$$

1. Wir erlauben auch reelle Argumente, d.h. wir betrachten die Funktion

$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ x \longmapsto e^{\frac{\ln x}{x}},$$

und zeigen, dass diese Funktion für $x \geq 3$ fallend ist; dies gilt dann insbesondere für die natürlichen Zahlen $n \geq 3$. Da die Exponentialfunktion monoton wachsend ist, genügt es zu zeigen, dass

$$g: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ x \longmapsto \frac{\ln x}{x},$$

für $x \ge 3$ fallend ist. Dazu ziehen wir Satz 15.7 (Mathematik für Anwender (Osnabrück 2019-2020)) heran und betrachten die Ableitung der differenzierbaren Funktion g. Diese ist

$$g'(x) = rac{1}{x^2} - rac{\ln x}{x^2} \ = rac{1 - \ln x}{x^2}.$$

Für $x \geq 3 > e$ ist $\ln x \geq 1$ und somit ist der Zähler negativ, also ist die Funktion negativ.

2. Wir zeigen, dass $\frac{\ln n}{n}$ für $n \to \infty$ gegen 0 konvergiert. Wegen der Monotonie aus Teil 1 kann man statt n auch e^k einsetzen, was zur Folge $\frac{k}{e^k}$ führt. Für diese Folge gilt

$$egin{aligned} rac{k}{e^k} & \leq rac{k}{1+k+rac{1}{2}k^2} \ & = rac{rac{1}{k}}{rac{1}{k^2}+rac{1}{k}+rac{1}{2}}, \end{aligned}$$

ihr Grenzwert ist nach dem Quetschkriterium also 0. Da die Exponentialfunktion stetig ist, konvergiert somit $e^{\frac{\ln n}{n}}$ gegen $e^0=1$.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (5 Punkte)

Wir betrachten die durch

$$f(x) = \left\{ egin{aligned} x \cdot \sin rac{1}{x} & ext{für } x
eq 0 \,, \ 0 & ext{sonst} \,, \end{aligned}
ight.$$

definierte Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
.

Zeige, dass es zu jedem $\lambda, -1 \le \lambda \le 1$, eine Nullfolge $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}_+$ derart gibt, dass die Folge der Differenzenquotienten

$$\frac{f(x_n)-f(0)}{x_n}$$

gegen λ konvergiert.

Lösung

Zu jedem $\lambda \in [-1,1]$ gibt es ein $u \in [0,2\pi]$ mit $\sin u = \lambda$. Wir setzen

$$x_n := \frac{1}{u + 2\pi n}.$$

Dies ist offenbar eine Nullfolge in \mathbb{R}_+ . Die zugehörigen Differenzenquotienten sind

$$egin{aligned} rac{f(x_n)}{x_n} &= rac{x_n \sin rac{1}{x_n}}{x_n} \ &= \sin rac{1}{x_n} \ &= \sin (u + 2\pi n) \ &= \sin u \ &= \lambda. \end{aligned}$$

Also ist die Folge dieser Differenzenquotienten konstant gleich λ .

Aufgabe (4 Punkte)

Beweise die Kettenregel für differenzierbare Funktionen.

Lösung

Aufgrund von Satz 14.5 (Mathematik für Anwender (Osnabrück 2019-2020)) kann man

$$f(x) = f(a) + f'(a)(x-a) + r(x)(x-a)$$

und

$$g(y) = g(f(a)) + g'(f(a))(y - f(a)) + s(y)(y - f(a))$$

schreiben. Daher ergibt sich

$$egin{aligned} g(f(x)) &= g(f(a)) + g'(f(a))(f(x) - f(a)) + s(f(x))(f(x) - f(a)) \ &= g(f(a)) + g'(f(a))(f'(a)(x-a) + r(x)(x-a)) + s(f(x))(f'(a)(x-a) + r(x)(x-a)) \ &= g(f(a)) + g'(f(a))f'(a)(x-a) + (g'(f(a))r(x) + s(f(x))(f'(a) + r(x)))(x-a). \end{aligned}$$

Die hier ablesbare Restfunktion

$$t(x):=g'(f(a))r(x)+s(f(x))(f'(a)+r(x))$$

ist stetig in a mit dem Wert 0.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (3 Punkte)

Berechne das Matrizenprodukt

$$\left(egin{array}{cccccc} 4 & 0 & 0 & -3 & 7 \ 8 & 3 & 1 & 0 & -5 \ 6 & 2 & -1 & -2 & 3 \ -4 & 5 & 1 & 0 & 3 \end{array}
ight) \cdot \left(egin{array}{cccccc} 3 & 2 & -4 \ 1 & -1 & 5 \ 0 & 6 & 1 \ -5 & 2 & 0 \ 6 & -3 & -2 \end{array}
ight).$$

Lösung

Es ist

$$\begin{pmatrix} 4 & 0 & 0 & -3 & 7 \\ 8 & 3 & 1 & 0 & -5 \\ 6 & 2 & -1 & -2 & 3 \\ -4 & 5 & 1 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & -4 \\ 1 & -1 & 5 \\ 0 & 6 & 1 \\ -5 & 2 & 0 \\ 6 & -3 & -2 \end{pmatrix} = \begin{pmatrix} 69 & -19 & -30 \\ -3 & 34 & -6 \\ 48 & -9 & -21 \\ 11 & -16 & 36 \end{pmatrix}.$$

Aufgabe (1 Punkt)

Erläutere, warum das Achsenkreuz im \mathbb{R}^2 kein Untervektorraum ist

Lösung

Offensichtlich gehören die Vektoren e_1,e_2 zum Achsenkreuz, die Summe dieser beiden Vektoren jedoch nicht. Folglich ist das Achsenkreuz kein Untervektorraum

Aufgabe (1 Punkt)

Beweise den Satz über die Dimension des Standardraumes.

Lösung

Die Standardbasis e_i , $i=1,\ldots,n$, besteht aus n Vektoren, also ist die Dimension n.

Aufgabe (3 Punkte)

Bestimme die inverse Matrix zu

$$\begin{pmatrix} 1 & 1 & 0 \\ 7 & 2 & 1 \\ 0 & 0 & 4 \end{pmatrix}.$$

Lösung

$$\begin{pmatrix} 1 & 1 & 0 \\ 7 & 2 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & -5 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -7 & 1 & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -7 & 1 & -\frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{7}{5} & -\frac{1}{5} & \frac{1}{20} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{2}{5} & \frac{1}{5} & -\frac{1}{20} \\ \frac{7}{5} & -\frac{1}{5} & \frac{1}{20} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

Aufgabe (5 Punkte)

Bestimme das charakteristische Polynom, die Eigenwerte mit Vielfachheiten und die Eigenräume zur reellen Matrix

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Lösung

Das charakteristische Polynom ist

$$\det egin{pmatrix} x & -1 & -1 \ -1 & x & -1 \ -1 & -1 & x \end{pmatrix} = x(x^2-1)-x-1-1-x \ = x^3-3x-2.$$

Dabei ist x = -1 eine Nullstelle, daher haben wir (Division mit Rest)

$$x^3 - 3x - 2 = (x+1)(x^2 - x - 2)$$

= $(x+1)(x+1)(x-2)$
= $(x+1)^2(x-2)$.

Somit ist -1 ein Eigenwert mit algebraischer Vielfachheit 2 und 2 ein Eigenwert mit algebraischer Vielfachheit 1.

$$\mathbb{R} \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight) + \mathbb{R} \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight).$$

Daher ist die geometrische Vielfachheit zu -1 ebenfalls 2. Der Kern von

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \text{ ist }$$

$$\mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

und die geometrische Vielfachheit zu 2 ist 1.

Kurs:Mat	thematik für Anwender/Teil I/50/Klausur mit Lösungen – Wik	https://de.m.wikiversity.org/wiki/Kurs:Mathematik_für_Anwender	r/Teil