

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Database Systems

Chapter 4: Structured Query Language (SQL)

Session 1: Introduction to SQL, DDL, DML

Outline

SQL

Stuctured Query Language

- ☐ Pronounced "S-Q-L" by some and "sequel" by others
- ☐ Pronounced "S-Q-L" by some and "sequel" by others
- **□SQL** is a Nonprocedural language
- ☐ The standard for relational database management systems (RDBMS).

History of SQL

- □ 1970–Edgar E. Codd develops relational database concept
- □ 1974-1979–System R with Sequel (later SQL) created at IBM Research Lab
- □1979–Oracle markets first relational DB with SQL
- ☐ 1986—ANSI (American National Standards Institue) SQL standards were first published
- □1989, 1992, 1999, 2003, 2006, 2008, 2011 and 2016–Major ANSI standard updates
- □Current–SQL is supported by most major database vendors

Purpose of SQL Standard

- □Specify syntax/semantics for data definition and manipulation
- ☐ Define data structures
- ☐ Enable portability
- □Specify minimal (level 1) and complete (level 2) standards
- □Allow for later growth/enhancement to standard

Benefits of a Standardized Relational Language

- ☐ Reduced training costs
- ☐ Productivity
- □ Application portability
- □ Application longevity
- ☐ Reduced dependence on a single vendor
- □Cross-system communication

SQL Commands

☐ 3 types:

Data Definition Language(DDL)

Define the database:

- CREATE, ALTER, DROP TABLES, VIEWS, INDEXES

- ESTABLISHING CONSTRAINTS

Data Manipulation Language(DML)

Maintain and query

the database:

- UPDATING, INSERTING,
DELETING AND
QUERYING DATA

Data Control Language(DCL)

Control the database:

- GRANT OR REVOKE

PRIVILEGES TO

ACCESS THE

DATABASE

- COMMITING DATA

Data Definition Language(DDL)

- □DDL statements are used to define a database
- ☐ Major CREATE statements:
 - ■CREATE DATABASE create a new database
 - CREATE SCHEMA—defines a portion of the database owned by a particular user
 - CREATE TABLE—defines a table and its columns
 - CREATE VIEW—defines a logical table from one or more views

Creating a database

- ☐ Two tasks must be completed:
 - create the database structure
 - create the tables that will hold the end-user data
- ☐ First task
 - RDBMS creates the physical files that will hold the database
 - ■Tends to differ substantially from one RDBMS to another

Creating a database

- □ A SQL Server database can be created, altered and dropped by one of two following methods:
 - Using the designer with SQL Server Management Studio (SSMS) or
 - Using a Query
- □ After creating database, 2 files are generated:
 - ■.MDF file Data file (contains actual data)
 - ■.LDF file _ Transaction Log file (used to recover the database)

Creating a new database

- 1. Using designer:
 - Right-click to Database menu, choose New Database
- 2. Using a Query: Ctrl +N
 To create a new query
 - Syntax:

CREATE DATABASE DatabaseName

■ Example:

create the DemoShopping database.

Creating a new database

- Using the database
 - 1. Click the combobox to choose the database

- 2. Use Query
- Syntax:

USE DatabaseName

Example

USE DemoShopping

■Right-click to the database, choose Properties, click Files to know database files

Altering/Deleting a Database

- ☐ To alter an existing database:
 - Syntax:

ALTER DATABASE OldDatabase MODIFY NAME = NewDatabase

Example:

ALTER DATABASE DemoShopping MODIFY NAME = DemoShopping2

- ☐ To drop a database
 - Syntax:

DROP DATABASE TheDatabase

Example:

DROP DATABASE DemoShopping2

Dropping a database will delete the LDF and MDF files.

Creating the Database Schema

- ☐Schema: logical database structure
 - Is a group of database objects- such as tables and indexes
 - that are related to each other.
- ■Authentication
 - Process through which the DBMS verifies that only registered users are able to access the database
 - Log on to the RDBMS using a user ID and a password created by the database administrator

CREATE SCHEMA AUTHORIZATION < creator>

□Ex:

CREATE SCHEMA AUTHORIZATION vku

☐ Exact numeric data types:

Data Type	Lower limit	Upper limit	Memory	
bigint	-2^63 (-9,223,372, 036,854,775,808)	2^63-1 (-9,223,372, 036,854,775,807)	8 bytes	
int	-2^31 (-2,147, 483,648)	2^31-1 (-2,147, 483,647)	4 bytes	
smallint	-2^15 (-32,767)	2^15 (-32,768)	2 bytes	
tinyint	0	255	1 byte	
bit	0	1	1 byte/8bit column	
decimal	-10^38+1	10^381-1	5 to 17 bytes	
numeric	-10^38+1	10^381-1	5 to 17 bytes	
money	-922,337, 203, 685,477.5808	+922,337, 203, 685,477.5807	8 bytes	
smallmoney	-214,478.3648	+214,478.3647	4 bytes	

□ Approximate numeric data types:

The approximate numeric data type stores floating point numeric data. They are often used in scientific calculations.

Data Type	Lower limit	Upper limit	Memory	Precision
float(n)	-1.79E+308	1.79E+308	Depends on the value of n	7 Digit
real	-3.40E+38	3.40E+38	4 bytes	15 Digit

☐ Date & Time data types

Data Type	Storage size	Accuracy	Lower Range	Upper Range	
datetime	8 bytes	Rounded to increments of .000, .003, .007	1753-01-01	9999-12-31	
smalldatetime	4 bytes,	1 minute	1900-01-01	2079-06-06	
date	3 bytes, fixed	1 day	0001-01-01	9999-12-31	
time	5 bytes	100 nanoseconds	00:00:00.0000000	23:59:59.9999999	
datetimeoffset	10 bytes	100 nanoseconds	0001-01-01	9999-12-31	
datetime2	6 bytes	100 nanoseconds	0001-01-01	9999-12-31	

☐ Character strings data types

Character strings data types allow you to store either fixed-length (char) or variable-length data (varchar).

Data Type	Lower limit	Upper limit		
char	0 chars	8000 chars		
varchar	0 chars	8000 chars		
varchar (max)	0 chars	2^31 chars		
text	0 chars	2,147,483,647 chars		

Unicode character string data types store either fixedlength (nchar) or variable-length (nvarchar)

Data Type	Lower limit	Upper limit		
nchar	0 chars	4000 chars		
nvarchar	0 chars	4000 chars		
ntext	0 chars	1,073,741,823 char		

☐Binary string data types

The binary data types stores fixed and variable length binary data.

Data Type	Lower limit	Upper limit
binary	0 bytes	8000 bytes
varbinary	0 bytes	8000 bytes
image	0 bytes	2,147,483,647 bytes

☐Other data types

Data Type	Description
cursor	for variables or stored procedure OUTPUT parameter that contains a reference to a cursor
rowversion	expose automatically generated, unique binary numbers within a database
hierarchyid	represent a tree position in a tree hierarchy
uniqueidentifier	16-byte GUID
sql_variant	store values of other data types
XML	store XML data in a column, or a variable of XML type
Spatial Geometry type	represent data in a flat coordinate system.
Spatial Geography type	store ellipsoidal (round-earth) data, such as GPS latitude and longitude coordinates.

SQL Constraints

☐A constraint is a mechanism that may be used to limit the values entered into a column.

SQL Constraints

- ☐ Primary Key Constraints
 - Is a way to enforce Entity Integrity
 - Ensures that values in a primary key column are unique and not null.
 - A primary key can be one column or combination of columns
- ☐ Foreign key Constraints
 - Is a way to enforce Referential integrity
 - Ensures that if the foreign key contains a value, that value must refer to an existing value in the parent table.
 - ■The parent table in such a parent—child relationship should be created first so that the child table will reference an existing parent table when it is created

SQL constraints

- NOT NULL constraint
 - Ensures that a column does not accept nulls
- **□**UNIQUE constraint
 - Ensures that all values in a column are unique
 - you can have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.
- □ DEFAULT constraint
 - Assigns a value to an attribute when a new row is added to a table
- □CHECK constraint
 - is a kind of domain integrity
 - Validates data when an attribute value is entered

http://vku.udn.vn/

Creating a Table with foreign key constraint

☐Example:

- Each product is supplied by only a single vendor.
- A vendor may supply many products
- PRODUCT is optional to VENDOR.
- Some vendors have never supplied a product (VENDOR is optional to PRODUCT)

VKU The Vendor and Product tables

_							
	V_Code	V_Name	V_Contact	V_AreaCode	V_Phone	V_State	V_Order
1	21225	Bryson, Inc.	Smithson	615	223-3234	TN	Y
2	21226	SuperLoo, Inc.	Flushing	904	215-8995	FL	N
3	21231	D&E Supply	Singh	615	228-3245	TN	Y
4	21344	Gomez Bros.	Ortega	615	889-2546	KY	N
5	22567	Dome Supply	Smith	901	678-1419	GA	N
6	23119	Randsets Ltd.	Anderson	901	678-3998	GA	Y
7	24004	Brackman Br	Browning	615	228-1410	TN	N
8	24288	ORDVA, Inc.	Hakford	615	898-1234	TN	Y
9	25443	B&K, Inc.	Smith	904	227-0093	FL	N
10	25501	Damal Suppli	Smythe	615	890-3529	TN	N
11	25595	Rubicon Sys	Orton	904	456-0092	FL	Y

Vendor table

	P_Code	P_Descript	P_InDate	P_QOH	P_Min	P_Price	P_Discount	V_Code
1	11QER/31	Power painter, 15 psi., 3-nozzle	2017-11-03	8	5	109.99	0.00	25595
2	13-Q2/P2	7.25-in. pwr. saw blade	2017-01-13	32	15	14.99	0.05	21344
3	14-Q1/L3	9.00-in. pwr. saw blade	2017-11-13	18	12	17.49	0.00	21344
4	1546-QQ2	Hrd. cloth, 1/4-in., 2x50	2018-01-15	15	8	39.95	0.00	23119
5	1558-QW1	Hrd. cloth, 1/2-in., 3x50	2018-01-15	23	5	43.99	0.00	23119
6	2232/QTY	B&D jigsaw, 12-in. blade	2017-12-30	8	5	109.92	0.05	24288
7	2232/QWE	B&D jigsaw, 8-in. blade	2017-12-24	6	5	99.87	0.05	24288
8	2238/QPD	B&D cordless drill, 1/2-in.	2018-01-20	12	5	38.95	0.05	25595
9	23109-HB	Claw hammer	2018-01-20	23	10	9.95	0.10	21225
10	23114-AA	Sledge hammer, 12 lb.	2018-01-02	8	5	14.40	0.05	NULL
11	54778-2T	Rat-tail file, 1/8-in. fine	2017-12-15	43	20	4.99	0.00	21344
12	89-WRE-Q	Hicut chain saw, 16 in.	2018-02-07	11	5	256.99	0.05	24288
13	PVC23DRT	PVC pipe, 3.5-in., 8-ft	2018-02-20	188	75	5.87	0.00	NULL
14	SM-18277	1.25-in. metal screw, 25	2018-03-01	172	75	6.99	0.00	21225
15	SW-23116	2.5-in. wd. screw, 50	2018-02-24	237	100	8.45	0.00	21231
16	WR3/TT3	Steel matting, 4'x8'x1/6", .5" mesh	2018-01-17	18	5	119.95	0.10	25595

Product table

The Database Model

□Example

The Database Model

- ☐ The database model reflects the following business rules:
 - A customer may generate many invoices. Each invoice is generated by one customer.
 - An invoice contains one or more invoice lines. Each invoice line is associated with one invoice.
 - Each invoice line references one product. A product may be found in many invoice lines.
 - A vendor *may* supply many products. Some vendors do not yet supply products.
 - If a product is vendor-supplied, it is supplied by only a single vendor.
 - ■Some products are not supplied by a vendor.

Creating a table

Creating a simple table using syntax:

```
CREATE TABLE tablename (

column1 data type [constraint] [,

column2 data type [constraint] ] [,

PRIMARY KEY (column1 [, column2]) ] [,

FOREIGN KEY (column1 [, column2]) REFERENCES tablename] [,

CONSTRAINT constraint]);
```

- Data Types can be string, numeric, and date/time. Not all data types are supported by every relational database vendors.
- ☐To make the SQL code more readable:
 - one line per column definition,
 - SQL keywords should be upper-case letters
 - User-defined words should be lower-case letters

Creating a Table with primary key constraint

☐Syntax 1:

```
CREATE TABLE table_name
(
   column1 datatype [ NULL | NOT NULL ] [ PRIMARY KEY ],
   column2 datatype [ NULL | NOT NULL ],
   ...
);
```

☐ Syntax 2: you can named for constraint

```
CREATE TABLE table_name
(
   column1 datatype [ NULL | NOT NULL ],
   column2 datatype [ NULL | NOT NULL ],
   ...
   CONSTRAINT constraint_name PRIMARY KEY (column1, column2, ... column_n)
);
```

Creating a table with primary key constraint (REATE TABLE Vendor (

□Example:

Or

```
V_Code INT PRIMARY KEY,

V_Name VARCHAR(35) NOT NULL,

V_Contact VARCHAR(15) NOT NULL,

V_AreaCode CHAR(3) NOT NULL,

V_Phone CHAR(8) NOT NULL,

V_State CHAR(2) NOT NULL,

V_Order CHAR(1) NOT NULL
```

```
CREATE TABLE Vendor

V_Code INT NOT NULL,

V_Name VARCHAR(35) NOT NULL,

V_Contact VARCHAR(15) NOT NULL,

V_AreaCode CHAR(3) NOT NULL,

V_Phone CHAR(8) NOT NULL,

V_State CHAR(2) NOT NULL,

V_Order CHAR(1) NOT NULL,

CONSTRAINT PK_Vendor PRIMARY KEY (V_Code)
```

Primary keys can never have NULL values

Creating a Table with foreign key constraint

□Syntax

```
CREATE TABLE child_table
(
  column1 datatype [ NULL | NOT NULL ],
  column2 datatype [ NULL | NOT NULL ],
  ...

CONSTRAINT fk_name
   FOREIGN KEY (child_col1, child_col2, ... child_col_n)
   REFERENCES parent_table (parent_col1, parent_col2, ... parent_col_n)
   [ ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT } ]
   [ ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT } ]
);
```

http://vku.udn.vn/

Creating a Table with foreign key constraint

□Example

Primary key of parent table

```
CREATE TABLE Product (
    P_Code VARCHAR(10) NOT NULL,
    P_Descript VARCHAR(35) NOT NULL,
    P_InDate DATE NOT NULL,
    P_QOH INT NOT NULL,
    P_Min INT NOT NULL,
    P_Price DECIMAL(8,2) NOT NULL,
    P_Discount DECIMAL(8,2) NOT NULL,
    V_Code INT NULL,
    CONSTRAINT PK_Product PRIMARY KEY (P_Code),
    CONSTRAINT FK_Product_Vendor_Vcode
    FOREIGN KEY (V_Code) REFERENCES Vendor)

Child_table
```

Foreign key constraint with Delete and Update rules

DELETE AND UPDATE rules in SQL Server foreign key can be use with the following options:

- **INO ACTION** (the default)
 - Error message would be generated, and no action is performed

□CASCADE

• if the parent record is deleted/updated, associated records in child table are also deleted/updated.

□SET NULL

- if the parent record is deleted/updated, associated records in child table are set to null
- Foreign key column should allow NULL values

□SET DEFAULT

• if the parent record is deleted/updated, associated records in child table are set to default value specified in column definition.

http://valuedisvo/default value should be present in primary key column.

Foreign key constraint with Delete and Update rules

□Example

```
CREATE TABLE Product (
       P_Code VARCHAR(10) NOT NULL,
       P_Descript VARCHAR(35) NOT NULL,
       P_InDate DATE NOT NULL,
       P_QOH INT NOT NULL,
       P_Min INT NOT NULL,
       P_Price DECIMAL(8,2) NOT NULL,
       P Discount DECIMAL(8,2) NOT NULL,
       V Code INT NULL,
       CONSTRAINT PK_Product PRIMARY KEY (P_Code),
       CONSTRAINT FK Product Vendor Vcode
               FOREIGN KEY (V_Code) REFERENCES Vendor
               ON UPDATE CASCADE
```

ON UPDATE CASCADE specification ensures that if you make a change in any V_CODE in VENDOR table that will result in that value changing in the PRODUCT table to match.

http://vku.udn.vn/

Creating a table with DEFAULT, CHECK, UNIQUE constraint

☐ Example: CUSTOMER table

```
CREATE TABLE Customer (
   CUS Code INT PRIMARY KEY,
   CUS_Lname NVARCHAR(30) NOT NULL,
   CUS_Fname NVARCHAR(30) NOT NULL,
   CUS Initial CHAR(1),
   CUS AreaCode CHAR(3)
       DEFAULT '615' NOT NULL
       CHECK(CUS_AreaCode IN('615','713','931')),
   CUS_Phone CHAR(8) NOT NULL,
   CUS_Balance DECIMAL DEFAULT 0.00,
   CONSTRAINT UQ_CUS_LName_FName
              UNIQUE (CUS Lname, CUS Fname)
```

http://vku.udn.vn/

Creating a table with constraints

- ☐ Invoice table
 - the DEFAULT constraint assigns a default date to a new invoice
 - ■the CHECK constraint validates that the invoice date is greater than January 1, 2016

```
CREATE TABLE Invoice (
    INV_Number INT PRIMARY KEY,
    CUS_CodeINT NOT NULL,
    INV_Date DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL,
    CONSTRAINT FK_Inv_Cus_CusCode FOREIGN KEY(CUS_Code)
        REFERENCES Customer,
    CONSTRAINT CK_INVDate CHECK (INV_Date > '2016-01-01')
)
```

Creating a table with constraints

- ☐ Invoice table has
 - a composite primary key (INV_NUMBER, LINE_NUMBER)
 - ■a UNIQUE constraint in INV_NUMBER and P_CODE to ensure that the same product is not ordered twice in the same invoice.

```
CREATE TABLE Line (
    INV_Number INTEGER NOT NULL, composed of multiple attributes
    LINE_Number NUMERIC(2,0) NOT NULL,
    P_Code VARCHAR(10) NOT NULL,
    LINE_Units DECIMAL(9,2) DEFAULT 0.00 NOT NULL,
    LINE_Price DECIMAL(9,2) DEFAULT 0.00 NOT NULL,
    PRIMARY KEY (INV_Number,LINE_Number),
    FOREIGN KEY (INV_Number) REFERENCES Invoice ON DELETE CASCADE,
    FOREIGN KEY (P_Code) REFERENCES Product(P_Code),
    CONSTRAINT UQ_Line UNIQUE(INV_Number, P_Code))
```

http://vku.udn.vn/

Altering a table

- ☐ Use ALTER TABLE statement is used to
 - ■To add a column to an existing table:

```
ALTER TABLE table_name
ADD column_name datatype
```

To change the data type of a column in a table

```
ALTER TABLE table_name
ALTER COLUMN column_name datatype
```

■To drop a column

```
ALTER TABLE table_name
DROP COLUMN column_name
```

Altering a table

- ☐ Use ALTER TABLE statement is also used to
 - ■To add a constraint to an existing table:

```
ALTER TABLE table_name
ADD CONSTRAINT constraint_name constraint_type syntax
```

■To remove a constraint

```
ALTER TABLE table_name
DROP CONSTRAINT constraint_name;
```

☐Show all constraints in a table

```
exec sp_helpconstraint 'table_name'
```


Altering a table with examples

- ☐To add column for a table
 - Add a column named CUS_Address to the Customer table

```
ALTER TABLE dbo.Customer
ADD CUS_Address NVARCHAR(50) DEFAULT N'Đà Nẵng'
```

- ☐To add constraints for a table
 - Add a primary key for Vendor table if you forget to create it. Note: you only create a primary key on column(s) that are already defined as NOT NULL

```
ALTER TABLE Vendor
ADD CONSTRAINT PK_Vendor PRIMARY KEY(V_Code)
```

Add a foreign key for Product table

```
ALTER TABLE Product

ADD CONSTRAINT FK_Product_Vendor_Vcode

FOREIGN KEY (V_Code) REFERENCES Vendor

ON UPDATE CASCADE
```

Removing a table

- □DROP TABLE statement removes the specified table from a database
- **□**Syntax

DROP TABLE Table_name [RESTRIC|CASCADE]

- Default option is RESTRICT, the table will not be dropped if there are any dependent objects, such as views or constraints, that currently reference the table.
- If CASCADE is specified, all dependent objects will also be dropped as the table is dropped.

Removing a table

⊒Example:

DROP TABLE Table_name [RESTRIC | CASCADE]

- ☐ Many RDBMSs allows users to retain the table's structure but remove all of the data that have been entered in the table with its TRUNCATE TABLE command
 - Syntax:

TRUNCATE TABLE Table_name

ExampleTRUNCATE TABLE Customer

- Auto-increment allows a **unique number** to be generated automatically when a new record is inserted into a table.
- □Often this is the primary key field that we would like to be created automatically every time a new record is inserted.

Auto-increment

☐ To create an identity column for a table:

```
IDENTITY[(seed,increment)]
```

- **seed** is the value of the first row loaded into the table.
- increment is the incremental value added to the identity value of the previous row.
- ☐ The default value of seed and increment is 1.
- **□**Example:

```
CREATE TABLE Employee
(
Emp_ID int PRIMARY KEY IDENTIY(1,1),
LastName nvarchar(255) NOT NULL,
FirstName nvarchar(255),
Address nvarchar(255),
)
```

- □Ex1: Create the following tables (Employee, Department)
 - Use Auto-increment
 - apply 4 rules: No action, Cascade, set null, set default.

Ex2: Create a database scheme that consists of four tables:

- Product(maker, model, type)
- ■PC(<u>code</u>, *model*, speed, ram, hd, cd, price)
- Laptop(code, model, speed, ram, hd, screen, price)
- ■Printer(<u>code</u>

- ☐ Ex3: Create a database named BookDB
 - ■Use the SQL statements to create the tables: Books (BookID, BookTitle, CopyRight, Year), Authors (AuthorID, AuthorFName, AuthorMName, AuthorLName, DateOfBirth, Gender, Address) and AuthorBook (BookID, AuthorID)
 - Set the constraints for the tables

□INSERT command is used to enter data into a table.

```
INSERT INTO table_name (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);
```

Example:

```
INSERT INTO Vendor
(V_Code,V_Name,V_Contact,V_AreaCode,V_Phone,V_State,V_Order)
VALUES(21225,'Bryson, Inc.','Smithson','615','223-3234','TN','Y')
```

- ■Note for INSERT statement
 - The row contents are entered between parentheses
 - Character (string) and date values must be entered between apostrophes (').
 - Numerical entries are not enclosed in apostrophes.
 - Attribute entries are separated by commas.
 - A value is required for each column in the table.

http://vku.udn.vn/

☐ You do not need to specify the column (s) name if you are adding values for all the columns of the table. However, make sure the order of the values is in the same order as the columns in the table.

```
INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);
```

```
INSERT INTO Vendor VALUES(21225, 'Bryson,
Inc.', 'Smithson', '615', '223-3234', 'TN', 'Y')
```

☐ Inserting Rows with **Null Attributes** with NULL keyword when all the attribute values must be specified

```
INSERT INTO Product
VALUES ('BRT-345','Titanium drill bit','18-Oct-15', 75, 10, 4.50, 0.06, NULL)
```

- ☐ Inserting Rows with **Optional Attributes**
 - Rather than declaring each attribute as NULL in the INSERT command, you can **indicate just the attributes that have** required values.
 - Example: assume that the only required attributes for the PRODUCT table are P_Code and P_Descript

```
INSERT INTO Product(P_Code, P_Descript)
VALUES('BRT-345','Titanium drill bit')
```

- ☐You can insert more than one record at a time.
 - Example

```
INSERT INTO Vendor VALUES
(21226, 'SuperLoo, Inc.', 'Flushing', '904', '215-8995', 'FL', 'N'),
(21231, 'D&E Supply' , 'Singh' , '615', '228-3245', 'TN', 'Y'),
(21344, 'Gomez Bros.' , 'Ortega' , '615', '889-2546', 'KY', 'N')
```

☐ End-user applications are best created with utilities to create a form-based data view and entry screen

- □SQL Server automatically uses the following value for the column that is available in the table but does not appear in the column list of the INSERT statement:
 - The next incremental value if the column has an IDENTITY property.
 - The default value if the column has a default value specified.
 - The NULL if the column is nullable
 - The calculated value if the column is a computed column.
 - The current timestamp value if the data type of the column is a timestamp data type

- □ Any changes made to the table contents **are not physically saved** on disk until
 - Database is closed
 - Program is closed
 - COMMIT command is used
- ☐ Saving table changes by

COMMIT;

Will permanently save any changes (such as rows added, attributes modified, and rows deleted) made to any table in the database

The content of Product table

	P_Code	P_Descript	P_InDate	P_QOH	P_Min	P_Price	P_Discount	V_Code
1	11QER/31	Power painter, 15 psi., 3-nozzle	2017-11-03	8	5	109.99	0.00	25595
2	13-Q2/P2	7.25-in. pwr. saw blade	2017-01-13	32	15	14.99	0.05	21344
3	14-Q1/L3	9.00-in. pwr. saw blade	2017-11-13	18	12	17.49	0.00	21344
4	1546-QQ2	Hrd. cloth, 1/4-in., 2x50	2018-01-15	15	8	39.95	0.00	23119
5	1558-QW1	Hrd. cloth, 1/2-in., 3x50	2018-01-15	23	5	43.99	0.00	23119
6	2232/QTY	B&D jigsaw, 12-in. blade	2017-12-30	8	5	109.92	0.05	24288
7	2232/QWE	B&D jigsaw, 8-in. blade	2017-12-24	6	5	99.87	0.05	24288
8	2238/QPD	B&D cordless drill, 1/2-in.	2018-01-20	12	5	38.95	0.05	25595
9	23109-HB	Claw hammer	2018-01-20	23	10	9.95	0.10	21225
10	23114-AA	Sledge hammer, 12 lb.	2018-01-02	8	5	14.40	0.05	NULL
11	54778-2T	Rat-tail file, 1/8-in. fine	2017-12-15	43	20	4.99	0.00	21344
12	89-WRE-Q	Hicut chain saw, 16 in.	2018-02-07	11	5	256.99	0.05	24288
13	PVC23DRT	PVC pipe, 3.5-in., 8-ft	2018-02-20	188	75	5.87	0.00	NULL
14	SM-18277	1.25-in. metal screw, 25	2018-03-01	172	75	6.99	0.00	21225
15	SW-23116	2.5-in. wd. screw, 50	2018-02-24	237	100	8.45	0.00	21231
16	WR3/TT3	Steel matting, 4'x8'x1/6", .5" mesh	2018-01-17	18	5	119.95	0.10	25595

Update statement

☐ The UPDATE statement is used to modify the existing records in a table.

```
UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;
```

- Value1, value2,...can be an expression.
- ■If more than one attribute is to be updated in the row, separate the corrections with commas.
- ■The WHERE clause is optional, that specifies which record(s) that should be updated.
- If you omit the WHERE clause, all records in the table will be updated!

Update statement

□Example

```
UPDATE Product
SET P_InDate = '01-18-2016'
WHERE P_Code = '13-Q2/P2'
```

```
UPDATE Product
SET P_InDate = '01-18-2016', P_Price = 17.99, P_Min = 10
WHERE P_CODE = '13-Q2/P2'
```

☐ Use can use the command to list contents of table

```
SELECT * FROM Product
```

UPDATE statement

- ☐ Restoring Table Contents by ROLLBACK statement
 - Used restore the database to its previous condition
 - Only applicable if COMMIT command has not been used to permanently store the changes in the database
- **□**Syntax

ROLLBACK;

- ☐ Use BEGIN TRANSACTION before DML commands before using ROLLBACK command.
- □COMMIT and ROLLBACK only work with **data manipulation commands** that are used to add, modify, or delete table rows

DELETE statement

☐ The DELETE statement is used to delete existing records in a table.

```
DELETE FROM table_name WHERE condition;
```

- ■The WHERE clause is optional, that specifies which record(s) should be deleted.
- If you omit the WHERE clause, all records in the table will be deleted!

DELETE statement

□Example

```
DELETE FROM Product
WHERE P_Code = 'BRT-345'
```

```
DELETE FROM Product
WHERE P_Min = 5
```

DELETE statement

- ☐TRUNCATE vs DELETE
 - ■TRUNCATE is a DDL whereas DELETE is a DML
 - You can use WHERE clause(conditions) with DELETE but you can't use WHERE clause with TRUNCATE
 - You can't rollback data in TRUNCATE but in DELETE you can rollback data
 - ■TRUNCATE is faster than DELETE.

☐ Complete the previous exercise with DML commands.

ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Vietnam - Korea University of Information and Communication Technology

Thank You !