

Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste

QUIMICA GENERAL

Carreras: Bioquímica, Profesorado en Ciencias Químicas y del Ambiente y Licenciatura en Ciencias Químicas

Unidad XII Cinética Química

Condiciones que afectan a la velocidad de reacción. Ley de velocidad. Mecanismo de reacción a partir de la ecuación de velocidad. Orden y molecularidad de una reacción. Ecuación de Arrhenius. Teoría de las colisiones. Teoría del estado de transición. Catálisis.

Cinética Química

Termodinámica

¿Ocurre una reacción?

Cinética

¿Qué tan rápido ocurre la reacción?

Cinética Química

Es la rama de la química que estudia la velocidad de reacción y los mecanismos por los cuales ocurre dicha reacción.

Determina si una reacción dada, termodinámicamente favorable, se produce en un determinado periodo de tiempo.

Velocidad de reacción. Concepto

La **velocidad de reacción** es una magnitud positiva que expresa el cambio de la concentración de un reactivo o un producto por unidad de tiempo. La mayor parte de las veces, la velocidad se expresa en términos de las concentraciones de los reactivos.

Velocidad de reacción.

Raymond Chang (2010) QUÍMICA. Ed. Mc Graw Hill, Fig 13.1

Velocidad de reacción.

Raymond Chang (2010) QUÍMICA. Ed. Mc Graw Hill, Fig 13.1

$$V = - \frac{\Delta[A]}{\Delta t}$$

$$V = \frac{\Delta[B]}{\Delta t}$$

$$\Delta[A] = [A]_{final} - [A]_{inicial}$$

 $\Delta[A]$ es negativo porque [A] $\Delta[B]$ = idem $\Delta[A]$ decrece con el tiempo,

$$\Delta[B] = idem \Delta[A]$$

 $\Delta t = t_{final} - t_{inicial}$

Unidades:
$$\frac{\text{mol}}{l. \text{ s}}, \frac{\text{mol}}{l. \text{min}}, \frac{mol}{l. h}$$

Condiciones que afectan a las velocidades de reacción

Naturaleza de las sustancias.

Estado físico.

Superficie de contacto o grado de pulverización

Concentración de los reactivos.

Temperatura.

Presencia de catalizadores.

$$Br_2$$
 (ac) + HCOOH (ac) \longrightarrow 2Br⁻ (ac) + 2H⁺ (ac) + CO₂ (g)

Time (s)	[Br ₂] (M)	0.0120	
0.0	0.0120	0.0100	Rate at 100 s:
50.0	0.0101	0.00800	$2.96 \times 10^{-5} \text{M/s}$
100.0	0.00846		Rate at 200 s: $2.09 \times 10^{-5} \text{M/s}$
150.0	0.00710	(M)	Rate at 300 s:
200.0	0.00596	=	$1.48 \times 10^{-5} \text{M/s}$
250.0	0.00500	0.00400	
300.0	0.00420		Pendiente de la
350.0	0.00353	0.00200	tangente
400.0	0.00296		tangente
		0	100 200 300 400 t(s)

Velocidad promedio =
$$-\frac{\Delta[Br_2]}{\Delta t}$$
 = $-\frac{[Br_2]_{final} - [Br_2]_{inicial}}{t_{final} - t_{inicial}}$

Velocidad instantánea = Velocidad en un tiempo específico

¿Cómo se mide la velocidad de reacción?

Vm =
$$-\frac{[Br_2]_2 - [Br_2]_1}{t_2 - t_1}$$

¿Cómo se mide la velocidad de reacción?

¿Cómo se mide la velocidad de reacción?

Medir ΔP respecto al tiempo

$$2H_2O_2$$
 (ac) $\longrightarrow 2H_2O$ (I) + O_2 (g)
 $PV = nRT$

$$P = \frac{n}{V} RT = [O_2]RT$$

$$[O_2] = \frac{1}{RT} P$$

$$V = \frac{\Delta[O_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P}{\Delta t}$$

Raymond Chang (2010) QUÍMICA. Ed. Me Graw Hill, Fig 13.7, pp. 562

Velocidad de reacción y estequiometría

Dos moles de A desaparecen por cada mol de B que se forma.

$$V = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} \qquad V = \frac{\Delta[B]}{\Delta t}$$

$$aA + bB \longrightarrow cC + dD$$

$$V = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

Velocidad de reacción y estequiometría

Ejercicio

Escriba la expresión de velocidad para la siguiente reacción

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

$$V = -\frac{\Delta[CH_4]}{\Delta t} = -\frac{1}{2}\frac{\Delta[O_2]}{\Delta t} = \frac{\Delta[CO_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[H_2O]}{\Delta t}$$

Ley de la velocidad

En general, la velocidad depende de las concentraciones de los reactivos. La **ley de la velocidad** expresa el producto de la concentración de los reactivos elevados a una potencia llamada orden de reacción.

$$aA + bB \longrightarrow cC + dD$$

Ecuación de velocidad

$$V = k [AXB]$$

x e y se determinan experimentalmente

A la constante "k" se le denomina constante de velocidad (No confundir con K_C o K_P). La reacción es de orden x respecto a x La reacción es de orden y respecto a y la reacción general es de orden y respecto a y re

Ecuación de velocidad

Ejemplo:

■
$$H_2(g) + I_2(g) \rightarrow 2 \text{ HI } (g)$$

$$v = k \cdot [H_2] \cdot [I_2]$$
■ $H_2(g) + Br_2(g) \rightarrow 2 \text{ HBr } (g)$

$$v = k \cdot [H_2] \cdot [Br_2]^{1/2}$$

Nota: El valor de "k" depende de cada reacción

Determinación de la ecuación de velocidad

- Consiste en medir la velocidad inicial manteniendo las concentraciones de todos los reactivos constantes excepto la de uno y ver cómo afecta la variación de éste al valor de la velocidad.
- Si por ejemplo, al doblar la concentración de un reactivo la velocidad se multiplica por cuatro, podemos deducir que el orden parcial respecto a ese reactivo es "2".

Determinación de la ecuación de velocidad

$$F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$$

$$V = k [F_2]^x [CIO_2]^y$$

TABLE 13.2	Rate Data for the Reaction Between F ₂ and ClO ₂			
[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)		
0.10	0.010	1.2×10^{-3}		
0.10	0.040	4.8×10^{-3}		
0.20	0.010	2.4×10^{-3}		

Duplicando $[F_2]$ con $[ClO_2]$ constante, La velocidad se duplica: x = 1

Cuadruplicando $[ClO_2]$ con $[F_2]$ constante, la velocidad se cuadruplica: v = 1

$$V = k [F_2][CIO_2]$$

TABLE 13.1

Rates of the Reaction Between Molecular Bromine and Formic Acid at 25°C

Time (s)	[Br ₂] (M)	Rate (M/s)	$k = \frac{\text{rate}}{[Br_2]} (s^{-1})$		
0.0 0.0120 4.20×1		4.20×10^{-5}			
50.0	0.0101	3.52×10^{-5}	3.49×10^{-3}		
100.0	0.00846	2.96×10^{-5}	3.50×10^{-3}		
150.0	0.00710	2.49×10^{-5}	3.51×10^{-3}		
200.0	0.00596	2.09×10^{-5}	3.51×10^{-3}		
250.0	0.00500	1.75×10^{-5}	3.50×10^{-3}		
300.0	0.00420	1.48×10^{-5}	3.52×10^{-3}		
350.0	0.00353	1.23×10^{-5}	3.48×10^{-3}		
400.0	0.00296	1.04×10^{-5}	3.51×10^{-3}		

Velocidad α [Br₂]

 $Velocidad = k [Br_2]$

$$k = \frac{V}{[Br_2]} = constante =$$

= 3.50 x 10⁻³(s⁻¹)

Ejercicio

Determine la ley de la velocidad y la constante de velocidad de la reacción del anión peroxodisulfato con el anión yoduro a partir de los siguientes datos:

$$S_2O_8^{2-}$$
 (ac) + $3I^-$ (ac) $\longrightarrow 2SO_4^{2-}$ (ac) + I_3^- (ac)

Experimental	[S ₂ O ₈ ²⁻]	[1-]	Velocidad nicial (M/s)
1	0.08	0.034	2.2 x 10 ⁻⁴
2	0.08	0.017	1.1 x 10 ⁻⁴
3	0.16	0.017	2.2 x 10 ⁻⁴

$$V = k [S_2O_8^{2-}]^x[I^-]^y$$

$$y = 1$$

$$x = 1$$

$$V = k [S_2O_8^{2-}][I^-]$$

Ejercicio

Determine la ley de la velocidad y la constante de velocidad de la reacción del anión peroxodisulfato con el anión yoduro a partir de los siguientes datos:

$$S_2O_8^{2-}$$
 (ac) + $3I^-$ (ac) $\longrightarrow 2SO_4^{2-}$ (ac) + I_3^- (ac)

Experimenta I	[S ₂ O ₈ ²⁻]	[11]	Velocidad nicial (<i>M</i> /s)	V = k
1	0.08	0.034	2.2 x 10 ⁻⁴	y=1
2	0.08	0.017	1.1 x 10 ⁻⁴	x = 1
3	0.16	0.017	2.2 x 10 ⁻⁴	V = k

$$V = k [S_2O_8^{2-}]^x[I^-]^y$$

$$y = 1$$

$$x = 1$$

$$V = k [S_2O_8^{2-}][I^-]$$

Duplicando [l-], se duplica la velocidad (experimento 1 y 2)

Duplicando [S₂O₈²⁻], la velocidad se duplica (experimento 2 y 3)

$$k = \frac{V}{[S_2O_8^{2-}][I^-]} = \frac{2.2 \times 10^{-4} M/s}{(0.08 M)(0.034 M)} = 0.08/M \cdot s$$

Tiempo de vida media

La **vida media**, $\mathbf{t}_{1/2}$, es el tiempo requerido para que la concentración de un reactivo disminuya a la mitad de su concentración inicial. Para reacciones de primer orden $\mathbf{t}_{1/2}$ no cambia a lo largo de la reacción

$$t_{1/2} = \ln 2/k$$

¿Cómo sabe que la reacción es de primer orden?

unidades de k (s⁻¹)

Interpretación Molecular de las Reacciones

- Teoría de las colisiones
- Teoría del estado de transición

Teoría de las colisiones. Energía de activación, E_a

- Para que una reacción pueda producirse entre átomos, iones o moléculas, es preciso que éstos colisionen.
- La velocidad es proporcional al número de colisiones entre las moléculas de los reactivos.
- Explica el hecho de que la v dependa de un producto de términos de []
- No todos los choques son efectivos
 - Bien porque no tienen la energía de activación necesaria
 - Bien porque no tienen la orientación adecuada.

La **energía de activación (E_a)** es la energía mínima requerida para iniciar una reacción,

Teoría de las colisiones

Orientación en el choque

Teoría del estado de transición

Los reactivos atraviesan un estado intermedio de alta energía de corta duración, llamado complejo activado o complejo del estado de transición, antes de formar los productos.

La energía de activación, Ea, es la energía que los reactivos deben absorber para poder alcanzar el estado de transición.

Teoría del estado de transición

$$A + B \longrightarrow AB^{\dagger} \longrightarrow C + D$$

El complejo activado es una asociación transitoria muy inestable, ya que tiene una energía superior a las moléculas de reactivo y producto.

Transcurso de la reacción

Transcurso de la reacción

Reacción exotérmica Reacción endotérmica

Mecanismo de reacción

- En la reacción elemental: $H_2(g) + I_2(g) \rightarrow 2 HI(g)$ v = k · $[H_2]$ · $[I_2]$
- Sin embargo, la mayoría de las reacciones suceden en etapas.
- El conjunto de estas etapas se conoce como "mecanismo de la reacción".
- Las sustancias que van apareciendo y que no son los productos finales se conocen como "intermediarios de reacción".
- La velocidad de la reacción dependerá de las sustancias que reaccionen en la etapa más lenta.

Mecanismo de reacción

- La reacción NO₂(g) + CO(g) → NO(g) + CO₂(g)
- se cree que sucede en dos etapas: 1^a etapa (lenta): $2 \text{ NO}_2 \rightarrow \text{NO} + \text{NO}_3$ 2^a etapa (rápida): $\text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2$
- La reacción global es la suma de las dos.
- NO₃ es un intermediario de reacción.
- En la etapa lenta intervienen dos moléculas de $NO_{2,}$, luego $v = k \cdot [NO_2]^2$.
- La velocidad de la reacción siempre estará determinada por la etapa más lenta (1^a etapa).

Molecularidad

- Se llama molecularidad al número de moléculas de reactivos que colisionan simultáneamente para formar el complejo activado en una reacción elemental.
- Se trata de un número entero y positivo.
- Así hablamos de reacciones unimoleculares, bimoleculares, trimoleculares, etc...

Ejemplo: La reacción $H_2(g) + I_2(g) \rightarrow 2$ HI (g) es una reacción elemental (que sucede en una sola etapa) y para que suceda es necesario el choque de dos moléculas (una de H_2 y otra de I_2). Se dice que es una reacción "bimolecular"

Molecularidad

- Generalmente, en reacciones elementales, coincide con el orden de reacción.
- Sin embargo, existen casos en los que no coinciden, como las reacciones de hidrólisis en los que interviene una molécula de agua ya que al ser [H₂O] prácticamente constante la velocidad es independiente de ésta.
- Es raro que una reacción intervengan más de tres moléculas pues es muy poco probable que choquen entre sí simultáneamente con la energía y orientación adecuadas.

Factores que afectan a la velocidad de una reacción

Efecto del estado de agregación y superficie de contacto de los reactantes

- Las reacciones en estado gaseoso son más rápidas que aquellas en fase líquida y estas, más rápidas que en fase sólida: velocidad de reacción: gases > líquidos > sólidos
- Un gramo de carbón en polvo, cubre más superficie que una esfera de carbón de un gramo.
- A mayor superficie de contacto de un material más rápido reacciona.
- Al moler o triturar un sólido, reacciona más rápido.

Efecto de la Temperatura

- La constante de velocidad, y por tanto la velocidad de una reacción, en general aumenta si aumenta la temperatura, porque la fracción de moléculas que sobrepasan la energía de activación es mayor.
- La variación de la constante de la velocidad con la temperatura viene recogida en la ecuación de Arrhenius.
- La velocidad, prácticamente se duplica por cada 10º de aumento de temperatura.

Efecto de la Temperatura

k = A₌exp(-E_a / RT) (Ecuación de Arrhenius)

k = constante de velocidad

A = factor de frecuencia. Es una constante con unidades de k. Proporcional a la frecuencia de choque de las moléculas que reaccionan.

e-Ea/RT = factor energético. Representa la fracción de choques con energía suficiente para superar la Ea.

Ea = Energía de activación de la reacción (J/mol o cal/mol).

T = temperatura absoluta (K).

 \mathbf{R} = cte. univ. de los gases (8,314 J/mol.K ó 1,987 cal/mol.K).

Efecto de la Temperatura

Normalmente se expresa de forma logarítmica para calcular E_a

$$lnk = -\frac{E_a}{R} \frac{1}{T} + lnA$$

Efecto de catalizadores

Un catalizador es una sustancia que incrementa la velocidad de la reacción química sin que ésta se consuma.

Efecto de catalizadores

- Intervienen en alguna etapa de la reacción pero no se modifican pues se recuperan al final y no aparece en la ecuación global ajustada.
- Modifican el mecanismo y por tanto E_a.
- No modifican las constantes de los equilibrios.
- Pueden ser:
 - \triangleright Positivos: hacen que $\mathbf{v} \uparrow$ porque consiguen que $\mathbf{E}_{\mathbf{a}} \downarrow$.
 - > Negativos: hacen que $\mathbf{v} \downarrow \mathbf{p}$ porque consiguen que $\mathbf{E}_{\mathbf{a}} \uparrow \mathbf{1}$.
- Los catalizadores también pueden clasificarse en:
 - Homogéneos: en la misma fase que los reactivos.
 - > Heterogéneos: se encuentra en distinta fase.

Efecto de catalizadores

Cinética y equilibrio químico

En la reacción elemental: $aA + bB \rightarrow cC + dD$

$$aA + bB \xrightarrow{V_d} cC + dD$$

$$v_d = k_d [A]^a [B]^b$$

 $v_i = k_i [C]^c [D]^d$

Con el transcurso del tiempo, v_d↓ y v_i↑

En el equilibrio, $v_d = v_i$ $k_d [A]^a [B]^b = k_i [C]^c [D]^d$

$$K_{C} = \frac{k_{d}}{k_{i}} = \frac{[C]^{c} \cdot [D]^{d}}{[A]^{a} \cdot [B]^{b}}$$

Resumen de la cinética para las reacciones de orden cero, primer orden y de segundo orden

Orden	Ley de la velocidad Cor	Ecuación ncentración-Tiempo	Tiempo de vida media
0	velocidad = k	$[A] = [A]_0 - kt$	$t_{1/2} = \frac{[A]_0}{2k}$
1	velocidad = k [A]	$ln[A] = ln[A]_0 - kt$	$t_{1/2} = \frac{ln2}{k}$
2	velocidad = $k [A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{1/2} = \frac{1}{k[A]_0}$

Bibliografía recomendada

- Chang, R. "Química". McGraw-Hill Interamericana de México, S.A. de C. V. México. 2006.
- Atkins, P. y Jones, L. "Principios de Química. Los caminos del descubrimiento". Editorial Panamericana. 2006.
- Atkins, P. y Jones, L. "Química. Moléculas. Materia. Cambio".
 Ediciones Omega S.A. Barcelona. España. 1998.
- Whitten, K., Davis, R., Peck, M. Química General. McGraw-Hill/Interamericana de España S.A.U. 1998
- Brown, T., LeMay, H., Bursten, B. "Química la Ciencia Central".
 Prentice Hall Hispanoamericana S.A. México. 1998.
- Burns. "Fundamentos de Química". Prentice Hall. 1996.