

DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB101J - Electromagnetic Theory, Quantum Mechanics, Waves and Optics

Module-IV (Waves and Optics) Lecture-4

Problem Solving

1. A single slit of width 1 mm is illuminated by light of wavelength 589 nm. Find the angular spread of the central maxima of diffraction pattern observed.

Solution Given
$$\lambda = 5.89 \times 10^{-7}$$
 m and slit-width (b) 1.0×10^{-3} m.

Formula used is $b \sin \theta = m\lambda$

For first minima, $m = 1$
 $\therefore \sin \theta = \lambda/b$
 $\theta = \sin^{-1} \left[\lambda/b \right] = \sin^{-1} \left[\frac{5.89 \times 10^{-7}}{1.0 \times 10^{-3}} \right]$
 $\theta = 0.03374^{\circ}$

The angular spread of central maximum is 2θ
 $\therefore 2\theta = 2 \times 0.03374$
 $2\theta = 0.0675^{\circ}$

Therefore, angular spread of central maximum is 0.0675° .

2. In Fraunhofer type diffraction at narrow slit of width 0.2 mm, a screen is placed 1.2 m away from the slit. In the fringe pattern, first minimum lie at 3.7 mm on either side of the central maximum. Find out the wavelength of light.

Solution: given- b = .2mm, D = 1.2 m and x = 3.7 mm

From the given figure, if θ is very small, then

$$\sin \theta = \frac{x}{D}$$

condition of minima $b \sin \theta = m\lambda$

For
$$m = 1$$
, then $\sin \theta = \lambda b$

By using Eqs. (i) and (ii), we get

$$\frac{\lambda}{b} = \frac{x}{D}$$
 or $\lambda = \frac{xb}{D} = \frac{3.7 \times 10^{-3} \times 2 \times 10^{-4}}{1.2}$

$$\lambda = 6167 \text{ Å}$$

3. In Fraunhofer diffraction at a slit of width 1.2 x 10^{-6} m, find the half-angular width of the central bright maximum if the slit is illuminated by light of wavelength 5.89 x 10^{-7} m

Given:
$$b = 1.2 \times 10^{-6} \text{ m}$$
 and $\lambda = 5.89 \times 10^{-7} \text{ m}$

Formula:
$$b \sin \theta = m\lambda$$

For first minimum
$$m = 1$$

$$\sin\theta = \lambda/b = 5.89 \times 10^{-7} / 1.2 \times 10^{-6}$$

= 0.491

$$\theta = \sin^{-1}(0.491)$$

$$\theta = 29.41^{\circ}$$

4. Parallel beam of light (5.0 x 10^{-7} m) is normally incident on a slit. The central maximum fans out at 30° on both sides of the direction of the incident light. Calculate the slit width. For what width of the slit the central maximum would spread out to 90° from the direction of the incident light?

Given:
$$\theta = 30^{\circ}$$
 and $\lambda = 5.0 \times 10^{-7}$ m

Formula:
$$b \sin \theta = m\lambda$$

For first minimum m = 1

$$b = \lambda / \sin \theta = 5.0 \text{ x } 10^{-7} \text{ m} / \sin 30^{\circ}$$

=1.0 \text{ \text{}}\text{m}

$$\theta = 90^{\circ}, b = ?$$

$$b = 5.0 \times 10^{-7} \text{ m} / \text{Sin } 90^{\circ} = 0.5 \text{ } \mu\text{m}$$

5. A Parallel beam of light (5890 x 10^{-10} m) is incident perpendicularly on a slit of width 0.1 mm. Calculate angular width and linear width of central maximum formed on the screen 100 cm away.

18PYB101J Module-IV Lecture-4

