

"Study of Reverse Flow Process

Engineering Intern | Duration: Jan 2021 – Feb 2020

System Overview

Production of Seamless Rocket Motor Tubes Using Flow Forming.

Key Learnings:

- ✓ **Process Optimization**: Studied and optimized parameters such as feed rate, roller geometry, and hardness variations to improve tube quality.
- ✓ Experimental Analysis: Conducted tests using CNC flow forming machines to evaluate effects on thickness, ovality, and diameter.
- ✓ Material Evaluation: Assessed the mechanical properties and microstructural changes of SAE 4130 Steel after flow forming.
- ✓ **Quality Improvement**: Implemented stagger adjustments and controlled roller movement to achieve better surface finish and dimensional accuracy.

Leifeld Flow Forming Machine

Process and Experimentation

Experimental Setup

•Machine Used: Three-Roller CNC Flow Forming Machine Material: SAE 4130 Steel (chosen for high strength and heat resistance)

Key Process Parameters:

- Feed Rate: Controls thickness and surface finish.
- Roller Radius & Stagger: Determines tube ovality and dimensional accuracy.
- **Lubrication & Cooling:** Ensures smooth material flow and prevents overheating.

Testing and Quality Control

To ensure precision and quality, the following equipment was used:

- •Ultrasonic Thickness Meter Measures wall thickness consistency.
- •Hardness Tester (EQUITIP-D, Frank Tester) Ensures uniform hardness.
- •Surface Finish Measurement— Evaluates texture and roughness.

Fig- Mechanism of plastic flow

Results and Conclusions

- √ The finishing roller radius should be lower than other two
 rollers to have uniform mean diameter and reduction in ovality.
- ✓ The hardness variation in the preforms tube should be as less as possible to avoid thickness variation and ovality.
- ✓ The staggering of the rollers should be kept in such a way that there is a minimum of thickness of preforms tube.
- ✓ The feed rate is arrived at 50 mm/min on SAE 4130 Steels to obtain better ovality, thickness and mean diameter.
- ✓ Material Performance Evaluation Assessed load-bearing capacity, impact resistance, and flexibility across multiple auxetic structures.
- ✓ Though reduction in feed rate improves surface finish, but its effect is there on ovality and mean diameter, therefore it is optimized at 50 mm/min.

