

《计算机网络》实验报告(二)

学院:_	信息科学与工程学院
班级: _2	2018 级计算机科学与技术 (数据科学方向) 4 班
小组成员	引: <u>胡悦、陈宇铭、冯博、钟奕</u>
任课教师	万:
实验小组	1: 8
实验日期	月: 2020-11-30

目录

一、	实验任务	. 3
_,	实验要求	. 3
三、	实验环境	. 3
四、	实验步骤	4
	1. 设计满足当前网络拓扑图的地址分配方案	. 4
	1.1 假设	4
	1.2 设计原则	4
	1.3 网络分析	. 4
	1.4 设计网络划分方案	. 5
	1.5 设计路由器端口地址分配方案	. 5
	1.6 设计服务器地址分配方案	. 5
	2. 在 ENSP 中制作网络拓扑图,并为路由器 C 和路由器 B 添加接口卡	6
	3. 配置 IP 地址	
	3.1 路由器	6
	3.2 服务器	10
	4. 配置 OSPF 路由协议	11
	4.1 路由器 A	11
	4.2 路由器 B	11
	4.3 路由器 C	11
	4.4 路由器 D	11
	4.5 路由器 E	12
	4.6 路由器 Y	12
	4.7 路由器 ₩	12
	5. 配置 DHCP 服务器	12
	5.1 路由器 C 接口地址池	12
	5.2 路由器 Y 全局地址池	13
	6. 配置 TELNET 服务器	16
	6.1 路由器 E	16
	6.2 路由器 W	17
	7. 测试连通性	18
	7.1 查看路由器的路由表	18
	7.2 使用 ping、tracert 命令	19
	7.3 测试服务器连通性	20
	8. ACLs	22
	8.1 路由器 A 的 e0 端口网络下的主机可以访问 FTP 服务器	22
	8.2 路由器 A 的 e0 端口网络下的主机可以访问 FTP 服务器	24
五、	小组签名	26

一、 实验任务

二、 实验要求

- 1. 设计满足当前网络拓扑图的 IP 地址分配方案。
- 2. 配置合适的路由协议,使得网络中所有结点都能互相连通。
- 3. 把路由器 Y 作为 DHCP 服务器,采用全局地址池,使其可为 A 的 e0 端口网络下的主机动态分配 IP 地址。
- 4. 把路由器 C 作为 DHCP 服务器,采用接口地址池,使其可为 C 的 e3 端口网络下的主机动态分配 IP 地址。
- 5. 将路由器 E 配置为一台 Telnet 服务器, 其权限等级为 Level 1。
- 6. 将路由器D配置为一台Telnet服务器,其权限等级为Level 3。
- 7. 配置以下访问规则:
 - 7.1 仅 A 的 e0 端口网络下的主机可以访问 FTP 服务器。
 - 7.2 仅 C 的 e3 端口网络下的主机不可访问 Web 服务器。

三、 实验环境

软件类别	版本号	
eNSP	1.3.00 V100R003C00	
VirtualBox	5. 2. 22 r126460 (Qt5. 6. 2)	
Wireshark	3. 0. 0	
WinPcap	4. 1. 3	

四、 实验步骤

1. 设计满足当前网络拓扑图的地址分配方案

1.1 假设

- ① 假设交换机不需要端口。
- ② 假设 D 的端口 e_2 、E 的端口 e_1 和 W 的端口 e_2 在同一个网络中,且该网络的网关为 D 的端口 e_2 。

1.2 设计原则

- ① 两个路由器直接相连时,这一段连线就构成一种只包含一段线路的特殊"网络"。
- ② 路由器总是具有两个或两个以上的 IP 地址,即路由器的每一个接口都有一个不同 网络号的 IP 地址。
- ③ 在同一个局域网的主机或路由器的 IP 地址中的网络号必须一致。

1.3 网络分析

根据网络拓扑图,可以将网络分为10个子网络。具体的分析结果如下表所示:

网络类型	网络名称	IP 数	比特数	子网掩码
	А-В		2bits	/30
	В-С			
吸出网络	А-С			
路由网络 (7个)	С-Е	2IP + 网络地址 + 广播地址 = 4IP		
	B-D			
	В-Х			
	Y-W			
主机网络	A	4IP + 网络地址 + 广播地址 = 6IP	3bits	/29
(3个)	С	2IP + 网络地址 + 广播地址 = 4IP	2bits	/30
	DEW	5IP + 网络地址 + 广播地址 = 7IP	3bits	/29

1.4 设计网络划分方案

1.4.1 等长掩码方案

根据上述分析得,共有 10 个子网络,故需要 10 个网络号,即需要 4bits 的 IP 地址空间来表示这些子网络,因此需要将原来的网络号拓展 4bits,将子网掩码由/26 变至/30。然而当自网掩码为/30 时,主机号仅有 2bits,即最多只能表示 2 个主机地址,无法满足网络 DEW 和网络 A 的需求。综上所述,等长掩码方案无法满足该网络需求,故弃用。

1.4.2 变长掩码方案

网络	子网掩码	二进制	网络地址	有效主机地址范围	分配网:	络
1		01000000	178.65.124.64 /30	178. 65. 124. 65 - 66	A-B	
2		01000100	178.65.124.68 /30	178. 65. 124. 69 - 70	В-С	
3		01001000	178. 65. 124. 72 /30	178. 65. 124. 73 - 74	A-C	
4	/20	01001100	178.65.124.76 /30	178. 65. 124. 77 - 78	C-E	路由网络
5	/30	01010000	178.65.124.80 /30	178. 65. 124. 81 - 82	B-D	
6		01010100	178.65.124.84 /30	178. 65. 124. 85 - 86	В-Ү	
7		01011000	178.65.124.88 /30	178. 65. 124. 89 - 90	Y-W	
8		01011100	178.65.124.92 /30	178. 65. 124. 93 - 94	С	
9	/90	01100000	178. 65. 124. 96 /29	178. 65. 124. 97 - 102	A	主机网络
10	/29	01101000	178. 65. 124. 104 /29	178. 65. 124. 105 - 110	DEW	1

1.5 设计路由器端口地址分配方案

路由器	e0	e1	e2	e3
A	178. 65. 124. 97/29	178. 65. 124. 73/30	178. 65. 124. 65/30	
В	178. 65. 124. 69/30	178. 65. 124. 81/30	178. 65. 124. 66/30	178. 65. 124. 85/30
С	178. 65. 124. 70/30	178. 65. 124. 74/30	178. 65. 124. 77/30	178. 65. 124. 93/30
D		178. 65. 124. 82/30	178. 65. 124. 105/29	
Е		178. 65. 124. 106/29	178. 65. 124. 78/30	
Y		178. 65. 124. 89/30		178. 65. 124. 86/30
W		178. 65. 124. 90/30	178. 65. 124. 107/29	

1.6 设计服务器地址分配方案

服务器	IP	网关
HTTP	178. 65. 124. 108/29	178. 65. 124. 105
FTP	178. 65. 124. 109/29	178. 65. 124. 105

2. 在 ENSP 中制作网络拓扑图, 并为路由器 C 和路由器 B 添加接口卡

3. 配置 IP 地址

3.1 路由器

3.1.1 路由器 A

在工作区双击路由器 A 图标,在命令行界面配置 A 的 e0 端口为 178.65.124.97/29, e1 端口为 178.65.124.73/30, e2 端口为 178.65.124.65/30

```
<Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname A
[A]int g0/0/2
[A-GigabitEthernet0/0/2]ip ad 178.65.124.65 30
[A-GigabitEthernet0/0/2]int g0/0/0
[A-GigabitEthernet0/0/0]ip ad 178.65.124.97 29
[A-GigabitEthernet0/0/0]int g0/0/1
[A-GigabitEthernet0/0/1]ip ad 178.65.124.73 30
[A-GigabitEthernet0/0/1]q
[A] display ip interface brief
Interface
                              IP Address/Mask
                                                   Physical
Protocol
GigabitEthernet0/0/0
                                178.65.124.97/29
                                                     up
                                                               up
GigabitEthernet0/0/1
                                178.65.124.73/30
                                                     up
                                                               up
GigabitEthernet0/0/2
                                178.65.124.65/30
```

NULLO unassigned up up(s)

3.1.2 路由器 B

在工作区双击路由器 B 图标,在命令行界面配置 B 的 e0 端口为 178.65.124.69/30, e1 端口为 178.65.124.81/30, e2 端口为 178.65.124.66/30, e3 端口为 178.65.124.85/30

代码如下:

```
<Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname B
[B]int g0/0/0
[B-GigabitEthernet0/0/0]ip ad 178.65.124.69 30
[B-GigabitEthernet0/0/0]int g0/0/1
[B-GigabitEthernet0/0/1]ip ad 178.65.124.81 30
[B-GigabitEthernet0/0/1]int g0/0/2
[B-GigabitEthernet0/0/2]ip ad 178.65.124.66 30
[B-GigabitEthernet0/0/2]int g4/0/0
[B-GigabitEthernet4/0/0]ip ad 178.65.124.85 30
[B-GigabitEthernet4/0/0]q
[B] display ip interface brief
                                                 Physical
                             IP Address/Mask
Interface
Protocol
GigabitEthernet0/0/0
                               178.65.124.69/29
                                                   up
GigabitEthernet0/0/1
                               178.65.124.81/30
                                                             up
GigabitEthernet0/0/2
                               178.65.124.66/30
GigabitEthernet4/0/0
                               178.65.124.85/30
NULL0
                            unassigned up
                                                        up(s)
```

3.1.3 路由器 C

在工作区双击路由器 C 图标,在命令行界面配置 C 的 e0 端口为 178.65.124.70/30, e1 端口为 178.65.124.74/30, e2 端口为 178.65.124.77/30, e3 端口为 178.65.124.93/30

<Huawei>sys

```
Enter system view, return user view with Ctrl+Z.

[Huawei]sysname C

[C]int g0/0/0

[C-GigabitEthernet0/0/0]ip ad 178.65.124.70 30

[C-GigabitEthernet0/0/0]int g0/0/1

[C-GigabitEthernet0/0/1]ip ad 178.65.124.74 30

[C-GigabitEthernet0/0/1]int g0/0/2

[C-GigabitEthernet0/0/2]ip ad 178.65.124.77 30

[C-GigabitEthernet0/0/2]int g4/0/0
```

```
[C-GigabitEthernet4/0/0]ip ad 178.65.124.93 30
[C-GigabitEthernet4/0/0]q
[C]display ip interface brief
Interface
                           IP Address/Mask
                                              Physical
Protocol
GigabitEthernet0/0/0
                             178.65.124.69/70
GigabitEthernet0/0/1
                             178.65.124.81/74
                                                         up
GigabitEthernet0/0/2
                             178.65.124.66/77
                                                up
GigabitEthernet4/0/0
                             178.65.124.85/93
                                                up
NULL0
                          unassigned up
                                                    up(s)
```

3.1.4 路由器 D

在工作区双击路由器 D 图标,在命令行界面配置 D 的 e1 端口为 178.65.124.82/30, e2 端口为 178.65.124.105/29

代码如下:

```
<hul>Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname D
[D] int g0/0/1
[D-GigabitEthernet0/0/1]ip ad 178.65.124.82 30
[D-GigabitEthernet0/0/1]int g0/0/2
[D-GigabitEthernet0/0/2]ip ad 178.65.124.105 29
[D-GigabitEthernet0/0/2]q
[D]display ip interface brief
                             IP Address/Mask Physical
Interface
Protocol
GigabitEthernet0/0/1
                              178.65.124.82/30
GigabitEthernet0/0/2
                              178.65.124.105/29
                                                            up
NULL0
                            unassigned up
                                                        up(s)
```

3.1.5 路由器 E

在工作区双击路由器 E 图标,在命令行界面配置 E 的 e1 端口为 178.65.124.106/29, e2 端口为 178.65.124.78/30

```
<Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname E
[E]int g0/0/1
[E-GigabitEthernet0/0/1]ip ad 178.65.124.106 29
[E-GigabitEthernet0/0/1]int g0/0/2
```

3.1.6 路由器 Y

在工作区双击路由器 Y 图标,在命令行界面配置 Y 的 e1 端口为 178.65.124.89/30, e2 端口为 178.65.124.86/30

代码如下:

```
<Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname Y
[Y]int g0/0/1
[Y-GigabitEthernet0/0/1]ip ad 178.65.124.89 30
[Y-GigabitEthernet0/0/1]int g0/0/2
[Y-GigabitEthernet0/0/2]ip ad 178.65.124.86 30
[Y-GigabitEthernet0/0/2]q
[Y]display ip interface brief
                             IP Address/Mask
                                               Physical
Interface
Protocol
GigabitEthernet0/0/1
                              178.65.124.89/30
                                                  up
GigabitEthernet0/0/2
                              178.65.124.86/30
NULL0
                            unassigned up
                                                       up(s)
```

3.1.6 路由器 ₩

在工作区双击路由器 W 图标,在命令行界面配置 W 的 e1 端口为 178.65.124.90/30, e2 端口为 178.65.124.107/29

```
<Huawei>sys
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname W
[W]int g0/0/1
[W-GigabitEthernet0/0/1]ip ad 178.65.124.90 30
[W-GigabitEthernet0/0/1]int g0/0/2
[W-GigabitEthernet0/0/2]ip ad 178.65.124.107 29
[W-GigabitEthernet0/0/2]q
```

[W]display ip interface brief			
Interface	IP Address/Mask	Physical	1
Protocol			
GigabitEthernet0/0/1	178.65.124.90/30	up	up
GigabitEthernet0/0/2	178.65.124.107/29	9 up	up
NULL0	unassigned	up	up(s)

3.2 服务器

3. 2. 1 HTTP

在工作区双击 HTTP 服务器图标,在"配置"界面,IP 地址配置为 178.65.124.108,子网掩码配置为 255.255.255.248,网关配置为 178.65.124.105

3.2.2 FTP

在工作区双击 FTP 服务器图标,在"配置"界面,IP 地址配置为 178.65.124.109,子网掩码配置为 255.255.255.248,网关配置为 178.65.124.105

4. 配置 OSPF 路由协议

4.1 路由器 A

在工作区双击路由器 A 图标, 在命令行界面配置 OSPF 协议 代码如下:

```
[A]ospf
[A-ospf-1]area 0
[A-ospf-1-area-0.0.0.0]network 178.65.124.97 0.0.0.7
[A-ospf-1-area-0.0.0.0]network 178.65.124.72 0.0.0.3
[A-ospf-1-area-0.0.0.0]network 178.65.124.64 0.0.0.3
```

4.2 路由器 B

在工作区双击路由器 B 图标,在命令行界面配置 OSPF 协议

代码如下:

```
[B]ospf
[B-ospf-1]area 0
[B-ospf-1-area-0.0.0.0]network 178.65.124.68 0.0.0.3
[B-ospf-1-area-0.0.0.0]network 178.65.124.80 0.0.0.3
[B-ospf-1-area-0.0.0.0]network 178.65.124.64 0.0.0.3
[B-ospf-1-area-0.0.0.0]network 178.65.124.84 0.0.0.3
```

4.3 路由器 C

在工作区双击路由器 C 图标,在命令行界面配置 OSPF 协议

代码如下:

```
[C]ospf
[C-ospf-1]area 0
[C-ospf-1-area-0.0.0.0]network 178.65.124.68 0.0.0.3
[C-ospf-1-area-0.0.0.0]network 178.65.124.72 0.0.0.3
[C-ospf-1-area-0.0.0.0]network 178.65.124.76 0.0.0.3
[C-ospf-1-area-0.0.0.0]network 178.65.124.92 0.0.0.3
```

4.4 路由器 D

在工作区双击路由器 D 图标,在命令行界面配置 OSPF 协议

```
[D]ospf
[D-ospf-1]area 0
[D-ospf-1-area-0.0.0.0]network 178.65.124.80 0.0.0.3
[D-ospf-1-area-0.0.0.0]network 178.65.124.104 0.0.0.7
```

4.5 路由器 E

在工作区双击路由器 E 图标,在命令行界面配置 OSPF 协议

代码如下:

```
[E]ospf
[E-ospf-1]area 0
[E-ospf-1-area-0.0.0.0]network 178.65.124.76 0.0.0.3
[E-ospf-1-area-0.0.0.0]network 178.65.124.104 0.0.0.7
```

4.6 路由器 Y

在工作区双击路由器 Y 图标,在命令行界面配置 OSPF 协议

代码如下:

```
[Y]ospf
[Y-ospf-1]area 0
[Y-ospf-1-area-0.0.0.0]network 178.65.124.88 0.0.0.3
[Y-ospf-1-area-0.0.0.0]network 178.65.124.84 0.0.0.3
```

4.7 路由器 W

在工作区双击路由器W图标,在命令行界面配置OSPF协议

代码如下:

```
[W]ospf
[W-ospf-1]area 0
[W-ospf-1-area-0.0.0.0]network 178.65.124.88 0.0.0.3
[W-ospf-1-area-0.0.0.0]network 178.65.124.104 0.0.0.7
```

5. 配置 DHCP 服务器

5.1 路由器 C 接口地址池

在路由器 C 中配置接口地址池的 DHCP 服务器,为路由器 C 的端口 e3 网络下的 PC2 动态分配 IP 地址。

```
<C>sys
Enter system view, return user view with Ctrl+Z.
[C]dhcp enable
Info: The operation may take a few seconds. Please wait for a moment.done.
[C]int g4/0/0
[C-GigabitEthernet4/0/0]dhcp select interface
[C-GigabitEthernet4/0/0]dhcp server lease day 30
```

验证如下:

使用 ipconfig 在 PC2 中查看 DHCP 服务器为其分配的 IP 地址

从图中可看出, PC2 的 IP 地址为 178. 65. 124. 94, 网关为 178. 65. 124. 93, 属于我们所 划分的该网络下的有效主机地址范围。

5.2 路由器 Y 全局地址池

5.2.1 在路由器 Y 处设置全局地址池

在路由器 Y 中配置接口地址池的 DHCP 服务器,为路由器 Y 的端口 e0 网络动态分配 IP 地址。

```
<Y>sys
Enter system view, return user view with Ctrl+Z.
[Y]dhcp enable
Info: The operation may take a few seconds. Please wait for a
moment.done.
[Y]ip pool test
Info: It's successful to create an IP address pool.
[Y-ip-pool-test]network 178.65.124.96 mask 29
  [Y-ip-pool-test]gateway-list 178.65.124.97
[Y-ip-pool-test]lease day 30
[Y-ip-pool-test]q
[Y]int g0/0/0
[Y-GigabitEthernet0/0/0]dhcp selec global
```

5.2.2 在路由器 B 处配置 DHCP 中继

代码如下:

```
<B>sys
Enter system view, return user view with Ctrl+Z.
[B]dhcp enable
Info: The operation may take a few seconds. Please wait for a moment.done.
[B]int g0/0/2
[B-GigabitEthernet0/0/2]dhcp select relay
[B-GigabitEthernet0/0/2]dhcp relay server-ip 178.65.124.86
```

5.2.3 在路由器 A 处配置 DHCP 中继

代码如下:

```
<A>sys
Enter system view, return user view with Ctrl+Z.
[A]dhcp enable
Info: The operation may take a few seconds. Please wait for a moment.done.
[A]int g0/0/0
[A-GigabitEthernet0/0/2]dhcp select relay
[A-GigabitEthernet0/0/2]dhcp relay server-ip 178.65.124.66
```

验证如下:

① PC1

使用 ipconfig 在 PC1 中查看 DHCP 服务器为其分配的 IP 地址

② PC3

使用 ipconfig 在 PC3 中查看 DHCP 服务器为其分配的 IP 地址

③ PC4

使用 ipconfig 在 PC4 中查看 DHCP 服务器为其分配的 IP 地址

从图中可看出, PC1, PC3 和 PC4 的网络信息为

主机名	IP 地址	网关地址	子网掩码
PC1	178. 65. 124. 98	178. 65. 124. 97	255. 255. 255. 248
PC3	178. 65. 124. 99	178. 65. 124. 97	255. 255. 255. 248
PC4	178. 65. 124. 100	178. 65. 124. 97	255. 255. 255. 248

均属于我们所划分的该网络下的有效主机地址范围。

6. 配置 TELNET 服务器

6.1 路由器 E

6.1.1 路由器 E

将路由器 E 配置为 Telnet 服务器, 权限等级为 Level 1。

代码如下:

```
<E>sys
Enter system view, return user view with Ctrl+Z.

[E]telnet server enable
Error: TELNET server has been enabled

[E]user-interface vty 0 4

[E-ui-vty0-4]authentication-mode password
Please configure the login password (maximum length 16)
:123456

[E-ui-vty0-4]user privilege level 1

[E-ui-vty0-4]q
```

6.1.2 验证

① 在路由器 A 中登录

代码如下:

```
<A>telnet 178.65.124.78
  Press CTRL_] to quit telnet mode
  Trying 178.65.124.78 ...
  Connected to 178.65.124.78 ...
Login authentication
Password: 123456
<E>
```

② 在路由器 B 中登录

代码如下:

```
<B>telnet 178.65.124.78
  Press CTRL_] to quit telnet mode
  Trying 178.65.124.78 ...
  Connected to 178.65.124.78 ...
Login authentication
Password: 123456
<E>
```

③ 在路由器 E 中查看现在的用户

```
<E>dis users
```

```
User-Intf Delay Type Network Address AuthenStatus
AuthorcmdFlag
+ 0 CON 0 00:00:00 pass
Username: Unspecified

129 VTY 0 00:01:55 TEL 178.65.124.73 pass
Username: Unspecified

130 VTY 1 00:00:10 TEL 178.65.124.69 pass
Username: Unspecified
```

6.2 路由器 ₩

6.2.1 路由器 W

将路由器 W 配置为 Telnet 服务器, 权限等级为 Level 3。

代码如下:

```
<W>sys
Enter system view, return user view with Ctrl+Z.
[W]telnet server enable
Error: TELNET server has been enabled
[W]user-interface vty 0 4
[W-ui-vty0-4]authentication-mode password
Please configure the login password (maximum length 16)
:123456
[W-ui-vty0-4]user privilege level 3
[W-ui-vty0-4]q
```

6.2.2 验证

① 在路由器 A 中登录

代码如下:

```
<A>telnet 178.65.124.90
Press CTRL_] to quit telnet mode
Trying 178.65.124.90 ...
Connected to 178.65.124.90 ...
Login authentication
Password: 123456
<W>
```

② 在路由器 B 中登录

```
<B>telnet 178.65.124.90
Press CTRL_] to quit telnet mode
Trying 178.65.124.90 ...
```

Connected to 178.65.124.90 ...

Login authentication

Password: 123456

<W>

③ 在路由器₩中查看现在的用户

代码如下:

7. 测试连通性

7.1 查看路由器的路由表

例,查看 A 的路由表

7.2 使用 ping、tracert 命令

例,测试 PC1 和 PC2 的连通性

7.2.1 ping

PC1 -> PC2

```
PC>ping 178.65.124.94

Ping 178.65.124.94: 32 data bytes, Press Ctrl_C to break Request timeout!

From 178.65.124.94: bytes=32 seq=2 ttl=126 time=31 ms

From 178.65.124.94: bytes=32 seq=3 ttl=126 time=47 ms

From 178.65.124.94: bytes=32 seq=4 ttl=126 time=47 ms

From 178.65.124.94: bytes=32 seq=5 ttl=126 time=31 ms

--- 178.65.124.94 ping statistics ---

5 packet(s) transmitted
4 packet(s) received
20.00% packet loss
round-trip min/avg/max = 0/39/47 ms
```

PC2 -> PC1

```
PC>ping 178.65.124.98

Ping 178.65.124.98: 32 data bytes, Press Ctrl_C to break Request timeout!

From 178.65.124.98: bytes=32 seq=2 ttl=126 time=63 ms

From 178.65.124.98: bytes=32 seq=3 ttl=126 time=47 ms

From 178.65.124.98: bytes=32 seq=4 ttl=126 time=47 ms

From 178.65.124.98: bytes=32 seq=5 ttl=126 time=47 ms

--- 178.65.124.98 ping statistics ---
5 packet(s) transmitted
4 packet(s) received
20.00% packet loss
round-trip min/avg/max = 0/51/63 ms
```

7.2.2 tracert

PC1 -> PC2

```
PC>tracert 178.65.124.94
traceroute to 178.65.124.94, 8 hops max
(ICMP), press Ctrl+C to stop
```

```
1 178.65.124.97 47 ms 47 ms 47 ms
2 178.65.124.74 63 ms 31 ms 47 ms
3 178.65.124.94 47 ms 46 ms 47 ms
```

PC1 -> PC2

```
PC>tracert 178.65.124.98

traceroute to 178.65.124.98, 8 hops max

(ICMP), press Ctrl+C to stop

1 178.65.124.93 16 ms 15 ms <1 ms

2 178.65.124.73 31 ms 16 ms 16 ms

3 178.65.124.98 62 ms 47 ms 47 ms
```

可使用此方法验证路由器与路由器之间、主机与主机之间以及路由器与主机之间 的连通性,在此略

7.3 测试服务器连通性

例,测试主机网络 A和 FTP 的连通性

7.3.1 ping

在 PC1 中

```
Ping 178.65.124.109: 32 data bytes, Press Ctrl_C to break Request timeout!

From 178.65.124.109: bytes=32 seq=2 ttl=252 time=47 ms

From 178.65.124.109: bytes=32 seq=3 ttl=252 time=47 ms

From 178.65.124.109: bytes=32 seq=4 ttl=252 time=47 ms

From 178.65.124.109: bytes=32 seq=4 ttl=252 time=47 ms

From 178.65.124.109: bytes=32 seq=5 ttl=252 time=93 ms

--- 178.65.124.109 ping statistics ---
5 packet(s) transmitted
4 packet(s) received
20.00% packet loss
round-trip min/avg/max = 0/58/93 ms
```

7.3.2 测试服务

建立客户端 Client1, 在工作区双击 Client 客户端图标,在"配置"界面,IP 地址配置为 178.65.124.101,子网掩码配置为 255.255.255.248,网关配置为 178.65.124.97

例,测试主机网络A和HTTP的连通性

7.3.1 ping

在 PC1 中

```
PC>ping 178.65.124.108

Ping 178.65.124.108: 32 data bytes, Press Ctrl_C to break
From 178.65.124.108: bytes=32 seq=1 ttl=252 time=62 ms
From 178.65.124.108: bytes=32 seq=2 ttl=252 time=63 ms
From 178.65.124.108: bytes=32 seq=3 ttl=252 time=62 ms
From 178.65.124.108: bytes=32 seq=4 ttl=252 time=63 ms
From 178.65.124.108: bytes=32 seq=4 ttl=252 time=78 ms

--- 178.65.124.108 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 62/65/78 ms
```

7.3.2 测试服务

通过Client1测试HTTP服务

8. ACLs

为了方便对访问控制协议进行测试,将 PC2 替换为 Client2,将其 IP 地址配置为 178.65.124.94,子网掩码配置为 255.255.255.252,网关配置为 178.65.124.93

8.1 路由器 A 的 e0 端口网络下的主机可以访问 FTP 服务器

- 8.1.1 访问规则
- ① rule permit tcp source 178.65.124.96 0.0.0.7 destination 178.65.124.109 0 destination-port eq ftp
- ② rule deny tcp destination 178.65.124.109 0 destination-port eq ftp

8.1.2 配置规则

在路由器 D、路由器 E 及路由器 W 的对应端口中配置 ACL

代码如下: (以路由器 D 为例)

<D>sys Enter system view, return user view with Ctrl+Z. [D]acl name test advanced [D-acl-adv-test]rule permit tcp source 178.65.124.96 0.0.0.7 destination 178.65.124.109 0 destination-port eq ftp [D-acl-adv-test]rule deny tcp destination 178.65.124.109 0 destination-port eq ftp [D-acl-adv-test]int g0/0/2 [D-GigabitEthernet0/0/1]traffic-filter inbound acl 3999

将上述访问规则添加到路由器 E 的 e2 端口、W 的 e1 端口的 in 方向,具体过程同上

8.1.3 检验

a. 在添加访问规则前

① 路由器 C的 e3 端口网络

② 路由器 A 的 e0 端口网络

Client1

b. 在添加访问规则后

① 路由器 C 的 e3 端口网络

Client2

② 路由器 A 的 e0 端口网络

8.2 路由器 A 的 e0 端口网络下的主机可以访问 FTP 服务器

- 8.2.1 访问规则
- ① rule permit tcp source 178.65.124.92 0.0.0.3 destination 178.65.124.108 0 destination-port eq www
- 2 rule deny tcp destination 178.65.124.108 0 destination-port eq www

8.1.2 配置规则

在路由器 D、路由器 E 及路由器 W 的对应端口中配置 ACL

代码如下: (以路由器 D 为例)

Enter system view, return user view with Ctrl+Z. [D]acl name test advanced [D-acl-adv-test]rule permit tcp source 178.65.124.92 0.0.0.3 destination 178.65.124.108 0 destination-port eq www [D-acl-adv-test]rule deny tcp destination 178.65.124.108 0 destination-port eq www [D-acl-adv-test]int g0/0/2 [D-GigabitEthernet0/0/1]traffic-filter inbound acl 3999

—— 将上述访问规则添加到路由器 E 的 e2 端口、W 的 e1 端口的 in 方向,具体过程同上

8.2.3 检验

a. 在添加访问规则前

① 路由器 C的 e3 端口网络

② 路由器 A 的 e0 端口网络

Client1

b. 在添加访问规则后

① 路由器 C的 e3 端口网络

Client2

② 路由器 A 的 e0 端口网络

五、 小组签名

陈宇铭	冯博	胡悦	钟奕
-----	----	----	----