Correction proposée par : EL Amdaoui Mustapha elamdaoui@gmail.com

1^{ère} partie

Étude de solutions des équations différentielles de Bessel d'indice entier

1.1. u étant de C^2 et non nulle sur $]0, +\infty[$, alors par produit v est de C^2 et non nulle sur $]0, +\infty[$ et par la formule de Leibniz, on obtient :

$$\forall t > 0, \quad v''(t) = \sqrt{t}u''(t) + \frac{u'(t)}{\sqrt{t}} - \frac{u(t)}{4\sqrt{t}^3}$$

Puis, pour t > 0, on a :

$$v''(t) + \sigma_n(t)v(t) = \sqrt{t}u''(t) + \frac{u'(t)}{\sqrt{t}} - \frac{u(t)}{4\sqrt{t}^3} + \sqrt{t}\left(1 + \frac{1 - 4n^2}{4t^2}\right)u(t)$$

$$= \frac{1}{\sqrt{t^3}}\underbrace{\left[t^2u'' + tu'(t) + \left(t^2 - n^2\right)u(t)\right]}_{=0}$$

$$= 0$$

1.2.

1.2.1. La fonction y_n est de C^{∞} sur]-R, R[, car c'est la somme d'une série entière de rayon R, et pour tout $t \in]-R, R[$, on a :

$$ty'_n(t) = \sum_{k=0}^{+\infty} (k+n)a_k t^{n+k}$$
$$t^2 y''_n(t) = \sum_{k=0}^{+\infty} (k+n)(k+n-1)a_k t^{n+k}$$

L'équation (\mathcal{B}_n) équivaut à

$$\sum_{k=0}^{+\infty} (k+n)(k+n-1)a_k t^{n+k} + \sum_{k=0}^{+\infty} (k+n)a_k t^{n+k} + \sum_{k=0}^{+\infty} a_k t^{n+k+2} - n^2 \sum_{k=0}^{+\infty} a_k t^{n+k} = 0$$

Soit

$$\sum_{k=0}^{+\infty} k(2n+k)a_k t^{n+k} + \sum_{k=0}^{+\infty} a_k t^{n+k+2} = 0$$

Avec le changement d'indice k' = k + 2 dans le second terme du premier membre, il vient

$$\sum_{k=0}^{+\infty} k(2n+k)a_k t^{n+k} + \sum_{k=2}^{+\infty} a_{k-2} t^{n+k} = 0$$

Ou encore

$$\sum_{k=2}^{+\infty} \left(k(2n+k)a_k + a_{k-2} \right) t^{n+k} + (2n+1)a_1 t = 0$$

$$\text{Ceci fournit} \begin{cases} a_1 = 0 \\ k(2n+k)a_k + a_{k-2} = 0 \quad \forall k \geqslant 2 \end{cases} \quad \text{c'est-\`a-dire} \begin{cases} a_1 = 0 \\ (k+2)(2n+2+k)a_{k+2} + a_k = 0 \quad \forall k \geqslant 0 \end{cases}$$

- **2.1.2.** Par récurrence sur $k \in \mathbb{N}$
 - Pour k = 0 les deux formules sont vraies

• Soit
$$k \in \mathbb{N}$$
. Supposons que
$$\begin{cases} a_{2k+1} = 0 \\ a_{2k} = a_0 n! \frac{(-1)^k}{2^{2k} k! (n+k)!} \end{cases}$$

De même

$$a_{2k+2} = -\frac{a_{2k}}{(2k+2)(2n+2+2k)} = -\frac{a_{2k}}{2^2(k+1)(n+1+k)}$$
(HR)
$$= \frac{-1}{2^2(k+1)(n+1+k)} a_0 n! \frac{(-1)^k}{2^{2k}k! (n+k)!}$$

$$= a_0 n! \frac{(-1)^{k+1}}{2^{2k+2}(k+1)! (n+k+1)!}$$

Récurrence achevée

- **1.3.** On pose $a_k = \frac{1}{k! (n+k)!}$. Par le critère de D'Alembert $\left| \frac{a_{k+1}}{a_k} \right| = \frac{1}{(k+1)(n+k+1)} \xrightarrow[k \to +\infty]{} 0$, donc le rayon de convergence de la série $\sum_{k \ge 0} \frac{1}{k! (n+k)!} z^k$ est $+\infty$
 - On pose $b_k = \frac{(-1)^k}{2^{2k}k!\,(n+k)!}z^{2k}$. Pour z=0, la série $\sum_{k\geqslant 0}b_k$ converge absolument et pour $z\in\mathbb{C}^*$, on a : $\left|\frac{b_{k+1}}{b_k}\right| = \frac{|z|^2}{(k+1)(n+k+1)}\xrightarrow[k\to +\infty]{}0$, donc la série $\sum_{k\geqslant 0}b_k$ est absolument convergence et, par suite, le rayon de convergence $\sum_{k\geqslant 0}\frac{(-1)^k}{2^{2k}k!\,(n+k)!}z^{2k}$ vaut $+\infty$
- **1.4.** On considère la suite $(a_k)_{k\geqslant 0}$ définie par : $\forall k\in\mathbb{N},\ \begin{cases} a_{2k+1}=0\\ a_{2k}=\frac{(-1)^k}{2^{n+2k}k!\;(n+k)!} \end{cases}$. La série $\sum_{k\geqslant 0}a_kz^k$ est de rayon $+\infty$ et la suite $(a_k)_{k\geqslant 0}$ vérifie bien les contraintes de la question (1.2.2) avec $a_0=\frac{1}{2^nn!}$

1.5.

- **1.5.1.** $G_n(0)=\frac{1}{n!}>0$, et par continuité de G_n , il existe donc $\beta>0$ tel que $G_n(t)>0$, pour tout $t\in]-\beta,\beta[$
- **1.5.2.** Pour $t \geqslant \beta > 0$, alors $G_n(t)$ est somme d'une série à termes strictement positifs, donc $G_n(t) > 0$ et pour $t \in]-\beta, \beta[$, $G_n(t) > 0$. Par exclusion les zéros de G_n sont dans $]-\infty, -\beta]$
- **1.5.3.** Soit $t \in \mathbb{R}$, on a

$$\left(\frac{t}{2}\right)^n G_n \left(-\left(\frac{t}{2}\right)^2\right) = \left(\frac{t}{2}\right)^n \sum_{k=0}^{+\infty} \frac{1}{k! \ (n+k)!} \left(-\frac{t}{2}\right)^k = \left(\frac{t}{2}\right)^n \sum_{k=0}^{+\infty} \frac{(-1)^k}{2^{2k} k! \ (n+k)!} t^{2k} = J_n(t)$$

Si $t \in]0, +\infty[$ est zéro de J_n alors $-\frac{t^2}{4}$ est zéro de G_n , donc $-\frac{t^2}{4} \leqslant -\beta$, soit $t \geqslant 2\sqrt{\beta}$

2ème partie

Quelques résultats utiles pour la suite

2.1.

2.1.1. La fonction G_n est la somme d'une série entière de rayon de convergence $+\infty$, donc elle est de classe \mathcal{C}^{∞} et pour tout $p \in \mathbb{N}^*$ et $t \in \mathbb{R}$:

$$G_n^{(p)}(t) = \sum_{k=n}^{+\infty} \frac{k!}{(k-p)!} \frac{1}{k! (n+k)!} t^{k-p} = \sum_{k=0}^{+\infty} \frac{1}{k! (k+p+n)!} t^k$$

2.1.2. Soit $x \in \mathbb{R}$. La fonction $t \mapsto t^n G_n(t)$ est somme d'une série entière de rayon de convergence $+\infty$, alors

$$\int_0^x t^n G_n(t) dt = \int_0^x \sum_{k=0}^{+\infty} \frac{1}{k! (k+n)!} t^{n+k} dt$$

$$= \sum_{k=0}^{+\infty} \int_0^x \frac{1}{k! (k+n)!} t^{n+k} dt$$

$$= \sum_{k=0}^{+\infty} \frac{1}{k! (k+n+1)!} x^{n+k+1}$$

$$= x^{n+1} \sum_{k=0}^{+\infty} \frac{1}{k! (k+n+1)!} x^k$$

$$= x^{n+1} G'_n(x)$$

2.1.3. Soit $p \in \mathbb{N}^*$, l'application $x \longmapsto x^{n+p}G'_n(x)$ est dérivable sur \mathbb{R} comme produit de deux fonctions dérivables sur \mathbb{R} et par la formule du produit

$$(x^{n+p}G'_n(x))' = (x^{p-1}x^{n+1}G'_n(x))'$$

$$= (p-1)x^{n+p-1}G'_n(x) + x^{p-1}\underbrace{(x^{n+1}G'_n(x))'}_{=x^nG_n(x)}$$

$$= x^{n+p-1}(G_n(x) + (p-1)G'_n(x))$$

- **2.1.4.** Par récurrence sur $p \in \mathbb{N}$
 - Pour p=0, on a $\int_0^x t^n G_n(t) dt = x^{n+1} G'_n(x)$, alors $A_0=0$ et $B_0=1$ répondent à la question
 - Soit $p \ge 0$. Par une intégration par parties

$$\int_0^x t^{n+p+1} G_n(t) dt = \int_0^x t^{p+1} t^n G_n(t) dt$$

$$= \int_0^x t^{p+1} \left(t^{n+1} G'_n(t) \right)' dt$$

$$= \left[t^{n+p+2} G'_n(t) \right]_0^x - (p+1) \int_0^x t^{n+p+1} G'_n(t) dt$$

$$= x^{n+p+2} G'_n(x) - (p+1) \int_0^x t^{n+p+1} G'_n(t) dt$$

En outre

$$\int_0^x t^{n+p+1} G'_n(t) dt = \left[t^{n+p+1} G_n(t) \right]_0^x - (n+p+1) \int_0^x t^{n+p} G_n(t) dt$$
$$= x^{n+p+1} G_n(x) - (n+p+1) \int_0^x t^{n+p} G_n(t) dt$$

Par hypothèse de récurrence, il existe deux polynômes A_p et B_p à coefficients entiers,

$$\int_0^x t^{n+p} G_n(t) dt = x^{n+1} \left(A_p(x) G_n(x) + B_p(x) G'_n(x) \right)$$

Alors

$$\int_0^x t^{n+p+1} G_n(t) dt = x^{n+1} \left(A_{p+1}(x) G_n(x) + B_{p+1}(x) G'_n(x) \right)$$

Avec

$$\begin{cases} A_{p+1} &= (p+1)(n+p+1)A_p - (p+1)X^p \\ B_{p+1} &= X^{p+1} + (p+1)(n+p+1)B_p \end{cases}$$

Les deux polynômes A_{p+1} et B_{p+1} sont à coefficients entiers car A_p et B_p le sont. Avec $\deg(A_{p+1})=p$ et $\deg(B_{p+1})=p+1$

2.1.5. Des formules précédentes, on tire

$$\forall p \in \mathbb{N}, \quad B_{p+1}(0) = (p+1)(n+p+1)B_p(0)$$

et

$$\begin{cases} A_0(0) = 0, & A_1(0) = -1 \\ A_{p+1}(0) = (p+1)(n+p+1)A_p(0), & \forall p \geqslant 1 \end{cases}$$

Soit

$$B_p(0) = \frac{p! \ (p+n)!}{n!} \quad \text{ et } \quad A_p(0) = \begin{cases} 0 & \text{ si } p = 0 \\ -\frac{p! \ (p+n)!}{(n+1)!} & \text{ si } p \geqslant 1 \end{cases}$$

2.1.6. Soit x un zéro de \mathbb{R} . Par absurde on suppose que $G_n'(x)=0$, alors x<0 et pour tout $p\in\mathbb{N}$, on a $\int_0^x t^{n+p}G_n(t)\,\mathrm{d}t=0$. Notons $f_n:\ t\longmapsto t^nG_n(t)$. Par linéarité de l'intégrale, pour tout polynôme $P\in\mathbb{R}[X]$, on a :

$$\int_0^x P(t) f_n(t) dt = 0$$

La fonction f_n est continue sur [x,0]. Donc, d'après théorème de Weierstrass, il existe une suite $(P_m)_{m\in\mathbb{N}}$ convergeant uniformément sur [x,0] vers f_n . Pour tout $m\in\mathbb{N}$ et tout $t\in[x,0]$, en écrivant

$$|f_n(t)^2 - f_n(t)P_m(t)| = |f_n(t)(f_n(t) - P_m(t))|$$

et il en résulte que la suite $(f_nP_m)_{m\in\mathbb{N}}$ converge uniformément vers f_n^2 sur [x,0]. D'après le théorème d'intégration des limites uniformes, il vient alors :

$$\int_{T}^{0} f_n(t)^2 dt = \lim_{m \to +\infty} \int_{T}^{0} f_n(t) P_m(t) dt$$

Donc

$$\int_{T}^{0} f_n(t)^2 \, \mathrm{d}t = 0$$

La fonction f_n^2 étant continue positive sur le segment [x,0] d'intégrale nulle, donc $f_n=0$, ainsi la nullité de f_n . En particulier $\forall t \in [x,0[$, $G_n(t)=0$ et par continuité $G_n(0)=0$. Ce qui est absurde

2.2.

- **2.2.1.** L'application $\frac{g}{f}$ est dérivable sur I et $\left(\frac{g}{f}\right)' = \frac{g'f gf'}{f^2} = 0$, donc $\frac{g}{f}$ est constante, c'est-à-dire il existe $\lambda \in \mathbb{C}$ tel que $g = \lambda f$. Les deux fonctions f et g sont à valeurs dans \mathbb{C}^* en conséquence $\lambda \in \mathbb{C}^*$
- **2.2.2.** Soit u et v les parties réelle et imaginaire de h, ces deux fonctions sont de classe \mathcal{C}^1 sur I et la contrainte |h|=1 donne $u^2+v^2=1$, en particulier u'u+v'v=0. L'application $t\longmapsto \frac{h'(t)}{h(t)}$ est continue, donc $t\longmapsto \int_{t_0}^t \frac{h'(s)}{h(s)}\,\mathrm{d}s$ est de classe \mathcal{C}^1 , puis θ est de classe \mathcal{C}^1 sur I et $\theta'(t)=-i\frac{h'(t)}{h(t)}$. Pour $t\in I$, on a

$$\int_{t_0}^{t} \frac{h'(s)}{h(s)} ds = \int_{t_0}^{t} h'(s)\overline{h}(s) ds$$

$$= \int_{t_0}^{t} \left[\underbrace{(u'(s)u(s) + v'(s)v(s))}_{=0} + i(u(s)v'(s) - u'(s)v(s)) \right] ds$$

$$= i \int_{t_0}^{t} (u(s)v'(s) - u'(s)v(s)) ds$$

Ceci montre que θ est à valeurs réelles.

Soit $f: t \mapsto e^{i\theta(t)}$. Par coposition f est de classe \mathcal{C}^1 sur I à valeurs dans \mathbb{C}^* et telle que $\frac{h'(t)}{h(t)} = i\theta'(t) = \frac{f'(t)}{f(t)}$, donc il existe $\lambda \in \mathbb{C}^*$ tel que $h = \alpha e^{i\theta}$. En particluier $e^{i\theta(t_0)} = h(t_0) = \lambda e^{i\theta(t_0)}$, donc $\lambda = 1$

2.2.3.

- (i) Notons u et v les parties réelle et imaginaire de f. Ces deux fonctions sont de classe \mathcal{C}^1 sur I, donc u^2+v^2 l'est aussi et est srtictement positve donc $t\longmapsto \sqrt{u^2(t)+v^2(t)}$ est de classe \mathcal{C}^1 sur I
- (ii) Existence : Soit $h = \frac{f}{|f|}$, une telle application est de classe \mathcal{C}^1 sur I et de norme 1, d'après la question (2.2.2) il existe $\theta: I \longmapsto \mathbb{R}$ de classe \mathcal{C}^1 sur I vérifiant :

$$\theta(t_0) = \theta_0$$
 et $\forall t \in I$, $h(t) = e^{i\theta(t)}$

Soit

$$\theta(t_0) = \theta_0$$
 et $\forall t \in I$, $f(t) = |f(t)| e^{i\theta(t)}$

- Unicité: Soit $\theta, \beta: I \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 vérifiant les deux contraintes. Alors $i\theta' = \frac{(e^{i\theta})'}{e^{i\theta}} = \frac{(e^{i\beta})'}{e^{i\beta}} = i\beta'$. Donc il existe $\lambda \in \mathbb{R}$ tel que $\theta = \beta + \lambda$, avec $\theta(t_0) = \beta(t_0)$, on obtient $\theta = \beta$
- **2.3.** Procédons par récurrence sur p. La formule est vraie pour p=1 (c'est la formule d'intégration par parties classique). Supposons la vraie au rang p-1 et prouvons-la au rang p. Soit h=f', qui est de classe C^{p-1} . La formule au rang p-1 appliquée à h et g donne

$$\int_a^b h^{(p-1)}(t)g(t)\,\mathrm{d}t = (-1)^{p-1}\int_a^b h(t)g^{(p-1)}(t)\,\mathrm{d}t + \sum_{k=1}^{p-1} (-1)^{k+1} \left(h^{(p-1-k)}(b)g^{(k-1)}(b) - h^{(p-1-k)}(a)g^{(k-1)}(a)\right)$$

soit

$$\int_{a}^{b} f^{(p)}(t)g(t) dt = (-1)^{p-1} \int_{a}^{b} f'(t)g^{(p-1)}(t) dt + \sum_{k=1}^{p-1} (-1)^{k+1} \left(f^{(p-k)}(b)g^{(k-1)}(b) - f^{(p-k)}(a)g^{(k-1)}(a) \right)$$

Il suffit alors d'intégrer par parties le premier terme du second membre, alors

$$\int_{a}^{b} f'(t)g^{(p-1)}(t) dt = f(b)g^{(p-1)}(b) - f(a)g^{(p-1)}(a) - \int_{a}^{b} f(t)g^{(p)}(t) dt$$

pour obtenir le résultat.

3^{ème} partie

Étude des zéros des solutons d'une équation différentielle d'ordre 2

3.1. Les deux fonctions φ et ψ sont continues sur I, d'après le théorème de Cauchy-Lipschitz linéaire, le problème de Cauchy

$$\begin{cases} u'' + \varphi u' + \psi u = 0 \\ u(t_0) = x_0 , u'(t_0) = x'_0 \end{cases} \quad x_0, x'_0 \in \mathbb{R} \quad \text{et} \quad t_0 \in I$$

admet une et une seule solution

- **3.2.** Soit u une solution sur I, non identiquement nulle, de l'équation différentielle $(\mathcal{E}_{\varphi,\psi})$
 - **3.2.1.** Si $u'(t_0)=0$, alors par unicité de la solution du problème de Cauchy u=0, ce qui est absurde. Par continuité de u' il existe $\eta>0$ tel que $\forall t\in I\cap]t_0-\eta,t_0+\eta[\ ,\ u'(t)\neq 0$ et soit $t\in I\cap]t_0-\eta,t_0+\eta[\ ,\ u'(t)\neq 0]$ et soit $t\in I\cap]$

3.2.2 Supposons que $Z_u \cap [a,b]$ est infini. Soit $(x_n)_{n\geqslant 0}$ une suite d'éléments deux à deux distincts de $Z_u\cap [a,b]$. Par le théorème de Bolzano-Weierstrass il existe une suite extraite $\left(x_{\varphi(n)}\right)_{n\geqslant 0}$ de $(x_n)_{n\geqslant 0}$ convergente vers $t_0 \in Z_u \cap [a,b]$ (Rappelons que $Z_u \cap [a,b] = u^{-1}(\{0\})$ est un fermé). On fait appel au théroème de Rolle, il existe y_n compris entre $x_{\varphi(n)}$ et $x_{\varphi(n+1)}$ tel que $u'(y_n) = 0$. La suite $y_n \xrightarrow[n \to +\infty]{} t_0$ par le théorème des gendarmes et par continuité de u', on a $u'(t_0) = 0$. Bref il existe $t_0 \in I$ tel que $u(t_0) = u'(t_0) = 0$, ce qui est absurde car u est non identiquement nulle

3.3.

- **3.3.1.** Sinon il existe $t \in I$ tel que $\rho(t) = 0$, soit u(t) = u'(t) = 0, donc u est nulle. Ce qui est absurde.
- **3.3.2.** f est de classe \mathcal{C}^1 sur I à valeurs dans $\mathbb C$ comme somme de deux fonctions de classe \mathcal{C}^1 et elle ne s'annule pas, alors d'après la question (2.2.3) il existe $\theta:I \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 telle que $\forall t \in I, \quad f(t) = |f(t)| \, e^{i\theta(t)}$ qui se traduit à

$$\forall t \in I, \quad u(t) = \rho(t)\cos\left(\theta(t)\right) \quad \text{ et } \quad u'(t) = \rho(t)\sin\left(\theta(t)\right)$$

3.3.3. On dérive u et u' on obtient $\begin{cases} \rho'\cos\theta-\rho\theta'\sin\theta=u'\\ \rho'\sin\theta+\rho\theta'\cos\theta=u''=-u\psi \end{cases}$. On multiplie la première égalité par $u'=\rho\sin\theta$ et la deuxième par $u=\rho\cos\theta$, on obtient $\begin{cases} \rho\rho'\sin\theta\cos\theta-\rho^2\theta'\sin^2\theta=u'^2\\ \rho\rho'\sin\theta\cos\theta+\rho^2\theta'\cos^2\theta=-u^2\psi \end{cases}$,

puis par soustraction on obtient $\theta' = \frac{-u^2\psi - u'^2}{u^2 + u'^2}$. Les fonctions $u^2\psi$ et u'^2 sont positives et elles ne peuvent pas s'annuler au même temps, donc pour tout $t \in I$, $\theta'(t) < 0$, soit θ est strictement décroissante sur I

- **3.3.4.** Soit $\lambda > 0$ un minorant de ψ
 - (i) Soit $t \in I$, on a $(u(t), u'(t)) \neq (0, 0)$ et

$$\theta'(t) = -\frac{u^2\psi + u'^2}{u^2 + u'^2} \leqslant -\frac{\lambda u^2 + u'^2}{u^2 + u'^2} \leqslant -\min(1, \lambda)$$

- (ii) θ est continue et strictement décroissante sur $I=[\alpha,+\infty[$, donc c'est une bijection de $I = [\alpha, +\infty[\text{ vers }\theta(I) = \left[\lim_{t \to +\infty} \theta(t), \theta(\alpha)\right]. \text{ L'inégalité précédente montre que } \forall t \in I, \quad \theta(t) \leqslant -\min(1, \lambda)(t - \alpha) + \theta(\alpha), \text{ puis } \lim_{t \to +\infty} \theta(t) = -\infty$
- (iii) Soit $t \ge \alpha$, alors

$$t \in Z_u \iff u(t) = 0 \iff \cos \theta(t) = 0$$

$$\iff \exists k \in \mathbb{Z}, \ \theta(t) = \frac{\pi}{2} + k\pi$$

 $\begin{aligned} & \text{Donc } Z_u = \left\{t \geqslant \alpha \mid \exists k \in \mathbb{Z}, \; \theta(t) = \frac{\pi}{2} + k\pi\right\} = \left\{\theta^{-1}\left(\frac{\pi}{2} + k\pi\right) \; ; \; \; k \in \mathbb{Z} \text{ et } \frac{\pi}{2} + k\pi \leqslant \theta(\alpha)\right\}. \\ & \text{Pour finir, on pose } k_0 = E\left(\frac{\theta(\alpha)}{\pi} - \frac{1}{2}\right) \text{ puis pour tout } n \in \mathbb{N}, \text{ on pose } x_n = \theta^{-1}\left(\frac{\pi}{2} + (k_0 - n)\,\pi\right). \\ & \text{On a bien } Z_u = \left\{x_n \; , \; n \in \mathbb{N}\right\} \text{ et la suite } (x_n)_{n \geqslant 0} \text{ est strictement croissante tendant vers } +\infty \end{aligned}$

- **3.4.** Soit u_{γ} la restriction de u à $I_{\gamma} = [\gamma, +\infty[$. la solution u_{γ} vérifie les conditions de la question (3.3.4), donc les zéros de u sur I_{γ} forment une suite strictement croissante vers $+\infty$. En outre d'après la question (3.2.2) l'ensemble $Z_u \cap [\alpha, \gamma]$ est fini. Par concaténation les zéros de la solution u sur I forment une suite qui tend vers $+\infty$ et qui est strictement croissante à partir d'un certain rang.
- **3.5.** D'après la question (1.5.3), il existe $\beta > \text{tel}$ que les zéros de J_n sur l'intervalle $]0, +\infty[$ sont dans $[2\sqrt{\beta}, +\infty[$. D'après la question (1.1) l'application $v: t \mapsto \sqrt{t}J_n(t)$ est solution de (\mathcal{E}_{σ_n}) sur $[2\sqrt{\beta}, +\infty[$, avec $\sigma_n(t)=1+\frac{1-4n^2}{4t^2}=\frac{1+4(t^2-n^2)}{4t^2}$ qui est strictement positive et minorée par $\lambda=\frac{1}{4\gamma^2}>0$ sur $[\gamma, +\infty[$, avec $\gamma>\max(n, 2\sqrt{\beta})$. D'après la question (3.4) l'application les zéros de vsur $[2\sqrt{\beta}, +\infty[$ forment une suite qui tend vers $+\infty$ et qui est strictement croissante à partir d'un certain rang. Pour conclure le résultat il suffit de voir que v et J_n ont même zéros sur $]0, +\infty[$

4^{ème} partie

Irrationnalité des zéros de la fonction J_n de Bessel

4.1. On appelle la formule de binoôme de Newton, il vient que $U_p(x) = \sum_{k=0}^p (-1)^k \frac{\binom{p}{k}}{p!} x^{n+p+k}$ et par définition de L_p , on aura $L_p(x) = U_p^{(p)}(x) = \sum_{k=0}^p (-1)^k \frac{\binom{p}{k}}{p!} \frac{(n+p+k)!}{(n+k)!} x^{n+k} = \sum_{k=0}^p (-1)^k \binom{p}{k} \binom{n+p+k}{n+k} x^{n+k}$ Soit $x \in \mathbb{R}^*$, alors par le changement de variable $t \longmapsto xt$, on a :

$$T_p(x) = \frac{1}{x} \int_0^x G_n(t) L_p\left(\frac{t}{x}\right) dt$$

On remplace L_p par son expression dans la base canonique de $\mathbb{R}[X]$ et on poursuit le calcul

$$T_{p}(x) = \sum_{k=0}^{p} (-1)^{k} {p \choose k} {n+p+k \choose n+k} \frac{1}{x^{n+k+1}} \int_{0}^{x} t^{n+k} G_{n}(t) dt$$

$$\stackrel{(2.1.4.)}{=} \sum_{k=0}^{p} (-1)^{k} {p \choose k} {n+p+k \choose n+k} \frac{1}{x^{n+k+1}} x^{n+1} (A_{k}(x)G_{n}(x) + B_{k}(x)G'_{n}(x))$$

$$= \frac{1}{x^{p}} \sum_{k=0}^{p} (-1)^{k} {p \choose k} {n+p+k \choose n+k} x^{p-k} (A_{k}(x)G_{n}(x) + B_{k}(x)G'_{n}(x))$$

$$= \frac{Q_{p}(x)G_{n}(x) + R_{p}(x)G'_{n}(x)}{x^{p}}$$

Avec

$$Q_p = \sum_{k=0}^{p} (-1)^k \binom{p}{k} \binom{n+p+k}{n+k} X^{p-k} A_k \quad \text{et} \quad R_p = \sum_{k=0}^{p} (-1)^k \binom{p}{k} \binom{n+p+k}{n+k} X^{p-k} B_k$$

- Les poynômes Q_p et R_p sont bien à coefficients entiers, car ils sont combinaisons linéaires des polynômes à coefficients entiers de coefficients entiers, donc ils vérifient la contrainte (i).
- $Q_0 = A_0 = 0$, $R_0 = B_0 = 1$ et pour tout $p \ge 1$, on a $R_p(0) = (-1)^p \binom{n+2p}{n+p} B_p(0) \ne 0$ et $Q_p(0) = (-1)^p \binom{n+2p}{n+p} A_p(0) \ne 0$. Donc la deuxième contrainte (ii) est vérifiée
- Soit $p \geqslant 1$. Pour chaque $k \in [\![0,p]\!] \deg A_k \leqslant k-1$ et $\deg B_k \leqslant k$, donc $\deg X^{p-k}A_k \leqslant p-1$ et $\deg X^{p-k}B_k \leqslant p$, alors par combinaisons linéaires $\deg Q_p \leqslant p-1$ et $\deg R_p \leqslant p$. Ainsi la troisième contrainte (iii) est vérifiée
- **4.2.** les deux fonctions $t \mapsto G_n(xt)$ et $t \mapsto U_p(t)$ sont de classe \mathcal{C}^p sur [0,1] et pour tout $k \in [0,p]$ et $t \in [0,1]$, $(G_n(xt))^{(k)} = x^k G_n^{(k)}(xt)$, alors par la formule d'intégration par parties itérée

$$T_p(x) = \int_0^1 G_n(xt) U_p^{(p)}(t) dt$$

$$= (-1)^p \int_0^1 (G_n(xt))^{(p)} U_p(t) dt + \sum_{k=1}^p (-1)^{k+1} \left[x^{p-k} G_n^{(p-k)}(xt) U_p^{(k-1)}(t) \right]_0^1$$

Comme 0 (resp. 1) est racine de U_p d'ordre n+p (resp. p), alors $\forall i \in [0, p-1]$, $U_p^{(i)}(0) = U_p^{(i)}(1) = 0$, puis $\sum_{k=1}^{p} (-1)^{k+1} \left[x^{p-k} G_n^{(p-k)}(xt) U_p^{(k-1)}(t) \right]_0^1 = 0$, soit

$$T_p(x) = (-1)^p \int_0^1 \left(G_n(xt) \right)^{(p)} U_p(t) \, \mathrm{d}t = (-1)^p x^p \int_0^1 G_n^{(p)}(xt) U_p(t) \, \mathrm{d}t$$

4.3. Soit $x \in \mathbb{R}$ et $t \in [0, 1]$, on a :

$$\left| (xt)^k t^{n+p} (1-t)^n \right| \leqslant |x|^k$$

Alors

$$\left| G_n^{(p)}(xt) U_p(t) \right| = \left| \sum_{k=0}^{+\infty} \frac{1}{k! (n+k+p)!} (xt)^k \frac{t^{n+p} (1-t)^n}{p!} \right| \leqslant \frac{1}{p!} \sum_{k=0}^{+\infty} \frac{|x|^k}{k! (n+k+p)!} \leqslant \frac{1}{p!} \sum_{k=0}^{+\infty} \frac{|x|^k}{k!} = \frac{e^{|x|}}{p!}$$

On conclut, donc

$$\left| \int_0^1 G_n^{(p)}(xt) U_p(t) \, \mathrm{d}t \right| \leqslant \int_0^1 \left| G_n^{(p)}(xt) U_p(t) \right| \, \mathrm{d}t \leqslant \frac{e^{|x|}}{p!}$$

- **4.4.** Soit $x \in \mathbb{R}$
 - Si x = 0. Pour $p \ge 1$, on a:

$$\begin{cases} Q_p(0) = (-1)^p \binom{n+2p}{n+p} A_p(0) = -(-1)^p \binom{n+2p}{n+p} \frac{p! \ (p+n)!}{(n+1)!} \\ R_p(0) = (-1)^p \binom{n+2p}{n+p} B_p(0) = (-1)^p \binom{n+2p}{n+p} \frac{p! \ (p+n)!}{n!} \\ G_n(0) = \frac{1}{n!} \text{ et } G_n'(0) = \frac{1}{(n+1)!} \end{cases}$$

Donc
$$Q_p(0)G_n(0) + R_p(0)G'_n(0) = 0 \xrightarrow{p \to +\infty} 0$$

• Si $x \neq 0$, on a:

$$|Q_p(x)G_n(x) + R_p(x)G'_n(x)| = |x^p T_p(x)|$$

$$= x^{2p} \left| \int_0^1 G_n^{(p)}(xt) U_p(t) dt \right|$$

$$\leqslant x^{2p} \frac{e^{|x|}}{p!} \xrightarrow[p \to +\infty]{} 0$$

Bref la suite $(Q_p(x)G_n(x) + R_p(x)G_n'(x))_{n \ge 1}$ converge vers 0

4.5. Remarquons d'abord que $Q_p R_{p-1} - Q_{p-1} R_p$ est un polynôme et

$$\deg\left(Q_{p}R_{p-1}-Q_{p-1}R_{p}\right)\leqslant \max\left(\deg Q_{p}R_{p-1},\deg Q_{p-1}R_{p}\right)\leqslant 2(p-1)$$

car pour tout $k \in \mathbb{N}$, $\deg R_k \leqslant k$ et $\deg Q_k \leqslant k-1$. Soit $x \in \mathbb{R}^*$, on part des égalités

$$\begin{cases} x^p T_p(x) &= Q_p(x) G_n(x) + R_p(x) G'_n(x) \\ x^{p-1} T_{p-1}(x) &= Q_{p-1}(x) G_n(x) + R_{p-1}(x) G'_n(x) \end{cases}$$

Soit

$$\begin{cases} x^{p}T_{p}(x)R_{p-1}(x) &= Q_{p}(x)R_{p-1}(x)G_{n}(x) + R_{p}(x)R_{p-1}G'_{n}(x) \\ x^{p-1}T_{p-1}(x)R_{p}(x) &= Q_{p-1}(x)R_{p}(x)G_{n}(x) + R_{p}(x)R_{p-1}(x)G'_{n}(x) \end{cases}$$

On tire alors

$$G_n(x)\left(Q_p(x)R_{p-1}(x) - Q_{p-1}(x)R_p(x)\right) = x^p T_p(x)R_{p-1}(x) - x^{p-1} T_{p-1}(x)R_p(x)$$

On introduit $\tilde{T}_p(x)=(-1)^p\int_0^1G_n^{(p)}(xt)U_p(t)\,\mathrm{d}t$, on a $T_p(x)=x^p\tilde{T}_p(x)$ et on obtient alors

$$G_n(x)\left(Q_p(x)R_{p-1}(x) - Q_{p-1}(x)R_p(x)\right) = x^{2p-2}\left(x^2\tilde{T}_p(x)R_{p-1}(x) - \tilde{T}_{p-1}(x)R_p(x)\right)$$

Ce qui montre que $Q_p(x)R_{p-1}(x)-Q_{p-1}(x)R_p(x)=\lambda x^{2p-2}+\circ\left(x^{2p-2}\right)$, avec λ vaut $\frac{-\tilde{T}_{p-1}(0)R_p(0)}{G_n(0)}\neq 0$, car $R_p(0)\neq 0$ et $\tilde{T}_{p-1}(0)=(-1)^pG_n^{(p)}(0)\int_0^1U_p(t)\,\mathrm{d}t\neq 0$ car U_p garde un signe constant sur [0,1]. Bref $Q_pR_{p-1}-Q_{p-1}R_p$ est un polynôme de valuation 2p-2, ainsi le résultat demandé

4.6. Soit p un entier non nul et x un réel non nul. Si $(T_{p-1}(x), T_p(x)) = (0,0)$, alors le sytème d'inconnues $G_n(x), G'_n(x)$

$$\begin{cases} Q_p(x)G_n(x) + R_p(x)G'_n(x) &= 0\\ Q_{p-1}(x)G_n(x) + R_{p-1}(x)G'_n(x) &= 0 \end{cases}$$

dont le déterminant $\lambda x^{2p-2} \neq 0$, est de Cramer, donc il admet une seule solution $G_n(x) = G'_n(x) = 0$. Ce qui est absurde

4.7. Soit x un zéro de G_n et par absurde on suppose qu'il est rationnel, c'est-à-dire $x=\frac{a}{b}$ avec $a\in\mathbb{Z}$ et $b\in\mathbb{N}^*$. La contrainte **(4.1.(i))** donne $\forall p\geqslant 1$, $R_p(x)G_n'(x)=x^pT_p(x)$ et l'inégalité obtenue en **(4.3)** montre que

$$|b^p R_p(x)| \le \frac{1}{|G'_n(x)|} \frac{a^{2p}}{|b^p|} \frac{e^{|x|}}{p!} \xrightarrow{p \to +\infty} 0$$

d'où à partir d'un certain rang p_0 , on a $|b^pR_p(x)|<1$. Or R_p est à coefficients entiers donc $b^pR_p(x)\in\mathbb{Z}$, alors $\forall p\geqslant p_0,\quad b^pR_p(x)=0$ puis $R_p(x)=0$. Revenons à **(4.1.(i))** on obtient $\forall p\geqslant p_0,\quad T_p(x)=0$ ce qui contredit le résultat de **(4.6)**

4.8. Soit x un zéro de J_n , alors $-\frac{x^2}{4}$ est zéro de G_n , donc il est irrationnel puis x^2 est irrationnel et, par suite, x est irrationnel