Listing of the Claims

1-7 (Canceled)

25

1	8. (Currently Amended) A computer implemented best indicator adaptive (BIA) method for
2	demand forecasting comprising the steps of:
3	computer-implemented implementing a plurality of forecasting subsystems which make
4	use of indicators Load (L), Ship (S) and Customer Acceptances (CA) history (CA _{hist});
5	computer-implemented generating a forecast (CA _L) from Load (L) by modeling the ratio
6	of quarter-to-date load to quarter CA actual as a random variable with gamma distribution so that
7	the CA becomes a variable with generalized gamma distribution and computing the sample mean
8	and sigma of the quarter-to-date load to quarter CA actual Load-to-CA ratio for a final forecasted
9	CA _L demand;
10	computer-implemented generating a forecast (CA _S) from Ship (S) by modeling the ratio
11	of quarter-to-date ship to quarter CA actual as a random variable with gamma distribution so that
12	the CA becomes a variable with generalized gamma distribution and computing the sample mean
13	and sigma of the Ship-to-CA quarter-to-date ship to quarter CA actual ratio for a final forecasted
14	CA_S demand;
15	computer-implemented generating a forecast (CA_{LS}) from Load and Ship (LS) by
16	forecasting Customer Acceptances (CA) based on Load (L), Ship (S) and Customer Acceptances
17	history (CA _{hist}) to generate CA _{LS} by estimating the functional relationship and the parameters
18	relating the two ratios Load-to-CA quarter-to-date load to quarter CA actual and Ship-to-CA
19	quarter-to-date ship to quarter CA actual;
20	<u>computer-implemented</u> generating a forecast from Customer Acceptances history (CA_{hist});
21	computer-implemented refining the forecasts based on distribution demand using
22	Customer Requested Date (CRAD) by
23	generating a forecast from Load (L) and CRAD as $CA_{L,CRAD}$,
24	generating a forecast from Ship (S) and CRAD as CA_{SCRAD} , and

generating a forecast from Load (L) and Ship (S) and CRAD as $CA_{LS,CRAD}$;

26	for each forecast CA_L , CA_S , CA_{LS} , $CA_{L,CRAD}$, $CA_{S,CRAD}$, $CA_{LS,CRAD}$, and CA_{hist} , determining
27	a forecast error;
28	computer-implemented eliminating CA _{LS} and CA _{LS,CRAD} if data is for a historical period
29	shorter than a predetermined period;
30	eliminating any other forecast due to expert knowledge;
31	for all remaining forecasts, selecting a the forecast having a the forecast error that is the
32	smallest error; and
33	outputting a the selected forecast as an optimum forecast.
1	9. (Currently Amended) A computer implemented best indicator adaptive (BIA) method for
2	demand forecasting comprising the steps of:
3	inputting Load (L), Ship (S) and Customer Acceptances (CA) quarterly history (CA _{hist})
4	data;
5	computer-implemented implementing a plurality of forecasting subsystems making use of
6	four sources of information, Load (L), Ship (S), Customer Acceptances quarterly history (CA_{hist}),
7	and Customer Request Date (CRAD);
8	computer-implemented forecasting Customer Acceptances (CA) based on Load (L) to
9	generate CA _L by modeling a ratio of quarter-to-date load to quarter CA actual as a random
10	variable with gamma distribution so that the CA becomes a variable with generalized gamma
11	distribution whose mean and sigma can be are easily computed from the sample mean and sigma
12	of the Load-to-CA quarter-to-date load to quarter CA actual ratio;
13	computer-implemented forecasting Customer Acceptances (CA) based on Ship (S) to
14	generate CA _S by modeling the ratio of quarter-to-date ship to quarter CA actual as a random
15	variable with gamma distribution so that the CA becomes a variable with generalized gamma
16	distribution whose mean and sigma can be are easily computed from the sample mean and sigma
17	of the Ship-to-CA quarter-to-date ship to quarter CA actual ratio;
18	computer-implemented forecasting Customer Acceptances (CA) based on Load (L), Ship

relationship and the parameters relating the two ratios Load-to-CA <u>quarter-to-date load to quarter</u>

(S) and Customer Acceptances history (CA_{hist}) to generate CA_{LS} by estimating the functional

19

20

<u>CA actual</u> and Ship-to-CA <u>quarter-to-date ship to quarter CA actual</u> ;		
computer-implemented using a log mean to sigma ratio of CRAD distribution, adjusting		
the forecasts CA_L , CA_S and CA_{LS} to arrive at more accurate forecasts $CA_{L,CRAD}$, $CA_{S,CRAD}$, and		
$CA_{LS,CRAD}$;		
<u>computer-implemented</u> for each forecast CA_L , CA_S , CA_{LS} , $CA_{L,CRAD}$, $CA_{S,CRAD}$, $CA_{LS,CRAD}$		
and CA_{hist} , determining a forecast error;		
computer-implemented eliminating CA_{LS} and $CA_{LS,CRAD}$ if data is for a historical period		
shorter than a predetermined period;		
eliminating any other forecast due to expert knowledge;		
for all remaining forecasts, selecting a the forecast having a the forecast error that is the		
smallest error; and		
outputting a the selected forecast as an optimum forecast.		