Intro to CS16

CS16: Introduction to Algorithms & Data Structures Spring 2019

Welcome to CS16!

What is 16 about?

Algorithms

"sequence of computer instructions for a given task"

Why Study Algorithms?

- Core to Computer Science
- Powerful in practice
 - running in seconds vs. age of the universe
- Interesting and elegant ideas

Web Search in the 90's

Google

- My friend Jeremy tells me about this new engine
 - "it's awesome you should try it out!"
- After 10 minutes it's obvious that
 - Google results were more "relevant"
- ▶ But why?
 - Why were Google's results better?
 - What was Google's secret?
- ▶ I finally learned why during my PhD
 - Google had a better algorithm!

Google

- Before Google
 - search engines ranked pages using keyword frequency
 - well-known and worked OK
- Larry Page & Sergey Brin (PhD students @ Stanford)
 - noticed that links were important too!
 - intuition that links conveyed information about importance
 - But what exactly? and how can you make use of it?
 - Lead them to design the PageRank algorithm

PageRank

- How does PageRank work?
- Why does it work?
- How do you implement it efficiently?
 - Google indexes "hundreds of billions" of pages
 - answers and ranks in 0.5 seconds
 - processes 40,000 queries a second
 - ▶ 3.5 billion per day
- Using clever algorithms and data structures!

A Personal Example

- Searching on encrypted data
 - Really cool idea; but slow
- We thought about this a lot
 - new approach that was very fast
 - as fast as searching on unencrypted data!
- ▶ 15 years later & after a lot more research
 - startups, apps, real-world products
- What was the secret?
 - clever use of algorithms & data structures

CS is diverse

You Will Learn

- How to design algorithms
- How to analyze algorithms
- How to implement algorithms

Content of CS16

- Analysis of algorithms: big-Oh, worst-case analysis, amortized analysis, expected running time
- Design paradigms: dynamic programming, divide and conquer, greedy algorithms
- Recursive algorithms: recurrence relations, induction
- ▶ Elementary data structures: stacks, queues, trees, hash tables, binary search trees, heaps, graphs
- Sorting algorithms: insertion sort, selection sort, heap sort, merge sort, quicksort, radix sort
- Machine learning algorithms: decision trees
- Graph algorithms: depth-first search, breadth-first search, shortest path, minimum spanning tree, topological sort
- Advanced topics: Bitcoin, functional programming, numerical algorithms

Meet your TA's

Goals

- Learn fundamental algorithms and data structures
- Find and design new ones
- Reason about them
- Use them
- Prepare you for more CS

Lectures

- Cover various algorithms & data structures
 - How they work
 - Why they work
 - Analyze them
- Activities & discussions
- You are responsible for content in lecture (whether on slides or not)

Textbook

- No required textbook
- Helpful
 - Dasgupta, Papadimtriou and Vazirani
 - Goodrich and Tamassia
 - Roughgarden

Course Page

- Slides
- Notes
- Announcements
- Helpful readings

Piazza

- Announcements
- Questions and answers
- Links to helpful material (blogs, Youtube videos)

Office Hours

- ▶ TA office hours are very helpful
 - Try to get unstuck on your own first
- My office hours
 - ► Mondays 4-6
- Questions about HW or projects:
 - Post on Piazza
 - Ask in Section
 - TA office hours
 - Schedule meeting with me

Homeworks (30%)

- ▶ 10 HWs
- Due every week
- Python code, proofs, analysis, ...

Projects (30%)

4 projects in Java

Sections (10%)

- ▶ 1 hour/week with 2 Tas
- ▶ 6-10 students
- Required!
 - If you miss 3 you fail
 - Lose points for every missed section
- Mini assignments
- Mentor

Exams (25%)

- Midterm
 - ▶ Date: March 21st
- Final
 - Date: May 14th

Collaboration

- Encouraged to collaborate on HWs but
 - Write up HWs by yourself
 - Code by yourself
 - No sharing of code or pseudocode
- No collaboration on Projects
- You will sign the collaboration policy
- We will use code similarity tester
- Random live audits
 - might ask you "what would happen if we did X to your code?"

Override Policy

- ▶ Email HTAs if
 - You are a graduate student
 - You are RISD student and need a signature

Email Policy

- Unless matter is private always email HTAs!
 - Your email can get lost in my inbox
 - It may take me a while to get to your email
 - HTAs may get to it faster & will remind me

References

▶ Slide #2

- A statue of Muhammad ibn Musa al-Khwarizmi; a persian scholar from the 9th century
- "Algorithms" is derived from "Algoritmi" which is the Latin translation of his name
- Worked in mathematics, astronomy and geometry
- Founded the field of Algebra

▶ Slide #10

- Lionel Messi is a soccer player that plays for Barcelona and Argentina
- He is considered one of the best soccer players of all time
- Won 5 Ballon D' Ors, 8 La Liga titles, 4 Champions League titles
- Scored the most goals and made the most assists in La Liga history