Homework #8 due to be announced

Question 1

Describe a TM M in both graphical and compositional tabular forms that decides the language

$$L = \{ u \in \Sigma_{\theta}^* \mid u = u^R \}$$

(Hint: you may use an extra symbol \mathcal{L}_0 and choose as initial ID: (s, #u))

Question 2

Describe a TM M in both graphical and compositional tabular forms that performs the following computation:

$$(s, \$w #) \mid --- *_M (h, \$u #)$$

where u is obtained from w by compressing all blank (#) symbols in w and s is a special symbol not used in w.

Question 3

Construct a *TM M* (*multitape* and/or *nondeterministic* if necessary!) that decides the language below (*specify the TM in tabular compositional form*).

$$L_n = \{ \omega \in (0+1)^* \mid w = u.u.u, u \in (0+1)^* \}$$

Question 4

Construct a *TM M* (*multitape and/or nondeterministic if necessary!*) that decides the language below (*specify the TM in tabular compositional form*).

$$L_n = \{ \omega \in (a+b+c+d)^* \mid w = a^n b^m c^n d^m, n, m > 0 \}$$

Question 5

Construct *TMs* in compositional tabular forms (*multitape* and/or *nondeterministic* if necessary!) that perform the following computations :

(i) (s,
$$\#w$$
) |---*_M (h, $\#w^R$)

(ii) (s,
$$\#w$$
) |---*_M (h, $\#ww$)

(iii) (s,
$$\#w$$
) |--- $*_M$ (h, $\#w\#w^R$)

(iv) $(s, \pm w)$ |---*_M $(h, \pm a^n b^n)$ where the number of **a**s and **b**s in **w** are both equal to a fixed integer n > 0.