@tracer(cat_col = ['race'], numerical_col = ['age']) def compas_pipeline(f1_path = '../data/compass/jailrecord1.csv',f3_path = '../data/compass/jailrecord2.csv'): #read csv files df1 = pd.read_csv(f1_path) df2 = pd.read_csv(f2_path) df3 = pd.read_csv(f3_path) #drop columns inplace df1.drop(columns=['Unnamed: 0', 'age_cat'], inplace=True) df2.drop(columns=['Unnamed: 0'],inplace=True) df3.drop(columns=['Unnamed: 0'],inplace=True) #JOIN dataframes column—wise and row—wise data23 = pd.concat([df2,df3],ignore_index=True) data = df1.merge(data23, on=['id', 'name']) #drop rows that miss a few important features data = data.dropna(subset=['id', 'name','is_recid','days_b_screening_arrest','c_charge_degree','c_jail_out','c_jail_in']) #generate a new column conditioned on existed column data['age_cat'] = data.apply(lambda row:'<25' if row['age'] < 25 else '>45' if row['age']>45 else '25-45', axis=1) **#PROJECTION** data = data[['sex', 'dob', 'age', 'c_charge_degree', 'age_cat', 'race', 'score_text', 'priors_count', 'days_b_screening_arrest', 'decile_score','is_recid','two_year_recid','c_jail_in','c_jail_out']] #SELECT based on some conditions data = data.loc[(data['days_b_screening_arrest'] <= 30)]</pre> data = data.loc[(data['days_b_screening_arrest'] >= -30)] data = data.loc[(data['is_recid'] != -1)] data = data.loc[(data['c_charge_degree'] != "0")] data = data.loc[(data['score_text'] != 'N/A')] # create a new feature data['c_jail_out'] = pd.to_datetime(data['c_jail_out']) data['c_jail_in'] = pd.to_datetime(data['c_jail_in']) data['length_of_stay'] = data['c_jail_out'] - data['c_jail_in'] #specify categorical and numeric features categorical = ['sex', 'c_charge_degree', 'age_cat', 'race', 'score_text', 'is_recid', 'two_year_recid'] numeric1 = ['age','priors_count', 'decile_score'] numeric2 = ['days_b_screening_arrest','length_of_stay'] #sklearn pipeline impute1_and_onehot = Pipeline([('imputer1', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) impute2_and_bin = Pipeline([('imputer2', SimpleImputer(strategy='mean')), ('bin_discretizer', KBinsDiscretizer(n_bins=4, encode='ordinal', strategy='uniform'))]) featurizer = ColumnTransformer(transformers=[('impute1_and_onehot', impute1_and_onehot, categorical), ('impute2_and_bin', impute2_and_bin, numeric1), ('std_scaler', StandardScaler(), numeric2), pipeline = Pipeline([('features', featurizer), ('learner', LogisticRegression()) return pipeline

_____ Inpected df1 = pd.read_csv(f1_path) Inpected df2 = pd.read_csv(f2_path) ______ Inpected df3 = pd.read_csv(f3_path) ______ ______ Inpected df1.drop(columns=['Unnamed: 0', 'age_cat'], inplace=True) _____ _____ Inpected df2.drop(columns=['Unnamed: 0'],inplace=True) ______ _____ Inpected df3.drop(columns=['Unnamed: 0'],inplace=True) _____ Inpected data23 = pd.concat([df2,df3],ignore index=True) ______ Inpected data = df1.merge(data23, on=['id', 'name'])

Changes in numerical features!

count missing_count median mad range

age -307.0

****** ******

Changes in categorical features!

missing_count num_class {'African-American': -159, 'Caucasian': -76, 'Hispanic': {'African-American': -0.0002, 'Caucasian': 0.0041, 'Hispanic': -0.0037, -53, 'Other': -17, 'Asian': 0, 'Native American': -2} 'Other': -0.0001, 'Asian': 0.0002, 'Native American': -0.0002} ****** Inpected data = data.dropna(subset=['id', 'name','is_recid','days_b_screening_arrest','c_charge_degree','c_j ail_out','c_jail_in']) _____ _____ Inpected data = data[['sex', 'dob', 'age', 'c_charge_degree', 'age_cat', 'race', 'score_text', 'priors_count', 'd ays_b_screening_arrest','decile_score','is_recid','two_year_recid','c_jail_in','c_jail_out']] ______ ****** Changes in numerical features! count missing count median mad range

age -284.0 ******

****** Changes in categorical features!

missing_count num_class class_count {'African-American': -158, 'Caucasian': -87, 'Hispanic': -(4)frican-American': -0.0019, 'Caucasian': 0.0016, 'Hispanic': -0.0005, 'Caucasian': -0.0016, 'Caucasian': -0.0016, 'Hispanic': -0.0005, 'Caucasian': -0.0016, 'Hispanic': -0.0005, 'Caucasian': -0.0016, 'Caucasia -27, 'Other': -9, 'Asian': 0, 'Native American': -3} 'Other': 0.0009, 'Asian': 0.0002, 'Native American': -0.0004}

****** ______ Inpected data = data.loc[(data['days_b_screening_arrest'] <= 30)]</pre> _____

****** Changes in numerical features!

count missing_count median mad range **age** -451.0 0.0 0.0 0.0 *****

Changes in categorical features!

	missing_count	num_class	class_count	class_percent
race	0.0	0.0	{'African-American': -204, 'Caucasian': -188, 'Hispanic': -48, 'Other': -8, 'Asian': -1, 'Native American': -2}	
****	****			
Inped	cted data =	data.loc[[(data['days_b_screening_arrest'] >=	-30)]
Inped	cted data =	data.loc[[(data['is_recid'] != -1)]	
Inped		data.loc[[(data['c_charge_degree'] != "0")]	
Inped	cted data =	data.loc[[(data['score_text'] != 'N/A')]	

_____ Operations SimpleImputer on race ______ Operations OneHotEncoder on race ______ ****** Changes in categorical features!

race missing_count {1.0: 3175, 0.0: 2997} class_count $\textbf{class_percent} \quad \{1.0;\, 0.5144,\, 0.0;\, 0.4856\}$ ______ Operations SimpleImputer on age ______ ______ Operations KBinsDiscretizer on age ______

0.0000 count missing_count 0.0000 median -31.0000 mad -10.3782 range -75.0000 *******

Changes in numerical features!

```
@tracer(cat_col = ['race', 'occupation', 'education'], numerical_col = ['age', 'hours-per-week'])
def adult_pipeline_normal(f_path = '../pipelines/adult-sample_missing.csv'):
    raw_data = pd.read_csv(f_path, na_values='?')
    data = raw_data.dropna()
    labels = label_binarize(data['income-per-year'], ['>50K', '<=50K'])</pre>
    nested_categorical_feature_transformation = Pipeline(steps=[
        ('impute', SimpleImputer(missing_values=np.nan, strategy='most_frequent')),
        ('encode', OneHotEncoder(handle_unknown='ignore'))
    ])
    nested_feature_transformation = ColumnTransformer(transformers=[
        ('categorical', nested_categorical_feature_transformation, ['education', 'workclass']),
        ('numeric', StandardScaler(), ['age', 'hours-per-week'])
   ])
    nested_pipeline = Pipeline([
      ('features', nested_feature_transformation),
      ('classifier', DecisionTreeClassifier())])
    return nested_pipeline
```

Inpected raw_data = pd.read_csv(f_path, na_values='?')

Changes in numerical features!

	count	missing_count	median	mad	range	
age	-14.0	0.0	0.0	-0.7413	-23.0	
hours-per-week	-14.0	0.0	0.0	0.0000	0.0	

Changes in categorical features!

	missing_count	num_class	class_count	class_percent
race	-4.0	0.0	{'White': -6, 'Black': -2, 'Amer-Indian-Eskimo': -2, 'Other': 0, 'Asian-Pac-Islander': 0}	{'White': 0.0271, 'Black': -0.0111, 'Amer-Indian-Eskimo': -0.0184, 'Other': 0.0012, 'Asian-Pac-Islander': 0.0012}
occupation	-8.0	0.0	{'Exec-managerial': 0, 'Adm-clerical': 0, 'Craft-repair': -1, 'Sales': -1, 'Other-service': 0, 'Prof-specialty': -2, 'Transport-moving': -1, 'Machine-opinspct': 0, 'Farming-fishing': 0, 'Handlers-cleaners': 0, 'Tech-support': 0, 'Protective-serv': -1}	{'Exec-managerial': 0.0106, 'Adm-clerical': 0.0099, 'Craft-repair': -0.0018, 'Sales': -0.0033, 'Other-service': 0.0068, 'Prof-specialty': -0.0157, 'Transport-moving': -0.0056, 'Machine-op-inspct': 0.0046, 'Farming-fishing': 0.0023, 'Handlers-cleaners': 0.0015, 'Techsupport': 0.0008, 'Protective-serv': -0.0101}
education	-2.0	0.0	{'HS-grad': -3, 'Bachelors': -1, 'Some-college': -4,	{'HS-grad': 0.0078, 'Bachelors': 0.0183, 'Some-college': -0.0138,
*****	*			
Inpected o	data = raw_c	data.drop	na()	
#########	<i>\##########</i>	### Start	Sklearn Pipeline ####################################	######################################
Operations	SimpleImpu	ter on e	ducation	

Changes in categorical features!

Operations OneHotEncoder on education

	education
missing_count	0
num_class	-10
class_count	{0.0: 84, 1.0: 2}
class_percent	{0.0: 0.9767, 1.0: 0.0233}

Operations StandardScaler on age

Changes in numerical features!

	age
count	0.0000
missing_count	0.0000
median	-36.0972
mad	-12.8320
range	-44.6418

Operations StandardScaler on hours-per-week

Changes in numerical features!

	hours-per-week
count	0.0000
missing_count	0.0000
median	-40.1126
mad	-1.3509
range	-63.7813

```
@tracer(cat_col = ['personal_status_and_sex'], numerical_col = ['age'])
def german_pipeline_easy(f_path = '../data/german_titled.csv'):
   data = pd.read_csv(f_path)
   # projection
   data = data[['duration_in_month', 'credit_his', 'credit_amt', 'preset_emp', 'personal_status_and_sex',
                 'guarantors', 'present_residence', 'property', 'age', 'label']]
   # filtering
   data = data.loc[(data.credit_amt>=4000)]
   #start sklearn pipeline
   one_hot_and_impute = Pipeline([
        ('imputer', SimpleImputer(strategy='most_frequent')),
        ('onehot', OneHotEncoder())
   featurizer = ColumnTransformer(transformers=[
        ('onehot', OneHotEncoder(), ['credit_his', 'preset_emp']),
        ('impute_onehot', one_hot_and_impute, ['personal_status_and_sex', 'guarantors', 'property']),
        ('std_scaler', StandardScaler(), ['duration_in_month', 'credit_amt', 'present_residence', 'age'])
   pipeline = Pipeline([
        ('features', featurizer),
        ('learner', RandomForestClassifier())
   return pipeline
```


	missing_count	num_class	class_count	class_percent
personal_status_and_sex	0.0	0.0	{'A93': -384, 'A92': -251, 'A91': -37, 'A94': -82}	{'A93': 0.1187, 'A92': -0.0702, 'A91': 0.0028, 'A94': -0.0513}

Inpected data = dat	a.loc[(data	.credit_a	nt>=4000)]	

Changes in categorical features!

Operations SimpleImputer on personal status and sex ______ Operations OneHotEncoder on personal_status_and_sex ______ ****** Changes in categorical features! personal_status_and_sex missing_count num_class {0.0: 233, 1.0: 13} class_count {0.0: 0.9472, 1.0: 0.0528} class_percent ******* Operations StandardScaler on age ______ ****** Changes in numerical features! age **count** 0.0000 missing_count 0.0000 median -33.7344

mad -10.1331

range -50.1208

```
@tracer(cat_col = ['personal_status_and_sex'], numerical_col = ['age'])
def german_pipeline_normal(f_path_1='../data/german_titled_split_1.csv', f_path_2='../data/german_titled_split_2.csv'):
   # load data
   dataSplit1 = pd.read_csv(f_path_1, index_col = 0)
   dataSplit2 = pd.read_csv(f_path_2, index_col = 0)
   data = dataSplit1.merge(dataSplit2, on='identifier')
   # drop first col
   data.drop(data.columns[0], axis=1, inplace = True)
   data = data[['duration_in_month', 'credit_his', 'credit_amt', 'preset_emp', 'personal_status_and_sex', 'guarantors', 'present_residence'
                 'property', 'age','label']]
   # filtering
   data = data.loc[(data.credit_amt>=4000)]
   #start sklearn pipeline
   one_hot_and_impute = Pipeline([
       ('imputer', SimpleImputer(strategy='most_frequent')),
       ('onehot', OneHotEncoder())
   featurizer = ColumnTransformer(transformers=[
       ('onehot', OneHotEncoder(), ['credit_his', 'preset_emp']),
       ('impute_onehot', one_hot_and_impute, ['personal_status_and_sex', 'guarantors', 'property']),
       ('std_scaler', StandardScaler(), ['duration_in_month', 'credit_amt', 'present_residence', 'age'])
   pipeline = Pipeline([
       ('features', featurizer),
       ('learner', RandomForestClassifier())
   return pipeline
```

```
______
Inpected dataSplit1 = pd.read_csv(f_path_1, index_col = 0)
______
*****
Changes in numerical features!
  count missing_count median mad range
*******
______
Inpected dataSplit2 = pd.read_csv(f_path_2, index_col = 0)
______
_____
Inpected data = dataSplit1.merge(dataSplit2, on='identifier')
______
Inpected data.drop(data.columns[0], axis=1, inplace = True)
______
______
Inpected data = data[['duration in month', 'credit his', 'credit amt', 'preset emp', 'personal status and s
ex', 'guarantors', 'present_residence', 'property', 'age', 'label']]
______
*****
Changes in numerical features!
  count missing_count median mad range
age -754.0
             0.5 0.7413 -1.0
******
```

	missing_count	num_class	class_count	class_percent
personal_status_and_sex	0.0	0.0	{'A93': -384, 'A92': -251, 'A91': -37, 'A94': -82}	{'A93': 0.1187, 'A92': -0.0702, 'A91': 0.0028, 'A94': -0.0513}

Inpected data = data.loc[(data.credit_amt>=4000)]

Changes in categorical features!

Operations SimpleImputer on personal_status_and_sex

Operations OneHotEncoder on personal_status_and_sex

missing_count

Changes in categorical features!

personal_status_and_sex

num_class -2
class_count {0.0: 233, 1.0: 13}

class_percent {0.0: 0.9472, 1.0: 0.0528}

Operations StandardScaler on age

Changes in numerical features!

age

count 0.0000

missing_count 0.0000

median -33.7344

mad -10.1331

range -50.1208

```
@tracer(cat_col = ['race', 'occupation', 'education'], numerical_col = ['age', 'hours-per-week'])
def adult_pipeline_easy(f_path = '../pipelines/adult-sample.csv'):
    raw_data = pd.read_csv(f_path, na_values='?')
    data = raw_data.dropna()

labels = label_binarize(data['income-per-year'], ['>50K', '<=50K'])

feature_transformation = ColumnTransformer(transformers=[
        ('categorical', OneHotEncoder(handle_unknown='ignore'), ['education', 'workclass']),
        ('numeric', StandardScaler(), ['age', 'hours-per-week'])
])

income_pipeline = Pipeline([
        ('features', feature_transformation),
        ('classifier', DecisionTreeClassifier())])

return income_pipeline</pre>
```

Inpected raw_data = pd.read_csv(f_path, na_values='?')

Changes in numerical features!

	count	missing_count	median	mad	range
age	-8.0	0.0	0.0	-0.7413	-19.0
hours-per-week	-8.0	0.0	0.0	-1.4826	0.0

Changes in categorical features!

ciass_percent	class_count	num_class	missing_count	
{'White': 0.007, 'Black': -0.0013, 'Amer-Indian-Eskimo': -0.0074, 'Asian-Pac-Islander': 0.0009, 'Other': 0.0009}	{'White': -6, 'Black': -1, 'Amer-Indian-Eskimo': -1, 'Asian-Pac-Islander': 0, 'Other': 0}	0.0	0.0	race
{'Exec-managerial': 0.0035, 'Adm-clerical': 0.003, 'Craft-repair': -0.0079, 'Sales': 0.0025, 'Prof-specialty': -0.0083, 'Other-service': 0.0021, 'Transport-moving': 0.0019, 'Machine-op-inspct': 0.0014 'Farming-fishing': 0.0007, 'Protective-serv': 0.0005, 'Handlers-cleaners': 0.0005, 'Tech-support': 0.0002	{'Exec-managerial': 0, 'Adm-clerical': 0, 'Craft-repair': -1, 'Sales': 0, 'Prof-specialty': -1, 'Other-service': 0, 'Transport-moving': 0, 'Machine-op-inspct': 0, 'Farming-fishing': 0, 'Protective-serv': 0, 'Handlers-cleaners': 0, 'Tech-support': 0}	0.0	-6.0	occupation
{'HS-grad': 0.0152, 'Bachelors': 0.0191, 'Some-college': -0.0235, 'Masters': -0.0057, '11th': -0.0157, '7th-8th': 0.0026, 'Assoc-voc': 0.0026, '10th': 0.0017, 'Prof-school': 0.0009, 'Assoc-acdm': 0.0009, '12th': 0.0009, '5th-6th': 0.0009]	{'HS-grad': -1, 'Bachelors': 0, 'Some-college': -4, 'Masters': -1, '11th': -2, '7th-8th': 0, 'Assoc-voc': 0, '10th': 0, 'Prof-school': 0, 'Assoc-acdm': 0, '12th': 0, '5th-6th': 0}	0.0	0.0	education
			*	*****

Operations OneHotEncoder on education

Changes in categorical features!

Inpected data = raw_data.dropna()

	education
missing_count	0
num_class	-10
class_count	{0.0: 90, 1.0: 2}
class_percent	{0.0: 0.9783, 1.0: 0.0217}

education, op=dropna

op=dropna

op=OneHotEncoder

op=OneHotEncoder

op=StandardScaler

op=StandardScaler

op=StandardScaler

op=DecisionTreeClassifier

Operations StandardScaler on age

Changes in numerical features!

	age
count	0.0000
missing_count	0.0000
median	-36.1059
mad	-12.8706
range	-48.4315

Operations StandardScaler on hours-per-week

Changes in numerical features!

	hours-per-week
count	0.0000
missing_count	0.0000
median	-40.0814
mad	0.0000
range	-63.7616

```
@tracer(cat_col = ['Gender', 'Education'], numerical_col = [])
def loan_pipeline(f_path = '../pipelines/loan_train.csv'):
   data = pd.read_csv(f_path)
   # Loan_ID is not needed in training or prediction
   data = data.drop('Loan_ID', axis=1)
     data = data.drop('Loan_Status', axis=1)
   numeric_features = data.select_dtypes(include=['int64', 'float64']).columns
   categorical_features = data.select_dtypes(include=['object']).drop(['Loan_Status'], axis=1).columns
   # do transformer on numeric & categorical data respectively
   numeric_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='median')),
        ('scaler', StandardScaler())])
   categorical_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
        ('onehot', OneHotEncoder(handle_unknown='ignore'))])
   preprocessor = ColumnTransformer(
        transformers=[
           ('num', numeric_transformer, numeric_features),
           ('cat', categorical_transformer, categorical_features)])
   # classifier
   pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                          ('classifier', RandomForestClassifier())])
   return pipeline
```

CoapplicantIncome__imputer,

op=SimpleImputer

CoapplicantIncome__scaler,

op=StandardScaler

LoanAmount_imputer,

op=SimpleImputer

LoanAmount_scaler,

op=StandardScaler

Loan_Amount_Term__imputer,

op=SimpleImputer

Loan_Amount_Term__scaler,

op=StandardScaler

ApplicantIncome_imputer,

op=SimpleImputer

ApplicantIncome__scaler,

op=StandardScaler

classifier op=RandomForestClassifier

Changes in categorical features!

	Gender	
missing_count	0	
num_class	-1	
class_count	{0.0: 502, 1.0: 112}	
class_percent	{0.0: 0.8176, 1.0: 0.1824}	

Operations	SimpleImputer on Education	n
Operations	OneHotEncoder on Education	n
********* Changes in	categorical features!	
	Education	

{1.0: 480, 0.0: 134}

class_percent {1.0: 0.7818, 0.0: 0.2182}

num_class

class count

op=read_csv drop 'Loan_ID', axis=1 op=drop select_dtypes include=['int64', 'float64'], op=select_dtypes select_dtypes include=['object'], op=select_dtypes Credit_History__imputer, Dependents__imputer, Self_Employed__imputer, Gender_imputer, Married_imputer, Education__imputer, Property_Area__imputer, op=SimpleImputer op=SimpleImputer op=SimpleImputer op=SimpleImputer op=SimpleImputer op=SimpleImputer op=SimpleImputer Credit_History__scaler, Self_Employed__onehot, Gender_onehot, Married__onehot, Dependents_onehot, Education__onehot, Property_Area__onehot, op=OneHotEncoder op=StandardScaler op=OneHotEncoder op=OneHotEncoder op=OneHotEncoder op=OneHotEncoder op=OneHotEncoder