OUESTION 1

- 1. What is the need for multi-level queue scheduling?
 - Processes with different requirements can be mapped to different queues and each queue can have a different scheduling policy (e.g., RR for interactive processes and FCFS for background).
 - This is necessary to minimize the average waiting time of all processes.
 - Processes with different requirements can be mapped to different queues and each queue can have a different scheduling policy (e.g., FCFS for interactive processes and RR for background).
 - It is only useful for multiprocessing (i.e, CPU with multiple cores).

0.25 points

QUESTION 2

- 1. Under First-Come First-Served (FCFS) scheduling, what is convoy effect?
 - A long process is in the "running" state, while several short processes are waiting in the "ready" state
 - A long process is in the "running" state, while several short processes are waiting in the "waiting" state.
 - A long process is in the "ready" state, while several short processes are waiting in the "ready" state behind this long process.

0.25 points

OUESTION 3

- 1. What is a CPU burst?
 - Time taken by a single instruction executed by a process.
 - Time taken by a set of instructions executed by a process between two successive I/O requests.
 - Time taken by all the instructions executed by a process.

0.25 points

QUESTION 4

- 1. What is Aging?
 - A technique in which the priority of processes that are unable to execute is slowly increased over time to avoid starvation.
 - A technique in which the priority of processes that are unable to execute is slowly decreased over time to avoid starvation.
 - A technique in which the priority of all processes is slowly increased over time to avoid starvation.

0.25 points

QUESTION 5

- 1. In a nonpreemptive CPU scheduler, when does scheduling happen?
 - Upon transitions 1 and 5 and ocassionally upon transition 4 (in the process state transition diagram).

	0	Upon transitions 2, 3 and 4 (in the process state transition diagram).		
	0	Upon any of the five transitions (in the process state transition diagram).		
	C	Upon any of the five transitions (in the process state transition diagram) and evitime instants.	en at other	
			0.25 points	
QUES	TIO	N 6	_	
1.	Wait	ing Time is defined as:		
	\odot	Time spent by a process in the "ready" state.		
	0	Time spent by a process in the "waiting" state.		
	C	Time taken between transition 4 and transition 5 minus the time spent in the state (in the process state transition diagram).	ne "running"	
		Time spent in the "ready" and "waiting" states combined.		
QUES	TIO	N 1		
1.		difference between non-preemptive Shortest-Job First (SJF) and Shortest Rema (SRTF) is that	aining Time	
	•	SJF is unaffected by newly admitted processes when a process is "running"; In current CPU burst of the newly admitted process is shorter than the remaining the running process, then a context-switch is triggered.		
	C	SRTF is unaffected by newly admitted processes when a process is "running"; total CPU duration of the newly admitted process is shorter than the remaining duration of the running process, then a context-switch is triggered.		
	C	SJF is unaffected by newly admitted processes when a process is "running"; In total CPU and I/O duration of the newly admitted process is shorter than the re CPU and I/O duration of the running process, then a context-switch is triggered	maining total	
	0	SRTF allows random preemption of processes, whereas SJF does not.		
			0.25 points	
QUES	TIO	N 2		
1.	The	key challenge under partitioned mutliprocessor scheduling is?		
	0	How to schedule processes on individual CPU cores?		
	0	How to do time-synchronization across CPU cores?		
	•	All of the others are key challenges.		
	0	How to map and partition the processes to CPU cores?		
			0.25 points	
QUESTION 3				
1.	Turn	around Time is defined as:		
	(T)	Time taken between transition 4 and transition 5 (in the process state trans	rition	

QUES

- Time taken between transition 4 and transition 5 (in the process state transition
- Time taken between transition 2 and transition 5 (in the process state transition diagram).

	C	Time taken between transition 4 and the first occurrence of the transition from "ready" to "running" (in the process state transition diagram).			
	C	Time taken between transition 2 and the next occurrence of the transition from "ready" to "running" (in the process state transition diagram).			
		0.25 points			
QUES	TIOI	N 4			
1.		n First-Come First-Served (FCFS) scheduling, the CPU scheduler is executed whenever a new process is "admitted" in the system.			
	•	False, it is a nonpreemptive scheduler and hence will only execute when either a "running" process completes or moves to the "waiting" state, or there is no running process when the new process is "admitted".			
	0	False, it is a nonpreemptive scheduler and hence will only execute when either a "running" process completes or moves to the "waiting" or "ready" states.			
	C	True, this enables the scheduler to check whether the new process must be given access to the CPU.			
	C	True, this enables the scheduler to setup the memory region for the new process.			
		0.25 points			
QUES	TIOI	-			
-					
	•	Minimizes the average waiting time for all processes.			
	0	Maximizes the average waiting time for all processes.			
	0	Minimizes the average response time for all processes.			
	C	Maximizes CPU utilization.			
QUEST	ION	5			
1.	Resp	oonse Time is defined as:			
	•	Time taken for a process between transition 4 and the first occurrence of transition from "ready" to "running" (in the process state transition diagram)			
	C	Time taken for a process between transition 2 and the next occurrence of transition from "ready" to "running" (in the process state transition diagram)			
	C	Time taken for a process between transition 4 and transition 5 (in the process state transition diagram)			
	C	Time taken for a process between transition 3 and the next occurrence of transition from "ready" to "running" (in the process state transition diagram)			