Graphical models

Sunita Sarawagi IIT Bombay

http://www.cse.iitb.ac.in/~sunita

Probabilistic modeling

- Given: several variables: $x_1, \ldots x_n$, n is large.
- Task: build a joint distribution function $Pr(x_1, ..., x_n)$
- Goal: Efficiently represent, estimate, and answer inference queries on the distribution
- Basic premise
 - Explicit joint distribution is dauntingly large
 - Queries are simple marginals (sum or max) over the joint distribution.

Example

Variables are attributes are people.

Age_	Income	Experiençe	Degree	Location.
10 ranges	7 scales	_7 scales	3 scales	30 places
•			,	

• An explicit joint distribution over all columns not tractable: number of combinations: $10 \times 7 \times 7 \times 3 \times 30 = 44100$.

Alternatives to an explicit joint distribution

- Assume all columns are independent of each other: bad assumption
- Use data to detect pairs of highly correlated column pairs and estimate their pairwise frequencies
 - ► Many highly correlated pairs income ⊥ age⊥experience
 - ► Ad hoc methods of combining these into a single estimate
- Go beyond pairwise correlations: conditional independencies
 - ▶ income ⊥ age, but income ⊥ age | experience
 - ▶ experience ⊥ degree, but experience ⊥ degree | income

Graphical models make explicit an efficient joint distribution from these independencies

More examples of CIs

- The grades of a student in various courses are correlated but they become CI given attributes of the student (hard-working, intelligent, etc?)
- Health symptoms of a person may be correlated but are CI given the latent disease.
- Words in a document are correlated, but may become CI given the topic.
- Pixel color in an image become CI of distant pixels given near-by pixels. $\chi_1 = \chi_2 = \chi_3$

Graphical models

Model joint distribution over **several** variables as a product of smaller factors that is

- Intuitive to represent and visualize
 - Graph: represent structure of dependencies
 - Potentials over subsets: quantify the dependencies
- Efficient to query
 - given values of any variable subset, reason about probability distribution of others.
 - many efficient exact and approximate inference algorithms

Graphical models = graph theory + probability theory.

Representation

Structure of a graphical model: Graph + Potential

Graph

- Nodes: variables $\mathbf{x} = x_1, \dots x_n$
 - Continuous: Sensor temperatures, income
 - Discrete: Degree (one of Bachelors, Masters, PhD), Levels of age, Labels of words
- Edges: direct interaction
 - Directed edges: Bayesian networks
 - Undirected edges: Markov Random fields

Representation

Potentials: $\psi_c(\mathbf{x}_c)$

- otentials: $\psi_c(\mathbf{x}_c)$ $\mathbf{V} = \{1, 2, \dots, n\}$ $c \in \mathbf{V}_{q}: \{1, 2\}$ Scores for assignment of values to subsets c of directly $\mathbf{x}_c = \{2, 3, 3\}$ interacting variables.
- Which subsets? What do the potentials mean?
 - Different for directed and undirected graphs

Probability

Factorizes as product of potentials

$$\operatorname{Pr}(\mathbf{x}=x_1,\ldots x_n)\propto \prod \psi_S(\mathbf{x}_S)$$

Directed graphical models: Bayesian networks

- Graph G: directed acyclic graphs (DAG)
 - Parents of a node: $Pa(x_i) = \text{set of nodes in } G$ pointing to x_i
- Potentials: defined at each node in terms of its parents.

$$\psi_i(x_i, Pa(x_i)) = Pr(x_i|Pa(x_i))$$

Probability distribution

$$\Pr(x_1 \dots x_n) = \prod_{i=1}^n \Pr(x_i | pa(x_i))$$

Example of a directed graph

$\psi_1(L) = \Pr(L)$									
	NY	CA	London	Other					
	0.2	0.3	0.1	0.4 -					

$$\psi_2(A) = \Pr(A)$$
 $20-30 \ | \ 30-45 \ | \ > 45$
 $0.3 \ | \ 0.4 \ | \ 0.3$
or, a Guassian distribution $(\mu,\sigma) = (35,10)$

$\psi_3(L,A) = \Gamma(L A)$								
	^							
	Age	0–10	10–15	> 15				
	20-30	0.9	0.1	0				
	30–45	0.4	0.5	0.1				
	~ 15	0.1	0.1	00				

 $a/A (E/A) = D_F(E/A)$

$$\psi_5(I, E, D) = \Pr(I|D, E)$$

3 dimensional table, or a

3 dimensional table, or a histogram approximation.

Probability distribution

 $Pa(\mathbf{x} = L, D, I, A, E) = Pr(L) Pr(D) Pr(A) Pr(E|A) Pr(I|D, E)$

|P(L)| = 30 - 1 |P(A)| = 10 - 1 |P(D)| = 3 - 1 |P(D)| = 10 |P(E|A)| = 10 |P(E|A)| = (1 - 1)|P(E|A)| = (1 - 1)

Conditional Independencies

• Given three sets of variables X, Y, Z, set X is conditionally independent of Y given Z ($X \perp \!\!\! \perp Y | Z$) iff

$$Pr(X|Y,Z) = Pr(X|Z)$$

• Local conditional independencies in BN: for each x_i

$$x_i \perp \!\!\!\perp ND(x_i)|Pa(x_i)$$

- \bullet $L \perp \!\!\!\perp E, D, A, I$
- *A* ⊥⊥ *L*, *D*
- \bullet $E \perp \!\!\!\perp L, D|A$
- $I \perp \perp A \mid E, D$

Cls and Fractorization

Theorem

Given a distribution $P(x_1,...,x_n)$ and a DAG G, if P satisfies Local-CI induced by G, then P can be factorized as per the graph. Local-CI(P, G) \Longrightarrow Factorize(P, G)

Proof.

- $x_1, x_2, ..., x_n$ topographically ordered (parents before children) in G.
- Local CI(P, G): $P(x_i | x_1, ..., x_{i-1}) = P(x_i | Pa_G(x_i))$
- Chain rule:

$$P(x_1,...,x_n) = \prod_i P(x_i|x_1,...,x_{i-1}) = \prod_i P(x_i|Pa_G(x_i))$$

 $\bullet \implies \mathsf{Factorize}(P,G)$

