순환신경망 RNN

7장 순환신경망

2020。08。13号 2h

순환 신경망 개요

- Recurrent Neural Networks(RNN)
 - 순서가 있는 데이터를 입력으로 받고, 같은 네트워크를 이용해 변화하는 입력에 대한 출력을 생성
 - 시간과 연관된 일
 - 예를 들자면, 책을 읽을 때 앞에 있는 내용을 기억하면서 글을 읽음
 - 순서가 있는 데이터

표현

• 음악, 자연어, 날씨, 주가 등 시간의 흐름에 따라 변화하고 그 변화가 의미를 갖는 데 이터

Pythoi

RNN(Recurrent Neural Network) 기본 구조

- 첫 번째 활성화 함수
 - 보통 tanh(x) 사용
 - 어떤 t(타임스텝)에 대해서도 같은 가중치 U, W, V, 편향 b, c를 사용
 - 가중치와 편향을 공유
 - 계산량이 감소
 - 편향은 언급하지 않는 경우도 대부분

$$h(t) = f(Ux(t) + Wh(t-1) + b)$$
$$y(t) = g(Vh(t) + c)$$

직관적인 표현

* x(t) : 현재 입력 (자극)

* h(t-1) : **과거 기억**

* h(t) : 현재 기억

RNN 딥러닝 구조

- 순환 모양의 화살표
 - 중간층이 순환
 - 순환의 각각을 타임스텝 t-1, t, t+1이라 함
- 입력 X를 받아서, 출력 Y를 반환하는 순환구조
 - 어떤 레이어의 출력을 다시 입력으로 받는 구조
 - 순환 신경망은 입력과 출력의 길이에 무제한

The architecture of RNN.

RNN 딥러닝 구조의 다양한 그림

- 입력 X를 받아서, 출력 Y를 반환하는 순환구조
 - 순환 모양의 화살표, 중간층이 순환

RNN 활용

- 활용 분야
 - 이미지 설명 문구 생성
 - 순환 신경망은 이미지에 대한 설명을 생성
 - 문장 감성 분석
 - 문장의 긍정/부정을 판단하는 감성 분석
 - 기계 번역(Machine Translation) 등
 - 하나의 언어를 다른 언어로 번역

기본 신경망 구조

MNIST 손글씨

- 첫 번째 데이터(x1)와 그 다음 데이터(x2 등) 간의 구조는 독립적
 - input x가 선형 결합 후, Hidden에 Activation function을 거쳐 다시 선형 결합을 통해 Output y를 구해 예측하는 알고리즘

RNN 구조와 특징

- RNN은 순환 구조
 - 레이어의 출력을 다시 입력으로 받아서 사용
 - 이전의 데이터가 함께 결과에 영향을 미침
- RNN은 입력과 출력의 길이에 제한이 없음
 - 구조를 바꾸면 다양한 형태, 스타일의 네트워크를 형성
 - 기본적으로 Fully connected 구조

RNN의 가중치와 편향

- 가중치 부류
 - 총 3개 부류
 - Wxh
 - Whh
 - Why
- 편향
 - 총 2개 부류
 - bh
 - **by**

RNN 파라미터

- RNN은 모든 시간대에 동일한 변수를 사용
 - units 패러미터는 RNN 신경망에 존재하는 뉴런의 개수
 - SimpleRNN(hidden_size, input_shape=(timesteps, input_dim)))
 - SimpleRNN(units=10, input_shape=[4,1])

Python

Time step(t) 3인 RNN

- Time step = 0
 - 각각 Layer들의 Weight를 초기화
 - h0 층은 0으로, 나머지는 Xavier 가중치 초기값으로 초기화
 - 또한 각 가중치는 각각 layer에서 공유

Time step(T) 2, 3, 단계

 $h_3 = tanh(W_{hh}h_2 + W_{xh}x_3 + b_h)$ $y_3 = W_{hy}h_3 + b_y$

손실 함수

- 최종 Cost
 - 모든 Cost Function의 평균

RNN의 연산

- 현재 시점 t에서의 은닉 상태값을 ht
 - 은닉층: 메모리 셀 ht를 계산
 - 총 두 부분의 가중치
 - 하나는 입력층에서 입력값을 위한 가중치 Wxh
 - 하나는 이전 시점 t-1의 은닉 상태 값인 ht-1을 위한 가중치 Whh
 - 출력층: yt 계산
 - 한 부분의 가중치 Why

은닉층 : $h_t = tanh(W_x x_t + W_h h_{t-1} + b)$

출력층 : $y_t = f(W_y h_t + b)$

단, f는 비선형 활성화 함수 중 하나.

7장 순환 신경망

1 SimpleRNN layers

SimpleRNN 레이어

- 간단한 형태의 RNN 레이어
 - 활성화 함수
 - tanh 사용
 - 실수 입력을 받아 -1에서 1사이의 출력 값을 반환
 - ReLU 같은 다른 활성화 함수도 사용

$$a = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- 코드
 - rnn1 = tf.keras.layers.SimpleRNN(units=1, activation='tanh', return_sequences=True)
 - units
 - SimpleRNN의 레이어에 존재하는 뉴런의 수
 - return_sequences
 - _ 출력으로 시퀀스 전체를 출력할지 여부를 나타내는 옵션
 - 여러 개의 RNN 레이어를 쌓을 때 사용

인자 return_sequences

- return_sequences
 - RNN 계산 과정에 있는 hidden state를 출력할 것인지에 대한 값을 의미
 - return_sequences = True
 - 다층으로 이루어진 RNN
 - one-to-many, many-to-many 출력을 위해서 사용

return_sequences=False

return_sequences=True

파일

ch7_RNN_study.ipynb

시퀀스 예측 모델 예제

- 4개의 숫자로 그 다음에 숫자를 예측
 - [0.0 0.1 0.2 0.3]이라는 0.1씩 늘어나는 수열을 줄 때
 - input_shape=[4, 1]
 - step_size 4
 - 한 순간의 자료 0.0 인 input_dim 벡터 1
 - 이후의 값 0.4를 예측하는 네트워크
 - 출력인 결과 벡터 1
- units
 - hidden_size 10은 하이퍼패러미터
- return_sequences=False
 - 중간 결과는 사용 안함

```
model = tf.keras.Sequentia ([
    tf.keras.layers.SimplePNN(units=10, return_sequences=False, input_shape=[4,1]),
    tf.keras.layers.Dense(1)
])
```

학습과 테스트 데이터 생성

```
[[0.]
X = []
                                                                [0.1]
Y = []
                                                                [0.2]
                                                                [0.3]] 0.4
for i in range(6):
                                                               [[0.1]]
 # [0, 1, 2, 3], [1, 2, 3, 4]
                                                               [0.2]
 lst = list(range(i, i+4))
                                                                [0.3]
                                                                [0.4]] 0.5
  # 위에서 구한 시퀀스의 숫자들을 각각 10으로 나눈 다음 저장합니다.
                                                               [[0.2]
  # SimpleRNN에 각 타임스텝에 하나씩 숫자가 들어가기 때문에
                                                                [0.3]
    여기서도 하나씩 분리해서 배열에 저장합니다.
                                                                [0.4]
 X.append(list(map(lambda c: [c/10], lst)))
                                                                [0.5]] 0.6
                                                               [[0.3]
  # 정답에 해당하는 4, 5 등의 정수 역시 앞에서처럼 10으로
                                                                [0.4]
    나눠서 저장합니다.
                                                                [0.5]
                                                                [0.6]] 0.7
  Y.append((i+4)/10)
                                                               [[0.4]
                                                                [0.5]
X = np.array(X)
                                                                [0.6]
Y = np.array(Y)
                                                                [0.7]] 0.8
                                                               [[0.5]]
for i in range(len(X)):
                                                                [0.6]
 print(X[i], Y[i])
                                                                [0.7]
                                                                [0.8]] 0.9
```

모델 정의

• SimpleRNN 레이어를 사용한 네트워크를 정의

입력 형태 = [time_step, input_dim]

```
    units = 10
    RNN 신경망의 은닉 층에 존재하는 뉴런의 개수
    input_shape = [4,1]
```

- return_sequences=False
 - RNN 계산 과정에 있는 hidden state를 출력 사용하지 않음
- 출력을 위한 시퀀셜 모델
 - Dense 레이어가 뒤에 추가
 - 활성화 함수 없이 사용

```
# 7.3 시퀀스 예측 모델 정의
model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(units=10, return_sequences=False, input_shape=[4,1]),
    tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.summary()
```

모델 RNN의 뉴런 수 units

- 중간층의 뉴런 수가 10개
 - _ 입력
 - Whh 10개, 편향 b 1개, input 1개
 - _ 출력
 - 중간층 뉴런 수 10개

```
# 7.3 시퀀스 예측 모델 정의

model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(units=10, return sequences=False, input shape=[4,1]),
    tf.keras.layers.Dense(1)

Output

model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
simple_rnn (SimpleRNN)	(None, 10)	120 ?
dense (Dense)	(None, 1)	11
Total params: 131 Trainable params: 131 Non-trainable params: 0		

units=2

Harim Kang - Davinci Al https://davincl-al.tistory.com/

units=3

모델 RNN의 입력 형태 input_shape

- input_shape=[4, 1]
 - [4,1]은 각각 timesteps, input_dim
 - [[0.]
 - · [0.1]
 - · [0.2]
 - · [0.3]]
 - 타입스텝(timesteps)
 - 순환 신경망이 입력에 대해 계산을 반복하는 횟수
 - input_dim
 - 입력 벡터의 크기, 1
 - 시퀀스 예측 모델은 4 타임 스텝에 걸 쳐 입력을 받고,
 - 마지막에 출력 값을 다음 레이어로 반환
- Dense 레이어
 - 별도의 활성화함수가 없음
 - 손실 함수
 - 이 값과 0.4와의 차이가 mse
 - 평균 제곱 오차(Mean Squared Error)

학습과 예측

- 6개 문제에 대한 예측 값
 - 정답은 4, 5, 6, 7, 8, 9

```
model.fit(X, Y, epochs=100, verbose=0)
print(model.predict(X))
```

```
[0.37758377]
[0.5054759]
[0.61844903]
[0.71716857]
[0.8032897]
[0.8785695]]
```

```
1 print(model.predict(np.array([[[0.6], [0.7], [0.8], [0.9]]])))
2 print(model.predict(np.array([[[-0.1], [0.0], [0.1], [0.2]]])))
```

```
[[0.94448555]]
[[0.23629726]]
```

순환신경망 RNN

7장 순환신경망

패러미터 수계산

RNN 패러미터 계산 개요

전통적 RNN(vanilla RNN)

Vanilla RNN

$$h_t = f(Ux_t + Wh_{t-1})$$
 tanh ਰੇਸ਼ਾਪੀਵ ਕਮਮਾਪਿਵ

$$Y_t = g(Vh_t)$$

RNN의 패러미터 수

simpleRNN 층

Total params: 19

Trainable params: 19

Non-trainable params: 0

- (units + input_dim + 1(bias)) x units
 - 중간 층 뉴런 수(units=2), 입력 차원(input_dim) 1, : (2+1+1) * 2 = 8
- Dense 층
 - (units + 1(bias)) x Dense층 출력 수 • (2 + 1) * 1 = 3

```
model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(units = 2,
                       input shape=[4,1],
                return sequences=False),
    tf.keras.layers.Dense(1)
1)
model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN (units=3,
                       input shape=[4,1],
                return sequences=False),
    tf.keras.layers.Dense(1)
1)
                        Output Shape
    Layer (type)
                                          Param #
    simple rnn 14 (SimpleRNN)
                        (None, 4, 3)
    dense_14 (Dense)
                        (None, 4, 1)
```

Layer (type)	Output Shape	Param #
simple_rnn_12 (SimpleRNN)	(None (2))	(8)
dense_12 (Dense)	(None, 1)	(3)

Total params: 11 Trainable params: 11 Non-trainable params: 0

units=2

units=3

RNN의 패러미터 수(2)

- simpleRNN 층
 - (units + input_dim + 1(bias)) x units
 - 증간 층 뉴런 수(units=10), 입력 차원(input_dim) 3, : (10+1+3) * 10 = 140
- Dense 층
 - (units + 1(bias)) x Dense층 출력 수
 - (10 + 1) * 2 = 22

Total params: 162 Trainable params: 162 Non-trainable params: 0

units=2

Harim Kang - Davinci Al https://davinci-ai.tistory.com/

units=3

RNN의 벡터와 행렬의 크기

- 입력 Xt
 - d: 입력 벡터의 차원
 - 예, [[1], [2], [3], [4]] : 1, [[1, 2], [2, 3], [3, 4], [4, 5]] : 2
- Dh
 - 은닉 상태의 크기, units 수
- 각각의 가중치 Wx, Wh, Wy
 - 모든 시점에서 값을 동일하게 공유
 - 은닉층이 2개 이상일 경우에는 은닉층 2개의 가중치는 서로 다름

Python