Lecture - 06 09/16/2020 DGP: X,, --., Xn icd N(0,62) standardize the estimator What if sigma is unknown? S^2 estimates $\delta^2 \Rightarrow \delta = \sqrt{S^2}$ estimates δ Does $\overline{X} - \theta$? N(0,1) No! But close! In 1907 Gosset proved: Student's standard T distribution (exactly) with n-1 " degrees of freedom" (the parameter for the standard Similar to normal but with thicker Tlowdf<2 tails data from n=10 male student heights: X=70.5, FO. G = 8 Ha! + + 70, Ho: 0=70, x=5% the standardized distri To of AlHo N=2.5% 1 = 2.26 > 1.96=2 97.57 REJ => Retain Ho

-	
-	III Ha: θ, >θ, => Ho: θ, < θo equivalently
	$H_{\alpha}: \theta_{1} - \theta_{2} > 0 \implies H_{\alpha}: \theta_{1} - \theta_{2} \leq 0$
	114 1 01 03 7 0 7 118 : 01 02 0
	111 1 2 (6 2) 11
	What is a test statistic? (For the .)
	â, - â, point estimate
	The estimator that produces these estimates
	The estimator that produces these estimates is simply! $\theta_1 \sim N(\theta_1, \theta_1)$ indep. $\theta_1 - \theta_2 = \overline{X}, -\overline{X}, \sim N(\theta_1 - \theta_2, \theta_1)$ exactly $\theta_1 = \overline{X}, -\overline{X}, \sim N(\theta_1 - \theta_2, \theta_1)$
	# N (0, 102/n)
	$\theta, -\theta, = X, -X, \sim N(\theta_1 - \theta_2, 0/n, +0/n_2)$ exactly
	\Rightarrow SE $[\hat{\theta}, -\hat{\theta}, \hat{J}] = [\hat{\theta}, \hat{\beta}, \hat{\delta}, \hat{\delta}]$
	$\frac{1}{2}$
-	10 11 (-11 11)
	Under Ho (all three),
	$\frac{(\theta_1 - \theta_2) - (\theta_1 - \theta_2)}{\sqrt{(\theta_1 - \theta_2)}} \sim N(\theta_1)$
	$\int_{0}^{6^{2}} \frac{6^{2}}{n_{1}} + \frac{6^{2}}{n_{2}} n_{2}$
	$\int_{0}^{\infty} n_{1} + v_{2} n_{3}$
	$\widehat{\theta}_{1} - \widehat{\theta}_{2} \sim N(0, \delta_{1}^{2} + \delta_{2}^{2})$
	n_1 n_2
	$\frac{\hat{\theta}_1 - \hat{\theta}_2}{\sqrt{\hat{\theta}_1^2 + \hat{\theta}_2^2}} \sim N(0,1)$
	$\frac{\forall_1 - \forall_2}{} \sim \mathbb{N}(0.1)$
	(01/ + 62)
	$\int \delta_{1}^{2} \int_{1}^{1} + \delta_{2}^{2}$
	Let's test if male mean height is different than
	semale mean height.
	$\vec{X} = \langle 60, 59, 64, 64, 63 \rangle$ $n_2 = 6 \vec{X}_9 = 62.3$
	$\theta_1 - \theta_2 = 70.5 - 62.3 = 8.2$
-	
	We assumed we knew the variances. So the
	variance for the men was assumed to be
	4° and now the variance for the women is

	The lest can be run again, you can probably
	The lest can be run again, you can probably assume 6=3175.
	Same as above but 6 unknown. How can we
	estimate the standard error?
	C B C B II
	Si, Si are the sample variances in both. Sample I and 2.
	$S_{1}^{R} = \frac{1}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})},$
	n, -1 (=1
	$S_{2}^{*} = \frac{1}{n_{2}-1} \left(X_{2,\hat{i}} - X_{3,\hat{i}} \right)^{2}$
	n -1 [=1
-	
	$S_{pooled} = (n,-1) \int_{1}^{2} + (n_{2}-1) \int_{2}^{2} weighted average.$
	n_1+n_2-2
	You can prove that
	this allows you to do the "2-sample t test I pooled I'n, + /n, 2 The "2-sample t test of equal variance"
	A A. T the "2-sample t test
	n ₁ +n ₂ -2 of equal variance"
	pooled In, + n2
	std estimator
	Ho = Tim
	2.5/.
0	711111
	0 tip, 97.5% = 2.14 standardised
	REJ SIC RET Observed's
	=> Reject Ho. estimato

phiodo	\$ = 70.5 - 62.3 - 8.2 - 7.42 Spooled 1/0 + 1/6 2.14 - 10.51
<u> </u>	Spooled : 19,02.07 of 10,2.25 polentes
	14
dtod	Si, Si are the semple voncoces in
	= 4.56. & bas 1 slams
	$S_{i} = I + \left(X_{i} - X_{i} \right) $