Cap. 2. Espaços vetoriais e Transformações Lineares

1 Definição e Exemplos

Definição. Um **espaço vetorial real** é um conjunto V munido de uma operação soma indicada por + e de uma operação multiplicação escalar indicada por \cdot tais que

- (S_0) Se u e v são elementos de V, a soma u+v também é elemento de V.
- $(S_1) \ \forall u, v \in V \quad u+v=v+u.$
- $(S_2) \ \forall u, v, w \in V \quad u + (v + w) = (u + v) + w.$
- (S_3) Existe um elemento $0_V \in V$ tal que, para todo o $u \in V, \ u + 0_V = 0_V + u = u.$
- (S_4) Para cada $u \in V$, existe um elemento $\hat{u} \in V$ tal que $u + \hat{u} = 0_V$.
- (M_0) Se $u \in V$ e se $\alpha \in \mathbb{R}$, a multiplicação de u por α , $\alpha \cdot u$, pertence a V.
- $(M_1) \ \forall u, v \in V \ e \ \forall \alpha \in \mathbb{R} \quad \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v.$
- $(M_2) \ \forall u \in V \ e \ \forall \alpha, \beta \in \mathbb{R} \quad (\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u.$
- $(M_3) \ \forall u \in V \ e \ \forall \alpha, \beta \in \mathbb{R} \quad \alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u.$
- (M_4) Para cada $u \in V$, $1 \cdot u = u$.

Observações.

- Os elementos de um espaço vetorial são chamados **vetores**.
- \bullet Os axiomas dão regras de bom comportamento das operações. Por exemplo, por M4 e M2 temos:

$$u + u = 1 \cdot u + 1 \cdot u = (1+1) \cdot u = 2 \cdot u$$

• O elemento 0_V do axioma S_3 é único e é chamado **vetor nulo**.

- Para todo o $u \in V$, tem-se $0 \cdot u = 0_V$.
- Dado $u \in V$, o elemento \hat{u} do axioma S_4 é único e é igual a $(-1) \cdot u$ pois

$$u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u = (1-1) \cdot u = 0 \cdot u = 0_V.$$

Este elemento é chamado **simétrico** de u e é denotado -u.

• A soma v + (-u) é escrita v - u.

Exemplos.

• \mathbb{R}^n com a soma e a multiplicação escalar definidas no Cap.I é um espaço vetorial real sendo o seu vetor nulo:

$$\vec{0} = (0, 0, \dots, 0)$$

O simétrico de $u = (x_1, ..., x_n)$ é

$$-u = (-x_1, ..., -x_n)$$

• O conjunto $\mathcal{F}(\mathbb{R},\mathbb{R})$ das funções $f:\mathbb{R}\to\mathbb{R}$ munido das operações + e · dadas por

$$f + g : \mathbb{R} \to \mathbb{R} \qquad \alpha \cdot f : \mathbb{R} \to \mathbb{R} x \mapsto f(x) + g(x) \qquad x \mapsto \alpha f(x) \qquad (f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \alpha \in \mathbb{R})$$

é um espaço vetorial real.

O seu vetor nulo é a função nula : $\mathbb{R} \to \mathbb{R}$, $x \mapsto 0$.

O simétrico de $f: \mathbb{R} \to \mathbb{R}$ é a função

$$-f: \mathbb{R} \to \mathbb{R}, \ x \mapsto -f(x).$$

2 Subespaço vetorial (resumo)

Definição. Seja V um espaço vetorial para as operações "+"e ":". Um subconjunto $W \subseteq V$ não vazio é um **subespaço vetorial (s.e.v)** de V se, com as mesmas operações "+"e ":", W é por si mesmo um espaço vetorial.

Proposição. Seja V um espaço vetorial e seja $W \subseteq V$.

$$W \text{ \'e um s.e.v de } V \Leftrightarrow \begin{cases} (i) & 0_V \in W \\ (ii) & \forall w, w' \in W \ w + w' \in W \\ (iii) & \forall w \in W, \forall \alpha \in \mathbb{R} \ \alpha \cdot w \in W \end{cases}$$

Observação. Se W é um s.e.v e se $w \in W$, o simétrico $-w = (-1) \cdot w$ também deve pertencer a W.

3 Subespaço vetorial gerado por um conjunto de vetores (resumo)

Consideremos um espaço vetorial V e k vetores $v_1, \dots, v_k \in V$.

• Um vetor $u \in V$ é **combinação linear (CL)** de v_1, \dots, v_k se existirem $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ tais que

$$u = \alpha_1 v_1 + \cdots + \alpha_k v_k$$

• O conjunto de todas as CL de v_1, \dots, v_k é

$$\langle v_1, \cdots, v_k \rangle = \{ \alpha_1 v_1 + \cdots + \alpha_k v_k \text{ com } \alpha_1, \cdots, \alpha_k \in \mathbb{R} \}$$

Proposição. $\langle v_1, \dots, v_k \rangle$ é um s.e.v de V. É chamado o **s.e.v gerado** pelos vetores v_1, \dots, v_k ou ainda gerado pelo conjunto $\{v_1, \dots, v_k\}$.

Se $\langle v_1, \dots, v_k \rangle = V$, diz-se que v_1, \dots, v_k **geram** o espaço vetorial V (ou que são **geradores** de V) e que o conjunto $\{v_1, \dots, v_k\}$ é um **conjunto gerador** de V.

4 Indepedência/depedêncial linear num espaço vetorial (resumo)

Definição. Consideremos um espaço vetorial V e k vetores $v_1, \dots, v_k \in V$.

• v_1, \dots, v_k são ditos linearmente independentes se

$$\forall \alpha_1, \dots, \alpha_k \in \mathbb{R}, \quad \alpha_1 \cdot v_1 + \dots + \alpha_k \cdot v_k = 0_V \Rightarrow \alpha_1 = \dots = \alpha_k = 0.$$

• v_1, \dots, v_k são ditos **linearmente dependentes** caso contrário, isto é se existirem $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ <u>não todos nulos</u> tais que

$$\alpha_1 \cdot v_1 + \cdots + \alpha_k \cdot v_k = 0_V.$$

Proposição. Consideremos um espaço vetorial V e k vetores $v_1, \dots, v_k \in V$.

(a) Se k = 1 (apenas um vetor), tem-se

 v_1 é linearmente dependente $\Leftrightarrow v_1 = 0_V$

ou, equivalentemente,

 v_1 é linearmente independente $\Leftrightarrow v_1 \neq 0_V$

(b) Se $k \geq 2$

 v_1, \cdots, v_k são linearmente dependentes \Leftrightarrow um dos vetores é CL dos outros.

Observações.

- Se um dos vetores é nulo, então v_1, \dots, v_k são linearmentes dependentes.
- 2 vetores são linearmente dependentes se um for múltiplo do outro. Em particular, em \mathbb{R}^n , 2 vetores são linearmentes independentes sse não são nulos nem paralelos.

Proposição. Consideremos um espaço vetorial V e k vetores $v_1, \dots, v_k \in V$. Se v_1, \dots, v_k forem linearmente independentes então todo o vetor $u \in \langle v_1, \dots, v_k \rangle$ tem uma escrita única como CL de v_1, \dots, v_k .

5 Base de um espaço vetorial (resumo)

Definição. Seja V um espaço vetorial. Dizemos que a família (ordenada) de vetores v_1, \dots, v_k forma uma **base** (ordenada) de V se

- (1) v_1, \dots, v_k geram V (isto é $\langle v_1, \dots, v_k \rangle = V$)
- (2) v_1, \dots, v_k são linearmente independentes.

Neste caso, todo o $u \in V$ escreve-se de maneira única como CL de v_1, \dots, v_k :

$$\exists (\text{unicos}) \ \alpha_1, \cdots, \alpha_k \in \mathbb{R} : u = \alpha_1 \cdot v_1 + \cdots + \alpha_k v_k.$$

Aos reais $\alpha_1, \dots, \alpha_k$ chamamos **coordenadas** de u na base v_1, \dots, v_k .

6 Dimensão de um espaço vetorial (resumo)

Teorema. Seja V um espaço vetorial. Se V admite uma base formada por n vetores então toda a base de V é constituída por n vetores.

Definição. Seja V um espaço vetorial.

- Se $V = \{0_V\}$, diz-se que V tem **dimensão** 0 e escreve-se dim V = 0.
- Se V admite uma base constituída por n vetores, diz-se que V tem dimensão n e escreve-se dim V=n.
- Se V não admite um número finito de geradores, V tem **dimensão** infinita e escreve-se dim $V = \infty$.

Observação. Se $v_1, \dots, v_k \in V$ são linearmente independentes então $\dim \langle v_1, \dots, v_k \rangle = k$.

Teorema. Consideremos um espaço vetorial V de dimensão n e k vetores $v_1, \dots, v_k \in V$.

1. Se v_1, \dots, v_k são linearmente independentes então $k \leq n$ e podemos encontrar n-k vetores $v_{k+1}, \dots, v_n \in V$ tais que v_1, \dots, v_n seja uma base de V.

2. Se v_1, \dots, v_k geram V (isto é, $\langle v_1, \dots, v_k \rangle = V$), então $k \geq n$ e podemos retirar de v_1, \dots, v_k k-n vetores de modo a obter uma base de V.

Corolário. Seja V um espaço vetorial de dimensão n. Consideremos n vetores $v_1, \dots, v_n \in V$.

$$v_1, \cdots, v_n$$
 formam uma base de $V \Leftrightarrow v_1, \cdots, v_n$ são lin. independentes $\Leftrightarrow v_1, \cdots, v_n$ geram V

Corolário. Seja V um espaço vetorial de dimensão finita e seja $W \subseteq V$ um s.e.v de V. Tem-se

- $\dim W \leq \dim V$
- V = W sse dim $W = \dim V$

7 Transformações Lineares

Definição. Sejam V e W dois espaços vetoriais. Uma **transformação** linear (ou aplicação linear) é uma funcão $T:V\to W$ tal que

(i)
$$\forall u, v \in V, T(u+v) = T(u) + T(v)$$

(ii)
$$\forall v \in V, \forall \alpha \in \mathbb{R}, \ T(\alpha \cdot v) = \alpha \cdot T(v)$$

Segue da definição que

- $T(0_V) = 0_W$
- $\forall u \in V, \ T(-u) = -T(u)$
- $\forall u, v \in V, \ \forall \alpha, \beta \in \mathbb{R}, \ T(\alpha \cdot u + \beta \cdot v) = \alpha \cdot T(u) + \beta \cdot T(v)$

Exemplos.

- 1. a função identidade $T=\mathrm{Id}_V:V\to V,\, T(v)=v$ é uma transformação linear.
- 2. a função nula $T: V \to W, T(v) = 0_W$ é uma transformação linear.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 2x + y + 1$

Não é uma transformação linear pois $T(0,0) = 1 \neq 0$.

4. $T: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto 2x + y$

É linear pois para todos os $u=(x,y), v=(x',y')\in\mathbb{R}^2$ e $\alpha\in\mathbb{R}$ tem-se

$$T(u+v) = T(x+x', y+y')$$
 e $T(\alpha \cdot u) = T(\alpha x, \alpha y)$
= $2(x+x') + (y+y')$ = $2(\alpha x) + \alpha y$
= $(2x+y) + (2x'+y')$ = $\alpha(2x+y)$
= $T(u) + T(v)$ = $\alpha \cdot T(u)$

5. Em geral, se $\mathbf{a} \in \mathbb{R}^n$,

$$T: \mathbb{R}^n \to \mathbb{R}$$
$$\mathbf{x} \mapsto (\mathbf{a}|\mathbf{x})$$

é uma transformação linear (exercício).

6. Para uma função

$$T: \mathbb{R}^n \to \mathbb{R}^p$$

 $u \mapsto (T_1(u), \cdots, T_p(u))$

verifica-se que

T é linear \Leftrightarrow cada componente $T_i: \mathbb{R}^n \to \mathbb{R}$ é linear.

Por exemplo: $T: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (2x+y,-3x,0)$ é linear.

7. Seja $v \in \mathbb{R}^n$ um vetor <u>não nulo</u>. A translação

$$t_v: \mathbb{R}^n \to \mathbb{R}^n$$
$$u \mapsto u + v$$

não é linear pois $t_v(\vec{0}) = v \neq \vec{0}$.

8. $T: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y^2$

Não é linear, pois, para u=(1,0) tem-se T(u)=1 mas $T(2\cdot u)=4\neq 2\cdot T(u).$

9. O conjunto $Der(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}, f \text{ derivável}\}$ é um s.e.v de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ e podemos considerar:

$$T: Der(\mathbb{R}, \mathbb{R}) \to \mathcal{F}(\mathbb{R}, \mathbb{R}), \quad T(f) = f'$$

T é linear pois, para todas as f,g deriváveis e para todo o $\alpha \in \mathbb{R}$ tem-se

$$T(f+g) = (f+g)' = f' + g' = T(f) + T(g)$$

$$T(\alpha \cdot f) = (\alpha f)' = \alpha f' = \alpha \cdot T(f)$$

Proposição. A composta de duas transformações lineares é uma transformação linear.

Prova: Sejam $S:U\to V$ e $T:V\to W$ duas transformações lineares e sejam $u,u'\in U$ e $\alpha\in\mathbb{R}$. Tem-se

$$T \circ S(u + u') = T(S(u + u')) = T(S(u) + S(u'))$$

= $T(S(u)) + T(S(u')) = T \circ S(u) + T \circ S(u')$

$$T \circ S(\alpha \cdot u) = T(S(\alpha \cdot u)) = T(\alpha S(u)) = \alpha T(S(u)) = \alpha \cdot T \circ S(u).$$

Núcleo e Imagem de uma transformação linear

Definição. Seja $T: V \to W$ uma transformação linear.

 \bullet O **núcleo** (Kernel) de T é o subconjunto de V dado por

$$Ker(T) := \{ v \in V : T(v) = 0_W \}$$

 \bullet A **imagem** de T é o subconjunto de W dado por

$$Im(T) := \{T(v) : v \in V\}$$

Nota. O conceito de imagem define-se para qualquer função $f:A\to B$ onde A e B são conjuntos:

$$Im(f) := \{ f(a) : a \in A \}$$

Proposição. Seja $T: V \to W$ uma transformação linear.

- (a) Ker(T) é um s.e.v de V.
- (b) Im(T) é um s.e.v de W.

Prova. (a) Primeiro, tem-se $0_V \in \text{Ker}(T)$ pois $T(0_V) = 0_W$.

Sejam agora $u, v \in \text{Ker}(T)$ e $\alpha \in \mathbb{R}$. Tem-se

$$T(u+v) = T(u) + T(v) = 0_W + 0_W = 0_W$$

$$T(\alpha \cdot u) = \alpha \cdot T(u) = \alpha \cdot 0_W = 0_W$$

Logo $u + v \in \text{Ker}(T)$ e $\alpha \cdot u \in \text{Ker}(T)$ e podemos concluir que Ker(T) é um s.e.v de V.

(b) Primeiro, tem-se $0_W \in \text{Im}(T)$ pois $0_W = T(0_V)$.

Sejam agora $w, w' \in \text{Im}(T)$ e $\alpha \in \mathbb{R}$. Existem $v, v' \in V$ tais que w = T(v) e w' = T(v') e tem-se

$$w + w' = T(v) + T(v') = T(v + v')$$

$$\alpha \cdot w = \alpha T(v) = T(\alpha \cdot v)$$

Logo $w + w' \in \text{Im}(T)$ e $\alpha \cdot w \in \text{Im}(T)$ e podemos concluir que Im(T) é um s.e.v de W.

Proposição. Seja $T: V \to W$ uma transformação linear. Suponha que $V = \langle v_1, \cdots, v_n \rangle$. Então

- $\operatorname{Im}(T) = \langle T(v_1), \cdots, T(v_n) \rangle$
- A dimensão de $\operatorname{Im}(T)$ corresponde ao maior número de vetores independentes entre os vetores $T(v_1), \dots, T(v_n)$.

Exercício: considere a seguinte transformação linear:

$$T: \mathbb{R}^3 \to \mathbb{R}^2 (x, y, z) \mapsto (x - 2y + z, y + 3z)$$

Determine o núcleo, a imagem de T e a sua dimensão.

• Ker $(T) = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0 \text{ e } y + 3z = 0\}$ Resolvendo o sistema

$$\left\{ \begin{array}{cccc} x-2y+z & = & 0 \\ y+3z & = & 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{cccc} x-2y+z & = & 0 \\ y & = & -3z \end{array} \right. \Leftrightarrow \left\{ \begin{array}{cccc} x & = & -7z \\ y & = & -3z \end{array} \right.$$

obtemos que $\operatorname{Ker}(T) = \{(-7z, -3z, z) : z \in \mathbb{R}\} = \langle (-7, -3, 1) \rangle$. Como (-7, -3, 1) é linearmente independente e gerador de $\operatorname{Ker}(T)$, este vetor forma uma base de $\operatorname{Ker}(T)$ e dim $\operatorname{Ker}(T) = 1$.

• Sabemos que dim $\operatorname{Im}(T) \leq \dim(\mathbb{R}^2) = 2$ pois $\operatorname{Im}(T) \subset \mathbb{R}^2$. Como $\mathbb{R}^3 = \langle e_1, e_2, e_3 \rangle$ (onde e_1, e_2, e_3 são os vetores da base canónica de \mathbb{R}^3) temos

$$\operatorname{Im}(T) = \langle T(e_1), T(e_2), T(e_3) \rangle = \langle (1, 0), (-2, 1), (1, 3) \rangle$$

Como (1,0) e (-2,1) são linearmente independentes (são não nulos nem paralelos) podemos afirmar que

$$\dim \operatorname{Im}(T) = 2 \operatorname{e} \operatorname{Im}(T) = \langle (1,0), (-2,1) \rangle = \mathbb{R}^2.$$

Teorema. (Teorema da dimensão) Seja $T:V\to W$ uma transformação linear. Se V tiver dimensão finita então

$$\dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T) = \dim(V).$$

Prova. Suponhamos que dim V = n e dim Ker(T) = k. Queremos ver que dim Im(T) = n - k.

Seja v_1, \dots, v_k uma base de Ker(T). São linearmente independentes em V. Logo existem $v_{k+1}, \dots, v_n \in V$ tais que $v_1, \dots, v_k, v_{k+1}, \dots, v_n$ seja uma base de V.

Para provar que dim $\operatorname{Im}(T) = n - k$ basta provar que $T(v_{k+1}), \dots, T(v_n)$ formam uma base de $\operatorname{Im}(T)$.

• São geradores pois

$$\operatorname{Im}(T) = \langle T(v_1), \cdots, T(v_k), T(v_{k+1}), \cdots, T(v_n) \rangle$$

= $\langle 0_W, \cdots, 0_W, T(v_{k+1}), \cdots, T(v_n) \rangle$
= $\langle T(v_{k+1}), \cdots, T(v_n) \rangle$

• São linearmente independentes pois, sendo $\alpha_{k+1}, \dots \alpha_n \in \mathbb{R}$ tem-se

$$\alpha_{k+1}T(v_{k+1}) + \dots + \alpha_nT(v_n) = 0_W$$

$$\Leftrightarrow T(\alpha_{k+1}v_{k+1} + \dots + \alpha_nv_n) = 0_W$$

$$\Leftrightarrow \alpha_{k+1}v_{k+1} + \dots + \alpha_nv_n \in \text{Ker}(T) = \langle v_1, \dots, v_k \rangle$$

Como v_1, \dots, v_n são linearmente independentes isto implica que $\alpha_{k+1} = \dots = \alpha_n = 0$.

Exemplo Seja $\mathbf{a} \in \mathbb{R}^n$ não nulo. Considere a transformação linear:

$$T: \mathbb{R}^n \to \mathbb{R}$$
$$\mathbf{x} \mapsto (\mathbf{a}|\mathbf{x})$$

O núcleo de T é o chamado hiperplano de \mathbb{R}^n perpendicular ao vetor \mathbf{a} que passa pela origem:

$$Ker(T) = \mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^n : (\mathbf{a}|\mathbf{x}) = 0 \}$$

Pelo Teorema da dimensão temos

$$n = \dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T)$$

Tem-se $\text{Im}(T) \subseteq \mathbb{R}$. Como $\mathbf{a} \neq 0$ tem-se $\text{Im}(T) \neq \{0\}$ logo $\text{Im}(T) = \mathbb{R}$ e dim Im(T) = 1. Em consequência

$$\dim \mathcal{H} = n - 1.$$

Transformações sobrejetivas, injetivas e bijetivas

Seja $T:V\to W$ uma função. Recorde que

 \bullet T é sobrejetiva se todo o elemento de W é uma imagem, isto é se

$$Im(T) = W$$

• $T \in \text{injetiva}$ se, para todos os $v_1, v_2 \in V$,

$$T(v_1) = T(v_2) \Rightarrow v_1 = v_2$$

• T é **bijetiva** se for sobrejetiva e injetiva.

Proposição. Seja $T: V \to W$ uma transformação linear.

$$T \text{ \'e injetiva} \Leftrightarrow \operatorname{Ker}(T) = \{0_V\}$$

Prova. Suponhamos que T é injetiva. Seja $v \in \text{Ker}(T)$. Tem-se $T(v) = T(0_V)$. Logo $v = 0_V$ e $\text{Ker}(T) = \{0_V\}$.

Reciprocamente, suponhamos que $\operatorname{Ker}(T) = \{0_V\}$. Sejam $v_1, v_2 \in V$ tais que $T(v_1) = T(v_2)$. Como T é linear vem $T(v_1 - v_2) = 0_W$. Logo $v_1 - v_2 \in \operatorname{Ker}(T)$. Como $\operatorname{Ker}(T) = \{0_V\}$ obtemos $v_1 - v_2 = 0_V$, isto é $v_1 = v_2$.

Exemplo. A transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (x - 2y + z, y + 3z)$$

é sobrejetiva pois $\text{Im}(T) = \mathbb{R}^2$ mas não é injetiva pois $\text{Ker}(T) = \langle (-7, -3, 1) \rangle$ (ver cálculo anterior).

Teorema. Seja $T:V\to W$ uma transformação linear onde V e W têm dimensão finita.

- T é sobrejetiva \Leftrightarrow dim $\operatorname{Im}(T) = \dim W$
- se T é bijetiva então dim $V = \dim W$.
- Se $\dim V = \dim W$ então tem-se

T é bijetiva $\Leftrightarrow T$ é injetiva $\Leftrightarrow T$ é sobrejetiva

Exemplo (geral). Seja $T: \mathbb{R}^n \to \mathbb{R}^p$ uma transformação linear. Como dim $\mathbb{R}^n = n$, sabemos que

$$n = \dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T)$$

e sabemos também que dim $\text{Im}(T) \leq p$. Assim podemos dizer que

- Se T for sobrejetiva então $p \leq n$ Equivalentemente, se p > n, então T não é sobrejetiva.
- Se T for injetiva então $n \leq p$ Equivalentemente, se n > p, então T não é injetiva.
- Se T é bijetiva então n = p.
- Se n = p, então

T é bijetiva $\Leftrightarrow T$ é injetiva $\Leftrightarrow T$ é sobrejetiva.

Exemplo. Considere a transformação linear

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (x-2y,y)$$

Como os espaços de partida e de chegada têm mesma dimensão, T é bijetiva sse T é injetiva, ou seja, sse $\mathrm{Ker}(T)=\{(0,0)\}$. Calculando o núcleo de T obtemos

$$\begin{cases} x - 2y &= 0 \\ y &= 0 \end{cases} \Leftrightarrow \begin{cases} x &= 0 \\ y &= 0 \end{cases}$$

Isto é $Ker(T) = \{(0,0)\}\ e\ T$ é injetiva e bijetiva.

Inversa

Se $T:V\to W$ for bijetiva então, para todo o $w\in W$, existe um único $v\in V$ tal que T(v)=w. Chamamos **inversa** de T à função

$$\begin{array}{cccc} T^{-1}: W & \to & V \\ & w & \mapsto & \text{único } v \text{ tal que } T(v) = w \end{array}$$

Observações.

- $\bullet\,$ Se T for bijetiva, a sua inversa T^{-1} também é bijetiva e $(T^{-1})^{-1}=T.$
- Tem-se $T^{-1} \circ T = \operatorname{Id}_V e T \circ T^{-1} = \operatorname{Id}_W$.

• Se existir uma função $S:W\to V$ tal que $S\circ T=\mathrm{Id}_V$ e $T\circ S=\mathrm{Id}_W$ então T é bijetiva e $T^{-1}=S$.

Exemplo. Considere a transformação linear (bijetiva)

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x-2y,y)$

e seja $(x', y') \in \mathbb{R}^2$. Resolvendo a equação T(x, y) = (x', y') (de incógnita (x, y) obtemos

$$\left\{ \begin{array}{ccc} x - 2y & = & x' \\ y & = & y' \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccc} x & = & x' + 2y' \\ y & = & y' \end{array} \right.$$

Isto significa que a inversa de T é

$$T^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x', y') \mapsto (x' + 2y', y')$$

Proposição. Se $T:V\to W$ for linear e bijetiva então a sua inversa também é linear.

8 Subespaços afins de um espaço vetorial

Definição. Seja V um espaço vetorial e $\mathcal{C} \subseteq V$ um subconjunto de V não vazio. Diz-se que \mathcal{C} é um **subespaço afim** (s.e.a) de V se existirem um elemento $v_0 \in V$ e um subespaço vetorial $W \subseteq V$ tais que

$$\mathcal{C} = \{v_0 + w : w \in W\}$$

Escrevemos $C = v_0 + W$.

Observação. Em outras palavras, C é a imagem do subespaço vetorial W pela translação $t_{v_0}: V \to V, v \mapsto v_0 + v$. Pode-se provar que o espaço vetorial W é único. Diz-se que $C = v_0 + W$ é o subespço afim de V que passa por v_0 e que é dirigido pelo subespaço vetorial W. Por outro lado, se $v_0' \in C$, C pode ser também descrito como $C = v_0' + W$.

Exemplos.

• Sendo $A, v \in \mathbb{R}^n$ com $v \neq \vec{0}$, a reta de \mathbb{R}^n que passa por A e dirigida pelo vetor v, isto é o conjunto

$$\mathcal{R} = A + \langle v \rangle$$

é um subespaço afim de \mathbb{R}^n .

• Sendo $A, u, v \in \mathbb{R}^n$ com u, v linearmente independentes, o plano de \mathbb{R}^n que passa por A e dirigido pelos vetores u e v, isto é o conjunto

$$\mathcal{P} = A + \langle u, v \rangle$$

é um subespaço afim de \mathbb{R}^n .

• Sendo $\mathbf{p}, \mathbf{a} \in \mathbb{R}^n$ com $\mathbf{a} \neq \vec{0}$, o hiperplano de \mathbb{R}^n perpendicular ao vetor \mathbf{a} que passa por \mathbf{p} , isto é o conjunto

$$\mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^n : (\mathbf{a} | \mathbf{x} - \mathbf{p}) = 0 \}$$

é um subespaço afim de \mathbb{R}^n pois

$$\mathcal{H} = \mathbf{p} + \{\mathbf{x} \in \mathbb{R}^n : (\mathbf{a}|\mathbf{x}) = 0\}$$

e o conjunto $\{\mathbf{x} \in \mathbb{R}^n : (\mathbf{a}|\mathbf{x}) = 0\}$ é um s.e.v de \mathbb{R}^n .

- Qualquer s.e.v W de V é um subespaço afim de V pois $W = 0_V + W$.
- Se $v \in V$ então $\{v\}$ é um subespaço afim de V de espaço vetorial diretor $W = \{0_V\}$.

Em geral, chamamos **dimensão** do s.e.a $C = v_0 + W$ à dimensão do espaço vetorial W (dim $C = \dim W$) e, generalizando a terminologia dada em \mathbb{R}^n , chamamos

- \bullet reta de V a um subespço afim de V de dimensão 1,
- \bullet plano de V a um subespço afim de V de dimensão 2,
- hiperplano de V a um subespço afim de V de dimensão dim V-1.

Proposição. Seja $T: V \to W$ uma transformação linear e seja $w_0 \in W$. Se existir $v_0 \in V$ tal que $T(v_0) = w_0$ então o conjunto

$$\{v \in V : T(v) = w_0\}$$

é o subespaço afim $v_0 + \ker(T)$ cuja dimensão é igual a dim $\ker(T)$.

Exercício: Considere a seguinte transformação linear:

$$T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

 $(x, y, z) \mapsto (x - 2y + z, y + 3z)$

Determine $C = \{(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = (1, 0)\}.$

Isto corresponde a resolver a equação T(x, y, z) = (1, 0), isto é o sistema

$$\begin{cases} x - 2y + z = 1 \\ y + 3z = 0 \end{cases}$$

Geometricamente, C é a interseção de dois planos de \mathbb{R}^3 . Obtemos:

$$\left\{ \begin{array}{cccc} x-2y+z&=&1\\ y+3z&=&0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{cccc} x-2y+z&=&1\\ y&=&-3z \end{array} \right. \Leftrightarrow \left\{ \begin{array}{cccc} x&=&1-7z\\ y&=&-3z \end{array} \right.$$

Assim temos

$$\mathcal{C} = \{ (1 - 7z, -3z, z) : z \in \mathbb{R} \}$$

$$= \{ (1, 0, 0) + z(-7, -3, 1) : z \in \mathbb{R} \}$$

$$= (1, 0, 0) + \langle (-7, -3, 1) \rangle$$

Podemos assim concluir que \mathcal{C} é a reta de \mathbb{R}^3 que passa pelo ponto (1,0,0) e que é dirigida pelo vetor (-7,-3,1). Note que $\langle (-7,-3,1) \rangle$ é exactamente $\operatorname{Ker}(T)$ tal como visto num cálculo anterior.

Exemplo geral (sistema de equações lineares em \mathbb{R}^n). Consideremos p vetores $\mathbf{a}_1, \dots, \mathbf{a}_p \in \mathbb{R}^n$ não nulos e a transformação linear

$$T: \mathbb{R}^n \to \mathbb{R}^p \ \mathbf{x} \mapsto ((\mathbf{a}_1|\mathbf{x}), \cdots, (\mathbf{a}_p|\mathbf{x}))$$

Seja $\mathbf{b} = (b_1, \dots b_p) \in \mathbb{R}^p$. Escrevendo $\mathbf{x} = (x_1, \dots, x_n)$ e

$$\mathbf{a}_1 = (a_{11}, a_{12}, \cdots, a_{1n}), \ \mathbf{a}_2 = (a_{21}, a_{22}, \cdots, a_{2n}), \ \cdots \ \mathbf{a}_p = (a_{p1}, a_{p2}, \cdots, a_{pn})$$

a equação $T(\mathbf{x}) = \mathbf{b}$ corresponde ao sistema

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n &= b_2 \\ & \vdots & \vdots \\ a_{p1}x_1 + \dots + a_{pn}x_n &= b_p \end{cases}$$

chamado sistema de p equações lineares em \mathbb{R}^n . Seja \mathcal{S} o conjunto de soluções deste sistema, isto é

$$\mathcal{S} = \{ \mathbf{x} \in \mathbb{R}^n : T(\mathbf{x}) = \mathbf{b} \}.$$

Geometricamente, S é a interseção de p hiperplanos de \mathbb{R}^n .

O sistema é dito

- impossível se não tiver soluções ($S = \emptyset$)
- **possível** se admitir soluções ($S \neq \emptyset$)

Se o sistema for possível, o conjunto S é um subespaço afim de \mathbb{R}^n (mais precisamente, $S = \mathbf{x}_0 + \operatorname{Ker}(T)$ onde \mathbf{x}_0 é uma solução do sistema, isto é, $T(\mathbf{x}_0) = \mathbf{b}$) e diz-se que o sistema é

• determinado se tiver uma única solução.

Observe que o sistema é determinado sse

 $\dim \mathcal{S} = \dim \operatorname{Ker}(T) = 0$ ou, equivalentemente, sse T é injetiva.

• indeterminado se tiver mais do que uma solução.

Neste caso,

$$\dim \mathcal{S} = \dim \operatorname{Ker}(T) > 1$$

e ${\cal S}$ não é um conjunto finito.

Em particular, se p < n, o sistema é necessariamente indeterminado (se for possível) pois, neste caso, T não pode ser injetiva.