Producto directo de una familia de grupos

En esta sección generalizamos los resultados anteriores para mas de dos grupos. Las demostraciones no las escribo.

Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia arbitraria de grupos y sea $G = \prod_{\lambda} G_{\lambda}$ su producto cartesiano. Definimos una operación interna en G por componentes: $\forall g, h \in G, (gh)_{\lambda} = g_{\lambda}h_{\lambda}$.

Lema . G con la operación recién definida tiene estructura de grupo.

Definición $G = \prod_{\lambda} G_{\lambda}$ con la estructura que acabamos de definir se llama *producto directo* de la familia de grupos G_{λ} .

Si $\Lambda = \{1, ..., n\}$ es finito, escribimos $G = G_1 \times \cdots \times G_n$. Si todos los productos G_{λ} son el mismo grupo H, escribimos $G = H^{\Lambda}$ ($G = H^n$ si es finito) y lo llamamos potencia directa de H.

Para todo $\lambda \in \Lambda$ existen dos aplicaciones:

$$p_{\lambda}: G \to G_{\lambda}, \quad p_{\lambda}(g) = g_{\lambda}$$

 $i_{\lambda}: G_{\lambda} \to G, \quad i_{\lambda}x = g$

donde $g_{\mu} = x$ si $\mu = \lambda$, $g_{\mu} = 1$ en otro caso.

Estas aplicaciones son las proyecciones y las inyecciones respectivamente.

Lema . \bullet 1. $\forall \lambda \in \Lambda$, $p_{\lambda} y i_{\lambda}$ son homomorfismos de grupos.

- 2. $\forall \lambda \in \Lambda$, $p_{\lambda}i_{\lambda} = 1_{G_{\lambda}}$. Para $\lambda \neq \mu$, $p_{\lambda}i_{\mu}$ es trivial.
- 3. $\forall \lambda \in \Lambda$, p_{λ} es sobre y i_{λ} es inyectiva.
- 4. $G'_{\lambda} = Im(i_{\lambda}) \cong G_{\lambda}$ es normal en G.

Teorema • Propiedad universal del producto directo. Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia de grupos y sea $G = \prod_{\lambda} G_{\lambda}$ su producto directo, con proyecciones $p_{\lambda}: G \to G_{\lambda}$. Para cualquier familia de homomorfismos de grupos (con el mismo conjunto de índices) $\{f_{\lambda}: H \to G_{\lambda}\}$ existe un único homomorfismo $f: H \to G$ tal que $\forall \lambda, f_{\lambda} = p_{\lambda} f$. Además, cualquier otro grupo que verifique esta propiedad es isomorfo a G.

El teorema dice que existe un único f que hace conmutativos todos los diagramas:

Teorema • Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia arbitraria de grupos, y para cada $\lambda \in \Lambda$ sea $H_{\lambda} < G_{\lambda}$. Entonces $\prod_{\lambda} H_{\lambda} < \prod_{\lambda} G_{\lambda}$.

Teorema ,— . Sea $\{G_{\lambda} \mid \lambda \in \Lambda\}$ una familia arbitraria de grupos. Existe un monomorfismo $\prod_{\lambda} Aut(G_{\lambda}) \to Aut(\prod_{\lambda} G_{\lambda})$.

Producto directo de una familia finita de grupos

En esta sección citamos algunas propiedades específicas para productos de un número finito de grupos. Empezamos con una ley asociativa:

Teorema • 1. Sean G_1, G_2, G_3 tres grupos arbitrarios. Entonces

$$(G_1 \times G_2) \times G_3 \cong G_1 \times G_2 \times G_3 \cong G_1 \times (G_2 \times G_3)$$

2. Sean G_1, \ldots, G_n grupos. Para todo $k = 1, \ldots, n-1$ se verifica:

$$(\prod_{1}^{k} G_{\lambda}) \times (\prod_{k+1}^{n} G_{\lambda}) \cong \prod_{1}^{n} G_{\lambda}$$

Veamos ahora cual es la relación entre órdenes de grupos y el orden de su producto:

Teorema • Sean G_1, \ldots, G_n grupos cualesquiera y sea $G = G_1 \times \cdots \times G_n$.

- 1. $|G| = |G_1| \cdots |G_n|$. En particular, G es finito si y sólo si todos los G_{λ} son finitos.
- 2. $\forall (g_1, ..., g_n) \in G$, $o((g_1, ..., g_n)) = m.c.m.(o(g_1), ..., o(g_n))$

Sea G un grupo y G_1, \dots, G_n subgrupos suyos. Siempre podemos definir una aplicación

$$\phi: G_1 \times \ldots \times G_n \to G$$

así: $\phi(g_1,\ldots,g_n)=g_1\cdots g_n$ (el producto en G). En general, ϕ no es homomorfismo ni sobre ni inyectiva. Pero como en el caso n=2, tenemos:

Teorema • Las siguientes condiciones son equivalentes:

- 1. La aplicación ϕ es un isomorfismo
- 2. Para $\lambda=1,\ldots,n,\ G_\lambda \triangleleft G,\ G_1\cdots G_n=G\ y\ (G_1\cdots G_{i-1})\cap G_i=1$ para $i=2,\ldots,n.$
- 3. Para $\lambda \neq \mu$ $g_{\lambda} \in G_{\lambda}$ y $g_{\mu} \in G_{\mu\nu}$ $g_{\lambda}g_{\mu} = g_{\mu}g_{\lambda}$; $G = G_1 \vee \cdots \vee G_n$ y $(G_1 \cdots G_{i-1}) \cap G_i = 1$ para $i = 2, \ldots, n$.

4. Para $\lambda \neq \mu$ $g_{\lambda} \in G_{\lambda}$ y $g_{\mu} \in G_{\mu}$, $g_{\lambda}g_{\mu} = g_{\mu}g_{\lambda}$; todo elemento $g \in G$ se expresa de manera única como $g = g_1 \cdots g_n$ donde $g_{\lambda} \in G_{\lambda}$

Teorema . Sea G_1, \ldots, G_n una familia finita de grupos finitos tales que sus órdenes son primos relativos dos a dos. Sea $G = \prod_{1}^{n} G_{\lambda}$. Entonces:

- 1. $\forall L < G \ \exists_1 H_{\lambda} < G_{\lambda} \ tales \ que \ L = H_1 \times \cdots \times H_n$.
- 2. $Aut(G_1) \times \cdots \times Aut(G_n) \cong Aut(G)$.