

Computer Vision

Exercise Session 7 – Structure from Motion

Structure from Motion

- Arc3D www.arc3d.be
 - http://www.youtube.com/watch?v=0tzW8dm71ec
- Acute3D (123D Catch www.123dapp.com/catch)
 - http://www.youtube.com/watch?v=UwBd1RbKljk
- 2D3 boujou
 - http://www.youtube.com/watch?v=qrszsSbStoQ
- •etc...

Exercise 7

- ■5 Images of a house on a turn table
- ■Background is static = at infinity

Exercise 7

■4 Tasks:

- Initialization with epipolar geometry
 - ■Do 8-point RANSAC and triangulate
- Add more views
 - ■Do 6-point RANSAC and triangulate
- Plot everything
- Dense Reconstruction
 - Stereo matching and depth map plot

Initialization

 Compute essential matrix, decompose into R and t, compute projection matrices

Adding more views

■ Feature matches define 3D-2D point correspondences

6-Point Algorithm

- ■The 6-point algorithm that was used for the camera calibration can be used to compute the projection matrix relative to the scene
- Do RANSAC to filter out wrong matches
- It does not work well on planar scenes make sure you have 3D points distributed all around

Plotting

Hand-in

- Report should include:
 - Images with visualized inlier and outlier matches
 - Epipolar geometry of the initialization images
 - Sparse reconstruction with inlier 3D-points and cameras
- ■Source code

Bonus: Dense Reconstruction

Hand-in

By 11:59pm on Thursday 21st November 2019 On Moodle

