Math 3310H: Assignment III

Jeremy Favro (0805980) Trent University, Peterborough, ON, Canada

October 21, 2025

Problem 1. Show that a group G cannot be the union of two proper subgroups, in other words, if $G = H \cup K$ where H and K are subgroups of G, then H = G or K = G.

Solution 1. Suppose, by way of contradiction, that $G = H \cup K$ and $H \neq G \neq K$. Then there are elements $a \in H$ and $b \in K$ but $a \notin K$ and $b \notin H$. Because $G = H \cup K$ and H, K, and G are closed by definition, $ab \in H$ or $ab \in K$. First then suppose that $ab \in H \implies a^{-1}ab \in H \implies eb \in H \implies b \in H$, but we began with the assumption that $b \notin H$, so unless H = K = G, K cannot be a subgroup. The same argument works in the other direction: Suppose $ab \in K \implies abb^{-1} \in K \implies ae \in K \implies a \in K$, but a was created to be something only in H, not K, meaning H is not closed unless H = K = G.

Problem 2. Let G be a group with identity e and $e \in G$. Show that if $a^n = e$ then the order of a divides n.

Solution 2. Let |a| = k be the order of a. By the division algorithm we can write n = qk + r for some $q, r \in \mathbb{Z}$ with $0 \le r < k$. So

$$e=a^n$$

$$=a^{qk+r}$$

$$=a^{qk}a^r$$

$$=(a^k)^q a^r$$

$$=e^q a^r$$

$$=a^r.$$
 $a^k=e$ by definition.

For the expression $e = a^r$ to hold true r must be some multiple of the order of a, k. This means that our expression using the division algorithm becomes n = qk + sk for sk = r which means that n/k = q + s which is an integer meaning that the order of a, k, divides n.

Problem 3. Let G be a cyclic group of order n with identity e. Suppose 15 divides n. How many solutions to $x^15 = e$ are there in G?

Solution 3.

Problem 4. Show that $H = \sigma \in S_n | \sigma(1) = 1$ is a subgroup of S_n .

Solution 4. For H to be a subgroup of S_n it must satisfy the following:

- (i) Closure: This is fairly obvious, constructing any $\sigma'' = \sigma \circ \sigma'$ will always satisfy $\sigma''(1) = 1$ as both σ and σ' must map $1 \to 1$ to belong to H in the first place.
- (ii) Contains the identity: The identity map looks like

$$\iota = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \end{pmatrix}$$

which satisfies $\sigma(1) = 1$

(iii) Contains inverses: All inverses for a $\sigma \in H$ will map $1 \to 1$ by the definition of σ and so will belong to H.

Problem 5. Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 4 & 1 & 7 & 5 & 8 & 9 & 6 \end{pmatrix}$$

and

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 3 & 7 & 9 & 1 & 8 & 2 & 4 & 5 \end{pmatrix}.$$

- (a) Compute σ^2 , $\sigma\tau$, $\tau\sigma$, σ^{-1} , $\sigma\tau\sigma^{-1}$, and $\tau\sigma\tau^{-1}$.
- (b) Find the order of τ

Solution 5.

Problem 6. Below are four recommended car tire rotation patterns.

- (a) Explain how these patterns can be represented as elements of S_4 .
- (b) Find the smallest subgroup H of S_4 that contains these four patterns.
- (c) Is H abelian?

Solution 6.

(a) If we represent the "default" state of the tires as

then each rotation of the tires is a permutation of this default state. By definition S_4 is the group containing all permutations of 4 elements and so these will belong to S_4 . We can express them as compositions of known permutations. The first

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}; \quad b = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$

- (b) Find the smallest subgroup H of S_4 that contains these four patterns.
- (c) Is H abelian?