Bare Demo of IEEEtran.cls for Journals

Michael Shell, Member, IEEE, John Doe, Fellow, OSA, and Jane Doe, Life Fellow, IEEE

Abstract—The abstract goes here.

Index Terms—IEEEtran, journal, LATEX, paper, template.

I. INTRODUCTION

THIS demo file is intended to serve as a "starter file" for IEEE journal papers produced under LATEX using IEEEtran.cls version 1.8 and later. I wish you the best of success.

mds December 27, 2012

A. Histrico

B. Neurnio

A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector.

A linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants). Suppose that K is a field (for example, the real numbers) and V is a vector space over K. As usual, we call elements of V vectors and call elements of K scalars. If v1,...,vn are vectors and a1,...,an are scalars, then the linear combination of those vectors with those scalars as coefficients is.

$$a_1v_1 + a_2v_2 + a_3v_3 + ... + a_nv_n$$

If the input feature vector to the classifier is a real vector \overrightarrow{x} , then the output score is

 $y=f(\overrightarrow{w}\cdot\overrightarrow{x})=f\left(\sum_j w_j x_j\right)$, where \overrightarrow{w} is a real vector of weights and f is a function that converts the dot product of the two vectors into the desired output. (In other words, \overrightarrow{w} is a one-form or linear functional mapping \overrightarrow{x} onto R.) The weight vector \overrightarrow{w} is learned from a set of labeled training samples. Often f is a simple function that maps all values above a certain threshold to the first class and all other values to the second class.

1) Subsubsection Heading Here: Subsubsection text here.

II. CONCLUSION

The conclusion goes here.

M. Shell is with the Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University. Manuscript received April 19, 2005; revised December 27, 2012. APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION
...

Appendix one text goes here.

APPENDIX B

1

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

 H. Kopka and P. W. Daly, A Guide to <u>BTEX</u>, 3rd ed. Harlow, England: Addison-Wesley, 1999.

Michael Shell Biography text here.

PLACE PHOTO HERE

John Doe Biography text here.

Jane Doe Biography text here.