# Univ.Al

# **Ensemble Learning for Fire Calorimetry Database**

Ekanki, Srish, Bhaskar & Kuldeep

#### Goals and Motivation

- Ensemble techniques (Isolation Forest, Feature Bagging and XGBOD) to detect anomalies.
- Regression analysis for Peak Heat Release Rate. Model Interpretation.
- Aleotoric Error Data Augmentation.
- Clustering / Ensemble methods for classifying fuel types.

### Aleotoric Uncertainty

- Using Central Limit Theorem
- Feature follows a Gaussian distribution.
- Measurement uncertainty as standard deviation and average value as the mean.
- Perform Cholesky decomposition



#### References

- 1. FCD Database, http://www.nist.gov/fcd
- **2.** Outlier Ensembles, C Aggarwal, S Sathe, Springer 2017
- **3.** PyOD: A python toolbox for scalable outlier detection, JML 20 (2019) 1-7.

# NIST Fire Calorimetry Database (FCD)<sup>1</sup>



FCD consists of data augmented video and tabulated data from 1020 experiments. Each experiment is described with metadata, time dependent calculations based on dozens of sensors and quantified uncertainty.

# Anomaly / Outlier Detection Flowchart



Outlier Anomaly Score / Aggregation / Outlier Removal<sup>2,3</sup>

## Interpretation Learning





### Results and Analysis

Both original and augmented dataset yielded that HOCf and Ef are the more importance characteristic features.

#### Conclusions

- -Shap Value and LIME are very useful tools for interpretation learning.
- -Provide lots of insight into the model

#### Future Work & Impact

- -Extension for data augmented videos and time-dependent output.
- -Continue project as on-going research.