SAÜ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ ARASINAVI

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.

- 1. Diferensiyel denklemlerin çözüm tanımından hareketle $y = (x^3 + c)e^{-3x}$ fonksiyonunun $y' + 3y = 3x^2e^{-3x}$ denkleminin çözümü olduğunu gösteriniz.
- 2. (2x+3y)dx+(y-x)dy=0 denkleminin çözümünü bulunuz.
- 3. y' = p olmak üzere $y = xp + (1 + p^2)$ denkleminin <u>çözümlerini</u> bulunuz.
- 4. $y'''+9y''+9y'=x^2e^{-3x}$ denklemi veriliyor. Bu denkleme ilişkin homojen kısma ait y_h çözümünü elde ediniz. Daha sonra ise y_p özel çözümünün <u>belirsiz katsayılar metodu</u> ile nasıl seçilmesi gerektiğini nedenleri ile belirtiniz. (Katsayıları bulmaya çalışmayınız.)

SÜRE: 70 DAKİKADIR. BAŞARILAR DİLERİZ

1)
$$y = (x^3 + c)e^{-3x}$$
 forhistyonum ve $y' = 3x^2e^{-3x} - 3e^{-3x}(x^3 + c)$ furevini venta de Membe yenhe yazalım.

 $3x^2e^{-3x} - 3e^{-3x}(x^3 + c) + 3(x^3 + c)e^{-3x} = 3x^2e^{-3x}$ old den $3x^2e^{-3x} - 3e^{-3x}(x^3 + c) + 3(x^3 + c)e^{-3x} = 3x^2e^{-3x}$ den Meminin $y = (x^3 + c)e^{-3x}$ forksiyonu $y' + 3y = 3x^2e^{-3x}$ den Meminin $y = (x^3 + c)e^{-3x}$ forksiyonu $y' + 3y = 3x^2e^{-3x}$ den Meminin $y' + 3y = 3x^2e^{-3x}$

2)
$$(2x+3y) dx + (y-x) dy = 0$$
 Homogen $y=vx$
 $dy=v dx + x dv$
 $(\sqrt{1+2v+2}) dx + x(v-1) dv = 0$
 $\frac{dx}{x} + \frac{v-1}{\sqrt{1+2v+2}} dv = 0$
 $\ln x + \frac{1}{2} \ln(\sqrt{1+2v+2}) - 2 \operatorname{orcdon}(v+1) = 0$

$$V = \frac{y}{x}$$
 (le
$$\ln x + \frac{1}{2} \ln \left(\frac{y^2}{x^2} + 2 \frac{y}{x} + 2 \right) - 2 \operatorname{arctan} \left(\frac{y}{x} + 1 \right) = 0$$

3)
$$y = xp + (1+p^{2})$$
 (clairant)
 $x = ye^{2}$ furer alalim
 $p = p + x \frac{dp}{dx} + 2p \frac{dp}{dx} \Rightarrow \frac{dp}{dx} (x+2p) \neq 0$
 $\frac{dp}{dx} = 0 \Rightarrow p = 0 \Rightarrow y = 0 \Rightarrow y = 0$
 $\frac{dp}{dx} = 0 \Rightarrow p = 0 \Rightarrow y = 0 \Rightarrow y = 0$
 $y = x(-\frac{x}{2}) + 1 + (-\frac{x}{2})^{2}$
 $y = x(-\frac{x}{2}) + 1 + (\frac{x^{2}}{4})^{2} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + 1 + \frac{x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{1 + x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{x^{2}}{4} = 1 - \frac{x^{2}}{4} = 1 - \frac{x^{2}}{4}$
 $y = 1 - \frac{x^{2}}{4} + \frac{x^{2}}{4} = 1 - \frac{x$

$$y_{p} = \chi^{2}(A \chi^{2} + B \chi + c) e^{-3\chi}$$

$$\int_{2}^{2} G_{3} = -3$$