Student Information

Name: Aybüke Aksoy

ID:2448090

Answer 1

Given a sample of data and a desired confidence level $(1 - \alpha)$, we can construct a confidence interval [a,b] that will satisfy the condition:

$$P\{a \le \theta \le b\} = 1 - \alpha$$

We can start by estimating θ .

Standardizing the unbiased estimator $\hat{\theta}$ with normal distribution, we get:

$$Z = \frac{\hat{\theta} - E(\hat{\theta})}{\sigma(\hat{\theta})} = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})}$$

This variable falls between $-z_{\alpha/2}$ and $z_{\alpha/2}$ with the probability $(1-\alpha)$

$$P\{-z_{\alpha/2} \le \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \le z_{\alpha/2}\} = 1 - \alpha$$

Solving the inequality for θ , we get:

$$a = \hat{\theta} - z_{\alpha/2}\sigma(\hat{\theta})$$

$$b = \hat{\theta} + z_{\alpha/2}\sigma(\hat{\theta})$$

While estimating the population mean \hat{X} :

$$\hat{\theta} = \hat{X}$$

$$a = \hat{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$b = \hat{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Standard deviation:
$$\sigma = 3$$

$$Sample\ size: n=10$$

$$Sample\ mean: \hat{X} = \frac{20.1 + 12.8 + 18.9 + 16.4 + 20.3 + 10.1 + 15.4 + 12.4 + 24.7 + 18.5}{10} = 16.96$$

Confidence level $1: 1-\alpha=0.90$, $\alpha=0.1$

Confidence level2: $1 - \alpha = 0.99$, $\alpha = 0.01$

From the table:

$$z_{0.05} = 1.645$$

We can find a and b for %90 confidence level as:

$$a = 16.96 - 1.645 \frac{3}{\sqrt{10}} = 15.4$$

$$b = 16.96 + 1.645 \frac{3}{\sqrt{10}} = 18.521$$

 $Confidence\ interval:[15.4,18.521]$

From the table:

$$z_{0.005} = 2.576$$

We can find a and b for %99 confidence level as:

$$a = 16.96 - 2.576 \frac{3}{\sqrt{10}} = 15.4$$

$$b = 16.96 + 2.576 \frac{3}{\sqrt{10}} = 18.521$$

 $Confidence\ interval: [14.517, 19.403]$

b)

Confidence level:
$$1 - \alpha = 0.98$$
, $\alpha = 0.02$

$$margin: z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.55$$

Hence;

Sample size:
$$n \ge (z_{\alpha/2} \frac{\sigma}{1.55})^2$$

From the table:

$$z_{0.01} = 2.326$$

$$n \ge (2.326 \frac{3}{1.55})^2$$

$$n \ge 20.267$$

$$n = 21$$

Answer 2

a) No. The mean rating and sample size are not enough for statistics of a restaurant. We also need sample for standard deviation and variance.

b)
$$H_0 = \ the \ null \ hypothesis$$

$$H_A = \ the \ alternative \ hypothesis$$

Since we decide whether a restaurant will be included in our list of candidate restaurants or not from looking at the rating being lower than 7.5 with %5 level of significance, we can determine our null hypothesis as:

$$H_0: \mu_0 = 7.5$$

 $H_A: \mu_0 < 7.5$

A normally would not be in our list because its rating is 7.4; however, if we have enough evidence to reject the null hypothesis, which is also in favor of H_A , A can not be in our list. To decide, we can use the Z test: H_A is a left tail alternative. A level α test with a left-tail alternative should:

reject
$$H_0$$
, if $Z \leq -z_\alpha$
accept H_0 , if $Z > -z_\alpha$

In this case, the rejection region is consists of small values of Z only.

$$A = [-z_{\alpha}, +\infty)$$
$$R = [-\infty, -z_{\alpha})$$

For an estimator $\hat{\theta}$ for population parameter θ that has normal distribution:

$$Test \ Statistic: Z = \frac{\hat{\theta} - E(\hat{\theta})}{\sqrt{Var(\hat{\theta})}} = \frac{\hat{X} - \mu_0}{\sigma/\sqrt{n}}$$

Standard deviation: $\sigma = 0.8$

Sample size: n = 256

Sample mean: $\hat{X} = 7.4$

$$\alpha = 0.05$$

$$z_{\alpha} = 1.645$$

Hence,

$$Z = \frac{7.4 - 7.5}{0.8 / \sqrt{256}} = -2$$

Since $Z < -z_{\alpha}$, we can reject the null hypothesis. Thus, the restaurant A is not included in the list. c) Using the information in part b with the only difference which is taking σ as 1.0 instead of 0.8 and calculating Z again:

$$Z = \frac{7.4 - 7.5}{1.0/\sqrt{256}} = -1.6$$

Since $Z > -z_{\alpha}$, we should accept the null hypothesis. Thus, the restaurant A is included in the list.

d) Since the mean of user ratings for restaurant A=7.6 is already greater than $\mu_0 = 7.5$, our decision will not be affected by other parameters like standard deviation. Hence, we do not have to conduct any statistical test.

Answer 3

If we have enough evidence to reject the null hypothesis, which is also in favor of H_A , we can claim that there is not at least 90 minutes run-time improvement. Hence we can take H_0 and H_A as:

$$H_0: \mu_A - \mu_B = 90$$

$$H_A: \mu_A - \mu_B < 90$$

Computer A:

Sample Standard deviation: $\sigma_A = 5.2$

Sample size: n = 20

Sample mean: $\hat{A} = 211$

Computer B:

Sample Standard deviation: $\sigma_B = 22.8$

Sample size: m = 32

Sample mean: $\hat{B} = 133$

To decide, we can use the T test:

a)
$$reject \ H_0, \quad if \ t \leq -t_{\alpha}$$

$$accept \ H_0, \quad if \ t > -t_{\alpha}$$

While population variances are equal:

$$\alpha = 0.01$$

$$\sigma_A^2 = \sigma_b^2 = \sigma_2$$

$$Pooled \ Sample \ Variance: s_p^2 = \frac{(n-1)\sigma_A^2 + (m-1)\sigma_B^2}{n+m-2}$$

$$Degree \ of \ freedom: n+m-2$$

$$t = \frac{\hat{A} - \hat{B} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$s_p^2 = \frac{19*5.2^2 + 31*22.8^2}{50} = 332.576$$

$$D = 50$$

$$t_\alpha = t_{0.01} = 2.403 \ , \ from \ the \ table$$

$$t = \frac{211 - 133 - 90}{\sqrt{332.576} \sqrt{\frac{1}{20} + \frac{1}{32}}} = -2.3084$$

Since $t > -t_{\alpha}$:

We should accept the null hypothesis.

Hence, B does provide 90 minutes or better improvement.

b) While population variances are not equal:

T Ratio:
$$\frac{(\hat{A} - \hat{B}) - (\mu_A - \mu_B)}{\sqrt{\frac{s_A^2}{n} + \frac{s_B^2}{m}}}$$

Using the information in part a:

$$T \ Ratio: \frac{(211-133)-90}{\sqrt{\frac{5.2^2}{20} + \frac{22.8^2}{32}}} = -2.8606$$

Degrees of freedom:
$$\frac{(\frac{\sigma_A^2}{n^2} + \frac{\sigma_B^2}{m^2})^2}{\frac{(\sigma_A^2/n)}{n-1} + \frac{(\sigma_B^2/m)^2}{m-1}} = 36$$

$$t_{\alpha} = t_{0.01} = 2.434$$
, from the table

Since $t < -t_{\alpha}$:

We should reject the null hypothesis.

Hence, B does not provide 90 minutes or better improvement.