MEDTECH CS420

Author: M. Taha BENNANI Academic Year: 2020-2021

Reminder: Arden's method

Following algorithm is used to build the regular expression from given DFA.

- 1. Let q1 be the inial state
- 2 2. There are q2, q3, ...qn number of states. The final state may be some qj where j<=n.
 - 3. Let alpha(ji) represents the transition from qj to qi
- 4 4. Calculate qi susch that:
 - qi = qj alpha(ji)
- if qi is a start state :
 - qi = qj alpha(ji) + epsilon
- 8 5. Similarly compute the final state which gives the regular expression r

Exercice 1: Regular expressions

Find a regular expression for language over the alphabet 0,1 in which all the strings:

- 1. contain at least two 0's
- 2. have odd number of b's

Exercice 2: Regular expressions to Automatas

- 1. Draw the NFA for r1 = b, then draw the NFA for $r2 = a^*$, and draw the NFA for $r3 = ba^*$. Construct NFA for the regular expression $b+ba^*$
- 2. Construct NFA for the regular expression $(0+1)^*$
- 3. Construct NFA for the regular expression (01+10)+
- 4. Morse code is a way to encode letters using dots(.) and dashes (-). Here is the encoding of subset of letters that we consider in this problem.

Token name	Character	Token name	Character	Token name	Character	
A		L		Т	-	
${ m E}$		R		Р		
I		V		F		
				II.		

(a) What is the alphabet used in this language?

(b) Create the automata that recognizes the above subset of Morse code tokens.

Exercice 3: NFA to DFA

1. Convert NFA the following NFA to its equivalent DFA

	0	1
-Q0+	Q3	Q1, Q2
Q1	Q4	Null
Q2	Null	Q3
Q3	Q3	Q4
Q4	Null	Null

2. Construct NFA for the regular expression (epsilon + (0+1) $(00)^*$) Then generate its equivalent DFA.

Exercice 4: Automata to Regular expressions

 $1. \ \,$ Compute the regular expression recognized by the following automata:

	a	b
-Q1+	Q2	Q3
Q2	Q4	Q1
Q3	Q1	Q4
Q4	Q4	Q4

2. Construct the regular expression from the following DFA:

	a	b
-Q1	Q1	Q2
Q2+	Q3	Q3
Q3	Null	Null

3. Find out the regular expression from given DFA

Exercice 5: Maximal Munch

1. Let L1 the language over the alphabet $\{a,b\}$ defined by the following regular expressions:

$$T1 = aa$$

$$T2 = b?a+b?$$

$$T3 = b?a*b?$$

$$T4 = .| n$$

- (a) Generate the automata which recognizes L1
- (b) Analyze the input "bbbabaa" and compute the differents lexemes
- 2. Let L2 the language over the alphabet $\{a,b,c\}$ defined by the following regular expressions:

$$T1 = aa*b*c*$$

$$T2 = c*b*$$

- (a) Generate the automata which recognizes L2
- (b) Analyze the input "babcaababccbcabb" and compute the differents lexemes
- (c) Consider the following tokenization: R1 = c, $R2 = ac+b^*$, R3 = cc, $R4 = ab^*$, R5 = a, $R6 = ac^*b+$. Which tokens can never be generated and why?