```
\forall x \forall y (x + y = y + x) where x, y \in \mathbb{R} domain domain
```

$$\forall x \exists y (x + y = 0)$$
 every real number has an additive inverse.

Ex: Let
$$Q(x, y)$$
 denote " $x + y = 0$ "

What are the truth values of I)
$$\exists y \forall x \in (x,y)$$
?

II) $\forall x \exists y \in (x,y)$

$$\overline{II}$$
) $\forall x \exists y \ Q(x,y)$ For all teal numbers x there is a real y can number y so that $x + y = 0$ i.e. $y = -x$ depend on x

I)
$$\exists y \ \forall x \ Q(x,y)$$
 There is some real number y such that for every real number x $x + y = 0$

But there is no single real number y
y is a constant that works for all values of
$$x$$
independent of x

So $\forall x \exists y \ Q(x, y) \not\equiv \exists y \ \forall x \ Q(x, y)$

However, if
$$\exists y \forall x P(x, y)$$
 true then $\forall x \exists y P(x, y)$

$$\exists y \forall x P(x,y) \rightarrow \forall x \exists y P(x,y)$$