eGaN® FET DATASHEET EPC29215_55

EPC29215_55 – Enhancement Mode **Power Transistor**

V_{DS}, 200 V $R_{DS(on)}$, $8~m\Omega$ I_D, 32 A 95% Pb/5% Sn Solder

Revised March 25, 2024

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

> **Questions:** Ask a GaN **Expert**

Maximum Ratings					
	PARAMETER VALUE UNIT				
V _{DS}	Drain-to-Source Voltage (Continuous)	200	V		
I _D	Continuous (T _A = 25°C)	32	Α		
	Pulsed (25°C, T _{PULSE} = 300 μs)	162			
VGS	Gate-to-Source Voltage	6	V		
	Gate-to-Source Voltage	-4			
TJ	Operating Temperature	-40 to 150	°C		
T _{STG}	Storage Temperature	-55 to 150			

Thermal Characteristics			
PARAMETER TYP UNIT			
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.5	
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	52	

Note 1: R_{BIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Die size: 4.6 x 1.6 mm EPC29215 55 eGaN® FETs

Applications

- DC-DC converters
- BLDC motor drives
- Sync rectification for AC/DC and DC-DC
- Multi-level AC/DC power supplies
- · Wireless power
- Solar micro inverters
- Robotics
- · Class-D audio

Benefits

- · Ultra high efficiency
- · No reverse recovery
- Ultra low Q_G
- · Small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC29215 55

eGaN® FET DATASHEET EPC29215_55

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER		TEST CONDITIONS MIN		TYP	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.6 \text{ mA}$	200			V	
	Drain Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}$		0.15	0.48	- mA	
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 160 \text{ V}, T_{J} = -55^{\circ}\text{C}$		0.008	0.048		
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.006	1		
		$V_{GS} = 5 \text{ V, T}_{J} = -55^{\circ}\text{C}$		0.0002	0.1		
	Gate-to-Source Forward Leakage#	V _{GS} = 5 V, T _J = 125°C		0.14	8.7		
Gate-to-Source Reverse Leakage		$V_{GS} = -4 V$		0.05	0.48		
V	Cata Thread and Valtage	$V_{DS} = V_{GS}$, $I_D = 6 \text{ mA}$	0.8	1.2	2.5	V	
V _{GS(TH)} Gate Threshold Voltage		$V_{DS} = V_{GS}$, $I_D = 6 \text{ mA}$, $T_J = -55^{\circ}\text{C}$		1.3	2.6	1 V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 20 \text{ A}$		6.3	8	0	
		$V_{GS} = 5 \text{ V}, I_D = 20 \text{ A}, T_J = -55 ^{\circ}\text{C}$		4.2	7.5	mΩ	
V _{SD}	Source-Drain Forward Voltage#	$V_{GS} = 0 \text{ V, } I_S = 0.5 \text{ A}$		1.6		V	

 $[\]ensuremath{\text{\#}}$ Defined by design. Not subject to production test.

Dynamic Characteristics $^{\#}$ (T _J = 25 $^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			1356	1790	
C _{RSS}	Reverse Transfer Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$		2.0		
C _{OSS}	Output Capacitance			390	585	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0VV 0+-100V		556		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ to } 100 \text{ V}$		699		
R_{G}	Gate Resistance			0.4		Ω
Q _G	Total Gate Charge	$V_{GS} = 5 \text{ V}, V_{DS} = 100 \text{ V}, I_D = 20 \text{ A}$		13.6	17.7	
Q _{GS}	Gate-to-Source Charge			3.3		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 100 \text{ V, } I_D = 20 \text{ A}$		2.1		6
Q _{G(TH)}	Gate Charge at Threshold	2.4			nC	
Q _{OSS}	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$		69	104	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 2: Typical Transfer Characteristics

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET EPC29215 55

Figure 3: Typical R_{DS(on)} vs. V_{GS} for Various Drain Currents

Figure 4: Typical R_{DS(on)} vs. V_{GS} for Various Temperatures

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

eGaN® FET DATASHEET EPC29215_55

Figure 8: Typical Reverse Drain-Source Characteristics

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Typical Normalized Threshold Voltage vs. Temp.

Figure 9: Typical Normalized On-State Resistance vs. Temp.

Figure 11: Safe Operating Area

EPC29215_55 eGaN® FET DATASHEET

Figure 12: Typical Transient Thermal Response Curves

t₁, Rectangular Pulse Duration, seconds

eGaN® FET DATASHEET EPC29215_55

DIE MARKINGS

Part	Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
EPC29215_55	9215	YYYY	ZZZZ	

DIE OUTLINE

Solder Bump View

	Micrometers		
DIM	MIN	Nominal	MAX
Α	4570	4600	4630
В	1570	1600	1630
c		1210	
d		1450	
е		1000	
f		275	
g		450	
h		700	
j		875	

Pad 1 is Gate;

Pads 2,4,6 are Source;

Pads 3, 5 are Drain

RECOMMENDED LAND PATTERN

(units in µm)

Land pattern is solder mask defined.

Pad 1 is Gate; Pads 2,4,6

are Source; Pads 3, 5 are Drain

Nominai
4600
1600
1210
1450
1000
275
450
700
875

eGaN® FET DATASHEET EPC29215_55

RECOMMENDED STENCIL DRAWING

(units in μ m)

DIM	Nominal
Α	4600
В	1600
c	1210
d	1450
e	1000
f	275
g	450
h	700
j	875

Recommended stencil should be 4 mil (100 μm) thick, must be laser cut, openings per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/design-support

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\ast}$ is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.