

Department of Computer Engineering

(NAAC Accredited)

INEERIN

S. Y. B. Tech. Course Book

(2020 Pattern)

(With effect from June 2021)

G H Raisoni College of Engineering and Management, Pune

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

Gat No.1200, Domkhel Road, Wagholi, Pune-412207

Department of **Computer Engineering**

(NAAC Accredited)

Under Graduate (UG) Course Book

S.Y. B. Tech (Computer Engg.)

Semester- III/IV

G H Raisoni College of Engineering and Management,

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University) Gat No. 1200, Domkhel Road, Wagholi, Pune-412207

INDEX

Sr. No.	Contents	Page No.
1	About Department	4
2	Vision & Mission of Institute and Department	5
3	PEOs, PSOs, POs	6-7
4	Course Code Details	8
5	Course Structure and Scheme of Examinations: Semester-III and Semester-IV	9
6	Detailed Syllabus of Semester- III	10-25
7	Detailed Syllabus of Semester- IV	26-48

About Computer Engg. Department

- NAAC Accredited Computer Engg.Programme
- Involvement of Experts from IITs, NITs, Govt. Colleges, Reputed Industries, Alumni and Students in development of curriculum
- Choice Based Credit System(CBCS)
- Choice of Electives
- Remedial Teaching
- Sponsorship for Publications and IPR
- ResearchMentorship
- **Industry**Internship
- Provision of Credit Transfer Scheme (CTS)
- Peer Teaching Scheme
- Teacher Guardian Scheme (TGS)
- Various Clubs and Hobby Modules
- **Proficiency Courses**
- Recognized Research Centre under SavitribaiPhule PuneUniversity
- Industry SupportedLabs.
- MOUs withIndustries.

INSTITUTE VISION AND MISSION

VISION

To achieve excellent standards of quality education by keeping pace with rapidly changing technologies and create technical manpower of global standards with capabilities of accepting new challenges

MISSION

Our efforts are dedicated to impart quality and value based education to raise satisfaction level of all stake-holders. Our strength is directed to create competent professionals. Our endeavor is to provide all possible support to promote research and development activities

DEPARTMENT VISION AND MISSION

VISION

To produce global standards ethical professionals, innovators, and entrepreneurs having strong knowledge and urge to learn latest technologies in the field of Computer Engineering.

MISSION

The department continuously strives to:

M1: Pursue excellence in Computer Engineering, able to adapt changing technologies through effective teaching-learningprocess.

M2: Develop competent professionals for global market with the spirit of self-study, team work, innovation and ethics.

M3: Promote continuous learning, entrepreneurial skills and research.

Programme Educational Objectives (PEOs)

- **PEO1:** Capability to analyze, design and develop cost effective solutions to the real life problems by applying the acquired knowledge.
- **PEO2:** Adoptability to learn latest technological advancement and interdisciplinary approaches by engaging in lifelong learning process.
- **PEO3:** Willingness to pursue higher education, entrepreneurship, and research in the field of Computer Engineering.
- **PEO4:** Being responsible towards society, environment, and ethical responsible team member with interpersonal and leadership skill.

Program Specific Objectives (PSOs)

At the end of the programme students will be able to demonstrate:

- Theabilitytoanalyze, designanddevelops of tware systems PSO1: applying theknowledge acquired in computer core courses such as Operating system, database, computer network, computer organization and architecture, software engineering.
- The utilization of skills assimilated in basic Computer Engineering Courses to build up PSO2: expertise in advanced areas of Database, Networking such as WSN, VANET, MANET, IoT, Computing etc.
- PSO3: Oneself as a global standard computer professional with good morals, ethics and sensitivity towards mankind and as a responsible team member.

Program Outcomes (POs)

Engineering Graduates will be able to:

- **1.Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineeringsciences.
- **3.Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide validconclusions.
- **5.Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of thelimitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineeringpractice.
- **7.Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, demonstrate the knowledge of, and need for and sustainabledevelopment.
- **8.Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineeringpractice.
- **9.Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.
- 10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clearinstructions.
- 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinaryenvironments.
- 12.Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Scheme of B. Tech. in Computer Engineering

			То	aabi	na Sa	heme		Evaluation Scheme						
Course		Course	16	aciii	ng sc	пеше	~		Theor	y	Practical			
Code	Name of Course	Category	L	Т	P	Total Hours	Credits	ТАЕ	CAE	ESE	INT	EXT	Cotal Larks	
SEMESTER-III														
UBSL205A	Discrete Mathematics and Graph Theory	BS6	3	1	-	4	4	10	15	50	-	-	75	
UCOL201/ UCOP201	Data Structures and Algorithms	C6	3	-	2	5	4	10	15	50	25	25	125	
UCOL202	Computer Architecture and Organization	C7	3	-	-	3	3	10	15	50	-	-	75	
UCOL203	Formal Languages and Automata	C8	3	-	-	3	3	10	15	50	-	-	75	
UITL201/ UITP201	Object Oriented Programming	C9	3		2	5	4	10	15	50	25	25	125	
UCOP204	Python for Data Science	A6-A7- A8			6	6	3		-	-	50		50	
	15	1	10	26	21	50	75	250	100	50	525			

Department of Computer Engineering

Detailed Syllabus

S. Y. B. Tech. Semester-III

UBSL205A: Discrete Mathematics and Graph Theory										
Teaching Scheme:	Credit:	Examination Scheme:								
Lectures: 03 Hrs./Week	4	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks								
TU :1 Hrs										

Course Objectives: After completing this course, student's will be able to

- 1. This course introduces size and kind of objects.
- 2. It also skills to analyze objects meeting the criteria, finding "largest", "smallest", or "optimal" objects.
- 3. It also introduces combinatorial structures and apply algebraic techniques to combinatorial problems.

Course Outcomes: After completing this course, students will be able to

CO1: Describe the fundamental concepts of discrete mathematics to solve the engineering problems.

CO2: Explain basic terminology, set, relations, functions, groups and rings.

CO3: Solve problems based on graphs, trees and related algorithms.

CO4: Relate, interpret and apply the concepts to various areas of computer science.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	2	1	2			1		1	2			1
CO2	3	3	3	2	1	1			1		1	2			1
CO3	3	3	3	2	1	1			2		2	2	2	2	1
CO4	3	3	3	2	1	1			2		2	2	2	2	1

Course Contents Hrs.

Unit I: Set Theory:

Operations on sets, Laws of algebra of sets, Representation of sets on computer in terms of 0's & 1's. Partition & covering of a set, ordered pair, Product set, Relation–Different types of relations,

Graph of relation, Matrix of relation, Transitive closure of relation, Functions, Partial ordering & partially ordered set, Hasse diagram of Poset, totally ordered set, Peano axioms & Mathematical Induction.

Unit II: Group 8

Modular arithmetic, Basic Prime number theory, congruence's, Residue classes & Fermat's theorem, Algebra or Algebraic systems like semigroup, monoid and examples. Homomorphism, Isomorphism of semigroup monoid. Groups, properties of algebraic groups. Permutations groups, Subgroups, Lagrange's theorem, properties of cyclic groups, generator of group, Cosets, Normal Subgroup, quotient group

8

Unit III: Rings	8					
Rings, types of rings, Fields, subring, Integral domain. Simple properties of rings. Lattice as						
Poset& as algebraic system, Types of lattices, Hasse diagrams, Sub lattice, direct product of						
Lattices, Lattice Homomorphism, complement of elements of lattices, Various lattices,						
composition tables						
Unit IV: Graph Theory	8					
Graphs and its types, Sub graph, Quotient graph, Euler path, complete path, in degree, out degree, reachability, cycle, matrix representation of graph. Adjacency matrix, Graph coloring, shortest path problems, Trees, Representation of trees, binary trees, spanning trees, Kruskal's and Prim's Algorithm for minimum spanning tree						
Unit V:Counting	8					
Basics of counting techniques, Pigeonhole principle, Definition of generating functions and						
examples, Recurrence relations: definitions & examples, Solving Linear Recurrence Relations						
Inclusion and Exclusion principle						

		"Dispute Methanistics and Its Applications" Variable II Description Telegraphy
	1.	"Discrete Mathematics and Its Applications", Kenneth H. Rosen, 7th Edition, Tata
T	1.	McGraw-Hill, 2017, ISBN: 9780073383095.
Text	2	"Elements of Discrete Mathematics", C. L. LIU, 4th Edition, Tata McGraw-Hill, 2017,
Books	2.	ISBN-10: 1259006395 ISBN-13: 978125 9006395.
	3.	C. L. Liu, —Elements of Discrete Mathematics, TMH, ISBN 10:0-07-066913-9
	1	"Discrete Mathematical Structures", G. Shanker Rao, 2 nd Edition2009, New Age
	1.	International, ISBN-10: 8122426697, ISBN-13: 9788122426694
	2.	"Discrete Mathematical Structures", B. Kolman, R. Busby and S. Ross, 4th
		Edition, Pearson Education, 2002, ISBN: 8178085569
Reference	2	"Discrete Mathematics", Lipschutz, Lipson, 2nd Edition, 1999, Tata McGraw-Hill,
Books	3.	ISBN: 007 463710X
	4	"Discrete Mathematics", R. K. Bisht, H. S. Dhami, Oxford University Press, ISBN:
	4.	9780199452798
	_	Bernard Kolman, Robert C. Busby and Sharon Ross, —Discrete Mathematical
	5.	Structures , Prentice-Hall of India /Pearson, ISBN: 0132078457, 9780132078450
on line TL	1.	https://onlinecourses.nptel.ac.in/noc20_cs37/unit?unit=41&lesson=42
Material	1.	https://onninecourses.npter.ac.nr/noc2o_cs5//unit:unit=41&icsson=42

UCOL201:Data Structures and Algorithms										
Teaching Scheme:	Credit:	Examination Scheme:								
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks								

Course Objectives: After completing this course, student's will be able to

- 1. This course introduces basic idea of data structure while making aware of methods and structure used to organize large amount of data.
- It's also aimed at developing skill to implement methods to solve specific problems using basic data structures.
- The course also provides career opportunities in design of data, implementation of data, technique to sort and searching the data.

Course Outcomes: After completing this course, students will be able to

CO1: Understand fundamentals of data structures

CO2: Apply searching and sorting techniques in various applications

CO3: Implement different linear data structures to solve real world problems.

CO4: Design and analyze non-linear data structure to find solution for different applications.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	3	2	1						2	2	2	2	
CO2	3	3	3	2	2						1	3	3	2	
CO3	3	3	3	3	2			2	2	2	2	3	3	2	1
CO4	3	3	3	3	2			2	2	2	2	3	3	3	1

Course Contents Hrs.

Unit I: Introduction 8

Introduction —Common operations on data structures, Types of data structures, Data structures & Programming, Program Design, Complexities, Time Complexity, order of Growth, Asymptotic Notation.

Sorting and Searching

Introduction, Sorting, Insertion Sort, Selection Sort, Merging, Merge-SortShell Sort, Radix Sort, Searching and Data Modification, Hashing

Unit II: Arrays and Link List

Arrays: Introduction, Linear Arrays, Arrays as ADT, Representation of Linear array in Memory, Traversing Linear Arrays, Inserting and deleting, Sorting; Bubble Sort, Searching; Linear Search, Binary Search,:

Linked List: Introduction: Linked Lists, Representation of Linked Lists in Memory, Traversing a Linked List, Searching a Linked List, Memory Allocation; Garbage Collection, Insertion into a Linked List, Deletion from a Linked List, Header Linked List, Circularly Linked Lists, Two-Way Lists (or Doubly Linked Lists).

Unit III: Stacks, Queue and Recursion	8
Stacks, Queue and Recursion- Introduction, Stacks ,Array Representation of Stacks ,Linked	
Representation of Stacks, Stack as ADT, Arithmetic Expression; Polish Notation, Application of	
Stacks, Recursion, Towers of Hanoi, Implementation of Recursive Procedures by Stacks, Queue,	
Linked Representation of Queues, Queues as ADT, Circular Queues, Deques, Priority Queues,	
Applications of Queues	
Unit IV: Trees and Binary Trees	8
Trees and Binary Trees -Binary Trees • Representation, Operations: Insert, Delete, Traversal: Preorder, Inorder, Postorder, Traversal Algorithms Using Stacks, Header Nodes; Threads, Threaded Binary Trees, Binary Search Trees ,Searching and Inserting in Binary Search Trees, Deleting in a Binary Search Tree, Balanced Binary Trees, AVL Search Trees, Insertion in an AVL Search Tree, Deletion in an AVL Search Tree, m-way Search Trees ,Searching, Insertion and Deletion in an m-way Search tree, B-Trees ,Searching, Insertion and Deletion in a B-tree, B+-Trees Graph Algorithms	
Unit V: Graphs and their Applications	8
Graphs and their Applications - Introduction, Graph Theory Terminology, Sequential	
Representation of Graphs, Adjacency Matrix; Path Matrix, Linked Representation of a Graph,	
Operations on Graphs, Traversing a Graph, Posets; Topological Sorting, Spanning Trees	

	1.	AVAho, J Hopcroft, JD Ullman, Data Structures and Algorithms, Addison- Wesley, 1983.
Text Books	2.	THCormen, CF Leiserson, RL Rivest, C Stein, Introduction to Algorithms, 3rd Ed., MIT Press, 2009.
	3.	Sahni, S., "Data Structures, Algorithms, and Applications in C++", WCB/McGraw-Hill.
E Books	1.	https://apps2.mdp.ac.id/perpustakaan/ebook/Karya%20Umum/Dsa.pdf
Referenc	1.	Data Structures & Algorithms, 1e, Alfred V.Aho, Jeffery D. Ullman, Person.
e Books	2.	MT Goodrich, R Tamassia, DM Mount, Data Structures and Algorithms in Java, 5th Ed., Wiley, 2010. (Equivalent book in C also exists.)
	3.	Wirth, N., "Algorithms and Data Structures", Prentice-Hall of India.
Online	1.	https://nptel.ac.in/courses/106/102/106102064/
TL	2.	http://cse01-iiith.vlabs.ac.in/
Material	3.	https://ds2-iiith.vlabs.ac.in/data-structures-2/

				TIGG	D004	D (- Cu				.7					
				UCC)P201	:Data	Struc	ctures	and A	Algori	thms	<u>lab</u>				
Teach	ing Sch	eme:				Cred	it				Exar	ninati	on Sc	heme		
Practi	ical: 02	Hrs./	Week		1 INT :25 Marks Ext :25 Marks								ks			
-	se Outo			-	pletin	g this	course	, stud								
CO1:	Apply s	search	ing an	d sort	ing te	chniqu	es in v	variou	s appli	ication	ıs					
CO2:	Implem	ent di	fferen	t linea	ır data	struct	ures to	o solv	e real v	world	proble	ems.				
CO3 :	Design	and ar	nalyze	non-l	inear	data st	ructur	e to fi	nd sol	ution :	for db	ifferer	ıt app	licatio	ns.	
Course																
Outco	mes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO		PSO3
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	
	O2	3	3	3	2	2			2	2	2	1	3	3	2	2
	O3	3	3	3	3	2			2	2	2	2	3	3	2	2
	O4	3	3	3	3	2	_		2	2	2	2	3	3	3	2
Sr.N	N List of Laboratory Assignments(*Any 8)															
1	Consi	der a	ctude	nt da	tahasa	of S	V CC	MP	clace (at lea	et 10	recoi	rde)	Datab	200 00	ontains
1	differe									•						Jiitailis
				-								•	•			g order
	(Use I	_			-,	6										5
	b) Arr				its alp	habeti	cally.	(Use l	Insertio	on sor	t)					
	c) Arr	_					•	•				. (Use	Quic	k sort)		
	d) Sea	rch st	udents	acco	rding	to SG	PA. If	more	than c	ne stu	ident l	naving	same	SGP	A, the	n print
	list of				_											
	e) Sea	rch a p	particu	ılar stı	udent	accord	ling to	name	using	binar	y sear	ch wit	hout 1	ecursi	on.	
	Б		6.0				1	. 1	.1 1	1	1 (2014	7.T. C	. 1 .	6.0	1
2	_			-	_		_									econd,
			•		-			_			_	_			•	ne may node is
				_							-					using
																dd and
							_									embers
	of clu	bc)D	isplay	mem	bers o	l) Disp	olay li	st in r	everse	order	using	recur	sion e	e) Two	linke	ed lists
	exists	for tw	o divi	sions.	Conc	atenat	e two l	lists								
3	_		Stack	using	g a li	nked	list. 1	Use the	his sta	ack to	perf	orm e	evalua	tion (of a j	postfix
	expres		2													
4																tion of
	_	_	-	_				_					_			ne jobs
	_					•		•		me a	progr	ain 10	ır sım	urating	g Job	queue.
5	Write									h addi	tions	and de	aletion	ie mar	, he m	nade at
3			-			*										Write a
					_				_	-					-	of the
	deque	10	Jiiiul	ac ac	Yuc V	, 1411 IU			111	a acit	010		110111	CILILO		J1 1110
6	_	k con	sists o	of cha	pters.	chant	ers co	nsist	of sect	tions	and se	ections	cons	ist of	subse	ctions.
	Const															
7	Imple									_				•		

Engineering Management Law Schools Other Courses

NAGPUR PUNE JALGAON AMRAVATI AHMEDNAGAR CHHINDWARA

8	Beginning with an empty binary search tree, Construct binary search tree by inserting the values
	in the order given. After constructing a binary tree
	i. Insert new node
	ii. Find number of nodes in longest path
	iii. Minimum data value found in the tree
	iv. Change a tree so that the roles of the left and right pointers are swapped at every node
	v. Search a value
9	Implement graph using adjacency list or matrix and perform DFS or BFS.
10	You have a business with several offices; you want to lease phone lines to connect them up with
	each other; and the phone company charges different amounts of money to connect different
	pairs of cities. You want a set of lines that connects all your offices with a minimum total cost.
	Solve the problem by suggesting appropriate data structures.
	Open Ended Experiments / New Experiments
11	A classic problem that can be solved by backtracking is called the Eight Queens problem,
	which comes from the game of chess. The chess board consists of 64 square arranged in an 8 by
	8 grid. The board normally alternates between black and white square, but this is not relevant
	for the present problem. The queen can move as far as she wants in any direction, as long as she
	follows a straight line, Vertically, horizontally, or diagonally. Write C++ program for
	generating all possible configurations for 4-queen's problem.
12	A Dictionary stores keywords & its meanings. Provide facility for adding new keywords,
	deleting keywords, updating values of any entry. Provide facility to display whole data sorted in
	ascending/ Descending order. Also find how many maximum comparisons may require for
	finding any keyword. Use Binary tree and find the complexity for finding a keyword.

UCOL202: Computer Architecture and Organization										
Teaching Scheme:	Credit:	Examination Scheme:								
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks								

Course Objectives: After completing this course, student's will be able to

- To understand the design principles of digital computing systems
- To provide essential understanding of different subsystems of modern computer system and design aspects these subsystems3
- 3. To provide overview on performance enhancement methods in instruction execution

Course Outcomes: After completing this course, students will be able to

- CO1: To describe the basic components and design of a computer system
- CO2: To implement basic binary math operations in computers.
- CO3: To apply the concept of various memories and interfacing technologies

CO4: To analyze the different parallel processing technique and high performance computing architecture

Course		Program Outcomes and Program Specific Outcomes													
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
S															
CO1	3	2	2	2	1	1			1	1	1	2	3		
CO2	2	3	2	3	1	1			1	1			2		
CO3	2	3	2	2	2	1			1	2	2	2	2		
CO4	3	3	3	3	2	2			1	1	3	3	3		

Course Contents	Hrs.
Unit I: Introducation	8

Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU -registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set, Instruction set architecture CISC, RISC, Case study –instruction sets of common CPUs

Unit II: Data Processing

Fixed point Addition, Subtraction, Multiplication and Division. Floating Point arithmetic, High performance arithmetic, Sub word parallelism, Booth's algorithm, integer division

- Data representation method
- Booths multiplication, division algorithm and example

IEEE standard single and double precision format and examples

Unit III: Memory Orgnization

Memory hierarchy, Memory Chip Organization, Cache memory, Virtual memory. Parallel Bus Architectures, Internal Communication Methodologies, Serial Architectures, Mass storage, Input and Output Devices, Segmentation, TLB, Page

8

replacement algorithms	
Unit IV: Pipelining	8
Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards Pipelining: Basic concepts of pipelining, Arithmetic and Instruction Pipeline, throughput and speedup, pipeline hazards, Introduction, Logic Design Conventions, Building a Datapath – A Simple Implementation scheme – An Overview of Pipelining – Pipelined Datapath and Control. Data Hazards: Forwarding versus Stalling, Control Hazards, Exceptions, Parallelism via Instructions	
UNIT V:CPU control unit design	8
CPU control unit design: hardwired and micro-programmed design approaches, Case study - design of a simple hypothetical CPU.	

	1.	Introduction to Parallel Computing by AnanthGrama, Anshul Gupta, George Karypis,
Toyet	1.	Vipin Kumar in Pearson Publication
Text Books	2.	Advance computer Architecture by Kai Hwang under Tata McGraw Hill publications
DOOKS	3.	Introduction to Parallel Processing: Algorithms & Architectures, BehroozParhami in
	٥.	Springer Shop
		Computer Architecture and Organization by William Stalling
EBooks	1.	http://home.ustc.edu.cn/~leedsong/reference_books_tools/Computer%20Organization%2
		0and%20Architecture%2010th%20-%20William%20Stallings.pdf
	1.	Introduction to Parallel Processing by P. Ravi Prakash, M. Sasikumar, Dinesh Shikhare
Referen	1.	By PHI Publications
	2.	Fundamentals of Parallel Processing by Jordan Harry, Alaghband Gita, PHI Publication
ce Books	3	Parallel Computers – Architecture and Programming by V. Rajaraman And C. Siva Ram
DOOKS	3	Murthy.
	4.	Introduction to Parallel Programming by Steven Brawer
Online		
TL	1.	NPTL https://nptel.ac.in/courses/106/105/106105163/
Material		

	UCOL203: Formal Languages and Automata										
Teaching Scheme:	Credit:	Examination Scheme:									
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks									

Course Objectives: After completing this course, student's will be able to

- 1. To provide introduction to some of the central ideas of theoretical computer science from theperspective of formallanguages.
- 2. To introduce the fundamental concepts of formal languages, grammars and automatatheory.
- 3. Classify machines by their power to recognize languages and usefinite state machines to solve problems incomputing.
- 4. To understand deterministic and non-deterministic machines.
- 5. Use of Turing Machine and Pushdown Automata in FormalLanguage.

Course Outcomes: After completing this course, student's will be able to

CO1 Understand the abstract machines and modeling of finite state machines.

CO2 Design context free grammars to analyze formal languages and computing problems.

CO3 Apply Formal language to analyze problems based on push down automata.

CO4 Solve problems based on linear bounded automata and Turing machine.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										1	3		
CO2	2	2	3	2					1	2		1	2		
CO3	3	3	2	2					1	2		1	2		
CO4	3	3	3	2					1	2		1	3		

Course Contents	Hrs.
Unit I: Introduction	8
Introduction-BasicMathematicalNotationandtechniques-FiniteStatesystems-Basic	
Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €- moves –	
RegularLanguages-RegularExpression —EquivalenceofNFA and DFA—Equivalence	
ofNDFA"s	
with and without €-moves – Equivalence of finite Automaton.	
Unit II: Regular Expressions	8
Regular Expressions- Finite Automata and Regular Expressions, Applications of Regular	
Expressions, Algebraic Laws for Regular Expressions, Properties of Regular Languages	
Pumping Lemma for Regular Languages, Applications of the Pumping Lemma, Closure	
Properties of Regular Languages, Decision Properties of Regular	
Languages.	

Unit III: Context-FreeGrammars	8
Context-FreeGrammars: Chomskyhierarchyoflanguages. Definition of Context-Free	
Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the	
Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free	
Grammars,	
Ambiguity in Grammars and Languages.	
Unit IV: Push Down Automata-	8
Push Down Automata- Definition of the Pushdown Automaton, the Languages of a PDA,	
Equivalence of PDA's and CFG's, Deterministic	
Pushdown Automata.	
UNIT V:	8
Definitions of Turing machines – Models – Computable languages and functions –	
Techniques for Turing machine construction – Multi	
head and Multi tape Turing Machines – The Halting problem	

		Introduction to Automata Theory, Languages, and Computation,									
	1	3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman,									
Text Books		Pearson Education.									
	2	Introduction to the Theory of Computation, Michael Sipser, 3 rd edition, Cengage									
		Learning.									
	1	Introduction to Languages and The Theory of Computation, John C Martin, TMH.									
	2	Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.									
Reference	3	A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge									
Books		University Press.									
	4	Introduction to Formal languages Automata Theory and									
		Computation Kamala Krithivasan, Rama R, Pearson.									

UITL201:Object Oriented Programming												
Teaching Scheme:	Credit:	Examination Scheme:										
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks										
Prerequisite (If any):												
Course Objectives: After completing	this course, stu	dent 's will be able to										
1. This course introduces student's gen	eral idea and co	oncepts of object oriented programming.										
2. It is also aimed at developing skills t	o implement th	nese concepts.										
3. The course provide carrier opportunity plays dominant role in software deve		of some applications as object oriented concepts										
Course Outcomes: After completing		dent's will be able to										

CO1: Understand the basic principles of object oriented programming

CO2:Apply the concepts of overloading, inheritance, polymorphism

CO3: Appraise memory allocation techniques and usage of exception handling, generic programming

CO4: Develop programs using object oriented concepts

Course Outcomes	Program Outcomes and Program Specific Outcomes														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2				1	2	2		3	3	2	1
CO2	3	3	3	2				1	2	2		3	3	2	2
CO3	3	3	3	3				1	2	2		3	3	2	2
CO4	3	3	3	3				1	2	2		3	3	2	2

Course Contents	Hrs.
Unit I: Principles Of Object Oriented Programming	8
Differences between C and C++. A look at procedure Oriented programming, object oriented programming paradigm, basic concepts of OOP, Benefits of OOP, OO languages, A sample program, structure of C++ program. Introduction to OOPS: The origins of C++, What is Object Oriented Programming?, Some C++ fundamentals, Headers & Name Spaces, Introducing C++ Classes, Function overloading, Operator overloading, Inheritance, Constructors & Destructors, Function & Operator Overloading	
Unit II: Overloading	8
Constructor functions, Localizing variables, Function overloading & Ambiguity, Finding the address of an overloaded function, this Pointer, Operator overloading, References, Using reference to overload a unary operator, Overloading [], overloading (), Applying operator overloading.	
Unit III: Inheritance, Virtual Functions and Polymorphism	8
Inheritance and the access specifies, Constructors and Destructors in derived classes, Multiple	

Inheritance, Passing parameters to a basic class, Pointers and references to derived types, Virtual Functions, Why virtual functions?, Pure virtual functions and abstract types, Early Vs Late binding.	
Unit IV: Static & Dynamic allocation	8
Static & Dynamic allocation using new and delete, static class members, Virtual base classes, const member functions and mutable, volatile member functions, Using the asm keyword, linkage specification, The .* and ->* operators, Creating conversion functions, Copy constructors, Granting access, namespaces, Explicit constructors, typename and export.	
UNIT V:Templates & Exception Handling	8
Class templates, class templates with multiple parameters, function templates, function templates with multiple parameters, Exception Handling, fundamentals, options the uncaught exception (), Applying exception Handling, and RTTI, casting operators, Recent trends in Object Oriented Programming in C++, Advanced topics & its Application	

Text	1.	Object Oriented Programming in C++ -Robert Lafore, edition, Galgotia publications
Books	2.	The Complete Reference C++, Herbert Schildt, 4th Edition, TMH
Referenc	1.	Let's C++ by Y. Kanetkar, BPB publications
e Books	2	Object oriented programming with C++, E Balagurusamy, 4th edition, TMH

	UITP201:Object Oriented Programming															
Teaching Sch	eme:				(Credit	:	Examination Scheme:								
Lectures: 021	Hrs./V	Veek				1	I	NT:25	marl	ks EX	KT:25	mark	s			
Prerequisite	e (If a	ny):														
Course Out	comes	:Afte	r comp	oleting	this c	ourse,	stude	nt will	be al	ole to						
CO1: Impleme	ent Ob	ject or	iented	princ	iples.											
CO2: Demons	strate e	execut	ion of	f mem	ory all	ocation	techn	iques a	nd exc	eption	handli	ng tech	niques			
CO3: Design	and de	velop	a solu	ition f	or real	life pı	roblen	ns usin	g obje	ct orie	nted c	oncep	ts.			
Course Outcomes				Pro	gram (Outcor	nes an	d Prog	gram S	Specifi	c Outo	comes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO11	PO11	PO11	PSO 1	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2		2	3	
CO1	3	3	3	2	2			2	3	3		3	3	2	1	
CO2	3	3	3	2	2			2	3	3		3	3	2	2	
CO3	3	3	3	2	3			2	3	3		3	3	2	2	

Sr. No.	Name of Experiments / Mini Projects/ Case Studies											
1	Write a program to compute the area of triangle and circle by overloading the area () function.											
2	Define a class to represent a bank account. Include the following members:											
	Data members: - Name of depositor, Account number, Type of account, Balance amount in the											
	account											
	Member functions: - To assign initial values, To deposit an amount, To withdraw an amount											
	after checking the balance, To display name & balance											
	Write a main program to test program using class and object.											
3	Create two classes DM and DB which stores values of distances. DM stores distances in											
	meters and centimeters and DB in feet and inches. Write a program that can read values for the											
	class objects and add one object of DM with another object of DB. Use a friend function to											
	carry out addition operation											
4	Create a class MAT of size m * n. Define all possible matrix operations for MAT type objects											
5	Create Stud class to display student information using constructor and destructor. (Default											
	constructor, Multiple constructors, Copy constructor, Overloaded constructor)											
6	Consider class network of given figure. The class master derives information from both											
	account and admin classes which in turn derive information from the class person. Define all											
	the four classes and write a program to create, update and display the information contained in											
	master objects.											

	
	person
	name
	code
	account admin
	pay experience
	pay superior of
	master
	name code
	- experience
	pay
7	A book shop sells both books and video tapes. Create a class media that stores the title and
,	price of the publication. Create two derived classes, one for storing number of pages in the
	book and another for storing playing time of tape. A function display () must be defined in all
	classes to display class contents. Write a program using polymorphism and virtual function.
8	Write a program to show use of this pointer, new and delete.
9	Write a function template for finding the minimum value contained in an array
10	Write a program containing a possible exception. Use a try block to throw it and catch block to
	handle it properly.
1	Open Ended Experiments / New Experiments
1	Write a class template to represent a generic vector. Include member functions to perform following tasks
	-To create a vector
	-To modify the value of given element
	-To multiply by scalar value.
	-To display vector.
2	Write a C++ program to design a simple calculator

					U	COP1	04 :P	ython	for D	ata S	cience						
Teach	ning	Scher	ne:			C	redit				Ex	aminat	ion Sc	heme	;		
Pract	iool.	06 L	Ive /X	/ook	1		3		т	NT .5	n Mar	lza					=
					· comr	mpleting this course, students will be able to											-
CO1:I									, stude	iits w	III UC i	ioic to					-
									al Pvtl	hon Pa	ackages	: NumI	Pv. Par	ndas a	nd		=
Matpl		Construct various programs using fundamental Python Packages: NumPy, Pandas and otlib. Analyze various Machine Learning techniques on different datasets															
•			arious	Mach	ine Le	earnin	g tech	nique	s on d	ifferer	nt datas	ets					
Course Outcon		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	
CC		3	3	3	2	2			1		3		3	2	2		t
CC		3	3	3	3	3	2		1	2	3	2	3	2	3	1	t
CC)3	3	3	3	3	3	2		1	2	3	2	3	3	3	1	Ī
Sr.N					I	List of	Labo	rator	y Assi	ignme	ents(*A	ny 8)					Ī
0																	
1	Im	pleme	ent bas	sic coi	ncept	of pytl	hon.										
2	Im	pleme	ent list	t, tupl	le con	cept ir	n pyth	on.									
3	Cre	eate P	ython	progr	am w	ith if e	else sta	ateme	nt.								
4	Im	pleme	ent Wl	hile ar	nd For	loop	using	Pytho	n.								
5	Im	pleme	ent ma	thema	atical	operat	ion in	pytho	n.								
6	Im	pleme	ent vai	rious (perat	ions o	f strin	gs usi	ng Py	thon.							
7	Im	pleme	ent dic	tionai	y con	cept in	n Pyth	on.									
8	Im	pleme	ent Fu	nction	conc	ept in	Pytho	n.									
9												te the a	•	_	_		
												dents. C	_			. 0	
	stu	dents	who s	scored	more	than:	50%.										
10					-			_	•			neight(r		_	_	s)]	
					_					_	_	ıt ii) me		_			
					_					-		omis>2			wo ar	rays	
11												int both checks			he sar	ne	1
11										•		s the nu		•			
												g nump					
	nuı	npy.p	ower	in you	ır fund	ction.	Make	sure t	hat it	works	with d	ifferent	ly size	d num	npy arı	•	
				nensio	ons, 1	dimen	sion a	and 2 o	limen	sions.	Do the	same u	sing th	ne nun	npy.po	ower	
10	-	ction					1 C	. •		1 .			C 7 .	1			1
12		_							_		_	is array ound ret			-	_	
						_		_			_	not use		-	tion o	ı ine	
		_	s/metl	_	Jouin	., auu	ane st		, 1110 11	1 1 C	DU	not use	ount 1				
13					ogram	to ad	d two	lists u	sing r	nap ar	nd lamb	da func	ction. i	i) Wri	te a p	ython	1
				_	_				_	-		er and l				· 	
1/	117.	ita c -	nrytha:	2 12 12 12	rom +	oraci	0 0 D	oto Ero	ma of	6 2022	ic from	Disting	OWI D	ingt on	ooto o		1

Write a python program to create a DataFrame of 6 rows from Dictionary. First create a

14

	Tourism_visitors dictionary from four lists of "Cities", "Visitors", "signups" and
	"Weekdays". Convert the dictionary to Dataframe importing Pandas library. And create
	row_labels as the short forms of the country names. And display the DataFrame.
15	Using Pandas library, create sample Dataframe of 10 records and Perform reshaping,
	grouping and sorting operation.
16	Download 100 CC Records csv from http://eforexcel.com/wp/downloads-17-sample-csv-
	files-data-sets-for-testing-credit-card/. And read the CSV into a DataFrame. Display the card
	type, holder name, issuing bank and credit limit of the holders from 20 to 40(row indexes)
	using loc and iloc commands. Also display all columns and table information.
17	Using Panads library read excel sample file of 100 records into Dataframe. Also write these
	100 records inot particular sheet of excel file.
18	Using Panads library read CSV/excel sample file and write into JSON file formation
19	Plot line and scatter charts for students interests in programming against their year in the
	Engineering college. And derive a distribution of the same over 10 years using a histogram.
20	Use the flavors of cocoa csv and write a python program to create a Box Plot (Box and
	Whisker) plot for four years 2013 to 2016, the distribution of the ratings.

Department of Computer Engineering

Detailed Syllabus

S. Y. B. Tech. Semester-IV

Scheme of S Y B. Tech. in Computer Engineering

			То	ahi	na Ca	homo			Eva	luatio	n Sche	me	
a		Course	1 ea	acm	ng Sc	cheme			Theor	y	Prac	tical	
Course Code	Name of Course	Catego ry	L	Т	P	Total Hours	Credit	TAE	CAE	ESE	INT	EXT	Fotal Iarks
SEMESTER-IV													
UBSL206A	Transforms and Numerical Methods	BS7	3	1	-	4	4	10	15	50	-	-	75
UCOL205/ UCOP205	Computer Networks	C10	3	-	2	5	4	10	15	50	25	-	100
UCOL206/ UCOP206	Design and Analysis of Algorithm	C11	3	-	2	5	4	10	15	50	25	25	125
UECL207/ UECP207	Applications of Microprocessors and Microcontrollers	C12	3	-	2	5	4	10	15	50	25	-	100
UITL203/ UITP203	Operating System	C13	3	-	2	5	4	10	15	50	25	-	100
UCOL200 X	Open Elective - I	OE1	2	-		2	2	10	15	50	-	-	75
UDSP208	Data Analysis using R	A9- A10	-	-	4	4	2	-	1	-	25	-	25
	TOTAL					30	24	60	90	300	125	25	600

UCOL2001	Basics of Computer Network (Open Elective)
UCOL2002	Cloud Computing

Department of Computer Engineering

Detailed Syllabus

S. Y. B. Tech. Semester-IV

UBSL206A:Transform and Numerical methods											
Teaching Scheme:	Credit:	Examination Scheme:									
Lectures: 03 Hrs./Week	4	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks									
Tutorial : 01 Hrs./Week											

Prerequisite (If any): Differential and Integral calculus ,Fourier series

Course Objectives: After completing this course, student will be able to

- 1. To develop skills to use Transforms and its applications in the field of Computer Engineering.
- 2. Transform techniques such as Laplace transform, Fourier transform, Z-Transform and applications to Image processing.
- 3. To provide suitable and effective Numerical method for obtaining approximate representative numerical results of the problem
- 4. To solve complex mathematical problems using only simple mathematical operations. The approach involves formulation of mathematical models of physical situations that can be solved with arithmetic operations

Course Outcomes:

CO1:Identify the various methods in Transforms, Numerical that applies to the problems in Computer engineering

CO2:Solve algebraic and transcendental equations and system of linear equations using numerical techniques

CO3: Apply the concept Laplace transform, Fourier transform and Z-transform and its applications to continues and discrete systems and image processing

CO4:Apply the knowledge of numerical techniques to solve ordinary differential equations

Course]	Progra	am Oı	utcom	es and	d Program Specific Outcomes									
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO	PS		
	1	2	3	4	5	6	7	8	9	10	11	12		2	O3		
CO1	3	3	3	3							1	1	1	1			
CO2	3	3	2	2		2	1	1	2	2	1	1	2	2			
CO3	3	3	3	3		2	2	1	1	2	1	1	2	1			
CO4	3	3	3	3		2	2	1	2	2	1	1	3	2			

Course Contents	Hrs.
Unit I: Laplace Transform	8
Laplace transform definition and their properties, transform of derivatives and integrals, evaluation of integrals by Laplace Transform, Laplace transforms of periodic function, Unit step function, Unit Impulse function, Inverse Laplace Transform.& its properties, convolution theorem, applications of Laplace transforms to solve ordinary differential equations.	
Unit II: Fourier Transform	8
Complex exponential form of Fourier series, Fourier integral theorem, Fourier Sine & Cosine integrals, Fourier transform, Fourier Sine and Cosine transforms and their inverses, Properties	

of Fourier Transform, Discrete Fourier Transform. Applications of Transforms to boundary

value Problems	
Unit III: Z-Transform	8
Definition, properties of Z- Transforms, Inverse Z- Transform and relation between Z transform and Laplace Transform. Convolution Theorem, Application of Z-Transform to solve difference equations with constant coefficients.	
Unit IV: Numerical Solution of Equations	8
Numerical solutions of algebraic and transcendental equations. Iteration method, Bisection method, Regula-Falsi method, Newton-Raphson's method and their convergences, solution of system of linear equations by Gauss elimination method, gauss Jordan method, gauss Seidel iteration method.	
Unit V:Numerical Solution of Ordinary Differential Equations	8
Picard's method, Taylor series method, Euler's method, Modified Euler's method, Range's	
method, Runge-Kutta fourth order method, Predicator -corrector methods, Milne's method.	
Solution of Simultaneous first order and higher order differential equations.	

Torre	1.	B. S. Grewal, "Higher Engineering Mathematics" Khanna Publication, 43 th edition									
Text Books	2.	H. K. Dass, 'Engineering Mathematics', S. Chand Publication 20e, New Delhi.									
DOOKS	3.	"Introductory Methods of Numerical Analysis", S.S.Sastry, 4th edition									
E Books	1.	tp://www.math.ust.hk/~machas/numerical-methods.pdf									
	1.	Erwin Kreyszig, "Advanced Engineering Mathematics", 9e, Wiley India									
Referenc	2.	Robert A.Gabel, Richard A.Roberts; Siglnals and linear systems; John Wiley & Sons									
Books	3.	Jain, R.K. and Iyengar, S.R.K, Advanced Engineering Mathematics, 3 rd Edition, New									
	3.	Delhi, Narosa Publishers, 2007									
Online	1.	https://onlinecourses.nptel.ac.in/noc19_ge30/preview									
TL	2. https://nptel.ac.in/courses/111/105/111105123/										
Material	3.	https://nptel.ac.in/courses/111/102/111102129/									

UCOL205: Computer Networks										
Teaching Scheme:	Credit:	Examination Scheme:								
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks								

Course Objectives: After completing this course, student will be able to

- Build an understanding of the fundamental concepts of computer networking
- Know about routing mechanisms and different routing protocols
- Understand transport layer functions
- Know about different application layer protocols

Couse Outcomes:

- CO1. Summarize services offered by layers of OSI model and TCP/IP model
- CO2. Determine the different network management techniques of various protocol.
- **CO3**. Explaining wireless network and different wireless standards.

CO4:: Explore various recent trends in networking.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO	PSO ₃
	1	2	3	4	5	6	7	8	9	10	11	12		2	
CO1	2	1	2	2	2			2		1			3	2	1
CO2	3	2	2	2	3	2	1	1	2	1			2	2	
CO3	1	2	2	3	3			2		2		2	2	2	
CO4	2	2	2	2	2			2		2		2	3	2	

Course Contents								
Unit I: Introduction to Computer Networks and Logical Link Medium Access Control								
Introduction – Network architecture -Design. Reference models- The OSI Reference Model-								
The TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models								
Design Issues, Switching Techniques: Circuit and Packet Switching, Connectionless and								
Connection-oriented Services, Virtual Circuit and Datagram Subnets .Autonomous system								
Unit II: Network Layer-I	8							
Routing Algorithms: Optimality principle, shortest path routing, flooding, Distance Vector								
routing, link state routing, hierarchical routing. Network layer services, IP protocol, IPv4,								
Problems with IPv4,IPV6,Subnetting, Network layer Protocols: ARP, RARP, ICMP, DHCP,								
Unicast Routing Algorithms: RIP, OSPF, BGP								
Unit III: Transport Layer								
UDP : UDP functionality, UDP Header; 31								
TCP: TCP Features, byte-stream, Connection-oriented, TCP Header Format, 2-way, 3-way								

Handshake, TCP State Diagram, TCP Sliding Window, Congestion Control Algorithms,	
Leaky Bucket, Token Bucket, Congestion Avoidance, TCP Tahoe, Fast Retransmit, Fast	
Recovery, Timer Management.	
Unit IV: Application Layer	6
Domain Name System (DNS), Naming and Address Schemes, DNS servers, Email: MIME, SMTP and POP3. Remote login, File Transfer Protocol (FTP), SNMP, DHCP and BOOTP.	
World Wide Web, HTTP	
Unit V: WIRELESS LAN,MAN,WAN	6
Introduction (Infrastructure and Ad-hoc Networks), Fundamentals of WLAN – technical issues,	
Network Architecture, IEEE 802.11- physical layer, Mac Layer Mechanism, CSMA/CA,	
Bluetooth - Specification, Transport Layer, Middleware Protocol Group,	
Bluetooth Profiles of IEEE 802.16, Sensor Node Architecture (hardware components), Sensor	
Network Architectures	

	1. Computer Networks (3rd edition), Tanenbaum Andrew S., International edition, 1996.								
Toyet	2	Behrouz A. Forouzan, TCP/IP Protocol Suite, McGraw Hill Education, ISBN: 978-0-07-							
Text Books	۷.	070652-1,4th Edition							
DOOKS	2	KazemSohraby, Daniel Minoli, TaiebZnati, Wireless Sensor Network", Wiley, ISBN							
	3.	:978-0-471-74300-2.							
	1	James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach							
Referenc	1.	Featuring the Internet", Pearson Education, 6th Edition, ISBN: 978-02737-68968							
e Books	2	Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor							
	۷.	Networks",							

UCOP205: Computer Networks										
Teaching Scheme: Credit Examination Scheme										
Practical: 02 Hrs./Week	1	INT :25 Marks								
Course Outcomes :On completion	n of the course, stud	dent will be able to:								
CO1:State the various networking Commands and understand Packet Tracer Simulator.										
CO2:Applying the simulator concept, implement various protocol										
CO2.Immlement Coalret museum	· · · · ·	•								

CO3:Implement Socket programming

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO	PSO ₃
	1	2	3	4	5	6	7	8	9	10	11	12		2	
CO1	2	2	2	2	2	3		2		3	3		3	3	2
CO2		3	3	3	3	3	2	2	2	3	3		3	3	1
CO3		2	2	2	2	3	2	2	2	3	3	2	3	3	

	CO3			_					_	_					
Sr.					List	of La	borat	ory A	ssignn	nents(*Any	8)			
No 1	Evalore	and C	tuder.	of TCI	D/ID vid	دناندن م	and N	[atry on	ılı Com		0				
1	Explore and Study of TCP/IP utilities and Network Commands														
		a) Ping b) Tracer c) ipconfig / ifconfig d) Netstat													
	e)	e) Arp f) Whois													
2	Using a	Using a Network Simulator (e.g. packet tracer) Configure Sub-netting of a given network													
3	Using a	Netwo	rk Sii	mulato	r (e g	nack	et trace	er) cor	nfigure	•					
	_				. •	-		•	•						
	1.	Static 1	Kouti	ng 2.	KIPV.	2 rout	ing pro	otocoi							
4	Using a	Netwo	rk Si	mulato	r (e.g.	. pack	et trace	er) cor	nfigure)					
	_	Using a Network Simulator (e.g. packet tracer) configure 1. EIGRP 2.OSPF													
	1.	1. EIURF 2.USFF													
5	Using a	Netwo	rk Si	mulato	r (e.g.	. pack	et trace	er) cor	nfigure	;					
						-	networl		Ü						
6	Using a	Netwo	rk Si	mulato	r (e.g.	. pack	et trace	er) cor	nfigure	;					
	_	VLAN				-			_		tocol				
7	TCP UI														
8	Using a	Netwo	rk Si	mulato	r (e.g.	. pack	et trace	er) cor	nfigure	;					
	,	WLAN	with	static	IP add	dreccir	ng and	DHC	P with	MAC	' secur	ity and	d filter	re	
		VV L27 II V	WILLI	Statio	II aa	ar Coon	ing und	Dire	1 **1111	101710	secui	ity air	<i>a</i> 111101	1.0	
9	Using N	Jetwork	Sim	ulator	2/ ON	INET	simula	ate(Ar	y one)					
	a.	Using Network Simulator 2/ OMNET simulate(Any one) a. Local Area Network													
	b.	. WSN													
	Conten														
10	Case stu	ıdy of r	netwo	rk sim	ulator	•									

UCOL206: Design And Analysis of Algorithms									
Teaching Scheme:	Credit:	Examination Scheme:							
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks							

Course Objectives: After completing this course, student will be able to

- 1. This course introduces students the general idea of analysis and design of algorithms while making them aware of basic methods of algorithm analysis and design.
- It is also aimed at developing skills to solve real life applications which involve algorithm development
- The course also provides career opportunities in analysis, design and optimization technique in algorithms

Course Outcomes:

CO1: Recall basic concepts of algorithm in analysis and Design of algorithms.

CO2: Examine Recurrence relations, solutions of recurrence of searching sorting methods

CO3: Analyze Greedy methods used for analysis and Design of Algorithm

CO4: Apply Dynamic Programming concepts in designing algorithm

CO5: Evaluate advanced techniques and tools available for algorithm analysis and development

Course			Pr	ograi	n Ou	tcome	s and	Prog	gram	Speci	fic O	ıtcom	ies		
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	2	2						1	3	2	
CO2	3	2	2		1	2		2	2	1	2	1	2	1	
CO3	2	2	1			2		2	2	2	2		1	1	
CO4	2	2	1			2		2	2	1	2		1	1	
CO5	2		1	2	2	2			2	1	1	2	2	1	

Course Contents	Hrs.	
Unit I: Mathematical foundations & Asymptotic notations	8	
Algorithm, Mathematical Notations, Algorithm specification, Analysis of Algorithm-Introduction, Analyzing control structures, Asymptotic notations, space complexity, time complexity, Performance measurement, analyzing control structures, best case, worst case and average case analysis, Iterative Algorithm analysis.		
Unit II: Divide and Conquer	8	
Recurrence relations, solutions of recurrence relations by Master Methods. Divide and conquer basic strategy, binary search, quick sort, merge sort, maximum and minimum finding		
Unit III: Greedy Method	8	

Greedy method – basic strategy, application to job sequencing with deadlines problem, minimum		
cost spanning trees, single source shortest path etc.		
Unit IV: Dynamic Programming	6	
Dynamic Programming basic strategy, multistage graphs, all pairs shortest path, single source		
shortest paths, optimal binary search trees, traveling salesman problems.		
Unit V:Traversal And Search Techniques		
Basic Traversal and Search Techniques, breadth first search and depth first search, Backtracking		
basic strategy, 8-Queen's problem, graph colouring, Hamiltonian cycles.NP, P Problems,		
Optimization Algorithms.		

Text Books	1.	Thomas H. Cormenet. al. "Introduction to Algorithms", Prentice Hall of India.					
	2.	Design & Analysis of Computer Algorithms by Aho,. Horowitz, Sahani,					
		Rajsekharam, Pearson education					
Reference Books	1.	"Computer Algorithms", Galgotia Publications Pvt. Ltd. Brassard, Bratley,					
		"Fundamentals of Algorithms", Prentice Hall					
	2.	Computer Algorithms: Introduction to Design and analysis, 3 rd Edition, By Sara					
		Baase& A. V. Gelder Pearson Education.					
On-line TL Material		NPTEL course on Design and Analysis of Algorithms:					
	1.	https://www.class-central.com/course/nptel-design-and-analysis-of-algorithms-					
Matchai		3984					

UCOP206: Design And Analysis of Algorithms					
Teaching Scheme: Credit Examination Scheme			ination Scheme		
Practical: 02 Hrs./Week	1	INT :25 Marks	Ext: 25 Marks		
Course Outcomes: On completion of the course, student will be able to—					

CO1:Describe concepts of specific algorithmic characteristics

CO2:Interpret various problem solving techniques using algorithmic types

CO3:Explain performance of algorithms using mathematical formulas

CO4:Demonstrate design strategies for solving various applications

CO5: Analyze complexity of problems for advanced computing areas

Sr.	List of Laboratory Assignments(*Any 8)
No 1	Write C++ program to find factorial of a given number using (i) Recursion
1	(ii) Iteration Compare time and space complexity of both the designs.
2	Implement Binary search program with Divide and Conquer design strategy for n numbers
4	
	using C++. Discuss Best, Average and Worst time complexity.
3	Sort a given set of n integer elements using Quick Sort method and compute its time
	complexity. Run the program for varied values of n and record the time taken to sort. The
	elements can be read from a user or can be generated using the random number generator.
	Demonstrate using C++ how the divide and conquer method works along with its time
	complexity analysis: worst case, average case and best case.
4	A business house has several offices in different countries; they want to lease phone lines to
	connect them with each other and the phone company charges different rent to connect different
	pairs of cities. Business house want to connect all its offices with a minimum total cost. Solve
	the problem by suggesting appropriate data structures in C++.
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using
	Dijkstra's algorithm. Write the program in C++.
6	Implement a program in C++ for 0/1 Knapsack problem using Dynamic Programming method.
7	Write C++ program to implement Travelling Sales Person problem using Dynamic
	programming.
8	Implement C++ program for solving N-Queen's problem using Back tracking. (Assume N=4)
9	Implement Travelling salesman problem using branch and bound approach using C++.
10	Write C++ Program to demonstrate the implementation of Rabin-Karp Algorithm with
	discussion of time complexity.
	Content beyond syllabus
11	Matrix Chain Multiplication using Dynamic Programming
12	Case Study of Optimization Algorithms for complexity problems

UECL207:Applications of Microprocessors and Microcontrollers							
Teaching Scheme:	Credit:	Examination Scheme:					
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks					

Prerequisite (If any):

Course Objectives: After completing this course, student's will be able to

- To studyandunderstand various microcontrollersand embedded systems
- 2. Tounderstandthedesignparametersofembeddedsystemsapplications.
- 3. TostudyandimpartdifferenttoolsforembeddedsystemandIoTapplication design.

Course Outcomes:

CO1: DemonstratetheprincipleofembeddedsystemsandMicrocontroller

CO2:Designtheinterfacingofdevicesandperipherals

CO3: Developprogramming for applications developreal time applications

CO4:MakeUse of Arduino Controller for Designing of Embedded Applications.

CO5:Design and Develop different embedded system and Io Tapplications.

CourseOu	ProgramOutcomesandProgramSpecificOutcomes														
tcomes															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS0	PS0	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
CO1	2	2	3	2	3						2	1	3	2	3
CO2	2	2	3	2	3	2	2	2	2		2	1	3	2	3
CO3	3	2	3	2	3	2	2	2	2	2	2	1	3	2	3
CO4	3	2	3	2	3	2	2	2	2	2	2	1	3	2	3
CO5	3	2	3	3	3	2	2	2	2		2	1	3	2	3

Course Contents	Hrs.			
Unit I: Introduction	8			
MicroprocessorTechnology:8085/8086-architecturaloverview&Programmingmodel.				
Unit II: Microcontrollers	8			
Introductiontomicrocontrollers,8051architecture,data typesanddirectives,				
flagbitsandPSWregister,registerbankandstack.				
37				

Unit III: AssemblyLanguageProgramming	8
Jump,LoopandCallInstructions,I/O PortProgramming,Addressingmodes,Arithmetic,Logicinstructionsandprograms,datatypesandtime	
delay.InterfacingtoExternalMemory.	
Unit IV: Programming	6
Programming: Timer/counter,Interruptsandserialcommunications,SerialI/O,ProgrammingTool	
s,Program usingC	
Interfacingwith8051:ADCandDACinterfacesformicrocontrollers,Real	
timeinterfacingwith LED, Keypad, LCD display, Sensorsinterfacing	
Unit V:Arduino	6
IntroductiontoArduino,Pinconfigurationandarchitecture,codingofArduniousingIDE.Interfacings	

	1.	MuhammadAliMazidi,the8051Micro-controller&EmbeddedSystemusing								
	1.	assembly&C, PearsonEducation,2008,Second								
TextBoo	2	Muhammad Ali Mazidi, ARM Assembly language programming And								
ks	2	Architecture,Second								
	3	RajKamal, Microcontrollers: Architecture, Programming, Interfacing and								
	3	SystemDesign,PearsonEducation India,2009,Second								
	1. ShibuK.V.Introduction toEmbeddedSystem,TheMcGrawHill,2011									
Reference	2.	AjayV.Deshmukh,Micro-controllers-TheoryandApplications,TataMcGraw								
Books	۷.	Hill,								
	3.	KennethJ.Ayala,The8051Micro-controller–Architecture,Programming&								
	٥.	Applications, PenramInternational & Thomson Asia, 1996, Second								
on lineTL		https://nptel.ac.in/courses/108/105/108105102/								
Material	1.									

	UECP207:Applications of Microprocessors and Microcontrollers Lab								
Teachin	ng Scheme:	Credit	Examination Scheme						
Practica Hrs./We		1	INT :25 Marks	Ext: NA					
		mpletion of the course, stud	dent will be able to—						
		cipleofembeddedsystemsan							
	_	ofdevicesandperipherals							
CO3:De	evelopprogrammin	gforapplicationsdeveloprea	ltimeapplications						
CO4:M	akeUse of Arduin	o Controller for Designin	ng of Embedded App	plications.					
CO5: D6	esign andDevelopd	ifferent embeddedsystema	nd IoTapplications.						
Sr.No		· · · · · · · · · · · · · · · · · · ·	Assignments(*Any 8	,					
1		performArithmaticoperation		ontroller					
2	1 0	performdatatransfer between							
		susing8051microcontroller							
3		ndsmallestnumberfromme							
4		egmentdisplaywith8051Mi	crocontroller(Proteou	S					
	based)								
5	Interface different sensor like LDR, IR with 8051 Microcontroller (Proteousbased)								
6	Interface LCDdisplaywithArduino(Handson)								
7	Design andperformdifferentembeddedsystem and IoTApplications								
8	ProjectModule-1								
9	ProjectModule-2								
10	ProjectModule-3								

Content beyond syllabus

11

Study any simulator tool for microprocessor and micro controller

UITL206:OPERATING SYSTEM							
Teaching Scheme: Credit: Examination Scheme:							
Lectures: 03 Hrs./Week	3	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks					

Prerequisite (If any):

Course Objectives: After completing this course, student will able to

- 1.Introduces general idea, structure and functions of operating system
- 2. Making students aware of basic mechanisms used to handle processes, memory, storage devices and files.
- 3.Recent trends in the operating system

Couse Outcomes:

- CO1:Identify basic structure and purpose of operating system.
- CO2. Interpret the concepts of process and illustrate various CPU scheduling algorithms.
- CO3. Interpret the concepts of inter process communication.
- CO4. Schematize Deadlock & security mechanisms in operating systems.
- CO5. Analyze different memory management techniques with advantages and disadvantages.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO	PSO ₃
	1	2	3	4	5	6	7	8	9	10	11	12		2	
CO1	2	2	3	2	2								1	1	1
CO2	2	2	3	3	3								3	3	
CO3	3	3	3	3	3								3	3	
CO4	3	3	2	3	3								3	3	1

Course Contents								
UNIT I: Introducation								
Evolution of OS, Types of OS, Basic h/w support necessary for modern operating systems, services provided by OS, system programs and system calls, system design and implementation.								
UNIT II: Process & Its Scheduling								
Process & Its Scheduling Process concept, process control block, Types of scheduler, context switch, threads, multithreading model, goals of scheduling and different scheduling algorithms								
UNIT III:Process management and synchronization								
Process management and synchronization: Concurrency conditions, Critical section problem, software and hardware solution, semaphores, conditional critical regions and monitors, classical inter process communication problems								

UNIT IV:Deadlock	7
Deadlock definitions, Prevention, Avoidance, detection and Recovery, Goals of Protection,	
access matrix, Deadlock implementation	
UNIT V: File systems	8
File systems: File concept, Access methods space allocation strategies, disk arm scheduling strategies. Contiguous allocation, Relocation, Paging, Segmentation, Segmentation with	
paging, demand paging, Virtual Memory Concepts, page faults and instruction restart, page replacement algorithms, working sets, Locality of reference, Thrashing, Garbage Collection.	

Text	1.	Operating System concepts – Silberchatz; Galvin, Addison Wesley, 6 thEdn.				
Books	2.	Modern Operating Systems – Tanenbaum, Pearson Edn. 2 ndedn				
	3.	Operating Systems: Internals and Design Principles William Stallings				
Reference	1.	Operating Systems – S R Sathe, Macmillan Publishers, India, 2008				
Books	2.	Operating System – Milan Milenkovik, McGraw-Hill, 1987				
DOOKS	3.	Operating Systems - 3 rd Edition by Gary Nutt, Pearson Education.				
on line TL Material	1.	https://nptel.ac.in/courses/106/108/106108101/				

	UITL206:OPERATING SYSTEM Lab								
Teachir	ng Scheme:	Credit	Examin	ation Scheme					
Practica	al: 02Hrs./Week	1	INT :25 Marks	Ext: NA					
Course	Course Outcomes: On completion of the course, student will be able to—								
		e and purpose of operating							
CO2: In	terpret the concepts	s of process and illustrate v	various CPU scheduli	ng algorithms.					
	<u> </u>	of inter process communication							
	chematize Deadlock	& security mechanisms in							
Sr.No		· ·	Assignments(*Any	,					
1	_	nux general purpose utility							
		rm, mkdir, rmdir, echo, m		istory, chmod, chown,					
		ogout, shutdown) comman							
2		n shell for printing table o	f any number.						
3	1 1 0	ram in shell script:							
	· ·	orial of given number							
4		ntest of three number							
4		m in shell script:	,						
		en number in reverse order n and odd numbers from g							
5	·	ven shell script program to							
6		ven program by using swite							
		ctorial of given number	on case for following.						
		eatest of three number							
	_	iven number in reverse ord	ler						
	, ,	en and odd numbers from							
7		for creating child process b							
8		NKER'S algorithm for dea							
9		owing Non pre-emptive C		thms: First Come First					
	Serve, Shortest Jo								
10		owing Pre-emptive CPU s	cheduling algorithms:	Shortest Job First,					
	Priority, and Round Robin.								
	Content Beyond	· ·							
11		f Page replacement algorit							
	a) First In Fir	, , , , , , , , , , , , , , , , , , ,		ge replacement algorithm					
12	1 0	for creating child process of		nmand.					
13	Write a program t	hrough which run any Uni	x command						

UCSL2001:Basics of Computer Network(Open Elective 1)										
Teaching Scheme:	Credit:	Examination Scheme:								
Lectures: 02 Hrs./Week	2	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks								

Prerequisite (If any):

Course Objectives: After completing this course, student's will be able to

- 1. Build an understanding of the fundamental concepts of data communication and computer networking
- 2. Know about routing mechanisms and different routing protocols
- 3. Understand transport layer functions
- 4. Know about different application layer protocols

Couse Outcomes:

- CO1. Summarize services offered by layers of OSI model and TCP/IP model
- CO2. Determine the different network management techniques of various protocol.
- CO3. Understand and building the skills of subnetting and routing mechanisms

CO4:Explore various recent trends in networking.

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO P													PSO ₃
	1	2	3	4	5	6	7	8	9	10	11	12		2	
CO1	2	1	2	2	2			2		1			3	2	1
CO2	3	2	2	2	3	2	1	1	2	1			2	2	
CO3	1	2	2	3	3			2				2	2	2	
CO4	2	2	2	2	2			2		2		2	3	2	

Course Contents	Hrs.
Unit I: Introduction to Computer Networks and Logical Link Medium Access Control	8
Introduction – Network architecture -Design. Reference models- The OSI Reference Model-	
The TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models	
Design Issues, Switching Techniques: Circuit and Packet Switching, Connectionless and	
Connection-oriented Services, Virtual Circuit and Datagram Subnets	
Unit II: Network Layer-I	8
Routing Algorithms: Optimality principle, shortest path routing, flooding, Distance Vector	
routing, link state routing, hierarchical routing. Network layer services, IP protocol, IPv4,	
Problems with IPv4,IPV6, Sub-netting, Network layer Protocols: ARP, RARP, ICMP, DHCP,	
Unicast Routing Algorithms: RIP, OSPF, BGP	
Unit III: Transport Layer	8
UDP : UDP functionality, UDP Header;	

TCP: TCP Features, byte-stream, Connection-oriented, TCP Header Format, 2-way, 3-way Handshake, TCP State Diagram, TCP Sliding Window, Congestion Control Algorithms,

Leaky Bucket, Token Bucket, Congestion Avoidance, Fast Retransmit, Fast Recovery,	
Unit IV: Application Layer	8
Domain Name System (DNS), Naming and Address Schemes, DNS servers, Email: MIME,	
SMTP and POP3. Remote login, File Transfer Protocol (FTP), SNMP, DHCP and BOOTP.	
World Wide Web, HTTP	

	1.	Computer Networks (3rd edition), Tanenbaum Andrew S., International edition, 1996.
Toyt	2	Behrouz A. Forouzan, TCP/IP Protocol Suite, McGraw Hill Education, ISBN: 978-0-07-
Text Books	۷.	070652-1,4th Edition
DOOKS	2	KazemSohraby, Daniel Minoli, TaiebZnati, Wireless Sensor Network", Wiley, ISBN
	3.	:978-0-471-74300-2.
	1	James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach
Referenc	1.	Featuring the Internet", Pearson Education, 6th Edition, ISBN: 978-02737-68968
e Books	2	Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor
	2.	Networks",

UCOL2002: Cloud Computing (Open Elective 1)

Teaching Scheme:	Credit:	Examination Scheme:
Lectures: 02 Hrs./Week	2	TAE: 10 Marks, CAE: 15 Marks, ESE:50 Marks

Prerequisite (If any):

Course Objectives: After completing this course, student's will be able to

- 1. To study cloud computing concepts.
- 2. To learn Key concepts of virtualization.
- 3. Enhancing cloud computing environment.
- 4.To study various platforms and Storage structure of cloud

Couse Outcomes:

- 1. Understand the cloud computing concepts.
- 2. Describe importance of virtualization along with their technologies.
- 3. Define Cloud Computing and memorize the different Cloud service and deployment models
- 4. Understand and apply different Storage structure of cloud.

Management Law

PUNE JALGAON AMRAVATI

Course		Program Outcomes and Program Specific Outcomes													
Outcomes	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO	PSO ₃
	1	2	3	4	5	6	7	8	9	10	11	12		2	
CO1	2	1	2	2	2			2		1			3	2	1
CO2	3	2	2	2	3	2	1	1	2	1			2	2	
CO3	1	2	2	3	3			2				2	2	2	
CO4	2	2	2	2	2			2		2		2	3	2	

Course Contents	Hrs.
Unit I: Introduction	8
Limitations, Security Concerns. Software as a Service (SaaS)- Understanding the Multitenant Nature of SaaS Solutions, Understanding SOA. Platform as a Service (PaaS)-IT Evolution Leading to the Cloud, Benefits of Paas Solutions, Disadvantages of PaaS Solutions. Infrastructure as a Service (IaaS)-Understanding IaaS, Improving Performance through Load Balancing, System and Storage Redundancy, Utilizing Cloud-Based NAS Devices, Advantages, Server Types. Identity as a Service (IDaaS).	
Unit II: Virtualization	8
Introduction, Characteristics of Virtualized environments, Taxonomy of Virtualization techniques, Pros	
and Cons of Virtualization, Technology examples: Xen, KVM, Vmware, Microsoft Hyper-V.	
Unit III: Storage in Cloud	8
Cloud file systems: GFS and HDFS, BigTable, HBase and Dynamo Cloud data stores: Datastore and Simple DB GautamShrauf, Cloud Storage-Overview, Cloud Storage Providers. [Anthony T. Velte]3 Securing the Cloud- General Security Advantages of Cloud-Based Solutions, Introducing Business	

Continuity and Disaster Recovery. Disaster Recovery- Understanding the Threats.	
Unit IV: Cloud computing platforms	8
Infrastructure as Service, best-of breed cloud infrastructure components, cloud ready converged	
infrastructure, Virtual machine provisioning and migration services, Anatomy of Cloud infrastructure,	
Distributed management of virtual infrastructure, scheduling techniques, SLA Commitment	

	1.	RajkumarBuyya, James Broberg, Andrzej M. Goscinski , " Cloud computing principles and paradigms", Wiley Publishing ©2011 ISBN: 9780470887998									
Text Books	2.	Gautam Shroff," Enterprise Cloud Computing", Cambridge University Press, December 2010,Online ISBN: 9780511778476 Online ISBN: 9780511778476.									
	3.	BorkoFurht, Armando Escalante, Handbook of Cloud Computing, Springer Publication, ISBN:1441965238 978 1441965233									
	1.	Dr. Kumar Saurabh, " Cloud Computing", Wiley Publication@2012 ISBN 10: 8126536039									
Referenc e Books	2.	Greg Schulz, "Cloud and virtual data storage networking", CRC Press Auerbach Publications, Published August 26, 2011, ISBN 9781439851739.									
		1. Barrie Sosinsky,"Cloud Computing", Wiley India @2011 ,ISBN: 9780470903568.									

				UDS	SP208	:Data	Anal	ysis u	sing P	'ython	/R				
Teaching Scheme: Credit: Examination Schem											eme:				
Practical: 04 Hrs./Week 2										J	INT: 2	5 mai	rks		
Prerequis	ite (I	f any)	:												
Course O	bjecti	ives:													
1. To und	erstand	d the t	asics	of Data	a Anal	ysis a	nd Sta	itistics	S.						
2. To unde	erstand	d the F	Expert	conce	pts of 1	Machi	ine lea	ırning	using	R pro	gramm	ing.			
3. To expl	ore th	e conc	ept of	f princi	pal co	mpon	ent an	alysis	and H	lypoth	esis tes	sting.			
4. To expl	ore to	ols an	d prac	tices fo	or wor	king v	with R	-							
Course O	utcon	nes: A	After c	omplet	ing th	is cou	rse, st	udent	s will	be abl	e to				
CO1.Apply	the c	oncep	ts of c	lata ana	alysis	for a c	lomaiı	1.							
CO2. Unde	rstand	and a	pply t	he data	analy	sis tec	chniqu	e for	Machi	ne Lea	rning 1	Mode	l Desig	gning	
CO3.Unde		-	data	from	differ	ent so	ources	(sm	all da	taset	and la	rge o	dataset	s),clea	an and
manij															
CO4.Prepr	ocess	and cl	ean da												<u> </u>
Course	DO										c Outc			Dac	Daga
0 4	PO 1	PO	PO	PO	PO	PO	PO	PO	PO 9	PO10	PO11		PSO1		PSO3
Outcomes		2	3	2	5	6	7	8				12		2	1
		1	' ')				1	ı					1	1	1
CO1	1	1	2											1	
		1 1 1	2 2	1 2										1 1	

Course Contents	Hrs.
Unit I: Introduction to data analysis	6
Introduction to data analysis: Overview, Data Science vs Data Analsis, Business Analytics	
classification, Data Science Project workflow, Project Roles, Introduction to R programming,	
R Studio, Applications of R	
Unit II: Statistics for Data Analysis	6
Statistics basic terminologies, Sampling methods, Cluster Sampling, Systematic & Biased	
Sampling. Sampling Error, EDA, EDA – Measures of Central Tendency: Mean, Median,	
Mode, Mid-range.	
Measures of Dispersion: Range, Variance, Mean Deviation, StandardDeviation.	
Unit IV:Introduction to Hypothesis	4
Bayestheorem, Basics and need of hypothesis and hypothesis testing, Pears on Correlation, Sample	
Hypothesis testing. 47	<u> </u>
Unit V: Basic Data Analysis through RStudio	6

Basic Data Analysis through RStudio, Essentials of R Programming: Data Types and Objects in R,	
Control Structures (Functions) in R, Useful R Packages.	
Exploratory Data Analysis in R: Basic Graphs, Treating Missing values, Working with	
Continuous and Categorical Variables.	
Unit VI:Data Manipulation in R	6
Data Manipulation in R: Feature Engineering, Label Encoding and One Hot	
Encoding.	
Predictive Modeling using Machine Learning: Linear (Multiple) Regression, Decision Trees,	
Rando Forest.	

	1	Hands-on Programming with R, Garrett Grolemund.
Text Book	2	R for Everyone: Advanced Analytics and Graphics, Jared Lander
	3	Data Analytics: The Complete Beginner's Guide: the Black book, Byron Francis, Create Space Ind pendent Publishing Platform, 2016
	1	R in Nutshell, Joseph Adler, O'Reilly Publications
E-Books	2	Introduction to Statistical learning with R, Gareth James, Daniela Written, Trevor Hastie, Robert Tibshivani, Springer Publications
	3	Data Analytics for Beginner: Paul Kinley
	1	Applied predictive modeling by Max Kuhn and Kejell Johnson
Reference Books	2	Introduction to statistical learning by Trevor Hastie
	3	Data Manipulation with R, Springer Publications
On line TL Material	1	NPTEL Course: https://nptel.ac.in/courses/110/106/110106072/
	2	Coursera Course: https://www.coursera.org/specializations/statistics
	3	Swayam Course: https://swayam.gov.in/nd1_noc20_ma53/preview

Sr.No.	NameofExperiment
1	a. InstallationandConfigurationof R/Python Studio.
	b. Write an R/Python program to take input from the user (name and age) and display the
	values. Also print the version of R installation.
2	Write a R/Python program to get the first 10 Fibonacci numbers.
3	Write a R/Python program to extract first 10 english letter in lower case and last 10 letters
	in upper case and extract letters between 22 nd to 24 th letters in upper case.
4	Write a R/Python program to create a list of random numbers in normal distribution and
	count occurrences of each value.
5	Write a R/Python program to create a 5 x 4 matrix, 3 x 3 matrix with labels and fill the
	matrix by rows and 2×2 matrix with labels and fill the matrix by columns.
6	Write an R/Python program to find the maximum and the minimum value of a given

	vector.
7	Write a R/Python program to create a simple bar plot of five subjects marks.
8	Write a R/Python program to create bell curve of a random normal distribution.
9	Write a R/Python program to compute sum, mean and product of a given vector elements.
10	Write a R program to create a list of heterogeneous data, which include character, numeric and logical vectors. Print the lists.
11	Write a R/Python program to read the .csv file and display the content. Write a R/Python program to create a Data Frames which contain details of 5 employees and display summary of the data.
12	Download the Iris flower dataset or any other dataset into a DataFrame. (eg https://archive.ics.uci.edu/ml/datasets/Iris) Use R/Python and Perform following — Create a histogram for each feature in the dataset to illustrate the feature distributions. Plot each histogram. Create boxplot for each feature in the dataset. All of the boxplots should be combined into a single plot. Compare distributions and identify outliers.

