Simscape Fluids exercise

Open Matlab.

Open the **Simscape** model template for your Simscape Fluids models.

For opening give Matlab command

ssc_new

This will open the

- model template with
 - Solver Configuration block
 - o and Simulink-PS Converter and PS-Simulink Converter blocks
- Foundation library

Simulink area

You can enter Matlab command SimscapeFluids_lib for Simscape Fluids block library.

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

Library: SimscapeFluids lib

Library: SimscapeFluids_lib > Hydraulics (Isothermal)

f(x) = 0

Model canvas

Find **Hydraulics** (**Isothermal**) > **Hydraulic Utilities** library, open it (double clicking) and use the mouse to drag a **Hydraulic Fluid** block to your new model canvas.

With this block you can determine the physical properties of the hydraulic fluid.

- density,
- viscosity, and
- bulk modulus.
- Connect the **Solver Configuration** and **Hydraulic Fluid** blocks.
 - With left mouse button draw a wire between blocks' terminals.
 - \bullet \cap \mathbb{R}
 - Click on the first block with the left button of your mouse
 - Press **Ctrl** button of your keyboard
 - Click on the second block
 - Connection (Wire) will be formed automatically.

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

Solver Configuration Hydraulic Fluid

The Solver Configuration block defines solver settings for your model.

In your canvas window click Library Browser button to open Simulink Library Browser.

From the **Library Browser's Simscape** > **Foundation** library

Pick the next two blocks and drag them to the model canvas.

Block Sublibrary

<u>Hydraulic Constant Pressure Source</u> Foundation Library > Hydraulic > Hydraulic Sources <u>Hydraulic Reference</u> Foundation Library > Hydraulic > Hydraulic Elements

Hydraulic Constant Pressure Source and Hydraulic Reference

> Local Hydraulic Resistances

The Hydraulic Reference block represents a connection to atmospheric pressure.

Connect these elements on the canvas. To make the branch use mouse's right button.

From the **Simscape** > **Fluids** library, pick and drag three blocks to the model canvas.

Block Sublibrary

Double-Acting

<u>Hydraulic Cylinder</u> **Hydraulics (Isothermal) > Hydraulic Cylinders**

(Simple)

4-Way Directional Valve Hydraulics (Isothermal) > Valves

- The block connections represent the physical connections between the actual components. The cylinder connects to the valve, which connects to the pump, which in turn connects to the fluid reservoir.
- Open the **4-Way Directional Valve** block dialog box by double clicking.

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

• From the **Simscape** > **Foundation** > **Mechanical** > **Translational** library, add a Mechanical Translational Reference block and connect it as shown in the figure.

• Connect the **4-way Directional Valve** to the **Double-Acting Hydraulic Cylinder** as follows.

• From the **Simscape** > **Foundation** > **Mechanical** > **Translational Elements** library, add a **Mass** block and connect it as shown in the figure below.

• From the Simscape > Foundation > Mechanical > Mechanical Sensors library bring an Ideal Translational Motion Sensor block and connect it as in the figure below (both C and R terminals).

• Connect the **Ideal Translational Motion Sensor** block to **PS-Simulink Converter** and **Scope** as follows.

• From the **Hydraulics (Isothermal)** > **Valves** > **Valve Actuators** library bring a **Valve Actuator** block and connect it to **Simulink-PS Converter** and **4-Way Directional Valve** as in the figure below.

• Connect the 4-Way Directional Valve to Hydraulic Constant Pressure Source block and to the Hydraulic Reference block as in the figure below.

Pressure sensor

• From the **Simscape > Foundation** library bring **Hydraulic > Hydraulic Sensors > Hydraulic Pressure Sensor** block. Make a copy of it and connect those two to **Hydraulic Cylinder's** A and B interfaces as well as the **Hydraulic Reference** (tank pressure) as in the figure below.

• Connect both of the **Hydraulic Pressure Sensor(s)** to **Scope(s)** by using a **PS-Simulink Converter** as follows.

Signal inputs

From the **Simulink Library Browser > Sources** bring

Step block \Rightarrow clone it (Ctrl-C and Ctrl-V) to get another block.

Constant block

From the Simulink Library Browser > Math Operations bring

Add block

Connect the blocks with **Simulink-PS Converter** block as follows.

Constant (named U_0) block represents the valve's zero point parameter. Adjust that parameter to keep cylinder still during zero input signal.

Pipes

From the Library: **Simscape > Fluids > Hydraulics (Isothermal) > Pipelines** bring **Hydraulic Pipeline** block. Make a copy of it and connect those two to **Hydraulic Cylinder's** A and B interfaces and corresponding A and B interfaces of **4-Way Directional Valve** as in the figure below.

Attention! You can rotate blocks by using Crtl-R keyboard command.

System Parameters – Double click blocks to open

Set system parameters as follows.

Step blocks

Step block 1 parameters

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

Step block 2 parameters

Constant (named U_0) block represents the valve's zero point parameter. Adjust that parameter to keep cylinder still during zero input.

Valve Actuator

- maximum **Valve stroke** 0.005 m (5 mm)
- by applying 10 V input the Actuator reaches full 5 mm stroke
- therefore the **Actuator gain** is 0.005/10 [m/V]
- the value for the **Time constant** can be 0.002 s (2 ms)

Hydraulic Constant Pressure Source (ideal constant pressure pump)

- ideal pump with constant pressure of 120 bar (in Matlab 120e5 [Pa])

4-Way Directional Valve (proportional valve)

For an orifice the flow rate is

If we know

$$q_{\rm v} = C_{\rm q} A \sqrt{\frac{2\Delta p}{\rho}}$$

- nominal flow rate (q_v) ,
- nominal pressure drop (Δp) ,
- fluid density (ρ) and
- flow coefficient (C_q)

the corresponding flow are can be calculated as follows

$$A = \frac{q_{\rm v}}{C_{\rm q} \sqrt{\frac{2\Delta p}{\rho}}}$$

For leakage of a certain proportional control valve

 $q_{\rm v}$ 0.45 l/min \Rightarrow 0.45/60000 m³/s

 Δp 50 bar \Rightarrow 50·10⁵ Pa

 ρ 961.873 kg/m³ (from **Hydraulic fluid** block)

 $C_{\rm q} = 0.7$

Leakage area parameter

0.45/60000/(0.7*sqrt(2*50e5/961.873))

Maximum opening parameter 0.005 m

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

Maximum opening area

Maximum opening area parameter

leakage area + actual flow area (40 l/min @ 35 bar) 40/60000/(0.7*sqrt(2*35e5/961.873))+0.45/60000/(0.7*sqrt(2*50e5/961.873))

Double-Acting Hydraulic Cylinder (Simple)

Aalto university

https://mycourses.aalto.fi/course/view.php?id=21959§ion=1

BIOCK Parameters: Double-Actin	ng Hydraulic Cylinder (Simple)	×
Double-Acting Hydraulic Cylind	der (Simple)	
basic cylinder functionality mureasons, factors such as fluid of hard stops are assumed to be stroke. The model is suitable ficonnections R and C are mechand cylinder clamping structure.	ole-acting hydraulic cylinder developed for st be reproduced in exchange for better in compressibility, friction, and leakages are fully inelastic to eliminate any possible osc or real time or HIL simulation if such simpl hanical translational conserving ports corree e, respectively. Connections A and B are h ind port B is connected to chamber B. The rientation parameter.	merical efficiency. For these issumed to be negligible. The illations at the end of the ifications are acceptable. sponding to the cylinder rod ydraulic conserving ports. Port
Settings		
Parameters		
Piston area A:	pi/4*0.032^2	m^2 ~
Piston area A: Piston area B:	pi/4*0.032^2 pi/4*0.032^2-pi/4*0.020^2	m^2
100011 01 00 7 11		
Piston area B:	pi/4*0.032^2-pi/4*0.020^2	m^2 ~
Piston area B: Piston stroke: Piston initial distance from	pi/4*0.032^2-pi/4*0.020^2	m^2

- D cylinder diameter 32 mm
- d rod diameter 20 mm
- maximum stroke 1 m
- initial position of piston 0.8 m
- $A_{\rm A} = \pi/4D^2$
- $A_{\rm B} = A_{\rm A} \pi/4d^2$

Mass

Pipe parameters

Update parameters

- Pipe internal diameter \Rightarrow 0.012 m
- Pipe length \Rightarrow 0.75 m

Ideal Translational Motion Sensor

Update parameter **Initial position** \Rightarrow 0.8 m

From the Library Browser's Simscape > Foundation library > Hydraulic > Hydraulic Sensors bring Hydraulic Pressure Sensor, make a copy of it and connect those two

- between Hydraulic Cylinder's A interface and Hydraulic Reference (B interface)
- between **Hydraulic Cylinder's** B interface and **Hydraulic Reference** (B interface)
- connect **P interfaces** to **PS-Simulink Converter(s)**
- connect **PS-Simulink Converter(s)** to **Scopes**

Assignment for phase 1

Make a short document (Word)

Documentation Format:

Your name

Assigments

- 1. Finalize the simulation model
 - a. Document part 1
 - i. Paste a **Figure of the System Model** to your document
 - ii. Edit > Copy Current View to Clipboard > Metafile or Bitmap
- 2. Tune the system with valve's zero point parameter (U_0). Adjust that parameter to keep cylinder still during zero input.
 - a. Document part 2
 - i. Give the proper parameter value for U_0
- 3. Plot the **Piston Displacement** signal
 - a. Document part 3
 - i. Copy the Scope plot and paste it into your document
 - ii. File > Copy to Clipboard (Ctrl-C) OR
 - iii. (File > Print to Figure) OR
 - iv. Configuration Properties > Logging > Log data to Workspace
 - 1. Variable name x
 - 2. Save format: Array
 - 3. In Matlab workspace
 - a. figure
 - b. plot(x(:,1),x(:,2);
- 4. Plot the Cylinder Pressure A signal
 - a. Document part 4
 - i. Copy the Scope plot and paste it into your document
 - ii. File > Copy to Clipboard (Ctrl-C) OR the options presented above
- 5. Plot the **Cylinder Pressure B** signal
 - a. Document part 5
 - i. Copy the Scope plot and paste it into your document
 - ii. File > Copy to Clipboard (Ctrl-C) OR the options presented above
- 6. Improvement suggestions to this Tutorial document
 - a. Actual errors or misprints (page and location)
 - b. Missing information
 - c. Actual improvements

Additional material

Getting started

https://se.mathworks.com/help/physmod/hydro/getting-started-with-simhydraulics.html Simple actuator model tutorial

https://se.mathworks.com/help/physmod/hydro/ug/creating-a-simple-model.html