

# Speech recognition

### Постановка задачи



На вход поступает спектрограмма аудиозаписи с человеческой речью.



Спектрограмма — последовательность из векторов, т.е. матрица  $n \times t$ .

Нужно вывести результат распознавания в виде  $\{a, ..., z, apostrophe, space\}^k$ , где k заранее неизвестно.

#### **BRNN**



• Задачу можно решать с помощью bidirectional RNN.



- Задачу можно решать с помощью bidirectional RNN.
- Функция активации clipped ReLu:  $g(z) = \min(20, \max(0, z))$



- Задачу можно решать с помощью bidirectional RNN.
- Функция активации clipped ReLu:
   g(z) = min(20, max(0, z))
- Регуляризация с помощью dropout 5-10%, накладывание шумов на аудиозаписи.



- Задачу можно решать с помощью bidirectional RNN.
- Функция активации clipped ReLu:
   g(z) = min(20, max(0, z))
- Регуляризация с помощью dropout 5-10%, накладывание шумов на аудиозаписи.
- CTC-loss.



- Задачу можно решать с помощью bidirectional RNN.
- Функция активации clipped ReLu:  $g(z) = \min(20, \max(0, z))$
- Регуляризация с помощью dropout 5-10%, накладывание шумов на аудиозаписи.
- CTC-loss.
- Если у спектрограммы размер  $n \times t$ , то на выходе получаем t векторов с вероятностями для каждой метки.









 Что если спектрограмма состоит из нескольких тысяч векторов, а в аудиозаписи всего одно слово?





- Что если спектрограмма состоит из нескольких тысяч векторов, а в аудиозаписи всего одно слово?
- Для получения конечного результата необходимо преобразовать выход модели.



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}.$ 

1. Каждому вектору сопоставим наиболее вероятный символ



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- 1. Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥

Пример: ssssss  $\bot\bot\bot$  ppp  $\bot$  eeee  $\bot$  eecchhhh

1.  $s \perp p \perp e \perp e \perp c \perp h \perp$ 



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥

Пример: ssssss  $\bot\bot\bot$  ppp  $\bot$  eeee  $\bot$  eeccchhhh

- 1.  $s \perp p \perp e \perp e \perp c \perp h \perp$
- 2. speech



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥

Пример: ssssss  $\bot\bot\bot$  ppp  $\bot$  eeee  $\bot$  eeccchhhh

- 1.  $s \perp p \perp e \perp e \perp c \perp h \perp$
- 2. speech

Порядок важен!



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥

Пример: ssssss  $\bot\bot\bot$  ppp  $\bot$  eeee  $\bot$  eeccchhhh

- 1.  $s \perp p \perp e \perp e \perp c \perp h \perp$
- 2. speech

Порядок важен!

• Пусть  $\mathcal{D}(w)$  преобразует слово w, выполняя шаги 2 и 3.



Множество меток необходимо расширить: теперь это  $\{a,...,z,apostrophe,space,\bot\}$ .

- Каждому вектору сопоставим наиболее вероятный символ
- 2. Удаляем повторяющиеся идущие подряд символы
- 3. Удаляем ⊥

Пример: ssssss  $\bot\bot\bot$  ppp  $\bot$  eeee  $\bot$  eecchhhh

- 1.  $s \perp p \perp e \perp e \perp c \perp h \perp$
- 2. speech

Порядок важен!

- Пусть  $\mathcal{D}(w)$  преобразует слово w, выполняя шаги 2 и 3.
- Способ неплохой, но можно лучше.

#### Чем плох этот способ?



| RNN output                                   | Decoded Transcription                        |
|----------------------------------------------|----------------------------------------------|
| what is the weather like in bostin right now | what is the weather like in boston right now |
| prime miniter nerenr modi                    | prime minister narendra modi                 |
| arther n tickets for the game                | are there any tickets for the game           |



• Пусть S — спектрограмма размера  $n \times t$ .



- Пусть S спектрограмма размера  $n \times t$ .
- Пусть  $\pi \in \{a,...,z, apostrophe, space, \bot\}^k$  путь длины  $k, w \in \{a,...,z, apostrophe, space\}^k$  слово длины k.



- Пусть S спектрограмма размера  $n \times t$ .
- Пусть  $\pi \in \{a, ..., z, apostrophe, space, \bot\}^k$  путь длины  $k, w \in \{a, ..., z, apostrophe, space\}^k$  слово длины k.
- Пусть  $\pi$  путь длины  $k \le t$ :  $P(\pi|S) = \prod_{i=1}^k y_{\pi_i}^{(i)}$ , где  $y^{(i)}$  векторы вероятности.



- Пусть S спектрограмма размера  $n \times t$ .
- Пусть  $\pi \in \{a, ..., z, apostrophe, space, \bot\}^k$  путь длины  $k, w \in \{a, ..., z, apostrophe, space\}^k$  слово длины k.
- Пусть  $\pi$  путь длины  $k \le t$ :  $P(\pi|S) = \prod_{i=1}^k y_{\pi_i}^{(i)}$ , где  $y^{(i)}$  векторы вероятности.
- Пусть w слово длины k ≤ t

$$\mathbb{P}(\textbf{\textit{w}}|\textbf{\textit{S}}) \overset{\textit{def}}{=} \sum_{\substack{\boldsymbol{\pi} \\ |\boldsymbol{\pi}| = t \\ \mathcal{D}(\boldsymbol{\pi}) = \textbf{\textit{w}}}} \textbf{\textit{P}}(\boldsymbol{\pi}|\textbf{\textit{S}})$$



• Слово  $w = w_1 w_2 ... w_k$ .



- Слово  $w = w_1 w_2 ... w_k$ .
- Введем путь  $I = \perp w_1 \perp w_2 \perp ... w_k \perp$ .



- Слово  $w = W_1 W_2 ... W_k$ .
- Введем путь  $I = \perp w_1 \perp w_2 \perp ... w_k \perp$ .
- Динамическое программирование по  $I: a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .



- Слово  $w = w_1 w_2 ... w_k$ .
- Введем путь  $I = \perp w_1 \perp w_2 \perp ... w_k \perp$ .
- Динамическое программирование по  $I: a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .

$$\mathbf{a}_{i}^{(j)} = \sum_{\substack{\boldsymbol{\pi} \\ |\boldsymbol{\pi}| = j \\ \mathcal{D}(\boldsymbol{\pi}) = \mathcal{D}(\mathbf{w}) \\ \boldsymbol{\pi}_{j} = l_{i}}} \mathbf{P}(\boldsymbol{\pi}|\mathbf{S})$$



• Динамическое программирование по I:  $a_i^{(j)}$  — суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .



- Динамическое программирование по I:  $a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .
- $a_1^{(1)} = y_\perp^{(1)}$



- Динамическое программирование по I:  $a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .
- ${\it a}_1^{(1)} = {\it y}_\perp^{(1)}$
- $\mathbf{a}_2^{(1)} = \mathbf{y}_{\mathbf{w}_1}^{(1)}$



- Динамическое программирование по I:  $a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .
- ${\it a}_1^{(1)} = {\it y}_\perp^{(1)}$
- $\mathbf{a}_2^{(1)} = \mathbf{y}_{\mathbf{w}_1}^{(1)}$
- $\forall i > 2 : a_i^{(1)} = 0$



- Динамическое программирование по  $I: a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .
- $a_1^{(1)} = y_{\perp}^{(1)}$
- $\mathbf{a}_2^{(1)} = \mathbf{y}_{\mathbf{w}_1}^{(1)}$
- $\forall i > 2 : a_i^{(1)} = 0$
- $\mathbb{P}(w|S) = a_{2k}^{(t)} + a_{2k+1}^{(t)}$



 $a_i^{(j)}$  — суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi)=\mathcal{D}(I_{1:i})$  и при этом  $\pi_j=I_i$ .

$$ullet$$
 Если  $\emph{\emph{I}}_i = \perp$ , то  $\emph{\emph{a}}_i^{(j)} = \left(\emph{\emph{a}}_i^{(j-1)} + \emph{\emph{a}}_{i-1}^{(j-1)}
ight)\emph{\emph{y}}_\perp^{(j)}.$ 



 $a_i^{(j)}$  — суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .

- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .



 $a_i^{(j)}$  — суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .

- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- $\mathcal{D}(\pi_{1:j-1}) = \mathcal{D}(I_{1:i}) = \mathcal{D}(I_{1:i-1})$



 $a_i^{(j)}$  — суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_j = I_i$ .

- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- $\mathcal{D}(\pi_{1:j-1}) = \mathcal{D}(I_{1:i}) = \mathcal{D}(I_{1:i-1})$
- Пусть  $\pi_{j-1}=c 
  eq \perp$ . Тогда последний символ  $\mathcal{D}(I_{1:j-1})$  равен  $c\Rightarrow c=I_{j-1}$ .



- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- $\mathcal{D}(\pi_{1:j-1}) = \mathcal{D}(I_{1:i}) = \mathcal{D}(I_{1:i-1})$
- Пусть  $\pi_{j-1}=c\neq \perp$ . Тогда последний символ  $\mathcal{D}(I_{1:j-1})$  равен  $c\Rightarrow c=I_{j-1}$ .
- Либо  $\pi_{j-1} = \perp$ , либо  $\pi_{j-1} = \textit{I}_{i-1}$ .



- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- $\mathcal{D}(\pi_{1:j-1}) = \mathcal{D}(I_{1:i}) = \mathcal{D}(I_{1:i-1})$
- Пусть  $\pi_{j-1}=c\neq \perp$ . Тогда последний символ  $\mathcal{D}(I_{1:j-1})$  равен  $c\Rightarrow c=I_{j-1}$ .
- Либо  $\pi_{j-1} = \perp$ , либо  $\pi_{j-1} = I_{j-1}$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \perp$ .



- ullet Если  $\emph{I}_i = \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_\perp^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- $\mathcal{D}(\pi_{1:j-1}) = \mathcal{D}(I_{1:i}) = \mathcal{D}(I_{1:i-1})$
- Пусть  $\pi_{j-1}=c\neq \perp$ . Тогда последний символ  $\mathcal{D}(I_{1:j-1})$  равен  $c\Rightarrow c=I_{j-1}$ .
- Либо  $\pi_{j-1} = \perp$ , либо  $\pi_{j-1} = I_{j-1}$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \perp$ .
- $a_{i-1}^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = I_{i-1}$ .



$$ullet$$
 Если  $\emph{\emph{I}}_i = \emph{\emph{I}}_{i-2} 
eq \perp$ , то  $\emph{\emph{a}}_i^{(j)} = \left(\emph{\emph{\emph{a}}}_i^{(j-1)} + \emph{\emph{\emph{a}}}_{i-1}^{(j-1)}
ight)\emph{\emph{\emph{y}}}_{\emph{\emph{\emph{\emph{\emph{I}}}}}}^{(j)}.$ 



- ullet Если  $\emph{\emph{I}}_i = \emph{\emph{I}}_{i-2} 
  eq \perp$ , то  $\emph{\emph{a}}_i^{(j)} = \left(\emph{\emph{\emph{a}}}_i^{(j-1)} + \emph{\emph{\emph{a}}}_{i-1}^{(j-1)}
  ight)\emph{\emph{\emph{\emph{y}}}}_{\emph{\emph{\emph{\emph{\emph{\emph{\emph{\emph{I}}}}}}}}}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .



- ullet Если  $\emph{I}_i = \emph{I}_{i-2} 
  eq \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_{\emph{I}_i}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ , но  $l_i = l_{i-2} \Rightarrow c = l_i$ .



- ullet Если  $\emph{I}_i = \emph{I}_{i-2} 
  eq \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_{\emph{I}_i}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ , но  $l_i = l_{j-2} \Rightarrow c = l_i$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \mathit{I}_i$ .



- ullet Если  $\emph{I}_i = \emph{I}_{i-2} 
  eq \perp$ , то  $\emph{a}_i^{(j)} = \left(\emph{a}_i^{(j-1)} + \emph{a}_{i-1}^{(j-1)}
  ight)\emph{y}_{\emph{I}_i}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ , но  $l_i = l_{i-2} \Rightarrow c = l_i$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = I_j$ .
- $a_{i-1}^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \perp$ .



$$ullet$$
 Если  $oxed{oxed} 
otin I_{i} 
eq I_{i-2}, ext{ то } oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
ight) oldsymbol{y}_{I_{i}}^{(j)}.$ 



- ullet Если  $oxed{oxed} 
  otin I_{i} 
  eq I_{i-2},$  то  $oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
  ight) oldsymbol{y}_{I_{i}}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .



- ullet Если  $oxed{oxed} 
  otin I_{i} 
  eq I_{i-2}$ , то  $oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
  ight) oldsymbol{y}_{I_{i}}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ .



- ullet Если  $oxed{oxed} 
  otin I_{i} 
  eq I_{i-2}$ , то  $oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
  ight) oldsymbol{y}_{I_{i}}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = I_i$ .



- ullet Если  $oxed{oxed} oxed{oxed} I_{i} 
  eq I_{i-2}$ , то  $oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
  ight)oldsymbol{y}_{I_{i}}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = I_{i}$ .
- $a_{j-1}^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \perp$ .



- ullet Если  $oxed{oxed} 
  otin I_{i} 
  eq I_{i-2},$  то  $oldsymbol{a}_{i}^{(j)} = \left(oldsymbol{a}_{i}^{(j-1)} + oldsymbol{a}_{i-1}^{(j-1)} + oldsymbol{a}_{i-2}^{(j-1)}
  ight) oldsymbol{y}_{I_{i}}^{(j)}.$
- Пусть  $\pi$  учитывается в  $a_i^{(j)}$ .
- Пусть  $\pi_{j-1} = c \neq \perp$ . Тогда  $c = l_i$ , либо  $c = l_{i-2}$ .
- $a_i^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = I_j$ .
- $a_{i-1}^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \perp$ .
- $a_{i-2}^{(j-1)}$  отвечает только за те пути  $\pi$ , что  $\pi_{j-1} = \mathit{I}_{i-2}$





$$m{a}_i^{(j)} = \left\{ egin{array}{l} \left(m{a}_i^{(j-1)} + m{a}_{i-1}^{(j-1)}
ight) m{y}_{l_i}^{(j)} & ext{если } m{I}_i = ot & ext{или } m{I}_i = m{I}_{i-2} \ \left(m{a}_i^{(j-1)} + m{a}_{i-1}^{(j-1)} + m{a}_{i-2}^{(j-1)}
ight) m{y}_{l_i}^{(j)} & ext{иначе} \end{array} 
ight.$$

### n-gram



- Пусть есть большой корпус текста, *с n*-грамма.
- $\bullet \ \textit{P}_{\textit{Im}}(\textit{c}) = \frac{\textit{cnt}(\textit{c})}{\textit{cnt}(\textit{c}_1\textit{c}_2...\textit{c}_{n-1})}$

### n-gram



- Пусть есть большой корпус текста, *с n*-грамма.
- $P_{lm}(c) = rac{\operatorname{cnt}(c)}{\operatorname{cnt}(c_1c_2...c_{n-1})}$
- Вероятность слова w:  $P_{lm}(w) = P_{lm}(w_1...w_n)P_{lm}(w_2...w_{n+1})...P_{lm}(w_{k-n+1}...w_k)$



- Пусть есть большой корпус текста, с n-грамма.
- $P_{lm}(c) = \frac{\operatorname{cnt}(c)}{\operatorname{cnt}(c_1c_2...c_{n-1})}$
- Вероятность слова w:

$$P_{\textit{lm}}(\textit{w}) = P_{\textit{lm}}(\textit{w}_1...\textit{w}_n) P_{\textit{lm}}(\textit{w}_2...\textit{w}_{n+1})...P_{\textit{lm}}(\textit{w}_{k-n+1}...\textit{w}_k)$$

$$Q(w) = \mathbb{P}(w) + \alpha P_{lm}(w) + \beta \operatorname{cnt}(w)$$



- Пусть есть большой корпус текста, с n-грамма.
- $P_{lm}(c) = \frac{\operatorname{cnt}(c)}{\operatorname{cnt}(c_1c_2...c_{n-1})}$
- Вероятность слова w:

$$P_{lm}(w) = P_{lm}(w_1...w_n)P_{lm}(w_2...w_{n+1})...P_{lm}(w_{k-n+1}...w_k)$$

$$Q(w) = \mathbb{P}(w) + \alpha P_{lm}(w) + \beta \operatorname{cnt}(w)$$

| RNN output                                   | Decoded Transcription                        |
|----------------------------------------------|----------------------------------------------|
| what is the weather like in bostin right now | what is the weather like in boston right now |
| prime miniter nerenr modi                    | prime minister narendra modi                 |
| arther n tickets for the game                | are there any tickets for the game           |



Пусть 
$$D = (S_i, w_i)_{i=1}^d$$
 — данные, на которых считается ошибка.

$$\mathcal{L} = -\sum_{(\textbf{S}, \textbf{w}) \in \textbf{D}} \text{In} \left( \mathbb{P}(\textbf{w}|\textbf{S}) \right)$$



Пусть  $D = (S_i, w_i)_{i=1}^d$  — данные, на которых считается ошибка.

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in \mathcal{D}} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$

• Как посчитать градиент?



Пусть  $D = (S_i, w_i)_{i=1}^d$  — данные, на которых считается ошибка.

$$\mathcal{L} = -\sum_{(\mathcal{S}, \textit{w}) \in \textit{D}} \ln \left( \mathbb{P}(\textit{w}|\mathcal{S}) \right)$$

- Как посчитать градиент?
- $a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:j})$  и при этом  $\pi_j = I_j$ .



Пусть  $D = (S_i, w_i)_{i=1}^d$  — данные, на которых считается ошибка.

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in D} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$

- Как посчитать градиент?
- $a_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{1:i})$  и при этом  $\pi_i = I_i$ .
- $b_i^{(j)}$  суммарная вероятность путей  $\pi$  длины j, таких, что  $\mathcal{D}(\pi) = \mathcal{D}(I_{i:|I|})$  и при этом  $\pi_1 = I_i$ .









• Проставим  $\mathbf{a}_{i}^{(j)} = 0 \ \forall i < |\mathbf{I}| - 2(\mathbf{t} - \mathbf{j}) - 1$  — верхний правый угол.





- Проставим  $oldsymbol{a}_i^{(j)} = 0 \,\, orall i < |I| 2(t-j) 1$  верхний правый угол.
- Проставим  $b_i^{(j)} = 0 \ \forall i > 2j$  левый нижний угол.





- Проставим  $\mathbf{a}_{i}^{(j)} = 0 \ \forall i < |\mathit{I}| 2(\mathit{t} \mathit{j}) 1$  верхний правый угол.
- Проставим  $b_i^{(j)} = 0 \ \forall i > 2j$  левый нижний угол.





$$a_{i}^{(j)}b_{i}^{(j)} = y_{l_{i}}^{(j)} \cdot \sum_{\substack{\pi \\ |\pi|=t \\ \mathcal{D}(\pi) = \mathcal{D}(l) \\ \pi_{j} = l_{i}}} P(\pi|S) = y_{l_{i}}^{(j)} \cdot \sum_{\substack{\pi \\ |\pi|=t \\ \mathcal{D}(\pi) = \mathcal{D}(l) \\ \pi_{j} = l_{i}}} \prod_{u=1}^{t} y_{\pi u}^{(u)}$$





$$\begin{aligned} a_{i}^{(j)}b_{i}^{(j)} &= y_{l_{i}}^{(j)} \cdot \sum_{\substack{\pi \\ |\pi| = t \\ \mathcal{D}(\pi) = \mathcal{D}(l) \\ \pi_{j} = l_{i}}} P(\pi|S) = y_{l_{i}}^{(j)} \cdot \sum_{\substack{\pi \\ |\pi| = t \\ \mathcal{D}(\pi) = \mathcal{D}(l) \\ \pi_{j} = l_{i}}} \prod_{u=1}^{l} y_{\pi u}^{(u)} \\ &\sum_{i=1}^{|I|} \frac{a_{i}^{(j)}b_{i}^{(j)}}{y_{l_{i}}^{(j)}} = \mathbb{P}(w|S) \end{aligned}$$



Нужно научиться брать производные такого вида:  $\frac{\partial \mathcal{L}}{\partial y_i^{(j)}}$ 



Нужно научиться брать производные такого вида:  $\frac{\partial \mathcal{L}}{\partial y_i^{(j)}}$ 

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in D} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$



Нужно научиться брать производные такого вида:  $\frac{\partial \mathcal{L}}{\partial y_i^{(j)}}$ 

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in \mathcal{D}} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$

То есть достаточно научиться брать производные такого вида:  $\frac{\partial \mathbb{P}(w|S)}{\partial y_i^{(j)}}$ 



Нужно научиться брать производные такого вида:  $\frac{\partial \mathcal{L}}{\partial y_{i}^{(j)}}$ 

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in \mathcal{D}} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$

То есть достаточно научиться брать производные такого вида:  $\frac{\partial \mathbb{P}(w|S)}{\partial v^{(j)}}$ 

$$\sum_{i=1}^{|I|} \frac{a_i^{(j)} b_i^{(j)}}{y_{I_i}^{(j)}} = \mathbb{P}(w|S)$$



Нужно научиться брать производные такого вида:  $\frac{\partial \mathcal{L}}{\partial y_{i}^{(j)}}$ 

$$\mathcal{L} = -\sum_{(\mathcal{S}, w) \in \mathcal{D}} \ln \left( \mathbb{P}(w|\mathcal{S}) \right)$$

То есть достаточно научиться брать производные такого вида:  $\frac{\partial \mathbb{P}(w|S)}{\partial v^{(j)}}$ 

$$\sum_{i=1}^{|I|} \frac{a_i^{(j)} b_i^{(j)}}{y_{I_i}^{(j)}} = \mathbb{P}(w|S)$$

То есть достаточно научиться брать производные такого вида:  $\frac{\partial}{\partial y_c^{(j)}} \left( \frac{\mathbf{a}_i^{(j)} \mathbf{b}_i^{(j)}}{y_{l:}^{(j)}} \right)$ 





Если 
$$\emph{I}_{\emph{i}} 
eq \emph{c}$$
, то  $\frac{\partial}{\partial \emph{y}^{(\emph{j})}_{\emph{c}}} \left( \frac{\emph{a}^{(\emph{j})}_{\emph{i}} \emph{b}^{(\emph{j})}_{\emph{i}}}{\emph{y}^{(\emph{j})}_{\emph{i}}} \right) = 0.$ 





Если 
$$\emph{I}_{\emph{i}} 
eq \emph{c}$$
, то  $\frac{\partial}{\partial \emph{y}^{(\emph{j})}_{\emph{c}}} \left( \frac{\emph{a}^{(\emph{j})}_{\emph{i}} \emph{b}^{(\emph{j})}_{\emph{i}}}{\emph{y}^{(\emph{j})}_{\emph{l}_{\emph{i}}}} \right) = 0.$ 

Иначе:

$$\frac{\partial}{\partial y_{l_{i}}^{(j)}} \left( \frac{\mathbf{a}_{i}^{(j)} \mathbf{b}_{i}^{(j)}}{\mathbf{y}_{l_{i}}^{(j)}} \right) = \frac{\partial}{\partial y_{l_{i}}^{(j)}} \left( \sum_{\substack{\substack{\pi \\ | \pi | = t \\ \mathcal{D}(\pi) = \mathcal{D}(l) \\ \pi_{i} = l_{i}}} \prod_{u=1}^{t} y_{\pi_{u}}^{(u)} \right) = \frac{\mathbf{a}_{i}^{(j)} \mathbf{b}_{i}^{(j)}}{\left( y_{l_{i}}^{(j)} \right)^{2}}$$

# Результаты



#### WER - word error rate

| System          | Clean (94) | Noisy (82) | Combined (176) |
|-----------------|------------|------------|----------------|
| Apple Dictation | 14.24      | 43.76      | 26.73          |
| Bing Speech     | 11.73      | 36.12      | 22.05          |
| Google API      | 6.64       | 30.47      | 16.72          |
| wit.ai          | 7.94       | 35.06      | 19.41          |
| Deep Speech     | 6.56       | 19.06      | 11.85          |

#### Список источников



- https://arxiv.org/abs/1412.5567
- https:
  //www.cs.toronto.edu/~graves/icml\_2006.pdf
- An Intuitive Explanation of Connectionist Temporal Classification