UNIVERSIDADE DE SÃO PAULO

Escola de Engenharia de São Carlos

SEL0621 - Projetos de Circuitos Integrados Digitais I Prof. Dr. João Pereira do Carmo

Projeto 8

Davi Diório Mendes 7546989

Nivaldo Henrique Bondança 7143909

1 de outubro de 2014

Lista de Figuras

1	Exemplo de esquemático	p. 6		
2	Prescaler 32/33	p. 9		
3	Layout do circuito Prescaler 32/33 na tecnologia AMS 0.35 (dimensões de			
	$82\mu m \times 35\mu m$). O divisor 4/5 está indicado com um quadrado tracejado	p. 10		

Lista de Tabelas

1 Máximas frequências de operação para o divisor de frequência da **Figura ??** . p. 8

Códigos Fontes

1	Comandos e sinais	utilizados na	simulação	p. ´	7
---	-------------------	---------------	-----------	------	---

Introdução

...

Resumo

Nesta experiência iniciaremos o uso de células da biblioteca de células da AMS. Para isso será desenvolvido um circuito *Prescaler* 32/33 e feitas simulações sobre ele.

Questões

1. Verifique no arquivo:

/tools/dkit/ams_3.70_mgc/www/index.html

as informações sobre as células digitais disponíveis no processo AMS $0.35\mu m$. Entenda os dados fornecidos (*Standar Cell DataSheet* – C35 – *Core Cells*).

2. *Procure o *layout* da célula **DL1** e o abra no IcStation. Levante e **desenhe o circuito esquemático** desta célula (não precisa determinar as dimensões dos transistores). Observe com cuidado o *layout* feito.

O esquemático está representado na Figura ??

3. *Observe que na célula **DL1** as linhas dos sinais de V_{DD} e V_{SS} correm nas extremidades superior e inferior. Qual é a dimensão vertical destas linhas e qual a distância entre elas. Abra

outra célula da biblioteca e verifique as dimensões das linhas de V_{DD} e V_{SS} e a distância entre elas. São iguais em todas as células? Seria/é interessante que fossem/sejam iguais, por quê?

Dimensão vertical: 0.75

Distância: 11.50

Analisando outras células, nota-se que as distâncias e dimensões são sempre as mesmas. Isso é feito para que as células possam ser facilmente alinhadas e utilizadas em blocos.

4. *Considere o circuito da **Figura 1** . Desenhe seu **esquemático** utilizando as células **DF3**, **NAND22**. Como sinal de entrada deve colocar o *clock* e **D**; como sinal de saída, **Q**. Gere o símbolo para a célula e faça todas as verificações necessárias. Certifique-se que não haja erros ou *warnings*.

Figura 1: Exemplo de esquemático.

O esquemático está representado na Figura ??, e o símbolo na Figura ??.

5. *A partir das informações dos blocos que compõe este circuito estime o valor máximo da frequência do clock que o circuito pode suportar (considere a entrada D = "1", utilize o pior caso entre subida e descida das portas e considere que os sinais são rápidos). Apresente os cálculos.

Analisando o circuito, pode-se notar que a equação que representa o caminho crítico é a seguinte,

$$t_{min} = t_{setup} + t_{nand} + t_{hold} \tag{1}$$

Por analisar as configurações dos componentes, sabe-se que $t_{setup} = 0ns$, $t_{hold} = 0,129ns$ e $t_{nand} = ns$. Assim sendo, $t_{min} = Xns$ o que implica uma frequência máxima de clock de

XXXGHz.

- **6.** *O que significam tempos de *holding* e de *set-up* em *flip-flops*. Qual seria o valor máximo do *clock*, do exercício acima, caso o tempo de *set-up* fosse de 0, 1*ns*.
- **holding** \rightarrow Tempo mínimo para segurar o sinal em uma determinada tensão para que o *flip-flop* possa armazená-lo.
- set- $up \rightarrow Tempo para que o flip-flop esteja pronto para propagar o sinal, partindo do princípio que o sinal já está armazenado.$

Recalculando o tempo máximo de *clock*, considerando tempo de *set-up* de 0, 1ns, tem-se $t_{min} = X$, e logo o valor máximo do *clock* seria de xHz.

- 7. *Gere, a partir do esquemático, um arquivo *netlist* para o ELDO. Simule o circuito com os parâmetros típicos e determine a **máxima velocidade** (*clock*) do circuito. Considere
 - a entrada D = "1";
 - $V_{DD} = 3V$;
 - o sinal de *clock* com (tempo de subida) = (tempo de descida) = $0, 1 \cdot Perodo$.

Apresente as linhas de comando e sinais utilizados.

As linhas de comando e os sinais utiliados estão representados no Código fonte ??

Código Fonte 1: Comandos e sinais utilizados na simulação

* TODO

- **8.** *Gere agora o *layout* para o circuito (use para isso o *designviepoint* não o *schematic*). Neste *layout* deve-se tomar cuidado com:
 - a área total do circuito;

- o uso correto dos metais e poli como camadas de conexão;
- a posição e o tamanho dos *ports* de entrada e saída;
- a largura das linhas de V_{DD} e V_{SS} , não inferiores a $1\mu m$ (use **Route ARoutre NEt Classe**).

Faça a verificação com o **DRC** (CALIBRE), passe o **LVS** e elimine todos os erros. **Apresente** a figura do *layout* no relatório.

- **9.** *Faça a extração do circuito via o Calibre com a opção **C+CC** (deve ser usada uma configuração que garanta que o nome dos nós venha do *schematic*). Simule o circuito com parâmetros típicos e determine sua máxima velocidade. Utilize as mesmas condições do exercício 7.
- **10.** *Extraia agora com a opção **R+C+CC**. Simule o circuito com parâmetros típicos e determine sua máxima velocidade. Utilize as mesmas condições do exercício 7.
- 11. *Monte uma tabela com os resultados obtidos nos exercícios 5, 7, 9 e 10. Compare e comente os resultados.

Tabela 1: Máximas frequências de operação para o divisor de frequência da Figura ?? .

Referência	Freq. Máxima (GHz)
Teórica	X.XX
Schematic	1.47
Extração C + CC	1.097
Extração R + C + CC	Z.ZZ

12. *Determine a área total do circuito que desenhou.

Conforme o report - Windows, o circuito possui uma área de 681,6µm.

13. Considere agora o circuito da Figura 2.

O circuito é um *Prescaler* 32/33, bloco comum na implementação de sintetizadores de frequência para RF (detalhes sobre o funcionamento de sintetizadores no fim da apostila). A parte de cima do circuito, hachurada, é um divisor 4/5 síncrono, cujo o valor de divisão depende do sinal MC (modulus counter); a parte de baixo é um contador assíncrono modulo 8. O circuito completo divide o sinal de *clock* por 32 quando SM = "0" ou por 33 quando SM = "1".

Figura 2: Prescaler 32/33

- 14. *A partir dos dados dos blocos que compõe o divisor 4/5 estime o máximo *clock* que o circuito pode suportar (considere que são usados na implementação os blocos **DF1**, **NAND23** e **NOR23** e utilize o pior caso entre subida e descida das portas). Apresente os cálculos.
- 15. Desenhe o esquemático do divisor 4/5 utilizando as células DF1, NAND23 e NOR23. Como sinal de entrada deve ter o *clock* e MC; como sinal de saída o sinal \overline{Q} do D-FF mais a esquerda. Gere o símbolo para a célula e faça a verificação do esquemático e do símbolo. Certifique-se que não haja erros ou mesmo *warnings*.
- **16.** *Gere, a partir do esquemático, um arquivo *netlist* para o ELDO. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito (consumo em **mW/GHz**). Considere
 - *MC* = "0", para o circuito fazer a divisão por 5;
 - $V_{DD} = 3V$;
 - o sinal de clock com (tempo de subida) = (tempo de descida) = 0,1*Periodo.

Apresente as linhas de comando e sinais utilizados.

17. *Gere agora o *layout* do circuito. Neste *layout* deve tomar cuidado com:

- a área total do circuito;
- o uso correto dos metais e poli como camadas de conexão;
- a posição e o tamanho dos *ports* de entrada e saída;
- a largura das linhas de V_{DD} e V_{SS} , não inferiores a $1\mu m$.

Faça a verificação com o **DRC** (CALIBRE), passe o **LVS** e elimine todos os erros. Apresente a figura do layout no relatório.

- **18.** *Faça a extração do circuito via o Calibre com a opção **C+CC**. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito. Considere as mesmas condições do exercício 16.
- 19. *Extraia agora com a opção R+C+CC. Simule o circuito com parâmetros típicos e determine a máxima velocidade e consumo do circuito. Considere as mesmas condições do exercício 16.
- 20. *Monte uma tabela com os resultados obtidos nos exercícios 14, 16, 18 e 19. Compare e comente os resultados.
 - **21.** *Determine a área total do circuito que desenhou.

Observação: A **Figura 3** apresenta o *layout* de um *Prescaler* 32/33 completo. Por resultados de simulação, este circuito funciona a 2,4 GHz com consumo de 2,43mW (parâmetros típicos, $V_{DD} = 3V$). O circuito implementado, por sua vez, funcionou a 1,7GHz com consumo de 2,31mW. Tanto a velocidade máxima como grande parte do consumo se deve ao divisor 4/5. Assim podemos, a grosso modo, dizer que o consumo e a velocidade deste divisor é igual a do *Prescaler*.

Figura 3: *Layout* do circuito *Prescaler* 32/33 na tecnologia AMS 0.35 (dimensões de $82\mu m$ x $35\mu m$). O divisor 4/5 está indicado com um quadrado tracejado.