

Brief Overlook on MQTT and HbbTV IoT communication protocols and their security and privacy implications

Who Am I

CyberSecurity Master Student @ University of Trento and University of Twente (NL)

Former Junior Researcher @ FBK

Intern in IoT Security @ Sababa Security

Security and Performance tradeoffs in the Internet of Things

Promoting the security awareness in MQTT-based scenarios

Introduction

Gartner predicts the number of IoT devices is estimated to reach **25 billions** by 2021[1]

Security is still **not a primary concern** in current IoT solutions

[1] https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends

Example 1: Targeted lease

Example 1: Targeted lease

Example 2: Car Insurance

Safe driver

Crazy driver

IoT in Industry 4.0

PROS:

- More reliable data
- Better predictions and tailoring
- Enhance existing solutions with new features

CONS:

- Security
- Analyze massive quantity of data
- Targetization
- Noisy data
- Destabilization of the market

 $\underline{https://www2.deloitte.com/us/en/insights/focus/internet-of-things/iot-in-financial-services-industry.html}$

Example 3: Laser Cutter

IoT in **FINTECH**

PROS:

- More reliable data
- Better predict ins and tailoring
- Enhance existing solutions with yew features

ted Sensors CONS:

- Security
- Analyze massive uantity of data argetization
- Noisy data
- Destabilization of the market

tps://www2.deloitte.com/us/en/insights/focus/internet-of-things/iot-in-financial-services-industry.htm

Message Queue Telemetry Transport (MQTT)

Message Queue Telemetry Transport

Popular open-source implementation of MQTT brokers

Developed by the Eclipse Foundation

Also provides the very popular mosquitto_pub and mosquitto_sub command line MQTT clients

https://mosquitto.org/

In a Ubuntu-based environment:

- 1. sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa
- 2. sudo apt-get update
- 3. sudo apt-get install mosquitto
- 4. sudo apt-get install mosquitto-clients

Then type: mosquitto

```
1621781009: mosquitto version 2.0.10 starting
1621781009: Using default config.
1621781009: Starting in local only mode. Connections will only be possible from clients running on this machine.
1621781009: Create a configuration file which defines a listener to allow remote access.
1621781009: For more details see https://mosquitto.org/documentation/authentication-methods/
1621781009: Opening ipv4 listen socket on port 1883.
1621781009: Opening ipv6 listen socket on port 1883.
1621781009: mosquitto version 2.0.10 running
```


Basic configuration file:

- 1. Running on port 1883
- 2. No security in place

Let's try to send a message:

- Make sure Mosquitto is running;
- 2. From a different terminal: mosquitto_pub -h 127.0.0.1 -m "test" -t test
- 3. Check on the terminal where Mosquitto is running

```
listener 1883
allow_anonymous true

log_dest stdout
log_type all
log_timestamp true
```


Let's try to receive a message:

- 1. Make sure Mosquitto is running;
- 2. From a different terminal: mosquitto_sub -h 127.0.0.1 -t test
- 3. From a different terminal: mosquitto_pub -h 127.0.0.1 -m "test" -t test
- 4. Check the subscriber terminal!

State of MQTT (in)Security

TOTAL RESULTS

161,746

TOP COUNTRIES

Korea, Republic of	51,508
China	33,211
United States	14,255
Germany	7,853
Δustralia	6 651

[1] S. Ranise U. Morelli T. Ahmad A. Palmieri, P. Prem. MQTTSA: A Tool for Automatically Assisting the Secure Deployments of MQTT brokers. IEEE services 2019 CSRIOT

State of MQTT (in)Security

Assistive Service for blind or low-vision people

```
{"username":" @ .com","firstname":" ","lastname":" ","status":null,"requestType":null,"requestType":1521771719000, "agentUsername":" @ ","agentFirstName":" Jack ","agentLastName":" ","agentPhoneNumber":" 74","serviceid": 9,"userid": ,"agentid":1188,"streamType":"WEBRTC","requestSource":null,"audioType":"VOIP-WEBRTC","stunServerList":[{"address":" "},{"address":" "},{"address":" "},{"address":" "},{"address":" "},{"address":" "},{"address":" ","username":" ","password":" ","password":" ","password":" ","password":" ","username":" ","password":" ","username":" ","password":" ","password
```

https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-loTs-data-backbone.pdf?v1

Contributions

- Investigate security best practices at the application and network layers in MQTT
 - Testing different scenarios with automated security tools
- Enhance security awareness in developers
 - Assisted configuration dashboard
- Evaluate the impact over performance
 - Measure connect, publish and reconnect times

I: Security Analysis

Three main security models with MQTT:

- 1. No security at all;
- Password-based authentication;
- 3. Certificate-based authentication (Transport Layer Security protocol).

I: Security Analysis

Application layer

No Security Mechanism

Password-based authentication

Certificate-based authentication

Network layer

TLS 1.2 & 1.3

TLS PSK

1 June 2019

^[1] https://mqtt-pwn.readthedocs.io/en/latest/intro.html.

^[2] G. Sciarretta S. Manfredi, S. Ranise. Lost in TLS? No more! Assisted Deployment of Secure TLS Configurations. 33rd Annual IFIP WG 11.3, Conference on Data and Applications Security and Privacy (DBSec'19), 15-17 July 2019.

^[3] https://testssl.sh/.

^[4] S. Ranise U. Morelli T. Ahmad A. Palmieri, P. Prem. MQTTSA: A Tool for Automatically Assisting the Secure Deployments of MQTT brokers. IEEE services 2019 CSRIoT, IEEE world congress on services, Milan, Italy,

I: Security Analysis

Application layer

No Security Mechanism

Password-based authentication

Certificate-based authentication

MQTT-SA[4] & MQTT-PWN [1]

Network layer

TLS 1.2 & 1.3

TLS PSK

TLS Assistant [2] &

TestSSL [3]

?

 $[\]hbox{[1] https://mqtt-pwn.readthedocs.io/en/latest/intro.html.}\\$

^[2] G. Sciarretta S. Manfredi, S. Ranise. Lost in TLS? No more! Assisted Deployment of Secure TLS Configurations. 33rd Annual IFIP WG 11.3, Conference on Data and Applications Security and Privacy (DBSec'19), 15-17 July 2019.

^[3] https://testssl.sh/.

^[4] S. Ranise U. Morelli T. Ahmad A. Palmieri, P. Prem. MQTTSA: A Tool for Automatically Assisting the Secure Deployments of MQTT brokers. IEEE services 2019 CSRIoT, IEEE world congress on services, Milan, Italy, 1. June 2019

III: Mosquitto Conf Generator

- Deploying a secure Mosquitto configuration is a daunting task
- Web-based interface to help users achieve the security level they need

III: Mosquitto Conf Generator

Continue

!! ATTENTION !!

NO ACCESS CONTROL MECHANISM CONFIGURED!

By default, clients who subscribe to the "#" topic can read to all the messages exchanged between devices and the ones subscribed to "SSYS/#" can read all the messages which includes statistics of the broker. Remote attackers could obtain specific information about the version of the broker to carry on more specific attacks or read messages exchanged by clients.

MITIGATION: It is strongly recommended to enforce an authorization mechanism in order to grant the access to confidential resources only to the specified users or devices. There are two possible approaches: Access Control List (ACL) and Role-based Access Control (RBAC).

NO TLS CONFIGUREDIA such a way all messages are sent unencrypted and therefore an attacker who have access to the network can sniff all packets understanding their content (which may include authentication credentials and other sensitive information).

MITIGATION: choose YES when you are asked to configure TLS

IV: Security vs Performance

- Broker: Virtual Machine with Ubuntu hosting Mosquitto
- Client: Raspberry Pi 3 b+ with Ubuntu Mate using PAHO (Python library for MQTT clients)

Performance Testing

- 1. Connect and Publish times for each supported cipher (TLS1.2 and TLS1.3) with a fixed payload
- 2. Burst message test

Test 1 – Connect&Publish

- Tested all supported cipher (TLS 1.2 and 1.3)
- 2. For each OpenSSL cipher and Quality of Service, 100 repetitions

Results 1.1 - Connect

Test 1 – Connect&Publish

- Tested all supported cipher (TLS 1.2 and 1.3)
- 2. For each cipher and QoS, 100 repetitions

Results 1.2 - Publish

Performance Testing

- 1. Connect and Publish times for each supported cipher (TLS1.2 and TLS1.3) with a fixed payload
- 2. Burst message test

Test 4 – Message Burst

- Send as many packets as possible in bursts of 10 seconds
- Test repeated 50 times

	TLS 1.2 AES128-SHA	TLS 1.3
92	97	64

Results

Security Analysis:

 TLS and Certificate-based authentication are the strongest security measures for MQTT

Performance analysis:

TLS 1.3 is the slowest cipher in every test performed

Security awareness:

Configuration authoring for Mosquitto deployments