

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/042504

International filing date: 17 December 2004 (17.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/530,555
Filing date: 17 December 2003 (17.12.2003)

Date of receipt at the International Bureau: 03 February 2005 (03.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1276351

UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

January 21, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/530,555

FILING DATE: *December 17, 2003*

RELATED PCT APPLICATION NUMBER: PCT/US04/42504

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

16138
121703
U.S. PTO

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No. EL 827 182 484 US

INVENTOR(S)				
Given Name (first and middle [if any])	Family Name or Surname	Residence (City and either State or Foreign Country)		
Peter R.	Brink	101 Dyke Road Setauket, New York 11733		
Additional inventors are being named on the <u>2</u> separately numbered sheets attached hereto				
TITLE OF THE INVENTION (500 characters max)				
Direct all correspondence to: CORRESPONDENCE ADDRESS				
<input type="checkbox"/> Customer Number: <div style="border: 1px solid black; height: 20px; width: 300px; margin-top: 5px;"></div>				
OR				
<input checked="" type="checkbox"/> Firm or Individual Name	John P. White, Esq.			
Address	Cooper & Dunham LLP			
Address	1185 Avenue of the Americas			
City	State	NY	Zip	10036
Country	Telephone	(212) 278-0400	Fax	(212) 391-0525
ENCLOSED APPLICATION PARTS (check all that apply)				
<input checked="" type="checkbox"/> Specification Number of Pages <u>9</u>		<input type="checkbox"/> CD(s), Number _____		
<input checked="" type="checkbox"/> Drawing(s) Number of Sheets <u>2</u>		<input checked="" type="checkbox"/> Other (specify) claims <u>4</u> pages		
<input type="checkbox"/> Application Date Sheet. See 37 CFR 1.76				
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT				
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27.		FILING FEE Amount (\$)		
<input checked="" type="checkbox"/> A check or money order is enclosed to cover the filing fees.		<u>\$80.</u>		
<input checked="" type="checkbox"/> The Director is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: <u>03-3125</u>				
<input type="checkbox"/> Payment by credit card. Form PTO-2038 is attached.				
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.				
<input checked="" type="checkbox"/> No.				
<input type="checkbox"/> Yes, the name of the U.S. Government agency and the Government contract number are: _____				

[Page 1 of 2]

Respectfully submitted Date December 17, 2003

SIGNATURE REGISTRATION NO. 29,691

(if appropriate)

Docket Number: 71131-Pro/JPW/PJPTYPED or PRINTED NAME Peter J. PhillipsTELEPHONE (212) 278-0400**USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT**

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Provisional Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

22154 U.S.P.T.O.
60/530553

121703

PROVISIONAL APPLICATION COVER SHEET
Additinal Pag

PTO/SB/16 (08-03)

Approved for use through 07/31/2006. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number 0575/71131/JPW/PJP

INVENTOR(S)/APPLICANT(S)		
Given Name (first and middle [if any])	Family or Surname	Residence (City and either State or Foreign Country)
Michael R.	Rosen	25 East 86th Street New York, New York 10028
Richard B.	Robinson	67 Roosevelt Street Cresskill, New Jersey 07626
Ira S.	Cohen	23 Hawks Nest Road Stony Brook, New York 11790

[Page 2 of 2]

Number 2 of 2

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Peter R. Brink, Ira S. Cohen, Richard B.
Robinson and Michael R. Rosen

Serial No. : Not yet assigned

Filed : December 17, 2003

For : **Delivery Of DNA Or RNA Via Gap Junctions From
Host Cells To Target Cells And A Cell-Based
Delivery System For Antisense Or siRNA**

1185 Avenue Of The Americas
New York, New York 10036
December 17, 2003

Mail Stop Provisional Patent
Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

**EXPRESS MAIL
CERTIFICATE OF MAILING
FOR ABOVE-IDENTIFIED APPLICATION**

"Express Mail" mailing label number: EL 827 182 484 US.
Date of Deposit: December 17, 2003

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. §1.10 on the date indicated above and is addressed to Mail Stop Provisional Patent Application Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Printed Name: Trinidad Iscoa

Peter Phillips
John P. White
Registration No. 28,678
Peter J. Phillips
Registration No. 29,691
Attorney for Applicant
Cooper & Dunham LLP
1185 Avenue of the Americas
New York, NY 10036
(212) 278-0428

*Application
for
United States Letters Patent*

To all whom it may concern

Be it known that

PETER R. BRINK; IRA S. COHEN; RICHARD B. ROBINSON;
MICHAEL R. ROSEN

have invented certain new and useful improvements in

DELIVERY OF DNA OR RNA VIA GAP JUNCTIONS FROM HOST CELLS TO
TARGET CELLS AND A CELL-BASED DELIVERY SYSTEM FOR
ANTISENSE OR siRNA

of which the following is a full, clear and exact description

5 **DELIVERY OF DNA OR RNA VIA GAP JUNCTIONS FROM HOST CELLS TO
TARGET CELLS AND A CELL-BASED DELIVERY SYSTEM FOR ANTISENSE OR
siRNA**

10 **Statement of Federally Sponsored Research or Development**

Work on this invention was sponsored by NHLBI, NIH(GMs) under award number HL-28958, GM-55263.

15

Background of the Invention

{

Throughout this application, various publications may be referenced to as footnotes or within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citations for these references may be found at the end of this application, preceding the claims.

As described in commonly owned prior application U.S. Serial No. 10/342,506, filed January 15, 2003, and in publications (1,2), incorporated by reference herein, stem cells have been used to form gap junctions with target tissues, and they can influence the activity of the target tissues by delivering gene products or small molecules. However, nucleotides in the form of RNA antisense, or DNA, have not been delivered by host cells (such as human mesenchymal stem cells (hMSCs)) to target tissues.

40

5 Summary of the Invention

According to the present invention, RNA can be passed through gap junctions so that engineered cells can be used to deliver RNA to target cells.

10

According to the present invention, oligonucleotides both single and double stranded can be passed through gap junctions formed by C x 43 in HE LA cell pairs, as demonstrated by a single electrode delivery of fluorescent-tagged oligonucleotides to a donor cell and determining their transfer to the target cell via gap junction mediated communication. Accordingly, the invention provides for delivery of oligonucleotides to target cells using any donor cell that forms gap junctions.

15 20

According to the invention, a method of delivering an oligonucleotide or a plasmid expressing an oligonucleotide into a target cell is provided, comprising introducing an oligonucleotide into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or a product of the oligonucleotide is delivered into the target cell from the donor cell.

25 30 According to the present invention, a method of delivering an oligonucleotide into a target cell is provided, comprising introducing an oligonucleotide into a human mesenchymal stem cell or other donor cell, and contacting the target cell with the human mesenchymal stem cell or other donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or its peptide product is delivered into the target cell from the

5 donor cell.

According to the present invention, a method of delivering an oligonucleotide into a syncytial target cell is provided, comprising introducing an oligonucleotide into a donor cell, 10 and contacting the syncytial target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the syncytial target cell, whereby the oligonucleotide is delivered into the syncytial target cell from the donor cell.

15

According to the present invention, a method of delivering RNA into a target cell is provided, comprising introducing RNA or a plasmid for RNA into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor 20 cell to form a gap junction with the target cell, whereby the RNA is delivered into the target cell from the donor cell.

According to the present invention, a method of delivering DNA into a target cell is provided, comprising introducing DNA or 25 a plasmid encoding for DNA into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the DNA is delivered into the target cell from the donor cell.

30

The invention provides a useful treatment in which down regulation of gene activity is desirable (e.g., cancer).

As compared to prior methods wherein delivery of RNA or 35 antisense to target cells is done by a naked plasmid, in the present invention the delivery is via cells, and the transfection rate should be much higher.

Description of the Drawings

Figure 1a shows a 12 member single stranded oligonucleotide passing through gap junction channels composed of connexin 43.

Figure 1b shows a 16 member single stranded oligonucleotide passing through gap junction channels composed of connexin 43.

Figure 1c shows a 24 member single stranded oligonucleotide passing through gap junction channels composed of connexin 43.

Figure 1d shows a 24 member double stranded oligonucleotide passing through gap junction channels composed of connexin 43.

Figure 2a shows a summary of the data where the x-axis is the length of the oligonucleotide, and the y-axis is the relative intensity of the fluorescent tag in the recipient cell (the cell on the left in all of the examples of Figure 1) 12 minutes after delivery of the oligonucleotide to the source cell.

Figure 2b is a graphic representation of junctional conductance on the x-axis versus relative intensity of the fluorescent tag on the y-axis.

5 **Description of the Invention**

According to the invention, a method of delivering an oligonucleotide or a plasmid expressing an oligonucleotide into a target cell is provided, comprising introducing an 10 oligonucleotide into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or a product of the oligonucleotide is delivered into the target cell from the donor cell.

15

The oligonucleotide may be RNA that can traverse the gap junction or be transcribed into a peptide that can traverse the gap junction. The oligonucleotide may be DNA. The oligonucleotide may be an antisense oligonucleotide or a cDNA 20 that produces an antisense oligonucleotide that can traverse the gap junction. The oligonucleotide may be a siRNA oligonucleotide or a cDNA that produces a siRNA oligonucleotide that can traverse the gap junction. The oligonucleotide may be a DNA or RNA that produces a peptide 25 that can traverse the gap junction. The plasmid may encode siRNA. The oligonucleotide may comprise 12-24 members. The donor cell may be a human mesenchymal stem cell. The donor cell may be a cell containing or engineered to contain connexin proteins. The target cell may be a cell comprising a 30 syncytial tissue, which may be a cardiac myocyte, a smooth muscle cell, an epithelial cell, a connective tissue cell, or a syncytial cancer cell. The target cell may be a white blood cell.

35 The gap junction channels may be composed of one or more of connexin 43, connexin 40, connexin 45, connexin 32 and connexin 37.

According to the present invention, a method of delivering an oligonucleotide into a target cell is provided, comprising introducing an oligonucleotide into a human mesenchymal stem cell or other donor cell, and contacting the target cell with the human mesenchymal stem cell or other donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or its peptide product is delivered into the target cell from the donor cell.

15

According to the present invention, a method of delivering an oligonucleotide into a syncytial target cell is provided, comprising introducing an oligonucleotide into a donor cell, and contacting the syncytial target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the syncytial target cell, whereby the oligonucleotide is delivered into the syncytial target cell from the donor cell.

25

According to the present invention, a method of delivering RNA into a target cell is provided, comprising introducing RNA or a plasmid for RNA into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the RNA is delivered into the target cell from the donor cell.

30

According to the present invention, a method of delivering DNA into a target cell is provided, comprising introducing DNA or a plasmid encoding for DNA into a donor cell, and contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the DNA is delivered into the target cell

5 from the donor cell.

The present invention provides a way to pass oligonucleotides (DNA and/or RNA fragments) through gap junction channels. This has been demonstrated in experiments where gap junction 10 channels composed of connexin43 (Cx43) were used in a HeLa cell line.

The experiments determined that oligocomplexes such as DNA or RNA sequences of defined length are able to pass through a gap 15 junction channel. DNA or RNA forms alpha helixes in solution with minor diameters of 0.9-1.0 nm. Oligonucleotides in the 12-24 member size range are of particular interest. Unique sequences of DNA which could not be broken down into smaller fragments were tagged with a fluorescent probe from 20 Morpholino, a company which specializes in the manufacture of oligo sequences.

The experiments were conducted with a 12 member oligonucleotide, a 16 member oligonucleotide and a 24 member 25 oligonucleotide. The results demonstrated that all three single stranded forms pass through gap junction channels composed of Cx43 (Figure 1a, b, and c). Further, two 12 member compliments were hybridized producing a double stranded form and its passage was measured (Figure 1d). The double 30 stranded version has only a small increase in its minor diameter.

Figure 2A shows a summary of the data where the X-axis is the length of the oligonucleotide. The hybridized 12 member 35 oligonucleotide is plotted out of sequence on the X-axis. The Y-axis is the relative intensity of the fluorescent tag in the recipient cell (the cell on the left in all of the examples of

5 Figure 1) 12 minutes after delivery of the oligonucleotide to
the source cell. For each oligonucleotide the individual
experimentally derived values are shown along with the mean
and standard deviation for each oligonucleotide. In a number
of experiments junctional conductance and the transfer of
10 fluorescently labeled oligonucleotide were monitored
simultaneously.

Figure 2B is a graphic representation of junctional
conductance on the X-axis versus relative intensity of the
15 fluorescent tag on the Y-axis. For comparison the
conductance-intensity relationship for Lucifer Yellow passage
through Cx43 gap junction channels is shown (Valiunas et al.,
2002) (2). In all cases the relative intensity, which
represents the transfer rate from one cell to another, is 5-10
20 times less than the Lucifer Yellow fluorescence intensity in
recipient cells. This lower transfer rate is consistent with
the rod-like dimensions of the oligonucleotide, whose minor
diameter is 1.0 nm, being less mobile in solution than Lucifer
Yellow.

25

These observations demonstrate that gap junction channels are
a feasible delivery port for molecules such as silencing RNA
(siRNA) or any other molecule of similar dimension.

30 We have previously demonstrated that hMSCs make gap junctions
with each other and target cells. We have also demonstrated
previously that one can load plasmids into stem cells by
electroporation. The present results demonstrate that any
35 donor cell type which forms gap junctions with another target
cell type (this includes hMSCs as potential donor or target
cells) can be used as a vehicle to deliver RNA or DNA.

5 References

1. Plotnikov AN, Shlapakova IN, Danilo P Jr, Herron A, Potapova I, Lu Z, Valiunas V, Doronin S, Brink PR, Robinson RB, Cohen IS, Rosen MR: Human mesenchymal stem cells transfected with HCN2 as a gene delivery system to induce pacemaker function in canine heart. Circulation 108: IV-547, 2003.
2. Valiunas et al., 2002 Cardiac gap junction channels show quantitative differences in selectivity. Cir. Res. 91:104-111

20

5 We claim:

1. A method of delivering an oligonucleotide or a plasmid expressing an oligonucleotide into a target cell comprising:

10

a) introducing an oligonucleotide into a donor cell; and

b) contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or a product of the oligonucleotide is delivered into the target cell from the donor cell.

20 2. The method of claim 1, wherein the oligonucleotide is RNA that can traverse the gap junction or be transcribed into a peptide that can traverse the gap junction.

25 3. The method of claim 1, wherein the oligonucleotide is DNA.

4. The method of claim 1, wherein the oligonucleotide is an antisense oligonucleotide or a cDNA that produces an antisense oligonucleotide that can traverse the gap junction.

30

5. The method of claim 1, wherein the oligonucleotide is a siRNA oligonucleotide or a cDNA that produces a siRNA oligonucleotide that can traverse the gap junction.

35 6. The method of claim 1, wherein the oligonucleotide is a DNA or RNA that produces a peptide that can traverse the gap junction.

7. The method of claim 1, wherein the plasmid encodes siRNA.

10 8. The method of claim 1, wherein the oligonucleotide comprises 12-24 members.

9. The method of claim 1, wherein the donor cell is a human mesenchymal stem cell.

15 10. The method of claim 1, wherein the donor cell is a cell containing or engineered to contain connexin proteins.

11. The method of claim 1, wherein the target cell is a cell comprising a syncytial tissue.

12. The method of claim 11, wherein the syncytial tissue is selected from the group consisting of a cardiac myocyte, a smooth muscle cell, an epithelial cell, a connective tissue cell, and a syncytial cancer cell.

13. The method of claim 1, wherein the target call is a white blood cell.

30 14. The method of claim 1, wherein the gap junction channels are composed of connexin 43.

15. The method of claim 1, wherein the gap junction channels are composed of connexin 40.

35 16. The method of claim 1, wherein the gap junction channels are composed of connexin 45.

5 17. The method of claim 1, wherein the gap junction channels are composed of connexin 32.

18. The method of claim 1, wherein the gap junction channels are composed of connexin 37.

10

19. The method of claim 1, wherein the gap junction channels are composed of at least two of connexin 43, connexin 40, connexin 45, connexin 32 and connexin 37.

15

20. A method of delivering an oligonucleotide into a target cell comprising:

a) introducing an oligonucleotide into a human mesenchymal stem cell or other donor cell; and

20

b) contacting the target cell with the human mesenchymal stem cell or other donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or its peptide product is delivered into the target cell from the donor cell.

25 21. A method of delivering an oligonucleotide into a syncytial target cell comprising:

30

a) introducing an oligonucleotide into a donor cell; and

35

b) contacting the syncytial target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the syncytial target cell ,

5 whereby the oligonucleotide is delivered into the syncytial target cell from the donor cell.

22. A method of delivering RNA into a target cell comprising:

10

a) introducing RNA or a plasmid for RNA into a donor cell; and

15

b) contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the RNA is delivered into the target cell from the donor cell.

20

23. A method of delivering DNA into a target cell comprising:

25

a) introducing DNA or a plasmid encoding for DNA into a donor cell; and

b) contacting the target cell with the donor cell under conditions permitting the donor cell to form a gap junction with the target cell, whereby the DNA is delivered into the target cell from the donor cell.

5 **DELIVERY OF DNA OR RNA VIA GAP JUNCTIONS FROM HOST CELLS TO
TARGET CELLS AND A CELL-BASED DELIVERY SYSTEM FOR ANTISENSE OR
siRNA**

Abstract of the Disclosure

10

A method of delivering an oligonucleotide or a plasmid expressing an oligonucleotide into a target cell comprises introducing an oligonucleotide into a donor cell, and contacting the target cell with the donor cell under 15 conditions permitting the donor cell to form a gap junction with the target cell, whereby the oligonucleotide or a product of the oligonucleotide is delivered into the target cell from the donor cell.

HeLa Cx43

12 min

1 min

A: **12 mer**
5/8/03 - 4

B: **16 mer**
5/13/03 - 5

C: **24 mer**
6/3/03 - 4

D: **12 mer hybridized**
7/22/03 - 3

Figure 1

BEST AVAILABLE COPY

A**B****Figure 2**