Chimie Shanghai 2022-23

华东理工大学2022 - 2023学年第一学期

East China University of Science and Technology, 2021–2022 school year, first semester <a href="https://www.exams.com/www.exams.

开课学院/School: <u>国卓学院</u>,专业/Major: <u>化工与制药</u>

考试形式/Exam format:QCM, 所需时间/Time required:90 分钟/Minutes

考生姓名/Name:______学号/Student ID:______ 班级/Class:

任课老师/Teacher_:

题序/Number of sections	得分/Points per sections	题序/Number of sections	得分/Points per section
1	6	9	6
2	6	10	7
3	6	11	6
4	6	12	6
5	6	13	6
6	6	14	7
7	6	15	7
8	6	16	7
评卷人/Responsible teacher			

Les documents de cours ne sont pas autorisés.

Pour certaines questions, plusieurs réponses sont possibles.

On donne: $h = 6,62 \cdot 10^{-34} \text{ J.s}$; 1 hartree = 27,21 eV = 4,36 10^{-18} J ; $c = 3 \cdot 10^8 \text{ m.s}^{-1}$; $R_H = 109 \cdot 677 \text{ cm}^{-1}$;

2022-23 Chimie Shanghai

Réponses

- b) □
- d) □
- e) 🗆

- 2)
- b) □
- d) □
- e) 🗆

- 3)
- b) □
- d) □
- e) 🗆

- 4)
- a) 🗆
- b) 🗆
- c) 🗆
- e) 🗆

- 5)
- a) 🗖
- b)
- c) 🗆
- d) □
- e) 🗆

- 6)
- **a**)
- b) □
- d) □
- e) 🗆

- 7) a) 口 b) 口 c) 口 d) 口 e) 口

- a) (b) (
- c) 🗆 d) 🗖

- a) (d) (b) (
- c) 🗆 d) 🗖

- 10) a) a) b) d c) d) e) a

 11) a) b) c c) d) d e) a

- 12) a) □

- 13) a) □
 - b) 🗖
- c) 🗆 d) 🗖
- e) 💢

- 14) a) \Box b) \Box c) \Box d) \Box e) \Box

- 15) a) □ b) ಠ c) □ d) □ e) □

- 16) a) (b) (c) (d) (e) (e)

b)
$$E = -13.6 \frac{Z^2}{n^2}$$

c)
$$E = \frac{h^2 k^2}{2m}$$

d)
$$E = -\frac{\hbar^2 k^2}{2m}$$

e) aucune des affirmations précédentes n'est vraie

- 2) Le potentiel d'ionisation de H(Z=1) en eV vaut :
 - a) 13,6
 - b) 27,2
 - c) 0,5
 - d) -0,5

- e) aucune des affirmations précédentes n'est vraie
- 3) Concernant la formule de Rydberg, identifier les affirmations exactes.

 $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$ $\Delta E = R_H \left(\frac{1}{n^2} - \frac{1}{p^2}\right)^2 / \lambda_0 hc$

$$\Delta E = h R_H \left(\frac{1}{n^2} - \frac{1}{p^2} \right) h c R_H \left(\frac{1}{n^2} - \frac{1}{p^2} \right)$$

- d) La formule s'applique uniquement à l'hydrogène
- e) aucune des affirmations précédentes n'est vraie

4) Un atome d'hydrogène peut :

- a) dans son état fondamental, èmettre un photon de longueur d'onde λ = 97,2 nm
- b) dans son état fondamental, émettre un photon de longueur d'onde $\lambda = 486,1$ nm
- c) dans son premier état excité, émettre un photon de longueur d'onde $\lambda = 97.2$ nm
- d) dans son premier état excité, émettre un photon de longueur d'onde $\lambda = 121,5$ nm
- e) aucune des affirmations n'est vraie

- 5) Un laser hélium-néon émet un faisceau laser de lumière de 0,1 Watt/dont la longueur d'onde est égale à 633 nm. Le nombre de photons émis par le laser à chaque minute vaut :
 - a) 3,142 10¹⁹
 - (b))1,9 10¹⁹
 - c) 5,23 10¹⁸
 - d) 3,142 10¹⁸
 - e) aucune des affirmations précédentes n'est vraie

- 6) Lorsque l'on évoque l'effet photoélectrique, la fonction de travail du métal est :
 - a) l'énergie à fournir pour observer le courant photoélectrique
 - b) la fréquence du rayonnement à appliquer pour observer le courant photoélectrique
 - c) la tension à appliquer pour annuler le courant photoélectrique
 - d) l'énergie cinétique des photo-électrons
 - e) aucune des affirmations précédentes n'est vraie
- 7) Les fonctions propres des opérateurs de la mécanique quantique sont :
 - orthonormées 1
 - b) linéaires
 - hermitiques R# 7
 - d) parallèles
 - e) aucune des affirmations précédentes n'est vraie

- Soit 2 grandeurs physiques A et B. Si les opérateurs \hat{A} et \hat{B} respectivement associés à ces grandeurs commutent, cela signifie que :
 - b) le produit des incertitudes associées à chacune de ces grandeurs est nul
 - c) le produit des incertitudes associées à chacune de ces grandeurs est supérieur à $^{\hbar}/_{2}$
 - d) leurs fonctions propres sont orthogonales
 - e) aucune des affirmations précédentes n'est vraie

>0

Chimie Shanghai 2022-23

- 9) La configuration électronique de l'état fondamental de Si (Z=14) est :
 - a) $(1s)^2(2s)^2(2p)^6(3s)^2(3p)^2$
 - b) $(1s)^2(1p)^6(2s)^2(2p)^4$
 - c) $(1s)^2(2s)^2(2p)^6(3s)^1(3p)^3$
 - d) $(1s)^2(1p)^6(2s)^1(2p)^5$
 - e) aucune des affirmations précédentes n'est vraie

- 10) La règle de Hund doit être invoquée pour déterminer la configuration électronique de l'état fondamental de :
 - a) Ga (Z=31)
 - b) Ge (Z=32)
 - c) CI (Z=17)
 - (d) V (Z=23)

11)

e) aucun de ces atomes

affirmations exactes

- a) électron 1 : n = 4 ; l = 2 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 ; l = 2 ; m = -2 ; $m_s = -\frac{1}{2}$
- b) électron 1 : n = 4 ; l = 2 ; m = -2 ; $m_s = \frac{1}{2}$ électron 2 : n = 4 ; l = 2 ; m = -1 ; $m_s = \frac{1}{2}$
- c) electron 1: n = 4; l = 3; m = -2; $m_s = \frac{1}{2}$ electron 2: n = 4; l = 3; m = 0; $m_s = -\frac{1}{2}$
- électron 1 : n = 4 ; l = 3 ; m = -2 ; $m_s \neq \frac{1}{2}$ électron 2 : n = 4 ; l = 3 ; m = -2 ; $m_s = -\frac{1}{2}$

- 12) La normalisation de la fonction d'onde ψ :
 - a) traduit le fait de trouver la particule dans tout l'espace
 - (b) consiste à résoudre l'équation $\langle \psi | \psi \rangle = 1$
 - c) consiste à résoudre l'équation $\langle \psi | \widehat{H} | \psi \rangle = 1$

e) aucune des affirmations précédentes n'est vraie

- 13) L'orthogonalité des fonctions d'onde ψ et ϕ :
 - traduit le fait de trouver la particule dans tout l'espace
 - b) consiste à résoudre l'équation $\langle \psi | \phi \rangle = 1$
 - consiste à résoudre l'équation $\langle \psi | \widehat{H} | \psi \rangle = 1$
 - d) consiste à résoudre l'équation $\frac{\langle \psi | \widehat{H} | \psi \rangle}{\langle \phi | \phi \rangle} = 1$
 - e) aucune des affirmations précédentes n'est vraie

On considère le cas d'une particule de masse m piégée dans un puits bidimensionnel où le potentiel est nul dans les intervalles $0 \le x \le a$ et $0 \le y \le b$ et infini en dehors. On suppose a > b > 0. L'hamiltonien d'un tel système s'écrit $\widehat{H} = -\frac{\hbar^2}{2m} \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right).$

La fonction $\Psi(x,y) = N \sin(k_x x) \sin(k_y y)$ (avec k_x et k_y scalaires) est fonction de propre de \widehat{H} .

L'énergie d'une particule décrite par la fonction $\Psi(x,y)$ est 14)

a)
$$E = \frac{h^2}{2m} (k_x^2 + k_y^2)$$

b)
$$E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2)$$

c)
$$E = -\frac{\hbar^2}{2m} (k_x^2 + k_y^2)$$

d)
$$E = \frac{h^2}{2m} (k_x^2 k_y^2)$$

- e) aucune des affirmations précédentes n'est vraie
- 15) L'étude aux limites du puits de potentiel permet de montrer que :

a)
$$k_x = \frac{\pi(n_x + 1/2)}{a}$$
 et $k_y = \frac{\pi(n_y + 1/2)}{a}$ avec n_x et $n_y \in \mathbb{Z}^*$

b)
$$k_x = \frac{n_x \pi}{a}$$
 et $k_y = \frac{n_y \pi}{a}$ avec n_x et $n_y \in \mathbb{Z}^*$

c)
$$k_x = \frac{\pi(n_x + 1/2)}{a}$$
 et $k_y = \frac{\pi(n_y + 1/2)}{a}$ avec n_x et $n_y \in \mathbb{Z}$

d)
$$k_x = \frac{n_x \pi}{a}$$
 et $k_y = \frac{n_y \pi}{a}$ avec n_x et $n_y \in \mathbb{Z}$

- aucune des affirmations précédentes n'est vraie
- On note la fonction d'onde du système $\psi_{n_x n_y}$. Si le puits bidimensionnel est carré (a=b), on peut dire que : 16)
 - ψ_{11} et ψ_{12} sont orthogonales

 - b) ψ_{21} et ψ_{12} sont orthogonales c) ψ_{21} et ψ_{12} sont dégénérées ?
 - ψ_{11} et ψ_{12} sont dégénérées
 - aucune des affirmations précédentes n'est vraie