Duffing Oscillator(Equation)

$$m\frac{d^2x}{dt^2} + \delta\frac{dx}{dt} + \alpha x + \beta x^3 = \gamma\cos(\omega t)$$

Condition	δ	α	β	γ	ω	initial	
Condition						Х	V
<u>Case 1.</u> Free Motion (stable equilibrium)	0	-1	1	0	0 (any)	-1	1
<u>Case 2.</u> Free motion (unstable equilibrium)	0	-1	1	0	0 (any)	-1.414	0
<u>Case 3.</u> Damped motion	-0.2	-1	1	0	0 (any)	-1.5	-1.0
<u>Case 4.</u> Damped driven motion	0.1	-1	1	0.1	1.4	0	0
<u>Case 5.</u> Damped driven motion	0.1	-1	1	0.32	1.4	0	0
<u>Case 6.</u> Damped driven motion: (increased driving amplitude)	0.1	-1	1	0.34	1.4	0	0
<u>Case 7.</u> Chaotic Motion <u>Case 7b.</u> Poincare Section Chaotic Motion	0.1	-1	1	0.38	1.4	0	0
<u>Case 8.</u> Ratio of gamma to delta causes period doubling, bifurcation	0.05	-1	1	0.34	1.4	0	0
	0.2	-1	1	0.34	1.4	0	0
<u>Case 9.</u> Frequency response curves	-	ı	-	-	-	-	-

Case 1. Free Motion (stable equilibrium)

Case 1. Free Motion (stable equilibrium)

-1.4

-1.2

-1.0

-0.8

Displacement [x]

-0.6

-0.2

0.0

-0.4

Case 2. Free motion (unstable equilibrium)

Case 2. Free motion (unstable equilibrium)

Case 3. Damped motion

Case 3. Damped motion

Case 4. Damped driven motion

Case 4. Damped driven motion

1.00 - v vs. x 0.75 0.50 0.25 0.25 0.25 0.00 0.25 0.25 0.00 -0.50-0.75-1.00-1.5-1.0-0.50.0 1.5 0.5 1.0 Displacement [x]

Case 5. Damped driven motion

Case 6. Damped driven motion: (increased driving amplitude)

Case 7. Chaotic Motion

Forcing: 0.34, damping: 0.2

Forcing: 0.34, damping: 0.05

Case 9. Frequency Response

ex) damping: 0.1, forcing: 0.1 / initial x: -1, dx/dt = 0

Error Verification

Step size (h)	Approximation of x	Final Global Error(F.G.E)	Approximate	
	at t = 0.1 , x _{approx}	at t = 0.1 (x_{approx} - x_{true})	Error Ratio	
0.1	-0.0018921715207243900	-0.000000076565361900		
0.05	-0.0018921642988212700	-0.000000004346330700	17.6160921	
0.025	-0.0018921638899839600	-0.000000000257957601	16.84901197	
0.0125	-0.0018921638657577500	-0.00000000015695500	16.43513065	
0.0001 (assume true value)	-0.0018921638641882000 (=x _{true})	-	Expected order: 16 (: O(h ¹⁶)	

As the step sizes halves, the error ratio converges to the order of 16,
 which is expected for a 4th order Runge-Kutta numerical approximation