Mathematics Preliminary Exam, Fall 2012

Attempt all problems; they are weighted equally. Write $\mathbb N$ for the set of positive integers and $\mathbb R$ for the set of real numbers.

- 1. Write the negations of these sentences in as "smooth" a way as possible. (In particular, you may not simply append "It is not the case that ...". Also, you should make explicit any "hidden" quantifiers.)
 - (a) There is a real number x such that for every real number y, |x-y| > 1.
- (b) A real-valued function that is continuous on a closed interval attains a minimum value on that interval.
 - (c) 3n + 1 is even if and only if $n^2 + 4$ is prime.
- 2. Let $A = \begin{pmatrix} 7 & -3 \\ 1 & 3 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D with $P^{-1}AP = D$. [You should not have to compute P^{-1} .]
- 3. Let A be an $m \times n$ real matrix. Write A^t for the transpose of A, and N(A) for the nullspace of A. Prove that $N(A^tA) = N(A)$.
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies f(xy) = xf(y) + yf(x) for all $x, y \in \mathbb{R}$. Prove that f(1) = 0 and that $f(u^n) = nu^{n-1}f(u)$ for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$.
- 5. Give an ϵ - δ proof that $\lim_{x\to 2} \frac{1}{x^2+1} = \frac{1}{5}$.
- 6. Let $f: X \to Y$ be a (not necessarily invertible!) function, and $A \subseteq X$.
 - (a) Prove that $A \subseteq f^{-1}(f(A))$.
 - (b) Prove that if f is injective (one-to-one) then $A = f^{-1}(f(A))$.
 - (c) Give an example for which $A \neq f^{-1}(f(A))$.
- 7. Prove that the line integral $\int_C (x+y^3) dx + (e^y + 3xy^2) dy$ is path-independent; i.e., it depends only on the endpoints of C.
- 8. Let $f_n(x) = \frac{nx}{n+x}$ for $x \in [0, \infty)$ and $n \in \mathbb{N}$.
 - (a) Find a function f such that $\{f_n\}$ converges to f pointwise on $[0,\infty)$.
 - (b) Is the convergence uniform on $[0,\infty)$? Justify your answer.
- 9. Suppose R is a commutative ring (with 1), I is a proper ideal in R, and $a \in R$. Suppose $\langle a \rangle + I = R$. Prove that a + I is a unit (i.e., invertible) in the quotient ring R/I.

(For half credit: Prove that if a and n are relatively prime integers, then $a + n\mathbb{Z}$ is a unit in $\mathbb{Z}/n\mathbb{Z}$.)