QGIS plugin for Drainage Tool Tutorial

2018.03

1.1 설치

본 플러그인의 사용하기 전에 아래의 사항을 미리 설치해야 한다.

※ QGIS 사용시 주의사항

○ 파일경로 및 파일명은 모두 영문 또는 숫자로 함.

1. QGIS 설치

● QGIS 웹 페이지에서(<u>http://www.qgis.org/ko/site/forusers/download.html</u>) QGIS 2.18 버전¹을 다운받아 기본 경로에 설치

2. TauDEM 사전 설치

- hmsop1??에서 TauDEM531 prerelease.exe를 다운받은 후 기본 경로에 설치
- TauDEM 설치 도중 나타나는 GDAL 프로그램도 함께 설치

Name	
oldVersion	
drainage_plugin_v20171108.	zip
taudem531_prerelease.exe	
version_memo.txt	

3. QGIS Plugin 설치

• hmsop1?? 에서Drainage Plugin Zip 파일을 다운 받아 압축 해제

Name	
<u>oldVersion</u>	
drainage_plugin_v20171108.zip	
taudem531_prerelease.exe	
version_memo.txt	

 C:\Users\사용자User\.qgis2\python\plugins² 경로에 압축 해제 파일 붙여 넣기 시행

1.2 교육용 샘플 데이터

- C:\Drainage 폴더 생성
- hmsop1?? 압축 파일을 C:\Drainage에 다운로드

¹ OS 운영체제에 맞게 32bit 또는 64bit 다운로드

 $^{^2}$ QGIS 최초 설치시에는 QGIS를 실행하여야 qgis2\python 경로가 만들어짐. plugins 폴더가 없을 경우 신규 생성 필요함.

- DEM500_ND.TIF
 - 수치 표고 모형(DEM:Digital Elevation Model)

• 좌표 : EPSG 5186

- 해상도 : 500m OutletPoint 1.shp
- OutletPoint_2.shp

2.1 QGIS 기능 실행

1) QGIS 프로그램을 실행 하여 상단 탭에 [플러그인→플러그인 관리 및 설치] 메뉴를 클릭

[그림1] 플러그인 관리 및 설치 메뉴 선택

2) 플러그인 다이알로그가 열리면 설치됨 항목에서 [Drainage] Plugin을 선택한 다음 닫기 클릭.

[그림 2] Plugin 선택

3) 상단 메뉴바에 [Drainage] 아이콘이 추가됨.

[그림3] 메뉴바 확인

4) 상단 메뉴바에서 Drainage 아이콘을 선택하면 Drainage Panel이 지도창 우측에 나타남.

[그림4] Drainage Panel 확인

[그림5] Drainage Panel 확인(확대)

2.2 Drainage - Batch Processor

- 1) DEM500_ND.TIF 파일 불러오기
 - \circ 레이어 ightarrow 레이어 추가 ightarrow 래스터 레이어 추가 ightarrow
 - DEM500 ND.TIF 선택후 열기
 - DEM500_ND.TIF 레이어가 지도창에 나타남.

2) Batch Processor 실행

Elevation Grid에서 DEM 파일을 선택하면, Fill Sink, Flow Direction, Flow Accumulation, Slope, Stream, Catchment 등의 파일명이 일괄 입력된다. Stream 임계치인 Threshold는 2000을 입력한다. 이 수치는 흐름누적수의 수치와 비교되며, 수치가 크면 큰 본류 위주로 자료를 생성하게 된다.

○ Drainage → Batch Processor 더블 클릭

○ Elevation : DEM500_ND.TIF 파일 선택

o Threshold Value: 2000 입력

○ [OK] 버튼 클릭

○ Elevation 래스터 파일의 포맷 정보가 나타나면, [확인] 버튼 클릭

○ Batch Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ 일괄 생성한 결과물이 자동으로 지도창에 표시됨.

2.3 Drainage - Watershed

유출구 개 수에 따라 유역이 분할된다. 이번 교육에서는 유출구 1개(OutletPoint_1.shp)와 유출구 2개(OutletPoint_2.shp)로 만들어놓은 샘플 파일을 이용하여 각각 유역을 분할해본다. 그리고 직접 유출구 포인트를 신규 생성하여 유역을 생성한다. 이때, 유출구는 Stream 위에 반드시 배치되어 있어야 한다.

- 1) OutletPoint_1.shp 파일 불러오기
 - \circ 레이어 \rightarrow 레이어 추가 \rightarrow 벡터 레이어 추가
 - OutletPoint_1.shp 파일 선택후 열기
 - OutletPoint_1.shp 레이어가 지도창에 나타남.

화면을 확대하여 OutletPoint_1.shp 레이어 객체가 Stream 위에 배치되어 있는지 확인한다.

- Layers Panel에서 OutletPoint_1.shp, DEM500_ND_Stream_polyline.shp, DEM500_ND_Stream.shp 레이어만 화면에 출력하고, 나머지 레이어는 모두 OFF 함.
- 지도창에 3개 레이어만 표시됨.

DEM500_ND_Stream 레이어를 살펴보면, Cell의 최소/최대값³이 '0' 으로 되어 있다. 레이어의 스타일을 재설정하여, 하천망이 육안으로 구분되도록 한다.

○ Layers Panel에서 DEM500_ND_Stream.tif 레이어를 마우스 우클릭한 다음 [속성] 메뉴 선택

QGIS 2.18 버전에서는 최소/최대값 인식에서 부정확한 경우가 있으므로, 이때는 레이어 속성 다이알로그에서 최소/최대값을 확인하여 주제도를 재설정한다.

²

- [레이어 속성] 다이알로그의 [스타일] 항목 선택
- 밴드 렌더링 그룹에서 **"최소/최대값 불러오기"** 선택하여 확장함.
- [최소값/최대값] 라디오 버튼 선택후 [불러오기] 버튼 선택하면, **최소값: 0, 최대값: 1** 로 설정됨.
- 컬러 그래디언트에서 "흰색에서 검은색으로" 선택
- [확인] 버튼 클릭

○ DEM500_ND_Stream 레이어 스타일이 변경된것을 확인할 수 있음.

- 화면 확대 아이콘 을 선택한 다음 유출구 지점을 확대 함.
- Stream 위에 OutletPoint가 위치해 있는것을 확인함.

○ 전체 보기 아이콘 🍑 선택

1. Watershed 실행

OutletPoint_1.shp 레이어를 이용하여 유역이 1개인 Watershed를 생성한다.

- Drainage → Watershed 더블 클릭
- Flow direction : DEM500 Fdr.TIF 레이어 선택
- o Outlet point : OutletPoint 1.shp 레이어 선택
- o Output: C:/Drainage/Watershed_1.tif 입력
- [OK] 버튼 클릭

○ Watershed Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ Watershed 생성 결과물이 자동으로 지도창에 표시됨.

0

● OutletPoint_2.shp 파일 불러오기

- OutletPoint 2.shp 파일 선택후 열기
- OutletPoint_2.shp 레이어가 지도창에 나타남.

● Watershed 실행

OutletPoint 2.shp 레이어를 이용하여유역이 2개로 분할된 Watershed를 생성한다.

- Drainage → Watershed 더블 클릭
- Flow direction : DEM500 Fdr.TIF 레이어 선택
- Outlet point : OutletPoint_2.shp 레이어 선택
- o Output: C:/Drainage/Watershed 2.tif 입력
- [OK] 버튼 클릭

○ Watershed Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ Watershed 생성 결과물이 자동으로 지도창에 표시됨.

Cell Value=1, Cell Value=2인 유역이 생성 되었다. Cell Value=2인 래스터 색상이 배경생인 흰색과 동일하여 구분이 안되므로, 레이어 속성에서 스타일을 재설정한다.

○ Layers Panel에서Watershed_2.tif 레이어를 마우스 우클릭한 다음 [속성] 메뉴 선택

- [레이어 속성] 다이알로그의 [스타일] 항목 선택
- 밴드 렌더링 그룹에서 렌더(Render) 유형은 "**단일 밴드 가상색채**" 선택.
- [최소값/최대값] 라디오 버튼 선택후 [불러오기] 버튼 선택하면, **최소값: 0, 최대값: 1** 로 설정됨.
- 컬러 그래디언트에서 "흰색에서 검은색으로" 선택
- [확인] 버튼 클릭

○ DEM500_ND_Stream 레이어 스타일이 변경된것을 확인할 수 있음.

