

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : C12N 15/53, 9/08, A61K 38/44, A23L 1/03		A1	(11) Numéro de publication internationale: WO 00/60094 (43) Date de publication internationale: 12 octobre 2000 (12.10.00)
(21) Numéro de la demande internationale: PCT/FR00/00885 (22) Date de dépôt international: 7 avril 2000 (07.04.00)		(74) Mandataires: VIALLE-PRESLES, Marie-José etc.; Cabinet Ores, 6, avenue de Messine, F-75008 Paris (FR).	
(30) Données relatives à la priorité: 99/04320 7 avril 1999 (07.04.99) FR		(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Déposants (<i>pour tous les Etats désignés sauf US</i>): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) [FR/FR]; 147, rue de L'Université, F-75007 Paris (FR). COMMISSARIAT A L'ENERGIE ATOMIQUE (CEA) [FR/FR]; 31-33, rue de la Fédération, F-75015 Paris (FR).		Publiée <i>Avec rapport de recherche internationale.</i>	
(71) Déposants (<i>US seulement</i>): DUWAT, Charlotte (héritière de l'inventeur décédé) [FR/FR]; 144, avenue de la République, F-92120 Montrouge (FR). DUWAT, Coralie (héritière de l'inventeur décédé) [FR/FR]; 144, avenue de la République, F-92120 Montrouge (FR).			
(72) Inventeur: DUWAT, Patrick (décédé).			
(72) Inventeur; et			
(75) Inventeur/Déposant (<i>US seulement</i>): BRAVARD, Anne [FR/FR]; 144, avenue de la République, F-92120 Montrouge (FR).			

(54) Title: MODIFIED LACTOCOCCI EXPRESSING A CATALASE AND THEIR USES

(54) Titre: LACTOCOQUES MODIFIES EXPRIMANT UNE CATALASE ET LEURS UTILISATIONS

(57) Abstract

The invention concerns strains of lactococci, in particular (*L. lactis*), transformed by a gene coding for a heterologous catalase. The strains are particularly useful for protecting prokaryotic or eukaryotic cells against oxidant stress.

(57) Abrégé

L'invention est relative à des souches de lactocoques, notamment de *L. lactis*, transformées par un gène codant pour une catalase hétérologue. Les souches sont notamment utilisables pour protéger des cellules procaryotes ou eucaryotes contre un stress oxydant.

BEST AVAILABLE COPY

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LJ	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

LACTOCOQUES MODIFIES EXPRIMANT UNE CATALASE
ET LEURS UTILISATIONS

La présente invention est relative à des bactéries probiotiques modifiées exprimant des molécules 5 anti-oxydantes.

Des radicaux libres dérivés de l'oxygène sont continuellement produits par le métabolisme cellulaire normal, et notamment lors de la réduction de l'oxygène moléculaire en H₂O par la chaîne respiratoire. On désigne 10 sous le terme de : "radicaux libres dérivés de l'oxygène" un ensemble d'espèces chimiques regroupant notamment l'anion superoxyde O₂⁻, les radicaux hydroxyle OH[.], l'oxygène singulet ^O₂[.], les radicaux peroxyles ROO[.], ainsi que l'eau oxygénée, H₂O₂. 15

Ces espèces sont extrêmement réactives et capables d'endommager des constituants cellulaires tels que l'ADN, les protéines, et les phospholipides membranaires [FRIDOVICH, Science, 201, 875-880, (1978) ; PRYOR, Photochem. Photobiol., 28, 787-801, (1978) ; 20 CERUTTI, Science, 227, 375-381, (1985) ; BOREK, Br. J. Cancer, 55, 74-86, (1987)]. Les radicaux oxygénés sont donc potentiellement toxiques et mutagènes, et ils interviennent notamment dans le développement des réactions inflammatoires et la carcinogenèse. Cependant, 25 ils participent également au bon fonctionnement de la cellule : ils sont par exemple impliqués dans le contrôle de la prolifération cellulaire [REMACLE et al., Mutation Res., 316, 103-122, (1995)], ainsi que dans la résistance aux agents infectieux.

30 Pour contrôler le niveau des radicaux libres oxygénés produits en conditions physiologiques, les cellules disposent d'enzymes antioxydantes (superoxyde dismutase, catalase, glutathion peroxydase, etc...), et de molécules piégeuses de radicaux (glutathion, vitamine 35 E,...) [RICE-EVANS et BURDON , New Comprehensive Biochemistry, 28, (1994)]. Ces mécanismes naturels de

protection sont toutefois insuffisants en cas de stress oxydant résultant de la surproduction de radicaux libres oxygénés, notamment lors de l'exposition à des radiations ionisantes ou à certaines substances chimiques.

5 Plusieurs études réalisées sur des modèles animaux, ont ainsi montré des modifications du métabolisme antioxydant dans différents organes après exposition à des radiations ionisantes [PELTOLA et al., J. Androl., 14, 267-274, (1993) ; HARDMEIER et al., Proc. Natl. Acad. Sci. USA, 94, 7572-7576, (1997)]. Dans la muqueuse intestinale, une étude ancienne met en évidence une baisse importante de l'activité antioxydante (BARBER et WILBUR, Radiation Res., 10, 167-175, (1959)) ; plus récemment, une baisse de vitamine B12 (molécule 15 antioxydante) a été décrite [DANNIELSSON et al., Gut, 32, 1180-1187, (1991)]. Chez l'homme, le traitement par radiothérapie des tumeurs abdominales induit une toxicité intestinale qui entraîne l'interruption du traitement chez 20% des patients [BLAIR et al., J. Surg. Res., 65, 20 165-168, (1996)]. Au niveau de l'épithélium intestinal, cette toxicité se traduit par une réduction du nombre et de la taille des villosités et par l'apparition de zones nécrosées [FRIBERG, Thesis, University of Lund, Sweden, (1980) ; HAUER-JENSEN, Acta Oncol., 29, 401-415, (1990) ; 25 POTTEN, Nature, 269, 518-529, (1977) ; POTTEN, Int. J. Radiat. Biol., 58, 925-973, (1990)].

Cet effet direct sur la muqueuse gastro-intestinale est en outre aggravé par une translocation de la microflore intestinale [DANNIELSSON et al., Gut, 32, 30 1180-1187, (1991)], résultant de la destruction d'une grande partie de celle-ci, composée de bactéries anaérobies présentant une très grande sensibilité aux stress oxydants [WELLS, Antonie van Leeuwenhoek, 58, 87-93, (1990) ; BENNO et MITSUOKA, J. Vet. Med. Sci., 54, 35 1039-1041, (1992)], et du développement de bactéries pathogènes se traduisant par l'apparition d'infections.

Dès études ont mis en évidence l'efficacité des antioxydants contre les effets mutagènes et toxiques des radiations ionisantes. Certains dérivés sulfhydryle s'avèrent très efficaces *in vitro* ; malheureusement leur forte toxicité *in vivo* limite leur utilisation chez l'homme [DELANEY et al., Cancer, 74, 2379-2384, (1994) ; PRASAD, Handbook of Radiobiology, 2nd edition, 61-84, (1995)]. L'effet protecteur d'autres molécules antioxydantes (telle que la vitamine E) a été observé après irradiation *ex vivo* du tractus digestif [MAISIN et LAMBIET-COLLIER, Int. J. Radiat. Biol., 13, 35-43, (1967) ; FELEMOVICIUS et al., Ann. Surg. 222, 504-508, (1995)]. De plus, une étude récente de BLAIR et al., (1996) suggère un effet protecteur *in vivo* L-2-oxo-4-thiazolidine, précurseur du glutathion, qui permettrait de limiter le syndrome gastro-intestinal en diminuant, entre autres, la translocation bactérienne.

Pour protéger l'épithélium intestinal et réduire la translocation de la microflore intestinale, il a également été proposé d'utiliser des bactéries probiotiques.

Les organismes probiotiques sont définis comme des : "organismes vivants qui après ingestion en certaines quantités exercent des effets bénéfiques pour la santé allant au-delà des vertus nutritives inhérentes de base" [F.A.O., (1992)].

Les bactéries probiotiques sont des bactéries non-pathogènes pouvant influer de manière bénéfique sur la santé de leur hôte. Il s'agit généralement de bactéries lactiques des genres *Lactobacillus*, *Bifidobacterium*, *Streptococcus* et *Lactococcus*, couramment utilisés dans l'industrie laitière. Ces bactéries sont capable de survivre dans le tractus digestif où elles restent métaboliquement actives sans supplanter la microflore intestinale [SALMINEN et al., Antonie van Leeuwenhoek, 70, 347-358, (1996)]. Leur durée de transit

dans le tractus digestif est variable et va d'une journée pour *Lactococcus lactis*, à neuf jours pour *Lactobacillus plantarum* [WELLS et al., Antonie van Leeuwenhoek, 70, 317-330, (1996)].

5 Au cours des dernières années, de nombreuses études, parfois contradictoires, sur les effets de l'ingestion d'aliments fonctionnels (tel que les yaourts) ou de bactéries ont été publiées. Certaines d'entre elles décrivent un effet positif de l'ajout de probiotiques
10 dans l'alimentation vis-à-vis des conséquences d'un stress oxydant, induit par exemple par une radiothérapie. Ainsi, des laits fermentés par des lactobacilles ou des lactocoques permettraient :

15 a) d'augmenter la survie de souris après irradiation ;

20 b) de diminuer les diarrhées de patients survenant à la suite de traitement par rayonnements [SALMINEN et al., Clinic. Radiol., 39, 435-437, (1988) ; HENRIKSSON et al., Supp. Care Cancer, 3, 81-83, (1995)], et

25 c) de favoriser la réimplantation de la microflore autochtone [CUZZOLIN et al., J Chemother, 4, 176-179 (1992)].

30 L'ingestion de bactéries probiotiques (principalement des lactobacilles) aurait également un effet contre le développement des pathogènes ; ainsi, elle limiterait les infections par *Salmonella typhimurium* [ALM, Prg. Fd. Nutr. Sci., 7, 13-17, (1983)] ; HUDAULT et al., Appl. Environ. Microbiol., 63, 513-518, (1997)],
35 *Listeria monocytogenes* [SATO, Infect Immun., 44, 445-451, (1984)], *Escherichia coli* [UNDERDAHL, Prog. Fd. Nutr. Sci., 7, 5-12, (1983)] et protégerait des souris immunodéprimées contre le développement de candidoses [WAGNER et al., Infect Immun. 65, 4165-4172, (1997)]. La mobilité intestinale semble également être augmentée par

l'ingestion de lait fermenté avec des bifidobactéries [SEKI et al., Nutr. Food, 4, 379-387, (1978)].

Cependant, les bactéries lactiques utilisées en tant que probiotiques ne possèdent que de très faibles 5 capacités de détoxication des radicaux oxygénés. En effet, la plupart d'entre elles ne possède pas l'ensemble de l'équipement enzymatique nécessaire à la neutralisation de ces radicaux [CODON, FEMS Microbiol. Rev., 46, 269-280, (1987)].

10 Les Inventeurs ont recherché s'il était possible d'exprimer chez ces bactéries probiotiques des enzymes antioxydantes actives, sans pour autant interférer avec leur métabolisme naturel.

Dans ce but, ils ont entrepris le clonage chez 15 *Lactococcus lactis* d'un gène codant pour une catalase (EC 1.11.1.6). *Lactococcus lactis* ne possède aucune activité catalase naturelle, et ne fournit donc pas a priori l'environnement nécessaire à l'expression de cette activité ; notamment, ne fabrique pas l'hème constituant 20 le groupe prosthétique des catalases. Les Inventeurs sont toutefois parvenus à exprimer la catalase hétérologue sous forme active, en ajoutant de l'hème au milieu de culture de *L. lactis* ; ils ont en effet constaté que l'hème était importée dans la bactérie et normalement 25 intégrée dans la catalase synthétisée, et que l'expression de cette catalase active ne nuisait pas à la croissance et à la survie de *L. lactis*.

En outre, les Inventeurs ont constaté que l'expression de la catalase hétérologue protégeait contre 30 un stress oxydant non seulement les bactéries-hôte, mais également les autres bactéries présentes dans la même culture.

De plus, ils ont également constaté que les lactocoques transformés exprimant la catalase hétérologue 35 protégeaient *in vitro* des cellules d'épithélium intestinal en culture contre les effets d'un stress

oxydant induit notamment par un rayonnement ionisant, et possédaient également *in vivo* des effets protecteurs sur des souris irradiées, en présence ou en absence de bactéries pathogènes.

5 La présente invention a pour objet une souche de lactocoque, en particulier une souche de *Lactococcus lactis*, transformée par un gène codant pour une catalase hétérologue.

10 Selon un mode de réalisation préféré de la présente invention, ledit gène code pour une catalase procaryote. Selon une disposition préférée de ce mode de réalisation, ledit gène est le gène *katB* de *B. subtilis*.

15 La présente invention a également pour objet un procédé de production d'une catalase par une souche de lactocoque conforme à l'invention, caractérisé en ce qu'il comprend la mise en culture de ladite souche en présence d'hème.

20 La présente invention a aussi pour objet l'utilisation d'une souche de lactocoque conforme à l'invention pour l'obtention d'un médicament destiné à protéger des cellules contre un stress oxydant.

25 Lesdites cellules sont notamment des cellules de la paroi intestinale, en particulier de l'épithélium intestinal. Il peut également s'agir des bactéries de la flore intestinale ; l'administration d'une souche de lactocoque conforme à l'invention permet de protéger, en cas de stress oxydant, les espèces bactériennes sensibles au stress, et ainsi de maintenir l'équilibre de la flore intestinale.

30 Selon un mode de mise en œuvre préféré de la présente invention, ledit médicament permet de protéger lesdites cellules contre un stress oxydant induit par un rayonnement, et est donc particulièrement approprié pour le traitement des affections gastrentestinales consécutives à une radiothérapie. Il peut toutefois également être utilisé dans toute autre pathologie

gastro-intestinale dans laquelle intervient une production excessive de radicaux libres oxygénés, et notamment toutes les pathologies inflammatoires. La présente invention permet d'acheminer de façon simple, et à faible coût, les molécules d'intérêt thérapeutique directement au voisinage des cellules sensibles ou exposées aux stress oxydants sans affecter l'organisme dans sa totalité.

La présente invention a en outre pour objet un procédé pour protéger *in vitro* des cellules contre un stress oxydant, caractérisé en ce qu'il comprend la mise en présence des cellules à protéger et d'au moins une souche de lactocoque conforme à l'invention, dans les conditions définies ci-dessus, de production de catalase par ladite souche.

Selon un mode de mise en œuvre préféré de ce procédé, lesdites cellules sont des bactéries probiotiques, notamment des bactéries lactiques. Le procédé conforme à l'invention peut ainsi être mis en œuvre pour la préparation d'un aliment fermenté associant au moins une souche de lactocoque conforme à l'invention à d'autres bactéries probiotiques.

La présente invention englobe également tout aliment fermenté comprenant au moins une souche de lactocoque conforme à l'invention, éventuellement associée à d'autres bactéries probiotiques.

Des aliments fermentés conformes à l'invention agissent à deux niveaux : d'une part, de par la présence des lactocoques conformes à l'invention, ils ont un effet direct de détoxication des radicaux libres ce qui permet de protéger l'épithélium intestinal et la microflore ; d'autre part, de par l'action probiotique des lactocoques conformes à l'invention, ainsi que des autres bactéries qui y sont éventuellement associées, ces aliments agissent en tant que protecteur de l'épithélium intestinal et de barrière contre les pathogènes.

La présente invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples non-limitatifs décrivant l'obtention et l'utilisation d'une souche bactérienne 5 conforme à l'invention.

EXEMPLE 1 : OBTENTION D'UNE SOUCHE DE *L. LACTIS* EXPRIMANT LE GÈNE *katB* DE *B. SUBTILIS*

Le gène *katB* de *Bacillus subtilis* code une catalase (Numéro d'accès SWISS-PROT : P42234) dont la 10 synthèse est induite chez *Bacillus subtilis* lors d'un stress thermique ou salin, de l'addition d'éthanol ou de la privation en glucose. Le gène *katB* a été amplifié par PCR à partir du chromosome de la souche 168 de *B. subtilis* [ANAGNOSTOPOULOS et SPITZIZEN, J. Bacteriol., 15 81, 741-746, (1961)] en utilisant des amorce 20 permettant d'obtenir la séquence codante du gène avec le site de fixation des ribosomes et son terminateur, et modifiées pour contenir des sites de restriction :

amorce sens : 5'-AATGTGCTCTAGAACATGTTCGTTAAA-3',
20 contenant un site XbaI ;
amorce anti-sens : 5'-TTTCCTCGAGTTCGTAAGCTTCAGTGAGC-3',
contenant un site XhoI.

L'amplification [5 mn 96°C, (15 s. à 96°C, 15 s. à 50°C, 2min 50 s. à 72°C) 30fois] a été faite avec 25 5 unités de Vent Polymérase [NEW ENGLAND BIOLABS] en présence de 4 mM de MgSO₄. Un fragment de la taille attendue (2180 pb) a été obtenu.

Ce fragment a ensuite été cloné, sous contrôle du promoteur du gène de la β-galactosidase aux sites 30 XbaI-XhoI de pBSKS+ (STRATAGENE) dans la souche *E. coli* TG1.

Le plasmide obtenu, dénommé pBSKSkatB a ensuite été transféré dans la souche MG1655 katE katG de *E. coli* [DUKAN et TOUATI, J. Bacteriol., 178, 6145-6150, 35 (1996)] dépourvue d'activité catalase.

Après avoir vérifié la présence du plasmide pBSKSkatB dans les bactéries transformées, l'activité catalase a été recherchée selon le protocole décrit par AERI, [Methods in Enzymology, 105, 121-127, (1984)].

5 Aucune activité catalase n'a été observée dans ces conditions.

Le promoteur p23 [VAN DER VOSSEN et al., Appl. Environ. Microbiol., 53, 2452-2457, (1987)] de *L. lactis* a ensuite été cloné dans les sites NotI-XbaI du plasmide 10 pBSKSkatB. Le plasmide obtenu, dénommé pBSKSp23katB, comprenant le gène *katB* sous contrôle du promoteur p23, a été introduit dans la souche MG1655 katE katG de *E. coli*. On observe dans la souche transformée une activité catalase, déterminée selon le protocole indiqué ci-dessus.

15 Le fragment NotI-XhoI contenant le promoteur p23 et le gène *katB* a ensuite été transféré sur le plasmide pILNew13 [RENAULT et al., Gene, 183, 175-182, (1996)]. Le plasmide résultant est dénommé pILN13p23KatB. Plusieurs essais effectués sur différentes souches de 20 *L. lactis* n'ayant pas permis d'introduire directement ce plasmide chez cette bactérie, le plasmide pILN13p23KatB a été introduit dans la souche 168 de *B. subtilis*, et un dérivé à bas nombre de copies de ce plasmide a été 25 fabriqué par délétion d'un fragment KpnI. Le plasmide résultant, dénommé pILN5p23KatB a ensuite été introduit dans la souche MG1363 de *L. lactis* (GASSON, J. Bacteriol., 154, 1-9, (1983)).

30 Après avoir vérifié la présence du plasmide pILN5p23KatB dans les bactéries transformées, l'activité catalase a été recherchée selon le protocole indiqué ci-dessus. Aucune activité catalase n'a été observée.

35 De l'hème (sous forme d'hémine) a été ajoutée au milieu de culture à une concentration de 0,5 mg par litre de milieu.

Dans ces conditions de culture, aucune activité catalase n'a été observée lors de la phase de croissance exponentielle. En revanche, une forte activité catalase apparaît au cours de la phase stationnaire.

5 Le fragment NotI-XhoI contenant le promoteur p23 et le gène *katB* a également été cloné sur les plasmides pG⁺host4, pG⁺host9, pGK12 [KOK et al., Appl. Environ. Microbiol. 48, 726-731, (1984)] (plasmides à haut nombre de copies se répliquant par un mécanisme dit de cercle roulant dans *E. coli* et de nombreuses bactéries à Gram-positif, notamment *B. subtilis* et *L. lactis*) et introduit dans plusieurs souches de *E. coli* et de *L. lactis* où une activité catalase a pu être observée dans les conditions précédemment décrites.

10 15 20 25 Un cointégrat pBSKS+ (plasmide répliquant de *E. coli*) et pVS41 [VON WRIGHT et SAARELA, Plasmid, 31, 106-110, (1994)] (plasmide à haut nombre de copies se répliquant par un mécanisme dit de cercle roulant dans *E. coli* et *L. lactis*) contenant le promoteur p23 et le gène *katB* a également été introduit dans plusieurs souches de *E. coli* et *L. lactis* où une activité catalase a pu être observée dans les conditions précédemment décrites.

**EXEMPLE 2 : EFFETS ANTI-OXYDANTS IN VITRO D'UNE SOUCHE DE
25 *L. LACTIS* EXPRIMANT LE GÈNE *katB* DE *B. SUBTILIS***

1) Effet sur la survie de souches bactériennes après un stress oxydant

30 L'effet protecteur de la catalase exprimée par le gène *katB* introduit dans *Lactococcus lactis* a été testé sur la bactérie hôte, ainsi que sur d'autres bactéries (*Lactococcus lactis*, *Escherichia coli* *Lactobacillus fermentum*) soumises à un stress oxydant.

Matériels et méthodes :*Cultures bactériennes*

Les cultures ont été effectuées dans les conditions suivantes :

- 5 - souche de *Lactococcus lactis* productrice de catalase :

Les bactéries sont ensemencées à partir d'une culture stock congelée, dans 5 ml de milieu M17 supplémenté avec 1% de glucose (M17glu) puis incubées à 10 30°C pendant 18 heures. La culture est ensuite diluée au 1/1000 en milieu M17glu, supplémenté avec de l'hémine à la concentration de 50 mg/ml, puis incubée à 30°C pendant 24 heures. Préalablement au test, les bactéries sont centrifugées et resuspendues en M17, à la concentration 15 de 10⁸ cellules/ml.

- souches non productrices de catalase :

**Lactococcus lactis :*

Les bactéries sont ensemencées à partir d'une culture stock congelée, dans 5 ml de milieu M17glu puis 20 incubées à 30°C pendant 18 heures. La culture est ensuite diluée au 1/1000 en milieu M17glu, puis incubée à 30°C jusqu'au moment du test.

**Escherichia coli :*

Les bactéries sont ensemencées à partir d'une 25 culture stock congelée, dans 5 ml de milieu LB puis incubées à 30°C pendant 18 heures. La culture est ensuite diluée au 1/1000 en milieu LB, puis incubée à 37°C avec agitation jusqu'au moment du test.

**Lactobacillus fermentum :*

30 Les bactéries sont ensemencées à partir d'une culture stock congelée, dans 5 ml de milieu MRS puis incubées à 37°C pendant 18 heures dans une jarre d'anaérobiose. La culture est ensuite diluée au 1/1000 en milieu MRS, puis incubée à 37°C jusqu'au moment du test.

Induction du stress

Lorsque la culture a atteint une DO₆₀₀ de 0,1, un stress oxydant est induit par addition de 10 mM de H₂O₂ au milieu de culture, et incubation pendant 30 minutes à 5 30°C pour et 37°C pour *Escherichia coli* et *Lactobacillus fermentum*. Le pourcentage de bactéries survivantes est estimé par étalement sur boîte de dilutions successives des prélèvements effectués dans les cultures avant et à l'issue du traitement, et comptage des colonies.

10 Des expérimentations sont effectuées en présence de *Lactococcus lactis* transformé producteur de catalase, ou de *Lactococcus lactis* non transformé ; dans les 2 cas l'ajout des lactocoques est effectué, à raison de 10⁷ ou 10⁸ cellules/ml, juste avant l'addition du 15 peroxyde d'hydrogène.

Résultats

Les résultats obtenus sont illustrés par la figure 1 :

A - Survie des cellules de lactocoques 20 sauvages (CAT-) ou productrices de catalase (CAT+) ;

B - Survie de lactocoques sauvages (CAT-) incubés avec 10⁷ ou 10⁸ lactocoques producteurs de catalase (CAT+) ;

C - Survie des cellules d'*Escherichia coli* 25 (*E. coli*) incubés avec 10⁷ ou 10⁸ lactocoques producteurs de catalase (CAT+).

D - Survie des cellules de *Lactobacillus fermentum* (*L. fermentum*) incubés avec 10⁷ ou 10⁸ lactocoques producteurs de catalase (CAT+).

30 Ces résultats montrent que :

1) La survie de la souche de *Lactococcus lactis* productrice de catalase est augmentée d'environ

1000 fois (survie de la souche sans catalase = 10^{-4} , avec catalase = 5×10^{-1}).

2) La souche productrice de catalase permet de protéger une souche de *L. lactis* non productrice de catalase : la survie de 10^8 lactocoques catalase moins est de 10^{-4} ; elle augmente de 50 fois en présence de 10^7 lactocoques catalase plus, et elle est de 100% en présence de 10^8 lactocoques catalase plus.

3) La souche productrice de catalase permet de protéger une souche d'*Escherichia coli* non productrice de catalase : la survie de 10^8 *E. coli* est de 10^{-3} ; elle augmente de 50 fois en présence de 10^7 lactocoques catalase plus, et elle est de 100% en présence de 10^8 lactocoques catalase plus. Par contre la survie n'est pas améliorée en présence de lactocoques catalase moins (résultats non représentés).

4) La souche productrice de catalase permet de protéger une souche de *Lactobacillus fermentum* non productrice de catalase : la survie de 10^8 *L. fermentum* est de 5×10^{-6} ; elle augmente de 200 fois en présence de 10^7 lactocoques catalase plus, et elle est de 3×10^{-2} en présence de 10^8 lactocoques catalase plus. Par contre la survie n'est pas améliorée en présence de lactocoques catalase moins (résultats non représentés).

25 Conclusions:

L'introduction du gène catalase augmente la résistance de *L. lactis* à un stress oxydant.

La présence de *L. lactis* produisant la catalase augmente la résistance à un stress oxydant de souches bactériennes n'exprimant pas de catalase.

2) Effet sur la survie de cellules coliques humaines après un stress oxydant.

L'effet protecteur de la catalase exprimée par le gène *katB* introduit dans *Lactococcus lactis* a été 5 testé sur des cellules coliques humaines en culture exposées à un stress induit par un produit oxydant (H_2O_2).

Matériels et méthodes :

Cellules humaines : cellules de la lignée épithéliale colique humaine HT29

10 Protocole expérimental : les cellules sont ensemencées en plaque 96 puits (2000 cellules par puits). Au moins 8 puits différents sont réalisés pour chaque condition expérimentale. Après 3 jours de culture, le milieu de culture est éliminé et remplacé par du milieu 15 de culture de cellules eucaryotes contenant les bactéries à tester (5×10^8 par ml de culture), préalablement cultivées comme indiqué en 1) ci-dessus.

Après 1 heure de contact cellules-bactéries, on ajoute du peroxyde d'hydrogène à différentes 20 concentrations (0, 100, 200 et 400 μM). Après 2 heures d'incubation, le milieu contenant les bactéries est éliminé et remplacé par du milieu de culture normal. La mesure de la prolifération cellulaire est effectuée 24 heures après, par deux techniques couramment utilisées 25 pour les tests de toxicité : 1) test au rouge neutre, 2) test au MTT (sel de tétrazolium). L'analyse statistique des résultats est réalisée par un test t.

Résultats :

Les résultats obtenus sont illustrés par la 30 figure 2 qui montre l'effet de *L. lactis* non modifié (CAT-) ou produisant la catalase (CAT+) sur la survie de cellules HT29 après incubation avec 0, 100, 200 ou 400 μM d' H_2O_2 . Les différences statistiquement significatives par

rapport aux cellules incubées sans bactéries (témoin) sont indiquées :

* = $p < 0,05$; ** = $p < 0,01$ et *** = $p < 0,001$.

A : test au rouge neutre ;

5 B : test au MTT.

Ces résultats montrent que :

1) La présence de bactéries ne modifie pas la prolifération des cellules HT29, en l'absence de peroxyde d'hydrogène,

10 2) que les différentes concentrations en H_2O_2 testées ont un effet toxique sur les cellules HT29,

3) que les bactéries modifiées pour surproduire la catalase protègent efficacement les cellules HT29 contre les différentes concentrations d' H_2O_2 utilisées,

15 4) qu'à la concentration de 200 μM , les bactéries non modifiées ont également un effet protecteur.

Conclusion :

20 La présence de *L. lactis* n'altère pas la croissance des cellules HT29.

La présence de *L. lactis* non modifiés peut apporter une certaine protection contre un stress oxydant mais la protection est beaucoup plus efficace en présence
25 de *L. lactis* produisant la catalase.

3) Effet sur la survie de cellules coliques humaines après un stress oxydant induit par irradiation

L'effet protecteur de la catalase exprimée par le gène *katB* introduit dans *Lactococcus lactis* a été
30 testé sur des cellules coliques humaines en culture exposées à un stress induit par des radiations ionisantes.

Matériels et méthodes

Les cellules HT29 sont ensemencées à 2000 cellules par puits en plaque 96 puits. Au moins 8 puits différents sont réalisés pour chaque condition expérimentale. Après 3 jours de culture, les plaques sont irradiées à 2 Gy à l'aide d'une source de cobalt 60. Les bactéries à deux concentrations différentes (10^7 et 10^8 / 0,2 ml) sont ajoutées soit 1 heure avant l'irradiation, soit 24 ou 48 heures après et laissées en contact des cellules pendant 3 heures. L'effet de l'irradiation sur la croissance cellulaire est estimé après 5 jours de culture par la technique du MTT.

Les résultats obtenus sont illustrés par la figure 3 qui montre l'effet de *L. lactis* non modifié ou *L. lactis* produisant la catalase (*L. lactis* CAT) sur la prolifération de cellules HT29 après une irradiation de 2 Gy. Les bactéries ont été rajoutées soit 1 heure avant l'irradiation (□) ; soit 24 heures après (■) ; soit 48 heures après (▲). Les valeurs (n=8) sont exprimées en % de survie par rapport au témoin correspondant non irradié. Les différences statistiquement significatives (test t) par rapport aux cellules incubées sans bactéries sont indiquées :

* = $p < 0,05$; ** = $p < 0,01$ et *** = $p < 0,001$

Ces résultats confirment que la présence des lactocoques, modifiés ou non, n'altère pas la croissance des cellules HT29. On n'observe pas d'effet protecteur des bactéries lorsque celles ci sont rajoutées au moment de l'irradiation ; par contre un effet protecteur est obtenu lorsqu'elles sont rajoutées 24 heures ou 48 heures après l'irradiation. L'effet protecteur le plus marqué est obtenu en présence de 10^8 *L. lactis* produisant la catalase.

Conclusion :

La présence de *L. lactis* protège les cellules HT29 contre les effets des radiations ionisantes. Cet effet protecteur est renforcé avec *L. lactis* produisant 5 la catalase.

EXEMPLE 3 : EFFETS ANTI-OXYDANTS IN VIVO D'UNE SOUCHE DE *L. LACTIS* EXPRIMANT LE GÈNE *katB* DE *B. SUBTILIS*

L'effet de l'ingestion de *L. lactis* exprimant la catalase sur la toxicité intestinale radioinduite a 10 été testé comme suit :

1) Irradiation abdominale en 1 fois

Matériels et méthodes :

Animaux: souris mâles C₃H/He âgées de 9 semaines au moment de l'irradiation

15 Alimentation: la veille de l'irradiation, les animaux sont nourris de croquettes standard broyées auxquelles sont ajoutées les cultures de bactéries ou le milieu de culture pour les témoins (1 ml /g de croquettes). Les aliments sont renouvelés chaque jour 20 pendant toute la durée de l'expérience. les animaux sont divisés en 6 groupes de 5 individus: 5 irradiés ingérant du milieu de culture sans bactérie et 5 témoins non irradiés nourris de la même façon; 5 irradiés ingérant *L. lactis* non modifié et 5 témoins non irradiés nourris 25 de la même façon, 5 irradiés ingérant *L. lactis* produisant la catalase et 5 témoins non irradiés nourris de la même façon.

Irradiation: après anesthésie, les animaux sont exposés à une irradiation abdominale de 10 Gy à 30 l'aide d'une source de cobalt 60.

Suivi pondéral: les animaux sont pesés chaque jour à la même heure pendant toute la durée de l'expérience.

Résultats :

Les résultats obtenus sont illustrés par la figure 4, qui montre l'effet de *L. lactis* non modifié (—●—) et de *L. lactis* produisant la catalase (—○—), 5 par rapport au milieu de culture sans bactérie (—■—) sur la perte pondérale des souris C3H/He après une irradiation abdominale de 10 Gy. Les différences statistiquement significatives (test t) par rapport au témoin (milieu sans bactérie) sont indiquées :
10 * = $p < 0,05$ et ** = $p < 0,01$.

Ces résultats montrent qu'une alimentation supplémentée en *L. lactis* diminue de façon significative la perte pondérale entraînée par l'irradiation. Pour les animaux ingérant *L. lactis* produisant la catalase, la 15 perte de poids est interrompue plus tôt et la reprise semble s'amorcer plus rapidement que pour ceux ingérant *L. lactis* non modifié.

2) Irradiation fractionnéeMatériels et méthodes:

20 Le protocole d'alimentation est le même que celui suivi pour l'irradiation abdominale.

Les animaux, placés dans des tubes plexiglas, sont irradiés tous les matins pendant 5 jours à une dose de 3Gy à l'aide d'une source de Cobalt 60.

25 Suivi pondéral: les animaux sont pesés chaque jour à la même heure pendant toute la durée de l'expérience.

Résultats :

Les résultats obtenus sont illustrés par la 30 figure 5, qui montre l'effet de *L. lactis* non modifié (—●—) et de *L. lactis* produisant la catalase (—○—) par rapport au milieu de culture sans bactérie (—■—) sur la perte pondérale des souris C3H/He après une irradiation totale de 5×3 Gy. La différence entre

L. lactis modifié et milieu de culture est significative (test t) à p<0,05.

Ces résultats montrent qu'une alimentation supplémentée en *L. lactis* diminue la perte pondérale 5 après irradiation. La différence par rapport au témoin est statistiquement significative dans le cas de *L. lactis* produisant la catalase (p<0,05, test t).

REVENDICATIONS

- 1) Souche de lactocoque, notamment de *L. lactis*, transformée par un gène codant pour une catalase hétérologue.
5
- 2) Souche selon la revendication 1 caractérisé en ce que ledit gène est un gène procaryote.
- 3) Souche selon une quelconque des revendications 1 ou 2, caractérisé en ce que ledit gène 10 est le gène *katB* de *B. subtilis*.
- 4) Procédé de production d'une catalase par une souche de lactocoque selon une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend la mise en culture de ladite souche en présence d'hème.
15
- 5) Utilisation d'une souche de lactocoque selon une quelconque des revendications 1 à 3 pour l'obtention d'un médicament destiné à protéger des cellules contre un stress oxydant.
20
- 6) Utilisation selon la revendication 5, caractérisée en ce que lesdites cellules sont des bactéries de la flore intestinale.
25
- 7) Utilisation selon la revendication 5, caractérisée en ce que lesdites cellules sont des cellules de la paroi intestinale.
30
- 8) Utilisation selon la revendication 5, caractérisée en ce que ledit stress oxydant est induit par un rayonnement.
35
- 9) Procédé pour protéger *in vitro* des cellules contre un stress oxydant, caractérisé en ce qu'il comprend la mise en présence des cellules à protéger et d'au moins une souche de lactocoque selon une quelconque des revendications 1 à 3, dans les conditions de production de catalase par ladite souche de lactocoque.
- 10) Procédé selon la revendication 9, caractérisée en ce que lesdites cellules sont des bactéries probiotiques.

11) Aliment fermenté comprenant au moins une souche de lactocoque selon une quelconque des revendications 1 à 3, éventuellement associée à d'autres bactéries probiotiques.

FIG.1

FIG. 2

3 / 5

FIG.3

4 / 5

FIG.4

5 / 5

FIG. 5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 00/00885

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/53 C12N9/08 A61K38/44 A23L1/03

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N A61K A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	HAMMES W.P. ET AL.: "Safety aspects of genetically modified lactic acid bacteria" ACS SYMPOSIUM SERIES, vol. 605, 1995, pages 181-194, XP000857960 the whole document ---	11
A	EP 0 670 366 A (BIO-OBTENTION SC (FR) GINOUX J-P; DREYER A; ROCH P; BACCOU J-C LACAN D) 6 September 1995 (1995-09-06) abstract page 1 -page 4 ---	5
A	EP 0 663 405 A (SHOWA DENKO KABUSHIKI KAISHA (JP); FUSHO YUICHI; YAJIMA YOSHIHIRO) 19 July 1995 (1995-07-19) page 2, line 26-55 ---	3

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the international search

13 July 2000

Date of mailing of the international search report

20/07/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Macchia, G

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 00/00885

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Database EMBL ID: CAT2_BACSU; AC: P42234 10 Nov. 1995 XP002126980 cited in the application the whole document ---	3
A	WO 97 14806 A (CAMBRIDGE UNIV TECH SERVICES LIM (US) STEIDLER; REMAUT; WELLS; LE PAGE) 24 April 1997 (1997-04-24) abstract page 36 -page 44; claims ---	1
A	WO 96 11277 A (DOMPE' SPA (IT); TAGLIABUE; BORASCHI; BOSSU'; MACCHIA; MAURIZI ET AL.) 18 April 1996 (1996-04-18) abstract page 10, line 1,2 page 11, line 1-4 page 13, line 25 -page 14, line 30 ---	1
A	WO 93 20195 A (FOX CHASE CANCER CTR (US); CORNELL RES FDT (US); HAMILTON; GODWIN ET AL) 14 October 1993 (1993-10-14) abstract ---	8
A	WO 98 31377 A (ESSAIDI MOHAMMED (MA/NL); HUF FREDERIK ALBERT (NL)) 23 July 1998 (1998-07-23) abstract page 4, paragraph 1 -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 00/00885

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
EP 0670366	A	06-09-1995	FR JP US US	2716884 A 8048699 A 5616323 A 5747043 A	08-09-1995 20-02-1996 01-04-1997 05-05-1998
EP 0663405	A	19-07-1995	JP US US	7246092 A 5486467 A 5622849 A	26-09-1995 23-01-1996 22-04-1997
WO 9714806	A	24-04-1997	AU BR CN EP NO	7315496 A 9610929 A 1202934 A 0871748 A 981746 A	07-05-1997 21-12-1999 23-12-1998 21-10-1998 22-06-1998
WO 9611277	A	18-04-1996	IT AU CA EP JP	1270123 B 3745395 A 2201721 A 0784689 A 10506791 T	28-04-1997 02-05-1996 18-04-1996 23-07-1997 07-07-1998
WO 9320195	A	14-10-1993	AU	3969993 A	08-11-1993
WO 9831377	A	23-07-1998	NONE		

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 00/00885

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 C12N15/53

C12N9/08

A61K38/44

A23L1/03

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 C12N A61K A23L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	HAMMES W.P. ET AL.: "Safety aspects of genetically modified lactic acid bacteria" ACS SYMPOSIUM SERIES, vol. 605, 1995, pages 181-194, XP000857960 le document en entier ---	11
A	EP 0 670 366 A (BIO-OBTENTION SC (FR)) GINOUX J-P; DREYER A; ROCH P; BACCOU J-C LACAN D) 6 septembre 1995 (1995-09-06) abrégé page 1 -page 4 ---	5
A	EP 0 663 405 A (SHOWA DENKO KABUSHIKI KAISHA (JP); FUSHO YUICHI; YAJIMA YOSHIHIRO) 19 juillet 1995 (1995-07-19) page 2, ligne 26-55 ---	3
		-/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent

"E" document antérieur, mais publié à la date de dépôt international ou après cette date

"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)

"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

13 juillet 2000

Date d'expédition du présent rapport de recherche internationale

20/07/2000

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Macchia, G

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 00/00885

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	Database EMBL ID: CAT2_BACSU; AC: P42234 10 Nov. 1995 XP002126980 cité dans la demande le document en entier ---	3
A	WO 97 14806 A (CAMBRIDGE UNIV TECH SERVICES LIM (US) STEIDLER; REMAUT; WELLS; LE PAGE) 24 avril 1997 (1997-04-24) abrégé page 36 -page 44; revendications ---	1
A	WO 96 11277 A (DOMPE' SPA (IT); TAGLIABUE; BORASCHI; BOSSU'; MACCHIA; MAURIZI ET AL.) 18 avril 1996 (1996-04-18) abrégé page 10, ligne 1,2 page 11, ligne 1-4 page 13, ligne 25 -page 14, ligne 30 ---	1
A	WO 93 20195 A (FOX CHASE CANCER CTR (US); CORNELL RES FDT (US); HAMILTON; GODWIN ET A) 14 octobre 1993 (1993-10-14) abrégé ---	8
A	WO 98 31377 A (ESSAIDI MOHAMMED (MA/NL); HUF FREDERIK ALBERT (NL)) 23 juillet 1998 (1998-07-23) abrégé page 4, alinéa 1 -----	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR 00/00885

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP 0670366 A	06-09-1995	FR	2716884 A	08-09-1995
		JP	8048699 A	20-02-1996
		US	5616323 A	01-04-1997
		US	5747043 A	05-05-1998
EP 0663405 A	19-07-1995	JP	7246092 A	26-09-1995
		US	5486467 A	23-01-1996
		US	5622849 A	22-04-1997
WO 9714806 A	24-04-1997	AU	7315496 A	07-05-1997
		BR	9610929 A	21-12-1999
		CN	1202934 A	23-12-1998
		EP	0871748 A	21-10-1998
		NO	981746 A	22-06-1998
WO 9611277 A	18-04-1996	IT	1270123 B	28-04-1997
		AU	3745395 A	02-05-1996
		CA	2201721 A	18-04-1996
		EP	0784689 A	23-07-1997
		JP	10506791 T	07-07-1998
WO 9320195 A	14-10-1993	AU	3969993 A	08-11-1993
WO 9831377 A	23-07-1998	AUCUN		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.