Application 1 Frottement exponentiel –

Poulie-courroie ★ – Corrigé

Lycée Mistral - Avignon.

Le problème du frottement d'une corde, d'une sangle ou d'une courroie sur une poulie ou un tambour est un problème classique.

Objectif

Modéliser l'évolution de la tension dans un câble en fonction de l'angle d'enroulement sur une poulie.

B2-14

C1-05

C2-07

On note f le coefficient de frottement entre le câble et la poulie.

On considère que le câble est enroulé d'un angle α autour de la poulie. Le câble est à la limite du glissement sous l'action des deux brins $\overrightarrow{T_1}$ et $\overrightarrow{T_2}$. Soit $M(\theta)$ un point de l'enroulement.

Question 1 Après avoir isolé une tranche élémentaire de câble en $M(\theta)$ de largeur $d\theta$, réaliser un bilan des actions mécaniques extérieures.

Correction

BAME:

- ► action de tension du câble $1 \overrightarrow{F} \left(\theta + \frac{d\theta}{2}\right)$;
- ► action de tension du câble $2 \overrightarrow{F} \left(\theta \frac{d\theta}{2}\right)$;
- ▶ action de la poulie sur le câble : $N\overrightarrow{u_r} + T\overrightarrow{u_\theta}$ avec $T = \pm fN$.

Question 2 Appliquer le théorème en résultante statique en projection dans la base $(\overrightarrow{u_r}, \overrightarrow{u_\theta})$.

Correction

L'application du TRS à la tranche de câble, on a $\overrightarrow{F}\left(\theta+\frac{\mathrm{d}\theta}{2}\right)+\overrightarrow{F}\left(\theta-\frac{\mathrm{d}\theta}{2}\right)+N\overrightarrow{u_r}+T\overrightarrow{u_\theta}=\overrightarrow{0}$. En projetant dans $\left(\overrightarrow{u_r},\overrightarrow{u_\theta}\right)$ on a :

$$\begin{cases} -F\left(\theta + \frac{\mathrm{d}\theta}{2}\right)\sin\left(\frac{\mathrm{d}\theta}{2}\right) - F\left(\theta - \frac{\mathrm{d}\theta}{2}\right)\sin\left(\frac{\mathrm{d}\theta}{2}\right) + N = 0\\ F\left(\theta + \frac{\mathrm{d}\theta}{2}\right)\cos\left(\frac{\mathrm{d}\theta}{2}\right) - F\left(\theta - \frac{\mathrm{d}\theta}{2}\right)\cos\left(\frac{\mathrm{d}\theta}{2}\right) + T = 0 \end{cases}.$$

Question 3 En considérant que l'angle θ est petit, établir l'équation différentielle liant f et $F(\theta)$ et θ .

Correction En utilisant $\cos d\theta/2 \simeq 1$ et $\sin d\theta/2 \simeq d\theta/2$: $\begin{cases} -F\left(\theta + \frac{d\theta}{2}\right) \frac{d\theta}{2} - F\left(\theta - \frac{d\theta}{2}\right) \frac{d\theta}{2} + N = 0 \\ F\left(\theta + \frac{d\theta}{2}\right) - F\left(\theta - \frac{d\theta}{2}\right) + T = 0 \end{cases}$ $\Leftrightarrow \begin{cases} -\left(F\left(\theta + \frac{d\theta}{2}\right) + F\left(\theta - \frac{d\theta}{2}\right)\right) \frac{d\theta}{2} + N = 0 \\ F\left(\theta + \frac{d\theta}{2}\right) - F\left(\theta - \frac{d\theta}{2}\right) + T = 0 \end{cases}$ De plus, en faisant un DL à l'ordre 2, $F\left(\theta + \frac{d\theta}{2}\right) \simeq F(\theta) + \frac{d\theta}{2} \frac{dF(\theta)}{d\theta}$. On a donc : $\begin{cases} -2F\left(\theta\right) \frac{d\theta}{2} + N = 0 \\ dF(\theta) + T = 0 \end{cases}$ En utilisant le modèle de Coulomb, $T = \pm fN$ $dF(\theta) \pm f\left(2F\left(\theta\right) \frac{d\theta}{2}\right) = 0 \Leftrightarrow dF(\theta) \pm fF\left(\theta\right) d\theta = 0$

Question 4 Résoudre l'équation différentielle pour établir la relation entre T_1 , T_2 , f et α .

Correction

On a :
$$\mathrm{d}F(\theta) = \pm F(\theta)\,\mathrm{d}\theta \Leftrightarrow \frac{\mathrm{d}F(\theta)}{F(\theta)} = \pm \mathrm{d}\theta$$

En intégrant l'équation précédente, on a : $[\ln F]_{T_1}^{T_2} = \pm f[\theta]_0^\alpha$ Soit $\ln T_2 - \ln T_1 = -f\alpha$
 $\Leftrightarrow \ln \frac{T_2}{T_1} = \pm f\alpha$ et $T_2 = T_1 \mathrm{e}^{\pm f\alpha}$.
(Le signe dépend du sens de glissement.)