Lab₀

Create a Project in Vivado & Do a Verilog Practice

Create New Project (1/4)

Create a new project.

Create New Project (2/4)

• Fill in Project name and Project location.

Create New Project (3/4)

- Choose RTL Project.
 - Tick the following boxes.

Create New Project (4/4)

• Select parts(boards) arbitrarily since we don't have to implement the

design on FPGA.

Add Design Source (.v files) (1/2)

Add Design Source (.v files) (2/2)

- Add design sources
 - Not including testbench.v

Add Simulation Source (testbench.v) (1/2)

Add Simulation Source (testbench.v) (2/2)

Add testbench.v

How to Run Simulation (1/2)

- After adding testbench into project, you can execute the behavioral simulation.
- It can help you debug with the signal waveform and check the correctness of your design.

How to Run Simulation (2/2)

Useful Information (1/2)

You can check out design error messages in Messages.

Possible design errors would be underlined in red.

```
module Full_Subtractor(
In_A, In_B, Borrow_in, Difference, Borrow_out
);
input In_A, In_B, Borrow_in;
output Difference, Borrow_out;

wire ;
```

Useful Information (2/2)

This button makes your complete waveform fit your window

You can change the radix of the signal. (default radix is decimal)

Lab0: Half Subtractor and Full Subtractor

- Implement the half subtractor and full subtractor without using '-'
 operation.
- We want you to practice how to implement the signal connection within the given circuit. We will give you example design sources and testbench.v.

Half Subtractor and Full Subtractor Circuit

Truth Table for Full Subtractor

Input			Output	
А	В	B	D	B
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Verify the Correctness of Your Design

- We have enumerated all input cases in testbench.v.
- After simulation with our testbench.v, if your design is correct,
 you should see the message shown below in Tcl Console.

Note

- You don't have to submit anything in this lab.
- However, we recommend you to do this lab, so that you get familiar with Vivado and Verilog. Both of them would be used in future labs.

Any Problem?

- If you have any questions, feel free to send an Email to TAs or ask on the Teams discussion forum. Your questions may also be other people's questions.
 - https://teams.microsoft.com/l/channel/19%3a078bb4ffa94f4f00a08a2f8282
 96a150%40thread.tacv2/%25E8%25AA%25B2%25E7%25A8%258B%25E8%25
 A8%258E%25E8%25AB%2596%25E5%258D%2580?groupId=e4b5cbb4-81d6-4dac-88a3-87e1a3802809&tenantId=80a9abdb-7cef-443c-b040-3f8e75e9232
 e