Cálculo II (Grupo 1º A) Relación de Ejercicios nº 7

Ejercicio 7.1: Calcular el área limitada por las gráficas de las funciones dadas por f(x) = 3x y por $g(x) = x^2$.

Ejercicio 7.2: Calcular mediante integración, el área de un triángulo y de un trapecio.

Ejercicio 7.3: Calcular el área del recinto limitado por la gráfica de la función $f(x) = x^3$, el eje de abcisas y las rectas x = -1 y x = 1.

Ejercicio 7.4: Calcular el área del recinto limitado por la curva de ecuación $f(x) = \frac{x-2}{(x-4)(x+2)}$, el eje de abcisas y las rectas x = -1 y x = 3.

Ejercicio 7.5: Calcular el área del recinto limitado por la parábola de ecuación $y^2 - 2x = 0$ y la recta que une los puntos (2, -2) y $(4, 2\sqrt{2})$.

Ejercicio 7.6: Calcular el área del recinto limitado por la parábola de ecuación $f(x) = 4x - x^2$ y el eje de abcisas.

Ejercicio 7.7: Calcular el área de los recintos limitados por la circunferencia de ecuación $x^2 + y^2 = 1$ y la recta de ecuación x + y = 1.

Ejercicio 7.8: Calcular el área comprendida entre las curvas $x^2 + y^2 = 2$ y $2y = x^2 + 1$.

Ejercicio 7.9: Calcular el área de la región acotada delimitada por la gráfica de la función $f(x) = x^2 \ln x$, la recta x = e, y el eje OX.

Ejercicio 7.10: Calcular el área limitada por la curva $y(x) = \frac{a}{2} (e^{\frac{x}{a}} + e^{-\frac{x}{a}})$, los ejes coordenados y la recta x = a, siendo a > 0.

Ejercicio 7.11: Calcular el área de cada una de las regiones del plano que delimitan conjuntamente las funciones $f(x) = \frac{1}{1+x}$ y $g(x) = \frac{1}{1+x^2}$ en el primer cuadrante.

Ejercicio 7.12: Calcular el área de las dos partes en que la parábola $y^2 = 4x$ divide al círculo $x^2 + y^2 = 8$.

Ejercicio 7.13: Calcular el valor de λ para el cual la curva $y = \lambda \cos x$ divide en dos partes de igual área a la región limitada por la curva $y = \sin x$ y el eje de abscisas cuando $0 \le x \le \frac{\pi}{2}$.

Ejercicio 7.14: Calcular el área de una elipse de semiejes a y b.

Ejercicio 7.15: Calcular el área comprendida entre las elipses $\frac{x^2}{1} + \frac{y^2}{4} = 1$ y $\frac{x^2}{4} + \frac{y^2}{1} = 1$.

Ejercicio 7.16: Calcular el área encerrada por el bucle de la curva de ecuación $y^2 = x(x-1)^2$.

Ejercicio 7.17: Dados a > 0 y b > 0, calcular el área encerrada por la curva $x^4 - ax^3 + by^2 = 0$.

Ejercicio 7.18: Sea a > 0. Calcular el área comprendida entre el esferoide $y^2(a+x) = x^2(a-x)$, y su asíntota vertical.

Ejercicio 7.19: Calcular la longitud de la curva $y(x) = \ln \frac{e^x + 1}{e^x - 1}$ entre x = 1 y x = 2.

Ejercicio 7. 20: Calcular la longitud de arco de la curva $y(x) = \sqrt{8} \ln x$ entre los puntos (1,0) y (8, $\sqrt{8}$ ln 8).

Ejercicio 7.21: Hallar la longitud de arco de la curva $y(x) = 2\sqrt{x}$, entre los puntos x = 1 y x = 2.

Ejercicio 7.22: Calcular la longitud de arco de la curva $y(x) = \ln x$, entre los puntos $x = \sqrt{3}$ y $x = \sqrt{8}$.

Ejercicio 7.23: Sea a > 0. Calcular la longitud del arco de la parábola semicúbica de ecuación $ay^2 = x^3$ comprendido entre el origen de coordenadas y el punto x = 5a.

Ejercicio 7.24: Calcular la longitud de arco de la curva dada por la ecuación $8a^2y^2 = x^2(a^2 - 2x^2)$.

Ejercicio 7.25: Sea a > 0. Hallar la longitud de arco de la catenaria de ecuación $y(x) = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$ entre el origen de coordenadas y el punto (x_0, y_0) .

Ejercicio 7.26: Hallar el volumen del cuerpo engendrado al girar sobre el eje OX la superficie limitada por parábola $y = ax - x^2$ (siendo a > 0) y el eje de abcisas.

Ejercicio 7.27: Calcular el volumen del sólido obtenido al girar sobre el eje OX, la región limitada por la gráfica de curva $f(x) = \text{sen}(x) + \cos(x)$, el eje de abcisas en el intervalo $[0, \pi]$.

Ejercicio 7.28: Para cada x > 0, sea V(x) el volumen del sólido obtenido al girar sobre el eje OX, la superficie determinada por la gráfica de la función $y(t) = \frac{\sqrt{t}}{1+t^2}$ cuando t recorre el intervalo [0,x]. Determinar el valor de a > 0 tal que $V(a) = \frac{1}{2} \lim_{x \to \infty} V(x)$.

Ejercicio 7.29: Un sólido de revolución está generado por la rotación alrededor del eje OX, de la superficie determinada por gráfica de la función y = f(x) sobre el intervalo [0, a]. Si para a > 0 el volumen de dicho sólido es $a^3 + a$, ¿Quién es la función f?

Ejercicio 7.30: Determinar el volumen del sólido que se obtiene al girar alrededor del eje OY la superficie acotada determinada por las parábolas $y = ax^2$ e $y = b - cx^2$, siendo a, b, c > 0.

Ejercicio 7.31: Determinar el volumen del sólido que se obtiene al girar la curva $y^2 = 8x$, para valores de x en el intervalo [0,2] cuando la curva gira sobre: (i) el eje OX, (ii) el eje OY, (iii) la recta x = 2.

Ejercicio 7.32: Determinar el volumen del sólido obtenido al girar alrededor del eje OX la región acotada determinada por las parábolas $y^2 = 2px$, y $x^2 = 2py$, siendo p > 0.

Ejercicio 7.33: Calcular el volumen del sólido obtenido al girar alrededor del eje OX la región acotada limitada por las gráficas de las funciones $f(x) = \operatorname{sen}(x)$ y $g(x) = \cos(x)$ en el intervalo $\left[0, \frac{\pi}{2}\right]$.

Ejercicio 7.34: Determinar el volumen del sólido obtenido al girar la región acotada limitada por las gráficas de las funciones $f(x) = x^2 - 4x + 4$, y g(x) = 4 - x, cuando dicha región gira alrededor de la recta y = -1.

Ejercicio 7.35: Determinar el volumen del sólido que se obtiene al girar alrededor del eje OX la región que en el primer cuadrante delimitan las curvas $y = \frac{1}{x^2}$ e $y = \text{sen}\left(\frac{\pi x}{2}\right)$, y las rectas x = 0 e y = e.

Ejercicio 7.36: Calcular el volumen generado cuando la superficie acotada limitada por la parábola de ecuación $y = 4x - x^2$ y el eje OX, se hace girar alrededor de la recta y = 6.

Ejercicio 7.37: Calcular el volumen del toro. Esto es el sólido de revolución generado por un círculo de radio r que gira alrededor de un eje situado en el mismo plano del círculo, a una distancia a del centro del círculo, con a > r.