Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>3220</u>	К работе допущен
Студент <u>Гафурова Ф. Ф.</u>	Работа выполнена
Преподаватель Пулькин Н. С.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной поверхности

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2) Определение величины ускорения свободного падения g.

2. Задачи.

- 1) Проведение измерений.
- 2) Обработка результатов измерений.
- 3) Построение графика по результатам измерений.

3. Объект исследования.

Ускорение тележки при различных углах наклона.

4. Метод экспериментального исследования.

Измерение времени, за которое тележка проходит заданное расстояние по наклонной плоскости при различных углах наклона.

5. Рабочие формулы и исходные данные.

Формула зависимости проекции скорости на ось X от времени:

$$v_x(t) = v_{0x} + a_x t \tag{1}$$

Где v_{0x} - проекция скорости на ось 0x в момент времени $t=0,\,a_x$ - ускорение тела.

Формула зависимости координаты тела от времени:

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}$$
 (2)

Где x_0 - начальная координата.

Формула зависимости координаты тела от времени через ускорение:

$$x_2 - x_1 = \frac{a}{2}(t_2^2 - t_1^2) \tag{3}$$

Второй закон Ньютона, описывающий движение тележки:

Рис.1 Схема, описывающая второй закон Ньютона.

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{TP} \tag{4}$$

Где a – ускорение тележки, N - сила реакции опоры, а сила трения, возникающая при скольжении, по модулю равна произведению коэффициента трения на силу нормальной реакции: $F_{\rm TP} = \mu \ N$

Проекции уравнения (4) на координатные оси X и Y:

$$\begin{cases}
oY: 0 = N - mg \cos \alpha \\
oX: ma = mg \sin \alpha - \mu mg \cos \alpha
\end{cases}$$
(5)

Где α - угол между наклонной плоскостью и горизонталью **Формула модуля ускорения:**

$$a = g \sin \alpha - \mu mg \cos \alpha \tag{6}$$

Ввиду малости угла, его косинус в уравнении (6) можно заменить единицей:

$$a = g(\sin \alpha - \mu) \tag{7}$$

Формулы нахождения ускорения и его среднеквадратичного отклонения из графика:

$$a = \frac{\sum_{i=1}^{N} z_{i} Y_{i}}{\sum_{i=1}^{N} z_{i}^{2}}$$

$$\sigma_{a} = \sqrt[2]{\frac{\sum_{1}^{N} (Y_{i} - aZ_{i})^{2}}{(N-1)\sum_{i=1}^{N} Z_{i}^{2}}}$$
(8)

Формула абсолютной погрешности коэффициента a для доверительной вероятности

 $\alpha = 0.90$:

$$\Delta a = 2\sigma_a \tag{9}$$

Формула относительной погрешности ускорения:

$$\varepsilon_{\rm a} = \frac{\Delta a}{a} \cdot 100\% \tag{10}$$

Формула синуса угла наклона рельса к горизонту

$$\sin \alpha = \frac{(h_0 - h) - (h_0^{\dagger} - h^{\dagger})}{x' - x}$$
 (11)

Формула значения ускорения:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2} \tag{12}$$

Формула погрешности ускорения для каждой из серии измерении:

$$\Delta a = \langle a \rangle \sqrt{\frac{(\Delta x_{n2})^2 + (\Delta x_{n1})^2}{(x_2 - x_1)^2} + 4 \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle \tau_2 \rangle_{\Delta} t_1)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^{2^-}}}$$
(13)

Формула коэффициента линейной зависимости В по методу наименьших квадратов (МНК) из формулы (7):

$$B = g = \frac{\sum_{i=1}^{N} a_1 \sin \alpha_i - \frac{1}{N}}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin x_i)^2}$$
(14)

Формула коэффициента линейной зависимости А:

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right)$$
 (15)

Формула среднеквадратичного отклонения для ускорения свободного падения:

$$\sigma_{g} = \sqrt{\frac{\sum_{i=1}^{N} d_{i}^{2}}{D(N-2)}}$$
 (16)

Где

$$d_1 = a_i - (A + B \sin \alpha_i) \tag{17}$$

$$D = \sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2$$
 (18)

Формула абсолютной погрешности g для доверительной вероятности $\alpha = 0.90$:

$$\Delta g = 2\sigma_g \tag{19}$$

Формула относительной погрешности ускорения свободного падения:

$$\varepsilon_{\rm g} = \frac{\Delta g}{g} \cdot 100\% \tag{20}$$

6. Измерительные приборы.

Таблица 1. Измерительные приборы

$\frac{\mathcal{N}_{2}}{n/n}$	Наименование	Предел измерений	Цена деления	Класс точности	Погрешность
1	Линейка на рельсе	1,3 м	1 см/дел	_	5,0 мм
2	Линейка на угольнике	250 мм	1 мм/дел	_	0,5 мм
3	ПЦК-3 в режиме секундомера	100c	0,1 c	_	0,1 c

7. Схема установки.

Рис. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки.

Задание 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.

Таблица 2: Характеристика лабораторной установки

х, м	x', m	h_o , мм	h'_o , mm
$0,22 \pm 0,005$	$1,00 \pm 0,005$	$205 \pm 0,5$	206 ± 0.5

Где х и х` это координаты, в которых измерялись высоты, на которых находится наклонная плоскость.

Таблица 3: Результаты прямых измерений (Задание 1)

	Измеренные величины			Рассчитанные величины		
Nº	x_1 , M	<i>x</i> ₂ , M	t_1 , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2
1	0,15	0,40	1,30	2,30	0,25	1,8
2	0,15	0,50	1,20	2,50	0,35	2,405
3	0,15	0,70	1,20	3,10	0,55	4,085
4	0,15	0,90	1,30	3,40	0,75	4,935
5	0,15	1,10	1,30	4,00	0,95	7,155

Задание 2: Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту

Таблица 4: Результаты прямых измерений (Задание 2)

$N_{\Pi \Pi}$	<i>h</i> , мм	<i>h</i> ′, мм	No	<i>t</i> ₁ , c	<i>t</i> ₂ , c
			1	1,3	4,3
			2	1,4	4,8
1	212	205	3	1,4	4,7
			4	1,5	5,0
			5	1,5	4,9
			1	1,0	3,3
			2	1,2	3,4
2	222	205	3	1,2	3,4

			4	1,2	3,4
			5	1,2	3,5
			1	0,8	2,8
			2	0,8	2,7
3	232	205	3	0,9	2,8
			4	0,8	2,7
			5	0,9	2,8
	241	204	1	0,8	2,2
4			2	0,8	2,2
			3	0,8	2,2
			4	0,8	2,2
			5	0,8	2,2
	251	204	1	0,7	1,9
5			2	0,7	1,9
			3	0,7	2,0
			4	0,7	2,0
			5	0,6	2,0

 $N_{\Pi \Pi}$ – количество пластин

h — высота на координате x=0,22 м

h' — высота на координате x'=1,00 м

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*). Задание 1

Посчитаем ускорение по МНК:

$$a = \frac{\sum_{i=1}^{N} Z_i \cdot Y_i}{\sum_{i=1}^{N} Z_i^2} \cong 0.139 \frac{M}{c^2}$$

Посчитаем среднеквадратичное отклонение ускорения по формуле (9):

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a \cdot Z_i)^2}{(N-1) \cdot \sum_{i=1}^{N} Z_i^2}} \cong 0,004 \frac{M}{c^2}$$

Задание 2

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi J}$	sin α	$\langle t_1 angle \pm \Delta t_1$, c	$\langle t_2 \rangle \pm \Delta t_2$, c	$\langle a \rangle \pm \Delta a, \frac{M}{C^2}$
1	-0,0102	1,42 <u>±</u> 0,067	4,74 ± 0,153	0,024 ± 0,007
2	-0,023	1,16 <u>±</u> 0,069	3,4 ± 0,063	0,069 ± 0,008
3	-0,036	0,84 <u>±</u> 0,058	2,76 ± 0,058	0,16 ± 0,013
4	-0,049	0,8 <u>±</u> 0,05	2,2 ± 0,05	0,357 ± 0,025
5	-0,062	0,68±0,055	1,96 ± 0,058	0,281 ± 0,04

$$N_{\Pi J I}$$
 — количество пластин $\langle t_{1,2}
angle = rac{1}{N} \sum_{i=1}^N t_{1i,2i}$

Найдем коэффициенты линейной зависимости а от sinα по МНК, коэффициент В равен:

$$B \equiv g = \frac{\sum_{i=1}^{N} (a_i \cdot \sin \alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^{N} a_i \cdot \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2} = 9.4 \frac{M}{c^2}$$

Коэффициент А равен:

$$A = \frac{1}{N} \cdot (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i) = 0.302 \frac{\text{cm}}{c^2}$$

Найдем среднеквадратичное отклонение с

$$\sigma_{g} = \sqrt{\frac{\sum_{i=1}^{N} (a_{i} - (A + B \cdot \sin \alpha_{i}))^{2}}{(\sum_{i=1}^{N} \sin \alpha_{i}^{2} - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_{i})^{2}) \cdot (N - 2)}} = 0.92 \frac{M}{c^{2}}$$

Найдем разницу посчитанного g от $g_{\text{табл}}$:

$$|g - g_{\text{табл}}| = 0.41 \frac{M}{c^2}$$

А также посчитаем в процентах отклонение от табличного значения:
$$\epsilon_{g_{\text{табл}}} = \frac{|g-g_{\text{табл}}|}{g_{\text{табл}}} \cdot 100\% = 4,12~\%$$

10. Расчет погрешностей измерений.

Абсолютная погрешность ускорения при доверительной вероятности $\alpha=0.90$ по формуле (10):

$$\Delta_a = 2\sigma_a = 0.008 \frac{cM}{c^2}$$

Найдем относительную погрешность для а:

$$\varepsilon_{a} = \frac{\Delta_{a}}{a} \cdot 100\% = 5,75\%$$

Найдем абсолютную погрешность для ∆g:

$$\Delta_{\rm g} = 2\sigma_{\rm g} = 1.84 \, \frac{\rm M}{\rm c^2}$$

Найдем относительную погрешность для g:

$$\epsilon_g = \frac{\Delta_g}{g} \cdot 100\% = 19,6\%$$

Абсолютная погрешность Y и Z равны:

Где

$$Y = x_2 - x_1, M$$

$$Z = \frac{t_1^2 - t_2^2}{2}, c^2$$

$$\Delta Y = \sqrt{(\frac{df_1}{dx_1} \cdot \Delta x_1)^2 + (\frac{df_1}{dx_2} \cdot \Delta x_2)^2} = 0,72 \text{ cm}$$

$$\Delta Z_i = \sqrt{(\frac{df_2}{dt_{1i}} \cdot \Delta t_{1i})^2 + (\frac{df_2}{dt_{2i}} \cdot \Delta t_{2i})^2} = 0,8 \text{ c}^2$$

Вычислим погрешность ускорения для первого случая по формуле (14):

$$\Delta a_{i} = \langle a \rangle_{i} \cdot \sqrt{\frac{(\Delta x_{_{H2}})^{2} + (\Delta x_{_{H1}})^{2}}{(x_{2} - x_{1})^{2}} + 4 \cdot \frac{(\langle t_{1} \rangle_{i} \Delta t_{1})^{2} + (\langle t_{2} \rangle_{i} \Delta t_{2})^{2}}{(\langle t_{2} \rangle_{i}^{2} - \langle t_{1} \rangle_{i}^{2})^{2}}} = 0.21 \frac{\text{cm}}{c^{2}}$$

11. Графики.

Задание 1

График 1. График зависимости Y(Z) = aZ

 $(t_1^2 - t_2^2)/2, c^2$

Экспериментальные значения Y

Аппроксимация У

Задание 2

0

Экспериментальные значения а

Аппроксимация а

12. Окончательные результаты.

Доверительный интервал и относительная погрешность ускорения тележки равны:

$$a = 0.139 \pm 0.003 \frac{M}{c^2}$$
 $\varepsilon_a = 5.75\%$

Доверительный интервал и относительная погрешность ускорения свободного падения:

$$g = 9.4 \pm 2.0358 \frac{M}{c^2}$$
 $\varepsilon_g = 19.6\%$

Абсолютное и относительное отклонение экспериментального значения ускорения свободного падения от табличного:

$$|g-g_{{ t Ta6}\pi}|=0,41~{ t rac{{ t M}}{c^2}} \qquad \qquad arepsilon_{g_{{ t Ta6}\pi}}=4,2\%$$

13. Выводы и анализ результатов работы.

В ходе проведения лабораторной работы было исследовано движение тележки по наклонной плоскости под разными углами и с разными расстояниями. Были собраны данные и построены таблицы и графики.

График 1 представляет зависимость времени движения тележки от пройденного пути. Данный график получился линейным, что позволило убедиться в равноускоренности движения тележки.

График 2 отображает зависимость ускорения a от $\sin \alpha$. Найдя угловой коэффициент по МНК, было рассчитано значение ускорения свободного падения $g=9,4\frac{M}{c^2}$. Полученное значение разнится с табличным значением ускорения свободного падения на 4,2% без учета погрешности.

Исходя из данных и результатов анализа графиков, можно сделать вывод о равноускоренности движения тележки по наклонной плоскости и расчете ускорения свободного падения.