Binomial Theorem

Binomial Theorem

Let x and y be variables and let n be a non-negative integer. Then

Examples

Example 1: What is the coefficient of x^7y^3 in the expansion of $(x + y)^{10}$?

$$\binom{10}{7} = \frac{10!}{3!7!} = 120 = \binom{10}{3}$$
 also coef for x^3y^7

Example 2: Show
$$\sum_{k=0}^{n} C(n, k) = 2^{n}$$
 $\underset{k=0}{\overset{n}{\underset{\sim}{\sum}}} {\binom{n}{k}} = 2^{n}$

Using a combinatorial proof: show 2 different ways of counting something Suppose S is a set of n element.

Tuppose 3 is a set of a element.

of subsets of
$$S = |P(s)| = 2^{|s|} = 2^n$$

of subsets with $\begin{cases} 1s \\ 1 \end{cases} = \binom{n}{0} \\ 0 \end{cases}$
 $\begin{cases} 1s \\ 1s \end{cases} = \binom{n}{1} \\ \binom{n}{2} \end{cases}$
 $\begin{cases} n \\ k \end{cases}$
 $\begin{cases} n \\ n \end{cases} = 1$

Total # of subsets of
$$= \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k}$$

Count the subset with 2 afferent technique, 2 value must be equal. i. $E = \sum_{k=0}^{n} \binom{n}{k} = 2^n$

Pigeonhole Principle

Theorem

Let S and T be sets such that |T| > |S|. Then for every total function $f: T \rightarrow S$, there are at least two elements in T that map to the same element of S under f.

Or, put another way: Let k be a positive integer. If k+1 (or more) objects are placed into k boxes, then there is at least one box containing 2 or more objects.

Examples

Example 1: Show that at least two people in this lecture got the same score on the first exam.

-60 points possible on the exam, no one get a score <10, half points allowed,

50 there are 101 different possibilities.

-There are 187 people in Lev!

Since there are more people than exam scores possible by pigeonhole principle, at least 2 people

get the same score.

Example 2: Show that for every positive integer n, there is a multiple of n that has only 0s and 1s in its decimal

Example 2: Show that for every positive integer
$$n$$
, there is a multiple of n that has only 0s and 1s in its decimal expansion (i.e., when expressed in base 10).

Lef. $|I|, |II|, |III| = 15$ every divisible by 7.

Let $n \in \mathbb{Z}^+$ \times mode $n = k$ \longrightarrow
 $N = k \le n - 1$
 $N =$