数值分析公式总结

目录

—、	数值计算误差	2
	1.1 计算误差	2
	1.2 函数的误差	2
	1.3 数值运算的误差估计	2
	1.4 误差限和有效位数的关系	3
	1.5 相对误差限和有效位数的关系	3
=,	插值法	4
	2.1 多项式插值	4
	2.2 Lagrange 插值	4
	2.3 Newton 插值	5
	2.4 等距插值(差分形式的牛顿插值公式)	6
三、	曲线拟合的最小二乘法	7
	3.1 曲线拟合	7
	3.2 抛物线拟合	7
四、	数值积分	8
	4.1Newton-Cotes 公式	8
	4.2 科特斯系数表	8
	4.3 复合求积公式	9
五、	数值微分	10
	5.1 两点公式	10
	5.2 三点公式	
六、	非线性方程迭代法	11
	6.1 二分法	11
	6.2 不动点迭代法	11
	6.3 牛顿迭代法	
	6.4 弦截法	
	6.5 抛物线法	
七、	常微分方程初值问题数值解法	13

一、数值计算误差

1.1 计算误差

误差: $e^* = x - x^*$

相对误差: $e_r^* = \frac{x-x^*}{x^*} = \frac{e^*}{x^*}$ (分母也可以取 x)

误差限: $|e^*| = |x - x^*| \le \varepsilon^*$

相对误差限: $|e_r^*| = \left|\frac{e^*}{x^*}\right| \leq \frac{\varepsilon^*}{|x^*|}$

1.2 函数的误差

误差: $e(f(x^*)) = f'(x^*)e(x^*)$

误差限: $\varepsilon(f(x^*)) = |f'(x^*)|e(x^*)$

相对误差: $e_r(f(x^*)) = f'(x^*)e(x^*)/f(x^*)$

相对误差限: $\varepsilon_r(f(x^*)) = |f'(x^*)|e(x^*)/f(x^*)$

1.3 数值运算的误差估计

$$\begin{cases} \varepsilon(x_1^* \pm x_2^*) \leqslant \varepsilon(x_1^*) + \varepsilon(x_2^*) \\ \varepsilon(x_1^* x_2^*) \leqslant |x_1^*| \varepsilon(x_2^*) + |x_2^*| \varepsilon(x_1^*) \\ \varepsilon(x_1^* / x_2^*) \leqslant \frac{|x_1^*| \varepsilon(x_2^*) + |x_2^*| \varepsilon(x_1^*)}{|x_2^*|^2} , x_2^* \neq 0 \end{cases}$$

1.4 误差限和有效位数的关系

$$\varepsilon^* = |x - x^*| \le \frac{1}{2} \times 10^{m - n + 1}$$

例: $193.4 \Rightarrow 1.934 \times 10^2 \Rightarrow m = 2 \ n = 4$

1.5 相对误差限和有效位数的关系

$$\varepsilon^* \le \frac{1}{2a_1} \times 10^{-(n-1)}$$

例: $193.4 \Rightarrow 1.934 \times 10^2 \Rightarrow a_1 = 1 \text{ n} = 4$

二、插值法

2.1 多项式插值

$$P(x)$$
 为 n 阶多项式, $P(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n, a_i$ 为实数。 解法: a 解方程组: $Aa=y$, 其中 $A=\begin{bmatrix}1&x_0&\cdots&x_0^n\\1&x_1&\cdots&x_1^n\\\vdots&\vdots&\ddots&\vdots\\1&x_n&\cdots&x_n^n\end{bmatrix}$, $a=\begin{bmatrix}a_0\\a_1\\\vdots\\a_n\end{bmatrix}$, $y=\begin{bmatrix}y_0\\y_1\\\vdots\\y_n\end{bmatrix}$

2.2 Lagrange 插值

插值多项式: $L_n(x) = l_0 y_0 + l_1 y_1 + \dots + l_n y_n$

$$l_0 = \frac{(x - x_0)(x - x_1) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)}$$

插值余项: $R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} W_{n+1}(x)$

截断误差:
$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|, M_{a+1} = \max_{a \le x \le b} |f^{(n+1)}(x)|$$

2.3 Newton 插值

均差 (差商)

一阶差商: $f[x_0, x_k] = \frac{f(x_k) - f(x_0)}{x_k - x_0}$ 二阶差商: $f[x_0, x_1, x_k] = \frac{f[x_0, x_1] - f[x_0, x_k]}{x_k - x_1}$ K 阶差商: $f[x_0, x_1, \cdots, x_k] = \frac{f[x_0, x_1, \dots, x_{k-1}] - f[x_0, \dots, x_{k-2}, x_k]}{x_k - x_{k-1}}$

k	x _k	f(x _k)	一阶差商	i 二阶差商	三阶差	
			商 …			
0	\mathbf{x}_0	$f(x_0)$				
1	X ₁	f(x ₁)	$f[x_0, x_1]$			
2	x ₂	$f(x_2)$	$f[x_1, x_2]$	$f[x_0,x_1,x_2]$		
3	x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1,x_2,x_3]$	$f[x_0, x_1, x_2, x_3]$	
4	X ₄	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	•••
-				l	1	

(均差表)

插值多项式:

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, x_2 \dots x_n](x - x_0)(x - x_1) \dots (x - x_n)$$

插值余项:

$$R_n(x) \& = f[x, x_0, x_1 \cdots x_n](x - x_0) \cdots (x - x_n) = f[x, x_0, x_1 \cdots x_n] w_{n+1}(x)$$

2.4 等距插值 (差分形式的牛顿插值公式)

k	f _k	Δ (∇)	$\Delta^2 \ (\nabla^2)$	$\Delta^3 \ (\nabla^3)$	$\Delta^4(\nabla^4)$	•••
0	f_0					
		$\Delta f_0(\nabla f_1)$				
1	f_1		$\Delta^{2} f_{0} (\nabla^{2} f_{2})$ $\Delta^{2} f_{1} (\nabla^{2} f_{3})$ \cdots $(\nabla^{2} f_{4})$ $\Delta^{2} f_{2}$	2		
		$\Delta f_1(\nabla f_2)$	2 0	$\Delta^3 f_0(\nabla^3 f_3)$.4 4 .	
2	f_2		$\Delta^2 \mathbf{f}_1 (\nabla^2 f_3)$	3 0 0 3 0 >	$\Delta^{T} f_0(\nabla^{T} f_4)$)
	,	$\Delta f_2(\nabla f_3)$		$\Delta^{\circ} f_1(\nabla^{\circ} f_4)$		
3	f_3	15.0000	$(\nabla^2 f_4)$:	i	
	,	$\Delta t_3(V f_4)$	Δ-1 ₂	i		
4	f ₄	1	i			
i	i					

(差分表)

差分多项式:

$$P_n(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!}\Delta^2 f_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n f_0$$

前插余项:
$$Rn = \frac{t(t-1)...(t-n)}{(n+1)!} h^{n+1} f^{(n+1)}(\xi)$$

截断误差:
$$\operatorname{Rn}(x) \leqslant \frac{M_{n+1}}{(n+1)!} \omega_{n+1}(x)$$

三、曲线拟合的最小二乘法

3.1 曲线拟合

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \dots & \sum_{i=1}^{n} x_{i}^{m+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} x_{i}^{n} & \sum_{i=1}^{n} x_{i}^{n+1} & \dots & \sum_{i=1}^{n} x_{i}^{m+n} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \\ \vdots \\ \vdots \\ x_{i}^{m} y_{i} \end{bmatrix}$$

对一组(Xi, yi)用次数 m<<n 的多项式拟合时的误差:

$$\|e\|_{2}^{2} = \sum_{i=1}^{n} \left(y_{i} - \sum_{j=0}^{m} a_{j} x_{i}^{j} \right)^{2} = \sum_{i=1}^{n} y_{i}^{2} - \sum_{i=1}^{n} \sum_{j=0}^{m} a_{j} x_{i}^{j} y_{i}$$

3.2 线性拟合

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

(注: n 为节点个数, a1 为系数 k, a0 为常数 b)

四、数值积分

4.1Newton-Cotes 公式

	公式	余项	
中矩形公式	$\int_{a}^{b} f(x)dx \approx (b-a) \int \left(\frac{a+b}{2}\right)$		
Cotes 公式	$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k}f(x_{k}) = (b-a)\sum_{k=0}^{n} C_{k}f(x_{k})$ A_{k} 是全系数, C_{k} 是科特斯系数,右侧为代数精度	<i>n n为奇数</i> <i>n + 1 n为偶数</i> 这里的 n 为等分数	
梯形公式(1	$I(f) = \int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$	$R[f] = \frac{-(b-a)^3}{12} f''(\eta)$	
次代数精度)	$I(f) = \int_a^b f(x) dx \approx 2 [f(a) + f(b)]$	$\Lambda[f] = \frac{12}{12} f(\eta)$	
辛普森公式(3	$a = b - a \begin{bmatrix} a + b \end{bmatrix}$	$-(b-a)^5$	
次代数精度)	$S = \frac{b-a}{b} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$	$R[f] = \frac{-(b-a)^5}{360} f^4(\eta)$	

4.2 科特斯系数表

n					$C_k^{(n)}$				
1	$\frac{1}{2}$	$\frac{1}{2}$							
2	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$						
3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$					
4	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	$\frac{16}{45}$	$\frac{7}{90}$				
5	$\frac{19}{288}$	$\frac{25}{96}$	$\frac{25}{144}$	$\frac{25}{144}$	$\frac{25}{96}$	$\frac{19}{288}$			
6	$\frac{41}{840}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{34}{105}$	$\frac{9}{280}$	$\frac{9}{35}$	$\frac{41}{840}$		
7	$\frac{751}{17280}$	$\frac{3577}{17280}$	$\frac{1323}{17280}$	$\frac{2989}{17280}$	$\frac{2989}{17280}$	$\frac{1323}{17280}$	$\frac{3577}{17280}$	$\frac{751}{17280}$	
8	989	5888	-928	10496	-4540	10496	-928	5888	989
	28350	28350	28350	28350	28350	28350	28350	228350	28350

4.3 复合求积公式

	公式	余项				
复合	$T_n = \sum_{k=0}^{n-1} \frac{h}{2} [f(x_k) + f(x_{k+1})] =$					
梯形		$R[f] = I - T_n = -\frac{b-a}{12}h^2f''(\eta)$				
公式	$\frac{h}{2} \left[f(a) + 2 \sum_{n=1}^{n-1} f(x_k) + f(b) \right]$	12				
	将区间[a h]n 等分 步长 h= $\frac{b-a}{2}$ 分占 $\gamma_{L}=a+kh$					

将区间[a,0]n 等分,步长 $n=\frac{1}{h}$,分点 $x_k=a+kn$

复合

$$S_n = \sum_{k=0}^{n-1} \frac{h}{6} \left[f(x_k) + 4f\left(x_{k+\frac{1}{2}}\right) + f(x_{k+1}) \right]$$
$$= \frac{h}{6} \left[f(a) + 4\sum_{k=0}^{n-1} f\left(x_{k+\frac{1}{2}}\right) + 2\sum_{k=1}^{n-1} f(x_{k+1}) + f(b) \right]$$

 $R[f] = I - h_n = -\frac{b - a}{2880} h^4 f^{(4)}(\eta)$

将区间[a,b]n 等分,在每个子区间[$x_k, x_{k+\frac{1}{2}}$]上采用 Simpson 公式,记 $x_{k+\frac{1}{2}} = x_k + \frac{1}{2}h$

*Gauss

公式

$$I(f) = \int_{a}^{b} \rho(x)f(x)dx \approx \sum_{k=0}^{n} A_{k}f(x_{k})$$

选择互异节点使插值求积公式代数精度为 2n+1,则该求积公式为高斯型,这些节点为高斯节点

 $\Leftrightarrow w(x) = \prod_{k=0}^{n} (x - x_k)$ 与任意次数不大于 n 的多项式 P(x)(带权)正交

五、数值微分

5.1 两点公式

	公式	余项
前点公式	$f'(a) \approx \frac{f(a+h) - f(a)}{h}$	$-\frac{h}{2}f''(\xi) = 0(h)$
中点公式	$f'(a) \approx \frac{f(a) - f(a+h)}{h}$	$\frac{h}{2}f''(\xi) = 0(h)$
后点公式	$f'(a) \approx \frac{f(a+h) - f(a-h)}{2h}$	$-\frac{h}{6}f''(\xi) = 0(h)$

5.2 三点公式

	公式	余项
前点	$P_2'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_1) - f(x_2) \right]$	$\frac{h^2}{3}f^{\prime\prime\prime}(\xi_0)$
公式	$P_2(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_1) - f(x_2) \right]$	$\frac{1}{3}f'''(\varsigma_0)$
中点	$P_2'(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)]$	$-\frac{h^2}{6}f'''(\xi_1)$
公式	$P_2(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)]$	$-\frac{1}{6}f'''(\varsigma_1)$
后点	1 [(() +2(())	h^2 ("(ξ)
公式	$P_2'(x_2) = \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)]$	$\frac{h^2}{3}f'''\left(\xi_2\right)$

六、非线性方程迭代法

6.1 二分法

迭代次数: $k > \frac{\ln(b-a)-\ln b}{\ln 2} - 1$

例: $\bar{x}f(x) = x^3 - x - 1 = 0$ 在[1,1.5]的一个实根精度要求小数点后两位

$$k > \frac{\ln(1.5 - 1) - \ln 0.01}{\ln 2} - 1 \Rightarrow k = 6$$

K	a_k	b_k	x_k	$f(x_k)$ 符号		
1	1	1.5	1.25			
2	1.25	1.5	1.375	+		
6	1.3125	1.3281	1.3203	+		

6.2 不动点迭代法

$$x_{k+1} = \varphi(x_k)$$
 $k = 0,1,2 \cdots$ (收敛速度慢)

迭代次数:

$$2|x_k - x_{k-1}| < \frac{\varepsilon(1-L)}{L}$$

$$\Im L = max|f'(x)|$$

局部收敛: $\varphi(x)$,不动点 x^* , $\varphi'(x)$ 在某领域连续,且 $|\varphi'(x)|<1$,则局部收敛。

6.3 牛顿迭代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad (k = 0, 1 \dots)$$

*(为了防止迭代发散, 迭代过程有 $|f(x_{k+1})| < |f(x_k)|$ 的单调性为牛顿下山法)

牛顿法 单根: 平方收敛 重根: 线性收敛

6.4 弦截法

$$y = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$$

将牛顿法中的 $f'(x_k)$ 用 $\frac{x_k-x_{k-1}}{f(x_k)-f(x_{k-1})}$ 代替

6.5 抛物线法

$$x_{k+1} = x_k - \frac{2f(x_k)}{w \pm \sqrt{w^2 - 4f(x_k)f[x_k, x_{k-1}, x_{k-2}]}}$$

$$w = f[x_k, x_{k-1}] + f[x_k, x_{k-1}, x_{k-2}](x_k - x_{k-1})$$

讨论正负号取舍问题:在 x_{k-1},x_k,x_{k+1} 三个近似根中,自然假定 x_k 更接近根 x^* ,为了保证精度,取 x_{k+1} ,为此只需要取根式前的符号与w相同

七、常微分方程初值问题数值解法

定义一: $T_{n+1} = y(x_{n+1}) - y(x_n) - h\varphi(x_n, y(x_n), h)$ 为显式单步法的局部截断误差

定义二: 局部截断误差满足 $T_{n+1}=y(x+h)-y(x)-h\varphi(x,y,h)=O(h^{p+1})$

则称方法具有 p 阶精度;若展开写成 $T_{n+1}=\psi\big(x_n,y(x_n)\big)h^{p+1}+O(h^{p+2})$,则 $\psi\big(x_n,y(x_n)\big)h^{p+1}$ 为局部截断误差主项

	公式	局部截断误差
前进 Euler 法(显式)	$y_{n+1} = y_n + hf(x_n, y_n)$ $y_{n+1} = y_n + h(y_n - \frac{2x_n}{y_n})$ —阶精度	局部截断误差是 $\frac{h^2}{2}y''(x_n) + O(h^3)$
后退 Euler 法(隐式)	y _{n+1} = y _n + hf(x _{n+1} ,y _{n+1}) 一阶精度	局部截断误差是 $\frac{h^2}{2}y''(x_n) + O(h^3)$
两步欧拉法	y _{n+1} = y _{n-1} + 2hf(x _n ,y _n) 二阶精度	局部截断误差是O(h²)
梯形法	$y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$ 二阶精度 梯形公式是将欧拉公式与隐式欧拉公式的算术平均,也是隐式公式	局部截断误差主项为 $-rac{h^3}{12}y^{\prime\prime\prime}(x_n)$
改进欧拉公 式	$\begin{cases} y_p = y_n + h\left(y_n - \frac{2x_n}{y_n}\right) \\ y_c = y_n + h\left(y_p - \frac{2x_{n+1}}{y_p}\right) \\ y_{n+1} = \frac{1}{2}(y_p + y_c) \end{cases}$	

例: 用改进欧拉法求初值问题

$$\begin{cases} y' = y - \frac{2x}{y} \\ y(0) = 1 \end{cases}$$

取 h=0.1, n=0, 1, ···, 9

n=0 时

$$y_{p} = y_{0} + h\left(y_{0} - \frac{2x_{0}}{y_{0}}\right) = 1 + 0.1\left(1 - \frac{2 \times 0}{1}\right) = 1.1$$

$$y_{c} = y_{0} + h\left(y_{p} - \frac{2x_{1}}{y_{p}}\right) = 1 + 0.1\left(1.1 - \frac{2 \times 0.1}{1.1}\right) = 1.091818$$

$$y_{1} = \frac{1}{2}(y_{p} + y_{c}) = 1.095909$$
.

逐步迭代到 n=9