LM4LV: A Frozen Large Language Model for Low-level Vision Tasks

Boyang Zheng *

Shanghai Jiao Tong University bytetriper@sjtu.edu.cn

Jinjin Gu

Shanghai AI Laboratory jinjin.gu@sydney.edu.au Shijun Li

Nanjing University shijun_lee@outlook.com

Chao Dong

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shanghai AI Laboratory chao.dong@siat.ac.cn

arXiv 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• Current major direction for many MLLM related works is towards a better semantic fusion of the text and image modality.

• First attempt to investigate a frozen LLM's capability in processing low-level feature, highlighting the importance of investigating LLMs' capability to process visual features with no multi-modal data or prior, leading to a deeper understanding of LLMs' inner mechanisms.

• By simply training two linear layers with vision-only data, a frozen LLM showcases non-trivial capability on a wide range of low-level vision tasks.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Vision Modules

- Training objective of the vision module should be reconstruction
- Vision modules must be trained in an unsupervised manner to avoid any multi-modal training
 - if the encoder has already transformed the image into text-like features, it becomes unclear
 - whether the LLM is leveraging its powerful text processing abilities to handle text features
 - or it inherently has the capability to process other modalities.

Fine-tuning MAE for Image Reconstruction

Model	rFID↓	prec(%)↑	recall(%)↑	PSNR↑
MAE	84.22	13.35	45.78	19.15
MAE-L1	9.96	88.46	97.57	29.21
VQGAN	1.49	94.90	99.67	22.61
MAE*	1.24	99.94	99.97	28.96

- Reconstruction FID (rFID), precision, recall and PSNR on the validation set of ImageNet.
 - MAE-L1 indicates to use L1 loss for fine-tuning MAE's decoder.
 - MAE* is the version tuned by a combination of L1 loss and LPIPS Loss.
- Released version of MAE calculates the reconstruction loss solely on masked tokens, leads to inconsistency between training and inference.

Vision Modules

Next Element Prediction

Human: <LQ-image> <task> Assistant: <HQ-image>

- Two simple linear layers as the adapter modules between the LLM and the vision encoder/decoder to align the feature dimension
- Next-token cross-entropy loss for text tokens, and for continuous visual tokens, we apply a next token l2-regression loss

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Experiment setup

- Evaluation tasks
 - Restoration tasks
 - Denoising
 - Deblurring
 - Pepper noise removal
 - Deraining
 - Mask removal
 - Spatial operation tasks
 - image rotation
 - image flipping

Baseline

• MAE to reconstruct degraded images without further modification (denote as MAE-r)

Result

Tasks	Degraded		MAE-r		LM4LV		
	PSNR ↑	SSIM ↑	PSNR↑	SSIM ↑	PSNR ↑	SSIM ↑	Δ psnr/ssim
Denoising	23.11dB	0.49	19.96dB	0.65	26.77dB	0.80	+6.81dB/+0.15
Deblurring	30.88dB	0.83	26.14dB	0.78	26.23dB	0.79	+0.09dB/ $+0.01$
Deraining	20.52dB	0.84	19.96dB	0.74	24.62dB	0.77	+4.66dB/+0.03
Pepper Removal	19.22dB	0.51	23.01dB	0.58	25.20dB	0.75	+2.19dB/+0.17
Mask Removal	20.54dB	0.83	20.00dB	0.73	25.83dB	0.80	+5.83dB/+0.07
Rotation	inf ⁷	1.00	29.52dB	0.89	27.18dB	0.83	-2.34dB/-0.06
Flipping	inf	1.00	29.52dB	0.89	27.28dB	0.84	-2.24dB/-0.05

Result

Ablation study

- Auto-regressive Generation Matters
 - ViT-LLM generation produces low-quality and blurred images
 - auto-regressive feature generation naturally aligns with LLM's behavior

• Linear Layer

- single linear layer is insufficient to handle low-level vision
- two linear layers tend to perform a scaled identity mapping

Ablation study

Noisy

• Text Pre-training

alarmy stock photo

• LLM vs Expert Models

	Deno	ising	Rotation		
	PSNR↑	SSIM ↑	PSNR↑	SSIM ↑	
MLP	25.87dB	0.76	13.29dB	0.32	
Transformer	27.42dB	0.81	10.52dB	0.23	
Ours*	26.77dB	0.80	27.18dB	0.83	

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• The goal for this work is not to achieve the best performance in image restoration, but to demonstrate the potential of LLMs in processing low-level features.

• LM4LV could not restore high-frequency details in degraded images. This is natural because the LLM does not have image prior, which could be improved by adding skip-connection or multi-modal data.

• LLMs' non-trivial performance on various low-level tasks, hope inspiring new perspectives on the capabilities of LLMs and deeper understanding of their mechanisms.