

Build

LLMs from Scratch

What are token embeddings and why we need them?

*

Representing Words Numerically

- Computers need numerical representation of words
- How can we represent words in numbers?

Can we assign random numbers to each word?

The Problem With Using Random Numbers

"book" → 2.9

"tablet" -20

"cat" and "kitten" are semantically related.

However the associated numbers 34 and -13 cannot capture this relation.

What About One-Hot Encoding?

- 1) Create a dictionary of words
- 2) Assign sequential one-hot encoding to each word

The Problem With One-Hot Encoding

One-hot encoding also fails to capture semantic relationship

store

Semantically Similar Words Should Have Similar Vectors

	"dog"	"cat"	"apple"		"banana"	
has_a_tail	23	31	1		2	1
is_eatable	2	3	22	- 14	38	
has_4_legs	19	21	0		0	
makes_sound	12	18	0.5		0.2	
is_a_pet	35	31	5		7	

Vectors can capture semantic meaning

*

We Can Train a Neural Network To Create Vector Embedding

"dog"

"cat"

"apple"

"banana"

[23, 2, 19, 12, 35]

[31, 3, 21, 18, 31]

[1, 22, 0, 0.5, 5]

[2, 38, 0, 0.2, 7]

