3éme année Licence 2023/2024 Matière : Mesure et Intégration ¹

Série 2 : £ iespace mesurable

Exercice 1 Soit $E = \{0, 1; 2\}$. Donner toutes les tribus que contient $\mathcal{P}(E)$.

Exercice 2 Soient \mathscr{S} et \mathscr{S}' deux familles de parties d'un ensemble E. Montrer que

- 1. $\mathscr{S} \subset \mathscr{S}' \Rightarrow \sigma(\mathscr{S}) \subset \sigma(\mathscr{S}')$,
- 2. $\mathscr{S} \subset \sigma(\mathscr{S}') \Leftrightarrow \sigma(\mathscr{S}) \subset \sigma(\mathscr{S}')$,
- 3. $\sigma(\mathscr{S}) = \sigma(\mathscr{S}^c)$,
- 4. la tribu engendrée par ${\mathscr S}$ est l'intersection de toutes les tribus contenant ${\mathscr S}.$

Exercice 3 Soient (E, τ) un espace mesurable et $\{A_n\}_{n\in\mathbb{N}}$ une suite de parties de E. Montrer que $\lim_{n\to+\infty}\inf A_n$ et $\lim_{n\to+\infty}\sup A_n$ sont des parties mesurables de E.

Exercice 4 Soit $\mathcal{B}(\mathbb{R})$ la tribu borélienne sur \mathbb{R} . On note l'ensemble

$$\mathcal{B}_{[0;1]} = \{ B \cap [0,1], \ B \subset \mathcal{B}(\mathbb{R}) \}.$$

- 1. Soit $\tau_{[0;1]} = \{C \in \mathcal{B}(\mathbb{R}) : C \subset [0,1]\}$. Montrer que $\mathcal{B}_{[0;1]} = \tau_{[0;1]}$.
- 2. Montrer que $\mathcal{B}_{[0;1]}$ est une tribu sur [0,1] dite la tribu trace de $\mathcal{B}(\mathbb{R})$ sur [0,1].

Exercice 5 Soient E un ensemble non vide et $\tau \subset \mathscr{P}(E)$ la famille des parties de E définie par

$$\tau = \{ A \in \mathscr{P}(E) : A \text{ ou } A^c \text{ est dénombrable} \}.$$

- 1. Montrer que τ est une tribu sur E.
- 2. Montrer que $\tau = \sigma(\mathcal{S})$, où $\mathcal{S} = \{\{x\}, x \in E\}$.
- 3. En déduire que si E est au plus dénombrable, alors $\tau = \mathscr{P}(E)$.

Exercice 6 Soient E et F deux ensembles non vides et $f: E \to F$ une application.

- 1. Montrer que si τ' est une tribu sur F alors $f^{-1}(\tau') = \{f^{-1}(B) : B \in \tau'\}$ est une tribu sur E.
- 2. Montrer que si τ est une tribue sur E, $f(\tau) = \{f(A) : A \in \tau\}$ n'est en gnéral pas une tribu sur F.
- 3. Montrer en revanche que $\mathcal{L} = \{B \in \mathscr{P}(F) : f^{-1}(B) \in \tau\}$ est une tribu sur F.
- 4. Montrer que si \mathscr{C} est une famille de parties de F alors $f^{-1}(\sigma(\mathscr{C})) = \sigma(f^{-1}(\mathscr{C}))$.

Exercice 7 Soit $\mathcal{B}(\mathbb{R})$ la tribu borélienne de \mathbb{R} . Montrer que

$$\mathcal{B}(\mathbb{R}) = \sigma(\{]a, b[, a, b \in \mathbb{Q}, a < b\})$$

$$= \sigma(\{[a, b], a, b \in \mathbb{Q}, a \leq b\})$$

$$= \sigma(\{[a, b], a, b \in \mathbb{Q}, a \leq b\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b])$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b])$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b])$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b]\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b]\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b]\})$$

$$= \sigma(\{[a, b[, a, b \in \mathbb{Q}, a \leq b]\})$$

 $^{1. \;\; \}text{F. Zouyed, email : fzouyed@gmail.com, Laboratoire des Mathématiques appliquées } \mathcal{LMA}$