1. (Qual Fall 2007 #3) Let A be a subset of \mathbb{R} with the property that for each $\epsilon > 0$ there are Lebesgue measurable sets B and C such that $B \subset A \subset C$ and $m(C \cap B^c) < \epsilon$. Show that A is measurable.

C measurable $\Rightarrow \exists$ open set σ containing C such that $m^*(O(C) < E$.

Alote σ also contains A. Then

$$m(O \mid A) \leq m(O \mid B)$$
 (as $B \subseteq A$)
= $m(O \mid C) + m(C \mid B)$
 $\leq 2\epsilon$

So O is an open set containing A such that $M^*(O \land A) \land E$ (after some E shuffling). Thus A is measurable.