cloudera®

Common Patterns in Spark Data Processing

Chapter 16

Course Chapters

Course Introduction	Introduction	1
Introduction to Hadoop	Introduction to Hadoop and the Hadoop Ecosystem Hadoop Architecture and HDFS	2 3
Importing and Modeling Structured Data	Importing Relational Data with Apache Sqoop Introduction to Impala and Hive Modeling and Managing Data with Impala and Hive Data Formats Data File Partitioning	4 5 6 7 8
Ingesting Streaming Data	Capturing Data with Apache Flume	9
Distributed Data Processing with Spark	Working with RDDs in Spark Aggregating Data with Pair RDDs Writing and Deploying Spark Applications Parallel Processing in Spark Spark RDD Persistence Common Patterns in Spark Data Processing	10 11 12 13 14 15 16 17
Course Conclusion	Conclusion	18

Common Patterns in Spark Programming

In this chapter you will learn

- What kinds of processing and analysis Spark is best at
- How to implement an iterative algorithm in Spark
- How GraphX and MLlib work with Spark

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

Common Spark Use Cases (1)

- Spark is especially useful when working with any combination of:
 - Large amounts of data
 - Distributed storage
 - Intensive computations
 - Distributed computing
 - Iterative algorithms
 - In-memory processing and pipelining

Common Spark Use Cases (2)

Examples

- Risk analysis
 - "How likely is this borrower to pay back a loan?"
- Recommendations
 - "Which products will this customer enjoy?"
- Predictions
 - "How can we prevent service outages instead of simply reacting to them?"
- Classification
 - "How can we tell which mail is spam and which is legitimate?"

Spark Examples

- Spark includes many example programs that demonstrate some common **Spark programming patterns and algorithms**
 - k-means
 - Logistic regression
 - Calculate pi
 - Alternating least squares (ALS)
 - Querying Apache web logs
 - Processing Twitter feeds
- Examples
 - -\$SPARK HOME/examples/lib
 - spark-examples-version.jar Java and Scala examples
 - -python.tar.gz Pyspark examples

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

Example: PageRank

- PageRank gives web pages a ranking score based on links from other pages
 - Higher scores given for more links, and links from other high ranking pages
- Why do we care?
 - PageRank is a classic example of big data analysis (like WordCount)
 - Lots of data needs an algorithm that is distributable and scalable
 - Iterative the more iterations, the better than answer

PageRank Algorithm (1)

Start each page with a rank of 1.0

PageRank Algorithm (2)

Start each page with a rank of 1.0

On each iteration:

each page contributes to its neighbors its own rank divided by the number of its neighbors: $contrib_p = rank_p / neighbors_p$

PageRank Algorithm (3)

Start each page with a rank of 1.0

On each iteration:

- each page contributes to its neighbors its own rank divided by the number of its neighbors: $contrib_p = rank_p / neighbors_p$
- Set each page's new rank based on the sum of its neighbors contribution: new-rank = Σ contribs * .85 + .15

PageRank Algorithm (4)

Start each page with a rank of 1.0

On each iteration:

- each page contributes to its neighbors its own rank divided by the number of its neighbors: $contrib_p = rank_p / neighbors_p$
- Set each page's new rank based on the sum of its neighbors contribution: new-rank = Σ contribs * .85 + .15

Each iteration incrementally improves the page ranking

PageRank Algorithm (5)

Start each page with a rank of 1.0

On each iteration:

- each page contributes to its neighbors its own rank divided by the number of its neighbors: $contrib_p = rank_p / neighbors_p$
- Set each page's new rank based on the sum of its neighbors contribution: new-rank = Σ contribs * .85 + .15

Each iteration incrementally improves the page ranking

PageRank in Spark: Neighbor Contribution Function

```
def computeContribs(neighbors, rank):
    for neighbor in neighbors: yield(neighbor, rank/len(neighbors))
```


PageRank in Spark: Example Data

Data Format: source-page destination-page

page1 page3 page2 page1 page4 page1 page3 page1 page4 page2 page3 page4

PageRank in Spark: Pairs of Page Links

```
def computeContribs(neighbors, rank):...
links = sc.textFile(file) \
   .map(lambda line: line.split()) \
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct()
```


PageRank in Spark: Page Links Grouped by Source Page

```
def computeContribs(neighbors, rank):...
links = sc.textFile(file) \
   .map(lambda line: line.split())\
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct()\
   .groupByKey()
```


PageRank in Spark: Persisting the Link Pair RDD

```
def computeContribs(neighbors, rank):...
links = sc.textFile(file) \
   .map(lambda line: line.split())\
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct() \
   .groupByKey()\
   .persist()
```


PageRank in Spark: Set Initial Ranks

```
links
                                                                   (page4, [page2,page1])
def computeContribs(neighbors, rank):...
                                                                   (page2, [page1])
links = sc.textFile(file) \
                                                                   (page3, [page1,page4])
   .map(lambda line: line.split()) \
                                                                   (page1, [page3])
   .map(lambda pages: (pages[0],pages[1]))\
   .distinct() \
   .groupByKey()\
                                                                   ranks
   .persist()
                                                                   (page4, 1.0)
ranks=links.map(lambda (page, neighbors): (page, 1.0))
                                                                   (page2, 1.0)
                                                                   (page3, 1.0)
                                                                   (page1, 1.0)
```

PageRank in Spark: First Iteration (1)

PageRank in Spark: First Iteration (2)

PageRank in Spark: First Iteration (3)

```
def computeContribs(neighbors, rank):...
links = ...
ranks = ...
for x in xrange(10):
  contribs=links\
    .join(ranks)\
    .flatMap(lambda (page, (neighbors, rank)): \
       computeContribs(neighbors,rank))
  ranks=contribs\
    .reduceByKey(lambda v1,v2: v1+v2)
```

contribs	
(page2,0.5)	
(page1,0.5)	
(page1,1.0)	
(page1,0.5)	
(page4,0.5)	
(page3,1.0)	

(page4,0.5)
(page2,0.5)
(page3,1.0)
(page1,2.0)

PageRank in Spark: First Iteration (4)

```
def computeContribs(neighbors, rank):...
links = ...
ranks = ...
for x in xrange(10):
  contribs=links\
    .join(ranks)
    .flatMap(lambda (page, (neighbors, rank)): \
       computeContribs(neighbors,rank))
  ranks=contribs\
    .reduceByKey(lambda v1,v2: v1+v2)\
    .map(lambda (page,contrib): \
         (page, contrib * 0.85 + 0.15))
```


(page4,0.5) (page2, 0.5) (page3,1.0)

(page1,2.0)

(page4,.58) (page2,.58) (page3,1.0) (page1,1.85)

PageRank in Spark: Second Iteration

Checkpointing (1)

Maintaining RDD lineage provides resilience but can also cause problems when the lineage gets very long

Iter1

Iter2

Iter3

Iter4 data... data...

data...

da

da

- e.g., iterative algorithms, streaming

- Recovery can be very expensive
- Potential stack overflow

```
data...
myrdd = ...initial-value...
                                                        data...
while x in xrange(100):
                                                               Iter100
    myrdd = myrdd.transform(...)
                                                               data...
myrdd.saveAsTextFile(dir)
                                                               data...
                                                               data...
```


Checkpointing (2)

- Checkpointing saves the data to HDFS
 - Provides fault-tolerant storage across nodes
- Lineage is not saved
- Must be checkpointed before any actions on the RDD

```
sc.setCheckpointDir(directory)
myrdd = ...initial-value...
while x in xrange(100):
  myrdd = myrdd.transform(...)
  if x \% 3 == 0:
    myrdd.checkpoint()
    myrdd.count()
myrdd.saveAsTextFile(dir)
```


Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- **Graph Processing and Analysis**
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

Graph Analytics

- Many data analytics problems work with "data parallel" algorithms
 - Records can be processed independently of each other
 - Very well suited to parallelizing
- Some problems focus on the relationships between the individual data items. For example:
 - Social networks
 - Web page hyperlinks
 - Roadmaps
- These relationships can be represented by graphs
 - Requires "graph parallel" algorithms

Graph Analysis Challenges at Scale

Graph Creation

- Extracting relationship information from a data source
 - For example, extracting links from web pages

Graph Representation

- e.g., adjacency lists in a table

Graph Analysis

- Inherently iterative, hard to parallelize
- This is the focus of specialized libraries like Pregel, GraphLab

Post-analysis processing

- e.g., incorporating product recommendations into a retail site

Graph Analysis in Spark

Spark is very well suited to graph parallel algorithms

- GraphX
 - UC Berkeley AMPLab project on top of Spark
 - Unifies optimized graph computation with Spark's fast data parallelism and interactive abilities
 - Supersedes predecessor Bagel (Pregel on Spark)

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

Machine Learning

- Most programs tell computers exactly what to do
 - Database transactions and queries
 - Controllers
 - Phone systems, manufacturing processes, transport, weaponry, etc.
 - Media delivery
 - Simple search
 - Social systems
 - Chat, blogs, email, etc.
- An alternative technique is to have computers learn what to do
- Machine Learning refers to programs that leverage collected data to drive future program behavior
- This represents another major opportunity to gain value from data

The 'Three Cs'

- Machine Learning is an active area of research and new applications
- There are three well-established categories of techniques for exploiting data
 - Collaborative filtering (recommendations)
 - Clustering
 - Classification

Collaborative Filtering

- Collaborative Filtering is a technique for recommendations
- Example application: given people who each like certain books, learn to suggest what someone may like in the future based on what they already like
- Helps users navigate data by expanding to topics that have affinity with their established interests
- Collaborative Filtering algorithms are agnostic to the different types of data items involved
 - Useful in many different domains

Clustering

- Clustering algorithms discover structure in collections of data
 - Where no formal structure previously existed
- They discover what clusters, or groupings, naturally occur in data
- Examples
 - Finding related news articles
 - Computer vision (groups of pixels that cohere into objects)

Classification

- The previous two techniques are considered 'unsupervised' learning
 - The algorithm discovers groups or recommendations itself
- Classification is a form of 'supervised' learning
- A classification system takes a set of data records with known labels
 - Learns how to label new records based on that information
- Examples
 - Given a set of e-mails identified as spam/not spam, label new e-mails as spam/not spam
 - Given tumors identified as benign or malignant, classify new tumors

Machine Learning Challenges

- Highly computation intensive and iterative
- Many traditional numerical processing systems do not scale to very large datasets
 - -e.g., MatLab

MLlib: Machine Learning on Spark

- MLlib is part of Apache Spark
- Includes many common ML functions
 - ALS (alternating least squares)
 - k-means
 - Logistic Regression
 - Linear Regression
 - Gradient Descent
- Still a 'work in progress'

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

k-means Clustering

k-means Clustering

- A common iterative algorithm used in graph analysis and machine learning
- You will implement a simplified version in the homework assignment

Clustering (1)

Clustering (2)

Goal: Find "clusters" of data points

Example: k-means Clustering (1)

1. Choose *K* random points as starting centers

Example: k-means Clustering (2)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center

Example: k-means Clustering (3)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster

Example: k-means Clustering (4)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- 4. If the centers changed, iterate again

Example: k-means Clustering (5)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
 - 3. Find the center (mean) of each cluster
- 4. If the centers changed, iterate again

Example: k-means Clustering (6)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- 4. If the centers changed, iterate again

Example: k-means Clustering (7)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- 4. If the centers changed, iterate again

Example: k-means Clustering (8)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- If the centers changed, iterate again

Example: k-means Clustering (9)

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- 4. If the centers changed, iterate again

5. Done!

Example: Approximate k-means Clustering

- 1. Choose *K* random points as starting centers
- 2. Find all points closest to each center
- 3. Find the center (mean) of each cluster
- 4. If the centers changed by more than *c*, iterate again

5. Close enough!

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- Optional Homework: Partition Data Files Using Spark

Essential Points

- Spark is especially suited to big data problems that require iteration
 - In-memory persistence makes this very efficient
- Common in many types of analysis
 - e.g., common algorithms such as PageRank and k-means
- Spark includes specialized libraries to implement many common functions
 - GraphX
 - MLlib

GraphX

- Highly efficient graph analysis (similar to Pregel et al.) and graph construction, representation and post-processing

MLlib

 Efficient, scalable functions for machine learning (e.g., logistic regression, k-means)

Chapter Topics

Common Patterns in Spark Data Processing

Distributed Data Processing with Spark

- Common Spark Use Cases
- Iterative Algorithms in Spark
- Graph Processing and Analysis
- Machine Learning
- Example: k-means
- Conclusion
- Homework: Implement an Iterative Algorithm with Spark
- **Optional Homework: Partition Data Files Using Spark**

Homework

Iterative Processing in Spark

- In this homework assignment you will
 - Implement k-means in Spark in order to identify clustered location data points from Loudacre device status logs
 - Find the geographic centers of device activity

Optional Homework: Partition Data Files Using Spark

- In this homework assignment you will
 - Define "regions" according to the k-means points identified above
 - Use Spark to create a dataset for device status data, partitioned by region
- Please refer to the Homework description

