

PROBABILISTIC TABULAR DIFFUSION FOR EXPLAINABLE AI

Alexander J Ohrt

Supervisor: Kjersti Aas

04 May

Overview

- Explainable AI (XAI)
- Counterfactual Explanations (CEs)
- Generative Modelling
- Diffusion Models
- Selected Results from Thesis Work

Figure: Qualitative illustration of the tradeoff between accuracy and interpretability in a set of common ML models.

XAI — Why?

- Open the black box
- Understand reasoning
- Debug systems
- Reduce risk
- Guarantee positive effects
- Legislative Reasons, e.g. GDPR, Al Act

XAI — How?

"Meta-Models": Build AI/ML models to explain other black box AI/ML models (post-hoc).

XAI — How?

Examples of Methods:

- Shapley Values and SHAP
- ► LIME
- Counterfactual Explanations (CEs)

CEs — **Example**

Table 2.1: The customer that solicits a mortgage. The attributes of the customer are age, sex, nationality, salary (yearly), work sector, marital status, years as customer at the bank and postal code (ZIP).

Age	Sex	Nat.	Sal.	Work Sect.	Mar. Stat.	Cust. Years.	ZIP
22	M	Norway	350K	Public	Single	2	7051

Table 2.2: A possible successfully generated counterfactual.

Age	Sex	Nat.	Sal.	Work Sect.	Mar. Stat.	Cust. Years.	ZIP
22	M	Norway	420K	Private	Single	2	7051

Table 2.3: A possible unsuccessfully generated counterfactual.

Age	Sex	Nat.	Sal.	Work Sect.	Mar. Stat.	Cust. Years.	ZIP
200	F	Sweden	2200K	Private	Single	10	7051

CEs — General Criteria

- 1. *on-manifold*: The counterfactual should lie on the data-manifold ("resemble the training data").
- **2.** *actionable*: The counterfactual should not change fixed features ("not very informative to change *age* e.g.").
- **3.** *valid*: The counterfactual should flip the prediction ("from mortgage denied to mortgage granted").
- **4.** *low cost*: The counterfactual should be as similar as possible to input ("don't change unnecessary characteristics of client").

CEs — Algorithms

Optimization-based

$$\min_{\mathbf{x}'} \{ d_1(f(\mathbf{x}'), y') + \lambda d_2(\mathbf{x}, \mathbf{x}') \}$$
 (1)

On-Manifold

MCCE — Our Inspiration for Calculating CEs

MCCE: Monte Carlo sampling of realistic Counterfactual Explanations

Redelmeier, A., Jullum, M., Aas, K., & Løland, A. (2021). MCCE: Monte Carlo sampling of realistic counterfactual explanations. arXiv preprint arXiv:2111.09790.

MCCE — Our Inspiration for Calculating CEs

Steps:

- 1. Model underlying data distribution
- 2. Sample from data distribution
- **3.** Post-process the samples, i.e. filter out counterfactuals

MCCE — Our Inspiration for Calculating CEs

Steps:

- 1. Model underlying data distribution
- 2. Sample from data distribution
- **3.** Post-process the samples, i.e. filter out counterfactuals

Generative Modelling with Diffusion Models

A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda bike. It is wearing sunglasses and a beach hat.

dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.

Figure: Examples of photorealistic images created with Imagen. Borrowed from Imagen paper (May 2022).

Diffusion Models — How?

Diffusion Models — How?

Diffusion Models — How?

Thesis Objectives

- Develop an accessible introduction to diffusion models.
- ▶ Implement a model specifically for *tabular data*.
- Perform experiments.

Some Results

Some Results

Table: Factual h and generated counterfactual for CatBoost classifier.

	h	Diffusion
age	25	25
fnlwgt	188767	218210
ed_num	12	13
cap_gain	0	0
cap_loss	0	0
h_p_w	45	52
workcl.	Private	Private
mar_stat	Never-married	Married
occup.	Exec.	Exec.
rel.	Not-family	Not-family
race	White	White
sex	Male	Male
country	US	US
Prediction	0	1

