

November 1988 Revised March 2005

74AC244 • 74ACT244 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The AC/ACT244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

Features

- I_{CC} and I_{OZ} reduced by 50%
- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- ACT244 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC244SCX_NL (Note 1)	M20B	Pb-Free 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC244SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC244MTCX_NL (Note 1)	MTC20	Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT244SCX_NL (Note 1)	M20B	Pb-Free 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT244SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ACT244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT244MTCX_NL (Note 1)	MTC20	Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Please use order number as indicated.

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Inputs
I ₀ –I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Tables

Inp	uts	Outputs				
OE ₁	I _n	(Pins 12, 14, 16, 18)				
L	L	L				
L	Н	Н				
Н	X	Z				

Inp	uts	Outputs
OE ₂	I _n	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	Х	Z

X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ccc} V_{I} = -0.5 V & -20 \text{ mA} \\ V_{I} = V_{CC} + 0.5 V & +20 \text{ mA} \\ DC \text{ Input Voltage (V_{I})} & -0.5 V \text{ to V}_{CC} + 0.5 V \end{array}$

DC Output Diode Current (I_{OK})

$$\begin{split} V_{O} &= -0.5 \text{V} & -20 \text{ mA} \\ V_{O} &= V_{CC} + 0.5 \text{V} & +20 \text{ mA} \end{split}$$

-0.5V to $V_{CC} + 0.5V$

DC Output Voltage (V_O)

DC Output Source

or Sink Current (I_O) ± 50 mA

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

Minimum Input Edge Rate (ΔV/Δt)

AC Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

 $V_{CC} @ 3.3V, 4.5V, 5.5V$ 125 mV/ns

Minimum Input Edge Rate $(\Delta V/\Delta t)$

ACT Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/n

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTU circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	v _{cc}	V_{CC} $T_A = +25^{\circ}C$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Cynnbon	i arameter	(V)	Тур		Guaranteed Lir	nits	Onno		
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	3.15	V	or V _{CC} - 0.1V	
		5.5	2.75	3.85	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	1.35	V	or V _{CC} - 0.1V	
		5.5	2.75	1.65	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4	5.4			
		3.0		2.56	2.4	2.46		I _{OH} = 12 mA	
		4.5		3.86	3.7	3.76	V	$I_{OH} = 24 \text{ mA}$	
		5.5		4.86	4.7	4.76		I _{OH} = 24 mA (Note 3)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	0.1	V	$I_{OUT} = 50 \mu A$	
		5.5	0.001	0.1	0.1	0.1			
		3.0		0.36	0.50	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.50	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.50	0.44		I _{OL} = 24 mA (Note 3)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	±1.0	μА	$V_I = V_{CC}$, GND	
(Note 5)	Leakage Current								
loz	Maximum							V_{I} (OE) = V_{IL} , V_{IH}	
	3-STATE	5.5		±0.25	±5.0	±2.5	μΑ	$V_I = V_{CC}, V_{GND}$	
	Current							$V_O = V_{CC}$, GND	
I _{OLD}	Minimum Dynamic	5.5			50	75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 4)	5.5			-50	-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	80.0	40.0	μΑ	$V_{IN} = V_{CC}$	
(Note 5)	Supply Current							or GND	

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}$.

74AC244 • 74ACT244

DC Electrical Characteristics for ACT $T_A = +25^{\circ}C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ v_{cc} Units Symbol Parameter Conditions **Guaranteed Limits** (V) Тур Minimum HIGH Level 4.5 1.5 2.0 2.0 2.0 V_{OUT} = 0.1V 5.5 1.5 2.0 2.0 2.0 or V_{CC} - 0.1V V_{IL} Maximum LOW Level 4.5 1.5 8.0 8.0 8.0 V_{OUT} = 0.1V or V_{CC} – 0.1VInput Voltage 5.5 1.5 8.0 8.0 8.0 $I_{OUT} = -50 \ \mu A$ Minimum HIGH Level V_{OH} 4.5 4.49 4.4 4.4 4.4 5.4 Output Voltage 5.5 5.49 5.4 5.4 $I_{OH} = 12$ 4.5 3.86 3.70 3.76 $I_{OH} = 24 \text{ mA}$ $I_{OH} = 24 \text{ mA (Note 6)}$ 5.5 4.86 4.70 4.76 Maximum LOW Level 4.5 0.001 0.1 0.1 0.1 $I_{OUT} = 50 \mu A$ V_{OL} Output Voltage 0.1 0.1 $I_{OL} = 12 \text{ mA}$ 4.5 0.36 0.50 $I_{OL}=24\;mA$ 0.44 $I_{OL} = 24 \text{ mA (Note 6)}$ 5.5 0.36 0.50 0.44 $V_I = V_{CC}$, GND Maximum Input 5.5 ±0.1 ±1.0 ±1.0 μΑ I_{IN} Leakage Current Maximum 3-STATE ±0.25 I_{OZ} 5.5 ±5.0 ±2.5 $V_I = V_{IL}, V_{IH}$ Current $V_O = V_{CC}$, GND Maximum 5.5 0.6 1.5 $V_I = V_{CC} - 2.1V$ 1.6 I_{CCT} I_{CC}/Input mA V_{OLD} = 1.65V Max Minimum Dynamic 5.5 50 75 I_{OLD} Output Current (Note 7) -50 -75 V_{OHD} = 3.85V Min I_{OHD} 5.5 mΑ

4.0

80.0

40.0

 $V_{IN} = V_{CC}$ or GND

Note 6: All outputs loaded; thresholds on input associated with output under test.

5.5

Note 7: Maximum test duration 2.0 ms, one output loaded at a time.

Maximum Quiescent

Supply Current

AC Electrical Characteristics for AC

		V _{CC}		T _A = +25°C	;	$T_A = -55^{\circ}C$	c to +125°C	T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	(V) C _L = 50 pF			$C_L = 50 \text{ pF}$		C _L = 50 pF		Units
		(Note 8)	Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	2.0	6.5	9.0	1.0	12.5	1.5	10.0	20
	Data to Output	5.0	1.5	5.0	7.0	1.0	9.5	1.0	7.5	ns
t _{PHL}	Propagation Delay	3.3	2.0	6.5	9.0	1.0	12.0	2.0	10.0	ns
	Data to Output	5.0	1.5	5.0	7.0	1.0	9.0	1.0	7.5	115
t _{PZH}	Output Enable Time	3.3	2.0	6.0	10.5	1.0	11.5	1.5	11.0	20
		5.0	1.5	5.0	7.0	1.0	9.0	1.5	8.0	ns
t _{PZL}	Output Enable Time	3.3	2.5	7.5	10.0	1.0	13.0	2.0	11.0	ns
		5.0	1.5	5.5	8.0	1.0	10.5	1.5	8.5	115
t _{PHZ}	Output Disable Time	3.3	3.0	7.0	10.0	1.0	12.5	1.5	10.5	ns
		5.0	2.5	6.5	9.0	1.0	10.5	1.0	9.5	115
t _{PLZ}	Output Disable Time	3.3	2.5	7.5	10.5	1.0	13.0	2.5	11.5	200
		5.0	2.0	6.5	9.0	1.0	11.0	2.0	9.5	ns

Note 8: Voltage Range 3.3 is 3.3V ± 0.3V Voltage Range 5.0 is 5.0V ± 0.5V

AC Electrical Characteristics for ACT

		V _{CC}	$T_A = +25^{\circ}C$			$T_A = -55^{\circ}C$ to $+125^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Symbol Parameter (V)		C _L = 50 pF			$C_L = 50 \text{ pF}$		$C_L = 50 \text{ pF}$		Units
		(Note 9)	Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	5.0	2.0	6.5	9.0	1.0	10.0	1.5	10.0	ns
	Data to Output									
t _{PHL}	Propagation Delay	5.0	2.0	7.0	9.0	1.0	10.0	1.5	10.0	ns
	Data to Output									
t _{PZH}	Output Enable Time	5.0	1.5	6.0	8.5	1.0	9.5	1.0	9.5	ns
t _{PZL}	Output Enable Time	5.0	2.0	7.0	9.5	1.0	11.0	1.5	10.5	ns
t _{PHZ}	Output Disable Time	5.0	2.0	7.0	9.5	1.0	11.0	1.5	10.5	ns
t _{PLZ}	Output Disable Time	5.0	2.5	7.5	10.0	1.0	11.5	2.0	10.5	ns

Note 9: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	45.0	pF	V _{CC} = 5.0V

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 64 4.4±0.1 -B-32 ALL LEAD TIPS PIN #1 IDENT.

LAND PATTERN RECOMMENDATION

C0.90+0.15 0.1±0.05 0.19-0.30 | \$\| 0.10@\| A\| E\| 0\|

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

12.00° R0.09min GAGE PLANE -0.6±0.1 R0.09min

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com