Untitled 24/9/19, 23:52

1. Возьмем классификатор вида $H = sign(w^T x + b)$

 $VCdim(H) \ge d + 1$:

$$X = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ 1 & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Так как X - обратимая, мы всегда можем выбрать $w = X^T y$, который приведет $w^T x$ в необходимый знак

VCdim(H) < d + 2:

Очевидно, что взяв систему из d+1 уравнений и d+2 переменной мы получим линейную зависимость, а значит не сможем покрыть множество решений своим множеством гипотез

P.S. Ответ будет d по аналогии, если из классификатора убрать b и соответственно bias в матрице

3. а) Возьмем в качестве С базис пространства, где

$$x_i^C = (0, \dots, 0, 1^{(i)}, 0, \dots, 0), \forall i = \overline{1, n}$$

Пусть $y_C = (y_1^C, y_2^C, \dots, y_n^C), y_i^C = \{0, 1\}, \forall j = \overline{1, n}$ - значение произвольной функции из H_C . Покажем, что для получения необходимых значений на наборе ${\mathbf C}$ найдется функция из H.

Выберем множество

$$I_C = \{i | y_i^C = 1\}$$

. $I_C=\{i|y_i^C=1\}$ Значит, $h_{I_C}(x_j^C)=1$, когда $j\in I_C$. Следовательно, семейство H_C таких функций разукрашивает C и

$$VCdim(H) \ge n$$

б)
$$|X|=n,$$
 значит $|H|\leq 2^n$
$$VCdim(H)\leq log_2(|H|)$$

$$VCdim(H)\leq n$$

Untitled 24/9/19, 23:52

1. ERM-алгоритма над конечным классом H - PAC-learnable только с учетом гипотезы о реализуемости, а No-FLT работает без этого предположения.

2. agnostic PAC-learnability утверждает только что true risk найденной гипотезы больше true risk наилучшей гипотезы не более чем на ϵ . No-FLT утверждает, что даже для наилучшей гипотезы найдется такое распределение вероятностей, что $L_D(h') \geq 1/8$, что не вызывает противоречий.