Calculus 1 9/26 Note Module Class 07

Yueh-Chou Lee

September 26, 2019

Section 2.5: Continuity

Definition

A function f is

1. continuous at a number a if

$$\lim_{x \to a} f(x) = f(a).$$

2. continuous from the right at a number a if

$$\lim_{x \to a^+} f(x) = f(a).$$

3. continuous from the left at a number a if

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Theorem

If f and g are continuous at a and c is a constant, then the function states in the **Limit Laws** are also continuous at a.

Theorem

If f is continuous at b and $\lim_{x\to a}g(x)=b$, then $\lim_{x\to a}f(g(x))=f(b)$. In other words,

$$\lim_{x \to a} \, f(g(x)) = f\left(\lim_{x \to a} \, g(x)\right)$$

Theorem

If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Example:

Explain, using Theorems 4, 5, 7 and 9 in the textbook, why the function is continuous at every number in its domain. State the domain.

$$G(x) = \frac{x^2 + 1}{2x^2 - x - 1}$$

Sol.

$$G(x) = \frac{x^2 + 1}{2x^2 - x - 1} = \frac{x^2 + 1}{(2x + 1)(x - 1)}$$

G(x) is a rational function, so it is continuous on its domain, $\left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 1\right) \cup \left(1, \infty\right)$ by Theorem 5(b) in the textbook.

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a, b] and let s be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = s.

Graph:

Example:

Use the Intermediate Value Theorem to show that is a root of the given equation in the specified.

$$x^4 + x - 3 = 0$$
, $(1, 2)$

Sol.

 $f(x) = x^4 + x - 3$ is continuous on the interval [1, 2], f(1) = -1 and f(2) = 15.

Since f(1) = -1 < 0 < 15 = f(2), there is a number c in (1,2) such that f(c) = 0 by the Intermediate Value Theorem.

2

Thus, there is a root of the equation $x^4 + x - 3 = 0$ in the interval (1,2).

Exercise:

- 1. Use continuity to evaluate the following limit.
 - (a) $\lim_{x \to \pi} \sin(x + \sin x)$
 - (b) $\lim_{x \to 1} \ln \left(\frac{5-x^2}{1+x} \right)$
- 2. Use the Intermediate Value Theorem to show that is a root of the following given equation in the specified.
 - (a) $\ln x = x \sqrt{x}$, (2,3)
 - (b) $\sin x = x^2 x$, (1,2)
- 3. Is there a number that is exactly 1 more than its cube?

Sol.

- 1. (a) 0 (b) $\ln 2$
- 2. (a) $f(x) = \ln x x + \sqrt{x}$, f(2) > 0 > f(3) (b) $f(x) = \sin x x^2 + x$, f(1) > 0 > f(2)
- 3. There is a root between -2 and -1.

Section 2.6: Limits at Infinity; Horizontal Asymptotes

Defintion

The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$

Theorem

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x^r} = 0$$

Example:

Find the following limit or show that it does not exist.

$$1. \lim_{x \to \infty} \frac{\sqrt{x} + x^2}{2x - x^2}$$

2.
$$\lim_{x \to \infty} (e^{-x} + 2\cos 3x)$$

Sol.

1.

$$\lim_{x \to \infty} \frac{\sqrt{x} + x^2}{2x - x^2} = \lim_{x \to \infty} \frac{(\sqrt{x} + x^2)/x^2}{(2x - x^2)/x^2} = \lim_{x \to \infty} \frac{x^{-3/2} + 1}{2x^{-1/2} - 1} = -1$$

2. DEN

 $\lim_{x\to\infty}e^{-x}=0$, but $\lim_{x\to\infty}(2\cos 3x)$ does not exist because the values of $2\cos 3x$ oscillate between the values of -2 and 2 infinitely often, so the given limit does not exist.

Exercise:

1. Find the following limit or show that it does not exist.

(a)
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

(b) $\lim_{x \to 0^+} \tan^{-1}(\ln x)$

(b)
$$\lim_{x\to 0^+} \tan^{-1}(\ln x)$$

2. Find the horizontal and vertical asymptote of each curve.

(a)
$$y = \frac{5+4x}{x+3}$$

(b)
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$

Sol.

1. (a) 3 (b)
$$-\pi/2$$

2. (a) y = 4 is a horizontal asymptote and x = -3 is a vertical asymptote.

(b)y = 2 is a horizontal asymptote; x = -2 and x = 1 are vertical asymptotes.

Precise Definitions:

Precise Definition of a Limit at Theorem

1. x approaches to ∞ :

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that for every $\epsilon > 0$ there is a corresponding number N such that

if
$$x > N$$
 then $|f(x) - L| < \epsilon$.

2. x approaches to $-\infty$:

Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that for every $\epsilon > 0$ there is a corresponding number N such that

if
$$x < N$$
 then $|f(x) - L| < \epsilon$

Definition of an Infinite Limit at Infinity

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that for every positive number M there is a corresponding positive number N such that

if
$$x > N$$
 then $f(x) > M$.

Example:

Use Definition to prove that $\lim_{x \to -\infty} \frac{1}{x} = 0$.

Sol.

For x < 0, |1/x - 0| = -1/x.

If $\epsilon > 0$ is given, then

$$-\frac{1}{x} < \epsilon \iff x < -\frac{1}{\epsilon}.$$

Take $N = -1/\epsilon$. Then

$$x < N \Rightarrow x < -\frac{1}{\epsilon} \Rightarrow \left| \frac{1}{x} - 0 \right| = -\frac{1}{x} < \epsilon,$$

So
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
.

Section 2.7: Derivatives and Rates of Change

Definition

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 or $m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

provided that this limit exists.

Definition of Derivatives

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

Example:

1.
$$f(x) = \frac{2x+1}{x+3}$$
, find $f'(a)$.

2. Each limit represents the derivative of some function f at some number a. State such an f and a in the given case.

$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

Sol.

1.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{2(a+h)+1}{(a+h)+3} - \frac{2a+1}{a+3}}{h}$$
$$= \lim_{h \to 0} \frac{(2a+2h+1)(a+3) - (2a+1)(a+h+3)}{h(a+h+3)(a+3)}$$
$$= \lim_{h \to 0} \frac{5}{(a+h+3)(a+3)} = \frac{5}{(a+3)^2}$$

2.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h} = f'(9)$$
, where $f(x) = \sqrt{x}$ and $a = 9$.

Exercise:

1. (a)
$$f(x) = 2x^3 + x$$
, find $f'(a)$.

(b)
$$f(x) = \sqrt{1 - 2x}$$
, find $f'(a)$.

2. Each limit represents the derivative of some function f at some number a. State such an f and a in the given case.

6

(a)
$$\lim_{x \to 1/4} \frac{\frac{1}{x} - 4}{x - \frac{1}{4}}$$
.

(b)
$$\lim_{h\to 0} \frac{\cos(\pi+h)+1}{h}$$
.

Sol.

1. (a)
$$6a^2 + 1$$
 (b) $\frac{-1}{\sqrt{1 - 2a}}$

2. (a)
$$f(x) = \frac{1}{x}$$
 and $a = \frac{1}{4}$ (b) $f(x) = \cos(\pi + x)$ and $a = 0$

Section 2.8: The Derivatives as a Function

Recall:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definition

A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.

Theorem

If f is differentiable at a, then f is continuous at a.

Note of Higher Derivatives:

$$f' = \frac{df}{dx},$$
 $f'' = (f')' = \frac{d}{dx} \left(\frac{df}{dx}\right) = \frac{d^2f}{dx^2},$ $f''' = (f'')' = \frac{d}{dx} \left(\frac{d^2f}{dx^2}\right) = \frac{d^3f}{dx^3},$ $f^{(4)} = \frac{d^4f}{dx^4}$ and

Example:

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

1.
$$f(x) = 3x - 8$$

2.
$$f(x) = \frac{1-2x}{3+x}$$

Sol.

1.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{[3(x+h) - 8] - (3x - 8)}{h} = \lim_{h \to 0} \frac{3h}{h} = 3$$

2.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1 - 2(x+h)}{3 + (x+h)} - \frac{1 - 2x}{3 + x}}{h}$$
$$= \lim_{h \to 0} \frac{-6h - h}{h(3 + x + h)(3 + x)} = \lim_{h \to 0} \frac{-7}{(3 + x + h)(3 + x)} = \frac{-7}{(3 + x)^2}$$

Exercise:

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

1.
$$f(x) = \sqrt{9-x}$$

2.
$$f(x) = \frac{x^2 - 1}{2x - 3}$$

Sol. 1.
$$\frac{-1}{2\sqrt{9-x}}$$
, domain of $f=(-\infty,9]$ and domain of $f'=(-\infty,9)$

2.
$$\frac{2x^2 - 6x + 2}{(2x - 3)^2}$$
, domain of $f = \text{domain of } f' = (-\infty, \frac{3}{2}) \cup (\frac{3}{2}, \infty)$