BÁO CÁO THỰC HÀNH KIẾN TRỰC MÁY TÍNH TUẦN 4

Họ và tên: Phan Khánh Vũ

MSSV: 20235880

1. Assignment 1:

Nhập chương trình sau: (TH cộng 2 số dương có tràn)

```
lab03_1.asm*
   # Laboratory Exercise 4, Home Assignment 1
3 li s1 1000000000 # Khởi tạo giá trị cho s1
   li s2 2000000000 # Khởi tạo giá trị cho s2
   # Thuật toán xác định tràn số
  li t0, 0 # Mặc định không có tràn số
   add s3, s1, s2
                        \# s3 = s1 + s2
7
  xor t1, s1, s2 # Kiểm tra s1 với s2 có cùng dấu
8
9 blt t1, zero, EXIT # Nếu t1 là số âm, s1 và s2 khác dấu
10 blt s1, zero, NEGATIVE # Kiểm tra s1 và s2 là số âm hay không âm
11 bge s3, s1, EXIT # s1 không âm, kiểm tra s3 nhỏ hơn s1 không
   # N\hat{e}u s3 >= s1, không tràn s\hat{o}
12
13 j
       OVERFLOW
14 NEGATIVE:
15 bge s1, s3, EXIT # s1 âm, kiểm tra s3 có lớn hơn s1 không
16 # Nếu s1 >= s3, không tràn số
   OVERFLOW:
18 li t0, 1
                      # The result is overflow
19 EXIT:
20
```

- Các biến khởi tạo:

- \circ Khởi tạo giá trị của s1 = 1000000000
- \circ Khởi tạo giá trị của s2 = 2000000000

- Các bước thực hiện của chương trình:

- \circ Câu lệnh li s1 1000000000 để gán giá trị cho s1 = 1000000000
- \circ Câu lệnh li s2 2000000000 để gán giá trị cho s2 = 20000000000
- Câu lệnh li t0, 0 để gán giá trị cho t0 = 0. Mặc định không có hiện tượng tràn số.
- \circ Câu lệnh add s3, s1, s2 để tính tổng s3 = s1 + s2;
- Câu lệnh xor t1, s1, s2 để kiểm tra xem s1 và s2 có cùng dấu hay không.
- O Nếu s1 và s2 khác dấu thì trả về t1 có kết quả âm.
- Câu lệnh blt t1, zero, EXIT để so sánh t1 với zero. Nếu t1 < 0 thì s1 và s2 khác dấu điều kiện đúng thì nhảy đến thẻ EXIT.
- Câu lệnh blt s1, zero, NEGATIVE để so sánh s1 với zero. Nếu s1 < 0 thì s1
 và s2 cùng âm và nhảy đến thẻ NEGATIVE.

- Câu lệnh bge s3, s1, EXIT để kiểm tra xem s3 có nhỏ hơn s1 hay không. Do đã kiểm tra điều kiện 2 số cùng dương nên nếu s3 nhỏ hơn s1 thì sảy ra hiện tượng tràn số.
- Câu lệnh j OVERFLOW dùng để nhảy đến thẻ OVERFLOW. Khi trường hợp tràn số sảy ra sẽ nhảy đến OVERFLOW và thực hiện thay đổi giá trị của t0.
- O Câu lệnh bge s1, s3, EXIT dùng để so sánh s1 có nhỏ hơn s3 hay không.
- Do đã kiểm tra điều kiện 2 số cùng âm nên nếu s1 nhỏ hon s3 thì sảy ra hiện tượng tràn số.
- O Câu lệnh li t0, 1 dùng để thay đổi giá trị của t0 =1. Được đặt trong thẻ OVERFLOW, khi có hiện tượng tràn số sảy ra thì thay đổi giá trị của t0

Quan sát sự thay đổi của thanh ghi:

Name	Number	Value	Name	Number	Value	Name	Number	Value
zero	0	0x00000000		Number	0x00000000zero		Number	0×00000000
ra	1	0x00000000)	0)	0	
sp	2	0x7fffeffc		1	0x00000000ra		1	0×00000000
gp	3	0x10008000 sp		2	0x/fffeffcsp		2	0x7fffeffc
tp	4	0x00000000 gp		3	0x10008000gp		3	0x10008000
t0	5	0x00000000		4	0x00000000tp		4	0x00000000
t.1	6	0×000000000 t.1		3	0x00000000t0		5	0x00000000
L2	7	0x000000000 t2		6	0x00000000t1		6	0x00000000
s0	В	0x000000000 s0		/	0x0000000012		7	0×00000000
sl	9	0x3b9aca00 =		8	0x00000000s0		8	0x00000000
a0	10	0x000000000 a0		9	0x3b9ad000s1		9	0x3b9aca00
a1	11	0x000000000 a1	saved tem	porary (preserved across call)	0x00000000a0		10	0×00000000
a2	12	0×000000000 a2		11	0x00000000a1		11	0×00000000
a3	13	0×000000000 a3		12	0x00000000a2		12	0x00000000
a4	14	0x00000000 a3		13	0x00000000a3		13	0x00000000
ab	15	0x000000000 a5		14	0x000000000a4		14	0x00000000
a6	16	0x000000000 a6		15	0x00000000a5		15	0×00000000
a7	17	0x00000000 a6		16	0x00000000a6		16	0x00000000
s2	18	0×000000000 a7		17	0x000000000a7		17	0×00000000
s3	19	0×000000000 s2		18	0x00000000 <mark>s2</mark>		18	0x77359000
s4	20	0x00000000 83		19	0x00000000s3		19	0x00000000
24 25	21	0x000000000 s4		20	0x00000000s4		2.0	0×000000000
		0x000000000 s5		21	0x00000000s5		2.1	0×00000000
36	22	0x000000000 ₃₆		2.2	0x00000000s6		22	0x00000000
s7	23	0x000000000 s7		23	0x00000000s7		23	0x00000000
s8	24	0x000000000		24	0x00000000s8		24	0x00000000
n9	2.5	0x00000000		25	0x00000000s9		25	0x00000000
s10	26	0x000000000 s10		26	0x00000000s10		26	0×00000000
s11	27	0x000000000 s11		27	0x00000000s11		27	0×000000000
L3	28	0x000000000 t3		28	0x00000000t3		28	0x00000000
t4	29	0x000000000 t4		29	0x00000000t4		29	0x00000000
t5	30	0x00000000 U5		30	0x00000000t.5		30	0×00000000
t6	31	0x000000000 t6		31	0x00000000t.6		31	0×00000000
pc		0x00400008			0x00400004pc			0x0040000c

Name	Number	Value	Name	Number	Value	Name	Number	Value
zero	0	0x000000000	zero	0	0x00000000	zero	0	0x00000000
ra	1	0x00000000	ra	1	0x00000000	ra	1	0x00000000
sp constant 0	2	0x7fffeffe	sp	2	0x7fffeffc	up	2	0x7fffeffc
qp.	3	0x10008000	gp	3	0x10008000	e p	3	0×10008000
tp	4	0x00000000	tp.	4	0x00000000	tp	4	0x00000000
t.0	5	0x00000000	t0	5	0x00000000	t0	5	0x00000001
t1	6	0x00000000	t1	6	0x4caf5e00	t1	6	0x4caf5e00
L2	7	0x00000000	t.2	7	0x00000000	t2	7	0x00000000
s0	8	0x00000000	s0	8	0x00000000	s0	8	0×00000000
s1	9	0x3b9aca00	s1	9	0x3b9aca00	sl	9	0x3b9aca00
a0	10	0x00000000	a0	10	0x00000000	a0	10	0×00000000
al	11	0x00000000	a1	11	0x00000000	a1	11	0×00000000
п2	12	0×00000000	a2	12	0x00000000	a2	12	0x00000000
a3	1.3	0x00000000	a3	13	0x00000000	a3	13	0x00000000
a4	14	0x00000000	a4	14	0x00000000	a4	14	0x00000000
a5	15	0x00000000	a5	15	0x00000000	a5	15	0x00000000
a6	16	0x000000000	a6	16	0x00000000	a6	16	0x0000000
a7	17	0x00000000	a7	17	0x00000000	ă7	17	0x00000000
s2	18	0x77359400	s2	18	0x77359400	s2	18	0×77359400
a3	19	0xb2d05e00	n3	19	0xb2d05e00	n3	19	0xb2d05e00
94	20	0x00000000	s4	20	0x00000000	s4	20	0x00000000
s5	21	0x00000000	s5	21	0x00000000	s5	21	0x00000000
s6	22	0x000000000	a6	2.2	0x00000000	s6	22	0x0000000
s7	23	0x00000000	n7	2.3	0×00000000	s7	23	0x00000000
s8	24	0x00000000	s8	24	0x00000000	s8	24	0x00000000
89	25	0x00000000	s9	25	0x00000000	s9	25	0x00000000
s10	26	0x00000000	a10	2.6	0×00000000	::10	2.6	0×00000000
a11	2.7	0x00000000	s11	27	0×00000000	s11	27	0×00000000
t3	28	0x00000000	t3	28	0x00000000	t3	28	0x00000000
t4	29	0x00000000	t4	29	0x00000000		29	0x00000000
t5	30	0x00000000	1.5	30	0×00000000	t5	30	0x00000000
t6	31	0x00000000	L6	31	0×00000000		31	0x00000000
рс		0x00400018	nc		0x00400020	pc		0x00400034

Nhận thấy t0 = 1 như kỳ vọng

Các trường hợp khác:

1. s1 = 0x10000000 và s2 = 0x01000000 (cộng 2 số dương không tràn)

Kết quả: t0 = 0 như kỳ vọng

2. s1 = 0x80000000 và s2 = 0x01000000 (cộng số âm với số dương)

```
| About 1. # Interconcry Exercise 4, Name Assignment I
| # Interconcry Exercise 4, Name Assignment I
| ** Interconcrite 4, Name Assignment I
| ** Inter
```

Kết quả : t0 = 0 như kỳ vọng

3. s
1 = 0xF0000000 và s2 = 0xA0000000 (cộng 2 số âm không tràn)

Kết quả: t0 = 0 như kỳ vọng

4. s1 = 0x90000000 và s2 = 0x99999999 (cộng 2 số âm tràn)

Kết quả: t0 = 1 như kỳ vọng

2. Assignment 2:

Nhập chương trình sau:

```
| lab03_1.asm | lab03_2.asm* | lab03_2.asm* | lab03_1.asm | lab03_2.asm* | lab03_1.asm | lab03_2.asm* | lab03_2
```

Khởi tạo giá trị:

- \circ Giá tri của s0 = 0x20235658
- Giá trị của t1 = 0xFFFFFF00

Các bước thực hiện của chương trình:

- \circ Câu lệnh li s0, 0x20235658 để khởi tạo giá trị cho s0 = 0x20235658
- Câu lệnh srli t0, s0, 24 dùng để dịch phải 24 bit để lấy byte cao nhất. Do dịch phải 24 bit để giữ ại 2 bit cao nhất lưu vào t0;
- Câu lệnh li t1, 0xFFFFFF00 để khởi tạo giá trị cho t1 = 0xFFFFFF00
- Câu lệnh and s0, s0, t1 để xóa LSB của s0
- O Câu lệnh ori s0, s0, 0xFF để thiết lập byte bé nhất
- O Câu lệnh xor s0, s0, s0 dùng để xóa toàn bộ nội dung của s0 (s0 = 0) thông qua phép logic xor.

Kết quả chạy của chương trình của mỗi phần

Registers	Floating Point	Control and Statu	ıs		
Nam	ne	Number	Value		
zero		0 0x000			
ra		1	0x00000000		
sp		2	0x7fffeffc		
gp		3	0x10008000		
tp		4	0x00000000		
t0		5	0x00000020		
t1		6	0x00000000		
t2		7	0x00000000		
s 0		8	0x20235658		
s1		9	0x00000000		
a 0		10	0x00000000		
a1		11	0x00000000		
a2		12	0x00000000		
a 3		13 0x00			
a4		14	0x00000000		
a5		15	0x00000000		
a6		16	0x00000000		
a7		17	0x00000000		
s2		18	0x00000000		
s3		19	0x00000000		
s4		20	0x00000000		
s5		21	0x00000000		
s6		22	0x00000000		
s7		23	0x00000000		
s 8		24	0x00000000		
s 9		25	0x00000000		
s10		26 0x00			
s11		27 0x0			
t3		28 0x0			
t4		29 0			
t5		30	0x00000000		
t6		31	0x00000000		
рс			0x0040000c		

Registers	Floating F	Point	Control and	Status		
Nan	ne	1	Number		Value	
zero			0		0x00000000	
ra			1		0x00000000	
sp			2		0x7fffeffc	
gp			3		0x10008000	
tp			4		0x00000000	
t0			5		0x00000020	
t1			6		0xffffff00	
t2			7		0x0000000	
s0			8		0x20235600	
s1			9		0x0000000	
a0			10		0x0000000	
a1			11		0x0000000	
a2			12		0x00000000	
a3			13		0x0000000	
a4		14			0x0000000	
a5			15		0x0000000	
a6			16		0x0000000	
a7			17		0x00000000	
s2			18		0x0000000	
s 3			19		0x00000000	
s4			20		0x0000000	
s5			21		0x00000000	
s6			22		0x0000000	
s7			23		0x00000000	
s 8			24		0x0000000	
s 9			25		0x00000000	
s10		26			0x0000000	
s11		27			0x0000000	
t3			28	0x00000		
t4			29	9 0x00000		
t5			30	0x00000		
t6			31		0x00000000	
рс					0x0040001	

Registers	Floating Poin	t Control and	Status		
Nan	ne	Number	Value		
zero		0	0x00000000		
ra		1	0x00000000		
sp		2	0x7fffeffc		
gp		3	0x10008000		
tp		4	0x00000000		
t0		5	0x00000020		
t1		6	0xffffff00		
t2		7	0x00000000		
s0		8	0x202356ff		
s1		9	0x00000000		
a0		10	0x00000000		
a1		11	0x00000000		
a2		12	0x00000000		
a3		13	0x00000000		
a4		14	0x00000000		
a5		15	0x00000000		
a6		16	0x00000000		
a7		17	0x00000000		
s2		18			
s 3		19	0x00000000		
s4		20	0x00000000		
s5		21	0x00000000		
s6		22	0x00000000		
s7		23	0x00000000		
s8		24	0x00000000		
s 9		25	0x00000000		
s10		26	0x00000000		
s11		27 0x			
t3		28	0x00000000		
t4		29	0x00000000		
t5		30	0 x 0000000		
t6		31	1 0x000000		
pc			0x00400018		

Registers	Floating	Point	Control and	Status		
Nam	ne	- 1	Number Value			
zero			0		0x00000000	
ra			1		0x00000000	
sp			2		0x7fffeffc	
gp			3		0x10008000	
tp			4		0x00000000	
t0			5		0x00000020	
t1			6		0xffffff00	
t2			7		0x00000000	
s0			8		0x00000000	
s1			9		0x00000000	
a 0			10		0x00000000	
a1			11		0x00000000	
a2			12		0x00000000	
a 3		13 0x00				
a4		14			0x00000000	
a5			15		0x00000000	
a6			16		0x00000000	
a7			17		0x00000000	
s2			18		0x00000000	
s3			19		0x00000000	
s4			20		0x00000000	
s5			21		0x00000000	
s6			22		0x00000000	
s7			23		0x00000000	
s8			24		0x00000000	
s 9		25 0x00		0x00000000		
s10		26 0x00		0x00000000		
s11		27 0x00		0 x 00000000		
t3		28 0x00		0x00000000		
t4		29 0x			0x00000000	
t5		30 0x000			0x00000000	
t6			31		0x00000000	
рс					0x00400020	

3. Assignment 3:

- a. neg s0, s1 (s0 = -s1)
- Nhập chương trình:

.text li s1 0x20235658 sub s0, zero, s1

- Các bước thực hiện
 - Câu lệnh li s0 0x20235658 để khởi tạo giá trị cho s0
 - \circ Câu lệnh sub s0, zero, s1 để thực hiện phép trừ s0 = 0 s1
- Kết quả thực hiện

s 0	8	0x20235658
s1	9	0xdfdca9a8
0	1.0	0.0000000

b. mv s0, s1 (s0 = s1)

- Nhập chương trình:

```
.text
li s1 0x20235658
add s0, zero, s1
```

- Các bước thực hiện
 - + Câu lệnh li s0 0x20235658 để khởi tạo giá trị cho s0
 - + Câu lệnh add s0, zero, s1 để thực hiện phép trừ s0 = 0 + s1
- Kết quả thực hiện:

s 0	8	0x20235658
s1	9	0x20235658
_		

- c. not s0 ($s0 = bit_invert(s0)$)
- Nhập chương trình:

.text li s0 0x20235658 xori s1, s0, 0xFFFFFFF

- Các bước thực hiện:
- o Câu lệnh li s0 0x20235658 để khởi tạo giá trị cho s0

o Câu lệnh xori s1, s0, 0xFFFFFFF để xor s0 với 0xFFFFFFFF

- Kết quả thực hiện:

- -	•	
s 0	8	0x20235658
s1	9	0xdfdca9a7
_		

d. ble s1, s2, label (if s1 \leq = s2 j label)

- Nhập chương trình:

- Các bước thực hiện:

- \circ Câu lệnh li s1 100 để gán giá trị s1 = 100
- \circ Câu lệnh li s2 200 để gán giá trị s2 = 200
- \circ Câu lệnh li s0 0 để gán giá trị s0 = 0
- \circ Câu lệnh bge s2, s1, else để so sánh nếu s2 >= s1 thì nhảy đến thẻ else
- O Câu lênh j end để nhay đến thẻ end
- Câu lệnh li s0 1 để gán giá trị của s0 =1 nhằm xác định xem nếu s2 >= s1
 thì đổi giá trị của s0 = 1;
- Kết quả thực hiện của chương trình:

62	,	0x00000000
s0	8	0x0000001
s1	9	0x00000064
a0	10	0x00000000
a1	11	0x00000000
a2	12	0x00000000
a3	13	0x00000000
a4	14	0x00000000
a5	15	0x00000000
a6	16	0x00000000
a7	17	0x00000000
s2	18	0x000000c8

ab03_1.asi	lab03_2.asm* lab03_3.asm	Name	Number	Value
text		zero	0	0x00000000
	11 =1 100	ra	1	0x00000000
	11 +2 200	ap	2	0x7tttettc
	li e0 0	gp	3	0x10008000
	bqe s2, s1, else	tp	4	0×000000000
thon:	240 241 241 242	t0	5	0x00000000
cijon.	1 end	t.1	6	0×000000000
else:	_ end	t.2	7	0x00000000
	11 =0 1	a0	8	0x00000001
end:	11 30 1	a1	9	0x00000064
enio.		a0	10	0x00000000
		al	11	0×00000000
		a2	12	0x00000000
		n3	13	0x00000000
		a4	14	0x00000000
		a5	15	0x00000000
		a6	16	0x00000000
		a7	17	0x00000000
		s2	18	0x000000c8
		±3	19	0x00000000

4. Assignment 4:

- Ý tưởng thuật toán:
 - o Cộng hai số s1 và s2.
 - 0 Nếu s1 và s2 khác dấu, không thể tràn số \rightarrow thoát.
 - 0 Nếu s1 và s3 khác dấu, tràn số xảy ra.
 - \circ Gán t0 = 1 nếu có tràn số, ngược lại t0 = 0.

Mã code: (TH cộng 2 số dương tràn số)

Laboratory Exercise 4, Home Assignment 4

.text

TODO: Thiết lập giá trị cho s1 và s2

li s1 0x70000000

li s2 0x78888888

Thuật toán xác định tràn số

li t0, 0 # Mặc định không có tràn số

add s3, s1, s2 # s3 = s1 + s2

xor t1, s1, s2 # Kiểm tra s1 với s2 có cùng dấu blt t1, zero, EXIT # Nếu t1 là số âm, s1 và s2 khác dấu xor t2 s1, s3 # Kiểm tra s1 với s3 có cùng dấu không blt t2, zero, OVERFLOW # khác dấu thì tràn số j EXIT OVERFLOW:

li t0, 1 # The result is overflow

EXIT:

Chú thích:

Chương trình RISC-V này kiểm tra tràn số khi cộng hai số nguyên có dấu. Đầu tiên, nó nạp hai số s1 và s2, sau đó thực hiện phép cộng s3 = s1 + s2. Nếu s1 và s2 khác dấu, tràn số không thể xảy ra, nên chương trình thoát ngay. Nếu chúng cùng dấu, chương trình kiểm tra xem s3 có cùng dấu với s1 không. Nếu khác dấu, nghĩa là phép cộng đã gây tràn số, và t0 được gán giá trị 1 để đánh dấu.

Nhập chương trình trên vào và chạy:

Kết quả: t0 = 1 như kỳ vọng.

Các trường hợp khác:

1.s1 = 0x70000000 và s2 = 0x88888888(cộng số âm với số dương)

Kết quả: t0 = 0 như kỳ vọng.

2.s1 = 0x80000000 và s2 = 0x88888888 (cộng 2 số âm tràn)

Kết quả: t0 = 1 như kỳ vọng.

5. Assignment 5:

Chạy trường hợp 6 x 8 để tìm cách tổng quát:

.text

addi t1,zero,0x6

addi t2,zero,0x8

slli t1,t1,3 #khi dich 3 bit sang trai, gia tri tang len 2^3 lan

KÉT QUẢ:

t0	5	0x00000000
tl	6	0x00000030
t2	7	0x00000008
s0	8	0x00000000

- t1 = 0x30 chính là 48 kết quả của 6x8
- Khi dịch 1 số n bit sang trái thì giá trị của nó sẽ tăng lên 2ⁿ
- dịch 3 bit thì giá trị sẽ tăng 8 lần tương đương với việc nhân 8.
- ta nhận thấy n lũy thừa của 2 thì sau khi dịch phải n bit thì sẽ bằng 1

Tổng quát:

.text

li t1,6

li t2, 16 # ví dụ 16 sẽ bằng 10000 là có 4bit 0

addi s0,s0,1 # gán giá trị s0 = 1 để dễ so sánh

loop:

beq t2,s0,break # so sánh giá trị t2 sau khi dịch bit

srli t2,t2,1 # dịch bit sang phải 1 bit lần lượt

slli t1,t1,1 # dịch bit sang trái 1 bit lần lượt

j loop

break:

Chú thích:

Chương trình RISC-V này đếm số bit 0 liên tiếp ở cuối của t2 và lưu kết quả theo dạng lũy thừa của 2 trong t1. Ban đầu, t1 được gán giá trị 6, còn t2 = 16 (0b10000), tức là có 4 bit 0 ở cuối. Thanh ghi s0 được gán giá trị 1 để làm điều kiện dừng vòng lặp. Trong vòng lặp, chương trình dịch phải t2 (srli t2, t2, 1), giúp loại bỏ từng bit 0 ở cuối cho đến khi t2 == 1, đồng thời dịch trái t1 (slli t1, t1, 1), tức là nhân đôi giá trị của nó mỗi lần lặp. Khi t2 bằng 1, vòng lặp dừng và giá trị cuối của t1 sẽ là 6×2^{4} (số bit 0 của t2). Ví dụ với t2 = 16 (4 bit 0 cuối), t1 cuối cùng sẽ là 6×2^{4} = 96.

KÉT QUẢ:

t0			5	0x00000000
t1			6	0x00000060
t2			7	0x00000001
s0	temporary (not preserved	across call)	8	0x00000001
sl			9	0x00000000
_				

- Nhận xét giá trị t1 = 0x60 đúng bằng 6*16
- ⇒ đúng như dự kiến

Câu hỏi kết luận: Ứng dụng phép dịch bit để thực hiện phép nhân có lợi gì so với sử dụng các lệnh nhân trong extension M (RV32M: RISC-V 32-bit Multiplier/Divider)

Lợi ích của việc sử dụng phép dịch bit để thực hiện phép nhân thay vì lệnh MUL (RV32M):

- 1. Tương thích với hệ thống không có extension M (Ví dụ: RV32I, RV32E).
- 2. Tiết kiệm tài nguyên phần cứng (Không cần mạch nhân phần cứng).
- 3. Tiêu thụ ít năng lượng hơn so với lệnh MUL.
- 4. Có thể nhanh hơn trên vi xử lý không có nhân phần cứng, tránh phải giả lập phần mềm.
- 5. Tận dụng tối ưu cho một số phép nhân đặc biệt (Nhân với lũy thừa của 2, nhân với số cố định).
- 6. Giảm độ phức tạp của vi xử lý, phù hợp với hệ thống nhúng hoặc IoT.
- 7. Linh hoạt hơn trong việc tối ưu hóa thuật toán, có thể thay thế phép nhân bằng các phép toán đơn giản hơn.