

Цель

01

Описать основные типы шифрования в OpenSSL

02

Проанализировать основные преимущества и недостатки алгоритмов

03

На основе полученных результатов предложить рекомендованный алгоритм

Типы шифрования

Симметричное

Асимметричное

Асимметричное шифрование

Асимметричное шифрование предполагает использование открытого и закрытого ключа

Для асимметричного шифрования в OpenSSL есть два вида алгоритма

- 1. RSA
- 2. ECDH

Алгоритм Ривест-Шамир-Адлеман (**RSA**) RSA относится к ассиметричным алгоритмам шифрования.

Где открытый ключ используется для шифрования данных, а закрытый для их дешифрования.

Алгоритм работы RSA

Алиса хочет отправить сообщение Бобу

Боб создает два ключа - открытый и закрытый

Боб отправляет открытый ключ Алисы

Алиса шифрует сообщение отрытом ключ Боба

Алиса отправляет зашифрованное сообщение Бобу

Боб закрытым ключом расшифровывает сообщение

Основной недостаток использование алгоритма RSA для шифрования сообщения

В связи с тем что алгоритм RSA является медленным (по сравнения с симметричными методами шифрования). Данный алгоритм не используется для шифрования сообщений.

Протокол Диффи—Хеллмана на эллиптических кривых (ECDH)

ECDH позволяет двум сторонам, имеющим пары отрытого и закрытого ключа на эллиптических кривых, получить общий секретный ключ, используя незащищенный от прослушивания канал связи.

Алгоритм ECDH

Алиса и Боб хотят создать общий секретный ключ

Алиса и Боб создают пару открытого/закрытого ключа

Алиса и Боб обмениваются открытыми ключами

Алиса вычисляет общий секрет за счет открытого ключа Боба

Боб вычисляет общий секрет за счет открытого ключа Алисы

Недостаток ECDH

• ECDH используется только для создания общего секрета (ключа), который потом будет является секретным ключом для симметричного шифрования.

Типы ключей для асимметричного шифрования

Эфемерный

Статичный

Статичный ключ

Статичный ключ - это такая пара ключей в которой Алиса и Боб используют одни и те же ключи для каждой сессии связи.

Эфемерный ключ

Эфемерный ключ - это ключ который использует разные закрытые ключи для каждого сеанса.

Преимущество эфемерного ключа в отличие от статичного

Основное преимущество эфемерного ключа заключается в том что если третья сторона сможет найти секретный ключ за время одной сессии, он не сможет использовать его для других.

Симметричное шифрование

Симметричное шифрование - это способ шифрования/дешифрования при котором применяется один и тот же криптографический ключ.

Существует два вида симметричного шифрования

- 1. Блочный
- 2. Потоковый

Блочные шифры в OpenSSL

AES

• AES (Advanced Encryption Standard) симметричный алгоритм блочного шифрования (размер блока 128 бит, ключ 128/192/256 бит), принятый в качестве стандарта шифрования правительством США по результатам конкурса AES.

DES u 3DES

- DES алгоритм для симметричного шифрования, разработанный фирмой IBM и утверждённый правительством США в 1977 году как официальный стандарт. Размер блока для DES равен 64 битам. В основе алгоритма лежит сеть Фейстеля с 16 циклами и ключом, имеющим длину 56 бит. Алгоритм использует комбинацию нелинейных и линейных преобразований.
- 3DES симметричный блочный шифр, созданный Уитфилдом Диффи, Мартином Хеллманом и Уолтом Тачманном в 1978 году на основе алгоритма DES с целью устранения главного недостатка последнего малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше.

RC2 u RC5

- RC2 блочный шифр с длиной блока 64 бита и переменной длиной ключа, разработанный Роном Ривестом в конце 1980-х годов. Алгоритм является более быстрым, чем алгоритм DES.
- RC5 это блочный шифр, разработанный Роном Ривестом из компании RSA Security с переменным количеством раундов, длиной блока и длиной ключа. Это расширяет сферу использования и упрощает переход на более сильный вариант алгоритма.

CAST

САST-128 (или CAST5) в криптографии — блочный алгоритм симметричного шифрования на основе сети Фейстеля, который используется в целом ряде продуктов криптографической защиты, в частности некоторых версиях PGP и GPG.

IDEA

• IDEA — симметричный блочный алгоритм шифрования данных, запатентованный швейцарской фирмой Ascom. Известен тем, что применялся в пакете программ шифрования PGP.

Camelia

Сamellia — алгоритм симметричного блочного шифрования (размер блока 128 бит, ключ 128, 192, 256 бит), один из финалистов европейского конкурса NESSIE (наряду с AES и Shacal-2), разработка японских компаний Nippon Telegraph and Telephone Corporation и Mitsubishi Electric Corporation (представлен 10 марта 2000 г.).

Проще реализовать

Некоторые блочные шифры могут обеспечить защиту целостности.

Блочное шифрования медленное по сравнению с потоковым

Требует больше памяти

Чувствительны к шумам при передаче

Потоковое шифрование в OpenSSL

B OpenSSL есть поддержка только одного потокового шифра

ChaCha20

ChaCha20

СhaCha20 - это потоковый шифр, разработанный Дэниелом Бернштейном. Он работает путем перестановки 128 фиксированных битов, 128 или 256 бит ключа, 64-битного одноразового номера и 64-битного счетчика в 64 байта выходных данных. Этот вывод используется в качестве ключевого потока, при этом все неиспользуемые байты просто отбрасываются.

Совместное использование с Poly1305

- Poly1305— это криптографический код аутентификации сообщений (MAC), созданный Дэниелом Дж. Бернштейном. Его можно использовать для проверки целостности данных и подлинности сообщения.
- ChaCha20-poly1305 объединяет эти два примитива в аутентифицированный режим шифрования. Используемая конструкции, предложенной для TLS Адамом Лэнгли, но отличается расположением данных, передаваемых на МАС, и добавлением шифрования длин пакетов.

Скорость работы ChaCha20 против AES

	ChaCha20	AES-128-GCM	AES-256-GCM	AES-128-CBC	AES-256-CBC	Total Score
AMD Ryzen 7 1800X	573	3006	2642	1513	1101	= 8835
Intel W-2125	565	2808	2426	1698	1235	= 8732
Intel i7-6700	585	2607	2251	1561	1131	= 8135
Intel Gold 5217	598	2344	2018	1396	1014	= 7370
AMD EPYC 7702	410	2464	2175	1241	904	= 7194
AMD EPYC 7551	355	2213	1962	1114	811	= 6455
AMD EPYC 7402P	493	2478	2184	1244	907	= 6062
Intel 15-6500	410	1729	1520	1078	783	= 5520
Intel i7-4750HQ	369	1556	1353	688	499	= 4465
AMD FX 8350	367	1453	1278	716	514	= 4328
AMD FX 8150	347	1441	1273	716	515	= 4292
Intel E5-2650 v4	404	1479	1286	652	468	= 4289
Intel i7-2700K	382	1353	1212	763	552	= 4262
Intel i7-3840QM	373	1279	1143	725	520	= 4040
Intel i5-2500K	358	1274	1140	728	522	= 4022
AMD FX 6100	326	1344	1186	671	481	= 4008
AMD A10-7850K	321	1303	1176	685	499	= 3984
AMD A8-7600 Kaveri	306	1246	1108	648	470	= 3778
Intel E5-2640 v3	303	1286	1126	585	419	= 3719
AMD Opteron 6380	293	1203	1063	589	423	= 3571
AMD Opteron 6378	282	1138	986	561	406	= 3373
AMD Opteron 6274	232	1054	926	524	376	= 3112
Intel Xeon E5-2630	247	962	864	541	394	= 3008
Intel Xeon E5645	262	817	717	727	524	= 3047
Intel i7-2635QM	151	989	881	564	404	= 2989
Intel Xeon L5630	225	701	610	626	450	= 2612
Intel E5-2603 v4	236	866	754	382	274	= 2512
AMD Opteron 2382	249	651	485	215	150	= 1750
Intel i7-950	401	256	218	358	257	= 1490
Intel Xeon X5550	287	205	175	305	219	= 1191
AMD Phenom 965	404	84	63	282	198	= 1031
Intel Core2 Q9300	231	126	133	221	161	= 872
AMD X4 610e	225	59	44	198	139	= 665
Intel Core2 Q6600	173	141	79	108	77	= 578
Intel P4 3Ghz Will	109	26	23	55	43	= 256
Intel ATOM D525	98	51	43	28	20	= 240
Snapdragon S4 Pro	131	41	-	-	-	= 172

AES vs ChaCha20

Но если процессор поддерживает аппаратное ускорение то получаем обратный результат

Преимущество потокового шифрования

Быстрее по сравнению с блочным шифрование (при условии что на процессоре нет аппаратного ускорения)

Требует меньше памяти для работы

Менее чувствительны к шумам

Недостатки потокового шифрования

Намного сложение реализовать по сравнению с блочным шифрованием

Не обеспечивают целостность и аутентификацию

Основной вывод во блочным и потоковым шифрам

Потоковые шифры лучше подходят когда объем данных либо неизвестен либо непрерывен например, сетевые потоки.

Блочные шифры лучше подходят если объем данных заранее известен - например, файл, поля данных или протоколы запроса/ответа, такие как HTTP, где длина всего сообщение известна уже в начале.

Вывод

- На основе сделанной презентацию можно сделать вывод что для оптимальной работы с шифрование данных лучше использовать сразу несколько видов шифровании (асимметричный и симметричный).
- То есть за счет асимметричного метода мы шифруем сообщение в котором храниться ключ для симметричного шифрования и передаем его клиенту или серверу
- Что касается выбора уже определенных методов для асимметричного (RSA и т.д.) и симметричного (AES и т.д.) шифрование. То здесь надо уже смотреть на то где будет использоваться данные методы т.к. все зависит от того что для нас является основным в шифрование
- Также в случае использование асимметричного метода необходимо определиться какой тип ключа будет использоваться эфемерный или статичный ключ.