Propósito

Esta técnica describe la forma para extraer ARN viral de muestras clínicas y aislamientos virales en cultivos celulares o huevo embrionado para el diagnóstico de influenza mediante la técnica del RT-PCR tiempo real o punto final.

Material y equipo

- tubos eppendorf estériles de 1.8 ml
- guantes desechables de neopreno
- micropipetas de volumen variable con capacidad de 20 a 200 μL
- micropipetas de volumen variable con capacidad de 100 a 1000 μL
- microcentrífuga
- agitador tipo vórtex
- kit de extracción de ARN viral QIAGEN [camisas (tubo colector)], columnas, solución amortiguadora concentrada AW-1, solución amortiguadora concentrado AW-2, solución amortiguadora de lisis AVL, acarreador, solución amortiguadora de elusión.
- gasas estériles (en frasco)
- tubos cónicos de 50 ml
- gradilla para tubos Eppendorf
- puntas para pipeta de 20 a 200 μL con filtro estériles
- puntas para pipeta de 100 a 1000 µL con filtro estériles
- vaso de precipitados estéril de 1000 ml (para desechos)
- etanol absoluto grado biología molecular
- etanol al 70% para desinfectar (atomizador)

Preparación de reactivos del kit QIAamp viral ARN

- 1. Solución amortiguadora AVL con acarreador
 - a) Acarreador: Disolver el acarreador liofilizado adicionando 310 μL de solución amortiguadora obteniendo una solución de 1 μg/μL. Enseguida guardar en alícuotas a -20 °C. No descongelar por más de 3 veces.
 - b) Solución amortiguadora AVL. Incubar a 80 °C si hay presencia de precipitado.
- Mezclar el acarreador con la solución amortiguadora AVL.
- Calcular la cantidad necesaria de AVL y acarreador para las muestras que se vayan a extraer.

Calcular de acuerdo a la siguiente fórmula:

 $n \times 0.56 \, ml = y \, ml$

y ml x 10 μ L/ml= z

n= número de muestras para extraer

y= volumen calculado de AVL

z= volumen calculado de acarreador

- Mezclar suavemente por inversión 10 veces para evitar aerosoles.
- Guardar el exceso de AVL con acarreador a 4 °C por unos días.

Tabla 1. Cálculo de volúmenes de solución amortiguadora AVL con acarreador de acuerdo con el número de muestras.

Número	Vol.	Vol.	Núm	Vol.	Vol.
de muestras	AVL (ml)	Acarreador (μΙ)	ero de muestras	VAL (ml)	Acarreador (μΙ)
1	0.56	5.6	13	7.28	72.8
2	1.12	11.2	14	7.84	78.4
3	1.68	16.8	15	8.40	84.0
4	2.24	22.4	16	8.96	89.6

LINEAMIENTOS PARA LA VIGILANCIA POR LABORATORIO DE VIRUS RESPIRATORIOS

A. Extracción del ARN viral por medio del kit QIAamp viral ARN

5	2.80	28.0	17	9.52	95.2
6	3.36	33.6	18	10.08	100.8
7	3.92	39.2	19	10.64	106.4
8	4.48	44.8	20	11.20	112.0
9	5.04	50.4	21	11.76	117.6
10	5.60	56.0	22	12.32	123.2
11	6.16	61.6	23	12.88	128.8
12	6.72	67.2	24	13.44	134.4

2. Solución amortiguadora AWI

- Colocar con una pipeta 25 ml de etanol absoluto en un tubo cónico de 50 ml.
- Agregar 19 ml de solución amortiguadora concentrada AW-1 para obtener 44 ml de solución final.
- Tapar perfectamente y mezclar
- Rotular como "AW-1", fecha de preparación, quién elaboró y guardar a temperatura ambiente.

3. Solución amortiguadora AW2

- Colocar con una pipeta 30 ml de etanol absoluto en un tubo cónico de 50 ml.
- Agregar 13 ml de solución amortiguadora concentrada AW-2 para obtener 43 ml de solución final.
- Tapar perfectamente y mezclar.
- Rotular como "AW-2", fecha de preparación, quién elaboró y guardar a temperatura ambiente.
- 4. Solución de elusión AVE. Esta lista para usarse
- 5. **Etanol grado biología molecular.** No provisto en el material del kit. Usarlo a 4 °C.

Método para la extracción de ácido nucleico

a) Atemperar las muestras (sobrenadantes de exudado faríngeo, nasofaríngeo, lavado bronquio alveolar y biopsia).

InDRE Página 3 de 12

- b) Colocar 560 μL de solución amortiguadora AVL mezclada con el acarreador de ARN en un tubo Eppendorf de 1.5 ml. Adicionar 140 μL de muestra a la solución amortiguadora AVL del paso anterior, mezclar en el vórtex durante 15 segundos.
- c) Preparar un control de reactivos de extracción (CRE) con 140 µL de medio de transporte viral y 560 µL de solución amortiguadora AVL mezclado con el acarreador de ARN, mezclar en el vortex durante 15 segundos.
- d) Incubar a temperatura ambiente por 10 min. En este paso se inactiva cualquier agente infeccioso.
- e) Agregar 560 μL de etanol grado biología molecular a la muestra y mezclar en el vórtex durante 15 segundos. Después de mezclar, centrifugar a 8000 rpm ó 6000 x g por 1 minuto para desprender las gotas de la tapa.
- f) Colocar cuidadosamente 630 µL de la solución del paso anterior a una columna del kit QIAamp (contenida en un tubo colector de 1.5 ml nuevo) al colocar el volumen se debe tener la precaución de no mojar el borde, tapar y centrifugar a 8000 rpm ó 6000 x g por 1 minuto. Colocar la columna dentro de un adaptador de 1.5 ml nuevo y desechar el tubo que contiene el filtrado. Si la solución no ha pasado completamente por la columna, centrifugar a una mayor velocidad. La centrifugación a altas velocidades no afecta la pureza del ARN viral.
- g) Abrir cuidadosamente la columna y repetir el paso del inciso f.
- h) Abrir cuidadosamente la columna y agregar 500 μL de solución amortiguadora AW1, cerrar la tapa y centrifugar a 8000 rpm ó 6000 x g por 1 minuto. Colocar la columna dentro de un tubo colector nuevo, desechar el tubo que contiene el filtrado.
- i) Abrir cuidadosamente la columna y agregar 500 μL de solución amortiguadora AW2, cerrar la tapa y centrifugar a 14,000 rpm ó 20,000 x g por 3 minutos. Retirar la columna y colocarla en un tubo colector nuevo, desechar el tubo que contiene el filtrado.
- j) Colocar nuevamente la columna en un tubo colector de 1.5 ml nuevo y centrifugar a 20 000 x g por 1 minuto para eliminar el exceso de solución amortiguadora. Si es necesario repetir este paso para

InDRE Página 4 de 12

garantizar que la columna quede seca. La solución amortiguadora AW2 puede causar problemas después, se debe evitar un frenado rápido de la centrífuga en este punto.

- **k)** Retirar la columna y colocarla en tubo Eppendorf de 1.5 ml nuevo, desechar el tubo que contiene el filtrado.
- I) Abrir cuidadosamente la columna y colocar 60 μL de solución amortiguadora AVE, cerrar la tapa e incubar a temperatura ambiente por 1 minuto. Centrifugar a 8000 rpm ó 6000 x g por 1 minuto. La elusión con AVE garantiza la recuperación del 90% del ARN, una doble elusión con 2 X 40 μL de solución amortiguadora AVE incrementa hasta un 10% la recuperación. Volúmenes menores a 30 μL no incrementan la concentración final de ARN.
- m) El ARN viral es estable hasta por un año cuando es almacenado a -20 o -70 °C.
- n) Manejar los lavados como residuos CRIT.

A. Extracción del ARN viral por medio del kit QIAamp MinElute Virus Spin kit (Otros virus respiratorios no influenza)

Material y equipo

- tubos Eppendorf estériles de 1.5 ml
- guantes desechables de neopreno
- gasas estériles (en frasco)
- tubos cónicos de 50 ml
- gradillas para tubos Eppendorf
- puntas para pipeta de 1 a 200 µL con filtro estériles
- puntas para pipeta de 100 a 1000 µL con filtro estériles
- vaso de precipitados estéril de 1000 ml

InDRE Página 5 de 12 2021

- micropipetas de volumen variable con capacidad de 20 a 200 µL
- micropipetas de volumen variable con capacidad de 100 a 1000 μL
- microcentrífuga hasta 20 000 x g
- agitador tipo vórtex
- termoblock
- kit de extracción de ARN viral QIAGEN QIAamp MinElute Virus Spin Kit (tubo colector), columnas, solución amortiguadora concentrada AW-1, solución amortiguadora concentrada AW-2, solución amortiguadora de lisis AVL, Acarreador, solución amortiguadora de elusión)
- etanol absoluto (100%) grado biología molecular
- etanol al 70% para desinfectar (atomizador)

Medidas de bioseguridad

Preparación de reactivos del KIT QIAamp MinElute Virus Spin

- 1. Solución amortiguadora con acarreador AVL
- Adicionar 310 μL de solución amortiguadora AVE al vial del kit que contenga 310 μg del acarreador de RNA liofilizado.
- Disolver el acarreador de RNA completamente.
- Tomar todo el contenido del tubo y pasarlo al frasco de solución amortiguadora AVL (volumen total 12 ml) y homogenizar (ya con el acarreador la solución amortiguadora se llama AVL).
- Hacer alícuotas en tubos Eppendorf de 1,5 ml con 800 μL de solución amortiguadora AVL con el acarreador de RNA (cada alícuota sirve para 4 muestras).
- Almacenar a 20 °C.

InDRE

2021

2. Solución amortiguadora AWI

- Adicionar 25 ml de etanol (96-100%) grado biología molecular a la botella que contiene 19 ml de solución amortiguadora concentrada AWI (volumen total 44 ml).
- La solución amortiguadora AWI es estable por un año cuando se almacena cerrado a temperatura ambiente, o hasta que el kit llegue a su fecha de expiración.
- Hacer alícuotas en tubos cónicos de 50 ml.
- Antes de usar, mezclar por inversión.

Solución amortiguadora AW2

- Adicionar 30 ml de etanol (96-100%) grado biología molecular a la botella que contiene 13 ml de solución amortiguadora concentrada AW2 (volumen total 43 ml).
- Almacenar cerrado a temperatura ambiente, la solución amortiguadora AW2 es estable por un año o hasta que el kit llegue a su fecha de expiración.
- Hacer alícuotas en tubos cónicos de 50 ml.

4. Etanol absoluto

- Colocar 40 ml de etanol absoluto en un tubo cónico.
- Tapar herméticamente y rotular como *Etanol absoluto de trabajo* con la fecha de preparación y guardar a 4 °C.
- Colocar en hielo para su uso.

Preparación del gabinete de seguridad

Desinfectar el gabinete con alcohol etílico al 70%, así como todo el material y equipo que se introduce al gabinete (vórtex), encender la luz UV por 10 minutos.

Procedimiento para la extracción de ácido nucleico

Todas las centrifugaciones son a temperatura ambiente (15-25 °C).

- Según el número de muestras, enumerar tubos tipo Eppendorf de 1.5 ml por duplicado.
- Colocar 250 µL de la muestra a procesar en el vial correspondiente.
- Centrifugar para eliminar moco a 2500 rpm, durante 5 minutos.
- Colocar 200 µL de muestra centrifugada en el tubo correspondiente.
- Adicionar 200 μ L de buffer AVL ya con el acarreador. Preparar un Control de Reactivos de Extracción (CRE) con 200 μ L de medio de transporte viral más 200 μ L de buffer AVL
- Mezclar en el vórtex por 15 segundos.
- Incubar a temperatura ambiente por 10 minutos.
- Enseguida incubar a 56 °C en termoblock por 15 minutos.
- Dar spin para bajar el agua de condensación de la tapa.
- Agregar 250 µL de etanol grado biología molecular y mezclar en el vórtex por 15 segundos.
- Incubar el lisado con el etanol por 5 minutos a temperatura ambiente (Si la temperatura es mayor a 25 °C el etanol se debe enfriar en hielo y adicionar al lisado).
- Dar spin para bajar el agua de condensación de la tapa.
- Adicionar todo el lisado a la columna.
- Centrifugar durante 1 minuto a 8000 rpm (6000 x g).
- Desechar el tubo colector con el filtrado y poner la columna sobre un tubo colector nuevo. (Si el lisado no pasa completamente, se repite la centrifugación hasta que la columna esté vacía).
- Destapar la columna y agregar 500 μ L de AW1 y centrifugar durante 1 minuto a 8000 rpm (6000 x g).
- Desechar el tubo colector con el filtrado y colocar la columna en un tubo colector nuevo.
- Destapar cuidadosamente la columna y agregar 500 μL de AW2 y centrifugar a 6000 x g durante l minuto.
- Desechar el tubo colector con el filtrado y poner la columna sobre un tubo colector nuevo.
- Destapar cuidadosamente la columna y agregar 500 μL de etanol grado biología molecular.

InDRE Página 8 de 12

- Centrifugar durante 1 minuto a 8000 rpm (6000 x g) y desechar el tubo colector con el filtrado y poner la columna sobre un tubo colector nuevo.
- Centrifugar a 14 000 rpm por 3 minutos, hasta que la columna ya no contenga líquido.
- Colocar la columna en un tubo Eppendorf de 1.5 ml previamente identificado y agregar 55 µL de buffer AVE en el centro de la membrana, cerrar la tapa e incubar 5 minutos a temperatura ambiente.
- Centrifugar a 14 000 rpm (20 000 x g) por 1 minuto, desechar la columna y etiquetar y almacenar el RNA a -70 °C o a 4 °C si se trabaja inmediatamente.

En caso de desabasto de estuches de extracción y/o insumos de robot. La RNLSP pueden hacer uso de los siguientes estuches:

Subsecretaria de Prevención y Promoción de la Salud Dirección General de Epidemiología Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martinez Báez" (InDRE)

Subsecretaría de Prevención y Promoción de la Salud Dirección General de Epidemiología Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martinez Báez" (InDRE)

Subsecretaria de Prevención y Promoción de la Salud
Subsecretaria de Epidemiología
Instituto de Diagnóstico y Referencia Epidemiológicos
"Dr. Manuel Martínez Baez" (InDRE)

