21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

28- Wednesday November 9, 2011.

Definition 28.1: A vector space over a field F (or an F-vector space) is an Abelian group for addition + (with identity 0 and inverse of x denoted -x), and a scalar multiplication (since the elements of F are called scalars), which is a mapping from $F \times V$ into V, with the image of (λ, v) denoted λv , satisfying

```
\lambda\left(v_{1}+v_{2}\right)=\lambda\,v_{1}+\lambda\,v_{2}\text{ for all }\lambda\in F\text{ and all }v_{1},v_{2}\in V,\\ \left(\lambda_{1}+\lambda_{2}\right)v=\lambda_{1}v+\lambda_{2}v\text{ for all }\lambda_{1},\lambda_{2}\in F\text{ and all }v\in V,\\ \lambda_{1}\left(\lambda_{2}v\right)=\left(\lambda_{1}\lambda_{2}\right)v\text{ for all }\lambda_{1},\lambda_{2}\in F\text{ and all }v\in V,\\ 1\,v=v\text{ for all }v\in V,
```

which imply $\lambda 0 = 0$ for all $\lambda \in F$, and 0v = 0 for all $v \in V$.

A linear mapping from an F-vector space V_1 into an F-vector space V_2 is a mapping L from V_1 into V_2 such that

```
L(v+w) = L(v) + L(w) for all v, w \in V_1,

L(\lambda v) = \lambda L(v) for all \lambda \in F and all v \in V_1,
```

and the set $L(V_1; V_2)$ of all linear mappings from V_1 into V_2 is an F-vector space.¹ The kernel of a linear mapping L is $L^{-1}(\{0\}) = \{v_1 \in V_1 \mid L(v_1) = 0\} \subset V_1$, and the range of L is the image $\{L(v_1) \mid v_1 \in V_1\} \subset V_2$. For an F-vector space V, the general linear group GL(V) is the multiplicative group of all invertible linear mappings from V into itself.²

A bilinear mapping B from $V_1 \times V_2$ into V_3 , where V_1, V_2, V_3 are F-vector spaces, is a mapping such that $v_1 \mapsto B(v_1, v_2)$ is linear (from V_1 into V_3) for all $v_2 \in V_2$ and $v_2 \mapsto B(v_1, v_2)$ is linear (from V_2 into V_3) for all $v_1 \in V_1$.

Examples 28.2: If I is non-empty and for each $i \in I$ one is given an F-vector space V_i , then the product $\prod_{i \in I} V_i$ has a natural structure of F-vector space.³ A particular case is when all V_i are equal to an F-vector space W, which corresponds to considering the (F-vector space of) mappings from I into W; this example is encountered with W = F and $I = \mathbb{N}$ in the case of the ring of formal power series F[[x]]. Other F-vector spaces already encountered are the ring of polynomials F[x], the ring of formal Laurent series F((x)), as well as any quotient ring $F[x]/(P_0)$ for some $P_0 \in F[x]$.

In the case P_0 is an irreducible polynomial of degree n, then $K = F[x]/(P_0)$ is a field, and as an F-vector space it is isomorphic to F^n , since each coset $P + (P_0)$ corresponds to $r + (P_0)$ where $r = a_0 + \ldots + a_{n-1}x^{n-1}$ is the remainder in the Euclidean division of P by P_0 , and a_0, \ldots, a_{n-1} may be chosen independently in F.

F[x], $F[x]/(P_0)$, F[[x]], and F((x)) also have a multiplication, and they are particular cases of an F-vector space V having a product given by a bilinear mapping from $V \times V$ into V, in which case V is called an algebra over F.

Remark 28.3: If R is a ring but not a field, one has a similar notion of R-module, or more precisely of left R-module and right R-module in the case where R is not commutative, and the structure of modules is not as simple of that of vector spaces, in particular because one cannot define a notion of dimension, or use a basis as for a vector space. However, if D is a division ring, then the properties of a D-module are exactly similar to that of a vector space.

Definition 28.4: If V is an F-vector space, a linear combination of elements of a non-empty subset $A \subset V$ is any element of the form $\sum_{i=1}^{n} \lambda_i a_i$ with $a_1, \ldots, a_n \in A$ and $\lambda_1, \ldots, \lambda_n \in F$; $span(A) = \{\sum_{i=1}^{n} \lambda_i a_i \mid n \in \mathbb{N}^{\times}, a_1, \ldots, a_n \in A, \lambda_1, \ldots, \lambda_n \in F\}$ is the vector subspace generated by A. Distinct elements $a_1, \ldots, a_n \in V$ are linearly dependent if $\sum_{i=1}^{n} \lambda_i a_i = 0$ and not all λ_i are equal to 0; a non-empty subset $A \subset V$ is linearly

If $L_1, L_2 \in L(V_1; V_2)$, then $L_1 + L_2$ is the mapping $v \mapsto L_1(v) + L_2(v)$ for all $v \in V_1$, and for $\lambda \in F$, λL_1 is the mapping $v \mapsto \lambda L_1(v)$ for all $v \in V_1$.

Notice that GL(V) is not a vector space. It is a pointed cone in the vector space L(V; V), i.e. one can multiply an element $A \in GL(V)$ by $\lambda \in F^*$, but 0 is not allowed.

³ If $a = (a_i, i \in I), b = (b_i, i \in I) \in \prod_{i \in I} V_i$, and $\lambda \in F$, then c = a + b and $d = \lambda a$ are the elements of $\prod_{i \in I} V_i$ defined by $c_i = a_i + b_i$, $d_i = \lambda a_i$ for all $i \in I$.

independent if no non-empty finite subset of A is linearly dependent, i.e. if $n \ge 1$ and $\sum_{i=1}^{n} \lambda_i a_i = 0$ for distinct elements $a_1, \ldots, a_n \in A$ imply $\lambda_i = 0$ for $i = 1, \ldots, n$. A basis of an F-vector space V is a linearly independent set which spans V.

Lemma 28.5: If V is an F-vector space, and $v_1, \ldots, v_n \in V$ for $n \ge 1$, then any n+1 (or more) vectors in $span(v_1, \ldots, v_n)$ are linearly dependent.

Proof: One first checks the case n = 1, i.e. one considers two vectors, $w_1 = \alpha v_1, w_2 = \beta v_1$ for some $\alpha, \beta \in F$: since $\beta w_1 - \alpha w_2 = 0$, it proves linear dependence if α or β is non-zero, but if $\alpha = \beta = 0$ then $w_1 = w_2 = 0$ and any of the two vectors is linearly dependent (since $1 w_i = w_i = 0$).

One proves the general case by induction on n: one assumes that $n \geq 2$ and that the result is proved for a number of vectors $\leq n-1$, and one chooses w_1,\ldots,w_{n+1} which are linear combinations of v_1,\ldots,v_n , i.e. one writes $w_j = \sum_{i=1}^n \lambda_{j,i} v_i$ for some $\lambda_{j,i} \in F, i=1,\ldots,n, j=1,\ldots,n+1$; if all $\lambda_{j,n}$ are 0, then $span(v_1,\ldots,v_n) = span(v_1,\ldots,v_{n-1})$, and the induction hypothesis applies; if $\lambda_{j_0,n} \neq 0$, then for $j \neq j_0$ one considers the vectors $z_j = w_j - \lambda_{j_0,n}^{-1} \lambda_{j,n} w_{j_0}$ for $j \neq j_0$, which are linear combinations of v_1,\ldots,v_{n-1} , hence the induction hypothesis applies and there exist $\mu_j \in F$ for $j \neq j_0$, not all equal to 0, and such that $\sum_{j \neq j_0} \mu_j z_j = 0$, so that it means $\sum_j \mu_j w_j = 0$ if one defines $\mu_{j_0} = -\sum_{j \neq j_0} \lambda_{j_0,n}^{-1} \lambda_{j,n} \mu_j$, and since not all μ_j are 0 the w_j are linearly dependent.

Definition 28.6: An F-vector space V is *finite-dimensional* if it is generated by finitely many elements, and its dimension is the number of elements in a basis (indeed independent of the basis by Lemma 28.5).

Remark 28.7: Every F-vector space V has a basis, because a basis is a maximal family of linearly independent vectors $\{e_i \mid i \in I\}$, since if $W = span(e_i, i \in I)$ was different from V, adding to the family $e_i, i \in I$ any element in $V \setminus W$ would contradict the maximality; then such a maximal family exists by a simple application of "Zorn's lemma". If $f_j, j \in J$ is another basis, then I and J have the same cardinal, even in the case where I (and then I by Lemma 28.5) is infinite: for $i \in I$, e_i can be expressed as a linear combination of the f_j , with non-zero coefficient for $j \in A(i)$, but since $i' \neq i$ could have A(i') = A(i), one puts a total order on I (for example a well order by Zermelo's theorem), and one denotes $\alpha(i)$ the order of i in the set $A^{-1}(A(i))$ of indices i' having the same image than i (noticing that this set is finite and has a number of element at most that of A(i) by Lemma 28.5); then the mapping $i \mapsto (\alpha(i), A(i))$ is injective from I into $\mathbb{N} \times \mathcal{P}_{finite}(J)$, where $\mathcal{P}_{finite}(J)$ denotes the set of finite subsets of J, and since for J infinite $\mathcal{P}_{finite}(J)$ has the same cardinal than J, one deduces that $cardinal(I) \leq cardinal(J)$; reversing the roles gives $cardinal(J) \leq cardinal(I)$, hence cardinal(J) = cardinal(I) by the Schröder-Bernstein theorem.^{4,5}

Definition 28.8: The *prime subfield* F_0 of a field F is the subfield generated by 0 and 1. If F has *characteristic* 0, the prime subfield is isomorphic to \mathbb{Q} , and if F has finite characteristic, necessarily a prime p, then the prime subfield is isomorphic to \mathbb{Z}_p .

If E is a subfield of F, one says that F is an extension field of E, or that F/E is a field extension. F is an E-vector space, whose dimension is denoted [F:E], and F is called a finite-dimensional extension (or a finite extension) if $[F:E] < \infty$, and an infinite-dimensional extension (or infinite extension), if $[F:E] = \infty$.

Lemma 28.9: If F is a finite field, then $|F| = p^k$ for a prime p (the characteristic of F) and a positive integer k.

Proof. Let F_0 be the prime subfield of F, isomorphic to \mathbb{Z}_p for the characteristic p of F. Then F is an F_0 -vector space, necessarily of finite dimension k, so that F is isomorphic to F_0^k as F_0 -vector spaces.

Remark 28.10: It can be shown that, for each prime p and each $k \ge 1$, there is only one finite field with $q = p^k$ elements, up to isomorphism (as fields), and one denotes it F_q .

⁴ Friedrich Wilhelm Karl Ernst Schröder, German mathematician, 1841–1902. He worked in Darmstadt, and in Karlsruhe, Germany. The Schröder–Bernstein theorem is partly named after him (Cantor stated it without giving a proof, which Bernstein provided in 1898, and Schröder obtained it independently the same year).

⁵ Felix Bernstein, German mathematician, 1878–1956. He worked at Georg-August-Universität, Göttingen, Germany. The Schröder–Bernstein theorem is partly named after him (Cantor stated it without giving a proof, which Bernstein provided in 1898, and Schröder obtained it independently the same year).