Examen du cours d'optimisation différentiable

Durée: 1 heure 30

Les documents ainsi que les calculatrices ne sont pas autorisés.

Exercice 0.1 (Différentielle et gradient)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une application différentiable. Soit $u \in \mathbb{R}^n$.

- a) Donner la définition de la différentielle de f en u et montrer qu'elle est unique.
- b) Donner la définition du gradient de f en u à partir de sa différentielle.

Correction de l'exercice 0.1 a) [1pt] La différentielle de f en u est une forme linéaire continue sur \mathbb{R}^n telle que quand $h \in \mathbb{R}^n$ et $h \to 0$, on a

$$f(u+h) = f(u) + df_u(h) + o(||h||_2).$$

(On prend ici la norme euclidienne mais n'importe quelle autre norme convient aussi vu qu'en dimension finie toutes les normes sont équivalentes). Si df_u^* est une autre forme linéaire vérifiant cette propriété alors pour tout $x \in \mathbb{R}^n$ quand $\lambda \in \mathbb{R}$ et $\lambda \to 0$, on a

$$df_u(\lambda x) = df_u^*(\lambda x) + o(\lambda)$$

et donc par linéarité, quand $\lambda \to 0$

$$df_u(x) = df_u^*(x) + o(1).$$

Alors en faisant tendre λ vers 0 dans la dernière égalité, on obtient $df_u(x) = df_u^*(x)$ et ceci pour tout $x \in \mathbb{R}^n$, il y a donc bien unicité de la différentielle quand elle existe.

b)[1pt] Comme df_u est une forme linéaire continue sur l'espace de Hilbert \mathbb{R}^n , on en déduit par le théorème de Riesz qu'il existe un vecteur noté $\nabla f(u)$ tel que pour tout $h \in \mathbb{R}^n$, $df_u(h) = \langle \nabla f(u), h \rangle$. Ce vecteur est unique et c'est ainsi qu'on définit le gradient de la fonction f de \mathbb{R}^n dans \mathbb{R} en u.

Exercice 0.2

Soit
$$f:(x,y) \in \mathbb{R}^2 \to x^4 + y^3/3 - 4y - 2$$
.

- a) Déterminer les points critiques de f
- b) Parmi ces points critiques, déterminer les minima locaux de f.

c) Montrer que ces minima locaux ne sont pas globaux

Mêmes questions avec la fonction $g:(x,y)\in\mathbb{R}^2\to 3x^3+xy^2-2xy$.

Correction de l'exercice 0.2 a) [1pt] En tant que polynôme, f est de classe C^{∞} . Les points critiques de f sont les éléments $(x,y) \in \mathbb{R}^2$ tels que $\nabla f(x,y) = 0$ càd tels que $4x^3 = 0$ et $y^2 - 4 = 0$. Il y a donc deux points critiques (0,2) et (0,-2).

b) [2pts] Pour savoir si un point critique est un minimum local de f, on peut utiliser la condition du second ordre. La Hessienne de f en (x, y) est donnée par

$$\nabla^2 f(x,y) = \left(\begin{array}{cc} 12x^2 & 0\\ 0 & 2y \end{array}\right).$$

En particulier la Hessienne de f en (0, -2) admet 0 et -4 comme valeurs propres. Donc (0, -2) ne peut pas être un minum local de f. Pour (0, 2), la Hessienne de f en (0, 2) admet pour valeurs propres 0 et 4, elle est donc positive mais pas définie positive. On ne peut pas conclure sur la minimalité locale de f en (0, 2) par la condition du second ordre. Cependant, on voit que f est la somme de deux fonctions f(x, y) = g(x) + h(y) avec $g(x) = x^4$ et $h(y) = y^3/3 - 4y - 2$. Pour chercher les minima locaux de f il suffit de chercher ceux de g et h. Pour g, 0 est le seul minimum local et pour h (qui est un polynôme de degré g), seul g0 est un minimum locale (on a g0 est le seul minimum local et pour g1 est bien un minimum local de g2.

- c)[1pt] Ce n'est pas un minimum global car $f(0,y) \to -\infty$ quand $y \to -\infty$.
- d) [1pt] Pour tout $(x,y) \in \mathbb{R}^2$, on a

$$\nabla g(x,y) = \begin{pmatrix} 9x^2 + y^2 - 2y \\ 2xy - 2x \end{pmatrix}$$
 et $\nabla^2 g(x,y) = \begin{pmatrix} 18x^2 & 2y - 2 \\ 2y - 2 & 2x \end{pmatrix}$.

Les points critiques (x,y) de f satisfont $\nabla f(x,y) = 0$. On obtient 4 solutions

$$(0,0), (0,2), (1/3,1)$$
 et $(-1/3,1)$.

e) [2pts] La Hessienne de f en ces points critiques est

$$\left(\begin{array}{cc} 0 & -2 \\ -2 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 2 \\ 2 & 0 \end{array}\right), \left(\begin{array}{cc} 2 & 0 \\ 0 & 2/3 \end{array}\right) \text{ et } \left(\begin{array}{cc} 2 & 0 \\ 0 & -2/3 \end{array}\right).$$

La première matrice a pour valeurs propres 2 et -2 donc (0,0) n'est pas un minimum local de g. La deuxième matrice a pour valeurs propres 2 et -2 donc (0,2) n'est pas un minimum local. La troisième matrice a deux valeurs propres strictement positives (car leur produit vaut 4/3 et leur somme 2+2/3) donc (1/3,1) est un minimum local. La quatrième matrice a deux valeurs propres non nulles de signes opposés (leur produit vaut -4/3) donc (-1/3,1) n'est pas un minimum local de g.

La fonction g a donc un seul minimum local qui est atteint en (1/3,1).

f) [1pt] Par ailleurs, $f(x,0) \to -\infty$ quand $x \to -\infty$ donc g n'a pas de minimum global. En particulier, (1/3,1) est seulement un minimum local sans être global.

Exercice 0.3

Soient p_1, \dots, p_n des points de \mathbb{R}^d . On définit la fonction

$$f: x \in \mathbb{R}^d \to \sum_{i=1}^n ||x - p_i||_2^2$$

où $\|\cdot\|_2$ est la norme euclidienne de \mathbb{R}^d .

- a) Montrer que f admet un unique minimum sur \mathbb{R}^d ,
- b) Déterminer ce minimum et en donner une interprétation géométrique.

Correction de l'exercice 0.3 a) [2pt] La fonction f est un polynôme du second ordre, elle est donc \mathcal{C}^{∞} . On a pour tout $x \in \mathbb{R}^d$,

$$\nabla f(x) = \sum_{i=1}^{n} 2(x - p_i) \text{ et } \nabla^2 f(x) = 2I_d.$$

Comme $\nabla f(x) \succeq 2I_d$, f est 2-convexe, en particulier, elle est coercive sur \mathbb{R}^d donc admet un minimum sur \mathbb{R}^d et strictement convexe donc ce minimum est unique.

b) [2pt] Il est de plus un point critique de f, càd tel que $\nabla f(x) = 0$ càd $x = (1/n) \sum_{i=1}^{n} p_i$ est l'unique minimum de f sur \mathbb{R}^d . C'est la moyenne/barycentre des p_1, \dots, p_n .

Exercice 0.4

On considère trois points M_1, M_2 et M_3 du plan de coordonnées $(x_1, y_1), (x_2, y_2)$ et (x_3, y_3) . On considère aussi la fonction

$$f: (a,b) \in \mathbb{R}^2 \to \sum_{i=1}^3 (y_i - ax_i - b)^2.$$

On suppose que les x_i , i = 1, 2, 3 ne sont pas tous égaux.

- a) Montrer que f est coercive et strictement convexe. En déduire que f admet un unique minimum sur \mathbb{R}^2 .
- b) Montrer que f n'admet qu'un seul point critique.
- c) Résoudre le problème de minimisation de f sur \mathbb{R}^2 et donner une interprétation géométrique de cette solution en fonction des points M_1, M_2 et M_3 .

Correction de l'exercice 0.4 a) [4pts] On note

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{ et } \mathbb{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{pmatrix}.$$

On a $f: z \in \mathbb{R}^2 \to \|Y - \mathbb{X}z\|_2^2$ où $\|\cdot\|_2$ est la norme euclidienne de \mathbb{R}^3 .

On a pour tout $z \in \mathbb{R}^2$,

$$\nabla f(z) = 2 \mathbb{X}^{\top} (\mathbb{X}z - Y) \text{ et } \nabla^2 f(z) = 2 \mathbb{X}^{\top} \mathbb{X}$$

Comme les x_i ne sont pas tous égaux, \mathbb{X}^{\top} est de rang 2. Par ailleurs, $\operatorname{Im}(\mathbb{X}^{\top}\mathbb{X}) = \operatorname{Im}(\mathbb{X}^{\top})$ donc $\mathbb{X}^{\top}\mathbb{X}$ est aussi de rang 2 et comme c'est une matrice 2×2 , elle est inversible. Par ailleurs, pour tout $z \in \mathbb{R}^2$, $\langle z, \mathbb{X}^{\top}\mathbb{X}z \rangle = \|\mathbb{X}z\|_2^2 \geq 0$. Alors $\mathbb{X}^{\top}\mathbb{X}$ est inversible et positive donc elle est définie positive. Si on note $\sigma_1 \geq \sigma_2$ les valeurs propres de $\mathbb{X}^{\top}\mathbb{X}$, on a $\sigma_2 > 0$ et $\nabla^2 f(z) \succeq \sigma_2 I_2$. Donc f est σ_2 -convexe. Elle est donc coercive sur \mathbb{R}^2 et strictement convexe. Donc f admet un unique minimum sur \mathbb{R}^2 .

- b) [1pt] $z \in \mathbb{R}^2$ est un point critique de f ssi $\nabla f(z) = 0$ càd $\mathbb{X}^\top \mathbb{X} z = \mathbb{X}^\top Y$. Comme $\mathbb{X}^\top \mathbb{X}$ est inversible, on a $z = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top Y$. Il y a donc bien unicité du point critique de f.
- c) [1p] $z = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}Y$ est l'unque solution au problème de minimisation de f sur \mathbb{R}^2 au vu des deux questions précédentes. C'est la solution des moindres carrés de la droite qui minimise les résidus aux points M_1, M_2 et M_3 .