MCS Tutorial 6 Answer: Relations

Huan Jin

Relations

1. Consider a relation R on the set \mathbb{Z}^+ defined as

$$R = \{(x, y) | x + y \text{ is even} \}$$

Show whether R is reflexive, symmetric, antisymmetric and/or transitive.

- 2. Let R and S be the following relations:
 - R={(1,1), (1,2),(2,4),(3,2),(4,3)}
 - S={(1,0),(2,4),(3,1),(3,2),(4,1)}

What is the composite of the relations R and S, $S^{\circ}R$?

3. Let $R=\{(1,1), (2,4), (3,4), (4,2)\}$. Find the powers R^2 , R^3 , R^4 ,...

Try at home:-

$$R = \{(x, y): x + y \text{ is odd}\}$$

$$R = \{(x, y) | x + y \text{ is even} \}$$

1. Answer:

- Since x + x is even for any x, then $(x, x) \in R$ and R is **reflexive**.
- Since x + y = y + x, R is symmetrical.
- Since 4+2 and 2+4 are even, but $4 \neq 2$, R is **not antisymmetric**.
- Suppose $(x, y) \in R$ and $(y, z) \in R$.
 - \triangleright Then, either both x and y are odd, or both are even.
 - \triangleright If x and y are odd, then z must be odd $\Rightarrow x + z$ is even $\Rightarrow (x, z) \in R$.
 - \triangleright If x and y are even, then z must be even $\Rightarrow x + z$ is even $\Rightarrow (x, z) \in R$.
 - \triangleright Hence R is transitive.

Answer:

For every $(a,b) \in R$, $(b,c) \in S$ forms $(a,c) \in S \circ R$.

(a,b)	(b,c)	(a,c)
(1,1)	(1,0)	(1,0)
(1, 2)	(2, 4)	(1,4)
(2,4)	(4,1)	(2,1)
(3, 2)	(2,4)	(3, 4)
(4, 3)	(3, 1)	(4,1)
(4, 3)	(3, 2)	(4, 2)

Therefore, $S \circ R = \{(1,0), (1,4), (2,1), (3,4), (4,1), (4,2)\}.$

Answer:

Find $R^2 = R \circ R$.

(a,b)	(b,c)	(a,c)
(1,1)	(1,1)	(1,1)
(2,4)	(4, 2)	(2, 2)
(3,4)	(4, 2)	(3, 2)
(4, 2)	(2, 4)	(4, 4)

Then, $R^2 = \{(1,1), (2,2), (3,2), (4,4)\}.$

Find $R^3 = R^2 \circ R$. $(a,b) \in R$ and $(b,c) \in R^2$, then $(a,c) \in R^3$.

(a,b)	(b,c)	(a,c)
(1,1)	(1,1)	(1,1)
(2,4)	(4, 4)	(2, 4)
(3, 4)	(4, 4)	(3, 4)
(4, 2)	(2, 2)	(4, 2)

Then, $R^3 = \{(1,1), (2,4), (3,4), (4,2)\}.$

Find $R^4=R^3\circ R.$ $(a,b)\in R$ and $(b,c)\in R^2,$ then $(a,c)\in R^3$

(a,b)	(b,c)	(a,c)
(1,1)	(1,1)	(1,1)
(2,4)	(4, 2)	(2, 2)
(3,4)	(4, 2)	(3, 2)
(4, 2)	(2,4)	(4, 4)

Then, $R^4 = \{(1,1), (2,2), (3,2), (4,4)\}.$