First Steps towards a Reduced Basis Method for Self-Consistent Field Theory Models

Alexej Disterhoft

9. September 2015

We want to study the phase separation behavior of polymers.¹

¹G. H. Fredrickson. *The Equilibrium Theory of Inhomogeneous Polymers*. Vol. 134. International Series of Monographs on Physics. Oxford University Press (OUP), Dec. 2005.

We want to study the phase separation behavior of polymers.¹

- polymers are large molecules, composed of many repeated subunits (monomers)
- monomers interact with each other in and across polymers
- theory based on stochastic models (mainly *ideal chain models*)

¹G. H. Fredrickson. *The Equilibrium Theory of Inhomogeneous Polymers*. Vol. 134. International Series of Monographs on Physics. Oxford University Press (OUP), Dec. 2005.

We want to study the phase separation behavior of polymers.¹

- polymers are large molecules, composed of many repeated subunits (monomers)
- monomers interact with each other in and across polymers
- theory based on stochastic models (mainly ideal chain models)
- for simplicity, we consider only diblock copolymers; linear chain polymers consisting of two types of monomers (e.g. A and B)

¹G. H. Fredrickson. *The Equilibrium Theory of Inhomogeneous Polymers*. Vol. 134. International Series of Monographs on Physics. Oxford University Press (OUP), Dec. 2005.

Polymer melts (liquid phase) can exhibit different separation behaviors:

- macrophase separation: liquid-liquid separation (e.g. like water / oil); mostly seen in blends of different polymers.
- **microphase separation**: distinct ordering of individual polymer chains.

Polymer melts (liquid phase) can exhibit different separation behaviors:

- macrophase separation: liquid-liquid separation (e.g. like water / oil); mostly seen in blends of different polymers.
- **microphase separation**: distinct ordering of individual polymer chains.

Several types of microphase separation observable depending on the properties of the polymers, e.g. gyroid.

Purpose of *self-consistent field theory* (SCFT):

- Goal: study a complex stochastic model (e.g. a polymer melt) with a huge number of small interacting components (e.g. monomers).
- Idea: instead of considering interactions between all the individual components, approximate the effect on a given individual by a single averaged effect (so called external field).

Purpose of *self-consistent field theory* (SCFT):

- Goal: study a complex stochastic model (e.g. a polymer melt) with a huge number of small interacting components (e.g. monomers).
- Idea: instead of considering interactions between all the individual components, approximate the effect on a given individual by a single averaged effect (so called external field).
- This reduces a many-body problem to a one-body problem!

Purpose of self-consistent field theory (SCFT):

- Goal: study a complex stochastic model (e.g. a polymer melt) with a huge number of small interacting components (e.g. monomers).
- Idea: instead of considering interactions between all the individual components, approximate the effect on a given individual by a single averaged effect (so called external field).
- This reduces a many-body problem to a one-body problem!

How can this be used?

- Model leads to a free energy functional depending on external fields w_A and w_B , where *saddle points* correspond to stable microphase separations.
- Allows an iterative scheme that adjusts the external fields until these satisfy some saddle point equations.

Most costly part of each iteration: modified diffusion equation (MDE)

$$\frac{\partial}{\partial s}q(\mathbf{r},s) = c\,\Delta q(\mathbf{r},s) - w(\mathbf{r},s)q(\mathbf{r},s), \quad q(\mathbf{r},0) = 1,$$

where c > 0 and

Most costly part of each iteration: modified diffusion equation (MDE)

$$\frac{\partial}{\partial s}q(\mathbf{r},s) = c\,\Delta q(\mathbf{r},s) - w(\mathbf{r},s)q(\mathbf{r},s), \quad q(\mathbf{r},0) = 1,$$

where c > 0 and

- lacksquare the normalized polymer chain contour $s \in [0,1]$,
- \blacksquare a position ${\bf r}$ in a small volume cell $\Omega \subset \mathbb{R}^n$ (bounded domain),
- the combined external field

$$w(\mathbf{r}, s) = \begin{cases} w_A(\mathbf{r}), & 1 \le s < f \\ w_B(\mathbf{r}), & f \le s \le 1 \end{cases}$$

with the ratio $f \in [0,1]$ of A-type monomers in the polymer chain.

Most costly part of each iteration: *modified diffusion equation* (MDE)

$$\frac{\partial}{\partial s}q(\mathbf{r},s) = c\,\Delta q(\mathbf{r},s) - w(\mathbf{r},s)q(\mathbf{r},s), \quad q(\mathbf{r},0) = 1,$$

where c > 0 and

- lacksquare the normalized polymer chain contour $s \in [0,1]$,
- lacksquare a position ${f r}$ in a small volume cell $\Omega\subset \mathbb{R}^n$ (bounded domain),
- the combined external field

$$w(\mathbf{r}, s) = \begin{cases} w_A(\mathbf{r}), & 1 \le s < f \\ w_B(\mathbf{r}), & f \le s \le 1 \end{cases}$$

with the ratio $f\in \left[0,1\right]$ of A-type monomers in the polymer chain.

Has to be solved *several hundred / thousand times* with mostly slight variations in the external fields.

Example I

Let $\Omega = [0, 10]$ and f = 1/2.

 $^{^2\}text{P.}$ Stasiak and M. W. Matsen. "Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases". *The European Physical Journal E* vol. 34, no. 10 (Oct. 2011). DOI: 10.1140/epje/i2011-11110-0.

Example I

- Let $\Omega = [0, 10]$ and f = 1/2.
- Final fields w_A , w_B (using de facto default pseudospectral method²).

²P. Stasiak and M. W. Matsen. "Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases". *The European Physical Journal E* vol. 34, no. 10 (Oct. 2011). DOI: 10.1140/epje/i2011-11110-0.

Example I

- **Let** $\Omega = [0, 10]$ and f = 1/2.
- Final fields w_A , w_B (using de facto default pseudospectral method²).
- Corresponding Fourier coefficients (absolute value, in the order $\cos(2\pi x), \sin(2\pi x), \cos(4\pi x), \ldots$).

²P. Stasiak and M. W. Matsen. "Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases". *The European Physical Journal E* vol. 34, no. 10 (Oct. 2011). DOI: 10.1140/epje/i2011-11110-0.

Example II

And now the same with f=1/3.

Example II

And now the same with f = 1/3.

Maybe a good leverage point for model reduction by only considering the functions with significant coefficients

→ model reduction by *reduced basis method*.

Intermission: Reduced Basis Method³

Preliminaries

Given a parametric variational problem

$$b(u, v; \boldsymbol{\sigma}) = f(v; \boldsymbol{\sigma}), \quad u \in \mathcal{X}, \ v \in \mathcal{Y},$$

- \blacksquare \mathcal{X}, \mathcal{Y} are Hilbert spaces,
- $ightharpoonup \mathcal{P} \subset \mathbb{R}^P$, $P \in \mathbb{N}$, is a closed parameter space,
- $b: \mathcal{X} \times \mathcal{Y} \times \mathcal{P} \to \mathbb{R}$ is a parametric continuous bilinear form,
- $f: \mathcal{Y} \times \mathcal{P} \to \mathbb{R}$ is a parametric continuous linear functional.

³A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-15431-2.

Intermission: Reduced Basis Method³

Preliminaries

Given a parametric variational problem

$$b(u, v; \boldsymbol{\sigma}) = f(v; \boldsymbol{\sigma}), \quad u \in \mathcal{X}, \ v \in \mathcal{Y},$$

- \blacksquare \mathcal{X}, \mathcal{Y} are Hilbert spaces,
- $ightharpoonup \mathcal{P} \subset \mathbb{R}^P$, $P \in \mathbb{N}$, is a closed parameter space,
- $b: \mathcal{X} \times \mathcal{Y} \times \mathcal{P} \to \mathbb{R}$ is a parametric continuous bilinear form,
- $f: \mathcal{Y} \times \mathcal{P} \to \mathbb{R}$ is a parametric continuous linear functional.
- Assume

$$\beta(\pmb{\sigma}) := \inf_{u \in \mathcal{X}} \sup_{v \in \mathcal{Y}} \frac{b(u,v;\pmb{\sigma})}{\|u\|_{\mathcal{X}} \|v\|_{\mathcal{Y}}} > 0 \qquad \text{for all } \pmb{\sigma} \in \mathcal{P}.$$

+ some minor assumptions \Rightarrow for every $\sigma \in \mathcal{P}$ exists a unique solution $u(\sigma)$.

³A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations*. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-15431-2.

Basic idea

Assume we want to compute the solution $\sigma\mapsto u(\sigma)$ in real time or for lots of different parameters $\sigma\in\mathcal{P}$

 \rightarrow standard Galerkin methods are likely too slow!

Basic idea

Assume we want to compute the solution $\sigma\mapsto u(\sigma)$ in real time or for lots of different parameters $\sigma\in\mathcal{P}$

- ightarrow standard Galerkin methods are likely too slow!
 - $\blacksquare \text{ Let } \mathcal{M} := \{ u(\boldsymbol{\sigma}) \, | \, \boldsymbol{\sigma} \in \mathcal{P} \}.$
 - Depending on the properties of the variational problem, M is often a smooth manifold with low dimension.
 - This can be used for model reduction: instead of \mathcal{X} use \mathcal{M} as the ansatz space!

Basic idea

Assume we want to compute the solution $\sigma\mapsto u(\sigma)$ in real time or for lots of different parameters $\sigma\in\mathcal{P}$

- \rightarrow standard Galerkin methods are likely too slow!
 - $\blacksquare \text{ Let } \mathcal{M} := \{ u(\boldsymbol{\sigma}) \, | \, \boldsymbol{\sigma} \in \mathcal{P} \}.$
 - Depending on the properties of the variational problem, M is often a smooth manifold with low dimension.
 - This can be used for model reduction: instead of \mathcal{X} use \mathcal{M} as the ansatz space!

Further we won't use the continuous variational problem, but instead the *truth variational problem* based on a high dimensional Galerkin method:

$$b(u, v; \boldsymbol{\sigma}) = f(v; \boldsymbol{\sigma}), \qquad u \in \mathcal{X}_{\mathcal{N}}, v \in \mathcal{Y}_{\mathcal{N}},$$

with subspaces $\mathcal{X}_{\mathcal{N}} \subset \mathcal{X}$, $\mathcal{Y}_{\mathcal{N}} \subset \mathcal{Y}$.

Basic idea

The reduced basis method consists of two stages:

Basic idea

The reduced basis method consists of two stages:

■ Offline stage: Construction of "optimal" reduced basis spaces $\mathcal{X}_N := \{u_{\mathcal{N}}(\sigma_n) \mid n=1,\ldots,N\} \subset \mathcal{M}_{\mathcal{N}} \text{ and } \mathcal{Y}_N \subset \mathcal{Y}_{\mathcal{N}} \text{ with low dimension } N \ll \mathcal{N}.$

Basic idea

The reduced basis method consists of two stages:

- Offline stage: Construction of "optimal" reduced basis spaces $\mathcal{X}_N := \{u_{\mathcal{N}}(\boldsymbol{\sigma}_n) \,|\, n=1,\ldots,N\} \subset \mathcal{M}_{\mathcal{N}} \text{ and } \mathcal{Y}_N \subset \mathcal{Y}_{\mathcal{N}} \text{ with low dimension } N \ll \mathcal{N}.$
- **Online stage:** Given a parameter $\sigma \in \mathcal{P}$, compute the rb-solution $u_N(\sigma)$ and a certified bound for the error $\|u_N(\sigma) u_N(\sigma)\|_{\mathcal{X}}$ (both independent of \mathcal{N}).

Certified error bound

Let $r_N \colon \mathcal{Y}_{\mathcal{N}} \times \mathcal{P} \to \mathbb{R}$ be the *residual*

$$r_N(v; \boldsymbol{\sigma}) := b(u_N(\boldsymbol{\sigma}) - u_N(\boldsymbol{\sigma}), v; \boldsymbol{\sigma}) = f(v; \boldsymbol{\sigma}) - b(u_N(\boldsymbol{\sigma}), v; \boldsymbol{\sigma}).$$

 \Rightarrow continuous linear functional for every $\sigma \in \mathcal{P}.$

Certified error bound

Let $r_N \colon \mathcal{Y}_{\mathcal{N}} \times \mathcal{P} \to \mathbb{R}$ be the *residual*

$$r_N(v; \boldsymbol{\sigma}) := b(u_{\mathcal{N}}(\boldsymbol{\sigma}) - u_N(\boldsymbol{\sigma}), v; \boldsymbol{\sigma}) = f(v; \boldsymbol{\sigma}) - b(u_N(\boldsymbol{\sigma}), v; \boldsymbol{\sigma}).$$

 \Rightarrow continuous linear functional for every $\sigma \in \mathcal{P}$.

Standard theorems lead to a posteriori error bound

$$\|u_N(\boldsymbol{\sigma}) - u_{\mathcal{N}}(\boldsymbol{\sigma})\|_{\mathcal{X}} \le \frac{\|r_N(\cdot; \boldsymbol{\sigma})\|_{\mathcal{Y}'_{\mathcal{N}}}}{\beta_{\mathrm{LB}}(\boldsymbol{\sigma})} =: \Delta_N(\boldsymbol{\sigma}),$$

where

- the norm of the residual can be efficiently computed through the Riesz representation theorem,
- lacksquare $\beta_{\mathrm{LB}}(\boldsymbol{\sigma})$ is a computable lower bound for $\beta(\boldsymbol{\sigma})$.

Inf-sup-constant

Problem: how to compute $\beta_{\rm LB}(\boldsymbol{\sigma})$ efficiently?

⁴D. B. P. Huynh et al. "A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants". *Comptes Rendus Mathematique* vol. 345, no. 8 (Oct. 2007), pp. 473–478. DOI: 10.1016/j.crma.2007.09.019.

Inf-sup-constant

Problem: how to compute $\beta_{LB}(\boldsymbol{\sigma})$ efficiently?

Default: successive constraint method⁴.

Reinterpret the calculation of $\beta(\sigma)$ as an optimization problem \rightarrow linear objective function, but feasible region in general not a convex polytope.

⁴D. B. P. Huynh et al. "A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants". *Comptes Rendus Mathematique* vol. 345, no. 8 (Oct. 2007), pp. 473–478. DOI: 10.1016/j.crma.2007.09.019.

Inf-sup-constant

Problem: how to compute $\beta_{LB}(\boldsymbol{\sigma})$ efficiently?

Default: successive constraint method⁴.

- Reinterpret the calculation of $\beta(\sigma)$ as an optimization problem \rightarrow linear objective function, but feasible region in general not a convex polytope.
- Offline stage: Construct "optimal" lower and upper bounds for the feasible region.
- Online stage: Compute $\beta_{LB}(\sigma)$ through small linear program.

⁴D. B. P. Huynh et al. "A successive constraint linear optimization method for lower bounds of parametric coercivity and inf—sup stability constants". *Comptes Rendus Mathematique* vol. 345, no. 8 (Oct. 2007), pp. 473–478. DOI: 10.1016/j.crma.2007.09.019.

Offline and online stage

Offline stage of RBM needs a discrete "training set" $\mathcal{P}_{\text{train}} \subset \mathcal{P}$. Iterative greedy scheme, start with random $\sigma_1 \in \mathcal{P}_{\text{train}}$, $\mathcal{X}_1 := \{u_{\mathcal{N}}(\sigma_1)\}$:

- 1 find $\sigma_{N+1} := \arg \max_{\sigma \in \mathcal{P}_{\text{train}}} \Delta_N(\sigma)$,
- $2 \operatorname{set} \mathcal{X}_{N+1} := \operatorname{span}(\mathcal{X}_N \cup \{u_{\mathcal{N}}(\boldsymbol{\sigma}_{N+1})\}),$
- **3** repeat until maximum in step 1 is smaller than a given tolerance.
- \rightarrow computationally intensive part.

Offline and online stage

Offline stage of RBM needs a discrete "training set" $\mathcal{P}_{\text{train}} \subset \mathcal{P}$. Iterative greedy scheme, start with random $\sigma_1 \in \mathcal{P}_{\text{train}}$, $\mathcal{X}_1 := \{u_{\mathcal{N}}(\sigma_1)\}$:

- 1 find $\sigma_{N+1} := \arg \max_{\sigma \in \mathcal{P}_{\text{train}}} \Delta_N(\sigma)$,
- \geq set $\mathcal{X}_{N+1} := \operatorname{span}(\mathcal{X}_N \cup \{u_{\mathcal{N}}(\boldsymbol{\sigma}_{N+1})\}),$
- 3 repeat until maximum in step 1 is smaller than a given tolerance.
- \rightarrow computationally intensive part.

Online stage, given a $\sigma \in \mathcal{P}$:

- **1** solve reduced basis system for $u_N(\boldsymbol{\sigma}) \in \mathcal{X}_N$,
- **2** compute certified error bound $\Delta_N(\boldsymbol{\sigma})$.
- ightarrow runtime depends only on low dimension N, not \mathcal{N} .

Examples

Examples

Examples

Examples

Examples

And now a four dimensional parameter space.

What we've already done:

■ Derived a *space-time variational formulation* (STVP) of the MDE based on *Bochner spaces*; showed *well-posedness*.

What we've already done:

- Derived a *space-time variational formulation* (STVP) of the MDE based on *Bochner spaces*; showed *well-posedness*.
- \blacksquare Replaced the fields w_A, w_B with parametric functions

$$w(\boldsymbol{\sigma}) = \sum_{j=1}^{N} \sigma_j \phi_j,$$

where $N \in \mathbb{N} \cup \{\infty\}$, $\sigma \in [-1,1]^N$ and $\phi_j \in L_{\infty}(\Omega)$, $j=1,\ldots,N$.

Shown that the solution of the STVP depends *analytically* on the parameters (given some restrictive sufficient conditions).

What we've already done:

- Derived a *space-time variational formulation* (STVP) of the MDE based on *Bochner spaces*; showed *well-posedness*.
- **Replaced** the fields w_A, w_B with parametric functions

$$w(\boldsymbol{\sigma}) = \sum_{j=1}^{N} \sigma_j \phi_j,$$

where $N \in \mathbb{N} \cup \{\infty\}$, $\sigma \in [-1,1]^N$ and $\phi_j \in L_{\infty}(\Omega)$, $j=1,\ldots,N$.

- Shown that the solution of the STVP depends *analytically* on the parameters (given some restrictive sufficient conditions).
- Applied a *Petrov-Galerkin* method to solve the STVP.
- Experimented with the application of the reduced basis method on the STVP.

Problems encountered so far:

■ The fact that $\mathcal{X} \neq \mathcal{Y}$ complicates lots of things.

Problems encountered so far:

- The fact that $\mathcal{X} \neq \mathcal{Y}$ complicates lots of things.
- Most suitable Petrov-Galerkin methods aren't unconditionally stable.

Problems encountered so far:

- The fact that $\mathcal{X} \neq \mathcal{Y}$ complicates lots of things.
- Most suitable Petrov-Galerkin methods aren't unconditionally stable.
- Successive constraint method suffers from curse of dimensionality and is quite slow for more than a handful of parameters.
 - \rightarrow a priori knowledge about field expansion functions required to reduce number of parameters.