3/19/2014 Remider Do the reading assignment and exercises from the syntax of expression) before Exam! Double Recursion ("directe-and-conquer") A double recursion function computes its result from two different recurise calls (for at last some argument values). No. of recursive calls grows exponentially with the depth of recursion . (But in many doubly recursive function the depth of recursion grows only Loganthmically with argument size and so the no. of recursive calls does not grow exponentially with argument size). Ex MOORT from Asn I. (MSort L) = a sorted list of the elements of L. (mort (3 7 16582)) ⇒ (123 45 678). (msort (2 7 3 0 4 5 81) (mfort (2348)) (msort (705)).

= (123 45678).(msort '(2730459))
(msort '(705)).
(2348)) (msort '(705)).
(2348) (057)
(herge-list '(2348) '(057))
(0234578).

(2 7 3 0 45 8).

Split - Cist

mfort > (057)

Aother picture

2/19/2014 Another example. (QSOVT L) => Same result as (Msort L). (4 17-25 6 83)). wrt = with respect to. (1-2 4) (475 68) 95mt 95ort (-213) (45678) (-2 13 45-678). When does the above recursive strategy fail? ON @ First element of L is the first element is the smallest element of the list. L= (-4 (7-2 5 6 83).

partition wrt car () (-417-25683) could A special case of @ is when L is of length 1, but this can be handled as a base case. A different recursive strategy is needed in case (2)! Fountions that take functions as arguments Gx: $\frac{1}{x}$: $\frac{1$ (defun sqr (n) (x n n)) Бх: (sigma #'sgr 2 4) > 29 How can we write function SIGMA that is like E? in Common Lisp [this does NOT apply to scheme] the value of a symbol as a variable (if any) is not related to the function definition of that symbol (if any) SETF is one way to set the value LET/LET+ is another way to set the value.

CS316 3/19/2014 3
Nort importantly when a function is called, the value of each formal parameter is
set to the value of the corresponding actual argument.
DEFUN sets the function definition of a symbol (DEFUN has no effect
on the value of the symbol.)
(defun sqr(n) (xnn))
(setf sqr 5)
7 (ser ser)
#'f is an expression whose value is the definis function definition of f.
This explain why we wrote (signa #'sqr 2 5) and NOT (signa sqr 2 t).
Function Funcall.
Church a a a a a a a
calls the function given by the value of g with a, -, akas the actual arguments.
(setf g #'sqr)
(defin 9 (n) (+n 17)
(defin 9 (n) (th 17) $>(g 3)$ > (timeall $g 3) \in 9 = 99^{2}$, > (timeall $\# g 3$) $> (g 3)$ $> (fineall g 3) \in 9 = 99^{2}, > (fineall \# g 3)$
20 9
In scheme, there is no difference between function definition and value. So FUNA
and the are not used in scheme. $\Sigma f(i) = f(m)_{+} + f(n)$
Now we are ready to write the SIGMA FUNCTION. I I'm Sfim) + in Sfim) + in Sfim) + in Sfim) + in Sfim)
In scheme, such and scheme, and the are not used in scheme. Now we are veally to write the SIGMA function. I f(i) = $f(m)_{t} + f(n)_{t} + f($
(f(>m n))
(+(funalls f m) (figure f (+ m 1) n)))
('gna f (+ m 1) n)))

C5316 3/19/2014 @ MAPCAR (map in scheme) (map car # round "(7,1, 6,8, 3,2, 3,15,9)) (map car f 2) => a list of same length t in which the ith element is obtained by appling of to the ith element of L. (mapear #'epr (2 + 6 39) = (4 1 36 98). Let's write our own vesion of Mapear. (defun our-mapcar & f L) L= er ez - ex) our mapart fl) should =) (f (e,), fle) -+ f(ex)) (defun our-map car (+ L) (if endpc) cans (funcall f (car L)) (our-papagocar f (cdrL)]))) The build-in MAPCAH Mapcan (unlike our-MARCAR) can also be used to map function of 2 or more arguments. (map car #14 (6763) 1(2 4 58) 1(0 1 61) = (3 12 17 12) (mapear # cons (ABC) (((2) (345) (6)))) A ((A 12) (B 345). (C 6)) Comboly Lambda Expression (also available in Jave, and any other ves 8; Lambda expression evaluate to number nameless function Syntax is the same as for DEFUN but without the function name. (lambda (n) (+ nn)) ((Lambola (n) (x n n) +) = 2 1 (signa ((ambda (k) (* KE) 2 4) \Rightarrow 29. EK^*

```
CS3H 3/24/2014
 Landa Expression (contd.)
 > ((lamola (x y 3) (+ x (* y 3))) 2 17)
             (optional)
 > (mapcar (landbala (x) (+ x (* x x x)))
           (2 1 0 4))
 > (mapear (lambola (x y) (+ x (* y 2)))
           \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}
           ((0 1 1 2)) = (1 2 4 7)
  \Xi. (signer (lambda (i) (+ (+ i i) (+ i 3)) 0 3) \frac{1}{120} (i+3i).
     302+3+0 + 12+3*1 + 22+3*2 +32+3+3
  Important A Cambda expression can use variables defined outside that Cambda expression receivent to FOO problem (QIK on ASN 5)
  Ex: Write a function SUM-POWERS such that
       (sum-powers | k m n) = \sum_{j\geq m} i^k - m^k + (m+1)^k + \dots + n^k
        (defun sum-powers (kmn)
               (sigma (landa (i)(expt i k)) m n)
 Ex: INC-LIST-2: from assignent.
        (inc-list-2 '(27/65) 3) 7 (5 10 4 9 8)
   (detun inc-list-2 (Ln)
         (mapcar (lambda (i) (+ i n)) L).
```

```
05316 3/24/2014
Apply a like funcall but allows a list of arguments to be passed.

**last argument must be a list.
  (apply #'+ ((2 1 7 97)
  = (funcall #1+ 2 179)
  = (t z 1 79) = 19.
  = (apply #' + 2 '(1 79))
   = (apply #'+ 2 1 '(7 9))
   = (apply #'t 2 17 (9))
   = (apply #+ 2 17 9(1)
   (appy f in in -- ix L a List
      calls of with the values of i, in - in and the elements of the values of
    Lan arguments.
   (funcall f i, irmin).
  = (apply f (list i, iz ...ix))
  = (apply fi, (list is with)) -- etc.
 Ex. Sum from Asn-4
   [ (sum '(z 7 16)) $ > 16]
                                                This is not I here.
      (defun sum (L)
apply #'+ L).
      (apply #'coms '((+23) (+4A))). 7 ((+23) + 4A)
  Ex: (relevant to 160).
     capply #1mapear #1+ 1((1 23)
                          9 (4 0 7)
                          6 (0 1 1)
                          0 (3 3 2 )))
                                           1(332)) = (8 6 13)
   = (mapcar #+ 1(1 23) 1(007) 1(0 11)
```

CS 316 3/24/2014 3	
Syntax	
Syntax of Expression.	
Expression can be written in many different notation/syntaxes.	
Consider the expression: $f(g(h(1,2), f(3,4)), 5)$ (in java/c++ syntax))
This expression can be written in.	
(1 h 2) 9 (3f 4)) f 5 (1 h 2) 9 (3f 4)) f 5 (1 h 2) - (3+4) + 5 (1 h 2) - (3+4) + 5 (1 h 2) g having equal precedence ond belonging to a lef	t
associative precedence class, I having higher precedence than f and g.	
1 h 2 g (3 f 4) f 5. (it t=t, g=-, h=x)	
1 + 2 - (3 + 4) + 5	
@ Lisp notation (f (g (h 1 2) (f 34)) 5)	
@ prefix notation = Lisp notation without parentheses. [. fgh 12 if 3 4 is	
[This assumes you know how many arguments each operator/function takens]	
("anti-Lisp" notation - like Lisp but function names appear at the ends of list	\$
(instead of that at the beginings of list).	
((((12k)(34f)g)5f)	
6 Portfix notation = anti-lisp without parentheres.	
12h 34f g 5f.	
Syntam of infix notation	
To mind and apperator = symbol that denotes a function	· less et
The arity of an operator is the no. of organist	· pon c.
Each argument maybe called an operand.	
Anoperator of arity n is called an <u>n-ary</u> operator	
binary = z-ary	

pretix unary operators Syntactically valid infin expressions. (SVIES) can be called defined as follows: e is an a SVIE just of one of the following is true: Att Postfix many O e is a constant or a variable De is (e,) where e, is an SVIE. (3) e is e, op er where each of e, and er is an SVIE and of is a binary operate @ e is op e, where e, is an SVIE and of is a prefix unary operator (Be is e of where e is an SVIE and of is a portfix mary operator. This definition of SUIE's as a serious weakness, some Syntact decompositions of SVIEs that are suggested by this definition are inconsistent with the desired semantics. Ex: e=x+1+3-w Can be decomposed using value (3) into e, * ez This is in consistent with the usual semantics of arithmetic expressions. After exam, you will study sec 2.5 with which gives another way to specify SVIES that is anambiguous specification that is consistent with given precedence and associatively villes. One way to fix the problem is to add to 3, @, and D, the rule that of should be the operator that is applied last, and to give rules that determitive which operator capplied last.

C5316 3/24/2014 (4)