Lab 5_1 – Niezależność, warunkowa niezależność i funkcje zmiennych losowych.

Niech $(\Omega, \mathcal{F}, Pr)$ przestrzeń probabilistyczna.

Def. Odwzorowanie $X: \Omega \to \mathbb{R}^n$ nazywamy zmienną losową, jeżeli

$$\forall A \in \mathcal{B}(\mathbb{R}^n) \ X^{-1}(A) \in \mathcal{F}$$

gdzie $\mathcal{B}(\mathbb{R}^n)$ jest rodziną zbiorów borelowskich.

Def. Rozkładem prawdopodobieństwa zmiennej losowej $X: \Omega \to \mathbb{R}^n$ nazywamy miarę μ_X na \mathbb{R}^n taką, że

$$\mu_X(B) = \Pr(X^{-1}(B)), \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

Def. Jeżeli istnieje funkcja $f_X: \mathbb{R}^n \to \mathbb{R}$ taka, że

$$\mu_X(B) = \int_B f_X(x) dx, \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

to f_X nazywamy gęstością zmiennej losowej X. Zmienną losową posiadająca gęstość nazywamy ciqglq.

Def. Zmienne losowe $X_1, ..., X_k : \Omega \to \mathbb{R}$ nazywamy *niezależnymi*, jeżeli dla każdego ciągu zbiorów borelowskich $B_1, ..., B_k \in \mathcal{B}(\mathbb{R})$ mamy

$$\Pr(X_1 \in B_1, ..., X_k \in B_k) = \Pr(X_1 \in B_1), ..., \Pr(X_k \in B_k).$$

Tw. Niech $X_1, ..., X_k: \Omega \to \mathbb{R}$ zmienne losowe. Następujące warunki są równoważne:

- 1. Zmienne losowe są niezależne.
- 2. $\mu_{X_1,\ldots,X_k} = \mu_{X_1} \otimes \ldots \otimes \mu_{X_k}$.
- 3. $\forall (t_1, \dots, t_k) \in \mathbb{R}^k$ mamy $F_{X_1, \dots, X_k}(t_1, \dots, t_k) = F_{X_1}(t_1), \dots, F_{X_k}(t_k)$.

Tw. Zmienne losowe o wartościach dyskretnych, rzeczywistych $\{X_i: \Omega \to S_i \subset \mathbb{R}\}_{i=1,..,k}$ są niezależne wtedy i tylko wtedy, gdy $\forall (x_1,...,x_k) \in S_1 \times,...,\times S_k$ mamy

$$Pr(X_1 = x_1, ..., X_k = x_k) = Pr(X_1 = x_1), ..., Pr(X_k = x_k).$$

Zmienne losowe zależne, rozkłady warunkowe.

Niech $X, Y: \Omega \to \mathbb{R}$ dwie zmienne losowe.

Niech zmienne X, Y będą dyskretne, to $\Pr\{X = x_i | Y = y_k\} = \frac{\Pr\{X = x_i, Y = y_k\}}{\Pr\{Y = y_k\}}$, $F(x|y_k) = \Pr\{X < x | Y = y_k\} = \sum_{x_i < x} \Pr\{X = x_i | Y = y_k\}$ są odpowiednio rozkładem i dystrybuantą warunkową.

Jeżeli X, Y będą zmiennymi o rozkładzie ciągłym to dystrybuantą warunkową zmiennej X pod warunkiem $Y \in B$ dla pewnego $B \in \mathcal{B}(\mathbb{R})$ nazywamy funkcje F(x|y) spełniającą warunek

$$\forall B \in \mathcal{B}(\mathbb{R}) \ \Pr(X \le x | Y \in B) = \int_{B} F(x | y) d \Pr_{Y}(y)$$

Jeżeli X, Y będą zmiennymi o rozkładzie ciągłym, łącznej funkcji gęstości f(x, y) funkcją gęstości łącznej, $f_X(x), f_Y(y)$ gęstościami zmiennych X, Y, to

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}, \qquad f(y|x) = \frac{f(x,y)}{f_X(x)}$$

będą gęstościami rozkładów warunkowych zmiennej X pod warunkiem Y=y, oraz zmiennej Y pod warunkiem X=x odpowiednio.

Zadanie 1. Losujemy jedna kartę z talii 52 kart. Oznaczamy przez X_1 zmienną losową przyjmującą 0 dla karty nietreflowej a wartość 1 dla treflowej; przez X_2 przyjmującą wartość 5 dla asa, 4 dla króla, 3 dla damy, 0 dla pozostałych kart. Wyznacz rozkład prawdopodobieństwa zmiennej losowej $X = X_1 + X_2$.

Zadanie 2. (oparte na zadaniu 14 z Lab 5) Dla rozkładu zmiennej dwuwymiarowej danego gęstością

$$f(x,y) = \begin{cases} e^{-y} & \text{dla} & 0 \le x < \infty, \ x \le y \\ 0 & \text{dla} & \text{dla pozostałych}(x,y) \end{cases}$$

Znaleźć gęstości rozkładów warunkowych.

Zadanie 14, Lab5. Funkcja gęstości zmiennej losowej $(X,Y): \Omega \to \mathbb{R}^2$ dana jest wzorem

$$f(x, y) = \begin{cases} e^{-y} & \text{dla} & 0 \le x, \ x \le y \\ 0 & \text{dla} & \text{dla pozostalych}(x, y) \end{cases}$$

- 1) Znaleźć dystrybuantę F(x, y) tego rozkładu.
- 2) Znaleźć gęstości i dystrybuanty brzegowe tego rozkładu.

Zadanie 3. Niech $(X,Y): \Omega \to \Delta = \{(x,y) \in \mathbb{R}^2, 0 \le x, y \le 1, y \le x\}$. Rozważmy funkcje

$$\Delta \ni (x, y) \rightarrow F(x, y) = -y^2 + 2xy$$

- a) Sprawdzić, czy funkcja F może być dystrybuantą pewnej zmiennej losowej.
- b) Jeżeli tak, to obliczyć funkcję gęstości f(x, y) tej zmiennej.
- c) Obliczyć gęstość brzegową $f_X(x)$ i gęstość warunkową f(y|x) tego rozkładu.
- d) Obliczyć $Pr\{y \in [0, 0.5] | x = 0.7\}.$

Niezależność zdarzeń i zmiennych losowych

Zadanie 4. Funkcja gęstości zmiennej losowej $(X,Y):\Omega\to\mathbb{R}^2$ dana jest wzorem

$$f(x,y) = \begin{cases} 24x^2y(1-x) & \text{dla } 0 \le x \le 1, \ 0 \le y < 1 \\ 0 & \text{dla } \text{dla pozostałych } (x,y) \end{cases}$$

Zbadać, czy zmienne X, Y są niezależne.

Warunkowa niezależność zdarzeń

Def. Zdarzenia A i B są warunkowo niezalezne wzgledem zdarzenia C w.t.w. gdy

$$Pr(A \cap B|C) = Pr(A|C) Pr(B|C).$$

Zadanie 5. Rozważmy zbiór zdarzeń elementarnych $\Omega = [0,4] \times [0,4]$ oraz równomierną miarę probabilistyczną Pr na Ω . Rozważmy zdarzenia:

$$A = [0,3] \times [1,2], B = [2,4] \times [0,4], C = [1,2] \times [1,2].$$

- 1) Zbadaj, czy zdarzenia A, B są niezależne w $(\Omega, \mathcal{B}(\Omega), Pr)$?
- 2) Zbadaj, czy zdarzenia A, B są warunkowo niezależne względem zdarzenia C?

Warunkowa niezależność zmiennych losowych

Def. Zmienne losowe $X_1, ..., X_k, Y: \Omega \to \mathbb{R}$ nazywamy warunkowo niezależne względem zmiennej Y, jeżeli dla każdego ciągu zbiorów borelowskich $B_1, ..., B_k \in \mathcal{B}(\mathbb{R})$ mamy

$$\Pr(X_1 \in B_1, \dots, X_k \in B_k | Y = y) = \Pr(X_1 \in B_1 | Y), \dots, \Pr(X_k \in B_k | Y).$$

Tw. Niech $X_1, ..., X_k, Y: \Omega \to \mathbb{R}$ zmienne losowe. Następujące warunki są równoważne:

- 4. Zmienne losowe X_1, \dots, X_k są warunkowo niezależne względem zmiennej Y.
- 5. $\forall (x_1, \dots, x_k, y) \in \mathbb{R}^{k+1}$ mamy $F_{X_1, \dots, X_k}(t_1, \dots, t_k | y) = F_{X_1}(x_1 | y), \dots, F_{X_k}(x_k | y)$.
- 6. Dla rozkładów dyskretnych $\forall (x_1,\dots,x_k,y) \in \mathbb{R}^{k+1}$ mamy $p(x_1,\dots,x_k|y)=p(x_1|y),\dots,p(x_k|y).$
- 7. Dla rozkładów ciągłych $\forall (x_1, ..., x_k, y) \in \mathbb{R}^{k+1}$ mamy $f_{X_1, ..., X_k}(t_1, ..., t_k | y) = f_{X_1}(x_1 | y), ..., f(x_k | y).$

Tw. Niech $X, Y, Z: \Omega \to \mathbb{R}$ zmienne losowe, X, Y niezależne względem Z, to $\forall A \in \mathcal{B}(\mathbb{R})$, $\forall y, z \in \mathbb{R}$ mamy

$$Pr(X \in A | Y = y, Z = z) = Pr(X \in A | Z = z).$$

Funkcja zmiennej losowej i działania na zmiennych losowych

Niech $(\Omega, \mathcal{F}, Pr)$ przestrzeń probabilistyczna.

Def. Odwzorowanie $X: \Omega \to \mathbb{R}^n$ nazywamy zmienną losową, jeżeli

$$\forall A \in \mathcal{B}(\mathbb{R}^n) \ X^{-1}(A) \in \mathcal{F}$$

gdzie $\mathcal{B}(\mathbb{R}^n)$ jest rodziną zbiorów borelowskich.

Def. Rozkładem prawdopodobieństwa zmiennej losowej $X: \Omega \to \mathbb{R}^n$ nazywamy miarę μ_X na \mathbb{R}^n taka, że

$$\mu_X(B) = \Pr(X^{-1}(B)), \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

Def. Jeżeli istnieje funkcja $f_X: \mathbb{R}^n \to \mathbb{R}$ taka, że

$$\mu_X(B) = \int_B f_X(x) dx, \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

to f_X nazywamy gęstością zmiennej losowej <math>X. Zmienną losową posiadająca gęstość nazywamy ciąglq.

Def. $g: \mathbb{R}^n \to \mathbb{R}^m$ nazywamy funkcją borelowską, jeżeli

$$\forall A \in \mathcal{B}(\mathbb{R}^m) \ g^{-1}(A) \in \mathcal{B}(\mathbb{R}^n)$$

Tw. Jeżeli $X: \Omega \to \mathbb{R}^n$ jest zmienną losową, to $g \circ X: \Omega \to \mathbb{R}^m$ jest także zmienną losową.

Główny Problem

Niech zmienna losowa Y będzie funkcją pewnej zmiennej X, tzn $Y(\omega) = g(X(\omega))$. Znając rozkład zmiennej X chcemy wyznaczyć rozkład zmiennej Y (?)

Przypadek trywialny wektora losowego

Niech $\Omega = \{e_1, ..., e_k\}$, $X: \Omega \to \mathbb{R}^n$, wtedy wartości zmiennej X możemy kojarzyć z wektorem (tablicą) $x = (x_1, ..., x_k)$; $x_i = X(e_i)$, i = 1, ..., k. Rozkład prawdopodobieństwa zmiennej X, to wektor $p_X = (\Pr(e_1), ..., \Pr(e_k)) \in \mathbb{R}^n$.

Niech $g: \mathbb{R}^n \to \mathbb{R}^m$ funkcja (niekoniecznie borelowska). Chcemy znaleźć rozkład prawdopodobieństwa Y = g(X). Oznaczmy przez $y = (y_1, ..., y_r) = g(x)$

Łatwo zauważyć, że $\operatorname{card}(Y(\Omega)) = \operatorname{card}(g(X(\Omega))) = r \le k$, a równość zachodzi zawsze w przypadku, kiedy g jest injekcją. Będziemy mieli zatem

$$p_Y = (p_1, ..., p_r);$$
 $p_i = \sum_{j:g(x_j)=y_i} \Pr(e_j),$ $i = 1, ..., r$

Rozwiązanie przez dystrybuanty:

$$F_Y(y) = \Pr(Y < y) = \Pr(g(X) < y) = \Pr(X < g^{-1}(y)) = F_X(g^{-1}(y))$$

Jeżeli dystrybuanta jest różniczkowalna, to $D(F_X(g^{-1}(y))) = f_Y(y)$.

Zadanie 6:

Znaleźć rozkład zmiennej losowej $Y: \Omega \to \mathbb{R}$ (dystrybuantę i gęstość), gdy Y = aX + b, gdzie $a \neq 0$, X jest zmienną losową typu ciągłego z gęstością f_X i dystrybuantą F_X .

Odwzorowania gładkie zmiennej jednowymiarowej

Niech $(\Omega, \mathcal{F}, \Pr)$ przestrzeń probabilistyczna, $X: \Omega \to \mathbb{R}$ zmienna losowa jednowymiarowa, oraz $g: \mathbb{R} \to \mathbb{R}$ pewna funkcja gładka w całej dziedzinie. Zakładając, że X ma rozkład ciągły oraz funkcję gęstości $f: \mathbb{R} \to \mathbb{R}$ będziemy starali się wyznaczyć rozkład zmiennej losowej jednowymiarowej $Y: \Omega \to \mathbb{R}$; $Y(\omega) = g(X(\omega)) \ \forall \ \omega \in \Omega$.

Tw. Jeżeli zmienna losowa $X: \Omega \to \mathbb{R}$ ma rozkład ciągły o gęstości $f_X: \mathbb{R} \to \mathbb{R}$ i $X(\Omega) \subset (a, b)$ tak, że $g|(a, b) \in C^1(a, b)$ oraz $g'|(a, b) \neq 0$, to zmienna losowa Y = g(X) ma rozkład ciągły o gęstości

$$f_Y(y) = f_X \Big(g^{-1}(y) \Big) \, |D(g^{-1})(y)| \ \chi_{g(a,b)}(y)$$

gdzie $\chi_{g(a,b)}$ jest funkcją charakterystyczną obrazu przedziału (a,b) przez funkcję g.

Zadanie 7: Niech zmienna losowa $X: \Omega \to \mathbb{R}$ ma standaryzowany rozkład normalny (Gaussa) N(0,1), którego gęstość dana jest wzorem $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$.

Należy wyznaczyć dystrybuantę i gęstość (jeżeli istnieje) dla zmiennych losowych $Y = e^X$ oraz $Z = X^2$.

Zadanie 8: Niech ponownie $X: \Omega \to \mathbb{R}$ ma standaryzowany rozkład normalny (Gaussa) N(0,1). Znaleźć rozkład zmiennej Y = aX + b, $a \neq 0$.

Suma niezależnych zmiennych losowych

Zmienne dyskretne:

Niech $X,Y:\Omega\to\mathbb{Z}$ dwie niezależne zmienne niezależne losowe przyjmujące wartości całkowite oraz $\{p_i\},\{r_k\};\Pr\{X=i\}=p_i, \Pr\{Y=k\}=r_k,$ są ich rozkładami prawdopodobieństwa. Oczywiście $\Pr\{X=i,Y=k\}=p_i\,r_k$. Niech Z=X+Y nowa zmienna losowa dyskretna, wtedy:

$$Pr\{Z = i\} = Pr\{X = 0, Y = i\} + Pr\{X = 1, Y = i - 1\} + \dots + Pr\{X = i, Y = 0\}.$$

Jeżeli zmienne X, Y są niezależne, to:

$$\Pr\{Z = j\} = \sum_{i=0}^{j} p_i \, r_{j-i}$$

Zadanie 9:

Rzucamy dwoma kostkami do gry. Niech X będzie liczbą oczek wyrzuconej na 1 kostce, natomiast Y=1 gdy liczba oczek na 2 kostce jest parzysta, Y=2 w.p.p. Łatwo widać, że zmienne są niezależne. Znaleźć rozkład Z=X+Y.

Zmienne ciągłe:

Niech obecnie $X, Y: \Omega \to \mathbb{R}$ dwie niezależne zmienne losowe o wartościach rzeczywistych. Dystrybuanta i funkcja gęstości zmiennej losowej X+Y dane są wzorami

$$F_{X+Y}(z) = \int_{-\infty}^{\infty} F_X(z-y) \ F_Y(y) dy$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$$

Jest to odpowiednio splot dystrybuant i splot gęstości tych zmiennych.

Jeżeli X, Y dwie niezależne zmienne losowe o funkcjach charakterystycznych $\varphi_X(t), \varphi_Y(t)$, to

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t), \forall t$$

Zadanie 10:

Obliczyć funkcję gęstości sumy ciągłej zmiennej losowej X o gęstości f_X i niezależnej zmiennej losowej Y o rozkładzie normalnym $N(0,\sigma)$.

Minimum i maksimum niezależnych zmiennych losowych

Niech $X,Y:\Omega\to\mathbb{R}$ dwie niezależne zmienne losowe i ich dystrybuanty $F_X(x),F_Y(y)$, wówczas zmienna losowa $Z=\min\{X,Y\}$ ma dystrybuantę

$$F_Z(z) = 1 - (1 - F_X(z))(1 - F_Y(z))$$

oraz zmienna $H = \max\{X, Y\}$ ma dystrybuantę

$$F_H(z) = F_X(z)F_Y(z)$$
.

Jeżeli X, Y mają taki sam rozkład i dystrybuantę F, to

$$F_Z(z) = 1 - (1 - F(z))^2$$
, $F_H(z) = F(z)^2$.

Dla niezależnych zmiennych losowych X_1, \dots, X_n o tym samym rozkładzie

$$F_Z(z) = 1 - (1 - F(z))^n$$
, $F_H(z) = F(z)^n$

Gdzie obecnie $Z = \min\{X_1, ..., X_n\}, H = \max\{X_1, ..., X_n\}.$

Iloczyn i iloraz zmiennych losowych

Niech $X, Y: \Omega \to \mathbb{R}$ dwie zmienne losowe oraz Z = XY, $U = \frac{X}{Y}$, wtedy

$$f_Z(z) = \int_{-\infty}^{+\infty} f_{X,Y}\left(x, \frac{z}{x}\right) \frac{1}{|x|} dx$$

gdzie $f_{X,Y}$ gęstość rozkłady łącznego zmiennych X,Y. Ponadto

$$f_U(z) = \int_{-\infty}^{+\infty} f_{X,Y}(zy,y) |y| dy.$$

Jeżeli zmienne X, Y są niezależne, to

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y\left(\frac{z}{x}\right) \frac{1}{|x|} dx,$$

$$f_U(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y\left(\frac{x}{z}\right) \frac{1}{|x|} dx.$$