Matrix transformations. Part 1

Matrix math.

Matrices.

A matrix.

A 3x2 matrix.

```
    1
    2
    0

    4
    3
    2
```

A 3x3 matrix.

```
    1
    2
    0

    4
    3
    2

    3
    4
    2
```

Matrix operations.

Matrix addition.

To add two matrices, add their corresponding entries.

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} + \begin{bmatrix} J & K & L \\ M & N & O \\ P & Q & R \end{bmatrix} = \begin{bmatrix} A+J & B+K & C+L \\ D+M & E+N & F+O \\ G+P & H+Q & I+R \end{bmatrix}$$

Matrix subtraction.

To subtract two matrices, subtract their corresponding entries.

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} - \begin{bmatrix} J & K & L \\ M & N & O \\ P & Q & R \end{bmatrix} = \begin{bmatrix} A-J & B-K & C-L \\ D-M & E-N & F-O \\ G-P & H-Q & I-R \end{bmatrix}$$

Matrix addition and subtraction can only happen with matrices that are the same size!

Transpose of a matrix.

Transpose of a matrix is a matrix whose columns are the rows of the original matrix and its rows are the columns.

Matrix/scalar multiplication.

Multiply each entry of the matrix by the scalar

Matrix/matrix multiplication.

You can only multiply two matrices if the number of columns of the first matrix equals the number of rows of the second.

$$\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} \begin{bmatrix} J & K \\ M & N \\ P & Q \end{bmatrix} = ?$$

It results in a matrix that is number of rows of first matrix by number of columns of second matrix.

$$\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} \begin{bmatrix} J & K \\ M & N \\ P & Q \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$$

Vectors.

A 2 dimensional vector can be represented as a 2x1 matrix.

A 3 dimensional vector can be represented as a 3x1 matrix.

Matrix vector multiplication.

Multiplying a matrix and a vector is basically just multiplying two matrices.

Row by row, multiply each column value with the each row of the vector and add them together.

Row by row, multiply each column value with the each row of the vector and add them together.

Row by row, multiply each column value with the each row of the vector and add them together.

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} = \begin{bmatrix} AX + BY + CZ \\ DX + EY + FZ \\ GX + HY + IZ \end{bmatrix}$$

Why are we doing all this?

Transformation matrices.

Linear transformations stored as matrices.

A transformation matrix is a matrix that we can multiply with a vector to transform it.

Example: scale

Scale

```
    ?
    3

    ?
    2
```

Scale

Example: translate??

Affine transformations and homogenous coordinates.

Translate

Translate
$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} AX + BY + CZ \\ DX + EY + FZ \\ GX + HY + IZ \end{bmatrix}$$

```
\begin{bmatrix} 1 & 0 & Tx \\ 0 & 1 & Ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} 1X + 0Y + 1Tx \\ 0X + 1Y + 1Ty \\ 0X + 0Y + 1x1 \end{bmatrix}
```

Rotation

Rotation

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} AX + BY + CZ \\ DX + EY + FZ \\ GX + HY + IZ \end{bmatrix}$$

```
\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta X + \sin\theta Y + 1x0 \\ -\sin\theta X + \cos\theta Y + 1x0 \\ 0X + 0Y + 1x1 \end{bmatrix}
```


$$cos\theta X + sin\theta Y + 1x0
-sin\theta X + cos\theta Y + 1x0
0X + 0Y + 1x1$$

Identity

Identity

$$\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} AX + BY + CZ \\ DX + EY + FZ \\ GX + HY + IZ \end{bmatrix}$$

```
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} 1X + 0Y + 1X0 \\ 0X + 1Y + 1X0 \\ 0X + 0Y + 1X1 \end{bmatrix}
```

Multiplying affine matrices.

You can only multiply two matrices if the number of columns of the first matrix equals the number of rows of the second.


```
glLoadIdentity();
glScalef(2.0, 4.0, 1.0);
glTranslatef(5.0, 4.0, 0.0);
// draw vertex at 3,2
```

```
glLoadIdentity();
```

```
glLoadIdentity();
                      glScalef(2.0, 4.0, 1.0);
```

```
glScalef(2.0f, 4.0f, 1.0f);
glLoadIdentity();
                                                       glTranslatef(5.0f, 4.0f, 0.0f);
```

```
glLoadIdentity();
glTranslatef(5.0, 4.0, 0.0);
glScalef(2.0, 4.0, 1.0);
// draw vertex at 3,2
```

```
glLoadIdentity();
```

```
glTranslatef(5.0, 4.0, 0.0);
glLoadIdentity();
```

```
glLoadIdentity();
                       glTranslatef(5.0, 4.0, 0.0);
                                                       glScalef(2.0, 4.0, 1.0);
```

Moving into 3D

3D identity matrix and 3d position in homogenous coordinates.

All transformations in 3D

sinφ

cos ф 0

Projection matrices are the same.

glOrtho(I, r, t, b, n, f);

$$\mathbf{P}_{o} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{1}{f-n} & -\frac{n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

glOrtho(-1.33, 1.33, 1.0, -1.0, -1.0, 1.0);

