Дискретная математика 2 семестр ПИ, Π екции

Собрано 9 марта 2022 г. в 17:13

Содержание

1.	Кодирование информации	1
	1.1. Задача об оптимальном префиксном коде	1
	1.2. Неравенство Крафта	٠
	1.3. Напоминалка	
	1.4. Конечная случайная схема	4
	1.5. Количество информации	(
	1.5.1. Избыточное кодирование	7
	1.5.2. Код Хэмминга	7
2.	Графы	Ç
	2.1. Отношение достижимости	Ć
	2.1.1. Граф-покрытие и граф достижимости	Ć
	2.2. Турниры и полустепени в орграфе	11

Раздел #1: Кодирование информации

1.1. Задача об оптимальном префиксном коде

Пусть Λ – произвольное конечное множество (алфавит), $a \in \Lambda$ – символы. Пусть $\forall a \in \Lambda \ \exists l(a) \in \mathbb{N}, \exists c(a) = \{0,1\}^{l(a)}$ – кодовая последовательность a, где l(a) – длина.

Очевидно, условие $\forall a, b \in \Lambda \to (a \neq b \Rightarrow c(a) \neq c(b))$ не является достаточным для однозначного распознавания символов.

Def 1.1.1. Код называется префиксным, если $\forall a,b \in \Lambda$ $c(a) = \omega \Rightarrow \not\equiv m \in \mathbb{N}_0 : c(b) = \omega \gamma$, где $\gamma \in \{0,1\}^m$

Пусть $\forall a \in \Lambda$ соответствует вероятность p(a) появления этого символа в сообщении. $\sum_{a \in \Lambda} p(a) = 1$ и считаем $\forall a \in \Lambda$ p(a) > 0.

Введем дискретную случайную величину $l: \forall a \in \Lambda \ Pr\{l=l(a)\} = p(a)$ – длина кодовой последовательности символа в сообщении.

Def 1.1.2. Оптимальным называется префиксный код, минимизирующий математическое ожидание $l: \mathbb{E} l = \sum_{a \in \Lambda} l(a)p(a)$

Чем чаще встречается символ, тем короче должна быть кодовая последовательность.

Почему вообще ОПК существует? Известно, что $\mathbb{E}l \geqslant 1$ (в каждой кодовой последовательности должен быть хотя бы один символ). Всегда можно сделать префиксный код, в котором все символы имеют одинаковые длины кодовых последовательностей и эти последовательности различны ($\forall a \in \Lambda \ l(a) = \lceil \log_2(|\Lambda|) \rceil$), т.е. префиксный код существует и матожидание длины кодовой последовательности ограничено.

- <u>Lm</u> 1.1.3. Если в некотором коде C существует $x \in \Lambda : c(x) = \omega \alpha$, где $\alpha \in \{0,1\}$ и при этом $\not\equiv y \in \Lambda, y \neq x : c(y) = \omega \gamma$, где $\gamma \in \{0,1\}^k$ (то есть, если ω не является началом никакой другой кодовой последовательности, кроме c(x)), то код $C' : c'(x) = \omega, \forall y \in \Lambda, y \neq x \ c' = c(y)$ будет префиксным (по построению и условию леммы) и $\mathbb{E}l' = \mathbb{E}l p(x)l(x) + p(x)(l(x) 1) = \mathbb{E}l p(x) < \mathbb{E}l$. Тогда код C точно не мог быть оптимальным.
- <u>Lm</u> 1.1.4 (Лемма о кратчайшем префиксе). Если в префиксном коде $C \exists a, b \in \Lambda, a \neq b : p(a) < p(b), l(a) < l(b)$, то такой код не оптимален.

Доказательство. Проверим, что для кода C', в котором c'(a) = c(b), c'(b) = c(a) и $\forall x \in \Lambda : x \neq a, x \neq b$ c'(x) = c(x) верно $\mathbb{E}l - \mathbb{E}l' > 0$.

$$\mathbb{E}l - \mathbb{E}l' = p(a)l(a) + p(b)l(b) - p(a)l(b) - p(b)l(a) = (p(a) - p(b))(l(a) - l(b)) > 0$$

<u>Lm</u> 1.1.5 (Лемма о соседстве самых редких символов). Пусть $a, b \in \Lambda, a \neq b$ – символы с намиеньшими вероятностями ($\forall x \in \Lambda \ p(x) \geqslant p(b) \geqslant p(a)$). Тогда $\exists \ \text{ОПK} : c(a) = \omega 0, c(b) = \omega 1$, где $\exists k \in \mathbb{N}_0 : \omega \in \{0,1\}^k$ и это самые длинные кодовые последовательности.

Доказательство. Пусть C' – ОПК. По лемме о кратчайшем префиксе a и b имеют самые длинные кодовые последовательности в C': $\forall x \in \Lambda, x \neq a, x \neq b \ l'(a) \geqslant l'(b) \geqslant l'(x)$

Если $c(a) = \omega \gamma, \omega \in \{0,1\}^{l'(b)}, \gamma \in \{0,1\}^{l'(a)-l'(b)}$ и ω не является началом никакой кодовой последовательности (т.к. остальные кодовые последовательности не длиннее ω и $\not\equiv$ символа с кодовой последовательностью ω в силу префиксности C') \Rightarrow можно сократить кодовую последовательность a, создав более оптимальный код (?!).

 \Rightarrow из оптимальности C' следует l(a) = l(b). Пусть $c'(b) = \omega 1$, тогда, если $\exists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = c'(x), c(x) = c'(a), \forall z \in \Lambda, z \neq a, z \neq x \ c(z) = c'(z)$.

Если $\nexists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = \omega 0, \forall z \in \Lambda, z \neq a \ c(z) = c'(z)$.

<u>Lm</u> 1.1.6 (Лемма об ОПК для расширенного алфавита). Пусть $a,b \in \Lambda, a \neq b$ — символы с намиеньшими вероятностями. $\Lambda' = \Lambda \setminus \{a,b\} \cup \{ab\}$, где $ab \notin \Lambda$, p(ab) = p(a) + p(b). Пусть C'

– ОПК для $\Lambda', c'(\underline{ab}) = \omega$. Тогда для Λ код $C: c(a) = \omega 0, c(b) = \omega 1, \forall x \in \Lambda, x \neq a, x \neq b$ c(x) = c'(x) будет ОПК.

Доказательство. $l(a)p(a)+l(b)p(b)=(l'(\underline{ab})+1)(p(a)+p(b))=l'(\underline{ab})p(\underline{ab})+p(\underline{ab})$. Тогда $\mathbb{E}l=\mathbb{E}l'+p(\underline{ab})$.

Пусть \overline{C} – ОПК для Λ и $\mathbb{E}\overline{l}$ < $\mathbb{E}l$. По лемме о соседстве: $\overline{c}(a) = \gamma 0, \overline{c}(b) = \gamma 1$. Построим \overline{C}' для $\Lambda': \overline{c}'(ab) = \gamma$ и $\forall x \in \Lambda, x \neq a, x \neq b$ $\overline{c}'(x) = \overline{c}(x)$.

 \overline{C}' – префиксный? По Лемме о кратчайшем префиксе $\not\equiv$ символа с кодовой последовательностью длины > $\overline{l}(a)$. Никакой символ не мог иметь кодовую последовательность γ , т.к. \overline{C} префиксный. Единственные две последовательности длины $\overline{l}(a)$, начинающиеся на γ – это коды a и b. Но их нет в Λ' . При этом $\mathbb{E}\overline{l} = \mathbb{E}\overline{l}' = p(-ab_-)$. По предположению $\mathbb{E}l' + p(-ab_-) = \mathbb{E}l > \mathbb{E}\overline{l} = \mathbb{E}\overline{l}' + p(-ab_-)$

(?!) оптимальности
$$C'\Rightarrow \mathbb{E}\bar{l}\geqslant \mathbb{E}l$$
, но т.к. $\overline{C}-\mathrm{O}\Pi\mathrm{K}\Rightarrow \mathbb{E}\bar{l}=\mathbb{E}l$ и $C-\mathrm{O}\Pi\mathrm{K}$.

Задача: нужно построить ОПК на алфавите Λ , $|\Lambda| = M$. По лемме об ОПК для расширенного алфавита задачу построения ОПК можно свести к такой же задаче, но с исходным алфавитом с числом букв на единицу меньше, и с набором вероятностей, получющимся из первоначального сложением двух наименьших вероятностей.

Уменьшаем пока не получится алфавит из двух букв. ОПК для алфавита из 2-х букв – $\{0,1\}$. Строже: $\Lambda_0 := \Lambda$. $\forall k \in 0...(M-3)$ берем $a_k, b_k \in \Lambda_k : \forall x \in \Lambda_k, x \neq a_k, x \neq b_k$ $p(a_k) \leq p(b_k) \leq p(x)$ и построим $\Lambda_{k+1} = \Lambda_k \setminus \{a_k, b_k\} \cup \{a_k b_k\}...$

Для $\Lambda_{M-2} = \{a_{M-2}, b_{M-2}\}$ оптимальным будет код $C_{M-2} : c_{M-2}(a_{M-2}) = 0, c_{M-2}(b_{M-2}) = 1$, т.к. для него $\mathbb{E}l_{M-2} = 1$.

Теперь для $k \in 1...(M-2)$ есть ОПК C_k для Λ_k . По лемме об ОПК для расширенного алфавита строится ОПК C_{k-1} для Λ_{k-1} такой, что $c_{k-1}(a_{k-1}) = c_k(a_{k-1}b_{k-1})0$, $c_{k-1}(b_{k-1}) = c_k(a_{k-1}b_{k-1})1$, $\forall x \in \Lambda_k, x \neq a_{k-1}b_{k-1}$ $c_{k-1}(x) = c_k(x)$.

Выполняем, пока не получится C_0 – ОПК для Λ_0 = Λ .

Пример 1.1.7. $\Lambda_0 = \{a, b, c, d, e, f, g\}, p(a) = 0.13, p(b) = 0.08, p(c) = 0.25, p(d) = 0.18, p(e) = 0.03, p(f) = 0.12, p(g) = 0.21.$

$$a_0$$
, = e, b_0 = b, Λ_1 = $\{a, e, b, c, d, f, g\}, p(a)$ = $0.13, p(\underline{eb})$ = $0.11, p(c)$ = $0.25, p(d)$ = $0.18, p(f)$ =

$$0.12, p(g) = 0.21.$$
 $a_1 = \underbrace{eb}, b_1 = f, \Lambda_2 = \{a, \underbrace{ebf}, c, d, g\}, p(a) = 0.13, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(d) = 0.18, p(g) = 0.21.$ $a_2 = a, b_2 = d, \Lambda_3 = \{\underbrace{ad}, \underbrace{ebf}, c, g\}, p(\underbrace{ad}) = 0.31, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(g) = 0.21.$ $a_3 = g, b_3 = \underbrace{ebf}, \Lambda_4 = \{\underbrace{ad}, \underbrace{gebf}, c\}, p(\underbrace{ad}) = 0.31, p(\underbrace{gebf}) = 0.44, p(c) = 0.25.$ $a_4 = c, b_4 = \underbrace{ad}, \Lambda_5 \{\underbrace{cad}, \underbrace{gebf}\}, p(\underbrace{cad}) = 0.56, p(\underbrace{gebf}) = 0.44.$ Тогда $c_5(\underbrace{gebf}) = 0, c(\underbrace{cad}) = 1.$

Теперь раскрываем алфавит обратно:

$$c_4(gebf) = 0, c_4(c) = 10, c_4(ad) = 11.$$

$$c_3(g) = 00, c_3(ebf) = 01, c_3(c) = 10, c_3(\underline{ad}) = 11.$$

$$c_1(g) = 00, c_1(-eb^-) = 010, c_1(f) = 011, c_1(c) = 10, c_1(a) = 110, c_1(d) = 111.$$

$$c_0(g) = 00, c_0(e) = 0100, c_0(b) = 0101, c_0(f) = 011, c_0(c) = 10, c_0(a) = 110, c_0(d) = 111.$$

1.2. Неравенство Крафта

Пусть задан набор длин $l_1,...,l_m$, не все обязательно различны. Может ли такой набор оказаться набором длин некоторого префиксного кода.

Теорема 1.2.1. Для того, чтобы набор длин $l_1,...,l_m$ мог быть набором длин кодовых последовательностей некоторого ΠK для алфавита из m символов необходимо и достаточно, чтобы $\sum_{i=1}^{m} 2^{-l_i} \leqslant 1.$

Доказательство. " ⇒ ". Пусть ∃ префиксный код для алфавита с кодовыми последовательностями с длинами $l_1,...,l_m$. множество кодовых последовательностей – набор всех путей на двоичном дереве от корня к листьям.

Корень – нулевой уровень. Далее последовательно увеличиваем номер по мере удаления от корня.

Каждой вершине v на уровне t сопоставим число $a(v) = 2^{-t}$

Пусть вершина v на уровне t – не лист. Т.е. на уровне t+1 есть ≥ 1 вершина, получившаяся из v. Обозначим её N(v). Тогда $a(v) \geqslant \sum_{u \in N(v)} a(u)$

Просуммируем неравенства для всех не листов:

$$\sum_{v \text{ не лист}} a(v) \geqslant \sum_{u \text{ не корень}} a(u)$$

 $\Rightarrow 2^0 \geqslant \sum_{\substack{u \text{ листья} \\ }} a(u)$. Необходимость доказана. " \Leftarrow ". Считаем, что выполнено неравенство и пусть $l_1 \leqslant l_2 \leqslant \ldots \leqslant l_m$ n_j — число листьев на уровне $j:n_j=|\{i:l_i=j, i\in 1:m\}|$

$$\sum_{i \in 1:m} 2^{-l_i} \geqslant 1 \Rightarrow \sum_{j \in 1:l_m} 2^{-j} n_j \leqslant \text{. Тогда } \forall j \in 1:l_m: n_j \leqslant 2^j - \left(2^{j-1} n_1 + \ldots + 2 n_{j-1}\right)$$

Пусть $m \neq 1$. Выделим на первом уровне вершин $n_1 \leqslant 2$, на втором уровне останется $2(2-n_1)$. Известно, что $n_2 \leqslant 2^2 - 2n_1 \Rightarrow$ осталось не меньше, чем требуется для второго уровня.

(j-1)-уровень: было свободно $2^{j-1}-(2^{j-2}n_1+\ldots+2n_{j-2})$ и n_{j-1} не больше этой величины. Выделим n_{j-1} узлов, останется $2^{j-1}-(2^{j-2}n_1+\ldots+2n_{j-2})-n_{j-1}$. Значит на j-м уровне будет $2\cdot(\ldots)=2^j-(2^{j-1}n_1+\ldots+2n_{j-1})$

1.3. Напоминалка

Пусть S – конечное множество. |S| = n.

Пусть задана функция $f: S \to [0,1], \forall \omega \in S \exists ! f(\omega) \in [0,1]$

 $\sum_{\omega \in S} f(\omega)$ = 1. Определим $\forall A \subseteq S$ величину $Pr(A) = \sum_{\omega \in A} f(\omega)$

 $\frac{\widetilde{\omega \in S}}{\Phi y}$ нкция f в общем-то и не нужна. Достаточно иметь \Pr

Def 1.3.1. (S, Pr) называется вероятностным пространством.

S – npocmpaнcmво элементарных событий.

 $\omega \in S$ – элементарное событие (ucxod). $A \subseteq S$ – событие. Pr(A) – вероятность A.

 $A, B \subseteq S, Pr(A \cap B) = 0$ – несовместные события.

Свойства вероятности:

- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- $Pr(A) + Pr(S \backslash A) = 1$
- $Pr(A \cup B) \leq Pr(A) + Pr(B)$
- $Pr(A) = Pr(A \backslash B) + Pr(A \cap B)$

Неравенство Йенсена:

Def 1.3.2. Функция f называется выпуклой на $X \in R$, если $\forall x_1, x_2 \in X$ и $\forall \alpha \in [0, 1]$ выполняется неравенство $f(\alpha x_1 + (1 - \alpha x_2) \leq \alpha f(x_1) + (1 - \alpha) f(x_2)$

Неравенство Йенсена: пусть f выпуклая на X функция. Тогда $f(\sum_{i=1}^n \alpha_i x_i) \leq \sum_{i=1}^n \alpha_i f(x_i)$, где

$$x_i \in X, \alpha_i \geqslant 0, \sum_{i=1}^n \alpha_i = 1.$$

Доказательство. База при n=2 верна по определению выпуклой функции. Пусть f – выпуклая на X функция. Тогда

$$f(\sum_{i=1}^{n+1} \alpha_i x_i) = f((1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} x_i + \alpha_{n+1} x_{n+1}) \leq (1 - \alpha_{n+1}) f(\sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} x_i) + \alpha_{n+1} f(x_{n+1}) \leq (1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} f(x_i) + \alpha_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} \alpha_i f(x_i)$$

1.4. Конечная случайная схема

Def 1.4.1. Пусть $A_1, A_2, ..., A_n$ — разбиение множества исходов S вероятностного пространства (S, Pr). Конечной случайной схемой называется схема α , сопоставляющая каждому A_i вероятность $Pr(A_i)$

Def 1.4.2. Энтропией КСС называется
$$H(\alpha) = -\sum_{i=1}^{n} Pr(A_i) \times \log Pr(A_i)$$

Свойства энтропии:

- $H(\alpha) \geqslant 0$
- Энтропия характеризует неопределенность, заключенную в КСС
- Для любой $\alpha \subset k$ исходами справедливо $H(\alpha) \leq \log k$

Доказательство. $f(x) := -x \cdot \log x$. На [0,1] функция f(x) строго вогнутая \Rightarrow по неравенству Йенсена $\sum_{i=1}^{n} \lambda_i \cdot f(x_i) \leqslant f(\sum_{i=1}^{n} \lambda_i \cdot x_i)$, причём равенство $\Leftrightarrow x_1 = \dots = x_n$.

Тогда возьмём $x_i = Pr(A_i)$ и $\lambda_i = \frac{1}{k} \ \forall i \in 1...k$, получаем $\sum_{i=1}^k \frac{1}{k} (-Pr(A_i) \times \log Pr(A_i)) \leqslant$

$$\leq -\sum_{i=1}^{k} \frac{1}{k} Pr(A_i) \times \log(\sum_{i=1}^{k} Pr(A_i))$$

$$-\frac{1}{k} \sum_{i=1}^{k} Pr(A_i) \times \log Pr(A_i) \leq -\frac{1}{k} \log \frac{1}{k}$$

$$-\sum_{i=1}^{k} Pr(A_i) \times \log Pr(A_i) \leq \log k$$

Максимальная энтропия для КСС имеет схема с k равновероятностными исходами. $H(\alpha) = 0 \Leftrightarrow \exists !$ достоверный исход в α

Пусть есть КСС α с исходами $A_1,...,A_k$ и КСС β с исходами $B_1,...,B_l$. Их пересечением $\alpha \cap \beta$ называются КСС, исходы которой – $A_i \cap B_j$, $\forall i \in 1,...,k,j \in 1,...,l$

Тогда
$$H(\alpha \cap \beta) = -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i \cap B_j) \times \log Pr(A_i \cap B_j)$$

T.K.
$$Pr(A_i \cap B_j) = Pr(A_i) \times Pr(B_j | A_i) \Rightarrow H(\alpha \cap \beta) =$$

$$= -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times (\log Pr(A_i) + \log Pr(B_j | A_i)) =$$

$$= -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times \log Pr(A_i) - \sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times \log Pr(B_j | A_i) =$$

$$= -\sum_{i=1}^k Pr(A_i) \cdot \log Pr(A_i) \cdot \sum_{j=1}^l Pr(B_j | A_i) + \sum_{i=1}^k Pr(A_i) \cdot (-\sum_{j=1}^l Pr(B_j | A_i) \cdot \log Pr(B_j | A_i)) =$$

$$= -\sum_{i=1}^k Pr(A_i) \cdot \log Pr(A_i) + \dots = H(\alpha) + \dots$$

Def 1.4.3. Величину $H(\beta|A_i) := -\sum_{j=1}^{l} Pr(A_i) Pr(B_j|A_i) \cdot \log Pr(B_j|A_i)$ называют условной энтропией β при условии A_i

Def 1.4.4. Величину $H_{\alpha}(\beta) \coloneqq \sum_{i=1}^{k} Pr(A_i) \cdot H(\beta|A_i)$ называют средней условной энтропией β при условии α .

Таким образом, $H(\alpha \cap \beta) = H(\alpha) + H_{\alpha}(\beta)$ Докажем, что $0 \le H_{\alpha}(\beta) \le H(\beta)$ Неотрицательность следует из неотрицательности энтропий.

fix
$$j$$
, $f(x) = -x \cdot \log x$, $\lambda_i = Pr(A_i)$, $x_i = Pr(B_j|A_i) \quad \forall i \in 1...k$

Неравенство Йенсена:
$$\sum_{i=1}^{k} Pr(A_i) \cdot (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \le$$

$$\leq \left(-\sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)\right) \cdot \log \sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)$$

$$\Pi \Psi = \left(-\sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)\right) \cdot \log \sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i) =$$

$$= -\left(\sum_{i=1}^{k} Pr(B_j \cap A_i)\right) \cdot \log \sum_{i=1}^{k} Pr(B_j \cap A_i) = -Pr(B_j) \cdot \log Pr(B_j)$$

Просуммируем по j: $\sum_{j=1}^{j} \sum_{i=1}^{k} Pr(A_i) \cdot (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \leq \sum_{j=1}^{l} (-Pr(B_j) \cdot \log Pr(B_j))$

$$\sum_{i=1}^{k} Pr(A_i) \cdot \sum_{j=1}^{l} (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \le -\sum_{j=1}^{l} Pr(B_j) \cdot \log Pr(B_j)$$

$$\sum_{i=1}^{k} Pr(A_i) \cdot H(\beta|A_i) \leqslant H(\beta) \Rightarrow H_{\alpha}(\beta) \leqslant H(\beta)$$

 $\overset{\iota^{-1}}{H_{\alpha}}(\beta)$ = $H(\beta) \Leftrightarrow$ все $Pr(B_j|A_i)$ равны между собой.

Формула полной вероятности: $\forall j \in 1...lPr(B_j) = \sum_{i=1}^k Pr(B_j|A_i) \cdot Pr(A_i)$

$$\forall j \in 1...lPr(B_j) = Pr(B_j|A_1) \cdot \sum_{i=1}^k Pr(A_i) = Pr(B_j|A_1).$$

То есть $\forall i \in 1...k, j \in 1...l$ $Pr(B_j) = Pr(B_j|A_i)$

Def 1.4.5. События A и B – взаимно независимы $\Leftrightarrow Pr(A \cap B) = Pr(A) \cdot Pr(B) \Leftrightarrow Pr(A) \cdot Pr(B|A) = Pr(A) \cdot Pr(B|A) = Pr(B|$

Def 1.4.6. $KCC \ \alpha \ u \ \beta$ называются независимыми, когда все исходы α независимы со всеми исходами β . В таком случае $H_{\alpha}(\beta)$ максимальна и равна $H(\beta)$

1.5. Количество информации

Def 1.5.1. Величина $I(\alpha, \beta) = H(\beta) - H_{\alpha}(\beta)$ называется количеством информации.

Свойства:

- 1. $I(\alpha, \beta) \ge 0$
- 2. $I(\alpha, \beta) = H(\beta) \Leftrightarrow H_{\alpha}(\beta) = 0$
- 3. $I(\alpha, \beta) = I(\beta, \alpha)$
- 4. $I(\alpha, \beta) = 0 \Leftrightarrow \alpha$ и β независимы.

Пример 1.5.2. Загадано натуральное число $x \in 1...N$

 β – опыт, состоящий в нахождении х, β_m – опыт, показывающий, делится ли x на m, $m ∈ 1...N. У <math display="inline">\beta$ есть N исходов, у β_m – два исхода.

$$H_{\beta_m}(\beta) = Pr(x : m) \cdot H(\beta | x : m) + Pr(x + m) \cdot H(\beta | x + m)$$

$$q\coloneqq\left|\frac{N}{m}\right|$$
 — количество чисел от 1 до N, делящихся на m. Тогда $Pr(x\!:\!m)=\frac{q}{N}, Pr(x+m)=\frac{N-q}{N}.$ $H(eta|x\!:\!m)=-\sum_{i:m:i\in I-m}\frac{1}{q}\cdot\log\frac{1}{q}=-\frac{q}{q}\cdot\log\frac{1}{q}=\log q.$

Аналогично
$$H(\beta|x+m) = \log(N-q) \Rightarrow H_{\beta_m}(\beta) = \frac{q}{N} \cdot \log q + \frac{N-q}{N} \cdot \log(N-q)$$

$$I(\beta_m, \beta) = \log N - \frac{q}{N} \cdot \log q - \frac{N - q}{N} \cdot \log(N - q) =$$

$$= \frac{q}{N} \cdot \log N - \frac{q}{N} \log q - \frac{N - q}{N} \cdot \log N - \frac{N - q}{N} \cdot \log(N - q) =$$

$$= -\frac{q}{N} \cdot \log \frac{q}{N} - \frac{N - q}{N} \cdot \log \frac{N - q}{N} \leq \log 2$$

Равенство достигается при $q = N - q = \frac{N}{2}$.

Пример 1.5.3 (Данетки). Загадано число от 1 до N.

Опыт β – угадать число.

Опыт α – задать любой общий (да/нет) вопрос и получить ответ.

 $H(\beta) = \log N$ (Числа загаданы с равной вероятностью)

 $H(\alpha) \leq \log 2$ (Поскольку есть всего 2 варианта ответа)

 $H(\alpha_1\alpha_2...\alpha_k) \leq \log 2^k = k \log 2$ (k вопросов, 2 варианта ответа) Чтобы угадать число потребуется $k \geq \frac{\log N}{\log 2} = \log_2 N$ вопросов.

Есть ли алгоритм, который умеет угадывать загаданное число за $O(\log N)$.

1.5.1. Избыточное кодирование

Есть сообщение $u \in \{0,1\}^k$, которое нужно передать.

Можем передавать сообщение $x(u) \in \{0,1\}^n, n \ge k$, содержащую некоторую избыточную информацию (канал связи шумит и может допускать ошибки), но не более d ошибок на сообщение. β заключается в нахождении всех d ошибок. Сколько у β исходов? Для каждого количества ошибок j от 0 до d есть $\binom{n}{j}$ вариантов их расположения, то есть всего исходов у β ровно $\sum_{i=0}^{n} \binom{n}{i}$

Следовательно,
$$H(\beta) = \log \sum_{j=0}^{d} \binom{n}{j}$$

 α – дополнительное сообщение размера n-k. Их 2^{n-k} и $\Rightarrow H(\alpha) = \log 2^{n-k} = (n-k) \log 2$ Чтобы гарантированно найти все ошибки нужно $H(\alpha) \geqslant H(\beta)$

$$(n-k)\log 2 \ge \log \sum_{j=0}^{d} {n \choose j} \Rightarrow n-k \ge \log_2 \sum_{j=0}^{d} {n \choose j} \Rightarrow k \le n - \log_2 \sum_{j=0}^{d} {n \choose j}$$

Таким образом, если канал связи допускает не более d ошибок, то для передачи сообщения размером k понадобится не менее $k + \log_2 \sum_{j=0}^d \binom{n}{j}$.

Или, поскольку количество ошибок обычно зависит от размера переданного сообщения, если передаётся n бит и из них не более d могут быть ошибочными, то в переданном сообщении можно закодировать сообщение длиной не более $n - \log_2 \sum_{i=1}^{a} \binom{n}{i}$.

1.5.2. Код Хэмминга

Предыдущая задача при d = 1. Известно, что $2^{n-k} \geqslant \sum_{j=0}^{1} \binom{n}{j}$ = 1+n.

 $l \coloneqq n - k$ – длина "избыточного сообщения". Тогда $k \le 2^l - l - 1$.

Чем большее сообщение, тем относительно меньше лишней информации. Как передавать дополнительную информацию?

Пример 1.5.4. Пусть k = 12 и мы хотим передать сообщение u = 101101011100. Зарезервируем в сообщении длины 17 места с номерами $2^{i}(1,2,4,8,16)$, а на остальные позиции запишем сообщение:

$$x_0(u) = __1_011_0101110_0$$

Подберём на позицию 2^i такую цифру, чтобы произведение x(u) и i-й строки матрицы было равно 0. На "неопределенных" позициях в строке с номером i стоят $0(2^j = 10...0)$.

На позиции 2^i в i-й строке стоит 1.

$$?*1+_*0+1*1+_**0+0*1+1*0+1*1+_**0+0*1+1*0+0*1+1*0+1*1+1*0+0*1+_**0+0*1==?+1+1+1=1+?=0\Rightarrow?=1.$$

Получается $x_1 = 1 \quad 1 \quad 011 \quad 0101110 \quad 0$

Аналогично делаем для остальных. Итого x(u) = 111101100101111000

Как определять позицию ошибки? y = 11110110000111000

Посчитаем $A \times y^T = (0, 1, 0, 1, 0)^T$ — двоичная запись позиции с ошибкой.

Старший бит – справа. Почему так?

При умножении на i -ю строку матрицы j -я позиция сообщения влияла только если A[i,j]=1, то есть если на i-м месте в двоичной записи числа j стояла $1\Rightarrow$ результат произведения строки матрицы на столбец сообщения изменился (став 1) только для тех строк, где на 10-й позиции стояла 1 (а это строки с номерами, равными позициям, где в двоичной записи числа 10 стоят 1), а для остальных строк остался 0.

Раздел #2: Графы

Def 2.0.1. Ориентированным графом называют G = (V, E), где $V \neq \emptyset$ – множество вершин, $E \subseteq V \times V$ – множество ребер. Ребра часто записывают по их концам: (v_1, v_2) или v_1v_2 .

Замечание $2.0.2.\ V = \varnothing$ иногда встречается в доказательствах утверждений. Пустым графом называют граф, множество ребер которого пусто.

- **Def 2.0.3.** Пусть G = (V, E). G' = (V', E') называют подграфом G ($G' \leq G$), если $V' \subseteq V, E' \subseteq (V' \times V') \cap E$. Если $E' = (V' \times V') \cap E$ подграф, то подграф называют порожденным. Порожденный граф обозначают G[V'].
- **Def 2.0.4.** Пусть G = (V, E). Путем называется последовательность вершин $v_0v_1...v_n : \forall i \in 0...n \ v_i \in V, \forall i \in 1...n \ (v_{i-1}, v_i) \in E$. Простым называется путь, в котором все вершины различны.
- **Def** 2.0.5. Циклом называется последовательность вершин $v_0v_1...v_n : \forall i \in 0...n \ v_i \in V, \forall i \in 1...n \ (v_{i-1},v_i) \in E, v_0 = v_n$. Простым называется цикл, в котором все вершины, кроме первой и последней, различны.
- **Def 2.0.6.** Ациклическим графом называется орграф без циклов.

2.1. Отношение достижимости

- **Def 2.1.1.** На множестве вершин V зададим отношение достижимости R^* : вершина $v_1 \in V$ находится в отношении R^* с вершиной $v_2 \in V$ (в этом случае говорят, что вершина v_2 достижима из вершины v_1), если существует с началом v_1 и концом v_2 .
- Замечание 2.1.2. Отношение достижимости для вершин орграфа рефлексивно и транзитивно, но не обязательно симметрично.
- **Def 2.1.3.** Определим с помощью отношения достижимости разбиение множества вершин графа на классы эквивалентности: вершины v_1, v_2 принадлежат одному классу, если отношение симметрично. Такое отношение рефлексивно, транзитивно и симметрично.

Замечание 2.1.4. Если граф ациклический, то каждый класс эквивалентности состоит из одной вершины.

2.1.1. Граф-покрытие и граф достижимости

- **Def 2.1.5.** Минимальный граф G_b , индуцирующий на множестве вершин V(G) то же отношение достижимости, что и исходный орграф G (т.е. граф c неуменьшаемым далее множеством ребер), называется **базисным** графом для графа G.
- Замечание 2.1.6. Базисный граф не обязательно единственный.
- Замечание 2.1.7. В конечном орграфе существует базисный граф. Получается последовательным удалением ребер (v_1, v_2) , для которых существует не содержащий его путь.

Def 2.1.8. Классы эквивалентности по отношению достижимости называются связными компонентами. Классы эквивалентности по отношению взаимной достижимости называются компонентами сильной связности.

Def 2.1.9. Пусть G = (V, E) – орграф. Граф достижимости (графом транзитивного замыкания) $G^* = (V, E^*)$ для G имеет то же множество вершин V и следующее множество ребер $E^* = \{(u, v) | \mathbf{в} \ \text{графе} \ G \ \text{вершина} \ v \ \text{достижима} \ \mathbf{u} \mathbf{s} \ \text{вершины} \ \mathbf{u} \}$

Замечание 2.1.10. Ребра графа достижимости G^* соответствуют путям исходного графа G.

Def 2.1.11. Матрица смежности орграфа G = (V, E) c |V| = n называется матрица A_G размера $n \times n$ с элементами

$$A_{ij} = \begin{cases} 1, (v_i, v_j) \in E \\ 0 \end{cases}$$

Введем обозначения $\hat{A} := A_G \vee E_n, \hat{A}_0 = E_n, \hat{A}_1 = \hat{A}, ..., \hat{A}_{k+1} = \hat{A}_k \wedge \hat{A}.$

<u>Lm</u> 2.1.12. Пусть $\hat{A}_k = (a_{ij}^{(k)})$. Тогда

$$a_{ij}^{(k)} = \begin{cases} 1, \exists \text{ путь из } v_i \text{ в } v_j \text{ длины } \leqslant k, \\ 0 \end{cases}$$

Доказательство. Индукция по k. База верна по определению \hat{A}_0 . Пусть верно для k, докажем

для k+1. $a_{ij}^{(k+1)}=a_{i1}^{(k)}a_{1j}^{(1)}\vee...\vee a_{ir}^{(k)}a_{rj}^{(1)}\vee...\vee a_{in}^{(k)}a_{nj}^{(1)}$. Пусть в G из v_i в v_j есть путь длины $\leqslant k+1$. Рассмотрим кратчайший из таких путей. Если длина $\leqslant k$, то $a_{ij}^{(k)}=1$ и , т.к. $a_{jj}^{(1)}=1$, то $a_{ij}^{(k)}a_{jj}^{(1)}=1$ и $a_{ij}^{(k+1)}=1$. Если длина ровно k+1, то пусть v_r — предпоследняя вершина. Тогда из v_i в v_r есть путь длины k и по предположению $a_{ir}^{(k)}=1$. Т.к. есть ребро (v_r,v_j) , то $a_{ir}^{(k)}a_{rj}^{(1)}=1$. Поэтому $a_{ir}^{(k)}a_{rj}^{(1)}=1$ и $a_{ij}^{(k+1)} = 1.$

В другую сторону: пусть $a_{ij}^{(k+1)}=1$, тогда $\exists r:a_{ir}^{(k)}a_{rj}^{(1)}=1$. Если это r=j, то $a_{ij}^{(k)}=1$ и по предположению в G есть путь из v_i в v_j длины $\leqslant k$.

Если $r \neq j$, то $a_{ir}^{(k)} = 1$ и $a_{rj}^{(1)} = 1$. Это означает, что в G есть путь из v_i в v_r длины $\leqslant k$ и ребро (v_r, v_i) . Объединяем и получаем путь из v_i в v_i длины $\leq k+1$.

Следствие 2.1.13. Пусть G = (V, E) – орграф, $|V| = n, G^*$ – его граф достижимости. Тогда $A_{G^*} = A_{n-1}.$

Замечание 2.1.14. При вычислении можно хитрить: считать $\hat{A}\Rightarrow\hat{A}_2\Rightarrow\hat{A}_4\Rightarrow\dots$

Также, т.к. на диагонали \hat{A} стоят единицы, то $\forall i < j$ все единицы в \hat{A}_i сохраняются в \hat{A}_j (и в $(\hat{A}_i)^2$). При вычислении квадратов, если в "сумме" обнаруживается $r:a_{ir}=1$ и $a_{rj}=1$, то остальные слагаемые можно не рассматривать.

 $\partial ocmu \rightarrow cu Mocmu G_{\star}^{\star} = (V, E_{\star}^{\star}), \quad r \partial e$ Def **2.1.15.** $\Gamma pa\phi$ сильной $\{(u,v)|u,v$ взаимно достижимы в $G\}$

По матрице сильной достижимости можно выделить компоненты сильной связности графа G:

1. В первую компоненту K_1 поместить вершину v_1 и все вершины $v_j:A_{G_*^*}(1,j)=1$

- 2. Построение $K_1, ..., K_i$ и v_k вершина с минимальным индексом без компоненты. Помещаем её в K_{i+1} и все $v_j: A_{G^*_s}(k,j) = 1$.
- **Def 2.1.16.** Пусть K и K' компоненты сильной связности графа G. Компонента K достижима из компоненты K', если K = K' или существуют две такие вершины $u \in K$ и $v \in K'$, что и достижима из v. K строго достижима из K', если $K \neq K'$ и K достижима из K'.
- **Def 2.1.17.** Отношение строго достижимости можно представлять в виде орграфа, вершины компоненты сильной связности, ребра есть если есть строга достижимость **Конденсация** G, ацикличный граф.

2.2. Турниры и полустепени в орграфе

- **Def 2.2.1.** Полустепень захода в орграфе для вершины число дуг, входящих в вершину. Обозначается $d^+(v)$. Полустепень исхода в орграфе для вершины v число дуг, исходящих из вершины $(d^-(v))$.
- **Def 2.2.2.** Турнир некоторый полный орграф (V, E) (орграф без петель и между любой парой вершин есть ровно одно ребро).
- **Def 2.2.3.** Для ребра $(u, v) \in E$ говорим, что u доминирует над v.
- **Def 2.2.4.** Турнир (будучи орграфом) транзитивен, если из $(u, v) \in E, (v, w) \in E$ следует из $(u, w) \in E$.
- **Def 2.2.5.** Порядком турнира T называется число его вершин.
- **Def 2.2.6.** Полустепень выхода вершины v турнира T число вершин, над которыми v доминирует (еще называется результатом).
- **Def** 2.2.7. Последовательность результатов турнира T упорядоченная последовательность $S = (s_1, ..., s_n)$, где s_i результат $v_i, 1 \le i \le n$, причем $s_1 \le s_2 \le ... \le s_n$.
- **Def 2.2.8.** Множество результатов турнира T это последовательность $D = (d_1, ..., d_m)$ различных результатов вершин турнира T, где $d_1 < d_2 < ... < d_m$.
- **Def 2.2.9.** Если последовательностью результатов турнира T является S, а множество результатов D, то будем говорить, что S генерирует D.
- **Теорема 2.2.10** (Редеи-Камиона для пути). Любой турнир порядка n содержит гамильтонов путь (т.е. путь, содержащий все n вершин).

Упражнение 2.2.11. Доказательство.

Теорема 2.2.12 (Редеи-Камиона для цикла). В сильно связном турнире есть гамильтонов цикл. Верно и обратное утверждение.

Упражнение 2.2.13. Доказательство.

Def 2.2.14. Вершина $v \in V(T)$ турнира T является королем $\Leftrightarrow \forall x \in V(T)$ \exists путь из $v \in X$ длиной ≤ 2 .

Теорема 2.2.15. В любом турнире существует вершина-король.

Теорема 2.2.16. Для турнира порядка n следующие утверждения эквивалентны:

- 1. Т транзитивен
- 2. Т не содержит циклов длины 3
- 3. Т ацикличен
- 4. Последовательность результатов турнира T это (0, 1, ..., n-1).
- 5. Т содержит ровно один гамильтонов путь.

Доказательство. $1 \Rightarrow 2 : \exists (u,v), (v,w), (w,u)$. Но также $\exists (u,w)$ (?!)

- $2 \Rightarrow 3$: \exists цикл $(v_1, ..., v_k), k \geqslant 4$. Т.к. нет циклов длины 3, то есть транзитивность. Индукцией покажем, что $\exists (v_1, v_{k-1})$. База: $(v_1, v_2), (v_2, v_3) \in E \Rightarrow (v_1, v_3) \in E$. Переход: $(v_1, v_i) \in E \forall i < k-1$, также $(v_i, v_{i+1}) \in E \Rightarrow (v_1, v_{i+1}) \in E$. (?!) цикл (v_1, v_{k-1}, v_k) .
- $3 \Rightarrow 4: D^+(T)$ множество степеней захода. Индукция по n. База очевидна. Переход: пусть верно для n-1. В ациклическом графе есть вершина-сток $t: d^+(t) = 0$. Рассмотрим граф T-t. $D^+(T-t) = (0,1,...,n-2)$. А из $\forall v \in V \setminus t$ ведет одно ребро в t.
- $4\Rightarrow 5$: Существует по теореме Редеи-Камиона. Надо единственность. Докажем по индукции. База очевидна, переход: берем $s:d^-(s)=0$ (все ребра выходят, исток). Она будет первой в гамильтоновом пути. Рассмотрим T-s:s была соединена со всеми, степени уменьшились на 1 и $D^-(T-s)=(0,1,...,n-2)$. Значит в T-s $\exists !$ гамильтонов путь. Если $\exists 2$ гамильтоновых пути с началом в s, то будет и z гамильтоновых пути в z0.
- $5 \Rightarrow 1: P = (v_1, ..., v_n) !$ гамильтонов путь. Пусть $\exists m$ наименьший индекс : в v_m идет ребро из вершины с большим индексом, а v_k вершина с наибольшим индексом, из которой ребро ведет в v_m .

 $m \neq 1, k \neq n$: есть ребро из v_{m-1} в v_{m+1} (минимальность v_m) и из v_m в v_{m+1} (максимальность k). Есть еще цикл $P_1 = (v_1, ..., v_{m-1}, v_{m+1}, ..., v_k, v_m, v_{k+1}, ..., v_n)$.

- $m \neq 1, k = n : P_1 = (v_1, ..., v_{m-1}, v_{m+1}, ..., v_n, v_m)$
- $m = 1, k \neq n : P_1 = (v_2, ..., v_k, v_1, v_{k+1}, ...)$
- $m = 1, k = n : P_1 = (v_2, ..., v_n, v_1)$

Значит такого m не существует и $(v_i, v_j) \in E \Leftrightarrow i < j$. Значит $\forall i, j, k : 1 \le i, j, k \le n \ (v_i, v_j) \in E$ и $(v_i, v_k) \in E \Rightarrow i < j \lor j < k \Rightarrow (v_i, v_k) \in E$.

Теорема 2.2.17. Конденсация любого турнира является транзитивным турниром.

Доказательство. U, V — компоненты сильной связности. $u \in U, v \in V : (u, v) \in E$ или $(v, u) \in E$. Т.е. в конденсации есть либо ребро (U, V), либо (V, U). Рассмотрена произвольная пара вершин конденсации турнира, получилось, что она тоже турнир. Знаем, что конденсация ациклична \Rightarrow транзитивна.

Теорема 2.2.18 (Ландау). Некоторая неубывающая последовательность неотрицательных целых чисел $S = (s_1, s_2, ..., s_n)$ является последовательностью результатов некоторого турнира $\Leftrightarrow \sum_{i=1}^k s_i \geqslant \frac{k(k-1)}{2}, 1 \leqslant k \leqslant n$, причем равенство при k = n.

Замечание 2.2.19. Восстановление турнира по некоторому допустимому множество результатов – это более сложная задача, чем восстановление турнира по некоторой допустимой последовательности результатов.

Теорема 2.2.20 (Яо). Если $m \ge 1, D = (d_1, ..., d_m)$ — множество неотрицательных чисел, то существует турнир с множеством результатов D.

Замечание 2.2.21. Теорема Яо доказывает только существование соответствующего турнира, но не дает способ его построения.

Замечание 2.2.22. Проверка существования турнира с заданной последовательностью результатов — линейная задача (Ландау). Построение турниров по последовательности результатов делается быстро (квадратичные алгоритмы).

Замечание 2.2.23. А как построить турнир по множеству? Строят по множеству последовательность (за полиномиальное время), а дальше понятно.