Temporal Smoothing in 2D Human Pose Estimation for Bouldering

André Oskar Andersen wpr684

Institution of Computer Science, University of Copenhagen

2023

▶ Increased usage of video analysis in sports.

- ▶ Increased usage of video analysis in sports.
- ▶ Often requires the position of the players.
 - Already developed for popular sports.
 - Missing for the less popular sports.

- Increased usage of video analysis in sports.
- Often requires the position of the players.
 - Already developed for popular sports.
 - Missing for the less popular sports.
- Problems with the data
 - Methods require large quantities
 - Unusual poses/movements

- ClimbAlong at NorthTech ApS
 - ► Frame-idependent pose-detector for bouldering

- ClimbAlong at NorthTech ApS
 - Frame-idependent pose-detector for bouldering
 - Proposition: Incorporate temporal information

► Aim: extending the ClimbAlong pose-dector to use temporal information.

➤ 30 fully annotated videos of climbers with 25 keypoints, totalling to 10,293 frames, provided by ClimbAlong

- ➤ 30 fully annotated videos of climbers with 25 keypoints, totalling to 10,293 frames, provided by ClimbAlong
- Both static and quick movements.

► Very small dataset

- ► Very small dataset
- Instead, pretraing on related datasets and finetune of ClimbAlong

- ► The BRACE dataset:
 - Breakdancers

- ▶ The BRACE dataset:
 - Breakdancers
 - ▶ 1,352 video sequences / 334,538 frames with 17 keypoints.

- ▶ The BRACE dataset:
 - Breakdancers
 - ▶ 1,352 video sequences / 334,538 frames with 17 keypoints.
 - Compared to ClimbAlong:
 - Swaps between static and quick movements
 - Less frequent static movements
 - Quicker movements

- ► Penn Action dataset:
 - ► People performing various actions

- Penn Action dataset:
 - ► People performing various actions
 - 2,326 video sequences with 13 keypoints and binary visibility-flag.

- Penn Action dataset:
 - People performing various actions
 - 2,326 video sequences with 13 keypoints and binary visibility-flag.
 - Filtered down to 307 video sequences / 26,036 frames.

- ► Motivation for valg
- ► 3D Conv
- DeciWatch
- bi-ConvLSTM Model S
- bi-ConvLSTM Model C

- ► Generally, three approaches
 - 1. 3-dimensional convolutional layer
 - 2. Convolutional recurrent neural network
 - 3. Transformer

- ► Generally, three approaches
 - 1. 3-dimensional convolutional layer
 - 2. Convolutional recurrent neural network
 - 3. Transformer
- ▶ One architecture based on each approach

- ► 3DConv
 - ▶ 3-dimensional conv. layer + ReLU
 - ► Input/output: heatmaps

- ▶ 3DConv
 - 3-dimensional conv. layer + ReLU
 - ► Input/output: heatmaps
 - $K \in \mathbb{N}$ filters with $h, w \in \mathbb{N}$ height and width
 - $T \in \mathbb{N}$ frames

- bi-ConvLSTM Model S
 - Adoptation of Unipose by Artacho and Savakis
 - ▶ Bidirectional convolutional LSTM + conv. layers and ReLU
 - Processing directions summed together

- bi-ConvLSTM Model S
 - Adoptation of Unipose by Artacho and Savakis
 - ▶ Bidirectional convolutional LSTM + conv. layers and ReLU
 - Processing directions summed together
 - Input/output: heatmaps
 - $ightharpoonup K \in \mathbb{N}$ filters with $h, w \in \mathbb{N}$ height and width
 - $T \in \mathbb{N}$ frames

- ▶ bi-ConvLSTM Model C
 - Similary to bi-ConvLSTM Model S
 - Problem: Prioritization of processing direction

- bi-ConvLSTM Model C
 - ► Similary to bi-ConvLSTM Model S
 - Problem: Prioritization of processing direction
 - ► Solution: Using convolution

- ▶ DeciWatch by Zeng Et al
 - ► Transformer-based
 - Only considers every nth frame
 - Processes keypoints

- DeciWatch by Zeng Et al
 - ► Transformer-based
 - Only considers every nth frame
 - Processes keypoints
 - ► Encoder: DenoiseNet
 - Decoder: RecoverNet

► Not training pose-detector

- ► Not training pose-detector
- ► Adding noise to input-data

Data preprocessing

Discarding images

Data preprocessing

- Discarding images
- Simulating output of pose-detector on ClimbAlong dataset:
 - 1. Making input data consist of bboxes with side-length of 56 px

Data preprocessing

- Discarding images
- Simulating output of pose-detector on ClimbAlong dataset:
 - 1. Making input data consist of bboxes with side-length of 56 px
 - 2. 25 Heatmaps

Data preprocessing

- Discarding images
- Simulating output of pose-detector on ClimbAlong dataset:
 - 1. Making input data consist of bboxes with side-length of 56 px
 - 2. 25 Heatmaps
 - 3. Adding noise to input
 - 3.1 Shifting-scalar
 - 3.2 Gaussian filter standard deviation

- ▶ Data configuration
 - ightharpoonup s = 5 frames
 - ▶ Splitting of data into non-overlapping and repeating subsets
 - Handling of missing keypoints

- Experiments
 - ► Sample Gaussian filter standard deviation from {1, 1.5, 2, 2.5, 3}.

- Experiments
 - ► Sample Gaussian filter standard deviation from {1, 1.5, 2, 2.5, 3}.
 - ► Fixed standard deviation

- Experiments
 - ► Sample Gaussian filter standard deviation from {1, 1.5, 2, 2.5, 3}.
 - ► Fixed standard deviation
 - Decreased frame rate

- Experiments
 - ► Sample Gaussian filter standard deviation from {1, 1.5, 2, 2.5, 3}.
 - ► Fixed standard deviation
 - Decreased frame rate
- ▶ Two different shifting-scalars $s \in \{1, 2\}$

- Experiments
 - ► Sample Gaussian filter standard deviation from {1, 1.5, 2, 2.5, 3}.
 - Fixed standard deviation
 - Decreased frame rate
- ▶ Two different shifting-scalars $s \in \{1, 2\}$
- DeciWatch inspected source code:
 - Sampling every 5th frame

► Results

- Data-preprocessing
- ► Training Details
- Results
- Visualizations?
- Subconclusion

- ► Freezing pose-detector
 - Quicker fitting

- ► Freezing pose-detector
 - Quicker fitting
 - ► Greater understanding of results

- Data preprocessing
 - Making data more similar to pretraining
 - Setting negative values to 0
 - Normalizing summing up to same value as pretraining heatmaps

- Data preprocessing
 - Making data more similar to pretraining
 - Setting negative values to 0
 - Normalizing summing up to same value as pretraining heatmaps
 - Using predicted bbox to create heatmaps

- Data preprocessing
 - Making data more similar to pretraining
 - Setting negative values to 0
 - Normalizing summing up to same value as pretraining heatmaps
 - Using predicted bbox to create heatmaps
 - ► Handling of groundtruth keypoints out of bbox

- ▶ Data configuration
 - ► Careful splitting of dataset

► Results

Additional experiments

► Additional test results

Discussion

Conclusion

Extras: Mistakes Were Made!