Homework Questions

Circuits and Electronics

Week 1

Q.1 Determine the truth table for the following logic circuits

- (c) What can you say about the above two circuits?
- Q.2 Consider the following Boolean function:

$$\overline{F} = \overline{BD} + \overline{ABC} + ACD + \overline{ABC}$$

- (a) Find the <u>complement</u> of the Boolean function and reduce it to seven literals in sum-of-products form.
- (b) Using a truth table show that the reduced Boolean function for is equivalent to the original expression.
- (c) Implement the simplified expression using AND, OR and NOT logic gates in a 2-level gate circuit.
- Q.3 Use Karnaugh maps to obtain the simplified expressions in sum-of-products form for the following Boolean functions:

(a)
$$ABD + \overline{A}\overline{C}\overline{D} + \overline{A}B + \overline{A}C\overline{D} + A\overline{B}\overline{D}$$

(b)
$$\overline{X}Z + \overline{W}X\overline{Y} + W(\overline{X}Y + X\overline{Y})$$

Q.4 Using Karnaugh maps, simplify the following expressions, using sum-of-products form:

(a)
$$ABC + \overline{ABC} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}}$$

(b)
$$ABCD + \overline{AB}CD + \overline{AB}CD + \overline{AB}CD + \overline{AB}\overline{CD}$$

don't cares

(c)
$$A\overline{B}C\overline{D} + A\overline{B}CD + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}$$

Solutions

Q1.

(a)
$$F = XYZ + \overline{X}Y$$

	×	Y	Z	XYZ	$\overline{\times}$ γ	F
_	0	0	O	O	0	0
e.	0	0	1	0	0	0
	0	(O	O	(1
	0	1	1	0	(
_	-	0	0	0	0	0
	(0	1	0	0	0
	(1	0	0	0	Ö
	(1	(1	0	

(b)
$$F = (\overline{XYZ})(\overline{XY}).$$

•			
×	XYZ	$\overline{\overline{\times}} \gamma$	F
000		(0
001	ŀ	(0
010	l	\circ	1
011	l	0	
100	1		0
101	(1	0
110	l	(0
(0	l	1
(c)	The two	o circuits a	re equivalent

$$F = \overline{B}D + \overline{A}B\overline{C} + ACD + \overline{A}BC$$

$$F = (\overline{B}D + \overline{A}B\overline{C} + ACD + \overline{A}BC)$$

$$= (\overline{B}D + \overline{A}B(\overline{C} + C) + ACD)$$

$$= (\overline{B}D + \overline{A}B + ACD)$$

$$= (B+\overline{D})(A+\overline{B})(\overline{A} + \overline{C} + \overline{D})$$

$$= (AB + AD + BB + \overline{B}D)(\overline{A} + \overline{C} + \overline{D})$$

$$= \overline{A}B\overline{D} + AB\overline{C} + A\overline{C}D + \overline{B}\overline{C}D$$

$$+ AB\overline{D} + A\overline{D} + \overline{B}D$$

$$= \overline{B}D [1+\overline{A} + C] + A\overline{D}[1+\overline{C} + B]$$

$$+ AB\overline{C}$$

$$F = \overline{B}D + A\overline{D} + A\overline{D} + AB\overline{C}$$

(b)

ABCD	БD	ĀBĒ	ACD	Ā BC	F	F
000000000000000000000000000000000000000	0-0-00000-0-0000	000011000000000000	00000000000000000000000000000000000000	00000000000000	0-00-0-000-	-0-00000-0-0-00
1001	0 - 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000		1	-0-00000-0-0-0

(c)

 $F = X\overline{Y} + \overline{X}\overline{Z} + W\overline{X}\overline{Y}$

a)

AB	0	l
00		III
01		X
11	×	1111
10		X

$$f = c$$

6)

	AB	00	01	11	10
	00	X			
	0			X	
l	11			1	
L	10			1X	

c)

AB	00	01	11	10
00	×	X		,
10			1	1

f = ABC