МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ОТЧЕТ

по практичской работе №1

по дисциплине «ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННОГО УЗЛА НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ»

Студент гр. 1335	Максимов Ю F
Преподаватель	Буренева О И

Санкт-Петербург 2024

Практическая работа 1.

ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННОГО УЗЛА НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ.

Цель занятия — освоение методики проектирования комбинационного узла на логических элементах, получение практических навыков в оформлении функциональной электрической схемы.

Задание на работу

Выполнить проектирование комбинационной схемы, реализующую функцию от четырех переменных, заданную набором входных данных, на которых она принимает единичные значения: составить таблицу истинности функции, выполнить минимизацию функции с использованием карт Карно или метода Квайна — Мак-Класки, основанного на применении операций склеивания и поглощений. Проектирование осуществляется в базисе, заданном перечнем используемых микросхем.

Подготовить схему электрическую функциональную для разработанного устройства.

Вариант

Десятичные значения векторов входных переменных (x_4 , x_3 , x_2 , x_1), на которых переключательная функция y (x_4 , x_3 , x_2 , x_1) равна логической «1»:

2, 3, 5, 6, 10, 12, 14.

На других входных наборах функция равна логическому «0».

ИС: ЛА8 $(7401) - 4 \times 2$ И-НЕ с открытым коллектором.

Выполнение работы

1. Синтез логической схемы.

Составим таблицу истинности, имеющую 2^4 строк (по строке для каждого набора входных переменных) и 4+2 столбцов (табл. 1).

No	Входные переменные				Функция
№ 10	χ_4	x_3	x_2	x_1	$y(x_4, x_3, x_2, x_1)$
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

Таблица 1 — Таблица истинности функции у (x_4, x_3, x_2, x_1)

От таблицы истинности перейдем к совершенной дизъюнктивной нормальной форме (СДНФ), т. е. к дизъюнкции конституент единицы искомой функций, путем составления логической суммы тех входных наборов, на которых функция принимает единичное значение.

СДНФ:

$$y(x_4, x_3, x_2, x_1) = \overline{x_4} \cdot \overline{x_3} \cdot x_2 \cdot \overline{x_1} \vee \overline{x_4} \cdot \overline{x_3} \cdot x_2 \cdot x_1 \vee \overline{x_4} \cdot x_3 \cdot \overline{x_2} \cdot x_1 \vee \overline{x_4} \cdot x_3 \cdot \overline{x_2} \cdot x_1 \vee \overline{x_4} \cdot x_3 \cdot x_2 \cdot \overline{x_1} \vee x_4 \cdot x_3 \cdot \overline{x_2} \vee \overline{x_1} \vee \overline{x_2} \vee \overline{x_1} \vee x_4 \cdot x_3 \cdot \overline{x_2} \vee \overline{x_1} \vee x_4 \cdot x_4 \cdot x_4 \cdot x_4 \cdot x_4 \vee x$$

Выполним минимизацию функции с помощью карты Карно (диаграммы Вейча), которая представляет собой развертку гиперкуба на плоскости. Элементы в соседних ячейках отличаются лишь в одном разряде.

Карте Карно соответствует циклический код Грея, в котором каждая следующая комбинация отличается от предыдущей значением одного разряда. При представлении функции с помощью карты Карно необходимо учитывать, что крайние столбцы и строки считаются соседними. Если свернуть карту в пространстве, соединив ее края, получим тор с такими же свойствами.

Алгоритм нахождения МДНФ по карте Карно:

- 1) необходимо выделить на карте контуры так, чтобы были соблюдены следующие условия:
 - контуры должны содержать в ячейках внутри себя только единицы,
 - контуры должны быть прямоугольными или квадратными,
 - они должны включать число ячеек, равное степени 2: 1, 2, 4, 8 или 16;
- крайние столбцы, крайние строки и угловые ячейки считаются соседними;
- каждый контур должен охватывать по возможности наибольшее число ячеек,
 - контуры могут пересекаться,
- не должно быть контуров, все ячейки которых входят в другие контуры;
 - все единицы в ячейках должны быть покрыты контурами.
- 2) Затем необходимо по контурам составить элементарные конъюнкции, соответствующие им. Для этого при рассмотрении контура выделяются переменные, которые постоянны в контуре, они входят в элементарную конъюнкцию, переменные же, входящие в контур вместе со своими инверсиями, исключаются из нее.

Заполним ячейки карты значениями из последнего столбца таблицы истинности (табл. 1). Выделим контуры и для каждого запишем выражение (рис. 1).

$\begin{array}{c} x_2 x_1 \\ x_4 x_3 \end{array}$	$\overline{x_2} \cdot \overline{x_1}$	$\overline{x_2} \cdot x_1$	$x_2 \cdot x_1$	$x_2 \cdot \overline{x_1}$
$\overline{x_4} \cdot \overline{x_3}$	0	0	1	1
$\overline{x_4} \cdot x_3$	0	1	0	1
$x_4 \cdot x_3$	1	0	0	1
$x_4 \cdot \overline{x_3}$	0	0	0	1
	V 4	_ + _		V _
	$x_4 \cdot x_3 \cdot x_1$	$x_4 \cdot x_3 \cdot x_2 \cdot x_1$	$x_4 \cdot x_3 \cdot x_2$	$x_2 \cdot x_1$

Рисунок 1 – Минимизация функции с помощью карты Карно

Объединим полученные конъюнкции логической суммой (дизъюнкция) и получим МДНФ:

$$y(x_4, x_3, x_2, x_1) = x_4 \cdot x_3 \cdot \overline{x_1} \vee \overline{x_4} \cdot x_3 \cdot \overline{x_2} \cdot x_1 \vee \overline{x_4} \cdot \overline{x_3} \cdot x_2 \vee x_2 \cdot \overline{x_1}.$$

2. Функциональная схема.

Преобразуем полученное выражение МДНФ в заданный базис, используя правило де Моргана ($a \lor b = \overline{a} \cdot \overline{b}$ и $a \cdot b = \overline{a} \cdot \overline{b}$).

$$y(x_4, x_3, x_2, x_1) = \underbrace{x_4 \cdot x_3 \cdot \overline{x_1} \vee \overline{x_4} \cdot x_3 \cdot \overline{x_2} \cdot x_1 \vee \overline{x_4} \cdot \overline{x_3} \cdot x_2 \vee x_2}_{= \overline{x_4 \cdot x_3 \cdot \overline{x_1}} \cdot \overline{\overline{x_4} \cdot x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{\overline{x_4} \cdot \overline{x_3}} \cdot \overline{\overline{x_2} \cdot \overline{x_1}} \cdot \overline{\overline{\overline{x_4}} \cdot \overline{x_3}} \cdot \overline{\overline{x_2} \cdot \overline{x_1}} \cdot \overline{\overline{\overline{x_4}} \cdot \overline{\overline{x_3}}} \cdot \overline{\overline{\overline{x_4}} \cdot \overline{\overline{x_3}}} \cdot \overline{\overline{\overline{x_4}} \cdot \overline{\overline{x_3}}} \cdot \overline{\overline{\overline{x_4}}} \cdot \overline{\overline{\overline{x_4}}}$$

Заданная интегральная схема ЛА8 (7401) представляет собой четыре логических элемента 2И-НЕ. Учтем ограничение на число входов заданной = UC (=2), применяя правило двойного отрицания ($\stackrel{a}{a} = a$):

$$y(x_4, x_3, x_2, x_1) = x_4 \cdot x_3 \cdot x_1 \cdot x_4 \cdot x_3 \cdot x_2 \cdot x_1 \cdot x_4 \cdot x_3 \cdot x_2 \cdot x_1.$$

Потребуются четыре логических элемента 2И-НЕ для инвертирования переменных и семнадцать - для операций. Всего 21 элемент, т.е. шесть корпусов микросхемы ЛА8 (4×2ИЛИ-НЕ).

По полученному выражению составим функциональную схему, реализующую переключательную функцию от четырех переменных (рис. 2).

Рисунок 2 — Функциональная схема, реализующая функцию y