Congratulations! You passed!

Next Item

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the

- $\bigcirc \quad x^{< i > (j)}$
- $x^{(j) < i >}$
- $x^{< j > (i)}$

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_y$$

Correct

It is appropriate when every input should be matched to an output.

- $T_x < T_y$
- $T_x > T_y$
- $T_x = 1$

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

Image classification (input an image and output a label)

Un-selected is correct

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \quad \text{Estimating } P(y^{<1>},y^{<2>},\ldots,y^{< t-1>}) \\$
- Estimating $P(y^{< t>})$
- Stimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps

You have finished training a language model RNN and are using it to sample random sentences, as follows:

1/1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word

		(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
		(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
		Correct Yes!
~	6.	You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
1 / 1 point		Vanishing gradient problem.
		Exploding gradient problem.
		Correct
		Pol II activation function of) used to compute g(z) where z is too large
		ReLU activation function g(.) used to compute g(z), where z is too large.
		Sigmoid activation function g(.) used to compute g(z), where z is too large.
*	7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{<\ell>}$. What is the dimension of Γ_u at each time step?
1 / 1 point		O 1
		100
		Comment.
		Correct Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.
		300
		10000
		10000
~	8.	Here're the update equations for the GRU.
1/1		GRU
point		$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$
		$\Gamma_{u} = \sigma(W_{u}[c^{< t-1>}, x^{< t>}] + b_{u})$
		$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$
		$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$
		$\alpha^{< t>} = c^{< t>}$
		Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?
		Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
		Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

for that time-step as y = 0 . (ii) Then pass the ground-truth word from the

training set to the next time-step.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly $\text{dependant on } c^{< t-1>}.$

Betty's model (removing Γ_r), because if $\Gamma_u\approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Here are the equations for the GRU and the LSTM:

GRU

LSTM

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to ____ ___ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Correct

Yes, correct!

- \bigcap Γ_u and Γ_r
- $1-\Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}.$ You'd like to build a model to map from x
ightarrow y. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of $\boldsymbol{y}^{< t>}$ depends only on $x^{<1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{<365>}$

Correct

Yes!

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

