Mathematical Analysis Lecture

Philip Policki

12th October 2020

Contents

1	Rul	es	2
2	Rec	quirements	2
3	Notation		
	3.1	Number sets	2
	3.2	Sets notation	2
	3.3	Cartesian Product	3
	3.4	Quantifiers	3
4	Functions		
	4.1	The Vertical Line Test	4
	4.2	Classes of functions	4
	4.3	New functions from Old functions	5

1 Rules

No textbook, so take notes. Classes are mandatory

2 Requirements

During the classes we will start with a quiz, every practice. To pass the course you need 50% of points from the quizzed. A Quizes is 15min every quiz is worth 5 points. You get points from your top 10 quizes.

3 Notation

3.1 Number sets

- 1. Natural Numbers $N = \{1, 2, 3, ...\}$
- 2. Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- 3. Rational $\mathbb{Q} = \{\frac{p}{q}; p, q \in Z, q \neq 0\}$
- 4. Irrational $ex.: \sqrt{2}, \pi, \dots$
- 5. Real Numbers $\mathbb{R} = Rational + Irrational$

3.2 Sets notation

- $(a,b) = x \in R : a < x < b$
- $(a,b)=x\in R:a\leq x\leq b$
- $(a, \infty) = x \in R : x > a$
- (a,b) openinterval
- [a,b]-closedinterval

 $A \subset B$ A is a subset of B

 $x \in A$ X is an element of A, x belongs to A

 $x \not \in A$ X is not an element of A, x does not belong to A

3.3 Cartesian Product

Given two sets A and B, we can form the set consisting of all ordered pairs of the form (a, b) where $a \in A$ and $b \in B$. This set is called the Cartesian product of A and B and is denoted by AxB

 $AxB\{(a,b): a \in A, \in B\}$

If A = B, then AxA is denoted by A^2

3.4 Quantifiers

- 1. Existential \exists "There exists x such that", "For at least one x"
- 2. Universal ∀ "For all x", "For each x", "For every x"

Example:

 $\exists t > 0 \ \forall \ x \in \mathbb{R} \ x^2 + 4x + 4 > t$

The statement above is false

The negation of the statement:

 $\forall t > 0 \ \exists \ x_0 \in \mathbb{R} \ x_0^2 + 4x_0 + 4 \le t$

4 Functions

A function f is a rule that assigns to each element x in a set A $\underbrace{\text{exactly one}}$ element , called f(x), in a set B.

In our class $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ The set A is called the domain of the function f and will be denoted D_f .

The range of the function f is the set of all possible values of f(x) as x varies throughout the domain. The range of f will be denoted by R_f .

The most common method for visualizing a function is its.

If f is a function with domain D_f then its graph is the set of ordered pairs.

$$\{(x,y) \in \mathbb{R}^2 \ x \in D_f, y = f(x)\}$$

Example:

Min function

$$f(x) = \min\{x, x^2\}$$

$$f(2) = \min\{2, 4\} = 2$$

$$f(\frac{1}{2}) = \min\{\frac{1}{2}, \frac{1}{4}\} = \frac{1}{4}$$
(1)

Absolute

$$f(x) = |x| = \{x, ifx \ge 0 \text{ or } -x, ifx - 2 < 0\}$$

$$f(x) = |x - 2| = \{x - 2, ifx \ge 0 \text{ or } -(x - 2), ifx - 2 < 0\}$$
 (2)

|x-a| represents the distance between x and a

4.1 The Vertical Line Test

A curve is the XY plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

4.2 Classes of functions

1. Periodic functions

We say that f is a periodic function if

$$\exists T > 0 \ \forall x \in D_f(x \pm T \in D_f \text{ and } f(x+T) = f(x))$$

A periodic function is a function that repeats its values after some determined period has been added to its independent variable.

2. Symmetric functions

• Even

A function f is called even if:

$$\forall x \in D_f \ (-x \in D_f) \text{ and } f(-x) = f(x)$$

The geometric significance of an even function is that its graph is symmetric with respect to the Y axis.

If f is even D_f is symmetric about the Y Axis.

Odd

A function f is called odd if:

$$\forall x \in D_f(-x \in D_f) \text{ and } f(-x) = -f(x)$$

The graph of and odd function is symmetric about the origin. If an odd function is defined at x=0 then f(0) must be 0!!

Example: Check if function is even or odd.

$$f(x) = \frac{3^x - 3^{-x}}{x}$$

(a) Check if domain is symmetric

$$D_f = \mathbb{R} \setminus \{0\}$$

- (b) Substitute -x for x
- Monotonicity:

A function is monotonic if it is increasing, or decreasing, or nondecreasing, or non-increasing.

- Increasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I [(x_1 < x_2) \Rightarrow (f(x_1) < f(x_2))]$$

Non-decreasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I \ [(x_1 < x_2) \Rightarrow (f(x_1) \le f(x_2))]$$

- Decreasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I [(x_1 < x_2) \Rightarrow (f(x_1) > f(x_2))]$$

- Non-increasing:

A function f is called increasing on a set $I \subset D_f$,

if
$$\forall x_1, x_2 \in I \ [(x_1 < x_2) \Rightarrow (f(x_1) \ge f(x_2))]$$

Algebraic way to check monotonicity:

let
$$f(x) = \frac{1}{1+x^2}$$
 and $I = (-\infty, 0]$

Take any 2 points $x_1, x_2 \in I$ with $x_1 < x_2$.

$$f(x_2) - f(x_1) = \frac{1}{1+x_2^2} - \frac{1}{1+x_1^2} =$$

$$\frac{1+x_1^2-1+x_2^2}{(1+x_2^2)(1+x_2^2)}$$
 =

$$(1+x_1^2)(1+x_2^2)$$

 $(x_1-x_2)(x_1+x_2)$

$$(1+x_2^2)(1+x_1^2) x_1 - x_2 < 0$$

$$x_1 - x_2 < 0$$

$$x_1 + x_2 < 0$$

Suppose c > 0.

New functions from Old functions

• Vertical and horizontal shifts:

To obtain the graph of y = f(x) + c shift the graph of y a distance of c units upwards. If y = f(x) - c shift downwards.

To obtain the graph of y = f(x - c) shift the graph y a distance of c units to the right.

To obtain the graph of y = f(x + c) shift the graph y a distance of c units to the left.

• Vertical and horizontal stretching and reflecting:

Suppose c > 1.

To obtain the graph y = c * f(x) stretch y vertically by a factor of x. To obtain the graph y = f(c*x) compress the graph of y horizontally by a factor of c.

To obtain the graph y = -f(x) reflect the graph of y about the x axis.

To obtain the graph y = f(-x) reflect the graph of y about the y axis.

• Algebra of functions:

let f and g be functions with domains D_f and D_g . Then the functions f_g , f - g, fg and $\frac{f}{g}$ are as follows:

$$(f \pm g)(x) = f(x) \stackrel{\circ}{\pm} g; D_{f+g} = D_f \cap D_g$$

$$(f * g)(x) = f(x) * g(x); D_{f*g} = D_f \cap D_g$$

 $(\frac{f}{g})(x) = \frac{f(x)}{f(g)}; D_{f+g} = D_f \cap D_g$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{f(g)}; D_{f+g} = D_f \cap D_g$$