Formule logique : Syntaxe

Quentin Fortier

April 21, 2022

Formule logique : Définition

Définition

Soit V un ensemble (de variables).

L'ensemble des formules logiques sur V est défini inductivement :

- T et F sont des formules (Vrai et Faux)
- Toute variable $x \in V$ est une formule
- ullet Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Formule logique : Définition

Définition

Soit V un ensemble (de variables).

L'ensemble des formules logiques sur V est défini inductivement :

- T et F sont des formules (Vrai et Faux)
- Toute variable $x \in V$ est une formule
- Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Ceci définit uniquement la **syntaxe** des formules logiques, sans leur donner de sens (ce qu'on appelle la **sémantique**).

Formule logique : Définition

Définition

Soit V un ensemble (de variables).

L'ensemble des formules logiques sur V est défini inductivement :

- T et F sont des formules (Vrai et Faux)
- ullet Toute variable $x \in V$ est une formule
- ullet Si φ est une formule alors $\neg \varphi$ est une formule
- Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

Ceci définit uniquement la **syntaxe** des formules logiques, sans leur donner de sens (ce qu'on appelle la **sémantique**).

<u>Exemple</u>: si x_1 , $x_2 \in V$, $\neg(x_1 \lor x_2)$ et $\neg x_2 \land \neg x_2$ sont deux formules différentes.

Formule logique : En OCaml

Remarque : l'égalité (avec =) est automatiquement définie en OCaml.

Exercice

Écrire une fonction pour obtenir la liste des variables dans une formule logique.

Formule logique : BNF

On peut aussi utiliser une grammaire décrivant les formules logiques (BNF pour *Backus-Naur Form*) :

Formule logique : BNF

On peut aussi utiliser une grammaire décrivant les formules logiques (BNF pour *Backus-Naur Form*) :

$$<\!\!\!\text{formule}\!\!> ::= T \mid F \mid <\!\!\!\text{variable}\!\!> \\ \mid \neg <\!\!\!\text{formule}\!\!> \\ \mid <\!\!\!\!\text{formule}\!\!> \vee <\!\!\!\!\text{formule}\!\!> \\ \mid <\!\!\!\!\text{formule}\!\!> \wedge <\!\!\!\!\text{formule}\!\!> \\$$

Cette notation est très utilisée pour décrire la syntaxe d'un langage de programmation.

Exemple: OCaml, C, Python

Formule logique : Représentation par un arbre

On peut représenter une formule logique sous forme d'un arbre. Par exemple, $(x \land \neg y) \lor \neg (y \lor z)$ est représenté par :

L'arité d'un connecteur logique est son nombre d'arguments (= nombre de fils dans l'arbre).

 \neg est d'arité 1 (unaire) et \land, \lor sont d'arités 2 (binaire).

Formule logique : Représentation par un arbre

On peut représenter une formule logique sous forme d'un arbre. Par exemple, $(x \land \neg y) \lor \neg (y \lor z)$ est représenté par :

Exercice

Écrire des fonctions pour obtenir la taille (nombre de symboles) et la hauteur (de l'arbre associé) d'une formule logique.

Formule logique : Représentation par un arbre

On peut représenter une formule logique sous forme d'un arbre. Par exemple, $(x \land \neg y) \lor \neg (y \lor z)$ est représenté par :

Exercice

Quelle est la taille d'une formule contenant b connecteurs binaires et n symboles de négations ?

Soit $P(\varphi)$ une propriété sur les formules φ (en fixant l'ensemble V des variables).

On peut montrer $\forall \varphi, P(\varphi)$:

f 0 Par récurrence sur la taille/hauteur de arphi

Soit $P(\varphi)$ une propriété sur les formules φ (en fixant l'ensemble V des variables).

On peut montrer $\forall \varphi, P(\varphi)$:

- ullet Par récurrence sur la taille/hauteur de arphi
- Par induction structurelle

Pour montrer $\forall \varphi, P(\varphi)$ par induction structurelle, il faut montrer :

- $P(\varphi) \implies P(\neg \varphi)$

Pour montrer $\forall \varphi, P(\varphi)$ par induction structurelle, il faut montrer :

- $P(\varphi) \implies P(\neg \varphi)$

Remarque : On a un schéma de preuve similaire pour les arbres binaires, et toutes les structures définies récursivement.

Pour montrer $\forall \varphi, P(\varphi)$ par induction structurelle, il faut montrer :

- $P(\varphi) \implies P(\neg \varphi)$

Remarque : On a un schéma de preuve similaire pour les arbres binaires, et toutes les structures définies récursivement.

Exemples:

- $P(\varphi) =$ « Si φ possède n opérateurs binaires alors son nombre de terminaux est n+1 » (TD)
- $P(\varphi) = \ll \varphi$ est équivalence à une formule où toutes les négations sont sur les variables »

Formule logique : Sous-formule

Si φ est représenté par un arbre A, une **sous-formule** de φ est un sous-arbre de A.

Formule logique : Sous-formule

Si φ est représenté par un arbre A, une **sous-formule** de φ est un sous-arbre de A.

Dit autrement, on associe à chaque formule φ l'ensemble des sous-formules $F(\varphi)$ inductivement :

$$\forall x \in V: \ F(x) = \{x\}$$

$$F(\neg \varphi) = \{\neg \varphi\} \cup F(\varphi)$$

$$\forall * \in \{\lor, \land\}: \ F(\varphi * \psi) = \{\varphi * \psi\} \cup F(\varphi) \cup F(\psi)$$

Formule logique : Autres opérateurs

Définition

- On définit $\varphi \longrightarrow \psi$ par $\neg \varphi \lor \psi$.
- On définit $\varphi \longleftrightarrow \psi$ par $\varphi \longrightarrow \psi \land \psi \longrightarrow \varphi$.

Formule logique : Autres opérateurs

Définition

- On définit $\varphi \longrightarrow \psi$ par $\neg \varphi \lor \psi$.
- On définit $\varphi \longleftrightarrow \psi$ par $\varphi \longrightarrow \psi \land \psi \longrightarrow \varphi$.

```
let implies p q = Or(Not p, q)
let equiv p q = And(implies p q, implies q p)
```

Formule logique : Substitution

Si φ , ψ sont des formules et x une variable, on note $\varphi[x\leftarrow\psi]$ la substitution de x par ψ , définie par :

$$\forall x \in V, \ x[x \leftarrow \psi] = \psi$$

$$T[x \leftarrow \psi] = T$$

$$F[x \leftarrow \psi] = F$$

$$\forall * \in \{\lor, \land\}, \ (\varphi_1 * \varphi_2)[x \leftarrow \psi] = \varphi_1[x \leftarrow \psi] * \varphi_2[x \leftarrow \psi]$$

Exercice

Écrire une fonction OCaml effectuant une substitution.

Formule logique : Quantificateurs

Si φ est une formule, on peut définir \forall et \exists par :

$$\forall x, \varphi = \varphi[x \leftarrow T] \land \varphi[x \leftarrow F]$$

$$\exists x, \varphi = \varphi[x \leftarrow T] \lor \varphi[x \leftarrow F]$$