# Chapitre 6: Théorème du moment cinétique

# I Moment d'une force, moment cinétique

#### A) Produit vectoriel

 $\vec{a} \wedge \vec{b}$ : Produit vectoriel de  $\vec{a}$  par  $\vec{b}$ 

- Direction perpendiculaire à  $\vec{a}$  et à  $\vec{b}$
- Sens de sorte que  $(\vec{a}, \vec{b}, \vec{a} \wedge \vec{b})$  soit direct (règle de la main droite)
- Module  $\|\vec{a} \wedge \vec{b}\| = \|\vec{a}\| \times \|\vec{b}\| \times |\sin(\vec{a}, \vec{b})|$



Propriétés :  $\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$ 

$$\vec{a} / / \vec{b} \iff \vec{a} \wedge \vec{b} = \vec{0}$$

Dans une base  $(\vec{u}, \vec{v}, \vec{w})$  triorthonormée directe :

$$\vec{a} \begin{vmatrix} a_1 & b_1 \\ a_2 \wedge \vec{b} \\ b_3 \end{vmatrix} b_2 = \begin{vmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \end{vmatrix} + 1 \text{ sur les indices}$$

$$\begin{vmatrix} a_1 & b_2 \\ a_3b_1 - a_2b_3 \end{vmatrix} + 1 \text{ sur les indices}$$

Pour la base cartésienne  $(\vec{i}, \vec{j}, \vec{k})$ :

 $\vec{j} \wedge \vec{k}$  : Colinéaire à  $\vec{i}$  , de module 1, et de même sens que  $\vec{i}$  .

Donc 
$$\vec{j} \wedge \vec{k} = \vec{i}$$

## B) Moment d'une force

# 1) Moment d'une force en un point

Soit M soumis à une force  $\vec{F}$ , O un point de l'espace.

On définit  $\vec{M}_O(\vec{F}) = \overrightarrow{OM} \wedge \vec{F}$ , moment en O de la force  $\vec{F}$ .



Dans le plan  $(O, M, \vec{F})$ :



$$\|\vec{M}_{O}(\vec{F})\| = \|\overrightarrow{OM}\| \times \|\vec{F}\| \times |\sin \alpha| = OH \times \|\vec{F}\|$$

Si l'axe  $(M, \vec{F})$  passe par  $O, \vec{M}_O(\vec{F}) = \vec{0}$ 

#### 2) Moment d'une force par rapport à un axe $\Delta$ orienté

On considère un axe  $\Delta$ , orienté par le vecteur unitaire  $\vec{u}_{\Delta}$ 



On a, par définition :  $M_{\Delta}(\vec{F}) = \vec{M}_{O}(\vec{F}) \cdot \vec{u}_{\Delta}$ 

Cette définition est indépendante de O:

$$\begin{split} \text{si } O &\in \Delta : \vec{M}_{O'}(\vec{F}) \cdot \vec{u}_{\Delta} = (\overrightarrow{O'M} \wedge \vec{F}) \cdot \vec{u}_{\Delta} = (\overrightarrow{O'O} \wedge \vec{F} + \overrightarrow{OM} \wedge \vec{F}) \cdot \vec{u}_{\Delta} \\ &= (\underbrace{\overrightarrow{O'O} \wedge \vec{F}}_{\perp \vec{u}_{\Delta}}) \cdot \vec{u}_{\Delta} + (\overrightarrow{OM} \wedge \vec{F}) \cdot \vec{u}_{\Delta} = \vec{M}_{O}(\vec{F}) \cdot \vec{u}_{\Delta} \end{split}$$

### <u>Propriété</u>



On a :  $\vec{F} = \vec{F}_{/\!/} + \vec{F}_{\perp}$  avec  $\vec{F}_{\perp}$  perpendiculaire à  $\Delta$ ,  $\vec{F}_{/\!/}$  parallèle à  $\Delta$ .

On a alors: 
$$M_{\Delta}(\vec{F}) = (\overrightarrow{OM} \wedge \vec{F}) \cdot \vec{u}_{\Delta} = (\underbrace{\overrightarrow{OM}} \wedge \vec{F}_{\parallel}) + \overrightarrow{OM} \wedge \vec{F}_{\perp}) \cdot \vec{u}_{\Delta}$$

$$= (\overrightarrow{OM} \wedge \vec{F}_{\perp}) \cdot \vec{u}_{\Delta} = M_{\Delta}(\vec{F}_{\perp})$$

Cas particulier :  $\vec{F}$  //  $\Delta \Rightarrow \vec{F}_{\perp} = \vec{0} \Rightarrow M_{\Delta}(\vec{F}) = 0$ 

Dans le cas général : on peut se ramener au cas où  $\vec{F} \perp \Delta$ On a dans le plan  $(M, \vec{F}, \vec{A} \perp \Delta)$  : (avec  $\vec{F} \perp \Delta$ )



 $\alpha = (\overrightarrow{OM}, \vec{F})$  orienté par  $\vec{u}_{\Delta}$ 

$$\begin{split} M_{_{\Delta}}(\vec{F}) &= (\overrightarrow{OM} \wedge \vec{F}) \cdot \vec{u}_{_{\Delta}} = (\left\| \overrightarrow{OM} \right\| \times \left\| \vec{F} \right\| \times \sin \alpha \cdot \vec{u}_{_{\Delta}}) \cdot \vec{u}_{_{\Delta}} \\ &= \left\| \overrightarrow{OM} \right\| \times \left\| \vec{F} \right\| \times \sin \alpha \end{split}$$

 $M_{\Delta}(\vec{F})>0$  si  $\alpha>0$ , c'est-à-dire si  $\vec{F}$  tend à faire tourner M dans le sens direct associé à  $\vec{u}_{\Delta}$ 

 $M_{\Delta}(\vec{F})$  < 0 si  $\alpha$  < 0, c'est-à-dire si  $\vec{F}$  tend à faire tourner M dans le sens horaire associé à  $\vec{u}_{\Delta}$ 

$$|M_{\Delta}(\vec{F})| = ||\overrightarrow{OM}|| \times ||\overrightarrow{F}|| \times |\sin \alpha| = OH \times ||\overrightarrow{F}||$$

Donc 
$$M_{\Delta}(\vec{F}) = OH \times ||\vec{F}|| \quad \text{si } \alpha > 0$$

et 
$$M_{\Delta}(\vec{F}) = -OH \times ||\vec{F}|| \text{ si } \alpha < 0$$

(Attention, c'est uniquement lorsque  $\vec{F} \perp \Delta$ )

OH est appelé bras de levier.

Exemple:



On verra que la condition d'équilibre s'écrit  $\sum M_{\Delta} = 0$ 

$$\Leftrightarrow M_{\Lambda}(\vec{P}) + M_{\Lambda}(\vec{F}_{on}) = 0$$

$$\Leftrightarrow -M \times g \times d + F_{op}D = 0$$

$$\Leftrightarrow F_{\text{op}} = \frac{d}{D}M \times g$$

# C) Moment cinétique dans (R)

Rappel : quantité de mouvement de M dans (R) :

$$\vec{p}_{M/(R)} = m \times \vec{v}_{M/(R)}$$

Moment cinétique en O de M dans (R):

$$\vec{\sigma}_{O/(R)}(M) = \overrightarrow{OM} \wedge \vec{p}_{M/(R)} = \overrightarrow{OM} \wedge m \cdot \vec{v}_{M/(R)}$$

Moment cinétique de M dans (R) autour de  $\Delta$  orienté :





$$\begin{split} M_{\Delta}(\vec{F}) &= \pm OH \times m \times v_{\perp} \\ & \left\{ + OH \times m \times v_{\perp} \text{ si M tourne dans le sens positif par rapport à } \vec{u}_{\Delta} \right. \\ & \left. - OH \times m \times v_{\perp} \text{ si M tourne dans le sens négatif par rapport à } \vec{u}_{\Delta} \right. \end{split}$$

## II Théorème du moment cinétique

#### A) Enoncé, démonstration

On considère un référentiel (R) galiléen, O un point fixe dans (R), M de masse m soumis à une résultante des forces  $\vec{F}$ .

On a:

$$\begin{split} \vec{\sigma}_{O/\!(R)}(M) &= OM \wedge m \cdot \vec{v}_{M/\!(R)} \\ \frac{d(\vec{\sigma}_{O/\!(R)}(M))}{dt} \bigg|_{(R)} &= \underbrace{\frac{d(\overrightarrow{OM})}{dt}}_{(R)} \wedge m \cdot \vec{v}_{M/\!(R)} + \overrightarrow{OM} \wedge \underbrace{\frac{d(m \cdot \vec{v}_{M/\!(R)})}{dt}}_{=m\vec{a}_{M/\!(R)} = \vec{F}} \\ &= \vec{0} + \overrightarrow{OM} \wedge \vec{F} = \vec{M}_0(\vec{F}) \end{split}$$

D'où le théorème

Dot le theoreme. 
$$\frac{d(\vec{\sigma}_{O/(R)}(M))}{dt}\bigg|_{(R)} = \vec{M}_0(\vec{F})$$
 ( $\vec{F}$  est la résultante des forces) Ainsi,  $\vec{M}_0(\vec{F})$  correspond à l'aptitude de  $\vec{F}$  à modifier le mouvement de rotation

de M par rapport à O.

On considère un axe  $\Delta$  orienté, fixe dans (R), passant par O.

(C'est-à-dire que O et  $\vec{u}_{\Delta}$  sont fixes)



#### B) Utilisation du théorème du moment cinétique (TMC)

Remarque : le Théorème du Moment Cinétique en un point est parfaitement équivalent à la Relation Fondamentale de la Dynamique

On l'utilise quand une force  $\vec{F}$  inconnue « passe » par O. Ainsi,  $\vec{M}_O(\vec{F}) = \vec{0}$ .

$$O \stackrel{\star}{\overrightarrow{F}} M$$

Pour le théorème du moment cinétique projeté sur un axe  $\Delta$ :

Si  $\vec{F}$  passe par  $\Delta$  ou si  $\vec{F}/\!/\Delta$ , alors  $M_{\Delta}(\vec{F}) = 0$ .

## C) Application: pendule simple



On est dans le référentiel terrestre  $(R_T)$  supposé galiléen.

$$\overrightarrow{OM} = L \cdot \vec{u}_r$$

$$\vec{v}_{M/(R_T)} = L \dot{\theta} \cdot \vec{u}_{\theta}$$

$$\vec{\sigma}_{O/(R_T)}(M) = \overrightarrow{OM} \wedge m \cdot \vec{v}_{M/(R_T)}$$

$$= \begin{vmatrix} L & 0 & 0 \\ 0 \wedge mL\dot{\theta} = 0 & 0 \\ 0 & 0 & mL^2\dot{\theta} \cdot \vec{u}_z \end{vmatrix}$$

$$\vec{M}_0(\vec{T}) = \overrightarrow{OM} \wedge \vec{T} = \vec{0}$$

$$\vec{M}_0(\vec{P}) = -OH \times mg \cdot \vec{u}_z = -L \sin \theta \times mg \cdot \vec{u}_z$$
 (reste valable quand  $\theta < 0$ )

Théorème du moment cinétique dans  $(R_T)$  galiléen à M:

$$\left. \frac{d(\vec{\sigma}_{O/(R_T)}(M))}{dt} \right|_{(R_T)} = \vec{M}_0(\vec{T}) + \vec{M}_0(\vec{P}) = \vec{M}_0(\vec{P})$$

$$\Leftrightarrow mL^2\ddot{\theta} \cdot \vec{u}_z = -L\sin\theta \times mg \cdot \vec{u}_z$$

$$\Leftrightarrow \ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

Alternative : on considère l'axe  $\Delta = (O, \vec{u}_{\Delta})$ .

$$\vec{\sigma}_{\Delta/(R_T)}(M) = (mL^2\dot{\theta}\cdot\vec{u}_z)\cdot\vec{u}_z = mL^2\dot{\theta}$$

$$M_{\Delta}(\vec{T}) = 0$$

$$M_{\Delta}(\vec{P}) = L \times (-mg\sin\theta)$$

Donc 
$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$