Planche nº 5. Réduction. Corrigé

Exercice nº 1

1ère solution. $A = 2J - I_3$ où $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. On a $J^2 = 3J$ et plus généralement $\forall k \in \mathbb{N}^*$, $J^k = 3^{k-1}J$. Soit $n \in \mathbb{N}^*$. Puisque les matrices 2J et -I commutent, la formule du binôme de Newton permet d'écrire

$$\begin{split} A^n &= (2J-I_3)^n = (-I_3)^n + \sum_{k=1}^n \binom{n}{k} (2J)^k \left(-I_3\right)^{n-k} = (-1)^n I_3 + \left(\sum_{k=1}^n \binom{n}{k} 2^k 3^{k-1} (-1)^{n-k}\right) J \\ &= (-1)^n I_3 + \frac{1}{3} \left(\sum_{k=1}^n \binom{n}{k} 6^k (-1)^{n-k}\right) J = (-1)^n I_3 + \frac{1}{3} \left((6-1)^n - (-1)^n\right) J \\ &= \frac{1}{3} \left(\begin{array}{ccc} 5^n + 2(-1)^n & 5^n - (-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n + 2(-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n - (-1)^n & 5^n + 2(-1)^n \end{array}\right), \end{split}$$

ce qui reste vrai quand n = 0.

Soit de nouveau $n \in \mathbb{N}^*$.

$$\begin{split} \left((-1)^n I_3 + \frac{1}{3} \left(5^n - (-1)^n \right) J \right) \times \left((-1)^{-n} I_3 + \frac{1}{3} \left(5^{-n} - (-1)^{-n} \right) J \right) \\ &= I_3 + \frac{1}{3} \left((-5)^n - 1 + (-5)^{-n} - 1 \right) J + \frac{1}{9} \left(1 - (-5)^n - (-5)^{-n} + 1 \right) J^2 \\ &= I_3 + \frac{1}{3} \left((-5)^n - 1 + (-5)^{-n} - 1 \right) J + \frac{3}{9} \left(1 - (-5)^n - (-5)^{-n} + 1 \right) J = I_3, \end{split}$$

et donc A^n est inversible et

$$A^{-n} = \frac{1}{3} \left(\begin{array}{cccc} 5^{-n} + 2(-1)^{-n} & 5^{-n} - (-1)^{-n} & 5^{-n} - (-1)^{-n} \\ 5^{-n} - (-1)^{-n} & 5^{-n} + 2(-1)^{-n} & 5^{-n} - (-1)^{-n} \\ 5^{-n} - (-1)^{-n} & 5^{-n} - (-1)^{-n} & 5^{-n} + 2(-1)^{-n} \end{array} \right).$$

Finalement

$$\forall n \in \mathbb{Z}, \, A^n = \frac{1}{3} \left(\begin{array}{ccc} 5^n + 2(-1)^n & 5^n - (-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n + 2(-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n - (-1)^n & 5^n + 2(-1)^n \end{array} \right).$$

2ème solution. Puisque $\operatorname{rg}(A+I)=1$, $\dim(\operatorname{Ker}(A+I))=2$ et -1 est valeur propre de A d'ordre au moins 2. La troisième valeur propre λ est fournie par la trace : $\lambda-1-1=3$ et donc $\lambda=5$. Par suite, $\chi_A=(X+1)^2(X-5)$. On note que 0 n'est pas valeur propre de A et donc A est inversible.

De plus,
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{-1} \Leftrightarrow x+y+z=0$$
 et donc $E_{-1} = \operatorname{Vect}(e_1,e_2)$ où $e_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

De même, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_5 \Leftrightarrow x=y=z$ et $E_5 = \operatorname{Vect}(e_3)$ où $e_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

On pose $P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ et $D = \operatorname{diag}(-1,-1,5)$ et on a $A = PDP^{-1}$.

Calcul de P^{-1} . Soit (i, j, k) la base canonique de \mathbb{R}^3 .

$$\begin{cases} e_{1} = i - j \\ e_{2} = i - k \\ e_{3} = i + j + k \end{cases} \Leftrightarrow \begin{cases} j = i - e_{1} \\ k = i - e_{2} \\ e_{3} = i + i - e_{1} + i - e_{2} \end{cases} \Leftrightarrow \begin{cases} i = \frac{1}{3}(e_{1} + e_{2} + e_{3}) \\ j = \frac{1}{3}(-2e_{1} + e_{2} + e_{3}) \\ k = \frac{1}{3}(e_{1} - 2e_{2} + e_{3}) \end{cases}$$

et donc $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$. Soit alors $n \in \mathbb{Z}$.

$$\begin{split} A^n &= PD^n P^{-1} = \frac{1}{3} \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{array} \right) \left(\begin{array}{ccc} (-1)^n & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 5^n \end{array} \right) \left(\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) \\ &= \frac{1}{3} \left(\begin{array}{ccc} (-1)^n & (-1)^n & 5^n \\ -(-1)^n & 0 & 5^n \\ 0 & -(-1)^n & 5^n \end{array} \right) \left(\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) = \frac{1}{3} \left(\begin{array}{ccc} 5^n + 2(-1)^n & 5^n - (-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n + 2(-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n - (-1)^n \end{array} \right), \end{split}$$

et on retrouve le résultat obtenu plus haut, le calcul ayant été mené directement avec n entier relatif.

3ème solution. Soit $n \in \mathbb{N}^*$. La division euclidienne de X^n par χ_A fournit trois réels a_n , b_n et c_n et un polynôme Q_n tels que $X^n = \chi_A Q_n + a_n X^2 + b_n X + c_n$. En prenant les valeurs des deux membres en 5, puis la valeur des deux membres ainsi que de leurs dérivées en -1, on obtient

$$\left\{ \begin{array}{l} 25\alpha_n + 5b_n + c_n = 5^n \\ \alpha_n - b_n + c_n = (-1)^n \\ -2\alpha_n + b_n = n(-1)^{n-1} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} b_n = 2\alpha_n - n(-1)^n \\ 35\alpha_n + c_n = 5n(-1)^n + 5^n \\ -\alpha_n + c_n = -(n-1)(-1)^n \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} \alpha_n = \frac{1}{36} \left(5^n + (6n-1)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ b_n = \frac{1}{36} \left(2 \times 5^n + (-24n-2)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (6n-1)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \end{array} \right. \\ \left. \begin{array}{l} a_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right) \\ c_n = \frac{1}{36} \left(5^n + (-30n+35)(-1)^n \right)$$

Le théorème de Cayley-Hamilton fournit alors $A^n = \chi_A(A)Q_n(A) + a_nA^2 + b_nA + c_nI_3 = a_nA^2 + b_nA + c_nI_3$ puis

$$\begin{split} A^n &= \frac{1}{36} \left((5^n + (6n-1)(-1)^n) \, A^2 + 2(5^n - (12n+1)(-1)^n) A + (5^n + (-30n+35)(-1)^n) \, I_3 \right) \\ &= \frac{1}{36} \left((5^n + (6n-1)(-1)^n) \left(\begin{array}{ccc} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{array} \right) + 2 (5^n - (12n+1)(-1)^n) \left(\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array} \right) \\ &+ (5^n + (-30n+35)(-1)^n) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \right) \\ &= \frac{1}{36} \left(\begin{array}{cccc} 12 \times 5^n + 24(-1)^n & 12 \times 5^n - 12(-1)^n & 12 \times 5^n - 12(-1)^n \\ 12 \times 5^n - 12(-1)^n & 12 \times 5^n + 24(-1)^n & 12 \times 5^n - 12(-1)^n \\ 12 \times 5^n - 12(-1)^n & 12 \times 5^n - 12(-1)^n & 12 \times 5^n + 24(-1)^n \end{array} \right) \\ &= \frac{1}{3} \left(\begin{array}{cccc} 5^n + 2(-1)^n & 5^n - (-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n + 2(-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n - (-1)^n & 5^n + 2(-1)^n \end{array} \right). \end{split}$$

On retrouve encore une fois le même résultat mais pour $n \in \mathbb{N}^*$ uniquement.

3ème solution (bis). $\chi_A = (X+1)^2(X-5)$ et donc, ou bien $\mu_A = (X+1)^2(X-5)$, ou bien $\mu_A = (X+1)(X-5)$. De plus, $(A+I_3)(A-5I_3) = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} = 0_3$. Donc, $\mu_A = (X+1)(X-5)$. La division euclidienne de

 X^n par μ_A fournit deux réels a_n et b_n et un polynôme Q_n tels que $X^n = \mu_A Q_n + a_n X + b_n$. En prenant les valeurs des deux membres en 1 et 5, on obtient

$$\begin{cases} 5a_n + b_n = 5^n \\ -a_n + b_n = (-1)^n \end{cases} \Leftrightarrow \begin{cases} 6a_n = 5^n - (-1)^n \\ 6b_n = 5^n + 5(-1)n \end{cases} \Leftrightarrow \begin{cases} a_n = \frac{1}{6}(5^n - (-1)^n) \\ b_n = \frac{1}{6}(5^n + 5(-1)^n) \end{cases}.$$

Par suite,

$$\begin{split} A_n &= \mu_A(A)Q_n(A) + a_nA + b_nI_3 = a_nA + b_nI_3 \\ &= \frac{1}{6} \left((5^n - (-1)^n) \, A + (5^n + 5(-1)n) \, I_3 \right) = \frac{1}{3} \left(\begin{array}{ccc} 5^n + 2(-1)^n & 5^n - (-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n + 2(-1)^n & 5^n - (-1)^n \\ 5^n - (-1)^n & 5^n - (-1)^n & 5^n + 2(-1)^n \end{array} \right). \end{split}$$

Soit $X \in \mathcal{M}_3(\mathbb{R})$. Si $X^2 = A$ alors $AX = X^3 = XA$ et donc X et A commutent.

A admet trois valeurs propres réelles et simples à savoir 1, 3 et 4. Donc A est diagonalisable dans \mathbb{R} et les sous espaces propres de A sont des droites. X commute avec A et donc laisse stable les trois droites propres de A.

Ainsi, un vecteur propre de A associé à la valeur propre 1 (ou 3, ou 4) est encore un vecteur propre de X (mais pas nécessairement avec la même valeur propre) puis une base de $\mathcal{M}_{3,1}(\mathbb{R})$ formée de vecteurs propres de A est également une base de vecteurs propres de X ou encore, si P est une matrice réelle inversible telle que $P^{-1}AP$ soit la matrice diagonale $D_0 = \operatorname{diag}(3,4,1)$ alors pour la même matrice P, $P^{-1}XP$ est une matrice diagonale D. De plus

$$X^2 = A \Leftrightarrow PD^2P^{-1} = PD_0P^{-1} \Leftrightarrow D^2 = D_0 \Leftrightarrow D = \operatorname{diag}(\pm\sqrt{3},\pm2,\pm1)$$

ce qui fournit huit solutions deux à opposées. On peut prendre $P = \begin{pmatrix} 2 & 0 & 0 \\ -16 & 1 & 0 \\ 5 & 0 & 1 \end{pmatrix}$ puis $P^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 8 & 1 & 0 \\ -5/2 & 0 & 1 \end{pmatrix}$. D'où

les solutions

$$\begin{pmatrix} 2 & 0 & 0 \\ -16 & 1 & 0 \\ 5 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3}\varepsilon_1 & 0 & 0 \\ 0 & 2\varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 0 \\ 8 & 1 & 0 \\ -5/2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2\sqrt{3}\varepsilon_1 & 0 & 0 \\ -16\sqrt{3}\varepsilon_1 & 2\varepsilon_2 & 0 \\ 5\sqrt{3}\varepsilon_1 & 0 & \varepsilon_3 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 0 \\ 8 & 1 & 0 \\ -5/2 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{3}\varepsilon_1 & 0 & 0 \\ -8\sqrt{3}\varepsilon_1 + 16\varepsilon_2 & 2\varepsilon_2 & 0 \\ 5(\sqrt{3}\varepsilon_1 - \varepsilon_3)/2 & 0 & \varepsilon_3 \end{pmatrix} .$$

où $(\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3$.

Exercice nº 3

précisément

1) En développant suivant la dernière colonne, on obtient

$$\chi_A = \left| \begin{array}{ccc} X-3 & -1 & 0 \\ 4 & X+1 & 0 \\ -4 & -8 & X+2 \end{array} \right| = (X+2)((X-3)(X+1)+4) = (X+2)(X^2-2X+1) = (X+2)(X-1)^2.$$

 $A \ \mathrm{diagonalisable} \Rightarrow \dim(\mathrm{Ker}(A-I)) = 2 \Rightarrow \mathrm{rg}(A-I) = 1 \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{.} \ \mathrm{Donc} \ A \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{diagonalisable}.$

$$\mathsf{E}_{-2} = \mathrm{Vect}(e_1) \text{ où } e_1 = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) \text{ et } \mathsf{E}_1 = \mathrm{Vect}(e_2) \text{ où } e_2 = \left(\begin{array}{c} 1 \\ -2 \\ -4 \end{array}\right).$$

3) On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est A. Le théorème de CAYLEY-HAMILTON et le théorème de décomposition des noyaux permettent d'affirmer

$$\mathcal{M}_{3,1}(\mathbb{R}) = \operatorname{Ker}(A + 2I) \oplus \operatorname{Ker}((A - I)^2).$$

De plus, chacun des sous-espaces $\operatorname{Ker}(A+2I)$ et $\operatorname{Ker}\left((A-I)^2\right)$ étant stables par f, la matrice de f dans toute base adaptée à cette décomposition est diagonale par blocs. Enfin, $\operatorname{Ker}(A-I)$ est une droite vectorielle contenue dans le plan $\operatorname{Ker}\left((A-I)^2\right)$ et en choisissant une base de $\operatorname{Ker}\left((A-I)^2\right)$ dont l'un des deux vecteurs est dans $\operatorname{Ker}(A-I)$, la matrice de f aura la forme voulue.

On a déjà choisi
$$e_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 et $e_2 = \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}$ puis on prend $e_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. On note $P = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -2 & -1 \\ 1 & -4 & 0 \end{pmatrix}$. P est inversible d'inverse $P^{-1} = \begin{pmatrix} -4 & -4 & 1 \\ -1 & -1 & 0 \\ 2 & 1 & 0 \end{pmatrix}$. On peut déjà affirmer que $P^{-1}AP$ est de la forme $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & \times \\ 0 & 0 & 1 \end{pmatrix}$. Plus

$$Ae_3 - e_3 = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix} = e_2$$

et donc $Ae_3 = e_2 + e_3$ puis

$$A = PTP^{-1} \text{ où } P = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -2 & -1 \\ 1 & -4 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} -4 & -4 & 1 \\ -1 & -1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \text{ et } T = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

4) Soit $n \in \mathbb{N}$. Posons T = D + N où $D = \operatorname{diag}(-2, 1, 1)$ et $N = E_{2,3}$. On a $ND = E_{2,3}$ $(-2E_{1,1} + E_{2,2} + E_{3,3}) = E_{2,3} = DN$ et $N^2 = 0$. Puisque les matrices D et N commutent, la formule du binôme de Newton permet d'écrire (en tenant compte du fait que $N^k = 0$ pour $k \ge 2$),

$$\begin{split} T^n &= D^n + \binom{n}{1} D^{n-1} N = \mathrm{diag}((-2)^n, 1, 1) + n \; \mathrm{diag}((-2)^{n-1}, 1, 1) E_{2,3} = \mathrm{diag}((-2)^n, 1, 1) + n E_{2,3} \\ &= \left(\begin{array}{ccc} (-2)^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{array} \right). \end{split}$$

Puis

$$\begin{split} A^n &= PT^n P^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -2 & -1 \\ 1 & -4 & 0 \end{pmatrix} \begin{pmatrix} (-2)^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -4 & -4 & 1 \\ -1 & -1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 & n+1 \\ 0 & -2 & -2n-1 \\ (-2)^n & -4 & -4n \end{pmatrix} \begin{pmatrix} -4 & -4 & 1 \\ -1 & -1 & 0 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2n+1 & n & 0 \\ -4n & -2n+1 & 0 \\ -4(-2)^n - 8n+4 & -4(-2)^n - 4n+4 & (-2)^n \end{pmatrix}. \end{split}$$

Exercice nº 4

Soit P un élément de $\mathbb{R}_{2n}[X]$. f(P) est un polynôme de degré inférieur ou égal à 2n+1 et de plus, si $\mathfrak a$ est le coefficient de X^{2n} dans P, le coefficient de X^{2n+1} dans f(P) est $2n\mathfrak a-2n\mathfrak a=0$. Donc f(P) est un élément de $\mathbb{R}_{2n}[X]$. f est une application de $\mathbb{R}_{2n}[X]$ dans lui-même.

Soient $(P,Q) \in (\mathbb{R}_{2n}[X])^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$\begin{split} f(\lambda P + \mu Q) &= \left(X^2 - 1\right)(\lambda P + \mu Q) - 2nX(\lambda P + \mu Q)' = \lambda\left(\left(X^2 - 1\right)P - 2nXP'\right) + \mu\left(\left(X^2 - 1\right)Q - 2nXQ'\right) \\ &= \lambda f(P) + \mu f(Q). \end{split}$$

Donc, f est un endomorphisme de $\mathbb{R}_{2n}[X]$.

Cherchons maintenant P polynôme non nul et λ réel tels que $f(P) = \lambda P$ ce qui équivaut à

$$\frac{P'}{P} = \frac{2nX + \lambda}{X^2 - 1} = \frac{1}{2} \left(\frac{2n + \lambda}{X - 1} + \frac{2n - \lambda}{X + 1} \right).$$

En identifiant à la décomposition en éléments simples classique de $\frac{P'}{P}$ (à savoir si $P = K(X-z_1)^{\alpha_1} \dots (X-z_k)^{\alpha_k}$ avec

 $K \neq 0 \text{ et les } z_i \text{ deux à deux distincts, alors } \frac{P'}{P} = \sum_{i=1}^k \frac{\alpha_i}{X - z_i}), \text{ on voit que nécessairement } P \text{ ne peut admettre pour racines}$

dans \mathbb{C} que -1 et 1 et d'autre part que P est de degré $\alpha_1 + \alpha_2 = \frac{1}{2}(2n + \lambda + 2n - \lambda) = 2n$. P est donc nécessairement de la forme

$$P = \alpha P_k \text{ avec } \alpha \in \mathbb{R}^* \text{ et } P_k = (X-1)^k (X+1)^{2n-k} \text{ avec } k \in \llbracket 0, 2n
rbracket.$$

Réciproquement, chaque P_k est non nul et vérifie

$$\frac{P_k'}{P_k} = \frac{k}{X-1} + \frac{2n-k}{X+1} = \frac{1}{2} \left(\frac{2n + (2k-2n)}{X-1} + \frac{2n - (2k-2n)}{X+1} \right).$$

Donc, pour chaque $k \in [0, 2n]$, P_k est vecteur propre de f associé à la valeur propre $\lambda_k = 2(k-n)$. Ainsi, f admet 2n+1 valeurs propres deux à deux distinctes, nécessairement simples car $\dim(\mathbb{R}_{2n}[X]) = 2n+1$. f est donc diagonalisable et les sous espaces propres de f sont les droites $Vect(P_k)$, $0 \le k \le 2n$.

Exercice nº 5

Soit $P = aX^3 + bX^2 + cX + d \in \mathbb{R}_3[X]$

$$AP - (X^4 - X)P = (X - 1)P = aX^4 + (b - a)X^3 + (c - b)X^2 + (d - c)X - d$$

= $a(X^4 - X) + (b - a)X^3 + (c - b)X^2 + (a + d - c)X - d$.

 $\mathrm{et}\;\mathrm{donc}\;AP = (X^4 - X)(P + a) + (b - a)X^3 + (c - b)X^2 + (a + d - c)X - d\;\mathrm{et}\;\mathrm{donc}\;f(P) = (b - a)X^3 + (c - b)X^2 + (a + d - c)X - d.$ Par suite, f est un endomorphisme de E et la matrice de f dans la base canonique $(1, X, X^2, X^3)$ de E est

$$A = \left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{array}\right).$$

puis

$$\chi_{A} = \begin{vmatrix} X+1 & 0 & 0 & 0 \\ -1 & X+1 & 0 & -1 \\ 0 & -1 & X+1 & 0 \\ 0 & 0 & -1 & X+1 \end{vmatrix} = (X+1) \begin{vmatrix} X+1 & 0 & -1 \\ -1 & X+1 & 0 \\ 0 & -1 & X+1 \end{vmatrix}$$
$$= (X+1)((X+1)^{3}-1) = X(X+1)(X^{2}+3X+3).$$

A admet quatre valeurs propres simples dans \mathbb{C} , deux réelles 0 et -1 et deux non réelles -1 + j et $-1 + j^2$. χ_f n'est pas scindé sur \mathbb{R} et donc f n'est pas diagonalisable.

- $\bullet \ \mathrm{Soit} \ P \in E. \ P \in \mathrm{Ker}(f) \Leftrightarrow b-a=c-b=a+d-c=-d=0 \Leftrightarrow a=b=c \ \mathrm{et} \ d=0. \ \mathrm{Ker}(f)=\mathrm{Vect}(X^3+X^2+X).$
- Soit $P \in E$. $P \in Ker(f + Id) \Leftrightarrow b = c = a + d = 0 \Leftrightarrow b = c = 0 \text{ et } d = -a$. $Ker(f + Id) = Vect(X^3 1)$.
- D'après le théorème du rang, rg(f) = 4 1 = 3 et immédiatement $Im(f) = Vect(X 1, X^2 X, X^3 X^2)$.

Si $\mathbb{K} = \mathbb{C}$, on peut continuer :

$$P \in \operatorname{Ker}(f + (1 - j)\operatorname{Id}) \Leftrightarrow b - ja = c - jb = a + d - jc = -jd = 0 \Leftrightarrow b = ja, \ c = j^2a \text{ et } d = 0.$$
 Donc
$$\operatorname{Ker}(f + (1 - j)\operatorname{Id}) = \operatorname{Vect}(X^3 + jX^2 + j^2X) \text{ et en conjuguant } \operatorname{Ker}(f + (1 - j^2)\operatorname{Id}) = \operatorname{Vect}(X^3 + j^2X^2 + jX).$$

 $\mathbf{Remarque.} \ B = X(X-1)(X-j)(X-j^2) \ \mathrm{et} \ \mathrm{on} \ \mathrm{a} \ \mathrm{trouv\acute{e}} \ \mathrm{pour} \ \mathrm{base} \ \mathrm{de} \ \mathrm{vecteurs} \ \mathrm{propres} \ \mathrm{les} \ \mathrm{quatre} \ \mathrm{polyn\^{o}mes} \ \mathrm{de} \ \mathrm{Lagrange}$ $X^3 - 1 = (X - 1)(X - j)(X - j^2)$ puis $X^3 + X^2 + X = X(X - j)(X - j^2)$ puis $X^3 + jX^2 + j^2X = X(X - 1)(X - j^2)$ et enfin $X^3+j^2X^2+jX=X(X-1)(X-j)$. C'est une généralité. On peut montrer que si $E=\mathbb{C}_n[X]$ et si B a n+1 racines deux à deux distinctes dans C alors f est diagonalisable et une base de vecteurs propres est fournie par les polynômes de LAGRANGE associés aux racines de B et ceci pour un polynôme A quelconque.

Exercice nº 6

Si p = q, le résultat est connu : $\chi_{AB} = \chi_{BA}$.

Supposons par exemple p < q. On se ramène au cas de matrices carrées en complétant. Soient $A' = \begin{pmatrix} A \\ 0_{q-p,q} \end{pmatrix}$ et

$$B' = \left(\begin{array}{ccc} B & 0_{q,q-p} \end{array}\right). \ A' \ \text{et } B' \ \text{sont des matrices carrées de format } q \ \text{et } A'B' \ \text{et } B'A' \ \text{ont même polynôme caractéristique}.$$
 Un calcul par blocs donne
$$B'A' = BA \ \text{et } A'B' = \left(\begin{array}{ccc} A \\ 0_{q-p,q} \end{array}\right) \left(\begin{array}{ccc} B & 0_{q,q-p} \end{array}\right) = \left(\begin{array}{ccc} AB & 0_{p,q-p} \\ 0_{q-p,p} & 0_{q-p,q-p} \end{array}\right).$$
 Un calcul de déterminant par blocs fournit
$$\chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une écriture plus symétrique, } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{BA} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{ou encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} = \chi^{q-p} \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{oue encore, avec une format } \chi^p \chi_{AB} \ \text{$$

 $X^q \chi_{AB}$, ce qui est vrai dans tous les cas.

$$\forall A \in \mathscr{M}_{p,\,q}(\mathbb{K}),\, \forall B \in \mathscr{M}_{q,\,p}(\mathbb{K}),\, X^p \; \chi_{BA} = X^q \; \chi_{AB}.$$

Exercice nº 7

Si u est inversible,

$$\det(u+\nu) = \det(u) \Leftrightarrow \det u \times \det \left(Id + u^{-1}\nu \right) = \det(u) \Leftrightarrow \det \left(Id + u^{-1}\nu \right) = 1.$$

u et ν commutent et donc u^{-1} et ν également car $u\nu = \nu u \Rightarrow u^{-1}u\nu u^{-1} = u^{-1}\nu u u^{-1} \Rightarrow \nu u^{-1} = u^{-1}\nu$. Mais alors, puisque ν est nilpotent, l'endomorphisme $w = u^{-1}\nu$ l'est également (car, si $\nu^p = 0$, alors $(u^{-1}\nu)^p = u^{-p}\nu^p$). Il reste donc à calculer $\det(\mathrm{Id}+w)$ où w est un endomorphisme nilpotent. On remarque que $\det(\mathrm{Id}+w) = (-1)^n\chi_w(-1)$. Il est connu que 0 est l'unique valeur propre d'un endomorphisme nilpotent et donc $\chi_w = X^n$ puis

$$\det(\mathrm{Id} + w) = (-1)^n \chi_w(-1) = (-1)^n (-1)^n = 1.$$

Le résultat est donc démontré dans le cas où $\mathfrak u$ est inversible. Si $\mathfrak u$ n'est pas inversible, $\mathfrak u+x\mathrm{Id}$ est inversible sauf pour un nombre fini de valeurs de $\mathfrak x$ et commute toujours avec $\mathfrak v$. Donc, pour tout $\mathfrak x$ sauf peut-être pour un nombre fini, $\det(\mathfrak u+x\mathrm{Id}+\mathfrak v)=\det(\mathfrak u+x\mathrm{Id})$. Ces deux polynômes coïncident en une infinité de valeurs de $\mathfrak x$ et sont donc égaux. Ils prennent en particulier la même valeur en $\mathfrak 0$ ce qui refournit $\det(\mathfrak u+\mathfrak v)=\det\mathfrak u$.

Exercice nº 8

- Si A est nilpotente, pour tout $k \in [1, n]$, A^k est nilpotente et donc 0 est l'unique valeur propre dans \mathbb{C} de A^k . Par suite, $\forall k \in [1, n]$, $\text{Tr}(A^k) = 0$.
- Réciproquement , supposons que $\forall k \in [\![1,n]\!]$, $\mathrm{Tr}(A^k) = 0$ et montrons alors que toutes les valeurs propres de A dans $\mathbb C$ sont nulles. Ceci montrera que le polynôme caractéristique de A est X^n et donc que A est nilpotente d'après le théorème de Cayley-Hamilton.

Soient $\lambda_1,...,\lambda_n$ les n valeurs propres (distinctes ou confondues) de A dans \mathbb{C} . Pour $k\in [\![1,n]\!]$, on pose $S_k=\lambda_1^k+...+\lambda_n^k$. Il s'agit de montrer que : $(\forall k\in [\![1,n]\!]$, $S_k=0)$ \Rightarrow $(\forall j\in [\![1,n]\!]$, $\lambda_j=0)$.

Les S_k , $1 \le k \le n$, sont tous nuls et par combinaisons linéaires de ces égalités, on en déduit que pour tout polynôme P de degré inférieur ou égal à n et s'annulant en 0, on a $P(\lambda_k) = 0$ (1). Il s'agit alors de bien choisir le polynôme P.

Soit $i \in [1, n]$. Soient $\mu_1, ..., \mu_p$ les valeurs propres deux à deux distinctes de A $(1 \leqslant p \leqslant n)$. On prend $P = X \prod_{i \neq i} (X - \mu_j)$

si $p \ge 2$ et P = X si p = 1. P est bien un polynôme de degré inférieur ou égal à n et s'annule en 0. L'égalité $P(\mu_i) = 0$ fournit $\mu_i = 0$ ce qu'il fallait démontrer.

Exercice nº 9

Soit $k \in \mathbb{N}^*$.

$$\begin{split} f^k g - g f^k &= f^k g - f^{k-1} g f + f^{k-1} g f - f^{k-2} g f^2 + f^{k-2} g f^2 - \ldots - f g f^{k-1} + f g f^{k-1} - g f^k \\ &= \sum_{i=0}^{k-1} (f^{k-i} g f^i - f^{k-i-1} g f^{i+1}) = \sum_{i=0}^{k-1} f^{k-i-1} (f g - g f) f^i = \sum_{i=0}^{k-1} f^{k-i-1} f f^i \\ &= k f^k \end{split}$$

ce qui reste vrai quand k = 0. Ainsi,

$$\mathrm{si}\ fg-gf=f,\ \mathrm{alors}\ \forall k\in\mathbb{N},\ f^kg-gf^k=kf^k\quad (*).$$

 $k \in \mathbb{N}^*$ donné, f^k n'est pas nul, f^k est valeur propre de ϕ associé à la valeur propre k. Par suite, si aucun des f^k n'est nul, ϕ admet une infinité de valeurs propres deux à deux distinctes. Ceci est impossible car $\dim(\mathscr{L}(E)) < +\infty$. Donc, f est nilpotent.

2ème solution. Les égalités (*) peuvent s'écrire P(f)g - gP(f) = fP'(f), (**), quand P est un polynôme de la forme X^k , $k \in \mathbb{N}$. Par linéarité, l'égalité (**) sont vraies pour tout polynôme P.

En particulier, l'égalité (**) est vraie quand P est μ_f le polynôme minimal de f et donc

$$f\mu'_{f}(f) = \mu_{f}(f)q - q\mu_{f}(f) = 0.$$

Le polynôme $X\mu_f'$ est donc un polynôme annulateur de f et on en déduit que le polynôme μ_f divise le polynôme $X\mu_f'$. Plus précisément, si $p \in \mathbb{N}^*$ est le degré de μ_f , les polynômes $p\mu_f$ et $X\mu_f'$ ayant mêmes degrés et mêmes coefficients dominants, on en déduit que $p\mu_f = X\mu_f'$ ou encore que

$$\frac{\mu_f'}{\mu_f} = \frac{p}{X}.$$

6

Par identification à la décomposition en éléments simples usuelle de $\frac{\mu_f'}{\mu_f}$, on en déduit que $\mu_f = X^p$. En particulier, $f^p = 0$ et encore une fois f est nilpotent.

Exercice nº 10

1er cas. Supposons $\alpha = \beta = 0$ et donc uv = vu. Puisque E est un C-espace de dimension finie non nulle, u admet au moins une valeur propre que l'on note λ . Le sous-espace propre $E_{\lambda}(u)$ correspondant n'est pas réduit à $\{0\}$, est stable par u et d'autre part stable par v car u et v commutent. On note u' et v' les restrictions de u et v au sous-espace $E_{\lambda}(u)$. u' et ν' sont des endomorphismes de $E_{\lambda}(u)$. De nouveau, $E_{\lambda}(u)$ est un \mathbb{C} -espace de dimension finie non nulle et donc ν' admet au moins un vecteur propre x_0 . Par construction, x_0 est un vecteur propre commun à u et v.

2ème cas. Supposons par exemple $\alpha \neq 0$.

$$\begin{split} uv - vu &= \alpha u + \mu v \Leftrightarrow (\alpha u + \beta v) \circ \frac{1}{\alpha} v - \frac{1}{\alpha} v \circ (\alpha u + \beta v) = \alpha u + \beta v \\ &\Leftrightarrow fg - gf = f \text{ en posant } f = \alpha u + \beta v \text{ et } g = \frac{1}{\alpha} v. \end{split}$$

On va chercher un vecteur propre commun à u et v dans le noyau de f. Montrons tout d'abord que Kerf n'est pas nul (on sait montrer que f est en fait nilpotent (exo n° 9) mais on peut montrer directement une propriété un peu moins forte). Si f est inversible, l'égalité fq - qf = f fournit $(q + Id) \circ f = f \circ q$ et donc $q + Id = f \circ q \circ f^{-1}$. Par suite, q et q + Idont même polynôme caractéristique (en tenant compte de $1 \leq \dim(E) < +\infty$) ou encore, si λ est valeur propre de g alors $\lambda + 1$ est encore valeur propre de q. Mais alors $\lambda + 2$, $\lambda + 3$... sont aussi valeurs propres de q et q a une infinité de valeurs propres deux à deux distinctes. Ceci est exclu et donc Kerf n'est pas réduit à {0}.

Maintenant, si x est un vecteur de Kerf, on a f(g(x)) = g(f(x)) + f(x) = 0 et g(x) est dans Kerf. Donc g laisse Kerf stable et sa restriction à Kerf est un endomorphisme de Kerf qui admet au moins une valeur propre et donc au moins un vecteur propre. Ce vecteur est bien un vecteur propre commun à f et g.

Enfin si x est vecteur propre commun à f et g alors x est vecteur propre de $v = \frac{1}{\alpha}g$ et de $u = \frac{1}{\alpha}(f - \beta v)$. x est un vecteur propre commun à u et v.

Exercice nº 11

- 1) E contient I_2 et est inclus dans $GL_2(\mathbb{R})$.
- Si A et B sont dans E alors AB est à coefficients entiers et $\det(AB) = \det A \times \det B = 1$. Donc AB est dans E.
- Si A est dans E, $\det(A^{-1}) = 1$ et en particulier $A^{-1} = \frac{1}{\det A} \operatorname{tcom}(A)$ est à coefficients entiers. On en déduit que A^{-1} est dans E.

Finalement

$E \ {\rm est \ un \ sous\mbox{-}groupe \ de \ } GL_2(\mathbb{R}).$

2) Soit A un élément de E tel qu'il existe un entier naturel non nul p tel que $A^p = I_2$.

A est diagonalisable dans \mathbb{C} car annule le polynôme à racines simples $X^p - 1$.

A admet deux valeurs propres distinctes ou confondues qui sont des racines p-èmes de 1 dans \mathbb{C} et puisque A est réelle, on obtient les cas suivants :

1er cas. Si SpA = (1, 1), puisque A est diagonalisable, A est semblable à I_2 et par suite $A = I_2$. Dans ce cas, $A^{12} = I_2$.

2ème cas. Si SpA = (-1, -1), $A = -I_2$ et $A^{12} = I_2$.

3ème cas. Si $\mathrm{SpA}=(1,-1)$ alors A est semblable à $\mathrm{diag}(1,-1)$ et donc $\mathrm{A}^2=\mathrm{I}_2$ puis encore une fois $\mathrm{A}^{12}=\mathrm{I}_2$.

4ème cas. Si SpA = $(e^{i\theta}, e^{-i\theta})$. Dans ce cas TrA = $2\cos\theta$ est un entier ce qui impose $2\cos\theta \in \{-2, -1, 0, 1, 2\}$. Les cas $\cos \theta = 1$ et $\cos \theta = -1$ ont déjà été étudié.

- Si $\cos\theta=0$, SpA = (i,-i) et A est semblable à diag(i,-i). Donc $A^4=I_2$ puis $A^{12}=I_2$. Si $\cos\theta=\pm\frac{1}{2}$, SpA = (j,j^2) ou SpA = $(-j,-j^2)$. Dans le premier cas, $A^3=I_2$ et dans le deuxième $A^6=I_2$.

Dans tous les cas $A^{12} = I_2$.

Exercice nº 12

On montre le résultat par récurrence sur $n \in \mathbb{N}^*$ le format de A.

- C'est clair pour n = 1.
- Soit $n \ge 1$. Supposons que toute matrice de format n et de trace nulle soit semblable à une matrice de diagonale nulle. Soient A une matrice carrée de format n+1 et de trace nulle puis f l'endomorphisme de \mathbb{K}^{n+1} de matrice A dans la base canonique $(e_1, ..., e_{n+1})$ de \mathbb{K}^{n+1} .

Si f est une homothétie de rapport noté k, alors 0 = Tr(f) = k(n+1) et donc k=0 puis f=0 puis A=0. Dans ce cas, A est effectivement semblable à une matrice de diagonale nulle.

Sinon f n'est pas une homothétie et on sait qu'il existe un vecteur u de E tel que la famille (u, f(u)) soit libre (voir exercice n° 25, planche 2). On complète la famille libre (u, f(u)) en une base de E. Le coefficient ligne 1, colonne 1, de la matrice

de f dans cette base est nul. Plus précisément, A est semblable à une matrice de la forme : A' :

Puis ${\rm Tr} A'={\rm Tr} A=0$ et par hypothèse de récurrence, A' est semblable à une matrice A_1 de diagonale nulle ou encore il existe A_1 matrice carrée de format n et de diagonale nulle et $Q\in GL_n(\mathbb{K})$ telle que $Q^{-1}A'Q=A_1$.

Mais alors, si on pose $P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & Q & \\ 0 & & & \end{pmatrix}$, P est inversible car $\det(P) = 1 \times \det(Q) \neq 0$ et un calcul par blocs montre

$$\operatorname{que} P^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & Q^{-1} \\ 0 & & & \end{pmatrix} \text{ puis que } P^{-1}AP = \begin{pmatrix} 0 & \times & \dots & \times \\ \times & & & \\ \vdots & & & & \\ & & & A_1 \\ \vdots & & & & \\ & & & \times \end{pmatrix} \text{ est de diagonale nulle.}$$

Exercice nº 13

 $\det(M) = \det\left(\begin{array}{cc} A & 4A \\ A & A \end{array}\right) = \det\left(\begin{array}{cc} -3A & 4A \\ 0 & A \end{array}\right) \ (\forall k \in \llbracket 1, n \rrbracket, \ C_k \leftarrow C_k - C_{n+k}) \ \text{et donc } \det(A) \det(-3A) = (-3)^n (\det A)^2.$

$$\det M = (-3)^{n} (\det A)^{2}.$$

L'idée de l'étude de M qui suit vient de l'étude de la matrice de format 2, $B = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$.

Une diagonalisation rapide amène à $B = \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \times \frac{1}{4} \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}$. Soit alors P la matrice de format 2n définie par blocs par $P = \begin{pmatrix} -2I_n & 2I_n \\ I_n & I_n \end{pmatrix}$. Un calcul par blocs montre que P est inversible et que $P^{-1} = \frac{1}{4} \begin{pmatrix} -I_n & 2I_n \\ I_n & 2I_n \end{pmatrix}$ puis que

$$P^{-1}MP = \frac{1}{4} \left(\begin{array}{cc} -I_n & 2I_n \\ I_n & 2I_n \end{array} \right) \left(\begin{array}{cc} A & 4A \\ A & A \end{array} \right) \left(\begin{array}{cc} -2I_n & 2I_n \\ I_n & I_n \end{array} \right) = \frac{1}{4} \left(\begin{array}{cc} A & -2A \\ 3A & 6A \end{array} \right) \left(\begin{array}{cc} -2I_n & 2I_n \\ I_n & I_n \end{array} \right) = \left(\begin{array}{cc} -A & 0 \\ 0 & 3A \end{array} \right).$$

On pose $N = \begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$. Puisque les matrices M et N sont semblables, M et N ont même polynôme caractéristique et de plus M est diagonalisable si et seulement si N l'est.

 $\text{Un calcul par blocs fournit } \chi_{M} = \chi_{-A} \times \chi_{3A}. \text{ Donc, si } \mathrm{Sp}(A) = (\lambda_{\mathfrak{i}})_{1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}}, \text{ alors } \mathrm{Sp}(M) = (-\lambda_{\mathfrak{i}})_{1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}} \cup (3\lambda_{\mathfrak{i}})_{1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}}.$

Cherchons les vecteurs propres Z de N sous la forme $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$ où X et Y sont des vecteurs colonnes de format n. Soit $\lambda \in \mathbb{C}$.

$$NZ = \lambda Z \Leftrightarrow \left(\begin{array}{cc} -A & 0 \\ 0 & 3A \end{array} \right) \left(\begin{array}{c} X \\ Y \end{array} \right) = \lambda \left(\begin{array}{c} X \\ Y \end{array} \right) \Leftrightarrow -AX = \lambda X \text{ et } 3AY = \lambda Y.$$

Par suite

 $Z \text{ est vecteur propre de } N \text{ associ\'e \`a } \lambda \Leftrightarrow (X \neq 0 \text{ ou } Y \neq 0) \text{ et } (X \in \operatorname{Ker}(A + \lambda I) \text{ et } Y \in \operatorname{Ker}\left(A - \frac{\lambda}{3}I\right)).$

Une discussion suivant λ s'en suit :

1er cas. Si $-\lambda$ et $\frac{\lambda}{3}$ ne sont pas valeurs propres de A alors λ n'est pas valeur propre de M.

 $\begin{aligned} \textbf{2\`eme cas.} & \text{Si} - \lambda \text{ est dans SpA et } \frac{\lambda}{3} \text{ n'y est pas, alors } \lambda \text{ est valeur propre de } M. \text{ Le sous-espace propre associ\'e est l'ensemble } \\ \text{des P} \left(\begin{array}{c} X \\ 0 \end{array} \right) = \left(\begin{array}{c} -2X \\ X \end{array} \right) \text{ où } X \text{ d\'ecrit Ker}(A + \lambda I). \text{ La dimension de } E_{\lambda} \text{ est alors } \dim(\text{Ker}(A + \lambda I)). \end{aligned}$

3ème cas. Si $-\lambda$ n'est pas dans SpA et $\frac{\lambda}{3}$ y est, alors λ est valeur propre de M. Le sous-espace propre associé est l'ensemble des P $\begin{pmatrix} 0 \\ Y \end{pmatrix} = \begin{pmatrix} 2Y \\ Y \end{pmatrix}$ où Y décrit Ker $\left(A - \frac{\lambda}{3}I\right)$. La dimension de E_{λ} est alors dim $\left(\operatorname{Ker}\left(A - \frac{\lambda}{3}I\right)\right)$.

4ème cas. Si $-\lambda$ est dans SpA et $\frac{\lambda}{3}$ aussi, alors λ est valeur propre de M. Le sous-espace propre associé est l'ensemble des $P\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} -2X+2Y \\ X+Y \end{pmatrix}$ où X décrit $Ker(A+\lambda I)$ et Y décrit $Ker\begin{pmatrix} A-\frac{\lambda}{3}I \end{pmatrix}$. La dimension de E_{λ} est alors $dim(Ker(A+\lambda I)) + dim\left(Ker\left(A-\frac{\lambda}{3}I\right)\right)$.

Dans tous les cas, $\dim(\mathsf{E}_\lambda(M)) = \dim(\mathsf{E}_{-\lambda}(A)) + \dim(\mathsf{E}_{\lambda/3}(A))$ (et en particulier $\dim(\mathrm{Ker}M) = 2\dim(\mathrm{Ker}A)$). Comme les applications $\lambda \mapsto -\lambda$ et $\lambda \mapsto \frac{\lambda}{3}$ sont des bijections de $\mathbb C$ sur lui-même,

$$\begin{split} A \ \mathrm{est} \ \mathrm{diagonalisable} &\Leftrightarrow \sum_{\lambda \in \mathbb{C}} \dim(E_{\lambda}(A)) = n \\ &\Leftrightarrow \sum_{\lambda \in \mathbb{C}} \dim(E_{\lambda}(A)) + \sum_{\lambda \in \mathbb{C}} \dim(E_{\lambda}(A)) = 2n \\ &\Leftrightarrow \sum_{\lambda \in \mathbb{C}} \dim(E_{-\lambda}(A)) + \sum_{\lambda \in \mathbb{C}} \dim(E_{\lambda/3}(A)) = 2n \\ &\Leftrightarrow M \ \mathrm{est} \ \mathrm{diagonalisable}. \end{split}$$

Exercice nº 14

$$\chi_A = \left| \begin{array}{cccc} X & -b & \dots & -b \\ -\alpha & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -b \\ -\alpha & \dots & -\alpha & X \end{array} \right|. \text{ Soit } f(x) = \left| \begin{array}{ccccc} X+x & -b+x & \dots & -b+x \\ -\alpha+x & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -b+x \\ -\alpha+x & \dots & -\alpha+x & X+x \end{array} \right|.$$

f est un polynôme en x. En retranchant la première colonne à toutes les autres (ce qui ne change pas la valeur de f(x)), on fait disparaître les x de colonnes n° 2, ..., n. En développant alors suivant la première colonne, on obtient un polynôme en x de degré inférieur ou égal à 1.

Ainsi, f est donc une fonction affine. Il existe donc deux nombres α et β tels que $\forall x \in \mathbb{C}$, $f(x) = \alpha x + \beta$. Les égalités $f(a) = (X - a)^n$ et $f(b) = (X - b)^n$ fournissent $\begin{cases} \alpha a + \beta = (X - a)^n \\ \alpha b + \beta = (X - b)^n \end{cases}$ et comme $a \neq b$, les formules de Cramer fournissent

$$\chi_{A} = f(0) = \beta = \frac{1}{b-a} (b(X-a)^{n} - a(X-b)^{n}).$$

Soit $\lambda \in \mathbb{C}$.

$$\lambda \ \mathrm{valeur \ propre \ de} \ A \Rightarrow \chi_A(\lambda) = 0 \Rightarrow \left(\frac{\lambda - a}{\lambda - b}\right)^n = \frac{a}{b} \Rightarrow \left|\frac{\lambda - a}{\lambda - b}\right| = \left|\frac{a}{b}\right|^{1/n}.$$

Soient M le point du plan d'affixe λ , A le point du plan d'affixe α et B le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β puis β le point du plan d'affixe β puis β pui

$$\begin{split} \lambda \ \mathrm{valeur \ propre \ de} \ A &\Rightarrow MA = kMB \Rightarrow MA^2 - k^2MB^2 = 0 \Rightarrow \left(\overrightarrow{MA} - k\overrightarrow{MB}\right). \left(\overrightarrow{MA} + k\overrightarrow{MB}\right) = 0 \\ &\Rightarrow (1-k)\overrightarrow{MI}. (1+k)\overrightarrow{MJ} = 0 \Rightarrow \overrightarrow{MI}. \overrightarrow{MJ} = 0 \\ &\Rightarrow M \ \mathrm{est \ sur \ le \ cercle \ de \ diamètre \ [I, J] \ (cercles \ d'Appolonius \ (de \ Perga)).} \end{split}$$

- 1) Les hypothèses fournissent AU = U où $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ et donc 1 est valeur propre de A.
- 2) a) Soient λ une valeur propre de A et $X=\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)\in M_{n,1}(\mathbb{C})$ un vecteur propre associé.

$$\begin{split} AX &= \lambda X \Rightarrow \forall i \in [\![1,n]\!], \ \sum_{j=1}^n \alpha_{i,j} x_j = \lambda x_i \Rightarrow \forall i \in [\![1,n]\!], \ |\lambda x_i| \leqslant \sum_{j=1}^n |\alpha_{i,j}| |x_j| \\ &\Rightarrow \forall i \in [\![1,n]\!], \ |\lambda x_i| \leqslant \left(\sum_{j=1}^n \alpha_{i,j}\right) \operatorname{Max}\{|x_j|, \ 1 \leqslant j \leqslant n\} \\ &\Rightarrow \forall i \in [\![1,n]\!], \ |\lambda||x_i| \leqslant \operatorname{Max}\{|x_j|, \ 1 \leqslant j \leqslant n\}. \end{split}$$

On choisit alors pour i un indice \mathfrak{i}_0 tel que $|x_{\mathfrak{i}_0}|=\operatorname{Max}\{|x_{\mathfrak{j}}|,\ 1\leqslant\mathfrak{j}\leqslant\mathfrak{n}\}$. Puisque X est non nul, on a $|x_{\mathfrak{i}_0}|>0$. On obtient $|\lambda||x_{\mathfrak{i}_0}|\leqslant|x_{\mathfrak{i}_0}|\text{ et donc }|\lambda|\leqslant1\text{ puisque }|x_{\mathfrak{i}_0}|>0.$

b) Plus précisément,

$$|\lambda - \alpha_{i_0,i_0}| |x_{i_0}| = \left| \sum_{j \neq i_0} \alpha_{i_0,j} x_j \right| \leqslant \sum_{j \neq i_0} \alpha_{i_0,j} |x_j| \leqslant \left(\sum_{j \neq i_0} \alpha_{i_0,j} \right) |x_{i_0}| = (1 - \alpha_{i_0,i_0}) |x_{i_0}|$$

et donc $\forall \lambda \in \operatorname{SpA}$, $|\lambda - a_{i_0,i_0}| \leq 1 - a_{i_0,i_0}$ ce qui signifie que les valeurs propres de A appartiennent au disque de centre $\omega = a_{i_0,i_0}$ et de rayon $1 - \omega$. Ce disque est tangent intérieurement au cercle de centre (1,0) et de rayon 1 en le point (1,0).

Exercice nº 16

Soit $A \in \mathcal{M}_n(\mathbb{R})$. A est antisymétrique si et seulement si $A^T = -A$. Dans ce cas

$$\chi_A(X) = \det\left(XI_{\mathfrak{n}} - A\right) = \det\left(\left(XI_{\mathfrak{n}} - A\right)^T\right) = \det\left(XI_{\mathfrak{n}} + A\right) = (-1)^{\mathfrak{n}}\det\left(-XI_{\mathfrak{n}} - A\right) = (-1)^{\mathfrak{n}}\chi_A(-X).$$

Ainsi, χ_A a la parité de n.

Exercice nº 17

Soit f l'endomorphisme de \mathbb{R}^n de matrice A dans la base canonique (e_1, \ldots, e_n) de \mathbb{R}^n . $\forall i \in [1, n], f(e_i) = e_{n+1-i}$ et donc $\forall i \in [1, n], f^2(e_i) = e_i$. Donc f est une symétrie distincte de l'identité et en particulier SpA = $\{-1, 1\}$ et f est diagonalisable. On en déduit que A est diagonalisable dans \mathbb{R} .

Exercice nº 18

1) $J^n = I$. Le polynôme $X^n - 1$, qui est à racines simples dans \mathbb{C} , est annulateur J. Donc, J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. Les valeurs propres de J sont à choisir parmi les racines \mathfrak{n} -èmes de 1 dans \mathbb{C} . On pose $\omega = e^{2i\pi/n}$. Vérifions que $\forall k \in [0, n-1], \omega^k$ est valeur propre de J.

Soient $k \in [\![0,n-1]\!]$ et $X=(x_j)_{1\leqslant j\leqslant n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{C}).$

$$JX = \omega^k X \Leftrightarrow \left\{ \begin{array}{l} x_2 = \omega^k x_1 \\ x_3 = \omega^k x_2 \\ \vdots \\ x_n = \omega^k x_{n-1} \\ x_1 = \omega^k x_n \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x_2 = \omega^k x_1 \\ x_3 = (\omega^k)^2 x_1 \\ \vdots \\ x_n = (\omega^k)^{n-1} x_1 \\ x_1 = (\omega^k)^n x_1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x_2 = \omega^k x_1 \\ x_3 = (\omega^k)^2 x_1 \\ \vdots \\ x_n = (\omega^k)^{n-1} x_1 \end{array} \right.$$

et donc

$$JX = \omega^k X \Leftrightarrow X \in \mathrm{Vect}(U_k) \text{ où } U_k = \begin{pmatrix} 1 \\ \omega^k \\ (\omega^k)^2 \\ \vdots \\ (\omega^k)^{n-1} \end{pmatrix}.$$

Donc $\forall k \in [0, n-1]$, ω^k est valeur propre de J. Les valeurs propres de J sont les n racines n-èmes de 1 dans \mathbb{C} . Ces valeurs propres sont toutes simples. Le sous espace propre associé à ω^k , $0 \le k \le n-1$, est la droite vectorielle $D_k = \operatorname{Vect}(U_k)$.

Soit P la matrice de Vandermonde des racines n-èmes de l'unité c'est-à-dire $P=(\omega^{(j-1)(k-1)})_{1\leqslant j,k\leqslant n}$ puis

 $D=\mathrm{diag}(1,\omega,...,\omega^{n-1}). \text{ On a déjà vu que } P^{-1}=\frac{1}{n}\overline{P} \text{ (planche 3, exercice n° 16) et on a}$

$$\boxed{J = PDP^{-1} \text{ avec } D = \operatorname{diag}(\omega^{j-1})_{1\leqslant j\leqslant n}, \ P = \left(\omega^{(j-1)(k-1)}\right)_{1\leqslant j,k\leqslant n} \text{ et } P^{-1} = \frac{1}{n}\overline{P} \text{ avec } \omega = e^{2i\pi/n}.}$$

Remarque. La seule connaissance de D suffit pour le 2).

2) Soit A la matrice de l'énoncé.

$$A = a_0 I_n + a_1 J + a_2 J^2 + ... + a_{n-1} J^{n-1} = Q(J) \text{ où } Q = a_0 + a_1 X + ... + a_{n-1} X^{n-1}.$$

D'après 1), $A = P \times Q(D) \times P^{-1}$ et donc A est semblable à la matrice $\operatorname{diag}(Q(1),Q(\omega),...,Q(\omega^{n-1}))$. Par suite, A a même déterminant que la matrice $\operatorname{diag}(Q(1),Q(\omega),...,Q(\omega^{n-1}))$. D'où la valeur du déterminant circulant de l'énoncé :

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & a_{n-2} \\ \vdots & & \ddots & \ddots & \vdots \\ a_2 & & \ddots & a_0 & a_1 \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{vmatrix} = \prod_{k=1}^n \left(\sum_{j=1}^n e^{\frac{2\mathfrak{i}(j-1)(k-1)\pi}{n}} a_j \right).$$

Exercice nº 19

1) Soit $\sigma \in S_n$.

$$\det(P_\sigma) = \sum_{\sigma' \in S_n} \epsilon(\sigma') p_{\sigma'(1),1} \dots p_{\sigma'(n),n} = \sum_{\sigma' \in S_n} \epsilon(\sigma') \delta_{\sigma'(1),\sigma(1)} \dots \delta_{\sigma'(n),\sigma(n)} = \epsilon(\sigma),$$

 $\mathrm{car}\ \delta_{\sigma'(1),\sigma(1)}\dots\delta_{\sigma'(n),\sigma(n)}\neq 0 \Leftrightarrow \forall i\in [\![1,n]\!],\ \sigma'(i)=\sigma(i) \Leftrightarrow \sigma'=\sigma.$

$$\forall \sigma \in S_n, \, \det(P_\sigma) = \epsilon(\sigma).$$

 $\textbf{2) a)} \ \mathrm{Soit} \ (\sigma,\sigma') \in S^2_n. \ \mathrm{Soit} \ (i,j) \in [\![1,n]\!]^2. \ \mathrm{Le \ coefficient \ ligne} \ i, \ \mathrm{colonne} \ j, \ \mathrm{de \ la \ matrice} \ P_\sigma \times P_{\sigma'} \ \mathrm{vaut}$

$$\sum_{k=1}^{n} \delta_{i,\sigma(k)} \delta_{k,\sigma'(j)}.$$

Dans cette somme, si $k \neq \sigma'(j)$, le terme correspondant est nul et quand $k = \sigma'(j)$, le terme correspondant vaut $\delta_{i,\sigma(\sigma'(j))}$. Finalement, le coefficient ligne i, colonne j, de la matrice $P_{\sigma} \times P_{\sigma'}$ vaut $\delta_{i,\sigma(\sigma'(j))}$ qui est encore le coefficient ligne i, colonne j, de la matrice $P_{\sigma \circ \sigma'}$.

$$\forall (\sigma,\sigma') \in S^2_{\mathfrak{n}}, \, P_{\sigma} \times P_{\sigma'} = P_{\sigma \circ \sigma'}.$$

b) Montrons que G est un sous-groupe du groupe $(GL_n(\mathbb{R}), \times)$. G contient $I_n = P_{Id}$ et d'autre part, G est contenu dans $GL_n(\mathbb{R})$ d'après 1). G est stable pour \times d'après 2) et pour le passage à l'inverse car pour tout $\sigma \in S_n$, $(P_{\sigma})^{-1} = P_{\sigma^{-1}} \in G$ (toujours d'après 2)). Donc

$$(G,\times) \ {\rm est \ un \ sous\text{-}groupe \ de} \ (GL_n(\mathbb{R}),\times).$$

Soit l'application $\varphi: (S_n, \circ) \to (G, \times)$. φ est un morphisme de groupes d'après 2), surjectif par construction. De $\sigma \mapsto P_{\sigma}$ plus,

$$\sigma \in \mathrm{Ker}(\phi) \Leftrightarrow P_{\sigma} = I_{\mathfrak{n}} \Leftrightarrow \forall \mathfrak{i} \in \llbracket 1, \mathfrak{n} \rrbracket, \ \sigma(\mathfrak{i}) = \mathfrak{i} \Leftrightarrow \sigma = Id_{\llbracket 1, \mathfrak{n} \rrbracket}.$$

Donc $\operatorname{Ker}(\phi) = \{\operatorname{Id}\}$ puis ϕ est injectif et finalement ϕ est un isomorphisme du groupe (S_n, \circ) sur le groupe (G, \times) .

3) Le coefficient ligne i, colonne j, de la matrice AP_σ vaut

$$\sum_{k=1}^{n} a_{i,k} \delta_{k,\sigma(j)} = a_{i,\sigma(j)}.$$

Par suite, si C_1, \ldots, C_n désignent les colonnes de la matrice A, la matrice AP_{σ} est la matrice dont les colonnes sont $C_{\sigma(1)}, \ldots, C_{\sigma(n)}$.

Si
$$A = (C_1 \dots C_n), AP_{\sigma} = (C_{\sigma(1)} \dots C_{\sigma(n)}).$$

4) Commençons par trouver le polynôme caractéristique de la matrice associée à un cycle c de longueur ℓ ($2 \le \ell \le n$). Soit f_c l'endomorphisme de $E = \mathbb{R}^n$ de matrice P_c dans la base canonique de \mathbb{R}^n . Il existe une base de E dans laquelle la matrice de f_c est $\begin{pmatrix} J_\ell & 0_{\ell,n-\ell} \\ 0_{n-\ell,\ell} & I_{n-\ell} \end{pmatrix}$ où la matrice J_ℓ est la matrice du n^o 18. Le polynôme caractéristique χ_{P_c} de P_c est donc $(X-1)^{n-\ell}(X^\ell-1)$ (voir n^o 18).

Soit maintenant $\sigma \in S_n$. On note f_{σ} l'endomorphisme de $E = \mathbb{R}^n$ de matrice P_{σ} dans la base canonique de \mathbb{R}^n . σ se décompose de manière unique à l'ordre près des facteurs en produit de cycles à supports disjoints, ces cycles commutant deux à deux.

Posons donc $\sigma = c_1 \circ ... \circ c_p$, $p \geqslant 1$, où les c_i , $1 \leqslant i \leqslant p$, sont des cycles à supports disjoints, et notons ℓ_i la longueur du

$$\operatorname{cycle} c_i, \ 1 \leqslant i \leqslant p. \ \operatorname{Il} \ \operatorname{existe} \ \operatorname{une} \ \operatorname{base} \ \operatorname{de} \ E \ \operatorname{dans} \ \operatorname{laquelle} \ \operatorname{la} \ \operatorname{matrice} \ \operatorname{de} \ f_\sigma \ \operatorname{est} \left(\begin{array}{cccc} J_{\ell_1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & J_{\ell_p} & 0 \\ 0 & \dots & 0 & I_k \end{array} \right) \ \operatorname{où} \ k = n - \ell_1 - \dots - \ell_p$$

est le nombre de points fixes de σ .

Le polynôme caractéristique cherché est donc $\chi_{P_{\sigma}} = (X^{\ell_1} - 1) \dots (X^{\ell_p} - 1)(X - 1)^{n-\ell_1 - \dots - \ell_p}$. On en déduit les valeurs propres de P_{σ} .

Exercice nº 20

Posons $\chi_f = \prod_{k=1}^p (X - \lambda_k)^{\alpha_k}$ où $\lambda_1, ..., \lambda_p$ sont les valeurs propres deux à deux distinctes de f.

Soit $E_k' = \operatorname{Ker}(f - \lambda_k \operatorname{Id})^{\alpha_k}$ $(E_k' \text{ s'appelle le sous-espace caractéristique de f associé à la valeur propre } \lambda_k, 1 \leqslant k \leqslant p)$. D'après le théorème de décomposition des noyaux, $E=E_1'\oplus ...\oplus E_p'.$ De plus, la restriction de f à E_k' induit un endomorphisme $f_k \ \mathrm{de} \ E_k' \ (\mathrm{car} \ f \ \mathrm{et} \ (f - \lambda_k Id)^{\alpha_k} \ \mathrm{commutent}).$

On note que $(f_k - \lambda_k Id)^{\alpha_k} = 0$ et donc λ_k est l'unique valeur propre de f_k car toute valeur propre de f_k est racine du polynôme annulateur $(X - \lambda_k)^{\alpha_k}$.

Existence de d et n. On définit d par ses restrictions d_k aux E'_k , $1 \le k \le p$: d_k est l'homothétie de rapport λ_k . Puis on définit n par n = f - d.

d est diagonalisable car toute base de E adaptée à la décomposition $E=E_1'\oplus ...\oplus E_p'$ est une base de vecteurs propres de d. De plus, f = d + n.

Soit n_k l'endomorphisme de E_k' induit par n. On a $n_k = f_k - \lambda_k Id_{E_k'}$ et par définition de E_k' , $n_k^{\alpha_k} = 0$. Mais alors, si on pose $\alpha = \text{Max}\{\alpha_1, ..., \alpha_p\}$, on a $n_k^{\alpha} = 0$ pour tout k de [1, p] et donc $n^{\alpha} = 0$ (les endomorphismes n^{α} et 0 coïncident sur des sous-espaces supplémentaires). Ainsi, n est nilpotent. Enfin, pour tout $k \in [1, p]$, n_k commute avec d_k car d_k est une homothétie et donc nd = dn (les endomorphismes nd et dn coïncident sur des sous-espaces supplémentaires).

Unicité de d et n. Supposons que f = d + n avec d diagonalisable, n nilpotent et nd = dn.

d commute avec n et donc avec f car $df = d^2 + dn = d^2 + nd = fd$. Mais alors, n = f - d commute également avec f. d et n laissent donc stables les sous-espaces caractéristiques E'_k , $1 \le k \le p$ de f. Pour $k \in [1, p]$, on note d_k et n_k les endomorphismes de E_k' induits par d et $\mathfrak n$ respectivement.

Soient $k \in [1, p]$ puis μ une valeur propre de d_k . D'après l'exercice n° 7,

$$\det(f_k - \mu Id) = \det(d_k - \mu Id + n) = \det(d_k - \mu Id) = 0,$$

 ${\rm car}\ d_k - \mu Id\ n'est\ pas\ inversible\ et\ donc\ que\ \mu\ est\ valeur\ propre\ de\ f_k.$ Puisque λ_k est l'unique valeur propre de d_k , on a donc $\mu = \lambda_k$. Ainsi, λ_k est l'unique valeur propre de d_k et puisque d_k est diagonalisable (voir exercice n° 36), on a nécessairement $d_k = \lambda_k Id_{E'_k}$ puis $n_k = f_k - \lambda_k Id_{E'_k}$. Ceci montre l'unicité de d et n.

Exercice nº 21

On cherche une matrice A de format 4 dont le polynôme caractéristique est $X^4 - 3X^3 + X^2 - 1$. La matrice compagnon

On cherche une matrice A de format 4 dont le polynôme caractéristique est
$$X^4 - 3X^3 + X^2 - 1$$
. La matrice compagnon $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$ convient (voir planche 4, exercice n° 15) et le théorème de CAYLEY-HAMILTON montre que $A^4 - 3A^3 + A^2 - I_4 = 0$

Exercice nº 22

Soit A la matrice de l'énoncé. det(A) est le produit des valeurs propres de A.

- Si b = 0, $det(A) = a^n$.
- $\bullet \text{ Si } b \neq 0, \ \operatorname{rg}(A (a b)I) = 1 \text{ ou encore } \dim(\operatorname{Ker}(A (a b)I)) = n 1. \ \operatorname{Par \ suite}, \ a b \text{ est \ valeur \ propre \ d'ordre } n 1$ au moins. On obtient la valeur propre manquante λ par la trace de $A:(n-1)(a-b)+\lambda=na$ et donc $\lambda=a+(n-1)b$. Finalement detA = $(a - b)^{n-1}(a + (n-1)b)$ ce qui reste vrai quand b = 0.

$$\begin{vmatrix} a & b & \dots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \dots & b & a \end{vmatrix} = (a-b)^{n-1}(a+(n-1)b).$$

Exercice nº 23

A est de format (2,2). Donc, soit A a deux valeurs propres distinctes et est dans ce cas diagonalisable dans \mathbb{C} , soit A a une valeur propre double λ non nulle car $\mathrm{Tr}(A) = 2\lambda \neq 0$.

Dans ce dernier cas, A^2 est diagonalisable et est donc est semblable à diag $(\lambda^2, \lambda^2) = \lambda^2 I$. Par suite, $A^2 = \lambda^2 I$. Ainsi, A annule le polynôme $X^2 - \lambda^2 = (X - \lambda)(X + \lambda)$ qui est scindé sur \mathbb{R} à racines simples. Dans ce cas aussi, A est diagonalisable.

Exercice nº 24

1) Soit $f \in C^0(\mathbb{R}, \mathbb{R})$. Soit F une primitive de f sur \mathbb{R} . Pour tout $x \in \mathbb{R}^*$, on a $(\varphi(f))(x) = \frac{F(x) - F(0)}{x - 0}$. F est continue sur $\mathbb R$ donc $\phi(f)$ est continue sur $\mathbb R^*.$ De plus, F étant dérivable en 0

$$\lim_{\substack{x \to 0 \\ x \neq 0}} (\phi(f))(x) = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{F(x) - F(0)}{x - 0} = F'(0) = f(0) = (\phi(f))(0).$$

Finalement $\varphi(f)$ est continue sur \mathbb{R} . Ainsi, φ est une application de E dans E. La linéarité de φ est claire et finalement

$$\varphi \in \mathscr{L}(C^0(\mathbb{R},\mathbb{R})).$$

2) Si f est dans $\operatorname{Ker}(\phi)$ alors f(0)=0 et pour tout x non nul, $\int_0^x f(t) \ dt=0$. Par dérivation on obtient $\forall x\in\mathbb{R}^*, \ f(x)=0$ ce qui reste vrai pour x = 0 et donc f = 0. Finalement $Ker(\phi) = \{0\}$ et ϕ est injective. φ n'est pas surjective car pour toute $f \in E$, $\varphi(f)$ est de classe C^1 sur \mathbb{R}^* . Mais alors par exemple, l'application $g: x \mapsto |x-1|$ est dans E et n'est pas dérivable en 1 et donc, n'est pas dans $\text{Im}(\varphi)$.

$\boldsymbol{\phi}$ est injective et n'est pas surjective.

3) On cherche $\lambda \in \mathbb{R}$ et f continue sur \mathbb{R} et non nulle telle que $\forall x \in \mathbb{R}$, $(\varphi(f))(x) = \lambda f(x)$. D'après la question précédente, 0 n'est pas valeur propre de φ et donc nécessairement $\lambda \neq 0$.

Pour x=0, nécessairement $f(0)=\lambda f(0)$ et donc ou bien $\lambda=1$ ou bien f(0)=0.

On doit avoir pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{1}{\lambda x} \int_0^x f(t) dt$. f est nécessairement dérivable sur \mathbb{R}^* . Pour tout $x \in \mathbb{R}^*$, on a $\int_{-\infty}^{\infty} f(t) \ dt = \lambda x f(x) \ \mathrm{et \ par \ d\'erivation}, \ \mathrm{on \ obtient \ pour \ } x \in \mathbb{R}^*,$

$$f(x) = \lambda(xf'(x) + f(x)).$$

Soit I l'un des deux intervalles $]-\infty,0[$ ou $]0,+\infty[$.

$$\begin{split} \forall x \in I, \ f(x) &= \lambda(xf'(x) + f(x)) \Rightarrow \forall x \in I, \ f'(x) + \frac{\lambda - 1}{\lambda x} f(x) = 0 \\ &\Rightarrow \forall x \in I, \ e^{\frac{(\lambda - 1) \ln |x|}{\lambda}} f'(x) + \frac{\lambda - 1}{\lambda x} e^{\frac{(\lambda - 1) \ln |x|}{\lambda}} f(x) = 0 \\ &\Rightarrow \forall x \in I, \ \left(|x|^{\frac{\lambda - 1}{\lambda}} f\right)'(x) = 0 \\ &\Rightarrow \exists K \in \mathbb{R} / \ \forall x \in I, \ |x|^{\frac{\lambda - 1}{\lambda}} f(x) = K \Rightarrow \exists K \in \mathbb{R} / \ \forall x \in I, \ f(x) = K |x|^{\frac{1 - \lambda}{\lambda}}. \end{split}$$

 $\textbf{1er cas.} \text{ Si } \lambda \in]-\infty, 0 \\ [\cup] \\ 1, +\infty [\text{ alors } \\ \frac{1-\lambda}{\lambda} < 0 \text{ et donc } \lim_{x \to 0} |x|^{\frac{1-\lambda}{\lambda}} \\ = +\infty. \text{ La fonction } \\ x \mapsto K|x|^{\frac{1-\lambda}{\lambda}} \text{ ne peut donc être } \\ [-1, +\infty] \\$ la restriction à I d'une fonction continue sur \mathbb{R} que dans le cas K=0. Ceci fournit $f_{/]-\infty,0[}=0$, $f_{/]0,+\infty[}=0$ et f(0)=0par continuité en 0. Donc f est nécessairement nulle et λ n'est pas valeur propre de φ dans ce cas.

2ème cas. Si $\lambda = 1$, les restriction de f à $]-\infty,0[$ ou $]0,+\infty[$ sont constantes et donc, par continuité de f en 0, f est constante sur \mathbb{R} . Réciproquement, les fonctions constantes f vérifient bien $\varphi(f) = f$. Ainsi, 1 est valeur propre de f et le sous-espace propre associé est constitué des fonctions constantes.

 $\textbf{3\`eme cas.} \text{ Si } \lambda \in]0,1[, \text{ n\'ecessairement } \exists (K_1,K_2) \in \mathbb{R}^2/ \ \forall x \in \mathbb{R}, \ f(x) = \left\{ \begin{array}{l} K_1 x^{\frac{1}{\lambda}-1} \sin x \geqslant 0 \\ K_2(-x)^{\frac{1}{\lambda}-1} \sin x < 0 \end{array} \right.. \text{ f ainsi d\'efinie est bien}$ continue sur \mathbb{R} . Calculons alors $\phi(f)$. $(\phi(f))(0)=f(0)=0$ puis si x>0

$$(\phi(f))(x) = \frac{1}{x} \int_0^x K_1 t^{\frac{1-\lambda}{\lambda}} dt = \frac{\lambda K_1}{x} x^{\frac{1}{\lambda}} = \lambda K_1 x^{\frac{1}{\lambda}-1} = \lambda f(x)$$

et de même si x < 0. Enfin, $(\phi(f))(0) = 0 = \lambda f(0)$. Finalement $\phi(f) = \lambda f$. λ est donc valeur propre de ϕ $(K_1 = K_2 = 1)$

fournit une fonction non nulle, vecteur propre de ϕ associé à λ) et le sous-espace propre associé à λ est de dimension 2. Une base de ce sous-espace est (f_1, f_2) où $\forall x \in \mathbb{R}, f_1(x) = \left\{ \begin{array}{l} x^{\frac{1}{\lambda}-1} \sin x \geqslant 0 \\ 0 \sin x < 0 \end{array} \right.$ et $f_2(x) = \left\{ \begin{array}{l} 0 \sin x \geqslant 0 \\ (-x)^{\frac{1}{\lambda}-1} \sin x < 0 \end{array} \right.$. Finalement

 $Sp(\varphi) =]0, 1].$

Trouvons un polynôme scindé à racines simples annulant f.

Le polynôme $P=X(X-\lambda)(X-\mu)=X^3-(\lambda+\mu)X^2+\lambda\mu X$ est annulateur de f. En effet,

$$\begin{split} P(f) &= f^3 - (\lambda + \mu)f^2 + \lambda \mu f = (\lambda^3 - (\lambda + \mu)\lambda^2 + (\lambda \mu)\lambda)u + (\mu^3 - (\lambda + \mu)\mu^2 + (\lambda \mu)\mu)v \\ &= P(\lambda)u + P(\mu)v = 0. \end{split}$$

- Si λ et μ sont distincts et non nuls, P est un polynôme scindé à racines simples annulateur de f et donc f est diagonalisable.
- Si $\lambda = \mu = 0$, alors f = 0 et donc f est diagonalisable.
- Si par exemple $\lambda \neq 0$ et $\mu = 0$, $f^2 = \lambda^2 u = \lambda f$ et et le polynôme $P = X(X \lambda)$ est scindé à racines simples et annulateur de f. Dans ce cas aussi f est diagonalisable.
- Enfin si $\lambda = \mu \neq 0$, $f^2 = \lambda^2(\mu + \nu) = \lambda f$ et de nouveau $P = X(X \lambda)$ est scindé à racines simples et annulateur de f.

Dans tous les cas, f est diagonalisable.

Exercice nº 26

Posons
$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
. On a $N^2 = E_{1,3}$ et $N^3 = 0$. Si $X \in \mathcal{M}_3(\mathbb{C})$ est une matrice carrée vérifiant $X^2 = N$, alors

 $X^6=0$. Donc X est nilpotente et, puisque X est de format 3, on sait que $X^3=0$. Mais alors $N^2=X^4=0$ ce qui n'est pas. L'équation proposée n'a pas de solution.

Exercice nº 27

Montrons le résultat par récurrence sur $n = \dim(E) \geqslant 1$.

- Si n = 1, c'est clair.
- \bullet Soit $\mathfrak{n}\geqslant 1$. Supposons que deux endomorphismes d'un \mathbb{C} -espace de dimension \mathfrak{n} qui commutent soient simultanément trigonalisables.

Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel de dimension n+1 tels que fg=gf.

f et g ont au moins un vecteur propre en commun. En effet, f admet au moins une valeur propre λ . Soit E_{λ} le sous-espace propre de f associé à λ . g commute avec f et donc laisse stable E_{λ} . La restriction de g à E_{λ} est un endomorphisme de E_{λ} qui est de dimension finie non nulle. Cette restriction admet donc une valeur propre et donc un vecteur propre. Ce vecteur est un vecteur propre commun à f et g.

Commençons à construire une base de trigonalisation simultanée de f et g. Soit x un vecteur propre commun à f et g. On complète la famille libre (x) en une base $\mathcal{B} = (x, ...)$ de E. Dans la base \mathcal{B} , les matrices M et N de f et g s'écrivent

respectivement
$$M = \begin{pmatrix} \lambda & \times \\ 0 & M_1 \end{pmatrix}$$
 et $N = \begin{pmatrix} \mu & \times \\ 0 & N_1 \end{pmatrix}$ où M_1 et N_1 sont de format n . Un calcul par blocs montre que M_1 et N_1 commutent ou encore si f_1 et g_1 sont les endomorphismes de \mathbb{C}^n de matrices M_1 et N_1 dans la base canonique

 M_1 et N_1 commutent ou encore si f_1 et g_1 sont les endomorphismes de \mathbb{C}^n de matrices M_1 et N_1 dans la base canonique de \mathbb{C}^n , f_1 et g_1 commutent. Par hypothèse de récurrence, f_1 et g_1 sont simultanément trigonalisables. Donc il existe une matrice inversible P_1 de format n et deux matrices triangulaires supérieures T_1 et T_1' de format n telles que $P_1^{-1}M_1P_1 = T_1$ et $P_1^{-1}N_1P_1 = T_1'$.

Soit $P = \begin{pmatrix} 1 & 0 \\ 0 & P_1 \end{pmatrix}$. P est inversible de format n+1 car $\det(P) = \det(P_1) \neq 0$ et un calcul par blocs montre que $P^{-1}MP$ et $P^{-1}NP$ sont triangulaires supérieures.

P est donc la matrice de passage de la base \mathscr{B} à une base de trigonalisation simultanée de f et q.

Exercice nº 28

Soit $(\lambda_1,...,\lambda_n)$ la famille des valeurs propres de A. On a donc $\chi_A=(X-\lambda_1)\ldots(X-\lambda_n)$.

$$\begin{split} \chi_A(B) \ \mathrm{inversible} &\Leftrightarrow (B-\lambda_1 I)...(B-\lambda_n I) \ \mathrm{inversible} \\ &\Leftrightarrow \forall k \in [\![1,n]\!], \ B-\lambda_k I \ \mathrm{inversible} \ (\mathrm{car} \ \mathrm{det}((B-\lambda_1 I)...(B-\lambda_n I)) = \mathrm{det}(B-\lambda_1 I) \times ... \times \mathrm{det}(B-\lambda_n I)) \\ &\Leftrightarrow \forall k \in [\![1,n]\!], \ \lambda_k \ \mathrm{n'est} \ \mathrm{pas} \ \mathrm{valeur} \ \mathrm{propre} \ \mathrm{de} \ B \\ &\Leftrightarrow \mathrm{Sp}(A) \cap \mathrm{Sp}(B) = \varnothing. \end{split}$$

Exercice nº 29

Si P et χ_f sont premiers entre eux, d'après le théorème de Bézout, il existe deux polynômes U et V tels que $UP + V\chi_f = 1$. En prenant la valeur en f et puisque que $\chi_f(f) = 0$, on obtient $P(f) \circ U(f) = U(f) \circ P(f) = Id$. P(f) est donc un automorphisme de E.

Réciproquement, si P et χ_f ne sont pas premiers entre eux, P et χ_f ont une racine commune λ dans \mathbb{C} . Soit A la matrice de f dans une base donnée (si K n'est pas C l'utilisation de la matrice est indispensable). On a $P(A) = (A - \lambda I)Q(A)$ pour un certain polynôme Q. La matrice $A - \lambda I$ n'est pas inversible car λ est valeur propre de A et donc P(A) n'est pas inversible $(\det(P(A)) = \det(A - \lambda I) \det Q(A) = 0)$ puis P(f) n'est pas un automorphisme.

Exercice nº 30

 $\operatorname{rg}(M_{a,b}-I)=1$, si a=b=0,2 si l'un des deux nombres a ou b est nul et l'autre pas et 3 si a et b ne sont pas nuls. Donc $M_{0,0}$ n'est semblable à aucune des trois autres matrices et de même pour $M_{1,1}$.

Il reste à savoir si les matrices $M_{1,0}$ et $M_{0,1}$ sont semblables. $(M_{1,0}-I)^2=(E_{1,2}+E_{2,3})^2=E_{1,3}\neq 0$ et $(M_{0,1}-I)^2=(E_{1,2}+E_{3,4})^2=0$. Donc les matrices $M_{1,0}$ et $M_{0,1}$ ne sont pas semblables.

Exercice nº 31

Soit B la matrice de l'énoncé. rgB = 1 et si A existe, nécessairement rgA = n - 1 (planche 4, exercice n° 18). Une matrice de rang 1 admet l'écriture générale UV^T où U et V sont des vecteurs colonnes non nuls.

$$\operatorname{Ici} U = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix} \operatorname{et} V = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Si A existe, A doit déjà vérifier $AB^T = B^TA = 0$ ou encore $AVU^T = 0$ (1) et $VU^TA = 0$ (2). En multipliant les deux membres de l'égalité (1) par U à droite puis en simplifiant par le réel non nul $U^TU = ||U||_2^2$, on obtient AV = 0. Ceci montre que la première colonne de A est nulle (les n-1 dernières devant alors former une famille libre).

De même, en multipliant les deux membres de l'égalité (2) par V^T à gauche, on obtient $U^TA = 0$ et donc les colonnes de la matrice A sont orthogonales à U (pour le produit scalaire usuel) ce qui invite franchement à considérer la matrice

$$A = \begin{pmatrix} 0 & -2 & \dots & -n \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \text{ qui convient (les mineurs des coefficients des colonnes } C_2, \dots, C_n, \text{ ont une première }$$

colonne nulle et sont donc nuls et les cofacteurs des coefficients de la première colonne sont après un calcul simple, effectivement égaux à $1, \ldots, n$).

Exercice nº 32

(Si les a_k sont réels, la matrice A est symétrique réelle et les redoublants savent que la matrice A est diagonalisable.) Si tous les a_k , $1 \le k \le n-1$, sont nuls la matrice A est diagonalisable car diagonale.

On suppose dorénavant que l'un au moins des a_k , $1 \le k \le n-1$, est non nul. Dans ce cas, rg(A) = 2. 0 est valeur propre d'ordre n-2 au moins. Soient λ et μ les deux dernières valeurs propres. On a

$$\lambda + \mu = \mathrm{Tr} A = \alpha_n \ \mathrm{et} \ \lambda^2 + \mu^2 = \mathrm{Tr}(A^2) = \sum_{k=1}^{n-1} \alpha_k^2 + \sum_{k=1}^n \alpha_k^2 = 2 \sum_{k=1}^{n-1} \alpha_k^2 + \alpha_n^2.$$

$$\lambda + \mu = \operatorname{Tr} A = a_n \text{ et } \lambda^2 + \mu^2 = \operatorname{Tr} (A^2) = \sum_{k=1}^n a_k^2 + \sum_{k=1}^n a_k^2 = 2 \sum_{k=1}^n a_k^2 + a_n^2.$$

$$\lambda \text{ et } \mu \text{ sont solutions du système} \begin{cases} \lambda + \mu = a_n \\ \lambda^2 + \mu^2 = 2 \sum_{k=1}^{n-1} a_k^2 + a_n^2 \end{cases} \text{ qui équivaut au système} \begin{cases} \lambda + \mu = a_n \\ (\lambda + \mu)^2 - 2\lambda \mu = 2 \sum_{k=1}^{n-1} a_k^2 + a_n^2 \end{cases}$$
ou encore
$$\begin{cases} \lambda + \mu = a_n \\ \lambda \mu = -\sum_{k=1}^{n-1} a_k^2 \end{cases} \text{ (S)}.$$
On a alors les situations suivantes:

$$\mathrm{ou\ encore} \left\{ \begin{array}{l} \lambda + \mu = \alpha_n \\ \lambda \mu = - \sum_{k=1}^{n-1} \alpha_k^2 \end{array} \right. (S).$$

On a alors les situations suivantes :

- Si λ et μ sont distincts et non nuls, A est diagonalisable car l'ordre de multiplicité de chaque valeur propre est égale à la dimension du sous-espace propre correspondant.
- Si λ ou μ est nul, A n'est pas diagonalisable car l'ordre de multiplicité de la valeur propre 0 est différent de n-2, la dimension du novau de A.
- Si $\lambda = \mu \neq 0$, A est diagonalisable si et seulement si $rg(A \lambda I) = n 2$ mais on peut noter que si λ n'est pas nul, on a toujours $rg(A - \lambda I) = n - 1$ en considérant la matrice extraite formée des n-1 premières lignes et colonnes.

En résumé, la matrice A est diagonalisable si et seulement si le système (S) admet deux solutions distinctes et non nulles.

Mais λ et μ sont solutions du système (S) si et seulement si λ et μ sont les racines de l'équation (E) : $X^2 - \alpha_n X - \sum_{k=0}^{n-1} \alpha_k^2 = 0$.

Par suite, A est diagonalisable si et seulement si $\sum_{k=1}^{n-1}\alpha_k^2\neq 0$ et $\Delta=\alpha_n^2+4\sum_{k=1}^{n-1}\alpha_k^2\neq 0$.

Exercice nº 33

1)
$$\chi_A = \begin{vmatrix} X-1 & -1 & 1 \\ -1 & X-1 & -1 \\ -1 & -1 & X-1 \end{vmatrix} = (X-1)(X^2-2X) + (2-X) - (2-X) = X(X-1)(X-2).$$
On set dans le cas d'une matrice diagonalisable avec 3 valeurs propres simples

Recherche des droites stables. Dans chacun des cas, les droites stables sont les droites engendrées par des vecteurs propres. On obtient immédiatement les 3 droites stables : $E_0 = \text{Vect}(e_1)$ où $e_1 = (1, -1, 0)$, $E_1 = \text{Vect}(e_2)$ où $e_2 = (1, -1, 0)$ (1,-1,-1) et $E_2 = Vect(e_3)$ où $e_3 = (0,1,1)$.

Recherche des plans stables. Soit P un plan stable par f. La restriction de f à P induit un endomorphisme f_P de P et on sait de plus que le polynôme caractéristique de f_P divise celui de f. f_P est diagonalisable car f l'est (car on dispose d'un polynôme scindé à racines simples annulant f et donc f_P). On en déduit que P est engendré par deux vecteurs propres indépendants de f_P qui sont encore vecteurs propres de f. On obtient trois plans stables : $P_1 = \text{Vect}(e_2, e_3)$, $P_2 = Vect(e_1, e_3)$ et $P_3 = Vect(e_1, e_2)$.

2)
$$\chi_A = \begin{vmatrix} X-2 & -2 & -1 \\ -1 & X-3 & -1 \\ -1 & -2 & X-2 \end{vmatrix} = (X-2)(X^2-5X+4) + (-2X+2) - (X-1) = (X-1)((X-2)(X-4)-2-1) = (X-1)(X^2-5X+4) + (-2X+2) - (X-1)(X-2)(X-4) - (X-1)(X-2)(X-2) - (X-1)(X-2)(X-2)(X-2) - (X-1)(X-2)(X-2) - (X-1)(X-2)(X-2) - (X-1)(X-2)(X-2) - (X-1)(X-2)(X-2) -$$

 $(X-1)(X^2-6X+5)=(X-1)^2(X-5)$. Puis E_1 est le plan d'équation x+2y+z=0 et $E_5=\mathrm{Vect}((1,1,1))$. On est toujours dans le cas diagonalisable mais avec une valeur propre double.

Les droites stables sont $E_5 = \text{Vect}((1, 1, 1))$ et n'importe quelle droite contenue dans E_1 . Une telle droite est engendrée par un vecteur de la forme (x, y, -x - 2y) avec $(x, y) \neq (0, 0)$.

Recherche des plans stables. Soit P un plan stable par f. f est diagonalisable et donc f_P est un endomorphisme diagonalisable de P. Par suite, P est engendré par deux vecteurs propres indépendants de f. On retrouve le plan propre de f d'équation x + 2y + z = 0 et les plans engendrés par (1, 1, 1) et un vecteur quelconque non nul du plan d'équation x + 2y + z = 0. L'équation générale d'un tel plan est (-a - 3b)x + (2a + 2b)y + (b - a)z = 0 où $(a, b) \neq (0, 0)$.

3)

$$\chi_{A} = \begin{vmatrix} X - 6 & 6 & -5 \\ 4 & X + 1 & -10 \\ -7 & 6 & X - 4 \end{vmatrix} = (X - 6)(X^{2} - 3X + 56) - 4(6X + 6) - 7(5X - 55) = X^{3} - 9X^{2} + 15X + 25$$
$$= (X + 1)(X^{2} - 10X + 25) = (X + 1)(X - 5)^{2}.$$

 $E_{-1} = \text{Vect}(10, 15, 4)$ et $E_5 = \text{Vect}((1, 1, 1))$. On est dans le cas où A admet une valeur propre simple et une double mais n'est pas diagonalisable. Les droites stables par f sont les deux droites propres.

Recherche des plans stables. Soit P un plan stable par f. Le polynôme caractéristique de f_P est unitaire et divise celui de f. Ce polynôme caractéristique est donc soit (X+1)(X-5) soit $(X-5)^2$.

 ${\rm Dans}\ {\rm le}\ {\rm premier}\ {\rm cas},\ f_P\ {\rm est}\ {\rm diagonalisable}\ {\rm et}\ P\ {\rm est}\ {\rm n\'{e}cessairement}\ {\rm le}\ {\rm plan}\ {\rm Vect}((10,15,4)) + {\rm Vect}((1,1,1))\ {\rm c\'{e}st-\`a-dire}\ {\rm le}$ plan d'équation 11x - 6y - 5z = 0.

Dans le deuxième cas, $\chi_{f_P} = (X-5)^2$ et 5 est l'unique valeur propre de f_P . Le théorème de CAYLEY-HAMILTON montre que $(f_P - 5Id_P)^2 = 0$ et donc P est contenu dans $\operatorname{Ker}((f - 5Id)^2)$. $\operatorname{Ker}((f - 5Id)^2)$ est le plan d'équation x = z qui est bien sûr stable par f car $(f - 5Id)^2$ commute avec f.

Exercice nº 34

Soit
$$A = \begin{pmatrix} 1 & 3 & -7 \\ 2 & 6 & -14 \\ 1 & 3 & -7 \end{pmatrix}$$
. A est de rang 1 et donc admet deux valeurs propres égales à 0 . Tr $A = 0$ et donc la troisième

valeur propre est encore 0. Donc $\chi_A = X^3$. A est nilpotente et le calcul donne $A^2 = 0$. Ainsi, si X est une matrice telle que $X^2 = A$ alors X est nilpotente et donc $X^3 = 0$.

Réduction de A. $A^2 = 0$. Donc ImA \subset KerA. Soit e_3 un vecteur non dans KerA puis $e_2 = Ae_3$. (e_2) est une base de ImA que l'on complète en (e_1, e_2) base de KerA.

 (e_1,e_2,e_3) est une base de $\mathcal{M}_{3,1}(\mathbb{C})$ car si $ae_1+be_2+ce_3=0$ alors $A(ae_1+be_2+ce_3)=0$ c'est-à-dire $ce_2=0$ et donc c = 0. Puis a = b = 0 car la famille (e_1, e_2) est libre.

Si P est la matrice de passage de la base canonique de $\mathcal{M}_{3,1}(\mathbb{C})$ à la base (e_1,e_2,e_3) alors $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. On

peut prendre
$$P = \begin{pmatrix} 3 & -7 & 0 \\ -1 & -14 & 0 \\ 0 & -7 & 1 \end{pmatrix}$$
.

Si $X^2=A, X$ commute avec A et donc X laisse stable ImA et KerA. On en déduit que Xe_2 est colinéaire à e_2 et Xe_1 est dans $Vect(e_1,e_2)$. Donc $P^{-1}XP$ est de la forme $\begin{pmatrix} a & 0 & d \\ b & c & e \\ 0 & 0 & f \end{pmatrix}$. De plus, X est nilpotente de polynôme caractéristique

$$(\lambda-\alpha)(\lambda-c)(\lambda-f). \text{ On a donc n\'ecessairement } \alpha=c=f=0. \text{ P}^{-1}XP \text{ est de la forme } \left(\begin{array}{ccc} 0 & 0 & b \\ \alpha & 0 & c \\ 0 & 0 & 0 \end{array}\right).$$

$$\mathrm{Enfin},\, X^2=A \Leftrightarrow \left(\begin{array}{ccc} 0 & 0 & b \\ \alpha & 0 & c \\ 0 & 0 & 0 \end{array}\right)^2=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \Leftrightarrow \alpha b=1.$$

Les matrices X solutions sont les matrices de la forme $P\begin{pmatrix} 0 & 0 & \frac{1}{a} \\ a & 0 & b \\ 0 & 0 & 0 \end{pmatrix}$ P^{-1} où a est non nul et b quelconque.

On trouve
$$P^{-1} = \frac{1}{49} \begin{pmatrix} 14 & -7 & 0 \\ -1 & -3 & 0 \\ -7 & -21 & 49 \end{pmatrix}$$
 puis

$$X = \frac{1}{49} \begin{pmatrix} 3 & -7 & 0 \\ -1 & -14 & 0 \\ 0 & -7 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{1}{a} \\ a & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 14 & -7 & 0 \\ -1 & -3 & 0 \\ -7 & -21 & 49 \end{pmatrix}$$

$$= \frac{1}{49} \begin{pmatrix} -7a & 0 & \frac{3}{a} - 7b \\ -14a & 0 & -\frac{1}{a} - 14b \\ -7a & 0 & -7b \end{pmatrix} \begin{pmatrix} 14 & -7 & 0 \\ -1 & -3 & 0 \\ -7 & -21 & 49 \end{pmatrix}$$

$$= \begin{pmatrix} -2a - \frac{3}{7a} + b & a - \frac{9}{7a} + 3b & \frac{3}{a} - 7b \\ -4a + \frac{1}{7a} + 2b & 2a + \frac{3}{7a} + 6b & -\frac{1}{a} - 14b \\ -2a + b & a + 3b & -7b \end{pmatrix}, (a, b) \in \mathbb{C}^* \times \mathbb{C}.$$

Exercice nº 35

A est à valeurs propres réelles et simples. A est diagonalisable dans \mathbb{R} et les sous-espaces propres sont des droites. Si M est une matrice qui commute avec A, M laisse stable ces droites et donc si P est une matrice inversible telle que $P^{-1}AP$ soit diagonale alors la matrice $P^{-1}MP$ est diagonale. Réciproquement une telle matrice commute avec A.

$$C(A) = \{ \mathrm{Pdiag}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c}) P^{-1}, \ (\mathfrak{a}, \mathfrak{b}, \mathfrak{c}) \in \mathbb{C}^3 \}.$$

$$\operatorname{On\,trouve} C(A) = \left\{ \left(\begin{array}{ccc} 2b-c & -a+2b-c & \frac{a-c}{2} \\ -b+c & a-b+c & (-a+c)/2 \\ 2c-2b & -2b+c & c \end{array} \right), \ (a,b,c) \in \mathbb{C}^3 \right\}. \\ \operatorname{On\,peut\,v\acute{e}rifier\,que} C(A) = \operatorname{Vect}(I,A,A^2).$$

Exercice nº 36

F est stable par f et donc la restriction de f à F induit est un endomorphisme f_F de F. f est diagonalisable et donc il existe un polynôme P, scindé sur \mathbb{K} à racines simples, tel que P(f) = 0. Mais alors $P(f_F) = 0$ et on a trouvé un polynôme scindé sur \mathbb{K} à racines simples annulateur de f_F . Donc f_F est diagonalisable.

Soit $P=X^3+X^2+X=X(X-j)$ $\left(X-j^2\right)$. P est à racines simples dans $\mathbb C$ et annulateur de A. Donc A est diagonalisable dans $\mathbb C$ et ses valeurs propres sont éléments de $\left\{0,j,j^2\right\}$. Le polynôme caractéristique de A est de la forme $X^{\alpha}(X-j)^{\beta}\left(X-j^2\right)^{\gamma}$ avec $\alpha+\beta+\gamma=n$. De plus, A est réelle et on sait que j et $j^2=\overline{j}$ ont même ordre de multiplicité ou encore $\gamma=\beta$.

Puisque A est diagonalisable, l'ordre de multiplicité de chaque valeur propre est égale à la dimension du sous-espace propre correspondant et donc

$$rg(A) = n - dim(KerA) = n - \alpha = 2\beta.$$

On a montré que rgA est un entier pair.