MATH 611 (DUE 11/13)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 22) Prove by induction on dimension the following facts about the homology of a finite-dimensional CW complex X, using the observation that X_n/X_{n1} is a wedge sum of n spheres:

- If X has dimension n then $H_i(X) = 0$ for i > n and $H_n(X)$ is free.
- $H_n(X)$ is free with basis in bijective correspondence with the n cells if there are no cells of dimension n-1 or n+1.
- If X has k n-cells, then $H_n(X)$ is generated by at most k elements.

Proof.

• X^0 is a set of points, so it is clear that $H_i(X) = 0$ for i > 0. Let $k \ge 0$. Suppose that $H_i(X) = 0$ for i > k. Let n = k + 1. Then we have an exact sequence $H_i(X^{n-1}) \to H_i(X^n) \to H_i(X^n, X^{n-1})$ for any i > n. Since (X^n, X^{n-1}) is a good pair, $H_{n+1}(X^n, X^{n-1}) = H_{n+1}(X^n/X^{n-1}) = H_{n+1}(\vee_{\alpha} S^n) = \bigoplus_{\alpha} 0 = 0$. By the inductive hypothesis, $H_i(X^{n-1}) = 0$. Therefore, the exactness of $0 \to H_i(X^n) \to 0$ implies that $H_i(X^n) = 0$ for all i > n.

Exercise. (Problem 27) Let $f:(X,A)\to (Y,B)$ be a map such that both $f:X\to Y,f:A\to B$ are homotopy equivalences.

• Show that $f_*: H_n(X,A) \to H_n(Y,B)$ is an isomorphism for all n.

• For the case of the inclusion $f:(D^n,S^{n-1})\to (D^n,D^n\setminus\{0\})$, show that f is not a homotopy equivalence of pairs - there is no $g:(D^n,D^n\setminus\{0\})\to (D^n,S^{n-1})$ such that fg and gf are homotopic to the identity through maps of pairs.

Proof.

• For each $n \geq 1$, we have an exact sequence $H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X)$ and another one with X, A replaced with Y, B. Moreover, they are connected by homomorphisms $f_*: H_n(A) \to H_n(B)$, $f_*: H_n(X) \to H_n(Y)$, $f_*: H_n(X,A) \to H_n(Y,B)$ such that the diagram commutes. (naturality) Since $f: X \to Y$ and $f: A \to B$ are both homotopy equivalences, $f_*: H_n(X) \to H_n(Y)$, $f_*: H_n(A) \to H_n(B)$ are isomorphisms. By the Five lemma, $f_*: H_n(X,A) \to H_n(X,B)$ is an isomorphism.

The exact sequence $H_1(A) \to H_1(X) \to H_1(X,A) \to 0$ can be extended to $H_1(A) \to H_1(X) \to H_1(X,A) \to 0 \to 0$ by appending 0 at the end. Using the same argument as above, $f_*: H_1(X,A) \to H_1(Y,B)$ is an isomorphism.

• Suppose $f:(D^n,S^{n-1})\to (D^n,D^n-\{0\})$ is a homotopy equivalence. Then there exists a $g:(D^n,D^n-\{0\})\to (D^n,S^{n-1})$ such that $f\circ g$ and $g\circ f$ are homotopic to

the identity maps in corresponding domains. Since g is continuous, $g(\overline{D^n} - \{0\}) = \overline{g(D^n - \{0\})} \subset \overline{S^{n-1}} = S^{n-1}$. Therefore, g maps D^n into S^{n-1} . Since f maps S^{n-1} into D^n , $g \circ f$ maps S^{n-1} into S^{n-1} . We know this is homotopic to the identity map from the problem statement. Similarly, $f \circ g$ maps D^n into D^n and we know this is homotopic to the identity map from the problem statement. Therefore, this implies that D^n and S^{n-1} are homotopy equivalent. However, this is false because D^n is contractible but S^{n-1} is not.

Hence, f cannot be homotopy equivalent.