

Informática Empresarial, sede Guanacaste Curso de Arquitectura de Computadoras IF 4000

Tarea 3

Estudiantes

Anton Murillo Jurgen B90458

Chaves Mora Aldahir B92175

Morales Villegas César B95329

Rosales Mora Esteban - B96967

Vasquez Murillo Erick - B98334

Segundo Semestre del 2021

1. Deduzca de la descripción textual y las especificaciones, el funcionamiento deseado, y haga un diagrama de estados para el circuito.

Se debe realizar un contador de 3 bits que posea dos entradas e = enable y r= reset, que utiliza 3 flip flops D. Su funcionamiento debe ser incrementar el contador de uno en uno cuando su entrada e=1 y r=0, hasta su límite que sea 111 = 7, al llegar a 7 se reiniciará a 0 (000), además con r=1 sin importar el valor de "e" se vuelve al estado 0.

e = x significa que "e" puede ser cualquier valor ya sea 0,1.

2. Asigne valores binarios a los estados.

Estados	Α	В	С
S0	0	0	0
S1	0	0	1
S2	0	1	0
S 3	0	1	1
S4	1	0	0
\$ 5	1	0	1
S 6	1	1	0
S7	1	1	1

3. Obtenga la tabla de estados codificada en binario.

Α	В	C	r	e	Α	В	С
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	1
0	0	1	0	1	0	1	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	1	0
0	1	0	0	1	0	1	1
0	1	0	1	0	0	0	0
0	1	0	1	1	0	0	0
0	1	1	0	0	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0
1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	1
1	0	0	1	0	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	1	0	1
1	0	1	0	1	1	1	0
1	0	1	1	0	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	0	1	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	0	1	1	1
1	1	1	0	1	0	0	0
1	1	1	1	0	0	0	0
1	1	1	1	1	0	0	0

4. Deduzca las ecuaciones simplificadas de entrada y de salida de los flipflops.

Se obtiene la ecuación de estados los flip-flops. Se tiene que la ecuación de estado para un flip-flop D es: $D_Q = Q(t+1)$.

- 1. Para el flip-flop D_A , la ecuación es: $A(t+1) = D_A(A, B, C, e, r)$
- 2. Para el flip-flop D_B , la ecuación es: $B(t+1) = D_B(A,B,C,e,r)$
- 3. Para el flip-flop $D_{\mathcal{C}}$, la ecuación es: $\mathcal{C}(t+1) = D_{\mathcal{C}}(A,B,\mathcal{C},e,r)$

Se deducen las ecuaciones de la tabla de estados utilizando los mintérminos correspondientes:

$$A(t+1) = D_A(A,B,C,e,r) = \Sigma$$
 (13,16,17,20,21,24,25,28).
 $B(t+1) = D_B(A,B,C,e,r) = \Sigma$ (5,8,9,12,21,24,25,28).
 $C(t+1) = D_C(A,B,C,e,r) = \Sigma$ (1,4,9,12,17,20,25,28).

Para FF D_A tenemos

 $D_A = \text{-ABC-re} + \text{A-B-r} + \text{A-C-r} + \text{A-r-e}$

 D_B = ~BC~re + B~C~r + B~r~e

Para FF D_C tenemos

$$D_C = \text{-C-re} + \text{C-r-e}$$

5. Dibuje el diagrama lógico.

\mathbf{CLK}	A	В	\mathbf{C}	е	r
0	0	0	0	1	0
1	0	0	1	1	0
0	0	0	1	1	0
1	0	1	0	1	0
0	0	1	0	1	0
1	0	1	1	1	0
0	0	1	1	1	0
1	1	0	0	1	0
0	1	0	0	1	0
1	1	0	1	1	0
0	1	0	1	1	0
1	1	1	0	1	0
0	1	1	0	1	0
1	1	1	1	1	0
0	1	1	1	1	0
1	0	0	0	1	0