Седмица на олимпийската математика 2020

Контролно по Геометрия януари 2020

Този материал е изготвен със съдействието на школа Sicademy

Задача G1. В равнината е дадена окръжност k, точка M, вътрешна за k и права ℓ , която се допира до k. Да се построят с линийка и пергел точки A и B върху ℓ , такива че ако допирателните от A и B към k (различни от ℓ) се пресичат в точка C, то M е медицентър за $\triangle ABC$.

Задача G2. Даден е остроъгълен $\triangle ABC$, вписан в окръжност k и произволна точка P върху дъгата \widehat{BC} , несъдържаща точка A. Нека M е средата на AB, а N е точка върху страната BC, такава че $PN \parallel AB$. Правата PM пресича k за втори път в точка F, а правите FC и BP се пресичат в точка Q. Да се докаже, че правата QN минава през постоянна точка, независеща от положението на P върху \widehat{BC} .

Задача G3. Даден е изпъкнал четириъгълник ABCD и вътрешна за него точка O, такава че AO и CO са ъглополовящи на $\angle BAD$ и $\angle BCD$ съответно. Върху отсечките AO и CO са избрани съответно точки M и N, такива че $\angle MBN = \frac{1}{2} \angle ABC$. Да се докаже, че ABCD е описан четириъгълник тогава и само тогава, когато $\angle MNB = \angle DNO$.