Methods of Soft Control (Methoden der Soft-Control)

Prof. Dr. Ping Zhang
Institute for Automatic Control
WS 2017/18

Organisational issues

> Lecture: Prof. Dr. Ping Zhang

Email: pzhang@eit.uni-kl.de

Office: 12/474

Appointment through Ms. Monika Kunz

Email: mkunz@eit.uni-kl.de

Office: 12/476

> Exercise: Dipl.-Ing. Anna Nehring

Email: nehring@eit.uni-kl.de

> Language of the course: English

> Scope: 2 SWS

Script: available on OLAT (password: artiint17)

> Examination: written examination, 90 min.

Review of control courses

Typical control courses

> Basics:

- Grundlagen der Automatisierungstechnik
- Lineare Regelungen

> Advanced:

- Logic control
- Processautomatisierung
- Optimal control
- Nichtlineare und adaptive Regelungen
- Robust control
- Model predictive control

> Modelling:

- Modelling and identification
- > Implementation:
 - CAE in der Regelungstechnik
 - Lab courses

Review of control courses

What happens

- if it is very difficult to get a model of the system to be controlled, or
- if the system is too complex, or
- If the optimization problem is too complex?

"Soft control"

What is Soft Control?

- > Soft control: application of soft computing in control
- > Soft computing:
 - deal with imprecision and uncertainty
 - make use of human expertise
- Main content of this course:
 - Fuzzy control: fuzzy inference / experience based control
 - Neural network: brain (network of neurons, learning ability)
 - Evolutionary algorithms: evolution theory

Three different design philosophies...

Key idea: learn from NATURE!

Learning goals

- > What are the soft control methods (basic ideas, basic principles, advantages and disadvantages)?
- > How to apply them (basic procedures, choice of parameters)?
- When to apply them (application examples)?

Literature

- > Adamy, J.: Fuzzy Logic, Neuronale Netze und Evolutionäre Algorithmen. Shaker Verlag, 2011.
- > Lippe, W.M.: Soft-Computing. Springer, 2006.
- > Haykin S.: Neural networks and learning machines. Pearson, 2009.

Organisation of this course

Chapter 1: Introduction

Chapter 2: Fuzzy control

Chapter 3: Neural networks

Chapter 4: Evolutionary algorithms

Chapter 2 Fuzzy control

Introduction

- > The basic idea of fuzzy sets and fuzzy logic was introduced by Zadeh (1965).
- The first fuzzy control scheme was presented by Mamdani (1975).
- > A number of applications appeared in Japan in the 80's.
- > Fuzzy control has been widely used in various consumer electronic devices, for instance, washing machines, video cameras, TV and sound systems.

Introduction

> An example of fuzzy controller used to control the amount of cooling medium in a drilling machine:

Rule 1: IF Speed = very low, THEN Amount of Cooling medium = very little.

Rule 2: IF Speed = low, THEN Amount of Cooling medium = little.

Rule 3: IF Speed = middle, THEN Amount of Cooling medium = normal.

Rule 4: IF Speed = high, THEN Amount of Cooling medium = much.

Rule 5: IF Speed = very high, THEN Amount of Cooling medium = very much.

Introduction

- > Fuzzy Takagi-Sugeno (T-S) models have been much investigated around year 2000.
- > Journals on this topic:
 - Fuzzy Sets and Systems (since 1978)
 - IEEE Transactions on Fuzzy Systems (since 1993)
- Key of fuzzy control:
 - Introduction of fuzzy sets and membership functions
 - Based on that, fuzzy logic (especially fuzzy inference mechanism) was developed.

Preliminary

Classical crisp set:

- ➤ Examples: $\{1,2,3\}, \{T \mid 20^{\circ}C \leq T \leq 40^{\circ}C\}, R, RH_{\infty}$
- > An element either belongs to or doesn't belong to a crisp set. For instance,

$$3 ∈ \{1,2,3\},$$
 $5 ∉ \{1,2,3\}$
 $39.9°C ∈ \{T \mid 20°C ≤ T ≤ 40°C\},$ $40.1°C ∉ \{T \mid 20°C ≤ T ≤ 40°C\}$

$$\mu(T) = \begin{cases} 1, & \text{if } T \text{ belongs to the set} \\ 0, & \text{if } T \text{ belongs to the set} \end{cases}$$

How much is the difference between 39.9°C and 40.1°C?

Fuzzy sets

Fuzzy set:

- > An element may partly belong to a set.
- > A fuzzy set is described by

$$M = \{(x, \mu(x)) \mid x \in G \}$$

where G is a set, $\mu(x)$ is the **membership function**, $0 \le \mu(x) \le 1$.

$$\mu(39.9) = 0.51$$

 $\mu(40.1) = 0.49$

Membership function

Membership function $\mu(x)$ denotes the **grade of membership** of an element x in the set.

Typical membership functions

Membership function

> **Support** of the fuzzy set *M*:

$$supp(M) = \{x \mid \mu(x) > 0\}$$

> Core of the fuzzy set *M*:

$$core(M) = \{x \mid \mu(x) = 1\}$$

 $\triangleright \alpha$ level set of the fuzzy set M:

$$M_{\geq \alpha} = \{x \mid \mu(x) \geq \alpha \}$$

 $\triangleright \mu(x)$ is said to be **normalized**, if

$$\max \mu(x) = 1$$

Operations on fuzzy sets

Given two fuzzy sets

$$M_1 = \{(x, \mu_1(x)) \mid x \in G \}$$

 $M_2 = \{(x, \mu_2(x)) \mid x \in G \}$

- $ightharpoonup M_1$ is said to be a **subset** of M_2 , if $\mu_1(x) \leq \mu_2(x)$, $\forall x \in G$.
- > Union

$$M_1 \cup M_2 = \{(x, \mu(x)) \mid x \in G \}$$

 $\mu(x) = \mu_1(x) \cup \mu_2(x)$

Intersection

$$M_1 \cap M_2 = \{(x, \mu(x)) \mid x \in G \}$$

 $\mu(x) = \mu_1(x) \cap \mu_2(x)$

Complement

$$\overline{M}_1 = \left\{ \left(x, \overline{\mu_1}(x) \right) \mid x \in G \right\}$$

$$\overline{\mu_1}(x) = 1 - \mu_1(x)$$

How to get $\mu_1(x) \cup \mu_2(x)$ or $\mu_1(x) \cap \mu_2(x)$?

Min/Max operators

$$\mu(x) = \mu_1(x) \cap \mu_2(x) = \min \{\mu_1(x), \mu_2(x)\}\$$

$$\mu(x) = \mu_1(x) \cup \mu_2(x)$$

= $\max \{\mu_1(x), \mu_2(x)\}$

Some often used operators

Operators	$\mu_1(x) \cap \mu_2(x)$	$\mu_1(x) \cup \mu_2(x)$
Min/Max	min $\{\mu_1(x), \mu_2(x)\}$	$\max \{\mu_1(x), \mu_2(x)\}$
Algebraic product / sum	$\mu_1(x)\mu_2(x)$	$\mu_1(x) + \mu_2(x) - \mu_1(x)\mu_2(x)$
Einstein product / sum	$\frac{\mu_1(x)\mu_2(x)}{1 + \left(1 - \mu_1(x)\right)\left(1 - \mu_2(x)\right)}$	$\frac{\mu_1(x) + \mu_2(x)}{1 + \mu_1(x)\mu_2(x)}$
Bounded difference / sum	$\max \{0, \mu_1(x) + \mu_2(x) - 1\}$	$\min \{1, \mu_1(x) + \mu_2(x)\}$

Most of the properties of classical crisp sets hold also for fuzzy sets.

Identity: $\mu_1 \cap 1 = \mu_1, \qquad \qquad \mu_1 \cup 0 = \mu_1$

Commutativity: $\mu_1 \cap \mu_2 = \mu_2 \cap \mu_1, \quad \mu_1 \cup \mu_2 = \mu_2 \cup \mu_1$

 $\mu_1 \cap \mu_2 \cap \mu_3 = (\mu_1 \cap \mu_2) \cap \mu_3 = \mu_1 \cap (\mu_2 \cap \mu_3)$ **Associativity:**

 $\mu_1 \cup \mu_2 \cup \mu_3 = (\mu_1 \cup \mu_2) \cup \mu_3 = \mu_1 \cup (\mu_2 \cup \mu_3)$

Distributivity: $\mu_1 \cap (\mu_2 \cup \mu_3) = (\mu_1 \cap \mu_2) \cup (\mu_1 \cap \mu_3)$

 $\mu_1 \cup (\mu_2 \cap \mu_3) = (\mu_1 \cup \mu_2) \cap (\mu_1 \cup \mu_3)$

Absorption: $\mu_1 \cup (\mu_1 \cap \mu_2) = \mu_1, \qquad \mu_1 \cap (\mu_1 \cup \mu_2) = \mu_1$

De Morgan's Law: $\overline{\mu_1 \cap \mu_2} = \overline{\mu_1} \cup \overline{\mu_2}, \qquad \overline{\mu_1 \cup \mu_2} = \overline{\mu_1} \cap \overline{\mu_2}$

Exercise:

- 1. Prove Absorption Law.
- 2. Prove De Morgan's Law

Most of the properties of classical crisp sets hold also for fuzzy sets.

Identity: $\mu_1 \cap 1 = \mu_1, \qquad \mu_1 \cup 0 = \mu_1$

Commutativity: $\mu_1 \cap \mu_2 = \mu_2 \cap \mu_1$, $\mu_1 \cup \mu_2 = \mu_2 \cup \mu_1$

Associativity: $\mu_1 \cap \mu_2 \cap \mu_3 = (\mu_1 \cap \mu_2) \cap \mu_3 = \mu_1 \cap (\mu_2 \cap \mu_3)$

 $\mu_1 \cup \mu_2 \cup \mu_3 = (\mu_1 \cup \mu_2) \cup \mu_3 = \mu_1 \cup (\mu_2 \cup \mu_3)$

Distributivity: $\mu_1 \cap (\mu_2 \cup \mu_3) = (\mu_1 \cap \mu_2) \cup (\mu_1 \cap \mu_3)$

 $\mu_1 \cup (\mu_2 \cap \mu_3) = (\mu_1 \cup \mu_2) \cap (\mu_1 \cup \mu_3)$

Absorption: $\mu_1 \cup (\mu_1 \cap \mu_2) = \mu_1, \qquad \mu_1 \cap (\mu_1 \cup \mu_2) = \mu_1$

De Morgan's Law: $\overline{\mu_1 \cap \mu_2} = \overline{\mu_1} \cup \overline{\mu_2}, \qquad \overline{\mu_1 \cup \mu_2} = \overline{\mu_1} \cap \overline{\mu_2}$

How about the law of complements?

 $\mu_1 \cap \overline{\mu_1} = 0 ?$ $\mu_1 \cup \overline{\mu_1} = 1 ?$

Exercise: Given a membership function $\mu(x)$. Calculate

(1)
$$\bar{\mu}(x)$$
,

(2)
$$\mu(x) \cap \bar{\mu}(x)$$
,

(3)
$$\mu(x) \cup \bar{\mu}(x)$$

The laws of complement don't hold for min/max operators!

