

BLG354E / CRN: 21560 6th Week Lecture (cont.)

Implementation of Discrete Time Systems

Transfer function of DT-LTI system is given as,

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}$$

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}} \cdot \frac{A(z)}{A(z)} = \frac{Y(z)}{X(z)}$$

$$Y(z) = \frac{1}{a_0} (b_0 + b_1 z^{-1} \dots + b_m z^{-m}) A(z)$$

$$A(z) = \frac{1}{a_0} X(z) - \frac{1}{a_0} (a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}) A(z)$$

Direct Programming

(canonical form)

Example:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{5(1+2z^{-1})}{(1-z^{-1})(1-0.5z^{-1})}$$

Write the Psuedo code H(z) for the signal sampled at f_s

$$H(z) = \frac{Y(z)}{X(z)} = \frac{(5+10z^{-1})A(z)}{(1-1.5z^{-1}+0.5z^{-2})A(z)}$$

$$Y(z) = (5 + 10 z^{-1}) A(z)$$

$$A(z) = X(z) + 1.5 z^{-1} A(z) - 0.5 z^{-2} A(z)$$

Pseudo code: Timer Interrupt @Ts=1/f_s

X = READ (ADC)

A = X + 1.5 B - 0.5 C

Y = 5 A + 10 B

Output (Y)

C=B

B=A

Return

Proof:

$$Y=5A+10B=$$

=5A+10Az⁻¹=(5+10z⁻¹)A

A=X+1.5B-0.5C
A=X+1.5Az⁻¹-0.5Az⁻²
$$\Rightarrow$$
 $A = \frac{X}{1-1.5z^{-1}+0.5z^{-2}}$

$$Y = \frac{\left(5 + 10z^{-1}\right)X}{1 - 1.5z^{-1} + 0.5z^{-2}} \implies T(z) = \frac{Y(z)}{X(z)} = \frac{\left(5 + 10z^{-1}\right)}{\left(1 - 1.5z^{-1} + 0.5z^{-2}\right)}$$

Step Response:

n	x[n]	Α	B /	C	y[n]
0	1	1	0	0	5
1	1	2.5	1	0	22.5
2	1	4.25	2.5	1	46.25
3	1	6.125	4.25	2.5	73.125

Initial condition

Canonical Simulation (First form)

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

$$(1+a_1z^{-1}+a_2z^{-2})Y(z)=(b_0+b_1z^{-1}+b_2z^{-2})X(z)$$

$$Y(z) = -a_1 z^{-1} Y(z) - a_2 z^{-2} Y(z) + b_0 X(z) + b_1 z^{-1} X(z) + b_2 z^{-2} X(z)$$

Programming of Cascaded sub-systems

Programming of Parallel sub-systems

Example:

Digital integrator without delay:

$$H(z) = \frac{Y(z)}{X(z)} = T\left(\frac{1}{1-z^{-1}}\right)$$

Initial condition: If y(kT)=0 for k<0 then A=0

$$Y[n]=y(kT)=T[x(0)+x(T)+x(2T)+...+x(kT)]$$

- 1) Simulate the system for $x[n]=u[n-2]-u[n-4]+\delta[n-3]$
- 2) What are the differences between integrator with and without Delay?
- 3) Write the pseudo code for digital integrator with delay

