[Harold Cohen. Numerical approximation methods, p. 25.]

Given experimental data points $[x_k,y_k]$ and a hypothesized model equation to fit data $f[x_k]$ with unknown coefficients α_k , the method of least squares consists on minimizing the square of the rms error $e=\sum_k \epsilon_k{}^2=\sum_k \left(f_k-y_k\right)^2$ wrt the coefficients α_k .

For instance, consider that a theory predicts that the data in table 1 decreases with increasing x as a quadratic in 1/x.

Define the model to fit the data:

$$f[x] = \alpha_1 + \alpha_2 \frac{1}{x} + \alpha_3 \frac{1}{x^2}$$
.

Find the square of the rms error of the model and the data:

$$e = \sum_{k} \left(\alpha_1 + \alpha_2 \frac{1}{x} + \alpha_3 \frac{1}{x^2} - y_k \right)^2.$$

Minimize the model equation with respect to the coefficients α_k :

$$\begin{split} \partial_{\alpha_1}e &= 2\sum_k \left(\alpha_1 + \alpha_2\frac{1}{x_k} + \alpha_3\frac{1}{x_k^2} - y_k\right) = 0\,,\\ \partial_{\alpha_2}e &= 2\frac{1}{x_k}\sum_k \left(\alpha_1 + \alpha_2\frac{1}{x_k} + \alpha_3\frac{1}{x_k^2} - y_k\right) = 0\,,\\ \partial_{\alpha_3}e &= 2\frac{1}{x_k^2}\sum_k \left(\alpha_1 + \alpha_2\frac{1}{x_k} + \alpha_3\frac{1}{x_k^2} - y_k\right) = 0\,. \end{split}$$

Distribute the sums in every term, perform algebra and replace the values of table ${\scriptstyle 1}$ to have

$$4.000\alpha_1 + 1.698\alpha_2 + 0.913\alpha_3 = 17.130$$
,
 $1.698\alpha_1 + 0.913\alpha_2 + 0.577\alpha_3 = 7.883$,
 $0.913\alpha_1 + 0.577\alpha_2 + 0.400\alpha_3 = 4.52$.

x_k	y_k
1.3	5.42
2.2	4.28
3.7	3.81
4.9	3.62

Table 1 Data with inverse power of x decrease

Solve the system to find $\{\alpha_1=3.261,\alpha_2=1.480,\alpha_3=1.722\}.$ The model equation thus becomes

$$f[x] = 3.261 + 1.480\frac{1}{x} + 1.722\frac{1}{x^2}$$

and its error in fitting data

$$e = \sum_{k=1}^{4} \left(3.261 + 1.480 \frac{1}{x} + 1.722 \frac{1}{x^2} - y_k \right)^2 = 0.001.$$