Tarea I: FoldIt

Citlali Gil Aguillon. Jessica Danielly Medina Sánchez. Anali Migueles Lozano.

1) Creen un repositorio git en tepeu, por ejemplo en su home/algoritmos3D, para ir añadiendo ahí las tareas de los 4 días y sus respectivos informes.

https://github.com/anamigueeles/Bioinformatica/

2) Que completen los puzzles de Foldit al menos hasta el nivel 4-5, y por el camino vayan tomando capturas de pantalla que reflejen algunos de los conceptos teóricos que hablamos por la mañana:

2.2) Ejemplo de aminoácido con cadena lateral chica.

2.1) Ejemplo de aminoácido con cadena lateral aromática

2.3) Ejemplo de giro en torno a los ángulos phi/psi de un residuo seleccionado, que pasa cuando si sus vecinos tienen cadenas laterales voluminosas?

2.4) Ejemplo de puentes de hidrógeno entre residuos de una alfa-hélice y entre hojas de una lámina beta. Desde el punto de vista algorítmico, cuál de los estados de estructura secundaria les parece más difícil de programar?

2.5) Ejemplo de residuo hidrofóbico expuesto y luego correctamente "enterrado" tras operaciones con los vecinos.

2.6) Ejemplo de conformaciones distintas con puntuaciones similares, para hacer patente el problema de evaluar lo correcto de una conformación.

Aunque es la misma proteína y en ambos casos se alcanza el umbral esperado de estabilidad, podemos notar que las proteínas tienen conformaciones ligeramente distintas.

2.7) De acuerdo con http://eead-csic-compbio.github.io/bioinformatica_estructural/node17.html calcula el tiempo que llevaría explorar todas las conformaciones posibles de uno de los péptidos o proteínas que utilicen en los puzzles.

Si tenemos 100 aminoácidos (ya que menos de cien aminoácidos no se considera proteína, se denominan polipéptidos) y si proponemos que cada aminoácido pudiese tomar 3 conformaciones distintas por decir algo porque realmente el aminoácido puede tomar muchas conformaciones distintas. Entonces el numero de conformaciones que tendría la proteína seria 3¹⁰⁰. Pero debemos considerar el tiempo que tarda la proteína en cambiar de conformación para poder estimar el tiempo, en promedio el tiempo que le toma a un enlace girar para formar una nueva conformación es de aproximadamente. 10⁻¹⁵ segundos.

Entonces el tiempo calculado sería 3^{100} x 10^{-15} s = $5 \cdot 10^{32}$ s (1,6 · 10^{25} años).