El Método Simplex

Fernando Lozano

Universidad de los Andes

13 de febrero de 2014

• Idea:

• Idea: Desplazarse de una esquina a otra a lo largo de los bordes del conjunto factible.

- Idea: Desplazarse de una esquina a otra a lo largo de los bordes del conjunto factible.
- Moverse por un borde a lo largo del cual disminuya función objetivo.

- Idea: Desplazarse de una esquina a otra a lo largo de los bordes del conjunto factible.
- Moverse por un borde a lo largo del cual disminuya función objetivo.
- Eventualmente encontramos esquina que no se pueda mejorar.

- Idea: Desplazarse de una esquina a otra a lo largo de los bordes del conjunto factible.
- Moverse por un borde a lo largo del cual disminuya función objetivo.
- Eventualmente encontramos esquina que no se pueda mejorar.
- Por ahora supondremos que ya conocemos una esquina del conjunto factible.

- Idea: Desplazarse de una esquina a otra a lo largo de los bordes del conjunto factible.
- Moverse por un borde a lo largo del cual disminuya función objetivo.
- Eventualmente encontramos esquina que no se pueda mejorar.
- Por ahora supondremos que ya conocemos una esquina del conjunto factible.
- \bullet Esquina: intersección de n planos (restricciones) diferentes.

Ejemplo (Dasgupta)

$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1 \ge 0$$

$$x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$+ x_2 + x_3 \le 400$$

1

2

3

4

(5)

6

7

$$x_1 \ge 0$$
 $x_2 \ge 0$

$$x_2 \ge 0$$
 $x_3 \ge 0$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

Variable a introducir?

• x_3 ?

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

•
$$x_3$$
? \times

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

- x_3 ? \times
- \bullet x_4 ?

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

- x_3 ? \times
- *x*₄?✓

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

- x_3 ? \times
- x_4 ?
- $\bullet x_5$?

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

- x_3 ? \times
- x_4 ?
- x₅?**//**

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

SBF inicial:
$$x_1 = 8, x_2 = 9, x_3 = x_4 = x_5 = 0.$$

Costo Inicial: 0

- x_3 ? \times
- x_4 ?
- x₅?**//**

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4$$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

$$\bullet$$
 $x_5 \rightarrow 3$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

• Comparamos
$$\frac{8}{2}$$
 y $\frac{9}{3}$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

- \bullet Comparamos $\frac{8}{2}$ y $\frac{9}{3}$
- Sólo coeficientes positivos.

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

- Comparamos $\frac{8}{2}$ y $\frac{9}{3}$
- Sólo coeficientes positivos.
- Si todos fueran negativos \Rightarrow costo $\rightarrow -\infty$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

- Comparamos $\frac{8}{2}$ y $\frac{9}{3}$
- Sólo coeficientes positivos.
- Si todos fueran negativos \Rightarrow costo $\rightarrow -\infty$
- Nueva SBF:

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

- Comparamos $\frac{8}{2}$ y $\frac{9}{3}$
- Sólo coeficientes positivos.
- Si todos fueran negativos \Rightarrow costo $\rightarrow -\infty$
- Nueva SBF: $x_5 = 3, x_1 = 2, x_2 = x_3 = x_4 = 0$

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

•
$$x_5 \rightarrow 4 \Rightarrow x_1 \rightarrow 0$$

•
$$x_5 \rightarrow 3 \Rightarrow x_2 \rightarrow 0$$

- Comparamos $\frac{8}{2}$ y $\frac{9}{3}$
- Sólo coeficientes positivos.
- Si todos fueran negativos \Rightarrow costo $\rightarrow -\infty$
- Nueva SBF: $x_5 = 3, x_1 = 2, x_2 = x_3 = x_4 = 0$
- Costo se redujo a -9.

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 + x_3 + 6x_4 + 2x_5 = 8$
 $x_2 + x_3 + 3x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

• Ponerlo en la forma conveniente.

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

- Ponerlo en la forma conveniente.
 - Variables básicas en una sola restriccion con coeficiente 1.

- Ponerlo en la forma conveniente.
 - Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 x_1+ x_3+ $6x_4+$ $2x_5=8$
 x_2+ x_3+ $3x_5=9$
 $x_1, \dots, x_5 \ge 0$

- Ponerlo en la forma conveniente.
 - 1 Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.
- Pivotear!

mín
$$7x_3 - x_4 - 3x_5$$

sujeto a
 $x_1 +$ $x_3 + 6x_4 + 2x_5 = 8$
 $\frac{x_2}{3} + \frac{x_3}{3} +$ $x_5 = 3$
 $x_1, \dots, x_5 \ge 0$

- Ponerlo en la forma conveniente.
 - 1 Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.
- Pivotear!

- Ponerlo en la forma conveniente.
 - 1 Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.
- Pivotear!

mín
$$7x_3 - x_4 - (9 - x_2 - x_3)$$

sujeto a
 $x_1 - \frac{2x_2}{3} + \frac{x_3}{3} + 6x_4 = 2$
 $\frac{x_2}{3} + \frac{x_3}{3} + x_5 = 3$
 $x_1, \dots, x_5 \ge 0$

- Ponerlo en la forma conveniente.
 - 1 Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.
- Pivotear!

- Ponerlo en la forma conveniente.
 - Variables básicas en una sola restriccion con coeficiente 1.
 - 2 Costo sin variables básicas.
- Pivotear!

• Variable entrante:

• Variable entrante: x_4

- Variable entrante: x_4
- Variable saliente:

• Variable entrante: x_4

• Variable saliente: x_1

• Variable entrante: x_4

• Variable saliente: x_1

• Variable entrante: x_4

• Variable saliente: x_1

$$x_4 =$$

• Variable entrante: x_4

• Variable saliente: x_1

$$x_4 = \frac{1}{3},$$

• Variable entrante: x_4

• Variable saliente: x_1

$$x_4 = \frac{1}{3}, x_5 = 3,$$

• Variable entrante: x_4

• Variable saliente: x_1

$$x_4 = \frac{1}{3}, x_5 = 3, x_1 = x_2 = x_3 = 0$$

• Variable entrante: x_4

• Variable saliente: x_1

• Nueva SBF:

$$x_4 = \frac{1}{3}, x_5 = 3, x_1 = x_2 = x_3 = 0$$

Nuevo costo es

• Variable entrante: x_4

• Variable saliente: x_1

• Nueva SBF:

$$x_4 = \frac{1}{3}, x_5 = 3, x_1 = x_2 = x_3 = 0$$

• Nuevo costo es $-\frac{28}{3}$.

mín
$$x_2 + 8x_3 - x_4 - 9$$

sujeto a
 $x_1 - \frac{2x_2}{3} + \frac{x_3}{3} + \frac{6x_4}{3} + \frac{2}{3} = 3$
 $x_1, \dots, x_5 \ge 0$

$$\begin{aligned} & & & & \text{min} & & x_2 + 8x_3 - x_4 - 9 \\ & & & & \text{sujeto a} \\ & & & x_1 - & \frac{2x_2}{3} + & \frac{x_3}{3} + & 6x_4 & & = 2 \\ & & & \frac{x_2}{3} + & \frac{x_3}{3} + & x_5 & = 3 \\ & & & & x_1, \dots, x_5 \ge 0 \end{aligned}$$

mín
$$x_2 + 8x_3 - x_4 - 9$$

sujeto a
$$\frac{x_1}{6} - \frac{x_2}{9} + \frac{x_3}{18} + x_4 = \frac{1}{3}$$

$$\frac{x_2}{3} + \frac{x_3}{3} + x_5 = 3$$

$$x_1, \dots, x_5 \ge 0$$

mín
$$x_2 + 8x_3 - \left(\frac{1}{3} - \frac{x_1}{6} + \frac{x_2}{9} - \frac{x_3}{18}\right) - 9$$

sujeto a
$$\frac{x_1}{6} - \frac{x_2}{9} + \frac{x_3}{18} + x_4 = \frac{1}{3}$$

$$\frac{x_2}{3} + \frac{x_3}{3} + x_5 = 3$$

$$x_1, \dots, x_5 \ge 0$$

mín
$$\frac{1}{6}x_1 + \frac{8}{9}x_2 + \frac{143}{18}x_3 - \frac{28}{3}$$
sujeto a
$$\frac{x_1}{6} - \frac{x_2}{9} + \frac{x_3}{18} + x_4 = \frac{1}{3}$$

$$\frac{x_2}{3} + \frac{x_3}{3} + x_5 = 3$$

$$x_1, \dots, x_5 > 0$$

- Pivotear!
- Solución óptima!

Mantenemos problema en forma conveniente.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - Costo sin variables básicas.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - ► Si todos los coeficientes en el costo son positivos estamos en SBF óptima.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - Si todos los coeficientes en el costo son positivos estamos en SBF óptima.
- Variable saliente:

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - Si todos los coeficientes en el costo son positivos estamos en SBF óptima.
- Variable saliente:
 - La determina el menor valor de la razón $\frac{b_j}{a_{ji}}$ con a_{ji} positivo.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - Si todos los coeficientes en el costo son positivos estamos en SBF óptima.
- Variable saliente:
 - La determina el menor valor de la razón $\frac{b_j}{a_{ji}}$ con a_{ji} positivo.
 - ▶ Si no hay a_{ji} positivo, problema es no acotado.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - Si todos los coeficientes en el costo son positivos estamos en SBF óptima.
- Variable saliente:
 - La determina el menor valor de la razón $\frac{b_j}{a_{ji}}$ con a_{ji} positivo.
 - ▶ Si no hay a_{ji} positivo, problema es no acotado.

- Mantenemos problema en forma conveniente.
 - ▶ Variables básicas en una sola restriccion con coeficiente 1.
 - ► Costo sin variables básicas.
- 2 Variable entrante:
 - La determina el Coeficiente más negativo de variable libre en el costo.
 - Si todos los coeficientes en el costo son positivos estamos en SBF óptima.
- Variable saliente:
 - La determina el menor valor de la razón $\frac{b_j}{a_{ji}}$ con a_{ji} positivo.
 - ▶ Si no hay a_{ji} positivo, problema es no acotado.
- Qué sucede con SBF degeneradas?

El Tableau

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

El Tableau

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

• Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m],$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

• Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

- Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$
- $\mathbf{c} = [\mathbf{c}_B; \mathbf{c}_N]$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

- Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$
- $\bullet \ \mathbf{c} = [\mathbf{c}_B; \mathbf{c}_N] \Rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B.$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

- Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$
- $\bullet \ \mathbf{c} = [\mathbf{c}_B; \mathbf{c}_N] \Rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B.$
- $\bullet \ \mathbf{B} = [\mathbf{a}_1 | \mathbf{a}_2 | \dots \mathbf{a}_m]$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

- Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$
- $\bullet \ \mathbf{c} = [\mathbf{c}_B; \mathbf{c}_N] \Rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B.$
- $\bullet \mathbf{B} = [\mathbf{a}_1 | \mathbf{a}_2 | \dots \mathbf{a}_m] \Rightarrow \mathbf{B} \mathbf{x}_B = \mathbf{b}$

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \hline \mathbf{c} & 0 \end{bmatrix}$$

- Variables básicas: $\mathbf{x}_B = [x_1; x_2; \dots; x_m], \mathbf{x} = [\mathbf{x}_B; \mathbf{x}_N].$
- $\bullet \ \mathbf{c} = [\mathbf{c}_B; \mathbf{c}_N] \Rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B.$
- $\bullet \mathbf{B} = [\mathbf{a}_1 | \mathbf{a}_2 | \dots \mathbf{a}_m] \Rightarrow \mathbf{B} \mathbf{x}_B = \mathbf{b} .$

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

 $oldsymbol{0}$ Reemplazar $oldsymbol{B}$ por $oldsymbol{I}$.

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- $oldsymbol{0}$ Reemplazar $oldsymbol{B}$ por $oldsymbol{I}$.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- $oldsymbol{0}$ Reemplazar $oldsymbol{B}$ por $oldsymbol{I}$.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.
- Gauss-Jordan:

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- lacktriangledown Reemplazar f B por f I.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.
- Gauss-Jordan: ♣

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- $oldsymbol{0}$ Reemplazar $oldsymbol{B}$ por $oldsymbol{I}$.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.
- Gauss-Jordan: ♣

$$\mathbf{T}' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & \mathbf{0} \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- $oldsymbol{0}$ Reemplazar $oldsymbol{B}$ por $oldsymbol{I}$.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.
- Gauss-Jordan: ♣

$$\mathbf{T}' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & \mathbf{0} \end{bmatrix}$$

2 Multiplicar primera fila por \mathbf{c}_{R}^{T} , restarla a la segunda:

$$\mathbf{T} = \begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \hline \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- Reemplazar **B** por **I**.
- **2** Reemplazar \mathbf{c}_B por $\mathbf{0}$.
- Gauss-Jordan: ♣

$$\mathbf{T}' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & \mathbf{0} \end{bmatrix}$$

2 Multiplicar primera fila por \mathbf{c}_{R}^{T} , restarla a la segunda:

$$\mathbf{T}'' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{N} & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

$$\mathbf{T}'' = \left[\begin{array}{c|cc} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \hline \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{N} & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{array} \right]$$

$$\mathbf{T}'' = \begin{bmatrix} \mathbf{I} & \mathbf{B^{-1}N} & \mathbf{B^{-1}b} \\ \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} & -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}$$

• La ecuación $\mathbf{A}\mathbf{x} = \mathbf{b}$:

$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \underbrace{\mathbf{B}^{-1} \mathbf{b}}_{\mathbf{x}_B}$$

$$\mathbf{T}'' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{N} & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

• La ecuación $\mathbf{A}\mathbf{x} = \mathbf{b}$:

$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \underbrace{\mathbf{B}^{-1} \mathbf{b}}_{\mathbf{x}_B}$$

• El costo actual es:

$$\mathbf{c}^T \mathbf{x} = \underbrace{(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N})}_{\mathbf{r}} \mathbf{x}_N + \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b}$$

$$\mathbf{T}'' = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{N} & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

• La ecuación $\mathbf{A}\mathbf{x} = \mathbf{b}$:

$$\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \underbrace{\mathbf{B}^{-1} \mathbf{b}}_{\mathbf{x}_B}$$

El costo actual es:

$$\mathbf{c}^T \mathbf{x} = \underbrace{(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N})}_{\mathbf{r}} \mathbf{x}_N + \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b}$$

• $\mathbf{r} = \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$: costos reducidos.

- $\mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$: costos reducidos.
- Si $\mathbf{r} \geq 0$ el costo no se puede reducir (SBF actual es óptima).

- $\mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$: costos reducidos.
- Si $\mathbf{r} \geq 0$ el costo no se puede reducir (SBF actual es óptima).
- Si $\mathbf{r} \ngeq 0$ cualquier componente negativo de \mathbf{r} corresponde a un borde a lo largo del cual el costo se reduce.

- $\mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$: costos reducidos.
- Si $\mathbf{r} \geq 0$ el costo no se puede reducir (SBF actual es óptima).
- Si $\mathbf{r} \ngeq 0$ cualquier componente negativo de \mathbf{r} corresponde a un borde a lo largo del cual el costo se reduce.
- Usalmente se selecciona el componente r_i más negativo.

- $\mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$: costos reducidos.
- Si $\mathbf{r} \geq 0$ el costo no se puede reducir (SBF actual es óptima).
- Si $\mathbf{r} \ngeq 0$ cualquier componente negativo de \mathbf{r} corresponde a un borde a lo largo del cual el costo se reduce.
- Usalmente se selecciona el componente r_i más negativo.
- Esto quiere decir que el componente i de \mathbf{x}_N se vuelve positivo.

• Variable entrante $x_i \to \alpha$

- Variable entrante $x_i \to \alpha$
- \bullet $\alpha = ?$

- Variable entrante $x_i \to \alpha$
- \bullet $\alpha = ?$
- $x_i \to \alpha \Rightarrow x_j \to 0$ si el coeficiente de x_j es positivo.

- Variable entrante $x_i \to \alpha$
- \bullet $\alpha = ?$
- $x_i \to \alpha \Rightarrow x_j \to 0$ si el coeficiente de x_j es positivo.

Variable saliente x_k es aquella que se vuelve cero primero:

Sea **u** la *i*-ésima columna de **N** (correspondiente a x_i), entonces su valor en la nueva SBF es:

$$\alpha = \min_{j: (\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

- Variable entrante $x_i \to \alpha$
- $\alpha = ?$
- $x_i \to \alpha \Rightarrow x_j \to 0$ si el coeficiente de x_j es positivo.

Variable saliente x_k es aquella que se vuelve cero primero:

Sea **u** la *i*-ésima columna de **N** (correspondiente a x_i), entonces su valor en la nueva SBF es:

$$\alpha = \min_{j: (\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

• Si $\mathbf{B}^{-1}\mathbf{u} \leq 0$ el problema es no acotado, el costo mínimo es $-\infty$.

$$\left[\begin{array}{c|c} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \hline \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{array}\right]$$

• Tableau original.

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- Tableau original.
- ② Gauss-Jordan.

$$\left[\begin{array}{c|c} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \hline \mathbf{0} & \mathbf{c}_N^T - \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{N} & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{array}\right]$$

- Tableau original.
- ② Gauss-Jordan.

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{N} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots \ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- Tableau original.
- ② Gauss-Jordan.

$$\begin{bmatrix} \mathbf{I} & [\mathbf{u}_1|\mathbf{u}_2|\cdots|\mathbf{u}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots \ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- Tableau original.
- @ Gauss-Jordan.
- $\mathbf{b} \quad \mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$ $\mathbf{b} \quad \mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$

$$\begin{bmatrix} \mathbf{I} & [\mathbf{u}_1|\mathbf{u}_2|\cdots\mathbf{u}_i\cdots|\mathbf{u}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots r_i\cdots \ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- Tableau original.
- @ Gauss-Jordan.
- $\mathbf{0} \qquad \mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$ $\mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$
- **4** Escoger columna \mathbf{u}_i correspondiente a r_i más negativo.

$$\begin{bmatrix} [\mathbf{e}_1|\mathbf{e}_2|\dots|\mathbf{e}_m] & [\mathbf{u}_1|\mathbf{u}_2|\dots\mathbf{u}_i\dots|\mathbf{u}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ [0\ 0\ \dots\ 0] & [r_1\ r_2\ \dots r_i \cdots\ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- Tableau original.
- @ Gauss-Jordan.
- $\mathbf{0} \qquad \mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$ $\mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$
- **1** Escoger columna \mathbf{u}_i correspondiente a r_i más negativo.

Simplex

$$\begin{bmatrix} \begin{bmatrix} \mathbf{e}_1 | \mathbf{e}_2 | \dots \mathbf{e}_k \dots | \mathbf{e}_m \end{bmatrix} & \begin{bmatrix} \mathbf{u}_1 | \mathbf{u}_2 | \dots \mathbf{u}_i \dots | \mathbf{u}_{n-m} \end{bmatrix} & \mathbf{B}^{-1} \mathbf{b} \\ \hline \begin{bmatrix} 0 \ 0 \ \dots 0 \ \dots \ 0 \end{bmatrix} & \begin{bmatrix} r_1 \ r_2 \ \dots r_i \dots r_{n-m} \end{bmatrix} & -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}$$

- Tableau original.
- ② Gauss-Jordan.
- $\mathbf{0} \qquad \mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$ $\mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$
- **1** Escoger columna \mathbf{u}_i correspondiente a r_i más negativo.
- 5 Escoger columna a salir de la base.

Simplex

$$\begin{bmatrix} \frac{[\mathbf{e}_1|\mathbf{e}_2|\dots\mathbf{u}_i\dots|\mathbf{e}_m] & [\mathbf{u}_1|\mathbf{u}_2|\dots\mathbf{e}_k\dots|\mathbf{u}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ [0 \ 0 \ \dots r_i \dots \ 0] & [r_1 \ r_2 \ \dots 0 \dots \ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- Tableau original.
- ② Gauss-Jordan.
- $\mathbf{0} \qquad \mathbf{r} = \mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$ $\mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$
- **1** Escoger columna \mathbf{u}_i correspondiente a r_i más negativo.
- **5** Escoger columna a salir de la base.
- Reemplazar.

Simplex

$$\begin{bmatrix} \mathbf{B} & \mathbf{N} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- Tableau original.
- ② Gauss-Jordan.

$$\mathbf{0} \qquad \mathbf{r} = \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} = [r_1 \ r_2 \ \dots \ r_{n-m}]$$
$$\mathbf{B}^{-1} \mathbf{N} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_{n-m}]$$

- **4** Escoger columna \mathbf{u}_i correspondiente a r_i más negativo.
- **5** Escoger columna a salir de la base.
- 6 Reemplazar.
- O De nuevo.

$$\begin{aligned} & \text{m\'in} & -3x_1-x_2-3x_3\\ & \text{sujeto a} & 2x_1+x_2+x_3 \leq 2\\ & x_1+2x_2+3x_3 \leq 5\\ & 2x_1+2x_2+x_3 \leq 6\\ & x_1,x_2,x_3 \geq 0 \end{aligned}$$

mín
$$-3x_1 - x_2 - 3x_3$$

sujeto a $2x_1 + x_2 + x_3 + y_1 = 2$
 $x_1 + 2x_2 + 3x_3 + y_2 = 5$
 $2x_1 + 2x_2 + x_3 + y_3 = 6$
 $x_1, x_2, x_3, y_1, y_2, y_3 \ge 0$

mín
$$-3x_1 - x_2 - 3x_3$$

sujeto a $2x_1 + x_2 + x_3 + y_1 = 2$
 $x_1 + 2x_2 + 3x_3 + y_2 = 5$
 $2x_1 + 2x_2 + x_3 + y_3 = 6$
 $x_1, x_2, x_3, y_1, y_2, y_3 \ge 0$

• SBF inicial: $y_1 = 2, y_2 = 5, y_3 = 6, x_1 = x_2 = x_3 = 0$

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
$\overline{-3}$	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{b}
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{b}
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
1	2	3	0	1	0	5
2	2	1	0	0	1	6
-3	-1	-3	0	0	0	0

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
-3	0	1	-2	1	0	1
-2	0	-1	-2	0	1	2
$\overline{-1}$	0	$\overline{-2}$	1	0	0	$\overline{2}$

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
-3	0	1	-2	1	0	1
-2	0	-1	-2	0	1	2
-1	0	$\overline{-2}$	1	0	0	$\overline{2}$

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
-3	0	1	-2	1	0	1
-2	0	-1	-2	0	1	2
$\overline{-1}$	0	-2	1	0	0	$\overline{2}$

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
2	1	1	1	0	0	2
-3	0	1	-2	1	0	1
-2	0	-1	-2	0	1	2
-1	0	-2	1	0	0	2

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{b}
5	1	0	3	-1	0	1
-3	0	1	-2	1	0	1
-5	0	0	-4	1	1	3
$\overline{-7}$	0	0	$\overline{-3}$	2	0	4

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
5	1	0	3	-1	0	1
-3	0	1	-2	1	0	1
-5	0	0	-4	1	1	3
-7	0	0	-3	2	0	4

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
5	1	0	3	-1	0	1
-3	0	1	-2	1	0	1
-5	0	0	-4	1	1	3
-7	0	0	-3	2	0	4

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
5	1	0	3	-1	0	1
-3	0	1	-2	1	0	1
-5	0	0	-4	1	1	3
-7	0	0	-3	2	0	4

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{b}
1	$\frac{1}{5}$	0	$\frac{3}{5}$	$\frac{-1}{5}$	0	$\frac{1}{5}$
0	$\frac{3}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
0	1	0	-1	0	1	4
0	$\frac{7}{5}$	0	$\frac{6}{5}$	$\frac{3}{5}$	0	$\frac{27}{5}$

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	b
1	$\frac{1}{5}$	0	$\frac{3}{5}$	$\frac{-1}{5}$	0	$\frac{1}{5}$
0	$\frac{3}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
0	ĭ	0	-1	ŏ	1	$\overset{\circ}{4}$
0	$\frac{7}{5}$	0	$\frac{6}{5}$	$\frac{3}{5}$	0	$\frac{27}{5}$

• Solución óptima:

\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{b}
1	$\frac{1}{5}$	0	$\frac{3}{5}$	$\frac{-1}{5}$	0	$\frac{1}{5}$
0	$\frac{3}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	$\frac{8}{5}$
0	ĭ	0	-1	ŏ	1	$\overset{\circ}{4}$
0	$\frac{7}{5}$	0	$\frac{6}{5}$	$\frac{3}{5}$	0	$\frac{27}{5}$

• Solución óptima: $x_1 = \frac{1}{5}, x_2 = 0, x_3 = \frac{8}{5}$

$$\begin{aligned} & \min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x} \\ & \text{sujeto a} \\ & \mathbf{A} \mathbf{x} \le \mathbf{b} \\ & \mathbf{x} \ge 0 \end{aligned}$$

• Restricciones con Desigualdad.

$$\begin{aligned} & \underset{\mathbf{x}}{\min} & \mathbf{c}^{T}\mathbf{x} \\ & \text{sujeto a} \\ & [\mathbf{A}|\mathbf{I}] \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array} \right] = \mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq 0 \end{aligned}$$

- Restricciones con Desigualdad.
- Variables de holgura dan SBF inicial.

$$\begin{aligned}
& \underset{\mathbf{x}}{\text{min}} \quad \mathbf{c}^T \mathbf{x} \\
& \text{sujeto a} \\
& \mathbf{A} \mathbf{x} = \mathbf{b} \\
& \mathbf{x} \ge 0
\end{aligned}$$

• Forma estándar.

$$\begin{aligned} & \min_{\mathbf{y}} \quad \mathbf{1}^{T} \mathbf{y} \\ & \text{sujeto a} \\ & \mathbf{A} \mathbf{x} + \mathbf{y} = \mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq 0 \end{aligned}$$

- Forma estándar.
- Problema auxiliar

$$\begin{aligned}
& \min_{\mathbf{y}} \quad \mathbf{1}^{T} \mathbf{y} \\
& \text{sujeto a} \\
& \mathbf{A} \mathbf{x} + \mathbf{y} = \mathbf{b} \\
& \mathbf{x}, \mathbf{y} \ge 0
\end{aligned}$$

- Forma estándar.
- Problema auxiliar
- Resolver usando simplex (ya tenemos SBF inicial!)

$$\begin{aligned}
& \min_{\mathbf{y}} \quad \mathbf{1}^{T} \mathbf{y} \\
& \text{sujeto a} \\
& \mathbf{A} \mathbf{x} + \mathbf{y} = \mathbf{b} \\
& \mathbf{x}, \mathbf{y} \ge 0
\end{aligned}$$

- Forma estándar.
- Problema auxiliar
- Resolver usando simplex (ya tenemos SBF inicial!)
- Si el costo mínimo es 0, tenemos $\mathbf{y} = \mathbf{0}$, y el \mathbf{x} resultante es SBF del problema original.

Ejemplo

Considere el programa lineal: mín $\mathbf{c}^T \mathbf{x}$ sujeto a $\mathbf{A} \mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}$, donde

$$\mathbf{c}^T = \begin{bmatrix} 2 & 3 & 2 & 2 \end{bmatrix}, \quad \mathbf{b}^T = \begin{bmatrix} 3 & 5 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 4 \end{bmatrix}$$

 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ son las columnas de \mathbf{A} , y $\mathbf{a}_5, \mathbf{a}_6$ las columnas adicionales resultantes al añadir variables de holgura

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$			
$[\mathbf{a}_1 \mathbf{a}_3]$			
$[\mathbf{a}_4 \mathbf{a}_6]$			

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$			
$[\mathbf{a}_1 \mathbf{a}_3]$			
$[\mathbf{a}_4 \mathbf{a}_6]$			

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$			
$[\mathbf{a}_1 \mathbf{a}_3]$			
$[\mathbf{a}_4 \mathbf{a}_6]$			

$$\mathbf{x_B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$	NO	NO	X
$[\mathbf{a}_1 \mathbf{a}_3]$			
$[\mathbf{a}_4 \mathbf{a}_6]$			

$$\mathbf{x_B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$	NO	NO	X
$[\mathbf{a}_1 \mathbf{a}_3]$			
$[\mathbf{a}_4 \mathbf{a}_6]$			

$$\mathbf{x_B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{r} = \mathbf{c_N} - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \left(\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \right) \begin{bmatrix} 2 & 2 & -1 & 0 \\ 1 & 4 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & -1 & 0 \\ 1 & 4 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 4 & 4 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 2 & 0 \end{bmatrix}$$

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$	NO	NO	X
$[\mathbf{a}_1 \mathbf{a}_3]$	SI	NO	6
$[\mathbf{a}_4 \mathbf{a}_6]$			

$$\mathbf{x_B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{r} = \mathbf{c_N} - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \left(\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \right) \begin{bmatrix} 2 & 2 & -1 & 0 \\ 1 & 4 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & -1 & 0 \\ 1 & 4 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 4 & 4 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 2 & 0 \end{bmatrix}$$

Base	SBF?	SBF óptima?	Costo
$[\mathbf{a}_1 \mathbf{a}_2]$	NO	NO	X
$[\mathbf{a}_1 \mathbf{a}_3]$	SI	NO	6
$[\mathbf{a}_4 \mathbf{a}_6]$			

$$\mathbf{x_B} = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix} \Rightarrow \text{ es factible.}$$

$$\mathbf{r} = \mathbf{c_N} - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \left(\begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

	Base	SBF?	SBF óptima?	Costo
ſ	$[\mathbf{a}_1 \mathbf{a}_2]$	NO	NO	X
Ī	$[\mathbf{a}_1 \mathbf{a}_3]$	SI	NO	6
Ī	$[{f a}_4 {f a}_6]$	SI	SI	3

$$\mathbf{x_B} = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix} \Rightarrow \text{ es factible.}$$

$$\mathbf{r} = \mathbf{c_N} - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{N} = \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \left(\begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I} & \mathbf{B^{-1}N} & \mathbf{B^{-1}b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

 \bullet En cada paso del Simplex se calcula ${\bf B}^{-1}{\bf N}$

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}[\mathbf{n}_1|\mathbf{n}_2|\dots|\mathbf{n}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_N^T & 0 \end{bmatrix}$$

- En cada paso del Simplex se calcula B⁻¹N
- ullet Puede verse como multiplicar cada columna de ${f N}$ por ${f B}^{-1}$

$$\begin{bmatrix} \mathbf{I} & [\mathbf{B}^{-1}\mathbf{n}_1|\mathbf{B}^{-1}\mathbf{n}_2|\dots|\mathbf{B}^{-1}\mathbf{n}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots \ r_{n-m}] & -\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- \bullet En cada paso del Simplex se calcula ${\bf B}^{-1}{\bf N}$
- ullet Puede verse como multiplicar cada columna de ${\bf N}$ por ${\bf B}^{-1}$
- Sólo escogemos una columna en cada paso.

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{n}_1 | \mathbf{B}^{-1}\mathbf{n}_2 | \dots \mathbf{B}^{-1}\mathbf{n}_i \dots | \mathbf{B}^{-1}\mathbf{n}_{n-m} \end{bmatrix} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots r_i \dots r_{n-m}] & -\mathbf{c}_B^T \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- En cada paso del Simplex se calcula B⁻¹N
- ullet Puede verse como multiplicar cada columna de ${f N}$ por ${f B}^{-1}$
- Sólo escogemos una columna en cada paso.
- Muchas columnas de calculan pero no se usan.

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{n}_1 | \mathbf{B}^{-1}\mathbf{n}_2 | \dots \mathbf{B}^{-1}\mathbf{n}_i \dots | \mathbf{B}^{-1}\mathbf{n}_{n-m} \end{bmatrix} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots r_i \dots \ r_{n-m}] & -\mathbf{c}_B^T \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- En cada paso del Simplex se calcula B⁻¹N
- ullet Puede verse como multiplicar cada columna de ${f N}$ por ${f B}^{-1}$
- Sólo escogemos una columna en cada paso.
- Muchas columnas de calculan pero no se usan.
- Crítico en problemas grandes.

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{n}_1 | \mathbf{B}^{-1}\mathbf{n}_2 | \dots \mathbf{B}^{-1}\mathbf{n}_i \dots | \mathbf{B}^{-1}\mathbf{n}_{n-m}] & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & [r_1 \ r_2 \ \dots r_i \dots \ r_{n-m}] & -\mathbf{c}_B^T \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

- \bullet En cada paso del Simplex se calcula ${\bf B}^{-1}{\bf N}$
- Puede verse como multiplicar cada columna de ${\bf N}$ por ${\bf B}^{-1}$
- Sólo escogemos una columna en cada paso.
- Muchas columnas de calculan pero no se usan.
- Crítico en problemas grandes.
- \bullet Idea:Mantener \mathbf{B}^{-1} actualizada, sólo calcular columnas que se requieren en cada paso.

Un paso del método Simplex

① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T - \boldsymbol{\lambda}^T \mathbf{N}$.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ${\it 2}{\it 0}$ Si ${\bf r}\geq 0$ termine. solución actual es óptima.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.
- 3 Calcule $\mathbf{v} = \mathbf{B}^{-1}\mathbf{u}$.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.
- 3 Calcule $\mathbf{v} = \mathbf{B}^{-1}\mathbf{u}$.

4

$$\alpha = \min_{j:(\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.
- 3 Calcule $\mathbf{v} = \mathbf{B}^{-1}\mathbf{u}$.

4

$$\alpha = \min_{j: (\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

Reemplazar columna k de **B**.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.
- 3 Calcule $\mathbf{v} = \mathbf{B}^{-1}\mathbf{u}$.

4

$$\alpha = \min_{j: (\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

Reemplazar columna k de \mathbf{B} .

⑤ Actualice \mathbf{B}^{-1} y la solución $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$.

Un paso del método Simplex

- ① Calcule el vector fila $\boldsymbol{\lambda}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ y los costos reducidos $\mathbf{r} = \mathbf{c}_N^T \boldsymbol{\lambda}^T \mathbf{N}$.
- ② Si $\mathbf{r} \geq 0$ termine. solución actual es óptima. Si no, escoja la columna \mathbf{u} de \mathbf{N} correspondiente al r_i más negativo, para insertarla en la base.
- 3 Calcule $\mathbf{v} = \mathbf{B}^{-1}\mathbf{u}$.

4

$$\alpha = \min_{j:(\mathbf{B}^{-1}\mathbf{u})_j > 0} \frac{(\mathbf{B}^{-1}\mathbf{b})_j}{(\mathbf{B}^{-1}\mathbf{u})_j} = \frac{(\mathbf{B}^{-1}\mathbf{b})_k}{(\mathbf{B}^{-1}\mathbf{u})_k}$$

Reemplazar columna k de \mathbf{B} .

- ⑤ Actualice \mathbf{B}^{-1} y la solución $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$.
 - Requerimos calcular $\lambda^T = \mathbf{c}_B^T \mathbf{B}^{-1}$, $\mathbf{v} = \mathbf{B}^{-1} \mathbf{u}$ y $\mathbf{x}_B = \mathbf{B}^{-1} \mathbf{b}$.

• Calcular explícitamente ${\bf B}^{-1}$ en la primera SBF.

- Calcular explícitamente ${\bf B}^{-1}$ en la primera SBF.
- Al intercambiar \mathbf{e}_k por \mathbf{v} actualizamos \mathbf{B}^{-1} multiplicando por:

- Calcular explícitamente \mathbf{B}^{-1} en la primera SBF.
- Al intercambiar \mathbf{e}_k por \mathbf{v} actualizamos \mathbf{B}^{-1} multiplicando por:

$$\mathbf{E}^{-1} = \begin{bmatrix} 1 & . & v_1 & . & . \\ . & . & \vdots & . & . \\ . & . & v_k & . & . \\ . & . & \vdots & . & . \\ . & . & v_m & . & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & . & -v_1/v_k & . & . \\ . & . & \vdots & . & . \\ . & . & 1/v_k & . & . \\ . & . & 1/v_k & . & . \\ . & . & . & . & . \\ . & . & -v_m/v_k & . & 1 \end{bmatrix}$$

- Calcular explícitamente \mathbf{B}^{-1} en la primera SBF.
- Al intercambiar \mathbf{e}_k por \mathbf{v} actualizamos \mathbf{B}^{-1} multiplicando por:

$$\mathbf{E}^{-1} = \begin{bmatrix} 1 & . & v_1 & . & . \\ . & . & \vdots & . & . \\ . & . & v_k & . & . \\ . & . & \vdots & . & . \\ . & . & v_m & . & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & . & -v_1/v_k & . & . \\ . & . & \vdots & . & . \\ . & . & 1/v_k & . & . \\ . & . & 1/v_k & . & . \\ . & . & . & . & . \\ . & . & -v_m/v_k & . & 1 \end{bmatrix}$$

• Se puede verificar que **BE** tiene $\mathbf{u} = \mathbf{B}\mathbf{v}$ en su columna k, luego $\mathbf{E}^{-1}\mathbf{B}^{-1}$ es la nueva inversa.

- Calcular explícitamente \mathbf{B}^{-1} en la primera SBF.
- Al intercambiar \mathbf{e}_k por \mathbf{v} actualizamos \mathbf{B}^{-1} multiplicando por:

$$\mathbf{E}^{-1} = \begin{bmatrix} 1 & . & v_1 & . & . \\ . & . & \vdots & . & . \\ . & . & v_k & . & . \\ . & . & \vdots & . & . \\ . & . & v_m & . & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & . & -v_1/v_k & . & . \\ . & . & \vdots & . & . \\ . & . & 1/v_k & . & . \\ . & . & 1/v_k & . & . \\ . & . & . & . & . \\ . & . & -v_m/v_k & . & 1 \end{bmatrix}$$

- Se puede verificar que **BE** tiene $\mathbf{u} = \mathbf{B}\mathbf{v}$ en su columna k, luego $\mathbf{E}^{-1}\mathbf{B}^{-1}$ es la nueva inversa.
- Períodicamente se recalcula \mathbf{B}^{-1} . Criterio de error es $|\mathbf{B}\mathbf{x}_B \mathbf{b}|$, donde $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ con el valor actual de \mathbf{B}^{-1} .

• Resolver
$$\lambda^T \mathbf{B} = \mathbf{c}_B^T$$
, $\mathbf{B} \mathbf{v} = \mathbf{u}$ y $\mathbf{B} \mathbf{x}_B = \mathbf{b}$.

- Resolver $\lambda^T \mathbf{B} = \mathbf{c}_B^T$, $\mathbf{B} \mathbf{v} = \mathbf{u}$ y $\mathbf{B} \mathbf{x}_B = \mathbf{b}$.
- Tres ecuaciones con el mismo coeficiente **B**.

- Resolver $\lambda^T \mathbf{B} = \mathbf{c}_B^T$, $\mathbf{B} \mathbf{v} = \mathbf{u}$ y $\mathbf{B} \mathbf{x}_B = \mathbf{b}$.
- Tres ecuaciones con el mismo coeficiente B.
- Utilizar factorización $\mathbf{B} = \mathbf{L}\mathbf{U}$.

- Resolver $\lambda^T \mathbf{B} = \mathbf{c}_B^T$, $\mathbf{B} \mathbf{v} = \mathbf{u} \ \mathbf{y} \ \mathbf{B} \mathbf{x}_B = \mathbf{b}$.
- Tres ecuaciones con el mismo coeficiente B.
- Utilizar factorización $\mathbf{B} = \mathbf{L}\mathbf{U}$.
- Actualizar L y U.

• En la práctica $\sim \frac{3}{2}m$ iteraciones

• En la práctica $\sim \frac{3}{2}m$ iteraciones $\Rightarrow m^2n$ operaciones.

• En la práctica $\sim \frac{3}{2}m$ iteraciones $\Rightarrow m^2n$ operaciones.

• En la práctica $\sim \frac{3}{2}m$ iteraciones $\Rightarrow m^2n$ operaciones.

Existen ejemplos en el que el simplex debe visitar todas las esquinas

- En la práctica $\sim \frac{3}{2}m$ iteraciones $\Rightarrow m^2n$ operaciones.
- Existen ejemplos en el que el simplex debe visitar todas las esquinas (tiempo exponencial!).

- En la práctica $\sim \frac{3}{2}m$ iteraciones $\Rightarrow m^2n$ operaciones.
- Existen ejemplos en el que el simplex debe visitar todas las esquinas (tiempo exponencial!).
- Métodos de punto interior (Karmarkar) corren en tiempo polinomial.