Lecture 2:

Naïve Bayes and Parameter Estimation

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	Model selection: Comparing Distributions vs Frequentist Methods
	Module 4	Model Selection: Bayesian Signal Detection
	Module 5	Variational Bayes, Expectation Maximization
	Module 6	Stochastic Processes
	Module 7	Monte Carlo Methods
	Module 8	Markov Models, Graphs
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	TBD (GNNs)
	Module 15	TBD (RNNs and LSTMs)
	Module 16	TBD (Transformer and LLMs)

Outline

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

<u>Outline</u>

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes Theorem

Idea

Example

UMAP projection
(toxic, non-toxic)

K different classes
(here K = 2)

 \vec{x} : vector with all model parameters (or features)

	_					
Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0	413.228	2.94416	3.41991	1	10.4335	Toxic
1	447.945	3.55371	3.66831	7	10.3475	Toxic
2	309.199	3.19761	2.84841	0	7.88825	Non-Toxic
3	382.554	3.8653	3.46237	8	9.59041	Toxic
4	310.904	3.18141	2.87774	6	7.85477	Non-Toxic
5	353.857	3.12105	3.32724	6	8.58887	Non-Toxic

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes Theorem

Idea

goal: predicting class C_k of a new datum, given \vec{x}

 $P(C_k|\vec{x})$: probability that datapoint belongs to class C_k , given \vec{x}

 $P(\vec{x}|C_k)$: probability that datapoint has

features \vec{x} , given class C_k

$$P(C_k|\vec{x}) = \frac{P(\vec{x}|C_k)P(C_k)}{P(\vec{x})} = \frac{P(C_k)}{P(\vec{x})} \prod_{i=1}^{I} P(x_i|C_k) \sim P(C_k) \prod_{i=1}^{I} P(x_i|C_k) \qquad \sum_{k=1}^{K} P(C_k|\vec{x}) = 1$$

$$\sim P(C_k) \prod_{i=1}^{I} P(x_i|C_k)$$

$$\sum_{k=1}^{K} P(C_k | \vec{x}) = 1$$

Naïve Bayes:

- all features are mutually independent
- i. e.: no correlation between features
- features can be factorized

$$k_{new} = \underset{k}{argmax} \left\{ P(C_k) \prod_{i=1}^{I} P(x_i | C_k) \right\}$$

from the training data \rightarrow supervised learning (see later)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes Theorem

Idea

Example

goal: predicting class C_k of a new datum, given \vec{x}

 $P(C_k|\vec{x})$: probability that datapoint belongs to class C_k , given \vec{x}

 $P(\vec{x}|C_k)$: probability that datapoint has

features \vec{x} , given class C_k

$$P(C_k|\vec{x}) = \frac{P(\vec{x}|C_k)P(C_k)}{P(\vec{x})} = \frac{P(C_k)}{P(\vec{x})} \prod_{i=1}^{I} P(x_i|C_k) \sim P(C_k) \prod_{i=1}^{I} P(x_i|C_k) \qquad \sum_{k=1}^{K} P(C_k|\vec{x}) = 1$$

$$k_{new} = \underset{k}{argmax} \left\{ P(C_k) \prod_{i=1}^{l} P(x_i | C_k) \right\}$$

from the training data \rightarrow supervised learning (see later)

different models for $P(x_i|C_k)$

- multinomial

- Gaussian

•••

<u>Outline</u>

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

from the training data → supervised learning

Example

1) creating the model:

```
my_model = library.method(argument1 = 'arg1', ... )
```

2) training the model

```
out = my_model.fit(xtrain, ytrain)
```

3) evaluation

```
ypred = out.predict(xeval)
accur = (ypred == yeval).sum()/len(yeval)
```

4) prediction (actual application)

```
ypred = out.predict(xnew)
```



```
Python:
```

```
from sklearn.naive_bayes import *
                                                                         Example
 from sklearn.preprocessing import MinMaxScaler
                                                                    importing methods for
                                                                    naïve bayes
Train = pd.read_csv('molecular_train_gbc_cat.csv')
Test = pd.read csv('molecular test qbc cat.csv')
                                                                   scaling/normalizing data
XTrain = Train.drop('label', axis = 1).values
YTrain = Train['label']
XTest = Test.drop('label', axis = 1).values
YTest = Test['label']
                           print(YTrain[:10])
                                Toxic
                                Toxic
                              Non-Toxic
                              Non-Toxic
```

Non-Toxic Non-Toxic Non-Toxic Toxic Non-Toxic

Name: label, dtype: object

XTestS = scaler.transform(XTest)

Ypred = Fit.predict(XTestS)

Probs = Fit.predict_proba(XTestS)

Example

<u>Outline</u>

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

D: data set

q: parameter

L=L(D/q): **known** likelihood function

goal: finding the parameter q as P(q|D) such that

- entropy of P(q|D) decreases for increasing amount of D

- we derive the actual P(q|D)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 Bayes Theorem

likelihood function (eg: binomial)

$$P(q|D) = \frac{P(D|q)P(q)}{P(D)}$$
 prior

evidence (const wrt q)

$$\int P(q|D) \ dq = 1$$

Idea

D: data set

q: parameter

L=L(D/q): **known** likelihood function

likelihood function (eg: binomial)

$$P(q|D) = \frac{P(D|q)P(q)}{P(D)}$$
 prior

evidence (const wrt q)

in **this** example: $P(k, n|q) = \binom{n}{k} q^k (1-q)^{n-k}$

Idea

$$P(q|D) = \frac{\binom{n}{k} q^k (1-q)^{n-k}}{P(D)} P(q)$$

$$\sim q^k (1-q)^{n-k} P(q)$$

$$P(D) \text{ and } \binom{n}{k} \text{ are no functions of } q$$

D: data set

q: parameter

L=L(D/q): **known** likelihood function

in **this** example: $P(k|n,q) = \binom{n}{k} q^k (1-q)^{n-k}$

$$P(q|D) = \frac{\binom{n}{k} \ q^k (1-q)^{n-k}}{P(D)} P(q)$$

$$\sim q^k (1-q)^{n-k} \ P(q)$$

$$\sim q^k (1-q)^{n-k}$$

$$\sim q^k (1-q)^{n-k}$$

$$\sim q^k (1-q)^{n-k}$$

The proof of the proo

Idea

$$P(q|D) = \frac{q^{k}(1-q)^{n-k}}{\int_{0}^{1} q^{k}(1-q)^{n-k} dq}$$

check out bayesian_bino.py

n1 = 4

k1 = np.random.binomial(n1, 0.25)

creating artificial data set note: in reality **q** is unknown!

[q1, b, _] = bayesian_bino(n1, k1)

Idea

$$P(q|data set) = \frac{q^{k}(1-q)^{n-k}}{\int_{0}^{1} q^{k}(1-q)^{n-k} dq}$$

check out bayesian_bino.py

increasing n

Idea

n	estimated q
5	$0.2^{+0.15}_{-0.18}$
10	$0.1^{+0.09}_{-0.1}$
20	$0.3^{+0.1}_{-0.1}$
50	$0.2^{+0.05}_{-0.06}$
100	$0.32^{+0.05}_{-0.05}$
500	$0.23^{+0.02}_{-0.02}$
1,000	$0.25^{+0.01}_{-0.01}$
infinity	0.25

check out bayesian_bino.py

increasing n

Idea

Laplace Approximation and MAP

n	estimated q
5	$0.2^{+0.15}_{-0.18}$
10	$0.1^{+0.09}_{-0.1}$
20	$0.3^{+0.1}_{-0.1}$
50	$0.2^{+0.05}_{-0.06}$
100	$0.32^{+0.05}_{-0.05}$
500	$0.23^{+0.02}_{-0.02}$
1,000	$0.25^{+0.01}_{-0.01}$
infinity	0.25

Bayesian Parameter Estimation works with any other pdf

Idea

What is the average number of WhatsUp messages I get every day?

- has no duration Mon: 5 event

- is rare Tue:

Wed: 1

→ Poissonian Thu:

Fri: 9

Sat:

5 Sun:

likelihood function
$$P(k|\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$P(q|D) = \frac{P(D|q)P(q)}{P(D)}$$

<u>Outline</u>

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

What if there is new data?

Sharing new Information

Laplace Approximation and MAP

$$P(q|D) = \frac{q^{k}(1-q)^{n-k}}{\int_{0}^{1} q^{k}(1-q)^{n-k} dq}$$

if there **is** prior information **I** about **q**:

$$P(q|new\ data\ set,I) = \frac{P(new\ data\ set|q,I)\ P(q,I)}{P(new\ data\ set)}$$

What if there is new data?

$$P(q|new\ data\ set,I) = \frac{P(new\ data\ set|q,I)}{P(new\ data\ set)}$$

$$= \frac{q^{\kappa} (1-q)^{\nu-\kappa}}{\int_0^1 q^{\kappa} (1-q)^{\nu-\kappa}} \frac{q^k (1-q)^{n-k}}{q^k (1-q)^{n-k}} dq$$

$$= \frac{q^{k+\kappa}(1-q)^{\nu-\kappa+n-k}}{\int_0^1 q^{k+\kappa}(1-q)^{\nu-\kappa+n-k} dq}$$

$$= \frac{q^{k+\alpha-1}(1-q)^{n-k+\beta-1}}{\int_0^1 q^{k+\alpha-1}(1-q)^{n-k+\beta-1} dq}$$

Idea

Sharing new Information

Laplace Approximation and MAF

$$P(q|D) = \frac{q^{k}(1-q)^{n-k}}{\int_{0}^{1} q^{k}(1-q)^{n-k} dq}$$

often: $\kappa = \alpha - 1$ $\beta = \nu - \kappa - 1$

Beta function

(conjugate prior of the binomial distribution)

What if there is new data?

Likelihood $p(x_i heta)$	$\begin{array}{c} \textbf{Model} \\ \textbf{parameters} \\ \theta \end{array}$	Conjugate prior (and posterior) distribution $p(\theta \Theta), p(\theta \mathbf{x},\Theta) = p(\theta \Theta')$	Prior hyperparameters ⊖
Bernoulli	p (probability)	Beta	$lpha,eta\in\mathbb{R}$
Binomial with known number of trials, <i>m</i>	p (probability)	Beta	$lpha,eta\in\mathbb{R}$
Negative binomial with known failure number, r	p (probability)	Beta	$lpha,eta\in\mathbb{R}$
Poisson	λ (rate)	Gamma	$k, heta\in\mathbb{R}$
			$\alpha,eta^{[{ m note}4]}$
Categorical	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	$oldsymbol{lpha} \in \mathbb{R}^k$
Multinomial	p (probability vector), k (number of categories; i.e., size of	Dirichlet	$oldsymbol{lpha} \in \mathbb{R}^k$

Idea

Sharing new Information

Laplace Approximation and MAP

see example "Model Selection" about discrete signals

What if there is new data?

$$P(q|new\ data\ set, I) = \frac{q^{\kappa}(1-q)^{\nu-\kappa}}{\int_{0}^{1} q^{\kappa}(1-q)^{\nu-\kappa}} \frac{q^{k}(1-q)^{n-k}}{q^{k}(1-q)^{n-k}} \frac{q^{k}(1-q)^{n-k}}{q^{k}(1-q)^{n$$

Idea

Sharing new Information

Laplace Approximation and MAP

$$P(q,I) = \frac{q^{k}(1-q)^{n-k}}{\int_{0}^{1} q^{k}(1-q)^{n-k} dq}$$

What if there is new data?

$$P(q|new\ data\ set, I) = \frac{q^{\kappa}(1-q)^{\nu-\kappa}}{\int_0^1 q^{\kappa}(1-q)^{\nu-\kappa}} \frac{q^{k}(1-q)^{n-k}}{q^{k}(1-q)^{n-k}} \frac{q^{k}(1-q)^{n-k}}{q^{k}(1-q)^{n-k}}$$

Idea

Sharing new Information

Laplace Approximation and MAP

The **posterior** from the **previous** experiment is the **prior** of the **next** experiment

- → we become more certain about the model parameters
- → learning!

<u>Outline</u>

Naïve Bayes

- Idea
- Example

Parameter Estimation

- Idea
- Sharing new Information
- Laplace Approximation and MAP

Idea

Sharing new Information

Laplace Approximation and MAP

D: data set

q: parameter

 q_0 : q for which P(q/D)

reaches max

for large D, the posterior seems to approach a Gaussian

Laplace approximation: 2^{nd} order Taylor approximation of ln[P(q|D)]

$$L = \ln[P(q|D)] \approx \ln[P(q_0|D)] + \frac{d}{dq} \ln[P(q|D)]|_{q=q_0} (q - q_0) + \frac{1}{2} \frac{d^2}{dq^2} \ln[P(q|D)]|_{q=q_0} (q - q_0)^2$$
= 0 (evaluated at maximum)

$$P(q|D) \approx P(q_0|D) \exp\left\{\frac{1}{2} \frac{d^2}{dq^2} ln[P(q|D)]|_{q=q_0} (q - q_0)^2\right\}$$

$$P(q|D) \approx P(q_0|D) \exp\left\{\frac{1}{2} \frac{d^2}{dq^2} ln[P(q|D)]|_{q=q_0} (q - q_0)^2\right\}$$

$$\mu = q_0$$

$$\sigma^{2} = \frac{1}{\frac{d^{2}}{dq^{2}} ln[P(q|D)]|_{q=q_{0}}}$$

for **example**, if P(D|q) is a **binomial** distribution:

$$P(q|D) \sim q^k (1-q)^{n-k}$$

$$q_0 = \frac{k}{n}$$

$$q = \frac{k}{n} \pm \sqrt{\frac{q_0(1 - q_0)}{n}}$$

$$\sigma = \sqrt{\frac{q_0(1 - q_0)}{n}}$$

Laplace Approximation and MAP

D: data set

parameter q:

q for which P(q|D) q_0 :

reaches max

for large n: approaches frequentist results (like maximum likelihood estimation, MLE)

$$P(q|D) \approx P(q_0|D) \exp\left\{\frac{1}{2} \frac{d^2}{dq^2} ln[P(q|D)]|_{q=q_0} (q - q_0)^2\right\}$$

Idea

Sharing new Information

Laplace Approximation and MAP

D: data set

q: parameter

 q_0 : q for which P(q|D)

reaches max

note: - using Bayesian Parameter Estimation, we find the **pdf** P(q|D) of the desired parameter q

- the P(q|D) is flat for small D, but becomes more defined for large $D \rightarrow$ reflects the exact amount of information with have about q
- integration around the maximum of P(q|D) provides confidence intervals about q
- for large D, we can apply the Laplace approximation, which is equal to the frequentist result

- finding
$$q_0 = \displaystyle \frac{argmax}{q} \{P(q|D)\}$$
, is called **maximum a posteriori (MAP)** estimate

- maximum likelihood estimation, MLE (see later):
$$q_0 = \frac{argmax}{q} \{P(D|q)\},$$

Thank you very much for your attention!

