Clustering Estadística Multivariante

Sofía Almeida Bruno Daniel Bolaños Martínez José María Borrás Serrano Fernando de la Hoz Moreno Pedro Manuel Flores Crespo María Victoria Granados Pozo

20 de enero de 2020

Clustering

- Objetivo: agrupar objetos similares.
- Dadas x₁, · · · , x_n medidas de p variables en n objetos considerados heterogéneos. El objetivo del análisis clúster es agrupar estos objetos en k clases homogéneas, donde k es también desconocido.

Clustering

Figura: Ejemplo de clustering. [?]

Ejemplos de Clustering

- Biología: determinación de especies.
- Marketing: descubrimiento de grupos de clientes.

Figura: Ejemplo de clustering. [?]

- Psicología: encontrar tipos de personalidad.
- Arqueología: datar objetos encontrados.
- Planificación urbana: identificar grupos de viviendas.

Clustering

Para realizar un análisis clúster hay que:

- Elegir una medida de similitud.
- Elegir un algoritmo para construir los grupos.
 - Particionamiento.
 - Jerárquicos.

Medidas de similitud

Consideraciones iniciales como:

- Naturaleza de las variables (discreta, continua, binaria).
- Escalas de las medidas (nominal, ordinal, intervalo).
- Conocimiento sobre el problema.

Los valores de las variables consideradas deberán ser normalizados.

Distancias de similitud para pares de ítems

La distancia estadística entre dos observaciones p-dimensionales $x^T = [x_1, \dots, x_p]$ e $y^T = [y_1, \dots, y_p]$ es:

$$d(x,y) = \sqrt{(x-y)^T A(x-y)}$$

Donde:

- $A = S^{-1}$.
- ullet S contiene las varianzas y covarianzas de la muestra.

Otras medidas y coeficientes de similitud

• Métrica de Minkowski:

$$d(x,y) = \left[\sum_{i=1}^{p} |x_i - y_i|^m \right]^{1/n}$$

• Métrica de Canberra (variables no negativas):

$$d(x,y) = \sum_{i=1}^{p} \frac{|x_i - y_i|}{(x_i + y_i)}$$

• Coeficiente de Czekanowski (variables no negativas):

$$d(x,y) = 1 - \frac{2\sum_{i=1}^{p} \min(x_i, y_i)}{\sum_{i=1}^{p} (x_i + y_i)}$$

Propiedades distancia "verdadera"

- d(P, Q) = d(Q, P).
- $d(P,Q) > 0 \text{ si } P \neq Q.$
- d(P, Q) = 0 si P = Q.
- $d(P, Q) \le d(P, R) + d(R, Q)$.

con P y Q dos puntos y R su punto intermedio.

La mayoría de algoritmos de clustering aceptan distancias que no satisfagan la desigualdad triangular.

Binarización de variables

Si los ítems no pueden ser representados por medidas *p*-dimensionales significativas, las parejas de ítems se suelen comparar según la **presencia o ausencia** de ciertas características.

Matemáticamente se consigue introduciendo una variable binaria, que toma el valor ${\bf 1}$ si la característica **está presente** y el valor ${\bf 0}$ si ${\bf no}$.

Frecuencias de las parejas

Organizamos las frecuencias en la siguiente tabla de contingencia:

		Ite	m k	Total			
		1	0				
Item i	1	а	b	a+b			
	0	С	d	c+d			
Total		a+c	b+d	p=a+b+c+d			

Coeficientes de similitud para ítems clustering

Coeficiente		Fundamento						
1	<u>a+d</u> p	Las parejas 1-1 y 0-0 ponderan lo mismo.						
2	$\frac{2(a+d)}{2(a+d)+b+c}$	Las parejas 1-1 y 0-0 ponderan el doble.						
3	$\frac{a+d}{a+d+2(b+c)}$	Las parejas que no coinciden ponderan el doble.						
4	<u>a</u> p	No hay parejas 0-0 en el numerador.						

Coeficientes de similitud para ítems clustering

Coeficiente		Fundamento						
5	<u>a</u> a+b+c	No hay parejas 0-0 en el numerador ni el denominador (Las parejas 0-0 son irrelevantes).						
6	2a 2a+b+c	No hay parejas 0-0 en el numerador ni el denominador. Las parejas 1-1 ponderan el doble.						
7	$\frac{a}{a+2(b+c)}$	No hay parejas 0-0 en el numerador ni el denominador. Las parejas que no coinciden ponderan el doble.						
8	$\frac{a}{b+c}$	Proporción de parejas que coinciden (excluyendo las 0-0) en relación a las parejas que no coinciden.						

Construcción de similitudes y distancias

• Siempre se pueden construir similitudes a partir de distancias.

Fijando $s_{ik} = \frac{1}{1+d_{ik}}$ donde $0 < s_{ik} \le 1$ es la similitud entre los ítems i y k, entonces d_{ik} es la distancia correspondiente.

• Las distancias se pueden construir a partir de similitudes si la matriz de similitudes es definida no negativa y la máxima similitud cumple $s_{ii}=1$.

Entonces $d_{ik} = \sqrt{2 \cdot (1 - s_{ik})}$, cumple las propiedades de una distancia.

Medidas de similitud para pares de variables

Las medidas de similitud para variables suelen tomar la forma de coeficientes de correlaciones muestrales.

Cuando las variables son binarias, los datos se pueden organizar en una tabla de contingencia que tiene la siguiente forma:

		Varia	ble <i>k</i>	Total			
		1	0				
Variable i	1	а	b	a + b			
	0	С	d	c + d			
Total		a + c	b + d	n = a + b + c + d			

Medidas de similitud para pares de variables

La fórmula del coeficiente de correlación producto-momento aplicada a las variables binarias de la tabla de contingencia nos da:

$$r = \frac{ad - bc}{[(a+b)(c+d)(a+c)(b+d)]^{1/2}}.$$

r se puede tomar como la medida de similitud entre las dos variables.

Ejemplo idiomas

Medimos las similitudes de 11 lenguajes en base a los primeros 10 números naturales en cada idioma.

Inglés (E)	Noruego (N)	Danés (Da)	Holandés (Du)	Alemán (G)	Francés (Fr)	Español (Sp)	Italiano (I)	Polaco (P)	Húngaro (H)	Finés (Fi)
one	en	en	een	eins	un	uno	uno	jeden	egy	yksi
two	to	to	twee	zwei	deux	dos	due	dwa	ketto	kaksi
three	tre	tre	drie	drei	trois	tres	tre	trzy	harom	kolme
four	fire	fire	vier	vier	quatre	cuatro	quattro	cztery	negy	nelja
five	fem	fem	vijf	funf	cinq	cinco	cinque	piec	ot	viisi
six	seks	seks	zes	sechs	six	seis	sei	szesc	hat	kuusi
seven	sju	syv	zeven	sieben	sept	siete	sette	siedem	het	seitseman
eight	atte	otte	acht	acht	huit	ocho	otto	osiem	nyolc	kahdeksan
nine	ni	ni	negen	neun	neuf	nueve	nove	dziewiec	kilenc	yhdeksan
ten	ti	ti	tien	zehn	dix	diez	dieci	dziesiec	tiz	kymmenen

	Е	Ν	Da	Du	G	Fr	Sp	I	Р	Н	Fi
Е	10										
Ν	8	10									
Da	8	9	10								
Du	3	5	4	10							
G	4	6	5	5	10						
Fr	4	4	4	1	3	10					
Sp	4	4	5	1	3	8	10				
	4	4	5	1	3	9	9	10			
Р	3	3	4	0	2	5	7	6	10		
Н	1	2	2	2	1	0	0	0	0	10	
Fi	1	1	1	1	1	1	1	1	1	2	10

Vemos que inglés, noruego, danés, holandés y alemán parecen formar un grupo. El francés, español, italiano y polaco forman otro, mientras que el húngaro y el finés no forman parte de ninguno.

Métodos de agrupamiento

Definición procedimiento de agruapación de una serie de vectores de acuerdo con un criterio (distancia o similitud).

Métodos de agrupamiento

Tipos

- Jerárquicos
- No jerárquicos o particionamiento

Figura: Comparación métodos jerárquico y no jerárquico.

Métodos de agrupamiento Jerárquicos

Métodos Jerárquicos

Definición: método de análisis de grupos puntuales, que se basa en buscar una construcción de una jerarquía de grupos. Se minimizan las distancias y no es necesario conocer el número de grupos que se van a formar.

Figura: Comparación métodos aglomerativos y divisivos.

Comparación de técnicas aglomerativas y divisivas

Figura: Comparación de dendrogramas aglomerativos y divisivo

Distancia entre dos clústers

$$d(R,S) = min\{d_{rs} : r \in R, s \in S\}$$
 (1)

Matriz de distancias

$$\mathcal{D} = \begin{bmatrix} d_{rs} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 1 & 2 & 4 & 7 & 9 \\ 2 & 0 & 8 & 9 & 8 \\ 4 & 8 & 0 & 3 & 7 \\ 7 & 9 & 3 & 0 & 5 \\ 5 & 9 & 8 & 7 & 5 & 0 \end{bmatrix}$$

Matriz de distancias

$$\mathcal{D} = \begin{bmatrix} d_{rs} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 7 & 9 \\ 2 & 0 & 8 & 9 & 8 \\ 4 & 8 & 0 & 3 & 7 \\ 7 & 9 & 3 & 0 & 5 \\ 5 & 9 & 8 & 7 & 5 & 0 \end{bmatrix}$$

Tomamos los clúster 1 y 2 y formamos el nuevo clúster (12)

Cálculo de las nuevas distancias

$$d_{(12)(3)} = \min\{d_{13}, d_{23}\} = \min\{4, 8\} = 4$$

 $d_{(12)(4)} = \min\{d_{14}, d_{24}\} = \min\{7, 9\} = 7$
 $d_{(12)(5)} = \min\{d_{15}, d_{25}\} = \min\{9, 8\} = 8$

Matriz de distancias

$$\mathcal{D}_1 = \begin{pmatrix} (12) & 3 & 4 & 5 \\ (12) & 0 & 4 & 7 & 8 \\ 3 & 4 & 0 & 3 & 7 \\ 4 & 0 & 3 & 7 \\ 7 & 3 & 0 & 5 \\ 8 & 7 & 5 & 0 \end{pmatrix}$$

Tomamos los clúster 3 y 4 y formamos el nuevo clúster (34)

Cálculo de las nuevas distancias

$$d_{(34)(12)} = \min\{d_{(3)(12)}, d_{(4)(12)}\} = \min\{4, 7\} = 4$$

$$d_{(34)(5)} = \min\{d_{(3)(5)}, d_{(4)(5)}\} = \min\{7, 5\} = 5$$

Matriz de distancias

$$\mathcal{D}_2 = \begin{pmatrix} (12) & (34) & 5 \\ (12) & 0 & 4 & 8 \\ (34) & 4 & 0 & 5 \\ 5 & 8 & 5 & 0 \end{pmatrix}$$

Tomamos los clúster (12) y (34) y formamos el nuevo clúster (1234)

Cálculo de la nueva distancia

$$d_{(12)(34)5} = \min\{d_{(12)(5)}, d_{(34)(5)}\} = \min\{8, 5\} = 5$$

Finalmente se obtiene el clúster (12345)

Figura: Dendrograma ejemplo Single Link.

DBSCAN

- Se basa en la densidad de las muestras para identificar los clústeres.
- Los clústers pueden tener cualquier forma.
- Dos parámetros para definir este algoritmo son: eps y min samples.

DBSCAN

La técnica de agrupación DBSCAN clasifica los puntos como:

- Un punto p pertenece al núcleo si al menos min_samples puntos están a una distancia e de él y esos puntos son directamente alcanzables desde p.
- Un punto q es alcanzable desde p si existe una secuencia de puntos p₁...p_n donde p₁ = p y p_n = q y cada punto p_{i+1} es directamente alcanzable desde p_i.
- Un punto que no sea alcanzable desde cualquier otro se considera ruido.

DBSCAN

Un clúster generado por DBSCAN satisface dos propiedades:

- Todos los puntos de un mismo clúster están densamente conectados entre sí.
- Si un punto A es alcanzable desde cualquier otro punto B del clúster, entonces A también forma parte del clúster.

Mean Shift

- Método iterativo que parte de una estimación inicial x.
- Define una función núcleo $K(x_i x)$ que determina los pesos de los puntos cercanos para la reestimación media.

La media ponderada de la densidad en K es:

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

donde N(x) es el vecindario de x, un conjunto de puntos donde $K(x_i) \neq 0$.

Mean Shift

- La diferencia m(x) x se denomina Mean Shift.
- El algoritmo establece m(x) → x y repite la estimación hasta que m(x) converja.
- No existe ninguna prueba de la convergencia del algoritmo en espacios de alta dimensión.

Mean Shift

Sea un conjunto de datos finito S embebido en el espacio euclídeo n-dimensional X. Sea K un núcleo plano con función característica:

$$K(x) = \begin{cases} 1 \text{ si } ||x|| \le \lambda \\ 0 \text{ si } ||x|| > \lambda \end{cases}$$

En cada iteración del algoritmo, se establece $m(x) \to x$ para todo $s \in S$ a la vez.

En un conjunto pequeño, estimaremos la función de densidad como:

$$f(x) = \sum_{i} K(x - x_i) = \sum_{i} k \frac{||x - x_i||^2}{h^2}$$

donde x_i son las muestras de entrada y k la función núcleo y h es el bandwidth.

Particionamiento

- Objetivo: dividir los datos en grupos.
- No hay dependencia jerárquica entre soluciones.
- Se explora un número limitado de agrupaciones.
- Se busca maximizar la similitud en los clústeres.

K-medias

- 1. Entrada: $L = \{x_i, i = 1, 2, ..., n\}$, K = número de clústeres.
- 2. Hacer uno de los siguientes:
 - Formar una asignación aleatoria inicial de los datos en los K clústeres y, para los K clústeres, calcular su centroide, x̄_k, k = 1, 2, ..., K.
 - Pre-especificar los centroides de los K clústeres, $\overline{\mathbf{x}}_k$, k = 1, 2, ..., K.
- Calcular la distancia euclídea al cuadrado para cada dato al centroide de su clúster actual:

$$ESS = \sum_{k=1}^{K} \sum_{c(i)=k} (\mathbf{x}_i - \overline{\mathbf{x}}_k)^T (\mathbf{x}_i - \overline{\mathbf{x}}_k)$$

donde $\overline{\mathbf{x}}_k$ es el centroide del k-ésimo clúster y c(i) es el clúster que contiene \mathbf{x}_i .

K-medias

- 4. Reasignamos cada dato al clúster con el centroide más cercano de tal manera que ESS se reduce en magnitud. Actualizamos los centroides de los clústeres después de la reasignación de los datos.
- 5. Repetimos los pasos 3 y 4 hasta que no se produzcan más reasignaciones.

K-medoides y PAM

- 1. Entrada: $D = (d_{ij})$, K=número de clústeres.
- 2. Formar una asignación inicial en los K clústeres.
- Localizar el medoide de cada clúster. El medoide del k-ésimo clúster esta definido como ese dato en el k-ésimo clúster que minimiza la disimilitud total a los otros datos dentro del clúster, k = 1, 2, ..., K.

K-medoides y PAM

4a. K-medoides:

▶ Para el k-ésimo clúster, reasignamos el i_késimo dato al clúster con su medoide más cercano para que la función objetivo,

$$ESS_{med} = \sum_{k=1}^{K} \sum_{c(i)=k} d_{ii_k}$$

sea reducida en magnitud, donde c(i) es el clúster que contiene el i-ésimo dato.

► Repetir el paso 3 y el paso de reasignación hasta que no se produzcan mas reasignaciones.

K-medoides y PAM

4b. Particionamiento Alrededor de Medoides:

- ▶ Buscamos un dato no medoide tal que al intercambiarlo por otro medoide se produce una reducción en ESS_{med}, considerando el cambio que se produce en los clusters al cambiar de medoide (si hay varios medoides que cumplen esta condición, seleccionar el que mayor reducción produzca) y se produce el cambio.
- ► Repetir el proceso de intercambio hasta que no se produzca ninguna reducción del *ESS*_{med}.

Análisis difuso

A los datos se les asigna la probabilidad de pertenercer a cada uno de los clústeres. Notamos como u_{ik} la fuerza de pertenencia del i-ésimo dato al k-ésimo clúster.

Para que u_{ik} se comporte como una probabilidad se tiene que cumplir que $\sum_{k=1}^K u_{ik} = 1$ y $u_{ik} \geq 0$

Dada $D=d_{ij}$ matriz de proximidades, u_{ik} se encuentra minimizando, bajo las restricciones de no negatividad y unidad de la suma usando un algoritmo iterativo., la función objetivo

$$\sum_{k=1}^{K} \frac{\sum_{i} \sum_{j} u_{ik}^{2} u_{jk}^{2} d_{ij}}{2 \sum_{l} u_{lk}^{2}}$$

Consideraciones generales

- En los algoritmos de *clustering*, uno de los problemas es determinar el número idóneo de clústeres *k*.
- Es un proceso ambiguo. Depende de las interpretaciones según la forma y la escala de de la distribución de los datos y la solución deseada.
- Como *k* decrece de *n* a 1, el valor de la distancia debería aumentar ya que tendría que ser mayor cuando dos clústeres distintos se agrupan en uno solo.

Método del codo

Consiste en dibujar la gráfica de las distancia a los centros de cada clúster en función del número de clústeres. Definimos:

$$SSE_k = \sum_{i=1}^{n_k} = ||\mathbf{y}_i - \bar{\mathbf{y}}_k||^2,$$

y para cada k dibujamos

$$D_k = \sum_{i=1}^k SSE_k.$$

Método del codo

Figura: Ejemplo del método del codo [?].

Estadístico R²

Para n clústeres la suma total de las distancias al cuadrado es $T = \sum_{i=1}^{n} \|\mathbf{y}_i - \bar{\mathbf{y}}\|^2$. Así, para k clústeres definimos R^2 como

$$R_k^2 = \frac{T - \sum_k SSE_k}{T}.$$

Para n clústeres $SSE_k = 0$ por lo que $R^2 = 1$. Una gran disminución en R_k^2 representaría un mal agrupamiento.

También podríamos tener en cuenta el cambio en R^2 al unir los clústeres R y S como $SR^2 = R_k^2 - R_{k-1}^2$. El estadístico SR^2 representa, en función de T, la proporción de $SSE_t - (SSE_r + SSE_s)$ donde los clústeres C_R y C_S se han unido para formar el clúster C_T . Cuanto mayor sea el índice mayor será la pérdida de homogeneidad.

Varianza agrupada

Para un solo clúster

$$s^2 = \sum_{i=1}^n \|\mathbf{y}_i - \bar{\mathbf{y}}\|^2 / p(n-1).$$

Para el clúster Ch

$$s^{2} = \sum_{i=1}^{n_{k}} \|\mathbf{y}_{i} - \bar{\mathbf{y}}_{k}\|^{2} / p(n_{k} - 1).$$

Valores grandes de la varianza agrupada indica que los clústeres no son homogéneos. Por lo tanto, si tiende a cero para algún k < n indica la formación de un clúster homogéneo.

Pseudo estadísticos

El pseudo estadístico F se define como

$$F_k^* = \frac{(T - \sum_k SSE_k)/(k-1)}{\sum_k SSE_k/(n-k)}.$$

El pseudo estadístico t^2 se define como

pseudo
$$t^2 = \frac{[SSE_t - (SSE_r + SSE_s)](n_R + n_S - 2)}{SSE_r + SSE_s}$$
.

Silhouette method

Definimos el índice:

$$s(i) = \frac{b(i) - a(i)}{\max\{b(i), a(i)\}}, \quad \forall i = 1, \dots, n$$

donde

$$a(i) = \frac{1}{|C_i| - 1} \sum_{i \in C: i \neq i} d(i, j)$$

ν

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{i \in C_k} d(i, j).$$

Se escoge el k que maximice el valor medio de s(i).

Silhouette method

k	Silhouette coeff.
2	0.7049787496083262
3	0.5882004012129721
4	0.6505186632729437
5	0.5745566973301872
6	0.43902711183132426

Cuadro: Ejemplo silhouette method [?].

Vemos que se obtienen los mejores resultados con 2 o 4 clústeres.

Gap method

El k elegido será aquel que maximice el valor de:

$$Gap(k) = E_n^* \{ \log(W_k) \} - \log(W_k).$$

En la fórmula anterior E_n^* denota la media de una de muestra de tamaño n y

$$W_k = \sum_{R=1}^k \frac{1}{2n_R} \sum_{i: \in C_R} d(i, j).$$

Gap method

Figura: Ejemplo del método de la brecha [?].

Conclusiones

- Busca relaciones entre objetos.
- Depende del conjunto de datos, variables seleccionadas, medida de proximidad y método de agrupamiento.
- Métodos jerárquicos: exploratorios, métodos no jerárquicos: confirmatorios.
- Problema: validación de la solución.

Flor de Iris

Estudiaremos el conjunto de datos iris de Fisher.

Contiene 50 muestras de cada una de tres especies de flor Iris. Para cada muestra, se recogen las medidas de: largo y ancho del sépalo y y largo y ancho del pétalo, en centímetros.

Figura: Iris Setosa.

Figura: Iris virginica.

Figura: Iris versicolor.

Métricas utilizadas

Se utilizarán las siguientes métricas para medir la bondad de los algoritmos:

- Calinski-Harabaz: Nos indica si estamos usando un buen número de clústeres para un algoritmo en concreto.
- Silhouette: Cuanto mayor sea su valor, más similar será un objeto respecto a su grupo y más diferente a los de otros clúster. Toma valores entre -1 y +1.

Tabla comparativa de los algoritmos

Nombre	Nº clústeres	СН	SH	Tiempo (s)	Clústeres
K-Means	3	359.845074	0.504769	0.016456	0: 61 (40.67%) 1: 50 (33.33%) 2: 39 (26.00%)
DBSCAN	4	94.991819	0.306404	0.002353	0: 45 (30.00 %) 1: 39 (26.00 %) -1: 36 (24.00 %) 2: 30 (20.00 %)
AggCluster	3	349.254185	0.504800	0.019058	0: 67 (44.67%) 1: 50 (33.33%) 2: 33 (22.00%)
MeanShift	3	290.470683	0.476961	0.289073	0: 81 (54.00 %) 1: 50 (33.33 %) 2: 19 (12.67 %)

Gráficas

Para cada algoritmo, se mostrarán algunas gráficas que nos ayudarán a comprender como funciona el agrupamiento para el caso de estudio.

Las gráficas usadas son:

- Scatter Matrix.
- · Heatmap.
- KPlot y BoxPlot.

Para el caso del algoritmo **Agglomerative Clustering** mostraremos como se forman los distintos clústers a partir del **Dendrograma** generado.

K-Means

Para el algoritmo **K-Means** se ha utilizado el siguiente código en python y se ha obtenido la siguiente agrupación de las muestras:

Agrupamiento Jerárquico

Para el algoritmo **Agglomerative Clustering**, se ha utilizado el siguiente código en python y se ha obtenido la siguiente agrupación de las muestras:

```
AgglomerativeClustering (n_clusters=3, linkage="ward", affinity='euclidean')

cluster 0: 67 (44.67%)

cluster 1: 50 (33.33%)

cluster 2: 33 (22.00%)
```


Dendrogramas

Un dendrograma es un diagrama de árbol que muestra los grupos que se forman al crear clústers de observaciones en cada paso y sus niveles de similitud.

La decisión acerca de la agrupación final también se conoce como cortar el dendrograma. Cortar el dendrograma es similar a trazar una línea a lo largo del dendrograma para especificar la agrupación final.

: 67 (44.67%), **1**: 50 (33.33%), **2**: 33 (22.00%)

DBSCAN

Para **DBSCAN**, se ha utilizado el siguiente código en python y se ha obtenido la siguiente agrupación de las muestras, donde el clúster -1 representa las muestras formadas por ruido:

```
DBSCAN(eps=0.12, min_samples=5)

cluster 0: 45 (30.00%)

cluster 1: 39 (26.00%)

ruido -1: 36 (24.00%)

cluster 2: 30 (20.00%)
```


Mean Shift

Para **Mean Shift**, se ha utilizado el siguiente código en python y se ha obtenido la siguiente agrupación de las muestras:

```
MeanShift (bandwidth=estimate_bandwidth (X_normal, quantile=0.67, n_samples=400))

cluster 0: 81 (54.00%)
cluster 1: 50 (33.33%)
cluster 2: 19 (12.67%)
```


Referencias I

- Chire, Cluster analysis with optics on a density-based data set., https://commons.wikimedia.org/wiki/File:
 OPTICS-Gaussian-data.svg, October 2011.
- Using the elbow method to determine the optimal number of clusters for k-means clustering, https://bl.ocks.org/rpgove/0060ff3b656618e9136b, note = "Último acceso: 28/12/2019".
- K-means cluster analysis, https://uc-r.github.io/kmeans_clustering, note = "Último acceso: 28/12/2019".
- Understanding data mining clustering methods.

Referencias II

Selecting the number of clusters with silhouette analysis on kmeans clustering,

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html, Último acceso: 28/12/2019.