

Vehicle Motion Prediction in Autonomous Vehicles

Seminar Electromobility SS 2022

Institute of Electromobility
University of Kaiserslautern

Nilay Gawade 421670 Kaiwalya Patkar 422429 Sarvesh Telang 422444

Agenda

- Selection of Motion prediction model
 - Why Neural Network?
 - FCN Keras
- Implementation
 - Changed Hyperparameters
 - Activation functions
 - Random Search- Hyperparameter Tuner
- Model Results

Selection of Motion prediction model

Why Neural Network Model?

- Computing system with interconnected nodes (neurons in Human brain)
- Algorithms can recognize hidden patterns and correlations in raw data
- Learning through several iterations and improvement
- High accuracy
- Accuracy = Number of correct predictions

Selection of Motion prediction model

Prediction techniques based on Neural Networks

RNN (Recurrent Neural Networks)

LSTM Network (Long Short-Term Memory)

GRUs (Gated Recurrent Unit)

CNN (Convolutional Neural Networks)

FCN (Fully Convolutional Network

FCN Keras

Possibility of accepting input and generating output of image-like data

Maintains spatial relationship of input data

Contains 1x1 convolutions that perform the task of dense layers

Possible to feed variable input

Implementation

Selection of training data

inD dataset (Intersection Drone Dataset)

Train Data: Recording 18 and 24 from Location set 2

Data Processing and Normalization

Noisy, unnecessary, and large unstructured data

Downsampling to shorten the sample time and save RAM usage.

Min- max Scaling

Data Preparation

Sliding window technique

Train test split

- Overfitting: Good performance on the training data, poor generalization to other data.
- Underfitting: Poor performance on the training data and poor generalization to other data

Trained model result

- The validation loss: How well the model fits new data
- Training loss: How well it matches training data.
- Overfitting: Validation loss > training loss
- Underfitting: Validation loss < the training loss.

Implemented Model and Results

FCN Keras Model

ADE = 1.004 m FDE = 0.888 m AHE = 5.5 degrees

Changed Hyperparameters

FCN Keras Model

```
# define multi-layer perceptron model
model = Sequential()
#Input layer
model.add(Dense(279, activation='sigmoid', input_shape=(n_input,)))
#Hidden layers
model.add(Dense(162, activation='sigmoid'))
model.add(Dense(45, activation='sigmoid'))
#Output Layer
model.add(Dense(n output, activation='linear'))
#Optimizer and learning rate
model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=3e-5), loss='mse')
# fit the keras model on the dataset
history =model.fit(xTrain, yTrain, epochs=170, batch size=72,
                   verbose=1, validation_data=(xTest, yTest))
```

- No. of Neurons
- No. of Hidden layers
- No. of epochs
- Activation functions of Input,
 Output and Hidden layers
- Learning rate

Activation Functions

To add non-linearity to the neural network

Without activation

With activation

function

function

$$y_1 = w_1 x_1 + w_2 x_2 + b$$
 $y_2 = w_1 x_1 + w_2 x_2 + b$
 $y = \sigma(y_2)$

Source: [3]

Popular types of activation functions

- Binary Step
- Linear
- Sigmoid
- Tanh
- ReLU
- Leaky ReLU
- Parameterised ReLU
- Exponential Linear Unit
- Swish
- Softmax

Random Search – Tuning of Hyperparameters

```
def build model(hp):
   model = keras.Sequential()
   for i in range(hp.Int('num layers',2,4)):
        model.add(layers.Dense(units=hp.Int('units ' + str(i),
                                            min value=45,
                                            max value=350,
                                            step=32),
                               activation='sigmoid'))
    model.add(layers.Dense(1, activation='linear'))
    model.compile(
        optimizer=keras.optimizers.Adam(
           hp.Choice('learning_rate', [1e-4, 1e-5])),
        loss='mean absolute error',
        metrics=['mean_absolute_error'])
   return model
tuner = RandomSearch(
   build model,
   objective='val mean absolute error',
   max trials=5,
   executions per trial=3,
   directory='project',
   project_name='Emobilitytune')
tuner.search space summary()
tuner.search(xTrain, yTrain,
             epochs=50,
             batch size=80,
             validation_data=(xTest, yTest))
tuner.results summary()
```

Output:

```
Trial 361 Complete [00h 04m 00s]
val mean absolute error: 0.1795041263103485
Best val mean absolute error So Far: 0.1759001612663269
Total elapsed time: 00h 09m 33s
Search: Running Trial #362
                   |Best Value So Far |Hyperparameter
Value
                                      num_layers
                   13
301
                   141
                                      units 0
333
                   237
                                      units 1
45
                   333
                                      units 2
1e-05
                   0.0001
                                      |learning rate
```

- Random combinations of the hyperparameters are used to find the best solution
- Set values in ranges
- Results from the previous iteration are not used to decide the next hyperparameter value candidates-Bayesian Optimization

Final Evaluation

Prediction Testing

Testing on blind data set and generalization performance

Test Data: Recording 28

Collecting Ground Truth and final Evaluation

Validation against ground truth for actual performance

Error metrics: ADE, FDE, AHE

References

[1] https://medium.com/analytics-vidhya/comparison-of-hyperparameter-tuning-algorithms-grid-search-random-search-bayesian-optimization-5326aaef1bd1

[2] https://www.ibm.com/cloud/learn/neural-

<u>networks#:~:text=Neural%20networks%20reflect%20the%20behavior,machine%20learning%2C%20and%20deep%20learning</u>.

https://towardsdatascience.com/implementing-a-fully-convolutional-network-fcn-in-tensorflow-2-3c46fb61de3b

- [3] https://www.v7labs.com/blog/neural-networks-activation-functions
- [4] Heru Wahyu Herwanto, Anik Nur Handayani, Aji Prasetya Wibawa, Katya Lindi Chandrika, Kohei Arai, "Comparison of Min-Max, Z-Score and Decimal Scaling Normalization for Zoning Feature Extraction on Javanese Character Recognition," IEEE, 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), October 2021.
- [5] H.S. Hota, Richa Handa and A.K. Shrivas, "Time Series Data Prediction Using Sliding Window Based RBF Neural Network," International Journal of Computational Intelligence Research, Volume 13, Issue 5, pp. 1145-1156, 2017.
- [6] Yun Xu, and Royston Goodacre, "On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning," Springer, Journal of Analysis and Testing, October 2018.
- [7] Qipei Li, Ming Yan, and Jie Xughg, "Optimizing Convolutional Neural Network Performance by Mitigating Underfitting and Overfitting," IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS), Shanghai, China, June 2021.
- [8] Yingying Wang, Yibin Li, Yong Song, and Xuewen Rong, "The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition," MDPI Applied Sciences, China, March 2020.

Thank you