Module 44 CUDA Streams

GPU based Streaming Enabled Spectral Correlation Density Function (SCD)

Signal Classification

- Software Defined Radio (SDR)
 - Radio components in software
 - Rapid reconfiguration
 - higher spectral efficiency based on environmental conditions.
 - signal parameters such as transmission frequency or modulation scheme

Task of reliable and real-time signal classification involving non-cooperative communication is difficult

- Consider 5G Systems
 - Massive growth in number of edge devices, scaling to billions, in the wireless spectrum.
- Challenges:
 - Recognizing signals of a specific modulation type in real-time
 - Share the spectrum effectively without hampering the other transmissions at various priority levels

Accurate and fast modulation classification is needed!

- Spectral Correlation Density (SCD)
 - Signals that can be classified: BPSK, QPSK,
 8PSK, 16QAM, GMSK, CPFSK, AM, FM, OFDM.
 - Relatively immune to noise

- Challenge:
 - Computational complexity

Goals and Outcomes

- High throughput SCD analysis based on GPU
 - Explore parallelization opportunities
 - Algorithmic
 - Full SCD
 - Quarter SCD (QSCD)
 - Architecture Specific
 - Kernel launch overhead
 - » Process multiple signals concurrently
 - » Data streaming
- Throughput Improvement
 - State of the art GPU based Full SCD 120 signals/second [1]
 - Our implementation [2] achieves 3300 signals/second
- [1] [Nilangshu Bidyanta, Garrett Vanhoy, Mohammed Hirzallah, Ali Akoglu and Bo Ryu, "GPU and FPGA Based Architecture Design for Real-time Signal Classification," Proc. 2015 Wireless Innovation Forum Conference on Wireless Communications Technologies and Software Defined Radio (WInnComm'15), March 24-26, 2015, San Diego, CA, pp. 70-79.
- [2] Scott Marshall, Garrett Vanhoy, Ali Akoglu, Tamal Bose and Bo Ryu, "GPGPU based Parallel Implementation of Spectral Correlation Density Function," *Journal of Signal Processing Systems*, vol. 92, pp.71-93, April 2019. DOI doi.org/10.1007/s11265-019-01448-7

- Step-1: Framing the signal
 - An arbitrary length signal split into P parts (32) of length Np (256) each.
 - Each part overlaps with its predecessor.
 - The offset between the beginning of two consecutive parts is set to L where L = Np/4.
 - Frames arranged column-wise Np x P matrix

- Step-2: Hamming Window
 - Steep cut-offs at both ends of the frame (step-1) introduce high frequency components
 - "raised cosine" function of length Np
 - Window function remains the same for a given set of input parameters.

- Kernel1: Framing and Windowing
 - Change the sparse matrix multiplication to P number of vector multiplications
 - The number of scalar multiplications is Np * P
 - Factoring in the number of signals: Np * P * signal count

- ✓ Typical Np, P and signal_count:
 - o 256, 32 and 30
- ✓ # of scalar multiplications:
 - o **245,760**

GPU Mapping

Framing and Windowing (Kernel 1)

- Step-3: 256pt FFT (Kernel 2)
 - FFT applied in parallel to windowed frames

- Step-4a: Down Conversion (Kernel 3)
 - Apply the window to multiple frames
 - Each element is handled by a thread.

- Step-4b: FFT Shift and Transpose (Kernel 3)
 - Matrix is arranged in column major order
 - Setting up for coalesced memory access for FFT
 - Color coding shows how the data move before and after the transformation takes place.

Thread Blocks

- threads in blocks of 1024 threads to manage
- 32 element multiplications in groups of 32 threads (warps)

 Step-6: Signal Profile Generation (Kernel 5)

Earlier work

Mapped the entire Full SCD process onto NVIDIA GPU

	Matlab	CUDA	CUDA
	Intel I7	K20 GPU	K40 GPU
GPU	3.3GHz	706MHz	745MHz
	32GB RAM	2496 cores	2880 cores
	(Reference)	(Earlier work)*	(This study)
Execution Time/Signal (ms) (includes data transfer)	3502.29	8.96	8.33
Speedup		390X	420X
Throughput (Signals/sec)		111	120

- Results validated against the Matlab implementation
 - o minimum error of 0.0041% and a maximum error of 0.0051%.
- Execution time is based on 4096 points digital signal.

^{*}N. Bidyanta, G. Vanhoy, M. Hirzallah, A. Akoglu, and B. Ryu, "GPU and FPGA Based Architecture Design for Real-time Signal Classification," In Proceedings of the 2015 Wireless Innovation Forum Conference on Wireless Communications Technologies and Software Defined Radio (WInnComm'15), March 24-26, 2015, San Diego, CA, pp. 70-79.

Algorithm 1 SCD Matrix and Alpha Profile Calculation

- 1: **procedure** SCD(*data*[256][32], *Alpha_Profile*[4096])
- for (i = 0; i < 256; i + +){ do
- for (j = 0; j < 256; j + +){ do 3:

4: Step 4.1:
$$x \leftarrow data[i] * Conjugate(data[j])$$

- Step 4.2: $y \leftarrow FFT_32(x)$ $SCD_Matrix \leftarrow \{y[31:24]\}\{y[7:0]\}$ 6:
- Step 4.3.1: Calculate partial Alpha_Profile 7:
- Step 4.3.2: Merge partial Alpha_Profiles 8:
- }# end of inner loop 9:
- Step 4.3.3: *Update Alpha_Profile* 10:
- }# end of outer loop 11:
- **return** Alpha_Profile 12:

Key Features	K20x	K40
Compute Capability	3.5	3.5
Memory BW (GB/sec)	250	288
Clock (MHz)	732	745
Number of MPs	14	15
Number of Cores	2688	2880
Execution Time (ms)	8.9	8.3
Throughput	111	120

Inner

loop

unrolled

5:

Kernel Name	% Total
1 - Framing	0.13
2 - 256 point FFT	0.26
3 - FFTShift	0.11
4.1 - Conjugate	18.79
4.2 - 32 point FFT	32.93
4.3.1 - Partial	24.69
4.3.2 - Merge	9.67
4.3.3 - Update	13.44

- 4.56 micro seconds on average for a kernel launch (256*5 kernel launches)
- This corresponds to 5.84 ms of time spent on launching kernels out of the total 8.3 ms execution time,

– which comprises 70% of the total computation

time.

What if we merge kernels?

```
Algorithm 1 SCD Matrix and Alpha Profile Calculation
 1: procedure SCD(data[256][32], Alpha_Profile[4096])
       for (i = 0; i < 256; i + +){ do
          for (j = 0; j < 256; j + +){ do
              Step 4.1: x \leftarrow data[i] * Conjugate(data[j])
              Step 4.2: y \leftarrow FFT_32(x)
              SCD_Matrix \leftarrow \{y[31:24]\}\{y[7:0]\}
              Step 4.3.1: Calculate partial Alpha Profile
              Step 4.3.2: Merge partial Alpha_Profiles
          }# end of inner loop
          Step 4.3.3: Update Alpha_Profile
10:
       }# end of outer loop
11:
       return Alpha_Profile
12:
```

Batching

- Group multiple signals together in so-called "signal-batches,"
- Increase number of calculations performed per kernel launch
- Decrease total number of kernel launches
 - Original: 5 kernels per signal
 - Revised: Batch of "n" signals still uses 5 kernel launches

Question to answer: What is the optimal batch size?

Batching – Finding Optimal Batch Size

- Size 45 improves throughput from 120 to 503
 - For batch size 100: 1039 signals/second peak throughput

Saturation trend beyond batch size 40 since all threads are occupied. Execution time increases linearly as we add more signals to a batch

Batching Challenge

- Complicates the utilization of the low-latency shared memory available on the GPU primarily due to memory bank conflicts.
- Therefore during each kernel launch, we ensure that individual signals of a given batch are assigned to distinct thread blocks to avoid bank conflicts.

• 70% vs 16%

- While batching reduces the kernel launch overhead, it doesn't help improve the hardware utilization
 - True or False

Batching with multiple streams

- Different signal kernels synchronously enqueued on to asynchronous streams.
- symmetric multi processors (SMPs)
 - K40 has 15 SMPs
 - Allows streaming multiple signals to be executed concurrently

Question to answer: What is the optimal stream size?

Batching with multiple streams— Finding Optimal Stream Size when batch size is 1

Stream size 0: No streaming, batch of 1

Stream size 1: Stream setup overhead reduces throughput

Why is streaming not helping?

Batching with multiple streams—Finding Optimal Stream Size when batch size is 45

8 streams increases throughput 1282

Stream size 0: No streaming, batch of 45

Stream size 1: Stream setup overhead reduces throughput of batch size 45

 Streaming with multiple batches
 – Finding Optimal Batch Size when stream size is 8

Peak throughput 1569 with batch size 91

Stream size 0: No streaming, batch of 45

Stream size 1: Stream setup overhead reduces throughput of batch size 45

Algorithmic Optimization

Quarter SCD - Data trimming

- Take advantage of the symmetry in the SCD estimate
- Divide SCD matrix into 4 Cartesian quadrants, and cells receding in top-left quadrant (quadrant 2) become the relevant cells for calculating alpha profile of the signal
 - Amount of computations and data transfers shrinks significantly

- Algorithmic and architecture specific optimizations
 - Quarter SCD
 - Batching
 - Streaming
- Peak throughput performance improvement over reference full SCD on GPU
 - 13.7x with batch size 45, stream size 9
 - 2719/signals/second
 - 27.5x with batch size 100, stream size 9
 - 3300 signals/second