

Podstawowe informacje o kursie

Co musisz wiedzieć aby zacząć

- Podstawowa znajomość Docker-a (kurs nie zawiera wprowadzenia do Docker-a)
- Podstawowa znajomość YAML-a
- Środowisko do edycji kodu (darmowe <u>Visual Studio</u> <u>Code</u> lub może być np. <u>Intellij IDEA</u>)
- Komputer (najlepiej z dostępem administratora) aby zainstalować klaster kubernetesa

Docker od podstaw

Sprawdź mój inny kurs na Udemy "Docker od podstaw – dla programistów i nie tylko"

Dostępny tutaj

Licencja edukacyjna JetBrains (6 miesięcy)

Link rejestracyjny:

https://www.jetbrains.com/store/redeem/

Kod:

<dostepny-w-materialach-na-udemy-po-zakupie-kursu>

Ponieważ jest to licencja edukacyjna i negocjowana z JetBrains dzięki czemu jest to pojedynczy kod na wiele licencji będę wdzięczny za użytek na własne potrzeby © Jako produkt sugeruję wybrać IntelliJ IDEA

Ultimate lub All products pack

Kod źródłowy

Repozytorium z materiałami: https://github.com/pnowy/kubernetes-course

Komendy używane w kursie: https://github.com/pnowy/kubernetes-

course/blob/main/komendy.md

Dane kontaktowe

Kontakt bezpośrednio przez platformę

LinkedIn: https://www.linkedin.com/in/przemeknowak/

GitHub: https://github.com/pnowy

Email: <u>kurskubernetesa@przemeknowak.com</u>

WWW: https://przemeknowak.com/

Agenda - omówienie

Linki

- https://github.com/pnowy/kubernetes-course/blob/main/agenda.md
- https://github.com/pnowy/kubernetes-course/blob/main/komendy.md
- https://ossinsight.io/analyze/kubernetes/kubernetes

Wprowadzenie do orkiestracji kontenerów

Orkiestracja kontenerów

Proces automatyzacji, zarządzania oraz skalowania skonteneryzowanych aplikacji. Dotyczy (najczęściej) aplikacji o dużej skali. Development

docker-compose

nginx

NodeJS

Postgres

Elasticsearch

Production

Orkiestracja kontenerów - obejmuje:

- Konfigurację i planowanie (scheduling) kontenerów
- Odpowiednie rozmieszenie kontenerów (np. na odpowiednich maszynach)
- Zapewnienie dostępności kontenerów i monitorowanie ich stanu
- Konfigurację aplikacji uruchamianej na kontenerze
- Skalowanie kontenerów (np. w celu obsługi większego ruchu czy też równoważenia obciążenia w klastrze)
- Alokacja zasobów pomiędzy kontenerami
- Load balancing (zarówno dla grup kontenerów jak i całego klastra)
- Zabezpieczenie komunikacji pomiędzy kontenerami

	Kontenery	Orkiestracja kontenerów
Przeznaczenie	Zapewnienie separacji dla naszej aplikacji w postaci pojedynczej "paczki"	Zapewnienie i definicja relacji pomiędzy kontenerami, ich uruchamianiem, skalowaniem, połączeniem ze światem zewnętrznym
Alternatywy	Wirtualne maszynyBezpośrednia instalacja	Własne skryptyManualna konfiguracja
Narzędzia	DockerPodman	KubernetesDocker SwarmAmazon ECSMesosRancher

Kubernetes (k8s) - podstawowe informacje

Infrastruktura - zmiany

Maszyny fizyczne → Wirtualizacja (2000)

Datacenters → Cloud (2010)

Host \rightarrow Containers (2014)

Infrastruktura - zmiany

Kubernetes - nazwa

Pochodzi z greckiego (κυβερνήτης kubernétēs)

Oznacza sternika / pilota

Historia

- 2003 2004 Borg system (wewnetrzny projekt Google)
- 2014 Google przedstawia Kubernetes-a jako otwartą wersję Borg-a, w tym samym roku Microsoft, RedHat, IBM, Docker dołączają do projektu
- 2015 Kubernetes 1.0, utworzenie Cloud Native Computing Foundation (CNCF)
- 2016 Rozwój całego ekosystemu (Helm, Minikube, Kops)
- 2017+ Coraz większa popularność i migracja przedsiębiorstw do Kubernetes-a
- 2019+ "Eksplozja" popularności Kubernetesa

Wady

- Rozwiązanie stosowane (zazwyczaj) w dużych organizacjach o określonym poziomie skomplikowania
- Wymagana znajomość konkretnych koncepcji (pod, deployment, etc.) przez co większe organizacje mogą mieć trudności z adaptacją
- Specyfikacja (manifesty) to YAML i aby sensownie nimi zarządzać
 często wymaga znajomości dodatkowych narzędzi (Helm, Kustomize)
- Administracja Kubernetesem jest skomplikowana

Zalety

- Wprowadził standaryzację do systemów rozproszonych (deployment, zarządzanie konfiguracją, sieć, uprawnienia, monitoring)
- Open source! Duże i otwarte community.
- Przenośny i wspierany przez największych dostawców cloud-a (GCP, AWS, Azure)
- Rozszerzalny
- Praktycznie "standard" którego znajomość jest jeżeli nie wymagana to "nice to have" w dzisiejszych czasach

Dlaczego warto się uczyć K8S

- Praktycznie "standard" którego znajomość jest jeżeli nie wymagana to "nice to have" w dzisiejszych czasach
- Znajomość koncepcji może być przydatna w przypadku konieczności debugowania aplikacji czy tej jej odpowiedniego przygotowania do deploymentu na Kubernetesie (zero—downtime deployment, selfhealing)
- Coraz więcej firm, które używają k8s używa go także przy lokalnym developmencie (zamiast docker-compose, unifikacja manifestów, tunelowanie portów)

Linki

- Borg
- Omega
- Kubernetes pierwszy commit

Kubernetes - architektura

Kubernetes - architektura

Kubernetes - architektura

Linki

• Dokumentacja na oficjalnej stronie Kubernetes

Kubernetes – rodzaje instalacji

Local development

- Minikube
- Docker Desktop
- Kind
- Rancher Desktop

Cloud Providers

- GKE (Google Kubernetes Engine)
- EKS (Amazon Elastic Kubernetes Service)
- AKS (Azure Kubernetes Service)

Bare metal

- Kops
- K3S

Kubectl – podstawowe informacje

Kubectl

Linki

- https://kubernetes.io/docs/reference/kubectl/
- https://kubernetes.io/docs/tasks/tools/install-kubectl-windows/

Minikube – instalacja Windows

- <u>Minikube dokumentacja</u>
- Minikube drivers

Minikube – instalacja Linux (Ubuntu 22)

- <u>Minikube dokumentacja</u>
- Minikube drivers

Minikube – instalacja MacOS

- <u>Minikube dokumentacja</u>
- Minikube drivers

Uruchamianie aplikacji (imperatywne - komendy)

Uruchamianie aplikacji (deklaratywnie - pliki)

Kubectl - alias

alias k="kubectl"

https://www.baeldung.com/linux/create-alias#2-permanent-alias — jak ustawić alias w systemie Linux

https://github.com/ahmetb/kubectl-aliases - projekt z aliasami do Kubernetesa

<u>https://ahmet.im/blog/kubectl-aliases/</u> - objaśnienie aliasów z projektu GitHub-a

Podstawowe koncepcje i obiekty - pod

- https://kubernetes.io/docs/concepts/workloads/pods/
- https://kubebyexample.com/learning-paths/istio/intro źródło diagramów z Istio

Podstawowe koncepcje i obiekty – konfiguracja pod-ów

Obrazy aplikacji dostępne na DockerHub

docker pull pnowy/kurs-kubernetesa-app:1.0.0 docker pull pnowy/kurs-kubernetesa-app:1.1.0

https://hub.docker.com/r/pnowy/kurs-kubernetesa-app

- https://hub.docker.com/r/pnowy/kurs-kubernetesa-app/tags
- https://kubernetes.io/docs/concepts/workloads/pods/

Podstawowe koncepcje i obiekty – labels & selectors

• https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Podstawowe koncepcje i obiekty – annotations

• https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Podstawowe koncepcje i obiekty – deployments

 https://kubernetes.io/docs/concepts/workloads/controllers/deployme nt/

Podstawowe koncepcje i obiekty – services

• https://kubernetes.io/docs/concepts/services-networking/service/

Podstawowe koncepcje i obiekty – narzędzia graficzne

- https://github.com/kubernetes/dashboard
- https://k9scli.io/
- https://k8slens.dev/

Podstawowe koncepcje i obiekty – port-forward, proxy i dodatkowe komendy

- https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#port-forward
- https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#proxy
- https://github.com/johanhaleby/kubetail

Podstawowe koncepcje i obiekty – kubectl explain

• https://jamesdefabia.github.io/docs/user-guide/kubectl/kubectl_explain/

Podstawowe koncepcje i obiekty – namespaces

- https://kubernetes.io/docs/concepts/overview/working-withobjects/namespaces/
- https://kubernetes.io/docs/reference/kubectl/cheatsheet/
- https://github.com/ahmetb/kubectx
- https://ohmyz.sh/
- https://github.com/romkatv/powerlevel10k

Podstawowe koncepcje i obiekty – namespaces / DNS

DNS

[pod-ip].[namespace].pod.cluster.local

[svc-name].[namespace].svc.cluster.local

[port-name] [port-protocol] [svc] [namespace] svc.cluster.local

- https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
- https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Podstawowe koncepcje i obiekty – secrets

- Opaque
- Service account token secrets
- Docker config secrets
- Basic authentication secret
- SSH authentication secrets
- TLS secrets
- Boostrap token secrets

https://kubernetes.io/docs/concepts/configuration/secret/

Podstawowe koncepcje i obiekty – secrets

- Opaque
- Service account token secrets
- Docker config secrets
- Basic authentication secret
- SSH authentication secrets
- TLS secrets
- Boostrap token secrets

https://kubernetes.io/docs/concepts/configuration/secret/

Podstawowe koncepcje i obiekty – pod resources

- https://kubernetes.io/docs/concepts/configuration/manageresources-containers/
- https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

Podstawowe koncepcje i obiekty – probes

Readiness probe Liveness probe Startup probe

Readiness probe

Liveness probe

Startup probe

Handlers

ExecAction handler
TCPSocket Action handler
HTTPGetAction handler
gRPC handler

- https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
- https://cloud.google.com/blog/products/containerskubernetes/kubernetes-best-practices-terminating-with-grace

Podstawowe koncepcje i obiekty – deployments konfiguracja

 https://kubernetes.io/docs/concepts/workloads/controllers/deployme nt/

Zaawansowane koncepcje i obiekty - volumes

- https://kubernetes.io/docs/concepts/storage/persistent-volumes/
- https://minikube.sigs.k8s.io/docs/handbook/persistent_volumes/

Zaawansowane koncepcje i obiekty – storage classes

- https://kubernetes.io/docs/concepts/storage/storage-classes/
- https://kubernetes.io/docs/concepts/storage/persistent-volumes/
- https://minikube.sigs.k8s.io/docs/handbook/persistent_volumes/

Zaawansowane koncepcje i obiekty volumes – configmaps and secrets

- https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#populate-a-volume-with-data-stored-in-a-configmap
- https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets-as-files-from-a-pod

Zaawansowane koncepcje i obiekty – service types

• https://kubernetes.io/docs/concepts/services- networking/service/#publishing-services-service-types

Zaawansowane koncepcje i obiekty - Ingress

- https://kubernetes.io/docs/concepts/services-networking/ingress/
- https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
- https://github.com/stefanprodan/podinfo
- https://github.com/postmanlabs/httpbin

Zaawansowane koncepcje i obiekty - Ingress TLS

- https://kubernetes.io/docs/concepts/services-networking/ingress/
- https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
- https://github.com/FiloSottile/mkcert

Zaawansowane koncepcje i obiekty - init containers

Główne cechy init containers

- Wykonują się do końca
- Uruchamiane sekwencyjnie
- Nie wspierają niektórych właściwości kontenerów aplikacyjnych

Przykłady wykorzystania init containers

- Dodatkowe narzędzia dla kontenerów aplikacyjnych
- Weryfikacja stanu innych kontenerów
- Migracje (np. bazy danych), które w specyficznych przypadkach mogą trwać dłużej
- Pliki z config-mapy z możliwością edycji

• https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Zaawansowane koncepcje i obiekty StatefulSet - wprowadzenie

Przykłady wykorzystania init containers

- Dodatkowe narzędzia dla kontenerów aplikacyjnych
- Weryfikacja stanu innych kontenerów
- Migracje (np. bazy danych), które w specyficznych przypadkach mogą trwać dłużej
- Pliki z config-mapy z możliwością edycji

• https://kubernetes.io/docs/concepts/workloads/controllers/statefulset

Zaawansowane koncepcje i obiekty headless service

• https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Zaawansowane koncepcje i obiekty StatefulSet praktyka

• https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Zarządzanie manifestami Helm - wprowadzenie

• https://helm.sh/

Zarządzanie manifestami Helm – instalacja aplikacji

- https://helm.sh/
- https://helm.sh/docs/intro/cheatsheet/
- https://artifacthub.io/packages/helm/podinfo/podinfo

Zarządzanie manifestami Helm – ćwiczenie - parametryzacja

- https://helm.sh/
- https://helm.sh/docs/intro/cheatsheet/
- https://artifacthub.io/packages/helm/bitnami/wordpress

Zarządzanie manifestami Helm – własny chart

- https://helm.sh/
- https://helm.sh/docs/intro/cheatsheet/

Zaawansowane koncepcje i obiekty Job

• https://kubernetes.io/docs/concepts/workloads/controllers/job/

Zaawansowane koncepcje i obiekty CronJob

- https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
- https://en.wikipedia.org/wiki/Cron
- https://crontab.guru/

Zaawansowane koncepcje i obiekty API Groups

- https://jamesdefabia.github.io/docs/api/
- https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/
- https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Zaawansowane koncepcje i obiekty Service accounts

- https://kubernetes.io/docs/reference/access-authn-authz/authentication/
- https://kubernetes.io/docs/concepts/security/service-accounts/

Zaawansowane koncepcje i obiekty RBAC (Role-based access control)

• https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Zaawansowane koncepcje i obiekty DaemonSet

https://kubernetes.io/docs/concepts/workloads/controllers/daemonse
 t/

Zaawansowane koncepcje i obiekty Alokacja podów na konkretnych nodach

- https://kubernetes.io/docs/tasks/configure-pod-container/assignpods-nodes/
- https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
- https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Zaawansowane koncepcje i obiekty Alokacja podów na konkretnych nodach

- https://kubernetes.io/docs/tasks/configure-pod-container/assignpods-nodes/
- https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
- https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Zaawansowane koncepcje i obiekty Horizontal Pod Autoscaler

- https://kubernetes.io/docs/tasks/run-application/horizontal-podautoscale/
- https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

Środowiska produkcyjne Google Kubernetes Engine

- https://cloud.google.com/free
- https://cloud.google.com/kubernetes-engine

Środowiska produkcyjne

AWS - konfiguracja wstępna

- https://aws.amazon.com/free
- Instalacja AWS CLI
- AWS CLI MFA
- https://dodov.dev/blog/aws-cli-access-denied-despite-having-full-permissions

Środowiska produkcyjne

Eleastic Kubernetes Service

- eksctl
- https://eksctl.io/installation/#prerequisite
- eksctl przykłady
- https://aws.amazon.com/eks/

Dobre praktyki

Liveness / readiness probes Fault tolerance Resource management Labels and annotations Namespaces Logging and monitoring CI / CD (GitOps) Secrets

- https://spring.io/blog/2020/03/25/liveness-and-readiness-probes-with-spring-boot
- https://cloud.google.com/blog/products/containers-kubernetes/kubernetes-best-practices-terminating-with-grace
- https://blog.colinbreck.com/kubernetes-liveness-and-readiness-probes-how-to-avoid-shooting-yourself-in-the-foot/
- https://kubernetes.io/docs/tasks/run-application/configure-pdb/
- https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
- https://kubernetes.io/docs/concepts/policy/resource-quotas/
- https://prometheus.io/
- https://grafana.com/
- https://argo-cd.readthedocs.io/en/stable/
- https://fluxcd.io/
- https://external-secrets.io/latest/introduction/overview/
- https://sealed-secrets.netlify.app/

Co dalej i gdzie szukać dodatkowych informacji

Dzięki;)

- https://kubernetes.io/docs/home/
- https://github.com/tomhuang12/awesome-k8s-resources
- https://github.com/collabnix/kubetools
- https://www.cncf.io/
- https://github.com/kelseyhightower/kubernetes-the-hard-way