Maximal Independent Set

Parallel Graph Algorithms

Outline

- Maximal Independent Set (MIS)
 - What is it?
 - Why are we interested in it?
- Bad Ideas
 - Greedy
 - "Local" greedy
- Luby's Algorithm
- Literature

Outline

- Maximal Independent Set (MIS)
 - What is it?
 - Why are we interested in it?
- Bad Ideas
 - Greedy
 - "Local" greedy
- Luby's Algorithm
- Literature

Learning objectives:

You are able to

- explain why finding a maximum independent set in the LOCAL model is hard
- state the MIS algorithm by Luby
- Analyse the probability that a neighbor of a good node gets selected to the MIS in one iteration of Luby

Maximal Independent Set (MIS)

Independent Set:

A set $I \subseteq V$ is *independent* if there are no edges between nodes in I.

Maximal Independent Set (MIS)

Independent Set:

A set $I \subseteq V$ is *independent* if there are no edges between nodes in I.

Maximality:

An independent set $I \subseteq V$ is maximal if for any node $u \in V \setminus I$, it holds that $I \cup \{u\}$ is not independent.

Maximal Independent Set (MIS)

Independent Set:

A set $I \subseteq V$ is *independent* if there are no edges between nodes in I.

Maximality:

An independent set $I \subseteq V$ is maximal if for any node $u \in V \setminus I$, it holds that $I \cup \{u\}$ is not independent.

You cannot add any nodes to an MIS without breaking independence.

Why not Maximum?

Notice:

A maximal independent set does not need to be of maximum size.

Maximal

Maximum

Why not Maximum?

Notice:

A maximal independent set does not need to be of maximum size.

Maximal

Maximum

Observation:

A maximum independent set on an even ring corresponds to a 2-coloring.

Why not Maximum?

Notice:

A maximal independent set does not need to be of maximum size.

Maximal

Maximum

Observation:

A maximum independent set on an even ring corresponds to a 2-coloring.

Why Should I Care?

Primitive symmetry breaking

[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph, Science 2011]

Why Should I Care?

Primitive symmetry breaking

[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph, Science 2011]

It's not easy! Understand this first and then go for harder problems.

Why Should I Care?

Primitive symmetry breaking

[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph, Science 2011]

It's not easy! Understand this first and then go for harder problems.

Subroutine for more sophisticated tools such as distributed Lovász Local Lemma (LLL).

[Moser, Tardos, JACM 2010]

Outline

- Maximal Independent Set (MIS)
 - What is it?
 - Why are we interested in it?
- Bad Ideas
 - Greedy
 - "Local" greedy
- Luby's Algorithm
- Literature

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

What do we need to solve?

Just use the greedy algorithm...?

Greedy:

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

Could deal with both remaining components at once

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

Choose local maxima, according to IDs?

Greedy:

One by one, pick nodes into the MIS and remove neighbors from the graph.

Runtime: $\Theta(n)$

Choose local maxima, according to IDs?

Think about a cycle with monotonically increasing IDs. One local minimum and maximum at once.

Outline

- Maximal Independent Set (MIS)
 - What is it?
 - Why are we interested in it?
- Bad Ideas
 - Greedy
 - "Local" greedy
- Luby's Algorithm
- Literature

Very informally:

Randomly pick the local maxima.

[Luby J. Computing 86] [Alon, Babai, Itai J. Algorithms 86]

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

Change over time

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked:

Select u to the MIS and remove u and all N(u) from the graph.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Challenge:

What kind of progress do we have?

Does a node get picked to the MIS with a constant probability?

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Challenge:

What kind of progress do we have?

Does a node get picked to the MIS with a constant probability? No.

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Challenge:

What kind of progress do we have?

Does a node get picked to the MIS with a constant probability?

Does a node get removed with a constant probability?

Algorithm (one phase)

Each Node *u*:

With probability $\frac{1}{2d(u)}$ mark u.

If u is marked and no node $v \in N(u)$ with $d(v) \ge d(u)$ is marked: Select u to the MIS and remove u and all N(u) from the graph.

Challenge:

What kind of progress do we have?

Does a node get picked to the MIS with a constant probability?

Does a node get removed with a constant probability?

Challenge:

What kind of progress do we have?

Does a node get picked to the MIS with a constant probability?

Does a node get removed with a constant probability?

P[u gets selected] is small

 $P[\text{some } u \in N(u) \text{ gets selected}]$ is small.

Node *u* is *good* if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

At least one third of the neighbors of u have smaller degree.

An edge is *good* if it is incident on a good node.

Intuition:

There is a reasonable chance that one is selected to the MIS.

Node u is good if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

At least one third of the neighbors of u have smaller degree.

An edge is *good* if it is incident on a good node.

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Node u is good if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

At least one third of the neighbors of u have smaller degree.

An edge is *good* if it is incident on a good node.

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Corollary:

After expected $O(\log m)$ rounds, no edges remain. We can get this in expectation and w.h.p.

Lemma:

A good node gets removed with a constant probability.

Node u is good if

$$|\{v \in N(u) \mid d(u) > d(v)\}| \ge \frac{\deg u}{3}$$

What would be nice (Event R):

A "low degree" neighbor v of u is marked and no higher degree neighbor of v is marked.

Event B(v):

v is marked and no higher degree neighbor of v is marked.

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{2d(v)} \left(1 - \frac{1}{2d(v)}\right)^{d(v)}$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{2d(v)} \left(1 - \frac{1}{2d(v)} \right)^{d(v)}$$

$$\ge \frac{1}{2d(v)} \cdot \left(2^{1/d(v)} \right)^{d(v)} = \frac{1}{4d(v)}$$

$$\left(1 - \frac{x}{2}\right) \ge 2^{-x}$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{4d(v)}$$

Lemma:

A good node gets removed with a constant probability.

A neighbor v with $d(v) \leq 3$ is selected to the MIS with probability at least 1/12.

Hence, we can assume that each d(v) > 3.

Node u is good if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

Let C be the lower degree neighbors of u.

Each d(v) > 3.

Node u is good if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

Let C be the lower degree neighbors of u.

By definition:

$$\Sigma_{v \in C} \frac{1}{2d(v)} \ge \frac{d(u)}{3} \frac{1}{2d(v)}$$

Each d(v) > 3.

Node u is good if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

Let C be the lower degree neighbors of u.

By definition:

$$\Sigma_{v \in C} \frac{1}{2d(v)} \ge \frac{d(u)}{3} \frac{1}{2d(v)}$$

$$\frac{d(u)}{3} \frac{1}{2d(u)} \ge \frac{1}{6}$$

Each d(v) > 3.

Node *u* is *good* if

$$|\{v \in N(u) | d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

Let ${\cal C}$ be the lower degree neighbors of u.

By definition:

$$\sum_{v \in C} \frac{1}{2d(v)} \ge \frac{d(u)}{3} \frac{1}{2d(v)}$$

$$\frac{d(u)}{3} \frac{1}{2d(u)} \ge \frac{1}{6}$$

Each d(v) > 3.

There must exist $S \subseteq C$ such that

$$\frac{1}{6} \le \Sigma_{v \in S} \frac{1}{2d(v)} \le \frac{1}{3}$$

Inclusion-Exclusion:

Let S be a set such that $\frac{1}{6} \leq \sum_{v \in S} \frac{1}{2d(v)} \leq \frac{1}{3}$.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v))$$
 and $B(w)$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$\mathsf{P}(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

Inclusion-Exclusion:

Let S be a set such that $\frac{1}{6} \le \Sigma_{v \in S} \frac{1}{2d(v)} \le \frac{1}{3}$.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v))$$
 and $B(w)$

$$\geq \sum_{v \in S} P(B(v)) - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

$$\geq \sum_{v \in S} \frac{1}{4d(v)} - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

Inclusion-Exclusion:

Let S be a set such that
$$\frac{1}{6} \le \Sigma_{v \in S} \frac{1}{2d(v)} \le \frac{1}{3}$$
.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v)) \text{ and } B(w)$$

$$\geq \sum_{v \in S} P(B(v)) - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

$$\geq \sum_{v \in S} \frac{1}{4d(v)} - \sum_{v \neq w \in S} \frac{1}{2d(v)} \frac{1}{2d(w)}$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

A neighbor v of u is marked and no higher degree neighbor of v is marked.

> They both need to get marked at the least.

Inclusion-Exclusion:

Let S be a set such that $\frac{1}{6} \leq \sum_{v \in S} \frac{1}{2d(v)} \leq \frac{1}{3}$.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v))$$
 and $B(w)$

$$\geq \sum_{v \in S} P(B(v)) - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

$$\geq \sum_{v \in S} \frac{1}{4d(v)} - \sum_{v \neq w \in S} \frac{1}{2d(v)} \frac{1}{2d(w)}$$

$$= \Sigma_{v \in S} \frac{1}{2d(v)} \left(\frac{1}{2} - \Sigma_{w \in S} \frac{1}{2d(w)} \right)$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$P(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

Inclusion-Exclusion:

Let S be a set such that
$$\frac{1}{6} \le \Sigma_{v \in S} \frac{1}{2d(v)} \le \frac{1}{3}$$
.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v))$$
 and $B(w)$

$$\geq \sum_{v \in S} P(B(v)) - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

$$\geq \sum_{v \in S} \frac{1}{4d(v)} - \sum_{v \neq w \in S} \frac{1}{2d(v)} \frac{1}{2d(w)}$$

$$= \Sigma_{v \in S} \frac{1}{2d(v)} \left(\frac{1}{2} - \Sigma_{w \in S} \frac{1}{2d(w)} \right)$$

$$\geq \Sigma_{v \in S} \frac{1}{2d(v)} \left(\frac{1}{2} - \frac{1}{3} \right) \geq \frac{1}{6} \left(\frac{1}{6} \right) = \frac{1}{36}$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$\mathsf{P}(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

Inclusion-Exclusion:

Let S be a set such that $\frac{1}{6} \leq \sum_{v \in S} \frac{1}{2d(v)} \leq \frac{1}{3}$.

$$\geq \Sigma_{v \in S} P(B(v)) - \Sigma_{v \neq w \in S} P(B(v))$$
 and $B(w)$

$$\geq \sum_{v \in S} P(B(v)) - \sum_{v \neq w \in S} P(B(v) \text{ and } B(w))$$

$$\geq \sum_{v \in S} \frac{1}{4d(v)} - \sum_{v \neq w \in S} \frac{1}{2d(v)} \frac{1}{2d(w)}$$

$$= \Sigma_{v \in S} \frac{1}{2d(v)} \left(\frac{1}{2} - \Sigma_{w \in S} \frac{1}{2d(w)} \right)$$

$$\geq \sum_{v \in S} \frac{1}{2d(v)} \left(\frac{1}{2} - \frac{1}{3} \right) \geq \frac{1}{6} \left(\frac{1}{6} \right) = \frac{1}{36}$$

Event B(v):

v is marked and no higher degree neighbor of v is marked.

$$\mathsf{P}(B(v)) \ge \frac{1}{4d(v)}$$

Event *R*:

Definition:

Each good edge is adjacent to a good node u.

Event *R*:

$$P(R) \ge \frac{1}{36}$$

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Corollary:

After expected $O(\log m)$ rounds, no edges remain. We can get this in expectation and w.h.p.

Lemma:

At least half of all edges are good.

Approach:

Find an upper bound on the number of bad edges.

Lemma:

At least half of all edges are good.

Approach:

Find an upper bound on the number of bad edges.

Smart counting:

Orient edges towards higher degree neighbors.

Lemma:

At least half of all edges are good.

Approach:

Find an upper bound on the number of bad edges.

Smart counting:

Orient edges towards higher degree neighbors.

Node u is good if

$$|\{v \in N(u) \mid d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

Lemma:

At least half of all edges are good.

Approach:

Find an upper bound on the number of bad edges.

Smart counting:

Orient edges towards higher degree neighbors.

Node *u* is *good* if

$$|\{v \in N(u) \mid d(u) > d(v)\}| \ge \frac{d(u)}{3}$$

A bad node u has outdegree of at least 2d(u)/3.

Lemma:

At least half of all edges are good.

Recall:

An edge is *good* if it is incident on a good node.

A bad node u has outdegree of at least 2d(u)/3.

Lemma:

At least half of all edges are good.

Recall:

An edge is *good* if it is incident on a good node.

A bad node u has outdegree of at least 2d(u)/3.

A bad edge ends in a bad node.

Lemma:

At least half of all edges are good.

Recall:

An edge is *good* if it is incident on a good node.

A bad node u has outdegree of at least 2d(u)/3.

A bad edge ends in a bad node.

Let B be the bad nodes.

#bad edges $\leq \sum_{u \in B} \text{indeg}(u)$ $\sum_{u \in B} \text{indeg}(u) \leq \sum_{u \in B} \text{outdeg}(u) / 2$

Lemma:

At least half of all edges are good.

Recall:

An edge is *good* if it is incident on a good node.

A bad node u has outdegree of at least 2d(u)/3.

A bad edge ends in a bad node.

Let B be the bad nodes.

#bad edges $\leq \Sigma_{u \in B}$ indeg(u)

 $\Sigma_{u \in B}$ indeg $(u) \le \Sigma_{u \in B}$ outdeg(u) / 2

Lemma:

At least half of all edges are good.

Recall:

An edge is *good* if it is incident on a good node.

A bad node u has outdegree of at least 2d(u)/3.

A bad edge ends in a bad node.

Let B be the bad nodes.

#bad edges $\leq \Sigma_{u \in B}$ indeg(u) $\Sigma_{u \in B}$ indeg(u) $\leq \Sigma_{u \in B}$ outdeg(u) /2

#bad edges $\leq \sum_{u \in B} \text{outdeg}(u) / 2$ $\leq \text{#edges/2}$

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Corollary:

After expected $O(\log m)$ rounds, no edges remain. We can get this in expectation and w.h.p.

Lemma:

A good edge gets removed with probability at least 1/36.

Lemma:

At least half of all edges are good.

Linearity of expectation:

Let *R* be the number of edges removed in a phase.

$$E[R] \ge m/72$$

Markov's inequality:

$$P\left[R \le \frac{\boldsymbol{E}[R]}{2}\right] \le \frac{1}{144}$$

Lemma:

A good edge gets removed with probability at least 1/36.

Lemma:

At least half of all edges are good.

Let *R* be the number of edges removed in a phase.

$$P\left[R \le \frac{\boldsymbol{E}[R]}{2}\right] \le \frac{1}{144}$$

Let \widehat{m} be the number of edges in the original input graph.

After expected $O(\log \widehat{m}) = O(\log n)$ rounds, all edges are removed. Notice that a degree 0 node joins the MIS with probability 1.

Lemma:

A good edge gets removed with a constant probability.

Lemma:

At least half of all edges are good.

Corollary:

After expected $O(\log m)$ rounds, no edges remain. We can get this in expectation and w.h.p.

Left as an exercise.

Literature

Maximal Independent Set

Deterministic:

 $O(\operatorname{poly} \log n)$

Randomized:

[Ghaffari et al., SODA 2021]

Literature

Maximal Independent Set

Deterministic:

 $O(\operatorname{poly} \log n)$ $\Omega(\log n)$

Randomized:

 $\Omega(\log \log n)$

[Ghaffari et al., SODA 2021] [Balliu et al., FOCS 2019 best paper]

Literature

Maximal Independent Set

Deterministic:

 $O(\operatorname{poly} \log n)$ $\Omega(\log n)$

Randomized:

 $O(\log \Delta + \operatorname{poly} \log \log n)$ $\Omega(\log \log n)$

[Ghaffari et al., SODA 2021]
[Balliu et al., FOCS 2019 best paper]
[Ghaffari, SODA 2016 best student paper]

Wrap-up

Luby's Algorithm: $O(\log n)$

Maximal Independent Set

Deterministic:

 $O(\operatorname{poly} \log n)$

 $\Omega(\log n)$

Randomized:

$$O\left(\sqrt{\log \Delta} + \operatorname{poly} \log \log n\right)$$

 $\Omega(\log \log n)$

Maximum Independent Set

