Wrangling data for Wrangling and Analyze Data project

By Jennifer Powell

Gather

The first step to wrangle the data for this project was to gather the 3 files required for this project:

- 1. WeRateDogs Twitter archive (twitter-archive-enhanced.csv), which I downloaded from udacity, and read into a dataframe.
- 2. The tweet image predictions file (image_predictions.tsv), which was downloaded programmatically and read into a dataframe
- 3. The retweet and favorite count data, which was queried from Twitter and acquired programmatically using the Twitter API. The tweet_id from the archive file was used to obtain JSON data from Python's Tweepy library. The resulting data was stored one line at a time in a text file: tweet_json.txt. This was then read into a 3rd dataframe.
- 4. I decided to obtain a 4th file (language-codes_csv.csv) to use for decoding the 2 char code in the language column of the image_predictions table to a readable text. I downloaded this file programmaticcally from https://datahub.io/core/language-codes and read it into a 4th dataframe.

Assess

Detect and document at least eight (8) quality issues and two (2) tidiness issues

The next step was to assess the data in the 4 dataframes. I went through each dataframe and looked at the quality of the data (missing data, garbage data, duplicates). These were the quality issues found in each of the datasets:

Quality

twitter_df table

- 1. erroneous datatypes id, retweet_count and favorite_count should be int; timestamp should be datetime
- 2. language abbrev should be full name, not cryptic
- 3. many columns have only 1 value or no data (contributors, coordinates, favorited, geo, place, possibly_sensitive, possibly_sensitive_appealable)

img_pred_df table

- 1. some of the p1 values look to be garbage (eg crash helmet, water bottle)
- 2. many records are not dogs (p1_dog=False)
- 3. some records are retweets

wrd_df table

- 1. Some names look to be garbage (eg a, an) clean up and set to 'None'?
- 2. some records contain retweets
- 3. Erroneous datatypes (source column, stage should be category, timestamp should be datetime)
- 4. a handful of denominators aren't 10
- 5. missing images
- 6. source column contains extra info, only 4 values
- 7. stages of dog:doggo, pupper, puppo, and floof(er) some have multiple ratings for same dog
- 8. missing floof stage, only checked for floofer

Tidiness

Column headers are values, not variable names

wrd_df table -doggo, floofer, pupper, puppo columns contain only 4 values in 4 columns

A single observational unit is stored in multiple tables.

- The source and text of the tweet are stored in both wrd_df and twitter_df. We only want the twitter_df favorite_count and retweet_count so can combine with wrd_df and drop rest of columns in twitter_clean
- jpg_url is repeated in img_pred_df. Only need p1 and p1_conf, can combine these with wrd_df and drop rest of columns

Clean

- 1. Language abbreviations in twitter_df were replaced using a lookup table.
- 2. Determined records with missing images and dropped them from wrd_df.
- 3. Removed records from wrd_df that are retweets.
- 4. One character names in wrd_df set to 'None'.
- 5. Numerators can be greater than 10, but decided to make denominators all 10 since so few.
- 6. Created subsets of **twitter_df**: 'id','retweet_count','favorite_count','lang' and **wrd_df**: 'tweet_id', 'source', 'timestamp','expanded_urls', 'text', 'rating_numerator', 'rating_denominator','name','doggo', 'floofer', 'pupper', 'pupper' dropping unused columns.
- 7. Combined the doggo, floofer, pupper, puppo columns into 1 categorical **stage** column.
- **8.** Convert wrd_df.source to category type with 4 values (iPhone, Vine, WebClient, TweetDeck).
- 9. Deleted rows which weren't dogs (ie p1_dog == False).
- 10. Converted twitter_df.retweet_count and favorite_count to integer.
- 11. Converted wrd_df.timestamp to datetime.
- 12. Combined the dataframes into one master.