Blockchains and Decentralized Applications

Thierry Sans

Forbes

LEADERSHIP

All Hype? What Every Business Leader Should Know About Web3

Sally Percy Contributor ①

Follow

Aug 17, 2022, 03:00am EDT

Web3 could restore power to the people GETTY

Web3 is a decentralized, blockchain-based version of the internet. Experts predict that it will undermine the dominance of big tech by giving users more control over which services they access. As such, it could completely revolutionize how businesses operate.

So, what should leaders know about Web3?

From the article:

- 1. Web3 could restore "Power to the People"
- Web3 could change the way we communicate with each other (perhaps)
- 3. Web3 could transform the infrastructure that all business runs on
- 4. Web3's impact could go beyond 'tech' companies
- 5. Web3 could be just another disruption for leaders to navigate

Forbes

Dashboard

FORBES DIGITAL ASSETS • EDITORS' PICK

Web3 Growth Stymied By Scarcity Of Programmers

Nina Bambysheva Forbes Staff

I cover cryptocurrencies and other applications of blockchain

Follow

Aug 29, 2022, 07:30pm EDT

Developer shortage stands in the way of decentralized, blockchain-centric internet bliss. GETTY

Advocates of Web3, a catch-all term widely used to incorporate concepts of decentralized networks, cryptocurrencies and other blockchain-powered applications, have a grand vision for the future of the Internet and global finance.

One thing that stands in the way: a lack of people to make it happen.

Cryptocurrencies

Total cryptocurrency market cap

The original Bitcoin paper (2008)

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.

A centralized ledger (Trusted Third Party)

A decentralized ledger (Trustless)

T(Alice, Bob, \$100)

Beyond Cryptocurrencies

Towards Decentralized Applications

Web 2 - The centralized Web

Web 3 - The decentralized web

smart contracts

Cryptography Toolbox

The cryptography toolbox has many building blocks . . .

- ... but here we only need:
 - Hashing
 - Digital Signature

Cryptographic Hashing

H(m) = x is a hash function if

- m is a message of any length
- x is a message digest of a fixed length
- H is a non invertible function
- \rightarrow H is a lossy compression function necessarily there exists x, m₁ and m₂ | H(m₁) = H(m₂) = x

Computational Properties

- ✓ Given H and m, computing x is easy (polynomial or linear)
- Given H and x, computing m is hard (exponential)
- Given H, m and x, it is hard (exponential) to find m' such that H(m) = H(m') = x
- Given H, it is hard (exponential) to find m and m' such that H(m) = H(m') = x

Digital Signatures

Only Alice can sign a message m with her secret key ska

→ Everybody can verify m using Alice's public key pkA

Computational Properties

- ✓ (pk, sk) = generateKeyPair() is easy to compute (polynomial)
- ✓ $sig = sign(m, sk_A)$ is easy to compute (either polynomial or linear)
- ✓ verify(m, sig, pk_A)
 is easy to compute (either polynomial or linear)
- Finding a matching key sk, given pk is hard (exponential)
- Forging a valid signature without knowing sk is hard (exponential)

Naive Cryptocurrency

Alice's Blockchain

oldH: null

from: null

to: aGks5

amount: 100

newH: uUiN1

Genesis Block

Alice's Keypair

pk_B: aGks5

sk_B: ...

Alice's Tracker

aGks5: 100

Bob's Keypair

pk_B: bJR5H

sk_B: ...

Bob's Blockchain

...

Bob's Tracker

aGks5: 100

Alice's Blockchain

oldH: null

from: null

to: aGks5

amount: 100

newH: uUiN1

Genesis Block

oldH: uUiN1

from: aGks5

to: bJR5H

amount: 20

newH: dSm3LJ

Alice's Key pair

pk_B: aGks5

sk_B: ...

Alice's Tracker

aGks5: 80

bJR5H: 20

Bob's Keypair

pk_B: bJR5H

sk_B: ...

Bob's Tracker

aGks5: 80

bJR5H: 20

Bob's Blockchain

Concurrency issues

to: m406Z

amount: 10

newH:P+q2C

Solution: consensus algorithm

Malory's Tracker

aGks5: ?

bJR5H: ?

m406Z:?

Malory's Keypair

 $pk_M: m406Z$

 sk_M : ...

Mallory's Blockchain

?

oldH: 7fLvX

from: bJR5H

to: m406Z

amount: 10

newH: vVxL6

Bob's Keypair

pk_B: bJR5H

sk_B: ...

Double Spending Attack

Malory's Keypair

 $pk_M: m406Z$

 sk_M : ...

aGks5: 80

bJR5H: 10

m406Z: 10

oldH: 7fLvX

from: m406Z

to: bJR5H

amount: 10

newH: U9gm6

Bob's Keypair

pk_B: bJR5H

sk_B: ...

The original Bitcoin paper (2008)

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.