

SI0-0107
Serial No.: 10/720,372
W. W. KOBA (610) 346-7112
REPLACEMENT SHEET

1/17

FIG. 1

FIG. 2

2/17

FIG. 3

WAVELENGTH DEPENDENCE OF BEAM ANGLE INSIDE PRISM (θ_{Si}) AS A FUNCTION OF WAVELENGTH, FOR THREE DIFFERENT WAVEGUIDE THICKNESSES

FIG. 4

WAVELENGTH DEPENDENCE OF BEAM ANGLE IN AIR (θ_{air}) AS A FUNCTION OF WAVELENGTH, FOR THREE DIFFERENT WAVEGUIDE THICKNESSES

FIG. 5

FIG. 6

FREE-SPACE ANGULAR SEPARATION BETWEEN THE 3 dB POINTS (FWHM (θ_{air})) AS A FUNCTION OF FREE-SPACE BEAM DIAMETER, FOR THREE DIFFERENT COUPLING CONSTANT VALUES AT 1550 nm

4/17

FIG. 7

$n = 1.45$ FOR EVANESCENT LAYER

COUPLING LOSS vs "CONSTANT" SILICON DIOXIDE ($n = 1.45$)
 EVANESCENT COUPLING LAYER THICKNESS, $\lambda = 1550$ nm, $2\omega_0 = 63\mu\text{m}$
 IN AIR, AS A FUNCTION OF WAVEGUIDE THICKNESS

FIG. 8

COUPLING EFFICIENCY vs EVANESCENT COUPLING LAYER
 THICKNESS, $\lambda = 1550\text{nm}$, $2\omega_0 = 63\mu\text{m}$, $W = 0.14\mu\text{m}$, FOR
 THREE DIFFERENT REFRACTIVE INDEX VALUES OF THE
 EVANESCENT COUPLING LAYER

5/17

FIG. 9

MAXIMUM WEDGE ANGLE FOR A "FLAT" EVANESCENT COUPLING LAYER
AS A FUNCTION OF FREE-SPACE BEAM DIAMETER AT 1550 nm

FIG. 10

OPTIMUM WEDGE ANGLE FOR A TAPERED EVANESCENT
COUPLING LAYER (LINEARLY VARYING IN THICKNESS) AS A
FUNCTION OF FREE-SPACE BEAM DIAMETER AT 1550 nm

SI0-0107
Serial No.: 10/720,372
W. W. KOBA (610) 346-7112
REPLACEMENT SHEET

6/17

FIG. 11

$$\text{GRAPHS OF } 2\omega_{\text{PCS}}/2\omega_0 = \left\{ 1 - (\sin \theta_{\text{air}} / \eta_{\text{Si}})^2 \right\}^{1/2} / \left\{ \cos \theta_{\text{air}} * \cos \theta_{\text{Si}} \right\}$$

RATION OF PROJECTION OF INPUT BEAM ON PRISM COUPLING SURFACE TO FREE SPACE BEAM SIZE, AS A FUNCTION OF WAVELENGTH FOR 4 DIFFERENT WAVEGUIDE THICKNESSES OF THE EMBODIMENT SHOWN IN FIGURE 2.1, WITH $\theta_{\text{Pr}} = 54.74$ DEGREES

7/17

FIG. 12

FIG. 13

9/17

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

15/17

FIG. 20

(a)

(b)

(c)

(d)

FIG. 21

FIG. 22

