Student Information

Full Name : Murat Bolu Id Number : 2521300

Answer 1

Part a)

p	q	$\neg p$	$ \neg q $	$p \wedge q$	$\neg p \lor \neg q$	$ \mid (p \land q) \leftrightarrow (\neg p \lor \neg q) \mid $
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	F

Therefore, it is a contradiction.

Part b)

$$p \to ((q \lor \neg q) \to (p \land q)) \equiv p \to (T \to (p \land q))$$
 Negation Law, Table 6
$$\equiv p \to (\neg T \lor (p \land q))$$
 Table 7, 1st Line
$$\equiv p \to (F \lor (p \land q))$$
 Negation of Truth
$$\equiv p \to ((p \land q) \lor F)$$
 Commutative Law, Table 6
$$\equiv p \to (p \land q)$$
 Identity Law, Table 6
$$\equiv \neg p \lor (p \land q)$$
 Table 7, 1st Line
$$\equiv (\neg p \lor p) \land (\neg p \lor q)$$
 Distributive Law, Table 6
$$\equiv (p \lor \neg p) \land (\neg p \lor q)$$
 Distributive Law, Table 6
$$\equiv (p \lor \neg p) \land (\neg p \lor q)$$
 Negation Law, Table 6
$$\equiv T \land (\neg p \lor q)$$
 Negation Law, Table 6
$$\equiv (\neg p \lor q) \land T$$
 Commutative Law, Table 6
$$\equiv (\neg p \lor q) \land T$$
 Commutative Law, Table 6

Answer 2

- **a)** $\forall x \exists y \ W(x,y)$
- **b)** $\exists y \ \forall x \ (\neg F(x,y))$
- c) $\forall x (W(x, P) \rightarrow A(a, x))$, where a is Ali.
- d) $\exists x (W(b,x) \land F(t,x))$, where b is Büşra and t is TÜBİTAK.
- e) $\exists x \exists y \exists z (S(x,y) \land S(x,z) \land \neg (y=z))$
- f) $\forall x \ \forall y \ \forall z \ ((W(x,z) \land W(y,z)) \rightarrow (x=y))$, where x and y are students and z is a project.

g) $\exists x \exists y \exists z \ (W(y,x) \land W(z,x) \land \neg (y=z) \land \forall t \ (W(t,x) \rightarrow ((y=t) \lor (z=t))))$, where x is a project and y, z and t are students.

Answer 3

1.	$p \to q$	Premise
2.	$(q \land \neg r) \to s$	Premise
3.	$\neg s$	Premise
4.	p	Assumption
5.	-r	Assumption
6.		\rightarrow e, 4, 1
7.	$ q \wedge \neg r$	∧ i, 6, 5
8.	s	\rightarrow e, 7, 2
9.		¬ e, 3, 8
10.	$\neg \neg r$	¬ i, 6 - 9
11.	r	¬ ¬ e, 10
12.	$p \to r$	\rightarrow i, 4 - 11

Answer 4

If we translate the sentences to logical formulas:

• Ayşe: p

• Barış: $s \to \neg q$

• Can: $p \to (q \land r)$

• Duygu: $r \to s$

Now, we need to show that $p,\ p \to (q \land r),\ r \to s \vdash \neg(s \to \neg q).$

1.	p	Premise
2.	$p \to (q \wedge r)$	Premise
3.	$r \to s$	Premise
4.	$q \wedge r$	\rightarrow e, 1, 2
5.	q	∧ e, 4
6.	r	∧ e, 4
7.	s	\rightarrow e, 6, 3
8.	$s \rightarrow \neg q$	Assumption
9.	$\neg q$	\rightarrow e, 7, 8
10.		¬ e, 5, 9
11.	$\overline{\neg(s \to \neg q)}$	¬ i, 8 - 10

Answer 5

1.	$\forall x \ (P(x) \to (Q(x) \to R(x)))$	Premise
2.	$\exists x \ (P(x))$	Premise
3.	$\forall x \ (\neg R(x))$	Premise
4.	P(c)	Assumption
5.	$P(c) \to (Q(c) \to R(c))$	∀e, 1
6.	$Q(c) \to R(c)$	\rightarrow e, 4, 5
7.	Q(c)	Assumption
8.	R(c)	\rightarrow e, 7, 6
9.		∀e, 3
10.		¬ e, 8, 9
11.	$\neg Q(c)$	¬ i, 7 - 10
12.	$\exists x \ (\neg Q(x))$	∃i, 11
13.	$\exists x \ (\neg Q(x))$	∃e, 2, 4 - 12