DECIMAL	HEX	BINARY
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

Prime numbers from 1 to 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Calculation rules for exponents and logarithms

Below is a collection of useful calculation rules for exponents and logarithms.

 $b^m \cdot b^n = b^{m+n}$

 $\frac{b^m}{b^n} = b^{m-n}$

 $(b^m)^r = b^{m \cdot r}$

 $b^0 = 1$

 $b^{1} = b$

Radicals (roots):

$$a^{\frac{1}{y}} = \sqrt[y]{a}$$

$$\log_b(mn) = \log_b m + \log_b n$$

$$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$$

$$\log_b(m^r) = r \cdot \log_b m$$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

Base-conversion:

$$\log_b m = \frac{\log_q m}{\log_q b}$$

$$x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $= rac{-6 \pm \sqrt{6^2 - 4(1)(10)}}{2(1)}$
 $= rac{-6 \pm \sqrt{36 - 40}}{2}$
 $x = rac{-6 \pm \sqrt{-4}}{2}$
 $x = rac{-6 \pm 2i}{2}$
 $x = -3 \pm i$

TABLE 2 Some Useful Summation Formulae.

Sum

Closed Form

$$\sum_{k=0}^{n} ar^k \ (r \neq 0)$$

$$\sum_{k=1}^{n} k$$

$$\sum_{k=1}^{n} k^2$$

$$\sum_{k=1}^{n} k^3$$

$$\sum_{k=0}^{\infty} x^k, |x| < 1$$

$$\sum_{k=1}^{\infty} kx^{k-1}, |x| < 1$$

$$\frac{ar^{n+1}-a}{r-1}, r \neq 1$$

$$\frac{n(n+1)}{2}$$

$$\frac{n(n+1)(2n+1)}{6}$$

$$\frac{n^2(n+1)^2}{4}$$

$$\frac{1}{1-x}$$

$$\frac{1}{(1-x)^2}$$