Generated on 2017-06-02 20:30:39 by gEcon version 1.0.2 (2016-12-05) Model name: tc_rs

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t, C_t, H_t, I_t} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.

$$C_t + I_t + T_t = \pi_t + TR_t + K_{t-1}r_t + H_tW_t - \psi K_{t-1} \left(-\delta + K_{t-1}^{-1}I_t \right)^2 \quad (\lambda_t^c)$$
(1.2)

$$K_t = I_t + K_{t-1} (1 - \delta) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right)$$
(1.3)

1.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \beta \left((1 - \delta) E_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{2}} \right] + E_{t} \left[\lambda_{t+1}^{c} \left(r_{t+1} - \psi \left(-\delta + K_{t}^{-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{-1} I_{t+1} \left(-\delta + K_{t}^{-1} I_{t+1} \right) \right) \right] \right) = 0 \quad (K_{t})$$

$$(1.4)$$

$$-\lambda_t^{c} + \mu C_t^{-1+\mu} (1 - H_t)^{1-\mu} \left(C_t^{\mu} (1 - H_t)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - H_t)^{-\mu} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{-\eta} = 0 \quad (H_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^2} + \lambda_t^{\text{c}} \left(-1 - 2\psi \left(-\delta + K_{t-1}^{-1} I_t \right) \right) = 0 \quad (I_t)$$

$$\tag{1.7}$$

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, H_t^{\rm d}, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.

$$Y_t = Z_t H_t^{\mathrm{d}^{1-\alpha}} K_t^{\mathrm{d}^{\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$\pi_t = Y_t - H_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \quad \left(\lambda_t^{\mathrm{FIRM}^2}\right) \tag{2.3}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^2} r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t H_t^{\text{d}^{1-\alpha}} K_t^{\text{d}^{-1+\alpha}} = 0 \quad (K_t^{\text{d}})$$

$$(2.4)$$

$$-\lambda_t^{\text{FIRM}^2} W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) H_t^{\text{d}^{-\alpha}} K_t^{\text{d}^{\alpha}} = 0 \quad (H_t^{\text{d}})$$

$$(2.5)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t)$$
 (2.6)

$$1 - \lambda_t^{\text{FIRM}^2} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t H_t^{\mathrm{d}^{1-\alpha}} K_t^{\mathrm{d}^{-1+\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$\tag{2.8}$$

$$-W_t + Z_t (1 - \alpha) H_t^{\mathbf{d}^{-\alpha}} K_t^{\mathbf{d}^{\alpha}} = 0 \quad (H_t^{\mathbf{d}})$$

$$\tag{2.9}$$

3 CONSUMER*

 \sim

3.1 Optimisation problem

$$\max_{K_t^*, C_t^*, H_t^*, I_t^*} U_t^* = \beta \mathcal{E}_t \left[U_{t+1}^* \right] + (1 - \eta)^{-1} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{1-\eta}$$
(3.1)

s t

$$C_t^* + I_t^* + T_t^* = \pi_t^* - TR_t + K_{t-1}^* r_t^* + H_t^* W_t^* - \psi K_{t-1}^* \left(-\delta + K_{t-1}^*^{-1} I_t^* \right)^2 \quad \left(\lambda_t^{c^*} \right)$$
(3.2)

$$K_t^* = I_t^* + K_{t-1}^* (1 - \delta) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right)$$
 (3.3)

3.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{*2}} + \beta \left((1 - \delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{*2}} \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*-1} I_{t+1}^{*} \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right) \right) \right] \right) = 0 \quad (K_{t}^{*})$$

$$(3.4)$$

$$-\lambda_t^{c^*} + \mu C_t^{*-1+\mu} (1 - H_t^*)^{1-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t^*)$$
(3.5)

$$\lambda_t^{c^*} W_t^* + (-1 + \mu) C_t^{*\mu} (1 - H_t^*)^{-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1 - \mu} \right)^{-\eta} = 0 \quad (H_t^*)$$
(3.6)

$$\lambda_t^{\text{CONSUMER}^{*2}} + \lambda_t^{c^*} \left(-1 - 2\psi \left(-\delta + K_{t-1}^*^{-1} I_t^* \right) \right) = 0 \quad (I_t^*)$$
 (3.7)

$4 \quad \mathbf{FIRM}^*$

4.1 Optimisation problem

$$\max_{K_t^{d^*}, H_t^{d^*}, Y_t^*, \pi_t^*} \Pi_t^* = \pi_t^* \tag{4.1}$$

s.t.:

$$Y_t^* = Z_t^* H_t^{d^{*1} - \alpha} K_t^{d^{*\alpha}} \quad \left(\lambda_t^{\text{FIRM}^{*1}}\right) \tag{4.2}$$

$$\pi_t^* = Y_t^* - H_t^{d^*} W_t^* - r_t^* K_t^{d^*} \quad \left(\lambda_t^{\text{FIRM}^*}\right)$$
(4.3)

4.2 First order conditions

$$-\lambda_t^{\text{FIRM}^*} r_t^* + \alpha \lambda_t^{\text{FIRM}^*} Z_t^* H_t^{d^*} r_t^{d^*} = 0 \quad \left(K_t^{d^*} \right)$$
(4.4)

$$-\lambda_t^{\text{FIRM}^*} W_t^* + \lambda_t^{\text{FIRM}^*} Z_t^* (1 - \alpha) H_t^{d^* - \alpha} K_t^{d^* \alpha} = 0 \quad \left(H_t^{d^*} \right)$$
(4.5)

$$-\lambda_t^{\text{FIRM}^{*1}} + \lambda_t^{\text{FIRM}^{*2}} = 0 \quad (Y_t^*)$$
 (4.6)

$$1 - \lambda_t^{\text{FIRM}^{*2}} = 0 \quad (\pi_t^*) \tag{4.7}$$

4.3 First order conditions after reduction

$$-r_t^* + \alpha Z_t^* H_t^{d^*}^{1-\alpha} K_t^{d^*}^{-1+\alpha} = 0 \quad \left(K_t^{d^*}\right)$$
(4.8)

$$-W_t^* + Z_t^* (1 - \alpha) H_t^{d^* - \alpha} K_t^{d^* \alpha} = 0 \quad (H_t^{d^*})$$
(4.9)

5 EQUILIBRIUM

5.1 Identities

ಬ

$$K_t^{\mathbf{d}} = K_{t-1} \tag{5.1}$$

$$H_t^{\rm d} = H_t \tag{5.2}$$

$$T_t = G_t^{\mathrm{d}} \tag{5.3}$$

$$K_t^{d^*} = K_{t-1}^* \tag{5.4}$$

$$H_t^{\mathbf{d}^*} = H_t^* \tag{5.5}$$

$$T_t^* = G_t^{d^*} \tag{5.6}$$

$$\lambda_t^{\rm c} = \lambda_t^{\rm c^*} \tag{5.7}$$

6 EXOG

6.1 Identities

$$G_t^{\mathbf{d}} = \epsilon_t^{\mathbf{G}} + \phi^{\mathbf{G}} G_{t-1}^{\mathbf{d}} \tag{6.1}$$

$$Z_t = e^{\epsilon_t^{\mathbf{Z}} + \phi^{\mathbf{Z}} \log Z_{t-1}} \tag{6.2}$$

$$G_t^{d^*} = \epsilon_t^{G^*} + \phi^G G_{t-1}^{d^*} \tag{6.3}$$

$$Z_t^* = e^{\epsilon_t^{Z^*} + \phi^Z \log Z_{t-1}^*} \tag{6.4}$$

7 Equilibrium relationships (after reduction)

$$-\lambda_t^c + \lambda_t^{c^*} = 0 \tag{7.1}$$

$$-\lambda_t^{c} + \mu C_t^{-1+\mu} (1 - H_t)^{1-\mu} \left(C_t^{\mu} (1 - H_t)^{1-\mu} \right)^{-\eta} = 0$$
 (7.2)

$$-\lambda_t^{c^*} + \mu C_t^{*-1+\mu} (1 - H_t^*)^{1-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0$$
 (7.3)

$$-r_t + \alpha Z_t K_{t-1}^{-1+\alpha} H_t^{1-\alpha} = 0 (7.4)$$

$$-r_t^* + \alpha Z_t^* K_{t-1}^{*}^{-1+\alpha} H_t^{*1-\alpha} = 0 \tag{7.5}$$

$$-W_t + Z_t (1 - \alpha) K_{t-1}{}^{\alpha} H_t{}^{-\alpha} = 0$$
 (7.6)

$$-W_t^* + Z_t^* (1 - \alpha) K_{t-1}^* {}^{\alpha} H_t^{*-\alpha} = 0$$
(7.7)

$$-Y_t + Z_t K_{t-1}{}^{\alpha} H_t{}^{1-\alpha} = 0 (7.8)$$

$$-Y_t^* + Z_t^* K_{t-1}^* {}^{\alpha} H_t^{*1-\alpha} = 0 (7.9)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi^{\mathbf{Z}} \log Z_{t-1}} = 0 \tag{7.10}$$

$$-Z_t^* + e^{\epsilon_t^{Z^*} + \phi^{Z} \log Z_{t-1}^*} = 0 (7.11)$$

$$\beta \left(-(1-\delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{c} \left(-1-2\psi \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c} \left(r_{t+1} - \psi \left(-\delta+K_{t}^{-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{-1} I_{t+1} \left(-\delta+K_{t}^{-1} I_{t+1} \right) \right) \right] \right) + \lambda_{t}^{c} \left(-1-2\psi \left(-\delta+K_{t-1}^{-1} I_{t} \right) \right) = 0$$

$$(7.12)$$

$$\beta \left(-(1-\delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(-1-2\psi \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right) \right) \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{c^{*}} \left(r_{t+1}^{*} - \psi \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right)^{2} + 2\psi K_{t}^{*-1} I_{t+1}^{*} \left(-\delta + K_{t}^{*-1} I_{t+1}^{*} \right) \right) \right] \right) + \lambda_{t}^{c^{*}} \left(-1-2\psi \left(-\delta + K_{t-1}^{*-1} I_{t}^{*} \right) \right) = 0$$

$$(7.13)$$

$$\lambda_t^c W_t + (-1 + \mu) C_t^{\mu} (1 - H_t)^{-\mu} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{-\eta} = 0$$
(7.14)

$$\lambda_t^{c^*} W_t^* + (-1 + \mu) C_t^{*\mu} (1 - H_t^*)^{-\mu} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{-\eta} = 0$$
(7.15)

$$\epsilon_t^{G} - G_t^{d} + \phi^{G} G_{t-1}^{d} = 0 \tag{7.16}$$

$$\epsilon_t^{G^*} - G_t^{d^*} + \phi^G G_{t-1}^{d^*} = 0 \tag{7.17}$$

$$I_t - K_t + K_{t-1} (1 - \delta) = 0 (7.18)$$

$$I_t^* - K_t^* + K_{t-1}^* (1 - \delta) = 0 (7.19)$$

$$U_t - \beta E_t [U_{t+1}] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - H_t)^{1 - \mu} \right)^{1 - \eta} = 0$$
(7.20)

$$U_t^* - \beta \mathcal{E}_t \left[U_{t+1}^* \right] - (1 - \eta)^{-1} \left(C_t^{*\mu} (1 - H_t^*)^{1-\mu} \right)^{1-\eta} = 0 \tag{7.21}$$

$$-C_t - G_t^{d} - I_t + TR_t + Y_t - \psi K_{t-1} \left(-\delta + K_{t-1}^{-1} I_t \right)^2 = 0$$
(7.22)

$$-C_t^* - G_t^{d^*} - I_t^* - TR_t + Y_t^* - \psi K_{t-1}^* \left(-\delta + K_{t-1}^{*-1} I_t^* \right)^2 = 0$$

$$(7.23)$$

8 Steady state relationships (after reduction)

$$-\lambda_{\rm ss}^{\rm c} + \lambda_{\rm ss}^{\rm c^*} = 0 \tag{8.1}$$

$$-\lambda_{\rm ss}^{\rm c} + \mu C_{\rm ss}^{-1+\mu} (1 - H_{\rm ss})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - H_{\rm ss})^{1-\mu} \right)^{-\eta} = 0$$
(8.2)

$$-\lambda_{\rm ss}^{c^*} + \mu C_{\rm ss}^{*-1+\mu} (1 - H_{\rm ss}^*)^{1-\mu} \left(C_{\rm ss}^{*\mu} (1 - H_{\rm ss}^*)^{1-\mu} \right)^{-\eta} = 0$$
(8.3)

$$-r_{\rm ss} + \alpha Z_{\rm ss} H_{\rm ss}^{1-\alpha} K_{\rm ss}^{-1+\alpha} = 0 \tag{8.4}$$

$$-r_{ss}^* + \alpha Z_{ss}^* H_{ss}^{*1-\alpha} K_{ss}^{*-1+\alpha} = 0$$
(8.5)

$$-G_{\rm ss}^{\rm d} + \phi^{\rm G}G_{\rm ss}^{\rm d} = 0 \tag{8.6}$$

$$-G_{\rm ss}^{\rm d^*} + \phi^{\rm G} G_{\rm ss}^{\rm d^*} = 0 \tag{8.7}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) H_{\rm ss}^{-\alpha} K_{\rm ss}^{\alpha} = 0$$
 (8.8)

$$-W_{ss}^* + Z_{ss}^* (1 - \alpha) H_{ss}^{*-\alpha} K_{ss}^{*\alpha} = 0$$
(8.9)

$$-Y_{\rm ss} + Z_{\rm ss}H_{\rm ss}^{1-\alpha}K_{\rm ss}^{\ \alpha} = 0 \tag{8.10}$$

$$-Y_{\rm ss}^* + Z_{\rm ss}^* H_{\rm ss}^{*1-\alpha} K_{\rm ss}^{*\alpha} = 0 (8.11)$$

$$-Z_{\rm ss} + e^{\phi^{\rm Z}\log Z_{\rm ss}} = 0 \tag{8.12}$$

6

$$-Z_{\rm ss}^* + e^{\phi^2 \log Z_{\rm ss}^*} = 0 ag{8.13}$$

$$\beta \left(\lambda_{ss}^{c} \left(r_{ss} - \psi \left(-\delta + I_{ss} K_{ss}^{-1} \right)^{2} + 2\psi I_{ss} K_{ss}^{-1} \left(-\delta + I_{ss} K_{ss}^{-1} \right) \right) - \lambda_{ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{ss} K_{ss}^{-1} \right) \right) (1 - \delta) \right) + \lambda_{ss}^{c} \left(-1 - 2\psi \left(-\delta + I_{ss} K_{ss}^{-1} \right) \right) = 0$$
(8.14)

$$\beta \left(\lambda_{\text{ss}}^{\text{c*}} \left(r_{\text{ss}}^* - \psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right)^2 + 2\psi I_{\text{ss}}^* K_{\text{ss}}^{*-1} \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) - \lambda_{\text{ss}}^{\text{c*}} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) (1 - \delta) \right) + \lambda_{\text{ss}}^{\text{c*}} \left(-1 - 2\psi \left(-\delta + I_{\text{ss}}^* K_{\text{ss}}^{*-1} \right) \right) = 0 \quad (8.15)$$

$$\lambda_{\rm ss}^{\rm c} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - H_{\rm ss})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - H_{\rm ss})^{1-\mu} \right)^{-\eta} = 0 \tag{8.16}$$

$$\lambda_{\rm ss}^{\rm c^*} W_{\rm ss}^* + (-1 + \mu) C_{\rm ss}^{*\mu} (1 - H_{\rm ss}^*)^{-\mu} \left(C_{\rm ss}^{*\mu} (1 - H_{\rm ss}^*)^{1-\mu} \right)^{-\eta} = 0 \tag{8.17}$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} (1 - \delta) = 0 \tag{8.18}$$

$$I_{ss}^* - K_{ss}^* + K_{ss}^* (1 - \delta) = 0 (8.19)$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - H_{\rm ss})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{8.20}$$

$$U_{ss}^* - \beta U_{ss}^* - (1 - \eta)^{-1} \left(C_{ss}^{*\mu} (1 - H_{ss}^*)^{1 - \mu} \right)^{1 - \eta} = 0$$
(8.21)

$$-C_{ss} - G_{ss}^{d} - I_{ss} + TR_{ss} + Y_{ss} - \psi K_{ss} \left(-\delta + I_{ss} K_{ss}^{-1} \right)^{2} = 0$$
(8.22)

$$-C_{ss}^* - G_{ss}^{d^*} - I_{ss}^* - TR_{ss} + Y_{ss}^* - \psi K_{ss}^* \left(-\delta + I_{ss}^* K_{ss}^{*-1} \right)^2 = 0$$
(8.23)

9 Parameter settings

$$\alpha = 0.4 \tag{9.1}$$

$$\beta = 0.99 \tag{9.2}$$

$$\delta = 0.025 \tag{9.3}$$

$$\eta = 2 \tag{9.4}$$

$$\mu = 0.3 \tag{9.5}$$

$$\phi^{\rm G} = 0.95 \tag{9.6}$$

$$\phi^{\mathbf{Z}} = 0.95 \tag{9.7}$$

$$\psi = 0.8 \tag{9.8}$$

10 Steady-state values

	Steady-state value
λ^{c}	0.3934
λ^{c^*}	0.3934
r	0.0351
r^*	0.0351
C	0.9578
C^*	0.9578
$G^{ m d}$	0
G^{d^*}	0
H	0.2645
H^*	0.2645
I	0.3816
I^*	0.3816
K	15.2627
K^*	15.2627
TR	0
U	-125.6048
U^*	-125.6048
W	3.0384
W^*	3.0384
Y	1.3393
Y^*	1.3393
Z	1
Z^*	1

11 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	G_{t-1}^{d}	$G_{t-1}^{\mathrm{d}^*}$	K_{t-1}	K_{t-1}^*	Z_{t-1}	Z_{t-1}^*
λ_t^{c}	$\int 0.1022$	0.1022	-0.0091	-0.0091	-0.1072	-0.1072
λ_t^{c} $\lambda_t^{\mathrm{c}^*}$	0.1022	0.1022	-0.0091	-0.0091	-0.1072	-0.1072
r_t	0.0044	0.0044	-0.0012	-0.0004	0.0497	-0.0046
r_t^*	0.0044	0.0044	-0.0004	-0.0012	-0.0046	0.0497
C_t	-0.1525	-0.1525	0.0187	0.0136	0.3448	0.1599
C_t^*	-0.1525	-0.1525	0.0136	0.0187	0.1599	0.3448
H_t	0.0554	0.0554	0.0023	-0.0049	0.2054	-0.0581
H_t^*	0.0554	0.0554	-0.0049	0.0023	-0.0581	0.2054
I_t	-0.1542	-0.1542	-0.0296	0.0244	2.2856	-1.0704
I_t^*	-0.1542	-0.1542	0.0244	-0.0296	-1.0704	2.2856
TR_t	0.475	-0.475	-0.053	0.053	0.7338	-0.7338
U_t	-3.1408	-3.1408	0.1608	0.2366	0.053	8.3603
U_t^*	-3.1408	-3.1408	0.2366	0.1608	8.3603	0.053
W_t	-0.2547	-0.2547	0.0689	0.0227	1.9424	0.2672
W_t^*	-0.2547	-0.2547	0.0227	0.0689	0.2672	1.9424
Y_t	0.1684	0.1684	0.0422	-0.015	1.8966	-0.1767
Y_t^*	0.1684	0.1684	-0.015	0.0422	-0.1767	1.8966

$\mathbf{Matrix}\ S$

	$\epsilon^{ m Z}$	ϵ^{G}	ϵ^{G^*}	ϵ^{Z^*}
λ^{c}	/-0.1128	0.1075	0.1075	-0.1128
λ^{c^*}	-0.1128	0.1075	0.1075	-0.1128
r	0.0523	0.0046	0.0046	-0.0049
r^*	-0.0049	0.0046	0.0046	0.0523
C	0.3629	-0.1605	-0.1605	0.1683
C^*	0.1683	-0.1605	-0.1605	0.3629
H	0.2163	0.0583	0.0583	-0.0612
H^*	-0.0612	0.0583	0.0583	0.2163
I	2.4059	-0.1623	-0.1623	-1.1267
I^*	-1.1267	-0.1623	-0.1623	2.4059
TR	0.7724	0.5	-0.5	-0.7724
U	0.0557	-3.3061	-3.3061	8.8003
U^*	8.8003	-3.3061	-3.3061	0.0557
W	2.0446	-0.2681	-0.2681	0.2812
W^*	0.2812	-0.2681	-0.2681	2.0446
Y	1.9964	0.1773	0.1773	-0.186
Y^*	-0.186	0.1773	0.1773	1.9964

12 Model statistics

12.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{r}	0.0351	0.0051	0	N
C	0.9578	0.0373	0.0014	N
G^{d}	0	0.0922	0.0085	N
H	0.2645	0.026	0.0007	N
I	0.3816	0.2659	0.0707	N
K	15.2627	0.9072	0.8231	N
TR	0	0.1943	0.0378	N
U	-125.6048	1.065	1.1342	N
W	3.0384	0.1882	0.0354	N
Y	1.3393	0.2048	0.042	N
Z	1	0.0922	0.0085	N

12.2 Correlation matrix

	r	C	G^{d}	H	I	K	TR	U	W	Y	Z
\overline{r}	1	0.569	0.552	0.89	0.816	0.169	0.516	-0.237	0.865	0.922	0.979
C		1	0.055	0.39	0.432	0.264	0.182	0.431	0.851	0.595	0.702
G^{d}			1	0.6	0.354	0.137	0.403	-0.287	0.377	0.538	0.5
H				1	0.733	0.532	0.338	-0.458	0.815	0.972	0.89
I					1	0.231	0.829	-0.563	0.69	0.75	0.793
K						1	-0.129	-0.329	0.47	0.532	0.296
TR							1	-0.517	0.308	0.342	0.449
U								1	0.01	-0.29	-0.145
W									1	0.928	0.949
Y										1	0.956
Z											1

12.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r_t	0.025	0.163	0.276	0.41	0.563	0.734	0.922	0.574	0.294	0.077	-0.087	-0.205
C_t	0.182	-0.052	0.027	0.129	0.256	0.411	0.595	0.473	0.36	0.258	0.168	0.09
G_t^{d}	0.45	0.048	0.116	0.199	0.297	0.41	0.538	0.368	0.227	0.112	0.021	-0.048
H_t	0.127	0.067	0.196	0.352	0.534	0.741	0.972	0.723	0.504	0.314	0.155	0.025
I_t	1.298	0.197	0.289	0.393	0.506	0.626	0.75	0.439	0.193	0.005	-0.134	-0.229
K_t	4.429	-0.217	-0.127	-0.009	0.14	0.32	0.532	0.647	0.688	0.672	0.616	0.533
TR_t	0.949	0.235	0.268	0.298	0.322	0.338	0.342	0.074	-0.119	-0.249	-0.328	-0.367
U_t	5.199	-0.137	-0.177	-0.215	-0.249	-0.275	-0.29	-0.179	-0.087	-0.014	0.042	0.083
W_t	0.919	0.005	0.129	0.282	0.465	0.681	0.928	0.71	0.513	0.341	0.194	0.071
Y_t	1	0.045	0.178	0.34	0.531	0.752	1	0.752	0.531	0.34	0.178	0.045
Z_t	0.45	0.105	0.226	0.372	0.542	0.737	0.956	0.648	0.393	0.186	0.023	-0.1

12.4 Autocorrelations

	Lag 1	${\rm Lag}\ 2$	Lag 3	${\rm Lag}\ 4$	Lag 5
r	0.704	0.456	0.254	0.093	0
C	0.746	0.524	0.332	0.172	0.041
G^{d}	0.713	0.471	0.271	0.11	-0.016
H	0.755	0.536	0.345	0.184	0.05
I	0.697	0.446	0.242	0.081	-0.042
K	0.956	0.852	0.708	0.544	0.373
TR	0.72	0.482	0.283	0.122	-0.006
U	0.731	0.5	0.304	0.143	0.014
W	0.747	0.525	0.333	0.172	0.039
Y	0.752	0.531	0.34	0.178	0.045
Z	0.713	0.471	0.271	0.11	-0.016

12.5 Variance decomposition

	ϵ^{Z}	ϵ^{G}	ϵ^{G^*}	ϵ^{Z^*}
r	0.979	0.005	0.006	0.01
C	0.547	0.119	0.076	0.259
G^{d}	0.25	0.75	0	0
H	0.81	0.032	0.029	0.128
I	0.641	0.002	0.126	0.23
K	0.648	0.003	0.124	0.225
TR	0.291	0.042	0.369	0.298
U	0.022	0.061	0.022	0.895
W	0.95	0.013	0.014	0.023
Y	0.944	0.005	0.011	0.04
Z	1	0	0	0

13 Impulse response functions

Figure 1: Impulse responses (C,C^*,H,H^*,TR) to $\epsilon^{\rm Z}$ shock

Figure 2: Impulse response (Y) to $\epsilon^{\mathbb{Z}}$ shock

Figure 3: Impulse responses $(C,C^*,H,H^*,T\!R)$ to $\epsilon^{{\bf Z}^*}$ shock

Figure 4: Impulse response (Y) to ϵ^{Z^*} shock