21-238, Math Studies Algebra 2, Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc TARTAR, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 5 - Wednesday April 25, 2012. Due Wednesday May 2

Exercise 21: Let F be a finite dimensional Galois extension of E, and let K be an intermediate field. Show that there is a smallest field L such that $K \subset L \subset F$ and L is a Galois extension of E, characterized by $Aut_L(F) = \bigcap_{\sigma \in Aut_E(F)} \sigma \left(Aut_K(F)\right)\sigma^{-1}$.

Exercise 22: Let E be a field, $P \in E[x]$, and F a splitting field extension for P over E. One assumes that P splits in F as $(x-u_1)^{m_1}\cdots(x-u_k)^{m_k}$ (with u_1,\ldots,u_k distinct and $m_1,\ldots,m_k\geq 1$). Let $v_0,v_1,\ldots,v_k\in F$ be the coefficients of $Q=(x-u_1)\cdots(x-u_k)\in F[x]$ (so that $v_k=1$), and let $K=E(v_0,\ldots,v_k)$.

- i) Show that F is a splitting field extension for Q over K.
- ii) Show that F is a Galois extension of K.
- iii) Show that $Aut_K(F) = Aut_E(F)$.

Exercise 23: Let $E \subset \mathbb{C}$ be the field generated by \mathbb{Q} and $\{\sqrt{b} \mid b \in \mathbb{Q}\} \subset \mathbb{C}$, i.e. a splitting field extension for the set $S = \{x^2 + a \mid a \in \mathbb{Q}\} \subset \mathbb{Q}[x]$.

- i) Show that $E = \mathbb{Q}(A)$ where $A = \{\sqrt{p} \mid p = -1 \text{ or } p \text{ is a prime integer}\}.$
- ii) If $\sigma \in Aut_{\mathbb{Q}}(E)$, show that $\sigma^2 = id_E$. Show that every group G such that $g^2 = e$ for all $g \in G$ is Abelian.
- iii) Show that for every subset $B \subset A$, there exists $\sigma \in Aut_{\mathbb{Q}}(E)$ such that $\sigma(\sqrt{p}) = \sqrt{p}$ for all $p \in B$ and $\sigma(\sqrt{p}) = -\sqrt{p}$ for all $p \in A \setminus B$.

Exercise 24: Notation of Exercise 23.

- i) Show that $Aut_{\mathbb{Q}}(E)$ is uncountable and has an uncountable number of subgroups of index 2.
- ii) Show that the set of extension fields of \mathbb{Q} included in E and having dimension 2 over \mathbb{Q} is countable.
- iii) Show that $[E:\mathbb{Q}] \leq \aleph_0$, so that $[E:\mathbb{Q}] < |Aut_{\mathbb{Q}}(E)|$.

Exercise 25: Let F be a finite extension of E.

- i) Show that there exists a finite field extension G of F such that G is a normal field extension of E, and no proper subfield of G containing F is a normal field extension of E.
- ii) Show that if F is separable over E, then G is a Galois extension of E.