



## **Research and Innovation Action**

HORIZON EUROPE - Grant Agreement 101120727

# D4.1 - Specification for integration of neuromorphic sensors

Due date of deliverable: June 30<sup>th</sup>, 2024 Actual submission date: July 12<sup>th</sup>, 2024

**Authors: Maurizio CASTI** 

Lead Beneficiary: IIT - Genova

## **Document Information**

| Grant Agreement<br>Number | 101120727                                           | Acronym | PRIMI |  |  |
|---------------------------|-----------------------------------------------------|---------|-------|--|--|
| Full title                | Performance in Robot Interaction via Mental Imagery |         |       |  |  |
| Project Officer           | Olivier Da Costa                                    |         |       |  |  |

| Delivery date       | Contractual    |          | Actual      |         |
|---------------------|----------------|----------|-------------|---------|
| Status              | Draft □        |          | Final X     |         |
| Nature              | Demonstrator 🗆 | Report X | Prototype □ | Other 🗆 |
| Dissemination level | Confidential 🗆 | Public X |             |         |

| Responsible<br>Institution   | IIT Genova       |       |                       |
|------------------------------|------------------|-------|-----------------------|
| Responsible                  | Maurizio Casti   | Email | maurizio.casti@iit.it |
| Author                       | IVIAUTIZIO Casti | Phone |                       |
| Other partners (Institution) |                  |       |                       |

## **History of Changes**

| Version | Date       | Main Author            | Description                      |
|---------|------------|------------------------|----------------------------------|
| 1.0     | 30/06/2024 | Maurizio Casti         | Initial Release                  |
| 1.1     | 08/07/2024 | Alessandro Di<br>Nuovo | Check and review                 |
| 1.2     | 12/07/2024 | Maurizio Casti         | Footnotes and bibliography added |

## **PUBLISHABLE SUMMARY**

This report provides the initial guidelines on the technical transfer of neuromorphic perception from iCub to humanoid robots. First, there is an overview of the event-drive sensors in the iCub neuromorphic robot developed by IIT Genoa. The sensorimotor architecture of the robot is designed to detect and respond to events. New perception architectures are proposed so that the same sensors will be transferred to a standard iCub robot in Manchester and to a new robot being developed on the Kangaroo platform by PAL Robotics. The new architectures are designed to be flexible so it can be installed on other types of humanoid robots as well.

## **INDEX**

| Document Information                   | 1  |
|----------------------------------------|----|
| 1. Executive Summary                   | 4  |
| 2. Introduction                        | 5  |
| 2.1. Perception architecture proposals | 5  |
| 2.1.1. iCub Genoa                      | 5  |
| 2.1.2. iCub Manchester                 | 6  |
| 2.1.3. Kangaroo                        | 6  |
| 3. Ed-Skin (Event Driven Skin)         | 7  |
| 3.1. Introduction                      | 7  |
| 3.2. ED-MTB Connections                | 7  |
| 3.3. The Skin                          | 9  |
| 3.3.1. Standard Skin                   | 9  |
| 3.3.2. Palm Skin                       | 12 |
| 3.3.3. Fingertip Skin                  | 13 |
| 4. CCAM3 (Event Based Vision)          | 14 |
| 4.1. Introduction                      | 14 |
| 4.2. ATIS GEN3 Event Based sensor      | 15 |
| 5. USB Event Based Cameras             | 16 |
| 5.1. Introduction                      | 16 |
| 6. PEYE - Python Cameras (Frame Based) | 16 |
| 6.1. Introduction                      | 16 |
| 6.2. Connections                       | 16 |
| 7. UZCB                                | 17 |
| 7.1. Introduction                      | 17 |
| 7.2. Block Diagram                     | 18 |
| 7.3. Connectors                        | 19 |
| 8. Bibliography                        | 23 |
|                                        |    |

## 1. EXECUTIVE SUMMARY

This document collects information about event driven sensors installed on iCub neuromorphic robot (IIT Genoa) and that will be ported to a standard iCub hosted in Manchester and on a new robot under development based on the Kangaroo platform by PAL Robotics. The architecture has been conceived to be adapted and installed on other humanoid robots.

#### 2. INTRODUCTION

## 2.1. Perception architecture proposals

The computational core will be offered by the SpiNNaker2¹ board which will host also a SoC-FPGA² based module capable of managing the event flow and to offer availability for hardware calculation to speed-up algorithms by pre-processing or faster processing.SpiNNaker2 board will expose at least 3 Ethernet ports for net connection as well as a few Aurora links³ for direct high-speed board-to-board connections.

#### 2.1.1. iCub Genoa

Event based sensor are connected to a board named UZCB that hosts a SoC-FPGA based daughter board that manages the event flow coming from sensor boards. It applies a time stamp to each event, then injects data in YARP<sup>4</sup> and send events to SpiNNaker2 board via Aurora links as well. The FPGA fabric is also available for implementing hardware computation for preprocessing. UZCB manages the Event Cameras, the Event Based Skin and the frame-based cameras. The UZCB would be connected to SpiNNaker2 board by two direct Aurora lanes, one dedicated to the daughter board, the other to SpiNNaker2 array. The rest of the robot's items (standard sensors, control PC, motor controllers and feedback, etc.) are connected together through a Gigabit Ethernet net.



Figure 2.1.1 – iCub "Genoa" architecture

<sup>&</sup>lt;sup>1</sup> **SpiNNaker** (Spiking Neural Network Architecture) is a many-core computer architecture based on spiking neural networks, useful in simulating the human brain. It was designed at the Dept. of Computer Science, Univ. of Manchester.

<sup>&</sup>lt;sup>2</sup> **System on Chip**, composed by one or more Microprocessor core and a FPGA fabric (Field Programmable Gate Array) in a single package

<sup>&</sup>lt;sup>3</sup> A link layer communications protocol for use on point-to-point serial links. It was developed by Xilinx

<sup>&</sup>lt;sup>4</sup> Yet Another Robot Platform, a middleware capable to sustain the dataflow through the robot

#### 2.1.2. iCub Manchester

Event based sensors (skin and USB3 event-based cameras) are managed directly by the SoC-FPGA based daughter board, that injects data in YARP and sends events to SpiNNaker2 board via Aurora links. Frame Cameras are connected to the system through the Embedded PC



Figure 2.1.2 – iCub "Manchester" perception architecture

## 2.1.3. Kangaroo

The architecture is similar to iCub Manchester, but the hand would be provided by Seed Robotics (TBC) and their tactile sensors would be connected to the Multimedia PC. Kangaroo robot is controlled over EtherCAT by the Control PC. The motors of the hand are controlled with RS485 by the Control PC



Figure 2.1.3 – Kangaroo architetture

## 3. ED-SKIN (EVENT DRIVEN SKIN)

#### 3.1. Introduction

Ed-Skin stands for Event Driven Skin, an implementation of event-driven based tactile sensing. The current version of implementation is referred to **ED-MTB** Assembly Rev 1.0 that is a prototype derived from CCAM3-IIT\_GEN3<sup>5</sup> assembly, from which the "PROC" board (based on XILINX Artix XC7A50T-CPG236-1) was taken (Synoptic Processing Board) and applied to a customized carrier board (ED-MTB), with the **ed-skin** FPGA firmware loaded.

**ED-MTB** Assembly Rev 1.0 is composed by:

- Synoptic Processing Board Rev B 19/02/2016
- ED-MTB Rev A 16/12/2016
- the **ed-skin** FPGA release 0.1 17/01/2024





Figure 3.1.1 – ED-MTB assembly, derived from PROC board (1) of CCAM-IIT\_GEN3 and a custom carrier board (2)

## 3.2. ED-MTB Connections

ED-MTB is provided with:

- 1) power/data connector towards master board (e.g. UZCB) or mirror board (for implementing a tree architecture via HSSAER<sup>6</sup> (1))
- 2) power connector (for standalone operation)
- 3) data connector towards other slave boards (for implementing a tree architecture via HSSAER)
- 4) connector towards sensor boards
- 5) JTAG for FPGA programming and debugging

<sup>&</sup>lt;sup>5</sup> CCAM3-IIT\_GEN3 is the event-based vision system installed on Neuromorphic iCub, IIT Genoa. See paragraph 4

<sup>&</sup>lt;sup>6</sup> **HSSAER** (High Speed Serial Address Event Representation) is a serial protocol developed by IIT to serially transmit an AER (Address Event Representation) data



Figure 3.2.1 – ED-MTB connectors (red dots indicate pins 1)

| # | ID | PIN | SIG. NAME    | DESCRIPTION                                                              | DIR |
|---|----|-----|--------------|--------------------------------------------------------------------------|-----|
|   |    | 1   | GND          | Ground                                                                   | -   |
|   |    | 2   | SCL_in       | SCL - I2C clock from master / LVDS Input Auxiliary lane n side           | - 1 |
| 4 | 10 | 3   | SDA_in       | SDA – I2C data from/to master / LVDS Input Auxiliary lane p side         | I/O |
| 1 | J2 | 4   | LVDS_out_p   | LVDS_p - HSSAER output side p                                            | 0   |
|   |    | 5   | LVDS_out_n   | LVDS_n – HSSAER output side n                                            | 0   |
|   |    | 6   | 5V           | +5V power supply (output if the board is powered)                        | I/O |
|   |    | 1   | GND          | Ground                                                                   |     |
|   |    | 2   | SDA_out      | SDA_in turned out / signal from FPGA / LVDS Output Auxiliary lane p side | I/O |
| 2 | J1 | 3   | SCL_out      | SCL_in turned out / signal from FPGA / LVDS Output Auxiliary lane n side | I/O |
|   |    | 4   | LVDS_in_p    | LVDS_p - HSSAER input side p                                             | ı   |
|   |    | 5   | LVDS_in_n    | LVDS_n – HSSAER input side n                                             | ı   |
|   |    | 6   | 5V           | +5V power supply (output if the board is powered)                        | I/O |
|   |    | 1   | GND          | Ground                                                                   | -   |
|   |    | 2   | AN0          | Not connected                                                            | -   |
|   |    | 3   | SD4_sensor   | SDA Lane 4                                                               | I/O |
| 3 | JO | 4   | SD3_sensor   | SDA Lane 3                                                               | I/O |
| 3 | 30 | 5   | SD2_sensor   | SDA Lane 2                                                               | I/O |
|   |    | 6   | SD1_sensor   | SDA Lane 1                                                               | I/O |
|   |    | 7   | SCL_sensor   | SCL (common)                                                             | 0   |
|   |    | 8   | 3.3V         | Sensor Power supply output                                               | 0   |
|   |    | 1   | 5V           | ED-MTB Power Supply                                                      | - 1 |
| 4 | J6 | 2   | 5V           | ED-MTB Power Supply                                                      | ı   |
| 4 | Jb | 3   | GND          | Ground                                                                   | -   |
|   |    | 6   | GND          | Ground                                                                   | -   |
|   |    | 1   | 1.8V         | JTAG Power Supply                                                        | 0   |
|   |    | 2   | GND          | Ground                                                                   | -   |
| 5 | J5 | 3   | Ext_fpga_TCK | JTAG TCK                                                                 |     |
| 5 | Jo | 4   | Ext_fpga_TDO | JTAG TDO                                                                 | 0   |
|   |    | 5   | Ext_fpga_TMS | JTSG TMS                                                                 |     |
|   |    | 6   | Ext_fpga_TDI | JTAG TDI                                                                 |     |

**Table 3.2.1** – ED-MTB connectors

#### 3.3. The Skin

The touch is detected by CDC (Capacitance to Digital Converter) devices that sense an amount of capacitance (generically named "taxels") deployed along the surface of some body districts, hand palms and fingertips (generically called "skin"). There are three different patches for "skin" that are different for taxel displacement and physical characteristics that arise in different CDC configuration needs. They are here named as "standard", "palm" and "fingertip". Note: the CDC device here used is the Analog Devices AD7147 (2).

#### 3.3.1. Standard Skin

The atomic standard skin patch is a triangular and flexible PCB with a CDC onboard on the top side and 13 capacitance pads (10 used as touch sensors, 3 available for thermal compensation) on the bottom side. The sensitive side of the PCB is the bottom side.





Figure 3.3.1 – Standard skin atomic patch. Top view, component side (left), Bottom view, taxels side (right)





Figure 3.3.2 – "Hexagon". Top view, component side (left), Bottom view, taxels side (right)

The CDC mounted on the PCB communicates via I2C bus; the five most significant bits of device address are "01011", but the two less significant bits are settable by tying two dedicated pins to Vcc or GND. It means that I2C address of device has a base of 0x2C and a hardware selectable offset from 0 to 3; that means, it is possible to connect up to 4 CDC on the same I2C bus.

ED-Skin is capable to master up to 4 different lanes (meaning 4 different SDA<sup>7</sup> lines with the same SCL<sup>8</sup> line), so it can handle 16 different triangles. Triangles are provided grouped in a bigger flexible PCB called *Hexagon* that comprehend 24 triangles conveniently connected each to others in a sort of hexagonal shape. Hexagon has 1 SCL clock line and 4 SDA data lines (lanes) conveniently distributed and connected through triangles. The number printed on the top corner of each triangle declares the I2C lane that CDC is connected to (left digit) and the offset of I2C address.

For example, the CDC of triangle shown in Figure 3.3.1 is connected to lane 1 with address 0x2D. The "triangle number" is just a decimal tag that identifies the triangle in the "Hexagon".

User can crop appropriately the Hexagon to create shapes best fitting the body area he has to cover





ED-Skin can handle up to 16 triangles, and user can crop the hexagon to create different shapes considering that each triangle must be reached by I2C bus by bus connection (blue marks) and they must have

Figure 3.3.3 – Labels of triangle in Hexagon and labels of taxels in triangle. Bottom view

| TAXEL | CDC input |
|-------|-----------|
| P0    | CIN0      |
| P1    | CIN1      |
| P2    | CIN2      |
| P3    | CIN3      |
| P4    | CIN4      |
| P5    | CIN5      |
| P6    | CIN6      |
| P7    | CIN7      |
| P8    | CIN8      |
| P9    | CIN9      |
| P10   | CIN10     |
| P11   | CIN11     |
| P12   | CIN12     |
|       |           |



Table 3.3.1 and Figure 3.3.4 – Connection between Taxel pads of standard skin and CIN input of CDC

<sup>&</sup>lt;sup>7</sup> **SDA** Serial Data for I2C communication Protocol

<sup>&</sup>lt;sup>8</sup> **SCL** Serial Clock for I2C communication Protocol

The following data are relative to the flexible PCB that composes the standard skin; measures (sides of triangles and their thickness) are important to understand how triangles may fit to destination

| PRINTED CIRCUIT BOARD (PCB) SPECIFICATIONS |                             |  |  |  |  |
|--------------------------------------------|-----------------------------|--|--|--|--|
|                                            | All measurements in mm      |  |  |  |  |
| PCB IIT code                               | 4534                        |  |  |  |  |
| PCB revision                               | 2                           |  |  |  |  |
| Layer number                               | PCB FLEX 4 (see build-up)   |  |  |  |  |
| Total PCB thickness                        | 0.24+/-10%                  |  |  |  |  |
| Base Copper thick ext/int                  | (see build-up)              |  |  |  |  |
| Minimum trace width ext/int                | 0,3/0,3                     |  |  |  |  |
| Minimum clearance ext/int                  | 0,125/0,125                 |  |  |  |  |
| Minimum hole                               | 0,2 th - 0,1 laser (1-n)    |  |  |  |  |
| Single PCB max dimesions                   | 145x132                     |  |  |  |  |
| Surface finish                             | ENIG (Rohs)                 |  |  |  |  |
| Silkscreen                                 | Yes, top only (white)       |  |  |  |  |
| Solder mask                                | Yes, top and bottom (green) |  |  |  |  |



Figure 3.3.5 – Specification of Hexagon PCB



Figure 3.3.6 – Measures of Hexagon

#### 3.3.2. Palm Skin

Palm skin (flexible PCB) is composed by four districts managed by 4 different CDC. As mentioned above, up to 4 CDC can share the same I2C bus so the palm has got only one I2C lane. At current date, the palm is connected to SDA3 lane.





Figure 3.3.7 – Palm skin, bottom view. Left hand (left) and right hand (right)





Figure 3.3.8 – Displacement of the taxels in palms. Left hand (left) and right hand (right). P23, P47, P48 and P16 are available for thermal compensation. Please note the displacement is not symmetrical

| 0x2C device   |           | 0x2D device   |           | 0x2E device   |           | 0x2F device   |           |
|---------------|-----------|---------------|-----------|---------------|-----------|---------------|-----------|
| TAXEL         | CDC input |
| P1            | CIN0      | P26           | CIN0      | P25           | CIN0      | P2            | CIN0      |
| P3            | CIN1      | P27           | CIN1      | P28           | CIN1      | P4            | CIN1      |
| P5            | CIN2      | P29           | CIN2      | P30           | CIN2      | P6            | CIN2      |
| P7            | CIN3      | P32           | CIN3      | P31           | CIN3      | P8            | CIN3      |
| P9            | CIN4      | P33           | CIN4      | P34           | CIN4      | P10           | CIN4      |
| P11           | CIN5      | P37           | CIN5      | P35           | CIN5      | P12           | CIN5      |
| P13           | CIN6      | P38           | CIN6      | P36           | CIN6      | P14           | CIN6      |
| P15           | CIN7      | P39           | CIN7      | P40           | CIN7      | P16 (thermal) | CIN7      |
| P17           | CIN8      | P43           | CIN8      | P41           | CIN8      | P18           | CIN8      |
| P19           | CIN9      | P44           | CIN9      | P42           | CIN9      | P20           | CIN9      |
| P21           | CIN10     | P45           | CIN10     | P46           | CIN10     | P22           | CIN10     |
| P23 (thermal) | CIN11     | P48 (thermal) | CIN11     | P47 (thermal) | CIN11     | P24           | CIN11     |
| N.C.          | CIN12     | N.C.          | CIN12     | N.C.          | CIN12     | N.C.          | CIN12     |

 Table 3.3.2 – Connection between Taxel pads of palm skin and CIN input of CDCs (valid for both palms)

| PRINTED CIRCUIT BOAR     | D (PCB) SPECIFICATIONS |
|--------------------------|------------------------|
|                          | All measurements in mm |
| PCB IIT code             | 4700                   |
| PCB revision             | 0                      |
| Material                 | Kapton                 |
| Total PCB thickness      | 0.25 mm                |
| Base Copper thick        | 17 um                  |
| Surface finish           | Gold (Rohs)            |
| Silkscreen               | Yes, top               |
| Single PCB max dimesions | 70x50 mm               |
| Layers                   | 4                      |



Figure 3.3.9 - Palm skin, technical information

## 3.3.3. Fingertip Skin

Fingertip skin version 2 (FT2) is composed by a flexible PCB with a particular outline suitable for a 3D fitting over a cylindrical and truncated cone shape. PCBs for left-hand fingertips and right-hand fingertips are symmetric and are the same for all the five fingers. At current date, the thumb is connected to SDA2 lane and the other fingers to SDA1 lane.



Figure 3.3.10 and Table 3.3.3 – Displacement of the taxels in fingertips and their connection to CIN inputs of CDC

## 4. CCAM3 (EVENT BASED VISION)

#### 4.1. Introduction

The FPGA based system, an assembly named CCAM3-IIT\_GEN3, is used to manage the ATIS GEN3 camera and generate its AER Events over the AER backbone, sent via Gigabit Transceivers. It's composed by three boards:

#### 1. ATIS board:

This is the board hosting the ATIS GEN3 sensor.

#### 2. CCAM3-Processing

This board is based upon the usage of Artix XC7A50T-CPG236-1. It contains also the SPI flash memory used to store the bitstream for the FPGA,

#### 3. CCAM-CTR

This board is used as bridge to proper connectors (LVDS lines for HSSAER, Gigabit Transceivers lanes, I2C lines, eventually through buffers/drivers; it also hosts the JTAG connector for programming the flash memory and debugging the FPGA).



Figure 4.1.1 - The CCAM3-Processing/CCAM3-CTR/ATIS boards



Figure 4.1.2 - The CCAM3-CTR board dimension and connectors

| # | ID | PIN | SIG. NAME DESCRIPTION |                                                                      |     |
|---|----|-----|-----------------------|----------------------------------------------------------------------|-----|
|   |    |     | •                     | JTAG                                                                 | •   |
|   |    | 1   | +5V                   | +5V power supply                                                     |     |
|   |    | 2   | GND                   | Ground                                                               |     |
|   | 14 | 3   | TCK                   | JTAG - Test Clock                                                    | 1   |
| 1 | J1 | 4   | TDO                   | JTAG - Test Data Out                                                 | 0   |
|   |    | 5   | TMS                   | JTAG - Test Mode Select                                              | ı   |
|   |    | 6   | TDI                   | JTAG - Test Data In                                                  | 1   |
|   |    |     |                       | MAIN CAMERA CONNECTOR                                                |     |
|   |    | 1   | +5V                   | +5V power supply                                                     |     |
|   |    | 2   | +5V                   | +5V power supply                                                     |     |
|   |    | 3   | +5V                   | +5V power supply                                                     |     |
|   |    | 4   | GND                   | Ground                                                               |     |
|   |    | 5   | lvds4_n               | Generic differential line, n side (originally used as HSSAER Lane 3) | 0   |
|   |    | 6   | lvds4_p               | Generic differential line, p side (originally used as HSSAER Lane 3) | 0   |
|   |    | 7   | GND                   | Ground                                                               |     |
|   |    | 8   | lvds3_n               | Generic differential line, n side (originally used as HSSAER Lane 2) | 0   |
|   |    | 9   | lvds3_p               | Generic differential line, p side (originally used as HSSAER Lane 2) | 0   |
|   |    | 10  | GND                   | Ground                                                               |     |
|   |    | 11  | lvds2_n               | Generic differential line, n side (originally used as HSSAER Lane 1) | 0   |
|   |    | 12  | lvds2_p               | Generic differential line, p side (originally used as HSSAER Lane 1) | 0   |
|   |    | 13  | GND                   | Ground                                                               |     |
|   |    | 14  | lvds1_n               | Generic differential line, n side (originally used as HSSAER Lane 0) | 0   |
| 2 | J2 | 15  | lvds1 p               | Generic differential line, p side (originally used as HSSAER Lane 0) | 0   |
| _ | 52 | 16  | GND                   | Ground                                                               |     |
|   |    | 17  | fpga_Slave_CSn        | Used as I2C SDA signal (data)                                        | I/O |
|   |    | 18  | fpga_Slave_MISO       | Spare                                                                |     |
|   |    | 19  | fpga_Slave_MOSI       | Spare                                                                |     |
|   |    | 20  | fpga_Slave_SCK        | Used as I2C SCK signal (clock)                                       | I/O |
|   |    | 21  | GND                   | Ground                                                               |     |
|   |    | 22  | mgtrefCLK0p           | Reference clock for Gigabit Transceiver, p side                      | 1   |
|   |    | 23  | mgtrefCLK0n           | Reference clock for Gigabit Transceiver, n side                      | ı   |
|   |    | 24  | GND                   | Ground                                                               |     |
|   |    | 25  | mgtpTXp1              | Gigabit Transceiver TX lane 1, p side                                | 0   |
|   |    | 26  | mgtpTXn1              | Gigabit Transceiver TX lane 1, n side                                | 0   |
|   |    | 27  | GND                   | Ground                                                               |     |
|   |    | 28  | mgtpTXp0              | Gigabit Transceiver TX lane 0, p side                                | 0   |
|   |    | 29  | mgtpTXn0              | Gigabit Transceiver TX lane 0, n side                                | 0   |
|   |    | 30  | GND                   | Ground                                                               |     |

Table 4.1.1 – CCAM3 connectors

## 4.2. ATIS GEN3 Event Based sensor

The adopted ATIS GEN3 camera (part Number CCVS1STMU0300A) is a VGA event-based vision sensor developed around 15-um x 15-um contrast detection pixels. This vision sensor technology features low power consumption, always-on full awareness, high dynamic range and compressed data output. The pixel array contains  $640 \times 480$  event-driven pixels.



Figure 4.2.1 – GEN3 data connections

#### 5. USB EVENT BASED CAMERAS

#### 5.1. Introduction

For iCub Manchester and Kangaroo, two (optionally one) external USB3 Event Based Cameras would be used.

Two suitable candidates could be:

- Metavision® EVK4 HD
   With IMX636 (1280x720) realized in collaboration between Sony and PROPHESEE.
   Details can be found at <a href="https://www.prophesee.ai/">https://www.prophesee.ai/</a>
- 2. SilkyEvCam VGA Equipped with PROPHESEE event-based vision sensor (640x480) Details can be found at <a href="https://centurvarks.com/en/silkyevcam-vga/">https://centurvarks.com/en/silkyevcam-vga/</a>

## 6. PEYE - PYTHON CAMERAS (FRAME BASED)

#### 6.1. Introduction

For completeness, here are mentioned also the Frame Based camera adopted on iCub – Genoa; they are interfaced with YARP and sends data coming from the same field of view of event based camera (a beam splitter placed into the eyes of iCub permits both cameras in the same eye to receive the same real image). The adopted device is a Python 1.3 MegaPixel Global Shutter CMOS image sensor (1280 x 1024 Active Pixels, 1/2" Optical Format), Bayer Color, with 4 LVDS Data Channels data output, 10 bit, 210/165 frames per second (depending on operational mode). Part number Onsemi NOIP1SN1300A-QDI (3)





Figure 6.1.1 - Python camera modules

## 6.2. Connections

| # | ID                    | PIN | SIG. NAME | DESCRIPTION                   | DIR |  |
|---|-----------------------|-----|-----------|-------------------------------|-----|--|
|   | MAIN CAMERA CONNECTOR |     |           |                               |     |  |
|   |                       | 1   | SCK       | SPI Clock                     |     |  |
| 4 | 4 11                  | 2   | MISO      | SPI Master In - Slave Out     |     |  |
| • | JI                    | 3   | MOSI      | SPI Master Out - Slave In     |     |  |
|   |                       | 4   | NSEL      | SPI Slave Select (Active Low) |     |  |

| 5  | RSTN        | Sensor Reset (Active Low)              | 0   |
|----|-------------|----------------------------------------|-----|
| 6  | GND         | Ground                                 | 0   |
| 7  | CLK_OUTN    | LVDS Clock Output (Negative)           |     |
| 8  | CLK_OUTP    | LVDS Clock Output (Positive)           | 0   |
| 9  | DOUTN0      | LVDS Data Output Channel #0 (Negative) | 0   |
| 10 | DOUTP0      | LVDS Data Output Channel #0 (Positive) |     |
| 11 | DOUTN1      | LVDS Data Output Channel #1 (Negative) | 0   |
| 12 | DOUTP1      | LVDS Data Output Channel #1 (Positive) | 0   |
| 13 | MON1        | Monitor Output #1                      |     |
| 14 | MON0        | Monitor Output #0                      | 0   |
| 15 | TRIGGER1    | Trigger Input #1                       | 0   |
| 16 | TRIGGER0    | Trigger Input #0                       |     |
| 17 | CLK_PLL     | Reference Clock Input for PLL          | I/O |
| 18 | GND         | Ground                                 |     |
| 19 | DOUTN2      | LVDS Data Output Channel #2 (Negative) |     |
| 20 | DOUTP2      | LVDS Data Output Channel #2 (Positive) | I/O |
| 21 | DOUTN3      | LVDS Data Output Channel #3 (Negative) |     |
| 22 | DOUTP3      | LVDS Data Output Channel #3 (Positive) | 1   |
| 23 | LVDS_CLKINN | LVDS Clock Input (Negative)            |     |
| 24 | LVDS_CLKINP | LVDS Clock Input (Positive)            |     |
| 25 | SYNCN       | LVDS Sync Channel Output (Negative)    | 0   |
| 26 | SYNCP       | LVDS Sync Channel Output (Positive)    | 0   |
| 27 | GND         | Ground                                 |     |
| 28 | +5V         | +5V power supply                       | 0   |
| 29 | +5V         | +5V power supply                       | 0   |
| 30 | +5V         | +5V power supply                       |     |

**Table 6.2.1** – Python module connectors

## 7. UZCB

## 7.1. Introduction

UZCB stands for **Ultrascale Zynq Carrier Board** and acts as bridge between sensors and YARP; it hosts a commercial daughter board based on a XILINX Ultrascale+ SoC device that, basically, has in charge to merge, arbitrate and manage events coming from sensor boards; it also tags them with a Timestamp permitting to have also a temporal representation of events.



Figure 7.1.1 – UZCB with the SoC module (and cooling fan)



Figure 7.1.2 - The SoC module and size of UZCB

The used Ultrascale+ Soc Module is a Mercury XU5 provided by Enclustra (4)
The part adopted is the ME-XU5-5EV-2I-D12E, equipped with an AMD-Xilinx Ultrascale+ (5)
XCZU5EV-2SFVC784I (industrial range), 4GB DDR for PS side<sup>9</sup> and 1 GB DDR for PL side<sup>10</sup>.

## 7.2. Block Diagram



Figure 7.2.1 – UCZCB block Diagram

<sup>&</sup>lt;sup>9</sup> **Processor** side is the computational part of the SoC, powered by ARM processors

<sup>&</sup>lt;sup>10</sup> **Programmable Logic** side is the FPGA fabric part of the SoC

## 7.3. Connectors

Here are described connectors to sensors relevant to the scope of this document.



Figure 7.3.1 – UZCB top



Figure 7.3.2 – UZCB bottom

| # | ID                                               | PIN      | SIG. NAME                        | DESCRIPTION                                                                                              | DIR                                              |  |  |
|---|--------------------------------------------------|----------|----------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
|   | '                                                |          |                                  | SKIN – Left Side                                                                                         | •                                                |  |  |
|   |                                                  | 1        | +5V                              | +5V power supply (+3,3V hardware selectable)                                                             |                                                  |  |  |
|   |                                                  | 2        | GND                              | Ground                                                                                                   |                                                  |  |  |
| 1 | J29                                              | 3        | I2C_SKx_SCL                      | I2C clock (shared with right side connector #2 – J30)                                                    | I/O                                              |  |  |
|   |                                                  | 4        | I2C_SKL_SDA                      | I2C data – left skin HSSAER input side p (LVDS)                                                          | 1/0                                              |  |  |
|   |                                                  | 5<br>6   | SKL_HSSAER_p<br>SKL_HSSAER_n     | HSSAER input side p (LVDS)  HSSAER input side n (LVDS)                                                   |                                                  |  |  |
|   |                                                  | U        | SKL_H33AEK_II                    | SKIN - Right Side                                                                                        | <u>                                     </u>     |  |  |
|   | +5V +5V power supply (+3,3V hardware selectable) |          |                                  |                                                                                                          |                                                  |  |  |
|   |                                                  | 2        | GND                              | Ground                                                                                                   |                                                  |  |  |
| 2 | 120                                              | 3        | I2C_SKx_SCL                      | I2C clock (shared with left side connector #1 – J29)                                                     | I/O                                              |  |  |
| 2 | J30                                              | 4        | I2C_SKL_SDA                      | I2C data – right skin                                                                                    | I/O                                              |  |  |
|   |                                                  | 5        | SKL_HSSAER_p                     | HSSAER input side p (LVDS)                                                                               | I                                                |  |  |
|   |                                                  | 6        | SKL_HSSAER_n                     | HSSAER input side n (LVDS)                                                                               | <u> </u>                                         |  |  |
|   | 1                                                | ,        |                                  | SED CAMERA CONNECTOR - Left                                                                              | 1                                                |  |  |
|   |                                                  | 1        | GND                              | Ground                                                                                                   | -                                                |  |  |
|   |                                                  | 3        | EDL_MGT_RX_n<br>EDL_MGT_RX_p     | Gigabit Transceiver RX lane 1, n side – left camera  Gigabit Transceiver RX lane 1, p side – left camera | l l                                              |  |  |
|   |                                                  | 4        | GND                              | Ground                                                                                                   | 1                                                |  |  |
|   |                                                  |          |                                  | Gigabit Transceiver TX lane 1, n side – Spare for other                                                  | _                                                |  |  |
|   |                                                  | 5        | EDL_MGT_TX_n                     | applications                                                                                             | 0                                                |  |  |
|   |                                                  | 6        | EDL_MGT_TX_p                     | Gigabit Transceiver TX lane 1, p side – Spare for other                                                  | 0                                                |  |  |
|   |                                                  | b        | ·                                | applications                                                                                             |                                                  |  |  |
|   |                                                  | 7        | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 8        | EDL_MGT_CK_n                     | Reference clock for Gigabit Transceiver, n side – left camera                                            | 0                                                |  |  |
|   |                                                  | 9        | EDL_MGT_CK_p                     | Reference clock for Gigabit Transceiver, p side – left camera                                            | 0                                                |  |  |
|   |                                                  | 10       | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 11       | I2C_EDx_SPx_SCL                  | I2C SCK signal (clock) – shared with connectors 4, 5 and 6                                               | I/O                                              |  |  |
|   |                                                  | 12       | EDL_SPARE_p                      | Spare signal                                                                                             |                                                  |  |  |
|   |                                                  | 13       | EDL_SPARE_n                      | Spare signal                                                                                             | 1/0                                              |  |  |
|   |                                                  | 14       | I2C_EDL_SPA_SDA                  | I2C SDA signal (data) – left camera - shared with connector 5                                            | I/O                                              |  |  |
| 3 | J23                                              | 15       | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 16<br>17 | EDL_HSSAER_0_n<br>EDL_HSSAER_0_p | Spare differential line, n side Spare differential line, p side                                          |                                                  |  |  |
|   |                                                  | 18       | GPIO L 0                         | Spare unierential line, p side                                                                           |                                                  |  |  |
|   |                                                  | 19       | EDL_HSSAER_1_p                   | Spare differential line, n side                                                                          |                                                  |  |  |
|   |                                                  | 20       | EDL_HSSAER_1_n                   | Spare differential line, p side                                                                          |                                                  |  |  |
|   |                                                  | 21       | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 22       | EDL_HSSAER_2_n                   | Spare differential line, n side                                                                          |                                                  |  |  |
|   |                                                  | 23       | EDL_HSSAER_2_p                   | Spare differential line, p side                                                                          |                                                  |  |  |
|   |                                                  | 24       | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 25       | EDL_HSSAER_3_p                   | Spare differential line, n side / hardware selectable as +5V or +3,3V                                    |                                                  |  |  |
|   |                                                  |          |                                  | Spare differential line, p side / hardware selectable as +5V or                                          |                                                  |  |  |
|   |                                                  | 26       | EDL_HSSAER_3_n                   | +3,3V                                                                                                    |                                                  |  |  |
|   |                                                  | 27       | GND                              | Ground                                                                                                   |                                                  |  |  |
|   |                                                  | 28       | +5V                              | +5V power supply                                                                                         |                                                  |  |  |
|   |                                                  | 29       | +5V                              | +5V power supply                                                                                         | 1                                                |  |  |
|   | <u> </u>                                         | 30       | +5V                              | +5V power supply                                                                                         | <u> </u>                                         |  |  |
|   |                                                  |          |                                  | ED CAMERA CONNECTOR - Right                                                                              |                                                  |  |  |
|   |                                                  | 2        | GND<br>EDR_MGT_RX_n              | Ground Gigabit Transceiver RX lane 1, n side – right camera                                              | + , -                                            |  |  |
|   |                                                  | 3        | EDR_MGT_RX_p                     | Gigabit Transceiver RX lane 1, n side – right camera                                                     | + ;                                              |  |  |
|   |                                                  | 4        | GND                              | Ground                                                                                                   | <del>† '</del>                                   |  |  |
|   |                                                  |          |                                  | Gigabit Transceiver TX lane 1, n side – Spare for other                                                  |                                                  |  |  |
|   |                                                  | 5        | EDR_MGT_TX_n                     | applications                                                                                             | 0                                                |  |  |
|   |                                                  | 6        | EDR_MGT_TX_p                     | Gigabit Transceiver TX lane 1, p side – Spare for other                                                  | 0                                                |  |  |
| 4 | J22                                              |          |                                  | applications                                                                                             | +                                                |  |  |
| 4 | JZZ                                              | 7        | GND MOT OK                       | Ground                                                                                                   | + _                                              |  |  |
|   |                                                  | 8        | EDR_MGT_CK_n                     | Reference clock for Gigabit Transceiver, n side – right camera                                           | 0                                                |  |  |
|   |                                                  | 9        | EDR_MGT_CK_p                     | Reference clock for Gigabit Transceiver, p side – right camera                                           | 0                                                |  |  |
|   |                                                  | 10       | GND                              | Ground                                                                                                   | 1/0                                              |  |  |
|   |                                                  | 11       | I2C_EDx_SPx_SCL                  | I2C SCK signal (clock) – shared with connectors 3, 5 and 6                                               | I/O                                              |  |  |
|   |                                                  | 12       | EDR_SPARE_p                      | Spare signal                                                                                             | <del>                                     </del> |  |  |
|   |                                                  | 13<br>14 | EDR_SPARE_n                      | Spare signal                                                                                             | 1/0                                              |  |  |
|   |                                                  | 14       | I2C_EDR_SPA_SDA                  | I2C SDA signal (data) – right camera                                                                     | I/O                                              |  |  |

| # | ID  | PIN      | SIG. NAME                              | DESCRIPTION                                                                                 | DIR |
|---|-----|----------|----------------------------------------|---------------------------------------------------------------------------------------------|-----|
| " |     | 15       | GND                                    | Ground                                                                                      |     |
|   |     | 16       | EDR_HSSAER_0_n                         | Spare differential line, n side                                                             |     |
|   |     | 17       | EDR_HSSAER_0_p                         | Spare differential line, p side                                                             |     |
|   |     | 18       | GPIO_L_0                               |                                                                                             |     |
|   |     | 19       | EDR_HSSAER_1_p                         | Spare differential line, n side                                                             |     |
|   |     | 20<br>21 | EDR_HSSAER_1_n<br>GND                  | Spare differential line, p side Ground                                                      |     |
|   |     | 22       | EDR_HSSAER_2_n                         | Spare differential line, n side                                                             |     |
|   |     | 23       | EDR_HSSAER_2_p                         | Spare differential line, p side                                                             |     |
|   |     | 24       | GND                                    | Ground                                                                                      |     |
|   |     | 25       | EDR_HSSAER_3_p                         | Spare differential line, n side / hardware selectable as +5V or +3,3V                       |     |
|   |     | 26       | EDR_HSSAER_3_n                         | Spare differential line, p side / hardware selectable as +5V or +3,3V                       |     |
|   |     | 27       | GND                                    | Ground                                                                                      |     |
|   |     | 28       | +5V                                    | +5V power supply                                                                            |     |
|   |     | 29<br>30 | +5V<br>+5V                             | +5V power supply                                                                            |     |
|   |     | 30       |                                        | +5V power supply  SPARE CONNECTOR A                                                         |     |
|   |     | 1        | GND                                    | Ground                                                                                      |     |
|   |     | 2        | SPA_MGT_RX_n                           | Gigabit Transceiver RX lane 1, n side                                                       | 1   |
|   |     | 3        | SPA_MGT_RX_p                           | Gigabit Transceiver RX lane 1, p side                                                       | Ī   |
|   |     | 4        | GND                                    | Ground                                                                                      |     |
|   |     | 5        | SPA_MGT_TX_n                           | Gigabit Transceiver TX lane 1, n side                                                       | 0   |
|   |     | 6        | SPA_MGT_TX_p                           | Gigabit Transceiver TX lane 1, p side                                                       | 0   |
|   |     | 7        | GND                                    | Ground                                                                                      |     |
|   |     | 8        | SPA_MGT_CK_n                           | Reference clock for Gigabit Transceiver, n side                                             | 0   |
|   |     | 9        | SPA_MGT_CK_p                           | Reference clock for Gigabit Transceiver, p side                                             | 0   |
|   |     | 10       | GND/SPA_SPARE_p                        | Ground / Hardware selectable as a signal named SPA_SPARE_p                                  | 1/0 |
|   |     | 11       | I2C_EDx_SPx_SCL                        | I2C SCK signal (clock) – shared with connectors 3, 4 and 6                                  | I/O |
|   |     | 12       | SPA_DIFF4_MIPI4_p                      | Spare signal (suitable for MIPI)                                                            |     |
|   |     | 13<br>14 | SPA_DIFF4_MIPI4_n                      | Spare signal (suitable for MIPI)  I2C SDA signal (data) – shared with connector 3           | I/O |
|   |     | 15       | I2C_EDL_SPA_SDA<br>GND/SPA_SPARE_n     | Ground / Hardware selectable as a signal named SPA_SPARE_n                                  | 1/0 |
| 5 | J25 | 16       | SPA_DIFF0_MIPICLK_n                    | Spare signal (suitable for MIPI)                                                            |     |
|   | 020 | 17       | SPA_DIFF0_MIPICLK_p                    | Spare signal (suitable for MIPI)                                                            |     |
|   |     | 18       | GND                                    | ,                                                                                           |     |
|   |     | 19       | SPA_DIFF1_MIPI1_p                      | Spare signal (suitable for MIPI)                                                            |     |
|   |     | 20       | SPA_DIFF1_MIPI1_n                      | Spare signal (suitable for MIPI)                                                            |     |
|   |     | 21       | GND                                    | Ground                                                                                      |     |
|   |     | 22<br>23 | SPA_DIFF2_MIPI2_p                      | Spare signal (suitable for MIPI)                                                            |     |
|   |     | 24       | SPA_DIFF2_MIPI2_n GND                  | Spare signal (suitable for MIPI) Ground                                                     |     |
|   |     | 25       | SPA_DIFF3_MIPI3_p                      | Spare signal (suitable for MIPI)/ hardware selectable as +5V or +3,3V                       |     |
|   |     | 26       | SPA_DIFF3_MIPI3_n                      | Spare signal (suitable for MIPI)/ hardware selectable as +5V or +3,3V                       |     |
|   |     | 27       | GND                                    | Ground                                                                                      |     |
|   |     | 28       | +5V                                    | +5V power supply                                                                            |     |
|   |     | 29       | +5V                                    | +5V power supply                                                                            |     |
|   |     | 30       | +5V                                    | +5V power supply  SPARE CONNECTOR B                                                         |     |
|   |     | 1        | GND                                    | Ground                                                                                      |     |
|   |     | 2        | SPB MGT RX n                           | Gigabit Transceiver RX lane 1, n side                                                       | ı   |
|   |     | 3        | SPB_MGT_RX_p                           | Gigabit Transceiver RX lane 1, p side                                                       | I   |
|   |     | 4        | GND                                    | Ground                                                                                      |     |
|   |     | 5        | SPB_MGT_TX_n                           | Gigabit Transceiver TX lane 1, n side                                                       | 0   |
|   |     | 6        | SPB_MGT_TX_p                           | Gigabit Transceiver TX lane 1, p side                                                       | 0   |
|   |     | 7        | GND NOT OK                             | Ground Professional Confession Control Transporters                                         |     |
| 6 | J24 | 8        | SPB_MGT_CK_n                           | Reference clock for Gigabit Transceiver, n side                                             | 0   |
|   |     | 9        | SPB_MGT_CK_p                           | Reference clock for Gigabit Transceiver, p side                                             | 0   |
|   |     | 10       | GND/SPB_SPARE_p                        | Ground / Hardware selectable as a signal named SPA_SPARE_p                                  | 1/0 |
|   |     | 11<br>12 | I2C_EDx_SPx_SCL<br>SPB_DIFF4_MIPI4_p   | I2C SCK signal (clock) – shared with connectors 3, 4 and 5 Spare signal (suitable for MIPI) | I/O |
|   |     | 13       | SPB_DIFF4_MIPI4_p<br>SPB_DIFF4_MIPI4_n | Spare signal (suitable for MIPI)  Spare signal (suitable for MIPI)                          |     |
|   |     | 14       | I2C_EDL_SPB_SDA                        | I2C SDA signal (data) – shared with connector 3                                             | I/O |
|   |     | 15       | GND/SPB_SPARE_n                        | Ground / Hardware selectable as a signal named SPA_SPARE_n                                  | 1/0 |
|   |     |          |                                        |                                                                                             |     |

| #   | ID  | PIN      | SIG. NAME                  | DESCRIPTION                                                                              | DIR                                          |
|-----|-----|----------|----------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|
| n e | 10  | 16       | SPB DIFF0 MIPICLK n        | Spare signal (suitable for MIPI)                                                         | DIIX                                         |
|     |     | 17       | SPB_DIFF0_MIPICLK_p        | Spare signal (suitable for MIPI)                                                         |                                              |
|     |     | 18       | GND                        |                                                                                          |                                              |
|     |     | 19       | SPB_DIFF1_MIPI1_p          | Spare signal (suitable for MIPI)                                                         |                                              |
|     |     | 20<br>21 | SPB_DIFF1_MIPI1_n GND      | Spare signal (suitable for MIPI) Ground                                                  |                                              |
|     |     | 22       | SPB_DIFF2_MIPI2_p          | Spare signal (suitable for MIPI)                                                         |                                              |
|     |     | 23       | SPB_DIFF2_MIPI2_n          | Spare signal (suitable for MIPI)                                                         |                                              |
|     |     | 24       | GND                        | Ground                                                                                   |                                              |
|     |     | 25       | SPA_DIFF3_MIPI3_p          | Spare signal (suitable for MIPI)/ hardware selectable as +5V or +3,3V                    |                                              |
|     |     | 26       | SPA_DIFF3_MIPI3_n          | Spare signal (suitable for MIPI)/ hardware selectable as +5V or +3,3V                    |                                              |
|     |     | 27       | GND                        | Ground                                                                                   |                                              |
|     |     | 28       | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 29<br>30 | +5V<br>+5V                 | +5V power supply<br>+5V power supply                                                     |                                              |
|     |     | 30       |                            | SED CAMERA CONNECTOR - Left                                                              |                                              |
|     |     | 1        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 2        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 3        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 4        | GND                        | Ground                                                                                   |                                              |
|     |     | 5        | FRL_SYNC_p                 | LVDS Sync Channel Input (Positive)                                                       |                                              |
|     |     | 6        | FRL_SYNC_n                 | LVDS Sync Channel Input (Negative)                                                       |                                              |
|     |     | 7        | FRL_HSCLK_p                | LVDS Clock Output (Positive)                                                             |                                              |
|     |     | 8        | FRL_HSCLK_n                | LVDS Clock Output (Negative)                                                             |                                              |
|     |     | 9        | FRL_DATA3_p                | LVDS Data Input Channel #3 (Positive)                                                    |                                              |
|     |     | 10       | FRL_DATA3_n                | LVDS Data Input Channel #3 (Negative)  LVDS Data Input Channel #2 (Positive)             |                                              |
|     |     | 11<br>12 | FRL_DATA2_p<br>FRL_DATA2_n | LVDS Data Input Channel #2 (Positive)  LVDS Data Input Channel #2 (Negative)             |                                              |
|     |     | 13       | GND                        | Ground                                                                                   |                                              |
|     |     | 14       | FRL_CLK_PLL                | Reference Clock Output for PLL                                                           |                                              |
| 7   | J27 | 15       | FRL_TRIGGER_0_HW2          | Trigger Output #0                                                                        |                                              |
| ,   | 321 | 16       | FRL_TRIGGER_1_HW3          | Trigger Output #1                                                                        |                                              |
|     |     | 17       | FRL_MONITOR_0              | Monitor Input #0                                                                         |                                              |
|     |     | 18       | FRL_MONITOR_1              | Monitor Input #1                                                                         |                                              |
|     |     | 19       | FRL_DATA1_p                | LVDS Data Input Channel #1 (Positive)                                                    |                                              |
|     |     | 20       | FRL_DATA1_n                | LVDS Data Input Channel #1 (Negative)                                                    |                                              |
|     |     | 21<br>22 | FRL_DATA0_p<br>FRL_DATA0_n | LVDS Data Input Channel #0 (Positive)  LVDS Data Input Channel #0 (Negative)             |                                              |
|     |     | 23       | FRL_DATACLK_p              | LVDS Clock Input (Positive)                                                              |                                              |
|     |     | 24       | FRL_DATACLK_n              | LVDS Clock Input (Negative)                                                              |                                              |
|     |     | 25       | GND                        | Ground                                                                                   |                                              |
|     |     | 26       | FRx_RSTn                   | Sensor Reset (Active Low) – shared with connector 8                                      |                                              |
|     |     | 27       | SPI_SSn_FRL                | SPI Slave Select (Active Low)                                                            |                                              |
|     |     | 28       | SPI_MOSI                   | SPI Master Out – Slave In – shared with connector 8                                      |                                              |
|     |     | 29<br>30 | SPI_MISO<br>SPI_SCK        | SPI Master In – Slave Out – shared with connector 8  SPI Clock – shared with connector 8 | 1                                            |
|     |     |          |                            | ED CAMERA CONNECTOR - Right                                                              | <u>.                                    </u> |
|     |     | 1        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 2        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 3        | +5V                        | +5V power supply                                                                         |                                              |
|     |     | 4        | GND                        | Ground                                                                                   |                                              |
|     |     | 5        | FRR_SYNC_p                 | LVDS Sync Channel Input (Positive)                                                       |                                              |
|     |     | 6<br>7   | FRR_SYNC_n<br>FRR_HSCLK_p  | LVDS Sync Channel Input (Negative)  LVDS Clock Output (Positive)                         |                                              |
|     |     | 8        | FRR_HSCLK_n                | LVDS Clock Output (Positive)  LVDS Clock Output (Negative)                               | +                                            |
|     |     | 9        | FRR_DATA3_p                | LVDS Data Input Channel #3 (Positive)                                                    |                                              |
| 8   | J26 | 10       | FRR_DATA3_n                | LVDS Data Input Channel #3 (Negative)                                                    |                                              |
|     |     | 11       | FRR_DATA2_p                | LVDS Data Input Channel #2 (Positive)                                                    | 1                                            |
|     |     | 12       | FRR_DATA2_n                | LVDS Data Input Channel #2 (Negative)                                                    |                                              |
|     |     | 13       | GND                        | Ground                                                                                   |                                              |
|     |     | 14       | FRR_CLK_PLL                | Reference Clock Output for PLL                                                           |                                              |
|     |     | 15       | FRR_TRIGGER_0_HW2          | Trigger Output #0                                                                        |                                              |
|     |     | 16       | FRR_TRIGGER_1_HW3          | Trigger Output #1                                                                        |                                              |
|     |     | 17       | FRR_MONITOR_0              | Monitor Input #0                                                                         |                                              |
|     |     | 18       | FRR_MONITOR_1              | Monitor Input #1                                                                         |                                              |

| # | ID | PIN | SIG. NAME     | DESCRIPTION                                         | DIR |
|---|----|-----|---------------|-----------------------------------------------------|-----|
|   |    | 19  | FRR_DATA1_p   | LVDS Data Input Channel #1 (Positive)               |     |
|   |    | 20  | FRR_DATA1_n   | LVDS Data Input Channel #1 (Negative)               |     |
|   |    | 21  | FRR_DATA0_p   | LVDS Data Input Channel #0 (Positive)               |     |
|   |    | 22  | FRR_DATA0_n   | LVDS Data Input Channel #0 (Negative)               |     |
|   |    | 23  | FRR_DATACLK_p | LVDS Clock Input (Positive)                         |     |
|   |    | 24  | FRR_DATACLK_n | LVDS Clock Input (Negative)                         |     |
|   |    | 25  | GND           | Ground                                              |     |
|   |    | 26  | FRx_RSTn      | Sensor Reset (Active Low) – shared with connector 7 |     |
|   |    | 27  | SPI_SSn_FRL   | SPI Slave Select (Active Low)                       |     |
|   |    | 28  | SPI_MOSI      | SPI Master Out - Slave In - shared with connector 7 |     |
|   |    | 29  | SPI_MISO      | SPI Master In - Slave Out - shared with connector 7 |     |
|   |    | 30  | SPI_SCK       | SPI Clock – shared with connector 7                 |     |

**Table 7.3.1** –UZCB connectors

## 8. BIBLIOGRAPHY

- 1. Asynchronous DC-Free Serial Protocol for Event-Based AER Systems. Ros, Paolo Motto, et al. 2015. IEEE International Conference on Electronics, Circuits and Systems (ICECS).
- 2. **Analog Devices.** AD7147 Datasheet. [Online] www.analog.com/media/en/technical-documentation/data-sheets/AD7147.pdf.
- 3. **Onsemi.** NOIP1SN1300A. [Online] https://www.onsemi.com/pdf/datasheet/noip1sn1300a-d.pdf.
- 4. **Enclustra.** XU5 Module. [Online] https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu5/.
- 5. **AMD.** AMD Zynq UltraScale+ MPSoCs. [Online] https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-ultrascale-plus-mpsoc.html.