Model for seasonal variation

Parametrization

A model for seasonal variation with periodicity m for the random vector $\S = (x_1, \dots, x_n), n > m$ is obtained assuming that the sums $x_i + x_{i+1} + \dots + x_{i+m-1}$ are independent Gaussian with preciosion τ .

The density for **x** is derived from the n-m+1 increments as

$$\pi(\mathbf{x}|\tau) \propto \tau^{\frac{(n-m+1)}{2}} \exp\left\{-\frac{\tau}{2} \sum (x_i + x_{i+1} + \dots + x_{i+m-1})^2\right\}$$

$$= \tau^{\frac{(n-m+1)}{2}} \exp\left\{-\frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}\right\}$$
(2)

where $\mathbf{Q} = \tau \mathbf{R}$ and \mathbf{R} is the structure matrix reflecting the neighbourhood structure of the model.

Hyperparameters

The precision parameter τ is represented as

$$\theta = \log \tau$$

and the prior is defined on θ .

Specification

The seasonal model is specified inside the f() function as

Hyperparameter spesification and default values

hyper

```
name precision
short.name prec
initial 4
fixed FALSE
prior loggamma
param c(1, 1e-04)
constr FALSE
```

nrow.ncol FALSE

augmented FALSE

aug.factor 1

aug.constr NULL

n.div.by NULL

n.required FALSE

set.default.values FALSE

Example

Notes

The seasonal is intrinsic with rank deficiency m-1.