

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PC1)									
(51) International Patent Classification 7:		(11) International Publication Number:	WO 00/37491						
C07K 14/00	A2	(43) International Publication Date:	29 June 2000 (29.06.00)						
[FR/FR]; 24, rue Royale, F-75008 Paris (FR).	20.12.9 8) (BR, BY, CA, CH, CN, CR, CU ES, FI, GB, GD, GE, GH, GM, F KE, KG, KP, KR, KZ, LC, LK, I MD, MG, MK, MN, MW, MX, I SD, SE, SG, SI, SK, SL, TI, TI US, UZ, VN, YU, ZA, ZW, ARI JS LS, MW, SD, SL, SZ, TZ, UG, 2 AZ, BY, KG, KZ, MD, RU, TJ, T BE, CH, CY, DE, DK, ES, FI,	J, CZ, DE, DK, DM, EE, IR, HU, ID, IL, IN, IS, JP, LR, LS, LT, LU, LV, MA, NO, NZ, PL, PT, RO, RU, M, TR, TT, TZ, UA, UG, IPO patent (GH, GM, KE, ZW), Eurasian patent (AM, FM), European patent (AT, FR, GB, GR, IE, IT, LU, (BF, BJ, CF, CG, CI, CM,						
 (72) Inventors; and (75) Inventors/Applicants (for US only): BOUGUELERE [FR/FR]; 108, avenue Victor Hugo, F-92170 Vam DUMAS, Jean-Baptiste [FR/FR]; 8, rue Grégoire F-75006 Paris (FR). DUCLERT, Aymeric [FR/F rue Victorine, F-94100 Saint-Maur (FR). (74) Common Representative: GENSET; Intellectual Dept., 24, rue Royale, F-75008 Paris (FR). 	ves (FI de Tou R]; 6t	R). Without international search rep rs, upon receipt of that report. et,	ort and to be republished						

(54) Title: COMPLEMENTARY DNA'S ENCODING PROTEINS WITH SIGNAL PEPTIDES

(57) Abstract

The sequences of cDNAs encoding secreted proteins are disclosed. The cDNAs can be used to express secreted proteins or fragments thereof or to obtain antibodies capable of specifically binding to the secreted proteins. The cDNAs may also be used in diagnostic, forensic, gene therapy, and chromosome mapping procedures. The cDNAs may also be used to design expression vectors and secretion vectors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Słovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		•
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/37491 PCT/IB99/02058

COMPLEMENTARY DNA'S ENCODING PROTEINS WITH SIGNAL PEPTIDES

Background of the Invention

The estimated 50,000-100,000 genes scattered along the human chromosomes offer tremendous promise for the understanding, diagnosis, and treatment of human diseases. In addition, probes capable of specifically hybridizing to loci distributed throughout the human genome find applications in the construction of high resolution chromosome maps and in the identification of individuals.

In the past, the characterization of even a single human gene was a painstaking process, requiring years of effort. Recent developments in the areas of cloning vectors, DNA sequencing, and computer technology have merged to greatly accelerate the rate at which human genes can be isolated, sequenced, mapped, and characterized.

Currently, two different approaches are being pursued for identifying and characterizing the genes distributed along the human genome. In one approach, large fragments of genomic DNA are isolated, cloned, and sequenced. Potential open reading frames in these genomic sequences are identified using bio-informatics software. However, this approach entails sequencing large stretches of human DNA which do not encode proteins in order to find the protein encoding sequences scattered throughout the genome. In addition to requiring extensive sequencing, the bio-informatics software may mischaracterize the genomic sequences obtained, *i.e.*, labeling non-coding DNA as coding DNA and vice versa.

An alternative approach takes a more direct route to identifying and characterizing human genes.

In this approach, complementary DNAs (cDNAs) are synthesized from isolated messenger RNAs (mRNAs) which encode human proteins. Using this approach, sequencing is only performed on DNA which is derived from protein coding fragments of the genome. Often, only short stretches of the cDNAs are sequenced to obtain sequences called expressed sequence tags (ESTs). The ESTs may then be used to isolate or purify cDNAs which include sequences adjacent to the EST sequences. The cDNAs may contain all of the sequence of the EST which was used to obtain them or only a fragment of the sequence of the EST which was used to obtain them. In addition, the cDNAs may contain the full coding sequence of the gene from which the EST was derived or, alternatively, the cDNAs may include fragments of the coding sequence of the gene from which the EST was derived. It will be appreciated that there may be several cDNAs which include the EST sequence as a result of alternate splicing or the activity of alternative promoters.

In the past, these short EST sequences were often obtained from oligo-dT primed cDNA libraries. Accordingly, they mainly corresponded to the 3' untranslated region of the mRNA. In part, the prevalence of EST sequences derived from the 3' end of the mRNA is a result of the fact that typical techniques for obtaining cDNAs, are not well suited for isolating cDNA sequences derived from the 5' ends of mRNAs (Adams et al., Nature 377:3-174, 1996, Hillier et al., Genome Res. 6:807-828, 1996). In addition, in those reported instances where longer cDNA sequences have been obtained, the reported sequences typically correspond to coding sequences and do not include the full 5' untranslated region (5'UTR) of the mRNA from which the cDNA is derived. Indeed, 5'UTRs have been shown to affect either the stability or translation of

WO 00/37491 PCT/IB99/02058

2

mRNAs. Thus, regulation of gene expression may be achieved through the use of alternative 5'UTRs as shown, for instance, for the translation of the tissue inhibitor of metalloprotease mRNA in mitogenically activated cells (Waterhouse et al., J Biol Chem. 265:5585-9. 1990). Furthermore, modification of 5'UTR through mutation, insertion or translocation events may even be implied in pathogenesis. For instance, the 5 fragile X syndrome, the most common cause of inherited mental retardation, is partly due to an insertion of multiple CGG trinucleotides in the 5'UTR of the fragile X mRNA resulting in the inhibition of protein synthesis via ribosome stalling (Feng et al., Science 268:731-4, 1995). An aberrant mutation in regions of the 5'UTR known to inhibit translation of the proto-oncogene c-myc was shown to result in upregulation of c-myc protein levels in cells derived from patients with multiple myelomas (Willis et al., Curr Top Microbiol Immunol 10 224:269-76, 1997). In addition, the use of oligo-dT primed cDNA libraries does not allow the isolation of complete 5'UTRs since such incomplete sequences obtained by this process may not include the first exon of the mRNA, particularly in situations where the first exon is short. Furthermore, they may not include some exons, often short ones, which are located upstream of splicing sites. Thus, there is a need to obtain sequences derived from the 5' ends of mRNAs.

Moreover, despite the great amount of EST data that large-scale sequencing projects have yielded (Adams et al., Nature 377:174, 1996, Hillier et al., Genome Res. 6:807-828, 1996), information concerning the biological function of the mRNAs corresponding to such obtained cDNAs has revealed to be limited. Indeed, whereas the knowledge of the complete coding sequence is absolutely necessary to investigate the biological function of mRNAs, ESTs yield only partial coding sequences. So far, large-scale full-length cDNA 20 cloning has been achieved only with limited success because of the poor efficiency of methods for constructing full-length cDNA libraries. Indeed, such methods require either a large amount of mRNA (Ederly et al., 1995), thus resulting in non representative full-length libraries when small amounts of tissue are available or require PCR amplification (Maruyama et al., 1994; CLONTECHniques, 1996) to obtain a reasonable number of clones, thus yielding strongly biased cDNA libraries where rare and long cDNAs are 25 lost. Thus, there is a need to obtain full-length cDNAs, i.e. cDNAs containing the full coding sequence of their corresponding mRNAs.

15

While many sequences derived from human chromosomes have practical applications, approaches based on the identification and characterization of those chromosomal sequences which encode a protein product are particularly relevant to diagnostic and therapeutic uses. Of the 50,000-100,000 protein coding genes, those genes encoding proteins which are secreted from the cell in which they are synthesized, as well as the secreted proteins themselves, are particularly valuable as potential therapeutic agents. Such proteins are often involved in cell to cell communication and may be responsible for producing a clinically relevant response in their target cells. In fact, several secretory proteins, including tissue plasminogen activator, G-CSF, GM-CSF, erythropoietin, human growth hormone, insulin, interferon-II, interferon-II, 35 interferon-I, and interleukin-2, are currently in clinical use. These proteins are used to treat a wide range of conditions, including acute myocardial infarction, acute ischemic stroke, anemia, diabetes, growth hormone deficiency, hepatitis, kidney carcinoma, chemotherapy induced neutropenia and multiple sclerosis. For WO 00/37491 . PCT/IB99/02058

these reasons, cDNAs encoding secreted proteins or fragments thereof represent a particularly valuable source of therapeutic agents. Thus, there is a need for the identification and characterization of secreted proteins and the nucleic acids encoding them.

In addition to being therapeutically useful themselves, secretory proteins include short peptides, called signal peptides, at their amino termini which direct their secretion. These signal peptides are encoded by the signal sequences located at the 5' ends of the coding sequences of genes encoding secreted proteins. Because these signal peptides will direct the extracellular secretion of any protein to which they are operably linked, the signal sequences may be exploited to direct the efficient secretion of any protein by operably linking the signal sequences to a gene encoding the protein for which secretion is desired. In addition, fragments of the signal peptides called membrane-translocating sequences, may also be used to direct the intracellular import of a peptide or protein of interest. This may prove beneficial in gene therapy strategies in which it is desired to deliver a particular gene product to cells other than the cells in which it is produced. Signal sequences encoding signal peptides also find application in simplifying protein purification techniques. In such applications, the extracellular secretion of the desired protein greatly facilitates purification by reducing the number of undesired proteins from which the desired protein must be selected. Thus, there exists a need to identify and characterize the 5' fragments of the genes for secretory proteins which encode signal peptides.

Sequences coding for secreted proteins may also find application as therapeutics or diagnostics. In particular, such sequences may be used to determine whether an individual is likely to express a detectable 20 phenotype, such as a disease, as a consequence of a mutation in the coding sequence for a secreted protein. In instances where the individual is at risk of suffering from a disease or other undesirable phenotype as a result of a mutation in such a coding sequence, the undesirable phenotype may be corrected by introducing a normal coding sequence using gene therapy. Alternatively, if the undesirable phenotype results from overexpression of the protein encoded by the coding sequence, expression of the protein may 25 be reduced using antisense or triple helix based strategies.

The secreted human polypeptides encoded by the coding sequences may also be used as therapeutics by administering them directly to an individual having a condition, such as a disease, resulting from a mutation in the sequence encoding the polypeptide. In such an instance, the condition can be cured or ameliorated by administering the polypeptide to the individual.

In addition, the secreted human polypeptides or fragments thereof may be used to generate antibodies useful in determining the tissue type or species of origin of a biological sample. The antibodies may also be used to determine the cellular localization of the secreted human polypeptides or the cellular localization of polypeptides which have been fused to the human polypeptides. In addition, the antibodies may also be used in immunoaffinity chromatography techniques to isolate, purify, or enrich the human polypeptide or a target polypeptide which has been fused to the human polypeptide.

Public information on the number of human genes for which the promoters and upstream regulatory regions have been identified and characterized is quite limited. In part, this may be due to the difficulty of

isolating such regulatory sequences. Upstream regulatory sequences such as transcription factor binding sites are typically too short to be utilized as probes for isolating promoters from human genomic libraries. Recently, some approaches have been developed to isolate human promoters. One of them consists of making a CpG island library (Cross *et al.*, *Nature Genetics* 6: 236-244, 1994). The second consists of isolating human genomic DNA sequences containing Spel binding sites by the use of Spel binding protein. (Mortlock *et al.*, *Genome Res.* 6:327-335, 1996). Both of these approaches have their limits due to a lack of specificity and of comprehensiveness. Thus, there exists a need to identify and systematically characterize the 5' fragments of the genes.

cDNAs including the 5' ends of their corresponding mRNA may be used to efficiently identify and isolate 5'UTRs and upstream regulatory regions which control the location, developmental stage, rate, and quantity of protein synthesis, as well as the stability of the mRNA (Theil et al., BioFactors 4:87-93, (1993). Once identified and characterized, these regulatory regions may be utilized in gene therapy or protein purification schemes to obtain the desired amount and locations of protein synthesis or to inhibit, reduce, or prevent the synthesis of undesirable gene products.

In addition, cDNAs containing the 5' ends of secretory protein genes may include sequences useful as probes for chromosome mapping and the identification of individuals. Thus, there is a need to identify and characterize the sequences upstream of the 5' coding sequences of genes encoding secretory proteins.

15

Summary of the Invention

The present invention relates to purified, isolated, or recombinant cDNAs which encode secreted proteins or fragments thereof. Preferably, the purified, isolated or recombinant cDNAs contain the entire open reading frame of their corresponding mRNAs, including a start codon and a stop codon. For example, the cDNAs may include nucleic acids encoding the signal peptide as well as the mature protein. Such cDNAs will be referred herein as "full-length" cDNAs. Alternatively, the cDNAs may contain a fragment of the open reading frame. Such cDNAs will be referred herein as "ESTs" or "5'ESTs". In some embodiments, the fragment may encode only the sequence of the mature protein. Alternatively, the fragment may encode only a fragment of the mature protein. A further aspect of the present invention is a nucleic acid which encodes the signal peptide of a secreted protein.

The term "corresponding mRNA" refers to the mRNA which was the template for the cDNA synthesis which produced the cDNA of the present invention. As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual cDNA clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The cDNA clones are not naturally occurring as such, but rather are obtained via manipulation of a partially purified naturally occurring substance (messenger RNA). The conversion of mRNA into a cDNA library involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection. Thus, creating a cDNA library from messenger RNA and subsequently isolating individual clones from that library results in an approximately 104-106 fold purification of the native message.

Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.

As used herein, the term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated.

As used herein, the term "recombinant" means that the cDNA is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the cDNAs will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the present invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Preferably, the enriched cDNAs represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. More preferably, the enriched cDNAs represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched cDNAs represent 90% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules.

Thus, cDNAs encoding secreted polypeptides or fragments thereof which are present in cDNA libraries in which one or more cDNAs encoding secreted polypeptides or fragments thereof make up 5% or 20 more of the number of nucleic acid inserts in the backbone molecules are "enriched recombinant cDNAs" as defined herein. Likewise, cDNAs encoding secreted polypeptides or fragments thereof which are in a population of plasmids in which one or more cDNAs of the present invention have been inserted such that they represent 5% or more of the number of inserts in the plasmid backbone are "enriched recombinant cDNAs" as defined herein. However, cDNAs encoding secreted polypeptides or fragments thereof which are in cDNA libraries in which the cDNAs encoding secreted polypeptides or fragments thereof constitute less than 5% of the number of nucleic acid inserts in the population of backbone molecules, such as libraries in which backbone molecules having a cDNA insert encoding a secreted polypeptide are extremely rare, are not "enriched recombinant cDNAs."

The term "polypeptide" refers to a polymer of amino acids without regard to the length of the polymer; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not specify or exclude post-expression modifications of polypeptides, for example, polypeptides which include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term polypeptide. Also included within the definition are polypeptides which contain one or more analogs of an amino acid (including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.

PCT/IB99/02058 WO 00/37491

6

As used interchangeably herein, the terms "nucleic acids," "oligonucleotides," and "polynucleotides" include RNA, DNA, or RNA/DNA hybrid sequences of more than one nucleotide in either single chain or duplex form. The term "nucleotide" as used herein as an adjective to describe molecules comprising RNA, DNA, or RNA/DNA hybrid sequences of any length in single-stranded or duplex form. The term "nucleotide" 5 is also used herein as a noun to refer to individual nucleotides or varieties of nucleotides, meaning a molecule, or individual unit in a larger nucleic acid molecule, comprising a purine or pyrimidine, a ribose or deoxyribose sugar moiety, and a phosphate group, or phosphodiester linkage in the case of nucleotides within an oligonucleotide or polynucleotide. Although the term "nucleotide" is also used herein to encompass "modified nucleotides" which comprise at least one modifications (a) an alternative linking group, (b) an 10 analogous form of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar, for examples of analogous linking groups, purine, pyrimidines, and sugars see for example PCT publication No. WO 95/04064. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, ex vivo generation, or a combination thereof, as well as utilizing any purification methods known in the art.

The terms "base paired" and "Watson & Crick base paired" are used interchangeably herein to refer to nucleotides which can be hydrogen bonded to one another be virtue of their sequence identities in a manner like that found in double-helical DNA with thymine or uracil residues linked to adenine residues by two hydrogen bonds and cytosine and guanine residues linked by three hydrogen bonds (See Stryer, L., Biochemistry, 4th edition, 1995).

15

20

The terms "complementary" or "complement thereof" are used herein to refer to the sequences of polynucleotides which are capable of forming Watson & Crick base pairing with another specified polynucleotide throughout the entirety of the complementary region. For the purpose of the present invention, a first polynucleotide is deemed to be complementary to a second polynucleotide when each base in the first polynucleotide is paired with its complementary base. Complementary bases are, generally, A 25 and T (or A and U), or C and G. "Complement" is used herein as a synonym from "complementary polynucleotide," "complementary nucleic acid" and "complementary nucleotide sequence". These terms are applied to pairs of polynucleotides based solely upon their sequences and not any particular set of conditions under which the two polynucleotides would actually bind. Preferably, a "complementary" sequence is a sequence which an A at each position where there is a T on the opposite strand, a T at each position where there is an A on the opposite strand, a G at each position where there is a C on the opposite strand and a C at each position where there is a G on the opposite strand.

"Stringent", "moderate," and "low" hybridization conditions are as defined below.

In particular, the present invention relates to cDNAs which were derived from genes encoding secreted proteins. As used herein, a "secreted" protein is one which, when expressed in a suitable host cell, 35 is transported across or through a membrane, including transport as a result of signal peptides in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g. soluble

proteins), or partially (e.g. receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum.

cDNAs encoding secreted proteins may include nucleic acid sequences, called signal sequences, which encode signal peptides which direct the extracellular secretion of the proteins encoded by the cDNAs. 5 Generally, the signal peptides are located at the amino termini of secreted proteins.

Secreted proteins are translated by ribosomes associated with the "rough" endoplasmic reticulum. Generally, secreted proteins are co-translationally transferred to the membrane of the endoplasmic reticulum. Association of the ribosome with the endoplasmic reticulum during translation of secreted proteins is mediated by the signal peptide. The signal peptide is typically cleaved following its co-10 translational entry into the endoplasmic reticulum. After delivery to the endoplasmic reticulum, secreted proteins may proceed through the Golgi apparatus. In the Golgi apparatus, the proteins may undergo posttranslational modification before entering secretory vesicles which transport them across the cell membrane.

The cDNAs of the present invention have several important applications. For example, they may be used to express the entire secreted protein which they encode. Alternatively, they may be used to 15 express fragments of the secreted protein. The fragments may comprise the signal peptides encoded by the cDNAs or the mature proteins encoded by the cDNAs (i.e. the proteins generated when the signal peptide is cleaved off). The fragments may also comprise polypeptides having at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids encoded by the cDNAs.

Antibodies which specifically recognize the entire secreted proteins encoded by the cDNAs or 20 fragments thereof having at least 10 consecutive amino acids, at least 15 consecutive amino acids, at least 25 consecutive amino acids, or at least 40 consecutive amino acids may also be obtained as described below. Antibodies which specifically recognize the mature protein generated when the signal peptide is cleaved may also be obtained as described below. Similarly, antibodies which specifically recognize the signal peptides encoded by the cDNAs may also be obtained.

In some embodiments, the cDNAs include the signal sequence. In other embodiments, the cDNAs may include the full coding sequence for the mature protein (i.e. the protein generated when the signal polypeptide is cleaved off). In addition, the cDNAs may include regulatory regions upstream of the translation start site or downstream of the stop codon which control the amount, location, or developmental stage of gene expression. As discussed above, secreted proteins are therapeutically important. Thus, the 30 proteins expressed from the cDNAs may be useful in treating or controlling a variety of human conditions. The cDNAs may also be used to obtain the corresponding genomic DNA. The term "corresponding genomic DNA" refers to the genomic DNA which encodes mRNA which includes the sequence of one of the strands of the cDNA in which thymidine residues in the sequence of the cDNA are replaced by uracil residues in the mRNA.

35 The cDNAs or genomic DNAs obtained therefrom may be used in forensic procedures to identify individuals or in diagnostic procedures to identify individuals having genetic diseases resulting from WO 00/37491 PCT/IB99/02058

abnormal expression of the genes corresponding to the cDNAs. In addition, the present invention is useful for constructing a high resolution map of the human chromosomes.

The present invention also relates to secretion vectors capable of directing the secretion of a protein of interest. Such vectors may be used in gene therapy strategies in which it is desired to produce a gene product in one cell which is to be delivered to another location in the body. Secretion vectors may also facilitate the purification of desired proteins.

The present invention also relates to expression vectors capable of directing the expression of an inserted gene in a desired spatial or temporal manner or at a desired level. Such vectors may include sequences upstream of the cDNAs such as promoters or upstream regulatory sequences.

In addition, the present invention may also be used for gene therapy to control or treat genetic diseases. Signal peptides may also be fused to heterologous proteins to direct their extracellular secretion.

10

25

One embodiment of the present invention is a purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 24-73 or a sequence complementary thereto. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising at least 8 consecutive bases of the sequence of one of SEQ ID NOs: 24-73 or one of the sequences complementary thereto. In one aspect of this embodiment, the nucleic acid comprises at least 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 consecutive bases of one of the sequences of SEQ ID NOs: 24-73 or one of the sequences complementary thereto. The nucleic acid may be a recombinant nucleic acid.

Another embodiment of the present invention is a purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 24-73 or a sequence complementary to one of the sequences of SEQ ID NOs: 24-73. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 24-73, wherein the full coding sequence optionally comprises the sequence encoding signal peptide as well as the sequence encoding mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

A further embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 24-73 which encode a mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

Yet another embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 24-73 which encode the signal peptide. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 74-123.

WO 00/37491 PCT/IB99/02058

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 74-123.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 74-123.

Yet another embodiment of the present invention is a purified or isolated protein comprising the sequence of one of SEQ ID NOs: 74-123.

Another embodiment of the present invention is a purified or isolated polypeptide comprising at least 5 or 8 consecutive amino acids of one of the sequences of SEQ ID NOs: 74-123. In one aspect of this embodiment, the purified or isolated polypeptide comprises at least 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 consecutive amino acids of one of the sequences of SEQ ID NOs: 74-123.

Another embodiment of the present invention is an isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 74-123.

15 Yet another embodiment of the present invention is an isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 74-123.

A further embodiment of the present invention is a method of making a protein comprising one of the sequences of SEQ ID NO: 74-123, comprising the steps of obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 24-73, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the protein encoded by said cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a protein obtainable by the method described in the preceding paragraph.

Another embodiment of the present invention is a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 74-123, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO: 24-73 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a mature protein obtainable by the method described in the preceding paragraph.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the sequence of one of SEQ ID NOs: 24-73 or a sequence complementary thereto described herein.

15

PCT/IB99/02058 WO 00/37491 10

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the full coding sequences of one of SEQ ID NOs: 24-73, wherein the full coding sequence comprises the sequence encoding the signal peptide and the sequence encoding the mature protein described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 24-73 which encode a mature protein which are described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 24-73 which encode the signal peptide which are 10 described herein.

Another embodiment of the present invention is a purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 74-123. In one aspect of this embodiment, the antibody is capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 74-123.

Another embodiment of the present invention is an array of cDNAs or fragments thereof of at least 15 nucleotides in length which includes at least one of the sequences of SEQ ID NOs: 24-73, or one of the sequences complementary to the sequences of SEQ ID NOs: 24-73, or a fragment thereof of at least 15 consecutive nucleotides. In one aspect of this embodiment, the array includes at least two of the sequences of SEQ ID NOs: 24-73, the sequences complementary to the sequences of SEQ ID NOs: 24-73, or 20 fragments thereof of at least 15 consecutive nucleotides. In another aspect of this embodiment, the array includes at least five of the sequences of SEQ ID NOs: 24-73, the sequences complementary to the sequences of SEQ ID NOs: 24-73, or fragments thereof of at least 15 consecutive nucleotides.

A further embodiment of the invention encompasses purified polynucleotides comprising an insert from a clone deposited in an ECACC deposit, which contains the sequences of SEQ ID NOs. 25-40 and 42-25 46, having an accession No. 99061735 and named SignalTag 15061999 or deposited in an ECACC deposit having an accession No. 98121805 and named SignalTag 166-191, which contains SEQ ID NOs.: 47-73, or a fragment of these nucleic acids comprising a contiguous span of at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 nucleotides of said insert. An additional embodiment of the invention encompasses purified polypeptides which comprise, consist of, or consist essentially of an 30 amino acid sequence encoded by the insert from a clone deposited in an ECACC deposit, which contains the sequences of SEQ ID NOs. 25-40 and 42-46, having an accession No. 99061735 and named SignalTag 15061999 or deposited in an ECACC deposit having an accession No. 98121805 and named SignalTag 166-191, which contains SEQ ID NOs.: 47-73, as well as polypeptides which comprise a fragment of said amino acid sequence consisting of a signal peptide, a mature protein, or a contiguous span of at least 5, 8, 10, 12, 35 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 amino acids encoded by said insert.

An additional embodiment of the invention encompasses purified polypeptides which comprise a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 amino acids of

35

SEQ ID NOs: 74-123, wherein said contiguous span comprises at least one of the amino acid positions which was not shown to be identical to a public sequence in any of Figures 10 to 13. Also encompassed by the invention are purified polynucleotides encoding said polypeptides.

Another embodiment of the present invention is a computer readable medium having stored thereon a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQID NOs. 74-123.

Another embodiment of the present invention is a computer system comprising a processor and a data storage device wherein the data storage device has stored thereon a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQID NOs. 74-123. In some embodiments the computer system further comprises a sequence comparer and a data storage device having reference sequences stored thereon. For example, the sequence comparer may comprise a computer program which indicates polymorphisms. In other aspects of the computer system, the system further comprises an identifier which identifies features in said sequence.

Another embodiment of the present invention is a method for comparing a first sequence to a reference sequence wherein the first sequence is selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQ ID NOs. 74-123 comprising the steps of reading the first sequence and the reference sequence through use of a computer program which compares sequences and determining differences between the first sequence and the reference sequence with the computer program. In some aspects of this embodiment, said step of determining differences between the first sequence and the reference sequence comprises identifying polymorphisms.

Another embodiment of the present invention is a method for identifying a feature in a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQID NOs. 74-123 comprising the steps of reading the sequence through the use of a computer program which identifies features in sequences and identifying features in the sequence with said computer program.

Brief Description of the Drawings

Figure 1 is a table with all of the parameters that can be used for each step of cDNA analysis.

Figure 2 is an analysis of the 43 amino terminal amino acids of all human SwissProt proteins to determine the frequency of false positives and false negatives using the techniques for signal peptide identification described herein.

30 Figure 3 provides a diagram of a RT-PCR-based method to isolate cDNAs containing sequences adjacent to 5'ESTs used to obtain them

Figure 4 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags.

Figure 5 describes the transcription factor binding sites present in each of these promoters.

Figure 6 is a block diagram of an exemplary computer system.

WO 00/37491 PCT/IB99/02058

Figure 7 is a flow diagram illustrating one embodiment of a process 200 for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database.

12

Figure 8 is a flow diagram illustrating one embodiment of a process 250 in a computer for 5 determining whether two sequences are homologous.

Figure 9 is a flow diagram illustrating one embodiment of an identifier process 300 for detecting the presence of a feature in a sequence.

Figure 10 illustrates an alignment of the protein of SEQ ID NO: 76, encoded by the cDNA SEQ ID NO: 26 with the parotid HPSP protein (SEQ ID NO: 124).

Figure 11 illustrates an alignment of the protein of SEQ ID NO: 93, encoded by the cDNA SEQ ID NO: 43 with a human transmembrane protein (SEQ ID NO: 125). The conserved cysteines are in bold. The conserved region around the second cysteine is underlined. The potential active site QxVxG is in italics.

Figure 12 illustrates an alignment of the protein of SEQ ID NO: 75, encoded by the cDNA SEQ ID NO: 25 with a human putative sialyltransferase (SEQ ID NO: 126), displaying 89.4% identical residues in a 301 amino acid overlap. The sialylmotifS is in bold. The sialylmotifL is in italics. The potential transmembrane segments are underlined.

Figure 13 illustrates an alignment of the protein of SEQ ID NO: 104, encoded by the extended cDNA SEQ ID NO: 54, with the murine recombination activating gene 1 inducing protein (SEQ ID NO: 177).

Detailed Description of the Preferred Embodiment

20 I. Obtaining cDNA libraries including the 5'Ends of their Corresponding mRNAs

10

The cDNAs of the present invention may include the entire coding sequence of the protein encoded by the corresponding mRNA, including the authentic translation start site, the signal sequence, and the sequence encoding the mature protein remaining after cleavage of the signal peptide. Such cDNAs are referred to herein as "full length cDNAs." Alternatively, the cDNAs may include only the sequence encoding the mature protein remaining after cleavage of the signal peptide, or only the sequence encoding the signal peptide.

The methods explained therein can also be used to obtain cDNAs which encode less than the entire coding sequence of the secreted proteins encoded by the genes corresponding to the cDNAs. In some embodiments, the cDNAs isolated using these methods encode at least 5 amino acids of one of the proteins encoded by the sequences of SEQ ID NOs: 24-73. In further embodiments, the cDNAs encode at least 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 consecutive amino acids of the proteins encoded by the sequences of SEQ ID NOs: 24-73. In a preferred embodiment, the cDNAs encode a full length protein sequence, which includes the protein coding sequences of SEQ ID NOs: 24-73.

The cDNAs of the present invention were obtained from cDNA libraries derived from mRNAs having intact 5' ends as described in Examples 1 to 5 using either a chemical or enzymatic approach.

EXAMPLE 1

Preparation of mRNA

Total human RNAs or polyA+ RNAs derived from different tissues were respectively purchased from LABIMO and CLONTECH and used to generate cDNA libraries as described below. The purchased RNA had been isolated from cells or tissues using acid guanidium thiocyanate-phenol-chloroform extraction (Chomczyniski and Sacchi, *Analytical Biochemistry* 162:156-159, 1987). PolyA+ RNA was isolated from total RNA (LABIMO) by two passes of oligo dT chromatography, as described by Aviv and Leder, *Proc. Natl. Acad. Sci. USA* 69:1408-1412, 1972) in order to eliminate ribosomal RNA.

The quality and the integrity of the polyA+ RNAs were checked. Northern blots hybridized with a probe corresponding to an ubiquitous mRNA, such as elongation factor 1 or elongation factor 2, were used to confirm that the mRNAs were not degraded. Contamination of the polyA+ mRNAs by ribosomal sequences was checked using Northern blots and a probe derived from the sequence of the 28S rRNA. Preparations of mRNAs with less than 5% of rRNAs were used in library construction. To avoid constructing libraries with RNAs contaminated by exogenous sequences (prokaryotic or fungal), the presence of bacterial 16S ribosomal sequences or of two highly expressed fungal mRNAs was examined using PCR.

EXAMPLE 2

Methods for Obtaining mRNAs having Intact 5' Ends

Following preparation of the mRNAs from various tissues as described above, selection of mRNA with intact 5' ends and specific attachment of an oligonucleotide tag to the 5' end of such mRNA is performed using either a chemical or enzymatic approach. Both techniques take advantage of the presence of the "cap" structure, which characterizes the 5'end of intact mRNAs and which comprises a guanosine generally methylated once, at the 7 position.

The chemical modification approach involves the optional elimination of the 2', 3'-cis diol of the 3' terminal ribose, the oxidation of the 2', 3', -cis diol of the ribose linked to the cap of the 5' ends of the mRNAs into a dialdehyde, and the coupling of the dialdehyde to a derivatized oligonucleotide tag. Further detail regarding the chemical approaches for obtaining mRNAs having intact 5' ends are disclosed in International Application No. WO96/34981, published November 7, 1996.

The enzymatic approach for ligating the oligonucleotide tag to the 5' ends of mRNAs with intact 5' ends involves the removal of the phosphate groups present on the 5' ends of uncapped incomplete mRNAs, the subsequent decapping of mRNAs with intact 5' ends and the ligation of the phosphate present at the 5' end of the decapped mRNA to an oligonucleotide tag. Further detail regarding the enzymatic approaches for obtaining mRNAs having intact 5' ends are disclosed in Dumas Milne Edwards J.B. (Doctoral Thesis of Paris VI University, Le clonage des ADNc complets: difficultes et perspectives nouvelles. Apports pour l'etude de la regulation de l'expression de la tryptophane hydroxylase de rat, 20 Dec. 1993), EP0 625572 and Kato et al., Gene 150:243-250 (1994).

In either the chemical or the enzymatic approach, the oligonucleotide tag has a restriction enzyme site (e.g. EcoRI sites) therein to facilitate later cloning procedures. Following attachment of the oligonucleotide tag to the mRNA, the integrity of the mRNA was then examined by performing a Northem blot using a probe complementary to the oligonucleotide tag.

-<u>-</u>-- ,

EXAMPLE 3

cDNA Synthesis Using mRNA Templates Having Intact 5' Ends

For the mRNAs joined to oligonucleotide tags using either the chemical or the enzymatic method, first strand cDNA synthesis was performed using reverse transcriptase with an oligo-dT primer or random nonamer. In some instances, this oligo-dT primer contained an internal tag of at least 4 nucleotides which is different from one tissue to the other. In order to protect internal EcoRI sites in the cDNA from digestion at later steps in the procedure, methylated dCTP was used for first strand synthesis. After removal of RNA by an alkaline hydrolysis, the first strand of cDNA was precipitated using isopropanol in order to eliminate residual primers.

The second strand of the cDNA was then synthesized with a Klenow fragment using a primer corresponding to the 5'end of the ligated oligonucleotide. Preferably, the primer is 20-25 bases in length. Methylated dCTP was also used for second strand synthesis in order to protect internal EcoRI sites in the cDNA from digestion during the cloning process.

EXAMPLE 4

Cloning of cDNAs derived from mRNA with intact 5' ends into BlueScript

10

15

Following second strand synthesis, the cDNAs were cloned into the phagemid pBlueScript II SK-vector (Stratagene). The ends of the cDNAs were blunted with T4 DNA polymerase (Biolabs) and the cDNA was digested with EcoRI. Since methylated dCTP was used during cDNA synthesis, the EcoRI site present in the tag was the only hemi-methylated site, hence the only site susceptible to EcoRI digestion. In some instances, to facilitate subcloning, an Hind III adaptor was added to the 3' end of cDNAs.

The cDNAs were then size fractionated using either exclusion chromatography (AcA, Biosepra) or electrophoretic separation which yields 3 or 6 different fractions. The cDNAs were then directionally cloned either into pBlueScript using either the EcoRI and Smal restriction sites or the EcoRI and Hind III restriction sites when the Hind III adaptator was present in the cDNAs. The ligation mixture was electroporated into bacteria and propagated under appropriate antibiotic selection.

EXAMPLE 5

Selection of Clones Having the Oligonucleotide Tag Attached Thereto

Clones containing the oligonucleotide tag attached to cDNAs were then selected as follows.

The plasmid DNAs containing cDNA libraries made as described above were purified (Qiagen). A positive selection of the tagged clones was performed as follows. Briefly, in this selection procedure, the plasmid DNA was converted to single stranded DNA using gene II endonuclease of the phage F1 in combination with an exonuclease (Chang *et al.*, *Gene* 127:95-8, 1993) such as exonuclease III or T7 gene 6 exonuclease. The resulting single stranded DNA was then purified using paramagnetic beads as described by Fry *et al.*, *Biotechniques*, 13: 124-131, 1992. In this procedure, the single stranded DNA was hybridized with a biotinylated oligonucleotide having a sequence corresponding to the 3' end of the oligonucleotide tag described in example 2. Preferably, the primer has a length of 20-25 bases. Clones including a sequence complementary to the biotinylated oligonucleotide were captured by incubation with streptavidin coated

PCT/IB99/02058 WO 00/37491

15

magnetic beads followed by magnetic selection. After capture of the positive clones, the plasmid DNA was released from the magnetic beads and converted into double stranded DNA using a DNA polymerase such as the ThermoSequenase obtained from Amersham Pharmacia Biotech. Alternatively, protocols such as the Gene Trapper kit (Gibco BRL) may be used. The double stranded DNA was then electroporated into 5 bacteria. The percentage of positive clones having the 5' tag oligonucleotide was estimated to typically rank between 90 and 98% using dot blot analysis.

Following electroporation, the libraries were ordered in 384-microtiter plates (MTP). A copy of the MTP was stored for future needs. Then the libraries were transferred into 96 MTP.

II. Characterization of the 5' Ends of Clones

10

In order to sequence only cDNAs which contain the 5' ends of their corresponding mRNA, a first round of sequencing was performed on the 5' end of clones as described in example 6. In some instances, only a partial sequence of the clone, therein referred to as "5'EST" was obtained. In other instances, the complete sequence of the clone, herein referred to as a "cDNA" is obtained. A computer analysis was then performed on the 5' ESTs or cDNAs as described in Examples 7 and 8 in order to evaluate the quality of the 15 cDNA libraries and in order to select clones containing sequences of interest among cDNAs which contain the 5' ends of their corresponding mRNA.

EXAMPLE 6

Sequencing of The 5'End of cDNA Clones

The 5' ends of cloned cDNAs were then sequenced as follows. Plasmid inserts were first amplified 20 by PCR on PE 9600 thermocyclers (Perkin-Elmer, Applied Biosystems Division, Foster City, CA) using standard SETA-A and SETA-B primers (Genset SA), AmpliTagGold (Perkin-Elmer), dNTPs (Boehringer), buffer and cycling conditions as recommended by the Perkin-Elmer Corporation.

PCR products were then sequenced using automatic ABI Prism 377 sequencers (Perkin Elmer). Sequencing reactions were performed using PE 9600 thermocyclers with standard dye-primer chemistry and 25 ThermoSequenase (Amersham Pharmacia Biotech). The primers used were either T7 or 21M13 (available from Genset SA) as appropriate. The primers were labeled with the JOE, FAM, ROX and TAMRA dyes. The dNTPs and ddNTPs used in the sequencing reactions were purchased from Boehringer. Sequencing buffer, reagent concentrations and cycling conditions were as recommended by Amersham.

Following the sequencing reaction, the samples were precipitated with ethanol, resuspended in 30 formamide loading buffer, and loaded on a standard 4% acrylamide gel. Electrophoresis was performed for 2.5 hours at 3000V on an ABI 377 sequencer, and the sequence data were collected and analyzed using the ABI Prism DNA Sequencing Analysis Software, version 2.1.2.

The sequence data obtained from the sequencing of 5' ends of all cDNA libraries made as described above were transferred to a proprietary database, where quality control and validation steps were 35 performed. A proprietary base-caller, working using a Unix system automatically flagged suspect peaks, taking into account the shape of the peaks, the inter-peak resolution, and the noise level. The proprietary base-caller also performed an automatic trimming. Any stretch of 25 or fewer bases having more than 4

25

16

suspect peaks was considered unreliable and was discarded. Sequences corresponding to cloning vector or ligation oligonucleotides were automatically removed from the sequences. However, the resulting sequences may contain 1 to 5 nucleotides belonging to the above mentioned sequences at their 5' end. If needed, these can easily be removed on a case by case basis.

Following sequencing as described above, the sequences of the cDNA clones were entered in a database for storage and manipulation as described below. Before searching the cDNA clones in the database for sequences of interest, cDNAs derived from mRNAs which were not of interest were identified and eliminated, namely, endogenous contaminants (ribosomal RNAs, transfert RNAs, mitochondrial RNAs) and exogenous contaminants (prokaryotic RNAs and fungal RNAs) using software and parameters 10 described in Figure 1. In addition, cDNA sequences showing showing homology to repeated sequences (Alu, L1,THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats) were identified and masked in further processing.

EXAMPLE 7

Determination of Efficiency of 5' End Selection

15 To determine the efficiency at which the above selection procedures isolated cDNAs which include the 5' ends of their corresponding mRNAs, the sequences of 5'ESTs or cDNAs were aligned with a reference pool of complete mRNA/cDNA extracted from the EMBL release 57 using the FASTA algorithm. The reference mRNA/cDNA starting at the most 5' transcription start site was obtained, and then compared to the 5' transcription start site position of the 5'EST or cDNA. More than 75% of 5'ESTs or cDNAs had their 20 5' ends close to the 5' ends of the known sequence. As some of the mRNA sequences available in the EMBL database are deduced from genomic sequences, a 5' end matching with these sequences will be counted as an internal match. Thus, the method used here underestimates the yield of 5'ESTs or cDNAs including the authentic 5' ends of their corresponding mRNAs.

EXAMPLE 8

Identification of Open Reading Frames Coding For Potential Signal Peptides

The obtained nucleic acid sequences were then screened to identify those having uninterrupted open reading frames (ORF) with a good coding probability using proprietary software. When the full-length cDNA was obtained, only complete ORFs, namely nucleic acid sequences beginning with a start codon and ending with a stop codon, longer than 150 nucleotides were considered. When only 5'EST sequences were 30 obtained, both complete ORFS longer than 150 nucleotides and incomplete ORFs, namely nucleic acid sequences beginning with a start codon and extending up to the end of the 5'EST, longer than 60 nucleotides were considered.

The retrieved ORFs were then searched to identify potential signal motifs using slight modifications of the procedures disclosed in Von Heijne, Nucleic Acids Res. 14:4683-4690, 1986. Those 5'ESTs or cDNA 35 sequences encoding a polypeptide with a score of at least 3.5 in the Von Heijne signal peptide identification matrix were considered to possess a signal sequence. Those 5'ESTs or cDNAs which matched a known

WO 00/37491 PCT/IB99/02058

17

human mRNA or EST sequence and had a 5' end more than 30 nucleotides downstream of the known 5' end were excluded from further analysis.

EXAMPLE 9

Confirmation of Accuracy of Identification of Potential Signal Sequences in 5' ESTs

The accuracy of the above procedure for identifying signal sequences encoding signal peptides was evaluated by applying the method to the 43 amino acids located at the N terminus of all human SwissProt proteins. The computed Von Heijne score for each protein was compared with the known characterization of the protein as being a secreted protein or a non-secreted protein. In this manner, the number of non-secreted proteins having a score higher than 3.5 (false positives) and the number of secreted proteins having a score lower than 3.5 (false negatives) could be calculated.

Using the results of the above analysis, the probability that a peptide encoded by the 5' region of the mRNA is in fact a genuine signal peptide based on its Von Heijne's score was calculated based on either the assumption that 10% of human proteins are secreted or the assumption that 20% of human proteins are secreted. The results of this analysis are shown in figure 2.

Using the above method of identification of secretory proteins, 5' ESTs of the following polypeptides known to be secreted were obtained: human glucagon, gamma interferon induced monokine precursor, secreted cyclophilin-like protein, human pleiotropin, and human biotinidase precursor. Thus, the above method successfully identified those 5' ESTs which encode a signal peptide.

To confirm that the signal peptide encoded by the 5' ESTs or cDNAs actually functions as a signal peptide, the signal sequences from the 5' ESTs or cDNAs may be cloned into a vector designed for the identification of signal peptides. Such vectors are designed to confer the ability to grow in selective medium only to host cells containing a vector with an operably linked signal sequence. For example, to confirm that a 5' EST or cDNA encodes a genuine signal peptide, the signal sequence of the 5' EST or cDNA may be inserted upstream and in frame with a non-secreted form of the yeast invertase gene in signal peptide selection vectors such as those described in U.S. Patent No. 5,536,637. Growth of host cells containing signal sequence selection vectors with the correctly inserted 5' EST or cDNA signal sequence confirms that the 5' EST or cDNA encodes a genuine signal peptide.

Alternatively, the presence of a signal peptide may be confirmed by cloning the 5'ESTs or cDNAs into expression vectors such as pXT1 as described below, or by constructing promoter-signal sequencereporter gene vectors which encode fusion proteins between the signal peptide and an assayable reporter protein. After introduction of these vectors into a suitable host cell, such as COS cells or NIH 3T3 cells, the growth medium may be harvested and analyzed for the presence of the secreted protein. The medium from these cells is compared to the medium from control cells containing vectors lacking the signal sequence or cDNA insert to identify vectors which encode a functional signal peptide or an authentic secreted protein.

EXAMPLE 10

35

15

PCT/IB99/02058

The spatial and temporal expression patterns of the mRNAs corresponding to the 5' ESTs or cDNAs, as well as their expression levels, may be determined. Characterization of the spatial and temporal expression patterns and expression levels of these mRNAs is useful for constructing expression vectors capable of producing a desired level of gene product in a desired spatial or temporal manner, as will be discussed in more detail below.

In addition, cDNAs or 5' ESTs whose corresponding mRNAs are associated with disease states may also be identified. For example, a particular disease may result from lack of expression, over expression, or under expression of an mRNA corresponding to a cDNA or 5' EST. By comparing mRNA expression patterns and quantities in samples taken from healthy individuals with those from individuals suffering from a particular disease, cDNAs and 5' ESTs responsible for the disease may be identified.

Expression levels and patterns of mRNAs corresponding to 5' ESTs or cDNAs may be analyzed by solution hybridization with long probes as described in International Patent Application No. WO 97/05277. Briefly, a 5' EST, cDNA, or fragment thereof corresponding to the gene encoding the mRNA to be characterized is inserted at a cloning site immediately downstream of a bacteriophage (T3, T7 or SP6) RNA polymerase promoter to produce antisense RNA. Preferably, the 5' EST or cDNA is 100 or more nucleotides in length. The plasmid is linearized and transcribed in the presence of ribonucleotides comprising modified ribonucleotides (i.e. biotin-UTP and DIG-UTP). An excess of this doubly labeled RNA is hybridized in solution with mRNA isolated from cells or tissues of interest. The hybridizations are performed under standard stringent conditions (40-50°C for 16 hours in an 80% formamide, 0.4 M NaCl buffer, pH 7-8). The unhybridized probe is removed by digestion with ribonucleases specific for single-stranded RNA (i.e. RNases CL3, T1, Phy M, U2 or A). The presence of the biotin-UTP modification enables capture of the hybrid on a microtitration plate coated with streptavidin. The presence of the DIG modification enables the hybrid to be detected and quantified by ELISA using an anti-DIG antibody coupled to alkaline phosphatase.

The 5' ESTs, cDNAs, or fragments thereof may also be tagged with nucleotide sequences for the serial analysis of gene expression (SAGE) as disclosed in UK Patent Application No. 2 305 241 A. In this method, cDNAs are prepared from a cell, tissue, organism or other source of nucleic acid for which it is desired to determine gene expression patterns. The resulting cDNAs are separated into two pools. The cDNAs in each pool are cleaved with a first restriction endonuclease, called an "anchoring enzyme," having a recognition site which is likely to be present at least once in most cDNAs. The fragments which contain the 5' or 3' most region of the cleaved cDNA are isolated by binding to a capture medium such as streptavidin coated beads. A first oligonucleotide linker having a first sequence for hybridization of an amplification primer and an internal restriction site for a "tagging endonuclease" is ligated to the digested cDNAs in the first pool. Digestion with the second endonuclease produces short "tag" fragments from the cDNAs.

A second oligonucleotide having a second sequence for hybridization of an amplification primer and an internal restriction site is ligated to the digested cDNAs in the second pool. The cDNA fragments in the second pool are also digested with the "tagging endonuclease" to generate short "tag" fragments derived

35

-- ·

from the cDNAs in the second pool. The "tags" resulting from digestion of the first and second pools with the anchoring enzyme and the tagging endonuclease are ligated to one another to produce "ditags." In some embodiments, the ditags are concatamerized to produce ligation products containing from 2 to 200 ditags. The tag sequences are then determined and compared to the sequences of the 5' ESTs or cDNAs to

5 determine which 5' ESTs or cDNAs are expressed in the cell, tissue, organism, or other source of nucleic acids from which the tags were derived. In this way, the expression pattern of the 5' ESTs or cDNAs in the cell, tissue, organism, or other source of nucleic acids is obtained.

Quantitative analysis of gene expression may also be performed using arrays. As used herein, the term array means a one dimensional, two dimensional, or multidimensional arrangement of full length 10 cDNAs (i.e. cDNAs which include the coding sequence for the signal peptide, the coding sequence for the mature protein, and a stop codon), cDNAs, 5' ESTs or fragments of the full length cDNAs, cDNAs, or 5' ESTs of sufficient length to permit specific detection of gene expression. Preferably, the fragments are at least 15 nucleotides in length. More preferably, the fragments are at least 100 nucleotides in length. More preferably, the fragments are more than 100 nucleotides in length. In some embodiments the fragments 15 may be more than 500 nucleotides in length.

For example, quantitative analysis of gene expression may be performed with full length cDNAs. cDNAs, 5' ESTs, or fragments thereof in a complementary DNA microarray as described by Schena et al. (Science 270:467-470, 1995; Proc. Natl. Acad. Sci. U.S.A. 93:10614-10619, 1996). Full length cDNAs, cDNAs, 5' ESTs or fragments thereof are amplified by PCR and arrayed from 96-well microtiter plates onto 20 silylated microscope slides using high-speed robotics. Printed arrays are incubated in a humid chamber to allow rehydration of the array elements and rinsed, once in 0.2% SDS for 1 min, twice in water for 1 min and once for 5 min in sodium borohydride solution. The arrays are submerged in water for 2 min at 95°C, transferred into 0.2% SDS for 1 min, rinsed twice with water, air dried and stored in the dark at 25°C.

Cell or tissue mRNA is isolated or commercially obtained and probes are prepared by a single 25 round of reverse transcription. Probes are hybridized to 1 cm² microarrays under a 14 x 14 mm glass coverslip for 6-12 hours at 60°C. Arrays are washed for 5 min at 25°C in low stringency wash buffer (1 x SSC/0.2% SDS), then for 10 min at room temperature in high stringency wash buffer (0.1 x SSC/0.2% SDS). Arrays are scanned in 0.1 x SSC using a fluorescence laser scanning device fitted with a custom filter set. Accurate differential expression measurements are obtained by taking the average of the ratios of two 30 independent hybridizations.

Quantitative analysis of the expression of genes may also be performed with full length cDNAs, cDNAs, 5' ESTs, or fragments thereof in complementary DNA arrays as described by Pietu et al. (Genome Research 6:492-503, 1996). The full length cDNAs, cDNAs, 5' ESTs or fragments thereof are PCR amplified and spotted on membranes. Then, mRNAs originating from various tissues or cells are labeled with 35 radioactive nucleotides. After hybridization and washing in controlled conditions, the hybridized mRNAs are detected by phospho-imaging or autoradiography. Duplicate experiments are performed and a quantitative analysis of differentially expressed mRNAs is then performed.

PCT/IB99/02058 WO 00/37491

20

Alternatively, expression analysis of the 5' ESTs or cDNAs can be done through high density nucleotide arrays as described by Lockhart et al. (Nature Biotechnology 14: 1675-1680, 1996) and Sosnowsky et al. (Proc. Natl. Acad. Sci. 94:1119-1123, 1997). Oligonucleotides of 15-50 nucleotides corresponding to sequences of the 5' ESTs or cDNAs are synthesized directly on the chip (Lockhart et al., 5 supra) or synthesized and then addressed to the chip (Sosnowski et al., supra). Preferably, the oligonucleotides are about 20 nucleotides in length.

cDNA probes labeled with an appropriate compound, such as biotin, digoxigenin or fluorescent dye, are synthesized from the appropriate mRNA population and then randomly fragmented to an average size of 50 to 100 nucleotides. The said probes are then hybridized to the chip. After washing as described in 10 Lockhart et al., supra and application of different electric fields (Sosnowsky et al., Proc. Natl. Acad. Sci. 94:1119-1123),, the dyes or labeling compounds are detected and quantified. Duplicate hybridizations are performed. Comparative analysis of the intensity of the signal originating from cDNA probes on the same target oligonucleotide in different cDNA samples indicates a differential expression of the mRNA corresponding to the 5' EST or cDNA from which the oligonucleotide sequence has been designed.

15 III. Characterization of cDNAs including the 5'End of their Corresponding mRNA

EXAMPLE 11

Characterization of the complete sequence of cDNA clones

· Clones which include the 5'end of their corresponding mRNA and which encode a new protein with a signal peptide as determined in the aforementioned procedure were then fully sequenced as follows.

First, both 5' and 3' ends of cloned cDNAs were sequenced twice in order to confirm the identity of the clone using a Die Terminator approach with the AmpliTaq DNA polymerase FS kit available from Perkin Elmer. Second, primer walking was performed if the full coding region had not been obtained yet using software such as OSP to choose primers and automated computer software such as ASMG (Sutton et al., Genome Science Technol. 1: 9-19, 1995) to construct contigs of walking sequences including the initial 5' 25 tag. Contigation was then performed using 5' and 3' sequences and eventually primer walking sequences. The sequence was considered complete when the resulting contigs included the full coding region as well as overlapping sequences with vector DNA on both ends. In addition, clones were entirely sequenced in order to obtain at least two sequences per clone. Preferably, the sequences were obtained from both sense and antisense strands. All the contigated sequences for each clone were then used to obtain a consensus 30 sequence which was then submitted to the computer analysis described below.

Alternatively, clones which include the 5'end of their corresponding mRNA and which encode a new protein with a signal peptide, as determined in the aforementioned procedure, may be subcloned into an appropriate vector such as pED6dpc2 (DiscoverEase, Genetics Institute, Cambridge, MA) before full sequencing.

EXAMPLE 12

35

20

Following identification of contaminants and masking of repeats, structural features, e.g. polyA tail and polyadenylation signal, of the sequences of cDNAs were subsequently determined using the algorithm, parameters and criteria defined in figure 1. Briefly, a polyA tail was defined as a homopolymeric stretch of at least 11 A with at most one alternative base within it. The polyA tail search was restricted to the last 100 nt of the sequence and limited to stretches of 11 consecutive A's because sequencing reactions are often not readable after such a polyA stretch. To search for a polyadenylation signal, the polyA tail was clipped from the full-length sequence. The 50 bp preceding the polyA tail were searched for the canonic polyadenylation AAUAAA signal allowing one mismatch to account for possible sequencing errors as well as known variation in the canonical sequence of the polyadenylation signal.

PCT/IB99/02058

Functional features, e.g. ORFs and signal sequences, of the sequences of cDNAs were subsequently determined as follows. The 3 upper strand frames of cDNAs were searched for ORFs defined as the maximum length fragments beginning with a translation initiation codon and ending with a stop codon. ORFs encoding at least 80 amino acids were preferred. Each found ORF was then scanned for the presence of a signal peptide using the matrix method described in example 10.

Sequences of cDNAs were then compared, on a nucleotidic or proteic basis, to public sequences available at the time of filing.

EXAMPLE 13

Selection of Full Length Sequences

cDNAs that had already been characterized by the aforementioned computer analysis were then submitted to an automatic procedure in order to preselect cDNAs containing sequences of interest.

a) Automatic sequence preselection

10

All cDNAs clipped for vector on both ends were considered. First, a negative selection was performed in order to eliminate sequences which resulted from either contaminants or artifacts as follows. Sequences matching contaminant sequences were discarded as well as those encoding ORF sequences exhibiting extensive homology to repeats. Sequences lacking polyA tail were also discarded. Those cDNAs which matched a known human mRNA or EST sequence and had a 5' end more than 30 nucleotides downstream of the known 5' end were also excluded from further analysis. Only ORFs ending before the polyA tail were kept.

Then, for each remaining cDNA containing several ORFs, a preselection of ORFs was performed using the following criteria. The longest ORF was preferred. If the ORF sizes were similar, the chosen ORF was the one which signal peptide had the highest score according to Von Heijne method as defined in Example 10.

Sequences of cDNA clones were then compared pairwise with BLAST after masking of the repeat sequences. Sequences containing at least 90% homology over 30 nucleotides were clustered in the same class. Each cluster was then subjected to a clustal analysis that detects sequences resulting from internal priming or from alternative splicing, identical sequences or sequences with several frameshifts. This automatic analysis served as a basis for manual selection of the sequences.

WO 00/37491 PCT/IB99/02058

b) Manual sequence selection

30

Manual selection was carried out using automatically generated reports for each sequenced cDNA clone. During the manual selection procedure, a selection was performed between clones belonging to the same class as follows. ORF sequences encoded by clones belonging to the same class were aligned and compared. If the homology between nucleotidic sequences of clones belonging to the same class was more than 90% over 30 nucleotide stretches or if the homology between amino acid sequences of clones belonging to the same class was more than 80% over 20 amino acid stretches, then the clones were considered as being identical. The chosen ORF was either the one exhibiting matches with known amino acid sequences or the best one according to the criteria mentioned in the automatic sequence preselection section. If the nucleotide and amino acid homologies were less than 90% and 80% respectively, the clones were said to encode distinct proteins which can be both selected if they contain sequences of interest.

Selection of full length cDNA clones encoding sequences of interest was performed using the following criteria. Structural parameters (initial tag, polyadenylation site and signal, eventually matches with public ESTs in 5' or 3' of the sequence) were first checked in order to confirm that the cDNA was complete in 5' and in 3'. Then, homologies with known nucleic acids and proteins were examined in order to determine whether the clone sequence matched a known nucleic acid or protein sequence and, in the latter case, its covering rate and the date at which the sequence became public. If there was no extensive match with sequences other than ESTs or genomic DNA, or if the clone sequence included substantial new information, such as encoding a protein resulting from alternative splicing of an mRNA coding for an already known protein, the sequence was kept. Examples of such cloned full length cDNAs containing sequences of interest are described in Example14. Sequences resulting from chimera or double inserts as assessed by homology to other sequences were discarded during this procedure.

EXAMPLE 14

Characterization of Full-length cDNAs

The procedure described above was used to obtain or full length cDNAs derived from a variety of tissues. The following list provides a few examples of thus obtained cDNAs.

Using this procedure, the full length cDNA of SEQ ID NO:1 (internal identification number 108-005-5-0-F9-FLC) was obtained. This cDNA encodes a potentially secreted protein (SEQ ID NO:2) with a signal peptide having a von Heijne score of 4.1.

Using this procedure, the full length cDNA of SEQ ID NO:3 (internal identification number 108-004-5-0-G10-FLC) was obtained. This cDNA encodes a potentially secreted protein (SEQ ID NO:4) with a signal peptide having a von Heijne score of 5.3.

Using this procedure, the full length cDNA of SEQ ID NO:5 (internal identification number 108-004-5-0-B12-FLC) was obtained. This cDNA encodes a potentially secreted protein (SEQ ID NO:6) with a signal peptide having a von Heijne score of 7.0.

Using this procedure, the full length cDNA of SEQ ID NO:7 (internal identification number 108-013-5-0-G5-FLC) was obtained. This cDNA encodes a potentially secreted protein (SEQ ID NO:8) with a signal peptide having a von Heijne score of 9.4.

Furthermore, the polypeptides encoded by the extended or full-length cDNAs may be screened for 5 the presence of known structural or functional motifs or for the presence of signatures, small amino acid sequences which are well conserved amongst the members of a protein family. Some of the results obtained for the polypeptides encoded by full-length cDNAs that were screened for the presence of known protein signatures and motifs using the Proscan software from the GCG package and the Prosite database are provided below.

10

The protein of SEQ ID NO:10 encoded by the full-length cDNA SEQ ID NO:9 (internal designation 108-013-5-O-H9-FLC) shows homologies with a family of lysophospholipases conserved among eukaryotes (yeast, rabbit, rodents and human). In addition, some members of this family exhibit a calcium-independent phospholipase A2 activity (Portilla et al., J. Am. Soc. Nephro., 9:1178-1186 (1998)). All members of this family exhibit the active site consensus GXSXG motif of carboxylesterases that is also found in the protein of 15 SEQ ID NO:10 (position 54 to 58). In addition, this protein may be a membrane protein with one transmembrane domain as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)). Taken together, these data suggest that the protein of SEQ ID NO:10 may play a role in fatty acid metabolism, probably as a phospholipase. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, cancer, diabetes, and 20 neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. It may also be useful in modulating inflammatory responses to infectious agents and/or to suppress graft rejection.

The protein of SEQ ID NO: 12 encoded by the full-length cDNA SEQ ID NO:11 (internal designation 108-004-5-0-D10-FLC) shows remote homology to a subfamily of beta4-galactosyltransferases widely conserved in animals (human, rodents, cow and chicken). Such enzymes, usually type II membrane 25 proteins located in the endoplasmic reticulum or in the Golgi apparatus, catalyze the biosynthesis of glycoproteins, glycolipid glycans and lactose. Their characteristic features defined as those of subfamily A in Breton et al., J. Biochem., 123:1000-1009 (1998) are pretty well conserved in the protein of SEQ ID NO: 12, especially the region I containing the DVD motif (positions 163-165) thought to be involved either in UDP binding or in the catalytic process itself. In addition, the protein of SEQ ID NO: 12 has the typical structure of 30 a type II protein. Indeed, it contains a short 28-amino-acid-long N-terminal tail, a transmembrane segment from positions 29 to 49 and a large 278-amino-acid-long C-terminal tail as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)). Taken together, these data suggest that the protein of SEQ ID NO: 12 may play a role in the biosynthesis of polysaccharides, and of the carbohydrate moieties of glycoproteins and glycolipids and/or in cell-cell recognition. Thus, this protein may 35 be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, atherosclerosis, cardiovascular disorders, autoimmune disorders and rheumatic diseases including rheumatoid arthritis.

WO 00/37491

10

The protein of SEQ ID NO: 14 encoded by the extended cDNA SEQ ID NO: 13 (internal designation 108-004-5-0-E8-FLC) exhibits the typical PROSITE signature for amino acid permeases (positions 5 to 66) which are integral membrane proteins involved in the transport of amino acids into the cell. In addition, the protein of SEQ ID NO: 14 has a transmembrane segment from positions 9 to 29 as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)). Taken together, these data suggest that the protein of SEQ ID NO: 14 may be involved in amino acid transport. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to. cancer, aminoacidurias, neurodegenerative diseases, anorexia, chronic fatigue, coronary vascular disease, diphtheria, hypoglycemia, male infertility, muscular and myopathies.

Bacterial clones containing plasmids containing the full length cDNAs described above are presently stored in the inventor's laboratories under the internal identification numbers provided above. The inserts may be recovered from the deposited materials by growing an aliquot of the appropriate bacterial clone in the appropriate medium. The plasmid DNA can then be isolated using plasmid isolation procedures familiar to those skilled in the art such as alkaline lysis minipreps or large scale alkaline lysis plasmid 15 isolation procedures. If desired the plasmid DNA may be further enriched by centrifugation on a cesium chloride gradient, size exclusion chromatography, or anion exchange chromatography. The plasmid DNA obtained using these procedures may then be manipulated using standard cloning techniques familiar to those skilled in the art. Alternatively, a PCR can be done with primers designed at both ends of the cDNA insertion. The PCR product which corresponds to the cDNA can then be manipulated using standard 20 cloning techniques familiar to those skilled in the art.

The above procedure was also used to obtain the cDNAs of the invention having the sequences of SEQ ID NOs: 24-73. Table I provides the sequence identification numbers of the cDNAs of the present invention, the locations of the first and last nucleicotides of the full coding sequences in SEQ ID NOs: 24-73 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS 25 location in Table I), the locations of the first and last nucleotides in SEQ ID NOs: 24-73 which encode the signal peptides (listed under the heading SigPep Location in Table I), the locations of the first and last nucleotides in SEQ ID NOs: 24-73 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table I), the locations in SEQ ID NOs; 24-73 of stop codons (listed under the heading Stop Codon Location in Table I), the locations of the first and last nucleotides in SEQ ID NOs: 24-73 of the polyA signals (listed under the heading Poly A Signal Location in Table I) and the locations of the first and last nucleotides of the polyA sites (listed under the heading Poly A Site Location in Table I).

Table II lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 74-123, the locations of the first and last amino acid residues of SEQ ID NOs: 74-123 in the full length polypeptide 35 (second column), the locations of the first and last amino acid residues of SEQ ID NOs: 74-123 in the signal peptides (third column), and the locations of the first and last amino acid residues of SEQ ID NOs; 74-123 in

PCT/IB99/02058 WO 00/37491

the mature polypeptide created by cleaving the signal peptide from the full length polypeptide (fourth column).

The nucleotide sequences of the sequences of SEQ ID NOs: 24-73 and the amino acid sequences encoded by SEQ ID NOs: 24-73 (i.e. amino acid sequences of SEQ ID NOs: 74-123) are provided in the 5 appended sequence listing. In some instances, the sequences are preliminary and may include some incorrect or ambiguous sequences or amino acids. All instances of the symbol "n" in the nucleic acid sequences mean that the nucleotide can be adenine, guanine, cytosine or thymine. For each amino acid sequence, Applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. In some instances the polypeptide sequences in the 10 Sequence Listing contain the symbol "Xaa." These "Xaa" symbols indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined sequence where applicants believe one should not exist (if the sequence were determined more accurately). Thus, "Xaa" indicates that a residue may be any of the twenty amino acids. In some instances, several possible identities of the unknown amino acids may be suggested by the genetic code.

The sequences of SEQ ID NOs: 24-73 can readily be screened for any errors therein and any sequence ambiguities can be resolved by resequencing a fragment containing such errors or ambiguities on both strands. Nucleic acid fragments for resolving sequencing errors or ambiguities may be obtained from the deposited clones or can be isolated using the techniques described herein. Resolution of any such ambiguities or errors may be facilitated by using primers which hybridize to sequences located close to the 20 ambiguous or erroneous sequences. For example, the primers may hybridize to sequences within 50-75 bases of the ambiguity or error. Upon resolution of an error or ambiguity, the corresponding corrections can be made in the protein sequences encoded by the DNA containing the error or ambiguity. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein, and determining its sequence.

25

30

15

EXAMPLE 15

Categorization of cDNAs of the Present Invention

The nucleic acid sequences of the present invention (SEQ ID NOs. 24-73) were grouped based on their homology to known sequences as follows. All sequences were compared to EMBL release 58 and daily releases available at the time of filing using BLASTN.

In some instances, the cDNAs did not match any known vertebrate sequence nor any publicly available EST sequence, thus being completely new.

All sequences exhibiting more than 90% of homology to known sequences over at least 30 nucleotides were retrieved and further analyzed. Table III gives the sequence identification numbers of these cDNAs (first column) and the positions of preferred fragments within these sequences (second column entitled 35 "Positions of preferred fragments"). Each fragment is represented by x-y where x and y are the start and end positions respectively of a given preferred fragment. Preferred fragments are separated from each other by a coma. As used herein the term "polynucleotide described in Table III" refers to the all of the preferred

PCT/IB99/02058 WO 00/37491

polynucleotide fragments defined in Table III in this manner. The present invention encompasses isolated, purified, or recombinant nucleic acids which consist of, consist essentially of, or comprise a contiguous span of one of the sequences of SEQ ID Nos. 24-73 or a sequence complementary thereto, said continguous span comprising at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 5 2000 nucleotides of the sequence of SEQ ID Nos. 24-73 or a sequence complementary thereto, to the extent that a contiguous span of these lengths is consistent with the lengths of the particular sequence, wherein the contiguous span comprises at least 1, 2, 3, 5, 10, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400 or 500 of a polynucleotide described in Table III, or a sequence complementary thereto. The present invention also encompasses isolated, purified, or recombinant nucleic acids comprising, consisting essentially of, 10 or consisting of a contiguous span of at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 nucleotides of a polynucleotide described in Table III or a sequence complementary thereto, to the extent that a contiguous span of these lengths is consistent with the length of the particular sequence described in Table III. The present invention also encompasses isolated, purified, or recombinant nucleic acids which comprise, consist of or consist essentially of a polynucleotide described in 15 Table III, or a sequence complementary thereto. The present invention further encompasses any combination of the nucleic acids listed in this paragraph.

Cells containing the cDNAs (SEQ ID NOs: 24-73) of the present invention in the vector pBluescriptII SK- (Stratagene) are maintained in permanent deposit by the inventors at Genset, S.A., 24 Rue Royale, 75008 Paris, France.

20

35

A pool of the cells containing the cDNAs (SEQ ID NOs: 24-73), from which the cells containing a particular polynucleotide is obtainable, was deposited on June, 17, 1999, with the European Collection of Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Reasearch, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom. In addition, a pool of the cells containing the extended cDNAs (SEQ ID NOs: 47-73), from which the 25 cells containing a particular polynucleotide is obtainable, was deposited on December 18, 1998, with the European Collection of Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Reasearch, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom. Each cDNA clone has been transfected into separate bacterial cells (E-coli) for these composite deposits. In particular, cells containing the sequences of SEQ ID Nos: 25-40 and 42-46 were 30 deposited on June, 17, 1999 in the pool having ECACC Accession No. 99061735 and designated SignalTag 15061999. In addition, cells containing the sequences of SEQ ID Nos: 47-73 were deposited on December 18, 1998, in the pool having ECACC Accession No. 98121805 and designated SignalTag 166-191. Table IV provides the internal designation number assigned to each SEQ ID NO. and indicates whether the sequence is a nucleic acid sequence or a protein sequence.

Each cDNA can be removed from the Bluescript vector in which it was deposited by performing a BsH II double digestion to produce the appropriate fragment for each clone provided the cDNA clone

sequence does not contain this restriction site. Alternatively, other restriction enzymes of the multicloning site of the vector may be used to recover the desired insert as indicated by the manufacturer.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The design of the oligonucleotide probe should preferably follow these parameters:

- (a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;
- (b) Preferably, the probe is designed to have a T_m of approx. 800C (assuming 2 degrees for each A
 10 or T and 4 degrees for each G or C). However, probes having melting temperatures between 40 0C and 80 0C may also be used provided that specificity is not lost.

The oligonucleotide should preferably be labeled with (-[32P]ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantified by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4X10⁶ dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 fl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing 20 ampicillin at 100 fg/ml. The culture should preferably be grown to saturation at 37fC, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 fg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37fC. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 650C for 1 hour with gentle agitation in 6X SSC (20X stock is 175.3 g NaC1/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 pg/ml of yeast RNA, and 10 mM EDTA (approximately 10 ml per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1X10⁶ dpm/ml. The filter is then preferably incubated at 650C with gentle agitation overnight. The filter is then preferably washed in 500 ml of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 650C for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

The plasmid DNA obtained using these procedures may then be manipulated using standard cloning techniques familiar to those skilled in the art. Alternatively, a PCR can be done with primers designed at both ends of the cDNA insertion. The PCR product which corresponds to the cDNA can then be manipulated using standard cloning techniques familiar to those skilled in the art.

Alternatively, the cDNA clone obtained by the process described in Examples 1 through 13 may not include the entire coding sequence of the protein encoded by the corresponding mRNA, although they do include sequences derived from the 5'ends of their corresponding mRNA. Such 5'EST can be used to isolate extended cDNAs which contain sequences adjacent to the 5' ESTs. Such obtained extended cDNAs may include the entire coding sequence of the protein encoded by the corresponding mRNA, including the authentic translation start site. Examples 16 and 17 below describe methods for obtaining extended cDNAs using 5' ESTs. Example 17 also describes methods to obtain cDNA, mRNA or genomic DNA homologous to cDNA, 5'ESTs, or fragment thereof.

The methods of Examples 16 and 17 can also be used to obtain cDNAs which encode less than the entire coding sequence of proteins encoded by the genes corresponding to the 5' ESTs. In some embodiments, the cDNAs isolated using these methods encode at least 5, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 consecutive amino acids of one of the proteins encoded by the sequences of SEQ ID NOs. 24-73.

EXAMPLE 16

General Method for Using 5' ESTs to Clone and Sequence cDNAs which Include the Entire Coding Region and the Authentic 5'End of the Corresponding mRNA

The following general method may be used to quickly and efficiently isolate cDNAs including sequence adjacent to the sequences of the 5' ESTs used to obtain them. This method, ilustrated in Figure 3, may be applied to obtain cDNAs for any 5' EST.

The method takes advantage of the known 5' sequence of the mRNA. A reverse transcription reaction is conducted on purified mRNA with a poly dT primer containing a nucleotide sequence at its 5' end allowing the addition of a known sequence at the end of the cDNA which corresponds to the 3' end of the mRNA. Such a primer and a commercially-available reverse transcriptase enzyme are added to a buffered mRNA sample yielding a reverse transcript anchored at the 3' polyA site of the RNAs. Nucleotide monomers are then added to complete the first strand synthesis. After removal of the mRNA hybridized to the first cDNA strand by alkaline hydrolysis, the products of the alkaline hydrolysis and the residual poly dT primer can be eliminated with an exclusion column.

Subsequently, a pair of nested primers on each end is designed based on the known 5' sequence from the 5' EST and the known 3' end added by the poly dT primer used in the first strand synthesis. Software used to design primers is either based on GC content and melting temperatures of

35

WO 00/37491

10

15

oligonucleotides, such as OSP (Illier and Green, PCR Meth. Appl. 1:124-128, 1991), or based on the octamer frequency disparity method (Griffais et al., Nucleic Acids Res. 19: 3887-3891, 1991) such as PC-Rare (http:// bioinformatics.weizmann.ac.il/software/PC-Rare/doc/manuel.html). Preferably, the nested primers at the 5' end and the nested primers at the 3' end are separated from one another by four to nine 5 bases. These primer sequences may be selected to have melting temperatures and specificities suitable for use in PCR.

29

PCT/IB99/02058

A first PCR run is performed using the outer primer from each of the nested pairs. A second PCR run using the inner primer from each of the nested pairs is then performed on a small aliquot of the first PCR product. Thereafter, the primers and remaining nucleotide monomers are removed.

Due to the lack of position constraints on the design of 5' nested primers compatible for PCR use using the OSP software, amplicons of two types are obtained. Preferably, the second 5' primer is located upstream of the translation initiation codon thus yielding a nested PCR product containing the entire coding sequence. Such a cDNA may be used in a direct cloning procedure such as the one described in example 4.

However, in some cases, the second 5' primer is located downstream of the translation initiation codon, thereby yielding a PCR product containing only part of the ORF. For such amplicons which do not contain the complete coding sequence, intermediate steps are necessary to obtain both the complete coding sequence and a PCR product containing the full coding sequence. The complete coding sequence can be assembled from several partial sequences determined directly from different PCR products. Once the full 20 coding sequence has been completely determined, new primers compatible for PCR use are then designed to obtain amplicons containing the whole coding region. However, in such cases, 3' primers compatible for PCR use are located inside the 3' UTR of the corresponding mRNA, thus yielding amplicons which lack part of this region, i.e. the polyA tract and sometimes the polyadenylation signal, as illustrated in Figure 3. Such obtained cDNAs are then cloned into an appropriate vector using a procedure essentially similar to the one 25 described in example 4.

Full-length PCR products are then sequenced using a procedure similar to the one described in example 11. Completion of the sequencing of a given cDNA fragment may be assessed by comparing the sequence length to the size of the corresponding nested PCR product. When Northern blot data are available, the size of the mRNA detected for a given PCR product may also be used to finally assess that the 30 sequence is complete. Sequences which do not fulfill these criteria are discarded and will undergo a new isolation procedure.

Full-length PCR products are then cloned in an appropriate vector. For example, the cDNAs can be cloned into a vector using a procedure similar to the one described in example 4. Such full-length cDNA clones are then double-sequenced and submitted to computer analyses using procedure essentially similar 35 to the ones described in Examples 11 through 13. However, it will be appreciated that full-length cDNA clones obtained from amplicons lacking part of the 3'UTR may lack polyadenylations sites and signals.

20

25

Methods for Obtaining cDNAs or Nucleic Acids Homologous to cDNAs or Fragments Thereof

In addition to PCR based methods for obtaining cDNAs, traditional hybridization based methods may also be employed. These methods may also be used to obtain the genomic DNAs which encode the mRNAs from which the cDNA is derived, mRNAs corresponding to the cDNAs, or nucleic acids which are homologous to cDNAs or fragments thereof. Indeed, cDNAs of the present invention or fragments thereof, including 5'ESTs, may also be used to isolate cDNAs or nucleic acids homologous to cDNAs from a cDNA library or a genomic DNA library as follows. Such cDNA libraries or genomic DNA libraries may be obtained from a commercial source or made using techniques familiar to those skilled in the art such as the one described in Examples 1 through 5. An example of such hybridization-based methods is provided below.

Techniques for identifying cDNA clones in a cDNA library which hybridize to a given probe sequence are disclosed in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual 2d Ed.*, Cold Spring Harbor Laboratory Press, 1989. The same techniques may be used to isolate genomic DNAs.

Briefly, cDNA or genomic DNA clones which hybridize to the detectable probe are identified and isolated for further manipulation as follows. A probe comprising at least 10 consecutive nucleotides from the cDNA or fragment thereof is labeled with a detectable label such as a radioisotope or a fluorescent molecule. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the cDNA or fragment thereof. More preferably, the probe comprises 20 to 30 consecutive nucleotides from the cDNA or fragment thereof. In some embodiments, the probe comprises more than 30 nucleotides from the cDNA or fragment thereof.

Techniques for labeling the probe are well known and include phosphorylation with polynucleotide kinase, nick translation, *in vitro* transcription, and non radioactive techniques. The cDNAs or genomic DNAs in the library are transferred to a nitrocellulose or nylon filter and denatured. After blocking of non specific sites, the filter is incubated with the labeled probe for an amount of time sufficient to allow binding of the probe to cDNAs or genomic DNAs containing a sequence capable of hybridizing thereto.

By varying the stringency of the hybridization conditions used to identify cDNAs or genomic DNAs which hybridize to the detectable probe, cDNAs or genomic DNAs having different levels of homology to the probe can be identified and isolated as described below.

1. Isolation of cDNA or Genomic DNA Sequences Having a High Degree of Homology to the Labeled Probe

To identify cDNAs or genomic DNAs having a high degree of homology to the probe sequence, the melting temperature of the probe may be calculated using the following formulas:

For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: Tm=81.5+16.6(log (Na+))+0.41(fraction G+C)-(600/N) where N is the length of the probe.

If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation Tm=81.5+16.6(log (Na+))+0.41(fraction G+C)-(0.63% formamide)-(600/N) where N is the length of the probe.

Prehybridization may be carried out in 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100 µg denatured fragmented salmon sperm DNA or 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100 µg denatured

fragmented salmon sperm DNA, 50% formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook *et al.*, *supra*.

31

Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200 nucleotides in length, the hybridization may be carried out at 15-25°C below the Tm. For shorter probes, such as oligonucleotide probes, the hybridization may be conducted at 15-25°C below the Tm. Preferably, for hybridizations in 6X SSC, the hybridization is conducted at approximately 68°C. Preferably, for hybridizations in 50% formamide containing solutions, the hybridization is conducted at approximately 42°C.

All of the foregoing hybridizations would be considered to be under "stringent" conditions.

Following hybridization, the filter is washed in 2X SSC, 0.1% SDS at room temperature for 15 minutes. The filter is then washed with 0.1X SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour.

15 Thereafter, the solution is washed at the hybridization temperature in 0.1X SSC, 0.5% SDS. A final wash is conducted in 0.1X SSC at room temperature.

cDNAs or genomic DNAs which have hybridized to the probe are identified by autoradiography or other conventional techniques.

Isolation of cDNA or Genomic DNA Sequences Having Lower Degrees of Homology to the Labeled
 Probe

The above procedure may be modified to identify cDNAs or genomic DNAs having decreasing levels of homology to the probe sequence. For example, to obtain cDNAs or genomic DNAs of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a sodium concentration of approximately 1M. Following hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50°C and "low" conditions below 50°C.

Alternatively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42°C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50°C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide. cDNAs or genomic DNAs which have hybridized to the probe are identified by autoradiography or other conventional techniques.

35 <u>3. Determination of the Degree of Homology between the Obtained cDNAs or Genomic DNAs and cDNAs or</u>
Fragments thereof Used as the Labeled Probe or Between the Polypeptides Encoded by the Obtained

cDNAs or Genomic DNAs and the Polypeptides Encoded by the cDNAs or Fragment Thereof Used as the Labeled Probe

To determine the level of homology between the hybridized cDNA or genomic DNA and the cDNA or fragment thereof from which the probe was derived, the nucleotide sequences of the hybridized nucleic 5 acid and the cDNA or fragment thereof from which the probe was derived are compared. The sequences of the cDNA or fragment thereof from which the probe was derived and the sequences of the cDNA or genomic DNA which hybridized to the detectable probe may be stored on a computer readable medium as described below and compared to one another using any of a variety of algorithms familiar to those skilled in the art such as those described below.

To determine the level of homology between the polypeptide encoded by the hybridizing cDNA or genomic DNA and the polypeptide encoded by the cDNA or fragment thereof from which the probe was derived, the polypeptide sequence encoded by the hybridized nucleic acid and the polypeptide sequence encoded by the cDNA or fragment thereof from which the probe was derived are compared. The sequences of the polypeptide encoded by the cDNA or fragment thereof from which the probe was derived and the 15 polypeptide sequence encoded by the cDNA or genomic DNA which hybridized to the detectable probe may be stored on a computer readable medium as described below and compared to one another using any of a variety of algorithms familiar to those skilled in the art such as those described below.

Protein and/or nucleic acid sequence homologies may be evaluated using any of the variety of sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are by 20 no means limited to, TBLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-2448; Altschul et al., 1990, J. Mol. Biol. 215(3):403-410; Thompson et al., 1994, Nucleic Acids Res. 22(2):4673-4680; Higgins et al., 1996, Methods Enzymol. 266:383-402; Altschul et al., 1990, J. Mol. Biol. 215(3):403-410; Altschul et al., 1993, Nature Genetics 3:266-272).

In a particularly preferred embodiment, protein and nucleic acid sequence homologies are 25 evaluated using the Basic Local Alignment Search Tool ("BLAST") which is well known in the art (see, e.g., Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. USA 87:2267-2268; Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1993, Nature Genetics 3:266-272; Altschul et al., 1997, Nuc. Acids Res. 25:3389-3402). In particular, five specific BLAST programs are used to perform the following task:

- (1) BLASTP and BLAST3 compare an amino acid query sequence against a protein sequence 30 database;
 - (2) BLASTN compares a nucleotide query sequence against a nucleotide sequence database;
 - (3) BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database;
- TBLASTN compares a query protein sequence against a nucleotide sequence database translated (4) 35 in all six reading frames (both strands); and
 - TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-(5) frame translations of a nucleotide sequence database.

15

The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as "high-scoring segment pairs," between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., 1992, Science 256:1443-1445; Henikoff and Henikoff, 1993, Proteins 17:49-61). Less preferably, the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlas of Protein Sequence and Structure, Washington: National Biomedical Research Foundation)

The BLAST programs evaluate the statistical significance of all high-scoring segment pairs identified, and preferably selects those segments which satisfy a user-specified threshold of significance, such as a user-specified percent homology. Preferably, the statistical significance of a high-scoring segment pair is evaluated using the statistical significance formula of Karlin (see, e.g., Karlin and Altschul, 1990, *Proc. Natl. Acad. Sci. USA 87*:2267-2268).

The parameters used with the above algorithms may be adapted depending on the sequence length and degree of homology studied. In some embodiments, the parameters may be the default parameters used by the algorithms in the absence of instructions from the user.

In some embodiments, the level of homology between the hybridized nucleic acid and the cDNA or fragment thereof from which the probe was derived may be determined using the FASTDB algorithm 20 described in Brutlag et al. Comp. App. Biosci. 6:237-245, 1990. In such analyses the parameters may be selected as follows: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the sequence which hybridizes to the probe, whichever is shorter. Because the FASTDB program does not consider 5' or 3' truncations when calculating homology levels, if the sequence which hybridizes to the probe 25 is truncated relative to the sequence of the cDNA or fragment thereof from which the probe was derived the homology level is manually adjusted by calculating the number of nucleotides of the cDNA or fragment thereof which are not matched or aligned with the hybridizing sequence, determining the percentage of total nucleotides of the hybridizing sequence which the non-matched or non-aligned nucleotides represent, and subtracting this percentage from the homology level. For example, if the hybridizing sequence is 700 30 nucleotides in length and the cDNA or fragment thereof sequence is 1000 nucleotides in length wherein the first 300 bases at the 5'end of the cDNA or fragment thereof are absent from the hybridizing sequence, and wherein the overlapping 700 nucleotides are identical, the homology level would be adjusted as follows. The non-matched, non-aligned 300 bases represent 30% of the length of the cDNA or fragment thereof. If the overlapping 700 nucleotides are 100% identical, the adjusted homology level would be 100-30=70% 35 homology. It should be noted that the preceding adjustments are only made when the non-matched or nonaligned nucleotides are at the 5'or 3'ends. No adjustments are made if the non-matched or non-aligned sequences are internal or under any other conditions.

WO 00/37491

For example, using the above methods, nucleic acids having at least 95% nucleic acid homology, at least 96% nucleic acid homology, at least 97% nucleic acid homology, at least 98% nucleic acid homology, at least 99% nucleic acid homology, or more than 99% nucleic acid homology to the cDNA or fragment thereof from which the probe was derived may be obtained and identified. Such nucleic acids may be allelic variants or related nucleic acids from other species. Similarly, by using progressively less stringent hybridization conditions one can obtain and identify nucleic acids having at least 90%, at least 85%, at least 80% or at least 75% homology to the cDNA or fragment thereof from which the probe was derived.

Using the above methods and algorithms such as FASTA with parameters depending on the sequence length and degree of homology studied, for example the default parameters used by the algorithms in the absence of instructions from the user, one can obtain nucleic acids encoding proteins having at least 99%, at least 98%, at least 97%, at least 96%, at least 95%, at least 90%, at least 85%, at least 80% or at least 75% homology to the protein encoded by the cDNA or fragment thereof from which the probe was derived. In some embodiments, the homology levels can be determined using the "default" opening penalty and the "default" gap penalty, and a scoring matrix such as PAM 250 (a standard scoring matrix; see Dayhoff et al., in: Atlas of Protein Sequence and Structure, Vol. 5, Supp. 3 (1978)).

Alternatively, the level of polypeptide homology may be determined using the FASTDB algorithm described by Brutlag et al. Comp. App. Biosci. 6:237-245, 1990. In such analyses the parameters may be selected as follows: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=Sequence Length, Gap Penalty=5, Gap Size Penalty=0.05, 20 Window Size=500 or the length of the homologous sequence, whichever is shorter. If the homologous amino acid sequence is shorter than the amino acid sequence encoded by the cDNA or fragment thereof as a result of an N terminal and/or C terminal deletion the results may be manually corrected as follows. First, the number of amino acid residues of the amino acid sequence encoded by the cDNA or fragment thereof which are not matched or aligned with the homologous sequence is determined. Then, the percentage of 25 the length of the sequence encoded by the cDNA or fragment thereof which the non-matched or non-aligned amino acids represent is calculated. This percentage is subtracted from the homology level. For example wherein the amino acid sequence encoded by the cDNA or fragment thereof is 100 amino acids in length and the length of the homologous sequence is 80 amino acids and wherein the amino acid sequence encoded by the cDNA or fragment thereof is truncated at the N terminal end with respect to the homologous 30 sequence, the homology level is calculated as follows. In the preceding scenario there are 20 non-matched, non-aligned amino acids in the sequence encoded by the cDNA or fragment thereof. This represents 20% of the length of the amino acid sequence encoded by the cDNA or fragment thereof. If the remaining amino acids are 100% identical between the two sequences, the homology level would be 100%-20%=80% homology. No adjustments are made if the non-matched or non-aligned sequences are internal or under 35 any other conditions.

In addition to the above described methods, other protocols are available to obtain homologous cDNAs using cDNA of the present invention or fragment thereof as outlined in the following paragraphs.

cDNAs may be prepared by obtaining mRNA from the tissue, cell, or organism of interest using mRNA preparation procedures utilizing polyA selection procedures or other techniques known to those skilled in the art. A first primer capable of hybridizing to the polyA tail of the mRNA is hybridized to the mRNA and a reverse transcription reaction is performed to generate a first cDNA strand.

5

20

The first cDNA strand is hybridized to a second primer containing at least 10 consecutive nucleotides of the sequences of SEQ ID NOs 24-73. Preferably, the primer comprises at least 10, 12, 15, 17, 18, 20, 23, 25, or 28 consecutive nucleotides from the sequences of SEQ ID NOs 24-73. In some embodiments, the primer comprises more than 30 nucleotides from the sequences of SEQ ID NOs 24-73. If it is desired to obtain cDNAs containing the full protein coding sequence, including the authentic translation 10 initiation site, the second primer used contains sequences located upstream of the translation initiation site. The second primer is extended to generate a second cDNA strand complementary to the first cDNA strand. Alternatively, RT-PCR may be performed as described above using primers from both ends of the cDNA to be obtained.

cDNAs containing 5', fragments of the mRNA may be prepared by hybridizing an mRNA comprising 15 the sequences of SEQ ID NOs. 24-73 with a primer comprising a complementary to a fragment of the known cDNA, genomic DNA or fragment thereof hybridizing the primer to the mRNAs, and reverse transcribing the hybridized primer to make a first cDNA strand from the mRNAs. Preferably, the primer comprises at least 10. 12. 15. 17. 18, 20, 23, 25, or 28 consecutive nucleotides of the sequences complementary to SEQ ID NOs. 24-73.

Thereafter, a second cDNA strand complementary to the first cDNA strand is synthesized. The second cDNA strand may be made by hybridizing a primer complementary to sequences in the first cDNA strand to the first cDNA strand and extending the primer to generate the second cDNA strand.

The double stranded cDNAs made using the methods described above are isolated and cloned. The cDNAs may be cloned into vectors such as plasmids or viral vectors capable of replicating in an 25 appropriate host cell. For example, the host cell may be a bacterial, mammalian, avian, or insect cell.

Techniques for isolating mRNA, reverse transcribing a primer hybridized to mRNA to generate a first cDNA strand, extending a primer to make a second cDNA strand complementary to the first cDNA strand, isolating the double stranded cDNA and cloning the double stranded cDNA are well known to those skilled in the art and are described in Current Protocols in Molecular Biology, John Wiley & Sons, Inc. 1997 30 and Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.

Alternatively, other procedures may be used for obtaining full-length cDNAs or homologous cDNAs. In one approach, cDNAs are prepared from mRNA and cloned into double stranded phagemids as follows. The cDNA library in the double stranded phagemids is then rendered single stranded by treatment with an 35 endonuclease, such as the Gene II product of the phage F1 and an exonuclease (Chang et al., Gene 127:95-8, 1993). A biotinylated oligonucleotide comprising the sequence of a fragment of a known cDNA. genomic DNA or fragment thereof is hybridized to the single stranded phagemids. Preferably, the fragment comprises at least 10, 12, 15, 17, 18, 20, 23, 25, or 28 consecutive nucleotides of the sequences of SEQ ID NOs. 24-73.

Hybrids between the biotinylated oligonucleotide and phagemids are isolated by incubating the hybrids with streptavidin coated paramagnetic beads and retrieving the beads with a magnet (Fry et al., 5 Biotechniques, 13: 124-131, 1992). Thereafter, the resulting phagemids are released from the beads and converted into double stranded DNA using a primer specific for the cDNA or fragment thereof used to design the biotinylated oligonucleotide. Alternatively, protocols such as the Gene Trapper kit (Gibco BRL) may be used. The resulting double stranded DNA is transformed into bacteria. Homologous cDNAs or full length cDNAs containing the cDNA or fragment thereof sequence are identified by colony PCR or colony hybridization.

Using any of the above described methods, a plurality of cDNAs containing full-length protein coding sequences or fragments of the protein coding sequences may be provided as cDNA libraries for subsequent evaluation of the encoded proteins or use in diagnostic assays as described below.

cDNAs prepared by any method described therein may be subsequently engineered to obtain nucleic acids which include desired fragments of the cDNA using conventional techniques such as subcloning, PCR, or *in vitro* oligonucleotide synthesis. For example, nucleic acids which include only the full coding sequences (*i.e.* the sequences encoding the signal peptide and the mature protein remaining after the signal peptide peptide is cleaved off) may be obtained using techniques known to those skilled in the art. Alternatively, conventional techniques may be applied to obtain nucleic acids which contain only the coding sequence for the mature protein remaining after the signal peptide is cleaved off or nucleic acids which contain only the coding sequences for the signal peptides.

Similarly, nucleic acids containing any other desired fragment of the coding sequences for the encoded protein may be obtained. For example, the nucleic acid may contain at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 consecutive bases of a cDNA.

Once a cDNA has been obtained, it can be sequenced to determine the amino acid sequence it encodes. Once the encoded amino acid sequence has been determined, one can create and identify any of the many conceivable cDNAs that will encode that protein by simply using the degeneracy of the genetic code. For example, allelic variants or other homologous nucleic acids can be identified as described below. Alternatively, nucleic acids encoding the desired amino acid sequence can be synthesized *in vitro*.

In a preferred embodiment, the coding sequence may be selected using the known codon or codon pair preferences for the host organism in which the cDNA is to be expressed.

IV. Use of cDNA or Fragments Thereof to Express Proteins and Uses of Those Expressed Proteins

25

30

Using any of the above described methods, cDNAs containing the full protein coding sequences of their corresponding mRNAs or portions thereof, such as cDNAs encoding the mature protein, may be used to express the secreted proteins or portions thereof which they encode as described below. If desired, the cDNAs may contain the sequences encoding the signal peptide to facilitate secretion of the expressed protein. It will be appreciated that a plurality of extended cDNAs containing the full protein coding

5

WO 00/37491 PCT/IB99/02058

sequences or portions thereof may be simultaneously cloned into expression vectors to create an expression library for analysis of the encoded proteins as described below.

EXAMPLE 18

Expression of the Proteins Encoded by cDNAs or Fragments Thereof

To express the proteins encoded by the cDNAs or fragments thereof, nucleic acids containing the coding sequence for the proteins or fragments thereof to be expressed are obtained as described above and cloned into a suitable expression vector. If desired, the nucleic acids may contain the sequences encoding the signal peptide to facilitate secretion of the expressed protein. For example, the nucleic acid may comprise the sequence of one of SEQ ID NOs: 24-73 listed in Table I and in the accompanying sequence 10 listing. Alternatively, the nucleic acid may comprise those nucleotides which make up the full coding sequence of one of the sequences of SEQ ID NOs: 24-73 as defined in Table I above.

It will be appreciated that should the extent of the full coding sequence (i.e. the sequence encoding the signal peptide and the mature protein resulting from cleavage of the signal peptide) differ from that listed in Table I as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-15 translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the full coding sequences in the sequences of SEQ ID NOs. 24-73. Accordingly, the scope of any claims herein relating to nucleic acids containing the full coding sequence of one of SEQ ID NOs. 24-73 is not to be construed as excluding any readily identifiable variations from or equivalents to the full coding sequences listed in Table I. 20 Similarly, should the extent of the full length polypeptides differ from those indicated in Table II as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the amino acid sequence of the full length polypeptides is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table II.

Alternatively, the nucleic acid used to express the protein or fragment thereof may comprise those 25 nucleotides which encode the mature protein (i.e. the protein created by cleaving the signal peptide off) encoded by one of the sequences of SEQ ID NOs: 24-73 as defined in Table I above.

It will be appreciated that should the extent of the sequence encoding the mature protein differ from that listed in Table I as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, 30 or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the mature protein in the sequences of SEQ ID NOs. 24-73. Accordingly, the scope of any claims herein relating to nucleic acids containing the sequence encoding the mature protein encoded by one of SEQ ID NOs.24-73 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table I. Thus, claims relating to nucleic acids containing the sequence encoding 35 the mature protein encompass equivalents to the sequences listed in Table I, such as sequences encoding biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in addition to cleavage of the signal

PCT/IB99/02058 WO 00/37491 38

peptide. Similarly, should the extent of the mature polypeptides differ from those indicated in Table II as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a mature protein included in the sequence of one of SEQ ID NOs. 74-123 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table II. Thus, 5 claims relating to polypeptides comprising the sequence of the mature protein encompass equivalents to the sequences listed in Table II, such as biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in addition to cleavage of the signal peptide. It will also be appreciated that should the biologically active form of the polypeptides included in the sequence of one of SEQ ID NOs. 74-123 or the nucleic acids 10 encoding the biologically active form of the polypeptides differ from those identified as the mature polypeptide in Table II or the nucleotides encoding the mature polypeptide in Table I as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the amino acids in the biologically active form of the polypeptides and 15 the nucleic acids encoding the biologically active form of the polypeptides. In such instances, the claims relating to polypetides comprising the mature protein included in one of SEQ ID NOs. 74-123 or nucleic acids comprising the nucleotides of one of SEQ ID NOs. 24-73 encoding the mature protein shall not be construed to exclude any readily identifiable variations from the sequences listed in Table I and Table II.

In some embodiments, the nucleic acid used to express the protein or fragment thereof may 20 comprise those nucleotides which encode the signal peptide encoded by one of the sequences of SEQ ID NOs: 24-73 as defined in Table I above.

It will be appreciated that should the extent of the sequence encoding the signal peptide differ from that listed in Table I as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, 25 or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the signal peptide in the sequences of SEQ ID NOs. 24-73. Accordingly, the scope of any claims herein relating to nucleic acids containing the sequence encoding the signal peptide encoded by one of SEQ ID NOs.24-73 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table I. Similarly, should the extent of the signal peptides differ from those indicated in Table II as a 30 result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a signal peptide included in the sequence of one of SEQ ID NOs. 74-123 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table II.

Alternatively, the nucleic acid may encode a polypeptide comprising at least 5 consecutive amino acids of one of the sequences of SEQ ID NOs: 74-123. In some embodiments, the nucleic acid may encode 35 a polypeptide comprising at least 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 75, 100, 150 or 200 consecutive amino acids of one of the sequences of SEQ ID NOs: 74-123.

The nucleic acids inserted into the expression vectors may also contain sequences upstream of the sequences encoding the signal peptide, such as sequences which regulate expression levels or sequences which confer tissue specific expression.

The nucleic acid encoding the protein or polypeptide to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector may be any of the mammalian, yeast, insect or bacterial expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767.

The following is provided as one exemplary method to express the proteins encoded by the cDNAs or the nucleic acids described above. First, the methionine initiation codon for the gene and the poly A signal of the gene are identified. If the nucleic acid encoding the polypeptide to be expressed lacks a 15 methionine to serve as the initiation site, an initiating methionine can be introduced next to the first codon of the nucleic acid using conventional techniques. Similarly, if the cDNA lacks a poly A signal, this sequence can be added to the construct by, for example, splicing out the Poly A signal from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene). pXT1 contains the LTRs and a fragment of the gag gene from Moloney Murine 20 Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex Thymidine Kinase promoter and the selectable neomycin gene. The cDNA or fragment thereof encoding the polypeptide to be expressed is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the cDNA or fragment thereof and containing restriction endonuclease sequences for Pst I incorporated into the 5'primer and BgIII at the 5' end of the corresponding 25 cDNA 3' primer, taking care to ensure that the cDNA is positioned in frame with the poly A signal. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bgl II, purified and ligated to pXT1, now containing a poly A signal and digested with Balll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, 30 Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600ug/ml G418 (Sigma, St. Louis, Missouri). Preferably the expressed protein is released into the culture medium, thereby facilitating purification.

Alternatively, the cDNAs may be cloned into pED6dpc2 (DiscoverEase, Genetics Institute, Cambridge, MA). The resulting pED6dpc2 constructs may be transfected into a suitable host cell, such as COS 1 cells. Methotrexate resistant cells are selected and expanded. Preferably, the protein expressed from the cDNA is released into the culture medium thereby facilitating purification.

Proteins in the culture medium are separated by gel electrophoresis. If desired, the proteins may be ammonium sulfate precipitated or separated based on size or charge prior to electrophoresis.

40

As a control, the expression vector lacking a cDNA insert is introduced into host cells or organisms and the proteins in the medium are harvested. The secreted proteins present in the medium are detected using techniques such as Coomassie or silver staining or using antibodies against the protein encoded by the cDNA. Coomassie and silver staining techniques are familiar to those skilled in the art.

Antibodies capable of specifically recognizing the protein of interest may be generated using synthetic 15-mer peptides having a sequence encoded by the appropriate 5' EST, cDNA, or fragment thereof. The synthetic peptides are injected into mice to generate antibody to the polypeptide encoded by the 5' EST, cDNA, or fragment thereof.

Secreted proteins from the host cells or organisms containing an expression vector which contains the cDNA or a fragment thereof are compared to those from the control cells or organism. The presence of a band in the medium from the cells containing the expression vector which is absent in the medium from the control cells indicates that the cDNA encodes a secreted protein. Generally, the band corresponding to the protein encoded by the cDNA will have a mobility near that expected based on the number of amino acids in the open reading frame of the cDNA. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

Alternatively, if the protein expressed from the above expression vectors does not contain sequences directing its secretion, the proteins expressed from host cells containing an expression vector containing an insert encoding a secreted protein or fragment thereof can be compared to the proteins expressed in host cells containing the expression vector without an insert. The presence of a band in samples from cells containing the expression vector with an insert which is absent in samples from cells containing the expression vector without an insert indicates that the desired protein or fragment thereof is being expressed. Generally, the band will have the mobility expected for the secreted protein or fragment thereof. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

The protein encoded by the cDNA may be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques.

If antibody production is not possible, the cDNA sequence or fragment thereof may be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the cDNA or fragment thereof is inserted in frame with the gene encoding the other half of the chimera. The other half of the chimera may be I-globin or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to I-globin or nickel attached thereto is then

PCT/IB99/02058 WO 00/37491 41

used to purify the chimeric protein. Protease cleavage sites may be engineered between the I-globin gene or the nickel binding polypeptide and the cDNA or fragment thereof. Thus, the two polypeptides of the chimera may be separated from one another by protease digestion.

One useful expression vector for generating I-globin chimerics is pSG5 (Stratagene), which encodes rabbit I-globin. Intron II of the rabbit I-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., (Basic Methods in Molecular Biology, L.G. Davis, M.D. Dibner, and J.F. Battey, ed., Elsevier Press, NY, 1986) and many of the methods are available from 10 Stratagene, Life Technologies, Inc., or Promega. Polypeptide may additionally be produced from the construct using in vitro translation systems such as the In vitro Express™ Translation Kit (Stratagene).

Following expression and purification of the secreted proteins encoded by the 5' ESTs, cDNAs, or fragments thereof, the purified proteins may be tested for the ability to bind to the surface of various cell types as described below. It will be appreciated that a plurality of proteins expressed from these cDNAs may 15 be included in a panel of proteins to be simultaneously evaluated for the activities specifically described below, as well as other biological roles for which assays for determining activity are available.

Alternatively, the polypeptide to be expressed may also be a product of transgenic animals, i.e., as a component of the milk of transgenic cows, goats, pigs or sheeps which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein of interest.

20 **EXAMPLE 19**

Analysis of Secreted Proteins to Determine Whether they Bind to the Cell Surface

The proteins encoded by the cDNAs, or fragments thereof are cloned into expression vectors such as those described in the previous example. The proteins are purified by size, charge, immunochromatography or other techniques familiar to those skilled in the art. Following purification, the 25 proteins are labeled using techniques known to those skilled in the art. The labeled proteins are incubated with cells or cell lines derived from a variety of organs or tissues to allow the proteins to bind to any receptor present on the cell surface. Following the incubation, the cells are washed to remove non-specifically bound protein. The labeled proteins are detected by autoradiography. Alternatively, unlabeled proteins may be incubated with the cells and detected with antibodies having a detectable label, such as a fluorescent 30 molecule, attached thereto.

Specificity of cell surface binding may be analyzed by conducting a competition analysis in which various amounts of unlabeled protein are incubated along with the labeled protein. The amount of labeled protein bound to the cell surface decreases as the amount of competitive unlabeled protein increases. As a control, various amounts of an unlabeled protein unrelated to the labeled protein is included in some binding 35 reactions. The amount of labeled protein bound to the cell surface does not decrease in binding reactions containing increasing amounts of unrelated unlabeled protein, indicating that the protein encoded by the cDNA binds specifically to the cell surface.

WO 00/37491 PCT/IB99/02058 42

As discussed above, secreted proteins have been shown to have a number of important physiological effects and, consequently, represent a valuable therapeutic resource. The secreted proteins encoded by the cDNAs or fragments thereof made using any of the methods described therein may be evaluated to determine their physiological activities as described below.

EXAMPLE 20

5

20

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Cytokine, Cell Proliferation or Cell **Differentiation Activity**

As discussed above, secreted proteins may act as cytokines or may affect cellular proliferation or differentiation. Many protein factors discovered to date, including all known cytokines, have exhibited activity 10 in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7c and CMK. The proteins encoded by the above cDNAs or fragments thereof may be evaluated for their 15 ability to regulate T cell or thymocyte proliferation in assays such as those described above or in the following references: Current Protocols in Immunology, Ed. by J.E. Coligan et al., Greene Publishing Associates and Wiley-Interscience; Takai et al. J. Immunol. 137:3494-3500, 1986. Bertagnolli et al. J. Immunol. 145:1706-1712, 1990. Bertagnolli et al., Cellular Immunology 133:327-341, 1991. Bertagnolli, et al. J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152:1756-1761, 1994.

In addition, numerous assays for cytokine production and/or the proliferation of spleen cells, lymph node cells and thymocytes are known. These include the techniques disclosed in Current Protocols in Immunology. J.E. Coligan et al. Eds., Vol 1 pp. 3.12.1-3.12.14 John Wiley and Sons, Toronto. 1994; and Schreiber, R.D. <u>Current Protocols in Immunology</u>, supra Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

25 The proteins encoded by the cDNAs may also be assayed for the ability to regulate the proliferation and differentiation of hematopoietic or lymphopoietic cells. Many assays for such activity are familiar to those skilled in the art, including the assays in the following references: Bottomly, K., Davis, L.S. and Lipsky, P.E., Measurement of Human and Murine Interleukin 2 and Interleukin 4, Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. 30 Med. 173:1205-1211, 1991; Moreau et al., Nature 36:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Nordan, R., Measurement of Mouse and Human Interleukin 6 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Bennett, F., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Human Interleukin 11 Current Protocols in Immunology, J.E. Coligan et al. 35 Eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Ciarletta, A., Giannotti, J., Clark, S.C. and Tumer, K.J., Measurement of Mouse and Human Interleukin 9 Current Protocols in Immunology. J.E. Coligan et al., Eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

WO 00/37491 PCT/IB99/02058

The proteins encoded by the cDNAs may also be assayed for their ability to regulate T-cell responses to antigens. Many assays for such activity are familiar to those skilled in the art, including the assays described in the following references: Chapter 3 (*In vitro* Assays for Mouse Lymphocyte Function), Chapter 6 (Cytokines and Their Cellular Receptors) and Chapter 7, (Immunologic Studies in Humans) in 5 Current Protocols in Immunology, J.E. Coligan *et al.* Eds. Greene Publishing Associates and Wiley-Interscience; Weinberger *et al.*, *Proc. Natl. Acad. Sci. USA* 77:6091-6095, 1980; Weinberger *et al.*, *Eur. J. Immunol.* 11:405-411, 1981; Takai *et al.*, *J. Immunol.* 137:3494-3500, 1986; Takai *et al.*, *J. Immunol.* 140:508-512, 1988.

Those proteins which exhibit cytokine, cell proliferation, or cell differentiation activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which induction of cell proliferation or differentiation is beneficial. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 21

15

35

Assaying the Proteins Expressed from cDNAs or Fragments

Thereof for Activity as Immune System Regulators

The proteins encoded by the cDNAs may also be evaluated for their effects as immune regulators. For example, the proteins may be evaluated for their activity to influence thymocyte or splenocyte cytotoxicity. Numerous assays for such activity are familiar to those skilled in the art including the assays described in the following references: Chapter 3 (*In vitro* Assays for Mouse Lymphocyte Function 3.1-3.19) and Chapter 7 (Immunologic studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds, Greene Publishing Associates and Wiley-Interscience; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowman et al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

The proteins encoded by the cDNAs may also be evaluated for their effects on T-cell dependent immunoglobulin responses and isotype switching. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Maliszewski, *J. Immunol.* 144:3028-3033, 1990; Mond, J.J. and Brunswick, M Assays for B Cell Function: *In vitro* Antibody Production, Vol 1 pp. 3.8.1-3.8.16 in <u>Current Protocols in Immunology.</u> J.E. Coligan et al Eds., John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be evaluated for their effect on immune effector cells, including their effect on Th1 cells and cytotoxic lymphocytes. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 3 (In

WO 00/37491 PCT/IB99/02058

vitro Assays for Mouse Lymphocyte Function 3.1-3.19) and Chapter 7 (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds., Greene Publishing Associates and Wiley-Interscience; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al.; J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol, 149:3778-3783, 1992.

5

35

The proteins encoded by the cDNAs may also be evaluated for their effect on dendritic cell mediated activation of naive T-cells. Numerous assays for such activity are familiar to those skilled in the art. including the assays disclosed in the following references: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., 10 Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

The proteins encoded by the cDNAs may also be evaluated for their influence on the lifetime of lymphocytes. Numerous assays for such activity are familiar to those skilled in the art, including the assays 15 disclosed in the following references: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include. 20 without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Those proteins which exhibit activity as immune system regulators activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of immune activity is beneficial. 25 For example, the protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases caused by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis. autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent 45

WO 00/37491

diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

PCT/IB99/02058

Using the proteins of the invention it may also be possible to regulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T-cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both.

Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versushost disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in 20 tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-25 1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte 30 antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4lg fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl.

WO 00/37491

Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.

Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/pr/pr mice or NZB hybrid mice, murine autoimmuno collagen arthritis, diabetes mellitus in OD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory form of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells *in vitro* with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the *in vitro* activated T cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to T cells *in vivo*, thereby activating the T cells.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in

WO 00/37491 47

expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection *in vivo*.

PCT/IB99/02058

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a 5 T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acids encoding all or a fragment of (e.g., a cytoplasmic-I chain protein and an MHC class II II chain protein to thereby express MHC class I or MHC class II proteins 10 on the cell surface. Expression of the appropriate class II or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote 15 presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

20

EXAMPLE 22

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Hematopoiesis Regulating Activity

The proteins encoded by the cDNAs or fragments thereof may also be evaluated for their hematopoiesis regulating activity. For example, the effect of the proteins on embryonic stem cell differentiation may be evaluated. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

The proteins encoded by the cDNAs or fragments thereof may also be evaluated for their influence on the lifetime of stem cells and stem cell differentiation. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Freshney, M.G. Methylcellulose Colony Forming Assays, in <u>Culture of Hematopoietic Cells</u>. R.I. Freshney, *et al.* Eds. pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama *et al.*, *Proc. Natl. Acad. Sci. USA* 89:5907-5911, 1992; McNiece, I.K. and Briddell, R.A. Primitive Hematopoietic Colony Forming Cells with High Proliferative Potential, in <u>Culture of Hematopoietic Cells</u>. R.I. Freshney, *et al.* eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben *et al.*, *Experimental Hematology* 22:353-359, 1994; Ploemacher, R.E. Cobblestone Area Forming Cell Assay, In Culture of Hematopoietic Cells. R.I. Freshney, *et al.* Eds. pp. 1-21, Wiley-Liss,

PCT/IB99/02058 WO 00/37491

Inc., New York, NY. 1994; Spooncer, E., Dexter, M. and Allen, T. Long Term Bone Marrow Cultures in the Presence of Stromal Cells, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; and Sutherland, H.J. Long Term Culture Initiating Cell Assay, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

5

Those proteins which exhibit hematopoiesis regulatory activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of hematopoeisis is beneficial. For example, a protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. 10 in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat 15 consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell 20 disorders (such as those usually treated with transplantion, including, without limitation, aplastic anemia and paroxysmal noctumal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy. Alternatively, as described in more detail below, genes encoding these 25 proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 23

Assaying the Proteins Expressed from cDNAs or Fragments Thereof

for Regulation of Tissue Growth

30 The proteins encoded by the cDNAs or fragments thereof may also be evaluated for their effect on tissue growth. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in International Patent Publication No. WO95/16035, International Patent Publication No. WO95/05846 and International Patent Publication No. WO91/07491.

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal 35 Wound Healing, pps. 71-112 (Maibach, H1 and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

WO 00/37491

35

Those proteins which are involved in the regulation of tissue growth may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of tissue growth is beneficial. For example, a protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present 20 invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligamentlike tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming 30 cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e., for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration,

WO 00/37491

30

50

death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which. 5 may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing 10 wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium) muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or 15 for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to generate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic 20 cytokinc damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids 25 regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 24

Assaying the Proteins Expressed from cDNAs or Fragments

Thereof for Regulation of Reproductive Hormones or Cell Movement

The proteins encoded by the cDNAs or fragments thereof may also be evaluated for their ability to regulate reproductive hormones, such as follicle stimulating hormone. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 35 1986. Chapter 6.12 (Measurement of Alpha and Beta Chemokines) Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Intersciece; Taub et al. J. Clin. Invest. 95:13701376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al. Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

PCT/IB99/02058

Those proteins which exhibit activity as reproductive hormones or regulators of cell movement may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of reproductive hormones or cell movement are beneficial. For example, a protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of folic stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin I family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-B group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 25

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Chemotactic/Chemokinetic Activity

The proteins encoded by the cDNAs or fragments thereof may also be evaluated for chemotactic/chemokinetic activity. For example, a protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, cosinophils, epithelial and/or endothelial cells. Chemotactic and chmokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

15

20

PCT/IB99/02058 WO 00/37491 52

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as 5 well as the ability of a protein to induce the adhension of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokincs 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 10 1995; Mueller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol, 153:1762-1768, 1994.

EXAMPLE 26

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Regulation of Blood Clotting

The proteins encoded by the cDNAs or fragments thereof may also be evaluated for their effects on blood clotting. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Those proteins which are involved in the regulation of blood clotting may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of blood clotting is beneficial. For example, a protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulations disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds 25 resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)). Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the 30 proteins as desired.

EXAMPLE 27

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Involvement in Receptor/Ligand Interactions

The proteins encoded by the cDNAs or a fragment thereof may also be evaluated for their 35 involvement in receptor/ligand interactions. Numerous assays for such involvement are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 7.28 (Measurement of Cellular Adhesion under Static Conditions 7.28.1-7.28.22) in Current Protocols in Immunology, J.E. Coligan

WO 00/37491

et al. Eds. Greene Publishing Associates and Wiley-Interscience; Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160, 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995; Gyuris et al., Cell 75:791-803, 1993.

53

For example, the proteins of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and 10 receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune respones). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

15 **EXAMPLE 28**

5

Assaying the Proteins Expressed from cDNAs or Fragments

Thereof for Anti-Inflammatory Activity

The proteins encoded by the cDNAs or a fragment thereof may also be evaluated for antiinflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells 20 involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation 25 associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusioninury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

30 **EXAMPLE 29**

Assaying the Proteins Expressed from cDNAs or Fragments Thereof for Tumor Inhibition Activity

The proteins encoded by the cDNAs or a fragment thereof may also be evaluated for tumor inhibition activity. In addition to the activities described above for immunological treatment or prevention of turnors, a protein of the invention may exhibit other anti-turnor activities. A protein may inhibit turnor growth 35 directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors,

WO 00/37491 PCT/IB99/02058

agents or cell types which inhibit tumor growth, or by suppressing, climinating or inhibiting factors, agents or cell types which promote tumor growth.

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, 5 bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or 10 climination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of 15 enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is crossreactive with such protein.

20 EXAMPLE 30

35

Identification of Proteins which Interact with Polypeptides Encoded by cDNAs

Proteins which interact with the polypeptides encoded by cDNAs or fragments thereof, such as receptor proteins, may be identified using two hybrid systems such as the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech). As described in the manual accompanying the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech), the cDNAs or fragments thereof, are inserted into an expression vector such that they are in frame with DNA encoding the DNA binding domain of the yeast transcriptional activator GAL4. cDNAs in a cDNA library which encode proteins which might interact with the polypeptides encoded by the cDNAs or fragments thereof are inserted into a second expression vector such that they are in frame with DNA encoding the activation domain of GAL4. The two expression plasmids are transformed into yeast and the yeast are plated on selection medium which selects for expression of selectable markers on each of the expression vectors as well as GAL4 dependent expression of the HIS3 gene. Transformants capable of growing on medium lacking histidine are screened for GAL4 dependent lacZ expression. Those cells which are positive in both the histidine selection and the lacZ assay contain plasmids encoding proteins which interact with the polypeptide encoded by the cDNAs or fragments thereof.

Alternatively, the system described in Lustig *et al.*, Methods in Enzymology 283: 83-99 (1997), may be used for identifying molecules which interact with the polypeptides encoded by cDNAs. In such systems, *in vitro* transcription reactions are performed on a pool of vectors containing cDNA inserts cloned

WO 00/37491 PCT/IB99/02058

downstream of a promoter which drives *in vitro* transcription. The resulting pools of mRNAs are introduced into *Xenopus laevis* oocytes. The oocytes are then assayed for a desired activity.

Alternatively, the pooled *in vitro* transcription products produced as described above may be translated *in vitro*. The pooled *in vitro* translation products can be assayed for a desired activity or for interaction with a known polypeptide.

Proteins or other molecules interacting with polypeptides encoded by cDNAs can be found by a variety of additional techniques. In one method, affinity columns containing the polypeptide encoded by the cDNA or a fragment thereof can be constructed. In some versions, of this method the affinity column contains chimeric proteins in which the protein encoded by the cDNA or a fragment thereof is fused to glutathione S-transferase. A mixture of cellular proteins or pool of expressed proteins as described above and is applied to the affinity column. Proteins interacting with the polypeptide attached to the column can then be isolated and analyzed on 2-D electrophoresis gel as described in Ramunsen *et al.* Electrophoresis, 18, 588-598 (1997). Alternatively, the proteins retained on the affinity column can be purified by electrophoresis based methods and sequenced. The same method can be used to isolate antibodies, to screen phage display products, or to screen phage display human antibodies.

Proteins interacting with polypeptides encoded by cDNAs or fragments thereof can also be screened by using an Optical Biosensor as described in Edwards & Leatherbarrow, Analytical Biochemistry, 246, 1-6 (1997). The main advantage of the method is that it allows the determination of the association rate between the protein and other interacting molecules. Thus, it is possible to specifically select interacting molecules with a high or low association rate. Typically a target molecule is linked to the sensor surface (through a carboxymethl dextran matrix) and a sample of test molecules is placed in contact with the target molecules. The binding of a test molecule to the target molecule causes a change in the refractive index and/ or thickness. This change is detected by the Biosensor provided it occurs in the evanescent field (which extend a few hundred manometers from the sensor surface). In these screening assays, the target molecule can be one of the polypeptides encoded by cDNAs or a fragment thereof and the test sample can be a collection of proteins extracted from tissues or cells, a pool of expressed proteins, combinatorial peptide and/ or chemical libraries,or phage displayed peptides. The tissues or cells from which the test proteins are extracted can originate from any species.

In other methods, a target protein is immobilized and the test population is a collection of unique polypeptides encoded by the cDNAs or fragments thereof.

To study the interaction of the proteins encoded by the cDNAs or fragments thereof with drugs, the microdialysis coupled to HPLC method described by Wang *et al.*, Chromatographia, 44, 205-208(1997) or the affinity capillary electrophoresis method described by Busch *et al.*, J. Chromatogr. 777:311-328 (1997).

The system described in U.S. Patent No. 5,654,150, may also be used to identify molecules which interact with the polypeptides encoded by the cDNAs. In this system, pools of cDNAs are transcribed and translated *in vitro* and the reaction products are assayed for interaction with a known polypeptide or antibody.

56

PCT/IB99/02058

It will be appreciated by those skilled in the art that the proteins expressed from the cDNAs or fragments may be assayed for numerous activities in addition to those specifically enumerated above. For example, the expressed proteins may be evaluated for applications involving control and regulation of inflammation, tumor proliferation or metastasis, infection, or other clinical conditions. In addition, the proteins expressed from the cDNAs or fragments thereof may be useful as nutritional agents or cosmetic agents.

The proteins expressed from the cDNAs or fragments thereof may be used to generate antibodies capable of specifically binding to the expressed protein or fragments thereof as described below. The antibodies may capable of binding a full length protein encoded by one of the sequences of SEQ ID NOs. 24-73, or a signal peptide encoded by one of the sequences of SEQ ID Nos. 24-73. Alternatively, the antibodies may be capable of binding fragments of the proteins expressed from the cDNAs which comprise at least 10 amino acids of the sequences of SEQ ID NOs: 74-123. In some embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the cDNAs which comprise at least 15 amino acids of the sequences of SEQ ID NOs: 74-123. In other embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the cDNAs which comprise at least 25 amino acids of the sequences of SEQ ID NOs: 74-123. In further embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the cDNAs which comprise at least 40 amino acids of the sequences of SEQ ID NOs: 74-123.

EXAMPLE 31

20

Production of an Antibody to a Human Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells as described in example 18. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

25 A. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature* 256:495 (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supermatant fluid of the wells by immunoassay procedures, such as Elisa, as originally described by Engvall, E., *Meth. Enzymol.* 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their

PCT/IB99/02058 WO 00/37491 57

monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.

B. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be 5 prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of 10 antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known 15 concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 IM).. Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington. 20 D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies may also be used in therapeutic compositions for killing cells expressing the protein or 25 reducing the levels of the protein in the body.

V. Use of cDNAs or Fragments Thereof as Reagents

The cDNAs of the present invention may be used as reagents in isolation procedures, diagnostic assays, and forensic procedures. For example, sequences from the cDNAs (or genomic DNAs obtainable therefrom) may be detectably labeled and used as probes to isolate other sequences capable of hybridizing 30 to them. In addition, sequences from the cDNAs (or genomic DNAs obtainable therefrom) may be used to design PCR primers to be used in isolation, diagnostic, or forensic procedures.

EXAMPLE 32

Preparation of PCR Primers and Amplification of DNA

The cDNAs (or genomic DNAs obtainable therefrom) may be used to prepare PCR primers for a 35 variety of applications, including isolation procedures for cloning nucleic acids capable of hybridizing to such sequences, diagnostic techniques and forensic techniques. The PCR primers are at least 10 bases, and preferably at least 12, 15, or 17 bases in length. More preferably, the PCR primers are at least 20-30 bases WO 00/37491 PCT/IB99/02058

in length. In some embodiments, the PCR primers may be more than 30 bases in length. It is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

EXAMPLE 33

Use of cDNAs as Probes

Probes derived from cDNAs or fragments thereof (or genomic DNAs obtainable therefrom) may be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe may be single stranded or double stranded and may be made using techniques known in the art, including *in vitro* transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it may be denatured prior to contacting the probe. In some applications, the nucleic acid sample may be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample may comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe may be cloned into vectors such as expression vectors, sequencing vectors, or *in vitro* transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques may be used to isolate and clone sequences in a genomic library or cDNA library which are capable of hybridizing to the detectable probe as described in example 17 above.

PCR primers made as described in example 32 above may be used in forensic analyses, such as the DNA fingerprinting techniques described in Examples 34-38 below. Such analyses may utilize detectable probes or primers based on the sequences of the cDNAs or fragments thereof (or genomic DNAs obtainable therefrom).

EXAMPLE 34

Forensic Matching by DNA Sequencing

30

35

In one exemplary method, DNA samples are isolated from forensic specimens of, for example, hair, semen, blood or skin cells by conventional methods. A panel of PCR primers based on a number of the

WO 00/37491 PCT/IB99/02058

cDNAs (or genomic DNAs obtainable therefrom), is then utilized in accordance with example 32 to amplify DNA of approximately 100-200 bases in length from the forensic specimen. Corresponding sequences are obtained from a test subject. Each of these identification DNAs is then sequenced using standard techniques, and a simple database comparison determines the differences, if any, between the sequences from the subject and those from the sample. Statistically significant differences between the suspect's DNA sequences and those from the sample conclusively prove a lack of identity. This lack of identity can be proven, for example, with only one sequence. Identity, on the other hand, should be demonstrated with a large number of sequences, all matching. Preferably, a minimum of 50 statistically identical sequences of 100 bases in length are used to prove identity between the suspect and the sample.

10 EXAMPLE 35

Positive Identification by DNA Sequencing

The technique outlined in the previous example may also be used on a larger scale to provide a unique fingerprint-type identification of any individual. In this technique, primers are prepared from a large number of sequences from Table I and the appended sequence listing. Preferably, 20 to 50 different primers are used. These primers are used to obtain a corresponding number of PCR-generated DNA segments from the individual in question in accordance with example 32. Each of these DNA segments is sequenced, using the methods set forth in example 34. The database of sequences generated through this procedure uniquely identifies the individual from whom the sequences were obtained. The same panel of primers may then be used at any later time to absolutely correlate tissue or other biological specimen with that individual.

20 EXAMPLE 36

Southern Blot Forensic Identification

The procedure of example 35 is repeated to obtain a panel of at least 10 amplified sequences from an individual and a specimen. Preferably, the panel contains at least 50 amplified sequences. More preferably, the panel contains 100 amplified sequences. In some embodiments, the panel contains 200 amplified sequences. This PCR-generated DNA is then digested with one or a combination of, preferably, four base specific restriction enzymes. Such enzymes are commercially available and known to those of skill in the art. After digestion, the resultant gene fragments are size separated in multiple duplicate wells on an agarose gel and transferred to nitrocellulose using Southern blotting techniques well known to those with skill in the art. For a review of Southern blotting see Davis et al. (Basic Methods in Molecular Biology, 1986, 30 Elsevier Press. pp 62-65).

A panel of probes based on the sequences of the cDNAs (or genomic DNAs obtainable therefrom), or fragments thereof of at least 10 bases, are radioactively or colorimetrically labeled using methods known in the art, such as nick translation or end labeling, and hybridized to the Southern blot using techniques known in the art (Davis et al., supra). Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30 nucleotides from the cDNA (or genomic DNAs obtainable).

PCT/IB99/02058 WO 00/37491

60

therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom).

Preferably, at least 5 to 10 of these labeled probes are used, and more preferably at least about 20 or 30 are used to provide a unique pattern. The resultant bands appearing from the hybridization of a large 5 sample of cDNAs (or genomic DNAs obtainable therefrom) will be a unique identifier. Since the restriction enzyme cleavage will be different for every individual, the band pattern on the Southern blot will also be unique. Increasing the number of cDNA probes will provide a statistically higher level of confidence in the identification since there will be an increased number of sets of bands used for identification.

EXAMPLE 37

10

25

Dot Blot Identification Procedure

Another technique for identifying individuals using the cDNA sequences disclosed herein utilizes a dot blot hybridization technique.

Genomic DNA is isolated from nuclei of subject to be identified. Oligonucleotide probes of approximately 30 bp in length are synthesized that correspond to at least 10, preferably 50 sequences from 15 the cDNAs or genomic DNAs obtainable therefrom. The probes are used to hybridize to the genomic DNA through conditions known to those in the art. The oligonucleotides are end labeled with P32 using polynucleotide kinase (Pharmacia). Dot Blots are created by spotting the genomic DNA onto nitrocellulose or the like using a vacuum dot blot manifold (BioRad, Richmond California). The nitrocellulose filter containing the genomic sequences is baked or UV linked to the filter, prehybridized and hybridized with 20 labeled probe using techniques known in the art (Davis et al. supra). The 32P labeled DNA fragments are sequentially hybridized with successively stringent conditions to detect minimal differences between the 30 bp sequence and the DNA. Tetramethylammonium chloride is useful for identifying clones containing small numbers of nucleotide mismatches (Wood et al., Proc. Natl. Acad. Sci. USA 82(6):1585-1588 (1985)). A unique pattern of dots distinguishes one individual from another individual.

cDNAs or oligonucleotides containing at least 10 consecutive bases from these sequences can be used as probes in the following alternative fingerprinting technique. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30 nucleotides from the 30 cDNA (or genomic DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the cDNA (or genomic DNAs obtainable therefrom).

Preferably, a plurality of probes having sequences from different genes are used in the alternative fingerprinting technique. Example 38 below provides a representative atternative fingerprinting procedure in 35 which the probes are derived from cDNAs.

EXAMPLE 38

Alternative "Fingerprint" Identification Technique

WO 00/37491 PCT/IB99/02058

20-mer oligonucleotides are prepared from a large number, e.g. 50, 100, or 200, of cDNA sequences (or genomic DNAs obtainable therefrom) using commercially available oligonucleotide services such as Genset, Paris, France. Cell samples from the test subject are processed for DNA using techniques well known to those with skill in the art. The nucleic acid is digested with restriction enzymes such as EcoRI and Xbal. Following digestion, samples are applied to wells for electrophoresis. The procedure, as known in the art, may be modified to accommodate polyacrylamide electrophoresis, however in this example, samples containing 5 ug of DNA are loaded into wells and separated on 0.8% agarose gels. The gels are transferred onto nitrocellulose using standard Southern blotting techniques.

10 ng of each of the oligonucleotides are pooled and end-labeled with P³². The nitrocellulose is prehybridized with blocking solution and hybridized with the labeled probes. Following hybridization and washing, the nitrocellulose filter is exposed to X-Omat AR X-ray film. The resulting hybridization pattern will be unique for each individual.

It is additionally contemplated within this example that the number of probe sequences used can be varied for additional accuracy or clarity.

The antibodies generated in Examples 18 and 31 above may be used to identify the tissue type or cell species from which a sample is derived as described above.

EXAMPLE 39

Identification of Tissue Types or Cell Species by Means of Labeled Tissue Specific Antibodies

Identification of specific tissues is accomplished by the visualization of tissue specific antigens by means of antibody preparations according to Examples 18 and 31 which are conjugated, directly or indirectly to a detectable marker. Selected labeled antibody species bind to their specific antigen binding partner in tissue sections, cell suspensions, or in extracts of soluble proteins from a tissue sample to provide a pattern for qualitative or semi-qualitative interpretation.

Antisera for these procedures must have a potency exceeding that of the native preparation, and for that reason, antibodies are concentrated to a mg/ml level by isolation of the gamma globulin fraction, for example, by ion-exchange chromatography or by ammonium sulfate fractionation. Also, to provide the most specific antisera, unwanted antibodies, for example to common proteins, must be removed from the gamma globulin fraction, for example by means of insoluble immunoabsorbents, before the antibodies are labeled with the marker. Either monoclonal or heterologous antisera is suitable for either procedure.

30 A. Immunohistochemical Techniques

Purified, high-titer antibodies, prepared as described above, are conjugated to a detectable marker, as described, for example, by Fudenberg, H., Chap. 26 in: <u>Basic 503 Clinical Immunology</u>, 3rd Ed. Lange, Los Altos, California (1980) or Rose, N. *et al.*, Chap. 12 in: <u>Methods in Immunodiagnosis</u>, 2d Ed. John Wiley 503 Sons, New York (1980).

A fluorescent marker, either fluorescein or modamine, is preferred, but antibodies can also be labeled with an enzyme that supports a color producing reaction with a substrate, such as horseradish peroxidase. Markers can be added to tissue-bound antibody in a second step, as described below.

WO 00/37491 PCT/IB99/02058

Alternatively, the specific antitissue antibodies can be labeled with ferritin or other electron dense particles, and localization of the ferritin coupled antigen-antibody complexes achieved by means of an electron microscope. In yet another approach, the antibodies are radiolabeled, with, for example ¹²⁵I, and detected by overlaying the antibody treated preparation with photographic emulsion.

Preparations to carry out the procedures can comprise monoclonal or polyclonal antibodies to a single protein or peptide identified as specific to a tissue type, for example, brain tissue, or antibody preparations to several antigenically distinct tissue specific antigens can be used in panels, independently or in mixtures, as required.

Tissue sections and cell suspensions are prepared for immunohistochemical examination according to common histological techniques. Multiple cryostat sections (about 4 m, unfixed) of the unknown tissue and known control, are mounted and each slide covered with different dilutions of the antibody preparation. Sections of known and unknown tissues should also be treated with preparations to provide a positive control, a negative control, for example, pre-immune sera, and a control for non-specific staining, for example, buffer.

Treated sections are incubated in a humid chamber for 30 min at room temperature, rinsed, then washed in buffer for 30-45 min. Excess fluid is blotted away, and the marker developed.

If the tissue specific antibody was not labeled in the first incubation, it can be labeled at this time in a second antibody-antibody reaction, for example, by adding fluorescein- or enzyme-conjugated antibody against the immunoglobulin class of the antiserum-producing species, for example, fluorescein labeled antibody to mouse IgG. Such labeled sera are commercially available.

The antigen found in the tissues by the above procedure can be quantified by measuring the intensity of color or fluorescence on the tissue section, and calibrating that signal using appropriate standards.

B. Identification of Tissue Specific Soluble Proteins

5

30

The visualization of tissue specific proteins and identification of unknown tissues from that procedure is carried out using the labeled antibody reagents and detection strategy as described for immunohistochemistry; however the sample is prepared according to an electrophoretic technique to distribute the proteins extracted from the tissue in an orderly array on the basis of molecular weight for detection.

A tissue sample is homogenized using a Virtis apparatus; cell suspensions are disrupted by Dounce homogenization or osmotic lysis, using detergents in either case as required to disrupt cell membranes, as is the practice in the art. Insoluble cell components such as nuclei, microsomes, and membrane fragments are removed by ultracentrifugation, and the soluble protein-containing fraction concentrated if necessary and reserved for analysis.

A sample of the soluble protein solution is resolved into individual protein species by conventional SDS polyacrylamide electrophoresis as described, for example, by Davis, L. et al., Section 19-2 in: <u>Basic Methods in Molecular Biology</u> (P. Leder, ed), Elsevier, New York (1986), using a range of amounts of

WO 00/37491

30

polyacrylamide in a set of gels to resolve the entire molecular weight range of proteins to be detected in the sample. A size marker is run in parallel for purposes of estimating molecular weights of the constituent proteins. Sample size for analysis is a convenient volume of from 5 to 55 II, and containing from about 1 to 100 Ig protein. An aliquot of each of the resolved proteins is transferred by blotting to a nitrocellulose filter paper, a process that maintains the pattern of resolution. Multiple copies are prepared. The procedure, known as Western Blot Analysis, is well described in Davis, L. et al., (above) Section 19-3. One set of nitrocellulose blots is stained with Coomassie Blue dye to visualize the entire set of proteins for comparison with the antibody bound proteins. The remaining nitrocellulose filters are then incubated with a solution of one or more specific antisera to tissue specific proteins prepared as described in Examples 18 and 31. In this procedure, as in procedure A above, appropriate positive and negative sample and reagent controls are run.

In either procedure A or B, a detectable label can be attached to the primary tissue antigen-primary antibody complex according to various strategies and permutations thereof. In a straightforward approach, the primary specific antibody can be labeled; alternatively, the unlabeled complex can be bound by a labeled secondary anti-IgG antibody. In other approaches, either the primary or secondary antibody is conjugated to a biotin molecule, which can, in a subsequent step, bind an avidin conjugated marker. According to yet another strategy, enzyme labeled or radioactive protein A, which has the property of binding to any IgG, is bound in a final step to either the primary or secondary antibody.

The visualization of tissue specific antigen binding at levels above those seen in control tissues to one or more tissue specific antibodies, prepared from the gene sequences identified from cDNA sequences, can identify tissues of unknown origin, for example, forensic samples, or differentiated tumor tissue that has metastasized to foreign bodily sites.

In addition to their applications in forensics and identification, cDNAs (or genomic DNAs obtainable therefrom) may be mapped to their chromosomal locations. example 40 below describes radiation hybrid (RH) mapping of human chromosomal regions using cDNAs. example 41 below describes a representative procedure for mapping a cDNA (or a genomic DNA obtainable therefrom) to its location on a human chromosome. example 42 below describes mapping of cDNAs (or genomic DNAs obtainable therefrom) on metaphase chromosomes by Fluorescence In Situ Hybridization (FISH).

EXAMPLE 40

Radiation hybrid mapping of cDNAs to the human genome

Radiation hybrid (RH) mapping is a somatic cell genetic approach that can be used for high resolution mapping of the human genome. In this approach, cell lines containing one or more human chromosomes are lethally irradiated, breaking each chromosome into fragments whose size depends on the radiation dose. These fragments are rescued by fusion with cultured rodent cells, yielding subclones containing different fragments of the human genome. This technique is described by Benham et al. (Genomics 4:509-517, 1989) and Cox et al., (Science 250:245-250, 1990). The random and independent nature of the subclones permits efficient mapping of any human genome marker. Human DNA isolated from

WO 00/37491

5

a panel of 80-100 cell lines provides a mapping reagent for ordering cDNAs (or genomic DNAs obtainable therefrom). In this approach, the frequency of breakage between markers is used to measure distance, allowing construction of fine resolution maps as has been done using conventional ESTs (Schuler et al., Science 274:540-546, 1996).

RH mapping has been used to generate a high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for growth hormone (GH) and thymidine kinase (TK) (Foster et al., Genomics 33:185-192, 1996), the region surrounding the Gorlin syndrome gene (Obermayr et al., Eur. J. Hum. Genet. 4:242-245, 1996), 60 loci covering the entire short arm of chromosome 12 (Raeymaekers et al., Genomics 29:170-178, 1995), the region of human chromosome 22 containing the 10 neurofibromatosis type 2 locus (Frazer et al., Genomics 14:574-584, 1992) and 13 loci on the long arm of chromosome 5 (Warrington et al., Genomics 11:701-708, 1991).

EXAMPLE 41

Mapping of cDNAs to Human Chromosomes using PCR techniques

cDNAs (or genomic DNAs obtainable therefrom) may be assigned to human chromosomes using 15 PCR based methodologies. In such approaches, oligonucleotide primer pairs are designed from the cDNA sequence (or the sequence of a genomic DNA obtainable therefrom) to minimize the chance of amplifying through an intron. Preferably, the oligonucleotide primers are 18-23 bp in length and are designed for PCR amplification. The creation of PCR primers from known sequences is well known to those with skill in the art. For a review of PCR technology see Erlich, H.A., PCR Technology, Principles and Applications for DNA 20 Amplification. 1992. W.H. Freeman and Co., New York.

The primers are used in polymerase chain reactions (PCR) to amplify templates from total human genomic DNA. PCR conditions are as follows: 60 ng of genomic DNA is used as a template for PCR with 80 ng of each oligonucleotide primer, 0.6 unit of Taq polymerase, and 1 ICu of a ³²P-labeled deoxycytidine triphosphate. The PCR is performed in a microplate thermocycler (Techne) under the following conditions: 25 30 cycles of 94%C, 1.4 min; 550C, 2 min; and 720C, 2 min; with a final extension at 720C for 10 min. The amplified products are analyzed on a 6% polyacrylamide sequencing gel and visualized by autoradiography. If the length of the resulting PCR product is identical to the distance between the ends of the primer sequences in the cDNA from which the primers are derived, then the PCR reaction is repeated with DNA templates from two panels of human-rodent somatic cell hybrids, BIOS PCRable DNA (BIOS Corporation). 30 and NIGMS Human-Rodent Somatic Cell Hybrid Mapping Panel Number 1 (NIGMS, Camden, NJ).

PCR is used to screen a series of somatic cell hybrid cell lines containing defined sets of human chromosomes for the presence of a given cDNA (or genomic DNA obtainable therefrom). DNA is isolated from the somatic hybrids and used as starting templates for PCR reactions using the primer pairs from the cDNAs (or genomic DNAs obtainable therefrom). Only those somatic cell hybrids with chromosomes 35 containing the human gene corresponding to the cDNA (or genomic DNA obtainable therefrom) will yield an amplified fragment. The cDNAs (or genomic DNAs obtainable therefrom) are assigned to a chromosome by analysis of the segregation pattern of PCR products from the somatic hybrid DNA templates. The single

human chromosome present in all cell hybrids that give rise to an amplified fragment is the chromosome containing that cDNA (or genomic DNA obtainable therefrom). For a review of techniques and analysis of results from somatic cell gene mapping experiments. (See Ledbetter et al., Genomics 6:475-481 (1990).)

Alternatively, the cDNAs (or genomic DNAs obtainable therefrom) may be mapped to individual 5 chromosomes using FISH as described in example 42 below.

EXAMPLE 42

Mapping of cDNAs to Chromosomes Using Fluorescence in situ Hybridization

Fluorescence in situ hybridization allows the cDNA (or genomic DNA obtainable therefrom) to be mapped to a particular location on a given chromosome. The chromosomes to be used for fluorescence in 10 situ hybridization techniques may be obtained from a variety of sources including cell cultures, tissues, or whole blood.

In a preferred embodiment, chromosomal localization of a cDNA (or genomic DNA obtainable therefrom) is obtained by FISH as described by Cherif et al. (Proc. Natl. Acad. Sci. U.S.A., 87:6639-6643, 1990). Metaphase chromosomes are prepared from phytohemagglutinin (PHA)-stimulated blood cell 15 donors. PHA-stimulated lymphocytes from healthy males are cultured for 72 h in RPMI-1640 medium. For synchronization, methotrexate (10 IIM) is added for 17 h, followed by addition of 5-bromodeoxyuridine (5-BudR, 0.1 mM) for 6 h. Colcemid (1 lig/ml) is added for the last 15 min before harvesting the cells. Cells are collected, washed in RPMI, incubated with a hypotonic solution of KCI (75 mM) at 370C for 15 min and fixed in three changes of methanol:acetic acid (3:1). The cell suspension is dropped onto a glass slide and air 20 dried. The cDNA (or genomic DNA obtainable therefrom) is labeled with biotin-16 dUTP by nick translation according to the manufacturer's instructions (Bethesda Research Laboratories, Bethesda, MD), purified using a Sephadex G-50 column (Pharmacia, Upssala, Sweden) and precipitated. Just prior to hybridization, the DNA pellet is dissolved in hybridization buffer (50% formamide, 2 X SSC, 10% dextran sulfate, 1 mg/ml sonicated salmon sperm DNA, pH 7) and the probe is denatured at 700C for 5-10 min.

Slides kept at -200C are treated for 1 h at 370C with RNase A (100 0g/ml), rinsed three times in 2 X SSC and dehydrated in an ethanol series. Chromosome preparations are denatured in 70% formamide, 2 X SSC for 2 min at 70liC, then dehydrated at 4liC. The slides are treated with proteinase K (10 lig/100 ml in 20 mM Tris-HCl, 2 mM CaCl₂) at 37IC for 8 min and dehydrated. The hybridization mixture containing the probe is placed on the slide, covered with a coverslip, sealed with rubber cement and incubated overnight in 30 a humid chamber at 37IC. After hybridization and post-hybridization washes, the biotinylated probe is detected by avidin-FITC and amplified with additional layers of biotinylated goat anti-avidin and avidin-FITC. For chromosomal localization, fluorescent R-bands are obtained as previously described (Cherif et al., supra.). The slides are observed under a LEICA fluorescence microscope (DMRXA). Chromosomes are counterstained with propidium iodide and the fluorescent signal of the probe appears as two symmetrical 35 yellow-green spots on both chromatids of the fluorescent R-band chromosome (red). Thus, a particular cDNA (or genomic DNA obtainable therefrom) may be localized to a particular cytogenetic R-band on a given chromosome.

25

66

EXAMPLE 43

Use of cDNAs to Construct or Expand Chromosome Maps

Once the cDNAs (or genomic DNAs obtainable therefrom) have been assigned to particular chromosomes using the techniques described in Examples 40-42 above, they may be utilized to construct a 5 high resolution map of the chromosomes on which they are located or to identify the chromosomes in a sample.

Chromosome mapping involves assigning a given unique sequence to a particular chromosome as described above. Once the unique sequence has been mapped to a given chromosome, it is ordered relative to other unique sequences located on the same chromosome. One approach to chromosome 10 mapping utilizes a series of yeast artificial chromosomes (YACs) bearing several thousand long inserts derived from the chromosomes of the organism from which the cDNAs (or genomic DNAs obtainable therefrom) are obtained. This approach is described in Ramaiah Nagaraja et al. Genome Research 7:210-222, March 1997. Briefly, in this approach each chromosome is broken into overlapping pieces which are inserted into the YAC vector. The YAC inserts are screened using PCR or other methods to determine 15 whether they include the cDNA (or genomic DNA obtainable therefrom) whose position is to be determined. Once an insert has been found which includes the cDNA (or genomic DNA obtainable therefrom), the insert can be analyzed by PCR or other methods to determine whether the insert also contains other sequences known to be on the chromosome or in the region from which the cDNA (or genomic DNA obtainable therefrom) was derived. This process can be repeated for each insert in the YAC library to determine the 20 location of each of the cDNAs (or genomic DNAs obtainable therefrom) relative to one another and to other known chromosomal markers. In this way, a high resolution map of the distribution of numerous unique markers along each of the organisms chromosomes may be obtained.

As described in example 44 below cDNAs (or genomic DNAs obtainable therefrom) may also be used to identify genes associated with a particular phenotype, such as hereditary disease or drug response.

25 EXAMPLE 44

Identification of genes associated with hereditary diseases or drug response

This example illustrates an approach useful for the association of cDNAs (or genomic DNAs obtainable therefrom) with particular phenotypic characteristics. In this example, a particular cDNA (or genomic DNA obtainable therefrom) is used as a test probe to associate that cDNA (or genomic DNA obtainable therefrom) with a particular phenotypic characteristic.

CDNAs (or genomic DNAs obtainable therefrom) are mapped to a particular location on a human chromosome using techniques such as those described in Examples 40 and 41 or other techniques known in the art. A search of Mendelian Inheritance in Man (V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) reveals the region of the human chromosome which contains the cDNA (or genomic DNA obtainable therefrom) to be a very gene rich region containing several known genes and several diseases or phenotypes for which genes have not been

67

identified. The gene corresponding to this cDNA (or genomic DNA obtainable therefrom) thus becomes an immediate candidate for each of these genetic diseases.

Cells from patients with these diseases or phenotypes are isolated and expanded in culture. PCR primers from the cDNA (or genomic DNA obtainable therefrom) are used to screen genomic DNA, mRNA or cDNA obtained from the patients. CDNAs (or genomic DNAs obtainable therefrom) that are not amplified in the patients can be positively associated with a particular disease by further analysis. Alternatively, the PCR analysis may yield fragments of different lengths when the samples are derived from an individual having the phenotype associated with the disease than when the sample is derived from a healthy individual, indicating that the gene containing the cDNA may be responsible for the genetic disease.

10 VI. Use of cDNAs (or genomic DNAs obtainable therefrom) to Construct Vectors

The present cDNAs (or genomic DNAs obtainable therefrom) may also be used to construct secretion vectors capable of directing the secretion of the proteins encoded by genes inserted in the vectors. Such secretion vectors may facilitate the purification or enrichment of the proteins encoded by genes inserted therein by reducing the number of background proteins from which the desired protein must be purified or enriched. Exemplary secretion vectors are described below.

EXAMPLE 45

Construction of Secretion Vectors

The secretion vectors of the present invention include a promoter capable of directing gene expression in the host cell, tissue, or organism of interest. Such promoters include the Rous Sarcoma Virus promoter, the SV40 promoter, the human cytomegalovirus promoter, and other promoters familiar to those skilled in the art.

A signal sequence from a cDNA (or genomic DNA obtainable therefrom), such as one of the signal sequences in SEQ ID NOs: 24-73 as defined in Table I above, is operably linked to the promoter such that the mRNA transcribed from the promoter will direct the translation of the signal peptide. The host cell, tissue, or organism may be any cell, tissue, or organism which recognizes the signal peptide encoded by the signal sequence in the cDNA (or genomic DNA obtainable therefrom). Suitable hosts include mammalian cells, tissues or organisms, avian cells, tissues, or organisms, insect cells, tissues or organisms, or yeast.

In addition, the secretion vector contains cloning sites for inserting genes encoding the proteins which are to be secreted. The cloning sites facilitate the cloning of the insert gene in frame with the signal sequence such that a fusion protein in which the signal peptide is fused to the protein encoded by the inserted gene is expressed from the mRNA transcribed from the promoter. The signal peptide directs the extracellular secretion of the fusion protein.

The secretion vector may be DNA or RNA and may integrate into the chromosome of the host, be stably maintained as an extrachromosomal replicon in the host, be an artificial chromosome, or be transiently present in the host. Preferably, the secretion vector is maintained in multiple copies in each host cell. As used herein, multiple copies means at least 2,5, 10, 20, 25, 50 or more than 50 copies per cell. In

some embodiments, the multiple copies are maintained extrachromosomally. In other embodiments, the multiple copies result from amplification of a chromosomal sequence.

Many nucleic acid backbones suitable for use as secretion vectors are known to those skilled in the art, including retroviral vectors, SV40 vectors, Bovine Papilloma Virus vectors, yeast integrating plasmids, yeast episomal plasmids, yeast artificial chromosomes, human artificial chromosomes, P element vectors, baculovirus vectors, or bacterial plasmids capable of being transiently introduced into the host.

The secretion vector may also contain a polyA signal such that the polyA signal is located downstream of the gene inserted into the secretion vector.

After the gene encoding the protein for which secretion is desired is inserted into the secretion vector, the secretion vector is introduced into the host cell, tissue, or organism using calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection, viral particles or as naked DNA. The protein encoded by the inserted gene is then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and hplc.

Alternatively, the secreted protein may be in a sufficiently enriched or pure state in the supernatant or growth media of the host to permit it to be used for its intended purpose without further enrichment.

The signal sequences may also be inserted into vectors designed for gene therapy. In such vectors, the signal sequence is operably linked to a promoter such that mRNA transcribed from the promoter encodes the signal peptide. A cloning site is located downstream of the signal sequence such that a gene encoding a protein whose secretion is desired may readily be inserted into the vector and fused to the signal sequence. The vector is introduced into an appropriate host cell. The protein expressed from the promoter is secreted extracellularly, thereby producing a therapeutic effect.

The cDNAs or 5' ESTs may also be used to clone sequences located upstream of the cDNAs or 5' ESTs which are capable of regulating gene expression, including promoter sequences, enhancer sequences, and other upstream sequences which influence transcription or translation levels. Once identified and cloned, these upstream regulatory sequences may be used in expression vectors designed to direct the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative fashion. The next example describes a method for cloning sequences upstream of the cDNAs or 5' ESTs.

EXAMPLE 46

Use of CDNAs or Fragments thereof to Clone Upstream Sequences from Genomic DNA

30

Sequences derived from cDNAs or 5' ESTs may be used to isolate the promoters of the corresponding genes using chromosome walking techniques. In one chromosome walking technique, which utilizes the GenomeWalkeril kit available from Clontech, five complete genomic DNA samples are each digested with a different restriction enzyme which has a 6 base recognition site and leaves a blunt end.

Following digestion, oligonucleotide adapters are ligated to each end of the resulting genomic DNA fragments.

PCT/IB99/02058

WO 00/37491

10

20

35

69

For each of the five genomic DNA libraries, a first PCR reaction is performed according to the manufacturer's instructions using an outer adaptor primer provided in the kit and an outer gene specific primer. The gene specific primer should be selected to be specific for the cDNA or 5' EST of interest and should have a melting temperature, length, and location in the cDNA or 5' EST which is consistent with its 5 use in PCR reactions. Each first PCR reaction contains 5ng of genomic DNA, 5 µl of 10X Tth reaction buffer, 0.2 mM of each dNTP, 0.2 µM each of outer adaptor primer and outer gene specific primer, 1.1 mM of Mg(OAc)2, and 1 µl of the Tth polymerase 50X mix in a total volume of 50 µl. The reaction cycle for the first PCR reaction is as follows: 1 min at 948C / 2 sec at 949C, 3 min at 729C (7 cycles) / 2 sec at 949C, 3 min at 670C (32 cycles) / 5 min at 670C.

The product of the first PCR reaction is diluted and used as a template for a second PCR reaction according to the manufacturer's instructions using a pair of nested primers which are located internally on the amplicon resulting from the first PCR reaction. For example, 5 µl of the reaction product of the first PCR reaction mixture may be diluted 180 times. Reactions are made in a 50 µl volume having a composition identical to that of the first PCR reaction except the nested primers are used. The first nested primer is 15 specific for the adaptor, and is provided with the GenomeWalkeril kit. The second nested primer is specific for the particular cDNA or 5' EST for which the promoter is to be cloned and should have a melting temperature, length, and location in the cDNA or 5' EST which is consistent with its use in PCR reactions. The reaction parameters of the second PCR reaction are as follows: 1 min at 94IIC / 2 sec at 94IIC, 3 min at 720C (6 cycles) / 2 sec at 940C, 3 min at 670C (25 cycles) / 5 min at 670C

The product of the second PCR reaction is purified, cloned, and sequenced using standard techniques. Alternatively, two or more human genomic DNA libraries can be constructed by using two or more restriction enzymes. The digested genomic DNA is cloned into vectors which can be converted into single stranded, circular, or linear DNA. A biotinylated oligonucleotide comprising at least 15 nucleotides from the cDNA or 5' EST sequence is hybridized to the single stranded DNA. Hybrids between the 25 biotinylated oligonucleotide and the single stranded DNA containing the cDNA or EST sequence are isolated as described in example 17 above. Thereafter, the single stranded DNA containing the cDNA or EST sequence is released from the beads and converted into double stranded DNA using a primer specific for the cDNA or 5' EST sequence or a primer corresponding to a sequence included in the cloning vector. The resulting double stranded DNA is transformed into bacteria. DNAs containing the 5' EST or cDNA 30 sequences are identified by colony PCR or colony hybridization.

Once the upstream genomic sequences have been cloned and sequenced as described above, prospective promoters and transcription start sites within the upstream sequences may be identified by comparing the sequences upstream of the cDNAs or 5' ESTs with databases containing known transcription start sites, transcription factor binding sites, or promoter sequences.

In addition, promoters in the upstream sequences may be identified using promoter reporter vectors as described below.

15

Identification of Promoters in Cloned Upstream Sequences

The genomic sequences upstream of the cDNAs or fragment thereof are cloned into a suitable promoter reporter vector, such as the pSEAP-Basic, pSEAP-Enhancer, plgal-Basic, plgal-Enhancer, or pEGFP-1 Promoter Reporter vectors available from Clontech. Briefly, each of these promoter reporter vectors include multiple cloning sites positioned upstream of a reporter gene encoding a readily assayable protein such as secreted alkaline phosphatase, Il galactosidase, or green fluorescent protein. The sequences upstream of the cDNAs or 5' ESTs are inserted into the cloning sites upstream of the reporter gene in both orientations and introduced into an appropriate host cell. The level of reporter protein is assayed and compared to the level obtained from a vector which lacks an insert in the cloning site. The presence of an elevated expression level in the vector containing the insert with respect to the control vector indicates the presence of a promoter in the insert. If necessary, the upstream sequences can be cloned into vectors which contain an enhancer for augmenting transcription levels from weak promoter sequences. A significant level of expression above that observed with the vector lacking an insert indicates that a promoter sequence is present in the inserted upstream sequence.

Appropriate host cells for the promoter reporter vectors may be chosen based on the results of the above described determination of expression patterns of the cDNAs and ESTs. For example, if the expression pattern analysis indicates that the mRNA corresponding to a particular cDNA or fragment thereof is expressed in fibroblasts, the promoter reporter vector may be introduced into a human fibroblast cell line.

Promoter sequences within the upstream genomic DNA may be further defined by constructing nested deletions in the upstream DNA using conventional techniques such as Exonuclease III digestion. The resulting deletion fragments can be inserted into the promoter reporter vector to determine whether the deletion has reduced or obliterated promoter activity. In this way, the boundaries of the promoters may be defined. If desired, potential individual regulatory sites within the promoter may be identified using site directed mutagenesis or linker scanning to obliterate potential transcription factor binding sites within the promoter individually or in combination. The effects of these mutations on transcription levels may be determined by inserting the mutations into the cloning sites in the promoter reporter vectors.

EXAMPLE 48

Cloning and Identification of Promoters

Using the method described in example 47 above with 5' ESTs, sequences upstream of several 30 genes were obtained. Using the primer pairs GGG AAG ATG GAG ATA GTA TTG CCT G (SEQ ID NO:15) and CTG CCA TGT ACA TGA TAG AGA GAT TC (SEQ ID NO:16), the promoter having the internal designation P13H2 (SEQ ID NO:17) was obtained.

Using the primer pairs GTA CCA GGGG ACT GTG ACC ATT GC (SEQ ID NO:18) and CTG TGA CCA TTG CTC CCA AGA GAG (SEQ ID NO:19), the promoter having the internal designation P15B4 (SEQ 35 ID NO:20) was obtained.

WO 00/37491 PCT/IB99/02058

71

Using the primer pairs CTG GGA TGG AAG GCA CGG TA (SEQ ID NO:21) and GAG ACC ACA CAG CTA GAC AA (SEQ ID NO:22), the promoter having the internal designation P29B6 (SEQ ID NO:23) was obtained.

Figure 4 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags. The upstream sequences were screened for the presence of motifs resembling transcription factor binding sites or known transcription start sites using the computer program MatInspector release 2.0, August 1996.

Figure 5 describes the transcription factor binding sites present in each of these promoters. The columns labeled matrice provides the name of the MatInspector matrix used. The column labeled position provides the 5' postion of the promoter site. Numeration of the sequence starts from the transcription site as determined by matching the genomic sequence with the 5' EST sequence. The column labeled "orientation" indicates the DNA strand on which the site is found, with the + strand being the coding strand as determined by matching the genomic sequence with the sequence of the 5' EST. The column labeled "score" provides the MatInspector score found for this site. The column labeled "length" provides the length of the site in nucleotides. The column labeled "sequence" provides the sequence of the site found.

The promoters and other regulatory sequences located upstream of the cDNAs or 5' ESTs may be used to design expression vectors capable of directing the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative manner. A promoter capable of directing the desired spatial, temporal, developmental, and quantitative patterns may be selected using the results of the expression analysis described in example 10 above. For example, if a promoter which confers a high level of expression in muscle is desired, the promoter sequence upstream of a cDNA or 5' EST derived from an mRNA which is expressed at a high level in muscle, as determined by the method of example 10, may be used in the expression vector.

Preferably, the desired promoter is placed near multiple restriction sites to facilitate the cloning of the desired insert downstream of the promoter, such that the promoter is able to drive expression of the inserted gene. The promoter may be inserted in conventional nucleic acid backbones designed for extrachromosomal replication, integration into the host chromosomes or transient expression. Suitable backbones for the present expression vectors include retroviral backbones, backbones from eukaryotic episomes such as SV40 or Bovine Papilloma Virus, backbones from bacterial episomes, or artificial chromosomes.

Preferably, the expression vectors also include a polyA signal downstream of the multiple restriction sites for directing the polyadenylation of mRNA transcribed from the gene inserted into the expression vector.

Following the identification of promoter sequences using the procedures of Examples 46-48, proteins which interact with the promoter may be identified as described in example 49 below.

Identification of Proteins Which Interact with Promoter Sequences, Upstream Regulatory Sequences, or **mRNA**

Sequences within the promoter region which are likely to bind transcription factors may be identified by homology to known transcription factor binding sites or through conventional mutagenesis or deletion 5 analyses of reporter plasmids containing the promoter sequence. For example, deletions may be made in a reporter plasmid containing the promoter sequence of interest operably linked to an assayable reporter gene. The reporter plasmids carrying various deletions within the promoter region are transfected into an appropriate host cell and the effects of the deletions on expression levels is assessed. Transcription factor binding sites within the regions in which deletions reduce expression levels may be further localized using 10 site directed mutagenesis, linker scanning analysis, or other techniques familiar to those skilled in the art. Nucleic acids encoding proteins which interact with sequences in the promoter may be identified using onehybrid systems such as those described in the manual accompanying the Matchmaker One-Hybrid System kit avalilabe from Clontech (Catalog No. K1603-1). Briefly, the Matchmaker One-hybrid system is used as follows. The target sequence for which it is desired to identify binding proteins is cloned upstream of a 15 selectable reporter gene and integrated into the yeast genome. Preferably, multiple copies of the target sequences are inserted into the reporter plasmid in tandem.

A library comprised of fusions between cDNAs to be evaluated for the ability to bind to the promoter and the activation domain of a yeast transcription factor, such as GAL4, is transformed into the yeast strain containing the integrated reporter sequence. The yeast are plated on selective media to select cells 20 expressing the selectable marker linked to the promoter sequence. The colonies which grow on the selective media contain genes encoding proteins which bind the target sequence. The inserts in the genes encoding the fusion proteins are further characterized by sequencing. In addition, the inserts may be inserted into expression vectors or in vitro transcription vectors. Binding of the polypeptides encoded by the inserts to the promoter DNA may be confirmed by techniques familiar to those skilled in the art, such as gel 25 shift analysis or DNAse protection analysis.

VII. Use of cDNAs (or Genomic DNAs Obtainable Therefrom) in Gene Therapy

The present invention also comprises the use of cDNAs (or genomic DNAs obtainable therefrom) in gene therapy strategies, including antisense and triple helix strategies as described in Examples 50 and 51 below. In antisense approaches, nucleic acid sequences complementary to an mRNA are hybridized to the 30 mRNA intracellularly, thereby blocking the expression of the protein encoded by the mRNA. The antisense sequences may prevent gene expression through a variety of mechanisms. For example, the antisense sequences may inhibit the ability of ribosomes to translate the mRNA. Alternatively, the antisense sequences may block transport of the mRNA from the nucleus to the cytoplasm, thereby limiting the amount of mRNA available for translation. Another mechanism through which antisense sequences may inhibit gene 35 expression is by interfering with mRNA splicing. In yet another strategy, the antisense nucleic acid may be incorporated in a ribozyme capable of specifically cleaving the target mRNA.

EXAMPLE 50

Preparation and Use of Antisense Oligonucleotides

The antisense nucleic acid molecules to be used in gene therapy may be either DNA or RNA sequences. They may comprise a sequence complementary to the sequence of the cDNA (or genomic DNA 5 obtainable therefrom). The antisense nucleic acids should have a length and melting temperature sufficient to permit formation of an intracellular duplex having sufficient stability to inhibit the expression of the mRNA in the duplex. Strategies for designing antisense nucleic acids suitable for use in gene therapy are disclosed in Green et al., Ann. Rev. Biochem., 55:569-597 (1986) and Izant and Weintraub, Cell, 36:1007-1015 (1984).

In some strategies, antisense molecules are obtained from a nucleotide sequence encoding a 10 protein by reversing the orientation of the coding region with respect to a promoter so as to transcribe the opposite strand from that which is normally transcribed in the cell. The antisense molecules may be transcribed using in vitro transcription systems such as those which employ T7 or SP6 polymerase to generate the transcript. Another approach involves transcription of the antisense nucleic acids in vivo by operably linking DNA containing the antisense sequence to a promoter in an expression vector.

Alternatively, oligonucleotides which are complementary to the strand normally transcribed in the cell may be synthesized in vitro. Thus, the antisense nucleic acids are complementary to the corresponding mRNA and are capable of hybridizing to the mRNA to create a duplex. In some embodiments, the antisense sequences may contain modified sugar phosphate backbones to increase stability and make them less sensitive to RNase activity. Examples of modifications suitable for use in antisense strategies include 2' O-20 methyl RNA oligonucleotides and Protein-nucleic acid (PNA) oligonucleotides. Further examples are described by Rossi et al., Pharmacol. Ther., 50(2):245-254, (1991).

15

30

Various types of antisense oligonucleotides complementary to the sequence of the cDNA (or genomic DNA obtainable therefrom) may be used. In one preferred embodiment, stable and semi-stable antisense oligonucleotides described in International Application No. PCT WO94/23026 are used. In these 25 moleucles, the 3' end or both the 3' and 5' ends are engaged in intramolecular hydrogen bonding between complementary base pairs. These molecules are better able to withstand exonuclease attacks and exhibit increased stability compared to conventional antisense oligonucleotides.

In another preferred embodiment, the antisense oligodeoxynucleotides against herpes simplex virus types 1 and 2 described in International Application No. WO 95/04141.

In yet another preferred embodiment, the covalently cross-linked antisense oligonucleotides described in International Application No. WO 96/31523 are used. These double- or single-stranded oligonucleotides comprise one or more, respectively, inter- or intra-oligonucleotide covalent cross-linkages, wherein the linkage consists of an amide bond between a primary amine group of one strand and a carboxyl group of the other strand or of the same strand, respectively, the primary amine group being directly 35 substituted in the 2' position of the strand nucleotide monosaccharide ring, and the carboxyl group being carried by an aliphatic spacer group substituted on a nucleotide or nucleotide analog of the other strand or the same strand, respectively.

The antisense oligodeoxynucleotides and oligonucleotides disclosed in International Application No. WO 92/18522 may also be used. These molecules are stable to degradation and contain at least one transcription control recognition sequence which binds to control proteins and are effective as decoys therefor. These molecules may contain "hairpin" structures, "dumbbell" structures, "modified dumbbell" structures, "cross-linked" decoy structures and "loop" structures.

In another preferred embodiment, the cyclic double-stranded oligonucleotides described in European Patent Application No. 0 572 287 A2 are used. These ligated oligonucleotide "dumbbells" contain the binding site for a transcription factor and inhibit expression of the gene under control of the transcription factor by sequestering the factor.

Use of the closed antisense oligonucleotides disclosed in International Application No. WO 92/19732 is also contemplated. Because these molecules have no free ends, they are more resistant to degradation by exonucleases than are conventional oligonucleotides. These oligonucleotides may be multifunctional, interacting with several regions which are not adjacent to the target mRNA.

10

The appropriate level of antisense nucleic acids required to inhibit gene expression may be determined using *in vitro* expression analysis. The antisense molecule may be introduced into the cells by diffusion, injection, infection or transfection using procedures known in the art. For example, the antisense nucleic acids can be introduced into the body as a bare or naked oligonucleotide, oligonucleotide encapsulated in lipid, oligonucleotide sequence encapsidated by viral protein, or as an oligonucleotide operably linked to a promoter contained in an expression vector. The expression vector may be any of a variety of expression vectors known in the art, including retroviral or viral vectors, vectors capable of extrachromosomal replication, or integrating vectors. The vectors may be DNA or RNA.

The antisense molecules are introduced onto cell samples at a number of different concentrations preferably between 1x10⁻¹⁰M to 1x10⁻⁴M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use *in vivo*. For example, an inhibiting concentration in culture of 1x10⁻⁷ translates into a dose of approximately 0.6 mg/kg bodyweight. Levels of oligonucleotide approaching 100 mg/kg bodyweight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the vertebrate are removed, treated with the antisense oligonucleotide, and reintroduced into the vertebrate.

It is further contemplated that the antisense oligonucleotide sequence is incorporated into a 30 ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi *et al.*, *supra*.

In a preferred application of this invention, the polypeptide encoded by the gene is first identified, so that the effectiveness of antisense inhibition on translation can be monitored using techniques that include but are not limited to antibody-mediated tests such as RIAs and ELISA, functional assays, or radiolabeling.

The cDNAs of the present invention (or genomic DNAs obtainable therefrom) may also be used in gene therapy approaches based on intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. They are particularly useful for studying alterations in cell activity as it

WO 00/37491 PCT/IB99/02058

is associated with a particular gene. The cDNAs (or genomic DNAs obtainable therefrom) of the present invention or, more preferably, a fragment of those sequences, can be used to inhibit gene expression in individuals having diseases associated with expression of a particular gene. Similarly, a fragment of the cDNA (or genomic DNA obtainable therefrom) can be used to study the effect of inhibiting transcription of a particular gene within a cell. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences from the cDNA or from the gene corresponding to the cDNA are contemplated within the scope of this invention.

10 EXAMPLE 51

20

Preparation and use of Triple Helix Probes

The sequences of the cDNAs (or genomic DNAs obtainable therefrom) are scanned to identify 10-mer to 20-mer homopyrimidine or homopyrime stretches which could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopyrime stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into tissue culture cells which normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis, such as GENSET, Paris, France.

The oligonucleotides may be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

Treated cells are monitored for altered cell function or reduced gene expression using techniques such as Northern blotting, RNase protection assays, or PCR based strategies to monitor the transcription levels of the target gene in cells which have been treated with the oligonucleotide. The cell functions to be monitored are predicted based upon the homologies of the target gene corresponding to the cDNA from which the oligonucleotide was derived with known gene sequences that have been associated with a particular function. The cell functions can also be predicted based on the presence of abnormal physiologies within cells derived from individuals with a particular inherited disease, particularly when the cDNA is associated with the disease using techniques described in example 44.

The oligonucleotides which are effective in inhibiting gene expression in tissue culture cells may then be introduced *in vivo* using the techniques described above and in example 50 at a dosage calculated based on the *in vitro* results, as described in example 50.

In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize

10

15

25

the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science, 245:967-971 (1989).

EXAMPLE 52

Use of cDNAs to Express an Encoded Protein in a Host Organism

The cDNAs of the present invention may also be used to express an encoded protein in a host organism to produce a beneficial effect. In such procedures, the encoded protein may be transiently expressed in the host organism or stably expressed in the host organism. The encoded protein may have any of the activities described above. The encoded protein may be a protein which the host organism lacks or, alternatively, the encoded protein may augment the existing levels of the protein in the host organism.

A full length cDNA encoding the signal peptide and the mature protein, or a cDNA encoding only the mature protein is introduced into the host organism. The cDNA may be introduced into the host organism using a variety of techniques known to those of skill in the art. For example, the cDNA may be injected into the host organism as naked DNA such that the encoded protein is expressed in the host organism, thereby producing a beneficial effect.

Alternatively, the cDNA may be cloned into an expression vector downstream of a promoter which is active in the host organism. The expression vector may be any of the expression vectors designed for use in gene therapy, including viral or retroviral vectors.

The expression vector may be directly introduced into the host organism such that the encoded protein is expressed in the host organism to produce a beneficial effect. In another approach, the 20 expression vector may be introduced into cells in vitro. Cells containing the expression vector are thereafter selected and introduced into the host organism, where they express the encoded protein to produce a beneficial effect.

EXAMPLE 53

Use Of Signal Peptides To Import Proteins Into Cells

The short core hydrophobic region (h) of signal peptides encoded by the cDNAs of the present invention or fragment thereof may also be used as a carrier to import a peptide or a protein of interest, socalled cargo, into tissue culture cells (Lin et al., J. Biol. Chem., 270: 14225-14258 (1995); Du et al., J. Peptide Res., 51: 235-243 (1998); Rojas et al., Nature Biotech., 16: 370-375 (1998)).

When cell permeable peptides of limited size (approximately up to 25 amino acids) are to be 30 translocated across cell membrane, chemical synthesis may be used in order to add the h region to either the C-terminus or the N-terminus to the cargo peptide of interest. Alternatively, when longer peptides or proteins are to be imported into cells, nucleic acids can be genetically engineered, using techniques familiar to those skilled in the art, in order to link the cDNA sequence or fragment thereof encoding the h region to the 5' or the 3' end of a DNA sequence coding for a cargo polypeptide. Such genetically engineered nucleic 35 acids are then translated either in vitro or in vivo after transfection into appropriate cells, using conventional techniques to produce the resulting cell permeable polypeptide. Suitable hosts cells are then simply incubated with the cell permeable polypeptide which is then translocated across the membrane.

This method may be applied to study diverse intracellular functions and cellular processes. For instance, it has been used to probe functionally relevant domains of intracellular proteins and to examine protein-protein interactions involved in signal transduction pathways (Lin et al., supra; Lin et al., J. Biol. Chem., 271: 5305-5308 (1996); Rojas et al., J. Biol. Chem., 271: 27456-27461 (1996); Liu et al., Proc. Natl. Acad. Sci. USA, 93: 11819-11824 (1996); Rojas et al., Bioch. Biophys. Res. Commun., 234: 675-680 (1997)).

Such techniques may be used in cellular therapy to import proteins producing therapeutic effects. For instance, cells isolated from a patient may be treated with imported therapeutic proteins and then reintroduced into the host organism.

Alternatively, the h region of signal peptides of the present invention could be used in combination with a nuclear localization signal to deliver nucleic acids into cell nucleus. Such oligonucleotides may be antisense oligonucleotides or oligonucleotides designed to form triple helixes, as described in examples 50 and 51 respectively, in order to inhibit processing and maturation of a target cellular RNA.

EXAMPLE 54

15

10

Computer Embodiments

As used herein the term "cDNA codes of SEQ ID NOs. 24-73" encompasses the nucleotide sequences of SEQ ID NOs. 24-73, fragments of SEQ ID NOs. 24-73, nucleotide sequences homologous to SEQ ID NOs. 24-73 or homologous to fragments of SEQ ID NOs. 24-73, and sequences complementary to all of the preceding sequences. The fragments include fragments of SEQ ID NOs. 24-73 comprising at least 20 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 consecutive nucleotides of SEQ ID NOs. 24-73. Preferably, the fragments are novel fragments. Preferably the fragments include polynucleotides described in Table III or fragments thereof comprising at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 consecutive nucleotides of the polynucleotides described in Table III. Homologous sequences and fragments of SEQ ID NOs, 24-73 25 refer to a sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, or 75% homology to these sequences. Homology may be determined using any of the computer programs and parameters described in example 17, including BLAST2N with the default parameters or with any modified parameters. Homologous sequences also include RNA sequences in which uridines replace the thymines in the cDNA codes of SEQ ID NOs. 24-73. The homologous sequences may be obtained using any of the procedures 30 described herein or may result from the correction of a sequencing error as described above. Preferably the homologous sequences and fragments of SEQ ID NOs. 24-73 include polynucleotides described in Table III or fragments comprising at least 8, 10, 12, 15, 18, 20, 25, 28, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, 500, 1000 or 2000 consecutive nucleotides of the polynucleotides described in Table III. It will be appreciated that the cDNA codes of SEQ ID NOs. 24-73 can be represented in the traditional single 35 character format (See the inside back cover of Styer, Lubert. Biochemistry, 3rd edition. W. H Freeman & Co... New York.) or in any other format which records the identity of the nucleotides in a sequence.

WO 00/37491

As used herein the term "polypeptide codes of SEQ ID NOS. 74-123" encompasses the polypeptide sequences of SEQ ID NOs. 74-123 which are encoded by the cDNAs of SEQ ID NOs. 24-73, polypeptide sequences homologous to the polypeptides of SEQ ID NOS. 74-123, or fragments of any of the preceding sequences. Homologous polypeptide sequences refer to a polypeptide sequence having at least 99%, 98%, 5 97%, 96%, 95%, 90%, 85%, 80%, 75% homology to one of the polypeptide sequences of SEQ ID NOS. 74-123. Homology may be determined using any of the computer programs and parameters described herein, including FASTA with the default parameters or with any modified parameters. The homologous sequences may be obtained using any of the procedures described herein or may result from the correction of a sequencing error as described above. The polypeptide fragments comprise at least 5, 8, 10, 12, 15, 20, 25, 10 30, 35, 40, 50, 60, 75, 100, 150 or 200 consecutive amino acids of the polypeptides of SEQ ID NOS. 74-123. Preferably, the fragments are novel fragments. Preferably, the fragments include polypeptides encoded by the polynucleotides described in Table III, or fragments thereof comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of the polypeptides encoded by the polynucleotides described in Table III. It will be appreciated that the polypeptide codes of the SEQ ID NOS. 74-123 can be 15 represented in the traditional single character format or three letter format (See the inside back cover of Starrier, Lubert. Biochemistry, 3rd edition. W. H Freeman & Co., New York.) or in any other format which relates the identity of the polypeptides in a sequence.

It will be appreciated by those skilled in the art that the cDNA codes of SEQ ID NOs. 24-73 and polypeptide codes of SEQ ID NOS. 74-123 can be stored, recorded, and manipulated on any medium which can be read and accessed by a computer. As used herein, the words "recorded" and "stored" refer to a process for storing information on a computer medium. A skilled artisan can readily adopt any of the presently known methods for recording information on a computer readable medium to generate manufactures comprising one or more of the cDNA codes of SEQ ID NOs. 24-73, one or more of the polypeptide codes of SEQ ID NOS. 74-123. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, 20, 25, 30, or 50 cDNA codes of SEQ ID NOs. 24-73. Another aspect of the present invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, 20, 25, 30, or 50 polypeptide codes of SEQ ID NOS. 74-123.

Computer readable media include magnetically readable media, optically readable media, electronically readable media and magnetic/optical media. For example, the computer readable media may be a hard disk, a floppy disk, a magnetic tape, CD-ROM, Digital Versatile Disk (DVD), Random Access Memory (RAM), or Read Only Memory (ROM) as well as other types of other media known to those skilled in the art.

Embodiments of the present invention include systems, particularly computer systems which store and manipulate the sequence information described herein. One example of a computer system 100 is illustrated in block diagram form in Figure 6. As used herein, "a computer system" refers to the hardware components, software components, and data storage components used to analyze the nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73, or the amino acid sequences of the polypeptide codes

of SEQ ID NOS. 74-123. In one embodiment, the computer system 100 is a Sun Enterprise 1000 server (Sun Microsystems, Palo Alto, CA). The computer system 100 preferably includes a processor for processing, accessing and manipulating the sequence data. The processor 105 can be any well-known type of central processing unit, such as the Pentium III from Intel Corporation, or similar processor from Sun, Motorola, Compaq or International Business Machines.

Preferably, the computer system 100 is a general purpose system that comprises the processor 105 and one or more internal data storage components 110 for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components. A skilled artisan can readily appreciate that any one of the currently available computer systems are suitable.

In one particular embodiment, the computer system 100 includes a processor 105 connected to a bus which is connected to a main memory 115 (preferably implemented as RAM) and one or more internal data storage devices 110, such as a hard drive and/or other computer readable media having data recorded thereon. In some embodiments, the computer system 100 further includes one or more data retrieving device 118 for reading the data stored on the internal data storage devices 110.

10

The data retrieving device 118 may represent, for example, a floppy disk drive, a compact disk drive, a magnetic tape drive, etc. In some embodiments, the internal data storage device 110 is a removable computer readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon. The computer system 100 may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device.

The computer system 100 includes a display 120 which is used to display output to a computer user. It should also be noted that the computer system 100 can be linked to other computer systems 125a-c in a network or wide area network to provide centralized access to the computer system 100.

Software for accessing and processing the nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73, or the amino acid sequences of the polypeptide codes of SEQ ID NOS. 74-123 (such as search tools, compare tools, and modeling tools etc.) may reside in main memory 115 during execution.

In some embodiments, the computer system 100 may further comprise a sequence comparer for comparing the above-described cDNA codes of SEQ ID NOs. 24-73 or polypeptide codes of SEQ ID NOS. 74-123 stored on a computer readable medium to reference nucleotide or polypeptide sequences stored on a computer readable medium. A "sequence comparer" refers to one or more programs which are implemented on the computer system 100 to compare a nucleotide or polypeptide sequence with other nucleotide or polypeptide sequences and/or compounds including but not limited to peptides, peptidomimetics, and chemicals stored within the data storage means. For example, the sequence comparer may compare the nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73, or the amino acid sequences of the polypeptide codes of SEQ ID NOS. 74-123 stored on a computer readable medium to reference sequences stored on a computer readable medium to identify homologies, motifs implicated in

biological function, or structural motifs. The various sequence comparer programs identified elsewhere in this patent specification are particularly contemplated for use in this aspect of the invention.

80

Figure 7 is a flow diagram illustrating one embodiment of a process 200 for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database. The database of sequences can be a private database stored within the computer system 100, or a public database such as GENBANK, PIR or SWISSPROT that is available through the Internet.

The process 200 begins at a start state 201 and then moves to a state 202 wherein the new sequence to be compared is stored to a memory in a computer system 100. As discussed above, the 10 memory could be any type of memory, including RAM or an internal storage device.

The process 200 then moves to a state 204 wherein a database of sequences is opened for analysis and comparison. The process 200 then moves to a state 206 wherein the first sequence stored in the database is read into a memory on the computer. A comparison is then performed at a state 210 to determine if the first sequence is the same as the second sequence. It is important to note that this step is 15 not limited to performing an exact comparison between the new sequence and the first sequence in the database. Well-known methods are known to those of skill in the art for comparing two nucleotide or protein sequences, even if they are not identical. For example, gaps can be introduced into one sequence in order to raise the homology level between the two tested sequences. The parameters that control whether gaps or other features are introduced into a sequence during comparison are normally entered by the user of the 20 computer system.

Once a comparison of the two sequences has been performed at the state 210, a determination is made at a decision state 210 whether the two sequences are the same. Of course, the term "same" is not limited to sequences that are absolutely identical. Sequences that are within the homology parameters entered by the user will be marked as "same" in the process 200.

25

If a determination is made that the two sequences are the same, the process 200 moves to a state 214 wherein the name of the sequence from the database is displayed to the user. This state notifies the user that the sequence with the displayed name fulfills the homology constraints that were entered. Once the name of the stored sequence is displayed to the user, the process 200 moves to a decision state 218 wherein a determination is made whether more sequences exist in the database. If no more sequences 30 exist in the database, then the process 200 terminates at an end state 220. However, if more sequences do exist in the database, then the process 200 moves to a state 224 wherein a pointer is moved to the next sequence in the database so that it can be compared to the new sequence. In this manner, the new sequence is aligned and compared with every sequence in the database.

It should be noted that if a determination had been made at the decision state 212 that the 35 sequences were not homologous, then the process 200 would move immediately to the decision state 218 in order to determine if any other sequences were available in the database for comparison.

Accordingly, one aspect of the present invention is a computer system comprising a processor, a data storage device having stored thereon a nucleic acid code of SEQ ID NOs. 24-73 or a polypeptide code of SEQ ID NOs. 74-123, a data storage device having retrievably stored thereon reference nucleotide sequences or polypeptide sequences to be compared to the nucleic acid code of SEQ ID NOs. 24-73 or polypeptide code of SEQ ID NOS. 74-123 and a sequence comparer for conducting the comparison. The sequence comparer may indicate a homology level between the sequences compared or identify structural motifs in the above described nucleic acid code of SEQ ID NOs. 24-73 and polypeptide codes of SEQ ID NOS. 74-123 or it may identify structural motifs in sequences which are compared to these cDNA codes and polypeptide codes. In some embodiments, the data storage device may have stored thereon the sequences of at least 2, 5, 10, 15, 20, 25, 30, or 50 of the cDNA codes of SEQ ID NOs. 24-73 or polypeptide codes of SEQ ID NOS. 74-123.

Another aspect of the present invention is a method for determining the level of homology between a nucleic acid code of SEQ ID NOs. 24-73 and a reference nucleotide sequence, comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through the use of a computer program which determines homology levels and determining homology between the nucleic acid code and the reference nucleotide sequence with the computer program. The computer program may be any of a number of computer programs for determining homology levels, including those specifically enumerated herein, including BLAST2N with the default parameters or with any modified parameters. The method may be implemented using the computer systems described above. The method may also be performed by reading 2, 5, 10, 15, 20, 25, 30, or 50 of the above described cDNA codes of SEQ ID NOs. 24-73 through use of the computer program and determining homology between the cDNA codes and reference nucleotide sequences.

Figure 8 is a flow diagram illustrating one embodiment of a process 250 in a computer for determining whether two sequences are homologous. The process 250 begins at a start state 252 and then 25 moves to a state 254 wherein a first sequence to be compared is stored to a memory. The second sequence to be compared is then stored to a memory at a state 256. The process 250 then moves to a state 260 wherein the first character in the first sequence is read and then to a state 262 wherein the first character of the second sequence is read. It should be understood that if the sequence is a nucleotide sequence, then the character would normally be either A, T, C, G or U. If the sequence is a protein sequence, then it should be in the single letter amino acid code so that the first and sequence sequences can be easily compared.

A determination is then made at a decision state 264 whether the two characters are the same. If they are the same, then the process 250 moves to a state 268 wherein the next characters in the first and second sequences are read. A determination is then made whether the next characters are the same. If they are, then the process 250 continues this loop until two characters are not the same. If a determination is made that the next two characters are not the same, the process 250 moves to a decision state 274 to determine whether there are any more characters either sequence to read.

If there aren't any more characters to read, then the process 250 moves to a state 276 wherein the level of homology between the first and second sequences is displayed to the user. The level of homology is determined by calculating the profragment of characters between the sequences that were the same out of the total number of sequences in the first sequence. Thus, if every character in a first 100 nucleotide 5 sequence aligned with a every character in a second sequence, the homology level would be 100%.

Alternatively, the computer program may be a computer program which compares the nucleotide sequences of the cDNA codes of the present invention, to reference nucleotide sequences in order to determine whether the nucleic acid code of SEQ ID NOs. 24-73 differs from a reference nucleic acid sequence at one or more positions. Optionally such a program records the length and identity of inserted, 10 deleted or substituted nucleotides with respect to the sequence of either the reference polynucleotide or the nucleic acid code of SEQ ID NOs. 24-73. In one embodiment, the computer program may be a program which determines whether the nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73 contain a biallelic marker or single nucleotide polymorphism (SNP) with respect to a reference nucleotide sequence. This single nucleotide polymorphism may comprise a single base substitution, insertion, or deletion, while 15 this biallelic marker may comprise about one to ten consecutive bases substituted, inserted or deleted.

Another aspect of the present invention is a method for determining the level of homology between a polypeptide code of SEQ ID NOS. 74-123 and a reference polypeptide sequence, comprising the steps of reading the polypeptide code of SEQ ID NOS. 74-123 and the reference polypeptide sequence through use of a computer program which determines homology levels and determining homology between the 20 polypeptide code and the reference polypeptide sequence using the computer program.

Accordingly, another aspect of the present invention is a method for determining whether a nucleic acid code of SEQ ID NOs. 24-73 differs at one or more nucleotides from a reference nucleotide sequence comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through use of a computer program which identifies differences between nucleic acid sequences and identifying differences 25 between the nucleic acid code and the reference nucleotide sequence with the computer program. In some embodiments, the computer program is a program which identifies single nucleotide polymorphisms. The method may be implemented by the computer systems described above and the method illustrated in Figure 8. The method may also be performed by reading at least 2, 5, 10, 15, 20, 25, 30, or 50 of the cDNA codes of SEQ ID NOs. 24-73 and the reference nucleotide sequences through the use of the computer program 30 and identifying differences between the cDNA codes and the reference nucleotide sequences with the computer program.

In other embodiments the computer based system may further comprise an identifier for identifying features within the nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73 or the amino acid sequences of the polypeptide codes of SEQ ID NOS. 74-123.

An "identifier" refers to one or more programs which identifies certain features within the abovedescribed nucleotide sequences of the cDNA codes of SEQ ID NOs. 24-73 or the amino acid sequences of

35

the polypeptide codes of SEQ ID NOS. 74-123. In one embodiment, the identifier may comprise a program which identifies an open reading frame in the cDNAs codes of SEQ ID NOs. 24-73.

Figure 9 is a flow diagram illustrating one embodiment of an identifier process 300 for detecting the presence of a feature in a sequence. The process 300 begins at a start state 302 and then moves to a state 304 wherein a first sequence that is to be checked for features is stored to a memory 115 in the computer system 100. The process 300 then moves to a state 306 wherein a database of sequence features is opened. Such a database would include a list of each feature's attributes along with the name of the feature. For example, a feature name could be "Initiation Codon" and the attribute would be "ATG". Another example would be the feature name "TAATAA Box" and the feature attribute would be "TAATAA". An example of such a database is produced by the University of Wisconsin Genetics Computer Group (www.gcg.com).

Once the database of features is opened at the state 306, the process 300 moves to a state 308 wherein the first feature is read from the database. A comparison of the attribute of the first feature with the first sequence is then made at a state 310. A determination is then made at a decision state 316 whether the attribute of the feature was found in the first sequence. If the attribute was found, then the process 300 moves to a state 318 wherein the name of the found feature is displayed to the user.

The process 300 then moves to a decision state 320 wherein a determination is made whether move features exist in the database. If no more features do exist, then the process 300 terminates at an end state 324. However, if more features do exist in the database, then the process 300 reads the next sequence feature at a state 326 and loops back to the state 310 wherein the attribute of the next feature is compared against the first sequence.

It should be noted, that if the feature attribute is not found in the first sequence at the decision state 316, the process 300 moves directly to the decision state 320 in order to determine if any more features exist in the database.

In another embodiment, the identifier may comprise a molecular modeling program which determines the 3-dimensional structure of the polypeptides codes of SEQ ID NOS. 74-123. In some embodiments, the molecular modeling program identifies target sequences that are most compatible with profiles representing the structural environments of the residues in known three-dimensional protein structures. (See, e.g., Eisenberg *et al.*, U.S. Patent No. 5,436,850 issued July 25, 1995). In another technique, the known three-dimensional structures of proteins in a given family are superimposed to define the structurally conserved regions in that family. This protein modeling technique also uses the known three-dimensional structure of a homologous protein to approximate the structure of the polypeptide codes of SEQ ID NOS. 74-123. (See e.g., Srinivasan, *et al.*, U.S. Patent No. 5,557,535 issued September 17, 1996). Conventional homology modeling techniques have been used routinely to build models of proteases and antibodies. (Sowdhamini *et al.*, Protein Engineering 10:207, 215 (1997)). Comparative approaches can also be used to develop three-dimensional protein models when the protein of interest has poor sequence identity to template proteins. In some cases, proteins fold into similar three-dimensional structures despite having

very weak sequence identities. For example, the three-dimensional structures of a number of helical cytokines fold in similar three-dimensional topology in spite of weak sequence homology.

The recent development of threading methods now enables the identification of likely folding patterns in a number of situations where the structural relatedness between target and template(s) is not 5 detectable at the sequence level. Hybrid methods, in which fold recognition is performed using Multiple Sequence Threading (MST), structural equivalencies are deduced from the threading output using a distance geometry program DRAGON to construct a low resolution model, and a full-atom representation is constructed using a molecular modeling package such as QUANTA.

According to this 3-step approach, candidate templates are first identified by using the novel fold 10 recognition algorithm MST, which is capable of performing simultaneous threading of multiple aligned sequences onto one or more 3-D structures. In a second step, the structural equivalencies obtained from the MST output are converted into inter-residue distance restraints and fed into the distance geometry program DRAGON, together with auxiliary information obtained from secondary structure predictions. The program combines the restraints in an unbiased manner and rapidly generates a large number of low 15 resolution model confirmations. In a third step, these low resolution model confirmations are converted into full-atom models and subjected to energy minimization using the molecular modeling package QUANTA. (See e.g., Aszódi et al., Proteins:Structure, Function, and Genetics, Supplement 1:38-42 (1997)).

The results of the molecular modeling analysis may then be used in rational drug design techniques to identify agents which modulate the activity of the polypeptide codes of SEQ ID NOS. 74-123.

Accordingly, another aspect of the present invention is a method of identifying a feature within the cDNA codes of SEQ ID NOs. 24-73 or the polypeptide codes of SEQ ID NOS. 74-123 comprising reading the nucleic acid code(s) or the polypeptide code(s) through the use of a computer program which identifies features therein and identifying features within the nucleic acid code(s) or polypeptide code(s) with the computer program. In one embodiment, computer program comprises a computer program which identifies 25 open reading frames. In a further embodiment, the computer program identifies structural motifs in a polypeptide sequence. In another embodiment, the computer program comprises a molecular modeling program. The method may be performed by reading a single sequence or at least 2, 5, 10, 15, 20, 25, 30, or 50 of the cDNA codes of SEQ ID NOs. 24-73 or the polypeptide codes of SEQ ID NOS. 74-123 through the use of the computer program and identifying features within the cDNA codes or polypeptide codes with the 30 computer program.

The cDNA codes of SEQ ID NOs. 24-73 or the polypeptide codes of SEQ ID NOS. 74-123 may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the cDNA codes of SEQ ID NOs. 24-73 or the polypeptide codes of SEQ ID NOS. 74-123 may be stored as text in a word processing file, such as MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of 35 database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE. In addition, many computer programs and databases may be used as sequence comparers, identifiers, or sources of reference nucleotide or polypeptide sequences to be compared to the cDNA codes of SEQ ID NOs. 24-73 or

the polypeptide codes of SEQ ID NOS. 74-123. The following list is intended not to limit the invention but to provide quidance to programs and databases which are useful with the cDNA codes of SEQ ID NOs. 24-73 or the polypeptide codes of SEQ ID NOS. 74-123. The programs and databases which may be used include, but are not limited to: MacPattern (EMBL), DiscoveryBase (Molecular Applications Group), 5 GeneMine (Molecular Applications Group), Look (Molecular Applications Group), MacLook (Molecular Applications Group), BLAST and BLAST2 (NCBI), BLASTN and BLASTX (Altschul et al., J. Mol. Biol. 215: 403 (1990)), FASTA (Pearson and Lipman, Proc. Natl. Acad. Sci. USA, 85: 2444 (1988)), FASTDB (Brutlag et al. Comp. App. Biosci. 6:237-245, 1990), Catalyst (Molecular Simulations Inc.), Catalyst/SHAPE (Molecular Simulations Inc.), Cerius².DBAccess (Molecular Simulations Inc.), HypoGen (Molecular 10 Simulations Inc.), Insight II, (Molecular Simulations Inc.), Discover (Molecular Simulations Inc.), CHARMm (Molecular Simulations Inc.), Felix (Molecular Simulations Inc.), DelPhi, (Molecular Simulations Inc.), QuanteMM, (Molecular Simulations Inc.), Homology (Molecular Simulations Inc.), Modeler (Molecular Simulations Inc.), ISIS (Molecular Simulations Inc.), Quanta/Protein Design (Molecular Simulations Inc.), WebLab (Molecular Simulations Inc.), WebLab Diversity Explorer (Molecular Simulations Inc.), Gene 15 Explorer (Molecular Simulations Inc.), SeqFold (Molecular Simulations Inc.), the EMBL/Swissprotein database, the MDL Available Chemicals Directory database, the MDL Drug Data Report data base, the Comprehensive Medicinal Chemistry database, Derwents's World Drug Index database, the BioByteMasterFile database, the Genbank database, and the Genseqn database. Many other programs and data bases would be apparent to one of skill in the art given the present disclosure.

85

Motifs which may be detected using the above programs include sequences encoding leucine zippers, helix-turn-helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

25 **EXAMPLE 55**

Methods of Making Nucleic Acids

The present invention also comprises methods of making the cDNA of SEQ ID Nos.24-73, genomic DNA obtainable therefrom, or fragment thereof. The methods comprise sequentially linking together nucleotides to produce the nucleic acids having the preceding sequences. A variety of methods of 30 synthesizing nucleic acids are known to those skilled in the art.

In many of these methods, synthesis is conducted on a solid support. These included the 3' phosphoramidite methods in which the 3' terminal base of the desired oligonucleotide is immobilized on an insoluble carrier. The nucleotide base to be added is blocked at the 5' hydroxyl and activated at the 3' hydroxyl so as to cause coupling with the immobilized nucleotide base. Deblocking of the new immobilized 35 nucleotide compound and repetition of the cycle will produce the desired polynucleotide. Alternatively, polynucleotides may be prepared as described in U.S. Patent No. 5,049,656. In some embodiments,

35

86

several polynucleotides prepared as described above are ligated together to generate longer polynucleotides having a desired sequence.

EXAMPLE 56

Methods of Making Polypeptides

The present invention also comprises methods of making the polynucleotides encoded by the cDNA of SEQ ID Nos.24-73, genomic DNA obtainable therefrom, or fragments thereof and methods of making the polypeptides of SEQ ID Nos.74-123 or fragments thereof. The methods comprise sequentially linking together amino acids to produce the nucleic polypeptides having the preceding sequences. In some embodiments, the polypeptides made by these methods are 150 amino acids or less in length. In other 10 embodiments, the polypeptides made by these methods are 120 amino acids or less in length.

A variety of methods of making polypeptides are known to those skilled in the art, including methods in which the carboxyl terminal amino acid is bound to polyvinyl benzene or another suitable resin. The amino acid to be added possesses blocking groups on its amino moiety and any side chain reactive groups so that only its carboxyl moiety can react. The carboxyl group is activated with carbodilmide or 15 another activating agent and allowed to couple to the immobilized amino acid. After removal of the blocking group, the cycle is repeated to generate a polypeptide having the desired sequence. Alternatively, the methods described in U.S. Patent No. 5,049,656 may be used.

EXAMPLE 57

Functional Analysis of Predicted Protein Sequences

20 Following double-sequencing, contigs were assembled for each of the cDNAs of the present invention and each was compared to known sequences available at the time of filing. These sequences originate from the following databases: Genbank (release 108), EMBL (release 58 and daily releases), Genseq (release 35.3) Swissprot (release 37), Genbank (release 108 and daily releases up to October, 15. 1998); Genseq (release 32) PIR (release 53) and Swissprot (release 35). In some cases, based on 25 homology with other proteins, new open reading frames than the one previously selected were chosen. For example, the new open reading frame of SEQ ID NO: 27 does not contain a signal peptide anymore.

Then, the predicted proteins of the present invention matching known proteins were further classified into 3 categories depending on the level of homology.

The first category contains proteins of the present invention exhibiting at least 80% identical amino 30 acid residues on the whole length of the matched protein. They are clearly close homologues, which most probably have the same function or a very similar function as the matched protein.

The second category contains proteins of the present invention exhibiting more remote homologies (35 to 80% over the whole protein) indicating that the protein of the present invention is likely to have functions similar to those of the matched protein.

The third category contains proteins exhibiting homology to a domain of a known protein indicating that the matched protein and the protein of the invention may share similar features such as functional domains.

PCT/IB99/02058 WO 00/37491 87

It should be noted that, in the numbering of amino acids in the protein sequences discussed below, in figures 10 to 13 and in Table V, the first methionine encountered is designated as amino acid number 1. In the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1 and the first amino acid of the signal peptide is 5 designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

In addition, all amino acid sequences (SEQ ID NOs:74-123) were scanned for the presence of known protein signatures and motifs. This search was performed against the Prosite 15.0 database, using the Proscan software from the GCG package as follows.

The polypeptides encoded by the cDNAs were screened for the presence of known structural or functional motifs or for the presence of signatures, small amino acid sequences that are well conserved amongst the members of a protein family. The conserved regions have been used to derive consensus patterns or matrices included in the PROSITE data bank, in particular in the file prosite dat located at http://expasy.hcuge.ch/sprot/prosite.html. Prosite_convert and prosite_scan programs 15 (http://ulrec3.unil.ch/ftpserveur/prosite_scan) were used to find signatures on the cDNAs.

For each pattern obtained with the prosite_convert program from the prosite.dat file, the accuracy of the detection on a new protein sequence has been tested by evaluating the frequency of irrelevant hits on the population of human secreted proteins included in the data bank SWISSPROT. The ratio between the number of hits on shuffled proteins (with a window size of 20 amino acids) and the number of hits on native 20 (unshuffled) proteins was used as an index. Every pattern for which the ratio was greater than 20% (one hit on shuffled proteins for 5 hits on native proteins) was skipped during the search with prosite scan. The program used to shuffle protein sequences (db_shuffled) and the program used to determine the statistics for each pattern in the protein data banks (prosite_statistics) are available on the ftp site http://ulrec3.unil.ch/ftpserveur/prosite_scan.

25 A) Proteins which are closely related to known proteins

10

35

Protein of SEQ ID NO: 76 (internal designation 105-095-1-0-D10-FLC)

The protein of SEQ ID NO: 76 encoded by the cDNA of SEQ ID NO:26 exhibits identity to the human parotid secretory protein HPSP (Genseq accession number W60682 and SEQ ID NO: 124) as shown by the alignment of figure 10. Antagonists of this protein may be used to treat cancer and 30 autoimmune diseases particularly of secretory or gastrointestinal tissue.

Taken together, these data suggest that the protein of SEQ ID NO: 76 or part thereof may play a role in cell differentiation and/or proliferation. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to cancer and autoimmune diseases.

Protein of SEQ ID NO: 93 (internal designation 117-007-2-0-C4-FLC)

The protein of SEQ ID NO: 93 encoded by the cDNA of SEQ ID NO:43 exhibits identity to a human protein thought to be transmembraneous (Genseg accession number W88491 and SEQ ID NO: 125) as shown by the alignment of figure 11. This protein displays homology to alpha-2-HS glycoprotein precursors

PCT/IB99/02058 WO 00/37491 88

(fetuins) of human and pigs, which belong to the cystatin superfamily. The 382-amino-acid-long protein of SEQ ID NO: 93, which is similar in size to fetuins, displays a cystatin-like domain with 12 conserved cysteines (positions 36, 93, 104, 117, 137, 151, 154, 216, 224, 237, 254 and 368, in bold in figure 11) and a conserved region around the second cysteine (positions 89 to 96, underlined in figure 11) although the typical PROSITE signatures for fetuins is not present. In addition, the potential active site QxVxG is also present in the protein of the invention (positions 198 to 202, in italics in figure 11). The cystatin superfamily contain evolutionarily related proteins with diverse functions such as cysteine protease inhibitors, stefins, fetuins and kininogens (see review by Brown and Dziegielewska, Prot. Science, 6:5-12 (1997)).

Taken together, these data suggest that the protein of SEQ ID NO: 93 or part thereof may play a 10 role in cellular proteolysis, maybe as a protease inhibitor. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, cancer, and especially tumor progression and metastasis, chronic inflammation, neurodegenerative diseases such as Alzheimer disease. diabetes, hypertension and immune disorders. It may also be useful in treating patients with cardiovascular disorders by modulating their blood coagulation properties.

15 Protein of SEQ ID NO: 75 (internal designation 105-031-3-0-D6-FLC)

The protein of SEQ ID NO: 75 encoded by the cDNA of SEQ ID NO:25 exhibits homology to a murine putative sialyltransferase protein (TREMBL accession number O88725 and SEQ ID NO: 126) as shown by the alignment of figure 12. Sialyltransferases are type II transmembrane proteins involved in the biosynthesis of sialosides which are important in a large variety of biological processes such as cell-cell 20 communication, cell-matrix interactions, maintenance of serum glycoproteins in the circulation, and so on (Sjoberg et al., J. Biol. Chem. 271:7450-7459 (1996); Tsuji, J. Biochem. 120:1-13 (1996)). The protein of SEQ ID NO: 75 displays the two conserved motifs of the sialyltransferase protein family, namely the centrally located sialylmotifL (positions 73 to 120, in bold in figure 12) thought to be involved in the recognition of the sugar nucleotide donor common to all sialyltransferases and the sialylmotifS (positions 211 to 233, in italics 25 in figure 12) thought to be the catalytic site and located in the C-terminus of the protein. Furthermore, the 302-amino-acid long protein of SEQ ID NO: 75 has a size similar to the one of the members of the sialyltransferase family. In addition, the protein of the invention has a predicted transmembrane structure. Indeed, it contains 2 potential transmembrane segment (positions 7 to 27 and 206 to 226, underlined in figure 12) as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10 :685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO: 75 or part thereof may play a role in the biosynthesis of sialyl-glycoconjugates, probably as a sialyltransferase. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, cancer, cystic fibrosis and hypothyroidism.

30

Proteins of SEQ ID NOs: 104 (internal designation 108-008-5-O-C5-FL)

The protein of SEQ ID NO: 104 encoded by the cDNA of SEQ ID NO: 54 exhibits extensive homology over the whole length of the murine recombination activating gene 1 inducing protein (Genbank accession number X96618 and SEQ ID NO: 177). As shown by the alignment of figure 13, the amino acid 5 residues are identical except for the positions 6, 7, 10-13, 17, 25, 34-35, 42, 51, 56, 62, 68, 71, 74, 78, 91, 93, 95-96, 106, 121-122, 151-152, 159, 162-163, 170-171, 176-177, 188, 190, 192, 196, 199, 202-203, 206, 210, 215 and 217 of the 221 amino acid long matched protein. This protein with 4 potential transmembrane segments is involved in the induction of the recombination of V(D)J segments in T cells (Muraquchi et al. Leuk Lymphoma, 30:73-85 (1998)).

89

Taken together, these data suggest that the protein of SEQ ID NO: 104 may play a role in lymphocyte repertoire formation. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, cancer, immunological disorders and inflammatory disorders. It may also be useful to modulate the inflammatory or immune response to infectious agents, such as HIV.

15 B) Proteins which are remotely related to proteins with known functions Proteins of SEQ ID NO: 87 (internal designation 116-073-4-0-C8-FLC)

Part of the protein of SEQ ID NO: 87 encoded by the cDNA of SEQ ID NO:37 shows homology over the whole length of the widely conserved family of lysozyme C precursors (fish, bird, and mammals). In addition, this protein displays the characteristic alpha-lactalbumin/lysozyme C PROSITE signature of this 20 family of glysosyl hydrolases, family 22 (positions 162 to 180, see Table V). Lysozymes C are bacteriolytic defensive enzymes and alpha-lactalbumin is the regulatory subunit of lactose synthetase. Lysozymes C and alpha-lactalbumin appear to be evolutionary related (Qasba and Kumar, Crit. Rev. Biochem. Mol. Biol. <u>32</u>:255-306 (1997)).

Taken together, these data suggest that the protein of SEQ ID NO: 87 or part thereof, especially the 25 domain matching the above mentioned lysozyme C precursors, may play a role in glycoprotein and/or peptidoglycan metabolism, probably as a glycosyl hydrolase. Thus, this protein or part thereof, may be useful in diagnosing and/or treating several disorders including, but not limited to, cancer and amyloidosis. It may also be useful in modulating defensive responses to infectious agents such as bacteria.

Proteins of SEQ ID NO: 86 (internal designation 116-054-3-0-G12-FLC)

The protein of SEQ ID NO: 86 encoded by the cDNA of SEQ ID NO:36 found in liver shows homology to the MLRQ subunit of NADH-uniquinone oxidoreductase (complex I) of bovine, murine and human species (Genbank accession numbers X64897, U59509 and EMBL accession number U94586 respectively). In addition, the 83-amino-acid-long protein of SEQ ID NO: 86 has a size similar to those of known MLRQ subunits. Complex I is part of the mitochondrial electron transport chain and is involved in the 35 dehydrogenation of NADH and the transportation of electrons to coenzyme Q. It is also thought to play a role in the regulation of apoptosis and necrosis. Mitochondriocytopathies due to complex I deficiency are frequently encountered and affect tissues with a high-energy demand such as brain (mental retardation,

convulsions, movement disorders), heart (cardiomyopathy, conduction disorders), kidney (Fanconi syndrome), skeletal muscle (exercise intolerance, muscle weakness, hypotonia) and/or eye (opthmaloplegia, ptosis, cataract and retinopathy). For a review on complex I, see Smeitink et al., Hum. Mol. Gent., 7: 1573-1579 (1998).

90

Taken together, these data suggest that the protein of SEQ ID NO: 86 may be a NADH-ubiquinone oxidoreductase MLRQ-like protein. Thus, this protein or part thereof, may be useful in diagnosing and/or treating several disorders including, but not limited to, brain disorders (mental retardation, convulsions, movement disorders), heart disorders (cardiomyopathy, conduction disorders), kidney disorders (Fanconi syndrome), skeletal muscle disorders (exercise intolerance, muscle weakness, hypotonia) and/or eye 10 disorders (opthmalmoplegia, ptosis, cataract and retinopathy).

Protein of SEQ ID NO: 91 (internal designation 117-005-4-0-E5-FLC)

The protein of SEQ ID NO:91 encoded by the cDNA of SEQ ID NO:41 found in liver shows homology over domains of a family of mitochondrial substrate carrier proteins found in the inner mitochondrial membrane. These carrier proteins are evolutionary related and consist of three tandem 15 repeats of a domain of approximately one hundred residues with each of these domains containing two transmembrane regions. The 308-amino-acid-long protein of SEQ ID NO:91 has a size similar to the one of mitochondrial carrier proteins and displays the characteristic PROSITE signature of this protein family three times (positions 19 to 28, 115 to 124 and 237 to 246, see Table V). In addition, the protein of SEQ ID NO: 91 has 6 potential transmembrane segments of 20 amino acids, 4 being predicted with a high level of 20 confidence (positions 1-21, 54-74, 135-155 and 217-237) and 2 with a lower level of confidence (positions 96-116 and 191-211), using the TopPred II software (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO: 91 or part thereof may play a role in energy transfer, probably as a mitochondrial substrate carrier protein. Thus, this protein or part 25 thereof, may be useful in diagnosing and/or treating several disorders including, but not limited to, mitochondriocytopathies and obesity.

In particular, the protein of SEQ ID NO: 91 encoded by the cDNA of SEQ ID NO: 41 exhibits homology to apolipoprotein A-IV related protein. Lipoproteins such as HDL and LDL contain characteristic apolipoproteins that are responsible for targeting them to certain tissues and for activating enzymes required 30 for the trafficking of the lipid fraction of the lipoprotein (including cholesterol). Apolipoprotein A-IV-related protein (AA4RP) is a member of the apolipoprotein family; it is 52% similar (29% identical) to Apolipoprotein A-IV (ApoA-IV) and therefore is likely to have a similar function. ApoA-IV is found associated with the chylomicron and HDL fraction of blood. Its specific function is currently unknown; however, it is expressed in the liver and intestine and regulated by high fat meals (upregulated) and by leptin (downregulated). Levels of 35 ApoA-IV are correlated with glycemic control in young type I diabetes (IDDM) patients. Over-expression of the protein is protective against atherosclerosis in mice with ApoE knockouts. Finally, ApoAIV is responsible

for part of the inter-individual variability in blood cholesterol response to changes in dietary fat/cholesterol intake.

AA4RP circulates in the blood, and is therefore easily amenable to therapeutic intervention, by direct administration into the blood of synthetic peptide analogs that mimic its activity or function as 5 competitive antagonists (dominant negatives). Since this protein is involved in fat transport and in cholesterol trafficking within the body and mediates the changes in blood cholesterol in response to dietary changes, interventions targeted at this protein will be useful for cholesterol lowering and anti-atherosclerosis therapeutics, and in the control of diabetes and obesity.

Proteins of SEQ ID NO: 74 (internal designation 105-016-3-0-E3-FLC)

10

20

The 325-amino-acid-long protein of SEQ ID NO: 74 encoded by the cDNA of SEQ ID NO: 24 shows homology over the whole length of the 332-amino-acid-long murine neural proliferation differentiation and control 1 protein or NPDC-1 (Genbank accession number X67209) which is thought to play an important role in the control of neural cell proliferation and differentiation as well as in cell survival probably by interacting directly or not with cell cycle regulators such as E2F-1 (Galiana et al., Proc. Natl. Acad. Sci. USA 15 92:1560-1564 (1995); Dupont et al., J. Neurosci. Res. 51:257-267 (1998))...

Taken together, these data suggest that the protein of SEQ ID NO: 74 or part thereof may play a role in cell proliferation and differentiation. Thus, this protein or part thereof, may be useful in diagnosing and/or treating several disorders including, but not limited to cancer and neurodegenerative disorders.

Protein of SEQ ID NO: 111 (internal designation 108-013-5-O-H9-FL)

The protein of SEQ ID NO: 111 encoded by the extended cDNA SEQ ID NO: 61 shows homologies with a family of lysophospholipases conserved among eukaryotes (yeast, rabbit, rodents and human). In addition, some members of this family (rat:Genbank accession number U97146, rabbit: Genbank accession number U97147) exhibit a calcium-independent phospholipase A2 activity (Portilla et al, J. Am. Soc. Nephro., 9:1178-1186 (1998)). All members of this family exhibit the active site consensus 25 GXSXG motif of carboxylesterases that is also found in the protein of the invention (position 54 to 58). In addition, this protein may be a membrane protein with one transmembrane domain as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO:111 may play a role in fatty acid metabolism, probably as a phospholipase. Thus, this protein or part therein, may be useful in diagnosing 30 and/or treating several disorders including, but not limited to, cancer, neurodegenerative disorders such as Parkinson's and Alzheimer's diseases, diabetes. It may also be useful in modulating inflammatory responses to infectious agents and/or to suppress graft rejection.

Protein of SEQ ID NOs:101 (internal designation 108-005-5-O-F9-FL)

The protein of SEQ ID NO:71 encoded by the extended cDNA SEQ ID NO: 51 shows homology 35 with the Drosophila rhythmically expressed gene 2 protein (Genbank accession number U65492). Expression of the mRNA coding for the matched protein is dependent on the interplay between light-dark WO 00/37491

cycle, feeding conditions and expression of the per gene which is essential to the function of the endogenous circadian pacemaker (Van Gelder et al., Curr. Biol., 5:1424-1436 (1995)).

92

Taken together, these data suggest that the protein of SEQ ID NO: 101 may play a role in circadian control. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders 5 including, but not limited to, insomnia, depression, stress and other disorders of the circadian rhythm. In addition, such a protein may be useful in modulating the physiological response to night work or to jet lag.

C) Proteins homologous to a domain of a protein with known function

Protein of SEQ ID NO: 94 (internal designation 121-004-3-0-F6-FLC)

The protein of SEQ ID NO: 94 encoded by the cDNA of SEQ ID NO:44 found in brain shows 10 homology to a ganglioside-induced differentiation associated protein 1 found in both human (EMBL accession number 075786) and murine species (EMBL accession number 088741). Gangliosides are believed to be involved in neural cell development, differentiation, survival and pathology, maybe as modulators of membrane properties (Brigande and Seyfried, Ann. N. Y. Acad. Sci. 845:215-218 (1998); Schengrund and Mummert, Ann. N. Y. Acad. Sci. 845:278-284 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 94 or part thereof may play a role in central nervous system development and differentiation. Thus, this protein or part thereof, may be useful in diagnosing and treating several disorders including, but not limited to, cancer and neuronal disorders.

Protein of SEQ ID NO: 89 (internal designation 117-005-2-0-E10-FLC)

15

20

The protein of SEQ ID NO: 89 encoded by the cDNA of SEQ ID NO:39 shows remote homology to domains of apolipoprotein A-IV of human, murine and chicken species (Genbank accession numbers M13654, M13966, and EMBL accession number O93601 respectively). These apolipoproteins are thought to play a role in chylomicrons and VLDL secretion and catabolism and may also be involved in reverse cholesterol transport. In addition, the 366-amino-acid-long protein of SEQ ID NO: 89 has a size similar to 25 those of above-mentioned apolipoprotein A-IV.

The protein of SEQ ID NO: 89 encoded by the cDNA of SEQ ID NO: 39 exhibits homology to the camitine carrier related protein. The carritine carrier-related protein (CCRP) is 45% similar (30% identical) to the acyl-camitine/camitine carrier and is therefore likely to have a similar function. The acvlcamitine/carnitine carrier is a mitochondrial carrier protein that is responsible for transporting fatty acids into 30 the mitochondrion where they may be oxidized to produce energy. CCRP also shares underlying structural similarities with the uncoupling protein (UCP-1), another mitochondrial transporter protein which is involved in weight regulation and temperature homeostasis. UCP protein activity is regulated by nucleotides via a 9 amino acid protein domain that is relatively well conserved in the predicted CCR protein (6 of 9 identical, 9 of 9 similar), compared to only 4 of 9 for the acyl-camitine/camitine carrier itself. Therefore the function of the 35 CCRP may be amenable to direct activation or inhibition via small molecule nucleotide analogs.

Acyl-carnitine/carnitine carrier is required for transport of fatty acids into mitochondria before they can be oxidized for energy, however genetic mutations of this gene do not result in disturbances of weight. This indicates that another protein must also be available for fatty acid transport, and CCRP is likely to be this transporter.

93

The rate of lipid burning by the mitochondrion is dependent upon the rate of delivery of fatty acids into the mitochondrion by these transporters. Regulation of the activity of CCRP, via its nucleotide binding domain or by other interventions to increase its availability or activity in the mitochondria, would increase the fat burning capacity of tissues. Since elevated plasma free fatty acids have been implicated in the causation of type II diabetes (NIDDM) such interventions could be designed to increase net clearance of lipids from the blood. Other effects of therapeutics targeted at CCRP could be to increase fat burning by liver and muscle at the expense of fat storage by adipose tissue, with the result of decreasing weight.

Taken together, these data suggest that the protein of SEQ ID NO: 89 may play a role in lipid metabolism. Thus, this protein or part thereof, may be useful in diagnosing and treating several disorders including, but not limited to, hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as coronary heart disease, neurodegenerative disorders such as Alzheimer's disease or dementia, and obesity.

15 Protein of SEQ ID NO: 95 (internal designation 122-005-2-0-F11-FLC)

10

The protein of SEQ ID NO: 95 encoded by the cDNA of SEQ ID NO:45 exhibits homology with domains of a family of reductases, and especially with the NADH-cytochrome b5 reductase of rat, bovine and human species (Genbank accession numbers J03867, M83104 and Y09501, respectively). The homology include the flavin-adenine dinucleotide-binding domain of NADH-cytochrome b5 reductase proteins which belong to a flavoenzyme family whose members are involved in photosynthesis, in the assimilation of nitrogen and sulfur, in fatty-acid oxidation, in the reduction of methemoglobin and in the metabolism of many pesticides, drugs and carcinogens.

Taken together, these data suggest that the protein of SEQ ID NO: 95 may play a role in cellular oxidoreduction reactions, maybe as a flavoenzyme reductase. Thus, this protein or part thereof, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, methemoglobinemia, hyperlipidemia, obesity and cardiovascular disorders. It may also be useful in regulating the metabolism of pesticides, drugs and carcinogens.

Protein of SEQ ID NO: 106 (internal designation 108-011-5-O-B12-FL)

The protein of SEQ ID NO: 106 encoded by the extended cDNA SEQ ID NO: 56 shows homology to the predicted extracellular domain and part of transmembrane domain of interleukin-17 receptor of both human and murine species (Genbank accession numbers W04185 and W04184). These IL-17R proteins are thought to belong to a new family of receptors for cytokines which induce T cell proliferation, I-CAM expression and preferential maturation of haematopoietic precursors into neutrophils (Yao et al., Cytokine., 9:794-8001 (1997)). It is also thought to play a proinflammatory role and to induce nitric oxide. The protein of the invention has a 21 amino acid transmembrane domain (positions 172 to 192) as predicted by the software TopPred II (Claros and von Heijne, CABIOS applic. Notes, 10:685-686 (1994)) matching the 21 amino acid putative transmembrane domain of human interleukin-17 receptor.

Taken together, these data suggest that the protein of SEQ ID NO: 106 may play a role in regulating immune and/or inflammatory responses. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological disorders, septic shock and impotence. In addition, this protein may also be useful to modulate immune and/or inflammatory responses to infectious responses and/or to suppress graft rejection.

Protein of SEQ ID NO: 114 (internal designation 108-014-5-O-D12-FL)

The protein of SEQ ID NO: 114 encoded by the extended cDNA SEQ ID NO: 64 possess a cysteine-rich C3H2C3 region also found in G1 protein of *Drosophila melanogaster* (Swissprot accession number Q06003). This cysteine-rich region is similar to a RING type zinc finger, a domain that binds two atoms of zinc and is probably involved in mediating protein-protein interaction.

Taken together, these data suggest that the protein of SEQ ID NO: 114 may play a role in protein protein interaction.

The nucleic acid sequences of SEQ ID NOs: 24-73 or fragments thereof may also be used to construct fusion proteins in which the polypeptide sequences of SEQ ID NOs: 74-123 or fragments thereof are fused to heterologous polypeptides. For example, the fragments of the polypeptides of SEQ ID NOs. 74-123 which are included in the fusion proteins may comprise at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of the polypeptides of SEQ ID NOs. 74-123 or may be of any length suitable for the intended purpose of the fusion protein. Nucleic acids encoding the desired fusion protein are produced by cloning a nucleic acid of SEQ ID NOs. 24-73 in frame with a nucleic acid encoding the heterologous polypeptide. The nucleic acid encoding the desired fusion protein is operably linked to a promoter in an appropriate vector, such as any of the vectors described above, and introduced into a host capable of expressing the fusion protein.

Antibodies against the polypeptides of SEQ ID NOs. 74-123 or fragments thereof may be used in immunoaffinity chromatography to isolate the polypeptides of SEQ ID NOs. 74-123 or fragments thereof or to 25 isolate fusion proteins containing the polypeptides of SEQ ID NOs. 74-123 or fragments thereof.

EXAMPLE 58

Immunoaffinity Chromatography

Antibodies prepared as described above are coupled to a support. Preferably, the antibodies are monoclonal antibodies, but polyclonal antibodies may also be used. The support may be any of those typically 30 employed in immunoaffinity chromatography, including Sepharose CL-4B (Pharmacia, Piscataway, NJ), Sepharose CL-2B (Pharmacia, Piscataway, NJ), Affi-gel 10 (Biorad, Richmond, CA), or glass beads.

The antibodies may be coupled to the support using any of the coupling reagents typically used in immunoaffinity chromatography, including cyanogen bromide. After coupling the antibody to the support, the support is contacted with a sample which contains a target polypeptide whose isolation, purification or enrichment is desired. The target polypeptide may be a polypeptide of SEQ ID NOs. 74-123, a fragment thereof, or a fusion protein comprising a polypeptide of SEQ ID NOs. 74-123 or a fragment thereof.

Preferably, the sample is placed in contact with the support for a sufficient amount of time and under appropriate conditions to allow at least 50% of the target polypeptide to specifically bind to the antibody coupled to the support.

95

PCT/IB99/02058

Thereafter, the support is washed with an appropriate wash solution to remove polypeptides which have non-specifically adhered to the support. The wash solution may be any of those typically employed in immunoaffinity chromatography, including PBS, Tris-lithium chloride buffer (0.1M lysine base and 0.5M lithium chloride, pH 8.0), Tris-hydrochloride buffer (0.05M Tris-hydrochloride, pH 8.0), or Tris/Triton/NaCl buffer (50mM Tris.cl, pH 8.0 or 9.0, 0.1% Triton X-100, and 0.5MNaCl).

After washing, the specifically bound target polypeptide is eluted from the support using the high pH or low pH elution solutions typically employed in immunoaffinity chromatography. In particular, the elution solutions may contain an eluant such as triethanolamine, diethylamine, calcium chloride, sodium thiocyanate, potasssium bromide, acetic acid, or glycine. In some embodiments, the elution solution may also contain a detergent such as Triton X-100 or octyl-β-D-qlucoside.

As discussed above, the cDNAs of the present invention or fragments thereof can be used for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination for expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins or polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding

PCT/IB99/02058 WO 00/37491

96

occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

5

10

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning; A Laboratory Manual", 2d ed., Cole Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology; Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or 15 capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only 20 by reference to the appended claims.

TABLE I

ld	FCS Location	SigPep Location	Mature Polypeptide Location	Stop Codon Location	PolyA Signal Location	PolyA Site Location
24	153/1127	153/230	231/1127	1128	1415/1420	1434/1450
25	261/1166	261/314	315/1166	1167	-	1524/1556
26	67/813	67/111	112/813	814	1023/1028	1042/1058
27	187/438	-	187/438	439	612/617	632/648
28	92/1753	92/130	131/1753	1754	2070/2075	2090/2104
29	. 144/440	144/287	288/440	441	457/462	500/515
30	174/443	174/269	270/443	444	623/628	647/661
31	55/399	55/192	193/399	400	654/659	680/694
32	90/287	90/146	147/287	288	1078/1083	1096/1110
33	49/447	49/111	112/447	448	579/584	602/623
34	199/618	199/408	409/618	619	626/631	643/657
35	271/969	271/366	367/969	970	1092/1097	1123/1137
36	192/440	192/278	279/440	441	590/595	622/636
37	59/703	59/181	182/703	704	783/788	804/818
38	139/1389	139/198	199/1389	1390	1854/1859	1873/1888
39	21/1118	21/89	90/1118	1119	1858/1863	1879/1894
40	143/592	143/277	278/592	593	1877/1882	1899/1913
41	76/999	76/279	280/999	1000	1711/1716	1729/1744
42	123/464	123/269	270/464	465	908/913	931/946
43	85/1230	85/129	130/1230	1231	1589/1594	1607/1622
44	29/664	29/619	620/664	665	657/662	699/715
45	18/878	18/95	96/878	879	1500/1505	1533/1549
46	73/1008	73/147	148/1008	1009	1286/1291	1312/1328
47	165/842	165/251	252/842	843	1474/1479	1500/1515
48	31/1248	31/135	136/1248	1249	1580/1585	1607/1622
49	131/490	131/301	302/490	491	1411/1416	1434/1448
50	61/690	61/168	169/690	691	858/863	879/894
51	501/1253	501/1229	1230/1253	1254	1392/1397	1432/1447
52	25/402	25/96	97/402	403	1500/1505	1525/1540
53	280/678	280/411	412/678	679	1606/1611	1628/1643

ld	FCS Location	SigPep Location	Mature Polypeptide Location	Stop Codon Location	PolyA Signal Location	PolyA Site Location
54	64/726	64/147	148/726	727	1279/1284	1300/1314
55	42/1097	42/110	111/1097	1098	2323/2328	2341/2356
56	245/1399	245/796	797/1399	1400	1669/1674	1687/1701
57	235/441	235/303	304/441	442	-	758/772
58	88/411	88/234	235/411	412	938/943	964/987
59	129/452	129/212	213/452	453	1290/1295	1309/1324
60	238/612	238/348	349/612	613	1885/1890	1905/1918
61	229/735	229/492	493/735	736	816/821	841/852
62	168/413	168/335	336/413	414	684/689	708/726
63	100/852	100/159	160/852	853	998/1003	1019/1039
64	238/1152	238/339	340/1152	1153	1298/1303	1324/1355
65	187/369	187/312	313/369	370	489/494	558/572
66	121/459	121/165	166/459	460	497/502	521/535
67	34/336	34/123	124/336	337	536/541	556/572
68	119/409	119/388	389/409	410	769/774	789/804
69	232/534	232/306	307/534	535	595/600	615/629
70	140/595	140/442	443/595	596	630/635	655/669
71	32/658	32/289	290/658	659	936/941	959/973
72	14/280	14/76	77/280	281	-	776/791
73	93/290	93/149	150/290	291	1078/1083	1096/1110

TABLE II

ld	Full Length Polypeptide Location	Signal Peptide Location	Mature Polypeptide Location
74	-26 through 299	-26 through -1	1 through 299
75	-18 through 284	-18 through -1	1 through 284
76	-15 through 234	-15 through -1	1 through 234
77	1 through 84	-	1 through 84
78	-13 through 541	-13 through -1	1 through 541
79	-48 through 51	-48 through -1	1 through 51
80	-32 through 58	-32 through -1	1 through 58
81	-46 through 69	-46 through -1	1 through 69
82	-19 through 47	-19 through -1	1 through 47
83	-21 through 112	-21 through -1	1 through 112
84	-70 through 70	-70 through -1	1 through 70
85	-32 through 201	-32 through -1	1 through 201
86	-29 through 54	-29 through -1	1 through 54
87	-41 through 174	-41 through -1	1 through 174
88	-20 through 397	-20 through -1	1 through 397
89	-23 through 343	-23 through -1	1 through 343
90	-45 through 105	-45 through -1	1 through 105
91	-68 through 240	-68 through -1	1 through 240
92	-49 through 65	-49 through -1	1 through 65
93	-15 through 367	-15 through -1	1 through 367
94	-197 through 15	-197 through -1	1 through 15
95	-26 through 261	-26 through -1	1 through 261
96	-25 through 287	-25 through -1	1 through 287
97	-29 through 197	-29 through -1	1 through 197
98	-35 through 371	-35 through -1	1 through 371
99	-57 through 63	-57 through -1	1 through 63
100	-36 through 174	-36 through -1	1 through 174
101	-243 through 8	-243 through -1	1 through 8
102	-24 through 102	-24 through -1	1 through 102
103	-44 through 89	-44 through -1	1 through 89
104	-28 through 193	-28 through -1	1 through 193

ld	Full Length Polypeptide Location	Signal Peptide Location	Mature Polypeptide Location
105	-23 through 329	-23 through -1	1 through 329
106	-184 through 201	-184 through -1	1 through 201
107	-23 through 46	-23 through -1	1 through 46
108	-49 through 59	-49 through -1	1 through 59
109	-28 through 80	-28 through -1	1 through 80
110	-37 through 88	-37 through -1	1 through 88
111	-88 through 81	-88 through -1	1 through 81
112	-56 through 26	-56 through -1	1 through 26
113	-20 through 231	-20 through -1	1 through 231
114	-34 through 271	-34 through -1	1 through 271
115	-42 through 19	-42 through -1	1 through 19
116	-15 through 98	-15 through -1	1 through 98
117	-30 through 71	-30 through -1	1 through 71
118	-90 through 7	-90 through -1	1 through 7
119	-25 through 76	-25 through -1	1 through 76
120	-101 through 51	-101 through -1	1 through 51
121	-86 through 123	-86 through -1	1 through 123
122	-21 through 68	-21 through -1	1 through 68
123	-19 through 47	-19 through -1	1 through 47

TABLE III

ld	Positions of preferred fragments	
24	1-126, 164-259, 420-432, 1404-1450	
25	32-44, 4199-1556	
26	1-19, 1011-1058	
27	1-16, 108-159, 595-648	
28	1-119, 486-665, 1968-2009, 2055-2104	
29	424-435, 500-515	
30	1-122, 242-661	
31	1-16, 649-694	
32	1-663, 1070-110	
33	1-129, 541-623	
34	1-200, 614-657	
35	1-419, 1094-1137	
36	1-127, 323-331, 595-636	
37	804-818	
38	1-47, 438-611, 1005-1133, 1846-1888	
39	1-430, 527-1894	
40	1-119, 1743-1792, 1866-1913	
41	1-70, 133-1235, 1729-1744	
42	575-615, 896-946	
43	513-526, 950-960, 1577-1622	
44	1-2, 210-265, 674-715	
45	1400-1441, 1508-1549	
46	1-4, 1284, 1328	

102 TABLE IV

Internal designation	ld	Type of sequence
105-016-3-0-E3-FL	24	DNA
105-031-3-0-D6-FL	25	DNA
105-095-1-0-D10-FL	26	DNA
105-118-4-0-E6-FL	27	DNA
114-025-2-0-F11-FL	28	DNA
116-005-4-0-G11-FL	29	DNA
116-032-2-0-F9-FL	30	DNA
116-047-3-0-B1-FL	31	DNA
116-048-4-0-A6-FL	32	DNA
116-049-1-0-F2-FL	33	DNA
116-050-2-0-A11-FL	34	DNA
116-054-3-0-E6-FL	35	DNA
116-054-3-0-G12-FL	36	DNA
116-073-4-0-C8-FL	37	DNA
117-002-3-0-G3-FL	38	DNA
117-005-2-0-E10-FL	39	DNA
117-005-3-0-F2-FL	40	DNA
117-005-4-0-E5-FL	41	DNA
117-007-2-0-B5-FL	42	DNA
117-007-2-0-C4-FL	43	DNA
121-004-3-0-F6-FL	44	DNA
122-005-2-0-F11-FL	45	DNA
122-007-3-0-D10-FL	46	DNA
108-004-5-0-B12-FL	47	DNA
108-004-5-0-C10-FL	48	DNA
108-004-5-0-G10-FL	49	DNA
108-005-5-0-D4-FL	50	DNA
108-005-5-0-F9-FL	51	DNA
108-006-5-0-C7-FL	52	DNA
108-006-5-0-E1-FL	53	DNA
108-008-5-0-C5-FL	54	DNA
108-008-5-0-G5-FL	55	DNA
108-011-5-0-B12-FL	56	DNA

Internal designation	ld	Type of sequence
108-011-5-0-C7-FL	57	DNA
108-011-5-0-G8-FL	58	DNA
108-011-5-0-H2-FL	59	DNA
108-013-5-0-G5-FL	60	DNA
108-013-5-0-H9-FL	61	DNA
108-014-5-0-A10-FL	62	DNA
108-014-5-0-C7-FL	63	DNA
108-014-5-0-D12-FL	64	DNA
108-014-5-0-H8-FL	65	DNA
108-015-5-0-E2-FL	66	DNA
108-016-5-0-C12-FL	67	DNA
108-016-5-0-D4-FL	68	DNA
108-019-5-0-F10-FL	69	DNA
108-019-5-0-F5-FL	70	DNA
108-019-5-0-H3-FL	71	DNA
108-020-5-0-D4-FL	72	DNA
108-020-5-0-E3-FL	73	DNA
105-016-3-0-E3-FL	74	PRT
105-031-3-0-D6-FL	75	PRT
105-095-1-0-D10-FL	76	PRT
105-118-4-0-E6-FL	77	PRT
114-025-2-0-F11-FL	78	PRT
116-005-4-0-G11-FL	79	PRT
116-032-2-0-F9-FL	80	PRT
116-047-3-0-B1-FL	81	PRT
116-048-4-0-A6-FL	82	PRT
116-049-1-0-F2-FL	83	PRT
116-050-2-0-A11-FL	84	PRT
116-054-3-0-E6-FL	85	PRT
116-054-3-0-G12-FL	86	PRT
116-073-4-0-C8-FL	87	PRT
117-002-3-0-G3-FL	88	PRT
117-005-2-0-E10-FL	89	PRT
117-005-3-0-F2-FL	90	PRT
117-005-4-0-E5-FL	91	PRT .

117-007-2-0-B5-FL 92 PRT 117-007-2-0-C4-FL 93 PRT 121-004-3-0-F6-FL 94 PRT 122-005-2-0-F11-FL 95 PRT 122-007-3-0-D10-FL 96 PRT 108-004-5-0-B12-FL 97 PRT 108-004-5-0-G10-FL 98 PRT 108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-D4-FL 100 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-C7-FL 102 PRT 108-008-5-0-G5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-G5-FL 111 PRT 108-014-5-0-A19-FL 112 PRT 108-014-5-0-D12-FL 113 PRT 108-014	Internal designation	ld	Type of sequence
121-004-3-0-F6-FL 94 PRT 122-005-2-0-F11-FL 95 PRT 122-007-3-0-D10-FL 96 PRT 108-004-5-0-B12-FL 97 PRT 108-004-5-0-G10-FL 98 PRT 108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-008-5-0-C5-FL 104 PRT 108-011-5-0-G5-FL 105 PRT 108-011-5-0-G8-FL 106 PRT 108-011-5-0-G8-FL 109 PRT 108-011-5-0-G8-FL 109 PRT 108-013-5-0-H2-FL 109 PRT 108-013-5-0-H2-FL 110 PRT 108-014-5-0-A10-FL 111 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-016-5-0-C12-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-H3-FL 119 PRT 108-019-5-0-H3-FL 119 PRT	117-007-2-0-B5-FL	92	PRT
122-005-2-0-F11-FL 95 PRT 122-007-3-0-D10-FL 96 PRT 108-004-5-0-B12-FL 97 PRT 108-004-5-0-C10-FL 98 PRT 108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-C5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-D12-FL 115 PRT 108-014-5-0-D12-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-C12-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-H3-FL 120 PRT	117-007-2-0-C4-FL	93	PRT
122-007-3-0-D10-FL 96 PRT 108-004-5-0-B12-FL 97 PRT 108-004-5-0-C10-FL 98 PRT 108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-G5-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-D12-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-H3-FL 120 PRT 108-019-5-0-H3-FL 121 PRT	121-004-3-0-F6-FL	94	PRT
108-004-5-0-B12-FL 97 PRT 108-004-5-0-C10-FL 98 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-D4-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-H3-FL 111 PRT 108-014-5-0-C7-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-B-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-019-5-0-F10-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F3-FL 120 PRT 108-019-5-0-H3-FL 120 PRT	122-005-2-0-F11-FL	95	PRT
108-004-5-0-C10-FL 98 PRT 108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H2-FL 110 PRT 108-013-5-0-H3-FL 111 PRT 108-014-5-0-H3-FL 112 PRT 108-014-5-0-A10-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H3-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108	122-007-3-0-D10-FL	96	PRT
108-004-5-0-G10-FL 99 PRT 108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-B12-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-G8-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-G5-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-D12-FL 114 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT <td< td=""><td>108-004-5-0-B12-FL</td><td>97</td><td>PRT</td></td<>	108-004-5-0-B12-FL	97	PRT
108-005-5-0-D4-FL 100 PRT 108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-G8-FL 109 PRT 108-011-5-0-H2-FL 110 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H3-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL <	108-004-5-0-C10-FL	98	PRT
108-005-5-0-F9-FL 101 PRT 108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-C7-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-B12-FL 114 PRT 108-014-5-0-B12-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D1-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT	108-004-5-0-G10-FL	99	PRT
108-006-5-0-C7-FL 102 PRT 108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-C7-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-H2-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-D12-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-005-5-0-D4-FL	100	PRT
108-006-5-0-E1-FL 103 PRT 108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-B12-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-A10-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-016-5-0-E2-FL 116 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-005-5-0-F9-FL	101	PRT
108-008-5-0-C5-FL 104 PRT 108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-G8-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-019-5-0-F10-FL 118 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-006-5-0-C7-FL	102 ·	PRT
108-008-5-0-G5-FL 105 PRT 108-011-5-0-B12-FL 106 PRT 108-011-5-0-C7-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-A10-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-006-5-0-E1-FL	103	PRT
108-011-5-0-B12-FL 106 PRT 108-011-5-0-C7-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-H9-FL 112 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-008-5-0-C5-FL	104	PRT
108-011-5-0-C7-FL 107 PRT 108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-A10-FL 113 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-H3-FL 120 PRT 108-020-5-0-D4-FL 122 PRT	108-008-5-0-G5-FL	105	PRT
108-011-5-0-G8-FL 108 PRT 108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-H3-FL 120 PRT 108-020-5-0-D4-FL 122 PRT	108-011-5-0-B12-FL	106	PRT
108-011-5-0-H2-FL 109 PRT 108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-011-5-0-C7-FL	107	PRT
108-013-5-0-G5-FL 110 PRT 108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-011-5-0-G8-FL	108	PRT
108-013-5-0-H9-FL 111 PRT 108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-011-5-0-H2-FL	109	PRT
108-014-5-0-A10-FL 112 PRT 108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-013-5-0-G5-FL	110	PRT
108-014-5-0-C7-FL 113 PRT 108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-013-5-0-H9-FL	111	PRT
108-014-5-0-D12-FL 114 PRT 108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-014-5-0-A10-FL	112	PRT
108-014-5-0-H8-FL 115 PRT 108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-014-5-0-C7-FL	113	PRT
108-015-5-0-E2-FL 116 PRT 108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-014-5-0-D12-FL	114	PRT
108-016-5-0-C12-FL 117 PRT 108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-014-5-0-H8-FL	115	[· · · · · · · · · · · · · · · · · · ·
108-016-5-0-D4-FL 118 PRT 108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-015-5-0-E2-FL	116	PRT
108-019-5-0-F10-FL 119 PRT 108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-016-5-0-C12-FL	117	PRT
108-019-5-0-F5-FL 120 PRT 108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-016-5-0-D4-FL	118	PRT
108-019-5-0-H3-FL 121 PRT 108-020-5-0-D4-FL 122 PRT	108-019-5-0-F10-FL	119	PRT
108-020-5-0-D4-FL 122 PRT	108-019-5-0-F5-FL	120	PRT
	108-019-5-0-H3-FL	121	PRT
108-020-5-0-E3-FL 123 PRT	108-020-5-0-D4-FL	122	PRT
	108-020-5-0-E3-FL	123	PRT

105 TABLE V

id	Locations	PROSITE signature Name
87	162-180	Alpha-lactalbumin / lysozyme C
91	19-28	Mitochondrial energy transfer proteins
91	143-152	Mitochondrial energy transfer proteins
91	389-398	Mitochondrial energy transfer proteins

WO 00/37491 PCT/IB99/02058

106

FREE TEXT OF SEQUENCE LISTING

Von Heijne matrix

Score

5 oligonucleotide used as a primer matinspector prediction

name

complement

PCT/IB99/02058

107

WHAT IS CLAIMED IS:

30

- A purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 24-73 or a 1. sequence complementary thereto.
- A purified or isolated nucleic acid comprising at least 12 consecutive bases of the sequence of one 2. 5 of SEQ ID NOs: 24-73 or one of the sequences complementary thereto.
 - 3. A purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 24-73, wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein.
- 4. A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 24-73 which 10 encode a mature protein.
 - 5. A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 24-73 which encode the signal peptide.
 - A purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the 6. sequences of SEQ ID NOs: 74-123.
- 15 7. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 74-123.
 - 8. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 74-123.
 - 9. A purified or isolated protein comprising the sequence of one of SEQ ID NOs: 74-123.
- 20 10. A purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 74-123.
 - 11. An isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 74-123.
- 12. An isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ 25 ID NOs: 74-123.
 - 13. A method of making a protein comprising one of the sequences of SEQ ID NO: 74-123, comprising the steps of:

obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 24-73; inserting said cDNA in an expression vector such that said cDNA is operably linked to a promoter; and

introducing said expression vector into a host cell whereby said host cell produces the protein encoded by said cDNA.

- 14. The method of Claim 13, further comprising the step of isolating said protein.
- 15. A protein obtainable by the method of Claim 14.
- 5 16. A host cell containing a recombinant nucleic acid of Claim 1.
 - 17. A purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 74-123.
- 18. In an array of polynucleotides of at least 15 nucleotides in length, the improvement comprising inclusion in said array of at least one of the sequences of SEQ ID NOs: 24-73, or one of the sequences complementary to the sequences of SEQ ID NOs: 24-73, or a fragment thereof of at least 15 consecutive nucleotides.
 - 19. A purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 24-73 or a sequence complementary to one of the sequences of SEQ ID NOs: 24-73.
- 15 20. A purified or isolated antibody capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 74-123.
 - 21. A computer readable medium having stored thereon a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQ ID NOs. 74-123.
- A computer system comprising a processor and a data storage device wherein said data storage
 device has stored thereon a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQ ID NOs. 74-123.
 - 23. The computer system of Claim 22 further comprising a sequence comparer and a data storage device having reference sequences stored thereon.
- The computer system of Claim 23 wherein said sequence comparer comprises a computer program
 which indicates polymorphisms.
 - 25. The computer system of Claim 22 further comprising an identifier which identifies features in said sequence.

5

- 26. A method for comparing a first sequence to a reference sequence wherein said first sequence is selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQ ID NOs. 74-123 comprising the steps of:
 - reading said first sequence and said reference sequence through use of a computer program which compares sequences; and determining differences between said first sequence and said reference sequence with said computer program.
- 27. The method of Claim 26, wherein said step of determining differences between the first sequence and the reference sequence comprises identifying polymorphisms.
- A method for identifying a feature in a sequence selected from the group consisting of a cDNA code of SEQID NOs. 24-73 and a polypeptide code of SEQID NOs. 74-123 comprising the steps of: reading said sequence through the use of a computer program which identifies features in sequences; and identifying features in said sequence with said computer program.
- 15 29. A purified or isolated nucleic acid comprising a contiguous span of at least 12 nucleotides of the sequence of one of SEQ ID NOs: 24-73 or one of the sequences complementary thereto, wherein said contiguous span comprises at least 1 of the nucleotide positions of polynucleotides described in Table III.
- A purified or isolated nucleic acid comprising a contiguous span of at least 12 nucleotides of the
 sequence of one of the polynucleotides described in Table III or one of the sequences complementary thereto.

	Search characteristic	eristic		Selecti	Selection Characteristics	stics
Step	Program	Strand	Parameters	Identity (%)	Length (bp)	Comments
miscellanaeous	FASTA	both		06	15	
tRNA	FASTA	both	1	08	09	
rRNA	BLASTN	both	S=108	08	40	
mtRNA	BLASTN	both	S=108	08	40	
Procaryotic	BLASTN	poth	S=144	06	40	
Fungal	BLASTN	both	S=144	06	40	
Alu	BLASTN	both	S=72, B=5	0/	40	max 5 matches, masking
۲٦	BLASTN	both	. S=72, B=5	02	40	max 5 matches, masking
Repeats	BLASTN	both	S=72	0/	40	masking
	•		W=6, S=10,			
PolyA	BLAST2N	top	E=1000, N=-12	90	10	in the last 100 nucleotides
Polyadenylation signal	-	top	AATAAA al	AATAAA allowing 1 mismatch	natch	in the 50 nucleotides preceding the 5' end of the polA
	BLASTN then					first BLASTN and then FASTA
Vertebrate	FASTA	both	•	90 then 70	30	on maching sequences
ESTs	BLAST2N	both	•	06	30	
Genesed	BLASTN	both	W=8, B=10	06	30	
ORF	BLASTP	top	W=8, B=10	,		on ORF proteins, max 10 matches
Proteins	BLASTX	top	E = 0.001	70	30	

Parameters used for each step of cDNA analysis

Figure 1

2/13

Minimum signal peptide score	false positive rate	false negative rate	proba(0.1)	proba(0.2)
3,5	0,121	0,036	0,467	0,664
4	0,096	0,06	0,519	0,708
4,5	0,078	0,079	0,565	0,745
5	0,062	0,098	0,615	0,782
5,5	0,05	0,127	0,659	0,813
6	0,04	0,163	0,694	0,836
6,5	0,033	0,202	0,725	0,855
7	0,025	0,248	0,763	0,878
7,5	0,021	0,304	0,78	0,889
8	0,015	0,368	0,816	0,909
8,5	0,012	0,418	0,836	0,92
9	0,009	0,512	0,856	0,93
9,5	0,007	0,581	0,863	0,934
10	0,006	0,679	0,835	0,919

Figure 2

FIGURE 3

FIGURE 4

Description of Transcription Factor Binding Sites present on promoters isolated from SignalTag sequences

Promoter sequence					
Matrix	Position	Orientation	Score	Length	Sequence
CMYB_01	-502	+	0.983	9	TGTCAGTTG
MYOD_Q6	-501	_	0.961	10	CCCAACTGAC
S8_01	-444	-	0.960	11	AATAGAATTAG
S8_01	-425	+	0.966	11	AACTAAATTAG
DELTAEF1 01	-390	. -	0.960	11	GCACACCTCAG
GATA_C	-364	_	0.964	11	AGATAAATCCA
CMYB_01	-349	+	0.958	9	CTTCAGTTG
GATA1 02	-343	+	0.959	14	TTGTAGATAGGACA
GATA_C	-339	+	0.953	11	AGATAGGACAT
TAL1ALPHAE47_01	-235	+	0.973	16	CATAACAGATGGTAAG
TAL1BETAE47_01	-235	+	0.983	16	CATAACAGATGGTAAG
TAL1BETAITF2_01	-235	+	0.978	16	CATAACAGATGGTAAG
MYOD_Q6	-232	•	0.954	10	ACCATCTGTT
GATA1_04	-217	_	0.953	13	TCAAGATAAAGTA
IK1_01	-126	+	0.963	13	AGTTGGGAATTCC
IK2_01	-126	+	0.985	12	AGTTGGGAATTC
CREL_01	-123	+	0.962	10	TGGGAATTCC
GATA1_02	-96	+	0.950	14	TCAGTGATATGGCA
SRY_02	-41	_	0.951	12	TAAAACAAAACA
E2F_02	-33	+	0.957	8	TTTAGCGC
MZF1_01	-5	- -	0.975	8	TGAGGGGA
Promoter sequence		1bp) :	0.070	Ū	TORIOGOOM
Matrix	•	Orientation	Score	Length	Sequence
NFY_Q6	-748	-	0.956	11	GGACCAATCAT
MZF1_01	-738	+	0.962	8	CCTGGGGA
CMYB_01	-684	+	0.994	9	TGACCGTTG
VMYB_02	-682	-	0.985	9	TCCAACGGT
STAT_01	-673	+	0.968	9	TTCCTGGAA
STAT_01	-673	-	0.951	9	TTCCAGGAA
MZF1_01	-556	-	0.956	8	TTGGGGGA
IK2_01	-451	+	0.965	12	GAATGGGATTTC
MZF1_01	-424	+	0.986	8	AGAGGGGA
SRY_02	-398	-	0.955	12	GAAAACAAAACA
MZF1_01	-216	+,	0.960	8	GAAGGGGA
MYOD_Q6	-190	+	0.981	10	AGCATCTGCC
DELTAEF1_01	-176	+	0.958	11	TCCCACCTTCC
S8_01	5	-	0.992	11	GAGGCAATTAT
MZF1_01	16	-	0.986	8	AGAGGGGA
Promoter sequence	P29B6 (55	5 bp) :			
Matrix	Position	Orientation	Score	Length	Sequence
ARNT_01	-311	+	0.964	16	GGACTCACGTGCTGCT
NMYC_01	-309	+	0.965	12	ACTCACGTGCTG
USF_01	-309	+	0.985	12	ACTCACGTGCTG
USF_01	-309	-	0.985	12	CAGCACGTGAGT
NMYC_01	-309	-	0.956	12	CAGCACGTGAGT
MYCMAX_02	-309	-	0.972	12	CAGCACGTGAGT
USF_C	-307	+	0.997	8	TCACGTGC
USF_C	-307	-	0.991	8	GCACGTGA
MZF1_01	-292	-	0.968	8	CATGGGGA
ELK1_02	-105	+	0.963	14	CTCTCCGGAAGCCT
CETS1P54_01	102	+	0.974	10	TCCGGAAGCC
AP1_Q4	-42	-	0.963	11	AGTGACTGAAC
AP1FJ_Q2	-42	-	0.961	11	AGTGACTGAAC
PADS_C	45	+	1.000	9	TGTGGTCTC
_		Figure			

FIGURE 6

FIGURE 7

NO

END

END

FIGURE 9

10/13

			10 20 30		60
SEQ	ID	NO: 76	MLQLWKLVLLCGVLTGTSESLLDNLGNDLS X::::::::::::::::::::::::::::::::::::	SNVVDKLEPVLHEGLETVDNT	LKGILEKLKV
SEQ	ID	NO:124	MLQLWKLVLLCGVLTGTSESLLDNLGNDL		LKGILEKLKV
			10 20 30	0 40 50	60
			70 80 90) 100 110	120
SEO	תז	NO: 76	DLGVLQKSSAWQLAKQKAQEAEKLLNNVIS		
מבכ	10	110. 70	::::::::::::::::::::::::::::::::::::::		······
SEO	ID	NO:124	DLGVLQKSSAWQLAKQKAQEAEKLLNNVIS	KLLPTNTDIFGLKISNSLILI	OVKAEPIDDG
_			70 80 90		120
			130 140 . 150	160 170	180
SEQ	ID	NO: 76	KGLNLSFPVTANVTVAGPIIGQIINLKASI	DLLTAVTIETDPQTHQPVAVI	LGECASDPTS
SEQ	ID	NO:124	KGLNLSFPVTANVTVAGPIIGQIINLKASI		LGECASDPTS
			130 140 150	160 170	180
			100 200 210		
950		NO 76	190 200 210		240
SEQ	מנ	NO: /6	ISLSLLDKHSQIINKFVNSVINTLKSTVS	-	~~ ~
CEO	TD	NO.124	TOLOLI DVUCOT INVENDOVINE VORMO		
SEQ	ענ	NO:124	ISLSLLDKHSQIINKFVNSVINTLKSTVSS		
			190 200 210	220 230	240

SEQ ID NO: 76 HKTQLQTLI ::::::X
SEQ ID NO:124 HKTQLQTLI

Figure 10

11/13

			10	20	30	40	50	60
SEQ	ID	NO: 93	MGLLLPLALCILVLCCG	_				
			X::::::::::::::::					
SEQ	ID	NO:125	MGLLLPLALCILVLCCG.	-				-
			10	20	30	40	50	60
			70	80	00	100	110	
CEO	TD	NO. 03	VLRLNRVNDAQEYRRGG		90	100	110	120
SEQ	עג	NO: 33	VIKINKVNDAQE1RRGG			_	- ~	
GEO.	TD	NO - 125	VLRLNRVNDAOEYRRGG					
250	10	110.123	70	80	90	100	110	120
			, 0	00	50	100	110	120
			130	140	150	160	170	180
SEQ	ID	NO: 93	FYMNNPSRVLYLAAYNC	TLRPVSKKKI	YMTCPDCPSS	IPTDSSNHQV	LEAATESLAK	YNN
						:::::::::		:::
SEQ	ID	NO:125	FYMNNPSRVLYLAAYNC	TLRPVSKKKI	YMTCPDCPSS	IPTDSSNHQV	LEAATESLAK	YNN
			130	140	150	160	170 '	180
				200	210	220		240
SEQ	ID	NO: 93	ENTSKQYSLFKVTRASS	<i>QWVVG</i> PSYFV	EYLIKESP C T	KSQASS C SLQ	SSDSVPVGL C	KGS
SEQ	ID	NO:125	ENTSKQYSLFKVTRASS				='	
			190	200	210	220	230	240
			250	260	0.70			
CEO	TD	NO. 03	250 LTRTHWEKFVSVTCDFF	260 ECONDATICE	270	280		300
SEQ	ID	NO: 33						
SEO	TD	NO - 125	LTRTHWEKFVSVTCDFF					
Ç	1.11	NO.123		260	_	280		300
			250	200	270	200	290	300
			310	320	330	340	350	360
SEQ	ID	NO: 93	RGSVQYLPDLDDKNSQE	KGPOEAFPVH	ILDLTTNPOGE	TLDISFLFLE		FPK
-								
SEQ	ID	NO:125	RGSVQYLPDLDDKNSQE:	KGPQEAFPVH	ILDLTTNPQGE	TLDISFLFLE	PMEEKLVVLP	FPK
			310	320	330	340	350	360
			•					
			=	380				
SEQ	ID	NO: 93	EKARTAECPGPAQNASP	LVLPP				
SEQ	ID	NO:125	EKARTAECPGPAQNASP:					
			370	380				

Figure 11

12/13

			10 20 30 40 50	60
SEQ	ID	NO: 75	MKAPGRLVLIILCSVVFSAVYILLCCWAGLPLCLATCLDHHFPTGSRPTVPGPLHFS	GYS
			X:::::::::::::::::::::::::::::::::::::	:::
SEQ	מז	NO: 126	MKAPGRLLLLTLCILTFSAVCVFLCCWACLPLCLATCLDRHLPAAPRSTVPGPLHFS	
			10 20 30 40 50	60
			70 80 90 100 110	120
SEO	TD	NO: 75	SVPDGKPLVREPCRSCAVVSSSGQMLGSGLGAEIDSAECVFRMNQAPTVGFEADVGC	
PPQ	10	110. 75	STED AND STATE OF THE STATE OF	•
SEO	TD	NO-126	SVPDGKPLIRELCHSCAVVSSSGOMLGSGLGAQIDGAECVLRMNOAPTVGFEEDVGC	
J_X			70 80 90 100 110	120
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120
			130 140 150 160 170	180
SEQ	ID	NO: 75	LRVVSHTSVPLLLRNYSHYFQKARDTLYMVWGQGRHMDRVLGGRTYRTLLOLTRMYP	GLO
				_
SEQ	ID	NO:126	LRVISHTSVPLLLRNYSHYFQHARDTLYVVWGQGRHMDRVLGGRTYRTLLQLTRMYP	GLQ
			130 140 150 160 170	180
			190 200 210 220 230	240
SEQ	ID	NO: 75	VYTFTERMMAYCDQIFQDETGKNRRQSGSF <i>LSTGWFTMILALELCEEIVVYGM</i> VSDS	YCR
				::.
SEQ	ID	NO:126	VYTFTERMMAYCDQIFQDETGKNRRQSGSFLSTGWFTMILALELCEEIVVYGMVSDS	YCS
			190 200 210 220 230	240
				300
SEQ	ID	NO: 75	EKSHPSVPYHYFEKGRLDECQMYLAHEQAPRSAHRFITEKAVFSRWAKKRPIVFAHP	

SEQ	ID	NO:126	EKSPRSVPYHYFEKGRLDECQMYRLHEQAPRSAHRFITEKAVFSRWAKKRPIVFAHP	
			250 260 270 280 290	300

SEQ ID NO: 75 TE

SEQ ID NO:126 AK

Figure 12

13/13

	10	20	30	40	50	60
SECTO 104	COLOREST CONCV	T. POT. CMP!	STGLSDLRHMQF	rtrsvdniqf	LPFLTTDVNN:	LSWLSY
ביין עבעבר			: . ! ! ! ! ! ! ! ! .	, , , , , , , , , ,		
CEATO177	MEAGGFLDSLIYGACV	UPPT.CMP	SACT.SDT.RHMRN	ITRSVDNVQF	LPFLTTEVNN	LGWLSY
SEQID177		20	30	40	50	60
	10	20	30	••		•
	7.0	80	90	100	110	120
	70	12 T AMT U			TAVLLLGYGY	FWLLVP
SEQID 104	GVLKGDGTLIIVNSVG	WATOLFI	TPVITUIDANN	TO A THOUSE OF		
	GATVGDG1TTTANDAG	1.1111				ENT TIT
SECID 177	GALKGDGILIVVNTVG	AALQTLY	ilaylhycprki	KAAPPÕLVAT	TOATHTATA	t umtiar
2020	70	80	90	100	110	120
	7.5	•				
	130	140	150	160	170	180
	130	# * * O -m + O\	DI ADI AVIUOT	KETORLSESI	TIATLECSAS	WSIYGF
SEQID 104	DLEARLQQLGLFCSVI	itralitha	S HUDDUNT A MT.			
	DESARIQUIGHTCSVI	;;;;;;;		iiii iiii	mtamttmcac	MCT.YCE
SEQID 177		ftismyls	LIYOTYKATÖ 1.	KALOCHALLI	11 TWI DHI DWG	180
	130	140	150	160	170	180
	•					
	190	200	210	220		
emero 404	RLRDPYIAVPNLPGI		TECKYPPEODR	KYRLLOT		
SECTO 104	KTKDATTWALHTEGT	*****		X		
	:::::: ; . : . : : : :			NVWI TOT		
SEQID 177	RLRDPYIMVSNFPGI'	VISEIREV	TEMKIEĞEĞDE	74 T M T T T T T		
	190	200	210	220		

FIGURE 13

1

```
<110> Genset
```

<120> Complementary DNA's Encoding Proteins with Signal Peptides

<130> 56.WO1

<150> 60/113,686

<151> 1998-12-22

<150> 60/141,032

<151> 1999-06-25

<160> 176

<170> Patent.pm

<210> 1

<211> 1447

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 501..1253

<220>

<221> sig_peptide

<222> 501..1229

<223> Von Heijne matrix

score 4.1

seq LPSLAHLLPALDC/LE

<220>

<221> polyA_signal

<222> 1392..1397

<220>

<221> polyA_site

<222> 1432..1447

<220>

2

-120

-115

egg cta gag ggc atc etg gag ggc ett ggc etg egt gaa eac tte gae

Arg Leu Glu Gly Ile Leu Glu Gly Leu Gly Leu Arg Glu His Phe Asp

<221> misc_feature <222> 243,252,278,285,387,1429 <223> n=a, g, c or t <400> 1 qtqaqtcagg tgggtcctgg gcccaggaac cggcccggag ccgtggacgc cctacaqctq 60 agaaggggac ccaaggggtc ggccgcggcc aaggccccta ggaccgccgc cccagctcac 120 getgeegacg geagetatag acattetgeg teaggteegg geteetggae tttgeettte 180 ccgagccctg gaggtgggga gaaaaggttc accaattttt aaaatccaaa tatatctcat 240 qqntacagtg gnaagaactg gccagagagt ctggaagntt tgggnttctg gtcctggctq 300 tgccactgac tcactgtgac cttgggatct tgtgctgtga agacatttcc caagtgcttc 360 atgttagcca gcaaatctga cccacanggc ctggaaagag gtgattgtta ggttgcgcag 420 aggtggtctt atccagctca gcttcccctg ggacccaccg tgggacctga ggcagaactq 480 gggtggactt ggcctcctcc atg gca cac cgg ctg cag ata cga ctg ctg acg 533 Met Ala His Arg Leu Gln Ile Arg Leu Leu Thr -240 -235 tgg gat gtg aag gac acg ctg ctc agg ctc cgc cac ccc tta ggg gag 581 Trp Asp Val Lys Asp Thr Leu Leu Arg Leu Arg His Pro Leu Gly Glu -230 -225 gcc tat gcc acc aag gcc cgg gcc cat ggg ctg gag gtg gag ccc tca 629 Ala Tyr Ala Thr Lys Ala Arg Ala His Gly Leu Glu Val Glu Pro Ser -210 -205 gcc ctg gaa caa ggc ttc agg cag gca tac agg gct cag agc cac agc 677 Ala Leu Glu Gln Gly Phe Arg Gln Ala Tyr Arg Ala Gln Ser His Ser -195 -190 ttc ccc aac tac ggc ctg agc cac ggc cta acc tcc cgc cag tgg tgg 725 Phe Pro Asn Tyr Gly Leu Ser His Gly Leu Thr Ser Arg Gln Trp Trp -180 -175 ctg gat gtg gtc ctg cag acc ttc cac ctg gcg ggt gtc cag gat gct 773 Leu Asp Val Val Leu Gln Thr Phe His Leu Ala Gly Val Gln Asp Ala -165 -160 -155 cag gct gta gcc ccc atc gct gaa cag ctt tat aaa gac ttc agc cac 821 Gln Ala Val Ala Pro Ile Ala Glu Gln Leu Tyr Lys Asp Phe Ser His -150 -145 ccc tgc acc tgg cag gtg ttg gat ggg gct gag gac acc ctg agg .gag 869 Pro Cys Thr Trp Gln Val Leu Asp Gly Ala Glu Asp Thr Leu Arg Glu -135 -130 -125 tgc cgc aca cgg ggt ctg aga ctg gca gtg atc tcc aac ttt gac cga 917 Cys Arg Thr Arg Gly Leu Arg Leu Ala Val Ile Ser Asn Phe Asp Arg

-110

									3							
				-100)				-95					-90		
ttt	gtg	ctg	acc	tcc	gag	gct	gct	ggc	tgg	ccc	aag	ccg	gac	ccc	cgc	1013
Phe	Val	Leu	Thr	Ser	Glu	Ala	Ala	Gly	Trp	Pro	Lys	Pro	Asp	Pro	Arg	
			-85					-80					-75			
att	ttc	cag	gag	gcc	ttg	cgg	ctt	gct	cat	atg	gaa	cca	gta	gtg	gca	1061
Ile	Phe	Gln	Glu	Ala	Leu	Arg	Leu	Ala	His	Met	Glu	Pro	Val	Val	Ala	
		-70					-65					-60				
gcc	cat	gtt	ggg	gat	aat	tac	ctc	tgc	gat	tac	cag	999	cct	cgg	gct	1109
Ala	His	Val	Gly	Asp	Asn	Tyr	Leu	Cys	Asp	Tyr	Gln	Gly	Pro	Arg	Ala	
	-55					-50					-45					
gtg	ggc	atg	cac	agc	ttc	ctg	gtg	gtt	ggc	cca	cag	gca	ctg	gac	ccc	1157
Val	Gly	Met	His	Ser	Phe	Leu	Val	Val	Gly	Pro	Gln	Ala	Leu	Asp	Pro	
-40					-35					-30					-25	
gtg	gtc	agg	gat	tct	gta	cct	aaa	gaa	cac	atc	ctc	ccc	tct	ctg	gcc	1205
Val	Val	Arg	Asp	Ser	Val	Pro	Lys	Glu	His	Ile	Leu	Pro	Ser	Leu	Ala	
				-20					-15					-10		
cat	ctc	ctg	cct	gcc	ctt	gac	tgc	cta	gag	ggc	tca	act	cca	999	ctt	1253
His	Leu	Leu	Pro	Ala	Leu	Asp	Сув	Leu	Glu	Gly	Ser	Thr	Pro	Gly	Leu	
			-5					1				5		_		
tga	ggcca	agt g	gaggg	gaagt	g go	tggg	gccct	agg	ccat	gga	gaaa	acct	cta a	aacaa	accct	1313
ggag	gacag	gg a	igccc	ctto	ct tt	ctc	cacaç	cto	tgga	acct	ttcc	ccct	ct o	ccts	geggee	1373
ttt	gtcac	ct a	ctgt	gata	aa ta	aaago	agto	gagt	gcto	gage	tcto	acco	ett d	cccc	cnccaa	1433
aaaa	aaaa	aa a	aaaa													1447
<21	0> 2															
<21	1> 25	51														
<21	2> PF	RT														
<21	3 > Hc	omo s	apie	ens												
<22	0>															
<22	l> S]	GNAI														
<22	2> -2	243	-1													
<40	0> 2															
Met	Ala	His	Arq	Leu	Gln	Ile	Arg	Leu	Leu	Thr	Trp	Asp	Val	Lys	Asp	
			-240					-235			•	•	-230	_	•	
Thr	Leu	Leu	Arg	Leu	Ara	His	Pro	Leu	Glv	Glu	Ala	Tvr			Lvs	
_		-225	_		- 3				1			-			4 ~	
		-44:	•				-220	,				-215	5			
Ala	Ara			Glv	Lev	Glu			Pro	Ser	Ala			Gln	Glv	
Ala	_	Ala		Gly	Leu		Val		Pro	Ser	Ala -200	Leu		Gln	Gly	
	-210	Ala)	His	_		-205	Val	Glu			Ala -200 Phe	Leu)	Glu		-	

PCT/IB99/02058 WO 00/37491

									4						
Leu	Ser	His	Gly	Leu	Thr	Ser	Arg	Gln	Trp	Trp	Leu	Asp	Val	Val	Leu
				-17	5				-170	0				-16	5
Gln	Thr	Phe	His	Leu	Ala	Gly	Val	Gln	Asp	Ala	Gln	Ala	Val	Ala	Pro
			-160	ס				-15	5				-150)	
Ile	Ala	Glu	Gln	Leu	Tyr	Lys	Asp	Phe	Ser	His	Pro	Cys	Thr	Trp	Gln
		-145	5				-140)				-13	5		
Val	Leu	Asp	Gly	Ala	Glu	Asp	Thr	Leu	Arg	Glu	Cys	Arg	Thr	Arg	Gly
	-130)				-12	5				-120)			
Leu	Arg	Leu	Ala	Val	Ile	Ser	Asn	Phe	Asp	. Arg	Arg	Leu	Glu	Gly	Ile
-11	5				-110)				-109	5				-100
Leu	Glu	Gly	Leu	Gly	Leu	Arg	Glu	His	Phe	Asp	Phe	Val	Leu	Thr	Ser
				- 95					-90					-85	
Glu	Ala	Ala	Gly	Trp	Pro	Lys	Pro	Asp	Pro	Arg	Ile	Phe	Gln	Glu	Ala
			-80					-75					-70		
Leu	Arg	Leu	Ala	His	Met	Glu	Pro	Val	Val	Ala	Ala	His	Val	Gly	Asp
		-65					-60					-55			
Asn	Tyr	Leu	Cys	qaA	Tyr	Gln	Gly	Pro	Arg	Ala	Val	Gly	Met	His	Ser
	-50					-45					-40				
Phe	Leu	Val	Val	Gly	Pro	Gln	Ala	Leu	qaA	Pro	Val	Val	Arg	Asp	Ser
-35					-30					-25					-20
Val	Pro	Lys	Glu	His	Ile	Leu	Pro	Ser	Leu	Ala	His	Leu	Leu	Pro	Ala
				-15					-10					-5	
Leu	Asp	Сув	Leu	Glu	Gly	Ser	Thr	Pro	Gly	Leu					
			1				5								
<21	0> 3														
-27	1 . 1/	140													

<211> 1448

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 131..490

<220>

<221> sig_peptide

<222> 131..301

<223> Von Heijne matrix

score 5.31

seq AIALATVLFLIGA/FL

PCT/IB99/02058 WO 00/37491

5 <221> polyA_signal <222> 1411..1416 <220> <221> polyA site <222> 1434..1448 <400> 3 60 egetgecaac egtgggegag etetgggtgt gegggegee tegegeggeg eteegetgtg 120 teagegtgtt atg atg eeg tee egt ace aac etg get act gga ate eec 169 Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro -55 -50 -45 agt agt aaa gtg aaa tat tca agg ctc tcc agc aca gac gat ggc tac 217 Ser Ser Lys Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr -40 -30 att gac ctt cag ttt aag aaa acc cct cct aag atc cct tat aag gcc 265 Ile Asp Leu Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala -25 ate gea ctt gee act gtg ctg ttt ttg att gge gee ttt ete att att 313 Ile Ala Leu Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile -10 ata ggc tcc ctc ctg ctg tca ggc tac atc agc aaa ggg ggg gca gac 361 Ile Gly Ser Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp cgg gcc gtt cca gtg ctg atc att ggc att ctg gtg ttc cta ccc gga 409 Arg Ala Val Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly ttt tac cac ctg cgc atc gct tac tat gca tcc aaa ggc tac cgt ggt 457 Phe Tyr His Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly 40 tac tec tat gat gac att eca gac ttt gat gac tageacceae eccatagetg 510 Tyr Ser Tyr Asp Asp Ile Pro Asp Phe Asp Asp 55 60 aggaggagte acagtggaac tgtcccagct ttaagatate tagcagaaac tatagetgag 570 gactaaggaa ttctgcagct tgcagatgtt taagaaaata atggccagat tttttgggtc 630 cttcccaaag atgttaagtg aacctacagt tagctaatta ggacaagctc tatttttcat 690 ccctgggccc tgacaagttt ttccacagga atatgtatca tggaagaata gaggttattc 750 tgtaatggaa aagtgttgcc tgccaccacc ctctgtagag ctgagcattt cttttaaata 810 gtcttcattg ccaatttgtt cttgtagcaa atggaacaat gtggtatggc taatttctta 870 ttattaagta atttatttta aaaatatctg agtatattat cctgtacact tatccctacc 930

ttcatgttcc agtggaagac cttagtaaaa tcaaagatca gtgagttcat ctgtaatatt

6

-.·

ttttttactt gctttcttac tgacagcaac caggaatttt tttatcctgc agagcaagtt 1050 ttcaaaatgt aaatacttcc tctgtttaac agtccttgga ccattctgat ccagttcacc 1110 aqtaqqttgg acagcatata atttgcatca ttttgtccct tgtaaatcaa gatgttctgc 1170 agattattcc tttaacggcc ggacttttgg ctgtttccta atgaaacatg tagtggttat 1230 tatttaqaqt ttataqccgt attgctagca ccttgtagta tgtcatcatt ctgctcatga 1290 ttccaaggat cagcctggat gcctagagga ctagatcacc ttagtttgat tctatttttt 1350 agcttgcaaa aagtgactta tattccaaag aaattaaaat gttgaaatcc aaatcctaga 1410 aataaaatga gttaacttca aacaaaaaaa aaaaaaaa 1448

<210> 4

<211> 120

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -57..-1

<400> 4

Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys
-55 -50 -45

Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu
-40 -35 -30

Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu
-25 -20 -15 -10

Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser

Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val

Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His

Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr 40 45 50 55

Asp Asp Ile Pro Asp Phe Asp Asp

60

<210> 5

<211> 1515

<212> DNA

<213> Homo sapiens

<220>

7 <221> CDS <222> 165..842 <220> · <221> sig_peptide <222> 165..251 <223> Von Heijne matrix score 7.01 seg LASFAALVLVCRQ/RY <220> <221> polyA_signal <222> 1474..1479 <220> <221> polyA_site <222> 1500..1515 <400> 5 agtogogga tgcgccggg agccacagcc tgaggccctc aggtctctgc aggtgtcgtg 60 gaggaaccta gcacctgcca tcctcttccc caatttgcca cttccagcag ctttagccca 120 tgaggaggat gtgaccggga ctgagtcagg agccctctgg aagc atg gag act gtg 176 Met Glu Thr Val gtg att gtt gcc ata ggt gtg ctg gcc acc atc ttt ctg gct tcg ttt 224 Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile Phe Leu Ala Ser Phe -25 -20 -15 gca gcc ttg gtg ctg gtt tgc agg cag cgc tac tgc cgg ccg cga gac 272 Ala Ala Leu Val Leu Val Cys Arg Gln Arg Tyr Cys Arg Pro Arg Asp ctg ctg cag cgc tat gat tct aag ccc att gtg gac ctc att ggt gcc 320 Leu Leu Gln Arg Tyr Asp Ser Lys Pro Ile Val Asp Leu Ile Gly Ala atg gag acc cag tct gag ccc tct gag tta gaa ctg gac gat gtc gtt 368 Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu Asp Asp Val Val atc acc aac ccc cac att gag gcc att ctg gag aat gaa gac tgg atc 416 Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn Glu Asp Trp Ile 50 40 45 55 gaa gat gcc tcg ggt ctc atg tcc cac tgc att gcc atc ttg aag att 464

Glu Asp Ala Ser Gly Leu Met Ser His Cys Ile Ala Ile Leu Lys Ile

tgt cac act ctg aca gag aag ctt gtt gcc atg aca atg ggc tct ggg

60

70

8

Cys His Thr Leu Thr Glu Lys Leu Val Ala Met	Thr Met Gly Ser Gly
75 80	85
gcc aag atg aag act tca gcc agt gtc agc gad	e atc att gtg gtg gcc 560
Ala Lys Met Lys Thr Ser Ala Ser Val Ser Asp) Ile Ile Val Val Ala
90 95	100
aag cgg atc agc ccc agg gtg gat gat gtt gtg	g aag tog atg tac cct 608
Lys Arg Ile Ser Pro Arg Val Asp Asp Val Val	Lys Ser Met Tyr Pro
105 110	115
ccg ttg gac ccc aaa ctc ctg gac gca cgg acg	g act gcc ctg ctc ctg 656
Pro Leu Asp Pro Lys Leu Leu Asp Ala Arg Thr	Thr Ala Leu Leu Leu
120 125 130	135
tct gtc agt cac ctg gtg ctg gtg aca agg aat	gcc tgc cat ctg acg 704
Ser Val Ser His Leu Val Leu Val Thr Arg Asr	n Ala Cys His Leu Thr
140 145	150
gga ggc ctg gac tgg att gac cag tct ctg tcg	
Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser	Ala Ala Glu Glu His
155 160	165
ttg gaa gtc ctt cga gaa gca gcc cta gct tct	
Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser	Glu Pro Asp Lys Gly
170 175	180
ctc cca ggc cct gaa ggc ttc ctg cag gag cag	
Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln	
185 190	195
tagtgcctac aggccagcag ctagccatga aggcccctgc	
gcttagcctt ctactttttc ctatagagtt agttgttctc	
gtgtgtgcat agtaaagcag gagatccccg tcagtttatg	
tgtggctggt gagtggcagt ctaatactac agttagggga	
agaggagtat tgaaaactgg tggactgtca gctttattta	
aaaattgagc caccgtctaa gaaatcaaga ggtttcacat	
tetetegate ggteagaatg tgtggeaatt etgatetgea	
attgaaacta agtaggggtt tcttctttg gcaagacttg	
ttcatttatt tgtattatct gcctggtccc tgaggcgtct	
aggtttgggt ttgaagctga ggaactacaa agttgatgat	
tgcaatttta cctagctacc actaggtgga tagtaaattt	
aaaaaaaaa aaa	1515

<210> 6

<211> 226

<212> PRT

<213> Homo sapiens

9

<221> SIGNAL

<222> -29..-1

<400> 6

Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile Phe

-25 -20 . -15

Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg Tyr Cys
-10 -5 1

Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro Ile Val Asp

Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu

20 25 30 35

Asp Asp Val Val Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn
40 45 50

Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu Met Ser His Cys Ile Ala 55 60 65

Ile Leu Lys Ile Cys His Thr Leu Thr Glu Lys Leu Val Ala Met Thr
70 75 80

Met Gly Ser Gly Ala Lys Met Lys Thr Ser Ala Ser Val Ser Asp Ile 85 90 95

Ile Val Val Ala Lys Arg Ile Ser Pro Arg Val Asp Asp Val Val Lys
100 105 110 115

Ser Met Tyr Pro Pro Leu Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr 120 125 130

Ala Leu Leu Ser Val Ser His Leu Val Leu Val Thr Arg Asn Ala 135 140 145

Cys His Leu Thr Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala 150 155 160

Ala Glu Glu His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu 165 170 175

Pro Asp Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser 180 185 190 195

Ala Ile

<210> 7

<211> 1918

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 238..612

<220>																
<221>	sig_p	eptio	ie													
<222>	238	348														
<223>	Von H	eijne	e mat	rix												•
	score	9.4														
	seq L	LCCV	LSAS	QLSS/	/QD											
<220>																
<221>	polyA	_sig	nal													
<222>	1885.	.189	0													
<220>																
<221>	polyA	_site	9													
<222>	1905.	.191	3													
<220>																
<221>	misc_	featı	ıre													
<222>	945,1	624														
<223>	n=a,	g, c	or t	Ξ.												
<400>	7															
aaaaa	tctaa	gcga	cttc	ga to	gccaa	aggaa	gtt	gtgt	aaa	tgt	gcac	gcg	ctaca	accaca	3	60
cccag	ggtgg	aaac	cacaç	gt to	gcaga	agtca	a tta	aaaca	aatc	aatt	gtti	tgt '	ttaad	catcto	3	120
tgata	ggcag	cttt	cctt	ct tt	tcaa	acagt	gat	cacct	acg	aaaa	atca	aaa '	taaat	gcaag	3	180
ctgag	gtttt	gtgc	tcact	tg aa	aggg	gctgt	caa	accc	caga	agge	ccga	cac a	aaaa	aaa	:	237
atg g	ta tgt	gaa	gat	gca	ccg	tct	ttt	caa	atg	gcc	tgg	gag	agt	caa	:	285
Met V	al Cys	Glu	Asp	Ala	Pro	Ser	Phe	Gln	Met	Ala	Trp	Glu	Ser	Gln		
	-35	i				-30					-25					
atg g	cc tgg	gag	agg	999	cct	gcc	ctt	ctc	tgc	tgt	gtc	ctt	tcg	gct	:	333
Met A	la Trp	Glu	Arg	Gly	Pro	Ala	Leu	Leu	Сув	Сув	Val	Leu	Ser	Ala .		
-:	20				-15					-10						
tcc c	ag ttg	agc	tcc	caa	gac	cag	gac	cca	ctg	9 99	cat	ata	aaa	tct	:	381
Ser G	ln Leu	Ser	Ser	Gln	Asp	Gln	Asp	Pro	Leu	Gly	His	·Ile	Lys	Ser		
-5				1				5					10			
ctg c	tg tat	cct	ttc	ggc	ttc	cca	gtt	gag	ctc	cca	aga	cca	gga	ccc	•	429
Leu L	eu Tyr	Pro	Phe	Gly	Phe	Pro	Val	Glu	Leu	Pro	Arg	Pro	Gly	Pro		
		15					20					25				
act g	gg gca	tat	aaa	aaa	gtc	aaa	aat	caa	aat	caa	aca	aca	agt	tct		477
Thr G	ly Ala	Tyr	Lys	Lys	Val	Lys	Asn	Gln	Asn	Gln	Thr	Thr	Ser	Ser		
	30					35					40					
gag t	ta ctt	agg	aaa	cag	act	tcg	cat	ttc	aat	cag	aga	ggc	cac	aga	9	525

11

- .

Glu Leu Leu Arg Lys Gln Thr Ser His Phe Asn Gln Arg Gly His Arg 50 45 gca agg tct aaa ctt ctg gct tct aga caa att cct gat aga aca ttt 573 Ala Arg Ser Lys Leu Leu Ala Ser Arg Gln Ile Pro Asp Arg Thr Phe 75 65 60 aaa tgt ggg aag tgg ctt ccc cag gtc cca tcc cct gtt tagggataga 622 Lys Cys Gly Lys Trp Leu Pro Gln Val Pro Ser Pro Val RΛ gttgatatca tttttatagt tgccatgtat gcctctgcct gaattttttt aattgacttt 682 -742 tqaqcttttg agattgcacg agggagaaca aggcctttgc tgttgtggat aggaaagact taacctaaaa ttaaaccagc aagaaagcat tagtaaaaat ctaacaatat gaagggctct 802 tatqaqtcat tttttcaaa agatgaaaac tccagaaacg cacaggaacg aaatacctcc 862 cagaaacatg aagcaatcat cgaagactca ctggtaatat ttttaaaaaag tatacagatc 922 aaagcaaaaa gaagccatgt gtnaacaaag agaaatgtgc aaatattttt taaggcagta 982 ttaagtgcaa gaggagtaac atgaaataaa cattetttea catggetaet gggaatataa 1042 atttcgctcc agaaaggccg tagcagtttg acgataggtg gcaaaacctt aagattgtgt 1102 actqqqqccc agaattttta tttctaggaa tgtatcctga ggaaattatc cgagatcccc 1162 acaaactgca atgtttagga attgtcctta tagcattgca tacacaagaa aaacagagaa 1222 aagcotgato ootgtoagtg gaaaaggggt toaatgaatt acggtgtgto tgcatgaggo 1282 ttttatqaca ttaaaaattg ttgaacaacg gccaggcaca gtggctcatg cctgtaatcc 1342 taacactttq qqaqqccaaq qtqqqaaqat tqcctgaqct caggaqtttg agaccagcct 1402 gggcaacacg gtgaaacccc gtctctacta aaatacaaaa aattagccgg gcgtcgcagc 1462 atgcqcctqt aqtcccaqct gctcaggagg ctgaggcagg agaattgatt gaacccggga 1522 qqcaqaqqtt gcactgagct gagattaagc caccgcactc cagcctgggc gacagagcaa 1582 gattccgttc ccaagaaaaa aaaattgttc aacaataagg gncaaaggga gagaatcata 1642 acatctgatt aaacagaaaa agcaagattt ttaaaactaa ctatataagg atggtcccag 1702 ctqtqtcaaa aggaaqcttq tttgtaatac gtgtgcataa aaattaaata gaggtgaaca 1762 caattatttt aaggcagtta aattatctct gtattgtgaa ctaagacttt ctagaatttt 1822 acttattcat totgtactta aattttttot aatgaacaca tatacttttg taatcagaaa 1882 atattaaatg catgtatttt tcaaaaaaaa aaaaaa 1918

<210> 8

<211> 125

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -37..-1

<400> 8

Met Val Cys Glu Asp Ala Pro Ser Phe Gln Met Ala Trp Glu Ser Gln

12

-30 -25 -35 Met Ala Trp Glu Arg Gly Pro Ala Leu Leu Cys Cys Val Leu Ser Ala -15 -10 Ser Gln Leu Ser Ser Gln Asp Gln Asp Pro Leu Gly His Ile Lys Ser 1 5 Leu Leu Tyr Pro Phe Gly Phe Pro Val Glu Leu Pro Arg Pro Gly Pro 20 Thr Gly Ala Tyr Lys Lys Val Lys Asn Gln Asn Gln Thr Thr Ser Ser 30 35 Glu Leu Leu Arg Lys Gln Thr Ser His Phe Asn Gln Arg Gly His Arg 50 Ala Arg Ser Lys Leu Leu Ala Ser Arg Gln Ile Pro Asp Arg Thr Phe

Ala Arg Ser Lys Leu Leu Ala Ser Arg Gin lie Pro Asp Arg Thr Phe

Lys Cys Gly Lys Trp Leu Pro Gln Val Pro Ser Pro Val

80 85

<210> 9

<211> 852

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 229..735

<220>

<221> sig_peptide

<222> 229..492

<223> Von Heijne matrix

score 6.7

seq VFALSSFLNKASA/VY

<220>

<221> polyA_signal

<222> 816..821

<220>

<221> polyA_site

<222> 841..852

<400> 9

13

13	
togtgtcgcc ggcagggagg catagcgcct ctctgatctt cctgcatggc tcaggtgatt	120
ctggacaagg attaagaatg tggatcaagc aggtttttaa atcaagattt aacattccaa	180
cacataaaaa ttatttatcc aacagctcct cccagatcat atactcct atg aaa gga	237
Met Lys Gly	
gga atc tcc aat gta tgg ttt gac aga ttt aaa ata acc aat gac tgc	285
Gly Ile Ser Asn Val Trp Phe Asp Arg Phe Lys Ile Thr Asn Asp Cys	
-85 -80 -75 -70	
cca gaa cac ctt gaa tca att gat gtc atg tgt caa gtg ctt act gat	333
Pro Glu His Leu Glu Ser Ile Asp Val Met Cys Gln Val Leu Thr Asp	
-65 -60 - 55	
ttg att gat gaa gaa gta aaa agt ggc atc aag aag aac agg ata tta	381
Leu Ile Asp Glu Glu Val Lys Ser Gly Ile Lys Lys Asn Arg Ile Leu	
-50 -45 -40	
ata gga gga ttc tct atg gga gga tgc atg gca atg cat tta gca tat	429
Ile Gly Gly Phe Ser Met Gly Gly Cys Met Ala Met His Leu Ala Tyr	
-35 -30 -25	
aga aat cat caa gat gtg gca gga gta ttt gct ctt tct agt ttt ctg	477
Arg Asn His Gln Asp Val Ala Gly Val Phe Ala Leu Ser Ser Phe Leu	
-20 -15 -10	
aat aaa gca tot gct gtt tac cag gct ctt cag aag agt aat ggt gta	525
Asn Lys Ala Ser Ala Val Tyr Gln Ala Leu Gln Lys Ser Asn Gly Val	
-5 1 5 10	
ctt cct gaa tta ttt cag tgt cat ggt act gca gat gag tta gtt ctt	573
Leu Pro Glu Leu Phe Gln Cys His Gly Thr Ala Asp Glu Leu Val Leu	
15 20 25	
cat tct tgg gca gaa gag aca aac tca atg tta aaa tct cta gga gtg	621
His Ser Trp Ala Glu Glu Thr Asn Ser Met Leu Lys Ser Leu Gly Val	
30 35 40	
acc acg aag ttt cat agt ttt cca aat gtt tac cat gag cta agc aaa	669
Thr Thr Lys Phe His Ser Phe Pro Asn Val Tyr His Glu Leu Ser Lys	
45 50 55	
act gag. tta gac ata ttg aag tta tgg att ctt aca aag ctg cca gga	717
Thr Glu Leu Asp Ile Leu Lys Leu Trp Ile Leu Thr Lys Leu Pro Gly	
60 65 70 75	
gaa atg gaa aaa caa aaa tgaatgaatc aagagtgatt tgttaatgta	765
Glu Met Glu Lys Gln Lys	
80	
agtgtaatgt ctttgtgaaa agtgattttt actgccaaat tataatgata attaaaatat	825
taagaaatag caaaaaaaa aaaaaaa	852

<210> 10

<211> 169

14

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -88..-1

<400> 10

Met Lys Gly Gly Ile Ser Asn Val Trp Phe Asp Arg Phe Lys Ile Thr

-85 -80 -7**5**

Asn Asp Cys Pro Glu His Leu Glu Ser Ile Asp Val Met Cys Gln Val

-70 -65 -60

Leu Thr Asp Leu Ile Asp Glu Glu Val Lys Ser Gly Ile Lys Lys Asn
-55 -50 -45

Arg Ile Leu Ile Gly Gly Phe Ser Met Gly Gly Cys Met Ala Met His

-40 -35 -30 -25

Leu Ala Tyr Arg Asn His Gln Asp Val Ala Gly Val Phe Ala Leu Ser
-20 -15 -10

Ser Phe Leu Asn Lys Ala Ser Ala Val Tyr Gln Ala Leu Gln Lys Ser
-5 1 5

Asn Gly Val Leu Pro Glu Leu Phe Gln Cys His Gly Thr Ala Asp Glu
10 15 20

Leu Val Leu His Ser Trp Ala Glu Glu Thr Asn Ser Met Leu Lys Ser
25 30 35 40

Leu Gly Val Thr Thr Lys Phe His Ser Phe Pro Asn Val Tyr His Glu
45 50 55

Leu Ser Lys Thr Glu Leu Asp Ile Leu Lys Leu Trp Ile Leu Thr Lys
60 65 70

80

Leu Pro Gly Glu Met Glu Lys Gln Lys

75

<210> 11

<211> 1602

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 24..1004

<220>

<221> sig_peptide

15

<222> 24..170 <223> Von Heijne matrix score 5.6 seq ACLSLGFFSLLWL/QL

<220>

<221> polyA_site

<222> 1586..1602

	٠															
<400)> 1:	l														
atgo	gcc	gcc s	gcct	ctcc	gc a	cg at	tg ti	to co	cc to	eg eg	gg ag	gg a	aa g	eg ge	cg cag	. 53
						Me	et Pl	he P	ro S	er A	rg A	rg L	ys A	la A	la Gln	
										- 4	15				-40	
ctg	ccc	tgg	gag	gac	ggc	agg	tcc	ggg	ttg	ctc	tcc	ggc	ggc	ctc	cct	101
Leu	Pro	Trp	Glu	Asp	Gly	Arg	Ser	Gly	Leu	Leu	Ser	Gly	Gly	Leu	Pro	
				-35					-30					-25		
cgg	aag	tgt	tcc	gtc	ttc	cac	ctg	ttc	gtg	gcc	tgc	ctc	tcg	ctg	ggc	149
Arg	Lys	Суз	Ser	Val	Phe	His	Leu	Phe	Val	Ala	Сув	Leu	Ser	Leu	Gly	
			-20					-15					-10	•		
ttc	ttc	tcc	cta	ctc	tgg	ctg	cag	ctc	agc	tgc	tct	999	gac	gtg	gcc	197
Phe	Phe	Ser	Leu	Leu	Trp	Leu	Gln	Leu	Ser	Cys	Ser	Gly	Asp	Val	Ala	
		-5					1				5					
cgg	gca	gtc	agg	gga	caa	999	cag	gag	acc	tcg	ggc	cct	ccc	cgt	gcc	245
Arg	Ala	Val	Arg	Gly	Gln	Gly	Gln	Glu	Thr	Ser	Gly	Pro	Pro	Arg	Ala	
10					15					20					25	
tgc	ccc	cca	gag	ccg	ccc	cct	gag	cac	tgg	gaa	gaa	gac	gca	tcc	tgg	293
Cys	Pro	Pro	Glu	Pro	Pro	Pro	Glu	His	Trp	Glu	Glu	Asp	Ala	Ser	Trp	
				30					35					40		
ggc	ccc	cac	cgc	ctg	gca	gtg	ctg	gtg	ccc	ttc	cgc	gaa	cgc	ttc	gag	341
Gly	Pro	His	Arg	Leu	Ala	Val	Leu	Val	Pro	Phe	Arg	Glu	Arg	Phe	Glu	
			45					50					55			
gag	ctc	ctg	gtc	ttc	gtg	ccc	cac	atg	cgc	cgc	ttc	ctg	agc	agg	aag	389
Glu	Leu	Leu	Val	Phe	Val	Pro	His	Met	Arg	Arg	Phe	Leu	Ser	Arg	Lys	
		60					65					70				
aag	atc	cgg	cac	cac	atc	tac	gtg	ctc	aac	cag	gtg	gac	cac	ttc	agg	437
Lys	Ile	Arg	His	His	Ile	Tyr	Val	Leu	Asn	Gln	Val	Asp	His	Phe	Arg	
	75					80					85					
ttc	aac	cgg	gca	gcg	ctc	atc	aac	gtg	ggc	ttc	ctg	gag	agc	agc	aac	485
Phe	Asn	Arg	Ala	Ala	·Leu	Ile	Asn	Val	Gly	Phe	Leu	Glu	Ser	Ser	Asn	
90					95					100					105	
agc	acg	gac	tac	att	gcc	atg	cac	gac	gtt	gac	ctg	ctc	cct	ctc	aac	533
Ser	Thr	Asp	Tyr	Ile	Ala	Met	His	Asp	Val	Asp	Leu	Leu	Pro	Leu	Asn	

									10							•
				110					115					120		
gag	gag	ctg	gac	tat	ggc	ttt	cct	gag	gct	9 99	CCC	ttc	cac	gtg	gcc	581
Glu	Glu	Leu	Asp	Tyr	Gly	Phe	Pro	Glu	Ala	Gly	Pro	Phe	His	Val	Ala	
			125					130					135			
tcc	ccg	gag	ctc	cac	cct	ctc	tac	cac	tac	aag	acc	tat	gtc	ggc	ggc	629
Ser	Pro	Glu	Leu	His	Pro	Leu	Tyr	His	Tyr	Lys	Thr	Tyr	Val	Gly	Gly	
		140					145					150				
atc	ctg	ctg	ctc	tcc	aag	cag	cac	tac	cgg	ctg	tgc	aat	ggg	atg	tcc	677
Ile	Leu	Leu	Leu	Ser	Lys	Gln	His	Tyr	Arg	Leu	Cys	Asn	Gly	Met	Ser	
	155					160					165					
aac	cgc	ttc	tgg	ggc	tgg	ggc	cgc.	gag	gac	gac	gag	ttc	tac	cgg	cgc	725
Asn	Arg	Phe	Trp	Gly	Trp	Gly	Arg	Glu	Asp	Asp	Glu	Phe	Tyr	Arg	Arg	
170					175					180					185	
att	aag	gga	gct	999	ctc	cag	ctt	ttc	cgc	ccc	tcg	gga	atc	aca	act	773
Ile	Lys	Gly	Ala	Gly	Leu	Gln	Leu	Phe	Arg	Pro	Ser	Gly	Ile	Thr	Thr	
	•			190					195					200		
9 99	tac	aag	aca	ttt	cgc	cac	ctg	cat	gac	cca	gcc	tgg	cgg	aag	agg	821
Gly	Tyr	Lys	Thr	Phe	Arg	His	Leu	His	Asp	Pro	Ala	Trp	Arg	Lys	Arg	
			205					210		•			215			
gac	cag	aag	cgc	atc	gca	gct	caa	aaa	cag	gag	cag	ttc	aag	gtg	gac	869
Asp	Gln	Lys	Arg	Ile	Ala	Ala	Gln	Lys	Gln	Glu	Gln	Phe	Lys	Val	Asp	
		220					225					230				
agg	gag	gga	ggc	ctg	aac	act	gtg	aag	tac	cat	gtg	gct	tcc	cgc	act	917
Arg	Glu	Gly	Gly	Leu	Asn	Thr	Val	Lys	Tyr	His	Val	Ala	Ser	Arg	Thr	
	235					240					245					
gcc	ctg	tct	gtg	ggc	ggg	gcc	ccc	tgc	act	gtc	ctc	aac	atc	atg	ttg	965
Ala	Leu	Ser	Val	Gly	Gly	Ala	Pro	Cys	Thr	Val	Leu	Asn	Ile	Met	Leu	
250					255					260					265	
gac	tgt	gac	aag	acc	gcc	aca	ccc	tgg	tgc	aca	ttc	agc	tga	gctg	gat	1014
Двр	Сув	Asp	Lys	Thr	Ala	Thr	Pro	Trp	Сув	Thr	Phe	Ser				
				270					275							
gga	cagto	gag g	gaag	cctg	ta c	ctaca	aggc	ata	attg	ctca	ggct	cag	gac a	aaggo	cctcaç	1074
gtc	gtggg	gcc (cagc	tctg	ac a	ggat	gtgga	a gt	ggcc	agga	ccaa	agaca	agc a	aagct	tacgca	1134
att	gcago	cca (ccg	gccg	cc a	aggca	aggct	t tg	ggct	gggc	cag	gaca	cgt (ggggt	gcctg	1194
gga	eget	gct 1	tgcc	atgc	ac a	gtgai	tcaga	a ga	gagg	ctgg	ggt	gtgt	cct q	gtcc	gggaco	1254
CCC	cctg	cct 1	tcct	gctc	ac c	ctact	tctga	a cci	tcct	tcac	gtg	cca	ggc (ctgt	gggtag	1314
tgg	ggagg	ggc 1	tgaad	cagg	ac a	acct	ctcat	ca	cccc	cact	ttt	gttc	ctt (cctg	ctggg	1374
tgc	ctcgi	tgc a	agaga	acac	ag t	gtag	gggc	ate	gcag	ctgg	cgta	aggt	ggc a	agtt	gggcct	1434
ggt	gagg	gtt a	agga	cttc	ag a	aacc	agago	c aca	aagc	ccca	caga	1ggg	gga a	acago	ccagca	1494
ccg	ctcta	agc 1	tggti	tgtt	gc c	atgc	cggaa	a tgi	tggg	ccta	gtg	tgc	cag a	atcti	ctgat	1554
ttt	tcgaa	aag a	aaaci	taga	at g	ctgg	attci	t ca	aaaa	aaaa	aaaa	aaaa	a			1602

17 <210> 12 <211> 327 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -49..-1 <400> 12 Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp Gly Arg Ser Gly Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser Val Phe -25 His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser Leu Leu Trp Leu Gln Leu Ser Cys Ser Gly Asp Val Ala Arg Ala Val Arg Gly Gln Gly Gln Glu Thr Ser Gly Pro Pro Arg Ala Cys Pro Pro Glu Pro Pro . 25 Pro Glu His Trp Glu Glu Asp Ala Ser Trp Gly Pro His Arg Leu Ala 40 Val Leu Val Pro Phe Arg Glu Arg Phe Glu Glu Leu Leu Val Phe Val 55 Pro His Met Arg Arg Phe Leu Ser Arg Lys Lys Ile Arg His His Ile 70 75 Tyr Val Leu Asn Gln Val Asp His Phe Arg Phe Asn Arg Ala Ala Leu Ile Asn Val Gly Phe Leu Glu Ser Ser Asn Ser Thr Asp Tyr Ile Ala 100 105 Met His Asp Val Asp Leu Leu Pro Leu Asn Glu Glu Leu Asp Tyr Gly 120 Phe Pro Glu Ala Gly Pro Phe His Val Ala Ser Pro Glu Leu His Pro 130 135 Leu Tyr His Tyr Lys Thr Tyr Val Gly Gly Ile Leu Leu Ser Lys 150 Gln His Tyr Arg Leu Cys Asn Gly Met Ser Asn Arg Phe Trp Gly Trp 160 165 Gly Arg Glu Asp Asp Glu Phe Tyr Arg Arg Ile Lys Gly Ala Gly Leu 185

Gln Leu Phe Arg Pro Ser Gly Ile Thr Thr Gly Tyr Lys Thr Phe Arg

200

205

18 His Leu His Asp Pro Ala Trp Arg Lys Arg Asp Gln Lys Arg Ile Ala 215 220 210 Ala Gln Lys Gln Glu Gln Phe Lys Val Asp Arg Glu Gly Gly Leu Asn 230 Thr Val Lys Tyr His Val Ala Ser Arg Thr Ala Leu Ser Val Gly Gly 240 245 250 255 Ala Pro Cys Thr Val Leu Asn Ile Met Leu Asp Cys Asp Lys Thr Ala 265 260 Thr Pro Trp Cys Thr Phe Ser 275 <210> 13 <211> 948 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 80..784 <220> <221> sig_peptide <222> 80..139 <223> Von Heijne matrix score 4 seq LLKVVFVVFASLC/AW <220> <221> polyA_signal <222> 910..915 <220> <221> polyA_site <222> 933..948 <400> 13 cttcctgacc caggggctcc gctggctgcg gtcgcctggg agctgccgcc agggccagga 60 ggggagcggc acctggaag atg cgc cca ttg gct ggt ggc ctg ctc aag gtg 112 Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val -20 -15 gtg ttc gtg gtc ttc gcc tcc ttg tgt gcc tgg tat tcg ggg tac ctg 160

Val Phe Val Val Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu

19

--<u>-</u>-

ctc gca gca gca gca gca ccc ctg tcc agt gcc tcc agt gcc tcc agt gcc tcc agt gcc tcc agt tcc agt 20 atc cgc agc atc ggg gag agg ccc gtc ctc aaa gct ccc aaa 256 10 acc ggg gag agg ccc gtc ctc aaa gct ccc aaa 256 11e Arg Ser Ile Gly Gly Arg Pro Val Leu Lys Ala Pro Val Pro Lys Lys
10
atc cgc agc atc ggg gag cct gtc ctc aaa gct cca gtc ccc aaa 256 11e Arg Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys agg caa aaa tgt gac cac tgg acc tct gac acc tat gcc 304 Arg Caa aaa tgt gac cac tgg acc tct gac acc tat gcc 304 Arg Gln Lys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 40 Lys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala Asp ttg 352 Tyr Arg Leu Leu Ser Gly Gly Arg Cy
The Arg Ser The Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys
25
agg caa tgt gac cac tgg act tgc ccc tgc tct gac acc tat gcc 304 Arg Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 40
Arg Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 40
40
tac agg tta ctc agc gga ggt ggc aga agc aag tac gcc aaa atc tgc 352 Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile Cys 60 65 70 ttt gag gat aac cta ctt atg gga gaa cag ctg gga aat gtt gcc aga 400 Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg
Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile Cys 60 65 70 ttt gag gat aac cta ctt atg gga gaa cag ctg gga aat gtt gcc aga 400 Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg
60 65 70 ttt gag gat aac cta ctt atg gga gaa cag ctg gga aat gtt gcc aga 400 Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg
ttt gag gat aac cta ctt atg gga gaa cag ctg gga aat gtt gcc aga 400 Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg
Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg
BE 00 ***
75 80 85
gga ata aac att gcc att gtc aac tat gta act ggg aat gtg aca gca 448
Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn Val Thr Ala
90 95 100
aca cga tgt ttt gat atg tat gaa ggc gat aac tct gga ccg atg aca 496
Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser Gly Pro Met Thr
105 110 115
aag ttt att cag agt gct gct cca aaa tcc ctg ctc ttc atg gtg acc 544
Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu Leu Phe Met Val Thr
120 125 130 135
tat gac gac gga agc aca aga ctg aat aac gat gcc aag aat gcc ata 592
Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn Asp Ala Lys Asn Ala Ile
140 145 150
gaa gca ctt gga agt aaa gaa atc agg aac atg aaa ttc agg tct agc 640
Glu Ala Leu Gly Ser Lys Glu Ile Arg Asn Met Lys Phe Arg Ser Ser
155 160 165
tgg gta ttt att gca gca aaa ggc ttg gaa ctc cct tcc gaa att cag 688
Trp Val Phe Ile Ala Ala Lys Gly Leu Glu Leu Pro Ser Glu Ile Gln
170 175 180
aga gaa aag atc aac cac tct gat gct aag aac aac aga tat tct ggc 736
Arg Glu Lys Ile Asn His Ser Asp Ala Lys Asn Asn Arg Tyr Ser Gly
185 190 195
tgg cct gca gag atc cag ata gaa ggc tgc ata ccc aaa gaa cga agc 784
Trp Pro Ala Glu Ile Glu Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser
200 205 210 215 tgacactgca gggtcctgag taaatgtgtt ctgtataaac aaatgcagct ggaatcgctc 844
tgacactgca gggtcctgag taaatgtgtt ctgtataaac aaatgcagct ggaatcgctc 844 aagaatctta tttttctaaa tccaacagcc catatttqat qaqtattttq qgtttgttgt 904

948

20

aaaccaatga acatttgcta gttgtaccaa aaaaaaaaa aaaa <210> 14 <211> 235 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1 <400> 14 Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg Ser Ile Gly 20 Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg Gln Lys Cys Asp 35 30 His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala Tyr Arg Leu Leu Ser 50 55 Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val Ala Arg Gly Ile Asn Ile Ala 85 Ile Val Asn Tyr Val Thr Gly Asn Val Thr Ala Thr Arg Cys Phe Asp 100 Met Tyr Glu Gly Asp Asn Ser Gly Pro Met Thr Lys Phe Ile Gln Ser 115 Ala Ala Pro Lys Ser Leu Leu Phe Met Val Thr Tyr Asp Asp Gly Ser 130 135 Thr Arg Leu Asn Asn Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser 145 Lys Glu Ile Arg Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala 165 Ala Lys Gly Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn 180 His Ser Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile 195 200 Gln Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 205 210

21

```
<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide used as a primer
<400> 15
gggaagatgg agatagtatt gcctg
                                                                        25
<210> 16
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide used as a primer
<400> 16
ctgccatgta catgatagag agattc
                                                                        26
<210> 17
<211> 546
<212> DNA
<213> Homo Sapiens
<220>
<221> promoter
<222> 1..517
<220>
<221> transcription start site
<222> 518
<220>
<221> protein_bind
<222> 17..25
<223> matinspector prediction
      name CMYB_01
```

score 0.983

PCT/IB99/02058

22

sequence tgtcagttg

<220> <221> protein_bind <222> complement (18..27) <223> matinspector prediction name MYOD_Q6 score 0.961 sequence cccaactgac <220> <221> protein_bind <222> complement (75..85) <223> matinspector prediction name S8_01 score 0.960 sequence aatagaattag <220> <221> protein_bind <222> 94..104 <223> matinspector prediction name S8_01 score 0.966 sequence aactaaattag ,<220> <221> protein_bind <222> complement(129..139) <223> matinspector prediction name DELTAEF1_01 score 0.960 sequence gcacacctcag <220> <221> protein_bind <222> complement (155..165) <223> matinspector prediction name GATA_C score 0.964 sequence agataaatcca

23

<220> <221> protein_bind <222> 170..178 <223> matinspector prediction name CMYB_01 score 0.958 sequence cttcagttg <220> <221> protein_bind <222> 176..189 <223> matinspector prediction name GATA1_02 score 0.959 sequence ttgtagataggaca <220> <221> protein_bind <222> 180..190 <223> matinspector prediction name GATA_C score 0.953 sequence agataggacat <220> <221> protein_bind <222> 284..299 <223> matinspector prediction name TAL1ALPHAE47_01 score 0.973 sequence cataacagatggtaag <220> <221> protein_bind <222> 284..299 <223> matinspector prediction name TAL1BETAE47_01 score 0.983 sequence cataacagatggtaag

<220>

<221> protein_bind

24

<222> 284..299

<223> matinspector prediction
 name TAL1BETAITF2_01
 score 0.978

sequence cataacagatggtaag

<220>

<221> protein_bind

<222> complement (287..296)

<223> matinspector prediction
name MYOD_Q6
score 0.954
sequence accatctgtt

<220>

<221> protein_bind

<222> complement (302..314)

<223> matinspector prediction
 name GATA1_04
 score 0.953
 sequence tcaagataaagta

<220>

<221> protein_bind

<222> 393..405

<223> matinspector prediction
 name IK1_01
 score 0.963
 sequence agttgggaattcc

<220>

<221> protein_bind

<222> 393..404

<223> matinspector prediction
 name IK2_01
 score 0.985
 sequence agttgggaattc

<220>

<221> protein bind

<222> 396..405

<223> matinspector prediction

PCT/IB99/02058

name CREL_01 score 0.962 sequence tgggaattcc <220> <221> protein_bind <222> 423..436 <223> matinspector prediction name GATA1_02 score 0.950 sequence tcagtgatatggca <220> <221> protein_bind <222> complement (478..489) <223> matinspector prediction name SRY 02 score 0.951 sequence taaaacaaaca <220> <221> protein_bind <222> 486..493 <223> matinspector prediction name E2F_02 score 0.957 sequence tttagcgc <220> <221> protein_bind <222> complement (514..521) <223> matinspector prediction name MZF1_01 score 0.975 sequence tgagggga <400> 17 tgagtgcagt gttacatgtc agttgggtta agtttgttaa tgtcattcaa atcttctatg 60 tcttgatttg cctgctaatt ctattatttc tggaactaaa ttagtttgat ggttctatta . 120 gttattgact gaggtgtgct aatctcccat tatgtggatt tatctatttc ttcagttgta 180 gataggacat tgatagatac ataagtacca ggacaaaagc agggagatct tttttccaaa 240 atcaggagaa aaaaatgaca tetggaaaac etatagggaa aggeataaca gatggtaagg 300

26

atactttatc ttgagtagga gagccttcct gtggcaacgt	ggagaaggga	agaggtcgta	360
gaattgagga gtcagctcag ttagaagcag ggagttggga	attccgttca	tgtgatttag	420
catcagtgat atggcaaatg tgggactaag ggtagtgatc	agagggttaa	aattgtgtgt	480
tttgttttag cgctgctggg gcatcgcctt gggtcccctc	aaacagattc	ccatgaatct	540
cttcat			546
<210> 18			
<211> 23			
<212> DNA			
<213> Artificial Sequence			
•			
<220>			
<223> oligonucleotide used as a primer			
<400> 18		•	
gtaccaggga ctgtgaccat tgc			23
<210> 19			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
222			
<220>			
<223> oligonucleotide used as a primer			
<400> 19			
ctgtgaccat tgctcccaag agag			24
cognition of the control of the cont			
<210> 20			
<211> 861			
<212> DNA			
<213> Homo Sapiens			
-			
<220>			
<221> promoter			
<222> 1806			
<220>			
<221> transcription start site			
<222> 807			
-226.			

27

```
<221> protein_bind
<222> complement (60..70)
<223> matinspector prediction
      name NFY_Q6
      score 0.956
      sequence ggaccaatcat
<220>
<221> protein_bind
<222> 70..77
<223> matinspector prediction
      name MZF1_01
      score 0.962
      sequence cctgggga
<220>
<221> protein bind
<222> 124..132
<223> matinspector prediction
      name CMYB_01
      score 0.994
      sequence tgaccgttg
<220>
<221> protein_bind
<222> complement(126..134)
<223> matinspector prediction
      name VMYB_02
      score 0.985
      sequence tccaacggt
<220>
<221> protein_bind
<222> 135..143
<223> matinspector prediction
      name STAT_01
      score 0.968
      sequence ttcctggaa
<220>
<221> protein_bind
<222> complement(135..143)
```

28

<223> matinspector prediction name STAT_01 score 0.951 sequence ttccaggaa <220> <221> protein_bind <222> complement (252..259) <223> matinspector prediction name MZF1_01 score 0.956 sequence ttggggga <220> <221> protein_bind <222> 357..368 <223> matinspector prediction name IK2_01 score 0.965 sequence gaatgggatttc <220> <221> protein_bind <222> 384..391 <223> matinspector prediction name MZF1_01 score 0.986 sequence agaggga <220> <221> protein_bind <222> complement (410..421) <223> matinspector prediction name SRY_02 score 0.955 sequence gaaaacaaaca <220> <221> protein_bind <222> 592..599 <223> matinspector prediction name MZF1_01

```
score 0.960
      sequence gaagggga
<220>
<221> protein_bind
<222> 618..627
<223> matinspector prediction
     name MYOD_Q6
      score 0.981
      sequence agcatctgcc
<220>
<221> protein_bind
<222> 632..642
<223> matinspector prediction
      name DELTAEF1_01
      score 0.958
      sequence tcccaccttcc
<220>
<221> protein bind
<222> complement(813..823)
<223> matinspector prediction
      name S8_01
      score 0.992
      sequence gaggcaattat
<220>
<221> protein_bind
<222> complement (824..831)
<223> matinspector prediction
      name MZF1_01
      score 0.986
      sequence agaggga
<220>
<221> misc_feature
<222> 335,376
<223> n=a, g, c or t
<400> 20
tactataggg cacgcgtggt cgacggccgg gctgttctgg agcagagggc atgtcagtaa
```

30

.-_.

tqattqqtcc ctggggaagg tctggctggc tccagcacag tgaggcattt aggtatctct . 120 180 ctcagagggc taggcacgag ggaaggtcag aggagaaggs aggsarggcc cagtgagarg 240 ggagcatgcc ttcccccaac cctggcttsc ycttggymam agggcgktty tgggmacttr 300 aaytcagggc ccaascagaa scacaggccc aktcntggct smaagcacaa tagcctgaat 360 420 ccaaatcaag gtaacttgct cccttctgct acgggccttg gtcttggctt gtcctcaccc 480 agtoggaact coctaccact ttcaggagag tggttttagg cocgtggggc tgttctgttc 540 caagcagtgt gagaacatgg ctggtagagg ctctagctgt gtgcggggcc tgaaggggag 600 tgggttctcg cccaaagagc atctgcccat ttcccacctt cccttctccc accagaagct 660 tgcctgagct gtttggacaa aaatccaaac cccacttggc tactctggcc tggcttcagc 720 ttggaaccca atacctaggc ttacaggcca tcctgagcca ggggcctctg gaaattctct 780 tectqatggt cetttaggtt tgggcacaaa atataattge eteteceete teccatttte. 840 tctcttggga gcaatggtca c 861 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide used as a primer <400> 21 20 ctgggatgga aggcacggta <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide used as a primer <400> 22 gagaccacac agctagacaa 20 <210> 23 <211> 555 <212> DNA <213> Homo Sapiens

PCT/IB99/02058

31

```
<220>
<221> promoter
<222> 1..500
<220>
<221> transcription start site
<222> 501
<220>
<221> protein_bind
<222> 191..206
<223> matinspector prediction
      name ARNT_01
      score 0.964
      sequence ggactcacgtgctgct
<220>
<221> protein bind
<222> 193..204
<223> matinspector prediction
      name NMYC_01
      score 0.965
      sequence actcacgtgctg
<220>
<221> protein_bind
<222> 193..204
<223> matinspector prediction
      name USF_01
      score 0.985
      sequence actcacgtgctg
<220>
<221> protein_bind
<222> complement (193..204)
<223> matinspector prediction
      name USF_01
      score 0.985
      sequence cagcacgtgagt
<220>
<221> protein_bind
```

WO 00/37491

32

<222> complement(193..204)

<223> matinspector prediction
 name NMYC_01
 score 0.956

sequence cagcacgtgagt

<220>

<221> protein_bind

<222> complement(193..204)

<223> matinspector prediction
 name MYCMAX_02
 score 0.972
 sequence cagcacgtgagt

<220>

<221> protein_bind

<222> 195..202

<223> matinspector prediction
 name USF_C
 score 0.997
 sequence tcacgtgc

<220>

<221> protein_bind

<222> complement(195..202)

<223> matinspector prediction
 name USF_C
 score 0.991
 sequence gcacgtga

<220>

<221> protein_bind

<222> complement (210..217)

<223> matinspector prediction
 name MZF1_01
 score 0.968
 sequence catgggga

<220>

<221> protein_bind

<222> 397..410

<223> matinspector prediction

PCT/IB99/02058

name ELK1_02 score 0.963 sequence ctctccggaagcct <220> <221> protein_bind <222> 400..409 <223> matinspector prediction name CETS1P54_01 score 0.974 sequence tccggaagcc <220> <221> protein_bind <222> complement(460..470) <223> matinspector prediction name AP1_Q4 score 0.963 sequence agtgactgaac <220> <221> protein_bind <222> complement (460..470) <223> matinspector prediction name AP1FJ Q2 score 0.961 sequence agtgactgaac <220> <221> protein_bind <222> 547..555 <223> matinspector prediction name PADS_C score 1.000 sequence tgtggtctc <400> 23 ctatagggca cgcktggtcg acggcccggg ctggtctggt ctgtkgtgga gtcgggttga 60 aggacageat ttgtkacate tggtctactg cacetteect etgeegtgea ettggeettt 120 kawaagetea geaceggtge ceateacagg geeggeagea cacacatece attacteaga 180 aggaactgac ggactcacgt gctgctccgt ccccatgagc tcagtggacc tgtctatgta 240 gagcagtcag acagtgcctg ggatagagtg agagttcagc cagtaaatcc aagtgattgt 300

34

--_·

catteetgte tgcattagta acteecaace tagatgtgaa aacttagtte ttteteatag 360 gttgctctgc ccatggtccc actgcagacc caggcactct ccggaagcct ggaaatcacc 420 egtgtettet geetgeteee geteacatee cacacttgtg tteagteact gagttacaga 480 ttttgcctcc tcaatttctc ttgtcttagt cccatcctct gttcccctgg ccagtttgtc 540 555 tagctgtgtg gtctc <210> 24 <211> 1450 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 153..1127 <220> <221> sig peptide <222> 153..230 <223> Von Heijne matrix score 8.40 seq RLLRLLLSGLVLG/AA <220> <221> polyA_signal <222> 1415..1420 <220> <221> polyA_site <222> 1434..1450 <220> <221> misc feature <222> 88 <223> n=a, g, c or t <400> 24 ctttcctctt cctcctcctc ctccttggca tccgcctctt cttcctcctg cgtcctcccc 60 egetgeetee getgeteeeg aegegganee eggageeege geegageeee tggeetegeg 120 gtgccatgct gccccggcgg cggcgctgaa gg atg gcg acg ccg ctg cct ccg 173 Met Ala Thr Pro Leu Pro Pro -20 -25 221 ccc tcc ccg cgg cac ctg cgg ctg ctg ctg ctc tcc ggc ctc

PCT/IB99/02058 WO 00/37491

35 Pro Ser Pro Arg His Leu Arg Leu Leu Leu Leu Ser Gly Leu -15 -10 gte ete gge gee gee etg egt gga gee gee gge eac eeg gat gta 269 Val Leu Gly Ala Ala Leu Arg Gly Ala Ala Gly His Pro Asp Val gee gee tgt eee ggg age etg gae tgt gee etg aag agg egg gea agg 317 Ala Ala Cys Pro Gly Ser Leu Asp Cys Ala Leu Lys Arg Arg Ala Arg 15 tgt cct cct ggt gca cat gcc tgt ggg ccc tgc ctt cag ccc ttc cag 365 Cys Pro Pro Gly Ala His Ala Cys Gly Pro Cys Leu Gln Pro Phe Gln 35 qaq qac cag caa ggg ctc tgt gtg ccc agg atg cgc cgg cct cca ggc 413 Glu Asp Gln Gln Gly Leu Cys Val Pro Arg Met Arg Arg Pro Pro Gly ggg ggc cgg ccc cag ccc aga ctg gaa gat gag att gac ttc ctg gcc 461 Gly Gly Arg Pro Gln Pro Arg Leu Glu Asp Glu Ile Asp Phe Leu Ala 70 cag gag ctt gcc cgg aag gag tct gga cac tca act ccg ccc cta ccc 509 Gln Glu Leu Ala Arg Lys Glu Ser Gly His Ser Thr Pro Pro Leu Pro 80 85 90 aag gac cga cag cgg ctc ccg gag cct gcc acc ctg ggc ttc tcg gca 557 Lys Asp Arg Gln Arg Leu Pro Glu Pro Ala Thr Leu Gly Phe Ser Ala 95 100 105 egg ggg cag ggg etg gag etg ggc ete eee tee aet eea gga aee eee 605 Arg Gly Gln Gly Leu Glu Leu Gly Leu Pro Ser Thr Pro Gly Thr Pro 110 115 120 125 acg ccc acg ccc cac acc tcc ctg ggc tcc cct gtg tca tcc gac ccg 653 Thr Pro Thr Pro His Thr Ser Leu Gly Ser Pro Val Ser Ser Asp Pro 130 135 gtg cac atg tcg ccc ctg gag ccc cgg gga ggg caa ggc gac ggc ctc 701 Val His Met Ser Pro Leu Glu Pro Arg Gly Gly Gln Gly Asp Gly Leu 150 ged ett gtg etg ate etg geg tte tgt gtg ged ggt gea ged ged etc 749 Ala Leu Val Leu Ile Leu Ala Phe Cys Val Ala Gly Ala Ala Ala Leu tee gta gee tee ete tge tgg tgc agg etg eag egt gag ate ege etg 797 Ser Val Ala Ser Leu Cys Trp Cys Arg Leu Gln Arg Glu Ile Arg Leu 175 180 185 act cag aag gcc gac tac gcc act gcg aag gcc cct ggc tca cct gca 845 Thr Gln Lys Ala Asp Tyr Ala Thr Ala Lys Ala Pro Gly Ser Pro Ala 195 200 205 190 get eec egg ate teg eet ggg gae eag egg etg gea eag age geg gag 893

36

								•	,,							
Ala	Pro	Arg	Ile	Ser	Pro	Gly	Asp	Gln	Arg	Leu	Ala	Gln	Ser	Ala	Glu	
				210					215					220		
atg	tac	cac	tac	cag	cac	caa	cgg	caa	cag	atg	ctg	tgc	ctg	gag	cgg	941
Met	Tyr	His	Tyr	Gln	His	Gln	Arg	Gln	Gln	Met	Leu	Cys	Leu	Glu	Arg	
			225					230					235			
cat	aaa	gag	cca	ccc	aag	gag	ctg	gac	acg	gcc	tcc	tcg	gat	gag	gag	989
His	Lys	Glu	Pro	Pro	Lys	Glu	Leu	Asp	Thr	Ala	Ser	Ser	Asp	Glu	Glų	
		240					245					250				
aat	gag	gac	gga	gac	ttc	acg	gtg	tac	gag	tgc	ccg	ggc	ctg	gcc	ccg	1037
Asn	Glu	Asp	Gly	Asp	Phe	Thr	Val	Tyr	Glu	Cys	Pro	Gly	Leu	Ala	Pro	
	255					260					265					
acc	ggg	gaa	atg	gag	gtg	cgc	aac	cct	ctg	ttc	gac	cac	gcc	gca	ctg	1085
Thr	Gly	Glu	Met	Glu	Val	Arg	Asn	Pro	Leu	Phe	Asp	His	Ala	Ala	Leu	
270					275					280					285	
tcc	gcg	ccc	ctg	ccg	gcc	ccc	agc	tca	ccġ	cct	gca	ctg	cca			1127
Ser	Ala	Pro	Leu	Pro	Ala	Pro	Ser	Ser	Pro	Pro	Ala	Leu	Pro			
				290					295							
tgad	ctg	gag ç	gcaga	acaga	ac go	cca	cctg	tco	ccga	acct	cgag	gcc	cc g	9999	aggggc	1187
aggg	gccts	gga g	gctto	cca	ct aa	aaaa	catgt	ttt	gate	gctg	tgtg	gcttt	tg g	gctgg	ggcctt	1247
ggg	ctcca	agg d	ccct	gggad	ee ee	cttg	ccago	ggag	gacco	cccg	aaco	tttg	gtg (ccago	gacacc	1307
tcct	ggt	ccc o	etgea	acct	ct co	etgti	ttggt	tta	agaco	ccc	aaac	tgga	agg g	gggca	atggag	1367
aac	gtag	gag o	gcag	ggaad	eg gg	gtggg	gtaat	tct	agag	gaca	aaag	gccaa	att a	aaagt	ccatt	1427
tcag	gacaa	aaa a	aaaa	aaaa	aa aa	aa										1450

<210> 25

<211> 1556

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 261..1166

<220>

<221> sig_peptide

<222> 261..314

<223> Von Heijne matrix score 8.80

seq RLVLIILCSVVFS/AV

<220>

<221> polyA_site

37

<222> 1524..1556

																•
	> 25															
_	_		-												ctcctg	60
cgaa	ccc	ag o	cctgo	cacgo	ec cg	gtta	igcat	tc	gccc	gga	gato	gegge	ag t	ggaa	atctgg	120
	-	-													egggta	180
gaga	iggt	gcc c	ggct	ccca	ac co	ctto	ccag	ccc	cago	cct	ggag	gacas	gca g	gece	ctagac	240
tact	gagg	gga d	cagco	gacaç	gc at	g aa	ag go	et co	g gg	gt co	gg ct	c gt	g ct	c at	c atc	293
					Me	t Ly	/s Al	la Pi	co GI	ly Ai	g Le	u Va	al Le	eu I	le Ile	
								- 1	L5				-:	10		
ctg	tgc	tcc	gtg	gtc	ttc	tct	gcc	gtc	tac	atc	ctc	ctg	tgc	tgc	tgg	341
Leu	Cys	Ser	Val	Val	Phe	Ser	Ala	Val	Tyr	Ile	Leu	Leu	Cys	Сув	Trp	
		-5					1				5					
gcc	ggc	ctg	ccc	ctc	tgc	ctg	gcc	acc	tgc	ctg	gac	cac	cac	ttc	ccc	389
Ala	Gly	Leu	Pro	Leu	Сув	Leu	Ala	Thr	Cys	Leu	Asp	His	His	Phe	Pro	
10					15					20					25	
aca	ggc	tcc	agg	ccc	act	gtg	ccg	gga	ccc	ctg	cac	ttc	agt	gga	tat	437
Thr	Gly	Ser	Arg	Pro	Thr	Val	Pro	Gly	Pro	Leu	His	Phe	Ser	Gly	Tyr	
				30					35					40		
agc	agt	gtg	cca	gat	999	aag	ccg	ctg	gtc	cgc	gag	ccc	tgc	cgc	agc	485
Ser	Ser	Val	Pro	Asp	Gly	Lys	Pro	Leu	Val	Arg	Glu	Pro	Сув	Arg	Ser	
		-	45					50					55			
tgt	gcc	gtg	gtg	tcc	agc	tcc	ggc	caa	atg	ctg	ggc	tca	ggc	ctg	ggt	533
Сув	Ala	Val	Val	Ser	Ser	Ser	Gly	Gln	Met	Leu	Gly	Ser	Gly	Leu	Gly	
	•	60					65					70				
gct	gag	atc	gac	agt	gcc	gag	tgc	gtg	ttc	cgc	atg	aac	cag	gcg	ccc	581
Ala	Glu	Ile	Asp	Ser	Ala	Glu	Cys	Val	Phe	Arg	Met	Asn	Gln	Ala	Pro	
	75					80					85					
acc	gtg	ggc	ttt	gag	gcg	gat	gtg	ggc	cag	cgc	agc	acc	ctg	cgt	gtc	629
Thr	Val	Gly	Phe	Glu	Ala	Asp	Val	Gly	Gln	Arg	Ser	Thr	Leu	Arg	Val	
90					95					100					105	
gtc	tca	cac	aca	agc	gtg	ccg	ctg	ctg	ctg	cgc	aac	tat	tca	cac	tac	677
Val	Ser	His	Thr	Ser	Val	Pro	Leu	Leu	Leu	Arg	Asn	Tyr	Ser	His	Tyr	
				110					115					120		
ttc	cag	aag	gcc	cga	gac	acg	ctc	tac	atg	gtg	tgg	ggc	cag	ggc	agg	725
Phe	Gln	Lys	Ala	Arg	Asp	Thr	Leu	Tyr	Met	Val	Trp	Gly	Gln	Gly	Arg	
			125					130					135			
cac	atg	gac	cgg	gtg	ctc	ggc	ggc	cgc	acc	tac	cgc	acg	ctg	ctg	cag	773
His	Met	Asp	Arg	Val	Leu	Gly	Gly	Arg	Thr	Tyr	Arg	Thr	Leu	Leu	Gln	
		140					145					150				
ctc	acc	agg	atg	tac	ccc	ggc	ctg	cag	gtg	tac	acc	ttc	acg	gag	cgc	821
Leu	Thr	Arg	Met	Tyr	Pro	Gly	Leu	Gln	Val	Tyr	Thr	Phe	Thr	Glu	Arg	

38

155 160 165	
atg atg gcc tac tgc gac cag atc ttc cag gac gag acg ggc aag aac	869
Met Met Ala Tyr Cys Asp Gln Ile Phe Gln Asp Glu Thr Gly Lys Asn	
170 175 180 185	
cgg agg cag tcg ggc tcc ttc ctc agc acc ggc tgg ttc acc atg atc	917
Arg Arg Gln Ser Gly Ser Phe Leu Ser Thr Gly Trp Phe Thr Met Ile	
190 195 200	
ctc gcg ctg gag ctg tgt gag gag atc gtg gtc tat ggg atg gtc agc	965
Leu Ala Leu Glu Leu Cys Glu Glu Ile Val Val Tyr Gly Met Val Ser	
205 210 215	
gac agc tac tgc agg gag aag agc cac ccc tca gtg cct tac cac tac	1013
Asp Ser Tyr Cys Arg Glu Lys Ser His Pro Ser Val Pro Tyr His Tyr	
220 225 230	
ttt gag aag ggc cgg cta gat gag tgt cag atg tac ctg gca cac gag	1061
Phe Glu Lys Gly Arg Leu Asp Glu Cys Gln Met Tyr Leu Ala His Glu	
235 240 245	
cag gcg ccc cga agc gcc cac cgc ttc atc act gag aag gcg gtc ttc	1109
Gln Ala Pro Arg Ser Ala His Arg Phe Ile Thr Glu Lys Ala Val Phe	
250 255 260 265	
tee ege tgg gee aag aag eee ate gtg tte gee cat eeg tee tgg	1157
Ser Arg Trp Ala Lys Lys Arg Pro Ile Val Phe Ala His Pro Ser Trp	
270 275 280	
agg act gag tagetteegt egteetgeea geegeeatge egttgegagg	1206
Arg Thr Glu	
cctccgggat gtcccatccc aagccatcac actccactcc	1266
gggggctcac cacctccagg tctgtcaagt ggcctttgtc cctggggctg atggccccca	1326
acteaceage ateatgacet tgtgccagte etggteetee etecceagee geccetacea	1386
ccttttggtg ccacacttct caggctggcc gccctggttg gggcagccga gagcctgggg	1446
ttcattggtg aaggggcctt ggagttgtga ctgccggggc cgtatcagga acgtacgggt	1506
aaacgtgtgt tttctggaaa aaaaaaaaaa aacaaaaaaa aaaaaaaaaa	1556

<210> 26

<211> 1058

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 67..813

<220>

<221> sig_peptide

<222> 67..111
<223> Von Heijne matrix
score 5.20
seq QLWKLVLLCGVLT/GT

<220>

<221> polyA_signal

<222> 1023..1028

<220>

<221> polyA_site

<222> 1042..1058

<400> 26

agcagactgt gcagtggggc aaggatttca tgagcatcct cctctaaacg cgtgacaaga 60
caaaag atg ctt cag ctt tgg aaa ctt gtt ctc ctg tgc ggc gtg ctc 108
Met Leu Gln Leu Trp Lys Leu Val Leu Cys Gly Val Leu
-15 -10 -5

act ggg acc tca gag tct ctt ctt gac aat ctt ggc aat gac cta agc

Thr Gly Thr Ser Glu Ser Leu Leu Asp Asn Leu Gly Asn Asp Leu Ser

aat gtc gtg gat aag ctg gaa cct gtt ctt cac gag gga ctt gag aca Asn Val Val Asp Lys Leu Glu Pro Val Leu His Glu Gly Leu Glu Thr

20 25 30

204

gtt gac aat act ctt aaa ggc atc ctt gag aaa ctg aag gtc gac cta 252
Val Asp Asn Thr Leu Lys Gly Ile Leu Glu Lys Leu Lys Val Asp Leu

35 40 45

gga gtg ctt cag aaa tcc agt gct tgg caa ctg gcc aag cag aag gcc 300 Gly Val Leu Gln Lys Ser Ser Ala Trp Gln Leu Ala Lys Gln Lys Ala

50 55 60

cag gaa gct gag aaa ttg ctg aac aat gtc att tct aag ctg ctt cca 348

Gln Glu Ala Glu Lys Leu Leu Asn Asn Val Ile Ser Lys Leu Leu Pro

65 70 75

act aac acg gac att ttt ggg ttg aaa atc agc aac tcc ctc atc ctg 396

Thr Asn Thr Asp Ile Phe Gly Leu Lys Ile Ser Asn Ser Leu Ile Leu

gat gtc aaa gct gaa ccg atc gat gat ggc aaa ggc ctt aac ctg agc 444

Asp Val Lys Ala Glu Pro Ile Asp Asp Gly Lys Gly Leu Asn Leu Ser

100 105 110

tte eet gte ace geg aat gte act gtg gee ggg eec ate att gge cag . 492 Phe Pro Val Thr Ala Asn Val Thr Val Ala Gly Pro Ile Ile Gly Gln

115 120 125

40

540	att	aca	gtc	gca	acc	ctg	ctc	gac	ttg	tcc	gcc	aaa	ctg	aac	atc	att
	Ile	Thr	Val	Ala	Thr	Leu	Leu	Asp	Leu	Ser	Ala	Lys	Leu	Asn	Ile	Ile
				140					135					130		
588	tgc	gaa	gga	ctg	gtc	gcc	gtt	cct	cag	cac	aca	cag	ccc	gat	act	gaa
	Cys	Glu	Gly	Leu	Val	Ala	Val	Pro	Gln	His	Thr	Gln	Pro	Asp	Thr	Glu
					155					150					145	
636	agc	cac	aaa	gac	ctg	ttg	tcc	ctt	tca	atc	agc	acc	cca	gac	agt	gcc
	Ser	His	Lys	Asp	Leu	Leu	Ser	Leu	Ser	Ile	Ser	Thr	Pro	Asp	Ser	Ala
	175					170					165				•	160
684	agc	aaa	ctg	acg	aac	atc	gtg	agc	aat	gtg	ttc	aag	aac	atc	atc	caa
	Ser	Lys	Leu	Thr	Asn	Ile	Val	Ser	Asn	Val	Phe	Lys	Asn	Ile	lle	Gln
		190					185					180				
732	atc	cgc	atc	ctg	cca	tgt	ata	gag	aag	cag	ctg	ctg	tcc	tcc	gta	act
	Ile	Arg	Ile	Leu	Pro	Cys	Ile	Glu	Lys	Gln	Leu	Leu	Ser	Ser	Val	Thr
•			205					200					195			
780	aat	gat	gtc	gtc	cag	cag	att	gtc	aat	gtg	gat	ctg	tcc	cac	atc	ttc
	Asn	Asp	Val	Val	Gln	Gln	Ile	Val	Asn	Val	Asp	Leu	Ser	His	Ile	Phe
				220					215					210		
833	gaggag	gaato	gac g	agagg	tgaa	atc	ctc	acc	caa	ctg	cag	acc	aaa	cac	cag	cct
						Ile	Leu	Thr	Gln	Leu	Gln	Thr	Lys	His	Gln	Pro
										230					225	
893	gcatct	atag	ct 1	accc	CCC	tgc	ggct	agi	tcc	ttggi	tg af	atgci	gtgca	gtg 9	cact	gac
953	agaagg	cacca	cc o	gagt	gcct	gaaa	gegte	c ca	ctaa	ccac	cc á	gctg	agct	gga a	tcca	ccc
1013	gtcct															
1058				ıa	aaaa	aaaa	aaaa	a aa	gca	tttc	cc at	aggc	ataaa	gca a	cctg	gcc

<210> 27

<211> 648

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 187..438

·<220>

<221> polyA_signal

<222> 612..617

<220>

<221> polyA_site

<222> 632..648

•	
<400> 27	
agtgcgcact ggcgtgcgag actcggcggg cgctgttgag ggagtcgggc cgcgactgtg	60
gtcgttttta taccttcccg cgcggacgcc ggcgctgcca acggaagggc ggagacggag	120
tttcgtcatg ttggccaggc ccatttgaga tctttgaaga tatcctcaac gtgaggctct	180
gctgcc atg aag gtg aag att aag tgc tgg aac ggc gtg gcc act tgg	228
Met Lys Val Lys Ile Lys Cys Trp Asn Gly Val Ala Thr Trp	
1 5 10	
ctc tgg gtg gcc aac gat gag aac tgt ggc atc tgc agg atg gca ttt	276
Leu Trp Val Ala Asn Asp Glu Asn Cys Gly Ile Cys Arg Met Ala Phe	
15 20 25 30	
aac gga tgc tgc cct gac tgc aag gtg ccc ggc gac gac tgc ccg ctg	324
Asn Gly Cys Cys Pro Asp Cys Lys Val Pro Gly Asp Asp Cys Pro Leu	
35 40 45	
gtg tgg ggc cag tgc tcc cac tgc ttc cac atg cat tgc atc ctc aag	372
Val Trp Gly Gln Cys Ser His Cys Phe His Met His Cys Ile Leu Lys	
50 55 60	
tgg ctg cac gca cag cag gtg cag cac tgc ccc atg tgc cgc cag	420
Trp Leu His Ala Gln Gln Val Gln Gln His Cys Pro Met Cys Arg Gln	
65 70 75	
gaa tgg aag ttc aag gag tgaggcccga cctggctctc gctggagggg	468
Glu Trp Lys Phe Lys Glu	
80	
catectgaga etectteete atgetggege egatggetge tggggacage geecetgage	528
tgcaacaagg tggaaacaag ggctggagct gcgtttgttt tgccatcact atgttgacac	588
ttttatccaa taagtgaaaa ctcattaaac tactcaaatc tcgaaaaaaaa aaaaaaaaa	648
<210> 28	•
<211> 2104	
<212> DNA	
<213> Homo Sapiens	
<220>	
<221> CDS	
<222> 921753	
<220>	•
<221> sig_peptide	
<222> 92130	
2223 Von Heijne matrix	

score 3.90 seq MLYLQGWSMPAVA/EV

PCT/IB99/02058 WO 00/37491 42

<220> <221> polyA_signal <222> 2070..2075 <220> <221> polyA_site <222> 2090..2104 <220> <221> misc_feature <222> 905 <223> n=a, g, c or t <220> <221> unsure <222> 259 <223> Xaa = Asp, His, Asn, Tyr <400> 28 atagacttta tcatacttcg tagcatccag tatgttttct ttgctaagat tattgatttt 60 gtattgaagg gtcccatgtc catcgttttc a atg ctt tat ctc cag ggt tgg 112 Met Leu Tyr Leu Gln Gly Trp -10 agc atg cct gct gtg gca gag gta aaa ctt cga gat gat caa tat aca 160 Ser Met Pro Ala Val Ala Glu Val Lys Leu Arg Asp Asp Gln Tyr Thr -5 1 10 ctg gaa cac atg cat gct ttt gga atg tat aat tac ctg cac tgt gat 208 Leu Glu His Met His Ala Phe Gly Met Tyr Asn Tyr Leu His Cys Asp 15 20 tca tgg tat caa gac agt gtc tac tat att gat acc ctt gga aga att 256 Ser Trp Tyr Gln Asp Ser Val Tyr Tyr Ile Asp Thr Leu Gly Arg Ile 30 35 atg aat tta aca gta atg ctg gac act gcc tta gga aaa cca cga gag 304 Met Asn Leu Thr Val Met Leu Asp Thr Ala Leu Gly Lys Pro Arg Glu 50 gtg ttt cga ctt cct aca gat ttg aca gca tgt gac aac cgt ctt tgt 352 Val Phe Arg Leu Pro Thr Asp Leu Thr Ala Cys Asp Asn Arg Leu Cys gca tet ate cat tte tea tet tet ace tgg gtt ace ttg tea gat gga 400 Ala Ser Ile His Phe Ser Ser Ser Thr Trp Val Thr Leu Ser Asp Gly 85 75 80

								4	1 3							
act	gga	aga	ttg	tạt	gtc	att	gga	aca	ggt	gaa	cgt	gga	aat	agc	gct	448
Thr	Gly	Arg	Leu	Tyr	Val	Ile	Gly	Thr	Gly	Glu	Arg	Gly	Asn	Ser	Ala	
				95					100					105		
tct	gaa	aaa	tgg	gag	att	atg	ttt	aat	gaa	gaa	ctt	999	gat	cct	ttt	496
Ser	Glu	Lys	Trp	Glu	Ile	Met	Phe	Asn	Glu	Glu	Leu	Gly	Asp	Pro	Phe	
			110	•				115					120			
				_										tct		544
Ile	Ile	Ile	His	Ser	Ile	Ser	Leu	Leu	Asn	Ala	Glu	Glu	His	Ser	Ile	
		125					130					135				
_														aaa		592
Ala	Thr	Leu	Leu	Leu	Arg	Ile	Glu	Lys	Glu	Glu		Asp	Met	Lys	Gly	
	140					145					150					
	33			-		_			_			_	_	aaa -		640
Ser	Gly	Phe	Tyr	Val		Leu	Glu	Trp	Val		Ile	Ser	Lys	Lys		
155					160					165					170	600
	_					•			_	_	_			cgt		688
Gin	Asp	Asn	гув	_	Tyr	GIU	11e	шe		Arg	Asp	шe	Leu	Arg	GIY	
				175		~~+	~~=		180	aat	~a+		225	185	ata	736
_														ggt Gly		/36
гув	ser	vaı	190	HIS	Tyr	Ald	Ala	195	пув	PIO	Asp	GLY	200	Gry	Dea	
250	a++	ata		tac	220	tct	tta		+++	att	cad	act		caa	gat	784
_														Gln		,,,
Mec	110	205	501	-,-	2,0	001	210					215	1			
ctt	gaa		aat	atq	gat	gaa		ata	tca	qaq	aaa		aaa	gaa	cct	832
	_													Glu		
	220				•	225	•				230		•			
ctg	tat	tac	tgg	caa	cag	act	gaa	gat	gat	ttg	aca	gta	acc	ata	cgg	880
-														Ile		
235					240					245					250	
ctt	сса	gaa	gac	agt	act	aag	gag	nac	att	caa	ata	cag	ttt	ttg	cct	928
Leu	Pro	Glu	Asp	Ser	Thr	Lys	Glu	Xaa	Ile	Gln	Ile	Gln	Phe	Leu	Pro	
				255					260					265		
gat	cac	atc	aac	att	gta	ctg	aag	gat	cac	cag	ttt	tta	gaa	gga	aaa	976
Asp	His	Ile	Asn	Ile	Val	Leu	Lys	Asp	His	Gln	Phe	Leu	Glu	Gly	Lys	
			270					275					280			
ctc	tat	tca	tct	att	gat	cat	gaa	agc	agt	aca	tgg	ata	att	aaa	gag	1024
Leu	Tyr	Ser	Ser	Ile	Asp	His	Glu	Ser	Ser	Thr	Trp	Ile	Ile	Lys	Glu	
		285					290					295				
agt	aat	agc	ttg	gag	att	tcc	ttg	att	aag	aag	aat	gaa	gga	ctg	acc	1072
Ser	Asn	Ser	Leu	Glu	Ile	Ser	Leu	Ile	Lys	Lys	Asn	Glu	Gly	Leu	Thr	
	.300					305					310					

44

WO 00/37491 PCT/IB99/02058

								-	+							
tgg	cca	gag	cta	gţa	att	gga	gat	aaa	caa	999	gaa	ctt	ata	aga	gat	1120
Trp	Pro	Glu	Leu	Val	Ile	Gly	Asp	rys	Gln	Gly	Glu	Leu	Ile	Arg	Asp	
315					320					325					330	
tca	gcc	cag	tgt	gct	gca	ata	gct	gaa	cgt	ttg	atg	cat	ttg	acc	tct	1168
Ser	Ala	Gln	Cys	Ala	Ala	Ile	Ala	Glu	Arg	Leu	Met	His	Leu	Thr	Ser	
				335					340					345		
gaa	gaa	ctg	aat	cca	aat	cca	gat	aaa	gaa	aaa	cca	cct	tgc	aat	gct	1216
Glu	Glu	Leu	Asn	Pro	Asn	Pro	Asp	Lys	Glu	Lys	Pro	Pro	Сув	Asn	Ala	
			350					355					360			
caa	gag	tta	gaa	gaa	tgt	gat	att	ttc	ttt	gaa	gag	agc	tcc	agt	tta	1264
						Asp										
		365					370					375				
tgc	aga	ttt	gat	ggc	aat	aca	tta	aaa	act	act	cat	gtg	gtg	aat	ctt	1312
_	_					Thr										
_	380		_			385					390					
gga	agc	aac	cag	tac	ctt	ttc	tct	gtc	ata	gtg	gat	cct	aaa	gaa	atg	1360
Gly	Ser	Asn	Gln	Tyr	Leu	Phe	Ser	Val	Ile	Val	Asp	Pro	Lys	Glu	Met	
395					400					405					410	
ccc	tgc	ttc	tgt	ttg	cgc	cat	gat	gtt	gat	gcc	cta	ctc	tgg	caa	cca	1408
Pro	Сув	Phe	Cys	Leu	Arg	His	Asp	Val	Asp	Ala	Leu	Leu	Trp	Gln	Pro	
	_		_	415					420					425		
cac	tcc	agc	aaa	caa	gat	gat	atg	tgg	gag	cac	atc	gca	act	ttc	aat	1456
						Asp										
			430					435					440			
gct	tta	ggc	tat	gtc	caa	gca	tca	aag	aga	gac	aaa	aaa	ttt	ttt	gcc	1504
_						Ala										
		445					450					455				
tgt	gct	cca	aat	tac	tcg	tat	gca	gcc	ctt	tgt	gag	tgc	ctt	cgt	cga	1552
Сув	Ala	Pro	Asn	Tyr	Ser	Tyr	Ala	Ala	Leu	Cys	Glu	Cys	Leu	Arg	Arg	
	460					465					470					
gta	ttc	atc	tat	cgt	cag	cct	gct	ccc	atg	tcc	act	gta	ctt	tac	aac	1600
Val	Phe	Ile	Tyr	Arg	Gln	Pro	Ala	Pro	Met	Ser	Thr	Val	Leu	Tyr	Asn	
475					480					485					490	
aga	aag	gaa	ggc	agg	caa	gta	gga	cag	gtt	gct	aag	cag	caa	gta	gca	1648
						Val										
	-		-	495					500			•		505		
agc	cta	gaa	acc	aat	gat	cct	att	tta	gga	ttt	cag	gca	aca	aat	gag	1696
_		-			_	Pro					_	_				
			510		•			515	•				520			
aga	tta	ttt		ctt	act	acc	aaa	aac	ctc	ttt	tta	ata	aaa	gta	aat	1744
-						Thr										
- 3		525					530					535	-			

45

aca gag aat taattattot aacatattgg cototttgta ctggaaaagt 1793 Thr Glu Asn 540 attcagtggt acctggaggt ctggacagtt atactgtaac ctcttaagtt ttaatgtgct 1853 aaatatatct tgtatgattt tttattttt aataacattg gaaatatatt caagagatta 1913 tgattctgta aagctgtgga atgaagctgc agatttagag aacattggct tctgaaaaaa 1973 aaaaagagtg aagatagtac tagcaagtat acttattttt taaaacaggc tagaatctca 2033 tgttttatat gaaagatgta caattcagtg tttaaaaata aaaatattta ttgtgtaaaa 2093 aaaaaaaaa a 2104 <210> 29 <211> 515 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 144..440 <220> <221> sig peptide <222> 144..287 <223> Von Heijne matrix score 4.10 seq VFMLIVSVLALIP/ET <220> <221> polyA_signal <222> 457..462° <220> <221> polyA_site <222> 500..515 <220> <221> misc_feature <222> 60 <223> n=a, g, c or t <400> 29 agagagegg aageegaget gggegagaag taggggaggg eggtgeteeg egeggtgeen 60 gttgctatcg cttcgcagaa cctactcagg cagccagctg agaagagttg agggaaagtg 120

46

ctgo	tgct	gg 9	gtctg	gcaga	ic go	_	-		_	_	_	_			aa cat	173
						Me	et As	sp As	sn Va -4		ln Pi	co r?	/S I.	_	ys His 10	
cgc	ccc	ttc	tgc	ttc	agt	gtg	aaa	ggc			aag	atg	ctg			221
Arg	Pro	Phe	Cys	Phe	Ser	Val	Lys	Gly	His	Val	Lys	Met	Leu	Arg	Leu	
			-35					-30					-25			
gat	att	atc	aac	tca	ctg	gta	aca	aca	gta	ttc	atg	ctc	atc	gta	tct	269
Asp	Ile	Ile	Asn	Ser	Leu	Val	Thr	Thr	Val	Phe	Met	Leu	Ile	Val	Ser	
		-20				•	-15					-10				
-		_	_	ata		_				_		_				317
Val		Ala	Leu	Ile	Pro		Thr	Thr	Thr		Thr	Val	Gly	Gly		
	-5					1				5					10	3.65
		_		gtg		-	_	_	_			_				365
vai	Pne	Ala	ьец	Val 15	IIII	ATA	Vai	Cys	20	neu	HIG	АБР	GIY	25	Deu	
att	tac	caa	aaq	ctt	cta	ttc	aat	ccc		aat.	cct	tac	cag		aaq	413
			_	Leu	_				_				_		_	
	•	_	30					35		•		-	40	•	-	
cct	gtg	cat	gaa	aaa	aaa	gaa	gtt	ttg	taat	ttta	ata t	tact	tttt	:a		460
Pro	Val	His	Glu	Lys	Lys	Glu	Val	Leu								
		45					50									
gttt	gata	act a	aagta	attaa	a ca	atatt	tctg	g tat	tctt	cca	aaaa	aaaa	aa a	aaat	=	515
<210)> 3()														
	L> 60															
<212	2 > D1	NA.														
<213	3 > Ho	omo s	Sapie	ens												
<220)>															
<221	L> CI	os													•	
<222	2> 1'	74	143													
<220)>															
<22	l> s:	ig_p	eptio	le												
<222	2> 1'	74:	269													
<22	3> V	on He	eijne	e mat	rix											
	80	core	4.10)		,										
	86	eq S	SLAF(CQVGI	LTA,	/QP										

<220>

<221> polyA_signal

<222> 623..628

<220>
<221> polyA_site
<222> 647..661

<400> 30

	aaaaaggaac t	ttcagtgat	aatgaacaa	a actcaggagc	tatgtggatg acaggagcac	60				
	ctagatgacc g	gactttaccc	acttcaaat	g ctaccttgac	cctagcactc tctccaccct	120				
	gcatcctcac c	ctcagaccat	cagttggtta	a ggccaacagc	tcaccatcaa ttc atg	176				
					Met					
	ccc tgc cta	gac caa ca	ag ctc act	gtt cat gcc	cta ccc tgc cct gcc	224				
	Pro Cys Leu	Asp Gln G	ln Leu Thr	Val His Ala	Leu Pro Cys Pro Ala					
	-30		-25		-20					
	cag ccc tcc	tct ctg go	cc ttc tgc	caa gtg ggg	ttc tta aca gca cag	272				
	Gln Pro Ser	Ser Leu Al	la Phe Cys	Gln Val Gly	Phe Leu Thr Ala Gln					
	-15	-	10	-5	1					
	cct tca cct	ccg aga ag	gg cgc aat	ggg aaa gac	aga tac acg ttg gtt	320				
	Pro Ser Pro	Pro Arg A	rg Arg Asn	Gly Lys Asp	Arg Tyr Thr Leu Val					
		5		10	, 15					
	ctg caa cac	cag gaa to	gc cag gat	gat tta gcc	acc tcc tca ctt gtc	368				
	Leu Gln His	Gln Glu Cy	ys Gln Asp	Asp Leu Ala	Thr Ser Ser Leu Val					
	20		25		30	•				
	tac ctt tcc	ctc ccc to	gc ttc aaa	gac ttg ggt	cga tcg aag cac caa	416				
	Tyr Leu Ser	Leu Pro Cy	ys Phe Lys	Asp Leu Gly	Arg Ser Lys His Gln					
	35		40		45					
	agc atc act	gtt gct ga	ac act aac	aag tagtgcca	aag ggattgcctt	463				
	Ser Ile Thr	Val Ala As	sp Thr Asn	Lys						
	50	5	5							
	taaggaagat d	caggagcgga	acatctggt	g gcaaagaaaa	tctttctaat agccccattc	523				
	tagtgaccac d	cttcaacctc	ctcatagca	g gagagtttgg	gagtagggga cttaggatgt	583				
	tttgttcttt t	taatcaattc	agaaaatat	g tatgtttgaa	ataaaaataa aaatacttga	643				
	gccaaaaaaa a	aaaaaaa				661				
	· ·									

<210> 31

<211> 694

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 55..399

PCT/IB99/02058 WO 00/37491

48 <220> <221> sig_peptide <222> 55..192 <223> Von Heijne matrix score 4.70 seq ILTGLTVGSAADA/GE <220> <221> polyA_signal <222> 654..659 <220> <221> polyA_site <222> 680..694 <400> 31 aatgettgag gaaaactggg aacagtatat tgttetgaaa acctaaaaag ttta atg 57 aaa acc ttg ttc aat cca gcc cct gcc att gct gac ctg gat ccc cag 105 Lys Thr Leu Phe Asn Pro Ala Pro Ala Ile Ala Asp Leu Asp Pro Gln -45 -35 -40 ttc tac acc ctc tca gat gtg ttc tgc tgc aat gaa agt gag gct gag 153 Phe Tyr Thr Leu Ser Asp Val Phe Cys Cys Asn Glu Ser Glu Ala Glu -25 -20 att tta act ggc ctc acg gtg ggc agc gct gca gat gct ggg gag gct 201 Ile Leu Thr Gly Leu Thr Val Gly Ser Ala Ala Asp Ala Gly Glu Ala -10 -5 gca tta gtg ctc ttg aaa agg ggc tgc cag gtg gta atc att acc tta 249 Ala Leu Val Leu Leu Lys Arg Gly Cys Gln Val Val Ile Ile Thr Leu 5 10 ggg gct gaa gga tgt gtg gtg ctg tca cag aca gaa cct gag cca aag 297. Gly Ala Glu Gly Cys Val Val Leu Ser Gln Thr Glu Pro Glu Pro Lys 20 cac att ccc aca gag aaa gtc aag gct gtg gat acc acg tgt aga cct 345 His Ile Pro Thr Glu Lys Val Lys Ala Val Asp Thr Thr Cys Arg Pro 45 40 ggc tca aga ccc aag agt gaa gca gca agt gtg aag aag cag aaa cat 393 Gly Ser Arg Pro Lys Ser Glu Ala Ala Ser Val Lys Lys Gln Lys His 60 tat aaa taacccagag aatcctttta taacagcaac tgcctactga ttttgtggcc 449 Tyr Lys

taacagctcg agcaaaaatg aatataaata caacattgtg caatgactaa ttactcaaaa

509

49

ttttgtgcat cagcagaagt ggaacctgtg	g gttggtgcta	atattatgaa	atgcctttgc	569
tgtttaataa tetggtaget etgtattatt	tagcatgcat	ttttcttgga	gaacaatgat	629
tttatttcaa gtacctctca ctgaaataaa	a aaagcagctg	ttagaagacg	aaaaaaaaa	689
aaaaa				694
<210> 32				
<211> 1110				
<212> DNA				
<213> Homo Sapiens				
<220>	•			
<221> CDS				
<222> 90287				
<220>				
<221> sig_peptide ·				
<222> 90146	•			
<223> Von Heijne matrix				
score 9.30				
seq VFVFLFLWDPVLA/GI				
222				
<220>				
<221> polyA_signal				
<222> 10781083				
<220>				
<221> polyA site				
<222> 10961110				
<400> 32				
atcatcttac atcagcacaa gaagaagagt	gagcatagca	caccgatgtc	agaccctgcc	60
actagectee ttaacagaag tteccagee	atg aag cct	ctc ctt gtt	gtg ttt	113
	Met Lys Pro	Leu Leu Val	l Val Phe	
	-	-15		
gtc ttt ctt ttc ctt tgg gat cca	gtg ctg gca	ggt ata aai	t tca tta	161
Val Phe Leu Phe Leu Trp Asp Pro				
-10 -5		1	5	
tca tca gaa atg cac aag aaa tgc	tat aaa aat	ggc atc tq	c aga ctt	209
Ser Ser Glu Met His Lys Lys Cys			•	
10	15	-	20	
gaa tgc tat gag agt gaa atg tta	gtt gcc tac	tgt atg tti		257
Glu Cvs Tvr Glu Ser Glu Met Leu	-			

25 30 35 gag tgc tgt gtc aaa gga aat cct gca ccc tgacataaga aaccaatgaa 307 Glu Cys Cys Val Lys Gly Asn Pro Ala Pro 40. tggccactat cctgtaggcc cttgattctg ccatctttca caaaaccagg gaatttagat 367 caaactgtga caccatgatg tgtccatgac tactggtttt tagcattttt ataggccagc 427 agactettgt ggtettaaat ttaaagaget gagetgtage ettetttaaa agageteggt 487 ttttcacaaa aacaatgtag aagatatttt ctcacctcaa cgtgatgtcc agtgtgctca 547 tragcarrig tttraccete taatcataga ggatattett attatttaga aaggetteaa 607 gggaaacaac ttttggcacc taagtcgtgt cctaccttcg cttcagcttc gcatttccca 667 tttctgtgaa attcccaact ttagagaagc agatttgcca tggccttctg acaaccttgt 727 acatetetea cataaacege ataggeaggg ettaactaca ggetggeeeg agtetggaet 787 gagtctgacc ctgaagttcc tttggaacag gagaggccat cttgtgatgg gctggaacaa 847 ggtaatttct catccacctc cctagtttca gttgagcaat ggaacttccc acctgagccc 907 ctagggttca gctacaggct ataagactgc cgtcctgtgg tttagtgttg gttccttagc 967 agcagagtga tgccacctct gctgcccgtc atctgactcc tctggatggg tgttatcctq 1027 tggcttaaga gctaacacca tgctgatctt gctttgctat atgtgtaact aataaactgc 1087 ctaaatgcaa aaaaaaaaaa aaa 1110

<210> 33

<211> 623

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 49..447

<220>

<221> sig peptide

<222> 49..111

<223> Von Heijne matrix

score 5.00

seq LIVIFFYCWLSSS/HE

<220>

<221> polyA_signal

<222> 579..584

<220>

<221> polyA_site

<222> 602..623

<400> 33																
atta	igaat	tt t	cttt	ctca	a at	taaa	ggtt	tga	gaaa	ttc	gtga	tgag	ato	tco	: tgt	57
													Met	: Ser	Cys	
														-20)	
tcc	cta	aag	ttt	act	ttg	att	gta	att	ttt	ttt	tac	tgt	tgg	ctt	tca	105
Ser	Leu	Lys	Phe	Thr	Leu	Ile	Val	Ile	Phe	Phe	Tyr	Cys	Trp	Leu	Ser	
			-15					-10					-5			
tcc	agc	cat	gag	gag	tta	gaa	ggt	ggt	aca	tcg	aag	tct	ttt	gac	ctc	153
Ser	Ser	His	Glu	Glu	Leu	Glu	Gly	Gly	Thr	Ser	Lys	Ser	Phe	Asp	Leu	
		1				5					10					
cat	aca	gtg	att	atg	ctt	gtc	atc	gct	ggt	ggt	atc	ctg	gcg	gcc	ttg	201
His	Thr	Val	Ile	Met	Leu	Val	Ile	Ala	Gly	Gly	Ile	Leu	Ala	Ala	Leu	
15					20					25					30	
ctc	ctg	ctg	ata	gtt	gtc	gtg	ctc	tgt	ctt	tac	ttc	aaa	ata	cac	aac	249
Leu	Leu	Leu	Ile	Val	Val	Val	Leu	Cys	Leu	Tyr	Phe	Lys	Ile	His	Asn	
				35					40					45		
gcg	cta	aaa	gct	gca	aag	gaa	cct	gaa	gct	gtg	gct	gta	aaa	aat	cac	297
Ala	Leu	Lys	Ala	Ala	Lys	Glu	Pro	Glu	Ala	Val	Ala	Val	Lys	Asn	His	
			50					55					60			
aac	cca	gac	aag	gtg	tgg	tgg	gcc	aag	aac	agc	cag	gcc	aaa	acc	att	345
Asn	Pro	Asp	Lys	Val	Trp	Trp	Ala	Lys	Asn	Ser	Gln	Ala	Lys	Thr	Ile	
		65					70					75				
gcc	acg	gag	tct	tgt	cct	gcc	ctg	cag	tgc	tgt	gaa	gga	tat	aga	atg	393
Ala	Thr	Glu	Ser	Cys	Pro	Ala	Leu	Gln	Cys	Cys	Glu	Gly	Tyr	Arg	Met	
	80					85					90					
tgt	gcc	agt	ttt	gat	tcc	ctg	cca	cct	tgc	tgt	tgc	gac	ata	aat	gag	441
Сув	Ala	Ser	Phe	Asp	Ser	Leu	Pro	Pro	Cys	Cys	Сув	Asp	Ile	Asn	Glu	
95					100					105					110	
ggc	ctc	tgag	gttag	gga a	aaggt	gggg	ca ca	aaaa	atctt	cat	gago	caat	actt	ctta	agt	497
Gly	Leu															
aga	ttgti	ttt	gttai	ttcaa	aa to	caagt	tcta	a gtg	gttt	tat	gtga	agatt	at a	ataat	ttaca	557
gtg	ttgti	ttt a	atata	actt	t ga	aataa	aatgt	aca	actat	taa	aaat	caaaa	aaa a	aaaa	aaaat	617
gcc	aaa															623

<210> 34

<211> 657

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

52 <222> 199..618 <220> <221> sig_peptide <222> 199..408 <223> Von Heijne matrix score 3.90 seg FKVLTQPLSLLWG/CD <220> <221> polyA_signal <222> 626..631 <220> <221> polyA_site <222> 643..657 <400> 34 aactggatag agtactgccc ccttcagccc atggagaaag gcaaatgcct ccttcagagt 60 ctacctaatg ctttctcaga taaataagca tgaagaaaag tcaaagtcca ttctagctct 120 aaaataagga atgaaatgtt ttcctgatat gattttttgt tttcatctga taataatttt 180 atatatcaca gaaacagc atg gtt ctt act aaa cct ctt caa aga aat ggc 231 Met Val Leu Thr Lys Pro Leu Gln Arg Asn Gly -70 -65 ago atg atg ago ttt gaa aat gtg aaa gaa aag ago aga gaa gga ggg 279 Ser Met Met Ser Phe Glu Asn Val Lys Glu Lys Ser Arg Glu Gly Gly -55 -50 ccc cat qca cac aca ccc gaa gaa gaa ttg tgt ttc gtg gta aca cac 327 Pro His Ala His Thr Pro Glu Glu Glu Leu Cys Phe Val Val Thr His -40 -35 -30 tac cct cag gtt cag acc aca ctc aac ctg ttt ttc cat ata ttc aag 375 Tyr Pro Gln Val Gln Thr Thr Leu Asn Leu Phe Phe His Ile Phe Lys -25 -20 gtt ctt act caa cca ctt tcc ctt ctg tgg ggt tgt gat cag aag cct 423 Val Leu Thr Gln Pro Leu Ser Leu Leu Trp Gly Cys Asp Gln Lys Pro cgt act gtt cct acc ctt gga aac ggc gca tgg gat acc tgc caa caa 471 Arg Thr Val Pro Thr Leu Gly Asn Gly Ala Trp Asp Thr Cys Gln Gln cac ata ege act toa toa tog aca goa aac aca cte gte att caa aac 519

His Ile Arg Thr Ser Ser Trp Thr Ala Asn Thr Leu Val Ile Gln Asn 25 30 35

WO 00/37491	PCT/IB99/02058									
53										
cag cat tca cgg gaa agc act gtt tct gtt tgc ctt ttt atg t	ta atc 567									
Gln His Ser Arg Glu Ser Thr Val Ser Val Cys Leu Phe Met L	eu Ile									
40 45 50										
cgc atg caa cat att ttg aaa aca gat aca ctt caa cag ttc a	nga ata 615									
Arg Met Gln His Ile Leu Lys Thr Asp Thr Leu Gln Gln Phe A	Arg Ile									
55 60 65										
tgc tagtactaat aaaaccaaca tgttaaaaaa aaaaaaaaa	657									
Cys										
70										
<210> 35	•									
<211> 1137										
<212> DNA										
<213> Homo Sapiens	•									
222										
<220>										
<221> CDS <222> 271969	•									
<222> 2/1709	•									
<220>										
<221> sig_peptide										
<222> 271366										
<223> Von Heijne matrix										
score 5.60										
seq WMGLACFRSLAAS/SP										
	•									
<220>										
<221> polyA_signal										
<222> 10921097										
<220>										
<221> polyA_site										
<222> 11231137										
<400> 35										
aaaaaccttt caagtgcccc ctcctttcct taaagtcttt tataggggtc cc										
ccatctccat cctgtgagtc aggactgaaa gggcacagac aggtcactgc ca	gcattgtt 120									

ggggcaagcc tgcaagcacg catcactggg gatctgacat gacaatggcc gcctgccccc

totgagggot acaggactta coccagtggg aagcagctaa gcaggtctga ccagccgacc

tggacctggc caagggtcct gtcatccctc atg gcc acc ccg cca ttc cgg ctg $\underline{\text{Met Ala Thr Pro Pro Phe Arg Leu}}$

180

240

294

PCT/IB99/02058 WO 00/37491

		., .						4	54							
															~~~	242
														ctt		342
Ile	Arg	Lys	Met		Ser	Phe	Lys	Val		Arg	Trp	Met	GIY	Leu	Ala	
				-20					-15					-10		
_														aag		390
Cys	Phe	Arg	Ser	Leu	Ala	Ala	Ser	Ser	Pro	Ser	Ile	Arg	Gln	Lys	Lys	
			-5					1				5				
cta	atg	cac	aag	ctg	cag	gag	gaa	aag	gct	ttt	cgc	gaa	gag	atg	aaa	438
Leu	Met	His	Lys	Leu	Gln	Glu	Glu	rys	Ala	Phe	Arg	Glu	Glu	Met	Lys	
	10					15					20					
att	ttt	cgt	gaa	aaa	ata	gag	gac	ttc	agg	gaa	gag	atg	tgg	act	ttc	486
Ile	Phe	Arg	Glu	Lys	Ile	Glu	Asp	Phe	Arg	Glu	Glu	Met	Trp	Thr	Phe	
25					30					35					40	
cga	ggc	aag	atc	cat	gct	ttc	cgg	ggc	cag	atc	ctg	ggt	ttt	tgg	gaa	534
Arg	Gly	Lys	Ile	His	Ala	Phe	Arg	Gly	Gln	Ile	Leu	Gly	Phe	Trp	Glu	
				45					50					55		
gag	gag	aga	cct	ttc	tgg	gaa	gag	gag	aaa	acc	ttc	tgg	aaa	gag	gaa	582
Glu	Glu	Arg	Pro	Phe	Trp	Glu	Glu	Glu	Lys	Thr	Phe	Trp	Lys	Glu	Glu	
			60					65					70			
aaa	tcc	ttc	tgg	gaa	atg	gaa	aag	tct	ttc	agg	gag	gaa	gag	aaa	act	630
Lys	Ser	Phe	Trp	Glu	Met	Glu	Lys	Ser	Phe	Arg	Glu	Glu	Glu	Lys	Thr	
		75			•		80					85				
ttc	tgg	aaa	aag	tac	cgc	act	ttc	tgg	aag	gag	gat	aag	gcc	ttc	tgg	678
Phe	Trp	Lys	Lys	Tyr	Arg	Thr	Phe	Trp	Lys	Glu	Asp	Lys	Ala	Phe	Trp	
	90					95					100					
aaa	gag	gac	aat	gcc	tta	tgg	gaa	aga	gac	cgg	aac	ctt	ctt	cag	gag	726
Lys	Glu	Asp	Asn	Ala	Leu	Trp	Glu	Arg	Asp	Arg	Asn	Leu	Leu	Gln	Glu	
105					110					115					120	
gac	aag	gcc	ctg	tgg	gag	gaa	gaa	aag	gcc	ctg	tgg	gta	gag	gaa	aga	774
Asp	Lys	Ala	Leu	Trp	Glu	Glu	Glu	Lys	Ala	Leu	Trp	Val	Glu	Glu	Arg	
				125					130					135		
gcc	ctc	ctt	gag	999	gag	aaa	gcc	ctg	tgg	gaa	gat	aaa	acg	tcc	ctc	822
Ala	Leu	Leu	Glu	Gly	Glu	Lys	Ala	Leu	Trp	Glu	Asp	Lys	Thr	Ser	Leu	
			140					145					150			
tgg	gag	gaa	gag	aat	gcc	ctc	tgg	gag	gaa	gag	agg	gcc	ttc	tgg	atg	870
Trp	Glu	Glu	Glu	Asn	Ala	Leu	Trp	Glu	Glu	Glu	Arg	Ala	Phe	Trp	Met	
		155					160					165				
gag	aac	aat	ggc	cac	att	gcc	gga	gag	cag	atg	ctc	gaa	gat	999	ccc	918
Glu	Asn	Asn	Gly	His	Ile	Ala	Gly	Glu	Gln	Met	Leu	Glu	Asp	Gly	Pro	
	170		=			175					180					
cac	aac	gcc	aac	aga	ggg	cag	cgc	ttg	ctg	gcc	ttc	tcc	cga	ggc	agg	966
		_		_		_	-		_	_				Gly		
185				_	190					195					200	

PCT/IB99/02058 WO 00/37491

55

gcg tagccagcat gcaggtgcag ggccctgtgg tccagactcc cctgggttgg 1019 Ala gattcaagtc cagggtgagc ccatgtgctg gagaaaatac acactcattg gtctccttgc 1079 tttgaaagat ccaataaagt cctgaggcaa ggtttggaaa accaaaaaaa aaaaaaaa <210> 36 <211> 636 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 192..440 <220> <221> sig_peptide <222> 192..278 <223> Von Heijne matrix score 5.20 seq VVFMTVAAGGASS/FA <220> <221> polyA_signal <222> 590..595 <220> <221> polyA_site <222> 622..636 <400> 36 aaaagcgagt caggtccctc gcgctcccgc cccacgcgcg tgaccagagc gcgctggccc 60 ggcccacccg gggcggttgt ggtcgctata tataaggtgg ggaggccgcc ggcccgttcg 120 gttccgggcg ttaccatcgt ccgtgcgcac cgcccggcgt ccagatttgg caattcttcg 180 ctgaagtcat c atg agc ttt ttc caa ctc ctg atg aaa agg aag gaa ctc 230 Met Ser Phe Phe Gln Leu Leu Met Lys Arg Lys Glu Leu -25 att ccc ttg gtg gtg ttc atg act gtg gcg gcg ggt gga gcc tca tct 278 Ile Pro Leu Val Val Phe Met Thr Val Ala Ala Gly Gly Ala Ser Ser -10 tte get gtg tat tet ett tgg aaa ace gat gtg ate ett gat ega aaa 326 Phe Ala Val Tyr Ser Leu Trp Lys Thr Asp Val Ile Leu Asp Arg Lys 10 15 1

WO 00/37491	PCT/IB99/0205

WO 00/37491 PCT/IB99/0	2058
56	
aaa aat cca gaa cct tgg gaa act gtg gac cct act gta cct caa aag	374
Lys Asn Pro Glu Pro Trp Glu Thr Val Asp Pro Thr Val Pro Gln Lys	3,1
20 25 30	
ctt ata aca atc aac caa caa tgg aaa ccc att gaa gag ttg caa aat	422
Leu Ile Thr Ile Asn Gln Gln Trp Lys Pro Ile Glu Glu Leu Gln Asn	
35 40 45	
gtc caa agg gtg acc aaa tgacgagccc tcgcctcttt cttctgaaga	470
Val Gln Arg Val Thr Lys	
50	
gtactctata aatctagtgg aaacatttct gcacaaacta gattctggac accagtgtgc	530
ggaaatgctt ctgctacatt tttagggttt gtctacattt tttgggctct ggataaggaa	590
ttaaaggagt gcagcaataa ctgcactgtc caaaaaaaaa aaaaaa	636
ccaaaggage goagoaacaa cogoacegee caaaaaaaaa aaaaaa	
<210> 37	
<211> 818	
<212> DNA	
<213> Homo Sapiens	
•	
<220>	
<221> CDS	
<222> 59703	
<220>	
<221> sig_peptide	
<222> 59181	
<223> Von Heijne matrix	
score 6.80	
seq LVSCLSSQSSALS/QS	
<220>	
<221> polyA_signal	
<222> 783788	
<220>	
<221> polyA_site	
<222> 804818	
<400> 37	
gacatettga getgaageag ggttttgage eactgetget getgetgeea ttgteace	58
atg gtc tca gct ctg cgg gga gca ccc ctg atc agg gtg cac tca agc	106
Met Val Ser Ala Leu Arg Gly Ala Pro Leu Ile Arg Val His Ser Ser	
-40 -35 -30	

								:	57							
cct	gtt	tct	tct	cct	tct	gtg	agt	gga	сса	cgg	agg	ctg	gtg	agc	tgc	154
Pro	Val	Ser	Ser	Pro	Ser	Val	Ser	Gly	Pro	Arg	Arg	Leu	Val	Ser	Cys	
-25					-20					-15					-10	
ctg	tca	tcc	caa	agc	tca	gct	ctg	agc	cag	agt	ggt	ggt	ggc	tcc	acc	202
Leu	Ser	Ser	Gln	Ser	Ser	Ala	Leu	Ser	Gln	Ser	Gly	Gly	Gly	Ser	Thr	
				-5					1				5			
tct	gcc	gcc	ggc	ata	gaa	gcc	agg	agc	agg	gct	ctc	aga	agg	cgg	tgg	250
Ser	Ala	Ala	Gly	Ile	Glu	Ala	Arg	Ser	Arg	Ala	Leu	Arg	Arg	Arg	Trp	
		10					15					20				
tgc	cca	gct	ggg	atc	atg	ttg	ttg	gcc	ctg	gtc	tgt	ctg	ctc	agc	tgc	298
Cys	Pro	Ala	Gly	Ile	Met	Leu	Leu	Ala	Leu	Val	Cys	Leu	Leu	Ser	Сув	
	25					30					35					
ctg	cta	ccc	tcc	agt	gag	gcc	aag	ctc	tac	ggt	cgt	tgt	gaa	ctg	gcc	346
Leu	Leu	Pro	Ser	Ser	Glu	Ala	Lys	Leu	Tyr	Gly	Arg	Cys	Glu	Leu	Ala	
40					45					50					55	
aga	gtg	cta	cat	gac	ttc	999	ctg	gac	gga	tac	cgg	gga	tac	agc	ctg	394.
Arg	Val	Leu	His	Asp	Phe	Gly	Leu	Asp	Gly	Tyr	Arg	Gly	Tyr	Ser	Leu	
				60					65					70		
gct	gac	tgg	gtc	tgc	ctt	gct	tat	ttc	aca	agc	ggt	ttc	aac	gca	gct	442
Ala	Asp	Trp	Val	Cys	Leu	Ala	Tyr	Phe	Thr	Ser	Gly	Phe	Asn	Ala	Ala	
			75					80					85			
gct	ttg	gac		gag	gct	gat	999		acc	aac	aac	999		ttc	cag	490
_	_	_	tac		-	gat Asp		agc					atc		_	490
_	_	_	tac		-	_		agc					atc		_	490
Ala	Leu	Asp 90	tac Tyr	Glu	Ala	_	Gly 95	agc Ser	Thr	Asn	Asn	Gly 100	atc Ile	Phe	Gln	490 538
Ala	Leu	Asp 90 agc	tac Tyr cgg	Glu agg	Ala tgg	Asp	Gly 95 agc	agc Ser	Thr ctc	Asn acc	Asn ccg	Gly 100 aac	atc Ile gtc	Phe ccc	Gln	
Ala	Leu	Asp 90 agc	tac Tyr cgg	Glu agg	Ala tgg	Asp	Gly 95 agc	agc Ser	Thr ctc	Asn acc	Asn ccg	Gly 100 aac	atc Ile gtc	Phe ccc	Gln	
Ala atc Ile	Leu aac Asn 105	Asp 90 agc Ser	tac Tyr cgg Arg	Glu agg Arg	Ala tgg Trp	Asp tgc Cys	Gly 95 agc Ser	agc Ser aac Asn	Thr ctc Leu	Asn acc Thr	Asn ccg Pro 115	Gly 100 aac Asn	atc Ile gtc Val	Phe ccc Pro	Gln aac Asn	
Ala atc Ile	Leu aac Asn 105 tgc	Asp 90 agc Ser	tac Tyr cgg Arg	Glu agg Arg	Ala tgg Trp	Asp tgc Cys 110	Gly 95 agc Ser	agc Ser aac Asn	Thr ctc Leu ttg	Asn acc Thr	Asn ccg Pro 115 cct	Gly 100 aac Asn	atc Ile gtc Val	Phe ccc Pro	Gln aac Asn	538
Ala atc Ile	Leu aac Asn 105 tgc	Asp 90 agc Ser	tac Tyr cgg Arg	Glu agg Arg	Ala tgg Trp	Asp tgc Cys 110 tca	Gly 95 agc Ser	agc Ser aac Asn	Thr ctc Leu ttg	Asn acc Thr	Asn ccg Pro 115 cct	Gly 100 aac Asn	atc Ile gtc Val	Phe ccc Pro	Gln aac Asn	538
Ala atc Ile gtg Val	Leu aac Asn 105 tgc Cys	Asp 90 agc Ser cgg Arg	tac Tyr cgg Arg atg Met	Glu agg Arg tac	Ala tgg Trp tgc Cys 125	Asp tgc Cys 110 tca	Gly 95 agc Ser gat Asp	agc Ser aac Asn ttg Leu	Thr ctc Leu ttg Leu	Asn acc Thr aat Asn 130	Asn ccg Pro 115 cct Pro	Gly 100 aac Asn aat Asn	atc Ile gtc Val ctc Leu	Phe ccc Pro aag Lys	Gln aac Asn gat Asp 135	538
Ala atc Ile gtg Val 120 acc	Leu aac Asn 105 tgc Cys	Asp 90 agc Ser cgg Arg	tac Tyr cgg Arg atg Met	Glu agg Arg tac Tyr	Ala tgg Trp tgc Cys 125 atg	tgc Cys 110 tca Ser	Gly 95 agc Ser gat Asp	agc ser aac Asn ttg Leu	Thr ctc Leu ttg Leu caa	Asn acc Thr aat Asn 130 gag	CCG Pro 115 CCT Pro	Gly 100 aac Asn aat Asn	atc Ile gtc Val ctc Leu	Phe ccc Pro aag Lys	Gln  aac Asn  gat Asp 135 ggt	538 586
Ala atc Ile gtg Val 120 acc	Leu aac Asn 105 tgc Cys	Asp 90 agc Ser cgg Arg	tac Tyr cgg Arg atg Met	Glu agg Arg tac Tyr	Ala tgg Trp tgc Cys 125 atg	Asp tgc Cys 110 tca Ser	Gly 95 agc Ser gat Asp	agc ser aac Asn ttg Leu	Thr ctc Leu ttg Leu caa	Asn acc Thr aat Asn 130 gag	CCG Pro 115 CCT Pro	Gly 100 aac Asn aat Asn	atc Ile gtc Val ctc Leu	Phe ccc Pro aag Lys	Gln  aac Asn  gat Asp 135 ggt	538 586
Ala atc Ile gtg Val 120 acc Thr	Leu aac Asn 105 tgc Cys gtt Val	Asp 90 agc Ser cgg Arg	tac Tyr cgg Arg atg Met	Glu agg Arg tac Tyr gcc Ala 140	Ala tgg Trp tgc Cys 125 atg Met	Asp tgc Cys 110 tca Ser	Gly 95 agc Ser gat Asp	agc ser aac Asn ttg Leu acc Thr	Thr ctc Leu ttg Leu caa Gln 145	Asn acc Thr aat Asn 130 gag Glu	Asn  ccg Pro 115 cct Pro  cct	Gly 100 aac Asn aat Asn cag	atc Ile gtc Val ctc Leu ggt	Phe ccc Pro aag Lys ctg Leu 150	Gln  aac Asn  gat Asp 135 ggt Gly	538 586
Ala atc Ile gtg Val 120 acc Thr	Leu aac Asn 105 tgc Cys gtt Val	Asp 90 agc ser cgg Arg atc Ile	tac Tyr cgg Arg atg Met tgt Cys	Glu agg Arg tac Tyr gcc Ala 140 tgg	Ala tgg Trp tgc Cys 125 atg Met	Asp tgc Cys 110 tca Ser aag	Gly 95 agc ser gat Asp ata Ile	agc ser aac Asn ttg Leu acc Thr	Thr ctc Leu ttg Leu caa Gln 145 cag	Asn acc Thr aat Asn 130 gag Glu	CCG Pro 115 CCt Pro CCt Pro	Gly 100 aac Asn aat Asn cag Gln	atc Ile gtc Val ctc Leu ggt Gly	Phe  ccc Pro  aag Lys  ctg Leu 150 act	Gln  aac Asn  gat Asp 135 ggt Gly	538 586 634
Ala atc Ile gtg Val 120 acc Thr	Leu aac Asn 105 tgc Cys gtt Val	Asp 90 agc ser cgg Arg atc Ile	tac Tyr cgg Arg atg Met tgt Cys	Glu agg Arg tac Tyr gcc Ala 140 tgg	Ala tgg Trp tgc Cys 125 atg Met	Asp tgc Cys 110 tca Ser aag Lys	Gly 95 agc ser gat Asp ata Ile	agc ser aac Asn ttg Leu acc Thr	Thr ctc Leu ttg Leu caa Gln 145 cag	Asn acc Thr aat Asn 130 gag Glu	CCG Pro 115 CCt Pro CCt Pro	Gly 100 aac Asn aat Asn cag Gln	atc Ile gtc Val ctc Leu ggt Gly	Phe  ccc Pro  aag Lys  ctg Leu 150 act	Gln  aac Asn  gat Asp 135 ggt Gly	538 586 634
Ala atc Ile gtg Val 120 acc Thr	Leu aac Asn 105 tgc Cys gtt Val tgg Trp	Asp 90 agc Ser cgg Arg atc Ile gag Glu	tac Tyr cgg Arg atg Met tgt Cys gcc Ala 155	Glu agg Arg tac Tyr gcc Ala 140 tgg	Ala tgg Trp tgc Cys 125 atg Met agg Arg	Asp tgc Cys 110 tca Ser aag Lys	Gly 95 agc ser gat Asp ata Ile cac	agc ser aac Asn ttg Leu acc Thr tgc Cys 160	Thr ctc Leu ttg Leu caa Gln 145 cag Gln	Asn acc Thr aat Asn 130 gag Glu gga Gly	CCG Pro 115 CCt Pro CCt Pro	Gly 100 aac Asn aat Asn cag Gln gac Asp	atc Ile gtc Val ctc Leu ggt Gly ctc Leu 165	Phe  ccc Pro  aag Lys  ctg Leu 150 act Thr	Gln  aac Asn  gat Asp 135 ggt Gly  gaa Glu	538 586 634
Ala atc Ile gtg Val 120 acc Thr tac	Leu aac Asn 105 tgc Cys gtt Val tgg Trp	Asp 90 agc Ser cgg Arg atc Ile gag Glu	tac Tyr cgg Arg atg Met tgt Cys gcc Ala 155 ggc	Glu agg Arg tac Tyr gcc Ala 140 tgg Trp	Ala tgg Trp tgc Cys 125 atg Met agg Arg	Asp tgc Cys 110 tca Ser aag Lys cat His	Gly 95 agc ser gat Asp ata Ile cac	agc ser aac Asn ttg Leu acc Thr tgc Cys 160	Thr ctc Leu ttg Leu caa Gln 145 cag Gln	Asn acc Thr aat Asn 130 gag Glu gga Gly	CCG Pro 115 CCt Pro CCt Pro	Gly 100 aac Asn aat Asn cag Gln gac Asp	atc Ile gtc Val ctc Leu ggt Gly ctc Leu 165	Phe  ccc Pro  aag Lys  ctg Leu 150 act Thr	Gln  aac Asn  gat Asp 135 ggt Gly  gaa Glu	538 586 634 682
Ala atc Ile gtg Val 120 acc Thr tac	Leu aac Asn 105 tgc Cys gtt Val tgg Trp	Asp 90 agc Ser cgg Arg atc Ile gag Glu gat	tac Tyr cgg Arg atg Met tgt Cys gcc Ala 155 ggc	Glu agg Arg tac Tyr gcc Ala 140 tgg Trp	Ala tgg Trp tgc Cys 125 atg Met agg Arg	Asp tgc Cys 110 tca Ser aag Lys cat His	Gly 95 agc ser gat Asp ata Ile cac	agc ser aac Asn ttg Leu acc Thr tgc Cys 160	Thr ctc Leu ttg Leu caa Gln 145 cag Gln	Asn acc Thr aat Asn 130 gag Glu gga Gly	CCG Pro 115 CCt Pro CCt Pro	Gly 100 aac Asn aat Asn cag Gln gac Asp	atc Ile gtc Val ctc Leu ggt Gly ctc Leu 165	Phe  ccc Pro  aag Lys  ctg Leu 150 act Thr	Gln  aac Asn  gat Asp 135 ggt Gly  gaa Glu	538 586 634 682
Ala atc Ile gtg Val 120 acc Thr tac Tyr	Leu aac Asn 105 tgc Cys gtt Val tgg Trp gtg Val	Asp 90 agc Ser cgg Arg atc Ile gag Glu gat Asp 170	tac Tyr cgg Arg atg Met tgt Cys gcc Ala 155 ggc Gly	Glu agg Arg tac Tyr gcc Ala 140 tgg Trp tgt Cys	Ala tgg Trp tgc Cys 125 atg Met agg Arg gac Asp	Asp tgc Cys 110 tca Ser aag Lys cat His ttc	Gly 95 agc Ser gat Asp ata Ile cac His	agc Ser aac Asn ttg Leu acc Thr tgc Cys 160 gatge	Thr ctc Leu ttg Leu caa Gln 145 cag Gln	Asn acc Thr aat Asn 130 gag Glu gga Gly	CCG Pro 115 CCT Pro CCT Pro aaa Lys	Gly 100 aac Asn aat Asn cag Gln gac Asp	gtc Val ctc Leu ggt Gly ctc Leu 165	Phe  ccc Pro  aag Lys  ctg Leu 150 act Thr	Gln  aac Asn  gat Asp 135 ggt Gly  gaa Glu	538 586 634 682

58 <210> 38 <211> 1888 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 139..1389 <220> <221> sig_peptide <222> 139..198 <223> Von Heijne matrix score 5.00 seq HLLAGFCVWVVLG/WV <220> <221> polyA_signal <222> 1854..1859 <220> <221> polyA_site <222> 1873..1888 <400> 38 ccccccage tggaaccaag aaggttgtgt cccccttcct ctgggtgtcc ttgtctcctg 60 ctatcagggc acagtectca ggatgtttcg gggagaatag gagecagaac etgageceet 120 aagccattcc cctcacca atg atg ggg tcc cca gtg agt cat ctg ctg gcc 171 Met Met Gly Ser Pro Val Ser His Leu Leu Ala -20 -15 -10 ggc ttc tgt gtg tgg gtc gtc ttg ggc tgg gta ggg ggc tca gtc ccc 219 Gly Phe Cys Val Trp Val Val Leu Gly Trp Val Gly Gly Ser Val Pro -5 aac ctg ggc cct gct gag cag gag cag aac cat tac ctg gcc cag ctg 267 Asn Leu Gly Pro Ala Glu Gln Glu Gln Asn His Tyr Leu Ala Gln Leu 15 ttt ggc ctg tac ggc gag aat ggg acg ctg act gca ggg ggc ttg gcg 315 Phe Gly Leu Tyr Gly Glu Asn Gly Thr Leu Thr Ala Gly Gly Leu Ala

cgg ctt ctc cac agc ctg ggg cta ggc cga gtt cag ggg ctt cgc ctg

Arg Leu Leu His Ser Leu Gly Leu Gly Arg Val Gln Gly Leu Arg Leu

50

45

40

363

55

59

WO 00/37491 PCT/IB99/02058

									59							
gga	cag	cat	ggg	cct	ctg	act	gga	cgg	gct	gca	tcc	cca	gct	gca	gac	411
Gly	Gln	His	Gly	Pro	Leu	Thr	Gly	Arg	Ala	Ala	Ser	Pro	Ala	Ala	Asp	
				60					65					70		
aat	tcc	aca	cac	agg	cca	cag	aac	cct	gag	ctg	agt	gtg	gat	gtc	tgg	459
Asn	Ser	Thr	His	Arg	Pro	Gln	Asn	Pro	Glu	Leu	Ser	Val	Asp	Val	Trp	
			75					80					85			
_		_	cct													507
Ala	Gly	Met	Pro	Leu	Gly	Pro	Ser	Gly	Trp	Gly	Asp	Leu	Glu	Glu	Ser	
		90					95					100				
_	•		cac													555
Lys	Ala	Pro	His	Leu	Pro	Arg	Gly	Pro	Ala	Pro	Ser	Gly	Leu	Asp	Leu	
	105					110					115					
			ctt													603
	His	Arg	Leu	Leu		Leu	Asp	His	Ser		Ala	Asp	His	Leu		
120					125					130					135	
	_	_	ctg -				_	_								651
Glu	Asp	Cys	Leu		GIY	Ser	Gin	Leu		vaı	Asn	Pne	GIY		ser	
				140					145				<b>.</b>	150		600
	_	_	cct													699
Pro	Ата	Ala	Pro	Leu	THE	Pro	Arg	160	Pne	Ala	ьeu	ьеи	165	PIO	Ald	
		<b>.</b>	155			200	550		+~~	2+0	~~~	act		~~~	act	747
-			cag Gln													,4,
ьeu	neu	170	GIII	TIE	wsp	261	175	Vai	Cys	116	Gry	180	110	AIG	110	
aca	ccc		ggg	gat	cta	cta		acc	cta	ctt	cag		gcc	cta	gca	795
_			Glý													
7114	185		017			190					195					
atc	-	tta	ctc	agc	ctc		tct	ccc	cta	tcc		ctq	ctq	ctq	cgq	843
_	_	_	Leu	_												
200					205					210					215	
ctc	ctg	gga	cct	cgt	cta	cta	cgg	ccc	ttg	ctg	ggc	ttc	ctg	999	gcc	891
Leu	Leu	Gly	Pro	Arg	Leu	Leu	Arg	Pro	Leu	Leu	Gly	Phe	Leu	Gly	Ala	
				220					225					230		
ctg	gcg	gtg	ggc	act	ctt	tgt	999	gat	gca	ctg	cta	cat	ctg	cta	ccg	939
Leu	Ala	Val	Gly	Thr	Leu	Суз	Gly	Asp	Ala	Leu	Leu	His	Leu	Leu	Pro	
			235					240					245			
cat	gca	caa	gaa	<b>g</b> gg	cgg	cac	gca	gga	cct	ggc	gga	cta	cca	gag	aag	987
His	Ala	Gln	Glu	Gly	Arg	His	Ala	Gly	Pro	Gly	Gly	Leu	Pro	Glu	Lys	
		250					255					260				
gac	ctg	ggc	ccg	<b>9</b> 99	ctg	tca	gtg	ctc	gga	ggc	ctc	ttc	ctg	ctc	ttt	1035
Asp	Leu	Gly	Pro	Gly	Leu	Ser	Val	Leu	Gly	Gly	Leu	Phe	Leu	Leu	Phe	
	265					270					275					

60

gtg	ctg	gag	aac	atg	ctg	ggg	ctt	ttg	cgg	cac	cga	999	ctc	agg	cca	1083
Val	Leu	Glu	Asn	Met	Leu	Gly	Leu	Leu	Arg	His	Arg	Gly	Leu	Arg	Pro	
280					285					290					295	
aga	tgc	tgc	agg	cga	aaa	cga	agg	aat	ctc	gaa	aca	cgc	aac	ttg	gat	1131
Arg	Cys	Cys	Arg	Arg	Lys	Arg	Arg	Asn	Leu	Glu	Thr	Arg	Asn	Leu	Asp	
				300					305					310		
ccg	gag	aat	ggc	agt	ggg	atg	gcc	ctt	cag	ccc	cta	cag	gca	gct	cca	1179
Pro	Glu	Asn	Gly	Ser	Gly	Met	Ala	Leu	Gl'n	Pro	Leu	Gln	Ala	Ala	Pro	
			315					320					325			
gag	cca	999	gct	cag	ggc	cag	agg	gag	aag	aac	agc	cag	cac	cca	cca	1227
Glu	Pro	Gly	Ala	Gln	Gly	Gln	Arg	Glu	Lys	Asn	Ser	Gln	His	Pro	Pro	
		330					335					340				
gct	ctg	gcc	cct	cct	999	cac	caa	ggc	cac	agt	cat	ggg	cac	cag	ggt	1275
Ala	Leu	Ala	Pro	Pro	Gly	His	Gln	Gly	His	Ser	His	Gly	His	Gln	Gly	
	345					350					355					
ggc	act	gat	atc	acg	tgg	atg	gtc	ctc	ctg	gga	gat	ggt	cta	cac	aac	1323
Gly	Thr	Asp	Ile	Thr	Trp	Met	Val	Leu	Leu	Gly	Asp	Gly	Leu	His	Asn	
360					365					370					375	
ctc	act	gat	ggg	ctg	gcc	ata	ggt	gct	gcc	ttc	tct	gat	ggc	ttc	tcc	1371
Leu	Thr	Asp	Gly	Leu	Ala	Ile	Gly	Ala	Ala	Phe	Ser	Asp	Gly	Phe	Ser	
				380					385					390		
gcg	gcc	tca	gta	cca	cct	tage	ggto	ett o	etge	atga	ag ct	gcc	cac	3		1419
Ala	Ala	Ser	Val	Pro	Pro						•					
			395													
aact	.ggg1	tga o	cttte	gccat	g ct	gct	cagt	caç	gggct	gtc	cttt	cgg	gg (	tgct	gctgc	1479
tgag	geet	gt g	gtct	ggag	cc ct	ggg	attg	g gg	ggtgd	agt	cct	39999	gtg g	gggct	cagcc	1539
tgg	gccci	tgt (	cccc	ctcad	ct co	cctg	ggtgt	ttg	ggggt	cac	tgct	9999	gtc t	tcct	ctatg	1599
tgg	cct	tgt g	ggaca	atgct	ta co	cagco	ctg	tto	gtc	ctcc	ggag	gccc	etg o	cctac	gecee	1659
atg	gct	cct 9	gcagg	jggct	g gg	gct	gctgo	tgg	99999	gegg	ccto	catgo	ett 9	gccat	aaccc	1719
tgci	cgga	gga g	gegge	ctact	g co	cgt	gacca	ctg	gaggg	gctg	atgg	gggc	ag t	ggaa	agggg	1779
tcg	gtt	gcc (	cttco	cttc	ec co	caad	caca	a gga	atg	gagg	cggg	gacad	ag g	gcca	agtagg	1839
agca	aata	gga 1	tttta	aataa	aa ca	agaad	ccat	ccc	caaaa	aaaa	aaaa	aaaa	aa			1888

<210> 39

<211> 1894

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 21..1118

PCT/IB99/02058

WO 00/37491 61 <220> <221> sig_peptide <222> 21..89 <223> Von Heijne matrix score 10.80 seg ALALLSAFSATQA/RK <220> <221> polyA_signal <222> 1858..1863 <220> <221> polyA_site <222> 1879..1894 <220> <221> misc_feature <222> 1695 <223> n=a, g, c or t <400> 39 agacgtgagc agagcagata atg gca agc atg gct gcc gtg ctc acc tgg gct -20

Met Ala Ser Met Ala Ala Val Leu Thr Trp Ala ctg gct ctt ctt tca gcg ttt tcg gcc acc cag gca cgg aaa ggc ttc 101 Leu Ala Leu Leu Ser Ala Phe Ser Ala Thr Gln Ala Arg Lys Gly Phe -10 -5 tgg gac tac ttc agc cag acc agc ggg gac aaa ggc agg gtg gag cag 149 Trp Asp Tyr Phe Ser Gln Thr Ser Gly Asp Lys Gly Arg Val Glu Gln 10 15 20 atc cat cag cag aag atg gct cgc gag ccc gcg acc ctg aaa gac agc 197 Ile His Gln Gln Lys Met Ala Arg Glu Pro Ala Thr Leu Lys Asp Ser 25 ctt gag caa gac ctc aac aat atg aac aag ttc ctg gaa aag ctg agg 245 Leu Glu Gln Asp Leu Asn Asn Met Asn Lys Phe Leu Glu Lys Leu Arg cct ctg agt ggg agc gag gct cct cgg ctc cca cag gac ccg gtg ggc 293 Pro Leu Ser Gly Ser Glu Ala Pro Arg Leu Pro Gln Asp Pro Val Gly atg cgg cgg cag ctg cag gag gag ttg gag gag gtg aag gct cgc ctc 341

Met Arg Arg Gln Leu Gln Glu Glu Leu Glu Glu Val Lys Ala Arg Leu

75

70

80

53

389 caq ecc tac atg gca gag gcg cac gag ctg gtg ggc tgg aat ttg gag Gln Pro Tyr Met Ala Glu Ala His Glu Leu Val Gly Trp Asn Leu Glu 90 ggc ttg cgg cag caa ctg aag ccc tac acg atg gat ctg atg gag cag 437 Gly Leu Arg Gln Gln Leu Lys Pro Tyr Thr Met Asp Leu Met Glu Gln gtg gcc ctg cgc gtg cag gag ctg cag gag cag ttg cgc gtg gtg ggg 485 Val Ala Leu Arg Val Gln Glu Leu Gln Glu Gln Leu Arg Val Val Gly 120 gaa gac acc aag gcc cag ttg ctg ggg ggc gtg gac gag gct tgg gct 533 Glu Asp Thr Lys Ala Gln Leu Leu Gly Gly Val Asp Glu Ala Trp Ala 135 ttg ctg cag gga ctg cag agc cgc gtg gtg cac cac acc ggc cgc ttc 581 Leu Leu Gln Gly Leu Gln Ser Arg Val Val His His Thr Gly Arg Phe 150 155 aaa gag ctc ttc cac cca tac gcc gag agc ctg gtg agc ggc atc ggg 629 Lys Glu Leu Phe His Pro Tyr Ala Glu Ser Leu Val Ser Gly Ile Gly 170 175 cgc cac gtg cag gag ctg cac cgc agt gtg gct ccg cac gcc ccc gcc 677 Arg His Val Gln Glu Leu His Arg Ser Val Ala Pro His Ala Pro Ala 190 185 age eee geg ege etc agt ege tge gtg eag gtg etc tee egg aag etc 725 Ser Pro Ala Arg Leu Ser Arg Cys Val Gln Val Leu Ser Arg Lys Leu 205 210 200 773 acg ctc aag gcc aag gcc ctg cac gca cgc atc cag cag aac ctg gac Thr Leu Lys Ala Lys Ala Leu His Ala Arg Ile Gln Gln Asn Leu Asp 215 220 225 821 cag ctg cgc gaa gag ctc agc aga gcc ttt gca ggc act ggg act gag Gln Leu Arg Glu Glu Leu Ser Arg Ala Phe Ala Gly Thr Gly Thr Glu 230 235 gaa ggg gcc ggc ccg gac ccc cag atg ctc tcc gag gag gtg cgc cag 869 Glu Gly Ala Gly Pro Asp Pro Gln Met Leu Ser Glu Glu Val Arg Gln 250 cga ctt cag gct ttc cgc cag gac acc tac ctg cag ata gct gcc ttc 917 Arg Leu Gln Ala Phe Arg Gln Asp Thr Tyr Leu Gln Ile Ala Ala Phe act cgc gcc atc gac cag gag act gag gag gtc cag cag cag ctg gcg 965 Thr Arg Ala Ile Asp Gln Glu Thr Glu Glu Val Gln Gln Gln Leu Ala 285 cca cct cca cca ggc cac agt gcc ttc gcc cca gag ttt caa caa aca 1013 Pro Pro Pro Pro Gly His Ser Ala Phe Ala Pro Glu Phe Gln Gln Thr

300

305

295

63

gac agt ggc aag gtt ctg agc aag ctg cag gcc cgt ctg gat gac ctg 1061 Asp Ser Gly Lys Val Leu Ser Lys Leu Gln Ala Arg Leu Asp Asp Leu 320 315 tgg gaa gac atc act cac agc ctt cat gac cag ggc cac agc cat ctg 1109 Trp Glu Asp Ile Thr His Ser Leu His Asp Gln Gly His Ser His Leu 325 330 335 340 ggg gac ccc tgaggatcta cctgcccagg cccattccca gctccttgtc 1158 Gly Asp Pro tggggageet tggetetgag cetetageat ggtteagtee ttgaaagtgg cetgttgggt 1218 ggagggtgga aggtcctgtg caggacaggg aggccaccaa aggggctgct gtctcctgca 1278 tatccagect cetgegacte eccaatetgg atgeattaca tteaccagge tttgcaaace 1338 cagectecca gtgeteattt gggaatgete atgagttact ceatteaagg gtgagggagt 1398 agggagggag aggcaccatg catgtgggtg attatctgca agcctgtttg ccgtgatgct 1458 ggaageetgt geeactacat eetggagttt ggetetagte aettetgget geetggtgge 1518 cactgctaca gctggtccac agagaggagc acttgtctcc ccagggctgc catggcagct 1578 atcaggggaa tagaagggag aaagagaata tcatggggag aacatgtgat ggtgtgtgaa 1638 tatecetget ggetetgatg etggtgggta egaaaggtgt gggetgtgat aggagangge 1698 agageceatg ttteetgaea tagetetaea eetaaataag ggaetgaaee eteecaaetg 1758 tgggagetee ttaaaceete tggggageat actgtgtget etceecatet ccageecete 1818 cctctgggtt cccaagttga agcctagact tctggctcaa atgaaataga tgtttatgat 1878 1894 aaaaaaaaa aaaaaa

<210> 40

<211> 1913

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 143..592

<220>

<221> sig_peptide

<222> 143..277

<223> Von Heijne matrix score 5.90 seq VLVDLAILGQAYA/FA

<220>

<221> polyA signal

<222> 1877..1882

<220> <221> polyA_site <222> 1899..1913

<400> 40			
atttttttgt gcctaagatg cccagt	gegt tgctgggttt	ttctgctgtc ctcgggctct	60
ggacatgagg ccagaccttg tgacct	tgtt ggcagtgggc	agtggcttga tgtgaggtcc	120
cagagacggc aggttcatca ag atg	g gtg ctc atg tgg	g acc agt ggt gac gcc	172
Met	. Val Leu Met Tr	Thr Ser Gly Asp Ala	
-45	5	-40	
ttc aag acg gcc tac ttc ctg	ctg aag ggt gcc	cct ctg cag ttc tcc	220
Phe Lys Thr Ala Tyr Phe Leu	Leu Lys Gly Ala	Pro Leu Gln Phe Ser	
-35 -30	-25	-20	
gtg tgc ggc ctg ctg cag gtg	ctg gtg gac ctg	gcc atc ctg ggg cag	268
Val Cys Gly Leu Leu Gln Val	Leu Val Asp Leu	Ala Ile Leu Gly Gln	
-15	-10	-5	
gcc tac gcc ttc gcc cca ccc	cca gaa gcc ggc	gcc cca cgc cgt gca	316
Ala Tyr Ala Phe Ala Pro Pro	Pro Glu Ala Gly	Ala Pro Arg Arg Ala	
1	5	10	
ccc cac tgg cac caa ggc cct	ctg aca gtg ggg	agg acg agg atg tgg	364
Pro His Trp His Gln Gly Pro	Leu Thr Val Gly	Arg Thr Arg Met Trp	
15 20		25	
gac cgc cag ccg cgg gca ctg	gtg ggc cct gac	ctc ccc gcg ggg agg	412
Asp Arg Gln Pro Arg Ala Leu	Val Gly Pro Asp	Leu Pro Ala Gly Arg	
30 35	40	45	
gtg ggt gcc gtg gcc cct gca	ggt gtg gca gag	atg ggg cac ggg cat	460
Val Gly Ala Val Ala Pro Ala	Gly Val Ala Glu	Met Gly His Gly His	
50	55	60	
tgg ggt ctc cat cag cct ctg	tgg ggt gtc tca	ggg tgg gca gtg ggg	508
Trp Gly Leu His Gln Pro Leu	Trp Gly Val Ser	Gly Trp Ala Val Gly	
65	70	75	
gtg ggg ctg gga cgc tgt ttg	tgc tca gcg ggg	aca gcc agg gtt gat	556
Val Gly Leu Gly Arg Cys Leu	Cys Ser Ala Gly	Thr Ala Arg Val Asp	
80	85	90	
ctg gcc ccg agg gtt ttg gat	gtt ttt agg atg	aca taaaaagcaa	602
Leu Ala Pro Arg Val Leu Asp	Val Phe Arg Met	Thr	
95 100		105	
gtgttttccc catttcctct tatgaa	aacac cgtctgagcc	caaggtacac attgggcggc	662
ctgcaggaac ctgctccagg tggaca	acacg ggccagcagc	cgcgaacctt gaagctgggg	722
tgaccgcagg agaccctgta aggcct	tgtga gcggagccct	cgaccccgtg acaccctggc	782
cagacaccct gcttggactg gggtgg	gcctc tgctacccag	gggtctggca cgggggaggg	842
ctggggcttt ctctgcctgg tacaca	acgga aaggcggctg	tgcggacgca gggtcaccgt	902

PCT/IB99/02058

WO 00/37491

65

962 qctccqqqtt ttctgacagt cggtgtttcc tgggcctttg gagtggctgc gaggcctgaa cgccttgtgg atccgctgtg tccagcccgg ctgagcatcg ccagggctag ctcatgctgc 1022 1082 tettqtcaqc etetggttet cetegagtec ttggggacgt ggcagatgec agegaccate agacaacgtg gaggccctca tgggcaatgg ctgagggggc cgggctgagg ctgtgcacat 1142 gcagtctgca cgccactctt gggctctgct ggcggagatc cccttccttc tgggtgcaga 1202 ctgcacctcc ggatgcagtt ttgatgtcca tcttccagga gagagacggt ctcgggtcca 1262 gggagtggag ggggctgccc ctgccgtgca ggtcctggcc gatggcgcct taccctgctg 1322 ccctgggctt ttggcctgaa gcaaattcct gagtgggggg tactggggcc tgccgcatcc 1382 tgtcctgtcc actgcccacc cccgtgtgct ggctccctca cttctggctg cagtgggagc 1442 eqceaqtetq accettqtea eegcacgete tgeececace eegttgeaag aggteacace 1502 atgteageag cettgeactg accgeageeg geceecagge etcagagtte tggatgette 1562 cgtgcggctc caacaggcat cgtcttccct tccgcaggtg gaggggccgc ttcccgcagg 1622 catctgaget ctgtgeeggg geegtggeea tgggaagatg ttecaegetg ceteeteete 1682 gagttttcct cggaaacact cttgaatgtc tgagtgaggg tcctgcttag ctctttggcc 1742 tgtgagatgc tttgaaaatt tttatttttt taagatgaag caagatgtct gtagcggtaa 1802 1862 ttgcctcaca ttaaactgtc gccgactgca ggcgcagtga ctgctgaatg taccctgtgt 1913

<210> 41

<211> 1744

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 76..999

<220>

<221> sig_peptide

<222> 76..279

<223> Von Heijne matrix score 5.10 seg LSLPVCTVSLVSS/VS

<220>

<221> polyA_signal

<222> 1711..1716

<220>

<221> polyA_site

<222> 1729..1744

66 <220> <221> misc_feature <222> 336 <223> n=a, g, c or t <400> 41 aagttgaggc caccctggtg gcaccaaagc cctctcaggc aggcagaccc agggcctccc 60 egecaeacet tgtte atg gat ttt gte get gga gee ate gga gge gte tge 111 Met Asp Phe Val Ala Gly Ala Ile Gly Gly Val Cys -65 -60 ggt gtt gct gtg ggc tac ccc ctg gac acg gtg aag gtc agg atc cag 159 Gly Val Ala Val Gly Tyr Pro Leu Asp Thr Val Lys Val Arg Ile Gln -55 -50 -45 207 acg gag cca aag tac aca ggc atc tgg cac tgc gtc cgg gat acg tat Thr Glu Pro Lys Tyr Thr Gly Ile Trp His Cys Val Arg Asp Thr Tyr -35 -30 -25 -40 cac cga gag cgc gtg tgg ggc ttc tac cgg ggc ctc tcg ctg ccc gtg 255 His Arg Glu Arg Val Trp Gly Phe Tyr Arg Gly Leu Ser Leu Pro Val -20 tgc acg gtg tcc ctg gta tct tcc gtg tct ttt ggc acc tac cgc cac 303 Cys Thr Val Ser Leu Val Ser Ser Val Ser Phe Gly Thr Tyr Arg His tgc ctg gcg cac atc tgc cgg ctc cgg tac ggn aac cct gac gcc aag 351 Cys Leu Ala His Ile Cys Arg Leu Arg Tyr Gly Asn Pro Asp Ala Lys ccc acc aag gcc gac atc acg ctc tcg gga tgc gcc tcc ggc ctc gtc 399 Pro Thr Lys Ala Asp Ile Thr Leu Ser Gly Cys Ala Ser Gly Leu Val ege gtg tte etg acg teg eec act gag gtg gee aaa gte ege ttg eag 447 Arg Val Phe Leu Thr Ser Pro Thr Glu Val Ala Lys Val Arg Leu Gln 45 50 495 acg cag aca cag gcg cag aag cag cag cgg ctg ctt tcg gcc tcg ggg Thr Gln Thr Gln Ala Gln Lys Gln Gln Arg Leu Leu Ser Ala Ser Gly 60 65 70 ccg ttg gct gtg ccc ccc atg tgt cct gtg ccc cca gcc tgc cca gag 543 Pro Leu Ala Val Pro Pro Met Cys Pro Val Pro Pro Ala Cys Pro Glu 75 85 80 591 ccc aag tac cgc ggg cca ctg cac tgc ctg gcc acg gta gcc cgt gag Pro Lys Tyr Arg Gly Pro Leu His Cys Leu Ala Thr Val Ala Arg Glu 90 95 gag ggg ctg tgc ggc ctc tac aag ggc agc tcg gcc ctg gtc tta cgg 639 Glu Gly Leu Cys Gly Leu Tyr Lys Gly Ser Ser Ala Leu Val Leu Arg

PCT/IB99/02058 WO 00/37491 67 120 105 110 115 gac ggc cac too ttt gcc acc tac ttc ctt tcc tac gcg gtc ctc tgc 687 Asp Gly His Ser Phe Ala Thr Tyr Phe Leu Ser Tyr Ala Val Leu Cys 125 130 qaq tog ctc agc ccc gct ggc cac agc cgg cca gat gtc ccg ggc gtg 735 Glu Trp Leu Ser Pro Ala Gly His Ser Arg Pro Asp Val Pro Gly Val 145 ctg gtg gcc ggg ggc tgt gca gga gtc ctg gcc tgg gct gtg gcc acc 783 Leu Val Ala Gly Gly Cys Ala Gly Val Leu Ala Trp Ala Val Ala Thr 155 160 165 ccc atg gac gtg atc aag tcg aga ctg cag gca gac ggg cag ggc cag 831 Pro Met Asp Val Ile Lys Ser Arg Leu Gln Ala Asp Gly Gln Gly Gln 170 175 180 agg ege tae egg ggt ete etg eac tgt atg gtg ace age gtt ega gag 879 Arg Arg Tyr Arg Gly Leu Leu His Cys Met Val Thr Ser Val Arg Glu 185 190 195 200 gag gga ccc egg gtc ctt ttc aag ggg ctg gta ctc aat tgc tgc cgc 927 Glu Gly Pro Arg Val Leu Phe Lys Gly Leu Val Leu Asn Cys Cys Arg 205 210 gee tte cet gte aac atg gtg gte tte gte gee tat gag gea gtg etg 975 Ala Phe Pro Val Asn Met Val Val Phe Val Ala Tyr Glu Ala Val Leu 220 225 1029 agg etc gec egg ggt etg etc aca tageeggtee ceaegeceag eggeecaece Arg Leu Ala Arg Gly Leu Leu Thr 235

accagcaget getggaggte gtagtggetg gaggaggeaa ggggtagtgt ggetgggtte 1089 gggaccccac agggccattg cccaggagaa tgaggagcct ccctgcagtg ttgtcggccg 1149 aggectaage tegecetgee cagetactga ceteaggteg aggggeeege cagecateag 1209 ccagggttgg cctagggtgg caggagccag ggaggagtgg gcctctttga tgagagcgtt 1269 gagttgcatg gagtcggttg ttcatcccag cctccccatg gccctcgcct cccatgtctt 1329 tgaagcaccc ctccagggag tcaggtgtgt gctcagccac cctctgcccc attcctagac 1389 cctcacccc accactgttc ctgtgtcttc atgagetgtc ccttacaggc aggggettcc 1449 cacaggetgg gggeeteggg géggggagea tgagetggge tggeaceaeg aetgaggget 1509 eccggecegg ettetteece acageagget geteagaggg ggtgetgeeg ggaetgecat 1569 gcccacctga gaggggcctg gggtggccgt cctcggccgg ttagggaatt tggggtgagg 1629 ttcctcagga gccctcactc tgcctgtgga cgctgcacct gccacttaaa gaccccaaag 1689 1744 actctgttgg gaactgttgt caataaaatg tttctgagga aaaaaaaaa aaaaa

<210> 42

<211> 946

<212> DNA

<213> Homo Sapiens

<220>											
<221>	CDS										
<222>	123	464									
<220>											
<221>	sig_p	eptide	e								
<222>	123	269									
<223>	Von H	eijne	matrix								
	score	4.90									
	seq P	SLAAG1	LLFGSLA	/GL	•						
<220>											
<221>	polyA	_signa	al								
<222>	908	913									
<220>											
<221>	polyA	_site									
<222>	931	946									
<400>	42										
aaatc	gcgtt 1	ccgga	agaga co	ctggctgc	t gtgt	cccgcg	gcttgc	gctc c	gtag	gtggac	60
tccgc	gggcc 1	ttcgg	cagat go	caggeetg	g ggta	gtctcc	tttctg	gact g	agaa	agagaa	120
ga at	g gag a	aag co	cc ctc 1	ttc cca	tta gt	g cct t	tg cat	tgg t	tt g	gc gc	167
Me	t Glu 1	Lys Pi	ro Leu 1	Phe Pro	Leu Va	l Pro L	eu His	Trp P	he G	3ly	
			-45			-40			-	-35	
ttt g	gc tac	aca g	gca ctg	gtt gtt	tct g	gt ggg	atc gt	t ggc	tat	gta	215
Phe G	ly Tyr	Thr A	Ala Leu	Val Val	Ser G	ly Gly	Ile Va	l Gly	Tyr	Val	
		•	-30		-	25			-20		
			_	tcc ctg			_			_	263
Lys T	hr Gly	Ser V	Val Pro	Ser Leu	Ala A	la Gly	Leu Le	u Phe	Gly	Ser	
		-15			-10			-5			
				tac cag							311
Leu A	la Gly	Leu (	Gly Ala	Tyr Gln	Leu T	yr Gln	Asp Pro	o Arg	Asn	Val	
	1			5			10				
tgg g	gt ttc	cta g	gcc gct	aca tct	gtt a	ct ttt	gtt ggt	t gtt	atg	gga	359
Trp G	ly Phe	Leu A	Ala Ala	Thr Ser	Val T	hr Phe	Val Gly	y Val	Met	Gly	
15			20			25				30	
				gga aaa		-				_	407
Met A	rg Ser	Tyr 1	Tyr Tyr	Gly Lys	Phe M	et Pro	Val Gly	y Leu	Ile	Ala	
		3	35		4	0			45	•	
aat a	cc act	tta c	rta ata	acc acc	222 (1	tt aga	att cat	- ata	tta	ato	455

69 Gly Ala Ser Leu Leu Met Ala Ala Lys Val Gly Val Arg Met Leu Met 50 aca tct gat tagcagaagt catgttccag cttggactca tgaaggatta 504 Thr Ser Asp 65 aaaatctgca tcttccacta ttttcaatgt attaagagaa ataagtgcag catttttgca 564 tctgacattt tacctaaaaa aaaaaagaca ccaaatttgg cggaggggtg gaaaatcagt 624 tgttaccatt ataaccctac agaggtggtg agcatgtaac atgagcttat tgagaccatc 684 atagagatcg attettgtat attgatttta tetetttetg tatetatagg taaateteaa 744 gggtaaaatg ttaggtgttg acattgagaa ccctgaaacc ccattccctg ctcagaggaa 804 cagtgtgaaa aaaaatctct tgagagattt agaatatctt ttcttttgct catcttagac 864 cacagactga ctttgaaatt atgttaagtg aaatatcaat gaaaataaag tttactataa 924 ataattaaaa aaaaaaaaa aa 946 <210> 43 <211> 1622 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 85..1230 <220> <221> sig_peptide <222> 85..129 <223> Von Heijne matrix score 10.10 seq LLLPLALCILVLC/CG <220> <221> polyA_signal <222> 1589..1594 <220> <221> polyA_site <222> 1607..1622 <400> 43 aaagtetgee ttaaagagee ttacaageea geeagteeet geageteeac aaactgacee 60 atcetgggcc ttgttctcca caga atg ggt ctg ctc ctt ccc ctg gca ctc 111 Met Gly Leu Leu Pro Leu Ala Leu

									, 0							
							-15					-10				
tgc	atc	cta	gtc	ctg	tgc	tgc	gga	gca	atg	tct	cca	ccc	cag	ctg	gcc	159
Cys	Ile	Leu	Val	Leu	Cys	Cys	Gly	Ala	Met	Ser	Pro	Pro	Gln	Leu	Ala	
	-5					1				5					10	
ctc	aac	ccc	tcg	gct	ctg	ctc	tcc	cgg	ggc	tgc	aat	gac	tca	gat	gtg	207
Leu	Asn	Pro	Ser	Ala	Leu	Leu	Ser	Arg	Gly	Суѕ	Asn	Asp	Ser	Asp	Val	
				15		•			20		•			25		
ctg	gca	gtt	gca	ggc	ttt	gcc	ctg	cgg	gat	att	aac	aaa	gac	aga	aag	255
Leu	Ala	Val	Ala	Gly	Phe	Ala	Leu	Arg	Asp	Ile	Asn	Lys	Asp	Arg	Lys	
			30					35					40			
gat	ggc	tat	gtg	ctg	aga	ctc	aac	cga	gtg	aac	gac	gcc	cag	gaa	tac	303
Asp	Gly	Tyr	Val	Leu	Arg	Leu	Asn	Arg	Val	Asn	Asp	Ala	Gln	Glu	Tyr	
		45					50					55				
aga	cgg	ggt	ggc	ctg	gga	tct	ctg	ttc	tat	ctt	aca	ctg	gat	gtg	cta	351
Arg	Arg	Gly	Gly	Leu	Gly	Ser	Leu	Phe	Tyr	Leu	Thr	Leu	Asp	Val	Leu	
	60					65					70					
gag	act	gac	tgc	cat	gtg	ctc	aga	aag	aag	gca	tgg	caa	gac	tgt	gga	399
Glu	Thr	Asp	Cys	His	Val	Leu	Arg	Lys	Lys	Ala	Trp	Gln	Asp	Cys	Gly	
75					80					85					90	
atg	agg	ata	ttt	ttt	gaa	tca	gtt	tat	ggt	caa	tgc	aaa	gca	ata	ttt	447
Met	Arg	Ile	Phe	Phe	Glu	Ser	Val	Tyr	Gly	Gln	Сув	Lys	Ala	Ile	Phe	
				95					100					105		
tat	atg	aac	aac	cca	agt	aga	gtt	ctc	tat	tta	gct	gct	tat	aac	tgt	495
Tyr	Met	Asn	Asn	Pro	Ser	Arg	Val	Leu	Tyr	Leu	Ala	Ala	Tyr	Asn	Cys	
			110					115					120			
act	ctt	cgc	cca	gtt	tca	aaa	aaa	aag	att	tac	atg	acg	tgc	cct	gac	543
Thr	Leu	Arg	Pro	Val	Ser	Lys	Lys	Lys	Ile	Tyr	Met	Thr	Cys	Pro	Asp	
		125					130					135				
tgc	cca	agc	tcc	ata	ccc	act	gac	tct	tcc	aat	cac	caa	gtg	ctg	gag	591
Cys	Pro	Ser	Ser	Ile	Pro	Thr	Asp	Ser	Ser	Asn	His	Gln	Val	Leu	Glu	
	140					145					150					
gct	gcc	acc	gag	tct	ctt	gcg	aaa	tac	aac	aat	gag	aac	aca	tcc	aag	639
Ala	Ala	Thr	Glu	Ser	Leu	Ala	Lys	Tyr	Asn	Asn	Glu	Asn	Thr	Ser	Lys	
155		· ·			160					165					170	
cag	tat	tct	ctc	ttc	aaa	gtc	acc	agg	gct	tct	agc	cag	tgg	gtg	gtc	687
Gln	Tyr	Ser	Leu	Phe	Lys	Val	Thr	Arg	Ala	Ser	Ser	Gln	Trp	Val	Val	
`				175					180					185		
ggc	cct	tct	tac	ttt	gtg	gaa	tac	tta	att	aaa	gaa	tca	cca	tgt	act	735
Gly	Pro	Ser	Tyr	Phe	Val	Glu	Tyr	Leu	Ile	Lys	Glu	Ser	Pro	Cys	Thr	
			190					195					200			
aaa	tcc	cag	gcc	agc	agc	tgt	tca	ctt	cag	tcc	tcc	gac	tct	gtg	cct	783
Lys	Ser	Gln	Ala	Ser	Ser	Сув	Ser	Leu	Gln	Ser	Ser	Asp	Ser	Val	Pro	

		205					210					215				
gtt	ggt	ctt	tgc	aaa	ggt	tct	ctg	act	cga	aca	cac	tgg	gaa	aag	ttt	831
Val	Gly	Leu	Суѕ	Lys	Gly	Ser	Leu	Thr	Arg	Thr	His	Trp	Glu	Lys	Phe	
	220					225					230					
gtc	tct	gtg	act	tgt	gac	ttc	ttt	gaa	tca	cag	gct	cca	gcc	act	gga	879
Val	Ser	Val	Thr	Cys	Asp	Phe	Phe	Glu	Ser	Gln	Ala	Pro	Ala	Thr	Gly	
235					240					245					250	
agt	gaa	aac	tct	gct	gtt	aac	cag	aaa	cct	aca	aac	ctt	CCC	aag	gtg	927
Ser	Glu	Asn	Ser	Ala	Val	Asn	Gln	Lys	Pro	Thr	Asn	Leu	Pro	Lys	Val	
				255					260					265		
gaa	gaa	tcc	cag	cag	aaa	aac	acc	CGC	cca	aca	gac	tcc	ccc	tcc	aaa	975
Glu	Glu	Ser	Gln	Gln	Lys	Asn	Thr	Pro	Pro	Thr	Asp	Ser	Pro	Ser	Lys	
			270					275					280			
gct	ggg	cca	aga	gga	tct	gtc	caa	tat	ctt	cct	gac	ttg	gat	gat	aaa	1023
Ala	Gly	Pro	Arg	Gly	Ser	Val	Gln	Tyr	Leu	Pro	Asp	Leu	Asp	Asp	Lys	
	•	285					290					295				
aat	tcc	cag	gaa	aag	ggc	cct	cag	gag	gcc	ttt	cct	gtg	cat	ctg	gac	1071
Asn	Ser	Gln	Glu	Lys	Gly	Pro	Gln	Glu	Ala	Phe	Pro	Val	His	Leu	Asp	
	300					305					310					
cta	acc	acg	aat	CCC	cag	gga	gaa	acc	ctg	gat	att	tcc	ttc	ctc	ttc	1119
Leu	Thr	Thr	Asn	Pro	Gln	Gly	Glu	Thr	Leu	Asp	Ile	Ser	Phe	Leu	Phe	
315					320					325					330	
_	gag		_			_	_		_	_					_	1167
Leu	Glu	Pro	Met		Glu	Lys	Leu	Val		Leu	Pro	Phe	Pro	_	Glu	
				335					340					345		
	gca	_		-		_								_		1215
Lys	Ala	Arg		Ala	Glu	Сув	Pro	_	Pro	Ala	Gln	Asn		Ser	Pro	
			350					355					360			
	gtc		_		tgag	gaato	cac a	acaga	agtc	tt c	tgtag	gggg1	t at	ggtg	cgcc	1270
Leu	Val		Pro	Pro												
		365														****
_	_										_				gagtgg	
															ggaaat	1390
	-	_	_	_	-										cctga	1450
. –	_				_										atgtct	1510
	_														atctca	1570
gca	tgaa	agc a	attg	catg	ag ta	aaaga	acac	c tt	CCCT	aaaa	aaaa	aaaa	aaa a	aa		1622

<210> 44

<211> 715

<212> DNA

<213> Homo Sapiens

PCT/IB99/02058

72

```
<220>
<221> CDS
<222> 29..664
<220>
<221> sig_peptide
<222> 29..619
<223> Von Heijne matrix
      score 4.80
      seq SFFGASFLMGSLG/GM
<220>
<221> polyA_signal
<222> 657..662
<220>
<221> polyA_site
<222> 699..715
<220>
<221> misc_feature
<222> 295,357
<223> n=a, g, c or t
<220>
<221> unsure
<222> -88
<223> Xaa = Ala, Asp, Gly, Val
<220>
<221> unsure
<222> -109
<223> Xaa = Asp,Glu
<400> 44
cttttcctgc ctctgattcc gggctgtc atg gcg acc ccc aac aat ctg acc
                                                                        52
                               Met Ala Thr Pro Asn Asn Leu Thr
                                        -195
ccc acc aac tgc agc tgg tgg ccc atc tcc gcg ctg gag agc gat gcg
                                                                       100
Pro Thr Asn Cys Ser Trp Trp Pro Ile Ser Ala Leu Glu Ser Asp Ala
```

-180

-175

-185

PCT/IB99/02058 WO 00/37491 73 que aag cea geg gag gee eec gae get eec gag geg gee age eec gee 148 Ala Lys Pro Ala Glu Ala Pro Asp Ala Pro Glu Ala Ala Ser Pro Ala -170 -165 cat tgg ccc agg gag agc ctg gtt ctg tac cac tgg acc cag tcc ttc 196 His Trp Pro Arg Glu Ser Leu Val Leu Tyr His Trp Thr Gln Ser Phe -155 -150 age teg cag aag gee aag ate ttg gag cat gat gat gtg age tae etg 244 Ser Ser Gln Lys Ala Lys Ile Leu Glu His Asp Asp Val Ser Tyr Leu -140 -135 -130 aag aag atc ctc ggg gaa ctg gcc atg gtg ctg gac cag att gag gcg 292 Lys Lys Ile Leu Gly Glu Leu Ala Met Val Leu Asp Gln Ile Glu Ala -125 -120 -110 gan ctg gag aag agg aag ctg gag aac gag ggg cag aaa tgc gag ctg 340 Xaa Leu Glu Lys Arg Lys Leu Glu Asn Glu Gly Gln Lys Cys Glu Leu -105-100 tgg etc tgt ggc tgt gnc ttc acc etc get gat gtc etc etg gga gec 388 Trp Leu Cys Gly Cys Xaa Phe Thr Leu Ala Asp Val Leu Leu Gly Ala -85 acc ctg cac cgc ctc aag ttc ctg gga ctg tcc aag aaa tac tgg gaa 436 Thr Leu His Arq Leu Lys Phe Leu Gly Leu Ser Lys Lys Tyr Trp Glu -75 -70 gat ggc agc cgg ccc aac ctg cag tcc ttc ttt gag agg gtc cag aga 484 Asp Gly Ser Arg Pro Asn Leu Gln Ser Phe Phe Glu Arg Val Gln Arg -60 -55 -50 cgc ttt gcc ttc cgg aaa gtc ctg ggt gac atc cac acc ctg ctg 532 Arg Phe Ala Phe Arg Lys Val Leu Gly Asp Ile His Thr Thr Leu Leu -45 -40 -35 -30 tog goo gto atc coc aat got tto ogg etg gto aag agg aaa coc coa 580 Ser Ala Val Ile Pro Asn Ala Phe Arg Leu Val Lys Arg Lys Pro Pro -25 -15 tee tte tte ggg geg tee tte ete atg gge tee etg ggt ggg atg gge 628 Ser Phe Phe Gly Ala Ser Phe Leu Met Gly Ser Leu Gly Gly Met Gly -10 tac ttt gcc tac tgg tac ctc aag aaa aaa tac atc tagggccagg 674 Tyr Phe Ala Tyr Trp Tyr Leu Lys Lys Lys Tyr Ile 10 cctggggctt ggtgtctgac tgccaaaaaa aaaaaaaaa a 715

<210> 45 <211> 1549 <212> DNA <213> Homo Sapiens

74

<220> <221> CDS <222> 18..878 <220> <221> sig_peptide <222> 18..95 <223> Von Heijne matrix score 6.30 seg GVGLVTLLGLAVG/SY <220> <221> polyA signal <222> 1500..1505 <220> <221> polyA site <222> 1533..1549 <220> <221> misc_feature <222> 944 <223> n=a, g, c or t <400> 45 ggaaaaggcg ctccgtc atg ggg atc cag acg agc ccc gtc ctg ctg gcc 50 Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala tcc ctg ggg gtg ggg ctg gtc act ctg ctc ggc ctg gct gtg ggc tcc 98 Ser Leu Gly Val Gly Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser -15 -10 tac ttg gtt cgg agg tcc cgc cgg cct cag gtc act ctc ctg gac ccc 146 Tyr Leu Val Arg Arg Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro 10 aat gaa aag tac ctg cta cga ctg cta gac aag acg ctc tct gca cgg 194 Asn Glu Lys Tyr Leu Leu Arg Leu Leu Asp Lys Thr Leu Ser Ala Arg 25 30 20 tcc cca ggc aaa cat atc tac ctc tcc acc cga att gat ggc agc ctg 242 Ser Pro Gly Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu 35 40 gtc atc agg cca tac act cct gtc acc agt gat gag gat caa ggc tat 290

									15							
Val	Ile	Arg	Pro	Tyr	Thr	Pro	Val	Thr	Ser	Asp	Glu	Asp	Gln	Gly	Tyr	
50					55					60					65	
gtg	gat	ctt	gtc	atc	aag	gtc	tac	ctg	aag	ggt	gtg	cac	ccc	aaa	ttt	338
Val	Asp	Leu	Val	Ile	Lys	Val	Tyr	Leu	Lys	Gly	Val	His	Pro	Lys	Phe	
				70					75					80		
cct	gag	gga	ggg	aag	atg	tct	cag	tac	ctg	gat	agc	ctg	aag	gtt	<b>9</b> 99	386
Pro	Glu	Gly	Gly	Lys	Met	Ser	Gln	Tyr	Leu	Asp	Ser	Leu	Lys	Val	Gly	
			85					90					95			
gat	gtg	gtg	gag	ttt	cgg	ggg	cca	agc	<b>9</b> 99	ttg	ctc	act	tac	act	gga	434
Asp	Val	Val	Glu	Phe	Arg	Gly	Pro	Ser	Gly	Leu	Leu	Thr	Tyr	Thr	Gly	
		100					105					110				
aaa	<b>9</b> 99	cat	ttt	aac	att	cag	CCC	aac	aag	aaa	tct	сса	cca	gaa	ccc	482
Lys	Gly	His	Phe	Asn	Ile	Gln	Pro	Asn	Lys	Lys	Ser	Pro	Pro	Glu	Pro	
	115					120					125					
cga	gtg	gcg	aag	aaa	ctg	gga	atg	att	gcc	ggc	999	aca	gga	atc	acc	530
Arg	Val	Ala	Lys	Lys	Leu	Gly	Met	Ile	Ala	Gly	Gly	Thr	Gly	Ile	Thr	
130					135					140					145	
cca	atg	cta	cag	ctg	atc	cgg	gcc	atc	ctg	aaa	gtc	cct	gaa	gat	cca	578
Pro	Met	Leu	Gln	Leu	Ile	Arg	Ala	Ile	Leu	Lys	Val	Pro	Glu	Asp	Pro	
				150					155					160		
acc	cag	tgc	ttt	ctg	ctt	ttt	gcc	aac	cag	aca	gaa	aag	gat	atc	atc	626
Thr	Gln	Cys	Phe	Leu	Leu	Phe	Ala	Asn	Gln	Thr	Glu	Lys	Asp	Ile	Ile	
			165					170					175			
_			_			gaa	_	_	_	_				-		674
Leu	Arg		Asp	Leu	Glu	Glu		Gln	Ala	Arg	Tyr		Asn	Arg	Phe	
		180					185					190				
_					_	gat					. –		_		-	722
Lys		Trp	Phe	Thr	Leu	Asp	His	Pro	Pro	Lys	_	Trp	Ala	Tyr	Ser	
	195					200					205					
						gac										770
	GIY	Pne	vai	Thr		Asp	Met	He	Arg		His	Leu	Pro	Ala		
210				_•	215					220					225	
	_	_		_	_	ctg		_					_		_	818
GIÀ	Asp	Asp	vaı		vaı	Leu	Leu	Cys	_	Pro	Pro	Pro	мет		GIn	
		<b>4</b>		230		<b>.</b>			235		•			240		
						ttg										866
ьeu	АТА	cys		Pro	Asn	Leu	Asp	_	Leu	GIÀ	ıyr	ser		гàз	met	
			245		<b>.</b>			250		_ •			255			
				cgag	jcato	cct o	cago	בבככ	c to	gtgo	tgtt	. cgc	rgca	igtt		918
arg	Phe		ryr													
<b></b>		260	·~+		·~	.a+		. ~		+	<b></b>	.a	.a	, de de de -		070
gutt	JUUCE	alli õ	yıac	Luda	ra cs	LCCAI	.aayc	. יינו	.ayat	.LCC	LLEC	ccca	ya Ç	ししじじ	aggtt	978

76 ttttcagtta catctagagc tgaaatctgg atagtacctg caggaacaat attcctgtag 1038 ccatggaaga gggccaaggc tcagtcactc cttggatggc ctcctaaatc tccccgtggc 1098 aacaggtcca ggagaggccc atggagcagt ctcttccatg gagtaagaag gaagggagca 1158 tgtacgcttg gtccaagatt ggctagttcc ttgatagcat cttactctca ccttctttgt 1218 gtctgtgatg aaaggaacag tctgtgcaat gggttttact taaacttcac tgttcaacct 1278 atgagcaaat ctgtatgtgt gagtataagt tgagcatagc atacttccag aggtggtctt 1338 atggagatgg caagaaagga ggaaatgatt tcttcagatc tcaaaggagt ctgaaatatc 1398 atatttctgt gtgtgtctct ctcagcccct gcccaggcta gagggaaaca gctactgata 1458 atcgaaaact gctgtttgtg gcaggaaccc ctggctgtgc aaataaatgg ggctgaggcc 1518 cctgtgtgat attcaaaaaa aaaaaaaaa a 1549 <210> 46 <211> 1328 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 73..1008 <220> <221> sig_peptide <222> 73..147 <223> Von Heijne matrix score 14.10 seq LTLLLLTLLAFA/GY <220> <221> polyA signal <222> 1286..1291 <220> <221> polyA_site <222> 1312..1328 <400> 46 actgegegga teggegteeg eagegggegg etgetgaget geettgaggt geagtgttgg 60 ggatccagag cc atg tcg gac ctg cta cta ctg ggc ctg att ggg ggc ctg 111 Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu -25 act ctc tta ctg ctg ctg acg ctg cta gcc ttt gcc ggg tac tca ggg 159

Thr Leu Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly

									• •							
		-10					-5					1				
cta	ctg	gct	999	gtg	gaa	gtg	agt	gct	<b>9</b> 99	tca	ccc	ccc	atc	cgc	aac	207
Leu	Leu	Ala	Gly	Val	Glu	Val	Ser	Ala	Gly	Ser	Pro	Pro	Ile	Arg	Asn	
5					10					15					20	
gtc	act	gtg	gcc	tac	aag	ttc	cac	atg	999	ctc	tat	ggt	gag	act	999	255
Val	Thr	Val	Ala	Tyr	Lys	Phe	His	Met	Gly	Leu	Tyr	Gly	Glu	Thr	Gly	
				25					30					35		
cgg	ctt	ttc	act	gag	agc	tgc	atc	tct	ccc	aag	ctc	cgc	tcc	atc	gct	303
Arg	Leu	Phe	Thr	Glu	Ser	Сув	Ile	Ser	Pro	Lys	Leu	Arg	Ser	Ile	Ala	
			40					45					50			
gtc	tac	tat	gac	aac	ccc	cac	atg	gtg	ccc	cct	gat	aag	tgc	cga	tgt	351
Val	Tyr	Tyr	Asp	Asn	Pro	His	Met	Val	Pro	Pro	Asp	Lys	Cys	Arg	Cys	
		55					60					65				
gcc	gtg	ggc	agc	atc	ctg	agt	gaa	ggt	gag	gaa	tcg	ccc	tcc	cct	gag	399
Ala	Val	Gly	Ser	Ile	Leu	Ser	Glu	Gly	Glu	Glu	Ser	Pro	Ser	Pro	Glu	
	70	٠				75					80					
ctc	atc	gac	ctc	tac	cag	aaa	ttt	ggc	ttc	aag	gtg	ttc	tcc	ttc	ccg	447
Leu	Ile	Asp	Leu	Tyr	Gln	Lys	Phe	Gly	Phe	Lys	Val	Phe	Ser	Phe	Pro	
85					90					95					100	
gca	CCC	agc	cat	gtg	gtg	aca	gcc	acc	ttc	CCC	tac	acc	acc	att	ctg	495
Ala	Pro	Ser	His		Val	Thr	Ala	Thr	Phe	Pro	Tyr	Thr	Thr		Leu	
				105					110					115		
			ctg	_		_	•	_			_	_	_			543
Ser	Ile	Trp	Leu	Ala	Thr	Arg	Arg		His	Pro	Ala	Leu		Thr	Tyr	
			120					125					130	_		
			cgg	_	_	_	_				_				-	591
Ile	Lys		Arg	Lys	Leu	Cys		Tyr	Pro	Arg	Leu		He	Tyr	GIn	
		135					140					145				
-		-	atc			_				-						639
GIU		GIN	Ile	HIS	Pne		сув	Pro	Leu	Ата		GIN	GIĀ	Asp	Pne	
	150		~~~			155					160					600
			gag	•	_											687
•	vaı	PIO	Glu	Met	170	GIU	Inr	GIU	пр	-	тър	Arg	GIĀ	Leu	180	
165	~~~		~-~	200			~~+	~~~	200	175		~				726
	_		gac Asp				_				_	_		_	_	735
GIU	MIA	TIE	Asp	185	GIII	vaı	Asp	GIY	190	GIY	AId	Asp	1111	195	ser	
~~~	200	20+			200		<i></i>	ata		aa+	~~~	200			agt	783
_	_	_	tct Ser	_	_	_	-		_			_				763
veh	TITT	ser	200	val	SEL	neu	GIU	205	SEL	FLO	GIY	361	210	GIU	1111	
+	aa+	~~~	aca	c+~	+	cat	~~		200	200	~~ +	~~~		as+	asc	831
	_	_	Thr	_					_	-	-			_	_	031
ser	ATG	ATG	ınr	ъeп	ser	PIO	GIÀ	wrg	ser	ser	arg	GIÀ	rrp	чвр	vaħ	

78 220 225 215 ggt gac acc cgc agc gag cac agc tac agc gag tca ggt gcc agc ggc 879 Gly Asp Thr Arg Ser Glu His Ser Tyr Ser Glu Ser Gly Ala Ser Gly 230 235 tee tet tit gag gag etg gae tit gag gge gag ggg eee tita ggg gag 927 Ser Ser Phe Glu Glu Leu Asp Leu Glu Gly Glu Gly Pro Leu Gly Glu 245 250 255 975 · tca cgg ctg gac cct ggg act gag ccc ctg ggg act acc aag tgg ctc Ser Arg Leu Asp Pro Gly Thr Glu Pro Leu Gly Thr Thr Lys Trp Leu 265 270 tgg gag ccc act gcc cct gag aag ggc aag gag taacccatgg cctgcaccct 1028 Trp Glu Pro Thr Ala Pro Glu Lys Gly Lys Glu 280 285 cctgcagtgc agttgctgag gaactgagca gactctccag cagactctcc agccctcttc 1088 ctccttcctc tgggggagga ggggttcctg agggacctga cttcccctgc tccaggcctc 1148 ttgctaagcc ttctcctcac tgccctttag gctcccaggg ccagaggagc cagggactat 1208 tttctgcacc agccccagg gctgccaccc.ctgttgtgtc tttttttcag actcacagtg 1268 gagettecag gacccagaat aaagccaatg atttacttgt ttcaaaaaaa aaaaaaaaa 1328 <210> 47

<211> 1515

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 165..842

<220>

<221> sig_peptide

<222> 165..251

<223> Von Heijne matrix

score 7.00

seq LASFAALVLVCRQ/RY

<220>

<221> polyA_signal

<222> 1474..1479

<220>

<221> polyA_site

<222> 1500..1515

<400)> 47	7		,												
			gege	ccgg	gg ag	gccad	agco	: tga	iggco	ctc	aggt	ctct	gc a	aggt	gtcgtg	60
_		-													agccca	120
															t gtg	176
												Met	: Glu	ı Thi	r Val	
gtg	att	gtt	gcc	ata	ggt	gtg	ctg	gcc	acc	atc	ttt	ctg	gct	tcg	ttt	224
Val	Ile	Val	Ala	Ile	Gly	Val	Leu	Ala	Thr	Ile	Phe	Leu	Ala	Ser	Phe	
-25					-20					-15					-10	
gca	gcc	ttg	gtg	ctg	gtt	tgc	agg	cag	cgc	tac	tgc	cgg	ccg	cga	gac	272
Ala	Ala	Leu	Val	Leu	Val	Cys	Arg	Gln	Arg	Tyr	Cys	Arg	Pro	Arg	Asp	
				-5					1				5			
ctg	ctg	cag	cgc	tat	gat	tct	aag	ccc	att	gtg	gac	ctc	att	ggt	gcc	320
Leu	Leu	Gln	Arg	Tyr	Asp	Ser	Lys	Pro	Ile	Val	Asp	Leu	Ile	Gly	Ala	
		10					15					20				
atg	gag	acc	cag	tct	gag	ccc	tct	gag	tta	gaa	ctg	gac	gat	gtc	gtt	368
Met	Glu	Thr	Gln	Ser	Glu	Pro	Ser	Glu	Leu	Glu	Leu	Asp	Asp	Val	Val	
	25					30					35					
atc	acc	aac	ccc	cac	att	gag	gcc	att	ctg	gag	aat	gaa	gac	tgg	atc	416
Ile	Thr	Asn	Pro	His	Ile	Glu	Ala	Ile	Leu	Glu	Asn	Glu	Asp	Trp	Ile	
40					45					50					55	
gaa	gat	gcc	tcg	ggt	ctc	atg	tcc	cac	tgc	att	gcc	atc	ttg	aag	att	464
Glu	Asp	Ala	Ser	Gly	Leu	Met	Ser	His	Cys	Ile	Ala	Ile	Leu	Lys	Ile	
				60					65					70		
_			_		-	aag										512
Cys	His	Thr	Leu	Thr	Glu	Lys	Leu	Val	Ala	Met	Thr	Met	Gly	Ser	Gly	
•			75					80					85			
						gcc										560
Ala	Lys	Met	Lys	Thr	Ser	Ala		Val	Ser	Asp	Ile		Val	Val	Ala	
		90					95					100				
_			_			gtg	-									608
ГÀЗ	_	Ile	Ser	Pro	Arg	Val	Asp	qaA	Val	Val		Ser	Met	Tyr	Pro	
	105					110					115					
_	_	_				ctg	_	_		_					-	656
	Leu	Asp	Pro	Lys		Leu	Asp	Ala	Arg		Thr	Ala	Leu	Leu		
120					125					130					135	
	_	_		_		ctg					_	_		_	_	704
Ser	Val	Ser	His		Val	Leu	Val	Thr	_	Asn	Ala	Сув	His		Thr	
				140					145					150		
						gac										752
Gly	Gly	Leu		Trp	Пе	Asp	Gin		ьeu	ser	Ala	Ala		GIU	HIS	
			155					160					165			

80

ttg gaa gtc ctt cga gaa gca gcc ct	ta gct tct gag cca gat aaa ggc	800
Leu Glu Val Leu Arg Glu Ala Ala Le	eu Ala Ser Glu Pro Asp Lys Gly	
170 175	180	
ctc cca ggc cct gaa ggc ttc ctg ca	ag gag cag tot goa att	842
Leu Pro Gly Pro Glu Gly Phe Leu Gl	ln Glu Gln Ser Ala Ile	
185 190	195	•
tagtgcctac aggccagcag ctagccatga a	aggeceetge egecateeet ggatggetea	902
gcttagcctt ctactttttc ctatagagtt a	agttgttctc cacggctgga gagttcagct	962
gtgtgtgcat agtaaagcag gagatccccg t	tcagtttatg cctcttttgc agttgcaaac	1022
tgtggctggt gagtggcagt ctaatactac a	agttagggga gatgccattc actctctgca	1082
agaggagtat tgaaaactgg tggactgtca	gctttattta gctcacctag tgttttcaag	1142
aaaattgagc caccgtctaa gaaatcaaga g	ggtttcacat taaaattaga atttctggcc	1202
tctctcgatc ggtcagaatg tgtggcaatt c	ctgatctgca ttttcagaag aggacaatca	1262
attgaaacta agtaggggtt tcttcttttg g	gcaagacttg tactctctca cctggcctgt	1322
ttcatttatt tgtattatct gcctggtccc t	tgaggcgtct gggtctctcc tctcccttgc	1382
aggtttgggt ttgaagctga ggaactacaa a	agttgatgat ttctttttta tctttatgcc	1442
tgcaatttta cctagctacc actaggtgga t	tagtaaattt atacttatgt ttcccccaaa	1502
aaaaaaaaaa aaa		1515

<210> 48

<211> 1622

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 31..1248

<220>

<221> sig_peptide

<222> 31..135

<223> Von Heijne matrix

score 6.30

seq TLLLFAAPFGLLG/EK

<220>

<221> polyA_signal

<222> 1580..1585

<220>

<221> polyA_site

<222> 1607..1622

	-400)	ì														
<pre><400> 48 aacctcttcc gtcggctgaa ttgcggccgt atg cgc ggc tct gtg gag tgc acc 5</pre>														E 4			
	aacc	ctctt	cc s	grege	gctga	ia ct	.gegg	leegt								Thr	54
									-35	5				-30)		
	taa	aat	taa	aaa	cac	tat	acc	ccc	agc	ccc	cta	ctc	ctt	taa	act	cta	102
					His												
	пр	Gry	-25	Gry	1110	Cyb	1120	-20					-15				
				a aa	gcc	999	+++		cta	cta	aaa	asa		200	cac	cad	150
		_		_	Ala												200
	Leu		Pne	Ala	ATA	PIO	-5	GIY	Deu	пец	GIY	1	Буз	****	nr 9	5	
		-10					-						a+a		220	-	198
	-		_		gtc												196
	Val	Ser	Leu	GIu	Val	TIE	Pro	Asn	Trp		GIY	Pro	Leu	GIN		Leu	
					10					15					20	_	
					gca												246
	Leu	His	Ile	Arg	Ala	Val	Gly	Thr	Asn	Ser	Thr	Leu	His	Tyr	Val	Trp	
				25					30					35			
	_	_	_		cct												294
	Ser	Ser	Leu	Gly	Pro	Leu	Ala	Val	Val	Met	Val	Ala	Thr	Asn	Thr	Pro	
			40					45					50				
	cac	agc	acc	ctg	agc	gtc	aac	tgg	agc	ctc	ctg	cta	tcc	cct	gag	ccc	342
	His	Ser	Thr	Leu	Ser	Val	Asn	Trp	Ser	Leu	Leu	Leu	Ser	Pro	Glu	Pro	
		55					60					65					
	gat	999	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	390
	Asp	Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	
	70					75					80					85	
	gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	438
	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	
					90					95					100		
	gat	acg	gca	gca	aag	cct	ttg	gga	aga	cca	tat	cct	cca	tac	tcc	ttg	486
	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
				105					110					115			
	gcc	gat	ttc	tct	tgg	aac	aac	atc	act	gat	tca	ttg	gat	cct	gcc	acc	534
	_	_			Trp												
		-	120		-			125					130				
	cta	agt		aca	ttt	caa	aac	cac	ccc	atq	aac	qac	cct	acc	agg	act	582
		-	_		Phe					_		_					
		135				_ 	140					145			,	•	
	+++		ast	aac	agc	cta		ttc	agg	atic	cao		ttt	tee	aga	tcc	630
		_			Ser												
	150		VOII	U.L.y	Per	155	n. u	. 110	9	- 44	160				3	165	
				~~~	caa		~~+		ctc	ctc		202	acs	asc.	acc		678
	ayc	cya	cca	gcc	udd	CCC		cgc		LLG	cac	aca	Sea	gac	مال	-5-	575

82

								8	32							
Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg	Leu	Leu	His	Thr	Ala	Asp	Thr	Сув	
				170					175					180		
cag	cta	gag	gtg	gcc	ctg	att	gga	gcc	tct	CCC	cgg	gga	aac	cgt	tcc	726
Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly	Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	
			185					190					195			
ctg	ttt	ggg	ctg	gag	gta	gcc	aca	ttg	ggc	cag	ggc	cct	gac	tgc	CCC	774
Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		200					205					210				
tca	atg	cag	gag	cag	cac	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcc	gtc	822
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	215					220					225					
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	870
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	
230					235					240					245	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	999	ggc	cga	gaa	tca	918
Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
				250					255					260		
gcc	ctg	ccc	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	966
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
	•		265					270					275			
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	999	tcc	cag	aat	aac	1014
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	
		280					285					290		-		
ttc	tgt	gcc	ttc	aat	ctg	acg	ttc	999	gct	tcc	aca	ggc	cct	ggc	tat	1062
Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	
	295					300					305					
tgg	gac	caa	cac	tac	ctc	agc	tgg	tcg	atg	ctc	ctg	ggt	gtg	ggc	ttc	1110
Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp	Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	
310					315					320					325	
cct	cca	gtg	gac	ggc	ttg	tcc	cca	cta	gtc	ctg	ggc	atc	atg	gca	gtg	1158
Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro	Leu	Val	Leu	Gly	Ile	Met	Ala	Val	
				330					335					340		
gcc	ctg	ggt	gcc	cca	ggg	ctc	atg	ctg	cta	999	ggc	ggc	ttg	gtt	ctg	1206
Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met	Leu	Leu	Gly	Gly	Gly	Leu	Val	Leu	
			345					350					355			
ctg	ctg	cac	cac	aag	aag	tac	tca	gag	tac	cag	tcc	ata	aat			1248
Leu	Leu	His	His	Lys	Lys	Tyr	Ser	Glu	Tyr	Gln	Ser	Ile	Asn			
		360					365					370				
taa	ggcc	ege 1	tctc	tgga	gg ga	aagga	acati	t act	tgaad	cctg	tct	tgct	gtg (	cctc	gaaac	t 1308
ctg	gaggi	ttg 9	gagc	atca	ag ti	tcca	gccc	c cti	tcaci	tccc	cca	tctt	gct 1	tttct	gtgg	a 1368
acc	tcag	agg (	ccag	cctc	ga c	ttcc	tgga	g ac	ccca	aggt	<b>ggg</b>	gctt	cct 1	tcata	acttt	g 1428
ttg	3 <b>9</b> 99	act 1	ttgg	aggc	gg g	cagg	ggac	a ggg	gctai	ttga	taa	ggtc	ccc 1	ttggt	gttg	c 1488

83 cttcttgcat ctccacacat ttcccttgga tgggacttgc aggcctaaat gagaggcatt 1548 ctgactggtt ggctgccctg gaaggcaaga aaatagattt atttttttt cacagggcaa 1608 1622 aaaaaaaaa aaaa <210> 49 <211> 1448 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 131..490 <220> <221> sig_peptide <222> 131..301 <223> Von Heijne matrix score 5.30 seq AIALATVLFLIGA/FL <220> <221> polyA_signal <222> 1411..1416 <220> <221> polyA_site <222> 1434..1448 <400> 49 60 cgctgccaac cgtgggcgag ctctgggtgt gcgggcggcc tcgcgcggcg ctccgctgtg 120 teagegtgtt atg atg eeg tee egt acc aac etg get act gga atc eec 169 Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro -55 ~50 -45 agt agt aaa gtg aaa tat tca agg ctc tcc agc aca gac gat ggc tac 217 Ser Ser Lys Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr -40 -30 -35 att gac ctt cag ttt aag aaa acc cct cct aag atc cct tat aag gcc 265 Ile Asp Leu Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala -25 atc gca ctt gcc act gtg ctg ttt ttg att ggc gcc ttt ctc att att 313 Ile Ala Leu Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile

		-10					-5					1				
ata	ggc	tcc	ctc	ctg	ctg	tca	ggc	tac	atc	agc	aaa	999	999	gca	gac	361
Ile	Gly	Ser	Leu	Leu	Leu	Ser	Gly	Tyr	Ile	Ser	Lys	Gly	Gly	Ala	Asp	
5					10					15					20	
cgg	gcc	gtt	cca	gtg	ctg	atc	att	ggc	att	ctg	gtg	ttc	cta	ccc	gga	409
Arg	Ala	Val	Pro	Val	Leu	Ile	Ile	Gly	Ile	Leu	Val	Phe	Leu	Pro	Gly	
				25					30					35		
ttt	tac	cac	ctg	cgc	atc	gct	tac	tat	gca	tcc	aaa	ggc	tac	cgt	ggt	457
Phe	Tyr	His	Leu	Arg	Ile	Ala	Tyr	Tyr	Ala	Ser	Lys	Gly	Tyr	Arg	Gly	
			40					45					50			
tac	tcc	tat	gat	gac	att	cca	gac	ttt	gat	gac	tago	acco	cac o	cccat	agctg	510
Tyr	Ser	Tyr	Asp	Asp	Ile	Pro	Asp	Phe	Asp	Asp						
		55					60									
agga	ggag	gtc a	acagt	ggaa	c to	jtccc	agct	: tta	agat	atc	tago	agaa	ac 1	tatag	gctgag	570
gact	aagg	gaa t	tctg	gcago	t to	jcaga	tgtt	taa	igaaa	ata	atgg	ccas	gat 1	tttt	gggtc	630
cttc	ccaa	ag a	atgtt	aagt	g aa	ıccta	cagt	tag	gctaa	tta	ggad	aago	ctc 1	tattt	ttcat	690
ccct	ggg	cc t	gaca	agtt	t tt	ccac	agga	ata	itgta	tca	tgga	agaa	ıta g	gaggt	tattc	750
tgta	atg	gaa a	agto	ttgc	c to	gccac	cacc	cto	tgta	gag	ctga	ıgcat	tt d	ctttt	aaata	810
gtct	tcat	tg d	ccaat	ttgt	t ct	tgta	igcaa	atg	gaac	aat	gtgg	jtat <u>c</u>	gc t	taatt	tctta	870
ttat	taag	gta a	attta	tttt	a aa	aata	tctg	gagt	atat	tat	ccto	jtaca	ict t	tatco	ctacc	930
ttca	tgtt	cc a	agtgg	jaaga	c ct	tagt	aaaa	tca	aaga	ıtca	gtga	gtto	at o	ctgta	atatt	990
tttt	ttac	ett g	gcttt	ctta	c to	jacag	gcaac	cag	gaat	ttt	ttta	tcct	gc a	agago	caagtt	1050
ttca	aaat	gt a	aata	cttc	c to	tgtt	taac	agt	cctt	gga	ccat	tctc	gat o	ccagt	tcacc	1110
agta	ggtt	gg a	acago	atat	a at	ttg	atca	ttt	tgto	cct	tgta	aato	aa q	gatgt	tctgc	1170
agat	tatt	cc t	ttaa	cggc	c gg	gactt	ttgg	ctg	tttc	cta	atga	iaaca	itg t	tagto	gttat	1230
tatt	taga	agt t	tata	gccg	ıt at	tgct	agca	cct	tgta	gta	tgto	atca	itt (	ctgct	catga	1290
ttcc	aagg	gat o	cagco	tgga	it go	ctac	gagga	cta	gato	acc	ttag	tttg	gat t	tctat	ttttt	1350
agct	tgca	aaa a	agtg	jactt	a ta	ttcc	caaag	g aaa	ttaa	aat	gttg	jaaat	cc a	aaato	ctaga	1410
aata	aaat	ga	gttaa	cttc	a aa	caaa	aaaa	a aaa	aaaa	ıa						1448

<210> 50

<211> 894

<2,12> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 61..690

<220>

<221> sig_peptide

<222> 61..168

<223> Von Heijne matrix score 4.60 seg GTVVLVAGTLCFA/WW

95

<220> <221> polyA_signal <222> 858..863 <220> <221> polyA_site <222> 879..894 <400> 50 acacetteae etgegeecag etceetgege geetggacag egeetgetge eegeeteeeg 60 atg gcc ctg ccc cag atg tgt gac ggg agc cac ttg gcc tcc acc ctc 108 Met Ala Leu Pro Gln Met Cys Asp Gly Ser His Leu Ala Ser Thr Leu -30 ege tat tge atg aca gte age gge aca gtg gtt etg gtg gee ggg acg 156 Arg Tyr Cys Met Thr Val Ser Gly Thr Val Val Leu Val Ala Gly Thr -20 -15 ctc tgc ttc gct tgg tgg agc gaa ggg gat gca acc gcc cag cct ggc 204 Leu Cys Phe Ala Trp Trp Ser Glu Gly Asp Ala Thr Ala Gln Pro Gly cag ctg gcc cca ccc acg gag tat ccg gtg cct gag ggc ccc agc ccc 252 Gln Leu Ala Pro Pro Thr Glu Tyr Pro Val Pro Glu Gly Pro Ser Pro ctg ctc agg tcc gtc agc ttc gtc tgc tgc ggt gca ggt ggc ctg ctg 300 Leu Leu Arg Ser Val Ser Phe Val Cys Cys Gly Ala Gly Gly Leu Leu 30 35 ctg ctc att ggc ctg ctg tgg tcc gtc aag gcc agc atc cca ggg cca 348 Leu Leu Ile Gly Leu Leu Trp Ser Val Lys Ala Ser Ile Pro Gly Pro 50 55 cct cga tgg gac ccc tat cac ctc tcc aga gac ctg tac tac ctc act 396 Pro Arg Trp Asp Pro Tyr His Leu Ser Arg Asp Leu Tyr Tyr Leu Thr 70 gtg gag tcc tca gag aag gag agc tgc agg acc ccc aaa gtg gtt gac 444 Val Glu Ser Ser Glu Lys Glu Ser Cys Arg Thr Pro Lys Val Val Asp atc ccc act tac gag gaa gcc gtg agc ttc cca gtg gcc gag ggg ccc 492 Ile Pro Thr Tyr Glu Glu Ala Val Ser Phe Pro Val Ala Glu Gly Pro

100

cca aca cca cct gca tac cct acg gag gaa gcc ctg gag cca agt gga

105

540

86

Pro Thr Pro Pro Ala Tyr Pro Thr Glu Glu Ala Leu Glu Pro Ser Gly 120 115 110 tog agg gat god otg otc ago acc cag cod god tog cot coa cod ago 588 Ser Arg Asp Ala Leu Leu Ser Thr Gln Pro Ala Trp Pro Pro Pro Ser 135 140 130 125 tat gag agc atc agc ctt gct ctt gat gcc gtt tct gca gag acg aca 636 Tyr Glu Ser Ile Ser Leu Ala Leu Asp Ala Val Ser Ala Glu Thr Thr ccg agt gcc aca cgc tcc tgc tca ggc ctg gtt cag act gca cgg gga 684 Pro Ser Ala Thr Arg Ser Cys Ser Gly Leu Val Gln Thr Ala Arg Gly 165 gga agt taaaggctcc tagcaggtcc tgaatccaga gacaaaaatg ctgtgccttc 740 Gly Ser 800 tccagagtct tatgcagtgc ctgggacaca gtaggcactc agcaaacgtt cgttgttgaa ggctgttcta tttatctatt gctgtataac aaaccacccc agaatttagt ggcttaaaat 860 894 aaatcccatt ttattacgaa aaaaaaaaaa aaaa

<210> 51

<211> 1447

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 501..1253

<220>

<221> sig peptide

<222> 501..1229

<223> Von Heijne matrix

score 4.10

seq LPSLAHLLPALDC/LE

<220>

<221> polyA_signal

<222> 1392..1397

<220>

<221> polyA_site

<222> 1432..1447

<220>

87

<221> misc_feature
<222> 243,252,278,285,387,1429
<223> n=a, g, c or t

<400> 51	
gtgagtcagg tgggtcctgg gcccaggaac cggcccggag ccgtggacgc cctacagctg	60
agaaggggac ccaaggggte ggccgcggcc aaggccccta ggaccgccgc cccagctcac	120
gctgccgacg gcagctatag acattctgcg tcaggtccgg gctcctggac tttgcctttc	180
ccgagccctg gaggtgggga gaaaaggttc accaattttt aaaatccaaa tatatctcat	240
ggntacagtg gnaagaactg gccagagagt ctggaagntt tgggnttctg gtcctggctg	300
tgccactgac tcactgtgac cttgggatct tgtgctgtga agacatttcc caagtgcttc	360
atgttagcca gcaaatctga cccacanggc ctggaaagag gtgattgtta ggttgcgcag	420
aggtggtctt atccagctca gcttcccctg ggacccaccg tgggacctga ggcagaactg	480
gggtggactt ggcctcctcc atg gca cac cgg ctg cag ata cga ctg ctg acg	533
Met Ala His Arg Leu Gln Ile Arg Leu Leu Thr	
-240 -235	
tgg gat gtg aag gac acg ctg ctc agg ctc cgc cac ccc tta ggg gag	581
Trp Asp Val Lys Asp Thr Leu Leu Arg Leu Arg His Pro Leu Gly Glu	
-230 -225 -220	•
gcc tat gcc acc aag gcc cgg gcc cat ggg ctg gag gtg gag ccc tca	629
Ala Tyr Ala Thr Lys Ala Arg Ala His Gly Leu Glu Val Glu Pro Ser	
-215 -210 -205	
gcc ctg gaa caa ggc ttc agg cag gca tac agg gct cag agc cac agc	677
Ala Leu Glu Gln Gly Phe Arg Gln Ala Tyr Arg Ala Gln Ser His Ser	
-200 -195 -190 -185	
ttc ccc aac tac ggc ctg agc cac ggc cta acc tcc cgc cag tgg tgg	725
Phe Pro Asn Tyr Gly Leu Ser His Gly Leu Thr Ser Arg Gln Trp Trp	
-180 -175 -170	
ctg gat gtg gtc ctg cag acc ttc cac ctg gcg ggt gtc cag gat gct	773
Leu Asp Val Val Leu Gln Thr Phe His Leu Ala Gly Val Gln Asp Ala	
-165 -160 -155	
cag get gta gee eee ate get gaa eag ett tat aaa gae tte age eac	821
Gln Ala Val Ala Pro Ile Ala Glu Gln Leu Tyr Lys Asp Phe Ser His	
-150 -145 -140	
ecc tgc acc tgg cag gtg ttg gat ggg gct gag gac acc ctg agg gag	869
Pro Cys Thr Trp Gln Val Leu Asp Gly Ala Glu Asp Thr Leu Arg Glu	
-135 -130 -125	
tgc cgc aca cgg ggt ctg aga ctg gca gtg atc tcc aac ttt gac cga	917
Cys Arg Thr Arg Gly Leu Arg Leu Ala Val Ile Ser Asn Phe Asp Arg	
-120 -115 -110 -105	
cgg cta gag ggc atc ctg gag ggc ctt ggc ctg cgt gaa cac ttc gac	965

Arg Leu Glu Gly Ile Leu Glu Gly Leu Gly Leu Arg Glu His Phe Asp

88

				-100	ס				-95					-90		
ttt	gtg	ctg	acc	tcc	gag	gct	gct	ggc	tgg	ccc	aag	ccg	gac	ccc	cgc	1013
Phe	Val	Leu	Thr	Ser	Glu	Ala	Ala	Gly	Trp	Pro	Lys	Pro	Asp	Pro	Arg	
			-85					-80					-75			
att	ttc	cag	gag	gcc	ttg	cgg	ctt	gct	cat	atg	gaa	cca	gta	gtg	gca	1061
Ile	Phe	Gln	Glu	Ala	Leu	Arg	Leu	Ala	His	Met	Glu	Pro	Val	Val	Ala	
		-70					-65					-60				
gcc	cat	gtt	ggg	gat	aat	tac	ctc	tgc	gat	tac	cag	ggg	cct	cgg	gct	1109
Ala	His	Val	Gly	Asp	Asn	Tyr	Leu	Cys	Asp	Tyr	Gln	Gly	Pro	Arg	Ala	
	-55					-50					-45					
gtg	ggc	atg	cac	agc	ttc	ctg	gtg	gtt	ggc	cca	cag	gca	ctg	gac	ccc	1157
Val	Gly	Met	His	Ser	Phe	Leu	Val	.Val	Gly	Pro	Gln	Ala	Leu	Asp	Pro	
-40		-			-35					-30					-25	
gtg	gtc	agg	gat	tct	gta	cct	aaa	gaa	cac	atc	ctc	ccc	tct	ctg	gcc	1205
Val	Val	Arg	Asp	Ser	Val	Pro	Lys	Glu	His	Ile	Leu	Pro	Ser	Leu	Ala	
				-20					-15					-10		
cat	ctc	ctg	cct	gcc	ctt	gac	tgc	cta	gag.	ggc	tca	act	cca	ggg	ctt	1253
His	Leu	Leu	Pro	Ala	Leu	Asp	Сув	Leu	Glu	Gly	Ser	Thr	Pro	Gly	Leu	
			-5					1				5				
tga	ggcca	agt g	gaggg	gaagi	tg go	etggg	gccct	agg	gccat	gga	gaaa	acct	ta a	aacaa	accct	1313
gga	gaca	ggg a	agcco	ctt	ct tt	ctc	cacaç	g cto	tgga	acct	ttc	ccct	ct	ccct	geggee	1373
ttt	gtca	cct a	actgt	gata	aa ta	aaago	agt	g agt	gct	gagc	tct	cacco	ctt o	cccc	cnccaa	1433
aaaa	aaaa	aaa a	aaaa													1447

<210> 52

<211> 1540

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 25..402

<220>

<221> sig_peptide

<222> 25..96

<223> Von Heijne matrix

score 7.00

seq LLCCFRALSGSLS/MR

<220>

<221> polyA_signal

89 <222> 1500..1505 <220> <221> polyA_site <222> 1525..1540 <220> <221> misc_feature <222> 625,1411,1432,1440,1450,1506 <223> n=a, g, c or t <400> 52 agectggeee teeetette caaa atg gae aag tee ete ttg etg gaa ete 51 Met Asp Lys Ser Leu Leu Leu Glu Leu ccc atc ctg ctc tgc tgc ttt agg gca tta tct gga tca ctt tca atg 99 Pro Ile Leu Cys Cys Phe Arg Ala Leu Ser Gly Ser Leu Ser Met -15 -10 aga aat gat gca gtc aat gaa ata gtt gct gtg aaa aac aat ttt cct 147 Arg Asn Asp Ala Val Asn Glu Ile Val Ala Val Lys Asn Asn Phe Pro 10 gtg ata gaa att att cag tgt agg atg tgc cac ctc cag ttc cca gga 195 Val Ile Glu Ile Ile Gln Cys Arg Met Cys His Leu Gln Phe Pro Gly 20 25 gaa aag tgc tcc aga gga aga gga ata tgc aca gca aca aca gaa gag 243 Glu Lys Cys Ser Arg Gly Arg Gly Ile Cys Thr Ala Thr Thr Glu Glu 35 40 gcc tgc atg gtt gga agg atg ttc aaa agg gat ggt aat ccc tgg tta 291 Ala Cys Met Val Gly Arg Met Phe Lys Arg Asp Gly Asn Pro Trp Leu 50 55 65 acc ttc atg ggc tgc cta aag aac tgt gct gat gtg aaa ggc ata agg 339 Thr Phe Met Gly Cys Leu Lys Asn Cys Ala Asp Val Lys Gly Ile Arg 70 75 tgg agt gtc tat ttg gtg aac ttc agg tgc tgc agg agc cat gac ctg 387 Trp Ser Val Tyr Leu Val Asn Phe Arg Cys Cys Arg Ser His Asp Leu tgc aat gaa gac ctt tagaagttaa tggttcttct gtgactccaa tttctgggtg 442 Cys Asn Glu Asp Leu 100 aggitgitgc cicagccict tcacaatgac titctaaaaa aaatcacaca cacacacaca 502 cacactacag aagaggattg caaacacatg gctccatctt ctgcacacga aaggaaagtc 562 cctctccttt tctacagtct ctgtcacgcc ccttaaaata agtaaataaa taaccttgag 622

90

agnaaagaac	aagatcaata	tatcctgcag	gttgctacaa	acccttgtgc	tttcactgta	682
tagccagttc	attcagaaaa	ggaggaaagg	gtagtttaat	ttcaaaaaag	aatcccttcc	742
tctttcctct	gctgctttcc	ttccttctgt	ggcagggtat	tttaatatat	ttttcaaatt	802
tttttccttt	ctgtgttatc	cttcttatcc	cactccaaag	aaagcacata	actgtggcct	862
gaagggatgg	ggagtagcaa	cataaaaaga	agtggctcaa	gtcttcttgg	agtttgttca	922
tgaatgctga	tcccagggtg	aggagaagat	tgggacatag	aaaggaaact	gcatcagaaa	982
catgaacaga	gaaagattgt	ctaccttcta	gaatcagatc	tgtttggggc	tgggggttgg	1042
agaataaaag	caggagaagt	ctatgggatt	ctagaaatag	tacctgcatc	cagcttccct	1102
gccaaactca	caaggagaca	tcaacctcta	gacagggaac	agcttcagga	tacttccagg	1162
agacagagcc	accagcagca	aaacaaatat	tcccatgcct	ggagcatggc	atagaggaag	1222
ctgagaaatg	tggggtctga	ggaagccatt	tgagtctggc	cactagacat	ctcatcagcc	1282
acttgtgtga	agagatgccc	catgacccca	gatgcctctc	ccacccttac	ctccatctca	1342
cacacttgag	cttgccactc	tgtataattc	taacatcctg	gagaaaaatg	gcagtttgac	1402
cgaacctgnt	tcacaagggt	agaggctgan	ttctaacnga	aacttgtnag	aatgaagcct	1462
ggaaagagtg	atgaattata	ttatattata	taaaaataat	aatnaaaaat	ataaagaaag	1522
ctaaaaaaaa	aaaaaaa					1540

<210> 53

<211> 1643

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 280..678

<220>

<221> sig_peptide

<222> 280..411

<223> Von Heijne matrix

score 3.90

seq LSDSLWSPHCSWS/ER

<220>

<221> polyA_signal

<222> 1606..1611

<220>

<221> polyA_site

<222> 1628..1643

<400> 53

91	-
cctaaqtttt ctcaaaaatg tctttttaca gttagtttaa gtcaggatct aaacaaagtt	60
catacattac atttgcttga tgtctctcaa ctgtcttata acctataaca attgctccca	120
atccatttt catgccatta ctttatttaa aaacctgggc caacccagtt ctcaaaaggt	180
attggacatc ctcagaaaag atgactgctc tatgttgaac caaacaactg attcttacag	240
gtttcttcct cacttgtcct ctggctgtgg cagccagat atg gac agg aga gct	294
Met Asp Arg Ala	
-40	
aca too tto cot coa cto cot goo aaa gaa agg aga got ggg ata ago	342
Thr Ser Phe Pro Pro Leu Pro Ala Lys Glu Arg Arg Ala Gly Ile Ser	
-35 -30 -25	
agt gcc ctc ccc tgc cca ccc act atg tca ctt tct gac tcc ctt tgg	390
Ser Ala Leu Pro Cys Pro Pro Thr Met Ser Leu Ser Asp Ser Leu Trp	
-20 -15 -10	
tcc cct cat tgc tct tgg agt gag aga cct cat tcc ttc tct cac tgg	438
Ser Pro His Cys Ser Trp Ser Glu Arg Pro His Ser Phe Ser His Trp	
-5 1 _. 5	
agg cag cca aga atg gga tcc tct ggt ggg tct ttg gat tat gta agt	486
Arg Gln Pro Arg Met Gly Ser Ser Gly Gly Ser Leu Asp Tyr Val Ser	
10 15 20 25	
ttc aaa cac tgg ata cac agc tcc aga tct aaa ggc aag att gct gct	534
Phe Lys His Trp Ile His Ser Ser Arg Ser Lys Gly Lys Ile Ala Ala	
30 35 40	
cta gag gca gga ctg ttc att tcc tgc ctt ggg gat gca ccc aga ggc	582
Leu Glu Ala Gly Leu Phe Ile Ser Cys Leu Gly Asp Ala Pro Arg Gly	
45 50 55	
ctg aat gct tcc caa gga aac caa aga aag aac atg gtc tgt ttc aga	630
Leu Asn Ala Ser Gln Gly Asn Gln Arg Lys Asn Met Val Cys Phe Arg	
60 65 70	
ggt gga gtg gcc agt cta gct ctg cca tct ctc act cct tcc tgc ctt	678
Gly Gly Val Ala Ser Leu Ala Leu Pro Ser Leu Thr Pro Ser Cys Leu	
75 80 85	
tagggtacca ctgaggtgga aagcctgaac tgctgtctct gctctggctt gtgctcaagc	
tgtgtgteet tggaetggee ateteetete tgeaaceete ggtettetea tttgtaaaat	798 858
ggaagtgate etetetgeee ataetteett acagggetge ttggagacaa tcaatcaaga	
tgagggaaat tgagattota caaagagtgt gatgcotaca taacaaagta ttgtttttot	
cacagttggt ggtatttgag gagaaggtga agattttggt tggaagaggg accagcagac	
aaacttgttc tcttgtgtat aaaaagccat aacacgcccc acatccctca agctaggaag	
aaacctgggc tggatggtga cccactggag aagctgtgac atcctagcat ggggaagagt	
accaggatge ceaetectet teeccaggaa ceaecaagga geetggagee tggetttate	
tcagccctga gtccccctct cccggtgcgc acacccctaa ctttttttt tttagatgga atcttgctct gtcgcccagg ctggagtgca acggcagctc actgtaacct ccacctccca	
ggttcaagcg attctcctgc ctcagcctcc cgagtagctg ggattacagg cgcgtgactc	1330

92

catgcctggc taatttttgt atttttagta gaggtagggt ttcaccatgt tgaccagggt 1398 ggtctggaac tcctgatctc aggtgatctg cctgcctcca cctcccaaag tgctggaatt 1458 acaggtgtga gctaccgcgc ccggccaatc tggggctcct agctttggtg caccaactac 1518 tcaaatcccc aacttctctc caagaggaat ttcaagaaac actgaccaat ctggttacag 1578 aagctgaagg ggccccaacc aggctgcaat aaacctgctt tacccttcca aaaaaaaaa 1638 1643 aaaaa <210> 54 <211> 1314 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 64..726 <220> <221> sig_peptide <222> 64..147 <223> Von Heijne matrix score 3.70 seq VVFTLGMFSAGLS/DL <220> <221> polyA signal <222> 1279..1284 <220> <221> polyA_site <222> 1300..1314 <400> 54 agtaggtece ggeaacegea ggetegegge gggegetggg egegggatee gaetetagte 60 gta atg gag gcg ggc ttt ctg gac tcg ctc att tac gga gca tgc 108 Met Glu Ala Gly Gly Phe Leu Asp Ser Leu Ile Tyr Gly Ala Cys -25 -20 gtg gtc ttc acc ctt ggc atg ttc tcc gcc ggc ctc tcg gac ctc agg 156 Val Val Phe Thr Leu Gly Met Phe Ser Ala Gly Leu Ser Asp Leu Arg cac atg cga atg acc cgg agt gtg gac aac gtc cag ttc ctg ccc ttt 204 His Met Arg Met Thr Arg Ser Val Asp Asn Val Gln Phe Leu Pro Phe 5 10 15

ctc acc acg gaa gtc aac aac ctg ggc tgg ctg agt tat ggg gct ttg

Leu Thr Thr	Glu Val	Asn Asn	Leu Gly	Trp Leu	Ser Tyr	Gly Ala	Leu
20		25		30			35
aag gga gad							
Lys Gly Asp	Gly Ile	Leu Ile	Val Val	Asn Thr	Val Gly	Ala Ala	Leu
	40			45		50	
cag acc ctg			_	_	_		_
Gln Thr Leu	-	Leu Ala	-	His Tyr	Cys Pro		Arg
	55		60	. ata aaa	ata att	65 ata ata	. aat 396
gtt gtg ctc	_	_					
70	Leu Gin	IIII AIA	75	n neu Gry	80	neu neu	d Gly
tat qqc tac	ttt tga	ctc cta		aac cct		caa ctt	caq 444
Tyr Gly Tyr			•				
85	-	90			95	_	
cag ttg ggc	ctc ttc	tgc agt	gtc ttc	acc atc	agc atg	tac cto	tca 492
Gln Leu Gly	Leu Phe	Cys Ser	Val Phe	Thr Ile	Ser Met	Tyr Leu	Ser
100		105		110			115
cca ctg gct	gac ttg	gct aag	gtg att	caa act	aaa tca	acc caa	tgt 540
Pro Leu Ala	Asp Leu	Ala Lys	Val Ile	Gln Thr	Lys Ser	Thr Glr	Cys
	120			125		130	1
ctc tcc tac			_			_	
Leu Ser Tyr		Thr Ile			Thr Ser		Trp
	135		140			145	525
tgc ctc tat		•			_		
Cys Leu Tyr		Arg Leu	Arg Asp	PIO TYP	11e Met	vai sei	ASII
ttt cca gga		acc acc		cac ttc		ttc tac	ı aaq 684
Phe Pro Gly						_	, _
165		170		J	175	•	•
tac ccc cag	gag caa	gac agg	aac tac	tgg ctc	ctg caa	acc	726
Tyr Pro Glr	Glu Gln	Asp Arg	Asn Tyr	Trp Leu	Leu Gln	Thr	
180		185		190			
tgaggctgct	catctgac	ca ctggg	cacct ta	gtgccaac	ctgaacca	aaa gaga	cctcct 786
tgtttcagct	gggcctgc	tg tccag	cttcc ca	ggtgcagt	gggttgt	ggg aaca	agagat 846
gactttgagg	ataaaagg	ac caaag	aaaaa go	tttactta	gatgatt	gat tggg	gcctag 906
gagatgaaat	cacttttt	at ttttt	agaga tt	tttttt	ttaattt	tgg aggt	tggggt 966
gcaatcttta	gaatatgc	ct taaaa	ggccg gg	cgcggtgg	ctcacgc	ctg taat	cccagc 1026
actttgggag							
aacatggtga							
cctgtaatcc							
aggttgcagt	gagctgag	at cgtgc	cattg to	atatgaat	atgeetta	aca tgct	gatatg 1266

94 1314 aatatgcctt aaaataaagt gttccccacc cctaaaaaaa aaaaaaaa <210> 55 <211> 2356 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 42..1097 <220> <221> sig_peptide <222> 42..110 <223> Von Heijne matrix score 4.40 seq QFILLGTTSVVTA/AL <220> <221> polyA_signal <222> 2323..2328 <220> <221> polyA_site <222> 2341..2356 <400> 55 atecttggeg ccacagtegg ccacegggge tegeogcegt c atg gag age gga ggg 56 Met Glu Ser Gly Gly -20 egg eec teg etg tge eag tte ate ete etg gge ace ace tet gtg gte 104 Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly Thr Thr Ser Val Val -15 -10 acc gcc gcc ctg tac tcc gtg tac cgg cag aag gcc cgg gtc tcc caa 152 Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys Ala Arg Val Ser Gln gag ctc aag gga gct aaa aaa gtt cat ttg ggt gaa gat tta aag agt 200 Glu Leu Lys Gly Ala Lys Lys Val His Leu Gly Glu Asp Leu Lys Ser att ctt tca gaa gct cca gga aaa tgc gtg cct tat gct gtt ata gaa 248 Ile Leu Ser Glu Ala Pro Gly Lys Cys Val Pro Tyr Ala Val Ile Glu 35 40 45

								9	95							
gga	gct	gtg	cgg	tct	gtt	aaa	gaa	acg	ctt	aac	agc	cag	ttt	gtg	gaa	296
Gly	Ala	Val	Arg	Ser	Val	Lys	Glu	Thr	Leu	Asn	Ser	Gln	Phe	Val	Glu	
			50					55					60			
aac	tgc	aag	999	gta	att	cag	cgg	ctg	aca	ctt	cag	gag	cac	aag	atg	344
Asn	Cys	Lys	Gly	Val	Ile	Gln	Arg	Leu	Thr	Leu	Gln	Glu	His	Lys	Met	
		65					70					75				
gtg	tgg	aat	cga	acc	acc	cac	ctt	tgg	aat	gat	tgc	tca	aag	atc	att	392
Val	Trp	Asn	Arg	Thr	Thr	His	Leu	Trp	Asn	Asp	Cys	Ser	Lys	Ile	Ile	
	80					85					90					
cat	cag	agg	acc	aac	aca	gtg	ccc	ttt	gac	ctg	gtg	ccc	cac	gag	gat	440
His	Gln	Arg	Thr	Asn	Thr	Val	Pro	Phe	Asp	Leu	Val	Pro	His	Glu	Asp	•
95					100					105					110	
ggc	gtg	gat	gtg	gct	gtg	cga	gtg	ctg	aag	ccc	ctg	gac	tca	gtg	gat	488
Gly	Val	Asp	Val	Ala	Val	Arg	Val	Leu	Lys	Pro	Leu	Asp	Ser	Val	Asp	
				115					120					125		
ctg	ggt	cta	gag	act	gtg	tat	gag	aag	ttc	cac	ccc	tcg	att	cag	tcc	536
Leu	Gly	Leu	Glu	Thr	Val	Tyr	Glu	Lys	Phe	His	Pro	Ser	Ile	Gln	Ser	
			130					135					140			
ttc	acc	gat	gtc	atc	ggc	cac	tac	atc	agc	ggt	gag	cgg	ccc	aaa	ggc	584
Phe	Thr	Asp	Val	Ile	Gly	His	Tyr	Ile	Ser	Gly	Glu	Arg	Pro	Lys	Gly	
		145					150					155				
atc	caa	gag	acc	gag	gag	atg	ctg	aag	gtg	999	gcc	acc	ctc	aca	ggg	632
Ile	Gln	Glu	Thr	Glu	Glu	Met	Leu	Lys	Val	Gly	Ala	Thr	Leu	Thr	Gly	
	160					165					170					
gtt	ggc	gaa	ctg	gtc	ctg	gac	aac	aac	tct	gtc	cgc	ctg	cag	ccg	ccc	680
Val	Gly	Glu	Leu	Val	Leu	Asp	Asn	Asn	Ser	Val	Arg	Leu	Gln	Pro	Pro	
175					180					185					190	
aaa	caa	ggc	atg	cag	tac	tat	cta	agc	agc	cag	gac	ttc	gac	agc	ctg	728
Lys	Gln	Gly	Met	Gln	Tyr	Tyr	Leu	Ser	Ser	Gln	Asp	Phe	Asp	Ser	Leu	
				195					200					205		
ctg	cag	agg	cag	gag	tcg	agc	gtc	agg	ctc	tgg	aag	gtg	ctg	gcg	ctg	776
Leu	Gln	Arg	Gln	Glu	Ser	Ser	Val	Arg	Leu	Trp	Lys	Val	Leu	Ala	Leu	
			210					215					220			
gtt	ttt	ggc	ttt	gcc	aca	tgt	gcc	acc	ctc	ttc	ttc	att	ctc	cgg	aag	824
Val	Phe	Gly	Phe	Ala	Thr	Сув	Ala	Thr	Leu	Phe	Phe	Ile	Leu	Arg	Lys	
		225					230					235				
caġ	tat	ctg	cag	cgg	cag	gag	cgc	ctg	cgc	ctc	aag	cag	atg	cag	gag	872
Gln	Tyr	Leu	Gln	Arg	Gln	Glu	Arg	Leu	Arg	Leu	Lys	Gln	Met	Gln	Glu	
	240					245			= "		250					
gag	ttc	cag	gag	cat	gag	gcc	cag	ctg	ctg	agc	cga	gcc	aag	cct	gag	920
Glu	Phe	Gln	Glu	His	Glu	Ala	Gln	Leu	Leu	Ser	Arg	Ala	Lys	Pro	Glu	
255					260					265					270	

96 ·

gac agg gag agt ctg aag agc gcc tgt gta gtg tgt ctg agc agc ttc	968
Asp Arg Glu Ser Leu Lys Ser Ala Cys Val Val Cys Leu Ser Ser Phe	
275 280 285	
aag toc tgc gtc ttt ctg gag tgt ggg cac gtt tgt tcc tgc acc gag	1016
Lys Ser Cys Val Phe Leu Glu Cys Gly His Val Cys Ser Cys Thr Glu	
290 295 300	
tgc tac cgc gcc ttg cca gag ccc aag aag tgc cct atc tgc aga cag	1064
Cys Tyr Arg Ala Leu Pro Glu Pro Lys Lys Cys Pro Ile Cys Arg Gln	
305 310 315	
gcg atc acc cgg gtg ata ccc ctg tac aac agc taatagtttg gaagccgcac	1117
Ala Ile Thr Arg Val Ile Pro Leu Tyr Asn Ser	
320 325	
agettgacet ggaageacee etgeceeett tteagggatt tttatetega ggeetttgga	1177
ggagcagtgg tgggggtagc tgtcacctcc aggtatgatt gagggaggaa ttgggtagaa	1237
actotocaga cocatgooto caatggcagg atgotgcott toccacotga gaggggacco	1297
tgtccatgtg cagcctcatc agagcctcac cctgggagga tgccgtggcg tctcctccca	1357
ggagccagat cagtgcgagt gtgactgaaa atgcctcatc acttaagcac caaagccagt	1417
gatcagcagc tettetgtte etgtgtette tgttttttte tggtgaateg ttgettgetg	1477
tggacttggt ggaggactca gaggggagga aaggctgggc cccgagtaca acggatgcct	1537
tgggtgctgc ctccgaagag actctgccgc agcttttctt ctttttcctc atgccccggg	1597
aaacagtett tetteagaat tgteaggetg ggeaggteaa ettgtgttee ttteeeetea	1657
cetgettgee teettaacge etgeacgtgt gtgtagagga caaaagaaag tgaagteage	1717
acatccgctt ctgcccagat ggtcggggcc ccgggcaaca gattgaagag agatcatgtg	1777
aagggcagtt ggtcaggcag gcctcctggt ttcgccactg gccctgattt gaactcctgc	1837
cacttgggag agctcggggt ggtccctggt tttccctcct ggagaatgag gcgcagaggc	1897
ctcgcctcct gaaggacgca gtgtggatgc cactggccta gtgtcctggc ctcacagctt	1957
ccttgcaagg ctgtcacaag gaaaagcagc cggctggcac cctgagcata tgccctcttg	2017
gggctccctc atccagcccg tcgcagcttt gacatcttgg tgtactcatg tcgcttctcc	2077
ttgtgttacc ccctcccagt attaccattt gcccctcacc tgcccttggt gagcctttta	2137
gtgcaagaca gatggggctg ttttccccca cctctgagta gttggaggtc acatacacag	2197
ctctttttt attgcccttt tctgcctctg aatgttcatc tctcgtcctc ctttgtgcag	2257
gcgaggaagg ggtgccctca ggggccgaca ctagtatgat gcagtgtcca gtgtgaacag	2317
cagaaattaa acatgttgca accaaaaaaa aaaaaaaaa	2356

<210> 56

<211> 1701

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 245..1399

97

<220	>															
<221	.> si	.g_pe	eptio	de												
<222	> 24	15	796													
<223	> Vc	n He	eijne	e mai	crix											
	sc	ore	5.10	0												
	se	eq GV	VLPL1	LLLS	LLVA,	/TW										
<220	>															
<221	.> pc	olyA_	_sigı	nal												
<222	> 16	69.	.1674	4												
<220	)>															
<221	.> pc	olyA_	_site	€												
<222	> 16	87.	.170	1												
<400	> 56	5														
atco	cgcg	gca g	gtggd	cccg	gc ga	atgto	cgct	gt	gctgo	ctaa	gcct	tggc	cgc (	gctgi	tgcagg	6
agcg	ccgt	ac d	ccga	agago	cc ga	accgt	ttcaa	a tgi	tggct	ctg	aaa	ctgg	gcc a	atcto	ccagag	120
tgga	tgct	ac a	aacat	tgato	ct aa	atcc	eggga	a gad	ettga	aggg	acct	ccg	agt a	agaad	cctgtt	180
acaa	ctaç	gtg t	tgca	aaca	gg gg	gacta	attca	a ati	ttga	atga	atg	caago	ctg (	ggtad	ctccgg	24
gcag	ato	g tgg	g aca	a tti	tc	c tac	c ato	gg	tto	c cct	t gta	a gag	g ct	g aad	caca	289
	Met	Tr	Thi	r Phe	e Se	туз	r Ile	e Gly	/ Phe	e Pro	o Vai	l Gl	ı Lei	ı Ası	n Thr	
					-18	30				-1'	75				-170	
_					_				cct		_		_		_	33'
Val	Tyr	Phe	Ile	Gly	Ala	His	Lys	Ile	Pro	Asn	Ala	Asn	Met	Asn	Glu	
				-16					-160					-15		
									acc							38
Asp	Gly	Pro			Ser	Val	Asn		Thr	Ser	Pro	Gly	-		Asp	
			-150					-145					-14			
									gtc							433
His	Ile			Tyr	Lys	Lys			Val	Lys	Ala			Leu	Trp	
		-135					-130					-12				
					_	-			aat	_			_	_		48:
Asp			Ile	Thr	Ala	-	-	Lys	Asn	GIu			Val	Glu	Val	
	-120					-11					-110					
						_			aga -		_	-				529
		Thr	Thr	Thr			GIA	Asn	Arg	-	Met	Ala	Leu	Ile		
-105					-100		L = 4		_4-	-95					-90	
	-							_	gtg					_	-	577
nlS	ser	Thr	11e		GIÀ	rne	ser	GIN	Val	rne	GIU	Pro	Hls		ьys	
				-85					-80					-75		

								9	98							
aaa	caa	acg	cga	gct	tca	gtg	gtg	att	cca	gtg	act	999	gat	agt	gaa	625
Lys	Gln	Thr	Arg	Ala	Ser	Val	Val	Ile	Pro	Val	Thr	Gly	Asp	Ser	Glu	
			-70					-65					-60			
	-	_	_		ctg											673
Gly	Ala	Thr	Val	Gln	Leu	Thr	Pro	Tyr	Phe	Pro	Thr	Cys	Gly	Ser	Asp	
		-55					-50					-45				
					gga		_			_					_	721
Cys	Ile	Arg	His	Lys	Gly		Val	Val	Leu	Сув		Gln	Thr	Gly	Val	
	-40					-35					-30					
			_	_	aac			-	-	_				_		769
	Phe	Pro	Leu	Asp	Asn	Asn	Lys	Ser	Lys		GIÀ	GIY	Trp	Leu		
-25					-20					-15					-10	07.77
-		_			ctg	-		_				_		_		817
Leu	Leu	ьeu	Leu		Leu	Leu	vai	Ala	1	пр	val	ьеи	vai 5	ATA	GIÀ	
250	<b>+</b> - +	ata	250	-5 +aa	agg	a 2 a	<b>~</b> 22	200		220	220	act			tet	865
					Arg											003
116	TYL	10	MCC		n.y		15	9		<b>L</b> , 5	275	20	DCI		<b>5</b> 01	
acc	acc		cta	cta	ccc	ccc		aaq	att	ctt	ata		tac	cca	tct	913
				_	Pro			_	-			_				
	25					30		•			35		-			
gaa	ata	tgt	ttc	cat	cac	aca	att	tgt	tac	ttc	act	gaa	ttt	ctt	caa	961
Glu	Ile	Cys	Phe	His	His	Thr	Ile	сув	Tyr	Phe	Thr	Glu	Phe	Leu	Gln	
40					45					50					55	
aac	cat	tgc	aga	agt	gag	gtc	atc	ctt	gaa	aag	tgg	cag	aaa	aag	aaa	1009
Asn	His	Cys	Arg	Ser	Glu	Val	Ile	Leu	Glu	Lys	Trp	Gln	Lys	Lys	Lys	
				60					65					70		
ata	gca	gag	atg	ggt	cca	gtg	cag	tgg	ctt	gcc	act	caa	aag	aag	gca	1057
Ile	Ala	Glu	Met	Gly	Pro	Val	Gln	Trp	Leu	Ala	Thr	Gln	Lys	Lys	Ala	
			75					80					85			
gca	gac	aaa	gtc	gtc	ttc	ctt	ctt	tcc	aat	gac	gtc	aac	agt	gtg	tgc	1105
Ala	Asp	Lys	Val	Val	Phe	Leu	Leu	Ser	Asn	Asp	Val	Asn	Ser	Val	Сув	
		90					95					100				
					aag											1153
Asp	_	Thr	Cys	Gly	ГÀа		Glu	Gly	Ser	Pro		Glu	Asn	Ser	Gln	
	105					110					115					
_					gcc					_	_	_		_	_	1201
	ьeu	rne	Pro	ьeu	Ala	rne	ASN	ьeu	rne		ser	qaa	ьeu	arg		
120	2++	904	a+~	an-	125		at-	a+		130	+++	262	<b>a</b>	a++	135	1240
_			_		aaa Lys				_			_			_	1249
GIII	116	UIR	neu	140	ъÀВ	ıyr	vai	val	va1 145	TÄL	FILE	wrd	GIU	150	ush	
				T-4-0					143					100		

99

aca aaa gac gat tac aat gct ctc agt gtc tgc ccc aag tac cac ctc	1297
Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys Pro Lys Tyr His Leu	
155 160 165	
atg aag gat gcc act gct ttc tgt gca gaa ctt ctc cat gtc aag cag	1345
Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu His Val Lys Gln	
170 175 180	
cag gtg tca gca gga aaa aga tca caa gcc tgc cac gat ggc tgc tgc	1393
Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His Asp Gly Cys Cys	
185 190 195	
tee ttg tageceacce atgagaagea agagacetta aaggetteet ateceaceaa	1449
Ser Leu	
200	
ttacagggaa aaaacgtgtg atgatcctga agcttactat gcagcctaca aacagcctta	1509
gtaattaaaa cattttatac caataaaatt ttcaaatatt gctaactaat gtagcattaa	1569
ctaacgattg gaaactacat ttacaacttc aaagctgttt tatacataga aatcaattac	1629
agttttaatt gaaaactata accattttga taatgcaaca ataaagcatc ttcagccaaa	1689
aaaaaaaaaa aa	1701

<210> 57

<211> 772

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 235..441

<220>

<221> sig_peptide

<222> 235..303

<223> Von Heijne matrix

score 5.30

seq LLLDVTVFIPALP/FS

<220>

<221> polyA_site

<222> 758..772

<220>

<221> misc_feature

<222> 573

<223> n=a, g, c or t

100

<400> 57			
aatacctggc aatctgttta agatc	attga caggcctgag	agttttccat acggcctgca	60
ccctaacctc tgggaagaaa atatc	cacaa tgaaatttct	acaagattag aggaaggaga	120
gaggcaacgg ggattccatt tctac	tagga gtatcaacct	ctgagaggga tatatccatc	180
tctgtggatg tcatctgctc tgcag	aaaac cctttcttgg	aactaccagg aaac atg	237
•		Met	
aat ctg atg tgg acc ctc ctc	ctt ttc ctc ctt	ttg gac gta act gtc	285
Asn Leu Met Trp Thr Leu Leu	Leu Phe Leu Leu	Leu Asp Val Thr Val	
-20	-15	-10	
ttc att cca gcc ctg ccc ttc	tca aca cga cat	ata gac aac ccc agg	333
Phe Ile Pro Ala Leu Pro Phe	Ser Thr Arg His	Ile Asp Asn Pro Arg	
-5 . 1	5	10	
tcg tgg gtc cct aga gga cac	cac cga tac tgt	gat gtg atg atg agg	381
Ser Trp Val Pro Arg Gly His	His Arg Tyr Cys	Asp Val Met Met Arg	•
15	20	25	
cgc cgt tgg ctg atc tat agg	ggt aaa tgc gag	cag atc cac aca ttc	429
Arg Arg Trp Leu Ile Tyr Arg	Gly Lys Cys Glu	Gln Ile His Thr Phe	
30	35	40	
att cat aga atc tgaccaccat	agcagatttc tgcag	aactc caccactgcc	481
Ile His Arg Ile	•		
45			
ctgtaccaac ageceeteca tgtge	agctg ccacaacagt	actcatgatg tcaatgtcac	541
tgactgcttt gccagcacag ggacc	gacc tnttcactgo	cactaccaaa aataaggagt	601
ccaccaggee catgegagtg ggetge	caaga agggggcatc	tgttcacctg gatggctagg	661
ttcctcctga caacggcacc tgaatg	gactt gcaccctacg	ccttcaaatc tgtgcagcac	721
tgtcaaggtc ttctttgtaa atgct	cgtc ctttgcaaaa	aaaaaaaaa a	772
<210> 58		,	
<211> 987			
<212> DNA	•		

<213> Homo Sapiens

<220>

<221> CDS

<222> 88..411

<220>

<221> sig_peptide

<222> 88..234

<223> Von Heijne matrix

score 4.70

101

seq LLLVSTWSADLMS/YR

.

<220	>															
<221	.> pc	olyA_	_sign	nal												
<222	> 93	389	943													
<220	>															
<221	> pc	olyA_	site	2												
<222	> 96	549	987													
<220	>			•												
<221	> m	isc_f	eatı	ıre												
<222	> 82	28,83	32													
<223	> n=	a, <u>c</u>	ј, с	or t	2											
<400	> 58	3														
tttt	ttct	tt g	gacat	gtto	a ga	atgtt	ggca	agg	gctga	aaaa	ctg	aggg	gga t	ctg	gttgtg	60
ataa	tcca	agg c	ctga	atat	a ta	acaaa	at at	g aa	ac aa	ag ac	cc ca	ac aa	ıg ga	ac to	gc tca	114
							Me	et As	sn Ly	/s Tì	ır Hi	is Ly	/s As	зр Су	ys Ser	
											-4	15				
tca	ccc	cag	tat	tcc	att	tac	aac	atc	ctg	aat	gaa	ctc	ccg	acc	agg	162
Ser	Pro	Gln	Tyr	Ser	Ile	Tyr	Asn	Ile	Leu	Asn	Glu	Leu	Pro	Thr	Arg	
-40					-35					-30					-25	
cct	ata	att	ctc	tct	tgc	agc	caa	ata	tcc	tgc	tta	ctc	ctg	gta	tct	210
Pro	Ile	Ile	Leu	Ser	Cys	Ser	Gln	Ile	Ser	Сув	Leu	Leu	Leu	Val	Ser	
				-20					-15					-10		
acc	tgg	tca	gca	gac	ctc	atg	agt	tat	cgc	cca	gtg	aca	aaa	cca	tcc	258
Thr	Trp	Ser	Ala	Asp	Leu	Met	Ser	Tyr	Arg	Pro	Val	Thr	Lys	Pro	Ser	
			-5					1				5				
caa	aga	tgc	acc	agt	cca	gca	caa	agt	atg	act	gtc	aat	ctc	aca	aaa	306
Gln	Arg	Cys	Thr	Ser	Pro	Ala	Gln	Ser	Met	Thr	Val	Asn	Leu	Thr	Lys	
	10					15					20					
gat	gta	999	ttc	tac	gag	gat	act	cag	agt	ata	aga	att	acg	cta	agt	354
Asp	Val	Gly	Phe	Tyr	Glu	qaA	Thr	Gln	Ser	Ile	Arg	Ile	Thr	Leu	Ser	
25					30					35					40	
gaa	ata	agc	caa	gcc	cag	aaa	gac	aca	tac	ttt	att	att	tca	tgt	atc	402
Glu	Ile	Ser	Gln	Ala	Gln	Lys	Asp	Thr	Tyr	Phe	Ile	Ile	Ser	Cys	Ile	
				45					50					55		
tgt	gga	atc	taaa	agag	jtc a	aatt	cate	g ca	gcag	ggag	g ago	gcts	gaag			451
Cys	Gly	Ile														
aagg	ggga	ıga t	gttg	atca	ıa aç	gtttc	tate	tat	acaa	aga	ccaa	acca	itc a	catt	atgcc	511
tcat	aaat	at a	taca	atta	it ta	ittto	ictaa	. tta	caac	rtaa	agca	atac	aa c	raaga	aaaaa	571

102

aggaatcata agtaaatcca tgacaagtga aaacgcaatg gagagaaggg aatcaatgat 631 tgaagaagag aaaggacagt ggatttacaa ctgcttcgaa agagtgattt gactggcaaa 691 ggactgggga gaggtccttt gggaaatgga caaaaccctc gaatggttag gaaagacaat 751 ctctttataa atgcggggca taagctgagc acaaggtgaa gtttggcatg tactgccgtg 811 ggatgttgta aaaattnatg ntcaaaagca aagcaattct tggttcatct gtgttcactg 871 tgagactagc ctattattgg ggttaaactt ataaacaaac ttctgttcat cattttttt 931 ctccaaaata aagtgatcaa attgtcccac agaaaaaaaa aaaaaaaaa aaaaaa 987 <210> 59 <211> 1324 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 129..452 <220> <221> sig_peptide <222> 129..212 <223> Von Heijne matrix score 5.20 seq LDIVISFVGAVSS/ST <220> <221> polyA_signal <222> 1290..1295 <220> <221> polyA_site <222> 1309..1324 <220> <221> misc_feature <222> 888,1080 <223> n=a, g, c or t <400> 59 gatttttttc acaagcaata gtttagtagt tcaactttca ttaattattt ctagtaatta 60 ctttcagtat tgaaaatact tactgttaat attcatgtaa gtaacaaaca tttaaataag 120 aaaaataa atg tat ttt cat ttt cta ggt gcc gga gca att ctt att cct 170 Met Tyr Phe His Phe Leu Gly Ala Gly Ala Ile Leu Ile Pro

103

					-25	5				-20	)				-15	
cgt	tta	gac	att	gtg	att	tcc	ttc	gtt	gga	gct	gtg	agc	agc	agc	aca	218
Arg	Leu	Asp	Ile	Val	Ile	Ser	Phe	Val	Gly	Ala	Val	ser	ser	Ser	Thr	
				-10					-5·					1		
ttg	gcc	cta	atc	ctg	cca	cct	ttg	gtt	gaa	att	ctt	aca	ttt	tcg	aag	266
Leu	Ala	Leu	Ile	Leu	Pro	Pro	Leu	Val	Glu	Ile	Leu	Thr	Phe	Ser	Lys	
		5					10					15				
gaa	cat	tat	aat	ata	tgg	atg	gtc	ctg	aaa	aat	att	tct	ata	gca	ttc	314
Glu	His	Tyr	Asn	Ile	Trp	Met	Val	Leu	Lys	Asn	Ile	Ser	Ile	Ala	Phe	
	20					25					30					
act	gga	gtt	gtt	ggc	ttc	tta	tta	ggt	aca	tat	ata	act	gtt	gaa	gaa	362
Thr	Gly	Val	Val	Gly	Phe	Leu	Leu	Gly	Thr	Tyr	Ile	Thr	Val	Glu	Glu	
35					40					45					50	
att	att	tat	cct	act	ccc	aaa	gtt	gta	gct	ggc	act	cca	cag	agt	cct	410
Ile	Ile	Tyr	Pro	Thr	Pro	Lys	Val	Val	Ala	Gly	Thr	Pro	Gln	Ser	Pro	
				55					60					65		
ttt	cta	aat	ttg	aat	tca	aca	tgc	tta	aca	tct	ggt	ttg	aaa			452
Phe	Leu	Asn	Leu	Asn	Ser	Thr	Cys	Leu	Thr	Ser	Gly	Leu	Lys			
			70					75					80			
tag	caaaa	agc a	agaa	tcat	ga gt	ctt	ctatt	tt!	tgtc	ccat	ttct	gaaa	aat 1	atca	agata	512
acta	agtaa	aaa t	taca	ttgci	ta ta	ataca	ataaa	a aat	tggta	aaca	aact	ctgt	tt 1	ctt	ggcac	572
gata	atta	ata 1	tttt	ggaag	gt aa	atcat	aact	cti	ttaco	agt	agto	ggtaa	aac (	ctate	gaaaaa	632
tcct	tgc	ttt 1	taag	tgtta	ag ca	aataq	gttca	a aaa	aaatt	aag	ttct	gaaa	aat 1	gaaa	aaaatt	692
aaaa	atgta	aaa a	aaaa	ttaaa	ag aa	ataaa	aaata	a cti	tctat	tat	tctt	ttat	ct	cagta	aagaaa	752
taco	ctta	acc a	aaga	tatc	c to	ettt	atgo	tac	ctctt	ttg	ccad	ctcad	ett (	gagaa	acagaa	812
tagg	gatti	tca a	acaa	taaga	ag aa	ataaa	aataa	a gaa	acato	gtat	aaca	aaaaa	agc 1	cctct	ccaga	872
tcat	ccci	tgt g	gaat	gncca	aa ag	gtaaa	actt	ato	gtaca	agtg	taaa	aaaa	aaa a	aaaat	ctcag	932
ttat	gtt	ttt a	atta	gccaa	aa tt	cta	atgat	tg:	gctco	etgg	aagt	ataç	gaa a	aacto	ccatt	992
aaca	ataa	tat a	aagc	atcag	ga aa	aatt	gcaaa	a ca	ctaga	aatt	aatt	ttac	cac t	ctaa	atggta	1052
gtt	gatc	ttc a	atag	tcaag	ga gg	gcact	gnto	aag	gatca	atga	ctta	agtgt	tt (	caato	gaaatt	1112
tgad	caag	gga d	cttt	aaaa	ct ta	atcca	agtgo	c aa	ctcc	ettg	tttt	tcgt	ca	gagga	aaaagg	1172
agge	ccta	gaa a	aggt	taagi	ta ad	ettg	gtcga	a gad	ccact	cag	cctt	gaga	atc a	aagaa	aaacct	1232
aato	cttc	tga (	ctcc	caggo	cc ag	ggat	gttt	at	ttct	caca	tcat	gtc	caa g	gaaaa	agaat	1292
aaat	ttat	gtt d	cage	tcaaa	aa aa	aaaa	aaaa	a aa								1324

<210> 60

<211> 1918

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

104 <222> 238..612 <220> <221> sig_peptide <222> 238..348 <223> Von Heijne matrix score 9.40 seq LLCCVLSASQLSS/QD <220> <221> polyA_signal <222> 1885..1890 <220> <221> polyA_site <222> 1905..1918 <220> <221> misc_feature <222> 945,1624 <223> n=a, g, c or t <400> 60 aaaaatctaa gcgacttcga tgccaaggaa gttgtgtaaa tgtgcacgcg ctacaccaca 60 cccagggtgg aaaccacagt tgcagagtca ttaaacaatc aattgtttgt ttaacatctg 120 tgataggcag ctttccttct tttcaacagt gatacctacg aaaatcaaaa taaatgcaag 180 ctgaggtttt gtgctcactg aaagggctgt caaccccaga aggccgacac aaaaaaa 237 atg gta tgt gaa gat gca ccg tct ttt caa atg gcc tgg gag agt caa 285 Met Val Cys Glu Asp Ala Pro Ser Phe Gln Met Ala Trp Glu Ser Gln -35 -30 -25 atg gcc tgg gag agg ggg cct gcc ctt ctc tgc tgt gtc ctt tcg gct 333 Met Ala Trp Glu Arg Gly Pro Ala Leu Leu Cys Cys Val Leu Ser Ala -20 -15 tcc cag ttg agc tcc caa gac cag gac cca ctg ggg cat ata aaa tct 381 Ser Gln Leu Ser Ser Gln Asp Gln Asp Pro Leu Gly His Ile Lys Ser ctg ctg tat cct ttc ggc ttc cca gtt gag ctc cca aga cca gga ccc 429 Leu Leu Tyr Pro Phe Gly Phe Pro Val Glu Leu Pro Arg Pro Gly Pro 20

act ggg gca tat aaa aaa gtc aaa aat caa aat caa aca aca agt tct Thr Gly Ala Tyr Lys Lys Val Lys Asn Gln Asn Gln Thr Thr Ser Ser 477

30 35 40

105

gag	tta	ctt	agg	aaa	cag	act	tcg	cat	ttc	aat	cag	aga	ggc	cac	aga	525
Glu	Leu	Leu	Arg	Lys	Gln	Thr	Ser	His	Phe	Asn	Gln	Arg	Gly	His	Arg	
	45					50					55					
gca	agg	tct	aaa	ctt	ctg	gct	tct	aga	caa	att	cct	gat	aga	aca	ttt	573
Ala	Arg	Ser	Lys	Leu	Leu	Ala	Ser	Arg	Gln	Ile	Pro	Asp	Arg	Thr	Phe	
60					65					70					75	
aaa	tgt	999	aag	tgg	ctt	ccc	cag	gtc	cca	tcc	cct	gtt	tag	ggata	aga	622
Lys	Cys	Gly	Lys	Trp	Leu	Pro	Gln	Val	Pro	Ser	Pro	Val				
				80					85							
gttg	gatai	tca	tttt	tataç	gt to	gccai	gtai	ge	ctcts	gcct	gaat	ttt	ttt	aatt	gacttt	682
tgag	jctti	ttg	agati	tgcad	g ag	ggga	gaaca	a agg	gcctt	tgc	tgtt	gtg	gat	agga	aagact	742
taad	cta	aaa	ttaaa	accaç	gc aa	agaaa	agcat	tag	gtaaa	aaat	ctaa	acaa	tat	gaag	ggctct	802
tate	gagto	cat	tttt	ttcaa	aa ag	gatga	aaaa	tc	cagaa	aacg	caca	agga	acg	aaata	acctcc	862
caga	aaca	atg	aagca	aatca	at c	gaaga	actca	a cto	ggtaa	atat	tttt	aaa	aag	tata	cagatc	922
aaag	caa	aaa 🤄	gaago	ccato	gt gi	tnaad	caaaq	g aga	aaato	gtgc	aaat	att	ttt	taag	gcagta	982
ttaa	igtgo	caa	gagga	agtaa	ac at	tgaaa	ataaa	a cat	tctt	tca	cate	gct	act	gggaa	atataa	1042
attt	cgct	tcc	agaaa	aggco	eg ta	agca	gttt	gac	gatag	gtg	gcaa	aac	ctt	aagat	ttgtgt	1102
acto	9999	ccc .	agaat	tttt	a ti	tcta	aggaa	a tgt	atco	tga.	ggaa	atta	atc	cgaga	atcccc	1162
acaa	act	gca	atgti	ttagg	ga at	ttgt	cctta	a tag	gcatt	gca	taca	caa	gaa	aaaca	agagaa	1222
aago	ctg	atc	cctg	cagt	g ga	aaaa	ggggt	tca	atga	att	acg	gtgt	gtc	tgcat	gaggc	1282
tttt	atga	aca	ttaaa	aaatt	g ti	tgaad	caac	g gco	caggo	caca	gtg	gctca	atg	cctgt	taatcc	1342
taad	cacti	ttg	ggagg	gcca	ag gt	tggga	aagat	tg:	cctga	igct	cago	gagti	ttg	agac	cagcct	1402
gggg	caaca	acg	gtgaa	aacco	cc gt	tctc	acta	a aaa	ataca	aaaa	aatt	agc	cgg	gcgt	cgcagc	1462
atgo	gcci	tgt	agtc	ccago	et go	ctcag	ggagg	g cto	gaggo	cagg	agaa	ttg	att	gaac	ccggga	1522
ggca	agag	gtt	gcact	tgago	ct ga	agati	aag	cad	ccgca	actc	cago	ctg	ggc	gacag	gagcaa	1582
gatt	ccg	ttc	ccaa	gaaaa	aa aa	aaati	gtt	aad	caata	aagg	gnca	aag	gga	gagaa	atcata	1642
acat	ctg	att	aaaca	agaaa	aa ag	gcaag	gatt	tta	aaaa	taa	ctat	ata	agg	atggt	cccag	1702
ctgt	gtc	aaa	aggaa	agctt	g ti	tgta	atac	gtg	gtgca	taa	aaat	taa	ata	gaggt	gaaca	1762
caat	tati	ttt :	aaggo	cagtt	ca aa	attai	ctct	gta	ttgt	gaa	ctaa	gact	ttt	ctaga	aatttt	1822
acti	att	cat	tctg	tactt	ca aa	attti	ttct	aat	gaad	caca	tata	ctti	ttg	taato	cagaaa	1882
atat	taaa	atg	catgt	tattt	t to	caaaa	aaaa	a aaa	aaaa							1918

<210> 61

<211> 852

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 229..735

106	
<221> sig_peptide	
<222> 229. 492	
<223> Von Heijne matrix	
score 6.70	
seq VFALSSFLNKASA/VY	
<220>	
<221> polyA_signal	
<222> 816821	
•	
<220>	
<221> polyA_site	
<222> 841852	
<400> 61	
aatgactggc agtggcatca gcgatggcgg ctgcgtcggg gtcggt	tctg cagcgctgta 60
tegtgtegee ggeagggagg catagegeet etetgatett eetgea	atggc tcaggtgatt 120
ctggacaagg attaagaatg tggatcaagc aggtttttaa atcaag	gattt aacattccaa 180
cacataaaaa ttatttatcc aacagctcct cccagatcat atactc	cct atg aaa gga 23'
	Met Lys Gly
gga atc tcc aat gta tgg ttt gac aga ttt aaa ata ac	cc aat gac tgc 28!
Gly Ile Ser Asn Val Trp Phe Asp Arg Phe Lys Ile Th	nr Asn Asp Cys
-85 -80 -75	-70
cca gaa cac ctt gaa tca att gat gtc atg tgt caa gt	tg ctt act gat 33
Pro Glu His Leu Glu Ser Ile Asp Val Met Cys Gln Va	al Leu Thr Asp
-65 -60	-55
ttg att gat gaa gaa gta aaa agt ggc atc aag aag aa	ac agg ata tta 38
Leu Ile Asp Glu Glu Val Lys Ser Gly Ile Lys Lys As	en Arg Ile Leu
-50 -45	-40
ata gga gga ttc tct atg gga gga tgc atg gca atg ca	at tta gca tat 42
Ile Gly Gly Phe Ser Met Gly Gly Cys Met Ala Met H	is Leu Ala Tyr
-35 -30 -2	25
aga aat cat caa gat gtg gca gga gta ttt gct ctt to	ct agt ttt ctg 47
Arg Asn His Gln Asp Val Ala Gly Val Phe Ala Leu Se	er Ser Phe Leu
-20 -15 -10	
aat aaa gca tct gct gtt tac cag gct ctt cag aag ag	gt aat ggt gta 52
Asn Lys Ala Ser Ala Val Tyr Gln Ala Leu Gln Lys Se	er Asn Gly Val
-5 1 · 5	10
ctt cct gaa tta ttt cag tgt cat ggt act gca gat ga	ag tta gtt ctt 57
Leu Pro Glu Leu Phe Gln Cys His Gly Thr Ala Asp G	lu Leu Val Leu
15 20	25

cat tot tgg gca gaa gag aca aac tca atg tta aaa tot cta gga gtg

621

107

His Ser Trp Ala Glu Glu Thr Asn Ser Met Leu Lys Ser Leu Gly Val 30 35 40 acc acg aag ttt cat agt ttt cca aat gtt tac cat gag cta agc aaa 669 Thr Thr Lys Phe His Ser Phe Pro Asn Val Tyr His Glu Leu Ser Lys 50 45 55 act gag tta gac ata ttg aag tta tgg att ctt aca aag ctg cca gga 717 Thr Glu Leu Asp Ile Leu Lys Leu Trp Ile Leu Thr Lys Leu Pro Gly 60 70 gaa atg gaa aaa caa aaa tgaatgaatc aagagtgatt tgttaatgta 765 Glu Met Glu Lys Gln Lys agtgtaatgt ctttgtgaaa agtgattttt actgccaaat tataatgata attaaaatat 825 taagaaatag caaaaaaaa aaaaaaa 852 <210> 62 <211> 726 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 168..413 <220> <221> sig_peptide <222> 168..335 <223> Von Heijne matrix score 3.80 seq QMIMLVCFNLSRG/CL <220> <221> polyA_signal <222> 684..689 <220> <221> polyA_site <222> 708..726 <220> <221> misc_feature <222> 723

<223> n=a, g, c or t

108

<400>	62														
cagcaa	aaatg	gcago	ggaag	gg ca	agcto	ctaaç	g ct	cccat	cct	tcca	atag	gaa	tgtt	gaataa	6
acaaco	cagac	actgt	caga	aa co	caact	ttgt	ga:	gaac	999	aaaa	ataat	ca	aaggi	tgtacg	12
gcaact	aaaa •	gaato	gctgg	ga to	caaca	acaaa	a gga	aaact	taa	aaat	tgat	atg	aaa	gct	17
												Met	Lys	Ala	
													-55		
gtg tg	gg cat	ttt	tgc	ttg	tcc	cac	aag	tcc	agc	ttg	gtg	ata	gtc	ttg	224
Val Tr	p His	Phe	Cys	Leu	Ser	His	Lys	Ser	Ser	Leu	Val	Ile	Val	Leu	
		-50					-45					-40			
aag ac	g gca	ggc	tgg	att	ccc	cag	gct	999	acc	ctt	atc	cct	ggt	tcc	27
Lys Th	ır Ala	Gly	Trp	Ile	Pro	Gln	Ala	Gly	Thr	Leu	Ile	Pro	Gly	Ser	
	-35					-30					-25				
aga ga	g gag	agc	aga	tct	gat	tca	caa	atg	att	atg	ctt	gtc	tgt	ttt	320
Arg Gl	lu Glu	ser	Arg	Ser	Asp	Ser	Gln	Met	Ile	Met	Leu	Val	Cys	Phe	
-2	20				-15					-10					
aat ct	t tcc	aga	ggc	tgt	ctg	aag	aag	gta	ttc	atc	atc	tct	gtt	tta	368
Asn Le	eu Ser	Arg	Gly	Cys	Leu	Lys	Lys	Val	Phe	Ile	Ile	Ser	Val	Leu	
-5				1				5					10		
cct ga	ac cca	gaa	acc	att	ctg	cta	gga	aaa	aca	gtg	ggc	att	gct		413
Pro As	sp Pro	Glu	Thr	Ile	Leu	Leu	Gly	Lys	Thr	Val	Gly	Ile	Ala		
		15					20					25			
tgaaaa	cagt (	gttct	gtgg	jt to	gaaaa	acco	aca	agtca	cct	tggg	gctgg	gtg (	ggaat	gtaaa	473
atggcg	gcctc	ttctg	gato	a to	gttt	ggca	gti	tctc	aaa	aggt	caaa	icg 1	tagaa	atcact	533
atttga	itcca a	acaat	tcta	c to	ctag	ggtat	ato	ccca	ıaaa	gaat	tgaa	aa (	caago	gatgca	593
aacata	tgcg	tgtac	acta	a to	ttta	ataga	aaa	aata	ttc	acaa	taat	ca a	aaagg	gcagaa	653
acaacc	caag	tgtcc	aata	a ca	gaag	gaato	g aat	aaac	agt	gtga	tata	aa o	cataa	aaaaa	713
aaaaaa	aaan a	aaa													726

<210> 63

<211> 1039

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 100..852

<220>

<221> sig_peptide

<222> 100..159

<223> Von Heijne matrix

109

score 6.10 seq FLILFLFLMECQL/HL

<220> <221> polyA_signal <222> 998..1003 <220> <221> polyA_site <222> 1019..1039 <400> 63 agaacttctt gattcctcag ataaatagag gacagatgct ggactgtagc taagtatttc 60 ctttcatcta cgggataaaa tactgataat ttgagagtg atg gac aag gtt cag 114 Met Asp Lys Val Gln -20 agt ggt ttc ctc att ttg ttt ttg ttt tta atg gaa tgc caa ctt cat 162 Ser Gly Phe Leu Ile Leu Phe Leu Phe Leu Met Glu Cys Gln Leu His -15 -10 tta tgc ttg ccg tat gca gat gga ctc cat ccc act gga aac ata aca 210 Leu Cys Leu Pro Tyr Ala Asp Gly Leu His Pro Thr Gly Asn Ile Thr ggc tta cca ggt agc ttc aac cac tgg ttt tat gtg act cag gga gaa 258 Gly Leu Pro Gly Ser Phe Asn His Trp Phe Tyr Val Thr Gln Gly Glu 25 ttg aaa agc tgt ttc agg gga gat aaa aag aag gta att aca ttt cac 306 Leu Lys Ser Cys Phe Arg Gly Asp Lys Lys Lys Val Ile Thr Phe His cgc aaa aag ttt tct ttt caa ggc agt aaa cgg tca caa cca ccc aga 354 Arg Lys Lys Phe Ser Phe Gln Gly Ser Lys Arg Ser Gln Pro Pro Arg 50 55 60 402 · aac atc acc aaa gag ccc aaa gtg ttc ttt cat aaa acc cag ttg cct Asn Ile Thr Lys Glu Pro Lys Val Phe Phe His Lys Thr Gln Leu Pro 70 ឧក 75 ggg att caa ggg gct gcc tcg aga tcc acg gct gca tcc cct acg aac 450 Gly Ile Gln Gly Ala Ala Ser Arg Ser Thr Ala Ala Ser Pro Thr Asn 85 90 ccc atg aaa ttc ctg agg aat aaa gca ata att cgg cat aga cct gct 498 Pro Met Lys Phe Leu Arg Asn Lys Ala Ile Ile Arg His Arg Pro Ala ctt gtt aaa gta att tta att tcg agc gta gcc ttc agc att gcc ctg 546

Leu Val Lys Val Ile Leu Ile Ser Ser Val Ala Phe Ser Ile Ala Leu

110

	115					120					125					
ata		aaa	ato	gca	atic		tat	ato	ata	tat		cta	gca	cag	act	594
	_		-											Gln		
130	Cyb	07			135		- ] -			140	5				145	
	<b>~</b> 22	ana	caa	cad		gag	tca	ctt	tat		aac	ctc	agg	ata		642
	-	-								_				Ile	_	012
GIU	Giu	Arg	GIII	150	Deu	Giu	501	DCu	155	шуы	non	пси	n. g	160	110	
++2	tta	aas	ast		ma a	aaa	aac	tca		asc	aaa	aat	aaa	tcc	200	690
			_	_	_					_				Ser	_	050
Leu	пеп	Gry	165	GIU	Giu	Giu	Gry	170	GIU	rsp	Olu	Gry	175	JCI	1111	
	ata	att		220	226	~~~	22t		cta	~~~	220	++~		cac	taa	738
				_		_			_		_					/30
HIS	Leu		PIO	гур	ASII	GIU		GIU	neu	Giu	гур		116	His	ser	
		180					185					190				706
_					-	_				_	_		_	aag	_	786
vaı		TIE	ser	rys	Arg		гуѕ	ASI	11e	гуѕ		ьуs	Leu	Lys	GIU	
	195					200					205					
				_		_				_				cat		834
	GIn	Asn	Ser	Val		Glu	Asn	гÀг	Thr	-	Asn	Ala	ser	His		
210					215					220					225	
-		_		gac	_	tgaa	acgca	aga d	gaca	igago	gt go	cgg	etga	3		882
Gly	Lys	Met	Glu	Asp	Leu											•
				230										- 4 4		040
-		-				_								_	cccag	942
-			-				_	_	_	_	acct	gcai	ce e	agaa	aataa	1002
agco	cacai	ga t	atag	gcaaa	aa aa	aaaaa	aaaa	a aaa	laaaa	1						1039
		_														
_	0 > 64															
	l> 13															
	2> Dì															
<213	3> H	omo s	Sapie	ens												
<220		_														
	L> CI															
<222	2> 23	38	1152													
<220	١.															
		ia na	ptio	łe.												
	2> 2:															
< 2 2 3				e mat	TITX											
	80	core	8.5	J												

seq SIFLLLSFPDSNG/KA

111

<220>
<221> polyA_signal
<222> 1298..1303

<220>
<221> polyA_site
<222> 1324..1355

<400> 64

		_														
aatt	ttct	tg a	aaato	cacat	g g	tacca	aatca	a caa	agtc	tgt	tatt	ttg	tt	catta	atgaga	60
aaga	ataat	ct a	actaa	aatat	t a	aaata	ctg	g . aag	ggag	caag	atag	gcttt	ga '	tcca	gggaga	120
cctt	ttc	cat 1	tate	gtgct	t ta	agtaa	atct	g cc	gccaa	acaa	gcta	atcti	ct '	ttate	gttctt	180
ctac	caact	gaj	gttg	gtttt	g ti	tttc	cate	g ttt	gtc	ctt	aata	ggc	237			
atg	agc	ttc	ctt	aga	att	acc	cct	tcg	acg	cat	agt	tct	gtt	tca	tct	285
Met	Ser	Phe	Leu	Arg	Ile	Thr	Pro	Ser	Thr	His	Ser	Ser	Val	Ser	Ser	
				-30					-25					-20		
gga	ctt	ttg	agg	ctt	agt	atc	ttt	cta	cta	ctt	agc	ttt	cct	gac	tca	333
Gly	Leu	Leu	Arg	Leu	Ser	Ile	Phe	Leu	Leu	Leu	Ser	Phe	Pro	Asp	Ser	
			-15					-10					-5			
aac	gga	aaa	gcc	att	tgg	aca	gct	cac	ctg	aat	ata	aca	ttt	cag	gtt	381
Asn	Gly	Lys	Ala	Ile	Trp	Thr	Ala	His	Leu	Asn	Ile	Thr	Phe	Gln	Val	
		1				5					10					
gga	aat	gag	atc	aca	tcg	gaa	tta	gga	gag	agt	gga	gtg	ttc	ggg	aat	429
Gly	Asn	Glu	Ile	Thr	Ser	Glu	Leu	Gly	Glu	Ser	Gly	Val	Phe	Gly	Asn	
15					20					25					30	
cat	tct	cct	ctg	gaa	agg	gtg	tct	ggt	gtg	gtg	gca	ctt	cct	gaa	gaa	477
His	Ser	Pro	Leu	Glu	Arg	Val	Ser	Gly	Val	Val	Ala	Leu	Pro	Glu	Glu	
				35					40					45		
tgg	aat	cag	aat	gcc	tgt	cat	cct	ttg	acc	aat	ttc	agc	agg	ccc	aaa	525
Trp	Asn	Gln	Asn	Ala	Cys	His	Pro	Leu	Thr	Asn	Phe	Ser	Arg	Pro	Lys	•
			50					55					60			
cag	gca	gac	tca	tgg	ctg	gcc	ctc	atc	gaa	cgt	gga	ggc	tgt	act	ttt	573
Gln	Ala	Asp	Ser	Trp	Leu	Ala	Leu	Ile	Glu	Arg	Gly	Gly	Cys	Thr	Phe	
		65					70					75				
aca	cat	aaa	atc	aac	gtg	gca	gca	gag	aag	gga	gca	aat	999	gtg	atc	621
Thr	His	Lys	Ile	Asn	Val	Ala	Ala	Glu	Lys	Gly	Ala	Asn	Gly	Val	Ile	
	80					85					90					
atc	tac	aac	tat	caa	ggt	acg	ggc	agt	aaa	gta	ttt	ccc	atg	tct	cac	669
Ile	Tyr	Asn	Tyr	Gln	Gly	Thr	Gly	Ser	Lys	Val	Phe	Pro	Met	Ser	His	
95					100					105					110	
cag	999	acg	gaa	aat	ata	gtc	gcg	gtg	atg	ata	agc	aac	ctg	aaa	ggc	717
Gln	Gly	Thr	Glu	Asn	Ile	Val	Ala	Val	Met	Ile	Ser	Asn	Leu	Lys	Gly	

112

				115					120					125		
atg	gaa	att	ttg	cac	tcg	att	cag	aaa	gga	gtc	tat	gtg	aca	gtc	atc	765
Met	Glu	Ile	Leu	His	Ser	Ile	Gln	Lys	Gly	Val	Tyr	Val	Thr	Val	Ile	
			130					135					140			
att	gaa	gtg	ggg	aga	atg	cac	atg	cag	tgg	gtg	agc	cat	tac	atc	atg	813
Ile	Glu	Val	Gly	Arg	Met	His	Met	Gln	Trp	Val	Ser	His	Tyr	Ile	Met	
		145					150					155				
tat	cta	ttt	acc	ttc	ctg	gct	gcc	aca	att	gcc	tac	ttt	tac	tta	gat	861
Tyr	Leu	Phe	Thr	Phe	Leu	Ala	Ala	Thr	Ile	Ala	Tyr	Phe	Tyr	Leu	Asp	
	160					165					170					
tgc	gtc	tgg	aga	ctt	aca	cct	aga	gtg	ccc	aat	tct	ttc	acc	agg	agg	909
Сув	Val	$\mathtt{Trp}$	Arg	Leu	Thr	Pro	Arg	Val	Pro	Asn	Ser	Phe	Thr	Arg	Arg	
175					180					185					190	
cga	agt	caa	ata	aag	aca	gat	gtg	aag	aaa	gct	att	gac	cag	ctt	caa	957
Arg	Ser	Gln	Ile	Lys	Thr	Asp	Val	Lys	Lys	Ala	Ile	Asp	Gln	Leu	Gln	
				195					200					205		
ctg	cga	gtt	ctc	aaa	gaa	999	gat.	gag	gaa	tta	gac	cta	aat	gaa	gac	1005
Leu	Arg	Val	Leu	Lys	Glu	Gly	Asp	Glu	Glu	Leu	Asp	Leu	Asn	Glu	Asp	
			210					215					220			
aac	tgt	gtt	gtt	tgc	ttt	gac	aca	tac	aaa	ccc	caa	gat	gta	gta	cgc	1053
Asn	Суѕ	Val	Val	Cys	Phe	Asp	Thr	Tyr	Lys	Pro	Gln	Asp	Val	Val	Arg	
		225					230					235				
att	tta	act	tgc	aaa	cat	ttt	ttc	cat	aag	gca	tgc	att	gac	ccc	tgg	1101
Ile	Leu	Thr	Сув	Lys	His	Phe	Phe	His	Lys	Ala	Cys	Ile	Asp	Pro	Trp	
	240					245					250					
ctt	tta	gcc	cat	agg	aca	tgt	CCC	atg	tgc	aag	tgt	gac	atc	ctg	aaa	1149
Leu	Leu	Ala	His	Arg	Thr	Cys	Pro	Met	Cys	Lys	Cys	Asp	Ile	Leu	Lys	
255					260					265					270	
act	taag	gaaat	ct c	ggaga	attt	t ct	gaag	gatgt	aac	caga	atct	ttc	aaat	ac		1202
Thr																
aaa	gatta	aga t	aaat	tgt	ct ta	attgt	actt	tat	gtag	gaga	gaaa	attt	ca g	gctto	ctctac	1262
ccaa	agtai	tga a	acaaç	gggt	ga aa	attt	gtgtt	tta	aaaa	taa	aact	cctt	at o	atgo	ccagc	1322
taaa	aaaa	aaa a	aaaaa	aaaa	aa aa	aaaa	aaaa	aaa	ì							1355

<210> 65

<211> 572

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 187..369

113

<220>	
<221> sig_peptide	
<222> 187312	
<223> Von Heijne matrix	
score 7.10	
seq LLPCSSVLTCGQA/SQ	
<220>	
<221> polyA_signal	
<222> 489494	
<220>	
<221> polyA_site	
<222> 558572	
<220>	
<221> misc_feature	
<222> 94,527,537538	
<223> n=a, g, c or t	
<400> 65	
cttcttcagt cagtggctgg ataatctaat tataatgtta taatccatca tttctctttt	60
tgaacagtca atttagttta acatttgctt aacnagccat tatgtatgcc aggtaatgtg	120
ctagatgctg gtggttcaaa gaaaggaacg atgtggacct gacctcaaag aaatccattg	180
gagaat atg aca gat tta gat tta atg atc aac ttt act ttt cct ata	228
Met Thr Asp Leu Asp Leu Met Ile Asn Phe Thr Phe Pro Ile	
-40 -35 -30	
cag tgg gtc aac caa aac cgc atg gcg tac tac tct ctg aag cct cta	276
Gln Trp Val Asn Gln Asn Arg Met Ala Tyr Tyr Ser Leu Lys Pro Leu	
-25 -20 -15	
cta ccc tgc tcc tcc gtg ttg aca tgt ggt cag gca agc cag gac tta	324
Leu Pro Cys Ser Ser Val Leu Thr Cys Gly Gln Ala Ser Gln Asp Leu	
-10 -5 1	
ctc aca tca gct aca tca gtt act ggg atg gag aaa att gaa gcc	369
Leu Thr Ser Ala Thr Ser Val Thr Gly Met Glu Lys Ile Glu Ala	
5 10 15	4==
tagaaagatc aagaaacttt ctccaggcca taaatagagg aatcaggatt caaatcagat	429
agaccccagg gcttgttctc ttcaacacca cattacccta cattattatt caattattaa	489
ataaaacctt gcattagtgg catttccaaa tgcataanca aaaaaaatnna aaaaaaagta	549
acactggcaa aaaaaaaaaa aaa	572

114

<210> 66

<211> 535

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 121..459

<220>

<221> sig_peptide

<222> 121..165

<223> Von Heijne matrix

score 4.20

seq FYLLLASSILCAL/IV

<220>

<221> polyA_signal

<222> 497..502

<220>

<221> polyA_site

<222> 521..535

<220>

<221> misc_feature

<222> 486,489

<223> n=a, g, c or t

<400> 66

agttacacca ggcatcctgg cccaaagttt cccaaatcca ggcggctaga ggcccactgc 60 ttcccaacta ccagctgagg gggtccgtcc cgagaaggga gaagaggccg aagaggaaac 120 atg aac ttc tat tta ctc cta gcg agc agc att ctg tgt gcc ttg att 168 Met Asn Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile gtc ttc tgg aaa tat cgc cgc ttt cag aga aac act ggc gaa atg tca 216 Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser 15 5 10 tca aat tca act gct ctt gca cta gtg aga ccc tct tct tct ggg tta 264 Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Ser Gly Leu

20 25 30

att aac agc aat aca gac aac aat ctt gca gtc tac gac ctc tct cgg

312

115 Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg 35 40 gat att tta aat aat ttc cca cac tca ata gcc agg cag aag cga ata . 360 Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile 50 55 ttg gta aac ctc agt atg gtg gaa aac aag ctg gtt gaa ctg gaa cat 408 Leu Val Asn Leu Ser Met Val Glu Asn Lys Leu Val Glu Leu Glu His act cta ctt agc aag ggt ttc aga ggt gca tca cct cac cgg aaa tcc 456 Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser 90 acc taaaagcgta caggatgtaa tgccagnggn ggaaatcatt aaagacactt 509 Thr tgagtagatt caaaaaaaa aaaaaa 535 <210> 67 <211> 572 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 34..336 <220> <221> sig_peptide <222> 34..123 <223> Von Heijne matrix score 7.80 seq SVTLAQLLQLVQQ/GQ <220> <221> polyA_signal <222> 536..541

<220>

<221> polyA_site

<222> 556..572

<220>

<221> misc_feature

<222> 545

<223> n=a, g, c or t

<400> 67

gcattacacg ceggtcagga ttegegacce gae atg gag egt eec ege agt eec 54 Met Glu Arg Pro Arg Ser Pro

> -30 -25

> > 396

caa tgc tcg gcc ccg gcc tct gcc tca gct tcg gtt acc ctg gcg cag 102 Gln Cys Ser Ala Pro Ala Ser Ala Ser Ala Ser Val Thr Leu Ala Gln

> -20 -15 -10

150 ctc ctg cag ctg gtc cag cag ggc cag gaa ctc ccg ggc ctg gag aaa Leu Leu Gln Leu Val Gln Gln Gly Gln Glu Leu Pro Gly Leu Glu Lys

> -5 1

cgc cac atc gcg gcg atc cac ggc gaa ccc aca gcg tcc cgg ctg ccg 198

Arg His Ile Ala Ala Ile His Gly Glu Pro Thr Ala Ser Arg Leu Pro 10

egg agg eec aag eec tgg gag gee geg get ttg get gag tee ett eec 246

Arg Arg Pro Lys Pro Trp Glu Ala Ala Ala Leu Ala Glu Ser Leu Pro

cct ccg acc ctc agg ata gga acg gcc ccg gcg gag cct ggc ttg gtt 294

Pro Pro Thr Leu Arg Ile Gly Thr Ala Pro Ala Glu Pro Gly Leu Val

gag gca gcg act gcg cct tct tca tgg cat aca gtg ggc ccc 336

Glu Ala Ala Thr Ala Pro Ser Ser Trp His Thr Val Gly Pro

tgaggttcca ggtcctttgc ggcggcgatc tggagggcgt ggctacagga cccgggatgc cattcagtta ctcatctttt atgctttcgt cctgacctgt ctcaactaga cttgctcctg 456

caaccaccat gggggttttg catttacatt tgtggaccat gttacagtta agaaaaatcc 516

tgtttcagtc cttatatgta ataaaatgnt ttatgatgca aaaaaaaaaa aaaaaa 572

<210> 68

<211> 804

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 119..409

<220>

<221> sig_peptide

<222> 119..388

<223> Von Heijne matrix

score 4.30 seq TCLTACWTALCCC/CL

<220>
<221> polyA_signal
<222> 769..774

<220>

<221> polyA_site <222> 789..804

<220>

<221> misc_feature

<222> 274

<223> n=a, g, c or t

<220>

<221> unsure

<222> -39

<223> Xaa = His,Gln

<400> 68

-10

~5

acttgctctg agacaggtgc ggcaagtcta ctgcgggctg gtccgggctc ctcaggttca 60 gacccgaccg ttatccagtc ggttcgtgga gaggagaggt gcactttaca ggtcccca 118 atg aac caa gag aac cct cca cca tat cca ggc cct ggt cca acg gcc 166 Met Asn Gln Glu Asn Pro Pro Pro Tyr Pro Gly Pro Gly Pro Thr Ala -80 -90 cca tac cca cct tat cca cca caa cca atg ggt cca gga cct atg ggg 214 Pro Tyr Pro Pro Tyr Pro Pro Gln Pro Met Gly Pro Gly Pro Met Gly -70 262 gga ccc tac cca cct cct caa ggg tac ccc tac caa gga tac cta cag Gly Pro Tyr Pro Pro Pro Gln Gly Tyr Pro Tyr Gln Gly Tyr Leu Gln ~55 tac ggc tgg can ggt gga cct cag gag cct cct aaa acc aca gtg tat 310 Tyr Gly Trp Xaa Gly Gly Pro Gln Glu Pro Pro Lys Thr Thr Val Tyr -35 gtg gta gaa gac caa aga aga gat gag cta gga cca tcc acc tgc ctc 358 Val Val Glu Asp Gln Arg Arg Asp Glu Leu Gly Pro Ser Thr Cys Leu -20 aca gcc tgc tgg acg gct ctc tgt tgc tgc tgt ctc tgg gac atg ctc 406 Thr Ala Cys Trp Thr Ala Leu Cys Cys Cys Cys Leu Trp Asp Met Leu

1

118

118	
acc tgaccagacc ageccagecg teetgteetg ecagetetge tgecacetet	459
Thr	
gacaggtgtg cctgccccca tctcttctga ttgctgttaa caaatgacta gctttgcaca	519
gacacctcta ccttcagcac tatgggattc tagattaatg ggggttgcta ctgtttaatt	579
cagtgacttg atctttttaa tgtccaaaat ccatttctta ttgatcttta aagatgtgct	639
aaatgacttt tttggccaaa ggcttagttg tgaaaaatat aatttttaaa ttatacattc	699
aaggtagtgg ccaaatgtaa cacatcaatc atggaatgat ttctctgcta acagccgcct	759
gtatgtttca ataaatttgt ccaaagctca aaaaaaaaaa	804
<210> 69	
<211> 629	
<212> DNA	
<213> Homo Sapiens	
<220>	
<221> CDS	
<222> 232534	
<220>	
<221> sig_peptide	
<222> 232306	
<223> Von Heijne matrix	
score 3.70	
seq AKTCLVLCSRVLS/VI	
<220>	
<221> polyA_signal	
<222> 595600	
<220>	
<221> polyA_site	
<222> 615629	
	-
<400> 69	
tatcactgtt acgaaccaag gatttacaga tcactggcaa aaattctgag aactttcaca	60
ccagtatact gtccaagccc attaagtggc atcacacctc tcttttatgt agctcagaca	120
agacagtota atatottoaa aataotaotg caatatggaa tottagaaag agaaaaaaac	180
cctatcaaca ttgtcttaac aatagtactc tacccttcga gagtaagagt a atg gtt	237
Met Val	
-25	
gat cgt gaa ttg gct gac atc cat gaa gat gcc aaa aca tgt ttg gta	285
Asp Arg Glu Leu Ala Asp Ile His Glu Asp Ala Lys Thr Cys Leu Val	

119

			-20					-15					-10			
cta	tgt	tcc	aga	gtg	ctt	tct	gtc	att	tca	gtc	aag	gaa	ata	aag	aca	333
Leu	Cys	Ser	Arg	Val	Leu	Ser	Val	Ile	ser	Val	Lys	Glu	Ile	Lys	Thr	
		-5					1				5					
cag	ctg	agt	tta	gga	aga	cat	cca	att	att	tca	aat	tgg	ttt	gat	tac	381
Gln	Leu	Ser	Leu	Gly	Arg	His	Pro	Ile	Ile	Ser	Asn	Trp	Phe	Asp	Tyr	
10					15					20			•		25	
att	cct	tca	aca	aga	tac	aaa	gat	cca	tgt	gaa	cta	tta	cat	ctt	tgc	429
Ile	Pro	Ser	Thr	Arg	Tyr	Lys	qeA	Pro	Cys	Glu	Leu	Leu	His	Leu	Cys	
				30					35					40		
aga	cta	acc	atc	agg	aat	caa	cta	tta	acc	aac	aat	atg	ctc	cca	gat	477
Arg	Leu	Thr	Ile	Arg	Asn	Gln	Leu	Leu	Thr	Asn	Asn	Met	Leu	Pro	Asp	
			45					50					55			
gga	ata	ttt	tca	ctt	cta	att	cct	gct	cgt	cta	caa	aac	tat	ctg	aat	525
Gly	Ile	Phe	Ser	Leu	Leu	Ile	Pro	Ala	Arg	Leu	Gln	Asn	Tyr	Leu	Asn	
		60					65					70				
tta	gaa	atc	taad	catao	gt d	cagt	gtcct	a ag	ttco	cttaa	a caa	atgct	tac			574
Leu	Glu	Ile														
	75															
caat	gtat	gg d	ttag	gaagt	t aa	ataaa	aatt	cac	ttca	atgc	aaaa	aaaaa	aa a	aaaa	a	629

<210> 70

<211> 669

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 140..595

<220>

<221> sig_peptide

<222> 140..442

<223> Von Heijne matrix

score 4.10

seq VFMLIVSVLALIP/ET

<220>

<221> polyA_signal

<222> 630..635

<220>

<221> polyA_site <222> 655..669

<400> 70

	<40	0> /	U							-							
gagcgggaag ccgagctggg cgagaagtag gggagggcgg tgctccgccg cggtggcggt 6														t 60			
	tgci	tato	gct	tcgc	agaa	cc ta	actc	aggc	a gc	cagci	tgag	aag	agtt	gag	ggati	tgctg	c 120
	tgc	tggg	tct q	gcag	acgc	g at	g ga	t aa	c gt	g ca	g cc	gaa	a at	a aa	a ca	t cgc	172
	•					Me	t As	o Asi	n Vai	l Gl	n Pro	э Гу	s Il	e Ly	s Hi	s Arg	
							-10	00				- 9	5				
	ccc	ttc	tgc	ttc	agt	gtg	aaa	ggc	cac	gtg	aag	atg	ctg	cgg	ctg	gca	220
	Pro	Phe	Cys	Phe	Ser	Val	Lys	Gly	His	Val	Lys	Met	Leu	Arg	Leu	Ala	
	-90					-85					~80					-75	
	cta	act	gtg	aca	tct	atg	acc	ttt	ttt	atc	atc	gca	caa	gcc	cct	gaa	268
	Leu	Thr	Val	Thr	Ser	Met	Thr	Phe	Phe	Ile	Ile	Ala	Gln	Ala	Pro	Glu	
					-70					-65					-60		
	cca	tat	att	gtt	atc	act	gga	ttt	gaa	gtc	acc	gtt	atc	tta	ttt	ttc	316
	Pro	Tyr	Ile	Val	Ile	Thr	Gly	Phe	Glu	Val	Thr	Val	Ile	Leu	Phe	Phe	
				-55					-50					-45			
	ata	ctt	tta	tat	gta	ctc	aga	ctt	gat	cga	tta	atg	aag	tgg	tta	ttt	364
	Ile	Leu	Leu	Tyr	Val	Leu	Arg	Leu	Asp	Arg	Leu	Met	Lys	Trp	Leu	Phe	
			-40					-35					-30				
	tgg	cct	ttg	ctt	gat	att	atc	aac	tca	ctg	gta	aca	aca	gta	ttc	atg	412
	Trp	Pro	Leu	Leu	Asp	Ile	Ile	Asn	Ser	Leu	Val	Thr	Thr	Val	Phe	Met	
		-25					-20					-15					
	ctc	atc	gta	tct	gtg	ttg	gca	ctg	ata	cca	gaa	acc	aca	aca	ttg	aca	460
	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro	Glu	Thr	Thr	Thr	Leu	Thr	
	-10					-5					1				5		
	gtt	ggt	gga	<b>9</b> 99	gtg	ttt	gca	ctt	gtg	aca	gca	gta	tgc	tgt	ctt	gcc	508
	Val	Gly	Gly	Gly	Val	Phe	Ala	Leu	Val	Thr	Ala	Val	Cys	Cys	Leu	Ala	
				10				•	15					20			
	gac	999	gcc	ctt	att	tac	cgg	aag	ctt	ctg	ttc	aat	ccc	agc	ggt	cct	556
	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu	Phe	Asn	Pro	Ser	Gly	Pro	
			25				•	30					35				
	tac	cag	aaa	aag	cct	gtg	cat	gaa	aaa	aaa	gaa	gtt	ttg	taat	tttta	ıta	605
	Tyr	Gln	Lys	Lys	Pro	Val	His	Glu	Lys	Lys	Glu	Val	Leu				
		40					45					50					
	ttac	ettti	ta g	gtttg	gatad	et aa	igtat	taaa	a cat	attt	ctg	tatt	ctto	cca a	aaaa	ıaaaaa	665
	aaaa	a '															669

<210> 71

<211> 973

<212> DNA

121 <213> Homo Sapiens <220> <221> CDS -<222> 32..658 <220> <221> sig peptide <222> 32..289 <223> Von Heijne matrix score 4.00 seq KLWKLLFLMKSQG/WI <220> <221> polyA_signal <222> 936..941 <220> <221> polyA_site <222> 959..973 <220> <221> misc_feature <222> 934 <223> n=a, g, c or t <400> 71 agggagaggg atggctagtg aggtttagat c atg ttg agc cct acc ttt gtt 52 Met Leu Ser Pro Thr Phe Val -85 -B0 ttg tgg gat gtt gga tat ccc tta tac acc tat gga tcc atc tgc att 100 Leu Trp Asp Val Gly Tyr Pro Leu Tyr Thr Tyr Gly Ser Ile Cys Ile -75 att gca tta att att tgg caa gtg aaa aag agc tgc caa aaa tta agc 148 Ile Ala Leu Ile Ile Trp Gln Val Lys Lys Ser Cys Gln Lys Leu Ser -60 -55 ttg gta cct aac agg agc tgt tgc cgg tgt cac cga aga gtc caa caa 196 Leu Val Pro Asn Arg Ser Cys Cys Arg Cys His Arg Arg Val Gln Gln -40 aag tot gga gat aga aca toa aga got agg aga act toa cag gaa gaa 244

-30 -25 -20

Lys Ser Gly Asp Arg Thr Ser Arg Ala Arg Arg Thr Ser Gln Glu Glu

122

								_								
gcc	gag	aag	ttg	tgg	aag	ctg	ctg	ttt	ctc	atg	aaa	agc	cag	ggc	tgg	292
Ala	Glu	Lys	Leu	Trp	Lys	Leu	Leu	Phe	Leu	Met	Lys	Ser	Gln	Gly	Trp	•
-15					-10					-5					1	
att	cct	cag	gaa	gga	agt	gtg	cgg	cga	atc	ctg	tgt	gca	gac	ccc	tgc	340
Ile	Pro	Gln	Glu	Gly	Ser	Val	Arg	Arg	Ile	Leu	Cys	Ala	Asp	Pro	Cys	
			5					10					15			
tgc	caa	atc	tgc	aat	gtt	atg	gct	ctg	gag	att	aag	caa	ttg	ctg	gca	388
Cys	Gln	Ile	Cys	Asn	Val	Met	Ala	Leu	Glu	Ile	Lys	Gln	Leu	Leu	Ala	
		20					25					30				
gaa	gct	cca	gaa	gtt	ggc	ttg	gat	aac	aag	atg	aag	ctg	ttt	ctg	cac	436
Glu	Ala	Pro	Glu	Val	Gly	Leu	Asp	Asn	Lys	Met	Lys	Leu	Phe	Leu	His	
	35					40					45					
tgg	att	aac	cct	gaa	atg	aaa	gat	cga	agg	cat	gag	gaa	tcc	att	ctc	484
Trp	Ile	Asn	Pro	Glu	Met	Lys	Asp	Arg	Arg	His	Glu	Glu	Ser	Ile	Leu	
50					55					60					65	
ctt	tct	aag	gct	gag	aca	gtg	acc	caa	gac	agg	aca	aaa	aac	att	gag	532
Leu	Ser	Lys	Ala	Glu	Thr	Val	Thr	Gln	Asp	Arg	Thr	Lys	Asn	Ile	Glu	
				70					75					80		
aag	agt	cca	act	gtc	acc	aaa	gat	cat	gtg	tgg	gga	gct	aca	aca	cag	580
Lys	Ser	Pro	Thr	Val	Thr	Lys	Asp	His	Val	Trp	Gly	Ala	$\text{Th} \boldsymbol{\tau}$	Thr	Gln	
			85					90					95			
aag	aca	aca	gag	gac	cct	gag	gct	cag	cct	cct	tct	act	gag	gag	gaa	628
Lys	Thr	Thr	Glu	Asp	Pro	Glu	Ala	Gln	Pro	Pro	Ser	Thr	Glu	Glu	Glu	
		100					105					110				
ggc	ctg	atc	ttc	tgt	gat	gcc	ccc	agt	gcc	taaa	ataat	ct g	gctct	agca	ıa	678
Gly	Leu	Ile	Phe	Cys	Asp	Ala	Pro	Ser	Ala							
	115					120										
caç	ccct	tc a	agtco	cagco	ca at	cct	gggto	ctg	gtgc	cact	ccta	acaaa	atg d	ctcca	aactc	738
tgt	cctca	aaa t	gact	tgt	gc ca	actca	acca	a gga	aato	ctat	ccca	aggto	cta a	actca	cctca	798
gcag	gaagg	gca d	tgtt	ttat	g ca	aagaa	ataco	cat	caca	aaga	aaaa	aggag	gtt d	atag	gttcc	858
tgaa	accto	tg o	caato	ccct	g aa	aaaa	gctt	tca	attgo	cat	ttc	catta	aac a	atgca	ıggtga	918
agca	agggo	cat t	ctc	enaaa	at at	act	tgta	a cct	ttaa	agct	aaaa	aaaa	aaa a	aaaa	ı	973

<210> 72

<211> 791

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> 14..280

123 <220> <221> sig_peptide <222> 14..76 <223> Von Heijne matrix score 9.50 seq ALVVLCAFQLVAA/LE <220> <221> polyA site <222> 776..791 <220> <221> misc_feature <222> 607 <223> n=a, g, c or t <400> 72 ataggegege acc atg gge tee tge tee gge ege tge geg ete gte 49 Met Gly Ser Cys Ser Gly Arg Cys Ala Leu Val Val -20 -15 -10 ctc tgc gct ttt cag ctg gtc gcc ctg gag agg cag gtg ttt gac 97 Leu Cys Ala Phe Gln Leu Val Ala Ala Leu Glu Arg Gln Val Phe Asp -5 ttc ctg ggc tac cag tgg gcg ccc atc ctg gcc aac ttt gtc cac atc 145 Phe Leu Gly Tyr Gln Trp Ala Pro Ile Leu Ala Asn Phe Val His Ile 10 20 15 ate ate gte ate etg gga ete tte gge ace ate eag tae egg etg ege 193 Ile Ile Val Ile Leu Gly Leu Phe Gly Thr Ile Gln Tyr Arg Leu Arg 25 30 tat gtc atg tgt aca cgc tgt ggg cag ccg tct ggg tca cct gga acg 241 Tyr Val Met Cys Thr Arq Cys Gly Gln Pro Ser Gly Ser Pro Gly Thr 40 45 50 tct tca tca tct gct tct acc tgg aag tcg gtg gcc tct taaaggacag 290 Ser Ser Ser Ser Ala Ser Thr Trp Lys Ser Val Ala Ser cgagctactg accttcagcc tctcccggca tcgctcctgg tggcgtgagc gctggccagg 350 ctgtctgcat gaggaggtgc cagcagtggg cctcggggcc ccccatggcc aggccctggt 410 gtcaggtgct ggctgtgcca tggagcccag ctatgtggag gccctacaca gttgcctgca 470 gatectgate gegettetgg getttgtetg tggetgeeag gtggteageg tgtttacgga 530 ggaagaggac agctgcctgc gtaagtgagg aaacagctga tcctgctcct gtggcctcca 590 gcctcagcga ccgaccnagt gacaatgaca ggagctccca ggccttggga cgcgcccca 650 cccagcaccc cccaggcggc cggcagcacc tgccctgggt tctaagtact ggacaccagc 710

124

-_-

770 cagggcggca gggcagtgcc acggctggct gcagcgtcaa gagagtttgt aatttccttt 791 ctcttaaaaa aaaaaaaaa a <210> 73 <211> 1110 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> 93..290 <220> <221> sig_peptide <222> 93..149 <223> Von Heijne matrix score 9.30 seq VFVFLFLWDPVLA/GI <220> <221> polyA_signal <222> 1078..1083 <220> <221> polyA_site <222> 1096..1110 <400> 73 agtataggac tgtgtgctca acctettete tetgtteeet gacageegat gteagaceet 60 gccactagcc tecttaacag aagtteecag ee atg aag eet ete ett gtt gtg 113 Met Lys Pro Leu Leu Val Val -15 ttt gtc ttt ctt ttc ctt tgg gat cca gtg ctg gca ggt ata aat tca 161 Phe Val Phe Leu Phe Leu Trp Asp Pro Val Leu Ala Gly Ile Asn Ser -10 tta tca tca gaa atg cac aag aaa tgc tat aaa aat ggc atc tgc aga 209 Leu Ser Ser Glu Met His Lys Lys Cys Tyr Lys Asn Gly Ile Cys Arg 10 15 20 ctt gaa tgc tat gag agt gaa atg tta gtt gcc tac tgt atg ttt cag 257 Leu Glu Cys Tyr Glu Ser Glu Met Leu Val Ala Tyr Cys Met Phe Gln 25 ctg gag tgc tgt gtc aaa gga aat cct gca ccc tgacataaga aaccaatgaa 310

125

Leu Glu Cys Cys Val Lys Gly Asn Pro Ala Pro 45 40 tggccactat cctgtaggcc cttgattctg ccatctttca caaaaccagg gaatttagat 370 caaactgtga caccatgatg tgtccatgac tactggtttt tagcattttt ataggccagc 430 agactettgt ggtettaaat ttaaagaget gagetgtage ettetttaaa agageteggt 490 ttttcacaaa aacaatgtag aagatatttt ctcacctcaa cgtgatgtcc agtgtgctca 550 tragcarrtg tttrccctr taatrataga ggatattett attatttaga aaggetteaa 610 gggaaacaac ttttgacacc taagtcgtgt cctaccttcg cttcagcttc gcatttccca 670 tttctgtgaa attcccaaca gagaagcaga tttgccatgg ccttctgaca accttgtaca 730 tototoacat aaacogcata ggcagggott gactacaggo tggcccgagt ctgcactgag 790 tctgaccctg aagttccttt ggaacaggag aggccatctt gtgatgggct ggaacaaggt 850 aatttctcat ccacctccct agtttcagtt gagcaatgga acttcccacc tgagccccta 910 gggttcagct acaggctata agactgccgt cctgtggttt agtgttggtt ccttagcagc 970 agagtgatgc cacctctgct gcccgtcatc tgactcctct ggatgggtgt tatcctgtgg 1030 cttaagagct aacaccatgc tgatcttgct ttgctatatg tgtaactaat aaactgccta 1090 aatccaaaaa aaaaaaaaa 1110 <210> 74 <211> 325

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -26..-1

<400> 74

Met Ala Thr Pro Leu Pro Pro Pro Ser Pro Arg His Leu Arg Leu Leu
-25
-20
-15

Arg Leu Leu Ser Gly Leu Val Leu Gly Ala Ala Leu Arg Gly Ala
-10 -5 1 5

Ala Ala Gly His Pro Asp Val Ala Ala Cys Pro Gly Ser Leu Asp Cys
10 15 20

Ala Leu Lys Arg Arg Ala Arg Cys Pro Pro Gly Ala His Ala Cys Gly

Pro Cys Leu Gln Pro Phe Gln Glu Asp Gln Gln Gly Leu Cys Val Pro
40 45 50

Arg Met Arg Arg Pro Pro Gly Gly Gly Arg Pro Gln Pro Arg Leu Glu

60

Asp Glu Ile Asp Phe Leu Ala Gln Glu Leu Ala Arg Lys Glu Ser Gly
75 80 85

His Ser Thr Pro Pro Leu Pro Lys Asp Arg Gln Arg Leu Pro Glu Pro

126 95 100 90 Ala Thr Leu Gly Phe Ser Ala Arg Gly Gln Gly Leu Glu Leu Gly Leu 110 Pro Ser Thr Pro Gly Thr Pro Thr Pro Thr Pro His Thr Ser Leu Gly 125 Ser Pro Val Ser Ser Asp Pro Val His Met Ser Pro Leu Glu Pro Arg 145 Gly Gly Gln Gly Asp Gly Leu Ala Leu Val Leu Ile Leu Ala Phe Cys 155 160 Val Ala Gly Ala Ala Ala Leu Ser Val Ala Ser Leu Cys Trp Cys Arg 175 Leu Gln Arg Glu Ile Arg Leu Thr Gln Lys Ala Asp Tyr Ala Thr Ala 185 190 Lys Ala Pro Gly Ser Pro Ala Ala Pro Arg Ile Ser Pro Gly Asp Gln 205 210 Arg Leu Ala Gln Ser Ala Glu Met Tyr His Tyr Gln His Gln Arg Gln Gln Met Leu Cys Leu Glu Arg His Lys Glu Pro Pro Lys Glu Leu Asp 240 235 Thr Ala Ser Ser Asp Glu Glu Asn Glu Asp Gly Asp Phe Thr Val Tyr 255 Glu Cys Pro Gly Leu Ala Pro Thr Gly Glu Met Glu Val Arg Asn Pro Leu Phe Asp His Ala Ala Leu Ser Ala Pro Leu Pro Ala Pro Ser Ser 285 290 Pro Pro Ala Leu Pro 295 <210> 75 <211> 302 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -18..-1

Met Lys Ala Pro Gly Arg Leu Val Leu Ile Ile Leu Cys Ser Val Val -15 -10 Phe Ser Ala Val Tyr Ile Leu Leu Cys Cys Trp Ala Gly Leu Pro Leu

> 5 10

127

Cys	Leu	Ala	Thr	Сув	Leu	Asp	His	His	Phe	Pro	Thr	Gly	Ser	Arg	Pro
15					20					25					30
Thr	Val	Pro	Gly	Pro	Leu	His	Phe	Ser	Gly	Tyr	Ser	Ser	Val	Pro	Asp
				35					40					45	
Gly	Lys	Pro	Leu	Val	Arg	Glu	Pro	Cys	Arg	Ser	Cys	Ala	Val	Val	Ser
			50					55					60		
Ser	Ser	Gly	Gln	Met	Leu	Gly	Ser	Gly	Leu	Gly	Ala	Glu	Ile	Asp	Ser
		65					70					75			
Ala	Glu	Cys	Val	Phe	Arg	Met	Asn	Gln	Ala	Pro	Thr	Val	Gly	Phe	Glu
	80					85					90				
Ala	Asp	Val	Gly	Gln	Arg	Ser	Thr	Leu	Arg	Val	Val	Ser	His	Thr	Ser
95					100					105					110
Val	Pro	Leu	Leu	Leu	Arg	Asn	Tyr	Ser	His	Tyr	Phe	Gln	Lys	Ala	Arg
				115					120					125	
Asp	Thr	Leu	Tyr	Met	Val	Trp	Gly	Gln	Gly	Arg	His	Met	Asp	Arg	Val
			130					135					140		
Leu	Gly	Gly	Arg	Thr	Tyr	Arg	Thr	Leu	Leu	Gln	Leu	Thr	Arg	Met	Tyr
		145					150					155			
Pro	Gly	Leu	Gln	Val	Tyr	Thr	Phe	Thr	Glu	Arg	Met	Met	Ala	Tyr	Cys
	160					165					170				
Asp	Gln	Ile	Phe	Gln	Asp	Glu	Thr	Gly	Lys	Asn	Arg	Arg	Gln	Ser	Gly
175					180					185					190
Ser	Phe	Leu	Ser	Thr	Gly	Trp	Phe	Thr	Met	Ile	Leu	Ala	Leu	Glu	Leu
				195					200					205	
Сув	Glu	Glu	Ile	Val	Val	Tyr	Gly		Val	Ser	Asp	Ser		Сув	Arg
			210					215					220		
Glu	ГÀз		His	Pro	Ser	Val		Tyr	His	Tyr	Phe		Lys	Gly	Arg
		225					230	_		_		235			
Leu	-	Glu	Сув	Gln	Met	-	Leu	Ala	His	Glu		Ala	Pro	Arg	Ser
	240					245			_		250			_	
	His	Arg	Phe	Ile		Glu	Lys	Ala	Val		Ser	Arg	Trp	Ala	
255		_			260			_		265	_	_,			270
Lys	Arg	Pro	Ile		Phe	Ala	His	Pro		Trp	Arg	Thr	Glu		
				275					280						

<210> 76

<211> 249

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

55

<222> -15..-1

<400> 76

Met Leu Gln Leu Trp Lys Leu Val Leu Leu Cys Gly Val Leu Thr Gly

-5

Thr Ser Glu Ser Leu Leu Asp Asn Leu Gly Asn Asp Leu Ser Asn Val 10

Val Asp Lys Leu Glu Pro Val Leu His Glu Gly Leu Glu Thr Val Asp 25

Asn Thr Leu Lys Gly Ile Leu Glu Lys Leu Lys Val Asp Leu Gly Val 40

Leu Gln Lys Ser Ser Ala Trp Gln Leu Ala Lys Gln Lys Ala Gln Glu 60

Ala Glu Lys Leu Leu Asn Asn Val Ile Ser Lys Leu Leu Pro Thr Asn

Thr Asp Ile Phe Gly Leu Lys Ile Ser Asn Ser Leu Ile Leu Asp Val 90

Lys Ala Glu Pro Ile Asp Asp Gly Lys Gly Leu Asn Leu Ser Phe Pro 105 110

Val Thr Ala Asn Val Thr Val Ala Gly Pro Ile Ile Gly Gln Ile Ile 120

Asn Leu Lys Ala Ser Leu Asp Leu Leu Thr Ala Val Thr Ile Glu Thr 130 135 140

Asp Pro Gln Thr His Gln Pro Val Ala Val Leu Gly Glu Cys Ala Ser 155

Asp Pro Thr Ser Ile Ser Leu Ser Leu Leu Asp Lys His Ser Gln Ile 165 170

Ile Asn Lys Phe Val Asn Ser Val Ile Asn Thr Leu Lys Ser Thr Val 185

Ser Ser Leu Leu Gln Lys Glu Ile Cys Pro Leu Ile Arg Ile Phe Ile 200

His Ser Leu Asp Val Asn Val Ile Gln Gln Val Val Asp Asn Pro Gln 215 220 225 210

His Lys Thr Gln Leu Gln Thr Leu Ile

230

<210> 77

<211> 84

<212> PRT

<213> Homo Sapiens

<400> 77

PCT/IB99/02058 WO 00/37491

129

Met Lys Val Lys Ile Lys Cys Trp Asn Gly Val Ala Thr Trp Leu Trp Val Ala Asn Asp Glu Asn Cys Gly Ile Cys Arg Met Ala Phe Asn Gly 25 Cys Cys Pro Asp Cys Lys Val Pro Gly Asp Asp Cys Pro Leu Val Trp 40 Gly Gln Cys Ser His Cys Phe His Met His Cys Ile Leu Lys Trp Leu 55 His Ala Gln Gln Val Gln Gln His Cys Pro Met Cys Arg Gln Glu Trp

70 75 80

Lys Phe Lys Glu

<210> 78

<211> 554

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -13..-1

<220>

<221> UNSURE

<222> 259

<223> Xaa = Asp, His, Asn, Tyr

<400> 78

Met Leu Tyr Leu Gln Gly Trp Ser Met Pro Ala Val Ala Glu Val Lys -10 -5

Leu Arg Asp Asp Gln Tyr Thr Leu Glu His Met His Ala Phe Gly Met

Tyr Asn Tyr Leu His Cys Asp Ser Trp Tyr Gln Asp Ser Val Tyr Tyr 20 25 30 35

Ile Asp Thr Leu Gly Arg Ile Met Asn Leu Thr Val Met Leu Asp Thr

Ala Leu Gly Lys Pro Arg Glu Val Phe Arg Leu Pro Thr Asp Leu Thr 55 60

Ala Cys Asp Asn Arg Leu Cys Ala Ser Ile His Phe Ser Ser Ser Thr 75

Trp Val Thr Leu Ser Asp Gly Thr Gly Arg Leu Tyr Val Ile Gly Thr 85 90

Gly Glu Arg Gly Asn Ser Ala Ser Glu Lys Trp Glu Ile Met Phe Asn

130

100					105					110					115
Glu	Glu	Leu	Gly	Asp	Pro	Phe	Ile	Ile	Ile	His	Ser	Ile	Ser	Leu	Leu
				120					125					130	
Asn	Ala	Glu	Glu	His	Ser	Ile	Ala	Thr	Leu	Leu	Leu	Arg	Ile	Glu	Lys
			135					140					145		
Glu	Glu	Leu	Asp	Met	Lys	Gly	Ser	Gly	Phe	Tyr	Val	Ser	Leu	Glu	Trp
		150					155					160			
Val	Thr	Ile	Ser	Lys	Lys	Asn	Gln	Asp	Asn	Lys	Lys	Tyr	Glu	Ile	Ile
	165					170					175				
Lys	Arg	Asp	Ile	Leu	Arg	Gly	Lys	Ser	Val	Pro	His	Tyr	Ala	Ala	Ile
180					185					190					195
Lys	Pro	Asp	Gly	Asn	Gly	Leu	Met	Ile	Val	Ser	Tyr	Lys	Ser	Leu	Thr
				200					205					210	
Phe	Val	Gln	Ala	Gly	Gln	Asp	Leu	Glu	Glu	Asn	Met	Asp	Glu	Asp	Ile
			215					220					225		
Ser	Glu	Lys	Ile	Lys	Glu	Pro	Leu	Tyr	Tyr	Trp	Gln	Gln	Thr	Glu	Asp
		230					235					240			
Ąsp	Leu	Thr	Val	Thr	Ile	Arg	Leu	Pro	Glu	Asp	Ser	Thr	Lys	Glu	Xaa
	245					250					255				
Ile	Gln	Ile	Gln	Phe	Leu	Pro	Asp	His	Ile	Asn	Ile	Val	Leu	Lys	Asp
260					265					270					275
His	Gln	Phe	Leu	Glu	Gly	Lys	Ļeu	Tyr	Ser	Ser	Ile	Asp	His	Glu	Ser
				280					285					290	
Ser	Thr	Trp	Ile	Ile	Lys	Glu	Ser	Asn	Ser	Leu	Glu	Ile		Leu	Ile
			295					300					305		
Lys	Lys		Glu	Gly	Leu	Thr		Pro	Glu	Leu	Val		Gly	Asp	Lys
		310	_		_	_	315			_		320	_,		~~
Gin	-	Glu	Leu	Ile	Arg		Ser	Ala	GIn	Cys		Ala	Пе	Ala	Glu
	325			•		330	<b>~1</b>	<b>~</b> 1	•	•	335	•	<b>D</b>	3	
	ьeu	Met	HIS	ren		ser	GIU	Glu	Leu		Pro	ASI	PIO	Asp	
340	· •	D	D	<b>~</b>	345	71.	<i>-</i> 15	C1	T 011	350	~1··	~	7.00	710	355
GIU	гур	PIO	PIO	_	Asn	AIA	GIII	Glu	365	GIU	GIU	Cys	Авр	370	PIIE
Dho	<i>c</i> 1	C111	co-	360	Cor	Lou	Crrc	Arg		λαν	Clv	N o m	ωp.~		Tare
Pne	GIU	GIU	375	ser	ser	ъеп	Сув	380	Phe	Asp	GIY	ASII	385	neu	ոչթ
Th~	Th~	uia		wa 1	ħ a n	T 011	C112		λan	al n	Тъгъ	Lon		cor	Wa I
Inr	Thr		vaı	vai	ASII	ьец		Ser	ASII	GIII	īĀī		PILE	ser	val
<b>71</b> ~	*/- 1	390	D	T	<b>~1</b>	Mot	395	Сув	Dho	C	T 011	400	uio	7 ~~	wa 1
116		Asp	Pro	гув	GIU		PIO	Сув	Pile	Сув		AIG	uis	АБР	Val
<b>7</b> a∽	405 Ala	Lev	Lou	True.	G1~	410 Pro	uie	Ser	Cer	Lace	415	λαν	λα <del>ν</del>	Met	Т
420	NIG	nen	₽₽U	тър	425	FIO	1112	PET	PET	430	GIII	roh	voh	rie C	435
	Hio	Tle	Δlο	Thr		Agn	Δla	Leu	Glv		Val	Gln	Δla	Ser	
				~ ~ ~ ~	~ ~~~				~~ 1	-1-					-,-

PCT/IB99/02058 WO 00/37491

131 445 450 440 Arg Asp Lys Lys Phe Phe Ala Cys Ala Pro Asn Tyr Ser Tyr Ala Ala 460 Leu Cys Glu Cys Leu Arg Arg Val Phe Ile Tyr Arg Gln Pro Ala Pro 475 470 Met Ser Thr Val Leu Tyr Asn Arg Lys Glu Gly Arg Gln Val Gly Gln 490 Val Ala Lys Gln Gln Val Ala Ser Leu Glu Thr Asn Asp Pro Ile Leu 510 500 505 Gly Phe Gln Ala Thr Asn Glu Arg Leu Phe Val Leu Thr Thr Lys Asn . 525

Leu Phe Leu Ile Lys Val Asn Thr Glu Asn 535 540

<210> 79

<211> 99

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -48..-1

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser -45 -40

Val Lys Gly His Val Lys Met Leu Arg Leu Asp Ile Ile Asn Ser Leu -25

Val Thr Thr Val Phe Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro -15 -10

Glu Thr Thr Thr Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr 10

Ala Val Cys Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu 20

Phe Asn Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys 40 45

Glu Val Leu

50

<210> 80

<211> 90

<212> PRT

PCT/IB99/02058

WO 00/37491 132

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -32..-1

<400> 80

Met Pro Cys Leu Asp Gln Gln Leu Thr Val His Ala Leu Pro Cys Pro -25 -30

Ala Gln Pro Ser Ser Leu Ala Phe Cys Gln Val Gly Phe Leu Thr Ala -10 -5

Gln Pro Ser Pro Pro Arg Arg Arg Asn Gly Lys Asp Arg Tyr Thr Leu 10 5

Val Leu Gln His Gln Glu Cys Gln Asp Asp Leu Ala Thr Ser Ser Leu 25

Val Tyr Leu Ser Leu Pro Cys Phe Lys Asp Leu Gly Arg Ser Lys His

Gln Ser Ile Thr Val Ala Asp Thr Asn Lys 50 55

<210> 81

<211> 115

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -46..-1

<400> 81

Met Lys Thr Leu Phe Asn Pro Ala Pro Ala Ile Ala Asp Leu Asp Pro -40

Gln Phe Tyr Thr Leu Ser Asp Val Phe Cys Cys Asn Glu Ser Glu Ala -30 -20

Glu Ile Leu Thr Gly Leu Thr Val Gly Ser Ala Ala Asp Ala Gly Glu -10 -5

Ala Ala Leu Val Leu Leu Lys Arg Gly Cys Gln Val Val Ile Ile Thr

Leu Gly Ala Glu Gly Cys Val Val Leu Ser Gln Thr Glu Pro Glu Pro 25

Lys His Ile Pro Thr Glu Lys Val Lys Ala Val Asp Thr Thr Cys Arg 35 40 45

133

Pro Gly Ser Arg Pro Lys Ser Glu Ala Ala Ser Val Lys Lys Gln Lys
55 60 65

His Tyr Lys

<210> 82

<211> 66

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -19..-1

<400> 82

Met Lys Pro Leu Leu Val Val Phe Val Phe Leu Phe Leu Trp Asp Pro
-15 -10 -5

Val Leu Ala Gly Ile Asn Ser Leu Ser Ser Glu Met His Lys Lys Cys

Tyr Lys Asn Gly Ile Cys Arg Leu Glu Cys Tyr Glu Ser Glu Met Leu 15 20 25

Val Ala Tyr Cys Met Phe Gln Leu Glu Cys Cys Val Lys Gly Asn Pro 30 35 40 45

Ala Pro

<210> 83

<211> 133

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -21..-1

<400> 83

Met Ser Cys Ser Leu Lys Phe Thr Leu Ile Val Ile Phe Phe Tyr Cys
-20 -15 -10

Trp Leu Ser Ser Ser His Glu Glu Leu Glu Gly Gly Thr Ser Lys Ser

Phe Asp Leu His Thr Val Ile Met Leu Val Ile Ala Gly Gly Ile Leu

20

Ala Ala Leu Leu Leu Ile Val Val Leu Cys Leu Tyr Phe Lys

30 35 40

134

Ile His Asn Ala Leu Lys Ala Ala Lys Glu Pro Glu Ala Val Ala Val
45 50 55

Lys Asn His Asn Pro Asp Lys Val Trp Trp Ala Lys Asn Ser Gln Ala 60 65 70 75

Lys Thr Ile Ala Thr Glu Ser Cys Pro Ala Leu Gln Cys Cys Glu Gly
80 85 90

Tyr Arg Met Cys Ala Ser Phe Asp Ser Leu Pro Pro Cys Cys Cys Asp 95 100 105

Ile Asn Glu Gly Leu

110

<210> 84

<211> 140

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -70..-1

<400> 84

Met Val Leu Thr Lys Pro Leu Gln Arg Asn Gly Ser Met Met Ser Phe
-70 -65 -60 -55

Glu Asn Val Lys Glu Lys Ser Arg Glu Gly Gly Pro His Ala His Thr
-50 -45 -40

Pro Glu Glu Leu Cys Phe Val Val Thr His Tyr Pro Gln Val Gln
-35 -30 -25

Thr Thr Leu Asn Leu Phe Phe His Ile Phe Lys Val Leu Thr Gln Pro
-20 -15 -10

Leu Ser Leu Leu Trp Gly Cys Asp Gln Lys Pro Arg Thr Val Pro Thr

Leu Gly Asn Gly Ala Trp Asp Thr Cys Gln Gln His Ile Arg Thr Ser

15 20 25

Ser Trp Thr Ala Asn Thr Leu Val Ile Gln Asn Gln His Ser Arg Glu
30 35 40

Ser Thr Val Ser Val Cys Leu Phe Met Leu Ile Arg Met Gln His Ile

**45** 50 55

Leu Lys Thr Asp Thr Leu Gln Gln Phe Arg Ile Cys
60 65 70

<210> 85

<211> 233

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -32..-1

<400> 85

Met Ala Thr Pro Pro Phe Arg Leu Ile Arg Lys Met Phe Ser Phe Lys

-25

Val Ser Arg Trp Met Gly Leu Ala Cys Phe Arg Ser Leu Ala Ala Ser

-10

Ser Pro Ser Ile Arg Gln Lys Lys Leu Met His Lys Leu Gln Glu Glu

Lys Ala Phe Arg Glu Glu Met Lys Ile Phe Arg Glu Lys Ile Glu Asp 20

Phe Arg Glu Glu Met Trp Thr Phe Arg Gly Lys Ile His Ala Phe Arg

40

Gly Gln Ile Leu Gly Phe Trp Glu Glu Glu Arg Pro Phe Trp Glu Glu

55

Glu Lys Thr Phe Trp Lys Glu Glu Lys Ser Phe Trp Glu Met Glu Lys

70 75

Ser Phe Arg Glu Glu Lys Thr Phe Trp Lys Lys Tyr Arg Thr Phe

Trp Lys Glu Asp Lys Ala Phe Trp Lys Glu Asp Asn Ala Leu Trp Glu 105 100

Arg Asp Arg Asn Leu Leu Gln Glu Asp Lys Ala Leu Trp Glu Glu Glu

120

Lys Ala Leu Trp Val Glu Glu Arg Ala Leu Leu Glu Gly Glu Lys Ala

Leu Trp Glu Asp Lys Thr Ser Leu Trp Glu Glu Glu Asn Ala Leu Trp

155 150

Glu Glu Glu Arg Ala Phe Trp Met Glu Asn Asn Gly His Ile Ala Gly

165

Glu Gln Met Leu Glu Asp Gly Pro His Asn Ala Asn Arg Gly Gln Arg

185

Leu Leu Ala Phe Ser Arg Gly Arg Ala

200 195

<210> 86

<211> 83

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -29..-1

<400> 86

Met Ser Phe Phe Gln Leu Leu Met Lys Arg Lys Glu Leu Ile Pro Leu
-25 -20 -15

Val Val Phe Met Thr Val Ala Ala Gly Gly Ala Ser Ser Phe Ala Val

Tyr Ser Leu Trp Lys Thr Asp Val Ile Leu Asp Arg Lys Lys Asn Pro 5 10 15

Glu Pro Trp Glu Thr Val Asp Pro Thr Val Pro Gln Lys Leu Ile Thr 20 25 30 35

Ile Asn Gln Gln Trp Lys Pro Ile Glu Glu Leu Gln Asn Val Gln Arg
40 45 50

Val Thr Lys

<210> 87

<211> 215

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -41..-1

<400> 87

Met Val Ser Ala Leu Arg Gly Ala Pro Leu Ile Arg Val His Ser Ser
-40 -35 -30

Pro Val Ser Ser Pro Ser Val Ser Gly Pro Arg Arg Leu Val Ser Cys
-25 -20 -15 -10

Leu Ser Ser Gln Ser Ser Ala Leu Ser Gln Ser Gly Gly Ser Thr

1

Ser Ala Ala Gly Ile Glu Ala Arg Ser Arg Ala Leu Arg Arg Trp
10 15 20

Cys Pro Ala Gly Ile Met Leu Leu Ala Leu Val Cys Leu Leu Ser Cys 25 30 35

Leu Leu Pro Ser Ser Glu Ala Lys Leu Tyr Gly Arg Cys Glu Leu Ala

40 45 50 55

Arg Val Leu His Asp Phe Gly Leu Asp Gly Tyr Arg Gly Tyr Ser Leu

PCT/IB99/02058 WO 00/37491

137 60 65 Ala Asp Trp Val Cys Leu Ala Tyr Phe Thr Ser Gly Phe Asn Ala Ala 80 Ala Leu Asp Tyr Glu Ala Asp Gly Ser Thr Asn Asn Gly Ile Phe Gln 90 95 Ile Asn Ser Arg Arg Trp Cys Ser Asn Leu Thr Pro Asn Val Pro Asn 110 Val Cys Arg Met Tyr Cys Ser Asp Leu Leu Asn Pro Asn Leu Lys Asp 125 120 Thr Val Ile Cys Ala Met Lys Ile Thr Gln Glu Pro Gln Gly Leu Gly 140 . 145 Tyr Trp Glu Ala Trp Arg His His Cys Gln Gly Lys Asp Leu Thr Glu 160 155 Trp Val Asp Gly Cys Asp Phe 170 <210> 88 <211> 417 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -20..-1 <400> 88 Met Met Gly Ser Pro Val Ser His Leu Leu Ala Gly Phe Cys Val Trp -15 Val Val Leu Gly Trp Val Gly Gly Ser Val Pro Asn Leu Gly Pro Ala Glu Gln Glu Gln Asn His Tyr Leu Ala Gln Leu Phe Gly Leu Tyr Gly 20 Glu Asn Gly Thr Leu Thr Ala Gly Gly Leu Ala Arg Leu Leu His Ser Leu Gly Leu Gly Arg Val Gln Gly Leu Arg Leu Gly Gln His Gly Pro 55 Leu Thr Gly Arg Ala Ala Ser Pro Ala Ala Asp Asn Ser Thr His Arg 70 Pro Gln Asn Pro Glu Leu Ser Val Asp Val Trp Ala Gly Met Pro Leu 85

Gly Pro Ser Gly Trp Gly Asp Leu Glu Glu Ser Lys Ala Pro His Leu 100

105

95

138

Pro	Arg	Gly	Pro	Ala	Pro	Ser 115	Gly	Leu	Asp	Leu	Leu 120	His	Arg	Leu	Leu
T.eu		Asp	His	Ser	Leu		Asp	His	Leu	Asn		Asp	Cvs	Leu	Asn
125					130					135		<b>F</b>	-2-		140
	Ser	Gln	Leu	Leu	Val	Asn	Phe	Glv	Leu	Ser	Pro	Ala	Ala	Pro	
•				145				•	150					155	
Thr	Pro	Arg	Gln	Phe	Ala	Leu	Leu	Cys	Pro	Ala	Leu	Leu	Tyr	Gln	Ile
			160					165					170		
Asp	Ser	Arg	Val	Cys	Ile	Gly	Ala	Pro	Ala	Pro	Ala	Pro	Pro	Gly	Asp
		175					180					185			
Leu	Leu	Ser	Ala	Leu	Leu	Gln	Ser	Ala	Leu	Ala	Val	Leu	Leu	Leu	Ser
	190					195					200				
Leu	Pro	Ser	Pro	Leu	Ser	Leu	Leu	Leu	Leu	Arg	Leu	Leu	Gly	Pro	Arg
205					210					215					220
Leu	Leu	Arg	Pro	Leu	Leu	Gly	Phe	Leu	Gly	Ala	Leu	Ala	Val	Gly	Thr
				225					230					235	
Leu	Cys	Gly	_	Ala	Leu	Leu	His		Leu	Pro	His	Ala		Glu	Gly
			240	_			_	245			_	_	250	_	
Arg	His	Ala	Gly	Pro	Gly	Gly	Leu	Pro	Glu	ГÀв	Asp	Leu	Gly	Pro	Gly
•	0	255	T	<b>a</b> 3	<b>G</b> 3	T	260	<b>Y</b>	, T	Dh.a	171	265	01	3	Mak
Leu			Leu	Gly	Gly			Leu	Leu	Phe			Glu	Asn	Met
	270	Val		-		275	Phe		•		280	Leu			
Leu	270	Val		-	His	275	Phe		•	Pro	280	Leu			Arg
Leu 285	270 Gly	Val Leu	Leu	Arg	His 290	275 Arg	Phe Gly	Leu	Arg	Pro 295	280 Arg	Leu Cys	Cys	Arg	Arg 300
Leu 285	270 Gly	Val Leu	Leu	Arg	His	275 Arg	Phe Gly	Leu	Arg	Pro 295	280 Arg	Leu Cys	Cys	Arg	Arg 300
Leu 285 Lys	270 Gly Arg	Val Leu Arg	Leu Asn	Arg Leu 305	His 290	275 Arg Thr	Phe Gly Arg	Leu Asn	Arg Leu 310	Pro 295 Asp	280 Arg Pro	Leu Cys Glu	Cys Asn	Arg Gly 315	Arg 300 Ser
Leu 285 Lys	270 Gly Arg	Val Leu Arg	Leu Asn	Arg Leu 305	His 290 Glu	275 Arg Thr	Phe Gly Arg	Leu Asn	Arg Leu 310	Pro 295 Asp	280 Arg Pro	Leu Cys Glu	Cys Asn	Arg Gly 315	Arg 300 Ser
Leu 285 Lys Gly	270 Gly Arg Met	Val Leu Arg Ala	Leu Asn Leu 320	Arg Leu 305 Gln	His 290 Glu	275 Arg Thr	Phe Gly Arg Gln	Leu Asn Ala 325	Arg Leu 310 Ala	Pro 295 Asp Pro	280 Arg Pro Glu	Leu Cys Glu Pro	Cys Asn Gly 330	Arg Gly 315 Ala	Arg 300 Ser Gln
Leu 285 Lys Gly	270 Gly Arg Met	Val Leu Arg Ala	Leu Asn Leu 320	Arg Leu 305 Gln	His 290 Glu Pro	275 Arg Thr	Phe Gly Arg Gln	Leu Asn Ala 325	Arg Leu 310 Ala	Pro 295 Asp Pro	280 Arg Pro Glu	Leu Cys Glu Pro	Cys Asn Gly 330	Arg Gly 315 Ala	Arg 300 Ser Gln
Leu 285 Lys Gly	270 Gly Arg Met	Val Leu Arg Ala Arg 335	Leu Asn Leu 320 Glu	Arg Leu 305 Gln Lys	His 290 Glu Pro	275 Arg Thr Leu Ser	Phe Gly Arg Gln Gln 340	Leu Asn Ala 325 His	Arg Leu 310 Ala Pro	Pro 295 Asp Pro	280 Arg Pro Glu Ala	Leu Cys Glu Pro Leu 345	Cys Asn Gly 330 Ala	Arg Gly 315 Ala Pro	Arg 300 Ser Gln Pro
Leu 285 Lys Gly	270 Gly Arg Met	Val Leu Arg Ala Arg 335	Leu Asn Leu 320 Glu	Arg Leu 305 Gln Lys	His 290 Glu Pro	275 Arg Thr Leu Ser	Phe Gly Arg Gln Gln 340	Leu Asn Ala 325 His	Arg Leu 310 Ala Pro	Pro 295 Asp Pro	280 Arg Pro Glu Ala	Leu Cys Glu Pro Leu 345	Cys Asn Gly 330 Ala	Arg Gly 315 Ala Pro	Arg 300 Ser Gln Pro
Leu 285 Lys Gly Gly	270 Gly Arg Met Gln His 350	Val Leu Arg Ala Arg 335 Gln	Leu Asn Leu 320 Glu Gly	Arg Leu 305 Gln Lys	His 290 Glu Pro	275 Arg Thr Leu Ser His 355	Phe Gly Arg Gln Gln 340 Gly	Leu Asn Ala 325 His	Arg Leu 310 Ala Pro Gln	Pro 295 Asp Pro Pro	280 Arg Pro Glu Ala Gly 360	Leu Cys Glu Pro Leu 345 Thr	Cys Asn Gly 330 Ala Asp	Arg Gly 315 Ala Pro	Arg 300 Ser Gln Pro
Leu 285 Lys Gly Gly	270 Gly Arg Met Gln His 350	Val Leu Arg Ala Arg 335 Gln	Leu Asn Leu 320 Glu Gly	Arg Leu 305 Gln Lys	His 290 Glu Pro Asn	275 Arg Thr Leu Ser His 355	Phe Gly Arg Gln Gln 340 Gly	Leu Asn Ala 325 His	Arg Leu 310 Ala Pro Gln	Pro 295 Asp Pro Pro	280 Arg Pro Glu Ala Gly 360	Leu Cys Glu Pro Leu 345 Thr	Cys Asn Gly 330 Ala Asp	Arg Gly 315 Ala Pro	Arg 300 Ser Gln Pro
Leu 285 Lys Gly Gly Gly Trp 365	270 Gly Arg Met Gln His 350 Met	Val Leu Arg Ala Arg 335 Gln Val	Leu Asn Leu 320 Glu Gly Leu	Arg Leu 305 Gln Lys His	His 290 Glu Pro Asn Ser	275 Arg Thr Leu Ser His 355 Asp	Phe Gly Arg Gln Gln 340 Gly	Leu Asn Ala 325 His His	Arg Leu 310 Ala Pro Gln His	Pro 295 Asp Pro Pro Gly Asn 375	280 Arg Pro Glu Ala Gly 360 Leu	Leu Cys Glu Pro Leu 345 Thr	Cys Asn Gly 330 Ala Asp	Arg Gly 315 Ala Pro Ile Gly	Arg 300 Ser Gln Pro Thr Leu 380

Pro

<210> 89

<211> 366

<212> PRT

<213> Homo Sapiens

139

<220	) >														
<221	.> SI	GNAI	د												
<222	> -2	23	-1												
<400	> 89	•													
Met	Ala	Ser	Met	Ala	Ala	Val	Leu	Thr	Trp	Ala	Leu	Ala	Leu	Leu	Ser
			-20					-15					-10		
Ala	Phe	Ser	Ala	Thr	Gln	Ala	Arg	Lys	Gly	Phe	Trp	Asp	Tyr	Phe	Ser
		-5					1				5				
Gln	Thr	Ser	Gly	Asp	Lys	Gly	Arg	Val	Glu	Gln	Ile	His	Gln	Gln	Lys
10					15					20					25
Met	Ala	Arg	Glu	Pro	Ala	Thr	Leu	Lys	Asp	Ser	Leu	Glu	Gln	Asp	Leu
				30		•			35					40	
Asn	Asn	Met	Asn	Lys	Phe	Leu	Glu	Lys	Leu	Arg	Pro	Leu	Ser	Gly	Ser
			45					50					55		
Glu	Ala	Pro	Arg	Leu	Pro	Gln	Asp	Pro	Val	Gly	Met	Arg	Arg	Gln	Leu
		60					65					70			
Gln	Glu	Glu	Leu	Glu	Glu	Val	Lys	Ala	Arg	Leu	Gln	Pro	Tyr	Met	Ala
	75					80					85				
Glu	Ala	His	Glu	Leu	Val	Gly	Trp	Asn	Leu	Glu	Gly	Leu	Arg	Gln	Gln
90					95					100					105
Leu	Lys	Pro	Tyr	Thr	Met	Asp	Leu	Met	Glu	Gln	Val	Ala	Leu	Arg	Val
				110					115					120	
Gln	Glu	Leu	Gln	Glu	Gln	Leu	Arg	Val	Val	Gly	Glu	Asp	Thr	Lys	Ala
			125					130					135		
Gln	Leu	Leu	Gly	Gly	Val	Asp	Glu	Ala	Trp	Ala	Leu	Leu	Gln	Gly	Leu
		140					145					150			
Gln	Ser	Arg	Val	Val	His	His	Thr	Gly	Arg	Phe	Lys	Glu	Leu	Phe	His
	155					160					165				
Pro	Tyr	Ala	Glu	Ser	Leu	Val	Ser	Gly	Ile	Gly	Arg	His	Val	Gln	Glu
170					175					180					185
Leu	His	Arg	Ser	Val	Ala	Pro	His	Ala	Pro	Ala	Ser	Pro	Ala	Arg	Leu
,				190					195					200	
Ser	Arg	Сув	Val	Gln	Val	Leu	Ser	Arg	Lys	Leu	Thr	Leu	Lys	Ala	Lys
			205					210					215		
Ala	Leu	His	Ala	Arg	Ile	Gln	Gln	Asn	Leu	Asp	Gln	Leu	Arg	Glu	Glu
		220					225					230			
Leu	Ser	Arg	Ala	Phe	Ala	Gly	Thr	Gly	Thr	Glu	Glu	Gly	Ala	Gly	Pro
	235					240					245				
Asp	Pro	Gln	Met	Leu	Ser	Glu	Glu	Val	Arg	Gln	Arg	Leu	Gln	Ala	Phe
250					255					260					265

140

Arg Gln Asp Thr Tyr Leu Gln Ile Ala Ala Phe Thr Arg Ala Ile Asp
270 275 280

Gln Glu Thr Glu Glu Val Gln Gln Gln Leu Ala Pro Pro Pro Gly
285 290 295

His Ser Ala Phe Ala Pro Glu Phe Gln Gln Thr Asp Ser Gly Lys Val

Leu Ser Lys Leu Gln Ala Arg Leu Asp Asp Leu Trp Glu Asp Ile Thr 315 320 325

His Ser Leu His Asp Gln Gly His Ser His Leu Gly Asp Pro 330 335 340

<210> 90

<211> 150

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -45..-1

<400> 90

Met Val Leu Met Trp Thr Ser Gly Asp Ala Phe Lys Thr Ala Tyr Phe

-45 -40 -35 -30

Leu Leu Lys Gly Ala Pro Leu Gln Phe Ser Val Cys Gly Leu Leu Gln
-25 -20 -15

Val Leu Val Asp Leu Ala Ile Leu Gly Gln Ala Tyr Ala Phe Ala Pro
-10 -5 1

Pro Pro Glu Ala Gly Ala Pro Arg Arg Ala Pro His Trp His Gln Gly
5 10 15

Pro Leu Thr Val Gly Arg Thr Arg Met Trp Asp Arg Gln Pro Arg Ala 20 25 30 35

Leu Val Gly Pro Asp Leu Pro Ala Gly Arg Val Gly Ala Val Ala Pro
40 45 50

Ala Gly Val Ala Glu Met Gly His Gly His Trp Gly Leu His Gln Pro

Leu Trp Gly Val Ser Gly Trp Ala Val Gly Val Gly Leu Gly Arg Cys
70 75 80

Leu Cys Ser Ala Gly Thr Ala Arg Val Asp Leu Ala Pro Arg Val Leu

Asp Val Phe Arg Met Thr

100 105

PCT/IB99/02058 WO 00/37491

141

<210> 91

<211> 308 <212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -68..-1

<400> 91

Met Asp Phe Val Ala Gly Ala Ile Gly Gly Val Cys Gly Val Ala Val -55 -65

Gly Tyr Pro Leu Asp Thr Val Lys Val Arg Ile Gln Thr Glu Pro Lys -45

Tyr Thr Gly Ile Trp His Cys Val Arg Asp Thr Tyr His Arg Glu Arg -30

Val Trp Gly Phe Tyr Arg Gly Leu Ser Leu Pro Val Cys Thr Val Ser -15 -10

Leu Val Ser Ser Val Ser Phe Gly Thr Tyr Arg His Cys Leu Ala His

Ile Cys Arg Leu Arg Tyr Gly Asn Pro Asp Ala Lys Pro Thr Lys Ala 20

Asp Ile Thr Leu Ser Gly Cys Ala Ser Gly Leu Val Arg Val Phe Leu 35

Thr Ser Pro Thr Glu Val Ala Lys Val Arg Leu Gln Thr Gln Thr Gln 45

Ala Gln Lys Gln Gln Arg Leu Leu Ser Ala Ser Gly Pro Leu Ala Val 70

Pro Pro Met Cys Pro Val Pro Pro Ala Cys Pro Glu Pro Lys Tyr Arg 80 85

Gly Pro Leu His Cys Leu Ala Thr Val Ala Arg Glu Glu Gly Leu Cys 100

Gly Leu Tyr Lys Gly Ser Ser Ala Leu Val Leu Arg Asp Gly His Ser

Phe Ala Thr Tyr Phe Leu Ser Tyr Ala Val Leu Cys Glu Trp Leu Ser 130 135

Pro Ala Gly His Ser Arg Pro Asp Val Pro Gly Val Leu Val Ala Gly 150

Gly Cys Ala Gly Val Leu Ala Trp Ala Val Ala Thr Pro Met Asp Val 165 160

Ile Lys Ser Arg Leu Gln Ala Asp Gly Gln Gly Gln Arg Arg Tyr Arg 180 175 185

142

Gly Leu Leu His Cys Met Val Thr Ser Val Arg Glu Glu Gly Pro Arg 190 195 200

Val Leu Phe Lys Gly Leu Val Leu Asn Cys Cys Arg Ala Phe Pro Val

210 215 220

Asn Met Val Val Phe Val Ala Tyr Glu Ala Val Leu Arg Leu Ala Arg
225 230 235

Gly Leu Leu Thr

240

<210> 92

<211> 114

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -49..-1

<400> 92

Met Glu Lys Pro Leu Phe Pro Leu Val Pro Leu His Trp Phe Gly Phe
-45 -40 -35

Gly Tyr Thr Ala Leu Val Val Ser Gly Gly Ile Val Gly Tyr Val Lys
-30
-25
-20

Thr Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu
-15 -10 -5

Ala Gly Leu Gly Ala Tyr Gln Leu Tyr Gln Asp Pro Arg Asn Val Trp

1 5 10 15

Gly Phe Leu Ala Ala Thr Ser Val Thr Phe Val Gly Val Met Gly Met
20 25 30

Arg Ser Tyr Tyr Gly Lys Phe Met Pro Val Gly Leu Ile Ala Gly
35 40 45

Ala Ser Leu Leu Met Ala Ala Lys Val Gly Val Arg Met Leu Met Thr
50 55 60

Ser Asp

65

<210> 93

<211> 382

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL <222> -15..-1 <400> 93 Met Gly Leu Leu Pro Leu Ala Leu Cys Ile Leu Val Leu Cys Cys -5 -10 Gly Ala Met Ser Pro Pro Gln Leu Ala Leu Asn Pro Ser Ala Leu Leu Ser Arq Gly Cys Asn Asp Ser Asp Val Leu Ala Val Ala Gly Phe Ala 25 Leu Arg Asp Ile Asn Lys Asp Arg Lys Asp Gly Tyr Val Leu Arg Leu 40 Asn Arg Val Asn Asp Ala Gln Glu Tyr Arg Arg Gly Gly Leu Gly Ser 55 60 50 Leu Phe Tyr Leu Thr Leu Asp Val Leu Glu Thr Asp Cys His Val Leu 70 Arg Lys Lys Ala Trp Gln Asp Cys Gly Met Arg Ile Phe Phe Glu Ser Val Tyr Gly Gln Cys Lys Ala Ile Phe Tyr Met Asn Asn Pro Ser Arg 100 105 110 Val Leu Tyr Leu Ala Ala Tyr Asn Cys Thr Leu Arg Pro Val Ser Lys 120 Lys Lys Ile Tyr Met Thr Cys Pro Asp Cys Pro Ser Ser Ile Pro Thr 135 Asp Ser Ser Asn His Gln Val Leu Glu Ala Ala Thr Glu Ser Leu Ala 155 150 Lys Tyr Asn Asn Glu Asn Thr Ser Lys Gln Tyr Ser Leu Phe Lys Val 170 Thr Arg Ala Ser Ser Gln Trp Val Val Gly Pro Ser Tyr Phe Val Glu 180 185 Tyr Leu Ile Lys Glu Ser Pro Cys Thr Lys Ser Gln Ala Ser Ser Cys 200 205 Ser Leu Gln Ser Ser Asp Ser Val Pro Val Gly Leu Cys Lys Gly Ser 210 215 220 Leu Thr Arg Thr His Trp Glu Lys Phe Val Ser Val Thr Cys Asp Phe 230 235 Phe Glu Ser Gln Ala Pro Ala Thr Gly Ser Glu Asn Ser Ala Val Asn Gln Lys Pro Thr Asn Leu Pro Lys Val Glu Glu Ser Gln Gln Lys Asn 265 270

Thr Pro Pro Thr Asp Ser Pro Ser Lys Ala Gly Pro Arg Gly Ser Val

285

280

275

144 Gln Tyr Leu Pro Asp Leu Asp Asp Lys Asn Ser Gln Glu Lys Gly Pro 300 290 295 Gln Glu Ala Phe Pro Val His Leu Asp Leu Thr Thr Asn Pro Gln Gly 315 310 Glu Thr Leu Asp Ile Ser Phe Leu Phe Leu Glu Pro Met Glu Glu Lys 330 325 Leu Val Val Leu Pro Phe Pro Lys Glu Lys Ala Arg Thr Ala Glu Cys 345 Pro Gly Pro Ala Gln Asn Ala Ser Pro Leu Val Leu Pro Pro 360 365 355 <210> 94 <211> 212 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -197..-1 <220> <221> UNSURE <222> -88 <223> Xaa = Ala, Asp, Gly, Val <220> <221> UNSURE <222> -109 <223> Xaa = Asp,Glu Met Ala Thr Pro Asn Asn Leu Thr Pro Thr Asn Cys Ser Trp Trp Pro -195 -190 Ile Ser Ala Leu Glu Ser Asp Ala Ala Lys Pro Ala Glu Ala Pro Asp -175 Ala Pro Glu Ala Ala Ser Pro Ala His Trp Pro Arg Glu Ser Leu Val -165 -160 -155 Leu Tyr His Trp Thr Gln Ser Phe Ser Ser Gln Lys Ala Lys Ile Leu -140 Glu His Asp Asp Val Ser Tyr Leu Lys Lys Ile Leu Gly Glu Leu Ala -130 -125

Met Val Leu Asp Gln Ile Glu Ala Xaa Leu Glu Lys Arg Lys Leu Glu

145

-110 -105 -115 Asn Glu Gly Gln Lys Cys Glu Leu Trp Leu Cys Gly Cys Xaa Phe Thr -95 -90 Leu Ala Asp Val Leu Leu Gly Ala Thr Leu His Arg Leu Lys Phe Leu -80 -75 -85 Gly Leu Ser Lys Lys Tyr Trp Glu Asp Gly Ser Arg Pro Asn Leu Gln -60 Ser Phe Phe Glu Arg Val Gln Arg Arg Phe Ala Phe Arg Lys Val Leu -50 -45 Gly Asp Ile His Thr Thr Leu Leu Ser Ala Val Ile Pro Asn Ala Phe -30 Arg Leu Val Lys Arg Lys Pro Pro Ser Phe Phe Gly Ala Ser Phe Leu -15 Met Gly Ser Leu Gly Gly Met Gly Tyr Phe Ala Tyr Trp Tyr Leu Lys 1 Lys Lys Tyr Ile 15 <210> 95 <211> 287 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -26..-1 <400> 95 Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg -5 1 Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu Leu Arg Leu Leu Asp Lys Thr Leu Ser Ala Arg Ser Pro Gly Lys His 30 Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu Val Ile 55 60 65 Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly Gly Lys 75 80

146

Met Ser Gln Tyr Leu Asp Ser Leu Lys Val Gly Asp Val Val Glu Phe 95 Arg Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn 110 Ile Gln Pro Asn Lys Lys Ser Pro Pro Glu Pro Arg Val Ala Lys Lys 125 Leu Gly Met Ile Ala Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu 140 145 Ile Arg Ala Ile Leu Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu 155 Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu 170 175 Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr 190 Leu Asp His Pro Pro Lys Asp Trp Ala Tyr Ser Lys Gly Phe Val Thr 200 205 Ala Asp Met Ile Arg Glu His Leu Pro Ala Pro Gly Asp Asp Val Leu 220 225 Val Leu Leu Cys Gly Pro Pro Pro Met Val Gln Leu Ala Cys His Pro 235 Asn Leu Asp Lys Leu Gly Tyr Ser Gln Lys Met Arg Phe Thr Tyr 255

<210> 96

<211> 312

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -25..-1

<400> 96

Met Ser Asp Leu Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu Leu
-25 -20 -15 -10

Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu Leu Ala
-5 1 5

Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn Val Thr Val
10 15 20

Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr Gly Arg Leu Phe 25 30 35

Thr Glu Ser Cys Ile Ser Pro Lys Leu Arg Ser Ile Ala Val Tyr Tyr

147

40 45 50 Asp Asn Pro His Met Val Pro Pro Asp Lys Cys Arg Cys Ala Val Gly 60 65 Ser Ile Leu Ser Glu Gly Glu Glu Ser Pro Ser Pro Glu Leu Ile Asp 80 Leu Tyr Gln Lys Phe Gly Phe Lys Val Phe Ser Phe Pro Ala Pro Ser 95 His Val Val Thr Ala Thr Phe Pro Tyr Thr Thr Ile Leu Ser Ile Trp 110 Leu Ala Thr Arg Arg Val His Pro Ala Leu Asp Thr Tyr Ile Lys Glu 125 130 Arg Lys Leu Cys Ala Tyr Pro Arg Leu Glu Ile Tyr Gln Glu Asp Gln 140 145 Ile His Phe Met Cys Pro Leu Ala Arg Gln Gly Asp Phe Tyr Val Pro 155 160 Glu Met Lys Glu Thr Glu Trp Lys Trp Arg Gly Leu Val Glu Ala Ile 175 Asp Thr Gln Val Asp Gly Thr Gly Ala Asp Thr Met Ser Asp Thr Ser 190 Ser Val Ser Leu Glu Val Ser Pro Gly Ser Arg Glu Thr Ser Ala Ala 205 210 Thr Leu Ser Pro Gly Ala Ser Ser Arg Gly Trp Asp Asp Gly Asp Thr Arg Ser Glu His Ser Tyr Ser Glu Ser Gly Ala Ser Gly Ser Ser Phe 235 240 Glu Glu Leu Asp Leu Glu Gly Glu Gly Pro Leu Gly Glu Ser Arg Leu 255 Asp Pro Gly Thr Glu Pro Leu Gly Thr Thr Lys Trp Leu Trp Glu Pro 270 275 Thr Ala Pro Glu Lys Gly Lys Glu 280 285

<210> 97

<211> 226

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -29..-1

<400> 97

148

Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile Phe -25 Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg Tyr Cys -10 -5 Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro Ile Val Asp 10 Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu 30 25 Asp Asp Val Val Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu Met Ser His Cys Ile Ala 55 60 Ile Leu Lys Ile Cys His Thr Leu Thr Glu Lys Leu Val Ala Met Thr 75 Met Gly Ser Gly Ala Lys Met Lys Thr Ser Ala Ser Val Ser Asp Ile 90 Ile Val Val Ala Lys Arg Ile Ser Pro Arg Val Asp Asp Val Val Lys 105 110 Ser Met Tyr Pro Pro Leu Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr 120 Ala Leu Leu Leu Ser Val Ser His Leu Val Leu Val Thr Arg Asn Ala 140 135 Cys His Leu Thr Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala 155 Ala Glu Glu His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu 170 175 Pro Asp Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser 190 180 185 Ala Ile <210> 98 <211> 406 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -35..-1

<400> 98

Met Arg Gly Ser Val Glu Cys Thr Trp Gly Trp Gly His Cys Ala Pro
-35 -25 -20

149

WO 00/37491 PCT/IB99/02058

Ser	Pro	Leu	Leu	Leu	Trp	Thr	Leu	Leu		Phe	Ala	Ala	Pro		Gly
				-15					-10					-5	
Leu	Leu	Gly	Glu	Lys	Thr	Arg	Gln	Val	Ser	Leu	Glu	Val	Ile	Pro	Asn
			1				5					10			
Trp	Leu	Gly	Pro	Leu	Gln	Asn	Leu	Leu	His	Ile	Arg	Ala	Val	Gly	Thr
	15					20					25				
Asn	Ser	Thr	Leu	His	Tyr	Val	Trp	Ser	Ser	Leu	Gly	Pro	Leu	Ala	Val
30					35					40					45
Val	Met	Val	Ala	Thr	Asn	Thr	Pro	His	Ser	Thr	Leu	Ser	Val	Asn	Trp
				50					55					60	
Ser	Leu	Leu	Leu	Ser	Pro	Glu	Pro	Asp	Gly	Gly	Leu	Met	Val	Leu	Pro
			65					70					75		
Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu
		80					85					90			
Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly
	95					100					105				
Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile
110					115					120					125
Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His
				130					135					140	
Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe
			145					150					155		
Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg
		160					165					170			
Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly
	175					180					185				
Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
190					195					200					205
Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	Gln	His	Ser	Ile
				210					215					220	
Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp
			225					230					235		
Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser
		240					245					250			
Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Сув	Gln	Ala	Ser	Pro
	255		_	_		260					265				
Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg
270					275	•				280					285
	Phe	Phe	Glv	Ser		Asn	Asn	Phe	Сув		Phe	Asn	Leu	Thr	
			4	290					295					300	
Gly	Ala	Ser	Thr		Pro	Gly	Tyr	Trp		Gln	His	Tyr	Leu		Trp
•			305	-4			•	310	•				315		-

150

Ser Met Leu Leu Gly Val Gly Phe Pro Pro Val Asp Gly Leu Ser Pro

320 325 330

Leu Val Leu Gly Ile Met Ala Val Ala Leu Gly Ala Pro Gly Leu Met 335 340 345

Leu Leu Gly Gly Gly Leu Val Leu Leu His His Lys Lys Tyr Ser 350 355 360 365

Glu Tyr Gln Ser Ile Asn

370

<210> 99

<211> 120

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -57..-1

<400> 99

Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys
-55
-50
-45

Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu
-40 -35 -30

Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu
-25 -20 -15 -10

Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser
-5 1 5

Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val
10 15 20

Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His 25 30 35

Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr 40 55 55

Asp Asp Ile Pro Asp Phe Asp Asp

60

<210> 100

<211> 210

<212> PRT

<213> Homo Sapiens

<220>

151

<221> SIGNAL

<222> -36..-1

<400> 100

Met Ala Leu Pro Gln Met Cys Asp Gly Ser His Leu Ala Ser Thr Leu

-35 -30 -25

Arg Tyr Cys Met Thr Val Ser Gly Thr Val Val Leu Val Ala Gly Thr
-20 -15 -10 -5

Leu Cys Phe Ala Trp Trp Ser Glu Gly Asp Ala Thr Ala Gln Pro Gly

1 5 10

Gln Leu Ala Pro Pro Thr Glu Tyr Pro Val Pro Glu Gly Pro Ser Pro
15 20 25

Leu Leu Arg Ser Val Ser Phe Val Cys Cys Gly Ala Gly Gly Leu Leu 30 35 40

Leu Leu Ile Gly Leu Leu Trp Ser Val Lys Ala Ser Ile Pro Gly Pro
45 50 55 60

Pro Arg Trp Asp Pro Tyr His Leu Ser Arg Asp Leu Tyr Tyr Leu Thr
65 70 75

Val Glu Ser Ser Glu Lys Glu Ser Cys Arg Thr Pro Lys Val Val Asp 80 85 90

Ile Pro Thr Tyr Glu Glu Ala Val Ser Phe Pro Val Ala Glu Gly Pro
95 100 105

Pro Thr Pro Pro Ala Tyr Pro Thr Glu Glu Ala Leu Glu Pro Ser Gly
110 120

Ser Arg Asp Ala Leu Leu Ser Thr Gln Pro Ala Trp Pro Pro Pro Ser 125 130 135 140

Tyr Glu Ser Ile Ser Leu Ala Leu Asp Ala Val Ser Ala Glu Thr Thr

145 150 155

Pro Ser Ala Thr Arg Ser Cys Ser Gly Leu Val Gln Thr Ala Arg Gly
160 165 170

Gly Ser

<210> 101

<211> 251

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -243..-1

<400> 101

152

Met	Ala	His	Arg	Leu	Gln	Ile	Arg	Leu	Leu	Thr	Trp	Asp	уаl	Lys	Asp	
			-24	0				-235 -23						30		
Thr	Leu	Leu	Arg	Leu	Arg	His	Pro	Leu	Gly	Glu	Ala	Tyr	Ala	Thr	Lys	
	-	-22	5				-22	0				-21	5			
Ala	Arg	Ala	His	Gly	Leu	Glu	Val	Glu	Pro	Ser	Ala	Leu	Glu	Gln	Gly	
	-21	0				-20	5				-20	)				
Phe	Arg	Gln	Ala	Tyr	Arg	Ala	Gln	Ser	His	Ser	Phe	Pro	Asn	Tyr	Gly	
-195	5				-19	0				-18	5		•		-180	
Leu	Ser	His	Gly	Leu	Thr	Ser	Arg	Gln	Trp	Trp	Leu	Asp	Val	Val	Leu	
				-17	5				-17	D				-16	5	
Gln	Thr	Phe	His	Leu	Ala	Gly	Val	Gln	Asp	Ala	Gln	Ala	Val	Ala	Pro	
			-16	0				-15	5				-15	0		
Ile	Ala	Glu	Gln	Leu	Tyr	Lys	Asp	Phe	Ser	His	Pro	Cys	Thr	Trp	Gln	
		-14	5				-140	)				-13	5			
Val	Leu	Asp	Gly	Ala	Glu	Asp	Thr	Leu	Arg	Glu	Cys	Arg	Thr	Arg	Gly	
	-130	כ				-125	5				-120	)				
Leu	Arg	Leu	Ala	Val	Ile	Ser	Asn	Phe	qaA	Arg	Arg	Leu	Glu	Gly	Ile	
-115	5				-110	)				-105	5				-100	
Leu	Glu	Gly	Leu	Gly	Leu	Arg	Glu	His	Phe	Asp	Phe	Val	Leu	Thr	Ser	
				-95					-90					-85		
Glu	Ala	Ala	Gly	$\mathtt{Trp}$	Pro	Lys	Pro	Asp	Pro	Arg	Ile	Phe	Gln	Glu	Ala	
			-80					-75					-70			
Leu	Arg	Leu	Ala	His	Met	Glu	Pro	Val	Val	Ala	Ala	His	Val	Gly	Asp	
		-65					-60					-55				
Asn	Tyr	Leu	Cys	qaA	Tyr	Gln	Gly	Pro	Arg	Ala	Val	Gly	Met	His	Ser	
	-50					-45					-40					
Phe	Leu	Val	Val	Gly	Pro	Gln	Ala	Leu	Asp	Pro	Val	Val	Arg	Asp	Ser	
-35					-30					-25					-20	
Val	Pro	Lys	Glu	His	Ile	Leu	Pro	Ser	Leu	Ala	His	Leu	Leu	Pro	Ala	
				-15					-10					-5		
Leu	Asp	Cys	Leu	Glu	Gly	Ser	Thr	Pro	Gly	Leu	•					
			1				5									
<210	> 10	2														
<211	.> 12	6														
<212	> PR	T														
<213	> Hc	omo s	Sapie	ens												

<220>

<221> SIGNAL

<222> -24..-1

<400> 102

Met Asp Lys Ser Leu Leu Leu Glu Leu Pro Ile Leu Leu Cys Cys Phe
-20 -15 -10

Arg Ala Leu Ser Gly Ser Leu Ser Met Arg Asn Asp Ala Val Asn Glu
-5 1 5

Ile Val Ala Val Lys Asn Asn Phe Pro Val Ile Glu Ile Gln Cys
10 15 20

Arg Met Cys His Leu Gln Phe Pro Gly Glu Lys Cys Ser Arg Gly Arg
25 30 35 40

Gly Ile Cys Thr Ala Thr Thr Glu Glu Ala Cys Met Val Gly Arg Met
45 50 55

Phe Lys Arg Asp Gly Asn Pro Trp Leu Thr Phe Met Gly Cys Leu Lys
60 65 70

Asn Cys Ala Asp Val Lys Gly Ile Arg Trp Ser Val Tyr Leu Val Asn
75 80 85

Phe Arg Cys Cys Arg Ser His Asp Leu Cys Asn Glu Asp Leu 90 95 100

<210> 103

<211> 133

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -44..-1

<400> 103

Met Asp Arg Arg Ala Thr Ser Phe Pro Pro Leu Pro Ala Lys Glu Arg
-40 -35 -30

Arg Ala Gly Ile Ser Ser Ala Leu Pro Cys Pro Pro Thr Met Ser Leu
-25 -20 -15

Ser Asp Ser Leu Trp Ser Pro His Cys Ser Trp Ser Glu Arg Pro His
-10 -5 1

Ser Phe Ser His Trp Arg Gln Pro Arg Met Gly Ser Ser Gly Gly Ser
5 10 15 20

Leu Asp Tyr Val Ser Phe Lys His Trp Ile His Ser Ser Arg Ser Lys
25 30 35

Gly Lys Ile Ala Ala Leu Glu Ala Gly Leu Phe Ile Ser Cys Leu Gly
40 45 50

Asp Ala Pro Arg Gly Leu Asn Ala Ser Gln Gly Asn Gln Arg Lys Asn
55 60 65

154

Met Val Cys Phe Arg Gly Gly Val Ala Ser Leu Ala Leu Pro Ser Leu 75 70 Thr Pro Ser Cys Leu <210> 104 <211> 221 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -28..-1 <400> 104 Met Glu Ala Gly Gly Phe Leu Asp Ser Leu Ile Tyr Gly Ala Cys Val -20 Val Phe Thr Leu Gly Met Phe Ser Ala Gly Leu Ser Asp Leu Arg His -5 Met Arg Met Thr Arg Ser Val Asp Asn Val Gln Phe Leu Pro Phe Leu 15 Thr Thr Glu Val Asn Asn Leu Gly Trp Leu Ser Tyr Gly Ala Leu Lys 25 . Gly Asp Gly Ile Leu Ile Val Val Asn Thr Val Gly Ala Ala Leu Gln 45 Thr Leu Tyr Ile Leu Ala Tyr Leu His Tyr Cys Pro Arg Lys Arg Val 60 Val Leu Leu Gln Thr Ala Thr Leu Leu Gly Val Leu Leu Leu Gly Tyr 75 Gly Tyr Phe Trp Leu Leu Val Pro Asn Pro Glu Ala Arg Leu Gln Gln 95 90 Leu Gly Leu Phe Cys Ser Val Phe Thr Ile Ser Met Tyr Leu Ser Pro 105 110 Leu Ala Asp Leu Ala Lys Val Ile Gln Thr Lys Ser Thr Gln Cys Leu 125 Ser Tyr Pro Leu Thr Ile Ala Thr Leu Leu Thr Ser Ala Ser Trp Cys 135 140 Leu Tyr Gly Phe Arg Leu Arg Asp Pro Tyr Ile Met Val Ser Asn Phe 160 155 Pro Gly Ile Val Thr Ser Phe Ile Arg Phe Trp Leu Phe Trp Lys Tyr 165 170 175 180 Pro Gln Glu Gln Asp Arg Asn Tyr Trp Leu Leu Gln Thr

155

185 190

<210> 105

<211> 352

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -23..-1

<400> 105

Met Glu Ser Gly Gly Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly
-20 -15 -10

Thr Thr Ser Val Val Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys
-5 1 5

Ala Arg Val Ser Gln Glu Leu Lys Gly Ala Lys Lys Val His Leu Gly
10 15 20 25

Glu Asp Leu Lys Ser Ile Leu Ser Glu Ala Pro Gly Lys Cys Val Pro 30 35 40

Tyr Ala Val Ile Glu Gly Ala Val Arg Ser Val Lys Glu Thr Leu Asn
45 50 55

Ser Gln Phe Val Glu Asn Cys Lys Gly Val Ile Gln Arg Leu Thr Leu 60 65 70

Gln Glu His Lys Met Val Trp Asn Arg Thr Thr His Leu Trp Asn Asp 75 80 85

Cys Ser Lys Ile Ile His Gln Arg Thr Asn Thr Val Pro Phe Asp Leu 90 95 100 105

Val Pro His Glu Asp Gly Val Asp Val Ala Val Arg Val Leu Lys Pro

Leu Asp Ser Val Asp Leu Gly Leu Glu Thr Val Tyr Glu Lys Phe His 125 130 135

Pro Ser Ile Gln Ser Phe Thr Asp Val Ile Gly His Tyr Ile Ser Gly
140 145 150

Glu Arg Pro Lys Gly Ile Gln Glu Thr Glu Glu Met Leu Lys Val Gly
155 160 165

Ala Thr Leu Thr Gly Val Gly Glu Leu Val Leu Asp Asn Asn Ser Val

Arg Leu Gln Pro Pro Lys Gln Gly Met Gln Tyr Tyr Leu Ser Ser Gln
190 195 200

Asp Phe Asp Ser Leu Leu Gln Arg Gln Glu Ser Ser Val Arg Leu Trp
205 210 215

156

Lys Val Leu Ala Leu Val Phe Gly Phe Ala Thr Cys Ala Thr Leu Phe 220 225 Phe Ile Leu Arg Lys Gln Tyr Leu Gln Arg Gln Glu Arg Leu Arg Leu 240 245 Lys Gln Met Gln Glu Glu Phe Gln Glu His Glu Ala Gln Leu Leu Ser 255 Arq Ala Lys Pro Glu Asp Arg Glu Ser Leu Lys Ser Ala Cys Val Val 275 270 Cys Leu Ser Ser Phe Lys Ser Cys Val Phe Leu Glu Cys Gly His Val 290 Cys Ser Cys Thr Glu Cys Tyr Arg Ala Leu Pro Glu Pro Lys Lys Cys 305 310 300 Pro Ile Cys Arg Gln Ala Ile Thr Arg Val Ile Pro Leu Tyr Asn Ser 315 320 325 <210> 106 <211> 385 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -184..-1 <400> 106 Met Trp Thr Phe Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val -175 -180 Tyr Phe Ile Gly Ala His Lys Ile Pro Asn Ala Asn Met Asn Glu Asp -160 Gly Pro Ser Met Ser Val Asn Phe Thr Ser Pro Gly Cys Leu Asp His -145 Ile Met Lys Tyr Lys Lys Lys Cys Val Lys Ala Gly Ser Leu Trp Asp -130 Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu Thr Val Glu Val Asn -115 -110 Phe Thr Thr Pro Leu Gly Asn Arg Tyr Met Ala Leu Ile Gln His -100 Ser Thr Ile Ile Gly Phe Ser Gln Val Phe Glu Pro His Gln Lys Lys -80 Gln Thr Arg Ala Ser Val Val Ile Pro Val Thr Gly Asp Ser Glu Gly -70 -65 Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro Thr Cys Gly Ser Asp Cys

157

-50 -55 Ile Arg His Lys Gly Thr Val Val Leu Cys Pro Gln Thr Gly Val Pro -35 -30 Phe Pro Leu Asp Asn Asn Lys Ser Lys Pro Gly Gly Trp Leu Pro Leu -20 Leu Leu Ser Leu Leu Val Ala Thr Trp Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His Glu Arg Ile Lys Lys Thr Ser Phe Ser Thr Thr Thr Leu Leu Pro Pro Ile Lys Val Leu Val Val Tyr Pro Ser Glu 35 30 Ile Cys Phe His His Thr Ile Cys Tyr Phe Thr Glu Phe Leu Gln Asn His Cys Arg Ser Glu Val Ile Leu Glu Lys Trp Gln Lys Lys Lys Ile 65 Ala Glu Met Gly Pro Val Gln Trp Leu Ala Thr Gln Lys Lys Ala Ala 80 Asp Lys Val Val Phe Leu Leu Ser Asn Asp Val Asn Ser Val Cys Asp Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro Ser Glu Asn Ser Gln Asp 110 115 Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys Ser Asp Leu Arg Ser Gln 130 Ile His Leu His Lys Tyr Val Val Val Tyr Phe Arg Glu Ile Asp Thr 145 Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys Pro Lys Tyr His Leu Met 160 Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu His Val Lys Gln Gln 180 175 Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His Asp Gly Cys Cys Ser 200 185 190 195 Leu

<210> 107

<211> 69

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -23..-1

158

<400> 107

Met Asn Leu Met Trp Thr Leu Leu Leu Phe Leu Leu Leu Asp Val Thr

-20 -15 -10

Val Phe Ile Pro Ala Leu Pro Phe Ser Thr Arg His Ile Asp Asn Pro
-5 1 5

Arg Ser Trp Val Pro Arg Gly His His Arg Tyr Cys Asp Val Met Met

10 20 25

Arg Arg Arg Trp Leu Ile Tyr Arg Gly Lys Cys Glu Gln Ile His Thr
30 35 40

Phe Ile His Arg Ile

45

<210> 108

<211> 108

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -49..-1

<400> 108

Met Asn Lys Thr His Lys Asp Cys Ser Ser Pro Gln Tyr Ser Ile Tyr
-45 -40 -35

Asn Ile Leu Asn Glu Leu Pro Thr Arg Pro Ile Ile Leu Ser Cys Ser
-30 -25 -20

Gln Ile Ser Cys Leu Leu Leu Val Ser Thr Trp Ser Ala Asp Leu Met
-15 -10 -5

Ser Tyr Arg Pro Val Thr Lys Pro Ser Gln Arg Cys Thr Ser Pro Ala 1 5 10 15

Gln Ser Met Thr Val Asn Leu Thr Lys Asp Val Gly Phe Tyr Glu Asp

Thr Gln Ser Ile Arg Ile Thr Leu Ser Glu Ile Ser Gln Ala Gln Lys
35 40 45

Asp Thr Tyr Phe Ile Ile Ser Cys Ile Cys Gly Ile

<210> 109

<211> 108

<212> PRT

<213> Homo Sapiens

159

<220>

<221> SIGNAL

<222> -28..-1

<400> 109

Met Tyr Phe His Phe Leu Gly Ala Gly Ala Ile Leu Ile Pro Arg Leu
-25 -20 -15

Asp Ile Val Ile Ser Phe Val Gly Ala Val Ser Ser Ser Thr Leu Ala
-10 -5 1

Leu Ile Leu Pro Pro Leu Val Glu Ile Leu Thr Phe Ser Lys Glu His

Tyr Asn Ile Trp Met Val Leu Lys Asn Ile Ser Ile Ala Phe Thr Gly
25 30 35

Val Val Gly Phe Leu Leu Gly Thr Tyr Ile Thr Val Glu Glu Ile Ile
40 45 50

Tyr Pro Thr Pro Lys Val Val Ala Gly Thr Pro Gln Ser Pro Phe Leu

Asn Leu Asn Ser Thr Cys Leu Thr Ser Gly Leu Lys
70 75 80

<210> 110

<211> 125

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -37..-1

<400> 110

Met Val Cys Glu Asp Ala Pro Ser Phe Gln Met Ala Trp Glu Ser Gln
-35 -30 -25

Met Ala Trp Glu Arg Gly Pro Ala Leu Leu Cys Cys Val Leu Ser Ala
-20 -15 -10

Ser Gln Leu Ser Ser Gln Asp Gln Asp Pro Leu Gly His Ile Lys Ser
-5 1 5 10

Leu Leu Tyr Pro Phe Gly Phe Pro Val Glu Leu Pro Arg Pro Gly Pro

Thr Gly Ala Tyr Lys Lys Val Lys Asn Gln Asn Gln Thr Thr Ser Ser
30 35 40

Glu Leu Leu Arg Lys Gln Thr Ser His Phe Asn Gln Arg Gly His Arg
45 50 55

160

Ala Arg Ser Lys Leu Leu Ala Ser Arg Gln Ile Pro Asp Arg Thr Phe 60 65 70 75 Lys Cys Gly Lys Trp Leu Pro Gln Val Pro Ser Pro Val

. 80 85

<210> 111

<211> 169

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -88..-1

<400> 111

Met Lys Gly Gly Ile Ser Asn Val Trp Phe Asp Arg Phe Lys Ile Thr

-75 -80 -75

Asn Asp Cys Pro Glu His Leu Glu Ser Ile Asp Val Met Cys Gln Val
-70 -65 -60

Leu Thr Asp Leu Ile Asp Glu Glu Val Lys Ser Gly Ile Lys Lys Asn
-55 -50 -45

Arg Ile Leu Ile Gly Gly Phe Ser Met Gly Gly Cys Met Ala Met His
-40 -35 -30 -25

Leu Ala Tyr Arg Asn His Gln Asp Val Ala Gly Val Phe Ala Leu Ser
-20 -15 -10

Ser Phe Leu Asn Lys Ala Ser Ala Val Tyr Gln Ala Leu Gln Lys Ser

Asn Gly Val Leu Pro Glu Leu Phe Gln Cys His Gly Thr Ala Asp Glu 10 15 20

Leu Val Leu His Ser Trp Ala Glu Glu Thr Asn Ser Met Leu Lys Ser 25 30 35 40

Leu Gly Val Thr Thr Lys Phe His Ser Phe Pro Asn Val Tyr His Glu
45 50 55

Leu Ser Lys Thr Glu Leu Asp Ile Leu Lys Leu Trp Ile Leu Thr Lys
60 65 70

Leu Pro Gly Glu Met Glu Lys Gln Lys

75 80

<210> 112

<211> 82

<212> PRT

<213> Homo Sapiens

161

<220> <221> SIGNAL <222> -56..-1 <400> 112 Met Lys Ala Val Trp His Phe Cys Leu Ser His Lys Ser Ser Leu Val -50 Ile Val Leu Lys Thr Ala Gly Trp Ile Pro Gln Ala Gly Thr Leu Ile -35 -30 Pro Gly Ser Arg Glu Glu Ser Arg Ser Asp Ser Gln Met Ile Met Leu -15 Val Cys Phe Asn Leu Ser Arg Gly Cys Leu Lys Lys Val Phe Ile Ile Ser Val Leu Pro Asp Pro Glu Thr Ile Leu Leu Gly Lys Thr Val Gly 10 15 20 Ile Ala 25 <210> 113 <211> 251 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -20..-1 <400> 113 Met Asp Lys Val Gln Ser Gly Phe Leu Ile Leu Phe Leu Phe Leu Met -20 -10 -15 Glu Cys Gln Leu His Leu Cys Leu Pro Tyr Ala Asp Gly Leu His Pro Thr Gly Asn Ile Thr Gly Leu Pro Gly Ser Phe Asn His Trp Phe Tyr 20 Val Thr Gln Gly Glu Leu Lys Ser Cys Phe Arg Gly Asp Lys Lys 35 Val Ile Thr Phe His Arg Lys Lys Phe Ser Phe Gln Gly Ser Lys Arg

50

55

70

Ser Gln Pro Pro Arg Asn Ile Thr Lys Glu Pro Lys Val Phe Phe His

Lys Thr Gln Leu Pro Gly Ile Gln Gly Ala Ala Ser Arg Ser Thr Ala

PCT/IB99/02058 WO 00/37491

162 80 85 90 Ala Ser Pro Thr Asn Pro Met Lys Phe Leu Arg Asn Lys Ala Ile Ile 100 Arg His Arg Pro Ala Leu Val Lys Val Ile Leu Ile Ser Ser Val Ala 110 115 Phe Ser Ile Ala Leu Ile Cys Gly Met Ala Ile Ser Tyr Met Ile Tyr 130 135 Arg Leu Ala Gln Ala Glu Glu Arg Gln Gln Leu Glu Ser Leu Tyr Lys 150 145 Asn Leu Arg Ile Pro Leu Leu Gly Asp Glu Glu Glu Gly Ser Glu Asp 160 . 165 Glu Gly Glu Ser Thr His Leu Leu Pro Lys Asn Glu Asn Glu Leu Glu 180 Lys Phe Ile His Ser Val Ile Ile Ser Lys Arg Ser Lys Asn Ile Lys 195 200 Lys Lys Leu Lys Glu Glu Gln Asn Ser Val Thr Glu Asn Lys Thr Lys 210 220 Asn Ala Ser His Asn Gly Lys Met Glu Asp Leu 230 225 <210> 114 <211> 305 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -34..-1 <400> 114 Met Ser Phe Leu Arg Ile Thr Pro Ser Thr His Ser Ser Val Ser Ser -30 -25 Gly Leu Leu Arg Leu Ser Ile Phe Leu Leu Ser Phe Pro Asp Ser -10 Asn Gly Lys Ala Ile Trp Thr Ala His Leu Asn Ile Thr Phe Gln Val

Gly Asn Glu Ile Thr Ser Glu Leu Gly Glu Ser Gly Val Phe Gly Asn 20 25 His Ser Pro Leu Glu Arg Val Ser Gly Val Val Ala Leu Pro Glu Glu 40 Trp Asn Gln Asn Ala Cys His Pro Leu Thr Asn Phe Ser Arg Pro Lys 50 55 60

163

Gln Ala Asp Ser Trp Leu Ala Leu Ile Glu Arg Gly Gly Cys Thr Phe 70 65 Thr His Lys Ile Asn Val Ala Ala Glu Lys Gly Ala Asn Gly Val Ile Ile Tyr Asn Tyr Gln Gly Thr Gly Ser Lys Val Phe Pro Met Ser His 105 100 Gln Gly Thr Glu Asn Ile Val Ala Val Met Ile Ser Asn Leu Lys Gly 115 Met Glu Ile Leu His Ser Ile Gln Lys Gly Val Tyr Val Thr Val Ile 130 135 Ile Glu Val Gly Arg Met His Met Gln Trp Val Ser His Tyr Ile Met 150 155 Tyr Leu Phe Thr Phe Leu Ala Ala Thr Ile Ala Tyr Phe Tyr Leu Asp 165 170 Cys Val Trp Arg Leu Thr Pro Arg Val Pro Asn Ser Phe Thr Arg Arg 175 180 185 Arg Ser Gln Ile Lys Thr Asp Val Lys Lys Ala Ile Asp Gln Leu Gln 195 Leu Arg Val Leu Lys Glu Gly Asp Glu Glu Leu Asp Leu Asn Glu Asp 210 215 Asn Cys Val Val Cys Phe Asp Thr Tyr Lys Pro Gln Asp Val Val Arg 230 Ile Leu Thr Cys Lys His Phe Phe His Lys Ala Cys Ile Asp Pro Trp 245 Leu Leu Ala His Arg Thr Cys Pro Met Cys Lys Cys Asp Ile Leu Lys 265 270 255 260 Thr <210> 115 <211> 61 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -42..-1 <400> 115 Met Thr Asp Leu Asp Leu Met Ile Asn Phe Thr Phe Pro Ile Gln Trp -35

Val Asn Gln Asn Arg Met Ala Tyr Tyr Ser Leu Lys Pro Leu Leu Pro
-25 -20 -15

164

Cys Ser Ser Val Leu Thr Cys Gly Gln Ala Ser Gln Asp Leu Leu Thr

-10 -5 1 5

Ser Ala Thr Ser Val Thr Gly Met Glu Lys Ile Glu Ala

10 15

<210> 116

<211> 113

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -15..-1

<400> 116

Met Asn Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile

15 -10 -5 1

Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser

10 15

Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Ser Gly Leu .

25 · 3

Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg

35 40

Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile

55 60 65

Leu Val Asn Leu Ser Met Val Glu Asn Lys Leu Val Glu Leu Glu His

70 75 80

Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser 85 90 95

Thr

<210> 117

<211> 101

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -30..-1

<400> 117

Met Glu Arg Pro Arg Ser Pro Gln Cys Ser Ala Pro Ala Ser Ala Ser

165

-20 -15 -30 -25 Ala Ser Val Thr Leu Ala Gln Leu Leu Gln Leu Val Gln Gln Gly Gln -10 - 5 Glu Leu Pro Gly Leu Glu Lys Arg His Ile Ala Ala Ile His Gly Glu 5 10 15 Pro Thr Ala Ser Arg Leu Pro Arg Arg Pro Lys Pro Trp Glu Ala Ala 25 Ala Leu Ala Glu Ser Leu Pro Pro Pro Thr Leu Arg Ile Gly Thr Ala 35 40 45 Pro Ala Glu Pro Gly Leu Val Glu Ala Ala Thr Ala Pro Ser Ser Trp 55 60 His Thr Val Gly Pro 70 <210> 118 <211> 97 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -90..-1 <220> <221> UNSURE <222> -39 <223> Xaa = His,Gln <400> 118 Met Asn Gln Glu Asn Pro Pro Pro Tyr Pro Gly Pro Gly Pro Thr Ala -85 Pro Tyr Pro Pro Tyr Pro Pro Gln Pro Met Gly Pro Gly Pro Met Gly -70 -65 Gly Pro Tyr Pro Pro Pro Gln Gly Tyr Pro Tyr Gln Gly Tyr Leu Gln -50 Tyr Gly Trp Xaa Gly Gly Pro Gln Glu Pro Pro Lys Thr Thr Val Tyr -40 -35 -30 Val Val Glu Asp Gln Arg Arg Asp Glu Leu Gly Pro Ser Thr Cys Leu -20 Thr Ala Cys Trp Thr Ala Leu Cys Cys Cys Leu Trp Asp Met Leu -10 -5 1 Thr

166

•

<210> 119

<211> 101

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -25..-1

<400> 119

Met Val Asp Arg Glu Leu Ala Asp Ile His Glu Asp Ala Lys Thr Cys

-25 -20 -15 -1

Leu Val Leu Cys Ser Arg Val Leu Ser Val Ile Ser Val Lys Glu Ile
-5 1 5

Lys Thr Gln Leu Ser Leu Gly Arg His Pro Ile Ile Ser Asn Trp Phe 10 15 20

Asp Tyr Ile Pro Ser Thr Arg Tyr Lys Asp Pro Cys Glu Leu Leu His
25 30 35

Leu Cys Arg Leu Thr Ile Arg Asn Gln Leu Leu Thr Asn Asn Met Leu 40 45 50 55

Pro Asp Gly Ile Phe Ser Leu Leu Ile Pro Ala Arg Leu Gln Asn Tyr
60 65 70

Leu Asn Leu Glu Ile

75

<210> 120

<211> 152

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -101..-1

<400> 120

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser

-100 -95 -90

Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val Thr Ser
-85 -80 -75 -70

Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr Ile Val Ile

-65 -60 -55

167

Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile Leu Leu Tyr Val -50 -45 Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe Trp Pro Leu Leu Asp -30 -25 Ile Ile Asn Ser Leu Val Thr Thr Val Phe Met Leu Ile Val Ser Val -15 Leu Ala Leu Ile Pro Glu Thr Thr Thr Leu Thr Val Gly Gly Val 5 1 Phe Ala Leu Val Thr Ala Val Cys Cys Leu Ala Asp Gly Ala Leu Ile 20 Tyr Arg Lys Leu Leu Phe Asn Pro Ser Gly Pro Tyr Gln Lys Lys Pro 35 40 30 Val His Glu Lys Lys Glu Val Leu 45 50 <210> 121 <211> 209 <212> PRT <213> Homo Sapiens <220> <221> SIGNAL <222> -86..-1 <400> 121 Met Leu Ser Pro Thr Phe Val Leu Trp Asp Val Gly Tyr Pro Leu Tyr -80 Thr Tyr Gly Ser Ile Cys Ile Ile Ala Leu Ile Ile Trp Gln Val Lys -60 -65 Lys Ser Cys Gln Lys Leu Ser Leu Val Pro Asn Arg Ser Cys Cys Arg -45 -50 Cys His Arg Arg Val Gln Gln Lys Ser Gly Asp Arg Thr Ser Arg Ala -30 Arg Arg Thr Ser Gln Glu Glu Ala Glu Lys Leu Trp Lys Leu Leu Phe -15 Leu Met Lys Ser Gln Gly Trp Ile Pro Gln Glu Gly Ser Val Arg Arg -5 Ile Leu Cys Ala Asp Pro Cys Cys Gln Ile Cys Asn Val Met Ala Leu 15 20 Glu Ile Lys Gln Leu Leu Ala Glu Ala Pro Glu Val Gly Leu Asp Asn 30 35 Lys Met Lys Leu Phe Leu His Trp Ile Asn Pro Glu Met Lys Asp Arg

168

45 50 55
Arg His Glu Glu Ser Ile Leu Leu Ser Lys Ala Glu Thr Val Thr Gln

60 65 70

Asp Arg Thr Lys Asn Ile Glu Lys Ser Pro Thr Val Thr Lys Asp His 75 80 85 90

Val Trp Gly Ala Thr Thr Gln Lys Thr Thr Glu Asp Pro Glu Ala Gln
95 100 105

Pro Pro Ser Thr Glu Glu Glu Gly Leu Ile Phe Cys Asp Ala Pro Ser 110 115 120

Ala

<210> 122

<211> 89

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -21..-1

<400> 122

Met Gly Ser Cys Ser Gly Arg Cys Ala Leu Val Val Leu Cys Ala Phe
-20 -15 -10

Gln Leu Val Ala Ala Leu Glu Arg Gln Val Phe Asp Phe Leu Gly Tyr
-5 1 5 10

Gln Trp Ala Pro Ile Leu Ala Asn Phe Val His Ile Ile Ile Val Ile 15 20 25

Leu Gly Leu Phe Gly Thr Ile Gln Tyr Arg Leu Arg Tyr Val Met Cys
30 35 40

Thr Arg Cys Gly Gln Pro Ser Gly Ser Pro Gly Thr Ser Ser Ser 45 50 55

Ala Ser Thr Trp Lys Ser Val Ala Ser

60 65

<210> 123

<211> 66

<212> PRT

<213> Homo Sapiens

<220>

<221> SIGNAL

<222> -19..-1

169

<400> 123

Met Lys Pro Leu Leu Val Val Phe Val Phe Leu Phe Leu Trp Asp Pro

Val Leu Ala Gly Ile Asn Ser Leu Ser Ser Glu Met His Lys Lys Cys

Tyr Lys Asn Gly Ile Cys Arg Leu Glu Cys Tyr Glu Ser Glu Met Leu 15 20 25

Val Ala Tyr Cys Met Phe Gln Leu Glu Cys Cys Val Lys Gly Asn Pro 30 35 40 45

Ala Pro

<210> 124

<211> 249

<212> PRT

<213> Homo Sapiens

<400> 124

Met Leu Gln Leu Trp Lys Leu Val Leu Cys Gly Val Leu Thr Gly

1 5 10 15

Thr Ser Glu Ser Leu Leu Asp Asn Leu Gly Asn Asp Leu Ser Asn Val 20 25 30

Val Asp Lys Leu Glu Pro Val Leu His Glu Gly Leu Glu Thr Val Asp

Asn Thr Leu Lys Gly Ile Leu Glu Lys Leu Lys Val Asp Leu Gly Val

50 55 60 Leu Gln Lys Ser Ser Ala Trp Gln Leu Ala Lys Gln Lys Ala Gln Glu

65 70 75 80

Ala Glu Lys Leu Leu Asn Asn Val Ile Ser Lys Leu Leu Pro Thr Asn 85 90 95

Thr Asp Ile Phe Gly Leu Lys Ile Ser Asn Ser Leu Ile Leu Asp Val
100 105 110

Lys Ala Glu Pro Ile Asp Asp Gly Lys Gly Leu Asn Leu Ser Phe Pro 115 120 125

Val Thr Ala Asn Val Thr Val Ala Gly Pro Ile Ile Gly Gln Ile Ile 130 · 135 140

Asn Leu Lys Ala Ser Leu Asp Leu Leu Thr Ala Val Thr Ile Glu Thr
145 150 155 160

Asp Pro Gln Thr His Gln Pro Val Ala Val Leu Gly Glu Cys Ala Ser 165 170 175

Asp Pro Thr Ser Ile Ser Leu Ser Leu Leu Asp Lys His Ser Gln Ile 180 185 190

170

 11e
 Asn
 Lys
 Phe
 Val
 Asn
 Ser
 Val
 11e
 Asn
 Thr
 Leu
 Lys
 Ser
 Thr
 Val

 Ser
 Leu
 Leu
 Gln
 Lys
 Glu
 Ile
 Cys
 Pro
 Leu
 Ile
 Arg
 Ile
 Phe
 Ile

 His
 Ser
 Leu
 Asp
 Val
 Asn
 Val
 Gln
 Gln
 Gln
 Gln
 Val
 Val
 Val
 Asp
 Asn
 Pro
 Gln

 His
 Lys
 Thr
 Gln
 Leu
 Ile
 I

245

<210> 125 <211> 382

<212> PRT

<213> Homo Sapiens

<400> 125 Met Gly Leu Leu Pro Leu Ala Leu Cys Ile Leu Val Leu Cys Cys 10 Gly Ala Met Ser Pro Pro Gln Leu Ala Leu Asn Pro Ser Ala Leu Leu 20 25 Ser Arg Gly Cys Asn Asp Ser Asp Val Leu Ala Val Ala Gly Phe Ala Leu Arg Asp Ile Asn Lys Asp Arg Lys Asp Gly Tyr Val Leu Arg Leu 50 55 Asn Arg Val Asn Asp Ala Gln Glu Tyr Arg Arg Gly Gly Leu Gly Ser 75 . 70 Leu Phe Tyr Leu Thr Leu Asp Val Leu Glu Thr Asp Cys His Val Leu Arg Lys Lys Ala Trp Gln Asp Cys Gly Met Arg Ile Phe Phe Glu Ser 105 Val Tyr Gly Gln Cys Lys Ala Ile Phe Tyr Met Asn Asn Pro Ser Arg 120

Val Leu Tyr Leu Ala Ala Tyr Asn Cys Thr Leu Arg Pro Val Ser Lys 130 135 140

Lys Lys Ile Tyr Met Thr Cys Pro Asp Cys Pro Ser Ser Ile Pro Thr 145 150 155 160

Asp Ser Ser Asn His Gln Val Leu Glu Ala Ala Thr Glu Ser Leu Ala 165 170 175

Lys Tyr Asn Asn Glu Asn Thr Ser Lys Gln Tyr Ser Leu Phe Lys Val

Thr Arg Ala Ser Ser Gln Trp Val Val Gly Pro Ser Tyr Phe Val Glu 195 200 205

Tyr Leu Ile Lys Glu Ser Pro Cys Thr Lys Ser Gln Ala Ser Ser Cys

171

220 215 210 Ser Leu Gln Ser Ser Asp Ser Val Pro Val Gly Leu Cys Lys Gly Ser 235 230 Leu Thr Arg Thr His Trp Glu Lys Phe Val Ser Val Thr Cys Asp Phe 245 250 Phe Glu Ser Gln Ala Pro Ala Thr Gly Ser Glu Asn Ser Ala Val Asn 265 Gln Lys Pro Thr Asn Leu Pro Lys Val Glu Glu Ser Gln Gln Lys Asn 280 275 Thr Pro Pro Thr Asp Ser Pro Ser Lys Ala Gly Pro Arg Gly Ser Val 300 295 Gln Tyr Leu Pro Asp Leu Asp Asp Lys Asn Ser Gln Glu Lys Gly Pro 310 305 Gln Glu Ala Phe Pro Val His Leu Asp Leu Thr Thr Asn Pro Gln Gly 330 325 Glu Thr Leu Asp Ile Ser Phe Leu Phe Leu Glu Pro Met Glu Glu Lys 345 Leu Val Val Leu Pro Phe Pro Lys Glu Lys Ala Arg Thr Ala Glu Cys 355 360 Pro Gly Pro Ala Gln Asn Ala Ser Pro Leu Val Leu Pro Pro 380 370 375

<210> 126

<211> 302

<212> PRT

<213> Mus Musculus

100

<400> 126

105

PCT/IB99/02058 WO 00/37491

172

Glu Asp Val Gly Gln Arg Ser Thr Leu Arg Val Ile Ser His Thr Ser 120 Val Pro Leu Leu Arg Asn Tyr Ser His Tyr Phe Gln His Ala Arg 135 140 Asp Thr Leu Tyr Val Val Trp Gly Gln Gly Arg His Met Asp Arg Val Leu Gly Gly Arg Thr Tyr Arg Thr Leu Leu Gln Leu Thr Arg Met Tyr 170 165 Pro Gly Leu Gln Val Tyr Thr Phe Thr Glu Arg Met Met Ala Tyr Cys 185 Asp Gln Ile Phe Gln Asp Glu Thr Gly Lys Asn Arg Arg Gln Ser Gly 195 200 205 Ser Phe Leu Ser Thr Gly Trp Phe Thr Met Ile Leu Ala Leu Glu Leu 215 . 220 Cys Glu Glu Ile Val Val Tyr Gly Met Val Ser Asp Ser Tyr Cys Ser 225 230 Glu Lys Ser Pro Arg Ser Val Pro Tyr His Tyr Phe Glu Lys Gly Arg 245 250 Leu Asp Glu Cys Gln Met Tyr Arg Leu His Glu Gln Ala Pro Arg Ser 265 Ala His Arg Phe Ile Thr Glu Lys Ala Val Phe Ser Arg Trp Ala Lys 280 Lys Arg Pro Ile Val Phe Ala His Pro Ser Trp Arg Ala Lys 290 295 300 <210> 127 <211> 9 <212> DNA

<213> Artificial Sequence

<400> 127

tgtcagttg 9

<210> 128

<211> 10

<212> DNA

<213> Artificial Sequence

<400> 128

cccaactgac 10

<210> 129

WO 00/37491	P	PCT/IB99/02058		
	. 173	~··		
<211> 11				
<212> DNA	•			

<213> Artificial Sequence <400> 129 aatagaatta g 11 <210> 130 <211> 11 <212> DNA <213> Artificial Sequence <400> 130 aactaaatta g 11 <210> 131 <211> 11 <212> DNA <213> Artificial Sequence <400> 131 11 gcacacctca g <210> 132 <211> 11 <212> DNA <213> Artificial Sequence <400> 132 agataaatcc a 11 <210> 133 <211> 9 <212> DNA <213> Artificial Sequence

<400> 133 cttcagttg

<210> 134 <211> 14 <212> DNA

WO 00/37491		PCT/IB99/02058
	174	7.2
<213> Artificial Sequence		
<400> 134		
ttgtagatag gaca		14
<210> 135		
<211> 11		
<212> DNA		
<213> Artificial Sequence		
· · · · · · · · · · · · · · · · · · ·		
<400> 135		
agataggaca t		11
<210> 136		·
<211> 16	•	
<212> DNA		
<213> Artificial Sequence		
<400> 136		
cataacagat ggtaag		16
cacaacagae ggcaag		
<210> 137		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<400> 137		
cataacagat ggtaag	•	16
<210> 138		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<400> 138		
cataacagat ggtaag		16
<210> 139		
<211> 10		
<212> DNA		
<213> Artificial Sequence		

WO 00/37491					PCT/I	B99/02058	
			175				·
<400> 139							
accatctgtt							10
<210> 140							
<211> 13							
<212> DNA							
<213> Artificial	Sequence						
<400> 140							
tcaagataaa gta							13
		•					
<210> 141							
<211> 13							
<212> DNA	_						
<213> Artificial	Sequence						
<400> 141							
agttgggaat tcc							13
agregggaac rec							13
<210> 142							
<211> 12		•	•				
<212> DNA							
<213> Artificial	Sequence						
<400> 142							
agttgggaat tc							12
<210> 143				•			
<211> 10							
<212> DNA							
<213> Artificial	Sequence						
<400> 143							
tgggaattcc							10
2999442200							10
<210> 144							
<211> 14							
<212> DNA							
<213> Artificial	Sequence						
<400> 144							
tcagtgatat ggca							14

176

<210> 145	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
	•
<400> 145	
taaaacaaaa ca	12
<210> 146	
<211> 8	
<212> DNA	
<213> Artificial Sequence	
<400> 146	
tttagcgc	8
<210> 147	
<211> 8	
<212> DNA	
<213> Artificial Sequence	
<400> 147	
tgagggga	8
<210> 148	
<211> 11	
<212> DNA	
<213> Artificial Sequence	
•	
<400> 148	11
ggaccaatca t	11
<210> 149	
<211> 8	
<212> DNA	
<213> Artificial Sequence	
<400> 149	8
cctgggga	8

<210> 150

	•
WO 00/37491	PCT/IB99/02058
	-
<211> 9	
<212> DNA	
<213> Artificial Sequence	
<400> 150	
	9
tgaccgttg	
<210> 151	
<211> 9	
<212> DNA	
<213> Artificial Sequence	
<400> 151	
tccaacggt	9
<210> 152	
<211> 9	
<212> DNA	
<213> Artificial Sequence	

<400> 152
ttcctggaa

<210> 153
<211> 9
<212> DNA
<213> Artificial Sequence

<400> 153 ttccaggaa 9 <210> 154

<211> 8
<212> DNA
<213> Artificial Sequence

<400> 154 ttggggga 8

<210> 155 <211> 12

<212> DNA

WO 00/37491		PCT/IB99/020
WO 00/37491	•	PC 1/1099

	178
<213> Artificial Sequence	
<400> 155	
gaatgggatt tc	1
<210> 156	•
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<400> 156	
gaaaacaaaa ca	1
<210> 157	
<211> 8	
<212> DNA	
<213> Artificial Sequence	
<400> 157	
gaagggga	
<210> 158	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<400> 158	
agcatctgcc	1
<210> 159	
<211> 11	
<212> DNA	
<213> Artificial Sequence	
<400> 159	
tcccaccttc c	1
<210> 160	
<211> 11	
<212> DNA	

<213> Artificial Sequence

WO 00/37491		PCT/IB99/02058
	179	<u></u> .
<400> 160		
gaggcaatta t		11
<210> 161		
<211> 8		
<212> DNA		
<213> Artificial Sequence		
<400> 161		
agaggga		8
<210> 162		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<400> 162		
ggactcacgt gctgct		16
<210> 163		
<211> 12		
<212> DNA		
<213> Artificial Sequence		
<400> 163		
actcacgtgc tg		12
<210> 164		
<211> 12		
<212> DNA		
<213> Artificial Sequence		
<400> 164		
actcacgtgc tg		12
<210> 165		
<211> 12		
<212> DNA		
<213> Artificial Sequence		
<400> 165		-
cagcacgtga gt		. 12

180

<210> 171

<210>	166						
<211>	10			•			
<212>	DNA						
<213>	Artificial	Sequence					
<400>	166						
accato	etgtt						10
<210>	167						
<211>			•				
<212>							
<213>	Artificial	Sequence					
<400>							
cagcac	egtga gt						12
<210>	168						
<211>							
<212>							
	Artificial	Sequence					
		•					
<400>	168						
cagcad	gtga gt						12
<210>	169		•				
<211>	8						
<212>	DNA						
<213>	Artificial	Sequence					
<400>				٠			
tcacgt	igc						8
	450						
<210>							
<211>							
<212>		Comionae					
<413>	Artificial	sequence					
<400>	170						
gcacgt						•	۶
,y	- J <del></del>						·

		181		
<211> 8		•		
<212> DNA				
<213> Artificial	Sequence			
<400> 171				
catgggga		•		8
<210> 172				
<211> 14				
<212> DNA				
<213> Artificial	Sequence			
<400> 172				
ctctccggaa gcct				14
<210> 173				
<211> 10				
<212> DNA	_			
<213> Artificial	Sequence			
400 170	•			
<400> 173			•	10
tccggaagcc				
<210> 174				
<211> 11				
<212> DNA				
<213> Artificial	Sequence			
	•			
<400> 174				
agtgactgaa c				11
			•	
<210> 175				
<211> 11	•			
<212> DNA				
<213> Artificial	Sequence			
<400> 175				
agtgactgaa' c				11
<210> 176				

<212> DNA

WO 00/37491

PCT/IB99/02058

182

<213> Artificial Sequence

<400> 176

tgtggtctc

9