MiniProjeto: Medição Ativa em Redes com o Iperf - ADS29009

Jéssica Gomes Carrico E Leonardo Ludvig Silva

IFSC - Campus São José

Abril de 2025

Objetivo

Investigar, por meio de medições ativas com o **iperf**, como a vazão de uma conexão TCP é afetada por:

- O tamanho do buffer de envio TCP;
- O atraso de rede (delay);
- E verificar se há interação entre os fatores.

Cenário e Ferramentas

- Emulador Imunes;
- Topologia com 2 PCs clientes, 2 servidores e 2 roteadores;
- Geração de tráfego TCP com iperf;
- Delay simulado com vlink;
- Script de automação em Python.

Cenário

Cenário da rede no IMUNES.

Fatores e Níveis

- Buffer de envio TCP:
 - 64 KB (baixa)
 - 208 KB (alta)
- Delay de rede:
 - 10 ms (baixa)
 - 100 ms (alta)

Execução do Experimento

- Cada combinação executada 8 vezes;
- Ruído UDP gerado paralelamente;
- Vazão média extraída e registrada;
- Resultados armazenados em CSV.
- Intervalo de confiança de 95% calculado no Excel;

Script Python - Parte 1/3

```
1 def run command(cmd):
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 24 25 26 27 28 29
       print(f"\nExecutando: {cmd}")
       subprocess.run(cmd, shell=True)
   def get_ip(host):
       result = subprocess.check_output(
           f"sudo himage {host} ip -4 addr show eth0", shell=True
       ).decode()
       for line in result.splitlines():
            if "inet" in line:
                return line.strip().split()[1].split('/')[0]
       return None
   def get_eid(file: str) -> str:
       output = subprocess.check output(
            f"sudo imunes -b {file} | grep 'ID'", shell=True
       ).decode("utf-8")
       eid = output.split("\n")[-2].split(" = ")[1]
       return eid
   def gera ruido udp(destino, duração total):
       elapsed = 0
       while elapsed < duracao_total:
            dur = random.randint(2, 6)
           taxa = random.randint(1, 10)
            print(f"[ UDP ] {taxa} Mbps por {dur} s")
           run_command("sudo himage {pc1} iperf -u -c {destino} -t {dur} -b {taxa}M")
            time.sleep(dur)
            elapsed += dur
```

Script Python - Parte 2/3

```
def salva csv(buffer, delay, repeticao, output):
       with open("resultadosComRepeticao.csv", "a") as f:
          f.write(f"Buffer={buffer},Delay={delay},Repeticao={repeticao}\n")
          f.write(output)
          f.write("\n")
  file = "/home/aluno/labADS/topologiaLAB1.imn"
  run command("sudo imunes -b /home/aluno/labADS/topologiaLAB1.imn")
  buffers = [64000, 208000]
  delays = ['10000', '100000']
  repeticoes = 8
  exec_id = get_eid(file)
  pc1 = f"pc1@{exec id}"
  pc2 = f"pc2@{exec_id}"
  pc3 = f"pc30{exec_id}"
  pc4 = f"pc4@{exec id}"
  router1 = "router1"
  router2 = "router2"
  pc3_ip = get_ip(pc3)
  pc4_ip = get_ip(pc4)
  run_command(f"sudo himage {pc3} iperf -s -u &")
  run_command(f"sudo himage {pc4} iperf -s &")
27 time.sleep(2)
```

Script Python - Parte 3/3

Cálculo do Intervalo de Confiança (IC)

Para cada configuração, o intervalo de confiança para a vazão média foi calculado com base em 8 repetições, utilizando a fórmula:

$$IC = \bar{x} \pm t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

Onde:

- \bar{x} : média das repetições
- s: desvio padrão amostral
- n: número de repetições (n = 8)
- $t_{n-1,\alpha/2}$: valor crítico da distribuição t de Student

Observação:

- Usa-se a distribuição t de Student pois $n \le 30$
- t = 2,365

Resultados - Vazão com IC

Gráfico de barras com média de vazão e intervalo de confiança.

Vazões Médias e Intervalos de Confiança

Execução	Vazão Média (Mbps)	IC Inferior (Mbps)	IC Superior (Mbps)
64 KB, 10 ms	46,81	46,74	46,89
64 KB, 100 ms	33,61	24,83	42,40
208 KB, 10 ms	137,51	137,21	137,81
208 KB, 100 ms	78,73	57,59	99,86

Cada valor representa a média de 8 repetições para a respectiva combinação de buffer e atraso.

Discussão dos Resultados

Efeito do Buffer:

• Buffers maiores aumentam a vazão.

Efeito do Delay:

Maior delay reduz a vazão.

Interação:

O efeito do buffer é mais expressivo com menor atraso.