# Attention Is All You Need (How to implement Transformer)

2020. 01. 06

Juhyuk Lee

sehkmg@gmail.com





## **Table of Contents**

NMT Basics and Encoder-Decoder Model

Abstract View of Transformer Architecture

• Dive into the Transformer Architecture



## **Table of Contents**

NMT Basics and Encoder-Decoder Model

Abstract View of Transformer Architecture

Dive into the Transformer Architecture



## **NMT Basics and Encoder-Decoder Model**

- Neural Machine Translation
  - Dataset만 이용해서 black box model을 end-to-end로 학습시켜 번역.
  - 기본적인 Deep Learning Framework.



## NMT Basics - Dataset 준비

## • Dataset 준비

| Source (Train)      | Target (Train)  |
|---------------------|-----------------|
| Je suis etudiant.   | I am a student. |
| Quel mois?          | What month?     |
| Source (Valid)      | Target (Valid)  |
| Je suis medecin.    | I am a doctor.  |
| Ce mois-ci?         | This month?     |
| Source (Test)       | Target (Test)   |
| Je suis enseignant. | I am a teacher. |
| Quel jour?          | What day?       |



Make batches - tokenize

[Je, suis, enseignant, .]

[Quel, jour, ?]

| Source Batch (Train)                           | Target Batch (Train)                       |
|------------------------------------------------|--------------------------------------------|
| [Je, suis, etudiant, .]<br>[Quel, mois, ?]     | [I, am, a, student, .]<br>[What, month, ?] |
| Source Batch (Valid)                           | Target Batch (Valid)                       |
| [Je, suis, medecin, .]<br>[Ce, mois, -, ci, ?] | [I, am, a, doctor, .]<br>[This, month, ?]  |
| Source Batch (Test)                            |                                            |



Make batches – add <sos>, <eos> token

## Source Batch (Train) [Je, suis, etudiant, .] [<sos>, I, am, a, student, ., <eos>] [Quel, mois, ?] [<sos>, What, month, ?, <eos>]

### Source Batch (Valid) Target Batch (Valid)

```
[/sos>, I, am, a, doctor, ., <eos>]
[/ce, mois, -, ci, ?]
[/sos>, This, month, ?, <eos>]
```

#### **Source Batch (Test)**

```
[Je, suis, enseignant, .] [Quel, jour, ?]
```



Make batches – padding

#### **Source Batch (Train)**

## [Je, suis, etudiant, .] [Quel, mois, ?, <pad>]

#### **Source Batch (Valid)**

#### **Source Batch (Test)**

```
[Je, suis, enseignant, .] [Quel, jour, ?, <pad>]
```

#### **Target Batch (Train)**

```
[<sos>, I, am, a, student, ., <eos>]
[<sos>, What, month, ?, <eos>, <pad>, <pad>]
```

#### **Target Batch (Valid)**

```
[<sos>, I, am, a, doctor, ., <eos>]
[<sos>, This, month, ?, <eos>, <pad>, <pad>]
```



• Numericalize – make vocabulary from train dataset

| Source (Train)    | <u>Target (Train)</u> |  |  |  |
|-------------------|-----------------------|--|--|--|
| Je suis etudiant. | I am a student.       |  |  |  |
| Quel mois?        | What month?           |  |  |  |

#### **Target Vocab**

| <u> </u>       | <u> </u>                |
|----------------|-------------------------|
| 0: <sos></sos> | 0: <sos></sos>          |
| 1: <eos></eos> | 1: <eos></eos>          |
| 2: <pad></pad> | 2: <pad></pad>          |
| 3: <unk></unk> | 3: <unk></unk>          |
| 4: Je          | 4: I                    |
| 5: suis        | 5: am                   |
| 6: etudiant    | 6: a                    |
| 7:.            | 7: student              |
| 8: Quel        | 8: .                    |
| 9: mois        | 9: What                 |
| 10: ?          | 10: month               |
| 11:            | 11: ?                   |
|                | <b>12:</b> <sub>9</sub> |
|                |                         |



Numericalize – handle out-of-vocabulary words

#### **Source Batch (Train)**

[Je, suis, etudiant, .] [Quel, mois, ?, <pad>]

#### **Source Batch (Valid)**

[Je, suis, <unk>, ., <pad>]
[<unk>, mois, <unk>, <unk>, ?]

#### **Source Batch (Test)**

[Je, suis, <unk>, .] [Quel, <unk>, ?, <pad>]

#### **Target Batch (Train)**

[<sos>, I, am, a, student, ., <eos>]
[<sos>, What, month, ?, <eos>, <pad>, <pad>]

#### **Target Batch (Valid)**

[<sos>, I, am, a, <unk>, ., <eos>]
[<sos>, <unk>, month, ?, <eos>, <pad>, <pad>]



Numericalize – numericalize

#### **Source Batch (Train)**

#### **Source Batch (Valid)**

#### **Source Batch (Test)**

#### **Target Batch (Train)**

#### **Target Batch (Valid)**



## **Encoder-Decoder Model - Training**

#### **Source Batch (Train)**

### **Target Batch (Train)**

| 4 | 5 | 6  | 7 |
|---|---|----|---|
| 8 | 9 | 10 | 2 |

| 0 | 4 | 5  | 6  | 7 | 8 | 1 |
|---|---|----|----|---|---|---|
| 0 | 9 | 10 | 11 | 1 | 2 | 2 |

## **Target Batch (Input)**

| 0 | 4 | 5  | 6  | 7 | 8 | 1 |
|---|---|----|----|---|---|---|
| 0 | 9 | 10 | 11 | 1 | 2 | 2 |

| 0 | 4 | 5  | 6  | 7 | 8 | 1 |
|---|---|----|----|---|---|---|
| 0 | 9 | 10 | 11 | 1 | 2 | 2 |

Encoder





## **Encoder-Decoder Model - Training**





## **Encoder-Decoder Model - Validation**

































## **NMT Basics – Compute BLEU Score**

#### **Target Vocab**

0: <sos>

1: <eos>

2: <pad>

3: <unk>

4:1

5: am

6: a

7: student

8: .

9: What

10: month

11: ?

12: .....

| 0 | 4 | 5 | 6  | 3 | 8  | 1  |
|---|---|---|----|---|----|----|
| 0 | 9 | 3 | 11 | 1 | 10 | 11 |



[I, am, a, <unk>, .] [What, <unk>, ?]





#### **NMT Basics and Encoder-Decoder Model**

#### NMT Basics

- Dataset 준비
- Data preprocessing
  - Make batches
    - tokenize
    - add <sos>, <eos> token
    - padding
  - Numericalize
    - make vocabulary from train dataset
    - handle out-of-vocabulary words
    - numericalize
- Compute BLEU Score

#### Encoder-Decoder Model

- Training
- Validation
- Test (Inference)



#### **NMT Basics and Encoder-Decoder Model**

#### NMT Basics (Done!)

- Dataset 준비: Multi30k English to German Translation Dataset
- Data preprocessing
  - Make batches
    - tokenize
    - add <sos>, <eos> token
    - padding
  - Numericalize
    - make vocabulary from train dataset
    - handle out-of-vocabulary words
    - numericalize
- Compute BLEU Score

#### Encoder-Decoder Model

- Training
- Validation
- Test (Inference)

#### https://github.com/sehkmg/NMT\_practice

```
# TODO: train
for epoch in range(args.epochs):
    for src_batch, tgt_batch in train_loader:
        pass

# TODO: validation
for src_batch, tgt_batch in valid_loader:
    pass
```

```
for src_batch, tgt_batch in test_loader:
    # TODO: predict pred_batch from src_b
    pred_batch = tgt_batch

# every sentences in pred_batch shoul
    # every <pad> token (index: 2) should
    # example of pred_batch:
    # [[0, 5, 6, 7, 1],
    # [0, 4, 9, 1, 2],
    # [0, 6, 1, 2, 2]]
```



## **Table of Contents**

NMT Basics and Encoder-Decoder Model

Abstract View of Transformer Architecture

Dive into the Transformer Architecture



## **Abstract View of Transformer Architecture**





## **Self Attention**

Je suis étudiant . <sos> I am a student . Original Attention:

V: source

Q: target

K: source

Self Attention:



Q: source Q: target K: target K: source V: source





#### **Multi-Head Attention**

 $\alpha_1$   $\alpha_2$   $\alpha_3$ 

Original Attention: Je suis étudiant . <sos> I am a student .

K: source V: source

Q: target

Attention for student:  $\alpha_1 \times \text{Je} + \alpha_2 \times \text{suis} + \alpha_3 \times \text{\'etudiant}$ 

#### Scaled Dot-Product Attention







## **Abstract View of Transformer Architecture**





## **Table of Contents**

NMT Basics and Encoder-Decoder Model

Abstract View of Transformer Architecture

• Dive into the Transformer Architecture



## **Attention is a Weighted Sum**

• Query: 주인공 문장.



• Key, Value: 주인공 문장이 보는 문장.



• Query는 Key와 연산하여 weight를 구한다.



## **Attention is a Weighted Sum**

•  $d_k$ 로 나눠주고 원치 않는 정보를 masking을 통해 지운 후 Softmax를 취한다.

Softmax
$$(\frac{w_{11}}{d_k}, \frac{w_{12}}{d_k}, \frac{w_{13}}{d_k}) = (\alpha_{11}, 0, \alpha_{13})$$
  
Softmax $(\frac{w_{21}}{d_k}, \frac{w_{22}}{d_k}, \frac{w_{23}}{d_k}) = (\alpha_{21}, \alpha_{22}, 0)$ 

• Value를 대상으로 Weighted Sum을 한다.



• 최종 output.





## **Attention in Matrix Form**

• Query: 주인공 문장.



• Key, Value: 주인공 문장이 보는 문장.



• Query는 Key와 연산하여 weight를 구한다.



#### **Attention in Matrix Form**

•  $d_k$ 로 나눠주고 원치 않는 정보를 masking을 통해 지운 후 Softmax를 취한다.



• Value를 대상으로 Weighted Sum을 한다.

| 0             | 0        | 2             |          |  |  |
|---------------|----------|---------------|----------|--|--|
| $\alpha_{11}$ | U        | $\alpha_{13}$ | <b>\</b> |  |  |
| $\alpha_{21}$ | ~        |               |          |  |  |
| $u_{21}$      | $a_{22}$ | 0             |          |  |  |
|               |          |               |          |  |  |

• 최종 output.





## **Attention in Implementation**

• Query: 주인공 문장.



• Key, Value: 주인공 문장이 보는 문장.



## **Multi-Head Attention**



## **Multi-Head Attention**

• Concatenate Outputs





Match the dimension







#### **Multi-Head Attention**

Multi\_Head\_Attention(Query, Key, Value, Mask)

Multi\_Head\_Attention (







| 0 | 1 | 0 | \ |
|---|---|---|---|
| 0 | 0 | 1 | ) |



- 위 example에서는 단어 벡터의 차원이 4, Head가 3개, 각 Head의 차원이 3.
- 보통은 단어 벡터의 차원이 512, Head가 8개, 각 Head의 차원이 64.



#### **Dive into the Transformer Architecture**





# **Input Embedding**





# **Input Embedding**

| 4 | 5 | 6  | 7 |
|---|---|----|---|
| 8 | 9 | 10 | 2 |



|  |  | 1 |   |   |   |  |  |
|--|--|---|---|---|---|--|--|
|  |  |   | 1 |   |   |  |  |
|  |  |   |   | 1 |   |  |  |
|  |  |   |   |   | 1 |  |  |

|  |   |  |  | 1 |   |   |   |
|--|---|--|--|---|---|---|---|
|  |   |  |  |   | 1 |   |   |
|  |   |  |  |   |   | 1 |   |
|  | 1 |  |  |   |   |   | · |

# **Input Embedding**









































# **Multi-Head Attention (Self Attention)**





# **Multi-Head Attention (Self Attention)**

#### Multi\_Head\_Attention (







| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

Multi\_Head\_Attention (







| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |



#### **Position-wise Feed-Forward Networks**





## **Position-wise Feed-Forward Networks**













# **Output Embedding**









# **Multi-Head Attention (Masked Self Attention)**





# **Multi-Head Attention (Masked Self Attention)**

#### Multi\_Head\_Attention (







| 0 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 |

#### Multi\_Head\_Attention (







| 0 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 |



# **Multi-Head Attention (Original Attention)**





# **Multi-Head Attention (Original Attention)**

#### Multi\_Head\_Attention (







| 0 | 0 | 0 | 0 |  |
|---|---|---|---|--|
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 |  |

#### Multi\_Head\_Attention (







| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |



#### **Position-wise Feed-Forward Networks**





#### **Prediction**





#### References

- 1) Attention Is All You Need (NeurIPS'17)
  - https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
- 2) Neural Machine Translation by Jointly Learning to Align and Translate (ICLR'15)
  - https://arxiv.org/pdf/1409.0473.pdf
- 3) Transformers From Scratch
  - http://www.peterbloem.nl/blog/transformers
- 4) The Illustrated Transformer
  - https://jalammar.github.io/illustrated-transformer/
- 5) The Annotated Transformer
  - https://nlp.seas.harvard.edu/2018/04/03/attention.html
- 6) A Brief Overview of Attention Mechanism
  - https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129



# Thank you!

Any Questions?



