Repeated Fair Allocation of Indivisible Items

Ayumi Igarashi,¹ Martin Lackner,² Oliviero Nardi² and Arianna Novaro³

¹The University of Tokyo ²DBAI, TU Wien ³CES, University of Paris 1 (Panthon-Sorbonne)

Abstract

In practice, items are not always allocated once and for all, but often repeatedly. For example, when the items are recurring chores to distribute in a household. Motivated by this, we initiate the study of the repeated fair division of indivisible items.

Applications

- Fairly distributing household chores between a couple
- Allocating teaching duties to professors over the semesters
- Granting employees daily access to a common infrastructure

Main Idea

We want to allocate a single item ▲ between two agents, ♣ and ♣. Problem:

What if we share them over time?

Each day's allocation is not fair, but the overall allocation is!

Formal Model

We have *n* agents ($\stackrel{2}{=}$, $\stackrel{2}{=}$, ...) that need to share some items ($\stackrel{4}{=}$, $\stackrel{4}{=}$, ...). Agents have additive utilities:

			2
	1	3	4
	5	2	1
*	-3	-4	-2

We have *k* time-steps at our disposal. Example:

Axioms

An axiom can be satisfied overall (while looking globally at the whole bundle, over all time-steps) or per round (if it is satisfied individually by all time-steps).

- ► Envy-freeness (EF): No agent prefers someone else's bundle
- ► Envy-freeness up to one item (EF1): If an agent envies some other agent, we can eliminate envy by removing one item from the bundle of one of the two agents
- ► **Proportionality** (PR): Each agent receives at least 1/n of the value of the whole set of items
- ► Pareto-optimality (PO): We cannot find an allocation that is better for some agents, and worse for none

Repetion: Why Bother?

In the one-shot setting, we can't always find a **PR** (let alone EF) and **PO** allocation. Our main goal:

Can we guarantee better fairness and efficiency properties by looking at the repeated allocation of items?

Results: General Case

Under certain conditions, envy-freeness is always achievable:

If k is a multiple of n, an overall EF allocation can always be found (in polynomial time).

To achieve this, we can rotate the items at each time-step, e.g.:

day 1			*
day 2	*		
day 3		*	

What about efficiency? Even if *k* is a multiple of *n*, an overall EF and PO allocation might not exist. Still:

If k is a multiple of n, an overall PR and PO allocation always exists.

Results: Two-agent Case

For two agents, we have stronger fairness guarantees:

For two agents, if k is even, an overall EF and PO allocation always exists.

What about the individual time-steps? We cannot have envy-freeness in every round. However:

For two agents, if k is even, an allocation which is overall EF and EF1 per round can always be found (in polynomial time).

Can we additionally have efficiency? Not if k > 2, but:

For two agents, if k = 2, we can always find an **overall EF** and **PO** allocation that is **EF1 per round**.

Conclusions and Future Work

We have found that, by taking time into consideration, we might be able to distribute items more fairly and more efficiently.

We leave open a number of interesting questions, mainly about the complexity of finding fair and efficient allocations.

Contact Information

- igarashi@mist.i.u-tokyo.ac.jp
- lackner@dbai.tuwien.ac.at
- oliviero.nardi@tuwien.ac.at
- arianna.novaro@univ-paris1.fr