

Inteligência Artificial

Clustering - Parte I

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1 UTAD

email: <u>oliveira@utad.pt</u>

IA. Clustering-Parte I. Paulo Moura Oliveira

Introdução

Em que consiste o *clustering*?

Clustering, consiste na organização (ou classificação) de um conjunto de dados em vários grupos a que se chamam clusters.

Como se faz o clustering?

Utiliza-se um dado critério de similaridade para agrupar os dados similiares no mesmo grupo (ou de critério de dissimilaridade para os distinguir dos outros grupos).

Introdução

Medidas de Proximidade

Há muitas formas de determinar a distância entre dois pontos. Das mais conhecidas temos:

IA, Clustering-Parte I, Paulo Moura Oliveira

Introdução

Medidas de Proximidade

Distância Pombalina (conhecida como Manhattan ou CityBlock)

Introdução

✓ Coesão Intra-cluster: avalia a proximidade dos seus pontos ao centróide do

IA, Clustering-Parte I, Paulo Moura Oliveira

Introdução

Medidas de Proximidade

Distância Chebychev

$$dist(x_i, x_j) = max_d |x_{id} - x_{jd}|$$

Exemplo: $x_1 = (1,1)$; $x_2 = (3,3)$ d= 2

Distância Minkowski

$$dist(x_i, x_j) = \sqrt[p]{\sum_{k=1}^{d} (x_{ik} - x_{jk})^p}$$

Exemplo: p=2 $x_1 = (1,1) ; x_2 = (3,3)$ d= 2.83

Igual Euclidiana Exemplo:

p=5 $x_1 = (1,1)$; $x_2 = (3,3)$ Uma medida muito utilizada é o Somatório do Erro Quadrático (SSE):

Como Avaliar os Clusters (Agrupamentos)?

c: centróide do cluster

SSE_1= 47.0279 SSE_2= 14.3666 SSE= 61.3945

✓ Separação Inter-cluster: avalia a separação dos centróides dos vários clusters.

IA, Clustering-Parte I, Paulo Moura Oliveira

IA, Clustering-Parte I, Paulo Moura Oliveira

1

Introdução

Qual o número de Clusters?

✓ Consideremos o mesmo exemplo do diapositivo anterior utilizando o k-means. Em vez de 2 clusters vamos agora considerar 3:

Introdução

Qual o número de Clusters?

- ✓ Um procedimento possível é o seguinte:
 - 1. Definir um número fixo de clusters
 - Executar o método de clustering e obter o melhor resultado para uma dada função de custo (função objetivo).
 - 3. Voltar a 1 e aumentar (ou diminuir) o número de clusters

IA, Clustering-Parte I, Paulo Moura Oliveira

Introdução

Quais as técnicas de Clustering?

✓ Existem várias taxonomias de técnicas de clustering que podem ser encontradas na literatura. Uma classificação comum usa três grupos:

1. Hierárquicas (Hierarchical)
2. Particionais (Partitional)
3. Bayseianas (Bayesian)
k-Means

✓ Como o algoritmo k-means é o mais utilizado no contexto da utilização de algoritmos evolutivos, vamos começar por esta técnica.

IA, Clustering-Parte I, Paulo Moura Oliveira

k-Means

O que é? Técnica de *clustering* que particiona um conjunto de dados em k clusters.

- ✓ Cada cluster tem um centro (centróide)
- ✓ O número de clusters, k, é especificado pelo utilizador.

Algoritmo k-means

Selecionar (ou Gerar) k-centros (centróides iniciais)

while(!(critério de paragem))

Atribuir cada amostra de dados ao cluster cujo centróide está mais próximo.

Recalcular os centróides utilizando os clusters atuais end while

IA, Clustering-Parte I, Paulo Moura Oliveira

10

k-Means

Critério de Paragem

- ✓ Alguns critérios que podem ser utilizados para parar o ciclo do k-means:
 - 1. Um número pré-definido de iterações;
 - 2. Variação dos centróides abaixo de um limiar mínimo;
 - Variação dos pontos nos clusters menor que um valor baixo prédefinido;
 - 4. Soma do erro quadrático abaixo que um valor baixo pré-definido.

k-Means

Exemplo 1

✓ Configuração inicial de um conjunto com 20 pontos.

2

Silhueta- Silhouette

✓ Uma forma de avaliar a qualidade do *clustering* é utilizando o critério da silhueta, cujo valor pode ser determinado para o ponto i:

Mínimo das médias distâncias do ponto i aos Média das distâncias do ponto i aos outros pontos dos <u>outros</u> outros pontos do mesmo cluster. $(b_i)-(a_i)$ ✓ Se: $max(a_i,b_i)$

- Os valores de s_i podem variar entre [-1 e 1];
- Se a maioria valores de s_i estiverem próximos de 1, indica que o clustering é bom;
- Se a muitos valores de s, forem baixos ou próximos de -1, indica que o clustering é mau (precisa de mais ou menos clusters)

Silhueta- Silhouette Exemplo: \checkmark Considere-se a seguinte representação inicial de dados com o respetivo agrupamento com o k-means: 0 o

⊗o IA, Clustering-Parte I, Paulo Moura Oliveira 17

