Temporal Models Suppose yt for t=1,..., T To study dynamics do a time server: First 2 = yt - 5 , then autoregressive model: $Z_{t} \sim N(x Z_{t-1}, \sigma^{2})$, t=a, ..., TIf Z is stationery true 1 a / < 1 $\alpha \sim N(M_{\alpha}, \sigma_{\alpha}^2)$ 6~ IG(a,r) Posturoz = [d, 02) 2] d (T[2t |2t-1, d, 5]) [4][0] Full- conditional distributions: [d1.] ~ (T[zt|zt-1, 1,07) [d] 2 exp{-1 \(\frac{2}{2} \) \(\frac{2} \) \(\frac{2}{2} \) \(\frac{2}{2} \) \(\fr $= e \times 1^{2} - \left[-2 \left(\frac{2}{5} \frac{2}{6^{2}} + \frac{M}{5^{2}} \right) + \frac{1}{5^{2}} \right) + \frac{1}{5^{2}} \right]$ = N(216, 21)

Procedure:

1.) Sample $d^{(k)}$, $\sigma^{z(k)}$ using $\rho(MC, k=1,..., K)$ 2.) Sample $2^{(k)}$ ~ $N(2^{(k)} z_T, \sigma^{z(k)})$ for k=1,..., K3.) $\hat{z}_{TT} = E(z_{T+1}|z) = \sum_{k=1}^{K} z_{T+1}^{(k)}$ "point forecast"