Θεωρία Γραφημάτων 2η Διάλεξη

Α. Συμβώνης

Εθνικό Μετσοβείο Πολυτέχνειο Σχολή Εφαρμόσμενων Μαθηματικών και Φυσικών Επιστήμων Τόμεας Μαθηματικών

Φεβρουάριος 2015

Βαθμοί Κορυφών

Βαθμός κορυφής:

$$d_G(v) = |N_G(v)|$$

[ορισμός μόνο για απλά γραφήματα]

Ελάχιστος βαθμός γραφήματος:

$$\delta(G) = \min \left\{ d_G(v) : v \in V(G) \right\}$$

Μέγιστος βαθμός γραφήματος:

$$\Delta(G) = \max \{ d_G(v) : v \in V(G) \}$$

Μέσος βαθμός γραφήματος:

$$d(G) = \sum_{v \in V(G)} d_G(v) / |V(G)|$$

Πυκνότητα γραφήματος:

$$\epsilon(G) = |E(G)|/|V(G)|$$

Απομονωμένη κορυφή:

κορυφή
$$v$$
 με $d_G(v)=0$

Εκκρεμής κορυφή:

κορυφή
$$v$$
 με $d_G(v)=1$

r-κανονικό γράφημα: *r*-regular

$$\forall v \in \mathit{V}(\mathit{G})$$
 ισχύει $\mathit{d}_\mathit{G}(v) = r$

Θεώρημα 2.1:

Για κάθε γράφημα G ισχύουν:

i.
$$\sum_{v \in V(G)} d_G(v) = 2|E(G)|$$

ii.
$$\delta(G) \leq d(G) \leq \Delta(G)$$

iii.
$$\epsilon(G) = d(G)/2$$

Απόδειξη :

Πίνακας Πρόσπτωσης

- ii. από τον ορισμό των $\delta(G)$, d(G) και $\Delta(G)$
- iii. από τον ορισμό των $\epsilon(G)$ και d(G)

Πρόταση 2.2:

Κάθε γράφημα G έχει άρτιο αριθμό κορυφών περιττού βαθμού

Απόδειξη :

΄Εστω
$$V_1\subseteq V$$
: σύνολο κορυφών περιττού βαθμού
$$V_2\subseteq V: \quad \text{σύνολο κορυφών άρτιου βαθμού} \end{cases} V_1\cup V_2=V$$
 Ισχύει
$$\sum_{v\in V_1}d_G(v)+\sum_{v\in V_2}d_G(v)=2|E(G)|$$

$$\Rightarrow \sum_{v\in V_1}d_G(v) \text{ είναι άρτιος αριθμός}$$

$$\Rightarrow |V_1| \text{ είναι άρτιο, γιατί } d_G(v), v\in V_1 \text{ είναι περιττός}$$

Πρόταση 2.3:

Κάθε r-κανονικό γράφημα G έχει $\frac{r|V(G)|}{2}$ ακμές

Απόδειξη :

$$|E(G)| = \frac{\sum_{v \in V(G)} d_G(v)}{2} = \frac{r|V(G)|}{2}$$

Ερώτηση 2.1: Το γράφημα G έχει ακριβώς δύο κορυφές με περιττό βαθμό, έστω τις u και v. Συνδέονται οι u και v με μονοπάτι?

Ερώτηση 2.2: Υπάρχει 3-κανονικό γράφημα G με 9 κορυφές?

Ερώτηση 2.3: Υπάρχει 9-κανονικό γράφημα G με 13 κορυφές?

Ερώτηση 2.4: Έστω 2 όμιλοι ποδοσφαίρου με 13 ομάδες ο καθένας. Μπορούμε να οργανώσουμε ένα πρωτάθλημα έτσι ώστε κάθε ομάδα να συμμετέχει σε 9 αγώνες με ομάδες του ομίλου της και σε 4 αγώνες με ομάδες του άλλου ομίλου?

Ερώτηση 2.5: Έστω ένα r-κανονικό διμερές γράφημα με διαμερίσεις X και Y. Τότε |X| = |Y|.

Πρόταση 2.4:

Κάθε απλό γράφημα G έχει δύο κορυφές ίδιου βαθμού

Απόδειξη :

- G απλό $\Rightarrow \forall \mathit{v} \in \mathit{V}(\mathit{G}) : \mathit{d}_\mathit{G}(\mathit{v}) \in \{0,1,\ldots,n-1\}$ όπου $n = |\mathit{V}(\mathit{G})|$
- Αλλά, το σύνολο των δυνατών βαθμών για τις κορυφές του G δεν μπορεί να περιέχει ταυτόχρονα τους βαθμούς 0 και n-1

[Η κορυφή με βαθμό n-1 είναι ενωμένη με όλες τις άλλες κορυφές, οπότε δεν υπάρχει κορυφή με βαθμό 0]

- Συνεπώς έχουμε n − 1 το πολύ δυνατούς βαθμούς για τις n κορυφές
- Άρα υπάρχουν δύο κορυφές με τον ίδιο βαθμό [αρχή του περιστερεώνα]

Πρόταση 2.5:

Σε κάθε ομάδα από 2 ή περισσότερους ανθρώπους πάντα υπάρχουν δύο άτομα με τον ίδιο αριθμό φίλων μέσα στην ομάδα

Πρόταση 2.6:

Έστω απλό γράφημα G για το οποίο ισχύει $\delta(G) \geq \frac{|V(G)|-1}{2}$. Τότε το G είναι συνδεδεμένο

Απόδειξη:

Θα δείξουμε ότι $\forall u, v \in V(G)$ υπάρχει μονοπάτι από την u στην v.

Περίπτωση 1: e = (u, v) ∈ E Τότε υπάρχει μονοπάτι u - v ✓ **Περίπτωση 2:** e = (u, v) ∉ E

$$\begin{array}{ll} \delta(G) \geq & \frac{|V(G)|-1}{2} \\ \Rightarrow & \begin{cases} |N_G(u)| \geq \frac{|V(G)|-1}{2} \\ |N_G(v)| \geq \frac{|V(G)|-1}{2} \end{cases} & \stackrel{\text{E\'ev } N_G(u) \cap N_G(v) = \emptyset \Rightarrow}{|N_G(u) \cup N_G(v)| = |N_G(u) \cap N_G(v)|} \\ \frac{|N_G(u)| + |N_G(u)| + |N_G(u)|}{|N_G(u)| + |N_G(u)|} & \frac{|N_G(u)| + |N_G(u)|}{|N_G(u)| + |N_G(u)|} & \frac{|N_G(u)|}{|N_G(u)|} & \frac{|N_G(u)|}{|N_G(u$$

Παρατηρούμε ότι

$$N_G(u) \cap N_G(v) \neq \emptyset$$
 (1)

Eάν
$$N_G(u)$$
 ∩ $N_G(v)$ = ∅⇒
$$|N_G(u) \cup N_G(v)| = |N_G(u)| + |N_G(v)| \ge |V(G)| - 1 \quad (2)$$

$$A\lambda\lambda$$
ά $\{u,v\} \notin N_G(u) \cup N_G(v)$

$$|N_G(u) \cup N_G(v)| \le |V(G)| - 2$$

άτοπο λόγω της (2)

(1)
$$\Rightarrow \exists w \in N_G(u) \cap N_G(v)$$

 $\Rightarrow \exists e_1 = (u, w), e_2 = (w, v)$
 \Rightarrow υπάρχει μονοπάτι $u - v$

(3)

Θεώρημα 2.7:

Κάθε γράφημα G χωρίς βρόγχους έχει διμερές υπογράφημα $H\subseteq G$ με τουλάχιστον |E(G)|/2 ακμές

Απόδειξη [Κατασκευαστική]:

- Θα κατασκευάσουμε διμερές υπογράφημα $H\subseteq G$ με $\geq |E(G)|/2$ ακμές.
 - 1. Έστω αυθαίρετη διαμέριση X, του V(G) και $H\subseteq G$ το διμερές επαγόμενο από τα X, γράφημα.
 - 2. 2.1 Εάν E(H) ≥ |E(G)|/2 τελειώσαμε \checkmark 2.2 Αλλιώς [E(H) < |E(G)|/2]
 - Έστω $v \in V(G) : d_H(v) < d_G(v)/2$ (πάντα υπάρχει)
 - Μετέθεσε την ν στο άλλο μερίδιο
 - Προσάρμοσε το H ώστε να είναι διμερές: αφαίρεσε τις ακμές από το H που ενώνονταν με την v πριν την μετάθεση $[d_H(v)$ ακμές] και πρόσθεσε τις ακμές που ενώνονται με την v στο G αλλά όχι στο H $[>d_H(v)$ ακμές]
 - Πήγαινε στο 2.

- Ο αριθμός των ακμών του Η αυξάνει μετά από κάθε μετακίνηση
- Ο αλγόριθμος τερματίζει
 - Το γράφημα Η είναι διμερές [από κατασκευή]
- $E(H) \geq |E(G)|/2$

• $E(H) \ge |E(G)|/2$

Απόδειξη :

Στο τέλος του αλγορίθμου ισχύει
$$\forall v \in \mathit{V}(\mathit{G}) : \mathit{d}_\mathit{H}(v) \geq \mathit{d}_\mathit{G}(v)/2$$

$$|E(H)| = \frac{1}{2} \sum_{v \in V(H)} d_H(v)$$

 $\geq \frac{1}{2} \sum_{v \in V(G)} d_G(v)/2 \quad [V(H) = V(G)]$
 $= |E(G)|/2$

Ερώτηση 2.6: Δίνει πάντοτε ο αλγόριθμος το μέγιστο διμερές υπογράφημα?

- $H_1: \{a, b, c, d\}, \{e, f, g, h\}$ $|E(H_1)| = 12$
- $H_2: \{g, h, a, b\}, \{c, d, e, f\}$ $|E(H_1)| = 16$

Θεώρημα 2.8:

Κάθε μη τετριμμένο γράφημα G χωρίς βρόγχους έχει διμερές υπογράφημα $H\subseteq G$ με >|E(G)|/2 ακμές [τετριμμένο γράφημα: γράφημα χωρίς ακμές ή κορυφές]

Απόδειξη [Επαγωγή στο |V(G)|]:

$$βάση |V(G)| = 2$$

$$G=H$$
, ισχύει \checkmark

- Ε.Υ. Κάθε μη τετριμμένο χωρίς βρόγχους γράφημα G με $|V(G)| \le k$, $k \ge 2$ έχει διμερές υπογράφημα $H \subseteq G$ με > |E(G)|/2 ακμές
- Ε.Β. Έστω αυθαίρετο γράφημα G με |V(G)| = k + 1
 - Έστω αυθαίρετη κορυφή $v \in V(G)$
 - Θεωρώ το *G\v* [έχει *k* κορυφές]
 - $\Longrightarrow \exists H' \subseteq G \backslash v : |E(H')| > |E(G \backslash v)|/2$
 - Έστω Χ και Υ τα μερίδια του Η'
 - Προσθέτω την ν στην διαμέριση όπου η ν συνδέεται με τις λιγότερες ακμές
 - ⇒ γράφημα Η
 - \Rightarrow Προσθέτουμε στο H' τουλάχιστον $d_G(v)/2$ ακμές.

$$|E(H)| \ge |E(H')| + d_G(v)/2$$

$$> |E(G \setminus v)|/2 + d_G(v)/2$$

$$= (|E(G \setminus v)| + d_G(v))/2$$

$$= |E(G)|/2$$

Ερώτηση 2.7: Έστω A ο πίνακας γειτνίασης ενός απλού γραφήματος G.

Να δειχθεί ότι η διαγώνιος του A^2 περιέχει τους βαθμούς των κορυφών του G.

Θεώρημα 2.9[Köning-1916]:

Κάθε γράφημα G είναι επαγόμενο υπογράφημα κάποιου $\Delta(G)$ -κανονικού γραφήματος

Απόδειξη :

• Για κάθε γράφημα G ορίζουμε την ποσότητα

$$z(G) = \frac{\sum_{v \in V(G)} (\Delta(G) - d_G(v))}{|V(G)|}$$

Το z(G) αποτελεί μέτρο του πόσο απέχει το G από το να είναι $\Delta(G)$ -κανονικό

- Εφαρμόζουμε επαναληπτικά την παρακάτω διαδικασία η οποία μειώνει το z(G)
 - 1. $G_1 = G \cup G$
 - 2. Πρόσθεσε ακμές μεταξύ αντίστοιχων κορυφών (σε διαφορετικά αντίγραφα) που έχουν βαθμό $<\Delta(G)$ $G\subset G_1$ και $z(G)>z(G_1)$
 - 3. Εάν G_1 είναι $\Delta(G)$ -κανονικό τελειώσαμε αλλιώς $G = G_1$ πήγαινε στο 1.

Γραφική Ακολουθία

- ullet Έστω η ακολουθία (d_1,d_2,\ldots,d_n) όπου $0\leq d_i < n$, $d_i\in\mathbb{N}$
- Με sorted((d_1, d_2, \ldots, d_n)) συμβολίζουμε την ακολουθία που προκύπτει από την ταξινόμηση σε φθίνουσα διάταξη της (d_1, d_2, \ldots, d_n)
- Έστω G=(V,E) και $s'=(d(v_1),d(v_2),\ldots,d(v_n))$, $v_i\in V(G)$, |V(G)|=n η ακολουθία βαθμών του G
- Η ακολουθία $sorted((d(v_1), d(v_2), \dots, d(v_n)))$ ονομάζεται γραφική ακολουθία του G.

Γραφική ακολουθία του G

Γραφική ακολουθία:

Μία φθίνουσα ακολουθία $s=(d_1\geq d_2,\geq\cdots\geq d_n)$ ονομάζεται γραφική αν υπάρχει γράφημα G(V,E) και μία 1-1 και επί απεικόνιση $\sigma:V\to\{1,2,\ldots,n\}$: $d(v)=d_{\sigma(v)}$

- Το γράφημα G υλοποιεί την ακολουθία s
- Η ακολουθία s είναι η ακολουθία βαθμών του G

Ερώτηση 2.8: Υπάρχουν διμερή γραφήματα με τις παρακάτω ακολουθίες βαθμών?

- i. (3,3,2,2,2)
- ii. (3, 2, 2, 2, 2, 1)
- iii. (5, 2, 1, 1, 1)
- iv. (3, 3, 2, 2)

Ερώτηση 2.9: Να δειχθεί ότι για κάθε $n \ge 2$ η ακολουθία $(0,1,2,\ldots,n-1)$ δεν είναι γραφική.

Ερώτηση 2.10: Να δειχθεί ότι η ακολουθία $(d_1 \geq d_2, \geq \cdots \geq d_n)$ είναι γραφική ανν η ακολουθία sorted $(n-d_1-1, n-d_2-1, \ldots, n-d_n-1)$ είναι γραφική.

Μεταγωγή:

Έστω κορυφές $x,y,z,w\in V(G)$ ενός απλού γραφήματος G και $(x,y),(z,w)\in E(G)$ αλλά $(x,z)(y,w)\notin E(G)$. Ορίζουμε ως μεταγωγή πάνω στο σύνολο $\{x,y,z,w\}$ την αντικατάσταση στο G των ακμών (x,y),(z,w) από τις (x,z)(y,w)

Παράδειγμα:

Σημείωση: Μια μεταγωγή σε ένα σύνολο 4 κορυφών ενός γραφήματος G δεν αλλάζει την ακολουθία βαθμών του G.

Ανηγμένη ακολουθία:

Έστω η ακολουθία $s=(d_1\geq d_2,\geq \cdots \geq d_n)$. Η ακολουθία $(d_2-1,d_3-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n)$

ορίζεται ως η ανηγμένη ακολουθία της s

Παράδειγμα: Έστω s=(4,3,2,2,2,2,1). Η ανηγμένη ακολουθία της s είναι η $s_1=(2,1,1,1,2,1)$

Θεώρημα 2.10[Havel-Hakimi]:

Μία φθίνουσα ακολουθία $s=(d_1\geq d_2,\geq\cdots\geq d_n)$ είναι γραφική ανν η ανηγμένη ακολουθία της s είναι γραφική

Απόδειξη :

" Έστω $s_1=(d_2-1,d_3-1,\dots,d_{d_1+1}-1,d_{d_1+2},\dots,d_n)$ η ανηγμένη ακολουθία της s και έστω ότι η s_1 είναι γραφική

- s_1 γραφική \Rightarrow $\exists G_1$ με $V(G_1)=\{v_2,v_3,\ldots,v_n\}$ $d(v_i)=\left\{ egin{array}{ll} d_i-1 & 2\leq i\leq d_1+1 \\ d_i & d_1+2\leq i\leq n \end{array} \right.$
- Κατασκευάζω γράφημα G(V,E): $V(G)=V(G_1)\cup\{v_1\}$ $E(G)=E(G_1)\cup\{(v_1,v_i):2\leq i\leq d_1+1\}$
- \Rightarrow 0 G υλοποιεί την ακολουθία s
- . ⇒ Η ακολουθία *s* είναι γραφική ✓

Παράδειγμα:

"
$$\Rightarrow$$
" $s=(d_1\geq d_2,\geq\cdots\geq d_n)$ \Rightarrow $s'=(d_2-1,d_3-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n)$ είναι γραφική είναι γραφική

•
$$s$$
 γραφική $\Rightarrow \exists G = (V, E)$ με $V(G) = \{v_1, v_2, \dots, v_n\}$: $d(v_i) = d_i, i = 1, \dots, n$

Περίπτωση 1: $\exists u \in V(G): d(u) = d_1$ και η u είναι γειτονική με κορυφές με βαθμούς $d_2, d_3, \ldots, d_{d_1+1}$

 \Rightarrow $G \setminus u$ έχει ακολουθία βαθμών την s'

Περίπτωση 2: \nexists κορυφή u όπως στην περίπτωση 1

- Έστω η κορυφή v_i έχει βαθμό $d(v_i)=d_i, i=1,\ldots,n$ Επειδή η v_1 δεν είναι \Rightarrow $\exists v_j$ και v_k με $d_j>d_k$: γειτονική με όλες τις v_1 δεν είναι γειτονική με v_j $v_2, v_3, \ldots, v_{d_1+1}$ v_1 είναι γειτονική με v_k Λόγω του ότι $d(v_i)>d(v_k)$ \Rightarrow \exists κορυφή v_i :
 - ογω του στι $a(v_j)>a(v_k)$ \Rightarrow \exists κορυφή v_l : v_l είναι γειτονική με v_j και

 v_1 v_k

- Μία μεταγωγή στις v_1, v_k, v_j, v_l δίνει γράφημα G' με ίδια ακολουθία βαθμών με το G.
- ΑΛΛΑ: το άθροισμα των βαθμών των γειτόνων της v_1 στο G' είναι μεγαλύτερο από το ίδιο άθροισμα στο G

ψ μεταγωγή

- Συνεχίζοντας ομοίως θα φτάσουμε στην περίπτωση 1.
- \Rightarrow η s' είναι γραφική \checkmark

Παράδειγμα: Είναι η ακολουθία (5,4,3,2,2,1,1) γραφική? Εάν ναι, να δοθεί γράφημα G που την υλοποιεί.

$$s_1 = (5,4,3,2,2,1,1)$$

$$\downarrow s_1' = (3,2,1,1,0,1) \Rightarrow s_2 = \text{sorted}(s_1') \Rightarrow s_2 = (3,2,1,1,1,0)$$

$$\downarrow s_2' = (1,0,0,1,0) \Rightarrow s_3 = \text{sorted}(s_2') \Rightarrow s_2' = (1,1,0,0,0) \quad \Gamma \rho \alpha \rho \text{im}$$

Θεώρημα 2.11[Erdös-Gallai]:

Μία φθίνουσα ακολουθία $s=(d_1\geq d_2,\geq\cdots\geq d_n)$, $n\geq 2$, $d_1\geq 1$ είναι γραφική ανν

i.
$$\sum_{i=1}^{n} d_i$$
 είναι άρτιο και

$$\text{i. } \sum_{i=1}^n d_i \text{ είναι άρτιο και} \qquad \qquad \text{ii. } \forall k: 1 \leq k < n \sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min \left\{k, d_i\right\}$$

Απόδειξη :

ii.
$$\sum_{i=1}^k d_i: \underbrace{\begin{array}{c} V_1 & V\backslash V_1 \\ \hline v_1 \ v_2 \ \dots \ v_k \end{array}}_{E_1} \underbrace{\begin{array}{c} V_{k+1} \ \dots \ v_n \end{array}}_{E_2}$$

• E_1 : $\left(egin{array}{c} \alpha \text{ καμές ανάμεσα} \\ \sigma \tau \text{ is κορυφές του } V_1 \end{array}
ight) imes 2$ $\leq k(k-1)$

- E₂: ακμές από το V₁ στο V\V₁ Κάθε κορυφή u του $V \setminus V_1$ ενώνεται με -το πολύ με d_{ν} κορυφές του V_1
- -το πολύ με k κορυφές του V_1
- \Rightarrow το πολύ με min $\{k, d_u\}$

Συνολικά: $\leq \sum \min\{k, d_i\}$ i=k+1

$$\Rightarrow \sum_{i=1}^{k} d_{i} \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_{i}\}, \forall 1 \le k < n \quad \checkmark$$

Ερώτηση 2.11: Να δειχθεί ότι για πολυγραφήματα ισχύει:

η φθίνουσα ακολουθία $s=(d_1\geq d_2,\geq \cdots \geq d_n), n\geq 2, d_1\geq 1$ $\Leftrightarrow \sum_{i=1}^n d_i \ \text{είναι άρτιο}.$ είναι γραφική

Σύνολα βαθμών κορυφών:

Δεδομένου γραφήματος G συμβολίζουμε με D_G το σύνολο των [διακριτών] βαθμών των κορυφών του G

Παράδειγμα:

$$s = (4, 3, 3, 2, 2, 2, 2, 1, 1)$$

 $D_G = \{4, 3, 2, 1\}$

Θεώρημα 2.12[Kapoor-Polimeni-Wall]:

Για κάθε σύνολο $S=\{a_1,a_2,\ldots,a_n\}, n\geq 1$, θετικών ακεραίων με $a_1< a_2<\cdots< a_n$ υπάρχει γράφημα G με σύνολο βαθμών $D_G=S$. Επιπλέον υπάρχει τέτοιο γράφημα G με $|V(G)|=a_n+1$.

Απόδειξη [Κατασκευαστικά με επαγωγή στο n]:

- Ο βαθμός του G είναι $\geq a_n+1$. Συνεπώς θα δείξουμε ότι υπάρχει G με $|V(G)|=a_n+1$
- n=1 Το πλήρες γράφημα K_{a_n+1} με a_n+1 κορυφές είναι το ζητούμενο. Όλες οι κορυφές του έχουν βαθμό a_1 . \checkmark
- n=2 Συμβολίζουμε με A_{λ} το γράφημα με λ κορυφές και χωρίς ακμές. $A_{\lambda}=\left(\left\{ v_{1},v_{2},\ldots,v_{\lambda}\right\} ,\emptyset\right)$ Το γράφημα $K_{a_{1}}*A_{a_{2}-a_{1}+1}$ [*: σύνδεση γραφημάτων]

- έχει σύνολο βαθμών {a₁, a₂}
 - $|V(G)| = a_2 a_1 + 1 + a_1 = a_2 + 1$

- Ε.Υ. Για κάθε σύνολο $S=\{a_1,a_2,\ldots,a_m\}$ με θετικούς ακεραίους $a_1< a_2<\cdots< a_m$ και 1< m< n ισχύει ότι:
 - υπάρχει γράφημα G με σύνολο βαθμών S
 - ii. $|V(G)| = a_m + 1$
- Ε.Β. Έστω σύνολο $S = \{a_1, a_2, \dots, a_n, a_{n+1}\}$ με $a_i \in \mathbb{N}^+$, $a_1 < \dots < a_n < a_{n+1}$
 - Από Ε.Υ. \exists γράφημα G_1 με σύνολο βαθμών $\{a_2-a_1,a_3-a_1,\ldots,a_n-a_1\}$ και $|V(G_1)|=a_n-a_1+1.$
 - Θεωρήστε το γράφημα $G = K_{a_1} * A_{a_{n+1} a_n} ∪ G_1$

- έχει σύνολο βαθμών $\{a_1, a_2, \dots, a_n, a_{n+1}\}$
- $|V(G)| = \underbrace{a_1}_{Ka_1} + \underbrace{a_{n+1} a_n}_{Aa_{n+1} a_n} + \underbrace{a_n a_1 + 1}_{G_1} = a_{n+1} + 1$

Παράδειγμα: Να κατασκευαστεί γράφημα με 8 κορυφές και σύνολο βαθμών $\{2,4,6,7\}$

•
$$D_1 = \{2, 4, 6, 7\} \rightarrow D_2 = \{d_2 - d_1, d_3 - d_1\} = \{2, 4\}$$

- $D_{G_1} = \{2, 4, 6, 7\}$
- $|V(G_1)| = 8$

