확률

모듈-2

강사: 장순용 박사

광주인공지능사관학교 제 2기 (2021/06/16~2021/12/02) 용도로 제공되는 강의자료 입니다. 지은이의 허락 없이는 복제와 배포를 금합니다.

순서

2. 확률 II:

2.1. 이산확률변수 & 확률분포.

- 2.2. 이산확률분포의 여러 종류.
- 2.3. 연속확률변수 & 확률밀도.
- 2.4. 연속확률밀도의 여러 종류.
- 2.5. 결합확률과 상관계수.

확률변수:정의

확률변수:

- 확률변수 (random variable): 확률실험의 각 결과에 실수를 부여하는 **함수**.
- 확률변수의 값은 하나의 수치로 나타낸 사건이다.

예). 동전을 한번 던지는 실험에서 앞면(H)가 나오면 1 뒷면(T)이 나오면 0.

확률변수: 유형

확률변수의 유형: 크게는 두가지의 유형이 있음.

- 이산확률변수 (discrete random variable): 셀 수 있는 가지수의 값을 가지는 확률변수.
 예). 주사위를 던져서 나오는 눈의 수: {1, 2, 3, 4, 5, 6}
- 연속확률변수 (continuous random variable): 셀 수 없는 (무한대) 가지수의 값을 가지는 확률 변수.

예). 1년 연봉, 성인남성의 신장, 등.

확률분포함수 : 유형

확률분포의 유형:

- 이산확률분포함수 (discrete probability distribution): 이산확률변수가 가지는 값과 이것의 확률 사이의 대응 관계.
 - → 보통 확률변수는 영문 **대문자**로 표기하고 확률변수의 값은 영문 소문자로 표기한다. 예). 확률변수 X, 확률변수의 값 x.
 - \rightarrow 확률변수 X의 값이 x일 확률은 P(X = x) 또는 P(x)와 같이 표기한다.

확률분포함수 : 유형

확률분포의 유형:

• 연속확률분포함수/확률밀도함수 (continuous probability distribution/probability density function): 이것을 **사용하여** 연속확률변수의 값이 특정 **구간에 속할 확률**을 나타냄. (이후 단원에서 자세히 다루기로함)

이산확률분포: 필수조건

이산확률분포의 필수조건:

- $0 \le P(x) \le 1$
- $\sum_{all \, x_i} P(x_i) = 1$

예). 인공신경망의 출력층의 활성화 함수로 사용되는 Softmax.

누적확률

누적확률:

- 확률변수 X의 개별값이 실현되는 확률을 확률분포 P(x)로 나타내었다.
- 누적확률은 확률변수의 값이 특정 구간에 속할 확률이다.

예). $P(X \ge 80)$ $P(X \le 70)$ P(X = 50) 80 P(X = 50) 80 P(X = 50) 80 P(X = 50) 80 P(X = 50) 80

• 누적확률은 0 이상 1이하의 수치이다.

모집단과 모수

모집단과 모수:

- 모집단 (population): 분석 대상 전체 (현실적 또는 이상적).
- 모수 (parameter): 모집단의 특성을 의미함.
 - 예). 모평균, 모분산, 모표준편차, 등.
- 확률분포함수를 사용해서 모수를 계산할 수 있다.

이산확률변수: 모평균

이산확률변수의 모평균 μ:

- 이산확률변수가 가질 수 있는 값들에 확률을 **가중치**로 곱해서 평균을 구한 것 (≅더한 것).
- 확률변수 X의 기대값 (expected value)이라고도 부르며 E[X]로 나타낸다.

$$\mu = E[X] = \sum_{all \ x} x P(x)$$

이산확률변수: 모분산

이산확률변수의 모분산 σ^2 :

- 모평균을 기준으로한 **편차의 제곱**에 확률을 **가중치**로 곱해서 평균을 구한 것 (≅더한 것).
- 확률변수 *X*의 모분산을 *Var*(*X*)와 같이 나타내기도 한다.

$$\sigma^2 = Var(X) = \sum_{all \ x} (x - \mu)^2 P(x)$$

• 모분산의 간편 수식:

$$\sigma^2 = Var(X) = \left(\sum_{all\ x} x^2 P(x)\right) - \mu^2$$
$$= E[X^2] - (E[X])^2$$

• 모표준편차: $\sigma = \sqrt{\sigma^2}$

이산확률분포: 예제 #0201

다음 표와 같이 성적이 분포해 있을 때, 모평균과 모분산을 계산 해 보세요:

점수 (X)	확률 P(x)
60	1/30
70	9/30
80	11/30
90	7/30
100	2/30
합계	1

•
$$\mu = 60 P(60) + 70 P(70) + 80 P(80) + 90 P(90) + 100 P(100)$$

= $60 \times \frac{1}{30} + 70 \times \frac{9}{30} + 80 \times \frac{11}{30} + 90 \times \frac{7}{30} + 100 \times \frac{2}{30} = 80$

이산확률분포: 예제 #0201

다음 표와 같이 성적이 분포해 있을 때, 모평균과 모분산을 계산 해 보세요:

점수 (X)	확률 P(x)
60	1/30
70	9/30
80	11/30
90	7/30
100	2/30
합계	1

•
$$\sigma^2 = \{60^2 P(60) + 70^2 P(70) + 80^2 P(80) + 90^2 P(90) + 100^2 P(100)\} - 80^2$$

= $3600 \times \frac{1}{30} + 4900 \times \frac{9}{30} + 6400 \times \frac{11}{30} + 8100 \times \frac{7}{30} + 10000 \times \frac{2}{30} - 6400 = 93.333$

•
$$\sigma = \sqrt{93.333} = 9.66$$

순서

- 2. 확률 II:
 - 2.1. 이산확률변수 & 확률분포.
 - 2.2. 이산확률분포의 여러 종류.
 - 2.3. 연속확률변수 & 확률밀도.
 - 2.4. 연속확률밀도의 여러 종류.
 - 2.5. 결합확률과 상관계수.

베르누이 확률분포 (Bernoulli):

$$P(x) = p^x (1-p)^{1-x}$$

평균 : *p*

분산 : p(1-p)

표준편차 : $\sqrt{p(1-p)}$

베르누이 분포 ("1회 동전 던지기")

베르누이 확률분포 (Bernoulli):

• 베르누이 시행에는 두개의 가능한 값이 있다.

예). 1 또는 0, 동전의 앞면(H) 또는 뒷면(T), "성공" 또는 "실패".

• 확률변수 X가 베르누이 확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

 $X \sim Ber(p)$

이항확률분포 (Binomial):

이항확률분포 (Binomial):

$$P(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

평균 : n p

분산 : n p(1-p)

표준편차 : $\sqrt{n p(1-p)}$

이항확률분포 (Binomial):

• 이항확률변수 X_{bin} 은 0 또는 1의 값을 갖는 n개의 베르누이확률변수 X_{Ber} 를 더한 것.

$$X_{bin} = X_{Ber} + X_{Ber} + \dots + X_{Ber}$$

$$\leftarrow \qquad \qquad n \text{ 7} \parallel \qquad \rightarrow$$

예). 동전 하나를 n 번 던져서 앞면(H)이 나온 횟수를 집계한 것.

예). n회 시행하여 "성공"한 횟수를 더한 것.

- 개개의 베르누이확률변수는 독립적이다. ⇒ 동전 던지기는 이전 결과와는 무관하다.
- 확률변수 X가 이항확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$X \sim Bin(n, p)$$

이항확률분포 (Binomial): 좌우 대칭인 경우.

이항확률분포 (Binomial): 확률이 오른쪽으로 쏠리는 경우.

이항확률분포 (Binomial): 확률이 왼쪽으로 쏠리는 경우.

난제를 풀어봅시다.

├├ス∜ = **brainteaser**

난제를 풀어봅시다.

질문: 다음과 같은 룰의 동전 던지기 게임에 참가하겠습니까?

동전 던지기 게임의 룰:

- 앞면이 나오면 수익 100\$ 이고, 반대로 뒷면이 나오면 수익 0\$이다.
- 매번 게임에 참가하는 비용은 40\$이다.

난제를 풀어봅시다.

그런데, 동전은 앞면이 나올 확률과 뒷면이 나올 확률이 같습니다. 1회 기대수익은 다음과 같습니다.

기대수익 = $\frac{1}{2} \times 100$ \$ + $\frac{1}{2} \times 0$ \$ = 50\$

기대수익 50\$가 비용 40\$보다 크니까 물론 게임에 참가?

난제를 풀어봅시다.

잠깐만, 1회 수익의 리스크(변동성, 표준편차)를 계산해봅시다.

리스크=
$$\sqrt{\frac{1}{2} \times (100 - 50)^2 + \frac{1}{2} \times (0 - 50)^2} = 50$$
\$

난제를 풀어봅시다.

샤프지수는 리스크 대비 초과수익을 나타냅니다.

샤프지수 =
$$\frac{\dot{\Sigma}$$
과수익
리스크
= $\frac{(기대수익 - 참가비용)}{리스크}$
= $\frac{(50-40)}{50}$ = 0.2

1 미만의 샤프지수는 불만족스럽습니다.

난제를 풀어봅시다.

그런데, 1 회 이상 n 회 동전 던지기를 할 수 있다면?

- 초과수익은 *n*에 비례해서 증가합니다.
- 리스크(표준편차, 변동성)은 \sqrt{n} 에 비례해서 증가합니다.
- 이항 분포 (binomial distribution)의 특성입니다.

25 회 이상 플레이하면 샤프지수는 1을 초과하게 됩니다. → 만족!

난제를 풀어봅시다: 확률 변수를 명시하여 다시한번 풀어본다.

• 다음과 같이 p=1/2인 확률변수 X_{Ber} 을 사용하여 1 회 동전 던지기의 "수익" 확률 변수 X를 모델링 해본다: $X=100\times X_{Ber}$

$$\Rightarrow$$
 기대수익 $\mu = E[X] = E[100 \times X_{Ber}] = 100 \times E[X_{Ber}] = 100 \times \frac{1}{2} = 50$

$$\Rightarrow \sigma^2 = Var(X) = Var(100 \times X_{Ber}) = 10000 \times Var(X_{Ber}) = 10000 \times \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 2500$$

$$\Rightarrow \sigma = \sqrt{\sigma^2} = 50$$

$$\Rightarrow$$
 샤프지수 = $\frac{초과수익}{리스크} = \frac{(기대수익 - 참가비용)}{리스크} = \frac{(50-40)}{50} = 0.2$

난제를 풀어봅시다: 확률 변수를 명시하여 다시한번 풀어본다.

• 다음과 같이 p=1/2인 확률변수 X_{bin} 을 사용하여 n 회 동전 던지기의 "수익" 확률 변수 X를 모델링 해본다: $X=100\times X_{bin}$

$$\Rightarrow$$
 기대수익 $\mu=E[X]=E[100\times X_{bin}]=100\times E[X_{bin}]=100\times n\times \frac{1}{2}=50\times n$

$$\Rightarrow \sigma^2 = Var(X) = Var(100 \times X_{bin}) = 10000 \times Var(X_{bin}) = 10000 \times n \times \frac{1}{2} \times \left(1 - \frac{1}{2}\right)$$

$$= 2500 \times n$$

$$\Rightarrow \sigma = \sqrt{\sigma^2} = 50 \times \sqrt{n}$$

$$\Rightarrow 샤프지수 = \frac{초과수익}{리스크} = \frac{\left(기대수익 - 참가비용 \right)}{리스크} = \frac{\left(50 \times n - 40 \times n \right)}{50 \times \sqrt{n}} = 0.2 \times \sqrt{n}$$

이산확률분포 : Python 함수

Python의 이산확률 함수:

명칭	함수
이항 (Binomial)	scipy.stats. binom .pmf() ← 확률분포
	scipy.stats. binom .cdf() ← 누적확률
	scipy.stats. binom .ppf() ← 분위수
푸아송 (Poisson)	scipy.stats. poisson .pmf()
	scipy.stats. poisson .cdf()
	scipy.stats. poisson .ppf()

실습 #0201

→ 이산확률분포에 대해서 알아봅니다. ←

→ 사용: ex_0201.ipynb ←

순서

- 2. 확률 II:
 - 2.1. 이산확률변수 & 확률분포.
 - 2.2. 이산확률분포의 여러 종류.
 - 2.3. 연속확률변수 & 확률밀도.
 - 2.4. 연속확률밀도의 여러 종류.
 - 2.5. 결합확률과 상관계수.

연속확률변수

연속확률변수:

• 연속확률변수 (continuous random variable): 셀 수 없는 (무한대) 가지수의 값을 가지는 확률 변수.

예). 1년 연봉, 성인남성의 신장, 등.

• 연속확률변수의 경우 확률은 실수 구간에 대해서 정의되어 있음. 즉 $P(X = x_0)$ 와 같이 특정위치에 대한 확률은 의미가 없고, $P(x_1 \le X \le x_2)$ 와 같이 X가 어느 실수 구간에 있을 확률이의미가 있다.

연속확률분포

연속확률분포:

- 연속확률분포함수/확률밀도함수 (continuous probability distribution/probability density function):
 - → 이산확률분포함수와는 다르게 이것 자체만으로는 확률의 **의미가 없다**.
 - → 이것을 **사용하여** 연속확률변수의 값이 특정 구간에 속할 확률을 나타낼 수 있다.
 - \rightarrow 연속확률분포함수 또는 확률밀도함수를 f(x)와 같이 표기하여 실제 확률 P(x)와는 구분 짓도록 한다.

연속확률분포

연속확률분포:

• $f(x_0)$ 에는 확률의 의미가 없다.

연속확률분포

연속확률분포:

• $P(x_1 \le X \le x_2)$ 와 같이 X가 어느 실수 **구간**에 있을 확률이 의미가 있다 (음영).

연속확률분포: 필수조건

연속확률분포의 필수조건:

- $0 \le f(x)$
- f(x)가 정의되어 있는 구간에서 f(x) 아래의 총 면적은 1과 같아야 한다.

연속확률분포: 필수조건

연속확률분포의 필수조건:

- $0 \le f(x)$
- f(x)가 정의되어 있는 구간에서 f(x) 아래의 총 면적은 1과 같아야 한다.

순서

- 2. 확률 II:
 - 2.1. 이산확률변수 & 확률분포.
 - 2.2. 이산확률분포의 여러 종류.
 - 2.3. 연속확률변수 & 확률밀도.
 - 2.4. 연속확률밀도의 여러 종류.
 - 2.5. 결합확률과 상관계수.

연속확률분포: 유형별 용도

연속확률분포함수 유형별 용도 정리:

명칭	활용
정규분포	대표본 구간 추정.
	대표본 평균 추론 (가설검정).
스튜던트 t 분포	소표본 구간 추정.
	소표본 평균 추론 (가설검정).
	선형회귀 계수 추론 (가설검정).
카이제곱 분포	분산 추론 (가설 검정).
	범주형 자료를 정리한 도수표 추론 (가설검정).
	범주형 자료를 정리한 분할표 추론 (가설검정).
F 분포	분산의 차이 비교 추론 (가설검정).
	다수의 집단의 평균 비교 추론 (ANOVA).
	선형회귀식의 설명력 추론 (가설검정)

연속확률분포: 연속균등분포

연속균등확률분포함수 (Uniform):

$$f(x) = \frac{1}{(b-a)}$$

평균 :
$$\frac{1}{2}(a+b)$$

분산 :
$$\frac{1}{12}(b-a)^2$$

표준편차 :
$$\frac{1}{\sqrt{12}}(b-a)$$

연속확률분포: 연속균등분포

연속균등확률분포함수 (Uniform):

• 연속균등확률분포함수는 구간 [a, b]에 대해서 정의되어 있다:

$$f(x) = \frac{1}{(b-a)}$$

- \rightarrow 이외의 구간에서는 f(x) = 0이다.
- 확률변수 X가 연속균등확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$X \sim Unif(a, b)$$

연속확률분포: 연속균등분포

연속균등확률분포함수 (Uniform):

• 확률밀도가 균등하므로 확률은 주어진 구간의 폭 (x_1-x_2) 에 비례한다.

연속균등분포: 누적확률함수

연속균등분포의 누적확률함수 (Cumulative Density Function, CDF):

- 연속균등분포의 누적확률 CDF(x)는 구간 [a,x] 에서 f(x) 아래의 면적 (-)과 같다.
- $CDF(x) = P(X \le x) \circ | \Box |$.

연속균등분포: 누적확률함수

연속균등분포의 누적확률함수 (Cumulative Density Function, CDF):

CDF(x) 는 x가 증가하면 1로 수렴한다.

연속확률분포: 예제 #0202

백열전구의 수명 (X)은 연속균등분포를 따르며 5000시간에서 7000시간 사이라고 한다. 다음 물음에 답하시오.

1). 어느 백열전구가 사용시간 6000시간과 7000시간 사이에서 타버릴 확률은?

$$\rightarrow$$
 확률밀도 함수는 $f(x) = \frac{1}{(7000-5000)} = 0.0005$ 이다. 그러므로
$$P(6000 \le X \le 7000) = (7000 - 6000) \times f(x) = 1000 \times 0.0005 = 0.5$$

2). 어느 백열전구의 수명이 5500시간 이하일 확률은?

 $\rightarrow P(X \le 5500) = P(5000 \le X \le 5500) = (5500 - 5000) \times f(x) = 500 \times 0.0005 = 0.25$

연속확률분포: 예제 #0202

백열전구의 수명 (X)은 연속균등분포를 따르며 5000시간에서 7000시간 사이라고 한다. 다음 물음에 답하시오.

- 3). 어느 백열전구의 수명이 최소 사용시간 5500시간 이상일 확률은?
- $\rightarrow P(5500 \le X) = P(5500 \le X \le 7000) = (7000 5500) \times f(x) = 1500 \times 0.0005 = 0.75$
- 4). 어느 백열전구의 수명이 정확하게 6000시간일 확률은?
- $\rightarrow P(X = 6000) = P(6000 \le X \le 6000) = (6000 6000) \times f(X) = 0 \times 0.0005 = 0$

정규확률분포함수 (Normal):

정규분포

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

평균 : μ

분산 : σ^2

표준편차 : σ

정규확률분포함수 (Normal):

• 정규확률분포함수는 구간 (-∞,+∞)에 대해서 정의되어 있다:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

e = 2.71828

 $\pi = 3.141592$

• 확률변수 X가 정규확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$X \sim N(\mu, \sigma^2)$$

정규확률분포함수 (Normal): μ 의 역할

정규확률분포함수 (Normal): σ 의 역할

연속확률분포: 표준정규분포

표준정규확률분포함수 (Standard Normal):

• $\mu = 0$ 이고 $\sigma^2 = 1$ 인 정규확률분포를 **표준**정규분포라 한다:

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

e = 2.71828

 $\pi = 3.141592$

• 확률변수 Z가 **표준**정규확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$Z \sim N(0,1)$$

정규분포: 누적확률함수

표준정규분포의 누적확률함수 (Cumulative Density Function, CDF):

- 표준정규분포의 누적확률 CDF(z)는 구간 $(-\infty, z]$ 에서 f(x) 아래의 면적 $(-\infty)$ 과 같다.
- $CDF(z) = P(Z \le z) \circ | \Box$.

정규분포: 누적확률함수

표준정규분포의 누적확률함수 (Cumulative Density Function, CDF):

정규분포: 누적확률함수

표준정규분포의 누적확률함수 (Cumulative Density Function, CDF):

• $P(z_1 \le Z \le z_2)$ 와 같이 Z가 어느 실수 구간에 있을 확률은 CDF(z)를 사용해서 구할 수 있다.

$$P(z_1 \le Z \le z_2)$$
 = $CDF(z_2)$ - $CDF(z_1)$

정규분포: 표준화

표준화 (Standardization):

• 확률변수 X가 정규확률분포를 따르는 경우 $X \sim N(\mu, \sigma^2)$, 다음의 방식으로 X를 표준정규확률변수로 변환할 수 있다. 그러면 $Z \sim N(0,1)$. 이것을 "표준화"라고 부른다.

$$Z = \frac{X - \mu}{\sigma}$$

• 표준화된 값 x = z-score "표준점수"라고 부른다.

$$z - score = \frac{x - \mu}{\sigma}$$

• 반대로 표준정규분포 확률변수 Z를 정규분포 $N(\mu, \sigma^2)$ 를 따르는 확률변수로 변환할 수 있다.

$$X = \sigma Z + \mu$$

정규분포 : 표준정규분포의 분위수

표준정규분포의 분위수 (Quantile of Standard Normal):

- 분위수 또는 백분위수는 신뢰구간 계산에 필요하다.
- z_{α} 라고 표기하며 왼쪽 면적(확률 = CDF)이 α 와 같은 위치를 의미한다.

$$P(Z < z_{\alpha}) = \alpha$$

표준정규분포의 분위수 (Quantile of Standard Normal):

정규분포: 표준정규분포의 분위수

표준정규분포의 분위수 (Quantile of Standard Normal):

연속확률분포: 예제 #0203

A군이 시험문제를 푸는데 문항당 평균 50초가 걸리고 표준편차는 20초라고 한다. 48초과 54초 사이에 문항을 풀 확률은 얼마인가? 다음과 같은 **표준**정규분포의 CDF 표를 활용하시오.

Z	CDF(Z)
-0.2	0.4207
-0.1	0.4602
0	0.5
0.1	0.5398
0.2	0.5793

 \rightarrow 먼저 $x_1 = 48$ 초와 $x_2 = 54$ 초를 표준화 한다.

$$z_1 = \frac{x_1 - \mu}{\sigma} = \frac{48 - 50}{20} = -\frac{2}{20} = -0.1$$
 $z_2 = \frac{x_2 - \mu}{\sigma} = \frac{54 - 50}{20} = \frac{4}{20} = 0.2$

연속확률분포: 예제 #0203

A군이 시험문제를 푸는데 문항당 평균 50초가 걸리고 표준편차는 20초라고 한다. 48초과 54초 사이에 문항을 풀 확률은 얼마인가? 다음과 같은 **표준**정규분포의 CDF 표를 활용하시오.

Z	CDF(Z)
-0.2	0.4207
-0.1	0.4602
0	0.5
0.1	0.5398
0.2	0.5793

→ CDF를 활용하여 확률을 계산한다.

$$P(z_1 \le Z \le z_2) = CDF(z_2) - CDF(z_1) = CDF(0.2) - CDF(-0.1)$$

= $\mathbf{0.5793} - \mathbf{0.4602} = \mathbf{0.1191}$

연속확률분포: 카이제곱

카이제곱 분포함수 (Chi Square):

• k개의 **표준**정규분포를 따르는 독립적인 확률변수 $Z \sim N(0,1)$ 가 있을때 카이제곱 확률변수 Q는 이들의 제곱의 합이다.

$$Q = Z^2 + Z^2 + Z^2 + \dots + Z^2$$

$$\leftarrow k^{7} \parallel \rightarrow$$

- 여기에서 k = "자유도"라고 부른다.
- 확률변수 Q가 카이제곱 확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$Q \sim \chi^2(k)$$

연속확률분포: 카이제곱

카이제곱 분포함수 (Chi Square): 자유도 k의 역할

68

연속확률분포: 스튜던트 t

스튜던트 t 분포함수 (Student t):

• $Q \sim \chi^2(k)$ 이고 $Z \sim N(0,1)$ 일때 스튜던트 t 확률변수 T는 다음과 같이 정의 된다.

$$T = \frac{Z}{\sqrt{Q/k}}$$

- 여기에서 k 는 카이제곱 확률변수의 "자유도"이다.
- 확률변수 T가 스튜던트 t 확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$T \sim t(k)$$

• 자유도 k가 커질수록 스튜던트 t는 **표준**정규분포로 수렴한다.

연속확률분포: 스튜던트 t

스튜던트 t 분포함수 (Student t): 자유도 k의 역할

연속확률분포:F분포

F 분포함수:

• $Q_1 \sim \chi^2(d_1)$ 이고 $Q_2 \sim \chi^2(d_2)$ 일때 F 확률변수 X는 다음과 같이 정의 된다.

$$X = \frac{Q_1/d_1}{Q_2/d_2}$$

- 여기에서 d_1 와 d_2 는 카이제곱 확률변수의 "자유도"이다:
 - $\rightarrow d_1 = 분자의 자유도$
 - $\rightarrow d_2 = 분모의 자유도$
- 확률변수 X가 F 확률분포를 따른다는 것을 다음과 같이 표기할 수 있다.

$$X \sim F(d_1, d_2)$$

• F 검정, 분산분석 (ANOVA) 등 활용.

연속확률분포 : Python 함수

Python의 연속확률 함수:

명칭	함수
연속균등 (Uniform)	scipy.stats. uniform .pdf() ← 확률밀도
	scipy.stats. uniform .cdf() ← 누적확률
	scipy.stats. uniform .ppf() ← 분위수
정규 (Norm)	scipy.stats. norm .□□□()
지수 (Exponential)	scipy.stats. expon .□□□()
카이제곱 (Chi Square)	scipy.stats.chi2.□□□()
스튜던트 t (Student t)	scipy.stats. t .□□□()
F	scipy.stats. f .□□□()

실습 #0202

→ 연속확률분포에 대해서 알아봅니다. ←

→ 사용: ex_0202.ipynb ←

실습 #0203

→ 확률변수를 시뮬레이션 해 봅니다. ←

→ 사용: ex_0203.ipynb ←

순서

2. 확률 II:

- 2.1. 이산확률변수 & 확률분포.
- 2.2. 이산확률분포의 여러 종류.
- 2.3. 연속확률변수 & 확률밀도.
- 2.4. 연속확률밀도의 여러 종류.
- 2.5. 결합확률과 상관계수.

공분산

공분산 (Covariance):

• $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y]$ \Leftarrow 결합확률을 사용하여 계산.

상관계수 (Pearson Correlation Coefficient):

- $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$
- 상관계수의 값은 -1과 1사이의 수치이다.
- 상관계수는 선형관계의 방향과 강도를 나타낸다.
 - $\rightarrow Corr(X,Y) > 0: X와 Y 사이에 양의 선형관계가 있음.$
 - $\rightarrow Corr(X,Y) < 0: X와 Y 사이에 음의 선형관계가 있음.$
 - $\rightarrow Corr(X,Y) = 0: X와 Y 사이에 선형관계가 없음.$
- 상관성은 원인과 결과로 해석하면 안된다!
- 허구적 상관관계 (spurious correlation)도 있을 수 있으니 주의한다!

상관성은 원인과 결과로 해석하면 안된다!

상관계수 : 허구적 상관관계

상관계수: 허구적 상관관계

마가린 소비량과 미국 메인(Maine)주의 이혼률

상관계수 : 허구적 상관관계

상관계수: 허구적 상관관계

컴퓨터 공학 박사학위와 아케이드 게임 수익

상관계수: 허구적 상관관계

상관계수 : 허구적 상관관계

원유 수입과 치킨 소비

상관계수 (Correlation Coefficient): r = Corr(X, Y)

상관계수 (Correlation Coefficient):

상관계수는 선형관계의 "명확함"을 나타낸다.

Y

독립성 vs 상관성

독립성 vs 상관성:

- 독립성: P(X,Y) = P(X)P(Y).
- $\rightarrow Cov(X,Y) = E[XY] E[X]E[Y] = E[X]E[Y] E[X]E[Y] = 0.$
- $\rightarrow Corr(X,Y) = 0$. 그러므로 "상관성 없음"을 내포함.
- 상관계수: *Corr(X,Y)*.
- → 상관계수는 -1과 1 사이의 수치이다.
- → "상관성이 없다" = "상관계수 0". 하지만 독립성을 내포하지는 않는다.
 - 예). -1, 0, 1에서 동일확률을 갖는 확률변수 X와 $Y = X^2$ 사이의 상관계수는 0이지만 독립적이지는 않다.

모듈 #2 : 끝

문의:

sychang1@gmail.com