Cyclic Causality: D-separation and Nonlinearity

David Reber 3/24 - 3/30 update

Past To-Do's

- 3/24 3/25
 - ✓ Relate problem to the literature
 - ✓ Writeup, submit mid-semester report
- 3/27 3/30
 - Come up with an example for each of the following:
 - ✓ Cyclic SCMs
 - ✓ Loss of d-separation
 - ✓ Intrinsic SCMs
 - Validity of d-separation via numerics

(It'll be a short week for me as I'll be out of town 3/31 - 4/3)

Example: Cyclic SCM

```
egin{aligned} \mathbf{u},\mathbf{v} \in \mathbb{R}^4 \ U_i \sim \mathcal{N}(0,1) \quad iid. \end{aligned}
f_3: V_3 \leftarrow V_1 V_4 + U_3 \ f_4: V_4 \leftarrow V_2 V_3 + U_4
```

Example: Cyclic SCM

Example: Cyclic SCM

$$egin{aligned} V_1 &\leftarrow U_1 \ V_2 &\leftarrow U_2 \ V_3 &\leftarrow V_1 V_4 + U_3 \ V_4 &\leftarrow V_2 V_3 + U_4 \end{aligned}$$

For fixed U=u, there's a unique equilibrium!

$$egin{array}{l} V_1 \leftarrow U_1 \ V_2 \leftarrow U_2 \ V_3 \leftarrow V_1 V_4 + U_3 \ V_4 \leftarrow V_2 V_3 + U_4 \ \end{pmatrix}$$

For fixed U=u, there's a unique equilibrium!

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

Potential Responses

$$egin{aligned} V_1 \leftarrow U_1 \ V_2 \leftarrow U_2 \ V_3 \leftarrow V_1 V_4 + U_3 \ V_4 \leftarrow V_2 V_3 + U_4 \end{aligned}$$

$$U_i \sim \mathcal{N}(0,1) \quad iid. \ P(U_i = u_i) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}u_i^2}$$

For fixed U=u, there's a unique equilibrium!

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{array}$$

Potential Responses

For fixed U=u, there's a unique equilibrium!

$$V_1(\mathbf{U}) = U_1$$

$$V_2({f U})=U_2$$

$$V_3({f U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2}$$

$$V_4({f U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4$$

Potential Responses

$$P(U_i=u_i)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}u_i^2}$$

 $U_i \sim \mathcal{N}(0,1) \quad iid.$

$$P(\mathbf{V}) = (rac{1}{4\pi^2})e^{-rac{v_1^2}{2}}e^{-rac{v_2^2}{2}}e^{-rac{(v_3-v_1v_4)^2}{2}}e^{-rac{(v_4-v_2v_3)^2}{2}}|(1-v_1v_2)^{-1}|$$

For fixed U=u, there's a unique equilibrium!

$$V_1(\mathbf{U}) = U_1$$

$$V_2({f U})=U_2$$

$$V_3({f U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2}$$

$$V_4({f U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4$$

Potential Responses

$$P(U_i=u_i)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}u_i^2}$$

 $U_i \sim \mathcal{N}(0,1) \quad iid.$

$$P(\mathbf{V}) = (rac{1}{4\pi^2})e^{-rac{v_1^2}{2}}e^{-rac{v_2^2}{2}}e^{-rac{(v_3-v_1v_4)^2}{2}}e^{-rac{(v_4-v_2v_3)^2}{2}}|(1-v_1v_2)^{-1}|$$

[Spirtes 2013 Bongers et al. 2021 Forr'e et al. 2017]

Example: d-separation

[Spirtes 2013 Bongers et al. 2021 Forr'e et al. 2017]

Example: d-separation

$$(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_G$$
?

$$(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_G$$
?

$$(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_G$$
?

Path 1:
$$V_1 {\longrightarrow} V_2 {\longrightarrow} V_3 {\longleftarrow} V_4$$

$$(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_G$$
?

Path 1:
$$V_1$$
 \longrightarrow V_2 \longrightarrow V_3 \longleftarrow V_4 Blocked

$$(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_G$$
?

Path 1:
$$V_1$$
 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 Blocked Path 2: V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4

Path 1:
$$V_1$$
 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 Blocked Path 2: V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_4 Blocked

Path 1:
$$V_1$$
 \longrightarrow V_2 \longrightarrow V_3 \longleftarrow V_4 Blocked

Path 2:
$$V_1$$
 \longrightarrow V_2 \longleftarrow V_3 \longrightarrow Blocked

Not Possible to Factor!

Not Possible to Factor!

So
$$(V_1 \not\perp \!\!\! \perp V_2 | V_3, V_4)_P$$

Not Possible to Factor!

So
$$(V_1 \not\perp \!\!\! \perp V_2 | V_3, V_4)_P$$

Let's double check with numerics...

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

 \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

- \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$
- Test $(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_P$ numerically...
 - Conditional independence + continuous domain? That's hard...

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

- \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$
- ullet Test $(V_1 \!\perp\!\!\!\perp \!\!\!\perp \!\!\! V_2 | V_3, V_4)_P$ numerically...
 - 😕 Conditional independence + continuous domain? That's hard...
- ullet ...using FCIT (a fast independence test which tries to predict V_1 from V_2 after V_3 and V_4 are provided)

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$
- Test $(V_1 \!\perp\!\!\!\perp \!\!\!\perp \!\!\! V_2 | V_3, V_4)_P$ numerically...
 - Conditional independence + continuous domain? That's hard...
- ...using FCIT (a fast independence test which tries to predict V_1 from V_2 after V_3 and V_4 are provided)

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$
- Test $(V_1 \!\perp\!\!\!\perp V_2 | V_3, V_4)_P$ numerically...
 - Conditional independence + continuous domain? That's hard...
- ...using FCIT (a fast independence test which tries to predict V_1 from V_2 after V_3 and V_4 are provided)

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- \succ Monte Carlo: sample from $P(\mathbf{U})$ and apply $V_i(\mathbf{U})$
- Test $(V_1 \!\perp\!\!\!\perp V_2 | V_3, V_4)_P$ numerically...
 - Conditional independence + continuous domain? That's hard...
- ...using FCIT (a fast independence test which tries to predict V_1 from V_2 after V_3 and V_4 are provided)

Low p-values ——— conditional dependence $(V_1 \perp \!\!\! \perp V_2 | V_3, V_4)_P$

$$(V_1 \perp \!\!\!\perp V_2 | V_3, V_4)_G \implies (V_1 \perp \!\!\!\perp V_2 | V_3, V_4)_P$$

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \overset{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \overset{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

 $V_i(\mathbf{U})$ is found by fixing \mathbf{u} and solving for the equilibrium of the system

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \overset{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- $V_i(\mathbf{U})$ is found by fixing \mathbf{u} and solving for the equilibrium of the system
- For <u>linear</u> SCMs*, these $V_i(\mathbf{U})$ at equilibrium preserve the conditional independencies of G (hence, d-separation is valid)

^{*}If $P(\mathbf{V}) > 0$ everywhere, and there's no trivial dependencies

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- $V_i(\mathbf{U})$ is found by fixing \mathbf{u} and solving for the equilibrium of the system
- For <u>linear</u> SCMs*, these $V_i(\mathbf{U})$ at equilibrium preserve the conditional independencies of G (hence, d-separation is valid)

Perhaps nonlinear SCMs whose asymptomatic dynamics are bounded by a linear SCM will also inherit these nice properties of $V_i(\mathbf{U})$

^{*}If $P(\mathbf{V}) > 0$ everywhere, and there's no trivial dependencies

$$egin{align} V_1(\mathbf{U}) &= U_1 \ V_2(\mathbf{U}) &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$$

- $V_i(\mathbf{U})$ is found by fixing \mathbf{u} and solving for the equilibrium of the system
- For <u>linear</u> SCMs*, these $V_i(\mathbf{U})$ at equilibrium preserve the conditional independencies of G (hence, d-separation is valid)

Perhaps nonlinear SCMs whose asymptomatic dynamics are bounded by a linear SCM will also inherit these nice properties of $V_i(\mathbf{U})$

What happens if we try to bound this example??

Bound each
$$f_i$$
 by $g_i = (\sum_j a_{ij} V_j) + U_i$ $a_{ij} = \max_{\mathbf{v}} |rac{\partial f_i}{\partial V_j}(\mathbf{v}, \mathbf{u})|$

Bound each f_i by

$$g_i = (\sum_j a_{ij} V_j) + U_i$$

$$a_{ij} = \max_{\mathbf{v}} |rac{\partial f_i}{\partial V_j}(\mathbf{v}, \mathbf{u})|$$

$$f_1:V_1\leftarrow U_1$$

$$f_2:V_2\leftarrow U_2$$

$$f_3:V_3\leftarrow V_1V_4+U_3$$

$$f_4: V_4 \leftarrow V_2 V_3 + U_4$$

Bound each f_i by

$$g_i = (\sum_j a_{ij} V_j) + U_i$$

$$a_{ij} = \max_{\mathbf{v}} |rac{\partial f_i}{\partial V_j}(\mathbf{v}, \mathbf{u})|$$

$$f_1:V_1\leftarrow U_1$$

$$f_2:V_2\leftarrow U_2$$

$$U_2$$

$$V_1$$
 .

$$-V_1$$

$$-V_1$$

$$f_4:V_4\leftarrow V_2V_3+U_4$$

$$J_3+U_4$$

$$: V_2 \leftarrow \mathcal{U}$$

 $q_1:V_1\leftarrow U_1$

$$\leftarrow a_3$$

$$\leftarrow$$
 $\overline{a_{31}}V$

$$g_3: V_3 \leftarrow a_{31}V_1 + a_{34}V_4 + U_3 \ g_4: V_4 \leftarrow a_{42}V_2 + a_{43}V_3 + U_4$$

Bound each f_i by

$$g_i = (\sum_j a_{ij} V_j) + U_i$$
 $a_{ij} = \max_{\mathbf{v}} |rac{\partial f_i}{\partial V_j}(\mathbf{v}, \mathbf{u})|$

$$f_1: V_1 \leftarrow U_1 \longrightarrow a_{1j} = 0 \longrightarrow g_1: V_1 \leftarrow U_1$$
 $f_2: V_2 \leftarrow U_2 \longrightarrow a_{2j} = 0 \longrightarrow g_2: V_2 \leftarrow U_2$
 $f_3: V_3 \leftarrow V_1 V_4 + U_3 \longrightarrow g_3: V_3 \leftarrow a_{31} V_1 + a_{34} V_4 + U_3$
 $f_4: V_4 \leftarrow V_2 V_3 + U_4 \longrightarrow g_4: V_4 \leftarrow a_{42} V_2 + a_{43} V_3 + U_4$
 $a_{31} = \max_{\mathbf{v}} |V_4| \quad a_{34} = \max_{\mathbf{v}} |V_1| \quad a_{42} = \max_{\mathbf{v}} |V_3| \quad a_{43} = \max_{\mathbf{v}} |V_2|$

$$f_1: V_1 \leftarrow U_1 \longrightarrow a_{1j} = 0 \longrightarrow g_1: V_1 \leftarrow U_1$$
 $f_2: V_2 \leftarrow U_2 \longrightarrow a_{2j} = 0 \longrightarrow g_2: V_2 \leftarrow U_2$
 $f_3: V_3 \leftarrow V_1 V_4 + U_3 \longrightarrow g_3: V_3 \leftarrow a_{31} V_1 + a_{34} V_4 + U_3$
 $f_4: V_4 \leftarrow V_2 V_3 + U_4 \longrightarrow g_4: V_4 \leftarrow a_{42} V_2 + a_{43} V_3 + U_4$
 $a_{31} = \max_{\mathbf{v}} |V_4| \quad a_{34} = \max_{\mathbf{v}} |V_1| \quad a_{42} = \max_{\mathbf{v}} |V_3| \quad a_{43} = \max_{\mathbf{v}} |V_2|$

- Some terms go to infinity, so we can't bound this example!
 - (these correspond directly to unboundedness of the potential response function)

Bound each f_i by $g_i = (\sum_j a_{ij} V_j) + U_i$ $a_{ij} = \max_{\mathbf{v}} |rac{\partial f_i}{\partial V_i}(\mathbf{v}, \mathbf{u})|$

$$f_1: V_1 \leftarrow U_1 \longrightarrow a_{1j} = 0 \longrightarrow g_1: V_1 \leftarrow U_1$$

$$f_2: V_2 \leftarrow U_2 \longrightarrow a_{2j} = 0 \longrightarrow g_2: V_2 \leftarrow U_2$$

$$f_3: V_3 \leftarrow V_1 V_4 + U_3 \longrightarrow g_3: V_3 \leftarrow a_{31} V_1 + a_{34} V_4 + U_3$$

$$f_4: V_4 \leftarrow V_2 V_3 + U_4 \longrightarrow g_4: V_4 \leftarrow a_{42} V_2 + a_{43} V_3 + U_4$$

$$a_{31} = \max_{\mathbf{v}} |V_4| \quad a_{34} = \max_{\mathbf{v}} |V_1| \quad a_{42} = \max_{\mathbf{v}} |V_3| \quad a_{43} = \max_{\mathbf{v}} |V_2|$$

- Some terms go to infinity, so we can't bound this example!
 - o (these correspond directly to unboundedness of the potential response function)
- What if we tweak the example?

```
M egin{aligned} egin{aligned} \mathbf{u}, \mathbf{v} &\in [-0.5, 0.5] \ U_i &\sim \mathcal{N}(0, 1) \cap [-0.5, 0.5] \end{aligned} iid. \ M egin{aligned} f_1 &: V_1 \leftarrow U_1 \ f_2 &: V_2 \leftarrow U_2 \ f_3 &: V_3 \leftarrow V_1 V_4 + U_3 \ f_4 &: V_4 \leftarrow V_2 V_3 + U_4 \end{aligned}
```


$$egin{align} rac{U_i \sim \mathcal{N}(0,1) \cap [-0.5,0.5]}{V_1(\mathbf{U})} &= U_1 \ rac{V_2(\mathbf{U})}{V_2(\mathbf{U})} &= U_2 \ V_3(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) &= rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

$$egin{align} rac{U_i \sim \mathcal{N}(0,1) \cap [-0.5,0.5]}{V_1(\mathbf{U})} & iid. \ N_1(\mathbf{U}) = U_1 \ M & V_2(\mathbf{U}) = U_2 \ V_3(\mathbf{U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

Test $(V_1 \overset{?}{\perp\!\!\!\perp} V_2 | V_3, V_4)_P$ again, numerically

ullet Using $P(\mathbf{U})\stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$ but with restricted domain

Test $(V_1 \!\stackrel{!}{\perp\!\!\!\perp} \! V_2 | V_3, V_4)_P$ again, numerically

ullet Using $P(\mathbf{U}) \stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$ but with restricted domain

Test $(V_1 \perp\!\!\!\perp V_2 | V_3, V_4)_P$ again, numerically

ullet Using $P(\mathbf{U})\stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$ but with restricted domain

$$egin{align} rac{U_i \sim \mathcal{N}(0,1) \cap [-0.5,0.5]}{V_1(\mathbf{U}) = U_1} \ M egin{align} V_2(\mathbf{U}) = U_2 \ V_3(\mathbf{U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} \ V_4(\mathbf{U}) = rac{U_1 U_4 + U_3}{1 - U_1 U_2} U_2 + U_4 \ \end{pmatrix}$$

Test $(V_1 \!\stackrel{?}{\perp\!\!\!\perp} \! V_2 | V_3, V_4)_P$ again, numerically

ullet Using $P(\mathbf{U})\stackrel{V_i(\mathbf{U})}{\longrightarrow} P(\mathbf{V})$ but with restricted domain

Next week's directions

Observational Case: Proof Sketch

Strategy:

- Relate M to a linear SCM L(M) which satisfies the directed global Markov property.
- Show that M and L(M):
 - o respect the same graph

Conjectured relation to other spaces of cyclic SCMs

Continuing Discussions: Game Theory + Causality

- Lewis Hammond (Oxford, Computer Science: Dphil student)
 - Extending Pearl's causal hierarchy to the game-theoretic domain

- Christian Kroer (Columbia, IOER department: Assistant professor)
 - Research: Game Theory, scalable optimization methods (for finding the potential responses)

- How relates:
 - Game theory is a primary motivation for cyclic causality
 - Local intrinsic stability

Next To-do's

- Prove Observational Equivalence
 - Get examples for each lemma
- Example of finding proper P(U) for linear bound
 - show numerically as well
 - Also an example of when it fails
- Prove (or disprove):
 - acyclic SCMs ⊂ intrinsic SCMs ⊂ simple SCMs
 - Example of each:
 - Linear bound for acyclic
 - Demonstrating unique solvability for each subset of intrinsic example
 - Example of simple SCM that's not intrinsic
- Meet with Christian Kroer, see if worth collaborating

References

- Krzysztof Chalupka, Pietro Perona, and Frederick Eberhardt. Fast conditional independence test for vector variables with large sample sizes, 2018.
- Patrick Forr'e and Joris M. Mooij. Markov properties for graphical models with cycles and latent variables.
 arXiv:Statistics Theory, 2017.
- Peter Spirtes. Directed cyclic graphical representations of feedback models. CoRR, abs/1302.4982, 2013.
- Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M. Mooij. Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5):2885 2915, 2021.