Evolutionary Computation for Speech Enhancement

By: Vince Fasburg and Josh Thomas

Overview

- Introduction
- Background
 - CMA-ES
 - Weiner Filter
 - Spectral Subtraction
 - Noise Gate
- Evolutionary Strategy
- Results
- Conclusions
- Future Work

Introduction

Problem

Recover clean speech signal from audio corrupted by noise, such as road noise.

Approach

Combine several existing de-noising algorithms, using evolutionary strategies to tune parameters to recreate clean signal.

Background: CMA-ES

- Real-valued parameters make up individuals
- Random mutation from mean every gen
- Mutation in direction of eigenvectors of covariance matrix

Background: Spectral Subtraction

Basic Algorithm:

Subtract power spectrum of noise only from that of noisy signal

$$X = (Y^2 - N^2)^{1/2}$$

- Improvements:
- Y values smoothed
- Speech/Noise decision with hold times
- Parameters: Noise Margin, Hang Over, Smoothing Factor

Background: Wiener Filter

- Estimate SNR = Y(f)/N(f)
- Use SNR to find best gains for FIR filter
- Apply filter to eliminate noise
- Parameters: SNR Smoothing Factor

$$y(t) = (h \star x)(t) + n(t)$$

$$G(f) = \frac{1}{H(f)} \left[\frac{|H(f)|^2}{|H(f)|^2 + \frac{N(f)}{Y(f)}} \right]$$

$$\hat{x} = ifft(G(f)Y(f))$$

Background: Noise Gate

Parameters: Threshold, Attack, Release

Evolutionary Strategy

- (μ, λ) CMA-ES with weighted recombination
- $\mu = 6,12,24$ parents, $\lambda = 12,24,48$ offspring
- Each offspring contains 8 parameters

Fitness Function

Average of the differences between the clean audio file and the processed audio file.

$$Fitness = \frac{1}{n} \left(\sum_{1}^{n} ABS(Clean - Processed) \right)$$

Lower fitness is desired since it will have less difference from the clean file.

Evolutionary Strategy

Each parameter scaled differently from [0,1]

Parameter	Min	Max	"Expert" Value
Wiener Smoothing	0	2	0.98
Wiener Gain	-2	2	N/A
Spec Sub Gain	-2	2	N/A
Noise Margin	0	20	8
Noise Length	0	20	18
Hangover	0	20	3
Threshold	0	0.25	N/A
Attack/Release	0	10	N/A

- Three different run configurations
 - 1: Offspring of 12
 - 2: Offspring of 24
 - 3: Offspring of 48
- ▶ 50 runs per configuration
- ▶ 300 Generations per run

	Expert Results	Expert Results	Best Pop 12	Best Pop 24	Best Pop 48
Wiener Gain	1	0	1.10	0.97	1.10
Wiener Smoothing	0.98	_	0.95	0.96	0.95
Spec Sub Gain	0	1	0.41	0.45	0.41
Noise Length	_	20	13.65	18.92	0.69
Noise Margin	_	8	18.23	0.78	15.35
Hang Over	_	3	9.33	0.58	18.16
Threshold	_	_	0.03	0.03	0.03
Attack/Release	_	_	1.25	0.96	1.25
Fitness	0.0301	0.0316	0.0225	0.0223	0.0225

Running the best results with only the Wiener Filter

	Expert Results	Best Results
Wiener Gain	1	1
Wiener Smoothing	0.98	0.96
Spec Sub Gain	0	0
Fitness	0.0301	0.0270

Running the best results with only Spectral Subtraction

	Expert Results	Best Results
Wiener Gain	0	0
Spec Sub Gain	1	1
Noise Length	20	18.92
Noise Margin	8	0.78
Hang Over	3	0.58
Fitness	0.0316	0.0354

Clean File

Dirty File

Processed File

Conclusions

- Improve upon the expert results with ES
- Difficult to compare to expert results
- Fitness is improved from expert results
 - Computation time of EC may not be worth it
- Wiener Filter is better than Spectral Subtraction at reducing noise

Future Work

- New fitness function
 - Tuned to human hearing
 - For computer interpretation
- Evolve different combinations of de-noising algorithms alongside parameters
 - Genetic programming
- Variety of audio samples
 - Different voices
 - Different noise situations

Questions?

