Strategies for Algorithm Design

This week

- Greedy algorithms!
- Builds on our ideas from dynamic programming

Example

Activity selection

Activity selection

• Input:

- Activities a₁, a₂, ..., a_n
- Start times s₁, s₂, ..., s_n
- Finish times f₁, f₂, ..., f_n

Output:

How many activities can you do today?

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

That seems like a reasonable thing to do...

- Running time:
 - O(n) if the activities are already sorted by finish time.
 - Otherwise O(nlog(n)) if you have to sort them first.
- Does it work?
 - We'll see soon.

This is an example of a greedy algorithm

- At each step in the algorithm, make a choice.
 - Hey, I can increase my activity set by one,
 - And leave lots of room for future choices,
 - Let's do that and hope for the best!!!
- Hope that at the end of the day, this results in a globally optimal solution.

Three questions

- 1. Does this greedy algorithm for activity selection work?
- 2. In general, when are greedy algorithms a good idea?

3. The "greedy" approach is often the first you'd think of...

Answers

- 1. Does this greedy algorithm for activity selection work?
 - Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When they exhibit especially nice optimal substructure.

3. The "greedy" approach is often the first you'd think of...

DP view of activity selection

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

Subproblems:

number of activities you can squeeze in after Activity i finishes and before Activity j starts

Optimal substructure

• Subproblems:

number of activities you can squeeze in after Activity i finishes and before Activity j starts

Now let's define an optimal solution, i.e., a maximal set of mutualy compatible activities between i,j.

Details for optimal substructure property

Then the candidate activities to consider are those that start after ai and end before aj:

Now let's define Aij to be an optimal solution, i.e., a maximal set of mutualy compatible activities in Sij. What is the structure of this solution?

At some point we will need to make a choice to include some activity ak, two sets of compatible candidates after ak is taken out:

Sik: activities that start after ai finishes, and finish before ak starts Skj: activities that start after ak finishes, and finish ai starts

Note that Sij may be a proper superset of Sik ∪ {ak} ∪ Skj, as activities incompatible with ak are excluded.)

Using the same notation as above, define the optimal solutions to these subproblems to be:

Aik = Aij∩ Sik: the optimal solution to Sik Akj = Aij ∩ Skj: the optimal solution to Skj

So the structure of an optimal solution Aij is:

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

This satisfies a nice recursive relationship

• $A[i,j] = \max_{k} \{ A[i,k] + 1 + A[k,j] \}$

A[i,j] = number of activities you can squeeze in after Activity i finishes and before Activity j starts

• The maximum is over all k so that Activity k fits in between Activities i and j.

This satisfies a nice recursive relationship

• $A[i,j] = \max_{k} \{ A[i,k] + 1 + A[k,j] \}$

A[i,j] = number of activities you can squeeze in after Activity i finishes and before Activity j starts

• The maximum is over all k so that Activity k fits in between Activities i and j.

We could turn this into a DP algorithm

- .Would take time something like O(n³)
 - Fill out an n-by-n table.
 - For each entry search over maybe n possiblities for k.
- But this would be wasteful!
 - we just saw an algorithm that takes time O(nlog(n)), if it's correct...

Try it!
It builds character!

The thing that's wasteful

A[i,j] = number of activities you can squeeze in after Activity i finishes and before Activity j starts

 Actually, we should know in advance what subproblem to look at.

• Lemma:

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1] that extends the optimal solution to A[k..n+1].

Let's add an additional activity a_{n+1} that starts "tomorrow".

A[i,j] = number of activities you can squeeze in after Activity i finishes and before Activity j starts

Lemma

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].

A[i,j] = number of activities you can squeeze in after Activity i finishes and before Activity j starts

Lemma

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1] that extends the optimal solution to A[k..n+1].

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].
- Suppose that this is an optimal solution to A[i..n+1]
 - Doesn't involve a_k

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].
- Suppose that this is an optimal solution to A[i..n+1]
 - Doesn't involve a_k
- Swap a_k in for whatever had the smallest finishing time in that solution.

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].
- Suppose that this is an optimal solution to A[i..n+1]
 - Doesn't involve a_k
- Swap a_k in for whatever had the smallest finishing time in that solution.

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1] that extends the optimal solution to A[k..n+1].
- Suppose that this is an optimal solution to A[i..n+1]
 - Doesn't involve a_k
- Swap a_k in for whatever had the smallest finishing time in that solution.

- Suppose that k is the activity you can squeeze in after i with the smallest finishing time.
- Then there is an optimal solution to A[i..n+1]
 that extends the optimal solution to A[k..n+1].
- Suppose that this is an optimal solution to A[i..n+1]
 - Doesn't involve a_k
- Swap a_k in for whatever had the smallest finishing time in that solution.

This means that DP would have been wasteful.

This means that DP would have been wasteful.

A[0,n+1] is the return value we wanted.

A[0,n+1] is the return value we wanted.

We should know ahead of time that it only depends on A[2,n+1]

Instead, let's use this insight to make a greedy algorithm

- Suppose the activities are sorted by finishing time
 - if not, sort them.
- mySchedule = []
- for k = 1,...,n:
 - if I can fit in Activity k after the last thing in mySchedule:
 - mySchedule.append(Activity k)
- return mySchedule

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

- Pick the activity you can add
 - that has the smallest finish time.
- Include it in your activity list.
- Repeat.

Why does this work?

- At each step, we make a choice
 - Include activity k
- We can show that this choice will never rule out an optimal solution.
 - Formally: There is an optimal solution to A[i..n+1] that contains A[k..n+1].
- So when we reach the end of the argument:
 - we haven't ruled out an optimal solution
 - and we only have one solution left
 - so it must be optimal.

• Divide-and-conquer:

Dynamic Programming:

Greedy algorithms:

Greedy algorithms:

- Not only is there optimal sub-structure:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

What have we learned?

- If we come up with a DP solution, and it turns out that we really only care about one sub-problem, then maybe we can use a greedy algorithm.
- One example was activity selection.
- In order to come up with a greedy algorithm, we:
 - Made a series of choices
 - Proved that our choices will never rule out an optimal solution.
 - Conclude that our solution at the end is optimal.

One more example Huffman coding

- everyday english sentence
- qwertyui_opasdfg+hjklzxcv

One more example Huffman coding

ASCII is pretty wasteful. If **e** shows up so often, we should have a more parsimonious way of representing it!

- everyday english sentence

- qwertyui_opasdfg+hjklzxcv

Suppose we have some distribution on characters

Suppose we have some distribution on characters

For simplicity, let's go with this made-up example

Try 1

A

0

B

00

D

01

of one or two bits.

Every letter is assigned a binary string

Ε

10

Letter

11

example text: Sleeplessness

character node that has children it's code is the prefix of another code

! all characters must be leaves in order not to be prefixes of another

A prefix-free code is a tree

Some trees are better than others

- Imagine choosing a letter at random from the language.
 - Not uniform, but according to our histogram!
- The cost of a tree is the expected length of the encoding of that letter.

Expected cost of encoding a letter with this tree:

$$2(0.45 + 0.16) + 3(0.05 + 0.13 + 0.12 + 0.09) = 2.39$$

Optimal sub-structure

Suppose this is an optimal tree:

Then this is an optimal tree on fewer letters.

Otherwise, we could change this sub-tree and end up with a better overall tree.

In order to design a greedy algorithm

• Think about what letters belong in this sub-problem...

Solution

greedily build subtrees, starting with the infrequent letters

Solution

greedily build subtrees, starting with the infrequent letters

Solution

greedily build subtrees, starting with the infrequent letters

Solution

greedily build subtrees, starting with the infrequent letters

Solution

greedily build subtrees, starting with the infrequent letters

What exactly was the algorithm?

- Create a node like D: 16 for each letter/frequency
 - The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.
 - Create a new node Z with Z.key = X.key + Y.key
 - Set Z.left = X, Z.right = Y
 - Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]

A: 45

B:13

C:12

D: 16

Proof strategy

just like before

 Show that at each step, the choices we are making won't rule out an optimal solution.

Lemma:

Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal subtree where x and y are siblings.

Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made its encoding shorter.
- Repeat this logic until we get an optimal tree with x and y as siblings.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal subtree where x and y are siblings.

Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made its encoding shorter.

```
let's name it T and T': cost(T) - cost(T') = (p_a - p_x) Delta_1 + (p_b - p_y) Delta_2 >=0
```

Proof strategy

just like last time

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.

A: 45

B:13

C:12

D: 16

Proof strategy just like last time

Our argument before just showed that we made the right choice at the first step, when everything was a leaf. What about once we start grouping stuff?

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.

Lemma 2 this distinction doesn't really matter

Together

• Lemma 1:

Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.

• Lemma 2:

 We may as well imagine that CURRENT contains only leaves.

These imply:

 At each step, our choice doesn't rule out an optimal tree.

Formally, we'd use induction

After the t'th step, we've got a bunch of current sub-trees:

- Inductive hypothesis:
 - after the t'th step,
 - there is an optimal tree containing the current subtrees as "leaves"
- Base case:
 - after the 0'th step,
 - there is an optimal tree containing all the characters.
- Inductive step:
 - TO DO
- Conclusion:
 - after the last step,
 - there is an optimal tree containing this whole tree as a subtree.
 - aka,
 - after the last step the tree we've constructed is optimal.

Inductive hyp. asserts

Inductive step

say that x and y are the two smallest.

- Suppose that the inductive hypothesis holds for t-1
 - After t-1 steps, there is an optimal tree containing all the current sub-trees as "leaves."
- Want to show:
 - After t steps, there is an optimal tree containing all the current sub-trees as leaves.
- Two ingredients:
 - Lemma 1: If x and y are the two least-frequent letters, there is an optimal subtree where x and y are siblings.
 - Lemma 2: Suppose that there is an optimal tree containing a as a subtree. Then we may as well replace it with a new letter with frequency

What have we learned?

- ASCII isn't an optimal way to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.

- To come up with a greedy algorithm:
 - Identify optimal substructure
 - Find a way to make "safe" choices that won't rule out an optimal solution.
 - Create subtrees out of the smallest two current subtrees.

Recap I

Greedy algorithms!

examples:

- Activity Selection
- Huffman Coding

Recap II

- Greedy algorithms!
- Often easy to write down
 - But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct
- A problem is a good candidate for a greedy algorithm if:
 - it has optimal substructure
 - that optimal substructure is REALLY NICE
 - solutions depend on just one other sub-problem.