Chapman's Master Thesis

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER		
GNE/PH/74-1	AN 777841		
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
A COMPUTER CODE FOR	THESIS		
HIGH ALTITUDE EMP	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)		
Terry C. Chapman, Captain, USAF			
9. PERFORMING ORGANIZATION NAME AND ADDRESS AFIT/ENP Wright-Patterson AFB, OH 45433	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
11. CONTROLLING OFFICE NAME AND ADDRESS AFIT/ENP	January 1974		
Wright-Patterson AFB, OH 45433	13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)		
Air Force Weapons Laboratory/EL Kirtland AFB, New Mexico 87117	UNCLASSIFIED		
MITUIANG AFD, NEW MEATCO O(III)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		

Roadmap

. Goals

- Identify missing pieces
- Recreate output in thesis
- Create baseline
- Process
- Status
 - Compiles will gfortran in Linux environment
 - Runs on guessed input file
 - Produces output and does not crash

Goals

- Identify missing pieces
- Recreate output in thesis
- Create baseline

The output from a typical run is shown in Fig. 4. The $E(\tau)$ calculated during the run is shown in Fig. 5. The input data for this run was:

X	=	0 meters	(65a)
Y	=	0 meters	(65b)
Z	=	0 meters	(65c)
нов	×	100 km	(65d)
Y	=	.001 kt	(65e)
Во	=	$2(10)^{-5} \text{ wb/m}^2$	(65f)
Dip Angle		20°	(65g)
NDELR	=	50	(65h)
TMAX	=	20 shakes	(65i)

The CDC 6600 Computer required 191 sec and 33000_8 words of central memory to execute this run.

The peak value of E, 6400 V/m, obtained in this run compares favorably with Karzas-Latter's order of magnitude estimate of 10^4 V/m (Ref 2) from similar input data.

THE BURST WITH GAMMA YIELD OF 1.000E-03 KILOTONS IS AT AN ALTITUCE OF 1.000E+02 KILOMETERS.

THE TARGET IS AT CCORCINATES 0. WHICH IS 1.000E+05 METERS FRCF THE BURST

.

٥.

DIRECT WAVE IS BEING CALCULATED

ITERATION TERMINATED AFTER 20.0 SHAKES

PEAK OCCURRED AT 2.1 SHAKES

* FEAK EFIELD AT TARGET IS 6.448E+03 VOLTS/METER

Fig. 5. Plot of $E(\tau)$ at target from a typical run

Process

- OCR FORTRAN program in thesis
- Change code from gfortran compiler
- Correct OCR errors
- Exclude Plotting code
- Compile program
- Identify needed inputs
- Run program
- Compare output with known output

OCR

- Extract individual code pages from thesis
- Use Free Online OCR Service
 - https://onlineocr.net

FORTRAN dialect differences

- OUT changed to OUX
- TIME changed to TIMX
- DATA
 - DATA (C=3.0E8),(RMLC=12.56637E-7)
 - DATA C/3.0E8/,RMLC/12.56637E-7/
- Multi statement line
 - DO 21 1=1,190 \$ T=1+(1.E-9)*DT \$ TIME(I)=1·(1.E8)

Pomranning

$$f(\tau) = (1/N) \frac{(\alpha+\beta) \exp (\tau-\tau_0)}{\beta + \alpha \exp [(\alpha+\beta)(\tau-\tau_0)]}$$
(61)

where N is chosen such that

$$\int_0^\infty f(\tau) d\tau = 1 \tag{62}$$

and $\alpha > \beta$.

This function rises like $e^{\alpha \tau}$ for small τ , falls like $e^{-\beta \tau}$ for large τ , and has a single maximum at τ_0 .

from Chapman Thesis page 20

$$f(t) = \frac{(\alpha + \beta) \exp \alpha (t - t_0)}{\beta + \alpha \exp [(\alpha + \beta)(t - t_0)]}$$
(47)

from Seller Thesis page 15

Correct in FOFT(T)

	FUNCTION FOFT (T)					
•	С		FOFT1020			
•	С	F(T) IS THE POMRANNING MODEL FOR TIME DEPENDENCE	FOFT1030			
•	С	OF NUCLEAR WEAPON YIELD IN RETARDED TIME	FOFT1040			
•		INTEGER OUX	FOFT1050			
•		COMMON OUX, AP, BP, RNP, TOP	FOFT1060			
•		TSHAKE=1.E8*T	FOFT1070			
•		DENOM=(BP+AP*EXP((AP+BP)*(TSHAKE-TOP)))*RNP	FOFT1080			
•		FOFT= (AP+BP) *EXP (AP* (TSHAKE-TOP)) / DENOM	FOFT1090			
•		RETURN	FOFT1100			
•		END	FOFT1101			

wolframcloud.com

(unnamed)

File

```
In[3]:= f47[a_, b_, t_, tθ_, N_] := (1/N) * ( ((a+b)*Exp[a*(t-tθ)]) / (b+(a*Exp[(a+b)*(t-tθ)])))

In[14]:= Plot[f47[5.2, 0.25, t, 1.8, 4.83489], {t, 0, 20}]

Out[14]:= 0.10

Out[14]:= 0.10

axes * image size * add fill background * rasterize $\beta$
```

In[13]:= N[Integrate[f47[5.2, 0.25, t, 1.8, 4.83489], {t, 0, 20000}]]
Out[13]= 1.

wolframcloud.com

Status

- Compiles will gfortran in Linux environment
- Runs on guessed input file
- Produces output and does not crash
- Have NOT duplicated PEAK and graph from IN

Fig. 5. Plot of $E(\tau)$ at target from a typical run