Modelling and Quantifying Membership Information Leakage in Machine Learning

Theorem 3. Assume that

- (A1) Θ is compact;
- (A2) $\lambda g(\theta) + \mathbb{E}_{\mathcal{P}}\{\ell(\mathfrak{M}(x;\theta),y)\}\)$ is continuous and finite everywhere;
- (A3) $\ell(\mathfrak{M}(x;\theta),y)$ is almost surely Lipschitz continuous with Lipschitz constant L on Θ ;
- (A4) $g(\theta)$ is strictly convex and $\mathbb{E}\{\ell(\mathfrak{M}(x;\theta),y)\}$ is convex.

Then,

$$\lim_{\lambda \to \infty} \rho_{\text{MI}}(\theta^*) = 0. \tag{1}$$

Consider a family of fitness functions $\ell(\mathfrak{M}(x;\theta),y)$ parameterized by the the Lipschitz constant $L \in [0,c)$ for some c>0, then

$$\lim_{L \to 0} \rho_{\text{MI}}(\theta^*) = 0. \tag{2}$$

Proof. The Danskin's theorem (see (Bertsekas, 1971, Proposition A.22) for a more general statement and proof) implies that θ^* is a continuous function of λ . Thus, $\lim_{\lambda \to \infty} \theta^* = \bar{\theta} := \arg\min_{\theta \in \Theta} g(\theta)$ and, as a result, $\lim_{\lambda \to \infty} I(\theta^*; z_i | x_i, y_i) = I(\bar{\theta}; z_i | x_i, y_i) = 0$. Again, the Danskin's theorem, implies that θ^* is a continuous function of L. For L = 0, the fitness function $\ell(\mathfrak{M}(x;\theta),y)$ is independent of θ because $0 \le \|\ell(\mathfrak{M}(x;\theta),y) - \ell(\mathfrak{M}(x;\theta'),y)\| \le L\|\theta - \theta'\| = 0$ for all $\theta,\theta' \in \Theta$. Thus $\lim_{\lambda \to \infty} \theta^* = \bar{\theta}$ and, similarly, $\lim_{\lambda \to \infty} I(\theta^*; z_i | x_i, y_i) = 0$

References

Bertsekas, D. P. Control of uncertain systems with a setmembership description of uncertainty, 1971. Cambridge, MA: PhD Thesis, MIT.