Chimie Organique

LMAPR 1230

PARTIE 2

Structure et réactivité des composés organiques

Sophie Demoustier

LMAPR1230- Chimie Organique

Structure et réactivité des composés organiques

- Chap. 4 Réactivité des alcanes, alcènes et alcynes
- Chap. 5 Réactivité des composés halogénés
- Chap. 6 Réactivité des alcools, phénols et thiols
- Chap. 7 Réactivité des éthers et époxydes
- Chap. 8 Réactivité des composés aromatiques
- Chap. 9 Réactivité des aldéhydes et cétones
- Chap. 10 Réactivité des acides carboxyliques et dérivés
- Chap. 11 Réactivité des amines
- Chap. 12 Introduction à la chimie supramoléculaire

CHAPITRE 4. Réactivité des alcanes, alcènes et alcynes

4.1 Introduction

Hydrocarbures = principaux constituants du pétrole et du gaz naturel

Classe de composés	Structure générale	Groupe fonctionnel	Exemple
Alcanes	R-H	néant	CH ₃ CH ₂ CH ₂ CH ₃
Alcènes	R(H) = C R(H) $R(H)$)c=c(H_3C $C=CH_2$ H_3C
Alcynes	R(H)—C≡C—R(H) R(H)	—C≡C—	H ₃ C−C≡C−CH ₃
Composés aromatiques	$R(H) \subset C \subset R(H)$ $R(H) \subset C \subset R(H)$ $R(H) \subset C \subset R(H)$ $R(H) \subset R(H)$		CH ₃ HC CH II HC CH

R représente un groupe alkyle

4.2 Structure et propriétés physiques des alcanes

Formules moléculaires générales

Alcanes acycliques: C_nH_{2n+2}

Alcanes monocycliques: C_nH_{2n}

n = nombre d'atomes de carbone

Ex. Molécules acycliques

- à chaîne linéaire

Ex : butane $CH_3-CH_2-CH_2-CH_3$

- à chaîne ramifiée

Ex: isobutane

Ex. Molécules cycliques

Ex : cyclohexane

Propriétés physiques

- > Alcanes apolaires insolubles dans l'eau
- > Faible point d'ébullition qui augmente avec la longueur de la chaîne carbonée mais diminue lorsque celle-ci devient plus ramifiée

Différences alcanes ramifiés et linéaires

Pentane T_{éb} = 36°C

Sources d'alcanes

Pétrole et gaz naturel

Pétrole = mélange complexe d'hydrocarbures

Pour pouvoir l'exploiter, il faut le raffiner (distillation)

Sources d'alcanes

Pétrole et gaz naturel

Pétrole = mélange complexe d'hydrocarbures

Pour pouvoir l'exploiter, il faut le raffiner (distillation)

Fraction d'essence ne constitue que ± 25% du pétrole brut

Nombreux procédés développés pour transformer les autres fractions en essence (ex. craquage)

4.3 Réactions des alcanes

Liaisons intramoléculaires des alcanes: simples, covalentes, apolaires et fortes

Composés relativement inertes, souvent utilisés comme solvants

4.3.a Oxydation et combustion

Les alcanes servent principalement de combustibles

Réaction de combustion des hydrocarbures = réaction d'oxydation

Réaction exothermique et complète (si excès d'O₂)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2 H_2O + chaleur (\Delta H = -876,7 kJ/mol)$$

$$C_3H_8 + 5O_2 \longrightarrow 3 CO_2 + 4 H_2O + chaleur (\Delta H = -2218 kJ/mol)$$

4.3.1 Oxydation et combustion

Réactions complètes de combustion

$$CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2 O$$
 Nbre d'oxydation (- 4)
$$(+ 4)$$

Réactions incomplètes de combustion

$$2 CH_4 + 3 O_2 \longrightarrow 2 CO + 4 H_2O$$

$$(-4) \qquad (+2)$$

$$CH_4 + O_2 \longrightarrow C + 2 H_2O$$

$$(-4) \qquad (0)$$

4.3.2 Halogénation radicalaire des alcanes

Halogénation des hydrocarbures = réaction de substitution

Réactions de chloration et de bromation

R-H + CI-CI
$$\xrightarrow{\text{hv ou } \Delta}$$
 R-CI + H-CI
R-H + Br-Br $\xrightarrow{\text{hv ou } \Delta}$ R-Br + H-Br

Réaction globale de l'halogénation

$$R-H + CI-CI \xrightarrow{hv ou \Delta} R-CI + H-CI$$

Comment l'halogénation se produit-elle?

Pourquoi nécessite-t'elle de la lumière ou de la chaleur?

Mécanisme de réaction

Mécanisme de l'halogénation: réaction radicalaire en chaîne

Mécanisme de l'halogénation: réaction radicalaire en chaîne

1/ Amorçage

$$|\underline{C}| - \underline{C}| | \frac{hv}{\text{ou } \Delta} \qquad 2 \quad |\underline{C}| \cdot \quad \text{(rupture homolytique)}$$

2/ Propagation

$$R^{\bullet} + |\overline{C}| - \overline{C}| | \longrightarrow R - \overline{C}| + |\overline{C}|^{\bullet}$$

3/ Terminaison

$$|\overline{CI}^{\cdot} + |\overline{CI}^{\cdot} \longrightarrow |\overline{CI} - \overline{CI}|$$

$$R^{\cdot} + R^{\cdot} \longrightarrow R - R$$

$$|\overline{CI}^{\cdot} + R^{\cdot} \longrightarrow R - \overline{CI}|$$

Exemple: chloration du méthane

$$CH_4 + CI-CI \xrightarrow{hv ou \Delta} CH_3-CI + H-CI$$

En présence d'un excès d'halogène: formation de produits polyhalogénés

Exemple: formation de produits polychlorés du méthane

$$CH_{3}CI \xrightarrow{CI_{2}} CH_{2}CI_{2} \xrightarrow{CI_{2}} CHCI_{3} \xrightarrow{CI_{2}} CCI_{4}$$

$$CH_{3}CI \xrightarrow{CI_{2}} CH_{2}CI_{2} \xrightarrow{CI_{2}} CHCI_{3} \xrightarrow{CI_{2}} CCI_{4}$$

4.4 Définition et réactivité des alcènes

Formule moléculaire générale

Alcènes: C_nH_{2n} contiennent une double liaison C=C

Les diènes disposent de deux liaisons doubles C=C qui peuvent être

Cumulées

C=C=C

Conjuguées

C=C-C=C

Isolées

C=C-C-C=C

La couleur des molécules organiques est généralement associée à un ensemble étendu de liaisons doubles conjuguées

Ex. β -carotène (C₄₀H₅₆)

Comparaison entre liaisons C-C et C=C

Propriétés	Liaison C-C	Liaison C=C
Géométrie	Tétraédrique	Triangulaire plane
Angle de liaison	109,5°	120°
Longueur de liaison	1.54 Å	1.34 Å
Rotation	Relativement libre	Bloquée

Les alcènes

Site réactionnel = double liaison

Liaison	Enthalpies de liaison (kJ mole ⁻¹)
$C = C (\sigma \text{ et } \pi)$	610
C - C (σ)	350
contribution π	260

Liaison double = site de forte densité électronique

Attaque par des électrophiles ou des radicaux

4.4.1 Réactions d'addition sur les alcènes

Schéma général de l'addition à la double liaison d'un alcène

La réaction comporte :

Rupture d'une liaison σ et d'une liaison π Formation de 2 liaisons σ

Liaisons σ sont + fortes que les liaisons π bilan énergétique toujours favorable

4.4.1.1 Réactions d'addition électrophile

A/ Addition des hydracides halogénés (HBr, HCl, HI)

Réaction globale

$$C = C + H - X \rightarrow C - C - X$$

$$X = CI, Br, I$$

Exemple

Mécanisme réactionnel en 2 étapes

4.4.1.1 Réaction d'addition électrophile

Mécanisme de réaction

1ère étape : Attaque électrophile de H⁺ sur la double liaison (Etape lente)

2^{ème} étape : Recombinaison du carbocation avec le nucléophile X⁻ (Etape rapide)

Exercice

Représenter le profil énergétique de la réaction d'addition électrophile:

$$CH_2=CH_2 + HBr$$

Si environnement de la double liaison est asymétrique, formation de 2 isomères de position (régioisomères)

ex : addition de HCl au propène

Réaction régiosélective

Comment prédire les produits majoritaires et minoritaires au cours d'une réaction d'addition électrophile de réactifs asymétriques sur des alcènes asymétriques?

Règle de Markovnikov

Lors de l'addition électrophile d'un réactif asymétrique A-B (ex. HBr) sur une double liaison asymétrique, pouvant donner lieu à deux orientations, le produit majoritaire est celui qui se forme via l'intermédiaire réactionnel (carbocation) le plus stable

Etape 2

CH₃—CH=CH₂ + HCl
$$\rightarrow$$
 CH₃—CH—CH₂ + CH₃—CH—CH₂ propène Cl H \rightarrow Cl \rightarrow C-chloropropane 1-chloropropane

B/ Hydratation des alcènes (addition H_2O)

ex : addition de H₂O à l'éthylène

 H_2SO_4 = catalyseur acide

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H \longrightarrow H$$

Electrophile

B/ Hydratation des alcènes (addition H₂O)

Mécanisme réactionnel

Si alcène asymétrique: la réaction d'hydratation est régiosélective (application de la règle de Markovnikov)

Exercice: Hydratation sur alcènes disymétriques

Quel est le produit majoritaire de la réaction d'addition d'eau au 2-méthylpropène?

C/ Halogénation (addition d'halogènes, X₂)

Le chlore et le brome s' additionnent facilement sur les alcènes

ex : chloration du but-2-ène

$$CH_3CH = CHCH_3 + CI-CI \longrightarrow CH_3CH - CHCH_3$$

$$CI CI$$

L'addition de brome peut servir de test chimique pour déceler la présence d'insaturation dans un composé organique

4.4.1.2 Réactions d'addition radicalaire

A/ L' hydrobromation radicalaire

Réaction globale

Mécanisme radicalaire en chaîne

R-O-O-R = Amorceur = substance capable de générer des radicaux libres

ex : peroxyde de benzoyle

liaison labile (ΔH de liaison O-O = 157 kJ mole⁻¹)

A/ L'hydrobromation radicalaire

Mécanisme réactionnel

Première étape: l'amorçage

$$R-O-O-R \longrightarrow 2 R-O \cdot$$

$$R-O-H + Br$$

Deuxième étape: la propagation

Troisième étape: la terminaison

Toutes les combinaisons possibles de deux radicaux

B/ Addition radicalaire et polymères

n
$$CH_2$$
— CH — X — ROOR — monomère

Si
$$X = H$$
 $CH_2 \longrightarrow CH_2$ éthylène

Si
$$X = CI$$
 $CH_2 \longrightarrow CH$
 CI

chlorure de vinyle

poly(chlorure de vinyle) (PVC)

Exercice à faire pour le prochain cours

Donnez la structure du produit majoritaire obtenu pour chacune des réactions ci-dessous. Justifiez votre réponse.

C/ Hydrogénation catalytique

Réaction générale

Catalyseur = généralement un métal (Pd, Ni, Pt)

Une application industrielle de l'hydrogénation: Saturation des huiles végétales pour les transformer en graisses comestibles

Mécanisme de l'hydrogénation catalytique

4.4.2 Réactions d'oxydation des alcènes

Les alcènes sont très sensibles à l'oxydation contrôlée

Suivant les conditions expérimentales, on obtiendra différents produits

4.5 Définition et réactivité des alcynes

Formule moléculaire générale

Alcynes: C_nH_{2n-2} contiennent une triple liaison carbone-carbone

Ex : molécule d'éthyne (acétylène), C₂H₂

Molécule linéaire

Angle de liaison = 180° L de liaison ~ 1.21 Å recouvrements latéraux des orbitales 2p formation de 2 liaisons π

Recouvrement axial d'orbitales sp Formation d'une liaison σ

4.5.1 Réaction d'addition des alcynes

Les réactions d'additions décrites pour les alcènes s'appliquent aussi aux alcynes mais se déroulent généralement beaucoup plus lentement

A/ Addition des halogénures d'hydrogène

$$R-C \equiv C-H \xrightarrow{H-CI} R-C \equiv C-H \xrightarrow{H-CI} R-C = C-H$$

$$(1 \text{ éq.})$$

$$CI H$$

$$R-C = C-H$$

$$(1 \text{ éq.})$$

$$CI H$$

B/ Hydratation

$$R-C \equiv C-H \xrightarrow{H_2O, H_2SO_4} R-C \equiv C-H \xrightarrow{Equilibre} R-C \xrightarrow{C} C$$

$$R-C \equiv C-H \xrightarrow{Equilibre} R-C \xrightarrow{C} C$$

$$R-C \equiv C-H \xrightarrow{Equilibre} R-C = C$$

4.5.2 Acidité des alcynes

Un alcyne ayant un atome d'hydrogène sur un des carbones de la triple liaison est faiblement acide

Hydrogène faiblement acide

Pourquoi cette réaction se produit-elle avec les alcynes et pas avec les alcènes?

A mesure que le caractère s du carbone hybridé augmente, l'acidité de l'hydrogène lié à ce carbone augmente