Indexing

and

Vector Space Model

Jiaul Paik Indian Statistical Institute , Kolkata

Plan of the Lecture

- 1. Tokenization
- 2. Pre-processing
- 3. Data Structures for Storing Dictionary
- 4. Index Constructon
- 5. Term Weighting
- 6. Vector Space Model

IR system architecture : Overview

Basic indexing steps

- Collect the documents.
- ► Tokenize the input text.
- ▶ Do pre-processing (stopwords, stemming etc.) of tokens.
- ► Construct the inverted index.

Tokenization

- ► General strategy : chop on white spaces and throw away punctuation characters.
- ▶ Input: "Friends, Romans and Countrymen".
- ► Output: Tokens
 - Friends
 - Romans
 - ▶ and
 - Contrymen
- ▶ A token is an instance of a sequence of characters.
- ► Each such token is now a candidate for an index entry, after further processing.

Tokenization: Issues

- ► O'Neill → neill, oneill, o'neill ?
- ► Hewlett-Packard → Hewlett and Packard as two tokens?
- ▶ lower-case, lowercase or lower case?
- ► San Francisco : One token or two?

Tokenization: language issues

- ► Compound words.
 - ► German IR benefits significantly (15%) from compound splitting.
 - Compound nouns without space : Computerlinguistik (computational linguistic)
 - ► Solution : Subdivide a word into multiple words that appear in vocabulary.

Tokenization : language issues

- ► Chinese and japanese has no spaces between words.
- ► Arabic (or Hebrew) is basically written right to left, but with certain items like numbers written left to right.

So far ... and now

Documents Tokenization

So far ... and now

Pre-processing

- ► Case folding
- Stopwords
- Spelling correction and normalization
- Stemming
- ▶ Lemmatization

Case folding

- ▶ Reduce all letters to lower case.
- exceptions
 - ► General Motors.
 - ► SAIL vs. sail

Stopwords

- Remove the words/terms from the index which have no or negligable information
- ▶ Pros : Disk space save. (25% to 30%)
- ► Cons : Not good if the system has to handle phrase query, song names, etc.
 - ► As we may think.
 - ► To be or not to be.
- Common approach
 - ► Sort the terms based on descending collection frequency.
 - ► Take top few terms.
 - Hand filter the list.

Spelling normalization and correction

Normalization

color vs. colour.

▶ Correction

- Isolated term: attempts to correct single query term at a time.
 - Edit distance
 - ▶ k-gram overlap
- ► Context sensitive : flew form Heathrow
 - Using query log: frequent query

Normalizing morphological variants

- ► Inflectional morphology
- Derivational morphology
- ▶ Two methods : lemmatization and stemming
- ▶ Why we need to care?
 - Significant performance improvement for more complex languages.
 - ▶ Retrieves more relevant documents.
 - Index size reduction.

► Reduce inflectional/variant forms to base form

- ► Reduce inflectional/variant forms to base form
- ightharpoonup Example: am, are, is o be

- ► Reduce inflectional/variant forms to base form
- ightharpoonup Example: am, are, is o be
- ► Example: car, cars, car's, cars' → car

- ▶ Reduce inflectional/variant forms to base form
- ightharpoonup Example: am, are, is o be
- ► Example: car, cars, car's, cars' → car
- ► Example: the boy's cars are different colors → the boy car be different color

- ▶ Reduce inflectional/variant forms to base form
- ightharpoonup Example: am, are, is o be
- ► Example: car, cars, car's, cars' → car
- ► Example: the boy's cars are different colors → the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form (the lemma).

- ▶ Reduce inflectional/variant forms to base form
- ightharpoonup Example: am, are, is o be
- ► Example: car, cars, car's, cars' → car
- ► Example: the boy's cars are different colors → the boy car be different color
- ► Lemmatization implies doing "proper" reduction to dictionary headword form (the lemma).
- Inflectional morphology (cutting → cut) vs. derivational morphology (destruction → destroy)

▶ Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.

- ▶ Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.
- ► Language dependent

- ▶ Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.
- ► Language dependent
- ► Often inflectional and derivational

- ▶ Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.
- ► Language dependent
- ► Often inflectional and derivational
- ► Example for derivational: automate, automatic, automation all reduce to automat

- ▶ Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.
- ► Language dependent
- ► Often inflectional and derivational
- ► Example for derivational: automate, automatic, automation all reduce to automat
- ► Common strategy : Indentify (manually or statistically) a set of suffixes and remove from the ends of words

► Most common algorithm for stemming English

- Most common algorithm for stemming English
- ► Results suggest that it is at least as good as other stemming options

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- ► Phases are applied sequentially

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- ▶ Phases are applied sequentially
- ► Each phase consists of a set of commands.

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- ▶ Phases are applied sequentially
- ► Each phase consists of a set of commands.
 - ► Sample command: Delete final *ement* if what remains is longer than 1 character

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- ▶ Phases are applied sequentially
- ► Each phase consists of a set of commands.
 - ► Sample command: Delete final *ement* if what remains is longer than 1 character
 - ▶ replacement → replac

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- ▶ Phases are applied sequentially
- ► Each phase consists of a set of commands.
 - ► Sample command: Delete final *ement* if what remains is longer than 1 character
 - ▶ replacement → replac
 - ▶ cement → cement

- Most common algorithm for stemming English
- Results suggest that it is at least as good as other stemming options
- ► 5 phases of reductions
- Phases are applied sequentially
- ► Each phase consists of a set of commands.
 - ► Sample command: Delete final *ement* if what remains is longer than 1 character
 - ▶ replacement → replac
 - ▶ cement → cement
- ► Sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

Porter stemmer: A few rules

Rule		Example			
SSES	\longrightarrow	SS	caresses	\longrightarrow	caress
IES	\longrightarrow	1	ponies	\longrightarrow	poni
SS	\longrightarrow	SS	caress	\longrightarrow	caress
S	\longrightarrow		cats	\longrightarrow	cat

No stem, stem and lemmatization: A comparison

Input text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

No stem, stem and lemmatization: A comparison

Input text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

No stem, stem and lemmatization: A comparison

Input text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

Lemmatized text: Such an analysis can reveal feature that are not easily visible from the variation in the individual gene and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Does stemming improve effectiveness?

- ▶ In general, stemming increases effectiveness for some queries, and decreases effectiveness for others.
- ► Some languages (Hungarian, Czech) enjoy 30% to 40% benefits.
- Queries where stemming is likely to help
 - tartan sweaters
 - ► (equivalence class: {sweater,sweaters})
 - sightseeing tour san francisco
 - ► (equivalence class: {tour,tours})
- ▶ Porter Stemmer maps all of {operate, operating, operates, operation, operative, operatives, operational} to oper.
- ▶ Queries where stemming hurts:
 - operational research
 - operating system
 - operative dentistry
- ▶ Stemming reduces the vocabulary size significantly.

So far ... and now

So far ... and now

Inverted index

► For each term t, we store a list of all documents that contain t along with the tf.

Input: Documents

id1: Web mining is useful.

id2: Usage mining applications.

id3: Web structure mining studies the hyperlink structure of web.

Output: Inverted Index

	Postings
:	$\langle id2, 1, [3] \rangle$
:	$\langle id3, 1, [6] \rangle$
:	$\langle id1, 1, [2] \rangle$, $\langle id2, 1, [2] \rangle$, $\langle id3, 1, [3] \rangle$
:	$\langle id3, 2, [2, 7] \rangle$
:	$\langle id3, 1, [4] \rangle$
:	$\langle id2, 1, [1] \rangle$
:	$\langle id1, 1, [4] \rangle$
:	$\langle id1, 1, [1] \rangle$, $\langle id3, 2, [1, 8] \rangle$
	: : : : : : : : : : : : : : : : : : : :

Dictionary data structures for inverted index

- ► The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list.
 - ► Term vocabulary : the data
 - Document frequency: the no. of documents that contain the term

Dictionary as array of fixed-width entries

- ▶ For each term, we need to store a couple of items:
 - document frequency
 - ▶ pointer to postings list
 - **.** . . .
- ► Assume for the time being that we can store this information in a fixed-length entry.
- ▶ Assume that we store these entries in an array.

Dictionary as array of fixed-width entries

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aabir	65	\longrightarrow
zonathan	221	\longrightarrow

Dictionary as array of fixed-width entries

term	document frequency	pointer to postings list
а	656,265	\longrightarrow
aabir	65	\longrightarrow
zonathan	221	\longrightarrow

How do we look up a query term q_i in this array at query time? That is: which data structure do we use to locate the entry (row) in the array where q_i is stored?

Data structures for looking up term

- ▶ Two main classes of data structures: hashes and trees
- ▶ Some IR systems use hashes, some use trees.
- ► Criteria for when to use hashes vs. trees:
 - Is there a fixed number of terms or will it keep growing?
 - ► How many terms are we likely to have?

Hashes

- Each vocabulary term is hashed into an integer.
- ► Try to avoid collisions
- ► At query time, do the following: hash query term, resolve collisions, locate entry in fixed-width array
- ▶ Pros: Lookup in a hash is faster than lookup in a tree.
 - Lookup time is constant.
- ► Cons
 - no prefix search (all terms starting with automat)
 - need to rehash everything periodically if vocabulary keeps growing

Trees

- ► Trees solve the prefix problem (find all terms starting with automat).
- ► Simplest tree: binary search tree
- ▶ Search is slightly slower than in hashes: O(log M), where M is the size of the vocabulary.
- $ightharpoonup O(\log M)$ only holds for balanced trees.
- ▶ Rebalancing binary search trees is expensive.
- ▶ B-trees mitigate the rebalancing problem.
- ▶ B-tree definition: every internal node has a number of children in the interval [a, b] where a, b are appropriate positive integers, e.g., [2, 4].
- ▶ Trie

Index Construction

- ▶ How do we construct an index efficiently?
- ▶ What strategies can we use with limited main memory?

Hardware basics

- ► Access to data in main memory faster than in disk.
- ▶ Disk seeks: No data is transferred from disk while the disk head is being positioned.
- ► Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
- ▶ Disk I/O is blockbased: Reading and writing of entire blocks (as opposed to smaller chunks).

Index Construction: Key Steps

- ▶ Documents are parsed to extract words and these are saved with the Document ID.
- ► After all documents have been parsed, the inverted file is sorted by terms.

Scaling Index Construction

- ▶ In-memory index construction does not scale.
- ▶ How can we construct an index for very large collections?

Sort Based Index Construction

- ▶ As we build the index, we parse docs one at a time.
- ► The final postings for any term are incomplete until the end.
- ► Store the term (or termID), docid pairs in main memory buffer.
- ► Sort (term/termID as primary key, docid as secondary key) and write to intermediate files in disk when the buffer is full.
- ▶ Merge all intermediate files into a sorted file.
- ▶ Finally build the inverted index in a linear scan.

Problem with sort based indexing

- ► Assumption : we can keep dictionary into main memory.
- ▶ We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- ► Actually, we could work with term, docID postings instead of termID, docID postings. But then intermediate files are large and we end up with a scalable but slow method.

Single pass in-memory indexing

- ► Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- ► Key idea 2: Accumulate postings in postings lists as they occur.
- ▶ With these two ideas we can generate a complete inverted index for each block.
- ► These separate indexes can then be merged into one big index.

So far ...

```
Documents
Tokenization
Pre processing
  Indexing
  ⟨Indexes⟩
```

TEA BREAK

So far . . . and now

So far ... and now

The retrieval problem

- ► Input
 - A set of documents : $d_1, d_2, \dots d_n$
 - A query $q = q_1 q_2 \dots q_n$
- ightharpoonup Output: A set of documents relevant to the query q.
- ▶ The first idea
 - ▶ Just look if a document contain the query terms.
 - ▶ Not good because too much / or too few match.
 - Users hardly read beyond first few.
 - Solution: Ranked retrieval (return documents based on the matching score)

Ranked retrieval

- ► Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the colletion with respect to a query
- ► Free text queries: Rather than a query language of operators and expressions, the users query is just one or more words in a human language

Scoring as the basis of ranked retrieval

- ► We wish to return in order the documents most likely to be useful to the searcher
- ► How can we rank the documents in the collection with respect to a query?
- Assign a score to each document with respect to the query
- ▶ This score measures how well document and query match.

Query-document matching scores

- ▶ We need a way of assigning a score to a query-document pair
- ► Let's start with a one-term query
 - ► If the query term does not occur in the document: score should be 0
 - ► The more frequent the query term in the document, the higher the score (should be)
 - ▶ We will look at a number of alternatives for this.
- ► For the rest of the talk : bag-of-words model assumption
 - ► Doesn't consider the ordering of words in a document
 - ► John is quicker than Mary and Mary is quicker than John have the same representation

Term weighting: term frequency

- ▶ The term frequency $tf_{t,d}$ of a term t in a document d is defined as the no. of times t occurs in document d.
- ▶ We want to use *tf* as a measure of importance when matching query with a document.
- Raw term frequency is not a good idea.
 - ► A document with 5 occurrences of a term is more relevant than a document with 1 occurrence of the same term.
 - ▶ But not 5 times relevant.
- Relevance does not increase proportionally with term frequency.

Scaling term frequency

► The log frequency weight of term *t* in *d* is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

- $\begin{array}{l} \blacktriangleright \ \ \mathsf{tf}_{t,d} \longrightarrow \mathsf{w}_{t,d} \colon \\ \ 0 \longrightarrow \mathsf{0,} \ 1 \longrightarrow \mathsf{1,} \ 2 \longrightarrow \mathsf{1.3,} \ \mathsf{10} \longrightarrow \mathsf{2,} \ \mathsf{1000} \longrightarrow \mathsf{4,} \ \mathsf{etc.} \end{array}$
- Score for a document-query pair: sum over terms t in both q and d: **tf-matching-score**(\mathbf{q} , \mathbf{d}) = $\sum (1 + \log \mathsf{tf}_{t,d})$
- ► The score is 0 if none of the query terms is present in the document.

Desired weight for rare terms

- ▶ Rare terms are more informative than frequent terms.
- ► Consider a term in the query (capricious person) that is rare in the collection (e.g., capricious).
- ► A document containing this term is very likely to be relevant.
- ▶ → We want high weights for rare terms like **capricious**.

Desired weight for frequent terms

- ► Frequent terms are less informative than rare terms.
- ► Consider a term in the query that is frequent in the collection (e.g., good, increase, person).
- ► A document containing this term is more likely to be relevant than a document that doesn't . . .
- ... but words like good, increase and person are not sure indicators of relevance.
- ► → For frequent terms like **good**, **increase**, and **person**, we want positive weights . . .
- ▶ ... but lower weights than for rare terms.

Document frequency

- ▶ We want high weights for rare terms like **capricious**.
- ► We want low (positive) weights for frequent words like **good**, **increase**, and **person**.
- ► We will use document frequency to factor this into computing the matching score.
- ► The document frequency is the number of documents in the collection that the term occurs in.

idf weight

- ▶ df_t is the document frequency, the number of documents that t occurs in.
- $ightharpoonup df_t$ is an inverse measure of the informativeness of term t.
- ▶ We define the idf weight of term *t* as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

- ightharpoonup idf_t is a measure of the informativeness of the term.
- ▶ $[\log N/\mathrm{df}_t]$ instead of $[N/\mathrm{df}_t]$ to "dampen" the effect of idf
- ▶ Note that we use the log transformation for both term frequency and document frequency.

Examples for idf

Compute idf_t using the formula: $idf_t = log_{10} \frac{1,000,000}{df_t}$

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Effect of idf on ranking

- ▶ idf has no effect on ranking for one-term queries.
 - ► For example : iPhone
- ▶ idf affects the ranking of documents for queries with at least two terms.
- ► For example, in the query *capricious person*, idf weighting increases the relative weight of *capricious* and decreases the relative weight of *person*.

Collection frequency vs. Document frequency

word	collection frequency	document frequency
insurance	10440	3997
try	10422	8760

- ► Collection frequency of *t*: number of tokens of *t* in the collection
- ▶ Document frequency of *t*: number of documents *t* occurs in
- ▶ Which word is a better search term (and should get a higher weight)?
- ► This example suggests that df (and idf) is better for weighting than cf (and "icf").

tf-idf weighting

- ➤ The tf-idf weight of a term is the product of its tf weight and its idf weight.
- $\qquad \qquad \mathbf{w}_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{\mathsf{N}}{\mathsf{df}_t}$
- ▶ Best known weighting scheme in information retrieval

Summary: tf-idf

- ▶ Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- ► The tf-idf weight . . .
 - Increases with the number of occurrences within a document. (term frequency)
 - ► Increases with the rarity of the term in the collection. (inverse document frequency)
 - ► Benefit is maximum when a term occurs many times within a small no. of documents
 - ► Lowest when the term occurs in virtually all documents.

Scoring function

► Score(q, d) = $\sum_{\mathbf{t} \in \mathbf{q}} \mathbf{w_{t,q}} \times \mathbf{w_{t,d}}$ For example, $w_{t,q}$ may be no. of time term t occurs in q

Vector Space Model: Documents as vectors

- ▶ Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$. |V| is the no. of distinct terms in the collection.
- \blacktriangleright So we have a |V|-dimensional real-valued vector space.
- ► Terms are axes of the space.
- ▶ Documents are points or vectors in this space.
- ► Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- ► Each vector is very sparse most entries are zero.

Queries as vectors

- ► Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- ► Key idea 2: Rank documents according to their proximity to the query
- ► proximity = similarity
- ightharpoonup proximity pprox inverse of distance

How do we formalize vector space similarity?

- ► First cut: distance between two points?
- ► Euclidean distance?
- ► Euclidean distance is a bad idea
 - Because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea?

Why distance is a bad idea?

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Use angle instead of distance

- ► Rank documents according to angle with query
- ► An experiment
 - ► Take a document d and append it to itself. Call this document d'. d' is twice as long as d.
 - For example let d = Sachin is a cricketer and d' = Sachin is a cricketer. Sachin is a cricketer
 - "Semantically" d and d' have the same content.
 - ► The angle between the two documents is 0, corresponding to maximal similarity . . .
 - ... even though the Euclidean distance between the two documents can be quite large.

From angles to cosines

- ▶ The following two notions are equivalent.
 - ► Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine (query, document) in increasing order
- ► Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

Ranked retrieval in vector space model: summary

- ▶ Represent the query as a weighted tf-idf vector
- ▶ Represent each document as a weighted tf-idf vector
- ► Compute the cosine similarity between the query vector and each document vector
- ▶ Rank documents based on the similarity score
- ▶ Return the top K (e.g., K = 10) to the user

Computing the cosine score using inverted index

```
CosineScore(q)
    float Scores[N] = 0
    float Length[N]
   for each query term t
     do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

References

- 1. Introduction to Information Retrieval. 2008. By Manning et. al.
- 2. Managing Gigabytes: Compressing and Indexing Documents and Images. 1999. By Witten et.al.
- Term Weighting Approaches to Automatic Text Retrieval. 1998. by Salton and Buckley

THANK YOU!