PINTA: Pulsar Timing Amay

InPTA Student Week 2023: Phase I

Debabrata Deb, IMSc

Publications of the
Astronomical Society
of Australia

pinta: The uGMRT data processing pipeline for the Indian Pulsar Timing Array

Part of: Data Analysis Pipelines and Software

Published online by Cambridge University Press: 14 April 2021

```
Abhimanyu Susobhanan (D), Yogesh Maan (D), Bhal Chandra Joshi (D), T. Prabu (D), Shantanu Desai (D), K. Nobleson (D), Sai Chaitanya Susarla (D), Raghav Girgaonkar (D), Lankeswar Dey (D), Neelam Dhanda Batra (D), Yashwant Gupta (D), A. Gopakumar (D), Manjari Bagchi (D), Avishek Basu (D), Suryarao Bethapudi (D), Arpita Choudhary (D), Kishalay De (D), M. A. Krishnakumar (D), P. K. Manoharan (D), Arun Kumar Naidu (D), Dhruv Pathak (D), Jaikhomba Singha (D) and Mayuresh P. Surnis (D)
```

Show author details >

The upgraded GMRT

- 30-element interferometer
- New wide-band feeds provide seamless frequency coverage between 150-1460 MHz
- 4 phased array beams simultaneous multi-frequency observations. (IA/PA/CDPA)
- A new GPS-synchronized hydrogen maser for precision timing – 1-10 ns precision timing.

uGMRT Pulsar Data Format

Data Volume =
$$N_{chan}$$
 * N_{smpl} * N_{pol} * 2 bytes

- The binary raw data file stores
 Npol polarization products in
 Nchan channels for every time
 sample as 16-bit integers.
 - Npol = 1 : Total intensity
 - Npol = 4 : Stokes I,Q,U,V
- The timestamp at the start of observation is stored as an ASCII file.

```
#Start time and date
IST Time: 19:59:57.633098240
Date: 25:08:2018
#Start ACQ SEQ NO = 17
```

pinta Overview

- pinta is a python script which calls various pulsar data processing codes to reduce the GMRT pulsar raw data to a folded Timer archive.
 - o Timer format is compatible with packages used for downstream processing.
- Performs RFI mitigation using two different packages.
 - O RFIClean
 - o gptool
- Metadata required for processing is provided as an ASCII input file.

https://github.com/inpta/pinta

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par)
 - Config file (pipeline.in)
- Output
 - Folded profile
 - With RFIClean
 - With gptool
 - Without RFI removal

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par)
 - Config file (pipeline.in)
- Output
 - Folded profile
 - With RFIClean
 - With gptool
 - Without RFI removal.

A binary file that contains Npol*Nchan*Nsample values.

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par)
 - Config file (pipeline.in)
- Output
 - Folded profile
 - With RFIClean
 - With gptool
 - Without RFI removal

ASCII file containing the timestamp of start of observation

```
#Start time and date
IST Time: 19:59:57.633098240
Date: 25:08:2018
#Start ACQ SEQ NO = 17
```

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par) Pulsar ephemeris in

TEMPO2 format.

- Config file (pipeline.in)
- Output
 - Folded profile
 - With RFIClean
 - With gptool
 - Without RFI removal

PSRJ J1857+0943 FLONG 286.86348828 1.000e-08 ELAT 32.32148622 2.000e-08 13.3140 2.500e-03 55367.00000 PEPOCH. 186.494081249931 3.000e-12 F0 F1 -6.2046F-16 3.000e-20 **POSEPOCH** 55367.00 **DMEPOCH** 56106 BINARY ELL1 PB 12.32717119157 1.800e-10 A1 9.2307802 3.000e-07 TASC 1.900e-08 55360.513155155 EPS1 -2.150E-5 3.000e-08 EPS2 2.440E-6 1.800e-08 CLK TT(BIPM2015) **EPHEM** DE436 RM 22.2 9.000e-01 PX 2.000e-01 0.6 DM1 0.0017 2.000e-04 **PMFLONG** -3.27 1.000e-02 **PMELAT** -5.06 2.000e-02 0.966 STIG 5.000e-03 4.000e-08 1.07E-6 UNITS TDB

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par)
 - Config file (pipeline.in)

#JName	RawData	Timestamp	Freq	Nbin	NChan	BW	TSmp1	SB	NPol	TSubint	Cohded
J0437-4715	J0437-4715_bm3_pa_1460_200_8_18mar2023.raw	J0437-4715_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0
J0751+1807	J0751+1807_bm3_pa_1460_200_8_18mar2023.raw	J0751+1807_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0
J0613-0200	J0613-0200_bm3_pa_1460_200_8_18mar2023.raw	J0613-0200_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0
J0740+6620	J0740+6620_bm3_pa_1460_200_8_18mar2023.raw	J0740+6620_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0
J0900-3144	J0900-3144_bm3_pa_1460_200_8_18mar2023.raw	J0900-3144_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0
J1022+1001	J1022+1001_bm3_pa_1460_200_8_18mar2023.raw	J1022+1001_bm3_pa_1460_200_8_18mar2023.raw.hdr	1460	-1	1024	200	0.00004096	LSB	1	10	0

- With gptool
- Without RFI removal

- Inputs
 - uGMRT raw data (.dat)
 - Timestamp (.timestamp)
 - Pulsar ephemeris (.par)
 - Config file (pipeline.in)
- Output
 - Folded profile (.fits)
 - With RFIClean
 - With gptool
 - Without RFI removal

- FITS files containing Nbin*Nsubint*Nchan*Npol entries.
- Can be manipulated using psrchive.

Folding using dspsr

Folding - Add large number of pulses in phase to improve signal to noise ratio.

What is RFI?

- Unwanted signals picked up by the telescope mostly human-made
- Strong RFI completely swamps the astrophysical signal.
- Also presence of Weak RFI reduces S/N ratio.
- Broadly three categories of RFI seen at GMRT
 - Periodic RFI
 - Eg: 50 Hz Power lines
 - Spectral line RFI
 - Eg: Satellites, TV signals, mobile phone signals, ...
 - Bursty RFI
 - Eg: Opening your microwave oven before it is done cooking (*google perytones at Parkes*), turning on your water pump, car spark plug, ...

gptool:

narrow-band spectral line RFI and broadband bursty time-domain RFI

rfiClean:

- periodic RFI in the Fourier domain,
- and then mitigates narrow-band spectral line RFI and broadband bursty time-domain RFI

Usage

```
$ pinta [--help] [--test] [--no-gptool] [--no-rficlean]
[--nodel] [--retain-aux] [--log-to-file] [--gptdir <...>]
[--pardir <...>] [--rficconf <...>] <input dir> <working dir>
```

- gptdir = Folder containing gptool configuration files
- pardir = Folder containing pulsar ephemeris files
- input dir = Folder containing raw data and timestamp files.
- working_dir = Folder containing pipeline.in file. The output will be written to this location.

pipeline.in

#JName	RawData	Timestamp	Freq	Nbin	NChan	BandWidth	TSmpl	SB	NPo1	TSubint	Cohded
J1939+2134	J1939+2134.25032019.B3.cdp.dat	J1939+2134.25032019.B3.cdp.timestamp	500	128	1024	100	0.00008192	LSB	1	10.0	1
J1939+2134	J1939+2134.25032019.B4.pa.raw	J1939+2134.25032019.B4.pa.hdr	750	128	1024	100	0.00008192	LSB	1	10.0	0
J1939+2134	J1939+2134.25032019.B5.cdp.dat	J1939+2134.25032019.B5.cdp.timestamp	1460	128	1024	100	0.00008192	LSB	1	10.0	1

Column	Parameter	Description	Data Type	Unit
1	JName	The name of the pulsar in J2000 epoch.	String	
2	RawDataFile	Raw data file name. Only the file name is required and not the full path.	String	
3	TimestampFile	Timestamp file name. Only the file name is required and not the full path.	String	
4	Frequency (F_{LO})	Local oscillator frequency of the observing band.	Float	MHz
5	NBins $(N_{\rm bin})$	Number of phase bins for the folded profile.	Integer	
6	NChans (N_{chan})	Number of frequency channels.	Integer	
7	BandWidth (ΔF)	Bandwidth of the observing band.	Float	MHz
8	TSample (T_{smpl})	The sampling time used for observation.	Float	s
9	SideBand	The side-band. This should be either LSB (lower side-band) or USB (upper side-band).	String	
10	NPol (N_{pol})	Number of polarizations $(1:=(I), 4:=(I,Q,U,V))$	Integer	
11	TSubInt (T_{subint})	The duration of individual sub-integrations within which the data will be folded over the pulsar period.	Float	s
12	Cohded	Whether the data has been coherently dedispersed (De & Gupta, 2016). 1 represents Yes and 0 represents No.	Boolean	

Creating pipeline.in

- 1. File name tells us
 - a. The pulsar name
 - b. GWB mode : ia/pa/cdpCohded = 1 for cdpCohded = 0 for pa / ia
 - c. Observation date

```
-rw-rw-r--. 1 visitor1 svisitor 49G Dec 8 16:00 J2124-3358_300_200_bm2_08Dec2023.raw0
-rw-rw-r--. 1 visitor1 svisitor 1.2K Dec 8 15:42 J2124-3358_300_200_bm2_08Dec2023.raw0.ahdr
-rw-r---. 1 visitor1 svisitor 96K Dec 8 15:42 J2124-3358_300_200_bm2_08Dec2023.raw0.bhdr
-rw-rw-r--. 1 visitor1 svisitor 90 Dec 8 15:42 J2124-3358_300_200_bm2_08Dec2023.raw0.hdr
```

Creating pipeline.in

- The observation settings we need are Frequency, Bandwidth, NChan, SideBand, NPol, TSmpl, and Cohded.
- Frequency & Cohded can be found from the file name
- Find the setup file and command file for Bandwidth, NChan, SideBand, NPol, TSmpl.
 - For CDP, TSmpl is not directly given in the setup file.

- Copy all the raw data and timestamp files to a directory (This will be the input_dir).
 - Make sure that you have read permission to all input files.
- Create your working directory
 - Make sure that this directory has write permissions and has sufficient disk quota.
- Create pipeline.in file
 - Either from a template or from scratch using observation files.
- Run the pipeline.
 - This may take a long time.
 - Use of screen/nohup command is recommended.

- Copy all PINTA generated output files at Kaveri
 - Copy PINTA generated pdmp summary output files and fits files at the required directory in Kaveri within the respective pulsar directory BAND wise.
- Copy pipeline.in and pinta_summary.txt file at Kaveri
 - Rename pipeline.in and pinta_summary.txt file based on epoch, BAND and observation date and copy to the required directory at Kaveri

```
-rw-rw----. 1 visitor1 pulsarg 7.6M Oct 29 11:49 J1939+2134_60117.939563_1400.norfix.fits
-rw-rw----. 1 visitor1 pulsarg 65K Oct 29 11:49 J1939+2134_60117.939563_1400.norfix.summary.pdf
-rw-rw----. 1 visitor1 pulsarg 7.6M Oct 29 12:01 J1939+2134_60117.939563_1400.rfiClean.fits
-rw-rw----. 1 visitor1 pulsarg 65K Oct 29 12:01 J1939+2134_60117.939563_1400.rfiClean.summary.pdf
drwxrwx---. 2 visitor1 pulsarg 4.0K Oct 29 11:54 RFIClean_ps
drwxrwx---. 3 visitor1 pulsarg 50 Oct 29 11:43 log
-rw-rw----. 1 visitor1 pulsarg 12K Oct 29 12:02 output_B5.log
-rw-rw----. 1 visitor1 pulsarg 263 Oct 29 12:01 pinta_summary.txt
-rw-rw----. 1 visitor1 pulsarg 226 Oct 29 11:43 pipeline.in
```

- Copy all PINTA generated output files at Kaveri
 - Copy PINTA generated pdmp summary output files and fits files at the required directory in Kaveri within the respective pulsar directory BAND wise.
- Copy pipeline.in and pinta_summary.txt file at Kaveri
 - Rename pipeline.in and pinta_summary.txt file based on epoch, BAND and observation date and copy to the required directory at Kaveri

```
-rwxrwx--- 1 prabu ugmrtpsr 843 Dec 5 00:31 pipeline.in.07Nov2023.60254.BAND3
-rwxrwx--- 1 prabu ugmrtpsr 921 Dec 5 00:21 pipeline.in.07Nov2023.60254.BAND5
```

Enter snr values achieved from gptool/norfix and rficlean to the SNR.log file based on the

```
-rwxrwx--- 1 prabu ugmrtpsr 1.6K Dec 5 00:31 pinta_summary.txt.07Nov2023.60254.BAND3
-rwxrwx--- 1 prabu ugmrtpsr 1.6K Dec 5 00:21 pinta_summary.txt.07Nov2023.60254.BAND5
```

 Rename setup file and observation log based on epoch and observation date and copy to the required directory at Kaveri

- Enter data to SNR.log files present at Kaveri
 - Enter snr values achieved from gptool/norfix and rficlean to the SNR.log file based on the pulsars and BANDs
- Copy setup file and observation log at Kaveri
 - Rename setup file and observation log based on epoch and observation date and copy to the required directory at Kaveri

- Copy all PINTA generated output files at Kaveri
 - Copy PINTA generated pdmp summary output files and fits files at the required directory in Kaveri within the respective pulsar directory BAND wise.
- Copy pipeline.in and pinta_summary.txt file at Kaveri
 - Rename pipeline.in and pinta_summary.txt file based on epoch, BAND and observation date and copy to the required directory at Kaveri

```
-rwxrwx--- 1 aman.srivastava ugmrtpsr 4.8K Nov 8 10:07 45_006_310ct2023.obslog.txt
-rwxrwx--- 1 aman.srivastava ugmrtpsr 9.2K Nov 8 10:09 gtac_45_006_310ct2023_1400.txt
-rwxrwx--- 1 ptarafdar ugmrtpsr 7.0K Nov 11 18:55 45_006_11Nov2023.obslog.txt
-rwxrwx--- 1 ptarafdar ugmrtpsr 7.9K Nov 11 18:56 gtac_45_006_11Nov2023_1000.txt
```

- Copy setup file and observation log at Kaveri
 - Rename setup file and observation log based on epoch and observation date and copy to the required directory at Kaveri

[[V1S1tor1@TS4 file	BAND5]\$ psredit J1939+2134_60117.939563_14 Name of the file	400.rfiClean.fits J1939+2134_60117.939563_1400.rfiClean.fits
nbin	Number of pulse phase bins	32
nchan	Number of frequency channels	1024
npol	Number of polarizations	1
nsubint	Number of sub-integrations	91
type	Observation type	Pulsar
site	Telescope name	GMRT
name	Source name	J1939+2134
coord	Source coordinates	19:39:38.561+21:34:59.12
freq	Centre frequency (MHz)	1300.09765625
bw	Bandwidth (MHz)	-200
dm	Dispersion measure (pc/cm^3)	71.0195007324219
rm	Rotation measure (rad/m^2)	0
dmc	Dispersion corrected	0
rmc	Faraday Rotation corrected	0
polc	Polarization calibrated	0
scale	Data units	FluxDensity
state	Data state	Intensity
length	Observation duration (s)	901.776261120001
int*:0	int:help for attribute list	
ext:obs_mode	Observation Mode	PSR
ext:obsfreq	Centre frequency	1300.09765625
ext:obsbw	Bandwidth	-200
ext:obsnchan	Number of channels	1024
ext:hdrver	Header Version	6.2
ext:date	File Creation Date	2023-10-29T06:31:52
ext:coord_md	Coordinate mode	J2000
ext:equinox	Coordinate equinox	2000
ext:trk_mode	Tracking mode	UNSET
ext:bpa	Beam position angle	0
ext:bmaj	Beam major axis	0
ext:bmin	Beam minor axis	0
ext:stt_date	Start UT date	UNSETTUNSE
ext:stt_time	Start UT	
ext:stt_imjd	Start MJD	60117
ext:stt_smjd	Start second	81179
ext:stt offs	Start fractional second	0.111732318226132

ext:stt_lst	Start LST	0
ext:stt_crd1	Start coord 1	00:00:00.000
ext:stt_crd2	Start coord 2	+00:00:00.000
ext:stp_crd1	Stop coord 1	UNSET
ext:stp_crd2	Stop coord 2	UNSET
ext:ra	Right ascension	19:39:38.561
ext:dec	Declination	+21:34:59.121
obs:observer	Observer name(s)	
obs:projid	Project name	
rcvr:name	Receiver name	uGMRT_B5
rcvr:basis	Basis of receptors	lin
rcvr:hand	Hand of receptor basis	+1
rcvr:sa	Symmetry angle of receptor basis	45deg
rcvr:rph	Reference source phase	0deg
rcvr:fdc	Receptor basis corrected	0
rcvr:prc	Receptor projection corrected	0
rcvr:ta	Tracking angle of feed	0deg
be:name	Name of the backend instrument	GWB
be:phase	Phase convention of backend	+1
be:dcc	Downconversion conjugation corrected	0
be:phc	Phase convention corrected	0
be:delay	Backend propn delay from digi. input.	-0
be:config	Configuration filename	1400 200 1024 LSB 40.96 0
be:nrcvr	Number of receiver channels	0
be:tcycle	Correlator cycle time	0
hist:nrow	Number of rows in history	2
hist:nbin prd	Nr of bins per period	32
hist:tbin	Time per bin or sample	4.8679660057411e-05
hist:chan bw	Channel bandwidth	-0.1953125
hist:cal file		NONE
aux:dm model	Auxiliary dispersion model	NONE
aux:dmc	Auxiliary dispersion corrected	0
aux:rm model	Auxiliary birefringence model	NONE
aux:rmc	Auxiliary birefringence corrected	0
sub:int_type	Time axis (TIME, BINPHSPERI, BINLNGASC, etc)	TIME
sub:int_unit	Unit of time axis (SEC, PHS (0-1), DEG)	SEC
sub:tsamp	[s] Sample interval for SEARCH-mode data	0
sub:nbits	Nr of bits/datum (SEARCH mode 'X' data, else 1)	-1
sub:nch_strt	Start channel/sub-band number (0 to NCHAN-1)	_1 -1
sub:nsblk	Samples/row (SEARCH mode, else 1)	
sub:nrows	Nr of rows in subint table (search mode)	91
sub:zero_off	Zero offset for SEARCH-mode data	0
sub:signint	1 for signed ints in SEARCH-mode data, else 0	0

DATA REDUCTION USING AUTOMATED PINTA IN KAVERI

- 1. Login to kaveri using ssh
- 2. Type the following commands:

```
newgrp ugmrtpsr
umask
0007
```

- 3. Create two directories input directory and working directory.
- 4. Navigate to BAND3/BAND5 within your working directory and run the following command:

```
For BAND3 data:
```

```
nohup /Data/debabrata/heilpinta/heilpinta_B3.sh 'input_dir' 'output_dir' 'Obs_date'
> output_B3.log

For BAND5 data:
nohup /Data/debabrata/heilpinta/heilpinta_B5.sh 'input_dir' 'output_dir' 'Obs_date'
> output_B5.log
```

where

```
input_dir is the full path of the input directory,
output_dir is the full path of the output/working directory,
Obs_date is the date of the observation in the format: 01Jan2024
```

DATA REDUCTION USING AUTOMATED PINTA IN FS4

- 1. Login to FS4 using ssh.
- Type the following commands:

```
newgrp pulsarg
umask 0007
Bash
```

- 3. Create two directories input directory and working directory.
- 4. Navigate to BAND3/BAND5 within your working directory and run the following command:

```
For BAND3 data:
```

```
nohup /Data/debabrata/heilpinta/heilpinta_B3.sh 'input_dir' 'output_dir' 'Obs_date'
    'hostname' 'username'> output_B3.log

For BAND5 data:
    nohup /Data/debabrata/heilpinta/heilpinta_B5.sh 'input_dir' 'output_dir' 'Obs_date'
    'hostname' 'username' > output_B5.log

where
input_dir is the full path of the input directory,
output_dir is the full path of the output/working directory,
Obs_date is the date of the observation in the format: 01Jan2024
hostname is the hostname of the Kaveri server. Usually, it's kaveri.ncra.tifr.res.in
username is the username of your Kaveri account
```

Thank you!

