Net (graph)

Net er mengi af **Hnútum** (verticies) og samsvarandi **Leggja** (edges), hver leggur tengir annaðhvort tvo hnúta eða hnút við sjálfan sig. Net geta verið óstefnd eða stefnd. ### Dæmu um stefnt net Hlekkur ### Dæmi um óstefnt net með lykkju hlekkur ## Lykkja (loop) Lykkja er leggur sem tengir hnút í sjálfan sig. ## Stig (degree) Stig hnúts er fjöldi leggja sem tengjast í hann. báðir endar á lykkjum eru taldir.

Grannar (neighbors)

Grannar eru tveir tengdir hnútar. Sagt er að hnútar eru *adjacent* ef þeir eru grannar.

Vegur

Vegur er runa af tengdum leggjum: $v_1 \to v_2 \to \cdots \to v_n$.

Hringrás (cycle)

Er vegur sem fer í hring svo: $v_1 \to \cdots \to v_n \to \cdots \to v_1 \# \# \#$ Fulltengt (complete) net (táknað K_4) Hlekkur

Hringnet (cyclic graph) (táknað C_6)

Hlekkur

Hjólnet (wheel graph) (táknað W_5)

hlekkur

Tvíhlutanet (bipartite graph)

Tvíhluta net er skilgreint þannig að hægt er að skipta hnútunum í tvennt: V_1 og V_2 , svo: $V = V_1 \cup V_2$ og $V_1 \cap V_2 = \emptyset$, og að allir leggirnir liggja aðeins á milli V_1 og V_2 .

Fullskipað tvíhlutanet (Complete bipartite graph)

Fullskipað tvíhlutanet með $|V_1| = m$ og $|V_2| = n$ er táknað K_{mn}

Dæmi
$$K_{32} = K_{23}$$

hlekkur # Litun neta Net er litað með því að lita hnútana svo a enginn hnæutur tengist hnút með sama lit.

n-litanlegt (*n*-colorable) net

Net er n-litanlegt ef það er hægt að lita það með n litum. ## Litunartala Lægsti fjöldi lita sem hægt er að lita net með.

Samhangandi net

Net er samhangandi ef til er vegur mill sérhverra tveggja hnúta.

Sterkt samhangandi net

Stefnt net þar sem hægt er að fara frá hnút a til b fyrir alla hnúta a og b.

Framsetning neta og einsmótun

Pað eru þrjár leiðir til að setja fram net í tölvu ## Grannalisti (adjacency list) Listi þar sem tekið er fram hvaða hnútar tengjast við i-ta hnútinn í listanum

Grannfylki (adjacency matrix)

Tengingar milli hnúta merktir með 1.

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = K_4$$

Legufylki (incidence matrix) Fylki þar sem leggir og hnútar eru merktir með bókstöfum og tölum, og tengingar milli hnúta og leggja merktir með 1.

Einsmóta net Tvö net eru $G_1(V_1, E_1)$ og $G_2(V_2, E_2)$ eru einsmóta ef til er gagntæk vörpun $f: V_1 \to V_2$ þannig að: x, y eru grannar í $G_1 \leftrightarrow f(x), f(y)$ eru grannar í V_2 . Óformlega má orða þetta svo að tvö net eru einsmóta ef það er hægt að færa hnúta í einu neti, án þess að breyta leggjum milli hnúta svo að netin líti eins út.

Sléttunet (Planar graph)

Sléttunet er net sem teikna má í plani án þess að leggir þess krossast. ### Formúla Eulers: Ef við erum með sléttunet sem skiptir planinu í svæði, (þar

meðtalið svæðið fyrir utan netið). Látum r= fjöldi svæða, e= fjöldi leggja og v= Fjöldi hnúta, þá gildir að:

$$r = e - v + 2$$

Sönnun á formúlu Eulers (með þrepun á fjölda leggja): ##### Grunnskref: Ef e=0 þá er netið bara einn hnútur svo v=1 og r=1 1=0-1+2, svo reglan gildir fyrir e=0. ##### Forsenda: G.r.f að reglan gildi fyrir net með e=k, svo: r=k-v+2. ##### Prepun: Skoðum net með k+1 legg. Veljum legg af handahófi og fjarlægjum hann úr netinu, þá eru tveir möguleikar: 1. að leggurinn sé "bryggja", fjöldi svæða stendur þá í stað, en v og e lækka um 1, r=(e-1)-(v-1)+2=r=e-v+2 svo reglan gildir í minna netinu og þar afleiðandi í því stærra. 2. að leggurinn sé "brú", þá lækka r og e um 1, en v stendur í stað. Líkt og í 1. þá fæst: r-1=(e-1)-v+2=r=e-v+2 svo reglan gildir í báðum netunum. Þar afleiðandi gildir formúla Eulers í neti með k+1 leggjum, ergo gildir reglan í öllum sléttunetum.