Agries 인공지능 생육 데이터 관리 플랫폼

한국산업기술대학교 서준민

- **1** 개발 배경
- **52** 개발 목표
- **3** 개발 결과
- J4 결론 및 향후 과제

국내 농업 현황

■ 농가 감소 및 고령화로 인한 지속 가능 위기

※ 2019-2021 중소기업 기술로드맵 14. 스마트팜

스마트 팜 시장 현황

■국내 스마트 팜 관련 시장은 계속 증가 추세에 있음 (연간 5% 성장률)

스마트 팜 도입 효과

스마트 팜 도입 효과

■ 스마트 팜 도입농가의 생산성 향상

스마트 팜 도입 효과

■ 스마트 팜 도입농가의 조수익 증가

국내 스마트 팜 모델

국내 스마트 팜 현황 및 문제점

■ 농진청에서 2세대 스마트 팜 시스템 개발 및 검증 중에 있음

- 최적 생육 모델을 개발하고 AI 분석을 통한 최적 환경 조절
 - 토마토 단일 작물에 적용되는 시스템

국내 스마트 팜 현황 및 문제점

- 스마트 팜 보급 면적은 증가추세
 - 일부 선도 농가를 제외하면 대부분 단순 편의형
 - 선도국과의 기술 격차도 4~5년
- 보급 중인 많은 운영 솔루션에 생산성 향상을 위한 서비스 부족
 - 대부분 환경 모니터링, 창문 및 가림막 자동 개폐, 원격 관제에 집중

온실 개요

<늘품 온실 전경>

<작물 재배실>

• 회사명 : 농업회사법인 주식회사 늘품

• 설립일 : 2017년 11월 23일

• 위치 : 전북 김제시 월연대길 135-75

• 시설면적 : 19,925m² (약 6,000평)

• 작물재배실: 16,002m² (약 4,840평)

• 생산 작물 : 오이

• 일일 생산량: 약 20,000개

운용중인 온실 환경 데이터 수집 시스템

- 제조국가: 네덜란드
- 센서 정보: 온습도, 광량, 수온 등 온실 환경 데이터 수집 및 커튼 제어, 난방 등 환경 제어
- 온실 적용 범위: 전체 온실 환경 제어

이레아스

- 제조국가: 대한민국
- 센서 정보: 배지 무게 및 급액약, 배액량 등에 관한 정보
- 온실 적용 범위: 한 개의 샘플에 대한 데이터 수집

환경 데이터 – Priva 데이터 (1)

<환경데이터 수집용 센서>

<온실 창문 조절용 모터>

<공급양액 관련 장비>

<온실 난방수 탱크>

환경 데이터 - Priva 데이터 (2)

<센서 데이터 엑세스 콘솔>

4	날짜	calc heat t	heat temp	meas AH	meas CO2	meas grh temp	meas HD
58629	2019-07-23 12:20	0	20.5	20.5	24.56	213.39	29
58630	2019-07-23 12:25	0	20.5	20.5	24.69	205.89	30
58631	2019-07-23 12:30	0	20.5	20.5	25.75	201.51	31.
58632	2019-07-23 12:35	0	20.5	20.5	26.07	196.63	32
58633	2019-07-23 12:40	0	20.5	20.5	26.54	190.76	32
58634	2019-07-23 12:45	0	20.5	20.5	26.6	189.13	32
58635	2019-07-23 12:50	0	20.5	20.5	26.16	189	31.
58636	2019-07-23 12:55	0	20.5	20.5	26.27	185.51	32
58637	2019-07-23 13:00	0	20.5	20.5	25.69	186.75	32
58638	2019-07-23 13:05	0	20.5	20.5	25.6	191.37	3
58639	2019-07-23 13:10	0	20.5	20.5	26.04	185.01	32
58640	2019-07-23 13:15	0	20.5	20.5	26.27	185.75	3
58641	2019-07-23 13:20	0	20.5	20.5	26.47	181.63	32
58642	2019-07-23 13:25	0	20.5	20.5	26.94	181	32
58643	2019-07-23 13:30	0	20.5	20.5	26.65	181.87	32
58644	2019-07-23 13:35	0	20.5	20.5	26.51	187.24	3
58645	2019-07-23 13:40	0	20.5	20.5	25.89	194.99	32
58646	2019-07-23 13:45	0	20.5	20.5	25.36	192.51	31.
58647	2019-07-23 13:50	0	20.5	20.5	25.56	187.63	31.
58648	2019-07-23 13:55	0	20.5	20.5	25.86	188.75	32
58649	2019-07-23 14:00	0	20.5	20.5	25.9	193.37	32
58650	2019-07-23 14:05	0	20.5	20.5	25.55	199.24	31.
58651	2019-07-23 14:10	0	20.5	20.5	26.02	192.14	31.
58652	2019-07-23 14:15	0	20.5	20.5	25.75	194.49	31.
58653	2019-07-23 14:20	0	20.5	20.5	24.74	196.75	31.
58654	2019-07-23 14:25	0	20.5	20.5	24.86	201.37	31.

<센서 데이터 샘플>

환경 데이터 - 이레아스 데이터

- 현재 온실의 한 샘플에 대해 이레아스 센서가 부착되어 데이터 수집 중
 - 주로 배지 온습도, 배액 pH 및 EC 값 측정

<배지 함수율 측정 센서>

<센서 데이터 샘플>

데이터 통합 플랫폼의 필요성

- ■작물 생장 데이터의 수집/분석 프로세스 복잡도 높음
 - 각기 다른 데이터 입력 경로로 인한 복잡도 증가 및 통합 어려움
 - 엑셀을 잘 다루지 못하는 사용자들의 데이터 시각화/분석 어려움
- 환경 데이터 수집/분석 프로세스의 실시간성 떨어짐
 - 다양한 시스템이 각기 독립된 소프트웨어로만 데이터 확인 및 내보내기 가능
 - 데이터 분석 소프트웨어에서 분석을 위해 **데이터 통합작업** 필요

작물 데이터

<테스트용 샘플>

<환경데이터 검증용 샘플>

작물 데이터

<테스트용 샘플>

<환경데이터 검증용 샘플>

재배 방법, 재식 밀도, 배지 용량 등을 달리하여 생장 속도, 수확량을 측정

작물 데이터

<테스트용 샘플>

<환경데이터 검증용 샘플>

환경제어 시스템에서 배지에 영양액을 제대로 주고 있는지 확인하기 위한 샘플 pH와 ec 값 측정

수집하는 데이터 - 작물 생장 및 수확량 데이터

엽전개속도, 착과수 수집

수확량 데이터는 분류기를 통해 수집

환경 데이터 수집의 한계

- Priva 시스템의 환경 데이터 수집이 제한적
 - 데이터를 추출을 위해서는 필요한 기간 별로 **수작업**으로 진행
 - 데이터 분석 소프트웨어에서 실시간으로 데이터 가져오기 불가능
- 이레아스 센서 데이터 재활용 어려움
 - 데이터 추출을 위해 **수작업**으로 진행 필요

생육 데이터 수집 한계

				2200							5007										
			4/16~?? 까지는 2천주 대상으로 수확량 증가 비교							기준은 튜브레일 번호! 개체수는 각 조사구마다 약 880주											
				(AM/PM) da 3rd: 조은 3차 다다기							(AM/PM) da 4th: 아파치 4차 다다기										
		날짜		개수			무게			개수				무게							
정식일차	No.		요 <mark>전</mark>	오후	합	1	누적	매일주당	주당	오전	오후	합계	오전	오후	합계	매일주당	누적	주당	오전	오후	합계
30	1	04-16	6		2	2	26	0.011818	0.011818	8		8			0	0	0	0			0
31	2	04-17	9		8	3	115	0.040455	0.052273	20		20			0	0	0	0			0
32	3	04-18	194	197	39	9	506	0.177727	0.23	44	40	84			0	0	0	0			0
33	4	04-19	250	183	4	48	949	0.201364	0.431364	100		100			0	0	0	0			0
34	5	04-20	626	518	11	4	2093	0.52	0.951364	136	99	235			0	0	0	0			0
35	6	04-21	806		80	0 5	2899	0.366364	1.317727	157		157			0	0	0	0			0
36	7	04-22	650	609	12	9	4168	0.576818		142	122	264			0	0	0	0			0
37	8	04-23	721	843	15	4	5732	0.710909	2.605455	154	153	307			0	0	0	0			0
38	9	04-24	329	68	39	9	6129	0.180455	2.785909	63	13	76			0	0	0	0			0
39	10	04-25	285		28	8	6414	0.129545	2.915455			0			0	0	0	0			0
40	11	04-26	354		3.	5 1	6768	0.160909	3.076364	86		86			0	0	0	0			0
41	12	04-27	523	104	6	2	7395	0.285	3.361364	122	22	144			0	0	0	0			0
42	13	04-28	256		2.	5	7651	0.116364	3.477727	59		59			0	0	0	0			0
43	14	04-29	2 <mark>7</mark> 5	95	3	/)	8021	0.168182	3.645909	67	23	90			0	0	0	0			0
44	15	04-30	253		2.	5	8274	0.115	3.760909	57		57			0	0	0	0			0
45	16	05-01	197		_19	9	8471	0.0895	交件 ②	⊢⊕ i	로 <u>축</u>	정히	LL_	항목		ᆘᄖᆠᄔ	0	INTE	 가	누락	. 0
46	17	05-02	202	52	2	5	8725		3.90 90 ₺	∃ —— -	12	O C	Ϋ́	<u>о</u> <u> </u>		╢╼╌╏	0			Ti	0
47	18	05-03	256	98	3.	5 1	9079	0.160909	4.126818	58	19	77			0	0	0	0			0
48	19	05-04	308		30	3	9387	0.14	4.266818	67		67			0	0	0	0			0
49	20	05-05	4 17		4	4	9834	0.203182	4.47	103		103			0	0	0	0			0
50	21	05-06	631		6		10465	0.286818	4.756818	149		149			0	0	0	0			0
51	22	05-07	6 12	128	7	7	11235	0.35	5.106818	147	27	174			0	0	0	0			0
52	23	05-08	592	252	84	4	12079	0.383636	5.490455	131	55	186			0	0	0	0			0
53	24	05-09	721		77	2	12800	0.327727	5.818182	151		151			0	0	0	0			0
54	25	05-10	758		70		13568	0.349091	6.167273	166		166			0	0	0	0			0
55	26	05-11	758		70	6 <mark>8</mark>	14336	0.349091	6.516364	169		169			0	0	0	0			0
56	27	05-12	8 11		84	4	15177	0.382273	6.898636	184		184			0	0	0	0			0
57	28	05-13	693		69	98	15870	0.315	7.213636	151		151			0	0	0	0			0
58	29	05-14	888		8	3 8	16708	0.380909	7.594545	190		190			0	0	0	0			0
59	30	05-15	9 75		9	7	17683	0.443182	8.037727	216		216			0	0	0	0			0
60	31	05-16	983		93	3	18616	0.424091	8.461818	228		228			0	0	0	0			0
61	32	05-17	951		9	5	19567	0.432273	8.894091	86	90	176	673	992	1665	0.332534	1665	0.332534	174	210	384
62	22	05-18	3 12	441	2	2 k	20400	0.378636	9 272727	26	90	176	772	927	1759	N 3513NR	3424	0.683843	120	199	379

정리

- ■국내 농업 시장 체질 개선을 위해 스마트 팜 도입 필요
- ■생육 모델 개발을 위한 생장 데이터 관리 시스템 필요
- ■환경 데이터와 생장 데이터를 활용한 가치 창출 필요
- 농업인들의 IT 인프라 구축 및 유지보수 어려움 해결 방안 필요

Agries?

Agriculture Execution System

-제조 현장에서 전 생산활동을 관리하는 시스템인 MES를

농업 환경에 적용

-데이터 기반 지능형 스마트 팜 농업 플랫폼 목표

개발 로드맵

■최종 목표: 3세대 스마트 팜 토탈 솔루션

Phase 1 개발 현황

■ 클라우드 기반 생장 데이터 관리 및 분석 시스템 개발

파스-타를 활용한 웹 프론트 엔드를 통해 UI 제공

웹 프론트엔드를 이용, 서버 데이터 확인 및 관리

쿠버네티스를 활용한 백엔드 구성

REST API를 통한 외부 솔루션 연계 가능

파스-타

■ 어플리케이션의 동적 확장 가능

파스-타

■ 어플리케이션 배포 프로세스 단순화로 인한 개발 기간 단축

반응형 웹 어플리케이션

■ HTML5를 준수하는 반응형 디자인으로 PC, 모바일 모두 지원

환경 데이터 수집

■ 환경 데이터는 기 설치된 환경 제어 솔루션 활용

환경 데이터 차트

■시스템의 환경 데이터 모니터링 가능

작물 관리

■ 기르는 작물에 대한 추가/제거 및 기본적인 정보 확인을 통한 관리 간편화

생육 데이터 입력

■ 다양한 생육 측정 항목 지원으로 인한 농가 별 맞춤 운용 가능

	† 새 식물 -		
- 1		생식 수수 20	_
- 1	새 샘플		-
- 1			_
- 1	이름		_
- 1			_
- 1	시작 일자 1 2019-11-26	□ 만료 일자	_
- 1	2019-11-20		
- 1	측정 항목		-
- 1		수확량	
- 1			
- 1		길이	
- 1		착과수	-
- 1	+	새 측정 항목	-
	·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	#3 항목

생육 데이터 차트

■ 입력된 데이터 차트 형태 확인을 통한 손쉬운 시각화 지원

수확량 딥러닝 예측

■ 환경 데이터와 수확량 데이터를 활용, 미래 수확량 예측 기능 제공

수확량 딥러닝 예측

■ 미래 수확량 예측 데이터를 활용하여 경영 지표 및 환경 데이터 검증 가능

외부 솔루션과의 연계

■ 개방 API 제공 및 API 문서 자동 생성을 통한 외부 시스템 연계 가능

외부 솔루션과의 연계

■ Microsoft Excel과의 연계 예시

외부 솔루션과의 연계

■ Microsoft Power-BI와의 연계 예시

기대 효과

- ■클라우드 기반으로 ITC 인프라를 구축·운영하기 어려운 소규모 농업인 들이 IT 인프라에 대한 전문 지식 없이 사용가능
- ●수확량에 대한 딥러닝 예측으로 앞으로 작물에 대한 관리 정책, 사업 방향을 결정하는데 도움
- 열린 API 제공으로 외부 소프트웨어와의 연계가 가능하여 다양한 분석 솔루션 및 공공 API 연계를 통한 매쉬업

한계

- ■오이 작물을 기준으로 디자인 되어 있음
- ■기 설치된 환경 데이터 제어 솔루션 필요
 - 본 시스템 단독 사용 불가
- 인력을 동원하여 생장 데이터 측정 및 입력 필요
- 딥러닝 모델 데이터와 정확도 부족
 - 데이터 부족으로 인한 딥러닝 학습 모델의 오버-피팅

