Quiz 2 – Practice Problems

- 1. Let G = (V, E) be a DAG, where each edge is annotated with some positive length. Let S be a source vertex in S. Suppose we run Dijkstra's algorithm to compute the distance from S to each vertex S0, and then order the vertices in increasing order of their distance from S1. Are we guaranteed that this is a valid topological sort of S2?
- 2. Suppose we have an alphabet with only five letters A, B, C, D, E which occur with the following frequencies.

Letter	Α	В	С	D	E
frequency	0.35	0.12	0.18	0.05	0.30

Use Huffman coding to find the optimal prefix-free variable-length binary encoding of the alphabet.

- (a) Draw a binary tree that represents the optimal encoding.
- (b) Fill in the table below with the binary encoding of each letter.

Letter	encoding
Α	
В	
С	
D	
E	

- 3. Given a set $\{x_1 \le x_2 \le ... \le x_n\}$ of points on the real line, determine the smallest set of unit-length closed intervals (e.g. the interval [1.25,2.25] includes all x_i such that $\{1.25 \le x_i \le 2.25\}$) that contains all of the points. Give the most efficient algorithm you can to solve this problem, prove it is correct and analyze the time complexity.
- 4. Let T be a complete binary tree with n vertices. Finding a path from the root of T to a given vertex v in T using breadth-first search takes
 - a) O(n)
 - b) O(lgn)
 - c) O(nlgn)
 - d) O(logn)
 - e) O(n²)
- 5. A Hamiltonian path in a graph G=(V,E) is a simple that includes every vertex in V. Design an algorithm to determine if a directed acyclic graph (DAG) G has a Hamiltonian path. Your algorithm should run in O(V+E). Provide a written description of your algorithm including why it works, pseudocode and an

Quiz 2 – Practice Problems

explanation of the running time.

- 6. Consider a connected weighted directed graph G = (V, E, w). Define the *fatness* of a path P to be the maximum weight of any edge in P. Give an efficient algorithm that, given such a graph and two vertices $u, y \in V$, finds the minimum possible fatness of a path from u to v in G.
- 7. Scheduling jobs intervals with penalties: For each $1 \le i \le n$ job j_i is given by two numbers d_i and, where d_i is the deadline and p_i is the penalty. The length of each job is equal to 1 minute. We want to schedule all jobs, but only one job can run at any given time. If job i does not complete on or before its deadline d, we should pay its penalty. Design a greedy algorithm to find a schedule which minimizes the sum of penalties.
- 8. Consider the weighted graph below:

Demonstrate Prim's algorithm starting from vertex A. Write the edges in the order they were added to the minimum spanning tree.