Optimization Model for Scrum-Based Software Development

Gemini AI Assistant

September 4, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	5

1 Sets (Entities)

- The set of all **Projects**, denoted by P.
- \bullet The set of all **Teams**, denoted by T.
- The set of all **Workers**, denoted by W.
- The set of all **Features**, denoted by F.
- The set of all **Skills**, denoted by S.
- The set of all **Roles**, denoted by R.
- The set of all **Product Owners**, denoted by *PO*.
- The set of all **Scrum Masters**, denoted by SM.
- The set of all **Product Backlogs**, denoted by *PB*.
- The set of all **Sprints**, denoted by SP.
- The set of all **Sprint Plannings**, denoted by *SPP*.
- The set of all **Daily Scrums**, denoted by DS.
- The set of all **Sprint Reviews**, denoted by SR.
- The set of all **Sprint Retrospectives**, denoted by *SRE*.
- The set of all **Sprint Backlogs**, denoted by SBL.
- The set of all **Sprint Goals**, denoted by SG.
- The set of all **Epics**, denoted by E.
- The set of all **User Stories**, denoted by US.
- The set of all **Tasks**, denoted by TSK.
- \bullet The set of all **Development Snapshots**, denoted by DEV.
- The set of all **Blockers**, denoted by BL.
- The set of all **Stakeholders**, denoted by SH.
- The set of all **Velocities**, denoted by VEL.
- The set of all **Release Plans**, denoted by REP.
- The set of all **Roadmaps**, denoted by RM.
- The set of all **Scrum Boards**, denoted by *SCB*.
- The set of all **Feature Documentations**, denoted by FED.

2 Indices

- $p \in P$: An index for a project.
- $t \in T$: An index for a team.
- $w \in W$: An index for a worker.
- $f \in F$: An index for a feature.
- $s \in S$: An index for a skill.
- $r \in R$: An index for a role.

- $po \in PO$: An index for a product owner.
- $sm \in SM$: An index for a scrum master.
- $pb \in PB$: An index for a product backlog.
- $sp \in SP$: An index for a sprint.
- $spp \in SPP$: An index for a sprint planning event.
- $ds \in DS$: An index for a daily scrum event.
- $sr \in SR$: An index for a sprint review event.
- $sre \in SRE$: An index for a sprint retrospective event.
- $sbl \in SBL$: An index for a sprint backlog.
- $sg \in SG$: An index for a sprint goal.
- $e \in E$: An index for an epic.
- $us \in US$: An index for a user story.
- $tsk \in TSK$: An index for a task.
- $dev \in DEV$: An index for a development snapshot.
- $bl \in BL$: An index for a blocker.
- $sh \in SH$: An index for a stakeholder.
- $vel \in VEL$: An index for a velocity metric.
- $rep \in REP$: An index for a release plan.
- $rm \in RM$: An index for a roadmap.
- $scb \in SCB$: An index for a scrum board.
- $fed \in FED$: An index for feature documentation.

3 Goals

G0 maximize_feature_priority:

$$1.5 \times \max \sum_{f \in F} \sum_{rep \in REP} \mathrm{priority}_f \cdot \mathrm{AssignFeatureToRelease}_{f,rep}$$

G1 minimize_total_task_effort:

$$1.0 \times \min \sum_{us \in US} \sum_{sp \in SP} \sum_{tsk \in TSK_{us}} \text{effort}_{tsk} \cdot \text{AssignStoryToSprint}_{us,sp}$$

G2 maximize_story_points_in_sprint:

$$1.2 \times \max \sum_{us \in US} \sum_{sp \in SP} \text{story_points}_{us} \cdot \text{AssignStoryToSprint}_{us,sp}$$

G3 minimize_project_timeline:

$$2.0 \times \min(\text{project_end_date}_p) \quad \forall p \in P$$

G4 maximize_team_satisfaction:

$$0.8 \times \max \frac{\sum_{sre \in SRE} \text{satisfaction}_{sre}}{|SRE|}$$

G5 minimize_number_of_blockers:

$$1.0 \times \min \sum_{bl \in BL} 1$$

G6 maximize_sprint_goal_achievement:

$$1.3 \times \max \sum_{sg \in SG} \text{achievement_status}_{sg}$$

G7 minimize_budget_usage:

$$1.8 \times \min(\text{budget}_p) \quad \forall p \in P$$

4 Conditions

C0 worker_must_have_skill: A worker must have the required skill for an assigned task.

$$\text{RequiresSkill}_{tsk.s} \cdot \text{AssignWorkerToTask}_{w,tsk} \leq \text{HasSkill}_{w,s} \quad \forall w, tsk, s$$

C1 project_budget_limit: The total cost must not exceed the project budget.

$$\sum \text{costs} \le \text{budget}_p \quad \forall p \in P$$

C2 team_velocity_capacity: The sum of story points in a sprint cannot exceed the team's velocity.

$$\sum_{us \in US} \text{story_points}_{us} \cdot \text{AssignStoryToSprint}_{us,sp} \leq \text{velocity}_{t} \quad \forall sp \in SP, t \in T_{sp}$$

C3 worker_availability_limit: A worker's assigned effort cannot exceed their availability.

$$\sum_{tsk \in TSK} \text{effort}_{tsk} \cdot \text{AssignWorkerToTask}_{w,tsk} \leq \text{availability}_{w} \quad \forall w \in W$$

- C4 **prefer_senior_for_complex_tasks**: Soft constraint, could be modeled by adding a penalty term to the objective function if low-level workers are assigned to high-effort tasks.
- C5 user_story_dependency: A dependent story cannot start before its prerequisite is finished.

$$StartDate_{us_A} \ge EndDate_{us_B} \quad \forall (us_A, us_B) \in Dependencies$$

C6 worker_cannot_be_on_vacation: A worker cannot be assigned tasks if their status is 'vacation'.

$$\label{eq:assignWorkerToTask} \text{AssignWorkerToTask}_{w,tsk} = 0 \quad \text{if status}_w = \text{`vacation'} \quad \forall w, tsk$$

C7 sprint_must_have_goal: Each sprint must have one and only one goal.

$$\sum_{sq \in SG} \mathsf{AssignGoalToSprint}_{sg,sp} = 1 \quad \forall sp \in SP$$

C8 feature_must_be_in_release: A feature must be part of a release plan to be worked on.

$$\sum_{rep \in REP} \text{AssignFeatureToRelease}_{f,rep} \geq 1 \quad \forall f \in F_{\text{active}}$$

4

5 Decision Variables

DV0 **assign_worker_to_task** (AssignWorkerToTask_{w,tsk}): Binary variable, equal to 1 if worker $w \in W$ is assigned to task $tsk \in TSK$, and 0 otherwise.

$$AssignWorkerToTask_{w,tsk} \in \{0,1\} \quad \forall w \in W, tsk \in TSK$$

DV1 **assign_user_story_to_sprint** (AssignStoryToSprint_{us,sp}): Binary variable, equal to 1 if user story $us \in US$ is assigned to sprint $sp \in SP$, and 0 otherwise.

AssignStoryToSprint
$$_{us,sp} \in \{0,1\} \quad \forall us \in US, sp \in SP$$

DV2 assign_feature_to_release (AssignFeatureToRelease_{f,rep}): Binary variable, equal to 1 if feature $f \in F$ is included in release plan $rep \in REP$, and 0 otherwise.

AssignFeatureToRelease
$$f_{rep} \in \{0, 1\} \quad \forall f \in F, rep \in REP$$

DV3 **assign_worker_to_team** (AssignWorkerToTeam $_{w,t}$): Binary variable, equal to 1 if worker $w \in W$ is a member of team $t \in T$, and 0 otherwise.

$$\label{eq:assignWorkerToTeam} \mathbf{AssignWorkerToTeam}_{w,t} \in \{0,1\} \quad \forall w \in W, t \in T$$

DV4 **set_sprint_for_task** (SprintForTask $_{tsk}$): Integer variable defining the sprint number in which a task is scheduled.

$$SprintForTask_{tsk} \in \mathbb{Z}^+ \quad \forall tsk \in TSK$$

DV5 **determine_team_size** (TeamSize_t): Integer variable representing the number of workers in team t.

TeamSize_t
$$\in \{3, 4, ..., 9\} \quad \forall t \in T$$

DV6 **worker_allocation_percentage** (Allocation_{w,p}): Continuous variable for the percentage of worker w's availability allocated to project p.

$$0 \leq \text{Allocation}_{w,p} \leq 100 \quad \forall w \in W, p \in P$$

DV7 **set_user_story_priority** (Priority_{us}): Integer variable to determine the priority ranking of a user story.

Priority_{us}
$$\in \{1, 2, ..., 100\} \quad \forall us \in US$$