- Задача 1. В коробке 50 конфет трёх видов. Докажите, что конфет какого-то вида не менее 17.
- **Задача 2.** Какое наименьшее количество учеников должно быть в школе, чтобы гарантированно можно было найти трёх учеников, отмечающих день рождения в один день?
- Задача 3. Докажите, что существуют две различные степени семёрки, оканчивающиеся на одну и ту же комбинацию из трёх цифр.
- Задача 4. В соревнованиях по бегу участвуют 100 спортсменов. Известно, что среди любых 12 из них найдутся двое знакомых между собой. Докажите, что как бы ни раздали спортсменам стартовые номера (не обязательно от 1 до 100), найдутся два знакомых спортсмена, номера которых начинаются с одной и той же цифры.
- Задача 5° . а) (Принцип Дирихле) Докажите, что если в n клетках сидит не менее n+1 кроликов, то найдётся клетка, в которой сидит не менее двух кроликов.
- **б)** (Обобщённый принцип Дирихле) Докажите, что если в n клетках сидит не менее k кроликов, то найдётся клетка, в которой сидит не менее k/n кроликов. Как следует понимать это утверждение, если k не делится на n нацело?
- в) Что в предыдущих задачах «клетки», а что «кролики»?
- **Задача 6.** Докажите, что если в n клетках сидит менее $\frac{n(n-1)}{2}$ кроликов, то найдутся две клетки, в которых сидит одинаковое количество кроликов (может быть, ни одного)
- **Задача 7.** Для награждения по итогам школьного конкурса имеется 70 конфет. При каком наибольшем количестве конкурсантов им можно будет раздать конфеты так, что все они получат разное и не меньшее 3 количество конфет?
- **Задача 8.** На заводе 7 цехов, в которых работает 360 человек. Докажите, что в каких-то пяти из этих цехов работает не менее 258 человек.
- **Задача 9.** Пять мальчиков собрали 53 гриба, причём известно, что никакие двое не собрали грибов поровну. Докажите, что какие-то трое из них собрали не менее 36 грибов.
- **Задача 10.** В коробке 70 карандашей. Докажите, что найдутся либо 9 карандашей одного цвета, либо 9 карандашей разного цвета.
- Задача 11. В кинотеатре 7 рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний. Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.
- **Задача 12.** Числа от 1 до 9 некоторым образом разбиты на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.
- **Задача 13.** Можно ли 100 гирь массами $1, 2, 3, \ldots, 99, 100$ разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
- Задача 14. У 10 девочек было по 10 конфет. Каждая девочка подарила несколько конфет другим (конфеты, полученные в подарок, девочки оставляют себе). В результате у всех девочек оказалось разное число конфет. Докажите, что какая-то из девочек подарила конфет не меньше, чем у неё их оказалось в конце.
- Задача 15*. На складе имеется несколько ящиков общей массой 10 тонн, причём масса каждого не превосходит тонны. Какое наименьшее количество трёхтонок нужно заказать, чтобы точно суметь вывезти их все за один раз?

2 3	4	5 a	56	5 B	6	7	8	9	10	11	12	13	14	15

Смотри примеры решений на обороте

Примеры задач с решениями

Пример 1. В классе 30 учеников. Докажите, что найдутся трое учеников, родившихся в одном и том же месяце.

Решение. Предположим противное: пусть в каждом месяце родилось меньше трёх учеников, то есть не более двух. Тогда всего учеников не более 2·12 = 24 человек. Значит, наше предположение неверно, и найдётся месяц, в котором родилось не менее трёх учеников. ■

Пример 2. Шесть мальчиков съели 13 конфет. Докажите, что найдутся два мальчика, которые съели конфет поровну (возможно, что ни одной).

Решение. Предположим, что все мальчики съели разное число конфет. Расположим их по возрастанию числа съеденных конфет. Тогда первый съел не меньше 0 конфет, второй съел больше первого, то есть не меньше 1, и т.д. Значит, всего они съели не меньше 0+1+2+3+4+5=15 конфет, что противоречит условию. Значит наше предположение неверно, и найдутся два мальчика, съевшие одинаковое число конфет. \blacksquare

Пример 3. В семи кабинетах стоят 107 парт. Докажите, что можно выбрать из этих кабинетов три, в которых вместе не меньше 47 парт.

Решение. Рассмотрим три кабинета, в которых находится больше всего парт. Предположим, что в них вместе не более 46 парт. Тогда в каком-то одном из них не более 15 парт (иначе всего в этих трёх кабинетах было бы не меньше $16 \cdot 3 = 48$ парт, что противоречит предположению.) Но тогда в оставшихся четырёх кабинетах не более $15 \cdot 4 = 60$ парт (поскольку выбрали три самых больших кабинета). А всего в семи кабинетах не более 46 + 60 = 106 парт, что противоречит условию. Значит предположение неверно, и найдутся три кабинета, в которых вместе не менее 47 парт. \blacksquare

Пример 4. В походе участвовало 18 школьников. Докажите, что среди них либо были пять школьников из одного класса, либо в походе приняли участие школьники не менее чем из пяти классов.

Решение. Предположим, что в походе приняли участие школьники не более чем четырёх классов, причем из каждого не более четырёх учащихся. Тогда всего в походе участвовало не более $4 \cdot 4 = 16$ учащихся, что противоречит условию. Значит предположение неверно, и в походе приняли участие либо школьники не менее чем пяти классов, либо не менее пяти учащихся из одного класса. \blacksquare