7.1 单相PWM整流电路工作原理

- SPWM调制方式:
- 单极性调制
- 双极性调制

A相

B相

■ 调制信号:

A相调制信号: $y_A = msin(\omega t + \delta)$

B相调制信号: $y_B = -m\sin(\omega t + \delta)$

■ 输出电压

$$U_{AO} = (U_{dc}/2) \text{msin}(\omega t + \delta)$$

$$U_{BO}=-(U_{dc}/2)$$
msin($\omega t + \delta$)

调制信号

$$y = msin(\omega t + \delta)$$

■ 电路关系

$$\dot{U}_{s} = \dot{U}_{Ls} + \dot{U}_{Rs} + \dot{U}_{AB}$$

$$\dot{U}_{Ls} = j\omega L_{s} I_{Ls}$$

■ PWM变换器工作方式

$$U_{s} = U_{Ls} + U_{Rs} + U_{AB}$$

$$U_{Ls} = j\omega L_{s} I_{Ls}$$

PWM变换器工作方式

等价 电路

整流? 逆变?

■ 整流运行

 \blacksquare a: \dot{U}_{AB} 滯后 U_s 相角 δ , \dot{I}_s 和 \dot{U}_s 同相,整流状态,功率因数为1。PWM整流电路最基本的工作状态。

$$U_{s}^{\bullet} = U_{Ls}^{\bullet} + U_{Rs}^{\bullet} + U_{AB}^{\bullet}$$
 $U_{Ls}^{\bullet} = j\omega L_{s} I_{Ls}^{\bullet}$

■ 逆变运行

■ b: \dot{U}_{AB} 超前 \dot{U}_{s} 相角 δ , \dot{I}_{s} 和 \dot{U}_{s} 反相,逆变状态,说明PWM整流电路可实现能量正反两个方向的流动,这一特点对于需再生制动的交流电动机调速系统很重要

■ 无功补偿运行

$$U_{s} = U_{Ls} + U_{Rs} + U_{AB}$$
 $U_{Ls} = j\omega L_{s} I_{Ls}$

 $\mathbf{c}: \dot{U}_{AB}$ 滞后 \dot{U}_{s} 相角 δ , \dot{I}_{s} 超前 \dot{U} 90°,电路向交流电源送出无功功率,这时称为静止无功功率发生器(Static Var Generator—SVG)。

■ 超前角运行

lacktriangleright d: 通过对 \dot{U}_{AB} 幅值和相位的控制,可以使 \dot{I} 比 \dot{U} 超前或滞后任一角度 φ 。s

$$U_{s}^{\bullet} = U_{Ls}^{\bullet} + U_{Rs}^{\bullet} + U_{AB}^{\bullet}$$
 $U_{Ls}^{\bullet} = j\omega L_{s} I_{Ls}^{\bullet}$

7.2 三相PWM整流电路工作原理

进行SPWM控制,在交流输入端A、B和C可得SPWM电压,按 类似单相PWM整流电路的相量图控制,可使 i_a 、 i_b 、 i_c 为正弦波 且和电压同相且功率因数近似为1

v

总结

■ PWM整流电路特点

- (1) 输出**直流电压平稳**,可迅速调节控制
- (2) 输入交流电源电流波形正弦
- (3) 输入的交流电流功率因数可任意控制
- (4) AC-DC间的功率流向是可以双向可控的
- (5) 变换器低损耗