Nombres premiers

I. Définition d'un nombre premier

Définition.

Un entier naturel n est dit **premier** s'il possède **exactement** deux diviseurs dans \mathbb{N} : 1 et lui même. Enfin, si cet entier naturel n, distinct de 1, est non premier, on dira qu'il est **composé**.

Exemples, contre-exemples.

- 2 est **premier** car ses seuls diviseurs positifs sont 1 et 2.
- 0 n'est pas premier car il possède une infinité de diviseurs positifs.
- 1 n'est pas premier car il de possède qu'un seul diviseur, lui-même!

Théorème.

Il existe une infinité de nombres premiers.

Démonstration

Raisonnons par l'absurde : supposons qu'il existe un nombre fini de nombres premiers. Soit p le plus grand d'entre eux.

Soit N le produit de tous ces nombres premiers.

$$N = 2 \times 3 \times \ldots \times p.$$

Posons
$$N' = N + 1$$
.

Alors, pour tout nombre premier d, la division euclidienne de N' par d a pour reste 1 car $N' = d \times q + 1$.

Donc N' n'est divisible par aucun d'entre eux, donc N' est premier.

Mais N' > p, ce qui est impossible car p est le plus grand nombre premier.

Donc il n'existe pas un nombre fini de nombres premiers

Théorème.

- Tout entier naturel n supérieur ou égal à 2 admet un diviseur premier.
- Tout entier naturel $n \ge 2$, non premier, admet un diviseur premier inférieur ou égal à \sqrt{n} .

Démonstration

Soit n un entier $n \ge 2$.

- \bullet Si n est premier, il est un diviseur premier de lui-même.
- Si n n'est pas premier, il admet un diviseur positif autre que 1 et lui-même. L'ensemble E des diviseurs positifs, autres que 1 et n, est donc un ensemble d'entiers naturels non vide : il a donc un plus petit élément que l'on note p. Si p n'était pas premier, il existerait un diviseur propre d de p qui serait plus petit que

p; comme d diviserait n avec p qui divise n, d diviserait n donc d serait un élément de E plus petit que p ce qui est impossible.

Ainsi p est premier et divise n; par suite il existe un entier q tel que n=pq avec 1 < q < n.

Donc q est un diviseur propre de n et par conséquent $p\leqslant q.$

On en déduit que $p^2 \leqslant pq$ soit $p^2 \leqslant n$ et donc $p \leqslant \sqrt{n}$

Propriété.

Soit n un entier supérieur à 2.

Si n n'est divisible par aucun des nombres premiers inférieurs ou égaux à \sqrt{n} alors n est un nombre premier.

Démonstration

Si n n'est pas premier, il admet un diviseur premier inférieur ou égal à \sqrt{n} d'après le premier théorème. Cette propriété est donc la contraposée du second théorème.

Exemple. Démontrons que 139 est un nombre premier.

II. Deux théorèmes fondamentaux

1. Décomposition en produit de facteurs premiers

Théorème.

Tout entier naturel $n \ge 2$ se décompose en un produit de nombres premiers.

Cette décomposition est unique à l'ordre des facteurs près.

On écrira $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$ où $n\geqslant 2,\ p_1,\ p_2,\dots,\ p_k$ sont des nombres premiers deux à deux distincts et $\alpha_1,\ \alpha_2,\ \dots,\ \alpha_k$ sont des entiers naturels non nuls.

Exemple. Décomposer 140 en produit de facteurs premiers et en déduire la liste des diviseurs de 140.

Propriété.

Si n est un entier naturel supérieur ou égal à 2, admettant pour décomposition en produit de facteurs premiers $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$ admet alors n possède

exactement $(\alpha_1 + 1) \times (\alpha_2 + 1) \times \ldots \times (\alpha_k + 1)$ diviseurs positifs.

Exemple. Déterminer le nombre de diviseurs positifs de 72.

2. Petit théorème de Fermat

Théorème.

Soit n un nombre entier.

Si p est un nombre premier ne divisant pas n alors $n^{p-1} \equiv 1$ [p].

Conséquence : si p est un nombre premier et n un entier, alors $n^p \equiv n$ [p].

Exercice 2.9. Montrer, que pour tout entier naturel n, $n^{13} - n$ est divisible par 26.