Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-10-25

Plan for Today

- Predicate Logic (Textbook Chapter 9)
 - Properties of Universal and Existential Quantification
 - "Sentences"
- Sequences (Textbook Chapter 13)
 - Inductive view from empty sequence (ϵ) and "cons" (\lhd)

∃-Introduction

$$P[x \coloneqq E]$$
= $\langle (8.14) \text{ One-point rule } \rangle$
 $(\exists x \mid x = E \bullet P)$

$$\Rightarrow \langle (9.25) \text{ Range weakening for } \exists \rangle$$
 $(\exists x \mid true \lor x = E \bullet P)$
= $\langle (3.29) \text{ Zero of } \lor \rangle$
 $(\exists x \mid true \bullet P)$
= $\langle true \text{ range in quantification } \rangle$
 $(\exists x \bullet P)$

This proves:

(9.28)
$$\exists$$
-Introduction: $P[x = E] \Rightarrow (\exists x \bullet P)$

An expression *E* with P[x := E] is called a "witness" of $(\exists x \bullet P)$.

Using ∃-Introduction for "Proof by Example"

$(9.28) \quad \exists \textbf{-Introduction:} \quad P[x := E] \quad \Rightarrow \quad (\exists \ x \bullet P)$

```
(\exists x : \mathbb{N} \bullet x \cdot x < x + x)
\Leftarrow \langle \exists \text{-Introduction} \rangle
(x \cdot x < x + x)[x := 1]
\equiv \langle \text{Substitution} \rangle
1 \cdot 1 < 1 + 1
\equiv \langle \text{Evaluation} \rangle
true
```

Using ∃-Introduction for "Proof by Counter-Example"

(9.28) \exists -Introduction: $P[x := E] \Rightarrow (\exists x \bullet P)$

```
\neg (\forall x : \mathbb{N} \bullet x + x < x \cdot x)
\equiv \langle \text{ Generalised De Morgan } \rangle
(\exists x : \mathbb{N} \bullet \neg (x + x < x \cdot x))
\Leftarrow \langle \exists \text{-Introduction } \rangle
(\neg (x + x < x \cdot x))[x := 2]
\equiv \langle \text{ Substitution } \rangle
\neg (2 + 2 < 2 \cdot 2)
\equiv \langle \text{ Fact } 2 + 2 < 2 \cdot 2 \equiv false \rangle
\neg false
\equiv \langle \text{ Negation of } false \rangle
true
```

Sentences

Definition: A sentence is a Boolean expression without free variables.

- Expressions without free variables are also called "closed": A sentence is a closed Boolean expression.
- The value of an expression only depends on its free variables.
- The value of a closed expression does not depend on the state.
- A closed Boolean expression, or sentence,
 - either always evaluates to true
 - or always evaluates to false
- A closed Boolean expression, or sentence,
 - is either valid
 - or a contradiction
- For a closed Boolean expression, or sentence, ϕ
 - either ϕ is valid
 - or $\neg \phi$ is valid
- For a closed Boolean expression, or sentence, ϕ , only one of ϕ and $\neg \phi$ can have a proof!

2018 Midterm 2

• For a closed Boolean expression, or sentence, ϕ , only one of ϕ and $\neg \phi$ can have a proof!

Prove one of the following two theorem statements — **only one is valid.** (Should be easy in less than ten steps.)

```
Theorem "M2-3A-1-yes": (\exists \ x : \mathbb{Z} \cdot \forall \ y : \mathbb{Z} \cdot (x - 2) \cdot y + 1 = x - 1)
Theorem "M2-3A-1-no": \neg \ (\exists \ x : \mathbb{Z} \cdot \forall \ y : \mathbb{Z} \cdot (x - 2) \cdot y + 1 = x - 1)
```

Monotonicity With Respect To ⇒

- (4.2) Left-Monotonicity of \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) Left-Monotonicity of \wedge : $(p \Rightarrow q) \Rightarrow p \wedge r \Rightarrow q \wedge r$

Antitonicity of \neg : $(p \Rightarrow q) \Rightarrow \neg q \Rightarrow \neg p$

Left-Antitonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$

Right-Monotonicity of \Rightarrow : $(p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$

Guarded Right-Monotonicity of \Rightarrow : $(r \Rightarrow (p \Rightarrow q)) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow q)$

Weakening/Strengthening for \forall and \exists — "Cheap Antitonicity/Monotonicity"

- (9.10) Range weakening/strengthening for \forall : $(\forall x \mid Q \lor R \bullet P) \Rightarrow (\forall x \mid Q \bullet P)$
- (9.11) Body weakening/strengthening for \forall : $(\forall x \mid R \bullet P \land Q) \Rightarrow (\forall x \mid R \bullet P)$
- (9.25) Range weakening/strengthening for \exists : $(\exists x \mid R \bullet P) \Rightarrow (\exists x \mid Q \lor R \bullet P)$
- (9.26) Body weakening/strengthening for \exists : $(\exists x \mid R \bullet P) \Rightarrow (\exists x \mid R \bullet P \lor Q)$

Monotonicity for \forall

(9.12) Monotonicity of \forall :

$$(\forall x \mid R \bullet P_1 \Rightarrow P_2) \Rightarrow ((\forall x \mid R \bullet P_1) \Rightarrow (\forall x \mid R \bullet P_2))$$

(9.12a) Range-Antitonicity of \forall :

$$(\forall x \bullet R_2 \Rightarrow R_1) \Rightarrow ((\forall x \mid R_1 \bullet P) \Rightarrow (\forall x \mid R_2 \bullet P))$$

$$(\forall x \bullet R_2 \Rightarrow R_1)$$

- \Rightarrow ((9.12) with shunted (3.82a) Transitivity of \Rightarrow)
 - $(\forall x \bullet (R_1 \Rightarrow P) \Rightarrow (R_2 \Rightarrow P))$
- \Rightarrow ((9.12) Monotonicity of \forall)

$$(\forall x \bullet R_1 \Rightarrow P) \Rightarrow (\forall x \bullet R_2 \Rightarrow P)$$

= $\langle (9.2) \text{ Trading for } \forall \rangle$

$$(\forall x \mid R_1 \bullet P) \Rightarrow (\forall x \mid R_2 \bullet P)$$

Monotonicity for ∃

(9.27) (Body) Monotonicity of \exists :

$$(\forall x \mid R \bullet P_1 \Rightarrow P_2) \Rightarrow ((\exists x \mid R \bullet P_1) \Rightarrow (\exists x \mid R \bullet P_2))$$

(9.27a) Range-Monotonicity of ∃:

$$(\forall x \bullet R_1 \Rightarrow R_2) \Rightarrow ((\exists x \mid R_1 \bullet P) \Rightarrow (\exists x \mid R_2 \bullet P))$$

Witnesses

(9.30v) **Metatheorem Witness**: If $\neg occurs('x', 'Q')$, then:

$$(\exists x \mid R \bullet P) \Rightarrow Q \text{ is a theorem}$$
 iff $(R \land P) \Rightarrow Q \text{ is a theorem}$

Theorem "Witness": $(\exists x \mid R \bullet P) \Rightarrow Q \equiv (\forall x \bullet R \land P \Rightarrow Q)$ prov. $\neg occurs('x', 'Q')$ **Proof:**

$$(\exists x \mid R \bullet P) \Rightarrow Q$$

= $\langle (9.19) \text{ Trading for } \exists \rangle$

$$(\exists x \bullet R \land P) \Rightarrow Q$$

= $\langle (3.59) p \Rightarrow q \equiv \neg p \lor q, (9.18b)$ Gen. De Morgan \rangle

$$(\forall x \bullet \neg (R \land P)) \lor Q$$

= $\langle (9.5) \text{ Distributivity of } \vee \text{ over } \forall --- \neg occurs('x', 'Q') \rangle$

$$(\forall x \bullet \neg (R \land P) \lor Q)$$

$$= \langle (3.59) p \Rightarrow q \equiv \neg p \lor q \rangle$$

$$(\forall x \bullet R \land P \Rightarrow Q)$$

The last line is, by (9.16) Universal quantification in theorems, a theorem iff $(R \land P) \Rightarrow Q$ is.

Witnesses (ctd.)

(9.30v) **Metatheorem Witness**: If $\neg occurs('x', 'Q')$, then:

$$(\exists x \mid R \bullet P) \Rightarrow Q \text{ is a theorem}$$
 iff $(R \land P) \Rightarrow Q \text{ is a theorem}$

(9.30) **Metatheorem Witness**: If $\neg occurs(\hat{x}', P, Q, R')$, then:

$$(\exists x \mid R \bullet P) \Rightarrow Q$$
 is a theorem iff $(R \land P)[x := \hat{x}] \Rightarrow Q$ is a theorem.

Witnesses: Using Existential Assumptions/Theorems

(9.30) **Metatheorem Witness**: If $\neg occurs(\hat{x}', P, Q, R')$, then:

$$(\exists x \mid R \bullet P) \Rightarrow Q$$
 is a theorem iff $(R \land P)[x := \hat{x}] \Rightarrow Q$ is a theorem.

Prove: $a + b = a + c \Rightarrow b = c$, using:

(9.31)
$$(\exists x : \mathbb{Z} \bullet x + a = 0)$$

(9.30) turns this into $(x + a = 0)[x = \alpha]$, so we use $\alpha + a = 0$.

$$a + b = a + c$$

 \Rightarrow (Leibniz, with Deduction Theorem (4.4))

$$\alpha + a + b = \alpha + a + c$$

= $\langle Assumption \alpha + a = 0 \rangle$

0 + b = 0 + c

= (Additive identity (15.3))

b = c

Predicate Logic Laws You Really Need To Know

(9.2) Trading for \forall : $(\forall x \mid R \bullet P) \equiv (\forall x \bullet R \Rightarrow P)$

(9.4a) Trading for \forall : $(\forall x \mid Q \land R \bullet P) \equiv (\forall x \mid Q \bullet R \Rightarrow P)$

(9.19) Trading for \exists : $(\exists x \mid R \bullet P) \equiv (\exists x \bullet R \land P)$

(9.20) Trading for \exists : $(\exists x \mid Q \land R \bullet P) \equiv (\exists x \mid Q \bullet R \land P)$

(9.13) Instantiation: $(\forall x \bullet P) \Rightarrow P[x := E]$

(9.28) \exists -Introduction: $P[x := E] \Rightarrow (\exists x \bullet P)$

(9.17) Generalised De Morgan: $(\exists x \mid R \bullet P) \equiv \neg(\forall x \mid R \bullet \neg P)$

(8.13) Empty Range: $(\forall x \mid false \bullet P) = true$ $(\exists x \mid false \bullet P) = false$

(8.14) **One-point Rule:** Provided $\neg occurs('x', 'E')$, $(\forall x \mid x = E \bullet P) \equiv P[x := E]$ $(\exists x \mid x = E \bullet P) \equiv P[x := E]$

 \dots and correctly handle substitution, Leibniz, renaming of bound variables, and monotonicity/antitonicity \dots

Sequences

- We may write (33, 22, 11) for the sequence that has
 - "33" as its first element,
 - "22" as its second element,
 - "11" as its third element, and
 - no further elements.

(Notation " $\langle ... \rangle$ " for sequences is not supported by CALCCHECK.)

- Sequence matters: (33, 22, 11) and (11, 22, 33) are different!
- Multiplicity matters: (33, 22, 11) and (33, 22, 22, 11) are different!
- We consider the type Seq *A* of sequences with elements of type *A* as generated inductively by the following two constructors:

```
\epsilon: Seq A \eps empty sequence \lhd: A \to \operatorname{Seq} A \to \operatorname{Seq} A \cons "cons" \lhd associates to the right.
```

• Therefore: $\langle 33, 22, 11 \rangle = 33 \triangleleft \langle 22, 11 \rangle$ = $33 \triangleleft 22 \triangleleft \langle 11 \rangle$ = $33 \triangleleft 22 \triangleleft 11 \triangleleft \epsilon$

Concatenation

Sequences — Induction Principle

- The set of all sequences over type A is written Seq A.
- The empty sequence " ϵ " is a sequence over type A.
- If x is an element of A and xs is a sequence over type A, then " $x \triangleleft xs$ " (pronounced: " $x \subseteq xs$ ") is a sequence over type A, too.
- Two sequences are equal <u>iff</u> they are constructed the same way from ϵ and \triangleleft .

Induction principle for sequences:

• if $P(\epsilon)$

If *P* holds for ϵ

• and if P(xs) implies $P(x \triangleleft xs)$ for all x : A,

and whenever *P* holds for xs, it also holds for any $x \triangleleft xs$

• then for all xs: Seq A we have P(xs).

then *P* holds for all sequences over *A*.

```
Sequences — Induction Proofs
Induction principle for sequences:
  • if P(ϵ)
                                                                                  If P holds for \epsilon
  • and if P(xs) implies P(x \triangleleft xs) for all x : A,
                                    and whenever P holds for xs, it also holds for any x \triangleleft xs
  • then for all xs: Seq A we have P(xs).
                                                         then P holds for all sequences over A.
An induction proof using this looks as follows:
Theorem: P
Proof:
  By induction on xs : Seq A:
     Base case:
       Proof for P[xs := \epsilon]
     Induction step:
       Proof for (\forall x : A \bullet P[xs := x \triangleleft xs])
          using Induction hypothesis P
```

```
(13.7) Tail is different: x \triangleleft xs \neq xs
```

```
(13.7) Tail is different: \forall xs : \mathsf{Seq} \ A \bullet \forall x : A \bullet x \triangleleft xs \neq xs
```