Universidad Autónoma de Madrid

COMPLEJIDAD Y COMPUTACIÓN

Teoría del caos y fractales

Autoress:

Alejandro VILLEGAS
Elena GUTIÉRREZ
Miguel Ángle GONZÁLEZ-GALLEGO
Pedro VALERO

16 de febrero de 2016

Índice

1.	\mathbf{Sist}	emas discretos	2
	1.1.	Ecuaciones en diferencias	2
	1.2.	Procesos de Verhulst. Period doubling, bifurcaciones	2
	1.3.	Ecuación logística	2
	1.4.	$x = x^2 + c$. Julia sets. Mandelbrot set	2
	1.5.	Fractales/dimensión de Hausdorlf/dimensión fractal	2
	1.6.	Polvo de Cantor	2
	1.7.	Ecuaciones de Volterra	2
2.	Sistemas continuos		
	2.1.	Sistemas dinámicos deterministas, ecuaciones diferenciales	2
	2.2.		2
	2.3.	·	2
	2.4.	Sistemas disipativos: atractores	2
	2.5.	Flujos, compresibles o no	2
	2.6.	Atractores extraños: caos	2
	2.7.	Exponentes de lyapunov	2
	2.8.	Ejemplos de sistemas	2
	2.9.	Lorenz Volterra	3
3.	Aplicaciones 3		
	-	Generación gráfica de conjuntos de Julia	3
	3.2.		3
	3.3.	Caos y criptografía	3
	3.4.		3
	3.5.		3
	3.6	Aeronáutica y fluidos	3

1. Sistemas discretos

Tiempo estimado de esta parte: 50 min Referencia

- The Beauty of fractals temas 1,2,3,4 y 8.
- 1.1. Ecuaciones en diferencias.
- 1.2. Procesos de Verhulst. Period doubling, bifurcaciones.
- 1.3. Ecuación logística
- 1.4. $x = x^2 + c$. Julia sets. Mandelbrot set.
- 1.5. Fractales/dimensión de Hausdorlf/dimensión fractal
- 1.6. Polvo de Cantor

No aparece en The Beauty of fractals (en algún otro libro de la bibliografía está).

1.7. Ecuaciones de Volterra

2. Sistemas continuos

Tiempo estimado de esta parte: 70 min. Referencia

- CHAOS: An introduction to dynamical systems temas 7,8,9 y 11.
- Elegant Chaos
- 2.1. Sistemas dinámicos deterministas, ecuaciones diferenciales
- 2.2. Espacio de estados/fases
- 2.3. Oscilaciones
- 2.4. Sistemas disipativos: atractores
- 2.5. Flujos, compresibles o no
- 2.6. Atractores extraños: caos

Hay que hablar de Atractores de Lorentz (artículo relacionado)

2.7. Exponentes de lyapunov

Hay que incluir algo.

2.8. Ejemplos de sistemas

Para los ejemplos: Non linear dynamic and chaos.

2.9. Lorenz Volterra

Ecuaciones en Non linear dynamic and chaos.

3. Aplicaciones

Tiempo estimado de esta parte: 30 min. Referencia

- Guide to Chaos
- 3.1. Generación gráfica de conjuntos de Julia
- 3.2. Ejemplos gráficos de explorar el conjunto de Mandelbrot
- 3.3. Caos y criptografía
- 3.4. Compresión fractal
- 3.5. Antenas fractales
- 3.6. Aeronáutica y fluidos

Referencias

- [1] Dprott, J.C, Elegant Chaos
- [2] Peitgen, H-O, Richter, P.H., The Beauty of Fractals.
- [3] Hall, Nina, Guide to Chaos
- [4] Strogatz, S.H. Nonlinear Dynamics and Chaos,
- [5] Alligood, K.T. et al, CHAOS: An introduction to dynamical systems