

Maker Space Lecture 1. What is Arduino?

YONSEI, where we make history

http://bitly.kr/2ivlS8k

YONSEI, where we make history

CONTENTS

- 1. Introduction to Arduino
- 2. Arduino Grammar
- 3. LED Tutorials
- 4. References

Definition of Arduino

➤ Easy to share code, library, and even hardware!

Arduino is an open-source electronics platform based on easy-to-use hardware and software.

To use it, you use the Arduino programming language, and the Arduino Software(IDE).

1 2

3

Applications of Arduino

https://www.youtube.com/watch?v=swoiluHrq4c&t=167s

Arduino CNC Drawing Machine

8x8x8 LED CUBE

http://www.arnabkumardas.com/product/arduino-cnc-drawing-machine/

Types of Arduino

Arduino Ethernet^[45] (AVR + W5100)

Arduino Yun^[46] (AVR + AR9331)

Arduino Due^[47] (ARM Cortex-M3 core)

2 3

Arduino Download

Step 2. 'JUST DOWNLOAD' 클릭

Step 4.

Double click the icon and click 'I Agree'

Step 4. Click 'Next' and Install

Step 5. Click 'Close'

Step 6. Double Click Arduino icon

```
파일 편집 스케치 툴 도움말
 sketch_jan19a
 void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```

3

Arduino Connection

Step 1. 그림과 같이 연결한다.

2 3

Arduino Connection

Step 2. 상단 메뉴 '툴'에서 '보드' 설정

Step 3. 상단 메뉴 '툴'에서 '포트'설정

Basic Structure

```
sketch_apr15a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```

setup()

: 최초 1회 실행, 초기 설정 함수

loop()

: 반복 실행, 동작 함수

Practice 1 - HELLO WORLD!

```
sketch_sep19a§
void setup() {
Serial.begin(9600);
void loop() {
Serial.println("HELLO WORLD!");
delay(1000);
```

Serial.begin()

: Serial 포트 초기화, 통신의 시작을 선언

Serial.println("string")

: Serial 모니터에 string을 출력하고 "₩n"을 출력한다. "₩n"은 새 줄로 입력함을 의미

delay()

: () milli seconds 동안 대기

-> 1초마다 "HELLO WORLD!" 출력

Serial Communication?

https://m.blog.naver.com/yuyyulee/220301424499

1: Upload 2: Click Serial monitor

```
sketch_sep19a§
void setup() {
Serial.begin(9600);
void loop() {
Serial.println("HELLO WORLD!");
delay(1000);
```

3: Set the baud rate

Function


```
    ★
    ★

    sketch_apr22a §
    ▼

    나가는값의자료형 함수이름(들어오는값){
    ^

    처리를 위한 명령문들...
    }
```

```
sketch_apr16a §

void happy() {
    //주석이여서 아무 효과 없어요~
    /*
    이렇게 쓰면
    여러 줄을 주석으로 쓸 수 있습니다.
    */
Serial.println("HELLO WORLD!");
}
```

{} Paragraph

; End a statement

주석 // for one line /* */ for multiple lines 2

if statement

if(case1){
 outcome1
}

-if문은 () 안의 참 거짓을 판별한다. 참이라면 {} 안의 내용을 실행한다.

-if문 뒤의 else, else if 는 생략해도 된다.

-else if는 무수히 많이 사용할 수 있다.

cf.

1 means 'ON', 'True', and 'HIGH' 0 means 'OFF', 'False', and 'LOW'

if statement

if(case1){
 outcome1
}

else(){
 outcome3
}

-if문은 () 안의 참 거짓을 판별한다. 참이라면 {} 안의 내용을 실행한다.

-if문 뒤의 else, else if 는 생략해도 된다.

-else if는 무수히 많이 사용할 수 있다.

cf.

1 means 'ON', 'True', and 'HIGH' 0 means 'OFF', 'False', and 'LOW'

if statement

```
if(case1){
  outcome1
}
else if(case2){
  outcome2
}
else(){
  outcome3
}
```


-if문은 () 안의 참 거짓을 판별한다. 참이라면 {} 안의 내용을 실행한다.

-if문 뒤의 else, else if 는 생략해도 된다.

-else if는 무수히 많이 사용할 수 있다.

cf.

1 means 'ON', 'True', and 'HIGH' 0 means 'OFF', 'False', and 'LOW' 2

Variable (변수)

-변수는 데이터를 저장하는 공간이며, name, value, type을 가지고 있다.

예를 들어, int pin = 13; 는 일반적인 변수 선언 방식이다.

이름은 pin, 값은 13이고 자료형은 int인 변수를 선언한 것이다.

-변수의 이름은 A~Z, a~z, 0~9, _ (숫자가 제일 앞에 올 수는 없음) 으로 쓸 수 있다.

-변수의 자료형 integer(정수형) : int, long (변수에 맞춰 적절한 자료형을 입력하여야 한다.)

real number(실수형) : float character(문자형) : char

Type?

http://www.3demp.com/community/boardDetails.php?cblD=212

Practice 2

```
practice2 §
void setup() {
  Serial begin (9600);
void loop() {
 if(Serial.available()>0){
   char c = Serial.read();
   if(c=='a'){
     Serial.println("You typed a");
   else{
      Serial println("You didn't type a");
```

Serial.available()

- : Serial 포트에 유의미한 값이 있는지 확인.
- : If data does exist, then its value is more than zero

Serial. read()

: Serial 통신으로 들어온 데이터의 맨 앞의 1바이트를 읽어와 그 값을 반환한다. (or -1 if no data is available)

Practice 2

Error case:

-한글자만 입력을 때, 2회 출력이 될 경우 line ending 없음 으로 설정할 것.

New line으로 설정되어 있는 경우, 아스키코드 10에 해당하는 line feed가 Serial.available()을 통과하며 빈 명령이 출력된다.

Practice 3 – About Numbers

```
sketch apr21a
void setup() {
 Serial.begin(9600);
void loop() {
  if(Serial.available()){
    long c = Serial.parseInt();
    long d = Serial.parseInt();
   Serial println(c*d);
업로드 완료.
```

Serial.parseint()

: 정수를 읽을 때 사용 Serial 모니터로 받은 값은 무조건 문자형으로 인식하기 때문에, 정수형으로 읽기 위해 read 대신 사용한다.

- : 다수의 입력을 할 때에는 Space로 구분하여 입력한다.
- : 숫자가 아닐 경우, 0을 반환한다.

Practice 3 — About Numbers

Breadboard(바다) Power bus Ground bus

Directions for the use

Connection

- : Always disconnect an Arduino from external power sources (laptop, battery, etc.) before making an electrical circuit.
- : 가장자리의 2줄은 세로, 나머지는 가로로 연결되어 있다.

여기에 저항을 연결해야 함

LED 사용하기

Long lead : + (plus) Short lead: - (minus)

LED 색상에 맞는 정격 전압이 있음

붉은색: 1.8~2.2 V, 20 mA 초록색: 3~3.4 V, 20 mA 파라색: 3~3.4 V, 20 mA

GND P fritzing

여기에 저항을 연결해야 함

필요 저항(R) 계산하기

아두이노 출력: 5V

정격 전압: x V

정격 전류: y mA

$$R = (5-x) / y$$

붉은색: 1.8~2.2 V, 20 mA

 $-> R = 140 \sim 160 \Omega$

초록색: 3~3.4 V, 20 mA

파란색: 3~3.4 V, 20 mA

 $-> R = 80 \sim 100 \Omega$

왼쪽 그림과 같이 연결!

붉은색 LED는 150 Ω 저항을 쓴다.

Practice 4 – Blink

4 LED Blink

```
#define LED 11

void setup(){
   pinMode(LED,OUTPUT);
   Serial.begin(9600);
   Serial.println("Start");
}

void loop(){
   digitalWrite(LED,HIGH);
   Serial.println("LED ON");
   delay(2000);
   digitalWrite(LED,LOW);
```

Serial.println("LED OFF");

업로드 완료

delay(2000);

#define

: Give a name to a constant

: #define constantName value

pinMode()

: Configures the specified pin to behave either as an input or an output

: pinMode(pin, mode)
pin – the number of the pin whose mode you wish to set
mode – INPUT or OUPUT

digitalWrite()

: Write a HIGH or a LOW value to a digital pin

: digitalWrite(pin, mode) pin – the pin number value – HIGH or LOW

PWM (Pulse Width Modulation)

- 1. 한 주기(Period)안에서 신호가 'ON' 상태인 시간을 지속시간 (Pulse Width)
- 2. 'ON'시간과 'OFF'시간의 비율을 Duty Cycle.
- ** 주기의 경우(t) 1/f 로 표현된다. t=1/f(주파수)

Digital signals

- : ON or OFF (interpreted in shorthand as 1 or 0) Analog signals
 - : infinite number of positions between 0 and 1

PWM

: A way to control analog devices with a digital output. You can output a modulating signal from a digital device such as an Arduino to drive an analog device.

for statement

```
- for 문은 {}로 묶인 블록을 반복하는 데에 사용한다.
- for(초기식; 조건식; 증감식){명령} 의 구조
 초기 시작값을 지정하고 그 값이 조건식을 불만족할 때 종료된다.
 시작값은 증감식에 의해 조정된다.
 : for(initialization; condition; increment){
           statement (s);
Examples
: for(int i=0; i<=255; i++){
           statement (s);
: for(int i=255; i>=0; i--){
           statement (s);
```

cf. i++ is equal to i=i+1; i-- is equal to i=i-1;

3

Practice 5 – Brightness

```
5_LED_Brightness §
#define LED 11
void setup() {
 pinMode (LED, OUTPUT);
  Serial.begin (9600);
  Serial.println("Start");
void loop() {
 // 점점 밝아진다.
  for(int i=0; i<=255; i++){
    analogWrite(LED, i);
    Serial.print("LED : \t");
    Serial.println(i);
    delay(10);
```

analogWrite()

: Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses or drive a motor at various speeds

```
: analogWrite(pin, value)
pin – the pin to write to
value – the duty cycle between 0 (always off) and 255
(always on)
```

Serial.print("")

: Print sentence on the serial monitor (no new line)

Practice 5 – Brightness

5_LED_Brightness §

delay(10);

```
#define LED 11

void setup() {
  pinMode(LED,OUTPUT);
  Serial.begin(9600);
  Serial.println("Start");
}

void loop() {
  // 점점 밝아진다.
  for(int i=0; i<=255; i++){
    analogWrite(LED,i);
    Serial.print("LED : \t");
    Serial.println(i);
```

점점 어두워지게 하려면?

초기식, 조건식, 증감식을 수정한다.

Practice 5 – Brightness

```
5_LED_Brightness §
```

```
#define LED 11
void setup() {
 pinMode (LED, OUTPUT);
 Serial.begin(9600);
 Serial.println("Start");
void loop() {
 // 점점 어두워진다.
 for (int i=255; i>=0; i--) {
    analogWrite(LED, i);
   Serial.print("LED : \t");
    Serial.println(i);
    delay(10);
```

점점 어두워지게 하려면?

for(int i=255; i>=0; i--)

왼쪽 그림과 같이 연결!

붉은색 LED는 150 Ω 저항을 쓴다.

녹색, 파란색은 100 Ω 저항을 쓴다.

Practice 6 – LED 3개 제어하기

```
6_3LED
```

```
#define Blue 9
#define Green 10
#define Red 11
void setup(){
  pinMode (Blue, OUTPUT);
  pinMode (Green, OUTPUT);
  pinMode (Red, OUTPUT);
  digitalWrite(Blue,LOW);
  digitalWrite (Green, LOW);
  digitalWrite (Red, LOW);
  Serial.begin(9600);
  Serial.println("Start");
void loop(){
  digitalWrite(Blue, HIGH);
  delay(3000);
  digitalWrite(Blue,LOW);
  digitalWrite(Green, HIGH);
  delay(1000);
  digitalWrite(Green, LOW);
  digitalWrite (Red, HIGH);
  delay(3000);
  digitalWrite(Red, LOW);
```

1개를 연결할 때와 동일하게,

Pin 번호만 바꿔서 작성하면 된다.

Light sensor? https://cafe.naver.com/mechawiki/37

Practice 7 – Light sensor

```
7 LightSensor_only
#define D sensor 2
#define A sensor A0
void setup() {
  pinMode(D sensor, INPUT);
  pinMode (A sensor, INPUT);
  Serial.begin (9600);
  Serial.println("Start");
int light digital=0;
int light analog=0;
void loop(){
  light digital = digitalRead(D sensor);
  light analog = analogRead(A sensor);
  Serial.print("Digital : \t");
                                      cf. in print function,
  Serial.print(light digital);
                                      \t is equal to tab
  Serial.print("\tAnalog : \t");
                                      \n is equal to new line
  Serial.println(light analog);
```

digitalRead()

: Reads the value from a specified digital pin, either HIGH or LOW. It returns HIGH or LOW

: digitalRead(pin)pin – the number of the digital pin you want to read

analogRead()

: Reads the value from the specified analog pin. It will map input voltages between 0 and the operating voltage(5V or 3.3V) into integer values between 0 and 1023. It returns the analog reading on the pin (int) (0~1023)

: analogRead(pin) pin – the name of the analog input pin to read from (A0 to A5)

Practice 8 – Light sensor blink

```
8 LightSensor LED
#define Blue 9
#define Green 10
#define Red 11
#define D sensor 2
#define A sensor A0
void setup() {
  pinMode (Blue, OUTPUT);
  pinMode (Green, OUTPUT);
 pinMode (Red, OUTPUT);
 pinMode(D sensor, INPUT);
 pinMode (A sensor, INPUT);
  digitalWrite (Blue, LOW);
  digitalWrite (Green, LOW);
  digitalWrite(Red, LOW);
  Serial.begin(9600);
  Serial.println("Start");
int light digital=0;
int light analog=0;
```

```
void loop() {
  light digital = digitalRead(D sensor);
  light analog = analogRead(A sensor);
  Serial.print("Digital : \t");
  Serial.print(light digital);
  Serial.print("\tAnalog : \t");
  Serial.println(light analog);
 LED Digital (Blue);
 LED Digital (Green);
 LED Digital (Red);
  /*LED Analog(Blue);
  LED Analog (Green);
  LED Analog(Red); */
void LED Digital (int LED) {
  digitalWrite(LED, light digital);
void LED Analog(int LED) {
  analogWrite(LED, map(light analog, 0, 1023, 0, 255));
```


Cathode 타입 RGB LED 가장 긴 2번째 핀이 – 다.

1번째 핀 = RED

3번째 핀 = GREEN

4번째 핀 = BLUE

```
9_RGB_Color
#define Blue 9
#define Green 10
#define Red 11
void setup() {
  pinMode(Blue,OUTPUT);
  pinMode (Green, OUTPUT);
  pinMode (Red, OUTPUT);
  digitalWrite(Blue,LOW);
  digitalWrite(Green, LOW);
  digitalWrite (Red, LOW);
  Serial.begin(9600);
  Serial.println("Start");
void loop() {
  for(int i=0; i<=255;i++){
    analogWrite(Blue, i);
    analogWrite(Green, i);
    analogWrite(Red, i);
    delay(10);
```

R, G, B 모두 점점 밝아진다.

이 때 백색으로 보인다.

```
10_RGB_Serial §
#define Blue 9
#define Green 10
#define Red 11
int R = 0, G = 0, B = 0;
void setup() {
  pinMode (Blue, OUTPUT);
  pinMode (Green, OUTPUT);
  pinMode (Red, OUTPUT);
  digitalWrite(Blue,LOW);
  digitalWrite (Green, LOW);
  digitalWrite(Red,LOW);
 Serial.begin(9600);
 Serial.println("Start");
void loop() {
 if (Serial.available()>0) {
   R = Serial.parseInt();
   G = Serial.parseInt();
   B = Serial.parseInt();
   Serial.println((String)"R:"+R+"\tG:"+G+"\tB:"+B);
    analogWrite(Blue, B);
    analogWrite (Green, G);
    analogWrite(Red, R);
    delay(10);
```

Serial 통신으로 R, G, B 값을 읽어 들여 각각의 밝기로 빛나며 색을 띄게 된다.

RGB 색상표 참고

- 1	100	m110000	(200,000,000)	raidaoise	m-100000	(004) 224) 200)
	crimson	#dc143c	(220, 020, 060)	darkturquoise	#00ced1	(000, 206, 209)
	firebrick	#b22222	(178, 034, 034)	aqua	#00ffff	(000, 255, 255)
	maroon	#800000	(128,000,000)	cyan	#00ffff	(000, 255, 255)
	darkred	#850000	(139,000,000)	deepskyblue	#00bfff	(000, 191, 255)
	brown	#a52a2a	(165,042,042)	dodgerblue	#1e90ff	(030, 144, 255)
	sienna	#a,0522d	(160, 082, 045)	cornflowerblue	#6495ed	(100, 149, 237)
	saddlebrown	#8b4513	(139, 069, 019)	royalblue	#4169e1	(065, 105, 000)
	indianred	#cd5c5c	(205, 092, 092)	blue	#0000ff	(000, 000, 255)
	rosybrown	#bc8f8f	(188, 143, 143)	mediumblue	#0000cd	(000, 000, 205)
	lightcoral	#f08080	(240, 128, 128)	navy	#000080	(128,000,000)
	salmon	#fa.8072	(250, 128, 114)	darkblue	#00008b	(000, 000, 139)
	darksalmon	#e9967a	(233, 150, 122)	midnightblue	#191970	(025, 025, 112)
	coral	#ff7f50	(255, 127, 080)	darkslateblue	#483d8b	(072,061,139)
	tomato	#ff6347	(255, 099, 071)	slateblue	#6a5acd	(106, 090, 205)
	sandybrown	#f4a460	(244, 164, 096)	mediumslateblue	#7b68ee	(123, 104, 238)
	lightsalmon	#ffa07a	(255, 160, 122)	mediumpurple	#9370db	(147, 112, 219)
	peru	#cd853f	(205, 133, 063)	darkorchid	#9932cc	(153, 050, 204)
	chocolate	#d2691e	(210, 105, 030)	darkviolet	#9400d3	(148,000,211)
1	orangered	#ff4500	(255, 069, 000)	blueviolet	#8a2be2	(138, 043, 226)
	orange	#ffa.500	(255, 165, 000)	mediumorchid	#ba55d3	(186, 085, 211)
	darkorange	#ff8c00	(255, 140, 000)	plum	#dda0dd	(221, 160, 221)
1	tan	#d2b48c	(210, 180, 140)	lavender	#e6e6fa	(230, 230, 250)
	peachpuff	#ffdab9	(255, 218, 185)	thistle	#d8bfd8	(216, 191, 216)
	bisque	#ffe4c4	(255, 228, 196)	orchid	#da70d6	(218, 112, 214)
	moccasin	#ffe4b5	(255, 228, 181)	violet	#ee82ee	(238, 130, 238)
Ī	navajowhite	#ffdead	(255, 222, 173)	indigo	#4b0082	(075,000,130)
	wheat	#f5deb3	(245, 222, 179)	darkmagenta	#8b008b	(139,000,139)
	burlywood	#deb887	(222, 184, 135)	purple	#800080	(128,000,128)
	darkgoldenrod	#b8860b	(184, 134, 011)	mediumvioletred	#c71585	(199,021,133)
	goldenrod	#daa520	(218, 165, 032)	deeppink	#ff1493	(255, 020, 147)
	gold	#ffd700	(255, 215, 000)	fuchsia	#ff00ff	(255, 000, 255)
	yellow	#ffff00	(255, 255, 000)	magenta	#ff00ff	(255, 000, 255)
	lightgoldenrodyellow	#fafad2	(250, 250, 210)	hotpink	#ff69b4	(255, 105, 180)
Ī	palegoldenrod	#eee8aa	(238, 232, 170)	palevioletred	#db7093	(219, 112, 147)
	khaki	#f0e68c	(240, 230, 140)	lightpink	#ffb6c1	(255, 182, 193)
	darkkhaki	#bdb76b	(189, 183, 107)	pink	#ffc0cb	(255, 192, 203)

(255,000,000)

#40e0d0

turquoise

(064, 224, 208)

2

Reference

https://codingrun.com/65 https://forum.arduino.cc/

https://dokkodai.tistory.com/188

Q & A

kynk94@naver.com 들어주셔서 감사합니다.