Modeling and Simulation

Dr. Belkacem KHALDI b.khaldi@esi-sba.dz ESI-SBA, Algeria

Level: 2nd SC Class Date:May 11, 2022

Lecture 5:

Solving Problems with Monte-Carlo Simulation Technique

What is Monte-Carlo Method

Monte-Carlo Method:

computational method using repeated random sampling to obtain numerical results.

- named after gambling in Monte-Carlo casino in Monaco.
- Technique invented in the context of the development of the atomic bomb in the 1940's.
- Provides generally approximate solutions to problems that are hard to solve analytically or numerically.
- Implemented with the uses of pseudo-random number generators

Figure 1: Monte-Carlo Casino in Monaco

Monte-Carlo Domains of Applications

- Actually, widely used in:
 - Engineering,
 - Physical Sciences,
 - Computational Biology,
 - Computer Graphics,
 - Artificial intelligence for Games,
 - Finance and Business,
 - Applied statistics,
 - Project Planning,
 - ...etc.

Basics of Monte-Carlo Simulation

- Monte-Carlo (MC) Simulation: A
 method of estimating the value of an
 unknown quantity or solving deterministic
 systems using the principles of inferential
 statistics.
- Multiple samples are collected and used to approximate the desired quantity.
 - Exactly what we did in simulating probabilities of throwing a dice (See Lecture 03: Probabilities and Random Number Simulation).

Inferential Statistics:

- Observation: Result from one trial of an experiment.
- Population: Space of all possible observations that could be seen from a trial.
- Sample: Group of results gathered from separate independent trials.
- Key fact: a random sample tends to exhibit the same properties as the population from which it is drawn.

The Probabilistic Basis for Monte-Carlo: Law of Large Numbers (LLN)

Estimation of the Mean:

Given a probability space (Ω, P) and a random variable X on it, the quantity we want to estimate is the mean of X.

LLN Theorem

Let X_n be an independent, and identically distributed (i.i.d.) sequence sampled from any probability distribution \mathcal{P} with mean $\mu = E[X]$. Then:

$$\hat{\mu}_n = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^n X_k \right) \to \mu$$

Important Note: the more random trials that are performed, the more accurate the approximated quantity, $\hat{\mu}_n$, will become.

The Probabilistic Basis for Monte-Carlo: Law of Large Numbers (LLN)

Error Estimation in $\hat{\mu}_n$:

- The LLN tells us that $\hat{\mu}_n$ converges to μ but it does not tell us anything about how close $\hat{\mu}_n$ is to μ .
- In any Monte Carlo simulation we do not actually let $n \to \infty$, we only use a (hopefully) large value of n.
- So it is crucial to address this question of how close our approximation is.

In Statistics, theory tells us that the difference of $\hat{\mu}_n$ from μ should be of order $\frac{\sigma}{\sqrt{n}}$.

$$|\hat{\mu}_n - \mu| \approx \frac{\sigma}{\sqrt{n}}$$

The Probabilistic Basis for Monte-Carlo: Law of Large Numbers (LLN)

Monte-Carlo Illustration of LLN with Uniform and Exponential Distributions:

Figure 2: For n = 100

Figure 3: For n = 1000

The Probabilistic Basis for Monte-Carlo: Law of Large Numbers (LLN)

Monte-Carlo Illustration of LLN Error Estimation with Uniform and Exponential Distributions:

Figure 4: For n = 100

Figure 5: For n = 1000

The Probabilistic Basis for Monte-Carlo: Central Limit Theorem (CLT)

A more precise statement of how $\hat{\mu}_n$ is distributed can be obtained using: The central limit theorem.

CLT

Let X_n be an independent, and identically distributed (i.i.d.) sequence sampled from any probability distribution \mathcal{P} with mean μ and variance σ^2 . Then:

$$\hat{\mu}_n \xrightarrow{n \to \infty} \mathcal{N}\left(\mu, \sigma^2/n\right) \Longleftrightarrow \left(Z = \frac{\hat{\mu}_n - \mu}{\sigma/\sqrt{n}}\right) \xrightarrow{n \to \infty} \mathcal{N}(0, 1)$$

Important Notes:

- The distribution of independent sample means is an approximately normal distribution, even if the population is not normally distributed.
- in CLT, given a dataset with an unknown distribution, the sample's means will approximate the normal distribution.

The Probabilistic Basis for Monte-Carlo: Confidence Interval

- From Statistic theory, for 95% of the time, $\hat{\mu}_n$ will be within $1.96\frac{\sigma}{\sqrt{n}}$ from μ .
- Alternatively, for 95% of the time, μ will be within $1.96\frac{\sigma}{\sqrt{n}}$ from $\hat{\mu}_n$.
- Hence, we call the interval:

$$\hat{\mu}_n \pm 1.96 \frac{\sigma}{\sqrt{n}} = \left[\hat{\mu}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + 1.96 \frac{\sigma}{\sqrt{n}} \right]$$

or

$$\mu \pm 1.96 \frac{\sigma}{\sqrt{n}} = \left[\mu - 1.96 \frac{\sigma}{\sqrt{n}}, \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

a 95% confidence interval for μ .

Important Notes: σ can be approximated using the sample standard deviation

Central Limit Theorem (CLT): Illustration with Uniform and Exponential Distributions

Figure 6: For n = 100

Figure 7: For n = 1000

Monte Carlo simulation: Basic steps

- Define Possible Inputs
 Generate Inputs Randomly
 Computation on the Inputs
 - Aggregate the Results

Define the domain of possible inputs.

 The simulated "universe" should be similar to the universe whose behavior we wish to describe and investigate.

Monte Carlo simulation: Basic steps

- 1 Define Possible Inputs
 - 2 Generate Inputs Randomly
 - 3 Computation on the Inputs
 - 4 Aggregate the Results

Generate inputs randomly from a probability distribution over the domain.

- inputs should be generated so that their characteristics are similar to the real universe we are trying to simulate
- in particular, dependencies between the inputs should be represented

Monte Carlo simulation: Basic steps

- 1 Define Possible Inputs
 - 2 Generate Inputs Randomly
 - 3 Computation on the Inputs
 - 4 Aggregate the Results

The **computation** should be deterministic.

Monte Carlo simulation: Basic steps

- 1 Define Possible Inputs
 - 2 Generate Inputs Randomly
 - 3 **Computation** on the Inputs
 - 4 Aggregate the Results

Aggregate the results to obtain the output of interest.

Typical outputs:

- histogram
- summary statistics(mean,standard deviation...)
- confidence intervals,
- ..

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

- Consider the largest circle which can be fit in the square ranging on \mathbb{R}^2 over $[-1,1]^2$.
 - the circle has radius 1 and area π .
 - the square has an area of $2^2 = 4$.
 - The ratio between their areas is thus $\frac{\pi}{4}$
- π can be approximated using the following Monte-Carlo procedure:
 - 1. draw the square over $[-1, 1]^2$.
 - 2. draw the largest circle that fits inside the square.
 - 3. randomly scatter a large number N of points over the square.
 - 4. count how many point fell inside the circle.
 - 5. the count divided by N and multiplied by 4 is an approximation of π

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

- Define Possible Inputs

 Generate Inputs Randomly

 Computation on the Inputs

 Aggregate the Results
- All points within the $[-1,1]^2$ unit square, uniformly distributed.

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

Define Possible Inputs
 Generate Inputs Randomly
 Computation on the Inputs

Aggregate the Results

Generate N uniform random points of (x,y) from the unit square in Python:

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

Define Possible Inputs
 Generate Inputs Randomly
 Computation on the Inputs
 Aggregate the Results

Test whether a randomly generated point(x, y) is within the circle:

```
for point in points:
    x = point[0]
    y = point[1]

if (np.sqrt(x**2 + y**2)) < 1:
    print("The point is inside")
else:
    print("The point is outside")</pre>
```

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

Define Possible Inputs
 Generate Inputs Randomly
 Computation on the Inputs

Aggregate the Results

Count the proportion of points that are within the circle:

```
_{1} N = 10000
_2 inside = 0
3 outside = 0
4 for point in points:
      x,y = point[0], point[1]
      if (np.sqrt(x**2 + y**2)) < 1:
          inside += 1
      else:
          outside += 1
pi = 4*inside / float(N)
print("Estimated Pi: {}".format(pi))
```

Monte Carlo simulation: Basic steps illustration Example

Example: π **Estimation**

Putting it all together: here is an implementation in Python with the NumPy library.

```
import numpy as np
pnp.random.seed(42)
_3 N = 100000
4 inside, outside = [],[]
5 points = np.random.uniform(-1, 1, size=(N
     .2))
 for point in random_points:
     x = point[0]
     v = point[1]
8
     if (np.sqrt(x**2 + y**2)) < 1:
          inside.append((x, y))
10
      else:
          outside.append((x, y))
pi = 4*len(inside) / len(random_points)
```


Monte-Carlo Applications in Resolving Numerical Integrals

Assume we want to evaluate an integral:

$$\int_{I} f(x) dx$$

• **Principle:** The integral to compute is related to the expectation of a random variable

$$\mathbb{E}(f(x) = \int_{I} f(x) dx$$

- Sample points within I
- Calculate the mean of the random variable within I
- Integral = sampled area × mean

Monte-Carlo Applications in Resolving Numerical Integrals: Integration Example

Task: find the shaded area, $\int_1^5 x^2 dx$

Analytical solution:

```
import sympy as sy
x = sy.Symbol("x")
i = sy.integrate(x**2)
4 i.subs(x, 5) - i.subs(x, 1)
5124/3
6 float(i.subs(x, 5) - i.subs(
    x, 1))
7 41.333333333333333
```

```
1 import numpy as np
_{2} N = 100000
3 \text{ accum} = 0
4 for i in range(N):
      x = np.random.uniform(1,
      5)
      accum += x**2
_{7} area = 5-1
8 integral = area*accum/float(
    N)
41.282652648597875
```

Monte-Carlo Applications in Resolving Numerical Integrals: Integration Example

Task: find the shaded area, $\int_{1}^{3} e^{x^{2}} dx$

Analytical solution:

```
import sympy as sy
_2 x = sy.Symbol("x")
3 i = sy.integrate(sy.exp(x
    **2))
4 i.subs(x, 3) - i.subs(x, 1)
5 float(i.subs(x, 3) - i.subs(
    x, 1))
6 1443.082471146807
```

```
1 import numpy as np
_{2} N = 100000
3 \text{ accum} = 0
4 for i in range(N):
      x = np.random.uniform(1,
      3)
  accum += np.exp(x**2)
_{7} \text{ area} = 3 - 1
8 integral = area * accum /
     float(N)
 1441.9954276924555
```

Monte-Carlo Applications in Resolving Numerical Integrals: 2D integration example

Task: resolve the double integral, $\int_0^1 \int_4^6 \cos(x^4) + 3y^2 dx dy$

Analytical solution:

```
import sympy as sy
_2 x = sy.Symbol("x")
y = sy.Symbol("y")
4 d1 = sy.integrate(sy.cos(x
    **4) + 3 * y**2, x)
5 d2 = sy.integrate(d1.subs(x,
     6) - d1.subs(x, 4), y)
6 \text{ sol} = d2.subs(y, 1) - d2.
    subs(y, 0)
7 float (sol)
8 2.005055086749674
```

```
1 import numpy as np
_{2} N = 100000
3 \text{ accum} = 0
4 for i in range(N):
  x = np.random.uniform(4,
      6)
  y = np.random.uniform(0,
accum += np.cos(x**4) +
    3 * y * y
8 \text{ volume} = (6-4) * (1-0)
9 integral = volume * accum/
     float(N)
10 2.0070240947478672
```

Monte-Carlo Applications to Uncertainty Analysis

- Uncertainty Analysis: investigates the uncertainty of variables that are used in decision-making problems.
- **Uncertainty** is inherent in everything we do.

In numerical experiments

- Our goal:
 - Quantify uncertainties propagated in models variables.
 - Understand and model it to make better decisions

Monte-Carlo Applications to Uncertainty Analysis: Basics Steps

- Uncertainty analysis: propagate uncertainty on input variables through the model to obtain a probability distribution of the output(s) of interest
- **Principle:** Uncertainty on each input variable is characterized by a probability density function
- Run the model a large number of times with input values drawn randomly from their PDF.
- Aggregate the output uncertainty as a probability distribution

Monte-Carlo Applications to Uncertainty Analysis: Basics Steps

Monte-Carlo Applications to Uncertainty Analysis: Example for uncertainty propagation

- Let X be a measure uniformly distributed over [0,100] and Y another measure exponentially distributed with $\beta=2.25$.
- We are interested in the distribution of the output variable:

$$Z = X * Y$$

Q: What is the 95th percentile of Z?

```
1 import numpy as np
_{2} N = 10000
Z = np.zeros(N)
4 for i in range(N):
      x = np.random.uniform
     (-100, 100)
      y = np.random.
    exponential (2.25)
      Z[i] = x * y
8 print(np.percentile(zs, 95))
9 sns.displot(zs)
10 277 . 23873656594316
```

Monte-Carlo Applications to Uncertainty Analysis: Example for uncertainty propagation

End of Lecture 5:

Solving Problems with Monte-Carlo Simulation Technique

