Artificial Intelligence

Question 1

Taxi-v2 with value-iteration and policy-iteration

Mohammad Reza Ghamkhar 95106494

Gamma

• گاما = 0.99 و value_iteration

• گاما = 1 و value_iteraion

در این حالت در هر مرحله مقدار Q(s,a) حداقل به اندازه V(s') تغییر می کند ذر نتیجه هیچ وقت همگر ا نمی شود اگرچه چون در هر مرحله مقدار V(s) به یک نسبت زیاد می شود به یک حالت شبه همگر ا می رسد. در این تابع من یک حد بالا بر ابر 1000 بر ای مقدار iteration ها بر ای همگر ایی در نظر گرفتم به این معنی که اگر بعد از 1000 مرحله همگر ا نشد همان مقدار V(s) را به عنو ان مقدار همگر ا شده بر می گرداند. تصویر مربوط به این حالت:

• گاما = 0.99 و policy_iteration

هر iteration در این روش شامل policy_improvment و policy_improvment است.

که مرحله policy_evaluation نقریبا مشابه value iteration با gamma=0.99 است و در نتیجه همگرا است (که البته خیلی زودنتر از value iteration همگرا می شود چون فقط براساس policy یک action انتخاب می کند و برای همه action های موجود این کار را انجام نمی دهد درنتیجه در هر مرحله تفاوت نسبت به حالت قبل کمتر می شود)

در مورد policy_improvment هم چون policy_evaluation همگراست براساس صفحه 69 اسلاید MDP استد، همگرا می شود. تصویر متناظر با این ادعا که نشانگر همگرا شدن بعد از iteration 17 است:

```
finding and optimal policy for 'Taxi-v2' using 'Policy_Iteration'
gamma: 0.99
number of states: 500
number of actions: 6
delta: 0.01
Convergence happened after '17' iterations
policy:
[4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 3, 3, 3,
```

• گاما = 1 و policy_iteration

در این حالت ،مرحله policy_evaluation به خاطر این که مانند value_iteration از max_a استفاده نمی کند و gamma=1 همواره از V_k استفاده می کند و gamma=1 است در نتیجه مقدار V_{K+1} همواره مقداری ثابت کمتر از V_k است و هیچ وقت همگرا نمی شود در نتیجه در این حالت مقدار policy_evaluation و policy_improvment همگرا نمی شود. و جواب بهینه بدست نمی آید(برخلاف gamma=1 value iteration که باز هم بعد از تعداد خوبی مرحله جواب بهینه بدست می آمد)

مقايسه جواب ها با gamma=0.99 و gamma=0.99

در روش value_iteration هنگامی که gamma=1 است اگر تعداد مناسبی value_iteration گذشته باشد می توانیم فرض کنیم به همگر ایی رسیده ایم و از روی Q(s,a) ها policy بهینه را بدست آوریم که این policy مشابه policy بدست آمده از طریق value_iteration با gamma=0.99 است.

اما در مورد policy_iteration قضیه متفاوت است و جواب حاصل از gamma=0.99 جواب بهینه و درست است و با جواب حاصل از gamma=1.99 متفاوت است (که جوابی نادرست و غیربهینه است).

مقایسه زمانی policy_iteration vs value_iteration

در مورد این مسئله (taxi-v2) الگوریتم policy_iteration بسیار سریع تر (حدود 5 برابر) از الگوریتم taxi-v2) الدور و و برابر) از الگوریتم cpu intel Core i5 2.3 النیه طول می کشد value_iteration حدود 4 ثانیه و policy_iteration

GHz)). با اجرا کردن کد Taxi.py می توانید نتایج را مشاهده کنید:

```
value_iteration took 3946.48'ms to execute policy_iteration took '841.75'ms to execute
```