

SURFACE MOUNT CAPACITOR

Patent number: JP2002313676
Publication date: 2002-10-25
Inventor: ARAI TOMOJI; MASUDA KOICHIRO
Applicant: NEC TOKIN CORP
Classification:
 - International: H01G9/004; H01G9/00; H01G9/028; H01G9/04
 - european:
Application number: JP20010110399 20010409
Priority number(s): JP20010110399 20010409

Also published as:

- US6717793 (B2)
- US2002144897 (A1)
- GB2377553 (A)

Abstract not available for JP2002313676
 Abstract of corresponding document: **US6717793**

Surface mount type condenser, which is capable of preventing transmission of electromagnetic wave between anode terminals and excellent in its noise removal performance in a high frequency region, having two anode portions and a substantially planar plate-shape first metallic plate sandwiched by two substantially planar plate-shape cathode portions, one of which being formed with a cathode terminal and connected thereto in a manner confronting a substrate, the two anode portions being provided with two anode terminals formed thereon and connected thereto in a manner of confronting the substrate, and characterized in that a substantially planar plate-shape second metallic plate electrically connected to a surface of the other of the cathode portions is provided in a manner of covering a predetermined region of the anode terminals.

(a)

(b)

Data supplied from the **esp@cenet** database - Worldwide

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-313676

(P2002-313676A)

(43)公開日 平成14年10月25日 (2002. 10. 25)

(51) Int.Cl.
 H 01 G 9/004
 9/00
 9/028
 9/04

識別記号

F I
 H 01 G 9/05
 9/24
 9/05
 9/02

テ-マコト(参考)
 C
 C
 H
 G

331 F
 審査請求 有 請求項の数 9 OL (全 7 頁)

(21)出願番号

特願2001-110399(P2001-110399)

(22)出願日

平成13年4月9日 (2001. 4. 9)

(71)出願人 000134257

エヌイーシートーキン株式会社

宮城県仙台市太白区郡山6丁目7番1号

(72)発明者 荒井 智次

東京都港区芝五丁目7番1号 日本電気株
式会社内

(72)発明者 増田 幸一郎

東京都港区芝五丁目7番1号 日本電気株
式会社内

(54)【発明の名称】 表面実装型コンデンサ

(57)【要約】

【課題】陽極端子間の電磁波の伝播を防ぎ、高周波領域におけるノイズ除去性能に優れた表面実装型コンデンサを提供する。

【解決手段】二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続される略平板形状の第二の金属板が前記陽極端子の所定の領域を覆う態様で設けられたことを特徴とする。

(a)

(b)

Best Available Copy

(2)

特開2002-313676

1

【特許請求の範囲】

【請求項1】二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続される略平板形状の第二の金属板が前記陽極端子の所定の領域を覆う態様で設けられたことを特徴とする表面実装型コンデンサ。

【請求項2】二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続され、前記陽極端子の表面に対向する面を有する略平板形状の第二の金属板が設けられたことを特徴とする表面実装型コンデンサ。

【請求項3】二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続され、前記陽極端子の表面の全部に対向する面を有する略平板形状の第二の金属板が設けられたことを特徴とする表面実装型コンデンサ。

【請求項4】前記第二の金属板の表面に、磁性材料からなる層が形成されたことを特徴とする請求項1乃至請求項3の何れか一項に記載の表面実装型コンデンサ。

【請求項5】前記磁性材料からなる層の幅は、前記第一の金属板の幅以上に設定されたことを特徴とする請求項4に記載の表面実装型コンデンサ。

【請求項6】前記第二の金属板が前記陽極部の側面を覆う態様で延設されたことを特徴とする請求項1乃至請求項5の何れか一項に記載の表面実装型コンデンサ。

【請求項7】前記第二の金属板と前記陽極部との相互の対向面の両面に絶縁層が形成されたことを特徴とする請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサ。

【請求項8】前記第二の金属板と前記陽極端子とが対向する空間に絶縁性の樹脂が充填されたことを特徴とする請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサ。

【請求項9】前記第二の金属板と前記陽極端子とが対向する空間を含む周囲全体が絶縁性の樹脂によって封止さ

2

れたことを特徴とする請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサ。

【発明の詳細な説明】

【0001】

【発明の属する分野】本発明は、電子基板上に実装され、主にノイズフィルタとして用いられる表面実装型コンデンサに関するものである。

【0002】

【従来の技術】近年の電子部品の高性能化、小型化、軽量化に伴い、電源の小型化が急速に発展してきた。電源の小型化は、動作周波数を高周波数化することで達成されるが、このような電源を用いた電源回路に使用される部品として、特に電子基板に実装されるノイズフィルタ、すなわちコンデンサ等の性能に対する要求は厳しくなる一方である。このような要求に対する表面実装型コンデンサとしては、導電性を有する機能性高分子を陰極として用い、電子基板の表面に実装されるアルミニウム固体電解コンデンサが開発され、実用化されている。このアルミニウム固体電解コンデンサは、それまでのアルミニウムコンデンサやタンタルコンデンサに比べ、 $1/20 \sim 1/50$ の等価直列抵抗(ESR)であるという利点がある。

【0003】図6は、表面実装型コンデンサの従来の構成を示す断面図である。図6に示すように、従来の表面実装型コンデンサ1の構成は、略平板形状をなす二の陰極部2が略平板形状をなす第一の金属板7を挟んでなる。従って、前記第一の金属板7に接していない前記陰極部2のそれぞれの面が、前記二の陰極部2の表面を形成し、係る陰極部の一方の面2aが基板上に形成された陰極端子4に接続されると共に、前記二の陰極部2から突出した前記第一の金属板7の両端部が二の陽極部を形成し、それぞれの端部には、基板6上に設けられたランドに電気的に接続される二の陽極端子5が形成されている。また、陰極部2(陰極端子4)と陽極部3(陽極端子5)との電気的な短絡を防ぐため、陽極部2及び陽極端子5の表面に絶縁層を設けたり、表面実装型コンデンサ1自体を絶縁性の樹脂などで封止していた。このようにして基板6に実装された表面実装型コンデンサ1は、二の陽極端子5に接続される二の陽極部3と、一の陰極端子4に接続される一の陰極部2とからなるため、三極端子のノイズフィルタと呼ばれる。従って、この表面実装型コンデンサ1が基板6に実装された場合、前記陽極端子5の一方から入力された電気信号が濾波され、その電気信号は前記陽極端子5の他方に出力されることとなる。

【0004】

【発明が解決しようとする課題】しかしながら、従来の表面実装型コンデンサは、100 MHz以上の高周波数領域において、一方の陽極端子から放出されたノイズが電磁波として空中を伝播し、他方の陽極端子へと到達す

Best Available Copy

(3)

特開2002-313676

3

る現象が顕著であった。すなわち、このような現象が生じることにより、一方の陽極端子に入ってきた信号が電磁波（ノイズ）として空气中を伝播し、他方の陽極端子に短絡してしまうため、十分なノイズ除去を行うことができなかった。従って、100MHz以上の高周波領域においては十分なノイズ除去が行われていなかった。

【0005】本発明は、以上の従来技術における問題に鑑みてなされたものであり、陽極端子間の電磁波の伝播を防ぎ、高周波領域におけるノイズ除去性能に優れた表面実装型コンデンサを提供することを目的とする。

【0006】

【課題を解決するための手段】前記課題を解決するためには、本願第一の発明に係る表面実装型コンデンサは、二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続される略平板形状の第二の金属板が前記陽極端子の所定の領域を覆う態様で設けられたことを特徴とする。

【0007】係る構成とすることにより、表面実装型コンデンサに高周波電流を流した際に特に陽極電子から放出される電磁波の挙動を陽極端子と第二の金属板との間で抑制することができる。ここで、この第二の金属板は、前記二の陽極端子間に電磁波が伝播しないように、その経路を遮断するものではなく、電解質を有する陰極部に電気的に接続された第二の金属板と陽極端子とが対向することによって電気的に前記電磁波の挙動を抑制するために設けられたものである。従って、前記二の陽極端子間に電磁波が伝播するといった空気中における電磁波の短絡がなくなるため、表面実装型コンデンサによる適正なノイズ除去が可能となり、高周波ではさらに効率的なノイズ除去ができる。また、前記所定の領域とは、第二の金属板が陽極端子の一部に対して覆うように設置されることにより、電気的に前記電磁波の挙動を抑制する程度である陽極端子の覆われた領域を指すものである。

【0008】前記課題を解決するために提供する本願第二の発明に係る表面実装型コンデンサは、二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続され、前記陽極端子の表面に対向する面を有する略平板形状の第二の金属板が設けられたことを特徴とする。

4

【0009】係る構成とすることにより、前記二の陽極端子間を電磁波が伝播するといった空気中における電磁波の短絡現象を少なくすることができる。ここで、この構成における第二の金属板の面は、表面実装型コンデンサの機能として求められる設定に応じて、前記陽極端子の表面に対向していればよい。すなわち、少なくとも第二の金属板の面の一部分と前記陽極端子の表面の一部分とが対向していればよく、このようにすることで、表面実装型コンデンサの設置スペースの縮小や、製造コストを下げることができる。

【0010】前記課題を解決するために提供する本願第三の発明に係る表面実装型コンデンサは、二の陽極部を有して、略平板形状をなす第一の金属板が略平板形状をなす二の陰極部によって挟まれてなり、係る陰極部の一方には、基板と対向する態様で接続された陰極端子が形成され、前記二の陽極部には、基板と対向する態様でそれが接続された二の陽極端子が形成されてなる表面実装型コンデンサにおいて、前記陰極部の他方の表面に電気的に接続され、前記陽極端子の表面の全部に対向する面を有する略平板形状の第二の金属板が設けられたことを特徴とする。

【0011】係る構成とすることにより、少なくとも前記二の陽極端子の表面から放出される電磁波を前記陽極端子の表面以上の表面積を有する第二の金属板の対向面によって抑えることができ、表面実装型コンデンサによる適正なノイズ除去が可能となり、高周波ではさらに効率的なノイズ除去ができる。

【0012】前記課題を解決するために提供する本願第四の発明に係る表面実装型コンデンサは、請求項1乃至30請求項3の何れか一項に記載の表面実装型コンデンサにおいて、前記第二の金属板の表面に、磁性材料からなる層が形成されたことを特徴とする。

【0013】係る構成とすることにより、平面実装型コンデンサのプラス（陽極部、陽極端子）とマイナス（陰極部、陰極端子）とが同位相であるために発生した磁界を磁性材料層の存在によって磁束を変化にくくさせ、結果としてノイズを減衰させることができる。すなわち、プラスとマイナスに同電位に発生するノイズ、いわゆるコモンモードノイズを減衰させることができる。

【0014】前記課題を解決するために提供する本願第五の発明に係る表面実装型コンデンサは、請求項4に記載の表面実装型コンデンサにおいて、前記磁性材料からなる層の幅は、前記第一の金属板の幅以上に設定されたことを特徴とする。

【0015】係る構成とすることにより、前記第一の金属板の幅に基づいて磁性材料層の幅を設定しているため、前記第一の金属板を上方から覆うような態様に磁性材料層が形成され、前記コモンモードノイズを確実かつ効率よく減衰させることができる。また、前記幅とは、前記誘電体に対して前記第一の金属板が突出している方

(4)

特開2002-313676

5

向をX方向とした場合、係るX方向と同一平面上で直行する方向の長さである。

【0016】前記課題を解決するために提供する本願第六の発明に係る表面実装型コンデンサは、請求項1乃至請求項5の何れか一項に記載の表面実装型コンデンサにおいて、前記第二の金属板が前記陽極部の側面を覆う様で延設されたことを特徴とする。

【0017】係る構成とすることにより、陽極端子と、かかる陽極端子の上方を覆うように形成された第二の金属板とが前記陽極端子から放出された電磁波の挙動を側面からも抑制せしめるため、前記陽極端子間の伝播が抑えられ、適正なノイズ除去を行うことができる。

【0018】前記課題を解決するために提供する本願第七の発明に係る表面実装型コンデンサは、請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサにおいて、前記第二の金属板と前記陽極部との相互の対向面の両面に絶縁層が形成されたことを特徴とする。

【0019】係る構成とすることにより、陰極部に電気的に接続された第二の金属板と陽極端子との電気的な短絡を防ぐものである。特に、前記第二の金属板及び陽極部（第一の金属板）が何らかの応力によって変形してしまった場合でも、前記絶縁層が設けられることによって確実に前記第二の金属板と前記陽極部及び陽極端子とを絶縁することができる。

【0020】前記課題を解決するために提供する本願第八の発明に係る表面実装型コンデンサは、請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサにおいて、前記第二の金属板と前記陽極端子とが対向する空間に絶縁性の樹脂が充填されたことを特徴とする。

【0021】係る構成とすることにより、絶縁性樹脂による第二の金属板と陽極端子との電気的な絶縁がなされると共に、前記第二の金属板と陽極端子及び陽極部との強度、すなわち表面実装型コンデンサ自体の強度を高めることができる。具体的には、前記第二の金属板及び陽極部（第一の金属板）のように何らかの応力によって変形してしまうような部材を保護することができる。

【0022】前記課題を解決するために提供する本願第九の発明に係る表面実装型コンデンサは、請求項1乃至請求項6の何れか一項に記載の表面実装型コンデンサにおいて、前記第二の金属板と前記陽極端子とが対向する空間を含む周囲全体が絶縁性の樹脂によって封止されたことを特徴とする。

【0023】係る構成とすることにより、前記請求項8のように表面実装型コンデンサ内の短絡及び強度向上をなすだけでなく、第二の金属板を保護すると共に、実装される基板に対して表面実装型コンデンサを確実に固定することができる。

【0024】

【発明の実施の形態】以下に、本発明に係る表面実装型コンデンサの一実施の形態における構成について図面を

6

参照して説明する。

（第一の実施の形態）図1は、本発明に係る表面実装型コンデンサの第一の実施の形態における構成を示す側面図である。なお、本発明に係る表面実装型コンデンサの実施の形態の説明においては、特に断りがない限り、基板を基準にして表面実装型コンデンサが実装される方向を上方とし、上方側の面を上面とする。図1(a)に示すように、本発明に係る表面実装型コンデンサ1は、略平板形状をなす二の陰極部2が略平板形状をなす第一の金属板7を挟んでなる。ここで、前記二の陰極部2はそれぞれ、導電性を有する機能性高分子層からなるものである。

【0025】次に、前記二の陰極部2の表面、すなわち前記第一の金属板7に接していない二の面は、それぞれ本発明に係る表面実装型コンデンサ1の陰極部2の一方の表面及び他方の表面を形成することとなる。すなわち、陰極部2の一方の表面は、実装時に基板上に形成された陰極端子4に接続される陰極部2aであり、陰極部2の他方の表面は実装時に上面側に位置することとなる。前記第一の金属板7は、前記二の陰極部2から正反対の方向に二の陽極部3を形成するために突出しており、この陽極部3のそれぞれの端部には、実装時に基板6上に形成されたランドに接続される二の陽極端子5が形成されている。さらに、前記陰極部2の他方の表面

（陰極部2b）には、第二の金属板10が設置されている。この第二の金属板10は、略平板形状をなし、前記陰極部2bの表面に電気的に接続されると共に、前記第一の金属板7のように前記陰極部2から端部が突出している。具体的には、突出している第二の金属板10の基板6側の面（以下、第二の金属板の表面とする）と前記二の陽極端子5の表面の少なくともそれぞれの一部とが対向するように前記第二の金属板10が設置されている。また、前記第二の金属板10は、銅、銀、金、アルミニウム、その他電気抵抗が小さい金属であることが望ましい。さらに、前記第二の金属板10の材料は、前記陽極端子5の材料と同じ材料であることが望ましい。ここで、前記第二の金属板10の表面は、二の陽極端子5間で伝播される電磁波の挙動を封じるために、前記陽極端子5のそれを覆うように対向して設置されることが望ましい。すなわち、本発明に係る表面実装型コンデンサ1を上面から覗た場合、第二の金属板10が前記陽極端子5のそれを隠すように設置されていることが望ましい。但し、第二の金属板10の面は、表面実装型コンデンサ1の機能として求められる設定に応じて、前記陽極端子5の表面に対向していればよいため、図1における第二の金属板10の右側の端部（陽極部3a）に示すように陽極端子5を覆わない様な構造を採用してもよい。すなわち、少なくとも第二の金属板10の面の一部分と前記陽極端子5の表面の一部分とが対向していればよく、このようにすることで、表面実装型コンデンサ

Best Available Copy

(5)

特開2002-313676

7

1の設置スペースの縮小や、製造コストを下げることができる。従って、本発明に係る表面実装型コンデンサ1の第二の金属板10の構造としては、前記陰極部2bに電気的に接続されると共に、前記陽極端子5に対向する対向面のうち少なくとも何れか一方が、対向する陽極端子5を覆うように形成されることが望ましい。またさらに望ましくは、本発明に係る表面実装型コンデンサ1を上面から観た場合に、前記陽極端子5が設置されている基板に埋設されたランドを第二の金属板10が隠すように設置されればよい。これは、前記ランド及び陽極端子5間において電磁波の伝播が生じる恐れを担保するものである。

【0026】また、図1(b)に示すように、第二の金属板10及び陽極部3並びに陽極端子5のそれぞれの対向面に絶縁層9(例えば絶縁テープ)を設けることによって、表面実装型コンデンサ1の縮小化による電気的な短絡を未然に防ぐことができる。

【0027】(第二の実施の形態)次に、本発明に係る表面実装型コンデンサの第二の実施の形態について以下に説明する。なお、本発明に係る表面実装型コンデンサの実施の形態において、前述の第一の実施の形態と重複する部分については、必要がない限り説明を省略する。図2は、本発明に係る表面実装型コンデンサの第二の実施の形態における構成を示す側面図である。図2に示すように、本発明に係る表面実装型コンデンサの第二の実施の形態では、第二の金属板10の上面に磁性材料層20が形成されている。この磁性材料層20を形成する磁性材料としては、フェライト、センダスト、パーマロイ、珪素鋼などを用いることが望ましい。また、この磁性材料層20は、第二の金属板10の上面全てに形成される必要はなく、本発明に係る表面実装型コンデンサ1を上方から観た場合に、少なくとも第一の金属板7の上面を覆う範囲で形成されていることが望ましい。

【0028】このように、磁性材料層20が形成されることによって、従来のノイズフィルタでは除去できなかったプラスとマイナスに同電位に発生するノイズ、いわゆるコモンモードノイズを減衰させることができ。これは、表面実装型コンデンサ1のプラス(陽極部、陽極端子)とマイナス(陰極部、陰極端子)とが同位相であるために発生した磁界を磁性材料層20の存在によって磁束を変化にくくさせ、結果としてノイズを減衰することによる。

【0029】(第三の実施の形態)次に、本発明に係る表面実装型コンデンサの第三の実施の形態について以下に説明する。図3は、本発明に係る表面実装型コンデンサの第三の実施の形態における構成を示す断面図である。図3(a)に示すように、本発明に係る表面実装型コンデンサ1全体を絶縁性の樹脂8で封止している。これは、前述のように、陽極部3及び陽極端子5

8

と、陰極部2bに電気的に接続された第二の金属板10とが電気的な短絡を生じせしめる位置にあってはならないためだけでなく、第二の金属板10の保護としても有用である。また、図3(b)に示すように、第二の金属板10と基板との空間を充填するように絶縁性の樹脂で部分的に封止してもよい。このような構成にすることにより、絶縁性の樹脂8による第二の金属板10と陽極端子5との電気的な絶縁がなされると共に、前記第二の金属板10と陽極端子5及び陽極部3との強度、すなわち表面実装型コンデンサ1自体の強度を高めることができる。具体的には、前記第二の金属板10及び陽極部3(第一の金属板7)のように何らかの応力によって変形してしまうような部材を保護することができる。

【0030】(第四の実施の形態)次に、本発明に係る表面実装型コンデンサの第四の実施の形態について以下に説明する。図4は、本発明に係る表面実装型コンデンサの第四の実施の形態における構成を示す側面図及びその側面図のA-A断面図である。図4(a)に示すように、本発明の第四の実施の形態では、実装する表面実装型コンデンサ1の容量に応じて二の陰極部2が一の第一の金属板7を挟んでなる構成を一単位として二以上の単位によってキャバシタ形成部が上方(又は下方)方向に重なるように形成されている。具体的には、前記キャバシタ形成部を構成するそれぞれの陰極部2と陰極端子4とが電気的に接続されると共に、前記キャバシタ形成部を構成するそれぞれの陽極部3が電気的に接続され、その先端部に陽極端子5が形成されている。また、前述の本発明に係る実施の形態のように、前記キャバシタ形成部の陰極端子4及び前記陽極端子5は基板6に形成されたランドに電気的に接続され、前記キャバシタ形成部の陰極部2には前記基板6対向するように第二の金属板10が電気的に接続されている。このようなキャバシタ形成部によって表面実装型コンデンサ1が所定の高さを有すると、基板と第二の金属板10との距離が陽極端子5間の電磁波の伝播を許容する距離となる場合がある。このとき、陰極部2bに接続された第二の金属板10のみでは陽極端子5間を伝播する電磁波を抑制することができないため、表面実装型コンデンサ1の側面をも覆うように前記第二の金属板10を下方に延設する。この延設された第二の金属板10の構造について示した図が図4(b)である。図4(b)に示すように、第二の金属板10は前記陽極端子5及び基板6の方向に開のコの字形状の断面をなしている。ここで、その延設した第二の金属板10の端部には、陽極端子5との短絡を防止するために、絶縁テープなどの絶縁層9を設けることが必要である。このような構成とすることによって、いかなる容量の表面実装型コンデンサ1についても、陰極部2bに接続された第二の金属板10と陽極端子5とで形成された空間に電磁波をとどめておくことができ、ノイズの発生を未然に防ぐことができる。

(6)

特開2002-313676

9

【0031】

【実施例】図5は、本発明に係る表面実装型コンデンサ*

条件1 陽極端子の幅 : 12 mm
 条件2 陽極部の幅 : 10 mm
 条件3 1対の陽極端子の設置範囲の長さ : 40 mm
 条件4 第二の金属板の素材 : アルミニウム(陽極端子も同じ)
 条件5 第二の金属板の大きさ : 上方(他方の陰極側)から観て陽極端子を隠す大きさ

図5に示すように、従来の表面実装型コンデンサの周波数特性に比べ、本発明に係る表面実装型コンデンサは、10 MHz～1 GHz付近で十分な減衰を示している。このような結果によって、本発明に係る表面実装型コンデンサに設けられた第二の金属板によって、陽極端子間の電磁波の伝播を防止し、十分なノイズ除去が行われたことが分かる。

【0032】

【発明の効果】以上説明したように、本発明に係る表面実装型コンデンサによれば、第二の金属板が陰極部に電気的に接続されると共に、電磁波ノイズが伝播する陽極端子のそれぞれに対向して設置されるため、電磁波ノイズの挙動を抑えることができる。従って、空気中に放出されやすい電磁波ノイズを選択的に減衰させることができ、100 MHz以上の高周波数領域におけるノイズ除去性能を向上させることができる。

【図面の簡単な説明】

【図1】本発明に係る表面実装型コンデンサの第一の実施の形態における構成を示す側面図である。

【図2】本発明に係る表面実装型コンデンサの第二の実施の形態における構成を示す側面図である。※

* 1を以下の条件下で実装した場合の実施例によって得られた周波数と透過減衰量との関係を表すグラフである。

: 12 mm
 : 10 mm
 : 40 mm
 : アルミニウム(陽極端子も同じ)
 : 上方(他方の陰極側)から観て陽極端子を隠す大きさ

※【図3】本発明に係る表面実装型コンデンサの第三の実施の形態における構成を示す断面図である。

【図4】本発明に係る表面実装型コンデンサの第四の実施の形態における構成を示す側面図及び断面図である。

【図5】本発明に係る表面実装型コンデンサの実施例における周波数と透過減衰量との関係を示すグラフである。

【図6】表面実装型コンデンサの従来の構成を示す側面図である。

【符号の説明】

1. 表面実装型コンデンサ
2. 陰極部
3. 陽極部
4. 陰極端子
5. 陽極端子
6. 基板
7. 第一の金属板
8. 樹脂
9. 絶縁層
10. 第二の金属板
20. 磁性材料層

【図1】

【図2】

【図6】

Best Available Copy

(7)

特開2002-313676

〔図3〕

〔図4〕

(b)

(б)

【図5】

BEST AVAILABLE COPY