project1

20989977 Zhang Mingtao 2024/3/19

0.

library (reticulate)

1.

```
import numpy as np
import matplotlib.pyplot as plt
### (1)
def u0(x):
   return np. where (x \le 0.5, 2*x, 2-2*x)
def method(J, dx, dt, tlist):
   \# x-J; t-n
   x = np. linspace(0, 1, J+1)
   t = np. arange(0, tlist[-1]+dt, dt)
   \# \mu
   mu = dt / (dx**2)
   # 初始化
   U = np. zeros((len(t), len(x)))
   U[:, 0] = 0
   U[:, -1] = 0
   # 设置初始条件
   U[0, :] = u0(x)
   # explicit scheme
   for n in range (len(t) - 1):
       for j in range(1, J):
           U[n+1, j] = U[n, j] + mu * (U[n, j+1] - 2 * U[n, j] + U[n, j-1])
   # 绘制数值解
   fig, ax = plt.subplots()
   for i, plot_time in enumerate(tlist):
       n = int(plot time / dt)
       ax.plot(x, U[n, :], label=f"{plot time} unit time")
   ax. set xlabel('x')
   ax. set_ylabel('u')
   ax.legend()
   ax.grid(True)
   plt.show()
#参数
J = 20
dx = 0.05
dt1 = 0.0012
dt2 = 0.0013
tlist = [0, dt1, 25*dt1, 50*dt1]
```

```
# (i)
method(J, dx, dt1, tlist)
```



```
# (ii)
tlist2 = [0, dt2, 25*dt2, 50*dt2]
method(J, dx, dt2, tlist2)
```



```
### (2)

dt3 = 0.0006

tlist3 = [0, dt3, 25*dt3, 50*dt3]

method(J, dx, dt3, tlist3)
```



```
### (3)
from scipy.sparse import diags
def Crank_Nicolson_method(J, dx, dt, tlist):
    \# x-J; t-n
    x = np. linspace(0, 1, J+1)
    t = np. arange(0, tlist[-1]+dt, dt)
    \# \mu
    mu = 0.5*dt/(dx**2)
    # 初始化
    U = np. zeros((len(t), len(x)))
    U[0, :] = u0(x)
    U[:, 0] = 0
    U[:, -1] = 0
    # 系数矩阵
    A = diags([-mu/2, 1+mu, -mu/2], [-1, 0, 1], shape=(J+1, J+1)).toarray()
    B = diags([mu/2, 1-mu, mu/2], [-1, 0, 1], shape=(J+1, J+1)).toarray()
    # 迭代计算数值解
    for n in range (len(t) - 1):
        U[n+1, :] = np. linalg. solve(np. dot(np. linalg. inv(B), A), U[n, :])
    # 绘制数值解
    fig, ax = plt.subplots()
    for i, plot_time in enumerate(tlist):
        n = int(plot time / dt)
        ax.plot(x, U[n, :], label=f"{plot_time} unit time")
    ax.set_xlabel('x')
    ax. set ylabel ('u')
    ax.legend()
    ax.grid(True)
    plt.show()
#参数
J = 20
dx = 0.05
dt4 = 0.0012
```

```
# (i)
dt4 = 0.0012
tlist4 = [0, dt4, 25*dt4, 50*dt4]
Crank_Nicolson_method(J, dx, dt4, tlist4)
```



```
# (ii)
dt5 = 0.0013
tlist5 = [0, dt5, 25*dt5, 50*dt5]
Crank_Nicolson_method(J, dx, dt5, tlist5)
```



```
# (iii)
dt6 = 0.012
tlist6 = [0, dt6, 25*dt6, 50*dt6]
Crank_Nicolson_method(J, dx, dt6, tlist6)
```


2.

```
### (1)
def u0(x):
   return np. where (x \le 0, 1, 0)
def method(dx, dt, a=1, v=0.5, t_final=0.5):
   nt = int(t final / dt)
   nx = int(2/dx)
   x = np. linspace(-1, 1, nx+1)
   t = np.arange(0, t final+dt, dt)
   # v
   v = dt / dx
   # 初始化
   U = np. zeros((len(t), len(x)))
   # 设置初始和边界条件
   U[0, :] = u0(x)
   U[:, 0] = 1
   U[:, -1] = 0
   # upwind method
   for n in range (len(t)-1):
       for j in range (1, len(x)-1):
          U[n+1, j] = U[n, j] - a * v * (U[n, j] - U[n, j-1])
   # 绘制数值解
   plt.figure(figsize=(10, 10))
   plt.plot(x, U[nt, :], label=f"dt = {dt}")
   plt.plot(x, u0(x-0.5), label='exact solution')
   plt.xlabel("x")
   plt.ylabel("u")
   plt. title ("Solution at t = 0.5")
   plt.legend()
   plt.grid(True)
   plt.show()
# 设置模拟区域和时间步长
v = 0.5
a = 1
dt1 = 0.01
dt2 = 0.0025
dx1 = dt1/v
dx2 = dt2/v
method(dx1, dt1)
```


method(dx2, dt2)


```
### (2)
def Lax_Wendroff_method(dx, dt, a=1, v=0.5, t_final=0.5):
    nt = int(t final / dt)
    nx = int(2/dx)
    x = np. linspace(-1, 1, nx+1)
     t = np.arange(0, t final+dt, dt)
    # v
    v = dt / dx
    # 初始化
    U = np. zeros((len(t), len(x)))
    # 设置初始和边界条件
    U[0, :] = u0(x)
    U[:, 0] = 1
    U[:, -1] = 0
    # upwind method
    for n in range (len(t)-1):
         for j in range(1, len(x)-1):
               \label{eq:unint}    \mathbb{U}[\mathsf{n}+\mathsf{1},\ \mathsf{j}] \ = \ \mathbb{U}[\mathsf{n},\ \mathsf{j}] \ - \ 0.\ 5\ *\ a\ *\ v\ *\ (\mathbb{U}[\mathsf{n},\ \mathsf{j}+\mathsf{1}]\ - \ \mathbb{U}[\mathsf{n},\ \mathsf{j}-\mathsf{1}]) \ + \ 0.\ 5\ *\ a**2\ *\ v**2\ *
(U[n, j+1] - 2 * U[n, j] + U[n, j-1])
    # 绘制数值解
    plt.figure(figsize=(10, 10))
     plt.plot(x, U[nt, :], label=f"dt = {dt}")
    plt. plot (x, u0(x-0.5), label='exact solution')
    plt.xlabel("x")
    plt.ylabel("u")
    plt. title ("Solution at t = 0.5")
    plt.legend()
    plt.grid(True)
    plt.show()
# 设置模拟区域和时间步长
v = 0.5
a = 1
dt1 = 0.01
dt2 = 0.0025
dx1 = dt1/v
dx2 = dt2/v
Lax_Wendroff_method(dx1, dt1)
```


 $Lax_Wendroff_method(dx2, dt2)$

(3)

As in (1) and (2), upwind scheme has significant smoothing of the edges of the pulse compared with the exact solution.

Lax Wendroff method maintains the height and width of the pulse better than the upwind scheme, but generates oscillations.

4