Departamento de Matemática da Universidade de Aveiro

CÁLCULO III - agrup. 4

2022/23

Folha 5: Integração múltipla - mudança de coordenadas em integrais duplos e triplos

1. Calcule

- (a) $\iint_{\mathbb{D}} xy \ dxdy$, com \mathbb{D} delimitado por $0 \le x \le 2$ e $x \le y \le x + 4$;
- (b) $\iint_{\mathbb{D}} dx dy$, com \mathbb{D} delimitado por $-x \le y \le 1 x$ e $\frac{3x-1}{2} \le y \le \frac{3x}{2}$;
- (c) $\iint_{\mathbb{D}} dx dy$, com \mathbb{D} delimitado por $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ e a, b > 0;

2. Use coordenadas polares para calcular

- (a) $\iint_{\mathbb{D}} x^2 y dx dy$ com \mathbb{D} dado por $x^2 + y^2 \le 25$ e $y \ge 0$.
- (b) $\iint_{\mathbb{D}} \sin(x^2 + y^2) dx dy$ com \mathbb{D} dado por $1 \le x^2 + y^2 \le 9$ e $x, y \ge 0$.
- (c) $\iint_{\mathbb{D}} e^{-x^2 y^2} dx dy$ com \mathbb{D} dado por $x^2 + y^2 \le 4$ e $x \ge 0$.

3. Descreva, em coordenadas cilíndricas,

- (a) o cone $z = \sqrt{x^2 + y^2}$
- (b) o hiperbolóide de uma folha $x^2 + y^2 = 1 + z^2$.
- (c) o parabolóide de revolução $z = x^2 + y^2$.

4. Calcule $\iiint_{\mathbb{V}} f(x, y, z) dx dy dz$, usando coordenadas cilíndricas.

- (a) $f(x,y,z)=\sqrt{x^2+y^2}$, e $\mathbb V$ dado por sólido interior ao cilíndro $x^2+y^2=4$, exterior ao parabolóide $z=x^2+y^2$ e onde $x,z\geq 0$
- (b) $f(x,y,z)=\sqrt{x^2+y^2}$, e $\mathbb V$ dado por sólido interior ao cilíndro $x^2+y^2=4$, exterior ao cone $z^2=x^2+y^2$ e acima do plano z=0

5. Calcule

(a)
$$\int_{-2}^{2} \left[\int_{-\sqrt{4-y^2}}^{+\sqrt{4-y^2}} \left(\int_{\sqrt{x^2+y^2}}^{2} xz dz \right) dx \right] dy$$

(b)
$$\int_{-3}^{3} \left[\int_{0}^{\sqrt{9-x^2}} \left(\int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} dz \right) dy \right] dx$$

- 6. Descreva em coordenadas esféricas o sólido
 - (a) interior à esfera $x^2+y^2+z^2\leq 4$ e ao cilíndro $x^2+y^2\leq 1.$
 - (b) delimitado superiormente por $z=\sqrt{x^2+y^2}$ e inferiormente por $x^2+y^2+z^2=z$. (c) dado por $1\leq x^2+y^2+z^2\leq 9,\ z\geq 0$ e $xy\leq 0$.
- 7. Calcule $\iiint_{\mathbb{V}} (x^2 + y^2 + z^2) z dx dy dz$, onde $\mathbb{V}: x^2 + y^2 + z^2 \le a^2$.
- 8. Calcule o volume do toros delimitado por $R = \sin \varphi$.