Power/Performance analysis and optimization for deep learning on CPU-GPU platform

Ahmet Fatih Inci

Ting-Wu (Rudy) Chin

18-743 Energy-Aware Computing

Project Website: https://github.com/afinci/18-743-Power-and-Performance-optimizations-for-DNNs-on-CPU-GPU

1

Carnegie Mellon

Outline

- » Introduction
- » CPU Benchmarks and Results
- » GPU Benchmarks and Results
- » Future Work

Introduction

» Profiling power/performance of embedded platform (TX1) while inferencing DNN on GPU and running benchmarks on CPU.

3

Carnegie Mellon

CPU Benchmarks

» bitcount (compute-intensive), jpeg (memory-intensive), string search (branch)

Results (CPU)

5

Carnegie Mellon

Results (CPU)

DNN Benchmarks

	Memory Overhead	Number of Layers
AlexNet	720 MB	7
GoogLeNet	820 MB	22
ResNet-152	2224 MB	152

7

Carnegie Mellon

Results (GPU)

Electrical & Computer ENGINEERING

Future Work

- » M2
 - » run CPU-GPU together by changing CPU-GPU frequency
 - » analyze results

9

Carnegie Mellon

