# 課題 05

#### 1218103 望月 雄友

### C 課題



図 1 方法 1 N=100 のランダムウォーク

## B課題

方法 1 と 2 のそれぞれについて、ステップ数 N = 100 のシミュレーションを 100 回 行い、R の平 均値と分散を調べた.

表1 方法1と方法2のRの平均値と分散

|        | 方法 1     | 方法 2     |
|--------|----------|----------|
| R の平均値 | 9.565242 | 9.131037 |
| Rの分散値  | 5.077983 | 4.974350 |

#### A 課題

方法 1 と 2 のそれぞれについて、ステップ数 N=10,30,100,300,1000,3000,10000 の シミュレーションを それぞれ 100 回ずつ行い、R の平 均値と分散と、平均と理論値との 誤差を調べた。R の方法 1 と方法 2 の平均値と、理論値を以下のグラフにした。



図2 Rの平均値と理論値

次に、R の分散を以下のグラフにプロットした.



図3 Rの分散

最後に, 平均値と理論値との誤差を以下のグラフにした.



図4 Rの平均値と理論値の誤差

これらから、方法1、方法2はともに理論値と比べて小さいことが分かった.

### S課題

方法 2 で 1 次元, 3 次元, 4 次元空間の R と N の関係は以下のグラフとなった.



図5 Rの平均値と理論値



図6 Rの分散



図7 Rの平均値と理論値の誤差

よって、次元を大きくすると、誤差と分散が小さくなり、正確性と精度が増すことが分かった.