MSU Deep Learning Course

Image Captioning

Ashuha Arseniy^{1,2}

Bayesian Research Group¹, MIPT²

ars-ashuha.ru/slides

November 25, 2016

Motivation

▶ What do we want?

'man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

Applications

- (a) Your's example
- (b) Medicine
- (c) Search engine

http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

Recurrent Nets Recap

▶ We want to process a number of inputs, each item is a sequence

We will add recurrent connections and memory control options

lasagne.layers.EmbeddingLayer, lasagne.layers.LSTMLayer

Text Generative Model

▶ What is a text generative model?

$$p(w_{n+1}|w_1,\ldots,w_n;\theta)$$

- Let's specify dimensions:
 - $p(w_{n+1}).shape$ is vocabulary size
 - $w_i.shape$ is embedding size
 - $\theta.shape$ has shape like parameters
- How can we define this function? RNN!

$$p(w_{n+1}|w_1,...,w_n;\theta) = p(w_{n+1}|w_n, hiden_{n-1};\theta)$$

But, there are several technical problems to apply it

- ▶ How would you to construct a batch?
- ▶ How to define loss functions?
- How to calculate soft-max over millions point? ()

Tech Details and General Scheme

Tech Details and General Scheme

Tech Details and General Scheme

Convolution Net Recap

- Convolution (lower number of parameters cw fully connected)
- Convolution and Convolution Neural Net

Morned Architecture (VGG16)

Condition Text Generative Model

How to build image captioning Neural Nets?

Another useful thinks?

But, extremely complex to train

http://cs.stanford.edu/people/karpathy/cvpr2015.pdf

Code should be like this

```
sentences = T.imatrix() # word i.d.s
image_vec = T.matrix() # image features
sentence_mask = T.neq(sentences, PAD_ix)
words = InputLayer((None, None), sentences)
masks = InputLayer((None, None), sentence_mask)
words_emb = EmbeddingLayer(words, n_tokens, EMBED_SIZE)
image_fea = InputLayer((None, CNN_FEATURE_SIZE), image_vec)
image_emb = DropoutLayer(image_fea, 0.5)
image_emb = DenseLayer(image_emb, LSTM_UNITS)
decoder = LSTMLayer(
        words_emb, num_units=LSTM_UNITS,
        cell_init=image_emb, mask_input=mask)
decoder = Reshape (...)
loss = categorical_cross_enrtopy (...)
```

AWS Educate

- ▶ Training is extremely hard, so you should use pre-train models
- If it's still hard, let's use gpu

- ▶ But gpu is a little bit expensive
- lacktriangle AWS Educate give 100\$ grand for all MSU students pprox 160 hours
- You need only MSU email
- You can rent GPU server on Amazon WS free using this money!!!

Go To Break

Image Captioning Seminar

http://mybinder.org/repo/ars-ashuha/caption_binder