Vorlesung 1 02.11.2020

Ziele:

- 1. Maßtheorie \to Lebesgue-Maß (Volumen von Teilmengen des \mathbb{R}^n bestimmen)
- 2. Integral
rechnung für Funktionen $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ \to Lebesgue-Integrale (Satz von Fubini, ...)
- 3. Version des Hauptsatzes \rightarrow Satz von Gauß

Ι Maße und messbare Funktionen

Notation:

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Def. I.1

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Bem.:

1. $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcap_{i \in \mathbb{N}} A_i \in \mathcal{A}$ Denn: $\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$

Denn:
$$\bigcap_{i \in \mathbb{N}} A_i = X \setminus (\bigcup_{i \in \mathbb{N}} X \setminus A_i)$$

- 2. $\emptyset = X \setminus X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$ Denn: $A \setminus B = A \cap (X \setminus B)$

Bsp.:

- 1. $\mathcal{P}(X)$ ist σ -Algebra, $\{\emptyset, X\}$ ist σ -Algebra
- 2. später: Menge aller messbaren Mengen eines äußeren Maßes bildet eine σ -Algebra.

Satz I.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Beweis. $(A_i)_{i\in I}$ sei eine Familie von σ -Algebren bezüglich X.

Offensichtlich gilt:
$$X \in \bigcap_{i \in I} \mathcal{A}_i$$

Sei $A \in \bigcap_{i \in I} \mathcal{A}_i \implies A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \mathcal{A}_i \ \forall i \in I \implies X \setminus A \in \bigcap_{i \in I} A_i$

Analog für die abzählbare Vereinigung.

Def. I.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Bem.:

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Bsp.:

- 1. Ist $E \subseteq X$ und $\mathcal{E} = \{E\} \implies \sigma(\mathcal{E}) = \{\emptyset, E, X \setminus E, X\}$
- 2. Sei (X, d) ein metrischer Raum. $\mathcal{O} \subseteq \mathcal{P}(X)$ sei das System der offenen Mengen. Die von \mathcal{O} erzeugte σ -Algebra heißt **Borel-\sigma-Algebra** $\mathbb{B}(\mathcal{O}) = \mathbb{B}$. Ihre Elemente heißen **Borelmengen**.
- 3. Seien $X \neq \emptyset$, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ eine Abbildung und das Urbild von $C \subseteq Y$: $f^{-1}(C) := \{x \in X | f(x) \in C\}$. Dann ist $f^{-1}(\mathcal{C}) := \{f^{-1}(C) | C \in \mathcal{C}\}$ eine σ -Algebra bzgl. X. Begründung:
 - $-X \in f^{-1}(\mathcal{C})$, denn $f^{-1}(Y) = X$ und $Y \in \mathcal{C}$
 - $f^{-1}(C) \in f^{-1}(\mathcal{C}) \iff C \in \mathcal{C},$ $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$
 - Erinnerung: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 4. Sei X eine beliebige Menge und $(E)_i \subseteq \mathcal{P}(X)$, $i \in I$, Mengensysteme, dann gilt: $\sigma(\bigcup_{i \in I} \mathcal{E}_i) = \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i))$ Begründung:
 - Klar: ⊆
 - Andererseits enthält $\sigma(\bigcup_{i \in I} \mathcal{E}_i)$ das System $\bigcup_{i \in I} \sigma(\mathcal{E}_i)$ und ist eine σ -Algebra $\Longrightarrow \sigma(\bigcup_{i \in I} \sigma(\mathcal{E}_i)) \subseteq \sigma(\bigcup_{i \in I} \mathcal{E}_i)$

Notation:

 $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} \text{ mit } -\infty < a < +\infty, \ \forall a \in \mathbb{R}$

Def. I.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s = \infty$ und $\forall r \in \mathbb{R} : s_k \in (r, \infty]$ für k hinreichend groß
- (iii) $s = -\infty$ und $\forall r \in \mathbb{R} : s_k \in [-\infty, r)$ für k hinreichend groß
- $(s_k) \subseteq \mathbb{R}$ ist genau dann in \mathbb{R} konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm \infty$ divergiert.

Bsp.:

- $-s_k$ monoton $\implies s_k$ konvergiert in $\bar{\mathbb{R}}$
- $-a_k \ge 0 \implies \sum_{k \in \mathbb{N}} a_k \in \bar{\mathbb{R}}$
- Eine Menge $U \subseteq \mathbb{R}$ ist genau dann offen, wenn $U \cap \mathbb{R}$ offen ist und im Fall +∞ ∈ U (bzw. $-\infty \in U$) ein $a \in \mathbb{R}$ existiert, sodass $(a, \infty] \subseteq U$ (bzw. $[-\infty, a) \subset U$) ist.
- Die Borel- σ -Algebra $\bar{\mathbb{B}}$ auf $\bar{\mathbb{R}}$ wird durch die offenen Mengen in $\bar{\mathbb{R}}$ erzeugt. Es gilt: $\bar{\mathbb{B}} = \{B \cup E | B \in \mathbb{B}, E \subseteq \{-\infty, +\infty\}\}$

Notation:

 $\sup \emptyset := -\infty$, $\inf \emptyset := +\infty$ konsistent mit $A, B \subseteq \mathbb{R}$ gilt $A \subseteq B \implies \sup A < \sup B$ und $\inf A \ge \inf B$

Def. I.5

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu : \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}, i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad (\sigma\text{-Additivität})$

Das Tripel (X, \mathcal{A}, μ) heißt **Maßraum**.

Bem.:

1. Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

2. Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. I.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -endlich, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$.

Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Bsp.:

- 1. Sei X eine beliebige Menge, $\mathcal{A} = \mathcal{P}(X)$, für $x \in X$ sei $\delta_x(A) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ (Dirac-Maß)
 - Es gilt $\delta_x(A) \in \{0,1\}, \, \delta_x(\emptyset) = 0, \, \delta_x(X) = 1.$
 - Sei $A=\bigcup_{k\in\mathbb{N}}A_k$ gegeben mit A_k paarweiße disjunkt und $x\in A\implies x\in A_k$ für genau ein $k\in\mathbb{N}\implies \sigma$ -Additivität.
 - Für $x \notin A$ gilt sowieso $\delta_x A = 0$
 - ⇒ Das Dirac-Maß ist ein Wahrscheinlichkeits-Maß
- 2. **Zählmaß:** X beliebige Menge

Vorlesung 2

06.11.2020

$$card: \mathcal{P}(X) \to [0, \infty]$$

$$card(A) := \begin{cases} \text{Anzahl der Elemente von A,} & \text{falls A endlich} \\ \infty, sonst \end{cases}$$
Für $A = \bigcup_{i=1}^{n} A_i$ endlich und paarweiße disjunkt ist die σ_i A

Für $A = \bigcup_{k \in \mathbb{N}} A_k$ endlich und paarweiße disjunkt ist die σ -Additivität klar.

Sei A unendlich und $A = \bigcup_{k \in \mathbb{N}} A_k$.

- (a) nur endlich viele A_k nicht-trivial $\implies \exists k_0 : A_{k_0}$ ist unendlich
- (b) abzählbar viele A_k sind nicht-trivial \implies Behauptung
- ⇒ Behauptung

Zählmaß ist σ -endlich $\Leftrightarrow X$ ist abzählbar Zählmaß ist endlich $\Leftrightarrow X$ ist endlich

Bsp.:

X beliebige Menge, $A \subseteq \mathcal{P}(X)$ σ-Algebra, $\mu(A) = 0 \ \forall A \in \mathcal{A}$

Satz I.7 (Stetigkeitseigenschaften von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$
 folgt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) \le \sum_{i\in\mathbb{N}} \mu(A_i)$$

Bem.:

- 1. (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- 2. Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden.

Begründung:

$$\begin{aligned} A_k &= k, k+1, \ldots \subseteq \mathbb{N} \\ & card(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \text{Aber: } card(\bigcap_{i \in \mathbb{N}} A_i) = card(\emptyset) = 0 \end{aligned}$$

Beweis.

(i)
$$\tilde{A}_1 := A_1, \ \tilde{A}_k := A_k \setminus A_{k-1}, \ k \ge 2$$
 $\tilde{A}_i \text{ sind paarweiße disjunkt.}$

$$\bigcup_{i \in \mathbb{N}} \tilde{A}_i = \bigcup_{i \in \mathbb{N}} A_i$$

$$\mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} \tilde{A}_i) = \sum_{i \in \mathbb{N}} \mu(\tilde{A}_i) = \lim_{k \to \infty} (\sum_{i=1}^k \mu(\tilde{A}_i)) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k A_k) = \lim_{k \to \infty} \mu(A_k)$$

(ii)
$$A'_k := A_1 \setminus A_k \implies A'_1 \subseteq A'_2 \subseteq \dots$$

Es gilt: $\mu(A_1) = \mu(A_1 \cap A_k) + \mu(A_1 \setminus A_k) = \mu(A_k) + \mu(A'_k)$
 $\implies \mu(A_1) - \lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(A'_k) \stackrel{(i)}{=} \mu(\bigcup_{k \in \mathbb{N}} A'_i) = \mu(A_1 \setminus \bigcap_{i \in \mathbb{N}})$
 $= \mu(A_1) - \mu(\bigcap_{i \in \mathbb{N}} A_i)$

(iii) Es genügt, die Folge $B_1 = A_1, \ B_i \stackrel{i \geq 2}{=} A_i \setminus \bigcup_{j=1}^{i-1} A_j$ zu betrachten. $\bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} B_i \text{ und } (B_i) \text{ ist paarweiße disjunkt.}$ $\Longrightarrow \mu(\bigcup_{i \in \mathbb{N}} A_i) = \mu(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \mu(B_i) \leq \sum_{i \in \mathbb{N}} \mu(A_i)$

Def. I.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A \in \mathcal{A}$ mit $\mu(A) = 0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt vollständig, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0$ $\Longrightarrow N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.:

Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen:

Sei (X, \mathcal{A}, μ) Maßraum und \mathcal{T}_{μ} sei das System aller Mengen $N \subseteq X$ für die keine μ Nullmenge $B \in \mathcal{N}(\mu)$ existiert mit $N \subseteq B$. Es gilt:

$$\mu$$
 vollständig $\Leftrightarrow \mathcal{T}_{\mu} \subseteq \mathcal{A}$

Definiere auf $\bar{A}_{\mu} := \{A \cup N | A \in \mathcal{A}, N \in \mathcal{T}_{\mu}\}$ die Mengenfunktion $\bar{\mu}$ durch $\bar{\mu}(A \cup N) := \mu(A) \ \forall A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$

Bem.:

$$\bar{\mu}$$
 ist wohldefiniert: $A \cup N = B \cup P$ mit $A, B \in \mathcal{A}, P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0$: $P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \le \mu(B) + \mu(C) = \mu(B)$ Symm $\implies \mu(A) = \mu(B)$

 $\bar{\mu}$ heißt **Vervollständigung** von μ

Satz I.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Beweis. Offensichtlich:

- 1. $\mathcal{A} \subseteq \bar{\mathcal{A}}_{u}$
- 2. \mathcal{T}_{μ} ist abgeschlossen unter Abz. \bigcup

 \mathcal{A} ist auch abgeschlossen unter abzählbarer Vereinigung

 $\implies A_{\mu}$ abgeschlossen unter abzählbarer Vereinigung

Sei $x \in \bar{\mathcal{A}}_{\mu}$. Für $E \in \bar{\mathcal{A}}_{\mu}$ ex. ein $A \in \mathcal{A}$, $N \in \mathcal{T}_{\mu}$ und $B \in \mathcal{A}$ und $N \subseteq B$ mit $\mu(B) = 0$, sodass $E = A \cup N$

$$\implies B \setminus N \in \mathcal{T}_{\mu}$$

$$\implies X \setminus E = (X \setminus (A \cup B)) \cup (B \setminus N) \in \bar{\mathcal{A}}_{\mu}$$

 $\implies \mathcal{A}_{\mu} \text{ ist } \sigma\text{-Algebra}$

 $\bar{\mu}$ ist Maß (ist klar)

Sei $M \subseteq B = A \cup N$ mit $A \in \mathcal{A}, N \in \mathcal{T}_{\mu}$ und $\bar{\mu}(B) = \mu(A) = 0$

Aus $M = (M \cap A) \cup (M \cap N) \in \mathcal{T}_{mu} \cup \mathcal{T}_{\mu} = \mathcal{T}_{\mu} \in \bar{\mathcal{A}}_{\mu}$

 $\implies \bar{\mu}$ ist vollständig.

Satz I.10

 (X, \mathcal{A}, μ) Maßraum und $(X, \bar{\mathcal{A}}_{\mu}, \bar{\mu})$ sei Vervollständigung. Ferner sei (X, \mathcal{B}, ν) ein vollständiger Maßraum mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$ und $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Beweis. Aus $\mathcal{A} \subseteq \mathcal{B}$ und $\mu = \nu$ auf \mathcal{A} folgt: $\mathcal{N}(\mu) \subseteq \mathcal{N}(\nu) \implies \mathcal{T}_{\mu} \subseteq \mathcal{T}_{\mu}$ vollständig $\implies \mathcal{T}_{\nu} \subseteq \mathcal{B} \implies \mathcal{T}_{\mu} \subseteq \mathcal{B} \implies \bar{\mathcal{A}}_{\mu} \subseteq \mathcal{B}$

Da $\bar{\mu}$ auf $\bar{\mathcal{A}}_{\mu}$ vollständig durch μ auf \mathcal{A} bestimmt ist, folgt sofort $\bar{\mu} = \nu$ auf $\bar{\mathcal{A}}_{\mu}$, da $\mu = \nu$ auf \mathcal{A} .

Def. I.11

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume. Eine Abbildung $f: X \to Y$ heißt $\mathcal{A} - \mathcal{C} - \mathbf{messbar}$, falls $f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Notation:

Falls \mathcal{A}, \mathcal{C} klar sind, bezeichnen wir f einfach als messbar.

Bsp.:

1. $(X, \mathcal{A}), (Y, \mathcal{C})$ beliebige messbare Räume. Sei $y_0 \in Y$ und $f: X \to Y, f(x) = y_0 \ \forall x \in X$ $\implies f \text{ ist } \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

2. $\chi_R: X \to \mathbb{R}, \chi_R(x) = \begin{cases} 1, \text{ falls } x \in E \subseteq X \\ 0, \text{ sonst} \end{cases}$

 \mathbb{R} wird versehen mit Borel- σ -Algebra \mathcal{B} . Für (X, \mathcal{A}) messbarer Raum gilt: $\chi_R \mathcal{A}$ - \mathcal{B} -messbar $\Leftrightarrow E \in \mathcal{A}$

3. Komposition messbarer Abbildungen ist messbar.

 $(X, \mathcal{A}), (Y, \mathcal{C}), (Z, \mathcal{D})$ messbare Räume.

 $f: X \to Y \mathcal{A}\text{-}\mathcal{C}\text{-messbar}$

 $g: Y \to Z$ C-D-messbar

 $\implies g \circ f: X \to Z \text{ ist } A\text{-}\mathcal{D}\text{-messbar, denn:}$

 $(g \circ f)^{-1}(\mathcal{D}) = f^{-1}(g^{-1}(\mathcal{D})) \subseteq f^{-1}(\mathcal{C}) \subseteq \mathcal{A}$

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f : X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar.

Beweis. Es gilt: $f^{-1}(\mathcal{C}) = f^{-1}(\sigma(\mathcal{E})) \stackrel{s.Blatt1}{=} \sigma(f^{-1}(\mathcal{E})) \subseteq \sigma(\mathcal{A}) = \mathcal{A}$

Bsp.:

1. Jede stetige Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ ist \mathbb{B}^n - \mathbb{B}^n -messbar (man sagt: f ist **borel-messbar**). Denn $\mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\})$ und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)

2. Sei $X \neq \emptyset$ Menge, (Y, \mathcal{C}) messbarer Raum, $f: X \to Y$ Abbildung. Nach Bsp. aus 1. Vorlesung ist $f^{-1}(\mathcal{C})$ σ -Algebra. Offensichtlich ist $f^{-1}(\mathcal{C}) \subseteq \mathcal{P}(X)$ die kleinste σ -Algebra und f messbar.

Notation:

Multiplikation und Division in $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$

$$s * (\pm \infty) = (\pm \infty) * s = \begin{cases} \pm \infty &, \text{ falls } s \in (0, \infty] \\ 0 &, \text{ falls } s = 0 \\ \mp \infty &, \text{ falls } s \in [-\infty, 0) \end{cases}$$

$$\frac{1}{t} = 0 \text{ für } t = \pm \infty$$

Def. I.13

 (X, \mathcal{A}) messbarer Raum und $D \in \mathcal{A}$.

Eine Funktion $f: D \to \overline{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$.

Dann sind folgende Aussagen äquivalent:

(i) f ist \mathcal{A} - \mathbb{B}^1 -messbar

(ii) $\forall \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$

(iii) $\{f \le s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(v) $\{f \ge s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

(vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$

Beweis. \mathbb{B}^1 wird erzeugt durch die offenen Mengen und $\pm \infty \implies (i) \Leftrightarrow (ii)$

 $(iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Leftrightarrow (vi) denn:$

(iv)
$$\Longrightarrow$$
 (iii): $f \le s = \bigcap_{k \in \mathbb{N}} \{f < s + \frac{1}{k}\}$
(iii) \Longrightarrow (vi): $\{f > s\} = D \setminus \{f \le s\}$
(vi) \Longrightarrow (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$
(v) \Longrightarrow (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(iii)
$$\implies$$
 (vi): $\{f > s\} = D \setminus \{f \le s\}$

(vi)
$$\implies$$
 (v): $\{f \ge \bigcap_{k \in \mathbb{N}} \{f > s - \frac{1}{k}\}\}$

(v)
$$\Longrightarrow$$
 (iv): $\{f < s\} = D \setminus \{f \ge s\}$

(ii)
$$\implies$$
 (vi), denn: $\{f > s\} = f^{-1}(s, \infty) \cup f^{-1}(\{\infty\}) \in \mathcal{A}$

Für ein offenes Intervall (a,b) gilt: $f^{-1}((a,b)) = \{f > a\} \cap \{f < b\} \in \mathcal{A}$ Eine der Aussagen (und damit alle) (iii) - (vi) gelte.

Mann kann zeigen: Jede offene Menge $U \subseteq \mathbb{R}$ lässt sich als abzählbare Vereinigung $\mathcal{U} = \bigcup I_k$ von offenen Intervallen $I_k = (a_k, b_k)$ schreiben (siehe Blatt 2).

In (iii) - (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.: $\{f \ge s\} = \bigcap \{f > q\}$

> Vorlesung 3 09.11.20

Lemma I.15

Sei (X, \mathcal{A}) ein messbarer Raum, $D \in \mathcal{A}$ und $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar. Dann sind die Mengen $\{f < g\} := \{x \in D : f(x) < g(x)\}\$ und $\{f \le g\} := \{x \in D : f(x) \le g(x)\}\$ Elemente aus \mathcal{A} .

Beweis. Es gilt:
$$\{f < g\} = \bigcup_{q \in \mathbb{Q}} (\{f < g\} \cap \{g > q\}) \in \mathcal{A}$$
, denn: $\{f < g\}, \{g > q\} \in \mathcal{A}$ (s. Lemma I.14) $\{f \leq g\} = D \setminus \{f > g\} \in \mathcal{A}$

Bem.:

Im folgenden Satz sind die Grenzfunktionen paarweiße definiert, z.B.: $\liminf f_x: X \to \mathbb{R}$ ist definiert durch: $(\liminf f_k)(x) := \liminf f_k(x)$

Satz I.16

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f_k : D \to \mathbb{R}$ Folge von \mathcal{A} -messbaren Funktionen. Dann sind auch folgende Funktionen A-messbar:

$$\inf_{k \in \mathbb{N}} f_k, \sup_{k \in \mathbb{N}} f_k, \lim_{k \to \infty} \inf_{k \to \infty} f_k, \lim_{k \to \infty} \sup_{k \to \infty} f_k$$

Beweis. Für $s \in \mathbb{R}$ gilt:

$$\{\inf_k f_k \ge s\} = \bigcap_{k \in \mathbb{N}} \{f_k \ge s\} \in \mathcal{A}, \text{ denn nach Lemma I.14 ist } \{f_k \ge s\} \in \mathcal{A}$$

$$\{\sup_k f_k \le s\} = \bigcap_{k \in \mathbb{N}} \{f_k \le s\} \in \mathcal{A}$$

$$\text{Lemma I.14}, \text{ of } f_k = 1, 1, 4, \dots, n$$

 $\stackrel{\text{Lemma}}{\Longrightarrow}^{\text{I.14}} \inf f_k, \sup f_k \text{ sind } \mathcal{A}\text{-messbar}$

 $\liminf_{k\to\infty} f_k = \sup_{k\in\mathbb{N}} (\inf_{l\geq k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

 $\limsup_{k \to \infty} f_k = \inf_{k \in \mathbb{N}} (\sup_{l \ge k} f_l) \text{ ist } \mathcal{A}\text{-messbar.}$

Notation:

Seien $D \in \mathcal{A}$ und $f: D \to \mathbb{R}$, dann sind $f^{\pm}: D \to [0, \infty]$ definiert durch: $f^+ := max(f,0) \ge 0$ und $f^- := max(-f,0) = -min(f,0) \ge 0$ $\implies f = f^+ - f^-, |f| = f^+ + f^-$

Satz I.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}, f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ max(f,g), \ min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in \mathcal{A} liegen \mathcal{A} -messbar.

Beweis.

1. $f, g: D \to \mathbb{R}$

$$- \{f + g < t\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r + s < t}} \{f < r\} \cap \{g < s\} \in \mathcal{A}$$

$$\{-f < t\} = \{f > -t\} \in \mathcal{A}$$

$$\Longrightarrow f + g, -f\mathcal{A}\text{-messbar. Ebenso } \alpha f \text{ für } \alpha \in \mathbb{R}$$

- Für $\mathcal{C} \in C^{\infty}(\mathbb{R})$ ist $\mathcal{C} \circ f$ messbar, denn für $\mathcal{U} \subseteq \mathbb{R}$ offen ist $\mathcal{C}^{-1}(\mathcal{U})$ offen und damit $(\mathcal{C} \circ f)^{-1}(\mathcal{U}) = f^{-1}(\mathcal{C}^{-1}(\mathcal{U})) \in \mathcal{A}$ $\implies f^{\pm} \text{ sind } \mathcal{A}\text{-messbar (wähle } \mathcal{C}(s)) = max(\pm s, 0))$ $\Rightarrow |f| = f^{+} + f^{-},$ $max(f,g) = \frac{1}{2}(f+g+|f-g|) \text{ und}$ $min(f,g) = \frac{1}{2}(f+g-|f-g|) \text{ sind } \mathcal{A}\text{-messbar}$

$$min(f,g) = \frac{1}{2}(f+g-|f-g|)$$
 sind \mathcal{A} -messbar

$$-f^2 = \mathcal{C} \circ f$$
 mit $\mathcal{C}(s) = s^2$ und
$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2) \mathcal{A}\text{-messbar}$$

$$-\frac{1}{g}$$
 ist A -messbar, denn:

$$\left\{\frac{1}{g} < s\right\} = \begin{cases} \left\{\frac{1}{s} < g < 0\right\} & , s < 0\\ \left\{g < 0\right\} & s = 0\\ \left\{g < 0\right\} \cup \left\{g > \frac{1}{2}\right\} & s > 0 \end{cases}$$

2. f, g beliebig

Betrachte
$$f_k(x) = \begin{cases} k & , f(x) \ge k \\ -k & , f(x) \le -k \in \mathbb{R} \\ f(x) & , \text{ sonst} \end{cases}$$

Analog $g_k(x)$. f_k, g_k sind \mathcal{A} -messbar $\forall k$

Punktweise gilt: $f_k(x) \to f(x), g_k(x) \to g(x)$

Ebenso: $f_k + g_k \to f + g, \alpha f_k \to \alpha f, ..., f_k g_k \to f g$ punktweise.

Der Allgemeine Fall folgt aus 1. und Satz I.16.

Notation:

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr für μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört. Zum Beispiel bedeutet für Funktionen $f,g:X\to \mathbb{R}$ die Aussage " $f(x)\leq g(x)$ für μ -fast alle $x\in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x\in X\setminus N$ gilt: $f(x)\leq g(x)$. Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D\in \mathcal{A}$ definiert ist und $\mu(X\setminus D)=0$.

Bsp.:

Eine Folge von Funktionen $f_k: D \to \overline{\mathbb{R}}$ konvergiert punktweise μ -fast überall gegen $f: D \to \overline{\mathbb{R}}$, wenn es eine μ -Nullmenge N gibt, so dass $\forall x \in D \setminus N$ gilt:

$$\lim_{k \to \infty} f_k(x) = f(x)$$

Ziel:

Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Def. I.18

 (X, \mathcal{A}, μ) Maßraum. Eine auf $D \in \mathcal{A}$ definierte Funktion $f : D \to \mathbb{R}$ heißt μ -messbar (auf X), wenn $\mu(X \setminus D) = 0$ und $f \mathcal{A}|_{\mathcal{D}}$ -messbar ist. $(\mathcal{A}|_D := \{A \cap D | A \in \mathcal{A}\}$, siehe Blatt 1)

Bem.:

- 1. Unterscheiden zwischen A-messbaren Funktionen (auf X), die <u>überall</u> auf X definiert sind, und μ -messbaren Funktionen (auf X), die in der Regel nur μ -fast <u>überall</u> definiert sind.
- 2. Analog zu \mathcal{A} -Messbarkeit verwenden wir μ -Messbarkeit auf für Funktionen, die nur auf Teilmengen definiert sind: Sei (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$. $f : E \to \mathbb{R}$ heißt μ -messbar (auf D), wenn $E \subseteq D$

Set (X, \mathcal{A}, μ) Mabraum, $D \in \mathcal{A}$. $f : E \to \mathbb{R}$ neight μ -messbar (auf D), wenn $E \subseteq \mathcal{A}$ in \mathcal{A} liegt mit $\mu(D \setminus E) = 0$ und $f \mid \mathcal{A}|_{E}$ -messbar.

- 3. " $f=g\mu$ -fast überall"ist eine Äquivalenzrelation auf der Menge aller Funktionen
- 4. Sei $D \in \mathcal{A}, f: D \to \mathbb{R}\mu$ -messbar. Dann ex. eine \mathcal{A} -messbare Funktion $g: X \to \mathbb{R}$ mit f = g auf D, z.B.: $g = \begin{cases} f & \text{, auf } D \\ 0 & \text{, auf } X \setminus D \end{cases}$

Somit übertragen sich die Sätze I.16 und I.17 auf μ -messbare Funktionen.

Vorlesung 4 13.11.20

Lemma I.19

 (X, \mathcal{A}, μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \tilde{f} mit $\tilde{f} = f$ μ -fast überall μ -messbar.

 $\begin{array}{l} \textit{Beweis.} \text{ Sei } f \text{ auf } D \in \mathcal{A} \text{ definiert mit } \mu(X \setminus D) = 0 \text{ und sei } \tilde{f} \text{ auf } \tilde{D} \subseteq X \text{ definiert.} \\ \text{Vor.} \implies \exists \text{ Nullmenge } N \text{ mit } X \setminus N \subseteq \cap \tilde{D} \text{ und } \tilde{f}(x) = f(x) \ \forall x \in X \setminus N \\ \implies X \setminus \tilde{D} \subseteq N \\ \stackrel{\mu\text{-vollständig}}{\Longrightarrow} X \setminus \tilde{D} \in \mathcal{A} \implies \tilde{D} \in \mathcal{A}. \end{array}$

Weiter gilt:

$$\{x \in \tilde{D} | \tilde{f}(x) < s\} = \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in \tilde{D} \cap (X \setminus N) | \ \tilde{f}(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D \cap (X \setminus N) | \ f(x) < s\}$$

$$= \{x \in \tilde{D} \cap N | \ \tilde{f}(x) < s\} \cup \{x \in D | \ f(x) < s\} \setminus \{x \in D \cap N | \ f(x) < s\}$$

$$=: A \cup B$$
Do f u -messbar ist, folgt, dass $B \in A$

Da f μ -messbar ist, folgt, dass $B \in \mathcal{A}$ μ -vollständig $\implies A \in \mathcal{A} \implies \{x \in \tilde{D} | \tilde{f}(x) < s\} \in \mathcal{A} \ \forall s$

Weiter ist $\{x \in \tilde{D} | \ \tilde{f}(x) < s\} \subseteq \tilde{D} \implies \{x \in \tilde{D} | \ \tilde{f}(x) < s\} \in \mathcal{A}|_{\tilde{D}} \Leftrightarrow \tilde{f} \ \mu\text{-messbar}$

Satz I.20

 (X, \mathcal{A}, μ) vollständiger Maßraum und seien $f_k, k \in \mathbb{N}$, μ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Beweis. Sei f_k auf $D_k \in \mathcal{A}$ definiert. Dann sind alle f_k , $k \in \mathbb{N}$, auf $D := \bigcap_{k \in \mathbb{N}} D_k$ definiert und $X \setminus D$ ist μ -Nullmenge $E := \{x \in D | \lim_{k \to \infty} f_k(x) \neq f(x)\}$ und betrachte

$$\tilde{f}_k(x) = \begin{cases} f_k(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}, \ \tilde{f}(x) = \begin{cases} f(x) &, \forall x \in D \setminus E \\ 0 &, \text{ sonst} \end{cases}$$

Es gilt $\tilde{f} = \lim_{k \to \infty} \tilde{f}_k \stackrel{\text{Satz I.16}}{\Longrightarrow} \tilde{f}$ ist \mathcal{A} -messbar

Vor.: $(X \setminus D) \cup E$ ist μ -Nullmenge $\stackrel{\text{Lemma I.14}}{\Longrightarrow} f$ ist μ -messbar.

Satz I.21 (Egorov)

 (X, \mathcal{A}, μ) Maßraum, $D \in \mathcal{A}$ Menge mit $\mu(D) < \infty$ und f_n, f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n \to f$ μ -fast überall. Dann existiert $\forall \epsilon > 0$ eine Menge $B \in \mathcal{A}$ mit $B \subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Beweis.
$$E := \{x \in D | f_n(x), f(x) \text{ sind endlich und } f_n(x) \to f(x) \}$$

Vor. $\Longrightarrow \exists \mu\text{-Nullmenge } N \text{ mit } D \setminus E \subseteq N$
O.B. $E = D$ (sonst erstetze D durch $D \setminus N$)
Sei $C_{i,j} := \bigcup_{n=j}^{\infty} \{x \in D | |f_n(x) - f(x)| > 2^{-i} \}, i, j \in \mathbb{N}$
Satz I.17 $\Longrightarrow C_{i,j} \in \mathcal{A} \text{ und } C_{i,j+1} \subseteq C_{i,j} \ \forall i,j \in \mathbb{N}$
 $\mu(D) < \infty \stackrel{\text{Satz I.7}}{\Longrightarrow} \lim_{j \to \infty} \mu(C_{i,j}) = \mu(\bigcap_{j \in \mathbb{N}} C_{i,j}) = 0, \text{ denn } f_n \to f$
Sei $\epsilon > 0$ gegeben
 $\Longrightarrow \forall i \in \mathbb{N} \ \exists N(i) \in \mathbb{N} \text{ mit } \mu(C_{i,N(i)}) < \epsilon * 2^{-i}$
Setze $B := D \setminus \bigcup_{i \in \mathbb{N}} C_{i,N(i)} \in \mathcal{A} \text{ und } \mu(D \setminus B) = \mu(\bigcup_{i \in \mathbb{N}} C_{i,N(i)}) \stackrel{\text{Satz I.7}}{\le} \sum_{i \in \mathbb{N}} \mu(C_{i,N(i)}) < \epsilon$
 $\forall i \in \mathbb{N} \ \forall x \in B \ \forall n > N(i) \text{ gilt:}$

$$|f_n(x) - f(x)| \le 2^{-i} \implies f_n \to f \text{ auf } B$$

II Äußere Maße

Def. II.1

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres Maß** auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

Bem.:

- 1. Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall \mathcal{A} durch $\mathcal{P}(X)$)
- 2. Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv (d.h. $A \subseteq \bigcup_{i=1}^n A_i \implies \mu(A) \le \sum_{i=1}^n \mu(A_i)$)

Def. II.2

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Bem.

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) < \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S \cap A) + \mu(S \setminus A) \ \forall S \subseteq X$

Bsp.:

Jedes auf $\mathcal{P}(X)$ definierte Maß ist ein äußeres Maß (Satz I.7), also sind das DiracMaß und das Zählmaß äußere Maße.

Satz II.3

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

Dann ist μ ein äußeres Maß.

 $(\inf \emptyset = \infty)$

Beweis. Mit $\emptyset \subseteq \emptyset \in \mathcal{Q}$ folgt $\mu(\emptyset) = 0$. Sei $E \subseteq \bigcup_{i \in \mathbb{N}} E_i$ mit $E, E_i \subseteq X$ und $\mu(E_i) < \infty$.

$$\underline{\text{z.z.:}} \ \mu(E) \leq \sum_{i \in \mathbb{N}} \mu(E_i)$$

Wähle Überdeckungen $E_i \subseteq \bigcup_{j \in \mathbb{N}} P_{i,j}$ mit $P_{i,j} \in \mathcal{Q}$, so dass zu $\epsilon > 0$ gegeben gilt:

$$\sum_{j\in\mathbb{N}} \lambda(P_{i,j}) < \mu(E_i) + 2^{-i} * \epsilon , \forall i \in \mathbb{N}$$

$$\implies E \subseteq \bigcup_{i,j \in \mathbb{N}} P_{i,j} \text{ und damit } \mu(E) \le \sum_{i,j \in \mathbb{N}} \lambda(P_{i,j}) \le \sum_{i \in \mathbb{N}} (\mu(E_i) + 2^{-i} * \epsilon) = \sum_{i \in \mathbb{N}} \mu(E_i) + \epsilon$$

Mit $\epsilon > 0$ folgt $\mu(E) \le \sum_{i \in \mathbb{N}} \mu(E_i)$

Satz II.4

Sei $\mu: \mathcal{P}(X) \to [0,\infty]$ äußeres Maß auf X. Für M $\subseteq X$ gegeben erhält man durch $\mu \llcorner M: \mathcal{P}(X) \to [0,\infty], \mu \llcorner M(A) := \mu(A \cap M)$ ein äußeres Maß $\mu \llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen. Es gilt:

 $A \mu$ -messbar $\implies A \mu \sqcup M$ -messbar

Beweis. Aus der Definition folgt sofort, dass $\mu \sqcup M$ ein äußeres Maß ist. Weiter gilt für $A \subseteq X$ μ -messbar und $S \subseteq X$ beliebig:

$$\begin{split} \mu \llcorner M(S) &= \mu(S \cap M) \\ &\geq \mu((S \cap M) \cap A) + \mu((S \cap M) \setminus A) \\ &= \mu((S \cap A) \cap M) + \mu((S \setminus A) \cap M) \\ &= \mu \llcorner M(S \cap A) + \mu \llcorner M(S \setminus A) \end{split}$$

⇒ Behauptung

Satz II.5

 μ äußeres Maß auf X. Dann gilt:

$$N \text{ μ-Nullmenge} \implies N \text{ μ-messbar}$$

$$N_k, k \in \mathbb{N}, \mu\text{-Nullmengen} \implies \bigcup_{k \in \mathbb{N}} N_k \text{ μ-Nullmenge}$$

Beweis. Sei $\mu(N)=0$. Für $S\subseteq X$ folgt aus Monotonie: $\mu(S\cap N)\leq \mu(N)=0,\ \mu(S)\geq \mu(S\setminus N)=\mu(S\cap N)+\mu(S\setminus N)\implies N$ μ -messbar Zweite Behauptung folgt aus σ -Subadditivität.

Bem.:

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Bsp.:

Auf X bel. definiere: $\beta(A) = \begin{cases} 0 & , A = \emptyset \\ 1 & , \text{ sonst} \end{cases} \beta$ ist äußeres Maß.

Es sind nur \emptyset und X β -messbar, denn für X = S folgt aus der Annahme, dass A β -messbar ist: $1 \ge \beta(A) + \beta(X \setminus A)$

Vorlesung 5 16.11.20

Lemma II.6

Seien $A_i \in \mathcal{M}(\mu), i = 1,...,k$, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \sum_{i=1}^{k} \mu(S \cap A_i)$$

Beweis. $\underline{k} = 1$: trivial $k \ge 2$: $A_k \mu$ -messbar

$$\mu(S \cap \bigcup_{i=1}^{k} A_i) = \mu((S \cap \bigcup_{i=1}^{k} A_i) \cap A_k) + \mu((S \cap \bigcup_{i=1}^{k} A_i) \setminus A_k)$$

$$= \mu(S \cap A_k) + \mu(S \cap \bigcup_{i=1}^{k} A_k)$$

$$\stackrel{\text{IV}}{=} \sum_{i=1}^{k} \mu(S \cap A_i)$$

Satz II.7

Sei $\mu : \mathcal{P}(X) \to [0, \infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Beweis. Notation: Schreibe \mathcal{M} statt $\mathcal{M}(\mu)$ Es gilt:

$$-x \in \mathcal{M}$$
, denn: $\forall S \subseteq X$ ist:
 $\mu(S \cap X) + \mu(S \setminus X) = \mu(S) + \mu(\emptyset) = \mu(S)$

- Sei
$$A \in \mathcal{M} \implies X \setminus A \in \mathcal{M}$$
, denn $\forall S \subset X$ gilt: $\mu(S \cap (X \setminus A)) + \mu(S \setminus (X \setminus A)) = \mu(S \setminus A) + \mu(S \cap A) = \mu(S)$

Als nächstes zeigen wir:

 $A, B \in \mathcal{M} \implies A \cap B \in \mathcal{M} \ \forall S \subseteq X$ gilt:

$$\mu(S) = \mu(S \cap A) + \mu(S \setminus A)$$

$$\mu(S \cap A) = \mu(S \cap A \cap B) + \mu((S \cap A) \setminus B)$$

$$\mu(S \setminus (A \cap B)) = \mu((S \setminus (A \cap B)) \cap A) + \mu((S \setminus (A \cap B)) \setminus A)$$

$$= \mu((S \cap A) \setminus B) + \mu(S \setminus A)$$

$$\implies \mu(S) = \mu(S \cap (A \cap B)) + \mu(S \setminus (A \cap B))$$

$$\implies A \cup B \in \mathcal{M}, \text{ denn:}$$

$$A \cup B = X \setminus ((X \setminus A) \cap (X \setminus B))$$

Per Induktion:

 \mathcal{M} ist abgeschlossen unter endlichen Durchschnitten und Vereinigungen.

<u>Jetzt:</u> μ ist σ -additiv auf \mathcal{M} .

Seien $A_j, j \in \mathbb{N}$, paarweiße disjunkt mit $A_j \in \mathcal{M} \ \forall j \in \mathbb{N}$

Wähle $S = A_1 \cup A_2$ und benutze $A_1 \in \mathcal{M}$

$$\implies \mu(S) = \mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \ \ (= \mu(S \cap A_1) + \mu(S \setminus A_1))$$

Induktion: Dasselbe gilt für endliche disjunkte Vereinigungen.

$$\sum_{j \in \mathbb{N}} \mu(A_j) = \lim_{k \to \infty} \sum_{j=1}^k \mu(A_j) = \lim_{k \to \infty} \mu(\bigcup_{j=1}^k A_j)$$

$$\leq \mu(\bigcup_{j \in \mathbb{N}} A_j) \stackrel{\sigma\text{-Subadd.}}{\leq} \sum_{j=1}^k \mu(A_j)$$

$$\implies \mu(\bigcup_{j\in\mathbb{N}} A_j) = \sum_{j\in\mathbb{N}} \mu(A_j) \implies \text{Behauptung}$$

Als letztes: \mathcal{M} ist abgeschlossen unter abzählbaren Vereinigungen Seien $A_j \in \mathcal{M}, j \in \mathbb{N}$. O.B. seien A_j paarweise disjunkt, sonst betrachte

$$\begin{split} \tilde{A}_i &:= A_i \setminus (A_1 \cup \ldots \cup A_{i-1}) \\ \text{Für } S \subseteq X \text{ folgt mit } \bigcup_{i=1}^k A_i \in \mathcal{M} : \end{split}$$

$$\mu(S) = \mu(S \cap \bigcup_{i=1}^{k} A_i) + \mu(S \setminus \bigcup_{i=1}^{k} A_i)$$

$$\stackrel{\text{Lemma II.6}}{\geq} \sum_{i=1}^{k} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i) \quad \forall k \in \mathbb{N}$$

Lasse $k \to \infty$

$$\implies \mu(S) \ge \sum_{i \in \mathbb{N}} \mu(S \cap A_i) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\stackrel{\sigma\text{-Subadd.}}{\ge} \mu(\bigcup_{i \in \mathbb{N}} (S \cap A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$= \mu(S \cap (\bigcup_{i \in \mathbb{N}} A_i)) + \mu(S \setminus \bigcup_{i \in \mathbb{N}} A_i)$$

$$\implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{M}$$

Vollständigkeit von μ : siehe Lemma II.5

Lemma II.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$.

Dann gelten:

i) Aus
$$A_1 \subseteq ... \subseteq A_i \subseteq A_{i+1} \subseteq ...$$
 folgt $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

ii) Aus
$$A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$$
 mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Beweis. Folgt aus Satz I.7 und Satz II.7

Def. II.9

Ein Mengensystem $\mathcal{A} \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil, \-stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

Bem.:

J-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. II.10

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- $i) \ \emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Bsp.:

- i) Für $A \subset X$ ist $\{\emptyset, A\}$ ein Ring, aber für $A \neq X$ keine Algebra.
- ii) System aller endlichen Teilmengen einer bel. Menge ist ein Ring.
- iii) Ebenso System aller höchstens abzählbaren Teilmengen.

Bem.:

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \bigvee -stabil

Def. II.11

Sei $\mathcal{R} \subseteq \mathcal{P}(X)$ Ring. Eine Funktion $\lambda : \mathcal{R} \to [0, \infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N},$ paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Bem.:

 $\sigma\text{-subadditiv},$ subadditiv, $\sigma\text{-endlich},$ endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Bsp.:

i)
$$\mathcal{R}$$
 Ring über X . $\lambda(A) = \begin{cases} 0 & H = \emptyset \\ \infty & \text{sonst} \end{cases}$

- ii) \mathcal{R} sei Ring der endlichen Teilmengen einer beliebigen Menge X und $\lambda = card|_{\mathcal{R}}$ ist Prämaß
- iii) Alle Maße sind Prämaße. Inbesondere äußere Maße eingeschränkt auf die messbaren Mengen.

Def. II.12

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

i)
$$\mu|_{\mathcal{R}} = \lambda$$
, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

Satz II.13 (Caratheodory-Fortsetzung)

 $\lambda: \mathcal{R} \to [0, \infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu: \mathcal{P}(X) \to [0, \infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

 μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Beweis.

i) $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$

Wir haben $\mu(A) \leq \lambda(A)$ aus Def. mit $A_1 = A, A_2 = ... = \emptyset$

Für $\lambda(A) \leq \mu(A)$ reicht es zz, dass:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \text{ mit } A_i \in \mathcal{R} \implies \lambda(A) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

Betrachte paarweise disjunkte Mengen $B_i = (A_i \setminus \bigcup_{j=1}^{i-1} A_j) \cap A \in \mathcal{R}$

$$\implies \lambda(A) = \lambda(\bigcup_{i \in \mathbb{N}} B_i) = \sum_{i \in \mathbb{N}} \lambda(B_i) \le \sum_{i \in \mathbb{N}} \lambda(A_i)$$

ii) Jedes $A \in \mathcal{R}$ ist μ -messbar.

Sei $A \in \mathcal{R}, S \subseteq X$ bel. mit $\mu(S) < \infty$. Zu $\epsilon > 0$ wähle $A_i \in \mathcal{R}$, sodass $S \subseteq \bigcup_{i \in \mathbb{N}} (A_i \cap A)$ und $S \setminus A \subseteq \bigcup_{i \in \mathbb{N}} (A_i \setminus A)$

$$\implies \mu(S \cap A) + \mu(S \setminus A) \le \sum_{i \in \mathbb{N}} \lambda(A_i \cap A) + \sum_{i \in \mathbb{N}} \lambda(A_i \setminus A)$$
$$= \sum_{i \in \mathbb{N}} \lambda(A_i) \le \mu(S) + \epsilon$$

Lasse $s \downarrow 0 \implies A \in \mathcal{M}(\mu)$

Für $\mu(S) = \infty$ ist das trivial.

Lemma II.14

 μ sei Caratheodory-Fortsetzung des Prämaßes $\lambda: \mathcal{R} \to [0, \infty]$ auf dem Ring \mathcal{R} über X. Sei $\tilde{\mu}$ ein Maß auf $\sigma(\mathcal{R})$ mit $\tilde{\mu} = \mu$ auf \mathcal{R} , dann gilt $\forall E \in \sigma(\mathcal{R})$: $\tilde{\mu}(E) \le \mu(E)$

 $\begin{array}{l} \textit{Beweis.} \ \forall E \in \sigma(\mathcal{R}) : E \subseteq \bigcup_{i \in \mathbb{N}} P_i \ \text{mit} \ P_i \in \mathcal{R} \\ \Longrightarrow \ \tilde{\mu}(E) \le \sum_{i \in \mathbb{N}} \tilde{\mu}(P_i) = \sum_{i \in \mathbb{N}} \lambda(P_i) \\ \text{Bilde Infimum über alle solche Überdeckungen} \end{array}$

 $\implies \tilde{\mu}(E) \le \mu(E)$