Contents

Chapter 1. Singular Homology										 							2
1 Free Abelian Groups					_	_	_	_	_	 			_	_	_		2

CHAPTER 1

Singular Homology

1. Free Abelian Groups

Proposition 1.1. The forgetful functor $U : Ab \rightarrow Set$ admits a left adjoint.

Proof. We have to construct a functor $F : Set \rightarrow Ab$. Let S be a set. Define

$$F(S) := \{ f \in \mathbb{Z}^S : \text{supp } f \text{ is finite} \}.$$

Equipped with pointwise addition, F(S) is an abelian group. There is a natural inclusion $\iota: S \hookrightarrow U\left(F(S)\right)$ sending $x \in S$ to the function taking the value one at x and zero else. Hence we may regard elements of F(S) as formal linear combinations $\sum_{x \in S} m_x x$, where $m_x \in \mathbb{Z}$ for all $x \in S$. Let $G \in \text{ob}(\mathsf{Ab})$ be an abelian group and $\varphi \in \mathsf{Ab}\left(F(S),G\right)$ a morphism of groups. Define $\overline{\varphi} \in \mathsf{Set}\left(S,U(G)\right)$ by $\overline{\varphi} := U(\varphi) \circ \iota$. Conversly, if we have $f \in \mathsf{Set}\left(S,U(G)\right)$, define $\overline{f} \in \mathsf{Ab}\left(F(S),G\right)$ by $\overline{f}\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f\left(\iota^{-1}(x)\right)$. This is well defined since all but finitely many m_x are zero. It is easy to check that \overline{f} is indeed a morphism of groups. Let $\varphi \in \mathsf{Ab}\left(F(S),G\right)$. Then

$$\overline{\overline{\varphi}}\left(\sum_{x\in S} m_x x\right) = \sum_{x\in S} m_x \overline{\varphi}\left(\iota^{-1}(x)\right)$$

$$= \sum_{x\in S} m_x \left(U(\varphi) \circ \iota\right) \left(\iota^{-1}(x)\right)$$

$$= \sum_{x\in S} m_x U(\varphi)(x)$$

$$= \sum_{x\in S} m_x \varphi(x)$$

$$= \varphi\left(\sum_{x\in S} m_x x\right).$$

And for $f \in Set(S, U(G))$ we have that

$$\overline{\overline{f}}(x) = \left(U(\overline{f}) \circ \iota\right)(x) = \overline{f}\left(\iota(x)\right) = f(x).$$

Hence $\overline{\overline{\varphi}} = \varphi$ and $\overline{\overline{f}} = f$ and so we have a bijection

$$\mathsf{Ab}\left(F(S),G\right)\cong\mathsf{Set}\left(S,U(G)\right).$$

The mapping $f \mapsto \overline{f}$ will be referred to as *extending by linearity*. To check naturality in S and G is left as an exercise. \Box

Exercise 1.1. Check the naturality of the bijection in proposition 1.1. Also check that $F : Set \to Ab$ is indeed a functor. F is called the *free functor from* **Set** *to* **Ab**.

Definition 1.1 (Free Abelian Group). Let $F : Set \to Ab$ be the free functor. For any set S, we call F(S) the free group generated by S.