Maribor, 13. VII. 2019

Block Structured Mesh

BlockMesh.cs

Two 2nd rank tensors serve as storage for node variable values (node vars):

$\mathbf{u}_{\triangleright}$	u^{jl}_{\triangleright}	Tensor Uf	$ \hbox{free node vars} \; ,$
u⊲	u^{jl}	Tensor Uc	constrained node vars.

where the slots represent:

$$j \rightarrow N$$
 nodes, $l \rightarrow m$ variables.

The two tensors hold mutually exclusive information - if the component $u^{5,4}$ appears in $\mathbf{u}_{\triangleright}$, it cannot appear in $\mathbf{u}_{\triangleleft}$ because a variable is either constrained or it isn't. The sum of them thus produces a tensor which holds all values:

$$\mathbf{u}_{\bowtie} = \mathbf{u}_{\triangleright} + \mathbf{u}_{\triangleleft}$$
 double U all = free + constrained.

Here U is a method that can access values from both Uf and Uc - given an index, it retrieves the value from the correct source. A third 2nd rank tensor stores all forcing vars (right-hand side od PDE):

$$\mathbf{f}_{\bowtie}$$
 f_{\bowtie}^{jl} Tensor F forcing vars .

The dynamic parameters (determining the system's evolution in the next step) are stored in a 4th rank tensor **A**, also known as the stiffness matrix:

A
$$A^{iphl}$$
 Tensor A stiffness matrix ,

where the slots represent:

$$i \rightarrow N \text{ nodes,}$$
 $p \rightarrow 3 \text{ partials,}$ $h \rightarrow m \text{ equations,}$ $l \rightarrow m \text{ variables .}$

Dynamics must not depend on element shapes. This is properly accounted for

with node-to-node influence weights in the form of overlap integrals. Triple overlap integrals reside in a 7th rank tensor \mathbf{S} , while double overlap integrals reside in a 5th rank tensor \mathbf{T} :

S
$$S_{arepsilonetalpha p\gamma\delta q}$$
 Tensor S tripple overlap integrals , T $T_{arepsilonetalpha p\gamma}$ Tensor T double overlap integrals ,

where the slots represent:

 $\begin{array}{lll} \varepsilon & \to & n \text{ elements,} \\ \beta & \to & 12 \text{ basis funcs of 1st A,} \\ \alpha & \to & 12 \text{ basis funcs of } \mathbf{v}\,, \\ p & \to & 3 \text{ partials of } \mathbf{v}\,, \\ \gamma & \to & 12 \text{ basis funcs of } \mathbf{u}_{\triangleleft} \text{ or } \mathbf{f}\,, \\ \delta & \to & 12 \text{ basis funcs of } \mathbf{u}_{\triangleright}\,, \end{array}$

 $q \rightarrow 3$ partials of $\mathbf{u}_{\triangleright}$.

Assembly process turns this:

$$\forall v_{\triangleright}^{ik}: \sum_{i,j}^{N} v_{\triangleright}^{ik} \sum_{\varepsilon}^{n} \sum_{\substack{\alpha, \delta \ni : \\ (\varepsilon, \alpha) = i \\ (\varepsilon, \delta) = j}}^{12} \left(S_{\varepsilon\beta\alpha p\gamma\delta q} A^{(\varepsilon, \beta)p}_{hk} A^{(\varepsilon, \gamma)qhl} u_{\triangleright}^{(\varepsilon, \delta)l} \right) = \tag{1}$$

$$\sum_{i}^{N} v_{\triangleright}^{ik} \sum_{\varepsilon}^{n} \sum_{\substack{\alpha \ni : \\ (\varepsilon, \alpha) = i}}^{12} \left(T_{\varepsilon\beta\alpha p\gamma} A^{(\varepsilon, \beta)p}_{hk} f_{\bowtie}^{(\varepsilon, \gamma)h} - S_{\varepsilon\beta\alpha p\gamma\delta q} A^{(\varepsilon, \beta)p}_{hk} A^{(\varepsilon, \gamma)qhl} u_{\triangleleft}^{(\varepsilon, \delta)l} \right)$$

into this:

$$K_{ikjl}u_{\triangleright}^{jl}=F_{ik}$$
.

The tensor K_{ikjl} is symmetric over indices i and j because the integral between nodes (i,j) must be identical to the integral between nodes (j,i). Therefore, to avoid redundant work, we iterate on each element over node indices α and δ in the following way:

i						j					
1											0
2										1	0
3									2	1	0
:						:					
10		9	8	7	6	5	4	3	2	1	0
11	10	9	8	7	6	5	4	3	2	1	0

and add the same value to the pair (i,j) and its symmetric pair (j,i). Then iterate over all repeated indices: (0,0), (1,1), ..., (10,10), (11,11) and add each value only once.