18/A/E/36-49

AI24BTECH11011 - HIMANI GOURISHETTY

00

36 Let C_1 and C_2 be the graphs of the functions $y = x^2$ and $y = 2x, 0 \le x \le 1$ respectively.Let C_3 be graph of a function $y=f(x), 0 \le x \le 1$, f(0)=0. For a point P on C_1 , let the lines through P, parallel to the axes, meet C_2 and C_3 at Q and R respectively(see figure). If for every position of P(on C_1), the areas of the shaded regions OPQ and ORP are equal, determine the function of f(x). (1998-8 Marks)

37 Integrate $\int_{0}^{\pi} \frac{e^{\cos x}}{e^{\cos x} + e^{-\cos x}}$ (1999-2 Marks)

38 Let f(x) be a continuos function given by

$$f(x) = \begin{cases} 2x, & |x| \le 1\\ x^2 + ax + b, & |x| > 1 \end{cases}$$

Find the area of the region in the third quadrant bounded by the curves $x=-2y^2$ and y=f(x) lying on the left of the line 8x+1=0. (1999-10marks)

39 For x > 0, $let f(x) = \int_e^x \frac{lnt}{1+t}$ Find the function $f(x) + f(\frac{1}{x})$ and show that $f(e) + f(\frac{1}{e}) = \frac{1}{2}$. Here ,lnt=log t. (2000-5Marks)

40 Let $b \neq 0$ and for j=0,1,2,...,n, S_i be the area of the region bounded by the y-axis and the curve $xe^{ay}=\sin$ by $\frac{jr}{b}\leq y\leq \frac{(j+1)\pi}{b}$. Show that $S_0,S_1,S_2,.....,S_n$ are in geometric progression . Also, find their sum for a=-1 and b=pi.

(2001-5Marks)

41 Find the area of the region bounded by the curves $y = x^2$, y = -2 - x and y = 2, which lies to the right of the line x=1. (2002-5 Marks)

42 If f is an even function then prove that $\int_0^{\frac{\pi}{2}} f(\cos 2x) \cos x = \sqrt{2} \int_0^{\frac{\pi}{4}} f(\sin 2x) \cos x$

43 If $y(x) = \int_{\frac{\pi^2}{16}}^{x^2} \frac{\cos x \cos \sqrt{\theta}}{1 + \sin^2 \sqrt{\theta}}$, then find $\frac{dy}{dx}$ at x = pi(2004-2Marks)

44 Find the value of $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\pi + 4x^3}{2 - \cos(x|x| + \frac{\pi}{3})}$ (2003-2Marks)

Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$ (2005-4Marks)

f(x) is a differentiable function and g(x) is double differentiable function such that $f(x) \le 1$ and f'(x)=g(x). if $f^2(0)+g^2(0)=9$. Prove that there exist some $c \in (-3,3)$ such that g(c).g''(c) < 0.

(2005-6Marks)

48

$$\begin{bmatrix} 4a^2 & 4a & 1 \\ 4b^2 & 4b & 1 \\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$$

f(x) is a quadratic function and its maximum value occurs at a point V.A is a point of intersection of y=f(x) with x axis and point B is such that chord AB subtends a right angle at V . Find the area enclosed by f(x) and chord AB. (2005-6Marks)

49 The value of 5050 $\frac{\int_0^1 (1-x^50)^1 00}{\int 0^1 (1-x^50)^1 01}$ 2006-6M