MA3227 Numerical Analysis II

Lecture 18: Implicit Runge-Kutta Methods

Simon Etter

2019/2020

Introduction

Recall from Lecture 17 that adaptive time-stepping applied to the ODE $\dot{y}=\lambda y$ with $\lambda<0$ failed to increase the time step Δt beyond a certain upper bound even though theory tells us that we should be able to choose Δt arbitrarily large for t large enough.

The ODE $\dot{y}=\lambda y$ is simple enough that we can determine explicit formulae for the Euler and midpoint steps:

► Euler:
$$\tilde{y}(t) = y_0 + f(y_0) t = y_0 + \lambda y_0 t = (1 + \lambda t) y_0$$
.

Conclusion: after k steps with constant step size Δt , the Runge-Kutta solution is given by

$$\tilde{y}(k \Delta t) = R(\lambda \Delta t)^k y(0)$$
 where $R(z) = \begin{cases} 1 + z & (\text{Euler}), \\ 1 + z + \frac{z^2}{2} & (\text{midpoint}). \end{cases}$

Introduction (continued)

We know that since $\lambda < 0$, the exact solution $y(t) = \exp(\lambda t)$ satisfies

$$\lim_{k\to\infty} y(k\,\Delta t) = \lim_{k\to\infty} \exp(\lambda\,k\,\Delta t) = 0.$$

It follows from the equation on the previous slide that the numerical solution $\tilde{y}(k\,\Delta t)$ has the same limit if and only if $|R(\lambda\,\Delta t)|<1$, and plots of R(z) reveal that

$$|R(\lambda \Delta t)| < 1 \quad \Longleftrightarrow \quad -2 < \lambda \Delta t < 0 \quad \Longleftrightarrow \quad \Delta t < \frac{2}{-\lambda}.$$

Introduction (continued)

The above explains our observations in Lecture 17: if $\Delta t > \frac{2}{-\lambda}$, then the numerical solution diverges from the exact solution. The step-size control detects this and makes sure Δt never exceeds $\frac{2}{-\lambda}$.

The discrepancy between our expectations and the numerical results arises because our expectations are based on a wrong interpretation of Taylor series. We have seen that Euler's method satisfies

$$\ddot{\Phi}_k(\tilde{y}_{k-1}) - \Phi_k(\tilde{y}_{k-1}) = \ddot{\tilde{y}}(t_{k-1}) \frac{\Delta t_k^2}{2} + \mathcal{O}(\Delta t_k^3),$$

and we have assumed that if the Δt_k^2 -term is small, then all higher-order terms must be even smaller. This is indeed the case if Δt_k is small, but in adaptive time-stepping we are interested in making Δt_k as large as possible, so eventually this Taylor-series argument will break down.

Linearisation of ODEs

The discussion so far was specific to the ODE $\dot{y} = \lambda y$

However, it turns out that our conclusions are relevant for generic ODEs $\dot{y} = f(y)$ as long as there is an attractive fixed-point, i.e. a y_F such that $f(y_F) = 0$ and $\nabla f(y_F)$ has at least one eigenvalue λ with Re(λ) < 0.

"Proof". For y close to y_F , we obtain

$$\frac{\frac{d}{dt}(y(t) - y_F) = f(y(t))}{= \underbrace{f(y_F)}_{=0} + \nabla f(y_F) (y(t) - y_F) + \mathcal{O}(\|y(t) - y_F\|^2)}.$$

Let us assume that $\nabla f(y_F)$ has eigendecomposition $\nabla f(y_F) = V \Lambda V^{-1}$. Ignoring the \mathcal{O} -term and introducing $w(t) = V^{-1}(y(t) - y_F)$, we then obtain

$$V\dot{w}(t) = \frac{d}{dt}Vw(t) = \nabla f(y_F)Vw(t) = V\Lambda w(t) \iff \dot{w} = \Lambda w.$$

The last equation is a system of n decoupled ODEs of precisely the form $\dot{w}_i = \lambda \, w_i$; hence the above discussion applies for y(t) close enough to y_F .

Discussion

The discussion on the previous slide shows that for general f(y), we are interested in the behaviour of Runge-Kutta methods applied to the ODE $\dot{y} = \lambda y$ where λ is an eigenvalue of $\nabla f(y_F)$.

The Jacobian $\nabla f(y_F)$ is generally a non-symmetric matrix, so the eigenvalues λ can be complex. The solution to $\dot{y} = \lambda y$ is still

$$y(t) = y_0 \exp(\lambda t) = y_0 \exp(\operatorname{Re}(\lambda) t) \left(\cos(\operatorname{Im}(\lambda) t) + \iota \sin(\operatorname{Im}(\lambda) t)\right);$$

hence we conclude that $\operatorname{Re}(\lambda)$ indicates whether y(t) converges to zero $(\operatorname{Re}(\lambda) < 0)$ or diverges $(\operatorname{Re}(\lambda) > 0)$, and $\operatorname{Im}(\lambda)$ indicates whether the solution oscillates.

Similary, the Runge-Kutta solutions still satisfy $\tilde{y}(k\,\Delta t)=R(\lambda\,\Delta t)^k$, and we conclude that these solutions have the right convergence / divergence behaviour if

$$Re(z) < 0 \iff |R(z)| < 1.$$

This motivates the definitions on the next slide.

Terminology

- ▶ The functions R(z) introduced above are called the stability function of the Runge-Kutta method.
- ▶ The set $\{z \in \mathbb{C} \mid |R(z)| < 1\}$ is called the stability domain of the Runge-Kutta method.

Example

The stability domains of the Euler and midpoint methods are:

Example

Consider the ODE $\ddot{x} = -x$, x(0) = 1, $\dot{x}(0) = 0$, or equivalently

$$\dot{y} = \begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} = f(y)$$
 with $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$.

We have $\nabla f = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ with eigenvalues $\lambda = \pm \iota$.

These eigenvalues are purely imaginary; hence the solution oscillates but does neither converge nor diverge. This is indeed the case since the exact solution is $x(t) = \cos(t)$.

We conclude from the domains of stability shown above that both Euler and midpoint methods have |R(z)| > 1 for purely imaginary z; hence they diverge when applied to the above ODE.

Moreover, knowing R(z) allows us to precisely predict the rate with which they diverge, see harmonic_oscillator_divergence().

Discussion

The above shows that the constraint $|R(\lambda \Delta t)| < 1$ imposes a limit on how large the step size Δt can be. Our next goals are therefore to determine a formula for R(z) for arbitrary Runge-Kutta methods, and figuring out how to construct Runge-Kutta methods which do not have a step size constraint.

Stability function for abstract Runge-Kutta method

Consider a general Runge-Kutta scheme with Butcher tableau

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right).$$

When applied to the ODE $\dot{y} = \lambda y$, the numerical solution $\tilde{y}(t)$ after a single step is given by

$$\tilde{y}(t) = y_0 + w^T \mathbf{f} t$$
 where $\mathbf{f} = \lambda (y_0 + V \mathbf{f} t)$.

You can verify the above formula by comparing it against the formula provided in the summary of Lecture 16.

Solving the second formula for f yields (1 denotes the vector of all ones)

$$\mathbf{f} = \lambda (1 - \lambda t V)^{-1} \mathbf{1} y_0$$

and inserting this expression into the formula for $\tilde{y}(t)$ yields

$$\tilde{y}(t) = (1 + \lambda t w^{T} (I - \lambda t V) \mathbf{1}) y(0).$$

Stability function for abstract Runge-Kutta method (continued)

Replacing all instances of λt with z in the above formula, we conclude that the stability function for the abstract Runge-Kutta scheme

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right)$$

is given by

$$R(z) = 1 + z w^{T} (I - z V) \mathbf{1}.$$

Example: stability function for Euler method

Butcher tableau:

$$\left(\begin{array}{c|c} 0 & \\ \hline & 1 \end{array}\right)$$

Stability function:

$$R(z) = 1 + z 1(1 - 0)1 = 1 + z.$$

Example: stability function for midpoint method

Butcher tableau:

$$\begin{pmatrix}
0 & \\
\frac{1}{2} & \frac{1}{2} \\
\hline
& 0 & 1
\end{pmatrix}$$

Stability function:

$$R(z) = 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} I - z \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{z}{2} & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 + \frac{z}{2} \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 1 + \frac{z}{2} \end{pmatrix}$$
$$= 1 + z + \frac{z^2}{2}.$$

Discussion

Recall the formula for the stability function given above:

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

We observe that R(z) is a rational function for all V and w, and one can easily show that R(z) is a polynomial if V is strictly lower triangular using Cramer's rule.

All Runge-Kutta methods that we have seen so far have a strictly lower-triangular V. This is for a good reason, as the example on the next slide shows.

Example: Implicit Euler

Consider the Runge-Kutta method with Butcher tableau

$$\left(\begin{array}{c|c} 1 & 1 \\ \hline & 1 \end{array}\right)$$

The corresponding one-step equations are

$$\tilde{y}(t) = y_0 + f_1 t$$
, $f_1 = f(y_0 + f_1 t)$ \iff $\tilde{y}(t) = y_0 + f(\tilde{y}(t)) t$.

This method is called the implicit Euler method because the one-step equation has the same form as the (explicit) Euler method that we have seen before, but the argument to f(y) is now $\tilde{y}(t)$ rather than y_0 .

In quadrature terms, explicit Euler corresponds to a left-point rule while implicit Euler corresponds to a right-point rule.

Discussion

We conclude that if V is not strictly lower triangular, then the one-step equations become implicit, i.e. $\tilde{y}(t)$ can no longer be computed by simply evaluating a given formula, but rather we have to solve a potentially nonlinear equation or maybe even system of equations.

This motivates the following terminology.

- ightharpoonup A RK scheme is called *explicit* if V is strictly lower triangular.
- ▶ A RK scheme is called *implicit* if *V* is not strictly lower triangular.

It depends on the context whether implicit one-step equations are a problem. For example, if f(y) = Ay for some $A \in \mathbb{R}^{n \times n}$, the implicit Euler equation becomes

$$\tilde{y}(t) = y_0 + A\tilde{y}(t) t \iff \tilde{y}(t) = (I - At)^{-1} y_0.$$

If n is small, we can solve $(I - At)^{-1} y_0$ reliably and cheaply using the LU factorisation. If n is large, we may have to use iterative methods like Krylov or multigrid, which can become expensive since we have to solve a new linear system $(I - At)^{-1} y_0$ for every time step.

Implicit Runge-Kutta methods (continued)

Also, recall that iterative methods may fail to converge, which can be frustrating if your ODE solver breaks down due to a failure of the nested iterative solver.

Of course, the above remarks regarding iterative linear solvers also apply if f(y) is nonlinear and we have to solve

$$\tilde{y}(t) - y_0 - f(\tilde{y}(t)) t = 0$$

using an iterative nonlinear solver like Newton's method.

We conclude that going from explicit to implicit Runge-Kutta methods may or may not introduce difficulties depending on the properties of f(y). Next, let us look into why we are interested in implicit Runge-Kutta methods in the first place.

Stability functions of explicit Runge-Kutta methods

Recall the formula for the stability function given above:

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

We have seen:

- ► Explicit Runge-Kutta methods have a strictly lower-triangular *V*.
- ightharpoonup Strictly lower-triangular V implies R(z) is a polynomial.

For polynomial R(z), we necessarily have

$$|z| \to \infty \implies |R(z)| \to \infty.$$

This implies that the stability domain $\{z \in \mathbb{C} \mid |R(z)| < 1\}$ is bounded, which in turn implies that all explicit Runge-Kutta methods have a stability-induced step-size constraint.

By contrast, R(z) is a rational function if V is arbitrary, and rational functions can be bounded for $|z| \to \infty$. This is the one and only reason why one would ever consider implicit Runge-Kutta methods.

Remark: determining stability functions

Stability functions can be determined in either of two ways.

▶ Write down the Butcher tableau use the formula given above,

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

▶ Write down the one-step equations for $\dot{y} = y$ and rearrange them into the form $\tilde{y}(t) = R(t) y_0$.

The first approach is convenient if you have a computer to do the linear algebra for you, the second approach is easier if you have to do the calculations by hand.

Example: stability function for the implicit Euler method

The one-step equation for implicit Euler is $\tilde{y}(t) = y_0 + f(\tilde{y}(t)) t$. Inserting f(y) = y yields

$$\tilde{y}(t) = y_0 + \tilde{y}(t) t \iff \tilde{y}(t) = \frac{y_0}{1-t};$$

hence the stability function is $R(z) = \frac{1}{1-z}$, and the stability domain is

$${z \mid |R(z)| < 1} = {z \mid \frac{1}{|1-z|} < 1} = {z \mid |1-z| > 1}$$

which is the complement of the ball of radius 1 around z = 1.

[To be continued]