

Detector Response

AMPTEK, INC.

14 Deangelo Drive, Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com www.amptek.com

XRF Overview 1

Detector

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Detector response function

- Linear plot (left) shows main photopeaks
- Log plot (right) shows many additional features
 - Some (e.g. escape peaks, some continuum) due to physics
 - Some (e.g. Al and Ar K_{α} lines, tail) from detector or setup
 - Details very important for trace analysis

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What is the "resolution"?

- Resolution defined as the full-width at half maximum (FWHM) of a peak
- If two peaks are separated by more than FWHM, there is a valley between them and we say they are resolved.

What is the peak shape?

- Theoretical limits give a Gaussian (FWHM= 2.35σ)
 - Real detectors always deviate at least a little

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What contributes to photopeak shape & FWHM?

- Statistical fluctuation in charge
 - Depends only on the energy
 - A theoretical limit and cannot be avoided
 - Truly Gaussian
- Intrinsic electronic noise
 - Independent of energy
 - Depends on detector, temperature, T_{peak}
 - Can be minimized but not eliminated
 - Truly Gaussian

$$\delta E = \sqrt{F\Box E + ENC^{2}}$$

$$ENC^{2} = C_{IN} \left(\frac{A_{1}}{T_{peak}}\right) + N_{1/f} + \sqrt{I_{leak}} \left(A_{2}T_{peak}\right)$$

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What else contributes to photopeak shape & FWHM?

- Charge trapping
 - Gives a tail to lower energies
 - Always present, sometimes important
 - Can be low energy, high energy, etc
- Ballistic deficit
 - Gives a tail to lower energies
 - Occurs when T_{flat} < T_{collection}
- Interference noise
 - Photopeak shape can be surprising
 - From ground loops, EMI, microphonics
 - Can be eliminated
- Other physical effects
 - There other effects which may broaden a peak

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What else contributes to photopeak shape & FWHM?

- Peak splitting
 - Not really part of the detector response but affects what you see
 - What we call a "single peak", e.g. K_{α} line, really has multiple lines ($K_{\alpha 1}$ and $K_{\alpha 2}$)
 - When the detector resolution is good enough, this splitting affect peak shape
 - Example below shows Ag K_{α} line. Detector response is 250 eV FWHM but line splitting leads to a 310 eV wide, non-Gaussian peak

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

How close is the FWHM to the theory?

- Plot below shows theoretical Fano limit (black) and combination expected from noise and Fano (red). Data points are very close
- Used monoenergetic gamma sources to avoid peak splitting

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

How close is the peak shape to Gaussian?

- Plot below shows theoretical Gaussian (blue) and a measured ⁵⁵Fe spectrum (red dots)
- Deviation occurs at 0.2% of the peak

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

How important is the photopeak width and shape?

- In some applications, e.g. left below, with no overlapping peaks and little background, not important at all. One can set an ROI and simply count the X-rays.
- In some applications, e.g. right below, it is VITAL. When peaks overlap, the tail of a large peak affects ability to measure adjacent weak peak.
- Deviations from the ideal shape drive the detection limit.

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Background

XRF Overview 10

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What causes the background (1)?

- Background includes both continuum and peaks
- X-rays scatter out of the detector active volume
 - This cannot be eliminated: due to physics of X-ray interactions
 - Continuum from escape of secondary electrons
 - Escape peaks from escape of silicon X-rays

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

12

Features in spectrum arising from physics of X-ray interaction causing X-rays or secondary electrons to scatter from the detector

XRF Overview

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What causes the background (2)?

- X-ray scattering from detector dead layers
 - Can be minimized with good design but never eliminated
 - Also leads to continuum and peaks
- X-ray scattering from material around the detector
 - Detector is always surrounded by stuff: housing, mount, wire bonds, capacitors, collimators, shutters, etc. These materials produce characteristic X-rays
 - Minimized with good design but cannot be eliminated

Features in spectrum due to characteristic X-ray from material near spectrometer (includes impurities in the radioactive ⁵⁵Fe)

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What causes the background (3)?

- Pulse pile-up
 - Occurs when two or more X-rays interact within pulse pair resolving time
 - "Sum peak" at sum of the X-ray energies. Intensity increases with count rate
 - Minimized at low count rate or short T_{peak}

14

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What causes the background (4)?

- Background in the spectrum
 - Not really part of detector response but affects what you see
 - Plot below shows Mn spectrum from ⁵⁵Fe decay and X-ray excitation of Mn target
 - Same FWHM but X-ray tube produces much more background

15

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

How important is the background?

- In some applications, where the peak intensity is strong, not important at all. One can set an ROI and apply a simple background correction
- In some applications, it is VITAL. When trying to measure small amounts, near detection limit, background features are huge.
- Plot below shows 0.5ppm Cd in a sample. Background is key

