EE618 (Zele)

CMOS Analog VLSI Design: Homework -3 (20- Marks)

Submission Deadline: 8th Sep 2019 11:55PM

- All problems are based on Cadence simulations
- The submission must contain appropriate plots labelled clearly.
- Submission must be in *Teamname_Rollnumber_Yourname_Assignment3.pdf* format.
- All MOSFET models should be used from SCL 180 nm library.
- Report all values preferably in tabular format wherever it is appropriate.
- Use unit finger width as a multiple of $0.5\mu m$ for all transistors
- Use $L = 0.18 \mu m$ unless otherwise stated

Question 1

Note: First read the document uploaded to understand common mode sensing ciruit implemented using R_c . Design a differential amplifier with PMOS Load as shown in Fig.2 meeting the following requirements:

Parameter	Value	
DC Power Consumption	<1.2 mW	max i should be 0.66mA
V_{out+} and V_{out-} DC Voltage	0.9-1.1V	set vout to be 1Acm gets limited
Differential Gain	>20dB	gain 10
Vout Bandwidth	>40 MHz	automatically sets with vout
V_{out+} and V_{out-} Voltage Headroom $(pk-pk)$	>0.4 V	

Given $C_L=300$ fF, $R_C=500K\Omega,\,R_B=500K\Omega,\,C_B=20$ pF, L for M7 and M6 = 0.5 μ m, Vdd = 1.8 V

Figure 1: Diff Amplifier with PMOS Load

Hand-Calculation Questions:

(Use $k_n = 260uA/V^2$, $k_p = 100uA/V^2$, $V_{tn} = 0.5V$, $V_{tp} = 0.5V$, $\lambda_n = 0.16V^{-1}$ and $\lambda_p = 0.2V^{-1}$)

- 1. Draw the small signal circuit for half circuit of the differential amplifier (neglect the transistor capacitance and only consider load capacitance) [2 Marks]
- 2. Derive the expression for DC gain using the small signal model [1 Marks]
- 3. Derive the expression for Bandwidth [1 Marks]

- 4. Now find value of R1 and W of M5, M6 and M7 needed for current mirroring. Tabulate the values obtained [2 Marks]
- 5. Finally, calculate W for M1, M2, M3 and M4 to meet the design specifications. Tabulate the values obtained [3 Marks]

Simulation Based Questions:

- 1. Show schematic with node voltages annotated [2 Marks]
- 2. Tabulate the Vdsat value, W, multipliers and no. of fingers used in the final simulations for all transistors. Also report the value of R_1 [2 Marks]
- 3. Show schematic with DC operating points annotated clearly (Note: They should be readable) [2 Marks]
- 4. Plot differential AC Gain (100 KHz to 100 GHz). Mark Gain at 1MHz and the 3 dB-Bandwidth on plot [2 Marks]
- 5. Plot transient differential output for a differential input of 8mV pk-pk sinusiod of 1 MHz (Plot 1 complete output cycle and mark the peak values). Also plot voltage at Node X and V_{out+} & V_{out-} in the same plot [1 Marks]
- 6. Fill the following table [2 Marks]

Specification	Value Obtained	Target Spec
DC Power Consumption		<1.2 mW
V_{out+} and V_{out-} DC Voltage		0.9-1.1V
Differential Gain		>20dB
Vout Bandwidth		>40 MHz