INT 307 Multimedia Security System

Neural Network and Adversarial Attack I

Sichen.Liu@xjtlu.edu.cn

Aims

- Master the working principle of deep learning
- Understand basic knowledge related to deep learning

Recall INT104

■ The boundaries between classes are not necessary linear but can be approximate as a combination of single layers.

- Could be single layer or multiple layer
- There is a threshold process after the output of each neuron, which is named as activation function

Artificial Neural Networks

- Data
- Input Layer
- Hidden Layer
- Output Layer

- FeatureExtraction
- Classification

Figure 3-1. A multilayer perceptron

Forward Propagation

- Neurons effectively represent a mapping between feature spaces
- In neural networks, the mapping is represented as weighted sums with activation functions

Figure 3-2. Incremental calculation steps in a multilayer perceptron

Forward Propagation

- Diagram 28 × 28
- 784 input neurons
- Two hidden layers with 56 neurons each
- RELU as activation functions

Figure 3-7. DNN architecture for image classification using Fashion-MNIST data

Common Tricks

Dropout

Normalization

Image Processing with Deep Learning

- Scene classification
- Object detection and localisation
- Semantic segmentation
- Facial recognition

Filter and Convolution

Figure 4-4. Application of a simple 3 x 3 filter to two different image segments

Figure 4-3. A convolutional filter is applied iteratively across an image

Convolutional Layers

- Kernel
 - Size
 - Padding
 - Stride
- Feature Maps

Figure 4-5. Typical layering pattern in a CNN

Convolutional Neural Network

- **Convolutional Layers**
- **Pooling Layers**
- **Fully Connected** Layers
- Classifier
- VGG
 - VGG-16
 - VGG-19

Figure 4-6. An example CNN image classification architecture

Residue Network

Recurrent Neural Network

- Recurrent Neural Network is commonly used to process sequential media
- Commonly used transforms are:
 - LSTM (Long Short Time Memory)
 - GRU (Gated Recurrent Unit)

Complex Networks

- A deep learning neural network can combine multiple types of structures
 - CNN = CNN + DNN
 - CRNN = CNN + RNN + DNN
- Discussion: Why CRNN can be considered as a way to analysis signal in multiscale?

Attention

Transformer

Figure 1: The Transformer - model architecture.

Face Recognition

Fingerprint Recognition

Audio Fingerprint

Audio Event Detection

THANK YOU

