Московский физико-технический институт

В коллаборации ФРТК и ФУПМ

Сравнительный анализ методов компьютерной симуляции моделей газов на основе моделирования процесса диффузии.

Алейник Владислав (ФРТК) Манайнен Максим (ФУПМ) Назаров Константин (ФРТК) Полетухин Роман (ФУПМ)

13 Июня 2019 года.

Теоретическая часть:

Введение:

В настоящей работе нами были изучены механизмы моделирования газов на примере идеального газа и газа Ван-Дер-Ваальса с потенциальным взаимодействием в форме Леннарда-Джонса, а также способы оптимизации вычислений в полученной программе с целью увеличения числа частиц, с которыми мы можем работать, что приводит к улучшению статистических показателей. Также было проведено исследование процесса диффузии для двух одноатомных газов и сравнение результатов с полученными при моделировании этого процесса.

Цели

- 1. Изучить способы моделирования реальных газов.
- 2. Запрограммировать несколько рабочих моделей.
- 3. Добиться максимально возможной выборки частиц.
- 4. Провести их валидацию.
- 5. Пронаблюдать за процессом диффузии двух одноатомных газов гелия и аргона в эксперименте и в программной модели.
- 6. Сравнить, какая из моделей лучше описывает процесс диффузии с точки зрения количественного и качественного описания.

Теория:

1. В начале работы было принято решение сравнить две принципиально разные модели газа: модель идеального газа и модель реального газа Леннарда-Джонса. Использование модели Леннарда-Джонса является обоснованным, т.к. в работе рассматривались только одноатомные и, следовательно неполярные молекулы

Идеальный газ:

- (а) Область применения:
 - Низкие давления, высокие температуры (когда газ не близок к переходным состояниям)
- (b) Постулаты:
 - Размеры молекул пренебрежимо малы по сравнению со средним расстоянием между ними, так что суммарный объём, занимаемый молекулами, много меньше объёма сосуда.
 - Импульс передаётся только при соударениях, то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях.
 - Соударения частиц между собой и со стенками сосуда абсолютно упруги.

- Количество молекул в газе велико и фиксированно, что позволяет вычислять средние величины по малому (по сравнению с размерами системы) объёму.
- Давление газа на стенку равно полному импульсу, передаваемому при столкновении частиц с участком стенки единичной площади в единицу времени, внутренняя энергия — сумме энергий частиц газа.
- (с) Уравнение состояния:
 - Уравнение Менделеева Клапейрона:

$$PV = \nu RT$$

Где P - давление газа, V - его объем, ν - количество молей, T - температура газа, R - т-д постоянная.

• В статистической физике принято использовать форму:

$$PV = NkT$$

Где N - количество частиц газа, k - постоянная Больцмана.

Модель Ван-Дер-Ваальса с потенциалом Леннарда-Джонса:

- (а) Описание:
 - За основу второй модели была взята модель Ван-Дер-Ваальса, потенциальную энергию взаимодействия в которой мы описываем потенциалом 6-12. Потенциал Леннард-Джонса (6-12) простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними.
- (b) Область применения (Потенциал):
 - Подходит для описания парного взаимодействия сферических неполярных молекул .
 - Неплохо описывает как газ, так и жидкости, и используется при их моделировании, хотя взаимодействие частиц при больших плотностях уже не является парным.
 - Потенциал расходится при приближении двух молекул друг к другу, что может потребовать специальной обработки.
- (с) Область применения (Модель Ван-Дер-Ваальса):
 - Качественно описывает поведение газа при низких давлениях и больших температурах и жидкости.
 - Расходится с экспериментом в области двухфазных состояний.
- (d) Постулаты:

В нашем эксперименте мы исходили из следующих постулатов, взятых из модели Ван-дер-Ваальса и ограничений применимости потенциала Леннарда-Джонса:

- Молекулы имеют конечный размер и определенную массу.
- Между каждыми двумя молекулами существует попарное взаимодействие, являющееся притягиванием на больших дистанциях и отталкиванием на малых.
- Не учитываются силы мультительного (тройного, четверного и т.д.) взаимодействия.
- (е) Уравнение:
 - Потенциал Леннарда-Джонса имеет следующую форму:

$$U = \varepsilon \left[\left(\frac{r_m}{r} \right)^{12} - 2 \left(\frac{r_m}{r} \right)^6 \right] = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

в котором r_m - расстояние, на котором потенциальная энергия взаимодействия принимает наименьшее значение, ε - глубина потенциальной ямы (локального минимума потенциальной энергии), σ - дистанция, на которой потенциал принимается равным нулю.

• Для двух молекул разной природы выполняются следующие соотношения:

$$\sigma_{12} = \frac{1}{2}(\sigma_1 + \sigma_2)$$

т.к. по сути, σ равна диаметру Ван-Дер-Ваальса и можно рассчитать максимальное сближение двух молекул равных радиусов как их среднее арифметическое. Для глубин потенциальной ямы выполняется следующее соотношение:

$$\varepsilon_{12} = \sqrt{\varepsilon_1 \cdot \varepsilon_2}$$

Эти правила для смесей носят имя Лоренца-Бартелота (Lorentz-Berthelot rules). Данные правила являются самыми распространенными и идут по умолчанию во многих инструментах работы с молекулярной динамикой, однако в состоянии равновесия они могут давать отклонение от реальных величин. В нашей компьютерной модели мы использовали именно их из-за компактности и простоты вычислений.

Теоретическое обоснование эксперимента:

1. Приведем описание каждого из экспериментов: в лаборатории и для компьютерной модели.

2. Реальность:

- За основу эксперимента была взята лабораторная работа по измерению коэффициента взаимной диффузии воздуха и гелия. В нашем эксперименте мы заменили многоатомный воздух на одноатомный аргон, чтобы соответствовать обеим моделям.
- В нашем эксперименте давление и температура предполагаются постоянными, т.е. в уравнении

$$P = (n_{Ar} + n_{He})kT$$

суммарная концентрация остается постоянной, т.е. $\Delta n_{Ar} = -\Delta n_{He}$, следовательно, достаточно изучить процесс диффузии только одного из компонентов. Кроме того, масса гелия $\mu_{He} = 4~g/mol$, много меньше массы аргона $\mu_{Ar} = 39~g/mol$, следовательно, смешивание этих двух газов можно приближенно считать диффузией легкой примеси гелия на стационарном фоне аргона. В таком случае коэффициент диффузии

$$D = \frac{1}{3}\lambda \langle v \rangle = \frac{1}{3}\lambda \sqrt{\frac{8RT}{\pi \mu}}$$

 Для исследования взаимной диффузии газов и измерения коэффициента взаимной диффузии D используется два сосуда с равными объёмами, соединенных трубкой длины L и сечения S. В предположении, что концентрации на концах трубки постоянны, получим, что со временем в ней должен установиться стационарный поток. Следовательно, применим закон Фика:

$$j = -D\frac{\partial n}{\partial x} = const \Rightarrow n(x) = \frac{\Delta n}{L}x$$

т.е. зависимость линейная, откуда

$$j = -D\frac{\Delta n}{L}$$

где Δn - разница концентраций на концах трубки.

В предположении о квазистационарности процесса диффузии, данное соотношение будет выполняться в любой момент времени для $n_{Ar}(t)$, $n_{He}(t)$. Предположим, что

концентрация в сосудах выравнивается мгновенно, т.е. $N_{He} = n_{He} \cdot V$, $N_{Ar} = n_{Ar} \cdot V$. Тогда для потока частиц через сечение трубки:

$$\frac{\partial N_{Ar}}{\partial t} = jS = -\frac{\partial N_{He}}{\partial t} \Rightarrow \frac{\partial \Delta n}{\partial t} = 2\frac{jS}{V} = -2\frac{DS\Delta n}{VL}$$

Откуда:

$$\Delta n = \Delta n_0 e^{-t/\tau}$$

где $au = \frac{VL}{2DS}$ - характерное время.

Силой гравитации пренебрегаем, т.к. разность потенциальных энергий в сосудах много меньше энергии теплового движения $mgh \ll kT$.

• Далее, при помощи датчиков теплопроводности измеряется разность концентраций на концах трубки в каждый квант времени. По полученным графикам находим $\frac{\partial \Delta n}{\partial t}$ однозначно восстанавливается коэффициент диффузии по приведенной выше формуле.

3. Компьютерная модель:

- Программный расчёт коэффициента диффузии осуществлялся по закону Фика:
 - Плотность потока частиц вычислялась как кол-во частиц, пролетающее за малое время через сечение сосуда в предполагаемом направлении диффузии.
 - Градиент концентрации аппроксимировался как dn/dx, где dn разность концентраций в двух соседних отделениях сосуда, а dx расстояние между центрами этих отделений.
 - Коэффициент диффузии определяется как угол наклона в формуле j=-Ddn/dx
- Измерения для обоих газов производились в объеме $5000 \cdot 1000 \cdot 1000$ Å в течение времени ~ 1 пкс. Установившееся давление $\sim 10^5$ Па, температура порядка 300 K, число частиц $\sim 10^5$.

Экспериментальная часть:

Валидация моделей:

1. Первым пунктом валидации модели была проверка нашей системы на сохранение энергии, затем мы проверили установление распределения Максвелла скоростей для состояния равновесия. Ниже приведены иллюстрации, демонстрирующие установившиеся распределения скоростей.

Рис. 1: Распределение скоростей для идеального газа

Рис. 2: Распределение скоростей для газа с потенциалом Леннарда-Джонса

2. Как видно из графиков, в обоих моделях установилось распределение скоростей, близкое к нормальному. Следовательно, притяжение молекул на дальних расстояниях не сильно влияет на общую картину движения.

Результаты экспериментов:

- 1. Прямые измерения в лаборатории.
 - В результате прямых измерений была получена зависимость напряжения в цепи из двух датчиков теплопроводности и моста от времени. В нашем эксперименте изменения напряжений невелики, следовательно можно считать, что напряжение пропорционально концентрации.

Рис. 3: Зависимости U(t) для каждого из давлений

D, cm^2/s (1/p, 1/torr)

Рис. 4: График зависимости D(1/P), по которому производилась экстраполяция

- При экстраполяции мы получили значение для $D \approx 0.75 \pm 0.04 \; cm^2/s$
- 2. Измерения, полученные при компьютерном моделировании:
 - При моделировании процесса диффузии на наших моделях были получены следующие зависимости:

Рис. 5: График зависимости $\Delta n(t)$ для идеального газа

Рис. 6: График зависимости $\Delta n(t)$ для газа Ван-Дер-Ваальса с потенциалом Леннарда-Джонса

Рис. 7: График зависимости $\ln \Delta n(t)$ для идеального газа

Рис. 8: График зависимости $\ln \Delta n(t)$ для газа Ван-Дер-Ваальса с потенциалом Леннарда-Джонса

- Как видно на графиках, в состоянии, близкому к равновесному модель газа с потенциалом Леннарда-Джонса склонна к большим флуктуациям, что и предсказывалось в теоретической части.
- Заметим, что обе модели качественно описывают процесс диффузии, т.е. зависимость разности концентраций имеет экспоненциальный характер. Следовательно, принятие зависимости линейной обосновано и соответствует реальности.
- По полученным графикам были найдены коэффициенты диффузии:

$$D_{PG} = 0.7 \pm 0.2 \text{ cm}^2/c$$

$$D_{LJ} = 0.6 \pm 0.1 \text{ cm}^2/c$$

• Полученные значения сходятся с экспериментальными до порядка, однако модель Леннарда-Джонса ближе к истинному значению, чем модель идеального газа.

Выводы:

В ходе проделанной работы были запрограммированы две модели газа: идеальный и модель Ван-Дер-Ваальса с потенциалом Леннарда-Джонса, а также достигнуто максимально доступное количество частиц, с которыми мы можем эффективно работать. Кроме того, была достигнута главная цель исследования: изучение процесса диффузии. Были получены результаты экспериментов в лаборатории и на моделях, на основе которых нам удалось сделать вывод, что обе исследуемые модели с хорошей точностью качественно описывают поведение реальных газов в процессе диффузии, хотя модель с потенциалом Леннарда-Джонса давала большие флуктуации состояния в состояниях, близких к равновесному. Также удалось сделать вывод о количественном описании реальности этих моделей. Выяснилось, что модель Ван-Дер-Ваальса с потенциалом Леннарда-Джонса дает лучшее количественное описание процесса диффузии, нежели модель идеального газа.

Использованная литература:

- 1. Цянь Сюэ-Сень. "Физическая механика". Под редакцией С.В. Валландера. Издательство "Мир Москва 1965.
- 2. Seung-Kyo Oh. "Modified Lennard-Jones Potentials with a Reduced Temperature-Correction Parameter for Calculating Thermodynamic and Transport Properties: Noble Gases and Their Mixtures (He, Ne, Ar, Kr, and Xe)". Pharmaceutics and Biotechnology Department, Konyang University, Republic of Korea.
- 3. Kholmirzo T. Kholmurodov. "Molecular dynamics simulations of valinomycin interactions with potassium and sodium ions in water solvent". Joint Institute for Nuclear Research, January 2010.
- 4. https://en.wikipedia.org/wiki/Lennard-Jones_potential.
- 5. E.whalley, W.G.Schneider. "Intermolecular Potentials of Argon, Krypton and Xenon". Article in The Journal of Chemical Physics, September 1955.