# Estadística Inferencial

## Capítulo VIII - Ejercicio 19

## Aaric Llerena Medina

Un procesador de alimentos envasa café en frascos de 400 gramos. Para controlar el proceso se seleccionan 64 frascos cada hora. Si su peso medio es inferior a un valor crítico K, se detiene el proceso y se registra. En caso contrario, se continúa la operación sin detener el proceso. Determinar el valor de K de modo que haya una probabilidad de solo el 5% de detener el proceso cuando está envasando a un promedio de 407.5 gramos con una desviación estándar de 2.5 gramos.

### Solución:

El peso de los frascos se distribuye normalmente con una media de 407.5 gramos y una desviación estándar de 2.5 gramos. Por ello, la media muestral  $\bar{X}$  sigue una distribución normal, tal que:

• Media Muestral:  $\mu_{\bar{X}} = \mu = 407.5$ 

■ Desviación Estándar Muestral: 
$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{2.5}{\sqrt{64}} = \frac{2.5}{8} = 0.3125$$

La media muestral  $\bar{X}$  de una muestra de 64 frascos se distribuye como  $\bar{X} \sim N$  (407.5, 0.3125<sup>2</sup>).

Se debe encontrar K que cumpla lo siguiente:

$$P\left(\bar{X} < K\right) = 0.05$$

Estandarizando la media muestral: 
$$P\left(Z < \frac{K - 407.5}{0.3125}\right) = 0.05.$$

Buscando el valor 0.05 en la tabla:

#### • 1. Buscando los valores más cercanos a 0.05:



\*Nota: Se está trabajando con 4 decimales.

■ 2. Como no se tiene un valor para 0.80, se debe interpolar con los valores cercanos:

| -1.64  | Z    | -1.65  |
|--------|------|--------|
| 0.0505 | 0.05 | 0.0495 |

Resolviendo:

$$\frac{-1.64 - Z}{0.0505 - 0.05} = \frac{Z - (-1.65)}{0.05 - 0.0495}$$
$$\frac{-1.64 - Z}{0.0005} = \frac{Z + 1.65}{0.0005}$$
$$-1.64 - Z = Z + 1.65$$
$$2Z = 1.65 + 1.64$$
$$Z = \frac{3.29}{2}$$
$$Z = 1.645$$

Por lo obtenido y reemplazando:

$$\frac{K - 407.5}{0.3125} = -1.645$$

Resolviendo la ecuación y determinando el valor de K:

$$K - 407.5 = -1.645 \times 0.3125$$

$$K - 407.5 = -0.5141$$

$$K = 407.5 - 0.5141$$

$$K = 406.9859$$

Por lo tanto, el valor de K debe ser aproximadamente 406.9859 gramos para que haya una probabilidad del 5% de detener el proceso cuando el peso medio es de 407.5 gramos.