# Misura dell'indice di rifrazione di un vetro con lo spettrometro a prisma

Laboratorio di Ottica, Elettronica e Fisica Moderna C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi Matricole: 13655A, 11410A, 11823A

23 novembre 2023

# 1 Introduzione

# 1.1 Scopo

Mediante l'utilizzo di un prisma a sezione isoscele, si vuole misurare l'indice di rifrazione del materiale che lo compone. Si vuole inoltre verificare la legge di dispersione secondo la formula di Cauchy:

$$n^2(\lambda) = A + \frac{B}{\lambda^2} \tag{1.1.1}$$

dove dove n è l'indice di rifrazione,  $\lambda$  è la lunghezza d'onda, A e B sono dei coefficienti. Questi possono essere determinati per un materiale interpolando l'equazione ad indici di rifrazione misurati per lunghezze d'onda note.

#### 1.2 Metodo

In seguito alla misurazione dello spettro di emissione della lampada ai vapori di mercurio - effettuata con il reticolo di diffrazione -, si utilizzano le lunghezze d'onda trovate per misurare l'indice di rifrazione del materiale vetroso che compone il prisma.

Tale misurazione viene effettuata attraverso il metodo della deviazione minima: si può ricavare la dipendenza dell'angolo  $\delta$  in funzione dell'angolo di incidenza i, dimostrando inoltre che la funzione  $\delta(i)$  presenta un minimo. La condizione di deviazione minima si presenta nel momento in cui viene soddisfatta l'equazione:

$$\cos i \cdot \cos r' = \cos r \cdot \cos i' \tag{1.2.2}$$

dove i è l'algolo di incidenza, i' è l'angolo di emergenza, r è l'angolo di rifrazione sulla faccia di entrata del prisma e r' l'angolo di incidenza sulla seconda faccia del prisma.

Queste quantità sono legate a  $\delta$  dalle seguenti relazioni:

$$r + r' = \alpha \qquad \qquad \delta = i + i' - \alpha \tag{1.2.3}$$

dove  $\alpha$  è l'angolo al vertice del prisma.

L'indice di rifrazione del prisma, in condizioni di minima deviazione, risulterà essere quindi:

$$n(\lambda) = \frac{\sin\frac{\alpha + \delta_m}{2}}{\sin\frac{\alpha}{2}} \tag{1.2.4}$$

dove  $n(\lambda)$  è l'indice di rifrazione del materiale in funzione della lunghezza d'onda  $\lambda$  considerata,  $\alpha$  l'angolo al vertice della sezione del prisma,  $\delta_m$  l'angolo di minima deviazione della lunghezza d'onda considerata.

# 2 Misure

## 2.1 Angolo del prisma

Per misurare l'angolo  $\alpha$  del prisma si sfrutta il fenomeno della riflessione: in particolare, si misurano le posizioni angolari  $\theta_1$ ,  $\theta_2$  delle immagini della fenditura riflesse da due facce consecutive del prisma. tramite un nonio sessagesimale di risoluzione 1'. I dati sono riportati in Tab. 3.

# 2.2 Angolo di deviazione minima

Per procede alla misura dell'angolo di deviazione minima, bisogna prima determinare la posizione angolare iniziale  $\theta_0$  della fenditura in assenza di prisma: le misurazioni sono riportate in Tab. 4.

Una volta determinato  $\theta_0$ , si procede alla ricerca dell'angolo di deviazione minima per ciascuna lunghezza d'onda considerata: per fare ciò, si misura la posizione angolare  $\theta_{\lambda}$  del punto di inversione del moto della riga spettrale considerata. I dati così ottenuti sono riportati in Tabb. 5 - 11.

# 3 Analisi dati

#### 3.1 Elaborazione dati

#### 3.1.1 Angolo del prisma

Dalla misura della posizione del fascio di luce riflessa da due delle facce del prisma, si ricava la posizione dell'angolo  $\alpha$  compreso tra le due facce attraverso la seguente relazione:

$$\alpha = 180^{\circ} - \Delta\theta \tag{3.1.5}$$

dove  $\Delta\theta = \theta_2 - \theta_1$ , e  $\theta_1$  è la posizione angolare del fascio riflesso dalla prima faccia, mentre  $\theta_2$  è la posizione angolare del fascio riflesso dalla seconda. Tale calcolo è stato eseguito per ogni set di misure di  $\theta_1$  e  $\theta_2$  (vedere Tab. 3), ed è stata effettuata una media aritmetica per determinare il valore finale di  $\alpha$ , pari a:

$$\alpha = 59^{\circ} \, 53' \pm 12' \tag{3.1.6}$$

Dove l'errore è stato attribuito come da Par. 3.2.1.

### 3.1.2 Angolo di deviazione minima

Per determinare la posizione angolare  $\theta_0$  del cannocchiale nella direzione da cui proviene l'immagine diretta della fenditura, si è eseguita la media aritmetica tra i valori di  $\theta_0$  misurati (vedere Tab. 4):

$$\theta_0 = -(1^\circ 18' \, 0'' \pm 40'') \tag{3.1.7}$$

Per ciascuna lunghezza d'onda dello spettro del mercurio, si determina l'angolo di inversione  $\delta$  del moto dell'immagine osservata mediante il cannocchiale attraverso la seguente relazione:

$$\delta = |\theta_0 - \theta_\lambda| \tag{3.1.8}$$

dove  $\theta_{\lambda}$  è la posizione angolare misurata del punto di inversione del moto (vedere Tabb. 5 - 11). Attraverso la media aritmetica dei valori di  $\delta$  ottenuti, se ne determina la miglior stima: i valori ottenuti per ciascuna lunghezza d'onda osservata, con le loro incertezze (ricavate come da Par. 3.2.2), sono riportati nella seguente tabella:

| Colore   | $\delta \pm \sigma_{\delta}$    |
|----------|---------------------------------|
| Viola 1  | $74^{\circ} 9' 0'' \pm 1' 8''$  |
| Viola 2  | $73^{\circ} 53' 0'' \pm 44''$   |
| Indaco   | $71^{\circ} 47' 0'' \pm 27''$   |
| Ciano    | $68^{\circ}  58'  0'' \pm 32''$ |
| Verde    | $67^{\circ}  16'  0'' \pm 17''$ |
| Giallo 1 | $66^{\circ} 33' 0'' \pm 14''$   |
| Giallo 2 | $66^{\circ} 32' 0'' \pm 10''$   |

Tab. 1: Valori di  $\delta$  e relativi errori.

#### 3.1.3 Indice di rifrazione del vetro

Ottenuti i valori dell'angolo di deviazione minima  $\delta$  per ciascuna lunghezza d'onda e dell'angolo  $\alpha$  al vertice del prisma, attraverso la relazione 1.2.4, si ricavano i seguenti valori di indice di rifrazione del vetro del prisma n in funzione della lunghezza d'onda  $\lambda$ :



| Colore   | $\lambda \pm \sigma_{\lambda}  [\mathrm{nm}]$ | $n(\lambda) \pm \sigma_n$ |
|----------|-----------------------------------------------|---------------------------|
| Viola 1  | $404.32 \pm 0.08$                             | $1.845 \pm 0.004$         |
| Viola 2  | $407.70 \pm 0.10$                             | $1.843 \pm 0.004$         |
| Indaco   | $435.57 \pm 0.08$                             | $1.828 \pm 0.004$         |
| Ciano    | $491.21 \pm 0.08$                             | $1.807 \pm 0.004$         |
| Verde    | $545.44 \pm 0.08$                             | $1.794 \pm 0.004$         |
| Giallo 1 | $576.46 \pm 0.08$                             | $1.789 \pm 0.004$         |
| Giallo 2 | $578.41 \pm 0.08$                             | $1.789 \pm 0.004$         |

Fig. 1 & Tab. 2: Relazione di Cauchy.

Per verificare la relazione di Cauchy 1.1.1, sono stati riportati sul grafico i valori ottenuti dalle misure e dalla loro elaborazione. In particolare, si è posto sulle ascisse il termine  $\frac{1}{\lambda^2}$  e sulle ordinate il valore  $n^2$ . Attraverso la regressione lineare pesata si sono ottenuti come valori del coefficiente angolare A e del termine noto B i seguenti:

$$A = (3.002 \pm 0.006) \tag{3.1.9}$$

$$B = (6.5 \pm 0.1) \cdot 10^{-14} \text{m}^2 \tag{3.1.10}$$

Per verificare l'effettivo andamento lineare dei risultati ottenuti è stato effettuato un test del  $\chi^2$ :

$$\chi^2 = 0.5623 \tag{3.1.11}$$

Tale valore restituisce una compatibilità con un andamento lineare di probabilità 76.07%.

## 3.2 Stima degli errori

#### 3.2.1 Angolo del prisma

L'errore attribuito ai singoli valori di  $\alpha$  è stato ottenuto propagando l'errore su  $\theta_1$  e  $\theta_2$  nella 3.1.5:

$$\sigma_{\alpha} = \sqrt{2} \cdot \sigma_{\theta} = 1'25'' \tag{3.2.12}$$

Al valore finale di  $\alpha$  è stata attribuita come incertezza la deviazione standard della media delle misure effettuate.

# 3.2.2 Angolo di deviazione minima

L'errore attribuito al valore medio di  $\theta_0$  è stato ricavato attraverso la deviazione standard della media delle misure effettuate.

L'errore sui valori di  $\delta$ , per ciascuna misurazione di  $\theta_{\lambda}$ , è stato ottenuto attraverso propagazione degli errori nella formula per  $\delta$ :

$$\sigma_{\delta} = \sqrt{\sigma_{\theta_0}^2 + \sigma_{\theta_{\lambda}}^2} \tag{3.2.13}$$

dove  $\sigma_{\theta_{\lambda}}$  è dato dalla risoluzione dello strumento utilizzato. L'errore sul valore finale di  $\delta$  è stato attribuito come deviazione standard della media delle misure effettuate.

# 3.2.3 Indice di rifrazione del vetro

L'incertezza attribuita a ciascun valore dell'indice di rifrazione del vetro n è stata ottenuta mediante propagazione degli errori su  $\delta$  e  $\alpha$  nella 1.2.4:

$$\sigma_n = \sqrt{\left(\frac{\sin\frac{\delta}{2}}{\cos\alpha - 1}\right)^2 \cdot \sigma_\alpha^2 + \left(\frac{\cos\frac{\delta + \alpha}{2}}{\sin\frac{\alpha}{2}}\right)^2 \cdot \sigma_\delta^2}$$
 (3.2.14)

dove  $\sigma_{\delta}$  è l'incertezza attribuita all'angolo di deviazione minima  $\delta$  e  $\sigma_{\alpha}$  è l'incertezza attribuita all'angolo al centro del prisma  $\alpha$ .

# 4 Conclusioni

Come si evince dai dati ottenuti e dal test statistico svolto, i risultati sono compatibili con la relazione teorica di Cauchy.

# Appendice

| $\theta_1 \pm \sigma_{\theta_1}$ | $\theta_2 \pm \sigma_{\theta_2}$ | $\alpha \pm \sigma_{\alpha} \text{ [rad]}$ |
|----------------------------------|----------------------------------|--------------------------------------------|
| $7^{\circ}47' \pm 1'$            | $128^{\circ}0' \pm 1'$           | $1.043416 \pm 0.000411$                    |
| $7^{\circ}56' \pm 1'$            | $128^{\circ}42' \pm 1'$          | $1.033817 \pm 0.000411$                    |
| $8^{\circ}37' \pm 1'$            | $128^{\circ}41' \pm 1'$          | $1.046034 \pm 0.000411$                    |
| $8^{\circ}44' \pm 1'$            | $129^{\circ}48' \pm 1'$          | $1.028581 \pm 0.000411$                    |
| $7^{\circ}54' \pm 1'$            | $127^{\circ}56' \pm 1'$          | $1.046616 \pm 0.000411$                    |
| $8^{\circ}46' \pm 1'$            | $128^{\circ}4' \pm 1'$           | $1.059415 \pm 0.000411$                    |
| $8^{\circ}1' \pm 1'$             | $128^{\circ}16' \pm 1'$          | $1.042834 \pm 0.000411$                    |
| $0^{\circ}40' \pm 1'$            | $119^{\circ}45' \pm 1'$          | $1.063196 \pm 0.000411$                    |
| $0^{\circ} - 35' \pm 1'$         | $119^{\circ}2' \pm 1'$           | $1.053888 \pm 0.000411$                    |
| $1^{\circ} - 10' \pm 1'$         | $119^{\circ}39' \pm 1'$          | $1.032944 \pm 0.000411$                    |

Tab. 3: Angolo del prisma.

| $	heta_0 \pm \sigma_{	heta_0}$ |
|--------------------------------|
| $-1^{\circ} - 20' \pm 1'$      |
| $-1^{\circ} - 15' \pm 1'$      |
| $-1^{\circ} - 20' \pm 1'$      |
| $-1^{\circ} - 15' \pm 1'$      |
| $-1^{\circ} - 17' \pm 1'$      |
| $-1^{\circ} - 20' \pm 1'$      |
| $-1^{\circ} - 20' \pm 1'$      |
| $-1^{\circ} - 19' \pm 1'$      |
| $-1^{\circ} - 20' \pm 1'$      |
| $-1^{\circ} - 17' \pm 1'$      |
| $-1^{\circ} - 18' \pm 1'$      |

 $\operatorname{Tab.}$ 4: Posizione iniziale della fenditura senza prisma.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $72^{\circ}47' \pm 1'$                           | $1.293085 \pm 0.000350$                    |
| $72^{\circ}50' \pm 1'$                           | $1.293958 \pm 0.000350$                    |
| $72^{\circ}59' \pm 1'$                           | $1.296576 \pm 0.000350$                    |
| $72^{\circ}50' \pm 1'$                           | $1.293958 \pm 0.000350$                    |
| $72^{\circ}51' \pm 1'$                           | $1.294249 \pm 0.000350$                    |
| $72^{\circ}53' \pm 1'$                           | $1.294831 \pm 0.000350$                    |
| $72^{\circ}49' \pm 1'$                           | $1.293667 \pm 0.000350$                    |
| $72^{\circ}52' \pm 1'$                           | $1.294540 \pm 0.000350$                    |
| $72^{\circ}47' \pm 1'$                           | $1.293085 \pm 0.000350$                    |
| $72^{\circ}48' \pm 1'$                           | $1.293376 \pm 0.000350$                    |

Tab. 5: Angolo di deviazione minima per la riga spettrale Viola 1.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $72^{\circ}35' \pm 1'$                           | $1.289595 \pm 0.000350$                    |
| $72^{\circ}36' \pm 1'$                           | $1.289886 \pm 0.000350$                    |
| $72^{\circ}37' \pm 1'$                           | $1.290176 \pm 0.000350$                    |
| $72^{\circ}34' \pm 1'$                           | $1.289304 \pm 0.000350$                    |
| $72^{\circ}36' \pm 1'$                           | $1.289886 \pm 0.000350$                    |
| $72^{\circ}35' \pm 1'$                           | $1.289595 \pm 0.000350$                    |
| $72^{\circ}36' \pm 1'$                           | $1.289886 \pm 0.000350$                    |
| $72^{\circ}34' \pm 1'$                           | $1.289304 \pm 0.000350$                    |
| $72^{\circ}37' \pm 1'$                           | $1.290176 \pm 0.000350$                    |
| $72^{\circ}29' \pm 1'$                           | $1.287849 \pm 0.000350$                    |

Tab. 6: Angolo di deviazione minima per la riga spettrale Viola 2.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $70^{\circ}30' \pm 1'$                           | $1.253234 \pm 0.000350$                    |
| $70^{\circ}27' \pm 1'$                           | $1.252361 \pm 0.000350$                    |
| $70^{\circ}27' \pm 1'$                           | $1.252361 \pm 0.000350$                    |
| $70^{\circ}28' \pm 1'$                           | $1.252652 \pm 0.000350$                    |
| $70^{\circ}27' \pm 1'$                           | $1.252361 \pm 0.000350$                    |
| $70^{\circ}29' \pm 1'$                           | $1.252943 \pm 0.000350$                    |
| $70^{\circ}31' \pm 1'$                           | $1.253525 \pm 0.000350$                    |
| $70^{\circ}29' \pm 1'$                           | $1.252943 \pm 0.000350$                    |
| $70^{\circ}30' \pm 1'$                           | $1.253234 \pm 0.000350$                    |
| $70^{\circ}28' \pm 1'$                           | $1.252652 \pm 0.000350$                    |

Tab. 7: Angolo di deviazione minima per la riga spettrale Indaco.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $67^{\circ}37' \pm 1'$                           | $1.202910 \pm 0.000350$                    |
| $67^{\circ}42' \pm 1'$                           | $1.204364 \pm 0.000350$                    |
| $67^{\circ}41' \pm 1'$                           | $1.204074 \pm 0.000350$                    |
| $67^{\circ}38' \pm 1'$                           | $1.203201 \pm 0.000350$                    |
| $67^{\circ}42' \pm 1'$                           | $1.204364 \pm 0.000350$                    |
| $67^{\circ}40' \pm 1'$                           | $1.203783 \pm 0.000350$                    |
| $67^{\circ}41' \pm 1'$                           | $1.204074 \pm 0.000350$                    |
| $67^{\circ}39' \pm 1'$                           | $1.203492 \pm 0.000350$                    |
| $67^{\circ}40' \pm 1'$                           | $1.203783 \pm 0.000350$                    |
| $67^{\circ}41' \pm 1'$                           | $1.204074 \pm 0.000350$                    |

Tab. 8: Angolo di deviazione minima per la riga spettrale Ciano.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $65^{\circ}57' \pm 1'$                           | $1.173821 \pm 0.000350$                    |
| $65^{\circ}58' \pm 1'$                           | $1.174112 \pm 0.000350$                    |
| $65^{\circ}59' \pm 1'$                           | $1.174403 \pm 0.000350$                    |
| $65^{\circ}57' \pm 1'$                           | $1.173821 \pm 0.000350$                    |
| $65^{\circ}58' \pm 1'$                           | $1.174112 \pm 0.000350$                    |
| $65^{\circ}58' \pm 1'$                           | $1.174112 \pm 0.000350$                    |
| $65^{\circ}59' \pm 1'$                           | $1.174403 \pm 0.000350$                    |
| $65^{\circ}57' \pm 1'$                           | $1.173821 \pm 0.000350$                    |
| $65^{\circ}57' \pm 1'$                           | $1.173821 \pm 0.000350$                    |
| $65^{\circ}59' \pm 1'$                           | $1.174403 \pm 0.000350$                    |

 $\operatorname{Tab.}$ 9: Angolo di deviazione minima per la riga spettrale Verde.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $65^{\circ}15' \pm 1'$                           | $1.161604 \pm 0.000350$                    |
| $65^{\circ}15' \pm 1'$                           | $1.161604 \pm 0.000350$                    |
| $65^{\circ}16' \pm 1'$                           | $1.161895 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}15' \pm 1'$                           | $1.161604 \pm 0.000350$                    |
| $65^{\circ}15' \pm 1'$                           | $1.161604 \pm 0.000350$                    |
| $65^{\circ}15' \pm 1'$                           | $1.161604 \pm 0.000350$                    |
| $65^{\circ}16' \pm 1'$                           | $1.161895 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}16' \pm 1'$                           | $1.161895 \pm 0.000350$                    |

Tab. 10: Angolo di deviazione minima per la riga spettrale Giallo 1.

| $\theta_{\lambda} \pm \sigma_{\theta_{\lambda}}$ | $\delta \pm \sigma_{\delta} \text{ [rad]}$ |
|--------------------------------------------------|--------------------------------------------|
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}13' \pm 1'$                           | $1.161022 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}13' \pm 1'$                           | $1.161022 \pm 0.000350$                    |
| $65^{\circ}13' \pm 1'$                           | $1.161022 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}13' \pm 1'$                           | $1.161022 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |
| $65^{\circ}14' \pm 1'$                           | $1.161313 \pm 0.000350$                    |

Tab. 11: Angolo di deviazione minima per la riga spettrale Giallo 2.