

Standard 7- Segment Display 10 mm

Color	Туре	Circuitry
Red	TDSR315.	Common anode
Red	TDSR316.	Common cathode
Orange red	TDSO315.	Common anode
Orange red	TDSO316.	Common cathode
Yellow	TDSY315.	Common anode
Yellow	TDSY316.	Common cathode
Green	TDSG315.	Common anode
Green	TDSG316.	Common cathode

Description

The TDS.31.. series are 10 mm character seven segment LED displays in a very compact package.

The displays are designed for a viewing distance up to 6 meters and available in four bright colors. The grey package surface and the evenly lighted untinted segments provide an optimum on-off contrast.

All displays are categorized in luminous intensity groups. That allows users to assemble displays with uniform appearence.

Typical applications include instruments, panel meters, point-of-sale terminals and household equipment.

Features

- Evenly lighted segments
- Grey package surface
- Untinted segments
- · Luminous intensity categorized
- Yellow and green categorized for color
- Wide viewing angle
- Suitable for DC and high peak current

Applications

Panel meters
Test- and measure- equipment
Point-of-sale terminals
Control units

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

TDSR315. /TDSR316., TDSO315. /TDSO316., TDSY315. /TDSY316., TDSG315. /TDSG316., /

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Reverse voltage per segment or DP			V_R	6	V
DC forward current per		TDSR315./316.	I_{F}	30	mA
segment or DP		TDSO315./316.	I_{F}	20	mA
		TDSY315./316.	I_{F}	20	mA
		TDSG315./316.	I_{F}	20	mA
Surge forward current per seg-	$t_p \le 10 \mu s$	TDSR315./316.	I_{FSM}	0.5	Α
	(non repetitive)	TDSO315./316.	I_{FSM}	0.15	Α
		TDSY315./316.	I_{FSM}	0.15	Α
		TDSG315./316.	I_{FSM}	0.15	Α
Power dissipation	$T_{amb} \le 45^{\circ}C$		P_{V}	480	mW
Junction temperature			T _i	100	°C
Operating temperature range			T _{amb}	-40 to + 85	°C
Storage temperature range			T_{stg}	-40 to + 85	°C
Soldering temperature	t ≤ 3 sec, 2mm below seating plane		T _{sd}	260	°C
Thermal resistance LED junction/ambient			R_{thJA}	120	K/W

Optical and Electrical Characteristics

 $T_{amb} = 25$ °C, unless otherwise specified

Red (TDSR315., TDSR316.)

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Luminous intensity per segment (digit average) 1)	I _F = 10 mA	TDSR 3150/3160	I_{V}	180			μcd
Dominant wavelength	I _F = 10 mA		$\lambda_{ m d}$		655		nm
Peak wavelength	$I_F = 10 \text{ mA}$		λ_{p}		660		nm
Angle of half intensity	$I_{\rm F}$ = 10 mA		φ		±50		deg
Forward voltage per segment or DP	$I_F = 20 \text{ mA}$		V_{F}		1.6	2	V
Reverse voltage per segment or DP	$I_R = 10 \mu A$		V_{R}	6	15		V
$^{\rm 1)}$ I_{Vmin} and I_{V} groups are mean	values of segments a to g						

Orange red (TDSO315., TDSO316.)

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Luminous intensity per segment	$I_F = 10 \text{ mA}$	TDSO	I_{V}	450			μcd
(digit average) 1)		3150/3160					
Dominant wavelength	$I_F = 10 \text{ mA}$		$\lambda_{ m d}$	612		625	nm
Peak wavelength	$I_{\rm F}$ = 10 mA		λ_{p}		630		nm
Angle of half intensity	$I_{\rm F}$ = 10 mA		φ		±50		deg
Forward voltage per segment or DP	$I_F = 20 \text{ mA}$		V_{F}		2	3	V
Reverse voltage per segment or DP	$I_R = 10 \mu A$		V_{R}	6	15		V
1) I _{Vmin} and I _V groups are mean	values of						
	segments a to g						

Yellow (**TDSY315.**, **TDSY316.**)

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Luminous intensity per segment	$I_{\rm F}$ = 10 mA	TDSY	I_{V}	450			μcd
(digit average) 1)		3150/3160					
Dominant wavelength	$I_{\rm F}=10~{\rm mA}$		$\lambda_{ m d}$	581		594	nm
Peak wavelength	$I_{\rm F}$ = 10 mA		λ_{p}		585		nm
Angle of half intensity	$I_{\rm F}$ = 10 mA		φ		±50		deg
Forward voltage per segment or DP	$I_{\rm F}$ = 20 mA		V_{F}		2.4	3	V
Reverse voltage per segment or DP	$I_R = 10 \mu\text{A}$		V_{R}	6	15		V
1) I _{Vmin} and I _V groups are mean	values of						
	segments a to g						

Green (TDSG315., TDSG316.)

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Luminous intensity per segment	I _F = 10 mA	TDSG	I_{V}	450			μcd
(digit average) 1)		3150/3160					
Dominant wavelength	$I_F = 10 \text{ mA}$		$\lambda_{ m d}$	562		575	nm
Peak wavelength	$I_F = 10 \text{ mA}$		λ_{p}		565		nm
Angle of half intensity	$I_F = 10 \text{ mA}$		φ		±50		deg
Forward voltage per segment or DP	$I_F = 20 \text{ mA}$		V_{F}		2.4	3	V
Reverse voltage per segment or DP	$I_R = 10 \mu A$		V_{R}	6	15		V
$^{ m 1)}$ I_{Vmin} and I_{V} groups are mean	values of						
	segments a to g						

VISHAY

Typical Characteristics ($T_{amb} = 25^{\circ}C$, unless otherwise specified)

Figure 1. Power Dissipation vs. Ambient Temperature

Figure 2. Forward Current vs. Ambient Temperature

Figure 3. Rel. Luminous Intensity vs. Angular Displacement

Figure 4. Forward Current vs. Forward Voltage

Figure 5. Rel. Luminous Intensity vs. Ambient Temperature

Figure 6. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

Figure 7. Relative Luminous Intensity vs. Forward Current

Figure 8. Relative Luminous Intensity vs. Wavelength

Figure 9. Forward Current vs. Forward Voltage

Figure 10. Rel. Luminous Intensity vs. Ambient Temperature

Figure 11. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

Figure 12. Relative Luminous Intensity vs. Forward Current

Figure 13. Relative Luminous Intensity vs. Wavelength

Figure 14. Forward Current vs. Forward Voltage

Figure 15. Rel. Luminous Intensity vs. Ambient Temperature

Figure 16. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

Figure 17. Relative Luminous Intensity vs. Forward Current

Figure 18. Relative Luminous Intensity vs. Wavelength

Figure 19. Forward Current vs. Forward Voltage

Figure 20. Rel. Luminous Intensity vs. Ambient Temperature

Figure 21. Specific Luminous Intensity vs.
Forward Current

Figure 22. Relative Luminous Intensity vs. Forward Current

Figure 23. Relative Luminous Intensity vs. Wavelength

VISHAY

Dimensions in mm

95 11343

Pin connections

1	g
2	f
3	A(C)
4	e
5	d
6	DP
7	c
8	A(C)
	-

96 11678

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83125 www.vishay.com
Rev. A2, 05-Oct-00 9 (9)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.