b) State D'Alembert's ratio test. Test for the convergence of the series

State D'Alembert's ratio test. 10
$$\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots \infty$$
.

- of the convergence series a) Test for the $1+\frac{1}{2^2}+\frac{2^2}{3^3}+\frac{3^3}{4^4}+\dots \infty$.
 - b) State Cauchy's root test. Test for the convergence of the series $\sum \left(1-\frac{3}{n}\right)^n$

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

ation: 3 Hour

5 Li a) Find th

b) i) W

c) Using

equati

approx

a) Using

corres

with a Perfor

Find th

matrix

Reduc canoni

i) Pro

ii) Is ti

State ti

			HATA MEMONIAL			
tion	usn Usn	34			To the	350
	NMAM INSTITUTE OF TECHNOLOGY, NITT	\$ / N	0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(An Autonomous Institution affiliated to VTU, Belaga	E Can		87		CHMO
I	Sem B.E. (Credit System) Mid Semester Examinations - I,		ary 20	122	,	150
	21MA101 - ENGINEERING MATHEMATICS - I	180			100	1/8
ation	1: 1 Hour		Max.	Mark	s: 20	
	Note: Answer any One full question from each Uni	it.		1		
		Marks	BT*	CO*	PO	
a)	Find the eigen values and corresponding eigen vectors of the matrix					
b	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$ Define rank of a matrix. Also find the rank of the following matrix by	6	L*2	1		2
9,	elementary row transformation.					
	$\begin{bmatrix} 1 & 3 & 4 & -2 \\ 3 & -1 & 2 & 0 \\ 2 & 1 & 3 & -1 \\ 4 & -3 & 1 & 1 \end{bmatrix}$	4	L1		1	1
a)	Test for consistency and hence solve the following system of equations by Gauss elimination method.					
	x-3y+2z=1 3x + y + z=2 7x-y+4z=5	5	L		1	2
b)	Solve the following system of equations by Gauss- Seidel iteration method.					
	27x + 6y - z = 85 6x + 15y + 2z = 72 x + y + 54z = 110					
	Start with $x^{(0)} = y^{(0)} = z^{(0)} = 0$ and carry out three iterations.		5 L	.1	1	1
	Unit - II					
a)	Using the Rayleigh's power method find the largest eigen value and $\begin{bmatrix} 4 & 1 & -1 \end{bmatrix}$					
	the corresponding eigen vector of the matrix $\begin{bmatrix} 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$. Take					
	the initial approximation to the eigen vector as $[1 \ 0.8 \ 0.8]^T$ and carry out 4 iterations.		5	L2	1	2

P.T.O.