

## planetmath.org

Math for the people, by the people.

## Birkhoff prime ideal theorem

Canonical name BirkhoffPrimeIdealTheorem

Date of creation 2013-03-22 17:02:18 Last modified on 2013-03-22 17:02:18

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Theorem
Classification msc 06D05
Classification msc 03E25

Related topic DistributiveLattice

**Birkhoff Prime Ideal Theorem**. Let L be a distributive lattice and I a proper lattice ideal of L. Pick any element  $a \notin I$ . Then there is a prime ideal P in L such that  $I \subseteq P$  and  $a \notin P$ .

Proof. If I is prime, then we are done. Let  $S := \{J \mid J \text{ is an ideal in } L, \text{ and } a \notin J\}$ . Then  $I \in S$ . Order S by inclusion. This turns S into a poset. Let C be a chain in S. Let  $K = \bigcup C$ . If  $x, y \in K$ , then  $x \in J_1$  and  $y \in J_2$  for some ideals  $J_1, J_2 \in C$ . Since C is a chain, we may assume that  $J_1 \subseteq J_2$ , so that  $x \in J_2$  as well. This means  $x \vee y \in J_2 \subseteq K$ . Next, assume  $x \in K$  and  $y \leq x$ . Then  $x \in J$  for some ideal  $J \in C$ , so that  $y \in J \subseteq K$  also. This shows that K is an ideal. If  $a \in K$ , then  $a \in J$  for some  $J \in C \subseteq S$ , contradicting the definition of S. So  $a \notin K$  and  $K \in S$  also. This shows that every chain in S has an upper bound. We can now appeal to Zorn's lemma, and conclude that S has a maximal element, say P.

We now want to show that P is the candidate that we are seeking: P is a prime ideal in L and  $a \notin P$ . Since  $P \in S$ , P is an ideal such that  $a \notin P$ . So the only thing left to prove is that P is prime. This amounts to showing that if  $x \wedge y \in P$ , then  $x \in P$  or  $y \in P$ . Suppose not:  $x, y \notin P$ . Let  $Q_1$  be the ideal generated by elements of P and x, and  $Q_2$  the ideal generated by P and P

In the proof, we use the fact that, an element  $a \in L$  belongs to the ideal generated by ideals  $I_k$  iff a is less than or equal to a finite join of elements, each of which belongs to some  $I_k$ .

## Remarks.

- 1. The theorem can be generalized: if we use a subset  $S \cap I = \emptyset$  instead of an element  $a \notin I$ , there is a prime ideal P containing I but excluding S.
- 2. Birkhoff's prime ideal theorem has been shown to be equivalent to the axiom of choice, under ZF.