Державний вищий навчальний заклад «Прикарпатський національний університет імені Василя Стефаника» Кафедра комп'ютерних наук та інформаційних систем

ЛАБОРАТОРНА РОБОТА №2

з предмету «Архітектура обчислювальних систем»

Тема: «Розробка багатопроцесорної обчислювальної системи з відмовами»

Виконав: студент групи КН-31 Книш В. В.				
<u>~</u>		2022p.		
	ийняв: н., доц. П	Іетришин М.Л		
		2022n		

Мета: Розробка багатопроцесорної обчислювальної системи з відмовами.

Хід роботи: Задано (згідно попередньої умови) багатопроцесорну систему із відмовами, t обс - середній час обслуговування одним процесором однієї задачі, λ - середня інтенсивність вхідного потоку задач. Необхідно визначити кількість процесорів ОС, для якої ймовірність обслуговування була б не меншою від Рпобсзд = 0.41 (згідно індивідуального завдання) і внести зміни в її архітектуру.

Варіант 14

За формулами даними в попередній лабораторними знайдемо кількість процесорів, щоб задовільнити нашу рівність Робс = Робсзв.

	+								
lambd	alpha	p_o	p_n	p_obs	n_k	k_z	n_o	k_p	n_zavd
1/55 1/55	11	0.0833333 0.0137931 0.0033975 0.0011057 0.0004451 0.0002125 0.0001166 7.2e-05 4.9e-05 3.63e-05 2.88e-05 2.43e-05 2.14e-05	0.917 0.834 0.754 0.675 0.597 0.523 0.451 0.383 0.319 0.26 0.206 0.159 0.119	0.083 0.166 0.246 0.325 0.403 0.477 0.549 0.617 0.681 0.74 0.794 0.841 0.881	0.917 1.821 2.71 3.58 4.428 5.25 6.039 6.79 7.494 8.145 8.733 9.252 9.696	0.917 0.91 0.903 0.895 0.886 0.875 0.863 0.849 0.833 0.814 0.794 0.771	0.0069444 0.0024732 0.0009869 0.0004644 0.0002545 0.0001594 0.0001121 8.71e-05 7.39e-05 6.74e-05 6.54e-05 6.66e-05 7.06e-05	0.0069444 0.0012366 0.000329 0.0001161 5.09e-05 2.66e-05 1.6e-05 1.09e-05 8.2e-06 6.7e-06 5.9e-06	1
1/55 1/55 1/55 1/55	11 11 11 11	1.96e-05 1.84e-05 1.77e-05 1.73e-05	0.085 0.059 0.039 0.025	0.915 0.941 0.961 0.975	10.063 10.353 10.573 10.73	0.719 0.69 0.661 0.631	7.7e-05 8.55e-05 9.6e-05 0.0001082	5.5e-06 5.7e-06 <u>6.0e-06</u> 6.4e-06	14 15 16 17

Таблиця 1 Результати обчислень показників ефективності обслуговування ОС з 15 процесорами

	Р(обс)	Р(обсзд)
1	0.083	0.941
2	0.166	0.941
3	0.246	0.941
4	0.325	0.941
5	0.403	0.941
6	0.477	0.941
7	0.549	0.941
8	0.617	0.941
9	0.681	0.941
10	0.740	0.941
11	0.794	0.941
12	0.841	0.941
13	0.881	0.941
14	0.915	0.941
15	0.941	0.941

Таблиця 2 Дані для побудови графіку (Рисунок 1)

Рисунок 1 Графік залежності Робс від кількості процесорів

За таблицею 2 та графіком (Рисунок 1) бачимо, що якщо кількість процесорів збільшити з (8) до (15), то наша рівність Робс = Робсзв виконується і наша ОС функціонує в оптимальному та ефективному режимі.

Висновки

Розробка багатопроцесорної обчислювальної системи з відмовами Задано (згідно попередньої умови) багатопроцесорну систему із відмовами, t обс - середній час обслуговування одним процесором однієї задачі, λ - середня інтенсивність вхідного потоку задач. Визначили кількість процесорів ОС, для якої ймовірність обслуговування була б не меншою від Рпобсзд ... (згідно індивідуального завдання) і внесли зміни в її архітектуру.