

Towards Confluence of DPRSs by Critical Pairs

Johannes Niederhauser and Aart Middeldorp

University of Innsbruck

IWC 2025 2 September 2025 1/17 universit

Outline

- 1. Introduction
- 2. Deterministic Higher-Order Pattern Rewrite Systems
- 3. Critical Pairs
- 4. Conclusion

 $app(abs(\lambda x.F(x)),S) \rightarrow F(S)$

 $abs(\lambda x.app(S,x)) \rightarrow S$

2 September 2025

universität innsbruck

$$\mathsf{app}(\mathsf{abs}(\lambda x. F(x)), S) \to F(S)$$

 $abs(\lambda x.app(S,x)) \rightarrow S$

Remarks

► HRSs à la Nipkow (LICS 1991)

3/17

$$app(abs(\lambda x.F(x)),S) \rightarrow F(S)$$

 $abs(\lambda x.app(S,x)) \rightarrow S$

Remarks

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form

3/17

 $app(abs(\lambda x.F(x)),S) \rightarrow F(S)$

 $abs(\lambda x.app(S,x)) \rightarrow S$

 $app(abs(\lambda x.app(x,x)), abs(\lambda x.app(x,x)))$

Remarks

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form

2 September 2025

 $app(abs(\lambda x.F(x)),S) \rightarrow F(S)$

 $abs(\lambda x.app(S,x)) \rightarrow S$

 $app(abs(\lambda x.app(x,x)), abs(\lambda x.app(x,x)))$

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- ightharpoonup matching modulo $\beta \eta$

$$\mathsf{app}(\mathsf{abs}(\lambda x.F(x)),S) \to F(S)$$

 $abs(\lambda x.app(S,x)) \rightarrow S$

- $app(abs(\lambda x.app(x,x)), abs(\lambda x.app(x,x)))$
- $\{F \mapsto \lambda z. \operatorname{app}(z, z), S \mapsto \operatorname{abs}(\lambda x. \operatorname{app}(x, x))\}$

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- ightharpoonup matching modulo $\beta \eta$

 $\mathsf{HRS}\,\mathcal{R}$

$$\mathsf{app}(\mathsf{abs}(\lambda x.F(x)),S) \, o \, F(S)$$

 $abs(\lambda x.app(S,x)) \rightarrow S$

- $\Rightarrow \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x))) \to_{\mathcal{R}} \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x)))$
- $F \mapsto \lambda z.\operatorname{app}(z,z), S \mapsto \operatorname{abs}(\lambda x.\operatorname{app}(x,x))$

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- matching modulo $\beta\eta$

 $\mathsf{HRS}\,\mathcal{R}$

$$app(abs(\lambda x.F(x)),S) \rightarrow F(S)$$

$$abs(\lambda x.app(S,x)) \rightarrow S$$

- $\Rightarrow \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x))) \to_{\mathcal{R}} \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x)))$
- ▶ $\{F \mapsto \lambda z. \operatorname{app}(z, z), S \mapsto \operatorname{abs}(\lambda x. \operatorname{app}(x, x))\}$

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- lacktriangleright matching modulo $\beta\eta$
- used in higher-order confluence analysis

 $\mathsf{HRS}\,\mathcal{R}$

$$app(abs(\lambda x.F(x)),S) \rightarrow F(S)$$

$$abs(\lambda x.app(S,x)) \rightarrow S$$

- $\Rightarrow \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x))) \to_{\mathcal{R}} \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x)))$
- $F \mapsto \lambda z.\operatorname{app}(z,z), S \mapsto \operatorname{abs}(\lambda x.\operatorname{app}(x,x))$

Remarks

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- lacktriangleright matching modulo $\beta\eta$
- used in higher-order confluence analysis
- critical pair lemma for special case where lhss are patterns

3/17

 $\mathsf{HRS}\,\mathcal{R}$

$$app(abs(\lambda x.F(x)),S) \rightarrow F(S)$$

$$\mathsf{abs}(\lambda x.\mathsf{app}(S,x)) \, o \, S$$

- $\Rightarrow \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x))) \to_{\mathcal{R}} \mathsf{app}(\mathsf{abs}(\lambda x.\mathsf{app}(x,x)),\mathsf{abs}(\lambda x.\mathsf{app}(x,x)))$
- $F \mapsto \lambda z.\operatorname{app}(z,z), S \mapsto \operatorname{abs}(\lambda x.\operatorname{app}(x,x))$

Remarks

- ► HRSs à la Nipkow (LICS 1991)
- terms in $\beta\eta$ -long normal form
- lacktriangleright matching modulo $eta\eta$
- used in higher-order confluence analysis
- critical pair lemma for special case where lhss are patterns
- our goal: extend this to deterministic higher-order patterns

3/17

Outline

- 1. Introduction
- 2. Deterministic Higher-Order Pattern Rewrite Systems
- 3. Critical Pairs
- 4. Conclusion

▶ flattened representation of simple types

- flattened representation of simple types
- ightharpoonup given set $\mathcal S$ of sorts, set of types is smallest set $\mathcal T$ such that
 - ① $\mathcal{S} \subseteq \mathcal{T}$
 - ② if $\sigma_1, \ldots, \sigma_n \in \mathcal{T}$ and $s \in \mathcal{S}$ then $(\sigma_1, \ldots, \sigma_n) \to s \in \mathcal{T}$

- flattened representation of simple types
- \blacktriangleright given set S of sorts, set of types is smallest set T such that
 - ① $\mathcal{S} \subset \mathcal{T}$
 - ② if $\sigma_1, \ldots, \sigma_n \in \mathcal{T}$ and $s \in \mathcal{S}$ then $(\sigma_1, \ldots, \sigma_n) \to s \in \mathcal{T}$
- $\beta\eta$ -free formulation of terms in $\beta\eta$ -long normal form

- flattened representation of simple types
- ightharpoonup given set ${\mathcal S}$ of sorts, set of types is smallest set ${\mathcal T}$ such that
 - \mathfrak{O} $\mathcal{S}\subseteq\mathcal{T}$
 - ② if $\sigma_1, \ldots, \sigma_n \in \mathcal{T}$ and $s \in \mathcal{S}$ then $(\sigma_1, \ldots, \sigma_n) \to s \in \mathcal{T}$
- $\beta\eta$ -free formulation of terms in $\beta\eta$ -long normal form
- ▶ given sets \mathcal{V} (infinite) and \mathcal{F} of typed variables and function symbols, set $\operatorname{term}(\sigma)$ of terms of type σ is defined inductively

- flattened representation of simple types
- ightharpoonup given set ${\mathcal S}$ of sorts, set of types is smallest set ${\mathcal T}$ such that
 - ① $\mathcal{S} \subseteq \mathcal{T}$
 - ② if $\sigma_1, \ldots, \sigma_n \in \mathcal{T}$ and $s \in \mathcal{S}$ then $(\sigma_1, \ldots, \sigma_n) \to s \in \mathcal{T}$
- $\beta\eta$ -free formulation of terms in $\beta\eta$ -long normal form
- given sets \mathcal{V} (infinite) and \mathcal{F} of typed variables and function symbols, set $\operatorname{term}(\sigma)$ of terms of type σ is defined inductively:

$$\frac{h:(\sigma_1,\ldots,\sigma_n)\to s\in\mathcal{F}\cup\mathcal{V}\qquad t_1\in\mathsf{term}(\sigma_1)\quad\cdots\quad t_n\in\mathsf{term}(\sigma_n)}{h(t_1,\ldots,t_n)\in\mathsf{term}(s)}$$

- flattened representation of simple types
- \blacktriangleright given set S of sorts, set of types is smallest set T such that
 - \mathfrak{I} $\mathcal{S} \subset \mathcal{T}$
 - ② if $\sigma_1, \ldots, \sigma_n \in \mathcal{T}$ and $s \in \mathcal{S}$ then $(\sigma_1, \ldots, \sigma_n) \to s \in \mathcal{T}$
- \blacktriangleright $\beta\eta$ -free formulation of terms in $\beta\eta$ -long normal form
- \triangleright given sets \mathcal{V} (infinite) and \mathcal{F} of typed variables and function symbols, set term(σ) of terms of type σ is defined inductively:

$$\frac{h:(\sigma_1,\,\ldots,\,\sigma_n)\to s\in\mathcal{F}\cup\mathcal{V}\qquad t_1\in\mathsf{term}(\sigma_1)\quad\cdots\quad t_n\in\mathsf{term}(\sigma_n)}{h(t_1,\,\ldots,\,t_n)\in\mathsf{term}(s)}$$

$$\frac{t \in \text{term}(s) \quad x_1 : \sigma_1 \in \mathcal{V} \quad \cdots \quad x_n : \sigma_n \in \mathcal{V}}{x_1 \dots x_n \cdot t \in \text{term}((\sigma_1, \dots, \sigma_n) \to s)}$$

higher–order pattern is term in β –normal form such that arguments of free variables are η –equivalent to distinct bound variables

higher-order pattern is term in β -normal form such that arguments of free variables are η -equivalent to distinct bound variables

Example

x.c(x) x.Z(c(x),d(x)) x.Z(y.y) Z(c) x.Z(y.x(y)) x.Z(Z(x)) $x.c(Z_1(x),Z_2(x))$

higher-order pattern is term in β -normal form such that arguments of free variables are η -equivalent to distinct bound variables

Example (higher-order patterns)

x.c(x) x.Z(c(x), d(x)) x.Z(y.y) Z(c) x.Z(y.x(y)) x.Z(Z(x)) $x.c(Z_1(x), Z_2(x))$

higher-order pattern is term in β -normal form such that arguments of free variables are η -equivalent to distinct bound variables

Example (higher-order patterns)

$$x.c(x)$$
 $x.Z(c(x),d(x))$ $x.Z(y.y)$ $Z(c)$ $x.Z(y.x(y))$ $x.Z(Z(x))$ $x.c(Z_1(x),Z_2(x))$

Definition (Yokoyama & Hu & Takeichi 2003)

deterministic higher-order pattern is term s such that

- ① $\varnothing \neq \mathsf{FV}(t_i) \subset \{y_1, \ldots, y_n\}$
- 2 $t_i \downarrow_n \not \leq t_i \downarrow_n$ whenever $i \neq j$
- 3 $t_i \downarrow_n$ is no lambda abstraction

for all abstracted subterms $y_1 \dots y_n.x(t_1, \dots, t_m)$ of s with $x \notin \{y_1, \dots, y_n\}$ and $1 \le i \le m$

higher-order pattern is term in β -normal form such that arguments of free variables are η -equivalent to distinct bound variables

Example (deterministic higher-order patterns)

$$x.c(x)$$
 $x.Z(c(x),d(x))$ $x.Z(y.y)$ $Z(c)$ $x.Z(y.x(y))$ $x.Z(Z(x))$ $x.c(Z_1(x),Z_2(x))$

Definition (Yokoyama & Hu & Takeichi 2003)

deterministic higher-order pattern is term s such that

- ① $\varnothing \neq \mathsf{FV}(t_i) \subseteq \{y_1, \ldots, y_n\}$
- 2 $t_i \downarrow_n \not \triangleleft t_i \downarrow_n$ whenever $i \neq j$
- 3 $t_i \downarrow_n$ is no lambda abstraction

for all abstracted subterms $y_1 \dots y_n.x(t_1, \dots, t_m)$ of s with $x \notin \{y_1, \dots, y_n\}$ and $1 \le i \le m$

unification problem for higher-order patterns is decidable

unification problem for higher-order patterns is decidable and unitary

unification problem for higher-order patterns is decidable and unitary

Theorem (Yokoyama & Hu & Takeichi 2003)

matching problem for deterministic higher–order patterns is decidable and unitary

unification problem for higher-order patterns is decidable and unitary

Theorem (Yokoyama & Hu & Takeichi 2003)

matching problem for deterministic higher-order patterns is decidable and unitary

Remarks

deterministic higher-order patterns are useful for program transformation

unification problem for higher-order patterns is decidable and unitary

Theorem (Yokoyama & Hu & Takeichi 2003)

matching problem for deterministic higher-order patterns is decidable and unitary

- deterministic higher-order patterns are useful for program transformation
- unification problem for deterministic higher-order problems is not unitary

- ightharpoonup f: a ightharpoonup a M, N: (a, a) ightharpoonup a
- terms x, y.M(f(x), f(y)) and x, y.f(N(y, x))

- ightharpoonup f: a ightharpoonup a M, N: (a, a) ightharpoonup a
- terms x, y.M(f(x), f(y)) and x, y.f(N(y, x)) admit three (incomparable) unifiers:
- $\{M \mapsto z_1, z_2, z_1, N \mapsto z_1, z_2, z_2\}$

- ightharpoonup f: a ightharpoonup a M, N: (a,a) ightharpoonup a
- ightharpoonup terms x, y. M(f(x), f(y)) and x, y. f(N(y, x)) admit three (incomparable) unifiers:

- ightharpoonup f: a ightharpoonup a M, N: (a, a) ightharpoonup a
- ightharpoonup terms x, y. M(f(x), f(y)) and x, y. f(N(y, x)) admit three (incomparable) unifiers:

with fresh variable $Z:(a,a)\rightarrow a$

- ightharpoonup f: a ightharpoonup a M, N: (a, a) ightharpoonup a
- terms x, y.M(f(x), f(y)) and x, y.f(N(y, x)) admit three (incomparable) unifiers:
 - $\{M \mapsto Z_1, Z_2, Z_1, N \mapsto Z_1, Z_2, Z_2\}$
 - 2 $\{M \mapsto Z_1, Z_2, Z_2, N \mapsto Z_1, Z_2, Z_1\}$
 - 3 $\{M \mapsto Z_1, Z_2, f(Z(Z_1, Z_2)), N \mapsto Z_1, Z_2, Z(f(Z_2), f(Z_1))\}$

with fresh variable $Z:(a,a)\rightarrow a$

Definitions

 deterministic higher-order pattern rewrite rule is rewrite rule whose left-hand side is deterministic higher-order pattern

- ightharpoonup f: a ightharpoonup a M, N: (a, a) ightharpoonup a
- terms x, y.M(f(x), f(y)) and x, y.f(N(y, x)) admit three (incomparable) unifiers:
 - $\{M \mapsto Z_1, Z_2, Z_1, N \mapsto Z_1, Z_2, Z_2\}$
 - 2 $\{M \mapsto Z_1, Z_2, Z_2, N \mapsto Z_1, Z_2, Z_1\}$
 - 3 $\{M \mapsto Z_1, Z_2, f(Z(Z_1, Z_2)), N \mapsto Z_1, Z_2, Z(f(Z_2), f(Z_1))\}$

with fresh variable $Z:(a,a)\rightarrow a$

- deterministic higher-order pattern rewrite rule is rewrite rule whose left-hand side is deterministic higher-order pattern
- deterministic higher-order pattern rewrite system (DPRS) is set of deterministic higher-order pattern rewrite rules

Outline

- 1. Introduction
- 2. Deterministic Higher-Order Pattern Rewrite Systems
- 3. Critical Pairs
- 4. Conclusion

DPRS \mathcal{R}

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$

$$c(y.Z(g(y))) \rightarrow Z(d(y))$$

universität innsbruck

DPRS \mathcal{R}

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$

ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b

DPRS \mathcal{R}

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- \triangleright $x : a Z : a \rightarrow a$

2 September 2025

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- \triangleright $x : a Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$

DPRS \mathcal{R}

$$\mathsf{f}(\mathsf{g}(x)) \, o \, \mathsf{f}(x) \qquad \mathsf{h}(\mathsf{g}(x)) \, o \, \mathsf{h}(x) \qquad \mathsf{c}(y.\mathsf{Z}(\mathsf{g}(y))) \, o \, \mathsf{Z}(\mathsf{d})$$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- $\triangleright x : a \quad Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is not joinable

Challenge

how to define critical pairs?

2 September 2025

DPRS \mathcal{R}

$$h(g(x)) \rightarrow h(x)$$

 $f(g(x)) \rightarrow f(x)$ $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$ $c(y.f(y)) \rightarrow f(d)$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- $\triangleright x : a \quad Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is joinable

Challenge

DPRS \mathcal{R}

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$ $c(y.f(y)) \rightarrow f(d)$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- $\triangleright x : a \quad Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is joinable
- $\triangleright \mathcal{R}$ is not locally confluent

Challenge

how to define critical pairs?

2 September 2025

DPRS \mathcal{R}

$$f(g(x)) \rightarrow f(x)$$
 $h(g(x)) \rightarrow h(x)$ $c(y.Z(g(y))) \rightarrow Z(d)$ $c(y.f(y)) \rightarrow f(d)$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- $\triangleright x : a \quad Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is joinable
- $\triangleright \mathcal{R}$ is not locally confluent
- local peak $c(y.f(f(y))) \leftarrow c(y.f(f(g(y)))) \rightarrow f(f(d))$ is not joinable

Challenge

DPRS \mathcal{R}

$$\mathsf{f}(\mathsf{g}(x)) \, o \, \mathsf{f}(x) \qquad \mathsf{h}(\mathsf{g}(x)) \, o \, \mathsf{h}(x) \qquad \mathsf{c}(y.Z(\mathsf{g}(y))) \, o \, Z(\mathsf{d}) \qquad \mathsf{c}(y.\mathsf{f}(y)) \, o \, \mathsf{f}(\mathsf{d})$$

- ightharpoonup c: (a o a) o a d: a f, g: a o a h: a o b
- $\triangleright x : a \quad Z : a \rightarrow a$
- ▶ local peak $c(v.f(v)) \leftarrow c(v.f(g(v))) \rightarrow f(d)$ is joinable
- $\triangleright \mathcal{R}$ is not locally confluent, contradicting local confluence result of Hamana (JFP 2019)
- local peak $c(y.f(f(y))) \leftarrow c(y.f(f(g(y)))) \rightarrow f(f(d))$ is not joinable

Challenge

DPRS \mathcal{R}

$$\mathsf{f}(\mathsf{g}(x)) \, o \, \mathsf{f}(x) \qquad \mathsf{h}(\mathsf{g}(x)) \, o \, \mathsf{h}(x) \qquad \mathsf{c}(y.\mathsf{Z}(\mathsf{g}(y))) \, o \, \mathsf{Z}(\mathsf{d}) \qquad \mathsf{c}(y.\mathsf{f}(y)) \, o \, \mathsf{f}(\mathsf{d})$$

- ightharpoonup c : (a ightharpoonup a d : a f, g : a ightharpoonup a h : a ightharpoonup b e : b ightharpoonup a
- \triangleright $x : a Z : a \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is joinable
- $ightharpoonup \mathcal{R}$ is not locally confluent, contradicting local confluence result of Hamana (JFP 2019)
- ▶ local peak $c(y.f(f(y))) \leftarrow c(y.f(f(g(y)))) \rightarrow f(f(d))$ is not joinable
- ▶ local peak $c(y.e(h(y))) \leftarrow c(y.e(h(g(y)))) \rightarrow e(h(d))$ is not joinable

Challenge

DPRS \mathcal{R}

$$\mathsf{f}(\mathsf{g}(x)) \, o \, \mathsf{f}(x) \qquad \mathsf{h}(\mathsf{g}(x)) \, o \, \mathsf{h}(x) \qquad \mathsf{c}(y.Z(\mathsf{g}(y))) \, o \, Z(\mathsf{d}) \qquad \mathsf{c}(y.\mathsf{f}(y)) \, o \, \mathsf{f}(\mathsf{d})$$

- ightharpoonup c : (a ightharpoonup a d : a f, g : a ightharpoonup a h : a ightharpoonup b e : b ightharpoonup a
- \triangleright $X : a Z : a \rightarrow a F : (a,a) \rightarrow a$
- ▶ local peak $c(y.f(y)) \leftarrow c(y.f(g(y))) \rightarrow f(d)$ is joinable
- $ightharpoonup \mathcal{R}$ is not locally confluent, contradicting local confluence result of Hamana (JFP 2019)
- ▶ local peak $c(y.f(f(y))) \leftarrow c(y.f(f(g(y)))) \rightarrow f(f(d))$ is not joinable
- ▶ local peak $c(y.e(h(y))) \leftarrow c(y.e(h(g(y)))) \rightarrow e(h(d))$ is not joinable
- ▶ local peak $c(y.F(f(y),g(y))) \leftarrow c(y.F(f(g(y)),g(y))) \rightarrow F(f(d),d)$ is not joinable

Challenge

①
$$\ell_1 \rightarrow r_1, \, \ell_2 \rightarrow r_2 \in \mathcal{R}$$

overlap of DPRS \mathcal{R} is octuple $\langle \ell_1 \to r_1, p, q, \overline{x_n}, \delta, \gamma, U, \ell_2 \to r_2 \rangle$ such that

① $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$ and $p \in \mathcal{P}os(\ell_2)$

- ① $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$ and $p \in \mathcal{P}os(\ell_2)$
- ② if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants

- ① $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$ and $p \in \mathcal{P}os(\ell_2)$
- ② if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants
- 3 BV(ℓ_2, p) = $\overline{x_p}$ and δ is $\overline{x_p}$ -lifter of ℓ_1 away from FV(ℓ_2)

- ① $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$ and $p \in \mathcal{P}os(\ell_2)$
- 2 if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants
- 3 BV $(\ell_2, p) = \overline{X_p}$ and δ is $\overline{X_p}$ -lifter of ℓ_1 away from FV (ℓ_2)
- 4 U' is minimal complete set of unifiers of $\overline{x_n}$. $\ell_1 \delta$ and $\ell_2 \gamma|_{pq}$

- ① $\ell_1 \rightarrow r_1, \ell_2 \rightarrow r_2 \in \mathcal{R}$ and $p \in \mathcal{P}os(\ell_2)$
- 2 if $p = \epsilon$ then $\ell_1 \to r_1$ and $\ell_2 \to r_2$ are not variants
- 3 BV(ℓ_2, p) = $\overline{x_p}$ and δ is $\overline{x_p}$ -lifter of ℓ_1 away from FV(ℓ_2)
- 4 U' is minimal complete set of unifiers of $\overline{x_n}$. $\ell_1 \delta$ and $\ell_2 \gamma|_{pq}$
- **5** either $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$, $q = \epsilon$, $\gamma = \epsilon$, U = U'

- ① $\ell_1 \rightarrow r_1, \, \ell_2 \rightarrow r_2 \in \mathcal{R} \text{ and } p \in \mathcal{P}os(\ell_2)$
- ② if $p = \epsilon$ then $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ are not variants
- ③ BV $(\ell_2,p)=\overline{x_n}$ and δ is $\overline{x_n}$ -lifter of ℓ_1 away from FV (ℓ_2)
- 4 U' is minimal complete set of unifiers of $\overline{x_n}.\ell_1\delta$ and $\ell_2\gamma|_{pq}$
- ⑤ either $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$, $q = \epsilon$, $\gamma = \epsilon$, U = U' or q = 1 and
 - $\qquad \qquad \bullet \ \ell_2|_{\rho} = \overline{x_n}.y(\overline{s_m}) \ \text{where} \ y \notin \{\overline{x_n}\} \ \text{and} \ \{\overline{s_m}\} \nsubseteq \{\overline{x_n} \uparrow\}$
 - ▶ $\gamma = \{y \mapsto \overline{y_m}.y''(y'(\overline{y_m}\uparrow), \overline{y_m}\uparrow)\}$ where $y' : \overline{\sigma_m} \to b$ and $y'' : (b, \overline{\sigma_m}) \to a$ are fresh variables with $y : \overline{\sigma_m} \to a$ and $\ell_1 : b$
 - ▶ $U = U' \setminus U''$ such that for all $\theta \in U'' \subseteq U$
 - ① if $\theta(y') = \overline{y_m} \cdot v$ and $y_i \in FV(v)$ then $s_i \in \{\overline{x_n} \uparrow\}$ or ② $(\overline{x_n} \cdot y'(\overline{s_m}))\theta \in \{\overline{x_n} \cdot s_i \mid 1 \leqslant i \leqslant m\}$

▶ critical peak for overlap $\langle \ell_1 \rightarrow r_1, p, q, \overline{x_n}, \delta, \gamma, U, \ell_2 \rightarrow r_2 \rangle$ and $\theta \in U$

$$\ell_2 \gamma \theta [(\overline{x_n}.r_1\delta)\theta]_{pq} \leftarrow \ell_2 \gamma \theta [(\overline{x_n}.\ell_1\delta)\theta]_{pq} = \ell_2 \gamma \theta \rightarrow r_2 \gamma \theta$$

▶ critical peak for overlap $\langle \ell_1 \rightarrow r_1, p, q, \overline{x_n}, \delta, \gamma, U, \ell_2 \rightarrow r_2 \rangle$ and $\theta \in U$

$$\ell_2 \gamma \theta [(\overline{x_n}.r_1\delta)\theta]_{pq} \leftarrow \ell_2 \gamma \theta [(\overline{x_n}.\ell_1\delta)\theta]_{pq} = \ell_2 \gamma \theta \rightarrow r_2 \gamma \theta$$

with critical pair

$$\ell_2 \gamma \theta [(\overline{x_n}.r_1\delta)\theta]_{pq} \approx r_2 \gamma \theta$$

▶ critical peak for overlap $\langle \ell_1 \rightarrow r_1, p, q, \overline{x_n}, \delta, \gamma, U, \ell_2 \rightarrow r_2 \rangle$ and $\theta \in U$

$$\ell_2 \gamma \theta [(\overline{x_n}.r_1 \delta) \theta]_{pq} \leftarrow \ell_2 \gamma \theta [(\overline{x_n}.\ell_1 \delta) \theta]_{pq} = \ell_2 \gamma \theta \rightarrow r_2 \gamma \theta$$

with critical pair

$$\ell_2 \gamma \theta [(\overline{x_n}.r_1\delta)\theta]_{pq} \approx r_2 \gamma \theta$$

 $ightharpoonup CP(\mathcal{R})$ denotes set of critical pairs of DPRS \mathcal{R}

DPRS \mathcal{R}

$$\operatorname{\mathsf{repl}}(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$\operatorname{\mathsf{repl}}(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- ▶ \bot : prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- ▶ repl : $(prop \rightarrow prop, prop) \rightarrow prop$ x : prop $F : prop \rightarrow prop$

universität innsbruck

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg \neg x \to x \qquad \neg (x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- $ightharpoonup \perp$: prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- repl: $(prop \rightarrow prop, prop) \rightarrow prop \quad x : prop \quad F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$\neg x \approx \neg x$$
 $x \Rightarrow \bot \approx \neg x$
 $\neg x \Rightarrow \bot \approx x$ $\neg (x \Rightarrow \bot) \approx x$
 $x \Rightarrow \bot \approx x \Rightarrow \bot$ $(x \Rightarrow \bot) \Rightarrow \bot \approx x$

DPRS \mathcal{R}

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- $ightharpoonup \perp$: prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- repl: $(prop \rightarrow prop, prop) \rightarrow prop \quad x : prop \quad F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$\neg x \approx \neg x \qquad x \Rightarrow \bot \approx \neg x \qquad H_1(x \Rightarrow \bot) \approx H_1(\neg x)$$
 $\neg x \Rightarrow \bot \approx x \qquad \neg(x \Rightarrow \bot) \approx x$
 $x \Rightarrow \bot \approx x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \approx x$

with H_1 : prop \rightarrow prop

DPRS \mathcal{R}

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg \neg x \to x \qquad \neg (x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- ▶ \bot : prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- ▶ repl : $(prop \rightarrow prop, prop) \rightarrow prop$ x : prop $F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$\neg x \approx \neg x$$
 $x \Rightarrow \bot \approx \neg x$
 $H_1(x \Rightarrow \bot) \approx H_1(\neg x)$
 $\neg x \Rightarrow \bot \approx x$
 $repl(y.G(y, \neg y), x) \approx G(\neg(x \Rightarrow \bot), x \Rightarrow \bot)$
 $x \Rightarrow \bot \approx x \Rightarrow \bot$
 $(x \Rightarrow \bot) \Rightarrow \bot \approx x$

with H_1 : prop \rightarrow prop, G: (prop, prop) \rightarrow prop

DPRS \mathcal{R}

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- ▶ \bot : prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- ▶ repl : $(prop \rightarrow prop, prop) \rightarrow prop$ x : prop $F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$abla x pprox \neg x \approx \neg x \qquad x \Rightarrow \bot \approx \neg x \qquad H_1(x \Rightarrow \bot) \approx H_1(\neg x)
\neg x \Rightarrow \bot \approx x \qquad \neg (x \Rightarrow \bot) \approx x \qquad \text{repl}(y.G(y,\neg y),x) \approx G(\neg (x \Rightarrow \bot),x \Rightarrow \bot)
x \Rightarrow \bot \approx x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \approx x \qquad \text{repl}(y.F(y \Rightarrow \bot),x) \approx F(x \Rightarrow \bot)$$

with H_1 : prop \rightarrow prop, G: (prop, prop) \rightarrow prop

DPRS \mathcal{R}

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- ▶ \bot : prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- repl: $(prop \rightarrow prop, prop) \rightarrow prop \quad x : prop \quad F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$abla x pprox \neg x \qquad x \Rightarrow \bot pprox \qquad H_1(x \Rightarrow \bot) pprox H_1(\neg x)
\neg x \Rightarrow \bot pprox \qquad \neg (x \Rightarrow \bot) pprox x \qquad \text{repl}(y.G(y,\neg y),x) pprox G(\neg (x \Rightarrow \bot),x \Rightarrow \bot)
x \Rightarrow \bot pprox x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot pprox x \qquad \text{repl}(y.F(y \Rightarrow \bot),x) pprox F(x \Rightarrow \bot)
\text{repl}(y.G(H_2(\neg y,H_1(\neg y) \Rightarrow \bot),\neg y),x) \approx G(\text{repl}(z.H_2(x \Rightarrow \bot,\neg z),H_1(x \Rightarrow \bot)),x \Rightarrow \bot)$$

with H_1 : prop \rightarrow prop, G: (prop, prop) \rightarrow prop and H_2 : (prop, prop) \rightarrow prop

DPRS \mathcal{R}

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- ▶ \bot : prop \neg : prop \rightarrow prop \Rightarrow : (prop, prop) \rightarrow prop
- ▶ repl : $(prop \rightarrow prop, prop) \rightarrow prop$ x : prop $F : prop \rightarrow prop$
- critical pairs (modulo symmetry)

$$\begin{array}{lll} \neg x \approx \neg x & x \Rightarrow \bot \approx \neg x & H_1(x \Rightarrow \bot) \approx H_1(\neg x) \\ \neg x \Rightarrow \bot \approx x & \neg(x \Rightarrow \bot) \approx x & \operatorname{repl}(y.G(y, \neg y), x) \approx G(\neg(x \Rightarrow \bot), x \Rightarrow \bot) \\ x \Rightarrow \bot \approx x \Rightarrow \bot & (x \Rightarrow \bot) \Rightarrow \bot \approx x & \operatorname{repl}(y.F(y \Rightarrow \bot), x) \approx F(x \Rightarrow \bot) \\ \operatorname{repl}(y.G(H_2(\neg y, H_1(\neg y) \Rightarrow \bot), \neg y), x) \approx G(\operatorname{repl}(z.H_2(x \Rightarrow \bot, \neg z), H_1(x \Rightarrow \bot)), x \Rightarrow \bot) \\ \operatorname{repl}(y.G(H_2(\neg y, H_1(\neg y)), \neg y), x) \approx G(\operatorname{repl}(z.H_2(x \Rightarrow \bot, z), H_1(x \Rightarrow \bot)), x \Rightarrow \bot) \end{array}$$

with $H_1: \mathsf{prop} \to \mathsf{prop}$, $G: (\mathsf{prop}, \mathsf{prop}) \to \mathsf{prop}$ and $H_2: (\mathsf{prop}, \mathsf{prop}) \to \mathsf{prop}$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \stackrel{*}{\mathcal{R}} \leftarrow u$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \stackrel{*}{\underset{\mathcal{R}}{\longleftarrow}} u$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \stackrel{*}{\mathcal{R}} \leftarrow u$

Example

$$f(x) \rightarrow x$$

$$c(y.Z(f(y))) \rightarrow Z(d)$$

- ightharpoonup c: (a o a) o a d: a f: a o a
- \triangleright x:a $Z:a \rightarrow a$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \underset{\mathcal{R}}{\overset{*}} \leftarrow u$

Example

$$f(x) \rightarrow x$$
 $c(y.Z(f(y))) \rightarrow Z(d)$

- ightharpoonup c: (a o a) o a d: a f: a o a g: (a,a) o a
- \triangleright x:a $Z:a \rightarrow a$
- ▶ non-joinable local peak $c(y,g(y,f(y))) \leftarrow c(y,g(f(y),f(y))) \rightarrow g(d,d)$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \underset{\mathcal{R}}{*} \leftarrow u$

Example

$$f(x) \rightarrow x$$
 $c(y.Z(f(y))) \rightarrow Z(d)$

- ightharpoonup c: (a o a) o a d: a f: a o a g: (a,a) o a
- \triangleright x:a $Z:a \rightarrow a$
- ▶ non-joinable local peak $c(y,g(y,f(y))) \leftarrow c(y,g(f(y),f(y))) \rightarrow g(d,d)$
- corresponding critical pair $c(y.Z(y)) \approx Z(d)$

if $t \mathrel{\mathcal{R}} \leftarrow \cdot \rightarrow_{\mathcal{R}} u$ then $t \downarrow_{\mathcal{R}} u$ or $t \rightarrow_{\mathcal{R}}^* \cdot \leftrightarrow_{\mathsf{CP}(\mathcal{R})} \cdot \stackrel{*}{\mathcal{R}} \leftarrow u$

Example

$$f(x) \rightarrow x$$
 $c(y.Z(f(y))) \rightarrow Z(d)$

- ightharpoonup c: (a o a) o a d: a f: a o a g: (a,a) o a
- \triangleright x:a $Z:a \rightarrow a$
- ▶ non-joinable local peak $c(y,g(y,f(y))) \leftarrow c(y,g(f(y),f(y))) \rightarrow g(d,d)$
- ightharpoonup corresponding critical pair $c(y.Z(y)) \approx Z(d)$
- $ightharpoonup c(y.g(y,f(y))) \rightarrow_{\mathcal{R}} c(y.g(y,y)) \leftrightarrow_{CP(\mathcal{R})} g(d,d)$

Corollary

terminating DPRS \mathcal{R} is confluent if all its critical pairs are joinable

IWC 2025

terminating DPRS ${\mathcal R}$ is confluent if all its critical pairs are joinable

Example (cont'd)

DPRS \mathcal{R}

$$\mathsf{repl}(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$\mathsf{repl}(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

▶ all critical pairs are joinable

terminating DPRS \mathcal{R} is confluent if all its critical pairs are joinable

Example (cont'd)

$$\operatorname{repl}(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$\operatorname{repl}(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- all critical pairs are joinable
- polynomial interpretation (van de Pol 1996)

$$\operatorname{repl}_{\mathbb{N}}(Y,x) = Y(x) + x + 1$$
 $\neg_{\mathbb{N}}(x) = x + 2$ $\Rightarrow_{\mathbb{N}}(x,y) = x + y + 1$ $\bot_{\mathbb{N}} = 0$

terminating DPRS ${\cal R}$ is confluent if all its critical pairs are joinable

Example (cont'd)

$$\mathsf{repl}(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$
$$\mathsf{repl}(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- all critical pairs are joinable
- polynomial interpretation (van de Pol 1996)

$$\operatorname{\mathsf{repl}}_{\mathbb{N}}(Y,x) = Y(x) + x + 1 \qquad \neg_{\mathbb{N}}(x) = x + 2 \qquad \Rightarrow_{\mathbb{N}}(x,y) = x + y + 1 \qquad \bot_{\mathbb{N}} = 0$$

$$[\![\operatorname{\mathsf{repl}}(y.F(\neg y),x)]\!] = [\![F]\!]([\![x]\!]+2) + [\![x]\!]+1 > [\![F]\!]([\![x]\!]+1) = [\![F(x\Rightarrow \bot)]\!]$$

terminating DPRS \mathcal{R} is confluent if all its critical pairs are joinable

Example (cont'd)

$$\mathsf{repl}(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$\mathsf{repl}(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- all critical pairs are joinable
- polynomial interpretation (van de Pol 1996)

$$\mathsf{repl}_{\mathbb{N}}(Y, x) = Y(x) + x + 1 \qquad \neg_{\mathbb{N}}(x) = x + 2 \qquad \Rightarrow_{\mathbb{N}}(x, y) = x + y + 1 \qquad \bot_{\mathbb{N}} = 0$$
$$\|\mathsf{repl}(y.F(\neg y), x)\| = \|F\|(\|x\| + 2) + \|x\| + 1 > \|F\|(\|x\| + 1) = \|F(x \Rightarrow \bot)\|$$

$$\llbracket \mathsf{repl}(y.F(y),x) \rrbracket = \llbracket F \rrbracket (\llbracket x \rrbracket) + \llbracket x \rrbracket + 1 > \llbracket F \rrbracket (\llbracket x \rrbracket) = \llbracket F(x) \rrbracket$$

terminating DPRS \mathcal{R} is confluent if all its critical pairs are joinable

Example (cont'd)

$$repl(y.F(\neg y),x) \to F(x \Rightarrow \bot) \qquad \neg\neg x \to x \qquad \neg(x \Rightarrow \bot) \to x$$

$$repl(y.F(y),x) \to F(x) \qquad \neg x \to x \Rightarrow \bot \qquad (x \Rightarrow \bot) \Rightarrow \bot \to x$$

- all critical pairs are joinable
- polynomial interpretation (van de Pol 1996)

$$\begin{split} \operatorname{repl}_{\mathbb{N}}(Y, x) &= Y(x) + x + 1 & \neg_{\mathbb{N}}(x) = x + 2 & \Rightarrow_{\mathbb{N}}(x, y) = x + y + 1 & \bot_{\mathbb{N}} = 0 \\ & [\![\operatorname{repl}(y.F(\neg y), x)]\!] = [\![F]\!]([\![x]\!] + 2) + [\![x]\!] + 1 > [\![F]\!]([\![x]\!] + 1) = [\![F(x \Rightarrow \bot)]\!] \end{split}$$

$$[\![\operatorname{\mathsf{repl}}(y.F(y),x)]\!] = [\![F]\!]([\![x]\!]) + [\![x]\!] + 1 > [\![F]\!]([\![x]\!]) = [\![F(x)]\!]$$

Outline

- 1. Introduction
- 2. Deterministic Higher-Order Pattern Rewrite Systems
- 3. Critical Pairs
- 4. Conclusion

critical pair lemma for deterministic higher-order pattern rewrite systems

critical pair lemma for deterministic higher-order pattern rewrite systems

Future Work

► investigate unification problem for deterministic higher–order patterns

critical pair lemma for deterministic higher-order pattern rewrite systems

Future Work

- ▶ investigate unification problem for deterministic higher–order patterns
- completion for higher-order rewriting

4. Conclusion

critical pair lemma for deterministic higher-order pattern rewrite systems

Future Work

- ▶ investigate unification problem for deterministic higher-order patterns
- completion for higher-order rewriting
- formalization of higher-order confluence methods

