Měsíční Kvantum Informací – Novotná Adéla, 6.A

II. U1

a) 0° (obzor)

Atmosféra Země (a mezihvězdný prach) rozptyluje světlo hvězd. To znamená, že čím větší vzdálenost musí světlo tímto prostředím urazit, tím více se ho rozptýlí a tím bude slabší. Pokud se objekt nachází na zenitu (a tedy přímo nad námi) má k nám nejkratší cestu – bude zářit nejjasněji. Čím je tedy dál od zenitu tím slabší světlo bude.

II. U2

c) James Clerk Maxwell

II. A

Polární záře na Zemi vzniká hlavně díky jejímu magnetickému poli. Venuše magnetické pole ale nemá. Sluneční vítr se tedy dostane do svrchní vrstvy její atmosféry díky magnetickému poli Slunce. V atmosféře se vítr může srážet s oxidem uhličitým, který tvoří její většinu. Jelikož v atmosféře není žádný kyslík ani dusík, nemá se "polární záře" jak obarvit. A protože

je atmosféra Venuše hustá a záře nevýrazná, nelze ji z povrchu planety vidět. Můžeme ji spatřit pouze z vesmíru, kde není blokovaná tak silnou vrstvou atmosféry.

II. K

- 1. b) λ_{max} je nepřímo úměrná teplotě tělesa
- 2. Předchozí odpověď vysvětluje Wienův posunovací zákon. Ten říká, že čím je teplota vyšší, tím jasněji těleso září na kratších vlnových délkách. Příkladem můžou být hvězdy:

	teplota	vlnová délka	porovnání
oranžové hvězdy	4500 K	640 nm (oranžová)	5780 > 4500
Slunce	5780 K	500 nm (žlutá)	500 < 640

3. d) Wienův posunovací zákon

II.B

Podle Dopplerova jevu platí:

$$f=f_0rac{v}{v-v_{s,r}}$$

O: Auto by muselo zrychlit na 23,4 . $10^7 \, \text{kmh}^{-1}$