Cover's Dichotomy Counting Theorem

(Thomas Cover, 1965)

Statement

Consider K points in general position in \mathbb{R}^N : $S = \{x^{(1)}, x^{(2)}, ..., x^{(K)}\}$.

Consider all possible dichotomies of S. That is: partitions into S_{\bigoplus} and S_{\bigcirc} .

There are 2^K such partitions.

Any such dichotomy is either linearly separable or it is not.

Further assume that N + 1 < K.

Cover's Thm states that (again – for any such configuration in general positions) the number of linearly separable dichotomies is

$$CovNum(K,N) = 2 \sum_{i=0}^{N} {K-1 \choose i}$$

For $K \leq N + 1$ all 2^K dichotomies are linearly separable.

Comments

- General position means that, for all $d \le N$ there are no d+1 points that reside on the same d-1 dimensional hyperplane. For example no 2 points are identical, no 3 points are co-linear, no 4 points are on the same 2 dimensional hyperplane, etc ...
- A immediate conclusion from the theorem is as follows. If we draw a dichotomy, uniformly at random, for a set *S* as above, then the probability that this dichotomy is linearly separable is (exactly!):

$$\frac{1}{2^{K-1}} \sum_{i=0}^{N} {K-1 \choose i}$$

We will use induction. We therefore assume that the statement is true up to K and for all N and now assume that we have K+1 points.

Denote the number of linearly separable dichotomies by

C(K,N)

 $H = \{x: \langle x, w \rangle + w_0 = 0\}$

X

x X

X X X X X

X X X

X

 $p = x^{(K+1)}$

and a hyperplane H, defined by w and w_0 so that all points are on the positive side of H and p uniquely has the minimal vertical distance to H. WLOG $p=x^{(K+1)}$. All this means that:

Find a point $p = x^{(i)} \in S$

All this means that: $\langle p,w\rangle + w_0 > 0$ and

Χ

Χ

Χ

 $\forall i \le K : \langle p, w \rangle < \langle x^{(i)}, w \rangle$

Н

Consider the set, T, of K points obtained by removing the point $p = x^{(K+1)}$ from S.

If a linearly separable dichotomy of T can be realized by a hyperplane that goes through p then it gives rise to exactly two linearly separable dichotomies of S, by moving the hyperplane to either side and setting $p \in S_{\bigoplus}$ or $p \in S_{\bigoplus}$, accordingly.

Consider the set, T, of K points obtained by removing the point $p = x^{(K+1)}$ from S.

Χ

Χ

Χ

If a linearly separable dichotomy of T can not be realized by a hyperplane that goes through p then it gives rise to exactly one linearly separable dichotomy of S, since to keep the separability only one of $p \in S_{\bigoplus}$ or $p \in S_{\bigoplus}$ is possible.

Proof Χ Χ Χ Χ Χ Χ X Χ Χ Χ Χ Χ Χ X Χ Χ Χ $p = x^{(K+1)}$ Χ Χ

Let D denote the number of linearly separable dichotomies of T that can be realized with a hyperplane through p.

From the previous two slides we get:

$$C(K + 1, N)$$

$$= C(K, N) - D + 2D$$

$$= C(K, N) + D$$

Н

We will now claim that

$$D = C(K, N-1)$$

To see this first project all points in T to a hyperplane, H_{Shifted} , obtained by shifting H further up the vector w. This is done by drawing the line from p to the point we want to project and continuing it until hitting H_{Shifted} .

This projection yields a set of K points on $H_{
m Shifted}$, call it $T_{\rm Shifted}$. Note that any dichotomy, of T, which we counted in D, yields, via projection of the separating hyperplane, a dichotomy of T_{Shifted} . Now note that T_{Shifted} , embedded in H_{Shifted} is equivalent to a set of K points, in general position, in \mathbb{R}^{N-1} .

Proof – final step, some algebra ...

We now have the recurrence relation:

$$C(K + 1, N)$$

= $C(K, N) - D + 2D$
= $C(K, N) + D$
= $C(K, N) + C(K, N - 1)$

By induction we then have:

$$C(K+1,N) = 2 \sum_{i=0}^{N} {K-1 \choose i} + 2 \sum_{i=0}^{N-1} {K-1 \choose i} = 2 \sum_{i=0}^{N} {K \choose i}$$

Which completes our inductive step.

The last equality uses the identity $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$ and some shifting of the summation.