Week 5 outline

Chapter 5. The Laws of Motion

Homework: Ch. 5 P. 2,3,5,6,7,9,12,

17,18,20,22,26,31 Due Friday

(Read 5.1-5.8)

Notes: Moodle Quiz 3 mean ~ 6.6/9

Other grades were imported to Moodle.

Physics tutoring on Thurs 7-9pm, SA116

TODAY: Forces – types

Newtons Laws

Forces – the cause of acceleration

Forces are vectors

Forces act between systems (the dashed boxes)

Types of forces

tension – pulling apart compression – pushing together shear – pushing tangentially torsion - twisting

Types of forces

Field forces (act "at a distance")

gravitational electric magnetic

The 4 Fundamental forces

Gravity

Electromagnetic Force

Nuclear Strong Force – holds nuclei together

Nuclear Weak force – decay of n and p

Isaac Newton (1642 - 1727)

3 laws of motion

1 law of Universal Gravitation

Newton's 1st law = inertial frames of reference exist such that an object will move with a constant velocity if no forces act upon it.

Overthrows Aristotle and medieval thought:

"Natural state" is at rest "Impetus" pushes an arrow along Heavy objects fall faster

Watch 17:05 – on. "Frames of Reference": https://www.youtube.com/watch?v=bJMYoj4hHqU&t=1036s&ab_channel=TrevM

Week 5 Day 2 outline Chapter 5. The Laws of Motion

Homework: Ch. 5 P. 2,3,5,6,7,9,12,

17,18,20,22,26,31 Due Friday

(Read 5.1-5.8)

Notes: Moodle Quiz 3 mean ~ 6.4/9 (regraded)

Physics tutoring on Thurs 7-9pm, SA116

TODAY: Quiz 3 review

Newtons 2nd law; weight vs mass

Newton's 3rd law; contact & field forces

Apparent weight

Applications of Newton's laws

Newton's 2nd law = the acceleration of an object is proportional to the net force and inversely proportional to the mass.

If same force acts on m1, m2, and m1+m2, the accelerations are different.

Newton's 2nd law (cont.)

Example: gravity

Weight = the force of gravity on an object

$$W = F_g = mg$$

Mass = the amount of matter in an object

Newton's 3rd law (cont.)

"For every action there is an equal but opposite reaction." "Forces come in equal but opposite pairs."

$$F_{12} = -F_{21}$$

Newton's 3rd law (cont.)

Gravity and all fundamental forces also obey Newton's 3rd.

Fig. 5.5, p. 111

Newton's 3rd law (cont.)

Weight = the |force| of gravity near a planet = mg = Fg

Apparent weight may differ in accelerating reference frames or when buoyant forces are present.

When the elevator accelerates upward, the spring scale reads a value greater than the weight of the fish.

When the elevator accelerates downward, the spring scale reads a value less than the weight of the fish.

The Application of Newton's Laws

Problem solving method

- 1. Conceptualize
- What is problem asking for?
- Write down knowns and unknowns.
- Draw picture.
- 2. Categorize
- Equilibrium problem: a=0 (often, v=0 too)
- Newton's 2nd law problem: object's accelerate, (a≠0)
- 3. Analyze
- Isolate object of interest and draw forces acting on it.
- Don't draw the forces object exerts on surroundings (usually).
- Form equations for x and y components independently.
- Plug and chug.
- 4. Finalize check units, dimensions, etc.

The Application of Newton's Laws

Find the normal force in each case if m=8 kg. (Use g=10 m/s²)

If m<4 kg, would it still be an equilibrium problem for (c)?

The Application of Newton's Laws

Find the acceleration vector for the 0.2 kg hockey puck.

$$\vec{a} = \frac{\vec{F}_{1+2}}{0.2 \, kg}$$

$$\vec{F}_{1} = (5 \cos 20) i - (5 \sin 20) j$$

$$\vec{F}_{2} = (8 \cos 60) i + (8 \sin 60) j$$

$$\vec{F}_{1+2} = (8\cos 60 + 5\cos 20)i + (8\sin 60 - 5\sin 20)j$$

 $\vec{a} = 43.5i + 26.1 jm/s^2$

a

Fig. 5.11, p. 116

Given mass of light, can we find T_1 , T_2 , and T_3 ?

Fig. 5.10, p. 114

Fig. 5.8, p. 113

Close-up of surfaces.

TABLE 5.1

Coefficients of Friction

μ_s	$oldsymbol{\mu}_k$
1.0	0.8
0.74	0.57
0.61	0.47
0.94	0.4
0.53	0.36
0.25 - 0.5	0.2
0.14	0.1
_	0.04
0.15	0.06
0.04	0.04
0.1	0.03
0.01	0.003
	1.0 0.74 0.61 0.94 0.53 $0.25-0.5$ 0.14 $ 0.15$ 0.04 0.1

Note: All values are approximate. In some cases, the coefficient of friction can exceed 1.0.

Fig. 5.18, p. 124