

特性

- 低功耗
- 低压降
- 较低的温度系数
- 高输入电压(高达30V)
- · 静态电流 2.5μA
- 大电流输出: 100mA
- 输出电压精度: ±1%
- 封装类型: 3-pin TO92, 3-pin SOT89, 5-pin SOT23

概述

HT75xx-2 系列是一组 CMOS 技术实现的 三端低功耗高电压稳压器。输出电流为 100mA 且允许的输入电压可高达 30V。具有几个固定的输出电压,范围从 2.1V 到 12.0V。CMOS 技术可确保其具有低压降和 低静态电流的特性。

尽管主要为固定电压调节器而设计,但这 些 IC 可与外部元件结合来获得可变的电压 和电流。

应用领域

- 电池供电设备
- 通信设备
- 音频 / 视频设备

选型表

型号	输出电压	封装类型	正印
HT7521-2	2.1V		
HT7523-2	2.3V		
HT7525-2	2.5V		
HT7527-2	2.7V		
HT7530-2	3.0V		
HT7533-2	3.3V		
HT7536-2	3.6V		75xx-2 (封装为TO92)
HT7540-2	4.0V	TO92 SOT89	75xx-2 (封装为 SOT89)
HT7544-2	4.4V	SOT23-5	5xx2 (封装为 SOT23-
HT7550-2	5.0V		5)
HT7560-2	6.0V		,
HT7570-2	7.0V		
HT7580-2	8.0V		
HT7590-2	9.0V		
HT75A0-2	10.0V		
HT75C0-2	12.0V		

注: "xx"代表输出电压。

Rev. 1.70 1 2019-01-11

方框图

引脚图

极限参数

电源供应电压0.3V~33V	工作环境温度40°C~85°C
储存温度范围50°C~160°C	最大芯片接面温度150°C

注: 这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

热能信息

符号	参数	封装类型	最大值	单位
$\theta_{ m JA}$	中四(上江本本·大·	SOT23-5	500	°C/W
	热阻(与环境连接) (假设无环境气流、无散热片)	SOT89	200	°C/W
		TO92	200	°C/W
P_{D}	功耗	SOT23-5	0.20	W
		SOT89	0.50	W
		TO92	0.50	W

注: P_D 值是在 Ta = 25°C 时测得。

Rev. 1.70 2 2019-01-11

引脚说明

引脚序号	引脚名称	说明
1	GND	地
2	VIN	输入脚
3	VOUT	输出脚

电气特性

HT7521-2, +2.1V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
$V_{\rm IN}$	输入电压	_	_	_	30	V
V_{OUT}	输出电压	$V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$	2.079	2.100	2.121	V
Iout	输出电流	V _{IN} =V _{OUT} +2V	70	100	_	mA
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$ m V_{DIF}$	Dropout 电压	$I_{OUT}=1 \text{ mA}, \Delta V_O=2\%$	_	30	100	mV
I_{SS}	静态电流	无负载		2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	V ₀ +1V≤V _{IN} ≤30V, I _{0UT} =1mA			0.2	%/V
$\Delta V_{OUT} \over \Delta T_{a} \times V_{OUT}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100		ppm/°C

注: 在 V_{IN} = V_{OUT} +2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7523-2, +2.3V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
V _{IN}	输入电压	_	_	_	30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	2.277	2.300	2.323	V
I _{OUT}	输出电流	V _{IN} =V _{OUT} +2V	70	100	_	mA
ΔV_{OUT}	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$	_	30	100	mV
I_{SS}	静态电流	无负载	_	2.5	4.0	μΑ
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	输入电压调节率	V ₀ +1V≤V _{IN} ≤30V, I _{0UT} =1mA	_	_	0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <ta<85°c< td=""><td>_</td><td>100</td><td>_</td><td>ppm/°C</td></ta<85°c<>	_	100	_	ppm/°C

注: 在 V_{IN} = V_{OUT} + 2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 3 2019-01-11

HT7525-2, +2.5V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
17 5		条件	取小	共出	取入	半江
$V_{\rm IN}$	输入电压	_			30	V
V_{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	2.475	2.500	2.525	V
Iout	输出电流	$V_{IN}=V_{OUT}+2V$	70	100		mA
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$		30	100	mV
I_{SS}	静态电流	无负载		2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$		_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 V_{IN} = V_{OUT} +2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7527-2, +2.7V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
$V_{\rm IN}$	输入电压	_			30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	2.673	2.700	2.727	V
Iout	输出电流	V _{IN} =V _{OUT} +2V	70	100	_	mA
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$	_	30	100	mV
I _{SS}	静态电流	无负载	_	2.5	4.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	V ₀ +1V≤V _{IN} ≤30V, I _{OUT} =1mA			0.2	%/V
$\Delta V_{OUT} \over \Delta T_{a} \times V_{OUT}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 4 2019-01-11

HT7530-2, +3.0V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
13.3	2 30	条件	42.3	\ -	427	7,2
$V_{ m IN}$	输入电压	_	_	_	30	V
V _{OUT}	输出电压	$V_{IN}=V_{OUT}+2V$, $I_{OUT}=10$ mA	2.970	3.000	3.030	V
Iout	输出电流	$V_{IN}=V_{OUT}+2V$	70	100		mA
$\Delta V_{ m OUT}$	负载调节率	V _{IN} =V _{OUT} +2V,	_	25	60	mV
		1mA≤I _{OUT} ≤50mA				
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$	_	30	100	mV
I_{SS}	静态电流	无负载	_	2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	V ₀ +1V≤V _{IN} ≤30V, I _{0UT} =1mA	_	_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 V_{IN} = V_{OUT} +2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7533-2, +3.3V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
$V_{\rm IN}$	输入电压	_	_	_	30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	3.267	3.300	3.333	V
Iout	输出电流	V _{IN} =V _{OUT} +2V	70	100	_	mA
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$	_	25	55	mV
I_{SS}	静态电流	无负载		2.5	4.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$		_	0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 5 2019-01-11

HT7536-2, +3.6V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
1ग ५	多奴	条件	取小	無空	取八	丰山
$V_{\rm IN}$	输入电压	_			30	V
V_{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	3.564	3.600	3.636	V
Iout	输出电流	$V_{IN}=V_{OUT}+2V$	70	100		mA
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$		25	55	mV
I_{SS}	静态电流	无负载		2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$	_		0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 V_{IN} = V_{OUT} +2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7540-2, +4.0V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
V _{IN}	输入电压	_	_	_	30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	3.960	4.000	4.040	V
Iout	输出电流	V _{IN} =V _{OUT} +2V	70	100		mA
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$	_	25	55	mV
I _{SS}	静态电流	无负载	_	2.5	4.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	V ₀ +1V≤V _{IN} ≤30V, I _{0UT} =1mA	_		0.2	%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100		ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 6 2019-01-11

HT7544-2, +4.4V 输出类型

Ta=25°C

符号	参数	测试条件 最小				典型	最大	单位
		条件						
V_{IN}	输入电压		_		30	V		
V _{OUT}	输出电压	$V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$	4.356	4.400	4.444	V		
Iout	输出电流	$V_{IN}=V_{OUT}+2V$	70	100		mA		
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 50mA$	_	25	60	mV		
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$	_	25	55	mV		
I_{SS}	静态电流	无负载		2.5	4.0	μΑ		
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$	_		0.2	%/V		
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C		

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7550-2, +5.0V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
17 5	多奴	条件	取小	- 兴空	取入	半江
$V_{\rm IN}$	输入电压	_		_	30	V
V_{OUT}	输出电压	$V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$	4.950	5.000	5.050	V
Iout	输出电流	V _{IN} =V _{OUT} +2V	100	150		mA
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$		25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$		25	55	mV
I_{SS}	静态电流	无负载		2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$			0.2	%/V
ΔV OUT $\Delta T_a \times V$ OUT	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 7 2019-01-11

HT7560-2, +6.0V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
10 5	多 奴	条件	取小	典型	取入	丰四
$V_{\rm IN}$	输入电压	_			30	V
Vout	输出电压	$V_{IN}=V_{OUT}+2V$, $I_{OUT}=10mA$	5.940	6.000	6.060	V
I_{OUT}	输出电流	V _{IN} =V _{OUT} +2V	150			mA
ΔV_{OUT}	负载调节率	$V_{IN}=V_{OUT}+2V,$		25	60	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_O=2\%$		25	55	mV
Iss	静态电流	无负载		2.5	4.0	μА
$\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1$ mA		0.2		%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7570-2, +7.0V 输出类型

Ta=25°C

符号	会粉	参数 测试条件 最小		参数 测试条件 最小 與		典型	最大	单位
10 5	多奴	条件	取小	典型	取八	半世		
$V_{\rm IN}$	输入电压	_			30	V		
Vout	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	6.930	7.000	7.070	V		
I _{OUT}	输出电流	V _{IN} =V _{OUT} +2V	150	_	_	mA		
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V, \\ 1mA \le I_{OUT} \le 70mA$	_	25	60	mV		
$ m V_{DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$		25	55	mV		
Iss	静态电流	无负载	_	2.5	4.0	μΑ		
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$	_	0.2	_	%/V		
$\Delta V_{OUT} \over \Delta T_a \times V_{OUT}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C		

注: 在 $V_{IN} = V_{OUT} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 8 2019-01-11

HT7580-2, +8.0V 输出类型

Ta=25°C

符号	会粉	测试条件		参数 测试条件 最小		典型	最大	单位
14) 5	多奴	条件	取小	典里	取八	- 平匹		
$V_{\rm IN}$	输入电压	_			30	V		
Vout	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	7.920	8.000	8.080	V		
I_{OUT}	输出电流	$V_{IN}=V_{OUT}+2V$	150	_		mA		
$\Delta V_{ ext{OUT}}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$		25	60	mV		
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$		25	55	mV		
Iss	静态电流	无负载		2.5	4.0	μΑ		
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$		0.2		%/V		
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C		

注: 在 V_{IN} = V_{OUT} +2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT7590-2, +9.0V 输出类型

Ta=25°C

符号	女 粉	参数 测试条件		典型	最大	单位
17 5		条件	最小	- 兴空	州空 取入	
V _{IN}	输入电压	_	_	_	30	V
Vout	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	8.910	9.000	9.090	V
I_{OUT}	输出电流	V _{IN} =V _{OUT} +2V	150			mA
ΔV_{OUT}	负载调节率	V _{IN} =V _{OUT} +2V, 1mA≤I _{OUT} ≤70mA		25	70	mV
$V_{ m DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$	_	25	55	mV
Iss	静态电流	无负载	_	2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_0+1V \le V_{IN} \le 30V$, $I_{OUT}=1mA$	_	0.2	_	%/V
$\Delta V_{OUT} \over \Delta T_a \times V_{OUT}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 $V_{\text{IN}} = V_{\text{OUT}} + 2V$ 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 9 2019-01-11

HT75A0-2, +10.0V 输出类型

Ta=25°C

符号	参数	测试条件	最小	典型	最大	单位
17 5	多奴	条件	取小	一类型	取入	半世
$V_{\rm IN}$	输入电压	_	_	_	30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	9.900	10.000	10.100	V
I_{OUT}	输出电流	V _{IN} =V _{OUT} +2V	150	_		mA
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$	_	25	70	mV
$ m V_{DIF}$	Dropout 电压	$I_{OUT}=1$ mA, $\Delta V_{O}=2\%$	_	25	55	mV
I _{SS}	静态电流	无负载	_	2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_O+1V \le V_{IN} \le 30V$, $I_{OUT}=1$ mA		0.2		%/V
$\Delta V_{OUT} \over \Delta T_a \times V_{OUT}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>		100		ppm/°C

注: 在 V_{IN} = V_{OUT} + 2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

HT75C0-2, +12.0V 输出类型

Ta=25°C

符号	参数	测试条件 条件	最小	典型	最大	单位
V _{IN}	输入电压	_	_	_	30	V
V _{OUT}	输出电压	V _{IN} =V _{OUT} +2V, I _{OUT} =10mA	11.880	12.000	12.120	V
I _{OUT}	输出电流	V _{IN} =V _{OUT} +2V	150	_	_	mA
$\Delta V_{ m OUT}$	负载调节率	$V_{IN}=V_{OUT}+2V,$ $1mA \le I_{OUT} \le 70mA$	_	25	70	mV
V _{DIF}	Dropout 电压	I _{OUT} =1mA, ΔV _O =2%		25	55	mV
I_{SS}	静态电流	无负载	_	2.5	4.0	μΑ
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	输入电压调节率	$V_O+1V \le V_{IN} \le 30V$, $I_{OUT}=1$ mA	_	0.2		%/V
$\frac{\Delta V_{OUT}}{\Delta T_{a} \times V_{OUT}}$	温度系数	I _{OUT} =10mA, -40°C <t<sub>a<85°C</t<sub>	_	100	_	ppm/°C

注: 在 V_{IN} = V_{OUT} + 2V 与一个固定负载条件下使输出电压下降 2%,此时的输入电压减去输出电压就是 Dropout 电压。

Rev. 1.70 10 2019-01-11

典型性能特点

除非另有说明,此规格测试条件是: V_{IN} = V_{OUT}+2V, I_{OUT}=10mA, T_J=25℃。

输出电压与输入电压

静态电流 (Iour=0mA) 与温度

输出电压与温度

输出电压与温度

应用电路

基本电路

大电流输出正电压调节器

Tr1 短路保护电路

用于增加输出电压的电路

用于增加输出电压的电路

恒流调节器

 $I_{OUT} \!\!=\!\! V_{XX} \!/ R_A \!\!+\!\! I_{SS}$

双电源电路

Rev. 1.70 13 2019-01-11

封装信息

请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 $\underline{\text{Holtek}}$ $\underline{\text{Modified}}$ 现式以获取最新版本的<u>封装信息</u>。

封装信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 1.70 14 2019-01-11

3-pin TO92 外形尺寸

符号	尺寸 (单位: inch)					
14.2	最小值	正常值	最大值			
A	0.173	0.180	0.205			
В	0.170	_	0.210			
С	0.500	0.580	_			
D	_	0.015 BSC	_			
Е	_	0.010 BSC	_			
F	_	0.050 BSC	_			
G	_	0.035 BSC	_			
Н	0.125	0.142	0.165			

符号	尺寸(单位: mm)				
19.5	最小值	正常值	最大值		
A	4.39	4.57	5.21		
В	4.32	_	5.33		
С	12.70	14.73	_		
D	_	0.38 BSC	_		
Е	_	2.54 BSC	_		
F	_	1.27 BSC	_		
G	_	0.89 BSC	_		
Н	3.18	3.61	4.19		

Rev. 1.70 15 2019-01-11

3-pin SOT89 外形尺寸

符号	尺寸 (单位: inch)				
	最小值	正常值	最大值		
A	0.173	_	0.181		
В	0.053	_	0.072		
С	0.090	_	0.102		
D	0.035	_	0.047		
Е	0.155	_	0.167		
F	0.014	_	0.019		
G	0.017	_	0.022		
Н	_	0.059 BSC	_		
I	0.055	_	0.063		
J	0.014	_	0.017		

符号	尺寸(单位: mm)				
19.5	最小值	正常值	最大值		
A	4.40		4.60		
В	1.35		1.83		
С	2.29		2.60		
D	0.89		1.20		
Е	3.94	_	4.25		
F	0.36		0.48		
G	0.44		0.56		
Н	_	1.50 BSC	_		
I	1.40	_	1.60		
J	0.35	_	0.44		

5-pin SOT23 外形尺寸

符号	尺寸 (单位: inch)			
	最小值	正常值	最大值	
A	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
Е	_	0.063 BSC	_	
e	_	0.037 BSC	_	
e1	_	0.075 BSC	_	
Н	_	0.110 BSC	_	
L1	_	0.024 BSC	_	
θ	0°	_	8°	

符号	尺寸 (单位: mm)		
	最小值	正常值	最大值
A	_	_	1.45
A1	_	_	0.15
A2	0.90	1.15	1.30
b	0.30	_	0.50
С	0.08	_	0.22
D	_	2.90 BSC	_
Е	_	1.60 BSC	_
e	_	0.95 BSC	_
e1	_	1.90 BSC	_
Н	_	2.80 BSC	_
L1	_	0.60 BSC	_
θ	0°	_	9°

Copyright© 2019 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而 Holtek 对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,Holtek 不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。Holtek 产品不授权使用于救生、维生从机或系统中做为关键从机。Holtek 拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.

Rev. 1.70 18 2019-01-11