Grupos Topológicos

Cristo Daniel Alvarado

6 de febrero de 2024

Índice general

B. Topología	2
B.1. Espacios Topológicos	2
C. Funciones Cardinales	4
C.1. nose	4

Capítulo B

Topología

B.1. Espacios Topológicos

En esta parte se hará un breve recordatorio de los resultados más relevantes de la parte de espacios topológicos.

Definición B.1.1

Un **espacio topológico** es una pareja (X, τ) que consiste en un conjunto X y una familia τ de subconjuntos de X con las siguientes propiedades:

- 1). $\emptyset, X \in \tau$.
- 2). Si $U_1, U_2 \in \tau$, entonces $U_1 \cap U_2 \in \tau$.
- 3). Si $\mathcal{F} \subseteq \tau$, entonces

$$\bigcup_{F \in \mathfrak{T}} F \in \tau$$

A los miembros de τ se les conoce como **conjuntos abiertos** en X. La familia τ es una **topología** en X.

Definición B.1.2

Sea X un espacio topológico y $x \in X$. Si U es un subconjunto abierto de X tal que $x \in U$, diremos que U es una vecindad de x.

Como resultado de lo anterior, se tiene que un subconjunto $V \subseteq X$ es abierto si para todo $x \in V$ existe una vecindad U_x contenida en V.

Definición B.1.3

Sea X un espacio topológico. Una **base** del espacio topológico X es una familia $\mathcal{B} \subseteq \tau$ tal que todo subconjunto abierto no vacío de X es unión de elementos de \mathcal{B} .

Proposición B.1.1

Sea X un espacio topológico. Una familia $\mathcal{B} \subseteq \tau$ es una base del espacio si y sólo si para todo punto $x \in X$ y para cualquier vecindad V de x existe $U \in \mathcal{B}$ tal que $x \in U \subseteq V$.

El objetivo de la base de un espacio topológico es la de disminuir el número de elementos de la familia τ , y de que esta familia más pequeña cumple propiedaes más generales que, resultan útiles para resultados posteriores.

Proposición B.1.2

Sea X un espacio topológico. Una base \mathcal{B} de X tiene las propiedades siguientes:

- B1). Para cualesquier $U_1, U_2 \in \mathcal{B}$ y todo punto $x \in U_1 \cap U_2$ existe un $U \in \mathcal{B}$ tal que $x \in U \subseteq U_1 \cap U_2$.
- B2). Para todo $x \in X$ existe $U \in \mathcal{B}$ tal que $x \in U$, es decir $X = \bigcup_{B \in \mathcal{B}} B$.

Además, si una familia \mathcal{B} de subconjuntos de X cumple B1) y B2), entonces existe una única topología τ en X para la cual \mathcal{B} es una base.

Definición B.1.4

Si (X, τ) es un espacio topológico que posee una base numerable \mathcal{B} , se dice que X es **segundo** numerable.

Una familia $\mathcal{P} \subseteq \tau$ es una **sub-base** de un espacio topológico (X, τ) si la familia de todas las intersecciones finitas $U_1 \cap U_2 \cap \cdots \cap U_k$, donde $U_i \in \mathcal{P}$ para $i = 1, \ldots, k$, es una base de (X, τ) .

Definición B.1.5

Una familia $\mathfrak{B}(x)$ de vecindades de x es una **base local** en $x \in X$ en el espacio topológico (X, τ) , si para toda vecindad V de x existe $U \in \mathfrak{B}(x)$ tal que $x \in U \subseteq V$.

Observe que si \mathcal{B} es una base de (X,τ) , la familia $\mathcal{B}(x)$ consistente en todos los elementos de \mathcal{B} que contienen a x es una base local para x en (X,τ) . Por otro lado, si para todo $x \in X$ contamos con una base local $\mathcal{B}(x)$ para x, enotnces $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}(x)$ es un base de (X,τ) .

Definición B.1.6

Sea (X, τ) un espacio topológico y supongamos que para todo $x \in X$ tenemos una base local $\mathcal{B}(x)$ en x; la familia

$$\{\mathcal{B}(x)|x\in X\}$$

es un sistema de vecindades para el espacio topológico (X, τ) .

Proposición B.1.3

Sea X un espacio topológico. Entonces, cualquier sistema de vecindades para el espacio X tiene las siguientes propiedades:

- BP1). Para toda $x \in X$, $\mathcal{B}(x) \neq \emptyset$ y para toda $U \in \mathcal{B}(x)$, $x \in U$.
- BP2). Si $U_1 \in \mathcal{B}(x)$, $U_2 \in \mathcal{B}(y)$ y $z \in U_1 \cap U_2$, existe un $U \in \mathcal{B}(z)$ tal que $U \subseteq U_1 \cap U_2$.

Definición B.1.7

Si (X, τ) es un espacio topológico tal que todo punto $x \in X$ posee una base local en x numerable, decimos que X es un espacio **primero numerable**.

Capítulo C

Funciones Cardinales

C.1. nose