Všeobecná Metóda Rozkladu podľa Centra (MVDC)*

Ing. Robert Polak e-mail: robopol@gmail.com

10. júla 2025

Abstrakt

Predkladám univerzálnu Metódu Rozkladu podľa Centra (MVDC), ktorá umožňuje rýchle asymptotické odhady súčinov a súm prepísateľných do súčinovej formy. Metóda automaticky volí optimálne "centrum" k na základe prvých momentov $\ln a_i$ a navyše podporuje kaskádové korekcie. Ukazujem, že MVDC prekonáva klasické Bernoulliho–Stirlingove rozvoje pri faktoriáli, Wallisovom súčine aj centrálnom binomickom koeficiente a je priamo aplikovateľná na nekonečné súčiny špeciálnych funkcií.

1 Úvod

Taylorov rozvoj je prirodzeným nástrojom pre lokálnu analýzu analytických funkcií. Pri výrazne rastúcich (alebo klesajúcich) súčinoch sa však chová neefektívne, pretože dominantná časť logaritmu (typicky tvaru $n \ln n - n$) zostáva v každom členovi. MVDC odstraňuje tento nedostatok tým, že exponenciálnu štruktúru faktoru-centrálnej hodnoty k využije už v základnom člene $H = k^m$.

Príklady kódu na GitHube

Všetky demonstračné skripty k článku sú vo verejnom repozitári https://github.com/robopol/MVDC:

- mvdc_factorial_analytic.py analytický (Bernoulli) faktoriál.
- binom_analytic.py analytický centrálny binomický koeficient.
- mvdc_factorial_higher_order.py príklad vyšších kaskád.
- gamma_ratio_mvdc.py pomer $\Gamma(n+0.5)/\Gamma(n)$.

2 Teoretické pozadie

2.1 Optimalizácia centra ako minimalizácia momentov

Nech $P = \prod_{i=1}^m a_i$ so $a_i > 0$. Označme $\ell_i = \ln a_i$ a $S_1 = \sum_i \ell_i$, $S_2 = \sum_i (\ell_i - \mu_1)^2$.

Veta 1 (Prvé dva momenty). Centrum k_* , ktoré minimalizuje prvý logaritmický moment reziduálu $R(k) = S_1 - m \ln k$, je $k_0 = e^{\mu_1}$. Ak požadujeme navyše, aby bol minimalizovaný aj druhý moment $\sum (\ell_i - \ln k)^2$, vyplýva posun $\pm \frac{S_2}{2m}$ v log-priestore, čo vedie ku kandidátom k_{\pm} .

 $D\hat{o}kaz$. Podmienka $\partial R/\partial(\ln k) = 0$ dá $S_1 - m \ln k = 0$. Druhý moment rozvinieme do tvaru $S_2 + m(\ln k - \mu_1)^2$; jeho derivácia nulová pri $\ln k = \mu_1 \pm S_2/(2m)$.

^{*}Preprint predložený na arXiv.org

2.2 Vzťah k Eulerovej–Maclaurinovej rovnici

MVDC nie je alternatívou, ale upravenou verziou klasickej Eulerovej–Maclaurinovej (EM) formuly (Euler 1735; Stirling 1730). Kým EM rozvíja ln n! okolo horného limita n a vytvára integrálny člen $\frac{1}{2} \ln(2\pi n)$, MVDC najprv vydelí pôvodný súčin dominantným členom k^m , kde $k = \frac{n}{e}(2\pi n)^{1/(2n)}$. Integrálny príspevok sa tak vynuluje a Bernoulliho zlomky $B_2/(12n)$, $-B_4/(360n^3)$,... korigujú už len reziduál O(1) (Bernoulli 1713). Rovnaké koeficienty tak prinášajú vyšší rád presnosti ako necentrovaný EM rozvoj; stručne, MVDC = EM + optimálne centrum.

2.3 Predpoklady a presný odhad chyby

Nech $f(x) = \ln a_x$ je triedy C^{2p+2} na intervale [0, m] a platí $|f^{(k)}(x)| \le C_k m^{1-k}$ pre $0 \le k \le 2p+2$. Ak zvolené centrum k anuluje prvý integrálny člen v (??), potom platí

Veta 2. Po odrezaní Bernoulliho série po m^{-(2p+1)} dostaneme

$$\frac{P_m}{H \exp(\sum_{j=1}^p c_{2j-1}/m^{2j-1})} = 1 + O(m^{-(2p+2)}).$$

Dôkaz využíva odhad zvyšku klasického Eulerovho–Maclaurinovho zvyšku v integrálnej forme.

2.4 Benchmark rýchlosti

Notebook v prílohách meria 'timeit' pre výpočet n! pri $n=10^6$. Analytická MVDC (4 Bernoulliho členy) je $\mathbf{3} \times$ **rýchlejšia** ako 'mpmath.nprod' a $6 \times$ rýchlejšia než priame násobenie v 'numpy'.

2.5 Odhad chyby hlavného člena

Veta 3. Ak k zvolíme podľa vyššie uvedeného pravidla, reziduál spĺňa $|R(k)| \leq \frac{|S_3|}{6m^2k^3}$, kde $S_3 = \sum (\ell_i - \mu_1)^3$.

 $D\hat{o}kaz$. Krátky dôkaz vychádza z Taylorovho rozvoja $\ln(1+x)$ a vynechania už nulových prvých dvoch momentov.

3 Algoritmus MVDC

Pseudokód

3.1 Kaskádový algoritmus

Reziduál prvého stupňa definujme

$$r_1(m) = \ln P - m \ln k - \sum_{j=1}^{p} \frac{c_j}{m^j}.$$

Ak je $|r_1| = O(m^{-(p+1)})$, môžeme naň aplikovať **druhú vrstvu** kaskády:

$$r_1(m) \approx \sum_{j=1}^q \frac{d_j}{m^j}, \qquad \hat{P} = H \exp\left(\sum_{j=1}^p \frac{c_j}{m^j} + \sum_{j=1}^q \frac{d_j}{m^j}\right).$$

Typicky postačí p=q=5. V našich experimentoch s faktoriálom dosahuje *Cascade2* relatívnu chybu $<10^{-13}$ už pre $n\geq 10$. Podobný efekt sa pozoruje pri Wallisovom súčine $(N\geq 20)$ aj centrálnych binomických koeficientoch $(n\geq 20)$.

4 Polynomiálne a kaskádové korekcie

Reziduál R je O(1); rozvinieme ho ako polynóm v 1/m

$$\ln K(m) = \sum_{j=1}^{p} \frac{c_j}{m^j} + O\left(\frac{1}{m^{p+1}}\right) \tag{1}$$

Koeficienty c_j získame lineárnou regresiou na intervale $m \in [m_{\min}, m_{\max}]$. Voliteľná textbflog-kaskáda fituje logaritmus zostávajúceho pomeru a dosahuje chybu až na úroveň strojovej presnosti.

5 Numerické experimenty

5.1 Wallisov súčin

Tabuľka 1 porovnáva presný súčin $P_N=\prod_{n=1}^N\frac{4n^2}{4n^2-1}$ s hlavným členom MVDC (označeným H), rozšíreniami H+3 a klasickým asymptotickým rozvojom.

\overline{N}	Presný súčin	MVDC H	H+3	Asympt.
1	1.33333333333334+00	1.33333333333334 + 00	1.33333333333334 + 00	1.384259868772e + 00
2	1.4222222222e+00	1.422222222222e+00	1.422222222222e+00	$1.475376492488e{+00}$
5	1.501087977278e+00	1.501087977278e + 00	1.501087977278e + 00	1.531997013890e + 00
10	1.533851903322e+00	1.533851903322e+00	1.533851903322e+00	$1.551281545584e{+00}$
20	1.551758480770e+00	1.551758480770e + 00	1.551758480770e + 00	1.561009210484e + 00
50	1.563039450108e+00	1.563039450108e+00	1.563039450108e+00	1.566874224281e + 00
100	1.566893745314e+00	1.566893745314e + 00	1.566893745314e + 00	$1.568834056016e{+00}$
500	1.570011909300e+00	1.570011909300e+00	1.570011909300e+00	1.570403676780e + 00
1000	1.570403873015e+00	1.570403873015e+00	1.570403873015e+00	1.570599989523e+00

Tabuľka 1: Porovnanie aproximácií Wallisovho súčinu.

5.2 Wallisov súčin a centrálne binomiálne čísla

Analogické tabuľky a grafy sú priložené v doplňujúcich materiáloch (fig/).

5.3 Pomer gama funkcií $\Gamma(n+0.5)/\Gamma(n)$

Pre $\alpha = \frac{1}{2}$ a $\beta = 0$ porovnáme MVDC s klasickou Stirlingovou expanziou do $1/n^2$:

$$\frac{\Gamma(n+\alpha)}{\Gamma(n+\beta)} \simeq n^{\alpha-\beta} \Big(1 + \frac{A_1}{n} + \frac{A_2}{n^2} \Big), \quad A_1 = \frac{1}{2} \alpha(\alpha-1), \ A_2 = \frac{1}{24} \alpha(\alpha-1)(\alpha-2)(3\alpha-1).$$

MVDC potrebuje len hlavný člen H a päť korekčných členov C_j/n^j , ktoré sa fitujú raz z krátkeho tréningového intervalu $(n = 200, 400, \dots, 1800)$. Tabuľka 2 ukazuje výrazný pokles chyby.

\overline{n}	Presná hodnota	Stirling	MVDC H	MVDC $H+5$	rel. chyba $H+5$
20	4.444275e+00	4.472136e+00	2.507414e+00	4.450719e+00	1.45×10^{-3}
50	7.053413e+00	7.071068e+00	3.979462e+00	7.053485e+00	1.03×10^{-5}
100	9.987508e+00	1.000000e+01	5.634848e+00	9.987509e+00	1.54×10^{-7}
500	2.235509e+01	$2.236068e{+01}$	$1.261251e{+01}$	$2.235509e{+01}$	4.63×10^{-12}
1000	3.161882e+01	3.162278e + 01	1.783901e+01	3.161882e+01	9.73×10^{-13}
2000	4.471856e+01	4.472136e+01	2.522975e+01	4.471856e + 01	3.64×10^{-12}

Tabuľka 2: Porovnanie MVDC a Stirlinga pre pomer gama funkcií. Už päť členov MVDC zrazí relatívnu chybu pod 10^{-12} a prekonáva Stirlingovu sériu o šesť rádov.

6 Analytická verzia s Bernoulliho číslami

MVDC možno použiť aj úplne bez numerickej regresie, ak poznáme Eulerovo–Maclaurinovo rozšírenie logaritmu. V takom prípade sú koeficienty c_j v log-polynóme jednoducho racionálne zlomky Bernoulliho čísel B_{2k} . Pre faktoriál dostaneme (do $1/n^7$)

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \exp\left(\frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5} - \frac{1}{1680n^7}\right),$$

čo prináša zvyšok $O(n^{-8})$ a už pri $n \geq 20$ prekonáva Ramanujanov odhad o 8–10 rádov.

Pre centrálny binomický koeficient platí

$$\binom{2n}{n} \approx \frac{4^n}{\sqrt{\pi n}} \left(1 - \frac{1}{8n} + \frac{1}{128n^2} - \frac{5}{1024n^3} + \frac{35}{32768n^4} - \frac{231}{262144n^5} \right),$$

vedúca chyba $O(n^{-6})$. Tabuľka 3 zhrňuje zisk oproti fitovaným koeficientom.

$\overline{}$	faktoriál rel. chyba
10	8.2×10^{-13}
50	4.3×10^{-19}
100	8.4×10^{-22}

Tabuľka 3: Relatívna chyba analytickej MVDC (Bernoulli) pre faktoriál, bez numerického fitovania.

Táto "Bernoulliho" cesta poskytuje okamžité zvýšenie presnosti pri zachovaní jednoduchej algebraickej štruktúry MVDC; kaskádové vrstvy môžeme stále pridať, ak budeme potrebovať ešte viac cifier.

7 Aplikácie

- 1. Aproximácia gama-funkcie v komplexnej oblasti.
- 2. Rýchla evaluácia q-Pochhammerových symbolov v kombinatorike.
- 3. Predbežné hodnoty pre numerické riešenie transcendentných rovníc.

8 Rozsah aplikovateľnosti

Metóda MVDC je vhodná pre každú úlohu, ktorú možno prirodzene prepísať do tvaru

$$P = \prod_{i=1}^{m} a_i, \qquad a_i > 0.$$

Najdôležitejšie triedy produktov:

- Klasické kombinatorické súčiny: faktoriál, (dvoj-)faktoriál, q-Pochhammer, binomické a multinomické koeficienty.
- Špeciálne funkcie s Eulerovým alebo Nekonečným súčinom: Wallisov, Vieta–Gaussov produkt, Γ-, q-Γ- a Barnesova G-funkcia.
- Eulerove produkty v analytickej teórii čísel: zeta- a *L*-funkcie orezané na konečný počet prvočísel.
- Štatistická fyzika: partičné funkcie vo forme $\prod (1 \pm e^{-\beta \varepsilon_i})^{-1}$.
- Numerické algoritmy: rýchla evaluácia veľkých produktov v Monte-Carlo či MCMC, kde stačí uzavretá semi-analytická formula namiesto explicitného násobenia stoviek členov.

Nevhodné prípady: čisto súčtové rady (napr. harmonické čísla), produkty s negatívnymi alebo striedavými znamienkami a prípady, keď optimálne centrum vychádza $k \approx 1$, čo zruší reziduál.

Poznámka pre čitateľa: V kapitole o algoritme uvádzam plný pseudokód, pomocou ktorého si každý môže dopočítať ďalšie členy rozvoja (alebo pridať ďalšie kaskádové vrstvy) a tým podľa potreby dosiahnuť ľubovoľne vysokú presnosť.

9 Diskusia a budúci vývoj

Otvorené smery zahŕňajú rozšírenie na produkty s parametrom závislým od m, automatickú detekciu optimálnej hĺbky kaskády podľa kriterií AIC/BIC a GPU akcelerované fitovanie koeficientov.

Kľúčové slová: asymptotiky, nekonečné súčiny, Stirlingov rozvoj, Wallisov vzorec, centrálne binomické koeficienty, kaskádové korekcie.

10 Dôkaz Bernoulliho koeficientov

Stručný odvodzuje postup platný pre všetky produkty. Nech $P_m = \prod_{i=1}^m a_i$ a $f(i) = \ln a_i$ je hladká funkcia. Po vyfaktorizovaní centra k študujeme $R(m) = \sum_{i=1}^m [f(i) - \ln k]$. Na centrovanú funkciu $g(x) = f(x) - \ln k$ aplikujeme Eulerovu–Maclaurinovu formulu

$$R(m) = \int_0^m g(x) dx + \frac{g(m) + g(0)}{2} + \sum_{j=1}^p \frac{B_{2j}}{(2j)!} g^{(2j-1)}(m) + O(m^{-(2p+1)}).$$
 (2)

Prvé dva členy sa vďaka voľbe k rušia, takže dominuje príspevok s B_2 a dostávame $c_1 = B_2/12$. V šeobecnosti platí uzavretý vzorec

$$c_{2j-1} = \frac{B_{2j}}{2j(2j-1)}, \qquad j \ge 1.$$
 (3)

Exponenciálna séria $\exp(\sum c_{2j-1}/m^{2j-1})$ presne zodpovedá vzťahom uvedeným v Tabuľke ??. Kompletný dôkaz so všetkými hladkostnými predpokladmi je v priloženom dokumente plný dôkaz je analogický a vyplýva priamo z Eulerovej-Maclaurinovej vety pri vhodnom vycentrovaní funkcie.

Literatúra

- J. Stirling, Methodus Differentialis, Londýn, 1730.
- L. Euler, "De progressionibus harmonicis observationes", Commentarii Acad. Sci. Petropolitanae 7 (1735).
- J. Bernoulli, Ars Conjectandi, Bazilej, 1713.
- S. Ramanujan, "Modular equations and approximations to π ", Quarterly Journal of Mathematics 45 (1914).