State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

Logic Gates

1. Label the following logic gates:

- 2. Convert the following to boolean expressions:
 - (a) NAND \sim (AB) + A \sim (B) + \sim (A)B
 - (b) XOR $A\sim(B) + \sim(A)B$
 - (c) XNOR \sim (AB) + AB

3. Create an AND gate using only NAND gates.

4. How many different two-input logic gates can there be? How many n-input logic gates?

16, 2^2^n

Boolean Logic

$$\begin{array}{lll} 1+A=1 & A+\bar{A}=1 & A+AB=A \\ 0B=0 & B\bar{B}=0 \\ \text{DeMorgan's Law:} & \overline{AB}=\bar{A}+\bar{B} & \overline{A+B}=A+B \end{array} \qquad (A+B)(A+C)=A+BC$$

1. Minimize the following boolean expressions:

(a) Standard:
$$(A + B)(A + \bar{B})C = (AA + AB + A \sim (B) + B \sim (B))C = (A(A + B + \sim (B)) + B \sim (B))C = (A(A + B) + B \sim (B))C = (A + B) + A \sim (B) + B \sim (B) +$$

AC

(b) Grouping & Extra Terms:
$$\bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + AB\bar{C} + A\bar{B}\bar{C} + ABC + A\bar{B}C$$

= \sim (C)((\sim (B) + B)((\sim (A) + A))) + AC(B + \sim (B)) = \sim (C)(1 & 1) + AC(1) = \sim C + AC = A + \sim C

(c) DeMorgan's:
$$\overline{A(\bar{B}\bar{C}+BC)}$$

= \sim (A) + \sim (\sim (B) \sim (C) + BC = \sim (A) + (B + C)(\sim B + \sim C) = \sim A + B \sim C + C \sim B