컴파일러: 2장

국민대학교 컴퓨터공학부 강 승 식

제2장 언어와 문법

- 문법이란?
- 스트링 = 문장
- 문장들의 집합을 기술 형식 언어에서 '문장'은 '스트링(string)'이라고 함
- 예1) 언어 L₁ = { 00, 01, 10, 11 }에 대한 문법

 $S \rightarrow 00 \mid 01 \mid 10 \mid 11$

 $S \rightarrow 00$

 $S \rightarrow 01$

 $S \rightarrow 10$

 $S \rightarrow 11$

정규문법 x nonterminal 두채이상(XS)

• 예2) 언어 L₂ = { a, b, aa, ab, ba, bb }에 대한 문법

S→a|b|aa|ab|ba|bb 정규언어

• 예3) 예2와 동일한 언어를 기술하는 문법

 $S \rightarrow a \mid b \mid aX \mid bX$ $X \rightarrow a \mid b$

정규문법 (우선형)

• 예4) 예2, 예3과 동일한 언어를 기술하는 문법

s→xy|x 같은문법이지만

X→alb 정규문법 X Y→alb 장구

context free grammer 3임

 $X \rightarrow 0 \mid 1$ • 예6) 잘못된 문법의 예

 $S \rightarrow XS$

 $S \rightarrow XS \mid 0 \mid 1$

문법의 정의

- 문법의 4가지 구성 요소 G = (T, N, P, S)
 - T: 터미널(terminal) 집합 • 예: { a, b }
 - N: 논터미널(non-terminal) 집합
 예: { S, X, Y }
 - P: 생성 규칙(production rule) 집합
 예: {S → XY | X, X → a | b, Y → a | b}
 - S: 시작 기호(start symbol)
 논터미널 기호 중 하나(첫번째 것)

정규 문법

• 예5) 언어 L₃ = { 0, 1, 00, 01, 10, 11, 000, 001, ... }

- 모든 생성규칙의 LHS(Left-Hand Side)는 논터미널 1개
- 모든 생성규칙의 RHS(Right-Hand Side)는 터미널 스트링으로만 구성되거나 또는 논 터미널 1개가 터미널 스트링 끝에 오른쪽 (혹은 왼쪽) 끝에 올 수 있음

정규 문법의 두 가지 유형

- t_s = t₁t₂,...t_n, n≥0인 터미널 스트링이라 할 때
- 우선형 문법(Right-Linear Grammar)

 $A \rightarrow t_s B$ $A \rightarrow t_s$

• 좌선형 문법(Left-Linear Grammar)

 $\mathsf{A} \to \mathsf{Bt}_\mathsf{s}$

- 예1, 예2, 예3은 정규 문법
- 예4, 예5는 정규 문법이 아님

정규 문법의 정의를 단순화

• 터미널 스트링을 터미널 1개로 제한

우선형 문법: A → aB | b 좌선형 문법: A → Ba | b

A → t₁t₂,...t_nB 유형은 아래와 같이 변환

 $A \rightarrow t_1 A^1$ $A^{1} \rightarrow t_{2}A^{2}$ $A^{2} \rightarrow t_{3}A^{3}$ $A^{n-1} \rightarrow t_n B$

4가지 각각의차이점 알기

- 문맥자유 문법(CFG) 왼쪽만 제약있음

 - 모든 생성규칙이 A → α 유형
 α는 터미널 또는 논터미널로 구성된 스트링, |α|≥0
- 문맥의존 문법(CSG) 더 자유로워짐 대신 크기제약이 있음
 - 모든 생성규칙이 α → β 유형이고, |α| ≤ |β|
 - α, β는 터미널 또는 논터미널로 구성된 스트링, |α|≥1
- 무제한 문법(UG) 아무 제약이 없음
 - 모든 생성규칙이 α → β 유형
 - α, β는 터미널 또는 논터미널로 구성된 스트링, |α|≥1

- 1. (정규문법) A->aB:b
- 2. (CFG) A-> α | α | >=0
- 3. (CSG) 1. $\alpha \rightarrow \beta$, $|\alpha | < = |\beta|$
- 4. (UG) $\alpha \rightarrow \beta$

문법 기술 방법

- 유한 언어: 스트링 개수가 유한 개
 - 모든 스트링을 나열하는 것이 가능함
 - 예1, 예2
- 무한 언어: 스트링 개수가 무한 개
 - 모든 스트링을 나열할 수 없음
 - 순환 규칙(recursive rule)으로 기술
 - 예3

문법 기술할 때 주의 사항

- 완전성(completeness)
 - 언어에 속하는 "**모든 스트링을 생성"**할 수 있어야 함
 - 즉, 1개라도 생성하지 못하는 스트링이 있으면 안됨
- 건전성(soundness)
 - "그 언어에 속하는 스트링만 생성"해야 함
 - 즉, 언어에 속하지 않은 스트링을 1개라도 생성할 수 있으면 안됨

a = b: a = +++b;

30가지 유형 문장 29개만 있으면 안됨 (누락된게 있으면 안됨) 그래서 하나 더추가했는데 모르고 또추가함 29 + 1 + 1 이것도 안됨. 더도말고 부족해도안되고 넘어가도안되고 완벽하게 딱 맞게

순화 규칙(recursive rule)

• 우순환 규칙(right recursive rule)

A = > aA = > aaA = > aaaA = > a...aAA에 b 가능 $A \rightarrow aA \mid b$ $a^*b = \{ b, a^1b, a^2b, ..., a^nb, ... \}$

• 좌순환 규칙(left recursive rule)

A=>Aa=>Aaa=>Aa...a $A \rightarrow Aa \mid b$ $ba^* = \{ b, ba^1, ba^2, ..., ba^n, ... \}$

• 순환 규칙의 예

• 언어 L₄ = { aⁿbⁿ | n ≥ 1 } 에 대한 순환 규칙

$$A \rightarrow aAb \mid ab$$

13

문법 기술 연습

- L₅ = { a^lb^mcⁿ | I, m, n ≥ 1 } 에 대한 정규 문법은?
- L₆ = { a^lb^mcⁿ | I, m, n ≥ 0 } 에 대한 정규 문법은?

14

문법 기술 연습

• 덧셈 언어 L₅ = { a, a+a, a+a+a, ... }

terminal들은 'a' '+' A→a+A|a 쓰기도 함 명확하게하려면

• 문장 언어 L₆ = { s; , s;s; , s;s;s; , ... }

$$A \rightarrow s; A \mid s;$$

15

문법 기술 연습

• 괄호 언어

 $L_7 = \{ (a), ((a)), ..., (a)(a), (a)((a)), ..., ((a)), ((a))(a), ... \}$

 $A \rightarrow AA \mid (A) \mid (a)$

AA = 열고닫고 자유자재 가능((()))(?)

• 사칙연산 수식

 $E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid a$

16

문법 기술 연습

• C 언어의 복문 { s; s; ...; s; }을 기술하는 문법은?

$$B \rightarrow \{A\}$$

 $A \rightarrow s;A \mid s;$

• 중첩된 if문을 기술하는 문법은? – 조건식을 e, 문장을 s라고 함

$$C \rightarrow if (e) S \mid if (e) S else S$$

 $S \rightarrow C \mid B \mid s;$

유도(derivation)

- 유도(derivation)
 - -시작기호로부터 터미널 스트링 생성 과정
- 예제

$$A \rightarrow aA \mid b$$

$$A \Rightarrow aA \Rightarrow aaA \Rightarrow aaaA \Rightarrow aaab$$

a

파스트리(parse tree)를 이용할 수 있음 A l l a A l l a A l l

문법 예제

• $G_1 = (\{O, E\}, \{a,b\}, P, O)$

길이가 짧은거부터 긴순

P: $S \rightarrow aA$ $A \rightarrow aA \mid bB$ $B \rightarrow bB \mid cC$ $C \rightarrow cC \mid d$

문법 예제

• $G_3 = (\{S, A\}, \{a, b, c\}, P, S)$

 $S \rightarrow bA \mid c$ $A \rightarrow aA \mid b$

• $G_4 = (\{S, A\}, \{a, b, c\}, P, S)$

 $S \rightarrow aSbA \mid c$ $A \rightarrow aAa \mid b$

• $G_5 = (\{S, A\}, \{a, b\}, P, S)$

 $\begin{array}{c} A \rightarrow aS \\ A \rightarrow b \end{array}$

형식 언어 예제

- $L = \{a^m b^n \mid m, n \ge 0\} : RG$
- $L_m = \{a^nb^n \mid n \ge 0\}$: CFG
- $L_{dm} = \{a^n b^n c^n \mid n \ge 0\}$: CSG
- $L_{mi} = \{ \omega \omega^R \mid \omega \in V_T^* \} : 거울 언어(mirror language)$
- $L_r = \{ \omega \mid \omega = \omega^R \}$: 회문 언어(palindrome)
- L_p = { $\omega \mid \omega$ 는 balanced parenthesis로 구성} : 괄호 언어

둘의 차이점? palindrome € abcba or abba 거울언어 abba만 (abcba는 아님)