Chapitre 2: Les ions

N. Bancel

Octobre 2024

1 Connaissances à connaître pour le contrôle

- Numéro atomique de l'atome
- Définition d'un ion (et la différence entre un cation et un anion)
- Les méthodes d'identification des ions
- Différence entre électriquement neutre et conducteur

2 Rappels: constitution d'un atome

La matière est constituée de petits « grains » de matière appelés **atomes**. Le diamètre d'un atome est de l'ordre de $10^{-10} m = 0.1 nm$.

Un atome est constitué d'un noyau central autour duquel gravitent un ou plusieurs électrons.

Le noyau et les électrons sont séparés par du **vide**. Il existe une centaine d'atomes différents. Leurs noms, symboles et caractéristiques sont répertoriés dans le **tableau périodique des éléments**.

Le noyau est chargé positivement

Le numéro atomique Z indique le nombre de charges positives du noyau.

Un atome est électriquement neutre.

La charge positive du noyau est compensée par les charges négatives, portées chacune par un électron.

Figure 1: L'atome

Les ions

Définition

Un ion est un atome (ou un groupe d'atomes) qui a perdu ou gagné un ou plusieurs électrons. Il est électriquement chargé.

Si des électrons sont perdus, l'ion formé est **positif** : c'est un **cation**. Si des électrons sont gagnés, l'ion formé est **négatif** : c'est un **anion**.

Formule chimique

La formule chimique d'un ion se compose du symbole chimique de l'atome (ou du groupe d'atomes) initial suivi de la charge de l'ion, inscrite en exposant.

Conséquences pour une solution

Comme un ion est électriquement chargé, la présence d'ions rend une solution conductrice.

Figure 2: Les ions

Identification d'ions dans une solution

Première approche

Une solution étant électriquement neutre, si elle contient des cations, elle contient nécessairement des anions aussi.

Le nom donné à une solution renseigne sur sa composition.

Par exemple, une solution de chlorure de sodium contient des ions chlorure Cl⁻ et des ions sodium Na⁺. Il est sous-entendu que le solvant est ici l'eau.

Figure 3: Les ions

Identification d'ions

Il est possible d'identifier certains ions présents dans une solution grâce à des tests caractéristiques.

Au contact d'un réactif adapté, chaque ion forme un précipité caractéristique.

Ces tests se réalisent sur un **échantillon** de la solution et jamais sur la totalité de la solution.

Figure 4: Les ions

L'électroneutralité en solution aqueuse

```
NaCl \xrightarrow{en \ solution} Na^+ + Cl^-
KCl \xrightarrow{en \ solution} K^+ + Cl^-
NaOH \xrightarrow{en \ solution} Na^+ + OH^-
Na_2SO_4 \xrightarrow{en \ solution} 2Na^+ + SO_4^{2-} \quad (cette \ solution \ contient \ 2 \ fois \ plus \ d'ions \ Na^+ \ que \ d'ions \ SO_4^{2-})
Al_2(SO_4)_3 \xrightarrow{en \ solution} 2Al^{3+} + 3SO_4^{2-}
Fe_2(SO_4)_3 \xrightarrow{en \ solution} 2Fe^{3+} + 3SO_4^{2-}
AlCl_3 \xrightarrow{en \ solution} Al^{3+} + 3Cl^-
CuSO_4 \xrightarrow{en \ solution} Cu^{2+} + SO_4^{2-}
```