

Introduction Into Probability Theory

MTH 231 Lecture 7 Chapter V

Some Useful Discrete Distributions

Overview

Today's lecture

- ☐ Some Important Discrete Distributions:
 - Bernoulli Distribution
 - Binomial Distribution
 - Poisson Distribution

Bernoulli Trial

- Trial with only two possible outcomes
 - Success (S)
 - Failure (F)
 - The trials are independent
- Examples
 - Toss of a coin (heads or tails)
 - Sex of a newborn (male or female)
 - Survival of an organism in a region (live or die)

Jacob Bernoulli (1654-1705)

Bernoulli Distribution

- The sample space of a Bernoulli trial is $\{S, F\}$.
- \square Defining a variable X in such way that

$$X(S) = 1$$
 and $X(F) = 0$,

- ☐ Then X is a r.v. taking only two possible values: 0 and 1. This r.v. is called **Bernoulli random variable.**
- Denoting P(X = 1) = p, it is then called the **probability** of success.
- The *PMF* of a Bernoulli r.v., called Bernoulli Distribution, is seen to be $P(x) = p^{x} (1-p)^{n-x}, x = 0,1$

Bernoulli Distribution

- ☐ The expectation:
 - $E[X] = 1 \times P(X=1) + 0 \times P(X=0) = p.$
- ☐ The variance:

Since
$$E[X^2] = 1^2 \times P(X = 1) + 0^2 \times P(X = 0) = p$$
,
then $Var(X) = E[X^2] - (E[X])^2 = p - p^2 = p(1-p)$

Example: If in a throw of a fair die the event of obtaining 4 or 6 is called a success, and the event of obtaining 1, 2, 3, or 5 is called a failure, then $X = \begin{cases} 1 & \text{if } 4 \text{ or } 6 \text{ is obtained} \\ 0 & \text{otherwise,} \end{cases}$

is a Bernoulli r.v. with parameter p = 1/3.

Binomial distribution

It is a discrete distribution that describes many experiments which require the probability of the number of successes or failures in a sample of repeated trials.

The following characteristics identify the binomial experiment:

- 1- The experiment consists of a fixed number of trials denoted by n.
- 2- The outcome of each trial can be classified as being either a "success " or a "failure".
- The trials are independent.
- 4- The probability of success, denoted by p, remains the same from trial to trial. The probability of failure equals q = 1-p.
- 5- The random variable x being studied is the number of successes obtained in the n trials.

The Binomial Probability Function:

If X is a random variable having a binomial distribution then its probability function is given by

$$P[X=r] = {n \choose r} p^r q^{n-r}$$
, $r = 0,1,2,...,n$ 0

Where

 $\binom{n}{r} = C_r^n$ = The number of ways that r objects can be selected from n objects, n and p are called the parameters of the binomial distribution.

Note that:

If n = 1 the binomial distribution is called the Bernoulli distribution.

The mean and variance of the binomial distribution:

If X is binomial with parameters n and p, then X has

(a) mean =
$$E(X) = \mu = n p$$
 and

(b) variance =
$$Var(X) = \sigma^2 = n p q$$

Possible Binomial Distribution Settings

A manufacturing plant labels items as either defective or acceptable

A firm bidding for contracts will either get a contract or not

A marketing research firm receives survey responses of "yes I will buy" or "no I will not"

New job applicants either accept the offer or reject it

Binomial Distribution (Cont.)

The shape of the binomial distribution depends on the values of p and n

$$\sigma = \sqrt{np(1-p)} = \sqrt{(5)(.1)(1-.1)}$$
$$= 0.6708$$

Here, n = 5 and p = .5

$$\sigma = \sqrt{np(1-p)} = \sqrt{(5)(.5)(1-.5)}$$
$$= 1.118$$

Binomial Distribution

- A Binomial Random Variable
 - n identical trials
 - Two outcomes: Success or Failure
 - P(S) = p; P(F) = q = 1 p
 - Trials are independent
 - \blacksquare X is the number of Successes in n trials

We say X has a binomial distribution with parameters n and p and write $X \sim Bin(n, p)$.

Binomial Distribution

- Example: You are taking a 10 question multiple choice test. If each question has four choices and you guess on each question, what is the probability of getting exactly 7 questions correct?
- > Answer:

$$n = 10, \qquad k = 7, \qquad n - k = 3$$

p=0.25= probability of guessing the correct answer on a question q=0.75= probability of guessing the wrong answer on a question

$$P(7 correct guesses out of 10 questions) = {10 \choose 7} (0.25)^7 (0.75)^3 \approx 0.0031.$$

- Example: A driving examiner finds that he passes 40% of the candidates. For a particular day on which he examines 9 people, find the probability that
- (a) he passes exactly 6 people
- (b) he passes at least one person
- (c) he passes more than 7 people
- (d) Find the mean and the standard deviation of the number of people who passes on that day, and then find E(2X-1) and Var(-2X+4).

Solution: Let X be the number of people he passes on that day, then X has the binomial random variable with parameters n = 9, p = 0.4 and q = 0.6, then

$$P[X=r] = {9 \choose r} (0.4)^r (0.6)^{9-r}, r = 0, 1, ..., 9$$

(a) P[he passes 6 people] = P[X = 6] =
$$\binom{9}{6}$$
 (0.4)⁶ (0.6)³ = 0.0743

(b) P[he passes at least one person]=P[X≥1] =1-P[he passes none]

=1-P[X=0] =1-
$$\binom{9}{0}$$
(0.4)⁰(0.6)⁹
=0.9899

(c) P[he passes more than 7 people] = P[X > 7] = P[X = 8] + P[X = 9]

$$= \binom{9}{8} (0.4)^8 (0.6)^1 + \binom{9}{9} (0.4)^9 (0.6)^0$$
$$= 0.0038$$

(d) $E(X) = \mu = n p = 9(0.4) = 3.6$

$$Var(X) = \sigma^2 = n p q = (9)(0.4)(0.6) = 2.16$$
,

$$\sigma = \sqrt{Var(X)} = \sqrt{2.16} = 1.47$$

Then,
$$E(2X-1) = 2 E(X) - 1 = 2(np) - 1 = 2 (3.6) - 1 = 6.2$$
$$Var(-2X+4) = (-2)^2 Var(X) = 4 npq = 4 (2.16) = 8.64.$$

- **Example**: If 20 % of the bolts produced by a machine are defective, 4 bolts are chosen at random from the production of these machine, what is the probability that
- (a) one bolt is defective
- (b) all 4 bolts will be good,
- (c) at most 2 bolts will be defective
- (d) Find the mean and the standard deviation of the number of defective items in the sample

Solution: Let X be a binomial random variable with parameters n = 4, p = 0.2, then

$$P[X = r] = {4 \choose r} (0.2)^r (0.8)^{4-r}, r = 0,1,2,3,4$$

(a)
$$P[X = 1] = {4 \choose 1} (0.2)^1 (0.8)^3 = 0.4096$$

(b) P [all 4 bolts will be good]

$$= P[X = 0] = {4 \choose 0} (0.2)^{0} (0.8)^{4} = 0.4096$$

(c)
$$P[X \le 2] = P[X = 0] + P[X = 1] + P[X = 2]$$
$$= {4 \choose 0} (0.2)^{0} (0.8)^{4} + {4 \choose 1} (0.2)^{1} (0.8)^{3} +$$
$${4 \choose 2} (0.2)^{2} (0.8)^{2}$$
$$= 0.9728$$

(d)
$$E(X) = \mu = n p = 4(0.2) = 0.8$$

$$Var(X) = \sigma^2 = n p q = (4)(0.2)(0.8) = 0.64$$

$$\sigma = \sqrt{0.64} = 0.8$$

2- Poisson distribution

A random variable X, taking of the values 0, 1, 2... is said to be a Poisson random variable with parameter λ if for some $\lambda > 0$,

$$P(X = r) = \frac{e^{-\lambda} \lambda^{r}}{r!}, \qquad r = 0, 1, 2, ...$$

The Poisson random variable has a tremendous range of applications in several areas because it may be used as an approximation for a binomial random variable, with parameters (n, p) when n is large (\geq 30) and p is small enough so that $\lambda = n$ p is fixed.

where:

X = number of successes per unit

 λ = expected number of successes per unit

e = base of the natural logarithm system (2.71828...)

The mean and the Variance of Poisson Distribution

- Mean $\mu = \lambda$
- Variance and Standard Deviation

$$\sigma^2 = \lambda$$

$$\sigma = \sqrt{\lambda}$$

where λ = expected number of successes per unit

Some examples of random variables that usually obey the Poisson probability law:

- 1- The number of misprints on a page (or a group of pages) of a book
- 2- The number of people in a community living to 100 years of age
- 3- The number of wrong telephone numbers that are dialed in a day
- 4- The number of customers entering a post office on a given day
- 5- The number of α- particles discharged in a fixed period of time from some radioactive material.
- 6- The number of transistors that fail on their first day of use .

Example : Suppose that the number of typographical errors on a single page of a book has a Poisson distribution with parameter $\lambda = 1/2$. Calculate the probability that there is at least one error on a page.

Solution: Letting X denote the number of errors on a page, we have $\lambda = 1/2$

$$P(X = r) = \frac{e^{-\frac{1}{2}} \left(\frac{1}{2}\right)^{r}}{r!}, \qquad r = 0, 1, 2, ...$$

we have

$$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{\frac{-1}{2}} \approx 0.393$$

The Relation between the Binomial and the Poisson distributions

- If a random variable X has a binomial distribution with parameters n and p, then when <u>n</u> is very large and <u>p</u> is small such that $\lambda = n p$ is fixed then X has approximately the Poisson distribution with parameter $\lambda = n p$.
- Example: Suppose that the probability that an item produced by a certain machine will be defective is 0.1. Find the probability that a sample of 10 items will contain at most 1 defective item by using the Binomial and Poisson distribution and compare the answer.

Solution

(a) Binomial distribution

$$n = 10$$
, $p = 0.1$, $q = 0.9$

$$P[X = r] = {10 \choose r} (0.1)^r (0.9)^{10-r}$$
, $r = 0,1,...,10$

The desired probability is

$$P(X \le 1) = P(X = 0) + P(X = 1) = {10 \choose 0} (0.1)^0 (0.9)^{10} + {10 \choose 1} (0.1)^1 (0.9)^9 = 0.7361$$

(b) Poisson distribution

$$\lambda = \mathbf{n} \, \mathbf{p} = (10) \, (0.1) = 1$$

$$P(X = r) = \frac{e^{-1} \, (1)^r}{r!}, \qquad r = 0, 1, 2, ...$$

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= e^{-1} \, \frac{1^0}{0!} + e^{-1} \, \frac{1^1}{1!} \approx 0.7358$$

The probability obtained by binomial distribution equals approximately (to the first three decimals) the probability obtained by the Poisson distribution.

➤Example :

If approximately 2% of the people in a room of 200 people are left-handed, find the probability that exactly 5 people there are left-handed.

Solution:

Since λ =n p, then λ =200(0.02)= 4. Hence, $P(X=5) = \frac{e^{-4}4^5}{5!} = 0.1563.$

- Example : At a certain manufacturing plant, accidents have been occurring at the rate of 1 every 2 months. Assuming the accidents occur independently:
- (a) What is the expected number and the standard deviation of accidents per year?
- (b) What is the probability that there will be no accidents in a given month?

Solution: Letting X denote the number accidents that have been occurring, the number of such accidents should be approximately Poisson distribution with $\lambda = 1$ for every 2 months

(a)
$$\lambda = 6$$
, then, $E(X) = \lambda = 6$, $\sigma = \sqrt{Var(X)} = \sqrt{\lambda} = \sqrt{6} = 2.45$

(b) $\lambda = \frac{1}{2}$ in a given month, then

$$P(X=0) = \frac{e^{-\frac{1}{2}} \left(\frac{1}{2}\right)^0}{0!} = e^{-0.5} = 0.607$$

- Problem1: The number of visitors to a webserver per minute follows a Poisson distribution. If the average number of visitors per minute is 4, what is the probability that:
 - (i) There are two or fewer visitors in one minute?;
 - (ii) There are exactly two visitors in 30 seconds?

- Solution: (i) There are two or fewer visitors in one minute?;
 - we need the average number of visitors in a minute.
 - In this case the parameter $\lambda = 4$.
- We wish to calculate

$$P(X = 0) = \frac{e^{-4}4^0}{0!} = e^{-4}$$

$$P(X = 1) = \frac{e^{-4}4^1}{1!} = 4e^{-4}$$

$$P(X = 2) = \frac{e^{-4}4^2}{2!} = 8e^{-4}$$

So the probability of two or fewer visitors in a minute is

$$P(X = 0) + P(X = 1) + P(X = 2).$$

$$= e^{-4} + 4e^{-4} + 8e^{-4} = 0.238.$$

Solution: (ii) There are exactly two visitors in 30 seconds?

- If the average number of visitors in 1 minute is 4, then the average in 30 seconds is 2.
- So for this point, our parameter $\lambda = 2$. So

$$P(X = 2) = \frac{e^{-2}2^2}{2!} = 2e^{-2} = 0.271.$$

- Problem 2: A fair coin is tossed 6 times. The probability of appearing heads on any toss is 30%. If X denote the number of heads that appeared.
 - Calculate:
 - a) P(X=3)
 - b) P(X=4)
 - c) $P(2 \le X < 6)$
 - d) E(X)
 - e) Var(X).

Questions!

