444 Lecture 5.7 - Rationalizable Strategies

Brian Weatherson

To introduce the idea of rationalizable strategies.

Reading

Bonanno, section 6.4

Playing Best Responses

	Left	Right
Up	3, 0	0, 1
Middle	1, 1	1,0
Down	0,0	3, 1

In this game, the best responses are:

- Row can play Up (best response to Left) or Down (best response to Right);
- Column can play Left (best response to Middle) or Right (best response to either Up or Down).

Playing Best Responses

	Left	Right
Up	3, 0	0, 1
Middle	1, 1	1,0
Down	0, 0	3, 1

- But Middle is not a best response.
- It is dominated by the 50/50 mixture of Left and Right.

	Left	Right
Up	3, 0	0, 1
Middle	1, 1	1,0
Down	0, 0	3, 1

- So while Left is a best response...
- It is not a best response to a best response.

• That makes it seem irrational to play Middle.

- That makes it seem irrational to play Middle.
- I could build more complicated examples, where we had cases that are best responses to best responses, but not best responses to best responses.

- That makes it seem irrational to play Middle.
- I could build more complicated examples, where we had cases that are best responses to best responses, but not best responses to best responses.
- Actually we've already seen such a case.
- In the Ice Cream game, 2 is a best response to 1, which is a best response to 0.
- But 2 is not a best response to any best response to a best response.

- Some strategies are at the start of an infinite chain S₁, S₂, ...
 where each strategy is a best response to the one that comes
 after it.
- Call these the rationalizable strategies.

Infinite Chains

Here is one way to get an infinite chain like this.

- If the pair (S_1, S_2) is a Nash equilibrium, ...
- Then S₁ is a best response to S₂, which is a best response to S₁, which is a best response to S₂, which ...

Infinite Chains

Here is one way to get an infinite chain like this.

- If the pair (S_1, S_2) is a Nash equilibrium, ...
- Then S₁ is a best response to S₂, which is a best response to S₁, which is a best response to S₂, which ...
- But you don't only need to use Nash equilibria.
- · Think about Rock, Paper, Scissors.
- Rock is a best response to Scissors, which is a best response to Paper, which is a best response to Rock, which is...
- · But Rock is not part of a Nash equilibrium.

Rationalizability

I'm not going to prove this, but the following turns out to be true.

- The strategies that can be at the start of these infinite chains ...
- Are exactly those strategies that survive iterated deletion of strongly dominated strategies ...
- Provided we include dominance by mixtures when we're doing the deleting.

Philosophical Payoff

Some economists, and a few philosophers, have argued that this is the key philosophical notion in game theory.

 They say that a strategy is rational to play if and only if it is rationalizable in this sense.

Philosophical Payoff

Some economists, and a few philosophers, have argued that this is the key philosophical notion in game theory.

- They say that a strategy is rational to play if and only if it is rationalizable in this sense.
- In economics, this is very much a heterodox view.
- Note that this view is more permissive than the view that rational players will choose Nash equilibria.
- All Nash equilibria are rationalizable, but some rationalizable strategies (e.g., Rock!), are not Nash equilibria.

Philosophical Payoff

Some economists, and a few philosophers, have argued that this is the key philosophical notion in game theory.

- They say that a strategy is rational to play if and only if it is rationalizable in this sense.
- In economics, this is very much a **heterodox** view.
- Note that this view is more permissive than the view that rational players will choose Nash equilibria.
- All Nash equilibria are rationalizable, but some rationalizable strategies (e.g., Rock!), are not Nash equilibria.
- Most economists think that if there is a key notion in game theory, it is less permissive than Nash equilibrium.

For Next Time

 We'll close this out by going back to Nash, and asking why Nash equilibrium is philosophically significant.