Notes on "Chemistry: the Central Science (13th Edition)"

Hugo Rivera

2014 - 2015

Notes taken during two introductory chemistry courses (CHEM121 and CHEM122) at the New Mexico Institute of Mining and Technology Spring 2015.

C	ontents		8 Chapter 8. Basic Concepts of Chemical Bonding	9
1	Chapter 1. Units and Significant Figures	2	8.1 Lewis Structures	
2	Chapter 2. Atoms, Molecules, Ions 2.1 Basics	2 3 3 3 3 3 3 4	 8.2 Resonance structures	10 10 10 11
3	Chapter 3. Chemical Reactions and Reaction Stoichiometry 3.1 Chemical Equations and Reactions	4 4 4	 9.1 Molecular Shapes 9.2 VSEPR Model 9.3 Covalent Bonding, Orbital Overlap 9.4 Hybrid Orbitals 9.5 Multiple Bonds 9.6 Molecular Orbitals 	12 13 13 13
4	Chapter 4. Reactions in Aqueous Solution 4.1 Solubility Guidelines	4 5 5 5 5 5	9.7 Period 2 Diatomic Molecules	14 16
5	Chapter 5. Thermochemistry 5.1 Energy	5 6 6 6 6 6	11.2Intermolecular Forces	17 18 18 19
6	Chapter 6. Electronic Structure of Atoms 6.1 Energy of Light and Photons, Quantum Worries	6 7 7	12.5 Complex	20 20 20
7	Chapter 7. Periodic Properties of the Elements 7.1 Periodic Properties of the Elements 7.2 Metals 7.3 Alkali metals 7.4 Alkaline metals 7.5 Nonmetals 7.6 Noble Gases 7.7 Hydrogen 7.8 Oxygen group 7.9 Halogens	7 8 8 8 9 9 9 9	12.9Semiconductors	20 21 21 21 22 22 22 22

14.Chapter 14. Chemical kinetics 14.1Reaction Rates	24 24 24 25	17 Chapter 17. More Aspects of Aqueous Equilibria 17.1 Common-lon Effect	30 31 31 32 32 32
15 Chapter 15. Chemical equilibrium	25	1001 1 10 01 1 171 1 1	
15.1Rock bottom 15.2Equilibrium constant 15.3Direction and Summation of Equations 15.4Heterogeneous Equilibrium 15.5Finding K from initial and equilibrium concentrations 15.6Applications of K 15.7Le Châtelier's Principle	26 26 26 26 27	19 Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes	33 33 34
16Chapter 16. Acid-Base Equilibria	27	20 Chapter 20. Electrochemistry	34
16.1Arrhenius Acids and Bases	28 28 28 28 28 28 29 29	20.10xidation States and Redox	35 35 35 35 35 35
16.9Acid-Base Behavior and Chemical Structure . 16.10ewis Acids and Bases		21Chapter 21. Nuclear Chemistry 21.1	35 36

Chapter 1. Units and Significant Figures

1. Elements, compounds, ero/homogeneous mixtures

3. Common prefixes

chemistry

2. Common elements

4. Significant figures OHYEA

5. SI units and non-SI units common in

Common elements C, F, H, N, I, O, P, S, Al, Br, Ca, Cl, He, Li, Mg, Si, Cu, Fe, Pb, Hg, K, Ag, Na, Sn Common prefixes Yocto (15), Tera, Giga, Mega, kilo, deci, centi, mill, μ icro, nano, Ångstrom(-10, non-SI), p, femto (-15), atto, zepto (-21) **SI units** kg, m, s or sec, K, mol, A, cd (candela)

Common in chem: L, 1000 cubic centimeters

Sig.fig. addition keep lowest decimal sig.fig.s. 1.0 +

221.31 = 222.3

Sig.fig. multiplication keep lowest sig.fig.s Sig.fig. logarithms sig.figs of mantissa expressed in scientific notation equals the number of significant figures to the right of the decimal $\log(2.7310^5) = \log(2.73) + \log(10^5) = 0.436 -$ 5.00000....

Chapter 2. Atoms, Molecules, Ions

2.1 Basics	3
2.2 Dalton's Theory and its Development	3
2.3 Naming	3
2.4 Alkanes and Alcohols	4

- 1. Dalton's atomic theory
- 2. Key experiments that led to discovery of atom/nucleus/electrons (Cathode ray, oil drop, α scattering)
- 3. Electrical charge and relative masses of e^{-}, p^{+}, n
- 4. Subatomic composition of isotopes
- 5. Atomic weight knowing natural abundances
- 6. Periodic table properties, als/nonmetals
- 7. Molecular and ionic substances, in terms of their composition
- 8. Empirical/molecular formulas
- 9. Compositions expressed as molecular and structural formulas
- 10. Ions and the gain/loss of e^- , predict common charges
- 11. Write empirical formulas of ionic compounds given charges of component
- 12. Name ionic compounds
- 13. Name binary inorganic compounds and acids
- 14. Name alkanes and alcohols

2.1 Basics

Empirical formula extra information is needed to find chemical

formula Mass of electron $9.10 \cdot 10^{-28}g$ **Charge of electron** 1.602 $10^{-19}C$

Rays β are negative, α are positive, and γ are neutral.

Cations positive. meow Anions negative.

2.2 Dalton's Theory and its Development

Laws: elements made of atoms, atoms unique/exclusive to elements, atoms cannot be changed by chemistry, compounds have the same relative number and kinds of atoms, and the next law:

Law of multiple proportions elements A and B form two compounds C_1 and C_2 . This proportion will be a natural number: $\frac{C_1.A}{C_2.A}$ where C_1 is larger.

Cathode rays cathode rays are electrically charged

and negative. Determined by firing such a ray and manipulating its positive end using magnetic and electric fields

Oil drop experiment Rate of oil drops affects their rate of descent. Used to find ratio of electron's mass and charge.

Rutherford's α **scattering** most α particles went through a gold foil with little deflection, though some were greatly repelled.

2.3 Naming

manganate is MnO₄⁻. Also, the only nonmetal cation encountered is Ammonium NH₄⁺.

Chromate is CrO_4^{2-} and Dichromate is $Cr_2O_7^{2-}$. Per- Oxyanions with hydrogen prepend "hydrogen" or "dihydrogen" to oxyanion name

2.3.1 Cations

Metal single charge name ion Metal ambiguous charge name (charge in Roman numerals) ion

2.3.3 Binary compound

Greek prefix to indicate atomic number, leave first alone if AN = 1

Leftmost first unless oxygen and a halogen, except

Bottommost first

Suffix -ide on second element

2.3.2 Anions

Single name-ide

Oxyanions normal sequence CO₃²⁻, NO₃⁻, ClO₃⁻; 2.3.4 Acids PO₄³⁻, SO₄²⁻

Oxyanions +1 O count per-name-ate Oxyanions normal O count name-ate

Oxyanions -2 O count hypo-name-ite

Oxyanions -1 O count name-ite

make H⁺ in water.

name-ide is converted to hydro-name-ic acid

name-ate is converted to name-ic acid name-ite is converted to name-ous acid

2.4 Alkanes and Alcohols

General formula C_nH_{2n+2}

Naming sequence methanol, ethanol, tetranol, pentanol, greek-prefix-nol.

Alcohols one of the H in the alkane replaced by a hy-

droxide OH.

propanol, **Enantiomers** different structure (even if rotated) due to location of the hydroxide group. 1-propanol has OH on edge, 2-propanol has it in center

Chapter 3. Chemical Reactions and Reaction Stoichiometry

Contents

- 1. Balance chemical equations
- 2. Combination, cdecomposition, combustion reactions
- 3. Formula weights

- 4. Grams and moles
- 5. Avogadro's number
- 6. Empirical and molecular formulas of a compound from percentage composition
- and MW
- 7. ID limiting reactants and calculate amounts consumed/formed
- 8. Percent yield of a reaction

3.1 Chemical Equations and Reactions

Unbalanced Formula $CH_4 + O_2 \longrightarrow CO_2 + H_2O$ **Balanced Formula** $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$ State indicators (s), (l), (g), (aq) indicates dissolution in water, others for different solvents

Formula weight $\sum_{Element} \#E \cdot E$ atomic weight Elemental Composition # element-weight of

formula weight

empirical formula weight divided by the molecular weight is always a natural number

Combination reaction $A + B \longrightarrow C$ **Decomposition reaction** $C \longrightarrow A + B$

Limiting Reactants test each reaction by moles until an obvious limit is found

One AMU is one $\frac{g}{mol}$.

3.2 Stoichiometry

One mole is equal to $6.022 \cdot 10^{23}$ units. Stoichiometric Equivalence A + 2B → 3C + 4D one mole of A yields 3 moles of C, one mole of D must have consumed half a mole of B.

Combustion analysis ... C ... H \longrightarrow nCO₂ + mH₂O %C = $\frac{Cmol}{Xmol}$ %H = $\frac{Hmol}{Xmol}$. Try different denominators X until all are natural numbers. Use algebra if another element involved.

Percentage yield actual yield divided by theoretical yield.

Chapter 4. Reactions in Aqueous Solution

4.1 Solubility Guidelines	5
4.2 Strong Acids and Bases	5
4.3 Solution basics	5
4.4 Acid-Base Reactions	5
4.5 Oxidation-Reduction Reactions	5

- 1. ID compounds as acids or bases, strong weak or non-electrolyte?
- 2. Recognize reaction types, simple acidbase, precipitation and redox (OILRIG)
- reactions
- 3. Calculate molarity, use it to find volume and moles
- 4. Carry out a dilution to achieve a desired
- solution
- 5. Perform and interpret results of a titra-

4.1 Solubility Guidelines

soluble	exceptions
NO ₃	
CH ₃ COO⁻	
alkali metals	
all following	unless with ${\rm Hg_2}^{2+}$, ${\rm Pb}^{2+}$
CI ⁻	unless with Ag ⁺
Br ⁻	unless with Ag ⁺
I-	unless with Ag ⁺
SO ₄ ²⁻	unless with Sr ²⁺ , Ba ²⁺

insoluble	exceptions
all following	unless with NH ₄ +, alkali metal
CO ₃ ² -	
PO ₄ ³⁻	
all following	unless with Ca ²⁺ , Sr ²⁺ , Ba ²⁺
S ²⁻	
OH-	

4.2 Strong Acids and Bases

Strong acids HI, HBr, HCl, HClO₃, HClO₄, HNO₃, H₂SO₄ (first proton only) **Strong bases** group 1A metal hydroxides KOH, group 2A heavy metal hydroxides (beginning at Ca(OH)₂) **Weak acids, bases** all else

4.3 Solution basics

Solvent more of this **Solute** dissolved in solvent **Molarity** moles per Litre **Dilution** $M_{\text{conc}}V_{\text{conc}} = M_{\text{dilute}}V_{\text{dilute}}$

Electrolyte fancy for salt. Forms ions in water by dissociating.

Weak electrolytes oscillate, only a fraction of itself is dissociated.

Precipitation pairs of oppositely charged ions attract each other to form a solid (salt). Look for any

insoluble products. A type **metathesis** reaction $AX + BY \longrightarrow AY + BX$

Ionic equation Split any dissociated (aq) molecules into ions. Cancel out ions present on both sides of equation, these are **spectator ions**.

Example ionic equation $Pb(NO_3)_2(aq) + 2KI(aq) \longrightarrow PbI_2(s) + 2KNO_3(aq)$ can be converted to $Pb^{2+}(aq) + 2I^{-}(aq) \longrightarrow PbI_2(s)$ with K^+ and $(NO_3)_2^{2+}$ as spectator ions.

4.4 Acid-Base Reactions

Acids form H^+ in water Bases form OH^- in water Acids and Bases combined $HA + BOH \longrightarrow H_2O + AB$ Gas formation is possible $2 \, HCI(aq) + Na_2S(aq) \longrightarrow H_2S(g) + 2 \, NaCI(aq)$

4.5 Oxidation-Reduction Reactions

Metal activity increases to the top-left. Higher means easier to oxidize.

OIL-RIG oxidation is loss of e^- , reduction is gain of e^- **Oxidation number** is an artificial (negated) e^- count.

 \mathbf{O} -2, except in O_2^{2+} where each O has -1.

H +1 with metals, -1 with nonmetals

F -1

other halogens -1, can be positive with oxygen elemental 0

monatomic ion charge

polyatomic ion sum of oxidation numbers is charge

5 Chapter 5. Thermochemistry

5.1	Energy	6
5.2	Enthalpy	6
5.3	Calorimetry	6
5.4	Hess's law	6
5.5	Enthalpies of Formation	6

- Interconvert energy units
- 2. System vs surroundings in thermody-
- 3. Internal energy from heat and work. Sign conventions
- 4. Concept of a state function, examples
- 5. ΔH from δE , $P\delta V$
- 6. relate q_p to ΔH . Signs indicate exo/endothermic
- 7. Relate ΔH at constant pressure and the amount of substance involved
- 8. Heat transfered using temperature mea-
- surements and heat capcities/specific heats (calorimetry)
- 9. Hess' law to determine enthalpy changes
- 10. Standard enthalpies of formation to calculate ΔH^{o}

5.1 Energy

Kinetic energy $\frac{mv^2}{2}$

Electrostatic energy between two points, charges First Law of Thermodynamics energy cannot be Q, distance d, $k = 8.99E9Jm/C^2$; $\frac{kQ_1Q_2}{d}$

1 calorie 4.184 Joules

System area singled out for study

Surroundings all else

Work $F \times d$

created or destroyed

5.2 Enthalpy

Internal energy E is the sum of kinetic and potential energies.

Change $\Delta E = E_{\text{final}} - E_{\text{initial}}$

Change and Work $\Delta E = q + w$ heat + work.

Positive q endothermic, **negative** q exothermic.

Positive ΔE means system has gained energy, has received: it's endothermic.

Negative ΔE means system has lost energy, has given: it's exothermic.

State function result depends only on present state **Enthalpy** H = E + PV where P is pressure and V is volume. All three terms are state functions.

Change in Enthalpy $\Delta H = H_{products} - H_{reactants} = q +$

w-w=q equal to heat at constant pressure. **Extensive** property (depends on amount). Depends on states of substances. Units: kJ

Example

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g), \Delta H = -483.6kJ$$

5.3 Calorimetry

Specific heat of substance mass(units $\frac{J}{mol K}$), range and change in temperature can be used to find the heat released or absorbed during a change.

$$Q = C_s m \Delta T$$

5.4 Hess's law

Composite reaction can be split into other, sometimes simpler, reactions which add to form it

Hess's law indicates the ΔH for a composite reaction is the sum of the ΔH for each component reaction.

5.5 Enthalpies of Formation

Enthalpy of formation ΔH_f° is the enthalpy required to form a substance in standard conditions, 25°C and 1 atm. Units: kJ/mol.

For stablest elementals at standard such as C(graphite), H_2 , O_2 , $\Delta H_f^{\circ} = 0$.

Example for diamond C(s) $\Delta H_f^{\circ} = 1.88 kJ/mol$. For water vapor $\Delta H_f^{\circ} = -241.8 kJ/mol$

5.6 Foods and Fuels

Proteins 17 Fats 38 Carbohydrates

Wood, pine 18 Charcoal 34 45 Texas Crude Oil 142 Hydrogen

Non-renewable fuels are fucked, renewable fuels not used enough.

Chapter 6. Electronic Structure of Atoms

6.1 Energy of Light and Photons, Quantum Worries	7
6.2 Electron Orbitals	7

- 1. Wavelength and frequency of electromagnetic radiation
- 2. Order the common kinds of radiation according to wavelengths/energy
- 3. Photons and their energy
- 4. Line spectra, relate to quantized energy
- 5. Wavelength of a moving object
- 6. Uncertainty principle and what it limits
- 7. Quantum numbers to the number and type of orbitals, orbital shapes
- Radial probability function graphs
- 9. Hydrogen atom orbitals vs other atoms' orbitals
- 10. Draw energy-level diagram for the or-

bitals in a many-electron atom, use Pauli exclusion principle and Hund's rule

11. Using periodic table, write condensed electorn configurations. Number of unpaired e-s.

6.1 Energy of Light and Photons, Quantum Worries

 $\lambda \nu$ where λ is wavelength ν is frequency.

Energy of single photon $E_p = h\nu$ where Planck's Heisenberg's uncertainty principle $\Delta x \Delta(m\nu)$ constant $h = 6.62E - 43I \cdot s$

Properties of light speed of light = $c = 2.99 \cdot 10^8 \frac{m}{c} =$ Wavelength of matter $\lambda = h/mv$ related to mass and velocity.

> $h/4\pi$ Position and momentum cannot be known perfectly.

6.2 Electron Orbitals

Electrons positioned by using a probability distribution which depends on their energy level.

Line spectrum

Spectral lines of Hydrogen energy must be absorbed to emit an electron. Wavelength of each spectra line:

$$\lambda = R_H (1/n_1^2 - 1/n_2^2)$$

Energy of hydrogen emissions

$$\Delta E = -2.18 * 10^{-18} J (1/n_f^2 - n_i^2)$$

Orbital diagram visualization of each e^{-1} 's quantum numbers in an atom or molecule. Row of boxes, one box holds at most a pair of arrows pointing in opposite directions (e^-) and groups of boxes are slightly separated to indicate different orbitals p, s, d, f.

Electron Quantum Numbers n, l, m_l, m_s

Energy level $n \in N^+$

Orbitals p, s, d, f $l \in 0...n-1$

Magnetic quantum number a box, $m_s \in -l...l$

Spin magnetic quantum number up/down, $m_l =$

Subshell electrons share n, l

Pauli's exclusion principle all e^- in an atom have unique quantum numbers.

Hund's rule the preferred e⁻ arrangement has maximum e^- with the same spin m_s

Chapter 7. Periodic Properties of the Elements

7.1	Periodic Properties	of the	Elem	ents	 	 	 	 							 		 	8
7.2	Metals				 	 	 	 							 		 	8
7.3	Alkali metals				 	 	 	 						 	 		 	8
7.4	Alkaline metals				 	 	 	 						 	 		 	8
7.5	Nonmetals				 	 	 	 						 	 		 	9
7.6	Noble Gases				 	 	 	 						 	 		 	9
7.7	Hydrogen				 	 	 	 						 	 		 	9
7.8	Oxygen group				 	 	 	 							 		 	9
7.9	Halogens				 	 	 	 						 	 		 	9

- 1. Explain effective nuclear charge Z_{eff}
- 2. Trends in atomic/ionic radii, ionization energy, electron affinity
- 3. Radius change on loss or gain of e-
- 4. Electron configuration of ions
- 5. Change in ionization energy as e^- are added or removed, especially core electrons
- 6. Irregulairites in periodic table, electron affinity and configuration
- 7. Differences in metals and nonmetals (basicity of metal oxides, acidity of nonmetal oxides)
- 8. Correlate atomic properties with electorn configuration
- 9. Balanced equations for reactions of
- groups 1A and 2A with water, oxygen, hydrogen and halogens
- 10. Unique properties of hydrogen
- 11. Atomic properties of groups 6A 7A and 8A with chemical reactivity and physical properties

7.1 Periodic Properties of the Elements

Effective nuclear charge Z_{eff} roughly equal to Z – S = number of protons - number of nonvalence e^- . The 1s orbital acts as a "lampshade" to the the right.

Ionization energy It becomes harder to remove successive e^- . $I = X(g) \longrightarrow X^+(g) + e^-$. $I_2 =$ $X^+(g) \longrightarrow X^{2+}(g) + e^-$. **Trend:** increases to the top-right.

Electron Affinity Energy for reaction $X(g) + e^{-} \longrightarrow$

X⁻(g). If positive, ions are unstable. **Trend:** increases to the top-right. F and CI have the high-

2s, 2p orbitals, and so on... **Trend:** increases to **Atomic radius** Cations are smaller, anions are larger. **Trend:** increases to the bottom-left.

> **Isoelectric series radius** same charge ions? Size decreases as atomic number increases: O^{2-} > $Br^{-} > F^{-} > Al^{3+}$

> e⁻ configuration of ions Add or remove e⁻ from the highest n, then I.

7.2 Metals

Trend: metallic character increases to the bottom-left. **Common reactions** Shiny silver

Malleable and ductile can be hammered into sheets and stretched into wires

Compounds usually ionic

Solid conductors of both heat and electricity

Only one liquid at room temperature: Hg

Form cations in aqueous solution, tend to make basic solutions.

Low first ionization energy I_1

Common reactions

oxide +
$$H_2O \longrightarrow hydroxide$$

oxide + $acid \longrightarrow salt + H_2O$

7.3 Alkali metals

Soft solids naturally present only in compounds **Good conductors**

Low densities, melting points

Very reactive, colorful flames when burned

$$2 M(s) + H_2(g) \longrightarrow 2 MH(s)$$

$$2 M(s) + S(s) \longrightarrow M_2 S(s)$$

Vigorous reaction in water:

$$2 M(s) + 2 H2O(l) \longrightarrow 2 MOH(\alpha q) + H2(g)$$

Special with Oxygen can coerce oxygen to form peroxide: $2 \text{Na} + 2 \text{O} \longrightarrow \text{Na}_2 \text{O}_2$ or super peroxide: $K + O_2 \longrightarrow KO_2$

7.4 Alkaline metals

Solid release colorful flame when burned Compared to Alkali metals harder, denser, less re-

active

Water reactions Be inert; Mg slowly, faster with steam; all others react slowly with water

Tend to lose their two outer se^- .

7.5 Nonmetals

Many colors but no luster Usually brittle Poor conductors heat and electricity Nonmetal oxides molecules. Form acidic solutions. High first ionization energy I_1 Common reactions

oxide +
$$H_2O \longrightarrow acid$$

oxide + base $\longrightarrow salt + H_2O$

7.6 Noble Gases

Monatomic almost no reactions
Filled s and p orbitals
Possible compounds exist in rare, laboratory conditions XeF_{2/4/6}, KrF₂, HArF

7.7 Hydrogen

Resembles a nonmetal more than an Alkali.

Preserves e⁻, tends to covalent bonds

Most stable H₂(g)

Proton H⁺ present in water

7.8 Oxygen group

Atypical nonmetals Oxygen stable as O_2 Peroxide O_2^- Superperoxide O_2^{2-} Sulfur stable as S_8 Stability of water-like $H_2O > H_2S > H_2Se > H_2Te$ Possible reaction air pollutant:

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$

7.9 Halogens

Typical nonmetals

Very soluble, negative e⁻ affinity

Fluoride is extremely reactive

Diatomic molecules formed such as I₂, Cl₂, except F

Trend: melting, boiling points increase as elements get heavier

Common reactions

$$H_2(g) + X_2 \longrightarrow 2 HX (g)$$

 $Cl_2(g) + H_2O(I) \longrightarrow HCI(\alpha q) + HOCI(\alpha q)$

8 Chapter 8. Basic Concepts of Chemical Bonding

8.1 Lewis Structures
8.2 Resonance structures
8.3 Exceptions to the Octet Rule
8.4 Ionic Bonds
8.5 Strengths and Lengths of Covalent Bonds
8.6 Bond Polarity and Electronegativity

- 1. Lewis symbols for atoms and ions
- Lattice energy. Rank based on ion sizes and charges.
- 3. e⁻ config and octet rule to draw Lewis structure
- 4. Electronegativity differences and nonpolar/polar covalent and ionic bonds
- 5. Charge separation in diatomic
- molecules based on dipole moment and bond length
- Formal charges, ID dominant Lewis structures
- Recognize molecules where resonance structures are needed, draw dominant res. struct.
- 8. All exceptions to octet rule

- Relationship between bond type (single, double, triple), bond strength/enthalpy, and bond length
- Bond enthalpies to estimate enthalpy changes for gas-phase reactants and products

8.1 Lewis Structures

Representation of electron arrangement and bonds. Valence e^- are drawn as dots around atom, shared pairs are lines between atoms. Most atoms require 8 valence e^- , H needs 2.

Electron Config of Ions remove or add e^- to highest n, then I.

Formal Charge valence - $\frac{1}{2}$ bonding - non-bonding Most common Lewis structure has the lowest formal charge

Not enough valence electrons could cause a multiple bond.

8.2 Resonance structures

The actual bonds of a substance with multiple valid bonding schemes cannot be modeled using a single Lewis structure. Examples, Benzene and O₃:

Benzene's arrangement confers special stability to molecules.

8.3 Exceptions to the Octet Rule

Odd number of e⁻ BF₃ has resonance and six valence around Boron, NO has 11 valence electrons

Hypervalent molecule or ion has more than an octet around central atom Only period 3++, due to

Octet gives unfavorable distribution.

larger size.

Large atom surrounded by large number of small electronegative atoms, enough to overpower the octet rule.

Electron configuration shows distribution of e^- in orbitals. F: [He] $2s^22p^5$

1A	Li	[He]2s ¹	Li·
2A	Be	$[He]2s^2$	·Be·
3A	В	[He] $2s^22p^1$	٠ġ٠
4A	С	[He] $2s^22p^2$	٠Ċ٠
5A	N	[He] $2s^22p^3$	·Ņ:
6A	O	[He] $2s^22p^4$:ọ:
7A	F	[He] $2s^22p^5$	·F:
8A	Ne	[He] $2s^22p^6$:Ne:

8.4 Ionic Bonds

Lattice energy indicates energy needed to separate an ionic substance into its gaseous components: $AB \longrightarrow A^{+}(g) + B^{-}(g)$

Related to Coulomb's law for particles.

Born-Haber cycle Used to calculate the elusive lattice energy using several known energies and Hess's law.

8.5 Strengths and Lengths of Covalent Bonds

Strength is determined by energy needed to break the bond

Bond enthalpy ΔH needed to break a bond in one mole of a gaseous substance: $Cl_2(g) \longrightarrow 2Cl(g)$. Represented as D(Cl-Cl)

Enthalpies of Reactions can be determined using bond enthalpies, even if ΔH_f° are not known for all involved. Imagine two steps: energy to break

all bonds as needed, energy to form new bonds. **Bond length** decreases with increasing number of bonds between two atoms.

Smaller bond length larger ΔH

8.6 Bond Polarity and Electronegativity

Electronegativity ability of an atom in a molecule to attract e^- . Based on ionization energy, electron afinity and other properties. **Trend:** increases to the top-right

Bond polarity equality of e^- distribution in covalent bond

Nonpolar covalent equal electron sharing. Difference in e.neg = 0.

Polar covalent not equal electron sharing. Partial charge represented as $\delta+$ and $\delta-$. In HF, H has partial positive, in H₂O H has partial negative. Difference in e.neg about 0.5.

lonic bonds very unequal electron sharing. Difference in e.neg $\gg 0.5$.

Dipole moment indicates direction and magnitude of partial charge. Relates to charge and radius:

9 Chapter 9. Molecular Geometry and Bonding Theories

9.1	olecular Shapes
9.2	EPR Model
9.3	valent Bonding, Orbital Overlap
9.4	brid Orbitals
9.5	ultiple Bonds
9.6	plecular Orbitals
9.7	riod 2 Diatomic Molecules

- 1. Predict 3D shapes using VSEPR model
- 2. Polar or nonpolar based on geometry and individual dipole moments
- 3. Orbital overlap and covalent bonds
- 4. Hybridization atoms in molecules based on molec structures
- 5. Overlap and σ , π bonds.

- 6. Delocalized π bonds in molecules like Benzene
- 7. Count e^- in delocalized π system
- 8. Concept of bonding and antibonding MOs and draw examples of σ and π MOs.
- 9. MO energy-level diagram. Place e^- to obtain bond orders and e^- configura-
- tions of diatomic molecules.
- Correlate bond order, bond strength/enthalpy, bond length, magnetic properties with MO descriptions of molecules.

9.1 Molecular Shapes

Steric No.	Basic Geometry 0 Ione pair	1 lone pair	2 Ione pairs	3 Ione pairs	4 lone pairs
2	X—E—X				
3	X 120° X	X = 120°			
	Trigonal Planar	Bent or Angular			<i>5</i>
4	X////// E 109° X Tetrahedral	XIIIIE X < 109° Trigonal Pyramid	X X X X S X S X S X S X S X S X S X S X		
5	120° E X X X X X X Trigonal Bipyramid	< 90° X X X 120° E X Sawhorse or Seesaw	X Y X T-shape	X 180° X Linear	
6	XIIII. X 90° X Y X X	<90° X E XX	90° XIIII.	X X X X < 90°	X 180° X
	Octahedral	Square Pyramid	Square Planar	T-shape	Linear

9.2 VSEPR Model

Shapes minimize electron repulsion

Electron Domain a bonding pair, a multiple bond, or a non-bonding e⁻. CCl₂O has 3 domains about the for 6 domains: octahedral arrangement is the stacentral atom.

blest

9.3 Covalent Bonding, Orbital Overlap

Overall Polarity of a covalent molecule. Consider the shape and each dipole, they may cnacel each other out, if they don't then the molecule is indeed polar.

Combining VSEPR with Lewis structures suggests covalent bonds form by the intersection of two non-bonding orbitals.

9.4 Hybrid Orbitals

Hybrid orbitals combined atomic orbitals, have dif- **Triangular** 120 $^{\circ}$ arrangement implies sp^2 hybridizaferent shapes

Hybridization mixing orbitals, although number of or- **Tetrahedral** 109.5° arrangement implies sp^3 hybitals must remain constant.

Hypervalent central atoms aren't generally hy-

Linear 180° arrangement of domains implies sp hy- **To find** draw Lewis structure, find shapes, any s orbridization.

tion, total 3.

bridization, total 4.

Not all orbitals need s contact, can also be nonbonding, NH_3 , H_2O have sp^3 orbitals.

bitals? Must be hybrid.

9.5 Multiple Bonds

Single bonds are called σ . Always local.

Triple and double bonds have one σ and two or one π bonds. Weaker – roundabout for e^- – but reduces rotation.

 \mathbf{p}_{π} orbital is the un-hybridized 2p orbital in an sp^2 that can be involved in forming a π orbital.

Benzene rigid thanks to the **delocalized** (floating) $e^$ in double bonds.

9.6 Molecular Orbitals

Molecular orbital wave functions describing e^- . Orbitals combine to cover the whole molecule. MO can have 0. 1 or 2 e^-

Number of MO number of atomic orbitals combining to make MOs.

Bonding MO waves add constructively to form mighty bond

Anti-Bonding MO waves add destructively, e⁻ repelled.

Bond order $\frac{1}{2}$ (bonding e^- - anti-bonding e^-).

Trend: as bond order increases, bond enthalpy increases and bond distance decreases

Electrons arranged according to Hund's Rule and **Paramagnetism** unpaired e^- cause magnetic attrac-Pauli's E. Principle.

Core electrons do not contribute to molecular bonding much

9.7 Period 2 Diatomic Molecules

Homonuclear diatomic molecules (two identical)

- 1. number of MO = number of AO combined
- 2. AO most effectively combined with other AO of similar energy
- 3. Effectiveness of combo relates to overlap.
- 4. MO can have two e^- with opposite spin (Pauli)
- 5. Hund's rule obeyed for same energy MOs

Heteronuclear diatomic similar to homo-nuclear, but an MO has a greater contribution from AO to which it is closer in energy. NO: σ_{2s} is closer to the O 2s than to the N 2s, thus the sigma has greater contribution from O than N.

tion

Diamagnetism no unpaired e⁻ weak magnetic repulsion

10 Chapter 10. Gases

- Convert between pressure units, mostly torr and atm
- 2. Calculate P, V, n, or T
- 3. Explain how gas laws relate to ideal-gas equation
- 4. Density or MW of a gas
- 5. Volume of gas consumed/formed
- 6. Total pressure of a gas mixture given partial pressures
- 7. Kinetic molecular theory of gases: gas

laws, rates of effusion/diffusion

Explain why volumes, intermolecular attractions cause gases deviate from ideal gas laws

Units 1 atm = 760 torr = $1.0132 \cdot 10^5$ Pascals Charles' law V/T is constant Boyle's law PV is constant Ideal gas law PV = nRT where $R = 0.08205 \frac{Latm}{molK}$ Van der Waal's equation for non-ideal gases, some corrections must be made. a, b are gas specific. Larger gas molecules are less ideal.

$$\left(P + \frac{n^2 \alpha}{V^2}\right)(V - nb) = nRT$$

RMS speed of molecules $\sqrt{\frac{3RT}{M}}$ **Rate of effusion** lighter gases effuse faster $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$.

Density of a gas $\frac{PM}{RT}$ Partial pressure $p_{\text{total}} = \sum_{\text{each gas}} p$

Mole fraction $X = \frac{P_1}{P_t} = \frac{n_1}{n_t}$ moles of gas and total moles, total pressure and partial pressure. $P_1 = \frac{n_1}{n_2}P_t = X_1P_t$.

11 Chapter 11. Liquids and IMFs

Contents

11.1Liquids	16
11.2Intermolecular Forces	17

- IMFs: dispersion, dipole-dipole, hydrogen bonding, ion-dipole
- Explain polarizability, relate to dispersion forces
- Explain viscosity, surface tension, capillary action
- 4. Names of state changes, exo or endo
- thermic?
- Interpret heating curves, get enthalpy changes (temp/phase)
- Critical pressure, crit temperature, vapor pressure, normal boiling/melting points, critical point, triple point
- 7. Sketch phase diagrams, water's = spe-
- cial
- 8. Molecular arrangements and characteristics of nematic, smectic, cholerestic liquid crystals. Features of those that favor liquid crystalline phases

11.1 Liquids

Viscosity ease of molecule motion relative to each other. Trend: decreases with size.

Surface tension net inward force that must be countered to expand the surface area of a liquid.

Cohesive forces molecules bind to each other

Adhesive forces bind to surface

Capillary action rise of liquid up narrow tubes

Heat of sublimation energy needed to move solid directly to gas phase. Equal to $\Delta H_{fus} + \Delta H_{vap}$.

Vapor pressure pressure exerted by the substance's vapor above the surface of a liquid. There's always some vaporization.

Volatile evaporate readily

Boiling point vapor pressure = external pressure. Molecules can break free of their neighbors

Temperature

Liquid phase

Molecules arranged randomly

Nematic liquid crystalline phase

Long axes of molecules aligned, but ends are not aligned

Smectic A liquid crystalline phase

Molecules aligned in layers, long axes of molecules perpendicular to layer planes

Smectic C liquid crystalline phase

Molecules aligned in layers, long axes of molecules inclined with respect to layer planes

Cholesteric liquid crystalline phase

Molecules pack into layers, long axes of molecules in one layer rotated relative to the long axes in the layer above it

11.2 Intermolecular Forces

Stronger IMFs mean higher viscosity, surface tension (maintain surface area) and capillary action. For molecules of approximately equal mass and size, **the strength of intermolecular attractions increases with increasing polarity**.

Name	strength	description	
Dispersion	weakest	instantaneous e [—] imbalance dis- rupt neighbors	all molecules do it, oblong, heavier = stronger
Dipole-dipole	weak	between dipoles	only between polar molecules
Van der Waal's	weak group	includes dispersion, dipole-dipole. Short range	repulsive/attractive, stronger = higher BP
Hydrogen bonding Ion-dipole	strong strongest	10% covalent, mostly electrostatic between polar group and ion	molecules with NH, OH, HF groups example: H_2O and an ion

12 Chapter 12. Solids

Contents

12.1Classification		 	 				 							 			 	
12.2 Structures		 	 				 							 			 	
12.3Metallic solids		 	 				 							 			 	
12.4Metallic bonding		 	 				 							 			 	
12.5Complex		 	 				 							 			 	
12.6lonic solids		 	 				 							 			 	
12.7Molecular solids		 	 				 							 			 	
12.8Covalent-network sol	ids	 	 				 							 			 	
12.9Semiconductors		 	 				 							 			 	
12.1 B olymers		 	 				 							 			 	

- 1. classify solids based on bonding/IMFs
- differences between crystalline and amorphous solids (crystal lattice, unit cells, etc)
- 3. why are there a limited number of lattices? 5 2D and 7 3D primitive lattices
- 4. characteristics/properties of metals
- empirical formula and density of ionic/metallic solid given a unit cell. estimate length of a cubic unit cell from radii of atoms present
- 6. homogeneous/heterogeneous alloys
- 7. electron-sea model of metallic bonding

- 8. MO model of metallic bonding to generate electronic band structure of metals, qualitatively predict MP & BP, hardness
- 9. predict structures of ionic solids given radii and empirical formula
- 10. MP & BP in terms of IMF and crystalline forces
- 11. valence/conduction bands. band gap, holes, semiconductor and insulator
- account for relative band gap energies of semiconductors through periodic trends
- 13. n-type and p-type doping to control con-

- ductivity
- 14. plastic, thermoplastic, thermosetting plastic, elastomer, copolymers, and cross-linking
- 15. polymers formed from monomers, what features allow this?
- polymer chain interactions impact physical properties
- 17. properties of semicond. and metals change with nanometer crystals
- structure/properties of fullerenes, carbon nanotubes and graphene

12.1 Classification

Types of kinetic energy

translational, rotational, vibrational.

solids lowest energy phase, mostly vibrational energy Atoms packed tight. It is surfaces of solids that react. metallic solids held together by delocalized sea of valence e⁻ ionic solids mutual attraction between anions/cations

covalent-network solids

extended network of covalent

bonds
molecular solids weak IMFs
polymers long chains of atoms,
covalent

nanomaterials individual crystals are 1-100nm.

12.2 Structures

crystalline solids regularly peating pattern, usually flat faces, specific angles

amorphous solids no long-range order

unit cell smallest repeating unit crystal lattice geometrical pattern of points where unit cells go. *N-dimensional* lattices can be defined with *n* vectors

motif, group of atoms, associated with each *lattice* point

primitives 5 2D lattices, 7 3D lattices

square a = b, $\gamma = 90$ rect $a \neq b, \gamma = 90$ **hex** $a = b, \gamma = 120$

rhombic a = b

oblique $a \neq b$

cubic $\alpha = b = c$, $\alpha = \beta = \gamma = 90$ **tetra** $\alpha = b \neq c$, $\alpha = \beta = \gamma = 90$

hexa $\alpha = b \neq c, \alpha = \beta = 90, \gamma =$ 120

rhombohedral $a = b \neq c, \alpha = \beta =$

 $\gamma \neq 90$

orthorhombic $\alpha \neq b \neq c$, $\alpha = \beta =$ $\gamma = 90$

monoclinic $\alpha \neq b \neq c, \alpha = \beta =$ $90, \gamma \neq 90$

triclinic $\alpha \neq b \neq c, \alpha \neq \beta \neq \gamma$ body-centered cubic additional

point at center of such a cell

face-centered additional points at the faces of a cell

12.3 Metallic solids

Metallic solids good conductors of electricity and heat, malleable (sheets), ductile (wires)

Structure usually simple, need one atom on each lattice point.

Primitive 1 atom per unit cell. Body-centered 2 atoms per. Face-centered 4 atoms per.

Tight packing is favorable if $e^$ are shared. Hexagonal close packing hcp, Cubic ccp.

Coordination number 12 for hcp

and ccp. In both, each sphere has 12 equidistant neighbors. Any immediate neighbors.

just Alloy material that contains more Heterogeneous alloy components than one element and behaves like a metal.

Substitutional alloy two metallic components have similar radii and bonding characteristics. Less typical if radii differ > 15%.

Interstitial alloy solute atoms must have smaller bonding radii than solvent. Extra bonds stronger/harder/less ductile.

are not dispersed uniformly. Properties depend on both composition and the manner in which the solid was formed from molten mixture (ex: cooled fast/slow?).

Inter-metallic compounds not mixtures. Definite properties.

12.4 Metallic bonding

Electron-sea model metal = array of metal cations **Conduction band** easy to remove e^- from here, the in a sea of valence electrons. Electrons migrate to positive end. Also, their motion facilitates transfer of kinetic energy (heat). Not enough e^- on each atom, must share!

Molecular-orbit model, Band Structure Orbitals shared by entire metal. Fills low ---- high. Bands are per-molecule in nonmetals. 3d band, 4s, 4d bands ...

Valence band e^- stick to here, closest to nucleus. **Stronger bonds** mean higher boiling/melting points, heats of fusion, hardness, and so forth.

Group 6B middle, highest strength. More does not always mean more strength, repulsion in antibonding MOs can ruin it. Recall bond order $\frac{1}{2}$ (bonding antibonding e⁻)

12.5 Complex

Color caused by e^- shuffling about the d-orbital. TiO₂ has no electrons in the d-orbital and is colorless.

12.6 Ionic solids

Ionic solids electrostatic attraction between cations and anions. Interactions increase as charges of ions increases (lattice energy++).

Structures cations are usually Formula from structure much smaller than anions.

Coordination number smaller than metals. Close packing is prohibited by repulsive forces.

Cations per formula unit anions per formula unit is equal to anion coord number

cation coord number

No conduction as solids! Molten salt can conduct.

12.7 Molecular solids

Molecular solids atoms/neutral molecules held by dipoledipole, dispersion, and/or hydrogen bonds.

Weak bonds low BP, MP (below 200 Celsius), soft. More symmetry means tighter packing,

stronger bonds.

12.8 Covalent-network solids

Strong bonds covalent bonds beat IMFs. Diamond, quartz.

12.9 Semiconductors

Semiconductors harder for e^- to move between levels because of a "band gap" separating valence/conduction bands. Typically group 4 (C, Si, Ge, Sn). Band gap + +, conduction - large band gap no conduction!

12.10 Polymers

Polymers chains or branched structures composed of monomers.

Addition Polymerization two monomers added to each other, double bond between is elimintated.

Condensation Polymerization condensing two monomers to-

gether, getting rid of intermediate small molecule once they are linked.

Chain inititaion a free radical initiator possesing an unstable unpaired electron attacks a monomer unit to cause it to expose another unstable e^- .

Chain propogation this unit at-

tacks other monomers, forming an ever growing chain.

Polymer crosslinks produce harder substances with less flexibility.

Commercial example polyethylene chains contain between 10^3 and 10^5 CH₂ units.

13 Chapter 13. Properties of Solutions

Contents

3.1Solution Process	
.3.2Saturated solutions and solubility	
.3.3Factors affecting solubility	
.3.4Expressing solution concentrations	
.3.5Colligative Properties	
3.6Colloids	

- Enthalpy/entropy changes affect solution formation
- 2. IMFs and solubility, like dissolves like
- 3. Equilibrium in the solution process, solubility of a solute
- Temperature and solid, liquid or gas solubility
- 5. Partial pressure of a gas and its solubility
- 6. Molarity, molality, mole fraction, percent composition, ppm, inter-convert!
- 7. Colligative property? How do nonelectrolytes and electrolytes affect?
- 8. Vapor pressure of a solvent over soln
- 9. BP elevation, FP depression
- 10. Osmotic pressure of a solution
- 11. Solution vs colloid
- Similarities between motions of gas molecules and the motions of colloids in a liquid

13.1 Solution Process

Natural tendency formation of solutions is favored by the increase in entropy that accompanies mixing.

Intermolecular interactions solute-solute, solvent-solute. The first two must be defeated to disperse and make room.

Solvation when ions/molecules of solute are split and surrounded by solvent.

Solvation solute is surrounded by solvent molecules. **Hydration** solvation with water as solvent

Energy cost Solute and solvent must break down,

then they must be mixed. $\Delta H_{soln} = \Delta H_{solute} + \Delta H_{solvent} + \Delta H_{mix}$

Think: solute_n \Longrightarrow n solute takes ΔH_{solute} solvent_m \Longrightarrow m solvent takes $\Delta H_{solvent}$ n solute + m solvent \Longrightarrow solution takes ΔH_{mix}

Exothermic $\Delta H_{mix} < 0$

Endothermic $\Delta H_{solvent/solute} > 0$ need energy. **Spontaneity** If overall exothermic, solvation occurs spontaneously. Explains why **likes dissolve likes**. Similar IMFs have similar costs.

13.2 Saturated solutions and solubility

Equilibrium solute + solvent \Longrightarrow solution

Crystallization when solute is reverted to original "Undissolved." Happens at the same time as solvation. Visible when solvent is spent and cannot maintain solvation interactions with enough solute.

Saturation Equilibrium with undissolved solute. Additional solute will not dissolve (unless you add heat!). Make a super-saturated: add heat, lower heat, creates unstable solution.

Solubility how much solute an amount of solvent can dissolve.

13.3 Factors affecting solubility

Like dissolves like the stronger the interactions between solvent and solute, the greater the solubility. Polar dissolves polar; non-polar, non-polar.

immiscible.

Pressure liquid and solid solubilities are unaffected. Gas solubility is related to its partial pressure above liquid.

Henry's law molarity of gas = constant · partial pressure $S_g = kP_g$. Constant k depends on temperature, solute and solvent.

Miscible liquids that mix in all proportions. May be **Temperature** increase increases solubility of most **solids** in water. There are exceptions $Ce_2(SO_4)_3$

> **Temperature** increase decreases solubility of most gases in water

13.4 Expressing solution concentrations

Mass percentage $\frac{\text{mass of component in soln}}{\text{total soln mass}} \cdot 100\%$ Parts per million/billion $\frac{mg}{kg}$, also $\frac{\text{mass of component in soln}}{\text{total soln mass}}$

Molality Commonly used, independent of temperature! moles of solute kg of solvent, little m.

10⁶

Molarity moles of solute litres of soln, big M.

Mole fraction moles of component in soln total moles

13.5 Colligative Properties

lute, type of solvent. Not on the type of solute.

Raoult's law, vapor pressure depression Applies to nonvolatile solute

$$P_{\text{solution}} = X_{\text{solvent}} P_{\text{solvent}}$$

$$\Delta P = X_{\text{solute}} P_{\text{solvent}}$$

$$X_{y} = \frac{\text{moles of y}}{\text{total moles}}$$

Solutions w/ two or more volatile components, the vapor pressure of the solution is the sum of the vapor pressure of each component as calculated by Raoult's law.

Ideal solution obey Raoult's law. Solute-solute, solvent-solvent and solute-solvent interactions all

Molal boiling point elevation constant BP of a solution is higher than that of the solvent. m is molality.

$$\Delta T_b = T_{b(\text{solution})} - T_{b(\text{solvent})} = iK_b m$$

Colligative property depend on concentration of so- Molal freezing point depression constant FP of a solution is lower than that of the solvent. m is molality.

$$\Delta T_f = T_{f(\text{solution})} - T_{f(\text{solvent})} = -iK_f m$$

van't Hoff Factor number of fragments a solute breaks up into for that particular solvent. Usually

anion/cation dissociated. True van't Hoff Factor $i = \frac{\Delta T_f \text{measured}}{\Delta T_f \text{theoretical}}$

Osmosis Solvent molecules pass through semipermeable membrane between two solutions of differing concentration. Solvent always goes to solution with lower solvent concentration. Want equilibrium (isotonic). Hypotonic: lower osmotic pres-

sure, hypertonic: more concentrated.
Osmotic pressure
$$\Pi = i(\frac{n}{V_{\text{soln}}})RT = iM_{\text{molarity}}RT$$

13.6 Colloids

Some mixtures appear to initially dissolve, but gravity separates solute from solvent.

Colloids between homogeneous mixtures and true solutions. Large solvent molecules/particles.

Tyndall effect Large enough to **scatter light**, Tyndall effect.

Hydrophilic folds to keep hydrophobic groups away from water. Polar groups go to surface. Usually have N or O and a charge.

Hydrophobic can only be dispersed if stabilized. Oth-

erwise, they run away. One method is via adsorption of ions to the surface. This repels particles from each other and causes interactions with the

Emulsion a suspension of one liquid in another, like Milk.

Adsorption think adhesion. Sticking stuff to surface. **Brownian motion** collisions cause colloid particles to exhibit random motion

Chapter 14. Chemical kinetics

Contents

14.1Reaction Rates
14.2Rates and Concentration
14.3Concentration and Time
14.4The Effect of Temperature on Rates
14.5Reaction Mechanisms
14.6Catalysts

- 1. Factors affecting rate of reactions
- 2. Rate of reaction given time and concentration
- 3. Relate rates of product formation and reactant disappearance given balanced chemical equation
- 4. Explain form and meaning of a rate law (reaction order, rate constant)
- 5. Determine these given measure rates for various concentrations
- 6. Integrate rate laws
- 7. Relationship between rate constant of
- 1st order and half-life
- 8. Activation energy affects a rate, Arrhenius equation
- 9. Predict rate law for a multi-step mechanism given each step.
- 10. Explain principles of catalysis

14.1 Reaction Rates

Chemical kinetics concerned with rates of reaction **Reaction rates** affected by physical states the more readily collisions occur, the more rapidly goes the **homogeneous** same phase reaction. Affected by reaction concentrations and

temperature. Catalysts increase reaction rates by affecting activation rates.

heterogeneous different phases

14.2 Rates and Concentration

Rate is typically measured in molarity per second, change in concentration, (M/s).

Average rate of disappearance of $A = \frac{\Delta[A]}{\Lambda +}$

Instantaneous rate concentrations can be measured using **spectroscopy**.

Beer's law concentration, c is directly proportional to absorbance, A. $A = \epsilon bc$, b is path length.

Stoichiometry In reaction $A \longrightarrow B$ the rate of appearance of product is the rate of disappearance of

Relative rates In reaction aA + bB \longrightarrow cC + dD, the rates are $-\frac{1}{a}\frac{\Delta A}{\Delta t}=-\frac{1}{b}\frac{\Delta B}{\Delta t}=\frac{1}{c}\frac{\Delta C}{\Delta t}=\frac{1}{d}\frac{\Delta D}{\Delta t}$. This does not hold true if intermediate substances are

formed in significant amounts.

Rates are positive by convention

(**Differential**) Rate Law Typically of form R = $-k[A]^m[B]^n$

Rate constant $k :: M^{-m-n+1}s^{-1}$. Different for every reaction and temperature; $> 10^9$ means fast, < 10 means slow.

Reaction orders *m, n* usually 0, 1, 2. Can be negative or fractional.

Overall reaction order n + m

Rate law from Initial rates $n = \frac{\ln \frac{Rate_1}{Rate_2}}{\ln |A|_1}$

14.3 Concentration and Time

Integrated, linear rate laws for the first order reaction **Zero-order reaction** $[A]_t = [A]_0 - kt$ A *→* . . .

First-order reaction $\ln[A]_t = \ln[A]_0 - kt$. Second order reaction $\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$.

Half life of a first-order depends only on k. $t_{1/2} =$

14.4 The Effect of Temperature on Rates

Collision model based on kinetic molecular theory. Molecules must collide to react, so goes the theory. More energy/temp means more collisions, faster rate. Molecules must be aligned correctly on impact.

Activation energy, E_a needs to be achieved. Must also be moving fast enough and in the correct orinegative.

Rate does not depend on ΔH , only on E_{α}

Activated complex/transition state Enough ergy in the right direction, now the molecules

may react together. Highest potential energy. It's all downhill from here!

Arrhenius equation Rate constant incorporates all of these: $k = Ae^{-E_a/RT}$. A is the **frequency fac**tor, constant as temperature is varied. Can be used to find different ks. $R = 8.314J \cdot mol^{-1} \cdot K^{-1}$ $= 0.082057L \cdot atm \cdot K^{-1} \cdot mol^{-1}$

entation. Lower E_a means faster reactions. Never **Solve for** k at different temperatures. A and E_a remain constant:

$$\ln \frac{k_1}{k_2} = \frac{E_a}{A} (1/T_2 - 1/T_1)$$

14.5 Reaction Mechanisms

Reaction mechanism Steps which constitute a reaction. Order in which bonds are modified. And change in relative positions.

Elementary reactions Single step. Defined by # of molecules colliding: uni/bi/termolecular. > 3 molecules colliding is improbable.

Intermediate $NO_2 + CO \longrightarrow NO + CO_2$ is actually $NO_2 + NO_2 \longrightarrow NO_3 + NO$ then $NO_3 + CO \longrightarrow$ $NO_2 + CO_2$ Together: $2NO_2 + NO_3 + CO \longrightarrow NO_2 +$ $NO_3 + NO + CO_2$ Thus NO_3 is an intermediate, common in both sides of the addition. Multi-step reactions have one or more such substances.

Rate laws of elementary reactions have an overall reaction order equal to the number of molecules involved. Termolecular, n+m=3. A single chemical equation cannot tell us if a reaction is elementary!

Rate-determining step is the slowest. If initial, likely that its rate law will govern that of the over-

Slow initial step the rate is usually equal to the rate

of the initial step.

If the initial step is fast, the rate law may be derived by assuming equilibrium and solving the k_1 and k_{-1} to get rid of the intermediate substance NOBr₂.

Example:

$$2 \text{ NO} + \text{Br}_2 \longrightarrow 2 \text{ NOBr}$$

could be a termolecular reaction, or the fast equilibrium step and a slow final step

$$NO + Br_2 \xrightarrow{k1} NOBr_2$$

$$NOBr_2 + NO \xrightarrow{k2} 2 NOBr$$

 k_1, k_{-1} reach equilibrium meaning rate of (forward = reverse) and the total rate constant $k = k_2 \frac{k_1}{k_{-1}}$. Two steps, but only uni/bi molecular is more likely. 35 or more steps are sometimes derived!

14.6 Catalysts

Catalyst changes the speed of (initial) activation of a reaction without being changed itself Usually done by lowering E_{α} . Opposite = inhibitor.

Homogeneous catalyst same phase as reactants. usually adsorption of reactants)

Adsorption (think adhesion), how fast a substance is bound to a surface.

Enzymes marvelously efficient biological catalysts.

Usually huge proteins, kilo to mega amu. Very selective. Faster than nonbiologicals, $10^3 - 10^7$ reactions per molecule per second (turnover number).

Not so for a **Heterogeneous catalyst** (first step **Substrates** substances reacting at the active site **Active site** location of catalysis.

> **Lock-and-key model** Explanation for specificity of an enzyme.

Chapter 15. Chemical equilibrium

15.1Rock bottom
15.2Equilibrium constant
15.3Direction and Summation of Equations
15.4Heterogeneous Equilibrium
15.5Finding K from initial and equilibrium concentrations
15.6Applications of K
15.7Le Châtelier's Principle

- 1. What is meant by equilibrium, relate to
- 2. Write equilibrium-constant expression for any reaction
- 3. Inter-convert K_c and K_p
- 4. Magnitude of equilibrium constant and relative amounts of reactants and products
- 5. Manipulate constant to reflect changes in chemical equation
- 6. Heterogeneous reaction equilibrium constant (EC)
- 7. Calculate EC from concentration measurements
- 8. Predict direction of a reaction given EC and conc.s
- 9. Calculate concentrations given EC and one equi. conc.
- Calculate equi. conc.s given EC and starting conc.s
- 11. Le Châtelier's principle to predict how conc.s, volume or temperature of system at equilibrium affects the equilibrium position

15.1 Rock bottom

Dynamic equilibrium two opposing events have the same rate, no net change occurs.

Vapor pressure rate of molecules leaving the liquid near the surface is equal to the rate of their return to liquid state

Chemical equilibrium opposing reactions with the same rate.

Example $N_2O_4(g)$ (colorless) \Longrightarrow 2 $NO_2(g)$ (brown).

The equilibrium constant is

$$k = \frac{k_f}{k_r} = \frac{[NO_2]^2}{[N_2O_4]}$$

At equilibrium concentrations do not change and products/reactants cannot escape system.

For equilibrium to occur, both reactions must be able to occur.

15.2 Equilibrium constant

Unique to an equilibrium even if initial concentrations change

law of mass action consider the general equilibrium equation aA + bB === dD + eE. The equilibrium expression is

$$K_c = \frac{[\mathsf{D}]^d [\mathsf{E}]^e}{[\mathsf{A}]^a [\mathsf{B}]^b}$$

measuring it ends up unitless.

Activity of a substance in an ideal mixture is the ratio of C or P to a reference like 1M or 1atm. A = CM/1M thus, no units

Solids and Liquids activity is unity.

Depends on order of the equilibrium reaction, even though they are naturally order-less. Thus, in a way $K_c = \frac{1}{K_c}$.

Can use partial pressure instead of concentrations for gaseous reactions.

No units k_c is unitless because another method of **Converting** $K_p = K_c(RT)^{\Delta n}$ where $\Delta n = \text{moles}$ of gaseous product - moles of gaseous reactant.

15.3 Direction and Summation of **Equations**

Reaction written backwards $K_{rev} = \frac{1}{K}$ **Reaction multiplied** by a constant n, $K_n = K^n$. **Reactions added** simply multiply all Ks involved. Adding the two equations:

$$aA + bB \Longrightarrow dD + cC$$

with K_0 and

$$cC + fF \Longrightarrow gG + \alpha A$$

with K_1 will give

$$bB + fF \Longrightarrow dD + gG$$

with K_0K_1 .

15.4 Heterogeneous Equilibrium

homogeneous all involved substances in same phase **heterogeneous** involved substances in different phases

liquid or solid substances have an activity equal to unity. Ratio of their mass to volume is constant.

15.5 Finding K from initial and equilibrium concentrations

If initial and final known then $\Delta conc$ is known. If initial and another $\triangle conc$ known use coefficients in balanced reaction to relate change in the known with the current unknown.

If initial and change known just add!

Use an ICE table Initial, Change in, and Equilibrium concentrations.

Example Key steps: finding change in *conc* knowing only $\Delta conc_{HI}$.

$$(1.87 \cdot 10^{-3})(\frac{1 mol H_2}{2 mol HI}) = 0.935 \cdot 10^{-3}$$

15.6 Applications of K

Predicting the Direction of Reaction If Q < K then more products will be needed, if Q > K then more reactants needed.

Reaction quotient Calculated like K, but for concen-

trations or partial pressures at any point in the reaction.

Calculating equilibrium concentrations just solve for unknowns using known equilibrium concentrations.

15.7 Le Châtelier's Principle

Le Châtelier's Principle if equilibrium is disturbed in any way, the system will shift its position to counteract. "le-SHOT-lee-ay."

Lies to the right lots of "product" Lies to the left lots of "reactant"

Concentration of reactants increased increases concentration of products

Pressure change by changing volume, if increased in gaseous equilibrium the system will want to min-

imize the number of moles of gas. Constant temperature.

Volume change same as pressure change

Temperature change If reaction is endothermic, increasing T increases K. If reaction is exothermic, increasing T decreases K.

Effects of catalysts activation energies are lowered, but *K* is not changed. Equilibrium will be reached faster.

16 Chapter 16. Acid-Base Equilibria

16.1Arrhenius Acids and Bases	
16.2Brønsted-Lowry Acids and Bases	
16.3Auto-ionization of Water	
16.4pH and pOH Scale	
16.5Strong acids and bases	
16.6Weak Acids and k_a	
16.7Weak Bases and k_b	
16.8Acid-Base Properties of Salt Solutions	
16.9Acid-Base Behavior and Chemical Structure	
16.110ewis Acids and Bases	

- 1. ID Arrhenius acids and bases
- Describe nature of hydrated proton, either H⁺ (ag) or H₃O⁺ (ag)
- 3. ID Brønsted-Lowry acids and bases and ID conjugate acid-base pairs
- Correlate the strength of an acid to the strength of its conjugate base
- Equilibrium position of a proton-transfer relates to the strengths of acids and
- bases involved
- 6. Auto-ionization of water and explain how $[H_3O^+]$ and $[OH^-]$ are related by K_W
- 7. Calculate the pH given $[H_3O^+]$ and $[OH^-]$
- 8. Calculate the pH of a strong acid or base given its concentration
- 9. Relate K_a and/or K_b for a weak acid/base and its concentration and the pH
- 10. Calculate K_b for a weak base given K_a of its conjugate acid and vice versa
- 11. Predict whether an aqueous solution of a salt will be acidic, basic or neutral
- 12. Predict the relative strength of a series of acids from their molecular structures
- 13. ID Lewis acids and bases

16.1 Arrhenius Acids and Bases

Acid increases concentration of H⁺ ions.

Bases increase the concentration of OH[−] ions

Examples HCl (g) → H⁺ (aq) + Cl[−] (aq)

NaOH → Na⁺ (aq) + OH[−] (aq)

16.2 Brønsted-Lowry Acids and Bases

Acid-base reactions involve the transfer of protons from one substance to another

Acid donates a proton to another substance **Base** receives a proton

Hydronium ion closer to the reality of aqueous solutions

Water acts like a Brønsted-Lowry base when a Brønsted-Lowry acid is dissolved: $HA + H_2O$ (I) $\longrightarrow H_3O^+$ (aq) $+ A^-$ (aq).

Water also acts like a Brønsted-Lowry acid when a Brønsted-Lowry base is dissolve: $B + H_2O(I) \longrightarrow BH^+(aq) + OH^-(aq)$

Amphoteric substances can behave as either acids

and bases. Basic if in the presence of something more acidic, acidic if the other is more basic.

Amphiprotic Either a proton acceptor or donor. Although an amphiprotic species must be amphoteric, the converse is not true.

Amphiprotic HCO₃⁻,HS⁻,HPO₄²⁻,HF,H₂O

Conjugate acid every base converts into one. H_3O^+ is the c.a. of H_2O

Conjugate base every acid converts into one. OH^- is the c.b. of H_2O

Relative Strengths of Acids and Bases The stronger the acid/base, the weaker its conjugate base/acid.

- 1. Strong acid's conjugate base shows negligible basicity
- 2. Weak acid's conjugate base is a weak base
- 3. Negligibly acidic substance's conjugate is a strong base

Leveling effect Stronger acids react with water to produce H₃O⁺ and stronger bases react to produce OH⁻. These are the strongest acids and bases that can exist in water.

Equilibrium favors transfer of protons to form weaker acids and bases.

16.3 Auto-ionization of Water

Autoionization $H_2O(I) + H_2O(I) \iff OH^-(aq) + H_3O^+(aq)$

Ion-product constant the equilibrium constant for water $k_w = 1 \cdot 10^{-14}$ at 25 degrees Celsius.

Neutral solution $[H^+] = [OH^-]$

16.4 pH and pOH Scale

pH is equal to - log₁₀[H⁺]
 pOH is equal to - log₁₀[OH⁻]
 pH + pOH at 25 degrees Celsius is always 14.

Negative pH indicates a very strong acid

pH greater than 14 indicates a very strong base

nH may be measured by detecting trace elec-

pH may be measured by detecting trace electric charge

pH depends on concentration of the acid or base

16.5 Strong acids and bases

Strong: no equilibrium, balance lies entirely to the

riaht

Most common strong bases ionic hydroxides of the alkali metals, and of the heavier alkaline earth metals (Calcium++). The latter are limited in solubility.

$$k_a k_b = k_w$$

16.6 Weak Acids and k_a

Equilibrium constant for acids is called the aciddissociation constant k_a . Larger means stronger. Need not be aqueous. Example for HA (aq) H^{+} (aq) + A^{-} (aq):

$$k_a = \frac{[\mathsf{H}^+][\mathsf{A}^-]}{[\mathsf{H}\mathsf{A}]}$$

Percent ionization for acids Larger stronger.

Polyprotic acids can undergo more than one dissociation. H₂SO₃ has two protons to give away. It is always easier to remove the first proton.

 $\mathbf{p}K_a$ is equal to $-\log_{10}k_a$

16.7 Weak Bases and k_b

Equilibrium constant for bases is called the basedissociation constant k_b . Larger means stronger. Only for water based! Example for B (ag) $+ H_2O$ (I) \rightleftharpoons HB⁺ (ag) + OH⁻ (ag):

$$k_b = \frac{[\mathsf{BH}^+][\mathsf{OH}^-]}{[\mathsf{B}]}$$

Category One neutral substances that have an atom with a non-bonding pair of electrons that can accept a proton. Most have Nitrogen. Includes Ammonia and Amines.

Amines at least one N-H bond in NH₃ is replaced with N-C.

Second category anions of weak acids. NaClO has the conjugate base ClO⁻.

 $\mathbf{p}K_b$ is equal to $-\log_{10}k_b$

16.8 Acid-Base Properties of Salt **Solutions**

Nearly all salts are strong electrolytes their acidbase properties are due to their cations and an-

Hydrolysis ions react with water to generate H⁺ or OH⁻.

An anion can be considered the conjugate base of an acid A⁻. If it is not a strong acid, it is a weak

Polyatomic cations with one or more protons can be considered the conjugate acids of weak

The larger the charge on the metal ion the stronger the interaction between ion and oxygen of its hydrating water molecules. Facilitates proton transfer.

Combined effect of cation and anion:

1. Anion and cation don't react with water (both from strong a/b)? pH should be neutral. NaCl, Ba(NO₃)₂, RbClO₄

2. Anion produces hydroxide ions, cation doesn't react (from weak acid, strong base)? pH should be basic. NaClO, RbF, BaSO₃

3. Cation produces hydronium ions, anion doesn't react (from weak base, strong acid)? pH should be acidic. NH₃NO₃, AlCl₃, Fe(NO₃)₃

4. Both anion and cation react in water (both from weak)? The pH of the solution depends on the relative abilities of the ions to react. NH₄ClO, Al(CH₃COO)₃, CrF₃

16.9 Acid-Base Behavior and Chemical **Structure**

Strength of the H-A bond is the greatest indicator Acid strength increases as additional electronegaof acid strength

Acid Strength 1. stronger partial charges on H in H bonds. If non-polar, the bond is neither acidic

2. bond strength, increases as you move to the left-bottom. HBr is very strong

3. The greater the stability of the conjugate base A⁻, the stronger the acid.

Binary acids bond strength decreases and acidity and size increase down a group.

Oxyacids O-H bonds present, but the compound is an acid

OH bond: acid or base as the electro-negativity of Y in Y-O-H increases, so does the acidity. Electron density is drawn to Y so the O-H bond becomes

weaker and more polar. Also, the stability of the conjugate base (YO-)increases with the electronegativity of Y.

tive atoms bond to the central atom Y.

$$HCIO_4 > HCIO_3 > HCIO_2 > HCIO$$

Carboxylic Acids Contain the carboxyl group COOH 0-

-0 — H. Largest group of organic acids. The conjugate base is stabilized by resonance between the two oxygens, spreads negative charge. Also the non O-H oxygen draws electron density from the broken bond, increases polarity.

Carboxylic acid examples CH₃COOH, Benzoic acid (benzene and carboxyl), Formic acid HCOOH.

16.10 Lewis Acids and Bases

Lewis acids and bases is a general definition of acids and bases.

Lewis Acid electron-pair acceptor **Lewis Base** electron-pair donor

Water is not required. A wider variety of reactions

may be treated, including acid-base reactions (no proton transfer).

Strength of electrostatic interactions

The interaction of lone pairs on one molecule with vacant orbitals on another is one of the most important concepts in chemistry.

17 Chapter 17. More Aspects of Aqueous Equilibria

17.1Common-lon Effect	31
17.2Buffers	31
17.3Acid-Base Titrations	31
17.4Solubility Equilibria	32
17.5Factors affecting solubility	32
17.6Precipitation and Separation of lons	32
17.7Qualitivative Analysis for Metallic Elements	32

- 1. The Common-ion effect
- 2. How does a buffer function?
- 3. Calculate the pH of a buffered solution
- 4. Same, after adding small amounts of strong acid/base
- 5. Calculate appropriate quantities to make buffer for certain pH
- Calculate pH at any point in a strong acid-strong base titration
- 7. Same, but for weak-strong acid/base or

- base/acid titration
- 8. Differences in the prev two titration curves?
- 9. Estimate pK_a for mono/polyprotic acids form titration curves
- 10. K_{sp} , molar solubility, mass solubility, solve for one using two.
- 11. Molar solubility in presence of common ion
- 12. Effect of pH on solubility

- 13. Precipitate when soln.s mixed by comparing Q and K_{Sp}
- Ion concentrations needed to begin precipitation
- 15. Effect of complex-ion formation on solubility
- 16. Logic of ID of metal ions in aqueous soln by a series of recctions.

17.1 Common-lon Effect

Solution with weak acid/base and a soluble substance containing that acid/base **shifts the equilibrium to the left** concentrations lowering H^+ . Example: adding $CH \equiv COONa$ (aq) salt to a solution of CH_3COOH (aq) or adding NH_4CI electrolyte to solution of NH_3 (aq)

17.2 Buffers

Buffered soluton small amount of strong acid/base. Resists changes in pH by neutralizing any H⁺ or OH⁻.

Composition example buffer pair CH₃COOH/CH₃COO⁻ **Composition method 1** mix a weak acid/base with a salt of that acid/base. Example: adding CH₃COONa to soln of CH₃COOH.

Composition method 2 make conjugate acid/base from weak soln by adding strong acid/base. Example: CH₃COOH and add NaOH neutralize half of the acetic acid.

Any pH can be chosen for a buffer

Buffer capacity how much intruding acid/base can be tolerated without straying from **pH range**

pH Range usually in range $pK_a \pm 1$. Work best when $[HA] = [A^-]$.

Add OH - ions acid takes over

$$OH^{-}(\alpha q) + HA(\alpha q) \longrightarrow H_2O(I) + A^{-}(\alpha q)$$

Add H⁺ ions base takes over

$$H^+(\alpha q) + A^-(\alpha q) \longrightarrow H_2O(1) + HA(\alpha q)$$

pH of a Buffer Use an ICE table. Cancel out spectator ions. Find [H⁺]

Henderson-Hasselbalch equation for conjugate acid-base pairs: $pH = pK_a + log \frac{base}{acid}$ where K_a of the acid is used and the two conc.s are at equilibrium Can use initial conc.s – easier – but use this assumption with care.

$$[H^+] = K_\alpha \frac{[HA]}{[A^-]}$$

Adding a strong acid/base Strong acid/base always neutralized completely with weak base/acid (water's $1/k_w = 10^{14}$) To calculate pH of buffer after addition:

- 1. Find limiting reactant in the acid-base neutralization reaction (OH⁻ or H⁺ into ICE table)
- 2. Use new values of HA, A^- and k_a to find [H⁺] Balance:

$$OH^- + HA \longrightarrow H_2O + A^-$$

 $H^+ + A^- \longrightarrow HA$

17.3 Acid-Base Titrations

pH titration curve indicates pH as the titration progresses. See initial, equivalence and postequivalnce values.

Equivalence point moles of acid = moles of base

Strong base titrates strong acid pH rises from about 0 to about 14; equivalence point 7.

Strong acid titrates strong weak pH lowers, same as base titrating acid.

Strong titrates weak sudden change in pH, but equivalence point is closer. May not be 7 due to conjugate base/acid. Equivalence point pH increases as k_{α} decreases, closer to titrator's side.

Acid-base indicator can be used instead of pH meter. It must have an activation range near the equivalence point. Phenolphthalein range 8.3 to 10.0, Methyl red ranges from 4.2 to 6.0.

Polyprotic acids curve with two equivalence points. Half-equivalence point $pH = pK_a$

17.4 Solubility Equilibria

Heterogeneous solubility Species in different phases. Dissolution, precipitation of ionic compounds.

Solubility-Product constant K_{sp} solubility of solid in water. K_{sp} = product of concentrations of ions, raised to power of its equilibrium coefficient. CaF₂ gives $K_{sp} = [C\alpha^{2+}][F^{-}]^{2}$. Small means it doesn't dissolve much.

Solubility is quantity that dissolves to form saturated

soln, very volatile. K_{sp} measures how much solid dissolves, one for each temperature (extreme accuracy? consider concentration).

Solubility from K_{sp} ICE table for dissolved ions, their initial conc.s are 0 unless otherwise noted. Only if no other important equilibria affecting solubility. Units: $\frac{g}{g} = \frac{mol}{s}$

Units: $\frac{g}{L \text{ soln}}$, $\frac{mol}{L \text{ soln}}$. **Deviations** caused by electrostatic between ions, ignoring acid-base equilibria, incomplete dissociation (like MgF⁺ ions)

17.5 Factors affecting solubility

Common-ion effect generally, solubility of a slightly soluble salt decreased by common-ion. Shift left.

pH affects solubility, increases for basic anions. Can dissolve completely in very acidic solution. Example: $Mg(OH)_2$ (s) usually pH = 10.52 [Mg^{2+}]

= 0.00017, if pH is buffered to 9 and $K_{sp} = 1.8 \cdot 10^{-11}$ then [Mg²⁺] = 0.18M.

Complex ion very soluble in water. ...
Formation of Complex ions
Formation constant
Amphoterism

17.6 Precipitation and Separation of lons

Q for solubility K_{sp} , but not necessarily at equilibrium. Can use same as Q in Chapter 15 to find direction of the reaction.

 $\mathbf{Q} = K_{SD}$ solution is saturated, no precipitate

 $\mathbf{Q} < K_{Sp}$ reaction proceeds to the right, no precipitate

 $\mathbf{Q} > K_{sp}$ reaction proceeds to the left, precipitate **Selective precipitation** ions can be separated based on solubilities of salts. Sulfide ion is commonly used, sulfide salts span wide range. CuS $K_{sp} = 6 \cdot 10^{-37}$, ZnS $K_{sp} = 2 \cdot 10^{-25}$. CuS will precipitate with pH around 1, ZnS will precipitate at higher pH.

17.7 Qualitivative Analysis for Metallic Elements

Metals vary in their salt solubility, acid-base, complex ions. These differences can be used to separate and detect presence of metal ions.

Qualitative analysis presence/absence of species **Quantitative analysis** quantity of species

Common 5 group scheme Group 1 insoluble chlorides, add HCl, precipitates AgCl, Hg₂Cl₂, PbCl₂

Group 2 acid-insoluble sulfides, soln. now acidic, H_2S is added, precipitates CuS, Bi_2S_3 , CdS, PbS, HgS, Ag_2S_3 , Sb_2S_3 , SnS_2 . These have low K_{SD}

Group 3 base-insoluble sulfides and hydroxides, soln made basic, $(NH_4)_2S$ added, precipitates Al^{3+} , Cr^{3+} , Fe^{3+} , Zn^{2+} , Ni^{2+} , Co^{2+} , Mn^{2+}

Group 4 insoluble phosphates, (NH₄)₂HPO₄ precipitates Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺

Group 5 alkali metal, NH₄⁺ flame test, other individual tests.

Solution containing unknown metal cations Add 6 M HCl Precipitate Decantate Group 1
Insoluble chlorides: Remaining AgCl, PbCl₂, Hg₂Cl₂ Add H₂S and 0.2 M HCl Precipitate Decantate Group 2 Acid-insoluble sulfides: CuS, CdS, Bi₂S₃, PbS, HgS, As₂S₃, Sb₂S₃, SnS₂ Remaining Add $(NH_4)_2S$ at pH = 8Precipitate Decantate Group 3
Base-insoluble sulfides and hydroxides:
Al(OH)₃, Fe(OH)₃, Cr(OH)₃, ZnS, NiS,
MnS, CoS Remaining cations Add (NH₄)₂HPO₄ and NH₃ Precipitate Decantate Group 4 Insoluble phosphates: Ca₃(PO₄)₂, Sr₃(PO₄)₂, Ba₃(PO₄)₂, MgNH₄PO₄ Group 5 Alkali metal ions and NH₄⁺

19 Chapter 19. Chemical Thermodynamics

19.1Spontaneous Processes
19.2Entropy and the Second Law
19.3Molecular Interpretation of Entropy and the Third Law
19.4Entropy Changes in Chemical Reactions
19.5Gibbs Free Energy
19.6Free Energy, Temperature, and Equilibrium Constant

- 1. Spontaneous, reversible, irreversible and isothermal processes
- 2. Entropy and the Second law
- 3. Entropy and micro-states
- 4. Possible molecular motions
- 5. Predict sign of ΔS for physical and chem-
- 6. The Third law
- 7. Standard entropy changes using standard molar entropies
- Entropy changes for an isothermal pro-
- 9. Gibbs free energy from enthalpy change
- 10. Entropy change at a temperature
- 11. Free-energy changes to predict if spontaneous
- 12. Effect of temperature on spontaneity given ΔH and ΔS
- 13. ΔG under nonstandard conditions
- 14. ΔG° and equilibrium constant

19.1 Spontaneous Processes

the first law helps us keep track of heat changes, but reversible process system and surroundings can redoes not tell us whether a proces is favored because of anything we did to the system. $\Delta H =$

thermodynamics all about direction and extent of a reaction, not about rate.

spontaneous inherently directional process. Related to thermodynamic path from start to end states.

example ice melts to water spontaneously at a high enough temperature.

turn to original state by an exact reversal. Truly, they must occur with infinitesimally small units of heat occurring infinitesimally slowly.

irreversible process system cannot return to original state without permanent change in surroundinas

isothermal process occurs at same temperature

19.2 Entropy and the Second Law

entropy denoted S, at constant temperature ΔS = q_{rev}/T where q_{rev} is the heat the process would absorb if it was reversible. Units J/K. State function.

for any process $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{sur}$ for phase changes $\Delta q_{rev} = \Delta H_{fusion}$. isothermic gas expansion $w_{rev} = -nRT \ln \frac{V_2}{V_1}$ **the second law** $\Delta S_{univ} = 0$ for reversible processes and $\Delta S_{univ} > 0$ for irreversible processes.

19.3 Molecular Interpretation of **Entropy and the Third Law**

microstate combination of motions and locations of atoms.

Boltzmann's $S = k \ln W$ where k is B's constant **entropy** randomness or disorder of a system. Related to number of microstates.

translational motion entire molecule moves. Kinetic energy.

vibation motion periodic molecular motion. "accor-

dion" bonds

rotational motion molecule spins like a top entropy increases with increase in volume, temperature, motion of molecules, increase of motions and locations of molecules.

entropy increases solid dissolves, phase change $(s) \rightarrow (l) \rightarrow (g)$ or increase in molecules.

the third law entropy of a pure crystalline solid at 0K is zero. W = 1. No motion, absolute zero, no entropy.

19.4 Entropy Changes in Chemical Reactions

standard molar entropy denoted S° is entropy of a mole of substance at standard conditions.

general observations Not the same as enthalpies of formation! Elements are reference temperature are not zero. Increase with increasing molar mass,

or increasing number of atoms in formula. Gases greater than liquids or solids.

tabulated ΔS° can be used to calculate entropy change of any reaction. $\Delta S^{\circ} = \sum_{products} nS^{\circ} \sum_{reactants} mS^{\circ}$

entropy change in surroundings for isothermal process is $\Delta S = -\Delta H/T = k \ln \frac{W_2}{W_1}$.

19.5 Gibbs Free Energy

Gibbs free energy thermodynamic state function combining two state functions G = H - TS. For isothermal processes: $\Delta G = \Delta H - T\Delta S$.

Gibbs at constant temperature and pressure indicates spontaneity. Negative ΔG means spontaneous, positive means nonspontaneous but reverse process is spontaneous.

Equilibrium $\Delta G = 0$. A spontaneous process.

maximum level of work that can be performed by

system indicated by the free energy. $\Delta G =$ $-w_{max}$.

standard free energies of formation ΔG_f° defined just like standard enthalpies of formation. Defined zero for a pure element in standard state (convention, we only care about changes). Can be used to find standard free-energy change ΔG° .

$$\Delta G^{\circ} = \sum_{products} n \Delta G^{\circ}_{f} - \sum_{reactants} m \Delta G^{\circ}_{f}$$

19.6 Free Energy, Temperature, and **Equilibrium Constant**

temperature doesn't affect ΔH and ΔS of a process very much. ΔG is governed by temperature.

entropy term $-T\Delta S$ has greater effect on temperature dependence. Process with both $\Delta H > 0$ and $\Delta S > 0$ can be nonspontaneous at low temperatures but spontanoues at high temperatures. Example: ice.

at equilibrium $\Delta G = 0, Q = K$ thus this equation: $\Delta G = \Delta G^{\circ} + RT \ln Q$ turns into equation directly dependant on temperature and standard freeenergy change

$$\Delta G^{\circ} = -RT \ln K$$

$$K = e^{-\Delta G^{\circ}/RT}$$

$$\Delta G = \Delta G^{\circ} + RT \ln K$$

Chapter 20. Electrochemistry

Contents

20.10xidation States and Redox
20.2Balancing Redox
20.3voltaic cells
20.4Voltage under Standard Conditions
20.5Free Energy and Redox Reactions
20.6Voltage under Nonstandard Conditions
20.7Batteries and Fuel Cells
20.8Corrosion
20.9Electrolysis

- 1. ID oxidation, reduction, oxidizing agent, reducing agent
- Complete, balance redox equations using half-reactions
- Sketch voltaic cells, ID cathode, anode, direction of e- motion
- Standard emfs from standard reduction potential
- 5. Reduction potentials to predict if redox is spontaneous
- 6. Relate E_{cell}° , ΔG° to equilibrium constants
- 7. Calculate emf under nonstandard condi-
- 8. ID components of common batteries
- 9. Construction, explanation of lithium-ion

- 10. Construction, explanation of fuel cell
- 11. Corrosion, prevent with cathode protection
- 12. Reactions in electrolytic cells
- 13. Amount of products, reactants in redox and electric charge

20.1 Oxidation States and Redox

electrochemistry study of electricity and chemical

OIL RIG oxidized is loss of electrons, reduction is gain-

ing electrons.

reducing agent causes reduction, it is oxidized to accomplish this

oxidizing agent causes oxidization, it is reduced to accomplish this

20.2 Balancing Redox

and into an oxidizing equation:

sonofbitch

steps to balance in aqueous 1. balance in basic aqueous half-reactions a redox can be split into a reducing adding half-reactions electrons should cancel to reveal the balanced equation

20.3 voltaic cells

20.4 Voltage under Standard **Conditions**

standard conditions 298K, 1atm, 1M

Negative E non-spontaneous **1 Watt (W)** 1 J/s

20.6 Voltage under Nonstandard **Conditions**

emf varies with temperature and concentrations **Nernst equation** Let n be the moles of e^- exchanged and Q be calculated similar to equil. constant k (use atm pressure without conversion):

 $E = E^{\circ} - (RT/nF) \ln Q$

At 298K

 $E = E^{\circ} - (0.0592/n) \ln Q$

20.5 Free Energy and Redox Reactions

Free energy ΔG

 $\Delta G = -nFE$

Faraday constant F = 96,485C/mol

Positive E spontaneous

20.7 Batteries and Fuel Cells

battery self contained electrochemical power source. Based on a variety of redox reactions.

Primary cells cannot be recharged

Secondary cells can be

Common primary cell alkaline dry cell

Common secondary cells Lead-acid, Ni-Cd, Nickelmetal hydride and Lithium-ion.

Fuel cells voltaic cells that need to be continuously supplied with reactants (such as H₂) for a redox

reaction.

20.8 Corrosion

corrosion undesirable redox reaction.

cathodic protection protecting a metal by covering it using another that more readily undergoes oxi-

example galvanized steel is Fe covered in Zn, a sacrificial anode in the redox reaction.

20.9 Electrolysis

electrolysis reaction electrolytic cell current carrying medium molten salt or electrolyte

solution

predict products by comparing potentials of the red. and oxi. processes.

active electrodes are involved in the reaction quantity of substance formed related to total cur-

rent. $1\frac{C}{c} = 1A$

Chapter 21. Nuclear Chemistry 21

- 1. Balanced nuclear equations
- 2. Nuclear stability, decay from neutron-toproton ratio of isotope
- 3. Balanced nuclear equations for nuclear transmutations
- 4. Ages of objects, amount of radionuclide remaining after time using half-life
- 5. Mass and energy changes for nuclear reactions
- 6. Binding energies for nuclei
- 7. Difference between fission and fusion
- 8. Power plant operation, differences
- 9. Units of radiation dosage
- 10. Biological effects of radiation

Minor

description item or whatevs

Notes may be incomplete. Based on "Chemistry: The Central Science (13th Edition)" by Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, and Matthew E. Stoltzfus.