Week 3 review

Announcements

- Mid-term exam for CSC 258:
 - On Friday, 22 June 2018, 2.00 4.00pm
 - Last names: A M at BA2145
 - Last names: O Z at BA2155
- Class List sign while submitting in-class exercise
- In-Class Exercise
 - <u>underline</u> your last name
 - write the PS set number (PS 04) or today's date
 - write the course code (CSC 258)
 - sign the PS submission list when submitting your set

Question #1

a) How do you write the number 78 as an 8-bit binary number?

b) What is the two's complement of 01101101?

10010011

c) What is the sum of 01101101 and 01101101?

 $1101\overline{1010}$

Question #2

• What groupings are in the K-map on the right?

	<u>C</u> · <u>D</u>	C · <u>D</u>	C ·D	<u>C</u> ·D
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	1	X	1
A·B	X	0	X	1
A·B	1	X	X	1
Ā·B	1	X	0	X

What logic equations do these groupings represent?

$$\overline{A} \cdot \overline{B} + \overline{C}$$

Question #3

Step 1: What is the half adder logic equation?

$$\mathbf{C} = X \cdot Y$$
 $\mathbf{S} = X \cdot \overline{Y} + \overline{X} \cdot Y$ $= X \oplus Y$

Step 2: Equivalent Verilog components.

```
assign C = X & Y;
assign S = X & ~Y | ~X & Y;
```

Question #3 (cont'd)

Step 3: What is the complete Verilog code for this device?


```
module half_adder(X, Y, C, S);
input X, Y;
output C, S;

assign C = X & Y;
assign S = X & ~Y | ~X & Y;
endmodule
```

Problem Set 03

Question 1

What gate is created by the following?

A	В	х
0	0	1
0	1	1
1	0	0
1	1	1

A	В	х
0	0	1
0	1	1
1	0	1
1	1	0

$$X = \overline{(A \cdot \overline{B})}$$
 or

$$X = \overline{A} + B$$

Question 2 - Minterms

Write Y in SOM (Sum Of Minterms) form.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$Y = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$Y = m_1 + m_2 + m_4 + m_7$$

Question 3

What is the most reduced form, in sum of products form, of the function from the truth table on the right?

$$Y = m_0 + m_1 + m_2 + m_5$$

+ $m_7 + m_8 + m_9$
+ $m_{10} + m_{13} + m_{15}$

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Question #4 (cont'd)

	<u>C</u> · <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
Ā·B	1	1	0	1
Ā·B	0	1	1	0
A·B	0	1	1	0
A·B	1	1	0	1

$$A = \underline{C} \cdot D + B \cdot D + \underline{B} \cdot \underline{D}$$

Question #4 (alternative)

• An alternative grouping:

	<u>C</u> · <u>D</u>	<u>C</u> ∙D	C ·D	O Ú
$\overline{A} \cdot \overline{B}$	1	1	0	1
Ā·B	0	1	1	0
A·B	0	1	1	0
A·B	1	1	0	1

$$Y = \overline{B} \cdot \overline{C} + B \cdot D + \overline{B} \cdot \overline{D}$$

Problem Set 03

Questions

- 1. Convert the following decimal values to 2's complement number:
 - - -89
 - **□** -62
- 2. Convert the following 2's complement number to it's decimal equivalent
 - 10110011
 - **1**0000011
- 3. Preform binary subtraction on these two numbers: 103 and 69. Show the steps.

Question 4: Full Adder

Х	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplify the following two equations so that they use at least one XOR gate (\bigoplus) :

$$C = \sum (3,5,6,7)$$

=

$$S = \sum (1,2,4,7)$$

=