Úkol 2

1. příklad

Uvažujte jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$, kde $\#_x(w)$ značí počet výskytů symbolů x v řetězci w. Dokažte, že jazyk L je bezkontextový. Postupujte následovně:

- (a) Nejdříve navrhněte gramatiku G, která bude mít za cíl jazyk L generovat.
- (b) Poté pomocí indukce k délce slova $w \in L$ dokažte, že L = L(G).

Řešení:

- (a) Nechť G je následující gramatika generující jazyk L: $G = (\{S\}, \{a,b\}, \{S \rightarrow aSbS \mid bSaS \mid \varepsilon\}, S)$
- (b) Důkaz, že L = L(G) provedeme dokázáním, že i) $L(G) \subseteq L$ a ii) $L \subseteq L(G)$ matematickou indukcí k délce slova $w \in L$.
 - i) Důkaz, že $L(G) \subseteq L$.
 - a) Důkaz vzhledem k délce slova i = 0.
 - Slovo o délce $0, \varepsilon : |\varepsilon| = 0$ lze vygenerovat pravidlem $S \to \varepsilon$ gramatiky G, tj. $\varepsilon \in L(G)$.
 - Zároveň platí, že $\varepsilon \in L$.
 - Pro i = 0 dokazované tvrzení tedy platí.
 - b) Předpokládejme, že pro slovo w platí, že $|w| \le i \land S \Rightarrow^* w : w \in L$. Na základě tohoto indukčního předpokladu ukažme, že dokazované tvrzení platí i pro slova délky i + 2.
 - Gramatika G derivuje následující řetězce $S \Rightarrow aSbS \Rightarrow^* aw'bw'' = w_1, S \Rightarrow bSaS \Rightarrow^* bw'aw'' = w_2.$
 - Dle indukčního předpokladu platí, že když $S \Rightarrow^* w' \wedge S \Rightarrow^* w''$, tak $w' \in L \wedge w'' \in L$, protože $w' \in L(G) \wedge w'' \in L(G) \wedge |w'| \leq i \wedge |w''| \leq i$, a tedy $w', w'' \in \{a,b\}^* : \#_a(w') = \#_b(w'') \wedge \#_a(w'') = \#_b(w'')$.
 - Z výše uvedeného plyne, že $\#_a(w_1) = \#_a(w') + \#_a(w'') + 1 = \#_b(w') + \#_b(w'') + 1 = \#_b(w_1) \Rightarrow w_1 \in L$.
 - A zároveň platí, že $\#_a(w_2) = \#_a(w') + \#_a(w'') + 1 = \#_b(w') + \#_b(w'') + 1 = \#_b(w_2) \Rightarrow w_2 \in L$.
 - c) $L(G) \subseteq L$ tedy platí.
 - ii) Důkaz, že $L \subseteq L(G)$.
 - a) Důkaz vzhledem k délce slova i = 0.
 - Slovo o délce $0, \varepsilon : |\varepsilon| = 0 \land \varepsilon \in L$.
 - Zároveň ε lze vygenerovat gramatikou G použitím pravidla $S \to \varepsilon$, tj. $\varepsilon \in L(G)$.
 - Pro i = 0 tedy dokazované tvrzení platí.
 - b) Předpokládejme, že pro slovo w platí, že $|w| \le i \land w \in L : S \Rightarrow^* w$. Na základě tohoto indukčního předpokladu ukážeme, že dokazované tvrzení platí i pro slova délky i + 2.
 - Pro řetězce z množiny $W = \{w \in L \mid \#_a(w) = \frac{i+2}{2} \land \#_b(w) = \frac{i+2}{2} \land |w| = i+2\}$ platí, že $\forall w \in W : \exists w' \in L : \#_a(w) = \#_a(w') + 1 = \#_b(w') + 1 = \#_b(w) \land |w'| \le i$.

- Dle indukčního předpokladu tedy platí, že $\forall w \in W : \exists w' \in L : S \rightarrow w'$.
- Řetězce z množiny W lze generovat gramatikou G následovně:

$$S \Rightarrow aSbS \Rightarrow aSb \Rightarrow aw'b$$

$$S \Rightarrow aSbS \Rightarrow abS \Rightarrow abw'$$

$$S \Rightarrow bSaS \Rightarrow bSa \Rightarrow bw'a$$

$$S \Rightarrow bSaS \Rightarrow baS \Rightarrow baw'$$

- Všechny výše uvedené řetězce patří do jazyka L, protože $w' \in L$, jak bylo ukázáno výše.
- c) $L \subseteq L(G)$ tedy platí.

2. příklad

Uvažujte doprava čtený jazyk TS M, značený jako $L^P(M)$, který je definován jako množina řetězců, které M přijme v běhu, při kterém nikdy nepohne hlavou doleva a nikdy nepřepíše žádný symbol na pásce za jiný. Dokažte, zda je problém prázdnosti doprava čteného jazyka TS M, tj. zda $L^P(M) = \emptyset$, rozhodnutelný:

- pokud ano, napište algoritmus v pseudokódu, který daný problém bude rozhodovat;
- pokud *ne*, dokažte nerozhodnutelnost redukcí z jazyka *HP*.

Řešení:

Problém prázdnosti doprava čteného jazyka Turingova stroje M, tj. $L^P(M) = \emptyset$, **je rozhodnutelný**. Důkazem nechť je následující algoritmus, který tento problém rozhoduje.

Algoritmus:

Vstup: Deterministický Turingův stroj $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f)$ s přechodovou parciální funkcí δ definovanou následovně: $(Q \setminus \{q_f\}) \times \Gamma \to Q \times (\Gamma \cup \{L, R\})$, kde $L, R \notin \Gamma$.

$$\frac{\text{V\'{y}stup:}}{\text{FALSE}} \begin{cases} \text{TRUE} & \text{pokud } L^P(M) = \emptyset \\ \text{FALSE} & \text{jinak, tj. pokud } L^P(M) \neq \emptyset \end{cases}$$

Metoda:

1. Nechť $R_{\delta} \subseteq Q \times Q$ je binární relace, která popisuje, zda je v Turingově stroji M možný přímý přechod (definovaný jazykem $L^P(M)$) mezi danou dvojicí stavů (p,q), definována na základě přechodové funkce δ následovně:

$$R_{\delta} = \{(p,q) \in Q \times Q \mid \exists \gamma_n \in \Gamma : ((q,R) \in (p,\gamma_n)) \lor ((q,\gamma_n) \in (p,\gamma_n))\}$$

- 2. Nechť R_{δ}^+ je tranzitivní uzávěr relace R_{δ} vypočtený Warshallovým algoritmem.
- 3. Nechť výstup algoritmu já dán predikátem φ definovaným následovně:

$$\varphi$$
: $\neg (\exists p, q \in Q : p = q_0 \land q = q_f \land (p, q) \in R_{\delta}^+)$

3. příklad

Uvažujte jazyk $L_{42} = \{\langle M \rangle \mid \text{TS } M \text{ zastaví na některém vstupu tak, že páska bude obsahovat právě 42 ne-blankových symbolů}. Dokažte pomocí redukce, že <math>L_{42}$ je nerozhodnutelný. Uvedte ideu důkazu částečné rozhodnutelnosti L_{42} .

2/5

Řešení:

Důkaz, že jazyk L_{42} je nerozhodnutelný.

Provedeme důkaz redukcí z problému zastavení Turingova stroje (HP).

- Jazyk, který charakterizuje HP bude vypadat následovně:
 HP = {\langle M \rangle # \langle w \rangle | M \ je Turingův stroj takový, že na řetězci w zastaví}, kde \langle M \rangle je kód Turingova stroje M a \langle w \rangle je kód řetězce w.
- Zadaný jazyk $L_{42} = \{\langle M \rangle \mid M \text{ je Turingův stroj takový, že zastaví na některém vstupu tak, že páska bude obsahovat právě 42 ne-blankových symbolů}, kde <math>\langle M \rangle$ je kód Turingova stroje M, bude charakterizovat problém, který tento jazyk reprezentuje.
- Navrhneme redukci $\sigma: \{0,1,\#\}^* \to \{0,1\}^*$ z jazyka HP na jazyk L_{42} .
- Redukce σ přiřadí řetězci $x \in \{0, 1, \#\}^*$ řetězec $\langle M_x \rangle$, což je kód Turingova stroje M_x , který pracuje následovně:
 - 1. M_x smaže svůj vstup w.
 - 2. M_x zapíše na vstupní pásku řetězec x, který má uložen v konečném stavovém řízení.
 - 3. M_x ověří, zda x má strukturu $x_1 \# x_2$, kde x_1 je kód Turingova stroje a x_2 je kód jeho vstupu. Pokud ne, odmítne.
 - 4. M_x odsimuluje na řetězci s kódem x_2 běh Turingova stroje s kódem x_1 . Pokud simulace skončí, smaže svou pásku, zapíše na ni 42 libovolných ne-blankových symbolů a následně přijme. Jinak cyklí.
- Redukci σ je možné implementovat úplným Turingovým strojem M_{σ} , který pro vstup x vyprodukuje kód Turingova stroje M_x . Tento sestává z následujících komponent:
 - 1. Komponenta, která maže vstupní pásku lze předpřipravit a pak M_{σ} jen vypíše patřičný kód.
 - 2. M_{σ} vypíše kód Turingova stroje, který jen zapíše na vstup řetězec a_1, a_2, \dots, a_n opakovaný sekvenční zápis a posuv doprava.
 - 3. M_{σ} vypíše kód Turingova stroje, který na vstupu ověří, zda se jedná o platnou instanci HP a pokud ne, odmítne. (Test na členství v regulárním jazyce.)
 - 4. M_{σ} vypíše kód Turingova stroje, který spustí univerzální Turingův stroj na Turingův stroj s kódem x_1 a vstupem s kódem x_2 .
- M_{σ} zajistí sekvenční předávání řízení mezi jednotlivými komponentami.
- Nyní zkoumejme jazyk Turingova stroje M_x :
 - a) $L(M_x) = \emptyset \Leftrightarrow (x \text{ nemá strukturu } x_1 \# x_2 \text{ pro kód Turingova stroje } x_1 \text{ a kód vstupu } x_2) \lor (x \text{ má strukturu } x_1 \# x_2, \text{ kde } x_1 \text{ je kód Turingova stroje a } x_2 \text{ kód vstupu, ale Turingův stroj s kódem } x_1 \text{ na vstupu s kódem } x_2 \text{ nezastaví}).$
 - b) $L(M_x) = \Sigma^* \Leftrightarrow (x \text{ má strukturu } x_1 \# x_2, \text{ kde } x_1 \text{ je kód Turingova stroje a } x_2 \text{ je kód vstupu a Turingův stroj s kódem } x_1 \text{ zastaví na vstupu s kódem } x_2) \land (M_x \text{ má po přijetí na pásce právě 42 ne-blankových symbolů.}$
- Konečně ukážeme, že redukce σ zachová členství v jazyce:
 ∀ x ∈ {0,1,#}* : (σ(x) = ⟨M_x⟩ ∈ L₄₂) ⇔ (L(M_x) = Σ*) ⇔ ((x má strukturu x₁#x₂, kde x₁ je kód Turingova stroje a x₂ kód vstupu) ∧ (Turingův stroj s kódem x₁ zastaví na vstupu s kódem x₂) ∧ (M_x má po přijetí na pásce právě 42 ne-blankových symbolů)) ⇔ x ∈ HP.

Idea důkazu, že jazyk L_{42} je částečně rozhodnutelný.

Lze sestavit Turingův stroj M' rozhodující jazyk L_{42} následujícím způsobem:

- *M'* zkontroluje, zda na vstupu má platný kód Turingova stroje *M*. Pokud ne, odmítne.
- *M'* na pomocné pásce postupně simuluje běh Turingova stroje *M* na jednotlivých vstupních řetězcích *w*. Jednotlivé páskové konfigurace jsou na pomocné pásce vhodně uspořádány.
- M' vždy projde všechny rozpracované simulace a na každé dále simuluje jeden krok výpočtu.
- Pokud byl v některém kroce řetězec přijat, M' taky přijme. V opačném případě se přidá pásková konfigurace pro další řetězec a kroky simulace se opakují.

4. příklad

Uvažujte programovací jazyk **Karel@TIN** se zadanou gramatikou a sémantikou. Dokažte, že programovací jazyk **Karel@TIN** je Turingovksy úplný, tj., dokažte, že

- (a) pro každý TS M nad abecedou $\{0,1\}$ a řetězec $w \in \{0,1\}^*$ lze sestrojit program P_M v jazyce **Karel@TIN** a zvolit počáteční konfiguraci prostředí C_M tak, že P_M skončí s návratovou hodnotou 1 právě tehdy, když $w \in L(M)$;
- (b) pro každý program P v jazyce **Karel@TIN** a počáteční konfiguraci C lze spustit TS M_P a řetězec $w \in \{0,1\}^*$ tak, že $w \in L(M_P)$ právě tehdy, když robot Karel po interpretaci programu P z počáteční konfigurace C skončí s návratovou hodnotu 1.

Řešení:

```
(a) Počáteční konfigurace C_M = ((0,0),\uparrow,g).
Kódování symbolů: 0 = 0, 1 = 1, \Delta = 2.
write_blank:
```

```
0 if empty: goto 3;
1 lift-screw;
2 if not empty: goto 1;
3 drop-screw;
4 drop-screw;
```

write_0:

```
0 if empty: goto 3;
1 lift-screw;
2 if not empty: goto 1;
3 turn left;
4 turn left;
5 turn left;
6 turn left;
```

```
write_1:

0  if empty: goto 3;
1  lift-screw;
2  if not empty: goto 1;
drop-screw;

move_forward:

0  step;

move_backward:

0  turn left;
turn left;
step;
3  turn left;
turn left;
turn left;
turn left;
```