Undecidability

Sections 21.1 – 21.3

Problems / Languages

The Problem View	The Language View
Does TM M halt on w?	$H = \{ < M, w > :$
	M halts on w }
Does TM M not halt on w?	$\square H = \{ \langle M, w \rangle :$
	M does not halt on w}
Does TM <i>M</i> halt on the empty tape?	$H \square = \{ \langle M \rangle : M \text{ halts on } \square \}$
Is there any string on which TM <i>M</i> halts?	$HANY = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$
	,
Does TM M accept all strings?	$AALL = \{ \langle M \rangle : L(M) = \square^* \}$
Do TMs Ma and Mb accept the same	EqTMs = $\{ \langle Ma, Mb \rangle : L(Ma) = L(Mb) \}$
languages?	
Is the language that $TM M$ accepts	$TMREG = \{ < M > : L(M) \text{ is regular} \}$
regular?	

Reduction

Example: Computing a function

```
multiply(x, y) =
```

- 1. answer := 0.
- 2. For i := 1 to y do: answer = sum(answer + x).
 - 3. Return answer.
- Computing multiply reduces to computing sum.
 or
- If we can do sum then we can do multiply.

Using Reduction for Undecidability

Theorem: There exists no general procedure to solve the following problem:

Given an angle A, divide A into sixths using only a straightedge and a compass.

Proof: Suppose that there were such a procedure, which we'll call sixth. Then we could trisect an arbitrary angle:

trisect(a: angle) =

- 1. Divide a into six equal parts by invoking sixth(a).
- 2. Ignore every other line, thus dividing a into thirds.

sixth exists \sqcap trisect exists

But we know that trisect does not exist. So, sixth cannot exist either.

Turing Reduction

A **reduction** R from L1 to L2 is one or more Turing machines such that:

If there exists a Turing machine *Oracle* that decides (or semidecides) *L*2, then the Turing machines in *R* can be composed with *Oracle* to build a deciding (or a semideciding) Turing machine for *L*1.

 $L1 \sqcap L2$ means that L1 is **reducible** to L2.

Using Reduction for Undecidability

Assume:

```
(L1 \square L2) \square (L2 \text{ is in D}) \square (L1 \text{ is in D})
```

If (*L*1 is in D) is false, then at least one of the two antecedents of that implication must be false. So:

```
If (L1 \square L2) is true,
then (L2 \text{ is in D}) must be false.
```

Using Reduction for Undecidability

Showing that *L*2 is not in D:

L2 (a new language whose if L2 in D decidability we are trying to determine)

So L2 not in D

To Use Reduction for Undecidability

- 0. Assume *Oracle* that decides *L2* exists
- 1. Choose a language L1:
 - that is already known not to be in D, and
 - that can be reduced to L2.
- 2. Define the reduction R.
- 3. Describe the composition *C* of *R* with *Oracle*:

$$C(x) = Oracle(R(x))$$

- 4. Show that *C* does correctly decide *L*1 if *Oracle* exists. We do this by showing:
- R can be implemented by Turing machines,
- C is correct:
 - If $x \square L1$, then C(x) accepts, and
 - If $x \square L1$, then C(x) rejects.

Mapping Reductions

L1 is *mapping reducible* to L2 (L1 \square M L2) iff there exists some computable function f such that:

 $\Box x \Box \Box^* (x \Box L1 \Box f(x) \Box L2)$

To decide whether x is in L1, we transform it, using f, into a new object and ask whether that object is in L2.

Note: mapping reduction is a particular case of Turing reduction.

$H \square = {< M> : TM M halts on \square}$

 $H \square$ is in SD. T semidecides it:

$$T() =$$

- 1. Run M on \square .
- 2. Accept.

T accepts <*M*> iff *M* halts on \square , so *T* semidecides H \square .

$H \square = {< M> : TM M halts on \square}$

Theorem: $H \square = \{ \langle M \rangle : TM M \text{ halts on } \square \} \text{ is not in D.}$

Proof: by reduction from H:

$$H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$$

R

$$(?Oracle)$$
 $H = { : TM M halts on }$

R is a mapping reduction from H to H \square :

$$R(< M, w>) =$$

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape (ignore its input)
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < M#>.

Proof, Continued

$$R(< M, w>) =$$

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < *M*#>.

If Oracle exists, C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - < M, $w > \square H$: M halts on w, so M# halts on everything. In particular, it halts on \square . Oracle accepts.
 - <*M*, $w> \square H$: *M* does not halt on w, so M# halts on nothing and thus not on \square . *Oracle* rejects.

A Block Diagram of C

R Can Be Implemented as a Turing Machine

R must construct < M # > from < M, w >. Suppose w =aba.

M# will be:

 $aRbRaL_{\square}M$

So the procedure for constructing ru# is:

1. Write:

- 2. For each character A III was
 - 2.1. Write *x*.
 - 2.2. If x is not the last character in w, write R.
- 3. Write Lq M.

Conclusion

R can be implemented as a Turing machine.

C is correct.

So, if *Oracle* exists:

 $C = Oracle(R(\langle M, w \rangle))$ decides H.

But no machine to decide H can exist.

So neither does Oracle.

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string \square , we could solve the more general problem of deciding whether M halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we could decide whether *M* halts on any one particular string.

But doing a reduction in that direction would tell us nothing about whether H

was decidable.

The significant thing that we just saw in this proof is that there also exists a reduction in the direction that does tell us that H
is not decidable.

We proved that H□ is "harder" than H. Clearly, H is also "harder" than H□ (H□ is a subproblem of H), so they are equally

Important Elements in a Reduction Proof

A clear declaration of the reduction "from" and "to" languages.

A clear description of R.

If *R* is doing anything nontrivial, argue that it can be implemented as a TM.

Run through the logic that demonstrates how the "from" language is being decided by the composition of *R* and *Oracle*. You must do both accepting and rejecting cases.

Declare that the reduction proves that your "to" language is not in D.

The Most Common Mistake: Doing the Reduction Backwards

Right way: to show that *L*2 is not in D:

- 1. Reduce a known hard one, L1, to L2: L1 L2
- 2. Given that *L*1 is not in D,
- 3. Reduce *L*1 to *L*2, i.e., show how to solve *L*1 (the known one) in terms of *L*2 (the unknown one)
 - Wrong way: reduce L2 (the unknown one) to L1 (the known hard):

Example (wrong):

If there exists a machine MH that solves H, then we could build a machine that solves $H \cap A$ as follows:

1. Return (*M*H(<*M*, □>)).

This proves nothing. It's an argument of the form:

If False then ...

(We show that a known hard one is harder than our language ...)

HANY = {<*M*> : there exists at least one string on which TM *M* halts}

Theorem: HANY is in SD.

Proof: by exhibiting a TM T that semidecides it.

What about simply trying all the strings in □* one at a time until one halts?

HANY is in SD

$$T(< M>) =$$

1. Use dovetailing to try M on all of the elements of \square^* :

- [[2] a [1]
- [] [3] a [2] b [1]
- [] [4] a [3] b [2] aa [1]
- [] [5] a [4] <u>b [3]</u> aa [2] ab [1]

2. If any instance of *M* halts, halt and accept.

T will accept iff M halts on at least one string. So T semidecides HANY.

HANY is not in D

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

(?Oracle) HANY = $\{ < M > :$ there exists at least one string on which TM M halts $\}$

$$R(< M, w>) =$$

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Examine *x*.
 - 1.2. If x = w, run M on w, else loop.
- 2. Return < M#>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

R can be implemented as a Turing machine.

C is correct: The only string on which M# can halt is w. So:

<*M*, w> \square H: *M* halts on w. So M# halts on w. There exists at least one string on which M# halts. *Oracle* accepts.

<*M*, w> \square H: *M* does not halt on w, so neither does M#. So there exists no string on which M# halts. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

HANY is not in D: another reduction

Proof: We show that HANY is not in D by reduction from H:

$$H = \{ < M, w > : TM M halts on input string w \}$$

R

(?Oracle) HANY = $\{ < M > :$ there exists at least one string on which TM M halts $\}$

$$R(< M, w>) =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

C is correct: M# ignores its own input. It halts on everything or nothing. So:

<*M*, $w> \square$ H: *M* halts on w, so M# halts on everything. So it halts on at least one string. *Oracle* accepts.

<*M*, w> \square H: *M* does not halt on w, so M# halts on nothing. So it does not halt on at least one string. *Oracle* rejects.

The Steps in a Reduction Proof

- Assume Oracle exists.
- Choose an undecidable language to reduce from.
- Define the reduction R.
- 4. Show that C (the composition of R with Oracle) is correct.

$HALL = {< M> : TM M halts on all inputs}$

```
We show that HALL is not in D by reduction from H□.
        H \square = \{ \langle M \rangle : TM M \text{ halts on } \square \}
(?Oracle) HALL = \{<M>: TM M halts on all inputs <math>\}
 R(< M>) =
    1. Construct the description \langle M\# \rangle, where M\#(x) operates as follows:
             1.1. Erase the tape.
             1.2. Run M.
    2. Return < M#>.
If Oracle exists, then C = Oracle(R(\langle M \rangle)) decides H \square:
   R can be implemented as a Turing machine.
    C is correct: M# halts on everything or nothing, depending on whether M halts
    on ∏. So:
         <M> \square H\square: M halts on \square, so M# halts on all inputs. Oracle accepts.
         <M> \square H\square: M does not halt on \square, so M# halts on nothing. Oracle rejects.
```

But no machine to decide H□ can exist, so neither does *Oracle*.

The Membership Question for TMs

We next define a new language:

 $A = \{ \langle M, w \rangle : M \text{ accepts } w \}.$

Note that A is different from H since it is possible that M halts but does not accept. An alternative definition of A is:

 $A = \{ \langle M, w \rangle : w \square L(M) \}.$

$A = \{ \langle M, w \rangle : w \square L(M) \}$

We show that A is not in D by reduction from H.

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

(?Oracle)
$$R = \{ \langle M, w \rangle : w \square L(M) \}$$

$$R(\langle M, w \rangle) =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept
- 2. Return < M#, w>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

R can be implemented as a Turing machine.

C is correct: M# accepts everything or nothing. So:

<*M*, w> \square H: *M* halts on w, so M# accepts everything. In particular, it accepts w. *Oracle* accepts.

< M, $w > \square$ H: M does not halt on w. M# gets stuck in step 1.3 and so accepts nothing. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

A□, **AANY**, and **AALL**

Theorem: $A \square = \{ < M > : TM \ M \ accepts \square \}$ is not in D.

Proof: Analogous to that for H□.

Theorem: AANY = {<*M*> :TM *M* accepts at least one string} is not in D.

Proof: Analogous to that for HANY.

Theorem: AALL = $\{ \langle M \rangle : L(M) = \square^* \}$ is not in D.

Proof: Analogous to that for HALL.

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}

$$AALL = \{ \langle M \rangle : L(M) = \square^* \}$$

$$R$$

(Oracle) EqTMs =
$$\{: L(Ma) = L(Mb)\}$$

$$R() =$$

- 1. Construct the description of M#(x):
 - 1.1. Accept. (M# accepts everything)
- 2. Return <*M*, *M*#>.

If *Oracle* exists, then C = Oracle(R(< M>)) decides AALL:

- C is correct: M# accepts everything. So if L(M) = L(M#), M must also accept everything. So:
 - <*M* $> <math>\square$ AALL: L(M) = L(M#). Oracle accepts.
 - <*M* $> <math>\square$ AALL: $L(M) \square L(M\#)$. *Oracle* rejects.

But no machine to decide AALL can exist, so neither does Oracle.

Sometimes Mapping Reducibility Isn't Right

Recall that a mapping reduction from *L*1 to *L*2 is a computable function *f* where:

$$\Box x \Box \Box^* (x \Box L1 \Box f(x) \Box L2).$$

When we use a mapping reduction, we return:

Oracle(f(x))

Sometimes we need a more general ability to use *Oracle* as a subroutine and then to do other computations after it returns.

{<M>: M accepts no even length strings}

 $H = \{ < M, w > : TM M \text{ halts on input string } w \}$ R

(?Oracle) $L2 = {<M> : M \text{ accepts no even length strings}}$

R(< M, w>) =

- 1. Construct the description $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return <*M*#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

C is correct: M# ignores its own input. It accepts everything or nothing, depending on whether it makes it to step 1.4. So:

<*M*, *w*> ☐ H: *M* halts on *w*. *Oracle*:

< M, $w > \square$ H: M does not halt on w. Oracle:

Problem:

{<M>: M accepts no even length strings}

 $H = \{ < M, w > : TM M \text{ halts on input string } w \}$ R

(?Oracle) $L2 = {<M> : M \text{ accepts no even length strings}}$

$$R(< M, w>) =$$

- 1. Construct the description $\langle M\# \rangle$, where M#(x) operates as follows:
- 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return <*M*#>.

If *Oracle* exists, then $C = \square Oracle(R(< M, w>))$ decides H:

R and □ can be implemented as Turing machines.

C is correct:

<*M*, w> \square H: *M* halts on w. M# accepts everything, including some even length strings. *Oracle* rejects so C accepts.

<*M*, w> \square H: *M* does not halt on w. M# gets stuck. So it accepts nothing, so no even length strings. *Oracle* accepts. So C rejects.

But no machine to decide H can exist, so neither does Oracle.

Are All Questions about TMs Undecidable?

 $L = \{ < M > : TM M contains an even number of states \}$

 $L = \{ \langle M, w \rangle : M \text{ halts on } w \text{ within 3 steps} \}.$

 $Lq = \{ < M, q > : \text{ there is some configuration } (p, u\underline{a}v) \text{ of } M, \text{ with } p \square q, \text{ that yields a configuration whose state is } q \}.$