DETERMINAREA SARCINII SPECIFICE A ELECTRONULUI

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD
Pascu Ioana-Călina
Sîrboiu Patricia Octavia
Văideanu Renata-Georgia

Scopul lucrării este studiul mișcării electronilor într-un câmp magnetic uniform și determinarea valorii sarcinii specifice a electronului.

Mai întâi, pentru verificarea preciziei de măsurare, se va întocmi un tabel cu valorile curentului prin bobinele Helmholtz pentru o tensiune de grilă de 20V, tensiunea de accelerare de 160V și raza de 4cm. Procesul se va repeta de 5 ori.

În plus, se calculează valoarea medie a curentului (I_m) , sarcina specifică medie (ε_{I_m}) și abaterea standard a mediei sarcinii specifice (σ_{I_m}) .

unde
$$I_m = \frac{\displaystyle\sum_{k=1}^{N} I_k}{N}$$
, $\sigma_{I_m} = \sqrt{\frac{\displaystyle\sum_{k=1}^{N} (I_k - I_m)^2}{N(N-1)}}$, $\varepsilon_{I_m} = \frac{\sigma_{I_m}}{I_m}$ iar N=5.

r (cm)	U (V)	I1 (A)	12 (A)	13 (A)	14 (A)	15 (A)	Im (A)	σlm (A)	εlm (A)	B (T)	e/m (C/kg)
4	160	1,76	1,79	1,72	1,74	1,76	1,754	1,568825	0,894427	0,0012	1.388 x 10^7

În următorul tabel sunt determinate valorile curentului prin bobinele Helmholtz pentru o tensiune de grilă de 20V, diverse tensiuni de accelerare și diverse raze ale traiectoriilor electronilor.

		r	= 5 cm	r	= 4 cm	r =	= 3 cm	r = 2 cm		
U (V)	I (A)	e/m (C/kg)	I (A)	e/m (C/kg)	I (A)	e/m (C/kg)	I (A)	e/m (C/kg)	
1	20	1,12	1,39E+11	1,42	1,39E+11	1,95	1,39E+11	3,13		
1	40	1,22		1,57		2,15		3,34		
1	60	1,32		1,68		2,29		3,51		
1	80	1,41		1,8		2,43		3,7		
2	00	1,49		1,88		2,55		3,89		
2	20	1,57		1,98		2,65		4,05		
2	40	1,64		2,05		2,76		-		
2	60	1,7		2,13		2,87		-		
2	80	1,75		2,2		2,94		-		
3	00	1,82		2,26		3,09		-		

Pentru determinarea valorilor sarcinii specifice s-au făcut patru reprezentări grafice, una pentru fiecare rază a traiectoriei electronilor. Graficele reprezintă dependența pătratului intensității curentului prin bobine în funcție de raportul U/r². Această dependență este o dreaptă care trece prin origine și are panta:

$$a = \frac{125}{32} \frac{R^2}{\mu_0^2 n^2} \frac{1}{\frac{e}{m}}$$

Sarcina specifică a electronului se calculează prin intermediul formulei: $\frac{e}{m} = \frac{125}{32} \frac{R^2}{\mu_0^2 n^2} \frac{1}{a}$ unde raza bobinelor R = 0.2 m, numărul de spire din fiecare bobină n = 154, constanta magnetică a vidului $\mu_0 = 4\pi \cdot 10^{-7} \cdot \text{N} \cdot \text{A}^{-2}$, iar panta a = 3e-05.

Așadar, valoarea sarcinii specifice a electronului este $\frac{e}{m} = 1,39 \cdot 10^{11}$.