FENS2024: 5276

Austrian Neuroscience

INTER-REGIONAL NEURAL DYNAMICS UNDERLYING SELF-PACED ACTION DECISIONS

M. Elbaz¹, K. Butterer¹, J. Glaser², A. Miri¹

¹Northwestern university, Evanston, United States, ²Northwestern university, Chicago, United States

Topic & Theme selection

Main Topic: I.1.h: Decision making

Secondary Topic: D.11.b: Voluntary movements

Abstract Body

Abstract body: Sixty years after the discovery of a slow monotonic drift in electroencephalographic recordings preceding voluntary self-paced actions ("the readiness potential"), its physiological underpinnings remain elusive. A classical interpretation holds that readiness potential onset reflects the decision to act, with the drift thereafter proceeding deterministically to movement onset. However, more recent analyses suggest that the readiness potential's monotonicity may be an artifact of trial averaging; rather than a slow, deterministic process, fast stochastic processes underlie self-paced decisions. In the absence of measurements resolving neural dynamics during single trials, these competing accounts have persisted. We have taken a comparative behavioral approach to address this, training mice to initiate an action in two contexts: in response to cues (instructed) and in their absence (self-paced). We can thus identify neuronal dynamics specific to self-paced decisions that are not motor-related. We used Neuropixels to simultaneously record activity in several brain regions implicated in self-paced decisions. The activity preceding movement enables above-chance classification of decision-making contexts. We parcellated this preparatory activity into subspaces shared between decision contexts or unique to self-paced decisions. Above-chance classification remains possible within both subspaces. These results imply that decision-making contexts differ through distinct temporal profiles within shared subspaces, and through activity modes specific to self-paced decisions. Finally, projecting single trial activity onto either subspace allows prediction of subsequent movement initiation. Preliminary results show that prediction accuracy improves closer to movement onset, in line with stochastic models. Collectively, our work helps arbitrate between models underlying the neural basis of self-paced action decisions.

Keywords: Yes

Keyword 1: self-paced **Keyword 2**: activity subspace

Poster Group Code

Virtual Poster Submission

I would like to submit a virtual poster to make my poster available online, free of additional cost: No I would like to receive a DOI for my virtual poster to make it permanently available and citable, free of additional cost No

Affirmations

I understand and agree the terms: Yes

Consent

I understand and agree with the FENS Terms of Use: Yes

I agree to follow the guidelines defined by FENS, including the FENS Code of Conduct: Yes