# Multi-objective & Multi-modal Optimization

### Multimodal Problems

### **Motivation 1: Multimodality**

Most interesting problems have more than one loc ally optimal solution.



#### Motivation 2: Genetic Drift

- Finite population with global mixing and selection eventually converge around one optimum
- Often might want to identify several possible peaks
- This can aid global optimisation when sub-optima has the largest basin of attra ction

# Niching Genetic Algorithms: Motivation

- Traditional genetic algorithms with elitist selection are suitable to locate the optimum of unimodal functions as they converge to a single solution of the search space.
- Real problem, however, often require the identificat ion of optima along with some local optima.
- For this purpose, **niching methods** extend the simple genetic algorithms by *promoting the formati* on of subpopulations in the neighborhood of the local optimal solutions.



#### Niching Genetic Algorithms: The Idea

- Niching methods have been developed to reduce the effect of generic dark resulting from the selection operator in the simple genetic algorithms.
- They maintain population diversity and permit genetic algorithms to explore more search space so as to identify multiple peaks, whether optimal or otherwise.
- The fitness sharing method is probably the best known and best used among the niching techniques.

### Ecological Meaning (1)

- In natural ecosystem, a niche can be viewed as an organisms task, which permits species to survive in their environment.
- Species are defined as a collection of similar organisms with similar features.
- The subdivision of environment on the basis of an organisms role reduces inter-species competition for environmental resources.
- This reduction in competition helps stable subpopulations to form around different niches in the environment.

# Implications for Evolutionary Optimisation

- Two main approaches to diversity maintenance:
- Implicit approaches:
  - ♦ Impose an equivalent of geographical separation
  - ♦ Impose an equivalent of speciation
- Explicit approaches
  - Make similar individuals compete for resources (fi tness)
  - ◆ Make similar individuals compete with each other for survival

# Implicit 1: "Island" Model Parallel EAs



Periodic migration of individual solutions between populations

#### Island Model EAs contd:

- Run multiple populations in parallel, in some kind of communication structure (usually a ring).
- After a (usually fixed) number of generations (an *Epoch*), exchange individuals with neighbours
- Repeat until ending criteria met
- Partially inspired by parallel/clustered systems

#### **Island Model Parameters 1**

- Could use different operators in each island
- How often to exchange individuals?
  - ◆ Too quick and all pops converge to same solution
  - ◆ Too slow and waste time
  - ♦ Most authors use range~ 25-150 gens
  - Can do it adaptively (stop each pop when no improvement for (say) 25 generations)

#### **Island Model Parameters 2**

- How many, which individuals to exchange?
  - ♦ Usually ~2-5, but depends on population size.
  - ♦ More sub populations usually gives better results but there can be a "critical mass" i.e. minimum size of each sub population needed
  - Martin et al found that better to exchange randomly selected individuals than best
  - ◆ Can select random/worst individuals to replace

# Implicit 2: Diffusion Model Parallel EAs

• Impose spatial structure (usually grid) in 1 population



- Current individual
- Neighbours

#### Diffusion Model EAs

- Consider each individual to exist on a point on a grid
- Selection (hence recombination) and replacement happen using concept of a neighbourhood a.k.a. *deme*
- Leads to different parts of grid searching different parts of space, good solutions spread across grid over a number of gens

#### Diffusion Model Example

- Assume rectangular grid so each individual has 8 immediate neighbours
- Equivalent of 1 generation is:
  - ◆ Pick point in population at random
  - ◆ Pick one of its neighbours using roulette wheel
  - ◆ Crossover to produce 1 child, mutate
  - Replace individual if fitter
  - Circle through population until done

### **Explicit 1: Fitness Sharing Method**

- The sharing method essentially modifies the search h landscape by *reducing the payoff in densely populated regions*.
- This method rewards individuals that uniquely ex ploit areas of the domain, while discouraging high ly similar individuals in a domain.
- This causes population diversity pressure, which helps maintain population members at local opti ma.

#### **Explicit 2: Crowding**

- Attempts to distribute individuals evenly amongst niches
- Relies on the assumption that offspring will tend to be close to parents
- Uses a distance metric in phenotype genotype space
- Randomly shuffle and pair parents, produce 2 offspring
- 2 parent/offspring tournaments pair so that d(p1,o1)+d(p2,o2) < d(p1,02) + d(p2,o1)

### Multi-objective Problems

### Multi-Objective Problems (MOPs)

- Wide range of problems can be categorised by the presence of a number of n possibly conflicting objectives:
  - ♦ Buying a car: speed vs. price vs. reliability
  - ♦ Engineering design: lightness vs strength
- Two part problem:
  - Finding set of good solutions
  - Choice of best for particular application

#### Multi-Objective Optimization

 Optimization problems with multiple, conflicting objectives.

Minimize/Maximize 
$$f_m(x), m = 1,2,...,M;$$
  
subject to  $g_j(x) \ge 0, j = 1,2,...,J;$   
 $h_k(x) = 0, k = 1,2,...,K;$   
 $x_i^{(L)} \le x_i \le x_i^{(U)}, i = 1,2,...,n;$ 

*M* objective functions:  $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))^T$ 

#### Decision Space vs. Objective Space



#### Decision Space vs. Objective Space



### Objectives in Multi-Objective Optimization

- Two goals in a MOO
  - ♦ To find a set as close as possible to the Paretooptimal front
  - ♦ To find a set of solutions as diverse as possible
  - ♦ Ex. Airline Route: Cost vs. Time
- With respect to single objective
  - ◆ Two goals instead of one
  - Dealing with two search space
    - Objective space & Decision space

#### MOPs 1: Conventional approaches

Rely on using a weighting of objective function values to give a single scalar objective function which can then be optimised:

$$f'(x) = \sum_{i=1}^{n} w_i f_i(x)$$

• To find other solutions have to re-optimise with different  $w_i$ 

#### MOPs 2: Dominance

• we say *x* dominates *y* if it is at least good on all criteria and *better* on at least one



#### Concept of Domination

- A solution  $x^1$  is said to dominate the other solution  $x^2$ , if both conditions 1 and 2 are true:
  - 1. The solution  $x^1$  is no worse than  $x^2$  in all objectives
  - 2. The solution  $x^1$  is strictly better than  $x^2$  in at least one objective

### Non-dominates Sorting Example



### Dominance Example



### Pareto-Optimality Example



#### Pareto-Optimality

- Non-dominated set
  - ♦ Among a set of solutions P, the non-dominated set of solutions P' are those that are not dominated by any member of the set P.
- Globally Pareto-optimal set
  - ◆ The non-dominated set of the entire feasible search space S is the globally Pareto-optimal set
- Locally Pareto-optimal set

### Non-dominated Sorting of a Population

- 1. Set all non-dominated sets  $P_j$ , (j=1,2,...) as empty sets. Set non-domination level counter j=1.
- 2. Find the non-dominated set P' of P
  - 1. Set solution counter i=1 and create an empty non-dominate set P'.
  - 2. For a solution  $j \in P$  (but  $j \neq i$ ), check if solution j dominates solution i, If yes, go to Step 2-4.
  - 3. If more solutions are left in P, increment j by one and go to Step 2-2; otherwise, set  $P'=P'\cup\{i\}$ .
  - 4. Increment i by one. If i ≤N, go to Step 2-2; otherwise stop and declare P' as the non-dominated set.
- 3. Update  $P_i = P'$  and  $P = P \setminus P'$ .
- 4. If  $P \neq \Phi$ , increase j by one and go to Step 2. Otherwise, stop and declare all non-dominated sets Pj, for j=1,2,...,i.

# MOPs 3: Advantages of EC approach

- Population-based nature of search means you can simultaneously search for set of points approximating Pareto front
- Don't have to make guesses about which combinations of weights might be useful
- Makes no assumptions about shape of Pareto front - can be convex / discontinuous etc

# MOPs 4: Requirements of EC approach

- Way of assigning fitness,
  - usually based on dominance
- Preservation of diverse set of points
  - similarities to multi-modal problems
- Remembering all the non-dominated points you've seen
  - usually using elitism or an archive

#### MOPs 5: Fitness Assignment

- Could use aggregating approach and change weights during evolution
  - no guarantees
- Different parts of population use different criteria
- Dominance
  - ranking or depth based
  - fitness related to whole population

### MOPs 6: Diversity Maintenance

- Usually done by niching techniques such as:
  - fitness sharing
- All rely on some distance metric in genotype / phenotype space

### MOPs 7: Remembering Good Points

- Could just use elitist algorithm
- Common to maintain an archive of non-dominated points
  - ◆ Some algorithms use this as second population that can be in recombination etc
  - ◆ Others divide archive into regions

# Multiple Objective GA

- Use the non-dominated classification of a GA population.
- Explicitly caters to emphasize non-dominated solutions and simultaneously maintains diversity in the non-dominated solutions.

## Niched-Pareto GA

- Uses a binary tournament selection scheme based on Pareto dominance.
- Solutions are selected if they dominate both the other and some small group of randomly selected solutions, but fitness sharing occurs only in the cases when both solutions are (non)dominated.

## Non-Dominated Sorting GA

- Before selection, the population is ranked on the basis of domination (Pareto ranking)
- All nondominated individuals are classified into one category.
- To maintain the diversity of the population, these classified individuals are shared with their dummy fitness values

# Non-dominated Sorting Genetic Algorithm (NSGA)

## **NSGA**

- Sort the population P according to non-domination
  - All solutions in the first set belong to the best nondominated set in the population





## **NSGA**

#### Advantages

- ♦ The assignment of fitness according to non-dominated sets
- ♦ Since better non-dominated sets are emphasized systematically, an NSGA progresses to the Pareto-optimal region.

### Disadvantages

- ◆ The sharing function approach requires the sharing parameter.
- Performance of an NSGA is sensitive to the sharing parameter

## Non-Elitist Multi-Objective EA

#### • Motivations:

- ♦ A user is usually not sure of an exact trade-off relationship among objectives.
- ♦ Equi-spaced weight does not always result to equi-spaced trade-off solutions.
- After finding diverse set of optimal solutions, it is possible to calculate the associated weights.
  - ♦ Enables to choose from different trade-offs.

# Modified NSGA-II algorithm-I



## Elitist MOEA

- The presence of elites
  - ◆ GAs converge to the global optimal solution
  - Enhance the probability of creating better offspring
- Which solutions are elites in the context of multi-objective optimization?
  - ◆ A solution can be evaluated based on nondomination rank in the population

# Controlling Elitism

 To ensure better convergence, a search algorithm may need diversity in both aspects – along the Pareto-optimal front and lateral to the Pareto-

optimal front.



## Elitist NSGA: NSGA-II

• Uses an explicit diversity-preserving mechanism.

## NSGA-II: Elitist NSGA



# Modified NSGA-II algorithm-II



# NSGA-II Procedure: Crowded Tournament Selection Operator

- A solution *i* wins a tournament with another solution *j* if any of the following conditions are true :
  - If solution *i* has a better rank, that is,  $r_i < r_j$
  - ♦ If they have the same rank but solution *i* has a better crowding distance than solution *j*, that is, r<sub>i</sub>
    = r<sub>j</sub> and d<sub>i</sub> > d<sub>j</sub>

# NSGA-II Procedure: Crowded Tournament Selection Operator

- 1. Call the number of solutions in F as l = |F|. For each i in the set, first assign  $d_i=0$ .
- 2. For each objective function sort the set in worse order, or find the sorted indices vector:  $I^m = sort(f_m, >)$ .
- Assign a large distance to the boundary solutions, and for all other solutions j=2 to (l-1):  $d_{I_{j}^{m}} = d_{I_{j}^{m}} + \frac{f_{m}^{(I_{j+1}^{m})} f_{m}^{(I_{j+1}^{m})}}{f_{m}^{max} f_{m}^{min}}$



## **NSGA-II**

- Advantages
  - ♦ No extra niching parameter is required
  - Crowding distance can be implemented in the parameter space
- Disadvantages
  - ♦ If population size is small, NSGA-II shows the poor exploration power.