Løsningsforslag, tentamen FY1001/TFY4145 torsdag 27. november 2014

- 1) Konstant $v = v_t$ betyr a = 0, dvs F = 0, dvs $mg = Dv_t^2$, dvs $v_t = \sqrt{mg/D} = \sqrt{0.400 \cdot 9.81/0.0115} = 18.5$ m/s. B.
- 2) Null nettokraft normalt skråplanet gir $N=mg\cos\theta$. Null nettokraft langs skråplanet gir $mg\sin\theta=f=\mu_k N$, dvs $\tan\theta=\mu_k=0.4$ som gir $\theta=22$ grader. C.
- 3) En ren figurbetraktning gir $D = L/3 + 2 \cdot (L/3) \cdot \cos \alpha$, der α er den søkte vinkelen. Innsetting av D = 4 og L = 6 gir $\cos \alpha = 1/2$, dvs $\alpha = 60$ grader. D.
- 4) En fotball er essensielt et kuleskall, med treghetsmoment $I_0=(2/3)MR^2$. Fra oppgave 1 har viM=400 g og R=11 cm, som gir $I_0=(2/3)\cdot 0.4\cdot 0.11^2=0.003$ kg m² = 3 g m². B.
- 5) Fire krefter virker på stigen: Mg, loddrett ned, angriper i massesenteret; N_1 , horisontalt, normalkraft fra veggen på stigen; N_2 , vertikalt opp, normalkraft fra gulvet på stigen; $f \leq \mu_s N_2$, horisontalt (mot veggen), friksjonskraft fra gulvet på stigen. Minimal μ_s finnes ved å erstatte ulikheten med likhetstegn. Newtons 1. lov vertikalt: $Mg = N_2$. N1 horisontalt: $N_1 = \mu_s N_2$. N1 for rotasjon mhp kontaktpunktet mellom gulv og stige: $Mg \cdot (L/2) \cdot \cos \pi/4 = N_1 \cdot L \cdot \cos \pi/4$. Siste ligning her gir $Mg = 2N_1$, som kombinert med de to andre gir $\mu_s = 0.5$. C.
- 6) Her kan vi bruke at $\omega_0 = \sqrt{k/m}$ hvis vi har kun en masse m festet i ei fjær, som igjen er festet i en vegg. Dersom vi lar $M \to \infty$, må det tilsvare situasjonen med veggen. Bare alternativ A stemmer med dette. A.
- 7) Total energi er $E = mv_0^2/2 = m\omega_0^2L^2/2$, og denne er bevart. I en vilkårlig posisjon er hastigheten v og høyden er $h(\theta) = L(1-\cos\theta)$. Dermed er $mv^2/2 + mgL(1-\cos\theta) = m\omega_0^2L^2/2$, som gir $v = [\omega_0^2L^2 2gL(1-\cos\theta)]^{1/2}$. B.
- 8) Baneakselerasjonen er $-g\sin\theta$, dvs $\Delta v/\Delta t = -g\sin\theta$. Da er det vel klart at riktig svar er B.
- 9) I avtar proporsjonalt med kvadratet av avstanden til sola. Dermed er $I_V/I_N = (4500/108)^2 = 1736$. C.
- 10) Med lik lengde har begge strenger lik bølgelengde for grunntonen (2L). Da er frekvensen omvendt proporsjonal med kvadratroten av strengens masse pr
 lengdeenhet (siden bølgehastigheten er det). Strengene har lik masse pr
 volumenhet. Det betyr at μ , massen pr
 lengdeenhet, er proporsjonal med d^2 , der d er strengens diameter. Dermed har vi at $f \sim 1/d$, slik at $f_D/f_E = d_E/d_D$, dvs $d_E = d_D f_D/f_E = 0.026 \cdot 146.8/82.4 = 0.046$ in. B.
- 11) Her vil trykkbølgen ha nullpunkt (node) i den åpne enden og buk i den lukkede enden. (For utsvingsbølgen vil det være omvendt.) Uansett vil grunntonen ha en kvart bølgelengde på rørets lengde, slik at $\lambda = 4L = 320$ cm. C.
- 12) Hvis frekvensen inne i ambulansen er f og lydhastigheten er v, hører dere frekvensen $f_1 = vf/(v v_S)$ når ambulansen (kilden, S, med hastighet v_S) kommer mot dere, og frekvensen $f_2 = vf/(v + v_S)$ når den kjører bort fra dere. Dette er to ligninger med to ukjente, f og v_S . Løsningen er, med $f_1 = 300$ Hz og $f_2 = 250$ Hz, $v_S/v = 1/11$ og $f = f_1(v v_S)/v$. Med v = 340 m/s (det er en varm sommerdag, så lydhastigheten er forholdsvis stor) finner vi $v_S = 31$ m/s, dvs 111 km/h, og f = 273 Hz. A.
- 13) Konstruktiv interferens når $d\sin\theta=n\lambda$. Vi er ute etter θ for n=1. Her er $\sin\theta_1\simeq\tan\theta_1=y_1/L$, med

L=1.0 m. Formelen for konstruktiv interferens gir $\sin \theta_1 = \lambda/d = 0.0632$. Dermed: $y_1=0.0632$ m = 6.3 cm. B.

- 14) Tyngden til et vannvolum V med høyde h, tverrsnitt A og massetetthet ρ er ρgAh . Trykkøkningen fra overflaten og ned til dybden h er dermed ρgh , og med $\rho=1000,\ g\simeq 10$ og h=10 (alle i SI-enheter) blir $\Delta p=10^5$ Pa, som er ca 1 atm. (Til eksamen er det ikke nødvendig å vite at et trykk på 1 atm tilsvarer ca 10^5 N/m² (= 10^5 Pa). Slike ting oppgis.) A.
- 15) Trykket der vannet skal strømme ut inne i sugepumpa kan vanskelig bli mindre enn null. Trykket ved brønnvannets overflate er ca 1 atm. Denne trykkforskjellen på 1 atm kan tilsvarer en vannsøyle på 10 meter. Dermed er riktig svar A.
- 16) Systemets totale energi er ganske enkelt summen av hvert enkelt fotons energi:

$$E = E_1 + E_2 = (200 + 100) \,\text{MeV} = 300 \,\text{MeV}.$$

Foton nr 1 har impuls $p_1 = E_1/c = 200 \,\text{MeV}/c$ i x-retning $(\mathbf{p}_1 = p_1 \hat{x})$. Foton nr 2 har impuls $p_2 = E_2/c = 100 \,\text{MeV}/c$ i y-retning $(\mathbf{p}_2 = p_2 \hat{y})$. Systemets totale impuls er (vektor-)summen av hvert enkelt fotons impuls:

$$p = p_1 + p_2 = 200 \,\mathrm{MeV}/c\,\hat{x} + 100 \,\mathrm{MeV}/c\,\hat{y}.$$

Absoluttverdi:

$$p = \sqrt{p_1^2 + p_2^2} = \sqrt{5} \cdot 100 \,\text{MeV}/c.$$

Retning (θ relativt positiv x-akse):

$$\tan \theta = \frac{p_2}{p_1} \quad \Rightarrow \quad \theta = \arctan 0.5 = 26.6^{\circ}.$$

For en enkelt partikkel med energi E og impuls p er massen:

$$m = \frac{1}{c^2} \sqrt{E^2 - (pc)^2} = \sqrt{300^2 - (\sqrt{5} \cdot 100)^2} \,\text{MeV}/c^2 = 200 \,\text{MeV}/c^2.$$

Retning: Gitt ved vinkelen $\theta = 26.6^{\circ}$ funnet ovenfor.

Hastighet: Vi har $E = \gamma mc^2$, som med $\gamma^{-2} = 1 - v^2/c^2$ gir

$$v = c\sqrt{1 - (mc^2/E)^2} = c\sqrt{1 - (200/300)^2} = \sqrt{5}c/3 \simeq 0.745c.$$

17) Før kollisjonen har den ene partikkelen energi $E_1 = mc^2 + K_1$ mens den andre har energi mc^2 . Total energi er derfor $E = K_1 + 2mc^2$, og denne energien er bevart. Før kollisjonen har den ene impuls $\mathbf{p}_1 = p_1 \,\hat{x}$ mens den andre har null impuls. Total impuls, en bevart størrelse, er derfor $\mathbf{p} = p_1 \,\hat{x}$. Etter kollisjonen har de to partiklene like stor energi E_2 , slik at $K_1 + 2mc^2 = 2E_2$. De to partiklene har videre like stor impuls p_2 i absoluttverdi etter kollisjonen. Impulsbevarelse gir dermed

$$p_1 = 2p_2 \cos(\theta/2)$$

$$\Rightarrow 4\cos^2(\theta/2) = (p_1/p_2)^2$$

For den innkommende partikkelen gjelder $p_1^2c^2=E_1^2-m^2c^4$, og for hver av partiklene etter kollisjonen gjelder $p_2^2c^2=E_2^2-m^2c^4$. Innsetting av $E_1=K_1+mc^2$ i den første av disse og innsetting av $E_2=K_1/2+mc^2$ i den andre gir

$$p_1^2c^2 = (K_1 + mc^2)^2 - m^2c^4 = K_1(K_1 + 2mc^2)$$

 $p_2^2c^2 = (K_1/2 + mc^2)^2 - m^2c^4 = K_1(K_1/4 + mc^2)$

Disse to ligningene gir, ved å dividere den første med den andre, og deretter kvadrere, et uttrykk for $(p_1/p_2)^2$, og dermed for $4\cos^2(\theta/2)$:

$$4\cos^{2}(\theta/2) = \frac{K_{1} + 2mc^{2}}{K_{1}/4 + mc^{2}} = \frac{4K_{1} + 8mc^{2}}{4mc^{2} + K_{1}}$$

$$\Rightarrow \cos\theta = 2\cos^{2}(\theta/2) - 1 = \frac{2K_{1} + 4mc^{2}}{4mc^{2} + K_{1}} - 1$$

$$= \frac{K_{1}}{4mc^{2} + K_{1}}$$

Med andre ord, N=4 i det oppgitte uttrykket for $\cos\theta.$

I den ikke-relativistiske grensen $K_1 \ll mc^2$ blir $\cos \theta = 0$, dvs $\theta = \pi/2$. Det er et velkjent resultat for elastisk kollisjon mellom to legemer i newton-mekanikk.

I den sterkt relativistiske grensen $K_1 \gg mc^2$ blir $\cos \theta = 1$, dvs $\theta = 0$. Partiklene spres i liten grad ut mot siden og fortsetter essensielt rett fram! Dette ble verifisert eksperimentelt av F. C. Champion i 1932 (Proc. Roy. Soc. A 136, 630 (1932); elastiske kollisjoner mellom innkommende elektroner med høy energi – hastigheter opp mot 0.94c – og elektronene i atomer i lufta i et tåkekammer).

18) Figuren nedenfor viser den skiveformede planeten sett fra siden:

Av symmetrigrunner må g på skivens akse peke mot skivens massesenter. I figuren er bidraget dg fra en ring med radius ρ og bredde $d\rho$ illustrert. Alle deler av denne ringen er i samme avstand $s=\sqrt{r^2+\rho^2}$ fra posisjonen r hvor vi skal bestemme feltet. Ringen har areal $dA=2\pi\rho\,d\rho$, og dermed masse $dm=M\,dA/A=M\cdot 2\pi\rho\,d\rho/\pi R^2$. Horisontale komponenter av g kansellerer. Vertikalkomponenten finner vi ved å multiplisere med $\cos\theta=r/s$. Dermed:

$$dg = \frac{G \, dm \cos \theta}{s^2} = \frac{G \, M \cdot 2\pi \rho \, d\rho \cdot r/s}{\pi R^2 \cdot s^2} = \frac{2G M \, r}{R^2} \cdot \frac{\rho \, d\rho}{(\rho^2 + r^2)^{3/2}}.$$

Integralet over ρ fra 0 til R gir:

$$g = \int dg = \frac{2GMr}{R^2} \int_0^R \frac{\rho \, d\rho}{(\rho^2 + r^2)^{3/2}} = \frac{2GMr}{R^2} \Big|_0^R \left(-\frac{1}{\sqrt{\rho^2 + r^2}} \right) = \frac{2GM}{R^2} \left(1 - \frac{r}{\sqrt{r^2 + R^2}} \right).$$

Langt unna planeten, $r \gg R$, kan vi med god tilnærmelse skrive

$$1 - \frac{r}{\sqrt{r^2 + R^2}} = 1 - \frac{1}{\sqrt{1 + R^2/r^2}} \simeq 1 - \left(1 - \frac{R^2}{2r^2}\right) = \frac{R^2}{2r^2},$$

slik at

$$g(r) \simeq \frac{GM}{r^2}$$
.

Og slik må det være: Veldig langt unna vil skiva se ut som en punktmasse i origo, og som kjent vil en punktmasse M i origo gi opphav til gravitasjonsfeltet GM/r^2 i en avstand r.

Mer overraskende er trolig resultatet for $r \to 0$, dvs meget nær skiva. Da blir feltet ganske enkelt

$$g \simeq \frac{2GM}{R^2},$$

dvs konstant, og uavhengig av avstanden r! Tilsvarende resultat vil du finne for det elektriske feltet fra en uniformt ladet sirkulær skive, se Elmag etter jul.