Πρόβλημα

• Δίνεται το Πολυώνυμο :

$$P(x) = p_0 x^n + p_1 x^{n-1} + ... + p_{n-1} x + p_n$$

 Να γίνει πρόγραμμα C το οποίο να υπολογίζει τους συντελεστές του πηλίκου και το Υπόλοιπο της Διαίρεσης του Πολυωνύμου P(x) δια του Μονώνυμου :

$$x - \xi$$

με τη βοήθεια του σχήματος του Horner.

Αλγόριθμος main()

- 1. Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbb{X})$ στον πίνακα \mathbb{P} .
- 2. **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 3. Διαβάζουμε το ξ.
- 4. Υπολογίζουμε τις τιμές του πηλίκου Q(x) στον πίνακα q, σύμφωνα με το σχήμα του Horner :
 - a) $q_0 = p_0$
 - b) Για τους συντελεστές q_i , i = 1,2,...,n:

$$q_i = p_i + q_{i-1} * \xi$$

- 5. **Εμφανίζουμε** τις τιμές των συντελεστών $q_0, q_1, ..., q_{n-1}$
- 6. Εμφανίζουμε την τιμή του υπολοίπου της διαίρεσης (συντελεστής q_n).

3.1 Αριθμητικές Σταθερές

• Η δήλωση του πλήθους των στοιχείων των πινάκων p και q στο προηγούμενο πρόγραμμα μπορεί να γίνει με την εντολή:

```
#define n 3
```

Παρατηρήσεις

Οι Σταθερές μπορούν να δηλωθούν στη αρχή του προγράμματος πριν τη συνάρτηση main() με την εντολή #define και προηγούνται των δηλώσεων των μεταβλητών ή με την εντολή const στην αρχή ή στο τμήμα δηλώσεων μεταβλητών. Π.χ.

```
const int n = 3;
```

 Οι Αριθμητικές Σταθερές στη C μπορεί να είναι Ακέραιες ή Πραγματικές και δεν αλλάζουν τιμή κατά τη διάρκεια του προγράμματος.

3.2 Δήλωση Μονοδιάστατων Πινάκων

• Η δήλωση γενικά ενός πίνακα pin 3 θέσεων για πραγματικούς αριθμούς γίνεται με την εντολή:

```
float pin[3];

με στοιχεία pin[0], p[1], ..., p[2].
```

Παρατηρήσεις

• Η δήλωση του πλήθους των στοιχείων του πίνακα μπορεί να γίνει με τη δήλωση σταθεράς. Έτσι, θα είχαμε το ίδιο αποτέλεσμα με τις εντολές:

```
#define n 3
float pin[n];
```

3.3 Διάβασμα Στοιχείων ενός Μονοδιάστατου Πίνακα

• Με την ομάδα εντολών :

```
for ( i = 0; i<=n; i++ )
{
printf("Dose timh gia to p[%d ] : ",i);
scanf ("%f",&p[i]);
}</pre>
```

διαβάζουμε n+1=4 πραγματικούς αριθμούς απ' το πληκτρολόγιο χωρίς format (έναν αριθμό σε κάθε γραμμή) και τους αποθηκεύουμε στον πίνακα των συντελεστών p.

Παρατήρηση

Αν θέλαμε να χρησιμοποιήσουμε το πρόγραμμα για συγκεκριμένο πολυώνυμο,
 π.χ. το p(x) = x³ - 4x, θα μπορούσαμε να δώσουμε τις τιμές των στοιχείων του πίνακα p στην εντολή δήλωσης του πίνακα :

```
float ksi,q[n+1];
float p[n+1] = {1,0,-4,0};
```

3.4 Εμφάνιση η Στοιχείων Μονοδιάστατου Πίνακα

• Με την ομάδα εντολών :

```
for ( i = 0; i<=n; i++ )
{
printf("p[%d] = %f\n",i, p[i]);
}</pre>
```

εμφανίζουμε στην οθόνη n+1=4 πραγματικούς αριθμούς (τα στοιχεία του πίνακα των συντελεστών p και τον αντίστοιχο δείκτη) χωρίς format.

 Να τροποποιηθεί η Άσκηση 3.1, ώστε ο Βαθμός του Πολυωνύμου να δίνεται απ' το πληκτρολόγιο.

Αλγόριθμος main()

- 1. Διαβάζουμε το Βαθμό του Πολυωνύμου n.
- 2. Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbb{X})$ στον πίνακα $\mathbb{P}(\mathbb{X})$
- 3. **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 4. Διαβάζουμε το ξ.
- 5. Υπολογίζουμε τις τιμές του πηλίκου Q(x) στον πίνακα q, σύμφωνα με το σχήμα του Horner:
 - a) $q_0 = p_0$
 - b) Fia tous suntelestés q_i , i=1,2,...,n : $q_i = p_i + q_{i-1} * \xi$
- 6. **Εμφανίζουμε** τις τιμές των συντελεστών $q_0, q_1, ..., q_{n-1}$
- 7. **Εμφανίζουμε** την τιμή του υπολοίπου της διαίρεσης (συντελεστής $q_n = P(\xi)$).

3.5 Πέρασμα Πινάκων σαν Παραμέτρων σε functions

- Αν θέλαμε να χρησιμοποιήσουμε μια function που θα καλείται από το πρόγραμμα main() να υλοποιήσει το Βήμα 5 θα έπρεπε να περάσουμε τον πίνακα p σαν παράμέτρο. Για το πέρασμα Πινάκων σαν παραμέτρων ισχύουν τα παρακάτω:
- ◆ Οι Πίνακες Παράμετροι θα πρέπει να δηλωθούν στο κυρίως Πρόγραμμα.
- ◆ Ο Πίνακας περνάει σαν παράμετρος με το όνομά του και αγκύλες.
- ◆ Ο Πίνακας περνάει **με αναφορά** (by reference), οπότε, αν αλλάξει το περιεχόμενό του επιστρέφει τις νέες τιμές.

Να τροποποιηθεί η Άσκηση 3.2, ώστε ο Υπολογισμός του Υπολοίπου q_n να γίνεται με τη χρήση της συνάρτησης – function Horner1(), η κλήση της οποίας θα επιστρέφει το υπόλοιπο της διαίρεσης P(x)/(x-ξ) και στην οποία θα εμφανίζουμε τους συντελεστές του πηλίκου.

Αλγόριθμος main()

- 1. Διαβάζουμε το Βαθμό του Πολυωνύμου n.
- 2. Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbf{x})$ στον πίνακα $\mathbb{P}(\mathbf{x})$
- 3. **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 4. Διαβάζουμε το ξ.
- 5. Εμφανίζουμε την τιμή του υπολοίπου της διαίρεσης $P(x)/(x-\xi)$ με την κλήση της συνάρτησης Horner1 (n,p,ksi).

Αλγόριθμος function Horner1 ()

- 1) Υπολογίζουμε τις τιμές του πηλίκου Q(x) στον πίνακα q, σύμφωνα με το σχήμα του Horner:
 - a) $q_0 = p_0$
 - b) Fia tous suntelestés $q_{_{i}}$, i=1,2,...,n : $q_{_{i}}=p_{_{i}}+q_{_{i-1}}*\xi$
- **2) Εμφανίζουμε** τους συντελεστές του πηλίκου $q_0, q_1, ..., q_{n-1}$
- 3) Επιστρέφουμε το Υπόλοιπο $q_n = P(\xi)$.

Να τροποποιηθεί η Άσκηση 3.3, ώστε ο Υπολογισμός του Υπολοίπου q_n να γίνεται με τη χρήση της συνάρτησης – function Horner2(), η κλήση της οποίας θα επιστρέφει όλες τις τιμές του πίνακα q, ο οποίος πρέπει να περάσει σαν παράμετρος, έτσι ώστε να εμφανίσουμε τους συντελεστές του πηλίκου στη main().

Αλγόριθμος main()

- 1) **Διαβάζουμε** το Βαθμό του Πολυωνύμου **n**.
- 2) Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbb{X})$ στον πίνακα $\mathbb{P}(\mathbb{X})$
- 3) **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 4) Διαβάζουμε το ξ.
- 5) Εμφανίζουμε την τιμή του υπολοίπου της διαίρεσης $P(x)/(x-\xi)$ με την κλήση της συνάρτησης Horner2 (n,p,q,ksi).
- **6) Εμφανίζουμε** τους συντελεστές του πηλίκου $q_0, q_1, ..., q_{n-1}$

Αλγόριθμος function Horner2 ()

- 1) Υπολογίζουμε τις τιμές του πηλίκου Q(x) στον πίνακα q, σύμφωνα με το σχήμα του Horner:
 - a) $q_0 = p_0$
 - b) Fia tous suntelestés q_i , i = 1,2,...,n:
 - $q_{i} = p_{i} + q_{i-1} * \xi$
- 2) Επιστρέφουμε το Υπόλοιπο $q_n = P(\xi)$.

Να τροποποιηθεί η Άσκηση 3.4, ώστε ο Υπολογισμός του Υπολοίπου q_n να γίνεται με τη χρήση της συνάρτησης – function Horner2, η κλήση της οποίας θα επιστρέφει όλες τις τιμές του πίνακα q, ο οποίος πρέπει να περάσει σαν παράμετρος, έτσι ώστε να ξανακαλέσουμε τη συνάρτηση για τον υπολογισμό και της πρώτης παραγώγου.

Αλγόριθμος main()

- 1. Διαβάζουμε το Βαθμό του Πολυωνύμου n.
- 2. Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbf{x})$ στον πίνακα $\mathbb{P}(\mathbf{x})$
- 3. **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 4. Διαβάζουμε το ξ.
- 5. Εμφανίζουμε την τιμή του υπολοίπου της διαίρεσης $P(x)/(x-\xi)$ με την κλήση της συνάρτησης Horner2 (n,p,q,ksi)
- **6. Εμφανίζουμε** τους συντελεστές του πηλίκου $q_0, q_1, ..., q_{n-1}$
- 7. Εμφανίζουμε την τιμή του υπολοίπου της διαίρεσης $Q(x)/(x-\xi)$ με την κλήση της συνάρτησης Horner2 (n-1, q, r, ksi)
- 8. Εμφανίζουμε τους συντελεστές του νέου πηλίκου \mathbf{r}_0 , \mathbf{r}_1 ,..., $\mathbf{r}_{\mathsf{n-2}}$.

Aλγόριθμος function Horner2 (n,p,q,ksi)

- 1) Υπολογίζουμε τις τιμές του πηλίκου Q(x) στον πίνακα q, σύμφωνα με το σχήμα του Horner:
 - a) $q_0 = p_0$
 - b) Fia tous suntelestés $\,\boldsymbol{q}_{_{i}}, i=1,\!2,\!...,\!n\,$:

$$q_i = p_i + q_{i-1} * \xi$$

2) Επιστρέφουμε το Υπόλοιπο (q.)

Πρόβλημα

• Να γίνει πρόγραμμα C, το οποίο να προσομοιώνει τη συνάρτηση sqrt(num) για τον υπολογισμό της τετραγωνικής ρίζας ενός αριθμού num, λύνοντας την sticklimits sticklimits sticklimits sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sqrt(num) = sticklimits sqrt(num) = <math>sticklimits sticklimits sqrt(num) = sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sticklimits sqrt(num) = sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sticklimits sqrt(num) = sticklimits sticklimits sqrt(num) = <math>sticklimits sticklimits sticklimits sqrt(num) = st

Αλγόριθμος main()

- 1. Διαβάζουμε τον αριθμό num.
- 2. Δίνουμε αρχική τιμή στο x και στο oldx.
- 3. Εμφανίζουμε την τιμή του num, του x και του sqrt (num)
- 4. Για Όσο $(x oldx) > 10^{-15}$

Αποθηκεύουμε το x στο oldx

Υπολογίζουμε το νέο x σύμφωνα με τη μέθοδο <code>Newton-Raphson</code> $x=x-\frac{f(x)}{f^{'}(x)}$

Εμφανίζουμε την τιμή του num, του x και του sqrt (num)

• Να τροποποιηθεί η Άσκηση 3.6, ώστε ο υπολογισμός της τετραγωνικής ρίζας ενός αριθμού num να γίνεται με την κλήση της συνάρτησης mysgrt (num).

Αλγόριθμος main()

- 1. Διαβάζουμε τον αριθμό num.
- 2. Εμφανίζουμε την τιμή του num, του mysqrt (num) και του sqrt (num)

Αλγόριθμος function mysqrt (num)

- 1. Δίνουμε αρχική τιμή στο x και στο oldx.
- 2. $\Gamma \times (x old \times 10^{-15})$

Αποθηκεύουμε το x στο oldx

Υπολογίζουμε το νέο x σύμφωνα με τη μέθοδο <code>Newton-Raphson</code> $x=x-\frac{f(x)}{f^{'}(x)}$

• Να γίνει πρόγραμμα C, το οποίο να βρίσκει όλες τις ρίζες μιας εξίσωσης που περιέχονται στο διάστημα [a, b] με τη βοήθεια της μεθόδου Newton-Raphson. Το διάστημα [a, b] θα χωρίζεται με το βήμα h στα υποδιαστήματα [a,a+h], [a+h,a+2h],...., [b-h,b], στο καθένα απ' τα οποία θα ελέγχεται αν υπάρχει ρίζα. Σ' αυτή την περίπτωση, θα χρησιμοποιείται ο αλγόριθμος 3.6 για την εύρεσή της. Η εξίσωση θα δηλώνεται με την εντολή #define.

Αλγόριθμος main()

- 1. Διαβάζουμε τα όρια του διαστήματος των ριζών a, b και το βήμα h.
- 2. **Για** το κάθε υποδιάστημα [a,a+h], [a+h,a+2h],..., [b-h,b]

Αν υπάρχει ρίζα στο υποδιάστημα τότε

Δίνουμε αρχική τιμή στο x και στο oldx τα άκρα του υποδιαστήματος

Εμφανίζουμε την τιμή του x και του f(x)

Για Όσο
$$(x - old x > 10^{-15})$$

Αποθηκεύουμε το x στο oldx

Υπολογίζουμε το νέο x σύμφωνα με τη μέθοδο <code>Newton-Raphson x=x-f(x) f'(x)</code>

Εμφανίζουμε την τιμή του x και του f(x)

Πρόβλημα

• Δίνεται το Πολυώνυμο $P(\mathbf{x}) = p_0 \mathbf{x}^n + p_1 \mathbf{x}^{n-1} + ... + p_{n-1} \mathbf{x} + p_n$. Να γίνει πρόγραμμα C, το οποίο να υπολογίζει **όλες** τις ρίζες του Πολυωνύμου που περιέχονται στο διάστημα [a, b] με τη βοήθεια της μεθόδου των **Newton-Raphson.** Το διάστημα [a, b] θα χωρίζεται με το βήμα h στα υπο-διαστήματα [a,a+h], [a+h,a+2h],..., [b-h,b], στο καθένα απ΄ τα οποία θα ελέγχεται αν υπάρχει ρίζα. Σ΄ αυτή την περίπτωση, θα χρησιμοποιείται ο αλγόριθμος 3.6 για την εύρεσή της. Για τον υπολογισμό της Τιμής του Πολυωνύμου και της τιμής της Παραγώγου του Πολυωνύμου (οπουδήποτε στον αλγόριθμο εμφανίζεται το $\mathbf{P}(\mathbf{x})$ ή το $\mathbf{P}'(\mathbf{x})$)θα χρησιμοποιηθεί η συνάρτηση Horner της Εργαστηριακής Άσκησης 3.4.

Αλγόριθμος main()

- 1. Διαβάζουμε το Βαθμό του Πολυωνύμου n.
- 2. Διαβάζουμε τους συντελεστές $p_0, p_1, ..., p_n$ του Πολυωνύμου $\mathbb{P}(\mathbb{X})$ στον πίνακα $\mathbb{P}(\mathbb{X})$
- 3. **Εμφανίζουμε** τους συντελεστές του Πολυωνύμου $p_0, p_1, ..., p_n$.
- 4. **Διαβάζουμε** τα όρια του διαστήματος των ριζών **a**, **b** και το βήμα **h**.
- 5. **Για** το κάθε υποδιάστημα [a,a+h],[a+h,a+2h],...,[b-h,b]

Αν υπάρχει ρίζα στο υποδιάστημα τότε

Δίνουμε αρχική τιμή στο x και στο oldx τα άκρα του υποδιαστήματος

Εμφανίζουμε την τιμή του x και του P(x)

Για Όσο
$$(x - old x) > 10^{-15}$$

Αποθηκεύουμε το x στο oldx

Υπολογίζουμε το νέο x σύμφωνα με τη μέθοδο Newton-Raphson $x=x-\frac{P(x)}{P^{'}(x)}$

Εμφανίζουμε την τιμή του x και του P (x)