

Analyse Numérique

Correction série d'exercices N°2 Interpolation et approximation polynomiale

Niveau : 3^{ème} année Année universitaire : 2022-2023

Exercice 1 On considére les points (-2,4); (0,0);(1,0) et (2,4). Parmi les polynômes suivants, lequel est le polynôme d'interpolation P aux quatre points et justifier votre réponse.

(1)
$$P_1(X) = X^4 + \frac{2}{3}X^3 + 3X^2 + \frac{8}{3}X$$

(2)
$$P_2(X) = \frac{4}{3}X^2 - \frac{4}{3}$$

(3)
$$P_3(X) = \frac{1}{3}X^3 + X^2 - \frac{4}{3}X$$

(4)
$$P_4(X) = \frac{1}{6}X^4 + X^3 + \frac{2}{3}X^2 + X$$

Correction:

On ne demande pas ici de calculer le polynôme mais de l'identifier, on va donc utiliser la caractérisation du polynôme d'interpolation de Lagrange associé aux points.

 $P \text{ polyn} \hat{o} \text{me d'interpolation de Lagrange aoocié à } x_i \Leftrightarrow \deg(P) \leq 3 \text{ et} \begin{cases} & P(\text{-}2) = 4; \\ & P(0) = 0; \\ & P(1) = 0; \\ & P(2) = 4. \end{cases}$

Il n'y a qu'à trouver le polyn \hat{o} me qui satisfait toute les propriètés. Existance et unicité du polyn \hat{o} me :

- Le polynôme P_1 est de degré 4 donc éliminé
- Le polynôme P_2 a un terme constant non nul il ne s'annule pas en 0 donc éliminé
- Le polynôme P_3 on vérifie qu'il convient et P_4 ne vérifie pas P(1)=0

Exercice 2 (Examen Mai 2019)

Partie I: Interpolation polynomial

- (a) Justifier l'existence d'un unique polynôme $P_2 \in \mathbb{R}_2[X]$ interpolant les points (-2, 16), (0, -4) et (2, 8).
- (b) Déterminer l'expression du polynôme P₂ par une méthode (vue en cours) de votre choix

Partie II: Approximation au sens des moindres carrées

Dans l'objectif d'étudier le chemin de freinage d'un véhicule, correspondant à la distance parcourue en mètres (m) du début du freinage jusqu'à l'arrêt total du véhicule, en fonction de la vitesse en Kilomètres par heure (Km/h) de ce dernier, 12 expériences indépendantes ont été réalisées. Les résultats obtenus sont présentés dans le tableau ci-dessous. On note par $X = (x_i)_{1 \le i \le 12}$ et $Y = (y_i)_{1 \le i \le 12}$, où x_i , et y_i , désignent, respectivement, la vitesse du véhicule et le chemin de freinage associés à l'éxpérience i.

i	1	2	3	4	5	6	7	8	9	10	11	12
x_i	40	50	60	70	80	90	100	110	120	130	140	150
y_i	9	11	20	27	39	45	58	78	79	93	108	12

(a) Déterminer les coefficients $Z=\begin{pmatrix} a \\ b \end{pmatrix}$ de la droite f(t,Z)=a+bt, qui ajuste au mieux les points $(x_i;y_i)_{1\leq i\leq 12}$ au sens des moindres carrées. On donne les valeurs des sommes suivantes :

$$\sum_{i=1}^{12} x_i = 1140; \ \sum_{i=1}^{12} x_i^2 = 122600; \ \sum_{i=1}^{12} y_i = 691; \ \sum_{i=1}^{12} x_i y_i = 80840$$

(b) Rouler à une vitesse de 105Km/h, le conducteur de ce véhicule pourrait-il éviter un obstacle survenant à une distance de 60m? Justifir votre réponse.

Correction:

Partie I: Interpolation polynomiale

- (a) Les abscisses des points (-2,16); (0,-4) et (2,8) sont deux à deux distincts donc il existe un unique polynôme $P_2 \in \mathbb{R}_2[X]$ passant par ces points. un unique polynôme $P_2 \in \mathbb{R}_2[X]$ passant par ces points.
- (b) Méthode de Lagrange :

On considère les polynôme $(L_i)_{0 \le i \le 2}$ de Lagrange associés aux (-2, 16); (0, -4) et (2, 8).

$$L_0(x) = \frac{x(x-2)}{8}, \ L_1(x) = \frac{x^2-4}{-4}, \ L_2(x) = \frac{x(x+2)}{8}$$

Alors $P_2(x) = 16L0(x) - 4L_1(x) + 8L_2(x) = 4x^2 - 2x - 4$

Méthode de Newton:

Le polynôme de Newton est donné par :

$$P_2(x) = \alpha_0 w_0(x) + \alpha_1 w_1(x) + \alpha_2 w_2(x)$$

avec

$$\begin{cases} w_0(x) = 1 \\ w_1(x) = x + 2 \\ w_2(x) = x(x+2) \end{cases}$$

Détermination des coefficients α_0,α_1 et α_2 par la méthode des differences divisées : On a : $x_0=-2,y_0=16$

$$x_1 = 0, y_1 = -4$$

$$x_2=2,\ y_2=8$$
 alors $\alpha_0=16=f[x_0],\alpha_1=f[x_0,x_1]=-10,\alpha_2=\frac{f[x_1,x_2]-f[x_0,x_1]}{x_2-x_0}=4$ Ainsi $\alpha_0=16,\alpha_1=-10$ et $\alpha_2=4$ d'où :

$$P_2(x) = 16w_0(x) - 10w_1(x) + 4w_2(x) = 4x^2 - 2x - 4$$

Partie II : Approximation au sens des moindres carrées

(a) Le vecteur $Z = \begin{pmatrix} a \\ b \end{pmatrix}$ de la droite f(t,Z) = a + bt, qui ajuste au mieux les points $(x_i; y_i)_{1 \le i \le 12}$ au sens des moindres carrées

$$F(Z,X) = \sum_{i=1}^{12} \left(f(x_i, Z) - y_i \right)^2$$

Il est donné par la relation suivante : $Z^* = ({}^tAA)^{-1}tAY$ avec $A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_{12} \end{pmatrix}$ On a :

$${}^{t}AA = \begin{pmatrix} 12 & \sum_{i=1}^{12} x_i \\ \sum_{i=1}^{12} x_i & \sum_{i=1}^{12} x_i^2 \\ \sum_{i=1}^{12} x_i & \sum_{i=1}^{12} x_i^2 \end{pmatrix} = {}^{t}AA = \begin{pmatrix} 12 & 1140 \\ 1140 & 122600 \end{pmatrix}$$

Cherchons $({}^tAA)^{-1}$? On sait que $({}^tAA)^{-1} = \frac{1}{\det({}^tAA)}{}^tcom({}^tAA)$ avec $\det({}^tAA) = 12 \times 122600 - (1140)^2 = 171600$ et $com({}^tAA) = \begin{pmatrix} 122600 & -1140 \\ -1140 & 12 \end{pmatrix}$ alors $({}^tAA)^{-1} = \frac{1}{171600} \begin{pmatrix} 122600 & -1140 \\ -1140 & 12 \end{pmatrix}$ D'autre part ${}^tAY = \begin{pmatrix} 691 \\ 80840 \end{pmatrix}$ Ainsi

$$Z^* = ({}^t AA)^{-1t} AY = \begin{pmatrix} -43, 36 \\ 1, 06 \end{pmatrix}$$
 Donc $f(t, Z) = -43, 36 + 1.06t$

- (b) Une valeur estimée du chemin de freinage du véhicule à une vitesse de 105km/h est donné par $f(10.5; Z^*) = -43.36 + 1.06 \times 10.5 = 68.21$. Le conducteur du véhicule ne pourra pas éviter l'obstacle.
- Exercice 3 (1) Construire le polynôme P d'interpolation de Lagrange aux points (-1, e); (0, 1) et (1, e).
 - (2) Sans faire de calcul, donner l'expression du polynôme de Lagrange Q qui interpole les trois points (-1,-1); (0,0) et (1,-1).
 - (3) Trouver le polynôme de l'espace vectoriel $Vect(1, X, X^2)$ qui interpole les trois points (-1, -1); (0, 0) et (1, -1).

Correction:

1) Le polynôme P d'interpolation de Lagrange de degré n qui interpole (n+1) points $\{(x_i,y_i); i=0,...,n\}$ s'écrit :

$$P_n(x) = \sum_{i=0}^n y_i \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}$$

ici n=2 donc on a :

$$P(x) = y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

$$= \frac{ex(x-1)}{2} - (x+1)(x-1) + \frac{e(x+1)x}{2} = (e-1)x^2 + 1$$

2) Il suffit de changer les coefficients y_i dans l'expression précedente :

$$Q(x) = -\frac{x(x-1)}{2} - \frac{(x+1)x}{2} = -x^2$$

3) Il s'agit de trouver un polynôme P(x) qui soit combinaison linèaire de deux polynômes assigès (ie : $P(x) = \alpha + \beta x + \gamma x^2$) et qui interpole les 3 points (-1, -1); (0, 0) et (1, -1).

$$\begin{cases}
P(-1)=1; \\
P(0)=0; \\
P(1)=-1;
\end{cases}$$

ce qui donne $\alpha = 0; \beta = 0$ et $\gamma = -1$ le polynôme cherché est donc $P(x) = -x^2$

Exercice 4 Soit la fonction $f(x) = \frac{1}{1+x^2}$

- (1) Déterminer le polynôme d'interpolation de Newton aux points -2, -1, 0 et 1.
- (2) Donner la valeur approchée de f au point x = 0.5
- (3) Calculer l'erreur à ce point.
- (4) Estimer l'erreur sur l'intervalle [-2, 1].

Correction:

1) En utilisant la méthode de Newton,

$$P_3(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1) + \beta_3(x - x_0)(x - x_1)(x - x_2),$$

avec

$$\beta_0 = y_0 = f(x_0) = 0.2$$

 $\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = 0.3$

$$\beta_2 = [y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - 0.3}{x_2 - x_0} = 0.25$$

$$\beta_3 = [y_0, y_1, y_2, y_3] = \frac{[y_1, y_2, y_3] - [y_0, y_1, y_2]}{x_3 - x_0} = \frac{\frac{[y_2, y_3] - [y_1, y_2]}{x_3 - x_1} - 0.25}{x_3 - x_0} = -0.25$$

d'où

$$P_3(x) = \beta_0 + \beta_1(x+2) + \beta_2(x+2)(x+1) + \beta_3(x+2)(x+1)x$$

= 0.2 + 0.3(x+2) + 0.1(x+1)(x+2) - 0.2x(x+1)(x+2)
= -0.2x^3 - 0.5x^2 + 0.2x + 1

- **2)** $P(0.5) = 0.95 \simeq f(0.5)$
- **3)** E(0.5) = |f(0.5) P(0.5)| = |0.8 0.95| = 0.015
- 4) La fonction f est de Classe C^4 sur [-2,1] et on a :

$$f'(x) = \frac{-2x}{(1+x^2)^2}.$$

$$f^{(2)}(x) = \frac{6x^2 - 2}{(1+x^2)^3}.$$

$$f^{(3)}(x) = \frac{24x(1-x^2)}{(1+x^2)^4}.$$

$$f^{(3)}(x) = \frac{24x(1-x^2)}{(1+x^2)^4}.$$

$$f^{(4)}(x) = 24\frac{5x^4 - 10x^2 + 1}{(1+x^2)^5}$$

on cherche maintenant à maximiser $f^{(4)}$ sur [-2,1]. On pose le changement de variable $X=x^2$, ce qui revient à maximiser la fonction :

$$F(X) = 24 \frac{5X^2 - 10X + 1}{(1+X)^5}$$
 sur $[0,4]$

et on a

$$F'(X) = \frac{-15x^2 + 50X - 15}{(1+X)^6}$$

qui s'annule en 1/3 et 3, voir le TVA

X	0	$\frac{1}{3}$	3	4
F'(X)	_	0	+ 0	_
F(X)	24	$-\frac{81}{8}$	$\frac{3}{8}$	984 3125

On a alors pour tout $x \in [-2, 1]$:

$$E(x) \le \sup_{t \in [-2,1]} \left| \frac{f^{(4)}(t)}{4!} \right| \left| x - x_0 \right| \left| x - x_1 \right| \left| x - x_2 \right| \le \left| x + 2 \right| \left| x + 1 \right| \left| x \right| \left| x - 1 \right|$$