

Valparaíso, 02 de julio de 2021

TAREA

Operación de SEP

ELI-349

1. Desarrolle la formulación matemática del problema del UC aplicado al siguiente sistema de potencia considerando la temática que su grupo eligió. Note que en el SEP se han incluido los datos del sistema de transmisión en p.u. y el límite térmico de cada línea (MVA). En la figura también se muestra los valores de demanda en MVA de la hora t. Las cargas tienen un factor de potencia de 0.9 inductivo. Para la formulación DC la demanda aproxime a MW, es decir factor de potencia de 1. Modele un horizonte de 3 horas, donde la demanda para la segunda hora es el 80% y para la tercera hora es del 50% de la demanda.

Los datos técnico-económicos del sistema de generación son los siguientes:

Con	UNITS												
Gen	1	2	3	4									
P_max, MW	100	120	150	100									
P_min, MW	10	50	40	10									
CVP, \$/MWh	60	100	190	90									
Q_max, Mvar	-100	-100	-100	-100									
Q_min, Mvar	100	100	50	50									

- En este problema inicial no se consideran los costos de encendido y las restricciones de acoplamiento temporal de generación (tiempos mínimos y rampas).
- Modele los generadores virtuales (energía no suministrada). Para modelar la pérdida de carga utilice la demanda máxima de la barra y un costo de 500 \$/MWh.
- Justifique en el caso que requiera algún parámetro adicional.
- i) Tabule los valores de la función objetivo, los datos de potencia y el flujo por el sistema de transmisión. Comente cuáles son las diferencias, y las ventajas y desventajas de la formulación

- desarrollada por su grupo en comparación con el UC tradicional. Explique y justifique si hay variación en los costos.
- ii) Con los estados de las unidades en la hora 3 resuelva un AC OPF. Realice las comparaciones con la solución obtenida por usted y concluya al respecto.
- iii) Reemplace al generador de la barra 4 por almacenamiento en base a baterías. Detalle y explique todas las hipótesis realizadas en el modelamiento. Presente las restricciones del problema, los resultados de la simulación y los efectos económicos en la operación del sistema.
 - 2. Para analizar el desempeño de su formulación (escalamiento) resuelva el sistema IEEE-39 bus.

- Los datos técnicos del sistema de transmisión los puede tomar del archivo de Matpower (case39.m). Se ha incluido el archivo Python del SEP en la carpeta de la tarea.
- Modifique lo que se considere necesario, pero informe todos los parámetros que sean incorporados en la formulación matemática.
- Modele los generadores virtuales (energía no suministrada). Para modelar la pérdida de carga utilice la demanda máxima de la barra y un costo de 500 \$/MWh.

Los datos técnico-económicos del sistema de generación son los siguientes:

Gen	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
P_max, MW	455	455	130	130	162	80	85	55	55	55
P_min, MW	150	150	20	20	25	20	25	10	10	10
a, \$/MW^2h	0.00048	0.00031	0.002	0.00211	0.00398	0.00712	0.00079	0.00413	0.00222	0.00173
b, \$/MWh	16.19	17.26	16.6	16.5	19.7	22.26	27.74	25.92	27.27	27.79
c, \$/h	1000	970	700	680	450	370	480	660	665	670
SU /SD, MW	150	150	20	20	25	20	25	10	10	10
RU /RD, MW	225	225	50	50	60	60	60	135	135	135
Min_up time, h	8	8	5	5	6	3	3	1	1	1
Min_down time, h	8	8	5	5	6	3	3	1	1	1
Start up cost, \$/h	9000	10000	1100	1120	1800	340	520	60	60	60
Initial_state, h	8	8	-5	-5	-6	-3	-3	-1	-1	-1

^{*} Para los límites de potencia reactiva considere que cada uno puede variar entre +/- 50 Mvar.

La estimación de demanda para las 24 horas del horizonte de análisis es la siguiente:

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
D, MW	700	750	850	950	1000	1100	1150	1200	1300	1400	1450	1500	1400	1300	1200	1050	1000	1100	1200	1400	1300	1100	900	800

Distribuya la demanda total proporcionalmente en función del valor de demanda que tiene el sistema original. Para garantizar que no existe congestión en el sistema, asuma inicialmente que el flujo máximo de las líneas es de 1000 MVA/MW.

- i) Congestionar una línea de transmisión cualesquiera tal que: a) el costo de encendido sea el mismo que el UC tradicional pero los costos de operación sean diferentes; y b) ambos costos de la solución sean diferentes.
 - Explique qué es lo que ocurre en cada caso. Comente cuál es el efecto en las distintas variables del problema (costos, generación, perfil de tensiones, etc.).
- ii) Para resolver el problema estocástico, la estimación de la demanda del sistema para las 24 horas es la siguiente (se ha modificado la demanda para no tener problemas de infactibilidad):

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
D, MW	630	675	765	855	900	990	1035	1080	1170	1260	1305	1350	1260	1170	1080	945	900	990	1080	1260	1170	990	810	720

Considere que el generador 10 es eólico. A continuación, se tabula la estimación de los posibles escenarios de potencia que ha hecho la empresa Valle de los Vientos.

^{*} Asuma que en la hora 0, la potencia de los generadores 1 y 2 es 455 MW y 245MW, respectivamente.

G, MW	esc 1	esc 2	esc 3	esc 4	esc 5	esc 6	esc 7	esc 8	esc 9	esc 10	esc 11	esc 12	esc 13	esc 14	e_ave
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	2.4	0.0	0.0	0.0	2.1	0.0	0.0
5	0.0	0.0	0.0	1.1	2.3	3.8	0.0	4.9	0.0	1.3	0.0	1.2	2.1	0.0	1.2
6	0.0	0.0	0.0	1.9	5.1	4.3	1.2	3.0	3.0	0.6	2.1	1.8	2.5	3.9	2.1
7	0.0	0.0	1.7	2.8	4.7	4.7	1.4	2.9	3.7	1.6	2.8	2.0	2.1	5.3	2.6
8	0.0	0.0	1.9	2.5	7.1	5.4	5.4	5.8	3.8	2.0	4.1	4.7	1.5	1.2	3.3
9	0.0	0.0	1.3	3.9	6.1	5.9	5.4	7.2	3.1	3.7	4.5	5.8	3.9	2.4	3.8
10	0.0	0.0	1.2	1.6	2.7	4.1	2.3	5.7	2.2	6.3	2.6	3.4	2.4	3.2	2.7
11	0.0	0.0	0.0	1.5	1.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	1.3	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	5.0	10.6	1.9	0.7	6.4	1.4	11.2	4.9	16.1	1.9	3.0	0.0	5.8	5.2	5.3
14	30.3	32.2	20.8	19.6	31.5	36.4	18.3	18.9	36.1	21.3	11.5	14.9	22.2	18.4	23.7
15	42.2	41.3	31.3	35.4	43.4	43.5	18.5	31.8	41.6	31.0	28.5	34.2	37.0	29.9	35.0
16	42.8	42.2	34.2	41.7	43.6	42.9	18.5	38.8	42.1	32.8	35.0	38.7	38.1	34.1	37.5
17	43.3	40.9	37.4	41.9	43.1	42.8	35.8	41.0	41.5	34.0	34.5	39.6	39.5	38.2	39.6
18	43.3	39.1	38.8	42.0	41.9	42.5	42.9	41.2	37.2	33.1	33.9	38.5	38.7	39.0	39.4
19	43.2	38.2	37.2	41.6	42.0	43.5	42.0	39.9	32.3	34.0	34.3	38.0	37.5	38.1	38.7
20	43.4	37.8	39.8	41.1	41.2	43.0	39.0	39.1	28.6	25.2	38.0	35.7	41.4	32.8	37.6
21	40.8	27.6	26.5	32.8	25.7	36.7	30.8	35.1	15.8	21.5	24.2	21.8	35.2	25.0	28.5
22	27.2	15.4	13.7	18.1	18.5	18.4	27.4	19.6	15.2	25.0	14.2	10.1	6.7	20.2	17.8
23	7.8	3.0	5.3	2.9	2.5	1.3	8.4	10.4	7.0	10.0	3.1	0.0	1.0	9.0	5.1
24	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	1.1	0.0

 Utilizando el escenario determinista/promedio (e_ave) resuelva el problema del UC planteado a su grupo. Resuelva el problema estocástico considerando los 7 primeros escenarios. Explique la solución. Incorpore todos los escenarios y comente los resultados para los tres casos propuestos.

Aspectos para considerar en el informe:

- i) Incluya la información del número de variables, restricciones y el número de no ceros del problema. Reporte los tiempos de simulación del solver.
- ii) Muestre los estados y las potencias para el horizonte de análisis. Incorpórelo en un anexo.
- iii) Todas las tablas con los estados de generación o flujo deben entregarse como anexos electrónicos. No incluirlos en el informe.
- iv) Dado que todos los grupos están resolviendo la formulación del UC considerando nuevos aspectos técnicos, comparé las soluciones (costos y estados de las unidades). Realice conclusiones al respecto, e informe aspectos que usted considere relevantes en los estudios.
- v) Utilice para presentar el formato de artículos del IEEE de doble columna que lo puede encontrar en Overleaf.

Plazos de entrega

- Primer control: viernes, 09 de julio de 2021.
- Segundo control (en el caso que usted considere necesario): viernes, 16 de julio de 2021.
- Entrega final: viernes, 23 de julio de 2021 11pm.