TP 6.2 - Composition de l'air

Objectifs:

- ▶ Connaître la composition de l'air.
- ▶ Connaître quelques tests d'identification de gaz présents dans l'air.
- ▶ Savoir calculer une fraction molaire.

Contexte : L'air qui nous entoure et qui nous permet de respirer est un mélange composé de plusieurs molécules.

→ Quelle est la composition de l'air et comment la mesurer?

Document 1 - Composition de l'air

Constituant		Proportion molaire	
Diazote	N_2	78,08 %	
Dioxygène	O_2	20,95 %	
Argon	Ar	0,93 %	
Dioxyde de carbone	CO_2	0,04 %	
Néon	Ne	18,2 ppm	
Hélium	Не	5,2 ppm	
Monoxyde d'azote	NO	5,0 ppm	Diazote
Méthane	CH_4	1,9 ppm	Dioxygène
Eau	$\mathrm{H_{2}O}$	Variable	Autres gaz
78.08%			20.95 % 0.97 %

 $1\,\%$ signifie qu'il y a 1 molécule sur un total de 100 molécules.

1 ppm signifie qu'il y a 1 molécule sur un total de 1 000 000 de molécules.

Document 2 - Fraction molaire

La **fraction molaire** est le rapport entre la quantité de matière du constituant considéré et la quantité de matière totale dans le mélange étudié.

La fraction molaire est noté x_i pour le constituant i. Elle varie entre 0 et 1 et se calcule avec la relation :

$$x_i = \frac{n_i}{n_{\rm tot}}$$

 n_i est la quantité de matière du constituant i.

 n_{tot} est la quantité de matière totale dans le mélange.

1 — Arrondir les proportion des 4 premiers éléments, puis les ramener à des fractions entières les plus simple possible (exemple : $78,08\% \simeq 80/100 = 4/5$).

.....

.....

Document 3 - Quelques tests pour identifier des espèces chimiques

- L'eau de chaux est une solution saturée en hydroxyde de calcium $Ca(OH)_2$. En présence de dioxyde de carbone CO_2 , l'eau de chaux se trouble. C'est dû à la formation d'un précipité blanc de carbonate de calcium $CaCO_3$.
- Le sulfate de cuivre anhydre CuSO₄ est une poudre blanche. En contact avec des molécules d'eau H₂O la poudre bleuit. C'est dû à la formation d'un complexe pentahydrate CuSO₄, 5H₂O.
- La combustion d'une allumette nécessite un combustible, la cellulose de formule brute $C_6H_{10}O_5$ du bois de l'allumette, et un comburant, le dioxygène O_2 . Cette réaction chimique forme du dioxyde de carbone CO_2 et de la vapeur d'eau H_2O .

2 -	Pour chacu	ın des 3 tests,	établir l'équation	de la réaction chi	mique mise en jeu.	

Document 4 - Combustion d'une bougie

Le combustible d'une bougie est l'acide stéarique de formule brute $C_{18}H_{36}O_2$ L'équation de la réaction de combustion d'une bougie est

$$C_{18}H_{36}O_2(s) + 26O_2(g) \rightarrow 18CO_2(g) + 18H_2O(g)$$

Matériel : un cristallisoir, une bougie, une éprouvette graduée.

Protocole : remplir le cristallisoir d'eau. Placer et allumer la bougie au centre du cristallisoir. Recouvrir la bougie avec l'éprouvette.

Le dioxyde de carbone se dissout dans l'eau dès sa formation et la vapeur d'eau se condense rapidement, ce qui laisse un vide dans le récipient où la combustion a lieue.

Document 5 - Volume molaire des gaz

Le volume molaire des gaz vaut $V_m = 24.1 \,\mathrm{L} \cdot \mathrm{mol}^{-1}$ à 20 °C sous pression atmosphérique. Cette valeur est la même pour tous les gaz, donc la fraction volumique est égale à la fraction molaire pour les gaz.

3 -	Réaliser l'expérience du document 4 et mesurer le volume d'eau déplacé. En déduire la fraction volumique de dioxygène, puis la fraction molaire de dioxygène.
	Comparer cette valeur avec celle fournie dans le document 1.