Covering Pairs in Directed Acyclic Graphs

Niko Beerenwinkel Stefano Beretta Paola Bonizzoni Riccardo Dondi **Yuri Pirola**

DISCo, Univ. degli Studi di Milano-Bicocca, Milan, Italy yuri.pirola@disco.unimib.it

ICTCS 2013

14th Italian Conference on Theoretical Computer Science Palermo, September 9–11, 2013

Outline

- Path Cover and Constrained Path Cover in Bioinformatics
- Max Required Pairs with a Single Path problem
 - W[1]-hardness
 (if parameterized by the optimum)
 - fixed-parameter algorithm
 (if parameterized by the overlapping pairs)
- Conclusions

Problem: Min Path Cover on DAGs (MinPC)

Instance: a DAG D = (N, A)

Solution: a set Π of paths that "cover" N

Measure: $|\Pi|$

It can be solved in time $O(n^3)$ (Dilworth 1950, Fulkerson 1965, Hopcroft and Karp 1973)

Existence of fixed source and target vertices can be safely assumed

MinPC has been used to solve Bioinformatics problems:

Viral haplotype assembly

(Eriksson *et al.* 2008)

Transcript reconstruction

(Trapnell et al. 2010)

Different applications, same problem:

Reconstructing a set of complete sequences starting from their fragments

Basic idea:

- vertices=fragments
- paths=possible complete sequences

Common issue: how to choose among same-size covers?

Paired-end reads could help!

Two paired-end reads are extracted from the same sequence.

 \Rightarrow they must be covered by the same path

Required pair [u, v]:

There must exists a path in the solution that contains ${f both}\ u$ and v

Constrained MinPC

Problem: Min Path Cover with Required Pairs (MinPCRP)

Instance: a DAG D = (N, A) and a set R of required pairs

Solution: a set Π of paths that "cover" N and R

Measure: $|\Pi|$

On Path Cover Problems in Digraphs and Applications to Program Testing

S. C. NTAFOS AND S. LOUIS HAKIMI, FELLOW, IEEE

Abstract—In this p gram testing, are disc generalized. Two m mum path cover) this given. To model into quired pairs and requa minimum path conficient algorithm is a of required paths.

Abstract—In this paper various path cover problems, arising in program testing, are discussed. Dilworth's theorem for acyclic digraphs is generalized. Two methods for finding a minimum set of paths (minimum path cover) that covers the vertices (or the edges) of a digraph are given. To model interactions among code segments, the notions of required pairs and required paths are introduced. It is shown that finding a minimum path cover for a set of required pairs is NP-hard. An efficient algorithm is given for linding a minimum path cover for a set

ON

d in software validation of test paths that covers finding appropriate test nay choose, for example, tatement is executed at that would exercise all

MaxRPSP

Possible greedy heuristic approach:

Add at each step the path that covers the maximum number of required pairs.

Problem: Max Required Pairs with a Single Path (MaxRPSP)

Instance: a DAG D = (N, A) and a set R of required pairs

Solution: a path π

Measure: no. of required pairs covered by π

Computational complexity?

1 – MaxRPSP parameterized by the optimum

Theorem

k-RPSP is W[1]-hard when parameterized by the number k of covered required pairs.

Proof (idea):

By parameterized reduction from h-Clique (which is W[1]-hard, Downey and Fellows 1995)

Corollary: no $O(2^k P(n))$ exact algorithm exists (unless P = NP)

2 – Fixed-parameter algorithm

MaxRPSP has a fixed-parameter algorithm when parameterized by the *maximum number of overlapping required pairs*.

Overlapping required pairs

Non-overlapping required pairs

2 – Fixed-parameter algorithm – Idea

Dynamic programming recurrence

$$P\left[\ [v_i^1, v_i^2]\ ,\ S\ \right]$$

Maximum number of required pairs covered by a path ending in v_i^2 and containing all the vertices in S

Let π be a path that:

- ullet ends in vertex v_i^2 and covers the required pair $p_i = [v_i^1, v_i^2];$
- contains the vertices of set S.

Suppose that $p_j=[v_j^1,v_j^2]$ is the "rightmost" required pair covered by π which is not nested in p_i .

2 – Fixed-parameter algorithm – Recursive step

 $p_j =$ "rightmost" required pair covered by π and not nested in p_i

2 – Fixed-parameter algorithm – Idea

Running time: $O(4^{2h}n^2)$

- n no. of vertices
- h maximum no. of overlapping pairs

Why? Cardinality of S is bounded by 2h!

Conclusions

- Adding constraints to Min Path Cover could help finding "better" (=closer to the hidden truth) solutions
- Various constrained variants of Min Path Cover appear to be computationally hard
- We need "good" algorithms
 (=approximation/fixed-parameter/heuristics/...)

Additional Content

Problem: Min Path Cover on DAGs (MinPC)

Instance: a DAG D = (N, A)

Solution: a set Π of paths that "cover" N

Measure: $|\Pi|$

Algorithm (idea):

- The size of the cover is equal to the size of a maximum matching of a "corresponding" bipartite graph
- Maximum matching can be solved in time $O(n^3)$

(Dilworth 1950, Fulkerson 1965, Hopcroft and Karp 1973)

Applications of MinPC in Bioinformatics

Viral quasi-species assembly

Viral reference genome

Viral quasi-species haplotypes (unknown)

Applications of MinPC in Bioinformatics

Viral quasi-species assembly

Viral reference genome

Viral quasi-species haplotypes (unknown)

Sequenced fragments (provenience unknown)

Applications of MinPC in Bioinformatics

Viral quasi-species assembly

Viral reference genome

Sequenced fragments (provenience unknown)

Alignments against the reference genome

Overlap graph

Overlap graph

Overlap graph

Viral reference genome

Viral quasi-species haplotypes (unknown)

Overlap graph

Paths are putative haplotypes

Overlap graph

Viral reference genome

Viral quasi-species haplotypes (unknown)

Overlap graph

Not all paths are correct!

Constraining MinPC

Required pair [u, v]:

There must exists a path in the solution that contains u and v

Constraining MinPC

Required pair [u, v]:

There must exists a path in the solution that contains u and v

Viral quasi-species haplotypes (unknown)

Overlap graph

2 – Fixed-parameter algorithm – DP recurrence

Dynamic programming recurrence

$$P[[v_i^1, v_i^2], S] = \max \left\{ P[[v_j^1, v_j^2], S'] + |Ov([v_i^1, v_i^2], S \setminus S')| \right\}$$

where:

- $\bullet \ [v_j^1, v_j^2]$ is not nested in $[v_i^1, v_i^2]$ and j < i
- \bullet S' in agreement with S
- \bullet there exists a path from v_j^2 to v_i^2 containing all vertices in $S \setminus S'$
- $\begin{array}{c} \bullet \ \ Ov([v_i^1,\,v_i^2],S\setminus S') = \{[v_h^1,\,v_h^2] \mid [v_h^1,\,v_h^2] \ \text{nested in} \ [v_i^1,\,v_i^2] \ \land \\ v_h^1 \in S \land v_h^2 \in S \setminus S'\} \end{array}$

2 – Fixed-parameter algorithm – Recursive step

Case 1) p_i and p_i do not overlap:

Case 2) p_i and p_i overlap:

2 – Fixed-parameter algorithm – Idea

Running time: $O(4^{2h}n^2)$

- n no. of vertices
- h maximum no. of overlapping pairs

Cardinality of S is bounded!

Observation: for each req. pair $[v_i^1, v_i^2]$, only the vertices of required pairs overlapping $[v_i^1, v_i^2]$ really matter.

$$OP\Big([v_i^1, v_i^2]\Big) = \text{vertices of required pairs overlapping }[v_i^1, v_i^2]$$

$$\Rightarrow |S| = O(\left|OP([v_i^1, v_i^2])\right|) = O(h)$$