Parallélisme Régulé

Assala ASSELLALOU

21 mars 2025

1 Introduction

Ce TP a pour objectifs de gérer le parallélisme à gros grain, de paralléliser un algorithme par décomposition en sous-tâches et de connaître les services d'exécution de la plateforme Java

2 Calcul du maximum d'un tableau

Le but est de trouver l'élément maximal du tableau. La méthode 'LargeIntArray.max(int[] array, int start, int end)' calcule le max en parcourant séquentiellement le tableau entre les indices '[start..end]'.

2.1 Méthode séquentielle

'MaxTabSequential.java' contient une version purement séquentielle.

2.2 Méthode Threads simples

Le fichier 'MaxTabThread.java' a été complété en s'inspirant de l'exemple de la somme dans le fichier 'SommeThreadPlus.java'

La méthode de thread simple consiste à utiliser un seul thread pour exécuter une tâche à la fois. Cela signifie que toutes les opérations sont effectuées de manière séquentielle, sans parallélisme. On verra plus tard que cette méthode n'est pas efficace face au situations bloquantes ou très longues.

2.3 Méthode Pool de Threads

Le fichier 'MaxTabPool.java' a été complété en s'inspirant de 'exemples/SommePool.java'. La méthode du pool de threads consiste à utiliser un nombre fixe de threads réutilisables pour exécuter plusieurs tâches concurrentes.

Les applications peuvent mettre en file d'attente des éléments de travail, associer des travaux à des handles pouvant être mis en attente, mettre automatiquement en file d'attente en fonction d'un retardateur et établir une liaison avec des $\rm E/S$.

FIGURE 1 - Thread Pool

2.4 Méthode Fork Join

Le fichier 'MaxTabForkJoin.java' a été complété en s'inspirant de 'exemples/SchemaForkJoin.java'.

Le ForkJoin divise un travail complexe en sous-tâches plus petites, qui peuvent être traitées en parallèle, puis fusionne les résultats pour obtenir le résultat final. Ce modèle est particulièrement adapté pour les tâches récursives où les sous-tâches sont indépendantes les unes des autres.

2.5 Comparaison des résultats

On a comparé les performances des solutions avec un gros tableau 'foo' conformement au sujet.

Essai	MaxTabSequential	MaxTabThread	MaxTabPool	MaxTabForkJoin
0	3860 µs	14931 µs	23646 μs	22214 µs
1	669 μs	1213 μs	431 μs	724 µs
2	2168 μs	$1037~\mu s$	397 μs	737 µs
3	518 μs	718 µs	504 μs	688 μs
4	$492 \mu s$	1014 μs	$325 \ \mu s$	638 μs
5	$445~\mu s$	472 μs	$424 \mu s$	812 μs
6	$574~\mu s$	564 μs	$407 \mu s$	804 μs
7	504 μs	580 μs	260 μs	775 μs
8	511 μs	614 μs	332 μs	813 μs
9	490 μs	717 µs	380 μs	790 μs
10	$506~\mu s$	953 μs	$407 \mu s$	$722~\mu s$
11	$532~\mu s$	857 μs	347 μs	$1025 \ \mu s$
12	$528~\mu s$	673 μs	379 μs	$1427 \mu s$
13	$452~\mu s$	$3062 \mu s$	$355~\mu s$	1101 µs
14	$443 \ \mu s$	856 μs	243 μs	934 μs
15	478 μs	818 μs	468 μs	1509 μs
16	$654~\mu s$	711 µs	281 μs	$915~\mu s$
17	597 μs	843 μs	316 µs	1040 µs
18	604 μs	609 μs	390 μs	1193 µs
19	$606~\mu s$	$602~\mu s$	484 μs	$1032~\mu s$
Moyenne	526 μs	872 μs	362 μs	971 μs

Table 1 – Comparaison des performances des solutions

2.6 Variation du nombre de threads / taille du pool / seuil d'arrêt

2.6.1 Variation du nombre de threads

Nombre de Threads	Moyenne des Durées
1	1095 μs
2	762 μs
4	920 µs
8	939 µs

Table 2 – Moyenne des durées selon le nombre de threads

2.6.2 Variation de la taille du pool

Nombre de pool de threads	Moyenne des durées (µs)
2	460
4	408
8	378

Table 3 – Moyennes des durées pour différents nombres de pool de threads

2.6.3 Variation du seuil d'arrêt

Seuil d'arrêt	Moyenne des durées (μs)	
100	2078	
500	1343	
1000	830	

Table 4 – Moyenne des durées pour différents seuils d'arrêt.