Deep Generative Models

Lecture 6

Roman Isachenko

2025, Spring

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \ldots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^{K} \pi_k = 1.$$

Let VAE model has discrete latent representation c with prior p(c) = Uniform{1,..., K}.

ELBO

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, \theta) - \underbrace{\mathit{KL}(q(c|\mathbf{x}, \phi)||p(c))}_{\phi, \theta} o \max_{\phi, \theta}.$$
 $\mathit{KL}(q(c|\mathbf{x}, \phi)||p(c)) = -\mathit{H}(q(c|\mathbf{x}, \phi)) + \log \mathit{K}.$

Vector quantization

Define the dictionary space $\{\mathbf{e}_k\}_{k=1}^K$, where $\mathbf{e}_k \in \mathbb{R}^L$, K is the size of the dictionary.

$$\mathbf{z}_q = \mathbf{q}(\mathbf{z}) = \mathbf{e}_{k^*}, \quad ext{where } k^* = rg\min_{\mathbf{z}} \|\mathbf{z} - \mathbf{e}_k\|.$$

Deterministic variational posterior

$$q(c_{ij} = k^* | \mathbf{x}, \phi) =$$

$$\begin{cases} 1, & \text{for } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\|; \\ 0, & \text{otherwise.} \end{cases}$$

ELBO

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{e}_c, heta) - \log K = \log p(\mathbf{x}|\mathbf{z}_q, heta) - \log K.$$

Straight-through gradient estimation

$$\frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \boldsymbol{\phi}} = \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_q}{\partial \boldsymbol{\phi}} \approx \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_e}{\partial \boldsymbol{\phi}}$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}].$$

ELBO surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\phi,\theta}(\mathbf{x}_{i}) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i},\phi)} \log p(\mathbf{x}_{i}|\mathbf{z},\theta)}_{\text{Reconstruction loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x},\mathbf{z}]}_{\text{MI}} - \underbrace{KL(q_{\text{agg}}(\mathbf{z}|\phi)||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal prior

$$\mathit{KL}(q_{\mathrm{agg}}(\mathbf{z}|\phi)||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\mathrm{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i},\phi).$$

The optimal prior distribution $p(\mathbf{z})$ is the aggregated variational posterior distribution $q_{\text{agg}}(\mathbf{z}|\phi)$.

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}) \Rightarrow$ over-regularization;
- ▶ $p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}|\phi) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i, \phi) \Rightarrow \text{overfitting and highly expensive.}$

ELBO revisiting

$$rac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{\phi,oldsymbol{ heta}}(\mathbf{x}_i) = \mathsf{RL} - \mathsf{MI} - \mathit{KL}(q_{\mathsf{agg}}(\mathbf{z}|oldsymbol{\phi})||
ho(\mathbf{z}|oldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

ELBO with learnable VAE prior

$$\begin{split} \mathcal{L}_{\phi,\theta}(\mathbf{x}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \left[\log p(\mathbf{x}|\mathbf{z},\theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x},\phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \left[\log p(\mathbf{x}|\mathbf{z},\theta) + \underbrace{\left(\log p(f_{\lambda}(\mathbf{z})) + \log \left| \det(\mathbf{J_f}) \right| \right)}_{\text{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x},\phi) \right] \\ \mathbf{z} &= \mathbf{f}_{\lambda}^{-1}(\mathbf{z}^*) = \mathbf{g}_{\lambda}(\mathbf{z}^*), \quad \mathbf{z}^* \sim p(\mathbf{z}^*) = \mathcal{N}(0,\mathbf{I}) \end{split}$$

Chen X. et al. Variational Lossy Autoencoder, 2016

Likelihood-free learning

- Likelihood is not a perfect metric for generative model.
- Likelihood could be intractable.

Imagine we have two sets of samples

- $\{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real samples;
- $\{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (or fake) samples.

$$p(y = 1|\mathbf{x}) = P(\{\mathbf{x} \sim \pi(\mathbf{x})\}); \quad p(y = 0|\mathbf{x}) = P(\{\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})\})$$

Assumption

Generative distribution $p(\mathbf{x}|\boldsymbol{\theta})$ equals to the true distribution $\pi(\mathbf{x})$ if we can not distinguish them using discriminative model $p(y|\mathbf{x})$. It means that $p(y=1|\mathbf{x})=0.5$ for each sample \mathbf{x} .

- ▶ **Generator:** generative model $\mathbf{x} = \mathbf{G}(\mathbf{z})$, which makes generated sample more realistic.
- **Discriminator:** a classifier $D(\mathbf{x}) \in [0, 1]$, which distinguishes real samples from generated samples.

Outline

1. Generative adversarial networks (GAN)

2. Wasserstein distance

3. Wasserstein GAN

Outline

1. Generative adversarial networks (GAN)

Wasserstein distance

3. Wasserstein GAN

Generative models zoo

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$.

Proof (fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\theta)} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\theta) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\theta)}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}$$

GAN optimality

Proof continued (fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$= KL \left(\pi(\mathbf{x}) || \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + KL \left(p(\mathbf{x}|\boldsymbol{\theta}) || \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) - 2 \log 2$$

$$= 2JSD(\pi(\mathbf{x}) || p(\mathbf{x}|\boldsymbol{\theta})) - 2 \log 2.$$

Jensen-Shannon divergence (symmetric KL divergence)

$$JSD(\pi(\mathbf{x})||p(\mathbf{x}|\theta)) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) + KL\left(p(\mathbf{x}|\theta)||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2}\right) \right]$$

Could be used as a distance measure!

$$V(G^*, D^*) = -2 \log 2, \quad \pi(\mathbf{x}) = p(\mathbf{x}|\theta), \quad D^*(\mathbf{x}) = 0.5.$$

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$. Expectations

If the generator could be **any** function and the discriminator is **optimal** at every step, then the generator is **guaranteed to converge** to the data distribution.

Reality

- Generator updates are made in parameter space, discriminator is not optimal at every step.
- Generator and discriminator loss keeps oscillating during GAN training.

GAN training

Let further assume that generator and discriminator are parametric models: $D_{\phi}(\mathbf{x})$ and $\mathbf{G}_{\theta}(\mathbf{z})$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{\boldsymbol{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))) \right]$$

- ightharpoonup $\mathbf{z} \sim p(\mathbf{z})$ is a latent variable.
- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} \mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))$ is deterministic decoder (like NF).
- ▶ We do not have encoder at all.

Mode collapse

The phenomena where the generator of a GAN collapses to one or few distribution modes.

Alternate architectures, adding regularization terms, injecting small noise perturbations and other millions bags and tricks are used to avoid the mode collapse.

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Metz L. et al. Unrolled Generative Adversarial Networks, 2016

Jensen-Shannon vs Kullback-Leibler

- $\blacktriangleright \pi(\mathbf{x})$ is a fixed mixture of 2 gaussians.
- $p(\mathbf{x}|\mu,\sigma) = \mathcal{N}(\mu,\sigma^2).$

Mode covering vs mode seeking

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}, \quad \mathit{KL}(p||\pi) = \int p(\mathbf{x}) \log rac{p(\mathbf{x})}{\pi(\mathbf{x})} d\mathbf{x}$$

$$JSD(\pi||p) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) + KL\left(p(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) \right]$$

Outline

1. Generative adversarial networks (GAN)

2. Wasserstein distance

Wasserstein GAN

Informal theoretical results

- The dimensionality of z is lower than the dimensionality of x. Hence, support of $p(x|\theta)$ with $x = G_{\theta}(z)$ lies on low-dimensional manifold.
- ▶ Distribution of real images $\pi(\mathbf{x})$ is also concentrated on a low dimensional manifold.

- ▶ If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\theta)$ have disjoint supports, then there is a smooth optimal discriminator.
- For such low-dimensional disjoint manifolds

$$KL(\pi||p) = KL(p||\pi) = \infty$$
, $JSD(\pi||p) = \log 2$

Wasserstein distance (discrete)

A.k.a. Earth Mover's distance.

Optimal transport formulation

The minimum cost of moving and transforming a pile of dirt in the shape of one probability distribution to the shape of the other distribution.

Simon J.D. Prince. Understanding Deep Learning, 2023

Wasserstein distance (continuous)

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\|_{\gamma}(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

 $\gamma(x, y)$ – transportation plan (the amount of "dirt" that should be transported from point x to point y)

$$\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y}); \quad \int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x}).$$

- ► $\Gamma(\pi, p)$ the set of all joint distributions $\gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p.
- $ightharpoonup \gamma(x,y)$ the amount, ||x-y|| the distance.

Wasserstein metric

$$W_s(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \left(\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\|^s \right)^{1/s}$$

Here we will use $W(\pi, p) = W_1(\pi, p)$ that corresponds to the optimal transport formulation.

Wasserstein distance vs KL vs JSD

Consider 2d distributions

$$\pi(x, y) = (0, U[0, 1])$$
$$p(x, y|\theta) = (\theta, U[0, 1])$$

 $\theta = 0$. Distributions are the same

$$KL(\pi||p) = KL(p||\pi) = JSD(p||\pi) = W(\pi, p) = 0$$

 $\theta \neq 0$

$$\mathit{KL}(\pi||p) = \int_{\mathit{U}[0,1]} 1\log \frac{1}{0} dy = \infty = \mathit{KL}(p||\pi)$$

$$JSD(\pi||p) = \frac{1}{2} \left(\int_{U[0,1]} 1 \log \frac{1}{1/2} dy + \int_{U[0,1]} 1 \log \frac{1}{1/2} dy \right) = \log 2$$

$$W(\pi, p) = |\theta|$$

Wasserstein distance vs KL vs JSD

Theorem 1

Let $\mathbf{G}_{\theta}(\mathbf{z})$ be (almost) any feedforward neural network, and $p(\mathbf{z})$ a prior over \mathbf{z} such that $\mathbb{E}_{p(\mathbf{z})}\|\mathbf{z}\|<\infty$. Then therefore $W(\pi,p)$ is continuous everywhere and differentiable almost everywhere.

Theorem 2

Let π be a distribution on a compact space \mathcal{X} and $\{p_t\}_{t=1}^{\infty}$ be a sequence of distributions on \mathcal{X} .

$$KL(\pi||p_t) \to 0 \text{ (or } KL(p_t||\pi) \to 0)$$
 (1)

$$JSD(\pi||p_t) \to 0$$
 (2)

$$W(\pi||p_t) \to 0 \tag{3}$$

Then, considering limits as $t \to \infty$, (1) implies (2), (2) implies (3).

Outline

1. Generative adversarial networks (GAN)

2. Wasserstein distance

3. Wasserstein GAN

Wasserstein distance

$$W(\pi||p) = \inf_{\gamma \in \Gamma(\pi,p)} \mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi,p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x},\mathbf{y}) d\mathbf{x} d\mathbf{y}$$

The infimum across all possible joint distributions in $\Gamma(\pi, p)$ is intractable.

Theorem (Kantorovich-Rubinstein duality)

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right],$$

where $f: \mathbb{R}^m \to \mathbb{R}$, $||f||_L \le K$ are K-Lipschitz continuous functions $(f: \mathcal{X} \to \mathbb{R})$

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le K ||\mathbf{x}_1 - \mathbf{x}_2||, \quad \text{for all } \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}.$$

Now we need only samples to get Monte Carlo estimate for $W(\pi||p)$.

Theorem (Kantorovich-Rubinstein duality)

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right],$$

- Now we have to ensure that f is K-Lipschitz continuous.
- Let $f_{\phi}(\mathbf{x})$ be a feedforward neural network parametrized by ϕ .
- ▶ If parameters ϕ lie in a compact set Φ then $f_{\phi}(\mathbf{x})$ will be K-Lipschitz continuous function.
- Let the parameters be clamped to a fixed box $\Phi \in [-c, c]^d$ (e.x. c = 0.01) after each gradient update.

$$\begin{split} K \cdot W(\pi||p) &= \max_{\|f\|_{L} \le K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right] \ge \\ &\geq \max_{\phi \in \mathbf{\Phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} f_{\phi}(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f_{\phi}(\mathbf{x}) \right] \end{split}$$

Standard GAN objective

$$\min_{m{ heta}} \max_{m{\phi}} \mathbb{E}_{\pi(\mathbf{x})} \log D_{m{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{m{\phi}}(\mathbf{G}_{m{ heta}}(\mathbf{z})))$$

WGAN objective

$$\min_{\boldsymbol{\theta}} W(\boldsymbol{\pi}||\boldsymbol{p}) \approx \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \big[\mathbb{E}_{\boldsymbol{\pi}(\mathbf{x})} f_{\boldsymbol{\phi}}(\mathbf{x}) - \mathbb{E}_{\boldsymbol{p}(\mathbf{z})} f_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z})) \big].$$

- Discriminator D is similar to the function f, but it is not a classifier anymore. In the WGAN model, function f is usually called critic.
- "Weight clipping is a clearly terrible way to enforce a Lipschitz constraint".
 - If the clipping parameter c is too large, it is hard to train the critic till optimality.
 - ▶ If the clipping parameter *c* is too small, it could lead to vanishing gradients.

- WGAN has non-zero gradients for disjoint supports.
- ► $JSD(\pi||p)$ correlates poorly with the sample quality. Stays constast nearly maximum value $\log 2 \approx 0.69$.
- $W(\pi||p)$ is highly correlated with the sample quality.

Summary

- ► GAN tries to optimize Jensen-Shannon divergence (in theory).
- ► KL and JS divergences work poorly as model objective in the case of disjoint supports.
- ► Earth-Mover distance is a more appropriate objective function for distribution matching problem.
- Kantorovich-Rubinstein duality gives the way to calculate the EM distance using only samples.
- Wasserstein GAN uses the weight clipping to ensure the Lipschitness of the critic.