ESSI Se former a			Semestre : 1 2 2 Session : Principale	XAMEN Rattrapage
	t Prénom :			Code:
Module : Calcul Scientific Enseignant(s) : Equipe (Classes : 3A1→3A28 Documents autorisés :		Nombre de	pages : 7 pages	
Calculatrice autorisée : Date : 01/06/2023	OUI NON Heure: 11h	Internet autorisée Durée : 1h30mir		

**NB:

- 1. Toute réponse non justifiée (sans code) ne sera pas considérée.
- 2. Vous êtes appelés à utiliser :
 - (a) une flèche pour indiquer une indentation,
 - (b) l'importation des modules "numpy", "matplotlib.pyplot" et "sympy" en utilisant les alias présentés ci-dessous:

```
[]: import numpy as np import matplotlib.pyplot as plt import sympy as sp
```

Exercice 1 : (10 points) Soient trois points de coordonnées $(x_i, y_i)_{0 \le i \le 2}$ tels que $x_i \ne x_j$, pour $0 \le i, j \le 2$ et $i \ne j$. On rappelle qu'il existe un unique polynôme d'interpolation $P \in \mathbb{R}_2[X]$ vérifiant $P(x_i) = y_i$, $\forall i \in \{0, 1, 2\}$ et s'exprimant comme suit :

$$P(t) = \sum_{i=0}^{2} \beta_{i}\omega_{i}(t), \quad t \in \mathbb{R}$$

$$= \beta_{0}.\underbrace{1}_{\omega_{0}(t)} + \beta_{1}\underbrace{(t-x_{0})}_{\omega_{1}(t)} + \beta_{2}\underbrace{(t-x_{0})(t-x_{1})}_{\omega_{2}(t)},$$

avec

$$\omega_i(t) = \begin{cases} 1 & \text{si } i = 0, \\ \prod_{j=0}^{i-1} (t - x_j) & \text{si } i \in \{1, 2\}. \end{cases}$$
 (1)

Les réels β_i , $i \in \{0,1,2\}$ correspondent aux coefficients de Newton. Pour les déterminer, nous utilisons la méthode des différences divisées.

1. (a) Compléter la fonction BaseNewton(t,i,x) prenant en entrée une liste t, l'indice i des coefficients de Newton et une liste x contenant les points d'interpolation $(x_i)_{0 \le i \le 2}$.

Cette fonction évalue en t, le polynôme ω_i , $i \in \{0,1,2\}$ associé aux points d'interpolation $(x_i)_{0 \le i \le 2}$. (1,5 points)

(b) En appliquant la fonction BaseNewton et en considérant les points d'interpolation $\{-2,0,2\}$, évaluer les polynômes ω_0 , ω_1 et ω_2 en 5 valeurs de t reparties uniformément sur l'intervalle [-2,2]. (1.5 points)

Les valeurs de ω_0 en t sont.....

Les valeurs de ω_1 en t sont......

Les valeurs de ω_2 en t sont......

On cherche maintenant à déterminer les coefficients de Newton.

On considère trois points $(x_i, y_i)_{0 \le i \le 2}$ d'abscisses deux à deux distincts et On rappelle que

• La différence divisée d'ordre 0 de x_0 est:

$$\beta_0 = [y_0] = y_0$$

• La différence divisée d'ordre 1 de x_0 et x_1 est :

$$\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0}$$

• La différence divisée d'ordre 2 des x_0 , x_1 et x_2 est:

$$\beta_2 = [y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0}$$

2. (a) Ecrire une fonction diffdiv(x,y) prenant en entrée deux listes x et y composées respectivement par $(x_i)_{0 \le i \le 2}$ et $(y_i)_{0 \le i \le 2}$, et qui retourne une liste contenant les coefficients de Newton β_i , $i \in \{0,1,2\}$. (1.5 points)

[]:	<pre>def diffdiv(x,y):</pre>
	return
(b)	En prenant les points d'interpolation $(-2,4)$, $(0,3)$ et $(2,6)$, afficher les coefficients de Newton β_0 , β_1 et β_2 . (1 point)
[]:	# Code
	$eta_0 = \dots$
	$eta_1 =$
	$eta_2 = \dots$
(a)	Compléter la fonction InterpolationNewton(t,x,y) qui évalue en t , le polynôme d'interpolation de Newton associé aux points d'interpolation $(x_i,y_i)_{0 \le i \le 2}$, avec x est une liste composée par les $(x_i)_{0 < i < 2}$ et y est une liste composée par les $(y_i)_{0 < i < 2}$. (2)

3. points)

[]:	def	InterpolationNewton(t,x,y):								
		P=np.zeros((len(t)))	#	Init	ia.	lisat	ion			
		beta=	#	beta	:	les	coeffici	ents	de	Newton
		for	. :							
		return								

(b) Evaluer le polynôme qui interpole les points (-2,4), (0,3) et (2,6), noté P, en S valeurs de t reparties uniformément sur l'intervalle [-2,2]. (1 point)

```
[]: # Code
```

Les valeurs de P en t sont.....

(c) Compléter le code suivant qui permet de tracer les courbes représentatives de P et du polynôme Q défini sur [-2,2] par $Q(t)=\frac{1}{2}t^2+\frac{1}{2}t+3$. Puis, interpréter les résultats obtenus. **(1.5 points)**

```
plt.plot(....,'mo',....,'b')
plt.grid(True)
plt.legend(('Polynome dinterpolation P','polynome Q'))
```

Interprétation graphique :

Exercice 2: (10 points)

L'objectif de cet exercice est d'approcher la valeur de $I = \int_a^b f(t) dt$, avec f une fonction continue sur un intervalle [a,b] en utilisant deux méthodes d'intégration numérique.

En subdivisant l'intervalle [a,b] en N sous-intervalles <u>de même longueur</u>, les points d'intégration seront notés x_k , où $0 \le k \le N$.

NB: Le nombre de sous-intervalles N égal au nombre de points d'intégration -1.

La formule de la première méthode d'intégration est donnée par

$$I_1 = \sum_{k=0}^{N-1} f(x_k) (x_{k+1} - x_k)$$
. Formule 1

ETUDIANT(e)	w w
Nom et Prénom :	Code:
Classe:	

1. Ecrire une fonction appelée methode1(f,x) prenant en entrée une fonction continue f sur l'intervalle [a,b] et $x=[x_0,x_1,...,x_N]$ une liste (ou un tableau 1D) contenant les points d'intégration et retournant I_1 la valeur approchée de I donnée par **Formule 1**. **(1.5 points)**

```
[]: def methode1(f,x):
    return
```

La formule de la deuxième méthode d'intégration est donnée par

$$I_2 = \sum_{k=0}^{N-1} \frac{f(x_k) + f(x_{k+1})}{2} (x_{k+1} - x_k)$$
. Formule 2

2. Ecrire une fonction appelée methode2(f,x) prenant en entrée une fonction continue f sur l'intervalle [a,b] et $x=[x_0,x_1,...,x_N]$ une liste (ou un tableau 1D) contenant les points d'intégration et retournant I_2 la valeur approchée de I donnée par **Formule 2**. **(1,5 points)**

[]:	<pre>def methode2(f,x):</pre>
	return

2	Cair I	$\int_{}^{5}$	1	Jı
3.	Soit I	$=\int_{0}$	$\overline{1+(t-\pi)}$	$\frac{1}{\sqrt{2}} dt$

(a) Pour N=10, donner les deux valeurs approchées de I obtenues en appliquant les fonctions **methode1** et **methode2**. **(1.5 points)**

[]: # Code

- La valeur approchée de *I* en appliquant **methode1** est
- La valeur approchée de *I* en appliquant **methode2** est
- (b) En utilisant une fonction pré-définie dans la bibliothèque **sympy**, donner la valeur de *I*.**(1.5 points)**

La valeur de I vaut

(c) Donner les erreurs d'intégration de I par les deux méthodes. (1.5 points)

[]: # Code

- L'erreur d'intégration de *I* en appliquant **methode1** est
- L'erreur d'intégration de *I* en appliquant **methode2** est
- (d) Ecrire un code qui permet d'afficher deux listes contenant les erreurs d'intégration obtenues par les deux méthodes **methode 1** et **methode 2** pour les différentes valeurs de *N* suivantes : 30,40,50 et 60. **(1.5 points)**

```
[]: # Code

# Indications : vous pouvez utiliser cette démarche

# 1- Créer pour chaque N une liste

# contenant les points d'intégration

# 2-Créer deux listes vides pour les remplir avec

# les erreurs d'intégration demandées
```

(e)	Comparer les deux méthodes en terme de précision pour les quatre valeurs considérées de N . (1 point)