VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI -590018

A PROJECT REPORT ON

"AI Based Accident Detection using Deep Learning"

Submitted in Partial Fulfillment of the Requirements for the VIII Semester

Bachelor of Engineering in

Computer Science and Engineering

Project Associate:

Mr. Vishal Rangrej

2KA21CS061

Under the Guidance of: Dr. Arunkumar Joshi

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SMT. KAMALA & SRI VENKAPPA M. AGADI
COLLEGE OF ENGINEERING & TECHNOLOGY
LAXMESHWAR-582116
2024-25

Smt. Kamala & Sri Venkappa M. Agadi

College of Engineering and Technology, Laxmeshwar-582116

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

This is to certify that Mr. Vishal Rangrej bearing the USN 2KA21CS061 respectively have satisfactorily completed the Project Work entitled "AI Based Accident Detection using Deep Learning" in partial fulfillment for the VIII Semester Bachelor of Engineering of Visvesvaraya Technological University Belagavi, during the year 2024-25. Project Report has been approved, as it satisfies the academic requirements in respect of Project Work.

Project Guide	Project Coordinator	HOD	Principal
Dr. Arunakumar Joshi	Dr. Arunakumar Joshi	Dr. Arun Kumbi	Dr. Parashuram Baraki
Examiners:			
1)		2)	

DECLARATION

I, Vishal Rangrej (2KA21CS061) studying in the VIII semester of Bachelor of

Engineering in Computer Science and Engineering at Smt. Kamala & Sri. Venkappa

M. Agadi College of Engineering & Technology, Lakshmeshwar, hereby declare that

this project work entitled "AI Based Accident Detection using Deep Learning"

which is being submitted by me in the partial fulfillment for the award of the degree of

Bachelor of Engineering in Computer Science and Engineering, from Visvesvaraya

Technological University, Belagavi is an authentic record of we carried out during the

academic year 2024-2025, under the guidance of Dr. Arunkumar Joshi Department of

Computer Science & Engineering, Smt. Kamala & Sri. Venkappa M. Agadi College of

Engineering & Technology, Lakshmeshwar.

I further undertake that the matter embodied in the dissertation has not been

submitted previously for the award of any degree by me to any other university or

institution.

Place: Lakshmeshwar

Date:

Vishal Rangrei 2KA21CS061

ACKNOWLEDGEMENT

It is my proud privilege and duty to acknowledge the kind of help and guidance received from several people in preparation of this seminar. It would not have been possible to prepare this report in this form without their valuable help, cooperation and guidance.

I wish to record our sincere gratitude to our project guide **Dr.Arunkumar Joshi** of Computer Science and Engineering Department for guiding me in investigations for this project and providing encouragement, constant support and guidance which was of a great help to complete this seminar successfully.

I thank our Project Coordinator Dr. Arunkumar Joshi provided the necessary guidance and the facilities to carry out the project

I am grateful to **Dr. Arun Kumbi, Head of the Department of Computer Science and Engineering** for giving me the support and encouragement that was necessary for the completion of this project work.

I would also like to express my gratitude to **Dr. Parashuram Barki, Principal,** for providing me pleasant environment to work in library and for providing laboratory facilities needed to prepare this report.

Last but not the least, i wish to thank my **parents** for financing my studies in this college as well as for constantly encouraging me to learn engineering. Their personal sacrifice in providing this opportunity to learn engineering is gratefully acknowledged.

Vishal Rangrej 2KA21CS061

ABSTRACT

Road accidents remain a significant cause of death and injury worldwide, with delayed emergency response often worsening the outcome. This study proposes a comprehensive system for real-time accident detection using Closed Circuit Television (CCTV) footage, integrated with an automated emergency alert mechanism. The system harnesses the power of deep learning, specifically Convolutional Neural Networks (CNNs) enhanced with an attention mechanism, to accurately detect accidents from live traffic video streams. Unlike traditional systems that rely on additional sensors or manual monitoring, the proposed model uses existing surveillance infrastructure, making it cost-effective and scalable.

The model is trained on a labeled dataset of accident and non-accident frames and achieves an impressive accuracy of 96%. It incorporates ReLU activation functions for feature extraction and softmax for classification. Upon detecting an accident, the system extracts the camera's geolocation from its IP address and identifies the three nearest hospitals within a 111 km radius. An automatic alert is then generated and sent, including the precise location, to facilitate immediate medical response.

Implementation of the system involves three main phases: data preprocessing, model training with an attention-enhanced CNN, and deployment with a real-time alerting web application. Performance evaluation includes analysis of training and validation loss, accuracy, and a confusion matrix, all of which indicate robust and reliable operation. The system is capable of detecting a wide range of accident scenarios and responding within 2–3 minutes, supporting concurrent access by multiple authorities.

This work represents a significant step towards intelligent transportation systems (ITS) by improving emergency response times and potentially saving lives. Future enhancements may involve integrating audio data, exploring transfer learning techniques, and improving system scalability for deployment across larger networks. The fusion of deep learning with real-time video processing and geolocation-based alerts presents a powerful tool for modern traffic management and accident response systems.

CONTENTS

Topics Page No
Chapter 1: INTRODUCTION01
1.1 LITERATURE SURVEY02
1.2 MOTIVATION07
1.3 PROBLEM STATEMENT08
1.4 OBJECTIVES OF THE PROJECT08
1.5 PROPOSED SYSTEM09
Chapter 2: REQUIREMENTS SPECIFICATION11
2.1 SOFTWARE REQUIREMENTS11
2.2 HARDWARE REQUIREMENTS14
2.3 SYSTEM REQIREMENTS
Chapter 3: SYSTEM DESIGN
3.1 SYSTEM ARCHITECTURE OVERVIEW13
3.2 MODULE DESCRIPTION
3.3 DATA FLOW DESIGN
3.4 USE CASE DIAGRAM21
3.5 SYSTEM SEQUENCE DIAGRAM24
3.6 DATA STRUCTURES AND ALGORITHMS24
3.7 SYSTEM BEHAVIOR UNDER FAULT CONDITIONS25
3.8 SCALABILITY AND EXTENSIBILITY25
3.9 SECURITY DESIGN25
3.10 COMPLIANCE AND STANDARDS25
3.11 DESIGN VALIDATION STRATEGY
3.12 INTEROPERABILITY DESIGN
3.13 REDUNDANCY AND FAULT TOLERANCE26
3.14 USER INTERACTION DESIGN
3.15 ENVIRONMENTAL CONSIDERATIONS27
3.16 DEPLOYMENT STRATEGY27
3.17 DESIGN LIMITATIONS

Chapter 4: SYSTEM IMPLEMENTATION
4.1 INTRODUCTION
4.2 HARDWARE IMPLEMENTATION
4.3 SOFTWARE DEVELOPMENT30
4.4 COMMUNICATION MODULES31
4.5 CLOUD AND DATABASE IMPLEMENTATION31
4.6 SYSTEM INTEGRATION
4.7 TESTING AND VERIFICATION32
4.8 PERFORMANCE METRICS33
4.9 CHALLENGES FACED
4.10 FUTURE ENHANCEMENTS
4.11 SUMMARY33
4.12 REAL-WORLD USE CASE SCENARIOS34
4.13 SECURITY AND PRIVACY CONSIDERATIONS34
4.14 MODULAR SYSTEM DESIGN35
4.15 DIAGRAMS AND DATA FLOW35
4.16 COMPARISON WITH EXISTING SYSTEMS37
4.17 DEPLOYMENT CONSIDERATIONS
4.18 MAINTENANCE AND SUPPORT38
Chapter 5: TESTING AND RESULTS39
5.1 INTRODUCTION39
5.2 TESTING METHODOLOGIES39
5.3 TESTING ENVIRONMENT SETUP40
5.4 SAMPLE TEST CASES AND OUTPUT41
5.5 PERFORMANCE METRICS42
5.6 ERROR HANDLING AND SYSTEM RESILIENCE42
5.7 USER FEEDBACK AND APP USABILITY43
5.8 LIMITATIONS IDENTIFIED43
5.9 COMPARATIVE RESULTS43
5.10 EXTENDED COMPARATIVE ANALYSIS WITH COMMERCIAL SYSTEMS
5.11 TESTING CHALLENGES ENCOUNTERED44

RESHITS	50
REFERENCE	49
CONCLUSION	48
5.18 SUMMARY	47
5.17 FINAL CONCLUSION OF TESTING PHASE	47
5.16 SCALABILITY TESTING RESULTS	46
5.15 CODE COVERAGE AND TEST AUTOMATION	46
5.14 POTENTIAL FIELD DEPLOYMENT SCENARIOS	46
5.13 RECOMMENDATIONS BASED ON TESTING	46
5.12 AUTOMATED LOGGING AND DEBUGGING UTILITI	ES45

LIST OF FIGURES

Figures	Page No
Figure 3.1: Layered Architecture Diagram	19
Figure 3.4.1: Use Case Diagram	22
Figure 3.4.2: Use Case Diagram	23
Figure 3.4.3: Use Case Diagram	23
Table 4.15.1: Flow Chart of the proposed system	36
Table 4.15.2: CNN model.	36
Table 4.15.3: Confusion matrix	37
Figure 4.15.1: Statistics.	22
Figure 4.15.2: CNN model.	23
Figure 4.15.3: Confusion matrix	24

LIST OF TABLES

TABLE	Page No
Table 1.1.1: Comparative Analysis	6
Table 1.1.2: Summary of Related Work	7
Table 4.8: Performance Metrics	33
Table 4.16: Comparison With Existing Systems	37
Table 5.2: System Testing	40
Table 5.5: Performance Metrics	42
Table 5.7: User Feedback And App Usability	43
Table 5.9: Comparative Results	43
Table 5.10: Extended Comparative Analysis With Commercial Systems	44