Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 2 по дисциплине "Методы цифровой обработки сигналов" Вариант 12

Выполнил:

Чебыкин И. Б.

Группа: РЗ401

Проверяющий: Тропченко А. А.

Цель работы

Цель работы: исследование эффективности метода подавления низкочастотных помех с помощью усредняющего фильтра.

Задача

Пусть на входе системы наблюдается смесь полезного высокочастотного сигнала и низкочастотной помехи. При этом на входе помеха по своей амплитуде в несколько сот раз превышает амплитуду сигнала. Путем линейнойй фильтрации с использованием двух видов нерекурсивного фильтра удается увеличить соотношение сигнал/шум.

Порядок выполнения работы

- Моделирование метода подавления низкочастотных помех при разных соотношениях частот и амплитуд сигнала и помех;
- Определение зависимостей между этими параметрами и отношением выходного сигнала к шуму;
- Анализ полученных результатов; составление выводов по работе.

Вариант

 Частота сигнала
 15

 Амплитуда сигнала
 2

 Частота помехи
 0,2-1,5

 Амплитуда помехи
 110

Ход работы

$\overline{F_n}$	$\frac{F_s}{F_n}$	SNR_{out}
0.2	75	90.1299
0.3	50	48.5
0.4	37.5	27.982
0.5	30	16.16
0.6	26	10.5636
0.7	21.4286	7.9639
8.0	18.75	6.5036
0.9	16.6666	5.249
1.0	15	4.107
1.1	13.6363	3.3137
1.2	12.5	2.853

$\overline{F_n}$	$\frac{F_s}{F_n}$	SNR_{out}
1.3	11.5384	2.5611
1.4	10.7142	2.283
1.5	10	1.9939

Рис. 1: Зависимость SNR от отношения между частотами сигнала ${\cal F}_s$ и помехи ${\cal F}_n$

Чем больше отношение между частотами сигнала и помехи, тем эффективнее усредняющий фильтр. По графику можно предположить, что зависимость SNR от этого отношения имеет линейный характер.

F_n	A_n	$\frac{A_n}{A_s}$	SNR_{out}	F_n	A_n	$\frac{A_n}{A_s}$	SNR_{out}
0.2	110	55	90.13	0.5	110	55	16.1602
	160	80	61.965		160	80	11.1305
	200	100	49.543		200	100	8.9212
	250	125	39.6603		250	125	7.1575
	300	150	33.0523		300	150	5.985
	350	175	28.333		350	175	5.1505
	400	200	24.7939		400	200	4.527
	450	225	22.0417		450	225	4.0443
	500	250	19.8403		500	250	3.66

$\overline{F_n}$	A_n	$\frac{A_n}{A_s}$	SNR_{out}	F_n	A_n	$\frac{A_n}{A_s}$	SNR_{out}
0.5	110	55	16.1602	1.0	110	55	4.107
	160	80	11.1305		160	80	2.8865
	200	100	8.9212		200	100	2.3622
	250	125	7.1575		250	125	1.9542
	300	150	5.985		300	150	1.6914

A_n	$\frac{A_n}{A_s}$	SNR_{out}	F_n	A_n	$\frac{A_n}{A_s}$	SNR_{out}
350	175	5.1505		350	175	1.5104
400	200	4.527		400	200	1.3796
450	225	4.0443		450	225	1.2816
500	250	3.66		500	250	1.2059
	350 400 450	350 175 400 200 450 225	A_n $\frac{A_n}{A_s}$ SNR_{out} 3501755.15054002004.5274502254.04435002503.66	350 175 5.1505 400 200 4.527 450 225 4.0443	350 175 5.1505 350 400 200 4.527 400 450 225 4.0443 450	400 200 4.527 400 200 450 225 4.0443 450 225

$\overline{F_n}$	A_n	$\frac{A_n}{A_s}$	SNR_{out}
1.5	110	55	1.9939
	160	80	1.5027
	200	100	1.302
	250	125	1.152
	300	150	1.0589
	350	175	0.9963
	400	200	0.9519
	450	225	0.9188
	500	250	0.8934

Рис. 2: Зависимость SNR от отношения между амплитудами помехи (A_n)

Чем больше отношение между амплитудами помехи и сигнала, тем менее эффективен усредняющий фильтр.

Рис. 3

Функциональная схема устройства

Вывод

В ходе выполнения данной лабораторной работы было определено, что усредняющий фильтр рекомендуется использовать в случаях, когда сигнал имеет значительно большую частоту, чем помехи.