4/29/21 4/29/21

Algoritmi greedy V parte

Progettazione di Algoritmi a.a. 2020-21 Matricole congrue a 1 Docente: Annalisa De Bonis

160

161

Proprietà del ciclo

Assumiamo che tutti i costi ce siano distinti.

- Proprietà del ciclo . Sia C un ciclo e sia e=(u,v) l'arco di costo massimo tra quelli appartenenti a C. Ogni minimo albero ricoprente non contiene l'arco e. Dim. (tecnica dello scambio)
- Sia T un albero ricoprente che contiene l'arco e. Dimostriamo che T non può essere un MST.
- Se rimuoviamo l'arco e da T disconnettiamo T in due alberi uno contenente u e l'altro contenente v. Chiamamo S l'insieme dei nodi dell'albero che contiene u.
- Il ciclo C contiene due percorsi per andare da u a v. Un percorso è costituito dall'arco e=(u,v) mentre l'altro va da u a v attraverso gli archi di C diversi da (u,v). Tra questi archi deve essercene uno che attraversa il taglio [S,V-S] altrimenti non sarebbe possibile andare da u che sta in S a v che sta in V-S. Sia f questo arco.

Se al posto di e inseriamo in Tl'arco f. otteniamo un albero ricoprente T' di costo c(T)=c(T)- ce+cf Siccome $c_f < c_e$ allora c(T') < c(T). Ne consegue che T non è uno MST.

PROGETTAZIONE DI ALGORITMI A.A. 2020 A. De Bonis

163

Correttezza dell'algoritmo Inverti-Cancella

L'algoritmo Inverti-Cancella produce un MST.

Dim. (nel caso in cui i costi sono a due a due distinti)

Sia T il grafo prodotto da Inverti-Cancella.

Prima dimostriamo che gli archi che non sono in T non sono neanche nello MST.

- Sia e un qualsiasi arco che non appartiene a T.
- Se e=(u,v) non appartiene a T vuol dire che quando l'arco e=(u,v) è stato esaminato l'arco si trovava su un ciclo C (altrimenti la sua rimozione avrebbe
- Dal momento che gli archi vengono esaminati in ordine decrescente di costo, l'arco e=(u,v) ha costo massimo tra gli archi sul ciclo C.
- La proprietà del ciclo implica allora che e=(u,v) non può far parte dello MST. Abbiamo dimostrato che ogni arco dello MST appartiene anche a T. Ora dimostriamo che T non contiene altri archi oltre a quelli dello MST.
- Sia T* lo MST. Ovviamente (V,T*) è un grafo connesso.
- Supponiamo **per assurdo** che esista un arco (u,v) di T che non sta in T*.
- Se agli archi di T* aggiungiamo l'arco (u,v), si viene a creare un ciclo. Poiché T contiene tutti gli archi di T e contiene anche (u,v) allora T contiene un ciclo C. Ciò è impossibile perché l'algoritmo rimuove l'arco di costo più alto su C e quindi elimina i cicli. Abbiamo quindi ottenuto una contraddizione.

162

Correttezza degli algoritmi quando i costi non sono distinti

- . In questo caso la correttezza si dimostra perturbando di poco i costi ce degli archi, cioè aumentando i costi degli archi in modo che valgano le sequenti tre condizioni
- 1. i nuovi costi ĉe risultino a due a due distinti
- 2. se ce<ce allora ĉe< ĉe
- 3. la somma dei valori aggiunti ai costi degli archi sia minore del minimo delle quantità $|c(T_1)-c(T_2)|$, dove il min è calcolato su tutte le coppie di alberi ricoprenti T_1 e T_2 tali che $c(T_1) \neq c(T_2)$ (Questo non è un algoritmo per cui non ci importa quanto tempo ci vuole a calcolare il minimo)

PROGETTAZIONE DI ALGORITMI A.A. 2018-19
A. De Bonis

4/29/21 4/29/21

Correttezza degli algoritmi quando i costi non sono distinti

- In questo esempio i costi sono interi quindi è chiaro che i costi di due alberi ricoprenti di costo diverso differiscono almeno di 1.
- Se perturbiamo i costi come nella seconda figura, si ha che
- I nuovi costi sono a due a due distinti
- Se e ha costo minore di e' all'inizio allora e ha costo minore di e' anche dopo aver modificato i costi.
- La somma dei valori aggiunti ai costi è 0.01+0.02+0.02+0.02+0.03+0.04+0.04+0.04 < 1

PROGETTAZIONE DI ALGORITMI A.A. 2020-21 A. De Bonis

164

Correttezza degli algoritmi quando i costi non sono distinti

- Chiamiamo G il grafo di partenza (con i costi non pertubati) e Ĝ quello con i costi perturbati.
- Sia T un minimo albero ricoprente del grafo Ĝ. Dimostriamo che T è un minimo albero ricoprente anche per G.
- Se **per assurdo** non fosse così esisterebbe un albero T* che in G ha costo minore di $T \rightarrow c(T)-c(T^*)>0$, dove c(T) e $c(T^*)$ sono i costi di Te T* in G.
- Sia s la somma totale dei valori aggiunti ai costi degli archi di G
- * Per come abbiamo perturbato i costi, si ha che c(T)-c(T*) > s o in quanto s è minore della differenza in valore assoluto tra i costi di due qualsiasi alberi ricoprenti di G.
- Se mostrassimo che il costo $\hat{c}(T^*)$ di T^* in \hat{G} è minore del costo $\hat{c}(T)$ di T in \hat{G} allora si otterrebbe una contraddizione al fatto che Tè un MST per Ĝ.

PROGETTAZIONE DI ALGORITMI A.A. 2020-21 A. De Bonis

Correttezza degli algoritmi quando i costi non sono distinti

- Vediamo di quanto può essere cambiato il costo di T* dopo aver perturbato gli archi. Stimiamo quindi $\hat{c}(T^*)$ - $c(T^*)$
- Osserviamo che il costo di T* è aumentato di un valore minore di $s (perché?) \rightarrow \hat{c}(T^*) - c(T^*) < s$
- $\hat{c}(T^*) c(T^*) < s \rightarrow \hat{c}(T^*) < s + c(T^*)$
- · La 1, implica
- $\hat{c}(T) \hat{c}(T^*) > \hat{c}(T) c(T^*) s > (c(T) c(T^*)) s$ per cui la differenza tra il costo di T e quello di T* è diminuita di un valore minore di s

Per la * si ha $c(T)-c(T^*) > s$ e quindi

 $(c(T)-c(T^*))-s>0$

La 2 e la 3 implicano $\hat{c}(T) - \hat{c}(T^*) > 0$ per cui T non può essere lo MST di Ĝ perché T* ha costo più piccolo di T anche in Ĝ.

PROGETTAZIONE DI ALGORITMI A.A. 2020-21
A. De Bonis

166

Correttezza degli algoritmi quando i costi non sono distinti

- Proprietà del taglio (senza alcun vincolo sui costi degli archi) Sia S un qualsiasi sottoinsieme di nodi e sia e **un** arco di costo minimo che attraversa il taglio [S,V-S]. Esiste un minimo albero ricoprente che contiene e.

167

- Siano $e_1,e_2,...,e_p$ gli archi di G che attraversano il taglio ordinati in modo che $c(e_1) \le c(e_2) \le ... \le c(e_n)$ con $e_1 = e$.
- Perturbiamo i costi degli archi di G come mostrato nelle slide precedenti e facendo in modo che ĉ (e1) <ĉ (e2) < ... <ĉ (en). Per fare questo basta perturbare i costi c di G nel modo già descritto e stando attenti che se $c(e_i)=c(e_{i+1})$, per un certo 1sisp-1, allora deve essere ĉ (ei) c (ei+1).
- Sia T lo MST di Ĝ.
- La proprietà del taglio per grafi con costi degli archi a due a due distinti implica che lo MST di \hat{G} contiene l'arco $e \rightarrow T$ contiene e.
- Per quanto dimostrato nelle slide precedenti, Tè anche un MST di G.
- Abbiamo quindi dimostrato che esiste un MST di G che contiene e.
- NB: MST distinti di G potrebbero essere ottenuti permutando tra di loro archi di costo uguale nell'ordinamento $c(e_1) \le c(e_2) \le ... \le c(e_p)$

PROGETTAZIONE DI ALGORITMI A.A. 2020-21 A. De Bonis

3

4/29/21 4/29/21

Correttezza degli algoritmi quando i costi non sono distinti

- Proprietà del ciclo (senza alcun vincolo sui costi deali archi) Sia C un ciclo e sia e **un** arco di costo massimo in C. Esiste un minimo albero ricoprente che non contiene e.
- Dim.
- Siano e₁,e₂,...,e_p gli archi del ciclo C, ordinati in modo che c(e₁) ≤c(e₂)≤...≤c(e_p)
- Perturbiamo i costi degli archi di G come mostrato nelle slide precedenti e facendo in modo che \hat{c} (e₁) $<\hat{c}$ (e₂) $<...<\hat{c}$ (e_n). Per fare questo basta perturbare i costi c di G nel modo già descritto e stando attenti che se $c(e_i)=c(e_{i+1})$, per un certo $1 \le i \le p-1$, allora deve essere $\hat{c}(e_i) < \hat{c}(e_{i+1})$.
- Sia T un MST di Ĝ.
- · La proprietà del ciclo per grafi con costi degli archi a due a due distinti implica che lo MST di \hat{G} non contiene l'arco e \rightarrow T NON deve contenere e.
- Per quanto dimostrato nelle slide precedenti T è anche un MST di G.
- · Abbiamo quindi dimostrato che esiste un MST di G che non contiene e.
- NB: MST distinti di G potrebbero essere ottenuti permutando tra di loro archi di costo uguale nell'ordinamento $c(e_1) \le c(e_2) \le ... \le c(e_p)$.

PROGETTAZIONE DI ALGORITMI A.A. 2020-21 A. De Bonis

168

169

Correttezza degli algoritmi quando i costi non sono distinti

- · Si è visto che la proprietà del taglio può essere estesa al caso in cui i costi degli archi non sono a due a due distinti
- Possiamo guindi dimostrare la correttezza degli algoritmi di Kruskal e di Prim nello stesso modo in cui abbiamo dimostrato la correttezza di questi algoritmi nel caso in cui gli archi hanno costi a due a due distinti.
- · Si è visto che la proprietà del ciclo può essere estesa al caso in cui i costi degli archi non sono a due a due distinti
- Possiamo quindi dimostrare la correttezza dell'algoritmo Inverti-Cancella nello stesso modo in cui abbiamo dimostrato la correttezza dell'algoritmo nel caso in cui gli archi hanno costi a due a due distinti.

PROGETTAZIONE DI ALGORITMI A.A. 2020-21 A. De Bonis

Clustering

- Clustering. Dato un insieme U di n oggetti p₁, ..., p_n, vogliamo classificarli in gruppi coerenti
- Esempi: foto, documenti, microorganismi.
- Funzione distanza. Associa ad ogni coppia di oggetti un valore numerico che indica la vicinanza dei due oggetti
- Questa funzione dipende dai criteri in base ai quali stabiliamo che due oggetti sono simili o appartengono ad una stessa categoria.
- Esempio: numero di anni dal momento in cui due specie hanno cominciato ad evolversi in modo diverso

Problema. Dividere i punti in cluster (gruppi) in modo che punti in cluster distinti siano distanti tra di loro.

- Classificazione di documenti per la ricerca sul Web.
- Ricerca di somiglianze nei database di immagini mediche
- Classificazione di oggetti celesti in stelle, quasar, galassie.

170

Clustering con Massimo Spacing

- · k-clustering. Partizione dell'insieme U in k sottoinsiemi non vuoti (cluster).
- · Funzione distanza. Soddisfa le sequenti proprietà
- d(p_i, p_i) = 0 se e solo se p_i = p_i
- $d(p_i, p_j) \ge 0$
- $d(p_i, p_j) = d(p_j, p_i)$
- · Spacing. Distanza più piccola tra due oggetti in cluster
- Problema del clustering con massimo spacing. Dato un intero k, trovare un k-clustering con massimo spacing.

k = 4

5

4/29/21 4/29/21

Algoritmo greedy per il clustering

- . Algoritmo basato sul single-link k-clustering.
- Costruisce un grafo sull'insieme di vertici U in modo che alla fine abbia k componenti connesse. Ogni componente connessa corrisponderà ad un cluster.
- Inizialmente il grafo non contiene archi per cui ogni vertice u è in un cluster che contiene solo u.
- Ad ogni passo trova i due oggetti x e y più vicini e tali che x e y sono in cluster distinti. Aggiunge un arco tra x e y.
- Va avanti fino a che ha aggiunto n-k archi: a quel punto ci sono esattamente k cluster.
- Osservazione. Questa procedura corrisponde ad eseguire l'algoritmo di Kruskal su un grafo completo in cui i costi degli archi rappresentano la distanza tra due oggetti (costo dell'arco (u,v) = d(u,v)). L'unica differenza è che l'algoritmo si ferma prima di inserire i k-1 archi più costosi dello MST.
- NB: Corrisponde a cancellare i k-1 archi più costosi da un MST

172

Algoritmo greedy per il clustering: Analisi

- Teorema. Sia C* il clustering C*1, ..., C*k ottenuto cancellando i k-1 archi più costosi da un MST T del grafo completo in cui ogni arco e=(u,v) ha costo c_e =d(u,v). C* è un kclustering con massimo spacing.
- Dim. Sia C un clustering C₁, ..., C_k diverso da C*
- Sia d* lo spacing di C*. La distanza d* corrisponde al costo del (k-1)-esimo arco più costoso dello MST T (il meno costoso tra quelli cancellati dallo MST T)
- Facciamo vedere che lo spacing tra due cluster di C non è maggiore di d*
- Siccome $C \in C^*$ sono diversi allora devono esistere due oggetti $p_i \in p_j$ che si trovano nello stesso cluster in C^* e in cluster differenti in C. Chiamiamo rispettivamente C^*_r il cluster di C^* che contiene $p_i \in p_j \in C_s \in C_t$ i due cluster di C contenenti $p_i \in p_j$, rispettivamente.

Algoritmo greedy per il clustering: Analisi

- Sia P il percorso tra p_i e p_j che passa esclusivamente per nodi di C*_r
 (cioe` attraverso archi selezionati da Kruskal nei primi n-k passi) e sia q il
 primo vertice di P che non appartiene a C_s
- Sia p il predecessore di q lungo P. Il nodo p è in una componente C_m di C diversa da C_t in quanto q è il primo nodo incontrato lungo il percorso che sta in C_t
- Tutti gli archi sul percorso P e quindi anche (p,q) hanno costo ≤ d*
 in quanto sono stati scelti da Kruskal nei primi n-k passi.

Lo spacing di C è minore o uguale del costo dell'arco (p,q) che per quanto detto è ≤ d*

174

8