IPv6

- Também conhecido como IPng (IP next generation).
- Motivação inicial: o espaço de endereços de 32 bits está próximo de ser completamente alocado.
- Motivações adicionais:
 - Melhorar o formato do cabeçalho para permitir maior velocidade de processamento e de transmissão.
 - Mudanças no cabeçalho para incorporar mecanismos de controle de QOS.

IPv6

2

Campos do Cabeçalho do Protocolo IPv6

- Cada pacote é composto por um cabeçalho-base seguido dos dados (payload).
- O payload consiste de duas partes: cabeçalhos de extensão adicionais e dados da camada superior.
- Tamanho máximo do datagrama IP continua em 65.536 bytes
- Versão: Campo de 4 bits que define a versão do protocolo.
- Classe de tráfego: define a prioridade do datagrama em um mecanismo de roteamento. É possível distinguir tipos de tráfego como: controlado por congestionamento e não controlado por congestionamento.

Cabeçalho IPv6 - Classe de Tráfego Controlado por Congestionamento

 Os pacotes poderão eventualmente chegar atrasados, fora de ordem ou serem perdidos. Utilizados quando a origem consegue se adaptar a consestionamentos. Possui 8 níveis de prioridade:

Prior.	Significado	Explicação
0	Nenhum tráfego específico	A origem não estabeleceu prioridade
1	Dados de segundo plano	Dados que são entregues em segundo plano. Ex: news
2	Tráfego de dados não atendido	Dados que o usuário não está esperando receber. Ex: mails
3	Reservado	
4	Tráfego de dados pesado atendido	Utilizado para aqueles protocolos que transferem dados e o usuário está aguardando estes dados. Ex: FTP e HTTP
5	Reservado	
6	Tráfego interativo	Protocolos que utilizam interação com o usuário. Ex: telnet
7	Tráfego de controle	Ex: OSPF, RIP e SNMP

Cabeçalho Ipv6 - Classe de Tráfego não Controlado por Congestionamento

- Neste tipo de tráfego o atraso deve ser mínimo, a eliminação de pacotes é indesejável e a retransmissão é impossível. Utilizado para transmissão em tempo real.
- Possui 8 níveis de prioridade, numerados de 8 a 15:
 - Dados que possuem maior redundância recebem menor prioridade
 (8). Exemplo: áudio e vídeo de alta qualidade
 - Dados que possuem menor redundância recebem maior prioridade
 (15). Exemplo: áudio e vídeo de baixa qualidade

5

Campos do Cabeçalho do Protocolo IPv6

• Fluxo

- Para o roteador, o fluxo é uma sequencia de pacotes que tem as mesmas características e devem ser tratados da mesma forma, como por exemplo, devem trafegar pela mesma rota, utilizam o mesmo recurso, possuem as mesmas características de segurança.
- O roteador gera uma tabela de rótulos de fluxo. Quando um pacote entra em um roteador e possui o rótulo definido, o roteador consulta a tabela de fluxos e não realiza o processo de roteamento do pacote.
- Vantagem: agiliza o encaminhamento dos pacotes.
- Exemplo: áudio e vídeo em tempo real

Campos do Cabeçalho do Protocolo IPv6

• Fluxo:

- É a sequencia de pacotes, enviada de uma determinada máquina origem para uma determinada máquina destino que precisa de um tratamento especial pelos roteadores.
- A máquina origem gera um número aleatório entre 1 e (2²⁴-1)
 que será o rótulo do fluxo. A origem não pode utilizar
 novamente este número, enquanto existir um outro fluxo ativo
 com o mesmo número.
- A combinação do endereço IP origem com o rótulo do fluxo define um fluxo de pacotes.
- Para o roteador, o fluxo é uma sequencia de pacotes que tem as mesmas características e devem ser tratados da mesma forma, como por exemplo, devem trafegar pela mesma rota, utilizam o mesmo recurso, possuem as mesmas características, de segurança.

Campos do Cabeçalho do Protocolo IPv6

- Comprimento do payload: campo de 2 bytes que define o tamanho do payload
- Next Header: identifica se existem os cabeçalhos adicionais ou de extensão. São 6 tipos de cabeçalhos de extensão:
 - Opção nó a nó: utilizado quando a origem necessita transmitir informações a todos os roteadores visitados pelo datagrama.
 - Source Routing
 - Fragmentação: Mesmo conceito utilizado no Ipv4, só que nesta versão, a origem precisa descobrir o menor MTU suportado na rota e utilizar este valor na fragmentação
 - Autenticação: Valida a mensagem enviada e garante a integridade dos dados.
 - Encrypted Security Payload (ESP): utilizado para fornecer confiabilidade e previnir escutas
 - Opção Destino: usado para a origem passar informações para o destino.
 Os roteadores intermediários não processam estas informações

/

CLASS=6 FLOW LABEL=80 VERSION=6 PAYLOAD LENGTH=64Bytes NEXT HEADER=0 HOP LIMIT=255 SOURCE ADDRESS DESTINATION ADDRESS NEXT HEADER=2B HEADER LENGTH Hop by Hop options NEXT HEADER=2C HEADER LENGTH Routing Options -NEXT HEADER=33 HEADER LENGTH Fragment Identification NEXT HEADER=6 HEADER LENGTH Authentication Data TCP header and Data Fonte: STEPHEN(1996, p.108), TCP/IP Tutorial e Técnico(2000, p. 352) e MARK(1997, p.45)

Campos do Cabeçalho do Protocolo IPv6

- Limite de Saltos: campo de 8 bits que define o mesmo objetivo do campo TTL no IPv4.
- Endereço origem: campo de 128 bits que define o endereço IP da máquina que está enviando o datagrama.
- Endereço destino: campo de 128 bits que define o endereço IP da máquina destino final do datagrama.

Diferenças do IPv4 e IPv6

- Campos mantidos IPv4 to IPv6 - Campos não mantidos IPv6
- Nomes e posições trocados no IPv6
- Novos campos no IPv6

Segurança no IPv6

- IPv4 possui vários problemas de segurança.
- O IPV6 fornece duas duas opções de segurança:
 Authentication Header e Encapsulation Security Header.
- Estes mecanismos podem ser utilizadas de forma isolada ou de forma conjunta.
- IPv6 Authentication Header: extensão de cabeçalho que provê autenticação e integridade, sem confidencialidade para datagramas IP. Suporta várias técnicas diferentes de autenticação.
- IPv6 Encapsulation Security Header: provê integridade e confidencialidade para os datagramas.

10

IPv6 - Endereçamento

- Um endereço IPv4 é formado por 32 bits.
- \cdot 2³² = 4.294.967.296
- Um endereço IPv6 é formado por 128 bits.
- · 2128 =

340.282.366.920.938.463.463.374.607.431.768.211.453 40.282.366.920.938.463.463.374.607.431.768.211.456

- ~ 79 octilhões (7,9x1028) de vezes a quantidade de endereços IPv4.
- O endereço é dividido em 8 partes de 16 bits.

IPv6 - Endereçamento

- 1ª Forma de representação do endereçamento:
 - x:x:x:x:x:x:x, onde "x" representam números hexadecimais.
 - Exemplo: 1080:0:0:0:8:800:200C:417A
 - Forma mais usual

14

Ipv6 - Endereçamento

- 2ª Forma de representação do endereçamento:
 - Forma abreviada: as seqüências de zeros podem ser substituídas pela string "::"
 - Exemplos:

Endereço Representação Completa Representação Abreviada Unicast 1080:0:0:8:800:200C:417A 1080::8:800:200C:417A

::

Multicast FF01:0:0:0:0:0:0:43 FF01::43

Loopback 0:0:0:0:0:0:0:1 ::1

Unspecified 0:0:0:0:0:0:0

IPv6 - Endereçamento

- 3ª Forma de representação do endereçamento:
- x:x:x:x:x:d:d:d:d, onde os "x" são números hexadecimais (16 bits) e os "d" são valores decimais de 8 bits referentes à representação padrão do Ipv4
- mais conveniente quando em ambientes mistos com nodos IPv4 e Ipv6
- Exemplos:

0:0:0:0:0:0:192.168.20.30 ou ::192.168.20.30

0:0:0:0:0:FFFF:172.17.10.40 ou ::FFFF:172.17.10.40

IPv6 - Endereçamento

- 4ª Forma de representação do endereçamento:
 - endereço/prefixo, onde o prefixo identifica a sub-rede a qual o endereço pertence.
 - Exemplo: considerando um prefixo de 60 bits sendo 12AB0000000CD3 em hexadecimal, as seguintes representações são válidas:

12AB:0:0:CD3:0:0:0:0/60

12AB::CD3:0:0:0/60

12AB:0:0:CD3::/60

17

IPv6 - Endereçamento

- Na arquitetura de endereçamento foram definidos 3 tipos de endereços: Unicast, Multicast e Anycast
- Os endereços do tipo Broadcast foram eliminados da arquitetura.
- Endereços de qualquer tipo podem ser atribuídos a uma interface.
- Uma única interface pode compartilhar mais de um endereço. Estes endereços podem ser de tipos diferentes.

18

IPv6 - Endereçamento

- Endereço Unicast: identifica uma única interface. Um pacote destinado a um endereço *unicast* é enviado diretamente para a interface associada ao endereço.
- Endereço Anycast:
 - identifica um grupo de interfaces de nodos diferentes.
 - um pacote destinado a um endereço anycast é enviado para a interface mais próxima (de acordo com a distância calculada pelo protocolo de roteamento).
 - quando um endereço unicast é configurado em mais de uma interface num mesmo nodo, ele se torna num endereço anycast. Desta forma o nodo deve ser explicitamente configurado para trabalhar com endereços anycast.

IPv6 - Endereçamento

- Endereço Multicast:
 - Identifica um grupo de interfaces ou um grupo de nodos.
 - Um pacote destinado a um endereço multicast é enviado para todas as interfaces do grupo. Um nodo pode pertencer a mais de um grupo multicast.

IPv6 - Endereçamento

NSAP	200::/7	Reservada para mapeamentos com redes OSI
143711		Reservada para mapeamentos com
IPX		redes Ipx
Não utilizado		·
Aggregatable Global Unicast	2000::/3	Endereços unicast públicos
Não utilizado		
		Endereços unicast privados de acesso
Link Local Unicast Addresses	FE80::/10	restrito a um enlace
		Endereços unicast privados de acesso
Site Local Unicast Addresses	FEC0::/10	restrito a uma WAN privada
Multicast Addresses	FF00::/8 1	Endereços multicast
Total Alocado: 15%		

21

IPv6 - Endereçamento Global Unicast

IPv6 - Endereçamento Global Unicast

- Formato do endereço:
 - Três primeiros bits são fixos: 001 (prefixo 2000/3);
 - TLA: entidade de agregação de auto-nível como a ARIN, RIPENCC, LACNIC ou APNIC, ou a outras entidades de grande porte, responsáveis pela distribuição de endereços IP;
 - Sub-TLA: prefixo atribuído a um ISP (Internet Service Provider). Corresponde a um bloco de 299 endereços.
 - NLA: distribuídos pelos ISP aos seus clientes.
 - SLA: cada cliente pode organizar sua rede em diversos sites, cada um deles representado um prefixo SLA.

IPv6 - Endereçamento Global Unicast

- Em números:
 - Podem existir até 213=8192 TLAs;
 - Cada TLA pode alocar blocos para até 2¹³=8192 Sub-TLAs;
 - Cada sub-TLA pode controlar até 2¹⁹ (524.288)
 organizações;
 - Com um NLA, uma organização pode ter até 2¹⁶ sites (64K subredes).
 - Cada sub-rede pode ter até 264 computadores.

IPv6 - Endereçamento Link Local

- Usado apenas no enlace onde a interface está conectada.
- Endereço é atribuído automaticamente utilizando o prefixo FE80::/64.
- Os roteadores não devem encaminhar para outros enlaces, pacotes que possuam como origem ou destino um endereço link-local.

	64	64
FE80	0	Identificador da interface

25

IPv6 - Endereçamento Multicast

8	4	4	112
PF = FF	Flags	Escopo	ID de Grupo

RFC 2375

FF01::1: todas as interfaces do nó (host)

FF02::1: todos os nós do enlace (rede local)

FF01::2 todos os roteadores locais ao nó

FF05::2 todos os roteadores do site

FF02::B agentes móveis locais ao enlace

FF02::1:2 agentes DHCP do enlace

FF05::1:3 servidores DHCP do site

U

IPv6 - Endereçamento Multicast

- Estrutura do endereço:
 - Prefixo: FF00/8;
 - Flags:
 - 0000: endereço de grupo dinâmico (o nó pode entrar e sair do grupo multicast)
 - 1111: endereço de grupo permanente (o nó sempre possui o endereço multicast)
 - Escopo: define se o endereço é público ou privado:
 - 1: nó local (o multicast é usado internamente no host)
 - 2: enlace local (o multicast está confinado a uma LAN)
 - 5: site local (o multicast está confinado a um site de uma organização)
 - 8: organização (o multicast está confinado aos sites de uma mesma organização)
 - 14: global (o multicast pode ser propagado pela Internet)

IPv6 - Endereçamento Link Local

- Usado apenas no enlace onde a interface está conectada.
- Endereço é atribuído automaticamente utilizando o prefixo FE80::/64.
- Os roteadores não devem encaminhar para outros enlaces, pacotes que possuam como origem ou destino um endereço link-local.

Transição de IPv4 para IPv6

- Técnicas utilizadas:
- Dual-stack: executa tanto IPv4 quanto IPv6 em uma mesma interface.
- NAT-PT: tradutor de protocolo que é colocado na frente de endereços que são somente IPv4 ou IPv6.
- Proxy: recebe pedidos de endereços IPv4, retornando páginas IPv6 e vice-versa

29

Dual Stack

NAT-PT

- O NAT-PT: efetua mapeamentos um-para-um entre endereços IPv4 e Ipv6.
- NAPT-PT: efetua mapeamentos de um-para-muitos, utilizando os números de porta para diferenciar múltiplas requisições feitas com o mesmo endereço.
- Utilizando o NAPT-PT é possível dar acesso a Internet a uma grande quantidade de computadores IPv6 utilizando um único endereço Ipv4 público.

NAT-PT

Proxy

- Funcionamento geral: recebe conexões de hosts internos pela interface de IP privado e cria conexões com hosts na Internet através da interface pública.
- Na conversão de endereços: pode receber conexões pela interface IPv6 e redirecioná-las para uma interface IPv4 e vice-versa

IPv6A PortaS PortaF IPv6 **PortaS** IPv4R IPv4B PortaP PortaD IPv4 lost A PortaF PortaP PortaD Socks LIB Proxy 6to4 IPv6A IPv6P IPv4P IPv6 Network **IPv4 Network** DNS Mapeamento IPv6A:PortaS:IPv6P:PortaF - IPv4P:PortaP:IPv4B:PortaD

Proxy

Host B

PortaS PortaD

::FFFF:<IPv4B>

IPv6A

33

ICMPv6

- Definido na RFC 4443.
- Funcões:
 - Informar características da rede:
 - Realizar diagnósticos;
 - Relatar erros no processamento de pacotes.
 - Assume as funcionalidades de outros protocolos: ARP/RARP e IGMP
- Identificado pelo valor 58 no campo Próximo Cabeçalho.

ICMPv6

- Tipo (8 bits): especifica o tipo da mensagem.
- Código (8 bits): informações adicionais para determinados tipos de mensagens.
- Soma de Verificação (16 bits): verificar a integridade dos cabeçalhos ICMPv6 e em parte do IPv6.
- Dados: informações de diagnóstico e erro de acordo com o tipo de mensagem. 36

ICMPv6

Tipo	Nome	Descrição	
		Indica falhas na entrega do pacote como endereço	
1	Destination Unreachable	ou porta desconhecida ou problemas na	
		comunicação.	
2	Packet Too Big		
3	Time Exceeded		
4	Parameter Problem		
100-101		Uso experimental	
102-126		Não utilizado	
127		Reservado para expansão das mensagens de erro	
127		ICMPv6	
128	Echo Request	Utilizadas pelo comando ping.	
129	Echo Reply		
130	Multicast Listener Query		
131	Multicast Listener Report	Utilizadas no gerenciamento de grupos multicast.	
132	Multicast Listener Done		

37

39

ICMPv6

Tipo	Nome	Descrição	
144	HA Address Discovery Req. Message		
145	HA Address Discovery Reply Message	Utilizadas no mecanismo de	
146	Mobile Prefix Solicitation	Mobilidade Ipv6.	
147	Mobile Prefix Advertisement		
148	Certification Path Solicitation Message	Utilizadas pelo protocolo SEND.	
149	Cert. Path Advertisement Message		
150		Utilizada experimentalmente com protocolos de mobilidade.	
151	Multicast Router Advertisement	Lines I and I are a	
152	Multicast Router Solicitation	Utilizadas pelo mecanismo	
153	Multicast Router Termination	-Multicast Router Discovery.	
154		Utilizada pelo protocolo de	
		mobilidade Fast Handover.	
200-201		Uso Experimental	
255		Reservado para expansão	

ICMPv6

Tipo	Nome	Descrição
133	Router Solicitation	
134	Router Advertisement	
135	Neighbor Solicitation	Utilizadas com o protocolo descoberta de
136	Neighbor Advertisement	vizinhança.
137	Redirect Message	1
	Router Renumbering	Utilizada no mecanismo de reendereçamento de roteadores.
	ICMP Node Information Query	Utilizadas por algumas ferramentas de redes
	ICMP Node Information Response	 (diagnóstico, depuração e gestão) para descobr informações sobre nomes endereços.
1./1	Inverse ND Solicitation	
	Message	Utilizadas em uma extensão do protocolo de
142	Inverse ND Advertisement	descoberta de vizinhança.
172	Message	