Density Dependence

Simulations

L Kell

15 December, 2022

This document provides an example of how to model density dependence in mass-at-age and M-at-age.

The life history parameters of mackerel are used to construct an FLBRP object that represents the equilibrium dynamics, this is then used to construct an FLStock object that models the time series dynamics.

The Lorenzen relationship between mass-at-age and M is used to link M and weight-at-age. For example, lorenzen $M = a*300^{\circ}-0.288$, so if you want M=0.2 at 300g then a=0.2 /(300 $^{\circ}-0.288$)

Error in get_dropbox() : could not find function "get_dropbox"

Mackerel

Figure 1 Equilibrium dynamics

Figure 2 Time series dynamics

 ${\bf Figure~3~Density~dependence~multiplier}$

 ${\bf Figure~4~Simulation~of~density~dependence~in~mass-at-age}$

 ${\bf Figure~5}~{\rm Simulation~of~density~dependence~in~M-at-age}$

Figure 6 Comparison of equilibrium curves with (black) and without (red) density dependence.

Figure 7 Comparison of equilibrium curves with (black) and without (red) density dependence.

Funding

References