Отчет о выполнении лабораторной работы 1.2.1

Определение скорости полета пули при помощи баллистического маятника

Шубин Владислав, Байбулатов Амир

29 ноября 2023 г.

1 Аннотация

В работе определяется скорость полета пули, путём применения законов сохранения и использования баллистического маятника. Используется следующий метод измерений скорости: 1) определение отклонения маятника с помощью оптической системы, изображенной на рис. 1а Длины нитей измеряются с помощью сантиметровой линейки, отклонения маятника с помощью миллиметровой линейки. Детально исследуется систематические и случайные погрешности проводимых измерений.

2 Теоретические сведения

2.1 Метод баллистического маятника, совершающего поступательное движение

В этой части работы (вторая часть не выполнялась) используется установка, изображенная на рис. 1а. Внешними силами для системы пуля-цилиндр являются сила тяжести, не имеющая горизонтальной компоненты, и силы натяжения нитей, горизонтальные компоненты которых появляются при отклонении маятника. Но так как отклонения маятника малы, то и эти компоненты малы и тем более мал и их импульс. Поэтому закон сохранения импульса при соударении пули с цилиндром имеет вид

$$mu = (M+m)V. (1)$$

Здесь m - масса пули, M - масса цилиндра, V - скорость цилиндра и пули после неупругого соударения.

Откуда (учитывая, что М » m) можно написать

$$u = -\frac{M}{m}V. (2)$$

По закону сохранения энергии

$$V^2 = 2gh. (3)$$

Здесь g - ускорение свободного падения, h - высота подъёма маятника над его начальным положением.

Высота подъёма маятника выражается через угол φ отклонения маятника от вертикали:

$$h = L(1 - \cos \varphi) = 2L \sin^2 \frac{\varphi}{2},\tag{4}$$

где $\varphi \approx \frac{\Delta x}{L}$

Из (2), (3) и (4) получаем формулу для определения скорости пули:

$$v = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x. \tag{5}$$

(а) Рис. 1. Схема установки для измерения скорости полета пули

(b) Рис 2. Поведение баллистического маятника при попадании в него пули

3 Оборудование и инструментальные погрешности

Оборудование: духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, а также баллистические маятники.

• Оптическая система: Δ сис = ± 0.25 мм (по цене деления)

• Линейка: Δ лин = ± 1 см (по цене деления)

• **Весы**: $\Delta m = \pm 5$ мг (маркировка производителя)

4 Результаты измерений и обработка данных

4.1 Характеристики системы:

 $L = 2,22 \pm 0,01$ м, $M = 2905 \pm 5$ г.

4.2 Измерения:

N изм.	1	2	3	4	5	6	7	8	9	10
т, г	0.516	0.515	0.503	0.504	0.507	0.512	0.508	0.507	0.509	0.501

Таблица 1: Результаты измерений масс пулек.

x_0 , MM	-0.8	0.0	0.5	1.0	-1.5	-1.8	-1.5	-1.0	-0.5	-0.3
x_1 , MM	12.0	11.6	12.5	12.5	10.5	10.5	10.3	10.2	10.6	11.9
x_2 , MM	11.7	11.4	12.3	12.4	10.4	10.4	10.2	10.1	10.5	11.7
<i>x</i> ₃ , MM	11.5	11.4	12.2	12.3	10.3	10.3	10.0	10.0	10.4	11.6
$x_{\rm cp}$, MM	11.7	11.5	12.3	12.4	10.4	10.4	10.2	10.1	10.5	11.7

Таблица 2: Результаты измерений отклонений маятника.

$\Delta x_{\rm cp}$, MM	12.5	11.5	11.8	11.4	11.9	12.2	11.7	11.1	11.0	12.0
и, м/с	148.0	136.4	143.3	138.2	143.4	145.5	140.7	133.7	132.0	146.3

Таблица 3: Результаты вычислений скорости пули.

Рассчитаем систематическую и случайную погрешности:

$$\sigma_u^{\text{cuct}} = u\sqrt{\varepsilon_M^2 + \varepsilon_m^2 + \varepsilon_{\Delta x}^2 + \left(\frac{\varepsilon_L}{2}\right)^2} \qquad \sigma_u^{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (u_i - u_{\text{cp}})^2} \qquad \sigma_u = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{случ}}^2}$$
(6)

$$\sigma_u^{\text{ciuct}} \approx 3,8 \, \frac{\text{M}}{\text{c}}$$
 $\sigma_u^{\text{cityq}} \approx 1,7 \, \frac{\text{M}}{\text{c}}$ $\sigma_u \approx 4,2 \, \frac{\text{M}}{\text{c}}$ (7)

Тогда средняя скорость $u_{\rm cp} = 141, 0 \pm 4, 2 \frac{\rm M}{\rm c}$

5 Заключение

В работе получено значение скорости пули $u\approx 141,0\pm 4,2\, \frac{\rm M}{\rm c}$. Реальная скорость вылета пули из духового ружья находится в диапазоне 140-200 м/с. Измеренные значения u попали в этот диапазон. Использованный в работе метод баллистического маятника позволил получить значения u образцов с хорошей точностью (3%, состоящей из системных погрешностей величин $M,m,\Delta x,L,$ а также случайной погрешности измерений u и Δx), которая ограничивалась погрешностями оптической системы, весов и линейки, пренебрежением массой пули в формуле (5), горизонтальными компонентами сил натяжения нитей, а также использованием значения угла в качестве результата функции sin в связи с его малым значением.