Probability theory

Sample Space: It is the set of all possible outcomes of an experiment. It is denoted by S

Examples:

Flipping a coin, S = {T, H}

Rolling a dice, $S = \{1, 2, ..., 6\}$

Probability Space (PS)

PS = (S, Pr), where:

S is the sample space

Pr is a function from 2^S to [0, 1]

Event: Each subset of S is called an event. It is denoted by A.

Example: Rolling a dice, S= {1,2, ...,6}

Odd number appears, A={1,3,5}

Axioms of a PS = (S, Pr)

- 1. $Pr(\Phi) = 0$
- 2. Pr(S)=1
- 3. $0 \le Pr(A) \le 1$, where $A \subseteq S$
- 4. If A, B \subseteq S and A Π B = Φ , then Pr(A U B)= Pr(A) + Pr(B)

Independence

Two events A and B are independent if

$$Pr(A \sqcap B) = Pr(A). Pr(B)$$

Conditional Probability

The probability that A happens, given that B has already happened is denoted by Pr(A|B).

 $Pr(A|B) = Pr(A \Pi B) / Pr(B)$

Random Variable X

It is a function X that maps each element of S to a real number

 $X: S \rightarrow R$

Indicator Random Variable:

 $X: S \to \{0, 1\}$

Expected value

 The expected value of a random variable X is denoted by E(X) where

$$E(X) = \sum_{x} (x. \Pr(X = x))$$

 Let X be a random variable that assigns the outcomes of the roll of two fair dice the sum of the number on the two dices. What is the expected value of X.

• E(X) = ?

 Let X be a random variable that assigns the outcomes of the roll of two fair dice the sum of the number on the two dices. What is the expected value of X.

•
$$E(X) = 7$$

Linearity of Expectation

Let X and Y be two random variables

- E(X + Y) = E(X) + E(Y)
- E(c.X)= c.E(X) where c is a real number.

 What is the expected number of times a person must toss a coin to get a head.

 What is the expected number of times a person must toss a coin to get a head.

Answer is 2