

- → Uploaded paper on Moodle
- → Maybe take notes for discussion

John P. A. Ioannidis

"Why Most Published Research Findings Are False" (2005)

Analytic approach: "It can be proven that most claimed research findings are false."

Ingredients:

- Ratio of true to no true relationships: $R = \frac{\text{True Effect } (E)}{\text{No Effect } (\neg E)}$
 - generally unknown and specific to a research field
 - *R* > 1: well-understood fields, but without much to learn
 - $R \le 1$: more exploratory, speculative research fields ("speculativeness" increases with lower R)
 - Fraction of true relationships: $\frac{E}{\neg E+E} = \frac{R}{R+1}$
- α (type I error) rate, the allowed probability of making a false positive; typically, $\alpha = 0.05$
- β (type II error) rate, the allowed probability of making a false negative; typically, $\beta = 0.20$
- **Power:** 1β , the probability of identifying an effect, *if* it exists
- c: Number of studies in the literature

Research Finding	True Relationship			
	Yes	No	Total	
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R + \alpha - \beta R)/(R + 1)$	
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R+1)	С	

Positive Predictive Value (PPV) =
$$P(E|Study claims E) = \frac{True Positives}{All Positive Findings}$$

Research	True Relationship			
Finding	Yes	No	Total	
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R+\alpha-\beta R)/(R+1)$	
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R+1)	С	

$$PPV = \frac{c(1-\beta)R/(R+1)}{c(R+\alpha-\beta R)/(R+1)} = \frac{(1-\beta)R}{(1-\beta)R+\alpha}$$

"Why Most Published Research Findings Are False" (2005)

Research	True Relationship			
Finding	Yes	No	Total	
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R+\alpha-\beta R)/(R+1)$	
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R+1)	С	

PPV =
$$\frac{c(1-\beta)R/(R+1)}{c(R+\alpha-\beta R)/(R+1)} = \frac{(1-\beta)R}{(1-\beta)R+\alpha}$$

Example 1: Assuming an average power of 23% in psychotherapy trials (de Vries, 2022) and that 5 out of 10 new treatments are effective:

$$PPV = \frac{(1-\beta)R}{(1-\beta)R+\alpha} = \frac{0.23 \times \frac{5}{10-5}}{0.23 \times \frac{5}{10-5} + 0.05} = 82\%$$

"Why Most Published Research Findings Are False" (2005)

Research	True Relationship			
Finding	Yes	No	Total	
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R+\alpha-\beta R)/(R+1)$	
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R+1)	С	

PPV =
$$\frac{c(1-\beta)R/(R+1)}{c(R+\alpha-\beta R)/(R+1)} = \frac{(1-\beta)R}{(1-\beta)R+\alpha}$$

Example 2: Assuming an average power of 23% in psychotherapy trials (de Vries, 2022) and that 5 out of **100 new treatments** are effective:

$$PPV = \frac{(1-\beta)R}{(1-\beta)R+\alpha} = \frac{0.23 \times \frac{5}{100-5}}{0.23 \times \frac{5}{100-5} + 0.05} = 19\%$$

"Why Most Published Research Findings Are False" (2005)

Bias *u*: "factors that tend to produce research findings when they should not be produced."

- Can be caused by many things: file-drawer problem, questionable research practices, ...
- Changes the number of findings vs. non-findings
- Changes the ratio of false positives and true positives:

Research Finding	True Relationship			
	Yes	No	Total	
			7	
Yes	$(c[1-\beta]R + uc\beta R)/(R+1)$	$c\alpha + uc(1 - \alpha)/(R + 1)$	$c(R + \alpha - \beta R + u - u\alpha + u\beta R)/(R + 1)$	
No	$(1 - u)c\beta R/(R + 1)$	$(1-u)c(1-\alpha)/(R+1)$	$c(1-u)(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R+1)	С	

"Why Most Published Research Findings Are False" (2005)

Research	True Relationship			
Finding	Yes	No	Total	
Yes	$(c[1-\beta]R + uc\beta R)/(R+1)$	$c\alpha + uc(1-\alpha)/(R+1)$	$c(R + \alpha - \beta R + u - u\alpha + u\beta R)/(R + 1)$	
No	$(1-u)c\beta R/(R+1)$	$(1-u)c(1-\alpha)/(R+1)$	$c(1-u)(1-\alpha+\beta R)/(R+1)$	
Total	cR/(R+1)	c/(R + 1)	С	

$$PPV = \frac{(1-\beta)R + u\beta R}{(1-\beta)R + \alpha + u(\beta R + 1 - \alpha)}$$

 \rightarrow The stronger the bias u, the lower the PPV!

Figure 1. PPV (Probability That a Research Finding Is True) as a Function of the Pre-Study Odds for Various Levels of Bias, *u* Panels correspond to power of 0.20, 0.50, and 0.80.

"Why Most Published Research Findings Are False" (2005)

1 – β	R	u	Practical Example	PPV
0.80	1:1	0.10	Adequately powered RCT with little	0.85
0.95	2:1	0.30	Confirmatory meta-analysis of good- quality RCTs	0.85
0.80	1:3	0.40	Meta-analysis of small inconclusive studies	0.41
0.20	1:5	0.20	Underpowered, but well-performed phase I/II RCT	0.23
0.20	1:5	0.80	Underpowered, poorly performed phase I/II RCT	0.17
0.80	1:10	0.30	Adequately powered exploratory epidemiological study	0.20
0.20	1:10	0.30	Underpowered exploratory epidemiological study	0.12
0.20	1:1,000	0.80	Discovery-oriented exploratory research with massive testing	0.0010
0.20	1:1,000	0.20	As in previous example, but with more limited bias (more standardized)	0.0015

Meta-Analysis

Almost certain that the research finding is false!

"Why Most Published Research Findings Are False" (2005)

What parameters can we target to increase the PPV?

- 1. True effect ratio R: Restrict exploratory analysis, massive uncorroborated testing
- **2.** Power 1β : Increase sample sizes
- 3. Bias u: "Researcher degrees of freedom", systemic issues in research, financial interests
- → All things equal, meta-analysis is a great way to increase (2), and thus the PPV.
- \rightarrow However, these attempts may become worthless in the presence of strong bias u
- \rightarrow As meta-analysts, we cannot eradicate, but can try to "adjust" for the presence of u. This is what is typically attempted in **publication bias analyses**.

"Why Most Published Research Findings Are False" (2005)

Limitations of Ioannidis' Paper:

- Only a thought experiment: loannidis brings no data to prove his model
- Not a mathematical "proof", although loannidis frames it this way (Goodman & Greenland, 2007)
- Based on an atomistic idea of truth: treats scientific fields as a collection of single independent hypotheses that are either strictly true or strictly false
 - Many philosophers of science would disagree with such a simple view (cf. the "Quine-Duhem thesis", which states that all hypotheses are based on background assumptions and theories that can only be tested as a whole)

W. V. O. Quine