IQRF OS

Operating System

version 2.09

User's Guide

Content

Compatibility	
OS Principles	4
IQRF OS Architecture	5
Microcontroller	6
Memories	7
Program memory (Flash)	7
Data memory (RAM)	7
Data memory (EEPROM)	8
Identification	8
Module data	8
Application data	8
Control	9
Operation modes	9
Real time	
Communication control, checking and timeouts	9
Watchdog	9
Sleep	10
Other PIC peripherals	10
Reset	10
Temperature measurement and battery check	10
Debug	10
SPI	11
RF	13
RF overview	13
RF networking	14
Filtering	15
RF transmitting	15
RF receiving	15
Routing	16
Bonding	17
Logging	17
Appendix	18
EEPROM map	18
RAM map (PIC16LF88 - TR-xxx-11A and TR-xxx-21A)	
RAM map (PIC16F886 - TR-xxx-31B, TR-xxx-32B and TR-xxx-52B)	
Documentation and Information	21
Sales and Service	22

Compatibility

TR module	current OS	modulation
TR-xxx-11A	v2.08	ASK
TR-xxx-21A v1.02 and v1.03	v2.08	ASK
TR-xxx-31B	v2.09	ASK
TR-xxx-32B	v2.09	ASK
TR-xxx-52B	v2.09	FSK

Communication is possible among TR modules with the same type of modulation only. FSK also supports multiple channels.

The modules are delivered with IQRF OS allowing realization of common networking device (Node) as well as network Coordinator (software selectable), both able to work additionally also as a router on background (see RF networking).

IQRF OS versions and history:

Version	Main differences	Release	Status
v1.14	previous generation	Jul 2007	not for new designs
v2.00	 Much more effective, easier to use, higher performance Networking totally reworked. Extended capability. Complete IQMESH. SPI on background Encoded network communication Indirect RAM access Temperature measurement supported by OS Supports user application debugging directly by IQRF OS Many other improvements IDE — complete development environment with all SW tools integrated including effective debug tools 	Jan 2008	not for new designs
v2.01	function wipeBondNR() addedfunction batteryValueOK() added	Mar 2008	not for new designs
v2.02	minor SPI bug fixed	May 2008	not for new designs
v2.03	 Improvements: BufferCOM size increased from 35B to 41B Number of nodes in one network increased from 128 to 239 Minor bug in routing fixed 	Jul 2008	not for new designs
v2.04	 setNetworkFilteringOn() switches just packet from active network (1 or 2), non-networking communication ignored Wake-up on pin change under user's control. Default disabled. To enable, set RBIE = 1 before iqrfSleep(). Not compatible with previous versions (permanently enabled in Sleep up to v2.03). 	Jul 2008	internal release only
v2.05	 higher RF noise immunity corrected transfer of MPRWx while not routing several minor bugs not affecting module functionality corrected 	Aug 2008	not for new designs
v2.06	minor change in routing	Aug 2008	not for new designs
v2.07	 bug in the setLoggingOff() function fixed Wake-up on pin change improved. To utilize it, the sequence GIE = 0; RBIE = 1; is required just before iqrfSleep(). 	Sep 2008	not for new designs
v2.08	broadcast message support added	Oct 2008	current for TR-xxx-11A
VZ.U0	implemented in TR-868-31B modules	Nov 2008	and TR-xxx-21A
v2.09	minor change in first falling to Sleep modebonding robustness increased	Jul 2009	current for TR-xxx-xxB

IQRF transceiver modules allow **upgrade** to current OS version. This service must be done by the manufacturer.

Document history:

081125 First release

090501 SPIbusy and _SPIwrite flags not documented. Use getStatusSPI() instead of SPIbusy.

• 090601 Completely revised and extended. Splitted to User's Guide and Reference Guide. EEPROM and RAM and maps moved from separate files to Appendix. OS version v2.09 (for TR-xxx-31B and higher). To emphasize differencies and similarities, TR-xxx-21A and 11A are sometimes also mentioned here.

OS Principles

The IQRF system is designed to allow using of RF wireless connection according to user's needs. Transceiver modules contain microcontrollers for controlling the transceiver operations and for executing of user defined functioning.

Patented IQRF transceiver module architecture has two software layers:

- Basic routines programmed in advance by the manufacturer. The set of such functions is called **operating system** (OS).
- Application layer utilizes routines from the basic layer to customize the module for user specific operation.

In opposite to Solution stack, there is no need to compile protocol related routines, just the application. This approach reduces time and development costs significantly when creating connectivity applications.

OS helps with development of IQRF applications very effectively. It offers software functions prepared in advance for all common user requirements. Thus, it is not necessary to create the whole user program by oneself (using microcontroller instructions and C commands only) but the user adds a user part of software to the OS only. Moreover even this user part can be very simple thanks to the OS. The user works on much higher level of OS functions. He need not solve partial issues, e.g. how to read a data from equipment connected in a standard way and send it via the RF. He can fully concentrate to implementation of his own demands.

The user application so called "runs under the operating system" which means that this is invoked from OS, uses OS functions and is (should be) under OS control.

There are two types of OS functions:

- functions intended for using in application programs block memory copying, writing of a byte or a block to EEPROM, sending/receiving block data via selected interface, starting/stopping of LED blinking, ...
- supportive functions, i.e. tools which support creation and development of the application but do not directly participate in user program, e.g. functions for debugging and uploading the program into the microcontroller.

Operation not supported with OS can be realized by functions located in user program memory area. Specific function can also be written by the user oneself.

OS functions need not run sequentially (next function invoked not until the preceding one is finished) but some operations can run so called "on background" (the function arranges execution of requested operations which runs independently and immediately returns the control back to superior program). In this way more processes can run "simultaneously". Then the program structure is that besides of execution running sequentially "on foreground" up to several tasks on background can be running. IQRF OS allows to run even very complex operation including complete communication protocols on background. This makes real-time programming really easy.

IQRF OS supports communications:

- RF (radio), including networks in peer-to-peer and IQMESH topologies.
- Standard serial SPI (slave mode) protocol for connection to peripherals or to PC (e.g. via CK-USB-02/03).

Other communications can be realized with a user program (I²C, UART, ...).

Complex standard communication protocols (USB, Ethernet, GSM, ZigBee,...) can be realized using IQRF gateways.

OS supports low power consumption of IQRF transceivers with the **Sleep** function when operation of TR module is reduced/stopped until setup time is elapsed or selected inputs are changed.

To increase the reliability the **watchdog** function is used. This is implemented in microcontroller hardware and controlled via user program.

IQRF OS Architecture

Hardware of the transceiver module with a microcontroller including the IQRF OS results in architectural model:

Individual blocks:

- · Memories:
 - program memory (Flash)
 - data memory (RAM)
 - data memory (EEPROM)
- Communication interface:
 - RF (wireless)
 - Standard serial (SPI, I2C, UART)
- Temperature sensor
- 1 or 2 LED(s)
- Power supply check
- Digital I/O (input or input/output). Up to 6 pins (4 pins are shared with SPI).
- A/D converter
- Real time support: 10 ms interval (tick) generator on background and supporting functions
- Pulse generator (especially for LED driving on OS background)
- IQMESH networking
- · Debug: OS support for testing and debugging

Resources partially depend on transceiver module type.

Microcontroller

The IQRF OS is intended for transceiver modules with the **PIC16LF88** (TR-xxx-11A/21A, up to OS v2.08) and **PIC16F886** (TR-xxx-31B/32B/52B) MCUs (8-bit microcontrollers by Microchip) – datasheets see [8].

PIC hardware resources and their utilization in TR modules with OS:

PIC HW reso	urces	Utilization				
Program memory	Flash	512 instructions (TR-xxx-11A/21A)				
		1024 instructions (TR-xxx-31B/32B/52B)				
Data momony	RAM	98 B – user data				
Data memory	KAIVI	140B – communication buffers				
Data momony	EEPROM	Node: 160 B (+32B application data)				
Data memory	EEFROW	Coordinator: 0 B (+32B application data)				
A/D converter (10b)	internal	Temperature measurement, battery check				
A/D converter (100)	pins	3 external analog inputs (TR-xxx-31B/32B/52B)				
Serial	SPI (slave)	Supported by OS on background				
communication	I ² C (slave)	Realized by PIC HW module and user function				
Communication	UART	Realized by PIC HW module and user function				
Interrupt		Not user available. It can be disabled just for a short period if necessary.				
Brown-out reset		Disabled				
Power-up timer		Enabled (TR-xxx-11A/21A), disabled (TR-xxx-31B/32B/52B)				
Watchdog		Timeout 1 ms – 268s (user selectable and programmable)				
		Enabled (TR-xxx-11A/21A), SW selectable (TR-xxx-31B/32B/52B)				
Oscillator		Internal RC, 8MHz (500ns instruction). It can be lowered by the user but it is				
		not recommended for keeping correct OS functionality.				
Configuration	PIC16LF88	CONFIG1 = 0x0E14, CONFIG2 = 0x3FFF				
words ("Fuses")	PIC16F886	CONFIG1 = 0x2014, CONFIG2 = 0x38FF				

These resources can be under OS supervision and the user should access them in accordance with this manual and possible requirements resulting from hardware construction of the module and OS implementation.

Configuration changes and direct access to some resources by the user can be limited or not allowed at all. Serviceability of some resources depends on using of some other ones at the same time (some hardware communication modules, pins and memory areas are shared for more functions).

Parts of memories are dedicated to PIC core, peripherals and operating system. Direct access (via the EEDATA register) to the EEPROM is not allowed at all, extra OS functions are intended for this. Flash memory is user accessible for uploading the program to the microcontroller using the IQRF development kits only. Indirect RAM access using the FSR register is not allowed due to security reasons. Instead of this IQRF OS provides complete support for indirect addressing using extra system functions. Not dedicated user inputs/outputs, peripherals (e.g. I²C and UART) and RAM locations can be accessed directly according to user's needs.

Details see datasheets of the transceiver modules [7], PIC datasheets [8] and Appendix - RAM and EEPROM maps. In doubt, refer to IQRF support by the manufacturer [6].

Memories

For memory purposes the IQRF OS version 2.09 uses internal memories of the microcontroller only.

Individual parts of memories are:

- · Dedicated to the microcontroller
- · Dedicated to the OS
- Other areas are available for the user

Memories can be under OS supervision and the user should access them in accordance with this manual and possible requirements resulting from hardware construction of the module and OS implementation.

Illegal modification of dedicated memory locations can cause system crash.

There are several header files (with the .H extension) delivered with IQRF examples and tutorials. They are intended for C compiler to provide easy and seamless linking the OS with the user program. Of course, these text files could serve to user's survey concerning memories – but the user should nowise modify them. (The 16F88.h and 16F886.h are based on standard files made by the C compiler manufacturer that is why they contain some irrelevant information to spare.)

User's own definitions should be placed to extra user header files. Names of user variables must not collide with names predefined in delivered header files.

Refer to Appendix - RAM and EEPROM maps.

Program memory (Flash)

The user can use this as a program memory only. The program remains stored there even after power off. Overwriting is not unlimited, number of erase/write cycles is about 100 000 typically.

User program can be uploaded into the TR module using appropriate IQRF development kits, e.g. CK-USB-02(03) and IQRF IDE servicing program [9]. Codes in standard .HEX format or scrambled codes in the .IQRF format can be uploaded.

- OS occupies the memory from 0x000 to 0xDFF (TR-xxx-11A and 21A) or to 0x1BFF (TR-xxx-31B/32B/52B)
- Remaining area $0 \times E00h 0 \times FFF$ (512 machine instructions) for TR-xxx-11A and 21A or $0 \times 1000h 0 \times 1FFF$ (1024 machine instructions) for TR-xxx-31B/32B/52B is available for user program .

User program should begin from address $0 \times E00$ (TR-xxx-11A/21A) or $0 \times 1C00$ (TR-xxx-31B/32B/52B). It is automatically arranged by the IQRF header files.

Data memory (RAM)

RAM is a fast memory accessible in a comfortable way. Data is fully under supervision of running program and is lost after power off.

Individual RAM parts:

- dedicated to the microcontroller and its peripherals (PIC special function registers SFRs). Direct using is mostly restricted, e.g. the application need not use registers INDF, EECON1, EECON2, EEADR, PIR2, PIE1 and PIE2. PIR1 is partially accessible via special OS function only. In doubt, refer to IQRF support by the manufacturer [6].
- dedicated to OS:
 - IQRF **communication** (RF and SPI) is packet oriented therefore buffer servicing is supported. There are three basic buffers primarily dedicated to communication and block operation:
 - bufferRF (0x110 0x14F), 64B for RF communication
 - **bufferCOM** (0xA0 0xC8), 41 B for serial communication (especially SPI). Use 35 B (0xA0 0xC2) only, the others are reserved for OS and future compatibility.
 - bufferINFO (0x20 0x42), 35B for OS and user block operations

These communication buffers are especially intended for transferred data but can be used according user's need in specific cases as well. There are specialized OS functions for comfortable buffer to buffer data copying.

- buffer networkInfo (22B) is an area dedicated to network system information.
- system variables. Only the toutRF register should be directly accessed by the user.
- OS work variables (not documented, the user need not modify them).
- Remaining area (0x190 0x1F1) is available for the user (98,B). It is the complete RAM bank 3 excluding the shared area (0x1F0 0x1FF) where only two more userRegx registers (0x1F0 and 0x1F1) are available. Selection of bank 3 is automatically arranged by the IQRF header files. Refer to the PIC datasheets [8] for information about RAM banking.

See Appendix (RAM map).

For block access special OS functions are intended instead of access via FSR and INDF registers which is restricted due to security reasons. See IQRF OS Reference Guide [1].

Data memory (EEPROM)

EEPROM data remains stored even after power off. Overwriting is not unlimited, number of erase/write cycles is 100 000 min., (typically 1 000 000). EEPROM is especially intended for configuration parameters and data.

Individual EEPROM parts:

- User data: 160B from 0x00 to 0x9F (Nodes only). This area is not user available for Coordinators.
- Application data: 32 B from 0xA0 to 0xBF (Nodes as well as Coordinators). The user can use this area for his particular needs (especially intended for configuration and similar purposes). It is accessible for reading via the appINFO() function in a comfortable way. The factory settings string is: "Hello everybody. IQRF is here!"
- **Dedicated to OS:** (Node as well as Coordinator)
 Remaining EEPROM area (0xC0 0xFF) is dedicated to OS. It is not accessible by the user.

EEPROM access:

- values can be specified in application (source) program to be written to EEPROM while the program is uploaded into the microcontroller. EEPROM address range is 0x2100-0x21FF instead of 0x00-0xFF when using cdata and similar C statements (e.g. EEAPPINFO = 0x21A0).
- The microcontroller can read/write data from/to EEPROM under user program control while the application is running using general OS functions for accessing EEPROM (eeWriteByte, ...). Short addresses (0x00-0xFF) are used in this case. Access via EEADR and EEADTA registers is restricted due to security. See IQRF OS Reference Guide [1].

The user should avoid exceeding the number of erase/write cycles allowed. Note that also some other OS functions (bond, bondRequest, ...) write to EEPROM as well.

Identification

Module data

Every IQRF module contains information about itself. This is accessible via the moduleInfo() function storing data to the bufferINFO in the following format:

address in bufferInfo	7	6	5	4	3	2	1	0
magning	OS build		build DIC turns Of		Coordinator / Node	lode serial number		er
meaning	03	bulla	PIC type	PIC type OS version	Module ID			

Coordinator / Node: reserved for future OS versions. Coordinator / Node is SW selectable in IQRF OS v2.02.

0: Node

1: Coordinator

OS version:

upper nibble (4 b): major version lower nibble (4 b): minor version

PIC type:

2: PIC16LF88

3: PIC16LF886

OS build: for the manufacturer only. Differences among various builds has no effect for functionality from the user's point of view.

Example (all in hexadecimal):

Meaning: Coordinator, Module ID = 0100101C, IQRF OS version 2.01, PIC16LF88, build # 0x0330.

Module ID is displayed with the IQRF IDE development environment.

Application data

It is a 32 B block in EEPROM (area 0xA0 - 0xBF) dedicated to the user application. It is possible to read data from it directly to the bufferINFO very effectively by a single instruction (appINFO()) only. This area is intended for arbitrary information concerning user application but is especially useful for repeatedly employed (often permanent) data such an identification information to be compared after receiving (with the compareBufferINFO2RF() function).

Refer to memory maps in Appendix as well.

Control

Operation modes

The TR modules can work in three modes:

- **Programming:** The user program can be uploaded to the TR (including EEPROM content). This mode is available using the appropriate IQRF development kit and IQRF IDE development environment. See application note AN003 [11].
- Run: The TR module executes operation required by the user.
- **Debug:** Execution is stopped and data can be downloaded from the microcontroller and displayed by the IQRF IDE. This mode is fully under control of user program and interactive handling and indication with IQRF IDE.

Real time

OS provides an efficient support for real time applications. It has a generator of time intervals running on background and appropriate functions. Basic interval (elementary OS time interval for timing on background – a "tick") is 10 ms. Using number of ticks times of appropriate processes (delay, LED blinking, communication timeout check, ...) can be specified, the timebase can be realized, ...

- Capture is another efficient timing tool. It is an independent resettable timer (16-bit counter of ticks) freely running on background. It is suitable especially for working with long periods (up to 655s).
- OS provides functions even for waiting on foreground.
- Short time intervals for timing on foreground can be derived also from instruction timing. The PIC16LF88(6) is clocked with internal 8MHz RC oscillator. Thus, instruction cycle is 500ns (1 µs for some instructions) see PIC datasheets [8].

Note that time precision of TR modules depends on precision of internal RC oscillator – see PIC datasheets [8]. Microcontrollers are individually calibrated by the manufacturer but despite of this fact the precision and stability are less than for a crystal oscillators. The precision is sufficient for asynchronous communication (UART) with reasonable speed, for clock and calendar functions another suitable method should be used.

Tip: If there is a gateway in the network, it can be used even as a timebase with crystal precision. Time information can be distributed via RF.

Communication control, checking and timeouts

Good programming practice requires to have supervision under times for communication establishing and data transfers. It is convenient for synchronization with the transmitter, securing the program against transmission failures, etc.

The OS supports the following timeouts and checking:

- **during receiving:** via functions for waiting on background. It is checked whether the requested operation passed during the user setup time. Otherwise attempts for receiving are terminated and receiving function returns control to superordinate program. OS checks the following times:
 - starting receiving a packet via RF
 - · starting receiving via SPI
 - receiving next word via SPI (i.e. after successfully established communication)
- during transmitting: control (e.g. repeated packet transmitting with number of repetitions specified in advance) is NOT
 ruled by the OS but it is fully under user's handling.
- during receiving and transmitting: RF and SPI communication is ensured with check "sums" CRC. Complete SPI packet (not only "significant data") is ensured with a single byte CRC, the RF packet with more various CRCs.
- Even higher reliability can be achieved with additional user verification.

Refer to SPI [5] and IQMESH [4] specifications for details.

Watchdog

To increase the reliability, the OS uses hardware watchdog of the microcontroller. It is a continuously running independent timer with a programmable overflow period. It should be used that never overflow during correct operation. It is accomplished via the <code>clrwdt()</code> instruction always executed in time, i.e. before the watchdog overflows. (This function is implemented not in OS but it is the PIC machine instruction supported with the compiler). If an overflow occurs it is regarded as a program execution failure (power supply failure, error in algorithm in application program e.g. after illegal data receiving and so on) and the microcontroller responds with reset. If the failure is not a permanent one, it can lead to system recovering. The watchdog can run even in the Sleep mode (see below). Overflow in Sleep results in wake-up but not in the PIC reset.

The watchdog can be enabled/disabled in SW (TR-xxx-31B and higher TR modules only). Overflow period is user selectable (even while the program is running) from 1ms to 268ms. Setup registers are WDTCON (WDTPSx and SWDTEN bits) and OPTION (PSA, PS0, PS1 and PS2 bits, remaining bits must be left unchanged by the user) – see PIC datasheets [8]. Default timeout period is about 4s.

Sleep

Complete TR module (including the RF circuitry, microcontroller and temperature sensor) can be set in the standby (Sleep) mode. In this case almost no operation is executed but the power consumption is minimized.

Transition to the Sleep mode:

The Sleep mode is initiated in software using the <code>iqrfSleep()</code> function in appropriate location in the source program. Then all TR hardware resources controlled by the OS are automatically suspended: activity of the TR module including the RF circuitry, temperature sensor, microcontroller as well as its peripherals (stopping of timers, disconnecting of internal pull-ups, ...).

Before switching to the Sleep mode:

- Power consumption should be minimized even for hardware resources of TR controlled by the user (PIC pins, possible PIC internal peripherals) and possible external peripherals connected. It must be done in user program. See the TR [7] and PIC [8] datasheets.
- The microcontroller should be configured for subsequent wake-up on pin change (if required):
 - Wake-up on pin change is under user's control, default disabled.
 - To enable, the sequence GIE = 0; RBIE = 1; iqrfSleep(); RBIF = 0; is required.
 - This is not compatible with previous IQRF OS versions. Wake-up on pin change was default disabled by OS up to v2.03, automatically enabled before iqrfSleep and automatically disabled after iqrfSleep. Now wake-up on pin change is fully under user's control.

Returning to the operating mode (wake-up):

- after watchdog overflow (non-maskable, but the watchdog can be disabled for TR-xxx-31B and higher)
- after pin change on some pins (depending on the TR type, typically the C5 pin), when configured as inputs (if enabled)
- after power-off/on

Tip: all wake-up types can be distinguished via the -TO and -PD status flags - see PIC datasheets [8].

After the wake-up the microcontroller continues with execution the command following the Sleep function.

The user can use Sleep and wake-up without any restriction due to OS, all related microcontroller possibilities can be employed – see PIC datasheets [8].

Tip: sleep period can be setup via the watchdog timeout period.

Typical sleep power consumption ~2.5 µA can be reached with all peripherals off – see the TR datasheets [7].

Other PIC peripherals

There are PIC HW resources (I^2C , UART) not supported with the OS but accessible directly via PIC special function registers. One of them (PIR1) is not directly accessible due to security reasons. To allow using appropriate PIR1 flags, the specialized OS function is available. Refer to the IQRF OS Reference guide [1] (setPIR1()) and datasheet of the microcontroller [8].

Reset

If needed, it is possible to run the application program from the very beginning again. It can be accomplished via the reset () function used in the user program in given location. It is a real microcontroller reset (the WDT type – see PIC datasheets [8]), automatically followed by reinitialization of OS and user program.

Temperature measurement and battery check

The IQRF platform supports temperature measurement and power supply check using internal A/D converter of the microcontroller. See E08-TEMPERATURE and E10-BATTERY examples [10] and IQRF OS Reference guide [1].

Debug

The IQRF platform provides user with an efficient debugging tool.

To enjoy its powerful capabilities, the following configuration should be used: The transceiver module plugged into the CK-USB-02(03) development kit connected to PC via USB with the IQRF IDE development environment [9].

Debug is directly supported by the OS with the <code>debug()</code> function. This can be included in user program wherever you need to stop program executing and evaluate variables, EEPROM content or RAM registers. After uploading user program into the transceiver module the application is running until the <code>debug()</code> function is encountered. Then the program stops, the module is switched to the debug mode and data can be downloaded and displayed on the screen.

The module stays in debug mode till the user wishes. Then the application program can continue execution until another debug() function is encountered and so on. To distinguish individual debug breakpoints the W register can be used. See IQRF IDE Help and E06-RAM example [10] for details.

SPI

IQRF transceiver modules can communicate with external peripherals via the SPI interface.

SPI™ (Serial Peripheral Interface, introduced by Motorola) is a standard serial four wire synchronous data bus that can operate in full duplex. Devices communicate in master/slave mode with a single master initiating data frames. Multiple slave devices are allowed with individual slave select lines.

The SPI bus specifies four logic signals:

SPI signal			
SCK	C6	Serial Clock	issued by master
SDI	C7	Serial Data In	
SDO	C8	Serial Data Out	
-SS	C5	Slave Select	issued by master, active low

The SPI bus with a single slave:

The IQRF transceiver modules can communicate as SPI slaves. Full as well as half duplex is supported. The SPI protocol is implemented in IQRF operating system. Thanks to the state machine architecture the communication is fully synchronous without any timeouts. It is packet oriented and works on OS background. Packets consist of selectable number of bytes (0 to N_{max}). In time constrained cases (e.g. during RF receiving) the communication can be slowed down to work on OS foreground with longer delays between individual bytes (SPI slow mode). Data stream can even be suspended at all.

Packet structure:

The master can send two types of packets with the following structure:

Master checks the SPI status of the module:

Master SPI_CHECK
Slave SPISTAT

Master reads/writes a packet from/to the module:

Master	SPI_CMD	PTYPE	DM ₁	DM ₂	 DM _{SPIDLEN}	CRCM
Slave	SPISTAT	SPISTAT	DS ₁	DS ₂	 DS _{SPIDLEN}	CRCS

Where:

 $SPI_CHECK = 0 \times 000$ $SPI_CMD = 0 \times F0$

SPISTAT: SPI status of the module

hex value	SPI status						
0.0	SPI not active (disabled by the disableSPI() command)						
07	SPI suspended by the stopSPI() command						
3F	SPI not ready (buffer full, last CRCM O.K.)						
3E	SPI not ready (buffer full, last CRCM error)						
40 to 63	SPI data ready. Value - 0×40 = number of bytes to be sent from the slave (1 to N_{max})						
80	SPI ready (communication mode)						
81	SPI ready (programming mode)						
82	SPI ready (debugging mode)						
83	SPI working in Slow mode (e.g. during receiving of RF packet). The Master should prolong the delay between individual bytes when this status is received.						
FF	SPI not active (HW error)						

SPI status of the module is indicated by the IQRF IDE when used together with related IQRF development tools, e.g. CK-USB-02(03):

PTYPE:

b7	b6	b5	b4	b3	b2	b1	b0
CT	/PE			SPIC	DLEN		

CTYPE: communication type

10: full duplex (the master reads/writes from/to the module, bufferCOM changed) 00: half duplex (the master reads from the module, bufferCOM unchanged)

SPIDLEN: data length (from 1 to N_{max}) TR-xxx-xxA: N_{max} = 35 TR-xxx-xxB: N_{max} = 35

DM: data from the master DS: data from the slave

CRCM = SPI_CMD xor PTYPE xor DM_1 xor DM_2 ... xor $DM_{SPIDLEN}$ xor 0x5F CRCS = PTYPE xor DS_1 xor DS_2 ... xor $DS_{SPIDLEN}$ xor 0x5F

Because of SPI runs on OS background information about current SPI state is available via the <code>getStatusSPI()</code> function (packet length, busy flag etc.).

Refer to IQRF SPI Specification [5] for detailed information.

See example E07-SPI [10].

RF

RF overview

OS functions allow powerful and user-friendly control of RF communication. From the user's point of view it means working primarily with memory (R/W operations with RF communication buffer). IQRF OS automatically provides all needed services including full protocol impementation:

- at transmission level: HW setup, coding for transmission, timeouts, ...
- at packet level: preamble, consistency checking, coding, ...
- at network level: routing, including information about the network and device, filtering, ...

Related memory locations and registers:

uns8 bufferRF[64] buffer for RF routines, 64B long

uns8 DLEN packet length, 0-64 (specify before transmitting, automatically set after receiving)

uns8 toutRF timeout for packet receiving (in ticks). 1-255, default value is 50 (500 ms).

uns8 PIN packet information. See below.

Supported modes:

- **Peer-to-peer**: Two or more peer-to-peer devices, without a network Coordinator. Packets are available for all devices in range and completely managed by the user program. Number of devices is unlimited. Keep PIN=0 in this mode. This is the default mode
- **IQMESH:** Topology with one Coordinator mastering the network and up to 239 end devices (Nodes) with full network support. This mode is defined by setting the most significant bit (NTWF) of the PIN register to 1. Nodes must be assigned (bonded) to the Coordinator's network.

IQMESH network and its individual devices can be configured very flexibly. IQMESH as well as peer-to-peer packets can be sent and received depending on setup of respective devices. Nodes can be assigned to one or more groups. Individual and broadcast packets (for all network members, e.g. with time information) are supported, group addressing will be available in future OS versions. IQMESH protocol was defined as a light and portable to the inexpensive microcontrollers with limited resources. Therefore, one byte internal addressing scheme was chosen, enabling to address up to 240 devices and up to 15 groups.

Every IQRF device can simultaneously work in two or more independent networks. This OS version supports two networks for every device, working as a Coordinator in Network 1 and as a Node in Network 2. It allows chaining networks up to unlimited number of devices and easy data sharing. Packets coming from other network(s) can be filtered. Background routing is fully suppported. Each Node can provide background routing service for network packets or can be programed as a dedicated router (RT). Both Coordinator and Node can be realized by a more complex device, a Gateway (GW), providing an interface between IQMESH and other standards.

Although IQMESH is very flexible and supports high variability and dynamic changes in configuration (including changes in topology), it is primarily intended for almost static systems. Devices are included in / excluded from the network by the bonding / unbonding procedure which should be considered to be an installation process by its nature. The Coordinator should not be switched dynamically from device to device in a network. The Coordinator should manage RF communication in the whole network. Nodes are allowed to communicate anytime but it can be recommended just in special cases. In typical applications the Coordinator always initiates any communication. All IQMESH communication is coded. The coding differs from network to network beeing readable in given network only. In addition to "user" packets, IQMESH uses also system packets with auxiliary information (e.g. for bonding, routing etc.). Such system packets are completely transparent from the user's point of view.

Basic network information about current setup of given device (network identification, device number, current network, topology, ...) provides the <code>qetNetworkParams()</code> function.

RF networking

IQMESH packet transmission is supported with a lot of additional sophisticated features. The communication is possible even between nodes out of RF range each other – using "hops" via other nodes in range (routing). In addition to the normal operation, every IQMESH device (TR module, gateway, ...) can work also as a router on background. IQMESH can additionally contain specialized plug-and-play routers.

Packets for Peer-to-peer communication consists of three block - PAH (packet header), DATA and CRC, while IQMESH packets consists of four blocks - PAH, NTWINFO (networking information), DATA and CRC. Every block has its own consistency check mechanism (CRCs) to achieve high reliability.

PIN	DLEN	CRCH	NTW INFO	CRCN	DATA	CRCD	CRCS
	РАН		NTWINE	' O	DATA		CRC

PAH

Packet header, 3 bytes long block, carries basic information about a packet, such as data length and flags (whether the packet is intended for peer-to-peer or IQMESH, indication of system communication, routing, direct peripheral addressing, encryption and acknowledgment request).

PIN

bi	t 7	6	5	4	3	2	1	0
	NTWF		ROUTEF		MPRWF			

NTWF:

NTWF = 0 Peer-to-peer mode NTWF = 1 IQMESH mode

ROUTEF (for IQMESH mode only):

ROUTEF = 0 Routing not required for outgoing packets.

ROUTEF = 1 Routing required for outgoing packets, routing vector RTV0-3 must be defined.

MPRWF (intended only for special applications supporting direct access to peripherals and services):

MPRWF = 0 Module peripheral read/write not active

MPRWF = 1 Module peripheral read/write active. MPRW0-2 should be add to NTWINFO.

Others PIN flags should not be used by the user in this OS version.

NTWINFO (applies for IQMESH mode only)

Networking information block with variable length based on PAH flags. Just five bytes (RX to PID) are mandatory (present in every IQMESH packet), the others depend on actual situation. For example, Star topology does not need routing information. Setting ROUTEF = 0 will make a packet without routing, while after setting ROUTEF = 1 six bytes describing the routing are expected to be added to the NTWINFO. This mechanism provides a way to fit various application needs.

די עם	m	~				D III 70 3			1
	'I' X	CTTD0-T	BID		I RTDEF	R'I'V0-3		MPRWU-2	l
1/27	1 77	СПІРО І	110	• • •	KIDEE	IVI VO O	• • •	1.11 1700 0	

Address of the node the packet is intended to in current network:

0 Coordinator
 1 - 239 Nodes
 240 - 254 Groups
 255 Broadcast

This must be specified by the user before sending an IQMESH packet.

TX Address of transmitting sender. It is automatically set by OS after RFTXpacket().

CLID0-1 Network identification. Added to packets by OS. See IQRF OS Reference guide [1], getNetworkParams.

System information about packet and hops. Dedicated to OS, not intended for users.

RTDEF Routing definition. Reserved for future use. Keep RTDEF=0 (standard routing, 4+1 hops).

RTV0-3 Routing vector (for ROUTEF = 1 only). Addresses of devices to route the packet. It must be specified by the user before sending a packet. Receiving device stores it in reversed order to support seamless acknowledge.

See below.

MPRW0-2 See Direct peripheral access

DATA

RX

Data length can vary between 0 and 64 B.

Detailed IQMESH protocol description will be publicly open. See IQMESH specification [4] for details.

Filtering

In case of chaining networks it can be selected whether packets should be received from both networks (including peer-to-peer packets) or from the current network only. If filtering is off current network is automatically switched to the network the packet was received from.

RF transmitting

It is possible to combine sending peer-to-peer and IQMESH packets (depending on the NTWF flag).

- Peer-to-peer: Prepare data to the bufferRF, specify data length (DLEN = ...) and simply send the packet via the RFTXpacket (). All receivers obtain the data and DLEN only.
- IQMESH: To send IQMESH packets, an appropriate setup (Coordinator/Node selection etc.) should be done and the Node should be bonded to a network. Sending itself is similar to Peer-to-peer but the receiver address (and possible routing information) must be specified. Other networking information (CLID0, CLID1, ...) is added to the packet by OS automatically.

If bidirectional communication, PIN and DLEN should be updated before every transmitting followed after any reception.

See the IQRF OS Reference guide [1] (RFTXpacket ()) and examples E01-TX, E03-TR and E09-LINK [10].

RF receiving

The RFRXpacket() function attempts to receive a packet and returns control to application after successful reception or after the timeout. The user has full control on timing as the timeout can be set in ticks (~10ms) prior to the RFRXpacket() function call (toutRF = ...).

Result (the RFRXpacket () return value) depends on the conditions (filtering, current network, packet type, addresse etc.).

After successful reception respective values are valid: received data in bufferRF, data length (DLEN) and all other networking information.

See the IQRF OS Reference guide [1] (RFRXpacket ()) and examples E02-RX, E03-TR and E09-LINK [10].

Routing

Routing allows sending packets to addressees out of the sender's range using "hops" via devices which are in range each other. This IQRF OS (and lower versions from v2.00) supports 4 routing devices for a packet. In standard routing mode (RTDEF=0) addresses of routing devices (routing vector) are specified in user program before sending the packet. OS includes the routing vector into the packet and ensures that the packet is ignored by all devices except of the addresse and the devices specified in the routing vector. Routing devices retransmit the packet in specified order (RTVO device first) in defined time slots, fixed period each (duration is depended on TR type). During these 1+4 hops the packet should be delivered to the addressee.

For effective IQMESH the topology (placement of devices with respect to the range) should be designed in a redundant way - every device should have sufficient number of devices in range. Routing vector should be specified with respect to maximal redundancy requirement. Due to time slots the efficiency should considerably depend on the order in the routing vector as well.

Thus, routing allows higher range, lower RF output power, more ways to deliver packets, higher noise immunity, resistance against failures and dropouts (self-healing) and flexibility with respect to dynamic changes in range among individual devices (moving of persons, objects or devices themselves) which results in better throughput and reliability.

Routing can be enabled or disabled. Routed packets can be received whenever the RFRXpacket() is active in routing device but they can be retransmitted in respective time slots only.

Example:

Task: Sending a packet from the device 0 to device 9 in network topology according the picture. TX=0, RX=9, for TR module with 1+4 hops and 50 ms time slots.

Solution: Delivering via devices 2, 3, 7 and 8. RTV0=2, RTV1=3, RTV2=7, RTV3=8.

Situation in individual time slots (0 - 4):

	Time clot	Transmitting	Receiving devices							
	Time slot	device	su	ccessful	not	in r	outir	ng vector	too late, time slot expired	
0	0 - 50 ms	0	2	3	1	4	5	6		
1	50 - 100 ms	2	3	7	0	1				
2	100 - 150 ms	3	7	8	0	4			2	
3	150 - 200 ms	7	9						2 3	
4	200 - 250 ms	8	9						3	

Every application has usually very different requirements. For example, a typical Smart House application can be realized with 4 hops and there is a need for fast response, while collecting data from power meters usually needs a network supporting much more hops but the latency is allowed. Thus, IQMESH specification supports various routing algorithms. But just a standard routing (RTDEF = 0), 4+1 hops with routing vector specified by the user is supported by this OS version. As a part of the packet, routing vector is stored in receiving device in reversed order to support acknowledgement via the same routing path. The addresse must not be included in routing vector.

Routing is possible under all following conditions:

- The routing device is bonded to respective network
- The packet was sent by the original sender with routing requirement (ROUTEF = 1)
- The routing device is included in the routing vector of the packet to be routed
- The RFRXpacket () function is active in the routing device when the packet to be routed is sent.
- The ROUTEF flag relates to outgoing packets and has no influence to routing incoming packets at all.

Dedicated router doing nothing but background routing can be realized very simply by a neverending loop:

```
setRoutingOn();
while (1)
{
   RFRXpacket();
   clrwdt();
}
```

It assumed this device has already been bonded. Due to power consumption it is recommended to supply such a router from mains adapter.

Bonding

Devices are bonded to an IQMESH network when they are assigned to given Coordinator. Bonding is a mutual relationship between Coordinator and Node. Coordinator assigns a number (1 to 239) to the Node which serves as device address. This short (1 B) address is used within the network. Individual network is identified via the unique four byte Module ID of the Coordinator - see Identification. This long ID is used outside the network.

Bonding is based on Node request (bondRequest()) confirmed by the Coordinator (bondNewNode()) via exchanging RF system packets. To avoid possible bonding of an unintentional Node, bonding operates with the lowest RF power. It is automatically arranged by OS. Therefore the Node should be placed on close distance from Coordinator during bonding and desired RF output power should be set after bonding.

The following bonding information is written in system EEPROMs (but they are not intended for direct user access):

- Coordinator:
 - Bit array. Individual flags = 1 if respective Node is bonded on Coordinator side
- Node:
 - Node number: short (1 B) device address
 - Network identification (4 B)
 - Flag if the Node is bonded on Node side

The user can check results and make arbitrary changes in bonding at any time. There is a set of OS functions dedicated to bonding and related operations (access results, unbonding, rebonding etc). But once the Node is bonded and respective records are written to EEPROMs on both sides, Coordinator as well as Node starts keeping its own bonding information independently and no subsequent changes in bonding are carried over to opposite side via RF automatically arranged by OS.

In short, only bondRequest and bondNewNode exchange RF system packets between Coordinator and Node. All subsequent changes in bonding by either Coordinator or Node are written to EEPROM just on one side. For example, removeBondedNode(), rebondNode() and clearAllBonds() operate with the Coordinator bit array only and removeBond operates with the Node flag only. If synchronization between Coordinator and Node after changes is needed it must be done by the application program. Static systems that suit IQRF best have moderate requirements for changes in bonding.

Logging

Logging means monitoring of communication to register adjacent devices beeing in range each other. OS has the logging capability but it is not intended to be used in this OS version. It is reserved for future usage (Discovery service etc.). Do not use the setloggingOn() and setloggingOff() function in this OS version.

Appendix EEPROM map

0.0		40		00		20		
00		40 41		80 81		C0 C1		
02		42		82	Coordinator.	C2		
-		-		_	Ţ	_		
03		43		83	ŭ	C3		
04		44		84	넍	C4		
05		45		85	Й	C5		
06		46		86	ŏ	C6		
07		47		87		C7		
08		48		88	for	C8		
09		49		89	μ̈́ο	C9		
0A		4A		8A		CA		
0в		4B		8B	use	СВ		
0C		4C		8C	Þ	СС		
0D		4D		8D	not	CD		
0E		4E		8E	9	CE		
OF		4F		8F	_	CF		
10		50		90	Do	D0		
11		51		91		D1		
12	OZ	52	OK	92	Þ	-		
	Coordinator		Coordinator		n1	D2	-	
13	กล	53	n	93	ō	D3	a11	
14	Ίį	54	ij	94	O	D4		
15	ŭ	55	й	95	ğ	D5	at	
16	00	56	0	96	N	D6		
17	ŭ	57		97	for Node only.	D7	use	
18	for	58	ы	98	ō	D8		
19	Ö	59	for	99	4	D9	not	
1A		5A		9A	Ø	DA	ŭ	
1B	Do not use	5B	use	9в	Available	DB		
1C	us l	5C	ä	9C	<u>_</u>	DC	Do	
1D	ע	_			<u>-</u>	_		
	6	5D	not	9D	ď	DD	E	
1E	ជ	5E	ဌ	9E	Ā	DE	T O	
1F	0	5 F	Do	9F		DF	Ñ	
20		60		A 0		E0	system.	
21	only.	61	only.	A1		E1		
22	1у	62	17	A2		E2	ดี	
23	ŭ	63	ŭ	A 3		E3	operating	
24		64		A4		E4	ď	
25	Node	65	Node	A5		E5	Ä	
26	ŏ	66	ŏ	A6		E6	ğ	
27	Z	67	Z	A7		E7		
28	for	68	for	A8		E8	рλ	
20	ξ		ξ				щ	
29		69		A9		E9	D	
2A	16	6A	1	AA		EA	Reserved	
2В	ab	6в	ab	AB	B	EB	O I	
2C	ï	6C	Į.	AC	32B	EC	Ñ	
-		1		AD		ED	Re	
2D	ai.	6D	σ	_				
2D 2E	\vai.	6E	ΙVα	ΑE	ď	EE		
_	Available	_	Available	_	ion,	EE EF		
2E	Avai	6E	Ava	ΑE	tion,	_		
2E 2F 30	Avai	6E 6F 70	Ava	AE AF B0	cation,	EF		
2E 2F 30 31	Avai	6E 6F 70 71	Ava	AE AF B0 B1	lication,	EF F0 F1		
2E 2F 30 31 32	Avai	6E 6F 70 71 72	Ava	AE AF B0 B1 B2	plication,	EF F0 F1 F2		
2E 2F 30 31 32 33	Avai	6E 6F 70 71 72 73	Ava	AE AF B0 B1 B2 B3	Application,	F0 F1 F2 F3		
2E 2F 30 31 32 33	Avai	6E 6F 70 71 72 73	Ava	AE AF B0 B1 B2 B3	Application,	F1 F2 F3 F4		
2E 2F 30 31 32 33 34 35	Avai	6E 6F 70 71 72 73 74 75	Ava	AE AF B0 B1 B2 B3 B4 B5	Application,	FF F0 F1 F2 F3 F4 F5		
2E 2F 30 31 32 33 34 35 36	Avai	6E 6F 70 71 72 73 74 75	Ava	AE AF B0 B1 B2 B3 B4 B5	Application,	FF F0 F1 F2 F3 F4 F5 F6		
2E 2F 30 31 32 33 34 35 36 37	Avai.	6E 6F 70 71 72 73 74 75 76	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7	Application,	FF F0 F1 F2 F3 F4 F5 F6		
2E 2F 30 31 32 33 34 35 36 37	Avai	6E 6F 70 71 72 73 74 75 76 77	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8	Application,	FF F0 F1 F2 F3 F4 F5 F6		
2E 2F 30 31 32 33 34 35 36 37 38	Avai	6E 6F 70 71 72 73 74 75 76	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7	Application,	FF F0 F1 F2 F3 F4 F5 F6		
2E 2F 30 31 32 33 34 35 36 37	Avai	6E 6F 70 71 72 73 74 75 76 77	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8	Application,	FF F0 F1 F2 F3 F4 F5 F6 F7		
2E 2F 30 31 32 33 34 35 36 37 38	Avai	6E 6F 70 71 72 73 74 75 76 77 78	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8	Application,	FF F0 F1 F2 F3 F4 F5 F6 F7 F8		
2E 2F 30 31 32 33 34 35 36 37 38 39 3A	Avai	6E 6F 70 71 72 73 74 75 76 77 78 79	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9	Application,	FF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9		
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B	Avai	6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BBB BC	Application,	EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB		
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D	Avai	6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BBB BC BD	Application,	EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC		
2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B	Avai	6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C	Ava	AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BBB BC	Application,	EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB		

$\pmb{RAM} \;\; \pmb{map} \; (\texttt{PIC16LF88} \; \text{-} \; \texttt{TR-xxx-11A} \; \texttt{and} \; \texttt{TR-xxx-21A})$

IRP	= 0	IRP = 1			
Bank 0	Bank 1	Bank 2	Bank 3		
00 Ind. addr.	80 Ind. addr.	100 Ind. addr.	180 Ind. addr.		
01 TIMRO	81 OPTION REG	101 WIRO	181 OPTION REG		
02 PCL	82 PCL	102 PCL	182 PCL		
03 STATUS	83 STATUS	103 STATUS	183 STATUS		
04 FSR	84 ESR	104 FSR	184 FSR		
05 PORTA	85 TRISA	105 WDTCON	185 -		
06 PORTB	86 TRUSB	106 PORTE	186 TRISB		
07 –	87 –	107	187 -		
08 -	88 –	108 -	188 -		
09 –	89 –	109 -	189 -		
OA PCLATH	8A PCLATH	10A POLATH	18A PCLATH		
OB INTCON	8B TINTCON	10B INTCON	18B INTCON		
0C PIR1	8C PIEI	10C DEDATA	18C EECON1		
0D PIR2	8D PH=2	10D DEADR	18D EECON2		
0E TMR1L	8E PCON	10E DEDAWAH	18E -		
OF TIME 1H	8F OSCCON	10F DEADRE	18F -		
10 T1CON	90 OSCTUNE	110 00	190		
11 TMR2	91 –	111 01	191		
12 T2CON	92 PR2	112 02	192		
13 SSPBUF	93 SSPADD	113 03	193		
14 SSPCON	94 SSPSTAT	114 04	194		
15 CCPR1L	95 -	115 05	195		
16 CCPR1H	96 –	116 06	196		
17 CCP1CON	97 –	117 07	197		
18 RCSTA	98 TXSTA	118 08	198		
19 TXREG	99 SPBRG	119 09	199		
1A RCREG	9A -	11A 10	19A		
1B -	9B ANSEL	11B 11	19B		
1C -	9C CMCON	11C 12	19C		
1D -	9D CVRCON	11D 13	19D		
1E ADRESH	9E ADRESL	11E 14	19E		
1F ADCONO	9F ADCON1	11F 15	19F		
		120 16	1A0		
21 01	A1 01	121 17 122 18	1A1 1A2		
— <u> </u>	A2 02				
23 03	A3 03	123 19	1A3		
24 04	A4 04	124 20 125 21	1A4 1A5		
25 05	A5 05	#			
26 06	A6 06	126 22	1A6		
27 07	A7 07	127 0 23	1A7		
28 08	A8 08	128 24	1A8		
29 09	A9 09	129 25	1A9		
		12A 26			
2B 11	AB 11	12B 27	1AB		
2C 12	AC 12	12C 28	1AC		
2D 13	AD > 13	12D 29	1AD		
2E Z 14	AE 14	12E 30	1AE		
2F 15	AF 15	12F 31	1AF		
30 16	B0 4 16	130 32	1B0		
31 17	B1 17	131 33	1B1		
32 5 18	DZ 18	132 34	1B2		
33 19	B3 19	133 35	1B3		
34 20	B4 20	134 36	1B4		
35 21	B5 21	135 37	1B5		
36 22	B6 22	136 38	1B6		
23	B7 23	137 39	1B7		
38 24	B8 24	138 40	1B8		
39 25	B9 25	139 41	1B9		
3A 26	BA 26	13A 42	1BA		
3B 27	BB 27	13B 43	1BB		
3C 28	BC 28	13C 44	1BC		
3D 29	BD 29	13D 45	1BD		
3E 30	BE 30	13E 46	1BE		
3F 31	BF 31	13F 47	1BF		
			_		

	IRP	= (0		IRP =	:1
	Bank 0		Bank 1		Bank2	Bank3
40	32	C0	32	140	48	1C0
41	33	C1	33	141	49	1C1
42	34	C2	> 34	142	50	1C2
43		СЗ	35	143	51	1C3
44		C4	36	144	52	1C4
45		C5	37	145	53	1C5
46		C6	38	146	<u>4</u> 54	1C6
47		C7	39	147	55	1C7
48		C8	40	148	56	1C8
49		C9		149	57	1C9
4A		CA		14A	58	1CA
4B		СВ		14B	59	1CB
4C	toutRF	CC		14C	60	1CC
4D		CD		14D	61	1CD
4E		CE		14E	62	1CE
4F		CF		14F	63	1CF
50		D0		150		1D0
51		D1		151		1D1
52		D2		152		1D2
53		D3		153	PIN 00	1D3
54		D4		154	DLEN 01	1D4
55		D5		155	02	1D5
56		D6		156	RX 03	1D6
57		D7		157	TX 04	1D7
58		D8		158	05	1D8
59		D9		159	06	1D9
5A		DA		15A	07	1DA
5B		DB		15B	_	1DB
5C		DC		15C	4	1DC
5D		DD		15D	RTDEF 09 RTV0 10	1DD
5E		DE		15E	RTV1 11	1DE
5F		DF		15F	RTV2 12	1DF
					-	
60		E0		160	RTV3 13	1E0
61		E1		161	MRW0 14	1E1
62 63		E2		162	MRW1 15	1E2
		E3		163	MRW2 16	1E3
64		E4		164	17	1E4
65		E5		165	18	1E5
66		E6		166	19	1E6
67		E7		167	20	1E7
68		E8		168	21	1E8
69		E9		169		1E9
6A		EA		16A		1EA
6B		EB		16B		1EB
6C		EC		16C		1EC
6D		ED		16D		1ED
6E		EE		16E 16F		1EE 1EF
6F		EF	1100×D0 = 0	_		
	userReg0		userReg0		userReg0	1F1 userReg0
	userReg1		userReg1		userReg1	1F1 userReg1
	param1		param1		param1	1F2 param1
74	param2		param2	174	param2	1F3 param2
75	param3	F4	param3	174	param3	1F4 1F5 param3
76	param4	F6	param4	176	param4	1F6 1F7 param4
78		F8		178		1F8
79		F9		179		1F9
7A		FA		17A		1FA
7B		FB		17B		1FB
7C		FC		17C		1FC
7D		FD		17D		1FD
7E		FE		17E		1FE
7 F		FF		17F		1FF

- reserved for PIC HW - OS buffers - reserved for OS - user available

$\pmb{\mathsf{RAM}}\,\,\pmb{\mathsf{map}}\,(\mathsf{PIC16F886}\,{\text{-}}\,\mathsf{TR}\text{-}\mathsf{xxx}\text{-}\mathsf{31B},\,\mathsf{TR}\text{-}\mathsf{xxx}\text{-}\mathsf{32B}\,\mathsf{and}\,\mathsf{TR}\text{-}\mathsf{xxx}\text{-}\mathsf{52B})$

IRP	= 0	IRP = 1			
Bank 0	Bank 1	Bank 2	Bank 3		
00 Ind. addr.	80 Ind. addr.	100 Ind. addr.	180 Ind. addr.		
01 TMR0	81 OPTION REG	101 WINO	181 OPTION_REG		
02 PCL	82 POI	102 PCI	182 PCL		
03 STATUS	83 STATUS	103 STATUS	183 STATUS		
04 FSR	84 ESR	104 FSR	184 ESR		
05 PORTA	85 TRISA	105 WDTCON	185 SRCON		
06 PORTB	86 TIRTISB	106 PORTIB	186 TIRTISB		
07 PORTC	87 TRISC	107 CM1CON0	187 BAUDCTL		
08 -	88 -	108 CM2CON0	188 ANSEL		
09 PORTE	89 TRISE	109 CM2CON1	189 ANSELH		
OA PCLATH	8A PCLATH	10A PCLIATH	18A PCLATH		
0B INTCON	8B INTCON	10B INTCON	18B INTCON		
0C PIR1	8C PHEI	10C PRODATE	18C DECONIL		
0D PIR2	8D PIE2	10D DEADR	18D EECON2		
0E TMR1L	8E PCON	10E DODANH	18E -		
OF TWRIH	8F OSCCON	10F DADRH	18F -		
10 T1CON	90 OSCTUNE	110 00	190		
11 TMR2	91 SSPCON2	111 01	191		
12 T2CON	92 PR2	112 02	192		
13 SSPBUF	93 SSPADD	113 03	193		
14 SSPCON	94 SSPSTAT	114 04	194		
15 CCPR1L	95 WPUB	115 05	195		
16 CCPR1H	96 IOC B	116 06	196		
17 CCP1CON	97 VRCON	117 07	197		
18 RCSTA	98 TIXSTVA	118 08	198		
19 TEXRE	99 SPBRE	119 09	199		
1A RCREG	9A SPBREH	11A 10	19A		
1B CCPR2L	9B PWM1CON	11B 11	19B		
1C CCPR2H	9C ECCPAS	11C 12	19C		
1D CCP2CON	9D PSTIRCON	11D 13	19D		
1E ADRESH	9E ADRESIL	11E 14	19E		
1F ADCON0	9F ADCON1	11F 15	19F		
20 00	A0 00	120 16	1A0		
21 01	A1 01	121 17	1A1		
22 02	A2 02	122 18	1A2		
23 03	A3 03	123 19	1A3		
24 04	A4 04	124 20	1A4		
25 05	A5 05	125 21	1A5		
26 06	A6 06	126 2 22	1A6		
27 07	A7 07	127 0 23	1A7		
28 08	A8 08	128 24	1A8		
29 09	A9 09	129 25	1A9		
			1AA		
2B 11	AB 11	12B 27	1AB		
2C 12			1AC		
2D 2 13		12D 29	1AD		
2E 14			1AE		
2F 15	AF 4 15	12F 31	1AF		
30 0 16		130 32	1B0		
31 17		131 33	1B1		
32 18	B2 ^A 18	132 34	1B2		
33 19		133 35	1B3		
34 20	B4 20		1B4		
35 21	B5 21		1B5		
36 22		136 38	1B6		
37 23			1B7		
38 24	B8 24	100	1B8		
39 25		100	1B9		
3A 26			1BA		
3B 27		13B 43	1BB		
3C 28		13C 44	1BC		
3D 29			1BD		
3E 30	BE 30	13E 46	1BE		
3F 31	BF 31	13F 47	1BF		
	d for PIC HW		– OS buffers		

	IRP	= (0 1		IRP =	:1	
	Bank 0		Bank 1		Bank2		Bank3
40	32	C0	32	140	48	1C0	
41	33	C1	33	141	49	1C1	
42	34	C2	34	142	50	1C2	
43	3-2	C3	S 35	143	51	1C3	
44		C4	н —	144		1C4	
45		C5	36	145	52	1C5	
46		C6	37	146	53	1C6	
47		C7	38	147	54	1C7	
48			39		55	-	
_		C8	40	148	30	1C8	
49		C9		149	<u>57</u>	1C9	
4A		CA		14A	58	1CA	
4B		CB		14B	59	1CB	
	toutRF	CC		14C	60	1CC	
4D		CD		14D	61	1CD	
4E		CE		14E	62	1CE	
4F		CF		14F	63	1CF	
50		D0		150		1D0	
51		D1		151		1D1	
52		D2		152		1D2	
53		D3		153	PIN 00	1D3	
54		D4		154	DLEN 01	1D4	
55		D5		155	02	1D5	
56		D6		156	RX 03	1D6	
57		D7		157	TX 04	1D7	
58		D8		158	05	1D8	
59		D9		159	06	1D9	
5A		DA		15A	07	1DA	
5B		DB		15B	0	1DB	
5C		DC		15C	RTOTX 08	1DC	
5D		DD		15D	RTDEF 09	1DD	
_					RTV0 10	_	
5E		DE		15E	RTV1 11	1DE	
5F		DF		15F	RTV2 12	1DF	
60		E0		160	RTV3 13	1E0	
61		E1		161	MRW0 14	1E1	
62		E2		162	MRW1 15	1E2	
63		E3		163	MRW2 16	1E3	
64		E4		164	17	1E4	
65		E5		165	18	1E5	
66		E6		166	19	1E6	
67		E7		167	20	1E7	
68		E8		168	21	1E8	
69		E9		169		1E9	
6A		ΕA		16A		1EA	
6B		EB		16B		1EB	
6C		EC		16C		1EC	
6D		ED		16D		1ED	
6E		EE		16E		1EE	
6F		EF		16F		1EF	
	userReg0		userReg0	_	userReg0	1F0	userReg0
	userReg1		userReg1		userReg1		userReg1
	param1		param1		param1		param1
	param2		param2		param2		param2
7.4		174		454		4 - 4	-
75	param3	FF	param3	175	param3	1 55	param3
7.0		E6		176		1 176	
77	param4	F7	param4	177	param4	157	param4
77 78		F8		178		1F7	
79		F9		179		1F9	
7A		FA		17A		1FA	
7B		FB		17B		1FB	
7C		FC		17C		1FC	
7D		FD		17D		1FD	
7E		FE		17E		1FE	
7 F		FF		17F		1FF	

- reserved for PIC HW - oS buffers - reserved for OS - user available

Documentation and Information

- 1 **IQRF OS** Reference guide <u>www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=133</u>
- 2 RAM map and EEPROM map, IQRF OS User's guide, Appendix 1 www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=130
- 3 **IQRF** home page <u>www.igrf.org</u>
- 4 **IQMESH** specification <u>www.igmesh.org/igmesh</u>
- 5 **SPI** specification <u>www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=90</u>
- 6 IQRF support site <u>www.iq-esupport.com</u>
- 7 TR-xxx-21A datasheet:
 - $\underline{www.iq\text{-}esupport.com/index.php?dload=Download&}\underline{m=downloads\&}\underline{a=downloadfile\&downloaditemid=88}\\ \textbf{TR-xxx-11A}\ datasheet$
 - www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=70 TR-xxx-31B datasheet:
 - <u>www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=109</u> **TR-xxx-32B** datasheet:
 - www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=128 TR-xxx-52B datasheet:
 - www.ig-esupport.com/index.php?dload=Download& m=downloads& a=downloadfile&downloaditemid=129
- 8 **PIC16LF88** datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/30487c.pdf **PIC16LF886** datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/30487c.pdf
- 9 **IQRF IDE** Integrated development environment <u>www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=89</u>
- 10 **Examples** (included in the StartUp Package) <u>www.iq-esupport.com/index.php?dload=Download&_m=downloads&_a=downloadfile&downloaditemid=96</u>
- Application note **AN003**: IQRF Development Tools Installation Guide www.ig-esupport.com/index.php?dload=Download&m=downloads&a=downloadfile&downloaditemid=120

If you need a help or more information please visit IQRF support pages [1] and Submit a Ticket with your request. A lot of information is also available on the IQRF web site [3].

Sales and Service

Corporate office:

MICRORISC s.r.o., Delnicka 222, 506 01 Jicin, Czech Republic, EU Tel: +420 493 538 125, Fax: +420 493 538 126, www.microrisc.com

Partners and distribution:

please visit www.iqrf.org/partners

Quality management:

ISO 9001: 2000 certified

Trademarks:

The IQRF name and logo are registered trademarks of MICRORISC s.r.o. PIC, SPI, Microchip, RFM and all other trademarks mentioned herein are property of their respective owners.

Legal:

All information contained in this publication is intended through suggestion only and may be superseded by updates without prior notice. No representation or warranty is given and no liability is assumed by MICRORISC s.r.o. with respect to the accuracy or use of such information.

Without written permission it is not allowed to copy or reproduce this information, even partially.

No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

The IQRF products utilize several patents (CZ, EU, US)

Website	www.iqrf.org				
E-mail	sales@iqrf.org				
On-line support	http://iq-esupport.com				

