a=qm אם קיים שלם $a=m\mid a$

a=qm+b -אם $a\equiv b \mod m$, כלומר קיים שלם $a\equiv b \mod m$

a % m מסומנת a בחלוקה ב-a מסומנת a

$$a$$
 % $m=a-m\left\lfloor rac{a}{m}
ight
floor$, $(-a)$ % $m=m-(a$ % $m)=m\left\lceil rac{a}{m}
ight
ceil -a$. משפט השארית של שלם שלילי:

a = qm + r,

משפט החילוק של אוקליד: עבור שלמים $a,m \neq 0$ כך שלמים עבור אוקליד: . השארית r=a % m הארית נקרא המנה ואילו q נקרא המודולו, q נקרא המנה ואילו

האלגוריתם של אוקליד: נתונים שלמים $a,b \geq 0$ ($a \geq b$, $a,b \geq 0$). ניתן לחשב את $d = \gcd(a,b)$ לפי האלגוריתם

$$0 \le r_1 \le b$$
 $a = bq_1 + r_1$:1 שלב

$$0 \le r_2 \le r_1$$
 $b = r_1 q_2 + r_2$:2 שלב

$$0 \le r_1 \le r_1$$
 $b = r_1q_2 + r_2$ $0 \le r_3 \le r_2$ $c = r_1q_2 + r_3$ $c = r_1q_3 + r_3$ $c = r_1q_3 + r_3$ $c = r_1q_3 + r_3$

$$0 \leq r_n \leq r_{n-1}$$
 $r_{n-2} = r_{n-1}q_n + r_n$: $r_{n-1} = r_nq_{n+1}$ שלב $r_{n-1} = r_nq_{n+1}$: $r_{n-1} = r_nq_{n+1}$

-ע כך x,y כד שלמים שלמים a,b ו- ($a \geq b$, $a,b \geq 0$) ו- עלגוריתם אוקליד המוכלל: נתונים שלמים $a,b \geq 0$) וax + by = d.

 $\left\{ egin{array}{ll} r_0=&a\;,&r_1=b\;,\\ s_0=&1\;,&s_1=0\;,\\ t_0=&0&t_1=1\;. \end{array}
ight\}$ ניתן למצוא את הערכים של x ו- y על ידי האלגוריתם הבא. נגדיר את הפרמטרים:

$(0 \le r_2 < r_1)$	$t_2 = t_0 - q_1 t_1$	$s_2 = s_0 - q_1 s_1$	$r_2 = r_0 - q_1 r_1$:1 שלב
$(0 \le r_3 < r_2)$	$t_3 = t_1 - q_2 t_2$	$s_3 = s_1 - q_2 s_2$	$r_3 = r_1 - q_2 r_2$:2 שלב
				:
$(0 \le r_{i+1} < r_i)$	$t_{i+1} = t_{i-1} - q_i t_i$	$s_{i+1} = s_{i-1} - q_i s_i$	$r_{i+1} = r_{i-1} - q_i r_i$:i שלב
				•••
$(0 \le r_n < r_{n-1})$	$t_n = t_{n-2} - q_{n-1}t_{n-1}$	$s_n = s_{n-2} - q_{n-1} s_{n-1}$	$r_n = r_{n-2} - q_{n-1}r_{n-1}$: n-1 שלב
			$r_{n+1} = 0$	n שלב

$$\gcd(a,b) = r_n , \qquad x = s_n , \qquad y = t_n .$$

gcd(a, b) = 1.

שני מספרים a,b נקראים מספרים ארים אם

-פד e_1,\ldots,e_n ושלמים p_1,p_2,\ldots,p_n כך שר קיים ראשוניים: לכל שלם שלם לכל שלם m

$$m=p_1^{e_1}\times p_2^{e_2}\dots p_n^{e_n}.$$

פונקצית אוילר: אם הפירוק לראשוניים של מספר שלם m הוא $m=\prod\limits_{i=1}^n p_i^{e_i}$, אז מספר השלמים הזרים לm בין עד m-1 ניתן על ידי 0

$$\phi(m) = \prod_{i=1}^{n} \left(p_i^{e_i} - p_i^{e_i-1} \right) .$$

אם p מספר ראשוני אז

אם p מספר ראשוני אז

$$\phi(p)=p-1.$$
 אם q מספר ראשוני אז $\phi(p^n)=p^n-p^{n-1}$ אם q מספר ראשוני אז $\phi(s\cdot t)=\phi(s)\cdot\phi(t).$ אם $\phi(s\cdot t)=\phi(s)\cdot\phi(t).$ אם $\phi(p\cdot q)=(p-1)(q-1).$ אם $\phi(p\cdot q)=(p-1)(q-1).$ אם $\phi(p\cdot q)=(p-1)(q-1).$ אם $\phi(p\cdot q)=(p-1)(q-1).$ אז התנאים הבאים מתקיימים: $a\in\mathbb{Z}_p$ אז התנאים הבאים מתקיימים:

:משפט ברמה: אם מספר השוני ו- $a\in\mathbb{Z}_p$ אז התנאים הבאים מחקיימים:

$$a^p \equiv a \mod p \ , \qquad \qquad a^{p-1} \equiv 1 \mod p \ , \qquad \qquad a^{-1} \equiv a^{p-2} \mod p \ .$$

$$\begin{array}{l} a^{\phi(n)} \equiv 1 \mod n. \\ a^{-1} \equiv a^{\phi(n)-1} \mod n. \end{array}$$

אם
$$a,n$$
 שלמים ו- $\gcd(a,n)=1$ אז a,n אם a,n שלמים ו- $\gcd(a,n)=1$

אם q ו-p מספרים ראשוניים שונים אז

$$\left\{egin{array}{ll} x=a_1\mod m_1\ x=a_2\mod m_2\ dots\ a_1\mod m_2\ dots\ x=a_r\mod m_r \end{array}
ight\}$$
 שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r כאשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r באשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r פרים פתרון יחיד מודולו a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r באשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r כאשר a_1,\ldots,a_r לכל a_1,\ldots,a_r לכל a_1,\ldots,a_r שניתן על ידי a_1,\ldots,a_r שניתן על יד

$$\mathbb{Z}_m = \{0, 1, \dots, m-1\}.$$

m חוג של אורך

 $a \equiv b \mod m$.

שני איברים a,b שקולים ב- שני איברים

 $\operatorname{.gcd}(a,m)=1$ אם ורק אם $a\in\mathbb{Z}_m$ נתון $a\in\mathbb{Z}_m$ נתון i ועמודת ועמודת החרי אחרי אחרי ועמודת החוה לדטרמיננטת אווה לדטרמיננטת שורת i ועמודת אחרי של i

$$A = C_{ij} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{pmatrix} \quad \Rightarrow \quad C_{ij} = (-1)^{i+j} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}$$

$$\langle a_{n1} \ a_{n2} \ \cdots \ a_{nj} \ \cdots \ a_{nn} \rangle$$
 $|a_{n1} \ a_{n2} \ \cdots \ a_{nj} \ \cdots \ a_{nn}|$ $C = \begin{pmatrix} C_{11} \ \cdots \ C_{1n} \ \vdots \ \ddots \ \vdots \ C_{n1} \ \cdots \ C_{nn} \end{pmatrix}$. $:A$ שטריצת הקופקטורים של מטריצה הופכית: $A^{-1} = (\det A)^{-1} C^t$.

1	-1 1	3-9	1	$\frac{5^{-1}}{21}$	7	-1 15	9^{-1}	-	11 ⁻ 19	1 1	$\frac{5^{-1}}{7}$	17 ⁻ 23	1	$\frac{19^{-1}}{11}$	21-5		$\frac{23^{-1}}{17}$		$\frac{5^{-1}}{25}$	$:\mathbb{Z}_{26}$	- 2 1	יכים	ים הפ	איבר	
a 0	b 1	2	d 3	e 4	f 5	g 6	h 7	i 8	ј 9	k 10	1 11	m 12	n 13	0 14	р 15	q 16	r 17	s 18	t 19	20	v 21	W 22	23	У 24	z 25
26	$\frac{m}{6 \times n}$	m	1 26	2 52	7		4	5 13		6 156	7 182	8	8 :	9 234	10 260	11 286	12		13 338	14 364	15 390	•'.	של 26	זכפל	לוח ר

m	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$26 \times m$	416	442	468	494	520	546	572	598	624	650	676	702	728	754	780

צפנים בסיסיים:

מפתח	כלל מפענח	כלל מצפין	צופן
$k = a \in \mathbb{Z}_{26}$	$d_k(x) = x - k$	$e_k(x) = x + k$	קיסר
m תמורה של אורך π	$d_{\pi}(y_1 \dots y_m) = y_{\pi^{-1}(1)} \dots y_{\pi^{-1}(m)}$	$e_{\pi}(x_1 \dots x_m) = x_{\pi(1)} \dots x_{\pi(m)}$	תמורה
26 תמורה של אורך π	$d_{\pi}(y) = \pi^{-1}(y)$	$e_{\pi}(x) = \pi(x)$	החלפה
k = (a, b)	$d_k(y) = a^{-1}(y-b) \mod 26$	$e_k(x) = ax + b \mod 26$	אפיני
$\gcd(a, 26) = 1$			
$k = (k_1, \dots, k_m) \in \mathbb{Z}_{26}^m$	$d_k\left(y_1,\ldots,y_m\right)$	$e_k\left(x_1,\ldots,x_m\right)$	ויז'נר
(*1) /***********************************	$= (y_1 - k_1, \dots, y_m - k_m)$	$= (x_1 + k_1, \dots, x_m + k_m)$	
$k \in \mathbb{Z}_{26}^{m \times m}$	$d_k(y_1 \dots y_m) = (y_1 \dots y_m) \cdot k^{-1}$	$e_k(x_1 \dots x_m) = (x_1 \dots x_m) \cdot k$	היל
$\gcd\left(\det(k),26\right)=1$			

הסתברויות של האותיות:

אות	הסתברות	אות	הסתברות	אות	הסתברות	אות	הסתברות	אות	הסתברות
a b c d	0.082 0.015 0.028 0.043	f g h i	0.022 0.02 0.061 0.07	k l m n	0.008 0.04 0.024 0.067	p q r	0.019 0.001 0.06 0.063	u v w x	0.028 0.01 0.023 0.001 0.02
е	0.127	j	0.002	0	0.075	t	0.091	Z	0.02

קבוצות תדירויות של האותיות בטקטס:

	אות	הסתברות
1.	е	p = 0.127
2.	t,a,o,i,n,s,h,r	$0.06 \lessapprox p \lessapprox 0.09$
3.	d,1	$p \approx 0.04$
4.	c,u,m,w,f,g,y,p,b	$0.015 \lesssim p \lesssim 0.028$
5.	v,k,j,x,q,z	p < 0.01

זוגות האותיות הנפוצים ביותר בטקטס:

th	he	in	er	an	re	ed	on	es	st
en	at	to	nt	ha	nd	ou	ea	ng	as
or	ti	is	et	it	ar	te	se	hi	of

שלשות של אותיות הנפוצים ביותר בטקטס:

the	ing	and	her	ere	ent	tha	nth	was	eth	for	dth	1
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---

$$I\left(X=x
ight)=\log_2\left(rac{1}{P(X=x)}
ight)=-\log_2\left(P(X=x)
ight).$$
 : X מידע של מ"מ בדיד : X

$$H[X] = \sum_{i=1}^N P(X=x_i)I(X=x_i) = -\sum_{i=1}^N P(X=x_i)\log_2\left(P(X=x_i)
ight).$$
 $:X$ אנטרופיה של מ"מ בדיד $:X$

$$P(X=x|Y=y)P(Y=y)=P(X=x\cap Y=y)=P(Y=y|X=x)P(X=x).$$
 נוסחת בייס:

סודיות:

נתונה קריפטו-מערכת בעלת קבוצת טקסט גלוי X, קבוצת טקסט מוצפן Y וקבוצת מפתחות כלל מצפין גלוי $x=d_k(y)$ וכלל מפענח $y=e_k(x)$

$$P(Y = y) = \sum_{k \in K} P(K = k) P(X = d_k(y))$$
, $P(Y = y | X = x) = \sum_{\substack{k \in K \\ x = d_k(y)}} P(K = k)$.

$$P(X = x | Y = y) = \frac{P(X = x) \sum_{\substack{k \in K \\ x = d_k(y)}} P(K = k)}{\sum_{k \in K} P(K = k) P(X = d_k(y))}.$$

סודיות מושלמת: לקריפטו-מערכת יש סודיות מושלמת אם:

$$P(X = x | Y = y) = P(X = x)$$
 \Leftrightarrow $P(Y = y | X = x) = P(Y = y)$.

אנטרופיה מותנית:

$$\begin{split} H(X|Y=y) &= -\sum_{x \in X} P(X=x|Y=y) \log_2 P(X=x|Y=y) \ . \\ H(X|Y) &= -\sum_{y \in Y} \sum_{x \in X} P(Y=y) P(X=x|Y=y) \log_2 P(X=x|Y=y) \ . \\ H(X,Y) &= H(Y) + H(X|Y) \ , \qquad H(X|Y) \leq H(X) \end{split}$$

$$H(K|C) = H(K) + H(P) - H(C).$$

משפט האנטרופיה לקריפו-מערכת:

טבלת אמת:

p	q	$p \wedge q$	$p \lor q$	$\sim p$	$p \oplus q$
1	1	1	1	0	0
1	0	0	1	0	1
0	1	0	1	1	1
0	0	0	0	1	0

ספרות הקסדצימליות:

hex	0	1	2	3	4	5	6	7
binary	0000	0001	0010	0011	0100	0101	0110	0111
hex	8	9	А	В	С	D	E	F
binary	1000	1001	1010	1011	1100	1101	1110	1111

 $C_{\Lambda}^{(r+1)} = Y_4 \oplus Y_{10}$

 $x = L_0 R_0$ משוואות פייסטל להצפנה: נתון טקטסט גלוי $x = L_0 R_0$ לכל

$$L_i = R_{i-1}$$
, $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$, $y = R_N L_N$

 $1 \le i \le N$ לכל $y = R_N L_N$ משוואות פייסטל לפענוח: נתון טקטסט גלוי

$$R_i = L_{i+1}$$
, $L_i = R_{i+1} \oplus f(R_i, k_{i+1})$, $x = L_0 R_0$

תזמוו מפתח של IDEA

r	k_1	k_2	k_3	k_4	k_5	k_6
1	0 - 15	16 - 31	32 - 47	48 - 63	64 - 79	80 - 95
2	96 - 111	112 - 127	25 - 40	41 - 56	57 - 72	73 - 88
3	89 - 104	105 - 120	121 - 8	9 - 24	50 - 65	66 - 81
4	82 - 97	98 - 113	114 - 1	2 - 17	18 - 33	34 - 49
5	75 - 90	91 - 106	107 - 122	123 - 10	11 - 26	27 - 42
6	43 - 58	59 - 74	100 - 115	116 - 3	4 - 19	20 - 35
7	36 - 51	52 - 67	68 - 83	84 - 99	125 - 12	13 - 28
8	29 - 44	45 - 60	61 - 76	77 - 92	93 - 108	109 - 124
9	22 - 37	38 - 53	54 - 69	70 - 85	_	_

אלגוריתם הצפנת IDEA

[14]

- . ביטים 64אורך של אורך
 $P \in \{0,1\}^{64}$ גלוי גלוי •
- $P = P_1 P_2 P_3 P_4 : P_i \in \{0,1\}^{16}$ ארבע בלוקים P לארבע בלוקים •
- ב- (r-1 מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את בתחילת מחזור ה- ($1 \le r \le 9$) מסמנים את בתחילת מחזור ה- ($1 \le r \le 9$). מלבד מ- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל מחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל מחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל מחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים אחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל ממחזור ה- ($1 \le r \le 9$) מסמנים את הטקסט מוצפן המתקבל מוצפן מוצפן מוצפן המתקבל מוצפן מ
 - באים: r מורכב מהשלבים הבאים:

$$\begin{array}{c} Y_1 = C_1^{(r)} \odot k_1^{(r)} = C_1^{(r)} \cdot k_1^{(r)} \mod (2^{16}+1) \\ Y_2 = C_2^{(r)} \boxplus k_2^{(r)} = C_2^{(r)} + k_2^{(r)} \mod 2^{16} \\ Y_3 = C_3^{(r)} \boxplus k_3^{(r)} = C_3^{(r)} + k_3^{(r)} \mod 2^{16} \\ Y_4 = C_4^{(r)} \odot k_4^{(r)} = C_4^{(r)} \cdot k_4^{(r)} \mod (2^{16}+1) \\ Y_5 = Y_1 \oplus Y_3 \\ Y_6 = Y_2 \oplus Y_4 \\ Y_7 = Y_5 \odot k_5^{(r)} = Y_5 \cdot k_5^{(r)} \mod (2^{16}+1) \\ Y_8 = Y_6 \boxplus Y_7 = Y_6 + Y_7 \mod 2^{16} \\ Y_9 = Y_8 \odot k_6^{(r)} = Y_8 \cdot k_6^{(r)} \mod 2^{16} + 1 \\ Y_{10} = Y_7 \boxplus Y_9 = Y_7 + Y_9 \mod 2^{16} \\ C_1^{(r+1)} = Y_1 \oplus Y_9 \\ C_2^{(r+1)} = Y_3 \oplus Y_9 \\ C_3^{(r+1)} = Y_2 \oplus Y_{10} \end{array} \qquad [13]$$

התפוקה: את הטקסט מוצפן הסופי, אחרי ביצוע של כל המחזורים r מבצעים את בכדי σ

$$C_1 = C_1^{(9)} \odot k_1^{(9)} = C_1^{(9)} \cdot k_1^{(9)} \mod 2^{16} + 1$$
 [1]

$$C_2 = C_3^{(9)} \boxplus k_2^{(9)} = C_3^{(9)} + k_2^{(9)} \mod 2^{16}$$
 [2]

$$C_3 = C_2^{(9)} \boxplus k_3^{(9)} = C_2^{(9)} + k_3^{(9)} \mod 2^{16}$$
 [3]

$$C_4 = C_4^{(9)} \odot k_4^{(9)} = C_4^{(9)} \cdot k_4^{(9)} \mod 2^{16} + 1$$
 [4]

 $C = C_1 C_2 C_3 C_4$ ביטים -16 בלוקים בלוקים מתקבל מהארבע ביטים -64 ביטים פוצפן •

מפתחות פענוח של IDEA

$$DK_1^{(1)} = \left(K_1^{(9)}\right)^{-1} , \quad DK_2^{(1)} = -\left(K_2^{(9)}\right) , \quad DK_3^{(1)} = -\left(K_3^{(9)}\right) , \quad DK_4^{(1)} = \left(K_4^{(9)}\right)^{-1} ,$$

$$DK_5^{(1)} = K_5^{(8)} , \quad DK_6^{(1)} = K_6^{(8)} .$$

 $x=x_1\dots x_{64}$ ביטים 64 נתון טקסט נלוי: DES אלגוריתם הצפנת

שלב IP מבצעים $IP(x_1,x_2,\ldots,x_{64})$ כאשר באשר ומבצעים (13 מבצעים מבצעים וויע.

(ביטים אחרונים: $IP(x)=L_0R_0$ ה-32 ה-10 אחרונים: $IP(x)=L_0R_0$ ה-12 לשניים. $IP(x)=R_0$ לשניים.

$$L_0 = x_{58}, x_{50}, x_{42}, x_{34}, x_{26}, x_{18}, x_{10}, x_2, x_{60}, x_{52}, x_{44}, x_{36}, x_{28}, x_{20}, x_{12}, x_4$$

$$x_{62}, x_{54}, x_{46}, x_{38}, x_{30}, x_{22}, x_{14}, x_{6}, x_{64}, x_{56}, x_{48}, x_{40}, x_{32}, x_{24}, x_{16}, x_8 ,$$

$$R_0 = x_{57}, x_{49}, x_{41}, x_{33}, x_{25}, x_{17}, x_{9}, x_{1}, x_{59}, x_{51}, x_{43}, x_{35}, x_{27}, x_{19}, x_{11}, x_{3}$$

$$x_{61}, x_{53}, x_{45}, x_{37}, x_{29}, x_{21}, x_{13}, x_{5}, x_{63}, x_{55}, x_{47}, x_{39}, x_{31}, x_{23}, x_{15}, x_{7} .$$

 $L_i=R_{i-1}\;, \qquad R_i=L_{i-1}\oplus f\left(R_{i-1},k_i
ight).$ שלב [3] מבצעים 16 מחזורים של אלגוריתם פייסטל: .k תת-מפתחות כל אחד 48 ביטים שמתקבלים ממפתח התחלתי k_1,\ldots,k_{16}

שלב IP^{-1} התמורה ההופכית: $y = IP^{-1}\left(R_{16}L_{16}
ight)$

$$IP^{-1} = \begin{pmatrix} 40 & 8 & 48 & 16 & 56 & 24 & 64 & 32 & 39 & 7 & 47 & 15 & 55 & 23 & 63 & 31 \\ 38 & 6 & 46 & 14 & 54 & 22 & 62 & 30 & 37 & 5 & 45 & 13 & 53 & 21 & 61 & 29 \\ 36 & 4 & 44 & 12 & 53 & 20 & 60 & 28 & 35 & 3 & 43 & 11 & 51 & 19 & 59 & 27 \\ 34 & 2 & 42 & 10 & 50 & 18 & 58 & 26 & 33 & 1 & 41 & 9 & 49 & 17 & 57 & 25 \end{pmatrix}$$

DES הפונקציית ליבה של

$$f:\{0,1\}^{32}\times\{0,1\}^{48}\to\{0,1\}^{32}.$$

נסמן הארגומנטים של fידי האלגוריתם f . $J \in \{0,1\}^{48}$, $A \in \{0,1\}^{32}$ כאשר כאשר f(A,J) -ב מתוארת של הארגומנטים הבא

$$E = \begin{pmatrix} 32 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 9 & 10 & 11 & 12 & 13 \\ 12 & 13 & 14 & 15 & 16 & 17 \\ 16 & 17 & 18 & 19 & 20 & 21 \\ 20 & 21 & 22 & 23 & 24 & 25 \\ 24 & 25 & 26 & 27 & 28 & 29 \\ 28 & 29 & 30 & 31 & 32 & 1 \end{pmatrix}$$

"שלב [2] מחשבים J ביטים: $E(A) \oplus J$ ורושמים התשובה כשירשור של שמונה רצפים

$$B = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 , \qquad B_j \in \{0, 1\}^6 .$$

 $b_i \in \{0,1\}$ רושמים $B_j = b_1 b_2 b_3 b_4 b_5 b_6$ כאשר (3)

 $1 \le j \le 8$ שנתון למטה. לכל אינת מסדר איא מטריצה מסדר $1 \le j \le 8$ שנתון למטה. לכל אינתון בשלב (4) בשלב בשלב שנתון למטה. לכל אינת ההחלפות

$$C_j = (S_j(r,c))_2$$
, $r = (b_1b_6)_{10}$, $c = (b_2b_3b_4b_5)_{10}$

 S_j המטריצה c העמודה דעמליות האיבר האיבר ו- $S_j(r,c)$ ו- דעמליות, בספרות בספרות בספרות האיבר בספרות האיבר ביניאריות. ביניאריות לבסוף ביניאריות ביניאריות האיבר לבסוף ביניאריות ביניאריות ביניאריות האיבר ביניאריות ביניאריות

$$P=egin{pmatrix} 16&7&20&21\ 29&12&28&17\ 1&15&23&26\ 5&18&31&10\ 2&8&24&14\ 32&27&3&9\ 19&13&30&6\ 22&11&4&25 \end{pmatrix}$$
 התמורה P כאשר P כאשר P כאשר P התמורה

.k נתון מפתח התחלתי 64 ביטים, נתון מפתח התחלתי ביטים,

. ביטים האחרונים 28 -- ה- 28 ביטים הראשונים ו- 28 ה- 28 ביטים האחרונים $PC_1(k)=C_0D_0$ נסמן

$$PC_2 = \begin{pmatrix} 14 & 17 & 11 & 24 & 1 & 5 \\ 3 & 28 & 15 & 6 & 21 & 10 \\ 23 & 19 & 12 & 4 & 26 & 8 \\ 16 & 7 & 27 & 20 & 13 & 2 \\ 41 & 52 & 31 & 37 & 47 & 55 \\ 30 & 40 & 51 & 45 & 33 & 48 \\ 44 & 49 & 39 & 56 & 34 & 53 \\ 46 & 42 & 50 & 36 & 29 & 32 \end{pmatrix}.$$

הבלוקים של ההחלפות של DES

														DES ,	ונשכ	יוועצו
S_1	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S_2	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	$\frac{9}{8}$
S_3	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	
	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
S_4	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
S_5	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
S_6	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	$\frac{8}{6}$
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	
	4	3	2	12	9	5	<u>15</u>	10	11	14	1	7	6	0	8	13
S_7	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
S_8	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	$\frac{2}{8}$
	7	11	4	$\frac{1}{7}$	9	12	14	2	0	6	10	13	15	3	5	
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

:RSA הצפנת

 $ab=1 \mod \phi(n)$ -שלמים כך ש- a,b שלמים מספרים מספרים אוניים, ו- $a,b=1 \mod \phi(n)$ באשר אוניים, ו- $a,b=1 \mod p$ מספרים אוניים, וועדיר כלל מצפין אונדיר כלל מפענת $d_k(x)=y^a \mod n$.

מפתח סודי. (p,q,b)

:RSA פענות

המשוואת פענוח $x=y^a \mod n$ ניתן לפתור באמצעות האלגוריתם הבא:

 $x_1=(y\mod p)^{a\mod (p-1)}\mod p$ שלב $a\mod p$ ואז מחשבים $a\mod (p-1)$ ואז מחשבים $a\mod (p-1)$

 $x_2=(y\mod q)^{a\mod (q-1)}\mod q.$ שלב [2] אוז מחשבים $a\mod (q-1)$ ואז מחשבים $a\mod (q-1)$

 $\left\{egin{array}{ll} x=&x_1\mod p \ x=&x_2\mod q \end{array}
ight\}$ בעזרת המשפט השאריות הסיני פותרים את המערכת (3)

 $.eta=lpha^a\mod p$ יהי $.a\in\{2,3,\dots,p-2\}$ ו- $\left(\mathbb{Z}_p^*, imes_p
ight)$ יוצר של מספר ראשוני, $a\in\{2,3,\dots,p-2\}$ ו- .k=(p,lpha,a,eta) נתון מפתח

 $c_k(x,d)=(y_1,y_2)\;,\quad y_1=lpha^d\mod p\;,\quad y_2=eta^dx\mod p\;$ נגדיר כלל מצפין $c_k(y_1,y_2)=(y_1^a)^{-1}\,y_2\mod p$ ונגדיר כלל מפענת

. מפתח שיבורי ו-a מפתח סודי (p,lpha,eta)