(CS-534) Machine Learning Implementation Assignment #2

Perceptron algorithm for Optical Character Recognition

Submission By:

Akash Agarwal

OSU ID NUMBER: 933-471-097

Vishnupriya Nochikaduthekkedath Reghunathan

OSU ID NUMBER: 933-620-571

Anand P Koshy

OSU ID NUMBER: 933-617-060

Contribution by each member in percentage: Equal contribution by each member

Akash Agarwal - 33.33%

Vishnupriya Nochikaduthekkedath Reghunathan -33.33%

Anand P Koshy -33.33%

Introduction

In this assignment, we are using 3 variations of perceptron to to classify handwritten digits of numbers 3 or 5. **Preprocessing**

- 1. The output Y from the train and validation datasets are changed to 1 and -1 (+1 to 3 and -1 to 5) and removed from the dataset for further processing with the train and validation data.
- 2. Add bias feature (equals to 1) to train, validation and test data to improve the fit.

Part 1 : Online Perceptron

In this part, we implemented the algorithm for Online Perceptron and trained the model with 15 iterations to calculate the weights per iteration. Then we used these weights on the validation data to calculate the validation loss. Recorded train and validation accuracies versus the iteration number is plotted to find the best iteration value. The weight and best iteration is used to calculate the output from test data and recorded in the file oplabel.csv.

(a) Implement the online perceptron model with algorithm described in Algorithm 1. Set the iters = 15. During the training, at the end of each iteration use the current w to make prediction on the validation samples. Record the accuracies for the train and validation at the end of each iteration. Plot the recorded train and validation accuracies versus the iteration number.

Solution

No of iterations	Accuracy with Training Data	Accuracy with Validation Data
1	94.74222585924714	93.37016574585635
2	95.76513911620295	94.536525475752
3	94.98772504091653	93.49294045426642

4	96.48117839607201	94.84346224677716
5	95.68330605564648	93.67710251688153
6	95.76513911620295	94.3523634131369
7	95.88788870703765	93.7998772252916
8	95.66284779050737	93.86126457949663
9	95.90834697217676	94.78207489257213
10	96.2152209492635	93.92265193370166
11	96.2152209492635	94.04542664211174
12	95.90834697217676	94.29097605893186
13	96.4607201309329	94.22958870472684
14	96.62438625204582	95.2731737262124
15	95.64238952536824	94.59791282995702

Algorithm is implemented and values are recorded for 15 iterations
The maximum accuracy observed on training data is **96.62438625204582** and
The maximum accuracy observed for validation data is **95.2731737262124**.

(b) Does the train accuracy reach to 100%? Why? Solution

No . When we iterate over 15 iterations the maximum accuracy for train data that we observed is 96.62438625204582 at 14 th iteration.

Reason:

This is one of the weaknesses of online perceptron. Online perceptron counts later points more than earlier points. Suppose we have 100000 examples and the online perceptron learns a really good model for the first 90000 examples and does not require any update but it encounters an error on the 90001th example and the weights get updated, there is a possibility that this update may have an adverse effect on the first 90000 examples which were correctly classified and hence it is difficult to achieve a training accuracy of 100%.

It might be because the data may not be completely linearly separable . i.e) There might be some values that cannot be correctly classified as a 3 or 5. After the 14 th iteration the model is overfitting and hence the accuracy reaches 100 (For 1700 iterations and above). So early stopping (at 15 iterations) can be used to prevent overfitting.

(c) Use the validation accuracy to decide the test number for iters. Apply the resulting model to make predictions for the samples in the test set. Generate the prediction file oplabel.csv. Please note that your file should only contain +1 (for 3) and -1 (for 5) and the number of rows should be the same as pa2 test.csv.

We observed that the best value for iteration to be 14. At 14th iteration we observed the highest accuracy for validation data .i.e) 95.2731737262124 and after the 14th iteration overfitting occurs and the accuracy of the validation data decreases and accuracy of training data increases causing overfitting.

The output is recorded in oplabel.csv.

Part 2 : Average Perceptron

In this part, we implemented the average perceptron to improve the performance of the perceptron. Here we are taking the weighted average of all the intermittent weights to find the accuracy for new dataset (validation data) and observations are noted. The train and validation accuracies vs iteration are noted and then the validation accuracy is compared with the validation accuracy for online perceptron and observations are noted to show that average perceptron has better performance.

(a) Please implement the average perceptron described in Algorithm 2

(b) Plot the train and validation accuracies versus the iteration number for iters = 1, ..., 15.

Plotted on the next page.

Algorithm is implemented and values are recorded for 15 iterations. The maximum accuracy observed on training data is **97.0949263502** and The maximum accuracy observed for validation data is **95.3959484346**.

(c) How average model has affected the validation accuracy comparing to the online perceptron?

We observe that the validation plot for the average perceptron is smooth with less oscillations as compared to the validation plot for the online perceptron. (i.e) average perceptron gives more convergence). The highest accuracy obtained on validation data using average perceptron (95.396) has a slight improvement over the highest accuracy reached by online perceptron (95.273) for 15th iteration. Even though the maximum accuracy obtained by average perceptron is same as online perceptron, the accuracy obtained by average perceptron at each iteration is observed to be almost similar for all the 15 iterations giving us a smooth curve.

Iteration	Accuracy obtained by Online Perceptron	Accuracy obtained by Average Perceptron
1	93.37016574585635	94.47513812154696

2	94.536525475752	94.96623695518723
3	93.49294045426642	95.15039901780233
4	94.84346224677716	95.0890116635973
5	93.67710251688153	95.02762430939227
6	94.3523634131369	95.0890116635973
7	93.7998772252916	95.15039901780233
8	93.86126457949663	95.2731737262124
9	94.78207489257213	95.21178637200737
10	93.92265193370166	95.2731737262124
11	94.04542664211174	95.2731737262124
12	94.29097605893186	95.2731737262124
13	94.22958870472684	95.2731737262124
14	95.2731737262124	95.2731737262124
15	94.59791282995702	95.39594843462247

Part 3 : Polynomial Kernel Perceptron

- (a) Implement the polynomial kernel function \mathbf{k}_{p} in the Algorithm 3. This function takes two vectors \mathbf{x}_{1} and \mathbf{x}_{2} and an integer p for the polynomial degree, and returns a real value. Implemented
- (b) Define a Gram matrix K with size N × N where N is the number of training samples. Fill matrix K(i, j) = k p (x_i, x_j) for all of the pairs in the training set. Implemented
- (c) Implement the rest of the kernel perceptron in Algorithm 3. For each p in [1, 2, 3, 7,15]:
 - 1) Run the algorithm to compute α .

We ran the algorithm and computed alpha for each iteration.

3) Record the train and validation accuracy for each iteration and plot the train and validation accuracies versus the iteration number.

P = 1		
Iteration	Training Accuracy	Validation Accuracy
1	94.74222586	93.37016575
2	95.76513912	94.53652548
3	94.98772504	93.49294045
4	96.4811784	94.84346225
5	95.68330606	93.67710252
6	95.76513912	94.35236341
7	95.88788871	93.79987723
8	95.66284779	93.86126458
9	95.90834697	94.78207489
10	96.21522095	93.92265193
11	96.21522095	94.04542664
12	95.90834697	94.29097606
13	96.46072013	94.2295887
14	96.56301146	94.59791283
15	95.45826514	94.04542664
16	96.64484452	94.04542664
17	95.88788871	93.86126458
18	96.80851064	94.9048496
19	96.29705401	94.35236341
20	95.17184943	93.30877839
21	94.82405892	93.24739104
22	95.92880524	93.30877839
23	96.23567921	95.02762431
24	96.4198036	94.35236341
25	96.68576105	94.59791283

P = 2		
Iteration	Training Accuracy	Validation Accuracy
1	96.44026187	94.59791283
2	98.2405892	97.36034377
3	99.26350245	97.91282996
4	98.91571195	97.60589319
5	99.67266776	98.09699202
6	99.67266776	97.97421731
7	99.83633388	97.97421731
8	99.95908347	98.34254144
9	99.77495908	98.15837937
10	99.95908347	98.15837937
11	99.87725041	97.8514426
12	99.87725041	97.91282996
13	99.95908347	97.97421731
14	99.83633388	98.03560467
15	99.32487725	97.23756906
16	99.85679214	98.09699202
17	99.83633388	98.03560467
18	99.97954173	98.15837937
19	99.85679214	98.21976673
20	99.95908347	97.97421731
21	100	97.97421731
22	100	97.97421731
23	100	97.97421731
24	100	97.97421731
25	100	97.97421731

P = 3	
-------	--

Iteration	Training Accuracy	Validation Accuracy
1	98.07692308	96.99201964
2	99.28396072	98.09699202
3	99.83633388	98.15837937
4	99.89770867	98.46531614
5	99.97954173	98.40392879
6	99.95908347	98.40392879
7	100	98.28115408
8	100	98.28115408
9	100	98.28115408
10	100	98.28115408
11	100	98.28115408
12	100	98.28115408
13	100	98.28115408
14	100	98.28115408
15	100	98.28115408
16	100	98.28115408
17	100	98.28115408
18	100	98.28115408
19	100	98.28115408
20	100	98.28115408
21	100	98.28115408
22	100	98.28115408
23	100	98.28115408
24	100	98.28115408
25	100	98.28115408

P = 7

Iteration	Training Accuracy	Validation Accuracy
1	98.79296236	96.31675875
2	99.61129296	97.23756906
3	99.9386252	97.72866789
4	100	97.72866789
5	100	97.72866789
6	100	97.72866789
7	100	97.72866789
8	100	97.72866789
9	100	97.72866789
10	100	97.72866789
11	100	97.72866789
12	100	97.72866789
13	100	97.72866789
14	100	97.72866789
15	100	97.72866789
16	100	97.72866789
17	100	97.72866789
18	100	97.72866789
19	100	97.72866789
20	100	97.72866789
21	100	97.72866789
22	100	97.72866789
23	100	97.72866789
24	100	97.72866789
25	100	97.72866789

P = 15		
Iteration	Training Accuracy	Validation Accuracy
1	96.70621931	94.96623696
2	99.24304419	96.43953346
3	98.93617021	96.13259669
4	99.03846154	96.50092081
5	99.75450082	96.56230816
6	99.79541735	96.56230816
7	99.85679214	96.56230816
8	99.89770867	96.56230816
9	99.89770867	96.56230816
10	99.89770867	96.56230816
11	99.91816694	96.56230816
12	99.91816694	96.56230816
13	99.9386252	96.56230816

Iteration		Training Accuracy	Validation Accuracy
	14	99.95908347	96.56230816
	15	99.95908347	96.56230810
	16	99.97954173	96.56230816
	17	99.97954173	96.5623081
	18	99.97954173	96.5623081
	19	99.97954173	96.5623081
	20	99.97954173	96.5623081
	21	99.97954173	96.5623081
	22	99.97954173	96.5623081
	23	99.97954173	96.5623081
	24	99.97954173	96.5623081
	25	99.97954173	96.5623081

4) Record the best validation accuracy achieved for each p over all iterations.

POWER	ACCURACY (in %)
P = 1	95.0276243094
P = 2	98.3425414365
P = 3	98.4653161449
P = 7	97.7286678944
P = 15	96.5623081645

(d) Plot the recorded best validation accuracies versus degrees. Please explain how p is affecting the train and validation performance.

It was observed that for Training examples, the accuracy increases as we increase the power. For example, for p = 1, the maximum training accuracy = 96.8 (approx), for higher values of p, the training accuracy is close to 100%. For p = 7, the model gains 100% accuracy from the 4th iteration. At p = 15, the training accuracy decreases very minutely, such that the maximum training accuracy at p = 99.97% (approx).

For validation data, the values of validation accuracy increases as we increase the power, till p = 3. For values greater than p = 3, the validation accuracies starts to decrease.

Also, on increasing the degree of Kernelized- perceptron, it can be observed that the model gets fit to the data faster. For example, at p = 1, maximum validation accuracy is achieved at 24th iteration and for p = 3 it is achieved at 4th iteration. As we increase the power, we notice that overfitting occurs on the training data-set and hence the validation accuracy starts to decrease.

(e) Use your best α (the best you found over all d and iterations above) to predict the test data-set. Please name the predicted file as kplabel.csv.

By observing the above graph, we can conclude that the best validation accuracy is observed at p=3, i.e. cubic-kernelized perceptron will provide the best accuracy on the Validation Data for the given validation file. By Looking at the Alpha vs Iteration graph for p=3, it was further observed that at Iteration: 4, the best value of alpha was observed. Thus, we've taken the alpha value for iteration:4 for power p=3 to predict the Y values for the test data. The data has been recorded in kplabel.csv and has been submitted along with the report.