Lecture 4

Friday, March 24, 2017 10:42 AM

Problem

DMakespan Minimization on Identical Machines

Input:

n jobs with processing times

P, P2, ..., Pn

om machines. Identical: Each job j takes some time on tach machine.

If a set $S \subseteq \{1, ..., n\}$ is schedded on a machine, the total processing time is the sum of processing times.

Output: Allocation of jobs to machine.

Objective: Minimize makespan: max proc. time on any m/c.

Formally, find a partition S,, Sz,..., Sm of El,..., n } p.t.

4
max ZP; is minimized. i=1 jes;
Graham Notation This problem is P Cmax This problem is Makespan machines no exha conshaints.
This problem is P Cmax
Identical Makes yan machines no a she
constaints.
For instance, we could have a machine dependent running times p; - job j's proc. time on machine is and we
coullne wanted to minimize the same obj
That prob is called RII Cmax.
Today, we stick to P/1 Cmax
Algorithm (The "oldest" appx alg) 1966 [Graham]
· Order the ishe in and order

· Schedule job j on the machine which has the least had so far.

Analysis

· Lower Bounds on OPT

$$\begin{array}{cccc}
P_{\text{max}} & := & \text{max} & P_{:} \\
\hline
P & := & \frac{1}{m} & \sum_{j=1}^{n} P_{j}
\end{array}$$

$$L := & \text{max} \left(P_{\text{max}}, P \right)$$

Obs: OPT > L

We will use this easier lower band to compane our algo. It may seem like we're taking a hit, but we have a botter handle on it.

Back to analysis:

Let i be the most loaded m/c. Consider the last job j being added to i. Let P be the load on m/c i just before j was added.

Theorem: The above algorithm is a factor 2 appx. alg. for PII Cmax.

A slightly simpler problem: P2 (max)
So, m = 2. only 2 m/c.
The problem is still NP-hard.
(Do you see this?)

Classification:

- Fix any E>0.

- Job j is big if $\rho_{i} > \varepsilon$ | small, o/ω .

Partitioning Output Space:

- B be the set of big jobs.

· Any schedule in particular partitions
B = B, O B2
· Let (B,*, B,*) be the partition
l
of B in the optimal schedule
(*) We can afford to guess
this partition.
Why? How many partitions are there?
2 Bi
\sim
How large is 1B1?
$2L > \sum_{j \in B} P_j > B \cdot \epsilon L = B \le \frac{2}{\epsilon}$
· J€18
The # of partitions of B \le 2
= 0 (1)
By enumerating, we formay not for may assume we have saying it a const deputed of me. There is a const deputed of me.
may assume we have saying its a const
dependent only on E.
guessed / know (B, B2)
Note: in the future, whenever we say
· · · · · · · · · · · · · · · · · · ·

"gness", be aware how much time this gness takes. In this case, the gness is via emmeration and takes $2^{O(1/\epsilon)}$ time.

Algo:

(B,*,B*) // 20(1/2) time

nia enum.

② Order smell jobs in any order and schedule on the least least loaded m/c... exactly like before.

Analysis

Two Cases.

The max-loadel m/c gets no small jobs. In that case, $P(B_1^*), P(B_2^*) \leq OPT$

2) The max-boaled m/c gets at least one small job j. Now we can repeat the above argument...

ALG & P+P; & P+ EL & C1+E)L

< (1+E) L < (1+E) OPT

guin

Theorem: For any $\varepsilon > 0$, the above algorithm is an $(1+\varepsilon)$ -approximation running in time $poly(n) \cdot 2^{0(1/\varepsilon)}$

Definitions

Polynomial Time Appx Scheme (PTAS):

An alg. which takes an extra paramher E>O as input and returns en (14e)-factor appx in time which is a polynomial in n as long as E is a constant.

Example running times: N/E 22

Example running times: N/E

N#2, N/E

Fully polynomial Time Appx Scheme (FPTAS)
These are PTAS... but their

	These are PTAS es but their
	These are PTAS es, but their running times are poly (n, 1/s).
	So, even if $\varepsilon \approx \frac{1}{n^{10}}$, the scheme
	runs in polynomial time.
	An FPTAS is the best you can hope
	for for an NP-hard problem.
	Stated as
	Thm: P211 Cmax has a PTAS
	PII Cmax with many machines
Ĵ	(Multiplicative Scaling)
	"Round up" all job sizes P; to the smallest power of (HE) which is larger than P;
	- OPT (In) < OPT (In) < (1+ E) · OPT (I)

- Given any soln to Inew of makespan

T = a Tsoln to I,y of ST mkspn.

(2) (Guessing OPT) Till now we assumed we didn't know OPT... the number. But we keep working with a 'quesi and bump it by a factor (14 E) if the final solm. isn't within \leq (14 E) times guess.

(3) (Bucketing Big Jobs)

- Job j is big if P, > €. OPT

- B = Set of big jobs.

- B = B with dhe same proc. time

| ≤ t ≤ N |

- How big is N? | log (1/€)

≈ \frac{1}{\xi} log \frac{1}{\xi} | log \frac{1}{\xi} \frac{1}{\xi}

4) (Profile of big jobs)

Every feasible schedule gives each machine a "profile" $\overrightarrow{V} = (V_1, V_2, \dots, V_N)$ where $v_t \in \mathbb{Z}_{\geq}$ denotes the # of jobs of Bt is given to this m/c. How many feasible profiles are there? If V is collection of all feas. $M = |V| \leq \left(\frac{1}{\epsilon}\right)^{N} \approx 2^{\frac{1}{\epsilon}\log^2 \frac{1}{\epsilon}}$ Show the constant is a constant in the is a constant, believe iter 5 (Histogram of profiles)

Lecture 4 Page 10

Lets	order	the	brotil	es of	11/3	બ
	ψ ⁽¹⁾ ,	ر2)		→ (M)		
	,	\	, , , ,	, v		
Any	fersil	de sc	hedule	allo	cutes	each
ma	chine	one	of 4h	ese p	ro file	ري. الم
Let	hi	be.	the #	of n	nles	
þic	ik th	e p	rofile) (i		
Here	doesn't	nse 4h	e par	Melness	' of	machine
I	doesn't	~~ «	Her w	ho dho	oses	which
64	these	hi	وسران ل <u>و</u>	उ र्ब र्	the J	(6)
Consi	stency (Condition	rns:			
	M					
•	<u></u>	n; =	m			
•	\(\sum_{\text{V}} \)	ے (i h: ۷۲) = /{	3. \	¥ 1	ミチミル
	ا تي	~	•	·	-	
	# 0	t big	jobs			
	amo	hype I	mlc's.			

6	
(P	(Guessing OPTs profile)
	Let (h, , , hm) be the histogram
	of OPT. Claim: We can 'guess' ht
	by Enumeration.
	How many consistent histograms one
	How many consistent histograms one there?
	$\leq m^{ V }$
	there? <m 2="1092" <m<="" =="" constant!="" th=""></m>
	Once we guess OPT's histogram,
	Once we guess OPT's histogram, we give his arbitrary mlc's the
	profile $\forall^{(i)}$. Since its considert,
	all big jobs are allocated.
•	The small jobs we allocate GREED; by
	Just as in the P211 Comex Case,
	we get an (HE). OPT makespan.
	U V