Quiz 3

Problem 1 (20 points; 5 points each). Decide if each of the following are true or false and provide a small proof or counterexample in each case. All vector spaces are assumed to be finite-dimensional here.

(a) _____ Given a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for a vector space V and U a subspace of V, then there is $\mathcal{C} \subseteq \mathcal{B}$ that is a basis for U.

This is false. For example, take $U = \text{span}\{(1,1)\}, V = \mathbb{R}^2$, and \mathcal{B} be the standard basis for \mathbb{R}^2 .

(b) _____ Given a basis $\mathcal C$ for a subspace U of a vector space V, $\mathcal C$ can be extended to a basis $\mathcal B$ for V.

This is true. This is part of Theorem 3.4.4.

(c) ______ If $\{v_1, \ldots, v_n\}$ is linearly independent and $v \in \text{span}(\{v_1, \ldots, v_n\})$, then it is possible that there are distinct $c, b \in \mathbb{R}^n$ such that $v = \sum_{i=1}^n c_i v_i = \sum_{i=1}^n b_i v_i$.

This is false. If $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{v}_i = \sum_{i=1}^{n} b_i \mathbf{v}_i$, then $\mathbf{0} = \sum_{i=1}^{n} (c_i - b_i) \mathbf{v}_i$. By independence, $c_i - b_i = 0$ for all i, so $c_i = b_i$ for all i.

(d) _____ If $\{v_1, \ldots, v_n\}$ is linearly independent and $V = \text{span}(\{v_1, \ldots, v_n\}) = \text{span}(\{u_1, \ldots, u_n\})$, then $\{u_1, \ldots, u_n\}$ is linearly independent.

This is true. Again, Theorem 3.4.4.

Problem 2 (8 pts). Find a basis for span $\{u_1, \ldots, u_5\}$ from among the vectors u_1, \ldots, u_5 , where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \ 2 \ 2 \end{bmatrix} \qquad oldsymbol{u}_2 = egin{bmatrix} 2 \ 5 \ 4 \end{bmatrix} \qquad oldsymbol{u}_3 = egin{bmatrix} 1 \ 3 \ 2 \end{bmatrix} \qquad oldsymbol{u}_4 = egin{bmatrix} 2 \ 7 \ 4 \end{bmatrix} \qquad oldsymbol{u}_5 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$$

Make sure to show all work and explain your reasoning.

Again using the notation $A \sim B$ to mean A and B are related by performing elementary row operations, or B = EA where E is invertible. Let $A = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_5 \end{bmatrix}$, then

$$A \sim \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 0 & 1 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

B is an echelon form of A with pivots in columns 1, 2, and 5. Thus $\{u_1, u_2, u_5\}$ is a basis for $\text{span}\{u_1, \dots, u_5\} = \text{CS}(A)$.

This was all that was asked here. The rest is just something like you have on the exam.

We also know that $v_1 = (1, 2, 1, 2, 1)$, $v_2 = (0, 1, 1, 3, -1)$, and $v_3 = (0, 0, 0, 0, 0, -1)$ is a basis for RS(A).

By back substitution, letting $x_3 = s$ and $x_4 = t$ we have $x_5 = 0$, $x_2 = -s - 3t$, and $x_1 = -2x_2 - s - 2t = 2(s + 3t) - s - 2t = s + 4t$, so NS(A) consists of vectors of the form (s + 4t, -s - 3t, s, t, 0) = -3t

s(1, -1, 1, 0, 0) + t(4, -3, 0, 1, 0), so $NS(A) = span\{v + 4, v_5\}$, where $v_4 = (1, -1, 1, 0, 0)$ and $v_5 = (4, -3, 0, 1, 0)$.

Quick check: Check that v_4 and v_5 are orthogonal to all rows of A.

Problem 3 (7 pts). Let c_1, c_2, \ldots, c_n be n distinct real numbers. Let $p_i = \prod_{\substack{j=1 \ j \neq i}}^n (x - c_j)/(c_i - c_j)$. Show that $\mathcal{B} = \{p_1, p_2, \ldots, p_n\}$ is a basis for P_{n-1} .

Hint: Consider $p_i(c_j)$.

I'll do the *n*-dimensional case. Suppose c_1, \dots, c_n are distinct reals then define $p_i \in P_{n-1}$

$$p_i = \prod_{\substack{j=1 \ j \neq i}}^{n} (x - c_j) / (c_i - c_j)$$

It is trivial to see that

$$p_i(c_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

This shows independence since if $p = \sum_{i=1}^{n} \alpha_i p_i$, then $p_i(c_j) = \alpha_j$ so if p = 0, then $\alpha_j = 0$ for all j.

This all you were asked to do.

Just for fun, for the basis, $\mathcal{B} = \{p_1, p_2, \dots, p_n\}, p = \sum_{i=1}^n p(c_i)p_i$, that is,

$$[p]_{\mathcal{B}} = \begin{bmatrix} p(c_1) \\ p(c_2) \\ \vdots \\ p(c_n) \end{bmatrix}$$

So given n points (x_i, y_i) with the x_i 's distinct. The unique degree (n-1)-polynomial through these points is $p(x) = \sum_{i=1}^{n} y_i \cdot p_i(x)$.