Japanese Utility Model Laid-Open HEI 2-13177 published on January 26, 1990

- 1. Japanese Utility Model Application SHO 63-87326 filed on June 30, 1988
- 2. Title:

Variable displacement inclined plate-type compressor

- 3. Inventor:
 - T. Nashiro
- 4. Applicant:
 Calsonic Corp.
- 5. Claim:

A variable displacement inclined plate-type compressor wherein a drive shaft (2) inserted rotatably and having a drive rod (21), a drive inclined plate (4) connected to said drive shaft (2) variably in inclined angle, a non-rotatable socket plate (25) attached slidably to said drive inclined plate (4) and reciprocated in the axial direction by the rotation of said drive inclined plate (4) are provided to a crank chamber (3) formed in a closed casing (1) having a cylinder head (29), and a piston (6) connected to said socket plate (25) via a piston rod (28) and a cylinder (5), in which said piston (6) slides, are provided, and a part of high-pressure refrigerant, which is discharged into a cooling cycle from a discharge port (31) formed on said cylinder head (29), is guided into said crank chamber (3) via a control valve (Cv), characterized in that a communication path (33) for guiding said part of high-pressure refrigerant only from a lowest surface of said discharge port (31) to a discharge-side pressure chamber (32) of said control valve (Cv) is formed in said cylinder head (29).

実用平成 2-13177

⑩ 日本 国特許庁(JP)

⑪実用新案出願公開

⑫ 公開実用新案公報(U)

平2-13177

@int. Cl. 3

識別記号

庁内整理番号

③公開 平成2年(1990)1月26日

F 04 B 27/08 49/00 S Z 6907-3H 8811-3H 6792-3H

3 6 1 3 3 1 49/10

審査請求 未請求 請求項の数 1 (全 頁)

図考案の名称

容量可変斜板式コンプレッサ

願 昭63-87326 ②実

@出 頤 昭63(1988)6月30日

@考案者 名城 敏 夫

東京都中野区南台5丁目24番15号 日本ラデエーター株式

会社内

カルソニツク株式会社 の出 願 人

東京都中野区南台5丁目24番15号

20代理人 弁理士 八田 幹雄 外1名

明細書

1. 考案の名称

容量可変斜板式コンプレッサ

2. 実用新案登録請求の範囲

シリンダヘッド(29)を有する密閉ケーシング(1)内に形成されたクランク室(3)に、回転自在に 嵌挿され駆動棒(21)を備えた駆動軸(2)と、当該 駆動軸(2) に対して傾斜角度が可変に連結された 駆動斜板(4)と、当該駆動斜板(4)に対し摺動自 在に取付けられ当該駆動斜板(4)の回転により軸 線方向の往復動を行なう非回転のソケットプレー ト(25)とを有し、当該ソケットプレート(25)にピ ストンロッド(28)を介して連結したピストン(6) と、当該ピストン(6)が内部を摺動するシリンダ (5) とを有すると共に、前記シリンダヘッド(29) に形成した吐出ポート(31)から冷房サイクル内に 吐出される高圧冷媒の一部をコントロールバルブ (Cv)を介して前記クランク室(3)内に案内して成 る容量可変斜板式コンプレッサにおいて、前記吐 出ポート(31)の最下面からのみ前記高圧冷媒の一

_ 1 -

部を前記コントロールバルブ(CV)の吐出側圧力室(32)に案内する連通路(33)を、前記シリンダヘッド(29)に形成したことを特徴とする容量可変斜板式コンプレッサ。

3. 考案の詳細な説明

[考案の目的]

(産業上の利用分野)

本考案は、容量可変斜板式コンプレッサに関し、 特に吐出冷媒に含有され吐出ポート内で分離され て貯溜した潤滑油をクランク室内に戻すようにし たものである。

(従来の技術)

最近の自動車用空気調和装置に使用されるコンプレッサとしては、例えば特公昭63-10,3 11号公報(特開昭58-158,384号公報)、特公昭61-46,710号公報、特公昭58-53,198号公報などに示されたような容量可変斜板式コンプレッサが提案されている。これらの容量可変斜板式コンプレッサは、シリンダにおける圧縮室内容積を、コンプレッサに帰還する 冷媒の吸入圧に応じて変化させ、当該コンプレッサの吐出冷媒量を調節することにより前記吸入圧が一定になるようにしたものである。

このように吸入圧を一定にすると、ある程度エバポレータの出口における冷媒圧力、すなわちエバポレータにおける冷媒の蒸発圧力が一定となり、いわゆる低負荷時のエバポレータの凍結を防止することが可能となる。

(考案が解決しようとする課題)

公司実用平成 2-19177

揺動運動を往復運動に変換して冷媒の吸入及び圧縮を行なうようになっている。従って、駆動軸が1回転すれば、1つのピストンは1回の吸入と1回の圧縮とを行なうこととなる。

また、第5~6図に示す如く、シリンダへッド 29には吸入ポート30及び吐出ポート31が設けられ、この吸入ポート30にはエバポレータレ 5の帰還が流入し、この冷媒はバルアカート34に開設した吸入の冷媒する吸入がある。 5の閉鎖弾撥力に抗してシリンダボア内に形成まれる圧縮室7に流入するようになって形成された配 この冷媒はシリンダへッド29に形成まれた配 この冷媒はシリンダへッド29に形成まれた配 この冷媒はシリンダへッド29に形成まれた配 この冷媒はシリンダへッド29に形成まれた配 この冷媒はシリンダへッド29に形成まれた配 この冷媒はシリンダへっている。 236に導かれるようになっている。

一方、前記吐出ポート31は圧縮された冷媒が 流出する部分であり、前記バルブプレート34に 開設された吐出口9から吐出された冷媒をコンデ ンサに送り込む配管(いずれも図示せず)と連通 し、更に通路を介して吐出側圧力室32とも連通 している。

従って、冷房サイクルにおける熱負荷が小さい場合には、帰還冷媒の圧力は充分スーパーヒート量が得られずに低圧で帰還するため、吸入側圧力室36内の圧力(以下、吸入圧Ps)が低くなり、ベローズ41は上方に伸び、第2弁口38を大きく開き、吐出口9から圧縮工程にあるピストンに

公司実用平成 2-15177

よって圧縮された高圧冷媒(以下、吐出圧Pd)の一部をこの第2弁口38より図示しない複数の通路を介してクランク室(不図示)に導き、このクランク室内の圧力(以下、クランク室圧Pc)を高めることになる。

前記ピストンによって圧縮された髙圧冷媒は、 吐出口9を通過して当該吐出ポート31から冷房 サイクル内に吐出される際に、吐出ポート31の 底壁に衝突するため、この冷媒中に含まれた潤滑 油が分離する。ところが、従来の容量可変斜板式コンプレッサのシリンダヘッドに形成された吐出ポート31は、第5図に示すような円環形状であって、前記分離した潤滑油は図中符号Aにて示す部分に溜り、コンプレッサの耐久性を損う慮れがある。

そこで、この部分Aに貯溜した潤滑油の量を実際に測定してみると、冷房サイクル内を循環する総潤滑油量240ccに対して、約12%に相当する30ccの油が溜っており、またこの量は、コンプレッサ内を循環する潤滑油量に対しては、約半分に相当していた。

本考案は、上述した従来技術に伴う欠点、問題点に鑑みてなされたもので、潤滑油の循環を円滑に行ない得る容量可変斜板式コンプレッサを提供することを目的とする。

[考案の構成]

(課題を解決するための手段)

上記目的を達成するための本考案は、シリンダ

- 7 -

■開実用平成 2-3177

ヘッドを有する密閉ケーシング内に形成されたク ランク室に、回転自在に嵌挿され駆動棒を備えた 駆動軸と、当該駆動軸に対して傾斜角度が可変に 連結された駆動斜板と、当該駆動斜板に対し摺動 自在に取付けられ当該駆動斜板の回転により軸線 方向の往復動を行なう非回転のソケットプレート とを有し、当該ソケットプレートにピストンロッ ドを介して連結したピストンと、当該ピストンが 内部を摺動するシリンダとを有すると共に、前記 シリンダヘッドに形成した吐出ポートから冷房サ イクル内に吐出される髙圧冷媒の一部をコントロ ールバルブを介して前記クランク室内に案内して 成る容量可変斜板式コンプレッサにおいて、前記 吐出ポートの最下面からのみ前記高圧冷媒の一部 を前記コントロールバルブの吐出側圧力室に案内 する連通路を、前記シリンダヘッドに形成したこ とを特徴とする容量可変斜板式コンプレッサであ る。

(作用)

このように構成した本考案にあっては、冷房サー 8 ー

イクルにおける熱負荷が小さい場合に、吐出ポートから吐出される高圧冷媒の一部を連通路を介してコントロールバルブの吐出側圧力室からクランク室内に案内する際に、シリンダヘッドの吐出ポートに貯溜した潤滑油を前記高圧冷媒によってクランク室内に戻すことができる。

(実施例)

以下、図面を参照して本考案の一実施例を説明する。

第1図は、本考案の一実施例に係る容量可変斜板式コンプレッサを示す断面図、第2図は、同容量可変斜板式コンプレッサのシリンダへッドを示す正面図、第3図は、第2図のIV-IV線に沿う断面図、第4図は、第2図のIV-IV線に沿う断面図であり、第5~6図に示す従来の容量可変斜板式コンプレッサと共通する部分には同一の符号を付してある。

まず第1図に示す容量可変斜板式コンプレッサにあっては、エンジンにより回転駆動される駆動軸2を有し、当該駆動軸2には、駆動棒21が突

公開実用平成 2-13177

設され、駆動棒21はクランク室3内で前記駆動軸2と共に回転するようになっている。駆動静2 1には、ピン22を支点として駆動斜板4が前退 駆動棒21に対して揺動し得るように対 駆動軸2の回転力が、駆動棒21及びは ン22を介して駆動斜板4には、軸受23・24 で介してソケットプレート25が摺動自在に取り けられている。

前記ソケットプレート25は、ケーシング1内 に固定された案内ピン26に対して圏動自在に連 結されたシュー27を有し、このシュー27によって当該ソケットプレート25の回転が防止される一方、軸線方向の往復動が許容されている。かり、アレート25には、球面軸受50略等3のででは、では同じく球面軸受51を介してピストン6が連結されている。

そして、駆動斜板4の回転により、ソケットプ

- 10 -

レート25が、いわゆるみそすり的動作を行なって軸線方向に往復運動することになり、これってピストンロッド28を介して5つのピストン6を順次往復運動させるようになっている。そのでは、当該ピストン6が厳挿されたシリンダ5のでは、かい前面6a側部分は圧縮室7となり、背面6b側部分は前記クランク室3と連通するようになっている。

また、シリンダヘッド29には吸入ポート30及び吐出ポート31が設けられ、この吸入ポート30にはエバポレータからの帰還冷媒が流入し、この冷媒はバルププレート34に開設した吸入口8を閉鎖する吸入弁35の閉鎖弾撥力に抗してシリンダボア内に形成される圧縮室7に流入するようになっている。また、この冷媒はシリンダヘッド29に形成された前記吸入ポート30と連通する通路を介して吸入側圧力室36に導かれるようになっている。

一方、前記吐出ポート31は圧縮された冷媒が 流出する部分であり、前記バルププレート34に

公開実用平成 2-1377

開設された吐出口9から吐出された冷媒をコンデンサに送り込む配管(いずれも図示せず)と連通し、更に後述する連通路33を介して吐出側圧力室32とも連通している。

更に、前記吸入側圧力室36と吐出側圧力室36と吐出側圧力では、シリンダへッド29の吸入するの圧力には、シリンがではないででは、からはないではないででは、からはができます。では、1000円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円がでは、100円のがでは、100円がでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のがでは、100円のでは

ここで本実施例においては、前記吐出ポート3 1から前記コントロールバルプCVの吐出側圧力 室32に通じる通路を、第2~4図の連通路33にて示すように形成している。すなわち、当該コンプレッサを自動車等に搭載した場合に、吐出ポート31の最下面となる位置に前記連通路33の一端33aを開設し、その他端33bは、前記吐出側圧力室32に通じる孔56と連通させている。その連通路33以外に存在しないように、その周辺部をバルブプレート34によってシールしている。

また、コンプレッサ内の種々の駆動部の耐久性 を確保するために、当該コンプレッサ内には潤滑 油が収容されており、この潤滑油は、冷媒に混合 して冷房サイクル内も循環している。

このように構成した本実施例の作用を第1~4 図を参照しつつ説明する。

まず、冷房サイクルにおける熱負荷が小さい場合には、帰還冷媒の圧力は充分スーパーヒート量が得られずに低圧で帰還するため、吸入側圧力空36内の吸入圧PSが低くなり、ベローズ41は

公開実用平成 2-13177

上方に伸び、第2弁口38を大きく開き、吐出口 9から圧縮工程にあるピストンによって圧縮され た高圧冷媒(吐出圧Pd)の一部をこの第2弁口 38より複数の通路52→53→54を介してク ランク室3に導き、このクランク室圧Pcを高め ることになる。

このとき、圧縮冷媒中に含有され、シリンダへッド29の底壁に衝突して分離し、当該吐出ポート31内に貯溜した潤滑油は、前記高圧冷媒に押圧されつつ、第2弁口38から通路52→53→54を介してクランク室3内に戻ることになる。

そして、ソケットプレート25の傾斜角度は、 複数のピストン6に対して加わる前後の圧力バランスに対して加わることをなり、 な傾斜角度は減少するように作動する。従っている。 の人となるように後退できず、次に圧縮するときに僅かな圧縮ストロークとなるように後ストロークを指揮の圧縮量は 少なくなり、冷房サイクル内を循環する冷媒の が減少し、低い熱負荷に応じた適正な冷媒量を提供し得る。

一方、冷房サイクルにおける熱負荷が高い場合には、吸入ポート30から前記吸入側圧力室36に流入する冷媒の吸入圧PSが高く、ベローズ41は下方に縮み、第1弁口37を大きく開き、クランク室圧PCの一部をこの第1弁口37より道路55及び第1弁口37を介して吸入側圧力室36に導き、クランク室圧PCを低下させることになる。

- 15 -

....

公開実用平成 2-13177

[考案の効果]

以上述べたように、本考案によれば、冷房サイクルにおける熱負荷が小さい場合に、吐出ポートから吐出される高圧冷媒の一部を連通路を介してコントロールバルブの吐出側圧力室からクランク室内に案内する際に、シリンダヘッドの吐出ポートに貯溜した潤滑油を前記高圧冷媒によってクランク室内に戻すことができる。従って、コンプレッサないに封入した潤滑油が充分に循環し、コンプレッサの耐久性を確保することができる。

4. 図面の簡単な説明

第1図は、本考案の一実施例に係る容量可変斜板式コンプレッサを示す断面図、第2図は、同容量可変斜板式コンプレッサのシリンダヘッドを示す正面図、第3図は、第2図のⅢ一Ⅲ線に沿う断面図、第4図は、第2図のIV-IV線に沿う断面図、第5図は、従来の容量可変斜板式コンプレッサのシリンダヘッドを示す正面図、第6図は、第5図のVI-VI線に沿う断面図である。

- 16 -

1 … ケーシング、2 … 駆動軸、3 … クランク室、

4 … 駆動斜板、5 … シリンダ、6 … ピストン、

25…ソケットプレート、29…シリンダヘッド、

31…吐出ポート、32…吐出側圧力室、

1

33…連通路、Cv…コントロールバルブ。

実用新案登録出願人 日本ラヂヱーター株式会社

代理人 弁理士 八 田 幹 雄(他1名)

公開 9 用 平成 2-1317

第 1 図

代理人 分型士 八 旧 幹 雌 (他1名) 中間2-12

第 2 図

第 3 図

第 4 図

代理人 ^{分型士} 八 田 幹 雄 (他) 実開2

開実用平成 2—3177

第 5 図

第 6 図

1至至5 代理人 介配上 八 国 幹 雄 (他)名)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
— отить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.