$$\rho = \frac{m}{V}$$

$$S_{\rho} = \pm \sqrt{\left(u_{m} \frac{\delta \rho}{\delta m}\right)^{2} + \left(u_{V} \frac{\delta \rho}{\delta V}\right)^{2}}$$

$$\frac{\delta\rho}{\delta m} = \frac{1}{V} = \frac{\rho}{m}$$

$$\frac{\delta\rho}{\delta V} = \frac{m}{V^2} = -\frac{\rho}{V}$$

$$\frac{S_{\rho}}{\rho} = \pm \sqrt{\left(\frac{u_m}{m}\right)^2 + \left(-\frac{u_V}{V}\right)^2}$$

	m (Kg)	V (m³)
1	13	34
2	13	35
3	13	35
4	12	34
5	13	35
6	12	35
7	13	35
8	12	35
9	12	34
10	13	35
11	13	34
12	13	34
13	13	35
Promedio	12.69	34.62
σ_{χ}	0.480	0.506

$$\frac{\sigma_m}{m} \times 100 \%$$

$$\frac{\sigma_V}{V} \times 100 \%$$

$$\frac{\sigma_\rho}{\rho} = \pm \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(-\frac{\sigma_V}{V}\right)^2}$$

$$\frac{A_\rho}{\rho} = \pm t_{\alpha/2,\nu} \frac{\sigma_\rho}{\sqrt{n} \rho}$$

$$\frac{ET_\rho}{\rho} = \pm \sqrt{\left(\frac{S_\rho}{\rho}\right)^2 + \left(\frac{A_\rho}{\rho}\right)^2}$$