# INDENG142 Predicting NBA MVP

## CASEY LI 12/17/2019

### Data loading and cleaning and splitting

```
# loading data
set.seed(679)

# we cleaned this csv already
csv <- read.csv("NBAStats.csv")
summary(csv)</pre>
```

```
##
         Х
                       fga
                                      fg3a
                                                        fta
##
         : 0
                 Min. : 3.70
                                 Min. : 0.000
                                                  Min.
                                                          : 1.300
   Min.
   1st Qu.:162
                 1st Qu.:13.90
                                  1st Qu.: 0.100
                                                   1st Qu.: 4.800
  Median:324
                 Median :16.80
                                 Median : 1.100
                                                  Median : 6.300
  Mean
         :324
                 Mean
                       :16.53
                                 Mean : 2.069
                                                  Mean
                                                        : 6.446
   3rd Qu.:486
                                  3rd Qu.: 3.700
                                                  3rd Qu.: 7.900
##
                 3rd Qu.:19.20
##
   Max.
          :648
                 Max.
                       :27.80
                                 Max. :13.200
                                                  Max.
                                                          :13.100
##
##
                        ts_pct
                                                          bpm
        per
                                       usg_pct
##
   Min.
          :10.10
                   Min.
                          :0.4410
                                     Min. : 7.10
                                                    Min.
                                                            :-2.800
##
   1st Qu.:19.90
                   1st Qu.:0.5430
                                     1st Qu.:23.70
                                                    1st Qu.: 2.600
   Median :22.60
                   Median :0.5680
                                     Median :26.70
                                                    Median: 4.500
   Mean
         :22.51
                          :0.5687
                                     Mean
                                            :26.53
                                                    Mean
                                                            : 4.601
                   Mean
   3rd Qu.:24.80
                   3rd Qu.:0.5960
                                     3rd Qu.:29.90
                                                    3rd Qu.: 6.100
##
   Max.
          :31.70
                   Max.
                          :0.6990
                                     Max.
                                            :41.70
                                                    Max.
                                                            :15.600
##
##
         vorp
                        season
                                                player
                                                               age
##
   Min.
          :-0.500
                     1980-81: 31
                                  LeBron James
                                                   : 16
                                                         Min.
                                                                :19.00
                                  Tim Duncan
                                                          1st Qu.:25.00
   1st Qu.: 3.100
                     1981-82: 25
                                                   : 16
   Median : 4.400
                    1982-83: 23
                                  Karl Malone
                                                   : 15
                                                         Median :27.00
         : 4.587
                    1984-85: 23
                                  Shaquille O'Neal: 14
                                                                 :27.47
##
   Mean
                                                         Mean
   3rd Qu.: 5.800
##
                    1998-99: 21
                                  Hakeem Olajuwon: 13
                                                          3rd Qu.:30.00
##
   Max.
          :12.400
                    1990-91: 20
                                  Kobe Bryant
                                                   : 13
                                                          Max.
                                                                 :38.00
##
                     (Other):506
                                   (Other)
                                                   :562
##
                     votes_first
       win_pct
                                        points_won
                                                          points_max
##
   Min.
          :0.2195
                    Min. : 0.000
                                      Min. :
                                                 1.0
                                                       Min. : 690
   1st Qu.:0.5610
                     1st Qu.: 0.000
                                       1st Qu.:
                                                 3.0
                                                        1st Qu.: 800
   Median :0.6463
                    Median : 0.000
                                      Median: 23.0
                                                        Median:1130
   Mean
          :0.6310
                     Mean : 6.401
                                      Mean
                                            : 166.4
                                                        Mean
                                                             :1039
                     3rd Qu.: 1.000
##
   3rd Qu.:0.7000
                                       3rd Qu.: 184.0
                                                        3rd Qu.:1230
##
   Max.
          :0.8902
                     Max.
                           :131.000
                                      Max.
                                              :1310.0
                                                        Max.
                                                               :1310
##
##
    award share
                                     mp_per_g
                                                   pts_per_g
                          g
##
  Min.
         :0.0010
                    Min.
                            :17
                                 Min. :23.60
                                                 Min. : 4.7
   1st Qu.:0.0040
                     1st Qu.:73
                                  1st Qu.:34.60
                                                 1st Qu.:18.8
  Median :0.0210
                    Median:79
                                 Median :36.70
                                                 Median:22.0
```

```
## Mean :0.1562
                    Mean
                         :75
                                Mean :36.33
                                               Mean :22.0
   3rd Qu.:0.1770
                    3rd Qu.:81
                                3rd Qu.:38.30
                                               3rd Qu.:25.7
##
   Max. :1.0000
                   Max. :82
                              Max. :43.70 Max. :37.1
##
##
     trb_per_g
                     ast_per_g
                                      stl_per_g
                                                     blk_per_g
##
  Min. : 1.900
                   Min. : 0.800
                                   Min. :0.200
                                                   Min. :0.0000
   1st Qu.: 4.800
                    1st Qu.: 2.800
                                    1st Qu.:1.000
                                                   1st Qu.:0.3000
   Median : 6.900
                    Median : 4.300
                                                   Median :0.6000
##
                                    Median :1.400
##
   Mean : 7.459
                    Mean : 5.002
                                    Mean :1.428
                                                   Mean :0.9817
##
   3rd Qu.:10.400
                    3rd Qu.: 6.700
                                    3rd Qu.:1.800
                                                   3rd Qu.:1.4000
  Max. :18.700
                    Max. :14.500
                                    Max. :3.700
                                                   Max. :5.6000
##
##
                      fg3_pct
                                       ft_pct
       fg_pct
                                                          WS
##
                    Min. :0.0000
                                                    Min. : 2.3
   Min.
        :0.3840
                                    Min. :0.4220
   1st Qu.:0.4630
                    1st Qu.:0.1670
                                    1st Qu.:0.7370
                                                    1st Qu.: 8.5
##
   Median :0.4920
                    Median :0.3020
                                    Median :0.7900
                                                    Median:10.6
##
   Mean :0.4944
                    Mean :0.2576
                                                    Mean :10.7
                                    Mean :0.7802
   3rd Qu.:0.5230
                    3rd Qu.:0.3650
                                    3rd Qu.:0.8430
                                                    3rd Qu.:12.9
##
   Max. :0.6700
                   Max. :1.0000
                                    Max. :0.9480
                                                    Max. :21.2
##
##
     ws_per_48
##
  Min. :0.0460
   1st Qu.:0.1550
##
## Median: 0.1870
## Mean :0.1877
## 3rd Qu.:0.2180
## Max. :0.3220
##
#variable selection
nba_csv <- select(csv, fg_pct, fg3_pct, ft_pct,</pre>
                 trb_per_g, ast_per_g, stl_per_g, blk_per_g,
                 per, ts_pct, usg_pct, ws, bpm, vorp, season,
                 age, award_share, win_pct, pts_per_g)
summary(nba_csv)
##
       fg_pct
                      fg3_pct
                                                      trb_per_g
                                        ft_pct
                                                    Min. : 1.900
## Min. :0.3840
                   Min. :0.0000
                                   Min. :0.4220
```

```
1st Qu.:0.4630
                   1st Qu.:0.1670
                                   1st Qu.:0.7370
                                                   1st Qu.: 4.800
## Median :0.4920
                   Median :0.3020
                                                   Median: 6.900
                                  Median :0.7900
## Mean :0.4944
                   Mean :0.2576
                                   Mean :0.7802
                                                   Mean : 7.459
   3rd Qu.:0.5230
                   3rd Qu.:0.3650
                                   3rd Qu.:0.8430
                                                   3rd Qu.:10.400
##
  Max. :0.6700
                   Max.
                         :1.0000
                                   Max. :0.9480
                                                   Max. :18.700
##
##
     ast_per_g
                     stl_per_g
                                    blk_per_g
                                                       per
  Min. : 0.800
                   Min. :0.200
                                  Min. :0.0000
                                                  Min. :10.10
##
##
   1st Qu.: 2.800
                   1st Qu.:1.000
                                  1st Qu.:0.3000
                                                  1st Qu.:19.90
   Median : 4.300
                   Median :1.400
                                  Median :0.6000
##
                                                  Median :22.60
   Mean : 5.002
                   Mean :1.428
                                  Mean :0.9817
                                                  Mean :22.51
   3rd Qu.: 6.700
                   3rd Qu.:1.800
                                  3rd Qu.:1.4000
                                                  3rd Qu.:24.80
##
##
   Max. :14.500
                   Max. :3.700
                                  Max.
                                        :5.6000
                                                  Max. :31.70
##
                      usg_pct
       ts_pct
                                                     bpm
                                        WS
                                       : 2.3 Min. :-2.800
                   Min. : 7.10
## Min. :0.4410
                                  Min.
```

```
## 1st Qu.:0.5430
                   1st Qu.:23.70
                                   1st Qu.: 8.5
                                                 1st Qu.: 2.600
## Median :0.5680
                   Median :26.70
                                  Median:10.6
                                                 Median: 4.500
                                   Mean :10.7
## Mean :0.5687
                   Mean :26.53
                                                 Mean : 4.601
                                   3rd Qu.:12.9
## 3rd Qu.:0.5960
                   3rd Qu.:29.90
                                                 3rd Qu.: 6.100
##
   Max. :0.6990
                   Max. :41.70
                                   Max. :21.2
                                                 Max.
                                                       :15.600
##
##
                                                 award share
        vorp
                       season
                                      age
                    1980-81: 31
## Min. :-0.500
                                 Min. :19.00
                                                Min.
                                                       :0.0010
##
   1st Qu.: 3.100
                    1981-82: 25
                                 1st Qu.:25.00
                                                1st Qu.:0.0040
## Median : 4.400
                   1982-83: 23
                                 Median :27.00
                                                Median :0.0210
## Mean : 4.587
                   1984-85: 23
                                 Mean
                                       :27.47
                                                Mean
                                                       :0.1562
## 3rd Qu.: 5.800
                   1998-99: 21
                                 3rd Qu.:30.00
                                                3rd Qu.:0.1770
## Max. :12.400
                   1990-91: 20
                                 Max. :38.00
                                                Max.
                                                       :1.0000
##
                    (Other):506
##
      win_pct
                     pts_per_g
##
   Min.
          :0.2195
                   Min. : 4.7
  1st Qu.:0.5610
                   1st Qu.:18.8
##
## Median :0.6463
                   Median:22.0
                   Mean
## Mean
         :0.6310
                         :22.0
## 3rd Qu.:0.7000
                    3rd Qu.:25.7
## Max. :0.8902
                   Max. :37.1
##
#separate to training vs. testing set
nba_csv.train <- filter(nba_csv, season != "2018-19")</pre>
nba_csv.test <- filter(nba_csv, season == "2018-19")</pre>
nba_csv.train <- select(nba_csv.train, -season)</pre>
nba_csv.test <- select(nba_csv.test, -season)</pre>
```

#### Baseline linear model

```
# baseline model -----
baseline <- mean(nba_csv.train$award_share)
pred.base <- rep(baseline, nrow(nba_csv.test))

# OSR2

SSE <- sum((nba_csv.test$award_share - pred.base)^2)
SST = sum((nba_csv.test$award_share - mean(nba_csv.train$award_share))^2)
OSR2 = 1 - SSE/SST
OSR2 #0 as expected! since sse = sst

## [1] 0</pre>
```

### Naive linear regression

```
##linear regression model
testlm <- lm(award_share ~ ., data = nba_csv.train)
summary(testlm)</pre>
```

```
##
## Call:
## lm(formula = award share ~ ., data = nba csv.train)
## Residuals:
##
       \mathtt{Min}
                  1Q Median
                                    3Q
                                            Max
## -0.40274 -0.11786 -0.03753 0.09231 0.69770
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6529754 0.2288151 -2.854 0.004465 **
                0.5290393 0.3817452
                                      1.386 0.166293
## fg_pct
## fg3_pct
               -0.0667063
                          0.0596292 -1.119 0.263708
                          0.1352366
## ft_pct
                0.1576860
                                      1.166 0.244062
                          0.0039831
                                      1.793 0.073381 .
## trb_per_g
               0.0071437
               0.0163803
                          0.0046416
                                       3.529 0.000448 ***
## ast_per_g
                          0.0186352 -2.401 0.016665 *
              -0.0447344
## stl_per_g
## blk_per_g
               0.0045502 0.0122848
                                       0.370 0.711213
               0.0005473 0.0092639
                                      0.059 0.952907
## per
## ts_pct
               -1.3495734 0.4553094 -2.964 0.003152 **
## usg_pct
               0.0038880 0.0058959 0.659 0.509854
               0.0237721 0.0097291
                                     2.443 0.014828 *
## Ws
               0.0140661 0.0164185
                                      0.857 0.391929
## bpm
               0.0085559 0.0244173
                                       0.350 0.726154
## vorp
## age
               0.0018868 0.0020919
                                       0.902 0.367426
## win_pct
               0.6003816 0.0898235
                                       6.684 5.19e-11 ***
               0.0104445 0.0044217
                                       2.362 0.018479 *
## pts_per_g
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1783 on 620 degrees of freedom
## Multiple R-squared: 0.5303, Adjusted R-squared: 0.5181
## F-statistic: 43.74 on 16 and 620 DF, p-value: < 2.2e-16
testlm$coefficients
     (Intercept)
                       fg_pct
                                    fg3_pct
                                                    ft_pct
                                                               trb_per_g
  -0.6529753819 0.5290393304 -0.0667062644 0.1576860037 0.0071437321
##
                     stl_per_g
                                   blk_per_g
      ast_per_g
                                                       per
                                                                  ts_pct
##
   0.0163803226 -0.0447344375
                                0.0045502399
                                              0.0005473181 -1.3495734159
##
         usg_pct
                                         bpm
                                                      vorp
                            WS
##
                 0.0237721109
                                0.0140660859
                                             0.0085559299
   0.0038880487
                                                            0.0018868444
         win_pct
                     pts_per_g
                 0.0104444661
   0.6003815569
testlm$fitted.values
##
                             2
                                           3
                                                                       5
##
   0.3972906118
                  0.2916581793
                                0.3594884314
                                              0.1993401127
                                                            0.1624579346
##
              6
                            7
                                           8
                                                         9
##
   0.2147955046
                 0.2154722659
                                0.0350259089 -0.0589241505
                                                            0.0297343558
                            12
                                          13
                                                        14
  0.0885785342 0.0922945096 -0.2112985691 -0.0617071877 -0.2187128273
```

```
20
                             17
                                            18
   -0.0637384935 -0.0691877979 -0.0106819405 0.0264315739 -0.0688684067
##
              21
                             22
                                            23
                                                           24
                  0.0219044207 -0.0774595865 -0.2117189962 -0.0560655893
   -0.0610597527
##
##
              26
                             27
                                            28
                                                           29
                  0.0414616602 -0.2139183151 -0.0582458470 -0.1094189856
##
   -0.2113985352
##
                             32
                                            33
                                                           34
##
   -0.1195729109
                   0.3798380306
                                 0.3958375379
                                                0.3154756571
                                                               0.2087001326
##
              36
                             37
                                            38
                                                           39
                   0.1971712924
                                 0.1797696935
                                                0.2800780058
                                                               0.1998916974
##
    0.1747815062
##
              41
                             42
                                            43
                                                           44
    0.2261494109 -0.0338753795 -0.1361760292
                                                0.1479482157 -0.0056570763
##
##
              46
                             47
                                            48
                                                           49
    0.0354081373
##
                  0.0028759112 -0.1874816730 -0.0294870068 -0.0377728547
##
                             52
                                            53
              51
                                                           54
##
    -0.2869335512 -0.0299859784
                                 0.0449853754 -0.2319481805
                                                              -0.0200816963
##
              56
                             57
                                            58
                                                           59
    0.1276560415
                  0.3810857245
                                 0.3798848301
                                                0.2773002294
                                                               0.1782551794
##
                                            63
              61
                             62
                                                           64
                                                                          65
##
    0.2660436783
                   0.2175688987
                                 0.0121898546
                                                0.0634733313
                                                               0.1016404280
##
              66
                             67
                                            68
                                                           69
    0.1816038097
                   0.0680002057
                                 0.0099041576 -0.1061899541
                                                              -0.0208888189
##
                             72
##
              71
                                            73
    -0.2615872467 -0.0231199347 -0.0724331019 -0.0484033035
##
                                                               0.0598843630
##
              76
                             77
                                            78
                                                           79
##
    0.0001164818
                  0.1760449005 -0.0945440380
                                                0.0422575085
                                                               0.4607651897
##
              81
                             82
                                            83
                                                           84
                                                                          85
                                 0.0933294478
##
    0.1277977964
                  0.1692539986
                                                0.1330411785
                                                               0.1622708841
##
              86
                             87
                                            88
                                                           89
##
    0.2235146215
                  0.1337276646 -0.0199162344
                                                0.0740147508
                                                               0.1296931373
##
              91
                             92
                                            93
                                                           94
                                                                          95
##
    0.0497300998 -0.1157686670 -0.2275910100
                                                0.0754248231
                                                               0.5651062663
##
              96
                             97
                                          98
                                                           99
                  0.2152980481 0.2495141359
##
    0.2964140129
                                                0.2393991395
                                                               0.2414150315
                                          103
##
             101
                            102
                                                          104
   -0.0218312096
                  0.1908948211
                                 0.2385215484 -0.0028557656
##
                                                               0.0988968475
##
                            107
                                           108
    0.1689760146
                  0.0692480212
                                 0.0512158342 -0.1016887179 -0.1684487839
##
##
             111
                            112
                                           113
    0.0833802641 \ -0.0704482056 \ -0.0474338351 \ -0.1014580300 \ -0.2061901511
##
##
             116
                            117
                                           118
                                                         119
                  0.0588340294
                                 0.5485016823
                                               0.2255040542
                                                               0.3133382257
##
   -0.0467824444
##
             121
                            122
                                           123
                                                          124
                                                               0.1766752978
##
    0.1269333208
                   0.2673610796
                                 0.1467539149
                                                0.1221774615
##
             126
                            127
                                           128
                                                          129
    0.0760933393
                  0.0616564975
                                 0.0539584230
##
                                                0.1066611894
                                                               0.2511496383
##
             131
                            132
                                           133
                                                          134
                                 0.1916543275 -0.1859185553
##
    0.0830623377 -0.1425847923
                                                               0.0629914075
                                           138
##
             136
                            137
                                                          139
                                                                         140
##
    0.5505936853
                  0.4431377734
                                 0.4963458117
                                                0.3543969927
                                                               0.3164025261
             141
##
                            142
                                           143
                                                          144
##
    0.1851487704
                  0.1425950248
                                 0.1045610563
                                                0.0627110386
                                                               0.0749202261
##
             146
                            147
                                           148
                                                          149
   -0.2070096665 -0.0476501164 0.0902816348 0.0450707472 0.1280898977
```

```
153
                                                                           155
##
              151
                             152
                                                           154
                                  0.6435355211
##
   -0.0058145069 -0.1013492495
                                                 0.4909543444
                                                                 0.3038973946
##
              156
                             157
                                            158
                                                           159
    0.2664241078
                   0.3199673969
                                  0.2150042519
                                                 0.1241270757
                                                                 0.1435291862
##
##
              161
                             162
                                            163
                                                           164
    0.2010242045
##
                   0.0534988670
                                  0.1527539107
                                                 0.0779074322
                                                                -0.0970659812
##
              166
                             167
                                            168
                                                           169
##
   -0.1393687167
                   0.1538468443
                                 -0.0045354729 -0.3759730112
                                                                 0.4824391599
##
              171
                             172
                                            173
                                                           174
                                                                           175
                                                                 0.3272939319
##
    0.6038916276
                   0.3256121344
                                  0.1378877341
                                                 0.1852858100
##
              176
                             177
                                            178
                                                           179
                                                                           180
    0.1846989439
                                  0.1340769873
                                                 0.0928675085
##
                   0.2253351013
                                                                 0.0644146218
##
                             182
                                            183
                                                           184
                                                                           185
              181
    0.0382743230
                  -0.1410676510
                                  0.0811748639
                                                  0.0874044658
                                                                 0.1056544324
##
##
                                            188
              186
                             187
                                                           189
                                                                           190
##
    0.0339469554
                  -0.0037865435
                                  0.1074438670
                                                  0.4979090700
                                                                 0.3760578386
##
                             192
                                            193
                                                           194
                                                                           195
              191
    0.5844865604
                   0.4009488401
                                  0.2607127947
                                                 0.3299225644
                                                                 0.1882687979
##
##
                             197
                                            198
                                                                           200
              196
                                                           199
##
    0.1648916237
                   0.2037271630
                                  0.2957021013
                                                -0.0459284286
                                                                 0.3085042573
##
              201
                             202
                                            203
                                                           204
                                                                           205
    0.0431050342
                   0.1212627625
                                  0.6359032968
                                                  0.4140381274
##
                                                                 0.4313950629
##
              206
                             207
                                            208
                                                           209
    0.2695938546
                                  0.3203995910
                                                                 0.1570796380
##
                   0.4029921390
                                                  0.2290042195
##
              211
                             212
                                            213
                                                           214
##
    0.1244123724
                   0.1554239678
                                  0.1603209640
                                                 0.1928117616
                                                                -0.0806575671
##
                                            218
                                                                           220
              216
                             217
                                                           219
##
    -0.0144751477
                   0.0526305755
                                 -0.1117966994
                                                -0.0630058446
                                                                 0.1470418841
                             222
              221
                                            223
                                                           224
##
                                                                           225
##
    0.0808047232
                   0.0105841321
                                  0.6091494637
                                                  0.3648177724
                                                                 0.2684030535
##
              226
                             227
                                            228
                                                           229
##
    0.3626741179
                   0.2475786360
                                  0.1182449365
                                                 0.0379832498
                                                                 0.1550542683
##
              231
                             232
                                            233
                                                           234
                                                                           235
    0.3797606469
                                                 0.0926412763
##
                   0.0515001160
                                  0.2042012694
                                                                 0.1744586967
              236
                             237
                                            238
                                                           239
##
                                                                           240
    0.1097527419
                                                -0.0565397787
                   0.1308838425
                                  0.0474664250
                                                                 0.4397763005
##
##
              241
                             242
                                            243
                                                           244
    0.4851069388
                   0.5549538297
                                  0.2523358110
                                                 0.1472741115
                                                                 0.2774255022
##
##
              246
                                            248
                                                           249
    0.1013358223
                                  0.0501789429
                                                                 0.0582189030
##
                   0.3397837546
                                                 0.1697483450
##
              251
                             252
                                            253
                                                           254
   -0.0532288389
                   0.0597979040
                                  0.0058044398
                                                  0.4376235050
                                                                 0.6531149024
##
##
              256
                             257
                                            258
                                                           259
                                                                           260
##
    0.2310999456
                   0.4367468762
                                  0.3248808135
                                                  0.0638498489
                                                                 0.1999928553
##
              261
                             262
                                            263
                                                           264
    0.3433020874
##
                   0.0330149448
                                  0.1642114058
                                                  0.1435191340
                                                                 0.0545589017
##
              266
                             267
                                            268
                                                           269
                                                                           270
##
   -0.0724093291 -0.0560118081
                                  0.1413972241
                                                 0.0131052507
                                                                 0.1031591960
##
              271
                             272
                                            273
                                                           274
                                                                           275
##
    0.5127593147
                   0.4017993440
                                  0.3695351133
                                                  0.1846791855
                                                                 0.2434262271
              276
                                            278
##
                             277
                                                           279
                                                                           280
##
    0.2427020446
                   0.1452753090
                                  0.1630967564
                                                  0.1498564072
                                                                 0.1166625696
##
              281
                             282
                                            283
                                                           284
   -0.0244534565 -0.0783888995 -0.2711467691 0.0844513004 -0.1519106289
```

```
##
              286
                             287
                                            288
                                                            289
                                                                           290
                                                  0.2123914072
    0.6754691688
                   0.5265069310
                                  0.2726951859
                                                                 0.3346789889
##
##
              291
                             292
                                            293
                                                           294
                                                                           295
    0.1839569039
                   0.3854044001
                                  0.1421588108
                                                                 0.1720069621
##
                                                  0.2027522146
##
              296
                             297
                                            298
                                                            299
                                                                           300
                                                  0.0557838077
##
    0.0964786602
                   0.1018918351
                                 -0.1529203937
                                                                 0.0356600415
##
              301
                             302
                                            303
                                                            304
##
    0.1298851865
                  -0.1073350671
                                  0.5759807021
                                                  0.5925164560
                                                                 0.3723969641
##
              306
                             307
                                            308
                                                            309
                                                                           310
##
    0.2886361909
                   0.0527791256
                                  0.2488176198
                                                  0.1721828614
                                                                 0.1725231196
##
              311
                             312
                                            313
                                                            314
                                                                           315
    0.1416229339
                   0.2583806222
                                  0.3367462913
                                                  0.0996400901
                                                                 0.0734099288
##
##
              316
                             317
                                            318
                                                           319
                                                                           320
                                  0.1726953571
                                                 -0.0631088225
                                                                -0.2676841750
##
   -0.0115412307
                   0.1420356117
##
                             322
              321
                                            323
                                                            324
                                                                           325
##
    0.0075989455
                   0.0310160099
                                  0.4547717182
                                                  0.4937551757
                                                                 0.2388624895
##
              326
                             327
                                            328
                                                            329
                                                                           330
    0.3182775521
                   0.2889096306
                                  0.2026247901
                                                  0.3406526970
                                                                 0.1043198074
##
                                            333
##
              331
                             332
                                                           334
                                                                           335
##
    0.0946830229
                   0.1073807719
                                  -0.0242678095
                                                 -0.1425502496
                                                                 0.0218473476
##
              336
                             337
                                            338
                                                            339
                                                                           340
   -0.0454342904
                  -0.1795787294
                                  0.0589440775
                                                  0.0112058018
##
                                                                -0.2012647130
##
              341
                             342
                                            343
                                                            344
    0.0473286205
                                  0.1104186216
##
                   0.2827174908
                                                  0.2056320401
                                                                 0.0488571816
##
              346
                             347
                                            348
                                                            349
##
    0.0426866942
                   0.2113561972
                                 -0.0543326756
                                                  0.1021685191
                                                                 0.0312985168
##
              351
                             352
                                            353
                                                            354
                                                                           355
##
    0.0116338360 -0.1305942693
                                  0.1261982554
                                                 -0.0400401604
                                                                -0.0381475952
##
              356
                             357
                                            358
                                                            359
##
   -0.0809917541 -0.1838096964 -0.0638212588
                                                -0.1662626945
                                                                -0.1539933938
##
              361
                             362
                                            363
                                                            364
##
   -0.0992972190 -0.2000240707
                                  0.7518793147
                                                  0.2629045110
                                                                 0.2310265738
##
              366
                             367
                                            368
                                                            369
                                                                           370
                   0.3261598385
                                                  0.0748923396
##
    0.4207412507
                                  0.3123144386
                                                                 0.1398683916
              371
                             372
                                            373
                                                            374
                                                                           375
##
    0.2089471384
                   0.1706762766
                                  0.0978933305
                                                  0.2717219537
##
                                                                -0.0849083885
##
              376
                             377
                                            378
                                                            379
    0.0120082629
                  -0.0231967310
                                 -0.0044980131
                                                  0.2955677828
                                                                 0.3409694031
##
              381
                             382
                                            383
                                                            384
##
    0.5101685406
                                  0.2438922165
                                                                 0.2986949701
##
                   0.3543101636
                                                  0.2347969567
##
              386
                             387
                                            388
                                                            389
                                                                           390
    0.1347352462
                   0.2640186099
                                  0.1663920229
                                                  0.1560350422
                                                                 0.2552806599
##
##
              391
                             392
                                            393
                                                           394
                                                                           395
##
   -0.0268584633
                   0.0771730730
                                  0.0701336769
                                                  0.0840772540
                                                                -0.0198988233
##
              396
                             397
                                            398
                                                            399
    0.5541818708
                   0.1434521102
                                                  0.2114993287
##
                                  0.4151199967
                                                                 0.3078507897
##
              401
                             402
                                            403
                                                            404
                                                                           405
##
    0.2525881053
                   0.2716862758
                                  0.2075810494
                                                  0.1058123254
                                                                 0.0024866901
##
              406
                             407
                                            408
                                                           409
                                                                           410
##
    0.1606126894
                   0.3097576893
                                  -0.0216198066
                                                  0.0712699715
                                                                -0.0117237312
##
              411
                             412
                                            413
                                                            414
                                                                           415
##
   -0.0786940550
                   0.1141863768
                                  0.0598296074
                                                  0.5055873820
                                                                 0.4545650523
##
              416
                             417
                                            418
                                                            419
                                                                           420
    0.3738324722
                   0.4242792031 0.3417190884 0.1192522821 0.3656799833
```

```
##
             421
                            422
                                           423
                                                           424
                                                                          425
    0.0009865580
                   0.2044291653
                                  0.2205610144
                                                                0.1655458362
##
                                                 0.0971571942
##
             426
                            427
                                           428
                                                           429
    0.1252376917
                   0.6222301662
                                  0.3821802498
                                                 0.2055959013
                                                                0.1208260350
##
##
             431
                            432
                                            433
                                                           434
                   0.2311936860
                                                 0.0600129005
##
    0.2049859192
                                  0.0726137876
                                                               -0.1193174654
##
             436
                            437
                                            438
##
    0.2388294366
                   0.0393077360
                                  0.1275300220
                                                 0.0395334939
                                                               -0.1248931990
##
              441
                            442
                                            443
                                                           444
    0.0299705095
                                  0.1412967430
                                                                0.3671230655
##
                  -0.0375466543
                                                 0.3028676155
##
             446
                            447
                                            448
                                                           449
                                                                          450
                                  0.3103513373
                                                                0.2499642446
##
    0.2885955517
                   0.1717485048
                                                 0.2939121416
##
             451
                            452
                                           453
                                                           454
                                                                          455
                   0.1313096556
                                  0.4147423914
                                                                0.0876352596
##
    0.2853173546
                                                 0.0875501986
##
             456
                            457
                                            458
                                                           459
                                                                          460
##
    -0.3260388892
                  -0.0826642721
                                  0.2002130318
                                                 0.1826344976
                                                                0.4978785172
##
             461
                            462
                                            463
                                                           464
                                                                          465
    0.4568226373
                   0.3912972646
                                  0.2858952458
                                                 0.3706454185
                                                                0.2931539653
##
##
             466
                            467
                                           468
                                                           469
                                                                          470
##
    0.2609887046
                   0.1242843550
                                  0.1879032142
                                                 0.2104383710
                                                                0.4650738959
##
             471
                            472
                                           473
                                                           474
    0.2266249078
                   0.2477688589
                                  0.3297937109
                                                 0.3418850003
                                                                0.2313973623
##
##
             476
                            477
                                            478
                                                           479
    0.0572553288
                   0.1131500422
                                  0.1440386829
##
                                                 0.1057884734
                                                                0.0664411684
##
             481
                            482
                                            483
                                                           484
##
   -0.1766805599
                   0.1746594614
                                  0.0880567587
                                                 0.0545105124
                                                               -0.0569501919
##
             486
                            487
                                            488
                                                           489
                                                                          490
##
    0.0858021939
                   0.3343997339
                                  0.4482708251
                                                 0.3385180182
                                                                0.4643158179
##
                                            493
             491
                            492
                                                           494
                                                                          495
##
    0.1245032474
                   0.2273514190
                                  0.2536885914
                                                 0.0945787154
                                                                0.0689771121
##
              496
                            497
                                            498
                                                           499
##
    0.1394859743
                   0.2397800795
                                  0.1199733949
                                                 0.0403149811
                                                                0.1384325136
##
             501
                            502
                                            503
                                                           504
                                                                          505
   -0.0455375356
                   0.1996603580
                                                 0.7479513246
##
                                 -0.0186272146
                                                                0.3592312891
##
             506
                                           508
                            507
                                                           509
    0.4192197380
                   0.2587521795
                                  0.4537657841 -0.0977996549
                                                                0.1078486447
##
##
             511
                                           513
    0.1492435669
                   0.2493614994
                                  0.1430246011
                                                 0.2232322124
                                                                0.0470581456
##
##
             516
                            517
                                            518
                                                           519
                   0.3022433780
                                  0.2171480860
##
    0.6828542433
                                                 0.2219942794
                                                                0.3411190131
##
             521
                            522
                                            523
                                                           524
                                                                          525
    0.1017282697
                   0.2068840203
                                  0.1041113051
                                                 0.1226431847
                                                                0.0581861609
##
##
             526
                            527
                                           528
                                                           529
                                                                          530
                                  0.0173314272
##
    0.0194981166
                  -0.0037236448
                                                -0.1620522282
                                                                0.064466630
##
             531
                            532
                                            533
                                                           534
    0.4071098911
                   0.2350743535
                                  0.4642265111
                                                 0.2401642703
                                                                0.1832273014
##
##
             536
                            537
                                           538
                                                           539
                                                                          540
##
    0.1713661222
                   0.3041568912
                                  0.0994611354 -0.0110512405
                                                                0.0099821954
                                           543
##
             541
                            542
                                                           544
                                                                          545
##
   -0.0298439333
                   0.0596330567
                                  0.1250847756
                                                 0.4436245018
                                                                0.2597127397
##
             546
                            547
                                           548
                                                           549
                                                                          550
##
    0.1784332673
                   0.1156220949
                                  0.1152796829
                                                 0.0206909056
                                                                0.0145201226
##
             551
                                            553
                                                           554
                            552
   -0.0789239465 -0.2026512648
```

```
##
              556
                             557
                                             558
                                                            559
                                                                           560
                                                  0.6351406025
    0.1352739503
                   0.0630749572 -0.0768576577
                                                                 0.4657458941
##
##
              561
                             562
                                             563
                                                            564
                                                                           565
                                  0.1946656498
                                                  0.1448003329
    0.1762673642
                   0.2195649413
                                                                 0.1529103111
##
##
              566
                             567
                                             568
                                                            569
    0.1295497713
                   0.3018088651
                                  0.1910605142
                                                  0.1063599355
                                                                -0.1565167091
##
##
              571
                             572
                                             573
                                                            574
                  -0.0396804970
                                   0.0655790197 -0.0342479090
                                                                 0.5666388623
##
    0.1705731941
##
              576
                             577
                                             578
                                                            579
                                                                           580
    0.3876921964
                                   0.1510339862
                                                                 0.2579452923
##
                   0.2508491256
                                                  0.1876706611
##
              581
                             582
                                             583
                                                            584
                                                                           585
    0.2307947276
                   0.0258071992
                                   0.1224271653
                                                  0.1211974817
                                                                 0.2833279841
##
##
              586
                             587
                                             588
                                                            589
                                                                           590
    0.1357306606
                  -0.0068033097
                                   0.0667963046
                                                  0.0861510717
                                                                 0.0052273728
##
##
              591
                             592
                                             593
                                                            594
                                                                           595
##
    -0.0208128934
                   0.4224504356
                                   0.4031673460
                                                  0.2609821527
                                                                 0.3697239643
                             597
##
              596
                                             598
                                                            599
                                                                           600
##
    0.2391993075
                   0.3483503599
                                   0.0877582441
                                                  0.1518206918
                                                                 0.1714648424
                             602
                                             603
                                                            604
##
              601
                                                                           605
##
    0.1069709819
                  -0.0232385474
                                   0.0816534859
                                                  0.6079772493
                                                                 0.2741201940
##
              606
                             607
                                             608
                                                            609
                                                                           610
##
    0.4211225832
                   0.4673510961
                                   0.3687107001
                                                  0.2637359703
                                                                 0.2303198017
                             612
##
              611
                                             613
                                                            614
                                                                           615
    0.0986823029
                   0.2387959324
                                   0.1662542860
                                                  0.6544219717
                                                                 0.5206176929
##
##
              616
                             617
                                             618
                                                            619
                                                                           620
##
    0.2988363183
                   0.3648256025
                                   0.2448380467
                                                  0.3206963365
                                                                 0.1791531761
##
              621
                             622
                                             623
                                                            624
                                                                           625
    0.1629478848
                                   0.3325198717
                                                  0.1157292559
##
                   0.0819950458
                                                                 0.5587262244
##
              626
                             627
                                             628
                                                            629
                                                                           630
##
    0.4365125411
                   0.2365969130
                                   0.2585384265
                                                  0.3725967368
                                                                 0.2019674734
##
              631
                             632
                                             633
                                                            634
##
    0.2344634968
                   0.1412535188
                                  0.1384792308 -0.0036472864
                                                                 0.1466540818
##
              636
                             637
    0.0507897436 -0.0023127817
##
```

# ## testing multicollinearity vif(testlm)

```
##
      fg pct
               fg3 pct
                          ft_pct trb_per_g ast_per_g stl_per_g blk_per_g
                        2.797433 3.440902 3.472220
##
   5.920908
              1.690224
                                                      2.389805
                                                                2.630610
##
         per
                ts_pct
                         usg_pct
                                        WS
                                                  bpm
                                                           vorp
                                                                      age
##
  23.899302 6.350981 16.487403 21.594223 39.249989 53.801023
                                                                 1.215793
     win_pct pts_per_g
   1.884890 10.375766
##
```

#### ## predicting

predictions\_testlm <- predict(testlm, newdata=nba\_csv.test)
predictions\_testlm</pre>

```
## 1 2 3 4 5 6 7
## 0.4918244 0.5519403 0.1647240 0.3149604 0.1654079 0.2545112 0.1870386
## 8 9 10 11 12
## 0.2452853 0.1413281 0.2404894 0.1355675 0.1319142
```

```
nba_csv.test
##
     fg_pct fg3_pct ft_pct trb_per_g ast_per_g stl_per_g blk_per_g per
      0.578
              0.256 0.729
                               12.5
                                          5.9
                                                    1.3
                                                              1.5 30.9
## 2
      0.442
              0.368 0.879
                                 6.6
                                           7.5
                                                    2.0
                                                              0.7 30.6
      0.438
## 3
              0.386 0.839
                                 8.2
                                          4.1
                                                    2.2
                                                              0.4 23.3
## 4
      0.511
              0.307 0.821
                                10.8
                                          7.3
                                                    1.4
                                                              0.7 26.3
## 5
      0.472
              0.437 0.916
                                 5.3
                                          5.2
                                                    1.3
                                                              0.4 24.4
      0.444
              0.369 0.912
                                                              0.4 23.7
## 6
                                4.6
                                          6.9
                                                    1.1
## 7
      0.484
              0.300 0.804
                                13.6
                                          3.7
                                                    0.7
                                                              1.9 26.1
              0.353 0.885
## 8
      0.521
                                 6.4
                                          5.9
                                                    0.7
                                                              1.1 24.2
## 9
      0.496
              0.371 0.854
                                 7.3
                                          3.3
                                                              0.4 25.8
                                                    1.8
## 10 0.428
              0.290 0.656
                                11.1
                                          10.7
                                                    1.9
                                                              0.5 21.1
## 11 0.669
              0.000 0.636
                                12.9
                                          2.0
                                                    0.8
                                                              2.3 24.6
## 12 0.510
              0.339 0.665
                                 8.5
                                           8.3
                                                    1.3
                                                              0.6 25.6
##
     ts_pct usg_pct
                     ws bpm vorp age award_share
                                                    win_pct pts_per_g
## 1
      0.644
               32.3 14.4 10.8 7.6 24
                                             0.932 0.7317073
                                                                 27.7
## 2
      0.616
               40.5 15.2 11.7 9.9 29
                                             0.768 0.6463415
                                                                 36.1
## 3
      0.583
               29.5 11.9 5.5 5.3 28
                                             0.352 0.5975610
                                                                 28.0
## 4
               27.4 11.8 9.5 7.3 23
      0.589
                                             0.210 0.6585366
                                                                 20.1
               30.4 9.7 6.3 4.9 30
## 5
      0.641
                                             0.173 0.6951220
                                                                 27.3
## 6
      0.588
               29.3 12.1 5.5 5.4 28
                                             0.068 0.6463415
                                                                 25.8
## 7
      0.593
               33.3 8.7 4.1 3.3 24
                                             0.049 0.6219512
                                                                 27.5
## 8
               29.0 11.5 4.3 4.3 30
                                             0.025 0.6951220
                                                                 26.0
      0.631
## 9
      0.606
               30.3 9.5 5.0 3.6 27
                                             0.013 0.7073171
                                                                 26.6
## 10 0.501
               30.9 6.8 6.5 5.6 30
                                             0.008 0.5975610
                                                                 22.9
## 11 0.682
               17.8 14.4 7.0 5.9 26
                                             0.001 0.6097561
                                                                 15.9
               31.6 7.2 8.1 4.9 34
## 12 0.588
                                             0.001 0.4512195
                                                                 27.4
SSE <- sum((nba_csv.test$award_share - predictions_testlm)^2)</pre>
SST = sum((nba_csv.test\u00e4award_share - mean(nba_csv.train\u00e4award_share))^2)
OSR2 = 1 - SSE/SST
OSR2 #0.5684896
```

## [1] 0.5684896

## Backwards stepwise linear regression

## nvmax RMSE Rsquared MAE RMSESD RsquaredSD MAESD

```
1 0.2031545 0.3777678 0.1494879 0.013038205 0.06766914 0.009339134
## 1
## 2
         2 0.1980863 0.4130157 0.1495969 0.009385366 0.06155075 0.008390312
         3 0.1889702 0.4656558 0.1435723 0.009611728 0.03700280 0.008884902
## 3
         4 0.1882616 0.4697285 0.1436825 0.009994344 0.03384342 0.008142159
## 4
## 5
         5 0.1841933 0.4921710 0.1417201 0.011991674 0.04868312 0.009469273
## 6
         6 0.1836906 0.4947454 0.1412724 0.011580542 0.05086569 0.008098952
         7 0.1819367 0.5038802 0.1405544 0.011323619 0.04721548 0.008132983
         8 0.1815373 0.5057130 0.1394399 0.010978828 0.04708293 0.007602473
## 8
## 9
         9 0.1807420 0.5093612 0.1390457 0.010185091 0.04485822 0.006754325
         10 0.1807905 0.5091646 0.1393108 0.010052605 0.04357026 0.006941399
## 10
## 11
        11 0.1808864 0.5086471 0.1394837 0.009905718 0.04480604 0.006538665
         12 0.1812204 0.5069891 0.1397146 0.010475619 0.04806086 0.006904193
## 12
        13 0.1811344 0.5073143 0.1397867 0.010223272 0.04627425 0.006816784
## 13
## 14
        14 0.1808260 0.5089978 0.1395601 0.010537676 0.04727980 0.007043144
## 15
        15 0.1807655 0.5094014 0.1395333 0.010362966 0.04689159 0.006909715
         16 0.1808619 0.5089869 0.1396446 0.010010337 0.04627448 0.006591465
## 16
## 17
         17 0.1808619 0.5089869 0.1396446 0.010010337 0.04627448 0.006591465
```

#### step.model\$bestTune

```
## nvmax
## 9 9
```

## Backwards stepwise linear regression



summary(step.model\$finalModel) # tells us which variables to include

```
## Subset selection object
## 16 Variables (and intercept)
            Forced in Forced out
##
## fg_pct
                FALSE
                           FALSE
                FALSE
## fg3_pct
                           FALSE
## ft_pct
                FALSE
                           FALSE
                FALSE
                           FALSE
## trb_per_g
                FALSE
                           FALSE
## ast_per_g
## stl_per_g
                           FALSE
             FALSE
                FALSE
                          FALSE
## blk_per_g
                FALSE
                          FALSE
## per
## ts_pct
                FALSE
                          FALSE
                FALSE
                          FALSE
## usg_pct
                          FALSE
## ws
                FALSE
                          FALSE
## bpm
                FALSE
## vorp
                FALSE
                          FALSE
## age
                FALSE
                           FALSE
## win_pct
                FALSE
                           FALSE
## pts_per_g
                FALSE
                           FALSE
## 1 subsets of each size up to 9
## Selection Algorithm: backward
##
           fg_pct fg3_pct ft_pct trb_per_g ast_per_g stl_per_g blk_per_g per
## 1 (1) " " " " " " "
                                         " " " "
```

```
11 11
                                                     11 11
## 2 (1)""
                  11 11
                                 11 11
                                          11 11
                                                                11 11
                                                                          11 11
## 3 (1)""
                   11 11
                                  11 11
                                            11 11
                                                      11 11
                                                                11 11
                                                                          11 11
## 4 (1)""
                  11 11
                           11 11
                                  11 11
                                           11 11
                                                      11 11
                                                                11 11
                                                                          11 11
## 5 (1)""
                                  11 11
                                                      11 11
## 6 (1)""
                   11 11
                                  11 11
                                           11 11
                                                                11 11
                           11 11
                                                      "*"
## 7 (1)""
                   11 11
                           11 11
                                 11 11
                                           "*"
                                                     "*"
                                                                11 11
                                                                          11 11
## 8 (1)""
                   11 11
                           11 11
                                  "*"
                                           "*"
                                                      "*"
                                                                11 11
                                                                          11 11
                                            "*"
                                                      "*"
                           11 11
## 9 (1)"*"
                                  "*"
##
           ts_pct usg_pct ws bpm vorp age win_pct pts_per_g
## 1 (1)""
                           " " *" " "
## 2 (1)""
                   11 11
                                                    11 11
                           " " "*" " " " " " " " "
## 3 (1)""
                   11 11
                           " " "*" " "
                                                    "*"
## 4 (1)""
                   11 11
                           "*" "*" " "
                                       " " "*"
                  11 11
## 5 (1)"*"
                          "*" "*" " "
                                       " " "*"
                                                    "*"
## 6 (1)"*"
                  11 11
                           "*" "*" " "
                                       " " "*"
## 7 (1)"*"
                   11 11
                           "*" "*" " "
                                       " " "*"
                                                    "*"
## 8 (1) "*"
                   11 11
                          "*" "*" " "
                                       " " "*"
                                                    "*"
                   11 11
## 9 (1)"*"
                          "*" "*" " "
                                       11 II II * II
                                                    "*"
coef(step.model$finalModel, id = 9)
## (Intercept)
                     fg_pct
                               trb_per_g
                                          ast_per_g
                                                         stl_per_g
## -0.387387572 0.425193698 0.006473243 0.016045291 -0.054028684
##
        ts_pct
                                     bpm
                                               win_pct
                         WS
                                                         pts_per_g
## -1.364878622 0.025383895 0.020137578 0.613492903 0.013981895
#building final linear model
bswr.mod <- lm(award_share ~ fg_pct + trb_per_g + ast_per_g + stl_per_g +
                ts_pct + ws + bpm + win_pct + pts_per_g,
               data = nba_csv.train)
summary(bswr.mod)
##
## Call:
## lm(formula = award_share ~ fg_pct + trb_per_g + ast_per_g + stl_per_g +
       ts_pct + ws + bpm + win_pct + pts_per_g, data = nba_csv.train)
## Residuals:
                 1Q Median
                                   30
                                            Max
## -0.38158 -0.11672 -0.03796 0.09170 0.69670
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          0.153987 -2.516 0.01213 *
## (Intercept) -0.387388
                           0.260576 1.632 0.10323
## fg_pct
               0.425194
               0.006473
                         0.003485
                                    1.858 0.06369 .
## trb_per_g
## ast_per_g 0.016045
                          0.003737
                                    4.294 2.03e-05 ***
## stl_per_g -0.054029
                          0.017149 -3.151 0.00171 **
                          0.332031 -4.111 4.47e-05 ***
## ts_pct
              -1.364879
               0.025384
                          0.003995 6.354 4.03e-10 ***
## WS
## bpm
              0.020138
                          0.004676 4.307 1.92e-05 ***
              0.613493
                          0.075165 8.162 1.81e-15 ***
## win_pct
## pts_per_g 0.013982
                          0.001792 7.803 2.53e-14 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.178 on 627 degrees of freedom
## Multiple R-squared: 0.5266, Adjusted R-squared: 0.5198
## F-statistic: 77.51 on 9 and 627 DF, p-value: < 2.2e-16
vif(bswr.mod) # acceptable vifs
##
      fg_pct trb_per_g ast_per_g stl_per_g
                                             ts_pct
                                                                    bpm
## 2.768500 2.642912 2.258271 2.031006 3.389390 3.653558 3.194391
   win_pct pts_per_g
## 1.324580 1.709839
# testing for OSR2
pred.bswr <- predict(bswr.mod, newdata=nba_csv.test)</pre>
pred.bswr
##
                     2
                               3
                                                   5
                                         4
## 0.5039477 0.5375057 0.1740437 0.3132550 0.1671717 0.2550683 0.1880855
                              10
                                        11
## 0.2396639 0.1470319 0.2419638 0.1414766 0.1506761
nba_csv.test$award_share
## [1] 0.932 0.768 0.352 0.210 0.173 0.068 0.049 0.025 0.013 0.008 0.001
## [12] 0.001
SSE <- sum((nba_csv.test\saward_share - pred.bswr)^2)
SST = sum((nba_csv.test$award_share - mean(nba_csv.train$award_share))^2)
OSR2 = 1 - SSE/SST
OSR2 # 0.5691312 # slight improvement!
## [1] 0.5691312
```

### Random forests - basic and cross-validated

1.2082597

## ft\_pct

```
##basic random forest model
set.seed(144)
mod.rf <- randomForest(award_share ~ ., data = nba_csv.train, mtry = 5, nodesize = 5, ntree = 500)
pred.rf <- predict(mod.rf, newdata = nba_csv.test) # just to illustrate

importance(mod.rf) #most important features: ws, vorp, win_pct, bpm

## IncNodePurity
## fg_pct     1.0813085
## fg3_pct     0.8731366</pre>
```

```
0.9318022
## trb_per_g
## ast_per_g
                1.2053944
## stl_per_g
             0.5994095
## blk_per_g 0.7338723
               5.0909337
## per
               0.9842470
## ts_pct
## usg_pct
               1.8279452
## Ws
                9.0585303
## bpm
                3.9519190
## vorp
                5.5728829
## age
                0.7868769
                4.3633348
## win_pct
                2.2574873
## pts_per_g
#cross validation on mtry
set.seed(849)
train.rf <- train(award_share ~ .,</pre>
                  data = nba_csv.train,
                  method = "rf",
                  tuneGrid = data.frame(mtry=1:16),
                  trControl = trainControl(method="cv",
                                          number=5, verboseIter = TRUE),
                  metric = "RMSE")
## + Fold1: mtry= 1
## - Fold1: mtry= 1
## + Fold1: mtry= 2
## - Fold1: mtry= 2
## + Fold1: mtry= 3
## - Fold1: mtry= 3
## + Fold1: mtry= 4
## - Fold1: mtry= 4
## + Fold1: mtry= 5
## - Fold1: mtry= 5
## + Fold1: mtry= 6
## - Fold1: mtry= 6
## + Fold1: mtry= 7
## - Fold1: mtry= 7
## + Fold1: mtry= 8
## - Fold1: mtry= 8
## + Fold1: mtry= 9
## - Fold1: mtry= 9
## + Fold1: mtry=10
## - Fold1: mtry=10
## + Fold1: mtry=11
## - Fold1: mtry=11
## + Fold1: mtry=12
## - Fold1: mtry=12
## + Fold1: mtry=13
## - Fold1: mtry=13
## + Fold1: mtry=14
## - Fold1: mtry=14
```

## + Fold1: mtry=15 ## - Fold1: mtry=15

```
## + Fold1: mtry=16
## - Fold1: mtry=16
## + Fold2: mtry= 1
## - Fold2: mtry= 1
## + Fold2: mtry= 2
## - Fold2: mtry= 2
## + Fold2: mtry= 3
## - Fold2: mtry= 3
## + Fold2: mtry= 4
## - Fold2: mtry= 4
## + Fold2: mtry= 5
## - Fold2: mtry= 5
## + Fold2: mtry= 6
## - Fold2: mtry= 6
## + Fold2: mtry= 7
## - Fold2: mtry= 7
## + Fold2: mtry= 8
## - Fold2: mtry= 8
## + Fold2: mtry= 9
## - Fold2: mtry= 9
## + Fold2: mtry=10
## - Fold2: mtry=10
## + Fold2: mtry=11
## - Fold2: mtry=11
## + Fold2: mtry=12
## - Fold2: mtry=12
## + Fold2: mtry=13
## - Fold2: mtry=13
## + Fold2: mtry=14
## - Fold2: mtry=14
## + Fold2: mtry=15
## - Fold2: mtry=15
## + Fold2: mtry=16
## - Fold2: mtry=16
## + Fold3: mtry= 1
## - Fold3: mtry= 1
## + Fold3: mtry= 2
## - Fold3: mtry= 2
## + Fold3: mtry= 3
## - Fold3: mtry= 3
## + Fold3: mtry= 4
## - Fold3: mtry= 4
## + Fold3: mtry= 5
## - Fold3: mtry= 5
## + Fold3: mtry= 6
## - Fold3: mtry= 6
## + Fold3: mtry= 7
## - Fold3: mtry= 7
## + Fold3: mtry= 8
## - Fold3: mtry= 8
## + Fold3: mtry= 9
## - Fold3: mtry= 9
## + Fold3: mtry=10
## - Fold3: mtry=10
```

```
## + Fold3: mtry=11
## - Fold3: mtry=11
## + Fold3: mtry=12
## - Fold3: mtry=12
## + Fold3: mtry=13
## - Fold3: mtry=13
## + Fold3: mtry=14
## - Fold3: mtry=14
## + Fold3: mtry=15
## - Fold3: mtry=15
## + Fold3: mtry=16
## - Fold3: mtry=16
## + Fold4: mtry= 1
## - Fold4: mtry= 1
## + Fold4: mtry= 2
## - Fold4: mtry= 2
## + Fold4: mtry= 3
## - Fold4: mtry= 3
## + Fold4: mtry= 4
## - Fold4: mtry= 4
## + Fold4: mtry= 5
## - Fold4: mtry= 5
## + Fold4: mtry= 6
## - Fold4: mtry= 6
## + Fold4: mtry= 7
## - Fold4: mtry= 7
## + Fold4: mtry= 8
## - Fold4: mtry= 8
## + Fold4: mtry= 9
## - Fold4: mtry= 9
## + Fold4: mtry=10
## - Fold4: mtry=10
## + Fold4: mtry=11
## - Fold4: mtry=11
## + Fold4: mtry=12
## - Fold4: mtry=12
## + Fold4: mtry=13
## - Fold4: mtry=13
## + Fold4: mtry=14
## - Fold4: mtry=14
## + Fold4: mtry=15
## - Fold4: mtry=15
## + Fold4: mtry=16
## - Fold4: mtry=16
## + Fold5: mtry= 1
## - Fold5: mtry= 1
## + Fold5: mtry= 2
## - Fold5: mtry= 2
## + Fold5: mtry= 3
## - Fold5: mtry= 3
## + Fold5: mtry= 4
## - Fold5: mtry= 4
## + Fold5: mtry= 5
## - Fold5: mtry= 5
```

```
## + Fold5: mtry= 6
## - Fold5: mtry= 6
## + Fold5: mtry= 7
## - Fold5: mtry= 7
## + Fold5: mtry= 8
## - Fold5: mtry= 8
## + Fold5: mtry= 9
## - Fold5: mtry= 9
## + Fold5: mtry=10
## - Fold5: mtry=10
## + Fold5: mtry=11
## - Fold5: mtry=11
## + Fold5: mtry=12
## - Fold5: mtry=12
## + Fold5: mtry=13
## - Fold5: mtry=13
## + Fold5: mtry=14
## - Fold5: mtry=14
## + Fold5: mtry=15
## - Fold5: mtry=15
## + Fold5: mtry=16
## - Fold5: mtry=16
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 12 on full training set
```

#### train.rf #mtry=12

```
## Random Forest
##
## 637 samples
   16 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 509, 508, 510, 512, 509
## Resampling results across tuning parameters:
##
##
                 Rsquared
   mtry RMSE
                         MAE
        0.1729006 0.5751842 0.1148861
##
    1
    2
##
        ##
    3
        0.1659232  0.5954343  0.1067127
##
        4
##
    5
        0.1640126 0.6042265
                         0.1045772
##
    6
        0.1636150 0.6054612
                         0.1041081
##
    7
        0.1628583 0.6086627
                         0.1030604
##
    8
        0.1027573
    9
##
        ##
   10
        0.1626249 0.6087426
                         0.1023939
##
   11
        0.1624621 0.6107147 0.1020349
##
   12
        0.1621851 0.6112369
                         0.1018550
##
   13
        ##
        ##
        0.1628195 0.6089939 0.1024110
   15
```

## Cross validating mtry (for random forest model (RF



```
SSE = sum((nba_csv.test$award_share - pred.best.rf)^2)
SST = sum((nba_csv.test$award_share - mean(nba_csv.train$award_share))^2)
OSR2 = 1 - SSE/SST
OSR2 #0.7677164
```

## [1] 0.7677164

### Boosting – basic and cross-validated



```
## var rel.inf
## ws ws 45.46286772
## vorp vorp 18.55601031
## per per 17.57885978
## win_pct win_pct 14.47977396
## bpm bpm 2.44925995
## usg_pct usg_pct 1.05795822
## pts_per_g pts_per_g 0.29577981
```

```
## age
                         0.04456713
                    age
## ft_pct
                         0.04326546
                 ft_pct
## ast_per_g ast_per_g
                         0.03165767
## fg_pct
                fg_pct
                         0.0000000
## fg3_pct
                fg3_pct
                         0.00000000
## trb_per_g trb_per_g
                         0.00000000
## stl_per_g stl_per_g
                         0.00000000
## blk_per_g blk_per_g
                         0.00000000
## ts_pct
                 ts_pct
                         0.00000000
#cross validation on n.trees and interaction depth
tGrid = expand.grid(n.trees = (1:75)*500, interaction.depth = c(1,2,4,6,8,10),
                     shrinkage = 0.001, n.minobsinnode = 10)
set.seed(849)
train.boost <- train(award_share ~ .,</pre>
                      data = nba_csv.train,
                      method = "gbm",
                      tuneGrid = tGrid,
                      trControl = trainControl(method="cv", number=5,
                                                 verboseIter = TRUE),
                      metric = "RMSE",
                      distribution = "gaussian")
## + Fold1: shrinkage=0.001, interaction.depth= 1, n.minobsinnode=10, n.trees=37500
          TrainDeviance
   Iter
                            ValidDeviance
                                             StepSize
                                                        Improve
##
        1
                  0.0665
                                               0.0010
                                                         0.0001
                                      nan
        2
##
                  0.0665
                                               0.0010
                                                         0.0000
                                      nan
##
        3
                                                         0.0000
                  0.0664
                                               0.0010
                                      nan
##
        4
                  0.0663
                                      nan
                                               0.0010
                                                         0.0000
##
        5
                                               0.0010
                                                         0.0000
                  0.0663
                                      nan
##
        6
                                               0.0010
                                                         0.0000
                  0.0662
                                      nan
        7
##
                  0.0662
                                               0.0010
                                                         0.0001
                                      nan
##
        8
                  0.0662
                                               0.0010
                                                         0.0000
                                      nan
##
        9
                                                         0.0000
                  0.0661
                                      nan
                                               0.0010
##
       10
                  0.0661
                                      nan
                                               0.0010
                                                         0.0000
##
       20
                  0.0656
                                               0.0010
                                                         0.0000
                                      nan
##
       40
                  0.0646
                                      nan
                                               0.0010
                                                         0.0000
##
       60
                  0.0637
                                      nan
                                               0.0010
                                                         0.0000
##
       80
                  0.0628
                                               0.0010
                                                         0.0000
                                      nan
##
      100
                  0.0620
                                               0.0010
                                                         0.0000
                                      nan
##
      120
                  0.0611
                                               0.0010
                                                         0.0000
                                      nan
##
      140
                  0.0603
                                               0.0010
                                                         0.0001
                                      nan
##
      160
                                               0.0010
                                                         0.0000
                  0.0595
                                      nan
##
      180
                  0.0587
                                               0.0010
                                                         0.0000
                                      nan
##
      200
                                                         0.0000
                  0.0579
                                               0.0010
                                      nan
##
      220
                  0.0572
                                               0.0010
                                                         0.0000
                                      nan
##
      240
                                                         0.0000
                  0.0565
                                               0.0010
                                      nan
##
      260
                                               0.0010
                                                         0.0000
                  0.0558
                                      nan
##
      280
                  0.0551
                                               0.0010
                                                         0.0000
                                      nan
##
      300
                  0.0545
                                               0.0010
                                                         0.0000
                                      nan
                                                         0.0000
##
      320
                  0.0539
                                               0.0010
                                      nan
##
      340
                                               0.0010
                                                         0.0000
                  0.0533
                                      nan
##
      360
                  0.0527
                                               0.0010
                                                         0.0000
```

nan

| ##       | 380          | 0.0521           | nan | 0.0010           | 0.0000 |
|----------|--------------|------------------|-----|------------------|--------|
| ##       | 400          | 0.0516           | nan | 0.0010           | 0.0000 |
| ##       | 420          | 0.0510           | nan | 0.0010           | 0.0000 |
| ##       | 440          | 0.0505           | nan | 0.0010           | 0.0000 |
| ##       | 460          | 0.0500           | nan | 0.0010           | 0.0000 |
| ##       | 480          | 0.0495           | nan | 0.0010           | 0.0000 |
| ##       | 500          | 0.0490           | nan | 0.0010           | 0.0000 |
| ##       | 520          | 0.0486           | nan | 0.0010           | 0.0000 |
| ##       | 540          | 0.0481           | nan | 0.0010           | 0.0000 |
| ##       | 560          | 0.0477           | nan | 0.0010           | 0.0000 |
| ##       | 580          | 0.0472           | nan | 0.0010           | 0.0000 |
| ##       | 600          | 0.0468           | nan | 0.0010           | 0.0000 |
| ##       | 620          | 0.0464           | nan | 0.0010           | 0.0000 |
| ##       | 640          | 0.0460           | nan | 0.0010           | 0.0000 |
| ##       | 660          | 0.0456           | nan | 0.0010           | 0.0000 |
| ##       | 680          | 0.0452           | nan | 0.0010           | 0.0000 |
| ##       | 700          | 0.0449           | nan | 0.0010           | 0.0000 |
| ##       | 720          | 0.0445           | nan | 0.0010           | 0.0000 |
| ##       | 740          | 0.0442           | nan | 0.0010           | 0.0000 |
| ##       | 760<br>700   | 0.0438           | nan | 0.0010           | 0.0000 |
| ##       | 780          | 0.0435           | nan | 0.0010           | 0.0000 |
| ##       | 800          | 0.0432           | nan | 0.0010           | 0.0000 |
| ##       | 820          | 0.0428           | nan | 0.0010           | 0.0000 |
| ##       | 840          | 0.0425           | nan | 0.0010           | 0.0000 |
| ##       | 860          | 0.0422           | nan | 0.0010           | 0.0000 |
| ##       | 880          | 0.0419           | nan | 0.0010           | 0.0000 |
| ##       | 900          | 0.0417           | nan | 0.0010           | 0.0000 |
| ##       | 920          | 0.0414           | nan | 0.0010           | 0.0000 |
| ##       | 940          | 0.0411           | nan | 0.0010           | 0.0000 |
| ##       | 960          | 0.0408           | nan | 0.0010           | 0.0000 |
| ##       | 980          | 0.0406           | nan | 0.0010           | 0.0000 |
| ##       | 1000         | 0.0403           | nan | 0.0010           | 0.0000 |
| ##       | 1020         | 0.0400           | nan | 0.0010           | 0.0000 |
| ##       | 1040         | 0.0398           | nan | 0.0010           | 0.0000 |
| ##       | 1060         | 0.0396           | nan | 0.0010           | 0.0000 |
| ##       | 1080         | 0.0393           | nan | 0.0010           | 0.0000 |
| ##       | 1100<br>1120 | 0.0391           | nan | 0.0010           | 0.0000 |
| ##       |              | 0.0388           | nan | 0.0010           | 0.0000 |
| ##       | 1140         | 0.0386           | nan | 0.0010           | 0.0000 |
| ##       | 1160         | 0.0384           | nan | 0.0010           | 0.0000 |
| ##       | 1180         | 0.0382           | nan | 0.0010<br>0.0010 | 0.0000 |
| ##       | 1200         | 0.0380           | nan |                  | 0.0000 |
| ##<br>## | 1220         | 0.0378<br>0.0376 | nan | 0.0010<br>0.0010 | 0.0000 |
| ##       | 1240<br>1260 | 0.0374           | nan | 0.0010           | 0.0000 |
| ##       | 1280         | 0.0374           | nan | 0.0010           | 0.0000 |
|          |              | 0.0372           | nan |                  |        |
| ##<br>## | 1300<br>1320 | 0.0370           | nan | 0.0010<br>0.0010 | 0.0000 |
| ##       | 1340         | 0.0366           | nan | 0.0010           | 0.0000 |
| ##       | 1340         | 0.0365           | nan | 0.0010           | 0.0000 |
| ##       | 1380         | 0.0363           | nan | 0.0010           | 0.0000 |
| ##       | 1400         | 0.0363           | nan | 0.0010           | 0.0000 |
| ##       | 1400         | 0.0359           | nan | 0.0010           | 0.0000 |
| ##       |              | 0.0358           | nan | 0.0010           | 0.0000 |
| ##       | 1440         | 0.0300           | nan | 0.0010           | 0.0000 |

| ## | 1460 | 0.0356 | nan | 0.0010 | 0.0000  |
|----|------|--------|-----|--------|---------|
| ## | 1480 | 0.0355 | nan | 0.0010 | 0.0000  |
| ## | 1500 | 0.0353 | nan | 0.0010 | 0.0000  |
| ## | 1520 | 0.0351 | nan | 0.0010 | 0.0000  |
| ## | 1540 | 0.0350 | nan | 0.0010 | 0.0000  |
| ## | 1560 | 0.0348 | nan | 0.0010 | 0.0000  |
| ## | 1580 | 0.0347 | nan | 0.0010 | 0.0000  |
| ## | 1600 | 0.0345 | nan | 0.0010 | 0.0000  |
| ## | 1620 | 0.0344 | nan | 0.0010 | 0.0000  |
| ## | 1640 | 0.0342 | nan | 0.0010 | 0.0000  |
| ## | 1660 | 0.0341 | nan | 0.0010 | 0.0000  |
| ## | 1680 | 0.0339 | nan | 0.0010 | 0.0000  |
| ## | 1700 | 0.0338 | nan | 0.0010 | 0.0000  |
| ## | 1720 | 0.0337 | nan | 0.0010 | 0.0000  |
| ## | 1740 | 0.0335 | nan | 0.0010 | 0.0000  |
| ## | 1760 | 0.0334 | nan | 0.0010 | 0.0000  |
| ## | 1780 | 0.0333 | nan | 0.0010 | 0.0000  |
| ## | 1800 | 0.0331 | nan | 0.0010 | 0.0000  |
| ## | 1820 | 0.0330 | nan | 0.0010 | 0.0000  |
| ## | 1840 | 0.0329 | nan | 0.0010 | 0.0000  |
| ## | 1860 | 0.0328 | nan | 0.0010 | 0.0000  |
| ## | 1880 | 0.0327 | nan | 0.0010 | 0.0000  |
| ## | 1900 | 0.0325 | nan | 0.0010 | 0.0000  |
| ## | 1920 | 0.0324 | nan | 0.0010 | 0.0000  |
| ## | 1940 | 0.0323 | nan | 0.0010 | 0.0000  |
| ## | 1960 | 0.0322 | nan | 0.0010 | 0.0000  |
| ## | 1980 | 0.0321 | nan | 0.0010 | 0.0000  |
| ## | 2000 | 0.0320 | nan | 0.0010 | 0.0000  |
| ## | 2020 | 0.0319 | nan | 0.0010 | -0.0000 |
| ## | 2040 | 0.0318 | nan | 0.0010 | 0.0000  |
| ## | 2060 | 0.0317 | nan | 0.0010 | 0.0000  |
| ## | 2080 | 0.0316 | nan | 0.0010 | 0.0000  |
| ## | 2100 | 0.0315 | nan | 0.0010 | 0.0000  |
| ## | 2120 | 0.0314 | nan | 0.0010 | 0.0000  |
| ## | 2140 | 0.0313 | nan | 0.0010 | 0.0000  |
| ## | 2160 | 0.0312 | nan | 0.0010 | 0.0000  |
| ## | 2180 | 0.0311 | nan | 0.0010 | 0.0000  |
| ## | 2200 | 0.0310 | nan | 0.0010 | 0.0000  |
| ## | 2220 | 0.0309 | nan | 0.0010 | 0.0000  |
| ## | 2240 | 0.0308 | nan | 0.0010 | 0.0000  |
| ## | 2260 | 0.0307 | nan | 0.0010 | 0.0000  |
| ## | 2280 | 0.0306 | nan | 0.0010 | 0.0000  |
| ## | 2300 | 0.0305 | nan | 0.0010 | 0.0000  |
| ## | 2320 | 0.0304 | nan | 0.0010 | 0.0000  |
| ## | 2340 | 0.0304 | nan | 0.0010 | 0.0000  |
| ## | 2360 | 0.0303 | nan | 0.0010 | 0.0000  |
| ## | 2380 | 0.0302 | nan | 0.0010 | 0.0000  |
| ## | 2400 | 0.0301 | nan | 0.0010 | 0.0000  |
| ## | 2420 | 0.0300 | nan | 0.0010 | 0.0000  |
| ## | 2440 | 0.0300 | nan | 0.0010 | 0.0000  |
| ## | 2460 | 0.0299 | nan | 0.0010 | 0.0000  |
| ## | 2480 | 0.0298 | nan | 0.0010 | 0.0000  |
| ## | 2500 | 0.0297 | nan | 0.0010 | 0.0000  |
| ## | 2520 | 0.0297 | nan | 0.0010 | 0.0000  |

| ##       | 2540         | 0.0296           | nan        | 0.0010           | 0.0000  |
|----------|--------------|------------------|------------|------------------|---------|
| ##       | 2560         | 0.0295           | nan        | 0.0010           | 0.0000  |
| ##       | 2580         | 0.0294           | nan        | 0.0010           | 0.0000  |
| ##       | 2600         | 0.0294           | nan        | 0.0010           | 0.0000  |
| ##       | 2620         | 0.0293           | nan        | 0.0010           | 0.0000  |
| ##       | 2640         | 0.0292           | nan        | 0.0010           | 0.0000  |
| ##       | 2660         | 0.0291           | nan        | 0.0010           | 0.0000  |
| ##       | 2680         | 0.0291           | nan        | 0.0010           | 0.0000  |
| ##       | 2700         | 0.0290           | nan        | 0.0010           | 0.0000  |
| ##       | 2720         | 0.0289           | nan        | 0.0010           | 0.0000  |
| ##       | 2740         | 0.0289           | nan        | 0.0010           | 0.0000  |
| ##       | 2760         | 0.0288           | nan        | 0.0010           | 0.0000  |
| ##       | 2780         | 0.0288           | nan        | 0.0010           | 0.0000  |
| ##       | 2800         | 0.0287           | nan        | 0.0010           | 0.0000  |
| ##       | 2820         | 0.0286           | nan        | 0.0010           | 0.0000  |
| ##       | 2840         | 0.0286           | nan        | 0.0010           | 0.0000  |
| ##       | 2860         | 0.0285           | nan        | 0.0010           | 0.0000  |
| ##       | 2880         | 0.0285           | nan        | 0.0010           | 0.0000  |
| ##       | 2900         | 0.0284           | nan        | 0.0010           | 0.0000  |
| ##       | 2920         | 0.0284           | nan        | 0.0010           | 0.0000  |
| ##       | 2940         | 0.0283           | nan        | 0.0010           | 0.0000  |
| ##       | 2960         | 0.0282           | nan        | 0.0010           | 0.0000  |
| ##       | 2980         | 0.0282           | nan        | 0.0010           | 0.0000  |
| ##       | 3000         | 0.0281           | nan        | 0.0010           | 0.0000  |
| ##       | 3020         | 0.0281           | nan        | 0.0010           | 0.0000  |
| ##<br>## | 3040<br>3060 | 0.0280<br>0.0280 | nan        | 0.0010<br>0.0010 | 0.0000  |
| ##       | 3080         | 0.0279           | nan        | 0.0010           | 0.0000  |
| ##       | 3100         | 0.0279           | nan<br>nan | 0.0010           | 0.0000  |
| ##       | 3120         | 0.0278           | nan        | 0.0010           | 0.0000  |
| ##       | 3140         | 0.0278           | nan        | 0.0010           | 0.0000  |
| ##       | 3160         | 0.0277           | nan        | 0.0010           | 0.0000  |
| ##       | 3180         | 0.0277           | nan        | 0.0010           | 0.0000  |
| ##       | 3200         | 0.0276           | nan        | 0.0010           | 0.0000  |
| ##       | 3220         | 0.0276           | nan        | 0.0010           | -0.0000 |
| ##       | 3240         | 0.0275           | nan        | 0.0010           | 0.0000  |
| ##       | 3260         | 0.0275           | nan        | 0.0010           | 0.0000  |
| ##       | 3280         | 0.0274           | nan        | 0.0010           | -0.0000 |
| ##       | 3300         | 0.0274           | nan        | 0.0010           | 0.0000  |
| ##       | 3320         | 0.0274           | nan        | 0.0010           | 0.0000  |
| ##       | 3340         | 0.0273           | nan        | 0.0010           | 0.0000  |
| ##       | 3360         | 0.0273           | nan        | 0.0010           | 0.0000  |
| ##       | 3380         | 0.0272           | nan        | 0.0010           | 0.0000  |
| ##       | 3400         | 0.0272           | nan        | 0.0010           | 0.0000  |
| ##       | 3420         | 0.0272           | nan        | 0.0010           | 0.0000  |
| ##       | 3440         | 0.0271           | nan        | 0.0010           | -0.0000 |
| ##       | 3460         | 0.0271           | nan        | 0.0010           | 0.0000  |
| ##       | 3480         | 0.0270           | nan        | 0.0010           | 0.0000  |
| ##       | 3500         | 0.0270           | nan        | 0.0010           | -0.0000 |
| ##       | 3520         | 0.0270           | nan        | 0.0010           | -0.0000 |
| ##       | 3540         | 0.0269           | nan        | 0.0010           | 0.0000  |
| ##       | 3560         | 0.0269           | nan        | 0.0010           | 0.0000  |
| ##       | 3580         | 0.0269           | nan        | 0.0010           | 0.0000  |
| ##       | 3600         | 0.0268           | nan        | 0.0010           | 0.0000  |
|          |              |                  |            |                  |         |

| ## | 3620 | 0.0268 | nan | 0.0010 | 0.0000  |
|----|------|--------|-----|--------|---------|
| ## | 3640 | 0.0267 | nan | 0.0010 | 0.0000  |
| ## | 3660 | 0.0267 | nan | 0.0010 | 0.0000  |
| ## | 3680 | 0.0267 | nan | 0.0010 | -0.0000 |
| ## | 3700 | 0.0266 | nan | 0.0010 | 0.0000  |
| ## | 3720 | 0.0266 | nan | 0.0010 | 0.0000  |
| ## | 3740 | 0.0266 | nan | 0.0010 | 0.0000  |
| ## | 3760 | 0.0265 | nan | 0.0010 | 0.0000  |
| ## | 3780 | 0.0265 | nan | 0.0010 | 0.0000  |
| ## | 3800 | 0.0265 | nan | 0.0010 | 0.0000  |
| ## | 3820 | 0.0265 | nan | 0.0010 | 0.0000  |
| ## | 3840 | 0.0264 | nan | 0.0010 | 0.0000  |
| ## | 3860 | 0.0264 | nan | 0.0010 | 0.0000  |
| ## | 3880 | 0.0264 | nan | 0.0010 | -0.0000 |
| ## | 3900 | 0.0263 | nan | 0.0010 | -0.0000 |
| ## | 3920 | 0.0263 | nan | 0.0010 | 0.0000  |
| ## | 3940 | 0.0263 | nan | 0.0010 | 0.0000  |
| ## | 3960 | 0.0262 | nan | 0.0010 | -0.0000 |
| ## | 3980 | 0.0262 | nan | 0.0010 | 0.0000  |
| ## | 4000 | 0.0262 | nan | 0.0010 | 0.0000  |
| ## | 4020 | 0.0262 | nan | 0.0010 | -0.0000 |
| ## | 4040 | 0.0261 | nan | 0.0010 | 0.0000  |
| ## | 4060 | 0.0261 | nan | 0.0010 | 0.0000  |
| ## | 4080 | 0.0261 | nan | 0.0010 | -0.0000 |
| ## | 4100 | 0.0260 | nan | 0.0010 | -0.0000 |
| ## | 4120 | 0.0260 | nan | 0.0010 | -0.0000 |
| ## | 4140 | 0.0260 | nan | 0.0010 | -0.0000 |
| ## | 4160 | 0.0260 | nan | 0.0010 | -0.0000 |
| ## | 4180 | 0.0259 | nan | 0.0010 | 0.0000  |
| ## | 4200 | 0.0259 | nan | 0.0010 | 0.0000  |
| ## | 4220 | 0.0259 | nan | 0.0010 | 0.0000  |
| ## | 4240 | 0.0259 | nan | 0.0010 | -0.0000 |
| ## | 4260 | 0.0258 | nan | 0.0010 | -0.0000 |
| ## | 4280 | 0.0258 | nan | 0.0010 | -0.0000 |
| ## | 4300 | 0.0258 | nan | 0.0010 | 0.0000  |
| ## | 4320 | 0.0258 | nan | 0.0010 | -0.0000 |
| ## | 4340 | 0.0258 | nan | 0.0010 | -0.0000 |
| ## | 4360 | 0.0257 | nan | 0.0010 | 0.0000  |
| ## | 4380 | 0.0257 | nan | 0.0010 | -0.0000 |
| ## | 4400 | 0.0257 | nan | 0.0010 | -0.0000 |
| ## | 4420 | 0.0257 | nan | 0.0010 | 0.0000  |
| ## | 4440 | 0.0256 | nan | 0.0010 | 0.0000  |
| ## | 4460 | 0.0256 | nan | 0.0010 | -0.0000 |
| ## | 4480 | 0.0256 | nan | 0.0010 | -0.0000 |
| ## | 4500 | 0.0256 | nan | 0.0010 | 0.0000  |
| ## | 4520 | 0.0256 | nan | 0.0010 | 0.0000  |
| ## | 4540 | 0.0255 | nan | 0.0010 | 0.0000  |
| ## | 4560 | 0.0255 | nan | 0.0010 | -0.0000 |
| ## | 4580 | 0.0255 | nan | 0.0010 | -0.0000 |
| ## | 4600 | 0.0255 | nan | 0.0010 | -0.0000 |
| ## | 4620 | 0.0254 | nan | 0.0010 | 0.0000  |
| ## | 4640 | 0.0254 | nan | 0.0010 | -0.0000 |
| ## | 4660 | 0.0254 | nan | 0.0010 | 0.0000  |
| ## | 4680 | 0.0254 | nan | 0.0010 | -0.0000 |
|    |      |        |     |        |         |

| ## | 4700 | 0.0254 | nan | 0.0010 | -0.0000 |
|----|------|--------|-----|--------|---------|
| ## | 4720 | 0.0253 | nan | 0.0010 | 0.0000  |
| ## | 4740 | 0.0253 | nan | 0.0010 | 0.0000  |
| ## | 4760 | 0.0253 | nan | 0.0010 | -0.0000 |
| ## | 4780 | 0.0253 | nan | 0.0010 | 0.0000  |
| ## | 4800 | 0.0253 | nan | 0.0010 | -0.0000 |
| ## | 4820 | 0.0253 | nan | 0.0010 | -0.0000 |
| ## | 4840 | 0.0252 | nan | 0.0010 | 0.0000  |
| ## | 4860 | 0.0252 | nan | 0.0010 | 0.0000  |
| ## | 4880 | 0.0252 | nan | 0.0010 | 0.0000  |
| ## | 4900 | 0.0252 | nan | 0.0010 | 0.0000  |
| ## | 4920 | 0.0252 | nan | 0.0010 | -0.0000 |
| ## | 4940 | 0.0251 | nan | 0.0010 | -0.0000 |
| ## | 4960 | 0.0251 | nan | 0.0010 | -0.0000 |
| ## | 4980 | 0.0251 | nan | 0.0010 | 0.0000  |
| ## | 5000 | 0.0251 | nan | 0.0010 | -0.0000 |
| ## | 5020 | 0.0251 | nan | 0.0010 | -0.0000 |
| ## | 5040 | 0.0251 | nan | 0.0010 | -0.0000 |
| ## | 5060 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5080 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5100 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5120 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5140 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5160 | 0.0250 | nan | 0.0010 | -0.0000 |
| ## | 5180 | 0.0250 | nan | 0.0010 | 0.0000  |
| ## | 5200 | 0.0249 | nan | 0.0010 | -0.0000 |
| ## | 5220 | 0.0249 | nan | 0.0010 | -0.0000 |
| ## | 5240 | 0.0249 | nan | 0.0010 | -0.0000 |
| ## | 5260 | 0.0249 | nan | 0.0010 | -0.0000 |
| ## | 5280 | 0.0249 | nan | 0.0010 | 0.0000  |
| ## | 5300 | 0.0249 | nan | 0.0010 | -0.0000 |
| ## | 5320 | 0.0248 | nan | 0.0010 | -0.0000 |
| ## | 5340 | 0.0248 | nan | 0.0010 | -0.0000 |
| ## | 5360 | 0.0248 | nan | 0.0010 | 0.0000  |
| ## | 5380 | 0.0248 | nan | 0.0010 | -0.0000 |
| ## | 5400 | 0.0248 | nan | 0.0010 | -0.0000 |
| ## | 5420 | 0.0248 | nan | 0.0010 | 0.0000  |
| ## | 5440 | 0.0248 | nan | 0.0010 | -0.0000 |
| ## | 5460 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5480 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5500 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5520 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5540 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5560 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5580 | 0.0247 | nan | 0.0010 | -0.0000 |
| ## | 5600 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5620 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5640 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5660 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5680 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5700 | 0.0246 | nan | 0.0010 | -0.0000 |
| ## | 5720 | 0.0246 | nan | 0.0010 | 0.0000  |
| ## | 5740 | 0.0245 | nan | 0.0010 | -0.0000 |
| ## | 5760 | 0.0245 | nan | 0.0010 | 0.0000  |
|    |      |        |     |        |         |

```
36620
##
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
                                                 0.0010
                                                           -0.0000
##
    36640
                  0.0003
                                       nan
##
    36660
                  0.0003
                                       nan
                                                 0.0010
                                                           -0.0000
##
    36680
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
                                                 0.0010
                                                           -0.0000
    36700
                  0.0003
                                       nan
##
    36720
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    36740
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
                                                           -0.0000
    36760
                  0.0003
                                       nan
##
    36780
                  0.0003
                                        nan
                                                 0.0010
                                                           -0.0000
##
    36800
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    36820
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
    36840
                  0.0003
                                                          -0.0000
                                       nan
                                                 0.0010
##
    36860
                  0.0003
                                        nan
                                                           -0.0000
##
    36880
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    36900
                                                 0.0010
                                                           -0.0000
                  0.0003
                                        nan
##
    36920
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
    36940
                  0.0003
                                                           -0.0000
                                        nan
##
                                                 0.0010
                                                           -0.0000
    36960
                  0.0003
                                       nan
##
    36980
                  0.0003
                                       nan
                                                 0.0010
                                                           -0.0000
##
    37000
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37020
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
                                                 0.0010
                                                           -0.0000
    37040
                  0.0003
                                       nan
##
    37060
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37080
                  0.0003
                                        nan
                                                 0.0010
                                                           -0.0000
##
    37100
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37120
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    37140
                  0.0003
                                                 0.0010
                                                          -0.0000
                                        nan
##
    37160
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    37180
                  0.0003
                                       nan
                                                 0.0010
                                                           -0.0000
##
    37200
                  0.0003
                                        nan
                                                 0.0010
                                                           -0.0000
##
    37220
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37240
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    37260
                                                 0.0010
                  0.0003
                                                           -0.0000
                                        nan
    37280
                                                 0.0010
##
                  0.0003
                                        nan
                                                           -0.0000
##
    37300
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37320
                  0.0003
                                       nan
                                                 0.0010
                                                           -0.0000
##
    37340
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37360
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
                                                 0.0010
                                                           -0.0000
    37380
                  0.0003
                                       nan
##
    37400
                  0.0003
                                       nan
                                                 0.0010
                                                           -0.0000
##
    37420
                  0.0003
                                        nan
                                                 0.0010
                                                           -0.0000
##
    37440
                  0.0003
                                                 0.0010
                                                           -0.0000
                                       nan
##
    37460
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    37480
                  0.0003
                                                 0.0010
                                                           -0.0000
                                        nan
##
    37500
                  0.0003
                                        nan
                                                 0.0010
                                                           -0.0000
##
   - Fold5: shrinkage=0.001, interaction.depth=10, n.minobsinnode=10, n.trees=37500
   Aggregating results
   Selecting tuning parameters
   Fitting n.trees = 4000, interaction.depth = 4, shrinkage = 0.001, n.minobsinnode = 10 on full training
##
           TrainDeviance
                            ValidDeviance
                                              StepSize
                                                           Improve
##
        1
                  0.0658
                                                 0.0010
                                                            0.0001
                                       nan
##
        2
                   0.0657
                                                 0.0010
                                                            0.0001
                                        nan
```

0.0010

nan

-0.0000

36600

##

0.0003

| ##       | 3          | 0.0657           | nan        | 0.0010           | 0.0001 |
|----------|------------|------------------|------------|------------------|--------|
| ##       | 4          | 0.0656           | nan        | 0.0010           | 0.0001 |
| ##       | 5          | 0.0655           | nan        | 0.0010           | 0.0001 |
| ##       | 6          | 0.0655           | nan        | 0.0010           | 0.0001 |
| ##       | 7          | 0.0654           | nan        | 0.0010           | 0.0001 |
| ##       | 8          | 0.0653           | nan        | 0.0010           | 0.0001 |
| ##       | 9          | 0.0652           | nan        | 0.0010           | 0.0001 |
| ##       | 10         | 0.0652           | nan        | 0.0010           | 0.0001 |
| ##       | 20         | 0.0644           | nan        | 0.0010           | 0.0001 |
| ##       | 40         | 0.0631           | nan        | 0.0010           | 0.0000 |
| ##       | 60         | 0.0617           | nan        | 0.0010           | 0.0001 |
| ##       | 80         | 0.0604           | nan        | 0.0010           | 0.0001 |
| ##       | 100        | 0.0592           | nan        | 0.0010           | 0.0000 |
| ##       | 120        | 0.0580           | nan        | 0.0010           | 0.0000 |
| ##       | 140        | 0.0568           | nan        | 0.0010           | 0.0001 |
| ##       | 160        | 0.0556           | nan        | 0.0010           | 0.0001 |
| ##       | 180        | 0.0546           | nan        | 0.0010           | 0.0000 |
| ##       | 200        | 0.0535           | nan        | 0.0010           | 0.0000 |
| ##       | 220        | 0.0524           | nan        | 0.0010           | 0.0000 |
| ##       | 240        | 0.0514           | nan        | 0.0010           | 0.0000 |
| ##       | 260        | 0.0505           | nan        | 0.0010           | 0.0000 |
| ##       | 280        | 0.0495           | nan        | 0.0010           | 0.0000 |
| ##       | 300        | 0.0486           | nan        | 0.0010           | 0.0000 |
| ##       | 320        | 0.0477           | nan        | 0.0010           | 0.0000 |
| ##       | 340        | 0.0469           | nan        | 0.0010           | 0.0000 |
| ##       | 360        | 0.0461           | nan        | 0.0010           | 0.0000 |
| ##       | 380        | 0.0453           | nan        | 0.0010           | 0.0000 |
| ##       | 400        | 0.0445           | nan        | 0.0010           | 0.0000 |
| ##<br>## | 420<br>440 | 0.0437<br>0.0430 | nan        | 0.0010<br>0.0010 | 0.0000 |
| ##       | 440        | 0.0423           | nan        | 0.0010           | 0.0000 |
| ##       | 480        | 0.0423           | nan<br>nan | 0.0010           | 0.0000 |
| ##       | 500        | 0.0410           | nan        | 0.0010           | 0.0000 |
| ##       | 520        | 0.0403           | nan        | 0.0010           | 0.0000 |
| ##       | 540        | 0.0397           | nan        | 0.0010           | 0.0000 |
| ##       | 560        | 0.0390           | nan        | 0.0010           | 0.0000 |
| ##       | 580        | 0.0385           | nan        | 0.0010           | 0.0000 |
| ##       | 600        | 0.0379           | nan        | 0.0010           | 0.0000 |
| ##       | 620        | 0.0374           | nan        | 0.0010           | 0.0000 |
| ##       | 640        | 0.0368           | nan        | 0.0010           | 0.0000 |
| ##       | 660        | 0.0363           | nan        | 0.0010           | 0.0000 |
| ##       | 680        | 0.0358           | nan        | 0.0010           | 0.0000 |
| ##       | 700        | 0.0353           | nan        | 0.0010           | 0.0000 |
| ##       | 720        | 0.0348           | nan        | 0.0010           | 0.0000 |
| ##       | 740        | 0.0344           | nan        | 0.0010           | 0.0000 |
| ##       | 760        | 0.0339           | nan        | 0.0010           | 0.0000 |
| ##       | 780        | 0.0335           | nan        | 0.0010           | 0.0000 |
| ##       | 800        | 0.0331           | nan        | 0.0010           | 0.0000 |
| ##       | 820        | 0.0326           | nan        | 0.0010           | 0.0000 |
| ##       | 840        | 0.0322           | nan        | 0.0010           | 0.0000 |
| ##       | 860        | 0.0318           | nan        | 0.0010           | 0.0000 |
| ##       | 880        | 0.0315           | nan        | 0.0010           | 0.0000 |
| ##       | 900        | 0.0311           | nan        | 0.0010           | 0.0000 |
| ##       | 920        | 0.0308           | nan        | 0.0010           | 0.0000 |

| ## | 940  | 0.0304 | nan | 0.0010 | 0.0000 |
|----|------|--------|-----|--------|--------|
| ## | 960  | 0.0301 | nan | 0.0010 | 0.0000 |
| ## | 980  | 0.0297 | nan | 0.0010 | 0.0000 |
| ## | 1000 | 0.0294 | nan | 0.0010 | 0.0000 |
| ## | 1020 | 0.0291 | nan | 0.0010 | 0.0000 |
| ## | 1040 | 0.0288 | nan | 0.0010 | 0.0000 |
| ## | 1060 | 0.0285 | nan | 0.0010 | 0.0000 |
| ## | 1080 | 0.0282 | nan | 0.0010 | 0.0000 |
| ## | 1100 | 0.0280 | nan | 0.0010 | 0.0000 |
| ## | 1120 | 0.0277 | nan | 0.0010 | 0.0000 |
| ## | 1140 | 0.0274 | nan | 0.0010 | 0.0000 |
| ## | 1160 | 0.0272 | nan | 0.0010 | 0.0000 |
| ## | 1180 | 0.0269 | nan | 0.0010 | 0.0000 |
| ## | 1200 | 0.0267 | nan | 0.0010 | 0.0000 |
| ## | 1220 | 0.0264 | nan | 0.0010 | 0.0000 |
| ## | 1240 | 0.0262 | nan | 0.0010 | 0.0000 |
| ## | 1260 | 0.0260 | nan | 0.0010 | 0.0000 |
| ## | 1280 | 0.0257 | nan | 0.0010 | 0.0000 |
| ## | 1300 | 0.0255 | nan | 0.0010 | 0.0000 |
| ## | 1320 | 0.0253 | nan | 0.0010 | 0.0000 |
| ## | 1340 | 0.0251 | nan | 0.0010 | 0.0000 |
| ## | 1360 | 0.0249 | nan | 0.0010 | 0.0000 |
| ## | 1380 | 0.0247 | nan | 0.0010 | 0.0000 |
| ## | 1400 | 0.0245 | nan | 0.0010 | 0.0000 |
| ## | 1420 | 0.0243 | nan | 0.0010 | 0.0000 |
| ## | 1440 | 0.0242 | nan | 0.0010 | 0.0000 |
| ## | 1460 | 0.0240 | nan | 0.0010 | 0.0000 |
| ## | 1480 | 0.0238 | nan | 0.0010 | 0.0000 |
| ## | 1500 | 0.0236 | nan | 0.0010 | 0.0000 |
| ## | 1520 | 0.0235 | nan | 0.0010 | 0.0000 |
| ## | 1540 | 0.0233 | nan | 0.0010 | 0.0000 |
| ## | 1560 | 0.0231 | nan | 0.0010 | 0.0000 |
| ## | 1580 | 0.0230 | nan | 0.0010 | 0.0000 |
| ## | 1600 | 0.0228 | nan | 0.0010 | 0.0000 |
| ## | 1620 | 0.0227 | nan | 0.0010 | 0.0000 |
| ## | 1640 | 0.0225 | nan | 0.0010 | 0.0000 |
| ## | 1660 | 0.0224 | nan | 0.0010 | 0.0000 |
| ## | 1680 | 0.0222 | nan | 0.0010 | 0.0000 |
| ## | 1700 | 0.0221 | nan | 0.0010 | 0.0000 |
| ## | 1720 | 0.0220 | nan | 0.0010 | 0.0000 |
| ## | 1740 | 0.0218 | nan | 0.0010 | 0.0000 |
| ## | 1760 | 0.0217 | nan | 0.0010 | 0.0000 |
| ## | 1780 | 0.0216 | nan | 0.0010 | 0.0000 |
| ## | 1800 | 0.0215 | nan | 0.0010 | 0.0000 |
| ## | 1820 | 0.0214 | nan | 0.0010 | 0.0000 |
| ## | 1840 | 0.0212 | nan | 0.0010 | 0.0000 |
| ## | 1860 | 0.0211 | nan | 0.0010 | 0.0000 |
| ## | 1880 | 0.0210 | nan | 0.0010 | 0.0000 |
| ## | 1900 | 0.0209 | nan | 0.0010 | 0.0000 |
| ## | 1920 | 0.0208 | nan | 0.0010 | 0.0000 |
| ## | 1940 | 0.0207 | nan | 0.0010 | 0.0000 |
| ## | 1960 | 0.0206 | nan | 0.0010 | 0.0000 |
| ## | 1980 | 0.0205 | nan | 0.0010 | 0.0000 |
| ## | 2000 | 0.0204 | nan | 0.0010 | 0.0000 |

| ## | 2020 | 0.0203 | nan | 0.0010 | -0.0000 |
|----|------|--------|-----|--------|---------|
| ## | 2040 | 0.0202 | nan | 0.0010 | 0.0000  |
| ## | 2060 | 0.0201 | nan | 0.0010 | 0.0000  |
| ## | 2080 | 0.0200 | nan | 0.0010 | 0.0000  |
| ## | 2100 | 0.0199 | nan | 0.0010 | 0.0000  |
| ## | 2120 | 0.0198 | nan | 0.0010 | 0.0000  |
| ## | 2140 | 0.0197 | nan | 0.0010 | 0.0000  |
| ## | 2160 | 0.0196 | nan | 0.0010 | 0.0000  |
| ## | 2180 | 0.0195 | nan | 0.0010 | 0.0000  |
| ## | 2200 | 0.0194 | nan | 0.0010 | 0.0000  |
| ## | 2220 | 0.0194 | nan | 0.0010 | 0.0000  |
| ## | 2240 | 0.0193 | nan | 0.0010 | 0.0000  |
| ## | 2260 | 0.0192 | nan | 0.0010 | -0.0000 |
| ## | 2280 | 0.0191 | nan | 0.0010 | 0.0000  |
| ## | 2300 | 0.0190 | nan | 0.0010 | -0.0000 |
| ## | 2320 | 0.0190 | nan | 0.0010 | 0.0000  |
| ## | 2340 | 0.0189 | nan | 0.0010 | 0.0000  |
| ## | 2360 | 0.0188 | nan | 0.0010 | 0.0000  |
| ## | 2380 | 0.0188 | nan | 0.0010 | 0.0000  |
| ## | 2400 | 0.0187 | nan | 0.0010 | 0.0000  |
| ## | 2420 | 0.0186 | nan | 0.0010 | 0.0000  |
| ## | 2440 | 0.0185 | nan | 0.0010 | 0.0000  |
| ## | 2460 | 0.0185 | nan | 0.0010 | 0.0000  |
| ## | 2480 | 0.0184 | nan | 0.0010 | -0.0000 |
| ## | 2500 | 0.0183 | nan | 0.0010 | -0.0000 |
| ## | 2520 | 0.0183 | nan | 0.0010 | 0.0000  |
| ## | 2540 | 0.0182 | nan | 0.0010 | 0.0000  |
| ## | 2560 | 0.0182 | nan | 0.0010 | 0.0000  |
| ## | 2580 | 0.0181 | nan | 0.0010 | -0.0000 |
| ## | 2600 | 0.0180 | nan | 0.0010 | 0.0000  |
| ## | 2620 | 0.0180 | nan | 0.0010 | -0.0000 |
| ## | 2640 | 0.0179 | nan | 0.0010 | 0.0000  |
| ## | 2660 | 0.0179 | nan | 0.0010 | -0.0000 |
| ## | 2680 | 0.0178 | nan | 0.0010 | -0.0000 |
| ## | 2700 | 0.0178 | nan | 0.0010 | -0.0000 |
| ## | 2720 | 0.0177 | nan | 0.0010 | -0.0000 |
| ## | 2740 | 0.0176 | nan | 0.0010 | -0.0000 |
| ## | 2760 | 0.0176 | nan | 0.0010 | -0.0000 |
| ## | 2780 | 0.0175 | nan | 0.0010 | 0.0000  |
| ## | 2800 | 0.0175 | nan | 0.0010 | 0.0000  |
| ## | 2820 | 0.0174 | nan | 0.0010 | 0.0000  |
| ## | 2840 | 0.0174 | nan | 0.0010 | -0.0000 |
| ## | 2860 | 0.0173 | nan | 0.0010 | -0.0000 |
| ## | 2880 | 0.0173 | nan | 0.0010 | 0.0000  |
| ## | 2900 | 0.0172 | nan | 0.0010 | -0.0000 |
| ## | 2920 | 0.0172 | nan | 0.0010 | 0.0000  |
| ## | 2940 | 0.0171 | nan | 0.0010 | -0.0000 |
| ## | 2960 | 0.0171 | nan | 0.0010 | 0.0000  |
| ## | 2980 | 0.0170 | nan | 0.0010 | -0.0000 |
| ## | 3000 | 0.0170 | nan | 0.0010 | -0.0000 |
| ## | 3020 | 0.0169 | nan | 0.0010 | -0.0000 |
| ## | 3040 | 0.0169 | nan | 0.0010 | -0.0000 |
| ## | 3060 | 0.0168 | nan | 0.0010 | 0.0000  |
| ## | 3080 | 0.0168 | nan | 0.0010 | -0.0000 |
|    |      |        |     |        |         |

```
##
     3100
                   0.0168
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3120
                   0.0167
                                                 0.0010
                                                            0.0000
                                        nan
                   0.0167
##
     3140
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3160
                                                 0.0010
                                                           -0.0000
                   0.0166
                                        nan
##
     3180
                   0.0166
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3200
                   0.0165
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
     3220
                   0.0165
                                        nan
                                                           -0.0000
##
     3240
                   0.0165
                                        nan
                                                 0.0010
                                                            0.0000
##
     3260
                   0.0164
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3280
                   0.0164
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3300
                   0.0163
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3320
                   0.0163
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3340
                                                 0.0010
                                                           -0.0000
                   0.0163
                                        nan
##
                   0.0162
     3360
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3380
                   0.0162
                                        nan
                                                 0.0010
                                                            0.0000
##
     3400
                   0.0161
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3420
                   0.0161
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3440
                   0.0161
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3460
                   0.0160
                                                 0.0010
                                                            0.0000
                                        nan
##
     3480
                   0.0160
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3500
                   0.0160
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3520
                                                 0.0010
                                                           -0.0000
                   0.0159
                                        nan
##
     3540
                   0.0159
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
     3560
                   0.0158
                                        nan
                                                           -0.0000
##
     3580
                   0.0158
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3600
                   0.0158
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3620
                                                 0.0010
                                                           -0.0000
                   0.0157
                                        nan
##
     3640
                   0.0157
                                                 0.0010
                                                            0.0000
                                        nan
##
     3660
                   0.0157
                                        nan
                                                 0.0010
                                                            0.0000
##
     3680
                                                 0.0010
                                                           -0.0000
                   0.0156
                                        nan
##
     3700
                   0.0156
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3720
                   0.0156
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3740
                   0.0155
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3760
                   0.0155
                                                 0.0010
                                                            0.0000
                                        nan
##
     3780
                   0.0155
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3800
                   0.0154
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3820
                   0.0154
                                        nan
                                                 0.0010
                                                           -0.0000
##
                   0.0154
                                                 0.0010
                                                           -0.0000
     3840
                                        nan
##
     3860
                   0.0153
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3880
                   0.0153
                                                 0.0010
                                                           -0.0000
                                        nan
##
                                                 0.0010
     3900
                   0.0153
                                        nan
                                                           -0.0000
##
     3920
                   0.0152
                                                 0.0010
                                                           -0.0000
                                        nan
##
     3940
                   0.0152
                                        nan
                                                 0.0010
                                                           -0.0000
##
     3960
                                                 0.0010
                                                           -0.0000
                   0.0152
                                        nan
##
     3980
                   0.0152
                                                 0.0010
                                                            0.0000
                                        nan
##
     4000
                   0.0151
                                                 0.0010
                                                           -0.0000
                                        nan
```

#### train.boost #ntrees=4000, interaction.depth=4

```
## Stochastic Gradient Boosting
##
## 637 samples
## 16 predictor
##
```

## No pre-processing ## Resampling: Cross-Validated (5 fold) Summary of sample sizes: 509, 508, 510, 512, 509 Resampling results across tuning parameters: ## ## interaction.depth n.trees Rsquared RMSE MAE ## 1 500 0.2214558 0.4792111 0.16511538 ## 1 1000 0.2020549 0.4969852 0.14811466 ## 1 1500 0.1907759 0.5191214 0.13683499 ## 1 2000 0.1831320 0.5373833 0.12848911 ## 2500 0.1778574 0.5505235 0.12209313 1 ## 1 3000 0.1742092 0.5597227 0.11716936 ## 3500 0.1716621 0.5664189 0.11334564 1 ## 4000 0.1701625 0.5703639 0.11062390 ## 4500 1 0.1691255 0.5734536 0.10869947 ## 1 5000 0.1685429 0.5752649 0.10789840 ## 1 5500 0.1681944 0.5763153 0.10764586 ## 6000 0.1679193 0.5772218 0.10766962 1 ## 6500 0.1676691 0.5782582 0.10781953 1 ## 1 7000 0.1675026 0.5791145 0.10807441 ## 1 7500 0.1674431 0.5794730 0.10839219 ## 8000 0.1673553 0.5798363 1 0.10872500 ## 1 8500 0.1672696 0.5802706 0.10906576 ## 1 9000 0.1671723 0.5808824 0.10944028 ## 1 9500 0.1671933 0.5809542 0.10978272 ## 1 10000 0.1671539 0.5812307 0.11012546 ## 10500 1 0.1671547 0.5813962 0.11046063 ## 1 11000 0.1671482 0.5815500 0.11076698 ## 1 11500 0.1670776 0.5818552 0.11103891 0.11134365 ## 12000 0.1670899 0.5819566 1 ## 1 12500 0.1670744 0.5820467 0.11163698 ## 1 13000 0.1670629 0.5820531 0.11185851 ## 13500 0.1671021 0.5820431 0.11212352 ## 14000 0.1671688 0.5819046 0.11242023 1 ## 1 14500 0.1672609 0.5815236 0.11271889 ## 1 15000 0.1672414 0.5815486 0.11294315 ## 15500 0.1672694 0.5814595 0.11315290 ## 0.1672855 0.5815873 1 16000 0.11336020 ## 16500 0.5816539 1 0.1672617 0.11356570 ## 1 17000 0.1673041 0.5815828 0.11375661 ## 1 17500 0.1673724 0.5814112 0.11394510 ## 0.1674393 0.5811127 1 18000 0.11415674 ## 1 18500 0.1675226 0.5809154 0.11436165 ## 0.1675932 0.5806968 1 19000 0.11456401 ## 1 19500 0.1675779 0.5808066 0.11469208 ## 1 20000 0.1676236 0.5806323 0.11487004 ## 1 20500 0.1676828 0.5804456 0.11500101 ## 1 21000 0.1677423 0.5802403 0.11517986 ## 21500 0.1678338 0.5799192 0.11536466 1 ## 1 22000 0.1678938 0.5796839 0.11554429 ## 1 22500 0.1678971 0.5797352 0.11565831 ## 1 23000 0.1679281 0.5796376 0.11579512 ## 1 23500 0.1679813 0.5795677 0.11591496 ## 24000 0.1680311 0.5794820 0.11604862

| ##       | 1 | 24500 | 0.1680568 | 0.5792360 | 0.11615515 |
|----------|---|-------|-----------|-----------|------------|
| ##       | 1 | 25000 | 0.1680816 | 0.5792360 | 0.11613313 |
| ##       | 1 | 25500 | 0.1681189 | 0.5791069 | 0.11638408 |
| ##<br>## | 1 |       | 0.1682174 | 0.5791009 | 0.11652927 |
|          |   | 26000 |           | 0.5786252 |            |
| ##       | 1 | 26500 | 0.1682819 |           | 0.11663353 |
| ##       | 1 | 27000 | 0.1683325 | 0.5782847 | 0.11673454 |
| ##       | 1 | 27500 | 0.1683847 | 0.5781400 | 0.11682979 |
| ##       | 1 | 28000 | 0.1684494 | 0.5778956 | 0.11696772 |
| ##       | 1 | 28500 | 0.1685378 | 0.5776667 | 0.11708884 |
| ##       | 1 | 29000 | 0.1685966 | 0.5773497 | 0.11720647 |
| ##       | 1 | 29500 | 0.1686372 | 0.5771779 | 0.11731944 |
| ##       | 1 | 30000 | 0.1686736 | 0.5770251 | 0.11742131 |
| ##       | 1 | 30500 | 0.1687696 | 0.5767262 | 0.11751840 |
| ##       | 1 | 31000 | 0.1688152 | 0.5765563 | 0.11758834 |
| ##       | 1 | 31500 | 0.1688788 | 0.5763740 | 0.11768664 |
| ##       | 1 | 32000 | 0.1689261 | 0.5761759 | 0.11776235 |
| ##       | 1 | 32500 | 0.1689816 | 0.5760901 | 0.11785943 |
| ##       | 1 | 33000 | 0.1690188 | 0.5758197 | 0.11793775 |
| ##       | 1 | 33500 | 0.1690658 | 0.5757314 | 0.11801278 |
| ##       | 1 | 34000 | 0.1691419 | 0.5755570 | 0.11812002 |
| ##       | 1 | 34500 | 0.1691867 | 0.5754365 | 0.11818911 |
| ##       | 1 | 35000 | 0.1692360 | 0.5751593 | 0.11825524 |
| ##       | 1 | 35500 | 0.1692954 | 0.5749372 | 0.11836039 |
| ##       | 1 | 36000 | 0.1693476 | 0.5747394 | 0.11842810 |
| ##       | 1 | 36500 | 0.1694348 | 0.5744117 | 0.11853231 |
| ##       | 1 | 37000 | 0.1694931 | 0.5742627 | 0.11859583 |
| ##       | 1 | 37500 | 0.1695597 | 0.5741320 | 0.11868027 |
| ##       | 2 | 500   | 0.2137503 | 0.5604232 | 0.15977050 |
| ##       | 2 | 1000  | 0.1900088 | 0.5781564 | 0.13913312 |
| ##       | 2 | 1500  | 0.1765877 | 0.5921661 | 0.12559398 |
| ##       | 2 | 2000  | 0.1688755 | 0.6028566 | 0.11634537 |
| ##       | 2 | 2500  | 0.1643709 | 0.6105790 | 0.10959152 |
| ##       | 2 | 3000  | 0.1619216 | 0.6152882 | 0.10496616 |
| ##       | 2 | 3500  | 0.1606477 | 0.6185082 | 0.10192181 |
| ##       | 2 | 4000  | 0.1598136 | 0.6211583 | 0.09998822 |
| ##       | 2 | 4500  | 0.1593077 | 0.6231082 | 0.09880187 |
| ##       | 2 | 5000  | 0.1590381 | 0.6241381 | 0.09823526 |
| ##       | 2 | 5500  | 0.1589199 | 0.6245225 | 0.09810074 |
| ##       | 2 | 6000  | 0.1588604 | 0.6248718 | 0.09824476 |
| ##       | 2 | 6500  | 0.1589107 | 0.6249419 | 0.09854758 |
| ##       | 2 | 7000  | 0.1590157 | 0.6245981 | 0.09897750 |
| ##       | 2 | 7500  | 0.1590626 | 0.6243050 | 0.09928272 |
| ##       | 2 | 8000  | 0.1591175 | 0.6241695 | 0.09964640 |
| ##       | 2 | 8500  | 0.1592280 | 0.6238063 | 0.09997356 |
| ##       | 2 | 9000  | 0.1594571 | 0.6228850 | 0.10036185 |
| ##       | 2 | 9500  | 0.1596208 | 0.6221653 | 0.10070837 |
| ##       | 2 | 10000 | 0.1597952 | 0.6215747 | 0.10105302 |
| ##       | 2 | 10500 | 0.1600374 | 0.6206522 | 0.10140356 |
| ##       | 2 | 11000 | 0.1602157 | 0.6199648 | 0.10172315 |
| ##       | 2 | 11500 | 0.1604588 | 0.6191029 | 0.10203659 |
| ##       | 2 | 12000 | 0.1606167 | 0.6184754 | 0.10230569 |
| ##       | 2 | 12500 | 0.1608240 | 0.6176909 | 0.10255068 |
| ##       | 2 | 13000 | 0.1609856 | 0.6170830 | 0.10275346 |
| ##       | 2 | 13500 | 0.1610696 | 0.6165900 | 0.10293637 |
|          |   |       |           |           |            |

| ## | 2 | 14000 | 0.1612863 | 0.6158137 | 0.10317954 |
|----|---|-------|-----------|-----------|------------|
| ## | 2 | 14500 | 0.1614250 | 0.6152745 | 0.10330915 |
| ## | 2 | 15000 | 0.1616299 | 0.6144505 | 0.10354205 |
| ## | 2 | 15500 | 0.1617791 | 0.6139780 | 0.10371125 |
| ## | 2 | 16000 | 0.1619087 | 0.6134491 | 0.10383206 |
| ## | 2 | 16500 | 0.1621331 | 0.6126041 | 0.10402804 |
| ## | 2 | 17000 | 0.1622810 | 0.6121171 | 0.10422085 |
| ## | 2 | 17500 | 0.1624086 | 0.6117243 | 0.10436348 |
| ## | 2 | 18000 | 0.1626084 | 0.6109255 | 0.10451729 |
| ## | 2 | 18500 | 0.1627691 | 0.6103134 | 0.10465935 |
| ## | 2 | 19000 | 0.1628951 | 0.6098289 | 0.10477137 |
| ## | 2 | 19500 | 0.1631061 | 0.6090511 | 0.10497543 |
| ## | 2 | 20000 | 0.1632228 | 0.6087294 | 0.10511400 |
| ## | 2 | 20500 | 0.1633785 | 0.6080979 | 0.10522949 |
| ## | 2 | 21000 | 0.1635344 | 0.6075315 | 0.10536598 |
| ## | 2 | 21500 | 0.1636318 | 0.6071449 | 0.10544792 |
| ## | 2 | 22000 | 0.1638008 | 0.6065304 | 0.10558707 |
| ## | 2 | 22500 | 0.1639156 | 0.6060297 | 0.10570732 |
| ## | 2 | 23000 | 0.1640671 | 0.6054805 | 0.10580877 |
| ## | 2 | 23500 | 0.1641638 | 0.6051929 | 0.10589365 |
| ## | 2 | 24000 | 0.1643228 | 0.6044657 | 0.10599951 |
| ## | 2 | 24500 | 0.1644884 | 0.6037854 | 0.10613654 |
| ## | 2 | 25000 | 0.1646500 | 0.6031625 | 0.10628593 |
| ## | 2 | 25500 | 0.1647519 | 0.6026876 | 0.10637125 |
| ## | 2 | 26000 | 0.1648764 | 0.6022171 | 0.10648756 |
| ## | 2 | 26500 | 0.1649698 | 0.6017583 | 0.10656465 |
| ## | 2 | 27000 | 0.1650527 | 0.6014732 | 0.10663942 |
| ## | 2 | 27500 | 0.1651658 | 0.6010775 | 0.10675308 |
| ## | 2 | 28000 | 0.1652546 | 0.6007621 | 0.10684296 |
| ## | 2 | 28500 | 0.1653858 | 0.6001812 | 0.10696463 |
| ## | 2 | 29000 | 0.1655380 | 0.5995648 | 0.10710268 |
| ## | 2 | 29500 | 0.1656556 | 0.5990614 | 0.10718974 |
| ## | 2 | 30000 | 0.1658216 | 0.5984188 | 0.10729817 |
| ## | 2 | 30500 | 0.1659337 | 0.5979505 | 0.10738733 |
| ## | 2 | 31000 | 0.1659881 | 0.5977160 | 0.10743805 |
| ## | 2 | 31500 | 0.1660786 | 0.5974156 | 0.10753321 |
| ## | 2 | 32000 | 0.1661791 | 0.5969972 | 0.10762031 |
| ## | 2 | 32500 | 0.1663089 | 0.5963877 | 0.10774770 |
| ## | 2 | 33000 | 0.1664091 | 0.5960499 | 0.10782755 |
| ## | 2 | 33500 | 0.1665558 | 0.5954389 | 0.10793625 |
| ## | 2 | 34000 | 0.1666956 | 0.5949787 | 0.10807434 |
| ## | 2 | 34500 | 0.1668367 | 0.5943526 | 0.10819605 |
| ## | 2 | 35000 | 0.1669858 | 0.5937913 | 0.10831560 |
| ## | 2 | 35500 | 0.1670568 | 0.5935155 | 0.10836493 |
| ## | 2 | 36000 | 0.1671539 | 0.5930449 | 0.10843982 |
| ## | 2 | 36500 | 0.1672478 | 0.5926805 | 0.10853983 |
| ## | 2 | 37000 | 0.1673684 | 0.5922293 | 0.10863388 |
| ## | 2 | 37500 | 0.1674849 | 0.5917337 | 0.10872547 |
| ## | 4 | 500   | 0.2081001 | 0.5930581 | 0.15506055 |
| ## | 4 | 1000  | 0.1831339 | 0.6020570 | 0.13234731 |
| ## | 4 | 1500  | 0.1705480 | 0.6106607 | 0.11842771 |
| ## | 4 | 2000  | 0.1642763 | 0.6177361 | 0.10947892 |
| ## | 4 | 2500  | 0.1611253 | 0.6229935 | 0.10379603 |
| ## | 4 | 3000  | 0.1595433 | 0.6265126 | 0.10021965 |
|    |   |       |           |           |            |

| ## | 4 | 3500  | 0.1588250 | 0.6284245 | 0.09816705 |
|----|---|-------|-----------|-----------|------------|
| ## | 4 | 4000  | 0.1585888 | 0.6289045 | 0.09730911 |
| ## | 4 | 4500  | 0.1586172 | 0.6289872 | 0.09712436 |
| ## | 4 | 5000  | 0.1586710 | 0.6287279 | 0.09721216 |
| ## | 4 | 5500  | 0.1588093 | 0.6281724 | 0.09753125 |
| ## | 4 | 6000  | 0.1591624 | 0.6266933 | 0.09798206 |
| ## | 4 | 6500  | 0.1594750 | 0.6252876 | 0.09844005 |
| ## | 4 | 7000  | 0.1597877 | 0.6238037 | 0.09886474 |
| ## | 4 | 7500  | 0.1601182 | 0.6224451 | 0.09933991 |
| ## | 4 | 8000  | 0.1604669 | 0.6210524 | 0.09971809 |
| ## | 4 | 8500  | 0.1608090 | 0.6195923 | 0.10008900 |
| ## | 4 | 9000  | 0.1611486 | 0.6182290 | 0.10047200 |
| ## | 4 | 9500  | 0.1614466 | 0.6169540 | 0.10078336 |
| ## | 4 | 10000 | 0.1617722 | 0.6155133 | 0.10113906 |
| ## | 4 | 10500 | 0.1620352 | 0.6144409 | 0.10145201 |
| ## | 4 | 11000 | 0.1623149 | 0.6133813 | 0.10172519 |
| ## | 4 | 11500 | 0.1626354 | 0.6119679 | 0.10201037 |
| ## | 4 | 12000 | 0.1628977 | 0.6107972 | 0.10227710 |
| ## | 4 | 12500 | 0.1631919 | 0.6096134 | 0.10252108 |
| ## | 4 | 13000 | 0.1634325 | 0.6086692 | 0.10275018 |
| ## | 4 | 13500 | 0.1636501 | 0.6077203 | 0.10292078 |
| ## | 4 | 14000 | 0.1638746 | 0.6067647 | 0.10310736 |
| ## | 4 | 14500 | 0.1640733 | 0.6058495 | 0.10329800 |
| ## | 4 | 15000 | 0.1643461 | 0.6047095 | 0.10349918 |
| ## | 4 | 15500 | 0.1645750 | 0.6037229 | 0.10366859 |
| ## | 4 | 16000 | 0.1647998 | 0.6027834 | 0.10383637 |
| ## | 4 | 16500 | 0.1649999 | 0.6018412 | 0.10400886 |
| ## | 4 | 17000 | 0.1652350 | 0.6008822 | 0.10417221 |
| ## | 4 | 17500 | 0.1654106 | 0.6001028 | 0.10435615 |
| ## | 4 | 18000 | 0.1656218 | 0.5992080 | 0.10452839 |
| ## | 4 | 18500 | 0.1658166 | 0.5982908 | 0.10468686 |
| ## | 4 | 19000 | 0.1660728 | 0.5971898 | 0.10489168 |
| ## | 4 | 19500 | 0.1662586 | 0.5964464 | 0.10507368 |
| ## | 4 | 20000 | 0.1664480 | 0.5956697 | 0.10522151 |
| ## | 4 | 20500 | 0.1666183 | 0.5950179 | 0.10535695 |
| ## | 4 | 21000 | 0.1668123 | 0.5941862 | 0.10552806 |
| ## | 4 | 21500 | 0.1669522 | 0.5936082 | 0.10564676 |
| ## | 4 | 22000 | 0.1671218 | 0.5928233 | 0.10581134 |
| ## | 4 | 22500 | 0.1672841 | 0.5921121 | 0.10596674 |
| ## | 4 | 23000 | 0.1674383 | 0.5915153 | 0.10610127 |
| ## | 4 | 23500 | 0.1676237 | 0.5907184 | 0.10626492 |
| ## | 4 | 24000 | 0.1678090 | 0.5899697 | 0.10643673 |
| ## | 4 | 24500 | 0.1679593 | 0.5892991 | 0.10658273 |
| ## | 4 | 25000 | 0.1680940 | 0.5887025 | 0.10668507 |
| ## | 4 | 25500 | 0.1683023 | 0.5878532 | 0.10685865 |
| ## | 4 | 26000 | 0.1684177 | 0.5874002 | 0.10695632 |
| ## | 4 | 26500 | 0.1685526 | 0.5868480 | 0.10707024 |
| ## | 4 | 27000 | 0.1686666 | 0.5862840 | 0.10718260 |
| ## | 4 | 27500 | 0.1688009 | 0.5856872 | 0.10729071 |
| ## | 4 | 28000 | 0.1689137 | 0.5852355 | 0.10740345 |
| ## | 4 | 28500 | 0.1690462 | 0.5846803 | 0.10755196 |
| ## | 4 | 29000 | 0.1692570 | 0.5838181 | 0.10771089 |
| ## | 4 | 29500 | 0.1693952 | 0.5832416 | 0.10782277 |
| ## | 4 | 30000 | 0.1695108 | 0.5827616 | 0.10790706 |
|    |   |       |           |           |            |

| шш | 4 | 20500 | 0 1000111 | 0 5000010 | 0 10001055 |
|----|---|-------|-----------|-----------|------------|
| ## | 4 | 30500 | 0.1696414 | 0.5823012 | 0.10801855 |
| ## | 4 | 31000 | 0.1697798 | 0.5817395 | 0.10812054 |
| ## | 4 | 31500 | 0.1698884 | 0.5812252 | 0.10823241 |
| ## | 4 | 32000 | 0.1700139 | 0.5807376 | 0.10835756 |
| ## | 4 | 32500 | 0.1701239 | 0.5802719 | 0.10844615 |
| ## | 4 | 33000 | 0.1702166 | 0.5798486 | 0.10855412 |
| ## | 4 | 33500 | 0.1703346 | 0.5794286 | 0.10864441 |
| ## | 4 | 34000 | 0.1704742 | 0.5788458 | 0.10875689 |
| ## | 4 | 34500 | 0.1705881 | 0.5782908 | 0.10885696 |
| ## | 4 | 35000 | 0.1706793 | 0.5779450 | 0.10892784 |
| ## | 4 | 35500 | 0.1707891 | 0.5774974 | 0.10900901 |
| ## | 4 | 36000 | 0.1709009 | 0.5770026 | 0.10910501 |
| ## | 4 | 36500 | 0.1710219 | 0.5765225 | 0.10918304 |
| ## | 4 | 37000 | 0.1711095 | 0.5761821 | 0.10926702 |
| ## | 4 | 37500 | 0.1712092 | 0.5757935 | 0.10936477 |
| ## | 6 | 500   | 0.2062742 | 0.6012482 | 0.15339828 |
| ## | 6 | 1000  | 0.1809392 | 0.6101613 | 0.12998589 |
| ## | 6 | 1500  | 0.1687524 | 0.6164286 | 0.11614566 |
| ## | 6 | 2000  | 0.1629721 | 0.6222686 | 0.10754441 |
| ## | 6 | 2500  | 0.1603198 | 0.6261458 | 0.10229248 |
| ## | 6 | 3000  | 0.1593016 | 0.6279180 | 0.09924148 |
| ## | 6 | 3500  | 0.1588865 | 0.6288074 | 0.09777288 |
| ## | 6 | 4000  | 0.1588843 | 0.6286181 | 0.09740707 |
| ## | 6 | 4500  | 0.1591060 | 0.6275732 | 0.09748808 |
| ## | 6 | 5000  | 0.1593639 | 0.6265285 | 0.09782845 |
| ## | 6 | 5500  | 0.1597698 | 0.6246656 | 0.09834818 |
| ## | 6 | 6000  | 0.1601350 | 0.6230271 | 0.09879440 |
| ## | 6 | 6500  | 0.1605253 | 0.6213253 | 0.09918451 |
| ## | 6 | 7000  | 0.1610039 | 0.6193616 | 0.09963463 |
| ## | 6 | 7500  | 0.1614863 | 0.6172603 | 0.10010738 |
| ## | 6 | 8000  | 0.1618985 | 0.6154619 | 0.10048556 |
| ## | 6 | 8500  | 0.1622634 | 0.6139025 | 0.10082191 |
| ## | 6 | 9000  | 0.1626910 | 0.6121194 | 0.10117574 |
| ## | 6 | 9500  | 0.1630061 | 0.6106655 | 0.10146560 |
| ## | 6 | 10000 | 0.1633947 | 0.6089960 | 0.10178402 |
| ## | 6 | 10500 | 0.1637044 | 0.6076224 | 0.10205452 |
| ## | 6 | 11000 | 0.1640731 | 0.6060814 | 0.10232065 |
| ## | 6 | 11500 | 0.1644335 | 0.6045285 | 0.10261128 |
| ## | 6 | 12000 | 0.1646876 | 0.6033523 | 0.10285240 |
| ## | 6 | 12500 | 0.1649701 | 0.6021348 | 0.10312565 |
| ## | 6 | 13000 | 0.1652288 | 0.6010556 | 0.10333379 |
| ## | 6 | 13500 | 0.1654504 | 0.6000441 | 0.10352183 |
| ## | 6 | 14000 | 0.1657430 | 0.5987300 | 0.10373237 |
| ## | 6 | 14500 | 0.1660121 | 0.5975615 | 0.10395490 |
| ## | 6 | 15000 | 0.1663250 | 0.5961947 | 0.10417761 |
| ## | 6 | 15500 | 0.1665370 | 0.5952758 | 0.10431987 |
| ## | 6 | 16000 | 0.1667689 | 0.5942024 | 0.10447840 |
| ## | 6 | 16500 | 0.1669717 | 0.5932760 | 0.10463377 |
| ## | 6 | 17000 | 0.1671798 | 0.5923788 | 0.10481005 |
| ## | 6 | 17500 | 0.1673755 | 0.5916151 | 0.10496103 |
| ## | 6 | 18000 | 0.1675964 | 0.5906946 | 0.10514607 |
| ## | 6 | 18500 | 0.1678058 | 0.5898655 | 0.10532107 |
| ## | 6 | 19000 | 0.1679845 | 0.5891321 | 0.10545738 |
| ## | 6 | 19500 | 0.1681568 | 0.5882760 | 0.10564420 |
|    | ~ | 10000 | 3.1001000 | 3.0002100 | J.10001120 |

|    |   | 00000        | 0.4600004 | 0 5076000 | 0 40577440               |
|----|---|--------------|-----------|-----------|--------------------------|
| ## | 6 | 20000        | 0.1683034 | 0.5876082 | 0.10577413               |
| ## | 6 | 20500        | 0.1684910 | 0.5868241 | 0.10595575               |
| ## | 6 | 21000        | 0.1686735 | 0.5860131 | 0.10611852               |
| ## | 6 | 21500        | 0.1688634 | 0.5851839 | 0.10628469               |
| ## | 6 | 22000        | 0.1690340 | 0.5844878 | 0.10643509               |
| ## | 6 | 22500        | 0.1691823 | 0.5839013 | 0.10657057               |
| ## | 6 | 23000        | 0.1693301 | 0.5832654 | 0.10669796               |
| ## | 6 | 23500        | 0.1694919 | 0.5825754 | 0.10683236               |
| ## | 6 | 24000        | 0.1696317 | 0.5819980 | 0.10692455               |
| ## | 6 | 24500        | 0.1697697 | 0.5814524 | 0.10704839               |
| ## | 6 | 25000        | 0.1699091 | 0.5809223 | 0.10715336               |
| ## | 6 | 25500        | 0.1700438 | 0.5802984 | 0.10728196               |
| ## | 6 | 26000        | 0.1701859 | 0.5796818 | 0.10738237               |
| ## | 6 | 26500        | 0.1703177 | 0.5791111 | 0.10749251               |
| ## | 6 | 27000        | 0.1704677 | 0.5785403 | 0.10764465               |
| ## | 6 | 27500        | 0.1705798 | 0.5780616 | 0.10773864               |
| ## | 6 | 28000        | 0.1706827 | 0.5776539 | 0.10783402               |
| ## | 6 | 28500        | 0.1707882 | 0.5772259 | 0.10790984               |
| ## | 6 | 29000        | 0.1708922 | 0.5767972 | 0.10798989               |
| ## | 6 | 29500        | 0.1710107 | 0.5762526 | 0.10809600               |
| ## | 6 | 30000        | 0.1711197 | 0.5758264 | 0.10818352               |
| ## | 6 | 30500        | 0.1712382 | 0.5753036 | 0.10829063               |
| ## | 6 | 31000        | 0.1713437 | 0.5748381 | 0.10838585               |
| ## | 6 | 31500        | 0.1714284 | 0.5744365 | 0.10846881               |
| ## | 6 | 32000        | 0.1715349 | 0.5739525 | 0.10855328               |
| ## | 6 | 32500        | 0.1716204 | 0.5736513 | 0.10862160               |
| ## | 6 | 33000        | 0.1717187 | 0.5732653 | 0.10871153               |
| ## | 6 | 33500        | 0.1718129 | 0.5729223 | 0.10879245               |
| ## | 6 | 34000        | 0.1718861 | 0.5726156 | 0.10884123               |
| ## | 6 | 34500        | 0.1719582 | 0.5723176 | 0.10889610               |
| ## | 6 | 35000        | 0.1720431 | 0.5719629 | 0.10897737               |
| ## | 6 | 35500        | 0.1721154 | 0.5716671 | 0.10902591               |
| ## | 6 | 36000        | 0.1721900 | 0.5713887 | 0.10908647               |
| ## | 6 | 36500        | 0.1722616 | 0.5710899 | 0.10914798               |
| ## | 6 | 37000        | 0.1723336 | 0.5707940 | 0.10919233               |
| ## | 6 | 37500        | 0.1723913 | 0.5705614 | 0.10913236               |
| ## | 8 | 500          | 0.2056724 | 0.6043325 | 0.15266172               |
| ## | 8 | 1000         | 0.1800684 | 0.6117354 | 0.12885505               |
| ## | 8 | 1500         | 0.1682629 | 0.6170662 | 0.11515708               |
| ## | 8 | 2000         | 0.1628897 | 0.6221450 | 0.10679539               |
| ## | 8 | 2500         | 0.1604849 | 0.6255679 | 0.10180923               |
| ## | 8 | 3000         | 0.1596672 | 0.6263910 | 0.09924485               |
| ## | 8 | 3500         | 0.1594553 | 0.6264584 | 0.09924403               |
| ## | 8 | 4000         | 0.1594555 | 0.6247565 | 0.09822361               |
| ## | 8 | 4500         | 0.1601196 | 0.6230558 | 0.09851142               |
| ## | 8 | 5000         | 0.1605150 | 0.6210311 | 0.09887941               |
| ## | 8 | 5500         | 0.1610580 | 0.6210311 | 0.09887941               |
|    | 8 |              |           | 0.6169906 | 0.09927676               |
| ## |   | 6000<br>6500 | 0.1615487 |           |                          |
| ## | 8 | 6500         | 0.1620194 | 0.6149453 | 0.10012626<br>0.10054394 |
| ## | 8 | 7000         | 0.1624932 | 0.6128172 |                          |
| ## | 8 | 7500         | 0.1629046 | 0.6109574 | 0.10083853               |
| ## | 8 | 8000         | 0.1633469 | 0.6090814 | 0.10119174               |
| ## | 8 | 8500         | 0.1637542 | 0.6072844 | 0.10149558               |
| ## | 8 | 9000         | 0.1641326 | 0.6056509 | 0.10179599               |

| ##       | 8 | 9500  | 0.1645473 | 0.6038767 | 0.10209211 |
|----------|---|-------|-----------|-----------|------------|
| ##       | 8 | 10000 | 0.1649385 | 0.6020996 | 0.10239276 |
| ##       | 8 | 10500 | 0.1652967 | 0.6005745 | 0.10267627 |
| ##       | 8 | 11000 | 0.1656526 | 0.5989190 | 0.10297880 |
| ##       | 8 | 11500 | 0.1659840 | 0.5975343 | 0.10324656 |
| ##       | 8 | 12000 | 0.1663013 | 0.5960288 | 0.10349512 |
| ##       | 8 | 12500 | 0.1666123 | 0.5946988 | 0.10367286 |
| ##       | 8 | 13000 | 0.1669615 | 0.5930681 | 0.10397115 |
| ##       | 8 | 13500 | 0.1672248 | 0.5919293 | 0.10417162 |
| ##       | 8 | 14000 | 0.1674720 | 0.5908541 | 0.10436238 |
| ##       | 8 | 14500 | 0.1677548 | 0.5895907 | 0.10455701 |
| ##       | 8 | 15000 | 0.1679971 | 0.5885377 | 0.10475239 |
| ##       | 8 | 15500 | 0.1682494 | 0.5874278 | 0.10493570 |
| ##       | 8 | 16000 | 0.1684328 | 0.5865559 | 0.10511171 |
| ##       | 8 | 16500 | 0.1686664 | 0.5855437 | 0.10532156 |
| ##       | 8 | 17000 | 0.1688702 | 0.5846732 | 0.10547201 |
| ##       | 8 | 17500 | 0.1690614 | 0.5838019 | 0.10564713 |
| ##       | 8 | 18000 | 0.1692411 | 0.5830555 | 0.10580668 |
| ##       | 8 | 18500 | 0.1694527 | 0.5821351 | 0.10598701 |
| ##       | 8 | 19000 | 0.1696136 | 0.5814892 | 0.10611391 |
| ##       | 8 | 19500 | 0.1697758 | 0.5807506 | 0.10624270 |
| ##       | 8 | 20000 | 0.1699712 | 0.5799023 | 0.10641804 |
| ##       | 8 | 20500 | 0.1701448 | 0.5791349 | 0.10657525 |
| ##       | 8 | 21000 | 0.1703082 | 0.5784205 | 0.10671977 |
| ##       | 8 | 21500 | 0.1704661 | 0.5778334 | 0.10684511 |
| ##       | 8 | 22000 | 0.1706072 | 0.5772613 | 0.10697183 |
| ##       | 8 | 22500 | 0.1707364 | 0.5767219 | 0.10708514 |
| ##       | 8 | 23000 | 0.1708670 | 0.5761375 | 0.10719049 |
| ##       | 8 | 23500 | 0.1709795 | 0.5756785 | 0.10727387 |
| ##       | 8 | 24000 | 0.1711308 | 0.5750210 | 0.10738757 |
| ##       | 8 | 24500 | 0.1712524 | 0.5745143 | 0.10749021 |
| ##       | 8 | 25000 | 0.1713637 | 0.5740602 | 0.10759146 |
| ##       | 8 | 25500 | 0.1714674 | 0.5736381 | 0.10767362 |
| ##       | 8 | 26000 | 0.1715815 | 0.5731544 | 0.10776158 |
| ##       | 8 | 26500 | 0.1716972 | 0.5726663 | 0.10784594 |
| ##       | 8 | 27000 | 0.1717854 | 0.5722727 | 0.10790558 |
| ##       | 8 | 27500 | 0.1718736 | 0.5719146 | 0.10798474 |
| ##       | 8 | 28000 | 0.1719573 | 0.5715688 | 0.10804256 |
| ##       | 8 | 28500 | 0.1720472 | 0.5711947 | 0.10811889 |
| ##       | 8 | 29000 | 0.1721249 | 0.5708551 | 0.10817994 |
| ##       | 8 | 29500 | 0.1722156 | 0.5704617 | 0.10824505 |
| ##       | 8 | 30000 | 0.1722912 | 0.5701667 | 0.10830692 |
| ##       | 8 | 30500 | 0.1723984 | 0.5697577 | 0.10837783 |
| ##       | 8 | 31000 | 0.1724673 | 0.5694767 | 0.10844187 |
| ##       | 8 | 31500 | 0.1725511 | 0.5691460 | 0.10851079 |
| ##       | 8 | 32000 | 0.1726409 | 0.5687683 | 0.10858323 |
| ##       | 8 | 32500 | 0.1726979 | 0.5685351 | 0.10862665 |
| ##       | 8 | 33000 | 0.1727582 | 0.5682779 | 0.10866226 |
| ##       | 8 | 33500 | 0.1728055 | 0.5681233 | 0.10870440 |
| ##       | 8 | 34000 | 0.1728673 | 0.5678887 | 0.10875261 |
| ##       | 8 | 34500 | 0.1729380 | 0.5675809 | 0.10881606 |
| ##       | 8 | 35000 | 0.1729945 | 0.5673634 | 0.10886621 |
| ##<br>## | 8 | 35500 | 0.1730617 | 0.5670987 | 0.10891549 |
| ##       | 8 | 36000 | 0.1731237 | 0.5668235 | 0.10896268 |

| ## | 8  | 36500 | 0.1731733 | 0.5666317 | 0.10899807 |
|----|----|-------|-----------|-----------|------------|
| ## | 8  | 37000 | 0.1732122 | 0.5665012 | 0.10903885 |
| ## | 8  | 37500 | 0.1732712 | 0.5662506 | 0.10909732 |
| ## | 10 | 500   | 0.2050995 | 0.6070552 | 0.15213500 |
| ## | 10 | 1000  | 0.1794826 | 0.6144966 | 0.12818444 |
| ## | 10 | 1500  | 0.1678623 | 0.6190703 | 0.11473030 |
| ## | 10 | 2000  | 0.1625576 | 0.6234839 | 0.10644799 |
| ## | 10 | 2500  | 0.1604984 | 0.6254875 | 0.10181403 |
| ## | 10 | 3000  | 0.1597459 | 0.6265611 | 0.09946826 |
| ## | 10 | 3500  | 0.1596889 | 0.6260491 | 0.09869884 |
| ## | 10 | 4000  | 0.1599152 | 0.6249949 | 0.09863401 |
| ## | 10 | 4500  | 0.1602804 | 0.6235022 | 0.09885348 |
| ## | 10 | 5000  | 0.1607582 | 0.6213569 | 0.09923379 |
| ## | 10 | 5500  | 0.1612263 | 0.6191451 | 0.09956037 |
| ## | 10 | 6000  | 0.1617702 | 0.6167579 | 0.09996534 |
| ## | 10 | 6500  | 0.1622116 | 0.6147627 | 0.10033022 |
| ## | 10 | 7000  | 0.1627188 | 0.6124314 | 0.10072645 |
| ## | 10 | 7500  | 0.1632301 | 0.6101826 | 0.10110538 |
| ## | 10 | 8000  | 0.1637088 | 0.6080121 | 0.10144854 |
| ## | 10 | 8500  | 0.1641718 | 0.6060066 | 0.10176423 |
| ## | 10 | 9000  | 0.1645616 | 0.6042373 | 0.10204506 |
| ## | 10 | 9500  | 0.1650055 | 0.6022799 | 0.10234784 |
| ## | 10 | 10000 | 0.1653673 | 0.6006051 | 0.10258157 |
| ## | 10 | 10500 | 0.1656853 | 0.5991435 | 0.10284603 |
| ## | 10 | 11000 | 0.1660691 | 0.5973076 | 0.10312015 |
| ## | 10 | 11500 | 0.1663792 | 0.5959649 | 0.10332460 |
| ## | 10 | 12000 | 0.1667406 | 0.5943463 | 0.10359089 |
| ## | 10 | 12500 | 0.1670243 | 0.5931649 | 0.10378341 |
| ## | 10 | 13000 | 0.1672967 | 0.5918803 | 0.10399682 |
| ## | 10 | 13500 | 0.1675936 | 0.5906074 | 0.10421585 |
| ## | 10 | 14000 | 0.1678361 | 0.5895497 | 0.10439079 |
| ## | 10 | 14500 | 0.1680878 | 0.5884447 | 0.10459422 |
| ## | 10 | 15000 | 0.1683000 | 0.5875320 | 0.10477279 |
| ## | 10 | 15500 | 0.1685428 | 0.5865087 | 0.10496216 |
| ## | 10 | 16000 | 0.1687551 | 0.5855014 | 0.10514819 |
| ## | 10 | 16500 | 0.1689953 | 0.5844682 | 0.10533331 |
| ## | 10 | 17000 | 0.1691620 | 0.5837118 | 0.10550409 |
| ## | 10 | 17500 | 0.1693429 | 0.5829502 | 0.10565185 |
| ## | 10 | 18000 | 0.1695334 | 0.5821340 | 0.10579576 |
| ## | 10 | 18500 | 0.1696699 | 0.5815415 | 0.10591229 |
| ## | 10 | 19000 | 0.1698174 | 0.5809213 | 0.10602152 |
| ## | 10 | 19500 | 0.1700235 | 0.5800012 | 0.10616833 |
| ## | 10 | 20000 | 0.1701643 | 0.5793453 | 0.10625569 |
| ## | 10 | 20500 | 0.1703184 | 0.5786641 | 0.10636889 |
| ## | 10 | 21000 | 0.1704776 | 0.5779786 | 0.10649549 |
| ## | 10 | 21500 | 0.1706105 | 0.5774015 | 0.10660078 |
| ## | 10 | 22000 | 0.1707360 | 0.5768998 | 0.10668013 |
| ## | 10 | 22500 | 0.1708497 | 0.5764261 | 0.10676641 |
| ## | 10 | 23000 | 0.1709721 | 0.5759802 | 0.10687519 |
| ## | 10 | 23500 | 0.1710754 | 0.5755409 | 0.10697615 |
| ## | 10 | 24000 | 0.1711622 | 0.5751896 | 0.10704606 |
| ## | 10 | 24500 | 0.1712842 | 0.5746484 | 0.10713869 |
| ## | 10 | 25000 | 0.1713792 | 0.5742640 | 0.10722314 |
| ## | 10 | 25500 | 0.1714736 | 0.5738752 | 0.10729927 |

```
##
    10
                       26000
                                0.1715899 0.5733928 0.10739968
##
    10
                       26500
                                0.1716582 0.5730863 0.10745911
##
    10
                       27000
                                0.1717587 0.5727277 0.10754360
                                0.1718427 0.5723652 0.10760192
##
    10
                       27500
##
    10
                       28000
                                0.1719220 0.5720314 0.10767169
##
    10
                       28500
                                0.1719854 0.5717694 0.10772143
##
    10
                       29000
                                0.1720531 0.5714521 0.10778694
##
    10
                       29500
                                0.1721260 0.5711641 0.10785504
##
    10
                       30000
                                0.1722062 0.5708877 0.10791577
##
    10
                       30500
                                0.1722825 0.5705834 0.10797993
##
    10
                       31000
                                0.1723429 0.5703322 0.10803090
##
                                0.1724014 0.5700926 0.10808018
    10
                       31500
##
    10
                       32000
                                0.1724527 0.5699104 0.10811601
##
    10
                       32500
                                0.1725021 0.5697188 0.10816437
##
    10
                       33000
                                0.1725510 0.5694976 0.10819819
##
    10
                       33500
                                0.1726131 0.5692463 0.10825754
##
    10
                       34000
                                0.1726633 0.5690446 0.10830037
##
    10
                       34500
                                0.1726951 0.5689104 0.10832944
##
                                0.1727387 0.5687660 0.10836671
    10
                       35000
##
    10
                       35500
                                ##
    10
                       36000
                                0.1728243 0.5684690 0.10843440
##
                       36500
                                0.1728644 0.5683091 0.10847078
    10
##
                       37000
    10
                                0.1729034 0.5681476 0.10850440
                       37500
                                0.1729425 0.5679821 0.10854408
##
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.001
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 4000,
  interaction.depth = 4, shrinkage = 0.001 and n.minobsinnode = 10.
best.boost <- train.boost$finalModel</pre>
pred.best.boost <- predict(best.boost, newdata = nba_csv.test, n.trees = 4000) # can use same model mat
ggplot(data = train.boost$results,
      mapping = aes(x = n.trees,
                    y = Rsquared,
                    colour = as.factor(interaction.depth))) +
 geom_line() +
 labs(y = "CV Rsquared", x = "n.trees",
      title = "Cross validating n.trees and interaction.depth (boosting)") +
 theme bw() +
 theme(axis.title=element_text(size=18),
       axis.text=element text(size=18),
       plot.title = element_text(size = 18)) +
 scale_color_discrete(name = "interaction.depth")
```

# Cross validating n.trees and interaction.depth (boo:



```
# double-checking
# ggplot(train.boost$results,
       aes(x = n.trees,
#
            y = Rsquared,
#
            colour = as.factor(interaction.depth))) +
# geom_line() +
# ylab("CV Rsquared") +
# theme_bw() +
# theme(axis.title=element_text(size=18),
          axis.text=element_text(size=18)) +
  scale color discrete(name = "interaction.depth")
SSE = sum((nba_csv.test$award_share - pred.best.boost)^2)
SST = sum((nba_csv.test$award_share - mean(nba_csv.train$award_share))^2)
OSR2 = 1 - SSE/SST
OSR2 #0.8231889
```

## [1] 0.8231889

# Bootstrapping for performance metrics

```
library(boot)
```

```
##
## Attaching package: 'boot'
## The following object is masked from 'package:car':
##
##
       logit
## The following object is masked from 'package:lattice':
##
##
       melanoma
boot_osr <- function(data, index) {</pre>
  labels <- data$label[index]</pre>
  predictions <- data$prediction[index]</pre>
  SSE <- sum((labels - predictions)^2)</pre>
  SST = sum((labels - mean_obs)^2)
  return(1 - SSE/SST)
boot_mae <- function(data, index) {</pre>
  labels <- data$label[index]</pre>
  predictions <- data$prediction[index]</pre>
  return(mean(abs(labels-predictions)))
}
boot_rmse <- function(data, index) {</pre>
  labels <- data$label[index]</pre>
  predictions <- data$prediction[index]</pre>
  return(sqrt(mean((labels-predictions)^2)))
boot_all_metrics <- function(data, index) {</pre>
  osr = boot_osr(data, index)
  mae = boot_mae(data, index)
  rmse = boot_rmse(data, index)
  return(c(osr, mae, rmse))
big_B = 10000
##baseline model
mean_obs <- mean(nba_csv.train$award_share) #0.1550612</pre>
predict.baseline = rep(mean_obs, nrow(nba_csv.test))
baseline_df = data.frame(labels = nba_csv.test$award_share, predictions = predict.baseline)
set.seed(6829)
Baseline_boot = boot(baseline_df, boot_all_metrics, R = big_B)
Baseline_boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
```

```
## boot(data = baseline_df, statistic = boot_all_metrics, R = big_B)
##
##
## Bootstrap Statistics :
       original
                       bias
                                std. error
## t1* 0.0000000 0.000000000 0.00000000
## t2* 0.2150102 -0.0004750286 0.06353995
## t3* 0.3090948 -0.0138000937 0.08911641
boot.ci(Baseline_boot, index = 1, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## boot.ci(boot.out = Baseline_boot, type = "basic", index = 1)
## Intervals :
## Level
             Basic
## 95%
        (0, 0)
## Calculations and Intervals on Original Scale
boot.ci(Baseline_boot, index = 2, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
## CALL :
## boot.ci(boot.out = Baseline_boot, type = "basic", index = 2)
## Intervals :
              Basic
## Level
## 95%
        (0.0776, 0.3208)
## Calculations and Intervals on Original Scale
boot.ci(Baseline_boot, index = 3, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
## CALL :
## boot.ci(boot.out = Baseline_boot, type = "basic", index = 3)
##
## Intervals :
## Level
             Basic
       (0.1625, 0.4977)
## Calculations and Intervals on Original Scale
##naive lin reg
lin_df = data.frame(labels = nba_csv.test$award_share, predictions = predictions_testlm)
Lin_boot = boot(lin_df, boot_all_metrics, R = big_B)
Lin boot
```

```
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = lin_df, statistic = boot_all_metrics, R = big_B)
##
## Bootstrap Statistics :
       original
                        bias
                                std. error
## t1* 0.5684896 -1.400382e-01 0.38400668
## t2* 0.1772665 3.304536e-05 0.02856057
## t3* 0.2030427 -2.661079e-03 0.03412865
boot.ci(Lin_boot, index = 1, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## boot.ci(boot.out = Lin_boot, type = "basic", index = 1)
##
## Intervals :
## Level
             Basic
        (0.4050, 1.9182)
## 95%
## Calculations and Intervals on Original Scale
boot.ci(Lin_boot, index = 2, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = Lin_boot, type = "basic", index = 2)
## Intervals :
## Level
             Basic
## 95% ( 0.1165,  0.2289 )
## Calculations and Intervals on Original Scale
boot.ci(Lin_boot, index = 3, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = Lin_boot, type = "basic", index = 3)
## Intervals :
## Level
             Basic
        (0.1363, 0.2635)
## Calculations and Intervals on Original Scale
```

```
##stepwise lin req
stepwise_df = data.frame(labels = nba_csv.test$award_share, predictions = pred.bswr)
set.seed(342)
Step_boot = boot(stepwise_df, boot_all_metrics, R = big_B)
Step_boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = stepwise_df, statistic = boot_all_metrics, R = big_B)
##
##
## Bootstrap Statistics :
       original
                        bias
                                std. error
## t1* 0.5691312 -1.438696e-01 0.38844781
## t2* 0.1787127 3.674980e-06 0.02774371
## t3* 0.2028917 -2.379516e-03 0.03215793
boot.ci(Step_boot, index = 1, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## boot.ci(boot.out = Step_boot, type = "basic", index = 1)
## Intervals :
## Level
             Basic
        (0.4146, 1.9315)
## 95%
## Calculations and Intervals on Original Scale
boot.ci(Step_boot, index = 2, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = Step_boot, type = "basic", index = 2)
##
## Intervals :
## Level
             Basic
        (0.1201, 0.2296)
## 95%
## Calculations and Intervals on Original Scale
boot.ci(Step_boot, index = 3, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
```

```
## CALL :
## boot.ci(boot.out = Step_boot, type = "basic", index = 3)
## Intervals :
## Level
             Basic
## 95% ( 0.1397,  0.2602 )
## Calculations and Intervals on Original Scale
##random forest
rf_df = data.frame(labels = nba_csv.test$award_share, predictions = pred.best.rf)
set.seed(6722)
RF_boot = boot(rf_df, boot_all_metrics, R = big_B)
RF_boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## boot(data = rf_df, statistic = boot_all_metrics, R = big_B)
##
##
## Bootstrap Statistics :
       original
                       bias
                               std. error
## t1* 0.7677164 -1.048213e-01 0.28593204
## t2* 0.1248506 6.594466e-05 0.02327981
## t3* 0.1489708 -1.754376e-03 0.02357759
boot.ci(RF_boot, index = 1, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## boot.ci(boot.out = RF_boot, type = "basic", index = 1)
## Intervals :
## Level
            Basic
## 95% ( 0.6469, 1.7677 )
## Calculations and Intervals on Original Scale
boot.ci(RF_boot, index = 2, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = RF_boot, type = "basic", index = 2)
## Intervals :
## Level
              Basic
        (0.0775, 0.1690)
## 95%
## Calculations and Intervals on Original Scale
```

```
boot.ci(RF_boot, index = 3, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = RF_boot, type = "basic", index = 3)
##
## Intervals :
## Level
             Basic
        (0.1068, 0.1989)
## 95%
## Calculations and Intervals on Original Scale
##boosting
boost_df = data.frame(labels = nba_csv.test$award_share, predictions = pred.best.boost)
set.seed(9391)
Boost_boot = boot(boost_df, boot_all_metrics, R = big_B)
Boost_boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = boost_df, statistic = boot_all_metrics, R = big_B)
##
##
## Bootstrap Statistics :
        original bias
                                std. error
## t1* 0.82318889 -0.0897699945 0.27261546
## t2* 0.09692254  0.0002631934  0.02466090
## t3* 0.12997102 -0.0033825419 0.03044758
boot.ci(Boost_boot, index = 1, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = Boost_boot, type = "basic", index = 1)
##
## Intervals :
             Basic
## Level
       (0.7047, 1.8199)
## 95%
## Calculations and Intervals on Original Scale
boot.ci(Boost_boot, index = 2, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
```

```
## CALL :
## boot.ci(boot.out = Boost_boot, type = "basic", index = 2)
## Intervals :
## Level
             Basic
## 95% ( 0.0434, 0.1399 )
## Calculations and Intervals on Original Scale
boot.ci(Boost_boot, index = 3, type = "basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = Boost_boot, type = "basic", index = 3)
## Intervals :
## Level
             Basic
## 95% ( 0.0746,  0.1925 )
## Calculations and Intervals on Original Scale
```

### Examining our predictions for MVP

All\_preds dataframe. I forgot to call it during the knit() and then I didn't want to re-knit because the boosting cross-validation would take too long.



# [IEOR 142] Scraper for NBA MVP Model

#### December 20, 2019

```
[4]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import requests
from bs4 import BeautifulSoup
import time
import re
```

```
[5]: from collections import defaultdict
```

```
[6]: #scrape player profiles
    def work_player_profile(param, season):
        url = "https://www.basketball-reference.com" + param
        res = requests.get(url)
        soup = BeautifulSoup(res.text)
        data_dict = {}
        per_game = soup.find(attrs={'id': 'all_per_game'})
        for row in per_game.findAll("tr"):
            if 'id' in row.attrs and row.attrs['id'] == "per_game." + season:
                data_dict['fga'] = float(row.find('td', attrs={'data-stat':_
     data_dict['fg3a'] = float(row.find('td', attrs={'data-stat':__
     →'fg3a_per_g'}).text)
                data_dict['fta'] = float(row.find('td', attrs={'data-stat':_
     →'fta_per_g'}).text)
                break
        advanced_table = soup.find(attrs={'id': 'all_advanced'})
        for child in advanced_table.children:
            if "table_outer_container" in child:
                other_soup = BeautifulSoup(child)
                rows = other_soup.findAll("tr")
        for row in rows:
            if 'id' in row.attrs and row.attrs['id'] == "advanced." + season:
                data_dict.update(
```

```
[7]: #scrape voting stats
     def get_stats_of_voting(url):
         res = requests.get(url)
         soup = BeautifulSoup(res.text)
         item = soup.find(attrs={'class': 'stats_table'})
         rows = item.findAll("tr")
         season = url.split(".html")[0][-4:]
         print(f"Current season: {season}")
         players_stats = defaultdict(list)
         for index, row in enumerate(rows):
             print(f"\tCurrent index: {index} of {len(rows)}")
             header_cells = row.findAll("th")
             for header_cell in header_cells:
                 if 'data-stat' in header_cell.attrs and header_cell['data-stat'] ==_u
      →'ranker' and 'csk' in header_cell.attrs:
                     rank = int(header cell.getText())
             td_cells = row.findAll("td")
             if not td_cells:
                 continue
             for cell in td_cells:
                 if 'data-stat' not in cell.attrs:
                     continue
     #
                   if cell['data-stat'] == 'age':
     #
                       continue
                 if cell['data-stat'] == 'team_id':
```

```
base = "https://www.basketball-reference.com"
              try:
                  link = cell.find("a")['href']
              except Exception:
                  players_stats['win_pct'].append(0.5) # average
                  continue
              url = base + link
              time.sleep(1)
              soup = BeautifulSoup(requests.get(url).text)
              for item in soup.findAll("p"):
                  if "Record" in item.text:
                      record = re.findall("\d+\-\d+", item.text)[0]
                      splitted = record.split("-")
                      players_stats['win_pct'].append(float(splitted[0]) /__
break
              continue
          if cell['data-stat'] == 'player':
              time.sleep(1)
              advanced_dict = work_player_profile(cell.find("a")['href'],__
⇒season)
              for key in advanced_dict:
                  players_stats[key].append(advanced_dict[key])
              players_stats[cell['data-stat']].append(cell.getText())
          else:
              text = cell.getText() or "0"
              players stats[cell['data-stat']].append(float(text))
  return players_stats
```

Current season: 1981

Current index: 0 of 33

Current index: 1 of 33

Current index: 2 of 33

```
Current index: 3 of 33
        Current index: 4 of 33
        Current index: 5 of 33
        Current index: 6 of 33
        Current index: 7 of 33
        Current index: 8 of 33
        Current index: 9 of 33
        Current index: 10 of 33
        Current index: 11 of 33
        Current index: 12 of 33
        Current index: 13 of 33
        Current index: 14 of 33
        Current index: 15 of 33
        Current index: 16 of 33
        Current index: 17 of 33
        Current index: 18 of 33
        Current index: 19 of 33
        Current index: 20 of 33
        Current index: 21 of 33
        Current index: 22 of 33
        Current index: 23 of 33
        Current index: 24 of 33
        Current index: 25 of 33
        Current index: 26 of 33
        Current index: 27 of 33
        Current index: 28 of 33
        Current index: 29 of 33
        Current index: 30 of 33
        Current index: 31 of 33
        Current index: 32 of 33
Current season: 1982
        Current index: 0 of 27
        Current index: 1 of 27
        Current index: 2 of 27
        Current index: 3 of 27
        Current index: 4 of 27
        Current index: 5 of 27
        Current index: 6 of 27
        Current index: 7 of 27
        Current index: 8 of 27
        Current index: 9 of 27
        Current index: 10 of 27
        Current index: 11 of 27
        Current index: 12 of 27
        Current index: 13 of 27
        Current index: 14 of 27
        Current index: 15 of 27
        Current index: 16 of 27
```

```
Current index: 17 of 27
        Current index: 18 of 27
        Current index: 19 of 27
        Current index: 20 of 27
        Current index: 21 of 27
        Current index: 22 of 27
        Current index: 23 of 27
        Current index: 24 of 27
        Current index: 25 of 27
        Current index: 26 of 27
Current season: 1983
        Current index: 0 of 25
        Current index: 1 of 25
        Current index: 2 of 25
        Current index: 3 of 25
        Current index: 4 of 25
        Current index: 5 of 25
        Current index: 6 of 25
        Current index: 7 of 25
        Current index: 8 of 25
        Current index: 9 of 25
        Current index: 10 of 25
        Current index: 11 of 25
        Current index: 12 of 25
        Current index: 13 of 25
        Current index: 14 of 25
        Current index: 15 of 25
        Current index: 16 of 25
        Current index: 17 of 25
        Current index: 18 of 25
        Current index: 19 of 25
        Current index: 20 of 25
        Current index: 21 of 25
        Current index: 22 of 25
        Current index: 23 of 25
        Current index: 24 of 25
Current season: 1984
        Current index: 0 of 17
        Current index: 1 of 17
        Current index: 2 of 17
        Current index: 3 of 17
        Current index: 4 of 17
        Current index: 5 of 17
        Current index: 6 of 17
        Current index: 7 of 17
        Current index: 8 of 17
        Current index: 9 of 17
        Current index: 10 of 17
```

```
Current index: 11 of 17
        Current index: 12 of 17
        Current index: 13 of 17
        Current index: 14 of 17
        Current index: 15 of 17
        Current index: 16 of 17
Current season: 1985
        Current index: 0 of 25
        Current index: 1 of 25
        Current index: 2 of 25
        Current index: 3 of 25
        Current index: 4 of 25
        Current index: 5 of 25
        Current index: 6 of 25
        Current index: 7 of 25
        Current index: 8 of 25
        Current index: 9 of 25
        Current index: 10 of 25
        Current index: 11 of 25
        Current index: 12 of 25
        Current index: 13 of 25
        Current index: 14 of 25
        Current index: 15 of 25
        Current index: 16 of 25
        Current index: 17 of 25
        Current index: 18 of 25
        Current index: 19 of 25
        Current index: 20 of 25
        Current index: 21 of 25
        Current index: 22 of 25
        Current index: 23 of 25
        Current index: 24 of 25
Current season: 1986
        Current index: 0 of 20
        Current index: 1 of 20
        Current index: 2 of 20
        Current index: 3 of 20
        Current index: 4 of 20
        Current index: 5 of 20
        Current index: 6 of 20
        Current index: 7 of 20
        Current index: 8 of 20
        Current index: 9 of 20
        Current index: 10 of 20
        Current index: 11 of 20
        Current index: 12 of 20
        Current index: 13 of 20
        Current index: 14 of 20
```

```
Current index: 15 of 20
        Current index: 16 of 20
        Current index: 17 of 20
        Current index: 18 of 20
        Current index: 19 of 20
Current season: 1987
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 1988
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 1989
        Current index: 0 of 21
        Current index: 1 of 21
```

```
Current index: 2 of 21
        Current index: 3 of 21
        Current index: 4 of 21
        Current index: 5 of 21
        Current index: 6 of 21
        Current index: 7 of 21
        Current index: 8 of 21
        Current index: 9 of 21
        Current index: 10 of 21
        Current index: 11 of 21
        Current index: 12 of 21
        Current index: 13 of 21
        Current index: 14 of 21
        Current index: 15 of 21
        Current index: 16 of 21
        Current index: 17 of 21
        Current index: 18 of 21
        Current index: 19 of 21
        Current index: 20 of 21
Current season: 1990
        Current index: 0 of 16
        Current index: 1 of 16
        Current index: 2 of 16
        Current index: 3 of 16
        Current index: 4 of 16
        Current index: 5 of 16
        Current index: 6 of 16
        Current index: 7 of 16
        Current index: 8 of 16
        Current index: 9 of 16
        Current index: 10 of 16
        Current index: 11 of 16
        Current index: 12 of 16
        Current index: 13 of 16
        Current index: 14 of 16
        Current index: 15 of 16
Current season: 1991
        Current index: 0 of 22
        Current index: 1 of 22
        Current index: 2 of 22
        Current index: 3 of 22
        Current index: 4 of 22
        Current index: 5 of 22
        Current index: 6 of 22
        Current index: 7 of 22
        Current index: 8 of 22
        Current index: 9 of 22
        Current index: 10 of 22
```

```
Current index: 11 of 22
        Current index: 12 of 22
        Current index: 13 of 22
        Current index: 14 of 22
        Current index: 15 of 22
        Current index: 16 of 22
        Current index: 17 of 22
        Current index: 18 of 22
        Current index: 19 of 22
        Current index: 20 of 22
        Current index: 21 of 22
Current season: 1992
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 1993
        Current index: 0 of 16
        Current index: 1 of 16
        Current index: 2 of 16
        Current index: 3 of 16
        Current index: 4 of 16
        Current index: 5 of 16
        Current index: 6 of 16
        Current index: 7 of 16
        Current index: 8 of 16
        Current index: 9 of 16
        Current index: 10 of 16
        Current index: 11 of 16
        Current index: 12 of 16
        Current index: 13 of 16
        Current index: 14 of 16
        Current index: 15 of 16
```

```
Current season: 1994
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 1995
        Current index: 0 of 17
        Current index: 1 of 17
        Current index: 2 of 17
        Current index: 3 of 17
        Current index: 4 of 17
        Current index: 5 of 17
        Current index: 6 of 17
        Current index: 7 of 17
        Current index: 8 of 17
        Current index: 9 of 17
        Current index: 10 of 17
        Current index: 11 of 17
        Current index: 12 of 17
        Current index: 13 of 17
        Current index: 14 of 17
        Current index: 15 of 17
        Current index: 16 of 17
Current season: 1996
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
```

```
Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 1997
        Current index: 0 of 22
        Current index: 1 of 22
        Current index: 2 of 22
        Current index: 3 of 22
        Current index: 4 of 22
        Current index: 5 of 22
        Current index: 6 of 22
        Current index: 7 of 22
        Current index: 8 of 22
        Current index: 9 of 22
        Current index: 10 of 22
        Current index: 11 of 22
        Current index: 12 of 22
        Current index: 13 of 22
        Current index: 14 of 22
        Current index: 15 of 22
        Current index: 16 of 22
        Current index: 17 of 22
        Current index: 18 of 22
        Current index: 19 of 22
        Current index: 20 of 22
        Current index: 21 of 22
Current season: 1998
        Current index: 0 of 21
        Current index: 1 of 21
        Current index: 2 of 21
        Current index: 3 of 21
        Current index: 4 of 21
        Current index: 5 of 21
        Current index: 6 of 21
        Current index: 7 of 21
        Current index: 8 of 21
        Current index: 9 of 21
        Current index: 10 of 21
        Current index: 11 of 21
        Current index: 12 of 21
        Current index: 13 of 21
```

```
Current index: 14 of 21
        Current index: 15 of 21
        Current index: 16 of 21
        Current index: 17 of 21
        Current index: 18 of 21
        Current index: 19 of 21
        Current index: 20 of 21
Current season: 1999
        Current index: 0 of 23
        Current index: 1 of 23
        Current index: 2 of 23
        Current index: 3 of 23
        Current index: 4 of 23
        Current index: 5 of 23
        Current index: 6 of 23
        Current index: 7 of 23
        Current index: 8 of 23
        Current index: 9 of 23
        Current index: 10 of 23
        Current index: 11 of 23
        Current index: 12 of 23
        Current index: 13 of 23
        Current index: 14 of 23
        Current index: 15 of 23
        Current index: 16 of 23
        Current index: 17 of 23
        Current index: 18 of 23
        Current index: 19 of 23
        Current index: 20 of 23
        Current index: 21 of 23
        Current index: 22 of 23
Current season: 2000
        Current index: 0 of 18
        Current index: 1 of 18
        Current index: 2 of 18
        Current index: 3 of 18
        Current index: 4 of 18
        Current index: 5 of 18
        Current index: 6 of 18
        Current index: 7 of 18
        Current index: 8 of 18
        Current index: 9 of 18
        Current index: 10 of 18
        Current index: 11 of 18
        Current index: 12 of 18
        Current index: 13 of 18
        Current index: 14 of 18
        Current index: 15 of 18
```

```
Current index: 17 of 18
Current season: 2001
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 2002
        Current index: 0 of 20
        Current index: 1 of 20
        Current index: 2 of 20
        Current index: 3 of 20
        Current index: 4 of 20
        Current index: 5 of 20
        Current index: 6 of 20
        Current index: 7 of 20
        Current index: 8 of 20
        Current index: 9 of 20
        Current index: 10 of 20
        Current index: 11 of 20
        Current index: 12 of 20
        Current index: 13 of 20
        Current index: 14 of 20
        Current index: 15 of 20
        Current index: 16 of 20
        Current index: 17 of 20
        Current index: 18 of 20
        Current index: 19 of 20
Current season: 2003
        Current index: 0 of 15
        Current index: 1 of 15
        Current index: 2 of 15
        Current index: 3 of 15
```

Current index: 16 of 18

```
Current index: 4 of 15
        Current index: 5 of 15
        Current index: 6 of 15
        Current index: 7 of 15
        Current index: 8 of 15
        Current index: 9 of 15
        Current index: 10 of 15
        Current index: 11 of 15
        Current index: 12 of 15
        Current index: 13 of 15
        Current index: 14 of 15
Current season: 2004
        Current index: 0 of 18
        Current index: 1 of 18
        Current index: 2 of 18
        Current index: 3 of 18
        Current index: 4 of 18
        Current index: 5 of 18
        Current index: 6 of 18
        Current index: 7 of 18
        Current index: 8 of 18
        Current index: 9 of 18
        Current index: 10 of 18
        Current index: 11 of 18
        Current index: 12 of 18
        Current index: 13 of 18
        Current index: 14 of 18
        Current index: 15 of 18
        Current index: 16 of 18
        Current index: 17 of 18
Current season: 2005
        Current index: 0 of 18
        Current index: 1 of 18
        Current index: 2 of 18
        Current index: 3 of 18
        Current index: 4 of 18
        Current index: 5 of 18
        Current index: 6 of 18
        Current index: 7 of 18
        Current index: 8 of 18
        Current index: 9 of 18
        Current index: 10 of 18
        Current index: 11 of 18
        Current index: 12 of 18
        Current index: 13 of 18
        Current index: 14 of 18
        Current index: 15 of 18
        Current index: 16 of 18
```

```
Current index: 17 of 18
Current season: 2006
        Current index: 0 of 13
        Current index: 1 of 13
        Current index: 2 of 13
        Current index: 3 of 13
        Current index: 4 of 13
        Current index: 5 of 13
        Current index: 6 of 13
        Current index: 7 of 13
        Current index: 8 of 13
        Current index: 9 of 13
        Current index: 10 of 13
        Current index: 11 of 13
        Current index: 12 of 13
Current season: 2007
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 2008
        Current index: 0 of 19
        Current index: 1 of 19
        Current index: 2 of 19
        Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
```

```
Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 2009
        Current index: 0 of 14
        Current index: 1 of 14
        Current index: 2 of 14
        Current index: 3 of 14
        Current index: 4 of 14
        Current index: 5 of 14
        Current index: 6 of 14
        Current index: 7 of 14
        Current index: 8 of 14
        Current index: 9 of 14
        Current index: 10 of 14
        Current index: 11 of 14
        Current index: 12 of 14
        Current index: 13 of 14
Current season: 2010
        Current index: 0 of 17
        Current index: 1 of 17
        Current index: 2 of 17
        Current index: 3 of 17
        Current index: 4 of 17
        Current index: 5 of 17
        Current index: 6 of 17
        Current index: 7 of 17
        Current index: 8 of 17
        Current index: 9 of 17
        Current index: 10 of 17
        Current index: 11 of 17
        Current index: 12 of 17
        Current index: 13 of 17
        Current index: 14 of 17
        Current index: 15 of 17
        Current index: 16 of 17
Current season: 2011
        Current index: 0 of 15
        Current index: 1 of 15
        Current index: 2 of 15
        Current index: 3 of 15
        Current index: 4 of 15
        Current index: 5 of 15
        Current index: 6 of 15
```

```
Current index: 9 of 15
        Current index: 10 of 15
        Current index: 11 of 15
        Current index: 12 of 15
        Current index: 13 of 15
        Current index: 14 of 15
Current season: 2012
        Current index: 0 of 17
        Current index: 1 of 17
        Current index: 2 of 17
        Current index: 3 of 17
        Current index: 4 of 17
        Current index: 5 of 17
        Current index: 6 of 17
        Current index: 7 of 17
        Current index: 8 of 17
        Current index: 9 of 17
        Current index: 10 of 17
        Current index: 11 of 17
        Current index: 12 of 17
        Current index: 13 of 17
        Current index: 14 of 17
        Current index: 15 of 17
        Current index: 16 of 17
Current season: 2013
        Current index: 0 of 18
        Current index: 1 of 18
        Current index: 2 of 18
        Current index: 3 of 18
        Current index: 4 of 18
        Current index: 5 of 18
        Current index: 6 of 18
        Current index: 7 of 18
        Current index: 8 of 18
        Current index: 9 of 18
        Current index: 10 of 18
        Current index: 11 of 18
        Current index: 12 of 18
        Current index: 13 of 18
        Current index: 14 of 18
        Current index: 15 of 18
        Current index: 16 of 18
        Current index: 17 of 18
Current season: 2014
        Current index: 0 of 19
        Current index: 1 of 19
```

Current index: 7 of 15 Current index: 8 of 15

```
Current index: 3 of 19
        Current index: 4 of 19
        Current index: 5 of 19
        Current index: 6 of 19
        Current index: 7 of 19
        Current index: 8 of 19
        Current index: 9 of 19
        Current index: 10 of 19
        Current index: 11 of 19
        Current index: 12 of 19
        Current index: 13 of 19
        Current index: 14 of 19
        Current index: 15 of 19
        Current index: 16 of 19
        Current index: 17 of 19
        Current index: 18 of 19
Current season: 2015
        Current index: 0 of 14
        Current index: 1 of 14
        Current index: 2 of 14
        Current index: 3 of 14
        Current index: 4 of 14
        Current index: 5 of 14
        Current index: 6 of 14
        Current index: 7 of 14
        Current index: 8 of 14
        Current index: 9 of 14
        Current index: 10 of 14
        Current index: 11 of 14
        Current index: 12 of 14
        Current index: 13 of 14
Current season: 2016
        Current index: 0 of 12
        Current index: 1 of 12
        Current index: 2 of 12
        Current index: 3 of 12
        Current index: 4 of 12
        Current index: 5 of 12
        Current index: 6 of 12
        Current index: 7 of 12
        Current index: 8 of 12
        Current index: 9 of 12
        Current index: 10 of 12
        Current index: 11 of 12
Current season: 2017
        Current index: 0 of 13
        Current index: 1 of 13
```

Current index: 2 of 19

```
Current index: 2 of 13
             Current index: 3 of 13
             Current index: 4 of 13
             Current index: 5 of 13
             Current index: 6 of 13
             Current index: 7 of 13
             Current index: 8 of 13
             Current index: 9 of 13
             Current index: 10 of 13
             Current index: 11 of 13
             Current index: 12 of 13
     Current season: 2018
             Current index: 0 of 15
             Current index: 1 of 15
             Current index: 2 of 15
             Current index: 3 of 15
             Current index: 4 of 15
             Current index: 5 of 15
             Current index: 6 of 15
             Current index: 7 of 15
             Current index: 8 of 15
             Current index: 9 of 15
             Current index: 10 of 15
             Current index: 11 of 15
             Current index: 12 of 15
             Current index: 13 of 15
             Current index: 14 of 15
     Current season: 2019
             Current index: 0 of 14
             Current index: 1 of 14
             Current index: 2 of 14
             Current index: 3 of 14
             Current index: 4 of 14
             Current index: 5 of 14
             Current index: 6 of 14
             Current index: 7 of 14
             Current index: 8 of 14
             Current index: 9 of 14
             Current index: 10 of 14
             Current index: 11 of 14
             Current index: 12 of 14
             Current index: 13 of 14
[11]: data_frame
[11]:
            fga fg3a
                        fta
                              per ts_pct usg_pct
                                                      bpm vorp
                                                                  season \
                  0.2
           18.6
                        6.5
                             25.1
                                    0.572
                                               28.4
                                                      8.0
                                                            7.2
                                                                 1980-81
      0
```

| 1   | 18.3 | 0.9  | 4.0  | 19.9 | 0.528 | 24.3 | 5.1  | 5.8 | 1980-81 |
|-----|------|------|------|------|-------|------|------|-----|---------|
| 2   | 18.2 | 0.0  | 6.9  | 25.5 | 0.616 | 26.3 | 5.3  | 5.4 | 1980-81 |
| 3   | 19.3 | 0.0  |      | 25.1 | 0.585 | 27.6 | 3.7  |     | 1980-81 |
| 4   | 21.1 | 0.4  | 7.6  | 22.9 | 0.555 | 32.3 | 1.6  |     | 1980-81 |
| 5   |      |      |      |      |       |      |      |     | 1980-81 |
|     | 15.2 | 0.1  |      | 22.0 | 0.583 | 23.3 | 5.9  |     |         |
| 6   | 14.2 |      | 4.8  |      |       | 27.1 |      |     | 1980-81 |
| 7   | 15.4 | 0.6  |      |      | 0.516 | 24.6 | 2.0  | 2.6 | 1980-81 |
| 8   | 9.6  | 0.1  | 5.2  | 14.3 | 0.582 | 17.5 | -1.3 | 0.5 | 1980-81 |
| 9   | 18.5 | 0.2  | 4.1  | 18.0 | 0.556 | 24.5 | 0.8  | 2.2 | 1980-81 |
| 10  | 15.9 | 0.5  | 6.1  | 25.7 | 0.582 | 24.3 | 9.2  | 3.9 | 1980-81 |
| 11  | 20.3 | 0.1  | 9.8  | 24.3 | 0.622 | 28.4 | 4.6  | 5.7 | 1980-81 |
| 12  | 13.4 | 0.5  | 5.4  | 17.3 | 0.553 | 23.3 | -1.1 |     | 1980-81 |
| 13  | 15.4 |      | 5.4  |      |       |      | 3.3  |     | 1980-81 |
| 14  |      | 0.4  |      |      | 0.484 |      | -2.8 |     | 1980-81 |
|     |      |      |      |      |       |      |      |     |         |
| 15  |      | 0.1  |      | 18.0 |       |      | 1.5  |     | 1980-81 |
| 16  |      | 0.5  |      | 20.3 | 0.580 | 26.8 | 2.4  |     | 1980-81 |
| 17  | 14.1 | 1.3  |      | 17.1 |       | 20.0 | 4.5  |     | 1980-81 |
| 18  | 15.6 | 0.0  | 4.8  | 14.9 | 0.531 | 21.5 | 0.0  | 1.5 | 1980-81 |
| 19  | 13.4 | 1.1  | 6.7  | 18.4 | 0.578 | 23.1 | 2.1  | 3.0 | 1980-81 |
| 20  | 15.3 | 0.2  | 3.2  | 15.5 | 0.511 | 21.8 | -1.2 | 0.6 | 1980-81 |
| 21  | 10.0 | 0.0  | 6.5  | 21.7 | 0.699 | 18.5 | 4.9  | 4.9 | 1980-81 |
| 22  | 10.7 |      |      |      | 0.573 | 21.8 |      |     | 1980-81 |
| 23  | 8.1  | 0.2  |      | 12.2 | 0.530 | 13.5 |      |     | 1980-81 |
| 24  | 14.1 | 0.2  |      | 18.4 | 0.579 | 25.6 | 0.9  |     | 1980-81 |
|     |      |      |      |      |       |      |      |     |         |
| 25  | 4.2  | 0.0  |      | 13.5 |       | 10.4 | 3.2  |     | 1980-81 |
| 26  | 9.3  | 0.0  |      | 20.1 | 0.604 | 20.8 | 5.0  |     | 1980-81 |
| 27  | 21.8 | 0.1  |      | 17.5 | 0.513 | 26.9 | -1.5 |     | 1980-81 |
| 28  | 13.3 | 0.0  | 5.9  | 19.4 | 0.557 | 26.1 | -0.3 | 0.9 | 1980-81 |
| 29  | 11.7 | 0.1  | 2.5  | 15.1 | 0.522 | 21.1 | 1.6  | 2.2 | 1980-81 |
|     | •••  |      | •••  | •••  |       |      | •••  |     |         |
| 619 | 15.7 | 2.3  | 7.7  | 26.1 | 0.599 | 28.3 | 7.6  | 6.9 | 2016-17 |
| 620 | 18.4 | 3.5  | 6.8  | 23.2 | 0.541 | 30.6 | 4.1  | 4.3 | 2016-17 |
| 621 |      |      |      |      | 0.580 |      |      |     | 2016-17 |
| 622 |      | 5.0  |      |      | 0.651 | 27.8 | 8.0  |     | 2016-17 |
| 623 | 20.9 | 1.7  |      | 24.0 | 0.552 | 34.3 | 0.9  |     |         |
|     |      |      |      |      |       |      |      |     |         |
| 624 | 20.1 | 10.0 | 10.1 | 29.8 | 0.619 | 36.1 | 10.9 |     |         |
| 625 | 19.3 | 5.0  | 6.5  | 28.6 | 0.621 | 31.6 | 9.6  |     | 2017-18 |
| 626 | 19.5 | 2.2  | 8.0  | 28.9 | 0.612 | 30.0 | 5.2  | 4.9 | 2017-18 |
| 627 | 19.4 | 8.6  | 7.4  | 25.2 | 0.594 | 30.6 | 6.7  | 5.9 | 2017-18 |
| 628 | 21.1 | 4.1  | 7.1  | 24.7 | 0.524 | 34.1 | 8.2  | 7.5 | 2017-18 |
| 629 | 18.7 | 1.9  | 8.5  | 27.3 | 0.598 | 31.2 | 5.8  | 5.4 | 2017-18 |
| 630 | 18.0 | 6.1  | 5.9  | 26.0 | 0.640 | 30.4 | 5.6  | 4.5 | 2017-18 |
| 631 | 17.7 | 3.6  | 7.0  | 21.0 | 0.555 | 29.6 | 1.8  | 2.6 | 2017-18 |
| 632 | 18.0 | 1.2  | 5.3  | 25.0 | 0.570 | 29.1 | 3.3  | 3.3 | 2017-18 |
|     |      |      |      |      |       |      |      |     |         |
| 633 | 15.6 | 3.4  | 7.2  | 23.7 | 0.590 | 24.9 | 5.0  | 3.8 | 2017-18 |
| 634 | 16.9 | 9.8  | 5.9  | 28.2 | 0.675 | 31.0 | 8.6  | 4.4 |         |
| 635 | 16.8 | 3.4  | 7.4  | 22.9 | 0.573 | 33.4 | 2.6  | 2.2 | 2017-18 |

| 202     | 17.0 5.0 4.0 00.4         | 0 577 | 00 4 4 0        | 4 5 004   | 7.40           |
|---------|---------------------------|-------|-----------------|-----------|----------------|
| 636     | 17.9 5.8 4.9 23.1         | 0.577 | 30.1 4.9        |           | 17-18          |
| 637     | 17.3 2.8 9.5 30.9         | 0.644 | 32.3 10.8       | 7.6 201   | 18-19          |
| 638     | 24.5 13.2 11.0 30.6       | 0.616 | 40.5 11.7       | 9.9 201   | 18-19          |
| 639     | 21.0 9.8 7.0 23.3         | 0.583 | 29.5 5.5        | 5.3 201   | 18-19          |
| 640     | 15.1 3.4 4.4 26.3         | 0.589 | 27.4 9.5        | 7.3 201   | l8 <b>-</b> 19 |
| 641     | 19.4 11.7 4.2 24.4        | 0.641 | 30.4 6.3        | 4.9 201   | L8-19          |
| 642     | 19.2 8.0 6.4 23.7         | 0.588 | 29.3 5.5        |           | 18-19          |
| 643     | 18.7 4.1 10.1 26.1        | 0.593 | 33.3 4.1        |           | 18-19          |
|         | 17.7 5.0 6.5 24.2         | 0.631 |                 |           | 18-19          |
| 644     |                           |       | 29.0 4.3        |           |                |
| 645     | 18.8 5.0 7.1 25.8         | 0.606 | 30.3 5.0        |           | 18-19          |
| 646     | 20.2 5.6 6.2 21.1         | 0.501 | 30.9 6.5        |           | 18-19          |
| 647     | 8.8 0.0 6.4 24.6          | 0.682 | 17.8 7.0        |           | 18-19          |
| 648     | 19.9 5.9 7.6 25.6         | 0.588 | 31.6 8.1        | 4.9 201   | 18-19          |
|         | player                    | ***   | pts_per_g tr    | b_per_g a | ast_per_g \    |
| 0       | Julius Erving             |       | 24.6            | 8.0       | 4.4            |
| 1       | Larry Bird                | •••   | 21.2            | 10.9      | 5.5            |
| 2       | Kareem Abdul-Jabbar       |       | 26.2            | 10.3      | 3.4            |
| 3       |                           | •••   |                 |           |                |
|         | Moses Malone              | •••   | 27.8            | 14.8      | 1.8            |
| 4       | George Gervin             | •••   | 27.1            | 5.1       | 3.2            |
| 5       | Marques Johnson           | •••   | 20.3            | 6.8       | 4.6            |
| 6       | Robert Parish             | •••   | 18.9            | 9.5       | 1.8            |
| 7       | Dennis Johnson            | •••   | 18.8            | 4.6       | 3.7            |
| 8       | Tiny Archibald            | •••   | 13.8            | 2.2       | 7.7            |
| 9       | Jamaal Wilkes             | •••   | 22.6            | 5.4       | 2.9            |
| 10      | Magic Johnson             | •••   | 21.6            | 8.6       | 8.6            |
| 11      | Adrian Dantley            | •••   | 30.7            | 6.4       | 4.0            |
| 12      | Phil Ford                 |       | 17.5            | 1.9       | 8.8            |
| 13      | Bernard King              | •••   |                 |           | 3.5            |
|         | •                         | •••   | 21.9            | 6.8       |                |
| 14      | Kelvin Ransey             | •••   | 15.2            | 2.4       | 6.9            |
| 15      | Jack Sikma                | •••   | 18.7            | 10.4      | 3.0            |
| 16      | Otis Birdsong             | •••   | 24.6            | 3.6       | 3.3            |
| 17      | Micheal Ray Richardson    | •••   | 16.4            | 6.9       | 7.9            |
| 18      | Truck Robinson            | •••   | 18.8            | 9.6       | 2.5            |
| 19      | Reggie Theus              | •••   | 18.9            | 3.5       | 5.2            |
| 20      | Norm Nixon                | •••   | 17.1            | 2.9       | 8.8            |
| 21      | Artis Gilmore             | •••   | 17.9            | 10.1      | 2.1            |
| 22      | Bob Lanier                | •••   | 14.3            | 6.2       | 2.7            |
| 23      | Michael Cooper            |       | 9.4             | 4.1       | 4.1            |
|         | Walter Davis              | ***   |                 |           |                |
| 24      |                           | •••   | 18.0            | 2.6       | 3.9            |
| 25      | George Johnson            | •••   | 5.0             | 7.3       | 1.1            |
| 26      | Bobby Jones               | •••   | 13.5            | 5.4       | 2.8            |
| 27      | Mike Mitchell             | •••   | 24.5            | 6.1       | 1.7            |
| 28      | James Silas               | •••   | 17.7            | 3.1       | 3.8            |
| 29      | Quinn Buckner             | •••   | 13.3            | 3.6       | 4.7            |
| <br>619 | <br>Giannis Antetokounmpo | •••   | <u></u><br>22.9 | 8.8       | 5.4            |
| 019     | grammis whiteforonimbo    | •••   | 22.3            | 0.0       | J.4            |

| 620 | John Wal             | .1     |         | 23.1   | 4.5  | 2 10.7    |
|-----|----------------------|--------|---------|--------|------|-----------|
| 621 | Anthony Davi         | .s     |         | 28.0   | 11.8 | 3 2.1     |
| 622 | Kevin Duran          | ıt     |         | 25.1   | 8.3  | 3 4.8     |
| 623 | DeMar DeRoza         | ın     |         | 27.3   | 5.3  | 2 3.9     |
| 624 | James Harde          | en     |         | 30.4   | 5.4  | 4 8.8     |
| 625 | LeBron Jame          | es     |         | 27.5   | 8.6  | 9.1       |
| 626 | Anthony Davi         |        |         | 28.1   | 11.  | 1 2.3     |
| 627 | Damian Lillar        |        |         | 26.9   | 4.   | 5 6.6     |
| 628 | Russell Westbroo     | ok     |         | 25.4   | 10.  | 1 10.3    |
| 629 | Giannis Antetokounmp | 00     |         | 26.9   | 10.0 | 3 4.8     |
| 630 | Kevin Duran          | nt     |         | 26.4   | 6.8  | 5.4       |
| 631 | DeMar DeRoza         | ın     |         | 23.0   | 3.9  | 9 5.2     |
| 632 | LaMarcus Aldridg     | ge     |         | 23.1   | 8.   | 5 2.0     |
| 633 | Jimmy Butle          | er     |         | 22.2   | 5.3  | 3 4.9     |
| 634 | Stephen Curr         | ту     |         | 26.4   | 5.   | 1 6.1     |
| 635 | Joel Embii           |        |         | 22.9   | 11.0 | 3.2       |
| 636 | Victor Oladip        | 00     |         | 23.1   | 5.3  | 2 4.3     |
| 637 | Giannis Antetokounmp | 00     |         | 27.7   | 12.  | 5 5.9     |
| 638 | James Harde          | en     |         | 36.1   | 6.6  | 7.5       |
| 639 | Paul Georg           | ge     |         | 28.0   | 8.3  | 2 4.1     |
| 640 | Nikola Joki          | .ć     |         | 20.1   | 10.8 | 7.3       |
| 641 | Stephen Curr         | ту     |         | 27.3   | 5.3  | 3 5.2     |
| 642 | Damian Lillar        | rd     |         | 25.8   | 4.6  | 6.9       |
| 643 | Joel Embii           |        |         | 27.5   | 13.6 | 3.7       |
| 644 | Kevin Duran          | nt     |         | 26.0   | 6.4  | 5.9       |
| 645 | Kawhi Leonar         | rd     |         | 26.6   | 7.3  | 3.3       |
| 646 | Russell Westbroo     | ok     |         | 22.9   | 11.  | 1 10.7    |
| 647 | Rudy Gober           | rt     |         | 15.9   | 12.9 | 9 2.0     |
| 648 | LeBron Jame          | es     |         | 27.4   | 8.   | 5 8.3     |
|     |                      |        |         |        |      |           |
|     | stl_per_g blk_per_g  | fg_pct | fg3_pct | ft_pct | WS   | ws_per_48 |
| 0   | 2.1 1.8              | 0.521  | 0.222   | 0.787  | 13.8 | 0.231     |
| 1   | 2.0 0.8              | 0.478  | 0.270   | 0.863  | 10.8 | 0.160     |
| 2   | 0.7 2.9              | 0.574  | 0.000   | 0.766  | 14.3 | 0.230     |
| 3   | 1.0 1.9              | 0.522  | 0.333   | 0.757  | 13.7 | 0.202     |
| 4   | 1.1 0.7              | 0.492  | 0.257   | 0.826  | 10.5 | 0.182     |
| 5   | 1.5 0.5              | 0.552  | 0.000   | 0.706  | 11.2 | 0.211     |
| 6   | 1.0 2.6              | 0.545  | 0.000   | 0.710  | 10.9 | 0.228     |
| 7   | 1.7 0.8              | 0.436  | 0.216   | 0.820  | 8.4  | 0.154     |
| 8   | 0.9 0.2              | 0.499  | 0.000   | 0.816  | 6.9  | 0.118     |
| 9   | 1.5 0.4              | 0.526  | 0.077   | 0.758  | 8.5  | 0.135     |
| 10  | 3.4 0.7              | 0.532  | 0.176   | 0.760  | 6.4  | 0.225     |
| 11  | 1.4 0.2              | 0.559  | 0.286   | 0.806  | 13.6 | 0.191     |
| 12  | 1.5 0.1              | 0.478  | 0.306   | 0.831  | 5.2  | 0.110     |
| 13  | 0.9 0.4              | 0.588  | 0.333   | 0.703  | 9.1  | 0.150     |
| 14  | 1.1 0.1              | 0.452  | 0.097   | 0.749  | 2.8  | 0.056     |
| 15  | 1.0 1.1              | 0.454  | 0.000   | 0.823  | 8.0  | 0.132     |
|     |                      |        |         |        |      |           |

| 16  | 1.3 | 0.3 | 0.544 | 0.286 | 0.697 | 8.2  | 0.152 |
|-----|-----|-----|-------|-------|-------|------|-------|
| 17  | 2.9 | 0.4 | 0.469 | 0.225 | 0.663 | 6.9  | 0.104 |
| 18  | 0.8 | 0.5 | 0.505 | 0.000 | 0.629 | 7.6  | 0.119 |
| 19  | 1.5 | 0.2 | 0.495 | 0.200 | 0.809 | 9.2  | 0.156 |
| 20  | 1.8 | 0.1 | 0.476 | 0.167 | 0.778 | 5.5  | 0.089 |
| 21  | 0.6 | 2.4 | 0.670 | 0.000 | 0.705 | 12.3 | 0.208 |
| 22  | 1.1 | 1.2 | 0.525 | 1.000 | 0.751 | 6.8  | 0.185 |
| 23  | 1.6 | 1.0 | 0.491 | 0.211 | 0.785 | 5.0  | 0.092 |
| 24  | 1.2 | 0.2 | 0.539 | 0.412 | 0.836 | 7.1  | 0.157 |
| 25  | 0.6 | 3.4 | 0.473 | 0.000 | 0.734 | 4.5  | 0.112 |
| 26  | 1.2 | 0.9 | 0.539 | 0.000 | 0.813 | 9.2  | 0.217 |
| 27  | 0.8 | 0.6 | 0.476 | 0.444 | 0.784 | 6.0  | 0.091 |
| 28  | 0.7 | 0.2 | 0.477 | 0.000 | 0.850 | 7.0  | 0.164 |
| 29  | 2.4 | 0.0 | 0.493 | 0.167 | 0.734 | 5.4  | 0.108 |
|     | ••• |     |       |       |       |      |       |
| 619 | 1.6 | 1.9 | 0.521 | 0.272 | 0.770 | 12.4 | 0.210 |
| 620 | 2.0 | 0.6 | 0.451 | 0.327 | 0.801 | 8.8  | 0.149 |
| 621 | 1.3 | 2.2 | 0.505 | 0.299 | 0.802 | 11.0 | 0.195 |
| 622 | 1.1 | 1.6 | 0.537 | 0.375 | 0.875 | 12.0 | 0.278 |
| 623 | 1.1 | 0.2 | 0.467 | 0.266 | 0.842 | 9.0  | 0.166 |
| 624 | 1.8 | 0.7 | 0.449 | 0.367 | 0.858 | 15.4 | 0.289 |
| 625 | 1.4 | 0.9 | 0.542 | 0.367 | 0.731 | 14.0 | 0.221 |
| 626 | 1.5 | 2.6 | 0.534 | 0.340 | 0.828 | 13.7 | 0.241 |
| 627 | 1.1 | 0.4 | 0.439 | 0.361 | 0.916 | 12.6 | 0.227 |
| 628 | 1.8 | 0.3 | 0.449 | 0.298 | 0.737 | 10.1 | 0.166 |
| 629 | 1.5 | 1.4 | 0.529 | 0.307 | 0.760 | 11.9 | 0.207 |
| 630 | 0.7 | 1.8 | 0.516 | 0.419 | 0.889 | 10.4 | 0.215 |
| 631 | 1.1 | 0.3 | 0.456 | 0.310 | 0.825 | 9.6  | 0.170 |
| 632 | 0.6 | 1.2 | 0.510 | 0.293 | 0.837 | 10.9 | 0.209 |
| 633 | 2.0 | 0.4 | 0.474 | 0.350 | 0.854 | 8.9  | 0.198 |
| 634 | 1.6 | 0.2 | 0.495 | 0.423 | 0.921 | 9.1  | 0.267 |
| 635 | 0.6 | 1.8 | 0.483 | 0.308 | 0.769 | 6.2  | 0.155 |
| 636 | 2.4 | 0.8 | 0.477 | 0.371 | 0.799 | 8.2  | 0.155 |
| 637 | 1.3 | 1.5 | 0.578 | 0.256 | 0.729 |      | 0.292 |
| 638 | 2.0 | 0.7 | 0.442 | 0.368 | 0.879 | 15.2 | 0.254 |
| 639 | 2.2 | 0.4 | 0.438 | 0.386 | 0.839 | 11.9 | 0.201 |
| 640 | 1.4 | 0.7 | 0.511 | 0.307 | 0.821 | 11.8 | 0.226 |
| 641 | 1.3 | 0.4 | 0.472 | 0.437 | 0.916 | 9.7  | 0.199 |
| 642 | 1.1 | 0.4 | 0.444 | 0.369 | 0.912 | 12.1 | 0.205 |
| 643 | 0.7 | 1.9 | 0.484 | 0.300 | 0.804 | 8.7  | 0.194 |
| 644 | 0.7 | 1.1 | 0.521 | 0.353 | 0.885 | 11.5 | 0.204 |
| 645 | 1.8 | 0.4 | 0.496 | 0.371 | 0.854 | 9.5  | 0.224 |
| 646 | 1.9 | 0.5 | 0.428 | 0.290 | 0.656 | 6.8  | 0.124 |
| 647 | 0.8 | 2.3 | 0.669 | 0.000 | 0.636 | 14.4 | 0.268 |
| 648 | 1.3 | 0.6 | 0.510 | 0.339 | 0.665 | 7.2  | 0.179 |

[649 rows x 28 columns]

```
[12]: #make csv
data_frame.to_csv("mvp_votings_1981-2020.csv")
[ ]:
```