$12a_{1147} (K12a_{1147})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{22} - u^{21} + \dots + 2b + 1, \ u^{22} + u^{21} + \dots + 2a - 1, \ u^{24} + u^{23} + \dots + u^2 + 1 \rangle \\ I_2^u &= \langle 663778u^{39} + 3468564u^{38} + \dots + 4497023b + 12669528, \\ & 1460252u^{39} + 3892416u^{38} + \dots + 4497023a + 44643349, \ u^{40} + u^{39} + \dots + 10u - 1 \rangle \\ I_3^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle b + a - 1, \ a^2 - 2a - 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{22} - u^{21} + \dots + 2b + 1, \ u^{22} + u^{21} + \dots + 2a - 1, \ u^{24} + u^{23} + \dots + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\-u^{3}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3}-2u\\-u^{3}+u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2}+1\\-u^{4}+2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{22}-\frac{1}{2}u^{21}+\cdots-2u+\frac{1}{2}\\\frac{1}{2}u^{22}+\frac{1}{2}u^{21}+\cdots-u-\frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3}-2u\\\frac{1}{2}u^{22}+\frac{1}{2}u^{21}+\cdots-u-\frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{22}-\frac{1}{2}u^{21}+\cdots-u+\frac{1}{2}\\-\frac{1}{2}u^{23}+\frac{1}{2}u^{21}+\cdots+\frac{3}{2}u+\frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6}-3u^{4}+2u^{2}+1\\-\frac{1}{2}u^{23}-\frac{1}{2}u^{22}+\cdots+4u^{2}+\frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5}-2u^{3}+u\\u^{7}-3u^{5}+2u^{3}+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{23}-\frac{1}{2}u^{22}+\cdots+3u^{2}+\frac{1}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -2u^{23} - u^{22} + 23u^{21} + 8u^{20} - 113u^{19} - 20u^{18} + 300u^{17} - 9u^{16} - 430u^{15} + 142u^{14} + 219u^{13} - 271u^{12} + 253u^{11} + 142u^{10} - 424u^{9} + 149u^{8} + 116u^{7} - 175u^{6} + 131u^{5} - 14u^{4} - 65u^{3} + 44u^{2} - 8u - 11u^{2} + 253u^{21} + 142u^{22} - 124u^{22} + 142u^{22} - 124u^{22} + 124u^{22} - 124u^{22} + 124u^{22} - 124u^{22$$

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u^{24} - 3u^{23} + \dots + 16u - 16$
c_2, c_3, c_8	$u^{24} - 3u^{23} + \dots + 2u - 2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$u^{24} + u^{23} + \dots + u^2 + 1$
c_9	$u^{24} + 9u^{23} + \dots - 38u - 46$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{24} + 17y^{23} + \dots - 1280y + 256$
c_2, c_3, c_8	$y^{24} - 23y^{23} + \dots + 28y + 4$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$y^{24} - 23y^{23} + \dots + 2y + 1$
c_9	$y^{24} - 11y^{23} + \dots + 7020y + 2116$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.064601 + 0.857743I		
a = 3.00242 + 0.79694I	11.05360 - 5.17653I	3.95325 + 3.49150I
b = -1.47055 + 0.22609I		
u = 0.064601 - 0.857743I		
a = 3.00242 - 0.79694I	11.05360 + 5.17653I	3.95325 - 3.49150I
b = -1.47055 - 0.22609I		
u = -0.034624 + 0.810902I		
a = -1.048330 - 0.309670I	4.86252 + 2.05888I	0.88457 - 3.56826I
b = 0.448897 + 0.626898I		
u = -0.034624 - 0.810902I		
a = -1.048330 + 0.309670I	4.86252 - 2.05888I	0.88457 + 3.56826I
b = 0.448897 - 0.626898I		
u = 1.24908		
a = -1.63637	-0.270498	-8.82770
b = 1.51781		
u = 1.259130 + 0.350678I		
a = 1.67906 + 0.25248I	3.67444 - 3.51286I	-3.38395 + 3.71816I
b = -1.50623 - 0.17059I		
u = 1.259130 - 0.350678I		
a = 1.67906 - 0.25248I	3.67444 + 3.51286I	-3.38395 - 3.71816I
b = -1.50623 + 0.17059I		
u = -1.315770 + 0.340499I		
a = -0.177134 + 0.134393I	-3.18817 + 6.18598I	-7.02896 - 2.89473I
b = 0.594644 - 0.588222I		
u = -1.315770 - 0.340499I		
a = -0.177134 - 0.134393I	-3.18817 - 6.18598I	-7.02896 + 2.89473I
b = 0.594644 + 0.588222I		
u = -1.384040 + 0.044740I		
a = 0.091228 + 0.281923I	-8.06493 + 0.19408I	-10.28074 + 0.61912I
b = -0.942704 + 0.288972I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.384040 - 0.044740I		
a = 0.091228 - 0.281923I	-8.06493 - 0.19408I	-10.28074 - 0.61912I
b = -0.942704 - 0.288972I		
u = 1.346140 + 0.369990I		
a = -0.959184 - 0.578715I	-3.88120 - 10.62900I	-8.08796 + 8.14735I
b = 0.398944 - 0.727533I		
u = 1.346140 - 0.369990I		
a = -0.959184 + 0.578715I	-3.88120 + 10.62900I	-8.08796 - 8.14735I
b = 0.398944 + 0.727533I		
u = 1.400780 + 0.126559I		
a = 0.372750 + 0.796952I	-10.61170 - 4.02452I	-13.52498 + 4.12532I
b = -0.137322 + 0.736533I		
u = 1.400780 - 0.126559I		
a = 0.372750 - 0.796952I	-10.61170 + 4.02452I	-13.52498 - 4.12532I
b = -0.137322 - 0.736533I		
u = -1.352420 + 0.399114I		
a = 1.62910 - 1.77474I	2.1308 + 14.2744I	-4.23619 - 8.14865I
b = -1.46757 - 0.27259I		
u = -1.352420 - 0.399114I		
a = 1.62910 + 1.77474I	2.1308 - 14.2744I	-4.23619 + 8.14865I
b = -1.46757 + 0.27259I		
u = -1.40349 + 0.18980I		
a = -0.55401 + 1.37979I	-6.12604 + 7.74233I	-8.51765 - 6.24570I
b = 1.301280 + 0.292342I		
u = -1.40349 - 0.18980I		
a = -0.55401 - 1.37979I	-6.12604 - 7.74233I	-8.51765 + 6.24570I
b = 1.301280 - 0.292342I		
u = 0.271980 + 0.498934I		
a = -2.01833 - 1.68837I	4.60442 - 2.61585I	2.73829 + 6.23776I
b = 1.348350 - 0.118156I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.271980 - 0.498934I		
a = -2.01833 + 1.68837I	4.60442 + 2.61585I	2.73829 - 6.23776I
b = 1.348350 + 0.118156I		
u = 0.454758		
a = 0.0591891	3.38497	-0.780610
b = -1.34147		
u = -0.204200 + 0.280203I		
a = 0.771021 - 0.484359I	-0.123351 + 0.761222I	-3.71153 - 9.11663I
b = -0.155898 - 0.381963I		
u = -0.204200 - 0.280203I		
a = 0.771021 + 0.484359I	-0.123351 - 0.761222I	-3.71153 + 9.11663I
b = -0.155898 + 0.381963I		

II. $I_2^u = \langle 6.64 \times 10^5 u^{39} + 3.47 \times 10^6 u^{38} + \dots + 4.50 \times 10^6 b + 1.27 \times 10^7, \ 1.46 \times 10^6 u^{39} + 3.89 \times 10^6 u^{38} + \dots + 4.50 \times 10^6 a + 4.46 \times 10^7, \ u^{40} + u^{39} + \dots + 10u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.324715u^{39} - 0.865554u^{38} + \dots + 25.4189u - 9.92731 \\ -0.147604u^{39} - 0.771302u^{38} + \dots + 11.3275u - 2.81731 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.502758u^{39} - 1.22710u^{38} + \dots + 23.4208u - 10.1653 \\ -0.0239736u^{39} - 0.611436u^{38} + \dots + 13.0357u - 2.77196 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.56209u^{39} + 1.79705u^{38} + \dots - 39.2267u + 15.9467 \\ 1.45613u^{39} + 0.698967u^{38} + \dots - 2.49928u + 2.49602 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.46016u^{39} + 3.14955u^{38} + \dots - 50.0991u + 14.1572 \\ 0.192619u^{39} + 0.247031u^{38} + \dots - 50.0991u + 14.1572 \\ 0.192619u^{39} + 0.247031u^{38} + \dots - 7.76383u + 2.21612 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1.65385u^{39} + 3.16578u^{38} + \dots - 41.7713u + 13.1425 \\ -0.193691u^{39} - 0.0162321u^{38} + \dots - 8.32777u + 2.01469 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{8450436}{4497023}u^{39} + \frac{11603704}{4497023}u^{38} + \dots - \frac{184433680}{4497023}u + \frac{28189534}{4497023}u^{38} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$(u^{20} - 3u^{19} + \dots - 12u + 1)^2$
c_2, c_3, c_8	$(u^{20} + u^{19} + \dots - 2u - 1)^2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$u^{40} + u^{39} + \dots + 10u - 1$
c_9	$(u^{20} - 3u^{19} + \dots + 2u + 5)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$(y^{20} + 17y^{19} + \dots - 62y + 1)^2$
c_2, c_3, c_8	$(y^{20} - 19y^{19} + \dots - 2y + 1)^2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$y^{40} - 29y^{39} + \dots - 60y + 1$
<i>c</i> ₉	$(y^{20} - 7y^{19} + \dots - 274y + 25)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.923862		
a = 1.32744	3.24334	1.89980
b = -1.38920		
u = 0.111900 + 0.892848I		
a = -2.88979 - 0.73183I	6.73027 - 9.64430I	-0.34532 + 6.20543I
b = 1.46202 - 0.24989I		
u = 0.111900 - 0.892848I		
a = -2.88979 + 0.73183I	6.73027 + 9.64430I	-0.34532 - 6.20543I
b = 1.46202 + 0.24989I		
u = 0.759025 + 0.475822I		
a = -1.48000 - 0.53937I	-1.34713 + 0.58469I	-6.79795 - 0.00910I
b = 1.218960 + 0.103071I		
u = 0.759025 - 0.475822I		
a = -1.48000 + 0.53937I	-1.34713 - 0.58469I	-6.79795 + 0.00910I
b = 1.218960 - 0.103071I		
u = -1.13904		
a = -0.0164448	-2.31303	-1.06120
b = 0.432245		
u = -0.118681 + 0.840736I		
a = 0.962099 + 0.331136I	0.72067 + 6.27316I	-3.89985 - 6.54347I
b = -0.403387 - 0.672553I		
u = -0.118681 - 0.840736I		
a = 0.962099 - 0.331136I	0.72067 - 6.27316I	-3.89985 + 6.54347I
b = -0.403387 + 0.672553I		
u = -1.128490 + 0.400676I		
a = -0.025745 + 0.174387I	-2.37392 - 1.80448I	-7.17537 + 3.70058I
b = 0.380611 - 0.584774I		
u = -1.128490 - 0.400676I		
a = -0.025745 - 0.174387I	-2.37392 + 1.80448I	-7.17537 - 3.70058I
b = 0.380611 + 0.584774I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.014873 + 0.802003I		
a = -3.15229 - 0.90911I	7.52808 - 0.63661I	0.960350 - 0.169887I
b = 1.47490 - 0.19643I		
u = 0.014873 - 0.802003I		
a = -3.15229 + 0.90911I	7.52808 + 0.63661I	0.960350 + 0.169887I
b = 1.47490 + 0.19643I		
u = 0.067576 + 0.777860I		
a = 1.154830 + 0.297440I	1.14846 - 2.14390I	-2.54408 + 0.24308I
b = -0.506351 - 0.571230I		
u = 0.067576 - 0.777860I		
a = 1.154830 - 0.297440I	1.14846 + 2.14390I	-2.54408 - 0.24308I
b = -0.506351 + 0.571230I		
u = 0.405495 + 0.666361I		
a = 2.09904 + 0.99095I	-0.30488 - 4.84109I	-4.36837 + 6.37981I
b = -1.287780 + 0.198735I		
u = 0.405495 - 0.666361I		
a = 2.09904 - 0.99095I	-0.30488 + 4.84109I	-4.36837 - 6.37981I
b = -1.287780 - 0.198735I		
u = 1.168250 + 0.467812I		
a = 1.64680 + 0.34227I	3.49387 + 4.79919I	-3.30190 - 3.09464I
b = -1.44525 - 0.22406I		
u = 1.168250 - 0.467812I		
a = 1.64680 - 0.34227I	3.49387 - 4.79919I	-3.30190 + 3.09464I
b = -1.44525 + 0.22406I		
u = 1.221280 + 0.315797I		
a = -1.117640 - 0.858852I	-2.37392 - 1.80448I	-7.17537 + 3.70058I
b = 0.380611 - 0.584774I		
u = 1.221280 - 0.315797I		
a = -1.117640 + 0.858852I	-2.37392 + 1.80448I	-7.17537 - 3.70058I
b = 0.380611 + 0.584774I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.506013 + 0.529581I		
a = -0.492988 - 0.064584I	-4.54605 + 1.94645I	-10.94680 - 4.81876I
b = 0.084750 + 0.594489I		
u = -0.506013 - 0.529581I		
a = -0.492988 + 0.064584I	-4.54605 - 1.94645I	-10.94680 + 4.81876I
b = 0.084750 - 0.594489I		
u = 1.210060 + 0.408349I		
a = -1.65887 - 0.29795I	7.52808 + 0.63661I	-60.960350 + 0.10I
b = 1.47490 + 0.19643I		
u = 1.210060 - 0.408349I		
a = -1.65887 + 0.29795I	7.52808 - 0.63661I	-60.960350 + 0.10I
b = 1.47490 - 0.19643I		
u = 1.280890 + 0.069261I		
a = -0.308042 - 1.258930I	-4.54605 - 1.94645I	-10.94680 + 4.81876I
b = 0.084750 - 0.594489I		
u = 1.280890 - 0.069261I		
a = -0.308042 + 1.258930I	-4.54605 + 1.94645I	-10.94680 - 4.81876I
b = 0.084750 + 0.594489I		
u = -1.238550 + 0.356207I		
a = 0.111095 - 0.148235I	1.14846 + 2.14390I	-2.54408 + 0.I
b = -0.506351 + 0.571230I		
u = -1.238550 - 0.356207I		
a = 0.111095 + 0.148235I	1.14846 - 2.14390I	-2.54408 + 0.I
b = -0.506351 - 0.571230I		
u = -1.288630 + 0.060039I		
a = 1.00326 + 1.02639I	-1.34713 + 0.58469I	-6.79795 + 0.I
b = 1.218960 + 0.103071I		
u = -1.288630 - 0.060039I		
a = 1.00326 - 1.02639I	-1.34713 - 0.58469I	-6.79795 + 0.I
b = 1.218960 - 0.103071I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.317540 + 0.151393I		
a = -0.06745 - 1.74399I	-0.30488 + 4.84109I	-4.00000 - 6.37981I
b = -1.287780 - 0.198735I		
u = -1.317540 - 0.151393I		
a = -0.06745 + 1.74399I	-0.30488 - 4.84109I	-4.00000 + 6.37981I
b = -1.287780 + 0.198735I		
u = -1.281360 + 0.353972I		
a = 1.52306 - 2.23919I	3.49387 + 4.79919I	-4.00000 - 3.09464I
b = -1.44525 - 0.22406I		
u = -1.281360 - 0.353972I		
a = 1.52306 + 2.23919I	3.49387 - 4.79919I	-4.00000 + 3.09464I
b = -1.44525 + 0.22406I		
u = 1.293540 + 0.359734I		
a = 1.030770 + 0.670930I	0.72067 - 6.27316I	-4.00000 + 6.54347I
b = -0.403387 + 0.672553I		
u = 1.293540 - 0.359734I		
a = 1.030770 - 0.670930I	0.72067 + 6.27316I	-4.00000 - 6.54347I
b = -0.403387 - 0.672553I		
u = -1.317700 + 0.387037I		
a = -1.62992 + 1.96256I	6.73027 + 9.64430I	0 6.20543I
b = 1.46202 + 0.24989I		
u = -1.317700 - 0.387037I		
a = -1.62992 - 1.96256I	6.73027 - 9.64430I	0. + 6.20543I
b = 1.46202 - 0.24989I		
u = 0.405383		
a = -1.98705	-2.31303	-1.06120
b = 0.432245		
u = 0.137952		
a = -6.74035	3.24334	1.89980
b = -1.38920		

III.
$$I_3^u=\langle b,\; a+1,\; u+1\rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_3 \\ c_8, c_9, c_{11}$	u
c_4, c_5, c_{10}	u+1
c_6, c_7, c_{12}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_8, c_9, c_{11}	y
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	y-1

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-3.28987	-12.0000
b = 0		

IV.
$$I_4^u = \langle b+a-1, \ a^2-2a-1, \ u-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ -a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -a+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -a \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ a-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_{11}	u^2
$c_2, c_3, c_8 \ c_9$	u^2-2
c_4, c_5, c_{10}	$(u-1)^2$
c_6, c_7, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	y^2
c_2, c_3, c_8 c_9	$(y-2)^2$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$(y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.414214	1.64493	-4.00000
b = 1.41421		
u = 1.00000		
a = 2.41421	1.64493	-4.00000
b = -1.41421		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{3}(u^{20} - 3u^{19} + \dots - 12u + 1)^{2}(u^{24} - 3u^{23} + \dots + 16u - 16)$
c_2, c_3, c_8	$u(u^{2}-2)(u^{20}+u^{19}+\cdots-2u-1)^{2}(u^{24}-3u^{23}+\cdots+2u-2)$
c_4, c_5, c_{10}	$((u-1)^2)(u+1)(u^{24}+u^{23}+\cdots+u^2+1)(u^{40}+u^{39}+\cdots+10u-1)$
c_6, c_7, c_{12}	$(u-1)(u+1)^{2}(u^{24}+u^{23}+\cdots+u^{2}+1)(u^{40}+u^{39}+\cdots+10u-1)$
<i>C</i> 9	$u(u^{2}-2)(u^{20}-3u^{19}+\cdots+2u+5)^{2}(u^{24}+9u^{23}+\cdots-38u-46)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^{3}(y^{20} + 17y^{19} + \dots - 62y + 1)^{2}(y^{24} + 17y^{23} + \dots - 1280y + 256)$
c_2, c_3, c_8	$y(y-2)^{2}(y^{20}-19y^{19}+\cdots-2y+1)^{2}(y^{24}-23y^{23}+\cdots+28y+4)$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$((y-1)^3)(y^{24} - 23y^{23} + \dots + 2y + 1)(y^{40} - 29y^{39} + \dots - 60y + 1)$
c_9	$y(y-2)^{2}(y^{20} - 7y^{19} + \dots - 274y + 25)^{2}$ $\cdot (y^{24} - 11y^{23} + \dots + 7020y + 2116)$