Machine Learning for Healthcare HST.956, 6.S897

Lecture 14: Causal Inference Part 1

David Sontag

Course announcements

- Please fill out mid-semester survey
- Project proposals
 - You will receive e-mail feedback this week
 - Office hours next Tuesday, 10-11:30am
- Problem sets
 - PS1-4 graded (see Stellar)
 - PS5 out tonight, due next Tuesday, April 9
 - Last problem set, PS6, released in ~2 weeks
- Recitation this week will be a discussion of
 - Brat et al., Postsurgical prescriptions for opioid naïve patients and association with overdose and misuse, BMJ 2018
 - Bertsimas et al., Personalized diabetes management using electronic medical records, Diabetes Care 2017

Does gastric bypass surgery prevent onset of diabetes?

- In Lecture 4 & PS2 we used machine learning for early detection of Type 2 diabetes
- Health system doesn't want to know how to predict diabetes – they want to know how to prevent it
- Gastric bypass surgery is the highest negative weight (9th most predictive feature)
 - Does this mean it would be a good intervention?

What is the likelihood this patient, with breast cancer, will survive 5 years?

- Such predictive models widely used to stage patients.
 Should we initiate treatment? How aggressive?
- What could go wrong if we trained to predict survival, and then used to guide patient care?

A long survival time may be because of treatment!

What treatment should we give this patient?

Expansion pathology (image from Andy Beck)

- People respond differently to treatment
- Goal: use data from other patients and their journeys to guide future treatment decisions
- What could go wrong if we trained to predict (past) treatment decisions?

 Best this can do is match current medical practice!

Does smoking cause lung cancer?

- Doing a randomized control trial is unethical
- Could we simply answer this question by comparing Pr(lung cancer | smoker) vs Pr(lung cancer | nonsmoker)?
- No! Answering such questions from observational data is difficult because of confounding

To properly answer, need to formulate as causal questions:

High dimensional

Observational data

Potential Outcomes Framework (Rubin-Neyman Causal Model)

- Each unit (individual) x_i has two potential outcomes:
 - $-Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $-Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Conditional average treatment effect for unit i: $CATE(x_i) = \mathbb{E}_{Y_1 \sim p(Y_1|x_i)} [Y_1|x_i] \mathbb{E}_{Y_0 \sim p(Y_0|x_i)} [Y_0|x_i]$
- Average Treatment Effect:

$$ATE := \mathbb{E}[Y_1 - Y_0] = \mathbb{E}_{x \sim p(x)}[CATE(x)]$$

Potential Outcomes Framework (Rubin-Neyman Causal Model)

- Each unit (individual) x_i has two potential outcomes:
 - $-Y_0(x_i)$ is the potential outcome had the unit not been treated: "control outcome"
 - $-Y_1(x_i)$ is the potential outcome had the unit been treated: "treated outcome"
- Observed factual outcome:

$$y_i = t_i Y_1(x_i) + (1 - t_i) Y_0(x_i)$$

Unobserved counterfactual outcome:

$$y_i^{CF} = (1 - t_i)Y_1(x_i) + t_iY_0(x_i)$$

"The fundamental problem of causal inference"

We only ever observe one of the two outcomes

Example – Blood pressure and age

blood_pres.

 $-- Y_1(x)$ $-- Y_0(x)$

$$x = age$$

- $-- Y_1(x)$ $-- Y_0(x)$

$$x = age$$

 $y = blood_pres.$

 $-- Y_1(x)$

 $-- Y_0(x)$

Treated

Control

y = blood_pres.

- Treated
- Control

$$x = age$$

- Counterfactual treated
- Counterfactual control

(age, gender, exercise, treatment)		Observed sugar levels
(45, F, O, A)		6
(45, F, 1, B)		6.5
(55, M, 0, A)		7
(55, M, 1, B)		8
(65, F, O, B)		8
(65,F, 1, A)		7.5
(75,M, 0, B)		9
(75,M, 1, A)		8

(Example from Uri Shalit)

(age, gender, exercise)	Observed sugar levels
(45, F, 0)	6
(45, F, 1)	6.5
(55, M, 0)	7
(55, M, 1)	8
(65, F, 0)	8
(65,F, 1)	7.5
(75,M, 0)	9
(75,M, 1)	8

(age, gender, exercise)	Y ₀ : Sugar levels had they	Y ₁ : Sugar levels had they	Observed sugar levels
	received	received	
	medication A	medication B	
(45, F, 0)	6	5.5	6
(45, F, 1)	7	6.5	6.5
(55, M, 0)	7	6	7
(55, M, 1)	9	8	8
(65, F, 0)	8.5	8	8
(65,F, 1)	7.5	7	7.5
(75,M, 0)	10	9	9
(75,M, 1)	8	7	8

(age,gender, exercise)	Sugar levels had they received medication A	Sugar levels had they received medication B	Observed sugar levels
(45, F, 0)	6	5.5	6
(45, F, 1)	7	6.5	6.5
(55, M, 0)	7	6	7
(55, M, 1)	9	8	8
(65, F, 0)	8.5	8	8
(65,F, 1)	7.5	7	7.5
(75,M, 0)	10	9	9
(75,M, 1)	8	7	8

mean(sugar|medication B) mean(sugar|medication A) =
?

mean(sugar|had they received B) – mean(sugar|had they received A) =

(Example from Uri Shalit)

(age,gender, exercise)	Sugar levels had they received medication A	Sugar levels had they received medication B	Observed sugar levels
(45, F, 0)	6	5.5	6
(45, F, 1)	7	6.5	6.5
(55, M, 0)	7	6	7
(55, M, 1)	9	8	8
(65, F, 0)	8.5	8	8
(65,F, 1)	7.5	7	7.5
(75,M, 0)	10	9	9
(75,M, 1)	8	7	8

mean(sugar|medication B) – mean(sugar|medication A) = 7.875 - 7.125 = 0.75

mean(sugar|had they received B) – mean(sugar|had they received A) = 7.125 - 7.875 = -0.75

(Example from Uri Shalit)

Typical assumption – no unmeasured confounders

 Y_0, Y_1 : potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$(Y_0, Y_1) \perp \!\!\!\perp T \mid x$$

The potential outcomes are independent of treatment assignment, conditioned on covariates x

Typical assumption – no unmeasured confounders

 Y_0, Y_1 : potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$(Y_0, Y_1) \perp T \mid x$$

Ignorability

Ignorability

 $(Y_0, Y_1) \perp T \mid x$

Ignorability

$$(Y_0, Y_1) \perp T \mid x$$

No Ignorability

$$(Y_0, Y_1) \not\perp T \mid x$$

Typical assumption – common support

 Y_0, Y_1 : potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \,\forall t, x$$

Framing the question

- 1. Where could we go to for data to answer these questions?
- 2. What should **X**, T, and Y be to satisfy ignorability?
- 3. What is the specific causal inference question that we are interested in?
- 4. Are you worried about common support?

Outline for lecture

- How to recognize a causal inference problem
- Potential outcomes framework
 - Average treatment effect (ATE)
 - Conditional average treatment effect (CATE)
- Algorithms for estimating ATE and CATE

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

Average Treatment Effect – the adjustment formula

- Assuming ignorability, we will derive the adjustment formula (Hernán & Robins 2010, Pearl 2009)
- The adjustment formula is extremely useful in causal inference
- Also called G-formula

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

law of total

expectation

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_1\right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right] =$$

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\begin{split} \mathbb{E}\left[Y_{1}\right] &= & \text{ignorability} \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x\right]\right] &= & (Y_{0}, Y_{1}) \perp\!\!\!\perp T \mid x \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x, T = 1\right]\right] &= & \\ \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{Y_{1} \sim p(Y_{1}|x)}\left[Y_{1}|x, T = 1\right]\right] &= & (Y_{0}, Y_{1}) \mid x \mid T \mid x \end{split}$$

The expected causal effect of T on Y:

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_1\right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_1 \sim p(Y_1|x)} \left[Y_1 | x, T = 1 \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_1 | x, T = 1 \right] \right]$$

shorter notation

$$ATE := \mathbb{E}\left[Y_1 - Y_0\right]$$

$$\mathbb{E}\left[Y_0
ight] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{Y_0 \sim p(Y_0|x)} \left[Y_0 | x, T=0 \right] \right] =$$

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E} \left[Y_0 | x, T = 0 \right] \right]$$

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\mathbb{E}\left[Y_1 \middle| x, T = 1\right] - \mathbb{E}\left[Y_0 \middle| x, T = 0\right]\right]$$

$$\mathbb{E}\left[Y_1|x,T=1
ight] egin{array}{c} ext{Quantities we} \ \mathbb{E}\left[Y_0|x,T=0
ight] \ ext{from data} \end{array}$$

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\mathbb{E}\left[Y_1 | x, T = 1\right] - \mathbb{E}\left[Y_0 | x, T = 0\right]\right]$$

$$\mathbb{E} \left[Y_0 | x, T = 1 \right]$$
 $\mathbb{E} \left[Y_1 | x, T = 0 \right]$
 $\mathbb{E} \left[Y_0 | x \right]$
 $\mathbb{E} \left[Y_1 | x \right]$

Quantities we cannot directly estimate from data

The adjustment formula

Under the assumption of ignorability, we have that:

$$ATE = \mathbb{E}\left[Y_1 - Y_0\right] =$$

$$\mathbb{E}_{x \sim p(x)}\left[\begin{array}{c} \mathbb{E}\left[Y_1|x, T = 1\right] - \mathbb{E}\left[Y_0|x, T = 0\right] \end{array}\right]$$

$$\mathbb{E}\left[Y_1|x, T = 1\right]$$

$$\mathbb{E}\left[Y_0|x, T = 0\right]$$
Quantities we can estimate from data

Empirically we have samples from p(x|T=1) or p(x|T=0). Extrapolate to p(x)

Many methods!

Covariate adjustment
Propensity score re-weighting
Doubly robust estimators
Matching

. . .

Covariate adjustment

- Explicitly model the relationship between treatment, confounders, and outcome
- Also called "Response Surface Modeling"
- Used for both CATE and ATE
- A regression problem

Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of T on Y:

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} f(x_i, 1) - f(x_i, 0)$$

Covariate adjustment (parametric g-formula)

- Explicitly model the relationship between treatment, confounders, and outcome
- Under ignorability, the expected causal effect of T on Y:

$$\mathbb{E}_{x \sim p(x)} \left[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \right]$$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$

$$\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0)$$

Covariate adjustment

 $y = blood_pres.$

- $-- Y_1(x)$
- $--- Y_0(x)$
- Treated
- Control

Covariate adjustment

 $y = blood_pres.$

- Treated
- Control

$$x = age$$

- Counterfactual treated
- Counterfactual control

Example of how covariate adjustment fails when there is no overlap

