Package 'Homework1'

November 11, 2013

Title Advanced Statistical Computing - Homework 1

mu

S log

Description This package contains functions for Homework 1 for Advanced

	istical Computing. It has functions for fast calculation of the beta ficients in linear regression and for the fast calculation of the multivariate normal density.
Version 1	.0
Author L	eslie Myint <1myint1@jhu.edu>
Maintain	er Leslie Myint <1myint1@jhu.edu>
Date 2013	3-11-13
License (GPL-3
Collate 'c	lmvnorm.R' 'fastlm.R'
R topic	es documented:
	Imvnorm
Index	4
dmvnor	m Fast multivariate normal density
Description	on
Fast e	valuation of the multivariate normal density
Usage	
dmvno	orm(x, mu, S, log = TRUE)
Argumen	ts
Х	The n by k matrix of points at which to evaluate the density. Each row of the

The k by k covariance matrix of the multivariate normal.

If TRUE, returns the natural logarithm of the density. If FALSE, returns the density.

matrix corresponds to one point (of dimension k). The length k vector of means of the multivariate normal.

2 fastlm

Details

This function checks that S is positive-definite. If not, the function will stop.

Value

A vector of length n containing the multivariate normal evallated at the n points of x.

Author(s)

Leslie Myint

References

Roger Peng. http://rdpeng.github.io/Biostat778_HW1/

See Also

mvrnorm

Examples

```
## Create the covariance matrix
n <- 10
n2 <- n^2
xg <- seq(0, 1, length = n)
yg <- xg
g <- data.matrix(expand.grid(xg, yg))
D <- as.matrix(dist(g))
phi <- 5

S <- exp(-phi * D)
mu <- rep(0, n2)
set.seed(1)
x <- matrix(rnorm(n2), byrow = TRUE, ncol = n2)

dmvnorm(x, mu, S, log = TRUE)</pre>
```

fastlm

Fast linear regression

Description

Efficiently calculate the beta coefficients and their variances in a standard linear model: $Y = X\beta + \epsilon$

Usage

```
fastlm(X, y, na.rm = FALSE)
```

Arguments

Χ	The design matrix of the linear model
у	The vector of observations
na.rm	Should missing values be removed? If TRUE, missing values are removed. If
	FALSE, missing values are not removed.

fastlm 3

Details

This function is designed to be faster than lm.fit. It does not perform the entire suite of tasks that lm does.

Value

coefficients A vector of the estimated beta coefficients
vcov The variance-covariance matrix of the estimated beta coefficients

Author(s)

Leslie Myint

References

Roger Peng. http://rdpeng.github.io/Biostat778_HW1/

See Also

```
lm,lm.fit
```

Examples

```
set.seed(2)
## Generate predictor matrix
n <- 1000
p <- 50
X <- cbind(1, matrix(rnorm(n * (p - 1)), n, p - 1))
## Coefficents
b <- rnorm(p)
## Response
y <- X
fit <- fastlm(X, y)</pre>
```

Index

```
dmvnorm, 1

fastlm, 2

lm, 3

lm.fit, 3

mvrnorm, 2
```