UOM Exam Second half 2021 Question paper R2019/CSC301 - Discrete Structures and Graph Theory /Sem-III / COMPUTER ENGINEERING / ARTIFICIAL INTELLIGENCE AND DATA SCIENCE / ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING / COMPUTER SCIENCE AND ENGINEERING (Artificial Intelligence and Machine Learning / COMPUTER SCIENCE AND ENGINEERING (Data Science) / COMPUTER SCIENCE AND ENGINEERING (Internet of Things and Cyber Security Including Block Chain Technology) / CYBER SECURITY / DATA **ENGINEERING / INTERNET OF THINGS** (IoT)

Dear Student,

Please note before you attempt this section of examination:

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

1.	Email *
2.	Student Name (As per exam form filled) *
3.	Seat No * Refer Hall ticket

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Page 1/5

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	How many subsets can be created for set A ={a,b,c,d}
Option A:	8
Option B:	12
Option C:	16
Option D:	20
2.	Let p be "John is happy" and q be "John is rich". Write the following in symbolic form. " John is poor but happy"
Option A:	~p^q
Option B:	~p V ~q
Option C:	~p V (p^~q)
Option D:	~q^p
3.	Let $R = \{[(1,2)(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(3,4),(4,2)]\}$, determine which property is satisfied by above relation?
Option A:	Reflexive
Option B:	Symmetric
Option C:	Transitive
Option D:	Equivalence
4.	Given the following statements pick the one that a tautology?
Option A:	$\sim p \rightarrow (q \rightarrow p)$
Option B:	(p^q)→p
Option C:	p^~q
Option D:	q →~p
5.	Planner graph is a graph in which
Option A:	Two edges of the graph intersect.
Option B:	No two edges of the graph intersect.
Option C:	All the edges of the graph intersect.
Option D:	Som e edges of the graph intersect.
6.	Group has following Properties
Option A:	Closure Associative, Inverse, Identity
Option B:	Closure, Associative, Identity, Commutative
Option C:	Closure, Associative, Identity, Inverse
Option D:	Closure, Associative, Identity element, Inverse element, Commutative

Page 2/5

7.	The transitive closure of the relation $R=\{(1,2),(2,3),(3,4)(5,4)\}$ on set $A=\{1,2,3,4,5\}$ is
Option A:	{(1,2),(2,3),(3,4),(5,4),(1,3)}
Option B:	$\{(1,2),(2,3),(3,4),(5,4),(1,3),(1,4),(2,4)\}$
Option C:	$\{(1,2),(2,3),(3,4),(5,4),(1,3),(1,4)\}$
Option D:	$\{(1,2),(2,3),(3,4),(4,5),(1,3),(1,4)\}$
8.	A is a semi group (A,*) that has an identity element.
Option A:	Cyclic group
Option B:	Lattice
Option C:	Poset
Option D:	Monoid
9.	K11 is a complete graph of 11 vertices and will haveedges.
Option A:	45
Option B:	54
Option C:	55
Option D:	42
10.	What is the identity element In the group G = {0, 1, 2, 3, 4, 5} under addition modulo 6?
Option A:	0
Option B:	1
Option C:	5
Option D:	4

Page 3/5

[5 marks each Show that R is an ned by a*b=a+b+
ned by a*b=a+b+
P/1904
[10 marks each
72
22.20%
wer
e functions.
n
6

Page 4/5

Q3		
A	Solve any Two [5 marks ea	ch]
i.	Consider the following digraph and find transitive closure using Warshall's algorithm.	
ii.	Find the generating function for the following sequences i) {1,1,1,1,1,1,} ii) {1,2,3,4,}	
iii.	Prove using Mathematical induction $1+3+5++(2k-1)=k^2$ is true.	
В	Solve any One [10 marks ex	ach
i.	Define Isomorphic Graph. Draw K6 and K3, 3 graphs. Find whether they are Isomorphic or not?	
ii.	Consider G = {1, 3, 5, 7} under the multiplication modulo 8. i) Find multiplication table of G. ii) Find 3 ⁻¹ ,5 ⁻¹ ,7 ⁻¹	
	iii) Is G cyclic Group?	

Page 5/5

Q4.	
Α	Solve any Two [5 marks each
į	Define Existential and Universal Quantifier. Let K(x): "x is a two-wheeler." L(x): "x is a scooter", M(x): "x is manufactured by Bajaj". Express the following using Quantifiers: i) Every two-wheeler is a scooter ii) There is a two-wheeler that is not manufactured by Bajaj. iii) Every two- wheeler that is a scooter is manufactured by Bajaj.
ii.	How many numbers between 1 and 500 are divisible by 3 or 5 or 7.
iii.	Define Euler Path and Euler Circuit. Check whether Euler Path, Euler Circuit exist in the following graphs.
В	Solve any One [10 marks each]
ī.	Consider the set Q of rational numbers, and let "" be the operation on Q defined by a * b = a + b - a b. i) Find 2 * 4, 5 * (-4) ii) Show that (Q, *) is a semi group. iii) I sit commutative?
ii	Give the examples of relation R on A = {1, 2, 3} having stated property. i) R is transitive but not symmetric ii) R is symmetric but not transitive iii) R is both symmetric and antisymmetric iv) R is neither symmetric nor antisymmetric. v) R is equivalence

4. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted: