

User Interaction COMPSCI2031

Dr Florian Weidner <u>Florian.Weidner@glasgow.ac.uk</u> Dr Ilyena Hirskyj-Douglas <u>ilyena.hirskyj-douglas@glasgow.ac.uk</u>

Recap: What we did last week

- Ethnography and Interviews
- Interview Task
- Reading: Ethnography in different contexts

User Interaction Topics

- HCI History and Introduction
- Usability and Heuristics

 Heuristic Evaluation and Human Cognition
- Human Perception and Capabilities
- Experimental Design & Variables Research
- Personas and Scenarios
- Surveys in HCI
- Ethnography
- 9. Statistical Methods
- 10. Theories in HCI
- 11. Models of Interaction
- 12. Large Scale and Mobile HCI
- 13. User-Centered Design
- 14. Ethics in User Testing
- 15. Revision & Example Exams

Statistics for User Studies

Lecture 9

Analysing Data from User Studies

- Providing "descriptive statistics" of quantitative data is the bare minimum in quantitative contexts (not always needed!)
 - Average, distribution, standard deviation
- Helps us to
 - make claims
 - infer causal relationships
 - hypothesis test
- Goal: Have you shown that your product is "better"?

- How to determine?
- From the types of computations possible with each measurement
- Nature of data

- Nominal / categorical
 - Labels or names
 - These could be numbers; but can't do computations with them.
 - E.g. Happy, sad labels. ID numbers
- Ordinal
 - Can put the values in a ranking, but not equally spaced
 - e.g. ordered list of favourite films
 - Can do > or < comparisons, but not valid to calculate means

- Interval
 - Equal distances between adjacent values, but no absolute zero
- Can compute mean
 - E.g., Rating scale
 - Sometimes treated as Ordinal or Interval:
 - Important to know which if you want to compute means.
 - Treating as Interval OK if options are equally spaced and centred at neutral value.

- Ratio
 - Do have absolute zero
 - e.g. time, distance, counts of events
 - Support many calculations
 - add, divide, mean, standard deviation

Population and Sample

- Limited access to Population (all)
- We use of Samples (subset)
 - → Proxy for Population
- Task Measurement
- Estimation
 - → The average result from the sample is used to estimate the average result for the entire user population.

Descriptive Statistics

Descriptive Statistics

- Measures of Central Tendency: Mean, Median, and Mode
 - The mean is simple to calculate, but also provide little (or potentially misleading) information
 - Typically only useful if normally distributed data
 - The median may differ significantly from the mean, and this can insight into the "shape" of the data
- Standard Deviation describes the spread of the data
 - Estimate of average difference of values from the mean
- Plotting distributions tells you much more than simple values

Descriptive Statistics: Central Tendency

- $Mean = \frac{sum \ of \ all}{number}$ \rightarrow mean of 2, 4, 6 is $\frac{2+4+6}{3} = 4$
- Median = middle number of sorted values of 1, 3, 5 is 3
- Mode = data point which occurs most; of 2, 2, 3, 4, 4, 4 is 4

Descriptive Statistics: Mean and Mode

- Mean (X)= (5+5+3+3)/4= 4
- Mean(Y)= (20+22+40+42)/4= 31
- Modes?
 No single mode as no repeating numbers!

X (user rating)	Y (Users age)
5	20
5	22
3	40
3	42

Standard Deviation

- Measure of how spread-out numbers are in a dataset.
- It tells you how much the numbers vary from the average (mean).
- 1. Find mean
- 2. Find difference of each value from mean
- 3. Square differences
- 4. Add up all squared differences
- 5. Average
- 6. Take square root.

Standard Deviation

- Back to our example!
- Mean (X) = 4
- Mean(Y) = 31
- SD(X) = 1
- SD(Y) = 10
- → What does this tell us?
- → Is the SD large or small?

X (user rating)	Y (Users age)
5	20
5	22
3	40
3	42

Standard Deviation and Normal Distribution

- Standard deviation?
 - Spread of data
 - Consistency
- Normal distribution?
 - Bell shaped, symmetrical curve
 - Common in nature!
- Z-Score?
 - how many sample values fall within n std devs of mean
 - $0 \rightarrow \text{value is at mean}$
 - $>0 \rightarrow$ value is above mean

•
$$z = \frac{Value - Mean}{StDev} = \frac{185 - 170}{10}$$

Standard Deviation for Evaluation Data

- Problem! → With human participants, the data is typically not normal distributed
- Error Rate?
- Outliers?
- Multimodal?

Data Skew

Central Limit Theorem

If you take many random samples from any population and calculate the mean of each sample, the distribution will be normal (bell-shaped, approximately), regardless of the original population's distribution.

Central Limit Theorem

- Technically: As the sample size approaches infinity...
- For us: > 30 (even smaller for interval data)
- Even applies to binary data! Example:
 - Completion (y/n)
 - Completion rate

Central Limit Theorem: Implications

- Many statistical hypothesis tests (e.g. t-test) assume normal distribution of data
 - If data non-normally distributed (e.g. skewed), will these tests be invalid?
 - If sample size is large enough, CLT tells us that the distribution of sample means approximate a normal distribution
 - And so, we can use these hypothesis tests!

= standard deviation of means (plural!)

For the sake of this example, imagine we weighed 5 mice.

Here's what it would look like if we plotted all 5 means on the same number line.

The standard deviation of the means is called The Standard Error.

- But we don't want to
 - run multiple experiments
 - take multiple samples!
- How we model standard error?

$$\rightarrow$$
 Estimate as: $SE = \frac{SD}{\sqrt{N}}$

Why bother? Sample vs. Population!

- Standard deviation is about variability within a single dataset
 Sample
- Standard error is about **precision** of the sample mean as an estimate
 population

t-distribution

- We cannot always know about distributions, means, SD and so on of population, only our sample
- Student's t-distribution, t-scores rather than z-scores

Hypothesis testing

Statistically significant differences.

Hypothesis Testing

- Hypothesis testing to prove something measurable about a system.
- Start with key question, e.g. is A better than B?
- Consider how you will measure "better",
 - Does using A result in faster completion times than B?
 - Does using A lead to less errors than B?
- Phrase this as a falsifiable statement,
 - e.g. There is no difference between A and B. (null hypothesis or H_0)
 - Goal: Rejecting the null hypothesis \rightarrow there's a difference

Hypothesis Testing

- We look for sufficient evidence (instead of definitive proof)
 - Science changes, often safer to say evidence rather than proof
- Evidence to reject H_0
- We use statistical test for those: there are lots!
- What are stats tests testing and telling you?
 - How likely is it that two samples are from the same distribution
 - How confident are we that they're different? → confidence interval
 - By how much are they different? → p-value ³/₂

Hypothesis Testing

- Consider an example comparing a mouse to a trackpad Null hypothesis H_0 : There is no difference between user performance in using these two input devices for an object selection task.
- Collect data about user performance for both devices.
- Perform hypothesis testing.
- See if we can reject null hypothesis H_0 or not
 - Reject H0 → there is probably a difference
 - Fail to reject H0

 there's probably no difference (but we don't know)
- How to do this test?

Hypothesis Testing: T-Tests

- There are many different tests. One of the most common is t-test
- Assumptions it makes:
 - Data follows a normal distribution
 - Data drawn from interval/ratio data
- What it does:
 - Compares sample means
 - Computes our p-value p-value
 - Computes confidence interval (CI)

- Value between 0 and 1 (percentage)
- Lots of confusion about this! Careful!
- "How likely it is to get this results if the H_0 is true." or "How likely is it that difference is by chance?" or "Low p means the null hypothesis unlikely to be true."
- In HCI: if < 0.05, less than [★] 5% [★] chance that difference is by chance
 → we reject H₀

reliability of the estimated mean

Hypothesis Testing: Errors

- Remember: H_0 = no difference
- p: Likelihood that difference is by chance.
- Type 1: False Positive Acting on something that is not real.
- Type 2: False Negative
 Missing something that is real.

Errors in Statistical Testing

- Type 1 and 2 errors can never be avoided entirely
 - > can reduce their likelihood by increasing sample size.
- Much of statistical theory is around avoided these two types of errors
- Statistical tests by nature are probabilistic
 - → we cannot know for certain whether conclusions are correct
- Significance level can help with Type 1* (False Positives) with
 - → 5% chance of incorrectly rejecting the true null hypothesis
- Adjusting significance level: reducing one increases the other

Correlations

Relationships between two variables

Correlations: Relationships between two variables

You only need to know what it means, not how

- Correlation coefficient (Pearson's r) → measures statistical relationship between two variables: X and Y
- E.g., from surveys you can get
 - X = rating of user satisfaction
 - Y = user age
- Measures relationship strength and direction (positive or negative).
- Practically, we will compute sample correlation coefficient

- $S_{X,Y} = \sum_{i=1}^{N} (x_i \bar{x})(y_i \bar{y})$ → Sum of product of differences from mean
- $S_{X,X} = \frac{1}{N} \sum_{i=1}^{N} (x_i \bar{x})^2$ → Sum of squares for X
- $S_{Y,Y} = \frac{1}{N} \sum_{i=1}^{N} (y_i \bar{y})^2$ → Sum of squares for Y
- $\rightarrow r(X,Y) = \frac{S_{X,Y}}{\sqrt{S_{XX}S_{YY}}}$

 $\bar{x} = mean \ of \ all \ x'$ $x_i = i'th \ x \ value \ (individual \ x)$ N = sample size

Comparing Correlation Plots

- Correlation coefficient (r) is between -1 to 1.
- 1 means perfect positive correlation, -1 means perfect negative correlation, and 0 means no correlation.

• Positive

• Positive

• Positive

No Correlation

Questions? Comments? Concerns?

User Interaction Topics

- HCI History and Introduction
- Usability and Heuristics
- Heuristic Evaluation and Human Cognition
- Human Perception and Capabilities
- Experimental Design & Variables Research
- Personas and Scenarios
- Surveys in HCI
- Ethnography
- Statical Methods
- Theories in HCI
- Models of Interaction
- Large Scale and Mobile HCI
- User-Centered Design
- Ethics in User Testing
- Revision & Example Exams

Statistics Task

- Calculate:
 - The average user satisfaction
 - The variability or spread UX
 - Typical user satisfaction
 - Most frequent UX rating
- For 1.-4., assign mode, mean, median, and standard deviation to each of the above.
- Calculate Pearson's r and describe what it means
- Post results in Teams chats ©

Fictional Dataset:

Participant ID	User Satisfaction Rating	User Experience UX
1	5	10
2	5	8
3	4	9
4	2	8
5	2	4

Statistics Task: Class Discussion

- https://www.statskingdom.com/ correlation-calculator.html
- https://www.socscistatistics.com/ /tests/pearson/default2.aspx

Reading

- Reading: Sauro & Lewis, Quantifying User Experience: Appendix A
 Crash Course in Fundamental Statistical Concepts File (whole chapter)
- https://www.sciencedirect.com/science/article/pii/B9780128023082 000126