Matthew Mendoza Assignment Math45-Homework-WEEK-09 due 10/31/2020 at 11:59pm PDT

2. (1 point) The function $y_1(x) = \ln|7x|$ is a solution to the differential equation xy'' + y' = 0. Use reduction of order to find another solution y_2 to this differential equation.

(If you need ln, use absolute value signs. For example, $\ln|\operatorname{input}|$.)

 $y_2 =$ _____ help (formulas)

 $y_2 =$ help (formulas)

3. (1 point) Find the two values of m for which

$$y(x) = e^{mx}$$

is a solution of the differential equation

$$y'' - 4y' + 3y = 0.$$

smaller value = ____ larger value = ____

4. (1 point) Find the general solution to 3y'' + y' = 0. Enter your answer as $y = \dots$. In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

help (equations)

5. (1 point) Find the general solution to 6y'' + 18y' - 24y = 0. Enter your answer as $y = \dots$. In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

_____ help (equations)

 $Generated\ by\ \textcircled{\textcircled{o}} We BWorK,\ http://webwork.maa.org,\ Mathematical\ Association\ of\ America$

6. (1 point) Find the general solution to y'' + 12y' + 36y = 0. Enter your answer as $y = \dots$. In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

_____ help (equations)

7. (1 point) Find the general solution to 2y'' + 8y = 0. Give your answer as $y = \dots$. In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

__ help (equations)

8. (1 point) Find the general solution to y'' + 4y' + 29y = 0. Give your answer as $y = \dots$ In your answer, use c_1 and c_2 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 and c_2 as c_2 .

_____ help (equations)

9. (1 point) Find the general solution to y''' + 3y'' + 25y' - 29y = 0. Give your answer as y = In your answer, use c_1 , c_2 , and c_3 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 , c_2 as c_2 , and c_3 as c_3 .

(Hint: Note $m^3 + 3m^2 + 25m - 29 = (m-1)(m^2 + 4m + 29)$.)

_ help (equations)

10. (1 point) Find the general solution to $y^{(4)} - 7y''' + 10y'' = 0$. In your answer, use c_1, c_2, c_3 and c_4 to denote arbitrary constants and x the independent variable. Enter c_1 as c_1 , c_2 as c_2 , etc.

____ help (equations)

11. (1 point) Find the particular solution to y'' + 4y' + 4y = 0 which satisfies the initial conditions y(0) = 2 and y'(0) = 2. Enter your answer as $y = \dots$. In your answer, use x to denote the independent variable.

help (equations)

1

Second order linear homogeneous differential equation with constant coefficients A second order linear, homogeneous ODE has the form of av'' + bv' + cv = 0

For an equation ay'' + by' + cy = 0, assume a solution of the form $e^{\gamma t}$

 $3((e^{\gamma t}))'' + ((e^{\gamma t}))' = 0$

Simplify $3((e^{\gamma t}))^{\prime\prime} + ((e^{\gamma t}))^{\prime} = 0$: $e^{\gamma t}(3\gamma^2 + \gamma) = 0$

 $e^{\gamma t}(3\gamma^2 + \gamma) = 0$

Solve $e^{\gamma t}(3\gamma^2 + \gamma) = 0$: $\gamma = 0, \gamma = -\frac{1}{2}$

 $\gamma = 0, \gamma = -\frac{1}{2}$

For two real roots $\gamma_1 \neq \gamma_2$, the general solution takes the form: $y = c_1 e^{\gamma_1 \, l} + c_2 e^{\gamma_2 \, l}$

 $c_1e^0 + c_2e^{-\frac{1}{3}t}$

 $y = c_1 + c_2 e^{-\frac{c}{3}}$

$$6y'' + 18y' - 24y = 0$$
: $y = c_1 e^f + c_2 e^{-4t}$

Steps

6v'' + 18v' - 24v = 0

A second order linear, homogeneous ODE has the form of av'' + bv' + cv = 0

For an equation ay'' + by' + cy = 0, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $v = e^{\gamma t}$

 $6((e^{\gamma t}))'' + 18((e^{\gamma t}))' - 24e^{\gamma t} = 0$

Simplify $6\left(\left(e^{\gamma t}\right)\right)^{\prime\prime} + 18\left(\left(e^{\gamma t}\right)\right)^{\prime} - 24e^{\gamma t} = 0$: $e^{\gamma t}\left(6\gamma^2 + 18\gamma - 24\right) = 0$

 $e^{\gamma t}(6\gamma^2 + 18\gamma - 24) = 0$

Solve $e^{\gamma t}(6\gamma^2 + 18\gamma - 24) = 0$: $\gamma = 1, \gamma = -4$

For two real roots $\gamma_1 \neq \gamma_2$, the general solution takes the form: $y = c_1 e^{\gamma_1 t} + c_2 e^{\gamma_2}$

 $y = c_1 e^t + c_2 e^{-4t}$

Q3

SOLUTION:

For $y(x)=e^{mx}$ we have $y'(x)=me^{mx}$ and $y''(x)=m^2e^{mx}$. Plugging these into the differential equation y''-4y'+3y=0 gives

Steps

y''' + 3y'' + 25y' - 29y = 0

 $m^2 e^{mx} - 4me^{mx} + 3e^{mx} = 0$

or

Since $e^{mx} \neq 0$ for any x we have

 $(m^2 - 4m + 3) = 0.$

 $(m^2 - 4m + 3) e^{mx} = 0.$

Noting that this is

(m-1)(m-3)=0

or solving the quadratic formula, we find m=1,3.

y'' + 12y' + 36y = 0: $y = c_1 e^{-6t} + c_2 t e^{-6t}$ Steps v'' + 12v' + 36v = 0

Second order linear homogeneous differential equation with constant coefficients A second order linear, homogeneous ODE has the form of ay'' + by' + cy = 0

For an equation ay'' + by' + cy = 0, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $y = e^{\gamma t}$

 $((e^{\gamma t}))^{\prime\prime} + 12((e^{\gamma t}))^{\prime} + 36e^{\gamma t} = 0$

$$\text{Simplify}\left(\left(\textbf{e}^{\gamma t}\right)\right)^{\prime\prime} \ + 12\Big(\left(\textbf{e}^{\gamma t}\right)\right)^{\prime} \ + 36\textbf{e}^{\gamma t} = 0: \quad \textbf{e}^{\gamma t}\Big(\gamma^2 + 12\gamma + 36\Big) = 0$$

 $e^{\gamma t} \left(\gamma^2 + 12\gamma + 36 \right) = 0$

Solve $e^{\gamma t} (\gamma^2 + 12\gamma + 36) = 0$: $\gamma = -6$ with multiplicity of 2

 $\gamma = -6$ with multiplicity of 2

For one real root γ , the general solution takes the form: $y = c_1 e^{\gamma t} + c_2 t e^{\gamma t}$

 $y = c_1 e^{-6t} + c_2 t e^{-6t}$

2v'' + 8v = 0

 $\text{Simplify}\left(\left(e^{\gamma t}\right)\right)^{\prime\prime\prime} + 3\left(\left(e^{\gamma t}\right)\right)^{\prime\prime} \\ + 25\left(\left(e^{\gamma t}\right)\right)^{\prime\prime} \\ - 29e^{\gamma t} = 0; \quad e^{\gamma t}\left(\gamma^3 + 3\gamma^2 + 25\gamma - 29\right) = 0$ $e^{\gamma t}(\gamma^3 + 3\gamma^2 + 25\gamma - 29) = 0$ Solve $e^{\gamma t}(\gamma^3 + 3\gamma^2 + 25\gamma - 29) = 0$: $\gamma = 1, \gamma = -2 + 5i, \gamma = -2 - 5i$ y = 1, y = -2 + 5i, y = -2 - 5iShow Stens Find solution for $\gamma = 1$: $c_1 e^t$ The general solution has the form of $y=y_1+y_2+...+y_{n-1}+y_n$ where $y_1,y_2,...,y_{n-1},y_n$ $y = c_1 e^t + e^{-2t} (c_2 \cos(5t) + c_3 \sin(5t))$ y''''(t) - 7y''' + 10y'' = 0: $y = c_1e^{2t} + c_2e^{5t} + c_3 + c_4t$

A linear homogeneous ODE with constant coefficients has the form of $a_{ny}^{(n)} + ... + a_{1y}' + a_{0y} = 0$

y''' + 3y'' + 25y' - 29y = 0: $y = c_1e^t + e^{-2t}(c_2\cos(5t) + c_3\sin(5t))$

Linear homogeneous differential equation with constant coefficients

 $((e^{\gamma t}))^{\prime\prime\prime} + 3((e^{\gamma t}))^{\prime\prime\prime} + 25((e^{\gamma t}))^{\prime} - 29e^{\gamma t} = 0$

For an equation $a_{\rm B} y^{(n)} + \ldots + a_{\rm L} y^{'} + a_0 y = 0$, assume a solution of the form $e^{\gamma t}$

2y'' + 8y = 0: $y = c_1 \cos(2t) + c_2 \sin(2t)$ Steps

Second order linear homogeneous differential equation with constant coefficient A second order linear, homogeneous ODE has the form of ay'' + by' + cy = 0

For an equation ay'' + by' + cy = 0, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $v = e^{\gamma t}$

 $2((e^{\gamma t}))'' + 8e^{\gamma t} = 0$

Simplify $2(e^{\gamma t})'' + 8e^{\gamma t} = 0$: $e^{\gamma t}(2\gamma^2 + 8) = 0$

 $e^{\gamma t}(2\gamma^2 + 8) = 0$

Solve $e^{\gamma t}(2\gamma^2 + 8) = 0$: $\gamma = 2i, \gamma = -2i$

y = 2i, y = -2i

For two complex roots $\gamma_1 \neq \gamma_2$, where $\gamma_1 = \alpha + i \beta$, $\gamma_2 = \alpha - i \beta$ the general solution takes the form: $y=e^{\alpha\,t}(c_1\cos(\beta\,t)+c_2\sin(\beta\,t))$

 $e^{0}(c_{1}\cos(2t) + c_{2}\sin(2t))$

Steps y''''(t) - 7y''' + 10y'' = 0Linear homogeneous differential equation with constant coefficients A linear homogeneous ODE with constant coefficients has the form of $a_n y^{(n)} + ... + a_1 y' + a_0 y = 0$ For an equation $a_n y^{(n)} + ... + a_1 y^{'} + a_0 y = 0$, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $y = e^{\gamma t}$ $((e^{\gamma t}))^{\prime\prime\prime\prime} - 7((e^{\gamma t}))^{\prime\prime\prime} + 10((e^{\gamma t}))^{\prime\prime\prime} = 0$ $\text{Simplify}\left(\left(\mathbf{e}^{\gamma t}\right)\right)^{\prime\prime\prime\prime}-7{\left(\left(\mathbf{e}^{\gamma t}\right)\right)^{\prime\prime\prime\prime}}+10{\left(\left(\mathbf{e}^{\gamma t}\right)\right)^{\prime\prime\prime}}=0;\quad \mathbf{e}^{\gamma t}{\left(\gamma^4-7\gamma^3+10\gamma^2\right)}=0 \qquad \text{Show Steps } \mathbf{\Theta}$ $e^{\gamma t} (\gamma^4 - 7\gamma^3 + 10\gamma^2) = 0$ Show Steps 0 Solve $e^{\gamma t} (\gamma^4 - 7\gamma^3 + 10\gamma^2) = 0$: $\gamma = 0$ with multiplicity of $2, \gamma = 2, \gamma = 5$ $\gamma = 0$ with multiplicity of 2, $\gamma = 2$, $\gamma = 5$ Show Steps • Find solution for $\gamma=2,$ $\gamma=5$: $c_1e^{2t}+c_2e^{5t}$ Show Steps O Find solution for $\gamma=0$ with multiplicity of 2: c_3+c_4t The general solution has the form of $y=y_1+y_2+...+y_{n-1}+y_n$ where $y_1,y_2,...,y_{n-1},y_n$ are linearly independent solutions of the equation $y = c_1 e^{2t} + c_2 e^{5t} + c_3 + c_4 t$

 $y = c_1 \cos(2t) + c_2 \sin(2t)$ y'' + 4y' + 29y = 0: $y = e^{-2t}(c_1\cos(5t) + c_2\sin(5t))$ Steps v'' + 4y' + 29y = 0A second order linear, homogeneous ODE has the form of ay'' + by' + cy = 0

For an equation av'' + bv' + cv = 0, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $y = e^{\gamma t}$

 $((e^{\gamma t}))^{\prime\prime} + 4((e^{\gamma t}))^{\prime} + 29e^{\gamma t} = 0$

Simplify $((e^{\gamma t}))^{\prime\prime} + 4((e^{\gamma t}))^{\prime} + 29e^{\gamma t} = 0$: $e^{\gamma t}(\gamma^2 + 4\gamma + 29) = 0$

 $e^{\gamma t}(\gamma^2 + 4\gamma + 29) = 0$

Solve $e^{\gamma t}(\gamma^2 + 4\gamma + 29) = 0$: $\gamma = -2 + 5i$, $\gamma = -2 - 5i$

For two complex roots $\gamma_1 \neq \, \gamma_2$, where $\gamma_1 = \alpha + i \, \beta, \, \gamma_2 = \alpha - i \, \beta$ the general solution takes the form: $y = e^{\alpha t} (c_1 \cos(\beta t) + c_2 \sin(\beta t))$

 $y = e^{-2t} (c_1 \cos(5t) + c_2 \sin(5t))$

 $m^2e^{mx} + 4me^{mx} + 4e^{mx} = 0$ $(m^2 + 4m + 4)e^{mx} = 0.$ Since $e^{\mathbf{m} x}
eq 0$ for any x we have that $m^2 + 4m + 4 = 0$, $(m+2)^2 = 0$ We note that this is a real repeated root. Therefore, $y_1=e^{-2x}$ is a solution and $y = c_1 e^{-2x} + c_2 x e^{-2x}$ Now we solve the initial value problem. Note that $y'(x) = -2c_1e^{-2x} + c_2e^{-2x} - 2c_2xe^{-2x}$ = $e^{-2x}(c_2 - 2c_2x - 2c_1)$. $2 = c_1 + c_2(0) = c_1$ $2 = c_2 - 2c_1 = c_2 - (2)(2)$ $c_2 = 2 + (2)(2) = 6$ Thus, the desired particular solution is

 $y = 2e^{-2x} + 6xe^{-2x}$

Solution

500001	
$3y'' + y' = 0$: $y = c_1 + c_2 e^{-\frac{t}{3}}$	
Steps	
3y'' + y' = 0	
Second order linear homogeneous differential equation with constant coefficients	
A second order linear, homogeneous ODE has the form of $ay'' + by' + cy = 0$	
· · · · · · · · · · · · · · · · · · ·	
For an equation $ay'' + by' + cy = 0$, assume a solution of the form $e^{\gamma t}$ Rewrite the equation with $y = e^{\gamma t}$	
Rewrite the equation with $y = e^{yt}$ $3((e^{yt}))^{t} + ((e^{yt}))^{t} = 0$	
$3((e^{ir}))^{rr} + ((e^{ir}))^r = 0$	
Simplify $3((e^{\gamma t}))'' + ((e^{\gamma t}))' = 0$: $e^{\gamma t}(3\gamma^2 + \gamma) = 0$	Hide Steps 🖨
$3((e^{\gamma t}))'' + ((e^{\gamma t}))' = 0$	
$(e^{\gamma t})^{\prime\prime} = \gamma^2 e^{\gamma t}$	Show Steps 🗗
$3\gamma^2 e^{\gamma t} + \left(e^{\gamma t}\right)' = 0$	
$(e^{\gamma t})' = e^{\gamma t} \gamma$	Hide Steps 🖨
$(e^{\gamma t})'$	
Apply the chain rule: $e^{\gamma t}(\gamma t)'$	Show Steps 🕒
$=e^{\gamma t}(\gamma t)'$	
$(\gamma t)' = \gamma$	Show Steps 🕒
$=e^{\gamma t}\gamma$	
$3\gamma^2 e^{\gamma t} + e^{\gamma t} \gamma = 0$	
Factor $e^{\gamma t}$	
$e^{\gamma t}(3\gamma^2 + \gamma) = 0$	
$e^{\gamma t} (3\gamma^2 + \gamma) = 0$	
Solve $e^{\gamma t} (3\gamma^2 + \gamma) = 0$: $\gamma = 0, \gamma = -\frac{1}{3}$	Show Steps 🗗
$\gamma = 0, \gamma = -\frac{1}{3}$	
For two real roots $\gamma_1 \neq \gamma_2$, the general solution takes the form: $y=c_1e^{\gamma_1t}+c_2e^{\gamma_2t}$	
$c_1 e^0 + c_2 e^{-\frac{1}{3}t}$	
Refine	
$y = c_1 + c_2 e^{-\frac{t}{3}}$	