复几何

曲豆豆 码字 南七技校福利社 五道口分社 2019年4月18日 第01稿

图:中国科学技术大学西校区-也西湖雪景 拍摄于 2015.1.28 - 11:30

本课程参考以下教材:

- 1. Demailly: Complex analytic and differential geometry.
- 2. Huybrechts: Complex geometry: an introduction.
- 3. Morrow, Kodaira: Complex manifolds.
- 4. Grauert, Remmert: Coherent analytic sheaves.
- 5. Hormander: An introduction to complex analysis in several variables.
- 6. Griffiths, Harris: Principles of algebraic geometry.

在五道口也要红专并进、理实交融呀~

目录

1	多复变函数		
	1.1	多元全纯函数	3
	1.2	解析延拓与 Hartogs 现象	8
2	层与层上同调 1:		
	2.1	层的上同调	12
	2.2	Cech 上同调	15
3	Hermite 向量丛		
	3.1	联络与曲率	24
	3.2	向量丛的构造	28
	3.3	陈省身示性类	29
	3.4	Hermite 向量丛	32
4	L^2 F	Hodge 理论	38
	4.1	向量丛上的微分算子	38
	4.2	椭圆算子的基本性质	40
	4.3	紧黎曼流形的 Hodge 理论	
	4.4	Kähler 流形	49
	4.5	紧复流形上的 Hodge 理论	
	4.6	紧 Kahler 流形的上同调群	

第1章 多复变函数

1.1 多元全纯函数

首先快速回顾单复变函数的知识。我们通常用 Ω 来表示 $\mathbb C$ 的开子集,z=x+iy 为 $\mathbb C$ 的坐标。对于 $z\in\mathbb C$ 以及实数 R>0,我们令

$$\mathbb{D}(z,R) := \{ w \in \mathbb{C} | |w - z| < R \}$$

为以 z 为圆心 R 为半径的开圆盘。

此外,我们有如下常用记号:

$$\begin{cases} dz := dx + idy \\ d\bar{z} := dx - idy \end{cases} \begin{cases} \frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \end{cases}$$

对于函数 $f: \Omega \to \mathbb{C}$,称 f 是**全纯** (holomorphic) 的,若在 Ω 中成立

$$\bar{\partial}f := \frac{\partial f}{\partial \bar{z}} d\bar{z} = 0$$

我们知道,f 是全纯的当且仅当 f 在 Ω 处处能够局部地展开为收敛幂级数。

对于 $\mathbb C$ 中的紧致集 K,称函数 $f:K\to\mathbb C$ 是全纯的,如果存在 K 的开邻域 $\Omega\supseteq K$,使得 f 可延拓为 Ω 上的全纯函数。

单复变函数论中有如下重要结果:

定理 1.1.1. (柯西积分公式) 设 $\mathbb{D} \subseteq \mathbb{C}$ 为 \mathbb{C} 中的开圆盘, $f: \mathbb{D} \to \mathbb{C}$ 为 \mathbb{D} 上的全纯函数, 且 在 $\partial \mathbb{D}$ 连续, 则对于任意 $w \in \mathbb{D}$, 成立

$$f(w) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{f(z)}{z - w} dz$$

此定理能推导出单变量全纯函数理论的"almost everything".这里不再赘述。 我们开始考虑多变量全纯函数。 定义 1.1.2. 设 $\Omega \subseteq \mathbb{C}^n$ 为 \mathbb{C}^n 的开子集,函数 $f:\Omega \to \mathbb{C}$ 称为(多变量)全纯函数,如果满足以下条件:

- (1) f 是连续函数;
- (2) 对任意 $1 \le j \le n$,以及任意固定的 $z_1,...,z_{j-1};z_{j+1},...,z_n \in \mathbb{C}$,关于 z_j 的单变量函数

$$z_i \mapsto f(z_1, ..., z_{i-1}; z_i; z_{i+1}, ..., z_n)$$

是(单变量)全纯函数。

事实上,如果该定义中的(2)成立,那么能推出(1)成立,也就是说此定义中的(1)可以去掉。其证明比较复杂,我们承认之。

记号 1.1.3. 对于 \mathbb{C}^n 的开子集 Ω , 我们记

容易知道 $\mathcal{O}(\Omega)$ 有显然的 \mathbb{C} -代数结构。

本节将说明,多变量全纯函数具有一些与单变量全纯函数类似的性质。

记号 1.1.4. 对于 $z=(z_1,z_2,...,z_n)\in\mathbb{C}^n$ 以及 $R=(R_1,R_2,...,R_n)\in\mathbb{R}^n$,并且 $R_j>0$ ($\forall 1\leq j\leq n$),则我们记

$$\mathbb{D}(z,R) := \mathbb{D}(z_1,R_1) \times \mathbb{D}(z_2,R_2) \times \cdots \times \mathbb{D}(z_n,R_n)$$

称为以z为中心,R为半径的多圆柱(polydisk)。

对于多圆柱 $\mathbb{D}(z,R)$, 我们记

$$\Gamma(z,R) := \partial \mathbb{D}(z_1,R_1) \times \partial \mathbb{D}(z_2,R_2) \times \cdots \times \partial \mathbb{D}(z_n,R_n)$$

称为 $\mathbb{D}(z,R)$ 的特征边界(distinguished boundary)。

特别注意特征边界 $\Gamma(z,R)$ 并不等于该多圆柱的边界 $\partial \mathbb{D}(z,R)$.

定理 1.1.5. (多变量全纯函数的柯西积分公式)

设 $f: \overline{\mathbb{D}(z,R)} \to \mathbb{C}$ 为全纯函数,则对任意的 $w \in \mathbb{D}(z,R)$,成立

$$f(w) = \frac{1}{(2\pi i)^n} \int_{\Gamma(z,R)} \frac{f(\xi) d\xi_1 d\xi_2 \cdots d\xi_n}{(\xi_1 - w_1)(\xi_2 - w_2) \cdots (\xi_n - w_n)}$$

证明. 由多变量全纯函数的定义, 反复使用单变量全纯函数的柯西积分公式即可。这是容易的。

与单复变函数完全类似,我们也有泰勒展开:

推论 1.1.6. (多元全纯函数的泰勒展开公式)

对于 $f \in \mathcal{O}(\Omega)$, 其中 $\Omega \subseteq \mathbb{C}^n$ 为开子集,则对于任何多圆柱 $\mathbb{D}(z_0,R)$, 如果 $\overline{\mathbb{D}(z_0,R)} \subseteq \Omega$, 则对于任意 $w \in \mathbb{D}(z_0,R)$,成立

$$f(w) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} (w - z_0)^{\alpha}$$

其中

$$a_{\alpha} = \frac{1}{(2\pi i)^n} \int_{\Gamma(z_0,R)} \frac{f(z)}{(z-z_0)^{\alpha+1}} dz_1 dz_2 \cdots dz_n = \frac{f^{(\alpha)}(z_0)}{\alpha!}$$

注意这里的 α 为多重指标, 即 $\alpha = (\alpha_1, ..., \alpha_n)$, 其中每个 α_i 都为非负整数。我们记

$$z^{\alpha} := z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$$

$$\alpha! := \alpha_1! \alpha_2! \cdots \alpha_n!$$

$$f^{(\alpha)} := (\partial_{z_1})^{\alpha_1} (\partial_{z_2})^{\alpha_2} \cdots (\partial_{z_n})^{\alpha_n} f$$

$$\alpha + 1 := (\alpha_1 + 1, \alpha_2 + 1, ..., \alpha_n + 1)$$

其中 $z = (z_1, ..., z_n) \in \mathbb{C}^n$, f 为 n 元全纯函数。

证明. 与单复变函数的情形完全类似,可由柯西积分公式得到。

定理 1.1.7. (柯西不等式)对于 \mathbb{C}^n 的开子集 Ω , 若 $f \in \mathcal{O}(\Omega)$, 多圆柱 $\overline{\mathbb{D}(z_0,R)} \subseteq \Omega$, 则对任意多重指标 $\alpha \in \mathbb{N}^n$, 成立

$$\left|f^{(\alpha)}(z_0)\right| \leq \frac{\alpha!}{R^{\alpha}} \sup_{z \in \Gamma(z_0,R)} |f(z)|$$

证明. 与单复变函数的情形完全类似。利用多元泰勒展开(推论1.1.6)即可。

推论 1.1.8. 设 $\Omega \subseteq \mathbb{C}^n$ 为连通开集, $f \in \mathcal{O}(\Omega)$ 满足 $\forall 1 \leq k \leq n$, $\frac{\partial f}{\partial z_k}$ 在 Ω 上恒为 0, 则 f 在 Ω 上为常值函数。

推论 1.1.9. (刘维尔定理) 设 $f \in \mathcal{O}(\mathbb{C}^n)$, 并且满足

$$|f(z)| \le A(1+|z|)^B$$

其中 A,B 为正实数,那么 f 必为次数不超过 B 的多项式函数。

这些性质于单变量全纯函数雷同,证明也是类似的。

推论 1.1.10. (Montel 定理)

设 Ω 为 \mathbb{C}^n 的开子集,则 $\mathcal{O}(\Omega)$ 中的任何局部一致有界的全纯函数列都存在一致收敛的子列。

证明. 仍类似于单复变全纯函数的情形。使用柯西积分公式,再配合 Arzela-Ascoli 定理即可。从略。

现在,简单介绍一些复的微分形式。对于 \mathbb{C}^n ,记其复坐标为 $(z_1, z_2, ..., z_n)$; 视 \mathbb{C}^n 为 2n 维实线性空间,

$$z_k = x_k + iy_k$$

从而引入

$$dz_k = dx_k + idy_k \qquad (1,0)$$
形式

$$d\bar{z}_k = dx_k - idy_k$$
 (1,0)形式

定义 1.1.11. ((p,q)-形式)

设 Ω 为 \mathbb{C}^n 的非空开集,则形如

$$u(z) = \sum_{\substack{|I|=p\\|J|=q}} a_{IJ}(z) dz_I \wedge d\overline{z}_J$$

的光滑张量场称为 (p,q)-形式。记 Ω 上的 (p,q)-形式之全体为 $C_{p,q}^{\infty}(\Omega)$.

这里的 I,J 为多重指标。"光滑"指的是系数函数 a_{IJ} 为 Ω 上的光滑复值函数。另外,显然 (0,0)-形式即为光滑函数; $C^{\infty}_{p,q}(\Omega)$ 具有显然的复线性空间结构,事实上还是 $C^{\infty}(\Omega)$ -模。

记号 1.1.12. ($\bar{\partial}$ -算子) 定义算子

$$\overline{\partial}: C^{\infty}_{p,q}(\Omega) \to C^{\infty}_{p,q+1}(\Omega)$$

如下: 对于 (p,q)-形式

$$u:=\sum_{\stackrel{|I|=p}{|I|=q}}a_{IJ}\mathrm{d}z_I\wedge\mathrm{d}\overline{z}_J$$

则

$$\overline{\partial}u = \sum_{\substack{|I|=p\\|I|=q}} \sum_{k=1}^{n} \frac{\partial a_{IJ}}{\partial \overline{z}_{k}} d\overline{z}_{k} \wedge dz_{I} \wedge d\overline{z}_{J}$$

类似地,也有

$$\partial: C^{\infty}_{p,q}(\Omega) \to C^{\infty}_{p+1,q}(\Omega)$$

它们与外微分算子 d 满足关系

$$d = \partial + \overline{\partial}$$

由 $d^2 = 0$, 易知

$$\partial^2 = 0$$
, $\overline{\partial}^2 = 0$, $\partial \overline{\partial} + \overline{\partial} \partial = 0$

以下事实显然成立:

引理 1.1.13. 对于区域 Ω 上的光滑函数 $f \in C^{\infty}(\Omega)$, 则 f 全纯当且仅当 $\overline{\partial} f = 0$.

注记 1.1.14. (Dolbeault 上同调) 对于 $\Omega \subseteq \mathbb{C}^n$, 注意 $\overline{\partial}^2 = 0$, 从而对任意 $p \geq 0$, 有上链复形 $C^{\infty}_{p,\bullet}(\Omega)$:

$$\cdots \to C^{\infty}_{p,q-1}(\Omega) \xrightarrow{\bar{\partial}} C^{\infty}_{p,q}(\Omega) \xrightarrow{\bar{\partial}} C^{\infty}_{p,q+1}(\Omega) \to \cdots$$

称上同调群

$$H^{p,q}(\Omega) := H^q(C^{\infty}_{p,\bullet}(\Omega), \overline{\partial})$$

为区域 Ω 的 *Dolbeault* 上同调群。

类似于外微分 d 的 de-Rham 上同调群,Dolbeault 上同调群与 Ω 的拓扑联系密切。例如,以下定理十分重要,我们先陈述,以后再证明:

引理 1.1.15. (Dolbeault-Grothendieck 引理)

设 $\mathbb{D} \subseteq \mathbb{C}^n$ 为多圆柱,则对于任意 $p,q \ge 0$,

$$H^{p,q}(\Omega) = 0$$

不难发现它与 de Rham 上同调的 Poincare 引理有些类似。

1.2 解析延拓与 Hartogs 现象

上一节介绍了多复变函数的一些"普通的"(与单变量类似)性质,本节开始介绍多复变函数的一些独特性质。

引理 1.2.1. 设 $f \in C_c^\infty(\mathbb{C})$ 为复平面上的紧支光滑函数,则对任意 $z \in \mathbb{C}$,成立

$$\frac{1}{2\pi i} \iint_{C} \frac{\partial f/\partial \overline{\tau}}{\tau - z} d\tau \wedge d\overline{\tau} = f(z)$$

证明. 基本的微积分练习。考虑换元 $\tau = z + re^{i\theta}$,则易知

$$d\tau \wedge d\overline{\tau} = -2irdr \wedge d\theta$$

$$\frac{\partial r}{\partial \overline{\tau}} = \frac{1}{2}e^{i\theta}$$

$$\frac{\partial \theta}{\partial \overline{\tau}} = -\frac{1}{2ir}e^{i\theta}$$

因此有

$$\begin{split} \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\partial f/\partial \overline{\tau}}{\tau - z} \mathrm{d}\tau \wedge \mathrm{d}\overline{\tau} &= \frac{-1}{2\pi} \int_{0}^{\infty} \mathrm{d}r \int_{0}^{2\pi} \left(-\frac{1}{ir} \frac{\partial f}{\partial \theta} (z + re^{i\theta}) \right) \mathrm{d}\theta \\ &+ \frac{-1}{2\pi} \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{\infty} \left(\frac{\partial f}{\partial r} (z + re^{i\theta}) \right) \mathrm{d}r \\ &= 0 + \frac{-1}{2\pi} \int_{0}^{2\pi} -f(z) \mathrm{d}\theta \\ &= f(z) \end{split}$$

证毕。

引理 1.2.2. (简单版本的 $\bar{\partial}$ -引理)

设 $n \geq 2$, $\varphi \in C_{0,1}^{\infty}(\mathbb{C}^n)$ 为具有紧支集的光滑 (0,1)-形式,且 $\overline{\partial}\varphi = 0$,则存在 \mathbb{C}^n 上的紧支光滑函数 g,使得

$$\bar{\partial}g = \varphi$$

证明. 记光滑 (0,1)-形式 φ 为

$$\varphi = \sum_{k=1}^{n} \varphi_k(z_1, ..., z_n) d\overline{z}_k$$

则

$$ar{\partial} arphi \ = \ \sum_{k,l} rac{\partial arphi_k}{\partial \overline{z}_l} \mathrm{d} \overline{z}_l \wedge \mathrm{d} \overline{z}_k = \sum_{1 \leq l \leq k \leq n} \left(rac{\partial arphi_k}{\partial \overline{z}_l} - rac{\partial arphi_l}{\partial \overline{z}_k}
ight) \mathrm{d} \overline{z}_l \wedge \mathrm{d} \overline{z}_k$$

从而由 $\bar{\partial}\varphi = 0$ 可得对任意 $k \neq l$,

$$\frac{\partial \varphi_k}{\partial \overline{z}_l} = \frac{\partial \varphi_l}{\partial \overline{z}_k}$$

考虑如下的 \mathbb{C}^n 上的函数 ψ : 对于 $z = (z_1, ..., z_n) \in \mathbb{C}^n$,

$$\psi(z) := \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\varphi_1(\tau; z_2, ..., z_n)}{\tau - z_1} d\tau \wedge d\overline{\tau}$$

由 φ_1 的紧支性易知 ψ 为 \mathbb{C}^n 上的光滑函数。对于 $1 < k \le n$,有

$$\frac{\partial \psi(z)}{\partial \overline{z}_{k}} = \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\frac{\partial \varphi_{1}}{\partial \overline{z}_{k}}(\tau; z_{2}, ..., z_{n})}{\tau - z_{1}} d\tau \wedge d\overline{\tau}
= \frac{1}{2\pi i} \iint_{\mathbb{C}} \frac{\frac{\partial \varphi_{k}}{\partial \overline{\tau}}(\tau; z_{2}, ..., z_{n})}{\tau - z_{1}} d\tau \wedge d\overline{\tau}
= \varphi_{k}(z)$$

上式对 k=1 显然也成立。因此 $\overline{\partial}\psi=\varphi$.

最后还需要证明 ψ 是紧支的。由于 φ 紧支,存在足够大的 R > 0,使得

$$\operatorname{supp} \varphi \subseteq \mathbb{D}(0,R)$$

因此任意取定 $z \in \mathbb{C}^n$,使得 z 的分量 $z_2, z_3, ..., z_n$ 之中至少有一个模长大于 R,则由 ψ 的定义式直接得到 $\psi(z) = 0$. (注意: 这一步严重依赖 $n \geq 2!$) 也就是说,存在 $z \notin \mathbb{D}(0,R)$ 使得 $\psi = 0$ 在 z 的某邻域内都成立。另一方面,由于 $\overline{\partial}\psi = \varphi$ 且 $\sup \varphi \subseteq \mathbb{D}(0,R)$,从而 ψ 在 $\mathbb{D}(0,\mathbb{R})$ 外部全 纯,因此由解析延拓唯一性, ψ 在 $\mathbb{D}(0,R)$ 外部恒为零,因此 ψ 紧支。

此引理在单复变 n=1 的情形**不成立**:

例子 1.2.3. 设 $\varphi_1 \in C_0^\infty(\mathbb{C})$ 为复平面上的紧支光滑函数,并且

$$\iint_{\mathbb{C}} \varphi_1(z) \neq 0$$

考虑 $\mathbb C$ 上的 (0,1)-形式 $\varphi=\varphi_1(z)d\overline{z}$,则 $\overline{\partial}\varphi=0$ 是平凡的,但不存在紧支光滑函数 ψ 使得 $\overline{\partial}\psi=\varphi$.

证明. 若存在紧支光滑函数 ψ 使得 $\overline{\partial}\psi=\varphi$,则 $\frac{\partial\psi}{\partial\overline{z}}=\varphi_1$. 于是

$$0 \neq \iint_{\mathbb{C}} \varphi_1(z) dz \wedge d\overline{z} = \iint_{\mathbb{C}} \frac{\partial \psi}{\partial \overline{z}} dz \wedge d\overline{z} = 0$$

产生矛盾。

以下是多复变函数解析延拓的令人惊讶的性质,它与单复变函数有本质不同:

定理 1.2.4. (Hartogs 现象)

设 $\Omega \subseteq \mathbb{C}^n$ 为开集 $(n \ge 2)$, $K \subset \Omega$ 且为 \mathbb{C}^n 的紧子集,则对任意的 $f \in \mathcal{O}(\Omega \setminus K)$,都存在解析延拓 $F \in \mathcal{O}(\Omega)$,使得

$$F|_{\Omega \setminus K} = f$$

证明. 取 $K 与 \Omega$ 直接的截断函数 $\psi \in C_0^{\infty}(\mathbb{C}^n)$, 使得 $0 \le \psi \le 1$,

$$K \subset\subset \operatorname{supp} \psi \subset\subset \Omega$$

并且 $\psi|_K \equiv 1$. 考虑

$$\widetilde{f} := (1 - \psi)f$$

则 \tilde{f} 在整个 Ω 上都有定义。注意

$$\overline{\partial}\widetilde{f} = -(\overline{\partial}\psi)f + (1-\psi)\overline{\partial}f$$

易知 $\operatorname{supp} \bar{\partial} \widetilde{f} \subseteq \operatorname{supp} \psi$. 于是由引理1.2.2,存在光滑函数 v,使得 $\operatorname{supp} v \subseteq \psi$,并且 $\bar{\partial} v = \bar{\partial} \widetilde{f}$,从 而考虑函数

$$F := (1 - \psi)f - v$$

则 $\bar{\partial}F = 0$,从而 $F \in \mathcal{O}(\Omega)$. 又因为易知

$$F = f \quad (\forall z \in \Omega \setminus \operatorname{supp} \psi)$$

从而由解析延拓唯一性,有 $F_{\Omega \setminus K} = f$.

关于解析延拓,再介绍如下结果:

引理 1.2.5. (Hartogs figure)

对于 n>1, 正实数 0< r< R, 以及 \mathbb{C}^{n-1} 的开子集 $\omega'\subseteq\omega$, 记 \mathbb{C}^n 的开子集

$$\Omega := ((\mathbb{D}(0,R) \setminus \mathbb{D}(0,r)) \times \omega) \cup (\mathbb{D}(0,R) \times \omega')$$

其中 $\mathbb{D}(0,r)$ 与 $\mathbb{D}(0,R)$ 分别为 \mathbb{C} 上的以原点为中心,r,R 为半径的开圆盘。则任意 $f\in\mathcal{O}(\Omega)$ 都可以(唯一地)解析延拓至

$$\widetilde{\Omega} := \mathbb{D}(0, R) \times \omega$$

如此的区域 Ω 称之为 "Hartogs figure"。 Ω 的几何图像大致如下:

图: Hartogs figure 示意

证明. 容易知道

$$\Omega = \left\{ (z_1, \widetilde{z}) \in \mathbb{C} \times \mathbb{C}^{n-1} \middle| r < |z_1| < R, \widetilde{z} \in \omega$$
或者 $|z_1| \le r, \widetilde{z} \in \omega' \right\}$

对于 $f \in \mathcal{O}(\Omega)$, 定义 $\widetilde{\Omega}$ 上的函数

$$\widetilde{f}(z_1,\widetilde{z}) := \frac{1}{2\pi i} \int_{|w|=\rho} \frac{f(w,\widetilde{z})}{z_1 - w} dw$$

其中 ρ 为满足 $\max\{r,|z_1|\}<\rho< R$ 的任意实数。则易知如此定义的 \widetilde{f} 为 f 在 $\widetilde{\Omega}$ 上的解析延拓。

第2章 层与层上同调

2.1 层的上同调

Today:

Sheaf cohomology

X a topological space, \mathcal{F} - sheaf (of abelian groups).

定义 2.1.1. (resolution)

(1)a resolution of \mathcal{F} is an exact sequence

$$0 \to \mathcal{F} \xrightarrow{j} \mathcal{F} \xrightarrow{d^0} \mathcal{F} \xrightarrow{d^1} \to \cdots$$

定义 2.1.2. A sheaf \mathcal{A} is called injective, if if for any injective morphism $j: \mathcal{A} \to \mathcal{B}$ and for any morphism $\varphi: \mathcal{A} \to \mathcal{S}$, there exists an extension $\psi: \mathcal{B} \to \mathcal{S}$,such that

定理 2.1.3. the category of sheaves of abelian sheaves have enough injective objects, i.e. any \mathcal{F} can be embedded in some injective sheaf.

定义 2.1.4. Consider an injective resolution of \mathcal{F} , i.e. an exact sequence

$$0 \to \mathcal{F} \to \mathcal{I}^0 \xrightarrow{d} \mathcal{I}^1 \xrightarrow{d} \mathcal{I}^2 \to \cdots$$

where every $\mathcal{I}^k(k \geq 0)$ is injective.

*∞*induces a sequence

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{I}^0) \xrightarrow{d} \Gamma(X, \mathcal{I}^1) \xrightarrow{d} \Gamma(X, \mathcal{I}^2) \to \cdots$$

Then

$$H^q(X,\mathcal{F}) := H^q(\Gamma(X,\mathcal{I}^{\bullet}))$$

then, $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F})$.

定义 **2.1.5.** A sheaf S is called a flabby (flasque ,in France) ,if for any open set $\Omega \subseteq X$, the morphism

$$S(X) \to S(\Omega)$$

is surjective.

定义 2.1.6.

$$0 \to \mathcal{F} \xrightarrow{j} \mathcal{F}^0 \xrightarrow{d^0} \to \mathcal{F}^1$$

is an exact sequence is called a flabby resolution, if any \mathcal{F}^k is flabby.

定义 2.1.7.

$$H^q(X,\mathcal{F}) := ...by flabby resolution...$$

证明. Homological Algebra...omit.

the two definitions of Sheaf Cohomology are isomorphic.

Godement's construction

$$God(\mathcal{F})(U) := \{ f : U \to \bigcup_{x \in U} \mathcal{F}_x | f(y) \in \mathcal{F}_y, \forall y \in U \} := \prod_{x \in U} \mathcal{F}_x$$

 $God(\mathcal{F})$ is a sheaf, and it is flabby. and there is a canonical morphism $\mathcal{F}(U) \to God(F)(U)$ by $x \mapsto (x \mapsto s_x)$ is injective.

$$\mathcal{F}^0:=\textit{God}(\mathcal{F})$$

$$0 \to \mathcal{F} \xrightarrow{j} \mathcal{F}^0 \twoheadrightarrow \operatorname{coker}(j) = \mathcal{F}^0 / \mathcal{F}$$

and consider

$$\mathcal{F}^1 := God(\operatorname{coker}(j))$$

.....then construct by induction... this is a flabby resolution of \mathcal{F} .

定义 2.1.8. (resolution by fine sheaves)

 \mathcal{A} is a sheaf of ring, X is a paracompact topological space, \mathcal{A} is called a fine sheaf, if for any open covering

$$X = \bigcup_{lpha} V_{lpha} \quad , \mathcal{V} := \{V_{lpha}\}$$

there exists a partition of unit subordinate to V, (i.e. $\exists f_{\alpha} \in \mathcal{A}(V_{\alpha})$, $supp(\alpha) := \overline{\{x \in V_{\alpha} | f_{\alpha,x} \neq 0\}} \subseteq V_{\alpha}$, and $\sum_{\alpha} f_{\alpha} = 1$ (the sum is locally finite))

例子 2.1.9. X is a differential manifold, C^{∞} is the sheaf of smooth functions, then C^{∞} is a fine sheaf.

定理 **2.1.10.** S is a sheaf of A-modules, A is a fine sheaf. then for any $q \geq 1$,

$$H^q(X,\mathcal{S})=0$$

证明. Consider a flabby(or injective) resolution

$$0 \to \mathcal{S} \xrightarrow{j} \mathcal{I}^0 \xrightarrow{d} \mathcal{I}^1 \xrightarrow{d} \mathcal{I}^2 \cdots$$

where any $\mathcal{I}^k(k \geq 0)$ is a sheaf of \mathcal{A} -modules.

by definition,

$$H^{q}(X, mS) := \frac{\ker d : \Gamma(\mathcal{I}^{q}) \to \Gamma(\mathcal{I}^{q+1})}{\Im d : \Gamma(\mathcal{I}^{q-1}) \to \Gamma(\mathcal{I}^{q})}$$

Let $\alpha \in \ker\{d : \Gamma(\mathcal{I}^q) \to \Gamma(\mathcal{I}^{q+1})\}$ by the exactness of resolution, \exists an open covering $\mathcal{U} = (\mathcal{U}_i)_i$, s.t. $\alpha|_{\mathcal{U}_i} = d\beta_i$ where $\beta_i \in \mathcal{T}^{q-1}(\mathcal{U}_i)$. Let $(\beta_i)_i$ be the partition of unit w.r.t. \mathcal{U} . consider

$$\beta := \sum_{i} f_i \beta_i$$

(well defined). Then $d\beta = \alpha$

2.2 Cech 上同调

Cech cohomology

X- a topological space, \mathcal{F} - a sheaf of abelian group.

$$\mathcal{U} = (U_{\alpha})_{\alpha \in I}$$

is an open covering.

notation: $U_{\alpha_1,...,\alpha_q} := \bigcap_{i=1}^q U_{\alpha_i}$.

Cech q-chain w.r.t \mathcal{U} :

$$C^q(\mathcal{U},\mathcal{F}) := \prod_{(\alpha_1,\ldots,\alpha_q)\in\mathcal{I}^{q+1}} \mathcal{F}(U_{\alpha_1,\ldots,\alpha_q})$$

$$c \in C^q(\mathcal{U}, \mathcal{F})$$

means that we have a family of sections $C_{\alpha_1,\dots,\alpha_q}\in\mathcal{F}(U_{\alpha_1,\dots,\alpha_q})$ with the relation

$$C_{\alpha_0,\ldots,\alpha_j,\ldots,\alpha_i,\ldots} = -C_{\ldots}$$

(C)ech differential:

$$\delta^q:C^q(\mathcal{U},\mathcal{F})\to C^{q+1}(\mathcal{U},\mathcal{F})$$

$$\delta^q(c)_{lpha_0,...,lpha_{q+1}} := \sum_{0 \le k \le q+1} (-1)^k c_{...\hat{lpha_k}...}|_{U_{lpha_0,...,lpha_{q+1}}}$$

性质 2.2.1.

$$\delta^q \circ \delta^q = 0$$

so, we have Cech cohomology

$$H^q(\mathcal{U}, \mathcal{F}) := \ker \delta^q / \operatorname{Im} \delta^{q-1}$$

example:

$$C^0(\mathcal{U},\mathcal{F}) := \prod_{\alpha \in I} \mathcal{F}(U_\alpha)$$

$$c = (c_{\alpha})_{\alpha \in I} \in C^{0}(\mathcal{U}, \mathcal{F})$$

$$\delta^0 c = 0 \iff (\delta^0 c)_{\alpha_0 \alpha_1} := (c_{\alpha_1} - c_{\alpha_0})|_{U_{\alpha_0 \alpha_1}} = 0$$

so,
$$c_{\alpha_0} = c_{\alpha_1}$$
 on $U_{\alpha_0 \alpha_1}$.
 $\leadsto H^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X)$.

例子 2.2.2. (1) consider $X = \triangle \setminus \{0\}$, where $\triangle = \{(z_1, z_2) | |z_1| < 1, |z_2| < 1\}$. Consider the covering

$$\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$$

where

$$U_1 := \{(z_1, z_2) \in \triangle | z_1 \neq 0\} = \mathbb{D}^* \times \mathbb{D}$$

 $U_2 := \{(z_1, z_2) \in \triangle | z_2 \neq 0\} = \mathbb{D} \times \mathbb{D}^*$

then

$$U_1 \cap U_2 = \mathbb{D}^* \times \mathbb{D}^*$$

 $\operatorname{consider} H^0(X,\mathcal{O}) = \mathcal{O}(X) \cong \mathcal{O}(\triangle) = \{f: \triangle \to \mathbb{C} \operatorname{holomorphic}\}.$

$$H^{1}(\mathcal{U},\mathcal{O}) = \ker \delta^{1} / \operatorname{Im} \delta^{0}$$
$$\delta^{1} : C^{1}(\mathcal{U},\mathcal{O}) \to C^{2}(\mathcal{U},\mathcal{O}) \subseteq \prod_{\alpha_{0},\alpha_{1},\alpha_{2}} \mathcal{O}(U_{\alpha_{0},\alpha_{1},\alpha_{2}}) = 0$$

 $\ker \delta^1 = C^1(\mathcal{U}, \mathcal{O}) = \{c = c(\alpha_0, \alpha_1) | c_{\alpha_0, \alpha_1} \in \mathcal{O}(U_{\alpha_0 \alpha_1})\} = \{c \in \mathcal{O}(U_1 \cap U_2)\} = \{c = \sum_{m,n \in \mathbb{Z}} a_{mn} z_1^m z_2^n convergent\}$

$$\delta^0: C^0(\mathcal{U}, \mathcal{O}) \to C^1(\mathcal{U}, \mathcal{O})$$
$$(\delta^0 c)_{12} = (c_2 - c_1)|_{\mathcal{U}_{12}}$$

where $c_2 \in \mathcal{O}(U_2)$ and $c_1 \in \mathcal{O}(U_1)$. note that

$$\mathcal{O}(U_1) = \{c(z_1, z_2) = \sum_{m \in \mathbb{Z}, n > 0} a_{mn} z_1^m z_2^n convergent\}$$

$$\mathcal{O}(U_2) = \{c(z_1, z_2) = \sum_{n \in \mathbb{Z}, m \ge 0} a_{mn} z_1^m z_2^n convergent\}$$

So,
$$H^1(\mathcal{U}, \mathcal{O}) = \{c(z_1, z_2) = \sum_{m,n < 0} a_{mn} z_1^m z_2^n \}$$

例子 2.2.3. (complex projective space)

$$\mathbb{C}P^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$$
$$(z_0, ..., z_n) \sim \lambda(z_0, ..., z_n)$$

for some $\lambda \in \mathbb{C}^*$.

$$\mathbb{C}P^n = \{ [z_0, ..., z_n] | not \ all \ z_k = 0, z_i \in \mathbb{C} \} = \bigcup_{0 \le p \le n} V_k$$

where

$$V_k = \{[z_0, ..., z_n] | z_k \neq 0\} \cong \{(\frac{z_0}{z_k}, ..., 1, ..., \frac{z_n}{z_k}) | z_i \in \mathbb{C}, i \neq k, z_k \neq 0\} \cong \mathbb{C}^n$$

this is a holo chart.

$$\mathbb{C}P^1 = V_0 \cup V_1, \mathcal{V} = \{V_0, \mathcal{V}_1\}$$

HW: compute $H^q(\mathcal{V}, \mathcal{O})$.

Answer:

$$H^0 \cong \mathbb{C}, H^1 \cong 0$$

Correction:

 \mathcal{A} : Sheaf of rings (with unit)

X: paracompact topological space,

定义 2.2.4. \mathcal{A} is called fine, if for any open covering $\mathcal{U} = (V_{\alpha})_{\alpha \in \mathcal{I}}$, there exist $s_{\alpha} \in \mathcal{A}(X)$ such that supp $(s_{\alpha}) \subseteq V_{\alpha}$,

$$\sum_{\alpha} s_{\alpha} = 1$$

(this is a locally finite sum)

注记 2.2.5. we call A is a **soft sheaf**, if for any closed set $K \subseteq X$, the morphism

$$\mathcal{A}(X) \to \mathcal{A}(K)$$

is surjective. where $A(K) := \Gamma(K, A|_K)$

fact: \mathcal{A} is fine if and only if $\mathcal{H}om(\mathcal{A},\mathcal{A})$ is soft. (omit)

Recall:

Cech cohomology: X topological space, $\mathcal{U} = (U_{\alpha})_{\alpha \in \mathcal{I}}$,

$$C^{q}(\mathcal{U},\mathcal{F}) = \prod_{\alpha_0 < ... < \alpha_q} \mathcal{F}(\alpha_1,...,\alpha_q)$$

$$\delta^q:C^q(\mathcal{U},\mathcal{F})\to C^{q+1}(\mathcal{U},\mathcal{F})$$

fact: $H^0(\mathcal{U}, \mathcal{F}) = \Gamma(X, \mathcal{F})$.

Today:

定义 2.2.6. Let $V = (V_{\beta})_{\beta \in J}$ be another open covering, then V is called a refinement of U, if there exists a map

$$\rho: \mathcal{J} \to \mathcal{I}$$

such that

$$V_{\beta} \subseteq U_{\rho(\beta)}$$

性质 2.2.7. Let V be a refinement of U, then ρ induces a map

$$\rho^q: C^q(\mathcal{U}, \mathcal{F}) \to C^q(\mathcal{V}, \mathcal{F})$$

$$(\rho^q C)_{\beta_0,\ldots,\beta_q} \mapsto C_{\rho(\beta_0),\ldots,\rho(\beta_q)}|_{V_{\beta_0,\ldots,\beta_q}}$$

 ρ is a morphism of complexes.

so, ρ induces a map

$$H^q(\rho): H^q(\mathcal{U}, \mathcal{F}) \to H^q(\mathcal{V}, \mathcal{F})$$

Let $\tilde{\rho}: \mathcal{J} \to \mathcal{I}$ be another refinement of \mathcal{U}

(induces $H^q(\tilde{\rho}): H^q(\mathcal{U}, \mathcal{F}) \to H^q(\mathcal{V}, \mathcal{F})$) then $\rho, \tilde{\rho}$ are homotopic (chain homotopy $\leadsto H^q(\rho) = H^q(\tilde{\rho})$)

so, if $\rho: \mathcal{J} \to \mathcal{I}$ is refinement, then

$$H^q(\rho)$$

is independent of the refinement.

定义 2.2.8.

$$\check{H}^q(X,\mathcal{F}) := \lim_{\stackrel{\rightarrow}{\mathcal{U}}} H^q(\mathcal{U},\mathcal{F})$$

i.e. $a \in H^q(\mathcal{U}, \mathcal{F}) \sim \in H^q(\mathcal{V}, \mathcal{F})$ iff \exists a refinement \mathcal{W} of \mathcal{U} and \mathcal{V} such that a, b have the same image in $H^q(\mathcal{W}, \mathcal{F})$

注记 2.2.9.

$$\check{H}^0(X,\mathcal{F}) = \Gamma(X,\mathcal{F})$$

Exercise: For q = 1, if V is a refinement of U, then

$$H^1(\mathcal{U},\mathcal{F}) \to H^1(\mathcal{V},\mathcal{F})$$

 $is\ injective.$

so ,for any open cover \mathcal{U} ,

$$H^1(\mathcal{U},\mathcal{F}) \to \check{H}^1(X,\mathcal{F})$$

is injective.

Homological Algebra recall: let (K^{\bullet}, d_k) , (L^{\bullet}, d_l) and (M^{\bullet}, d_M) , if we have a short exact sequence

$$0 \to K^{\bullet} \xrightarrow{\varphi} L^{\bullet} \xrightarrow{\psi} M^{\bullet} \to 0$$

then it induces a long exact sequence :

$$\cdots \to H^q(K^{\bullet}) \to H^q(L^{\bullet}) \to H^q(M^{\bullet}) \to H^{q+1}(K^{\bullet}) \to \cdots$$

analogy of Cech cohomology: X is a topological space, \mathcal{U} is an open covering of X. \mathcal{A} and \mathcal{B} sheaves on X, Let

$$\varphi:\mathcal{A}
ightarrow\mathcal{B}$$

be a morphism, then it induces

$$\varphi^{\bullet}: C^{\bullet}(\mathcal{U}, \mathcal{A}) \to C^{\bullet}(\mathcal{U}, \mathcal{B})$$

Let

$$0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$$

be an exact sequence of sheaves, then we have: for any open set Ω ,

$$0 \to \mathcal{A}(\Omega) \to \mathcal{B}(\Omega) \to \mathcal{C}(\Omega)$$

left exact.

Example: consider

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{exp} 0$$

is exact on $bbC^{\times} := \mathbb{C} \setminus \{0\}$

but we have:

$$0 \to \mathcal{A}(\Omega) \xrightarrow{\psi} \mathcal{B}(\Omega) \to \operatorname{Im} \psi(\Omega) \to 0$$

is exact.

First we have the following exact sequence

$$C^q(\mathcal{U},\mathcal{A}) \to C^q(\mathcal{U},\mathcal{B}) \to C^q_{\mathcal{B}}(\mathcal{U},\mathcal{C}) \to 0$$

where $C^q_{\mathcal{B}}$ is the image of \dots

then we get an exact sequence

$$0 \to (C^{\bullet}(\mathcal{U}, \mathcal{A}), \delta) \to (C^{\bullet}(\mathcal{U}, \mathcal{B}), \delta) \to (C^{\bullet}_{\mathcal{B}}(\mathcal{U}, \mathcal{C}), \delta) \to 0$$

it induces a long exact sequence

$$\cdots \to H^q(\mathcal{U}, \mathcal{A}) \to H^q(\mathcal{U}, \mathcal{B}) \to H^q_\mathcal{B}(\mathcal{U}, \mathcal{C}) \to H^{q+1}(\mathcal{U}, \mathcal{A}) \to \cdots$$

定理 2.2.10. If X is paracompact,

$$0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$$

is a sheaf exact sequence. Then there is a long exact sequence

$$\cdots \to \check{H}^q(X,\mathcal{A}) \to \check{H}^q(X,\mathcal{B}) \to \check{H}^q(X,\mathcal{C}) \to \check{H}^{q+1}(X,\mathcal{Z}) \to \cdots$$

证明. Key lemma: need to prove

$$\lim_{\stackrel{\rightarrow}{\mathcal{U}}} H^q(\mathcal{U},\mathcal{C}) = \lim_{\stackrel{\rightarrow}{\mathcal{U}}} H^q_{\mathcal{B}}(\mathcal{U},\mathcal{C})$$

if X is paracompact.

Omit. \Box

if

$$0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$$

exact,

recall:(cohomology by resolutions)

$$0 \to \mathcal{A} \to \mathcal{F}^0 \to \mathcal{F}^1 \to \cdots$$

flabby resolution. then it induces

$$0 \to \Gamma(X, \mathcal{A}) \to \Gamma(X, \mathcal{F}^0) \to \Gamma(X, \mathcal{F}^1) \to \cdots$$

then define the sheaf cohomology...

we have a long exact sequence

$$\cdots \to H^q(X,\mathcal{A}) \to H^q(X,\mathcal{B}) \to H^q(X,\mathcal{C}) \to H^{q+1}(X,\mathcal{A}) \to \cdots$$

it is homological algebra...

定理 2.2.11. (Leray's acyclic theorem) Let $\mathcal{U} = (U_{\alpha})_{\alpha \in \mathcal{I}}$ be an open covering of X, (\mathcal{F} is a sheaf on X), if satisfying

$$H^k(U_{\alpha_0,\ldots,\alpha_a})=0$$

for any $k \geq 1$, then

$$H^q(\mathcal{U},\mathcal{F}) \cong \check{(}H)^q(X,\mathcal{F})$$

and if X is paracompact, we also have

$$H^q(\mathcal{U},\mathcal{F})\cong \check{(}H)^q(X,\mathcal{F})\cong H^q(X,\mathcal{F})$$

(this \mathcal{U} is called acyclic covering)

de Rham- Weil theorem

定义 2.2.12. \mathcal{F} is a sheaf on X, Ω is an open set of X, then \mathcal{F} is called **acyclic sheaf** if

$$H^q(\Omega, \mathcal{F}) = 0$$

for any $q \geq 1$.

定理 2.2.13. Let

$$0 \to \mathcal{F} \to (L^{\bullet}, \mathbf{d})$$

be an acyclic resolution of \mathcal{F} (i.e. L^q is acyclic on X) then

$$H^q(X, \mathcal{F}) \cong H^q(\Gamma(X, L^{\bullet}), d)$$

for any $q \geq 0$.

(先看例子)

例子 2.2.14. Let X be a differential manifold, \mathcal{E}^p : sheaf of smooth p-forms, then we have a resolution (de Rham complex)

$$0 \to \mathbb{R} \hookrightarrow \mathcal{E}^0 \xrightarrow{d} \mathcal{E}^1 \xrightarrow{d} \mathcal{E}^2 \xrightarrow{d} \mathcal{E}^3 \to \cdots$$

where d differential operators. (Why it is a resolution? because of Poincare lemma...locally solvable..)

Note that

$$\mathcal{E}^0 = \mathcal{C}^{\infty}$$

 \mathcal{E}^p is a sheaf of C^{∞} -modules..

then we have

$$H^q(X, \mathcal{E}^p) = 0$$

for all $q \geq 1$

and then

$$H^{q}(X,\mathbb{R}) \cong \frac{\ker(\mathsf{d}:\Gamma(X,\mathcal{E}^{q}) \to \Gamma(X,\mathcal{E}^{q+1}))}{\operatorname{Im}(\mathsf{d}:\Gamma(X,\mathcal{E}^{q-1}) \to \Gamma(X,\mathcal{E}^{q}))} = H^{q}_{DR}(X,\mathcal{R})$$

例子 2.2.15. Let X be a complex manifold, $\mathcal{E}^{p,q}$ sheaf of smooth (p,q) forms, Ω^p is the sheaf of holomorphic p-forms (i.e. (p,0)-form φ with $\bar{\partial}\varphi=0$).

Then we have resolution

$$0 \to \Omega^p \xrightarrow{j} \mathcal{E}^{p,0} \xrightarrow{\bar{\partial}} \mathcal{E}^{p,1} \xrightarrow{\bar{\partial}} \mathcal{E}^{p,2} \to \cdots$$

(Why it is a resolution? because of the Dolbeault lemma), remain to Exercise...

$$H^q(X,\Omega^p)\cong H^{p,q}_{\overline{\partial}}(X,\mathbb{C})$$

Today: de Rham-Weil Isomorphism Thm

定理 2.2.16. Let X be a topological space, \mathcal{F} be a sheaf of abelian groups on X,

$$0 \to \mathcal{F} \to (\mathcal{L}^{\bullet}, d)$$

be an acyclic resolution, i.e.

$$H^k(X, \mathcal{L}^q) = 0$$

for all $k \ge 1$ and $q \ge 0$. Then,

$$H^q(X,\mathcal{F}) \cong H^q((\Gamma(\mathcal{L}^{\bullet}),d))$$

证明. Since

$$0 \to \mathcal{F} \xrightarrow{j} \mathcal{L}^0 \xrightarrow{d^0} \mathcal{L}^1 \xrightarrow{d^1} \mathcal{L}^2 \to \cdots$$

be an exact sequence, denote

$$\mathcal{Z}^q := \ker d^q$$

then we have short exact sequences

$$0 \to \mathcal{Z}^q \to \mathcal{L}^q \to \mathcal{Z}^{q+1} \to 0$$

for any q. They induce long exact sequence of cohomology groups:

$$\cdots \to H^k(X, \mathcal{Z}^q) \to H^k(X, \mathcal{L}^q) \to H^k(X, \mathcal{Z}^{q+1}) \xrightarrow{\partial} H^{k+1}(X, \mathcal{L}^q) \to H^{q+1}(X, \mathcal{L}^q) \to \cdots$$

For any $k \geq 1$, since \mathcal{L}^q are acyclic on X,

$$H^k(X, \mathcal{Z}^{q+1}) \cong H^{k+1}(X, \mathcal{Z}^q)$$

and for k = 0, we have

$$0 \to H^0(X, \mathcal{Z}^q) \to H^0(X, \mathcal{L}^q) \to H^0(X, \mathcal{Z}^{q+1}) \to H^1(X, \mathcal{Z}^q) \to H^1(X, \mathcal{L}^q) = 0 \to \cdots$$

so,

$$H^1(X, \mathcal{Z}^q) \cong H^0(X, \mathcal{Z}^{q+1}) / \operatorname{Im} d^q \cong H^{q+1}((\Gamma(\mathcal{L}^{\bullet}), d))$$

$$H^{q+1}(\Gamma(\mathcal{L}^{\bullet})) \cong H^1(X, \mathcal{Z}^q) \cong H^2(X, \mathcal{Z}^{q-1}) \cong \cdots H^{q+1}(X, \mathcal{Z}^0) = H^{q+1}(X, \mathcal{F})$$

$$0 \to \mathbb{R} \to \mathcal{E}^0 \xrightarrow{d} \mathcal{E}^1 \xrightarrow{d} \mathcal{E}^2 \to \cdots$$

(de Rham resolution) then we have

$$H^k(X,\mathcal{R}) \cong H^k_{DR}(X;\mathcal{R})$$

(if X is compact , then by Hodge theory, it also isomorphic to $\ker(dd^* + d^*d)$) Another example: X is a complex manifold, then

$$0 \to \Omega^p \to \mathcal{E}^{p,0} \xrightarrow{\overline{\partial}} \mathcal{E}^{p,1} \xrightarrow{\overline{\partial}} \mathcal{E}^{p,2} \to \cdots$$

then

$$H^q(X,\Omega^p)\cong H^{p,q}_{\overline{\partial}}(X,\mathbb{C})$$

(RHS= Dolbeault cohomology)

X be a smooth manifold, we define

 $C_q(X,\mathbb{Z}) :=$ the free abelian group generated by continuous map

$$\phi: \triangle_q := \{(t_1, ..., t_{q+1}) \in [0, 1]^{q+1} | \sum_{i=1}^n t_i = 1\}$$

and we define (for $\phi \in C_q(X, \mathbb{Z})$)

$$\partial \phi := \sum_{i=1}^{q+1} (-1)^q \phi|_{ riangle_{q,i}}$$

$$\triangle_{q,i} := \{ t \in \triangle_q | t_i = 0 \}$$

we define

$$(C_{sing}^{\bullet},\partial)$$

be the dual complex of (C^{sing}_{\bullet}) , ∂ .

(These are all Basic Algebraic Topology)

For any open $U \subseteq X$, we have

$$U \to C^q_{sing}(U, \mathbb{Z})$$

we get a sheaf

$$\mathcal{C}^q_{sing}$$

FACT: $(C_{sing}^{\bullet}, \partial)$ is a flabby resolution of \mathbb{Z} . (check!)So,

$$H_{sing}^{q}(X,\mathbb{Z}) = H^{q}(\Gamma(\mathcal{C}_{sing}^{\bullet}),\partial) \cong H^{q}(X,\mathbb{Z})$$

第3章 Hermite 向量丛

3.1 联络与曲率

Recall: X is a smooth manifold, E is a vector bundle of rank r, if

- $(1)\pi: E \to X$ is smooth map,
- (2)for any $x \in X$, $E_x := \pi^{-1}(x)$ is a vector space over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) of dimension r.
- (3)there an open covering $\mathcal{U} = (\mathcal{U}_{\alpha})_{\alpha \in I}$ and trivializations

$$\theta_{\alpha}: E|_{U_{\alpha}} \cong U_{\alpha} \times \mathbb{K}^r$$

and for any intersection $U_{\alpha} \cap U_{\beta}$, we have

注记 3.1.1.

$$g_{\alpha\beta} = g_{\beta\alpha}^{-1}$$

$$g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}=1$$

(cocycle condition)

Special Case: line bundle rank E=1.

then $g_{\alpha\beta} \in C^{\infty}(U_{\alpha\beta}, \mathbb{K}^*) = \mathcal{E}^*(U_{\alpha\beta})$ invertible smooth function on $U_{\alpha\beta}$. then, Cech cohomology,

$$(\delta g)_{\alpha\beta\gamma} = g_{\beta\gamma}g_{\alpha\gamma}^{-1}g_{\alpha\beta} = 1$$

so,

$$(g_{\alpha,\beta}) \in \mathcal{Z}^1(\mathcal{U},\mathcal{E}^*) \twoheadrightarrow H^1(\mathcal{U},\mathcal{E}^*) \hookrightarrow \check{H}^1(X,\mathcal{E}^*)$$

we get a map

$$\{\text{line bundles}\} \to \check{H}^1(X, \mathcal{E}^*)$$

actually, we have

$$\{\text{isomorphic classes of line bundles}\}\longleftrightarrow H^1(X,\mathcal{E}^*)$$

1-1 correspondence.

Now, X be a complex manifold, a complex vector bundle E is called homomorphic, if ... the transition matrix $g_{\alpha\beta}$ is holomorphic...

Holomorphic line bundles:

$$g_{\alpha\beta} \in \mathcal{O}^*(U_{\alpha\beta})$$

 \mathcal{O}^* :sheaf of invertible holomorphic functions...

FACT: there is a map

 $\{\text{holomorphic line bundle}\} \to \check{H}^1(X, \mathcal{O}^*)$

例子 3.1.2. trivial vector bundle $X \times \mathbb{K}^r$

例子 3.1.3. Tangent bundle TX. (transition matrix $g_{\alpha\beta}$ are given by Jacobi matrix..)

定义 3.1.4. (Local frame of vector bundles)

$$\theta_{\alpha}: E|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{K}^r$$

be a trivialization, we define

$$e_{\lambda}(x) := \theta_{\alpha}^{-1}(x, \begin{pmatrix} 0 \\ \dots \\ 1(\leftarrow ith) \\ \dots \\ 0 \end{pmatrix})$$

then, $\{e_1,...,e_r\}$ be a local smooth section $s \in \Gamma(U_\alpha,E)$ can be written as

$$s(x) = \sum \sigma_{\lambda}(x)$$

where $\sigma_{\lambda} \in C^{\infty}(U_{\alpha}, \mathbb{K})$.

(Connection)

记号 3.1.5. For X be a smooth manifold, E is a vector bundle(real or complex), denote

$$C_n^k(\Omega, E) := C^k(\Omega, \bigwedge^p T^*M \otimes E)$$

is the space of k-differential p-forms with values in E.

Locally, consider a trivialization of E,

$$\theta_{\alpha}E|_{U_{\alpha}}\cong U_{\alpha}\times\mathbb{K}^r$$

 $(\rightsquigarrow frame\ (e_1,...e_r))$

$$s \in \sum \varphi_{\lambda}(x) \otimes e_{\lambda}(x)$$

where φ_{λ} is a p-form.

定义 3.1.6. a (linear) connection on E is a linear differential operator of order 1 acting on $C^{\infty}_{\bullet}(X, E)$:

$$D: C_p^{\infty}(X, E) \to C_{p+1}^{\infty}(X, E)$$

$$D(f \wedge x) := \mathrm{d}f \wedge s + (-1)^p f \wedge Ds$$

where $f \in C^{\infty}(X, \bigwedge^p T^*M)$, $s \in C^{\infty}(X, E)$.

Locally, consider a local trivialization

$$\theta: E|_{\Omega} \xrightarrow{\sim} \Omega \times \mathbb{K}^r$$

with a frame $\{e_1,...,e_r\}$. any section $t\in C_p^\infty(\Omega,E)$ can be written as

$$t = \sum_{1 \le \lambda \le r} \sigma_{\lambda} \otimes e_{\lambda}$$

$$Ds = \sum_{\lambda=1}^{r} d\sigma_{\lambda} \wedge e_{\lambda} + (-1)^{p} \sigma_{\lambda} \wedge De_{\lambda}$$

where

$$De_{\lambda} \in C_1^{\infty}(\Omega, E)$$

can be written as

$$De_{\lambda} = \sum_{\mu=1}^{r} a_{\mu\lambda} \otimes e_{\mu}$$

where " $a_{\mu\lambda}$ " is called the coefficients of D with respect to frame $\{e_1,...,e_r\}$.

so,

$$D(t) = \sum_{\lambda,\mu} d\sigma_{\lambda} \wedge e_{\lambda} + (-1)^{p} \sigma_{\lambda} \wedge a_{\mu\lambda} \wedge e_{\mu} = \sum_{\mu} \sum_{\lambda} (d\sigma_{\mu} + a_{\mu\lambda} \wedge \sigma_{\lambda})$$

$$Dt = d\sigma + A \wedge \sigma$$

where $A = (a_{\mu\lambda})$.

RMK: connection always exists!

Recall: for any (connected) smooth manifold, $E \to X$ is a smooth vector bundle,

Connection:

$$D:C_p^\infty(X,E)\to C_{p+1}^\infty(X,E)$$

where $C_p^{\infty}(X, E) := C^{\infty}(X, \wedge^p T^*M \otimes E)$

$$D(f \wedge s) = \mathrm{d}f \wedge s + (-1)^{\mathrm{deg}f} f \wedge Ds$$

Essentially,

$$D: C^{\infty}(X, E) \to C^{\infty}_1(X, E)$$

Locally, consider a trivialization $\theta: E|_{\Omega} \xrightarrow{\sim} \Omega \times \mathbb{K}^r$, and a local frame $(e_1, ..., e_r)$ where $e_k(x) =$

$$\theta^{-1}(x, \begin{pmatrix} 0 \\ \vdots \\ 1(k^{th}) \\ \vdots \\ 0 \end{pmatrix}).$$
Let $s \in C^{\infty}(\Omega, E)$, i.e.

$$s = \sum_{i=1}^{r} \sigma_i e_i$$

where σ_i are smooth functions.

$$Ds = d\sigma + A \wedge \sigma$$

where

$$\sigma = \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_r \end{pmatrix} \quad A = a_{ij}$$

consider another trivialization

$$\tilde{\theta}: E|_{\Omega} \xrightarrow{\sim} \Omega \times \mathbb{K}^r$$

 \rightsquigarrow a local frame $(\tilde{e_1},...,\tilde{e_r})$. Then there exists a invertible linear transform s.t.

$$\tilde{e_k} = g_k^m e_m$$

assume

$$De_k = a_k^l e_l$$
 $D\tilde{e_k} = \tilde{a}_k^l \tilde{e}_l$

we have

Curvature

$$H_D := D^2$$

locally,

$$D^2s = D(\mathrm{d}\sigma + A \wedge \sigma) = \mathrm{d}(\mathrm{d}\sigma + A \wedge \sigma) + A \wedge (\mathrm{d}\sigma + A \wedge \sigma)$$

$$= dA \wedge \sigma - A \wedge d\sigma + A \wedge d\sigma + A \wedge A \wedge \sigma = (dA + A \wedge A) \wedge \sigma$$

so we have

$$H = dA + A \wedge A$$

Similarly to \tilde{A} , A we have

Exercise:

$$\tilde{H} = gHg^{-1}$$

曲率在不同平凡化下的表达式。where

$$\tilde{e} = ge$$

 $\leadsto H$ can be considered as a section of $C_2^{\infty}(X, \text{Hom}(E, E))$. because

$$\tilde{H}\tilde{e} = gHg^{-1}\tilde{e} = gHe$$

independent of the choice of local frames.

3.2 向量丛的构造

定义 3.2.1. (dual of vector bundles) $E \to X$, and $g_{\alpha\beta}$:transition matrix of E, the dual is given by $(g_{\alpha\beta})^{-1}$. (用转移函数来定义向量丛)

定义 3.2.2. direct sum of two vector bundles $(E,F) \rightarrow E \oplus F$. locally,

$$(g_{\alpha,\beta})\oplus(h_{\alpha\beta})$$

direct sum of transition matrices.

定义 3.2.3. tensor product of two vector bundles.

locally, tensor product of two transition matrices.

fact: let D_E be a connection on E, then it induces a connection D_{E^*} . Let u be a local section of E^* , s local section of E, then we define

$$d\langle u,s\rangle = \langle D_{E^*}u,s\rangle + \langle u,D_Es\rangle$$

Exercise:

$$H(D_{E^*}) = -H(D_E)^T$$

and for two vector bundles E, F, connections D_E, D_F , then

$$D_{E\oplus F}:=D_E\oplus D_F$$

$$H(E \oplus F) = H_E \oplus H_F$$

as for tensor product, we define $D_{E\otimes F}$ as follows:

$$D_{E\otimes F}(s\otimes t)=D_E s\otimes t+s\otimes D_F t$$

check the curvature

$$H_{E\otimes F}=H_E\otimes id_F+id_E\otimes H_F$$

注记 3.2.4. we can also consider wedge product of vector bundles. Consider vector bundles $E_1, ..., E_k$, with connections $D_{E_1}, ..., D_{E_k}$, let $s_i \in C_{p_i}^{\infty}(X, E^i)$ then

$$D_{E_1 \wedge ..., \wedge E_k}(s_1 \wedge ... \wedge s_k) = \sum_{i=1}^k (-1)^{p_1 + ... + p_{i-1}} s_1 \wedge ... \wedge D_{E_i} s_i \wedge ... \wedge s_k$$

Let E be a vector bundle of rank r, then $\bigwedge^r E$ is a line bundle, with transition matrix by $\det(g_{\alpha\beta})$. this bundle is denoted by $\det E$.(Det-bundle)

Let $s_1, ..., s_r$ be local sections of E, then we have

$$D_{\det E}(s_1 \wedge \cdots \wedge s_r) = tr(H_E)s_1 \wedge \cdots \wedge s_r$$

3.3 陈省身示性类

chern classes (defined by curvature).

Let $E \to X$ be a smooth complex vector bundle of rank r, where X be a complex manifold. (Chern-Weil theory)

V be a complex vector space, $f: \underbrace{V \times \cdots \times V}_{k} \to \mathbb{C}$ be a symmetric multi-linear form of degree

k.

 $\leadsto f(v) := f(v, v, ..., v)$ is a homogeneous polynomial of degree k.

定义 3.3.1. assume G is a group (left) acting on V, s.t.

$$f(g(v_1),...,g(v_k)) = f(v_1,...,v_k)$$

for any $g \in G$, $v_i \in V$, then we say f is G-invariant.

Special case: $G = GL(r, \mathbb{C})$ and $V = LieG = \mathfrak{gl}r, \mathbb{C}$ be the Lie algebra of G. the action is

$$(g, M) \mapsto gMg^{-1}$$

Consider

$$\det(I + \frac{i}{2\pi}tm) = I + tf_1(M) + t^2f_2(M) + \cdots + t^rf_r(M)$$

 $\rightsquigarrow \forall 1 \leq k \leq r, f_k \text{ is } G\text{-invariant.}$

Let $E \to X$ complex vector bundle on a complex manifold, let D_E be a connection, curvature $H_E \in C_2^{\infty}(X, \text{Hom}(E, E))$. Let $f \in GL(r, \mathbb{C})$ - invariant "k-form", then

(1)Let H_{α} , H_{β} be the curvature forms of E in different trivialization, then $f(H_{\alpha}) = f(H_{\beta})$, so we get a globally defined 2k-form.

assume $H_{\alpha} = gH_{\beta}g^{-1}$, then

$$f(H_{\alpha}) = f(gH_{\beta}g^{-1}) = f(H_{\beta})$$

(2) we also have

$$\mathrm{d}f(H)=0$$

locally , $H=H_{\alpha}=\mathrm{d}a_{\alpha}+A_{\alpha}\wedge A_{\alpha},$ then

$$df(H) = df(H_{\alpha}, H_{\alpha}, ..., H_{\alpha}) = \sum_{i=1}^{k} f(H_{\alpha}, ..., \underbrace{dH_{\alpha}, ..., \alpha}_{i})$$

$$=\sum_{i=1}^k f(H_{\alpha},...,dA_{\alpha}\wedge A_{\alpha}-A_{\alpha}\wedge dA_{\alpha},...,H_{\alpha})$$

Fact:(in Riemannian geometry) For any $x \in X$, we always can find a local frame s.t. $A_{\alpha}(x) = 0$. so, choose this frame,

$$\mathrm{d}f(H) = 0$$

So, $[f(H)] \in H^{2k}(X, \mathbb{C})$

(3) Claim: the class [f(H)] is independent of the choice of the connections D_E .

Let D_0, D_1 be two connections, consider

$$D_t = (1-t)D_0 + tD_1$$

 $t \in [0,1]$, curvature H_t

Fact: $\alpha := A_1 - A_0$ is globally defined, and in $C_1^{\infty}(X, \text{Hom}(E, E))$.

Fact:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(H_t) = k\mathrm{d}f(\alpha, H_t, H_t, ..., H_t)$$

So,

$$f(H_1) - f(H_0) = \int_0^1 \frac{d}{dt} f(H_t) dt = d \int_0^1 f(\alpha, H_t, H_t, ..., H_t) dt$$

So,

$$[f(H_1)] - [f(H_0)]$$

定义 3.3.2. the k-th Chern class of E

$$c_k(E) := [f_k(\Theta_E)] \in H^{2k}(X, \mathbb{C})$$

Recall: Chern Class

X complex manifold, $E \to X$ is a smooth complex vector bundle of rank r. D is a connection, curvature $\Theta(D) \in C_2^{\infty}(X, \text{Hom}(E, E))$.

linear algebra:

$$\det(I + \frac{i}{2\pi}tM) = I + tf_1(M) + t^2f_2(M) + \dots + t^rf_r(M)$$

Chern class $\{f_k(\Theta)\}\in H^{2k}_{DR}(X,\mathbb{C})$ is independent of choice of connection.

Today:

Special case: E is a complex line bundle. Let D_0 be a connection on E, locally $D_0e = A_0e$, A_0 is 1-form. curvature

$$\Theta(D_0) = D_0^2 = dA_0 + A_0 \wedge A_0 = dA_0$$

so, curvature is d-exact, so $d\Theta(D_0) = 0$.

$$\det(I + \frac{i}{2\pi}tM) = I + \frac{i}{2\pi}tM$$

so, the first Chern class of line bundle is

$$c_1(E) = \{ \frac{i}{2\pi} \Theta(D_0) \}$$

Let D_1 be another connection, locally $D_1e = A_1e$, so $\Theta(D_1) = dA_1$.so,

$$\Theta(D_1) - \Theta(D_0) = d(A_1 - A_0)$$

where

$$A_1 - A_0 \in C_1^{\infty}(X, \text{Hom}(E, E))$$

(when E is line bundle, $\operatorname{Hom}(E,E) \cong E^* \otimes E$ is trivial bundle)

so, $A_1 - A_0$ is a globally defined smooth function on X. So,

$$\{\Theta(D_1)\} = \{\Theta(D_0)\} \in H^2(X,\mathbb{C})$$

independent of the choice of connection.

3.4 Hermite 向量丛

定义 3.4.1. a complex vector bundle $E \to X$ of rank r is called a Hermitian vector bundle, if we have an inner product on E, i.e. locally, consider a local frame $\{e_1,...,e_r\}$, we have

$$\{e_i(x), e_i(x)\} = h_{ij}(x)$$

s.t. $(h_{ij}(x))$ is a positive definite Hermitian matrix depending smoothly on x.

注记 3.4.2. For any complex vector bundle, Hermitian structure always exists.

证明与黎曼几何类似。(黎曼度量的存在性)

定义 3.4.3. (Hermitian connection)

A connection D on E is called Hermitian, if

$$d\{e_i, e_j\} = \{De_i, e_j\} + \{e_i, De_j\}$$

More generally, let $t \in C_p^{\infty}(X, E)$, $s \in C_q^{\infty}(X, Y)$,

$$d\{s,t\} = \{dt,s\} + (-1)^p\{t,Ds\}$$

性质 3.4.4. D is a Hermitian connection, then the curvature

$$\Theta(D)^* = -\Theta(D)$$

(where $(-)^*$ is conjugate transpose of matrix)

it means that, $i\Theta(D) \in C_2^{\infty}(X, \text{Herm}(E, E))$

证明.

$$0 = d^{2}\{e_{i}, e_{j}\} = d\{De_{i}, e_{j}\} + d\{e_{i}, De_{j}\}$$
$$= \{D^{2}e_{i}, e_{j}\} - \{De_{i}, De_{j}\} + \{De_{i}, De_{j}\} + \{e_{i}, D^{2}e_{j}\} = \{(\Theta + \Theta^{*})e_{i}, e_{j}\}$$

注记 3.4.5. E is a Hermitian line bundle, D is a Hermitian connection, then $i\Theta(D)$ is a real 2-form , $c_1(E) \in H^2(X,\mathbb{R})$.

(Chern connection)

定义 3.4.6. Let X be a complex manifold. D' is called a connection of type (1,0) on E, if for any section $s \in C^{\infty}_{p,q}(X,E)$, we have $D's \in C^{\infty}_{p+1,q}(X,E)$.

A connection D'' is called a connection of type (0,1), if ... $D''s \in C_{p,q+1}^{\infty}(X,E)$.

注记 3.4.7. Let $E \to X$ be a vector bundle. Let D be a connection on E, locally

$$Ds \xrightarrow{\sim} d\sigma + A \wedge \sigma$$

$$d\sigma = \partial\sigma + \overline{\partial}\sigma$$

so, let A' be the (1,0)-part of A,...,

$$Ds = \partial \sigma + A' \wedge \sigma + (\overline{\partial} \sigma + A'' \wedge \sigma) =: D's + D''s$$

性质 **3.4.8.** E:Hermitian vector bundle, D is a Hermitian connection, locally, take a C^{∞} -frame $e_1,...,e_r$ which is orthonomal (i.e. $\{e_i(x),e_j(x)\}=\delta_{ij}$), then the connection coefficient A=A'+A'' satisfies

$$(A')^* = -A''$$

$$(\iff \bar{(}iA) = iA)$$

证明. because

$$0 = de_i, e_j = \{De_i, e_j\} + \{e_i, De_j\} = \{a_i^k e_k, e_j\} + \{e_i, a_i^l e_l\} = a_i^j + \overline{a_i^l}$$

so,
$$A^* = -A$$
.

推论 3.4.9. $E \to X$ is a Hermitian vector bundle, D_0'' is a connection of type (0,1) on E. Then exists a unique Hermitian connection D such that $D'' = D_0''$.

证明. Let
$$A'' = A_0''$$
 and $A' = -(A_0'')^* \rightsquigarrow A = A' + A''$, and D is given by A .

Let $E \to X$ is a holomorphic Hermitian vector bundle, observe that $\overline{\partial}$ defines a connection of type (0,1) on E(check!)

assume E is a holomorphic line bundle, take a section $s \in C_p^{\infty}(X, E)$, i.e. we have a family of p-forms (s_{α}) such that $s_{\alpha} = g_{\alpha\beta}s_{\beta}$ where $g_{\alpha,\beta}$ is the holomorphic transition matrix.

$$\overline{\partial}s \xrightarrow{\sim} \overline{\partial}s_{\beta}$$

then

$$\overline{\partial} s_{\alpha} = g_{\alpha,\beta} \overline{\partial} s_{\beta}$$

(so, $\bar{\partial}$ is a connection of (0,1))

this connection is called the canonical connection of type (0,1).

定义 3.4.10. Let $E \to X$ holomorphic Hermitian vector bundle, the connection D on E is called Chern connection if

$$D'' = \overline{\partial}$$

Curvature of Chern connection

 $E \to X$ is holomorphic Hermite vector bundle , D is the Chern connection, Locally let $\{e_1, ..., e_r\}$ be a holomorphic frame, and two local sections

$$s, t \in C^{\infty}(\Omega, E)$$

where

$$s = \sum_{i=1}^{r} \sigma_i e_i$$

$$t = \sum_{i=1}^{r} t_i e_i$$

Since D is Hermitian,

$$d\{s,t\} = d((\sigma_1,...,\sigma_r)H\begin{pmatrix} t_1 \\ \vdots \\ t_r \end{pmatrix}) = (d\sigma)^T H t + \sigma^T (dH)t + \sigma^T H d(t)$$

so, we have

$$\{Ds,t\} + \{s,Dt\} = (d\sigma + \overline{H}^{-1}\partial \overline{H} \wedge \sigma)^T \wedge H\overline{t} + \sigma^T \wedge H\overline{(dt + \overline{H}^{-1}\partial \overline{H} \wedge t)}$$

so,

$$Ds = d\sigma + \overline{H}^{-1} \partial \overline{H} \wedge \sigma$$

$$D's = \partial \sigma + \overline{H}^{-1} \partial \overline{H} \wedge \sigma = \overline{H}^{-1} \partial (\overline{H}\sigma)$$
$$D''s = \overline{\partial} \sigma$$

so,

$$(D')^2 s = \overline{H}^{-1} \partial (\overline{H}(\overline{H}^{-1} \partial (\overline{H}\sigma))) = \dots = 0$$

$$(D'')^2s = \dots = 0$$

So we have

$$\Theta(D) = (D' + D'')^2 = D'D'' + D''D'$$

Locally,

$$\Theta s = D'D''s + D''D's = \overline{H}^{-1}\partial(\overline{H}\partial\sigma) + \overline{\partial}(\overline{H}^{-1}\overline{\partial}(\overline{H}\sigma)) = \dots = \overline{H}^{-1}\partial\overline{H}\wedge\overline{\partial}\sigma + \overline{\partial}(\overline{H}^{-1})\sigma$$
$$= \overline{\partial}(\overline{H}^{-1}\partial\overline{H})\sigma$$

So, Chern curvature

$$\Theta_D = \overline{\partial}(\overline{H}^{-1}\partial\overline{H})$$

Last time: $E \to X$ is a holomorphic vector bundle with a Hermitian metric H. Then there is a unique connection D_E s.t. ... called Chern connection.

Curvature of Chern Connection:

$$\Theta(D_E) = \overline{\partial}(\overline{H}^{-1}\partial\overline{H})$$

so,

$$i\Theta(D_E) \in C^{\infty}_{1,1}(X, \operatorname{Hom}(E, E))$$

例子 3.4.11. (Special case: E is a holomorphic line bundle) locally, let e be ha holomorphic frame, $\langle e, e \rangle = h$ is the metric. then,

$$\Theta = \overline{\partial}(h^{-1}\partial h) = \overline{\partial}\partial \log h$$

so,

$$i\Theta(E) = -i\partial\overline{\partial}\log h$$

if $h=e^{-2\varphi}$ where φ is a smooth function, then

$$i\Theta(E) = 2i\partial\overline{\partial}\varphi = 2\sqrt{-1}\sum_{k,l}\frac{\partial^2\varphi}{\partial z_k\partial\overline{z_l}}\mathrm{d}z_k\wedge\mathrm{d}\overline{z_l}$$

Question: let s be a local holomorphic section of E,

$$-i\partial \overline{\partial} \log |s|_h^2 = ?$$

 $(\text{Hint:} \frac{i}{\pi} \partial \overline{\partial} \log z =$? 单复变,按分布意义下求导. 等于狄拉克测度 2333333) 可能是期末题目?

例子 3.4.12. $\mathcal{O}(-1)$ on $\mathbb{C}P^n$, tautological line bundle. (Recall: $\mathbb{C}P^n$ is a compact complex manifold with holomorphic charts

$$\Omega_j := \{[z_0; z_1; ...; z_n] | z_j \neq 0\} \rightarrow \left(\frac{z_0}{z_j}, \cdots, \hat{1}, \cdots, \frac{z_n}{z_j}\right) \in \mathbb{C}^n$$

Let V be a complex vector space, $\dim_{\mathbb{C}} V = n + 1$. Denote the projective space by

$$\mathbb{P}(V) = (V \setminus \{0\}) / \mathbb{C}^*$$

Let $\underline{V} := \mathbb{P}(V) \times V$ be the trivial vector bundle, define

$$\mathcal{O}(-1) := \{([x], \xi) | \xi \in \mathbb{C} \cdot x\}$$

性质 3.4.13. $\mathcal{O}(-1)$ is a holomorphic line bundle on $\mathbb{P}(V)$.

证明. $\mathcal{O}(-1)|_{\Omega_i}$ has a non-vanishing holomorphic section \mathcal{E}_i defined by

$$\mathcal{E}_j([x]) = \frac{x}{x_j}$$

for $0 \le j \le n$.

Assume V has a Hermitian inner product, then $\mathcal{O}(-1)$ has an Hermitian structure induced from V

Let $e_0, ..., e_n$ be an orthonormal basis of V, then $\mathcal{O}(-1)|_{\Omega_0}$ has a non-vanishing holomorphic section:

$$\mathcal{E}_0(z_1,...,z_n) = e_0 + z_1e_1 + ... + z_ne_n$$

where

$$\Omega_0 = \{[1; z_1; ...; z_n] | z_j \in \mathbb{C}\} \cong \mathbb{C}^n$$

then,

$$|\mathcal{E}_0|_h^2 = 1 + |z_1|^2 + \dots + |z_n|^2$$

so the Chern curvature of $\mathcal{O}(-1)$ on Ω_0 is given by

$$\Theta = \overline{\partial}\partial \log(1 + |z_1|^2 + \dots + |z_n|^2)$$

Denote $\mathcal{O}(1) := \mathcal{O}(-1)^*$, then

$$\Theta(\mathcal{O}(1)) = -\overline{\partial}\partial \log(1 + |z_1|^2 + \dots + |z_n|^2)$$

on Ω_0 .

$$i\Theta(\mathcal{O}(1)) = i\partial\overline{\partial}\log(1+|z_0|^2 + ... + |z_n|^2) = \sqrt{-1}\sum_{1 \le k,l \le n} c_{k,l} dz_k \wedge d\overline{z_l}$$

Exercise: (c_{kl}) is a positive definite Hermitian matrix.

"Fubini-Study metric" on $\mathbb{P}(V).\mathcal{O}(1)$ is "hyperplane line bundle of $\mathbb{P}(V)$ ".

Exercise: calculate

$$\int_{\mathbb{P}(V)} \left(\frac{i}{2\pi} \Theta(\mathcal{O}(1)) \right)^{\wedge n} = ?$$

(Hint: $\mathbb{P}(V) \setminus \Omega_0$ is a zero-measure set)

 $E \to X$: holomorphic line bundle, D_E is a Chern connection.

$$c_1(E) = \{\frac{i}{2\pi}\Theta(D_E)\} \in H^2_{DR}(X, \mathbb{R})$$

Exercise: 60% 的概率出现于期末试题

Consider the sequence

$$0 \to \mathbb{Z} \to \mathcal{O} \xrightarrow{e^{2\pi i *}} \mathcal{O}^* \to 0$$

it induces a long exact sequence

$$\cdots \to H^1(X,\mathcal{O}) \to H^1(X,\mathcal{O}^*) \xrightarrow{\delta} H^2(X,\mathbb{Z}) \to H^2(X,\mathcal{O}) \to \cdots$$

prove: Consider E as an element of $H^1(X, \mathcal{O}^*)$, then the image of $\delta(E)$ in $H^2(X, \mathbb{R}) \cong H^2_{DR}(X, \mathbb{R})$ is $c_1(E)$.

Exercise: E is a holomorphic line bundle, denote $\theta := \frac{i}{2\pi}\Theta(D_E)$ real (1,1)-form, where D_E is Chern connection with a metric h. Prove: for any smooth function $f \in C^{\infty}(X,\mathbb{R})$, there exists a Hermitian metric h_f s.t.

$$\frac{i}{2\pi}\Theta_{E,h_f} = \theta + i\partial\overline{\partial}f$$

第4章 L² Hodge 理论

4.1 向量丛上的微分算子

Differential operators on vector bundles.

Let X is a (connected) smooth manifold of (\mathbb{R} -)dimension n. $E,F:\mathbb{K}$ -vector bundle of rank r,r' respectively.

定义 4.1.1. a linear differential operator of degree k from E to F is a \mathbb{K} -linear map

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

$$u \mapsto Pu$$

locally given by

$$Pu(x) = \sum_{|\alpha| < k} a_{\alpha}(x) D^{\alpha} u(x)$$

where $a_{\alpha}(x) = (a_{afa,\lambda\mu}(x))$ be a $r' \times r$ matrix.

$$u(x) = (u_1(x), ..., u_r(x))^T$$

Let $t \in \mathbb{K}, f \in C^{\infty}(M, \mathbb{K}), u \in C^{\infty}(M, E)$, then

$$e^{-tf(x)}P(e^{tf(x)}u(x)) = t^k\sigma_P(x,\mathrm{d}f(x))u(x) + \mathrm{terms}\ c_j(x)^{t_j} \quad (j < k)$$

定义 4.1.2.

$$\sigma_P: T^*M \to \operatorname{Hom}(E,F)$$

is called the principal symbol of P, which is a polynomial on T^*M .

locally,

$$\sigma_P(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha}$$

$$(\xi^{\alpha}:=\xi_1^{\alpha_1}...\xi_n^{\alpha_n})$$

例子 4.1.3. Consider $d: C^{\infty}(M, \mathbb{K}) \to C^{\infty}(M, T^*M)$. then

$$du = \sum_{j=1}^{n} \begin{pmatrix} 0 \\ \vdots \\ 1(j^{th}) \\ \vdots \\ 0 \end{pmatrix} \frac{\partial u}{\partial x^{i}}$$

i.e.

$$\sigma_d(x,\xi) = \sum_{j=1}^n egin{pmatrix} 0 \ dots \ 1(j^{th}) \ dots \ 0 \end{pmatrix} \xi_j$$

定义 **4.1.4.** *P* is called elliptic, if $\forall x \in M, \xi \in T_x^*M \setminus \{0\}$,

$$\sigma_P(x,\xi) \in \operatorname{Hom}(E_x,E_x)$$

is injective.

For example, d is elliptic.

L^2 -inner product

Let M be an oriented C^{∞} -manifold with a smooth volume form, locally

$$dV(x) = \gamma(x)dx_1 \wedge \cdots \wedge dx_n$$

 $\gamma(x) > 0$. Assume E has a Euclidean (or Hermitian) structure... Let $u, v \in C^{\infty}(M, E)$, define

$$\langle\langle u,v\rangle\rangle := \int_{M} \langle u,v\rangle dV(x)$$

define $L^2(M, E) :=$ space of sections with measurable coefficients with are L^2 w.r.t $\langle \langle , \rangle \rangle$.

定义 4.1.5. Let $P: C^{\infty}(M,E) \to C^{\infty}(M,F)$ be a differential operator, E,F have Euclidean (or Hermitian) structure, then there exists unique differential operator

$$P^*: C^{\infty}(M,F) \to C^{\infty}(M,E)$$

s.t.

$$\langle\langle Pu, v\rangle\rangle = \langle\langle u, P^*v\rangle\rangle$$

for all u, v s.t. $Suppu \cap Suppv \subset\subset M(relative\ compact...)$ P^* is called the formal adjoint of P.

证明. Existence: Assume that $SuppU, Suppv \subset \subset$ some coordinate chart Ω with coordinates $(x_1, ..., x_n)$, then

$$\ll Pv, u \gg = \int_{\Omega} \sum_{\alpha,\lambda,\mu} a_{\alpha,\lambda\mu}(x) D^{\alpha} u_{\mu}(x) \overline{v_{\lambda}(x)} \gamma(x) dx_1 \cdots dx_n$$

integration by parts, it

$$= \int_{\Omega} \sum_{\alpha,\lambda,\mu} (-1)^{|\alpha|} u_{\mu}(x) \overline{D^{\alpha}(\gamma(x) \overline{a_{\alpha,\lambda\mu}} v_{\lambda}(x))} dx_{1}..dx_{n}$$

Locally,

$$P^*v = \sum_{|\alpha| \le k} (-1)^{|\alpha|} \gamma(x)^{-1} D^{\alpha} (\gamma(x) \overline{a_{\alpha}(x)}^T v(x))$$

Uniqueness: use the density of C^{∞} -section with compact support in $L^2(M,-)$.

推论 4.1.6. If $\sigma_P(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x)\xi^{\alpha}$, then

$$\sigma_{P^*} = (-1)^k \overline{\sigma_P(x,\xi)}^T$$

推论 4.1.7. If rank E = rankF, P is differential operator, then P^* is elliptic $\iff P^*$ is elliptic.

4.2 椭圆算子的基本性质

Fundamental results of elliptic operators

M is a compact (oriented) C^{∞} -manifold, $\dim_{\mathbb{R}} M = n$, with a smooth volume form dV.

E is an Hermite vector bundle, $rank_C E = r$.

Sobolev space: $W^k(M, E)$:= the space of section $s: M \to E$ whose derivations up to order = k, := the completion of space of smooth sections w.r.t W^k -norm.

 $(\Omega_j)_{j\in I}$: a finite open covering of M, $E|_{\Omega_j}$ trivial, Let $(\rho_j)_{j\in I}$ be a partition of unity w.r.t. $(\Omega_j)_{j\in I}$, s.t. $\sum_j \rho_j^2 = 1$. locally, choose an orthonormal frame $(e_{j,\lambda})_{1\leq \lambda\leq r}$ on Ω_j , then $u = \sum_{\lambda=1}^r u_{j,\lambda} e_{j,\lambda}$ on Ω_j . Define

$$||u||_k^2 := \sum_{j,\lambda} ||e_j u_{j,\lambda}||_k^2$$

where

$$||e_j u_{j,\lambda}||_k^2 := \int_{\Omega_j} \sum_{|\alpha| < k} |D^{\alpha}(e_j u_{j,\lambda})|^2 dV(x)$$

注记 **4.2.1.** On a compact manifold, the equivalence of class of $||\cdot||_k$ is independent of the choice of: partition of unity, local trivialization, holomorphic covering...

引理 **4.2.2.** (Sobolev lemma)

For $k > l + \frac{n}{2}$, then we have

$$W^k(M,E) \subseteq C^l(M,E)$$

引理 **4.2.3.** (Rellich lemma)

For any $k \in \mathbb{Z}_{>0}$, the inclusion

$$W^{k+1}(M,E) \hookrightarrow W^k(M,E)$$

is a compact operator.

引理 4.2.4. (Garding inequality)

If

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

$$||u||_{k+d} \le C_k (||\tilde{P}u||_k + ||u||_0)$$

where C_k depending on k, M.

证明. Reference: Kodaira: deformation of complex structures (Appendix)

推论 **4.2.5.** If $u \in \ker \tilde{P} \cap W^0(M, E)$, then $u \in C^{\infty}(M, E)$.

引理 **4.2.6.** (Finiteness theorem)

Setting M be a compact manifold, rankE = rankF,

$$P: C^{\infty}(M, E) \to C^{\infty}(M, F)$$

elliptic, then:

- (1) ker P is of finite dimension
- (2) $P(C^{\infty}(M, E))$ is closed and of finite codimension in $C^{\infty}(M, F)$. If P^* is the formal adjoint of P, then \exists decomposition

$$C^{\infty}(M,F) = P(C^{\infty}(M,E)) \oplus \ker P^*$$

which is orthogonal in $W^0(M,F) = L^2(M,F)$

证明. 椭圆算子的一般结果,分析的东西 233333333. 可以参考小平邦彦复流形与复结构形变的附录。

4.3 紧黎曼流形的 Hodge 理论

Hodge theory in compact Riemannian manifold

Hodge star operator.

M compact Riemannian manifold, $\dim_{\mathbb{R}} = n$, E is a Hermitian vector bundle. Assume $(\xi_1,...,\xi_n), (e_1,...,e_n)$ be orthonormal frame of TM, E on some local chart Ω , denote $(\xi_1^*,...,\xi_n^*), (e_1^*,...,e_n^*)$ be the co-frame of T^*M , T^*E .

 $\wedge^{\bullet}T^*M$ is endowed with an inner product frame from TM. locally,

$$\langle u_1 \wedge \cdots \wedge u_p, u_1 \wedge \cdots \wedge u_p \rangle := \det(\langle u_i, v_j \rangle)$$

for $u_i, v_i \in T^*M$. Then , get an inner product on $\wedge^p T^*M$.

Assume

$$U = \sum_{\substack{|I| = p \\ i_1 \le \dots \le i_p}} u_I \xi_I^*$$

$$V = \sum_{\stackrel{|I|=p}{i_1 \leq ... \leq i_p}} v_I \xi_I^*$$

be p-forms, then

$$\langle u, v \rangle = \sum_{|I|=p} u_I v_I$$

i.e. $\left\{ \xi_{T}^{\ast}\right\}$ is an orthonormal basis of $\wedge^{p}T^{\ast}M.$

 $\wedge^* T^* M \otimes E$ has an inner product induced from $\wedge^* T^* M, E$,

定义 4.3.1. the Hodge star operator

$$^*: \wedge^p T^*M \to \wedge^{n-p} T^*M$$

is defined by

$$u \wedge *v = \langle u, v \rangle dV$$

Locally, let

$$U=\sum_{|I|=p}u_I\xi_I^*$$
 , $V=\sum_{|I|=p}v_I\xi_I^*$

assume

$$*V = \sum_{|J|=n-p} a_J \xi_J^*$$

then

$$U \wedge * \sum u_I a_{I^c} \xi_I^* \wedge \xi_{I^c}^* = \sum u_I a_{I^c} \varepsilon(I, I^c) \xi_1^* \wedge \dots \wedge \xi_n^*$$
$$\langle u, v \rangle dV = \sum_{|I|=p} u_I v_I \xi_1^* \wedge \dots \wedge \xi_n^*$$

so, we have

$$*V = \sum_{|I|=p} \varepsilon(I, I^c) V_I \xi_{I^c}^* \in \bigwedge^{n-p} T^* M$$

定义 4.3.2.

$$*: \bigwedge^p T^*M \otimes E \to \bigwedge^{n-p} T^*M \otimes E$$

is defined by

$$\{s, *t\} := \langle s, t \rangle dV$$

Locally, assume

$$t = \sum_{\stackrel{|I|=p}{1 \le \lambda \le r}} t_{I,\lambda} \xi_I^* \otimes e_{\lambda}$$

then

$$*t = \sum_{\stackrel{|I|=p}{1 < \lambda < r}} arepsilon (I,I^c) t_{I,\lambda} \xi_{I^c}^* \otimes e_{\lambda}$$

定义 4.3.3.

$$\#: \bigwedge^p T^*M \otimes E \to \bigwedge^{n-p} T^*M \otimes E^*$$

is defined by: for any $s, t \in \bigwedge^p T^*M \otimes E$, such that

$$s \wedge \#t := \langle s, t \rangle dV$$

wedge product+ pairing of $E^* \times E \to \mathbb{C}$.

Locally: assume

$$t = \sum_{\stackrel{|I|=p}{1 \le \lambda_r}} t_{I,\lambda} \xi_T^* \otimes e_{\lambda}$$

then,

$$\#t = \sum_{|I|=p,\lambda} arepsilon(I,I^c) t_{I,\lambda} \xi_c^* I \otimes e_\lambda^*$$

性质 4.3.4.

$$*^2 = (-1)^{p(n-1)}$$
 on $\bigwedge^p T^*M \otimes E$

$$\#^2 = (-1)^{p(n-1)}$$
 on $\bigwedge^p T^*M \otimes E$

(正负号对吗?)

Recall: For all $s, t \in C^{\infty}(M, \bigwedge^p T^*M \otimes E)$, we have an inner product

$$\langle \langle s, t \rangle \rangle := \int_{M} \langle s, t \rangle dV$$

定理 4.3.5. Let D_E be an Hermite connection on E, acting on $\bigwedge^p T^*M \otimes E$, then

$$D_E^* := (-1)^{np+1} * D_E *$$

where D_E^* is the formal adjoint of D_E .

证明. Let $s \in C^{\infty}(M, \bigwedge^p T^*M \otimes E)$ and $t \in C^{\infty}(M, \bigwedge^{p+1} T^*M \otimes E)$. then

$$\langle\langle D_E s, t \rangle\rangle = \int_M \langle D_E s, t \rangle dV = \int_M \{D_E s, *t\}$$

Since D_E is Hermitian , by definetion ,

$$d\{s, *t\} = \{D_E s, t\} + (-1)^p \{s, D_E(*t)\}$$

so,

$$\langle \langle D_E s, t \rangle \rangle = \int_M d\{s, *t\} + (-1)^{p+1} \{s, D_E * t\} = (-1)^{p+1} (-1)^{p(n_1)} \int_M \{s, *(*D_E * t)\} = \langle \langle s, D_E^* t \rangle \rangle$$
so,

$$D_E^*t = (-1)^{np+1} * D_E *$$

定义 4.3.6.

$$\triangle_E = D_E D_E^* + D_E^* D_E : C^{\infty}(M, \bigwedge^p T^*M \otimes E) \to C^{\infty}(M, \bigwedge^p T^*M \otimes E)$$

例子 4.3.7. Let $M = \mathbb{R}^n$, $g = \sum_{i=1}^n dx_i^2$, $E = M \times \mathbb{C}$ trivial line bundle with $D_E = d$. then

$$\triangle_E u = (\mathrm{d}\mathrm{d}^* + \mathrm{d}^*\mathrm{d})u = -\sum_{i=1}^n \left(\sum_{|I|=p} \frac{\partial^2 u_I}{\partial x_I^2} \mathrm{d}x_I\right)$$

where

$$u = \sum_{|I|=p} u_I \mathrm{d} x_I$$

性质 4.3.8. \triangle_E is a self-adjoint elliptic operator. (i.e. $\triangle_E^* = \triangle_E$)

证明. $\triangle_E^* = \triangle_E$ be definition. note that

$$e^{-tf}D_E(e^{tf}s) = tdf \wedge s + D_E s$$

so,

$$\sigma_{D_E}(x,\xi)s=\xi\wedge s$$

$$\sum_{D_{E}^{*}} = -\overline{\sigma_{D_{E}}}^{T}$$

$$\sigma_{D_{E}^{*}}(x,\xi)s = -\tilde{\xi} \lrcorner s$$

where $\tilde{\xi}$ be the vector field dual to ξ .

定义 4.3.9.

$$\triangle_E = D_E D_E^* + D_E D_E^* : C^{\infty}(M, \bigwedge^p T^*M \otimes E) \to C^{\infty}(M, \bigwedge^p T^*M \otimes E)$$

so,

$$\sigma_{\triangle_E}(x,\xi)s = \left(\sigma_{D_E}\sigma_{D_E^*}(x,\xi) + \sigma_{D_E^*}\sigma_{D_E}(x,\xi)\right)s$$

so, σ_{\triangle_E} is injective if $\xi \neq 0$, so \triangle_E is elliptic.

Harmonic forms and Hodge isomorphism.

定义 4.3.10. u is called harmonic if $\triangle_d u = 0$.

定理 4.3.11. M is a compact Riemannian manifold, then de Rham cohomology

$$H_{DR}^p(M,\mathbb{R}) \cong \ker(\triangle_d : C^{\infty}(M,\bigwedge^p T^*M))$$

证明. \triangle_d self-adjoint elliptic, so by general result for elliptic operator,

$$C^{\infty}(M, \bigwedge^{p} T^{*}M) = \operatorname{Im} \triangle_{d} \oplus \ker \triangle_{d}^{*} = \operatorname{Im} \triangle_{d} \oplus \ker \triangle_{d}$$

Claim:

$$\operatorname{Im} \triangle_d = \in d \oplus \operatorname{Im} d^*$$

 $\mathrm{Recall}\ \triangle_d = dd^* + d^*d,\,\mathrm{so}$

$$\text{Im}\,\triangle_d\subseteq \text{Im}\,d\oplus\in d^*$$

on the other hand,

$$\operatorname{Im} d \oplus \operatorname{Im} d^* \subseteq (\ker \triangle_d)^{\perp} = \operatorname{Im} \triangle_d$$

so,

$$\text{Im}\,\triangle_d=\text{Im}\,d\oplus\text{Im}\,d^*$$

so,

$$C^{\infty}(M, \bigwedge^{p} T^{*}M) = \operatorname{Im} d \oplus \operatorname{Im} d^{*} \oplus \ker \triangle_{d}$$

so,

$$H_{DR}^{p}(M,\mathbb{R}) = \frac{\operatorname{Im} d \oplus \ker \triangle_{d}}{\operatorname{Im} d} = \ker \triangle_{d}$$

推论 4.3.12.

$$\dim H^p_{DR}(M,\mathbb{R}) = \dim \ker \triangle_{\mathsf{d}} < +\infty$$

注记 4.3.13. Consider

$$u \mapsto \int_{M} (\langle u, u \rangle + \langle du, du \rangle + \langle d^{*}u, d^{*}u \rangle) dV$$

这个泛函的变分是什么鬼?

Harmonic forms and Hodge isomorphism

Recall: M is a compact Riemann manifold,

$$d: C^{\infty}(M, \bigwedge^* T^*M) \to C^{\infty}(M, \bigwedge^{*+1} T^*M)$$

adjoint d^* ,

$$\triangle_d = dd^* + d^*d$$

is a self-adjoint elliptic operator.

Hodge decomposition:

$$C^{\infty}(M, \bigwedge^p T^*M) = \ker \triangle_d \oplus \operatorname{Im} d \oplus \operatorname{Im} d^*$$

$$\mathcal{H}^p(M, \mathbb{R}) := \ker \triangle_d \quad \text{finite dimension}$$

$$\mathcal{H}^p(M, \mathbb{R}) \cong H^p_{DR} \cong H^p(M, \mathbb{R})$$

(Hodge isomorphism, and, de Rham-Weil)

Poincare duality

定理 4.3.14. The pairing

$$H_{DR}^{p}(M,\mathbb{R}) \times H_{DR}^{n-p}(M,\mathbb{R}) \to \mathbb{R}$$

 $(s,t) \mapsto \int_{M} s \wedge t$

(is well defined) is non-degenerated. In particular, $H^p_{DR}(M,\mathbb{R})^* \cong H^{n-p}_{DR}(M,\mathbb{R})$

证明. the pairing factors through the pairing on

$$\mathcal{H}^{p}(M,\mathbb{R}) \times \mathcal{H}^{n-p}(M,\mathbb{R}) \to \mathbb{R}$$

$$(s,t) \mapsto \int_{M} s \wedge t$$

need to verify:(1) it is independent of the choice of representations.(Easy, check) (2) Pairing $\mathcal{H}...\times\mathcal{H}...$ is non-degenerated..

 $\operatorname{claim}(\operatorname{Exercise}) \colon \operatorname{Hodge} \ \operatorname{star} \ast \operatorname{s.t.} \ \ast \triangle_d = \triangle_d \ast.$

so, s is a harmonic p-form \iff *s is a harmonic (n-p)-form.

note that

$$s \wedge *s = \langle s, s \rangle dV = \int_M s \wedge *s = \int_M \langle s, s \rangle dV = ||s||^2$$

推论 4.3.15.

$$\dim \mathcal{H}^p(M,\mathbb{R}) = \dim \mathcal{H}^{n-p}(M,\mathbb{R})$$

Generalization to flat bundle. M is a compact Riemannian manifold, $\dim_{\mathbb{R}} M = n$, $E \to M$ is a complex Hermitian vector bundle.

定义 4.3.16. $E \to X$ is called flat, if it admit a connection D_E s.t.

$$D_E^2 = 0$$

注记 4.3.17. E is flat \iff E is given by a representation

$$\pi_1(M) \to GL(r,\mathbb{C})$$

(我们不证)

Consider the complex:

$$(C^{\infty}(M, \bigwedge^* T^*M \otimes E), D_E)$$

$$\rightsquigarrow H_{DR}^p(M, E) := \frac{\ker D_E}{\operatorname{Im} D_E}$$

Exercise: we have decomposition

$$C^{\infty}(M, \bigwedge^{p} T^{*}M \otimes E) = \ker \triangle_{D_{E}} \oplus \operatorname{Im} D_{E} \oplus \operatorname{Im} D_{E}^{*}$$
$$H_{DR}^{p}(M, E) \cong \ker \triangle_{D_{E}}$$

and the pairing

$$H_{DR}^{p}(M,E) \times H_{DR}^{n-p}(M,E^{*}) \to \mathbb{C}$$

 $(s,t) \mapsto \int_{M} s \wedge t$

is non-degenerate..

以上是实的 Hodge 理论。

4.4 Kähler 流形

定义 **4.4.1.** Let X be a complex manifold, $\dim_{\mathbb{C}} X = n$, X is called a Hermitian manifold, if X has a Hermitian metric, i.e. locally $h(z) := \sum_{1 \leq j,k \leq n} h_{jk}(z) dz_j \otimes d\overline{z}_k$, where (h_{jk}) is positive definition Hermitian matrix.

Check: the positivity of h is independent of the choice of holomorphic local coordinate

Rmk: Any complex manifold has a Hermitian metric...(Exercise)

Fundamental (1,1)-form associated to h(z) is defined by

$$\omega := -\operatorname{Im} h = \frac{\sqrt{-1}}{2} \sum_{j,k} h_{jk} dz_j d\overline{z}_k$$

we also call ω is the Hermitian metric on X

Fact: ω is real (i.e. $\overline{\omega} = \omega$).

注记 4.4.2. h is a Hermite structure on TX(holomorphic tangent bundle of X). locally,

$$\langle \frac{\partial}{\partial z_i}, \frac{\partial}{\partial z_i} \rangle(z) = h_{ij}(z)$$

定义 4.4.3. (X,ω) is an Hermitian manifold, X is Kähler if $d\omega = 0$.

性质 **4.4.4.** Locally, $\omega = \frac{\sqrt{-1}}{2} \sum_{jk} h_{jk} dz_j \wedge d\overline{z}_k$ is Kaehler, $\iff \partial \omega = 0$ and $\overline{\partial} \omega = 0$, i.e.

$$\frac{\partial h_{jk}}{\partial z_l} = \frac{\partial h_{lk}}{\partial z_j}$$

If (X, ω) is a compact Kaehler manifold, then

$$H^{2k}(X,\mathbb{R})\neq 0$$

证明. $d\omega = 0$, so $\omega \in H^2(M, \mathbb{R})$. Claim:

$$0 \neq \omega^k \in H^{2k}(M, \mathbb{R})$$

proof of the claim:

$$[\omega^k][\omega^{n-k}] = \int_X \omega^k \wedge \omega^{n-k} = \int_X \omega^n$$

Since ω is positive, locally

$$\omega^n = n! \det(h_{jk}) \bigwedge_{l=1}^n \left(\frac{\sqrt{-1}}{2} dz l \wedge d\overline{z}_l \right) > 0$$

is a volume form. So,

$$[\omega^k][\omega^{n-k}] = \int_X \omega^n > 0$$

(Using Poincare dual)

例子 4.4.5. (Exists a complex manifold NOT Kaehler) (Hopf Surface)

$$X = (\mathbb{C}^2 \setminus \{0\})/\Gamma$$

where discrete group $\Gamma := \{\lambda^n | n \in \mathbb{Z}\}, 0 < \lambda < 1$ fixed.

Exercise: $X \cong S^1 \times S^3$ C^{∞} homeomorphism.. and X is compact complex manifold. and $H^2(X,\mathbb{R}) = H^2(S^1 \times S^3,\mathbb{R}) = 0$ by Künneth Formula... So, X is non-Kahler...

例子 4.4.6. Examples of Kaehler manifold)

- (1)Riemann surface must be Kaehler...(trivial)
- (2)(complex torus) $X = C^n/\Gamma$, Γ is a lattice. (this manifold may not compact...)

$$\omega = \sqrt{-1} \sum_{j,k} h_{jk} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_k$$

is a Kahler metric on X if $(H_{jk}) > 0$, h_{jk} are constant.

(3) Projective space $\mathbb{C}P^n$.

$$\omega := \sqrt{-1}\Theta_h(\mathcal{O}(1))$$

locally,

$$\omega = \sqrt{-1}\partial \overline{\partial} \log(1 + |z_1|^2 + \dots + |z_n|^2)$$

on Ω . This ω is a Kahler metric,

例子 4.4.7. Let (X,ω) is a Kahler manifold, then any complex submanifold $Y\subseteq X$ is also Kahler.

$$i: Y \hookrightarrow X$$

with the Kahler metric $i^*\omega$.

Exercise: Let $f: Y \to X$ be a holomorphic immersion, and assume X is Kahler, then Y is Kahler.

推论 4.4.8. Any projective manifold (i.e. $X \hookrightarrow \mathbb{C}P^N$) is Kähler.

(Algebraic Geometry.....)

性质 **4.4.9.** (Equivalent definition of Kaehler metrics) a Hermitian metric ω is Kahler, if f for all $x_0 \in X$, there exists a holomorphic chart $(z_1,...,z_n)$ centered at x_0 , s.t.

$$\omega(z) = \sqrt{-1}\sigma_{ik}\delta_{ik}dz_i \wedge d\overline{z}_k + O(|z|^2)$$

 $(\Leftarrow is trivial...)$ (left to HW)

定理 **4.4.10.** (Exercise)

If (X,ω) is Kahler, then for all $x_0 \in X$, \exists holomorphic chart $z_1,...,z_n$ centered at x_0 , s.t. assume

$$\omega = \sqrt{-1}h_{jk}\mathrm{d}z_j \wedge \mathrm{d}\bar{z}_k$$

then

$$h_{lm}(z) = \delta_{lm} - \sum_{j,k} c_{jk,lm} z_j \overline{z}_k + O(|z|^3)$$

where $c_{jk,lm}$ is the coefficients of the Chern curvature tensor,

$$\Theta(TX)_x := \sum c_{jk,lm} dz_j \wedge d\overline{z}_k \otimes (\frac{\partial}{\partial z_l})^* \otimes \frac{\partial}{\partial z_m}$$

(查书)

4.5 紧复流形上的 Hodge 理论

 (X,ω) is a compact Hermitian manifold, $E\to X$ is a homomorphic Hermitian vector bundle.

$$D_E := D_E' + D_E''$$

Chern connection, $D_E'' = \overline{\partial}$.

定义 4.5.1.

$$\triangle_E := D_E D_E^* + D_E^* D_E$$

$$(D'_E)^* = -*D''_E *$$

 $(D''_E)^* = -*D'_E *$
 $\triangle'_E = D'_E (D'_E)^* + ...$
 $\triangle''_E = ...$

Note that $(D_E'')^2 = 0$, consider the complex

$$C^{\infty}(X, \bigwedge^{p,q} \otimes E) \xrightarrow{D_{E}^{"}} C^{\infty}(X, \bigwedge^{p,q+1} \otimes E)$$

$$\leadsto H_{D_{E}^{"}}^{p,q}(X, E)$$

Dolbeaut cohomology... it isom to $\ker \triangle_E''$

Hodge theory in compact complex manifold.

Let (X, ω) be a compact complex manifold of dimension n. $E \to X$ holomorphic Hermitian vector bundle, with Chern connection D_E , $D_E = D_E' + D_E''$ where $D_E'' = \overline{\partial}$.

Recall: L^2 inner product: $u \in C^{\infty}(X \bigwedge^{p,q} \otimes E)$,

$$\langle\langle u,v\rangle\rangle := \int_X \langle u,v\rangle d\mathrm{vol}$$

Hodge star operator $*: u, v \in C^{\infty}(X, \bigwedge^{p,q} \otimes E),$

定义 4.5.2.

$$*: \bigwedge^{p,q} \otimes E \to \bigwedge^{n-q,n-p} \otimes E$$

s.t.

$$u \wedge *v = \langle u, v \rangle dvol$$

(wedge product from $\bigwedge^{p,q}$, with inner product from E)

Exercise: Take a holomorphic chart $(z_1,...,z_n)$ s.t.

$$\omega = \sqrt{-1} \sum_{j} \mathrm{d}z_{j} \wedge \mathrm{d}\overline{z}_{j}$$

at some point p. An orthonormal frame $\{e_1,...,e_r\}$, Let

$$u = \sum_{\substack{|I|=p\\|I|=q}} \sum_{\lambda=1}^r u_{IJ} dz_I \wedge d\overline{z}_j \otimes e_\lambda \in \bigwedge^{p,q} \otimes E$$

WHAT IS *u?

Formal adjoint of D_E, D'_E, D''_E ?

性质 4.5.3.

$$D_E^* = -*D_E*$$

$$(D_E')^* = -*D_E''*$$

$$(D_E'')^* = -*D_E'*$$

定义 4.5.4.

$$\triangle_E := D_E D_E^* + D_E^* D_E$$
$$\triangle_E' := D_E' D_E'^* + D_E'^* D_E'$$

 $\triangle_E'' := \cdots$

Check: $\triangle_E, \triangle_E', \triangle_E''$ are self adjoint, elliptic operators.

Hodge theory w.r.t. \triangle_E'' .

定理 4.5.5. We have a decomposition

$$C^{\infty}(X, \bigwedge^{p,q} \otimes E) = \ker \triangle_E'' \oplus \operatorname{Im} D_E'' \oplus \operatorname{Im} D_E'''^*$$

As a consequence, Dolbeault cohomology

$$H_{D_E''}^{p,q}(X,\mathbb{C}) \cong \ker \triangle_E''$$

推论 4.5.6.

$$\dim_{\mathbb{C}} H^{p,q}_{D''_E}(X,\mathbb{C}) < +\infty$$

Cohomology group

$$H^{p,q}_{D''_{E}}(X,\mathbb{C})$$

 Ω^p : sheaf of holomorphic p-forms on X (i.e. a (p,0)-form φ is holomorphic if $\overline{\partial}\varphi=0$).

 $\mathcal{E}^{p,q}$:Sheaf of smooth (p,q)-forms on X.

Similarly, we have $\Omega^p(E)$ the sheaf of holomorphic p-forms with values in E,and $\mathcal{E}^{p,q}(E)$ the sheaf...smooth (p,q)-forms ...

we have an acyclic resolutions

$$0 \to \Omega^p(E) \xrightarrow{D_E''} \mathcal{E}^{p,1}(E) \xrightarrow{D_E''} \mathcal{E}^{p,2}(E) \xrightarrow{D_E''} \cdots$$

(check, it is a resolution)

By de Rham-Weil theorem,

$$H^q(X,\Omega^p(E)) \cong D^{p,q}_{D''_F}(X,\mathbb{C}) \cong \mathcal{H}^{p,q}_{D''_F}(X,\mathbb{C}) := \ker \triangle''_E$$

定理 **4.5.7.** (Serre duality)

The pairing

$$H^{p,q}_{D_E''}(X,E) \times H^{n-p,n-q}_{D_E''}(X,E^*) \to \mathbb{C}$$

 $(s,t) \mapsto \int_X s \wedge t$

is non-degenerate

证明. Define

$$\#: \bigwedge^{p,q} \otimes E \to \bigwedge^{n-p,n-q} \otimes E^*$$

by: for $u, v \in \bigwedge^{p,q} \otimes E$,

$$u \wedge \#v := \langle u, v \rangle dvol$$

Fact:

$$\triangle_{E^*}''\#=\#\triangle_E''$$

Remark: take $E = X \times \mathbb{C}, D_E = \mathbf{d} = \mathbf{d}' + \mathbf{d}'', (\mathbf{d}' = \partial, \mathbf{d}'' = \overline{\partial})$ then we have

$$\triangle' = d'd'^* + d'^*d'$$

$$\wedge'' = \cdots$$

then

$$H^{p,q}_{\mathbf{d''}}(X,\mathbb{C}) \cong \ker \triangle'' \curvearrowright C^{\infty}(X,\bigwedge^{p,q})$$

the pairing

$$H^{p,q}(X,\mathbb{C}) \times H^{n-p,n-q}(X,\mathbb{C}) \to \mathbb{C}$$

is non-degenerate.

4.6 紧 Kahler 流形的上同调群

Three goals:

Kahler package

Lefschetz decomposition

Hodge-Riemann bilinear relations

Linear algebra (baby representation theory)(local case) \mathbb{C}^n ,

$$\omega = \sqrt{-1} \sum_{i,j} h_{ij} \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j$$

Kahler metric with constant coefficients.(i.e. h_{ij} is constant, (h_{ij}) is positive Hermite matrix) W.L.O.G, by taking a linear transformation, we can assume

$$\omega = \sqrt{-1} \sum_{j=1}^{n} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_j$$

记号 **4.6.1.** An operator is of pure degree r if it transform a form of deg = k to as form of degree k + r.

An operator .. of bi-degree (p,q) if ... $(s,t) \rightarrow (s+p,t+q)$ (in this case, degree = p+q) if A,B with degree $\deg A, \deg B, define$

$$[A,B] := AB - (-1)^{\deg A \deg B} BA$$

定义 4.6.2.

$$L: \bigwedge^{p,q} \to \bigwedge^{p+1,q+1}$$
$$u \mapsto \omega \wedge u$$

is called Lefschetz operator.

Denote Λ to be the adjoint of L, adjointed by : Let $v \in \Lambda^{p-1,q-1}$ and $u \in \Lambda^{p,q}$

$$\langle Lv, u \rangle := \langle u, \Lambda u \rangle$$

The operator Λ is of bi-degree (-1, -1).

性质 4.6.3. If

$$u = \sum_{\substack{|I| = p \\ |I| = a}} u_{IJ} dz_I \wedge d\overline{z}_j$$

then

$$Lu = \sqrt{-1} \sum_{\substack{|I|=p\\|I|=a}} \sum_{m=1}^{n} u_{IJ} dz_m \wedge d\overline{z}_m \wedge dz_I \wedge d\overline{z}_J$$

$$\Lambda u = \sqrt{-1}(-1)^p \sum_{|I|=p \atop |I|=p} \sum_{m=1}^n u_{IJ} \left(\frac{\partial}{\partial z_m} \, \rfloor \, \mathrm{d}z_I \right) \wedge \left(\frac{\partial}{\partial \overline{z}_m} \, \rfloor \, \mathrm{d}\overline{z}_J \right)$$

where "\" is contraction.

推论 4.6.4. (Exercise) Let

$$\alpha = \sqrt{-1} \sum_{j=1}^{n} \alpha_j \mathrm{d}z_j \wedge \overline{z}_j$$

then, $(\alpha \text{ is a operator of bi-degree } (1,1))$

$$[\alpha, \Lambda] u = \sum_{\substack{|I| = p \\ |I| = q}} \left(\sum_{i \in I} \alpha_i + \sum_{j \in J} \alpha_j - \sum_{k=1}^n \alpha_k \right) u_{IJ} dz_I \wedge d\overline{z}_J$$

where

$$u = \sum_{\substack{|I| = p \\ |J| = q}} u_{IJ} \mathrm{d}z_I \wedge \mathrm{d}\overline{z}_J$$

推论 **4.6.5.** if $u \in \bigwedge^{p,q}$, then

$$[L, \Lambda]u = (p + q - n)u$$

推论 **4.6.6.** Denote $B := [L, \lambda]$, then

$$[B, L] = 2L$$

$$[B,\Lambda]=-2\Lambda$$

证明. Take $u \in \bigwedge^{p,q}$, then

$$[B, L] = BLu - LBu = (p + q - n + 2)Lu - (p + q - n)Lu = 2Lu$$

the second is similar..

 $\mathfrak{sl}(2,\mathbb{C})$ -representation

$$\mathfrak{sl}(2,\mathbb{C}) = \operatorname{span}_{\mathbb{C}} l, \lambda, b$$

where

$$l = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad \lambda = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

we have

$$[l, \lambda] = b$$
 $[b, l] = 2l$ $[b, \lambda] = -2\lambda$

性质 4.6.7. There exists a natural action

$$\rho:\mathfrak{sl}(2,\mathbb{C})\to\mathrm{End}(\bigoplus_{p,q}\bigwedge^{p,q})$$

with

$$\rho(l) = L$$

$$\rho(\lambda) = \Lambda$$

$$\rho(b) = B$$

定理 4.6.8. (HL)

$$L^{n-k}: \bigwedge^{k} \to \bigwedge^{2n-k}$$
$$u \to \omega^{n-k} \wedge u$$

is an isomorphism.

$$L^{n-k}: \bigwedge^{p,q} \to \bigwedge^{n-k+p,n-k+q}$$

is also an isomorphism.

证明. Lemma:

$$[L^r, \Lambda]u = r(k - n + r - 1)L^{r-1}u$$

(induction, omit)

Assume $\alpha \in \bigwedge_{\mathbb{C}}^k$, $L^{n-k}\alpha = 0$, need to verify $\alpha = 0$.

Claim:

$$L^r: \bigwedge^k \to \bigwedge^{k+2r}$$

is injective whenever $r \leq n - k$.

proof of the claim:

claim is true when k = 0 or k = 1.(check)

Let $\alpha \in \bigwedge^k$ s.t. $L^r \alpha = 0 (r \le n - k)$. By the lemma,

$$L^{r}\Lambda\alpha - \lambda L^{r}\alpha = r(k-n+r-1)L^{r-1}\alpha$$

so,

$$L^{r-1}(L\Lambda\alpha - r(k-n+r-1)\alpha) = 0$$

by the induction on r,

$$L\Lambda\alpha = r(k - n + r - 1)\alpha$$

since $r(k-n+r-1) \neq 0$, $\alpha = L\beta$ for some $\beta \in \bigwedge^{k-2}$. so, $L^r\alpha = L^{r+1}\beta = 0$, by induction on k, we have $\beta = 0$, so $\alpha = 0$.

The claim is proved.

定义 4.6.9. (Primitive form)

 $\alpha \in \bigwedge^k (k \leq n)$ is called primitive form, if

$$L^{n-k+1}\alpha = 0$$

推论 4.6.10. (Lefischtz Decomposition)(LD)

For any $\alpha \in \bigwedge^k$, $(1 \le k \le 2n)$, we have a unique decomposition:

$$\alpha = \sum_{\gamma \ge (k-n)_+} L^{\gamma} \alpha_r$$

 $((k-n)_+ := \max\{k-n,0\})$ with $\alpha_r \in \bigwedge^{k-2r}$ is primitive

证明. Existence: assume $k \leq n$, consider

$$L^{n-k+1}\alpha \in \bigwedge^{2n-k+2}$$

by HL, $\exists ! \beta \in \bigwedge^{k-2}$ s.t. $L^{n-k+2}\beta = L^{n-k+1}\alpha$, so $L^{n-k+1}(\alpha - L\beta) = 0$, i.e. $\alpha_0 = \alpha - L\beta$ is primitive. $\alpha = \alpha_0 + L\beta$, then induction on degrees, we get the decomposition for α .

If k > n, we apply HL to reduce it to case 1.

Uniqueness: Next time..