2 - COMO FUNCIONA A SIMULAÇÃO (1)

Referencia principal:

Freitas, P. J. <u>Introdução à Modelagem e Simulação de Sistemas</u>, 2ª Ed., Visual Books, 2008, Cap. 2.

Tópicos

- Introdução
- Terminologia Básica Utilizada em Modelagem e Simulação de Sistemas
- Um Exemplo Simples

Introdução

• A idéia central deste capítulo é fornecer aos usuários da simulação a compreensão e o conhecimento mínimo necessário ao bom emprego desta técnica.

• Os tópicos aqui abordados, envolvem alguns conceitos que facilitam a execução de uma das tarefas mais penosas atribuídas aos usuários de programas de simulação: educar e fazer compreender a outras pessoas a metodologia e os benefícios advindos do uso deste técnica (Gogg e Mott, 1996).

Introdução

- Um modelo computacional (programa de computador) para a simulação de um sistema executa, seqüencialmente e de maneira repetitiva, um conjunto de instruções.
- Na medida da execução das instruções, os valores que determinadas variáveis podem assumir são alterados, uma vez que se modificam as condições que influenciam o comportamento do modelo.
- As variáveis mudam na medida em que o tempo simulado progride. Além disso, como se tratam (na maioria das vezes) de sistemas estocásticos, tais variáveis não tem seus valores antecipadamente determinados.

Introdução

• Para que o modelo computacional evolua dinamicamente, uma das soluções encontradas pelos pesquisadores foi construir programas orientados a eventos.

• A medida da passagem do tempo, determinados acontecimentos (eventos) provocam alterações em alguns elementos do programa (variáveis de estado), os quais são responsáveis por informar a ocorrência de mudanças nas condições que envolvem o modelo.

Terminologia Básica Utilizada em Modelagem e Simulação de Sistemas

- Variáveis de Estado
- Eventos
- Entidades e Atributos
- Recursos e Filas de Recursos
- Atividades e Períodos de Espera
- Tempo (Real) Simulado e Tempo de Simulação

Variáveis de Estado

- Determinam o estado de um sistema.
- Constituem as informações necessárias à compreensão do que está ocorrendo no sistema (ou no modelo) num determinado instante no tempo.
- Exemplo:
 - <u>Fábrica</u>: o número de peças esperando para serem processadas na máquina (fila da máquina) ou ainda o estado da máquina, isto é, ocupada ou livre;
 - Banco: número de clientes esperando na fila do caixa;
 - <u>Servidor Web</u>: número de requisições aguardando na fila da CPU, número de atendidas, etc.

Eventos

- São acontecimentos, ocorrências, (programados ou não). Sua ocorrência provoca mudança de estado em um sistema.
- Toda mudança de estado é provocada pela ocorrência de um evento (pelo menos uma variável de estado se altera).
- Exemplos
 - <u>Chegada</u>: de peças, de clientes ou de tarefas, respectivamente, em cada um dos sistemas do exemplo anterior (fábrica, banco, servidor)
 - <u>Início de processamento</u>: pela máquina, pelo caixa ou pela CPU, respectivamente, em cada um dos sistemas;
 - <u>Saída</u>: de peças, clientes ou tarefas, respectivamente, em cada um dos sistemas.

Entidades e Atributos

- *Entidades*: representam objetos do modelo.
 - Dinâmicas, movimentam-se através do sistema;
 - Exemplos: Peças (que se movem pela fábrica); Clientes chegando e saindo da fila do caixa de um supermercado ou os tarefas que chegam e saem da CPU depois de processados.
 - Estáticas, servem a outras entidades.
 - Exemplos: Máquinas, caixa ou CPU.
- <u>Atributos</u>: características próprias das entidades. Entidades semelhantes possuem os mesmos atributos. Os valores dos atributos é que as diferenciam entre si.
 - Exemplos: Nome ou tipo de peça, cliente ou tarefa.

Recursos e Filas de Recursos

- <u>Recursos</u> são (em geral) considerados entidades estáticas. Fornecem serviços às entidades dinâmicas.
 - Pode ter vários estados. Ocupado, livre, bloqueado, falhado, indisponível, etc.
 - Pode servir uma ou mais entidades dinâmicas ao mesmo tempo, operando como um servidor paralelo.
 - Uma entidade dinâmica pode operar com mais de uma unidade de recurso ao mesmo tempo, ou com diferentes recursos ao mesmo tempo.
- Se uma entidade dinâmica não puder se apoderar de um recurso solicitado, ela deverá aguardar pelo mesmo na *Fila do Recurso*.
 - Filas podem ser gerenciadas.
 - A política de gerenciamento de filas mais comum é a FIFO (First In, First Out). Outras se aplicam (LIFO, Priority, etc.)

Atividades e Períodos de Espera

- Atividade período de tempo predeterminado.
 - Uma vez iniciada, seu final pode ser programado.
 - Sua duração poderá ou não ser constante.
 - Poderá resultar de uma expressão matemática, de uma distribuição de probabilidades, ou até mesmo ser dependente do estado do sistema
- <u>Espera</u> é um período de tempo sobre o qual não há controle, se o modelo contiver variáveis aleatórias. Uma vez iniciada, não se pode programar seu fim.
 - Exemplo: a espera causada por eventos inesperados. (quebras, chegadas de entidades com maior prioridade, etc.
- Todo início e final de uma atividade ou período de espera é causado por um evento (mudança de estado).

Tempo (Real) Simulado e Tempo de Simulação

- Cuidado com a relação entre o tempo (do sistema real) simulado e o tempo de simulação (tempo necessário à execução de um experimento no computador).
- Para modelos de certos sistemas, o tempo de simulação pode ser muito maior que o tempo simulado.
 - Por exemplo na simulação de um modelo de uma rede de computadores.,
 - Unidades de tempo admitidas para os eventos: milisegundos. Milhares de entidades e de processos.
- Por outro lado, tome-se um modelo de um terminal portuário.
 - Os eventos podem ocorrer na ordem de dias, ou semanas (tempo entre a chegada de dois navios). Simula-se meses ou anos de suas operações em apenas alguns segundos ou minutos de processamento.

Classificação dos Sistemas para Modelagem e Simulação

Classificação dos Modelos de Simulação

- Quanto ao emprego (processo decisório)
 - Modelos Voltados à Previsão
 - Modelos Voltados à Investigação
 - Modelos Voltados à Comparação
- Quanto à abrangência
 - Modelos Específicos
 - Modelos Genéricos
- Quanto à mudança de estado (dinâmica)
 - Modelos Discretos
 - Modelos Contínuos

Tipos de Modelos e o Processo Decisório

• Modelos Voltados à Previsão:

- A simulação pode ser usada para prever o estado de um sistema em algum ponto no futuro, baseado nas suposições sobre seu comportamento atual e de como continuará se comportando ao longo do tempo.
- Modelos de previsão do clima e modelos de previsão de demanda são exemplos clássicos.

Tipos de Modelos e o Processo Decisório

Modelos Voltados à Investigação:

- Busca de informações e desenvolvimento de hipóteses sobre o comportamento de sistemas.
- As variáveis de resposta servem para construir e organizar as informação sobre a natureza do fenômeno ou sistema sob estudo.
- Os experimentos recaem sobre as reações do sistema (modelo) a estímulos normais e anormais
- Exemplos deste tipo de aplicação encontram-se na indústria química (busca de novos compostos), na indústria farmacêutica (novos remédios), na indústria automobilística (novas estruturas visando segurança de veículos), administração de sistemas de saúde.

Tipos de Modelos e o Processo Decisório

• Modelos Voltados à Comparação:

- Avaliar os efeitos de mudanças sobre as variáveis de controle.
 - Na indústria em geral, é comum a busca por melhores soluções de *layout*, ou a determinação do melhor tamanho de lote de fabricação.
 - Em sistemas logísticos, considere, por exemplo, em um terminal portuário as opções de tamanho de tanques de armazenagem e frotas de caminhões transportadores, visando a minimização da espera dos navios para a atracação e descarregamento.

Tipos de Modelos: Abrangência

Modelos Específicos

✓ Utilizados em situações específicas e únicas, mesmo considerando um baixo volume de recursos financeiros envolvido no processo decisório.

Exemplo

• Sistemas de fabricação único, como um SFM.

Tipos de Modelos: Abrangência

Modelos Genéricos

 Modelos que são usados periodicamente por longos períodos. Necessitam ser flexíveis e robustos.

Exemplo

✓ Modelos sobre aplicações orçamentarias, baseadas em desempenho e projeções simuladas do futuro;

Tipos de Modelos: dinâmica da mudança de estado

Modelos Discretos e Modelos Contínuos

- Estes conceitos estão associados a idéia de sistemas que sofrem mudanças de forma discreta ou contínua ao longo do tempo.
- Os termos corretamente atribuídos são:
 - modelos de mudança discreta e
 - modelos de mudança contínua.
- A caracterização de um modelo é dada em função da maneira com que ocorrem as mudanças nas variáveis de estado do sistema.

Modelos de Mudança Discreta ou Discretos

 Nestes modelos, as variáveis de estado mantém-se inalteradas ao longo de intervalos de tempo e mudam seus valores somente em momentos bem definidos, também conhecidos como tempo de ocorrência do evento.

Modelos de Mudança Contínua ou Contínuos

- Nestes modelos, as variáveis de estado podem mudar continuamente ao longo do tempo.
 - <u>Por exemplo</u>, imaginemos um modelo que descreva um sistema composto de uma caixa d'água com seu conteúdo escoando por um furo na sua base.
 - Como variáveis de estado, poderíamos utilizar seu volume ou o seu nível de água.
- Intuitivamente, podemos imaginar que qualquer das duas variáveis de estado estará variando continuamente ao longo do tempo simulado.

Modelos de Mudança Contínua ou Contínuos

Processo Experimental com Modelos de Simulação

Representação esquemática de um modelo de sistema

Um Exemplo Simples para Começar

- Sistemas de Fila Simples
 - Posto de lavação de automóveis.
- Informações:
 - Dependendo do dia da semana e da hora escolhida, é possível que, ao chegar ao posto, um cliente encontre o mesmo ocupado.
 - Prevendo tal situação, o proprietário criou um área de espera na qual os clientes podem aguardar (por ordem de chegada) pelo momento de serem atendidos.

- Algumas das dúvidas do proprietário:
 - Será que a área de espera disponível (para no máximo quatro automóveis) é suficiente?
 - Será que o tempo de serviço é aceitável?
 - Será que a produtividade do operador é adequada?

- Sistema de fila simples: alternativas de tratamento:
 - Achometria;
 - Modelagem analítica (teoria das filas);
 - Modelagem e simulação.

- Informações básicas necessárias:
 - Com que frequência ocorrem chegadas de carros para serem servidos?
 - Qual o tempo necessário para completar o serviço?

- Informações do proprietário sobre as manhãs de sábado:
 - Primeira situação:
 - o "carros chegam mais ou menos a cada 10 min."
 - o "tempo de lavação é de "aproximadamente 15 min.".
 - Se verdade → congestionamento
 - Segunda situação:
 - o "as vezes é ao contrário
 - o o operador leva cerca de 10 min. para lavar
 - o e os carros demoram um pouco mais de 10 min. para chegar".
 - Se verdade → equilíbrio, sistema balanceado.

Achometria

- Bom senso + imaginação para "adivinhar" o futuro.
- Embora *desaconselhável*, esta é uma das técnicas de apoio a decisão mais utilizadas (*a mais econômica?*).
- Dados (fonte: proprietário).
 - Freqüência com que os automóveis chegam ao posto (TEC);
 - Tempo necessário para efetuar os serviços (TS).

Situação	TEC - Tempo entre Chegadas	TS - Tempo de Serviço
A	± 10 min	≅ 15 min
В	≥ 10 min	± 10 min

Tempos adaptados das afirmações do proprietário

Achometria

- Na situação A:
 - os automóveis chegam mais rápidos do que podem ser servidos;
 - alta a possibilidade de ocorrerem congestionamentos.
 - Considerando este possível cenário, as decisões poderiam ser, por exemplo:
 - aumentar a área de espera (alugando um terreno vizinho, por exemplo);
 - contratar mais um empregado e comprar mais um elevador hidráulico;
 - ambas as medidas acima.

Achometria

• Situação B:

- O sistema apresenta uma certa folga (tempo de atendimento é menor do que os tempos decorridos entre as chegadas;
- Raramente ocorrerão filas de espera.
- Neste caso, a decisão do proprietário seria não tomar nenhuma medida.

Achometria (problemas)

- *A verdade* (não captada pelo método) sobre o comportamento do sistema deve, provavelmente, se encontrar entre os dois extremos.
- Poucas informações adicionais podem ser obtidas.
- Falta de elementos para o exercício da previsão e da avaliação.