Machine Learning in Public Health

Lecture 2: Linear Regression

Dr. Yang Feng

Happy New Year

Today's agenda

- Simple Linear Regression
- Multiple Linear Regression
- Qualitative Predictors
- K-Nearest Neighbors for Regression

Linear regression with a single variable

- lacktriangle Goal: predict child's height Y from parent's height X
 - Call Y the **reponse**, also called **dependent** variable
 - Call X the **predictor**, also called **independent** variable

Predict child's heights using parent's heights

■ A naive idea:

$$\widehat{Y} = X$$

Predit child's heights using parent's heights

Probably a better idea:
$$\widehat{Y} = \underbrace{\widehat{\beta}_0}_{\text{intercept}} + \underbrace{\widehat{\beta}_1}_{\text{slope}} X$$

■ The **best** fit line of this form. (what does "best" mean?)

Simple Linear Regression Model

George Box:

All models are wrong; some models are useful...

- Predict a quantitative response Y using a single predictor X.
- The simplest of all is a (simple) linear regression model; that is, the response or target Y satisfies

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 is the *intercept* term
- β_1 is the slope
- β_0 and β_1 are coefficients or parameters of the linear model. They are usually **unknown**.
- ϵ is a noise term, which is usually assumed independent of x and mean zero. It is often assumed to be normally distributed in theoretical analysis.
- Often, we assume the variance of ε is σ^2 , which is another **unknown** parameter of the simple linear regression model.

Estimating the Coefficients (I)

■ **Data**: Suppose the training data contains $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, where x_i is the height of parent i and y_i is height of child i.n is the **sample size**.

	child	parent
1	66.43592	70.85107
2	65.94336	69.85889
3	64.27886	65.27814
4	63.85191	64.03263
5	63.19229	63.41899
6	65.00112	67.82480
6 rows		

- **Predictions**: For an estimate $\hat{\beta}_0$ and $\hat{\beta}_1$, the prediction is $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ of the height of child if a parent has height x.
- **Loss function**: How do we measure the quality of the fit. First, define the residual $e_i = y_i \hat{y}_i$.

$$Loss(y, \hat{y}) = (y - \hat{y})^2$$

■ Why does this loss function make sense? It is the only loss function that makes sense?

Estimating the Coefficients (2)

Training Loss: we can just sum up the loss for all n observations.

$$L(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n Loss(y_i, \hat{y}_i)$$

$$= \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Find $\hat{\beta}_0$ and $\hat{\beta}_1$ that **minimizes** the overall training loss.

$$\underset{\beta_0,\beta_1}{\text{minimize}} L(\beta_0,\beta_1)$$

■ The minimizer is called the **least squares estimate**, denoted as $\hat{\beta}_0$ and $\hat{\beta}_1$.

Residual Sum of Squares and Total Sum of Squares

Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} e_i^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$= (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

- Here, e_i is the residual for the i-th observation.
- Total Sum of Squares: corresponding to $\hat{\beta}_0 = \bar{y}$ and $\hat{\beta}_1 = 0$.

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

R^2 : coefficient of determination

$$R^2 = 1 - \frac{RSS}{TSS}$$

- $\mathbf{R}^2 \in [0,1]$ is the percent of the variation in the response explained by the regression model
- R^2 is a common measure for how good a linear fit is.
- Q: is a bigger R^2 always better?

Least Square Estimates

■ Exact formula

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \text{ and } \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- Remark: every least squares regression line passes (\bar{x}, \bar{y}) .
- Optimization techniques.

$$\frac{\partial L(\beta_0, \beta_1)}{\partial \beta_0} = 0$$
$$\frac{\partial L(\beta_0, \beta_1)}{\partial \beta_1} = 0$$

Multiple Regression: more than one predictors

In addition to scalar input $x \in \mathbb{R}$, we can consider vector input $x \in \mathbb{R}^p$

- lacktriangledown p is feature dimension of input (sometimes use d for dimension)
- Inputs of form

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

- \blacksquare Call x the covariates, independent variables, explanatory variables, features, attributes or predictor variables
 - Note that variables are usually NOT independent of one another

Example: Boston housing data

- Output (response, target, dependent) variable is medv, the median home price in neighborhoods of Suburbs of Boston
- Input variables include (but not limited to)
 - crim: per capita crime rate by town
 - rm: average number of rooms per dwelling
 - zn: proportion of large lots (zoned for > 25,000 feet)
 - chas: whether a home is near the Charles river $(x \in \{0, 1\})$
 - ptratio: pupil-teacher ratio by town
- Let's do a little data exploration

	crim	rm	zn	chas	ptratio	medv
	0.00632	6.575	18	0	15.3	24.0
2	0.02731	6.421	0	0	17.8	21.6
3	0.02729	7.185	0	0	17.8	34.7
4	0.03237	6.998	0	0	18.7	33.4
5	0.06905	7.147	0	0	18.7	36.2
6	0.02985	6.430	0	0	18.7	28.7

Boston housing: Number of Bedrooms

Idea: let us run a regression on each of these, and see which is best, first, the number of bedrooms rm.

```
fit_rm <- lm(medv ~ rm, data = boston)
fit_rm</pre>
```

■ To run a regression on a data frame, we tell R to use a formula with the column(s) we care about and the data frame we want.

Measuring the fit

Compute its fitted values \hat{y}_i and residuals

	true_response	fitted_response	residual
I	24.0	25.17575	-1.175746
2	21.6	23.77402	-2.174021
3	34.7	30.72803	3.971968
4	33.4	29.02594	4.374062
5	36.2	30.38215	5.817848
6	28.7	23.85594	4.844060
6 rows			

Its $R^2 = 0.4835255$

Visualization

Boston housing: Charles River

```
fit_chas <- lm(medv ~ chas, data = boston)
fit_chas</pre>
```

```
##
## Call:
## lm(formula = medv ~ chas, data = boston)
##
## Coefficients:
## (Intercept) chas
## 22.094 6.346
```


Its
$$R^2 = 0.0307161$$

Boston housing: Student to teacher ratio

```
fit_ptratio <- lm(medv ~ ptratio, data = boston)
fit_ptratio</pre>
```

```
##
## Call:
## lm(formula = medv ~ ptratio, data = boston)
##
## Coefficients:
## (Intercept) ptratio
## 62.345 -2.157
```


When we use more than one input variables

Make predictions

$$\hat{y} = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j$$

Model the data as

$$y = \beta_0 + \sum_{j=1}^p \beta_j x_j + \varepsilon$$

where ε is the random noise.

Fitting a multiple regression

Making predictions using

$$\hat{\mathbf{y}} = \hat{\boldsymbol{\beta}}_0 + \sum_{j=1}^p \hat{\boldsymbol{\beta}}_j x_j$$

Fit as in single variable case. Solve (least squares criterion)

$$\underset{\beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - \beta_0 - \beta^T x_i)^2$$

Since each observation has p values, $x_i = (x_{i1}, \dots, x_{ip})^T$, where $i = 1, \dots, n$. In matrix notation, let $y = (y_1, \dots, y_n)^T$ and

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & x_{23} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n3} & \dots & x_{np} \end{bmatrix}$$

where x_{ij} is the *i*th observation of the *j*th variable.

LS Solution

$$\hat{\beta} = (X^T X)^{-1} X y.$$

Boston housing: number of bedrooms and student to teacher ratio

```
fit_rm_ptratio <- lm(medv ~ rm + ptratio, data = boston)
fit_rm_ptratio</pre>
```

```
##
## Call:
## lm(formula = medv ~ rm + ptratio, data = boston)
##
## Coefficients:
## (Intercept) rm ptratio
## -2.561 7.714 -1.267
```

summary(fit_rm_ptratio)\$r.squared

```
## [1] 0.5612535
```

Housing data: regression on everything

fit_all <- lm(formula = medv ~ ., data = boston)</pre>

Summary of 1m

summary(fit rm ptratio)

```
## Call:
## lm(formula = medv ~ rm + ptratio, data = boston)
##
## Residuals:
      Min
              10 Median
                             30
## -17.672 -2.821 0.102 2.770 39.819
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.5612
                       4.1889 -0.611
                                          0.541
## rm
              7.7141
                       0.4136 18.650 <2e-16 ***
## ptratio
              -1.2672
                       0.1342 -9.440 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.104 on 503 degrees of freedom
## Multiple R-squared: 0.5613, Adjusted R-squared: 0.5595
## F-statistic: 321.7 on 2 and 503 DF, p-value: < 2.2e-16
```

Is there a relationship between the reponse and all predictors?

- $H_0: \beta_1 = \dots = \beta_p = 0$
- H_a : at least one of β_j is non-zero
- Did we miss β_0 ?
- This hypothesis test is performed by computing the F-statistic,

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$

■ The larger the F-statistic, the strong evidence against null hypothesis

ANOVA

anova(fit_rm_ptratio)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
					<dbl></dbl>
rm	l	20654.416	20654.4162	554.3367	3.508210e-83
ptratio	I	3320.252	3320.2525	89.1111	1.388009e-19
Residuals	503	18741.627	37.2597	NA	NA
3 rows			- 1 1 2 1 1		

- The **degrees of freedom** (df) for RSS is n p 1 = 503.
- The degrees of freedom (df) for TSS is 1 + 1 + 503 = 505 = n 1.
- What's the sample size of this dataset?

ANOVA: reduce model vs. full model

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
						<dbl></dbl>
	505	42716.30	NA	NA	NA	NA
2	503	18741.63	2	23974.67	321.7239	1.039313e-90
2 row	'S					

- Reduced model: medv ~ 1 (no variable)
- Full model:medv ~ rm + ptratio

Confidence Intervals

```
confint(fit_rm_ptratio, level = 0.95) # 95% CI for the coefficients
```

```
## 2.5 % 97.5 %

## (Intercept) -10.791000 5.668670

## rm 6.901448 8.526692

## ptratio -1.530892 -1.003431
```

Prediction using the linear regression model

1 2.618583 -11.33255 16.56972

Train and testing in the linear regression model

We can split the data into training and testing.

```
boston_tr <- boston[1:400, ]
boston_te <- boston[-(1:400), ]</pre>
```

Fit the model on the training data.

```
fit_rm <- lm(medv ~ rm, data = boston_tr)</pre>
```

2. Compute the fitted value on the training data and compute the training error.

```
pred_rm_train <- predict(fit_rm, newdata = boston_tr)
train_error <- sum((pred_rm_train - boston_tr$medv)^2)
train_error</pre>
```

```
## [1] 14521.32
```

3. Compute the predicted value on the test data and compute the test error.

```
pred_rm_test <- predict(fit_rm, newdata = boston_te)
test_error <- sum((pred_rm_test - boston_te$medv)^2)
test_error</pre>
```

```
## [1] 8440.338
```

Qualitative Predictors

- Sometimes, qualitative variables (also called categorical variables) can be useful in making predictions.
- We usually code qualitative variables by **dummy variables** (variables taking values 0 and 1).

	medv	rm rm_cate	
ı	24.0	6.575 Big	
2	21.6	6.421 Medium	
3	34.7	7.185 Big	
4	33.4	6.998 Big	
5	36.2	7.147 Big	
6	28.7	6.430 Medium	
6 rows			

- Suppose you have a qualitative variable rm_cate with three: Small, Medium, Big. We need to code it with two dummy variables.
- Can we code the levels with one variable with values 1, 2 and 3?
- Always recommended before applying any machine learning algorithms.
- R will automatically do the convertion for us in lm()

```
##
## Call:
## lm(formula = medv ~ rm_cate, data = boston)
## Residuals:
##
      Min
              1Q Median
                             30
                                   Max
## -22.417 -4.379 0.466 3.267 32.521
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               17.4793
                          0.5766 30.315 < 2e-16 ***
## rm cateMedium 2.7088 0.8166 3.317 0.000976 ***
## rm cateBig
                ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.496 on 503 degrees of freedom
## Multiple R-squared: 0.3384, Adjusted R-squared: 0.3358
## F-statistic: 128.6 on 2 and 503 DF, p-value: < 2.2e-16
```

K Nearest Neighbor

■ Recall we assume $Y = f(X) + \epsilon$.

x	y	y_true
-6.0	0.306450529	0.27941550
-5.9	-0.005761892	0.37387666
-5.8	0.483365883	0.46460218
-5.7	0.373730825	0.55068554
-5.6	-0.320387037	0.63126664

-5.I	0.262042912	0.92581468
-5.3 -5.2	0.680184558 1.119579350	0.83226744 0.88345466
-5.4	0.837394632	0.77276449
-5.5	1.425693307	0.70554033

KNN

- Main Idea of KNN: given a new observation x_0 , find the K nearest observations among $\{x_i, i = 1, \dots, n\}$.
- What is near? Measure by the Euclidean Distance $||x_i x_0||_2^2 = (x_i x_0)^2$.
- lacktriangle Let's say the smallest are x_{i_1}, \cdots, x_{i_K} . Then, we have

$$\hat{y}_0 = \frac{1}{K} \sum_{j=1}^K y_{i_j}.$$

Different choice of K

k	train_error	test_error
I	0.0000	581.8208
10	22.81288	364.5425
121	68.58850	964.9834
3 rows		

• K = 1: perfect fit on training data, too rough, bias low, variance high

- K = 121 (sample size): constant fit, just the sample average, too smooth, bias high, variance low (0)
- K = 10: a good balance