Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas Primer Semestre de 2015

MAT1620 * Cálculo II

Interrogación 2

1. Considere la sucesión $\{a_n\}$ definida por

$$a_0 = \sqrt{2}; \quad a_{n+1} = \sqrt{2 + a_n}$$

- a) Demuestre que $\{a_n\}$ es monótona (2 ptos)
- b) Demuestre que $\{a_n\}$ es convergente (2 ptos)
- c) Calcule $\lim_{n\to\infty} a_n$ (2 ptos)

Una solución

a) Dado que la función raíz es creciente y $2 \ge 0$, tenemos que

$$a_1 = \sqrt{2 + \sqrt{2}} \ge \sqrt{2} = a_0.$$

Si suponemos que para algún $k \in \mathbb{N}$ $a_k \ge a_{k-1}$, entonces

$$a_{k+1} = \sqrt{2 + a_k} \ge \sqrt{2 + a_{k-1}} = a_k$$

y el principio de inducción nos garantiza que $\{a_n\}$ es creciente.

b) Veamos que la sucesión $\{a_n\}$ es acotada superiormente por 2.

Primero, es claro que $a_0 = \sqrt{2} \le 2$. Ahora si suponemos que $a_k \le 2$ para algún $k \in \mathbb{N}$, entonces (como $a_k \ge \sqrt{2} \ge 0$, por ser creciente)

$$a_k \le 2 \Rightarrow 2 + a_k \le 4 \Rightarrow \sqrt{2 + a_k} \le 2 \Rightarrow a_{k+1} \le 2.$$

Nuevamente el principio de inducción nos asegura el resultado esperado.

Como la sucesión $\{a_n\}$ es creciente y acotada podemos decir que es convergente.

c) Para calcular el límite pedido escribimos lím $_{n\to\infty} a_n = a$ y usamos

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2 + a_n} \Rightarrow a = \sqrt{2 + a},$$

obteniendo la ecuación $a^2 - a - 2 = 0$, que tiene por soluciones -1 y 2. Como $a_n \ge 0$, se ve que a = 2.

2. Decida y demuestre la convergencia o divergencia de las siguientes series.

- a) $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{n \log n}$ (2 ptos)
- b) $\sum_{n=1}^{\infty} \frac{\text{sen(e^n)}}{n^{3/2}}$ (2 ptos)
- c) $\sum_{n=1}^{\infty} \operatorname{sen}(\frac{1}{n})$ (2 ptos)

Una solución

a) La serie es alternante: $\{\frac{1}{n\log n}\}$ es una sucesión decreciente ya que si $f(x) = \frac{1}{x\log x}$, su derivada $f'(x) = \frac{-(\log x + 1)}{(x\log x)^2}$ es menor que cero para $x \ge 1$. Además $\cos(n\pi) = (-1)^n$, $n \ge 2$.

b) Dado que la función | sen | es acotada por 1, usamos comparación

$$\sum_{n=1}^{\infty} \left| \frac{\sin(e^n)}{n^{3/2}} \right| \le \sum_{n=1}^{\infty} \frac{1}{n^{3/2}},$$

y como 3/2 > 1 se obtiene la convergencia absoluta de la serie original.

c) Comparamos $\operatorname{sen}(\frac{1}{n})$ con $\frac{1}{n}$ obteniendo

$$\lim_{n \to \infty} \frac{\operatorname{sen}(\frac{1}{n})}{\frac{1}{n}} = \lim_{m \to 0} \frac{\operatorname{sen}(m)}{m} = 1.$$

Como $\sum_{n=1}^{\infty}\frac{1}{n}$ diverge, concluimos que $\sum_{n=1}^{\infty} \operatorname{sen}(\frac{1}{n})$ diverge.

- 3. a) Demuetre que la serie $\sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)}$ es convergente. (2 ptos)
 - b) Calcule un valor aproximado de

$$3 + \sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)}$$

con un error menor a 4^{-3} . Demuestre que el valor encontrado cumple con lo requerido. (4 ptos)

Una solución

a) Es fácil comprobar que para todo $k \ge 1$

$$\frac{1}{2k(2k+1)(2k+2)} \ge \frac{1}{2(k+1)(2k+3)(2k+4)},$$

es decir, la suceción $\left\{\frac{1}{2k(2k+1)(2k+2)}\right\}$ es decreciente. También

$$\lim_{n \to \infty} \frac{1}{2k(2k+1)(2k+2)} = 0$$

La serie es por tanto alternante, y entonces converge.

b) Calculamos los dos primeros términos de la serie obteniendo

$$3 + \frac{1}{6} - \frac{1}{30} = 3{,}1\overline{3}$$

Usando la estimación para series alternantes

$$\left| 3 + \sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)} - 3 + \sum_{k=1}^{2} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)} \right| < \frac{4}{(6)(7)(8)} = \frac{1}{84} < \frac{1}{4^3}$$

4. Encuentre todos los $a \in \mathbb{R}$ tales que la serie

$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!} a^n$$

converge.

Una solución Sea $a \in \mathbb{R}$. Usemos el criterio de D'Alembert

$$\lim_{n \to \infty} \frac{\left| \frac{(n+1)^{n+1} a^{n+1}}{(2n+2)!} \right|}{\left| \frac{n^n a^n}{(2n)!} \right|} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} \frac{(n+1)|a|}{(2n+1)(2n+2)}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \frac{(n+1)|a|}{(2n+1)(2n+2)} = 0 < 1,$$

donde hemos usado que lím $_{n\to\infty}(1+\frac{1}{n})^n=\mathrm{e}$

Con esto, la serie converge absolutamente para todo $a \in \mathbb{R}$.