

AUSTRALIA

Course Notes for STAT3001 Mathematical Statistics

Contributors:

MICHAEL CICCOTOSTO-CAMP NAME₂

The University of Queensland SCHOOL OF MATHEMATICS AND PHYSICS

Contents

Symbols and Notation	iii
Review	V
Useful Formulae and Theorems	V
Common Distributions	vi
Common Probabilistic Properties and Identities	vii
Probabilistic Properties	vii
Probabilistic Identities	1
References	2

Symbols and Notation

 $Matrices \ are \ capitalized \ bold \ face \ letters \ while \ vectors \ are \ lowercase \ bold \ face \ letters.$

Syntax	Meaning			
<u> </u>	An equality which acts as a statement			
$ m{A} $	The determinate of a matrix.			
$oldsymbol{x}^\intercal, oldsymbol{X}^\intercal$	The transpose operator.			
$oldsymbol{x}^*, oldsymbol{X}^*$	The hermitian operator.			
a.*b or $A.*B$	Element-wise vector (matrix) multiplication, similar to Matlab.			
\propto	Proportional to.			
$ abla$ or $ abla_f$	The partial derivative (with respect to f).			
$\nabla\nabla$ or $H(f)$	The Hessian.			
~	Distributed according to, example $X \sim \mathcal{N}\left(0,1\right)$			
iid ∼	Identically and independently distributed according to, example $X_1, X_2, \ldots X_n \sim \mathcal{N}\left(0,1\right)$			
0 or 0_n or $0_{n \times m}$	The zero vector (matrix) of appropriate length (size) or the zero vector of length n or the zero matrix with dimensions $n \times m$.			
1 or 1_n or $1_{n\times m}$	The one vector (matrix) of appropriate length (size) or the one vector of length n or the one matrix with dimensions $n \times m$.			
$\mathbb{1}_{n \times m}$	The matrix with ones along the diagonal and zeros on off diagonal elements.			

 $oldsymbol{A}_{(\cdot,\cdot)}$

Index slicing to extract a submatrix from the elements of $A \in \mathbb{R}^{n \times m}$, similar to indexing slicing from the python and Matlab programming languages. Each parameter can receive a single value or a 'slice' consisting of a start and an end value separated by a semicolon. The first and second parameter describe what row and columns should be selected, respectively. A single value means that only values from the single specified row/column should be selected. A slice tells us that all rows/columns between the provided range should be selected. Additionally if now start and end values are specified in the slice then all rows/columns should be selected. For example, the slice $A_{(1:3,j:j')}$ is the submatrix $\mathbb{R}^{3\times(j'-j+1)}$ matrix containing the first three rows of A and columns j to j'. As another example, $A_{(:,j)}$ is the j^{th} column of A.

 $oldsymbol{A}^\dagger$

Denotes the unique psuedo inverse or Moore-Penore inverse of *A*.

 \mathbb{C}

The complex numbers.

 $\operatorname{diag}\left(\boldsymbol{w}\right)$

Vector argument, a diagonal matrix containing the elements of vector w.

 $\operatorname{diag}\left(\boldsymbol{W}\right)$

Matrix argument, a vector containing the diagonal elements of the matrix \mathbf{W} .

 \mathbb{E} or $\mathbb{E}_{q(x)}[z(x)]$

Expectation, or expectation of z(x) where $x \sim q(x)$.

 \mathbb{R}

The real numbers.

 $\mathrm{tr}\left(oldsymbol{A}\right)$

The trace of a matrix.

 \mathbb{V} or $\mathbb{V}_{q(x)}[z(x)]$

Variance, the variance of z(x) when $x \sim q(x)$.

 \mathbb{Z}

The integers, $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$

 Ω

The sample space.

Review

Theorems and defintions here are mostly concepts seen before from other courses.

Useful Formulae and Theorems.

(Geometric Series)
$$\sum_{k=0}^{n-1} r^k = \left(\frac{1-r^n}{1-r}\right)$$
 or
$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r} \quad \text{with} \quad |r|<1$$

(Euler's formula)
$$e^{ix} = \cos x + i \sin x$$

(Newton's Binomial formula)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Theorem 1 (Young's inequality for products). If $a \ge 0$ and $b \ge 0$ are nonnegative real numbers and if p > 1 and q > 1 are real numbers such that $\frac{1}{p} + \frac{1}{p} = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Equality holds iff $a^p = b^q$.

Common Distributions. Common distributions seen from prior courses. Notations mostly borrowed from STAT2003.

Name	Notation	Support	pf	Expectation	Variance
Bernoulli	Ber(p)	{0,1}	$p^k(1-p)^{1-k}$	p	p(1 - p)
Binomial	Bin(n,p)	$\{0,\ldots,n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
Geometric	Geo(n,p)	\mathbb{N}_0	$(1-p)^k p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Poisson	$Poi(\lambda)$	\mathbb{N}_0	$rac{\lambda^x}{x!}e^{-\lambda}$	λ	λ
Uniform	U[a,b]	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
Exponential	$Exp(\lambda)$	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$
Normal	$N(\mu,\sigma^2)$	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2
Gamma	$Gam(\alpha,\lambda)$	\mathbb{R}^+	$\frac{\lambda^{\alpha} x^{\alpha - 1} \exp(-\lambda x)}{\Gamma(\alpha)}$	$rac{lpha}{\lambda}$	$\frac{lpha}{\lambda^2}$
Chi-Squared	χ^2_n	\mathbb{R}^+	$\frac{x^{\frac{n}{2}-1}\exp(-\frac{1}{2}x)}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$	n	2n
White-Noise	$WN(\mu,\sigma^2)$	NA	NA	μ	σ^2

Common Probabilistic Properties and Identities. Common probabilistic properties seen from prior courses.

Probabilistic Properties. For any random variables, the following hold.

(1)
$$\mathbb{E}(X) = \int_0^\infty (1 - F(X)) \ dx$$

(2)
$$\mathbb{E}(aX+b) = a\mathbb{E}X + b$$

(3)
$$\mathbb{E}(g(X) + h(X)) = \mathbb{E}g(X) + \mathbb{E}h(X)$$

(4)
$$\operatorname{Var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

(5)
$$\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X)$$

(6)
$$Cov(X,Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y$$

(7)
$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$$

(8)
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$$

(9)
$$\operatorname{Var}(Y) = \mathbb{E}[\operatorname{Var}(Y|X)] + \operatorname{Var}(\mathbb{E}[Y|X])$$

$$|Cov(XY)|^2 \le Var(X)Var(Y)$$

(12)
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

(Bayes' Theorem)
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

(13)
$$\mathbb{P}(A_1, \dots, A_n) = \mathbb{P}(A_1) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_3 \mid A_1, A_2) \cdots \mathbb{P}(A_n \mid A_1, A_2, \dots, A_{n-1})$$

(14)

Let $\Omega = \bigcup_{i=1}^{n} B_i$ (that is B_i partitions the sample space) then

(TLoP)
$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

(TLoE)
$$\mathbb{E}(A) = \sum_{i=1}^{n} \mathbb{E}(A \mid B_i) \mathbb{P}(B_i)$$

which, when TLoP used in conjunction with Bayes' Rule gives

(15)
$$\mathbb{P}(B_i \mid A) = \frac{\mathbb{P}(A \mid B_i)\mathbb{P}(B_i)}{\sum_{j=1}^n \mathbb{P}(A \mid B_j)\mathbb{P}(B_j)}.$$

If $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{WN}(\mu, \sigma^2)$ and $S_n = \sum_{i=1}^n X_i$, then for all $\varepsilon > 0$

(Weak Law of Large Numbers)
$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) = 0.$$

If
$$X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{WN}(\mu, \sigma^2)$$
 and $S_n = \sum_{i=1}^n X_i$, then for all $x \in \mathbb{R}$ (CLT)
$$\mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}}\right) \leq x = \Phi(x).$$

If X is a random variable and h is a convex function then

$$(\text{Jensens Inequality}) \hspace{1cm} h(\mathbb{E}(X)) \leq \mathbb{E}(h(X)).$$

Probabilistic Identities.

References

[Cas01] George and Berger Casella Roger, *Statistical Inference*, Cengage, Mason, OH, 2001 (eng).