

Name: Ashok Kumar Reddy

Batch: 2

ID: cometfwc 016

Date: 15th May 2025

CHAPTER-2 POLYNOMIALS

MATHEMATICS

36

EXERCISE 2.1

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

2. 2.3 Relationship between Zeroes and Coefficients of a Polynomial

You have already seen that zero of a linear polynomial ax + b is $-\frac{b}{a}$. We will now try to answer the question raised in Section 2.1 regarding the relationship between zeroes and coefficients of a quadratic polynomial.

For this, let us take a quadratic polynomial, say $p(x) = 2x^2 - 8x + 6$. In Class IX, you have learnt how to factorise quadratic polynomials by splitting the middle term. So, here we need to split the middle term '-8x' as a sum of two terms, whose product is $6 \times 2x^2 = 12x^2$. So, we write:

$$2x^{2} - 8x + 6 = 2x^{2} - 6x - 2x + 6 = 2x(x - 3) - 2(x - 3) = (2x - 2)(x - 3) = 2(x - 1)(x - 3)$$

So, the value of $p(x) = 2x^2 - 8x + 6$ is zero when x - 1 = 0 or x - 3 = 0, that is, when x = 1 or x = 3. So, the zeroes of $2x^2 - 8x + 6$ are 1 and 3.

Observe that:

Sum of its zeroes = $1 + 3 = 4 = \frac{-(-8)}{2} = \frac{-b}{a}$

Product of its zeroes = $1 \times 3 = 3 = \frac{6}{2} = \frac{c}{a}$

Let us take one more quadratic polynomial, say, $p(x) = 3x^2 + 5x - 2$. By the method of splitting the middle term:

$$3x^{2} + 5x - 2 = 3x^{2} + 6x - x - 2$$
$$= 3x(x+2) - 1(x+2)$$
$$= (3x-1)(x+2)$$

Hence, the value of $3x^2 + 5x - 2$ is zero when either 3x - 1 = 0 or x + 2 = 0, i.e., when $x = \frac{1}{3}$ or x = -2.

Observe that:

Sum of its zeroes = $\frac{1}{3} + (-2) = -\frac{5}{3} = \frac{-b}{a}$

Product of its zeroes $=\frac{1}{3}\times(-2)=-\frac{2}{3}=\frac{c}{a}$

In general, if α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, $a \neq 0$, then $x - \alpha$ and $x - \beta$ are the factors of p(x). Therefore,

$$ax^{2} + bx + c = k(x - \alpha)(x - \beta)$$
$$= k \left[x^{2} - (\alpha + \beta)x + \alpha\beta\right]$$
$$= kx^{2} - k(\alpha + \beta)x + k\alpha\beta$$

Comparing the coefficients of x^2 , x, and constant terms on both sides, we get:

$$a = k$$
, $b = -k(\alpha + \beta)$, $c = k\alpha\beta$

This gives:

$$\alpha + \beta = \frac{-b}{a}$$
$$\alpha \beta = \frac{c}{a}$$

where α and β are Greek letters pronounced as 'alpha' and 'beta' respectively. We will use later one more letter ' γ ', pronounced as 'gamma'.

So, the zeroes are $x = \frac{1}{3}$ and x = -2.

Observe that:

Sum of zeroes = $\frac{-5}{3}$

Product of zeroes = $\frac{-2}{3}$

In general, for $p(x) = ax^2 + bx + c$, zeroes α and β :

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Example 2

Find the zeroes of $x^2 + 7x + 10$, and verify the relationship between zeroes and coefficients.

Solution: Factorizing:

$$x^2 + 7x + 10 = (x+2)(x+5)$$

Zeroes are x = -2 and x = -5.

Observe that:

Sum of zeroes =
$$-2 + (-5) = -7 = \frac{-7}{1}$$

Product of zeroes =
$$(-2) \times (-5) = 10 = \frac{10}{1}$$

Example 3

Find the zeroes of $x^2 - 3$ and verify the relationship.

Solution: Using identity $a^2 - b^2 = (a - b)(a + b)$:

$$x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})$$

Zeroes are $x = \sqrt{3}$ and $x = -\sqrt{3}$.

Observe that:

Sum of zeroes =
$$\sqrt{3} + (-\sqrt{3}) = 0$$

Product of zeroes =
$$(\sqrt{3})(-\sqrt{3}) = -3$$

Example 4

Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2, respectively.

Solution: Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

We have:

$$\alpha + \beta = -3 = \frac{-b}{a}$$
$$\alpha \beta = 2 = \frac{c}{a}$$

If a = 1, then b = 3, c = 2. So, one quadratic polynomial which fits the given conditions is:

$$x^2 + 3x + 2$$

Any other quadratic polynomial that fits these conditions will be of the form $k(x^2 + 3x + 2)$, where $k \in \mathbb{R}$.

Let us now look at cubic polynomials. Do you think a similar relation holds between the zeroes of a cubic polynomial and its coefficients?

Consider:

$$p(x) = 2x^3 - 5x^2 - 14x + 8$$

You can check that p(x) = 0 for:

$$x = 4, \quad x = -2, \quad x = \frac{1}{2}$$

Since a cubic polynomial can have at most three zeroes, these are the zeroes of p(x).

Observe:

Sum of the zeroes: $4 + (-2) + \frac{1}{2} = \frac{5}{2} = \frac{-(-5)}{2} = \frac{-b}{a}$

Product of the zeroes: $4 \times (-2) \times \frac{1}{2} = -4 = \frac{-8}{2} = \frac{-d}{a}$

Sum of the products taken two at a time:

$$(4 \times -2) + (-2 \times \frac{1}{2}) + (\frac{1}{2} \times 4) = -8 - 1 + 2 = -7 = \frac{c}{a}$$

In general, if α, β, γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$, then:

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
$$\alpha\beta\gamma = \frac{-d}{a}$$

Let us consider an example.

Example 5: Verify that 3, -1, $-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship between the zeroes and the coefficients.

Solution : Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we get:

$$a = 3$$
, $b = -5$, $c = -11$, $d = -3$

Check each root:

$$p(3) = 3 \times 3^{3} - 5 \times 3^{2} - 11 \times 3 - 3 = 81 - 45 - 33 - 3 = 0,$$

$$p(-1) = 3 \times (-1)^{3} - 5 \times (-1)^{2} - 11 \times (-1) - 3 = -3 - 5 + 11 - 3 = 0,$$

$$p\left(-\frac{1}{3}\right) = 3 \times \left(-\frac{1}{3}\right)^{3} - 5 \times \left(-\frac{1}{3}\right)^{2} - 11 \times \left(-\frac{1}{3}\right) - 3$$

$$= -\frac{1}{9} - \frac{5}{9} + \frac{11}{3} - 3$$

$$= -\frac{6}{9} + \frac{11}{3} - 3 = -\frac{2}{3} + \frac{11}{3} - 3$$

$$= 3 - 3 = 0$$

Therefore, 3, -1 and $-\frac{1}{3}$ are the zeroes of $3x^3 - 5x^2 - 11x - 3$. So, we take $\alpha = 3$, $\beta = -1$, and $\gamma = -\frac{1}{3}$.

Now, verify the relationships:

$$\alpha + \beta + \gamma = 3 + (-1) + \left(-\frac{1}{3}\right) = \frac{5}{3} = \frac{-b}{a} = \frac{-(-5)}{3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 3 \times (-1) + (-1) \times \left(-\frac{1}{3}\right) + \left(-\frac{1}{3}\right) \times 3 = -3 + \frac{1}{3} - 1 = -\frac{11}{3} = \frac{c}{a}$$

$$\alpha\beta\gamma = 3 \times (-1) \times \left(-\frac{1}{3}\right) = 1 = \frac{-d}{a}$$

Not from the examination point of view.

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x^2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1

(ii)
$$\frac{1}{2}$$
, $\frac{3}{2}$

(v)
$$\frac{1}{4}$$
, $-\frac{1}{4}$

2.4 Division Algorithm for Polynomials

You know that a cubic polynomial has at most three zeroes. However, if you are given only one zero, can you find the other two?

For this, let us consider the cubic polynomial $x^3 - 3x^2 - x + 3$.

If we tell you that one of its zeroes is 1, then you know that x-1 is a factor of x^3-3x^2-x+3 .

So, you can divide $x^3 - 3x^2 - x + 3$ by x - 1, as you have learnt in Class IX, to get the quotient $x^2 - 2x - 3$.

Next, you could get the factors of $x^2 - 2x - 3$ by splitting the middle term, as (x+1)(x-3). This would give you:

$$x^{3} - 3x^{2} - x + 3 = (x - 1)(x^{2} - 2x - 3) = (x - 1)(x + 1)(x - 3)$$

So, all the three zeroes of the cubic polynomial are now known to you as 1, -1, and 3.

Let us discuss the method of dividing one polynomial by another in some detail.

Before noting the steps formally, consider an example.

Example 6: Divide $2x^2 + 3x + 1$ by x + 2.

Solution: Note that we stop the division process when either the remainder is zero or its degree is less than the degree of the divisor. So, here the quotient is 2x-1 and the remainder is 3.

Also,

$$(2x-1)(x+2) + 3 = 2x^2 + 3x - 2 + 3 = 2x^2 + 3x + 1$$

i.e.,

$$2x^2 + 3x + 1 = (x+2)(2x-1) + 3$$

Therefore,

 $Dividend = Divisor \times Quotient + Remainder$

Example 7: Divide $3x^3 + x^2 + 2x + 5$ by $1 + 2x + x^2$.

Solution:

- First, write both polynomials in standard form:
 - Dividend: $3x^3 + x^2 + 2x + 5$ (already in standard form)
 - Divisor: $1 + 2x + x^2 = x^2 + 2x + 1$

Now, we divide using the standard polynomial division method:

1. Divide $3x^3$ by x^2 to get 3x. Multiply and subtract:

$$3x(x^2 + 2x + 1) = 3x^3 + 6x^2 + 3x$$

Subtracting from dividend:

$$(3x^3 + x^2 + 2x + 5) - (3x^3 + 6x^2 + 3x) = -5x^2 - x + 5$$

2. Divide $-5x^2$ by x^2 to get -5. Multiply and subtract:

$$-5(x^2 + 2x + 1) = -5x^2 - 10x - 5$$

POLYNOMIALS 35

Subtracting:

$$(-5x^2 - x + 5) - (-5x^2 - 10x - 5) = 9x + 10$$

3. Step 3: Since the degree of 9x + 10 is less than that of $x^2 + 2x + 1$, the division stops. Thus, the quotient is 3x - 5 and the remainder is 9x + 10.

Verification:

$$(x^{2} + 2x + 1)(3x - 5) + (9x + 10) = 3x^{3} + 6x^{2} + 3x - 5x^{2} - 10x - 5 + 9x + 10$$
$$= 3x^{3} + (6x^{2} - 5x^{2}) + (3x - 10x + 9x) + (-5 + 10)$$
$$= 3x^{3} + x^{2} + 2x + 5$$

Hence, Dividend = Divisor \times Quotient + Remainder.

This is similar to Euclid's division algorithm you studied in Chapter 1.

For polynomials, if p(x) and q(x) are polynomials with $q(x) \neq 0$, then:

$$p(x) = q(x) \cdot q(x) + r(x)$$
, where $r(x) = 0$ or $\deg r(x) < \deg q(x)$

This is known as the Division Algorithm for Polynomials.

Let us now take another example.

Example 8: Divide $3x^2 - x^3 - 3x + 5$ by $x - 1 - x^2$, and verify the division algorithm.

Solution:

- The given polynomials are not in standard form.
- To carry out division, write both the dividend and divisor in decreasing order of their degrees.

Dividend =
$$-x^3 + 3x^2 - 3x + 5$$
, Divisor = $-x^2 + x - 1$

The division process is performed (as shown visually in the textbook).

We stop here since $deg(3) = 0 < 2 = deg(-x^2 + x - 1)$.

• Quotient: x-2

• Remainder: 3

Divisor × Quotient + Remainder =
$$(-x^2 + x - 1)(x - 2) + 3$$

Compute:

$$(-x^{2} + x - 1)(x - 2) = -x^{3} + x^{2} - x + 2x^{2} - 2x + 2$$
$$= -x^{3} + 3x^{2} - 3x + 2$$

Adding remainder:

$$-x^3 + 3x^2 - 3x + 2 + 3 = -x^3 + 3x^2 - 3x + 5$$

Thus, Dividend = Divisor \times Quotient + Remainder is verified.

Example 9: Find all the zeroes of $2x^4 - 3x^3 - 3x^2 + 6x - 2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Solution:

- Given zeroes: $\sqrt{2}$ and $-\sqrt{2}$
- So, $(x-\sqrt{2})(x+\sqrt{2})=x^2-2$ is a factor of the polynomial.
- We divide the polynomial by $x^2 2$
- 1. First term of the quotient:

$$\frac{2x^4}{r^2} = 2x^2$$

2. Second term of the quotient:

$$\frac{-3x^3}{x^2} = -3x$$

3. Third term of the quotient:

$$\frac{x^2}{x^2} = 1$$

So, we get:

$$2x^4 - 3x^3 - 3x^2 + 6x - 2 = (x^2 - 2)(2x^2 - 3x + 1)$$

Now, we factorise the quadratic $2x^2 - 3x + 1$ by splitting the middle term:

• Split
$$-3x$$
 as $-2x - x$

• Factor:
$$2x^2 - 2x - x + 1 = 2x(x-1) - 1(x-1) = (2x-1)(x-1)$$

So, the complete factorisation is:

$$2x^4 - 3x^3 - 3x^2 + 6x - 2 = (x^2 - 2)(2x - 1)(x - 1)$$

Therefore, the zeroes of the given polynomial are:

1.
$$x = \sqrt{2}$$

2.
$$x = -\sqrt{2}$$

3.
$$x = \frac{1}{2}$$

4.
$$x = 1$$