DSM2 Learning Series: DSM2 Planning Studies Session 2: Output Post-processing

The goals for this session include

- 1. Post-processing DSM2 results, creating new DSS files used for plotting
- 2. Using Jupyter notebooks to plots results of studies
- 3. Learning to work with Jupyter notebook plots

Run the post-processor for the <u>baseline</u> and <u>alternative</u> studies.

Post-processing model output

baseline study: running the post-processor

Run post-processor

Creates new flow, stage, and velocity DSS files, containing

- daily max & min
- daily & monthly mean

Command Prompt - postpro.bat

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\baseline>postpro.bat

Successful run

```
/HYDROV8.2.2/TRNR_CUT/VEL/01SEP2010 - 01SEP2014/15MIN/2021EX/
/HYDROV8.2.2/VENICE162/VEL/01SEP2010 - 01SEP2014/15MIN/2021EX/
/HYDROV8.2.2/VENICE163/VEL/01SEP2010 - 01SEP2014/15MIN/2021EX/
all process done

(pydelmod_plan) D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\baseline
ctivate.bat

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\baseline>endlocal

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\baseline>=
```

Post-processing model output

alternative study: running the post-processor

Run post-processor

Creates new flow, stage, and velocity DSS files, containing

- daily max & min
- · daily & monthly mean

Command Prompt

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\alternative>postpro.bat

Successful run

```
/HYDROV8.2.2/IRNR_CUI/VEL/01SEP2010 - 01SEP2014/15M1N/2040ALT/
/HYDROV8.2.2/VENICE162/VEL/01SEP2010 - 01SEP2014/15M1N/2040ALT/
/HYDROV8.2.2/VENICE163/VEL/01SEP2010 - 01SEP2014/15MIN/2040ALT/
all process done

(pydelmod_plan) D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\alternative
deactivate.bat

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\alternative>endlocal

D:\DSM2_Planning_2023\delta\DSM2_v822plan\studies_planning\alternative>_
```

Plot model output with Jupyter notebooks

Post-processing model output starting Jupyter notebook application Command Prompt - notebook.bat D:\DSM2_Planning_2023\delta\DSM2_v822plan\postp>notebook.bat D:\DSM2_Planning_2023\delta\DSM2_v822plan\postp>set PATH=c:\Windows\System32;c:\Windows D:\DSM2_Planning_2023\delta\DSM2_v822p1an\postp>call ..\pydelmod_plan\Scripts\activate.bat (pydelmod_plan) D:\DSM2_Plannipg_2023\delta\DSM2_v822plan\postp>rem .\pydelmod_plan\Scripts\conda-unpack.exe 2. Jupyter notebook 🗂 jupyter 1. noteook.bat opens in web browser starts the jupyter Files Running Clusters Nbextensions notebook application Select items to perform actions on them □ 0 - ■/ 3. Click on info 🗀 info "workshop_notebooks" ☐ kernel folder workshop_notebooks

Jupyter notebooks for plotting model output

Notebook filename	Purpose
2021_example_EC.ipynb	Compare EC outputs from multiple scenarios, many stations throughout he system Bar charts aggregated by month Exceedance probability
	Box & Whisker
2021_example_EC_stds.ipynb	 Time series Exceedance probability
!021_example_stage.ipynb	Compare Stage outputs from multiple scenarios • All four plot types

Try the various plot features shown in the figure below.

