Simulation methods: Markov Chains Monte Carlo

Abass SAGNA. abass.sagna@ensiie.fr

Maître de Conférences à l'ENSIIE Laboratoire de Mathématiques et Modélisation d'Evry Université d'Evry Val-d'Essonne, UMR CNRS 8071

http://www.math-evry.cnrs.fr/members/asagna/

March 5, 2019

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- The Hastings-Metropolis algorithm
- The Gibbs distribution
- Simulated annealing
- 6 References

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- The Hastings-Metropolis algorithm
- The Gibbs distribution
- 4 Simulated annealing
- 5 References

Simulation of Markov chain

 \rightsquigarrow Let $(X_n)_{n>0}$ be a Markov chain on a countable state space E with initial distribution μ : $\mu(i) = \mathbb{P}(X_0 = i)$, $i \in E$, and transition matrix $P = (P(i,j))_{i,i \in F}$:

$$\mathbb{P}(X_{i_0},\ldots,X_{i_n})=\mu(i_0)\prod_{k=1}^n P(i_{k-1},i_k)$$

- \rightarrow Each row $P(i, \bullet) = \{P(i, j), j \in E\}$ of the transition matrix is a probability on E.
- \sim We can simulate a sample path of size n of the Markov chain using a sequential inversion algorithm described below:
 - Generate $X_0 \sim \mu$.
 - ② For k from 1 to n, generate $X_k \sim P(X_{k-1}, \bullet)$.
 - \odot Return (X_0, \ldots, X_n) .

Generating a sample path of a Markov chain: example.

Example (Simple random walk on \mathbb{Z}). Consider a mobile which moves up on \mathbb{Z} with probability $p \in (0,1)$ and moves down with probability q = 1 - p:

$$P(i,j) = \begin{cases} p & \text{if } j = i+1\\ q & \text{if } j = i-1\\ 0 & \text{otherwise.} \end{cases}$$

Generate a sample path of size n of the associated Markov chain $(X_k)_{k\geq 0}$ with initial distribution $\mu=\delta_0$.

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains

Reversibility: Definition.

Definition. Let $(X_n)_{n>0}$ be a Markov chain on E with initial distribution μ and transition matrix P. $(X_n)_{n\geq 0}$ is a revertible Markov chain if for any n > 1. $(X_0, ..., X_n) \stackrel{d}{=} (X_n, ..., X_0)$: mean, for any $i_0, ..., i_n \in E$,

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \mathbb{P}(X_0 = i_n, \dots, X_n = i_0).$$

 \rightsquigarrow If n=1, $i,j\in E$, we have in particular

$$\mathbb{P}(X_0 = i, X_1 = j) = \mathbb{P}(X_0 = j, X_1 = i) \iff \mu(i)P(i, j) = \mu(j)P(j, i). \tag{1}$$

Equation (1) is called *detailed balance equation*.

 \rightarrow Summing over *j* gives

$$(\mu P)(i) = \sum_{i \in E} \mu(j) P(j, i) = \mu(i) \sum_{i \in E} P(i, j) = \mu(i),$$

meaning that μ is stationary.

Reversibility: Definition.

→ If the detailed balance equation holds then the Markov chain is reversible. In fact

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \mu(i_0) P(i_0, i_1) \dots P(i_{n-1}, i_n)
= P(i_1, i_0) \mu(1) \dots P(i_{n-1}, i_n)
= \dots
= P(i_1, i_0) \dots P(i_n, i_{n-1}) \mu(i_n)
= \mathbb{P}(X_0 = i_n, \dots, X_n = i_0).$$

Proposition. A Markov on E with stationary distribution π is reversible if and only if for any $i, j \in E$

$$\pi(i)P(i,j) = \pi(j)P(j,i) \tag{2}$$

Reversibility: Example.

Example (Random walks on weighted graph). Consider a complete graph for which every undirected edge between vertices i and j has a weight $\varpi_{ij} = \varpi_{ji}$. Let

$$\varpi_i = \sum_k \varpi_{ik}$$
 and $\varpi = \sum_{ik} \varpi_{ik}$.

 \sim A walker moves from i to j with a probability $P(i,j)=p_{ij}$ proportional to w_{ij} , so that $p_{ij}=\varpi_{ij}/\varpi_i$. The probability measure π defined by

$$\pi_{i} = \frac{\varpi_{i}}{\varpi}$$

is a reversible measure. In fact

$$\pi_i p_{ij} = \frac{\varpi_i}{\varpi} \times \frac{\varpi_{ij}}{\varpi_i} = \frac{\varpi_{ij}}{\varpi} = \frac{\varpi_{ji}}{\varpi} = \pi_j p_{ji}.$$

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- 2 The Hastings-Metropolis algorithm
- The Gibbs distribution
- Simulated annealing
- 6 References

MC algorithm for Markov chain

 \leadsto To estimate $\mathbb{E}(g(X))$ by MC algorithm, we use an iid sequence $X_1, \ldots,$ X_n of r.v. with the same distribution π as X: with probability 1 or a.s.,

$$\frac{1}{n}\sum_{k=0}^n g(X_k) \longrightarrow \mathbb{E}(g(X)) = \int g(x)\pi(dx).$$

 \rightsquigarrow Let $(X_n)_{n\geq 0}$ be an irreducible Markov chain with stationary distribution π . If $X_0 \sim \pi$, then,

$$\mathbb{P}(X_1 = j) = \sum_{i \in E} P(i, j) \pi(i) = (\pi P)(j) = \pi(j) \implies X_1 \sim \pi,$$

and we show by induction that X_0, \ldots, X_{n-1} have the same distribution π but are (in general) not independent.

 \leadsto The ergodic theorem makes a similar estimate of $\mathbb{E}(g(X))$, $X \sim \pi$:

$$\frac{1}{n}\sum_{k=0}^{n-1}g(X_k)\longrightarrow \mathbb{E}(g(X))=\sum_{i\in E}g(i)\pi(i)=\int g(x)\pi(dx).$$

MC algorithm for Markov chain

- \leadsto Suppose $(X_n)_{n\geq 0}$ is an irreducible Markov chain with initial distribution μ stationary distribution π and we want to compute $\mathbb{E}g(X)$, $X \sim \pi$.
- \leadsto In practice it is often difficult to simulate from π (which is some time not explicit).
- \leadsto The ergodic theorem holds for an initial distribution μ , so that the bias introduced by starting the chain from the distribution μ instead of π disappears asymptotically.
- → The associated Monte Carlo algorithm is:
 - Generate $X_0 \sim \mu$.
 - ② For k from 1 to n, generate $X_k \sim P(X_{k-1}, \bullet)$.
 - **3** Return $(g(X_0) + \ldots + g(X_{n-1}))/n$.

MC algorithm for Markov chain: example

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- The Hastings-Metropolis algorithm
- The Gibbs distribution
- 4 Simulated annealing
- 6 References

The H-M algorithm: the principle

Let $E \subset \mathbb{R}^d$ be a countable set and let π be a probability on E. → Our aim is to approximate

$$\int g(x)\pi(dx) \tag{3}$$

using the Hastings-Metropolis (H-M) algorithm.

- → The H-M algorithm is useful when it is very difficult to generate an independent sequence X_1, \ldots, X_N of random variables with distribution π in order to use the Monte Carlo method.
- The aim of the Hastings-Metropolis algorithm is to build a reversible Markov chain $(X_n)_{n\geq 0}$ with reversible distribution π and to approximate (3) (using the ergodic theorem) by $(g(X_0) + \ldots + g(X_{n-1}))/n$.
- \sim Let E be a countable set and let π and Q be resp. a probability and a transition probability on E. We suppose $Q(x,y)=0 \iff Q(y,x)=0$.

The H-M algorithm: the principle

How to build the Markov chain $(X_n)_{n\geq 0}$ with reversible distribution π ?

- \leadsto Choose $x_0 \in E$ such that $\pi(x_0) > 0$ and set $X_0 = x_0$.
- $(X_n)_{n\geq 1}$ is built recursively using the rejection method. Suppose in fact that $X_k=x_k$, for $k=0,\ldots,n$, is built and say how to define X_{n+1} .
 - Generate two independent r.v. $Y_n \sim Q(x_n, \bullet)$ and $U_n \sim \mathcal{U}(]0, 1[)$, both independent from $(X_k)_{k \leq n}$ and set

$$h(x,y) = \min\left(1, \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}\right),\,$$

with the convention h(x, y) = 1 if $\pi(x)Q(x, y) = 0$.

- If $U_n \leq h(X_n, Y_n)$, set $X_{n+1} = Y_n$.
- If $U_n > h(X_n, Y_n)$, set $X_{n+1} = X_n$.

The H-M algorithm: proof

Proposition. The process $(X_n)_{n\geq 0}$ is a reversible Markov process with reversible distribution π and transition matrix P defined as:

$$P(x,y) = \begin{cases} Q(x,y)h(x,y) & \text{if } x \neq y \\ 1 - \sum_{y \neq x} P(x,y) & \text{if } x = y. \end{cases}$$

Proof. By construction, $(X_n)_{n\geq 0}$ is a Markov chain. Let $x\neq y$. We have

$$\mathbb{P}(X_{n+1} = y | X_n = x) = \mathbb{P}(X_{n+1} = y, U_n \le h(X_n, Y_n) | X_n = x)
+ \mathbb{P}(X_{n+1} = y, U_n > h(X_n, Y_n) | X_n = x)
= \mathbb{P}(X_{n+1} = y, U_n \le h(X_n, Y_n) | X_n = x)
= \mathbb{P}(Y_n = y, U_n \le h(x, y) | X_n = x)
= \mathbb{P}(Y_n = y, U_n \le h(x, y))
= \mathbb{P}(Y_n = y) \mathbb{P}(U_n \le h(x, y))
= Q(x, y) h(x, y).$$

The H-M algorithm: proof

If x = y, we have

$$P(x,x) = \mathbb{P}(X_{n+1} = x | X_n = x) = 1 - \sum_{y \neq x} \mathbb{P}(X_{n+1} = y | X_n = x).$$

On the other hand, if $x \neq y$,

$$\pi(x)P(x,y) = \min\left(\pi(x)Q(x,y), \pi(y)Q(y,x)\right) = \pi(y)P(y,x),$$

which shows that π is a reversible distribution and end the proof.

 \leadsto A particular, but interesting example of distribution π is the Gibbs distribution.

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- 2 The Hastings-Metropolis algorithm
- The Gibbs distribution
- Simulated annealing
- 6 References

The Gibbs distribution: definition

Definition. Let E be a finite set, $\beta > 0$, and $V : E \mapsto \mathbb{R}$ be a function. The Gibbs distribution associated to V and β is defined by

$$\pi_{\beta}(x) = \frac{\exp(-\beta V(x))}{Z(\beta)}, \qquad x \in E,$$

where $Z(\beta) = \sum_{x \in E} \exp(-\beta V(x))$ is the normalizing constant.

 \leadsto Gibbs distribution is solution of the optimization problem $\max_{\pi \in \mathcal{A}} H(\pi)$ where the entropy H and the set of constrains \mathcal{A} are defined as

$$H(\pi) = -\sum_{x \in E} \pi(x) \ln(\pi(x))$$
 and
$$\mathcal{A} = \Big\{ \pi \ge 0 : \sum_{x \in E} \pi(x) = 1, \quad \sum_{x \in E} V(x)\pi(x) = c \Big\}.$$

Remark. If Q is symmetric,

$$h(x,y) = \min(1,\pi(y)/\pi(x)) = \exp(-\beta(V(y) - V(x))^{+}).$$

and this will simplify the algorithm.

The Gibbs distribution: Ising model

The Ising model. Let us consider the integer lattice $\Lambda = \{0, \dots, N-1\}^2$ equipped with the horizontal and vertical neighbor relation $x \sim y$. Any spin $x = (i, j) \in \Lambda$ has one the two types $s(i, j) \in \{-1, 1\}$, so that the state space of the system is $E = \{s : \Lambda \mapsto \{-1, 1\}\} = \{-1, 1\}^{\Lambda}$.

 \rightarrow Let $S = (s(x))_{x \in \Lambda}$ be a possible spins configuration. We consider the Gibbs distribution on E which associates to any configuration S the proba.

$$\pi_{\beta}(S) = \frac{1}{Z(\beta)} \exp\left(-\beta H(S)\right), \quad H(S) = -\sum_{x,y \in E: x \sim y} s(x)s(y).$$

- → In this model, the spins interact with their neighbors and the energy associated to configuration S is H(S). The term $T = 1/\beta$ is the temperature.
- \rightarrow Remark that if N=40, then card $(E)=2^{40\times40}\approx10^{481}$, so that it is not possible to enumerate all the possible configurations S in order to compute $\pi_{\beta}(S)$. We use the H-M algorithm to simulate the Ising model.

The H-M for the Ising model

- \rightarrow Denote S_x the configuration obtained by changing the sign of the spin in $x \in \Lambda$ of the configuration S.
- \rightarrow The matrix Q describes the evolution on the set of configurations:

$$\forall x \in \Lambda, \quad Q(S, S_x) = \frac{1}{\mathsf{card}(\Lambda)}.$$

- \sim Then, at each step of the procedure, we choose a lattice $x \in \Lambda$ from a uniform distribution on Λ and change the sign of its spin.
- The corresponding variation of energy is

$$\Delta H(S, S_x) := H(S_x) - H(S) = -\sum_{y \sim x} s(-x)s(y) - \left(-\sum_{y \sim x} s(x)s(y)\right)$$
$$= 2s(x)\sum_{y \in x} s(y);$$

The H-M for the Ising model

 \rightsquigarrow Then, since $Q(S, S_x) = Q(S_x, S)$,

$$h(S, S_x) = \frac{\pi_{\beta}(S_x)Q(S_x, S)}{\pi_{\beta}(S)Q(S, S_x)} = \exp\left(-\beta \Delta H(S, S_x)\right).$$

- → Description of the Ising algorithm. The Ising algorithm is described from the following steps:
 - ullet Choose an initial configuration S.
 - Repeat M times (with M large enough):
 - Simulate independently $V = x \sim \mathcal{U}(\Lambda)$ and $U \sim \mathcal{U}(]0,1[)$,
 - If $U \leq \exp(-\beta \Delta H(S, S_x))$, then replace S by S_x , otherwise, let S unchanged.
 - 3 Return S.

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- The Hastings-Metropolis algorithm
- The Gibbs distribution
- 4 Simulated annealing
- 6 References

Simulated annealing: the principle

The Simulated is used to find the global minimum of a function $V: E \mapsto \mathbb{R}$, where E is a finite (it may be extended to optimization with continuous control parameters) set but very large to allow a systematic search on all the domain E.

- → One of the most popular problems effectively solved by the Simulated annealing algorithm is the famous *travelling salesman problem*.
- \leadsto It consists of finding the shortest cyclical itinerary for a travelling salesman who must visit N given cities in turn.
- \leadsto To describe the Simulated annealing algorithm, we need to define a inhomogeneous Markov chain.

Simulated annealing: the principle

Definition. A Markov chain $(X_n)_{n\geq 0}$ with state space E is inhomogeneous if there is a sequence $(P_n)_{n\geq 1}$ of transition probabilities on E such that for any $n\geq 0$ and for any $x_k\in E$, $k=0,\ldots,n$,

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_0 = x_0, \dots, X_n = x_n) = P_n(x_n, x_{n+1}).$$

 \rightsquigarrow If $(X_n)_{n\geq 0}$ is an inhomogeneous Markov chain, then,

$$\mathbb{P}(X_{n+1} = y | X_0 = x) = (P_1 \cdots P_n)(x, y).$$

 \rightsquigarrow If $X_0 \sim \nu_0$, the the distribution ν_n of X_n is

$$\nu_n = \nu_0 P_1 \cdots P_n$$
.

In fact, it follows from Bayes formula that

$$\nu_n(y) = \sum_{x \in E} \mathbb{P}(X_n = y | X_{n-1} = x) \nu_{n-1}(x) = \sum_{x \in E} P_n(x, y) \nu_{n-1}(x) = (\nu_{n-1} P_n)(y).$$

Simulated annealing: the algorithm

- → The Simulated annealing is defined from the following algorithm:
 - Fix a symmetric transition matrix Q satisfying the *Doeblin* condition: there exists $n \in \mathbb{N}$, $\alpha \in]0,1[$ and a probability π on E s.t. $\forall x,y \in E$,

$$Q^n(x,y) \geq \alpha \pi(y).$$

- ② Choose a nondecreasing sequence $(\beta_n)_{n\geq 1}$ converging toward $+\infty$.
- **9** Build the transition matrix P_n associated to Q and β_n using the Hastings-Metropolis algorithm:

$$P_n(x,y) = \begin{cases} Q(x,y) \exp\left(-\beta_n(V(y) - V(x))^+\right) & \text{if } x \neq y \\ 1 - \sum_{y \neq x} P_n(x,y) & \text{if } x = y. \end{cases}$$

 \sim The probability π_{β_n} defined by

$$\pi_{\beta_n}(x) = \frac{1}{Z(\beta_n)} \exp(-\beta_n V(x))$$

is the stationary distribution associated with the homogeneous Markov chain with transition matrix P_n .

 \rightsquigarrow If β_n goes to $+\infty$, π_{β_n} will be concentrated on points close to those realizing the minimum of V.

Example. The travelling salesman problem. We consider that:

- The travelling salesman must visit each of N cities in turn: by ending from the first visited city.
- Cities are numbered from 1 to N and each city i has coordinates (x_i, y_i) .
- The set of configurations is the set S_N of possible permutations σ in $\{1,\ldots,N\}$, with cardinality N!

- A permutation gives an order in which the cities are visited.
- Our aim is to find the shortest cyclical itinerary for the travelling salesman, i.e., finding $\varpi = (\varpi(1), \dots, \varpi(N)) \in S_N$ which minimizes the function

$$\sigma \in S_N \mapsto H(\sigma) = \sum_{i=1}^N \operatorname{dist}\left(\left(x_{\sigma(i)}, y_{\sigma(i)}\right), \left(x_{\sigma(i+1)}, y_{\sigma(i+1)}\right)\right)$$
$$= \sum_{i=1}^N \sqrt{\left(x_{\sigma(i)} - x_{\sigma(i+1)}\right)^2 + \left(y_{\sigma(i)} - y_{\sigma(i+1)}\right)^2},$$

with the convention that $(x_{\sigma(N+1)}, y_{\sigma(N+1)}) = (x_{\sigma(1)}, y_{\sigma(1)}).$

• We use the following neighborhood relation in S_N : $\varpi \sim \sigma$ if their is i < k such that

$$\varpi = (\sigma(1), \ldots, \sigma(i-1), \sigma(k), \sigma(i+1), \ldots, \sigma(k-1), \sigma(i), \sigma(k+1), \ldots, \sigma(N)).$$

- Then, from a permutation σ , we generate a neighbor by choosing a couple (i, k) uniformly on the set $\{1, \ldots, N\} \times \{1, \ldots, N\}$ of cardinal N^2 : if i = k we let σ unchanged, otherwise, we interchange the positions of cities i and k.
- The neighborhood reference transition matrix is then

$$Q(\sigma, \varpi) = \begin{cases} 1/N & \text{if } \sigma = \varpi \\ 2/N^2 & \text{if } \sigma \sim \varpi \text{ and } \sigma \neq \varpi \\ 0 & \text{if } \sigma \not\sim \varpi. \end{cases}$$

The simulated annealing algorithme to find $\varpi = \arg\min_{\sigma \in S_N} H(\sigma)$.

- \rightsquigarrow We choose $\beta_n = c \ln(n+1)$, c > 0.
 - Choose $\sigma_0 \in S_N$.
 - Repeat a large number of times
 - Simulate independently $\varpi \sim Q(\sigma_n, \cdot)$ and $U \sim \mathcal{U}(]0, 1[)$.
 - If $U \le \exp(-\beta_n(H(\varpi) H(\sigma_n)))$, set $\sigma_{n+1} = \varpi$, otherwise, set $\sigma_{n+1} = \sigma_n$.
 - Return σ_{n+1} .

- Simulation of Markov chains
 - Generating a sample path of a Markov chain
 - Reversible Markov chain
 - The MC algorithm for Markov chains
- The Hastings-Metropolis algorithm
- The Gibbs distribution
- Simulated annealing
- 6 References

Some references

1. Annie Millet. Méthodes de Monte-Carlo: https://samos.univ-paris1.

fr/archives/ftp/cours/millet/montecarlo.pdf

- 2. Matthias Winkel. Simulation: http://www.stats.ox.ac.uk/ winkel/ASim11.pdf
- 3. Otten, R.H.J.M., and van Ginneken, L.P.P.P. 1989, The Annealing Algorithm(Boston: Kluwer).