With D satisfying the conditions in \square , let $r(\mathcal{S}_{\phi}(E_{D'}))$ and $r(\mathcal{S}_{\hat{\phi}}(\hat{E}_{D}))$ denote the rank, as \mathbb{F}_3 -vector spaces, of the Selmer groups $\mathcal{S}_{\phi}(E_{D'})$ and $\mathcal{S}_{\hat{\phi}}(\hat{E}_{D})$, relative to the isogenies ϕ and $\hat{\phi}$, of the curves $E_{D'}$ and \hat{E}_{D} respectively, over \mathbb{Q} . Denote by $r_3(D)$ and $r_3(D')$ the rank of the 3-part of the ideal class group $\mathcal{CL}(K_D)$ and $\mathcal{CL}(K_{D'})$ of K_D and $K_{D'}$ respectively. In the next section we will compute the precise rank for the Selmer groups $\mathcal{S}_{\phi}(E_{D'})$ and $\mathcal{S}_{\hat{\phi}}(\hat{E}_{D})$ and obtain a parity result regarding the rank of the curves $E_{D'}$.

3. On the 3-Selmer group and rank of the elliptic curves E_{D^\prime}

By employing the results of Satgé [12], Section 3], we compute below the precise rank for the Selmer groups \mathcal{S}_{ϕ} and $\mathcal{S}_{\hat{\sigma}}$:

Proposition 3.1. With D satisfying the congruence conditions in (1), the rank of the Selmer groups $\mathcal{S}_{\phi}(E_{D'})$ and $\mathcal{S}_{\hat{\phi}}(\hat{E}_{D})$ of the curves $E_{D'}$ and \hat{E}_{D} are as follows:

$$r(\mathcal{S}_{\phi}(E_{D'})) = r_3(D')$$
$$r(\mathcal{S}_{\hat{\phi}}(\hat{E}_D)) = r_3(D') + 1.$$

Proof. Our elliptic curves $E_{D'}$ have a constant term equal to 16D' > 0. With D' squarefree and with $2^4||16D'$, Lemma 3.1 in [12] is vacuously true. Now 3||16D' and, given the congruence condition $D \equiv 2 \mod 3$, we have that $-16D \equiv 1 \mod 3$. Therefore, from Proposition 3.2(1) of [12] we have that $r(\mathcal{S}_{\phi}(E_{D'})) = r_3(D')$. Finally, since 16D' > 0, Proposition 3.3.(1) of [12] gives $r(\mathcal{S}_{\hat{\phi}}(\hat{E}_D)) = r_3(D') + 1$.

As in Remark 2.3, we denote by $S_3(\hat{E}_D)$ and $S_3(E_{D'})$ the 3-Selmer group of the corresponding elliptic curves. Its rank will be denoted by $r(S_3(E_{D'}))$ and similarly for \hat{E}_D . We now consider the exact sequence (11, Corollary 1) (10)

$$0 \to \frac{\hat{E}_D(\mathbb{Q})[\hat{\phi}]}{\phi(E_{D'}(\mathbb{Q})[3])} \to \mathcal{S}_{\phi}(E_{D'}) \to \mathcal{S}_3(E_{D'}) \to \mathcal{S}_{\hat{\phi}}(\hat{E}_D) \to \frac{\mathrm{III}(\hat{E}_D)[\hat{\phi}]}{\phi(\mathrm{III}(E_{D'})[3])} \to 0.$$

Since our curves have no rational 3-torsion points, the first term of (10) is trivial. As it is known, because of the non-degenerate alternating pairing on $\frac{\mathrm{III}(\hat{E}_D)[\hat{\phi}]}{\phi(\mathrm{III}(E_{D'})[3])}$ (defined by Cassels in [4]), this last term is an even-dimensional \mathbb{F}_3 -vector space (assuming finiteness of the Tate-Shafarevich group). Therefore, we obtain the following result regarding the parity of the rank of the 3-Selmer group and the ranks of the two Selmer groups $\mathcal{S}_{\phi}(E_{D'})$ and $\mathcal{S}_{\hat{\phi}}(\hat{E}_D)$:

(11)
$$r(\mathcal{S}_3(E_{D'})) \equiv r(\mathcal{S}_{\phi}(E_{D'})) + r(\mathcal{S}_{\hat{\phi}}(\hat{E}_D)) \bmod 2.$$

Corollary 3.2. The elliptic curves $E_{D'}$ have odd rank.

Proof. Given Remark 2.3, the exact sequence analogous to (9) is

(12)
$$0 \to \hat{E}_D(\mathbb{Q})/3(E_{D'}(\mathbb{Q})) \to \mathcal{S}_3(E_{D'}(\mathbb{Q})) \to \coprod(E_{D'}(\mathbb{Q}))[3] \to 0.$$