Shipment Pricing System

More

Predictor

Tools

WORLD CLASS SHIPPING SOLUTIONS AND SERVICES

ASIA (AMERICA) (AFRICA) (EUROPE)

Objective

Shipment pricing system are new generation of traditional shipment pricing where the whole process right from tracking the shipment package till delivery of the package to the customer. Users are able to track and find the cost of their package to be shipped by any modes. Apart from interesting real-world applications of Shipment pricing systems, the characteristics of data being generated by these systems make them attractive for the research.

Benefits:

- Use of logistics pricing data for accurate prediction
- Optimised solution
- * Helps in increase profit rate to organisation

Data Sharing Agreement

- Dataset Link: https://www.kaggle.com/divyeshardeshana/supply-chain-shipment-pricing-data
- Column Data type : float64,int,object

	ю	Project Code	PQ#	PO / SO #	ASN/DN	Country	Managed By	Futfill Via	Vendor INCO Term	Shipment Mode	 Unit of Measure (Per Pack)	Line Item Quantity	Line Item Value	Pack Price	Unit Price	Manufacturing Site
0	1	100-CI- T01	Pre-PQ Process	SCM5-	ASN-8	Côte d'hoire	PMO - US	Direct Drop	EXW	Air	30	19	551.00	29.00	0.97	Ranbary Fine Chemicals LTD
1	3	108- VN- T01	Pre-PQ Process	SCASS- 13	ASN-05	Vietnam	PMO - US	Direct Drop	EXW	Air	240	1000	6200.00	6.20	0.03	Aurobindo Unit III, India
2	4	100-CI- T01	Pre-PQ Process	SCMS- 20	ASN-14	Côte d'Ivoire	PMO - US	Direct Drop	FCA	Air	100	500	40000.00	80.00	0.80	ABBVIE GrebH & Co.KG Westadon
3	15	105- VN- T01	Process	5CM5- 78	A5N-50	Vetnam	PMO - US	Direct Drop	EXW	Arr	60	31920	127360.80	3.99	0.07	Ranbary Paonta Shahib, India
4	16	108- VN- TO1	Pro-PQ Process	SCMS- 81	ASN 55	Vietnam	PMO- US	Direct Drop	EXW	Air	60	38000	121600.00	3.20	0.05	Aurobindo Unit III, India
6	23	112- NG- T01	Pre-PQ Process	SCMS- 87	ASN-57	Ngeria	PMO- US	Direct Drop	EXW	Air	240	410	2225.60	5.35	0.02	Aurobindo Unit III, India
	44	110- ZM- T01	Pre-PQ Process	SCAIS- 130	ASN- 130	Zantsia	PMO - US	Direct Drop	DOU	Air	90	135	4374.00	32.40	0.36	MISO South Cranville Australia
7	45	109- TZ-T01	Pre-PQ Process	SCMS- 140	A5N-94	Tanzenia	PMO - US	Direct Drop	Exw	Air	60	16667	60834.55	3.65	0.06	Aurobiedo Unit III, India
	46	112- NG- T01	Pre-PQ Process	SCM5- 156	ASN-93	Nigeria	PMO - US	Dewct Drop	EXW	Air	60	273	532.35	1.95	0.03	Aurobindo Unit III, India

Architecture

Model Training

- ❖ Data export from csv :
 - 1) Loading csv data using python and extracting all the features
- ❖ Data Pre-processing:
- 1) Perforing EDA to get insight of data like identifying distribution, outlier, trend among the data .
 - 2) Check null values in the columns. If present impute the values
 - 3) Perform feature selection and extract all necessary features from the data

Feature selection

- ❖ In feature selection we have selected the required feature from the dataset on basis of :
 - 1) Based on Co-relation
 - 2) Based on Multicollinearity
 - 3) Based on common input feature
- Train And Test Split
 - 1) Train and test data is split into 70:30 ratio
 - 2) There is no validation data available

Model Selection:

As this is the regression problem use case we have used linear regression and followed by the other regression algorithms such as ensemble algorithm. Where linear regression was not giving accuracy so we use Ensemble algorithm such as decision tree and random forest among both Decision tree was giving better result approximate (80%) accuracy and least error comparison to random forest.

Prediction:

- 1. Loading CSV data using python pandas and extracting all the data into python file
- 2. We are perform data pre-processing techniques on the data loaded.
- 3. We have use Decision tree regression algorithm for creating model for prediction.
- 4. Based on the Decision tree algorithm respective model is loaded and is used to predict the outcome from the data
- 5. Prediction of Model is done on the specific climate condition as available in dataset as input variable
- 6. Prediction of the Model is done given specific amount of records
- 7. We can not add any other feature in same running Model without getting this model application down and have to retrain the Model on new feature
- 8. Model is giving approx. 80% accuracy with Decision tree algorithm
- 9. Once the Prediction is Done it will save in Mongo DB database

Data Insertion In Database

After the Model is created and prediction is done the result is inserted into MongoDB(non sequential) Database in order to Keep records of result

Database:-

Database is be created with name (shipment), scalable, flexible NOSQL format.

Collection:-

Collection is similar to table as we see in SQL database, collection (user details) is been created under the data base name (shipment), which can stored in any form. Where the records can be independent to each other.

Deployment

* We have deployed the model using AWS instance.

THANK YOU