

LAB 8:

UNSUPERVISED LEARNING AND GANS

University of Washington, Seattle

Spr 2025

OUTLINE

Part 1: Unsupervised Learning

- Supervised vs unsupervised
- Unsupervised learning in with NN

Part 2: Generative Model Taxidermy

- FVBN
- Variational Autoencoder
- GAN

Part 3: Generative Adversarial Networks

- GAN architecture

Part 4: GAN Optimization and Applications

- Competing cost function
- Minmax game optimization
- GAN variations

Part 5: GAN Example

- MNIST generation with Vanilla GAN
- Generator extension with convolution

Part 6: Lab Assignment

MNIST generation with DCGAN

Unsupervised Learning

Supervised vs Unsupervised

Unsupervised Learning in NN

Supervised vs Unsupervised Learning

Supervised

Data:

{x} x: inputs WITH labels

Neural Network Goal:

Minimize specific error

Examples: Classification,

Regression, Detection, Prediction

Supervised vs Unsupervised Learning

Supervised

Data:

{x} x: inputs WITH labels

Neural Network Goal:

Minimize specific **error**

Examples: Classification,

Regression, Detection, Prediction

Unsupervised

Data:

{x} x: inputs **WITHOUT labels**

Neural Network Goal:

Learn a **structure** of the data

Training Data

Training Data ~ P_{data}(x)

Training Data

Training Data ~ P_{data}(x)

Generated Samples

http://www.whichfaceisreal.com/

Generate Samples ~ P_{model}(x)

Training Data

Training Data ~ P_{data}(x)

Generated Samples

http://www.whichfaceisreal.com/

Generate Samples $\sim P_{model}(x)$

Goal: Model estimated density ≈ Real world density

Core problem in unsupervised learning

Unsupervised

Data:

{x} x: inputs **WITHOUT labels**

Neural Network Goal:

Learn a **structure** of the data

+ No need for labeling → More data

- Challenge: Cost?

+ Has the potential to learn the real world

- Challenge: Optimization?

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Model params
$$heta^* = argmax_{ heta} \, E_{x \sim p_{data}} \, log \, p_{model}(x| heta)$$

Goal: Find the optimal distribution $p_{model}(x|\theta)$ that best fit the data

Explicit – explicitly define and generate P_{model} **Implicit** - generate P_{model} without defining P_{model} exactly

Generative Model Taxidermy

Fully Visible BN

Variational Autoencoder

Generative Adversarial Network

18

Fully Visible BN

Explicitly formula based on chain rule:

$$p_{model}(x) = p_{model}(x_1) \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

O(n) generation cost

No control through hidden variables

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Chain rule is used to estimate probability:

$$P(w_1 w_2 \dots w_n) = \prod_{i} P(w_i | w_1 w_2 \dots w_{i-1})$$

P(W) = P(NASA) P(will | NASA) P(take | NASA will) P(me | NASA will take)
P(to | NASA will take me) P(Moon | NASA will take me to)

$$p_{model}(x) = \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

$$p_{model}(x) = \int p_{model}(z)p_{model}(x|z) dz$$

$$p_{model}(x) = \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

$$p_{model}(x) = \int p_{model}(z)p_{model}(x|z) dz$$

 $p_{model}(x)$ is controlled by hidden state z

GAN

 Instead of sampling from high dimensional, complex and unknown distribution

• Sample from **simple distribution**, e.g. normal distribution (random noise) and **find transformation** to the distribution we want to learn.

Learn the transformation using a NN

Generative Adversarial Networks

GAN Architecture

Generator Network

Discriminator Network

GAN

GAN

Discriminator – try to distinguish between **x** (real) and generated (fake) images

Generator – try to generate samples and present them as real world and fool the discriminator

Generator (G)

Training data has distribution \mathbf{p}_{data} . Sample $\mathbf{x} \sim \mathbf{p}_{data}$.

Goal: Output sample x^G is of similar dimensions as x and distribution p_{data} .

Examples

Face:

Car:

Bedroom:

Discriminator (D)

Receives input of same dimensions as **p**_{data}.

Goal: Distinguish sample from \mathbf{p}_{data} (1) or not (0).

Examples

Face (gen):

0

Discriminator

Car (real):

1

Bedroom (gen):

0

Full Architecture

GAN Optimization and Applications

Competing Loss Functions

Minmax Game Optimization

Optimization in NN

GAN Applications

Binary Cross Entropy Loss

$$\begin{split} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) - \frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right) \\ J^{(G)} &= -J^{(D)} \end{split}$$

$$J^{(D)} = -\frac{1}{2} \int p_{data}(x) \log D(x) dx - \frac{1}{2} \int p_{model}(x) \log \left(1 - D(x)\right) dx$$

Optimal D(x) is

$$D(x) = \frac{p_{data}}{p_{model} + p_{data}}$$

Assumption: p_{model} , p_{data} are nonzero everywhere

Equilibrium: $p_{model} = p_{data}$ then $E(D(x)) = \frac{1}{2}$

Discriminator learns an approximation of $p_{data}(x)/p_{model}(x)$ vs

learning p_{model} (x) directly (or indirectly via latent variable models).

Minmax Game Optimization

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p_{model}} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for real data

Discriminator output for generated data

Solution:

Saddle point in the parameter space (Nash Equillibrium)

- One player (Discriminator) is at maximum,
- Other player (Generator) is at minimum

Gradient ascent for the discriminator on J

$$J^{(D)} = \frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right)$$
$$\theta_d \leftarrow \operatorname*{arg\ min} J^{(D)}$$

Gradient descent for the generator

$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right)$$
$$\theta_g \leftarrow \underset{\theta_g}{\text{arg min }} J^{(G)}$$

Take k gradient steps for the discriminator (k a hyperparameter), each doing the following:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Sample m actual samples, $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ from $p_{data}(x)$: (a minibatch of your input data.)
- Perform an optimization step on the discriminator:

Take k gradient steps for the discriminator (k a hyperparameter), each doing the following:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Sample m actual samples, $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ from $p_{data}(x)$: (a minibatch of your input data.)
- Perform an optimization step on the discriminator:

Do gradient descent step for the generator:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Perform an optimization step on the **generator**:

For epoch in range(epochs):

For epoch in range(epochs):

For batch in batches:

For batch in batches:

Compute $D_{\theta_d}(x)$ vs Real labels Compute $D_{\theta_d}(G_{\theta_g}(z))$ vs Fake labels Compute $I^{(D)}$ Compute $D_{\theta_d}(G_{\theta_g}(z))$ vs Real labels Compute $I^{(G)}$

Backpropagation Update network Backpropagation Update network

Discriminator Network

Generator Network

GAN Applications: Original GAN

Goodfellow et al. (2014) Generative Adversarial Nets

DCGAN

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." (2015).

Similarities in Hidden Space

woman with glasses

Text to Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Reed et al. Generative Adversarial Text to Image Synthesis (2017)

CycleGAN

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

CycleGAN

Pix2Pix

P. Isola et al. Image-to-Image Translation with Conditional Adversarial Nets, CVPR 2017

GAN Example:

MNIST Generation with Vanilla GAN

MNIST Generation with GAN

Before Training

After Training

Prepare Data

```
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from torchvision import transforms

# Define a transformation to convert the data into Tensors
train_transforms = transforms.Compose([transforms.ToTensor()])

# Download the train and test MNIST data and transform it into Tensors
train_data = MNIST(root="./train.", train=True, download=True, transform=train_transforms)
```

Load MNIST dataset and in built DataLoader from torch

Configure the data transformation (to PyTorch tensors)

Download the training and testing data N = 60000

Define Model (Generator)

```
class Generator(torch.nn.Module):
   def __init__(self, batchsize, input_noise_dim):
       super(Generator, self). init ()
       self.batchsize = batchsize # Batch size for input data
       self.input noise dim = input noise dim # Dimension of the input data
       self.fc1 = torch.nn.Linear(input noise dim, 128) # Fully connected layer 1
       self.LReLU = torch.nn.LeakyReLU() # Leaky ReLU activation function
       self.fc2 = torch.nn.Linear(128, 1 * 28 * 28) # Fully connected layer 2
       self.output = torch.nn.Tanh() # Hyperbolic Tangent activation function
   def forward(self, x):
       layer1 = self.LReLU(self.fc1(x)) # Apply Leaky ReLU to the first fully connected layer
       layer2 = self.output(self.fc2(layer1)) # Apply Tanh to the second fully connected layer
       out = layer2.view(self.batchsize, 1, 28, 28) # Reshape the output to match image dimensions
       return out
```

Takes batchsize and input noise dimension as inputs

Define FC1, FC2 layers Uses LeakyReLU() as hidden layer activation Uses Tanh() as output layer activation

Define signal propagation input noise -> FC1 -> FC2 -> Output

Define Model (Discriminator)

```
class Discriminator(torch.nn.Module):
    def init (self, batchsize):
       super(Discriminator, self). init ()
       self.batchsize = batchsize # Batch size for input data
       self.fc1 = torch.nn.Linear(1 * 28 * 28, 128) # Fully connected layer 1
       self.LReLU = torch.nn.LeakyReLU() # Leaky ReLU activation function
       self.fc2 = torch.nn.Linear(128, 1) # Fully connected layer 2
       self.output = torch.nn.Sigmoid() # Sigmoid activation function
    # Function for forward propagation
    def forward(self, x):
       flat = x.view(self.batchsize, -1) # Flatten the input image
       layer1 = self.LReLU(self.fc1(flat)) # Apply Leaky ReLU to the first fully connected layer
       out = self.output(self.fc2(layer1)) # Apply Sigmoid to the second fully connected layer
       return out.view(-1, 1).squeeze(1) # Flatten the output and remove unnecessary dimension
```

Takes batchsize as inputs

Define FC1, FC2 layers
Uses LeakyReLU() as hidden layer activation
Uses sigmoid() as output layer activation

Define signal propagation input image -> FC1 -> FC2 -> (0/1)

Use .squeeze() to reduce output to 0/1

Define Hyperparameters

```
# Fix random seed
torch.manual seed(55)
# Define Learning rate + epochs
learning rate = 0.001
epochs = 5
# Define batch size and num features/timestep (this is simply the last dimension of train output seqs)
batchsize = 128
input noise dim = 100
# Create a Discriminator model
disc = Discriminator(batchsize)
gen = Generator(batchsize, input_noise_dim)
# Binary Cross Entropy (BCE) Loss function
loss_func = torch.nn.BCELoss()
optimizer disc = torch.optim.Adam(disc.parameters(), lr=learning rate, weight decay=1e-05)
optimizer gen = torch.optim.Adam(gen.parameters(), lr=learning rate, weight decay=1e-05)
# Determine the device for training (GPU if available, otherwise CPU)
device = torch.device("cuda") if torch.cuda.is available() else torch.device("cpu")
disc.to(device)
gen.to(device)
```

Define learning rate and epoch number

Define batchsize and input noise dimensions

Define Discriminator and Generator networks

Using Binary Cross-Entropy loss and Adam Optimizer with L2 regularization

Device for training (GPU/CPU)

Identify Tracked Values

```
gen_train_loss_list = []
disc_train_loss_list = []
```

Lists for storing generator/discriminator training loss

Train Model

```
# Create DataLoader objects to efficiently load the training and test data in batches
train_loader = DataLoader(train_data, batch_size=batchsize, shuffle=False, drop_last=True)
```

```
# Set the device as CUDA or CPU based on availability
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
   torch.device("cpu")
# Run training for each epoch
for epoch in range(epochs):
    print('Epoch {}/{}'.format(epoch + 1, epochs))
    running loss D = 0
    running loss G = 0
   for inputs, labels in train loader:
        inputs = inputs.to(device)
       # Convert labels into torch tensors with the proper size as per the batch size
        real_label = torch.full((batchsize,), 1, dtype=inputs.dtype, device=device)
       fake label = torch.full((batchsize,), 0, dtype=inputs.dtype, device=device)
```

Define the data loader for training and testing

Define device for training

Initialize Discriminator/Generator loss for given epoch

Create labels for real (1) vs fake (0) data

Train Model (Discriminator)

```
# Zero the gradients of the Discriminator optimizer
optimizer disc.zero grad()
# Compute output from the Discriminator
output = disc(inputs)
# Discriminator real loss
D_real_loss = loss_func(output, real_label)
D real loss.backward()
# Generate random noise data as input to the Generator
noise = torch.randn(batchsize, input noise dim, device=device)
# Generate fake images using the Generator
fake = gen(noise)
# Pass fake images through the Discriminator with gradient detachment
output = disc(fake.detach())
# Discriminator fake Loss
D_fake_loss = loss_func(output, fake_label)
D_fake_loss.backward()
# Total loss for the Discriminator
Disc loss = D real loss + D fake loss
running loss D += Disc loss
# Update Discriminator's parameters
optimizer_disc.step()
```

Clear the gradient for discriminator network

Compute the discriminator outputs for given real data inputs

Compute the loss with respect to real labels (1) Perform back propagation

Initialize noise to be fed into generator network

Compute the fake images from the generator

Feed the generated images to discriminator and get discriminator outputs

Compute the loss with respect to fake labels (0) Perform back propagation

Final discriminator loss is loss from real labels + fake labels

Update discriminator network

Train Model (Generator)

```
# Zero the gradients of the Generator optimizer
                                                                      Clear the gradient for generator network
optimizer_gen.zero_grad()
# Pass fake images obtained from the Generator to the Discriminator
                                                                      Feed the generated image to discriminator
output = disc(fake)
# Calculate Generator loss by giving fake images as input but providing real labels
Gen loss = loss func(output, real label)
                                                                      Compute complementary discriminator loss with
running loss G += Gen loss
                                                                      respect to real labels
# Backpropagation for the Generator
                                                                      Perform back-propagation
Gen loss.backward()
# Update Generator's parameters
                                                                      Update generator network
optimizer_gen.step()
disc train loss list.append(Disc loss.item())
                                                                      Store the loss the respective lists
gen train loss list.append(Gen loss.item())
```


Visualize & Evaluate Model

```
import matplotlib.pyplot as plt

# Function to plot an image
def show_image(img):
    # Convert the image from a tensor to a NumPy array
    npimg = img.numpy()
    # Transpose the NumPy array to the correct format for displaying
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
```

Define the function for converting torch image array to numpy array for plotting

```
import torchvision

# Generate random noise for generating fake images
random_noise = torch.randn(128, input_noise_dim, device=device)

# Generate fake images from the random noise using the Generator
fake = gen(random_noise)
fake = fake.cpu() # Move the generated fake images to the CPU for displaying

# Create a Matplotlib figure and axis for displaying the fake images
fig, ax = plt.subplots(figsize=(20, 8.5))

# Display the fake images in a grid (e.g., 10x5 grid)
show_image(torchvision.utils.make_grid(fake[0:50], 10, 5))

plt.show()
```

Define the random noise to be fed to generator for testing purpose

Feed the noise the generator to produce outputs and move them to cpu

Plot the first 50 generated images

Visualize & Evaluate Model

Visualize & Evaluate Model

Generated samples

Generator Extension with Convolution:

2D Transpose Convolution

DCGAN Architecture

DCGAN Architecture

Layer (type)	Output Shape	Param #
ConvTranspose2d-1 BatchNorm2d-2 ReLU-3 ConvTranspose2d-4 BatchNorm2d-5 ReLU-6 ConvTranspose2d-7 BatchNorm2d-8 ReLU-9 ConvTranspose2d-10 BatchNorm2d-11 ReLU-12 ConvTranspose2d-13 Tanh-14	[-1, 512, 4, 4] [-1, 512, 4, 4] [-1, 512, 4, 4] [-1, 256, 8, 8] [-1, 256, 8, 8] [-1, 256, 8, 8] [-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 3, 64, 64] [-1, 3, 64, 64]	819,200 1,024 0 2,097,152 512 0 524,288 256 0 131,072 128 0 3,072

Conv2D vs ConvTranspose2D

Conv2D()

input image = (5, 5) Kernel size = (3, 3) Output image = (3, 3)

ConvTranspose2D()

input image = (2, 2)Kernel size = (3, 3)Output image = (4, 4)

Conv2D vs ConvTranspose2D

torch.nn.ConvTranspose2d(

in_channels

out_channels

kernel_size

stride

Padding

of channels of input

of channels of output

Size of the convolving Filter

Stride of the convolution

Padding added to input

 $H_{out}=(H_{in}-1)$ *stride-2*padding+1*(kernel_size-1)+1

 $W_out=(W_in-1)$ *stride-2*padding+1*(kernel_size-1)+1

LAB 8 ASSIGNMENT:

MNIST Generation with DCGAN

MNIST Generation with DCGAN

In this exercise, you will use DCGAN architecture to generate MNIST hand-written images.

You are free to design architectures for Generator and Discriminator such as # of convolution layers, activation functions, regularization techniques etc.

You are also free to pick your own hyperparameters e.g., total epochs, batch size, learning rate, optimizer etc

Make sure to use ConvTranspose2D() for Generator instead of Conv2d().

After training, plot training loss for both generator and discriminator as well as the 50 best generated samples similar to example task. Comment on how their qualities different from Vanilla-GAN - Are they better quality?

72