数理统计第六章测验题

考试时间 2023 年 5 月 14 日, 答卷时间 120 分钟, 总分 100 分, 出题人-李绍文

- 1. (10 分)设总体 X 的密度函数 $p(x; \lambda, \theta) = \lambda e^{-\lambda(x-\theta)} I_{x>\theta}$,其中 $\lambda > 0$ 与 θ 为 参数, X_1, X_2, \cdots, X_n 为样本,求参数 λ, θ 的最大似然估计。
- 3. (10 分)某厂产品重量 X (克)服从正态分布 $N(\mu, \sigma^2)$,标准差 $\sigma = 20$ 克。问:
 - (1) 样本容量n 取多大时,才能保证 μ 的 95%置信区间长度不超过 10;
 - (2) 抽取容量为 100 的样本, 样本均值 $\bar{x} = 972$ 克, 求 μ 的 95%置信区间。
- 4. (10 分)设 A 、 B 两台机床生产的金属部件重量(克)各自服从正态分布。分别抽取 8 件和 9 件产品,测量后经计算得 $\bar{x}=145$, $s_1^2=6^2$, $\bar{y}=130$, $s_2^2=7^2$, 求:
 - (1) 总体方差相等时,均值差 $\mu_1 \mu_2$ 的 95%置信区间;
 - (2) 方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的95%置信区间。
- 5. $(10 \, f)$ 设事件 A 在一次试验中发生的概率为 p 。进行 146 次独立重复试验,事件 A 发生了 58 次,求概率 p 的 95% 置信区间。
- 6. (15 分)设总体 X 服从泊松分布 $P(\lambda)$,参数 λ 的先验分布是指数分布 $Exp(\theta)$, θ 已知, X_1, X_2, \cdots, X_n 为样本,求 λ 的贝叶斯估计 $\hat{\lambda}_B$ 。

(伽玛函数 $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$, $(\alpha > 0)$, 伽玛分布 $Ga(\alpha, \theta)$ 密度函数为

$$p(x) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\theta x} I_{x>0}$$
,期望为 $\frac{\alpha}{\theta}$,方差为 $\frac{\alpha}{\theta^2}$ 。)

- 7. $(15\, eta)$ 设 X_1, X_2, L , X_n 是来自伽玛分布 $Ga(\alpha, \theta)$ 的样本,已知 $\alpha > 0$, 试证明, $\dfrac{\bar{X}}{\alpha}$ 是 $g(\theta) = \dfrac{1}{\theta}$ 的有效估计,从而也是 UMVUE。
 - 8. (20分)总体X服从泊松分布 $P(\lambda)$, X_1, X_2, L , X_n 为样本。
- (1) 参数 λ 的点估计 $\hat{\lambda} = \bar{X}$,由此猜测 $g(\lambda) = \lambda^2$ 的点估计为 \bar{X}^2 。判断 \bar{X}^2 是 否 $g(\lambda) = \lambda^2$ 的无偏估计?如果不是,请根据 $E(\bar{X}^2)$ 的结果及 $E(\bar{X}) = \lambda$ 修偏得到 \hat{g} ,使得 \hat{g} 是 $g(\lambda) = \lambda^2$ 的无偏估计,即 $E(\hat{g}) = \lambda^2$;
- (2)写出样本联合密度函数 $p(x_1,x_2,\cdots,x_n;\lambda)$,证明 \hat{g} 是 $g(\lambda)=\lambda^2$ 的 UMVUE;
 - (3) 求出 λ 的 Fisher 信息量 $I(\lambda)$ 及 $g(\lambda) = \lambda^2$ 的 C-R 下界;
- (4) 设 Y 服从泊松分布 $P(\theta)$,可知 $Var(Y^2 Y) = 4\theta^3 + 2\theta^2$,根据此结论以及 泊松分布的可加性求出 $Var(\hat{g})$,并判断 \hat{g} 是否 $g(\lambda) = \lambda^2$ 的有效估计。

附录: $\Phi(1.96) = 0.975$, $f_{0.975}(7,8) = 4.53$, $f_{0.975}(8,7) = 4.9$