Ciência de Dados

Exploração de dados PARTE II

Profa. Roseli Ap. Francelin Romero – SCC

Material elaborado pelo Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco e complementado por Roseli Romero ICMC-USP

Tópicos

- Exploração de dados
 - Dados multivariados:
 - Matriz de Covariancia
 - Coeficiente de Pearson
 - Matriz de Correlação

- Possuem mais de um atributo
 - Cada atributo é uma variável
- Medidas de localização (tendência central)
 - Podem ser obtidas calculando medida de localização de cada atributo separadamente
 - Ex.: média, mediana, ...
 - Média dos objetos de um conjunto de dados com m atributos é dada por: $\bar{x} = (\bar{x}_1, ..., \bar{x}_m)$

- Medidas de espalhamento (dispersão)
 - Podem ser calculadas para cada atributo independentemente dos demais
 - Usando qualquer medida de espalhamento
 - Intervalo, variância, desvio padrão
 - Para dados multivariados numéricos devese usar uma matriz de covariância
 - Cada elemento da matriz é a covariância entre dois atributos

• Cálculo de cada elemento s_{ij} de uma matriz de covariância S para um conjunto de n objetos

$$s_{ij} = \text{covariância}(x_i, x_j) = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

Onde:

 $\overline{x_i}$: Valor médio do i-ésimo atributo

x_{ki}: Valor do i-ésimo atributo para o k-ésimo objeto

- Obs: covariância (x_i, x_i) = variância (x_i)
 - Matriz de covariância tem em sua diagonal as variâncias dos atributos

- Covariância de dois atributos
 - Mede o grau com que os atributos variam juntos
 - Valor próximo de 0:
 - Atributos não têm um relacionamento
 - Valor positivo:
 - Atributos diretamente relacionados
 - Quando o valor de um atributo aumenta, o do outro também aumenta
 - Valor negativo:
 - Atributos inversamente relacionados
 - Valor depende da magnitude dos atributos

- Covariância de dois atributos
 - É difícil avaliar o relacionamento entre dois atributos olhando apenas a covariância
 - Sofre influência da faixa de valores dos atributos
 - Correlação entre dois atributos ilustra mais claramente a força da relação entre eles
 - Mais popular que covariância
 - Elimina influência da faixa de valores

- Matriz de Correlação
- Correlação Linear: Coeficiente de correlação de Pearson
- Correlação Não Linear:
 - Correlação η (eta)
 - Kendall
 - Spearman

Matriz de Correlação

Coeficiente de Pearson

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Coeficiente de Spearman

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{(n^3 - n)}$$

onde d_i é a diferença entre cada posição de x e y.

Coeficiente de Kendall

$$\tau = \frac{2(n_c - n_d)}{n(n-1)}$$

Matriz de Correlação

- A matriz de correlação é simétrica.
 - O valor 1 significa que as duas variáveis são exatamente correlacionadas. É o caso de uma relação linear entre as duas variáveis;
 - O valor negativo, significa que elas são inversamente correlacionadas.
 - Não necessariamente informa o tipo de relação que existe entre as variáveis.

Matriz de Correlação

Vyzal	OD	DBO	Temp	CE	Alcalin	DQO	PT	Norg	NH,	NTK	NT	ST	SST	SDT	\$18
00	1,00														w
DBO	-0,58	1,00													
Temp	-0,57	0,18	1,00												
DE .	0,02	-0,24	0,61	1,00											
Alcalin	-0,23	-0,34	0,63	0,77	1,00										
000	-0,70	0,32	0,64	0,12	0,38	1,00									
PT	-0,09	0,31	0,03	0,21	-0,11	-0,10	1,00								
Vorg	0,16	0,23	-0,62	-0,49	-0,71	-0,49	0.28	1,00							
NH4	-0,76	0,53	0,38	-0,01	0,12	0,31	0,48	0,08	1,00						
NTK	0,08	0,28	-0,57	-0,49	-0,69	-0,45	0,33	0,99	0,18	1,00					
NT	0,15	0,27	-0,55	-0.34	-0,62	-0,50	0,35	0,97	0,13	0,97	1,00				
ST	0,24	-0,06	-0,23	0,33	-0,02	-0,61	0,47	0,29	0,08	0.29	0,37	1,00			
SST	0,01	0,35	-0,39	-0,14	-0,26	-0,43	0,60	0,61	0,37	0,64	0,63	0,63	1,00		
SDT	0,30	-0,38	0,04	0,56	0,20	-0,42	0,09	-0,15	-0,22	-0.17	-0,08	0,75	-0,04	1,00	
SIS	0,01	0,26	-0,47	-0,19	-0,37	-0,43	0,54	0,61	0,32	0,63	0,63	0,75	0,84	0,24	1,0

Fonte: Scielo

Calcular a matriz de covariância para o conjunto de dados:

Altura	Temperatura
170	37
165	38
190	34
152	31
	170 165 190

Fonte: Wikipedia

Peso	Altura
60	170
70	180
80	190

Peso	Altura
60	190
70	180
80	170

Perguntas

Outras formas de sumarizar dados

- Visualização gráfica
 - Em vários casos, facilita compreensão de padrões mais complexos nos dados
 - Exemplos simples
 - Histograma
 - Diagrama de torta
 - Scatter plot
 - Faces de Chernoff

Exemplos

Visualização

- Visualização tem um papel importante em análise de dados
 - Uma das técnicas mais poderosas para exploração dos dados
 - Facilita visualização de dados e resultados
 - Visual data mining
 - Usa técnicas de visualização em mineração de dados
 - Importante área de CD

Um dos primeiros

Mapa solar de Galileu

Outro dos primeiros usos

Napoleão

Exército francês, comandado por Napoleão Invade a Rússia, em 1812

Histogramas

- Conjunto de dados Iris
 - Largura das pétalas usando 10 e 5 cestas

Diagrama de torta

 Frequências relativas podem ser vistas no diagrama circular

Scatter Plot

- Usado para ilustrar graficamente
 Correlação Linear entre dois atributos
- Cada objeto é associado a uma posição em um gráfico
 - Valores dos atributos definem sua posição
 - Valores podem ser inteiros ou reais
- Matrizes de scatter plot resumem relação para vários pares de atributos

Relação Linear

Weight and Height of Children

Relação Não-Linear

Pode adicionar mais info

Weight and Height of Children by Gender

Scatter Plot

Matriz para atributos do conjunto iris

Diferentes classes são indicadas por cores diferentes

Faces de Chernoff

- Criado por Herman Chernoff
- Mapeia os valores dos atributos para imagens familiares para seres humanos: faces
 - Cada objeto é representado por uma face
 - Cada atributo é associado a uma característica específica da face
- Baseia-se na habilidade humana de distinguir faces

Faces de Chernoff

 Representar os dados a seguir usando faces de Chernoff

Febre	Idade	Batimento	Dor	Diagnóstico
sim	23	elevado	sim	doente
não	9	baixo	não	saudável
sim	61	elevado	não	saudável
sim	32	baixo	sim	doente
sim	21	elevado	sim	saudável
não	48	elevado	sim	doente

Considerações Finais

- Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
- Exploração de dados
 - Dados univariados
 - Medidas de localidade, espalhamento e distribuição
 - Dados multivariados
 - Visualização de dados e de resultados