	Name of the School	School of Basic & Applied Sciences	Name of the Department	Mathematics
	Name of the Program	B.Tech, CSE	Course Code- Course	UBS 1003M
	Session	2024-25	Branch, Year &	CSE, 1st, 1st
			Semester	, ,

Unit 5: Sequence and Series

Question Bank

2 Marks Questions

- 1. Give an example of a monotonically increasing sequence which is
 - a Convergent
 - b Divergent
- 2. Give an example of a monotonically decreasing sequence which is
 - a Convergent
 - b Divergent
- 3. Discuss the nature of the series 2-2+2-2+2-2+...
- 4. Test for convergence of the series $1 + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1} + \dots + \infty$
- 5. Examine the convergence of the series $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\dots$

6 Marks Questions

1. Examine the convergence of the following series

$$\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \dots$$
 to ∞

- 2. State D' Alembert's Ratio Test for convergence of an infinite series. Using D' Alembert's ratio test, test for convergence of the series whose n^{th} term is $\frac{n^2}{2^n}$.
- 3. Test the following series for convergence

$$\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \dots$$

4. Examine the following series for convergence

$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}} x^n$$

10 Marks Questions

1. Discuss the convergence of the infinite series

$$\sum \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n \left(x > 0\right)$$

2. Test for convergence of positive term series

$$1 + \frac{\alpha+1}{\beta+1} + \frac{(\alpha+1)(2\alpha+1)}{(\beta+1)(2\beta+1)} + \frac{(\alpha+1)(2\alpha+1)(3\alpha+1)}{(\beta+1)(2\beta+1)(3\beta+1)} + \dots$$

3. Discuss the convergence of the series

$$\frac{x}{1} + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$

4. Test the convergence of the following series

a.
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$

b.
$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots$$

5. Test for the convergence of the series

$$\frac{x}{1\cdot 2} + \frac{x^2}{3\cdot 4} + \frac{x^3}{5\cdot 6} + \dots$$

Solutions

2 Marks Questions.

1. a. $\frac{n}{n+1}$

b. *n*

2. a. $\frac{1}{n}$

b. −*n*

- 3. Oscillating finitely
- 4. Divergent
- 5. Divergent

6 Marks Questions

- 1. Convergent
- 2. Convergent
- 3. Convergent for p > 2 and divergent for $p \le 2$.
- 4. Convergent for x < 1 and divergent if $x \ge 1$.

10 Marks Questions

- 1. Convergent if x < 1 and divergent if $x \ge 1$.
- 2. Convergent when $\beta > \alpha > 0$ and divergent if $\alpha \ge \beta > 0$
- 3. Convergent if $x^2 \le 1$ and divergent when $x^2 > 1$
- 4. a. Convergent

- b. Convergent
- 5. Convergent if $x \le 1$ and divergent if x > 1.