Programme

- I Elements d'espaces métriques.
- II Fonctions numériques de plusieurs variables.
- III Calcul intégral.
- IV Systèmes d'équations differentielles.

${\bf Bibliographie}$

- 1. J. Dixier, Cours de mathématiques du 1^{er} cycle, 2^{me} année, Gauthier-Villars.
- 2. R.Cauty et J.Ezra.
- $3.\,$ Guinin, Aubonnet, Joppin précis de mathématiques, Analyse 2, Bréal.

...

Chapitre 1

Eléments d'espaces métriques

1.1 Généralités

Les concepts d'espaces vectoriels, de normes et d'applications linéaires sont supposés connus et doivent être revisés.

Nous vérifions en exercices que dans \mathbb{R}^n , les applications notées $\|.\|_e, \|.\|_s$ et $\|.\|_{\infty}$ définies par :

$$\|.\|_{\infty}$$
 définies par :
$$Pour \ x = (x_1, x_2, ..., x_n), \ \|x\|_e = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}, \ \|x\|_s = (\sum_{i=1}^n \ | \ x_i \ |) \text{ et } \|x\|_{\infty} = (\sup_{1 \le i \le n} | \ x_i \ |) \text{ sont des normes sur } \mathcal{R}^n.$$

NB $\|.\|_e \equiv$ norme euclidienne et $\|.\|_{\infty} \equiv$ norme de la convergence uniforme. Notons par C([a,b]) l'ensemble des fonctions numériques continues sur un segment [a,b], $a,b \in \mathbb{R}$ tels que a < b.

En posant pour $f \in C([a,b])$, $||f||_1 = (\sup_{x \in [a,b]} |f(x)|)$ et $||f||_2 = \int_a^b f(t)dt$, $||.||_1$ et $||.||_2$ sont des normes sur C([a,b]).

 $\|.\|_1$ est habituellement appelée norme de la **convergence uniforme**.

1.1.1 Notion de distances et de boules

Notion de distance

Définition 1.1 Soit E un ensemble non vide et $d: E*E \to \mathbb{R}$ une application. On dit que d est une **distance** (ou une métrique) lorsque les axiomes ci-dessous sont vérifiés :

- (i) $\forall x,y \in E, d(x,y) \geq 0$ (positivité)
- (ii) $\forall x,y \in E, d(x,y) = 0$ (séparation)
- (iii) $\forall x,y \in E, d(x,y) = d(y,x)$ (symétrie)
- (iv) $\forall x,y,z\in E,\ d(x,y)\leq d(x,z)+d(z,y)$ (Inégalité triangulaire ou de MINKOWSKI)

```
Exemple a) Montrer que :
```

 $\begin{aligned} d: \mathbb{R} * \mathbb{R} &\to \mathbb{R} \\ (x,y) &\mapsto d(x,y) = \|x-y\| \\ \text{et } d: \mathbb{C} * \mathbb{C} &\to \mathbb{R} \end{aligned}$

 $(z_1, z_2) \mapsto d(z_1, z_2) = ||z_1 - z_2||$

sont des distances sur \mathbb{R} et \mathbb{C} respectivement.

b) Soit E un espace vectoriel normé. On note $\|.\|$ sa norme. Montrer que $d:E*E\to\mathbb{R}$

 $(x,y) \mapsto ||x-y||$ est une distance.

On dit que c'est la **distance associée** à cette norme. Dans la suite, sauf **mention expresse** du contraire tout espace vectoriel normé sera muni de cette distance.

En outre, montrer que cette distance vérifie les propriétés ci-dessous :

(P1): $\forall x,y,z \in E, \forall \lambda \in \mathbb{R}, d(\lambda x, \lambda y) = |\lambda| d(x,y)$ (P2): $\forall x,y,z \in E d(x+z,y+z) = d(x,y)$

Exercice Soit d une distance sur un ensemble E.

 $\mathrm{Montrer\ que}:\forall\ x,y,z\in E,\ |\mathrm{d}(x,y)\text{-}\mathrm{d}(y,z)|\leq \mathrm{d}(x,z).$

Soit $x,y,z \in E$, on a:

- * $d(x,y) \le d(x,y) + d(y,z) \Longrightarrow d(x,y) d(y,z) \le d(x,z)$ (i)
- * $d(y,z) \le d(y,x) + d(x,z) \Longrightarrow d(y,z) d(x,y) \le d(x,z)$

 \Longrightarrow -d(x,z) \leq d(x,y)-d(y,z) (ii)

(i) et (ii) \Longrightarrow -d(x,z) \leq d(x,y)-d(y,z) \leq d(x,z).

 $\mid d(x,y)-d(y,z) \mid \leq d(x,z).$

Définition 1.2 On appelle **espace métrique**, tout couple (E,d) où E est un ensemble non vide et d une distance sur E.

Notions de boules

Définition 1.3 Soit (E,d) un espace métrique, $a \in E$ et $r \in \mathbb{R}_+$. On appelle :

- 1. boule ouverte de centre a et de rayon r, l'ensemble noté B(a,r) défini par : B(a,r) = $\{x \in E, d(a,x) < r\}$.
- 2. boule fermée de centre a et de rayon r, l'ensemble noté B'(a,r) défini par : B'(a,r) = $\{x \in E, d(a,x) \le r\}$.
- 3. sphère de centre a et de rayon r, l'ensemble noté S(a,r) défini par : $S(a,r) = \{x \in E, d(a,x) = r\}.$

Constats C1 : Si on prend $E = \mathbb{R}^3$ et d définie par :

 $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$

la notion de sphère coincide avec celle qu'on connait habituellement, la boule est alors délimitée par la sphère. Lorsque la sphère y est incluse, on obtient la boule fermée et dans le cas contraire, on obtient la boule ouverte.

C2:

- $-B(a,r)=\emptyset \iff r=0.$
- $\forall r \in \mathbb{R}_+, B'(a,r) \neq \emptyset \text{ car } a \in B'(a,r).$
- On ne peut pas affirmer de facon systématique que la sphère est vide ou non.

Observation
$$f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$$
 $(lim_{x \to x_0} f(x) = l) \iff (\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon)$

ceci devient

$$(lim_{x \to x_0} f(x) = l) \Longleftrightarrow (\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D_f, d(x - x_0) < \eta \Rightarrow d(f(x) - l) < \varepsilon)$$

Distances et normes équivalentes

Définition 1.4 Soit E un ensemble non vide. Si et d et d' sont deux distances sur E, on dit que d et d' sont **topologiquement équivalentes** lorsque la propriété ci-dessous est satisfaite :

 \forall a \in E, \forall r > 0, \exists r₁, r₂ > 0, $B_d(a, r_1) \subset B_d(a, r) \subset B_d(a, r_2)$ ceci revient à dire que toute boule ouverte centrée en a pour l'une quelconque des distances d et d' contient une boule ouverte centrée en a pour l'autre distance.

Exemple Montrer que d_e et d_{∞} sont équivalentes (topologiquement).

Proposition Soit E un ensemble non vide muni de deux distances d et d'. On suppose qu'il existe deux constances réelles positives (strictement) k_1 et k_2 telles que :

 $\forall x,y \in E, k_1d(x,y) \leq d'(x,y) \leq k_2d(x,y)$ (*) Alors les distances d et d' sont topologiquement équivalentes.

NB La condition (*) s'énonce en disant que : "d et d' sont uniformement équivalentes". Il s'en suit que deux distances uniformement équivalentes sont topologiquelent équivalentes.

Remarque Lorsque E est espace vectoriel. Deux normes sont uniformement équivalentes ou topologiquement équivalentes lorsque les distances associées le sont.

Exercice-TD Montrer que dans \mathbb{R}^n , $\|.\|_e$, $\|.\|_s$ et $\|.\|_\infty$ sont uniformement équivalentes.

1.1.2 Notion d'ouverts, de fermés et de voisinages

Ouverts et fermés

Définition 1.5 Soit (E,d) un espace métrique. On dit qu'une partie A de E est **ouverte** lorsque toutes les fois que A contient un élément a, il existe une boule ouverte centrée en a qui est incluse dans A c'est-à-dire

$$(A ouvert) \iff (\forall a \in A, \exists r > 0, B(a,r) \subset A)$$

Proposition 1.6 Les ouverts d'un espace métrique (E,d) satisfont les propriétés ci-dessous :

- $O_1 \emptyset$ et E sont des ouverts.
- O_2 Toute intersection finie d'ouverts est ouverte.
- O_3 Toute réunion quelconque d'ouverts est un ouvert.

Remarque Lorsqu'un ensemble non vide E possède une famille \mathcal{O} de parties ayant les propriétés O_1 , O_2 et O_3 , on dit que c'est un **espace topologique**. Ainsi, tout espace métrique (E,d) est un espace topologique dont la topologie est définie par la distance d.

Proposition 1.7 Soit (E,d) un espace métrique, une partie A de E est ouverte ssi A est réunion de boules ouvertes.

Exemples

- 1. Toute boule ouverte de (E,d) est un ouvert.
- 2. En munissant \mathbb{R} de la distance d définie par : $d(x,y) = |x-y| \le$, pour a,b $\in \mathbb{R}$ avec a < b, [a,b] est un ouvert de (\mathbb{R},d) .

NB]0,1] n'est pas un ouvert de (\mathbb{R},d) . En effet, $1 \in]0,1]$ et aucune boule ouverte non vide centrée en 1 n'est incluse dans]0,1].

Notion de parties fermées

Définition 1.8 Soit (E,d) un espace métrique. Une partie est $A \subset E$ est dite fermée si son complémentaire dans E est un ouvert.

Proposition 1.9 Soit (E,d) un espace métrique. L'ensemble des fermés de (E,d) vérifie les propriétés ci-dessous :

- $F_1 \emptyset$ et E sont fermés
- F_2 Toute réunion finie de fermés est un fermé
- ${\cal F}_3$ Toute intersection que lconque de fermés est un fermé

Exemples:

- i. Dans un espace métrique (E,d), toute boule fermée est un fermé.
- ii. Ainsi, dans \mathbb{R} , les intervales fermés [a,b] sont des fermés.

Remarque : Dans \mathbb{R} , l'intervale [0,1] n'est pas fermé.

Notion de voisinage

Définition 1.10 Soient (E,d) un espace métrique et $a \in E$. On appelle **voisinage** de a dans (E,d) toute partie $V \subset E$ contenant une boule ouverte non vide centrée en a.

On note $\mathcal{V}(a)$ l'ensemble de tous les voisinages de a. Ainsi, on a : $((V \in \mathcal{V}(a)) \Leftrightarrow (\exists r > 0, \ B(a,r) \subset V))$ (**)

Remarque : La propriété (**) s'interprète en disant que : $(V \in \mathcal{V}(a)) \Leftrightarrow$ (il existe un ouvert O tel que $a \in O \subset V$)

Proposition 1.11 Soit (E,d) un espace métrique. Une partie de A est ouverte si et seulement si A est voisinage de tous ses points.

1.1.3 Intérieur, Extérieur, Adhérence et Frontière

Intérieur et Extérieur

Définition 1.12 Soient (E,d) un espace métrique et $A \subset E$. Un point $a \in E$ est dit **intérieur** à A lorsqu'il existe un ouvert o de E contenant a et incus dans A.

On note par \dot{A} l'interieur de A.

Ainsi, $(a \in \dot{A}) \Leftrightarrow (\exists o \ ouvert \ de \ E \ tel \ que \ a \in o \subset A))$

Observons aussitôt que l'intérieur \dot{A} de A est inclus dans A; c'est-à-dire $\dot{A} \subset A$ De par la k-itération des ouverts par les boules, il s'en suit que $(a \in \dot{A}) \Leftrightarrow (\exists r > 0, \ B(a,r) \subset A)$

Définition 1.13 Soit A une partie d'un espace métrique (E,d). On appelle **extérieur** de A l'extérieur du complémentaire de A dans E.

On note $\operatorname{Ext}(A)$ l'extérieur de A et on a : $\operatorname{Ext}(A) = \mathbb{C}^A_E$

Proposition 1.14 Soit A une partie d'un espace métrique (E,d). A est ouverte si et seulement si $\dot{A}=A$.

Démonstration : (1) Soit A une partie ouverte, montrons que $\dot{A}=A$ c'està-dire $A\subset\dot{A}$ et $\dot{A}\subset A$.

- * Montrons que $A \subset \dot{A}$ Soit $a \in A$, montrons que $a \in \dot{A}$ c'est-à-dire cherchons $r > 0 | B(a,r) \subset A$ On a : $a \in A$. Or A ouvert $\Rightarrow \exists \ r' > 0 \ | B(a,r') \subset A$ Prendre r = r'. Donc $A \subset \dot{A}$
- ** Montrons que $\dot{A} \subset A$ (cas trival)
- (2) Supposons $A = \dot{A}$ et Montrons que A est ouvert Cela revient à montrer que \dot{A} est ouvert.

Adhérence et Frontière

Définition 1.15 Soient (E,d) un espace métrique et $A \subset E$. Un point $a \in E$ est dit **adhérent** à A lorsque tout voisinage de a rencontre A.

On note \bar{A} l'adhérence de A et on a : $(a \in A) \Leftrightarrow \forall V \in \mathcal{V}(a), \ A \cup V \neq \emptyset \Leftrightarrow \forall \epsilon > 0, \ B(a, \epsilon) \cap A \neq \emptyset$

Il s'en suit aussitôt que tout élément de A adhère à A.

Proposition 1.16 Une partie A de (E,d) est fermée si et seulement $\bar{A} = A$. Preuve (**TD**)

Définition 1.17 Soit A une partie d'un espace métrique (E,d). On appelle **frontière** de A, l'ensemble des points qui ne sont ni à l'interieur, ni à l'extérieur de A.

Proposition 1.18 Soit A une partie de (E,d). Un point frontière de A est adhérent à A et à \mathcal{C}_E^A . Ainsi, en notant ∂A (ou $F_r(A)$) la frontière de A, on a : $\partial A = \mathcal{C}_E(\dot{A} \cup \dot{\mathcal{C}}_E^A)$

Preuve (**Exercice**) Hint : Utiliser et démontrer le fait qu'on a $\hat{\mathsf{C}}_E^{\bar{A}} = \hat{\mathsf{C}}_E^{\dot{A}}$ et $\dot{\mathsf{C}}_E^A = \hat{\mathsf{C}}_E^{\bar{A}}$. Vérifier aussi en **Exercice** qu'on a : $F_r(A) = \bar{A} \backslash \dot{A}$.

Définition 1.19 Densité Soit A une partie d'un espace métrique (E,d). On dit que A est **dense** dans E lorsque $\bar{A}=E$

Exemple \mathbb{Q} est dense dans \mathbb{R} c'est-à-dire $\overline{\mathbb{Q}} = \mathbb{R}$.

Exercice Montrer que $\dot{\mathbb{Q}} = \emptyset$ et $F_r \mathbb{Q} = \mathbb{R}$.

1.1.4 Notion de sous-espace métrique

Définition 1.20 Soient (E,d) un espace métrique et X une partie non vide de E. On définit sur X*X une application notée d_x par la relation : $\forall x,y \in X,\ d_x(x,y) = d(x,y).\ d_x$ est une distance sur X appellée **distance induite** par d sur X.

On dit alors que (X, d_x) est un sous espace métrique de (E,d).

Dans la suite, on notera $B_x(a,r)$ ($resp\ B_x'(a,r)$) une boule ouverte (resp. fermée) de (X,d_x) .

Proposition 1.21 Soit (X, d_x) un sous-espace métrique d'un espace métrique (E,d). Toute boule ouverte (resp. fermée) de (X,d_x) est de la forme $B_x(a,r) = X \cap B(a,r)$ (resp. $B_x'(a,r) = X \cap B'(a,r)$).

On dit que les boules de (X, d_x) sont les traces sur X des boules de (E,d).

```
Exemple E = \mathbb{R}, X = [0,2[ [0,1[ est un ouvert de (X,d_x) [0,1[=[-1,1[\cap [0,2[ = B(0,1)\cap [0,2[ Donc [0,1[ est une boule ouverte de [0,2[ et par conséquent, c'est un ouvert. Montrons que B_X(a,r) = X \cap B(a,r) B_X(a,r) = \{x \in X, \ d_x(a,x) < r\} = \{x \in X, \ d(a,x) < r\} = X \cap \{x \in E, \ d(a,x) < r\} = X \cap B(a,r)
```

Théorème 1.22 Soient(E,d) un espace métrique et X une partie non vide de E.

- i. Soit A une partie de X.
 - * A est un ouvert de (X, d_x) si et seulement s'il existe un ouvert O de (E,d) tel que $A=X\bigcap O$
 - * A est un fermé de (X, d_x) si et seulement s'il existe un fermé F de (E,d) tel que $A = X \cap F$
- ii. Soit $a \in X$, soit $w \subset X$, on a : $w \in (V)_X(a) \Leftrightarrow \exists V \in (V)_X(a), \ w = X \cap V$

1.1.5 Produit d'espaces métriques

Observation : Soient $(E_i, d_i)_{i=1,\dots,p}$ p espaces métriques. Posons $E = \prod_{i=1}^p E_i = E_1 * E_2 * \dots * E_p$.

Soient $x, y \in E$ x et y s'écrivent $x = (x_1, x_2, ..., x_p)$ et $y = (y_1, y_2, ..., y_p)$.

Définissons les applications δ_{∞} , δ_S et δ_e deE*E vers $\mathbb R$ par les relations :

$$\delta_{\infty}(x,y) = \max_{1 \le i \le p} d_i(x_i, y_i) \delta_S(x,y) = \sum_{i=1}^p d_i(x_i, y_i) \delta_e(x,y) = \left[sum_{i=1}^p d_i(x_i, y_i)^2\right]^{\frac{1}{2}}$$

Montrer en **exercice** que δ_{∞} , δ_S $et\delta_e$ sont des distances uniformément équivalentes.

On établira les relations :

$$\forall x, y \in E, \delta_{\infty}(x, y) \leq \delta_{S}(x, y) \leq p\delta_{\infty}(x, y)et \ \delta_{\infty}(x, y) \leq \delta_{e}(x, y) \leq \sqrt{pp}\delta_{\infty}(x, y)$$

Définition 1.23 E muni de l'une quelconque des trois distances équivalentes ci-dessus est appelé **espace métrique** produit de p espaces métriques $(E_1, d_1), (E_2, d_2), ..., (E_p, d_p)$.

1.2 SUITES DANS UN ESPACE METRIQUE

Définition 1.24 Soient (E,d) un espace métrique et $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. Nous dirons que (U_n) **converge** vers l'élément $l\in E$ si quel que soit le voisinage V de l dans (E,d), il existe un entier naturel $n_V\in\mathbb{N}$ tel que $\forall n\in\mathbb{N},\ n\geq n_V\Rightarrow U_n\in V$.

On note alors $\lim U_n = l \ ou \ \lim_{n \to +\infty} U_n = l$.

Observons alors qu'on a les équivalences :

$$(\lim U_n = l) \Leftrightarrow (\forall V \in (V)(l), \exists N_V \in \mathbb{N}, \forall_{\mathbb{N}}^n, n \ge N_V \Rightarrow U_n \in V) \Leftrightarrow (\forall \epsilon > 0, \exists N_\epsilon \in \mathbb{N}, \forall_{\mathbb{N}}^n, n \ge N_\epsilon \Rightarrow U_n \in B)$$

Exemple Dans \mathbb{C} , on pose $U_n = \frac{1}{n}e^{in}$. Montrer que $\lim U_n = 0$ On a : $|U_n| = |\frac{1}{n}e^{in}| = \frac{1}{n}$ $\lim |U_n| = 0 \Rightarrow \lim U_n = 0$

Remarque Soit E un espace métrique produit des espaces métriques $(E_1, d_1), (E_2, d_2), ..., (E_p, d_p)$. Une suite $(U_n)_{n \in \mathbb{N}}$ une suite d'éléments de E converge vers $l \in E$ si et seulement si les suites composantes $(x_n^1), (x_n^2), ..., (x_n^p)$ convergent respectivement vers les composantes $l^1, l^2, ..., l^p$ de l c'est-à-dire $l = (l^1, l^2, ..., l^p)$.

Proposition 1.25 Soit (U_n) une suite d'éléments d'un espace métrique (E,d).

- i. Si (U_n) est convergente, alors sa limite est unique
- ii. Si (U_n) est convergente, alors elle est unique

Preuve

i. Soit (E,d) un espace métrique. Soit (U_n) une suite convergente vers $l \in E$. Supposons que (U_n) converge vers $l_1 \in E$ et (U_n) converge vers $l_2 \in E$, montrons que $l_1 = l_2$

.
$$\lim U_n = l_1 \Rightarrow \forall \ \epsilon > 0, \ \exists N_{\epsilon} \in \mathbb{N}, \ \forall_{\mathbb{N}}^n, \ n \geq N_{\epsilon} \Rightarrow U_n \in B(l_1, \epsilon)$$

 $\lim U_n = l_2 \Rightarrow \forall \ \epsilon > 0, \ \exists N_{\epsilon} \in \mathbb{N}, \ \forall_{\mathbb{N}}^n, \ n \geq N_{\epsilon} \Rightarrow U_n \in B(l_2, \epsilon)$
Supposons $l_1 \neq l_2$. Posons $\epsilon = \frac{d(l_2, l_1)}{2} > 0$
Alors pour ce ϵ , $\exists n_1 \in \mathbb{N}, \ \forall_{\mathbb{N}}^n, \ n \geq n_1 \Rightarrow U_n \in B(l_1, \frac{d(l_2, l_1)}{2})$

De même, $\exists n_2 \in \mathbb{N}, \ \forall_{\mathbb{N}}^n, \ n \geq n_2 \Rightarrow U_n \in B(l_2, \frac{d(l_2, l_1)}{2})$ soit $n > \max(n_1, n_2)$. Alors, $(U_n \in B(l_1, \frac{d(l_2, l_1)}{2}))$ et $(U_n \in B(l_2, \frac{d(l_2, l_1)}{2}))$ $d(l_1, l_2) \geq d(l_1, U_n) + d(U_n, l_2) < \frac{d(l_2, l_1)}{2} + \frac{d(l_2, l_1)}{2}$

D'où $d(l_1, l_2) < d(l_1, l_2)$

Conclusion : $l_1 = l_2$

ii. Supposons $\lim U_n = l$ et montrons que (U_n) est bornée.

Pour $\epsilon = 1 \ \exists n_1 \in \mathbb{N}, \ \forall_{\mathbb{N}}^n, \ n \geq n_1 \Rightarrow U_n \in B(l,1)$

Posons $R = \max 1, d(U_0, l), ..., d(U_{n-1}, l)$. On a $\forall n \in \mathbb{N}, U_n \in B(l, R)$

Conclusion : (U_n) est bornée

1.2.1 Notion de sous-suite

Définition 1.26 Soient (E,d) un espace métrique, $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et $v:\mathbb{N}\to\mathbb{N}$ une injection croissante. L'application Uov $n\mapsto Uov(n)=U_{v(n)}$ est une suite d'éléments de E dite suite extraite de (U_n) ou tout simplement sous-suite de (U_n) .

Remarque Soit (U_n) une suite d'éléments de (E,d).

- i. Si (U_n) converge vers $l \in E$, alors toutes les sous-suites de (U_n) convergent vers l. é
- ii. Des sous-suites (U_n) peuvent converger alors que (U_n) diverge.

Définition 1.27 Valeur d'adhérence d'une suite Soient (U_n) une suite d'éléments de (E,d) et $a \in E$. On dira que a est une valeur d'adhérence de (U_n) lorsque :

$$(\forall \epsilon > 0)(\forall n \in \mathbb{N})(\exists p \in \mathbb{N})(p > n \ et \ d(U_p, a) < \epsilon)$$

Exercice Montrer que si $\lim U_n = e$, alors l est une valeur d'adhérence de (U_n) .

Proposition 1.28 Soient (U_n) une suite d'éléments de (E,d) et $a \in E$. a est une valeur d'adhérence de (U_n) si et seulement si a est limite d'une sous-suite de (U_n) .

Preuve Exercice

Proposition 1.29 Caractérisation de l'adhérence Soit A une partie d'un espace métrique (E,d), les assertions ci-dessous sont équivalentes :

- i. $a \in E$ est un point adhérent à A.
- ii. $a \in E$ est limite d'une suite d'éléments de A.

Chapitre 2

FONCTIONS NUMERIQUES A PLUSIEURS VARIABLES

2.1 FONCTIONS CONTINUES

Dans tout ce chapitre, pour $n \in \mathbb{N}, \mathbb{R}^n$ sera muni de l'une des normes équivalentes $\|.\|_e, \|.\|_s$ et $\|.\|_{\infty}$.

Définition 2.1: Soient $\Delta \subset \mathbb{R}^n$ et $f: \Delta \longrightarrow \mathbb{R}^p$ une fonction définie dans un voisinage de $x_0 \in \Delta$ sauf peut – tre en x_0 . On dit que f **admet pour limite** le réel l quand x tend vers x_0 si on a : $\forall \epsilon > 0, \exists \eta > 0 \forall_{\Delta}^x || x - x_0 || < \eta \Rightarrow || f(x) - l|| < \epsilon$

On note alors $\lim_{x\to x_0} f(x) = l$

Quelques remarques:

- R_1) La limite d'une fonction f en x_0 lorsqu'elle existe est unique.
- R_2) Soient f et g deux fonctions définies dans un voisinage de $x_0 \in \Delta$ sauf peut-être en x_0 . On suppose que f et g admettent respectivement l et l' comme limite en x_0
 - . Alors f+g et f.g admettent respectivement $l+l^{'}$ et $l.l^{'}$ comme limites en x_{0}
 - Si en outre $l' \neq 0, \frac{f}{g}$ admet $\frac{l}{l'}$ comme limite en x_0 .

Définition 2.2 : (limites infinies) Soit $f:\Delta\subset\mathbb{R}^n\longrightarrow\mathbb{R}^p$ une application définie dans un voisinage de x_0 , sauf peut-être en x_0 . On dit que f tend vers $+\infty$ (resp $-\infty$) quand x tend vers x_0 si on a : $\forall A>0 \exists \eta>0, \forall_\Delta^x\|x-x_0\|<\eta\Rightarrow f(x)>A(respf(x)< A)$,

Définition 2.3: Soient $\Delta \subset \mathbb{R}^n (n \in \mathbb{N}^n)$, $f: \Delta \longrightarrow \mathbb{R}^p$. On suppose que f est définie au voisinage de x_0 sauf peut-être en x_0 . On dit que f admet pour limite l'élément $b \in \mathbb{R}^p$ quand x tend vers x_0 lorsque : $\forall \epsilon > 0, \forall \eta > 0 \forall_{\Lambda}^{\alpha} ||x - x_0|| <$ $\eta \Rightarrow ||f(x) - b|| < \epsilon$

Observons qu'on a : $\lim_{x\to x_0} f(x) = b \Leftrightarrow \lim_{x\to x_0} ||f(x) - b|| = 0$

Remarques: Soient f et g deux fonctions définies dans un voisinage de $x_0 \in \Delta$ sauf peut-être en x_0 . On suppose que f et g admettent respectivement b et c comme limite en x_0 . Alors on a :

```
* \lim_{x \to x_0} (f+g)(x) = b+c
** \lim_{x\to x_0} (fg)(x) = b.c où . est le produit scalaire dans \mathbb{R}^p
*** \lim_{x\to x_0} ||f(x)|| = ||b||
```

Remarque: Soit $f: \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ $x \mapsto f(x)$ f(x) peut s'écrire : $f(x) = (f_1(x), f_2(x), ..., f_p(x))$. Les fonctions composantes $f_1, f_2, ..., f_p$ sont définies de \mathbb{R}^n vers \mathbb{R} . Soit $b \in \mathbb{R}^p$. b s'écrit $b = (b1, b_2, ..., b_p)$ $\lim_{x\to x_0} f(x) = b$ si et seulement si $\forall i \in \{1, 2, ..., p\}$ on a $\lim_{x\to x_0} f_i(x) = b_i$

2.1.1Continuité d'une fonction

Soit $f: \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ on suppose f définie au voisinage de $x_0 \in \Delta$.

Définition 2.4 On dit que f est continue en x_0 lorsque $\lim_{x\to x_0} f(x) = f(x_0)$ C'est-à-dire: $\forall \epsilon > 0, \exists \eta > 0, \forall x \in \Delta, ||x - x_0|| < \eta \Rightarrow ||f(x) - f(x_0)|| < \epsilon.$

Exemple: Toute application linéaire $f: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ est continue en tout point $a \in \mathbb{R}^n$

Preuve Supposons \mathbb{R}^n muni de sa base canonique $(e_i)_{1 \leq i \leq n}$ Soit $a \in \mathbb{R}^n$, a s'écrit $a=\sum_{i=1}^n a_ie_i$, Pour un élément $x=\sum_{i=1}^n x_ie_i$ de \mathbb{R}^n , on a : f(a)-f(x) = f(a-x) = $\sum_{i=1}^n (a_i-x_i)f(e_i)$ Soit $\epsilon > 0$, cherchons $\eta > 0$, $\|x - a\| < \eta \Rightarrow \|f(x) - f(a)\| < \epsilon$ D'après l'inégalité triangulaire, on a : $||f(x) - f(a)|| < \sum_{i=1}^{n} |a_i - x_i| ||f(e_i)||$. $< (\sup_{1 \le i \le n} ||f(e_i)||) \sum_{i=1}^{n} |x_i - a_i|$

C'est-à-dire $||f(x) - f(a)|| \le C||x - a||_s$ où $C = \sup_{1 \le i \le n} ||f(e_i)||$ est une constante.

Pour avoir $||f(x)-f(a)|| < \varepsilon$, il suffit d'avoir $C||x-a||_s < \varepsilon$ c'est-à-dire $||x-a|| < \varepsilon$ $\overset{\varepsilon}{\overset{C}{C}}$ Prendre $\eta = \frac{\varepsilon}{C}$.

2.1.2 Opérations sur les applications continues

Soient $f, g: \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ définies au voisinage de x_0 et continues en x_0 .

- * Soit $\lambda \in \mathbb{R}$, les fonctions f + g et λf définies de $\mathbb{R}^n \longrightarrow \mathbb{R}^p$ sont continues en x_0
- ** Les fonctions f.g (produit scalaire) et ||f|| définies de $\mathbb{R}^n \longrightarrow \mathbb{R}^p$ sont continues en x_0 .
- *** Si p=1 et $g(x_0) \neq 0$, la fonction $\frac{f}{g}$ est continue en x_0

2.1.3 Conséquences

- i Les fonctions à n indéterminées sont des fonctions continues de $\mathbb{R}^n \longrightarrow \mathbb{R}$
- ii Les fractions rationnelles sont continues sur leurs ensembles de définition.

2.1.4 Composition de fonctions

Proposition 2.5 Soient $f: \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$ une fonction continue en x_0 , $g: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ définie sur $f(\Delta)$ et continue en $y_0 = f(x_0)$. Alors, la fonction gof est continue en x_0 .

Observation On considère une fonction $f : \mathbb{R}^n \longrightarrow \mathbb{R}^p$. On pose $a = (a_1, ..., a_n) \subset \mathbb{R}^n$. Pour $i \in \{1, ..., n\}$, on définit la fonction :

$$\phi_i : \mathbb{R} \longrightarrow \mathbb{R}^p t \mapsto \phi_i(t) = f(a_1, a_2, ..., a_{i-1}, a_i)$$

Si f est continue au point a, alors les fonctions ϕ_i sont toutes continues au point a_i . La réciproque n'est pas toujours vraie; c'est-à-dire on peut avoir toutes les fonctions ϕ_i continues aux points a_i alors que f n'est pas continue au point a.

Exemple
$$f: \mathbb{R}^n \to \mathbb{R}(x,y) \mapsto \begin{cases} \frac{2xy}{x^2+y^2} si(x,y) \neq (0,0) \\ 0si(x,y) = (0,0) \end{cases}$$

Montrons que $\forall \eta > 0, \ \exists \ (x_0,y_0) \in \mathbb{R}^2, \ \|(x_0,y_0)\| < \eta \ et \ \|f(x_0,y_0)\| > \frac{\eta}{2}$

Montrons que $\forall \eta > 0$, $\exists (x_0, y_0) \in \mathbb{R}^2$, $\|(x_0, y_0)\| < \eta$ et $\|f(x_0, y_0)\| > \frac{\eta}{2}$ Faisons tendre (x, y) vers (0,0) suivant la droite $\Delta : y = x \ f(x, y) = \frac{2x^2}{x^2 + x^2} = 1$ Posons $x_0 = \frac{\eta}{2}$ et $y_0 = \eta$ On a max $\{|x_0, y_0|\} = \frac{\eta}{2} < \eta$ et $\|f(x_0, y_0)\| > \frac{1}{2}$. Faisons tendre (x, y) vers (0,0) suivant la droite $\Delta : y = x$. On a : $f(x, y) = \frac{2x^2}{x^2 + x^2} = 1$ donc $\lim_{x\to 0} f(x, x) = 1 \neq f(0, 0)$ Conclusion : f n'est pas continue en (0,0).

Les applications $\phi_1: x \mapsto \phi_1(x) = f(x,0) = 0$ et $\phi_2: y \mapsto \phi_2(y) = f(0,y) = 0$ sont continues en 0 comme fonctions constantes.

2.2 Notion de dérivée partielle

2.2.1 Dérivée suivant un vecteur

Soient $p,q \in \mathbb{N}^*$, on suppose \mathbb{R}^p et \mathbb{R}^q munis de leurs bases canoniques respectives $(e_i)_{1 \leq i \leq p} et(k_j)_{1 \leq j \leq q}$

Soit $f: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ une fonction. Pour $x = (x_1, ..., x_p) \in \mathbb{R}^p$, on a: $f(x) \in \mathbb{R}^q$ et f(x) s'écrit $f(x) = (f_1(x), f_2(x), ..., f_q(x))$ C'est à dire: $f(x) = \sum_{i=1}^q f_i(x) * k_i$. On note habituellement $f = (f_1, f_2, ..., f_q)$ Rappelons que f est continue en $a \in \mathbb{R}^p$ si et seulement si $\forall i \in \{1, ..., q\}$ f_i : $\mathbb{R}^p \longrightarrow \mathbb{R}$ est continue en a.

Observation Soient Ω un ouvert de \mathbb{R}^p et $f:\Omega \longrightarrow \mathbb{R}^q$ une fonction. Pour un élement $a \in \Omega$ et un vecteur $u \in \mathbb{R}^p$, Posons $I = \{t \in \mathbb{R}, \ a + tu \in \Omega\}$ Considerons l'application $\phi: I \longrightarrow \mathbb{R}^q$ $t \mapsto \phi(t) = f(a + tu)$

Définition 2.6 On dit que f admet au point a une dérivée dans la direction du vecteur u si $\lim_{t\to 0} t\in I$ existe et appartient à \mathbb{R}^q . Dans ce cas, cette limite est notée $D_u f(a)$. On dit que c'est la dérivée en a de f suivant le vecteur u.

Exemple:

- * p = q = 1 u=1 On a $D_{u=1}f(a) = \lim_{t\to 0} \frac{f(a+t)-f(a)}{t}$ ie $D_{u=1}f(a) = f'(a)$
- * Si u=0, toute fonction $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$ admet en tout point $a \in \Omega$, une dérivée suivant le vecteur nul et on a $D_{u=0}f(u)=0$

Remarque Si f admet en tout point $a \in \Omega$ une dérivée $D_u f(a)$ suivant le vecteur u, on peut considérer la fonction. $D_u f: \Omega \longrightarrow \mathbb{R}^q$ $x \longrightarrow D_u f(x)$ Elle est appelée dérivée de la fonction f suivant le vecteur u.

2.2.2 Dérivée partielle

Soit $(e_i)_{1 \leq i \leq p}$ une base orthonormée de \mathbb{R}^p . On suppose (**sauf mention contraire**) que $(e_i)_{1 \leq i \leq p}$ est la base canonique. Soit $f: \mathbb{R}^p \longrightarrow \mathbb{R}, x \in \mathbb{R}^p$ s'écrit $x = \sum_{i=1}^p x_i e_i$.

Définition 2.7 : On dit que f admet en $a \in \mathbb{R}^p$ une **dérivée partielle** par rapport à x_i si $D_{e_i}f(a)$ existe.

On obtient alors $D_{e_i} f(a) = \lim_{t\to 0} \frac{f(a+te_i)-f(a)}{t}$ On note $\frac{\partial f}{\partial x_i}(a)$

Remarque Soit ϕ l'application définie pour $\alpha > 0$ par :

 $\begin{array}{l} \phi: ai-\alpha, ai+\alpha \longrightarrow \mathbb{R} \\ s\mapsto \phi(s) = f(a_1,...,a_{i-1},a_{i+1},...,a_p) \text{ Constatons que lorsque } D_{e_i}f(a) \text{ existe,} \\ \text{on a la relation : } \frac{\partial f}{\partial x_i}(a) = \phi(a_i) \\ = \lim_{t\to 0} \frac{\phi(a_i+t)-phi(a_i)}{t} \end{array}$

 $\begin{array}{ll} \textbf{Exemple} & f: \Omega \subset \mathbb{R}^2 \longrightarrow \mathbb{R}(x,y) \mapsto x^2 + y^2 \\ \text{Soit } (a,b) \in \mathbb{R}^2 \text{ dire si } \frac{\partial f}{\partial x}(a,b) \text{ et } \frac{\partial f}{\partial y}(a,b) \text{ existent et les calculer.} \end{array}$ Soient $(a,b) \in \mathbb{R}^2$ * Existence de $\frac{\partial f}{\partial x}(a,b)$ On a : $\frac{\partial f}{\partial x}(a,b)$ existe $\sin D_j f(a,b)$ existe $D_j f(a,b) = \lim_{t \to 0} \frac{f((a,b)+ti)-f(a,b)}{t}$ $\begin{aligned} &D_j f(a,b) = \lim_{t \to 0} \frac{3 \cdot (C + y + t)}{t} \\ &\text{on a}: (a,b) + ti = (a,b) + t(1,0) = (a+t,b) \\ &\text{Ainsi } \lim_{t \to 0} \frac{f((a,b)+ti) - f(a,b)}{t} = \lim_{t \to 0} \frac{(a+t)^2 + b^2 - a^2 - b^2}{t} \\ &= \lim_{t \to 0} \frac{2at + t^2}{t} = 2a \in \mathbb{R} \\ ^* &\text{Existence de } \frac{\partial f}{\partial y}(a,b) : \text{Idem que pour } \frac{\partial f}{\partial x}(a,b) \\ &\phi(s) = f(s,b) = s^2 + b^2 \\ &\frac{\partial f}{\partial x}(a,b) = \phi prim(a) = 2a \end{aligned}$

Remarque Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ Si $\forall a \in \Omega, \ \frac{\partial f}{\partial x_i}(a)$ existe, on définit la fonction:

 $\frac{\partial f}{\partial x_i}: \quad x \mapsto \frac{\partial f}{\partial x_i}(x)$

Elle est appelée dérivée partielle de f par rapport à x_i

2.2.3Matrice Jacobienne et Déterminant jacobien

Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$

Notons $(e_j)_{1 \leq j \leq p}$ et $(k_i)_{1 \leq i \leq q}$ les bases canoniques respectives de \mathbb{R}^p et \mathbb{R}^q . Soit $x \in \Omega$

- x s'écrit $x = (x_1, \ldots, x_p)$

- f(x) s'écrit $f(x_1,\ldots,x_p)$. Puisque $f(x)\in\mathbb{R}^q$, on peut écrire f(x)= $(f_1(x_1,\ldots,x_p),\ldots,f_q(x_1,\ldots,x_p))$

Observons que pour $j \in \{1, \dots, p\}$, pour que $D_{e_j}.f(a)$ existe, il faut et il suffit que les fonctions f_1, f_2, \ldots, f_q admettent toutes des dérivées partielles en a par

Puisque $D_{e_j}f(x) \in \mathbb{R}^q$, on a : $D_{e_j}f(a) = \sum_{i=1}^q \frac{\partial f_i(a)}{\partial x_j}.k_i$ Les $D_{e_j}f(a)$ sont des vecteurs colonnes d'une matrice que nous noterons J(f)(a). Elle s'appelle matrice Jacobienne de f au point $a \in \Omega$.

$$Jf(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_p}{\partial x_p}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \cdots & \frac{\partial f_2}{\partial x_p}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_q}{\partial x_1}(a) & \cdots & \frac{\partial f_q}{\partial x_p}(a) \end{bmatrix}$$

c-à-d: $Jf(a) = (\frac{\partial f_i}{\partial x_j}(a))_{1 \le i \le q, 1 \le j \le p}$

Lorsque p=q, le déterminant de cette matrice est appelé **déternimant Jacobien de f en a**. On le note |Jf(a)| ou encore $\frac{D(f_1,...,f_p)}{D(x_1,...,x_p)}$

Observons que la matrice Jacobienne de f en a donne toutes les informations sur toutes les dérivées partielles de toutes les composantes de la fonction f en a.

2.2.4 Insuffissance de la notion de dérivée directionnelle

Soit
$$f:\Omega\subset\mathbb{R}^2\longrightarrow\mathbb{R}$$

$$(x,y)\mapsto f(x,y)=\left\{\begin{array}{c} \frac{x^5}{(y-x^2)^2+x^8}\ si(x,y)\neq(0,0) \\ 0\ si(x,y)=(0,0) \end{array}\right.$$
 Nous allons montrer que f admet des dérivées dans toutes les directions en $(0,0)$ mais n'est pas continue

en(0,0)

- * Faisons tendre (x,y) vers (0,0) suivant la parabole d'équation $y = x^2$. Puisque $f(x, x^2) = \frac{1}{x^3}$, On a : $\lim_{x\to 0} f(x, x^2) = \infty$ On conclut que f n'est pas continue en (0,0).
- ** Soit une direction quelconque (u,v) avec $(u,v) \neq (0,0)$. Posons $\phi(t) =$

$$f[(0.0) + t(u, v)]$$
On a: $\frac{\phi(t) - \phi(0)}{t} = \frac{f(tu, tv)}{t}$

$$= \frac{t^2 u^5}{(v - tu^2)^2 + t^6 u^8}$$

$$= \frac{u^5}{v^2} t^2 + o(1)$$

On obtient $\lim_{t\to 0} \frac{\phi(t)}{t} = 0$ pour $v \neq 0$

Si v=0,
$$\frac{\phi(t)}{t} = \frac{t^2 u^5}{t^2 u^4 + t^6 u^8} = \frac{u^5}{u^4 + t^4 u^8}$$

Donc $\lim_{t \to 0} \frac{\phi(t)}{t} = u$

2.3 COMPLETUDE ET COMPACITE

2.3.1Notion d'espace métrique complet

Définition 1.3.1: Soient (E,d) un espace métrique et (u_n) une suite d'éléments de F. On dit que (u_n) est de **cauchy** lorsque :

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbf{N}, \forall n, m \in \mathbf{N}, n, m \geq N_{\epsilon} \Rightarrow d(u_n, u_m) < \epsilon$$

Proposition 1.3.2: Dans un espace métrique (E,d), on a :

- i Toute suite convergente est de cauchy.
- ii Toute suite extraite d'une suite de cauchy est de cauchy.

Preuve Soit u_n une suite convergente vers l. Montrons qu'elle est de cauchy. Soit $\epsilon > 0$, cherchons $N_{\epsilon} \in \mathbb{N}, \forall n, m \in \mathbb{N}, n, m \geq N_{\epsilon}d(u_n, u_m) < \epsilon$. Comme $\lim u_n = l, \exists N_{\epsilon} \in \mathbb{N}, \forall \epsilon \in \mathbb{N}, n \geq N_{\epsilon}' \Rightarrow d(u_n, l) < \epsilon. \text{ Soient } n, m \geq N_{\epsilon}', onad(u_n, l) < \frac{\epsilon}{2}etd(u_m, l) < \frac{\epsilon}{2} \text{ Ainsi, } d(u_n, u_m) < d(u_n, l) + d(u_m, l) < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon. \text{ Prendre}$ $N_{\epsilon} = N_{\epsilon}'$

Remarque: Dans un espace métrique (E,d), lorsqu'une suite de cauchy admet une sous-suite convergente, alors elle converge vers la même limite.

Preuve : Soient u_n une suite de cauchy et $u_{\phi(n)}$ une sous-suite de u_n qui converge vers l dans (E,d).

Soit $\epsilon > 0$, cherchons $N(\epsilon) \in \mathbb{N}, \forall_{\mathbb{N}}^n n \geq N_{\epsilon} \Rightarrow d(u_n, l) < \frac{\epsilon}{2}$

- * (u_n) est de cauchy, donc il existe $N_1(\epsilon) \in \mathbb{N}$ tel que $\exists N_1(\epsilon) \in \mathbb{N}$ tel que \forall $n,m \in \mathbb{N}, n,m \geq N_1 \Rightarrow d(u_n,u_m) < \epsilon$.
- * $(u_{\phi(n)})$ converge vers l donc, il existe $N_2(\epsilon) \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \geq N_2(\epsilon) \Rightarrow d(u_{\phi(n)}, l) < \frac{\epsilon}{2}$.

Soit $n \ge N_1(\epsilon)$, soit $p > \max(N_1(\epsilon), N_2(\epsilon))$. Comme ϕ est une injection croissante, il s'en suit que $\phi(p) > \max(N_1(\epsilon), N_2(\epsilon))$

On obtient $d(u_n, l) < d(u_n, u_{\phi(n)}) + d(u_{\phi(n)}, l) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ Donc $n \ge N_1(\epsilon) \Rightarrow d(u_n, l) < \epsilon$ Prendre $N(\epsilon) = N_1(\epsilon)$.

Conséquence:

C1 Toute suite de cauchy admettant une valeur d'adhérence converge vers cette valeur d'adhérence.

C2 Une suite de cauchy admet au plus une valeur d'adhérence.

Définition 1.3.3 : Un espace métrique (E,d) est dit **complet** lorsque dans (E,d) toute suite de cauchy converge.

Exemple: \mathbb{R} est complet.

Remarques:

R1 Un espace vectoriel normé complet est appelé espace de Banach

R2 Soient d_1 et d_2 deux distances uniformément équivalentes sur un ensemble non vide E. Alors

- * (E, d_1) et (E, d_2) ont les mêmes suites de cauchy.
- * (E, d_1) est complet si et seulement si (E, d_2) est complet

Proposition 1.34 : Soient A une partie non vide d'un espace métrique (E,d) et d_A la distance induite sur A par d. Alors

- (i) Si (A, d_A) est complet, alors A est un fermé de (E,d)
- (ii) Si (A, d_A) est complet et A est un fermé de (E,d), alors (A, d_A) est complet

Remarque : Soient $(E_1,d_1),(E_2,d_2,...,(E_p,d_p))$ p espaces métriques complets. Alors $E=\prod_{i=1}^p E_i$ muni de l'une quelconque des distances δ_∞,δ_e et δ_s est un espace métrique complet.

2.3.2 Notion de compacité

a- Notion de recouvrement

Définition 1.35 : Soit (E,d) un espace métrique.

- * On appelle **recouvrement** de E, toute famille \mathcal{R} extraite de $\mathcal{P}(E)$ (c'està-dire $\mathcal{R} \subset \mathcal{P}(E)$) telle que E soit inclus dans la réunion des éléments de la famille \mathcal{R} .
- * On appelle sous-recouvrement de \mathcal{R} toute famille \mathcal{R}' incluse dans \mathcal{R} (C'est-à-dire $\mathcal{R}' \subset \mathcal{R}$) telle que \mathcal{R}' est encore un recouvrement de E.
- * Un recouvrement \mathcal{R} est dit **fini** lorsque le cardinal de \mathcal{R} est fini (c'est-à-dire card $\mathcal{R}<+\infty$)
- * Un recouvrement \mathcal{R} est dit **ouvert** lorsque tout élément de \mathcal{R} est un ouvert de (E,d) c'est-à-dire $\forall A \in \mathcal{R}$, A est ouvert

Exemple $E = \mathbb{R}$

- L'ensemble S des intervalles est un recouvrement de E
- L'ensemble S_1 des intervalles ouverts est un sous-recouvrement de S. En outre S_1 est un recouvrement ouvert

Définition 1.36 : Un espace métrique (E,d) est dit **compact** losque de tout recouvrement ouvert de (E,d), on peut extraire un sous-recouvrement fini.

- * Une partie A de (E,d) est dite **compacte** lorsque l'espace métrique (A, d_A) est compact.
- * Une partie A de (E,d) est dite **relativement compacte** lorsque \bar{A} est compact.

Proposition 1.37: Soit (E,d) un espace métrique compact. Pout toute suite croissante $(O_n)_{n\in\mathbb{N}}$ d'ouverts recouvrant E, il existe $n_0\in\mathbb{N}$ tel que $E\subset O_{n_0}$.

Preuve : $(O_n)_{n\in\mathbb{N}}$ recouvre E. Comme E est compact, $(O_n)_{n\in\mathbb{N}}$ admet un sous-recouvrement fini c'est-à-dire il existe $n_1, n_2, ..., n_p \in \mathbb{N}$ tel que $E \subset \bigcup_{i=1}^p O_{n_i}$ (*) Posons $n_0 = \max_{1 \leq i \leq p} n_i$ alors comme la suite $(O_n)_{n\in\mathbb{N}}$ est croissante, $\bigcup_{i=1}^p O_{n_i} = 0$ (*) $\Rightarrow E \subset O_{n_0}$ $\Rightarrow E = O_{n_0}$

Corollaire Toute partie compacte d'un espace métrique (E,d) est bornée.

Preuve Soit r > 0. On a $A \subset \bigcup_{x \in A} B(x,r)$ $\{B(x,r); x \in E\}$ est un recouvrement ouvert du compact E. On peut en extraire un sous-recouvrement fini c'est-à-dire il existe $x_1, x_2, ..., x_p \in E$ tels que $A \subset B(x_1,r) \cup B(x_2,r) \cup ... \cup B(x_p,r) \cup_{i=1}^p B(x_i,r)$ est bornée comme réunion de parties bornées, ce qui entraine que A est bornée.

b- Compacité et ensemble fermé

Proposition 1.38: Soit (E,d) un espace métrique E est compact si et seulement si pour toute famille \mathcal{F} de fermés de E d'intersection vide, (c'est-à-dire $\bigcap_{F \in \mathcal{F}} F = \emptyset$), il existe une sous-famille fermée de \mathcal{F} d'intersection vide. C'est-à-dire $(F_i)_{i \in I}$ est une famille de fermés telles que $\bigcap_{i \in I} F_i = \emptyset$ si et seulement s'il existe $J \subset I$ tel sue card $J < +\infty$ et $\bigcap_{i \in J} F_i = \emptyset$

Conséquence:

- * Soient (E,d) un espace métrique compact et $(F_n)_{n\in\mathbb{N}}$ une suite décroissante de fermés de E telle que $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. Alors il existe $p \in \mathbb{N}, F_p = \emptyset$.
- * Soient (E,d) un espace métrique compact et $(F_n)_{n\in\mathbb{N}}$ une suite décroissante de fermés de E telle que $\forall n\in\mathbb{N},\ F_n\neq\emptyset$. Alors $\bigcap_{n\in\mathbb{N}}F_n\neq\emptyset$

Proposition 1.39 : Soit (E,d) un espace métrique.

- i Toute partie compacte de (E,d) est fermée
- ii Si (E,d) est compacte alors toute partie fermée de E est compacte.

Exemple: Dans \mathbb{N} , pour a > b, le segment [a,b] est compact.

NB: Dans \mathbb{N}^n , une partie $A \subset \mathbb{N}^n$ est compacte si et seulement si A est fermée et bornée.

Exemples:

- * Les pavés fermés de \mathbb{N}^n sont compacts.
- ** Les boules fermées de \mathbb{N}^n sont compacts.

Proposition 1.40 : (Théorème de Bolzano-Weierstrass) Un espace métrique (E,d) est compact si et seulement si toute suite d'éléments de E admet au moins une valeur d'adhérence.

NB: Cela équivaut à toute suite d'éléments deux à deux distincts de E admet au moins un **point d'accumulation**.

2.4 NOTION DE CONNEXITE

Définition 1.41 : Un espace métrique (E,d) est dit **connexe** s'il ne peut s'écrire comme réunion de deux ouverts non vides et disjoints.

Remarque : E connexe veut dire que : Pour tous les ouverts O_1 et O_2 tels que $O_1 \cap O_2 = \emptyset \Rightarrow (O_1 = EetO_2 = \emptyset)ou(O_1 = \emptyset etO_2 = E)$

NB: Une partie A de (E,d) est dite connexe lorsque (A,d_n) est connexe.

Proposition 1.42 : Soit (E,d) un espace métrique. Les assertions ci-dessous sont équivalentes :

- C1 E est connexe.
- C2 si E est réunion de deux ouverts disjoints, alors l'un de ces ouverts est vide et l'autre est égal à E.
- C3 Si E est réunion de deux fermés disjoints, alors l'un de ces fermés est vide et l'autre est égal à E.
- C4 les seules parties à la fois ouvertes et fermées de E sont ∅ et E.
- C5 Si l'on considère $\{0,1\}$ muni de la distance discrète $\delta: E*E \to \mathbb{R}$

$$(x,y)\mapsto d(x,y)=\left\{ egin{array}{ll} 0 & si & x=y \\ 1 & si & x
eq y \end{array}
ight.$$
 et $f:E\Rightarrow\{0,1\}$ une application continue(c'est-à-dire telle que l'image réciproque d'un ouvert de $\{0,1\}$ est un ouvert de E) alors f est constante.

Exemple: \mathbb{R} est connexe

Remarque: Une partie de \mathbb{R} est connexe si et seuement si c'est un intervalle

NB: On appelle domaine d'un espace métrique (E,d) toute partie à la fois ouverte et connexe.

Proposition 1.43 : Soit A une partie d'un espace métrique (E,d), les assertions suivantes sont équivalentes

- i A est connexe
- ii Si O_1 et O_2 sont deux ouverts de (E,d) tels que $A \subset O_1 \cup O_2$ et $O_1 \cap O_2 = \emptyset$, alors on a : $(O_1 \cap A = \emptyset)$ et $A \subset O_2$ ou $(A \subset O_1)$ et $A \cap O_2 = \emptyset$
- iii Si F_1 et F_2 sont deux fermés de (E,d) tels que $A \subset F_1 \cup F_2$ et $F_1 \cap F_2 = \emptyset$, alors on a : $(F_1 \cap A = \emptyset)$ et $A \subset F_2$ ou $(A \subset F_1)$ et $A \cap F_2 = \emptyset$

Proposition 1.44 : Soit A une partie connexe de (E,d). Soit $B \subset E$ te que $A \subset B \subset \bar{A}$, alors, B est connexe. En particulier \bar{A} est connexe.

Preuve : Soient O_1 et O_2 deux ouverts tes que $B \subset O_1 \cup O_2$ et $O_1 \cap O_2 = \emptyset$. Montrons que l'on a : $(O_1 \cap B = \emptyset \text{ et } B \subset O_2)$ ou $(B \subset O_1 \text{ et } B \cap O_2 = \emptyset)$ ou $(B \subset O_1 \cup O_2 \text{ et } A \subset B)$. Comme A est connexe, on a : $(A \cap O_1 = \emptyset \text{ et } A \subset O_2)$ ou $(A \cap O_2 = \emptyset \text{ et } A \subset O_1)$

ou $(A \cap O_2 = \emptyset \text{ et } A \subset O_1)$ C'est-à-dire $(A \subset \mathbb{C}_E^{O_1} \text{ et } A \subset O_2)$ ou $(A \subset \mathbb{C}_E^{O_2} \text{ et } A \subset O_1)$ Ainsi, on a : $(\bar{A} \subset \mathbb{C}_E^{O_1} \text{ et } A \subset O_2)$ ou $(\bar{A} \subset \mathbb{C}_E^{O_2} \text{ et } A \subset O_1)$

$$\begin{array}{l} 1^{er} \text{ cas } \bar{A} \subset \mathbb{C}_E^{O_1} \text{ et } A \subset O_2 \\ \text{ On a : } B \subset \mathbb{C}_E^{O_1} \Rightarrow B \bigcap O_1 = \emptyset \\ \text{ Comme } B \subset O_1 \cup O_2, \text{ onobtient} B \subset O_2 \\ \text{ C'est-\`a-dire } B \bigcap O_1 = \emptyset \text{ et } B \subset O_2 \end{array}$$

```
2^{eme} cas Identique on a B \cap O_2 = \emptyset et B \subset O_1 Concusion : B est connexe
```

Remarque : Soit $(A_i)_{i \in I}$, une famille de parties connexes de (E,d) tele que $\bigcap_{i \in I} A_i = \emptyset$. Alors $A = \bigcup_{i \in I} A_i$ et une partie connexe.

2.4.1 Notion de composante connexe

Soit (E,d) un espace métrique. On définit sur E une relation \mathcal{R} par $x \mathcal{R} y \Leftrightarrow il$ existe une partie connexe A de E telle que $x, y \in A$.

Exercice:

- 1 Montrer que \mathcal{R} est une relation d'équivalence.
- 2 Soit C(x) la classe d'équivalence d'un élément $x \in E$. Montrer que :
 - i C(x) est la plus grande partie connexe de E contenant x.
 - ii C(x) est fermé
 - iii Pour $a, b \in E$, montrer que : $a \neq b \Rightarrow C(a) = C(b)$ ou $C(a) \cap C(b) = \emptyset$.

Remarque: Soient (E,d) et (F, δ) deux espaces métriques. $f: E \Rightarrow F$ une application. On dit f est continue au point $x_0 \in E$ lorsque: $\forall w \in \mathcal{V}_{\delta}(f(x_0)), \exists o \in \mathcal{V}_{d}(x_0), f(o) \subset w$.

NB: On dit que $f: E \Rightarrow F$ est continue sur une partie A de E lorsque f est continue en tout point de A.

Remarque : Soient $f:(E,d)\Rightarrow (F,\delta)$ et $x_0\in E,$ les propriétés suivantes sont équivalentes :

```
i f est continue en x_0.
```

ii
$$\forall w \in \mathcal{V}_{\delta}(f(x_0)), f^{-1} \in \mathcal{V}_d(x_0)$$

iii
$$\forall \epsilon > 0 \exists \eta > 0, \forall_E^x d(x - x_0) < \eta \Rightarrow \delta(f(x), f(x_0)) < \epsilon$$

D'autre part, sont équivalentes :

- i f est continue sur E.
- ii $\forall \Omega$ ouvert de F, $f^{-1}(\Omega)$ est un ouvert de E.
- iii $\forall \Gamma$ fermé de F, $f^{-1}(\Gamma)$ est un fermé de E.

Proposition 1.45 : $f:(E,d)\Rightarrow (F,\delta)$ est dite **homéomorphisme** lorsque :

- i f est bijective
- ii f est continue
- iii f est ouverte (c'est-à-dire f^{-1} continue).

Proposition 1.46: Soit $f:(E,d)\Rightarrow (F,\delta)$ une application continue.

- i l'image par f d'une partie compacte de E est une partie compacte de F
- ii L'image par f d'une partie connexe de E est une partie connexe de F En particulier, en prenant $F = \mathbb{R}$, on a :
 - * L'image par f (continue) d'une partie connexe de E est un intervalle.

** Si $f:(E,d)\Rightarrow\mathbb{R}$ est continue, pour $A\subset E$ compact. Si A est connexe, f(A) est un intervalle fermé et borné.

Remarque : (Continuité uniforme) $f:(E,d) \to (F,\delta)$ est dite uniformément continue lorque : $\forall \epsilon > 0 \exists \eta > 0, \forall x,y \in Ed(x-y) < \eta \Rightarrow \delta(f(x),f(y)) < \epsilon$

NB:

- La notion de continuité uniforme est gobale et non locale comme celle de continuité.
- f uniformément continue \Rightarrow f continue.

2.4.2 Notion de Connexité par arcs

Définition 1.47 : Soient (E,d) un espace métrique et $x, y \in E$. On appelle **chemin d'extremités** x et y toute application continue notée $c : [0,1] \to E$ telle que c(0) = x et c(1) = y Dans ce cas, l'image c([0,1]) de [0,1] est appelée arc.

Un espace métrique (E,d) est dit **connexe par arcs** lorsque tout couple (x,y) de points de E peut être reié par une arc. Exemple : \mathbb{R} est connexe par arc. En effet, soient $x,y \in \mathbb{R}$. Définissons $\phi: [0,1] \to \mathbb{R}$ par $\phi(t) = (1-t)x + ty$. ϕ est naturellement continue comme fonction affine. $\phi(0) = xet\phi(1) = y$. Donc $\phi([0,1]) = [x,y]$.

Remarque : Une partie A de (E,d) est dite connexe par arcs lorsque (A, d_A) est connexe par arcs.

- * Soient $x, y, z \in E$ s'il existe :
 - Un chemin d'origine x et d'extremité y
 - Un chemin d'origine y et d'extremité z
 - Alors il existe un chemin d'origine x et d'extremité z (en **Exercice** TD)
- * Soit $(A_i)_{i\in I}$ une famille de parties connexes par arcs telle que $\bigcap_{i\in I} A_i \neq \emptyset$. Alors, $\bigcup_{i\in I} A_i$ est connexe par arcs.
- * Si $A \subset E$ connexe par arcs et $f: (E,d) \to (F,\delta)$ est continue, alors f(A) est connexe par arcs.

 ${\bf NB}$: On définit les composantes connexes par arcs de la même façon que les composantes connexes.

2.5 NOTION DE CONVEXITE

Définition 1.48 : Soit E une espace vectoriel normé. Une partie de E est dite **convexe** lorsque $\forall (x,y) \in A, [x,y] \subset A$ On rappelle que $[x,y] = \{(1-t)x + ty, 0 \le t \le 1\}$

Proposition 1.49 : Soit (E,d) un espace métrique

- * Toute partie connexe par arcs de E est convexe.
- * Si E est un espace vectoriel normé, toute partie connexe par arcs est connexe et par conséquent convexe.

2.5.1 Appications linéaires continues

C'est une notion qui a un sens pour appication linéaire définie entre deux espaces vectoriels normés.

Proposition 1.50 : Soit (E, ||.||) un espace vectoriel normé, les applications $+: \left\{ \begin{array}{ccc} E*E & \to & E \\ (x,y) & \mapsto & x+y \end{array} \right.$ et .: $\left\{ \begin{array}{ccc} \mathbb{K}*E & \to & E \\ (\lambda,y) & \mapsto & \lambda.y \end{array} \right.$ sont continues.

Preuve

* Munissons E*E de la norme N définie par $N(x,y) = \|x\| + \|y\|$. Observons que pour (x,y), $(x^{'},y^{'}) \in E*E$ on a : $\|(x+y)-(x^{'},y^{'})\| \leq \|x-x^{'}\| + \|y-y^{'}\| = N[(x,y)-(x^{'},y^{'})]$

On vient de montrer que + est **1-lipchitzienne**. Par conséquent, + est uniformément continue d'où continue.

* Soit $(\lambda_0, x_0) \in \mathbb{K} * E$. Montrons que . est continue en (λ_0, x_0)

On a : $\|\lambda x - \lambda_0 x_0\| = \|\lambda x - \lambda x_0 + \lambda x_0 - \lambda_0 x_0\|$

 $\leq |\lambda| ||x - x_0|| + |\lambda - \lambda_0| ||x_0||$

Soit $\epsilon > 0$, cherchons $\eta > 0$ telque $|\lambda - \lambda_0| < \eta e t ||x - x_0|| < \eta \Rightarrow ||\lambda x - \lambda_0 x_0|| < \epsilon$

Posons $\eta = \frac{\epsilon}{\|x_0\| + |\lambda_0| + 1 + \epsilon}$

On a : $\|\lambda x - \lambda_0 x_0\| \le \eta(|\lambda| + \|x_0\|)$

Pour $|\lambda| \le |\lambda_0| + \eta$, on a : $||\lambda x - \lambda_0 x_0|| \le \eta(|\lambda_0| + \eta + ||x_0||) \le \eta(|\lambda_0| + 1 + ||x_0||)$

 $\leq \epsilon$ (en prenant $\eta < 1$) On conclut que $(\lambda, y) \to \lambda y$ est continue en (λ_0, x_0) .

Remarque Dans un espace vectoriel normé:

- * L'adhérence d'une boule ouverte est la boule fermée de même centre et de même rayon.
- * L'intérieur d'une boule fermée est la boule ouverte de même centre et de même rayon.

Proposition 1.51 : Soient (E, $\|.\|_E$) et (F, $\|.\|_F$) deux espaces vectoriels normés, $f: E \to F$ une appication linéaire. Les assertions ci-dessous sont équivalentes :

- i f est continue sur E.
- ii f est continue en O_E

iii $\exists k \in \mathbb{R}_+^*, \forall x \in E ||f(x)||_F \leq k ||x||_E$ Dans ce cas, le réel ||f|| défini par $||f|| = \inf\{k \in \mathbb{R}_+^*, \forall_E^x ||f(x)||_F \leq k ||x||_E\}$ définit une norme dans l'espace vectoriel $\mathcal{L}(E,F)$ des applications linéaires continues de E vers F.

Preuve (exercice)

Remarques:

- R_1) Tout espace vectoriel normé **complet** est appelé **espace de Banach**.
- R_2) Dans un espace vectoriel normé de dimension **finie**, toutes les normes sont unifornément **équivalentes**.

2.6 FONCTION DIFFERENTIABLE

Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$

Nous notons B_r la boule centrée en (0,0,...,0) et de rayon r Posons $B_r^* = B_r \setminus \{0\}$. Observons que pour $a \in R^p$, on a :

 $B(a,r) = \{a\} + B_r \equiv a + B_r$

Définition 2.8 Soit $f: \Omega \subset \mathbb{R}^p \to \mathbb{R}^q$ une application.

Soit $a = (a_1, a_2, \dots, a_p) \in \Omega$

On dit que f est **differentiable** au point a s'il existe :

- 1. Une application linéaire $L: \mathbb{R}^p \longrightarrow \mathbb{R}^q$
- 2. Un réel $r \in R_+^*$ tel que $a + B_r^* \subset \Omega$
- 3. Une application $\varphi: B_r^* \longrightarrow R^q$ vérifiant $\lim_{||k|| \to 0} \varphi(k) = 0$ telle que $f(a+k) = f(a) + L(k) + ||k|| \varphi(k) \ \forall k \in B_r$

NB L(k) se note L.k comme en algèbre linéaire.

On pose dans de telles conditions : Df(a) = L

L'application linéaire Df(a) est alors appelée différentielle (ou differentielle totale) de f en a.

Remarque Si p=q=1, les concepts de differentielle en un point A et de dérivée en A s'identifient.

En effet, $f: R \longrightarrow R$ est dérivable en a et de dérivée f'(a) lorsqu'il existe $\varepsilon > 0$ et $\varphi:]a - \varepsilon, a + \varepsilon[\longrightarrow R$ tel que $f(a+k) = f(a) + f'(a).k + \varphi(k).k$ avec $\lim_{k \to 0} \varphi(k) = 0$

Ainsi, dans R, on pose Df(a) = f'(a)

Remarque Dire que $f: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ est differentiable en a de différentielle Df(a), equivaut à :

$$\lim_{||k|| \to 0} \frac{f(a+k) - f(a) - Df(a).k}{||k||} = 0$$

Proposition 2.9 Soit f définie de $\Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$ differentiable au point $a \in \Omega$. Alors :

- 1. Df(a) est unique
- 2. f est continue au point a
- 3. Soit u un vecteur de $R^p(u \in R^p)$. f admet en a la dérivée suivant le vecteur u et on a la relation :

$$D_u f(a) = Df(a)(u) = Df(a).u$$

NB D'après cette relation, on observe que si $f:\Omega\subset R^p\longrightarrow R^q$ est differentiable en a, la matrice jacobienne de f en a est celle de l'application linéraire Df(a) ie :

$$Jf(a) = M_{Df(a)}$$

Propriétés Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$

- 1. Si f est constante, alors f est différentiable en tout point $a \in \Omega$ et on a Df(a) = 0 (application nulle)
- 2. Si $f:R^p\longrightarrow R^q$ est une application linéaire, f est différentiable en tout point de R^p et on a :

$$Df(a) = f \ \forall a \in \mathbb{R}^p$$

3. Soient $f:\Omega\subset R^p\longrightarrow R^q,\ g:\Omega\subset R^p\longrightarrow R^q$ deux applications differentiables en a et α un nombre réel.

Les applications f + g et αf sont différentiables en a et on a :

$$D(f+g)(a) = Df(a) + Dg(a)$$
$$D(\alpha f)(a) = \alpha Df(a)$$

Proposition 2.10 (Composition) Soient $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q, \ g: \Omega' \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q, \ a \in \Omega$

On pose b=f(a) et on suppose $b\in\Omega$ ', f différentiable en a,g différentiable en b=f(a).

Alors $g \circ f$ est différentiable en a et on a :

- 1. $D(g \circ f)(a) = Dg[f(a)] \circ Df(a)$
- 2. $J(g \circ f)(a) = Jg(f(a)).Jf(a)$

Corollaire

- 1. Si dans la proposition 2.10, g est une application linéaire alors $D(g \circ f)(a) = g \circ Df(a)$
- 2. On suppose p=q et $f:\Omega\subset R^p\longrightarrow\Omega'\subset R^p$ une application bijective. Si f et f^{-1} sont différentiables respectivement en tout point de Ω et Ω' , alors

 $\forall a \in \Omega, Df(a) \ est \ un \ isomorphisme \ de \ R^p \longrightarrow R^p \ et \ on \ a:$

$$[Df(a)]^{-1} = Df^{-1}(f(a))$$

NB Si $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$ est différentiable en tout point de Ω, on dit que f est différentiable sur Ω. On définit l'application :

$$Df: \Omega \longrightarrow L(\mathbb{R}^p, \ \mathbb{R}^q)$$

 $x \longrightarrow Df(x)$

Théorème 2.11 Soit $f:\Omega\subset R^p\to R^q$

- 1. On suppose que dans Ω , les applications $\frac{\partial f_i}{\partial x_j}$ existent $\forall i \in \{1, \dots, q\}$ et $\forall j \in \{1, \dots, p\}$
 - En outre, on suppose que les $\frac{\partial f_i}{\partial x_j}$ sont continues de Ω vers R. Alors f est différentiable sur Ω .
- 2. Si f est différentiable sur Ω , toutes les dérivées partielles $\frac{\partial f_i}{\partial x_j}$ existent et sont continues sur Ω
- 3. Soit $f: \Omega \subset R^p \longrightarrow R^q$ différentiables sur Ω . Notons $(e_i)_{1 \leq i \leq p}$ et $(a_j)_{1 \leq j \leq q}$, les bases canoniques respectives de R^p et R^q . Pour $x \in \Omega$ et $h \in R^p$

$$df(x)(h) = \sum_{j=1}^{q} \left(\sum_{i=1}^{p} \frac{\partial f_j}{\partial x_i}(x).h_i\right).a_j$$

Proposition 2.12 Soient $f:\Omega\subset R^p\longrightarrow R^q$ et $g:\Omega\subset R^p\longrightarrow R^q$ deux applications differentiables au point $a\in\Omega$. Alors:

-f.g est différentiable en a et on a

$$\forall h \in R^p \ D(f,q)(a)(h) = Df(a)(h).q(a) + f(a).Dq(a).h$$

– Si q=1 et $g(a)\neq 0,\,\frac{f}{g}$ est différentiable en a et on a :

$$D(\frac{f}{g})(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$$

Quelques applications

2.6.1 Gradient d'une fonction scalaire

Soit $f:\Omega\subset R^p\longrightarrow R$ une fonction. Si f admet des dérivées partielles en tout point $a\in\Omega$, on appelle gradient de f en a, le vecteur

$$\nabla f(a) = gradf(a) = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_p}(a))$$

Si en outre, f est différentiable en a, on a :

$$df(a).h = \nabla f(a).h \ \forall h \in \mathbb{R}^p$$

On appelle opérateur gradient, l'opérateur $\nabla=(\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_\nu})$

Rappel Soit $U \subset \mathbb{R}^p$ un ouvert.

On appelle courbe dans U, toute application $r:I\subset R\longrightarrow U$

- Si r est différentiable en $t \in I$, le vecteur $r'(t) = r'_1(t), \dots, r'_p(t)$) est appelé $vecteur\ vitesse$
- Soit $f:U\longrightarrow R$ une application différentiable sur U et $r:I\longrightarrow U$ une courbe différentiable sur I.

On appelle dérivée de f le long de cette courbe et on note $\frac{df}{ds}$ le nombre

$$\frac{df}{ds}(t) = \nabla(f(r(t)) \cdot \frac{r'(t)}{||r'(t)||} \ lorsque \ r'(t) \neq 0$$

Exemple

$$c: y = x^2 + x + 1$$
$$f: R^2 \longrightarrow R$$
$$(x, y) \longrightarrow x^2 + y^2 - 1$$

Observons que c a pour équation

$$\begin{cases} x &= t \\ y &= t^2 + t + 1 \end{cases}$$
 Or $r'(t) = \begin{pmatrix} 1 \\ 2t+1 \end{pmatrix} \Rightarrow ||r'(t)|| = \sqrt{1 + (2t+1)^2}$
$$\nabla f(x,y) = (2x,2y)$$
 Ainsi,
$$\nabla f(r(t)) = (2t,2(t^2+t+1))$$
 donc
$$\frac{df}{ds}(r(t)) = \frac{2}{\sqrt{1+(2t+1)^2}}[t + (t+(t^2+t+1)(2t+1))]$$

Courbes de niveau

Définition 2.13 Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$. On appelle surface de niveau du champ scalaire f, l'ensemble des points de Ω pour lesquels f prend une valeur constante c.à.d. $L(c) = \{x \in \Omega, f(x) = c\}$

Remarque En un point d'une surface de niveau, le vecteur gradient est tangent à la surface de niveau.

L'équation de la tangente en a à L(c) est donnée par $\nabla f(a).r'(t_0) = 0$.

Exemples

Cas de \mathbb{R}^2 Quand la courbe est déterminée par une équation de la forme y=f(x), posons

$$g: R^2 \longrightarrow R$$

$$(x,y) \longrightarrow f(x) - y$$

$$\nabla g(x_0, y_0) = (f'(x_0), -1)$$

$$\nabla g(x_0, y_0).(x - x_0, y - y_0) = 0 \Leftrightarrow f'(x_0)(x - x_0) = y - y_0$$

Cas de R^3 Soient $f: R^3 \longrightarrow R$ et L(c) une surface déterminée par

L'équation du plant tangent à L(c) au point $a(x_0, y_0, z_0)$ est

$$\frac{\partial f}{\partial x}(x)(x-x_0) + \frac{\partial f}{\partial y}(a)(y-y_0) + \frac{\partial f}{\partial z}(a)(z-z_0) = 0$$

Remarque Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ différentiable. Soit $(e_i)_{1 \leq i \leq p}$ la base canonique de \mathbb{R}^p .

Pour $h \in R^p$, $h = \sum_{i=1}^p h_i e_i$ et $x \in \Omega$, la forme linéaire notée df(x) définie de R^p vers R par $df(x)(h) = \sum_{i=1}^p \frac{\partial f}{\partial x_i}(x).h_i$ est appelée différentielle totale de f au point x. df est indépendante du système de coordonnées choisies.

Remarque Une fonction $f: \mathbb{R}^p \longrightarrow \mathbb{R}^q$ est dite de classe \mathbb{C}^k $(k \in \mathbb{N})$ lorsque toutes les dérivées partielles jusqu'à l'ordre k existent et sont continues.

2.7 DERIVEES PARTIELLES D'ORDRE SUPERIEURE

Définition 2.14 Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$

On suppose que f admet des dérivées partielles sur Ω . Alors les applications $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,p$ sont bien définies de Ω vers R.

Pour $i \in \{1, \dots, p\}$ si $\frac{\partial f}{\partial x_i}$ admet une dérivée partielle par rapport à x_j , on a la

$$D_{e_j}(D_{e_i}(f)) ie \ D_{e_j}(D_{e_i}f) = \frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$$

On la note $D_{ji}f$ ou $\frac{\partial^2 f}{\partial x_i \partial x_j}$

On définit ainsi de proche en proche des dérivées partielles d'ordre p par :

$$D_{i_1,\dots,i_p}f = \frac{\partial^p f}{\partial x_{i_p}\partial x_{i_{p-1}}\dots\partial x_{i_1}}$$

Exemple $f(x,y) = log(x^2 + y^2)$

Pour $(x,y) \neq (0,0)$, on a: $\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}, \frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$ $\frac{\partial^2 f}{\partial x^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}, \frac{\partial^2 f}{\partial y^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$ $\frac{\partial^2 f}{\partial x \partial y} = \frac{-2xy}{(x^2 + y^2)^2}, \frac{\partial^2 f}{\partial y \partial x} = \frac{-2xy}{(x^2 + y^2)^2}$ On constate que $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$, ceci n'est pas vrai dans le cas général. Par contre, on a la résultat ci desseus. on a le résultat ci-dessous.

Théorème 2.15 Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$

Si f admet en un point x des dérivées partielles d'ordre 2 $\frac{\partial^2 f}{\partial x_i \partial x_i}$ et si ces dérivées

sont continues, alors on a:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Formule de Taylor avec reste de Lagrange

Proposition 2.16 (Formule des accroissements finis) Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ une fonction différentiable sur Ω Pour $x \in \Omega$, $h \in \mathbb{R}^p$ tel que $x+h \in \Omega$, il existe $\theta \in]0,1[$ tel que

$$f(x+h) = f(x) + \sum_{i=1}^{p} h_i \frac{\partial f}{\partial x_i} (x + \theta h)$$

Théorème 2.17 (Formule de Taylor Lagrange) Soit $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ une fonction admettant sur Ω des dérivées partielles continues jusqu'à l'ordre k. On suppose en outre que Ω est un ouvert convexe.

Alors, pour $x \in \Omega$ et $h \in \mathbb{R}^p$ tel que $x + h \in \Omega$, il existe $\vartheta \in]0,1[$ tel que l'on ait :

$$f(x+h) = f(x) + \sum_{i=1}^{p} h_i D_i f(x) + \frac{1}{2!} \sum_{i,j} h_i h_j D_{ij} f(x) + \cdots$$

$$+ \frac{1}{(k-1)!} \sum_{i_1,\dots,i_{k-1}} h_{i_1} h_{i_2} \dots h_{i_{k-1}} D_{i_1\dots i_{k-1}} f(x)$$

$$+ \frac{1}{k!} \sum_{i_1,\dots,i_k} h_{i_1} \dots h_{i_k} D_{i_1\dots i_k} (x + \theta h)$$

Le dernier terme est appelé reste de Lagrange.

Extrémum d'une fonction de pluseieurs variables réelles

Définition 2.18 On dit qu'une fonction $f: \Omega \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ admet un **maximum** (respectivement un minimum) en un pont $x_0 \in \Omega$ s'il existe un voisinnage V de x_0 tel que l'on ait $\forall x \in V$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).

Proposition 2.19 Soit $f:\Omega\subset R^p\longrightarrow R$, si f admet un extrémum en $x_0\in\Omega$ et si f admet des dérivées partielles $\frac{\partial f}{\partial x_i}(x_0)$ alors $\forall i\in\{1,\ldots,p\}$, on a $D_if(x_0)=0$

Des points x_0 de Ω tels que $\forall i \in \{1, ..., p\}, D_i f(x_0) = 0$ sont appelés des *points critiques*.

Observnos que la condition $\forall i \in \{1, ..., p\}$ $D_i f(x_0) = 0$ n'est pas suffisante pour que x_0 soit un extrémum.

Reconnaissance d'extrémas pour p=2

Théorème 2.20 Soit $f:\Omega\subset R^2\longrightarrow R$ une fonction de classe C^2 sur l'ouvert

Soit $a \in \Omega$ un point critique de f sur Ω . On note :

$$r = \frac{\partial^2 f}{\partial x^2}(a), \ s = \frac{\partial^2 f}{\partial x \partial y}(a) \ et \ t = \frac{\partial^2 f}{\partial y^2}(a)$$

alors:

- 1. Si $s^2 rt < 0$ et r > 0, f admet un **minimum local** en a
- 2. Si $s^2 rt < 0$ et r < 0, f admet un maximum local en a
- 3. Si $s^2 rt > 0$, f admet en a un point du type col (ie ni maximum, ni minimum)
- 4. Si $s^2 rt = 0$ on ne peut pas conclure de façon systématique s'il y'a un extrêmum ou pas. Une étude particulière s'impose dans une telle situation.

$$f(a+h) - f(a) = \frac{1}{2}(rh_1^2 + 2sh_1h_2 + t_2^2) + ||h^2||\varepsilon(h)$$

Autres applications du calcul differentiel

2.7.1Fonctions composées

Proposition 2.21 Soit $f:\Omega\subset R^n\longrightarrow R^p$ et $g:V\subset R^p\longrightarrow R$ telle que $f(\Omega) \subset V$.

On suppose que f et g admettent des dérivées partielles successives qui sont des fonctions continues. Alors la fonction $h = g \circ f : \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ admet des dérivées partielles successives et on a :

$$\frac{\partial h}{\partial x_i}(x) = \sum_{j=1}^p \frac{\partial g}{\partial y_j}(f(x)) \cdot \frac{\partial f_j}{\partial x_i}(x)$$

Exemple
Soit
$$f: R^2 \longrightarrow R$$
 $(x,y) \longrightarrow f(x,y)$
On considère un changement de

On considère un changement de variable bien défini x = x(u,v), y = y(u,v). On considère la fonction $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$F(u,v) = f(x(u,v),y(u,v))$$

On a:

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u}$$
$$\frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v}$$

Observons que ce principe est très utile dans les équations aux dérivées partielles (Exemple : Equation de la chaleur, équation des ondes, etc.).

CHAPITRE 2. FONCTIONS NUMERIQUES A PLUSIEURS VARIABLES30

Théorème 2.22 (Théorème des fonctions implicites) Soient $\Omega \subset \mathbb{R}^p$ un ouvert, $f:\Omega\longrightarrow R$ une fonction et $a\in\Omega$. On suppose que f est de classe C^1 , f(a) = 0 et $det J f(a) \neq 0$. Alors il existe un voisinage V de $(a_1, \dots, a_{p-1}) \in \mathbb{R}^{p-1}$ dans R^{p-1} et une fonction $\varphi: V \to R$ de classe C^1 tel que $a_p = \varphi(a_1, \dots, a_{p-1})$ et tel que $\forall (x_1, \ldots, x_{p-1}) \in V$, on a :

$$f(x_1, \dots, x_{p-1}, \varphi(x_1, \dots, x_{p-1})) = 0$$

Exemple
$$f: R^3 \longrightarrow R$$

 $(x,y,z) \longrightarrow f(x,y,z) = (x^2+y^2)e^z - 2x^2 - 1$
On a: $f(0,1,0) = 0$.

L'équation f(x,y,z)=0 entraine $z=ln(\frac{2x^2+1}{x^2+y^2})$ On prend ici $\varphi: R^2 \longrightarrow R$ On prend ici $(x,y) \longrightarrow ln(\frac{2x^2+1}{x^2+y^2})$ Alors $\forall (x,y) \neq (0,0)$, on a : $f(x,y,\varphi(x,y))=0$

Chapitre 3

CALCUL INTEGRAL

Dans ce chapitre, les concepts de produits scalaire, produit vectoriel, produit mixte, gradient, rotationnel et divergence sont supposés être connues et bien maîtrisés.

3.1 INTEGRALE MULTIPLE

3.1.1 Intégrales doubles et triples

Définition 3.1 (Partie pavable) Une partie $A \subset R^2$ est dite *pavable* si elle est réunion d'une famille finie de pavés $(P_i)_{i \in I}$ d'intérieurs deux à deux disjoints. En désignant par $\mu(A)$ la mesure (surface de A), on a alors :

$$\mu(A) = \sum_{i \in I} \mu(P_i)$$

Définition 3.2 Soit A une partie bornée de R^2 . On note $m^+(A)$, la borne inférieure des aires des parties pavables contenant A et $m^-(A)$ la borne supérieure des parties pavables contenues dans A.

On dit que A est quarrable lorsque $m^-(A) = m^+(A)$.

Exemple Soit $f:[a,b]\to R_+$ une fonction continue. $A^*=\{(x,y)\in R^2, a\le x\le b\ et\ 0\le y\le f(x)\}$ est une partie quarrable de R^2

Remarque Lorsque $A \subset \mathbb{R}^2$ est quarrable, le réel $\mu(A) = m^+(A) = m^-(A)$ est appelé mesure (ou aire) de A.

On aura par exemple : $\mu(A^*) = \int_a^b f(x) dx$

Définition 3.3 (Somme de Darboux) Soit $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction bornée sur une partie quarrable A. Etant donnée une subdivision $\delta = \{A_i\}_{i \in I}$ de A fermée des parties quarrables d'intérieurs deux à deux disjoints.

On appelle sommes de Darboux de f relative à la subdivision δ , les sommes :

$$D(\delta) = \sum_{i \in I} \mu(A_i) m_i$$

$$S(\delta) = \sum_{i \in I} \mu(A_i) M_i$$

où $m_i = \text{borne inférieure de } f \ sur A_i$ $M_i = \text{borne supérieure de } f \ sur A_i$.

Définition 3.4 Soient $A \subset \mathbb{R}^2$ et $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction.

On dit que f est **intégrable** (au sens de **Riemann**) sur A lorsqu'en notant D l'ensemble de toutes les subdivisions par des parties quarrables d'intérieurs deux à deux disjoints de A, on a :

$$inf_{\delta \in D}S(\delta) = sup_{\delta \in D}S(\delta)$$

Cette valeur commune est appelée intégrale double de f sur A et notée $\iint_A f(x) dx$ ou tout simplement $\iint_A f(x,y) dx dy$.

Exemple Si $f(x,y) = 1 \ \forall (x,y) \in A$, on a :

$$\iint_A 1. dx dy = \iint_A dx dy = \mu(A) = aire \ de \ A$$

Proposition 3.5 Toute fonction continue sur une partie quarrable et compacte y est *intégrable*.

Proposition 3.6 Soient A et B deux parties quarrables de \mathbb{R}^2 telles que les intérieurs sont disjoints

$$\overset{\circ}{A} \cap \overset{\circ}{B} = \emptyset$$

Si $f:R^2\to R$ est intégrable sur A et sur B alors f est intégrable sur $A\cup B$ et on a :

$$\iint_{A \cup B} f(x, y) \mathrm{d}x \mathrm{d}y = \iint_{A} f(x, y) \mathrm{d}x \mathrm{d}y + \iint_{B} f(x, y) \mathrm{d}x \mathrm{d}y$$

Proposition 3.7 Soient f et g deux fonctions définies de R^2 vers R intégrables sur une partie quarrable A et $\lambda \in R$

1. $f + \lambda g$ est intégrable sur A et on a :

$$\iint_{A} (f + \lambda g)(x, y) dxdy = \iint_{A} f(x, y) dxdy + \lambda \iint_{A} g(x, y) dxdy$$

2. Si $\forall (x,y) \in A \quad f(x,y) \leq g(x,y)$, on a :

$$\iint_A f(x,y) dx dy \le \iint_A g(x,y) dx dy$$

3. |f| est intégrable sur A et on a :

$$\left| \iint_A f(x,y) dx dy \right| \le \iint_A |f(x,y)| dx dy$$

Notion de d'intégrale triple

Remarque Les parties pavables et les parties quarrables de \mathbb{R}^3 se définissent de la même façon que celle de \mathbb{R}^2 en remplaçant les rectangles par les parral-lélépipèdes.

On définit alros de la même façon les intégrales triples des fonctions f définies d'une partie quarrable de $R^3 \to R$.

Ainsi, si $f:R^3\to R$ est intégrable sur la partie quarrable A, son intégrale triple est notée :

$$\iiint_A f(x, y, z) dx dy dz$$

Les propriétés de l'intégrale double s'étendent aux intégrales triples.

NB On peut définir de la même façon les intégrales multiples.

3.1.2 Calcul des intégrales multiples

Calcul des intégrales doubles

Théorème 3.8 (Formule de Fubini) Soient Φ et Ψ deux fonctions définies de $[a,b] \to R$ continues telles que :

$$\forall x \in [a, b], \quad \Phi(x) \le \Psi(x)$$

Alors .

- 1. $D = \{(x,y) \in \mathbb{R}^2, \ a \le x \le b, \ \Phi(x) \le y \le \Psi(x) \}$ est une partie quarrable de \mathbb{R}^2
- 2. Toute fonction $f:D\to R$ continue sur D est intégrable sur D et on a :

$$\iint_D f(x,y) dxdy = \int_a^b \left[\int_{\Phi(x)}^{\Psi(x)} f(x,y) dy \right] dx$$

Remarque Si on a deux fonctions numériques Φ et Ψ continues sur [c, d] telles

que $\forall y \in [c,d], \ \Phi(y) \leq \Psi(y).$ $D = \left\{ (x,y) \in R^2, \ c \leq y \leq d, \ \Phi(y) \leq x \leq \Psi(y) \right\} \text{ est quarrable dans } R^2 \text{ et toute fonction } f:D \to R \text{ continue est intégrable et on a :}$

$$\iint_D f(x,y) dx dy = \int_c^d \left[\int_{\Phi(y)}^{\Psi(y)} f(x,y) dx \right] dy$$

Théorème 3.9 (Formule de Fubini pour les intégrales triples) Soient Φ et Ψ deux fonctions numériques continues sur une partie quarrable compacte $K \subset \mathbb{R}^2$ telles que $\forall (x,y) \in K, \ \Phi(x,y) \leq \Psi(x,y)$, alors

- $-A = \{(x,y,z) \in \mathbb{R}^3, (x,y) \in K \text{ et } \Phi(x,y) \leq z \leq \Psi(x,y)\}$ est une partie quarrable de \mathbb{R}^3 .
- Toute fonction $f: A \to R$ continue y est intégrable et on a :

$$\iiint_A f(x, y, z) dx dy dz = \iint_K \left[\int_{\Phi(x, y)}^{\Psi(x, y)} f(x, y, z) dz \right] dx dy$$

Exemple Calculer:

- 1. $\iint_{[0,1]\times[0,\frac{\pi}{2}]} x^2 \cos(y) dx dy$
- 2. $\iint_D xy \mathrm{d}x \mathrm{d}y$ où D est le domaine délimité par le triangle OBC avec B(2,1)

Solution

1.

$$D = [0,1] \times [0,\frac{\pi}{2}] = \left[(x,y) \in R^2, \ 0 \le x \le 1 \ et \ 0 \le y \le \frac{\pi}{2} \right]$$

On a donc:

$$\iint_D x^2 \cos(y) dx dy = \int_0^2 \left[\int_0^{\frac{\pi}{2}} x^2 \cos(y) dy \right] dx$$
$$= \int_0^1 x^2 \left[\int_0^{\frac{\pi}{2}} \cos(y) \right] dx$$
$$= \int_0^1 x^2 dx \int_0^{\frac{\pi}{2}} \cos(y) dy$$
$$= \frac{1}{3}$$

2.

FIGURE 3.1 – Domaine de la remarque

Remarque Si D est un pavé $[a,b] \times [c,d]$ et $f:D \to R$ est de la forme $f(x,y) = \varphi_1(x)\varphi_2(y)$ intégrable sur D, on a :

$$\iint_{D} f(x,y) dxdy = \iint_{[a,b] \times [c,d]} \varphi_{1}(x) \varphi_{2}(y) dxdy$$

$$= \int_{a}^{b} \varphi_{1}(x) dx \int_{c}^{d} \varphi_{2}(y) dy$$

$$\iint_{D} xy dxdy = \iint_{D_{1}} xy dxdy + \iint_{D_{2}} xy dxdy$$

$$D_{1} = \left\{ (x,y) \in R^{2}, \ 0 \le x \le 1 \text{ et } \frac{1}{2}x \le y \le 2x \right\}$$

$$D_{2} = \left\{ (x,y) \in R^{2}, \ 1 \le x \le 2, \text{ et } \frac{1}{2}x \le y \le -x + 3 \right\}$$

$$\iint_{D_{1}} xy dxdy = \int_{0}^{1} \left[\int_{\frac{1}{2}x}^{2x} xy dy \right] dx$$

$$= \int_{0}^{1} x \left[\frac{1}{2} (2x)^{2} - \frac{1}{2} (\frac{1}{2}x)^{2} \right] dx$$

$$= \int_{0}^{1} \frac{3}{8} x^{3} dx = \frac{3}{32}$$

$$\iint_{D_{2}} xy dxdy = \int_{1}^{2} \left[\int_{\frac{1}{2}x}^{-x+3} xy dxdy \right] dx$$

3.1.3 Utilisation d'un changement de variable

Théorème 3.10 (Changement de variable pour une intégrale double)

Soient D et Δ deux fermés quarrables de R^2 , $\Phi: \begin{array}{cc} D & \to \Delta \\ (u,v) & \to \left(\varphi(u,v), \psi(u,v) \right) \end{array}$

un diph'eomorphisme de classe C^1 .

Pour une fonction $f: \Delta \to R$ continue sur $\overset{\circ}{\Delta}$, on a:

$$\iint_{\Delta} f(x,y) \mathrm{d}x \mathrm{d}y = \iint_{D} f(\phi(u,v),\psi(u,v)) \big| J\Phi(u,v) \big| \mathrm{d}u \mathrm{d}v$$

où $|J\Phi(u,v)|$ est la valeur absolue du déterminant Jacobien de Φ au point (u,v)

Remarque Le théorème précédent s'étend sans modification à une intégrale triple.

Remarque Les changements de variable usuels sont :

- Dans R^2 , les coordonnées polaires :

$$\left\{ \begin{array}{lll} x & = & r\cos\theta & r\in[0,+\infty[\\ y & = & r\sin\theta & \theta\in[0,2\pi[\end{array} \right.$$

et
$$|J(r,\theta)| = r$$

- Dans \mathbb{R}^3 , les coordonnées sphériques :

$$\begin{cases} x = r \cos \theta \sin \phi & r \in [0, +\infty[\\ y = r \sin \theta \cos \phi & \theta \in [0, 2\pi[\\ z = r \cos \phi & \phi \in [0, \pi] \end{cases}$$

et
$$|J(r,\theta,\phi)| = r^2 \sin \phi$$

- Coordonées cylindriques dans \mathbb{R}^3

$$\left\{ \begin{array}{lll} x & = & r\cos\theta & r\in[0,+\infty[\\ y & = & r\sin\theta & \theta\in[0,2\pi]\\ z & = & z & z\in R \end{array} \right.$$

et
$$|J(r, \theta, z)| = r$$

NB La forme du domaine d'intégration donne des indications sur les changements de variables éventuels.

3.2 Intégrales curvilignes

3.2.1 Notion de formes différentielles

Dans R^2 ou R^3 , on considère la base canonique (e_i) . Rappelons que la base duale est donnée par les projections (p^{r_i}) sur les axes de coordonnées.

Dans la suite, pour des raisons partiques, nous allons poser $dx = p^{r_1}$, $dy = p^{r_2}$, $dz = p^{r_3}$ de sorte que pour un vecteur $v = v_1e_1 + v_2e_2 + v_3e_3$, on a : $dx(v) = v_1$, $dy(v) = v_2$, $dz(v) = v_3$.

Définition 3.12 Une forme différentielle de degré 1 sur R^3 (ou R^2) est une application de la forme :

$$w = w_1(x, y, z)dx + w_2(x, y, z)dy + w_3(x, y, z)dz$$

Où w_1 , w_2 , w_3 sont des champs scalaires sur R^3 .

Exemple Soit $f: R^3 \to R$ un champ scalaire. La différentielle totale de f définie par : $\mathrm{d}f = \frac{\partial f}{\partial x}\mathrm{d}x + \frac{\partial f}{\partial y}\mathrm{d}y + \frac{\partial f}{\partial z}\mathrm{d}z$ est une forme différentielle de degré 1 sur R^3 .

Remarques

– Par convention, tout champ scalaire $f: \mathbb{R}^3 \to \mathbb{R}$ est appelé forme différentielle de degré 0 sur \mathbb{R}^3 .

Forme différentielle de degré 2 De facon analogue, nous accesptons qu'une forme différentielle de degré 2 sur R^3 peut se mettre sous la forme :

$$w = w_1(x, y, z) dx \wedge dy + w_2(x, y, z) dy \wedge dz + w_3(x, y, z) dz \wedge dx$$

Où $dx \wedge dy$, $dy \wedge dz$ et $dz \wedge dx$ sont des formes bilinéaires alternées sur R^3 , w_1 , w_2 et w_3 étant des champs scalaires sur R^3 .

Quelques opérations sur les formes différentielles (Dérivées extérieures)

Pour une forme différentielle $f: R^3 \to R$ de degré 0, $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$ est une forme différentielle de degré 1.

Pour une forme différentielle w de degré 1 donnée par $w = w_1 dx + w_2 dy + w_3 dz$, la dérivée extérieure de w s'obstient de la façon suivante :

$$\begin{array}{ll} \mathrm{d} w &=& \mathrm{d}(w_1\mathrm{d} x + w_2\mathrm{d} y + w_3\mathrm{d} z) \\ &=& \mathrm{d}(w_1\mathrm{d} x) + \mathrm{d}(w_2\mathrm{d} y) + \mathrm{d}(w_3\mathrm{d} z) \\ &=& \mathrm{d} w_1 \wedge \mathrm{d} x + \mathrm{d} w_2 \wedge \mathrm{d} y + \mathrm{d} w_3 \wedge \mathrm{d} z \\ &=& \left(\frac{\partial w_1}{\partial x}\mathrm{d} x + \frac{\partial w_1}{\partial y}\mathrm{d} y + \frac{\partial w_1}{\partial z}\mathrm{d} z\right) \wedge \mathrm{d} x + \left(\frac{\partial w_2}{\partial x}\mathrm{d} x + \frac{\partial w_2}{\partial y}\mathrm{d} y + \frac{\partial w_2}{\partial z}\mathrm{d} z\right) \wedge \mathrm{d} y \\ &+& \left(\frac{\partial w_3}{\partial x}\mathrm{d} x + \frac{\partial w_3}{\partial y}\mathrm{d} y + \frac{\partial w_3}{\partial z}\mathrm{d} z\right) \wedge \mathrm{d} z \\ &=& \frac{\partial w_1}{\partial y}\mathrm{d} y \wedge \mathrm{d} x + \frac{\partial w_1}{\partial z}\mathrm{d} z \wedge \mathrm{d} x + \frac{\partial w_2}{\partial x}\mathrm{d} x \wedge \mathrm{d} y + \frac{\partial w_2}{\partial z}\mathrm{d} z \wedge \mathrm{d} y \\ &+& \frac{\partial w_3}{\partial x}\mathrm{d} x \wedge \mathrm{d} z + \frac{\partial w_3}{\partial y}\mathrm{d} y \wedge \mathrm{d} z \\ &=& \left(\frac{\partial w_2}{\partial x} - \frac{\partial w_1}{\partial y}\right)\!\mathrm{d} x \wedge \mathrm{d} y + \left(\frac{\partial w_3}{\partial y} - \frac{\partial w_2}{\partial z}\right)\!\mathrm{d} y \wedge \mathrm{d} z + \left(\frac{\partial w_1}{\partial z} - \frac{\partial w_3}{\partial x}\right)\!\mathrm{d} z \wedge \mathrm{d} x \end{array}$$

Pour $w = w_1 \wedge dy \wedge dz + w_2 \wedge dz \wedge dx + w_3 \wedge dx \wedge dy$, on a :

$$dw = dw_1 \wedge dy \wedge dz + dw_2 \wedge dz \wedge dx + dw_3 \wedge dx \wedge dy$$

$$= \left(\frac{\partial w_1}{\partial x} dx + \frac{\partial w_1}{\partial y} dy + \frac{\partial w_1}{\partial z} dz\right) \wedge dy \wedge dz + \left(\frac{\partial w_2}{\partial x} dx + \frac{\partial w_2}{\partial y} dy + \frac{\partial w_2}{\partial z} dz\right) \wedge dz \wedge dx$$

$$= + \left(\frac{\partial w_3}{\partial x} dx + \frac{\partial w_3}{\partial y} dy + \frac{\partial w_3}{\partial z} dz\right) \wedge dx \wedge dy$$

$$= \frac{\partial w_1}{\partial x} dx \wedge dy \wedge dz + \frac{\partial w_2}{\partial y} dy \wedge dz \wedge dx + \frac{\partial w_3}{\partial z} dz \wedge dx \wedge dy$$

$$= \left(\frac{\partial w_1}{\partial x} + \frac{\partial w_2}{\partial y} + \frac{\partial w_3}{\partial z}\right) dx \wedge dy \wedge dz$$

C'est une forme différentielle de degré 3.

Définition 3.13

- Une forme différentielle α de degré p ($p \in N^*$) sur R^n est dite **exacte** lorsqu'il existe une forme différentielle β de degré p-1 sur R^n telle que $d\beta = \alpha$.
- Une forme différentielle α est dite **fermée** si $d\alpha = 0$.

3.2.2 Intégrale d'une forme différentielle (intégrale curviligne)

Définition 3.14 Soit Ω un ouvert de \mathbb{R}^n $(n \in \mathbb{N}^*)$.

On considère une forme différentielle ω de degré 1 définie et continue sur Ω par :

$$\omega(x) = \sum_{i=1}^{n} w_i(x_1, \dots, x_n) dx_i$$

On considère une courbe (\mathcal{C}) de classe C^1 tracée dans Ω et paramétrée par

$$t \mapsto \overrightarrow{OM}(t) = \sum_{i=1}^{n} x_i(t)e_i, \ avec \ t \in [a, b]$$

On appelle **intégrale curviligne** de la forme différentielle ω sur la courbe (\mathcal{C}) , la quantité notée $\int_{(\mathcal{C})} \omega$ définie par :

$$\int_{(C)} \omega = \int_{a}^{b} \omega(M(t)) \cdot \frac{dM(t)}{dt} dt
= \int_{a}^{b} \sum_{i=1}^{n} w_{1}(x_{1}(t), \dots, x_{n}(t)) \cdot x_{i}'(t) dt
w_{1} \mathbf{x}(t) + w_{2} dy(t) + w_{3} dz(t)
w_{1}(x(t), y(t), z(t)) x'(t) + w_{2} y'(t) + w_{3} z'(t)$$

On observe qu'au point M(t), on applique la forme différentielle au vecteur tangent et on intègre.

NB Cette formule s'étend aux courbes de classe C^1 par morçeaux, on a alors :

$$\int_{(\mathcal{C})} \omega = \sum_{j} \int_{(\mathcal{C}_{j})} \omega$$

Exemple Si n = 3 et $\omega = P dx + Q dy + R dz$. Pour une courbe Γ de classe C^1 donnée par

$$\varphi: [a,b] \rightarrow \mathbf{R}^3$$
 $t \mapsto (x(t), y(t), z(t))$

On a:

$$\int_{\Gamma} \omega = \int_{\Gamma} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

$$x = x(t) \Rightarrow dx = x'(t)dt$$

 $y = y(t) \Rightarrow dy = y'(t)dt$
 $z = z(t) \Rightarrow dz = z'(t)dt$

On a:

$$\int_{\Gamma} \omega = \int_{a}^{b} [P(x(t), y(t), z(t))x^{'}(t) + Q(x(t), y(t), z(t))y^{'}(t) + R(x(t), y(t), z(t))z^{'}(t)]dt$$

Rappel Dans \mathbb{R}^2 ou \mathbb{R}^3 , pour une courbe Γ joignant deux points A et B, si

$$\begin{array}{cccc} \varphi: & [a,b] & \to & \mathbf{R}^3 \\ & t & \mapsto & \varphi(t) = (x(t),y(t),z(t)) \end{array}$$

est une représentation d'une courbe Γ avec $\varphi(a)=A$ et $\varphi(b)=B$.

On appelle **travail** ou **circulation** d'une force F = (P(x, y, z), Q(x, y, z), R(x, y, z)) le long de la courbe Γ de A à B, le réel $\int_{\Gamma} \vec{F} \cdot \overrightarrow{d\sigma}$ avec $\overrightarrow{d\sigma} = (dx, dy, dz)$

Ainsi
$$\int_{\Gamma} \vec{F} d\vec{\sigma} = \int_{\Gamma} P dx + Q dy + R dz$$

Proposition 3.15

– L'intégrale curviligne d'une forme différentielle ω sur une courbe (\mathcal{C}) ne dépend pas de la représentation paramétrique choisie. Cependant, l'orientation doit être conservée car tout changement change le signe du résultat.

Relation de Chasles Soient \widehat{AB} une courbe, D un point de \widehat{AB} . On a:

$$\int_{\widehat{AB}} \omega = \int_{\widehat{AD}} \omega + \int_{\widehat{DB}} \omega$$

<u>Cas d'une forme exacte</u> Si ω est une forme différentielle exacte sur Ω simplement connexe et f une primitive de ω i.e. $df = \omega$. Alors pour toute courbe \widehat{AB} de classe C^1 d'origine A et d'extrêmité B tracée sur Ω . On a :

$$\int_{\widehat{AB}} \omega = f(B) - f(A)$$

3.2.3 Intégrale de surface

Définition 3.16 Soient S une surface de \mathbb{R}^3 , \vec{n} la normale unitaire en $M \in (S)$. Soient \vec{V} un champ de vecteurs de \mathbb{R}^3 dont le domaine contient (S).

On appelle flux de \vec{V} à travers (\mathcal{S}) , l'intégrale de surface définie par

$$\Phi = \iint_{(\mathcal{S})} \vec{V} . \vec{dS} \quad \vec{dS} = dS . \vec{n}$$

Détails Soit : $\varphi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ une paramétrisation de (S)

Le vecteur normal \vec{n} est donné par

$$ec{n} = rac{rac{\partial ec{M}}{\partial u} \wedge rac{\partial ec{M}}{\partial v}}{\|rac{\partial ec{M}}{\partial u} \wedge rac{\partial ec{M}}{\partial v}\|}$$

Ainsi:

$$d\mathcal{S} = \|\frac{\partial \vec{M}}{\partial u} \wedge \frac{\partial \vec{M}}{\partial v}\| du dv$$

De sorte que:

$$\Phi = \iint_D \vec{V}(u,v).(\frac{\partial \vec{M}}{\partial u} \wedge \frac{\partial \vec{M}}{\partial v}) \mathrm{d}u \mathrm{d}v$$

Exemple
$$(S) \equiv x^2 + y^2 + z^2 = 1$$
 $\vec{V} = (x, y, z)$
Calculons $\Phi = \iint_{(S)} \vec{V}.d\vec{S}$
Une paramétrisation de (S) est :

$$\begin{cases} x = \sin\theta\cos\varphi \\ y = \sin\theta\sin\varphi \\ z = \cos\theta \end{cases}$$

avec
$$D = \{(\theta, \varphi) \in \mathbf{R}, \ 0 \le \theta \le \pi \ et \ 0 \le \varphi \le 2\pi\}$$

$$\frac{\partial M}{\partial \theta} = \begin{pmatrix} \cos\theta \cos\varphi & \cos\theta \sin\varphi & -\sin\theta \\ -\sin\theta \sin\varphi & \sin\theta \cos\varphi & 0 \end{pmatrix}$$

$$\frac{\partial \vec{M}}{\partial \varphi} = \begin{pmatrix} \sin\theta \sin\varphi & \sin\theta \cos\varphi & \cos\theta \sin\varphi \\ \vec{V} & = (\sin\theta \cos\varphi, \sin\theta \sin\varphi, \cos\theta) \end{pmatrix}$$

$$\vec{V} = \begin{pmatrix} \sin\theta \cos\varphi, \sin\theta \sin\varphi, \cos\theta \\ \vec{V} \cdot \frac{\partial \vec{M}}{\partial u} \wedge \frac{\partial \vec{M}}{\partial v} & = \sin^3\theta + \cos^2\theta \sin\theta = \sin\theta \end{pmatrix}$$

$$\Phi = \iint_{D} \sin\theta d\theta d\varphi = \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} d\varphi = 4\pi$$

Exemple Calculer le flux de $\vec{V} = \vec{i} + y\vec{k}$ à travers :

$$S = \{(x, y, z) \in \mathbf{R}^3, \ x^3 + y^3 \le z, \ 0 \le z \le 1\}$$

3.3 FORMULES DE STOCKES

Rappel Une courbe de \mathbb{R}^3 ou \mathbb{R}^2 est dite **simple** si elle est sans point multiple.

FIGURE 3.2 – Exemples de courbe (Rappel)

Théorème 3.17 (Stockes) Soit (S) une surface ouverte à deux faces limitées par une courbe simple, fermée et orientée (C). Soit \vec{V} un champ de vecteurs dont le domaine contient (C). Le flux du rotationnel de \vec{V} à travers (S) est égale à la circulation de champs de vecteurs \vec{V} le long de la courbe (C) i.e.

$$\iint_{(\mathcal{S})} \overrightarrow{rot} \vec{V} . \overrightarrow{dS} = \int_{(\mathcal{C})} \vec{V} d\vec{M}$$

Rappel $d\vec{M}(dx, dy, dz)$

Remarque (Formule de Green-Riemann) Soit le domaine (D) de \mathbb{R}^2 limité par une courbe fermée et orientée (\mathcal{C}) du plan muni d'un repère (O,\vec{i},\vec{j}) Soit $\vec{V}=(V_1(x,y),\ V_2(x,y))$ un champ de vecteur de domaine contenant (D). On a :

$$\int_{(\mathcal{C})} V_1 dx + V_2 dy = \iiint_{(D)} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) dx dy$$

NB On a appliqué Stockes avec $\vec{V}(V_1(x,y), V_2(x,y), 0)$

Exemple $\vec{V} = (xy + y^2, x^3)$

D = domaine délimité par les courbes de l'équation y=x et $y=x^2$ avec $(\mathcal{C})=\delta D$ (frontière de D)

Calculons $\int_{(\mathcal{C})} (V_1 dx + V_2 dy)$.

$$(\mathcal{C}) = (\mathcal{C}_1) \cup (\mathcal{C}_2)$$

$$(\mathcal{C}_1): \left\{ \begin{array}{lcl} x & = & t \\ y & = & t^2 \end{array} \right. \quad t \in [0,1]$$

FIGURE 3.3 – Domaine ($\mathcal{D}del'exemple$)

$$(\mathcal{C}_2): \left\{ \begin{array}{ll} x & = & 1-t \\ y & = & 1-t \end{array} \right. t \in [0,1]$$

$$I = \underbrace{\int_{(\mathcal{C}_1)} V_1 \mathrm{d}x + V_2 \mathrm{d}y}_{I_1} + \underbrace{\int_{(\mathcal{C}_2)} V_1 \mathrm{d}x + V_2 \mathrm{d}y}_{I_2}$$

$$V_1 = xy + y^2 = t \cdot t^2 + t^4 = t^4 - t^3$$

 $V_2 = x^2 = t^2$

$$dx - dt$$
 at $dy - 2tdt$

$$dx = dt \ et \ dy = 2tdt$$

$$I_1 = \int_0^1 (t^4 + t^3 + t^2 \cdot 2t) dt$$

dx = dt et dy = 2tdt $I_1 = \int_0^1 (t^4 + t^3 + t^2.2t)dt$ De même, on calcule I_2 grâce à Green-Riemann, on a :

$$I = \iint_{D} (2x - 2y - x) dxdy$$

$$= \int_{0}^{1} \left[\int_{x^{2}}^{x} (x - 2y) dy \right] dx$$

$$= \int_{0}^{1} \left[xy - y^{2} \right]_{x^{2}}^{x} dx$$

$$= \int_{0}^{1} (xx - x^{2} - (x \cdot x^{2} - (x^{2})^{2})) dx$$

$$= \int_{0}^{1} (x^{4} - x^{3}) dx$$

$$= \left[\frac{x^{5}}{5} - \frac{x^{4}}{4} \right]_{0}^{1}$$

$$= -\frac{1}{20}$$

$$I = -\frac{1}{20}$$

Remarque (Formule de Green-Ostrogradski) Soit (D) un domaine de ${f R}^3$ limité par une surface fermée. Soit $\vec V$ un champ de vecteurs dont le domaine contient (D). Alors on a:

$$\iint_{(\mathcal{S})} \vec{V} d\vec{\mathcal{S}} = \iiint_{(D)} (div\vec{V}) dx dy dz$$

Exemple Reprenons le calcul du flux précédent. $\vec{V} = V(x,y,z) \Rightarrow div \vec{V} = 3$

$$V = V(x, y, z) \Rightarrow divV = 3$$

$$\Phi = \iint_{(\mathcal{S})} \vec{V} d(\vec{\mathcal{S}})$$

$$\stackrel{stockes}{=} \iiint_{(D)} 3dxdydz$$

$$= 3 \iiint_{(D)} dxdydz$$

$$= 3.volume(\mathcal{S})$$

$$= 3.\frac{4}{3}\pi$$

$$= 4\pi$$