*AL FM Pure

Differentiating and Integrating Inverse Trigonometric Functions

Yavuz

May 25, 2021

At AL you are also expected to know that, when y isn't the subject, it can sometimes be easier to find $\frac{dx}{dy}$ and then 'turn it upside down'

Definition

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Let $y = \sin^{-1} x$ so we are trying to find

 $\frac{dy}{dx}$

Then $\sin y = x$ or reversing the equation

Differentiating both sides with respect to y:

Because there are no ys in the question, there should be no ys in our answer:

 $\cos y =$

(because on line 2 we had $x = \sin y$)

 $\therefore \frac{dy}{dx} =$

,

At AL you are also expected to know that, when y isn't the subject, it can sometimes be easier to find $\frac{dx}{dy}$ and then 'turn it upside down'

Definition

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Let $y = \sin^{-1} x$ so we are trying to find

Then $\sin y = x$ or reversing the equation $x = \sin y$

Differentiating both sides with respect to y:

Because there are no ys in the question, there should be no ys in our answer:

 $\cos y =$

(because on line 2 we had $x = \sin y$)

 $\therefore \frac{dy}{dx} =$

At AL you are also expected to know that, when y isn't the subject, it can sometimes be easier to find $\frac{dx}{dy}$ and then 'turn it upside down'

Definition

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Let $y = \sin^{-1} x$ so we are trying to find

Then $\sin y = x$ or reversing the equation $x = \sin y$

Differentiating both sides with respect to y: $\frac{dx}{dy} = \cos y$

Because there are no ys in the question, there should be no ys in our answer:

 $\cos y =$ (because on line 2 we had $x = \sin y$)

 $\therefore \frac{dy}{dx} =$

At AL you are also expected to know that, when y isn't the subject, it can sometimes be easier to find $\frac{dx}{dy}$ and then 'turn it upside down'

Definition

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Let $y = \sin^{-1} x$ so we are trying to find $\frac{dy}{dx}$

Then $\sin y = x$ or reversing the equation $x = \sin y$

Differentiating both sides with respect to y: $\frac{dx}{dy} = \cos y$

Because there are no ys in the question, there should be no ys in our answer:

 $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$ (because on line 2 we had $x = \sin y$)

 $\therefore \frac{dy}{dx} =$

At AL you are also expected to know that, when y isn't the subject, it can sometimes be easier to find $\frac{dx}{dy}$ and then 'turn it upside down'

Definition

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Let $y = \sin^{-1} x$ so we are trying to find $\frac{dy}{dx}$

Then $\sin y = x$ or reversing the equation $x = \sin y$

Differentiating both sides with respect to y: $\frac{dx}{dy} = \cos y$

Because there are no ys in the question, there should be no ys in our answer:

 $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$ (because on line 2 we had $x = \sin y$)

$$\therefore \frac{dy}{dx} = \boxed{\frac{1}{\sqrt{1-x^2}}}$$

Problem

$$\textit{Prove } \frac{d}{dx} \left(\cos^{-1} x \right) = -\frac{1}{\sqrt{1-x^2}}$$

Problem

Prove
$$\frac{d}{dx}\left(\cos^{-1}x\right) = -\frac{1}{\sqrt{1-x^2}}$$

Solution

Let $y = \cos^{-1} x$ so we are trying to find $\frac{dy}{dx}$

Then $\cos y = x$ or reversing the equation $x = \cos y$

Differentiating both sides with respect to y: $\frac{dx}{dy} = -\sin y$

$$\therefore \frac{dy}{dx} = \frac{-1}{\sin y}$$

$$\sin y = \sqrt{1 - \cos y} = \sqrt{1 - x^2}$$
 (because on line 2 we had $x = \cos y$)

$$\therefore \frac{dy}{dx} = \frac{-1}{\sqrt{1 - x^2}}$$

Problem

$$\textit{Prove } \frac{\textit{d}}{\textit{dx}} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

Problem

$$\textit{Prove } \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

Solution

Let $y = \tan^{-1} x$ so we are trying to find $\frac{dy}{dx}$

Then $\tan y = x$ or reversing the equation $x = \tan y$ dx

Differentiating both sides with respect to y: $\frac{dx}{dy} = \sec^2 y$

$$\therefore \frac{dy}{dx} = \frac{1}{\sec^2 y}$$

We could write this as cos² y but as we have a trig identity which relate tan and sec, it is simpler to leave it as it is.

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

$$\therefore \frac{dy}{dx} = \frac{1}{1+x^2}$$

Problem

Given that
$$y = \operatorname{arcsec2x}$$
, show that $\frac{dy}{dx} = \frac{1}{x\sqrt{4x^2 - 1}}$

Problem

Given that
$$y = \operatorname{arcsec2x}$$
, show that $\frac{dy}{dx} = \frac{1}{x\sqrt{4x^2 - 1}}$

Solution

$$\sec y = 2x$$

$$x = \frac{\sec y}{2}$$

$$\frac{dx}{dy} = \frac{\sec y \tan y}{2}$$

$$\frac{dy}{dx} = \frac{2}{\sec y \tan y} = \frac{2}{\sec \sqrt{\sec^2 y - 1}} = \frac{2}{2x\sqrt{4x^2 - 1}}$$

$$= \frac{1}{x\sqrt{4x^2 - 1}}$$

Problem

Given that
$$y = \arctan\left(\frac{1-x}{1+x}\right)$$
, find $\frac{dy}{dx}$.

Problem

Given that
$$y = \arctan\left(\frac{1-x}{1+x}\right)$$
, find $\frac{dy}{dx}$.

Solution

Let
$$u = \frac{1-x}{1+x}$$
, then using the quotient rule,

$$\frac{du}{dx} = \frac{(1-x)(-1) - (1-x)(1)}{(1+x)^2} = -$$

Solution

Let
$$u = \frac{1-x}{1+x}$$
, then using the quotient rule,
$$\frac{du}{dx} = \frac{(1-x)(-1) - (1-x)(1)}{(1+x)^2} = -\frac{2}{(1+x)^2}$$

Therefore, by the chain rule,
$$\frac{dy}{dx} = \frac{1}{1+\left(\frac{1-x}{1+x}\right)^2} \times -\frac{2}{(1+x)^2}$$

$$= -\frac{2}{(1+x)^2 + (1-x)^2}$$

$$= -\frac{2}{2+2x^2}$$

$$= -\frac{1}{1+x^2}$$

Definition

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C, \quad |x| < a$$

The restriction |x| < a is to ensure that there is $\frac{1}{2}$ no negative square root

Think about what a sensible substitution might be so that you end up with something squared under the square root. Also looking at the answer gives a hint about the substitution.

Definition

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C, \quad |x| < a$$

Therefore $\int \frac{1}{\sqrt{x^2 + x^2}} dx = \sin^{-1}\left(\frac{x}{x}\right) + C$

The restriction |x| < a is to ensure that there is no negative square root

Think about what a sensible substitution might be so that you end up with something squared under the square root. Also looking at the answer gives a hint about the substitution.

Solution

Let
$$x=a\sin u$$
 then $\frac{dx}{du}=a\cos u$ so $dx=a\cos u$ du.
$$\int \frac{1}{\sqrt{a^2-x^2}} \ dx = \int \frac{1}{\sqrt{a^2-a^2\sin^2 u}} a\cos u \ du$$

$$= \int \frac{1}{a\sqrt{1-\sin^2 u}} a\cos u \ du$$

$$= \int \frac{1}{a\cos u} a\cos u \ du$$

$$= \int 1 \ du$$

$$= u+C$$
 But rearranging $x=a\sin u$ gives $\frac{x}{a}=\sin u$ and $u=\sin^{-1}(\frac{x}{a})$

Definition

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

Again look at the answer to think about what might be a good substitution.

Definition

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

Again look at the answer to think about what might be a good substitution.

Solution

Let
$$x = a \tan u$$
 then $\frac{dx}{du} = a \sec^2 u$ so $dx = a \sec^2 u$ du
$$\int \frac{1}{1+x^2} dx = \int \frac{1}{a^2 + a^2 \tan^2 u} a \sec^2 u du$$
$$= \int \frac{1}{a^2 (1+\tan^2 u)} a \sec^2 du$$
$$= \int \frac{1}{a^2 \sec^2 u} a \sec^2 du$$
$$= \frac{1}{a} \int 1 du$$
$$= \frac{1}{a} u + C$$

But rearranging $x = a \tan u$ gives $\frac{x}{a} = \tan u$ and $u = \tan^{-1}(\frac{x}{a})$.

Therefore
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$
.

Problem

Find
$$\int \frac{4}{5+x^2} dx$$

Problem

Find
$$\int \frac{1}{25+9x^2} dx$$

Hint: Factorise out $\frac{1}{9}$ so that you get left with a single x^2 in the integral

Problem

Showing full working, find
$$\int_{-\frac{4}{3}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{3-4x^2}} dx$$

Problem

Find
$$\int \frac{4}{5+x^2} dx$$

Solution

$$\int \frac{4}{5+x^2} \ dx = 4 \int \frac{1}{5+x^2} \ dx = \frac{4}{\sqrt{5}} \arctan\left(\frac{x}{\sqrt{5}}\right) + C$$

Problem

Find
$$\int \frac{1}{25+9x^2} dx$$

Hint: Factorise out $\frac{1}{9}$ so that you get left with a single x^2 in the integral

Problem

Showing full working, find
$$\int_{-\frac{\sqrt{3}}{4}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{3-4x^2}} dx$$

Problem

Find
$$\int \frac{4}{5+x^2} dx$$

Solution

$$\int \frac{4}{5+x^2} \ dx = 4 \int \frac{1}{5+x^2} \ dx = \frac{4}{\sqrt{5}} \arctan\left(\frac{x}{\sqrt{5}}\right) + C$$

Problem

Find
$$\int \frac{1}{25+9x^2} dx$$

Hint: Factorise out $\frac{1}{9}$ so that you get left with a single x^2 in the integral

Solution

$$\int \frac{1}{25 + 9x^2} \ dx = \frac{1}{9} \int \frac{1}{\frac{25}{9} + x^2} \ dx = \frac{1}{9} \times \frac{1}{\frac{5}{1}} \arctan\left(\frac{\frac{x}{5}}{3}\right) + C = \frac{1}{15} \arctan\left(\frac{3x}{5}\right) + C$$

Problem

Showing full working, find
$$\int_{-\frac{\sqrt{3}}{4}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{3-4x^2}} dx$$

Problem

Find
$$\int \frac{4}{5+x^2} dx$$

Solution

$$\int \frac{4}{5+x^2} \ dx = 4 \int \frac{1}{5+x^2} \ dx = \frac{4}{\sqrt{5}} \arctan \left(\frac{x}{\sqrt{5}}\right) + C$$

Problem

Find
$$\int \frac{1}{25+9x^2} dx$$

Hint: Factorise out $\frac{1}{0}$ so that you get left with a single x^2 in the integral

Solution

$$\int \frac{1}{25+9x^2} \ dx = \frac{1}{9} \int \frac{1}{\frac{25}{9}+x^2} \ dx = \frac{1}{9} \times \frac{1}{\frac{5}{1}} \arctan \left(\frac{\frac{x}{5}}{3} \right) + C = \frac{1}{15} \arctan \left(\frac{3x}{5} \right) + C$$

Problem

Showing full working, find
$$\int_{-\frac{\sqrt{3}}{4}}^{\frac{\sqrt{3}}{4}} \frac{1}{\sqrt{3-4x^2}} dx$$

Solution

$$\int_{-\sqrt{3}/4}^{\sqrt{3}/4} \frac{1}{\sqrt{3-4x^2}} \, dx = \int_{-\sqrt{3}/4}^{\sqrt{3}/4} \frac{1}{\sqrt{4}\sqrt{\frac{3}{4}-x^2}} \, dx = \frac{1}{2} \left[\arcsin\left(\frac{2x}{\sqrt{3}}\right) \right]_{-\frac{\sqrt{3}}{4}}^{\frac{\sqrt{3}}{4}} = \frac{\pi}{12} - \left(-\frac{\pi}{12}\right) = \frac{\pi}{6}$$

Problem

Find
$$\int \frac{x+4}{\sqrt{1-4x^2}} dx$$

Hint: Split up the numerator

Problem

Find
$$\int \frac{x+4}{\sqrt{1-4x^2}} \ dx$$

Hint: Split up the numerator

Solution

$$\int \frac{x+4}{\sqrt{1-4x^2}} dx = \int \frac{x}{\sqrt{1-4x^2}} \ dx + 4 \int \frac{1}{\sqrt{1-4x^2}} \ dx$$

Deal with each in turn:
$$\int \frac{dx}{\sqrt{1-4x^2}} \ dx = \int x \left(1-4x^2\right)^{-\frac{1}{2}} \ dx = \frac{1}{4} \sqrt{1-4x^2} + C$$

$$4\int \frac{1}{\sqrt{1-4x^2}} dx = 4\int \frac{1}{\sqrt{4(\frac{1}{4}-x^2)}} dx = 2\int \frac{1}{\sqrt{\frac{1}{4}-x^2}} dx = 2\arcsin 2x + C$$

$$\therefore \int \frac{x+4}{\sqrt{1-4x^2}} \ dx = \frac{1}{4} \sqrt{1-4x^2} + 2\arcsin 2x + C$$

Quadratic Denominator that can't be Factorised

If you have a rational function where the denominator is a quadratic that can be factorised, you should factorise and use partial fractions as in A Level.

Definition

When the denominator is a quadratic that can't be factorised, you should complete the square and use $\int \frac{1}{a^2+\chi^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C$ formula.

Problem

Find the exact value of
$$\int_{-2}^{\sqrt{3}-3} \frac{1}{x^2 + 6x + 12} dx$$

Quadratic Denominator that can't be Factorised

If you have a rational function where the denominator is a quadratic that can be factorised, you should factorise and use partial fractions as in A Level.

Definition

When the denominator is a quadratic that can't be factorised, you should complete the square and use $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C$ formula.

Problem

Find the exact value of $\int_{-2}^{\sqrt{3}-3} \frac{1}{x^2 + 6x + 12} dx$

Solution

$$\int_{-2}^{\sqrt{3}-3} \frac{1}{x^2 + 6x + 12} dx = \int_{-2}^{\sqrt{3}-3} \frac{1}{(x+3)^2 + 3} dx$$

$$= \int_{-2}^{\sqrt{3}-3} \frac{1}{\left(\sqrt{3}\right)^2 + (x+3)^2} dx$$

$$= \frac{1}{\sqrt{3}} \left[\arctan\left(\frac{x+3}{\sqrt{3}}\right) \right]_{-2}^{\sqrt{3}-3}$$

$$= \frac{1}{\sqrt{3}} \left(\arctan 1 - \arctan\left(-\frac{1}{\sqrt{3}}\right) \right)$$

$$= \frac{1}{\sqrt{3}} \left(\frac{\pi}{4} - \frac{\pi}{6} \right)$$

$$= \frac{\pi\sqrt{3}}{36}$$

If you can't see this step in one go, you could substitute u=x+3. However when integrating, for a linear function of x you can do what you would do for x but divide by the derivative of that linear function.

Here the linear function is x+3 so the derivative is 1 so you don't need to divide.

We can now integrate with partial fractions where one of the factors of the denominator is a quadratic that cannot be factorised.

Recall from A Level that when you write as partial fractions, you must ensure you have the most general possible non-top heavy fraction, i.e. the 'order' (i.e. maximum power) of the numerator is one less than the denominator.

i.e. You should initially write
$$\frac{1}{x\left(x^2+1\right)}\equiv \frac{A}{x}+\frac{Bx+C}{x^2+1}$$

Problem

Show that
$$\int \frac{1+x}{x^3+9x} \ dx = A \ln \left(\frac{x^2}{x^2+1}\right) + B \arctan \left(\frac{x}{3}\right) + C$$
, where A and B are constants.

We can now integrate with partial fractions where one of the factors of the denominator is a quadratic that cannot be factorised.

Recall from A Level that when you write as partial fractions, you must ensure you have the most general possible non-top heavy fraction, i.e. the 'order' (i.e. maximum power) of the numerator is one less than the denominator.

i.e. You should initially write
$$\frac{1}{x\left(x^2+1\right)} \equiv \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

Problem

Show that
$$\int \frac{1+x}{x^3+9x} \ dx = A \ln \left(\frac{x^2}{x^2+1}\right) + B \arctan \left(\frac{x}{3}\right) + C$$
, where A and B are constants.

Solution

$$\int \frac{1+x}{x^3+9x} \ dx = \int \frac{1+x}{x(x^2+9)} \ dx = \frac{A}{x} + \frac{Bx+C}{x^2+9}$$

$$1+x \equiv A\left(x^2+9\right) + x\left(Bx+C\right)$$

$$x=0 \Rightarrow A=\frac{1}{9} \ and \ x=3 \Rightarrow 4=2+9B+3C \ and \ x=-3 \Rightarrow -2=2+9B-3C$$
 Solving the simultaneous equations gives $B=-\frac{1}{9}$ and $C=1$

$$\int \frac{1+x}{x^3+9x} dx = \frac{1}{9} \int \frac{1}{x} dx - \frac{1}{9} \int \frac{9}{x^2+9} dx + \int \frac{1}{x^2+9} dx$$

$$= \frac{1}{9} \ln x - \frac{1}{18} \ln (x^2+9) + \frac{1}{3} \arctan \left(\frac{x}{3}\right) + C$$

$$= \frac{1}{18} \ln \left(\frac{x^2}{x^2+1}\right) + \frac{1}{3} \arctan \left(\frac{x}{3}\right) + C$$

As in A Level, if the numerator has degree at least that of the denominator then you will have to do long division first.

Problem

- * Express $\frac{x^4 + x}{x^4 + 5x^2 + 6}$ as partial fractions.
- Hence find $\int \frac{x^4 + x}{x^4 + 5x^2 + 6} \, dx$.

As in A Level, if the numerator has degree at least that of the denominator then you will have to do long division first.

Problem

- Express $\frac{x^4 + x}{x^4 + 5x^2 + 6}$ as partial fractions.

Solution

Using algebraic long division: $x + 4 = (x^4 + 5x^2 + 6)1 - 5x^2 + x - 6$

$$\therefore \frac{x^4 + x}{x^4 + 5x^2 + 6} = 1 + \frac{-5x^2 + x - 6}{x^4 + 5x^2 + 6}$$

Since
$$x^4 + 5x^2 + 6 = (x^2 + 2)(x^2 + 3) : \frac{-5x^2 + x - 6}{x^4 + 5x^2 + 6} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{x^2 + 3}$$

Then
$$-5x^2 + x - 6 = (Ax + B)(x^2 + 3) + (Cx + D)(x^2 + 2)$$

Use x = 0, 1, 2, 3 to get four simultaneous equations which you can then solve on your calculator to get A = 1, B = 2, C = -1 and D = -9

$$\therefore \frac{x^4 + x}{x^4 + 5x^2 + 6} = 1 + \frac{x + 4}{x^2 + 2} - \frac{x + 9}{x^2 + 3}$$

As in A Level, if the numerator has degree at least that of the denominator then you will have to do long division first.

Problem

- Express $\frac{x^4 + x}{x^4 + 5x^2 + 6}$ as partial fractions.
- $\bullet \quad \text{Hence find } \int \frac{x^4 + x}{x^4 + 5x^2 + 6} \ dx.$

Solution

Using algebraic long division: $x + 4 = (x^4 + 5x^2 + 6)1 - 5x^2 + x - 6$

$$\therefore \frac{x^4 + x}{x^4 + 5x^2 + 6} = 1 + \frac{-5x^2 + x - 6}{x^4 + 5x^2 + 6}$$

Since
$$x^4 + 5x^2 + 6 = (x^2 + 2)(x^2 + 3) : \frac{-5x^2 + x - 6}{x^4 + 5x^2 + 6} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{x^2 + 3}$$

Then
$$-5x^2 + x - 6 = (Ax + B)(x^2 + 3) + (Cx + D)(x^2 + 2)$$

Use x=0,1,2,3 to get four simultaneous equations which you can then solve on your calculator to get A=1,B=2,C=-1 and D=-9

$$\therefore \frac{x^4 + x}{x^4 + 5x^2 + 6} = 1 + \frac{x + 4}{x^2 + 2} - \frac{x + 9}{x^2 + 3}$$

Solution

$$\begin{split} &\int 1 + \frac{x+4}{x^2+2} - \frac{x+9}{x^2+3} \ dx = \int 1 + \frac{x}{x^2+2} + \frac{4}{x^2+2} - \frac{x}{x^2+3} - \frac{9}{x^2+3} \ dx \\ &= \ldots = x + \frac{1}{2} \ln \left| \frac{x^2+2}{x^2+3} \right| + 2\sqrt{2} \arctan \left(\frac{x}{\sqrt{2}} \right) - 3\sqrt{3} \arctan \left(\frac{x}{\sqrt{3}} \right) + C \end{split}$$