Inroducción a la solución numérica de ODE's

En la sección de materiales adicionales de la cátedra se encuentra un programa principal y un integrador Runge-Kutta de orden 4 (rk4) en lenguaje C. En el programa principal se encuentra escrita una ecuación diferencial a integrar, los parámetros y las condiciones iniciales. Sobre este código van a trabajar en las siguientes actividades realizando las modificaciones pertinentes para su problema en particular.

En ubuntu es posible compilar y ejecutar el código directamente desde una terminal abierta en una carpeta que contenga tanto el programa principal como el integrador rk4:

Se obtendrá como salida un archivo llamado *ej1.dat* que contiene el resultado de la integración. Los resultados pueden ser analizados graficamente mediante un graficador, en nuestro caso utilizaremos **gnuplot** que se controla mendiante comandos en terminal.

Actividad 1

Editar el codigo de *ODE.c* para analizar los siguientes puntos:

- Cómo varía el resultado según el paso de integración. Programe una integración con el método de Euler y compare.
- Analizar cómo evoluciona el sistema dadas distintas condiciones iniciales.

Qué tipo de conclusiones puede obtener a partir de los análisis anteriormente realizados.

Actividad 2 - Oscilador armónico amortiguado

El oscilador armónico armotiguado es un problema del cual conoce la solución análitica cuya ecuación diferencial que rige el movimiento es:

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0 \tag{1}$$

Estudie numéricamente las soluciones del sistema según la relación de los parámetros, para ello: escriba la ecuación de segundo orden como dos ecuaciones de primer orden, varíe γ y ω e integre. También analice distintas condiciones inicales. Compare con lo conocido de la solución análitica, para ello grafique como evoluciona la posición en el tiempo, la velocidad y cuál es la trayectoria en el espacio de fases x \dot{x} .

Actividad 3 - Oscilador de Van der Pol

Es un tipo de oscilador con un amortiguamiento no lineal descripto a principio de siglo por Van der Pol quien estudió circuitos eléctricos con componenten no lineales obteniendo la ecuación:

$$\frac{d^2x}{dt^2} + \mu(x^2 - 1)\frac{dx}{dt} + x = 0 \tag{2}$$

Este sistema presenta soluciones oscilatorias para ciertos valores del parámetro μ que son conocidad como oscilaciones de relajación. Esta ecuación tiene una importancia en la ciencia ya que fue usada en distintos campos para describir por ejemplo, el comportamiento de una falla tectónica o el potencial de acción de una neurona. Esto se debe a que el sistema según los valores de x presenta un amortiguamiento positivo (como el de la actividad 2 donde el sistema pierde energía), y para otros presenta un amortiguamiento "negativo" donde el sistema gana energía. Esto produce que eventualmente la energía perdida en un ciclo sea igual a la ganada generando oscilaciones autosostenidas. Este sistema se verá con más detalle avanzado el curso, en esta práctica se propone realizar un acercamiento de forma numérica para tener cierta comprensión de cómo se comporta el mismo.

- Escriba el sistema como dos ecuaciones de primer orden.
- Inspecione numéricamente las soluciones posibles del sistema, estudie como varían según la variación del parámetro μ . Para ello grafique la trayectoria x en función del tiempo, la velocidad \dot{x} en función del tiempo y también el espacio de fases x \dot{x} .
- Modifique también las condiciones iniciales y estudie numéricamente las respuestas del sistemas. Para ello grafique la trayectoria x en función del tiempo, la velocidad \dot{x} en función del tiempo y también el espacio de fases x \dot{x} .

A entregrar

Se deberá entregar un trabajo de la actividad 2 y 3, con los códigos, los gráficos obtenidos para las integraciones numéricas propuestas y el correspondiente análisis para cada caso.