→ Big Cities Health

▼ Description

Illustrates health status of 26 of the nation's largest and most urban cities.

▼ Summary

This dataset illustrates health status of 26 of the nation's largest and most urban citie

Attribution: U.S. Centers for Disease Control and Prevention

Source: Big Cities Health Inventory Data

→ Aim

To perform Data cleaning on the Data set

Importing Libraries

```
#Python
import numpy as np
import pandas as pd
#Visualization
import matplotlib.pyplot as plt
import seaborn as sns
#Data cleaning
import missingno
```

▼ Importing Dataset

The dataset could be found using the following link

health_df=pd.read_csv('https://query.data.world/s/nnsiif4n3gg3oj6o6efdiuqfr2eded') health df.head()

	Indicator Category	Indicator	Year	Gender	Race/ Ethnicity	Value	Place	BCHC Requested Methodology	
0	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2013	Both	All	30.4	Atlanta (Fulton County), GA	AIDS cases diagnosed in 2012, 2013, 2014 (as a	С
1	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2012	Both	All	39.6	Atlanta (Fulton County), GA	AIDS cases diagnosed in 2012, 2013, 2014 (as a	С

health_df.sample()

	Indicator Category	Indicator	Year	Gender	Race/ Ethnicity	Value	Place	BCHC Requested Methodology
721	Life Expectancy	Life Expectancy	2008-	Male	ΔΙΙ	77 1	Boston,	Three most recent years

Column removal

Here all the columns seems to be essential, so there is no need to remove any of them

▼ Changing Index

health_df1=health_df health_df1['Identifier']=list(range(1,13513)) health_dfl.head()

	Indicator Category	Indicator	Year	Gender	Race/ Ethnicity	Value	Place	Requested Methodology	
0	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2013	Both	All	30.4	Atlanta (Fulton County), GA	AIDS cases diagnosed in 2012, 2013, 2014 (as a	С
1	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2012	Both	All	39.6	Atlanta (Fulton County), GA	AIDS cases diagnosed in 2012, 2013, 2014 (as a	С

health_dfl.set_index("Identifier",inplace=True) health_dfl.head()

	Indicator Category	Indicator	Year	Gender	Race/ Ethnicity	Value	Place	Red Metho
Identifier								
1	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2013	Both	All	30.4	Atlanta (Fulton County), GA	AII diaç 20: 201
2	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000 people)	2012	Both	All	39.6	Atlanta (Fulton County), GA	AII diaç 20. 201
3	HIV/AIDS	AIDS Diagnoses Rate (Per 100,000	2011	Both	All	41.7	Atlanta (Fulton County),	AII diaç 20: 201

▼ Tidying up fields

health_df1["Indicator Category"].value_counts()

HIV/AIDS	2177
Injury and Violence	1916
Nutrition, Physical Activity, & Obesity	1841
Infectious Disease	1486
Cancer	1432
Maternal and Child Health	1323
Behavioral Health/Substance Abuse	983

Food Safety 874 Life Expectancy and Death Rate (Overall) 544 Demographics 504 Tobacco 432

Name: Indicator Category, dtype: int64

health_df1["Year"].value_counts()

Name: Year, dtype: int64

health_df1["Gender"].value_counts()

Both 9409 2423 Female Male 1680

Name: Gender, dtype: int64

health df1["Race/ Ethnicity"].value counts()

All 5757 White 1914 Black 1869 Hispanic 1688 Asian/PI 1015 0ther 570 Native American 371 Multiracial 270 American Indian/Alaska Native 58 Name: Race/ Ethnicity, dtype: int64

No value seems to be out of context

Missing values and Treatment

health_df1.isnull().sum()

Indicator Category 0 Indicator 0 Year

Gender	0
Race/ Ethnicity	0
Value	13
Place	0
BCHC Requested Methodology	508
Source	2290
Methods	9280
Notes	9971

dtype: int64

missingno.matrix(health_df1) plt.show()

We can clearly see that columns - Notes and Methods are almost null Also column - Source can also be considered having many null values Looking at column - BCHC Requested Methodology, it surely do contain null values, but we Column Value contains very few null value, but being numerical value, we can replace it $\ensuremath{\mathsf{w}}$ health_df2=health_df1.iloc[:,0:8] missingno.matrix(health_df2) plt.show()

health_df3=health_df2[health_df2["BCHC Requested Methodology"].isnull()==False] missingno.matrix(health_df3) plt.show()

health_df3.isnull().sum()

Indicator Category	0
Indicator	0
Year	0
Gender	0
Race/ Ethnicity	0
Value	10
Place	0
BCHC Requested Methodology	0
dtyne: int64	

Value still contains some null values, we can replace it with 1st business moment

health_df3.describe()

	Value
count	12994.000000
mean	96.447853
std	286.261235
min	0.000000
25%	7.000000
50%	15.900000
75%	44.900000
max	4199.600000

health_df4=health_df3.fillna(15.9) health_df4.isnull().sum()

> Indicator Category 0 Indicator 0 Year 0 0 Gender Race/ Ethnicity 0 Value 0 0 Place BCHC Requested Methodology

dtype: int64

With our data cleaned we will now save it

health_df4.to_csv("Big_Cities_Health__cleaned.csv")