

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Lifelong Action Learning for Socially Assistive Robots

November 28th, 2022

Hasnainali Walli

Advisors

Prof. Dr. Paul G. Plöger, Prof. Dr. Sebastian Houben, Alex Mitrevski

1. Introduction

2. Comparative Analysis: Action Recognition

- Comparative Analysis: Class-Incremental Learning
- 4. Assistive Robot Integration

Motivation

- Action recognition is a key function for socially assistive robots
- Challenge: Conventional models' inability to learn new actions
- How can robotic systems learn new actions without forgetting?

- Robotic systems fine-tune their knowledge with experience
- New actions are learnt while retaining the knowledge of the previous actions
- Concept of lifelong action learning was explored in the context of CRI
- Objectives:
 - Develop an action learning model using incremental learning
 - Integrate model on QTRobot for the MigrAVE project

Figure 1: Incremental learning pipeline for action and emotion recognition¹

¹ N. Etthymiou, P. P. Filntisis, G. Potamianos, and P. Maragos, "Visual Robotic Perception System with Incremental Learning for Child–Robot Interaction Scenarios," Technologies, vol. 9, no. 86, November 2021.

Figure 2: Incremental learning pipeline for action and emotion recognition²

²N. Etthymiou, P. P. Filntisis, G. Potamianos, and P. Maragos, "Visual Robotic Perception System with Incremental Learning for Child–Robot Interaction Scenarios," Technologies, vol. 9, no. 86, November 2021.

Their Approach

- RGB+D and Optical Flow data
- TSN Network
- iCaRL Algorithm
- BabyRobot Dataset

Our Approach

- 3D Skeleton data
- CTR-GCN Network
- BiC Algorithm
- NTU RGB+D Dataset

Our Approach

Methodology

- Perform comparative analysis on skeleton-based action recognition networks
- Perform comparative analysis on class-incremental learning algorithms
- 3. Integrate final model on QTRobot

Figure 3: Hand waving action visualized in RVIZ

1. Introduction

2. Comparative Analysis: Action Recognition

3. Comparative Analysis: Class-Incremental Learning

Assistive Robot Integration

NTU Dataset

- Features 120 everyday actions
- 40 subjects; 3 cameras; 2 demos
- 25 skeletal joints tracked
- Evaluation:
 - Cross-Subject Accuracy: train on 20 subjects; test on 20 subjects
 - Cross-View Accuracy: train using 2 views; test on 1 view

Figure 4: Joint configurations for NTU RGB-D dataset³

³ A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, "NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1010–1019.

Action Recognition Analysis

- Networks: CTR-GCN, MS-G3D, EfficientGCN, ViewAdaptive NN
- Joint, Bone and Joint Motions
- Metrics: Cross-Subject & Training Time

Drink Water Eat Meal		Brush Teeth	Drop
Pick Up	Throw	Sit Down	Stand Up
Clapping	Hand Waving	Kick Something	Hopping
Jump Up	Play with Phone	Point to Something	Rub Hands
Nod Head/Bow	' '		Cross Hands

Table 1: Subset of action classes from the NTU RGB-D dataset

Action Recognition Analysis Results

Network	Cross Subject	Cross View
CTR-GCN (Joint)	92.63%	96.37%
CTR-GCN (Bone)	92.78%	96.02%
CTR-GCN (Motion)	92.51%	96.40%
MS-G3D (Joint)	91.27%	96.85%
MS-G3D (Bone)	90.90%	95.44%
EfficientGCN-B4 (SG Layer)	94.05%	97.47%
EfficientGCN-B4 (EpSep Layer)	94.43%	97.56%
VA-NN (CNN)	92.97%	92.20%

Table 2: A	Action rec	ognition	networks	accuracy
------------	------------	----------	----------	----------

Network	Training Time
CTR-GCN	4 hrs
MS-G3D	8 hrs
EfficientGCN-B4	5 hrs
VA-NN (CNN)	0.5 hrs

Table 3: Networks training time

Action Recognition Analysis Results

Action	CTR-GCN	MS-G3D	Action	CTR-GCN	MS-G3D
Drink Water	82.48%	83.94%	Kick Something	97.83%	94.93%
Eat Meal	78.91%	73.82%	Hopping	98.91%	95.27%
Brush Teeth	90.84%	91.21%	Jump Up	98.91%	98.55%
Drop	90.18%	91.64%	Play with Phone	86.91%	90.91%
Pick Up	98.91%	94.55%	Point to Something	92.39%	92.03%
Throw	96.36%	90.91%	Rub Hands	90.58%	89.49%
Sit Down	98.90%	97.80%	Nod Head/Bow	96.01%	95.65%
Stand Up	98.17%	98.90%	Shake Head	96.00%	95.64%
Clapping	82.42%	72.89%	Wipe Face	92.39%	94.20%
Hand Waving	94.16%	94.89%	Cross Hands	93.84%	94.57%

Table 4: Cross-Subject accuracy results per class for CTR-GCN and MS-G3D models

1. Introduction

2. Comparative Analysis: Action Recognition

3. Comparative Analysis: Class-Incremental Learning

Assistive Robot Integration

Incremental Learning

Class-Incremental Learning Problem

An algorithm that learns a given sequence of tasks, T:

$$T = [(C^1, D^1), (C^2, D^2), \dots, (C^n, D^n)]$$
(1)

Tasks

• Set of actions to be learnt:

$$D^{t} = \{(x_1, y_1), \dots, (x_{m^t}, y_{m^t})\}$$
 (2)

Action set is distinct per task

$$C^i \cap C^j = \emptyset, \ if \ i \neq j \tag{3}$$

Exemplars

- Memory of training data from previous tasks
- Augments to training data if t > 0
- Memory scenarios: fixed or growing
- Selection methods: random, herding, distance, entropy

Incremental Learning Metrics

Task-Aware Accuracy

Calculated with the knowledge of the action classes learnt within each task.

Task-Agnostic Accuracy

Calculated with the overall set of the action classes learnt.

Forgetting Percentage

Estimated percentage of data forgotten

$$F_{i,t} = max(A[i,0:t-1]) - A[i,t], i \le t$$
 (4)

Figure 5: Incremental learning process of 4 classes split into 2 tasks⁴

⁴M. Masana et al., "Class-Incremental Learning: Survey and Performance Evaluation," CoRR, vol. abs/2010.15277, October 2020.

- IL Algorithms: LwF, iCaRL, LUCIR, BiC
- Memory Size: 400 (Fixed) & 20 per class (Growing)
- Selection Method:
 Random & Herding
- Metrics: Task-Aware & Task-Agnostic Accuracy

Task #	Action	Task #	Action
Task 1	Wipe Face	Task 6	Throw
	Eat Meal		Point to Something
Task 2	Cross Hands	Task 7	Hand Waving
	Clapping		Stand Up
Task 3	Kick Something	Task 8	Nod Head/Bow
	Shake Head		Hopping
Task 4	Sit Down	Task 9	Drop
	Play with Phone		Drink Water
Task 5	Pick Up	Task 10	Rub Hands
	Brush Teeth		Jump Up

Table 5: Task sequence for class-IL comparative analysis

LwF, iCaRL, LUCIR Model Architecture

BiC Model Architecture

Incremental Learning Analysis Results

			CTR-GCN		MS-G3D		
Algorithm	Memory	Total	Time per	Time Incr	Total	Time per	Time Incr
Algorithm	Config	Time (hrs)	Task (min)	per Task	Time (hrs)	Task (min)	per Task
iCaRL	Fixed	6.3	18.9 & 39.2	-	11.2	30.2 & 68.7	-
	Growing	5.6	-	2.8%	11.0	-	2.6%
LWF	Fixed	6.6	19.9 & 41.8	-	11.3	30.6 & 69.6	-
	Growing	5.8	-	2.8%	10.1	-	2.9%
BIC	Fixed	7.0	19.6 & 44.1	-	11.5	30.2 & 68.2	-
	Growing	6.2	-	3.3%	10.4	-	2.6%
LUCIR	Fixed	6.4	19.6 & 39.6	-	11.4	33.0 & 71.4	-
	Growing	5.8	-	2.9%	10.1	-	2.9%

Table 6: Incremental learning model training time

Incremental Learning Analysis Results

		Here	ding	Random		
Algorithm	Memory Config	CTR-GCN	CTR-GCN MS-G3D		MS-G3D	
iCaRL	Fixed	94.9%	97.2%	95.3%	98.1%	
	Growing	91.1%	95.9%	91.2%	96.6%	
LWF	Fixed	98.4%	97.8%	98.2%	97.5%	
	Growing	97.6%	96.1%	97.1%	96.1%	
LUCIR	Fixed	95.5%	97.5%	97.3%	97.5%	
	Growing	96.3%	94.8%	95.5%	96.5%	
BiC	Fixed	98.2%	98.1%	97.9%	96.9%	
	Growing	97.3%	96.9%	97.5%	96.6%	

Table 7: Average task-aware accuracy

Incremental Learning Analysis Results

		Here	ding	Random			
Algorithm	Memory Config	GIR-GON MS-G3D		CTR-GCN	MS-G3D		
iCaRL	Fixed	52.1%	72.5%	50.9%	72.1%		
	Growing	54.2%	67.8%	51.3%	66.9%		
LWF	Fixed 73.8%		67.8%	75.4%	67.5%		
	Growing	69.9%	61.5%	69.4%	63.5%		
LUCIR	Fixed	66.2%	64.7%	68.4%	64.4%		
	Growing	65.5%	43.6%	62.4%	59.9%		
BiC	Fixed	79.1%	70.1%	74.8%	67.1%		
	Growing	74.2%	61.1%	72.8%	61.6%		

Table 8: Average task-agnostic accuracy

How would the model perform if we grouped similar actions?

Task-Aware Accuracy:

Fixed: 98.2% ⇒ 94.6%

Growing: 97.3% ⇒ 93.4%

Task-Agnostic Accuracy:

- Fixed: 79.1% ⇒ 77.6%

Growing: 74.2% ⇒ 72.7%

Task #	Action	Task #	Action	Task #	Action
Task 1	Brush Teeth	Task 4	Sit Down	Task 7	Kick Something
	Wipe Face		Stand Up		Hopping
Task 2	Drink Water	Task 5	Clapping		Jump Up
	Eat Meal		Rub Hands	Task 8	Play with Phone
Task 3	Drop		Cross Hands	Task 9	Nod Head/Bow
	Pick Up	Task 6	Hand Waving		Shake Head
	Throw		Point to Something		

Table 9: Task sequence with variable task size and sorting similar actions

Model Robustness

- Task-Aware Accuracy:
 - Fixed: 94.6% ⇒ 94.1% & 96.7%
 - Growing: 93.4% ⇒ 95.1% & 95.6%

- Task-Agnostic Accuracy:
 - Fixed: 77.6% ⇒ 76.3% & 78.5%
 - Growing: 72.7% ⇒ 74.5% & 70.6%

Memory Size

Growing						Fixed				
2	5	10	20	50	100	40	100	200	400	1000
78.3%	94.3%	97.2%	97.3%	98.5%	98.7%	94.5%	96.7%	97.6%	98.2%	98.5%

Table 10: Average task-aware accuracy for varying memory size

Growing						Fixed				
2	5	10	20	50	100	40	100	200	400	1000
11.3%	45.7%	63.8%	74.2%	79.8%	84.1%	35.8%	65.2%	70.3%	79.1%	80.0%

Table 11: Average task-agnostic accuracy for varying memory size

- 4. Assistive Robot Integration

QTRobot Platform

- Teaching assistant for educators working with children
- Equipped with a RealSense 3D camera
- Skeletal tracking using Nuitrack SDK (19 joints tracked vs 25 joints in NTU)

Figure 6: QTRobot interacting with a child⁵

⁵Image taken from: https://robots.ieee.org/robots/qtrobot/

Model Integration

Task-Aware Accuracy: 97.3% ⇒ 97.4%

Task-Agnostic Accuracy: 74.2% ⇒ 71.9%

Figure 7: Joint configurations for NTU RGB-D dataset⁶

Figure 8: Joint configuration in the Nuitrack SDK⁷

⁷ Image taken from: https://github.com/3DiVi/nuitrack-sdk/tree/master/doc

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

⁶A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, "NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis," in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1010–1019.

CAL Server

Figure 9: Workflow of the Continual Action Learning Server

Demo

Action Recognition

Demo

Action Learning

Thank You!

Questions?

