IN THE SPECIFICATION:

Please amend the paragraph beginning on page 3, line 24 as follows:

In a preferred embodiment, the knock-in vectors of the present invention include a nucleotide sequence coding for an α-1,2-mannosidase or a functional part thereof and are capable of expressing the α-1,2-mannosidase or the functional part in a methylotrophic yeast strain. A preferred nucleotide sequence is a nucleotide sequence encoding the α-1,2-mannosidase of a fungal species, and more preferably, *Trichoderma reesei*. Preferably, the α-1,2-mannosidase expression vector is engineered such that the α-1,2-mannosidase or a functional part thereof expressed from the vector includes an ER-retention signal. A preferred ER-retention signal is HDEL (SEQ ID NO: 1). The α-1,2-mannosidase coding sequence can be operable linked to a constitutive or inducible promoter, and a 3' termination sequence. The vectors can be integrative vectors or replicative vectors. Particularly preferred α-1,2-mannosidase expression vectors include pGAPZMFManHDEL, pGAPZMFManMycHDEL, pPICZBMFManMycHDEL, pGAPZmManHDEL, pGAPZmMycManHDEL and pGAPZmMycManHDEL.

Please amend the paragraph beginning on page 4, line 10 as follows:

In another preferred embodiment, the knock-in vectors of the present invention include a sequence coding for a glucosidase II or a functional part thereof and are capable of expressing the glucosidase II or the functional part in a methylotrophic yeast strain. A preferred nucleotide sequence is a nucleotide sequence encoding the glucosidase II of a fungal species, and more preferably, *Saccharomyces cerevisiae*. Preferably, the glucosidase II expression vector is engineered such that the glucosidase II or a functional part thereof expressed from the vector

includes an ER-retention signal. A preferred ER-retention signal is HDEL (SEQ ID NO: 1). The glucosidase II coding sequence can be operable linked to a constitutive or inducible promoter, and a 3' termination sequence. The vectors can be integrative vectors or replicative vectors.

Particularly preferred glucosidase II expression vectors include pGAPZAGLSII, pPICZAGLSII, pAOX2ZAGLSII, pYPTIZAGLSII, pGAPADEglsII, pPICADEglsII, pAOX2ADEglsII, pYPTIADEglsII, pGAPZAglsIIHDEL and pGAPADEglsIIHDEL.

Please amend the paragraph beginning on page 40, line 5 as follows:

The cloning of a *Trypanosoma cruzi trans*-sialidase gene coding for an active *trans*-sialidase member without the C-terminal repeat domain has been described by Laroy et al. (*Protein Expression and Purification* 20: 389, 2000) which is incorporated herein by reference. The sequence of this *Trypanosoma cruzi trans*-sialidase gene is available through NCBI Genbank under the Accession No. AJ276679. For expression in *P. pastoris*, the entire gene was cloned in pHILD2 (Invitrogen, San Diego, CA), creating pHILD2-TS. To allow better secretion, pPIC9-TS was created in which *trans*-sialidase was linked to the prepro secretion signal of the yeast α-mating factor. Plasmids pPIC9-TSE and pCAGGS-prepro-TSE were created where the epitope E-tag was added to the C-terminal of the *trans*-sialidase to allow easy detection and purification. The construction of pHILD2-TS, pPIC9-TSE and pCAGGS-prepro-TSE has been described by Laroy et al. (2000), incorporated herein by reference. The vectors used in the construction were made available through http://www.belspo.be/becm/lmbp.htm#main for pCAGGS (No. LMBP 2453), Invitrogen, San Diego, CA for pHILD2 and pPIC9, and Pharmacia Biotech for pCANTAB-5E.

Please amend the paragraph beginning on page 44, line 9 as follows:

First, the full ORF of the *Pichia pastoris* Och1 gene was PCR cloned in pUC18 to obtain plasmid pUC18pOch1. pUC18pOch1 was cut with HindIII, blunt-ended with T4 polymerase, then cut with XbaI, releasing a fragment containing the 5' part of the *Pichia pastoris* Och1 gene. This fragment was ligated into the vector pBLURA IX (available from the Keck Graduate Institute, Dr. James Cregg, http://www.kgi.edu/html/noncore/faculty/cregg/eregg.htm), which had been cut with *Eco* RI, blunt-ended with T4 polymerase, and then cut with *Nhe* I. This ligation generated pBLURA5'PpPCH1, as shown in **Figure 8**.