Equational Reasoning - Presentation 2

Gabriel Silva

https://github.com/gabriel951/my_work

Professor: Daniele Nantes

December 17, 2020

Overview

Goal

Using Structured Proofs

 \mathcal{S}_{AGH} Is Isomorphic To $\mathbb{Z}[X]$

Proposition 6.6

Proposition 6.10

Goal

Present the proofs of:

- ▶ S_{AGH} is isomorphic to $\mathbb{Z}[X]$
- ► Proposition 6.6
- ▶ Proposition 6.10

of Nutt's paper: "Unification in Monoidal Theories is Solving Linear Equations Over Semirings" ([1]).

Using Structured Proofs

I decided to use **structured proofs** as described by Leslie Lamport in [2], [3].

Figure 1: Leslie Lamport.

Why Use a Structured Proof?

A structured proof allows us to present a proof in details without compromising readability, due to its **hierarchical organization**.

\mathcal{S}_{AGH} Is Isomorphic To $\mathbb{Z}[X]$

Lemma

 \mathcal{S}_{AGH} is isomorphic to $\mathbb{Z}[X]$.

Proof

Proof:

- $\langle 1 \rangle 1$. Let: $\alpha \in \mathcal{S}_{AGH}$. Then α is a Σ -homomorphism $\alpha : \mathcal{F}_{AGH}(u) \to \mathcal{F}_{AGH}(u)$. By the definition of $\mathcal{S}_{\mathcal{E}}$ with $\mathcal{E} = AGH$.
- $\langle 1 \rangle$ 2. Let: $u\alpha =_{AGH} ua_0 + h(u)a_1 + \ldots + h^k(u)a_k$, with $a_0, \ldots, a_k \in \mathbb{Z}$. Associate to α , the polynomial $p_\alpha \in \mathbb{Z}[X]$, given by $p_\alpha = a_0 + a_1X + \ldots + a_kX^k$.

 $\langle 1 \rangle 3$. Define:

$$\psi: \mathcal{S}_{AGH} \to \mathbb{Z}[X]$$
$$\alpha \mapsto p_{\alpha}$$

 $\langle 1 \rangle$ 4. ψ is a semiring isomorphism between \mathcal{S}_{AGH} and $\mathbb{Z}[X]$.

$$\langle 2 \rangle 1$$
. $\psi(\alpha + \beta) = \psi(\alpha) + \psi(\beta)$ for all α, β in \mathcal{S}_{AGH} .

$$\langle 3 \rangle 1$$
. $u(\alpha + \beta) = u\alpha + u\beta$.

By the definition of $\alpha + \beta$.

$$\langle 3 \rangle 2$$
. $p_{\alpha+\beta} = p_{\alpha} + p_{\beta}$.
By Step $\langle 3 \rangle 1$ and the definition of p .

$$\langle 3 \rangle 3$$
. $\psi(\alpha + \beta) = \psi(\alpha) + \psi(\beta)$.
By Step $\langle 3 \rangle 2$ and the definition of ψ .

$$\langle 2 \rangle 2$$
. $\psi(\alpha \beta) = \psi(\alpha) \psi(\beta)$.

$$\langle 3 \rangle 1$$
. $u(\alpha \beta) = (u\alpha)\beta$.

By the definition of $\alpha\beta$.

$$\langle 3 \rangle 2$$
. $p_{\alpha\beta} = p_{\alpha}p_{\beta}$.

By Step $\langle 3 \rangle 1$ and the definition of p.

$$\langle 3 \rangle 3. \ \psi(\alpha \beta) = \psi(\alpha) \psi(\beta).$$

By Step $\langle 3 \rangle 2$ and the definition of $\psi.$

$$\langle 2 \rangle 3. \ \psi(id) = 1.$$

$$\langle 3 \rangle 1$$
. $uid = u$.

By the definition of id.

 $\langle 3 \rangle 2. \ p_{id} = 1.$

By Step $\langle 3 \rangle 1$ and the definition of p.

 $\langle 3 \rangle 3$. $\psi(id) = 1$.

By Step $\langle 3 \rangle 2$ and the definition of ψ .

 $\langle 2 \rangle$ 4. ψ is an semiring homomorphism.

By the definition of semiring homomorphism and Steps $\langle 2 \rangle 1$, $\langle 2 \rangle 2$ and $\langle 2 \rangle 3$.

- $\langle 2 \rangle$ 5. ψ is injective.
 - $\langle 3 \rangle$ 1. Suffices: to prove that $\psi(\alpha) = \psi(\beta)$ implies $\alpha = \beta$ for arbitraries α and β in \mathcal{S}_{AGH} .

By the definition of injective.

$$\langle 3 \rangle 2. \ \psi(\alpha) = \psi(\beta).$$

By hypothesis.

$$\langle 3 \rangle 3$$
. $p_{\alpha} = p_{\beta}$.

By Step $\langle 3 \rangle 2$ and the definition of ψ .

$$\langle 3 \rangle 4$$
. $u\alpha = u\beta$.

By Step $\langle 3 \rangle 3$ and the definition of p.

$$\langle 3 \rangle 5$$
. $\alpha = \beta$.

Since both α and β are endomorphisms over $\mathcal{F}_{AGH}(u)$ and $\mathcal{F}_{AGH}(u)$ is free over $\{u\}$, they are uniquely determined by $u\alpha$ and $u\beta$ respectively.

- $\langle 2 \rangle$ 6. ψ is surjective.
 - $\langle 3 \rangle$ 1. Suffices: to consider an arbitrary polynomial $p \in \mathbb{Z}[x]$ and Pick an element $\alpha \in \mathcal{S}_{AGH}$ such that $\psi(\alpha) = p$. By the definition of surjective.
 - (3)2. Let: $p = a_0 + a_1 X + ... + a_k X^k$ be an arbitrary polynomial in $\mathbb{Z}[X]$.
 - $\langle 3 \rangle$ 3. Pick $\alpha \in \mathcal{S}_{AGH}$ given by: $u\alpha = ua_0 + h(u)a_1 + \ldots + h^k(u)a_k$.
 - $\langle 3 \rangle$ 4. $\psi(\alpha) = p$. By the definition of ψ .

 $\langle 2 \rangle$ 7. ψ is a semiring isomorphism between \mathcal{S}_{AGH} and $\mathbb{Z}[X]$. By Step $\langle 2 \rangle$ 4, ψ is a semiring homomorphism. By Steps $\langle 2 \rangle$ 5 and $\langle 2 \rangle$ 6, ψ is bijective.

15 / 34

 $\langle 1 \rangle$ 5. \mathcal{S}_{AGH} is isomorphic to $\mathbb{Z}[X]$. Since we found a ring isomorphism ψ in Step $\langle 1 \rangle$ 4.

Proposition 6.6 - Enunciate

Lemma (Proposition 6.6 of Nutt's paper)

 $\mathcal{S}_{\mathcal{E}}$ is commutative if, and only if, \mathcal{E} is a theory with commuting homomorphisms.

A Quick Note on Notation

Nutt, page 18, before Example 6.4:

"Observe that for the multiplication in $\mathcal{S}_{\mathcal{E}}$ we have $\alpha_{\mathsf{s}}\alpha_{\mathsf{t}} = \alpha_{\mathsf{s}[u/t]}$."

Proof

Proof:

- $\langle 1 \rangle 1.$ If $\mathcal{S}_{\mathcal{E}}$ is commutative, then \mathcal{E} is a theory with commuting homomorphisms.
 - $\langle 2 \rangle 1$. Let: h, h' be arbitraries unary symbols from Σ .
 - $\langle 2 \rangle 2$. $h(h'(u)) = u\alpha_{h(u)}\alpha_{h'(u)}$. By the definition of $\alpha_{h(u)}$ and $\alpha_{h'(u)}$.
 - $\langle 2 \rangle$ 3. $u\alpha_{h(u)}\alpha_{h'(u)} =_{\mathcal{E}} u\alpha_{h'(u)}\alpha_{h(u)}$. Since by hypothesis, $\mathcal{S}_{\mathcal{E}}$ is commutative.

- $\langle 2 \rangle$ 4. $u\alpha_{h'(u)}\alpha_{h(u)} = h'(h(u))$. By the definition of $\alpha_{h'(u)}$ and $\alpha_{h(u)}$.
- $\langle 2 \rangle$ 5. \mathcal{E} is a theory with commuting homomorphisms. By Steps $\langle 2 \rangle$ 2, $\langle 2 \rangle$ 3 and $\langle 2 \rangle$ 4 we have h(h'(u)) = h'(h(u)). Since h and h' are arbitraries, by definition we conclude that \mathcal{E} is a theory with commuting homomorphisms.

- $\langle 1 \rangle 2$. If $\mathcal E$ is a theory with commuting homomorphisms then $\mathcal S_{\mathcal E}$ is commutative.
 - $\langle 2 \rangle 1$. $S_{\mathcal{E}}$ is generated by elements that are of the form $\alpha_{h(u)}$ for some unary function symbol $h \in \Sigma$.
 - $\langle 3 \rangle 1$. Let: α be an arbitrary element of $\mathcal{S}_{\mathcal{E}}$.
 - $\langle 3 \rangle$ 2. Suffices: to prove that there exists a composition α' of the terms $\alpha_{h(u)}$ such that $u\alpha = u\alpha' = t$.

Because every endomorphism α on $\mathcal{F}_{\mathcal{E}}(u)$ is uniquely determined by $u\alpha$, we just need to prove that α and α' give the same result on u.

21 / 34

 $\langle 3 \rangle$ 3. Since $\mathcal E$ is a monoidal theory, every term t is obtained composing the constant 0, the symbol + and the unary function symbols h. Therefore, we can prove Step $\langle 3 \rangle$ 2 by induction on t.

- $\langle 2 \rangle 2$. $\mathcal{S}_{\mathcal{E}}$ has a set of commuting generators.
 - $\langle 3 \rangle 1$. Let: $h, h' \in \Sigma$ be arbitrary unary symbols.
 - $\langle 3 \rangle 2$. $\alpha_{h(u)} \alpha_{h'(u)} = \alpha_{h(h'(u))}$. By definition.
 - $\langle 3 \rangle 3$. $\alpha_{h(h'(u))} = \alpha_{h'(h(u))}$. Since, by hypothesis, \mathcal{E} is a theory with commuting homomorphisms.
 - $\langle 3 \rangle$ 4. $\alpha_{h'(h(u))} = \alpha_{h'(u)} \alpha_{h(u)}$. By definition.

 $\langle 2 \rangle 3.$ By Step $\langle 2 \rangle 2,$ we conclude that $\mathcal{S}_{\mathcal{E}}$ is commutative.

Proposition 6.10

Lemma (Proposition 6.10 of Nutt's paper)

Let X,Y,Z be finite and $\sigma:\mathcal{S}_{\mathcal{E}}^X\to\mathcal{S}_{\mathcal{E}}^Y$ and $\tau:\mathcal{S}_{\mathcal{E}}^Y\to\mathcal{S}_{\mathcal{E}}^Z$ be left linear. Then:

- 1. $(id_{\mathcal{S}_{\varepsilon}^{X}})^{hom} = id_{X}$.
- 2. $(\sigma \tau)^{hom} = \sigma^{hom} \tau^{hom}$.

Proof

Proof:

$$\langle 1 \rangle 1$$
. $(id_{\mathcal{S}_{\varepsilon}^{X}})^{hom} = id_{X}$.

$$\langle 2 \rangle 1. \ (id_{\mathcal{S}_{\mathcal{E}}^{\mathsf{X}}})^{\mathsf{hom}} = \sum_{\mathsf{X},\mathsf{X}' \in \mathsf{X}} \pi_{\mathsf{X}} \delta_{\mathsf{X}\mathsf{X}'} \iota_{\mathsf{X}'}.$$

The matrix of $id_{\mathcal{S}_{\mathcal{E}}^X}$ is the identity matrix $(\delta_{xx'})_{x,x'\in X}$. Then, by Definition of \cdot^{hom} we obtain $(id_{\mathcal{S}_{\mathcal{E}}^X})^{hom} = \sum\limits_{x,x'\in X} \pi_x \delta_{xx'} \iota_{x'}$.

26 / 34

$$\langle 2 \rangle 2$$
. $\sum_{x,x' \in X} \pi_x \delta_{xx'} \iota_{x'} = \sum_{x \in X} \pi_x \iota_x$.

Since $\delta_{xx'}$ is 1 when x = x' and is 0 otherwise.

$$\langle 2 \rangle$$
3. $\sum_{x \in X} \pi_x \iota_x = i d_X$.

By item 1 of Lemma 6.8.

- $\langle 1 \rangle 2$. $(\sigma \tau)^{hom} = \sigma^{hom} \tau^{hom}$.
 - $\langle 2 \rangle 1$. Let: $(\sigma_{xy})_{x \in X, y \in Y}$ be the matrix of σ and $(\tau_{yz})_{y \in Y, z \in Z}$ be the matrix of τ .

$$\langle 2 \rangle 2$$
. $(\sigma \tau)^{hom} = \sum_{x,z} \pi_x (\sum_y \sigma_{xy} \tau_{yz}) \iota_z$.

The matrix of $\sigma\tau$ has in the x-th row and z-th column the entry $\sum_{y} \sigma_{xy} \tau_{yz}$. Then, by the definition of \cdot^{hom} , we have:

$$(\sigma \tau)^{hom} = \sum_{x,z} \pi_x (\sum_y \sigma_{xy} \tau_{yz}) \iota_z.$$

$$\langle 2 \rangle 3$$
. $\sigma^{hom} \tau^{hom} = \sum_{x,z} \pi_x (\sum_y \sigma_{xy} \tau_{yz}) \iota_z$.

$$\langle 3 \rangle 1. \ \sigma^{hom} \tau^{hom} = \bigl(\sum_{x,y} \pi_x \sigma_{xy} \iota_y \bigr) \bigl(\sum_{y',z} \pi_{y'} \tau_{y'z} \iota_z \bigr).$$

By the definition of \cdot^{hom} .

$$\langle 3 \rangle 2. \ (\sum_{x,y} \pi_x \sigma_{xy} \iota_y) (\sum_{y',z} \pi_{y'} \tau_{y'z} \iota_z) = \sum_{x,y,y',z} \pi_x \sigma_{xy} \iota_y \pi_{y'} \tau_{y'z} \iota_z.$$

By the distributivity of composition over pointwise addition (Proposition 6.2).

$$\langle 3 \rangle 3. \sum_{x,y,y',z} \pi_x \sigma_{xy} \iota_y \pi_{y'} \tau_{y'z} \iota_z = \sum_{x,y,y',z} \pi_x \sigma_{xy} \delta_{yy'} \tau_{y'z} \iota_z.$$

By item 2 of Lemma 6.8.

$$\label{eq:continuous_state} \langle 3 \rangle 4. \; \sum_{x,y,y',z} \pi_x \sigma_{xy} \delta_{yy'} \tau_{y'z} \iota_z = \sum_{x,y,z} \pi_x \sigma_{xy} \tau_{yz} \iota_z.$$

Since $\delta_{yy'}=1$ if y=y' and is 0 otherwise.

$$\langle 3 \rangle 5. \sum_{x,y,z} \pi_x \sigma_{xy} \tau_{yz} \iota_z = \sum_{x,z} \pi_x (\sum_y \sigma_{xy} \tau_{yz}) \iota_z.$$

By the distributivity of composition over pointwise addition (Proposition 6.2).

Thank You

Thank you! Any doubts? 1

G. Silva

I now have a webpage, where I make my texts and my slides available: https://github.com/gabrie1951/my_work

Bibliography

- [1] W. Nutt, "Unification in monoidal theories," in *International Conference on Automated Deduction*, Springer, 1990, pp. 618–632.
- [2] L. Lamport, "How to write a 21st century proof," *J. of Fixed Point Theory and Applications*, vol. 11, no. 1, pp. 43–63, 2012.
- [3] L. Lamport, "How to write a proof," *The American math. monthly*, vol. 102, no. 7, pp. 600–608, 1995.