灵茶山艾府 🖓 发起于 2023-06-16 最近编辑于 4 天前 来自浙江



图:集合交、按位与之间存在某种联系。

### 前言

本文将扫清位运算的迷雾,在集合论与位运算之间建立一座桥梁。

在高中,我们学了集合论(set theory)的相关知识。例如,包含若干整数的集合  $S=\{0,2,3\}$ 。在编程中,通常用哈希表(hash table)实现集合。例如 Java 中的 HashSet ,C++ STL 中的  $unordered\_set$  。

在集合论中,有交集 ∩、并集 ∪、包含于 ⊆ 等等概念。如果编程实现「求两个哈希表的交集」,需要一个个地遍历哈希表中的元素。那么,有没有效率更高的做法呢? 该二进制登场了。

集合可以用二进制表示,二进制**从低到高**第 i 位为 1 表示 i 在集合中,为 0 表示 i 不在集合中。例 如集合  $\{0,2,3\}$  可以用二进制数 1101 表示;反过来,二进制数 1101 就对应着集合  $\{0,2,3\}$ 。

正式地说,包含非负整数的集合 S 可以用如下方式「压缩」成一个数字:

$$f(S) = \sum_{i \in S} 2^i$$

上面举例的  $\{0,2,3\}$  就可以压缩成  $2^0+2^2+2^3=13$ ,也就是二进制数 1101。

利用位运算「并行计算」的特点,我们可以高效地做一些和集合有关的运算。按照常见的应用场景,可以分为以下四类:

- 1. 集合与集合
- 2. 集合与元素
- 3. 遍历集合
- 4. 枚举集合

# 一、集合与集合

其中 & 表示按位与, │表示按位或, ⊕表示按位异或, ~表示按位取反。

其中「对称差」指仅在其中一个集合的元素。

| 术语     | 集合                              | 位运算                                                  | 举例                                                    | 举例                                          |
|--------|---------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|
| 交集     | $A\cap B$                       | a&b                                                  | $\{0, 2, 3\}$ $\cap \{0, 1, 2\}$ $= \{0, 2\}$         | 1101<br>& 0111<br>= 0101                    |
| 并集     | $A \cup B$                      | $a \mid b$                                           | $\{0, 2, 3\}$ $\cup \{0, 1, 2\}$ $= \{0, 1, 2, 3\}$   | 1101<br>  0111<br>= 1111                    |
| 对称差    | $A \Delta B$                    | $a\oplus b$                                          | $\{0, 2, 3\}$ $\Delta \{0, 1, 2\}$ $= \{1, 3\}$       | $1101$ $\oplus 0111$ $= 1010$               |
| 差      | $A\setminus B$                  | $a\&\sim b$                                          | $\{0, 2, 3\}$<br>\\\\ \{1, 2\}<br>=\{0, 3\}           | 1101<br>& 1001<br>= 1001                    |
| 差 (子集) | $A\setminus B$ ( $B\subseteq A$ | $a\oplus b$                                          | $\{0, 2, 3\}$<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1101<br>⊕ 0101<br>= 1000                    |
| 包含于    | $A\subseteq B$                  | $egin{aligned} a\&b &= a\ a\mid b = b \end{aligned}$ | $\{0,2\}\subseteq \{0,2,3\}$                          | $0101\&1101 = 0101$ $0101 \mid 1101 = 1101$ |

注 1: 按位取反的例子中, 仅列出最低 4 个比特位取反后的结果, 即 0110 取反后是 1001。

注 2: 包含于的两种位运算写法是等价的, 在编程时只需判断其中任意一种。

注 3:编程时,请注意运算符的优先级。例如 == 在某些语言中优先级更高。

# 二、集合与元素

#### 通常会用到移位运算。

#### 其中 << 表示左移, >> 表示右移。

注: 左移 i 位相当于乘  $2^i$ ,右移 i 位相当于除  $2^i$ 。

| 术语           | 集合                                | 位运算                                   | 举例                        | 举例                    |
|--------------|-----------------------------------|---------------------------------------|---------------------------|-----------------------|
| 空集           | Ø                                 | 0                                     |                           |                       |
| 单元素集合        | $\{i\}$                           | 1 << i                                | {2}                       | 1 << 2                |
| 全集           | $U=\ \{0,1,2,\cdots n-1\}$        | $(1 \lessdot \lessdot n) - 1$         | $\{0,1,2,3\}$             | (1 << 4) - 1          |
| 补集           | $\complement_U S = U \setminus S$ | $\sim s$ 或者 $((1 << n) - 1) \oplus s$ |                           |                       |
| 属于           | $i \in S$                         | (s >> i) & 1 = 1                      | $2\in\{0,2,3\}$           | (1101 >> 2) & 1 = 1   |
| 不属于          | i otin S                          | (s >> i) & 1 = 0                      | $1\notin\{0,2,3\}$        | (1101 >> 1) & 1 = 0   |
| 添加元素         | $S \cup \{i\}$                    | $s \mid (1 \leqslant i)$              | $\{0,3\}\cup\{2\}$        | 1001   (1 << 2)       |
| 删除元素         | $S\setminus\{i\}$                 | $s\&\sim (1 	ext{ << } i)$            | $\{0,2,3\}\setminus\{2\}$ | $1101\&\sim \ (1<<2)$ |
| 删除元素(一定在集合中) | $S\setminus\{i\}$ ( $i\in S$      | $s \oplus (1 \lessdot \lessdot i)$    | $\{0,2,3\}\setminus\{2\}$ | 1101 ⊕ (1 << 2)       |
| 删除最小元素       |                                   | s&(s-1)                               |                           | 见下                    |

```
s=101100 s-1=101011 // 最低位的 1 变成 0,同时 1 右边的 0 都取反,变成 1 s\&(s-1)=101000
```

特别地,如果 s 是 2 的幂,那么 s&(s-1)=0。

此外,某些数字可以借助标准库提供的函数算出:

| 术语                   | Python                        | Java                                           | C++                       | Go                     |
|----------------------|-------------------------------|------------------------------------------------|---------------------------|------------------------|
| 集合大小(元<br>素个数)       | s.bit_count(                  | Integer.bitc ount(s)                           | builtin_po pcount(s)      | bits.OnesCou           |
| 二进制长度 (减一得到集合中的最大元素) | s.bit_length ()               | 32-<br>Integer.numb<br>erOfLeadingZ<br>eros(s) | 32-<br>builtin_cl<br>z(s) | bits.Len(s)            |
| 集合中的最小元素             | (s&-<br>s).bit_lengt<br>h()-1 | Integer. numb er0fTrailing Zeros(s)            | builtin_ct z(s)           | bits.Trailin gZeros(s) |

特别地,只包含最小元素的子集,即二进制最低 1 及其后面的 0,也叫 lowbit,可以用 s & -s 算出。举例说明:

# 三、遍历集合

设元素范围从 0 到 n-1,挨个判断每个元素是否在集合 s 中:

# 四、枚举集合

设元素范围从 0 到 n-1, 从空集  $\emptyset$  枚举到全集 U:

```
Python3 | Java | C++ | Go

for (int s = 0; s < (1 << n); s++) {
    // 处理 s 的逻辑
}
```

### 设集合为 s, **从大到小**枚举 s 的所有**非空**子集 sub:

```
Python3 | Java | C++ | Go
```

```
for (int sub = s; sub; sub = (sub - 1) & s) {
    // 处理 sub 的逻辑
}
```

为什么要写成 sub = (sub - 1) & s 呢?

暴力做法是从 s 出发,不断减一,直到 0。但这样做,中途会遇到很多并不是 s 的子集的情况。例 如 s=10101 时,减一得到 10100,这是 s 的子集。但再减一就得到 10011 了,这并不是 s 的子集,下一个子集应该是 10001。

把所有的合法子集按顺序列出来,会发现我们做的相当于「压缩版」的二进制减法,例如

```
10101 \rightarrow 10100 \rightarrow 10001 \rightarrow 10000 \rightarrow 00101 \rightarrow \cdots
```

如果忽略掉 10101 中的两个 0,数字的变化和二进制减法是一样的,即

```
111 \rightarrow 110 \rightarrow 101 \rightarrow 100 \rightarrow 011 \rightarrow \cdots
```

如何快速找到下一个子集呢?以  $10100 \rightarrow 10001$  为例说明,普通的二进制减法会把最低位的 1 变成 0,同时 1 右边的 0 变成 1,即  $10100 \rightarrow 10011$ 。「压缩版」的二进制减法也是类似的,把最低位的 1 变成 0,但同时对于 1 右边的 0,只保留在 s=10101 中的 1,所以是  $10100 \rightarrow 10001$ 。怎么保留? & 10101 就行。

此外,如果要从大到小枚举 s 的所有子集 sub (从 s 枚举到空集  $\varnothing$ ) ,可以这样写:

```
Python3 | Java | C++ | Go

int sub = s;
do {
    // 处理 sub 的逻辑
    sub = (sub - 1) & s;
} while (sub != s);
```

原理是当 sub = 0 时(空集),再减一就得到 -1,对应的二进制为  $111 \cdots 1$ ,再 &s 就得到了 s。 所以当循环到 sub = s 时,说明最后一次循环的 sub = 0(空集),s 的所有子集都枚举到了,退出循环。

**注**: 还可以枚举全集 U 的所有大小**恰好**为 k 的子集,这一技巧叫做 Gosper's Hack,具体请看 视频讲解。

### 位运算题单

• 位运算(基础/性质/拆位/试填/恒等式/贪心/脑筋急转弯)

# 其它题单

- 滑动窗口 (定长/不定长/多指针)
- 二分算法 (二分答案/最小化最大值/最大化最小值/第K小)

- 单调栈 (矩形系列/字典序最小/贡献法)
- 网格图 (DFS/BFS/综合应用)
- 图论算法 (DFS/BFS/拓扑排序/最短路/最小生成树/二分图/基环树/欧拉路径)
- 动态规划 (入门/背包/状态机/划分/区间/状压/数位/数据结构优化/树形/博弈/概率期望)

欢迎关注 B站@灵茶山艾府