AlgebraicPetri Application Demo

AlgebraicPetri, II (https://algebraicjulia.github.io/AlgebraicPetri, II/dev/) is a library which simultaneously provides modelers access to the model construction and analysis tools contained in AlgebraicJulia (https://www.algebraicjulia.org/) and the simulation and analysis tools contained in SciML (https://sciml.ai/).

```
In [1]: # Necessary imports
          using AlgebraicPetri
          using AlgebraicPetri.ModelComparison
          using Semagrams, Semagrams. Examples
          using Catlab
          using Catlab.CategoricalAlgebra
          using DifferentialEquations
          using Plots
          using JSON
          using LabelledArrays
          using PrettyTables
          include("../src/GrometInterop.jl")
include("../src/ModelStratify.jl")
include("../src/Sensitivity.jl")
include("../src/EpiModel.jl")
          using .GrometInterop
          using .ModelStratify
          using .Sensitivity
          using .EpiModel:
          solution(model::LabelledReactionNet, tspan) = begin
              solve(ODEProblem(vectorfield(model), concentrations(model), tspan, rates(model)), Tsit5())
          default(linewidth=5, xaxis="Time", yaxis="Population")
          function sens_table(sens; kw...)
              sens_matrix = hcat(collect(keys(sens)), collect(values(sens)))
              pretty_table(sens_matrix[sortperm(sens_matrix[:, 2]; rev=true), :]; header=(["Transition", "Sensitivity"],), kw...)
          end:
          function signed_log(vals)
    scale fac = 1.0/(minimum(abs.(vals)) + 1e-10)
               log sens = log10.(abs.((vals .+ 1e-10) .* scale fac)) .* sign.(vals)
          get_ptnet(a) = begin
              epn = get_acset(a)
              pn = LabelledReactionNet(epn)
               set_subparts!(pn, 1:nt(pn),
                   rate=map(r->try parse(Float64, r) catch e; (t...)->Base.invokelatest(eval(Meta.parse(r)), t...) end,
                        subpart(pn, :rate)))
              pn
          end
          flt_rates(pn) = begin
               r = rates(pn)
               l = findall(t-> t isa Float64, r)
              Dict(zip(l, r[l]))
@LArray r[l] Tuple(l)
          function show graph(g)
              display("text/html",html"<style>div.graphs svg{max-width:100% !important;max-height:100% !important;</style>")
display("text/html", "<div class=graphs>" * read(Catlab.Graphics.Graphviz.run_graphviz(g, format = "svg"), String) * "</div>")
          end:
```

Unable to load WebIO. Please make sure WebIO works for your Jupyter client. For troubleshooting, please see the WebIO/IJulia documentation (https://juliagizmos.github.io/WebIO.jl/latest/providers/ijulia/).

```
In [10]: export_html(p)
Out[10]:
```



```
In [3]: load(p, "SVIIR.sema");
```

In [4]: model = get_ptnet(p)
show_graph(Graph(model, p; scale=144 * 0.8))

Code from Petrinet

```
In [5]: using AlgebraicPetri.BilayerNetworks
         bln = LabelledBilayerNetwork()
migrate!(bln, LabelledPetriNet(model))
         BilayerNetworks.compile(bln, :du, :phi, :psi, rates(model))
Out[5]: :(f!(du, phi, psi, t) = begin
                   #= /Users/abaas3/Documents/work/projects/act/aske/algebraic_petri/upstream/graphics_update/AlgebraicPetri.jl/src/BilayerNet
         works.jl:269 =#
                   begin
                       #= /Users/abaas3/Documents/work/projects/act/aske/algebraic_petri/upstream/graphics_update/AlgebraicPetri.jl/src/Bilaye
         rNetworks.jl:274 =#
                        du .= 0.0
                        #= /Users/abaas3/Documents/work/projects/act/aske/algebraic_petri/upstream/graphics_update/AlgebraicPetri.jl/src/Bilaye
         rNetworks.jl:275 =#
                       phi .= 1.0
                        phi[3] *= psi[2]
                       phi[1] *= psi[2]
                        phi[2] *= psi[4]
                        phi[5] *= psi[4]
                        phi[7] *= psi[4]
                        phi[7] *= psi[2]
                        phi[6] *= psi[5]
                        phi[4] *= psi[1]
                        phi[2] *= psi[1]
                        phi[4] *= psi[5]
                        phi[3] *= psi[5]
                       phi[1] *= 0.1
phi[2] *= 0.0002
                       phi[3] *= 0.001
phi[4] *= 0.0002
                        phi[5] *= 0.1
                        phi[6] *= 0.3
                        phi[7] *= 0.001
                        du[2] -= phi[3]
du[2] -= phi[1]
                        du[4] -= phi[2]
                        du[4] -= phi[5]
                        du[4] = phi[7]
                        du[2] -= phi[7]
                        du[5] -= phi[6]
                        du[1] -= phi[4]
                        du[1] -= phi[2]
                        du[5] -= phi[4]
                        du[5] -= phi[3]
                        du[5] += phi[4]
                        du[4] += phi[7]
                        du[4] += phi[3]
                        du[3] += phi[6]
                        du[4] += phi[2]
                        du[3] += phi[5]
                        du[5] += phi[2]
                        du[5] += phi[4]
                        du[1] += phi[1]
                        du[4] += phi[7]
                        du[5] += phi[3]
                        return du
                   end
               end)
```


In [8]: int_met = Sensitivity.int_metric(model, [:R, :S, :V], t_range=(0.0,50.0))
sens = Sensitivity.sensitivity(int_met, flt_rates(model)) .* flt_rates(model) ./ int_met(flt_rates(model))
sens_table(sens)

40

Transition	Sensitivity
γ_U	0.101564
ν	0.0961692
γ_V	0.0363567
β_{VV}	-0.00636655
β_{VU}	-0.00815847
β_{UV}	-0.0221078
β_{UU}	-0.102475

0

In [9]: log_sens = signed_log(sens)
max_rng = maximum(abs.(log_sens))
show_graph(GraphHeatmap(model, log_sens, clims=(-max_rng, max_rng); positions=locations(model, save(p), scale=144 * 0.7)))

Add a hypothesized transition to the original model

In [12]: export_html(p)


```
In [13]: sol = solution(model_susc, (0.0, 50.0))
plot(sol)
```


In [14]: int_met = int_metric(model_susc, [:R, :S, :V], t_range=(0.0,50.0))
 sens = sensitivity(int_met, rates(model_susc)) .* rates(model_susc) ./ int_met(rates(model_susc))
 sens_table(sens)

Transition	Sensitivity
ν Υ_U Υ_V β_{VV} β_{VU}	0.365404 0.34431 0.0910854 -0.0435335 -0.0587142 -0.1797
β_{UV} β_{UU}	-0.190486 -0.560356

Hypothesized stratification of model

In [19]: # Add a death transition
load(p_death, "SVIIRD.sema");

Specification of a Mixing Matrix

```
In [30]: export_html(gen_graph)
```

Out[30]:

In [20]: model_death = get_ptnet(p_death)
(generations = get_acset(gen_graph)) |> ModelStratify.show_graph

Out[20]:

In [21]: strat_model = ModelStratify.dem_strat(model_death, generations)
 str_loc = ModelStratify.strat_location(strat_model, model_death, generations, locations(model_death, save(p_death), scale=144 * 0.4),
 locations(generations, save(gen_graph)), scale=1.4)
 show_graph(Graph(strat_model, positions=str_loc))

In [36]: export_html(strat_sg)

Out[36]:

In [23]: # Change some of the initial conditions and rates for different populations

In [25]: fin met = Sensitivity.final metric(strat model, vcat([[Symbol(:D, "@\$i")] for i in [:School, :Workers, :Retirees]]...), t range=(0.0,

Transition	Sensitivity
v@Workers	0.848943
γ_U@Workers	0.505455
v@School	0.396903
γ_U@School	0.263965
γ_V@Workers	0.0876328
ν@Retirees	0.0534387
γ_V@School	0.0461593
γ_U@Retirees	0.0182882
γ_V@Retirees	0.00436017
crx_V'_I_V_2_3 crx_S'_I_V_2_3	-1.17187e-6
crx_S'_I_V_2_3 crx_V'_I_U_2_3 crx_V'_I_V_2_1	-3.47378e-6
crx_S'_I_V_2_3 crx_V'_I_U_2_3 crx_V'_I_V_2_1 crx_S'_I_V_2_1	-5.37703e-6
crx_V'_I_V_2_1	-6.16468e-6
crx_S'_I_V_2_1	-1.38395e-5
crx_V′_I_U_2_3 crx_V′_I_V_2_1 crx_S′_I_V_2_1 crx_S′_I_U_2_1 crx_S′_I_U_2_3 crx_S′_I_U_2_3	-1.72182e-5
crx S' I U 2 3	-4.44581e-5
crx_S'_I_U_2_1	-9.81893e-5
β {VV}@Retirees	-0.00045537
crx_V'_I_V_3_2	-0.00050463
crx V′ I V 1 2	-0.000683066
β_{UV}@Retirees	-0.000960095
crx V' I U 1 2	-0.00132267
crx_V'_I_U_3_2	-0.00136724
δ V@Retirees	-0.00207656
β_{VU}@Retirees	-0.00256549
crx V' T V 1 3	-0.0030104
crx_S'_I_V_3_2	-0.00342454
crx_S'_I_V_3_2 crx_S'_I_V_1_2	-0.00463712
β_{UU}@Retirees	-0.00720639
δ V@School	-0.00774339
β {VV}@School	-0.00884027
crx_V'_I_V_3_1	-0.00934874
crx_S′_I_U_3_2 crx_S′_I_V_1_3	-0.0112359
crx S′ I V 1 3	-0.0119143
crx_S'_I_U_1_2	-0.0125454
β {VV}@Workers	-0.0126722
δ_U@Retirees	-0.0129051
crx_V′_I_U_1_3	-0.0175438
crx_S'_I_V_3_1	-0.0304167
β {VU}@School	-0.0335797
crx V' I U 3 1	-0.0359078
β_{VU}@Workers	-0.0418467
β_{UV}@Workers	-0.042212
δ_V@Workers	-0.0504631
β_{UV}@School	-0.0510987
δ U@School	-0.142307
crx_S'_I_U_3_1 crx_S'_I_U_1_3	-0.235213
crx_S'_I_U_1 3	-0.247976
δ_U@Workers	-0.333775
β_{UU}@School	-0.428701
β_{UU}@Workers	-0.439939

Long Covid Example

In [43]: export_html(p_lcv)

Out[43]:

In [28]: load(p_lcv, "SVIIRD.sema");

Acknowledgements

AlgebraicJulia

This library provides the tooling necessary for both the interactive editing of models and the stratification of these models.

SciML

This library provides the basic sensitivity analysis and simulation tooling.

Julia Community

This work would not be possible without the high level of work put in to developing the thriving community of Julia developers, especially the developers who are involved in the AlgebraicJulia and SciML projects.

Relevant Resources

John Baez and Jade Master, 2020. Open Petri nets. DOI:10.1017/S0960129520000043. arXiv:1808.05415

Micah Halter et al. Compositional Scientific Computing with Catlab and SemanticModels. arXiv:2005.04831