CSCI 5870: Data Structures and Algorithms Homework 4

Instructor: Dr. Bob Kramer

Rabin Thapa

1. [Optimal Matrix Multiplication] Calculate the optimal number of scalar multiplications necessary to calculate the matrix product $M = M_1 \cdot M_2 \cdot M_3 \cdot M_4 \cdot M_5$, where M_1 is a 4×3 matrix, M_2 is a 3×5 matrix, M_3 is a 5×3 matrix, M_4 is a 3×2 matrix and M_5 is a 2×4 matrix. Show both the cost and "how" matrices ("how" shows the choice made for each f(i,j) value that yields the minimum value.)

i, j	1	2	3	4	5
1	0	60	81	84	116
2	-	0	45	60	84
3	-	-	0	30	70
4	-	-	-	0	24
5	-	-	-	-	0

Figure 1: f-table

i , j	1	2	3	4	5
1	-1	1	1	1	4
2	-	-1	2	2	4
3	-	-	-1	3	4
4	-	-	-	-1	4
5	-	-	-	-	-1

Figure 2: k-table

Calculations:

```
\begin{split} f(1,2) &= 4 \cdot 3 \cdot 5 = 60, \\ f(2,3) &= 3 \cdot 5 \cdot 3 = 45, \\ f(3,4) &= 5 \cdot 3 \cdot 2 = 30, \\ f(4,5) &= 3 \cdot 2 \cdot 4 = 24, \\ f(1,3) &= \min\{f(1,2) + 60, f(2,3) + 36\} = \min\{120,81\} = 81, \\ f(2,4) &= \min\{f(2,3) + 18, f(3,4) + 30\} = \min\{63,60\} = 63, \\ f(3,5) &= \min\{f(3,4) + 40, f(4,5) + 60\} = \min\{70,104\} = 70, \\ f(1,4) &= \min\{f(1,1) + f(2,4) + 4 \cdot 3 \cdot 2, f(1,2) + f(3,4) + 4 \cdot 5 \cdot 2, f(1,3) + f(4,4) + 4 \cdot 3 \cdot 2\} = \min\{84,130,105\} = 84, \\ f(2,5) &= \min\{f(2,2) + f(3,5) + 3 \cdot 4 \cdot 4, f(2,3) + f(4,5) + 3 \cdot 3 \cdot 4, f(2,4) + f(5,5) + 3 \cdot 2 \cdot 4\} = \min\{130,105,84\} = 84, \\ f(1,5) &= \min\{f(1,1) + f(2,5) + 4 \cdot 3 \cdot 4, f(1,2) + f(3,5) + 4 \cdot 5 \cdot 4, f(1,3) + f(4,5) + 4 \cdot 3 \cdot 4, f(1,4) + f(5,5) + 4 \cdot 3 \cdot 4\} = \min\{132,220,153,116\} = 116. \end{split}
```

So, the algebraic form of optimal matrix multiplication is $(M_1(M_2(M_3M_4)))M_5$.

Figure 3: Optimal Matrix Multiplication Tree

2. [Optimal Binary Search Tree]

Construct an optimal binary search tree for the six nodes A, B, C, D, E and F, where the nodes have the following probabilities:

- n P(n) A 0.20
- B 0.08
- C 0.17
- D 0.15
- E 0.25
- F 0.15

Show both the cost table and the "how" table.

- D to E: $\begin{vmatrix} i & j & k & S(i,j) & Cost \\ 4 & 5 & 4 & 40 & 65 \\ 4 & 5 & 5 & 40 & 55 \end{vmatrix}$
- S(i,j)Cost k 3 1 45 78 A to C: 3 2 45 82 3 3 45 81
- $\overline{S(i,j)}$ Cost k 2 87 4 40 B to D: 2 4 3 40 63 2 4 73 4 40

	i	j	k	S(i,j)	Cost
C to E:	3	5	3	57	112
С Ю Е.	3	5	4	57	99
	3	5	5	57	104

	i	j	k	S(i,j)	Cost
D to F:	F: $\frac{4}{4}$	6	4	55	110
υ ю г.	4	6	5	55	85
	4	6	6	55	110

	i	j	k	S(i,j)	Cost
	1	4	1	60	123
A to D:	1	4	2	60	127
	1	4	3	60	111
	1	4	4	60	135

	i	j	k	S(i,j)	Cost
	2	5	2	65	164
B to E:	2	5	3	65	128
	2	5	4	65	123
	2	5	5	65	128

	i	j	k	S(i,j)	Cost
	3	6	3	72	157
C to F:	3	6	4	72	144
	3	6	5	72	134
	3	6	6	72	171

	i	j	k	S(i,j)	Cost
	1	5	1	85	208
A to E:	1	5	2	85	204
A to E.	1	5	3	85	176
	1	5	4	85	185
	1	5	5	85	196

	i	j	k	S(i,j)	Cost
	2	6	2	80	214
B to F:	2	6	3	80	173
ъ ют.	2	6	4	80	158
	2	6	5	80	158
	2	6	6	80	203

	i	j	k	S(i,j)	Cost
	1	6	1	100	273
	1	6	2	100	281
A to F:	1	6	3	100	221
	1	6	4	100	233
	1	6	5	100	226
	1	6	6	100	222

		0	1	2	3	4	5	6
	1	0	20	36	78	111	176	221
	2	-	0	8	33	63	123	158
f-table	3	-	-	0	17	47	99	134
1-table	4	-	-	-	0	15	55	85
	5	-	-	-	-	0	25	55
	6	-	-	-	-	-	0	15
	6	-	-	-	-	-	-	0

		0	1	2	3	4	5	6
	1	-1	1	1	1	3	3	3
	2	-	-1	2	2	3	4	5
k-table	3	-	-	-1	3	3	4	5
K-table	4	-	-	-	-1	4	5	5
	5	-	-	-	-	-1	5	5
	6	-	-	-	-	-	-1	6
	6	-	-	-	-	-	-	-1

Figure 4: Optimal Binary Tree

3. [NP-Completeness #1]

A graph G=<V,E> has a Hamiltonian cycle if there is some permutation of the vertices $\pi=<\pi_1,\pi_2,\cdots,\pi_V>$ such that there is an edge between ν_{π_i} and $\nu_{\pi_{i+1}}$ and an edge between ν_{π_1} and $\nu_{\pi_{i+1}}$ and an edge between ν_{π_1} and ν_{π_2} . In simpler terms, you can start at any vertex, follow a sequence of edges to visit every vertex once, and end up at your starting vertex.

Show that the problem of determining whether or not an arbitrary undirected graph has a Hamiltonian cycle is \mathcal{NP} -complete.

Note: There are at least two ways to do this. One is definitely easier than the other.

Hamiltonian Cycle problem is in NP: A problem is in NP if a proposed solution for the problem can be verified in polynomial time. For a graph G(V, E) with n vertices, this can be done by checking if the proposed solution (sequence of vertices) contains all n vertices of G and if they form a cycle, which can be done in polynomial time:

```
Preconditions: A sequence (directed set of vertices) S = (v_0, v_1, ..., v_n)
Postconditions: returns true if S is a Hamiltonian cycle of G, false otherwise
```

```
 \begin{aligned} \text{H-CYCLE}(S, n) \\ result &\leftarrow true \\ \textbf{if } (S \text{ contains } n \text{ nodes and there is an edge } (v_0, v_{n-1})) \\ \textbf{for } i &= 0 \text{ to } n-1 \\ \textbf{ if there is an edge } (v_i, v_{i+1}) \\ \textbf{ continue} \\ \textbf{ else} \\ result &= false \\ \textbf{ break} \\ \textbf{ end for} \\ \textbf{ else} \\ result &= false \\ result &= false \\ \textbf{ return } result \end{aligned}
```

Hamiltonian Cycle problem is NP-hard: It can be shown by reducing Hamiltonian path problem, which is NP-hard, into this problem. That means for a graph G(V, E), the Hamiltonian path problem can be reduced into finding whether or not a graph G'(V', E') has a Hamiltonian cycle. G'(V', E') can be constructed by adding edges from a new vertex v_n to each vertex in the graph G, so |V'| = |V| + 1 and |E'| = |E| + |V|. This can be done in polynomial time. Now,

If the graph G' contains a Hamiltonian cycle C (which includes vertex v_n), then G = G' - v contains a Hamiltonian path $C - v_n$.

If the graph G contains a Hamiltonian path L, then $L + v_n$ forms a cycle (since there are edges joining end vertices of L and v_n) which is a Hamiltonian cycle for G'.

So, G has a Hamiltonian path if and only if G' has a Hamiltonian cycle. This shows that a Hamiltonian cycle problem can be reduced into a Hamiltonian path problem. Hence, Hamiltonian Cycle problem is NP-hard.

[Resource:https://www.geeksforgeeks.org/proof-that-hamiltonian-cycle-is-np-complete]

4. [NP-Completeness #2]

A *clique* of a graph $G = \langle V, E \rangle$ is a subgraph of G such that the subgraph is completely connected; *i.e.*, any two vertices in the subgraph are connected by an edge.

The *clique cover* problem takes a graph G and an integer k and determines whether or not the vertices of G can be partitioned into exactly k cliques.

Show that clique cover is \mathcal{NP} -complete.

Clique cover problem is in NP: A solution for Clique cover problem given by a non-deterministic algorithm can be verified using a deterministic algorithm in polynomial time.

Preconditions: A set of partitions $C = C_1, C_2, ..., C_k$ of vertices of GPostconditions: returns true if C is a k clique cover of G, false otherwise

```
 \begin{aligned} \operatorname{CLIQUE}(C,k) \\ \operatorname{result} &\leftarrow \operatorname{true} \\ \text{for } i = 1 \text{ to } k \\ & \text{if } \operatorname{COMPLETE}(C_i) = \operatorname{true} \quad // \text{checks if } C_i \text{ a complete subgraph in } O(n^2) \text{ time} \\ & \text{continue} \\ & \text{else} \\ & \operatorname{result} \leftarrow 0 \\ \text{end for} \\ & \text{return } \operatorname{result} \end{aligned}
```

Clique cover problem is NP-hard: It can be shown by reducing k-coloring problem, which is NP-hard, into this problem. Let consider a graph G(V, E) and its complement G'. Now,

If a k-coloring of G, vertices with same colors are not adjacent to one another. But in G', there is an edge between each pair of same-coloured vertices, so they form a clique, and there of k such cliques. So, if G has k-colouring, then G' has a k cliques cover.

If G' can be partitioned into exactly k cliques, then vertices in the same clique can be coloured the same and different cliques be colored different to result in k-coloring of G.

Hence, a graph G has k-coloring if and only if G' can be partitioned into exactly k cliques. So, Clique cover problem is NP-hard.

[Resource:https://en.wikipedia.org/wiki/Clique_cover]