

(11) EP 0 805 160 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 05.11.1997 Bulletin 1997/45

(51) Int CI.F: **C07K 2/00**, C12N 15/62, G01N 33/53

(21) Application number: 97400985.4

(22) Date of filing: 30.04.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

(30) Priority: 01.05.1996 JP 134444/96

(71) Applicant: FUJIREBIO Inc. Shinjuku-ku, Tokyo 163-07 (JP)

(72) Inventors:

Takemura, Fuminori,
 No. 806, Sakuragaoka Danchi 22
 Higashiyamto-shi, Tokyo (JP)

- Ueno, Eiichi Hino-shi, Tokyo (JP)
- Itoh, Satoru
 1-18-1, Narusegaoka, Machida-shi, Tokyo (JP)
- (74) Representative: Uchida, Kenji et al Cabinet Beau de Loménie 158, rue de l'Université 75340 Paris Cedex 07 (FR)
- (54) Nucleic acid-bound polypeptide, method of producing nucleic acid-bound polypetide, and immuoassay using the polypeptide
- (57) A nucleic acid-bound polypeptide produced by binding a nucleic acid to a polypeptide, a method of producing the nucleic acid-bound polypeptide, and applica-

tions of the nucleic acid-bound polypeptide, including immunoassays for an antigen or antibody, such as an agglutination immunoassay are provided.

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

15

20

25

30

35

45

50

The present invention relates to a nucleic acid-bound polypeptide, a method of producing the nucleic acid-bound polypeptide, and an immunoassay using the nucleic acid-bound polypeptide.

10 Discussion of Background

Various studies have been made as to how to maintain the specific steric structure of a recombinant protein produced by gene engineering, more specifically gene manipulation, and also as to how to apply the thus produced protein to an antigen-antibody reaction.

In the production of the recombinant protein, in particular, in the course of a purification step of the produced protein, a denaturation operation is inevitably carried out. In such purification step, it is not always possible to maintain a natural structure of the protein, so that such protein cannot be used in an immunoassay system.

Various factors are also known that affect reactions which are peculiar to each of various assays. It is known that for these reasons or other, the above-mentioned antigen-antibody reaction does not always proceed as desired when the recombinant protein is used.

For example, there is known an agglutination immunoassay as one of immunoassays. For instance, when an antibody corresponding to an antigen is assayed by agglutination immunoassay, the antigen is fixed on the surface of particles such as latex particles, and such antigen-fixed particles are allowed to react with the antibody in a test sample. When the antibody is present in the test sample, the antigen-fixed particles agglutinate due to the antigen-antibody reaction, so that, for instance, the absorbance of the test sample changes. Therefore by measuring the absorbance of the test sample, the degree of the agglutination can be determined, and accordingly the antibody in the test sample can be quantitatively measured from the measured absorbance of the test sample.

However, when the recombinant protein is used as the antigen to be fixed on the surface of the particles in the above-mentioned agglutination immunoassay, it occasionally occurs that even though the protein itself has reactivity with the antibody to be assayed and the antibody is in fact present in the test sample, no agglutination takes place.

Conventionally, in the case where no agglutination takes place as mentioned above, the recombinant protein is modified or expressed in the form of a fused protein in order to improve the agglutination reactivity of the protein. However, it is extremely difficult to modify the protein so as to impart the desired properties thereto, while maintaining the antigenicity (i.e. the reactivity with the antibody).

Furthermore, the recombinant protein is often of an insoluble kind, so that when the thus produced protein is purified, the protein has to be subjected to solubilization treatment. However, the protein is often denatured in the course of the purification treatment, losing the necessary antigenicity.

Therefore, it is preferable that a soluble protein be directly produced by genetic engineering.

40 SUMMARY OF THE INVENTION

It is therefore a first object of the present invention to provide a modified polypeptide, which is modified so as to change the properties of polypeptide such as the isoelectric point, the molecular weight and the three-dimensional structure thereof, but without changing the antigenicity thereof.

A second object of the present invention is to provide a method of producing the above-mentioned recombinant polypeptide in such a manner that the produced polypeptide can be obtained in a soluble fraction.

A third object of the present invention is to provide an immunoassay for assaying an antigen comprising a polypeptide, which is conventionally difficult to perform.

The first object of the present invention can be achieved by a nucleic acid-bound polypeptide which is obtainable by binding a nucleic acid to a polypeptide.

In the above nucleic acid-bound polypeptide, the nucleic acid may be bound to at least one terminus of the polypeptide.

The nucleic acid-bound polypeptide may further comprise a nucleic acid-binding motif through which the nucleic acid is bound to the polypeptide.

The above-mentioned polypeptide and the nucleic acid-binding motif may be expressed in the form of a fusion polypeptide by genetic engineering.

The nucleic acid-binding motif may have an amino acid sequence with sequence No. 2 defined in a sequence table attached to the specification of this application.

The above-mentioned polypeptide can be used as an antigen to be assayed by an immunoassay.

The second object of the present invention can be achieved by a method of producing a nucleic acid-bound polypeptide comprising the steps of:

producing a recombinant polypeptide,

binding a nucleic acid to the recombinant polypeptide to produce a nucleic acid-bound polypeptide as a soluble fraction, and

purifying the nucleic acid-bound polypeptide from the soluble fraction.

In the above-mentioned method of producing the nucleic acid-bound polypeptide, the step of binding the nucleic acid to the polypeptide to produce the nucleic acid-bound polypeptide may comprise the steps of:

fusing a gene which encodes the polypeptide and a gene which encodes the nucleic acid-binding motif to produce a fusion gene, and

expressing the fusion gene to produce the nucleic acid-bound polypeptide via the nucleic acid-binding motif.

The third object of the present invention can be achieved by an immunoassay for assaying an antigen comprising a polypeptide, or an antibody corresponding to the antigen, using as the antigen the above-mentioned nucleic acid-bound polypeptide, obtainable by binding a nucleic acid to said polypeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

Fig. 1 is a genetic map of a cloning vector pW6A for use in expressing HCV core protein used in the examples of the present invention.

Fig. 2 is a diagram showing the results of Western blotting performed for showing the reactivity of an HCV core protein prepared by genetic engineering in an example of the present invention with HCV core positive human serum.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The nucleic acid-bound polypeptide of the present invention can be provided by binding a nucleic acid to a polypeptide, whereby the properties of the polypeptide, such as the isoelectric point, the molecular weight and the three-dimensional structure thereof, can be changed without the antigenicity thereof being changed.

As the "polypeptide" for use in the present invention, any polypeptide can be employed as long as the polypeptide itself exhibits antigenicity and therefore the number of amino acid residues which constitute the polypeptide is 6 or more. It is preferable that the number of the amino acid residues which constitute the "polypeptide" for use in the present invention be 8 or more.

Examples of the "polypeptide" for use in the present invention include composites of a polypeptide and another component or other components such as sugar or lipid, namely glycoprotein and lipoprotein.

There is no particular limitation to the size of the nucleic acid which is bound to the polypeptide as long as the nucleic acid can change the above-mentioned properties of the polypeptide, such as isoelectric point, molecular weight and three-dimensional structure, without changing the antigenicity thereof. Normally, the number of bases of the nucleic acid for use in the present invention is 100 b to 10 kb, preferably about 1 kb to 5 kb.

Furthermore, the nucleic acid to be bound to the polypeptide may be either DNA or RNA. In the present invention, there is no limitation to the nucleotide sequence to be bound to the polypeptide. Any nucleotide sequence is acceptable for use in the present invention.

The nucleic acid may be bonded to any portion of the polypeptide. For instance, the nucleic acid may be bonded to the N-terminus or the C-terminus of the polypeptide, but the bonding is not limited to such terminus. In the present invention, the nucleic acid may be either directly or indirectly bonded to the polypeptide. For instance, the nucleic acid may be bonded to the polypeptide via a nucleic acid-binding motif which is also a polypeptide.

In this application, with respect to the binding of the nucleic acid to the polypeptide, the term "binding" or "bound" means all kinds of chemical bondings between the polypeptide and the nucleic acid with attractive force in a wide range of relatively weak attractive force to strong attractive force, without any particular limitation to the bonding mode, including the so-called association, covalent bonding, ionic bonding, coordinate bonding, and hydrogen bonding.

In the present invention, when the nucleic acid-bound polypeptide is produced by genetic engineering, the nucleic acid-bound polypeptide may be expressed in the form of a polypeptide to which the nucleic acid is bound, thereby

3

20

5

10

15

30

35

25

40

50

45

--

pW6AHCV core 120 was prepared.

By use of this plasmid, *Escherichia coli* BL21 (DE3) (obtained from Brookhaven National Laboratory) was subjected to transformation, so that an ampicillin-resistant transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120 for expressing HCV core polypeptide 120 was obtained, and an HCV core protein (1 - 120 aa) was expressed. Hereinafter, the thus expressed protein is referred to as "120". The nucleotide sequence of "120" and the amino acid sequence of "120" are respectively shown in Sequence ID. No. 3 and Sequence ID. No. 4 in the sequence table attached to this specification.

Example 1

10

20

25

30

40

45

50

55

[Preparation of Plasmid]

A DNA fragment for coding HCV core polypeptides 150 and 120 which are respectively shown with sequence ID. No. 5 and with sequence ID. No. 3 in the attached sequence table was amplified by the PCR (Polymerase Chain Reaction) method, using as a template molecule a plasmid CKSC1150 with a DNA fragment including an HCV core region being introduced, and was then digested with a restriction endonuclease EcoRl and a restriction endonuclease BamHI.

An HCV core region-including DNA fragment 470 bp and an HCV core region-including DNA fragment 370 bp were separated by 1% agarose gel electrophoresis. These DNA fragments were inserted into an EcoRI - BamHI site of the expression plasmid pW6A shown in Fig. 1, whereby a plasmid pW6AHCV core 150 and a plasmid pW6AHCV core 120 were prepared.

A DNA fragment for coding an HBc nucleic acid-binding motif shown with sequence ID. No. 1 in the sequence table attached to this specification was amplified by the PCR (Polymerase Chain Reaction) method, using as a template molecule a plasmid pHBV-11 (Nucleic Acids Res., 18, 4587 (1990)), and was then digested with the BamHI restriction endonuclease.

A DNA fragment 110bp including a nucleic acid-binding motif was separated by 2% agarose gel electrophoresis. This DNA fragment was inserted into an EcoRI - BamHI site of each of the above-mentioned plasmid pW6AHCV core 150 and plasmid pW6AHCV core 120.

By use of these plasmids, Escherichia coli BL21 (DE3) (obtained from Brookhaven National Laboratory) was subjected to transformation, so that an ampicillin-resistant transformed Escherichia coli BL21 (DE3)/pW6AHCV core 150NA and an ampicillin-resistant transformed Escherichia coli BL21 (DE3)/pW6AHCV core 120NA were obtained.

In this specification, the proteins to which the nucleic acid-binding motif is bound for expressing the above-mentioned transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 150NA and the above-mentioned transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120NA are respectively referred to as "150NA" and "120NA".

The nucleotide sequence of "150NA" and the amino acid sequence of "150NA" are respectively shown in Sequence ID. No. 9 and Sequence ID. No. 10 in the sequence table attached to this specification; and the nucleotide sequence of "120NA" and the amino acid sequence of "120NA" are respectively shown in Sequence ID. No. 7 and Sequence ID. No. 8 in the sequence table attached to this specification.

Example 2

[Expression of Recombinant Protein (150NA and 120NA)]

Each of the transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 150 and the transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120 prepared in Example 1 was separately cultured overnight in 2 ml of an LB culture medium containing 50 μg/ml of ampicillin at 37°C.

After the optical density (OD) of each culture medium reached 0.6 to 0.8 with a light with a wavelength of 600 nm by preculture, expression induction was carried out with the addition of 0.5 mM IPTG (Isopropyl-β-D(-)-thiogalacto-pyranoside) thereto, and the cultivation was continued for another two hours.

1.5 ml of the Escherichia coli cultivation medium was centrifuged at 5000 rpm for 2 minutes, whereby the Escherichia coli was collected. The thus collected Escherichia coli was suspended in 100 µl of a buffer solution (10 mM tris-HCl, pH 8.0, 0.1 M NaCl, 1 mM EDTA), and was then subjected to ultrasonic disruption for 15 minutes, whereby the Escherichia coli was completely disrupted, whereby two test samples, namely an Escherichia coli test sample of Escherichia coli BL21 (DE3)/pW6AHCV core 150NA and an Escherichia coli test sample of Escherichia coli BL21 (DE3)/pW6AHCV core 120NA, were prepared.

8 μl of a three-fold concentrated SDS polyacrylamide buffer solution (0.15 M tris-HCl, pH 6.8, 6% SDS, 24% glycerol, 6 mM EDTA, 2% 2-mercaptoethanol, 0.003% bromophenol blue) was added to each of the above test samples separately. Each mixture was then stirred sufficiently and was subjected to SDS-polyacrylamide gel electrophoresis.

producing the nucleic acid-bound polypeptide. Alternatively, after a recombinant polypeptide is expressed, the nucleic acid may be bound to the recombinant polypeptide, thereby producing the nucleic acid-bound polypeptide.

To be more specific, when a polypeptide is expressed as a fusion polypeptide, with a nucleic acid-binding motif which is known to have a function of binding the nucleic acid to the polypeptide being included in the function of the polypeptide to be expressed, a polypeptide with the nucleic acid-binding motif is expressed, and the nucleic acid in the host is simultaneously bound to the recombinant polypeptide via the nucleic acid-binding motif, so that the nucleic acid-bound polypeptide can be produced. This nucleic acid-bound polypeptide can be purified thereafter.

Alternatively, the nucleic acid-bound polypeptide can be obtained by reconstituting the polypeptide by mixing the expressed polypeptide with the nucleic acid.

In connection with the above-mentioned nucleic acid-binding motif, various nucleic acid-binding motifs are known. For example, in J. of Virology, <u>64</u> 3319-3330 (1990), there is reported a nucleic acid-binding motif which is present in HBc protein amino acid sequence of hepatitis B virus (HBV), and in Biochim. Biophys. Act, <u>950</u>, 45-53 (1988), there is reported protamin, which is a nucleic acid-bound protein in mouse. These can also be employed in the present invention

The nucleotide sequence and the amino acid sequence of the nucleic acid-binding motif of HBc are respectively shown in the sequence No. 1 and the sequence No. 2 in the sequence table attached to this specification; and the nucleotide sequence and the amino acid sequence of the mouse protamin are respectively shown in the sequence No. 17 and the sequence No. 18 in the sequence table attached to this specification

As mentioned above, when the protein or polypeptide conventionally produced by genetic engineering is used as the antigen to be fixed on the surface of the particles in the conventional agglutination immunoassay, it occasionally occurs that even though the polypeptide itself has reactivity with the antibody to be assayed and the antibody is in fact present in the test sample, no agglutination takes place.

In the present invention, however, this conventional problem is completely solved by use of the nucleic acid-bound polypeptide. Namely, when the nucleic acid-bound polypeptide of the present invention is used as the antigen to be fixed on the surface of particles for use in the agglutination immunoassay, the agglutination successfully takes place proportionally in accordance with the amount of the corresponding antibody in the test sample.

The nucleic acid-bound polypeptide of the present invention can be applied not only to the above-mentioned agglutination, but also to any conventional immunoassay such as ELISA (enzyme-linked immunosorbent assay).

Furthermore, the polypeptide antigen in a test sample can also be assayed by carrying out a competition reaction with the addition of a known amount of the nucleic acid-bound polypeptide to the test sample.

Conventionally, when a polypeptide is produced by genetic engineering, in many cases, the recombinant polypeptide is obtained as an insoluble fraction. Therefore, when the thus obtained polypeptide is used in practice, the polypeptide must be subjected to solubilization treatment. However, the polypeptide is often denatured in the course of the solubilization treatment, changing the antigenicity. Therefore it is preferable that the recombinant polypeptide be obtained as a soluble fraction.

In the method of producing the nucleic acid-bound polypeptide of the present invention, for example, a polypeptide is produced by genetic engineering, and the thus produced polypeptide is simultaneously caused to be bound to a nucleic acid in the host, whereby the nucleic acid-bound polypeptide is obtained as a soluble fraction.

Furthermore, as shown in the following examples, for example, when the polypeptide to be expressed as a fused polypeptide of a polypeptide and a nucleic acid-binding motif of HBc, the nucleic acid is bound to the nucleic acid-binding motif at the same time as the expression thereof, so that the nucleic acid-bound polypeptide is obtained in the soluble fraction.

Thus, there can be attained the method of producing the nucleic acid-bound polypeptide of the present invention, which comprises the steps of producing the recombinant polypeptide, binding the nucleic acid to the polypeptide to produce the nucleic acid-bound polypeptide as a soluble fraction, and purifying the nucleic acid-bound polypeptide from the soluble fraction. Other features of this invention will become apparent in the course of the following description of exemplary embodiments, which are given for illustration of the invention and are not intended to be limiting thereof.

Reference Example 1

5

10

15

20

25

35

50

[Expression of HCV Core Protein (1 - 120aa)]

A DNA fragment for coding the HCV core polypeptide with sequence ID. No. 3 in the attached sequence table was amplified by the PCR (Polymerase Chain Reaction) method, using as a template molecule a plasmid CKSC1150 with a DNA fragment including an HCV core region, and was then digested with a restriction endonuclease EcoRI and a restriction endonuclease BamHI.

An HCV core region-including DNA fragment 370 bp was separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into an ExpRI - BamHI site of an expression plasmid pW6A shown in Fig. 1, so that a plasmid

Western blotting was performed on a nitrocellulose filter, using each of the thus prepared test samples. After performing blocking using 1% BSA, each of the test samples was allowed to react with an HCV core antibody human serum which was diluted 200 times with a phosphoric acid buffer solution (10 mM phosphoric acid, pH 7.4, 0.15 M NaCl). Furthermore, a peroxydase enzyme labeled anti-human IgG rabbit polyclonal antibody (made by Daco Co., Ltd.) was then allowed to react therewith. After washing, 10 ml of a substrate coloring liquid (0.01 % aqueous solution of hydrogen peroxide, 0.6 mg/ml 4-chloro-1-naphthol) was added thereto, whereby each test sample was colored.

The results are shown in Fig. 2. As shown in Fig. 2, both the Escherichia coli test sample of Escherichia coli BL21 (DE3)/pW6AHCV core 150NA and the Escherichia coli test sample of Escherichia coli BL21 (DE3)/pW6AHCV core 120NA exhibited a positive reaction with the HCV core antibody human serum.

Example 3

10

15

20

25

35

40

45

50

55

[Purification of Soluble Nucleic Acid-bound 120NA Recombinant Protein (120(+))]

The Escherichia coli BL21 (DE3)/pW6AHCV core 120NA prepared in Example 1 was cultured ovemight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to be about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and thereafter the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.2 M NaCl, 0.3% octylthioglucoside (hereinafter referred to as "OTG") were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby a soluble fraction which contained therein a nucleic acid-bound 120NA (hereinafter referred to as "120NA(+)") was recovered.

A 50%-sucrose concentration buffer solution was prepared by adding sugar to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 30%-sucrose concentration buffer solution, and a 20%-sucrose concentration buffer solution were prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution, the 30%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The 120NA(+) containing soluble fraction was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a first sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using a Beckman ultrasonic centrifuge.

The 120NA(+) was recovered in a portion with a sucrose concentration of about 30 to 40%.

The 120NA(+) containing fraction recovered by the first sucrose density gradient ultracentrifugation was purified by Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (0.3 M NaCl, 0.1% myristyl sulfobetaine (Trademark "SB3-14" made by Sigma Co., Ltd.), whereby 120NA(+) with a molecular weight of about 700 to 1000 kDa was recovered.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 20%-sucrose concentration buffer solution was prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The above-mentioned 120NA(+) with a molecular weight of about 700 to 1000 kDa was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a second sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using the Beckman ultrasonic centrifuge, whereby the 120NA(+) was concentrated and purified.

Reference Example 2

[Purification of Insoluble 120NA]

The Escherichia coli BL21 (DE3)/pW6AHCV core 120NA prepared in Example 1 was cultured ovemight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to have about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was then centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.2 M NaCl, 0.3% OTG) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby an insoluble 120NA fraction was obtained. The thus obtained insoluble 120NA fraction was made soluble by a buffer solution (6M urea, 50 mM glycine-NaOH, pH 11.7) and was then subjected to centrifugation, whereby a supernatant fraction was obtained.

The thus obtained supernatant fraction was subjected to ion exchange purification, using an SFF cationic ion exchange column (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea, 50 mM glycine-NaOH, pH 11.7), with sodium chloride elution.

The SFF eluted fraction was then purified, using Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-0.5M NaOH, 50 mM tris-HCl, pH 9.6). Thus, a purified 120NA was obtained in a portion with a molecular weight of about 22 kDa.

Example 4

[Confirmation of Properties of 120NA and 120NA (+)]

The OD 260/280 nm ratio of the 120NA(+) purified in Example 3 was measured. The result was that the OD 260/280 nm ratio of the 120NA(+) was about 2.0, which was greater than the OD 260/280 nm ratio of the 120NA. This indicated that at least the polypeptide and the nucleic acid coexist in the 120NA(+).

Furthermore, in the sucrose density gradient ultracentrifugation, the 120NA was mostly collected in the zero% sucrose concentration region, while the 120NA(+) was mostly collected in an about 30-40% sucrose concentration region. It is considered that this fact indicates that the density of the 120NA(+) is different from that of the 120NA.

The 120NA(+) was subjected to enzyme treatment, using DNase or RNase. When the 120NA(+) was subjected to enzyme treatment, using RNase, the nucleic acid contained in the 120NA(+) was decomposed in its entirety by the RNase. It is considered that this fact indicates that the constituent nucleic acid of the 120NA(+) is RNA.

The 120NA(+) was also subjected to isoelectric focusing. The isoelectric point of the 120NA(+) was present in a wide range of pl 3.5 to 5.0.

In sharp contrast to this, the isoelectric point of the 120NA purified in Reference Example 2 was pl 12.84, with a strong positive charge, which was significantly different from the isoelectric point of the 120NA(+).

Furthermore, the 120NA(+) was also subjected to Native electrophoresis, using a 3% agarose 3% polyacrylamide gel. From the fact that luminescence was observed at the time of Ethidium bromide stain of the 120NA(+), it was confirmed that the nucleic acid was contained in the 120NA(+).

The 120NA(+) was further subjected to Western blotting and Coomassie Brilliant Blue stain, using the same gel as used in the above-mentioned Ethidium Bromide stain. The result was that in the Western blotting, the reactivity of the 120NA(+) with an anti-HCV core antibody was observed at the same position as that of the portion made luminescent by the Ethidium Bromide stain; and in the Coomassie Brilliant Blue stain, the presence of the polypeptide was confirmed.

In sharp contrast to this, with respect to the 120A, the transfer of the 120NA into the gel was not confirmed in the Native electrophoresis even when the Western blotting and the Coomassie Brilliant Blue stain were carried out.

Thus, the properties of the 120NA(+) are entirely different from those of the 120NA with respect to the apparent molecular weight, the density, and the electric charge thereof, particularly because of the increase of the apparent molecular weight of the 120NA(+) due to the binding of the nucleic acid to the polypeptide in the 120NA(+), but there are no differences in the Western blotting and agglutination reactions between the two. From these facts, it is considered that the antigenicity is maintained in the 120NA(+).

Reference Example 3

[Expression of Lysine-fused 120 (120K10)]

In the same manner as in Example 1, pW6AHCV core 120 was subjected to such gene manipulation that 10 lysine residues were continuously fused to the C-terminus of pW6AHCV core 120, whereby pW6AHCV core 120K10 was prepared.

By use of this pW6AHCV core 120K10, Escherichia coli BL21 (DE3) was subjected to transformation, whereby an ampicillin-resistant transformed Escherichia coli BL21 (DE3)/pW6AHCV core K10 was obtained. Hereinafter, the protein expressed by this ampicillin-resistant transformed Escherichia coli BL21 (DE3)/pW6AHCV core K10 is referred to as 120K10.

The above transformed Escherichia coli BL21 (DE3)/pW6AHCV core K10 was cultured overnight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to have about 0.7

7

15

20

10

30

35

40

50

55

when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium then was centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.2 M NaCl, 0.3% OTG) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby a soluble 120K10 fraction and an insoluble 120K10 fraction were separately obtained.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCI, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 30%-sucrose concentration buffer solution and a 20%-sucrose concentration buffer solution were prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution, the 30%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The above-mentioned soluble 120K10 fraction was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using the Beckman ultrasonic centrifuge. The 120K10 was not recovered in any of the 50%-sucrose concentration buffer solution, the 30%-sucrose concentration buffer solution, but was recovered on the top layer portion in the tube.

The above-mentioned insoluble 120K10 fraction was purified in the same manner as in Reference Example 2, using the SFF cationic ion exchange column (made by Pharmacia Co., Ltd.) and performing the gel filtration, whereby a purified 120K10 was recovered in a portion with a molecular weight of about 20 kDa.

Reference Example 4

[Assay of HCV Core Antigen Positive Serum]

The reactivity of each of HCV antibody positive serum 1 and HCV antibody positive serum 2 with a commercially available HCV antibody assay agent (Trademark *RIBA HCV 3.0 STRIP IMMUNOBLOT ASSAY* made by Chiron Co., Ltd.) was tested, using HCV antigen c100 (Amino acid Nos. 1569-1931), HCV antigen c33c (Amino acid Nos. 1192-1457), core antigen c22 (Amino acid Nos. 2-120) and NS5 (Amino acid Nos. 2054-2995). The result was that both HCV antibody positive serum 1 and HCV antibody positive serum 2 have antibodies in the entire antigen region including the core antigen region.

35

10

15

20

25

30

40

45

50

TABLE 1

Reactivity Tests of Positive Serums						
	c100	c33c	Core Antigen	NS5	Judgement	
Positive Serum 1	4+	4+	4+	4+	Positive ⁻	
Positive Serum 2	4+	4+	4+	4+	Positive	

Example 5

Each of the HCV antigens obtained in Reference Examples 1, 2, 3 and Example 3 was fixed on the surface of gelatin particles (made by Fujirebio Co., Ltd.) with a concentration of 10 mg/ml in a buffer solution (0.15M PBS, pH 7.1).

By use of HCV antibody positive serum 1 and HCV antibody positive serum 2 confirmed as having antibodies in the entire antigen region including the core antigen region in Reference Example 4, and a monoclonal antibody #2-7 obtained by subjecting HCV core antigen c22 to immunization, the immune reactivity of each of the above-mentioned HCV antigens fixed on the surface of gelatin particles was investigated.

25 μl of each HCV antigen-fixed gelatin particle and 25 μl of one of the above-mentioned HCV antibody positive serum 1 or HCV antibody positive serum 2, or 25 μl of the monoclonal antibody #2-7 were allowed to react in a microtiter plate (made by Fujirebio Co., Ltd.) for 2 hours, and agglutination images thereof were investigated. The results are shown in TABLE 2. In TABLE 2, the reactivity is shown with a dilution rate of 2ⁿ, and when a positive agglutination image was observed even when n was 4 or more in the dilution rate, the immune reactivity was judged as being "positive".

The monoclonal antibody #2-7 obtained by subjecting HCV core antigen c22 to immunization reacted with any

HCV core antigen, but it was only with the 120NA(+) fixed gelatin particles that HCV antibody positive serum 1 and HCV antibody positive serum 2 reacted in the above-mentioned reactions.

TABLE 2

Immune Reactivity Tests of HCV Core Antigens							
Name of Core Antigen	Positive Serum 1	Positive Serum 2	#2-7				
120NA(+)	6+	7	8				
120NA	<3	<3	7				
120K10	<3	<3	6				
120	<3	<3	4				

Example 6

5

10

15

20

25

30

40

45

55

[Rearrangement of 120NA(+) from 120NA]

By use of the transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120NA prepared in Example 1, HCV core 120NA was purified from an insoluble fraction thereof in the same manner as in Reference Example 2. The molecular weight of the purified HCV core 120NA was about 22 kDa, and the OD 260/280 nm ratio thereof was about 0.7.

To the HCV core 120NA (hereinafter referred to as 120NA), a cyclic plasmid DNA (4.7 Kbp) derived from pW6A, 6M urea and 20% sucrose were added, and 120NA was dialyzed against a buffer solution (50 mM tris-HCL, 0.15M NaCl, 20% sucrose), whereby 120NA was rearranged to 120NA(+).

The 120NA(+) which was obtained by the above-mentioned dialysis and rearrangement was purified, using Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.), whereby the 120NA(+) was recovered in a portion with a molecular weight of 700 to 1000 KD.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 20%-sucrose concentration buffer solution was prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The above recovered 120NA(+) was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using the Beckman ultrasonic centrifuge. The rearranged 120NA(+) was recovered in an about 40% to 50%-sucrose concentration portion of the buffer solution.

The OD 260/280 nm ratio of the 120NA before the rearrangement was about 0.7, and when the 120NA was rearranged to the 120NA(+), the OD 260/280 nm ratio thereof was changed from about 0.7 to about 1.7.

Furthermore, the above-mentioned rearranged 120NA(+) and the soluble 120NA(+) prepared in Example 3 have almost the same molecular weight after the gel filtration thereof, and also have almost the same specific weight thereof after the sucrose density gradient ultracentrifugation thereof. Thus, it is considered that these facts indicate that the above-mentioned rearrangement from the 120NA to the 120NA(+) was successfully conducted.

Example 7

[Construction of Transformed Escherichia coli BL21 (DE3)/pW6AHCV Core 120NA120 for Expressing 120-fused 120NA (120NA120)]

A DNA fragment for coding an HCV core polypeptide shown with sequence ID. No. 3 in the attached sequence table was amplified by the PCR method, using as a template molecule a plasmid CKSC1150 with a DNA fragment including an HCV core region being introduced, and was then digested with a restriction endonuclease Nhel and a restriction endonuclease EcoRI.

An HCV core region-including DNA fragment 370 bp was separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into an Nhel - EcoRl site of the expression plasmid pW6A shown in Fig. 1, whereby a plasmid pW6AHCV core 120 (Nhel/EcoRl) was prepared.

A DNA fragment for coding the HCV core polypeptide shown with sequence ID. No. 3 in the attached sequence table was amplified by the PCR method, using as a template molecule a plasmid CKSC1150, and was then digested with a restriction endonuclease EcoRI and a restriction endonuclease BamHI.

An HCV core region-including DNA fragment 370 bp was then separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into an EcoRI - BamHI site of the plasmid pW6AHCV core 120 (Nhel/EcoRI), whereby a plasmid pW6AHCV core 120-120 was prepared.

A DNA fragment for coding an HBc nucleic acid-binding motif with sequence ID. No. 1 in the attached sequence table was amplified by the PCR method, using as a template molecule a plasmid pHBV-11, and was then digested with a restriction endonuclease EcoRI.

A DNA fragment 110bp including the nucleic acid-binding motif was separated by 2% agarose gel electrophoresis. This DNA fragment was inserted into an EcoRl site of the above-mentioned plasmid pW6AHCV core 120-120.

By use of this plasmid, Escherichia coli BL21 (DE3) was subjected to transformation, so that an ampicillin-resistant transformed Escherichia coli BL21 (DE3)/pW6AHCV core 120NA120 for expressing 120-fused 120NA (hereinafter referred to as 120NA120) was obtained.

Example 8

20

25

30

40

45

50

55

[Purification of Insoluble 120NA120]

In the same manner as in Reference Example 2, the transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120NA120 prepared in Example 7 was cultured ovemight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to have about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was then centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.2 M NaCl, 0.3% OTG) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby an expressed 120NA120 was obtained as a soluble fraction as well as an insoluble fraction. The insoluble 120NA120 fraction was made soluble by a buffer solution (6M urea, 50 mM glycine-NaOH, pH 11.0) and was then subjected to centrifugation, whereby a supernatant fraction was obtained.

The thus obtained supernatant fraction was subjected to ion exchange purification, using an SFF cationic ion exchange column (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-glycine-NaOH, pH 11.0), with sodium chloride elution. 120NA120 was recovered in an about 0.5M sodium chloride elution fraction.

The SFF eluted fraction was then purified, using Superdex 200 (gel filtration column)(made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-0.5M NaCl, 50 mM tris-HCl, pH 9.6). Thus, a purified 120NA120 was obtained in a portion with a molecular weight of about 40 kDa.

The nucleotide sequence and the amino acid sequence of the 120NA120 are respectively shown with Sequence ID. No. 11 and Sequence ID. No. 12 in the attached sequence table.

Example 9

[Purification of Soluble Nucleic Acid-bound 120NA120 (120NA120(+)]

In the same manner as in Example 3, the *Escherichia coli* BL21 (DE3)/pW6AHCV core 120NA120 prepared in Example 7 was cultured overnight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to be about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and thereafter the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.2 M NaCl, 0.3% OTG) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby a soluble nucleic acid-bound 120NA120 (hereinafter referred to as "120NA120(+)") was recovered.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCI, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 30%-sucrose concentration buffer solution, and a 20%-sucrose concentration buffer solution were prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution, the 30%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The 120NA120(+) containing soluble fraction was overlaid on top of the overlaid buffer solutions in the ultracen-

trifuge tube, and was then subjected to a first sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using a Beckman ultrasonic centrifuge.

The 120NA120(+) was recovered in a portion with a sucrose concentration of about 30 to 40%.

The 120NA120(+) containing fraction recovered by the first sucrose density gradient ultracentrifugation was purified by Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (0.3 M NaCl, 0.3% OTG, 50 mM glycine-NaOH, pH 10.0), whereby 120NA120(+) with a molecular weight of about 700 to 1000 kDa was recovered.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 20%-sucrose concentration buffer solution was prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The above-mentioned 120NA120(+) with a molecular weight of about 700 to 1000 kDa was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a second sucrose density gradient centrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using the Beckman ultrasonic centrifuge, whereby the 120NA120(+) was concentrated and purified.

Example 10

20

25

30

10

15

[Rearrangement of 120NA120 to 120NA120(+)]

The OD 260/280 nm ratio of the 120NA120 purified in Example 9 was about 0.7.

To the purified 120NA120, there was added a purified DNA (about 1.3 to 0.7 Kbp)(made by Sigma Co., Ltd.), which was obtained form calf thymus and was subjected to sufficient cleavage by a restriction endonuclease Hae3. Furthermore, 6M urea, 20% sucrose and 1.0 M NaCI were added thereto.

This mixture was dialyzed against a buffer (50 mM tris-HCl, 0.3 M NaCl) at 4°C, whereby the 120NA120 was rearranged to a soluble 120NA120(+).

The soluble 120NA120(+) was purified by Superdex 200 (get filtration column)(made by Pharmacia Co., Ltd.), whereby a purified 120NA120(+) was recovered in a portion with a molecular weight of about 700 to 1000 kDa. The OD 260/280 nm ratio of the thus recovered rearranged 120NA120(+) was about 1.8.

Example 11

35 [Construction of Transformed Escherichia coll BL21 (DE3)/pW6A47C2NA for Expressing Nucleic Acid-Binding TP47 (TP47C2NA)]

A DNA fragment encoding a 47 kDa antigen derived from TP (Treponema pallidum), with Sequence ID No. 13 in the attached sequence table, was amplified by the PCR method, using as a template molecule a plasmid pW6A47C2 with a DNA fragment including a TP 47 kDa antigen region being introduced, and was then digested with a restriction endonuclease EcoRI and a restriction endonuclease BamHI.

A TP 47 kDa antigen region-including DNA fragment 1.3 Kbp was separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into an EcoRI-BamHI site of the expression plasmid pW6A shown in Fig. 1, whereby a plasmid pW6A47C2(EcoRI/BamHI) was prepared.

A DNA fragment for coding an HBc nucleic acid-binding motif with Sequence ID No. 1 in the attached sequence table was amplified by the PCR method, using as a template molecule a plasmid pHBV-11, and was then digested with a restriction endonuclease HamHI and a restriction endonuclease HindIII.

A nucleic acid-binding motif-containing DNA fragment 110 bp was then separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into a BamHI-HindIII site of the above plasmid pW6A47C2 (EcoRI/BamHI).

By use of this plasmid, *Escherichia coli* BL21 (DE3) was subjected to transformation, so that an ampicillin-resistant transformed *Escherichia coli* BL21 (DE3)/pW6A47C2NA for expressing a nucleic acid-binding TP47 (hereinafter referred to as TP47C2NA) was obtained.

Example 12

55

45

50

[Purification of Insoluble TP47C2NA]

In the same manner as in Reference Example 2, the transformed Escherichia coli BL21 (DE3)/pW6ATP47C2NA

prepared in Example 11 was cultured overnight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to have about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was then centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby an expressed TP47C2NA was obtained as a soluble fraction as well as an insoluble fraction. The insoluble TP47C2NA fraction was made soluble by a buffer solution (6M urea, 50 mM tris-HCl, pH 8.0) and was then subjected to centrifugation, whereby a supernatant fraction was obtained.

The thus obtained supernatant fraction was subjected to ion exchange purification, using an SFF cationic ion exchange column (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (8M urea, sodium acetate, pH 6.0), with sodium chloride elution. TP47C2NA was recovered in an about 0.5M sodium chloride elution fraction.

The SFF eluted fraction was then purified, using Superdex 200 (gel filtration column)(made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-0.5M NaCl, 50 mM tris-HCl, pH 9.6). Thus, a purified TP47C2NA was obtained in a portion with a molecular weight of about 100 kDa.

The nucleotide sequence and the amino acid sequence of the TP47C2NA are respectively shown with Sequence ID No. 15 and Sequence ID No. 16 in the attached sequence table.

Example 13

[Purification of Soluble Nucleic Acid-bound TP47C2NA (TP47C2NA(+)]

In the same manner as in Example 3, the *Escherichia coli* BL21 (DE3)/pW6ATP47C2NA prepared in Example 11 was cultured overnight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to be about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and thereafter the cultivation was continued for two hours and 30 minutes.

The Escherichia coli cultivation medium was centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol, 0.3% OTG) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby a soluble nucleic acid-bound TP47C2NA (hereinafter referred to as "TP47C2NA(+)") was recovered.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 30%-sucrose concentration buffer solution, and a 20%-sucrose concentration buffer solution were prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution, the 30%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The TP47C2NA(+) containing soluble fraction was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a first sucrose density gradient ultracentrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using a Beckman ultrasonic centrifuge.

The TP47C2NA(+) was recovered in a portion with a sucrose concentration of about 30 to 45%.

The TP47C2NA(+) containing fraction recovered by the first sucrose density gradient ultracentrifugation was purified by Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (0.3 M NaCl, 0.3% OTG, 50 mM glycine-NaOH, pH 10.0), whereby TP47C2NA(+) was recovered in a portion with a molecular weight of about 700 to 1000 kDa.

A 50%-sucrose concentration buffer solution was prepared by adding sucrose to a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) in such a manner that the concentration of sucrose in the buffer solution was 50%. In the same manner as mentioned above, a 20%-sucrose concentration buffer solution was prepared.

These buffer solutions were overlaid in an ultracentrifuge tube in the direction from the bottom to the top portion of the tube in the order of the 50%-sucrose concentration buffer solution and the 20%-sucrose concentration buffer solution.

The above-mentioned TP47C2NA(+) with a molecular weight of about 700 to 1000 kDa was overlaid on top of the overlaid buffer solutions in the ultracentrifuge tube, and was then subjected to a second sucrose density gradient centrifugation at 10°C, with a centrifugal force of 100,000 g, for 12 hours, using the Beckman ultrasonic centrifuge,

25

30

35

20

5

10

15

40

45

. 55

whereby the TP47C2NA(+) was concentrated and purified.

Example 14

[Rearrangement of TP47C2NA to TP47C2NA(+)]

The OD 260/280 nm ratio of the TP47C2NA purified in Example 12 was about 0.6.

To the purified TP47C2NA, there was added a purified DNA (about 1.3 to 0.7 Kbp)(made by Sigma Co., Ltd.), which was obtained form calf thymus and was subjected to sufficient cleavage by a restriction endonuclease Hae3. Furthermore, 6M urea, 20% sucrose and 1.0 M NaCl were added thereto.

This mixture was dialyzed against a buffer (50 mM tris-HCl, 0.3 M NaCl) at 4°C, whereby the TP47C2NA was rearranged to a soluble TP47C2NA(+).

The soluble TP47C2NA(+) was purified by Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.), whereby a purified 120NA120(+) was recovered in a portion with a molecular weight of about 700 to 1000 kDa. The OD 260/280 nm ratio of the thus recovered rearranged TP47C2NA(+) was about 1.8.

Example 15

10

15

20

25

30

35

40

[Construction of Transformed Escherichia coli BL21 (DE3)/pW6ACV Core 120prol for Expressing Mouse Protamine-1 fused 120 (120prol)]

A DNA fragment for coding a mouse protamine 1 with Sequence ID No. 17 in the attached sequence table was isolated, and amplified by the PCR method, using as a template molecule a mouse protamine 1 cDNA, and was then digested with a restriction endonuclease EcoRl and a restriction endonuclease BamHI.

A mouse protamine 1 region-including DNA fragment 160 bp was separated by 1% agarose gel electrophoresis. This DNA fragment was inserted into an EcoRI-BamHI site of the plasmid pW6AHCV core 120 (Nhel/EcoRI) prepared in Example 1.

By use of this plasmid, *Escherichia coli* BL21 (DE3) was subjected to transformation, so that an ampicillin-resistant transformed *Escherichia coli* BL21 (DE3)/pW6ACV core 120prol for expressing a mouse protamine 1 fused 120 (hereinafter referred to as 120prol) was obtained.

Example 16

[Purification of 120prol]

C ------

In the same manner as in Reference Example 2, the transformed *Escherichia coli* BL21 (DE3)/pW6AHCV core 120prol prepared in Example 15 was cultured overnight in an LB culture medium at 37°C. The optical density (OD) of the culture medium was adjusted by preculture so as to have about 0.7 when measured with light with a wavelength of 600 nm. Expression induction was then carried out with the addition of 0.5 mM IPTG thereto, and the cultivation was continued for 2 hours and 30 minutes.

The Escherichia coli cultivation medium was then centrifuged, whereby the Escherichia coli was collected. To the thus collected Escherichia coli, 150 ml of a buffer solution (50 mM tris-HCl, pH 8.0, 20% ethanol) were added, and the mixture was ice-cooled and subjected to ultrasonic disruption.

This mixture was then centrifuged, whereby an expressed 120prol was obtained as a soluble fraction as well as an insoluble fraction. The insoluble 120prol fraction was made soluble by a buffer solution (6M urea, 50 mM glycine-NaOH, pH 11.0) and was then subjected to centrifugation, whereby a supernatant fraction was obtained.

The thus obtained supernatant fraction was subjected to ion exchange purification, using an SFF cationic ion exchange column (made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-glycine-NaOH, pH 11.0), with sodium chloride elution. 120prol was recovered in an about 0.5M sodium chloride elution fraction.

The SFF eluted fraction was then purified, using Superdex 200 (gel filtration column)(made by Pharmacia Co., Ltd.) which was equilibrated with a buffer solution (6M urea-0.5M NaCl, 50 mM tris-HCl, pH 9.6). Thus, a purified 120prol was obtained in a portion with a molecular weight of about 22 kDa.

The nucleotide sequence and the amino acid sequence of the 120prol are respectively shown with Sequence ID No. 19 and Sequence ID No. 20 in the attached sequence table.

55

Example 17

5

10

15

20

25

30

35

40

45

50

55

[Rearrangement of 120prol to 120prol(+)]

The OD 260/280 nm ratio of the 120prol purified in Example 16 was about 0.7.

To the purified 120prol, there was added a purified DNA (about 1.3 to 0.7 Kbp)(made by Sigma Co., Ltd.), which was obtained form calf thymus and was subjected to sufficient cleavage by a restriction endonuclease Hae3. Furthermore, 6M urea, 20% sucrose and 1.0 M NaCl were added thereto.

This mixture was dialyzed against a buffer (50 mM tris-HCl, 0.3M NaCl) at 4°C, whereby the 120prol was rearranged to a soluble 120prol(+).

The soluble 120prol(+) was purified by Superdex 200 (gel filtration column) (made by Pharmacia Co., Ltd.), whereby a purified 120prol(+) was recovered in a portion with a molecular weight of about 700 to 1000 kDa. The OD 260/280 nm ratio of the thus recovered rearranged 120prol(+) was about 1.7.

Thus, the present invention provides the nucleic acid-bound polypeptide with various properties of the polypeptide being changed, without changing the antigenicity thereof. The use of the nucleic acid-bound polypeptide of the present invention makes it possible to perform immunoassays which have been conventionally impossible.

Furthermore, according to the present invention, there is provided a method of recovering a genetic product in a soluble fraction, which has conventionally been recovered in an insoluble fraction.

SEQUENCE LISTING

_	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Fuminori TAKEMURA et al.
	(ii) TITLE OF INVENTION: NUCLEIC ACID-BOUND POLYPEPTIDE, METHOD OF PRODUCIN
	G NUCLEIC ACID-BOUND POLYPEPTIDE. AND IMMUNOASSAY USING THE POLYPEPTIDE
10	(iii) NUMBER OF SEQUENCES: 20
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: c/o FUJIREBIO INC., 7-1
	(B) STREET: Nishi-shinjuku 2-chome
15	(C) CITY: Shinjuku-ku
	(D) STATE: Tokyo
	(E) COUNTRY: Japan
20	(F) POSTAL CODE (ZIP): 163-07
	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: NEC PC
25	(C) OPERATING SYSTEM: MS-DOS
.:	(D) SOFTWARE:
	(vi) CURRENT APPLICATION DATA:
20	(A) APPLICATION NUMBER:
30	(B) FILING DATE:
	(vii)PRIOE APPLICATION DATA:
	(A) APPLICATION NUMBER: JP 134444/1996
35	(B) FILING DATE: 1-MAY-1996
	(viii)ATTORNEY/AGENT INFORMATION
	(A) NAME:
	(B) REGISTRATION NUMBER:
40	(C) REFERENCE/DOCKET NUMBER:
	(xi) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE:
45	(B) TELEFAX:
	(2) INFORMATION FOR SEQ ID NO: 1:
	(i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 102 nucleic acids
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single strand
55	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: other nucleic acid

	(vi) ORIGINAL SOURCE:		
	(A) ORGANISM: synt	hesized	
_	(x) PUBLICATION INFORMA	TION:	
5	(A) AUTHORS: Fumino	ori TAKEMURA et al.	
	(B) TITLE:		
	(K) RELEVANT RESID	UES IN SEQ ID NO:1	: FROM 1 to 102
10	(xi) SEQUENCE DESCRIPTION	: 1:08 ID NO:1 :	
	AGACGACGAG GCAGGTCCCC TAGAA	GAAGA ACTCCCTCGC CT	CGCAGACG AAGGTCTAA
		30	6
15	TCGCCGCGTC GCAGAAGATC TCAAT	CTCGG GAATCTCAAT GT	
	•		
	(2) INFORMATION FOR SEQ ID		
	(i) SEQUENCE CHARACTER!		
20	(A) LENGTH: 34 ami	•	
	(B) TYPE: amino ac		
	(D) TOPOLOGY: line		
05	(ii) MOLECULE TYPE: prot	ein	
25	(vi) ORIGINAL SOURCE:		
	(A) ORGANISM: reco		
	(x) PUBLICATION INFORMA		•
30	(,	ori TAKEMURA et al.	
	(B) TITLE:	UES IN SEQ ID NO:2	. EPON 1 to 34
	(xi) SEQUENCE DESCRIPTIO		. гкол 1 to 34
	Arg Arg Arg Gly Arg Ser Pro		n Ser Pro Arg Arg
35		10	15
	Arg Arg Ser Lys Ser Pro Arg		
	arg arg ser bys ser rio arg	25	30
40	Gln Cys	••	
	om of s		
	(2) INFORMATION FOR SEQ ID	NO: 3:	
45	(i) SEQUENCE CHARACTERI	STICS:	
45	(A) LENGTH: 360 nu	cleic acids	
	(B) TYPE: nucleic	acid	
	(C) STRANDEDNESS:	single strand	
50	(D) TOPOLOGY: line	ar	
	(ii) MOLECULE TYPE: othe	r nucleic acid	
	(vi) ORIGINAL SOURCE:		
	(A) ORGANISM: synt	hesized	
55	(x) PUBLICATION INFORMA	TION:	

	(A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
5	(K) RELEVANT RESIDUES IN SEQ ID NO:3: FROM 1 to 360
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
	ATGAGCACAA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCCACAG
	1 30 60
0	GACGTTAAGT TCCCGGGCGG TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG
	90 120
	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA
	150 180
5	AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGTA GGACCTGGGC TCAGCCCGGG
	210 240
	TACCCTTGGC CCCTCTATGG CAACGAGGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC
ro	270 300
	CGTGGCTCTC GGCCTAGTTG GGGCCCCACA GACCCCCGGC GTAGGTCGCG TAATTTGGGT
	330 360
25	(2) INFORMATION FOR SEQ ID NO: 4:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 120 amino acids
m	(B) TYPE: amino acid
•	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(vi) ORIGINAL SOURCE:
5	(A) ORGANISM: recombinant
	· (x) PUBLICATION INFORMATION:
	(A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
ю.	(K) RELEVANT RESIDUES IN SEQ ID NO:4 : FROM 1 to 120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys. Thr Lys Arg Asn Thr Asn
15	1 5 10 15
	Arg Arg Pro Arg Asp Val Lys Phe Pro Gly Gly Gly Gln lle Val Gly
	20 25 30
	Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala
ю	35 40 45
	The Arg Lys The See Glu Arg See Gln Pro Arg Gly Arg Arg Gln Pro
	50 55 60
	ile Pro Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly
55	65 70 75 80

	Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Met Gly Trp Ala Gly Trp 85 90 95
5	Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro
	100 105 .110
	Arg Arg Ser Arg Asn Leu Gly 115 120
10	
	(2) INFORMATION FOR SEQ ID NO: 5:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 450 nucleic acids
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single strand
	(D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: other nucleic acid
	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: synthesized
25	(x) PUBLICATION INFORMATION: (A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
	(K) RELEVANT RESIDUES IN SEQ ID NO:5 : FROM 1 to 450
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
30	ATGAGCACAA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCCACGC
	30 60
	GACGTTAAAT TCCCGGGCGG TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGC
35	90 120
	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA
	150 180
40	AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGTA GGACCTGGGC TCAGCCCGGC
	210 240
	TACCCTTGGC CCCTCTATGG CAACGAGGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC
	270 300
45	CGTGGCTCCC GGCCTAGTTG GGGCCCCACG GACCCCCGGC GTAGGTCACG CAATTTGGGT
	330 360
	AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA TGGGGTACAT TCCGCTTGTC
50	
	GGCGCCCCC TAGGGGGCGC TGCCAGGGCC
	450
-	(2) INFORMATION FOR SEQ ID NO: 6:
55	(i) SPOURNCE CHARACTERISTICS:

		(A) LEI	GTH:	: 150	an.	ino a	acid	5						
		(B) TYI	E: a	anino	ac	id								
5		(D) TOI	POLO	GY: I	ine	ar								
3	(ii	i) MOL	ECULI	E TYI	PE: s	rot	ein								
	(v i) ORI	GINAL	. 501	URCE:	:									
		(A	OR(CIRAC	SM: 1	recoi	ab i na	ant							
10	(x)	PUB	LICAT	LION	INFO	RMA'	KOIT	:			•				
		(A) AUI	THORS	S: Fo	mine	ori 1	TAKE!	AURA	et a	al.				
		(B) TIT	TLE:											
15		(K) REI	EVA	NT RE	ESID	JES	12 14	11 9	ON C	:6:	FROS	1 1	:0 15	i 0
,,	(x) SEQ	UENC	E DES	SCRIE	PTIO	Y: SI	EQ 11	NO:	:6:					
	Met Se	er Thr	Asn	Pro	Lys	Pro	Gin	Arg	Lys	Thr	Lys	Arg	Asn	Thr	Asn
	1			5					10					15	
20	Arg A	rg Pro		Asp	Val	Lys	Phe		Gly	Gly	Gly	Gln		Val	Gly
			Z 0	_	_			25	_			٥.	30		
	Gly Va	al Tyr	Leu	Leu	Pro	Arg		Gly	Pro	Arg	Leu	_	Vai	Arg	Ala
25	Th - 4.	35	Th -	٠	C1	A	40	C1-	·D	A	C1 w	45	A = a	Cl a	D-0
	inr Ai	g Lys	1111	Ser	Glu	AFR 55	361	GIN	rro	MIR	60	MIR	urg	UIN	710
		o Lys	Ala	Δτσ	Ara		G1 n	Glv	Ατσ	Thr		Ala	Gin	Pro	Glv
	65	O LJS	nia	ure	70		0.0	01,	6	75	,		•••		80
30		o Trp	Pro	Leu		Gly	Asn	Glu	Gly		Gly	Trp	Ala	Gly	Trp
				85	- • -				90					95	·
	Leu Le	eu Ser	Pro		Gly	Ser	Arg	Pro	Ser	Trp	Gly	Рго	Thr	Asp	Pro
35			100					105					110		
	Arg A	g Arg	Ser	Arg	Asn	Leu	Gly	Lys	Val	lle	Asp	Thr	Leu	Thr	Cys
		115					120					125			
40	Gly Pl	ne Ala	Asp	Leu	Met	Gly	Tyr	He	Pro	Leu	Val	Gly	Ala	Рго	Leu
40	13	30				135					140				
	Gly G	ly Ala	Ala	Arg	Ala										
	145				150										
45								_							
		(FORMA			-										
	(i	i) SEQ													
50		-) LE					acı	as						
		•) TYE						4						
) ST!				_	le st	ranc	1					
	1::	ע) MOLI)) TOP					. 1		i di					
55		i) MUL					1140	. 1 & 1 0	. acı	u					
	(•)	I) UKI	LANIU	، عور	ace:										

	(A) ORGANISM: synthesized
	(x) PUBLICATION INFORMATION:
5	(A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
	(K) RELEVANT RESIDUES IN SEQ ID NO:7 : FROM 1 to 483
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
10	ATGGCTAGCG AATTCATGAG CACAAATCCT AAACCTCAAA GAAAAACCAA ACGTAACACC
	1 30 60
	AACCGCCGCC CACAGGACGT TAAGTTCCCG GGCGGTGGTC AGATCGTTGG TGGAGTTTAC
15	90 120
	CTGTTGCCGC GCAGGGGCCC CAGGTTGGGT GTGCGCGCGA CTAGGAAGAC TTCCGAGCGG
	150 180
	TCGCAACCTC GTGGAAGGCG ACAACCTATC CCCAAGGCTC GCCGGCCCGA GGGTAGGACC
20	210 240
	TGGGCTCAGC CCGGGTACCC TTGGCCCCTC TATGGCAACG AGGGTATGGG GTGGGCAGGA
	270 300
25	TGGCTCCTGT CACCCCGTGG CTCTCGGCCT AGTTGGGGCC CCACAGACCC CCGGCGTAGG 330 360
	TCGCGTAATT TGGGTGGATC CAGACGACGA GGCAGGTCCC CTAGAAGAAG AACTCCCTCG
	390 420
•	CCTCGCAGAC GAAGGTCTAA ATCGCCGCGT CGCAGAAGAT CTCAATCTCG GGAATCTCAA
30	450 480
	TGT
35	(2) INFORMATION FOR SEQ ID NO: 8:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 161 amino acids
40	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(vi) ORIGINAL SOURCE:
45	(A) ORGANISM: recombinant
	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Fuminori TAKEMURA et al.
50	(B) TITLE:
	(K) RELEVANT RESIDUES IN SEQ ID NO:8 : FROM 1 to 161
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
•	Met Ala Ser Glu Phe Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr
55	1 5 10 15
	Lys Arg Asn Thr Asn Arg Arg Pro Gin Asp Val Lys Phe Pro Gly Gly

	20 25 30									
	Gly Gin lie Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg									
5	35 40 45									
	Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg									
	50 55 60									
	Gly Arg Arg Glm Pro lle Pro Lys Ala Arg Arg Pro Glu Gly Arg Thr									
10	65 70 75 80									
	Trp Ala Gin Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Met									
	85 90 95									
15	Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp									
	100 105 110									
	Gly Pro Thr Asp Pro Arg Arg Arg Ser Arg Asn Leu Gly Gly Ser Arg									
	115 120 125									
20	Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro Arg Arg Arg									
	130 135 140									
	Arg Ser Lys Ser Pro Arg Arg Arg Ser Gln Ser Arg Glu Ser Gln 145 150 155 160									
25										
	Cys									
	(2) INFORMATION FOR SEQ ID NO: 9:									
30	(i) SEQUENCE CHARACTERISTICS:									
×	(A) LENGTH: 573 nucleic acids									
	(B) TYPE: nucleic acid									
	(C) STRANDEDNESS: single strand									
35	(D) TOPOLOGY: linear									
	(ii) MOLECULE TYPE: other nucleic acid									
•	(vi) ORIGINAL SOURCE:									
10	(A) ORGANISM: synthesized									
.•	(x) PUBLICATION INFORMATION:									
	(A) AUTHORS: Fuminori TAKEMURA et al.									
	(B) TITLE:									
15	(K) RELEVANT RESIDUES IN SEQ ID NO: 9 : FROM 1 to 573									
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:									
	ATGGCTAGCG AATTCATGAG CACAAATCCT AAACCTCAAA GAAAAACCAA ACGTAACAC									
50	••									
	AACCGCCGCC CACGGGACGT TAAATTCCCG GGCGGTGGTC AGATCGTTGG TGGAGTTTA									
	••									
	CTGTTGCCGC GCAGGGGCCC CAGGTTGGGT GTGCGCGCGA CTAGGAAGAC TTCCGAGCG									
55	150 180 TCGCAACCTC GTGGAAGGCG ACAACCTATC CCCAAGGCTC GCCGGCCCGA GGGTAGGAC									
	ICUCARCCIC GIGGRAGGEG ACARCCIAIC COCARGGEIC GCCGGCCCGA GGGIAGGAC									

				210	1		240
	TGGGCT	CAGC CCGG	GTACCC 1	TGGCCCCTC	TATGGCAA	CG AGGGTA1	TGGG GTGGGCAGGA
5				270	ı		300
	TGGCTC	CTGT CACC	CCGTGG C	TCCCGGCCT	AGTTGGGG	CC CCACGGA	CCC CCGGCGTAGG
				330			360
	TCACGC	AATT TGGG	TAAGGT C	CATCGATACC	CTCACATG	G GCTTCGC	CGA CCTCATGGGG
10				390			420
	TACATT	CCGC TTGT	CGGCGC C	CCCCTAGGG	GGCGCTGC	A GGGCCGC	ATC CAGACGACGA
				450			480
15	GGCAGGT	CCC CTAG	AAGAAG A	ACTCCCTCG	CCTCGCAGA	C GAAGGTO	TAA ATCGCCGCGT
				510			540
	CGCAGA	AGAT CTCA	ATCTCG G	GAATCTCAA	TGT	•	
				570			
20							
	•-•			ID NO: 1			
	(i)			TERISTICS			
25				l amino a	cids		
,			PE: amin				
			POLOGY:	•			
		MOLECUL		•	,		
30	(V1)	ORIGINA			- •		
	(-)			recombina	nt		
	(x)			ORMATION:	AKEMURA et	-1	
35		(B) TI		uminoii (AREMUKA EL	41	
		•-•		eciniiec i	N SEO ID N	0· 10 · F	ROM 1 to 191
	(vi)	-			Q ID NO: 1		MOM 1 CO 131
							Arg Lys Thr
40	1		5		10		15
	_	Asn Thr	,	Arg Pro		l Lys Phe	Pro Gly Gly
		20			25		30
45	Gly Gln	lle Val	Gly Gly	Val Tyr	Leu Leu Pr	o Arg Arg	Gly Pro Arg
		35		40		45	
	Leu Gly	Val Arg	Ala Thr	Arg Lys	Thr Ser Gl	u Arg Ser	Gln Pro Arg
	50			55		60	
50	Gly Arg	Arg Gln	Pro Ile	Pro Lys	Ala Arg Ar	g Pro Glu	Gly Arg Thr
	65		70		75		80
	Trp Ala	Gln Pro	Gly Tyr	Pro Trp I	Pro Leu Ty	r Gly Asn	Glu Gly Met
55			85		90		95
	Gly Trp	Ala Gly	Trp Leu	Leu Ser I	Pro Arg Gl	y Ser Arg	Pro Ser Trp

	;	100	105		110
	Gly Pro Thr	Asp Pro Arg A	rg Arg Ser Arg	Asn Leu Gly	Lys Val Ile
5	115		120	125	
J	Asp Thr Leu	Thr Cys Gly P	ne Ala Asp Leu	Met Gly Tyr	lle Pro Leu
	130	1	35	140	
	Val Gly Ala	ro Leu Gly G	ly Ala Ala Arg	Ala Gly Ser	Arg Arg Arg
10	145	150		155	160
		Pro Arg Arg A	rg Thr Pro Ser	Pro Arg Arg	Arg Arg Ser
		165	170		175
	Lys Ser Pro	Arg Arg Arg A	rg Ser Gln Ser	Arg Glu Ser	Gln Cys
15		180	185		190
	(2) INFORMAT	ION FOR SEQ I	D NO: 11:		
20	(i) SEQU	ENCE CHARACTE	RISTICS:		
	(A)	LENGTH: 843	nucleic acids		
	(B)	TYPE: nuclei	c acid		
05	(C)	STRANDEDNESS	: single strar	.d	
25	' (D)	TOPOLOGY: li	near		
÷	(ii) MOLE	CULE TYPE: ot	her nucleic ac	id	
	(vi) ORIG	INAL SOURCE:			
30	(A)	ORGANISM: sy	nthesized		
	•	ICATION INFOR			
	4 ,		inori TAKEMURA	et al.	
		TITLE:			
35	****			D NO:11 : FRO	M 1 to 843
	• •		ION: SEQ ID NO		
,	ATGGCTAGCA T	JAGCACAAA TCC		AAAA CCAAACGT	
40			30		6 TTACCTCTT
	CGCCCACAGG A	CGITAAGIT CCC		ATCG TTGGTGGA	12
	CCCCC04CCC	COCACCTT CCC	90	AGGA AGACTTCC	
	CCGCGCAGGG G	CCCAGGII GGG	150	AUGA AUACTICC	18
45	CCTCCTCCAA C	CCACAACC TAT		CGGC CCGAGGGT	
	CCICGIGGAA G	JCGACAACC IAI	210	COUC CCOROUGE	24
	CACCCCCCC A	CONTRACT COT		GGTA TGGGGTGG	
50	CAUCCCUUU! A		270	ddin idddiidd	30
	CTGTCACCCC G	recetetes see		ACAG ACCCCCGG	
	CIGICACCC G	144010104 400	330	DUUUUU DUUUU	36
	AATTTCCCTC A	ATTCACACC ACC		AGAA GAAGAACT	
55	AMILIUUUIU A	TITCHUNCO NCU		NUMB UNNUMBER	42
			390	•	421

	AGACGAAGGT CTAAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTGAA
	450 480
5	TTCATGAGCA CAAATCCTAA ACCTCAAAGA AAAACCAAAC GTAACACCAA CCGCCGCCCA
	510 540
	CAGGACGITA AGTICCCGGG CGGTGGTCAG ATCGTTGGTG GAGTITACCT GTTGCCGCGC
	570 600
10	AGGGGCCCCA GGTTGGGTGT GCGCGCGACT AGGAAGACTT CCGAGCGGTC GCAACCTCGT
	630 660
	GGAAGGCGAC AACCTATCCC CAAGGCTCGC CGGCCCGAGG GTAGGACCTG GGCTCAGCCC
15	690 720
	GGGTACCCTT GGCCCCTCTA TGGCAACGAG GGTATGGGGT GGGCAGGATG GCTCCTGTCA
	750 780
	CCCCGTGGCT CTCGGCCTAG TTGGGGCCCC ACAGACCCCC GGCGTAGGTC GCGTAATTTG
20	810 840
	GGT
25	(2) INFORMATION FOR SEQ ID NO: 12:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 281 amino acids
	(B) TYPE: amino acid
30	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: recombinant
35	-(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
40	(K) RELEVANT RESIDUES IN SEQ ID NO:12 : FROM 1 to 281
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
	Met Ala Ser Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg
	1 5 10 15
45	Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln
	20 25 30
	lle Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly
50	35 40 45
<i>50</i>	Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg
	50 55 60
	Arg Gln Pro lie Pro Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala
55	65 70 75 80
	Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Met Gly Trp

					85					90					95	
	Ala	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	Pro	Ser	Trp	Gly	Рго
5				100					105					110		
	Thr	Asp	Pro	Arg	Arg	Arg	Ser	Arg	Asn	Leu	Gly	Glu	Phe	Arg	Arg	Arg
			115					120					125			
	Gly	Arg	Ser	Pro	Arg	Arg	Arg	Thr	Pro	Ser	Pro	Arg	Arg	Arg	Arg	Ser
10		130					135					140				
	lys	Ser	Pro	Arg	Arg	Arg	Arg	Ser	Gln	Ser	Arg	Glu	Ser	Gln	Cys	Glu
	145					150					155					160
15	Phe	Met	Ser	Thr		Pro	Lys	Pro	Gln		Lys	Thr	Lys	Arg	Asn	Thr
				_	165					170			_		175	
	Asn	Arg	Arg		Gln	Asp	Val	Lys		Pro	Gly	Gly	Gly		He	Val
20		•		180					185		_			190		
20	Gly	Gly		Tyr	Leu	Leu	Pro		Arg	GLY	Pro	Arg		Gly	Val	Arg
	41.	Th	195	1	Th-	°	C1	200	°	C1-	D=0	A	205	۸	A	C1 -
	MIZ	210	HIR	LJS	Inr	Ser	215	uik	261	uin	rio	220	uıy	Arg	HIR	GIR
25	Pro		Pro	ive	Ala	Arg		Pro	Cln	Glv	Ara		Trn	Ala	Gla	Pro
•	225			5,5		230	0			J.,	235	· · · ·	,		4	240
		Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu		Met	Gly	Trp	Ala	
30	-			•	245		•			250	•			•	255	
	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	Pro	Ser	Trp	Gly	Pro	Thr	Asp
				260					265		,			270		
	Pro	Arg	Arg	Arg	Ser	Arg	Asn	Leu	Gly							
35			275					280								
	(2)					SEQ										
40		(i)				RACT										
•						124			c ac	105						
						ucle					ı					
45						DNES Y: L		_	e 51	rand	i					
***		/i:\				E: 0			laic	201	А					
		-				RCE:		nuc	1610	acı	u					
	`	. • 1 /				M: s		esi 7	eđ							
50	((x)				INFO										
	•	,				: Fu				URA	et a	1.		•		
				TIT							_					
55						T RE	SIDU	ES I	N SE	Q ID	NO:	13 :	FRO	М 1	to 1	245
	(xi)				CRIP										

	AIGGGCICGI	CICATCAIGA			CGCTAAGCTA	IGCGGACTA
			30			81
5	TGGGCCGGGG	AGTTGGGGCA	GAGTAGGGAC	GTGCTTTTGG	CGGGTAATGC	CGAGGCGGA
			90			120
	CGCGCGGGG	ATCTCGACGC	AGGCATGTTC	GATGCAGTTT	CTCGCGCAAC	CCACGGGCAT
			150			180
10	GGCGCGTTCC	GTCAGCAATT	TCAGTACGCG	GTTGAGGTAT	TGGGCGAAAA	GGTTCTCTCC
			210			240
	AAGCAGGAGA	CCGAAGACAG	CAGGGGAAGA	AAAAAGTGGG	AGTACGAGAC	TGACCCAAG
15			270			300
	GTTACTAAGA	TGGTGCGTGC	CTCTGCGTCA	TTTCAGGATT	TGGGAGAGGA	CGGGGAGATT
			330			360
	AAGTTTGAAG	CAGTCGAGGG	TGCAGTAGCG	TTGGCGGATC	GCGCGAGTTC	CTTCATGGTT
20			390			420
	GACAGCGAGG	AATACAAGAT		AAGGTTCACG	GTATGAAGTT	TGTCCCAGTT
			450			480
25	GCGGTTCCTC	ATGAATTAAA		AAGGAGAAGT	TTCACTTCGT	
	200277120		510		070.00.7.0	540
	CGCGTTACGG	AGAATACCAA		ACAAIGCICA	CTGAGGATAG	
	CCTAACCTAA	CCACCATCCA	570	CACCTTCTCC	TAGACACGGT	600
30	CUTANGUTAN	GCAGCA IGGA	630	UNCCITOTUU	TAGACACGGT	660
	TACCACAGCC	CTITTCCTTC		CCTTCTCTCA	TGCTGAAAAG	
	INCONUNCC	VIIIIUUIIC	690	delicidida	IUCIUAAAAU	720
35	TOTGAGOTOT	CCCACCCTCA		TATGTGATGA	ACTTCAACAC	
			750	INITIONIUM	nottonnonc	780
	GACTACTACG	GTGATGACGC		AATCTGATGG	CGAGTTATGG	
			810			840
40	TCTGCTGACT	CCTGGTGGAA	GACAGGAAGA	GTGCCCCGCA	TTTCGTGTGG	
			870			900
	GGGTTCGATC	GGTTTAAAGG	TTCAGGGCCG	GGATACTACA	GGCTGACTTT	GATTGCGAAC
45			930			960
	GGGTATAGGG	ACGTAGTTGC	TGATGTGCGC	TTCCTTCCCA	AGTACGAGGG	GAACATCGAT
			990			1020
	ATTGGGTTGA	AGGGGAAGGT	GCTGACCATA	GGGGGCGCGG	ACGCGGAGAC	TCTGATGGAT
50		•	1050			1080
	GCTGCAGTTG	ACGTGTTTGC	CGATGGACAG	CCTAAGCTTG	TCAGCGATCA	AGCGGTGAGC
			1110			1140
55	TTGGGGCAGA	ATGTCCTCTC	TGCGGATTTC	ACTCCCGGCA	CTGAGTACAC	GGTTGAGGTT
			1170			1200

AGGTTCAAGG AATTTGGTTC TGTGCGTGCG AAGGTAGTGG CCCAG 1230

	(2)	1 NF	ORMA	TION	FOR	SEQ	10	NO:	14:							
		(i)	SEQ	UENC	E CH	ARAC	TERI	STIC	\$:							
			(A) LE	NGTH	: 41	S am	ino	acid	s						
10			(B) TY	PE:	amin	o ac	id								
			(D) TO	POLO	GY:	line	ar								
		(ii)	MOL	ECUL	E TY	PE:	prot	ein								
15		(yi)	ORI	GINA	L SO	URCE	:									
			(A) OR	GANI	SM:	reco	mbin	ant							
		(x)	PUB	LICA	TION	INF	ORMA	KOIT	:							
			(A) AÜ	THOR	S: F	umin	ori	TAKE	MURA	et	al.				
?0			(B) TI	TLE:											
			(K) RE	LEVA	NT R	ESID	UES	IN S	EQ [D NO	:14	: FR	0M 1	to	415
		(xi)	SEQ	UENC	E DE	SCRI	OITS	N: S	EQ I	D NO	:14	:	•			
25	Me t	Gly	Ser	Ser		His	Glu	Thr	His	Туг	Gly	Tyr	Ala	Thr	Leu	Se
•	1				5					10					15	
	Tyr	Ala	Asp		Trp	Ala	Gly	Glu	Leu	Gly	Gln	Ser	Arg	Аsр	Val	Le
			•	20					25					30		
30	Leu	Ala		Asn	Ala	Glu	Ala		Arg	Ala	Gly	Asp		Asp	Ala	Gly
	W- 1	D	35	41.	W = 1	S		40	Th	n:	01	н.	45		•	
	met	Phe 50	MSP	Ala	vai	261	55	HIZ	lar	nis	GIA	60	GIY	Ala	rne	Arg
35	Gla	Gln	Dha	Cl n	tur	415		G1	Val	Lau	Clv		1 4 4	V = 1	1	٥
	65	4111	1 110	VIII	171	70	,	014	141	ren	75	UIU	P1 2	Val	Leu	80
		Gln	Gla	Thr	Glu		Ser	Ara	C1 v	A = a		ive	Ten	G1 ii	Tur	
	5,0	• • • • • • • • • • • • • • • • • • • •	•••	101	85	пор	001	6	u.,	90	673	6,73	11.7	Q I u	95	011
10	Thr	Asp	Pro	Ser		Thr	Lys	Met	Val		Ala	Ser	Ala	Ser		Glo
				100					105			•••		110		
	Asp	Leu	Gly	Glu	Asp	Gly	Glu	lle		Phe	Glu	Ala	Val		Gly	Ala
15			115					120					125			
	Val	Ala	Leu	Ala	Asp	Arg	Ala	Ser	Ser	Phe	Met	Val	Asp	Ser	Glu	Glu
		130					135					140				
	Tyr	Lys	Ιle	Thr	Asn	Val	Lys	Val	His	Gly	Met	Lys	Phe	Val	Pro	Val
50	145					150					155		•			160
	Ala	Val	Pro	His	Glu	Leu	Lys	Gly	lle	Ala	Lys	Glu	Lys	Phe	His	Phe
					165					170					175	
55	Val	Glu	Asp	Ser	Arg	Val	Thr	Glu	Asn	Thr	Asn	Gly	Leu	Lys	Thr	Met
				180					185					190		

	Lea	Thr	Glu	Asp	Ser	Phe	Ser	Ala	Arg	Lys	Val	Ser	Ser	Met	Glu	Ser
			195					200					205			
5	Pro	His	Asp	Leu	Val	Val	Asp	Thr	Val	Gly	Thr	Yal	Tyr	His	Ser	Arg
		210					215					220				
	Phe	Gly	Ser	Asp	Ala	Glu	Ala	Ser	Val	Met	Leu	Lys	Arg	Ala	Asp	Gly
	225					230	٠				235					240
10	Ser	Glu	Leu	Ser	His	Arg	Glu	Phe	He	Asp	Tyr	Val	Met	Asn	Phe	Asn
					245					250					255	
•	Thr	Val	Arg	Tyr	Asp	Tyr	Tyr	Gly	Asp	Asp	Ala	Ser	Tyr	Thr	Asn	Leu
15				260					265					270		
	Met	Ala	Ser	Tyr	Gly	Thr	Lys	His	Ser	Ala	Asp	Ser		Trp	Lys	Thr
			275					280					285			
	Gly	Arg	Val	Pro	Arg	lle		Çys	Gly	lle	Asn		Gly	Phe	Asp	Arg
20		290					295					300				
		Lys	Gly	Ser	Gly		Gly	Tyr	Tyr	Arg		Thr	Leu	He	Ala	
	305					310					315		_		_	320
25	Gly	Tyr	Arg	Asp		Val	Ala	Asp	Val		Phe	Leu	Pro	Lys		Glu
		:			325				•	330	,, ,		 .		335	01
	Gly	Asn	lle		He	Gly	Leu	Lys		Lys	Val	Leu	IDT		GIA	GIA
	41.		41-	340	Th -	l	W- 4		345	41.	V = 1	4	V-1	350 Bho	41.	4 c o
30	нта	Asp	355	viu	inr	Leu	me t	360	HIA	nia	Tal	KSP	365	rue	піа	иор
	C1 v	Gln		lve	Lau	ا د ۷	Sar		Cla	Δla	Val	Ser		Glv	Gln	Asn
	01)	370		6,3	LCu	141	375	пор			,	380	504	. .,		
35	Val	Leu	Ser	Ala	Asp	Phe		Pro	Gly	Thr	Glu		Thr	Val	Gla	Val
	385	••-	•••			390			•		395					400
		Phe	Lys	Glu	Phe		Ser	Yal	Arg	Ala	Lys	Val	Val	Ala	Gln	
			-•		405				_	410					415	
10						•										
	(2)	INFO	RMAT	KOL	FOR	SEQ	1 D 1	i0: 1	5:							
		(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	S :							
15			(A)	LEN	IGTH:	136	8 nu	ıclei	c ac	ids						
			(B)	TYP	E: n	nucle	ic a	cid								
			(C)	STR	ANDE	DNES	S: s	ingl	e st	ranc	l					
			(D)	TOP	OLOG	Y: 1	inea	ır								
50	1	(ii)	MOLE	CULE	TYP	'E: c	ther	nuc	leid	aci	d					
	1	(vi)	ORIG	INAL	. sot	RCE:										
			(A)	ORG	ANIS	M: s	ynth	esiz	ed							
55	1	(x)	PUBL	I CAT	NOI	INFO	RMAT	ION:								
			(A)	AUT	HORS	: Fu	mino	ri T	TAKEN	IURA	et a	ıl.				

11	• •	•		P 1	c	
۱t	3)	ı	ı	ΓL	C	:

	(K) RELEVANT	BEZIDUEZ 19	SEQ ID NO	15 : FROM	to 1368
5	(xi) SE	QUENCE DESC	RIPTION: SEC	Q ID NO:15	:	
	ATGGCTAGCG	AATTCATGGG	CTCGTCTCAT	CATGAGACGC	ACTATGGCTA	TGCGACGCTA
			30			60
	AGCTATGCGG	ACTACTGGGC	CGGGGAGTTG	GGGCAGAGTA	GGGACGTGCT	TTTGGCGGGT
10			90			120
	AATGCCGAGO	CGGACCGCGC	GGGGGATCTC	GACGCAGGCA	TGTTCGATGC	AGTTTCTCGC
			150			180
15	GCAACCCACO	GGCATGGCGC	GTTCCGTCAG	CAATTTCAGT	ACGCGGTTGA	GGTATTGGGC
			210			240
	GAAAAGGTTC	TCTCGAAGCA	GGAGACCGAA	GACAGCAGGG	GAAGAAAAA	GTGGGAGTAC
			270			300
20	GAGACTGACO	CAAGCGTTAC	TAAGATGGTG	CGTGCCTCTG	CGTCATTTCA	GGATTTGGGA
			330			360
	GAGGACGGG	AGATTAAGTT	TGAAGCAGTC	GAGGGTGCAG	TAGCGTTGGC	GGATCGCGCG
25			390			420
	AGTTCCTTCA	TGGTTGACAG	CGAGGAATAC	AAGATTACGA	ACGTAAAGGT	TCACGGTATG
			450			480
	AAGTTTGTC	CAGTTGCGGT	TCCTCATGAA	TTAAAAGGGA	TTGCAAAGGA	GAAGTTTCAC
30			510	,		540
	TTCGTGGAAC	ACTCCCGCGT	TACGGAGAAT	ACCAACGGCC	TTAAGACAAT	GCTCACTGAG
			570			600
	GATAGTTTTT	CTGCACGTAA	GGTAAGCAGC	ATGGAGAGCC	CGCACGACCT	TGTGGTAGAC
35			630			660
	ACGGTGGGT	CCGTCTACCA	CAGCCGTTTT	GGTTCGGACG	CAGAGGCTTC	
			690			720
10	AAAAGGGCTC	ATGGCTCTGA		CGTGAGTTCA	TCGACTATGT	
			750			780
	AACACGGTC	GCTACGACTA	CTACGGTGAT	GACGCGAGCT	ACACCAATCT	
			810			840
15	TATGGCACCA	AGCACTCTGC		TGGAAGACAG	GAAGAGTGCC	
			870			900
	TGTGGTATCA	ACTATGGGTT		AAAGGTTCAG	GGCCGGGATA	
50			930			960
	ACTTTGATTO	GCGAACGGGTA		GTTGCTGATG	TGCGCTTCCT	
			990			1020
	GAGGGGAACA	TCGATATTGG		AAGGTGCTGA	CCATAGGGGG	
55			1050			1080
	GAGACTCTGA	TGGATGCTGC	AGTTGACGTG	TTTGCCGATG	GACAGCCTAA	GCTTGTCAGC

				111	0			1140
	GATCAAG	CGG TGAC	CTTGGG 0	CAGAATGT	C CTCTCT	GCGG ATT	TCACTCC	CGGCACTGAG
5				117	0			1200
	TACACGG	TTG AGG1	TAGGTT (AAGGAATT	T GGTTCT	GTGC GTG	CGAAGGT	AGTGGCCCAG
				123	0			1260
	GGATCCA	GAC GAC	AGGCAG G	TCCCCTAG	A AGAAGA	ACTC CCT	CGCCTCG	CAGACGAAGG
10				129	0			1320
	TCTAAAT	CGC CGCC	TCGCAG A	AGATCTCA.	A TCTCGG	GAAT CTC	AATGT	
				135	0			
15								
	•) ID NO:				
	(i)			TERISTIC				
		•		5 amino	acids			
20			PE: amin					
	(::)		POLOGY:				•	
			E TYPE: L SOURCE	-				
25	(41)			recombin	an t			
	(*)			ORMATION				
	(*/			uminori '	•	et al		
		(B) TI		·		••••		
30		-		ESIDUES	IN SEQ II	D NO:16	: FROM 1	to 456
	(xi)	SEQUENC	E DESCRI	PTION: SI	Q ID NO	:16 :		
	Met Ala	Ser Glu	Phe Met	Gly Ser	Ser His	His Glu	Thr His	Tyr Gly
35	1		5		10			15
	Tyr Ala	Thr Leu	Ser Tyr	Ala Asp	Tyr Trp	Ala Gly	Glu Leu	Gly Gln
		20			25		30	-
40	Ser Arg	Asp Val	Leu Leu	Ala Gly	Asn Ala	Glu Ala	Asp Arg	Ala Gly
		35		40			45	
		Asp Ala	Gly Met	Phe Asp	Ala Val		Ala Thr	His Gly
	50			55		60		
45		Ala Phe		Gln Phe	Gln Tyr		Glu Val	
	65		70	01 01	* : 0:	75		80
	GIU LYS	Val Leu		Gln Glu		Asp Ser	Arg Gly	
50	lva Tan	Cin Tu-	85	Ass Des	90	The Luc	No. Val	95
	rle ilb	100		Asp Pro	Ser val	IHT LYS	met val	uig wig
	Ser Ala			Leu Gly		Cly Clu		Phe Clu
	Set WIG	115	uin nsp	120	giu nap	AIL AIR	125	. HC GIU
55	Ala Val		Ala Val	Ala Leu	Ala Asn	Arg Ala		Phe Met
		411			a usb	9 1114	20. 001	

		130					135					140				
	Val	Asp	Ser	Glu	Glu	Туг	Lys	ile	Thr	Asn	Val	Lys	Yal	His	Gly	Me
5	145					150					155					160
	Lys	Phe	Val	Pro	Val	Ala	Val	Pro	His	Glu	Leu	Lys	Gly	lle	Ala	Lys
					165					170					175	
	Glu	Lys	Phe	His	Phe	Val	Glu	Asp	Ser	Arg	Val	Thr	Glu	Asn	Thr	Asn
10				180					185					190		
	Gly	Leu	Lys	Thr	Met	Leu	Thr	Glu	Asp	Ser	Phe	Ser	Ala	Arg	Lys	Va l
			195					200					205			
15	Ser	Ser	Met	Glu	Ser	Pro	His	Asp	Leu	Val	V a l	Asp	Thr	Val	Gly	Thr
		210					215					220				
			His	Ser	Arg	Phe	Gly	Ser	Asp	Ala	Glu	Ala	Ser	Val	Met	Leu
	225					230					235					240
20 ,	Lys	Arg	Ala	Asp		Ser	Glu	Leu	Ser		Arg	Glu	Phe	Ile		Tyr
					245				_	250	_	_	_		255	
	Val	Met	Asn		Asn	Thr	Val	Arg		Asp	Туг	Tyr	Gly	Asp	Asp	Ala
25			T .	260					265		•		n ·	270		
	3er	IYE		ASN	Leu	met	Ala		lyr	GIY	ınr	Lys		Ser	Ala	ASP
	505	Ten	275 Ten	Ive	Th-	C1 v	A = a	280	D-a	1	110	50-	285	C1	11.	A
	361	290	119	LJS	1111	uly	295	V d 1	PLO	WI R	116	300	Cys	Gly	116	ASI
30	Tvr		Phe	Asn	. A r a	Pha		Glv	Ser	Glv	Pro		Tur	Tyr	4-5	ī au
	305	•.,				310	2,0	4.,	501	41,	315	41,	.,.	1,1,1	ur 9	320
		Leu	lle	Ala	Asn		Tyr	Arg	Asp	Val		Ala	Asp	Val	Arg	
35					325	•				330			,		335	
	Leu	Pro	Lys	Tyr		Gly	Asn	lle	Asp		Gly	Leu	Lys	Gly		Val
				340					345					350		
	Leu	Thr	lle	Gly	Gly	Ala	Asp	Ala	Glu	Thr	Leu	Met	Asp	Ala	Ala	Val
10			355					360		ı			365			
	Asp	Val	Phe	Ala	Asp	Gly	Gln	Pro	Lys	Leu	Val	Ser	Asp	Gln	Ala	Val
		370					375					380				
15	Ser	Leu	Gly	Gln	Asn	Val	Leu	Ser	Ala	Asp	Phe	Thr	Pro	Gly	Thr	Glu
	385					390					395					400
	Tyr	Thr	Val	Glu	Val	Arg	Phe	Lys	Glu	Phe	Gly	Ser	Val	Arg	Ala	Lys
					405					410					415	
50	Val	Val	Ala	Gln	Gly	Ser	Arg	Arg	Arg	Gly	Arg	Ser	Pro	Arg	Arg	Arg
				420					425					430		
	Thr	Pro		Pro	Arg	Arg	Arg		Ser	Lys	Ser	Pro		Arg	Arg	Arg
55			435		_		_	440					445			
	Set	Gln	Ser	Arg	Glu	Ser	Gin	Cys								

450 455

(2) INFORMATION FOR SEQ ID NO: 17:

	(i) SEQUENCE CHARACTERISTICS:	
	· (A) LENGTH: 153 nucleic acids	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single strand	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: synthesized	
	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Fuminori TAKEMURA et al.	
20	(B) TITLE:	
	(K) RELEVANT RESIDUES IN SEQ ID NO:17 : FROM 1 to 153	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	ATGGCCAGAT ACCGATGCTG CCGCAGCAAA AGCAGGAGCA GATGCCGCCG TCGCAGACGA	A
25	30 66	0
	AGATGTCGCA GACGGAGGAG GCGATGCTGC CGGCGGAGGA GGCGAAGATG CTGCCGTCG	C
	90 120)
30	CGCCGCTCAT ACACCATAAG GTGTAAAAAA TAC	
	150	
	(2) INFORMATION FOR SEQ ID NO: 18:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 51 amino acids	
	(B) TYPE: amino acid	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: recombinant	
45	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Funinori TAKEMURA et al.	
	(B) TITLE:	
50	(K) RELEVANT RESIDUES IN SEQ ID NO:18 : FROM 1 to 51	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	Met Ala Arg Tyr Arg Cys Cys Arg Ser Lys Ser Arg Ser Arg Cys Arg	
	1 5 10 15	
55	Arg Arg Arg Arg Cys Arg Arg Arg Arg Arg Cys Cys Arg Arg	
	20 25 30	

	us us us us oto oto us us us us us as its its the tie Will Cha
	35 40 45
5	Lys Lys Tyr
5	50
	(2) INFORMATION FOR SEQ ID NO: 19:
10	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 528 nucleic acids
·	(B) TYPE: nucleic acid
•	(C) STRANDEDNESS: single strand
15	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: other nucleic acid
	(vi) ORIGINAL SOURCE:
20	(A) ORGANISM: synthesized
	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Fuminori TAKEMURA et al.
	(B) TITLE:
25	(K) RELEVANT RESIDUES IN SEQ ID NO:19 : FROM 1 to 528
÷	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
	ATGGCTAGCA TGAGCACAAA TCCTAAACCT CAAAGAAAAA CCAAACGTAA CACCAACC
30	30
	CGCCCACGGG ACGTTAAATT CCCGGGCGGT GGTCAGATCG TTGGTGGAGT TTACCTGT
	90
	CCGCGCAGGG GCCCCAGGTT GGGTGTGCGC GCGACTAGGA AGACTTCCGA GCGGTCGC
35	150
	CCTCGTGGAA GGCGACAACC TATCCCCAAG GCTCGCCGGC CCGAGGGTAG GACCTGGG
	210
10	CAGCCCGGGT ACCCTTGGCC CCTCTATGGC AACGAGGGTA TGGGGTGGGC AGGATGGCT
	270 270 CTGTCACCCC GTGGCTCCCG GCCTAGTTGG GGCCCCACGG ACCCCCGGCG TAGGTCACC
	330
	AATTTGGGTG AATTCATGGC CAGATACCGA TGCTGCCGCA GCAAAAGCAG GAGCAGATG
1 5	390 42
	CGCCGTCGCA GACGAAGATG TCGCAGACGG AGGAGGCGAT GCTGCCGGCG GAGGAGGCG
	450 48
50	AGATGCTGCC GTCGCCGCCG CTCATACACC ATAAGGTGTA AAAAATAC
	510
	(2) INFORMATION FOR SEQ ID NO: 20:
55	(i) SEQUENCE CHARACTERISTICS:

	(A) LE	NGTH: 17	6 amino a	acids		
	(B) TY	PE: amino	o acid			
5	(D) TO	POLOGY:	linear			
(i	i) MOLECUL	E TYPE:	protein			
(v	i) ORIGINA	L SOURCE	:			
10	(A) OR	GANISM:	recombina	int	•	
(x) PUBLICA	TION INFO	ORMATION:			
	(A) AU	THORS: F	uminori T	AKEMURA	et al.	
	(B) TI	TLE:				
15	(K) RE	LEVANT RI	ESIDUES I	N SEQ II) NO:20 :	FROM 1 to 176
(x	i) SEQUENC	E DESCRII	PTION: SE	Q ID NO:	: 20 :	
Met A	la Ser Met	Ser Thr	Asn Pro	Lys Pro	Gln Arg I	Lys Thr Lys Arg
20 1		5		10		15
Asn T	hr Asn Arg	Arg Pro	Arg Asp	Val Lys	Phe Pro (Gly Gly Gly Gln
	20			25		30
	al Gly Gly	Val Tyr	Leu Leu	Pro Arg	Arg Gly F	ro Arg Leu Gly
25	35		40		4	15 -
Val A	rg Ala Thr	Arg Lys	Thr Ser	Glu Arg	Ser Gin F	ro Arg Gly Arg
5	0		\$5		60	
30 Arg G	ln Pro ile	Pro Lys	Ala Arg	Arg Pro	Glu Gly A	rg Thr Trp Ala
65		70			75	80
Gln P	ro Gly Tyr		Pro Leu	Tyr Gly	Asn Glu 0	ly Met Gly Trp
25		85		90		95
35 Ala G		Leu Ser			Arg Pro S	er Trp Gly Pro
	100			105		110
Thr A		Arg Arg		Asn Leu		he Met Ala Arg
40	115		120			25
				Arg Ser		rg Arg Arg Arg
	30		135		140	
4E	rg Cys Arg		Arg Arg	-	_	rg Arg Arg Arg
145	Cu	150	A		155	160
arg C	ys cys arg		wig yer		ile Arg C	ys Lys Lys Tyr
		165		170		175
50						

Claims

- 1. A nucleic acid-bound polypeptide obtainable by binding a nucleic acid to a polypeptide.
- 2. The nucleic acid-bound polypeptide as claimed in claim 1, wherein said nucleic acid is bound to at least one terminus of said polypeptide.

- The nucleic acid-bound polypeptide as claimed in claim 1 or 2, further comprising a nucleic acid-binding motif through which said nucleic acid is bound to said polypeptide.
- The nucleic acid-bound polypeptide as claimed in claim 3, wherein said polypeptide and said nucleic acid-binding motif are expressed in the form of a fusion polypeptide by genetic engineering.
 - The nucleic acid-bound polypeptide as claimed in claim 3, wherein said nucleic acid-binding motif has the sequence SEQ ID N° 2.
- The nucleic acid-bound polypeptide as claimed in one of claims 1-5, wherein said polypeptide is an antigen to be used in an immunoassay.
 - 7. A method of producing a nucleic acid-bound polypeptide comprising the steps of :

producing a polypeptide by genetic engineering, binding a nucleic acid to said polypeptide as a soluble fraction, and purifying said nucleic acid-bound polypeptide from said soluble fraction.

15

20

25

35

40

45

50

55

8. The method as claimed in claim 7, wherein the step of binding said nucleic acid to said polypeptide to produce said nucleic acid-bound polypeptide comprises the steps of:

fusing a gene which encodes said polypeptide and a gene which encodes a nucleic acid-binding motif for binding said nucleic acid to said polypeptide to produce a fusion gene, and expressing said fusion gene to produce said nucleic acid-bound polypeptide via said nucleic acid-binding motif.

9. An immunoassay for assaying an antigen comprising a polypeptide, or an antibody corresponding to said antigen, which comprises using a nucleic acid-bound polypeptide as claimed in one of claims 1-5, obtainable by binding a nucleic acid to the polypeptide of said antigen.

30 10. An agglutination immunoassay for assaying an antigen comprising a polypeptide, or an antibody corresponding to said antigen, which comprises using a nucleic acid-bound polypeptide as claimed in one of claims 1-5, obtainable by binding a nucleic acid to the polypeptide of said antigen, said nucleic acid-bound polypeptide being fixed on the surface of particles.

Fig. 1

| Nhe | | | Eco R| | | Sall | | Xho | | | Bam H| | Åpa | | | Xba | | MCS: ATG GCT AGC GAA TTC GTC GAC CTC GAG GGA TCC GGG CCC TCT AGA stort codon
| Not | | Eco T22| | Kpn | | | | Hind 3 | TGC GGC CGC ATG CAT GGT ACC TAA CTA ACT AAG CTT | Eag | |

Fig. 2

Western Blot

EUROPEAN SEARCH REPORT

Application Number

	DOCUMENTS CONSIDERED TO	BE RELEVANT		EP 97400985.4
Category	Citation of document with indication, where ap-	propriate, Re	devant claim	CLASSIFICATION OF THE APPLICATION (Int. CL. 6)
х	WO - A - 93/14 768 (THE TRUSTEES OF THE UN SITY OF PENNSYLVANIA) * Abstract *		3,7,	C 07 K 2/00 C 12 N 15/62 G 01 N 33/53
x	EP - A - 0 704 221 (AJINOMOTO CO., INC.) * Abstract *	1.	.7	
X,D	JOURNAL OF VIROLOGY, vono. 7, July 1990 F. BIRNBAUM et al. "Hep B Virus Nucleocapsid Asbly: Primary Structure quirements in the Core tein" pages 3319-3330 * Page 3319 *	patitis ssem- Re-	, 3	TECHNICAL FIELDS SEARCHED (IM. Cl. 6)
ويواوي والمالة المراوية والمراوية والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة				C 07 K C 12 N G 01 N
		all chaims		
	The present search report has been drawn up for a Place of search VIENNA 06-08		w	Exader OLF
C. X : partic Y : partic docur		ompletion of the search 1997 T: theory or principle und E: earlier patent documen after the filing date D: document cited in the L: document cited for oth	derlying the nt, but publ application	OLF Invention ished on, or