Introduction to Machine Learning

October 3, 2018

1 Lecture 1

linear function

$$y = f_{\mathbf{W}}(\mathbf{X}) = f(\mathbf{X}, \mathbf{W}) = \mathbf{W}^{\mathrm{T}} \mathbf{X}$$

linear classifier (perception model)

$$\mathbf{x}_i \cdot \mathbf{w} + b > 0$$

$$\mathbf{x}_i \cdot \mathbf{w} + b < 0$$

linear regression in 1 dimension

$$y^i = \mathbf{W}^{\mathrm{T}} \mathbf{X}^i + \epsilon^i$$

where ϵ is the noise(loss).

Loss function: sum of squared errors

$$L(\mathbf{W}) = \sum_{i=1}^{N} (\epsilon^{i})^{2}$$

$$L(w_{0}, w_{1}) = \sum_{i=1}^{N} \frac{\partial [y^{i} - (w_{0}x_{0}^{i} + w_{1}x_{1}^{i})]^{2}}{\partial w_{0}} = -2\sum_{i=1}^{N} (y^{i} - (w_{0}x_{0}^{i} + w_{1}x_{1}^{i}))x_{0}^{i} = 0$$

$$\sum_{i=1}^{N} y^{i}x_{0}^{i} = w_{0} \sum_{i=1}^{N} x_{0}^{i}x_{0}^{i} + w_{1} \sum_{i=1}^{N} x_{1}^{i}x_{0}^{i}$$

as follow, the partial gradient of w_1 would be

$$\sum_{i=1}^{N} y^{i} x_{1}^{i} = w_{0} \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} + w_{1} \sum_{i=1}^{N} x_{1}^{i} x_{1}^{i}$$

Therefore

$$\begin{bmatrix} \sum_{i=1}^{N} y^{i} x_{0}^{i} \\ \sum_{i=1}^{N} y^{i} x_{1}^{i} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{0}^{i} x_{0}^{i} & \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} \\ \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} & \sum_{i=1}^{N} x_{1}^{i} x_{1}^{i} \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix}$$
(1)

Formally, it could conclude that

$$\mathbf{X}^{\mathrm{T}}\mathbf{y} = \mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{w}$$

$$\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Why the gradient could be equal to 0

Hessian matrix is a square matrix of second-order partial derivatives of scalar-valued function, or scalar field.

$$\mathbf{H}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

$$\mathbf{H} = \begin{vmatrix} \frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial x^{2}} \end{vmatrix}$$

$$(2)$$

In the 2 dimension, when $\mathbf{H} > 0$: if $\frac{\partial^2 f}{\partial x^2} > 0$, then point (x_0, y_0) is the local min point. If $\frac{\partial^2 f}{\partial x^2} < 0$, then point (x_0, y_0) is the local max point.

when $\mathbf{H} < 0$, then point (x_0, y_0) is the stationary point.

when $\mathbf{H} = 0$, second order cannot decide the point property, then consider it in higher order Taylor's Expansion.

In the example, $\mathbf{H} = 4(x_0^i)^2(x_1^i)^2 - 4(x_1^ix_0^i)(x_0^ix_1^i) = 0$, and $\frac{\partial^2 f}{\partial x^2} = 4(x_0^i)^2(x_1^i)^2 > 0$. Therefore, it is a local min point for the loss function.

In higher dimension space (multi-variables), $\mathbf{H}(f)$ should be a positive definite matrix($(\nabla \mathbf{x})^T \mathbf{H}(f) \nabla \mathbf{x} \ge 0$ for any $\nabla \mathbf{x}$).

The more detail of Hessian matrix could look up Taylor expansion.

Generalized linear regression

$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^i - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}^i))^{\mathrm{T}}$$

where $\phi(\mathbf{x}^i)$ is a polynomial function for \mathbf{x}^i