Richard A. Brealey Stewart C. Myers

MODERN VÁLLALATI PÉNZÜGYEK

Panem, 2005

A diákat készítette: Matthew Will

McGraw Hill/Irwin

5. fejezet

Miért vezet a nettó jelenérték jobb befektetési döntésekhez, mint más kritériumok?

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved

Tartalom

- Az NPV és vetélytársai
- A megtérülési idő
- A könyv szerinti megtérülési ráta
- A belső megtérülési ráta
- Korlátozott tőkeerőforrások allokációja

Az NPV és a pénztranszferek

 A projektértékelés minden lehetséges módszere a következőképpen tekint a vállalathoz kapcsolódó pénzáramlásokra.

Megtérülés

- Egy projekt megtérülési ideje azoknak az éveknek a száma, amíg az előrejelzett pénzáramlások összege megegyezik a kezdeti kiadással.
- A megtérülési idő szabálya azt mondja ki, hogy csak azokat a projekteket fogadjuk el, amelyek a várt időintervallumon belül megtérülnek.
- Nagyon vitatható módszer, főként azért, mert nem veszi figyelembe a későbbi évek pénzáramlásait, és a jövőbeli pénzek időértékét.

Megtérülés

Példa

Vizsgáljuk meg az alábbi három projektet, és figyeljük meg, milyen hibát követünk el, ha csak a 2 éven belül megtérülő projekteket fogadjuk el.

Projekt	$C_{_{0}}$	$C_{_1}$	$C_{_2}$	$C_{_3}$	Megtérülési idő	NPV, ha $r = 10\%$
A	-2000	500	500	5000		
В	-2000	500	1800	0		
C	-2000	1800	500	0		

Megtérülés

Példa

Vizsgáljuk meg az alábbi három projektet, és figyeljük meg milyen hibát követünk el, ha csak a 2 éven belül megtérülő projekteket fogadjuk el.

Projekt	$C_{_{0}}$	$\mathbf{C}_{_{1}}$	$C_{_2}$	$C_{_3}$	Megtérülési idő	NPV, ha $r = 10\%$
A	-2000	500	500	5000	3	+2624
В	-2000	500	1800	0	2	-58
C	-2000	1800	500	0	2	+50

Könyv szerinti megtérülési ráta

Könyv szerinti megtérülési ráta – Átlagos nyereség osztva a projekt könyv szerinti átlagos értékével. *Számviteli megtérülési rátá*nak is nevezik.

Könyv szerinti megtérülés i ráta =

Könyv szerinti nyereség

Könyv szerinti eszközérté k

A menedzserek ritkán használják ezt a mércét döntéshozatalkor. Összetevői tartalmazzák az adókat és az egyéb számviteli tételeket, de nem veszik figyelembe a piaci értéket vagy a pénzáramlásokat.

Példa

Alkalmunk nyílik egy turbó meghajtású motoros ketyere megvásárlására 4000 dollárért. A beruházás nyomán a következő két évben rendre 2000 és 4000 dollár pénzáramláshoz jutunk. Mekkora a beruházás IRR-je?

Példa

Alkalmunk nyílik egy turbó meghajtású motoros ketyere megvásárlására 4000 dollárért. A beruházás nyomán a következő két évben rendre 2000 és 4000 dollár pénzáramláshoz jutunk. Mekkora a beruházás IRR-je?

$$NPV = -4000 + \frac{2000}{1 + IRR} + \frac{4000}{(1 + IRR)^2} = 0$$

Példa

Alkalmunk nyílik egy turbó meghajtású motoros ketyere megvásárlására 4000 dollárért. A beruházás nyomán a következő két évben rendre 2000 és 4000 dollár pénzáramláshoz jutunk. Mekkora a beruházás IRR-je?

$$NPV = -4000 + \frac{2000}{1 + IRR} + \frac{4000}{(1 + IRR)^2} = 0$$

$$IRR = 28.08\%$$

Első csapda: Hitelnyújtás vagy hitelfelvétel?

- Néhány pénzáramlás esetén (mint azt alább is megfigyelhetjük) egy projekt NPV-je a diszkontráta növekedésével növekszik.
- Ez ellentétben áll a diszkontráta és az NPV hagyományos viszonyával.

C_0	C_1	C_2	C_3	IRR	NPV, ha $r = 10\%$
+1000	-3600	+4230	-1728	+20%	-0.75

Első csapda: Hitelnyújtás vagy hitelfelvétel?

- Bizonyos pénzáramlások esetén (mint azt alább is megfigyelhetjük) egy projekt NPV-je a diszkontráta növekedésével növekszik.
- Ez ellentétben áll a diszkontráta és az NPV hagyományos viszonyával.

Második csapda: Többféle megoldás

- Bizonyos pénzáramlásoknak két különböző diszkontráta mellett is nulla az NPV-je.
- ◆ A következő pénzáramlás NPV-je nulla –50% és 15.2% mellett is.

C_0	C_1	C_2	C_3	C_4	C_5	C_6
-1000	+800	+150	+150	+150	+150	-150

Második csapda – többféle megoldás

- Bizonyos pénzáramlásoknak két különböző diszkontráta mellett is nulla az NPV-je.
- ◆ A következő pénzáramlás NPV-je nulla −50% és 15.2% mellett is.

Harmadik csapda: Egymást kölcsönösen kizáró lehetőségek

- Az IRR olykor elleplezi egy projekt fontosságát.
- Ezt a problémát illusztrálja a következő két projekt.

Projekt	C_0	C_1	IRR	NPV, ha
				r = 10%
Е	-10 000	+20 000	100%	+8 182
F	-20 000	+35 000	75%	+11 818

Harmadik csapda: Egymást kölcsönösen kizáró lehetőségek

Negyedik csapda: A rövid és hosszú távú kamatlábak eltérnek

- Feltesszük, hogy a diszkontráták a projekt élettartama alatt stabilak maradnak.
- Ez a feltevés azt implikálja, hogy minden pénzt az IRR mellett forgatunk vissza.
- Ez a feltevés hamis.

Az IRR számítása fáradságos feladat lehet. Szerencsére a pénzügyi kalkulátorok könnyedén alkalmazzák ezt a függvényt. Figyeljük meg az előző példán.

Az IRR számítása fáradságos feladat lehet. Szerencsére a pénzügyi kalkulátorok könnyedén alkalmazzák ezt a függvényt. Figyeljük meg az előző példán.

<u>HP-10B</u>		EL-733A		BAII Plus	
-350 000	CFj	-350 000	CFi	CF	
16 000	CFj	16 000	CFfi	2nd {C	CLR Work}
16 000	CFj	16 000	CFi	-350 000	ENTER
466 000	CFj	466 000	CFi	16 000	ENTER
{IRF	R/YR}	IRR		16 000	ENTER
				466 000	ENTER↓
Minden es	setben II		IRR CI	PT	

- Korlátozott erőforrások mellett a jövedelmezőségi index (PI) segítségével választhatunk a változatos projektkombinációk és lehetőségek közül.
- ◆ Több korlátozott erőforrás és projekt változatos lehetőségeket kínál.
- ◆ A legnagyobb, súlyozott átlaggal számított PI jelzi, hogy melyik projekteket válasszuk.

Jövedelmez őségi index =
$$\frac{NPV}{Kezdeti beruházás}$$

Példa

Csak 300 000 dollárunk van a beruházásra. Melyiket válasszuk?

Projekt	NPV	Beruházás	PI
A	230 000	200 000	1.15
В	141 250	125 000	1.13
C	194 250	175 000	1.11
D	162 000	150 000	1.08

Példa (folytatás)

<u>Proj</u>	ekt NPV	Beruházás	PI
A	230 000	200 000	1.15
В	141 250	125 000	1.13
C	194 250	175 000	1.11
D	162 000	150 000	1.08

A legnagyobb súlyozott átlagos PI-jű projektek kiválasztása:

WAPI (BD) =
$$1.13(125) + 1.08(150) + 0.0 (25)$$

(300) (300) (300)
= 1.01

Példa (folytatás)

Proje	ekt NPV	Beruházás	PI	
A	230 000	200 000		1.15
В	141 250	125 000		1.13
C	194 250	175 000		1.11
D	162 000	150 000		1.08

A legnagyobb súlyozott átlagos PI-jű projektek kiválasztása

WAPI (BD) =
$$1.01$$

WAPI (A) = 0.77
WAPI (BC) = 1.12

Lineáris programozás

- Maximalizálja a pénzáramlást vagy az NPV-t
- Minimalizálja a költségeket

Példa

$$Max NPV = 21Xa + 16Xb + 12Xc + 13Xd$$

feltétel

$$10Xa + 5Xb + 5Xc + 0Xd \le 10$$
$$-30Xa - 5Xb - 5Xc + 40Xd \le 10$$

A Vegetron akta

5.1. táblázat

	Év						
	1	2	3	4	5	6	7
1. Bevétel	140	140	140	140	140	140	140
2. Működési költség	55	55	55	55	55	55	55
3. Amortizáció	57	57	57	57	57	57	57
4. Nettó nyereség	28	28	28	28	28	28	28
5. Könyv szerinti érték év elején	400	343	286	229	171	114	57
T7.0							
Könyv szerinti megtérülési ráta	7 000/	0.20/	0.004	10.00/	1 < 40/	24 604	10.107
(4÷5)	7.00%	8.2%	9.8%	12.2%	16.4%	24.6%	49.1%

A Vegetron Akta

5.2. táblázat

Év							
_	1	2	3	4	5		
1. Bevétel	180	180	180	180	180		
2. Működési költség	70	70	70	70	70		
3. A mortizáció	80	80	80	80	80		
4. N ettó nyereség	30	30	30	30	30		
5. K önyv szerinti érték év elején	400	320	240	160	80		
K önyv szerinti megtérülési ráta	7.5%	9.4%	12.5%	18.75%	37.5%		
(4÷5)							

