cartesius.png

Cours complet sur les nombres complexes Niveau Baccalauréat Scientifique

Koudaya Kossi Boris SCIENCES UNIVERS

Introduction historique

Les nombres complexes sont apparus au XVI^e siècle pour résoudre des équations polynomiales qui n'avaient pas de solutions réelles. Le mathématicien **René Descartes** les qualifia de "**nombres imaginaires**" car ils semblaient ne pas exister dans la nature.

1. Définition et notation

Un nombre complexe z s'écrit sous la forme :

$$z = a + ib$$

où:

- -a et b sont des nombres réels
- i est le nombre imaginaire tel que $i^2 = -1$

Partie imaginaire (Im)

2. Opérations sur les nombres complexes

Addition et soustraction

Pour $z_1 = a + ib$ et $z_2 = c + id$:

$$z_1 + z_2 = (a+c) + i(b+d)$$

$$z_1 - z_2 = (a - c) + i(b - d)$$

Multiplication

$$z_1 \times z_2 = (ac - bd) + i(ad + bc)$$

Exemple:
$$(1+2i)(3-4i) = 3-4i+6i-8i^2 = 11+2i$$

Conjugué

Le conjugué de z = a + ib est $\overline{z} = a - ib$.

3. Représentation géométrique

Tout nombre complexe z=a+ib peut être représenté par un point M dans le plan complexe (ou plan d'Argand) de coordonnées (a,b).

4. Module et argument

Module

Le module de z = a + ib est noté |z| et vaut :

$$|z| = \sqrt{a^2 + b^2}$$

2

C'est la distance entre l'origine et le point M dans le plan complexe.

Argument

L'argument de $z \neq 0$ est noté $\arg(z)$ et est l'angle :

$$\theta = \arg(z) = (\overrightarrow{Ox}, \overrightarrow{OM})$$

mesuré en radians.

5. Forme trigonométrique

Tout nombre complexe non nul peut s'écrire sous forme trigonométrique :

$$z = r(\cos\theta + i\sin\theta)$$

où r = |z| et $\theta = \arg(z)$.

Exemple: $1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$

6. Forme exponentielle

En utilisant la formule d'Euler $e^{i\theta} = \cos \theta + i \sin \theta$, on obtient la forme exponentielle :

$$z = re^{i\theta}$$

7. Applications géométriques

Transformations

- Multiplication par i: rotation de $\frac{\pi}{2}$ Multiplication par $re^{i\theta}$: homothétie de rapport r et rotation d'angle θ

Équations de cercles et droites

- Cercle de centre z_0 et rayon $R:|z-z_0|=R$ Droite passant par z_1 et $z_2:\arg\left(\frac{z-z_1}{z_2-z_1}\right)=0$ $[\pi]$

8. Racines n-ièmes de l'unité

Les solutions de $z^n = 1$ sont :

$$e^{i\frac{2k\pi}{n}}$$
 pour $k = 0, 1, ..., n-1$

Racines 6-ièmes de l'unité

Conclusion

Les nombres complexes sont un outil puissant en mathématiques et en physique. Ils permettent de :

- Résoudre toutes les équations polynomiales
- Simplifier les calculs trigonométriques
- Modéliser des phénomènes physiques (électricité, mécanique quantique)

À retenir:

- 1. $i^2 = -1$
- 2. Formes algébrique, trigonométrique et exponentielle
- 3. Interprétation géométrique avec module et argument
- 4. Applications en géométrie et en sciences physiques