# Implement AWE

Name: Mohammed AL Shuaili

Date: 20/1/2025

AWE involves 4 main steps:

- 1. Form a state space representation
- 2. Form the moments
- 3. Find the poles of the system
- 4. Find the residues

And then form the impulse response as:

$$h(t) = k_0 \delta(t) + k_1 e^{p_1 t} + \dots + k_n e^{p_n t}$$
(1)

The following code implements AWE with first and second approximation:

```
1. clear all
2. clc
3. A = \begin{bmatrix} -2 & 1 & 0 & 0; 1 & -2 & 1 & 0; 0 & 1 & -2 & 1; 0 & 0 & 1 & -1 \end{bmatrix};
4. B = [1;0;0;0];
5. C = [1;0;0;0];
6. q = length(B);
7. moments = zeros(1,2*q-1);
8. for i=1:length(moments)
        moments(i) = -1*transpose(C)*A^-i*B;
10. end
11. %for first order approximation (Case 1)
12. b = -moments(2)/moments(1);
13. %the poles
14. p = -1/b;
15. % residues
16. k=-moments(1)*p;
17. %t = 0:0.01:0.5
18. %hense
19. ht1 = k*exp(p*t);
20. %Case 2
21. m2 = [moments(1), moments(2); moments(2), moments(3)];
22. m2_2 = -1*[moments(3);moments(4)];
23. b case2 = inv(m2)*m2 2;
24. p_case2 = roots([b_case2(1),b_case2(2),1]);
25. %residues
26. V = [1 \ 1 \ ; 1/p\_case2(1) \ 1/p\_case2(2)];
27. A_case2 = [1/p_case2(1) 0;0 1/p_case2(2)];
28. k case2 = -1* inv(A case2) * inv(V) * [moments(1); moments(2)];
29. % hence the final expersion is
30. ht_case2 = k_case2(1)*exp(p_case2(1)*t)+k_case2(2)*exp(p_case2(2)*t);
31.
```

This code takes the input as matrices A, B and C. For example let:

$$A = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} and C = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (2)

First one must find the moments as follows:

$$m_i = -C^T A^{-i+1} B$$

Where (i) goes from 0 to 2q-1 and q is the order of the transfer function associated with the equation or the state space.

In example 1 we can find that,

$$m_0 = 1$$
 ,  $m_1 = -4$  ,  $m_2 = 30$  ,  $m_3 = -246$  ,  $m_4 = 2037$  ,  $m_5 = -16886$  ,  $m_6 = 140000$ 

Next, find b (coefficients of s in the Laplace expression) as follows:

$$\begin{bmatrix} m_0 & \dots & m_{q-1} \\ m_1 & & m_q \\ \vdots & & \vdots \\ m_{q-1} & & m_{2q-1} \end{bmatrix} \begin{bmatrix} b_q \\ b_{q-1} \\ \vdots \\ b_1 \end{bmatrix} = - \begin{bmatrix} m_q \\ m_{q+1} \\ \vdots \\ m_{2q-1} \end{bmatrix}$$

Then solve for B(s)=0 to obtain the poles of the system where:

$$b_q s^q + b_{q-1} s^{q-1} \dots + b_1 s + 1 = 0$$

Next, finding the residues as:

$$k = -\Lambda V^{-1} \begin{bmatrix} m_0 \\ \cdot \\ m_{q-1} \end{bmatrix}$$

So, back to example 1, since q = 4, we can find that for a first order approximation:

$$b_1 = 4$$
, Thus,  $p = -0.25$  and  $k = 0.5$ 

Hence using the general expression in (1) we obtain,

$$h(t) = 0.25e^{-0.25t}$$

in the same manner we can then find second, third and fourth order approximations.

### • RLC ladder implementation

Now, consider the open voltage RLC ladder for the transmission line with N=2 as follows:



From the circuit, we can say that:

$$v_{in} = (R_s + R_{dz})i_1 + L_{dz}\frac{di_1}{dt} + v_1$$

$$v_1 = R_{dz}i_2 + L_{dz}\frac{di_2}{dt} + v_{out}$$

$$i_1 - i_2 = C\frac{dv_1}{dt}$$

$$i_2 = C\frac{dv_0}{dt}$$

(3)

So,

$$v_{in} = (R_s + R_{dz})i_1 + L_{dz}\frac{di_1}{dt} + R_{dz}i_2 + L_{dz}\frac{di_2}{dt} + v_{out}$$

Let,

$$x_1 = i_1$$
,  $x_2 = v_1$ ,  $x_3 = i_2$  and  $x_4 = v_0$ 

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} i_1 \\ v_1 \\ i_2 \\ v_2 \end{bmatrix}$$

Rewriting the equations,

$$\frac{di_{1}}{dt} = -\frac{(R_{s} + R_{dz})}{L_{dz}} i_{1} - \frac{v_{1}}{L_{dz}} + \frac{v_{in}}{L_{dz}}$$

$$\frac{di_{2}}{dt} = \frac{-R_{dz}i_{2}}{L_{dz}} - \frac{v_{out}}{L_{dz}} + v_{1}$$

$$\frac{dv_{1}}{dt} = \frac{1}{C} (i_{1} - i_{2})$$

$$\frac{dv_{o}}{dt} = \frac{1}{C} i_{2}$$

Now, express them in terms of the state variables.

1. For 
$$\frac{dx_1}{dt}$$
:

$$\frac{dx_1}{dt} = -\frac{(R_s + R_{dz})}{L_{dz}} x_1 - \frac{x_2}{L_{dz}} + \frac{v_{in}}{L_{dz}}$$

2. For 
$$\frac{dx_2}{dt}$$
:

$$\frac{dx_2}{dt} = \frac{1}{C}(x_1 - x_3)$$

3. For 
$$\frac{dx_3}{dt}$$
:

$$\frac{dx_3}{dt} = \frac{-R_{dz}x_3}{L_{dz}} - \frac{x_4}{L_{dz}} + x_2$$

4. For 
$$\frac{dx_4}{dt}$$
:

$$\frac{dx_4}{dt} = \frac{1}{C} x_3$$

# **Step 2: Write in State-Space Form**

$$x = Ax + Bu$$
,  $y = Cx + Du$ 

Where:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} i_1 \\ v_1 \\ i_2 \\ v_0 \end{bmatrix}, \quad u = v_{in}, \quad y = v_{out}$$

Matrix A:

$$A = \begin{bmatrix} \frac{-R_s + R_{dz}}{L_{dz}} & -\frac{1}{L_{dz}} & 0 & 0\\ \frac{1}{C} & 0 & -\frac{1}{C} & 0\\ 0 & \frac{1}{L_{dz}} & -\frac{R_{dz}}{L_{dz}} & -\frac{1}{L_{dz}}\\ 0 & 0 & \frac{1}{C} & 0 \end{bmatrix}$$

Matix B:

$$B = \begin{bmatrix} \frac{1}{L_{dz}} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Matrix C:

$$C = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

Now, let's implement AWE with these on MATLAB and compare it to ode45 for validation.

This is the expected output (from ode45).



#### The cod:

```
1. clear all
 2. clc
 3.1 = 400;
 4. N = 2;
 5. dz = 1/N;
 6. R = 0.1*dz;
 7. L = 2.5e-7*dz;
 8. C = 1e-10*dz;
9. Rs = 0;
10. Vs = 30; \% this is u
                )/L, -1/L, 0 , 0 ;
, 0 , -1/C, 0 ;
, 1/L , -R/L, -1/L;
11. A = [-(Rs+R)/L, -1/L, 0]
12.
           1/C
13.
14.
        0
                  , 0 , 1/C , 0 ];
15. B = [1/L;0;0;0].*Vs;
16. C = [0;0;0;1];
17. q = length(B);
18. moments = zeros(1,2*q-1);
19. for i=1:length(moments)
        moments(i) = -1*transpose(C)*A^-i*B;
21. end
22. %for first order approximation (Case 1)
23. b = -moments(2)/moments(1);
24. %the poles
25. p = -1/b;
26. % residues
27. k=-moments(1)*p;
28. \%t =
29. %hense
30. t = 0:1e-10:20e-6;
31. ht1 = k*exp(p*t);
32. %Case 2
33. m2 = [moments(1), moments(2); moments(2), moments(3)];
```

```
34. m2_2 = -1*[moments(3);moments(4)];
35. b_case2 = m2^{-1*m2} 2;
36. p_case2 = roots([b_case2(1),b_case2(2),1]);
37. %residues
38. V = [1 \ 1 \ ; 1/p\_case2(1) \ 1/p\_case2(2)];
39. A_case2 = [1/p_case2(1) 0;0 1/p_case2(2)];
40. k_{case2} = -1* inv(A_{case2}) * inv(V) * [moments(1); moments(2)];
41. % hence the final expersion is
42. ht_case2 = k_case2(1)*exp(p_case2(1)*t)+k_case2(2)*exp(p_case2(2)*t);
43. figure(1)
44. plot(t,ht1);
45. grid on
46. xlabel('Time (\mus)');
47. ylabel('V Load (Volts)');
48. title(['RLC with AWE first order at N = ',num2str(N)]);
49. figure(2)
50. plot(t,ht_case2);
51. grid on
52. xlabel('Time (\mus)');
53. ylabel('V Load (Volts)');
54. title(['RLC with AWE second order at N = ',num2str(N)]);
55.
```



Looking at the first and second order approximations, they don't match the expected outputs from ode45.

Let's investigate the third order approximation.

$$\begin{bmatrix} m_0 & m_1 & m_2 \\ m_1 & m_2 & m_3 \\ m_2 & m_3 & m_4 \end{bmatrix} \begin{bmatrix} b_3 \\ b_2 \\ b_1 \end{bmatrix} = - \begin{bmatrix} m_3 \\ m_4 \\ m_5 \end{bmatrix}$$

Using the matrices above, the moments can be found as follows:

$$m_0=1$$
 ,  $m_1=-1.2e-6$  ,  $m_2=-1.72e-12$  ,  $m_3=5.05e-18$  ,  $m_4=-6.72e-25$  ,  $m_5=-1.2595e-29$ 

Thus,

$$b_3 = -1.3270e - 18, b_2 = -3.1441e - 12, b_1 = -1.5175e - 6$$

And,

$$V = \begin{bmatrix} \frac{1}{p_1} & \frac{1}{p_2} & \frac{1}{p_3} \\ \frac{1}{p_1^2} & \frac{1}{p_2^2} & \frac{1}{p_3^2} \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \frac{1}{p_1} & 0 & 0 \\ 0 & \frac{1}{p_2} & 0 \\ 0 & 0 & \frac{1}{p_3} \end{bmatrix}, \quad k = \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}$$

Hence,



This is still not close to the expected result as in ode45.

Now, Let's consider the following circuit (RLC ladder with N=3 and open voltage) to find a pattern where we can link the number of sections to the state space model:



$$\begin{aligned} v_{in} &= (R_S + R_{dz})i_1 + L_{dz}\frac{di_1}{dt} + v_1 \\ v_1 &= R_{dz}i_2 + L_{dz}\frac{di_2}{dt} + v_2 \\ v_2 &= R_{dz}i_3 + L_{dz}\frac{di_3}{dt} + v_{out} \\ i_1 - i_2 &= C\frac{dv_1}{dt} \\ i_2 - i_3 &= C\frac{dv_2}{dt} \\ i_3 &= C\frac{dv_0}{dt} \\ v_{in} &= (R_S + R_{dz})i_1 + L_{dz}\frac{di_1}{dt} + R_{dz}i_2 + L_{dz}\frac{di_2}{dt} + R_{dz}i_3 + L_{dz}\frac{di_3}{dt} + v_{out} \end{aligned}$$

Let,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} i_1 \\ v_1 \\ i_2 \\ v_2 \\ i_3 \\ v_o \end{bmatrix}, \quad u = v_{in}, \quad y = v_{out}$$

So, each section of the transmission line contributes two states to the state-space model:

What to do next (in the meantime):

1. Find what causing the issue for the AWE

# Y and S parameters:

Y-parameters, or admittance parameters, characterize the electrical behavior of transmission lines in network analysis by relating port voltages and currents. They are used for modeling high-frequency circuits, especially in microwave design, as they describe how a network admits current in response to voltage.

# For a two-port network:

- **Y11**: Input admittance at port 1 (port 2 shorted).
- **Y12**: Reverse admittance from port 2 to port 1.
- **Y21**: Forward admittance from port 1 to port 2.
- Y22: Output admittance at port 2 (port 1 shorted).

These parameters are key for understanding transmission line interactions with other components [1].

[1] A. Arrais and R. Levy, "Direct Y-Parameter Estimation of Microwave Structures Using TLM Simulation and Prony's Method," *ResearchGate*, [Online]. Available: <a href="https://www.researchgate.net/publication/230844927">https://www.researchgate.net/publication/230844927</a> Direct Y-parameter estimation of microwave structures using TLM simulation and Prony's method. [Accessed: Jan. 25, 2025].

Further research can be done, at this time the IEEE website is down.

# IEEE Xplore is temporarily unavailable

We are working to restore service as soon as possible. Please try again later or email questions to <a href="mailto:onlinesupport@ieee.org">onlinesupport@ieee.org</a>. We apologize for the inconvenience and appreciate your patience.