Propellers Aerodynamic Characteristics

Copyright © 2019 Marek M. Cel. All rights reserved.

Author: Marek M. Cel

Revision: 2

Date: 2019-12-14

This work is licensed under a

Creative Commons CC0 1.0 Universal Public Domain Dedication

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights (defined below) upon the creator and subsequent owner(s) (each and all, an "owner") of an original work of authorship and/or a database (each, a "Work").

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons of creative, cultural and scientific works ("Commons") that the public can reliably and without fear of later claims of infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any form whatsoever and for any purposes, including without limitation commercial purposes. These owners may contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scientific works, or to gain reputation or greater distribution for their Work in part through the use and efforts of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or compensation, the person associating CC0 with a Work (the "Affirmer"), to the extent that he or she is an owner of Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and intended legal effect of CC0 on those rights.

- **1. Copyright and Related Rights.** A Work made available under CC0 may be protected by copyright and related or neighboring rights ("Copyright and Related Rights"). Copyright and Related Rights include, but are not limited to, the following:
 - i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;
 - ii. moral rights retained by the original author(s) and/or performer(s);
 - iii. publicity and privacy rights pertaining to a person's image or likeness depicted in a Work;
 - iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in paragraph 4(a), below;

- v. rights protecting the extraction, dissemination, use and reuse of data in a Work;
- vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and
- vii. other similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof.
- 2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer's Copyright and Related Rights and associated claims and causes of action, whether now known or unknown (including existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each member of the public at large and to the detriment of Affirmer's heirs and successors, fully intending that such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt the quiet enjoyment of the Work by the public as contemplated by Affirmer's express Statement of Purpose.
- **3. Public License Fallback.** Should any part of the Waiver for any reason be judged legally invalid or ineffective under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account Affirmer's express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and unconditional license to exercise Affirmer's Copyright and Related Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "License"). The License shall be deemed effective as of the date CC0 was applied by Affirmer to the Work. Should any part of the License for any reason be judged legally invalid or ineffective under applicable law, such partial invalidity or ineffectiveness shall not invalidate the remainder of the License, and in such case Affirmer hereby affirms that he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and causes of action with respect to the Work, in either case contrary to Affirmer's express Statement of Purpose.

4. Limitations and Disclaimers.

- a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or otherwise affected by this document.
- b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning the Work, express, implied, statutory or otherwise, including without limitation warranties of title, merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest extent permissible under applicable law.
- c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or any use thereof, including without limitation any person's Copyright and Related Rights in the Work. Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other rights required for any use of the Work.
- d. Affirmer understands and acknowledges that Creative Commons is not a party to this document and has no duty or obligation with respect to this CC0 or use of the Work.

Table of Contents

No	otatio	On	7
1.	Intro	oduction	8
	1.1.	Resources	8
	1.2.	Thrust Coefficient.	8
	1.3.	Power Coefficient	8
	1.4.	Alternative Form of Coefficients	8
	1.5.	Converting Data	8
2.	Han	nilton Standard propeller 1C1-0, 3 blades	.10
	2.1.	Thrust Coefficient, C _T	.12
	2.2.	Power Coefficient, C _P	.14
	2.3.	Efficiency, η	.16
3.		Navy Bureau of Aeronautics propeller 5868-9, 2 blades	
	3.1.	Thrust Coefficient, C _T	.23
	3.2.	Power Coefficient, C _P	.24
	3.3.	Efficiency, η	.25
	3.4.	Negative Thrust Coefficient, T _C	.26
	3.5.	Negative Torque Coefficient, Q _C	.27
	3.6.	Combined Thrust Coefficient, C _T	.28
	3.7.	Combined Power Coefficient, C _P	.30
4.	US	Navy Bureau of Aeronautics propeller 5868-9, 3 blades	.32
	4.1.	Thrust Coefficient, C _T	.37
	4.2.	Power Coefficient, C _P	.39
	4.3.	Efficiency, η	.41
	4.4.	Negative Thrust Coefficient, T _C	.43
	4.5.	Negative Torque Coefficient, Q _C	.44
	4.6.	Combined Thrust Coefficient, C _T	.45
	4.7.	Combined Power Coefficient, C _P	.47
5.	US	Navy Bureau of Aeronautics propeller 5868-9, 4 blades	.49
	5.1.	Thrust Coefficient, C _T	.54
	5.2.	Power Coefficient, C _P	.55

Propellers - Aerodynamic Characteristics

	5.3. Efficiency, η	56
	5.4. Negative Thrust Coefficient, T _C	57
	5.5. Negative Torque Coefficient, Q _C	58
	5.6. Combined Thrust Coefficient, C _T	59
	5.7. Combined Power Coefficient, C _P	61
6.	US Navy Bureau of Aeronautics propeller 5868-R6, 2 blades	63
	6.1. Thrust Coefficient, C _T	68
	6.2. Power Coefficient, C _P	69
	6.3. Efficiency, η	70
	6.4. Negative Thrust Coefficient, T _C	71
	6.5. Negative Torque Coefficient, Q _C	72
	6.6. Combined Thrust Coefficient, C _T	73
	6.7. Combined Power Coefficient, C _P	75
7.	US Navy Bureau of Aeronautics propeller 5868-R6, 3 blades	77
	7.1. Thrust Coefficient, C _T	82
	7.2. Power Coefficient, C _P	83
	7.3. Efficiency, η	84
	7.4. Negative Thrust Coefficient, T _C	85
	7.5. Negative Torque Coefficient, Q _C	86
	7.6. Combined Thrust Coefficient, C _T	87
	7.7. Combined Power Coefficient, C _P	89
8.	US Navy Bureau of Aeronautics propeller 5868-R6, 4 blades	91
	8.1. Thrust Coefficient, C _T	96
	8.2. Power Coefficient, C _P	97
	8.3. Efficiency, η	98
	8.4. Negative Thrust Coefficient, T _C	99
	8.5. Negative Torque Coefficient, Q _C	100
	8.6. Combined Thrust Coefficient, C _T	101
	8.7. Combined Power Coefficient, C _P	103
9.	Coefficients Converting Script	105
Bi	ibliography	109

Notation

 $C_P = \frac{P}{\rho n^3 D^5}$ - [-] power coefficient $C_T = \frac{T}{\rho n^2 D^4}$ - [-] thrust coefficient D - [m] propeller disperse

[m] propeller diameter

 $J = \frac{V}{nD}$ — [-] propeller advance ratio

[rev/s] propeller revolution speed n

P - [W] power- [N·m] torque

 $Q = \frac{Q}{\rho V^2 D^3} - [N \cdot m] \text{ torque}$ $Q_C = \frac{Q}{\rho V^2 D^3} - [-] \text{ torque coefficient}$ T = [N] thrust

T - [N] thrust $T_C = \frac{T}{\rho V^2 D^2}$ - [-] thrust coefficient (alternative form) V - [m/s] $V^2 = \frac{T}{\rho V^2 D^2}$

- [m/s] velocity

- [deg] propeller blade angle at 0.75 of radius

[-] propeller efficiency [kg/m³] air density

1. Introduction

1.1. Resources

Propellers aerodynamic characteristics data is a combination of data available in [1], [2] and [3]. More propellers characteristics can be found in [4], [5], [6], [7], [8], [9], [10], and [11].

1.2. Thrust Coefficient

Thrust coefficient is given as follows. [1], [2]

$$C_T = \frac{T}{\rho n^2 D^4} \tag{1.1}$$

1.3. Power Coefficient

Power coefficient is given as follows. [1], [2]

$$C_P = \frac{P}{\rho n^3 D^5} \tag{1.2}$$

1.4. Alternative Form of Coefficients

Alternative forms of thrust and torque coefficients were used in NACA Report No. 641. [3]

$$T_C = \frac{T}{\rho V^2 D^2} \tag{1.3}$$

$$Q_C = \frac{Q}{\rho V^2 D^3} \tag{1.4}$$

1.5. Converting Data

During tests described in NACA Report No. 641, the tunnel speed was held substantially constant and varied between 100 and 110 miles per hour. [3]

Knowing that all the propellers had 10 feet diameter and assuming constant speed value of 105 miles per hour data given in NACA Report No. 641 can be converted to the previously described form that was used in other NACA Reports.

Hence propeller advance ratio is given by the following formula. [12], [13]

$$J = \frac{V}{nD} \tag{1.5}$$

then propeller speed is.

$$n = \frac{V}{JD} \tag{1.6}$$

Thrust is given as

$$T = \rho V^2 D^2 T_C \tag{1.7}$$

Substituting equation (1.7) into (1.1) gives

$$C_{T} = \frac{V^{2}T_{C}}{n^{2}D^{2}} \tag{1.8}$$

Torque is given as

$$Q = \rho V^2 D^3 Q_C \tag{1.9}$$

Knowing that [14]

$$P=2\,\pi n\,Q\tag{1.10}$$

Power is

$$P = 2\pi n \rho V^2 D^3 Q_C \tag{1.11}$$

Substituting equation (1.11) into (1.2) gives

$$C_{P} = \frac{2\pi V^{2} Q_{C}}{n^{2} D^{2}} \tag{1.12}$$

2. Hamilton Standard propeller 1C1-0, 3 blades

Thrust coefficient [1]

Power coefficient [1]

Efficiency [1]

2.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.1230	0.1323	0.1529	0.1598	0.1635	0.1643	0.1576
0.05	0.1191	0.1299	0.1492	0.1582	0.1629	0.1640	0.1581
0.10	0.1150	0.1288	0.1477	0.1566	0.1617	0.1637	0.1585
0.15	0.1101	0.1272	0.1459	0.1550	0.1606	0.1633	0.1589
0.20	0.1048	0.1253	0.1442	0.1535	0.1593	0.1628	0.1592
0.25	0.0988	0.1231	0.1427	0.1519	0.1583	0.1624	0.1596
0.30	0.0920	0.1204	0.1411	0.1502	0.1570	0.1618	0.1599
0.35	0.0849	0.1169	0.1395	0.1487	0.1557	0.1613	0.1602
0.40	0.0770	0.1120	0.1380	0.1470	0.1543	0.1607	0.1605
0.45	0.0687	0.1053	0.1365	0.1454	0.1530	0.1600	0.1608
0.50	0.0602	0.0982	0.1350	0.1440	0.1517	0.1593	0.1607
0.55	0.0512	0.0907	0.1322	0.1423	0.1502	0.1585	0.1605
0.60	0.0417	0.0827	0.1272	0.1408	0.1490	0.1577	0.1601
0.65	0.0320	0.0743	0.1202	0.1391	0.1475	0.1566	0.1596
0.70	0.0223	0.0656	0.1125	0.1377	0.1462	0.1554	0.1588
0.75	0.0124	0.0565	0.1044	0.1357	0.1445	0.1542	0.1577
0.80	0.0016	0.0472	0.0960	0.1326	0.1427	0.1527	0.1565
0.85		0.0377	0.0870	0.1275	0.1405	0.1510	0.1550
0.90		0.0282	0.0788	0.1207	0.1375	0.1492	0.1538
0.95		0.0182	0.0688	0.1135	0.1345	0.1470	0.1522
1.00		0.0080	0.0595	0.1060	0.1317	0.1445	0.1507
1.05		-0.0018	0.0500	0.0980	0.1290	0.1418	0.1490
1.10			0.0400	0.0896	0.1255	0.1392	0.1475
1.15			0.0297	0.0810	0.1202	0.1372	0.1460
1.20			0.0189	0.0719	0.1140	0.1355	0.1443
1.25			0.0080	0.0624	0.1067	0.1340	0.1428
1.30			-0.0028	0.0527	0.0993	0.1324	0.1412
1.35				0.0430	0.0913	0.1300	0.1398
1.40				0.0327	0.0830	0.1267	0.1385
1.45				0.0225	0.0750	0.1215	0.1371
1.50				0.0124	0.0658	0.1157	0.1360
1.55				0.0020	0.0570	0.1090	0.1348
1.60					0.0478	0.1020	0.1339
1.65					0.0385	0.0940	0.1324
1.70					0.0288	0.0858	0.1303

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.75					0.0195	0.0770	0.1270
1.80					0.0100	0.0685	0.1220
1.85					0.0007	0.0595	0.1160
1.90						0.0500	0.1095
1.95						0.0410	0.1030
2.00						0.0320	0.0950
2.05						0.0230	0.0876
2.10						0.0147	0.0800
2.15						0.0058	0.0714
2.20						-0.0025	0.0632
2.25							0.0550
2.30							0.0470
2.35							0.0387
2.40							0.0305
2.45							0.0228
2.50							0.0150
2.55							0.0070
2.60							-0.0005

Thrust coefficient [1]

2.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.0529	0.1140	0.1563	0.2074	0.2695	0.3324	0.3868
0.05	0.0529	0.1078	0.1522	0.2051	0.2662	0.3291	0.3842
0.10	0.0529	0.1009	0.1510	0.2030	0.2631	0.3260	0.3817
0.15	0.0527	0.0948	0.1494	0.2007	0.2600	0.3228	0.3792
0.20	0.0522	0.0897	0.1474	0.1982	0.2567	0.3197	0.3767
0.25	0.0516	0.0851	0.1451	0.1959	0.2535	0.3164	0.3742
0.30	0.0505	0.0812	0.1425	0.1933	0.2501	0.3132	0.3717
0.35	0.0487	0.0782	0.1397	0.1908	0.2467	0.3100	0.3693
0.40	0.0463	0.0760	0.1363	0.1881	0.2432	0.3067	0.3667
0.45	0.0432	0.0741	0.1326	0.1853	0.2396	0.3033	0.3640
0.50	0.0398	0.0719	0.1285	0.1824	0.2360	0.3000	0.3614
0.55	0.0358	0.0691	0.1238	0.1794	0.2323	0.2963	0.3586
0.60	0.0313	0.0657	0.1187	0.1761	0.2285	0.2927	0.3557
0.65	0.0260	0.0615	0.1133	0.1721	0.2245	0.2890	0.3527
0.70	0.0201	0.0567	0.1082	0.1686	0.2205	0.2853	0.3499
0.75	0.0131	0.0510	0.1028	0.1643	0.2165	0.2813	0.3466
0.80	0.0047	0.0446	0.0970	0.1594	0.2121	0.2770	0.3434
0.85		0.0376	0.0910	0.1537	0.2078	0.2730	0.3400
0.90		0.0300	0.0847	0.1466	0.2028	0.2683	0.3362
0.95		0.0215	0.0775	0.1400	0.1982	0.2634	0.3324
1.00		0.0125	0.0695	0.1324	0.1940	0.2580	0.3277
1.05		0.0020	0.0600	0.1250	0.1895	0.2530	0.3232
1.10			0.0502	0.1171	0.1841	0.2490	0.3183
1.15			0.0392	0.1085	0.1777	0.2455	0.3135
1.20			0.0275	0.0990	0.1700	0.2428	0.3088
1.25			0.0145	0.0880	0.1624	0.2400	0.3052
1.30			0.0015	0.0769	0.1533	0.2360	0.3015
1.35				0.0650	0.1440	0.2310	0.2990
1.40				0.0514	0.1340	0.2255	0.2964
1.45				0.0380	0.1240	0.2185	0.2948
1.50				0.0231	0.1117	0.2103	0.2925
1.55				0.0080	0.0990	0.2010	0.2904
1.60					0.0850	0.1910	0.2878
1.65					0.0712	0.1790	0.2845
1.70					0.0558	0.1670	0.2805

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.75					0.0400	0.1540	0.2760
1.80					0.0237	0.1400	0.2690
1.85					0.0078	0.1240	0.2590
1.90						0.1080	0.2480
1.95						0.0915	0.2353
2.00						0.0745	0.2220
2.05						0.0575	0.2080
2.10						0.0400	0.1920
2.15						0.0220	0.1750
2.20						0.0038	0.1580
2.25							0.1400
2.30							0.1230
2.35							0.1050
2.40							0.0870
2.45							0.0688
2.50							0.0505
2.55							0.0320
2.60							0.0140

Power coefficient [1]

2.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.05	0.113	0.060	0.049	0.039	0.031	0.025	0.021
0.10	0.217	0.128	0.098	0.077	0.062	0.050	0.042
0.15	0.314	0.201	0.146	0.116	0.093	0.076	0.063
0.20	0.402	0.280	0.196	0.155	0.124	0.102	0.085
0.25	0.479	0.362	0.246	0.194	0.156	0.128	0.106
0.30	0.546	0.445	0.298	0.233	0.188	0.155	0.129
0.35	0.610	0.523	0.350	0.273	0.221	0.182	0.152
0.40	0.665	0.590	0.405	0.312	0.254	0.210	0.175
0.45	0.715	0.640	0.463	0.353	0.288	0.238	0.199
0.50	0.756	0.684	0.525	0.395	0.322	0.266	0.222
0.55	0.786	0.722	0.588	0.436	0.356	0.294	0.246
0.60	0.800	0.755	0.644	0.480	0.391	0.323	0.270
0.65	0.800	0.785	0.690	0.525	0.427	0.352	0.294
0.70	0.777	0.810	0.728	0.572	0.464	0.381	0.318
0.75	0.710	0.830	0.762	0.620	0.500	0.412	0.341
0.80	0.272	0.846	0.791	0.665	0.538	0.441	0.365
0.85		0.852	0.812	0.705	0.575	0.470	0.388
0.90		0.846	0.837	0.740	0.610	0.500	0.411
0.95		0.805	0.845	0.770	0.645	0.530	0.435
1.00		0.640	0.856	0.800	0.678	0.560	0.460
1.05			0.874	0.823	0.715	0.589	0.484
1.10			0.876	0.841	0.750	0.615	0.510
1.15			0.871	0.859	0.779	0.643	0.536
1.20			0.825	0.870	0.804	0.670	0.560
1.25			0.745	0.885	0.820	0.698	0.585
1.30				0.891	0.842	0.730	0.610
1.35				0.893	0.855	0.760	0.631
1.40				0.890	0.867	0.796	0.655
1.45				0.858	0.876	0.805	0.675
1.50				0.806	0.884	0.825	0.698
1.55				0.387	0.893	0.841	0.720
1.60					0.900	0.855	0.745
1.65					0.892	0.866	0.767
1.70					0.876	0.873	0.790

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.75					0.853	0.875	0.805
1.80					0.760	0.881	0.816
1.85					0.166	0.888	0.829
1.90						0.880	0.839
1.95						0.874	0.855
2.00						0.860	0.855
2.05						0.810	0.863
2.10						0.771	0.874
2.15						0.566	0.877
2.20							0.880
2.25							0.883
2.30							0.878
2.35							0.867
2.40							0.842
2.45							0.812
2.50							0.742
2.55							0.558

Efficiency [1]

3. US Navy Bureau of Aeronautics propeller 5868-9, 2 blades

Thrust coefficient [2]

Power coefficient [2]

Efficiency [2]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [2], [3]

Combined power coefficient [2], [3]

3.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.099	0.104	0.113	0.117	0.118	0.120	0.122
0.1	0.095	0.104	0.110	0.117	0.119	0.122	0.124
0.2	0.088	0.103	0.107	0.115	0.120	0.124	0.126
0.3	0.077	0.101	0.106	0.112	0.120	0.125	0.128
0.4	0.064	0.093	0.105	0.110	0.119	0.125	0.129
0.5	0.049	0.081	0.104	0.108	0.114	0.124	0.128
0.6	0.034	0.069	0.097	0.107	0.109	0.121	0.127
0.7	0.019	0.055	0.087	0.107	0.105	0.117	0.124
0.8	0.003	0.039	0.074	0.103	0.103	0.113	0.122
0.9		0.023	0.060	0.094	0.103	0.109	0.118
1.0		0.007	0.045	0.082	0.101	0.106	0.114
1.1			0.030	0.069	0.095	0.105	0.111
1.2			0.014	0.054	0.085	0.104	0.108
1.3				0.039	0.072	0.100	0.106
1.4				0.023	0.059	0.093	0.105
1.5				0.007	0.046	0.083	0.104
1.6					0.032	0.072	0.101
1.7					0.018	0.061	0.095
1.8					0.004	0.049	0.087
1.9						0.037	0.077
2.0						0.025	0.067
2.1						0.013	0.057
2.2							0.047
2.3							0.036
2.4							0.026
2.5							0.015
2.6							0.005

Thrust coefficient [2]

3.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.040	0.066	0.108	0.143	0.188	0.237	0.274
0.1	0.041	0.065	0.106	0.141	0.184	0.232	0.273
0.2	0.041	0.064	0.102	0.139	0.180	0.228	0.271
0.3	0.040	0.062	0.097	0.136	0.176	0.223	0.269
0.4	0.037	0.060	0.091	0.133	0.170	0.219	0.266
0.5	0.032	0.058	0.086	0.128	0.164	0.216	0.264
0.6	0.025	0.054	0.082	0.123	0.157	0.211	0.260
0.7	0.016	0.047	0.079	0.118	0.151	0.205	0.256
0.8	0.005	0.037	0.073	0.114	0.146	0.199	0.252
0.9		0.025	0.064	0.108	0.143	0.193	0.247
1.0		0.011	0.052	0.100	0.139	0.188	0.242
1.1			0.038	0.089	0.133	0.183	0.235
1.2			0.022	0.074	0.124	0.180	0.228
1.3			0.004	0.058	0.112	0.174	0.221
1.4				0.038	0.097	0.165	0.218
1.5				0.018	0.081	0.153	0.217
1.6					0.062	0.138	0.212
1.7					0.042	0.121	0.203
1.8					0.020	0.105	0.190
1.9						0.088	0.176
2.0						0.070	0.161
2.1						0.051	0.144
2.2						0.029	0.126
2.3						0.006	0.108
2.4							0.091
2.5							0.073
2.6							0.054
2.7							0.032
2.8							0.010

Power coefficient [2]

3.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.1	0.238	0.164	0.107	0.082	0.069	0.056	0.048
0.2	0.432	0.327	0.214	0.163	0.138	0.113	0.096
0.3	0.581	0.490	0.331	0.248	0.206	0.169	0.144
0.4	0.689	0.614	0.473	0.333	0.277	0.226	0.192
0.5	0.766	0.701	0.603	0.425	0.348	0.287	0.243
0.6	0.807	0.770	0.702	0.529	0.418	0.347	0.291
0.7	0.798	0.818	0.769	0.639	0.489	0.402	0.338
0.8	0.389	0.844	0.814	0.726	0.566	0.454	0.385
0.9		0.819	0.846	0.785	0.651	0.506	0.430
1.0		0.590	0.861	0.819	0.728	0.564	0.475
1.1			0.847	0.844	0.784	0.631	0.520
1.2			0.764	0.858	0.816	0.696	0.569
1.3				0.854	0.837	0.746	0.621
1.4				0.794	0.849	0.786	0.672
1.5				0.479	0.847	0.817	0.720
1.6					0.813	0.838	0.765
1.7					0.702	0.847	0.798
1.8					0.320	0.836	0.819
1.9						0.805	0.831
2.0						0.714	0.829
2.1						0.500	0.819
2.2							0.799
2.3							0.749
2.4							0.657
2.5							0.495
2.6							0.189

Efficiency [2]

3.4. Negative Thrust Coefficient, Tc

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.028	-0.026	-0.024	-0.023	-0.021	-0.018	-0.016
0.05	-0.028	-0.026	-0.024	-0.022	-0.020	-0.017	-0.015
0.10	-0.028	-0.026	-0.024	-0.022	-0.019	-0.016	-0.014
0.15	-0.029	-0.026	-0.024	-0.021	-0.019	-0.015	-0.013
0.20	-0.031	-0.027	-0.025	-0.021	-0.018	-0.015	-0.012
0.25	-0.033	-0.028	-0.026	-0.022	-0.018	-0.014	-0.010
0.30	-0.036	-0.030	-0.027	-0.022	-0.018	-0.013	-0.008
0.35	-0.038	-0.032	-0.027	-0.022	-0.016	-0.011	-0.004
0.40	-0.041	-0.034	-0.027	-0.020	-0.014	-0.007	
0.45	-0.043	-0.034	-0.027	-0.018	-0.010		
0.50	-0.045	-0.035	-0.025	-0.015	-0.004		
0.55	-0.047	-0.035	-0.023	-0.011			
0.60	-0.048	-0.034	-0.019	-0.005			
0.65	-0.048	-0.032	-0.015				
0.70	-0.048	-0.029	-0.009				
0.75	-0.046	-0.025	-0.002				
0.80	-0.045	-0.020					
0.85	-0.043	-0.014					
0.90	-0.039	-0.007					
0.95	-0.035						
1.00	-0.030						
1.05	-0.024						
1.10	-0.017						
1.15	-0.009						

Negative thrust coefficient [3]

3.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.0029	-0.0035	-0.0041	-0.0046	-0.0050	-0.0052	-0.0053
0.05	-0.0029	-0.0035	-0.0040	-0.0044	-0.0047	-0.0049	-0.0049
0.10	-0.0029	-0.0035	-0.0040	-0.0043	-0.0045	-0.0046	-0.0045
0.15	-0.0030	-0.0036	-0.0040	-0.0043	-0.0044	-0.0043	-0.0042
0.20	-0.0031	-0.0037	-0.0041	-0.0043	-0.0043	-0.0041	-0.0038
0.25	-0.0033	-0.0038	-0.0042	-0.0043	-0.0041	-0.0039	-0.0034
0.30	-0.0036	-0.0040	-0.0043	-0.0042	-0.0039	-0.0035	-0.0026
0.35	-0.0038	-0.0041	-0.0044	-0.0041	-0.0036	-0.0029	-0.0012
0.40	-0.0040	-0.0042	-0.0044	-0.0040	-0.0030	-0.0018	
0.45	-0.0041	-0.0042	-0.0042	-0.0037	-0.0022		
0.50	-0.0042	-0.0042	-0.0041	-0.0032	-0.0008		
0.55	-0.0042	-0.0041	-0.0037	-0.0024			
0.60	-0.0043	-0.0040	-0.0032	-0.0007			
0.65	-0.0043	-0.0039	-0.0024				
0.70	-0.0042	-0.0036	-0.0013				
0.75	-0.0042	-0.0033					
0.80	-0.0041	-0.0027					
0.85	-0.0039	-0.0019					
0.90	-0.0036	-0.0007					
0.95	-0.0033						
1.00	-0.0028						
1.05	-0.0022						
1.10	-0.0014						
1.15	-0.0003						

Negative torque coefficient [3]

3.6. Combined Thrust Coefficient, $C_{\scriptscriptstyle T}$

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.099	0.104	0.113	0.117	0.118	0.120	0.122
0.1	0.095	0.104	0.110	0.117	0.119	0.122	0.124
0.2	0.088	0.103	0.107	0.115	0.120	0.124	0.126
0.3	0.077	0.101	0.106	0.112	0.120	0.125	0.128
0.4	0.064	0.093	0.105	0.110	0.119	0.125	0.129
0.5	0.049	0.081	0.104	0.108	0.114	0.124	0.128
0.6	0.034	0.069	0.097	0.107	0.109	0.121	0.127
0.7	0.019	0.055	0.087	0.107	0.105	0.117	0.124
0.8	0.003	0.039	0.074	0.103	0.103	0.113	0.122
0.9	-0.013	0.023	0.060	0.094	0.103	0.109	0.118
1.0	-0.030	0.007	0.045	0.082	0.101	0.106	0.114
1.1	-0.047	-0.008	0.030	0.069	0.095	0.105	0.111
1.2	-0.063	-0.024	0.014	0.054	0.085	0.104	0.108
1.3	-0.078	-0.040	0.000	0.039	0.072	0.100	0.106
1.4	-0.093	-0.055	-0.013	0.023	0.059	0.093	0.105
1.5	-0.108	-0.070	-0.029	0.007	0.046	0.083	0.104
1.6	-0.123	-0.084	-0.044	-0.006	0.032	0.072	0.101
1.7	-0.137	-0.098	-0.059	-0.019	0.018	0.061	0.095
1.8	-0.152	-0.112	-0.073	-0.033	0.004	0.049	0.087
1.9	-0.166	-0.126	-0.087	-0.047	-0.008	0.037	0.077
2.0	-0.180	-0.139	-0.101	-0.061	-0.019	0.025	0.067
2.1	-0.194	-0.153	-0.114	-0.075	-0.031	0.013	0.057
2.2	-0.209	-0.167	-0.128	-0.088	-0.045	-0.001	0.047
2.3	-0.224	-0.181	-0.142	-0.101	-0.058	-0.015	0.036
2.4	-0.239	-0.196	-0.156	-0.114	-0.072	-0.029	0.026
2.5	-0.253	-0.210	-0.170	-0.128	-0.085	-0.042	0.015
2.6	-0.270	-0.224	-0.184	-0.141	-0.098	-0.056	0.005
2.7	-0.286	-0.239	-0.199	-0.154	-0.111	-0.069	-0.010
2.8	-0.302	-0.253	-0.214	-0.168	-0.125	-0.082	-0.025
2.9	-0.319	-0.268	-0.229	-0.182	-0.138	-0.094	-0.039
3.0	-0.336	-0.284	-0.245	-0.196	-0.151	-0.106	-0.050
3.1	-0.354	-0.300	-0.260	-0.211	-0.164	-0.117	-0.061
3.2	-0.372	-0.316	-0.276	-0.225	-0.178	-0.129	-0.072
3.3	-0.390	-0.331	-0.292	-0.240	-0.191	-0.140	-0.083
3.4	-0.409	-0.348	-0.309	-0.255	-0.205	-0.151	-0.095

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.429	-0.366	-0.326	-0.270	-0.219	-0.163	-0.106
3.6	-0.449	-0.384	-0.344	-0.286	-0.233	-0.174	-0.117
3.7	-0.469	-0.401	-0.361	-0.301	-0.247	-0.186	-0.129
3.8	-0.489	-0.419	-0.378	-0.317	-0.261	-0.197	-0.140
3.9	-0.509	-0.436	-0.396	-0.332	-0.275	-0.208	-0.151
4.0	-0.529	-0.454	-0.413	-0.347	-0.289	-0.220	-0.163
4.1	-0.552	-0.476	-0.433	-0.366	-0.306	-0.234	-0.176
4.2	-0.576	-0.498	-0.454	-0.385	-0.322	-0.249	-0.189
4.3	-0.600	-0.520	-0.474	-0.404	-0.339	-0.263	-0.202
4.4	-0.624	-0.542	-0.494	-0.423	-0.356	-0.278	-0.215
4.5	-0.647	-0.564	-0.514	-0.442	-0.373	-0.292	-0.229
4.6	-0.671	-0.586	-0.535	-0.461	-0.390	-0.306	-0.242
4.7	-0.695	-0.608	-0.555	-0.479	-0.407	-0.321	-0.255
4.8	-0.718	-0.629	-0.575	-0.498	-0.424	-0.335	-0.268
4.9	-0.742	-0.651	-0.595	-0.517	-0.441	-0.350	-0.281
5.0	-0.766	-0.673	-0.616	-0.536	-0.458	-0.364	-0.294

Combined thrust coefficient [2], [3]

3.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.040	0.066	0.108	0.143	0.188	0.237	0.274
0.1	0.041	0.065	0.106	0.141	0.184	0.232	0.273
0.2	0.041	0.064	0.102	0.139	0.180	0.228	0.271
0.3	0.040	0.062	0.097	0.136	0.176	0.223	0.269
0.4	0.037	0.060	0.091	0.133	0.170	0.219	0.266
0.5	0.032	0.058	0.086	0.128	0.164	0.216	0.264
0.6	0.025	0.054	0.082	0.123	0.157	0.211	0.260
0.7	0.016	0.047	0.079	0.118	0.151	0.205	0.256
0.8	0.005	0.037	0.073	0.114	0.146	0.199	0.252
0.9	-0.006	0.025	0.064	0.108	0.143	0.193	0.247
1.0	-0.018	0.011	0.052	0.100	0.139	0.188	0.242
1.1	-0.027	-0.005	0.038	0.089	0.133	0.183	0.235
1.2	-0.036	-0.020	0.022	0.074	0.124	0.180	0.228
1.3	-0.044	-0.033	0.004	0.058	0.112	0.174	0.221
1.4	-0.052	-0.044	-0.013	0.038	0.097	0.165	0.218
1.5	-0.060	-0.054	-0.029	0.018	0.081	0.153	0.217
1.6	-0.069	-0.064	-0.046	-0.001	0.062	0.138	0.212
1.7	-0.077	-0.074	-0.061	-0.020	0.042	0.121	0.203
1.8	-0.087	-0.084	-0.075	-0.045	0.020	0.105	0.190
1.9	-0.096	-0.095	-0.088	-0.064	-0.001	0.088	0.176
2.0	-0.106	-0.106	-0.102	-0.081	-0.021	0.070	0.161
2.1	-0.116	-0.117	-0.115	-0.096	-0.042	0.051	0.144
2.2	-0.126	-0.129	-0.129	-0.111	-0.064	0.029	0.126
2.3	-0.136	-0.141	-0.143	-0.126	-0.083	0.006	0.108
2.4	-0.146	-0.153	-0.157	-0.141	-0.101	-0.027	0.091
2.5	-0.156	-0.165	-0.171	-0.156	-0.120	-0.059	0.073
2.6	-0.166	-0.178	-0.186	-0.172	-0.138	-0.092	0.054
2.7	-0.177	-0.191	-0.201	-0.187	-0.156	-0.113	0.032
2.8	-0.188	-0.204	-0.216	-0.203	-0.174	-0.134	0.010
2.9	-0.199	-0.218	-0.231	-0.220	-0.192	-0.155	-0.073
3.0	-0.210	-0.232	-0.248	-0.237	-0.211	-0.176	-0.099
3.1	-0.222	-0.247	-0.264	-0.255	-0.231	-0.196	-0.125
3.2	-0.233	-0.261	-0.280	-0.272	-0.250	-0.216	-0.151
3.3	-0.245	-0.275	-0.297	-0.289	-0.269	-0.236	-0.176
3.4	-0.257	-0.291	-0.315	-0.309	-0.289	-0.257	-0.201

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.270	-0.307	-0.333	-0.329	-0.310	-0.279	-0.224
3.6	-0.283	-0.323	-0.352	-0.349	-0.331	-0.301	-0.248
3.7	-0.296	-0.339	-0.370	-0.369	-0.352	-0.322	-0.271
3.8	-0.309	-0.355	-0.389	-0.389	-0.373	-0.344	-0.295
3.9	-0.322	-0.371	-0.408	-0.410	-0.394	-0.366	-0.319
4.0	-0.335	-0.387	-0.426	-0.430	-0.415	-0.387	-0.342
4.1	-0.350	-0.405	-0.448	-0.454	-0.441	-0.413	-0.368
4.2	-0.366	-0.424	-0.470	-0.478	-0.466	-0.439	-0.394
4.3	-0.381	-0.443	-0.493	-0.502	-0.491	-0.464	-0.420
4.4	-0.397	-0.462	-0.515	-0.527	-0.517	-0.490	-0.446
4.5	-0.413	-0.481	-0.537	-0.551	-0.542	-0.516	-0.472
4.6	-0.428	-0.500	-0.559	-0.575	-0.568	-0.541	-0.497
4.7	-0.444	-0.518	-0.581	-0.599	-0.593	-0.567	-0.523
4.8	-0.459	-0.537	-0.603	-0.623	-0.618	-0.593	-0.549
4.9	-0.475	-0.556	-0.625	-0.647	-0.644	-0.618	-0.575
5.0	-0.490	-0.575	-0.647	-0.672	-0.669	-0.644	-0.601

Combined power coefficient [2], [3]

4. US Navy Bureau of Aeronautics propeller 5868-9, 3 blades

Thrust coefficient [1]

Power coefficient [1]

Efficiency [1]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [1], [3]

Combined power coefficient [1], [3]

4.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.1322	0.1514	0.1469	0.1709	0.1770	0.1725	0.1663
0.05	0.1280	0.1492	0.1486	0.1709	0.1770	0.1725	0.1663
0.10	0.1224	0.1465	0.1499	0.1692	0.1757	0.1730	0.1670
0.15	0.1165	0.1433	0.1510	0.1678	0.1723	0.1733	0.1677
0.20	0.1101	0.1397	0.1520	0.1662	0.1702	0.1737	0.1682
0.25	0.1036	0.1352	0.1529	0.1648	0.1680	0.1738	0.1687
0.30	0.0968	0.1306	0.1534	0.1635	0.1659	0.1739	0.1692
0.35	0.0899	0.1252	0.1538	0.1622	0.1638	0.1738	0.1697
0.40	0.0826	0.1193	0.1538	0.1610	0.1618	0.1737	0.1700
0.45	0.0752	0.1129	0.1529	0.1599	0.1600	0.1733	0.1702
0.50	0.0674	0.1060	0.1505	0.1588	0.1582	0.1728	0.1704
0.55	0.0587	0.0985	0.1452	0.1578	0.1566	0.1720	0.1705
0.60	0.0495	0.0905	0.1378	0.1570	0.1550	0.1710	0.1704
0.65	0.0391	0.0818	0.1297	0.1562	0.1538	0.1699	0.1702
0.70	0.0288	0.0729	0.1212	0.1554	0.1527	0.1684	0.1700
0.75	0.0183	0.0635	0.1126	0.1532	0.1517	0.1663	0.1694
0.80	0.0080	0.0542	0.1037	0.1454	0.1508	0.1641	0.1687
0.85	-0.0020	0.0447	0.0943	0.1369	0.1501	0.1619	0.1678
0.90		0.0350	0.0849	0.1201	0.1488	0.1598	0.1666
0.95		0.0254	0.0757	0.1117	0.1471	0.1578	0.1650
1.00		0.0153	0.0662	0.1031	0.1442	0.1560	0.1631
1.05		0.0043	0.0557	0.0948	0.1393	0.1545	0.1609
1.10			0.0454	0.0862	0.1340	0.1531	0.1585
1.15			0.0350	0.0770	0.1279	0.1520	0.1563
1.20			0.0250	0.0679	0.1210	0.1511	0.1542
1.25			0.0150	0.0577	0.1131	0.1497	0.1522
1.30			0.0047	0.0472	0.1048	0.1472	0.1503
1.35				0.0365	0.0962	0.1427	0.1488
1.40				0.0265	0.0875	0.1372	0.1476
1.45				0.0159	0.0788	0.1310	0.1470
1.50				0.0068	0.0700	0.1240	0.1468
1.55				-0.0047	0.0611	0.1160	0.1460
1.60					0.0521	0.1078	0.1445
1.65					0.0430	0.0988	0.1413
1.70					0.0340	0.0900	0.1370

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.75					0.0243	0.0810	0.1318
1.80					0.0145	0.0720	0.1255
1.85					0.0048	0.0630	0.1191
1.90					-0.0051	0.0540	0.1125
1.95						0.0450	0.1056
2.00						0.0360	0.0986
2.05						0.0265	0.0910
2.10						0.0175	0.0830
2.15						0.0083	0.0746
2.20						-0.0008	0.0663
2.25						-0.0100	0.0580
2.30							0.0500
2.35							0.0412
2.40							0.0330
2.45							0.0242
2.50							0.0160
2.55							0.0073
2.60							-0.0010
2.65							-0.0095

Thrust coefficient [1]

4.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.0584	0.0856	0.1742	0.2201	0.2728	0.3324	0.3937
0.05	0.0582	0.0857	0.1668	0.2201	0.2728	0.3324	0.3937
0.10	0.0578	0.0858	0.1610	0.2173	0.2699	0.3320	0.3925
0.15	0.0572	0.0857	0.1556	0.2144	0.2665	0.3313	0.3911
0.20	0.0564	0.0853	0.1505	0.2114	0.2630	0.3302	0.3900
0.25	0.0555	0.0848	0.1460	0.2083	0.2592	0.3288	0.3886
0.30	0.0543	0.0840	0.1414	0.2050	0.2552	0.3270	0.3871
0.35	0.0530	0.0831	0.1373	0.2017	0.2510	0.3249	0.3857
0.40	0.0514	0.0819	0.1338	0.1982	0.2467	0.3226	0.3840
0.45	0.0492	0.0804	0.1307	0.1947	0.2422	0.3199	0.3824
0.50	0.0461	0.0786	0.1282	0.1910	0.2377	0.3170	0.3806
0.55	0.0419	0.0764	0.1258	0.1874	0.2330	0.3138	0.3788
0.60	0.0370	0.0732	0.1230	0.1840	0.2283	0.3102	0.3767
0.65	0.0314	0.0691	0.1194	0.1804	0.2245	0.3066	0.3743
0.70	0.0252	0.0643	0.1155	0.1761	0.2220	0.3027	0.3720
0.75	0.0182	0.0586	0.1110	0.1708	0.2206	0.2988	0.3690
0.80	0.0106	0.0523	0.1062	0.1649	0.2186	0.2945	0.3660
0.85	0.0025	0.0455	0.1003	0.1589	0.2154	0.2898	0.3625
0.90		0.0380	0.0940	0.1528	0.2110	0.2847	0.3587
0.95		0.0298	0.0868	0.1461	0.2062	0.2799	0.3544
1.00		0.0200	0.0788	0.1397	0.2015	0.2755	0.3498
1.05		0.0090	0.0693	0.1329	0.1968	0.2712	0.3446
1.10			0.0586	0.1256	0.1915	0.2672	0.3390
1.15			0.0480	0.1175	0.1858	0.2632	0.3333
1.20			0.0364	0.1090	0.1795	0.2595	0.3280
1.25			0.0240	0.1000	0.1723	0.2560	0.3236
1.30			0.0118	0.0881	0.1644	0.2519	0.3199
1.35				0.0752	0.1550	0.2470	0.3168
1.40				0.0612	0.1453	0.2409	0.3142
1.45				0.0470	0.1345	0.2340	0.3127
1.50				0.0327	0.1236	0.2262	0.3110
1.55				0.0184	0.1110	0.2170	0.3088
1.60				0.0040	0.0984	0.2065	0.3054

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.65					0.0843	0.1950	0.3010
1.70					0.0693	0.1825	0.2950
1.75					0.0531	0.1690	0.2880
1.80					0.0365	0.1540	0.2800
1.85					0.0200	0.1385	0.2720
1.90					0.0031	0.1230	0.2636
1.95						0.1070	0.2535
2.00						0.0900	0.2427
2.05						0.0720	0.2293
2.10						0.0545	0.2135
2.15						0.0365	0.1961
2.20						0.0190	0.1780
2.25						0.0010	0.1595
2.30							0.1410
2.35							0.1220
2.40							0.1040
2.45							0.0855
2.50							0.0670
2.55							0.0485
2.60							0.0300
2.65							0.0120

Power coefficient [1]

4.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35	40	45
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.05	0.110	0.087	0.045	0.039	0.033	0.026	0.021
0.10	0.212	0.170	0.093	0.078	0.065	0.052	0.043
0.15	0.306	0.251	0.146	0.117	0.097	0.079	0.064
0.20	0.391	0.328	0.208	0.157	0.130	0.105	0.086
0.25	0.467	0.399	0.262	0.198	0.162	0.132	0.109
0.30	0.535	0.467	0.325	0.240	0.195	0.160	0.131
0.35	0.593	0.528	0.392	0.282	0.228	0.187	0.154
0.40	0.643	0.583	0.460	0.325	0.262	0.215	0.177
0.45	0.688	0.632	0.527	0.370	0.297	0.244	0.200
0.50	0.732	0.675	0.587	0.414	0.335	0.273	0.224
0.55	0.770	0.710	0.635	0.465	0.370	0.302	0.247
0.60	0.802	0.743	0.673	0.512	0.407	0.330	0.271
0.65	0.810	0.770	0.705	0.563	0.445	0.360	0.295
0.70	0.800	0.793	0.735	0.617	0.480	0.388	0.320
0.75	0.755	0.812	0.752	0.673	0.516	0.417	0.344
0.80	0.604	0.829	0.788	0.705	0.552	0.445	0.369
0.85		0.835	0.800	0.733	0.593	0.477	0.393
0.90		0.828	0.813	0.760	0.635	0.505	0.418
0.95		0.810	0.829	0.781	0.680	0.536	0.442
1.00		0.765	0.840	0.800	0.715	0.568	0.467
1.05		0.510	0.844	0.815	0.743	0.599	0.490
1.10			0.852	0.830	0.770	0.631	0.514
1.15			0.839	0.844	0.791	0.665	0.540
1.20			0.825	0.848	0.810	0.699	0.564
1.25			0.781	0.849	0.821	0.730	0.589
1.30			0.518	0.851	0.828	0.761	0.611
1.35				0.845	0.837	0.780	0.633
1.40				0.835	0.843	0.797	0.657
1.45				0.818	0.848	0.811	0.681
1.50				0.730	0.850	0.822	0.708
1.55				0.572	0.853	0.829	0.732
1.60					0.848	0.835	0.756
1.65					0.842	0.836	0.775
1.70					0.835	0.838	0.790

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
1.75					0.800	0.839	0.800
1.80					0.715	0.840	0.806
1.85					0.444	0.841	0.810
1.90						0.835	0.811
1.95						0.820	0.812
2.00						0.800	0.813
2.05						0.754	0.814
2.10						0.675	0.816
2.15						0.489	0.818
2.20							0.819
2.25							0.820
2.30							0.816
2.35							0.795
2.40							0.762
2.45							0.694
2.50							0.597
2.55							0.383

Efficiency [1]

4.4. Negative Thrust Coefficient, T_c

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.038	-0.036	-0.033	-0.030	-0.027	-0.025	-0.022
0.05	-0.038	-0.035	-0.033	-0.031	-0.027	-0.024	-0.020
0.10	-0.038	-0.036	-0.034	-0.031	-0.027	-0.022	-0.019
0.15	-0.039	-0.037	-0.034	-0.031	-0.026	-0.021	-0.018
0.20	-0.041	-0.038	-0.035	-0.031	-0.026	-0.020	-0.017
0.25	-0.044	-0.040	-0.036	-0.031	-0.025	-0.019	-0.015
0.30	-0.047	-0.042	-0.037	-0.031	-0.024	-0.018	-0.012
0.35	-0.051	-0.045	-0.038	-0.030	-0.023	-0.015	-0.005
0.40	-0.055	-0.047	-0.038	-0.030	-0.021	-0.009	
0.45	-0.059	-0.048	-0.038	-0.028	-0.015		
0.50	-0.062	-0.048	-0.037	-0.024	-0.006		
0.55	-0.063	-0.048	-0.035	-0.017			
0.60	-0.064	-0.048	-0.032	-0.008			
0.65	-0.065	-0.047	-0.025				
0.70	-0.065	-0.044	-0.016				
0.75	-0.064	-0.039	-0.006				
0.80	-0.063	-0.031					
0.85	-0.060	-0.022					
0.90	-0.054	-0.012					
0.95	-0.047	-0.001					
1.00	-0.038						
1.05	-0.029						
1.10	-0.019						
1.15	-0.009						

Negative thrust coefficient [3]

4.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.0046	-0.0054	-0.0060	-0.0066	-0.0071	-0.0074	-0.0077
0.05	-0.0044	-0.0052	-0.0058	-0.0065	-0.0068	-0.0070	-0.0070
0.10	-0.0043	-0.0051	-0.0058	-0.0063	-0.0066	-0.0066	-0.0065
0.15	-0.0043	-0.0052	-0.0058	-0.0063	-0.0063	-0.0062	-0.0059
0.20	-0.0045	-0.0054	-0.0059	-0.0062	-0.0061	-0.0058	-0.0053
0.25	-0.0048	-0.0057	-0.0062	-0.0062	-0.0059	-0.0054	-0.0048
0.30	-0.0053	-0.0061	-0.0063	-0.0061	-0.0056	-0.0050	-0.0040
0.35	-0.0057	-0.0063	-0.0063	-0.0060	-0.0052	-0.0044	-0.0010
0.40	-0.0060	-0.0064	-0.0062	-0.0057	-0.0047	-0.0024	
0.45	-0.0062	-0.0064	-0.0061	-0.0053	-0.0036		
0.50	-0.0063	-0.0064	-0.0058	-0.0046	-0.0011		
0.55	-0.0064	-0.0062	-0.0054	-0.0031			
0.60	-0.0064	-0.0061	-0.0047	-0.0010			
0.65	-0.0064	-0.0057	-0.0037				
0.70	-0.0064	-0.0053	-0.0021				
0.75	-0.0062	-0.0047	0.0000				
0.80	-0.0060	-0.0038					
0.85	-0.0057	-0.0025					
0.90	-0.0052	-0.0010					
0.95	-0.0046						
1.00	-0.0039						
1.05	-0.0030						
1.10	-0.0018						
1.15	-0.0003						

Negative torque coefficient [3]

4.6. Combined Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.1322	0.1514	0.1469	0.1709	0.1770	0.1725	0.1663
0.1	0.1224	0.1465	0.1499	0.1692	0.1757	0.1730	0.1670
0.2	0.1101	0.1397	0.1520	0.1662	0.1702	0.1737	0.1682
0.3	0.0968	0.1306	0.1534	0.1635	0.1659	0.1739	0.1692
0.4	0.0826	0.1193	0.1538	0.1610	0.1618	0.1737	0.1700
0.5	0.0674	0.1060	0.1505	0.1588	0.1582	0.1728	0.1704
0.6	0.0495	0.0905	0.1378	0.1570	0.1550	0.1710	0.1704
0.7	0.0288	0.0729	0.1212	0.1554	0.1527	0.1684	0.1700
0.8	0.0080	0.0542	0.1037	0.1454	0.1508	0.1641	0.1687
0.9	-0.0139	0.0350	0.0849	0.1201	0.1488	0.1598	0.1666
1.0	-0.0384	0.0153	0.0662	0.1031	0.1442	0.1560	0.1631
1.1	-0.0641	-0.0119	0.0454	0.0862	0.1340	0.1531	0.1585
1.2	-0.0881	-0.0358	0.0250	0.0679	0.1210	0.1511	0.1542
1.3	-0.1079	-0.0607	0.0047	0.0472	0.1048	0.1472	0.1503
1.4	-0.1270	-0.0834	-0.0264	0.0265	0.0875	0.1372	0.1476
1.5	-0.1458	-0.1031	-0.0501	0.0068	0.0700	0.1240	0.1468
1.6	-0.1650	-0.1212	-0.0729	-0.0116	0.0521	0.1078	0.1445
1.7	-0.1847	-0.1389	-0.0940	-0.0300	0.0340	0.0900	0.1370
1.8	-0.2049	-0.1567	-0.1128	-0.0533	0.0145	0.0720	0.1255
1.9	-0.2256	-0.1752	-0.1305	-0.0755	-0.0051	0.0540	0.1125
2.0	-0.2463	-0.1937	-0.1480	-0.0974	-0.0263	0.0360	0.0986
2.1	-0.2669	-0.2132	-0.1660	-0.1162	-0.0476	0.0175	0.0830
2.2	-0.2876	-0.2327	-0.1840	-0.1349	-0.0693	-0.0008	0.0663
2.3	-0.3074	-0.2523	-0.2025	-0.1519	-0.0897	-0.0191	0.0500
2.4	-0.3269	-0.2721	-0.2211	-0.1684	-0.1098	-0.0374	0.0330
2.5	-0.3465	-0.2918	-0.2397	-0.1850	-0.1299	-0.0557	0.0160
2.6	-0.3666	-0.3122	-0.2598	-0.2027	-0.1460	-0.0740	-0.0010
2.7	-0.3867	-0.3325	-0.2800	-0.2203	-0.1621	-0.0926	-0.0168
2.8	-0.4068	-0.3529	-0.3001	-0.2380	-0.1782	-0.1113	-0.0326
2.9	-0.4280	-0.3740	-0.3210	-0.2566	-0.1946	-0.1287	-0.0485
3.0	-0.4505	-0.3959	-0.3428	-0.2764	-0.2115	-0.1444	-0.0678
3.1	-0.4730	-0.4178	-0.3646	-0.2962	-0.2283	-0.1602	-0.0871
3.2	-0.4956	-0.4397	-0.3865	-0.3160	-0.2451	-0.1760	-0.1065
3.3	-0.5181	-0.4616	-0.4083	-0.3358	-0.2619	-0.1918	-0.1258
3.4	-0.5433	-0.4861	-0.4322	-0.3578	-0.2808	-0.2080	-0.1435

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.5698	-0.5120	-0.4572	-0.3808	-0.3007	-0.2244	-0.1604
3.6	-0.5963	-0.5378	-0.4821	-0.4039	-0.3205	-0.2409	-0.1772
3.7	-0.6227	-0.5637	-0.5070	-0.4270	-0.3404	-0.2573	-0.1941
3.8	-0.6492	-0.5895	-0.5319	-0.4501	-0.3602	-0.2738	-0.2110
3.9	-0.6757	-0.6154	-0.5569	-0.4732	-0.3801	-0.2902	-0.2278
4.0	-0.7022	-0.6412	-0.5818	-0.4963	-0.4000	-0.3066	-0.2447
4.1	-0.7348	-0.6726	-0.6115	-0.5245	-0.4241	-0.3267	-0.2617
4.2	-0.7673	-0.7039	-0.6413	-0.5528	-0.4482	-0.3467	-0.2788
4.3	-0.7998	-0.7352	-0.6710	-0.5811	-0.4724	-0.3668	-0.2958
4.4	-0.8324	-0.7665	-0.7007	-0.6093	-0.4965	-0.3869	-0.3129
4.5	-0.8649	-0.7979	-0.7305	-0.6376	-0.5206	-0.4069	-0.3299
4.6	-0.8975	-0.8292	-0.7602	-0.6659	-0.5447	-0.4270	-0.3470
4.7	-0.9300	-0.8605	-0.7900	-0.6941	-0.5689	-0.4470	-0.3640
4.8	-0.9625	-0.8919	-0.8197	-0.7224	-0.5930	-0.4671	-0.3811
4.9	-0.9951	-0.9232	-0.8495	-0.7506	-0.6171	-0.4871	-0.3981
5.0	-1.0276	-0.9545	-0.8792	-0.7789	-0.6413	-0.5072	-0.4152

Combined thrust coefficient [1], [3]

4.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.0584	0.0856	0.1742	0.2201	0.2728	0.3324	0.3937
0.1	0.0578	0.0858	0.1610	0.2173	0.2699	0.3320	0.3925
0.2	0.0564	0.0853	0.1505	0.2114	0.2630	0.3302	0.3900
0.3	0.0543	0.0840	0.1414	0.2050	0.2552	0.3270	0.3871
0.4	0.0514	0.0819	0.1338	0.1982	0.2467	0.3226	0.3840
0.5	0.0461	0.0786	0.1282	0.1910	0.2377	0.3170	0.3806
0.6	0.0370	0.0732	0.1230	0.1840	0.2283	0.3102	0.3767
0.7	0.0252	0.0643	0.1155	0.1761	0.2220	0.3027	0.3720
0.8	0.0106	0.0523	0.1062	0.1649	0.2186	0.2945	0.3660
0.9	-0.0075	0.0380	0.0940	0.1528	0.2110	0.2847	0.3587
1.0	-0.0248	0.0200	0.0788	0.1397	0.2015	0.2755	0.3498
1.1	-0.0389	-0.0035	0.0586	0.1256	0.1915	0.2672	0.3390
1.2	-0.0523	-0.0269	0.0364	0.1090	0.1795	0.2595	0.3280
1.3	-0.0652	-0.0462	0.0118	0.0881	0.1644	0.2519	0.3199
1.4	-0.0779	-0.0635	-0.0188	0.0612	0.1453	0.2409	0.3142
1.5	-0.0905	-0.0794	-0.0446	0.0327	0.1236	0.2262	0.3110
1.6	-0.1033	-0.0951	-0.0678	0.0040	0.0984	0.2065	0.3054
1.7	-0.1164	-0.1109	-0.0889	-0.0275	0.0693	0.1825	0.2950
1.8	-0.1300	-0.1268	-0.1083	-0.0593	0.0365	0.1540	0.2800
1.9	-0.1443	-0.1432	-0.1272	-0.0874	0.0031	0.1230	0.2636
2.0	-0.1588	-0.1598	-0.1461	-0.1147	-0.0318	0.0900	0.2427
2.1	-0.1742	-0.1774	-0.1651	-0.1369	-0.0667	0.0545	0.2135
2.2	-0.1896	-0.1949	-0.1842	-0.1591	-0.1047	0.0190	0.1780
2.3	-0.2052	-0.2137	-0.2041	-0.1810	-0.1336	-0.0180	0.1410
2.4	-0.2208	-0.2328	-0.2243	-0.2029	-0.1599	-0.0551	0.1040
2.5	-0.2364	-0.2520	-0.2445	-0.2247	-0.1862	-0.0921	0.0670
2.6	-0.2522	-0.2724	-0.2663	-0.2475	-0.2094	-0.1292	0.0300
2.7	-0.2680	-0.2929	-0.2882	-0.2704	-0.2327	-0.1659	-0.0046
2.8	-0.2839	-0.3134	-0.3100	-0.2932	-0.2560	-0.2027	-0.0392
2.9	-0.2998	-0.3339	-0.3330	-0.3171	-0.2803	-0.2348	-0.0738
3.0	-0.3159	-0.3545	-0.3577	-0.3424	-0.3061	-0.2606	-0.1210
3.1	-0.3321	-0.3751	-0.3823	-0.3677	-0.3319	-0.2864	-0.1682
3.2	-0.3482	-0.3957	-0.4070	-0.3931	-0.3577	-0.3121	-0.2154
3.3	-0.3643	-0.4163	-0.4316	-0.4184	-0.3835	-0.3379	-0.2626
3.4	-0.3814	-0.4379	-0.4578	-0.4464	-0.4119	-0.3660	-0.2985

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.3991	-0.4600	-0.4848	-0.4757	-0.4417	-0.3952	-0.3289
3.6	-0.4167	-0.4820	-0.5117	-0.5051	-0.4715	-0.4245	-0.3592
3.7	-0.4344	-0.5041	-0.5387	-0.5344	-0.5012	-0.4537	-0.3895
3.8	-0.4520	-0.5262	-0.5656	-0.5638	-0.5310	-0.4829	-0.4198
3.9	-0.4697	-0.5482	-0.5926	-0.5931	-0.5608	-0.5121	-0.4501
4.0	-0.4873	-0.5703	-0.6196	-0.6225	-0.5905	-0.5414	-0.4804
4.1	-0.5098	-0.5977	-0.6511	-0.6581	-0.6273	-0.5779	-0.5160
4.2	-0.5323	-0.6251	-0.6825	-0.6937	-0.6640	-0.6145	-0.5516
4.3	-0.5548	-0.6526	-0.7140	-0.7293	-0.7008	-0.6510	-0.5872
4.4	-0.5773	-0.6800	-0.7455	-0.7649	-0.7375	-0.6875	-0.6228
4.5	-0.5998	-0.7074	-0.7770	-0.8005	-0.7743	-0.7241	-0.6584
4.6	-0.6223	-0.7348	-0.8085	-0.8361	-0.8110	-0.7606	-0.6941
4.7	-0.6448	-0.7623	-0.8399	-0.8717	-0.8478	-0.7972	-0.7297
4.8	-0.6673	-0.7897	-0.8714	-0.9073	-0.8845	-0.8337	-0.7653
4.9	-0.6898	-0.8171	-0.9029	-0.9429	-0.9213	-0.8702	-0.8009
5.0	-0.7123	-0.8445	-0.9344	-0.9785	-0.9580	-0.9068	-0.8365

Combined power coefficient [1], [3]

5. US Navy Bureau of Aeronautics propeller 5868-9, 4 blades

Power coefficient [2]

Efficiency [2]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [2], [3]

Combined power coefficient [2], [3]

5.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.159	0.187	0.196	0.208	0.216	0.219	0.230
0.1	0.150	0.185	0.194	0.206	0.215	0.219	0.230
0.2	0.138	0.181	0.193	0.205	0.214	0.219	0.230
0.3	0.122	0.174	0.192	0.202	0.212	0.218	0.229
0.4	0.103	0.161	0.190	0.200	0.209	0.218	0.228
0.5	0.081	0.141	0.185	0.197	0.206	0.216	0.226
0.6	0.056	0.119	0.171	0.196	0.200	0.214	0.222
0.7	0.030	0.097	0.150	0.193	0.195	0.211	0.219
0.8	0.003	0.072	0.127	0.181	0.194	0.206	0.214
0.9		0.044	0.103	0.163	0.192	0.201	0.208
1.0		0.015	0.077	0.142	0.185	0.197	0.203
1.1			0.051	0.120	0.171	0.196	0.198
1.2			0.023	0.098	0.154	0.194	0.195
1.3				0.072	0.132	0.188	0.194
1.4				0.043	0.110	0.175	0.193
1.5				0.013	0.086	0.159	0.191
1.6					0.061	0.138	0.185
1.7					0.035	0.115	0.174
1.8					0.009	0.093	0.160
1.9						0.070	0.143
2.0						0.048	0.125
2.1						0.024	0.108
2.2						0.001	0.089
2.3							0.068
2.4							0.048
2.5							0.027
2.6							0.006

Thrust coefficient [2]

5.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.073	0.118	0.176	0.266	0.331	0.384	0.483
0.1	0.073	0.118	0.172	0.256	0.325	0.384	0.481
0.2	0.072	0.117	0.169	0.246	0.318	0.382	0.478
0.3	0.070	0.116	0.166	0.236	0.310	0.380	0.475
0.4	0.064	0.113	0.163	0.228	0.302	0.378	0.471
0.5	0.056	0.107	0.159	0.222	0.293	0.375	0.465
0.6	0.044	0.098	0.153	0.219	0.285	0.370	0.457
0.7	0.028	0.086	0.144	0.213	0.278	0.364	0.448
0.8	0.009	0.069	0.131	0.204	0.274	0.355	0.439
0.9		0.048	0.114	0.193	0.269	0.346	0.430
1.0		0.023	0.093	0.178	0.258	0.341	0.422
1.1			0.067	0.160	0.245	0.337	0.415
1.2			0.038	0.139	0.229	0.332	0.409
1.3			0.009	0.110	0.208	0.323	0.405
1.4				0.074	0.183	0.310	0.404
1.5				0.038	0.152	0.291	0.402
1.6				0.000	0.119	0.265	0.393
1.7					0.082	0.235	0.376
1.8					0.043	0.201	0.355
1.9					0.004	0.164	0.330
2.0						0.128	0.304
2.1						0.089	0.276
2.2						0.048	0.245
2.3						0.004	0.208
2.4							0.165
2.5							0.121
2.6							0.077
2.7							0.033

Power coefficient [2]

5.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.1	0.222	0.178	0.110	0.081	0.068	0.059	0.043
0.2	0.406	0.340	0.226	0.164	0.136	0.117	0.088
0.3	0.553	0.482	0.348	0.252	0.209	0.176	0.136
0.4	0.661	0.592	0.477	0.344	0.283	0.234	0.188
0.5	0.745	0.681	0.595	0.439	0.356	0.292	0.241
0.6	0.799	0.752	0.684	0.540	0.431	0.350	0.291
0.7	0.796	0.806	0.750	0.641	0.506	0.409	0.339
0.8	0.342	0.840	0.801	0.724	0.585	0.467	0.388
0.9		0.839	0.838	0.780	0.665	0.524	0.437
1.0		0.624	0.859	0.817	0.735	0.584	0.483
1.1			0.855	0.843	0.780	0.647	0.530
1.2			0.771	0.860	0.808	0.706	0.578
1.3				0.860	0.828	0.756	0.626
1.4				0.829	0.842	0.792	0.677
1.5				0.638	0.850	0.817	0.725
1.6					0.838	0.832	0.761
1.7					0.758	0.840	0.788
1.8					0.396	0.835	0.810
1.9						0.805	0.824
2.0						0.723	0.830
2.1						0.518	0.822
2.2							0.798
2.3							0.752
2.4							0.682
2.5							0.566
2.6							0.276

Efficiency [2]

5.4. Negative Thrust Coefficient, T_c

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.053	-0.050	-0.046	-0.041	-0.037	-0.033	-0.028
0.05	-0.052	-0.049	-0.045	-0.041	-0.037	-0.031	-0.027
0.10	-0.052	-0.049	-0.045	-0.040	-0.036	-0.030	-0.025
0.15	-0.054	-0.050	-0.045	-0.040	-0.035	-0.028	-0.024
0.20	-0.057	-0.052	-0.046	-0.040	-0.034	-0.027	-0.021
0.25	-0.061	-0.054	-0.047	-0.040	-0.033	-0.025	-0.018
0.30	-0.064	-0.057	-0.049	-0.040	-0.031	-0.022	-0.014
0.35	-0.068	-0.060	-0.050	-0.039	-0.030	-0.019	-0.006
0.40	-0.072	-0.063	-0.050	-0.038	-0.026	-0.011	
0.45	-0.076	-0.065	-0.050	-0.036	-0.017		
0.50	-0.080	-0.066	-0.049	-0.030	-0.007		
0.55	-0.084	-0.066	-0.045	-0.021			
0.60	-0.086	-0.064	-0.038	-0.009			
0.65	-0.088	-0.060	-0.029				
0.70	-0.088	-0.054	-0.017				
0.75	-0.087	-0.046	-0.003				
0.80	-0.085	-0.036					
0.85	-0.079	-0.024					
0.90	-0.072	-0.011					
0.95	-0.064						
1.00	-0.053						
1.05	-0.041						
1.10	-0.028						
1.15	-0.015						
1.20	0.000						<u> </u>

Negative thrust coefficient [3]

5.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35	40	45
0.00	-0.0060	-0.0071	-0.0080	-0.0089	-0.0096	-0.0100	-0.0100
0.05	-0.0059	-0.0069	-0.0077	-0.0085	-0.0091	-0.0091	-0.0089
0.10	-0.0059	-0.0068	-0.0075	-0.0082	-0.0087	-0.0084	-0.0080
0.15	-0.0060	-0.0068	-0.0074	-0.0081	-0.0083	-0.0079	-0.0072
0.20	-0.0061	-0.0071	-0.0076	-0.0081	-0.0080	-0.0074	-0.0066
0.25	-0.0063	-0.0074	-0.0078	-0.0080	-0.0077	-0.0069	-0.0060
0.30	-0.0065	-0.0077	-0.0080	-0.0078	-0.0074	-0.0064	-0.0047
0.35	-0.0069	-0.0080	-0.0081	-0.0076	-0.0069	-0.0054	-0.0016
0.40	-0.0072	-0.0082	-0.0080	-0.0072	-0.0059	-0.0031	
0.45	-0.0075	-0.0083	-0.0079	-0.0067	-0.0044		
0.50	-0.0078	-0.0083	-0.0076	-0.0058	-0.0015		
0.55	-0.0080	-0.0082	-0.0071	-0.0044			
0.60	-0.0082	-0.0080	-0.0063	-0.0015			
0.65	-0.0083	-0.0076	-0.0049				
0.70	-0.0084	-0.0070	-0.0029				
0.75	-0.0083	-0.0061					
0.80	-0.0080	-0.0049					
0.85	-0.0076	-0.0033					
0.90	-0.0070	-0.0010					
0.95	-0.0062						
1.00	-0.0053						
1.05	-0.0041						
1.10	-0.0026						
1.15	-0.0008						

Negative torque coefficient [3]

5.6. Combined Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.159	0.187	0.196	0.208	0.216	0.219	0.230
0.1	0.150	0.185	0.194	0.206	0.215	0.219	0.230
0.2	0.138	0.181	0.193	0.205	0.214	0.219	0.230
0.3	0.122	0.174	0.192	0.202	0.212	0.218	0.229
0.4	0.103	0.161	0.190	0.200	0.209	0.218	0.228
0.5	0.081	0.141	0.185	0.197	0.206	0.216	0.226
0.6	0.056	0.119	0.171	0.196	0.200	0.214	0.222
0.7	0.030	0.097	0.150	0.193	0.195	0.211	0.219
0.8	0.003	0.072	0.127	0.181	0.194	0.206	0.214
0.9	-0.020	0.044	0.103	0.163	0.192	0.201	0.208
1.0	-0.053	0.015	0.077	0.142	0.185	0.197	0.203
1.1	-0.086	-0.013	0.051	0.120	0.171	0.196	0.198
1.2	-0.117	-0.041	0.023	0.098	0.154	0.194	0.195
1.3	-0.146	-0.072	-0.001	0.072	0.132	0.188	0.194
1.4	-0.173	-0.102	-0.026	0.043	0.110	0.175	0.193
1.5	-0.199	-0.131	-0.057	0.013	0.086	0.159	0.191
1.6	-0.223	-0.159	-0.087	-0.010	0.061	0.138	0.185
1.7	-0.248	-0.185	-0.116	-0.034	0.035	0.115	0.174
1.8	-0.272	-0.212	-0.144	-0.063	0.009	0.093	0.160
1.9	-0.296	-0.238	-0.170	-0.091	-0.012	0.070	0.143
2.0	-0.320	-0.264	-0.195	-0.119	-0.033	0.048	0.125
2.1	-0.345	-0.290	-0.218	-0.145	-0.054	0.024	0.108
2.2	-0.370	-0.316	-0.241	-0.171	-0.080	0.001	0.089
2.3	-0.396	-0.342	-0.265	-0.194	-0.107	-0.023	0.068
2.4	-0.423	-0.368	-0.290	-0.216	-0.135	-0.047	0.048
2.5	-0.450	-0.394	-0.314	-0.239	-0.163	-0.071	0.027
2.6	-0.479	-0.422	-0.340	-0.262	-0.185	-0.095	0.006
2.7	-0.509	-0.450	-0.366	-0.285	-0.208	-0.119	-0.017
2.8	-0.538	-0.478	-0.392	-0.308	-0.230	-0.143	-0.040
2.9	-0.569	-0.506	-0.420	-0.332	-0.253	-0.166	-0.062
3.0	-0.602	-0.537	-0.448	-0.358	-0.275	-0.185	-0.085
3.1	-0.635	-0.567	-0.477	-0.383	-0.297	-0.205	-0.108
3.2	-0.668	-0.597	-0.505	-0.409	-0.319	-0.224	-0.130
3.3	-0.701	-0.627	-0.534	-0.435	-0.341	-0.243	-0.153
3.4	-0.738	-0.661	-0.565	-0.463	-0.365	-0.264	-0.173

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.776	-0.696	-0.597	-0.492	-0.391	-0.286	-0.193
3.6	-0.815	-0.731	-0.630	-0.522	-0.417	-0.308	-0.213
3.7	-0.853	-0.766	-0.662	-0.551	-0.443	-0.330	-0.232
3.8	-0.892	-0.801	-0.695	-0.581	-0.469	-0.351	-0.252
3.9	-0.930	-0.836	-0.727	-0.610	-0.495	-0.373	-0.271
4.0	-0.969	-0.871	-0.760	-0.639	-0.521	-0.395	-0.291
4.1	-1.015	-0.913	-0.799	-0.675	-0.553	-0.422	-0.315
4.2	-1.061	-0.955	-0.837	-0.711	-0.585	-0.449	-0.338
4.3	-1.107	-0.998	-0.876	-0.747	-0.617	-0.476	-0.362
4.4	-1.153	-1.040	-0.915	-0.784	-0.649	-0.503	-0.386
4.5	-1.199	-1.082	-0.954	-0.820	-0.681	-0.530	-0.410
4.6	-1.245	-1.124	-0.993	-0.856	-0.713	-0.557	-0.434
4.7	-1.291	-1.166	-1.032	-0.892	-0.745	-0.584	-0.457
4.8	-1.338	-1.208	-1.071	-0.928	-0.777	-0.611	-0.481
4.9	-1.384	-1.250	-1.110	-0.964	-0.809	-0.639	-0.505
5.0	-1.430	-1.292	-1.149	-1.000	-0.841	-0.666	-0.529

Combined thrust coefficient [2], [3]

5.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40	45
0.0	0.073	0.118	0.176	0.266	0.331	0.384	0.483
0.1	0.073	0.118	0.172	0.256	0.325	0.384	0.481
0.2	0.072	0.117	0.169	0.246	0.318	0.382	0.478
0.3	0.070	0.116	0.166	0.236	0.310	0.380	0.475
0.4	0.064	0.113	0.163	0.228	0.302	0.378	0.471
0.5	0.056	0.107	0.159	0.222	0.293	0.375	0.465
0.6	0.044	0.098	0.153	0.219	0.285	0.370	0.457
0.7	0.028	0.086	0.144	0.213	0.278	0.364	0.448
0.8	0.009	0.069	0.131	0.204	0.274	0.355	0.439
0.9	-0.011	0.048	0.114	0.193	0.269	0.346	0.430
1.0	-0.033	0.023	0.093	0.178	0.258	0.341	0.422
1.1	-0.052	-0.006	0.067	0.160	0.245	0.337	0.415
1.2	-0.070	-0.035	0.038	0.139	0.229	0.332	0.409
1.3	-0.087	-0.060	0.009	0.110	0.208	0.323	0.405
1.4	-0.103	-0.084	-0.026	0.074	0.183	0.310	0.404
1.5	-0.118	-0.105	-0.061	0.038	0.152	0.291	0.402
1.6	-0.133	-0.126	-0.090	0.000	0.119	0.265	0.393
1.7	-0.148	-0.146	-0.118	-0.040	0.082	0.235	0.376
1.8	-0.163	-0.167	-0.144	-0.084	0.043	0.201	0.355
1.9	-0.179	-0.188	-0.168	-0.116	0.004	0.164	0.330
2.0	-0.195	-0.209	-0.192	-0.146	-0.039	0.128	0.304
2.1	-0.212	-0.231	-0.216	-0.174	-0.082	0.089	0.276
2.2	-0.229	-0.253	-0.240	-0.202	-0.126	0.048	0.245
2.3	-0.247	-0.275	-0.265	-0.230	-0.163	0.004	0.208
2.4	-0.265	-0.298	-0.290	-0.257	-0.198	-0.052	0.165
2.5	-0.282	-0.321	-0.315	-0.285	-0.233	-0.108	0.121
2.6	-0.302	-0.346	-0.343	-0.314	-0.267	-0.164	0.077
2.7	-0.322	-0.370	-0.370	-0.344	-0.300	-0.208	0.033
2.8	-0.341	-0.395	-0.398	-0.373	-0.333	-0.252	-0.036
2.9	-0.362	-0.421	-0.427	-0.404	-0.367	-0.292	-0.106
3.0	-0.384	-0.448	-0.457	-0.437	-0.401	-0.327	-0.157
3.1	-0.405	-0.475	-0.488	-0.470	-0.435	-0.363	-0.209
3.2	-0.427	-0.502	-0.518	-0.503	-0.470	-0.398	-0.260
3.3	-0.449	-0.530	-0.549	-0.536	-0.504	-0.434	-0.312
3.4	-0.474	-0.559	-0.582	-0.572	-0.542	-0.471	-0.356

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40	45
3.5	-0.500	-0.590	-0.616	-0.611	-0.581	-0.508	-0.397
3.6	-0.526	-0.621	-0.650	-0.649	-0.619	-0.546	-0.438
3.7	-0.552	-0.652	-0.684	-0.688	-0.658	-0.583	-0.479
3.8	-0.578	-0.683	-0.718	-0.726	-0.697	-0.621	-0.520
3.9	-0.604	-0.714	-0.752	-0.765	-0.736	-0.659	-0.561
4.0	-0.630	-0.745	-0.787	-0.803	-0.775	-0.696	-0.601
4.1	-0.663	-0.782	-0.827	-0.850	-0.823	-0.743	-0.645
4.2	-0.695	-0.819	-0.868	-0.896	-0.871	-0.789	-0.688
4.3	-0.728	-0.856	-0.908	-0.943	-0.919	-0.835	-0.732
4.4	-0.760	-0.892	-0.948	-0.990	-0.967	-0.882	-0.775
4.5	-0.793	-0.929	-0.989	-1.036	-1.015	-0.928	-0.819
4.6	-0.826	-0.966	-1.029	-1.083	-1.063	-0.975	-0.862
4.7	-0.858	-1.003	-1.070	-1.130	-1.111	-1.021	-0.906
4.8	-0.891	-1.039	-1.110	-1.176	-1.159	-1.067	-0.949
4.9	-0.923	-1.076	-1.151	-1.223	-1.207	-1.114	-0.993
5.0	-0.956	-1.113	-1.191	-1.270	-1.255	-1.160	-1.036

Combined power coefficient [2], [3]

6. US Navy Bureau of Aeronautics propeller 5868-R6, 2 blades

Thrust coefficient [2]

Power coefficient [2]

Efficiency [2]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [2], [3]

Combined power coefficient [2], [3]

6.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35
0.0	0.104	0.124	0.113	0.120	0.126
0.1	0.097	0.123	0.115	0.121	0.125
0.2	0.087	0.119	0.118	0.122	0.124
0.3	0.075	0.109	0.123	0.122	0.122
0.4	0.063	0.098	0.121	0.122	0.121
0.5	0.049	0.085	0.111	0.122	0.122
0.6	0.034	0.071	0.100	0.120	0.123
0.7	0.019	0.056	0.087	0.114	0.121
0.8	0.004	0.041	0.073	0.103	0.120
0.9		0.025	0.058	0.090	0.120
1.0		0.008	0.044	0.077	0.110
1.1			0.029	0.063	0.098
1.2			0.015	0.050	0.085
1.3			0.000	0.036	0.073
1.4				0.022	0.060
1.5				0.008	0.047
1.6					0.034
1.7					0.020
1.8		_			0.007

Thrust coefficient [2]

6.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35
0.0	0.037	0.060	0.073	0.139	0.183
0.1	0.039	0.062	0.076	0.133	0.177
0.2	0.039	0.063	0.080	0.125	0.170
0.3	0.039	0.064	0.082	0.115	0.163
0.4	0.037	0.063	0.085	0.109	0.156
0.5	0.033	0.061	0.085	0.110	0.150
0.6	0.027	0.056	0.084	0.112	0.145
0.7	0.020	0.049	0.080	0.112	0.142
0.8	0.011	0.041	0.073	0.109	0.144
0.9	0.000	0.030	0.064	0.104	0.147
1.0		0.018	0.053	0.096	0.144
1.1		0.006	0.041	0.085	0.137
1.2			0.027	0.072	0.127
1.3			0.012	0.058	0.115
1.4				0.042	0.102
1.5				0.025	0.087
1.6				0.007	0.070
1.7					0.051
1.8					0.031
1.9					0.009

Power coefficient [2]

6.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35
0.0	0.000	0.000	0.000	0.000	0.000
0.1	0.250	0.204	0.148	0.086	0.067
0.2	0.446	0.380	0.300	0.196	0.143
0.3	0.590	0.513	0.451	0.323	0.222
0.4	0.689	0.620	0.574	0.451	0.308
0.5	0.753	0.703	0.661	0.554	0.402
0.6	0.777	0.767	0.723	0.647	0.505
0.7	0.706	0.807	0.771	0.714	0.596
0.8	0.228	0.816	0.807	0.758	0.671
0.9		0.769	0.827	0.789	0.728
1.0		0.461	0.827	0.815	0.769
1.1			0.796	0.833	0.793
1.2			0.669	0.842	0.814
1.3				0.832	0.832
1.4				0.747	0.842
1.5				0.424	0.835
1.6					0.798
1.7					0.689
1.8					0.404

Efficiency [2]

6.4. Negative Thrust Coefficient, T_c

nD/V\β _{0.75}	15	20	25	30	35
0.00	-0.027	-0.025	-0.024	-0.022	-0.020
0.05	-0.027	-0.025	-0.023	-0.021	-0.019
0.10	-0.026	-0.024	-0.022	-0.020	-0.018
0.15	-0.027	-0.025	-0.023	-0.020	-0.018
0.20	-0.028	-0.026	-0.023	-0.021	-0.018
0.25	-0.030	-0.027	-0.025	-0.021	-0.018
0.30	-0.032	-0.029	-0.026	-0.021	-0.017
0.35	-0.035	-0.031	-0.026	-0.021	-0.016
0.40	-0.037	-0.032	-0.026	-0.020	-0.014
0.45	-0.039	-0.032	-0.025	-0.018	-0.010
0.50	-0.041	-0.032	-0.024	-0.015	-0.005
0.55	-0.042	-0.032	-0.022	-0.012	
0.60	-0.043	-0.031	-0.019	-0.007	
0.65	-0.043	-0.030	-0.016		
0.70	-0.043	-0.028	-0.011		
0.75	-0.042	-0.025	-0.004		
0.80	-0.041	-0.020			
0.85	-0.039	-0.014			
0.90	-0.036	-0.008			
0.95	-0.033	0.000			
1.00	-0.029				
1.05	-0.023				
1.10	-0.016				
1.15	-0.008				

Negative thrust coefficient [3]

6.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35
0.00	-0.0029	-0.0035	-0.0039	-0.0043	-0.0046
0.05	-0.0028	-0.0034	-0.0039	-0.0042	-0.0044
0.10	-0.0028	-0.0033	-0.0038	-0.0041	-0.0042
0.15	-0.0028	-0.0033	-0.0038	-0.0040	-0.0041
0.20	-0.0029	-0.0034	-0.0038	-0.0040	-0.0040
0.25	-0.0030	-0.0035	-0.0038	-0.0040	-0.0037
0.30	-0.0032	-0.0036	-0.0038	-0.0039	-0.0034
0.35	-0.0035	-0.0037	-0.0039	-0.0036	-0.0030
0.40	-0.0037	-0.0038	-0.0039	-0.0033	-0.0025
0.45	-0.0038	-0.0038	-0.0037	-0.0029	-0.0018
0.50	-0.0038	-0.0037	-0.0034	-0.0023	-0.0006
0.55	-0.0038	-0.0035	-0.0029	-0.0016	
0.60	-0.0037	-0.0033	-0.0024	-0.0004	
0.65	-0.0036	-0.0030	-0.0017		
0.70	-0.0034	-0.0027	-0.0009		
0.75	-0.0031	-0.0022			
0.80	-0.0029	-0.0016			
0.85	-0.0026	-0.0008			
0.90	-0.0022				
0.95	-0.0017				
1.00	-0.0012				
1.05	-0.0005				

Negative torque coefficient [3]

6.6. Combined Thrust Coefficient, $C_{\scriptscriptstyle T}$

J \β _{0.75}	15	20	25	30	35
0.0	0.104	0.124	0.113	0.120	0.126
0.1	0.097	0.123	0.115	0.121	0.125
0.2	0.087	0.119	0.118	0.122	0.124
0.3	0.075	0.109	0.123	0.122	0.122
0.4	0.063	0.098	0.121	0.122	0.121
0.5	0.049	0.085	0.111	0.122	0.122
0.6	0.034	0.071	0.100	0.120	0.123
0.7	0.019	0.056	0.087	0.114	0.121
0.8	0.004	0.041	0.073	0.103	0.120
0.9	-0.012	0.025	0.058	0.090	0.120
1.0	-0.029	0.008	0.044	0.077	0.110
1.1	-0.043	-0.008	0.029	0.063	0.098
1.2	-0.057	-0.024	0.015	0.050	0.085
1.3	-0.071	-0.039	0.000	0.036	0.073
1.4	-0.084	-0.053	-0.017	0.022	0.060
1.5	-0.097	-0.065	-0.032	0.008	0.047
1.6	-0.109	-0.077	-0.045	-0.007	0.034
1.7	-0.123	-0.090	-0.058	-0.023	0.020
1.8	-0.136	-0.103	-0.070	-0.036	0.007
1.9	-0.149	-0.116	-0.082	-0.048	-0.007
2.0	-0.163	-0.129	-0.095	-0.060	-0.021
2.1	-0.177	-0.143	-0.107	-0.072	-0.035
2.2	-0.191	-0.157	-0.120	-0.085	-0.048
2.3	-0.205	-0.171	-0.134	-0.097	-0.061
2.4	-0.219	-0.185	-0.148	-0.110	-0.073
2.5	-0.233	-0.199	-0.162	-0.123	-0.086
2.6	-0.248	-0.214	-0.176	-0.136	-0.099
2.7	-0.263	-0.229	-0.190	-0.150	-0.112
2.8	-0.278	-0.243	-0.205	-0.163	-0.125
2.9	-0.293	-0.258	-0.219	-0.177	-0.138
3.0	-0.309	-0.274	-0.234	-0.191	-0.151
3.1	-0.324	-0.289	-0.249	-0.205	-0.164
3.2	-0.339	-0.304	-0.264	-0.219	-0.177
3.3	-0.355	-0.320	-0.279	-0.233	-0.190
3.4	-0.371	-0.336	-0.295	-0.248	-0.203

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35
3.5	-0.389	-0.353	-0.311	-0.264	-0.217
3.6	-0.406	-0.370	-0.328	-0.279	-0.231
3.7	-0.423	-0.387	-0.344	-0.294	-0.245
3.8	-0.441	-0.404	-0.360	-0.309	-0.259
3.9	-0.458	-0.421	-0.376	-0.324	-0.273
4.0	-0.475	-0.438	-0.392	-0.340	-0.286
4.1	-0.497	-0.459	-0.412	-0.357	-0.302
4.2	-0.519	-0.479	-0.431	-0.375	-0.318
4.3	-0.541	-0.500	-0.450	-0.393	-0.334
4.4	-0.563	-0.521	-0.469	-0.410	-0.350
4.5	-0.585	-0.542	-0.489	-0.428	-0.366
4.6	-0.608	-0.562	-0.508	-0.445	-0.382
4.7	-0.630	-0.583	-0.527	-0.463	-0.398
4.8	-0.652	-0.604	-0.546	-0.481	-0.414
4.9	-0.674	-0.624	-0.566	-0.498	-0.430
5.0	-0.696	-0.645	-0.585	-0.516	-0.446

Combined thrust coefficient [2], [3]

6.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35
0.0	0.037	0.060	0.073	0.139	0.183
0.1	0.039	0.062	0.076	0.133	0.177
0.2	0.039	0.063	0.080	0.125	0.170
0.3	0.039	0.064	0.082	0.115	0.163
0.4	0.037	0.063	0.085	0.109	0.156
0.5	0.033	0.061	0.085	0.110	0.150
0.6	0.027	0.056	0.084	0.112	0.145
0.7	0.020	0.049	0.080	0.112	0.142
0.8	0.011	0.041	0.073	0.109	0.144
0.9	0.000	0.030	0.064	0.104	0.147
1.0	-0.007	0.018	0.053	0.096	0.144
1.1	-0.016	0.006	0.041	0.085	0.137
1.2	-0.025	-0.010	0.027	0.072	0.127
1.3	-0.032	-0.021	0.012	0.058	0.115
1.4	-0.041	-0.031	-0.005	0.042	0.102
1.5	-0.049	-0.041	-0.021	0.025	0.087
1.6	-0.058	-0.051	-0.034	0.007	0.070
1.7	-0.067	-0.061	-0.046	-0.013	0.051
1.8	-0.077	-0.072	-0.059	-0.030	0.031
1.9	-0.086	-0.083	-0.072	-0.045	0.009
2.0	-0.096	-0.094	-0.085	-0.059	-0.012
2.1	-0.105	-0.105	-0.098	-0.073	-0.033
2.2	-0.115	-0.117	-0.111	-0.088	-0.051
2.3	-0.124	-0.128	-0.124	-0.102	-0.067
2.4	-0.134	-0.139	-0.138	-0.116	-0.082
2.5	-0.144	-0.150	-0.151	-0.131	-0.098
2.6	-0.154	-0.161	-0.165	-0.146	-0.114
2.7	-0.163	-0.173	-0.178	-0.162	-0.130
2.8	-0.173	-0.185	-0.192	-0.177	-0.146
2.9	-0.183	-0.197	-0.206	-0.194	-0.163
3.0	-0.193	-0.209	-0.220	-0.211	-0.181
3.1	-0.203	-0.222	-0.235	-0.228	-0.199
3.2	-0.213	-0.235	-0.249	-0.246	-0.216
3.3	-0.222	-0.247	-0.264	-0.263	-0.234
3.4	-0.233	-0.261	-0.280	-0.282	-0.254

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35
3.5	-0.245	-0.276	-0.297	-0.302	-0.274
3.6	-0.256	-0.291	-0.314	-0.322	-0.295
3.7	-0.267	-0.306	-0.331	-0.341	-0.315
3.8	-0.279	-0.320	-0.348	-0.361	-0.336
3.9	-0.290	-0.335	-0.365	-0.381	-0.356
4.0	-0.301	-0.350	-0.382	-0.401	-0.377
4.1	-0.316	-0.368	-0.403	-0.423	-0.401
4.2	-0.331	-0.386	-0.424	-0.445	-0.426
4.3	-0.346	-0.404	-0.446	-0.468	-0.451
4.4	-0.360	-0.422	-0.467	-0.490	-0.475
4.5	-0.375	-0.441	-0.488	-0.513	-0.500
4.6	-0.390	-0.459	-0.509	-0.535	-0.524
4.7	-0.405	-0.477	-0.530	-0.558	-0.549
4.8	-0.419	-0.495	-0.552	-0.580	-0.574
4.9	-0.434	-0.513	-0.573	-0.602	-0.598
5.0	-0.449	-0.531	-0.594	-0.625	-0.623

Combined power coefficient [2], [3]

7. US Navy Bureau of Aeronautics propeller 5868-R6, 3 blades

Thrust coefficient [2]

Power coefficient [2]

Efficiency [2]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [2], [3]

Combined power coefficient [2], [3]

7.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40
0.0	0.143	0.176	0.182	0.183	0.180	0.181
0.1	0.133	0.170	0.181	0.183	0.178	0.180
0.2	0.120	0.160	0.184	0.183	0.177	0.178
0.3	0.105	0.146	0.179	0.183	0.176	0.177
0.4	0.088	0.131	0.167	0.183	0.176	0.177
0.5	0.069	0.114	0.153	0.181	0.178	0.176
0.6	0.049	0.095	0.138	0.177	0.180	0.177
0.7	0.028	0.075	0.121	0.165	0.178	0.178
0.8	0.005	0.054	0.103	0.150	0.177	0.180
0.9		0.033	0.083	0.133	0.168	0.180
1.0		0.011	0.063	0.114	0.155	0.180
1.1			0.042	0.095	0.139	0.180
1.2			0.020	0.074	0.121	0.173
1.3				0.053	0.102	0.156
1.4				0.033	0.083	0.139
1.5				0.012	0.064	0.122
1.6					0.045	0.105
1.7					0.027	0.088
1.8					0.007	0.070
1.9						0.053
2.0						0.036
2.1						0.018
2.2						0.001

Thrust coefficient [2]

7.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40
0.0	0.059	0.091	0.130	0.171	0.236	0.292
0.1	0.059	0.090	0.127	0.166	0.231	0.291
0.2	0.059	0.090	0.125	0.163	0.227	0.289
0.3	0.057	0.089	0.123	0.162	0.221	0.287
0.4	0.053	0.088	0.123	0.163	0.216	0.283
0.5	0.047	0.083	0.122	0.164	0.209	0.276
0.6	0.038	0.076	0.120	0.166	0.202	0.269
0.7	0.028	0.067	0.113	0.166	0.202	0.264
0.8	0.015	0.054	0.104	0.161	0.204	0.260
0.9	0.002	0.039	0.091	0.153	0.204	0.259
1.0		0.023	0.076	0.141	0.200	0.260
1.1		0.005	0.057	0.125	0.190	0.266
1.2			0.037	0.106	0.176	0.266
1.3			0.014	0.085	0.158	0.253
1.4				0.062	0.138	0.237
1.5				0.036	0.116	0.219
1.6				0.009	0.093	0.200
1.7					0.067	0.178
1.8					0.038	0.155
1.9					0.006	0.129
2.0						0.102
2.1						0.075
2.2						0.042
2.3						0.004

Power coefficient [2]

7.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35	40
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	0.223	0.192	0.157	0.111	0.073	0.058
0.2	0.406	0.358	0.305	0.225	0.151	0.118
0.3	0.553	0.493	0.435	0.340	0.241	0.183
0.4	0.662	0.597	0.541	0.455	0.335	0.251
0.5	0.744	0.685	0.624	0.556	0.439	0.322
0.6	0.774	0.752	0.694	0.641	0.535	0.394
0.7	0.724	0.796	0.750	0.707	0.622	0.471
0.8	0.291	0.813	0.796	0.754	0.694	0.551
0.9		0.769	0.826	0.790	0.741	0.624
1.0		0.499	0.834	0.818	0.774	0.691
1.1			0.811	0.836	0.800	0.743
1.2			0.693	0.842	0.824	0.780
1.3				0.830	0.839	0.803
1.4				0.760	0.844	0.821
1.5				0.461	0.834	0.832
1.6					0.796	0.838
1.7					0.684	0.836
1.8					0.362	0.822
1.9						0.789
2.0						0.710
2.1						0.534
2.2						0.078

Efficiency [2]

7.4. Negative Thrust Coefficient, T_c

nD/V\β _{0.75}	15	20	25	30	35	40
0.00	-0.040	-0.038	-0.035	-0.032	-0.029	-0.025
0.05	-0.040	-0.037	-0.034	-0.031	-0.028	-0.024
0.10	-0.040	-0.037	-0.034	-0.030	-0.027	-0.023
0.15	-0.041	-0.037	-0.034	-0.030	-0.027	-0.022
0.20	-0.042	-0.038	-0.034	-0.030	-0.026	-0.021
0.25	-0.045	-0.041	-0.036	-0.031	-0.025	-0.020
0.30	-0.050	-0.044	-0.038	-0.031	-0.024	-0.017
0.35	-0.054	-0.047	-0.039	-0.030	-0.022	-0.014
0.40	-0.058	-0.048	-0.039	-0.029	-0.019	-0.009
0.45	-0.060	-0.049	-0.038	-0.026	-0.015	
0.50	-0.062	-0.050	-0.036	-0.023	-0.008	
0.55	-0.063	-0.049	-0.034	-0.017		
0.60	-0.064	-0.048	-0.029	-0.007		
0.65	-0.064	-0.045	-0.023			
0.70	-0.064	-0.042	-0.015			
0.75	-0.063	-0.037	-0.003			
0.80	-0.062	-0.030				
0.85	-0.060	-0.022				
0.90	-0.056	-0.010				
0.95	-0.050					
1.00	-0.042					
1.05	-0.033					
1.10	-0.022					
1.15	-0.008					

Negative thrust coefficient [3]

7.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35	40
0.00	-0.0047	-0.0055	-0.0061	-0.0066	-0.0070	-0.0074
0.05	-0.0045	-0.0053	-0.0059	-0.0064	-0.0067	-0.0069
0.10	-0.0044	-0.0052	-0.0058	-0.0062	-0.0064	-0.0064
0.15	-0.0044	-0.0052	-0.0057	-0.0061	-0.0062	-0.0061
0.20	-0.0046	-0.0053	-0.0058	-0.0060	-0.0059	-0.0056
0.25	-0.0048	-0.0055	-0.0060	-0.0059	-0.0056	-0.0050
0.30	-0.0051	-0.0057	-0.0060	-0.0058	-0.0052	-0.0043
0.35	-0.0055	-0.0059	-0.0059	-0.0055	-0.0046	-0.0033
0.40	-0.0057	-0.0059	-0.0057	-0.0050	-0.0038	-0.0018
0.45	-0.0057	-0.0058	-0.0053	-0.0044	-0.0026	
0.50	-0.0057	-0.0056	-0.0049	-0.0035	-0.0007	
0.55	-0.0056	-0.0053	-0.0044	-0.0023		
0.60	-0.0054	-0.0050	-0.0037	-0.0004		
0.65	-0.0052	-0.0045	-0.0026			
0.70	-0.0050	-0.0040	-0.0011			
0.75	-0.0047	-0.0033				
0.80	-0.0043	-0.0023				
0.85	-0.0039	-0.0010				
0.90	-0.0034					
0.95	-0.0027					
1.00	-0.0017					
1.05	-0.0006					

Negative torque coefficient [3]

7.6. Combined Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35	40
0.0	0.143	0.176	0.182	0.183	0.180	0.181
0.1	0.133	0.170	0.181	0.183	0.178	0.180
0.2	0.120	0.160	0.184	0.183	0.177	0.178
0.3	0.105	0.146	0.179	0.183	0.176	0.177
0.4	0.088	0.131	0.167	0.183	0.176	0.177
0.5	0.069	0.114	0.153	0.181	0.178	0.176
0.6	0.049	0.095	0.138	0.177	0.180	0.177
0.7	0.028	0.075	0.121	0.165	0.178	0.178
0.8	0.005	0.054	0.103	0.150	0.177	0.180
0.9	-0.015	0.033	0.083	0.133	0.168	0.180
1.0	-0.042	0.011	0.063	0.114	0.155	0.180
1.1	-0.067	-0.012	0.042	0.095	0.139	0.180
1.2	-0.087	-0.035	0.020	0.074	0.121	0.173
1.3	-0.106	-0.058	-0.001	0.053	0.102	0.156
1.4	-0.125	-0.080	-0.023	0.033	0.083	0.139
1.5	-0.144	-0.100	-0.046	0.012	0.064	0.122
1.6	-0.164	-0.120	-0.068	-0.008	0.045	0.105
1.7	-0.184	-0.139	-0.088	-0.028	0.027	0.088
1.8	-0.205	-0.159	-0.107	-0.051	0.007	0.070
1.9	-0.227	-0.179	-0.126	-0.071	-0.012	0.053
2.0	-0.249	-0.198	-0.144	-0.090	-0.030	0.036
2.1	-0.271	-0.219	-0.164	-0.108	-0.049	0.018
2.2	-0.293	-0.239	-0.183	-0.126	-0.068	0.001
2.3	-0.316	-0.260	-0.203	-0.143	-0.085	-0.017
2.4	-0.338	-0.281	-0.223	-0.161	-0.102	-0.036
2.5	-0.361	-0.302	-0.243	-0.179	-0.119	-0.054
2.6	-0.384	-0.324	-0.264	-0.198	-0.136	-0.072
2.7	-0.407	-0.346	-0.285	-0.217	-0.153	-0.089
2.8	-0.429	-0.368	-0.306	-0.236	-0.170	-0.105
2.9	-0.453	-0.391	-0.327	-0.255	-0.187	-0.122
3.0	-0.476	-0.414	-0.348	-0.275	-0.206	-0.139
3.1	-0.500	-0.438	-0.369	-0.295	-0.224	-0.155
3.2	-0.524	-0.461	-0.390	-0.316	-0.243	-0.172
3.3	-0.547	-0.484	-0.410	-0.336	-0.262	-0.188
3.4	-0.572	-0.508	-0.433	-0.358	-0.282	-0.206

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40
3.5	-0.598	-0.532	-0.456	-0.381	-0.302	-0.224
3.6	-0.624	-0.557	-0.479	-0.403	-0.323	-0.243
3.7	-0.649	-0.581	-0.503	-0.426	-0.344	-0.261
3.8	-0.675	-0.605	-0.526	-0.449	-0.364	-0.279
3.9	-0.701	-0.629	-0.549	-0.472	-0.385	-0.297
4.0	-0.726	-0.653	-0.572	-0.495	-0.406	-0.315
4.1	-0.760	-0.684	-0.601	-0.521	-0.431	-0.337
4.2	-0.793	-0.715	-0.630	-0.548	-0.455	-0.359
4.3	-0.826	-0.746	-0.659	-0.574	-0.480	-0.381
4.4	-0.860	-0.776	-0.687	-0.601	-0.505	-0.403
4.5	-0.893	-0.807	-0.716	-0.627	-0.530	-0.424
4.6	-0.927	-0.838	-0.745	-0.654	-0.555	-0.446
4.7	-0.960	-0.868	-0.774	-0.680	-0.580	-0.468
4.8	-0.993	-0.899	-0.802	-0.707	-0.605	-0.490
4.9	-1.027	-0.930	-0.831	-0.733	-0.629	-0.512
5.0	-1.060	-0.960	-0.860	-0.760	-0.654	-0.534

Combined thrust coefficient [2], [3]

7.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35	40
0.0	0.059	0.091	0.130	0.171	0.236	0.292
0.1	0.059	0.090	0.127	0.166	0.231	0.291
0.2	0.059	0.090	0.125	0.163	0.227	0.289
0.3	0.057	0.089	0.123	0.162	0.221	0.287
0.4	0.053	0.088	0.123	0.163	0.216	0.283
0.5	0.047	0.083	0.122	0.164	0.209	0.276
0.6	0.038	0.076	0.120	0.166	0.202	0.269
0.7	0.028	0.067	0.113	0.166	0.202	0.264
0.8	0.015	0.054	0.104	0.161	0.204	0.260
0.9	0.002	0.039	0.091	0.153	0.204	0.259
1.0	-0.011	0.023	0.076	0.141	0.200	0.260
1.1	-0.025	0.005	0.057	0.125	0.190	0.266
1.2	-0.037	-0.013	0.037	0.106	0.176	0.266
1.3	-0.048	-0.031	0.014	0.085	0.158	0.253
1.4	-0.060	-0.047	-0.008	0.062	0.138	0.237
1.5	-0.073	-0.062	-0.031	0.036	0.116	0.219
1.6	-0.086	-0.077	-0.051	0.009	0.093	0.200
1.7	-0.100	-0.092	-0.070	-0.016	0.067	0.178
1.8	-0.113	-0.107	-0.088	-0.043	0.038	0.155
1.9	-0.128	-0.124	-0.105	-0.066	0.006	0.129
2.0	-0.142	-0.140	-0.123	-0.088	-0.020	0.102
2.1	-0.158	-0.158	-0.142	-0.110	-0.046	0.075
2.2	-0.174	-0.175	-0.161	-0.131	-0.073	0.042
2.3	-0.190	-0.194	-0.181	-0.153	-0.098	0.004
2.4	-0.206	-0.213	-0.202	-0.175	-0.123	-0.030
2.5	-0.222	-0.232	-0.222	-0.197	-0.148	-0.065
2.6	-0.238	-0.251	-0.245	-0.220	-0.172	-0.099
2.7	-0.254	-0.271	-0.268	-0.244	-0.197	-0.126
2.8	-0.270	-0.291	-0.290	-0.267	-0.222	-0.153
2.9	-0.286	-0.311	-0.314	-0.292	-0.247	-0.181
3.0	-0.302	-0.331	-0.338	-0.317	-0.274	-0.208
3.1	-0.318	-0.352	-0.363	-0.343	-0.301	-0.236
3.2	-0.334	-0.372	-0.388	-0.369	-0.328	-0.264
3.3	-0.350	-0.392	-0.413	-0.395	-0.354	-0.292
3.4	-0.368	-0.414	-0.439	-0.423	-0.384	-0.321

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35	40
3.5	-0.387	-0.436	-0.465	-0.452	-0.414	-0.352
3.6	-0.405	-0.459	-0.492	-0.481	-0.445	-0.383
3.7	-0.424	-0.481	-0.518	-0.510	-0.476	-0.414
3.8	-0.443	-0.503	-0.545	-0.539	-0.506	-0.445
3.9	-0.461	-0.526	-0.572	-0.569	-0.537	-0.476
4.0	-0.480	-0.548	-0.598	-0.598	-0.568	-0.506
4.1	-0.503	-0.576	-0.629	-0.632	-0.604	-0.544
4.2	-0.527	-0.604	-0.660	-0.667	-0.641	-0.582
4.3	-0.550	-0.632	-0.691	-0.702	-0.677	-0.619
4.4	-0.574	-0.659	-0.722	-0.737	-0.714	-0.657
4.5	-0.598	-0.687	-0.753	-0.771	-0.751	-0.694
4.6	-0.621	-0.715	-0.783	-0.806	-0.787	-0.732
4.7	-0.645	-0.743	-0.814	-0.841	-0.824	-0.769
4.8	-0.668	-0.771	-0.845	-0.875	-0.861	-0.807
4.9	-0.692	-0.799	-0.876	-0.910	-0.897	-0.845
5.0	-0.715	-0.827	-0.907	-0.945	-0.934	-0.882

Combined power coefficient [2], [3]

8. US Navy Bureau of Aeronautics propeller 5868-R6, 4 blades

Power coefficient [2]

Efficiency [2]

Negative thrust coefficient [3]

Negative torque coefficient [3]

Combined thrust coefficient [2], [3]

Combined power coefficient [2], [3]

8.1. Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35
0.0	0.172	0.212	0.227	0.230	0.225
0.1	0.158	0.205	0.229	0.230	0.226
0.2	0.141	0.194	0.226	0.230	0.228
0.3	0.124	0.179	0.220	0.230	0.230
0.4	0.105	0.160	0.209	0.230	0.232
0.5	0.083	0.140	0.193	0.232	0.235
0.6	0.060	0.117	0.174	0.224	0.237
0.7	0.034	0.093	0.151	0.208	0.238
0.8	0.006	0.068	0.128	0.190	0.235
0.9		0.041	0.103	0.169	0.222
1.0		0.014	0.078	0.147	0.205
1.1			0.053	0.123	0.186
1.2			0.028	0.098	0.164
1.3			0.002	0.073	0.140
1.4				0.047	0.115
1.5				0.021	0.090
1.6					0.066
1.7					0.042
1.8					0.018

Thrust coefficient [2]

8.2. Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35
0.0	0.075	0.117	0.164	0.231	0.305
0.1	0.075	0.117	0.164	0.228	0.302
0.2	0.074	0.116	0.163	0.226	0.297
0.3	0.072	0.114	0.163	0.224	0.291
0.4	0.067	0.111	0.162	0.222	0.283
0.5	0.059	0.106	0.160	0.221	0.275
0.6	0.049	0.097	0.155	0.221	0.274
0.7	0.036	0.085	0.145	0.219	0.280
0.8	0.021	0.069	0.131	0.212	0.283
0.9	0.002	0.051	0.115	0.200	0.279
1.0		0.030	0.096	0.184	0.271
1.1		0.009	0.075	0.164	0.260
1.2			0.050	0.142	0.244
1.3			0.022	0.117	0.222
1.4				0.088	0.195
1.5				0.056	0.164
1.6				0.022	0.133
1.7					0.101
1.8					0.067
1.9					0.032

Power coefficient [2]

8.3. Efficiency, η

J \β _{0.75}	15	20	25	30	35
0.0	0.000	0.000	0.000	0.000	0.000
0.1	0.192	0.168	0.136	0.100	0.074
0.2	0.369	0.328	0.272	0.201	0.148
0.3	0.519	0.469	0.400	0.306	0.235
0.4	0.627	0.577	0.513	0.415	0.326
0.5	0.697	0.661	0.601	0.524	0.424
0.6	0.728	0.725	0.671	0.603	0.513
0.7	0.656	0.767	0.727	0.663	0.593
0.8	0.275	0.783	0.769	0.716	0.659
0.9		0.736	0.800	0.759	0.709
1.0		0.468	0.813	0.794	0.749
1.1			0.792	0.819	0.779
1.2			0.668	0.826	0.802
1.3			0.209	0.815	0.817
1.4				0.756	0.825
1.5				0.572	0.816
1.6					0.786
1.7					0.699
1.8					0.444

Efficiency [2]

8.4. Negative Thrust Coefficient, T_c

nD/V\β _{0.75}	15	20	25	30	35
0.00	-0.051	-0.048	-0.045	-0.042	-0.038
0.05	-0.051	-0.047	-0.044	-0.041	-0.036
0.10	-0.051	-0.047	-0.044	-0.039	-0.035
0.15	-0.052	-0.048	-0.044	-0.039	-0.034
0.20	-0.054	-0.050	-0.045	-0.039	-0.033
0.25	-0.058	-0.053	-0.047	-0.039	-0.032
0.30	-0.063	-0.057	-0.049	-0.039	-0.031
0.35	-0.068	-0.060	-0.050	-0.038	-0.028
0.40	-0.073	-0.062	-0.049	-0.037	-0.024
0.45	-0.076	-0.062	-0.047	-0.034	-0.019
0.50	-0.079	-0.063	-0.045	-0.029	-0.012
0.55	-0.080	-0.062	-0.042	-0.022	
0.60	-0.080	-0.061	-0.037	-0.013	
0.65	-0.081	-0.058	-0.030		
0.70	-0.080	-0.053	-0.019		
0.75	-0.079	-0.047	-0.005		
0.80	-0.078	-0.038			
0.85	-0.075	-0.027			
0.90	-0.070	-0.014			
0.95	-0.062				
1.00	-0.054				
1.05	-0.042				
1.10	-0.030				
1.15	-0.016				
1.20	-0.002				

Negative thrust coefficient [3]

8.5. Negative Torque Coefficient, Qc

nD/V\β _{0.75}	15	20	25	30	35
0.00	-0.0063	-0.0074	-0.0083	-0.0097	-0.0091
0.05	-0.0059	-0.0069	-0.0078	-0.0090	-0.0085
0.10	-0.0056	-0.0066	-0.0075	-0.0084	-0.0081
0.15	-0.0056	-0.0065	-0.0073	-0.0079	-0.0078
0.20	-0.0058	-0.0068	-0.0073	-0.0076	-0.0075
0.25	-0.0062	-0.0071	-0.0075	-0.0076	-0.0073
0.30	-0.0066	-0.0073	-0.0076	-0.0075	-0.0069
0.35	-0.0069	-0.0075	-0.0076	-0.0073	-0.0063
0.40	-0.0071	-0.0076	-0.0075	-0.0068	-0.0053
0.45	-0.0072	-0.0075	-0.0072	-0.0060	-0.0037
0.50	-0.0072	-0.0073	-0.0068	-0.0049	-0.0010
0.55	-0.0072	-0.0070	-0.0060	-0.0033	
0.60	-0.0070	-0.0066	-0.0049	-0.0007	
0.65	-0.0068	-0.0062	-0.0035		
0.70	-0.0066	-0.0054	-0.0016		
0.75	-0.0063	-0.0044			
0.80	-0.0060	-0.0031			
0.85	-0.0054	-0.0013			
0.90	-0.0047				
0.95	-0.0037				
1.00	-0.0025				
1.05	-0.0010				

Negative torque coefficient [3]

8.6. Combined Thrust Coefficient, C_T

J \β _{0.75}	15	20	25	30	35
0.0	0.172	0.212	0.227	0.230	0.225
0.1	0.158	0.205	0.229	0.230	0.226
0.2	0.141	0.194	0.226	0.230	0.228
0.3	0.124	0.179	0.220	0.230	0.230
0.4	0.105	0.160	0.209	0.230	0.232
0.5	0.083	0.140	0.193	0.232	0.235
0.6	0.060	0.117	0.174	0.224	0.237
0.7	0.034	0.093	0.151	0.208	0.238
0.8	0.006	0.068	0.128	0.190	0.235
0.9	-0.022	0.041	0.103	0.169	0.222
1.0	-0.054	0.014	0.078	0.147	0.205
1.1	-0.083	-0.015	0.053	0.123	0.186
1.2	-0.110	-0.045	0.028	0.098	0.164
1.3	-0.134	-0.074	0.002	0.073	0.140
1.4	-0.157	-0.101	-0.030	0.047	0.115
1.5	-0.181	-0.127	-0.059	0.021	0.090
1.6	-0.206	-0.152	-0.086	-0.011	0.066
1.7	-0.232	-0.176	-0.111	-0.044	0.042
1.8	-0.259	-0.201	-0.135	-0.069	0.018
1.9	-0.287	-0.225	-0.158	-0.093	-0.011
2.0	-0.314	-0.250	-0.181	-0.116	-0.040
2.1	-0.343	-0.276	-0.205	-0.139	-0.069
2.2	-0.371	-0.302	-0.229	-0.161	-0.090
2.3	-0.400	-0.330	-0.255	-0.184	-0.111
2.4	-0.429	-0.358	-0.281	-0.206	-0.132
2.5	-0.457	-0.387	-0.307	-0.228	-0.153
2.6	-0.486	-0.416	-0.335	-0.252	-0.174
2.7	-0.514	-0.445	-0.363	-0.275	-0.195
2.8	-0.542	-0.474	-0.391	-0.299	-0.217
2.9	-0.571	-0.503	-0.420	-0.323	-0.239
3.0	-0.600	-0.532	-0.449	-0.349	-0.262
3.1	-0.629	-0.562	-0.478	-0.375	-0.285
3.2	-0.659	-0.592	-0.507	-0.401	-0.308
3.3	-0.688	-0.621	-0.536	-0.426	-0.331
3.4	-0.720	-0.652	-0.567	-0.454	-0.356

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35
3.5	-0.754	-0.684	-0.598	-0.483	-0.383
3.6	-0.787	-0.716	-0.629	-0.512	-0.409
3.7	-0.821	-0.748	-0.660	-0.541	-0.435
3.8	-0.855	-0.779	-0.691	-0.569	-0.462
3.9	-0.888	-0.811	-0.722	-0.598	-0.488
4.0	-0.922	-0.843	-0.753	-0.627	-0.514
4.1	-0.965	-0.883	-0.790	-0.661	-0.546
4.2	-1.007	-0.922	-0.828	-0.696	-0.577
4.3	-1.050	-0.962	-0.866	-0.730	-0.609
4.4	-1.092	-1.001	-0.903	-0.765	-0.640
4.5	-1.135	-1.041	-0.941	-0.799	-0.672
4.6	-1.178	-1.081	-0.978	-0.834	-0.704
4.7	-1.220	-1.120	-1.016	-0.869	-0.735
4.8	-1.263	-1.160	-1.053	-0.903	-0.767
4.9	-1.306	-1.200	-1.091	-0.938	-0.798
5.0	-1.348	-1.239	-1.129	-0.972	-0.830

Combined thrust coefficient [2], [3]

8.7. Combined Power Coefficient, C_P

J \β _{0.75}	15	20	25	30	35
0.0	0.075	0.117	0.164	0.231	0.305
0.1	0.075	0.117	0.164	0.228	0.302
0.2	0.074	0.116	0.163	0.226	0.297
0.3	0.072	0.114	0.163	0.224	0.291
0.4	0.067	0.111	0.162	0.222	0.283
0.5	0.059	0.106	0.160	0.221	0.275
0.6	0.049	0.097	0.155	0.221	0.274
0.7	0.036	0.085	0.145	0.219	0.280
0.8	0.021	0.069	0.131	0.212	0.283
0.9	0.002	0.051	0.115	0.200	0.279
1.0	-0.016	0.030	0.096	0.184	0.271
1.1	-0.034	0.009	0.075	0.164	0.260
1.2	-0.051	-0.018	0.050	0.142	0.244
1.3	-0.066	-0.042	0.022	0.117	0.222
1.4	-0.081	-0.064	-0.010	0.088	0.195
1.5	-0.096	-0.084	-0.042	0.056	0.164
1.6	-0.112	-0.103	-0.068	0.022	0.133
1.7	-0.129	-0.123	-0.094	-0.025	0.101
1.8	-0.146	-0.142	-0.120	-0.062	0.067
1.9	-0.164	-0.162	-0.145	-0.093	0.032
2.0	-0.182	-0.183	-0.170	-0.123	-0.017
2.1	-0.200	-0.205	-0.194	-0.152	-0.066
2.2	-0.219	-0.227	-0.219	-0.181	-0.106
2.3	-0.238	-0.250	-0.244	-0.210	-0.141
2.4	-0.258	-0.273	-0.270	-0.240	-0.174
2.5	-0.278	-0.297	-0.295	-0.269	-0.207
2.6	-0.299	-0.321	-0.322	-0.298	-0.239
2.7	-0.321	-0.345	-0.349	-0.328	-0.272
2.8	-0.342	-0.369	-0.376	-0.358	-0.305
2.9	-0.364	-0.395	-0.404	-0.388	-0.338
3.0	-0.386	-0.421	-0.434	-0.419	-0.371
3.1	-0.409	-0.448	-0.464	-0.451	-0.404
3.2	-0.431	-0.474	-0.494	-0.482	-0.437
3.3	-0.454	-0.501	-0.523	-0.513	-0.471
3.4	-0.478	-0.530	-0.555	-0.548	-0.507

Propellers - Aerodynamic Characteristics

J \β _{0.75}	15	20	25	30	35
3.5	-0.503	-0.559	-0.589	-0.584	-0.544
3.6	-0.528	-0.589	-0.622	-0.620	-0.582
3.7	-0.553	-0.619	-0.655	-0.656	-0.619
3.8	-0.578	-0.649	-0.688	-0.692	-0.656
3.9	-0.602	-0.679	-0.721	-0.727	-0.694
4.0	-0.627	-0.709	-0.755	-0.763	-0.731
4.1	-0.656	-0.744	-0.794	-0.807	-0.776
4.2	-0.685	-0.779	-0.834	-0.850	-0.821
4.3	-0.714	-0.814	-0.874	-0.893	-0.866
4.4	-0.742	-0.850	-0.914	-0.936	-0.911
4.5	-0.771	-0.885	-0.954	-0.979	-0.957
4.6	-0.800	-0.920	-0.994	-1.023	-1.002
4.7	-0.829	-0.955	-1.033	-1.066	-1.047
4.8	-0.857	-0.990	-1.073	-1.109	-1.092
4.9	-0.886	-1.025	-1.113	-1.152	-1.137
5.0	-0.915	-1.060	-1.153	-1.196	-1.182

Combined power coefficient [2], [3]

9. Coefficients Converting Script

Python script converting propellers characteristics is listed below.

```
import sys
import math
import numpy
MPH 2 MPS = 0.44704
FT_2_M = 0.3048
def get_n(v,d,j):
    n = v / (j*d)
    return n
class DataInput(object):
    def __init__(self, v, d):
        self.v = v
        self.d = d
        self.args = []
        self.rows = []
        self.cols = []
        self.rows_no = 0
        self.cols_no = 0
    def read_file(self,in_file):
        data_file = open(in_file, "r")
        lines = data_file.readlines()
        data_file.close()
        lines = lines[2:]
        for line in lines:
            values = line.split(";")
            self.args.append(float(values[0]))
            values_rest = values[1:]
            row = []
            for value in values_rest:
                if len(value) > 0 and value != "\n":
                    row.append(float(value))
                else:
                    row.append(None)
            self.rows.append(row)
        self.rows_no = len(self.rows)
        self.rows_2_cols()
    def rows_2_cols(self):
        if len(self.rows) > 0:
```

```
row = self.rows[0]
        self.cols_no = len(row)
    for ic in range(0, self.cols_no,1):
        col = []
        self.cols.append(col)
    for ic in range(0,len(self.cols),1):
        for ir in range(0,len(self.rows),1):
            self.cols[ic].append(self.rows[ir][ic])
def ndv_2_j(self):
    result = []
    for arg in self.args:
        j = 1.0 / arg
        result.append( j )
    return result
def qc_2_cp(self):
    cols_new = []
    for ic in range(0,len(self.cols),1):
        col = []
        cols_new.append(col)
    for ic in range(0,len(self.cols),1):
        cp = 0.0
        for ir in range(0,len(self.args),1):
            j = 1.0 / self.args[ir]
            n = get_n(self.v,self.d,j)
            qc = self.cols[ic][ir]
            if qc != None:
                cp = 2.0 * math.pi * (self.v**2) * qc / ( (n**2) *
(self.d**2) )
            cols_new[ic].append(cp)
    return cols_new
def tc_2_ct(self):
    cols_new = []
    for ic in range(0,len(self.cols),1):
        col = []
        cols_new.append(col)
    for ic in range(0,len(self.cols),1):
        ct = 0.0
        for ir in range(0,len(self.args),1):
            j = 1.0 / self.args[ir]
            n = get_n(self.v, self.d, j)
            tc = self.cols[ic][ir]
            if tc != None:
                ct = (self.v^{*}2) * tc / ((n^{*}2) * (self.d^{*}2))
            cols_new[ic].append(ct)
    return cols_new
```

```
class DataOutput(object):
    def __init__(self,v,d):
        self.v = v
        self.d = d
        self.args = []
        self.cols = []
        self.rows_no = 0
        self.cols_no = 0
    def init_args(self, start, stop, step):
        arg = start
        while ( arg < stop ):</pre>
            self.args.append( arg )
            arg += step
            arg = round(arg, 2)
        self.rows_no = len(self.args)
    def init_cols(self,args,cols):
        self.cols_no = len(cols)
        for ic in range(0, self.cols_no,1):
            col = []
            self.cols.append(col)
        for ic in range(0, self.cols_no,1):
            self.cols[ic] = numpy.interp(self.args,args,cols[ic])
    def write_file(self,out_file):
        data_file = open(out_file,"w")
        for ir in range(0,len(self.args),1):
            out = str(self.args[ir])
            for ic in range(0,len(self.cols),1):
                out += ";"
                value = self.cols[ic][ir]
                if value != None:
                    out += str(round(value,6))
            out += "\n"
            data_file.write(out)
        data_file.close()
def process(qc_in_file,tc_in_file,cp_out_file,ct_out_file):
    V = MPH_2_MPS*105.0
    d = FT_2_M*10.0
    data_in_qc = DataInput(v,d)
    data_in_tc = DataInput(v,d)
    data_in_qc.read_file(qc_in_file)
    data_in_tc.read_file(tc_in_file)
```

```
args_cp = data_in_qc.ndv_2_j()
    cols_cp = data_in_qc.qc_2_cp()
   args_ct = data_in_tc.ndv_2_j()
    cols_ct = data_in_tc.tc_2_ct()
    args_cp.reverse()
    args_ct.reverse()
   for col in cols_cp:
        col.reverse()
    for col in cols_ct:
        col.reverse()
    data_out_cp = DataOutput(v,d)
    data_out_ct = DataOutput(v,d)
    data_out_cp.init_args(0.1,5.0+1e-9,0.1)
    data_out_ct.init_args(0.1,5.0+1e-9,0.1)
    data_out_cp.init_cols(args_cp, cols_cp)
    data_out_ct.init_cols(args_ct,cols_ct)
    data_out_cp.write_file(cp_out_file)
    data_out_ct.write_file(ct_out_file)
if len(sys.argv) == 5:
    qc_in_file = sys.argv[1]
    tc_in_file = sys.argv[2]
    cp_out_file = sys.argv[3]
    ct_out_file = sys.argv[4]
   process(qc_in_file,tc_in_file,cp_out_file,ct_out_file)
else:
   print("Usage:")
    print("convert.py qc_input_file tc_input_file cp_output_file
    ct_output_file")
```

Bibliography

- [1] Theodorsen T., Stickle G., Brevoort M.: Characterics of Six Propellers Including the High-Speed Range. National Advisory Committee for Aeronautics, TR-594, 1937
- [2] Hartman E., Biermann D.: The Aerodynamic Characteristics of Full-Scale Propellers Having 2, 3, and 4 Blades of Clark Y and R.A.F.6 Airfoil Sections. National Advisory Committee for Aeronautics, TR-640, 1938
- [3] Hartman E., Biermann D.: The Negative Thrust and Torque of Several Full-Scale Propellers and Their Application to Various Flight Problems. National Advisory Committee for Aeronautics, TR-641, 1938
- [4] Biermann D., Hartman E.: Test of Five Full-Scale Propellers in the Presence of a Radial and Liquid-Cooled Engine Nacelle, Including Test of Two Spinners. National Advisory Committee for Aeronautics, TR-642, 1938
- [5] Hartman E., Biermann D.: The Aerodynamic Characteristics of Four Full-Scale Propellers
 Having Different Plan Forms. National Advisory Committee for Aeronautics, TR-643, 1938
- [6] Biermann D., Hartman E.: The Aerodynamic Characteristics of Six Full-Scale Propellers Having Different Airfoil Sections. National Advisory Committee for Aeronautics, TR-650, 1939
- [7] Biermann D., Hartman E.: Tests of Two Full-Scale Propellers With Different Pitch Distributions, at Blade Angles up to 60°. National Advisory Committee for Aeronautics, TR-658, 1939
- [8] Hartman E., Biermann D.: Static Thrust and Power Characteristics of Six Full-Scale Propellers. National Advisory Committee for Aeronautics, TR-684, 1940
- [9] Lock C., Bateman H., Nixon H.: Wind Tunnel Tests of High Pitch Airscrews Part I. Aeronautical Research Committee, Reports and Memoranda No. 1673, 1934
- [10] Weinig F.: Aerodynamik der Luftschraube. Verlag von Julius Springer, 1940
- [11] Кравец А.: Характеристики воздушных винтов. Государственное издательство оборонной промышленности, 1941
- [12] Raymer D.: Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, 1992
- [13] Torenbeek E.: Synthesis of Subsonic Airplane Design. Delft University Press, 1982
- [14] Halliday D., Resnick R., Walker J.: Fundamentals of Physics. John Wiley and Sons, 2011