Лабораторная работа 2. ОБУЧЕНИЕ С УЧИТЕЛЕМ. ЗАДАЧА РЕГРЕССИИ

ЗАДАНИЕ.

1. Изучение примеров. Изучите примеры: Lab2_Ex1_MultiR+PolinomR.ipynb, Lab2_Ex2 PolinomR+Pipeline.ipynb, Lab2_Ex3 ElasticNet+GridSearch.ipynb, Lab2_Ex4 Optuna.ipynb

2. Загрузка и подготовка данных.

- В соответствии с индивидуальным вариантом загрузите предобработанный датасет в формате CSV для решения задачи регрессии.
 - Выделите целевой признак и предикторы.
- Разбейте данные на обучающую и тестовую выборки (например, 80% на обучение и 20% на тестирование).

3. Решение задачи регрессии.

- Используйте модели из библиотеки Scikit-learn для решения задачи регрессии с применением регуляризации.
- Для всех моделей регрессии с регуляризацией подберите гиперпараметры тремя способами: GridSearchCV; RandomizedSearchCV; фреймворк Optuna.

Изучите самостоятельно:

- 1) Онлайн-документация по фреймворку Optuna. https://optuna.readthedocs.io/en/stable/
- 2) Optuna: подбор гиперпараметров для вашей модели. https://practicum.yandex.ru/blog/optuna-podbor-giperparametrov/
- Реализуйте один пайплайн для построения любой модели регрессии (см. пример в файле *Lab2_Ex2 PolinomR+Pipeline.ipynb*).
- 3.1. Простая линейная регрессия. Lasso-регрессия (L1-регуляризация). Ridgeрегрессия (L2-регуляризация). Elastic Net.
- 3.2. Множественная линейная регрессия. Lasso-регрессия (L1-регуляризация). Ridge-регрессия (L2-регуляризация). Elastic Net.
 - 3.3. Полиномиальная регрессия.
- 4. **Визуализация**. Постройте графики для визуализации результатов решения задачи регрессии (например, графики предсказанных значений против истинных значений).
- 5. **Оценка качества моделей.** Вычислите значения метрик оценки качества: R², MAE, MSE, RMSE, MAPE для всех обученных моделей регрессии.

6. Реализация пользовательских функций.

- Самостоятельно реализуйте вычисление всех используемых метрик оценки качества модели регрессии.
- Поместите пользовательские функции в отдельный файл и подключите его к основной программе как библиотеку функций.

7. Создание таблицы результатов.

• Создайте две таблицы (объект DataFrame) и выведите в них наименования используемых регрессоров и значения вычисленных метрик оценки качества как с использованием библиотеки Scikit-learn, так и пользовательских функций (Образец 1 и Образец 2).

• Убедитесь, что при выводе значений предусмотрено необходимое количество знаков после запятой (см. Образец 1 и Образец 2).

Образец 1

	Train Data					Test Data				
Регрессор	R ²	MSE	RMSE	MAE	MAPE	R ²	MSE	RMSE	MAE	MAPE
Linear Regression	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XXXX	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XXXX

Образец 2

	Scikit-learn					Кастомные функции				
Регрессор	R ²	MSE	RMSE	MAE	MAPE	R ²	MSE	RMSE	MAE	MAPE
Linear Regression	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XXXX	0.XX	0.XXXX	0.XXXX	0.XXXX	0.XXXX

8. Вывод. Напишите вывод о выполненной Лабораторной работе №2, в котором выберите лучшую модель регрессии и обоснуйте свое решение.