UNIVERSIDADE FEDERAL DE SANTA MARIA ENGENHARIA DE COMPUTAÇÃO ELETROMAGNETISMO

RELATÓRIO DE EXPERIMENTOS E ATIVIDADES PARTE 2

IURY CLEVESTON

PROFESSOR LUIZ RIGHI

Santa Maria – RS Maio 2014

EXPERIMENTO - BÚSSOLA

A bússola é um dispositivo relativamente antigo e muito usado para navegação, sabe-se que uma bússola sempre aponta para o norte geográfico, independentemente de como girarmos ela.

Oersted notou que cargas elétricas em movimento alteravam a direção em que a bússola apontava. Fato comprovado por Faraday, que disse que cargas elétricas em movimento geravam um campo magnético ao redor do condutor, que fazia a bússola alterar a sua direção.

Desse modo, realizamos um experimento similar. Aproximamos uma bússola na direção de um campo magnético. Notamos que, de fato, a bússola apontava na direção do nosso campo magnético, que era mais forte que o campo magnético da Terra.

EXPERIMENTO - ALTO-FALANTE

Para que possamos ligar um dispositivo de um resistência mais baixa em relação ao amplificador, necessitamos de um transformador.

Este transformador definido pela seguinte equação:

$$R = \frac{V2}{I_2}$$

$$R' = \frac{V_1}{I_z}$$

Dessa forma, através das resistências podemos encontrar a relação entre o número de fios em cada bobina:

$$R' = \frac{N_1^2}{N_2} * R$$

EXPERIMENTO - LEI DE ÀMPERE

Este experimento teve como objetivo demonstrar a Lei de Ampere. Para isto, usamos um gerador de campo magnético, ao redor de uma das hastes desse equipamento foi desenhado um retângulo, subdivido de 0 a 30. Para cada parte foi medido a indução magnética B, mostrada na tabela abaixo.

Ponto	Indução Magnética (mT)	Campo Magnético (A/m)
1	0,18	1,43
2	0,35	2,78
3	0,54	4,29
4	0,66	5,25
5	0,80	6,36
6	0,98	7,79
7	0,92	7,32
8	0,80	6,36
9	0,68	5,41
10	0,27	2,14
11	0,45	3,58
12	0,72	5,72
13	0,95	7,55
14	0,99	7,87
15	0,99	7,87
16	0,54	4,29
17	1,07	8,51
18	2,26	17,98
19	2,75	21,88
20	2,17	17,26
21	1,41	11,22
22	0,70	5,57
23	0,40	3,18
24	0,07	0,55
25	1,58	12,57
26	1,63	12,97

27	1,53	12,17
28	1,40	11,14
29	1,26	10,02
30	1,12	8,91
SOMA	30,17	240,09

A partir da indução magnética foi calculado o Campo Magnético, haja vista que foi dividir o valor encontrado pela permeabilidade magnética do ar, obtendo-se a última coluna da tabela acima.

Esta coluna, somada e multiplicada por 1 metro, nos dá o valor para a corrente de 240,08 A, diferindo em 13,92 A do valor obtido com um amperimento alicate, que foi de 254 A.

Portanto, com este experimento fica comprovado a Lei de Àmpere, é possível encontrar a corrente elétrica através da indução magnética.

EXPERIMENTO - LEI DE FARADAY - QUADRO DE EPSTEIN

Este experimento tem como objetivo determinar a permeabilidade relativa de certo material. Para tanto foram realizadas as medições abaixo:

Ponto	Tensão Inicial (V)	Tensão Final (V)	Corrente (I)
1	220	84,3	3,2
2	210	83,1	2,75
3	200	81,9	2,29
4	190	80,4	1,82
5	180	78,7	1,38
6	170	76,9	1,03
7	160	74,8	0,72
8	150	72,3	0,48
9	140	68,9	0,31
10	130	65	0,21
11	120	61,2	0,17
12	110	56,5	0,13
13	100	51,6	0,11
14	90	46,9	0,09
15	80	41,7	0,07
16	70	36,4	0,06
17	60	31,6	0,0643
18	50	26,7	0,0555
19	40	21,5	0,0488
20	30	16,2	0,0412
21	20	11,2	0,0339
22	10	5,4	0,0234
23	0	0	0,0013

A partir da tabela acima é possível calcular o campo magnético:

$$H = \frac{N*I}{l}$$

Para cada medição teremos, uma vez que foi usada 700 voltas de fio:

$$H = \frac{700*I}{1}$$

Logo, o nosso campo magnético total será:

$$H = \sum_{i=1}^{23} H_i = 10561,88 \, A/m$$

Para encontrar nossa indução magnética, fazemos:

$$B = \frac{\Phi}{S} = \frac{V}{4.44*f*N*S}$$

Para cada medição, encontramos:

$$B = \frac{V}{4,44*60*700*3x10^{-4}}$$

Logo, nossa indução magnética total sera:

$$B = \sum_{i=1}^{23} B_i = 45,22 T$$

Para calcular a permeabilidade magnética relativa do material (μ_r), fizemos:

$$\mu_r = \frac{B}{H * \mu_0}$$

Isto é:

$$\mu_r = \frac{45,22}{10561.88*4*\Pi x 10^{-7}} = 3407,38$$

Desse modo, temos o gráfico do Campo B x Campo H:

Abaixo temos uma foto do experimento:

SOFTWARE EM PYTHON - TRANSFORMADOR

Como solicitado em aula, eu fiz um software em Python para calcular algumas características de um transformador.

Para este software funcionar é preciso entrar com os seguintes dados:

- Tensão de Entrada
- Tensão de Saída
- Potencia de Saída
- Rendimento
- Frequência
- Material do Núcleo

```
Informe a tensao de entrada(V): 220
Informe a tensao de saida(V): 110
Informe a potencia de saida(Watts): 200
Informe o rendimento(%): 60
Informe a frequencia(Hz): 60
Escolha o material do nucleo(1 - Ferrite, 2 - Laminado): 1
```

A partir desses dados, o software faz o cálculo das dimensões que o núcleo deverá ter para suprir a potencia exigida.

Com as dimensões do núcleo, e calculado o número de voltas para cada bobina. Bem como a espessura do fio utilizado.

```
('Secao do Nucleo: ', 20, ' cm2')
('Bobina principal: ', 413, ' voltas')
('Bobina Secundaria: ', 206, ' voltas')
('Secao do condutor 1: ', 1.0, ' mm2')
('Secao do condutor 2: ', 1.0, ' mm2')
```

LINHAS DE FORÇA - LIMALHA DE FERRO

Para podermos visualizar o campo magnético utiliza-se comumente limalha de ferro, uma vez que ela nos apresenta, de uma forma realística e barata, o campo magnético em determinados materiais ou condutores.

Desse modo, realizamos este experimento com Bombril esfarelado. Colocamos sobre uma folha de papel e aproximamos um imã pelo outro lado da folha. Dependo da maneira como nós aproximávamos, a limalha de se orientava pelo campo magnético, mostrando as linhas de força.

Abaixo, vemos algumas imagens de diferentes linhas de força. Notemos que elas saem do pólo negativo e se dirigem para o pólo positivo, passando pelo interior do imã. Estas linhas nunca se cruzam e não tem ponto final ou inicial.

É um experimento extremamente válido, pois nos permite ver, de uma forma simples e fascinante, um conceito abstrato e invisível como o campo magnético.