

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCISE160710104

FCC REPORT

(WIFI)

Applicant: Aqua trading(shenzhen)limited

No.22D, NEO Building Block B, No.6011. Shennan avenue **Address of Applicant:**

Futian District. Shenzhen China

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: RS3

Trade mark: **AKUA**

FCC ID: 2AGE2-RS3

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: 22 Jul., 2016

Date of Test: 22 Jul., to 24 Aug., 2016

Date of report issued: 25 Aug., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of theCCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Aug., 2016	Original

Tested by: | | | CMG | Date: 25 Aug., 2016

Test Engineer

Reviewed by: (Over (Date: 25 Aug., 2016)

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
•			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	
6	TES	T RESULTS ANDMEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	
	6.6.		
	6.6.2	2 Radiated Emission Method	32
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	52
7	TES	ST SETUP PHOTO	59
8	FUT	CONSTRUCTIONAL DETAILS	6n

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Aqua trading(shenzhen)limited	
Address of Applicant:	No.22D, NEO Building Block B, No.6011.Shennan avenue Futian District, Shenzhen China	
Manufacturer:	Aqua trading(shenzhen)limited	
Address of Manufacturer:	No.22D, NEO Building Block B, No.6011.Shennan avenue Futian District, Shenzhen China	
Factory:	Shenzhen Xin Kingbrand Enterprises Co., Ltd	
Address of Factory:	Kingbrand Industrial Zone, Nanpu Road, Shang Liao Lin Pi Keng, Shajing Town, Baoan District, Shenzhen City, Guangdong	

5.2 General Description of E.U.T.

	Owestalland
Product Name:	Smartphone
Model No.:	RS3
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.95dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh
AC adapter:	Model: aifeng4S Input: AC100-240V 50/60Hz 0.15A Output: DC 5.0V, 1A

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	1 2412MHz 4		2427MHz	7	2442MHz	10	2457MHz	
2 2417MHz 5		2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCISE160710104

5.3 Test environment andmode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20).Duty cycle setting during the transmission is100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Project No.: CCISE1607101

Report No: CCISE160710104

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE160710104

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal. Date	Cal. Due date	
itoiii	rest Equipment	Manaracturer	model No.	No.	(mm-dd-yy)	(mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017	
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Project No.:CCISE1607101

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.95 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	5.207				
Test Method:	ANSI C63.4: 2014					
TestFrequencyRange:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kH	Z				
Limit:	Frequency range	Frequency range Limit (dBuV)				
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test setup:		Reference Plane				
	AUX Equipment Test table/Insula Remark E.U.T. Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.6 for d	etails				
Test mode:	Refer to section 5.3 for d	etails				
Test results:	Passed					

Measurement Data:

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart phone Model : RS3 Test Mode : WIFI mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>		dBu₹	dBu∇	<u>dB</u>	
1	0.238	34.89	0.17	10.75	45.81	62.17	-16.36	QP
2	0.242	25.69	0.17	10.75	36.61	52.04	-15.43	Average
3	0.442	32.71	0.23	10.74	43.68	47.02	-3.34	Average
4	0.449	43.40	0.24	10.74	54.38	56.89	-2.51	QP
2 3 4 5 6 7 8 9	0.474	34.89	0.24	10.75	45.88	46.45	-0.57	Average
6	0.476	44.24	0.24	10.75	55.23	56.41	-1.18	QP
7	0.826	40.31	0.30	10.82	51.43	56.00	-4.57	QP
8	0.826	29.90	0.30	10.82	41.02	46.00	-4.98	Average
9	0.928	38.60	0.27	10.85	49.72	56.00	-6.28	QP
10	1.094	24.09	0.26	10.88	35.23	46.00	-10.77	Average
11	1.123	37.05	0.26	10.88	48.19	56.00	-7.81	QP
12	1.858	22.40	0.26	10.95	33.61	46.00	-12.39	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : Smart phone
Model : RS3
Test Mode : WIFI mode

Power Rating : AC 120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark :

LISN Cable Read Limit Over Freq Level Factor Limit Remark Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.246 18.93 10.75 29.84 0.16 51.91 -22.07 Average 23 10.75 10.73 61.78 -19.54 QP 42.24 0.249 31.33 0.16 0.343 59.13 -14.23 QP 33.97 0.20 44.90 4 0.449 42.70 0.24 -3.21 QP 10.74 53.68 56.89 5 0.44928.70 0.24 10.74 39.68 46.89 -7.21 Average 6 0.48129.30 0.24 10.75 40.29 46.32 -6.03 Average 37.11 0.826 0.29 10.82 48.22 56.00 -7.78 QP 0.29 8 10.82 33.00 46.00 -13.00 Average 0.83921.89 0.28 9 0.909 36.37 10.84 47.49 56.00 -8.51 QP 10 1.216 20.08 0.28 10.90 31.26 46.00 -14.74 Average 1.249 32.35 0.28 10.90 43.53 56.00 -12.47 QP 11 1.602 19.12 0.30 10.93 30.35 46.00 -15.65 Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

	Wicasai cilic	iii Datai					
Test CH	Maximum	Limit(dBm)	Result				
	802.11b	Limit(dDin)					
	Lowest	14.08	12.52	12.49			
	Middle	13.91	12.21	12.17	30.00	Pass	
	Highest	12.60	11.02	11.01			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

moduli enterti bata.							
Test CH	6dB	Limit(kHz)	Result				
1031 011	802.11b	802.11g	802.11n(H20)	Ell'lit(Ki iz)	Nesult		
Lowest	8.24	16.56	17.36				
Middle	8.80	16.56	17.76	>500	Pass		
Highest	8.72	16.56	17.76				
Test CH	99%	Limit(kHz)	Result				
1031 011	802.11b	802.11g	802.11n(H20)	Ell'lit(Ki iz)	Rosult		
Lowest	13.12	16.64	17.76				
Middle	13.04	16.56	17.68	N/A	N/A		
Highest	13.12	16.56	17.84				

Test plot as follows:

6dB EBW

Date: 17.AUG.2016 15:59:18

Lowest channel

Date: 17.AUG.2016 16:00:29

Middle channel

Date: 17.AUG.2016 16:01:34

Highest channel

Date: 17.AUG.2016 16:02:39

Lowest channel

Date: 17.AUG.2016 16:03:37

Middle channel

Date: 17.AUG.2016 16:04:34

Highest channel

Date: 17.AUG.2016 16:05:31

Lowest channel

Date: 17.AUG.2016 16:06:35

Middle channel

Date: 17.AUG.2016 16:07:28

Highest channel

99% OBW

Date: 17.AUG.2016 16:09:09

Lowest channel

Date: 17.AUG.2016 16:09:30

Middle channel

Date: 17.AUG.2016 16:09:54

Highest channel

Date: 17.AUG.2016 16:10:29

Lowest channel

Date: 17.AUG.2016 16:11:02

Middle channel

Date: 17.AUG.2016 16:11:30

Highest channel

Date: 17.AUG.2016 16:11:59

Lowest channel

Date: 17.AUG.2016 16:12:24

Middle channel

Date: 17.AUG.2016 16:12:56

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Pow	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	Limit(dBiri)	Rosult
Lowest	5.01	0.29	0.31		
Middle	4.71	-0.91	-0.57	8.00	Pass
Highest	3.48	-1.44	-1.36		

Test plot as follows:

Date: 17.AUG.2016 16:14:42

Lowest channel

Date: 17.AUG.2016 16:15:07

Middle channel

Date: 17.AUG.2016 16:15:34

Highest channel

Date: 17.AUG.2016 16:16:12

Lowest channel

Date: 17.AUG.2016 16:16:38

Middle channel

Date: 17.AUG.2016 16:17:06

Highest channel

Date: 17.AUG.2016 16:17:48

Lowest channel

Date: 17.AUG.2016 16:18:17

Middle channel

Date: 17.AUG.2016 16:18:48

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Project No.:CCISE1607101

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 20	013and KD)B 558074v03r	05 secti	on 12.1		
TestFrequencyRange:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector			/BW	Remark	
	Above 1GHz	Peak	1MHz		MHz	Peak Value	
Limit:	Frequenc	RMS	1MHz Limit (dBuV/m		MHz T	Average Value Remark	
LIIIIII.			54.00	<u> </u>	A	verage Value	
	Above 1Gh		74.00			Peak Value	
Test Procedure:	 The EUT was placed on the top the groundat a 3 meter camber todetermine the position of the I and todetermine the position of the I and todetermine the position of the I and tower. The EUT was set 3 meters away antenna, whichwas mounted on tower. The antenna height is varied from the ground to determine the may Both horizontal and vertical polar make the measurement. For each suspected emission, the case and thenthe antenna was meters and the rotatablewas turn to find the maximum reading. The test-receiver system was sometimed by the system was so			the top of a rotating table 1.5 meters above amber. The table was rotated 360 degrees of the highest radiation. It is away from the interference-receiving need on the top of a variable-height antenna ried from one meter to four meters above the maximum value of the field strength. It is call polarizations of the antenna are set to assion, the EUT was arranged to its worst a was tuned to heights from 1 meter to 4 was turned from 0 degrees to 360 degrees ding. I was set to Peak Detect Function and Maximum Hold Mode. The EUT in peak mode was 10dB lower than asting could be stopped and the peak values of ted. Otherwise the emissions that did not a bere-tested one by one using peak, quasi-			
Test setup:		AE EUT (Turntable)	Ground Reference Plan Test Receiver	Pre-	Antenna To	wer	
Test Instruments:	Refer to section	5.6 for det	ails				
Test mode:	Refer to section	5.3 for det	ails				
Test results:	Passed						

Project No.:CCISE1607101

802.11b Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

Model : RS3

Test mode : 802.11b-L Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK

THAIL	•	Read.	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu∇			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2338,501	23.73	23.67	6.53				-20.07	
2	2338.501	8.69	23.67	6.53	0.00	38.89	54.00	-15.11	Average
3	2390.000	15.65	23.68	6.63				-28.04	
4	2390.000	7.43	23.68	6.63	0.00				Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Smart phone

Model RS3

Test mode : 802.11b-L Mode Power Rating : AC120V/60Hz

Huni:55% Environment : Temp: 25.5°C

Test Engineer: YT REMARK :

	Freq		Antenna Factor						Remark	
**	MHz	—dBu⊽	<u>dB</u> /m			dBuV/m	dBuV/m			
	2321.183			6.48				-19.55		
	2321.183	9.64	23.67	6.48					Average	
	2390.000	17.52	23.68	6.63	0.00	47.83	74.00	-26.17	Peak	
	2390.000	7.46	23.68	6.63	0.00	37.77	54.00	-16.23	Average	

Remark:

1234

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone : RS3 Model

Test mode : 802.11-b-H Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK

TITUTE	1										
	Fre	q		Antenna Factor						Remark	
-	MH	z	dBu∜		<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	2483.50	0	19.58	23.70	6.85	0.00	50.13	74.00	-23.87	Peak	
2	2483.50	0	7.95	23.70	6.85	0.00	38.50	54.00	-15.50	Average	
3	2495.98	0	22.69	23.70	6.86	0.00	53.25	74.00	-20.75	Peak	
4	2495 98	Π	8 93	23 70	6 86	0.00	39 49	54 00	-14.51	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : RS3 Test mode : 802.11-b-H Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

JAM									
	Freq	ReadAntenna Level Factor					Limit Line		Remark
-	MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500	18.75	23.70	6.85	0.00	49.30	74.00	-24.70	Peak
2	2483.500	7.92	23.70	6.85	0.00	38.47	54.00	-15.53	Average
3	2488.829	21.36	23.70	6.85	0.00	51.91	74.00	-22.09	Peak
4	2488 829	8 34	23 70	6 85					Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11g

Test channel:Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smart phone

: RS3 Model

Test mode : 802.11g-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C H

Huni: 55%

Test Engineer: YT REMARK :

	Freq		Antenna Factor						
-	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2321.183 2321.183				0.00				Peak Average
3	2390.000 2390.000	18.85	23.68	6.63	0.00	49.16	74.00	-24.84	

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EIIT Smart phone

Model RS3

Test mode : 802.11g-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

шина		D	A 4	C-11-	D		T	A	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
2	MHz	dBu₹		dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2329.660	23.78	23.67	6.51	0.00	53.96	74.00	-20.04	Peak
2	2329.660	10.43	23.67	6.51	0.00	40.61	54.00	-13.39	Average
3	2390.000	19.12	23.68	6.63	0.00	49.43	74.00	-24.57	Peak
4	2390, 000	7.49	23, 68	6, 63	0.00	37, 80	54,00	-16.20	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

: RS3 Model

Test mode : 802.11-g-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

	D 1	A . 1	C 11	D		T			
Freq		Antenna Factor				Limit Line	Over Limit	Remark	
MHz	dBuV	$-\frac{dB}{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
2483.500	18.61	23.70	6.85	0.00	49.16	74.00	-24.84	Peak	
2483.500	7.48	23.70	6.85	0.00	38.03	54.00	-15.97	Average	
2492.740	21.65	23.70	6.86	0.00	52.21	74.00	-21.79	Peak	
2492.740	8.79	23.70	6.86	0.00	39.35	54.00	-14.65	Average	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : RS3

Test mode : 802.11-g-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Hur

Huni:55%

Test Engineer: YT

REMARK

Liluna			Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m		
1 2	2483.500 2483.500			6.85 6.85	0.00				Peak Average
3	2484.346 2484.346	19.84	23.70	6.85	0.00	50.39	74.00	-23.61	

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone

Model : RS3

: 802.11n20-L Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

LIIUUU			Antenna Factor				Limit Line		Remark
-	MHz	dBuV	$\overline{-dB/m}$	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2321.183	25.29	23.67	6.48				-18.56	
2	2321.183	12.46	23.67	6.48	0.00	42.61	54.00	-11.39	Average
3	2390.000	19.49	23.68	6.63	0.00	49.80	74.00	-24.20	Peak
4	2390.000	7.13	23.68	6.63	0.00	37.44	54.00	-16.56	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart phone

Model : RS3

Test mode : 802.11n20-L Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Antenna Factor						Remark	
_	MHz	dBu∇	$-\frac{dB}{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B		
	2321.292 2321.292			6.48 6.48				-15.34	Peak Average	
	2390.000 2390.000	18.03	23.68	6.63 6.63	0.00	48.34	74.00	-25.66		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

Model : RS3

: 802.11n20-H Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: YT

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
_	MHz	dBu∜	— <u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>		-
3	2483.500 2483.500 2498.304	7.45	23.70	6.85 6.85 6.88	0.00		54.00	-16.00	Average	
4	2498.304	7.15	23.70	6.88	0.00	37.73	54.00	-16.27	Average	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Smart phone

: RS3 Model

Test mode 802.11n20-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: YT REMARK

MKI	:								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	18.41	23.70	6.85	0.00	48.96	74.00	-25.04	Peak
	2483.500	7.95	23.70	6.85	0.00	38.50	54.00	-15.50	Average
1	2496.900	19.83	23.70	6.88	0.00	50.41	74.00	-23.59	Peak
	2496, 900	7.18	23.70	6, 88	0.00	37, 76	54, 00	-16.24	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmittercomplies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Project No.:CCISE1607101

Test plot as follows:

Test mode: 802.11b

Date: 17.AUG.2016 23:45:05

30MHz~25GHz

Date: 17.AUG.2016 23:45:42

Date: 17.AUG.2016 23:46:11

Test mode: 802.11g

Lowest channel

Date: 17.AUG.2016 23:46:51

30MHz~25GHz

Date: 17.AUG.2016 23:47:26

Date: 17.AUG.2016 23:47:46

Test mode: 802.11n(H20)

Date: 17.AUG.2016 23:48:15

30MHz~25GHz

Date: 17.AUG.2016 23:49:07

Date: 17.AUG.2016 23:49:32

6.7.2 Radiated Emission Method

Total Daniel Services	F00 D-145 0 0	45.00) I 45 005			1	
Test Requirement:	FCC Part15 C Se		and 15.205				
Test Method:	ANSI C63.10:201	13					
TestFrequencyRange:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3m					
Receiver setup:	Frequency	Detector	RBW	VI	BW	Remark	
·	30MHz-1GHz	Quasi-peak	eak 120KHz)KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz		Peak Value	
	RMS		1MHz		ЛHz	Average Value	
Limit:	Frequency		mit (dBuV/m @3	m)		Remark	
	30MHz-88MH		40.0			uasi-peak Value	
	88MHz-216MH		43.5			uasi-peak Value	
	216MHz-960M		46.0			uasi-peak Value	
	960MHz-1GH	Z	54.0			uasi-peak Value	
	Above 1GHz		54.0			Average Value	
			74.0		Peak Value		
Test Procedure:	1GHz)/1.5m chamber.The position of the 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the me 4. For each suc case and the meters and to find the meters and to find the meters. 5. The test-rec SpecifiedBa 6. If the emission the limitspect of the EUT will have 10dB resistance.	(above 1GH e table was ne highest rate is set 3 mete ichwas mount height is van determine atal and verticasurement. Spected emisenthe antenriche rotatable aximum reactiver system aximum reactiver system aximum teactiver sy	ers away from tonted on the top ried from one of the maximum of cal polarization assion, the EUT as was tuned from ding. I was set to Pea Maximum Hole ee EUT in peak esting could be orted. Otherwis	roundagrees he into of a value as of the was a control of the c	at a 3 r todete erferen variable to four of the tode errange hts from egrees tect Fulle. Ewas 1 eed and emissione us	meter rmine the nce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 to 360 degrees unction and 10dB lower than the peak values ons that did not sing peak, quasi-	

Project No.:CCISE1607101

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Smart phone Condition

Huni:55%

EUT rest mode : WIFI Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: YT
REMARK : RS3

шишии		220000000000000000000000000000000000000		122100200200	DEMONSTRATION AND ADDRESS OF		A20020000000000	0.0000000000000000000000000000000000000	
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	46.340	27.49	17.08	1.28	29.85	16.00	40.00	-24.00	QP
2	111.347	35.22	10.54	2.07	29.45	18.38	43.50	-25.12	QP
3	185.138	37.19	9.45	2.77	28.93	20.48	43.50	-23.02	QP
4	428.019	28.03	16.07	3.15	28.83	18.42	46.00	-27.58	QP
5	574.626	27.67	18.29	3.91	29.02	20.85	46.00	-25.15	QP
6	801, 786	29, 04	20, 60	4.34	28, 19	25, 79	46,00	-20.21	QP

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Smart phone Site Condition

EUT Model : RS3 Test mode : WIFI Mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK:

LMAKK										
			Antenna				Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		4
1	47.994	36.46	16.10	1.27	29.84	23.99	40.00	-16.01	QP	
2	93.768	44.27	8.49	2.02	29.56	25.22	43.50	-18.28	QP	
3	123.699	42.71	12.01	2.21	29.37	27.56	43.50	-15.94	QP	
4	339.589	35.27	13.85	3.07	28.54	23.65	46.00	-22.35	QP	
5	520.888	33.52	17.36	3.73	29.01	25.60	46.00	-20.40	QP	
6	734.491	28.11	20.00	4.30	28.54	23.87	46.00	-22.13	QP	

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.41	36.12	10.60	40.22	57.91	74.00	-16.09	Vertical
4824.00	49.04	36.12	10.60	40.22	55.54	74.00	-18.46	Horizontal
Test mode: 8	02.11b		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	43.51	36.12	10.60	40.22	50.01	54.00	-3.99	Vertical
4824.00	40.19	36.12	10.60	40.22	46.69	54.00	-7.31	Horizontal

Test mode: 8	02.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.25	36.32	10.64	40.15	56.06	74.00	-17.94	Vertical
4874.00	50.19	36.32	10.64	40.15	57.00	74.00	-17.00	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	42.18	36.32	10.64	40.15	48.99	54.00	-5.01	Vertical
4874.00	43.19	36.32	10.64	40.15	50.00	54.00	-4.00	Horizontal

Test mode: 80	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.63	36.58	10.70	40.08	57.83	74.00	-16.17	Vertical	
4924.00	50.53	36.58	10.70	40.08	57.73	74.00	-16.27	Horizontal	
Test	mode: 802.	11b	Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.17	36.58	10.70	40.08	50.37	54.00	-3.63	Vertical	
4924.00	42.80	36.58	10.70	40.08	50.00	54.00	-4.00	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	52.63	36.12	10.60	40.22	59.13	74.00	-14.87	Vertical
4824.00	48.19	36.12	10.60	40.22	54.69	74.00	-19.31	Horizontal
Test	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	43.16	36.12	10.60	40.22	49.66	54.00	-4.34	Vertical
4824.00	39.35	36.12	10.60	40.22	45.85	54.00	-8.15	Horizontal

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.35	36.32	10.64	40.15	53.16	74.00	-20.84	Vertical	
4874.00	45.18	36.32	10.64	40.15	51.99	74.00	-22.01	Horizontal	
Test	t mode: 802.	11g	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.64	36.32	10.64	40.15	44.45	54.00	-9.55	Vertical	
4874.00	36.95	36.32	10.64	40.15	43.76	54.00	-10.24	Horizontal	

Test mode: 80	mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.25	36.58	10.70	40.08	57.45	74.00	-16.55	Vertical	
4924.00	49.63	36.58	10.70	40.08	56.83	74.00	-17.17	Horizontal	
Tes	t mode: 802.	11g	Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.69	36.58	10.70	40.08	50.89	54.00	-3.11	Vertical	
4924.00	42.15	36.58	10.70	40.08	49.35	54.00	-4.65	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.32	36.12	10.60	40.22	52.82	74.00	-21.18	Vertical	
4824.00	45.73	36.12	10.60	40.22	52.23	74.00	-21.77	Horizontal	
Test m	ode: 802.11	n(H20)	Te	st channel: L	owest	Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.58	36.12	10.60	40.22	43.08	54.00	-10.92	Vertical	
4824.00	35.91	36.12	10.60	40.22	42.41	54.00	-11.59	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.18	36.32	10.64	40.15	51.99	74.00	-22.01	Vertical	
4874.00	46.78	36.32	10.64	40.15	53.59	74.00	-20.41	Horizontal	
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.85	36.32	10.64	40.15	42.66	54.00	-11.34	Vertical	
4874.00	36.79	36.32	10.64	40.15	43.60	54.00	-10.40	Horizontal	

Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.18	36.58	10.70	40.08	53.38	74.00	-20.62	Vertical
4924.00	46.79	36.58	10.70	40.08	53.99	74.00	-20.01	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.58	36.58	10.70	40.08	43.78	54.00	-10.22	Vertical
4924.00	36.94	36.58	10.70	40.08	44.14	54.00	-9.86	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.