

ERUCA

Efficient DRAM Resource Utilization and Resource Conflict Avoidance for Memory System Parallelism

Sangkug Lym, Heonjae Ha, Yongkee Kwon, Chun-kai Chang, Jungrae Kim, Mattan Erez

Trends in DRAM Generations

Memory system performance has improved by

Increasing # banks

Scaling data bandwidth

DRAM Bank Parallelism

Bits

 $DRAM \ chip \ size (= Cell \ area + peripheral \ logic)$

Sub-Banking

A set of row address latches
Shared between sub-banks

Sub-banking improves effective bank parallelism Shared resource conflicts restrict memory parallelism

Channel Bandwidth Scaling

Conflicts on the shared data bus may delay some memory accesses

Bank Grouping

The shared in-DRAM data bus restricts memory level parallelism

DRAM is Cost Sensitive

SALP (Sub-array level parallelism) [Kim et al. ISCA'12]

Area overhead: 3.03%(MASA4), 4.75%(MASA8)

Half-DRAM (Split a DRAM tile) [Zhang et al. ISCA'14]

Area overhead: 1.46%

Bank grouping

Double the chip-wise global data path width

Need more memory parallelism but at near-zero cost

Underutilized Resources?

DRAM Chips by I/O Width

Individual DRAM chip design is expensive because

- 1. Development cost
- 2. Testing cost
- 3. Market uncertainty

Combo DRAM Architecture

DRAM chip X4 I/O

DRAM chip X8 I/O DRAM chip X16 I/O

* All DRAM vendors use Combo DRAM as de facto design standard

Single DRAM design for all X4, 8, 16

Configurable

11

Combo DRAM (X8 chip)

ME

Combo DRAM (X8 chip)

All resources fully utilized!

Combo DRAM (X4 chip)

- Bank column logic → Only half used at a time
- Chip-wise global data bus → Half is not used

Sub-banking (VSB, EWLR, RAP)

VSB: Baseline Sub-bank Design

physical bank

Row address latch set

Build a pair of sub-banks using Combo DRAM Vertical Sub-Bank (VSB)

VSB: Baseline Sub-bank Design

physical bank

Row address latch set

Plane: A partition of row addresses that share row address latches

Plane Conflicts

Row address latch set

Plane conflict: Sub-bank interleaving has conflicts on the shared row address latches

NZ

Multi-Plane VSB

Fewer rows within a plane

→ Reduced chance for plane conflicts

But, area cost & reduced faulty row repair flexibility

19

Plane Conflicts by # Planes

Check how many plane conflicts actually occur

planes in a bank with 6K wordlines

EWLR: Effective Wordline Range

Observation: Transactions to the two subbanks have high row address locality

EWLR avoids plane conflicts in the row address range with high locality EWLR enables a subset of addresses to be activated across sub-bank pairs

EWLR: Effective Wordline Range

Mz

EWLR: Effective Wordline Range

Individual WL selection for each sub-bank within the shared MWL range

NZ

EWLR: Wider Sub-bank parallelism

Row address latch set

RAP: Row Address Permutation

RAP removes plane conflicts for both low and high address bit locality

RAP: Row Address Permutation

Row address latch set

Map the rows with high locality to other planes

RAP: Row Address Permutation

RAP does not require any DRAM changes

Dual Data Bus (DDB)

28

Conflicts on Global Data Bus

DDB (Dual Data Bus)

Build a switchable dual data bus using the unused data bus in Combo DRAM

Timing Diagram **Bank Grouping**

Larger Frequency Gap

Large frequency gap between channel and DRAM core clock

Larger Frequency Gap

Large frequency gap between channel and DRAM core clock

Command Window for Frequency Scaling

Evaluation

Evaluation Environment

DRAM system:

- DDR4 (16Banks, 4BG), 1.33GHz, 2 Channel x 1Rank
- Intel Skylake address mapping [1]

Simulators:

- CPU: SniperSim (Pin-based, OoO) [2]
- Memory system: USIMM (Trace based) [3]

Memory allocation:

- OS version: Linux 3.19.0-32-generic
- Memory fragmentation: 10%, 50% [4]

Workload:

8 (4 core SPEC2006 bench mixes)

^[1] P. Pessl, D. Gruss, C. Maurice, and S. Mangard, "Reverse engineering intel DRAM addressing and exploitation," CoRR, vol. abs/1511.08756, 2015

^[2] M. Gorman and A. Whitcroft, "The what, the why and the where to of anti- fragmentation," in *Ottawa Linux Symposium*, vol. 1, pp. 369–384, Citeseer, 2006.

^[3] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, "Usimm: the utah simulated memory module," *University of Utah, Tech. Rep*, 2012.

^[4] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, "Coordinated and

efficient huge page management with ingens," in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 705–721, USENIX Association, 2016.

Overall Weighted Speedup

- Naive 2Plane, 4Plane VSB → 8%, 10%
- +DDB has small performance gain → 12%
- +(EWLR+RAP) \rightarrow 16% (similar to BG32)

Performance Sensitivity

- Diminishing gain with increasing number of planes
- Small performance gain by EWLR+RAP
- Robust to high memory fragmentation

DRAM Area Overhead

2Plane VSB based ERUCA: 0.06 ~0.17% 4Plane VSB based ERUCA: 0.12 ~0.23%

Conclusion

Problem:

 Memory system parallelism restriction by the intra and inter bank resource conflicts

Goal:

Avoid resource conflicts at near-zero cost

Observation:

- Combo DRAM
- Row address locality between sub-banks

Proposed schemes:

- VSB: Near-zero cost sub-banking scheme
- EWLR/RAP: Shared row address latch conflict avoidance using low address locality
- DDB: Low cost switchable data bus construct

ERUCA

Efficient DRAM Resource Utilization and Resource Conflict Avoidance for Memory System Parallelism

Sangkug Lym, Heonjae Ha, Yongkee Kwon, Chun-kai Chang, Jungrae Kim, Mattan Erez

Appendix

Combo DRAM Architecture

8Gb: x4, x8, x16 DDR4 SDRAM Features

DDR4 SDRAM

MT40A2G4 MT40A1G8 MT40A512M16

Features

- $V_{DD} = V_{DDO} = 1.2V \pm 60r$
- $V_{PP} = 2.5V, -125mV, +25$
- · On-die, internal, adjust
- 1 2V pseudo open-draji

ORDERING INFORMATION

Part No.		Configuration		Package	
	H5AN4G4NMFR-*xxc	1G x 4		78ball FBGA	
	H5AN4G8NMFR-*xxC	512M x 8		700aii 1 box	
	H5AN4G6NMFR-*xxC	256M x 16		96ball FBGA	

SAMSUNG

Rev. 2.1

1. Ordering Information

[Table 1] Samsung 8Gb DDR4 B-die Ordering Information Table

1	Organization	DDR4-2133 (15-15-15)	DDR4-2400 (17-17-17) ²	DDR4-2666 (19-19-19) ²	Package
ł	2Gx4	K4A8G045WB-BCPB	K4A8G045WB-BCRC	K4A8G045WB-BCTD	78 FBGA
i	1Gx8	K4A8G085WB-BCPB	K4A8G085WB-BCRC	K4A8G085WB-BCTD	78 FBGA
ĺ	1Gx8	K4A8G085WB-BIPB	K4A8G085WB-BIRC	K4A8G085WB-BITD	78 FBGA

Evaluation Environment

System configuration			
Processor	4-core OoO x86, 4GHz, Fetch/Issue width (8), LSQ (32), ROB (192)		
TLB	I-TLB:128, D-TLB:64, Associativity (4)		
L1	32KB, Associativity (L1I: 4, L1D: 8), LRU		
LLC	1MB per core, Associativity (16), LRU		
DRAM	DDR4, 1.33GHz (18-18-18), 2channels × 1rank, FR-FCFS, Adaptive-open page, Intel Skylake address mapping		

Benchmark Mixes

	MPKI	
mix0	mix0 mcf:lbm:omnetpp:gemsFDTD	
mix1	mcf:lbm:gemsFDTD:soplex	H:H:H:H
mix2	lbm:omnetpp:gemsFDTD:soplex	H:H:H:H
mix3	omnetpp:gemsFDTD:soplex:milc	H:H:H:M
mix4	gemsFDTD:soplex:milc:bwaves	H:H:M:M
mix5	soplex:milc:bwaves:leslie3d	H:M:M:M
mix6	milc:bwaves:astar:leslie3d	M:M:M:M
mix7	milc:bwaves:astar:cactusADM	M:M:M:M
mix8	bwaves:leslie3d:astar:cactusADM	M:M:M:M

Comparison to the Prior Work

ERUCA has significant synergy with SALP→ Resolve in-DRAM bus conflicts

DDB: Frequency Scaling

- Bank grouping saturates by increasing bandwidth
- DDB scales with linear performance gain

Channel Bandwidth Scaling

No prefetch width increase in DDR4

	DDR	DDR2	DDR3	DDR4
Internal clock (MHz)	200	200	200	200
External clock (MHz)	200	400	800	1600
Prefetch width	2X	4X	8X —	→ 8X

