1 Gram-Schmidtův ortogonalizační proces

1.1 Připomenutí Gram-Schmidtova ortogonalizačního procesu

Gram-Schmidtův ortogonalizační proces je metoda, která z lineárně nezávislé posloupnosti vektorů a_1, \ldots, a_m vytvoří posloupnost ortonormálních vektorů q_1, \ldots, q_m tak, že platí

$$\operatorname{span}\{a_1,\ldots,a_k\} = \operatorname{span}\{q_1,\ldots,q_k\}$$

pro všechna $k = 1, \ldots, m$.

Nechť již jsme získali q_1, \ldots, q_{k-1} pro nějaké k. Popíšeme nyní, jak získáme vektor q_k .

Od vektoru a_k postupně odečítáme jeho projekce na podprostory generované jednotlivými vektory již spočtené ortonormální báze:

$$z = a_k - \sum_{i=1}^{k-1} q_i q_i^* a_k = \left(I - \sum_{i=1}^{k-1} q_i q_i^*\right) a_k. \tag{1}$$

Výsledný vektor z pak normalizujeme a získáme tak q_k :

$$q_k = z/\|z\|. (2)$$

Označíme-li $r_{i,k} = q_i^* a_k$ a $r_{k,k} = ||z||$, dosazením do (1) za z vektor $r_{k,k} q_k$ (viz (2)), dostaneme

$$a_k = \sum_{i=1}^{k-1} r_{i,k} \ q_i + r_{k,k} \ q_k, \quad k = 1, \dots, m,$$

neboli A = QR.

1.2 Implementace Gram-Schmidtova procesu

Gram-Schmidtův proces lze přepsat několika matematicky ekvivalentními způsoby.

1) Klasický algoritmus (CGS):

$$z = a_k - \sum_{i=1}^{k-1} q_i q_i^* a_k.$$
 (CGS)

2) Modifikovaný algoritmus (MGS) odpovídá postupné ortogonalizaci vektoru a_k :

$$z = (I - q_{k-1}q_{k-1}^*)\dots(I - q_2q_2^*)(I - q_1q_1^*)a_k$$
(MGS)

3) Klasický algoritmus s iteračním zpřesněním (ICGS), kdy stačí jediné opakování ortogonalizace (takže ortogonalizaci provedeme celkem dvakrát).

2 QR rozklad

2.1 QR rozklad a ztráta ortogonality

Definice 1 (QR rozklad). Nechť $A \in \mathbb{R}^{n \times m}$ je obecná obdélníková matice. Rozklad tvaru

$$A = QR$$

 $kde\ Q\ je\ matice\ s\ ortonormálními\ sloupci\ a\ R\ je\ horní\ trojúhelníková,\ nazýváme\ QR\ rozkladem\ matice\ A.$

Úloha 1. Sledujte ztrátu ortogonality a přesnost QR rozkladu pro různé implementace rozkladu.

- 1. Úpravou skriptu cgs.m (klasická implementace GSO) vytvořte skript mgs.m pro modifikovanou GSO.
- 2. Budete-li mít čas navíc, naimplementujte i icgs.m, iterovanou klasickou GSO. Volte dvě opakování.
- 3. Na základě přednášky si rozmyslete, jaké lze očekávat normy ||A QR|| a $||Q^*Q I||$ pro různé implementace QR rozkladu a doplňte je do skriptu srovnej_QR.m (na řádky 66–71). Hodnoty si poté můžete zkontrolovat v tabulce níže.
- 4. Než skript spustíte, projděte si ho a ujistěte se, že rozumíte jednotlivým příkazům. Pokud ne, zeptejte se cvičícího.
- 5. Skript spusťte a zamyslete se nad výsledky. Zejména odpovězte na otázky:
 - Je, dle vašich pozorování, norma rezidua ||A QR|| vypovídající o "kvalitě" spočteného QR rozkladu?
 - Lze pomocí nějaké varianty QR rozkladu získat téměř ortogonální faktor Q i pro matici A s vysokým číslem podmíněnosti?
 - Jsou dosažené výsledky v souladu s teoretickými výsledky, viz tabulka?

Algoritmus	$ Q^*Q - I $	A - QR
CGS	$\kappa^2(A)\varepsilon$	$\varepsilon \ A\ $
MGS	$\kappa(A)\varepsilon$	$\varepsilon \ A\ $
ICGS	arepsilon	$\varepsilon \ A\ $
Householder QR rozklad	ε	$\varepsilon \ A\ $
Givens QR rozklad	ε	$\varepsilon \ A\ $

Řešení.

- 1. Jak je vidět už z tabulky, norma ||A QR|| je obvykle malá a nesouvisí s (možnou) ztrátou ortogonality v Q.
- 2. Ano, při použití ICGS, HH, či Givense lze získat matici Q s ortogonálními sloupci nezávisle na podmíněnosti matice A.
- 3. Očekávání z tabulky je možná někdy nadsazené, ale závislost na čísle podmíněnosti A je pozorovatelná.

2.2 Řešení soustavy lineárních rovnic QR rozkladem

QR rozklad lze použít při řešení soustavy lineárních rovnic s (regulární) maticí A a vektorem pravé strany b:

$$Ax = b \Leftrightarrow QRx = b \Leftrightarrow Rx = Q^*b \tag{3}$$

Úloha 2. Ukažte, že matice R dědí mnohé vlastnosti původní matice A, například:

$$||R||_2 = ||A||_2$$
, $||R||_F = ||A||_F$, $\kappa(R) = \kappa(A)$.

 $\check{R}e\check{s}en\acute{i}$. První dvě tvrzení jsou triviálním důsledkem invariance norem. Alternativně lze argumentovat i skrze definici maticové normy:

- $||A||_2 = \max_{||x||=1} ||Ax||_2$, tedy záleží na velikosti dvojkové vektorové normy, která se přenásobením vektoru unitární maticí nemění.
- Frobeniova maticová norma je odmocninou součtu kvadrátů velikosti dvojkových norem sloupců matice, argumentace je tak stejná, jako v předchozím případě, sloupce výsledné matice R mají stejnou normu jako matice A a tedy Frobeniova norma matice R je stejná jako matice A.

Poslední tvrzení:

$$\kappa(A) = \|A\| \|A^{-1}\| = \|QR\| \|R^{-1}Q^*\| = \|R\| \|R^{-1}\| = \kappa(R).$$

Praktická implementace řešení soustavy Ax = b se typicky vyhýbá výpočtu Q a přenásobení pravé strany. Spíše se při řešení soustavy počítá QR rozklad rozšířené matice $[A \mid b]$.

$$[A|b] \xrightarrow{\text{QR rozklad}} \text{matice } \bar{Q} \text{ a } [\bar{R}|\bar{b}]; \quad [A|b] = \bar{Q} [\bar{R}|\bar{b}].$$
 (4)

Úloha 3. Uvažujte regulární reálnou matici A (pak Q, $\bar{Q} \in \mathbb{R}^{n \times n}$) a rozmyslete si následující otázky

- 1. V přesné aritmetice je řešení soustav $\bar{R}x = \bar{b}$, $Rx = Q^*b$ a Ax = b stejné.
- $2. \ Pro \ libovolnou \ danou \ implementaci \ QR \ rozkladu \ v \ p\check{r}esn\acute{e} \ aritmetice \ plat\acute{t}$

$$Q = \bar{Q}, \quad R = \bar{R}, \quad Q^*b = \bar{b}.$$

Řešení.

- 1. Mezi jednotlivými rovnicemi lze přecházet pomocí unitárních transformací.
- 2. Stačí si rozmyslet, že všechny varianty QR rozkladu lze interpretovat tak, že postupně transformuji sloupce matice A (od prvního po poslední). Proto přidání posledního sloupce nijak neovlivňuje výpočet těch předcházejících sloupců (a výpočet souvisejících ortogonalizačních koeficientů, respektive výsledek unitárních transformací pomocí matic Householderovy reflexe či Givensových rotací.

Úloha 4. Může se zdát, že MGS je ve všech směrech lepší než CGS, v praxi se však v jistých případech stále používá. Dokážete přijít na jistou implementační výhodu CGS?

[Hint: Představte si, že ve více lidech počítáte ručně QR rozklad matice o 100 řádcích a chcete to mít co nejrychleji. (Nebo, že počítáte na počítači s větším množstvím procesorů.)]

 $\check{R}e\check{s}en\acute{i}$. CGS se výrazně lépe paralelizuje: každou ortogonalizaci ve směru q_i lze počítat nezávisle na jiném procesoru. Tuto část výpočtu je tedy možno značně urychlit. U MGS to není možné, protože začít ortogonalizovat oproti dalšímu vektoru je možné až potom, co jsme dokončili ortogonalizaci vůči vektoru předchozímu.

Úloha 5. Zkonstruujte matici A = gallery('poisson',100); a pomocí vestavěné funkce qr (nebo jakékoli z "vašich" implementací) spočtěte její QR rozklad v MATLABu. Následně srovnejte zaplnění (tj. počet nenulových prvků) faktorů Q, R a samotné matice A pomocí příkazu spy.

(Navíc) Srovnejte se zaplněním faktorů L a U z LU rozkladu této matice. Pokud byste měli řešit soustavu lineárních algebraických rovnic Ax = b, kde matice A je řídká, kterou metodu byste použili a proč?

```
\check{R}e\check{s}en\acute{s}. A = gallery('poisson',100); [Q, R] = qr(A); nnz(Q) = 50\,994\,582,\, nnz(R) = 1\,979\,821
```

Faktor Q na rozdíl od R, L a U již nebude řídký. Pro řídké matice je obvykle výhodnější použít LU rozklad kvůli nižším paměťovým nárokům (faktory L a U se tolik nezaplní).

[L,U] = lu(A);
$$nnz(L) = nnz(U) = 1000099$$