LK-TECH伺服单元不同系列对比表

LK-TECH SERVO UNIT DIFFERENT SERIES COMPARISON TABLE ENGLISH

电机系列	MS系列	MF系列	MG系列	MH系列
电机图片	M57015 v. M57015 v. K-TECH M55005 v. K-TECH M54005 v.	K-TECH MF7010 v. K-TECH MF8008 v. K-TECH MF4008 v.	MCTECH MGIOOISH F. TECH MGGOION KCTECH MGGOION MGGOION MGGOION	MH9015v1 MH7015v1 MH5005v1 MH4005v1
电机优势	低速稳定,过滑环线	高速,高精度	内置减速机,小背隙	大中孔
输入电压	7.4-24V	12-36V	24-48V	12-24V
电流	0-4A	0-9A	0-14A	0-4A
速度范围	0-1000rpm	0-3000rpm	0-2000rpm	0-3000rpm
驱动类型	SVPWM控制	FOC控制	FOC控制	FOC控制
编码器精度	12bit/18bit	14bit/18bit	18bit	14bit
通讯方式	RS-485/CAN BUS	RS-485/CAN BUS	RS-485/CAN BUS	RS-485/CAN BUS
控制模式	速度模式/位置模式	力矩模式/速度模式/ 位置模式	力矩模式/速度模式/ 位置模式	力矩模式/速度模式/ 位置模式
保护类型	温度保护/低压保护	温度保护/低压保护	温度保护/低压保护	温度保护/低压保护
应景场景	云台、吊舱	云台、转盘、电力 工业巡检机械臂、 激光雷达	足式机器人、外骨 骼机器人	云台、吊舱、转盘、 激光雷达

免责声明

感谢您购买瓴控科技 M 系列电机及驱动系统。在使用之前,请仔细阅读本声明,一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守手册、产品说明和相关的法律法规、政策、准则安装和使用该产品。在使用产品过程中,用户承诺对自己的行为及因此而产生的所有后果负责。因用户不当使用、安装、改装造成的任何损失,瓴控科技将不承担法律责任。

瓴控科技是上海瓴控科技有限公司及其关联公司的商标。本文出现的产品名称、品牌等,均为其所属公司的商标或注册商标。

本产品及手册为瓴控科技版权所有。未经许可,不得以任何形式复制翻印。关于免责声明的最终解释权, 归瓴控科技所有。

目录

1	CAN总线:参数及单电机命令收发报文格式	3
2	单电机命令列表	3
3	单电机命令说明	4
(1)) 读取PID参数命令	4
(2)) 写入PID参数到RAM命令	4
(3)) 写入PID参数到ROM命令	4
(4)) 读取加速度命令	5
(5)) 写入加速度到RAM命令	5
(6)) 读取编码器数据命令	6
(7)) 写入编码器值到ROM作为电机零点命令	6
(8)) 写入当前位置到ROM作为电机零点命令	7
(9)) 读取多圈角度命	7
(10	0) 读取单圈角度命令	8
(11	1) 清除电机角度命令	8
(12	2) 读取电机状态1和错误标志命令	9
(13	3) 清除电机错误标志命令	9
(14	4) 读取电机状态2命令	10
(15	5) 读取电机状态3命令	11
(16	6) 电机关闭命令	11
(17	7) 电机停止命令	12
(18	8) 电机运行命令	12
(19	9) 转矩闭环控制命令	12
(20	0) 速度闭环控制命令	13
(2 1	1) 位置闭环控制命令1	14
(22	2) 位置闭环控制命令2	14
(23	3) 位置闭环控制命令3	15
(24	4) 位置闭环控制命令4	16
(25	5) 位置闭环控制命令5	17
(26	6) 位置闭环控制命令6	17
4	多电机命令	18

CAN 总线通讯协议

1. CAN 总线参数及单电机命令收发报文格式

总线接口: CAN 波特率: 1Mbps

用于向单个电机发送命令及电机回复的报文格式如下:

标识符: 0x140 + ID(1~32)

帧格式: DATA 帧类型: 标准帧 DLC: 8 字节

2. 单电机命令列表

目前 M 系列电机驱动支持的 CAN 控制命令如下表:

名称	命令数据
读取 PID 参数命令	0x30
写入 PID 参数到 RAM 命令	0x31
写入 PID 参数到 ROM 命令	0x32
读取加速度命令	0x33
写入加速度到 RAM 命令	0x34
读取编码器命令	0x90
写入编码器值到 ROM 作为电机零点命令	0x91
写入当前位置到 ROM 作为电机零点命令	0x19
读取多圈角度命令	0x92
读取单圈角度命令	0x94
清除电机角度命令(设置电机初始位置)	0x95
读取电机状态 1 和错误标志命令	0x9A
清除电机错误标志命令	0x9B
读取电机状态 2 命令	0x9C
读取电机状态 3 命令	0x9D
电机关闭命令	0x80
电机停止命令	0x81
电机运行命令	0x88
转矩闭环控制命令	0xA1
速度闭环控制命令	0xA2
位置闭环控制命令1	0xA3
位置闭环控制命令 2	0xA4
位置闭环控制命令 3	0xA5
位置闭环控制命令 4	0xA6
位置闭环控制命令 5	0xA7
位置闭环控制命令 6	0xA8

3. 单电机命令说明

(1) 读取 PID 参数命令(1 帧)

主机发送该命令读取当前电机的的 PID 参数

数据域	说明	数据
DATA[0]	命令字节	0x30
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

驱动回复数据中包含了各个控制环路的 PI 参数。

数据域	说明	数据
DATA[0]	命令字节	0x30
DATA[1]	NULL	0x00
DATA[2]	位置环 P 参数	DATA[2] = anglePidKp
DATA[3]	位置环 I 参数	DATA[3] = anglePidKi
DATA[4]	速度环 P 参数	DATA[4] = speedPidKp
DATA[5]	速度环 I 参数	DATA[5] = speedPidKi
DATA[6]	转矩环 P 参数	DATA[6] = iqPidKp
DATA[7]	转矩环Ⅰ参数	DATA[7] = iqPidKi

(2) 写入 PID 参数到 RAM 命令(1 帧)

主机发送该命令写入 PID 参数到 RAM 中,断电后写入参数失效

数据域	说明	数据
DATA[0]	命令字节	0x31
DATA[1]	NULL	0x00
DATA[2]	位置环 P 参数	DATA[2] = anglePidKp
DATA[3]	位置环 参数	DATA[3] = anglePidKi
DATA[4]	速度环 P 参数	DATA[4] = speedPidKp
DATA[5]	速度环 参数	DATA[5] = speedPidKi
DATA[6]	转矩环 P 参数	DATA[6] = iqPidKp
DATA[7]	转矩环 参数	DATA[7] = iqPidKi

驱动回复(1帧)

电机在收到命令后回复主机,回复命令和接收命令一致

(3) 写入 PID 参数到 ROM 命令(1 帧)

主机发送该命令写入 PID 参数到 ROM 中,断电仍然有效

数据域	说明	数据
DATA[0]	命令字节	0x32
DATA[1]	NULL	0x00

DATA[2]	位置环 P 参数	DATA[2] = anglePidKp
DATA[3]	位置环 参数	DATA[3] = anglePidKi
DATA[4]	速度环 P 参数	DATA[4] = speedPidKp
DATA[5]	速度环 参数	DATA[5] = speedPidKi
DATA[6]	转矩环 P 参数	DATA[6] = iqPidKp
DATA[7]	转矩环 参数	DATA[7] = iqPidKi

电机在收到命令后回复主机, 回复命令和接收命令一致

(4) 读取加速度命令(1帧)

主机发送该命令读取当前电机的的加速度参数

数据域	说明	数据
DATA[0]	命令字节	0x33
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

驱动回复数据中包含了加速度参数。加速度数据 Accel 为 int32_t 类型,单位 1dps/s

数据域	说明	数据
DATA[0]	命令字节	0x33
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	加速度低字节1	DATA[4] = *(uint8_t *)(&Accel)
DATA[5]	加速度字节 2	DATA[5] = *((uint8_t *)(&Accel)+1)
DATA[6]	加速度字节3	DATA[6] = *((uint8_t *)(&Accel)+2)
DATA[7]	加速度字节 4	DATA[7] = *((uint8_t *)(&Accel)+3)

(5) 写入加速度到 RAM 命令(1 帧)

主机发送该命令写入加速度到 RAM 中,断电后写入参数失效。加速度数据 Accel 为 int32_t 类型,单位 1dps/s

数据域	说明	数据
DATA[0]	命令字节	0x34
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	加速度低字节1	DATA[4] = *(uint8_t *)(&Accel)
DATA[5]	加速度字节 2	DATA[5] = *((uint8_t *)(&Accel)+1)
DATA[6]	加速度字节 3	DATA[6] = *((uint8_t *)(&Accel)+2)
DATA[7]	加速度字节 4	DATA[7] = *((uint8_t *)(&Accel)+3)

电机在收到命令后回复主机, 回复命令和接收命令一致

(6) 读取编码器数据命令(1帧)

主机发送该命令以读取编码器的当前位置

数据域	说明	数据
DATA[0]	命令字节	0x90
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 编码器位置 encoder(uint16_t 类型,14bit 编码器的数值范围 0~16383),为编码器原始位置减去编码器零偏后的值。
- 2. 编码器原始位置 encoderRaw(uint16_t 类型, 14bit 编码器的数值范围 0~16383)。
- **3.** 编码器零偏 encoderOffset(uint16_t 类型,14bit 编码器的数值范围 0~16383),该点作为电机角度的 0 点。

数据域	说明	数据
DATA[0]	命令字节	0x90
DATA[1]	NULL	0x00
DATA[2]	编码器位置低字节	DATA[2] = *(uint8_t *)(&encoder)
DATA[3]	编码器位置高字节	DATA[3] = *((uint8_t *)(&encoder)+1)
DATA[4]	编码器原始位置低字节	DATA[4] = *(uint8_t *)(&encoderRaw)
DATA[5]	编码器原始位置高字节	DATA[5] = *((uint8_t *)(&encoderRaw)+1)
DATA[6]	编码器零偏低字节	DATA[6] = *(uint8_t *)(&encoderOffset)
DATA[7]	编码器零偏高字节	DATA[7] = *((uint8_t *)(&encoderOffset)+1)

(7) 写入编码器值到 ROM 作为电机零点命令(1 帧)

主机发送该命令以设置编码器的零偏,其中,需要写入的编码器值 encoderOffset 为 uint16_t 类型,14bit 编码器的数值范围 0~16383。

数据域	说明	数据
DATA[0]	命令字节	0x91
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	编码器零偏低字节	DATA[6] = *(uint8_t *)(&encoderOffset)
DATA[7]	编码器零偏高字节	DATA[7] = *((uint8_t *)(&encoderOffset)+1)

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据和主机发送的命令相同。

(8) 写入当前位置到 ROM 作为电机零点命令(1 帧)

将电机当前编码器位置作为初始位置写入到 ROM 注意:

- 1. 该命令需要重新上电后才能生效
- 2. 该命令会将零点写入驱动的 ROM,多次写入将会影响芯片寿命,不建议频繁使用

数据域	说明	数据
DATA[0]	命令字节	0x19
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机,数据中 encoderOffset 为设置的 0 偏值

数据域	说明	数据
DATA[0]	命令字节	0x19
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	编码器零偏低字节	DATA[6] = *(uint8_t *)(&encoderOffset)
DATA[7]	编码器零偏高字节	DATA[7] = *((uint8_t *)(&encoderOffset)+1)

(9) 读取多圈角度命令(1帧)

主机发送该命令以读取当前电机的多圈绝对角度值

数据域	说明	数据
DATA[0]	命令字节	0x92
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据中包含了以下参数。

1. 电机角度 motorAngle,为 int64_t 类型数据,正值表示顺时针累计角度,负值表示逆时针累计角度,单位 0.01° /LSB。

-			
Ī	数据域	说明	数据

DATA[0]	命令字节	0x92
DATA[1]	角度低字节1	DATA[1] = *(uint8_t *)(&motorAngle)
DATA[2]	角度字节 2	DATA[2] = *((uint8_t *)(& motorAngle)+1)
DATA[3]	角度字节3	DATA[3] = *((uint8_t *)(& motorAngle)+2)
DATA[4]	角度字节 4	DATA[4] = *((uint8_t *)(& motorAngle)+3)
DATA[5]	角度字节 5	DATA[5] = *((uint8_t *)(& motorAngle)+4)
DATA[6]	角度字节 6	DATA[6] = *((uint8_t *)(& motorAngle)+5)
DATA[7]	角度字节7	DATA[7] = *((uint8_t *)(& motorAngle)+6)

(10) 读取单圈角度命令(1帧)

主机发送该命令以读取当前电机的单圈角度

数据域	说明	数据
DATA[0]	命令字节	0x94
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据中包含了以下参数。

1. 电机单圈角度 circleAngle,为 uint16_t 类型数据,以编码器零点为起始点,顺时针增加,再次到达零点时数值回 0,单位 0.01°/LSB,数值范围 0~35999。

数据域	说明	数据
DATA[0]	命令字节	0x94
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	单圈角度低字节	DATA[6] = *(uint8_t *)(& circleAngle)
DATA[7]	单圈角度高字节	DATA[7] = *((uint8_t *)(& circleAngle)+1)

(11) 清除电机角度命令(1帧) 暂未实现

该命令清除电机的多圈和单圈角度数据,并将当前位置设为电机的零点,断电后失效注意:该命令会同时清除所有位置环的控制命令数据

数据域	说明	数据
DATA[0]	命令字节	0x95
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00

8

DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

电机在收到命令后回复主机, 帧数据和主机发送相同

(12) 读取电机状态 1 和错误标志命令(1 帧)

该命令读取当前电机的温度、电压和错误状态标志

数据域	说明	数据
DATA[0]	命令字节	0x9A
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据包含了以下参数:

- 1. 电机温度 temperature(int8_t 类型,单位 1℃/LSB)。
- 2. 电压 voltage(uint16_t 类型,单位 0.1V/LSB)。
- 3. 错误标志 errorState (为 uint8_t 类型,各个位代表不同的电机状态)

数据域	说明	数据
DATA[0]	命令字节	0x9A
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	NULL	0x00
DATA[3]	电压低字节	DATA[3] = *(uint8_t *)(&voltage)
DATA[4]	电压高字节	DATA[4] = *((uint8_t *)(& voltage)+1)
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	错误状态字节	DATA[7]=errorState

备注:

1. errorState 各个位具体状态表如下

errorState 位	状态说明	0	1
0	电压状态	电压正常	低压保护
1	无效		
2	无效		
3	温度状态	温度正常	过温保护
4	无效		
5	无效		
6	无效		
7	无效		

(13) 清除电机错误标志命令(1帧)

该命令清除当前电机的错误状态, 电机收到后返回

数据域	说明	数据
DATA[0]	命令字节	0x9B
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

电机在收到命令后回复主机,该帧数据包含了以下参数:

- 1. 电机温度 temperature(int8_t 类型,单位 1℃/LSB)。
- 2. 电压 voltage(uint16_t 类型,单位 0.1V/LSB)。
- 3. 错误标志 errorState (为 uint8 t 类型,各个位代表不同的电机状态)。

数据域	说明	数据
DATA[0]	命令字节	0x9A
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	NULL	0x00
DATA[3]	电压低字节	DATA[3] = *(uint8_t *)(&voltage)
DATA[4]	电压高字节	DATA[4] = *((uint8_t *)(& voltage)+1)
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	错误状态字节	DATA[7]=errorState

备注:

- 1. 电机状态没有恢复正常时,错误标志无法清除。
- 2. errorState 各个位具体状态参考读取电机状态 1 和错误标志命令。

(14) 读取电机状态 2 命令(1 帧)

该命令读取当前电机的温度、电压、转速、编码器位置。

数据域	说明	数据
DATA[0]	命令字节	0x9C
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. 电机的转矩电流值 iq (int16 t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16_t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0x9C
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(15) 读取电机状态 3 命令(1 帧)

该命令读取当前电机的温度和相电流数据

数据域	说明	数据
DATA[0]	命令字节	0x9D
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据包含了以下数据:

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)
- 2. A相电流数据,数据类型为int16_t类型,对应实际相电流为1A/64LSB。
- 3. B相电流数据,数据类型为int16_t类型,对应实际相电流为1A/64LSB。
- 4. C相电流数据,数据类型为 int16 t 类型,对应实际相电流为 1A/64LSB。

数据域	说明	数据
DATA[0]	命令字节	0x9D
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	A 相电流低字节	DATA[2] = *(uint8_t *)(&iA)
DATA[3]	A 相电流高字节	DATA[3] = *((uint8_t *)(& iA)+1)
DATA[4]	B相电流低字节	DATA[4] = *(uint8_t *)(&iB)
DATA[5]	B 相电流高字节	DATA[5] = *((uint8_t *)(& iB)+1)
DATA[6]	C 相电流低字节	DATA[6] = *(uint8_t *)(&iC)
DATA[7]	C 相电流高字节	DATA[7] = *((uint8_t *)(& iC)+1)

(16) 电机关闭命令 (1 帧)

关闭电机,同时清除电机运行状态和之前接收的控制指令

数据域	说明	数据
DATA[0]	命令字节	0x80
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00

DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

电机在收到命令后回复主机, 帧数据和主机发送相同

(17) 电机停止命令(1帧)

停止电机,但不清除电机运行状态和之前接收的控制指令

数据域	说明	数据
DATA[0]	命令字节	0x81
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机, 帧数据和主机发送相同

(18) 电机运行命令(1帧)

从电机停止命令中恢复电机运行(恢复停止前的控制方式)

数据域	说明	数据
DATA[0]	命令字节	0x88
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	NULL	0x00
DATA[5]	NULL	0x00
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

驱动回复(1帧)

电机在收到命令后回复主机, 帧数据和主机发送相同

(19) 转矩闭环控制命令(1帧)

主机发送该命令以控制电机的转矩电流输出,控制值 iqControl 为 int16_t 类型,数值范围-2000~2000,对应实际转矩电流范围-32A~32A(母线电流和电机的实际扭矩因不同电机而异)。

数据域	说明	数据
DATA[0]	命令字节	0xA1
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	转矩电流控制值低字节	DATA[4] = *(uint8_t *)(&iqControl)

DATA[5]	转矩电流控制值高字节	DATA[5] = *((uint8_t *)(&iqControl)+1)
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

备注:

1. 该命令中的控制值 iqControl 不受上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature (int8 t 类型, 1℃/LSB)。
- 2. 电机的转矩电流值 iq (int16 t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder(uint16_t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA1
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(20) 速度闭环控制命令(1帧)

主机发送该命令以控制电机的速度,控制值 speedControl 为 int32_t 类型,对应实际转速为 0.01dps/LSB。

数据域	说明	数据
DATA[0]	命令字节	0xA2
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	速度控制低字节	DATA[4] = *(uint8_t *)(&speedControl)
DATA[5]	速度控制	DATA[5] = *((uint8_t *)(&speedControl)+1)
DATA[6]	速度控制	DATA[6] = *((uint8_t *)(&speedControl)+2)
DATA[7]	速度控制高字节	DATA[7] = *((uint8_t *)(&speedControl)+3)

备注:

- 1. 该命令下电机的最大转矩电流由上位机中的 Max Torque Current 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据中包含了以下参数。

- 1. 电机温度 temperature (int8 t 类型, 1℃/LSB)。
- 2. 电机的转矩电流值 iq(int16_t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型, 1dps/LSB)。
- 4. 编码器位置值 encoder (uint16 t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA2
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)

DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(21) 位置闭环控制命令1(1帧)

主机发送该命令以控制电机的位置(多圈角度), 控制值 angleControl 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,电机转动方向由目标位置和当前位置的差值决定。

数据域	说明	数据
DATA[0]	命令字节	0xA3
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 3. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 4. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. 电机的转矩电流值 iq (int16_t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16 t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA3
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(22) 位置闭环控制命令 2(1帧)

主机发送该命令以控制电机的位置(多圈角度), 控制值 angleControl 为 int32_t 类型,对应实际位置为 0.01degree/LSB,即 36000 代表 360°,电机转动方向由目标位置和当前位置的差值决定。

控制值 maxSpeed 限制了电机转动的最大速度,为 uint16 t 类型,对应实际转速 1dps/LSB。

数据域	说明	数据
DATA[0]	命令字节	0xA4
DATA[1]	NULL	0x00
DATA[2]	速度限制低字节	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制高字节	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下的控制值 angleControl 受上位机中的 Max Angle 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据中包含了以下参数。

- 1. 电机温度 temperature (int8 t 类型, 1℃/LSB)。
- 2. 电机的转矩电流值 iq(int16_t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16_t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA4
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(23) 位置闭环控制命令3(1帧)

主机发送该命令以控制电机的位置(单圈角度), 控制值 angleControl 为 uint16_t 类型,数值范围 $0^{\circ}35999$,对应实际位置为 0.01degree/LSB,即实际角度范围 $0^{\circ}359.99^{\circ}$ 。

控制值 spinDirection 设置电机转动的方向,为 uint8_t 类型,0x00 代表顺时针,0x01 代表逆时针。

数据域	说明	数据
DATA[0]	命令字节	0xA6
DATA[1]	转动方向字节	DATA[1] = spinDirection
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制高字节	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。

3. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. 电机的转矩电流值 iq(int16_t 类型,范围-2048~2048,对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16 t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA5
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(24) 位置闭环控制命令4(1帧)

主机发送该命令以控制电机的位置(单圈角度)。

- 1. 角度控制值 angleControl 为 uint16_t 类型,数值范围 0~35999,对应实际位置为 0.01degree/LSB,即实际角度范围 0°~359.99°。
- 2. spinDirection 设置电机转动的方向,为 uint8_t 类型, 0x00 代表顺时针, 0x01 代表逆时针。
- 3. maxSpeed 限制了电机转动的最大速度,为 uint16_t 类型,对应实际转速 1dps/LSB。

数据域	说明	数据
DATA[0]	命令字节	0xA6
DATA[1]	转动方向字节	DATA[1] = spinDirection
DATA[2]	速度限制低字节	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制高字节	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制高字节	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	NULL	0x00
DATA[7]	NULL	0x00

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature (int8 t 类型, 1℃/LSB)。
- 2. 电机的转矩电流值 iq(int16_t 类型,范围-2048~2048,对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16 t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16_t 类型, 14bit 编码器的数值范围 0~16383)。

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
数据域	说明	数据
DATA[0]	命令字节	0xA6
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)

DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(25) 位置闭环控制命令5(1帧)

主机发送该命令以控制电机的位置增量, 控制值 angleControl 为 int32_t 类型,对应实际位置为 0.01degree/LSB。电机的转动方向由控制量的符号确定。

数据域	说明	数据
DATA[0]	命令字节	0xA7
DATA[1]	NULL	0x00
DATA[2]	NULL	0x00
DATA[3]	NULL	0x00
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该命令下电机的最大速度由上位机中的 Max Speed 值限制。
- 2. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 3. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机, 该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8_t 类型,1℃/LSB)。
- 2. 电机的转矩电流值 iq (int16 t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16 t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA5
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

(26) 位置闭环控制命令 6 (1 帧)

主机发送该命令以控制电机的位置增量, 控制值 angleControl 为 int32_t 类型,对应实际位置为 0.01degree/LSB。电机的转动方向由控制量的符号确定。

控制值 maxSpeed 限制了电机转动的最大速度,为 uint16_t 类型,对应实际转速 1dps/LSB。

		<u> </u>
数据域	说明	数据
DATA[0]	命令字节	0xA8

DATA[1]	NULL	0x00
DATA[2]	速度限制低字节	DATA[2] = *(uint8_t *)(&maxSpeed)
DATA[3]	速度限制高字节	DATA[3] = *((uint8_t *)(&maxSpeed)+1)
DATA[4]	位置控制低字节	DATA[4] = *(uint8_t *)(&angleControl)
DATA[5]	位置控制	DATA[5] = *((uint8_t *)(&angleControl)+1)
DATA[6]	位置控制	DATA[6] = *((uint8_t *)(&angleControl)+2)
DATA[7]	位置控制高字节	DATA[7] = *((uint8_t *)(&angleControl)+3)

备注:

- 1. 该控制模式下,电机的最大加速度由上位机中的 Max Acceleration 值限制。
- 2. 该控制模式下,电机的最大转矩电流由上位机中的 Max Torque Current 值限制。

驱动回复(1帧)

电机在收到命令后回复主机,该帧数据中包含了以下参数。

- 1. 电机温度 temperature(int8 t 类型,1℃/LSB)。
- 2. 电机的转矩电流值 iq(int16_t 类型, 范围-2048~2048, 对应实际转矩电流范围-33A~33A)。
- 3. 电机转速 speed(int16_t 类型,1dps/LSB)。
- 4. 编码器位置值 encoder (uint16_t 类型, 14bit 编码器的数值范围 0~16383)。

数据域	说明	数据
DATA[0]	命令字节	0xA6
DATA[1]	电机温度	DATA[1] = *(uint8_t *)(&temperature)
DATA[2]	转矩电流低字节	DATA[2] = *(uint8_t *)(&iq)
DATA[3]	转矩电流高字节	DATA[3] = *((uint8_t *)(&iq)+1)
DATA[4]	电机速度低字节	DATA[4] = *(uint8_t *)(&speed)
DATA[5]	电机速度高字节	DATA[5] = *((uint8_t *)(&speed)+1)
DATA[6]	编码器位置低字节	DATA[6] = *(uint8_t *)(&encoder)
DATA[7]	编码器位置高字节	DATA[7] = *((uint8_t *)(&encoder)+1)

4. 多电机命令

多电机命令需要在设定软件中打开, 多电机命令和单电机命令无法同时使用

● 多电机转矩闭环控制命令(1 帧)

用于同时向多个电机发送命令的报文格式如下:

标识符: 0x280 帧格式: DATA 帧类型: 标准帧 DLC: 8 字节

主机发送该命令以同时控制最多 4 个电机的转矩电流输出,控制值 iqControl 为 int16_t 类型,数值范围-2000~2000,对应实际转矩电流范围-32A~32A(母线电流和电机的实际扭矩因不同电机而异)。

电机 ID 应当设置为#1~#4,并且不能重复,与帧数据中的 4 个转矩电流对应

数据域	说明	数据
DATA[0]	转矩电流 1 控制值低字节	DATA[0] = *(uint8_t *)(&iqControl_1)
DATA[1]	转矩电流 1 控制值高字节	DATA[1] = *((uint8_t *)(&iqControl_1)+1)
DATA[2]	转矩电流 2 控制值低字节	DATA[2] = *(uint8_t *)(&iqControl_2)
DATA[3]	转矩电流 2 控制值高字节	DATA[3] = *((uint8_t *)(&iqControl_2)+1)
DATA[4]	转矩电流 3 控制值低字节	DATA[4] = *(uint8_t *)(&iqControl_3)

DATA[5]	转矩电流 3 控制值高字节	DATA[5] = *((uint8_t *)(&iqControl_3)+1)
DATA[6]	转矩电流 4 控制值低字节	DATA[6] = *(uint8_t *)(&iqControl_4)
DATA[7]	转矩电流 4 控制值高字节	DATA[7] = *((uint8_t *)(&iqControl_4)+1)

● 驱动回复(1帧)

各个电机回复命令的报文格式如下:

标识符: 0x140 + ID(1~4)

帧格式: DATA 帧类型: 标准帧 DLC: 8 字节

各个电机根据 ID 从小到大依次回复,各个电机的回复数据与单电机转矩闭环控制命令回复数据相同