Optimization and Parallelization Methods for Radio-Network Planning

Lucas Benedičič¹

¹Research and Development department, Telekom Slovenije, d.d. FERI, Maribor, Slovenia

23. AVN

Radio network

Radio-network planning

Radio-network planning

Radio-coverage optimization

Radio-network planning: coverage maps

Radio-network planning: coverage maps

Radio-network planning: coverage maps

- Current optimization approaches are only effective for small networks (~10 BTS).
- Bigger networks only with lower problem complexity ⇒lower solution accuracy.
- The vast majority of works deals with "new networks".
 - very few examples of fine tuning of deployed networks.

- Current optimization approaches are only effective for small networks (~10 BTS).
- Bigger networks only with lower problem complexity ⇒lower solution accuracy.
- The vast majority of works deals with "new networks".
 - very few examples of fine tuning of deployed networks.

- Current optimization approaches are only effective for small networks (~10 BTS).
- Bigger networks only with lower problem complexity ⇒lower solution accuracy.
- The vast majority of works deals with "new networks".
 - very few examples of fine tuning of deployed networks.

- Current optimization approaches are only effective for small networks (~10 BTS).
- Bigger networks only with lower problem complexity ⇒lower solution accuracy.
- The vast majority of works deals with "new networks".
 - very few examples of fine tuning of deployed networks.

- ☐ Simulate bigger networks (~1000 BTS).
- ☐ Improve solution accuracy.
- ☐ Fine-tune a deployed network.

- ☐ Simulate bigger networks (~1000 BTS).
- ☐ Improve solution accuracy.
- ☐ Fine-tune a deployed network.

- Simulate bigger networks (~1000 BTS).
- \square Improve solution accuracy.
- \Box Fine-tune a deployed network.

- Black-box optimization (e.g., evaluation through simulation).
 - Optimization algorithm: < 20 % of the running time.
 - Objective-function evaluation: > 80 % of the running time.

Improve simulation performance.

- Black-box optimization (e.g., evaluation through simulation).
 - Optimization algorithm: < 20 % of the running time.
 - Objective-function evaluation: > 80 % of the running time.

Improve simulation performance

- Black-box optimization (e.g., evaluation through simulation).
 - Optimization algorithm: < 20 % of the running time.
 - Objective-function evaluation: > 80 % of the running time.

Improve simulation performance

- Black-box optimization (e.g., evaluation through simulation).
 - Optimization algorithm: < 20 % of the running time.
 - Objective-function evaluation: > 80 % of the running time.

Improve simulation performance.

- Black-box optimization (e.g., evaluation through simulation).
 - Optimization algorithm: < 20 % of the running time.
 - Objective-function evaluation: > 80 % of the running time.

Improve simulation performance.

Simulation: coverage maps

Serial implementation

Parallel implementation

Parallel implementation - architecture

Parallel implementation - architecture

Parallel implementation - speedup

- ☑ Simulate bigger networks (~1000 BTS).
 - ☐ Improve solution accuracy.
- \square Fine-tune a deployed network.

- Improve the accuracy of the coverage maps.
 - applying parameter optimization to the mathematical model,
 - using data from field measurements.

- Improve the accuracy of the coverage maps.
 - applying parameter optimization to the mathematical model,
 - using data from field measurements.

- Improve the accuracy of the coverage maps.
 - applying parameter optimization to the mathematical model,
 - using data from field measurements.

Mean: 6.52 dB Std.dev: 14.36 dB

- ☑ Simulate bigger networks (~1000 BTS).
- ☐ Fine-tune a deployed network.

Fine tuning: minimum power

- Given
 - a network layout (i.e., BTS positions are fixed),
- Find
 - for all installed BTS,
 - different power settings.
- Such that
 - coverage is maximized,
 - total power usage is minimized.

- Given
 - a network layout (i.e., BTS positions are fixed),
- Find
 - for all installed BTS,
 - different power settings.
- Such that
 - coverage is maximized,
 - total power usage is minimized.

- Given
 - a network layout (i.e., BTS positions are fixed),
- Find
 - for all installed BTS,
 - different power settings.
- Such that
 - coverage is maximized,
 - total power usage is minimized.

- Given
 - a network layout (i.e., BTS positions are fixed),
- Find
 - for all installed BTS,
 - different power settings.
- Such that
 - coverage is maximized,
 - total power usage is minimized.

- Given
 - a network layout (i.e., BTS positions are fixed),
- Find
 - for all installed BTS,
 - different power settings.
- Such that
 - coverage is maximized,
 - total power usage is minimized.

	No optimization		Siomina et al. (2008)		Multi-agent	
	Total power (W)	Average power (W)	Total power (W)	Average power (W)	Total power (W)	Average power (W)
Net ₁	422	2.187	-	-	147	0.764
Net_2	345	2.331	115	0.778	112	0.757

Radio-network planning: open challenges

- ☑ Simulate bigger networks (~1000 BTS).
- ☐ Fine-tune a deployed network.

- High interference areas of the network are prone to malfunctioning.
- Difficult to identify with coverage maps.
- Formalize and tackle the problem with metaheuristic optimization.

- High interference areas of the network are prone to malfunctioning.
- Difficult to identify with coverage maps.
- Formalize and tackle the problem with metaheuristic optimization.

- High interference areas of the network are prone to malfunctioning.
- Difficult to identify with coverage maps.
- Formalize and tackle the problem with metaheuristic optimization.

 $({\sf Loading\ Circle-m-increase3.mp4})$