Problem Set 5	
XUANQI WEI	
1009353209	
B.7.	
(a). $7(3^k) = 3^2 \cdot 7(1 + 3^k) + (3^k)^5$ by definition of 7.	
$=3^2$, $7(3^{k-1}) + 3^{5k}$.	
$= 3^{2} \cdot \left(3^{2} \cdot 7(L_{\frac{3}{3}}^{k-1}) + (3^{k-1})^{\frac{1}{3}}\right) + 3^{\frac{1}{3}k}.$	
$= 2^{2-2} - 7(3^{k-1}) + 2^{2} \cdot 2^{5k-5} + 3^{5k}$	
$= 3^{2-2} - J(3^{k-2}) + 3^{2} \cdot 3^{5k-5} + 3^{5k} \cdot $ $= 3^{4} \cdot (3^{2} \cdot J(1)^{3^{k-2}}) + (3^{k-2})^{5} + 3^{2} \cdot 3^{5k-5} + 3^{5k} \cdot $	
$= 3^{6} \cdot 7 (3^{k-3}) + 3^{4} \cdot 3^{5k-10} + 3^{2} \cdot 3^{5k-5} + 3^{5k}$	
$= 3^{6} \cdot 7 \cdot (3^{k-3}) + 3^{5k-6} + 3^{5k-3} + 3^{5k}$	
$=3^{2m} \cdot \int_{0}^{\infty} (3^{k-m}) + \sum_{i=0}^{m-1} 3^{i-3}$	
cb). Let $Q(m): \forall k, m \in \mathbb{N}, m \in k, \mathcal{T}(3^k) = 3^{2m} \mathcal{T}(3^{k-m}) + \sum_{k=0}^{m-1} 3^{k-3}$	i·
Let ke IN.	
WTS: VjelN, j < k => Q(j).	
Let jew.	
Base Case: j=0 or j=1.	
D When j=0. Assume j & k.	
WTS: QCOJ.	
Since $f(3^k) = 1.7(3^{k-0}) + 0.$	
$=3^{2\cdot 0}$, $7(3^{k-0}) + \frac{-1}{2} 3^{5k-31}$	
$=3^{2\sqrt{3}}\cdot7(3^{k-1})+\sqrt{2}\cdot13^{2k-3}$ as needed	
D When j=1. Assume. j < k.	
w7s:QCI).	
Since $k \ge j = 1$, gives $3^k > 1$. gives.	

$7(3^k) = 3^2 \cdot 7((\frac{3^k}{3})) + (3^k)^5$	
$=3^{2} \cdot \int (3^{k-1}) + 3^{\pm k}$	
$=3^{2\cdot 1}\cdot 7(3^{k-1}) + \sum_{k=0}^{\infty} 3^{k-3}$	
$=3^{2}\hat{J}. \int (3^{k-1}) + \sum_{j=0}^{k-1} 3^{j-k-3} \hat{J} \qquad \text{as needed}.$	
Induction Step: Let $\hat{j} \in \mathcal{U}$, $j > 1$.	
Industrion Aypotheers: Assume. j & k => QG).	
6, CoTS: j+1sk => QCj+1)	
Assume. j+1 < k.	
Since $j+1 \le k$, gives. $k-j \ge 1$. which	
$\int (3^{k-j})^{n} = 3^{2} \cdot \int (2^{\frac{3^{k-j}}{3}} 1) + (3^{k-j})^{\frac{1}{3}}$	
$= 3^{2} \cdot 7(3^{k-j-1}) + 3^{5k-5j} \cdot (4).$	
Since j+1 < k, gives. j < j+1 < k. by l.H., we have Q(j). which.	
$T(3^{k}) = 3^{2j} \cdot T(3^{k-j}) + \sum_{j \ge 0}^{k-3} 3^{j-2j}$ by (4).	
$=3^{2j}\cdot(3^{2}\cdot\mathcal{J}(3^{k-j-1})+3^{5k-5j})+3^{j-1}\sum_{j=0}^{2}3^{5k-3j}$	
$= 3^{2(j+1)} \cdot 7(3^{k-(j+1)}) + 3^{-k-3j} + 3^{j-1} \cdot 3^{2k-3j}$	
$= 3^{2(\hat{j}+1)} \cdot 7(3^{k-(\hat{j}+1)}) + 3^{k-3} \cdot 3^{5k-3} \cdot \text{ which } 75 (l(\hat{j}+1)) \cdot 08$	
necoled	
(c) Let $n=3^k$	
Take m=k, gives.	
$7(n) = 7(3^{k}) = 3^{2m} \cdot 7(3^{k-m}) + \sum_{i=0}^{m-1} 3^{i-3i}$ substitute gives.	
$=3^{2k}$. $\int (3^{k-k}) + \sum_{j=0}^{2} 3^{jk-k}$	
$= (3^{1/2})^{2} \cdot \int (1) + \sum_{j=0}^{\lfloor k-1 \rfloor} \frac{(3^{k})^{3}}{(3^{2})^{j}}$	+
$= \mathcal{N} + \sum_{i=0}^{k-1} \frac{\mathcal{N}^{\perp}}{(3^{i})^{i}}$	
$= n^{2} + n^{5} \stackrel{k-1}{\geq 0} \left(\frac{1}{3^{3}}\right)^{\frac{1}{3}} \qquad (4)$	+
Since $r = \frac{1}{3^{\frac{1}{3}}}$, $\alpha = (\frac{1}{3^{\frac{1}{3}}})^{\circ} = 1$, $1 - r = 1 - \frac{1}{3^{\frac{1}{3}}}$, $1 - r^{N} = 1 - \frac{1}{3^{\frac{1}{3}}}$, where $S_{2} = \frac{\alpha(1 - r^{N})}{1 - r} = \frac{1 - (\frac{1}{3^{\frac{1}{3}}})^{K}}{1 - \frac{1}{3^{\frac{1}{3}}}} = \frac{1 - (\frac{1}{3^{\frac{1}{3}}})^{3}}{3^{\frac{3}{3}}} = \frac{1 - (\frac{1}{n})^{3}}{3^{\frac{3}{3}}} = \frac{n^{3} - 1}{n^{3}}$ $S_{3} = \frac{1 - (\frac{1}{n})^{3}}{1 - r} = \frac{n^{3} - 1}{n^{3}}$	+
$S_{2} = \frac{1 - r}{1 - \frac{1}{3^{\frac{3}{3}}}} = \frac{3^{\frac{3}{3} - 1}}{3^{\frac{3}{3}}} = \frac{3^{\frac{3}{3} - 1}}{3^{\frac{3}{3}}} = \frac{1}{h^{\frac{3}{3}}}$	+
Thus, (A), gives. $n^2 + n^5 \cdot (\frac{n^3 - 1}{43}) \cdot \frac{3^3}{3^3 - 1}$	

	$= n^{2} + \frac{(n^{3} - n^{2})^{2}}{3^{2}}$ $= \frac{n^{2}3^{3} - n^{2} + r}{3^{2} - n^{2}}$	$\frac{n^{2})\cdot 3^{3}}{-1}$ $\frac{1}{3^{3}-n^{2}\cdot 3^{3}} =$	$\frac{3^{\frac{3}{2}}n^{\frac{1}{2}}-n^{\frac{2}{2}}}{3^{\frac{3}{2}}-1}$, which - 7(n)=	$\frac{3^{3} \cdot n^{4} - n^{2}}{3^{3} - 1}$
(d). WTS: Ykg/N, Yet kg/N.	$, n=3^k \Rightarrow 7(n)$	$= \frac{3^{\frac{3}{2}} n^{\frac{7}{2}} - n^{\frac{3}{2}}}{3^{\frac{3}{2}} - 1}$			
Bose Cose: k=0		> _ /			
Since 7(1)	= 3 ^k , gives $n = 3$ ° = 1, substitute $n = \frac{3^3 n^5 - n^4}{3^3 - 1}$.	$\frac{3^{3}n^{3}}{3^{3}}$	$\frac{3^3 n^3}{1}$ gives, $\frac{3^3 n^3}{3^3}$	$\frac{3^{2} - n^{2}}{3^{2} - 1} = \frac{3^{3} \cdot 1 - 1}{3^{2} - 1} = 1$	· roberc
Induction Step	p: Let kelN. otheris: Assume.	$n=3^k \Rightarrow 7(n)$	$0 = \frac{3^{\frac{3}{2}}n^{\frac{7}{2}}-n^{\frac{3}{2}}}{3^{\frac{3}{2}}-1}$		
WTS: n'=	$3^{k+1} \Rightarrow 7(w') = \frac{3}{3}$ $= 3^{k+1} \cdot \text{gaves}$	$n^2 = 3^k \cdot 3$ while	ch. n=3 ^k = -	n' 3	
By l.H., Sinex k64	gives. $J(n) = J(\frac{1}{2})$ $V, k+1 \ge 1, given$	$\frac{3^{3}}{3^{3}} = \frac{3^{3} - 1}{3^{3} - 1}$ ves. $n' = 3^{k+1} \ge 1$	3' = 3 > 2. gr		
T (n') =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NJ. Since	$e^{\frac{\pi}{3}}=3^k=n$	i's divisible by 3	3.
= = = = = = = = = = = = = = = = = = = =	$\frac{(n')^{5} - (n')^{3}}{3^{3} - 1} + (n')^{5} - (n')^{3} + (n')^{5} + (n')^{3} + (n')^{$	7 (n') 5 "25- (n') 5			
=	30') 5 - 1.	08 needed			