Energy Efficient Spectrum Sensing and Access In Cognitive Radio Networks

NODES Pizza Seminars

Suzan Bayhan

Post-doctoral Researcher
Helsinki Institute for Information Technology HIIT
http://www.hiit.fi/u/bayhan
bayhan@hiit.fi

Collaborators: Fatih Alagoz, Salim Eryigit, Tuna Tugcu, Gurkan Gur

October 2012

Outline

- Cognitive Radio in Brief
- 2 Motivations for Energy Efficient Design in CRNs
- 3 Energy Efficient Scheduling in CRNs Enabled via White Space Databases
- 4 Energy-Efficient Scheduling in CRNs Considering PU Interference
- 5 EE Cooperative Sensing Scheduling (with Channel Switching)
- 6 Conclusions

• Why: Radio spectrum is inefficiently used. Smarter schemes: *Dynamic spectrum access* (DSA)

3 / 31

- Why: Radio spectrum is inefficiently used. Smarter schemes:
 Dynamic spectrum access (DSA)
- A Primary User (PU): licensed user

3 / 31

- Why: Radio spectrum is inefficiently used. Smarter schemes:
 Dynamic spectrum access (DSA)
- A Primary User (PU): licensed user
- A spectrum hole: spatiotemporally unused frequency band

- Why: Radio spectrum is inefficiently used. Smarter schemes:
 Dynamic spectrum access (DSA)
- A Primary User (PU): licensed user
- A spectrum hole: spatiotemporally unused frequency band
- What: A Cognitive Radio (CR): smart radio, DSA capability, environment-aware, self-aware, adaptive

- Why: Radio spectrum is inefficiently used. Smarter schemes: *Dynamic spectrum access* (DSA)
- A Primary User (PU): licensed user
- A spectrum hole: spatiotemporally unused frequency band
- What: A Cognitive Radio (CR): smart radio, DSA capability, environment-aware, self-aware, adaptive

CR: a wireless device that can switch from one frequency to another.

1 Dynamicity of available frequencies: $f_1, f_2, ..., f_F$ owned by PUs

- **1** Dynamicity of available frequencies: $f_1, f_2, ..., f_F$ owned by PUs
- PUs must not be interfered: Spectrum sensing, White Spectrum Database Query

- **1** Dynamicity of available frequencies: $f_1, f_2, ..., f_F$ owned by PUs
- PUs must not be interfered: Spectrum sensing, White Spectrum Database Query
- 3 Spectrum sensing is not perfect: Probability of detection (P_d) and probability of false alarm (P_{fa})

- **1** Dynamicity of available frequencies: $f_1, f_2, ..., f_F$ owned by PUs
- PUs must not be interfered: Spectrum sensing, White Spectrum Database Query
- 3 Spectrum sensing is not perfect: Probability of detection (P_d) and probability of false alarm (P_{fa})
- **①** Cost of switching from f_i to f_j : channel switching overhead. Reduced time available for data transmission, energy consumption.

- **1** Dynamicity of available frequencies: $f_1, f_2, ..., f_F$ owned by PUs
- PUs must not be interfered: Spectrum sensing, White Spectrum Database Query
- **3** Spectrum sensing is not perfect: Probability of detection (P_d) and probability of false alarm (P_{fa})
- **②** Cost of switching from f_i to f_j : channel switching overhead. Reduced time available for data transmission, energy consumption.
- **5** Spectrum fragmentation: $f_1 = 100KHz$, $f_2 = 20GHz$

Outline

- Cognitive Radio in Brief
- 2 Motivations for Energy Efficient Design in CRNs
- 3 Energy Efficient Scheduling in CRNs Enabled via White Space Databases
- 4 Energy-Efficient Scheduling in CRNs Considering PU Interference
- 5 EE Cooperative Sensing Scheduling (with Channel Switching)
- 6 Conclusions

Motivations

- CR crucial for xG wireless communications
- Battery-dependent devices
- Energy may be the limiting factor

Energy efficiency (bits per Joule)

Energy efficiency =
$$\frac{\text{Number of data bits transmitted (bits)}}{\text{Energy consumed (Joule)}}$$

Our objective is

to design *low complexity* schemes for frequency assignment and spectrum sensing in infrastructure based cellular CRNs from an *energy efficiency* viewpoint *without sacrificing the network performance*.

Our objective is

to design *low complexity* schemes for frequency assignment and spectrum sensing in infrastructure based cellular CRNs from an *energy efficiency* viewpoint *without sacrificing the network performance*.

Energy-Efficient Scheduling in CRNs with WSDBs

Our objective is

to design low complexity schemes for frequency assignment and spectrum sensing in infrastructure based cellular CRNs from an energy efficiency viewpoint without sacrificing the network performance.

- Energy-Efficient Scheduling in CRNs with WSDBs
- Energy-Efficient Scheduling in CRNs Considering PU Protection

Our objective is

to design *low complexity* schemes for frequency assignment and spectrum sensing in infrastructure based cellular CRNs from an *energy efficiency* viewpoint *without sacrificing the network performance*.

- Energy-Efficient Scheduling in CRNs with WSDBs
- Energy-Efficient Scheduling in CRNs Considering PU Protection
- Energy-Efficient Cooperative Sensing Scheduling (with Channel Switching)

Our objective is

to design *low complexity* schemes for frequency assignment and spectrum sensing in infrastructure based cellular CRNs from an *energy efficiency* viewpoint *without sacrificing the network performance*.

- Energy-Efficient Scheduling in CRNs with WSDBs
- Energy-Efficient Scheduling in CRNs Considering PU Protection
- Energy-Efficient Cooperative Sensing Scheduling (with Channel Switching)

Our solution approaches

Optimization methods, design of heuristics, network flow, graph algorithms, analytic modeling and simulations

October 2012

Suzan Bayhan (HIIT) Energy Efficiency in CRNs

Outline

- Cognitive Radio in Brief
- 2 Motivations for Energy Efficient Design in CRNs
- 3 Energy Efficient Scheduling in CRNs Enabled via White Space Databases
- 4 Energy-Efficient Scheduling in CRNs Considering PU Interference
- 5 EE Cooperative Sensing Scheduling (with Channel Switching)
- 6 Conclusions

Centralized CRN Model Under Consideration

Research question

How to allocate idle frequencies out of F frequencies to N CRs such that energy efficiency is maximized? (frequency, CR id)

Our solutions

- NLP problem formulation and its optimal solution
- Energy-efficiency maximizing heuristic (Polynomial)
- Throughput max. but with energy consumption restriction
- Energy consumption min. but with minimum throughput guarantees
- Fairness criteria

Frame organization

- Control messaging (ignored)
- Channel switching (linear function of frequency separation)
- Transmission and Idling

Our proposal

- Queue-aware (Q_i : # bits in CR i's buffer)
- Channel-aware $(L_{i,f}: \# \text{ bits in CR } i \text{ can send in channel } f)$

CRN Throughput and Energy Consumption Modeling

Throughput (R)

- Shannon capacity of a link
- Number of bits in CR's buffer

Energy Consumption (E)

- CRs in transmission state
- CRs in idling state

$$\begin{split} R &= \sum_{f=1}^{F} \sum_{i=1}^{N} X_{i,f} L_{i,f} \text{ bits/frame} \\ E &= \sum_{i \in \mathcal{N}_{tx}} ((P_{tx} + P_c) t_{tx} + P_{id} (T_{frame} - T_{sw} - t_{tx})) \\ &+ \sum_{i \notin \mathcal{N}_{tx}} P_{id} T_{frame} \\ &+ \sum_{i \in \mathcal{N}_{tx}} \sum_{f'=1}^{F} P_{sw} t_{sw} |f - f'| X_{i,f'} \end{split}$$

Contiguous Spectrum

Our energy consumption aware schedulers have the same throughput performance but consume less energy. Max. improvement 23% improvement

CR Clustering in Fragmented Spectrum

Effect of Fragmentation in Frequency Domain

- Schedulers assign frequencies to each CR in the same/neighbor fragment
- Decreased opportunity for a CR, decreased competition for a CR.
- If tackled, fragmentation on the average *does not significantly affect* the CRN performance.

13 / 31

October 2012

Outline

- Cognitive Radio in Brief
- 2 Motivations for Energy Efficient Design in CRNs
- 3 Energy Efficient Scheduling in CRNs Enabled via White Space Database
- 4 Energy-Efficient Scheduling in CRNs Considering PU Interference
- 5 EE Cooperative Sensing Scheduling (with Channel Switching)
- 6 Conclusions

Energy-Efficient Scheduling in CRNs Considering PU Interference

Research question

How should CBS assign frequencies such that all PUs are protected and energy efficiency is maximized?

- CRs apply listen-before-talk
- Sensing time is a function of $(P_d, P_{fa}, \gamma_f, f_s)$ (Liang et al. [1])
- Control messaging in uplink and downlink
- PU interference ratios below max. tolerable limits

Suzan Bayhan (HIIT)

Our Solutions

- Formulate utility (energy or throughput efficiency) maximization framework
- Expected interference calculation
- Frame length optimization (short frames due to control overhead are inefficient, long frames are prone to PU collision)

Utility maximization framework

$$\max \sum_{i=1}^{N} \sum_{f=1}^{F} P_{idle}^{f} X_{i,f} U_{i,f}$$

$$\tag{2}$$

s.t.
$$I_{i,f}X_{i,f} \leq \Gamma^f_{thresh}$$

$$I_{i,f} = \frac{\text{Expected interference time of CR} i \text{ at } f}{\text{Mean PU activity duration at } f}$$

Energy Efficiency in CRNs Suzan Bayhan (HIIT)

16 / 31

Utility of CR i at frequency f

- Sensing is subject to errors: false alarm and misdetection
- $R_{i,f}$: Expected throughput, $E_{i,f}$: Expected energy consumption

$$U_{i,f} = \begin{cases} \frac{R_{i,f}}{E_{i,f}} & \text{, for } EE_{max} \\ \frac{(1-\omega_i)R_{i,f}}{E_{i,f}} & \text{, for } EE_{max} - fair \\ R_{i,f} & \text{, for } Thr_{max} \\ (1-\omega_i)R_{i,f} & \text{, for } Thr_{max} - fair \end{cases}$$

Utility Calculation

- ① Channel switching (E_{sw})
- 2 Spectrum sensing $(E_s) \Rightarrow$ Four outcomes
- Transmission and idling

Case	Probability	Throughput	Energy Cons.	Interference Time
1) OPP	$P_{idle}^f(1-P_{fa})$	$(1-q)t_{tx}C_{i,f}$	$P_{tx}t_{tx} + P_{id}(t_r - t_{tx})$	$t_{tx} - \beta_f (1 - \exp(\frac{-t_{tx}}{\beta_f}))$
2) FA	$P_{idle}^f P_{fa}$	0	$P_{id}t_r$	0
3) PUD	$(1-P_{idle}^f)P_d$	0	$P_{id}t_r$	0
4) PUM	$(1-P_{idle}^f)(1-P_d)$	0	$P_{id}t_{tx} + P_{id}(t_r - t_{tx})$	$t_{t \times}$

Comparison of EE_{max} with Thr_{max} with increasing F

N = 50, $\lambda_{CR} = 2Mbps$ and $\Gamma_{thresh} = 0.05$.

Our scheduler achieves the same throughput but consumes lower energy.

Outline

- Cognitive Radio in Brief
- 2 Motivations for Energy Efficient Design in CRNs
- 3 Energy Efficient Scheduling in CRNs Enabled via White Space Databases
- 4 Energy-Efficient Scheduling in CRNs Considering PU Interference
- 5 EE Cooperative Sensing Scheduling (with Channel Switching)
- 6 Conclusions

EE Cooperative Sensing Scheduling

- M frequencies, N CRs,
- CRs sense a subset of channels one after another,
- CBS collects reports (e.g. < CR_1 , f_5 , 0>, < CR_2 , f_8 , 1>,) and gives the final decision (e.g., $f_1:0$, $f_2:1$...)

EE Cooperative Sensing Scheduling

- M frequencies, N CRs,
- CRs sense a subset of channels one after another,
- CBS collects reports (e.g. $< CR_1$, f_5 , 0>, $< CR_2$, f_8 , 1>,) and gives the final decision (e.g., $f_1:0$, $f_2:1$...)

Research question

 Given that sensing must be completed in sensing period and each channel's detection reliability must be above a threshold, how should CBS choose a set of CRs to sense a particular frequency?

Problem Formulation

Merit of our work:

- Heterogeneity among CRs (channel SNR)
- The lower the SNR the longer the required sensing time.
- Mixed Integer Nonlinear Problem \rightarrow
- Outer Linearization Method

P1: min
$$w = \sum_{m=1}^{M} \sum_{n=1}^{N} P^{s} \tau_{m,n} + \sum_{n=1}^{N} E_{n}^{rep} y_{n}$$
 (3)

$$\tau_{m,n} \ge \tau_{m,n}^{min} \mathsf{x}_{m,n} \qquad \forall m \in M, \forall n \in N$$
(4)

$$\sum_{n=1}^{M} \tau_{m,n} \le T^{s} y_{n} \qquad \forall n \in N$$
 (5)

$$\sum_{n=1}^{N} x_{m,n} \ge \delta^{min} \qquad \forall m \in M \tag{6}$$

$$\sum_{n=1}^{N} x_{m,n} \le \delta^{\max} \qquad \forall m \in M \tag{7}$$

$$\sum_{n=1}^{M} x_{m,n} \le M y_n \qquad \forall n \in N$$
 (8)

$$_{th}Q^{d}-Q_{m}^{d}\leq 0 \qquad \forall m\in M \tag{9}$$

$$\times_{m,n}, y_n \in (0,1) \quad \forall m \in M, \forall n \in N$$
 (10)

$$\tau_{m,n} > 0 \quad \forall m \in M, \forall n \in N, \tag{13}$$

Performance Analysis

- Optimal energy-efficient solution (EE)
- Transmission time maximization (TXT)
- Sensing energy minimization (SEM)
- Transmission energy minimization (TEM)

(e) $\mu^{\it SNR}$ between -10 dB and 5 (f) $\mu^{\it SNR}$ between -2 dB and 3 dB. dB.

EE Cooperative Sensing Scheduling with Channel Switching

Research Challenges

- How to decide on the most EE channel sensing sequence
- For a particular CR, which frequencies should be sensed and in which order?

Problem Formulation using Network Flows

$$\begin{aligned} \text{P1: min } & w = \sum_{m=1}^{M} \sum_{n=1}^{N} P^{s} \tau_{m,n} + \sum_{n=1}^{N} E_{n}^{tx} y_{n} \\ & + P^{cs} t^{cs} \sum_{n=1}^{N} (\sum_{m=1}^{M} |f_{n}^{0} - f_{m}| x_{f_{n}^{0},m,n}^{0} \\ & + \sum_{m=1}^{M} \sum_{\substack{m'=1\\ m' \neq m}}^{M} \sum_{k=1}^{M-1} |f_{m} - f_{m'}| x_{m,m',n}^{k}) \end{aligned}$$

Subject to

- Sensing quality related constraints
- Plow related constraints
- Sensing time related constraints

Outline

- 2 Motivations for Energy Efficient Design in CRNs

- Conclusions

Summary

- Current CR solutions lack an energy efficiency perspective
- Resource allocation with both throughput and energy efficiency
- Channel-switching-aware, fragmentation-aware, PU-interference-aware design
- Low complexity solutions for EE spectrum sensing and access
- Suzan Bayhan and F.Alagöz, "Scheduling in Centralized Cognitive Radio Networks For Energy Efficiency", accepted, IEEE Transactions on Vehicular Technology, Oct. 2012.
- Salim Eryigit, Suzan Bayhan and Tuna Tugcu, "Energy-Efficient Multi-Channel Cooperative Sensing Scheduling with Heterogeneous Channel Conditions for Cognitive Radio Networks", submitted to IEEE Transactions on Vehicular Technology, 2012..
- Salim Eryigit, Suzan Bayhan and Tuna Tugcu, "Channel Switching Cost Aware and Energy-Efficient Cooperative Sensing Scheduling for Cognitive Radio Networks", submitted to IEEE ICC 2013.
- (in preparation) Suzan Bayhan and F.Alagöz, "Energy Efficiency in Spectrum Sensing and Access in CRNs: A Survey".

Ongoing/Future Research

- Energy efficient distributed channel access via reinforcement learning
- Energy efficiency analysis of wireless networks with cognitive femtocells
- A framework for energy efficient sensing and transmission
- Network wide energy efficiency analysis → Not a single cell

References

- Y. Liang, Y. Zeng, E. Peh, and A. Hoang, "Sensing-throughput tradeoff for cognitive radio networks," *IEEE Transactions on Wireless Communications*, vol. 7, no. 4, pp. 1326–1337, 2008.
- H. Kim and K. G. Shin, "Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks," *IEEE Transactions on Mobile Computing*, vol. 7, no. 5, pp. 533–545, May 2008.
 - C. Song and Q. Zhang, "Cooperative spectrum sensing with multi-channel coordination in cognitive radio networks," 2010 IEEE International Conference on Communications (ICC), pp. 1–5, 2010.

References

Questions? Comments?

Suzan Bayhan, Post-doctoral researcher, Exactum A 338, http://www.hiit.fi/u/bayhan bayhan@hiit.fi