Lecture 21 Normal Approximation To Binomial Distribution & Sampling Distribution of The Sample Proportion

BIO210 Biostatistics

Xi Chen Spring, 2025

School of Life Sciences
Southern University of Science and Technology

ABO Blood Types Proportions In Han Chinese

Population distribution of ABO blood types in Han Chinese.

Total	Α	В	AB	0
592,243	171,473	168,040	52,088	200,642
1	0.290	0.284	0.088	0.338

中国汉族人ABO血型的分布

灾累占都医院* 彭康仁

研究ARO血型的分布在聚学、法医学及 人类类等方面都有重要查以、至于国人的AB 〇电型分布显在1918年曾有人提出讨任3、现已 利果了大量的资料。1963年。而书须等曾统计 分析了15万字中国人ARO重要的分布资料。 排出建設国外的 A D O 电槽分布键为 A 种 类型(2)。1982年,陈稚勇等改集了1920~1979 年国内外发表的中国人的ARO由野公布管料 共28万多例,通过计算各群体间的遗传距离。 将全国分为 4 个组(1)。但这两篇文献都包含了 少數形態的影響。Mourant態影響的《人愿的 型分布》中也仅收集到18万多中国人的ABO **盘型分布资料CO。由于中国是一个多民族的国** 家, 辣ARO 市型研究, 不同的形象可有不同 的分布特点,即使基同一民族,其分布特点因 地域等原因也可能不尽相同。为了给医学、法 医学及人类学等研究组但一些基本数据,本文 故集了1920~1988年制度从安泰的有关汉族的 ABO 电型分布资料非59万多人,并对其进行 维让分析。

材料与方法

国内发表的资料主要取自1963~1966年的 《天津医药杂志输血及血液学附刊》、1978~

· 約收集码 610081

(一) 資料米源

1979年的《輸血及血液学》杂志、1980~1988 年的中华奥維茨奈混》。1981~1988年的《中 年医学检查介志》等的 162 篇文献,因外发表 的资料主要采自《人类血资产布》<12。所收集 的资料仅限于汉族,每份资料的人敷均多于30 人且往明了居住地区,全部资料共行1 022 237

(二) 基因製率的計算 与 Hardy-Weinberg物合度測验

(三) 遺传距离 为比较ABO 血型分布在各地区间的差异, 使用遗传距离 d, 其公式为 d=4(1-cos8)/κ

Sampling Distribution of ABO Blood Type Proportions

Population distribution of ABO blood types in Han Chinese.

Total	Α	В	AB	0
1	0.290	0.284	0.088	0.338

Sampling Distribution of The Sample Proportion

Fraction of type A blood in the population: π

sample

The Sum And The Mean of Indicator Variables

I: Indicator Variable

$$i.i.d.$$

$$I_1 \sim Ber(\pi)$$

$$I_2 \sim Ber(\pi)$$

$$I_3 \sim Ber(\pi)$$

:

$$I_{n-1} \sim Ber(\pi)$$

$$\boldsymbol{I_n} \sim Ber(\pi)$$

Meaning of Y: number of people with blood type A per n people.

Meaning of $ar{I}$: The proportion of people with blood type A.

$$Y = \sum_{i=1}^{n} I_i \sim ?$$
 $\bar{I} = \frac{1}{n} Y \sim ?$

By definition:

$$Y \sim B(n,\pi)$$

By The Central Limit Theorem:

$$\bar{I} \sim \mathcal{N} \left(\mu = \pi, \sigma^2 = \frac{\pi(1-\pi)}{n} \right)$$

$$Y = n\bar{I} \sim \mathcal{N} \left(\mu = n\pi, \sigma^2 = n\pi(1-\pi) \right)$$

Normal Approximation To A Binomial Distribution

Our knowledge about Han Chinese (Peng, 1991):

Total	Α	В	AB	0
1	0.290	0.284	0.088	0.338

A sample from Wuhan (Xu et al., 2015): 1,188 out of 3,694 people have blood type A.

Questions:

- 1. When draw a random sample (n=3,694), what is the probability of getting 1,100-1,200 people with blood type A?
- 2. When draw a random sample (n=3,694), what is the probability of getting 1,188 people with blood type A?

Normal Approximation To A Binomial Distribution

Question 1:

Use the Binomial probability:

$$\sum_{k=1100}^{1200} {3694 \choose k} 0.29^k 0.71^{3694-k} = 0.152949$$

Use the Normal probability :

$$\mathbb{P}\left(1100 \leqslant x \leqslant 1200\right) = \mathbb{P}\left(\frac{1100 - 1071.26}{27.58} \leqslant z \leqslant \frac{1200 - 1071.26}{27.58}\right) = 0.148681$$

Use the Normal probability with continuity correction :

$$\mathbb{P}(1100 - 0.5 \le x \le 1200 + 0.5) = 0.152923$$

Normal Approximation To A Binomial Distribution

Question 2:

Use the Binomial probability:

$$\binom{3694}{1188} 0.29^{1188} 0.71^{3694-1188} = 2.16 \times 10^{-6}$$

Use the Normal probability with continuity correction :

$$\mathbb{P}(1188 - 0.5 \le x \le 1188 + 0.5) = 1.86 \times 10^{-6}$$

Sampling Distribution of The Sample Proportion

- ullet $ar{I}\sim$ Sampling Distribution of The Sample Proportion
- Generally, we used $p=\frac{x}{n}$ to represent the sample proportion, which is an point estimate for the population parameter π .
- According to the Central Limit Theorem, when the sample size n is large enough, we have:

$$P \sim \mathcal{N}(\mu_P, \sigma_P^2), \text{ where } \mu_P = \pi, \sigma_P^2 = \frac{\pi(1-\pi)}{n}$$

Sampling Distribution of The Sample Proportion

