Projet Final

vendredi 9 juin 2023 22:02

main (+ setup) + readme + globs

BlueOrigin

: definition du cone (altitude/rayon à deploy break)

g = 9,81 isp =

masse_vide_rocket =

analyse_donnees affichage pretraitement : calculs et résultats à partir des : affiche les résultats (plan de : filtrage et mise au propre des données **PACKAGES** données traitées vol, trajectoires...) --> CSV new --> plot, print Affichage() FiltrageDonnees() PhysiqueVol() CLASSES : quelle entités récupérer g = 9,81def __init__() isp = def __init__() masse_vide_rocket = def affichage_trajectoire() def init (masse payload,) def affichage_plan_vol() ConversionTemps() : data synchro avec le même def calcul_vitesse() def affichage_physique() nombre et même valeur de temps def calcul masse() def __init__() def calcul_poussee() def calcul altitude() CreationNewFichier() def calcul_centre_gravite() def __init__() Trajectoire(profil_vent = 0, masse_payload = 0) g = 9,81masse_vide_rocket = def __init__() PlanVol(profil_vent = 0, masse_payload = 0) g = 9,81isp = masse_vide_rocket = def __init__() ConeLimite()

conditions_entrees

: contient des fonctions/classes à configurer par l'utilisateur et à mettre en entrées de propriétés (profil vent, masse payload)

ProfilVent ()

def __init__(
 vitesse_min =18
 Vitesse_max =
 hauteur_min =
 hauteur_max =
 Rugosite =)

def calcul_vent()

$$v_2 = v_1 \frac{\ln\left(\frac{h_2}{z_0}\right)}{\ln\left(\frac{h_1}{z_0}\right)}$$

interface_utilisateur

Profil_vent_jour1 = profil_vent(vitesse_min = 12...)

Affichage_traj_ini =
Affichage_new_traj =

def __init__()

GoNogo()

def __init__()