Breast Cancer Classification

Predicting IDC in Breast Cancer Histopathology Images

Final Presentation

W207 Applied ML Fall 2022

Heesuk Jang Tatianna Martinez Kesha Julien Rachael Phillips

Research Question

Can we accurately diagnose Invasive Ductal Carcinoma (IDC) using machine learning technologies given breast cancer histology images?

Invasive Ductal Carcinoma (IDC) is the most common subtype of all breast cancers, accounting for 80% of all breast cancer diagnoses.

Our Focus is being able to automate the identification and classification of IDC would help to save time and resources for pathologists.

The application of machine learning and Al service network system can promote quality of medical services in rural areas where medical providers are not available.

What is Invasive Ductal Carcinoma (IDC)?

Invasive Ductal Carcinoma (IDC) of the Breast

© 2019 Terese Winslow LL U.S. Govt. has certain rights

What is IDC?

Invasive ductal carcinoma (IDC), also known as **infiltrating ductal carcinoma**, is a type of breast cancer that starts in the milk ducts of the breast and moves into nearby tissue. In time, IDC may spread (metastasize) through the lymph nodes or bloodstream to other areas of the body.

How is IDC Found?

Pathologists typically focus on the regions which contain the IDC, rather than the whole mount slide. As a result, one of the common pre-processing steps for identification is to delineate the exact regions of IDC inside of a whole mount slide.

Dataset

Dataset from Kaggle

Size of Data Set:

277,524 Images and divided into train, validate, and test

Focused on 1,200 randomly sampled images (Train/Test/Val = 800/200/200)

Main Features:

Is IDC Present? 0 or I
Mount slide cross section

Class Imbalance

72 % (198,738) non IDC vs 28% (78,786) IDC

Breast Histopathology Images

How is the Data Organized?

Dataset Overview

162 whole mount slides, scanned at 40x C indicates the class, 0 is non-IDC and 1 is IDC

Initial EDA and PreProcessing

There are no missing values or values other than 0 or 1 in our Target

Pulled out "bad" images (Train/Test/Val = 3/1/3)

Used a total of 1,193 images for our

Train/Test/Validation sets (797/199/197)

The same data is used for both the Baseline and Advanced Model

Transformations Applied to Images

Grayscale Augmentation Normalization

Bad Images

Image Augmentation

Augmented the grayscale images using OpenCV

Normalized the augmented images using Keras ImageDataGenerator

Used 9,564 training images (12X more data) to train the machine learning models

Our Approach

Input Images

IDC Benign (0)

IDC Malignant (1)

Models Used

- Baseline Model
 Support Vector Machine (SVM)
- Model 2
 Random Forest
- Model 3
 Convolutional Neural Networks (CNN)
- Model 4

 CNN Transfer Learning

Evaluation Metrics

- 01 Test Accuracy
- 02 Validation Accuracy
- 03 Precision
- 04 Recall
- F1 Score
- Zero One Loss
- 07 ROC Curve and AUC

Support Vector Machines (SVM) as Our Baseline

Key Parameters for SVM

- **Gamma:** Defines how far the influence of a single training example reaches values lead to biased results
- C: Controls the cost of miscalculations
- **Kernel:** Mathematical functions (Ex: Linear, RBF, Polynomial)

We used **GridSearch** in our model to test multiple values for each parameter. We found that:

- The RBF kernel performed the best
- Accuracy score of Train: **0.77**
- Accuracy score for Test: 0.72
- Accuracy score for Validation: 0.69

Classification Report

	precision	recall	f1-score	support
0 1	0.75 0.69	0.65 0.79	0.70 0.74	99 100
accuracy macro avg weighted avg	0.72 0.72	0.72 0.72	0.72 0.72 0.72	199 199 199

Random Forest

Key Parameters for Random Forest

- N estimators
- Max features
- Max_Depth
- Min_samples_split
- Min_leaf_samples
- criteria

Hyperparameter Tuning

We used **RandomSearchCV** in our model We found that:

• Accuracy score of Train: 0.76

Accuracy score for Test: 0.72

Accuracy score for Validation: 0.70

Classification Report

	precision	recall	f1-score	support	
0 1	0.76 0.69	0.64 0.80	0.69 0.74	99 100	
accuracy macro avg weighted avg	0.72 0.72	0.72 0.72	0.72 0.72 0.72	199 199 199	

Model Architecture:

Input Max Pool 2d Conv Max Pool Flattening Dense Dense

Feature Extraction

Classification

Hyperparameter Tuning Options

Hyperparameter	Values
Number of Layers	1, 2, 3, 4
Filter Sizes	8, 16, 32, 64, 128
Kernel Sizes	1, 2, 3, 4, 5
Number of Dense Layer Units	8,16,32,64,128, 256, 521
Learning Rates	0.1, 0.001, 0.0001, 0.00001

Hyperparameter Tuning

Model: "sequential_50"

Total params: 156,461 Trainable params: 156,461 Non-trainable params: 0

Layer (type)	Output Shape	Param #
conv2d_159 (Conv2D)		32
max_pooling2d_159 (MaxPooling2D)	(None, 25, 25, 16)	0
conv2d_160 (Conv2D)	(None, 25, 25, 8)	3208
max_pooling2d_160 (MaxPooling2D)	(None, 12, 12, 8)	0
conv2d_161 (Conv2D)	(None, 12, 12, 8)	1608
max_pooling2d_161 (MaxPooling2D)	(None, 6, 6, 8)	0
flatten_50 (Flatten)	(None, 288)	0
dense_100 (Dense)	(None, 521)	150569
dense_101 (Dense)	(None, 2)	1044

	Number of Filters	Kernel Size
Input Layer	16	1
Conv2D I	8	5
Conv2D 2	8	5
Dense	521	

Model Results

Model Results and Metrics

Classes	Accuracy Precision		Recall	F1-Score	
0	0.78	0.74	0.78	0.76	
1	0.72	0.77	0.72	0.74	

Transfer Learning with CNN

Applied Transfer Learning

01 VGG16

⁰² VGG19

03 ResNet50

04 DenseNet201

05 ResNet152V2

Transfer Learning Process

Hyper Parameters

Tuning 60	Trials Exec 2	cution Per Trial	Batch Size 64	Epochs 20	Objective Validation Loss	Image Size 50 x 50 x 3
01	Optimizer SGD, Adam, R	msprop		06	Add Dense Layer True, False	
02	Activation ReLU, Leaky R	eLU, Tanh, Gelu	 I	07	Brightness Delta [0.2, 0.3, 0.4]	
03	Dense Units [min=128, ma	x= 1024, step= 1	28]	08	Contrast Factor [2, 3, 4]	
04	Learning Rate [le-2, le-3, le-4	4]		09	Rotate Range [-90, 90]	
05	Dropout Rate [0.2, 0.3, 0.4,	0.5, 0.6]		10	Shift Width and Height	

TL Model I - CNN Transfer Learning with All Frozen Layers

Top Models by Transfer Learning

TL Model	Test Acc	Train Acc	Val Acc
DenseNet201	0.74	0.79	0.72
VGG16	0.74	0.71	0.68
ResNet152V2	0.74	0.79	0.71
VGG19	0.73	0.72	0.7
ResNet50	0.72	0.73	0.71

TL Model 2 - CNN Transfer Learning with Unfrozen Last Layer

Top Models by Transfer Learning

TL Model	Test Acc	Train Acc	Val Acc
DenseNet201	0.77	0.8	0.73
ResNet50	0.76	0.72	0.74
VGG16	0.74	0.78	0.71
ResNet152V2	0.71	0.76	0.66
VGG19	0.7	0.77	0.71

CNN with ResNet50

Results Before and After Transfer Learning

Possible Sources of the Insignificant Improvement

with Transfer Learning

01 Mismatch in domain

O2 Stronger augmentation

Increased size of the fine-tune dataset

Conclusions - Model Summary

Model	Test_Acc	Train_Acc	Validation_Acc	Precisions	Recall	F1Score	ROC_AUC	ZeroOneLoss
Random Forest	0.72	0.76	0.70	0.68	0.80	0.74	0.71	0.28
CNN without Transfer Learning	0.75	0.74	0.71	0.75	0.75	0.75	0.72	0.25
M1: CNN with ResNet50	0.72	0.73	0.71	0.73	0.72	0.71	0.83	0.28
M1: CNN with DenseNet201	0.74	0.79	0.72	0.74	0.74	0.74	0.80	0.26
M1: CNN with ResNet152V2	0.74	0.79	0.71	0.74	0.74	0.74	0.80	0.26
M1: CNN with VGG16	0.74	0.71	0.68	0.74	0.74	0.74	0.82	0.26
M1: CNN with VGG19	0.74	0.72	0.69	0.74	0.74	0.74	0.80	0.26
M2: CNN with ResNet50	0.76	0.72	0.74	0.77	0.74	0.75	0.82	0.24
M2: CNN with DenseNet201	0.77	0.80	0.73	0.81	0.72	0.76	0.81	0.23
M2: CNN with ResNet152V2	0.71	0.76	0.66	0.71	0.70	0.70	0.81	0.29
M2: CNN with VGG16	0.74	0.78	0.71	0.75	0.74	0.74	0.83	0.26
M2: CNN with VGG19	0.70	0.77	0.71	0.68	0.79	0.73	0.81	0.30

Conclusions - Top 5 Models

Model	Test_Acc	Validation_Acc	Recall	F1Score	ROC_AUC
M2: CNN with ResNet50	0.76	0.74	0.74	0.75	0.82
CNN without Transfer Learning	0.75	0.74	0.75	0.75	0.72
M1: CNN with ResNet50	0.72	0.71	0.72	0.71	0.83
M2: CNN with DenseNet201	0.77	0.80	0.73	0.81	0.72
Random Forest	0.72	0.70	0.80	0.74	0.71

Conclusions - Lessons Learned & Limitations

Lessons Learned

Removing "bad" images from our dataset **improved accuracy** by 2-4%

Learned that certain fields have "best practices" for image augmentation

Important to work off the same dataset and augmented images for **accurate comparisons**

Limitations

Need significantly more processing power to run the original full set of data

Computationally expensive to maintain GPU capability to run pre-trained models

Limited knowledge on the differences among transfer learning methods and their impacts

Complex classification task on the histopathology images by nature

Looking Forward

Being able to handle a larger dataset

Utilize patient contextual data along with histopathology images to improve the classification results

Selection of better-suited transfer learning techniques for medical dataset

Hyperparameter tuning for a number of epochs and batch size for optimal performance

Employ various filter techniques to enhance the histopathology images to handle unstructured pattern

Project Contributions

Team Member	Research	EDA	SVM	Random Forest	CNN	CNN Transfer Learning	Presentation Slides
Rachael Phillips	Х	Х	x	X			X
Tatianna Martinez	X	X		x			×
Kesha Julien	Х	Х			Х		X
Heesuk Jang	X	×			X	X	X

Reference

- **Kaggle** https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images
- **NIH National Cancer Institute** https://www.cancer.gov/publications/dictionaries/cancer-terms/def/invasive-ductal-carcinoma
- **Penn Medicine Abramson Cancer Center** https://www.pennmedicine.org/cancer/types-of-cancer/breast-cancer/types-of-breast-cancer/invasive-ductal-carcinoma#:~:text=Invasive%20ductal%20carcinoma%20(IDC)%2C,other%20areas%20of%20the %20body.