COMPSCI 762 Tutorial 9

Tutorial on Reinforcement Learning and Association Rule Mining

Luke Chang

May 2021

The University of Auckland

Topics

Reinforcement Learning

Association Rule Mining

Reinforcement Learning —

Terminology

- **Agent:** A hypothetical entity which performs actions in an environment to gain some reward.
- Environment: A scenario the agent has to face.
- **Action** $a_t \in A$: All the possible moves that the agent can take.
- **State** $s_t \in S$: Current situation returned by the environment.
- **Reward** $R(s_t, a_t)$: An immediate return sent back from the environment to evaluate the last action by the agent.
- Policy π : S → A: The strategy that the agent employs to determine next action based on the current state.
- **Value** $V^{\pi}(s)$: The expected long-term return with discount γ , as opposed to the short term reward R. $V^{\pi}(s)$ is defined as the expected long term return of the current state s under policy π .
- **Q-value, action-value** $Q^{\pi}(s, a)$: is similar to **Value**, except it takes the current action *a*. $Q^{\pi}(s, a)$ refers to the long term return of the current state *s*, taking action *a* under policy π .

Markov Decision Process (MDP)

MDP is defined by $(S, A, R, \mathbb{P}, \gamma)$

- *S*: Set of possible states $s_t \in S$
- *A*: Set of possible actions $a_t \in A$
- *R*: Immediate reward given by the state and action pair $R(s_t, a_t)$
- \mathbb{P} : Transition probability at state s if an action a is taken
- γ : Discount factor with $0 \le \gamma < 1$; The weight of future rewards

Markov Property:

$$P(s_{t+1}|s_t,a_t,s_{t-1},a_{t-1},s_{t-2},a_{t-2},\ldots) = P(s_{t+1}|s_t,a_t)$$

A *stochastic process*, where the future is solely determined by the current state and action. The past and the future are independent.

Markov Decision Process

• Assume the reward r_t the Markov property:

$$P(r_t| < s_t, a_t >, < s_{t-1}, a_{t-1} >, < s_{t-2}, a_{t-2} >, \ldots) = P(r_t|s_t, a_t)$$

Immediate reward r_t is solely based on the current state and action pair $R(s_t, a_t)$.

• The task: Learn a policy $\pi: S \to A$ to maximizes the expected current and future rewards

$$\mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

for every possible starting state s_0 .

• Intuition: How we got here doesn't matter, what is the current best move?

Escape the grid-world: Solving an MDP - Value Iteration

Your task is to design the AI to help a robot to escape the room. The door is at right top corner. The actions are $\{Left, Up, Right, Down\}$.

		+10
0	0	0
0	0	0

Initially, no action is taken, we set the value to 0 for all states.

Value Iteration - 1 Action

If we can only take 1 action in the game.

Value Iteration - 2 Actions

When we take more than one action, we have to balance immediate reward and future reward. γ controls the importance of future rewards.

Let $\gamma = 0.5$, state values with 2 actions:

$$V^{\pi}(s) = \mathbb{E}[\sum_{t\geq 0} \gamma^t r_t] = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

= 0 + 0.5 \times 10 = 5

Value Iteration - 3 Actions

Let $\gamma = 0.5$, state values with 3 actions:

$$V^{\pi}(s) = 0 + 0 + 0.5^2 \times 10 = 2.5$$

		+10
2.5	5	10
0	2.5	5

Value Iteration

Let $\gamma = 0.5$, state values with 4 actions:

$$V^{\pi}(s) = 0 + 0 + 0 + 0.5^{3} \times 10 = 1.25$$

		+10 ↑
2.5	5	10
1.25	2.5	5

Caveat: Do not mix value $V^{\pi}(s)$ and reward $R(s_t, a_t)$.

Example

- The black cell cannot be entered.
- The actions are {Left, Up, Right, Down}.
- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- Discount factor, $\gamma = 0.5$

- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- $\gamma = 0.5$

Give for each state the value of the value function, V, for the given policy. You can ignore states for which no policy is defined.

- The target state, H, requires 0 action, $V^{\pi}(s = H) = 0$. Note: There is no action called "stay".
- State G requires 1 action, $V^{\pi}(s=G)=0$

- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- $\gamma = 0.5$

• State F requires 2 action, $V^{\pi}(s=F) = -1 + 0.5 \times 0 = -1$

- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- $\gamma = 0.5$

• State D requires 3 action, $V^{\pi}(s = D) = -1 + 0.5 \times (-1) + 0.5^{2} \times 0 = -1.5$

- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- $\gamma = 0.5$

• State A requires 4 action, $V^{\pi}(s = A) = -1 + 0.5 \times (-1) + 0.5^2 \times (-1) + 0.5^3 \times 0 = -1.75$

- The reward for actions that bring it into the target is 0. Other actions get a reward of -1.
- The partial policy, π , is given by the arrows in the grid.
- $\gamma = 0.5$

• State B requires 5 action,

$$V^{\pi}(s=A) = -1 + 0.5 \times (-1) + 0.5^{2} \times (-1) + 0.5^{3} \times (-1) + 0.5^{4} \times 0 = -1.875$$

Limitations on MDP - The Cliff Sernario

- The value of a state is the expected reward from taking the best action in the state.
- Accumulating rewards from random actions would calculate the expected reward from <u>random actions</u> in the state.
- E.g.: We would learn that any state near a cliff is bad, because you get a negative score if you jump off, even though you don't have to jump off.

Q-Learning

Intuition: Instead of computing value $V^{\pi}(s)$, we learn **Q-value**, $Q^{\pi}(s, a)$, which considers the state s and the action a as a pair.

- Q-learning can identify an **optimal action-selection policy** for any given a finite Markov decision process (FMDP).
- $Q: S \times A \rightarrow \mathbb{R}$, calculating the quality of a state–action combination
- Iterative method, Q is initialized to an arbitrary fixed value. At each time t, the agent selects an action a_t , observes a reword r_t , enters a new state s_{t+1} , and Q is updated.

The Q-value is updated by:

$$Q^{\text{new}}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \cdot \left[R(s_t, a_t) + \gamma \cdot \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)\right]$$

where α is the learning rate. (In a fully deterministic environment, a learning rate of $\alpha=1$ is optimal.)

Example

- For the transitions into non-existing cell the next state, s', is equal to the current state, s.
- For each action, the agent gets a reward of -1. The reward for actions that bring it into the target is 0, and the black state is -2.
- Discount factor, $\gamma = 0.5$
- Let the initial value of Q be -16.

Given
$$\gamma = 0.5$$
, $Q(s = F, a = \text{right}) = -1 + 0.5 \times (-16) = -9$

$$Q(G, up) = -2 + 0.5 \times (-16) = -10$$

$$Q(G, right) = 0 + 0.5 \times 0 = 0$$

$$V(G)=0$$

Create an optimal policy π^* , and draw it on the given diagram. What are the corresponding values of V^* ? What is the most desirable state for the agent?

Note: The initial value of Q does not affect V(s).

Association Rule Mining

Terminology

- Itemset: A collection of one or more items, e.g. $X = \{A, B\}$, $Y = \{B\}$ Note: Single item can be an itemset.
- N = |T|: is the number of transactions (instances)
- d = |I|: is the number of distinct (unique) items. There are 2^d possible itemsets.
- Width w: The transaction width is the number of items present in a transaction.
- **Support count \sigma:** Frequency of occurrence of an itemset, e.g. $\sigma(\{A, B\}) = 2$ means 2 transactions contain the itemset $\{A, B\}$.
- Frequent Itemset: An itemset whose support is greater than or equal to the *minsup* threshold
- **Support** $s(X \to Y)$: Fraction of transactions that contain an itemset

$$s(X \to Y) = \frac{\sigma(X \cup Y)}{|T|}$$

• Confidence $c \to Y$: Measures how often items in Y appear in transactions that contain X

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

Apriori Algorithm

- Goal: Reducing the number of candidates
- **Apriori principle:** "If an itemset is frequent, then all of its subsets must also be frequent." anti-monotone property of support

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Maximal Frequent Itemset: If none of its immediate supersets is frequent
- **Closed Frequent Itemset:** An itemset X is closed, if none of its immediate supersets has the same support as the itemset *X*.

 $Maximal\ Frequent\ Itemset \subseteq Closed\ Frequent\ Itemset \subseteq Frequent\ Itemset$

Review Question 1 - Apriori Algorithms

Given the following transaction database, considering using Apriori algorithm to find all frequent itemsets a support threshold of 30%.

TID	Items
T1	1, 2, 5
T2	2, 4
Т3	2, 3
T4	1, 2, 4
T5	1, 3
T6	2, 3
T7	1, 3
T8	1, 2, 3, 5
T9	1, 2, 3
T10	1, 2, 5, 6
	•

Table 1: Candidate 1-itemsets

Item	Support Count, σ
1	7
2	8
3	6
4	2
5	3
6	1

- 10 transactions. The frequent itemset must occur in at least 3 transactions.
- {1}, {2}, {3} and {5} are frequent 1-itemsets.

Review Question 1 - Frequent itemsets

Table 2: Candidate 2-itemsets

Item	σ
1, 2	7
1,3	4
1,5	3
2, 3	4
2, 5	3
3, 5	1

• {3,5} is not a frequent 2-itemset.

Table 3: Candidate 3-itemsets

Item	σ
1, 2, 3	2
1, 2, 5	3
1, 3, 5	1
2, 3, 5	1

- Only $\{1,2,5\}$ is a frequent 3-itemset.
- None of 4-itemsets is frequent.

Review Question 1 - Confidence Threshold

Find all association rules from frequent 3-itemset with the confidence threshold of 80%.

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

- Only $\{1,2,5\}$ is a frequent 3-itemset. Remove other 3-itemsets.
- $\sigma(X \cup Y) = \sigma(\{1,2,5\}) = 3$

$X \to Y$	$\sigma(X)$	c(X o Y)
$\{1\} \rightarrow \{2,5\}$	7	$3/7 \approx 0.43$
$\{2\} \rightarrow \{1,5\}$	8	3/8 = 0.375
$\{5\} \rightarrow \{1,2\}$	3	3/3 = 1
$\{1,2\} \rightarrow \{5\}$	5	3/5 = 0.6
$\{1,5\} \rightarrow \{2\}$	3	3/3 = 1
$\{2,5\} \rightarrow \{1\}$	3	3/3 = 1

 $\{5\} \rightarrow \{1,2\}, \{1,5\} \rightarrow \{2\} \text{ and } \{2,5\} \rightarrow \{1\} \text{ are the 3-itemsets with a confidence} \geq \textit{minconf.}$

FP-Tree