

Semester: 7 th			
Paper code: AIDS401/AIML401/IOT401	L	T/P	Credits
Subject: Principles of Management for Engineers	3	0	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End Term Theory Examination: As per university examination norms from time to time

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- 1. To introduce students to the principles and functions of management in engineering environments.
- 2. To develop the skills and knowledge required for effective decision-making in engineering contexts.
- To understand the dynamics of organizational behavior and its impact on engineering teams and projects.
- 4. To equip students with project management skills for successful execution of engineering projects.

Course Outcomes:

- CO1 Understand the fundamental principles of management, its evolution, and the roles of managers in engineering contexts.
- **CO2** Apply various decision-making models and techniques to solve engineering problems and make effective decisions.
- **CO3** Analyze individual and group behavior, motivation, leadership, and communication in engineering organizations.
- **CO4** Acquire project management skills and techniques to plan, execute, monitor, and control engineering projects effectively.

Course Outcomes (CO) to Programme Outcomes (PO)

Mapping (Scale 1: Low, 2: Medium, 3: High

CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	-	-	2	2	2	-	1	1	-	-	1	1
CO2	-	-	2	2	2	-	1	-	-	-	1	1
CO3	-	-	2	2	2	-	1	-	-	-	1	1
CO4	1	1	3	2	2	1	1	1	1	1	1	1

Course Overview:

Principles of Management for Engineers is an essential course providing a comprehensive understanding of management principles, leadership, decision-making, and organizational behavior in engineering contexts.

Unit I [8]

Definition of management: Science or art, manager vs entrepreneur; Types of managers managerial roles and skills; Evolution of management- scientific, human relations, system and contingency approaches; Types of Business Organizations, sole proprietorship, partnership, company, public and private enterprises; Organization culture and environment; Current trends and issues in management.

Unit II [8]

Nature and purpose of Planning: types of Planning, objectives, setting objectives, policies, Strategic Management, Planning Tools and Techniques, Decision making steps & processes. Nature and purpose of Organizing, formal and informal organization, organization structure, types, line and staff authority, departmentalization, delegation of authority, centralization and decentralization, job design, human resource management, HR planning, Recruitment selection, Training & Development, Performance Management, Career planning and Management.

[8] Unit III

Organizational Behavior: Directing, individual and group behavior, motivation, motivation theories, motivational techniques, job satisfaction, job enrichment, leadership, types & theories of leadership, effective communication.

Unit IV [8]

Controlling, system and process of controlling: Controlling, system and process of controlling, budgetary and non-budgetary control techniques, use of computers and IT in management control, productivity problems and management, control and performance, direct and preventive control, reporting.

Textbooks:

- 1. Robins S.P. and Couiter M., Management, Prentice Hall India, 10th ed., 2009.
- 2. Stoner JAF, Freeman RE and Gilbert DR, Management, 6th ed., Pearson Education, 2004.
- 3. Tripathy PC & Reddy PN, Principles of Management, Tata McGraw Hill, 1999

Approved by BoS of USAR: 15/06/23, Approved by AC sub-committee: 04/07/23 Page | 275

Semester: 7 th			
Paper code: AIDS409T	L	T/P	Credits
Subject: Business Intelligence & Analytics	3	0	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End Term Theory Examination: As per university examination norms from time to time

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- **1.** Gain a comprehensive understanding of Business Intelligence and Analytics concepts, techniques, and tools.
- **2.** Develop skills to analyze and interpret data, perform statistical analysis, and visualize data effectively.
- **3.** Acquire knowledge of machine learning algorithms and their applications in business analytics.
- 4. Stay updated with emerging trends and technologies in the field of Business Intelligence and Analytics.

Course Outcomes:

- CO1 Understand the fundamental concepts of Business Intelligence and Analytics and their application in AI and Data Science.
- **CO2** Analyze and interpret data using various statistical techniques and develop actionable insights for business decision-making.
- **CO3** Apply machine learning algorithms for business analytics, including regression, classification, clustering, and recommendation systems.
- **CO4** Explore emerging trends in Business Intelligence and Analytics, such as Big Data Analytics, real-time analytics, and streaming data.

Course Outcomes (CO) to Programme Outcomes (PO)

Mapping (Scale 1: Low, 2: Medium, 3: High

CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
РО												
CO1	3	3	3	3	3	-	-	-	-	-	-	2
CO2	3	3	3	3	3	-	-	-	-	-	-	3
CO3	3	3	3	3	3	-	-	-	-	-	1	2
CO4	3	3	3	3	3	-	-	-	-	-	2	3

Course Overview:

This course provides an in-depth understanding of Business Intelligence (BI) and Analytics concepts, techniques, and tools, with a focus on their application in the field of Artificial Intelligence (AI) and Data Science. Students will learn to analyze and interpret data, develop BI solutions, and apply analytics to make informed business decisions.

Unit I [8]

Introduction to Business Intelligence and Analytics: Introduction to Business Intelligence and Analytics, Data Warehousing and Data Mining, Data Extraction, Transformation, and Loading (ETL), Introduction to Analytics: Descriptive, Predictive, and Prescriptive Analytics.

Unit II [8]

Data Analysis and Visualization: Exploratory Data Analysis (EDA), Statistical Analysis for Business Intelligence, Data Visualization Techniques and Tools, Interactive Dashboards and Reports

Unit III [8]

Machine Learning for Business Analytics: Supervised and Unsupervised Learning Algorithms, Regression and Classification Models, Clustering Techniques for Customer Segmentation, Recommendation Systems

Unit IV [8]

Big Data Analytics and Emerging Trends: Introduction to Big Data Analytics, Hadoop and Map Reduce, Real-time Analytics and Streaming Data, Emerging Trends in Business Intelligence and Analytics

Textbooks:

- 1. "Business Intelligence: A Managerial Perspective on Analytics" by Ramesh Sharda, Dursun Delen, Efraim Turban
- 2. "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" by Foster Provost, Tom Fawcett
- 3. "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython" by Wes McKinney

Reference Books:

- 1. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling" by Ralph Kimball, Margy Ross
- 2. "Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die" by Eric Siegel
- 3. "Big Data Analytics: Methods and Applications" by Chang Liu, Quan Z. Sheng, Jian Yu, Yongrui Qin

Semester: 7 th			
Paper code: AIDS409P	L	T/P	Credits
Subject: Business Intelligence and Analytics Lab	0	2	1
Marking Scheme:			
1. Teachers Continuous Evaluation: As per university exam	ination norm	s from t	time to time

- 2. End term Examination: As per university examination norms from time to time INSTRUCTIONS TO EVALUATORS: Maximum Marks: As per university norms
- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which they appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. At least 8 experiments must be performed by the students.

4. ALI	east 8 experiments must be performed by the students.
Course	Objectives:
1.	Understand the fundamental concepts and techniques of business intelligence and
	analytics.
2.	Gain hands-on experience in applying business intelligence and analytics methods to
	real-world datasets and interpret the results.
Course	e Outcomes:
CO1	Apply business intelligence and analytics techniques to solve real-world problems in
	various domains.
CO2	Develop skills in using tools and technologies for data cleaning, analysis, modeling, and
	visualization in the context of business intelligence and analytics.
Course	Outcomes (CO) to Programme Outcomes (PO) Manning

Course Outcomes (CO) to Programme Outcomes (PO) Mapping

(Scale 1: Low, 2: Medium, 3: High)

CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	1	1	-	-	-	-	1	1	1
CO2	2	2	2	1	1	-	-	-	-	1	1	1

List of Experiments:

- 1. To provide students with hands-on experience in applying data cleaning and preprocessing techniques for business analytics.
- 2. To develop skills in exploring and analyzing data using exploratory data analysis methods for market research.
- 3. To understand and apply predictive modeling techniques, such as regression analysis, for business analytics.
- 4. To segment customers and perform cluster analysis to gain insights for targeted marketing strategies.
- 5. To forecast future sales using time series analysis and evaluate the accuracy of the predictions.

- 6. To mine association rules from transactional data for market basket analysis and cross-selling opportunities.
- 7. To analyze customer sentiment from text data and derive insights for improving products and services.
- 8. To build decision tree and random forest models for predicting customer churn and identify factors influencing it.
- 9. To implement recommender systems for personalized product recommendations based on user preferences.
- 10. To create interactive dashboards and reports using Power BI for effective communication and decision-making in business intelligence.

Semester: 7 th			
Paper code: AIDS411T	L	T/P	Credits
Subject: Advances in Data Science	3	0	3

Marking Scheme:

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End Term Theory Examination: As per university examination norms from time to time

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.

Course Objectives:

- **1.** Gain a comprehensive understanding of deep learning architectures, training techniques, and advanced topics.
- 2. Develop skills in NLP for text analysis, classification, and language modeling.
- **3.** Learn the principles and techniques of big data analytics, including distributed computing and scalable machine learning.
- 4. Understand the ethical implications of data science and implement techniques for model interpretability, fairness, and privacy.

Course Outcomes:

- **CO1** Apply advanced techniques in deep learning and neural networks for solving complex data analysis problems.
- Develop expertise in natural language processing (NLP) and apply it to text-based data for tasks such as sentiment analysis, named entity recognition, and language generation.
- CO3 Analyze and process big data using distributed computing frameworks like Hadoop and Spark, and apply machine learning algorithms to large-scale datasets.
- CO4 Understand the importance of explainable AI and ethical considerations in data science, and apply techniques to address model interpretability, bias, fairness, privacy, and security.

Course Outcomes (CO) to Programme Outcomes (PO)

Mapping (Scale 1: Low, 2: Medium, 3: High

CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	2	1	2	-	3	-	-	1	-	-	-	-
CO2	2	2	2	3	-	-	-	-	1	-	-	-
CO3	2	-		2	3	-	1	-	-	1	-	-
CO4	2	2		3	3	-	-	-	-		1	2

Course Overview:

This course explores advanced topics in data science, including deep learning, natural language processing, big data analytics, and ethical considerations. Students will gain practical skills in applying these techniques to solve complex problems, analyze large-scale datasets, and address interpretability, fairness, privacy, and security in AI applications.

Unit I [8]

Deep Learning and Neural Networks: Introduction to deep learning, Neural network architectures: CNNs, RNNs, and Transformers, Training deep learning models, Transfer learning and fine-tuning, Advanced topics in deep learning: Generative models, GANs, and reinforcement learning.

Unit II [8]

Natural Language Processing (NLP): Basics of NLP: Tokenization, POS tagging, and parsing Text classification and sentiment analysis, Named Entity Recognition (NER) and entity linking, Word embedding's and language modeling, Neural machine translation and language generation.

Unit III [8]

Big Data Analytics: Introduction to big data analytics, Distributed computing and storage: Hadoop and Spark, Processing big data: MapReduce and Spark programming, Machine learning on big data: Scalable algorithms and frameworks, Stream processing and real-time analytics

Unit IV [8]

Explainable AI and Ethical Considerations: Interpretable machine learning models, Model explainability and feature importance, Bias, fairness, and accountability in AI, Privacy and security in data science, Ethical guidelines and responsible AI practices

Textbooks:

- 1. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 2. "Natural Language Processing with Python" by Steven Bird, Ewan Klein, and Edward Loper
- 3. "Big Data: A Revolution That Will Transform How We Live, Work, and Think" by Viktor Mayer-Schönberger and Kenneth Cukier

Reference Books:

- 1. "Interpretable Machine Learning: A Guide for Making Black Box Models Explainable" by Christoph Molnar
- 2. "Fairness and Machine Learning: Limitations and Opportunities" edited by Solon Barocas, Moritz Hardt, and Arvind Narayanan
- 3. "Privacy and Big Data: The Players, Regulators, and Stakeholders" by Terence Craig and Mary Ludloff

Semester: 7	in										
Paper code:	AIDS411P	L	T/P	Credits							
Subject: Ad	Ivances in Data Science Lab	0	2	1							
Marking Sch	eme:										
1. Teac	1. Teachers Continuous Evaluation: As per university examination norms from time to time										
2. End t	erm Examination: As per university examination norms fro	om tim	e to tir	ne							
INSTRUCTIO	NS TO EVALUATORS: Maximum Marks: As per university	norm	S								
1. This is th	e practical component of the corresponding theory paper.										
2. The pra	The practical list shall be notified by the teacher in the first week of the class										
commen	commencement under the intimation to the office of the HOD/ Institution in which they										
appear is	s being offered from the list of practicals below.										
3. Instructo	ors can add any other additional experiments over and abo	ve the	menti	oned in the							
experime	ent list which they think is important.										
4. At least 8	B experiments must be performed by the students.										
Course Obj	ectives:										
1. Ga	in hands-on experience in building and training deep lear	rning n	nodels	and applying							
the	em to various domains.										
2. Un	derstand the challenges and considerations in natural I	angua	ge pro	cessing tasks							
and	d analyze the performance of NLP algorithms.										
Course Out	comes:										
CO1 De	velop practical skills in advanced data science technique	es suc	h as de	eep learning,							

Course Outcomes (CO) to Programme Outcomes (PO) Mapping

data science practices

NLP, and distributed computing for real-world applications.

(Scale 1: Low, 2: Medium, 3: High)

CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	1	1	1	1	1	1	2

Analyze and interpret the behavior of complex machine learning models, address issues of fairness and bias, and apply privacy-preserving methods to ensure ethical

List of Experiments:

CO2

- 1. To implement and train deep learning models (e.g., CNN, RNN) on real-world datasets for various applications.
- 2. To perform text classification tasks using NLP techniques and compare different algorithms for accuracy and efficiency.
- 3. To process large-scale datasets using Spark's distributed computing capabilities and run machine learning algorithms on them.
- 4. To build and train GAN models for generating realistic images and evaluate the quality of the generated samples.
- 5. To implement and train sequence-to-sequence models for language translation tasks using attention mechanisms.

- 6. To apply various anomaly detection techniques on time series data and evaluate their effectiveness.
- 7. To assess and mitigate bias in machine learning models using fairness indicators and AIF360.
- 8. To interpret and explain the predictions of complex machine learning models using LIME and SHAP techniques.
- 9. To design and train reinforcement learning agents to play games and achieve high scores.
- 10. To apply differential privacy techniques to protect sensitive information while performing data analysis.

Semester: 7 th				
Paper code: OAE403T	L		T/P	Credits
Subject: Computer Vision	3	3	0	3
Marking Scheme:	•		'	

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End Term Theory Examination: As per university examination norms from time to time

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms

- 1. There should be 9 questions in the end term examination question paper.
- 2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- 3. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- 4. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/level of the questions to be asked should be at the level of the prescribed textbooks.
- 5. The requirement of (scientific) calculators/log-tables/data-tables may be specified if required.

Course Objectives:

- 1. To introduce students the major ideas, methods and techniques of computer vision and pattern recognition.
- 2. Become familiar with the major technical approaches involved in computer vision. Describe various methods used for registration, alignment, and matching in images.
- Perform shape analysis and extract features form Images and do analysis of Images
- Get an exposure to advanced concepts, including state of the art deep learning architectures, in all aspects of computer vision.

Course Outcomes:

- Describe different image representation, their mathematical representation and different data CO1 structures used.
- Classify different segmentation algorithm for given input. CO2
- Detect a moving object in video using the concept of motion analysis. CO3
- **CO4** Recognize the object using the concept of computer vision

Course Outcomes (CO) to Programme Outcomes (PO)

Mapping (Scale 1: Low, 2: Medium, 3: High

CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	2	3	2	-	-	1	1	1	1	1	1	2
CO2	2	2	-	3	3	-	-	-	-	-	-	2
CO3	2	2	2	3	3	-	1	-	1	-	-	-
CO4	2	2	-	3	3	-	-	-	_	-	1	-

Course Overview:

Computer Vision introduces B.Tech students to the fascinating world of visual perception through machines. This course explores algorithms and techniques that enable computers to understand and interpret images and videos. Students will delve into image processing, feature

extraction, object recognition, and deep learning models for computer vision tasks. Practical applications such as facial recognition, autonomous vehicles, and medical imaging will be discussed, preparing students for exciting opportunities in Al-driven visual systems.

UNIT I [8]

Digital Image Formation and low, level processing: Overview and State of the art, Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc, Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing. Depth estimation and Multi camera views: Perspective, Binocular Stereopsis: Camera and Epipolar Geometry, Homography, Rectification, DLT, RANSAC, 3D reconstruction framework, Auto calibration.

UNIT II [8]

Feature Extraction: Edges , Canny, LOG, DOG, Line detectors (Hough Transform), Corners , Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale, Space Analysis, Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT. Image Segmentation: Region Growing, Edge Based approaches to segmentation, Graph, Cut, Mean, Shift, MRFs, Texture Segmentation, Object detection.

UNIT III [8]

Motion Analysis: Background Subtraction and Modeling, Optical Flow, KLT, Spatio, Temporal Analysis, Dynamic Stereo, Motion parameter estimation. Shape from X: Light at Surfaces, Phong Model, Reflectance Map, Albedo estimation, Photometric Stereo, Use of Surface Smoothness Constraint, and Shape from Texture, color, motion and edges.

UNIT IV [8]

Miscellaneous: Applications: CBIR, CBVR, Activity Recognition, computational photography, Biometrics, stitching and document processing, Modern trends, super-resolution, GPU, Augmented Reality, cognitive models, fusion and SR&CS.

Text Books:

- 1. Szeliski, R., Computer Vision: Algorithms and Applications, Springer, Verlag London.
- 2. Forsyth, A., D. and Ponce, J., Computer Vision: A Modern Approach, Pearson Education.

Reference Books:

- 1. Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision Cambridge University Press.
- 2. Fukunaga, K., Introduction to Statistical Pattern Recognition, Academic Press, Morgan Kaufmann.

Semeste	er: 7 th			
Paper co	ode: OAE403P	L	T/P	Credits
Subject	Computer Vision Lab	0	2	1
Marking	Scheme:			
1. 7	eachers Continuous Evaluation: As per university examinatior	n norm	s from	time to time
2. E	ind term Examination: As per university examination norms fr	om tim	e to tir	ne
INSTRU	CTIONS TO EVALUATORS: Maximum Marks: As per university	y norm	S	
1. This	is the practical component of the corresponding theory paper			
2. The	practical list shall be notified by the teacher in the f	irst w	eek of	the class
com	mencement under the intimation to the office of the HOD/	Institu	tion in	which they
appe	ear is being offered from the list of practicals below.			
3. Instr	uctors can add any other additional experiments over and abo	ove the	e menti	oned in the
expe	riment list which they think is important.			
4. At le	ast 8 experiments must be performed by the students.			
Course	Objectives:			
1.	Understand the fundamentals of computer vision algorithms	and th	neir use	cases.
2.	Develop practical skills in using popular computer vision too	ls and t	framew	orks to solve
	real-world problems.			
Course	Outcomes:			
CO1	Gain expertise in computer vision techniques and appl	lication	is, incl	uding object

on edge devices for real-world applications. Course Outcomes (CO) to Programme Outcomes (PO) Mapping

detection, segmentation, and facial recognition.

(Scale 1: Low, 2: Medium, 3: High)

												0 ,
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	3	1	-	1	-	1	1	-
CO2	2	2	2	2	3	2	1	1	1	1	1	1

Acquire hands-on experience in building computer vision models and deploying them

List of Experiments:

CO₂

- 1. Learn to preprocess images by applying techniques such as resizing, filtering, and histogram equalization.
- 2. To implement object detection algorithms to identify and localize objects in images and video streams.
- 3. To use semantic segmentation models to segment objects in an image and understand pixel-level classification.
- 4. To build a facial recognition system to detect and recognize faces in images and video.
- 5. To implement OCR techniques to recognize text from images and scanned documents
- 6. To apply neural style transfer to blend the style of one image onto the content of another image.
- 7. To use pose estimation models to detect and track human body keypoints in images and videos.
- 8. To implement super-resolution algorithms to upscale low-resolution images.

- 9. To fine-tune pre-trained models like VGG, ResNet, or MobileNet for image classification tasks.
- 10. To develop an image captioning system to generate textual descriptions of images.
- 11. To combine computer vision and natural language processing to create a model that answers questions about images.
- 12. To optimize object detection models for deployment on edge devices with real-time performance.

CO4

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

	ster: 7 th								•			
Paper	code: O	AE407T							I	L T,	/P	Credits
Subje	ct: Meta	verse a	nd its Ap	pplicatio	ns				4	1 (0	4
Marki	ng Scher	ne:							•	•	•	
1.	Teache	rs Conti	nuous E	valuatio	n: As per	univers	ity exam	ination i	norms fr	om time	e to time	9
2.	End Ter	m Theo	ry Exam	ination:	As per u	iniversity	examin	ation no	rms fror	n time t	o time	
INSTR	UCTIONS	TO PA	PER SET	TERS: M	aximum	Marks:	As per u	universit	y norms			
1. Th	ere shou	ld be 9	questior	ns in the	end terr	n examii	nation q	uestion p	paper.			
2. Qı	uestion N	lo. 1 sł	nould be	e compu	ılsory ar	nd cover	the en	tire sylla	abus. Th	is ques	tion sh	ould hav
ob	jective o	r short a	answer t	type que	stions.							
3. Ap	art from	Questi	on No. 1	., the res	t of the	paper sh	nall cons	ist of fo	ur units	as per t	he sylla	bus. Evei
un	it should	l have t	wo ques	stions. H	owever,	student	s may b	e asked	to atter	npt only	1 ques	stion from
ea	ch unit.											
4. Th	e questi	ons are	to be	framed	keeping	g in vie	w the le	earning	outcom	es of c	ourse/p	aper. Th
sta	andard/ I	evel of t	the ques	stions to	be asked	d should	be at th	e level o	f the pre	escribed	l textbo	oks.
5. Th	e require	ement o	f (scient	ific) calc	ulators/	log-table	es/ data	-tables n	nay be s	pecified	if requi	red.
	se Objec											
1.								he meta	verse, ir	ncluding	issues	related t
	-			n, and co		•	_					
2.		=		-					ie metav	erse in	various	domain
				interacti								
3.	-	•		he lates	t develo _l	pments	and eme	erging tre	ends in t	he field	of the r	netavers
	_	applicat										
4.		•		_	-		ing skill	s to ad	dress r	eal-wor	ld scen	arios an
	L	-	ne conte	ext of the	metave	erse.						
	se Outco											
CO1						=		he meta	verse, ir	ncluding	issues	related t
		•		n, and co		-						
CO2	-		-		ologies e	nabling	the met	averse, s	such as v	rirtual re	eality, a	ugmente
			ckchain.									
CO3				•	of the r	netavers	e, includ	ding virti	ual econ	omies,	digital a	ssets, an
	-		trategie									
CO4	1		_	•		ving skil	ls to ado	dress rea	al-world	scenario	os and o	challenge
				etaverse								
Cours	e Outcon	nes (CO) to Prog	gramme	Outcom	es (PO)	n	/lanning	(Scalo 1	· I Ow 2	· Madiu	m, 3: Hig
CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	2	3	2	-	-	_	_	-	1	1	1	2
CO2	2	2	_	3	3	_	_	-	-	_	-	2
CO3	2	2	2	3	3	-	_	-	1	-	_	_

Course Overview:

This course provides an in-depth exploration of the concept, technologies, and applications of the metaverse. The metaverse refers to a virtual universe where individuals can interact with digital environments and each other in real or simulated time.

UNIT I [10]

Introduction: definition of Metaverse applications, design dimensions, Metaverse application ecology and economy, design and development process

Immersive Techniques and Functionality: SDKs, tools, and services for augmented reality, virtual reality, extended reality (XR), human computer interactions, devices and internet of things, and digital twins.

UNIT II [10]

UIUX: SDKs, tools, and services for avatar systems, spatial user interface, multimodal user interface, locomotion, UI prototyping, and accessible and inclusive UX design

UNIT III [10]

Metaverse Privacy Security and Ethics: SDKs, tools, and services for cyberspace encryption, blockchain, and federated learning.

Metaverse Intelligence: SDKs, tools, and services for nature language processing, machine learning, data mining, and recommendation systems.

UNIT IV [10]

Meat Entertainment: Metaverse prototypes for entertainment, including multiplayer VR gaming, social VR, live performance in Metaverse.

Metaverse in Web Learning: Metaverse prototypes for education, including avatar-mediated teaching and learning, immersive learning, experiential learning, collaborative learning, etc.

Metaverse in Healthcare: Metaverse prototypes for healthcare and mental well-being, including teletherapy, teleoperation, rehabilitation.

Text Books:

- 1. LaViola Jr, J. J., Kruijff, E., McMahan, R. P., Bowman, D., & Poupyrev, I. P. (2017). 3D user interfaces: theory and practice. Addison-Wesley Professional.
- 2. LaValle, M. (2019). Virtual reality. Cambridge University Press.

Reference Books:

1. Metaverse Roadmap (2007) https://www.metaverseroadmap.org/overview/

CO1

CO3

CO4

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

	ster: 7 th								<u> </u>	1 -		- 17-	
	code: O								L		-	Credits	
Subje	ct: Audio	and Spo	peech Processing 3 0 3										
Marki	ng Schen	ne:											
	Teache				•		-					9	
	End Ter										o time		
NSTR	UCTIONS	TO PAP	ER SETT	ERS: Ma	ximum	Marks:	As per u	niversity	norms /				
1. Th	ere shou	ld be 9 q	uestions	in the e	end term	ı examin	ation qu	estion p	aper.				
				•	-	d cover	the ent	ire sylla	bus. Th	is quest	tion sho	ould have	
	jective o		-										
-					=	·='				=	=	ous. Every	
		l have tv	vo quest	ions. Ho	owever,	students	s may be	e asked t	to atten	npt only	1 ques	tion from	
	ch unit.												
	-							_			=	aper. The	
	andard/ I ·		•						•				
	e require		(scientif	ric) calcu	ilators/ I	og-table	s/ data-	tables m	ay be sp	ecified	if requir	ea.	
1.	se Objec		.donto to	2 +b2 b2	sies of a	بطنم مصط	snoosh	cianals a	nd +hai		inc	-	
2.	-	oduce stu					•						
۷.	-	viae irisiį ition syst	_	speed	recogn	iition an	ia the ti	echnique	es involv	reu in a	lutomat	ic speech	
3.		-		with co	ooch sy	nthocic	mothod	s and th	o proce	oss of so	anvortir	ng text to	
٥.	speech		tuuents	with Sp	reecii sy	111116313	methou	s and th	ie proce	:33 01 00	Jiivei tii	ig text to	
4.			ents to	annly ai	ıdio fea	tura avt	raction	technia	ies for v	various	audio n	rocessing	
••	tasks.	DIC Study	ciits to	арріу а	adio ica	ture ext	raction	cconnqu	103 101	various	audio p	71 000331118	
Cour	se Outco	mes.											
CO1	1		- funda	mentals	of auc	lio and	speech	signals	their	characte	eristics.	and the	
		ges in pr					эрссоп.	3.6.14.3,		ona. acc	,	and the	
CO2		<u> </u>			<u> </u>		eech red	cognition	svstem	ns and c	ompreh	end thei	
-		rld appli	-		_	ор			,		p		
CO3						-to-spee	ch synth	nesis svs	tems us	ing diffe	erent ar	proaches	
		aluate th	_	•	J	•	,	,		J	•	•	
CO4			•	-	raction 1	techniqu	ies for c	lassificat	ion, mu	sic infor	mation	retrieval	
	1	dio event				-			-				
Course	e Outcon					*							
			3			- •	N	apping	(Scale 1	: Low, 2:	Mediu	m, 3: High	
CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12	
PO													

Approved by BoS of USAR: 15/06/23, Approved by AC sub-committee : 04/07/23
Applicable from Batch Admitted in Academic Session 2022-23 Onwards Page | 361

Course Overview:

Audio and Speech Processing is an advanced course for B.Tech AI, ML, IIoT, and Data Science students to explore the principles and techniques for analyzing and processing audio and speech data. The syllabus covers speech recognition, synthesis, audio feature extraction, and applications in AI-based systems.

UNIT I [8]

Basic Concepts: Speech Fundamentals: Articulatory Phonetics – Production and Classification of Speech Sounds; Acoustic Phonetics – acoustics of speech production; Review of Digital Signal Processing concepts; Short-Time Fourier Transform, Filter-Bank and LPC Methods.

UNIT II [8]

Speech Analysis: Features, Feature Extraction and Pattern Comparison Techniques: Speech distortion measures – mathematical and perceptual – Log Spectral Distance, Cepstral Distances, Weighted Cepstral Distances and Filtering, Likelihood Distortions, Spectral Distortion using a Warped Frequency Scale, LPC, PLP and MFCC Coefficients, Time Alignment and Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths.

UNIT III [8]

Speech Modeling: Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Implementation issues.

UNIT IV [8]

Speech Recognition: Large Vocabulary Continuous Speech Recognition: Architecture of a large vocabulary continuous speech recognition system — acoustics and language models — ngrams, context dependent sub-word units; Applications and present status.

Speech Synthesis: Text-to-Speech Synthesis: Concatenative and waveform synthesis methods, subword units for TTS, intelligibility and naturalness – role of prosody.

Text Books:

- 1. Lawrence Rabinerand Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003.
- 2. Ben gold and Nelson Morgan, "Speech and audio signal processing", processing and perception of speech and music, Wiley-India Edition, 2006 Edition.
- 3. Daniel Jurafsky and James H Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education.

Reference Books:

- 1. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing.
- 2. Thomas F Quatieri, "Discrete-Time Speech Signal Processing Principles and Practice", Pearson Education.
- 3. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons.

Semester: 7 th			
Paper code: OAE413P	L	T/P	Credits
Subject: Audio and Speech Processing Lab	0	2	1

Marking Scheme:

- 1. Teachers Continuous Evaluation: As per university examination norms from time to time
- 2. End term Examination: As per university examination norms from time to time

INSTRUCTIONS TO EVALUATORS: Maximum Marks: As per university norms

- 1. This is the practical component of the corresponding theory paper.
- 2. The practical list shall be notified by the teacher in the first week of the class commencement under the intimation to the office of the HOD/ Institution in which they appear is being offered from the list of practicals below.
- 3. Instructors can add any other additional experiments over and above the mentioned in the experiment list which they think is important.
- 4. At least 8 experiments must be performed by the students.

4. At 16	4. At least 8 experiments must be performed by the students.									
Course	Course Objectives:									
1.	To provide hands-on experience in audio data handling, preprocessing, and feature									
	extraction.									
2.	To enable students to apply machine learning and signal processing techniques to real-									
	world speech-related problems and evaluate their performance.									
Course	e Outcomes:									
CO1	Gain practical experience in processing and analyzing audio signals for various									
	applications, including speech recognition and emotion analysis.									
CO2	Develop skills in implementing machine learning models for audio and speech-related									

tasks, and understanding their limitations and challenges. Course Outcomes (CO) to Programme Outcomes (PO) Mapping

(Scale 1: Low. 2: Medium. 3: High)

								(.,	, -	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	1	-	-	-	-	-	-	1
CO2	2	2	2	2	1	1	1	1	1	1	1	2

List of Experiments:

- 1. To visualize audio signals in the time and frequency domains, understanding the characteristics of audio data.
- 2. To preprocess audio data, remove noise, and apply techniques like normalization and filtering.
- 3. To extract relevant features (e.g., MFCC, Mel spectrogram) from audio data for speech recognition tasks.
- 4. To implement a basic speech recognition system using HMM and observe its performance.
- 5. To identify speakers from a dataset using methods like Gaussian Mixture Models (GMM) or Support Vector Machines (SVM).
- 6. To classify the emotional state of speakers from audio data using machine learning techniques.

- 7. To compress audio files using MPEG audio compression standards and analyze the trade-offs between size and quality.
- 8. To convert text into speech using TTS systems and evaluate the synthesized speech quality.
- 9. To automatically segment an audio recording and identify distinct speakers present in it.
- 10. To develop a deep learning model for detecting specific keywords or commands in an audio stream.
- 11. To optimize a speech emotion recognition model for running on edge devices like Raspberry Pi or Arduino.
- 12. To apply deep learning techniques to enhance the quality of noisy speech signals.