Real Analysis Qualifying Exam Solutions

D. Zack Garza

Friday 19th June, 2020

Contents

1	Spri	ng 2020	3
	1.1	1	3
	1.2	2	4
		1.2.1 a	4
		1.2.2 b	5
	1.3	3	5
		1.3.1 a	6
		1.3.2 b	6
		1.3.3 c	7
	1.4	4	8
	1.5	5	9
	1.6	6	9
2	Spri	0	10
	2.1	1	10
		2.1.1 a	10
		2.1.2 b	10
	2.2	2	10
		2.2.1 a	10
		2.2.2 b	11
	2.3	3	11
	2.4	4	12
		2.4.1 a	12
		2.4.2 b	12
	2.5	5	13
		2.5.1 a	13
		2.5.2 b	13
_		0010	
3			15
	3.1		15
	3.2		15
	3.3		16
	3.4	2	17

	3.5	3											 																 			17
		3.5.1	a										 																 			17
		3.5.2	b			_							 																 			18
		3.5.3																														18
	3.6																															18
	5.0	3.6.1																														
		0.0		-	-	-	 -			 -	-	-			-	 -	-	-	 -	-	 -	-	-		-		-			-	-	
	0.7																					•										
	3.7	5																														
	3.8	a																														
	3.9	b																														20
_			_																													
4	-	ing 2018																														21
	4.1	1					 •	•				•														•					•	
	4.2	2											 																 			22
		4.2.1	a										 																 			22
		4.2.2	b										 																 			22
	4.3	3											 																 			23
	4.4	4																														
	4.5	5																														
	4.0	J		•	•	•	 •	•	 •	•	•		•	•	•	•	 •	•	•	24												
5	Fall	2018																														25
•	5.1	1																														_
	5.2	2		-	-	-	 -			 -	-	-			-	 -	-	-	 -	-	 -	-	-		-		-			-	-	
	5.2	$\frac{2}{3} \dots$																														
	5.3	4																														
	5.5	5		•	٠	•	 •	•	•	 ٠	•	•	 •	٠	•	 •	•	•	 •	•	 ٠	•	•	•	٠	•	•	•	 •	•	•	26
6	Spri	ing 201	7																													27
U	6.1	_																														
		1																														
	6.2	2																														_
		6.2.1																				•										
		6.2.2	b																													
	6.3	3											 																 			29
		6.3.1	a										 																 			29
		6.3.2	b										 																 			29
	6.4	4											 																 			29
		5																														
	0.0			•	•	•	 ·	•	•	 •	·	•		·	•	 •	·	•	 ٠	•	 ·	•			·	•	•	•		·	·	
7	Fall	2017																														30
	7.1	1											 																 			30
	7.2	2																														
		7.2.1																														
		•																														
	7 2	•																														
	7.3	$\frac{3}{4}$																														_
	7.4	4																														_
		7.4.1			•	•	 •	•		 •		•						•					•			•		•		•	•	
		7 1 2	1																													29

Contents 2

	7.5	5.1 a	. 32
		5.2 b	
	7.6		. 35
8	Spri 8.1	2016	35 . 35
9	Fall 9.1	16 	35 . 35
		2014	35

1 Spring 2020

1.1 1

Concepts used:

- DCT
- Weierstrass Approximation Theorem

Suppose p is a polynomial, then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} p(x) \, dx = \lim_{k \to \infty} \int_0^1 \left(\frac{\partial}{\partial x} x^k \right) p(x) \, dx$$

$$= \lim_{k \to \infty} \left[x^k p(x) \Big|_0^1 - \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx \right] \quad \text{integrating by parts}$$

$$= p(1) - \lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) \, dx,$$

and thus it suffices to show that

$$\lim_{k \longrightarrow \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} \, p(x) \right) dx = 0.$$

Integrating by parts a second time yields

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = \lim_{k \to \infty} \frac{x^{k+1}}{k+1} p'(x) \Big|_0^1 - \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\lim_{k \to \infty} \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\int_0^1 \lim_{k \to \infty} \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx \quad \text{by DCT}$$

$$= -\int_0^1 0 \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= 0.$$

The DCT can be applied here because f'' is continuous and [0,1] is compact, so f'' is bounded on [0,1] by a constant M and $\int_0^1 \left| x^k f''(x) \right| \le \int_0^1 1 \cdot M = M < \infty$.

We now use the Weierstrass approximation theorem: if $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, then for every $\varepsilon > 0$ there exists a polynomial $p_{\varepsilon}(x)$ such that $||f - p_{\varepsilon}||_{\infty} < \varepsilon$. Thus

$$\left| \int_{0}^{1} kx^{k-1} p_{\varepsilon}(x) dx - \int_{0}^{1} kx^{k-1} f(x) dx \right| = \left| \int_{0}^{1} kx^{k-1} (p_{\varepsilon}(x) - f(x)) dx \right|$$

$$\leq \left| \int_{0}^{1} kx^{k-1} \| p_{\varepsilon} - f \|_{\infty} dx \right|$$

$$= \| p_{\varepsilon} - f \|_{\infty} \cdot \left| \int_{0}^{1} kx^{k-1} dx \right|$$

$$= \| p_{\varepsilon} - f \|_{\infty} \cdot x^{k} \Big|_{0}^{1}$$

$$= \| p_{\varepsilon} - f \|_{\infty} \xrightarrow{\varepsilon \longrightarrow 0} 0$$

and the integrals are equal. Finally, the first integral is equal to $p_{\varepsilon}(1)$ for each ε , which converges to f(1) since uniform convergence implies pointwise convergence.

1.2 2

Concepts used:

- Definition of outer measure: $m_*(E) = \inf_{\{Q_j\} \rightrightarrows E} \sum |Q_j|$ where $\{Q_j\}$ is a countable collection of closed cubes.
- Break \mathbb{R} into $\coprod_{n\in\mathbb{Z}}[n,n+1)$, each with finite measure.

1.2.1 a

Suppose $m_*(E) = N < \infty$.

Since $m_*(E)$ is an infimum, by definition, for every $\varepsilon > 0$ there exists a covering by closed cubes $\{Q_i(\varepsilon)\}_{i=1}^{\infty} \rightrightarrows E$ such that

$$\sum_{i=1}^{\infty} |Q_i(\varepsilon)| < N + \varepsilon.$$

Set $\varepsilon_n = \frac{1}{n}$ to produce such a collection $\{Q_i(\varepsilon_n)\}$ and set $B_n := \bigcup_{i=1}^{\infty} Q_i(\varepsilon_n)$. Then (theorem) the outer measure of cubes is *equal* to the sum of their volumes, so

$$m_*(B_n) = \sum_{i=1}^{\infty} |Q_i(\varepsilon_n)| < N + \varepsilon_n = N + \frac{1}{n}.$$

Now set
$$B := \bigcap_{n=1}^{\infty} B_n$$
.

- Since $E \subseteq B_n$ for every $n, E \subseteq B$
- Since B is a countable intersection of countable unions of closed sets, B is Borel.
- Since $B_n \subseteq B$ for every n, we can apply subadditivity to obtain the inequality

$$E \subseteq B \subseteq B_n \implies N \le m_*(B) \le m_*(B_n) < N + \frac{1}{n} \text{ for all } n \in \mathbb{Z}^{\ge 1}.$$

This forces $m_*(E) = m_*(B)$.

If $m_*(E) = \infty$, then take $B = \mathbb{R}^n$ since $m(\mathbb{R}^n) = \infty$.

1.2.2 b

Suppose $m_*(E) < \infty$.

- By (a), find a Borel set $B \supseteq E$ such that $m_*(B) = m_*(E)$
- Note that $E \subseteq B \implies B \cap E = E$ and $B \cap E^c = B \setminus E$.
- By assumption,

$$m_*(B) = m_*(B \cap E) + m_*(B \cap E^c)$$

$$m_*(E) = m_*(E) + m_*(B \setminus E)$$

$$m_*(E) - m_*(E) = m_*(B \setminus E) \quad \text{since } m_*(E) < \infty$$

$$\implies m_*(B \setminus E) = 0.$$

- So take $N = B \setminus E$; this shows $m_*(N) = 0$ and $E = B \setminus (B \setminus E) = B \setminus N$.
- If $m_*(E) = \infty$
 - Apply result to $E_R := E \bigcap [R, R+1)^n \subset \mathbb{R}^n$ for $R \in \mathbb{Z}$, so $E = \coprod_R E_R$
 - Obtain B_R , N_R such that $E_R = B_R \setminus N_R$, $m_*(E_R) = m_*(B_R)$, and $m_*(N_R) = 0$.
 - Note that
 - * $B := \bigcup B_R$, which is a union of Borel sets and thus still Borel

$$* E = \bigcup_{R}^{R} E_{R}$$

$$* N := \stackrel{n}{B} \setminus E$$

* $N := \stackrel{R}{B} \setminus E$ * $N' := \bigcup N_R$ which is a union of null sets and thus still null

- Since $E_R \subset B_R$ for every R, we have $E \subset B$
- We can compute

$$N = B \setminus E = \left(\bigcup_{R} B_{R}\right) \setminus \left(\bigcup_{R} E_{R}\right) \subseteq \bigcup_{R} \left(B_{R} \setminus E_{R}\right) = N'$$

where $m_*(N) = 0$ and thus subadditivity forces $m_*(N) = 0$.

1.3 3

Concepts used:

- Limits
- Cauchy Criterion for Integrals: $\int_{a}^{\infty} f(x) dx$ converges iff for every $\varepsilon > 0$ there exists an M_0 such that $A, B \geq M_0$ implies $\left| \int_{A}^{B} f \right| < \varepsilon$.
- Mean Value Theorem for Integrals: $\int_a^b f(t) dt = (b-a)f(c)$ for some $c \in [a, b]$.

1.3.1 a

Stated integral equality:

- Let $\varepsilon > 0$
- $C_c(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n)$ is dense so choose $\{f_n\} \longrightarrow f$ with $||f_n f||_1 \longrightarrow 0$.
- Since $\{f_n\}$ are compactly supported, choose $N_0 \gg 1$ such that f_n is zero outside of $B_{N_0}(\mathbf{0})$.
- Then

$$N \ge N_0 \implies \int_{|x|>N} |f| = \int_{|x|>N} |f - f_n + f_n|$$

$$\le \int_{|x|>N} |f - f_n| + \int_{|x|>N} |f_n|$$

$$= \int_{|x|>N} |f - f_n|$$

$$\le \int_{|x|>N} ||f - f_n||_1$$

$$= ||f_n - f||_1 \left(\int_{|x|>N} 1 \right)$$

$$\stackrel{n \to \infty}{\longrightarrow} 0 \left(\int_{|x|>N} 1 \right)$$

$$= 0$$

$$\stackrel{N \to \infty}{\longrightarrow} 0$$

To see that this doesn't force $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$:

- Take f(x) to be a train of boxes of height 1 and area $1/2^{j}$ centered on even integers.
- Then the

$$\int_{|x|>N} |f| = \sum_{j=N}^{\infty} 1/2^j \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

as the tail of a convergent sum.

• However f(x) = 1 for infinitely many even integers x > N, so $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.

1.3.2 b

• Since f is decreasing on $[1, \infty)$, for any $t \in [x - n, x]$ we have

$$x - n < t < x \implies f(x) < f(t) < f(x - n).$$

• Integrate over [x, 2x], using monotonicity of the integral:

$$\int_{x}^{2x} f(x) dt \le \int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x-n) dt$$

$$\implies f(x) \int_{x}^{2x} dt \le \int_{x}^{2x} f(t) dt \le f(x-n) \int_{x}^{2x} dt$$

$$\implies x f(x) \le \int_{x}^{2x} f(t) dt \le x f(x-n).$$

- By the Cauchy Criterion for integrals, $\lim_{x \to \infty} \int_{x}^{2x} f(t) dt = 0$.
- So the LHS term $\lim_{x \to \infty} x f(x) = 0$.
- Since x > 1, $|f(x)| \le |xf(x)|$
- Thus $f(x) \longrightarrow 0$ as well.

Alternatively, use mean value theorem for integrals:

$$\int_{x}^{2x} f(t) dt = x f(c_x) \quad \text{for some } c_x \in [x, 2x] \text{ depending on } x.$$

• Since f is decreasing,

$$x \le c_x \le 2x \implies f(2x) \le f(c_x) \le f(x)$$

$$\implies xf(2x) \le xf(c_x) \le xf(x)$$

$$\implies xf(2x) \le x \int_x^{2x} f(t) dt \le xf(x)$$

• By Cauchy Criterion, $\int_x^{2x} f \longrightarrow 0$.

Alternatively, just showing $f(x) \xrightarrow{x \to \infty} 0$:

- Toward a contradiction, suppose not.
- If $f(x) \longrightarrow -\infty$, then $f \notin L^1(\mathbb{R})$: choose $x_0 \gg 1$ so that $x \geq x_0 \implies f(x) < -1$, then

$$\int_{\mathbb{R}} |f| \ge \int_{x}^{\infty} |f(t)| \, dt \ge \int_{x}^{\infty} 1 = \infty.$$

1.3.3 c

- No: take $f(x) = \frac{1}{x \ln x}$
- Then by a u-substitution,

$$\int_0^x f = \ln\left(\ln(x)\right) \xrightarrow{x \to \infty} \infty$$

is unbounded, so $f \notin L^1([1,\infty))$.

• But

$$xf(x) = \frac{1}{\ln(x)} \xrightarrow{x \to \infty} 0.$$

1.4 4

Relevant concepts:

- Tonelli: non-negative and measurable yields measurability of slices and equality of iterated
- Fubini: $f(x,y) \in L^1$ yields integrable slices and equality of iterated integrals F/T: apply Tonelli to |f|; if finite, $f \in L^1$ and apply Fubini to f

$$\begin{split} \|(f*g)(x)\|_1 &= \left\| \int_{\mathbb{R}} H(x,y) \, dy \right\|_1 \\ &\coloneqq \left\| \int_{\mathbb{R}} f(y) g(x-y) \, dy \right\|_1 \\ &\leq \int_{\mathbb{R}} \|f(y) g(x-y)\|_1 \, dy \\ &\leq \int_{\mathbb{R}} |f(y)| \cdot \|g(x-y)\|_1 \, dy \\ &\leq \int_{\mathbb{R}} |f(y)| \cdot \|g\|_1 \, dy \\ &\leq \|g\|_1 \int_{\mathbb{R}} |f(y)| \, dy \\ &\leq \|g\|_1 \|f\|_1 \\ &< \infty \quad \text{by assumption} \quad . \end{split}$$

$$\begin{split} \|H(x)\|_1 &= \int_{\mathbb{R}} |H(x,y)| \, dx \\ &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(y) g(x-y) \, dy \right| \, dx \\ &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dy \right) \, dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dx \right) \, dy \quad \text{by Tonelli} \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dx \right) \, dy. \end{split}$$

Todo:

- Change of variables for x y?
- How to justify F/T?

1.5 5

Note that

$$\lim_{n} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} = \frac{1}{\lim_{n} \left(1 + \frac{x^2}{n} \right)^1 \left(1 + \frac{x^2}{n} \right)^n}$$
$$= \frac{1}{1 \cdot e^{x^2}}$$
$$= e^{-x^2}.$$

If passing the limit through the integral is justified, we will have $\int_0^\infty e^{-x^2} = \frac{\sqrt{\pi}}{2}$. Computing the integral:

$$\left(\int_{\mathbb{R}} e^{-x^2} dx\right)^2 = \left(\int_{\mathbb{R}} e^{-x^2} dx\right) \left(\int_{\mathbb{R}} e^{-y^2} dx\right)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-(x+y)^2} dx$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta \qquad u = r^2$$

$$= \frac{1}{2} \int_0^{2\pi} \int_0^{\infty} e^{-u} du d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} 1$$

$$= \pi.$$

and now use the fact that the function is even.

Todo:

• Justify, MCT? Possible have

$$f_n(x) \coloneqq \frac{1}{\left(1 + \frac{x^2}{n}\right)^{n+1}} \nearrow e^{-x^2}.$$

1.6 6

Concepts used:

- For $e_n(x) := 2^{2\pi i n x}$, the set $\{e_n\}$ is an orthonormal basis for $L^2([0,1])$.
- For any orthonormal set in a Hilbert space, Bessel's inequality:

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

- When a basis, the above is an inequality (Parseval)
- Arguing uniform convergence: since $\{\widehat{f}(n)\}\in \ell^1(\mathbb{Z})$, we should be able to apply the M test.

Want to show

$$\int_0^1 |f(x)|^2 dx \le \int_0^1 |f(x)| dx$$
$$\sum_{n=1}^\infty |c_n|^2 \le \sum_{n=1}^\infty |c_n|.$$

• First inequality: ?

• Second inequality: break into 2 pieces?

2 Spring 2019

2.1 1

2.1.1 a

Let $\{f_k\}$ be a Cauchy sequence in C(I). For each fixed $x \in [0,1]$, the sequence of real numbers $\{f_k(x)\}$ is Cauchy in \mathbb{R} , which is complete, since

$$x_0 \in I \implies |f_k(x_0) - f_j(x_0)| \le \sup_{x \in I} |f_k(x) - f_j(x)| = ||f_k - f_j||_{\infty} \longrightarrow 0,$$

so we can define $f(x) := \lim_{k} f_k(x)$.

We also have

$$||f_k - f||_{\infty} = \left| |f_k - \lim_{j \to \infty} f_j| \right|_{\infty} = \lim_{j \to \infty} ||f_k - f_j||_{\infty} \to 0.$$

Finally, f is the uniform limit of continuous functions and thus continuous.

2.1.2 b

It suffices to produce a Cauchy sequence that does not converge to a continuous function. Take

$$f_k(x) = \begin{cases} (x + \frac{1}{2})^k & x \in [0, \frac{1}{2}) \\ 1 & x \in [\frac{1}{2}, 1] \end{cases} \xrightarrow{k \to \infty} f(x) = \begin{cases} 0 & x \in [0, \frac{1}{2}) \\ 1 & x \in [\frac{1}{2}, 1] \end{cases},$$

which is Cauchy, but there is no $g \in L^1$ that is continuous such that $||f - g||_1 = 0$.

2.2 2

2.2.1 a

Lemma 1:
$$\mu(\coprod_{k=1}^{\infty} E_k) = \lim_{N \longrightarrow \infty} \sum_{k=1}^{N} \mu(E_k).$$

Lemma 2: $A = A \setminus B \coprod A \cap B.$

Let $A_k = F_k \setminus F_{k+1}$, so the A_k are disjoint, and let $A = \coprod_k A_k$.

Let $F = \bigcap_k F_k$. Then $F_1 = F \coprod A$ by lemma 2, so

$$\mu(F_1) = \mu(F) + \mu(A)$$

$$= \mu(F) + \lim_{N \to \infty} \sum_{k}^{N} \mu(A_k) \text{ by Lemma 1}$$

$$= \mu(F) + \lim_{N \to \infty} \sum_{k}^{N} \mu(F_k) - \mu(F_{k+1})$$

$$= \mu(F) + \lim_{N \to \infty} (\mu(F_1) - \mu(F_N)) \text{ (Telescoping)}$$

$$= \mu(F) + \mu(F_1) - \lim_{N \to \infty} \mu(F_N),$$

and since the measure is finite, $\mu(F_1) < \infty$ and can be subtracted, yielding

$$\mu(F_1) = \mu(F) + \mu(F_1) - \lim_{N \to \infty} \mu(F_N)$$

$$\implies \mu(F) = \lim_{N \to \infty} \mu(F_N).$$

2.2.2 b

Suppose toward a contradiction that there is some $\varepsilon > 0$ for which no such δ exists.

This means that we can take any sequence $\delta_n \longrightarrow 0$ and produce sets A_n such $m(A) < \delta_n$ but $\mu(A) > \varepsilon$.

So choose the sequence $\delta_n = \frac{1}{2^n}$ and define A_n accordingly, and let

$$A = \limsup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Since

$$\mu\left(\bigcup_{k=n}^{\infty} A_k\right) \le \sum_{k=n}^{\infty} \mu(A_k) \approx \frac{1}{2^n} \longrightarrow 0,$$

by part (a) we have m(A) = 0. Now by assumption, we should thus have $\mu(A) = 0$ as well.

However, again by part (a), we have

$$\mu(A) = \lim_{n} \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \ge \lim_{n} \mu(A_n) = \lim_{n} \varepsilon = \varepsilon > 0.$$

2.3 3

Since $f_k \longrightarrow f$ almost everywhere, we have $\liminf_k f_k(x) = f(x)$ and since $|f|^2 \in L^+$ we can apply Fatou:

$$||f||_2^2 = \int |f(x)|^2$$

$$= \int \liminf_k |f_k(x)|^2$$

$$\leq \lim_{\text{Fatou}} \inf_k \int |f_k(x)|^2$$

$$= M^2,$$

so $||f|| \le M < \infty$ and $f \in L^2$.

Let I = [0, 1]. Applying Egorov's theorem to produce sets F_{ε} such that $f_k \xrightarrow{u} f$ on F_{ε} and taking $F = \bigcap F_{\varepsilon}$, we have

$$\int_I f_k = \int_{F_\varepsilon} f_k + \int_{F_\varepsilon^c} f_k \quad \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} \quad \int_F f_k + 0 \quad \stackrel{k \longrightarrow \infty}{\longrightarrow} \quad \int_F f,$$

using that fact that uniform converges allows commuting limits and integrals.

2.4 4

2.4.1 a

 \Longrightarrow

Idea:
$$A = \{f(x) - t \ge 0\} \bigcap \{t \ge 0\}.$$

Define F(x,t) = f(x), G(x,t) = t, and H(x,y) = F(x,t) - G(x,t), which are all measurable functions

Then $\mathcal{A} = \{H \geq 0\} \bigcap \{G \geq 0\}$ which is an intersection of measurable sets.

 \Leftarrow

By F.T., for almost every $x \in \mathbb{R}^n$, the x-slices are measurable, so

$$\mathcal{A}_x := \left\{ t \in \mathbb{R} \mid (x, t) \in \mathcal{A} \right\} = [0, f(x)] \implies m(\mathcal{A}_x) = f(x)$$

But $x \mapsto m(A_x)$ is a measurable function, and is exactly to $x \mapsto f(x)$, so f is measurable.

2.4.2 b

We first note

$$\mathcal{A} = \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}$$
$$\mathcal{A}_t = \left\{ x \in \mathbb{R}^n \mid t \le f(x) \right\}.$$

Then,

$$\int_{\mathbb{R}^n} f(x) \ dx = \int_{\mathbb{R}^n} \int_0^{f(x)} 1 \ dt \ dx$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}} \chi_{\mathcal{A}} \ dt \ dx$$

$$\stackrel{F.T.}{=} \int_{\mathbb{R}} \int_{\mathbb{R}^n} \chi_{\mathcal{A}} \ dx \ dt$$

$$= \int_0^{\infty} \int_{\mathbb{R}^n} \chi_{\mathcal{A}} \ dx \ dt$$

$$= \int_0^{\infty} m(\mathcal{A}_t) \ dt,$$

where we just note that $\iint \chi_{\mathcal{A}} = m(\mathcal{A})$, and by F.T., all of these integrals are equal.

2.5 5

2.5.1 a

By Holder's inequality with p = q = 2, we have

$$||f||_1 = ||f \cdot 1||_1 \le ||f||_2 ||1||_2 = ||f||_2 m(X)^{\frac{1}{2}} = ||f||_2,$$

since $X = [0, 1] \implies m(X) = 1$.

So $L^2(X) \subseteq L^1(X)$, and since simple functions are dense in both spaces, L^2 is dense in L^1 .

2.5.2 b

Step 1 Let $\Lambda \in L^1(X)^{\vee}$; we'll show that in fact $\Lambda \in L^2(X)^{\vee}$, and by Riesz Representation for L^2 there will be a $g \in L^2$ such that $\Lambda(f) = \langle f, g \rangle$.

Lemma: $m(X) < \infty \implies L^p(X) \subset L^2(X)$.

Proof: Write Holder's inequality as $||fg||_1 \le ||f||_a ||g||_b$ where $\frac{1}{a} + \frac{1}{b} = 1$, then

$$||f||_p^p = |||f|^p||_1 \le |||f|^p||_a ||1||_b.$$

Now take $a = \frac{2}{p}$ and this reduces to

$$||f||_p^p \le ||f||_2^p \ m(X)^{\frac{1}{b}}$$

$$\implies ||f||_p \le ||f||_2 \cdot O(m(X)) < \infty.$$

Let $f \in L^2$ be arbitrary – by the lemma, $||f||_1 \le C||f||_2$ for some constant C = O(m(X)).

Since $\|\Lambda\|_{1^{\vee}} := \sup_{\|f\|_1 = 1} |\Lambda(f)|$, given an arbitrary $f \in L^1$, we can define $\widehat{f} = f/\|f\|_1$, so $\|\widehat{f}\|_1 = 1$, and obtain

$$\left|\Lambda(\widehat{f})\right| \leq \left\|\Lambda\right\|_{1^{\vee}},$$

since $\|\Lambda\|_{1^{\vee}}$ is the *least* such bound over all $f \in L^1$, and thus

$$\begin{split} \frac{\left|\Lambda(f)\right|}{\left\|f\right\|_{1}} &= \left|\Lambda(\widehat{f})\right| \leq \left\|\Lambda\right\|_{1^{\vee}} \\ \Longrightarrow &|\Lambda(f)| \leq \left\|\Lambda\right\|_{1^{\vee}} \cdot \left\|f\right\|_{1} \\ &\leq \left\|\Lambda\right\|_{1^{\vee}} \cdot C \|f\|_{2}, \end{split}$$

which is finite by assumption. So $\Lambda \in (L^2)^{\vee}$ since it is bounded and thus continuous. By Riesz Representation for L^2 , there is a $g \in L^2$ such that for all $f \in L^2$, $\Lambda(f) = \langle f, g \rangle$

Step 2 By Holder, we already have

$$\begin{split} \|\Lambda\|_{1^{\vee}} &= \sup_{\|f\|_{1}=1} |\Lambda(f)| \\ &= \sup_{\|f\|_{1}=1} \left| \int_{X} fg \right| \\ &\leq \sup_{\|f\|_{1}=1} \|fg\|_{1} \\ &\leq \sup_{\|f\|_{1}=1} \|f\|_{1} \|g\|_{\infty} \\ &= \|g\|_{\infty}, \end{split}$$

so it just remains to show that $\|g\|_{\infty} \leq \|\Lambda\|_{1^{\vee}}$.

Suppose otherwise, so $\|g\|_{\infty} > \|\Lambda\|_{1^{\vee}}$.

Then there exists some $E \subseteq X$ with m(E) > 0 such that $x \in E \implies |g(x)| > ||\Lambda||_{1^{\vee}}$.

Define

$$h = \frac{1}{m(E)} \frac{\overline{g}}{|g|} \chi_E.$$

$$\begin{split} \Lambda(h) &= \int_X hg \\ &= \int_X \frac{1}{m(E)} \frac{g\overline{g}}{|g|} \chi_E \\ &= \frac{1}{m(E)} \int_E |g| \\ &\geq \frac{1}{m(E)} \|g\|_\infty m(E) \\ &= \|g\|_\infty \\ &> \|\Lambda\|_{1^\vee}, \end{split}$$

a contradiction.

3 Fall 2019

3.1 1

Cesaro mean/summation. Break series apart into pieces that can be handled separately.

3.2 a

Prove a stronger result:

$$a_n \longrightarrow A \implies \frac{1}{N} \sum_{k=1}^{N} a_k \longrightarrow A.$$

Idea: once N is large enough, $a_k \approx A$, and all smaller terms will die off as $N \longrightarrow \infty$. See this MSE answer.

Suppose $S_k \longrightarrow S.$ Choose ℓ large enough such that

$$k \ge \ell \implies |S_k - S| < \varepsilon.$$

With ℓ fixed, choose N large enough such that

$$k \le \ell \implies \frac{|S_k - S|}{N} < \varepsilon.$$

3.3 b

Then

$$\left| \left(\frac{1}{N} \sum_{k=1}^{N} S_k \right) - S \right| = \frac{1}{N} \left| \sum_{k=1}^{N} (S_k - S) \right|$$

$$\leq \frac{1}{N} \sum_{k=1}^{N} |S_k - S|$$

$$= \sum_{k=1}^{\ell} \frac{|S_k - S|}{N} + \sum_{k=\ell+1}^{N} \frac{|S_k - S|}{N}$$

$$\longrightarrow 0.$$

3.3 b

Define

$$\Gamma_n := \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

Then $\Gamma_1 = \sum_k \frac{a_k}{k}$ and each Γ_n is a tail of this series, so by assumption $\Gamma_n \longrightarrow 0$.

Then

$$\frac{1}{n}\sum_{k=1}^{n}a_{k} = \frac{1}{n}(\Gamma_{0} + \Gamma_{1} + \dots + \Gamma_{n} - \Gamma_{n+1})$$

$$\longrightarrow 0$$

This comes from consider the following summation:

 $\Gamma_1: \qquad \qquad a_1 \qquad +\frac{a_2}{2} \qquad +\frac{a_3}{3} \qquad +\cdots$

 $\Gamma_2:$ $\frac{a_2}{2}$ $+\frac{a_3}{3}$ $+\cdots$

 $\Gamma_3:$ $\frac{a_3}{3}$ $+\cdots$

 $\sum_{i=1}^{n} \Gamma_i: \qquad \qquad a_1 \qquad +a_2 \qquad +a_3 \qquad +\cdots \qquad a_n \qquad +\frac{a_{n+1}}{n+1} \qquad +\cdots$

3.4 2

DCT, and bounding in the right place. Don't evaluate the actual integral!

Use the fact that $\int_0^1 \cos(tx) dt = \sin(x)/x$, then

$$\left| \frac{\partial^n}{\partial x} \sin(x)/x \right| = \left| \frac{\partial^n}{\partial x} \int_0^1 \cos(tx) \, dt \right|$$

$$= ? \left| \int_0^1 \frac{\partial^n}{\partial x} \cos(tx) \, dt \right|$$

$$= \left| \int_0^1 -t^n \sin(tx) \, dt \right| \quad \text{for } n \text{ odd}$$

$$\leq \int_0^1 |t^n \sin(tx)| \, dt$$

$$\leq \int_0^1 t^n \, dt$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

Where the DCT is justified by noting that $f(t) = \cos(tx)$ is dominated by g(t) = 1 on [0, 1], which integrates to 1.

3.5 3

Borel-Cantelli.

Use the following observation: for a sequence of sets X_n ,

$$\limsup_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for infinitely many } n \right\} = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} X_{n}$$

$$\liminf_{n} X_{n} = \left\{ x \mid x \in X_{n} \text{ for all but finitely many } n \right\} = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} X_{n}.$$

And recall

$$\prod_{n} e^{x_n} = e^{\sum_{n} x_n} \quad \text{and} \quad \sum_{n} \log(x_n) = \log\left(\prod_{n} x_n\right).$$

3.5.1 a

The Borel σ -algebra is closed under countable unions/intersections/complements, and $B = \limsup_{n} B_n$ is an intersection of unions of measurable sets.

3.6 4

3.5.2 b

We'll use the fact that tails of convergent sums go to zero, so $\sum_{n\geq M} \mu(B_n) \xrightarrow{M\longrightarrow\infty} 0$, and $B_M :=$

$$\bigcap_{m=1}^{M} \bigcup_{n>m} B_n \searrow B.$$

$$\mu(B_M) = \mu\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} B_n\right)$$

$$\leq \mu\left(\bigcup_{n \ge m} B_n\right) \quad \text{for all } m \in \mathbb{N}$$

$$\longrightarrow 0,$$

and the result follows by continuity of measure.

3.5.3 c

To show $\mu(B) = 1$, we'll show $\mu(B^c) = 0$.

Let
$$B_k = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{K} B_n$$
. Then

$$\mu(B_K^c) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{K} B_n^c\right)$$

$$\leq \sum_{m=1}^{\infty} \mu\left(\bigcap_{n=m}^{K} B_n^c\right) \quad \text{by subadditivity}$$

$$= \sum_{m=1}^{\infty} \prod_{n=m}^{K} 1 - \mu(B_n)$$

$$\leq \sum_{m=1}^{\infty} \prod_{n=m}^{K} e^{-\mu(B_n^c)} \quad \text{by hint}$$

$$= \sum_{m=1}^{\infty} e^{-\sum_{n=m}^{K} \mu(B_n^c)}$$

$$\longrightarrow 0$$

since $\sum_{n=m}^K \mu(B_n^c) \longrightarrow \infty$, and we can apply continuity of measure since $B_K^c \xrightarrow{K \longrightarrow \infty} B^c$.

3.6 4

Bessel's Inequality, surjectivity of Riesz map, and Parseval's Identity. Trick – remember to write out finite sum S_N , and consider $||x - S_N||$.

3.6.1 a

Claim:

$$0 \le \left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$
$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le \|x\|^2.$$

Proof: Let $S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$. Then

$$0 \le \|x - S_N\|^2$$

$$= \langle x - S_n, x - S_N \rangle$$

$$= \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\xrightarrow{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

3.6.2 b

1. Fix $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.

2. Define

$$x := \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{k=1}^N a_k u_k$$

3. $\{S_N\}$ Cauchy (by 1) and H complete $\implies x \in H$.

4.

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n \quad \forall n \in \mathbb{N}$$

since the u_k are all orthogonal.

5.

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2$$

by Pythagoras since the u_k are normal.

Bonus: We didn't use completeness here, so the Fourier series may not actually converge to x. If $\{u_n\}$ is **complete** (so $x = 0 \iff \langle x, u_n \rangle = 0 \ \forall n$) then the Fourier series *does* converge to x and $\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2$ for all $x \in H$.

3.7 5

Continuity in L^1 (recall that DCT won't work! Notes 19.4, prove it for a dense subset first). Lebesgue differentiation in 1-dimensional case. See HW 5.6.

3.8 a

Choose $g \in C_c^0$ such that $||f - g||_1 \longrightarrow 0$.

By translation invariance, $\|\tau_h f - \tau_h g\|_1 \longrightarrow 0$.

Write

$$\|\tau f - f\|_{1} = \|\tau_{h} f - g + g - \tau_{h} g + \tau_{h} g - f\|_{1}$$

$$\leq \|\tau_{h} f - \tau_{h} g\| + \|g - f\| + \|\tau_{h} g - g\|$$

$$\longrightarrow \|\tau_{h} g - g\|,$$

so it suffices to show that $\|\tau_h g - g\| \longrightarrow 0$ for $g \in C_c^0$.

Fix $\varepsilon > 0$. Enlarge the support of g to K such that

$$|h| \le 1$$
 and $x \in K^c \implies |g(x-h) - g(x)| = 0$.

By uniform continuity of g, pick $\delta \leq 1$ small enough such that

$$x \in K, |h| \le \delta \implies |g(x-h) - g(x)| < \varepsilon,$$

then

$$\int_K |g(x-h) - g(x)| \le \int_K \varepsilon = \varepsilon \cdot m(K) \longrightarrow 0.$$

3.9 b

We have

$$\int_{\mathbb{R}} |A_h(f)(x)| \ dx = \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(y) \ dy \right| \ dx$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \int_{x-h}^{x+h} |f(y)| \ dy \ dx$$

$$=_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{y-h}^{y+h} |f(y)| \ \mathbf{dx} \ \mathbf{dy}$$

$$= \int_{\mathbb{R}} |f(y)| \ dy$$

$$= ||f||_{1}.$$

and (rough sketch)

$$\int_{\mathbb{R}} |A_h(f)(x) - f(x)| \, dx = \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \, dy \right) - f(x) \right| \, dx$$

$$= \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) \, dy \right) - \frac{1}{2h} \int_{B(h,x)} f(x) \, dy \right| \, dx$$

$$\leq_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{B(h,x)} |f(y - x) - f(x)| \, \mathbf{dx} \, \mathbf{dy}$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \|\tau_x f - f\|_1 \, dy$$

$$\longrightarrow 0 \quad \text{by (a)}.$$

4 Spring 2018

4.1 1

We'll show that $m(E) \cap [n, n+1] = 0$ for all $n \in \mathbb{Z}$; then the result will follow from that fact that

$$m(E) = m\left(\bigcup_{n \in \mathbb{Z}} E \bigcap [n, n+1]\right) \le \sum m(E \bigcap [n, n+1]) = 0$$

By translation invariance of measure, it suffices to show $m(E \cap [0,1]) = 0$.

Define

$$E_j := \left\{ x \in [0, 1] \mid \exists p \in \mathbb{Z}^{\geq 0} \text{ s.t. } \left| x - \frac{p}{j} \right| < \frac{1}{j^3} \right\}.$$

Note that we can write E_j is a union of intervals

$$E_{j} = \left(1, \frac{1}{j^{3}}\right)$$

$$\coprod B_{\frac{1}{j^{3}}}\left(\frac{1}{j}\right) \coprod B_{\frac{1}{j^{3}}}\left(\frac{2}{j}\right) \coprod \cdots \coprod B_{\frac{1}{j^{3}}}\left(\frac{j-1}{j}\right)$$

$$\coprod \left(1 - \frac{1}{j^{3}}, 1\right),$$

from which we can conclude that E_j is Borel and thus Lebesgue measurable, and that for each j, there are exactly j+1 possible choices for a numerator (corresponding to the j+1 sets appearing above.)

The first and last intervals are length $\frac{1}{j^3}$ and the remaining (j+1)-2=j-1 intervals are length $\frac{2}{j^3}$, so we find that

$$m(E_j) = 2\left(\frac{1}{j^3}\right) + (j-1)\left(\frac{2}{j^3}\right) = \frac{2}{j^2}$$

We can then note that

$$\sum_{j \in \mathbb{N}} m(E_j) \le 2 \sum_{j \in \mathbb{N}} \frac{1}{j^2} < \infty,$$

which converges by the p-test for sums.

Since $\{E_j\}$ is a countable collection of measurable sets such that $\sum_j m(E_j) < \infty$, Borel-Cantelli applies and $m(\limsup_j E_j) = 0$, where we can just note that $\limsup_j E_j = E \bigcap [0,1]$.

4.2 2

4.2.1 a

Since $x < 1 \implies x^n \longrightarrow 0$ and $x > 1 \implies x^n \longrightarrow \infty$, we have

$$f_n(x) = \frac{x}{1+x^n} \xrightarrow{n \to \infty} f(x) = \begin{cases} 0, & x = 0 \\ x, & x < 1 \\ \frac{1}{2}, & x = 1 \\ 0, & x > 0 \end{cases}.$$

If $f_n \longrightarrow f$ uniformly on $[0, \infty)$, it would converge uniformly on every subset.

Butach $f_n(x)$ is clearly continuous on $(0, \infty)$, and if the convergence was uniform then f would be continuous. However f has a clear discontinuity at x = 1.

4.2.2 b

If the DCT applies, we can interchange the limit and integral, and the value would be the area under the graph of f which is $\int_0^1 x \, dx = \frac{1}{2}$.

To justify the DCT, write

$$\int_0^\infty f_n(x) = \int_0^1 f_n(x) + \int_1^\infty f_n(x).$$

Then

$$x \in [0,1] \implies \frac{x}{1+x^n} < \frac{1}{1+x^n} < 1$$

and
$$\int_0^1 1 \ dx = 1 < \infty$$
.

On the other hand,

$$x \in (1, \infty) \implies \frac{x}{1 + x^n} \approx O\left(\frac{1}{x^{n-1}}\right),$$

and so for n > 2 the integral will converge by the p-test.

4.3 3

Since $|f(x)| \leq ||f||_{\infty}$ almost everywhere, we have

$$||f||_p^p = \int_X |f(x)|^p dx \le \int_X ||f||_\infty^p dx = ||f||_\infty^p \cdot m(X) = ||f||_\infty^p,$$

so $||f||_p \le ||f||_{\infty}$ for all p and taking $\lim_{n \to \infty}$ preserves this inequality.

Conversely, let $\varepsilon > 0$. Define

$$S_{\varepsilon} := \left\{ x \in \mathbb{R} \mid |f(x)| \ge ||f||_{\infty} - \varepsilon \right\}.$$

Then

$$||f||_{p}^{p} = \int_{X} |f(x)|^{p} dx$$

$$\geq \int_{S_{\varepsilon}} |f(x)|^{p} dx$$

$$\geq \int_{S_{\varepsilon}} |||f||_{\infty} - \varepsilon|^{p} dx$$

$$= |||f||_{\infty} - \varepsilon|^{p} \cdot m(S_{\varepsilon})$$

$$\implies ||f||_{p} \geq |||f||_{\infty} - \varepsilon| \cdot m(S_{\varepsilon})^{\frac{1}{p}}$$

$$\stackrel{p \longrightarrow \infty}{\longrightarrow} |||f||_{\infty} - \varepsilon|$$

$$\stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} ||f||_{\infty}.$$

So $||f||_p \ge ||f||_{\infty}$.

4.4 4

Fix $k \in \mathbb{Z}$. Since $e^{2\pi ikx}$ is continuous on the compact interval [0,1], it is uniformly continuous, and is thus there is a sequence of polynomials P_{ℓ} such that

$$P_{\ell,k} \stackrel{\ell \longrightarrow \infty}{\longrightarrow} e^{2\pi i k x}$$
 uniformly on [0, 1].

Note that by linearity,

$$\int f(x)x^n = 0 \ \forall n \implies \int f(x)P_{\ell,k}(x) = 0 \quad \forall \ell \in \mathbb{N}$$

4 SPRING 2018

23

4.5 5

But then the kth Fourier coefficient of f is given by

$$\langle f, e_k \rangle = \int_0^1 f(x) e^{-2\pi i k x} dx$$

$$= \int_0^1 f(x) \lim_{\ell \to \infty} P_{\ell}(x)$$

$$= \lim_{\ell \to \infty} \int_0^1 f(x) P_{\ell}(x) \quad \text{by uniform convergence}$$

$$= \lim_{\ell \to \infty} 0$$

$$= 0 \quad \forall k \in \mathbb{Z},$$

so \hat{f} is the zero function, and $\hat{f} = 0 \iff f = 0$ almost everywhere.

4.5 5

Moral:
$$\int |f_n - f| \longrightarrow \iff \int f_n = \int f$$
.

Since if $\int |f_n| \longrightarrow \int |f|$ then we can define

$$h_n = |f_n - f| \longrightarrow 0 \ a.e.$$

 $g_n = |f_n| + |f| \longrightarrow 2|f| \ a.e.$

$$\int 2|f| = \int \liminf (g_n - h_n)$$

$$= \int \liminf g_n - \int \liminf h_n$$

$$= \int 2|f| - \int \liminf h_n$$

$$\stackrel{Fatou}{\leq} \int 2|f| + \limsup \int h_n,$$

which forces $\int h_n = \int |f_n - f| \longrightarrow 0$.

But then

$$\left| \int f_n - \int f \right| = \left| \int f_n - f \right| \le \int |f_n - f| \longrightarrow 0,$$

so
$$\int f_n \longrightarrow \int f$$
.

5 Fall 2018

Note: this is considered....not the most useful or representative exam of all time.

5.1 1

We'll show a stronger statement: $f(x) = \frac{1}{x}$ is uniformly continuous on any interval of the form (c, ∞) where c > 0.

We can use that fact that $x, y > c \implies xy > c^2 \implies \frac{1}{xy} < \frac{1}{c^2}$.

Letting ε be arbitrary, choose $\delta < \varepsilon c^2$. Then

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$

$$= \frac{|x - y|}{xy}$$

$$\leq \frac{\delta}{xy}$$

$$< \frac{\delta}{c^2}$$

$$< \varepsilon.$$

which shows uniform continuity since δ does not depend on x or y.

To see that f is not uniformly continuous when c = 0, let $\varepsilon < 1$ be arbitrary.

Let $x_n = \frac{1}{n}$. Then choose n large enough such that $|x_n - x_{n+1}| = \frac{1}{n} - \frac{1}{n+1} < \delta$. Then just note that $f(x_n) = n$ and thus $|f(x_n) - f(x_{n+1})| = n - (n+1) = 1 > \varepsilon$.

5.2 2

First consider the bounded case where $m(E) < \infty$.

E is measurable \iff for every ε there exist $F_{\varepsilon} \subset E \subset G_{\varepsilon}$ with F_{ε} closed and G_{ε} open and $m(G_{\varepsilon} \setminus E) < \varepsilon$ and $m(E \setminus F_{\varepsilon}) < \varepsilon$.

So take the sequence $\varepsilon_n = \frac{1}{n} \longrightarrow 0$ to produce a sequence of closed sets F_n such that $m(E \setminus F_n) < \frac{1}{n}$ for all n, and let $F := \bigcup_n$, which is clear an F_{σ} and thus Borel set.

Since $F_n \subseteq F_{n+1}$, we have $F_n \nearrow F$ and so by continuity of measure,

$$m(F) = \lim_{n} m(F_n) < \lim_{n} \left(\frac{1}{n}\right) \longrightarrow 0.$$

If E is not bounded, let $E_N = B_N(0) \cap E$ which is bounded. Then $E_N \nearrow E$, and for each N we can find an F_N by the previous case such that $m(E_N \setminus F_N) = 0$.

So take $F := \bigcup_{N} F_{N}$ so $F_{N} \nearrow F$. Then

$$E_N \setminus F_N \nearrow E \setminus F \implies m(E \setminus F) = \lim_N m(E_N \setminus F_N) = 0.$$

5.3 3

$$\frac{\partial}{\partial t} F(t) = \frac{\partial}{\partial t} \int_{\mathbb{R}} f(x) \cos(xt) dx$$

$$\stackrel{DCT}{=} \int_{\mathbb{R}} f(x) \frac{\partial}{\partial t} \cos(xt) dx$$

$$= \int_{\mathbb{R}} x f(x) \cos(xt) dx,$$

so it only remains to justify the DCT.

Fix t, then let $t_n \longrightarrow t$ be any sequence. Then

$$\frac{\partial}{\partial t} \cos(tx) := \lim_{t_n \to t} \frac{\cos(tx) - \cos(t_n x)}{t_n - t}$$

$$\stackrel{MVT}{=} \frac{\partial}{\partial t} \cos(tx) \Big|_{t = \xi_n} \quad \text{for some } \xi_n \in [t, t_n] \text{ or } [t_n, t]$$

$$= x \sin(\xi_n x).$$

So we can define

$$h_n(x,t) = f(x) \left(\frac{\cos(tx) - \cos(t_n x)}{t_n - t} \right)$$

and note that $h_n \longrightarrow \frac{\partial}{\partial t} [f(x)\cos(xt)]$ pointwise.

We then have $|h_n| = |f(x)x\sin(\xi_n x)| \le |xf(x)|$ for every n by the above argument, and since $g(x) := xf(x) \in L^1(\mathbb{R})$ by assumption, the DCT can be applied.

5.4 4

???

Apparently "easy" part: let $f(x) = \chi_{[0,\pi]}$, then $\int_{\mathbb{R}} f(x)|\sin(nx)| = \int_0^{\pi} |\sin(nx)| = 2$, and so $\int_0^1 |\sin(nx)| = \frac{2}{\pi}$, none of which depend on n.

Now approximate f by step functions.

5.5 5

???

6 Spring 2017

6.1 1

A is nowhere dense \iff every interval I contains a subinterval $S \subseteq A^c$.

K is compact:

It suffices to show that $K^c := [0,1] \setminus K$ is open; then K will be a closed and bounded subset of \mathbb{R} and thus compact by Heine-Borel.

We can identify K^c as the set of real numbers in [0,1] whose decimal expansion **does** use a 4. Let $x \in K^c$, and suppose a 4 occurs as the kth digit and write

$$x = 0.d_1d_2 \cdots d_{k-1} \ 4 \ d_{k+1} \cdots = \sum_{j=1}^k d_j 10^{-j} + 4 \cdot 10^{-k} + \sum_{j=k+1}^{\infty} d_j 10^{-j}.$$

Then if we set $r < 10^{-k}$ and pick any $y \in [0,1]$ such that $y \in B_r(x)$, then $|x-y| < 10^{-k}$. If we write $y = \sum_{j=1}^{\infty} c_j 10^{-j}$, this means that for all $j \le k$ we have $d_j = c_j$, and in particular $d_k = 4 = c_k$, so y has a 4 in its decimal expansion.

But then $K^c = \bigcup_{x} B_r(x)$ is a union of open sets and thus open.

K is nowhere dense and m(K)=0:

Since K is closed, we'll show that K can not properly contain any interval, so $(\overline{K})^{\circ} = \emptyset$.

As in the construction of the Cantor set, let

- K_1 denote [0,1] with 1 interval [0.4,0.5] of length $\frac{1}{10}$ deleted
- K_2 denote K_1 with 9 intervals [0.04, 0.05], [0.14, 0.15], $\cdots [0.94, 0.95]$ length $\frac{1}{100}$ deleted
- K_n denote K_{n-1} with 9^{n-1} such intervals of length 10^{-n} deleted.

Then $K = \bigcap K_n$, and

$$m(K) = 1 - m(K^c) = 1 - \sum_{j=0}^{\infty} \frac{9^n}{10^{n+1}} = 1 - \frac{1}{10} \left(\frac{1}{1 - \frac{9}{10}} \right) = 0,$$

and since any interval has strictly positive measure, K can not contain any interval.

K has no isolated points:

A point $x \in K$ is isolated iff there there is an open ball $B_r(x)$ containing x such that $B_r(x) \cap K = \emptyset$, so every point in this ball has a 4 in its decimal expansion.

Note that $m(K_n) = \left(\frac{9}{10}\right)^n \longrightarrow 0$ and that the endpoints of intervals are never removed and are thus elements of K. Then for every ε , we can choose n such that $\left(\frac{9}{10}\right)^n < \varepsilon$; then there is an endpoint of a removed interval e_n satisfying $|x - e_n| \le \left(\frac{9}{10}\right)^n < \varepsilon$.

So every ball containing x contains some endpoint of a removed interval, and thus an element of K.

6.2 2

$$\lambda \ll \mu \iff E \in \mathcal{M}, \mu(E) = 0 \implies \lambda(E) = 0.$$

6.2.1 a

By Radon-Nikodym, if $\lambda \ll \mu$ then $d\lambda = f d\mu$, which would yield

$$\int g \ d\lambda = \int g f \ d\mu.$$

So let E be measurable and suppose $\mu(E) = 0$. Then

$$\lambda(E) := \int_{E} f \ d\mu = \lim_{n} \left\{ \varphi_{n} := \sum_{j} c_{j} \mu(E_{j}) \right\},$$

where we take a sequence of simple functions increasing to f.

But since each $E_j \subseteq E$, we must have $\mu(E_j) = 0$ for any such E_j , so every such φ_n must be zero and thus $\lambda(E) = 0$.

6.2.2 b

By Radon-Nikodym, there exists a positive f such that

$$\int g \ dm = \int g f \ d\mu,$$

where we can take $g(x) = x^2$, then the LHS is zero by assumption and thus so is the RHS.

Note that qf is positive.

Define $A_k = \left\{ x \in X \mid gf\chi_E > \frac{1}{k} \right\}$, then by Chebyshev

$$\mu(A_k) \le k \int_E gf \ d\mu = 0,$$

which holds for every k.

Then noting that $A_k \searrow A := \{x \in E \mid x^2 > 0\}$, and gf is positive, we have

$$x \in E \iff gf\chi_E(x) > 0 \iff x \in A,$$

so E = A and $\mu(E) = \mu(A)$.

But since $m \ll \mu$ by construction, we can conclude that m(E) = 0.

6.3 3

6.3.1 a

Letting $x_n := \frac{1}{n}$, we have

$$\sum_{k=1}^{\infty} |f_k(x)| \ge |f_n(x_n)| = \left| ae^{-ax} - be^{-bx} \right| := M.$$

In particular, $\sup_{x} |f_n(x)| \not\longrightarrow 0$, so the terms do not go to zero and the sum can not converge.

6.3.2 b

?

6.4 4

Switching to polar coordinates and integrating over a half-circle contained in I^2 , we have

$$\int_{I^2} f \ge \int_0^\pi \int_0^1 \frac{\cos(\theta)\sin(\theta)}{r^2} \ dr \ d\theta = \infty,$$

so f is not integrable.

6.5 5

See https://math.stackexchange.com/questions/507263/prove-that-c1a-b-with-the-c1-norm-is-a-banach-space

This is clearly a norm, which we'll write $\|\cdot\|_{u}$

Let f_n be a Cauchy sequence and define a candidate limit $f(x) = \lim_n f_n(x)$.

Then noting that $||f_n||_{\infty}$, $||f'_n||_{\infty} \le ||f_n||_u < \infty$, both f_n , f_n are Cauchy sequences in $C^0([a, b], ||\cdot||_{\infty})$, which is a Banach space.

So $f_n \longrightarrow f$ uniformly, and $f'_n \longrightarrow g$ uniformly for some g, and moreover $f, g \in C^0([a, b])$.

We thus have

$$f_n(x) - f_n(a) \xrightarrow{u} f(x) - f(a)$$

$$\int_a^x f'_n \xrightarrow{u} \int_a^x g,$$

and by the FTC, the left-hand sides are equal, and by uniqueness of limits so are the right-hand sides, so f' = g.

Since $f, f' \in C^0([a, b])$, they are bounded, and so $||f||_u < \infty$. This means that $||f_n - f||_u \longrightarrow 0$, so f_n converges to f, which is in the same space.

7 Fall 2017

7.1 1

Note that $f(x) = e^x$ is entire and thus equal to its power series. So $f(x) = \sum_{j=0}^{\infty} \frac{1}{j!} x^j$.

Letting $f_N(x) = \sum_{j=1}^N \frac{1}{j!} x^j$, we have $f_N(x) \longrightarrow f(x)$ pointwise on $(-\infty, \infty)$.

For any compact interval [-M, M], we have

$$||f_N(x) - f(x)||_{\infty} = \sup_{-M \le x \le M} \left| \sum_{j=N+1}^{\infty} \frac{1}{j!} x^j \right|$$

$$\le \sup_{-M \le x \le M} \sum_{j=N+1}^{\infty} \frac{1}{j!} |x|^j$$

$$\le \sum_{j=N+1}^{\infty} \frac{1}{j!} M^j$$

$$\le \sum_{j=0}^{\infty} \frac{1}{j!} M^j$$

$$= e^M$$

$$< \infty,$$

so $f_N \longrightarrow f$ uniformly on [-M, M] by the M-test. Thus it converges on any bounded interval. It does not converge on \mathbb{R} , since x^N is unbounded.

7.2 2

7.2.1 a

It suffices to consider the bounded case, i.e. $E \subseteq B_M(0)$ for some M. Then write $E_n = B_n(0) \cap E$ and apply the theorem to E_n , and by subadditivity, $m^*(E) = m^*(\bigcup_n E_n) \le \sum_n m^*(E_n) = 0$.

Lemma: $f(x) = x^2, f^{-1}(x) = \sqrt{x}$ are Lipschitz on any compact subset of $[0, \infty)$.

Proof: Let g = f or f^{-1} . Then $g \in C^1([0, M])$ for any M, so g is differentiable and g' is continuous. Since g' is continuous on a compact interval, it is bounded, so $|g'(x)| \leq L$ for all x. Applying the MVT,

$$|f(x) - f(y)| = f'(c)|x - y| \le L|x - y|$$

Lemma: If g is Lipschitz on \mathbb{R}^n , then $m(E) = 0 \implies m(g(E)) = 0$.

Proof: If g is Lipschitz, then

$$q(B_r(x)) \subseteq B_{Lr}(x)$$
,

which is a dilated ball/cube, and so

$$m^*(B_{Lr}(x)) \le L^n \cdot m^*(B_r(x)).$$

Now choose $\{Q_j\} \rightrightarrows E$; then $\{g(Q_j)\} \rightrightarrows g(E)$.

By the above observation,

$$|g(Q_j)| \le L^n |Q_j|,$$

and so

$$m^*(g(E)) \le \sum_j |g(Q_j)| \le \sum_j L^n |Q_j| = L^n \sum_j |Q_j| \longrightarrow 0.$$

Now just take $g(x) = x^2$ for one direction, and $g(x) = f^{-1}(x) = \sqrt{x}$ for the other.

7.2.2 b

Lemma: E is measurable iff $E = K \coprod N$ for some K compact, N null.

Write $E = K \coprod N$ where K is compact and N is null.

Then
$$\varphi^{-1}(E) = \varphi^{-1}(K \coprod N) = \varphi^{-1}(K) \coprod \varphi^{-1}(N)$$
.

Since $\varphi^{-1}(N)$ is null by part (a) and $\varphi^{-1}(K)$ is the preimage of a compact set under a continuous map and thus compact, $\varphi^{-1}(E) = K' \coprod N'$ where K' is compact and N' is null, so $\varphi^{-1}(E)$ is measurable.

So φ is a measurable function, and thus yields a well-defined map $\mathcal{L}(\mathbb{R}) \longrightarrow \mathcal{L}(\mathbb{R})$ since it preserves measurable sets. Restricting to $[0, \infty)$, f is bijection, and thus so is φ .

7.3 3

From homework: E is Lebesgue measurable iff there exists a finite union of closed cubes A such that $m(E\Delta A) < \varepsilon$.

It suffices to show that S is dense in simple functions, and since simple functions are *finite* linear combinations of characteristic functions, it suffices to show this for χ_A for A a measurable set.

Let $s = \chi_A$. By regularity of the Lebesgue measure, choose an open set $O \supseteq A$ such that $m(O \setminus A) < \varepsilon$.

O is an open subset of \mathbb{R} , and thus $O = \coprod_{j \in \mathbb{N}} I_j$ is a disjoint union of countably many open intervals.

Now choose N large enough such that $m(O\Delta I_{N,n}) < \varepsilon = \frac{1}{n}$ where we define $I_{N,n} := \coprod_{j=1}^{N} I_j$.

Now define $f_n = \chi_{I_{N,n}}$, then

$$||s - f_n||_1 = \int |\chi_A - \chi_{I_{N,n}}| = m(A\Delta I_{N,n}) \xrightarrow{n \to \infty} 0.$$

7 FALL 2017

31

Since any simple function is a finite linear combination of χ_{A_i} , we can do this for each i to extend this result to all simple functions. But simple functions are dense in L^1 , so S is dense in L^1 .

7.4 4

7.4.1 a

Let $G(x) = \sum_{n=1}^{\infty} nx(1-x)^n$. Applying the ratio test, we have

$$\left| \frac{(n+1)x(1-x)^{n+1}}{nx(1-x)^n} \right| = \frac{n+1}{n} |1-x| \stackrel{n \to \infty}{\longrightarrow} |1-x| < 1 \iff 0 \le x \le 2,$$

and in particular, this series converges on [0,2]. Thus its terms go to zero, and $nx(1-x)^n \longrightarrow 0$ on $[0,1] \subset [0,2]$.

To see that the convergence is not uniform, let $x_n = \frac{1}{n}$ and $\varepsilon > \frac{1}{e}$, then

$$\sup_{x \in [0,1]} |nx(1-x)^n - 0| \ge |nx_n(1-x_n)^n| = \left| \left(1 - \frac{1}{n}\right)^n \right| \stackrel{n \longrightarrow \infty}{\longrightarrow} e^{-1} > \varepsilon.$$

7.4.2 b

Note: could use the first part with $\sin(x) \leq x$, but then integral ends up more complicated.

Noting that $sin(x) \leq 1$, we have We have

$$\left| \int_0^1 n(1-x)^n \sin(x) \right| \le \int_0^1 |n(1-x)^n \sin(x)|$$

$$\le \int_0^1 |n(1-x)^n|$$

$$= n \int_0^1 (1-x)^n$$

$$= -\frac{n(1-x)^{n+1}}{n+1}$$

$$\xrightarrow{n \to \infty} 0.$$

7.5 5

7.5.1 a

Lemma: If $\varphi \in C_c^1$, then $(f * \varphi)' = f * \varphi'$ almost everywhere.

Silly Proof:

$$\mathcal{F}((f * \varphi)') = 2\pi i \xi \ \mathcal{F}(f * \varphi)$$

$$= 2\pi i \xi \ \mathcal{F}(f) \ \mathcal{F}(\varphi)$$

$$= \mathcal{F}(f) \cdot (2\pi i \xi \ \mathcal{F}(\varphi))$$

$$= \mathcal{F}(f) \cdot \mathcal{F}(\varphi')$$

$$= \mathcal{F}(f * \varphi').$$

Actual proof:

$$(f * \varphi)'(x) = (\varphi * f)'(x)$$

$$= \lim_{h \to 0} \frac{(\varphi * f)'(x+h) - (\varphi * f)'(x)}{h}$$

$$= \lim_{h \to 0} \int \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y)$$

$$\stackrel{DCT}{=} \int \lim_{h \to 0} \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y)$$

$$= \int \varphi'(x-y) f(y)$$

$$= (\varphi' * f)(x)$$

$$= (f * \varphi')(x).$$

To see that the DCT is justified, we can apply the MVT on the interval [0, h] to f to obtain

$$\frac{\varphi(x+h-y)-\varphi(x-y)}{h}=\varphi'(c)\quad c\in[0,h],$$

and since φ' is continuous and compactly supported, φ' is bounded by some $M < \infty$ by the extreme value theorem and thus

$$\int \left| \frac{\varphi(x+h-y) - \varphi(x-y)}{h} f(y) \right| = \int \left| \varphi'(c) f(y) \right|$$

$$\leq \int |M| |f|$$

$$= |M| \int |f| < \infty,$$

since $f \in L^1$ by assumption, so we can take g := |M||f| as the dominating function.

Applying this theorem infinitely many times shows that $f * \varphi$ is smooth.

To see that $f * \varphi$ is compactly supported, approximate f by a *continuous* compactly supported function h, so $||h - f||_1 \xrightarrow{L^1} 0$.

Now let $g_x(y) = \varphi(x-y)$, and note that $\operatorname{supp}(g) = x - \operatorname{supp}(\varphi)$ which is still compact.

But since supp(h) is bounded, there is some N such that

$$|x| > N \implies A_x := \operatorname{supp}(h) \bigcap \operatorname{supp}(g_x) = \emptyset$$

and thus

$$(h * \varphi)(x) = \int_{\mathbb{R}} \varphi(x - y)h(y) \ dy$$
$$= \int_{A_x} g_x(y)h(y)$$
$$= 0,$$

so $\{x \mid f * g(x) = 0\}$ is open, and its complement is closed and bounded and thus compact.

7.5.2 b

$$||f * K_{j} - f||_{1} = \int \left| \int f(x - y)K_{j}(y) dy - f(x) \right| dx$$

$$= \int \left| \int f(x - y)K_{j}(y) dy - \int f(x)K_{j}(y) dy \right| dx$$

$$= \int \left| \int (f(x - y) - f(x))K_{j}(y) dy \right| dx$$

$$\leq \int \int \left| (f(x - y) - f(x)) \right| \cdot |K_{j}(y)| dy dx$$

$$\stackrel{FT}{=} \int \int \left| (f(x - y) - f(x)) \right| \cdot |K_{j}(y)| dx dy$$

$$= \int |K_{j}(y)| \left(\int \left| (f(x - y) - f(x)) \right| dx \right) dy$$

$$= \int |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy.$$

We now split the integral up into pieces.

- 1. Chose δ small enough such that $|y| < \delta \implies ||f \tau_y f||_1 < \varepsilon$ by continuity of translation in L^1 , and
- 2. Since φ is compactly supported, choose J large enough such that

$$j > J \implies \int_{|y| \ge \delta} |K_j(y)| \ dy = \int_{|y| \ge \delta} |j\varphi(jy)| = 0$$

Then

$$||f * K_{j} - f||_{1} \leq \int |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy$$

$$= \int_{|y| < \delta} |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy + \int_{|y| \ge \delta} |K_{j}(y)| \cdot ||f - \tau_{y}f||_{1} dy$$

$$= \varepsilon \int_{|y| \ge \delta} |K_{j}(y)| + 0$$

$$\leq \varepsilon(1) \longrightarrow 0.$$

7.6 6

Should be supremum maybe..?

Let $\{f_k\}$ be a Cauchy sequence, so $||f_k|| < \infty$ for all k. Then for a fixed x, the sequence $f_k(x)$ is Cauchy in \mathbb{R} and thus converges to some f(x), so define f by $f(x) := \lim_{k \to \infty} f_k(x)$.

Then $||f_k - f|| = \max_{x \in X} |f_k(x) - f(x)| \stackrel{k \longrightarrow \infty}{\longrightarrow} 0$, and thus $f_k \longrightarrow f$ uniformly and thus f is continuous. It just remains to show that f has bounded norm.

Choose N large enough so that $||f - f_N|| < \varepsilon$, and write $||f_N|| := M < \infty$

$$||f|| \le ||f - f_N|| + ||f_N|| < \varepsilon + M < \infty.$$

- 8 Spring 2016
- 8.1 1
- 9 Fall 2016
- 9.1 1
- 10 Spring 2014
- 10.1 1