inertia frame (of reference): a frame of reference in which an object experiencing zero net force(free object) at rest/ constant velocity An event is anything with a location in space and a time.

Einstein's Postulates:

- 1. The laws of physics are the same in all inertial frames.
- 2. The speed of light is same in all inertial frames.

1) relative simultaneity:

Two events occurring at the same locations that are simultaneous in one frame of reference will not be simultaneous in a frame of reference moving relative to the first.

②time dilation(时间膨胀): Δt'=Δt/γ t'=proper time

Two events occurring at the same location in one frame will be separated by a longer time interval in a frame moving relative to the first.

③length contraction(长度收缩) Ly=L' L'=proper length

The length of an object in a frame through which the object moves is smaller than its length in the frame in which it is at rest.

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 \geq 1 =1 stationary

classic limit v≪c

Relativistic Factor:

Note: binomial approximation: $(1-x)^a=1-ax$ when $x\ll 1$

Lorentz Transformation:

S reference frame x t	S' reference frame x' t'
$t' = \gamma \left(-\frac{v}{c^2} x + t \right)$	$t = \gamma \left(\frac{v}{c^2} x' + t' \right)$
$x' = \gamma (x - vt)$	$x = \gamma (x' + \nu t')$

Note: if stand in S' frame, then v-> -v since sees in opposite direction. v: S' moves at +v relative to S

Minkowski diagram (space-time diagram) in special relativity In the Diagram Events has: x=1.67 ct=1.33 x'=1 t'=0 v=0.8c

Relativistic Doppler Effect:

$$f_{observer} = f_{source} \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 + \frac{v}{c} \cos \theta}$$

Toward: θ =180 Away: θ =0 circle: : θ =90

f_{observer} smaller fo/fs>1

Relativistic Velocity Transformation:

$$u'_{x} = \frac{u_{x} - v}{1 - \frac{u_{x}v}{c^{2}}}$$

$$u'_{y} = \frac{u_{y}/\gamma}{1 - \frac{u_{x}v}{c^{2}}}$$

 u_x '=object observed in S' u_x =object observed in S v=velocity S' to S

60° north of west = from west 60° to north (和north 30°夹角)

Energy and Momentum

Energy and Momentum:

Momentum: $p = \gamma mu$

Energy: $E = \gamma mc^2$ c:universal constant

Total Energy = Kinetic Energy + Internal Energy

stationary object energy: Einternal=mc2

object with zero mass Etotal=pc

Kinetic Energy

=Energy of a Moving Object - Energy At rest(its internal energy)

=γmc²-mc²

= $(\gamma-1)$ mc² c:light speed at vacuum

Kinetic Energy = $\gamma mc^2 - mc^2 = (\gamma - 1)mc^2$ m: rest mass

true mass m; mass at rest m0 $m = \gamma m_0$

 $\gamma mc^2 = (1-u^2/c^2)\frac{1}{2} mc^2 \approx (1+(-1/2)(-u^2/c^2)) mc^2 = mc^2 + \frac{1}{2}mu^2 (u \ll c)$

Conservation of Total Energy: mass of a proton=1.67×10⁻²⁷kg

potential difference V (accelerate to that speed) KE= $q\Delta V$ (q=1.6×10⁻¹⁹C) Electron Volt(energy per charge) eV=1.6×10⁻¹⁹J

Momentum Conservation: γ1m1u1+γ2m2u2=γmu

Energy Conservation: γ1m1+γ2m2=γm

Change in Kinetic Energy= - Change in Potential Energy= -∆mc²

Rest mass: rest mass never changes(invariant) in all inertia frames of reference.

 $E^2 = p^2 c^2 + m^2 c^4$ m: rest mass

http://www.trell.org/div/minkowski.html

wave-particle duality

 \times intensity(energy per unit time per unit area) \propto (amplitude of electric field oscillation E₀)²

like rate of energy arrives.

 $E = hf = h\frac{c}{\lambda}$ h=6.626×10⁻³⁴J·s Photon:

black body radiation curve

※ Photoelectric Effect: (光电效应)

Electrons are emitted from solids, liquids, gases when they absorb energy Light produce a flow of electricity. from light.

A light beam directed at the surface of a metal could liberate electrons.

* Working Function φ: minimum energy required to free an electron/ minimum energy

to eject an electron(溢出功)

light: intensity (P/A) frequency(c/λ)

Stopping Potential: potential difference that barely stops the flow

* Threshold Wavelength: maximum wavelength for which electrons are freed corresponding minimum frequency (threshold frequency)

electron: KE, time lag between light and ejection

Electron Volt (eV): Energy that one electron gets by travelling through 1 V of electric potential

 $1eV=1.6 \times 10^{-19} \text{ J}$ Mass (eV / c2)

Electron's mass is 511 keV / c2 Proton's mass is 938 MeV /c2

Production of X-Ray (10-2nm~10nm)

cutoff wavelength: termination of the spectrum.

* Compton-Debye effect/scattering: (康普顿效应/散射)

scattering of electromagnetic radiation from free stationary electrons

>> object with zero mass E=pc

momentum density: energy/volume=momentum/volume xc

momentum of proton: $p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$ 当X射线或伽马射线的光子跟物质相互作用,因失去能量而导致波长变长的现 象

波长变化的幅度被称为康普顿偏移

$$\lambda - \lambda_0 = \Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

Effect is between 0 and 0.00485 nm ($2 h / m_e c$)

Photon momentum: $p=E/c=h/\lambda$ Electron momentum: p=ymev

Momentum Conserved:

$$x-component \frac{h}{\lambda} = \frac{h}{\lambda'} \cos \theta + \gamma_u m_e u \cos \varphi$$

y-component $0 = \frac{h}{\lambda'} \sin \theta - \gamma_u m_e u \sin \varphi$

Energy Conserved:
$$h\frac{c}{\lambda} + m_e c^2 = h\frac{c}{\lambda'} + \gamma_u m_e c^2$$

* Wave Function Ψ: probability amplitude $\Psi^2 >>$ probability when a phenomenon is detected as particles, we cannot predict with certainty where a given

particle will be found. The most we can determine is a probability of finding it in a given region, which is proportional to the square of the amplitude of the associated wave in that region.

probability of finding
$$particle$$
 in a region $ext{probability} = ext{probability of finding} =$

*** Matter Wave:**

double slip experiment -- constructive/destructive interference Properties:

① de Broglie wavelength: $\lambda = \frac{h}{p}$

② frequency: $f = \frac{E}{h}$

wave number k $k = \frac{2\pi}{\lambda}$ & angular frequency $\omega = \frac{2\pi}{T}$:

let
$$\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} J \cdot s$$
 so $p = \frac{h}{\lambda} = \hbar k$ $E = hf = \hbar \omega$

 $v_{wave} = f\lambda = \frac{E}{h} \frac{h}{p} = \frac{E}{p}$

young's Double Slit Experiment

*** Bohr's Model:**

Angular momentum of electron is quantized:

energy of an electron 电子定态跃迁 $\Delta E = hv$ n: principal quantum number

Balmer series

Lyman series Paschen series

Bragg Diffraction

Heisenberg Uncertainty Principle: $\Delta p \Delta x \ge \frac{\hbar}{2}$

Gaussian wave form $\psi(x,0)=Ce^{-(-(x/2\epsilon)^2)}$, $\Delta p \Delta x=h/2$

well-defined property: no uncertainty Δ =0

undefined property: Δ =infinite

Energy-Time Uncertainty Principle: $\Delta E \Delta t \ge \frac{\hbar}{2}$

Schrödinger Equation

Wave Function Ψ (probability amplitude) quantum state of a particle and how its behaves

probability density IΨ²I

Free-Particle Schrödinger Equation: (no external force/interaction)

wave function obeys wave equation

> wave on string: > electromagnetic waves:

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi(x,t)}{\partial x^2} \right) = i\hbar \left(\frac{\partial \psi(x,t)}{\partial t} \right)$$

> matter waves:

and $|\psi(x,t)| = A$ $\psi(x,t) = Ae^{i(kx-\omega t)}$ general solution Plane Wave:

Bound State: particle's motion is restricted by an external force to a finite region of space

Time-Dependent Schrödinger Equation

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi(x,t)}{\partial x^2} \right) + U(x)\psi(x,t) = i\hbar \left(\frac{\partial \psi(x,t)}{\partial t} \right)$$

(external force~potential energy associated with the force (even nonconservative forces))

$$(KE+U(x))\psi(x,t) = E\psi(x,t)$$

Stationary States: energy is well defined $E=h\omega(\Delta E=0)$ and probability density independent of time.

Separation of Variables: $\psi(x,t) = \varphi(x)\phi(t)$ spatial partxtemporal part

so
$$-\frac{\hbar^2}{2m}\frac{1}{\varphi(x)}\left(\frac{\partial^2 \varphi(x)}{\partial x^2}\right) + U(x) = i\hbar \frac{1}{\varphi(t)}\left(\frac{\partial \varphi(t)}{\partial t}\right) = C$$
 (separation constant=energy)

Temporal part $\phi(t)$: $\psi(x,t) = \varphi(x)e^{-i(E/\hbar)t}$ Spatial part $\varphi(x)$:

Time-Independent Schrödinger Equation

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \varphi(x)}{\partial x^2} \right) + U(x)\varphi(x) = E\varphi(x)$$

Well-Behaved Function:

$$\int_{\text{all space}} \left| \psi(x,t) \right|^2 dx = 1$$

1)Normalization:

②Smoothness:

Continuity of wavefunction(finite momentum) & its derivative(finite kinetic energy)

$$U(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x < 0, x > L \end{cases}$$

Case 1: Particle in a Box / Infinite Wall

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} & 0 < x < L \\ 0 & x < 0, x > L \end{cases}$$

$$E_n = \frac{n^2 \pi^2 h^2}{2mL^2}$$

Ground State: n=1

$$U(x) = \begin{cases} 0 & 0 < x < L \\ U_0 & x < 0, x > L \end{cases}$$

Case 2: Finite Wall

E>U₀: particle given enough energy to escape, so restrict E<U₀

Case 3: Simple Harmonic Oscillator

$$E = (n + \frac{1}{2})\hbar\omega_0 \qquad \omega_0 = \sqrt{\frac{k}{m}}$$

 $U(x) = \frac{1}{2}kx^2$

unstationary states:

$$\overline{x} = \int_{allspace} x \, |\varphi(x)|^2 \, dx$$

Expectation Value: average value of position

Uncertainties:
$$\Delta x = \sqrt{\overline{x^2} - \overline{x}^2}$$

$$\Delta x = \sqrt{\int_{allspace}} (x - \overline{x})^2 |\varphi(x)|^2 dx$$
Derivation:

Derivation:

$$\overline{x^2} = \int_{\text{allspace}} x^2 |\varphi(x)|^2 dx \qquad \int_{\text{allspace}} |\varphi(x)|^2 dx = 1$$

Observable Q: property that can be measured

$$\overline{Q} = \int_{allspace} \psi^*(x,t) \hat{Q} \psi(x,t) dx$$

EV of square of the position

$$\Delta Q = \sqrt{\overline{Q^2} - \overline{Q}^2}$$