Facility Location.

Theorem (p.33): For the local center, x_e , on an edge (p,q),

$$m(x_e) \geq \frac{m(p) + m(q) - c(p,q)}{2}$$
, where, c(p, q) denotes the length of (p,q).

For x=0, the point is p. For x=c(p,q) the point is q.

d(x,p)=x and d(x,p)=c(p,q)-x.

Therefore, we have $m(p) \le m(x)+x$ and $m(q) \le m(x)+c(p,q)-x$, since it is always possible to reach p by a path to x plus d(p,x), and it is always possible to reach q by a path to x plus d(p,x).

Summing up the above inequations, we get $m(q)+m(p) \le 2m(x)+x-c(p,q)-x=2m(x)+c(p,q)$.

The above is valid for every x, in particular, for $x=x_e$.

By switching sides, we get
$$m(x_e) \ge \frac{m(p) + m(q) - c(p,q)}{2}$$

Example of 2-approximation to k-center (p.37) Let k=3

Assume that A is selected as a first node.

The furthest node is D – since d(D,A)=16. So D is added.

The next furthest node is $F - \text{since } d(F,\{A,B\})=7$

 $X_3 = \{A,D,F\}$. The value of this solution is $6 - d(C,X_3) = d(G,X_3) = 6$.

A better solution is {B,F,H} – its value is 5.

For k=2, the algorithm halts with $\{A,D\}$, $d(f,X2\})=7$.

 $OPT(k=2)=\{B,H\}$, value =5 (achieved by E and F).

Example - no (2-ε)-approximation (p. 40).

Hakimi's Theorem: At least one optimal set of k-medians exist solely on the nodes of G (p. 43).

Proof: Assume that k=1.

Let x^* be the optimal 1-median. If x^* is a node – we are done. Otherwise, x^* is located on some edge (u,w). Split the graph's nodes into two disjoint sets $V=U\cup W$ such that $v\in U$ if and only if a shortest path from v to x^* passes through v (otherwise, $v\in W$)

Compare $\sum_{v \in U} h(v)$ with $\sum_{v \in W} h(v)$. Assume w.l.o.g. that $\sum_{v \in U} h(v) \ge \sum_{v \in W} h(v)$. We show that x^* can be replaced by the node u without hurting the objective function value.

$$J(x^*) = \sum_{v \in V} h(v)d(v,x^*) = \sum_{v \in U} h(v)[d(v,u) + d(u,x^*)] + \sum_{v \in W} h(v)d(v,x^*) = \\ \sum_{v \in U} h(v)d(v,u) + \sum_{v \in U} h(v)d(u,x^*) + \sum_{v \in W} h(v)d(v,x^*) \geq \\ \geq \sum_{v \in U} h(v)d(v,u) + \sum_{v \in W} h(v)d(u,x^*) + \sum_{v \in W} h(v)d(v,x^*) = \\ \geq \sum_{v \in U} h(v)d(v,u) + \sum_{v \in W} h(v)[d(u,x^*) + d(v,x^*)] \geq \\ \text{Triangle inequality} \\ \geq \sum_{v \in U} h(v)d(v,u) + \sum_{v \in W} h(v)d(u,v) = \sum_{v \in V} h(v)d(u,v) = J(u).$$

For k>1, a similar approach works for every facility located along an edge.