ANALOG SYSTEMS Continuous

DIGITAL SYSTEMS Discrete

ELECTRICITY NUMBER SYSTEM

BASE-?

BASE-10

GRANULARITY

RELIABILITY Robust to Noise

Fundamentally Hardware | Engineering Problem

TERNARY COMPUTER

https://en.wikipedia.org/wiki/Ternary_computer

Balanced Trinary {-1,0,1} Entirely from *Wood*! Thomas Fowler 1840

More History and Etymology → https://en.wikipedia.org/wiki/Computer

DECIMAL COMPUTER

https://en.wikipedia.org/wiki/Decimal_computer

They are not actually base-10! We'll cover them later.

TRUE VS. FALSE

George Boole (/buːl/)

Mathematician Philosopher Logician

The Laws of Thought (1854)

Boolean Algebra!

Claude Elwood Shannon

Mathematician Electrical Engineer Cryptographer

M.Sc. Thesis (1937)

A Symbolic Analysis of Relay and Switching Circuits

Switching Algebra!

BINARY COMPUTER

POSITIVE LOGIC

Voltage HIGH [2,5]noise [0.8,2)LOW [0,0.8)Time Value 1 1 1 1 0 0 0 0 1 1

NEGATIVE LOGIC

Voltage HIGH [2,5]noise [0.8,2)LOW [0,0.8)Time 0 0 0 1 1 1 0 0 Value

DESIGN COMPUTER

Positive Logic Button-Up Approach

DESIGN COMPUTER

Positive Logic Button-Up Approach

Finding simpler, but equivalent, computers reduces the overall cost!

Rely primarily on mathematical methods in Boolean algebra!

BUILD COMPUTER

Electrical and Computer Engineering

LOGIC GATES

X	NOT X	Invertor X	Χ'	\overline{X}
0		1		
1		0		

Boolean Expression/Function: F = X'

> inverse of X gives F <

Y	X	X AND Y	Y·X	Y * X
0	0		0	
0	1		0	
1	0		0	
1	1		1	

X	Y	Y AND X	X·Y	X * Y
0	0		0	
0	1		0	
1	0		0	
1	1		1	

Υ	Χ	YX
0	1	0
0	0	0

$$F = X0 = 0$$

Υ	Χ	YX
0	0	0
1	0	0

$$F = OY = O$$

Υ	Χ	YX
1	0	0
1	1	1

$$F = X1 = 1111X1111 = X$$

Χ	Χ	XX
0	0	0
1	1	1

$$F = XX = X$$

Χ	Χ	XX
0	0	0
1	1	1

$$F = XX = X$$

X′	Χ	X'X
1	0	0
0	1	0

$$F = XX' = 0$$

X'	Χ	X'X
1	0	0
0	1	0

$$F = XX' = 0$$

X'	Χ	X'X
1	0	0
0	1	0

$$F = XX' = 0$$

3-INPUT AND