〈数据分析实战45讲 首页 │ ♀

23 | SVM(下):如何进行乳腺癌检测?

2019-02-04 陈旸

讲述:陈旸

时长 10:21 大小 23.71M

讲完了 SVM 的原理之后,今天我来带你进行 SVM 的实战。

在此之前我们先来回顾一下 SVM 的相关知识点。SVM 是有监督的学习模型,我们需要事先对数据打上分类标签,通过求解最大分类间隔来求解二分类问题。如果要求解多分类问题,可以将多个二分类器组合起来形成一个多分类器。

上一节中讲到了硬间隔、软间隔、非线性 SVM,以及分类间隔的公式,你可能会觉得比较抽象。这节课,我们会在实际使用中,讲解对工具的使用,以及相关参数的含义。

如何在 sklearn 中使用 SVM

在 Python 的 sklearn 工具包中有 SVM 算法,首先需要引用工具包:

SVM 既可以做回归,也可以做分类器。

当用 SVM 做回归的时候,我们可以使用 SVR 或 LinearSVR。SVR 的英文是 Support Vector Regression。这篇文章只讲分类,这里只是简单地提一下。

当做分类器的时候,我们使用的是 SVC 或者 LinearSVC。SVC 的英文是 Support Vector Classification。

我简单说一下这两者之前的差别。

从名字上你能看出 LinearSVC 是个线性分类器,用于处理线性可分的数据,只能使用线性核函数。上一节,我讲到 SVM 是通过核函数将样本从原始空间映射到一个更高维的特质空间中,这样就使得样本在新的空间中线性可分。

如果是针对非线性的数据,需要用到 SVC。在 SVC 中,我们既可以使用到线性核函数(进行线性划分),也能使用高维的核函数(进行非线性划分)。

如何创建一个 SVM 分类器呢?

我们首先使用 SVC 的构造函数: model = svm.SVC(kernel= 'rbf', C=1.0, gamma= 'auto'), 这里有三个重要的参数 kernel、C 和 gamma。

kernel 代表核函数的选择,它有四种选择,只不过默认是 rbf,即高斯核函数。

1. linear: 线性核函数

2. poly: 多项式核函数

3. rbf:高斯核函数(默认)

4. sigmoid: sigmoid 核函数

这四种函数代表不同的映射方式,你可能会问,在实际工作中,如何选择这4种核函数呢?我来给你解释一下:

线性核函数,是在数据线性可分的情况下使用的,运算速度快,效果好。不足在于它不能处理线性不可分的数据。

多项式核函数可以将数据从低维空间映射到高维空间,但参数比较多,计算量大。

高斯核函数同样可以将样本映射到高维空间,但相比于多项式核函数来说所需的参数比较少,通常性能不错,所以是默认使用的核函数。

了解深度学习的同学应该知道 sigmoid 经常用在神经网络的映射中。因此当选用 sigmoid 核函数时, SVM 实现的是多层神经网络。

上面介绍的 4 种核函数,除了第一种线性核函数外,其余 3 种都可以处理线性不可分的数据。

参数 C 代表目标函数的惩罚系数,惩罚系数指的是分错样本时的惩罚程度,默认情况下为1.0。当 C 越大的时候,分类器的准确性越高,但同样容错率会越低,泛化能力会变差。相反,C 越小,泛化能力越强,但是准确性会降低。

参数 gamma 代表核函数的系数,默认为样本特征数的倒数,即 gamma = $1/n_f$ eatures。

在创建 SVM 分类器之后,就可以输入训练集对它进行训练。我们使用 model.fit(train_X,train_y),传入训练集中的特征值矩阵 train_X 和分类标识 train_y。特征值矩阵就是我们在特征选择后抽取的特征值矩阵(当然你也可以用全部数据作为特征值矩阵);分类标识就是人工事先针对每个样本标识的分类结果。这样模型会自动进行分类器的训练。我们可以使用 prediction=model.predict(test_X)来对结果进行预测,传入测试集中的样本特征矩阵 test_X,可以得到测试集的预测分类结果 prediction。

同样我们也可以创建线性 SVM 分类器,使用 model=svm.LinearSVC()。在 LinearSVC 中没有 kernel 这个参数,限制我们只能使用线性核函数。由于 LinearSVC 对线性分类做了优化,对于数据量大的线性可分问题,使用 LinearSVC 的效率要高于 SVC。

如果你不知道数据集是否为线性,可以直接使用 SVC 类创建 SVM 分类器。

在训练和预测中, LinearSVC 和 SVC 一样,都是使用 model.fit(train_X,train_y) 和 model.predict(test_X)。

如何用 SVM 进行乳腺癌检测

在了解了如何创建和使用 SVM 分类器后,我们来看一个实际的项目,数据集来自美国威斯康星州的乳腺癌诊断数据集,点击这里进行下载。

医疗人员采集了患者乳腺肿块经过细针穿刺 (FNA) 后的数字化图像,并且对这些数字图像进行了特征提取,这些特征可以描述图像中的细胞核呈现。肿瘤可以分成良性和恶性。部分数据截屏如下所示:

id (diagn ra	dius_net	exture_rp	erimetera:	rea_mear	smoothnes	compactne	concavity	concave r	symmetry_	fractal_c	radius_se	texture_s	perimetera	rea_se	smoothnes
842302 1	II.	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	1.095	0.9053	8.589	153.4	0.006399
842517 1	II.	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	0.5435	0.7339	3.398	74.08	0.005225
843009031	II.	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	0.7456	0.7869	4.585	94.03	0.00615
84348301 1	II.	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	0.4956	1.156	3.445	27.23	0.00911
84358402 1	II.	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	0.7572	0.7813	5.438	94.44	0.01149
843786 1	II.	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	0.3345	0.8902	2.217	27.19	0.00751
844359 1	II.	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	0.4467	0.7732	3.18	53.91	0.004314
84458202 1	II.	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	0.5835	1.377	3.856	50.96	0.008805
844981 1	II.	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	0.3063	1.002	2.406	24.32	0.005731
84501001 1	II.	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	0.2976	1.599	2.039	23.94	0.007149
845636 1	II.	16.02	23. 24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	0.3795	1.187	2.466	40.51	0.004029
846100021	II.	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	0.5058	0.9849	3.564	54.16	0.005771
846226 1	II.	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	0.9555	3.568	11.07	116.2	0.003139
846381 1	II.	15.85	23. 95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	0.4033	1.078	2.903	36.58	0.009769
84667401 1	tt.	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	0.2121	1.169	2.061	19.21	0.006429
847990021	II.	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	0.37	1.033	2.879	32.55	0.005607
848406 1	tt	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	0.4727	1.24	3.195	45.4	0.005718
84862001 1	tt.	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	0.5692	1.073	3.854	54.18	0.007026
849014 1	II.	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	0.7582	1.017	5.865	112.4	0.006494
8510426 B	В	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	0.2699	0.7886	2.058	23.56	0.008462
8510653 B	В	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	0.1852	0.7477	1.383	14.67	0.004097
8510824 B	В	9.504	12.44	60.34	273.9	0.1024	0.06492	0.02956	0.02076	0.1815	0.06905	0.2773	0.9768	1.909	15.7	0.009606
8511133 I	II.	15.34	14.26	102.5	704.4	0.1073	0.2135	0.2077	0.09756	0.2521	0.07032	0.4388	0.7096	3.384	44.91	0.006789
851509 1	M.	21.16	23.04	137.2	1404	0.09428	0.1022	0.1097	0.08632	0.1769	0.05278	0.6917	1.127	4.303	93.99	0.004728

数据表一共包括了 32 个字段, 代表的含义如下:

字段	含义
ID	ID标识
diagnosis	M/B (M: 恶性, B: 良性)
radius_mean	半径(点中心到边缘的距离)平均值
texture_mean	文理(灰度值的标准差)平均值
perimeter_mean	周长 平均值
area_mean	面积 平均值
smoothness_mean	平滑程度(半径内的局部变化)平均值
compactness_mean	紧密度(=周长*周长/面积-1.0)平均值
concavity_mean	凹度(轮廓凹部的严重程度)平均值
concave points_mean	凹缝(轮廓的凹部分)平均值
symmetry_mean	对称性 平均值
fractal_dimension_mean	分形维数(=海岸线近似-1)平均值
radius_se	半径(点中心到边缘的距离)标准差
texture_se	文理(灰度值的标准差)标准差
perimeter_se	周长 标准差
area_se	面积 标准差
smoothness_se	平滑程度(半径内的局部变化)标准差
compactness_se	紧密度(=周长*周长/面积-1.0)标准差
concavity_se	凹度(轮廓凹部的严重程度)标准差
concave points_se	凹缝(轮廓的凹部分)标准差
symmetry_se	对称性标准差
fractal_dimension_se	分形维数(=海岸线近似-1)标准差
radius_worst	半径(点中心到边缘的距离)最大值
texture_worst	文理(灰度值的标准差)最大值
perimeter_worst	周长 最大值
area_worst	面积 最大值
smoothness_worst	平滑程度(半径内的局部变化)最大值
compactness_worst	紧密度(=周长*周长/面积-1.0)最大值
concavity_worst	凹度(轮廓凹部的严重程度)最大值
concave points_worst	凹缝(轮廓的凹部分)最大值
symmetry_worst	对称性 最大值
fractal_dimension_worst	分形维数(=海岸线近似-1)最大值

上面的表格中,mean 代表平均值,se 代表标准差,worst 代表最大值(3 个最大值的平均值)。每张图像都计算了相应的特征,得出了这 30 个特征值(不包括 ID 字段和分类标识结果字段 diagnosis),实际上是 10 个特征值(radius、texture、perimeter、area、smoothness、compactness、concavity、concave points、symmetry 和fractal_dimension_mean)的 3 个维度,平均、标准差和最大值。这些特征值都保留了4 位数字。字段中没有缺失的值。在 569 个患者中,一共有 357 个是良性,212 个是恶性。

好了,我们的目标是生成一个乳腺癌诊断的 SVM 分类器,并计算这个分类器的准确率。 首先设定项目的执行流程:

- 1. 首先我们需要加载数据源;
- 2. 在准备阶段,需要对加载的数据源进行探索,查看样本特征和特征值,这个过程你也可以使用数据可视化,它可以方便我们对数据及数据之间的关系进一步加深了解。然后按照"完全合一"的准则来评估数据的质量,如果数据质量不高就需要做数据清洗。数据清洗之后,你可以做特征选择,方便后续的模型训练;
- 3. 在分类阶段,选择核函数进行训练,如果不知道数据是否为线性,可以考虑使用 SVC(kernel= 'rbf'),也就是高斯核函数的 SVM 分类器。然后对训练好的模型用测 试集进行评估。

按照上面的流程,我们来编写下代码,加载数据并对数据做部分的探索:

```
2 data = pd.read_csv("./data.csv")
3 # 数据探索
4 # 因为数据集中列比较多,我们需要把 dataframe 中的列全部显示出来
5 pd.set_option('display.max_columns', None)
6 print(data.columns)
7 print(data.head(5))
8 print(data.describe())
```

这是部分的运行结果,完整结果你可以自己跑一下。

自复制代码

```
Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
          'area mean', 'smoothness mean', 'compactness mean', 'concavity mean',
 2
          'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
          'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
          'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
 5
          'fractal_dimension_se', 'radius_worst', 'texture_worst',
          'perimeter worst', 'area worst', 'smoothness worst',
 7
          'compactness worst', 'concavity worst', 'concave points worst',
 8
          'symmetry_worst', 'fractal_dimension_worst'],
 9
         dtype='object')
            id diagnosis radius mean texture mean perimeter mean area mean \
11
12 0
        842302
                                17.99
                                              10.38
                                                             122.80
                                                                         1001.0
        842517
                       Μ
                                20.57
                                              17.77
                                                             132.90
                                                                        1326.0
13 1
14 2 84300903
                       Μ
                                19.69
                                              21.25
                                                             130.00
                                                                        1203.0
15 3 84348301
                                11.42
                                              20.38
                                                              77.58
                                                                         386.1
16 4 84358402
                                20.29
                                              14.34
                                                                        1297.0
                       Μ
                                                             135.10
```

接下来,我们就要对数据进行清洗了。

运行结果中,你能看到32个字段里,id 是没有实际含义的,可以去掉。diagnosis 字段的取值为B或者M,我们可以用0和1来替代。另外其余的30个字段,其实可以分成三组字段,下划线后面的mean、se和worst代表了每组字段不同的度量方式,分别是平均值、标准差和最大值。

■复制代码

```
1 # 将特征字段分成 3 组
2 features_mean= list(data.columns[2:12])
3 features_se= list(data.columns[12:22])
4 features_worst=list(data.columns[22:32])
5 # 数据清洗
```

6 # ID 列没有用,删除该列

```
7 data.drop("id",axis=1,inplace=True)
8 # 将 B 良性替换为 0, M 恶性替换为 1
9 data['diagnosis']=data['diagnosis'].map({'M':1,'B':0})
```

然后我们要做特征字段的筛选,首先需要观察下 features_mean 各变量之间的关系,这里我们可以用 DataFrame 的 corr() 函数,然后用热力图帮我们可视化呈现。同样,我们也会看整体良性、恶性肿瘤的诊断情况。

■复制代码

```
1 # 将肿瘤诊断结果可视化
2 sns.countplot(data['diagnosis'],label="Count")
3 plt.show()
4 # 用热力图呈现 features_mean 字段之间的相关性
5 corr = data[features_mean].corr()
6 plt.figure(figsize=(14,14))
7 # annot=True 显示每个方格的数据
8 sns.heatmap(corr, annot=True)
9 plt.show()
```

这是运行的结果:

热力图中对角线上的为单变量自身的相关系数是 1。颜色越浅代表相关性越大。所以你能看出来 radius_mean、perimeter_mean 和 area_mean 相关性非常大,compactness_mean、concavity_mean、concave_points_mean 这三个字段也是相关的,因此我们可以取其中的一个作为代表。

那么如何进行特征选择呢?

特征选择的目的是降维,用少量的特征代表数据的特性,这样也可以增强分类器的泛化能力,避免数据过拟合。

我们能看到 mean、se 和 worst 这三组特征是对同一组内容的不同度量方式,我们可以保留 mean 这组特征,在特征选择中忽略掉 se 和 worst。同时我们能看到 mean 这组特征中,radius_mean、perimeter_mean、area_mean 这三个属性相关性大,compactness_mean、daconcavity_mean、concave points_mean 这三个属性相关性大。我们分别从这 2 类中选择 1 个属性作为代表,比如 radius_mean 和 compactness_mean。

这样我们就可以把原来的 10 个属性缩减为 6 个属性,代码如下:

```
■复制代码

1 # 特征选择

2 features_remain = ['radius_mean','texture_mean', 'smoothness_mean','compactness_mean','s
```

对特征进行选择之后,我们就可以准备训练集和测试集:

■复制代码

```
1 # 抽取 30% 的数据作为测试集,其余作为训练集
```

- 2 train, test = train_test_split(data, test_size = 0.3)# in this our main data is splitted
- 3 # 抽取特征选择的数值作为训练和测试数据
- 4 train_X = train[features_remain]
- 5 train_y=train['diagnosis']
- 6 test_X= test[features_remain]
- 7 test_y =test['diagnosis']

在训练之前,我们需要对数据进行规范化,这样让数据同在同一个量级上,避免因为维度问题造成数据误差:

■复制代码

```
1 # 采用 Z-Score 规范化数据,保证每个特征维度的数据均值为 0,方差为 1
```

- 2 ss = StandardScaler()
- 3 train_X = ss.fit_transform(train_X)
- 4 test_X = ss.transform(test_X)

最后我们可以让 SVM 做训练和预测了:

■复制代码

```
1 # 创建 SVM 分类器
```

- 2 model = svm.SVC()
- 3 # 用训练集做训练
- 4 model.fit(train_X,train_y)
- 5 # 用测试集做预测
- 6 prediction=model.predict(test_X)
- 7 print('准确率: ', metrics.accuracy_score(prediction,test_y))

1 准确率: 0.9181286549707602

准确率大于90%,说明训练结果还不错。完整的代码你可以从GitHub上下载。

总结

今天我带你一起做了乳腺癌诊断分类的 SVM 实战,从这个过程中你应该能体会出来整个执行的流程,包括数据加载、数据探索、数据清洗、特征选择、SVM 训练和结果评估等环节。

sklearn 已经为我们提供了很好的工具,对上节课中讲到的 SVM 的创建和训练都进行了封装,让我们无需关心中间的运算细节。但正因为这样,我们更需要对每个流程熟练掌握,通过实战项目训练数据化思维和对数据的敏感度。

最后给你留两道思考题吧。还是这个乳腺癌诊断的数据,请你用 LinearSVC,选取全部的特征(除了 ID 以外)作为训练数据,看下你的分类器能得到多少的准确度呢?另外你对 sklearn 中 SVM 使用又有什么样的体会呢?

欢迎在评论区与我分享你的答案,也欢迎点击"请朋友读",把这篇文章分享给你的朋友或者同事,一起来交流,一起来进步。

数据分析实战 45 讲

即学即用的数据分析入门课

陈旸

清华大学计算机博士

新版升级:点击「 💫 请朋友读 」,10位好友免费读,邀请订阅更有现金奖励。

© 版权归极客邦科技所有,未经许可不得转载

上一篇 22 | SVM (上):如何用一根棍子将蓝红两色球分开?

下一篇 24 | KNN(上):如何根据打斗和接吻次数来划分电影类型?

精选留言 (11)

ሰን 1

Geek_dance...

2019-02-27

默认SVC训练模型,6个特征变量,训练集准确率:96.0%,测试集准确率:92.4% 默认SVC训练模型,10个特征变量,训练集准确率:98.7%,测试集准确率:98.2% LinearSVC训练模型,6个特征变量,训练集准确率:93.9%,测试集准确率:92.3% LinearSVC训练模型,10个特征变量,训练集准确率:99.4%,测试集准确率:96.0%

...

展开~

from sklearn import svm from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler... 展开~

1

第二个,准确率 0.935672514619883。

感觉还蛮好用的,只是不是很熟练的使用各个算法做分类和回归 展开~

13

Rickie

1

2019-02-05

思考题:

使用全部数据进行训练得到的准确率为0.9766,高于示例中的准确率。是否是由于多重共线性,使得测试结果偏高?

展开~

fancy

2019-03-02

使用LinearSVC和全部特征作为训练集时,分类器的准确率达到了99.4152%,在其他条件不变的情况下,其准确率高于SVC。

ldw

2019-02-28

陈老师,这堂课留的课后任务,包括可能使用的数据清洗,您会期望您团队的人用多长时间完成?超过多长时间以上,就是不合格的?谢谢@

mickey

2019-02-26

勘误:热力学图中的第一个蓝色框框应该是标记在第1列第3-4行上,而不是第1列第1行。 展开> 编辑回复: 代表的含义是: radius_mean, perimeter_mean, area_mean这三个指标正相关, 因此选择其中一个代表即可(我在正文中也写到了)

你说的标注第一列第3-4行也是对的,因为这几个指标都是正相关。完整的看第一行的第3-4列也可以标注上,实际上这三个指标可以重新组成一个小矩形。

我的标注(第一行第一列+第34行第34列,代表的是这三个指标相关)起到提示的作用,最主要的还是说明:radius_mean,perimeter_mean,area_mean这三个指标正相关。这个是最终的结果。

Anyway 你把第一列第3-4行标注出来,或者第一行第3-4列标注出来都是对的

ம

特征选择

features_all = ['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',...

展开~

凸

使用全部特征:(相同训练集和测试集) LinearSVC准确率: 0.9298245614035088 SVC高斯核准确率: 0.9415204678362573

SVM首先是有监督的学习模型,需要数据有较好的分类属性。其次依据硬间隔、软间隔和核函数的应用,可以解决线性分类和非线性分类的问题。最后在使用过程中,需要对数...

#svm 使用还是蛮方便的,完全特征,准确率达到97%以上

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler... 展开 >

老师可以用PCA进行特征选择吗?如果可以,那和你这种手动的方法比有什么差别 展开~