

บทที่ 6 การประเมินค่าใช้จ่ายซอฟต์แวร์ (Software Cost Estimation)

สอนโดย ผศ.ดร.วรารัตน์ สงฆ์แป็น

สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาลัยการคอมพิวเตอร์ มหาวิทยาลัยขอนแก่น

Cost Estimation

- การวิเคราะห์ต้นทุน
- วิเคราะห์ก่อนโครงงานจะเริ่มต้น

เทคนิคในการประเมินราคาซอฟต์แวร์

- ความแม่นยำในการประเมินราคามีความสำคัญดังนี้คือ
 - สามารถคิดกำไรที่ได้มาและระบบการเงินในบริษัท
 - สามารถคำนวณการใช้ทรัพยากร HW/SW ได้อย่างถูกต้อง
 - สามารถคำนวณราคาต่อโปรเจ็กย่อย ๆ ได้
- ในการประเมินราคาเราควรที่จะบวกค่าความเที่ยงตรงไว้ + 20%

ความแม่นยำในการประเมิน

- แม่นยำในการประมาณขนาด
- แม่นยำในการประมาณกำลังบุคลากรและเวลาที่ใช้จากขนาด
- แม่นยำในการวางแผนที่แสดงถึงความสามารถที่แท้จริงของทีมงาน
- ความคงที่ของความต้องการของผลิตภัณฑ์ และสภาพแวคล้อม ต่างๆ

Software Measurement

- direct measures
- indirect measures

Direct measures

- ราคา
- Effort + Time
- จำนวนคำสั่ง LOC (Line of Code)
- ความเร็ว
- จำนวนข้อผิดพลาด

Indirect measures

- ฟังก์ชัน (Function)
 - คุณภาพ
 - ความซับซ้อน
 - ความน่าเชื่อถือ
 - การบำรุงรักษาในภายหลัง

Software Measurement

- Size-Oriented Metrics
 - การวัดในเชิงของขนาด
- Function-Oriented Metrics
 - การวัดในเชิงของงานที่โปรแกรมกระทำ

Size-Oriented Metrics

project	LOC	Effort	\$(000)	pp.doc	Error	Defect	People
A	12,100	24	168	365	134	29	3
B	27,200	62	440	1224	321	86	5
C	20,200	43	314	1050	256	64	6

- ในการที่จะทำการเปรียบเทียบระหว่างโครงงาน เรานิยมใช้ จำนวนบรรทัด (LOC-Line of Code) ในการปรับค่า
 - errors per KLOC
 - defect per KLOC
 - \$ per LOC
 - documents per KLOC

- error/person-month
- LOC/person-month
- \$/page of documentation

Size-Oriented Metrics

- ไม่เป็นที่ยอมรับสมบูรณ์ว่าเป็นวิธี่ที่ดีในการวัดประสิทธิภาพของกระบวนการพัฒนา
- ปัญหาของการใช้ Line of Code (LOC)
 - Programming language dependent
 - เป็นปัญหากับ programmer ที่ออกแบบโปรแกรมดีและกระทัดรัด

Function-Oriented Metrics

- วัดที่งานที่โปรแกรมกระทำ
- ไม่สามารถวัดได้โดยตรง
- ใช้วิธี Function Point (FP)

คำนวณ Function Point (FP)

$$FP = UFP \times VAF$$

จำนวนของฟังก์ชัน หาได้จาก FP ที่ยังไม่ได้ถูกปรับแต่ง (Unadjusted Function Point : UFP) คูณกับค่าปัจจัยคุณลักษณะของระบบ (Value Adjustment Factor : VAF)

 $VAF = 0.65 + [0.01 \times Total DI]$

DI: Degree of Influence

Function Point (FP)

- กระบวนการนับฟังก์ชันพอยต์ มีลักษณะดังนี้
- ขั้นที่ 1 นำ Requirement ที่เก็บรวบรวมไว้มาทำการแบ่งฟังก์ชันพอยต์
- ขั้นที่ 2 ประเมินความซับซ้อนของฟังก์ชัน
- ขั้นที่ 3 เปรียบเทียบความซับซ้อน เพื่อให้ได้ระดับความซับซ้อน เพื่อคำนวณ ฟังก์ชันพอยต์ที่ยังไม่ได้ปรับค่า (Unadjusted Function Point : UFP)
- ขั้นที่ 4 คำนวณค่าตัวแปรปรับค่า (Value Adjustment Factor) ตามลักษณะของ โครงการ
- ขั้นที่ 5 คำนวณจำนวนฟังก์ชันพอยต์ที่ผ่านการปรับค่า (Adjusted Function Point : AFP)
- ขั้นที่ 6 ฟังก์ชันพอยต์ที่ผ่านการปรับค่า สามารถนำไปคำนวณเป็น LOC ได้

ขั้นตอนที่ 1, 2

จาก Product Backlog ดังรูป หรือสามารถแยกประเภทของ Use Case ตามฟังก์ชันพอยต์

Add Order Check Order

Initiate Change Request

Report

Order Notification

<u>ประเมิน</u>ความซับซ้อนของฟังก์ชัน

- External Input (EI) ข้อมูลที่รับเข้ามาในระบบ เช่น เพิ่ม ลบ แก้ไขข้อมูล เป็นต้น
- External Output (EO) ข้อมูลที่เป็นผลลัพธ์จากการประมวลผลข้อมูลที่ ใค้รับจากภายในระบบ เช่น พิมพ์
- External Queries(EQ) กระบวนการดึงข้อมูลและประมวลจากการค้นหา ข้อมูลของผู้ใช้
- Internal Logical Files (ILF) จัดการเกี่ยวกับไฟล์
- External Interface Files (EIF) ใฟล์ที่เกี่ยวข้อมูลที่ใช้อ้างอิงหรือ ร่วมกับระบบอื่น

ขั้นตอนที่ 3 Unadjusted Function Point : UFP

Item	Type	DETs	RETs/ FTRs	Complexity	Value
Check Order Status	EQ	17	1	Low	1X 3
Add Order	El	17	1	Average	1X 4
Initiate Change					
Request	El	12	1	Low	1 x3
Order Notification	EQ	15	1	Low	1 x 3
Report	EQ	6	1	Low	1 x 3
Order File	ILF	17	1	Low	1 x 7

Unadjusted Function Point: UFP

- แต่ละฟังก์ชันพอยต์นั้น มีองค์ประกอบต่างๆ ในฟังก์ชันแต่ละประเภท
 ซึ่งจะแตกต่างกันได้ เช่น
 - การเกี่ยวข้องกับองค์ประกอบข้อมูล (Data Element : DET)
 - เป็นข้อมูล เปรียบเสมือนฟิลด์ข้อมูลที่สนใจในแต่ละฟิลด์
 - เรคคอร์คข้อมูล (Record Element : RET)
 - กลุ่มของข้อมูล หรือกลุ่มย่อยของ DET หรือการนับประเภทของเรคคอร์ด ข้อมูลที่เกี่ยวข้องสัมพันธ์กับฟังก์ชันที่สนใจ
 - ประเภทไฟล์ (File Type of Record : FTR)

Unadjusted Function Point : UFP

Item	Туре	DETs	RETs/ FTRs	Complexity	Value
Check Order Status	EQ	17	1	Low	1X 3
Add Order	El	17	1	Average	1X 4
Initiate Change					
Request	El	12	1	Low	1 x3
Order Notification	EQ	15	1	Low	1 x 3
Report	EQ	6	1	Low	1 x 3
Order File	ILF	17	1	Low	1 x 7
	Summary L	Inadjusted F	unction Po	int: UFP	23 FP

Unadjusted Function Point : UFP

	FP Comple	exity Level				
Int	ernal Logical Files an	d External Interface file	es .			
Record Elements		Data Elements				
	1-19	20-50	51+			
1	Low	Low	Average			
2-5	Low	Average	High			
6+	Average	High	High -			
lr Ir	iternal External Outp	ut and External Inquiry				
File Types	Data Elements					
	1-5	6-19	20+			
0 or 1	Low	Low	Average			
2-3	Low	Average	High			
4+	Average	High	High			
	For Exter	nal Input				
File Types		Data Elements				
	1-4	5-15	16+			
0 or 1	Low	Low	Average			
2-3	Low	Average	High			
3+	Average	High	High			

Unadjusted Function Point : UFP

Item	Туре	DETs	RETs/ FTRs	Complexity	Value
Check Order Status	EQ	17	1	Low	1X 3
Add Order	El	17	1	Average	1X 4
Initiate Change					
Request	El	12	1	Low	1 x3
Order Notification	EQ	15	1	Low	1 x 3
Report	EQ	6	1	Low	1 x 3
Order File	ILF	17	1	Low	1 x 7
	Summary L	Inadjusted F	unction Po	int: UFP	23 FP

Unadjusted Function Point: UFP

	Complexity-Weight Complexity-Weight			
Function Type	Low	Average	High	
Internal Logical File (ILF)	7	10	15	
External Interface Files (EIF)	5	7	10	
3. External Input (EI)	3	4	6	
4. External Output: (EO)	4	5	7	
5. External Inquiry (EQ)	3	4	6	

Unadjusted Function Point: UFP

Item	Туре	DETs	RETs/ FTRs	Complexity	Value
Check Order Status	EQ	17	1	Low	1X 3
Add Order	EI	17	1	Average	1X 4
Initiate Change					
Request	El	12	1	Low	1 x3
Order Notification	EQ	15	1	Low	1 x 3
Report	EQ	6	1	Low	1 x 3
Order File	ILF	17	1	Low	1 x 7
	Summary U	Inadjusted F	unction Po	int: UFP	23 FP

UFP = 23 FP

คำนวณ Function Point (FP)

จำนวนของฟังก์ชัน หาได้จาก FP ที่ยังไม่ได้ถูกปรับแต่ง (Unadjusted Function Point : UFP) คูณกับค่าปัจจัยคุณลักษณะของระบบ (Value Adjustment Factor : VAF)

 $VAF = 0.65 + [0.01 \times Total DI]$

DI: Degree of Influence

ขั้นตอนที่ 4

ทำการเปรียบเทียบค่าของ Value

Adjustment Factors : VAF เพื่อหา

Total DI ตามสูตร

 $VAF = 0.65 + [0.01 \times Total DI]$

มีค่า [0-5]

	1.	Data communication	5
	2.	Distributed data processing	2
	3.	Performance	3
	4.	Heavily use configuration	0
	5.	Transaction rate	0
	6.	Online data entry	4
	7.	End user efficiency	2
	8.	Online Update	4
	9.	Complex processing	0
	10.	Reusability	3
	11.	Installation ease	0
	12.	Operational ease	0
	13.	Multiple sites	0
	14.	Facilitate Change	0
_	\rightarrow	Total Degree Influence (TDI)	17

การประเมิน VAF นั้นจะประเมินค่าของ 14 ปัจจัย ดังนี้

- 1. การติดต่อสื่อสารข้อมูล (Data Communication)
- 2. การประมวลผลข้อมูลแบบกระจาย (Distributed Data Processing)
- 3. ประสิทธิภาพของระบบ (Performance)
- 4. การแก้ไขค่าของระบบ (Configuration)
- 5. ปริมาณรายการข้อมูล (Transaction)
- 6. การป้อนข้อมูลเข้าสู่ระบบแบบออนไลน์ (Online Data Entry)
- 7. ประสิทธิภาพการใช้งานของผู้ใช้ (End user Efficiency)
- 8. การปรับปรุงข้อมูลแบบออนไลน์ (Online Update)
- 9. ความซับซ้อนของการประมวลผล (Complex Processing)
- 10. การนำไปใช้ซ้ำได้ (Reusability)
- 11. ความง่ายในการติดตั้ง (Installation Ease)
- 12. ความง่ายในการดำเนินงาน (Operational Ease)
- 13. การใช้งานได้หลายไซต์ (Multiple Sites)
- 14. รองรับการเปลี่ยนแปลงความต้องการของผู้ใช้ (Change Requirement)

แทนค่าในสูตร

$$VAF = 0.65 + [0.01 \times 17]$$

$$= 0.82$$

$$FP = UFP \times VAF$$

$$= 23 \times 0.82$$

ตารางเปรียบเทียบค่า FP เพื่อแปลงไปเป็น LOC

LOC/FP (average estimate)
320
128
105
105
90
70
67
31
30
20
15
6

ถ้าหากจัดทำซอฟต์แวร์โดยใช้ภาษา PHP จะได้ค่า LOC = 18.86 x 67 = 1263.62 ~1200 LOC

การประมาณการบุคลากร

Productivity : ประสิทธิผลในการผลิตงาน

Productivity = Output Size (LOC or Function Point)

Effort (Man-Month)

COCOMO Model

Boehm B.W. ได้พัฒนา COCOMO Model (Constructive Cost Model) เพื่อวัด Effort ในการพัฒนาซอฟต์แวร์ที่คิดเป็นหน่วย คน-เดือน (person-month) ที่ประมาณจากขนาดของโปรแกรม โดยนับจำนวนบรรทัดของโปรแกรมต้นฉบับเป็นหลัก

COCOMO Model

$$1000 LOC = 1 KLOC$$

$$E = a (KLOC)^b x EAF$$
 effort (person-month)

$$D = c E^d$$
 duration (month)

- a b c และ d : constant ที่ขึ้นกับประเภทของ software
- EAF : Effort Adjustment Factor

ค่า constant ขึ้นอยู่กับประเภทของ Software

System	a	b	c	d
organic	3.2	1.05	2.5	0.38
semidetached	3.0	1.12	2.5	0.35
embedded	2.8	1.20	2.5	0.32

Organic

- ใช้ทีมขนาดเล็ก(1-3คน) ภายใต้ HW, SW และการประยุกต์ที่คุ้นเคย
- บุคลากรที่เกี่ยวข้องกับการพัฒนามีประสบการณ์เป็นอย่างดีเกี่ยวกับซอฟต์แวร์ที่มี ลักษณะคล้ายๆกันมาก่อน
- กิจกรรมต่างๆเริ่มต้นได้อย่างรวดเร็ว
- ซอฟต์แวร์มีขนาดเล็ก

Semi-detached

- เป็นซอฟแวร์ที่มีขนาดและความยากปานกลาง
- ทีมงานประกอบด้วยกลุ่มบุคคลที่มีทั้งประสบการณ์และไม่มีประสบการณ์
- อยู่ระหว่างประเภท Organic และ Embedded

Embedded

- เป็นซอฟต์แวร์ที่พัฒนาภายใต้สิ่งแวคล้อมที่มีความซับซ้อน มีความเสี่ยงสูงและมีเงื่อนไขที่ยุ่งยาก
- ซอฟต์แวร์ที่พัฒนาแล้วจะถูกนำไปใช้ภายใต้สิ่งแวคล้อมที่ไม่มีความยืดหยุ่น
- เช่น ซอฟต์แวร์ที่ใช้ควบคุมเกี่ยวกับอุปกรณ์ เช่น Internet of Things (IoTs)

Effective Adjustment Factor: EAF

Product AttributesEffective Adjustment Factor: EAF

Cost Drivers	Very Low	Low	Nominal ;	High	Very High
Product Attributes					
Required Software Reliability	0.75	0.88	1.00	1.15	1.40
Size of Application Database		0.94	1.00	1.08	1.16
Complexity of The Product	0.70	0.85	1.00	1.15	1.30

Hardware Attributes

Hardware Attributes

Runtime Performance Constraints		1.00	1.11	1.30
Memory Constraints		1.00	1.06	1.21
Volatility of the virtual machine environment	0.87	1.00	1.15	1.30
Required turnabout time	0.94	1.00	1.07	1.15

Personnel Attributes

Personnel attributes					
Analyst capability	1.46	1.19	1.00	0.86	0.71
Applications experience	1.29	1.13	1.00	0.91	0.82
Software engineer capability	1.42	1.17	1.00	0.86	0.70
Virtual machine experience	1.21	1.10	1.00	0.90	
Programming language experience	1.14	1.07	1.00	0.95	

Project Attributes

Project Attributes					
Application of software engineering methods	1.24	1.10	1.00	0.91	0.82
Use of software tools	1.24	1.10	1.00	0.91	0.83
Required development schedule	1.23	1.08	1.00	1.04	1.10

Effective Adjustment Factor: EAF

cost driver attribute

Product	high	1.15	
Hardware	high	1.06	
Personal	low	1.13	
Project	low	1.17	

https://www.geeksforgeeks.org/software-engineering-cocomo-model/

ตัวอย่าง

- anic สมมติว่าทีมของคุณเป็นแบบ Organic
- $E = a (KLOC)^b \times EAF$
- $E = 3.2 \times (1.2)^{1.05} \times 1.61 = \dots$ PM
 - ใช้กำลังบุคลากรประมาณ คน-เคือน
- D = c E^d
- $D = 2.5 \times (...)^{0.38} = ... M$
 - ใช้เวลาประมาณ เคือน
 - สรุปคือ ถ้าคุณจะงบประมาณสำหรับโปรเจคนี้ สมมติคุณให้เงินเดือนเฉลี่ย 12,000/คน
 - คน *12000 บาท * เดือน =+-20%

Homework

- ให้แต่ละกลุ่ม ทำการคำนวณการประมาณการค่าใช้จ่ายโปรเจคการจองห้องประชุมดังกล่าว
- ส่งภายในวันที่ 10 มีนาคม 2565 ก่อนเวลา 21.00 น. ในอีเมล์ wararat@kku.ac.th