

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ZARZĄDZANIA INFORMATYKA I EKONOMETRIA

Zależność oczekiwanej długości życia w krajach świata od wybranych czynników społeczno-gospodarczych

Mateusz Grzelik 18 czerwca 2024

1 Cel projektu i hipotezy badawcze

Celem projektu jest ustalenie, jakie czynniki oraz w jaki sposób wpływają na oczekiwaną długość życia. Wśród potencjalnych regresorów znajdują się wskaźniki demograficzne (np. gęstość zaludnienia), ekonomiczne (PKB per capita), środkowiskowe (Emisja CO2 per capita) oraz geograficzne (położenie w Europie lub Afryce). Główna hipoteza ma postać:

Oczekiwana długość życia jest zależna od pewnych czynników społecznych, gospodarczych, środowiskowych lub geograficznych.

W celu zweryfikowania hipotezy głównej postawimy następujące hipotezy szczegółowe:

- 1. Populacja danego kraju wpływa na oczekiwaną długość życia.
- 2. Wartość PKB per capita wpływa pozytywnie na oczekiwaną długość życia.
- 3. Gęstość zaludnienia wpływa na oczekiwaną długość życia.
- 4. Procent populacji zurbanizowanej wpływa pozytywnie na oczekiwaną długość życia.
- 5. Emisja CO2 na mieszkańca wpływa na oczekiwana długość życia.
- 6. Procent populacji z dostępem do podstawowych usług sanitarnych wpływa pozytywnie na oczekiwaną długość życia.
- 7. Położenie państwa w Europie wpływa pozytywnie na oczekiwaną długość życia.
- 8. Położenie państwa w Afryce wpływa negatywnie na oczekiwaną długość życia.
- 9. Stosunek liczby mężczyzn do kobiet wpływa na oczekiwaną długość życia.

Jeżeli conajmniej jedna z hipotez okaże się prawdziwa, potwierdzi to hipotezę główną.

Ze względu na ustalony cel projektu (wskazanie zależności między zmiennymi), większą uwagę będziemy przykładać do tego jak dobrze model jest dopasowany do danych, niż do efektywności pod względem prognozowania.

2 Źródła oraz opis danych

Dane pochodzą z następujących witryn: GapMinder, World Bank oraz Wikpedia. Poniżej znajdują się bezpośrednie linki do źródeł poszczególnych zmiennych. Zbiór opisuje 156 państw ze wszystkich kontynentów.

Zbiór danych zawiera 11 zmiennych:

- Oczekiwana długość życia zmienna objaśniana. Wyrażona w latach z dokładnością do części dziesiątych.
 Dane pochodzą z roku 2019, z bazy danych GapMinder.
- Populacja stan na rok 2019, dane pochodzą z bazy danych GapMinder.
- PKB per capita w aktualnych dolarach stan na rok 2019, dane pochodzą z bazy danych World Bank.
- **Gęstość zaludnienia** stan na rok 2019, ilość ludzi przypadająca na kilometr kwadratowy. Dane pochodzą z bazy danych World Bank.
- Zurbanizowany procent populacji stan na rok 2019. Procent populacji zamieszkały w miastach. Dane pochodzą z bazy danych World Bank.
- Emisja CO2 per capita stan na rok 2019, wyrażona w tonach na osobę. Dane pochodzą z bazy danych World Bank.
- Procent populacji mający dostęp do co najmniej podstawowych usług sanitarnych stan na rok 2019.. Dane pochodzą z bazy danych World Bank.
- Czy europejskie zmienna binarna, przyjmuje wartość 1 jeżeli państwo znajduje się w Europie, 0 w pozostałych przypadkach. W sumie 40 państw europejskich.
- Czy afrykańskie zmienna binarna, przyjmuje wartość 1 jeżeli państwo znajduje się w Afryce, 0 w pozostałych przypadkach. W sumie 39 państw afrykańskich.
- Stosunek mężczyzn do kobiet ilość mężczyzn przypadająca na jedną kobietę. Dane pochodzą z artykułu
 na Wikipedii. Ze względu na brak dostępności danych z roku 2019, wykorzystano dane z roku 2020.

We wszystkich przypadkach data dostępu to 06.06.2024.

Rysunek 1: Państwa obecne w zbiorze danych

3 Statystyki opisowe oraz wykresy zależności

3.1 Oczekiwana długość życia

Średnia	73,230
Mediana	74,175
Minimalna	51,770
Maksymalna	84,850
Odchylenie standardowe	7,2549
Wsp. zmienności	0,099071
Skośność	-0,48638
Kurtoza	-0,41839
Percentyl 5%	60,920
Percentyl 95%	83,014
Zakres Q3-Q1	11,105
Brakujące obs.	0

Rysunek 2: Statystyki opisowe dla oczekiwanej długości życia

Ujemna różnica między wartością średniej oraz mediany jak i współczynnik skośności na poziomie około -0.5 sugerują, że rozkład jest lekko lewostronnie asymetryczny. Zilustrujmy dane na histogramie:

Rysunek 3: Histogram dla zmiennej objaśnianej

3.2 Populacja

Średnia	3,6807e+007
Mediana	8,7742e+006
Minimalna	10764,
Maksymalna	1,4338e+009
Odchylenie standardowe	1,2355e+008
Wsp. zmienności	3,3567
Skośność	9,5495
Kurtoza	103,52
Percentyl 5%	57897,
Percentyl 95%	1,4845e+008
Zakres Q3-Q1	2,7971e+007
Brakujace obs.	0

Rysunek 4: Statystyki opisowe dla populacji

Rozkład tej zmiennej jest mocno asymetryczny prawostronnie - jest znacznie więcej państw o niewielkiej populacji. Poza tym w zbiorze danych znajduje się znacząca wartość odstająca - są to Chiny z populacją około 1,43 miliarda.

3.3 PKB per capita w aktualnych dolarach

Średnia	17885,
Mediana	6896,8
Minimalna	216,97
Maksymalna	1,9938e+005
Odchylenie standardowe	27606,
Wsp. zmienności	1,5435
Skośność	3,4629
Kurtoza	16,377
Percentyl 5%	571,97
Percentyl 95%	65263,
Zakres Q3-Q1	21465,
Brakujące obs.	0

Rysunek 5: Statystyki opisowe dla PKB per capita

Mediana jest w tym przypadku znacznie mniejsza od średniej, zatem rozkład jest silnie asymetryczny prawostronnie, co potwierdza duży współczynnik skośności. Zmienną o takim rozkładzie warto spróbować zlogarytmować. Przedstawmy na wykresie związek ze zmienną objaśnianą dla PKB per capita przed i po zlogarytmowaniu.

Rysunek 6: Porównanie zależności dla PKB per capita przed i po zlogarytmowaniu

Współczynnik korelacji w obu przypadkach jest statystycznie istotny, jednak dla zmiennej zlogarytmowanej jest znacznie wyższy, wyższa jest również statstyka testowa (Bez logarytmu: $r=0.57,\,t=8.71,\,$ z logarytmem: $r=0.83,\,$ t=18.76). Powyższe wyniki sugerują użycie w modelu zmiennej zlogarytmowanej, o czym więcej w sekcji 4.

3.4 Gęstość zaludnienia

Średnia	383,14
Mediana	89,265
Minimalna	3,2937
Maksymalna	18270,
Odchylenie standardowe	1688,3
Wsp. zmienności	4,4065
Skośność	8,7065
Kurtoza	83,144
Percentyl 5%	6,4906
Percentyl 95%	744,58
Zakres Q3-Q1	175,08
Brakujące obs.	0

Rysunek 7: Statystyki opisowe dla gęstości zaludnienia

Ponownie, duża skośność sugeruje, że mamy do czynienia ze zmienną o prawostronnie asymetrycznym rozkładzie. Przedstawmy na wykresie związki ze zmienną objaśnianą przed i po zlogarytmowaniu:

Rysunek 8: Porównanie zależności dla gęstości zaludnienia przed i po zlogarytmowaniu

Pomimo, że efekt nie jest tak uderzający jak w przypadku PKB per capita, logarytm poprawia wartość współczynnika korelacji oraz jego istotność (bez logarytmu: r=0.18, t=2.32, z logarytmem: r=0.25, t=3.2, w obu przypadkach p<0.05), zatem jest to transformacja warta rozważenia przy wyborze ostatecznej postaci modelu.

3.5 Procent populacji zurbanizowanej

Średnia	60,070
Mediana	59,538
Minimalna	13,250
Maksymalna	100,00
Odchylenie standardowe	23,753
Wsp. zmienności	0,39542
Skośność	-0,15060
Kurtoza	-1,0322
Percentyl 5%	19,943
Percentyl 95%	97,469
Zakres Q3-Q1	38,890
Brakujące obs.	0

Rysunek 9: Statystyki opisowe dla procenta populacji zurbanizowanej

W tym przypadku rozkład okazuje się być z dobrym przybliżeniem symetryczny. Na uwagę zasługuje ujemna wartość kurtozy - rozkład jest platokurtyczny, czyli procent populacji zurbanizowanej jest szeroko rozłożony wokół średniej w krajach świata.

3.6 Emisja CO2 na mieszkańca

Średnia	4,1528
Mediana	3,3751
Minimalna	0,033715
Maksymalna	22,063
Odchylenie standardowe	4,1092
Wsp. zmienności	0,98950
Skośność	1,6720
Kurtoza	3,6073
Percentyl 5%	0,14062
Percentyl 95%	12,515
Zakres Q3-Q1	5,4549
Brakujące obs.	0

Rysunek 10: Statystyki opisowe dla emisji CO2 na mieszkańca

Rozkład ponownie okazuje się prawostronnie asymetryczny, jednak logarytmiczna transformacja czyni rozkład lewostronnie asymetrycznym. Ponadto współczynnik korelacji ze zmienną objaśnianą zarówno bez jak i z transformacją okazuje się nieistotny.

3.7 Procent populacji z dostępem do usług sanitarnych

Średnia	76,525
Mediana	90,339
Minimalna	8,6520
Maksymalna	100,00
Odchylenie standardowe	28,107
Wsp. zmienności	0,36729
Skośność	-1,0311
Kurtoza	-0,39642
Percentyl 5%	18,060
Percentyl 95%	100,00
Zakres Q3-Q1	44,338
Brakujące obs.	0

Rysunek 11: Statystyki opisowe dla procenta populacji z dostępem do usług sanitarnych

Rozkład w tym przypadku jest asymetryczny lewostronnie - w ponad połowie państw (dokładnie 80) w zbiorze danych procent populacji z dostępem do usług sanitarnych jest wyższy od 90%. W związku z powyższym występuje też niewielki współczynnik zmienności, który może mieć negatywny wpływ na interpretowalność parametrów modelu.

3.8 Czy państwo znajduje się w Europie

Rysunek 12: Wykres pudełkowy - oczekiwana długość życia w państwach Europejskich a reszcie świata

Powyższy wykres sugeruje, że państwa europejskie mają na ogół wyższą oczekiwaną długość życia.

3.9 Czy państwo znajduje się w Afryce

Rysunek 13: Wykres pudełkowy - oczekiwana długość życia w państwach Afrykańskich a reszcie świata

Powyższy wykres sugeruje, że państwa afrykańskie maja niższa oczekiwana długość życia.

Adnotacja do wykresów pudełkowych dla zmiennych binarnych

Nie należy wyciągać pochopnych wniosków z wykresów - może się bowiem okazać, że parametr przy zmiennej binarnej w modelu nie będzie istotnie różny od zera. Oznaczałoby to, że widoczna na wykresie różnica jest w rzeczywistości wypadkową pozostałych uwzględnionych w modelu czynników. Nawet jeżeli parametry okażą się istotnie różne od zera, nie można przyjąć, że różnice są spowodowane jedynie przez lokalizację danego państwa ceteris paribus. Możliwe bowiem, że istnieją inne, pominięte w tym projekcie czynniki.

3.10 Stosunek mężczyzn do kobiet

Średnia	1,0165
Mediana	0,98500
Minimalna	0,86000
Maksymalna	3,3900
Odchylenie standardowe	0,24118
Wsp. zmienności	0,23725
Skośność	7,9438
Kurtoza	68,988
Percentyl 5%	0,89700
Percentyl 95%	1,1130
Zakres Q3-Q1	0,057500
Brakujące obs.	0

Rysunek 14: Statystyki opisowe dla stosunku mężczyzn do kobiet

Niski współczynnik zmienności oznacza, że większość wartości zmiennej oscyluje wokół jedynki - różnice w liczbie kobiet i mężczyzn w większości państw są nieznaczne. Rozkład zaburzają obserwacje odstające, czyli Katar, gdzie na jedną kobietę przypada około 3.4 mężczyzny oraz Zjednoczone Emiraty Arabskie, gdzie wskaźnik ten wynosi około 2.56.

3.11 Wykresy zależności

Poniżej znajdują się wykresy zależności każdej ze zmiennych objaśniających ze zmienną objaśnianą. PKB per capita oraz gęstość zaludnienia zlogarytmowane. Ze zbioru danych zostały usunięte Katar oraz Zjednoczone Emiraty Arabskie (ze względu na odstający stosunek liczby mężczyzn do kobiet) oraz Chiny (ze względu na odstającą populację).

Rysunek 15: Wykresy zależności cz. I

Rysunek 16: Wykresy zależności cz. II

Rysunek 17: Wykresy zależności cz. III

Rysunek 18: Wykresy zależności cz. IV

Wykresy dla logarytmu z PKB per capita oraz procenta populacji zurbanizowanej najbardziej przypominają zalezność liniową, zatem spodziewamy się ich wysokiej istotności w modelu. Słabsza zależność jest widoczna w przypadku logarytmu z gęstości zaludnienia oraz procenta populacji z dostępem do usług sanitarnych - tutaj istnieje szansa na przynajmniej częściową istotność. Natomiast dla populacji, emisji CO2 oraz stosunku mężczyzn do kobiet zależność jest prawie niewidoczna - będą to zmienne które prawdopodobnie zostaną wykluczone z ostatecznej postaci modelu.

3.12 Macierz korelacji

Rysunek 19: Macierz korelacji dla zmiennych modelu

Macierz korelacji potwierdza wnioski płynące z wykresów - kandydatami na istotne regresory są PKB per capita (r=0.8), procent populacji zurbanizowanej (r=0.6), a nieco gorszymi gęstość zaludnienia (r=0.2) oraz procent populacji z dostępem do usług sanitarnych (r=0.3). Macierz korelacji ujawnia także dość silną zależność w przypadku zmiennych binarnych określających czy dane państwo leży w Europie lub w Afryce.

Uwagę zwracają wysokie korelacje w środku macierzy, pomiędzy zmiennymi objaśniającymi (np. dla PKB per capita i procent populacji zurbanizowanej r=0.7). Możliwe zatem, że w modelu wystąpi współliniowość lub silny efekt katalizy. Aby zapobiec tym zjawiskom w kolejnej sekcji zredukujemy zbiór zmiennych objaśniających.

4 Wstępna postać modelu i redukcja zbioru zmiennych objaśniających

4.1 Wstępna postać modelu

Wyestymujemy model ściśle liniowy, z uwzględnieniem wszystkich zmiennych w zbiorze danych.

Model 7: Estymacja KMNK, wykorzystane obserwacje 1-153 Zmienna zależna (Y): life_expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	64,1177	5,22447	12,27	4,23e-024	***
population	1,93543e-09	7,19898e-09	0,2688	0,7884	
gdp_per_capita_c~	8,19779e-05	1,94922e-05	4,206	4,57e-05	***
pepole_per_sq_km	-0,000449549	0,000266532	-1,687	0,0938	*
urbanized percen~	0,0981911	0,0175751	5,587	1,13e-07	***
co2_emissions_pe~	-0,0512877	0,0881978	-0,5815	0,5618	
percentage_popul~	0,0209598	0,0133424	1,571	0,1184	
is_european	2,35307	1,06224	2,215	0,0283	**
is_african	-5,88599	0,926250	-6,355	2,62e-09	***
males_per_female	1,40706	5,03912	0,2792	0,7805	
Średn.aryt.zm.zależne	j 73,17693	Odch.stand.zm.zale	żnej 7,3130	39	
Suma kwadratów reszt	2777,780	Błąd standardowy r	eszt 4,4073	84	
Wsp. determ. R-kwadra	t 0,658289	Skorygowany R-kwad	lrat 0,6367	83	
F(9, 143)	30,60920	Wartość p dla test	u F 3,19e-	29	
Logarytm wiarygodnośc	i -438,8688	Kryt. inform. Akai	ke'a 897,73.	75	
Kryt. bayes. Schwarza	928,0419	Kryt. Hannana-Quin	na 910,04	77	

Rysunek 20: Wyniki estymacji modelu ze wszystkimi zmiennymi, bez logarytmów

Część zmiennych okazuje się nieistotna, wobec tego zredukujemy liczbę zmiennych objaśniających z użyciem metody Hellwiga oraz krokowej wstecznej. Rozważymy takze postać modelu z logarytmami PKB per capita i gęstości zaludnienia.

Model 8: Estymacja KMNK, wykorzystane obserwacje 1-153 Zmienna zależna (Y): life expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	42,8070	4,86628	8,797	4,12e-015	***
population	5,66011e-09	6,19543e-09	0,9136	0,3625	
l_gdp_per_capita~	3,00415	0,368741	8,147	1,69e-013	***
l pepole per sq ~	0,455762	0,215686	2,113	0,0363	**
urbanized percen~	0,0224861	0,0184457	1,219	0,2248	
co2 emissions pe~	-0,0352095	0,0758915	-0,4639	0,6434	
percentage popul~	0,0150975	0,0115044	1,312	0,1915	
is european	1,42884	0,888721	1,608	0,1101	
is african	-2,69581	0,895116	-3,012	0,0031	***
males_per_female	-0,231203	4,29994	-0,05377	0,9572	
Średn.aryt.zm.zależne	j 73,17693	Odch.stand.zm.zale	żnej 7,3130	39	
Suma kwadratów reszt	2059,016	Błąd standardowy r	eszt 3,7945	63	
Wsp. determ. R-kwadra	t 0,746709	Skorygowany R-kwad	lrat 0,7307	67	
F(9, 143)	46,84082	Wartość p dla test	u F 2,47e-	38	
Logarytm wiarygodnośc	i -415,9628	Kryt. inform. Akai	ke'a 851,92	56	
Kryt. bayes. Schwarza	882,2300	Kryt. Hannana-Quin	na 864,23	58	

Wyłączając stałą, największa wartość p jest dla zmiennej 11 (males per female)

Rysunek 21: Wyniki estymacji modelu ze wszystkimi zmiennymi, z logarytmami

4.2 Metoda Hellwiga

4.2.1 Dla wersji bez logarytmów

Dla modelu bez logarytmów podzbiór zmiennych objaśniających o najwyższej integralnej pojemności informacyjnej (H=0.632) to:

- PKB per capita
- Procent zurbanizowanej populacji
- Czy państwo europejskie
- Czy państwo afrykańskie

4.2.2 Dla wersji z logarytmami

Dla modelu z logarytmami podzbiór zmiennych objaśniających o najwyższej integralnej pojemności informacyjnej (H = 0.706) zawiera jedynie zmienną PKB per capita (z logarytmem).

4.3 Metoda Krokowa Wsteczna

4.3.1 Dla wersji bez logarytmów

Dla modelu bez logarytmów podzbiór wybrany metodą krokową wsteczną to:

- PKB per capita
- Procent zurbanizowanej populacji
- Czy państwo europejskie
- Czy państwo afrykańskie

Zatem jest identyczny jak w sekcji 4.2.1.

4.3.2 Dla wersji z logarytmami

Dla modelu z logarytmami podzbiór wybrany metodą krokową wsteczną to:

- PKB per capita (logarytm)
- Gęstość zaludnienia (logarytm)
- Czy państwo afrykańskie

4.4 Porównanie modeli

Rozważymy trzy zdefiniowane powyżej zbiory zmiennych objaśniających i porównamy wyestymowane na ich podstawie modele.

	Model 1	Model 2	Model 3
Metoda doboru	Hellwiga/Krokowa wsteczna	Hellwiga	Krokowa wsteczna
Współczynnik determinacji \mathbb{R}^2	0.643	0.706	0.734
Liczba zmiennych	4	1	3
Skorygowany R^2	0.633	0.704	0.728
Kryterium informacyjne Akaike'a	894.42	858.71	847.65
P-value w teście Breuscha-Pagana	0.03	0.03	0.56

Tabela 1: Zestawienie wyestymowanych modeli

Model 3 (gdzie zmienne objaśniające to PKB per capita, gęstość zaludnienia oraz czy państwo jest afrykańskie) charakteryzuje się najwyższą wartością skorygowanego współczynnika determinacji oraz najniższą wartością kryterium informacyjnego Akaike'a. Ponadto, jako jedyny jest homoskedastyczny według testu Breuscha-Pagana.

4.5 Obserwacje odstające

W celu zidentyfikowania obserwacji odstających wyznaczymy odległości Cook'a dla każdej z obserwacji (więcej na temat metody w sekcji 6.6).

Rysunek 22: Odległości Cook'a - przed usunięciem outlierów

Nie ma konsensusu co do granicznej wartości odległości Cook'a. W niektórych opracowaniach [1] obserwacje o odległościach większych od trzykrotności średniej odległości są uważane za możliwe obserwacje odstające. W

naszym zbiorze danych średnia odległość Cook'a wynosi 2.62, jej trzykrotność - 7.86. Na wykresie widoczne są trzy obserwacje przekraczające ten próg:

- \bullet obserwacja 56 Hong Kong ($D_i=9.94,y=84.45)$
- obserwacja 92 Monako ($D_i = 21.24, y = 80.06$)
- obserwacja 124 Singapur ($D_i = 11.28, y = 84.85$)

Obserwacje te to wysoko rozwinięte państwa-miasta (Hong Kong administracyjne jest częścią Chin, w praktyce jednak gospodarka jest w dużej części odrębna od gospodarki Chińskiej), o ponadprzeciętnych wartościach zmiennej objaśnianej jak i zmiennych objaśniających. W dalszej analizie pozbędziemy się ich ze zbioru danych.

5 Ostateczna postać modelu

Ostateczna postać modelu to:

$$y = 39.42 + 3.62 \cdot ln(x_1) + 0.6 \cdot ln(x_2) - 2.51 \cdot x_3$$

gdzie x_1 - PKB per capita, x_2 - gęstość zaludnienia i x_3 - zmienna binarna, określa czy państwo leży w Afryce.

Model 2: Estymacja KMNK, wykorzystane obserwacje 1-150 Zmienna zależna (Y): life expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	39,4233	2,66127	14,81	6,91e-031	***
l gdp per capita~	3,61875	0,258360	14,01	8,60e-029	***
l pepole per sq ~	0,600878	0,239437	2,510	0,0132	**
is_african	-2,51483	0,877326	-2,866	0,0048	***
Średn.aryt.zm.zależnej Suma kwadratów reszt Wsp. determ. R-kwadrat F(3, 146) Logarytm wiarygodności	2086,388 : 0,732939 133,5636	Odch.stand.zm.zale Błąd standardowy r Skorygowany R-kwad Wartość p dla test Kryt. inform. Akai	eszt 3,7802 Irat 0,7274 u F 1,15e-	55 51 41	
Kryt. bayes. Schwarza	840,6073	Kryt. Hannana-Quin	na 833,45	72	

Rysunek 23: Estymacja parametrów ostatecznej postaci modelu

6 Analiza własności modelu

6.1 Współczynnik determinacji

Współczynnik determinacji w modelu wynosi $R^2 = 0.73$. Przeprowadzimy test istotności współczynnika determinacji (inaczej test istotności wszystkich zmiennych objaśniających) o następujących hipotezach:

$$H_0: a_1 = a_2 = a_3 = 0$$

$$H_1: a_1 \neq 0 \lor a_2 \neq 0 \lor a_3 \neq 0$$

Statystyka testowa postaci:

$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - (k+1)}{k}$$

ma rozkład F o k stopniach swobody licznika i n-(k+1) stopniach swobody mianownika. Obliczona wartość statystyki:

$$F = 133.5636$$

Wartość krytyczna:

$$F_{0.05:3:146} \approx 2.66 \ (p = 1.15 \cdot 10^{-41})$$

Zatem współczynnik determinacji (zbiór zmiennych objaśniających) można uznać za istotny.

6.2 Efekt katalizy

W celu sprawdzenia, czy współczynnik determinacji nie jest fałszywie zawyżony, zbadamy natężenie efektu katalizy oraz sprawdzimy, czy wśród zmiennych nie ma katalizatorów.

Wektor R_0 oraz macierz R mają postać:

$$R_0 = \begin{bmatrix} 0.84\\ 0.18\\ -0.6 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0.07 & -0.59\\ 0.07 & 1 & -0.15\\ -0.59 & -0.15 & 1 \end{bmatrix}$$

Po przekształceniu w regularną parę korelacyjną:

$$R_0 = \begin{bmatrix} 0.18 \\ 0.6 \\ 0.84 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & 0.15 & 0.07 \\ 0.15 & 1 & 0.59 \\ 0.07 & 0.59 & 1 \end{bmatrix}$$

Zmienna X_i z pary $(X_i, X_j), i < j$ jest katalizatorem, jeżeli $r_{ij} < 0$ lub $r_{ij} > \frac{r_i}{r_i}$.

(i, j)	r_{ij}	$r_{ij} - \frac{r_i}{r_j}$
(1, 2)	0.15	-0.15
(1, 3)	0.07	-0.034
(2, 3)	0.59	-0.12

Tabela 2: Wartość wyrażeń determinujących zmienne-katalizatory

Zgodnie z powyższą tabelą, w modelu nie ma katalizatorów. Dodatkowo wyznaczymy względne natężenie efektu katalizy:

$$H \approx 0.66$$

$$\eta = R^2 - H \approx 0.0716$$

$$W_{\eta} = \frac{\eta}{R^2} \cdot 100\% \approx 9.77\%$$

Wobec powyższych wyników, efekt katalizy nie zawyża znacząco współczynnika determinacji.

6.3 Normalność rozkładu składnika losowego

Przedstawny empiryczny rozkład reszt modelu wraz z dopasowaną krzywą Gaussa:

Rysunek 26: Rozkład częstości reszt modelu

Test na normalność rozkładu errors:

```
Test Doornika-Hansena = 13,7112, z wartością p 0,00105356

Test Shapiro-Wilka = 0,96177, z wartością p 0,000357666

Test Lillieforsa = 0,0744926, z wartością p ~= 0,04

Test Jarque'a-Bera = 27,5235, z wartością p 1,05522e-006
```

Rysunek 27: Testy normalności rozkłady składnika losowego

Wszystkie cztery wykonane testy wskazały, że składnik losowy nie ma rozkładu normalnego. Pomimo tego, ze względu na dużą liczbę stopni swobody w modelu, estymatory parametrów mają asymptotyczne rozkłady normalne (na mocy CLT), zatem stosowanie testów t oraz F jest zasadne [2]. Problematyczne natomiast będzie stworzenie przedziału ufności dla prognozy, czym zajmiemy się w sekcji 6.14.

6.4 Istotność zmiennych

6.4.1 Logarytm z PKB per capita

Wykonamy test t-Studenta o następujących hipotezach:

$$H_0: a_1 = 0$$

$$H_1: a_1 \neq 0$$

Statystyka testowa:

$$t = \frac{a_1}{S(a_1)} \approx 14.01$$

Wartość krytyczna:

$$t_{0.05:146} \approx 1.98$$

$$|t_{obl}| > t_{\alpha}$$

Czyli parametr przy zmiennej jest istotnie różny od zera, zatem zmienna jest istotna.

6.4.2 Logarytm z gęstości zaludnienia

Wykonamy test t-Studenta o następujących hipotezach:

 $H_0: a_2 = 0$

 $H_1: a_2 \neq 0$

Statystyka testowa:

$$t = \frac{a_2}{S(a_2)} \approx 2.51$$

Wartość krytyczna:

$$t_{0.05;146} \approx 1.98$$

$$|t_{obl}| > t_{\alpha}$$

Czyli parametr przy zmiennej jest istotnie różny od zera, zatem zmienna jest istotna. W tym przypadku jeżeli poziom istotności wynosiłby 0.01, zmienna nie byłaby istotna.

6.4.3 Czy państwo afrykańskie

Wykonamy test t-Studenta o następujących hipotezach:

 $H_0: a_3 = 0$

 $H_1: a_3 \neq 0$

Statystyka testowa:

$$t = \frac{a_3}{S(a_3)} \approx -2.87$$

Wartość krytyczna:

$$t_{0.05:146} \approx 1.98$$

$$|t_{obl}| > t_{\alpha}$$

Czyli parametr przy zmiennej jest istotnie różny od zera, zatem zmienna jest istotna.

6.5 Testy dodanych i pominiętych zmiennych

6.5.1 Pominięcie gęstości zaludnienia

Wykonamy test restrykcji o następujacych hipotezach:

$$H_0: \alpha_3 = 0$$

$$H_1:\alpha_3\neq 0$$

gdzie α_3 oznacza parametr przy logarytmie z gęstości zaludnienia. Statystyka testowa ma postać:

$$F = \frac{RRSS - URSS}{URSS} \cdot \frac{150 - 4}{1}$$

gdzie RRSS - suma kwadratów błędów w modelu bez gęstości zaludnienia, URSS - suma kwadratów błędów w modelu z gestością zaludnienia. Statystyka ma rozkład F(1, 146).

```
Hipoteza zerowa: parametr regresji jest równy zero dla 1_pepole_per_sq_km Statystyka testu: F(1, 146) = 6,29781, wartość p 0,0131802 Pominięcie zmiennych poprawiło 0 z 3 kryteriów informacyjnych (AIC, BIC, HQC).
```

Model 4: Estymacja KMNK, wykorzystane obserwacje 1-150 Zmienna zależna (Y): life expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const l_gdp_per_capita~ is_african	42,2333 3,60607 -2,80563	2,45735 0,262924 0,885171	17,19 13,72 -3,170	5,44e-037 4,34e-028 0,0019	
Średn.aryt.zm.zależnej Suma kwadratów reszt Wsp. determ. R-kwadrat F(2, 147) Logarytm wiarygodności	2176,386 : 0,721419 190,3368	Odch.stand.zm.zale Błąd standardowy r Skorygowany R-kwad Wartość p dla test Kryt. inform. Akai	eszt 3,8477 Irat 0,7176 u F 1,60e-	72 29 41	
Kryt. bayes. Schwarza	841,9313	Kryt. Hannana-Quin	na 836,56	88	

Rysunek 28: Wyniki testu restrykcji dla gęstości zaludnienia

Przyjmując poziom istotności 0.05 odrzucimy hipotezę zerową, czyli model nie jest istotnie lepszy bez omawianej zmiennej. Należy zaznaczyć, że przy bardziej kategorycznym poziomie istotności konkluzja mogłaby być inna. Podobne wnioski wynikają z testu t-Studenta w sekcji 6.4.3.

6.5.2 Dodanie procenta populacji zurbanizowanej

Rozszerzymy nasz model o procent populacji zurbanizowanej i parametr przy tej zmiennej oznaczymy jako α_4 . Wówczas hipotezy w teście restrykcji mają postać:

$$H_0: \alpha_4 = 0$$

$$H_1: \alpha_4 \neq 0$$

Statystyka testowa:

$$F = \frac{RRSS - URSS}{URSS} \cdot \frac{150 - 5}{1}$$

gdzie RRSS - suma kwadratów błędów w modelu bez procenta populacji zurbanizowanej, URSS - suma kwadratów błędów w modelu z procentem populacji zurbanizowanej. Statystyka ma rozkład F(1, 145).

```
Hipoteza zerowa: parametr regresji jest równy zero dla urbanized_percent_population Statystyka testu: F(1, 145) = 1,5294, wartość p 0,218202
Dodanie zmiennych poprawiło 0 z 3 kryteriów informacyjnych (AIC, BIC, HQC).
```

Model 6: Estymacja KMNK, wykorzystane obserwacje 1-150 Zmienna zależna (Y): life expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	40,2903	2,74743	14,66	1,96e-030	***
l_gdp_per_capita~	3,35474	0,334788	10,02	2,77e-018	***
l pepole per sq ~	0,631616	0,240293	2,629	0,0095	***
is_african	-2,63811	0,881395	-2,993	0,0032	***
urbanized_percen~	0,0226936	0,0183503	1,237	0,2182	
Średn.aryt.zm.zależnej	j 72,97807	Odch.stand.zm.zale	żnej 7,241	005	
Suma kwadratów reszt	2064,611	Błąd standardowy r	eszt 3,773	420	
Wsp. determ. R-kwadrat	0,735726	Skorygowany R-kwad	lrat 0,728	436	
F(4, 145)	100,9183	Wartość p dla test	u F 6,82e	-41	
Logarytm wiarygodnośc:	i -409,4954	Kryt. inform. Akai	ke'a 828,9	909	
Kryt. bayes. Schwarza	844,0440	Kryt. Hannana-Quin	na 835,1	065	

Wyłączając stałą, największa wartość p jest dla zmiennej 6 (urbanized_percent_population)

Rysunek 29: Wyniki testu restrykcji dla procenta populacji zurbanizowanej

Nie ma podstaw do odrzucenia hipotezy zerowej, zatem nie można twierdzić, że dodanie omawianej zmiennej polepsza własności modelu.

6.6 Obserwacje odstające

Obserwacje odstające zindentyfikujemy na podstawie wyznaczenia odległości Cook'a dla każdej z obserwacji. Odległość Cook'a i-tej obserwacji dana jest wzorem [3]:

$$D_i = \frac{\sum_{j=1}^n \hat{y}_j - \hat{y}_{j(i)}}{(k+1)S^2}$$

gdzie \hat{y}_j - przewidywanie wyjściowego modelu dla j-tej obserwacji, $\hat{y}_{j(i)}$ - przewidywanie modelu dla j-tej obserwacji estymowanego z pominięciem i-tej obserwacji, S^2 - wariancja reszt modelu wyjściowego.

Rysunek 30: Odległości Cook'a po usunięciu outlierów

Średnia odległość Cook'a wynosi w tym przypadku 2.65, jej trzykrotność - 7.95. W zbiorze danych nie ma obserwacji znacząco przekraczających ten pułap.

6.7 Test liczby serii

6.7.1 Dla logarytmu z PKB per capita

W celu sprawdzenia założenia o liniowej zależności między zmienną objaśnianą a objaśniającą wykonamy test serii Walda-Wolfowitza o następujących hipotezach:

 $H_0: Posta\'e modelu prawidłowa$

 $H_1: Postać modelu nieprawidłowa$

Uporządkujemy próbę według rosnących wartości logarytmu z PKB per capita. Wówczas liczba serii wśród składnika losowego wynosi 83, liczba elementów dodatnich wynosi 79, a ujemnych 71. Oznaczmy liczbę serii jako L. Wtedy:

$$L \sim N\left(2 \cdot \frac{n_1 n_2}{n} + 1, \sqrt{\frac{2n_1 n_2 (2n_1 n_2 - n)}{n^2 (n - 1)}}\right)$$

gdzie n_1 - liczba elementów dodatnich, n_2 - liczba elementów ujemnych, n - liczba obserwacji. W naszym przypadku:

$$L \sim N(75.79, 6.09)$$

Wyznaczmy 95% przedział ufności:

$$P(-1.96 < Z < 1.96) = 0.95$$

$$P(-1.96 < \frac{L - 76.94}{6.12} < 1.96) = 0.95$$

$$P(63.85 < L < 87.73) = 0.95$$

Ponieważ wyznaczona liczba serii wpada do tego przedziału, nie ma podstaw do odrzucenia hipotezy zerowej. Postać modelu można uznać za prawidłową.

6.7.2 Dla logarytmu z gęstości zaludnienia

Przedział ufności pozostaje taki sam jak w poprzedniej sekcji. Po uporządkowaniu próby według gęstości zaludnienia rosnąco liczba serii wynosi 74. Wartość ta należy do przedziału ufności, zatem nie ma podstaw do odrzucenia hipotezy zerowej - postać modelu można uznać za prawidłową.

6.8 Test RESET

W celu ustalenia, czy dobrana postać analityczna modelu jest poprawna, wykonamy test RESET o następujących hipotezach:

 H_0 : postać modelu prawidłowa

 $H_1: postać modelu nieprawidłowa$

Statystyka testowa postaci:

$$F = \frac{R_{II}^2 - R_1^2}{1 - R_{II}^2} \cdot \frac{n - (k+3)}{2}$$

ma rozkład F o 2 stopniach swobody licznika i n-(k+3)=144 stopniach swobody mianownika. R_{II}^2 oznacza współczynnik determinacji w modelu do którego dodano obliczone na podstawie bazowego modelu wartości zmiennej objaśnianej w kwadracie oraz w sześcianie jako zmienne objaśniające. R_I^2 to współczynnik determinacji bazowego modelu.

Pomocnicze równanie regresji dla testu specyfikacji RESET Estymacja KMNK, wykorzystane obserwacje 1-150 Zmienna zależna (Y): life_expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p
const	-7,64114	293,952	-0,02599	0,9793
l_gdp_per_capita~	-5,36792	68,6720	-0,07817	0,9378
1 pepole per sq ~	-0,876947	11,3865	-0,07702	0,9387
is african	3,98736	47,7293	0,08354	0,9335
yhat^2	0,0391419	0,262758	0,1490	0,8818
yhat^3	-0,000200751	0,00120794	-0,1662	0,8682

Statystyka testu: F = 0.148688, z wartością p = P(F(2,144) > 0.148688) = 0.862

Rysunek 31: Wyniki testu RESET

Test nie daje podstaw do odrzucenia hipotezy zerowej, zatem nie ma potrzeby zmiany postaci analitycznej modelu.

6.9 Heteroskedastyczność

Wykonamy test Breuscha-Pagana na heteroskedastyczność. Test ten polega na zbudowaniu pomocniczego równania regresji, w którym za pomocą zmiennych objaśniających wyjaśniamy kwadraty błędów z naszego modelu. Niech α oznacza wektor parametrów pomocniczego równania regresji. Hipotezy testu mają postać:

$$H_0: \alpha_2 = \alpha_3 = \alpha_4 = 0$$
$$H_1: \neg H_0$$

Mnożnik Lagrange'a będący statystyką testową jest równy połowie wyjaśnionej sumy kwadratów i ma asymptotyczny rozkład χ^2 , w tym przypadku o 3 stopniach swobody [4].

```
Test Breuscha-Pagana na heteroskedastyczność
Estymacja KMNK, wykorzystane obserwacje 1-150
Zmienna zależna (Y): standaryzowane uhat^2
```

	współczynnik	błąd standardowy	t-Studenta	wartość p	9
const	2,94318	1,29900	2,266	0,0249	**
l gdp per capita~	-0,187720	0,126108	-1,489	0,1388	
l_pepole_per_sq_~	-0,0627729	0,116872	-0,5371	0,5920	
is_african	-0,117800	0,428232	-0,2751	0,7836	
Wyjaśniona suma kwa	adr. = 10,707				
Statystyka testu: LM z wartością p = P(Chi		5,353514) = 0,1476	67		

Rysunek 32: Wyniki testu Breuscha-Pagana

Test Breuscha-Pagana nie daje podstaw do odrzucenia hipotezy H_0 zatem model jest homoskedastyczny.

6.10 Test Chowa

W celu przeprowadzenia testu stabilności parametrów modelu podzielimy próbę na dwie podpróby - w pierwszej znajdą się państwa, w których procent populacji mający dostęp do podstawowych usług sanitarnych jest większy od 90%, a w drugiej pozostałe. Niech α oznacza wektor parametrów modelu dla pierwszej podpróby, a β dla drugiej. Zweryfikujemy hipotezy:

```
H_0: \alpha = \betaH_1: \alpha \neq \beta
```

Pomocnicze równanie regresji dla testu Chowa Estymacja KMNK, wykorzystane obserwacje 1-150 Zmienna zależna (Y): life_expectancy

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	41,1600	3,70836	11,10	5,34e-021	***
l_gdp_per_capita~	3,34998	0,376937	8,887	2,55e-015	***
l pepole per sq ~	0,667336	0,315449	2,116	0,0361	**
is african	-3,49708	1,18032	-2,963	0,0036	***
dummy sanitary	-1,83035	5,41174	-0,3382	0,7357	
du 1 gdp per cap~	0,387612	0,521442	0,7433	0,4585	
du l pepole per ~	-0,213462	0,486685	-0,4386	0,6616	
du_is_african	2,08811	1,76680	1,182	0,2392	
Średn.aryt.zm.zależne	j 72,97807	Odch.stand.zm.zale	żnej 7,2410	05	
Suma kwadratów reszt	2013,171	Błąd standardowy r	eszt 3,7652	70	
Wsp. determ. R-kwadra	t 0,742311	Skorygowany R-kwad	rat 0,7296	808	
F(7, 142)	58,43583	Wartość p dla test	u F 1,01e-	38	
Logarytm wiarygodnośc	i -407,6031	Kryt. inform. Akai	ke'a 831,20	62	
Kryt. bayes. Schwarza	855,2913	Kryt. Hannana-Quin	na 840,99	12	

Test Chowa na strukturalne różnice poziomów ze względu na zmienną: dummy_sanitary F(4, 142) = 1,2911 z wartością p 0,2764

Rysunek 33: Wyniki testu Chowa

Zgodnie z wydrukiem, nie ma podstaw do odrzucenia hipotezy zerowej, zatem w obu podpróbach zależności można modelować takim samym równaniem.

6.11 Współliniowość

W celu zbadania przybliżonej współliniowości obliczmy wskaźniki VIF dla każdej ze zmiennych.

$$VIF = \frac{1}{1 - R^2}$$

gdzie R^2 jest współczynnikiem determinacji w modelu, gdzie badana zmienna objaśniająca jest uzależniona od pozostałych.

Rysunek 34: Wskaźniki rozdęcia wariancji (VIF) dla zmiennych modelu

Najwyższy VIF występuje dla PKB per capita. Przekłada się on na współczynnik determinacji $R^2 \approx 0.35$. Wartość ta nie wskazuje na problem współliniowości.

6.12 Koincydencja

Model jest koincydentny, jeżeli dla każdego zmiennej objaśniającej znak współczynnika korelacji liniowej jest zgodny ze znakiem parametru przy tej zmiennej w modelu. Zestawimy w tabeli wartości funkcji signum dla korelacji oraz parametru przy każdej zmiennej:

	$sgn(r_i)$	$sgn(a_i)$
PKB per capita	+	+
Gęstość zaludnienia	+	+
Czy afrykańskie	-	-

Tabela 3: Wartości funkcji signum dla współczynników korelacji i parametrów

Zatem model jest koincydentny.

6.13 Interpretacja parametrów modelu

Przypomnijmy postać modelu:

$$y = 39.42 + 3.62ln(x_1) + 0.6ln(x_2) - 2.51x_3$$

6.13.1 PKB per capita

Wzrost PKB per capita o 1% powoduje wzrost oczekiwanej długości życia o około 0.036 roku ceteris paribus.

$$y_1 = 39.42 + 3.62ln(1.01 \cdot x_1) + 0.6ln(x_2) - 2.51x_3 = 39.42 + 3.62ln(1.01) + 3.62ln(x_1) + 0.6ln(x_2) - 2.51x_3$$
$$y_1 = y_0 + 3.62ln(1.01) \approx y_0 + 0.036$$

Analogicznie, wzrost PKB per capita o 10% spowoduje wydłużenie oczekiwanej długości życia o około 0.35 roku ($3.62 \cdot ln(1.1)$) [5].

Ponieważ zależność jest logarytmiczna, oczekiwana długość życia dla niskich PKB per capita rośnie szybko, a dla dużych wolniej. Zatem można wysunąć wniosek, że w państwach słabiej rozwiniętych oczekiwana długość życia rośnie szybciej niż w krajach o silnej, ustabilizowanej gospodarce - przy małym PKB per capita wzrost o 1% przekłada się na niższą nominalnie wartość niż przy większym.

6.13.2 Gęstość zaludnienia

Wzrost gęstości zaludnienia o 1% powoduje wydłużenie oczekiwanej długości życia o około 0.006 roku (≈ 2.19 dnia) ceteris paribus. Wzrost gęstości zaludnienia o 10% powoduje wzrost oczekiwanej długości życia w przybliżeniu o 0.057 roku. Pozytywny wpływ gęstości zaludnienia jest prawdopodobnie związany z lepszą dostępnością opieki zdrowotnej, lepszą komunikacją, wymianą informacji itd.

6.13.3 Czy państwo afrykańskie

Położenie państwa w Afryce skraca oczekiwaną długość życia o około 2.5 roku względem państw spoza Afryki przy takim samym PKB per capita i tej samej gęstości zaludnienia. Najprawdopodobiej nie jest to jednak skutek jedynie geograficznego położenia, ale także nieuwzględnionych w tym projekcie czynników.

6.14 Predykcja

6.14.1 Prognoza ex post

Wymienimy najistotniejsze błędy średnie prognoz ex post:

- $\mathbf{ME} = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y_i}) = 7.4 \cdot 10^{-18} \approx 0$ błąd bliski zeru świadczy o tym, że prognoza nie jest obciążona
- MAE = $\frac{1}{n}\sum_{i=1}^n |y_i \hat{y_i}| \approx 2.86$ o tyle prognoza przeciętnie rózni się od wartości rzeczywistej
- RMSE = $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y_i})^2}\approx 3.73$ o tyle przeciętnie różni się prognoza od wartości rzeczywistej z większą wagą na wartościach skrajnych
- MAPE = $\frac{1}{n}\sum_{i=1}^{n} \left| \frac{y_i \hat{y_i}}{y_i} \right| \cdot 100\% \approx 4.08\%$ o tyle procent przeciętnie prognoza różni się od wartości rzeczywistej

6.14.2 Prognoza ex ante

W naszym zbiorze danych dla Polski PKB per capita wynosi 15 700, gęstość zaludnienia 124, a oczekiwana długość życia 78.1. Wyznaczymy prognozowaną oczekiwaną długość życia, jeżeli PKB per capita wzrośnie do 25 000 USD, a gestość zaludnienia do 150 osób na kilometr kwadratowy. Wówczas:

$$x_{\tau} = \begin{bmatrix} 1 & ln(25000) & ln(150) & 0 \end{bmatrix}$$

 $y_{\tau}^{p} = 79.08$

6.15 Bootstrap - przedział ufności i błąd standardowy

Ze względu na brak normalności składnika losowego, do wyznaczenia 95% przedziału ufności posłużymy się metodą bootstrapową.

6.15.1 Teoretyczny wstęp

Prognozowaną wartość y przy danym x_0 można zapisać jako [6]:

$$y(x_0) = \phi(x_0) + \epsilon(x_0)$$

gdzie ϕ jest postacią modelu, a ϵ składnikiem losowym. Dodajmy do równania wartość teoretyczną $\hat{y}(x_0)$

$$y(x_0) = \hat{y}(x_0) + \phi(x_0) - \hat{y}(x_0) + \epsilon(x_0)$$
$$y(x_0) = \hat{y}(x_0) + \eta(x_0) + \epsilon(x_0)$$

gdzie $\eta(x_0) = \phi(x_0) - \hat{y}(x_0)$ jest błędem wynikającym z postaci modelu. Ponieważ $\hat{y}(x_0)$ jest deterministyczne, w celu zbadania rozkładu $y(x_0)$ musimy zbadać rozkłady $\eta(x_0)$ - błędu wynikającego z postaci modelu oraz $\epsilon(x_0)$ - składnika losowego. Wyznaczymy empiryczne rozkłady tych zmiennych w użyciem metod bootstrapowych.

6.15.2 Symulacja

Przebieg symulacji:

- 1. Estymujemy model na podstawowej próbie, wyznaczamy reszty: $e_i = y_i \hat{y}_i$ (czyli realizacje zmiennej losowej ϵ)
- 2. Tworzymy n=150 prób złożonych ze 150 obserwacji, powstałych poprzez losowanie ze zwracaniem z ze zbioru danych (zatem mogą się pojawić duplikaty). Estymujemy model na podstawie każdej próby, oraz obliczamy prognozowaną wartość \hat{y}_{B_i} na podstawie tego modelu.
- 3. Estymujemy oczekiwaną wartość bootstrapowej prognozy $\hat{\mu} = \frac{\sum_{i=1}^n y \hat{y}_{B_i}}{n}$
- 4. Obliczamy $m_i = \hat{y}_{B_i} \hat{\mu}$ (czyli realizacje zmiennej losowej η)
- 5. Obliczamy $t_i = m_i + e_i$, czyli realizacje sumy zmiennych losowych η i ϵ , całkowitego błędu prognozy
- 6. Wyznaczamy kwantyle rzędu 0.025 oraz 0.975 rozkładu zmiennej t_i , i dodajemy do nich teoretyczną wartość $\hat{y}(x_0)$ otrzymując 95% przedział ufności.

Wyznaczymy przedział ufności dla wektora $x_{\tau} = \begin{bmatrix} 1 & ln(25000) & ln(150) & 0 \end{bmatrix}$ z poprzedniej sekcji.

Rysunek 35: Histogram błędu prognozy

Wyznaczmy średni absolutny błąd tej prognozy:

$$S_{\tau}^{p} = \frac{\sum_{i=1}^{n} |t_{i}|}{n} \approx 2.84$$
$$\left| \frac{S_{\tau}^{p}}{y_{\tau}^{p}} \right| \approx 3.6\%$$

Oraz przedział ufności:

$$P(70.54 < y_{\tau}^p < 85.46) = 0.95$$

Czyli jeżeli PKB per capita wzrośnie do 25000, gęstość zaludnienia do 150 osób na kilometr kwadratowy, to oczekiwana długość życia w Polsce na 95% znajdzie się w przedziałe od 70.54 do 85.46 lat. Jest to bardzo szeroki przedział ufności, więc wnioski jakie można z niego wyciągnąć nie są satysfakcjonujące.

7 Podsumowanie

7.1 Model od strony technicznej

Zbudowany model zawiera statystycznie istotne zmienne, jest homoskedastyczny, jego współczynnik determinacji jest wysoki i nie jest sztucznie zawyżony w wyniku efektu katalizy. Nie jest on jednak pozbawiony mankamentów. Należą do nich m.in. brak normalności składnika losowego oraz słabo interpretowalne przedziały ufności dla prognoz. Biorąc pod uwagę cel projektu, czyli ukazanie zależności między zmiennymi, a nie prognozowanie wartości, aspekty te schodzą na dalszy plan. Niemniej jednak wymienione problemy sugerują, że w dalszych badaniach warto rozszerzyć zbiór danych o pominięte w tym projekcie zmienne.

7.2 Hipotezy badawcze

W projekcie udało się potwierdzić następujące hipotezy badawcze:

- Wartość PKB per capita wpływa pozytywnie na oczekiwaną długość życia.
- Gęstość zaludnienia wpływa na oczekiwaną długość życia.
- Położenie państwa w Afryce wpływa negatywnie na oczekiwaną długość życia.

Potwierdza to naszą hipotezę główną - oczekiwana długość życia jest zależna od wybranych czynników ekonomicznych, społecznych oraz geograficznych. Model wyjaśnia ponad 70% zmienności oczekiwanej długości życia w krajach świata. Zdecydowanie największy wpływ na zmienną objaśnianą ma PKB per capita - parametr jest na moduł największy (tu warto przypomnieć, że model z samym PKB per capita charakteryzował się dość wysokim współczynnikiem determinacji).

7.3 Dalsze badania

Na rozwinięcie w dalszych badaniach zasługuje przede wszystkim zmienna binarna określająca, czy państwo leży w Afryce. Zmienna ta może zostać uznana za istotną nawet na bardzo restrykcyjnym poziomie istotności. Najprawdopodobniej w jej skład wchodzą pominięte w tym projekcie czynniki, których niskie/wysokie wartości są charakterystyczne dla państw afrykańskich. Podmiana tej zmiennej binarnej na inne, istotne (najlepiej ciągłe lub quasi-ciągłe) wskaźniki polepszyłaby znacznie użyteczność modelu. Można byłoby wówczas wskazać, na jakich czynnikach należy się skupić w celu wydłużenia oczekiwanej długości życia w państwach słabiej rozwinietych.

Bibliografia

- Boussiala, M. Cook's Distance 2020. https://www.researchgate.net/publication/344522968_Cook's_ Distance.
- 2. Lumley, T., Diehr, P., Emerson, S. & Chen, L. The importance of the normality assumption in large public health data sets. *Annual Review of Public Health*, 153. https://courses.washington.edu/b511/handouts/Lumley%20Normality%20Assumption.pdf (2002).
- 3. Cook, R. D. Detection of Influential Observation in Linear Regression. *Technometrics* **19.** ISSN: 00401706. http://www.jstor.org/stable/1268249 (1977).
- 4. Breusch, T. S. & Pagan, A. R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. *Econometrica* 47, 1287–1294. ISSN: 00129682, 14680262. http://www.jstor.org/stable/1911963 (1979).
- 5. Kenneth, B. Linear Regression Models with Logarithmic Transformations. https://kenbenoit.net/assets/courses/ME104/logmodels2.pdf (2011).
- 6. Kumar, S. & Srivastava, A. Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection. https://ntrs.nasa.gov/api/citations/20130014367/downloads/20130014367.pdf (2012).

Spis rysunków

1	Państwa obecne w zbiorze danych	2
2	Statystyki opisowe dla oczekiwanej długości życia	3
3	Histogram dla zmiennej objaśnianej	3
4	Statystyki opisowe dla populacji	3
5	Statystyki opisowe dla PKB per capita	4
6	Porównanie zależności dla PKB per capita przed i po zlogarytmowaniu	4
7	Statystyki opisowe dla gęstości zaludnienia	4
8	Porównanie zależności dla gęstości zaludnienia przed i po zlogarytmowaniu	5
9	Statystyki opisowe dla procenta populacji zurbanizowanej	5
10	Statystyki opisowe dla emisji CO2 na mieszkańca	5
11	Statystyki opisowe dla procenta populacji z dostępem do usług sanitarnych	6
12	Wykres pudełkowy - oczekiwana długość życia w państwach Europejskich a reszcie świata	6
13	Wykres pudełkowy - oczekiwana długość życia w państwach Afrykańskich a reszcie świata	7
14	Statystyki opisowe dla stosunku mężczyzn do kobiet	7
15	Wykresy zależności cz. I	8
16	Wykresy zależności cz. II	8
17	Wykresy zależności cz. III	8
18	Wykresy zależności cz. IV	9
19	Macierz korelacji dla zmiennych modelu	9
20	Wyniki estymacji modelu ze wszystkimi zmiennymi, bez logarytmów	10
21	Wyniki estymacji modelu ze wszystkimi zmiennymi, z logarytmami	11
22	Odległości Cook'a - przed usunięciem outlierów	12
23	Estymacja parametrów ostatecznej postaci modelu	13
26	Rozkład częstości reszt modelu	15
27	Testy normalności rozkłady składnika losowego	15
28	Wyniki testu restrykcji dla gęstości zaludnienia	17
29	Wyniki testu restrykcji dla procenta populacji zurbanizowanej	17
30	Odległości Cook'a po usunięciu outlierów	18
31	Wyniki testu RESET	19
32	Wyniki testu Breuscha-Pagana	20
33	Wyniki testu Chowa	20
34	Wskaźniki rozdęcia wariancji (VIF) dla zmiennych modelu	21
35	Histogram błędu prognozy	23
Spis	tabel	
1	Zestawienie wyestymowanych modeli	12
2	Wartość wyrażeń determinujących zmienne-katalizatory	
3	Wartości funkcji signum dla współczynników korelacji i parametrów	21

Spis treści

1	Cel projektu i hipotezy badawcze	1
2	Źródła oraz opis danych	2
3	Statystyki opisowe oraz wykresy zależności	3
	3.1 Oczekiwana długość życia	. 3
	3.2 Populacja	
	3.3 PKB per capita w aktualnych dolarach	
	3.4 Gęstość zaludnienia	
	3.5 Procent populacji zurbanizowanej	
	3.6 Emisja CO2 na mieszkańca	
	3.7 Procent populacji z dostępem do usług sanitarnych	
	3.8 Czy państwo znajduje się w Europie	
	3.9 Czy państwo znajduje się w Afryce	
	3.10 Stosunek mężczyzn do kobiet	
	3.11 Wykresy zależności	
	3.12 Macierz korelacji	. 9
4	Wstępna postać modelu i redukcja zbioru zmiennych objaśniających	10
	4.1 Wstępna postać modelu	
	4.2 Metoda Hellwiga	. 11
	4.2.1 Dla wersji bez logarytmów	. 11
	4.2.2 Dla wersji z logarytmami	. 11
	4.3 Metoda Krokowa Wsteczna	. 11
	4.3.1 Dla wersji bez logarytmów	. 11
	4.3.2 Dla wersji z logarytmami	
	4.4 Porównanie modeli	
	4.5 Obserwacje odstające	
_		
5	Ostateczna postać modelu	13
6	Analiza własności modelu	14
	6.1 Współczynnik determinacji	
	6.2 Efekt katalizy	
	6.3 Normalność rozkładu składnika losowego	
	6.4 Istotność zmiennych	
	6.4.1 Logarytm z PKB per capita	. 15
	6.4.2 Logarytm z gęstości zaludnienia	
	6.4.3 Czy państwo afrykańskie	. 16
	6.5 Testy dodanych i pominiętych zmiennych	
	6.5.1 Pominięcie gęstości zaludnienia	. 16
	6.5.2 Dodanie procenta populacji zurbanizowanej	
	6.6 Obserwacje odstające	
	6.7 Test liczby serii	
	6.7.1 Dla logarytmu z PKB per capita	
	6.7.2 Dla logarytmu z gęstości zaludnienia	
	6.8 Test RESET	
	6.9 Heteroskedastyczność	
	6.10 Test Chowa	
	6.11 Współliniowość	
	6.12 Koincydencja	
	6.13 Interpretacja parametrów modelu	
	6.13.1 PKB per capita	
	6.13.2 Gęstość zaludnienia	
	6.13.3 Czy państwo afrykańskie	
	6.14 Predykcja	
	C 14.1 D	. 22
	6.14.1 Prognoza ex post	

	6.15 Bootstrap - przedział ufności i błąd standardowy	22
7	Podsumowanie	24
	7.1 Model od strony technicznej	24
	7.2 Hipotezy badawcze	24
	7.3 Dalsze badania	24