LINEAR PROGRAMMING (LP): Formulation example

C. B. Vaz Instituto Politécnico de Bragança

Example of LP model:

A company produces two products (A and B), using the resources R1 and R2. The time required for the production of each product is shown in the table (in hours):

	R1	R2
Product A	2	4
Product B	4	4

The capacity (monthly availability) of the resources R1 and R2 is 720 hours and 880 hours, respectively. It is known that the maximum sales of the product A are limited to 160 monthly units.

The profit obtained from the sales of these products is $6 \in$ per unit of product A and $3 \in$ per unit of product B.

Determine the monthly production plan in order to maximize the profit obtained.

Formulation of LP model

1st: Choice the decision variables: The company produces products A and B. How many units of these products the company should produce per month to maximize the profit?

- Number of units of product A to be produced per month: x_1
- Number of units of product B to be produced per month: x_2

2nd: Nonnegativity constraints: $x_1, x_2 \ge 0$.

2nd: Functional constraints:

- ▶ Resource 1: $2x_1 + 4x_2 \le 720$, where:
 - \triangleright 2 x_1 is the number of hours used to produce the product A in the resource R1;
 - ▶ $4x_2$ is the number of hours used to produce the product B in the resource R1;
 - ➤ 720 is the number of hours available in the resource R1 per month.
- ▶ Resource 2: $4x_1 + 4x_2 \le 880$, where:
 - ▶ $4x_1$ is the number of hours used to produce the product A in the resource R2:
 - ▶ $4x_2$ is the number of hours used to produce the product B in the resource R2;
 - 880 is the number of hours available in the resource R2 per month.
- Market: $x_1 \le 160$ represents the number of units of the product A that are absorbed by the market.

3rd: Objective function=Z: It is necessary to know the company's monthly profit to solve a maximization problem.

- $ightharpoonup Z = 6x_1 + 3x_2$, where:
 - ▶ $6x_1$ is the profit (in €) obtained from the sale of x_1 units of product A;
 - ▶ $3x_2$ is the profit (in €) obtained from the sale of x_2 units of product B;

The standard formulation of this LP model is the following:

$$\begin{aligned} \text{Max } Z &= 6x_1 + 3x_2 \\ \text{subject to} \\ 2x_1 + 4x_2 &\leq 720 \\ 4x_1 + 4x_2 &\leq 880 \\ x_1 &\leq 160 \\ x_1, x_2 &> 0. \end{aligned}$$

Reference

Hillier F. S., & Lieberman G.R. (2010). Introduction to operations research (9th ed.). New York: McGraw-Hill.