

# Capacitance of the metal-oxide-semiconductor (MOS) structure

Dr. Sanatan Chattopadhyay

Department of Electronic Science

**University of Calcutta** 



## Si based MOS is the key





#### **Applications**:

Memory and Storages; Sensors; Diagnostics; Almost in all types of electronic circuits; Filters; Etc. .......



#### Metal-Oxide-Semiconductor (MOS) structure



#### **Schematic view:**

- A Si substrate (p- or n-type)
- $SiO_2$  is grown on it (@800 900°C)
- Ohmic contacts are taken from the top and bottom
- Sometimes, A Poly-Si layer is grown on SiO<sub>2</sub>, on which gate ohmic contact is taken.



#### Distribution of charges: different biases

Holes are attracted.

Holes are repelled.

Electrons are attracted.

$$V_{G} < 0$$

Gate

**Oxide** 

++++++++++

**P-Substrate** 

**Back contact** 

**Accumulation** 

$$V_G > 0$$

**Gate** 

**Oxide** 



**P-Substrate** 

**Back contact** 

**Depletion** 

$$V_G >> 0$$

Gate

**Oxide** 

**P-Substrate** 

**Back contact** 

Inversion



## Band diagram in MOS





#### Graphical variation of potential, field, charge

• For charge neutrality of the system, it is required that,

$$Q_M = -(Q_n + QN_A W_D) = -Q_s$$
where

•  $Q_M$  charges (unit area on the metal

- $Q_{M}$  charges/unit area on the metal,
- $Q_n$ : electrons/unit area near the surface (inversion region)
- $qN_AW_D$ : the ionized acceptors/unit area in the space-charge region with depletion width
- $Q_s$ : total charges/unit area in the semiconductor.
- Clearly, in the absence of any work-function difference, the applied voltage will partly appear across the insulator and partly across the semiconductor. Thus,

$$V = V_{ox} + \psi_s$$

where  $V_i$  is the potential across the insulator and is given by



#### Graphical variation of potential, field, charge





#### How does an inversion layer form?





#### Band diagram at inversion condition





Flat-band condition  $\psi_{B} > \psi_{s} > 0$  Depletion of holes (bands bending downward)  $\psi_{s} = \psi_{B}$  Fermi-level at mid-gap,  $E_{F} = E_{i}(0)$ ,  $n_{p}(0) = p_{p}(0) = n_{i}$   $2\psi_{B} > \psi_{s} > \psi_{B}$  Weak inversion (electron enhancement)  $\psi_{s} > 2\psi_{B}$  Strong inversion  $[n_{p}(0) = p_{p0+} \text{ or } N_{A} ]$ 



Redistribution of carriers due to the application of bias:

$$n_p(x) = n_{po} e^{\frac{q_{\psi}(x)}{kT}} = n_{po} e^{\beta \psi(x)}$$

$$p_{p}(x) = n_{po}e^{-\frac{q_{\psi}(x)}{kT}} = n_{po}e^{-\beta\psi(x)}$$



Where  $\psi_s$  is '+' when the band is bent downward,  $n_{po}$  and  $p_{po}$  are the equilibrium densities of electrons and holes, respectively, in the bulk of the semiconductor, and

$$\beta = \frac{q}{kT}$$

At the surface the densities are:

$$n_{p}(0) = n_{po}e^{\beta\psi_{s}}$$
$$p_{p}(0) = p_{po}e^{-\beta\psi(x)}$$



From the previous discussions and with the help of the above equations, the following of surface potential can be distinguished:



 $\psi_s < 0$ : A ccumulation of holes (band bends downward)

 $\psi_s = 0$ : Flat-band voltage

 $\psi_{BP} > \psi_s > 0$ : Depletion of holes (band bends downward)

 $\psi_s = \psi_{BP}$ : Fermi-level at midgap,  $E_F = E_i(0)$ ;  $n_p(0) = p_p(0) = n_i$ .

 $2\psi_{BP} > \psi_s > \psi_{BP}$ : Weak inversion

 $\psi_s > 2\psi_{BP}$ : Strong inversion



The potential  $\psi(x)$  as a function of distance can be obtained by using the one-dimensional Poisson's equation:

$$\frac{d^2\psi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_s}$$

Where  $\rho(x)$  is the total space-charge density given by:

$$\rho(x) = q(N_D^+ - N_A^- + p_p - n_p)$$

 $N_D^+$ : ionized donors density

 $N_A^-$ : ionized acceptor density

Now, in the bulk of the semiconductor, far from the surface, charge neutrality must exist.

Therefore at: 
$$\psi_p(\infty) = 0$$
, we have  $\rho(x) = 0$  and



$$N_D^+ - N_A^- + p_{po} - n_{po} = 0$$
; or,  $N_D^+ - N_A^- = n_{po} - p_{po}$ 

Now, 
$$n_{p}(0) = n_{po}e^{\beta\psi_{s}}$$
 and,  $p_{p}(0) = p_{po}e^{\beta\psi(x)}$ 

$$\therefore \frac{d^2\psi(x)}{dx^2} = -\frac{q}{\varepsilon_s} \left( n_{po} - p_{po} + p_p - n_p \right)$$

$$\therefore \frac{d^2\psi(x)}{dx^2} = \frac{q}{\varepsilon_s} \left( p_{po} - p_p + n_p - n_{po} \right)$$

$$\therefore \frac{d^2\psi(x)}{dx^2} = \frac{q}{\varepsilon_s} \left( p_{po} - p_{po} e^{-\beta\psi_s} + n_{po} e^{\beta\psi_s} - n_{po} \right)$$

$$\therefore \frac{d^2\psi(x)}{dx^2} = \frac{q}{\varepsilon_s} \left[ \left( p_{po} \left( 1 - e^{-\beta\psi_s} \right) + n_{po} \left( e^{\beta\psi_s} - 1 \right) \right] = \frac{qp_{po}}{\varepsilon_s} \left[ \frac{n_{po}}{p_{po}} \left( e^{\beta\psi_s} - 1 \right) + \left( 1 - e^{-\beta\psi_s} \right) \right]$$



or, 
$$\frac{d}{d\psi} \left( \frac{d\psi}{dx} \right) \cdot \left( \frac{d\psi}{dx} \right) = \frac{qp_{po}}{\varepsilon_s} \left[ \frac{n_{po}}{p_{po}} \left( e^{\beta\psi_s} - 1 \right) + \left( -e^{-\beta\psi_s} \right) \right]$$
or, 
$$\int_0^{\frac{d\psi}{dx}} \left( \frac{d\psi}{dx} \right) \cdot d\left( \frac{d\psi}{dx} \right) = \frac{qp_{po}}{\varepsilon_s} \int_0^{\psi} \left[ \frac{n_{po}}{p_{po}} \left( e^{\beta\psi_s} - 1 \right) + \left( -e^{-\beta\psi_s} \right) \right] d\psi$$
or, 
$$\frac{1}{2} \cdot \left( \frac{d\psi}{dx} \right)^2 = \frac{qp_{po}}{\varepsilon_s} \left[ \frac{n_{po}}{p_{po}} \left( \frac{1}{\beta} e^{\beta\psi_s} - \psi \right) + \left( \psi - \frac{1}{\beta} e^{-\beta\psi_s} \right) \right]_0^{\psi}$$
or, 
$$\left( \frac{d\psi}{dx} \right)^2 = \frac{2qp_{po}}{\beta\varepsilon_s} \left[ \frac{n_{po}}{p_{po}} \left( e^{\beta\psi_s} - \beta\psi - 1 \right) + \left( e^{-\beta\psi_s} + \beta\psi - 1 \right) \right]$$
or, 
$$\frac{d\psi}{dx} = \sqrt{\frac{2p_{po}kT}{\varepsilon_s}} \cdot \sqrt{\frac{n_{po}}{p_{po}} \left( e^{\beta\psi_s} - \beta\psi - 1 \right) + \left( e^{-\beta\psi_s} + \beta\psi - 1 \right)}$$



Therefore, the surface field of the MOS structure,

$$E_s = -\frac{d\psi}{dx}$$

From the surface field, we can deduce the total space charge per unit area by applying Gauss's law:

$$\begin{split} Q_s &= -E_s \varepsilon_s = \varepsilon_s \cdot \sqrt{\frac{2 \, p_{po} \, k \, T}{\varepsilon_s}} \cdot \sqrt{\frac{n_{po}}{p_{po}}} \Big( e^{\beta \psi_s} - \beta \psi - I \Big) + \Big( e^{-\beta \psi_s} + \beta \psi - I \Big) \\ \text{or, } Q_s &= \sqrt{2 \varepsilon_s \, p_{po} \, k \, T} \cdot \sqrt{\frac{n_{po}}{p_{po}}} \Big( e^{\beta \psi_s} - \beta \psi - I \Big) + \Big( e^{-\beta \psi_s} + \beta \psi - I \Big) \\ \text{or, } Q_s &= \sqrt{2 \varepsilon_s \, p_{po} \, k \, T} \cdot F \left( \beta \psi \cdot \frac{n_{po}}{p_{po}} \right) \\ \text{where, } F \left( \beta \psi \cdot \frac{n_{po}}{p_{po}} \right) = \sqrt{\frac{n_{po}}{p_{po}}} \Big( e^{\beta \psi_s} - \beta \psi - I \Big) + \Big( e^{-\beta \psi_s} + \beta \psi - I \Big) \end{split}$$



#### A typical variation of space charge density Qs will be as follows:

i).  $\psi$  is negative:  $Q_s$  is positive  $\to$  corresponds to accumulation and function F is dominated by the first term:

$$ightharpoonup Q_s \sim e^{rac{q|\psi_s|}{2\,k\,T}}$$

- ii).  $\psi = 0$ :  $Q_s = 0 \rightarrow corresponds$  to flatband condition.
- iii). For  $2\psi_B > \psi_s > 0$ :  $Q_s$  is negative and we get depletion and weak inversion condition. The function F is now dominated by the second term.

$$\Rightarrow Q_s \infty \sqrt{\psi_s}$$

iv). For  $\psi_s > 2\psi_B$ , we will have strong inversion condition with F dominated by the fourth term.

$$\rho_s \infty e^{\frac{q|\psi_s|}{2kT}}$$



Also note that this strong inversion begins at a surface potential,

$$\psi_s$$
 (strong inversion)  $\approx 2\psi_p = \frac{2kT}{q} \ln\left(\frac{N_A}{n_i}\right)$ 







### MOS - capacitor under accumulation

$$V_{\rm G} < 0$$
;  $C_{\rm G} = C_{\rm ox}$ 

where, 
$$C_{ox} = \frac{\mathcal{E}_{ox} A}{T_{ox}}$$







## MOS capacitor under depletion

• Depletion condition:  $V_G > 0$ 

$$C_{ox} = \frac{\varepsilon_{ox} A}{T_{ox}} \qquad C_{s} = \frac{\varepsilon_{s} A}{W}$$

$$\frac{1}{C_{g}} = \frac{1}{C_{ox}} + \frac{1}{C_{s}} \Rightarrow C_{g} = \frac{C_{ox} C_{s}}{C_{ox} + C_{s}}$$







# MOS capacitor under inversion

• Inversion condition  $\psi_s = 2\Psi_B$ 







#### Graphical variation of potential, field, charge

$$V_{ox} = E_{ox} T_{ox} = \frac{|Q_s| T_{ox}}{\varepsilon_{ox}} = \frac{|Q_s|}{C_{ox}}$$

 The total capacitance C of the system is a series combination of the insulator capacitance

$$C_{ox} = \frac{\mathcal{E}_{ox}}{T_{ox}}$$

and the semiconductor depletion-layer capacitance  $C_D$ :

$$C = \frac{C_{ox}C_{s}}{C_{ox} + C_{s}}$$



Two orthogonal electric fields work together to initiate the operation of a MOSFET. Vertical field applied from the gate creates a channel for the carriers and lateral electric field drags the carriers from source to the drain, leading to generate a current along the channel.