```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.ticker as tic
```

In [2]: df=pd.read_csv("rainfall in india 1901-2015.csv")
 df

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 20 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	index	4116 non-null	int64
1	SUBDIVISION	4116 non-null	object
2	YEAR	4116 non-null	int64
3	JAN	4112 non-null	float64
4	FEB	4113 non-null	float64
5	MAR	4110 non-null	float64
6	APR	4112 non-null	float64
7	MAY	4113 non-null	float64
8	JUN	4111 non-null	float64
9	JUL	4109 non-null	float64
10	AUG	4112 non-null	float64
11	SEP	4110 non-null	float64
12	OCT	4109 non-null	float64
13	NOV	4105 non-null	float64
14	DEC	4106 non-null	float64
15	ANNUAL	4090 non-null	float64
16	Jan-Feb	4110 non-null	float64
17	Mar-May	4107 non-null	float64
18	Jun-Sep	4106 non-null	float64
19	Oct-Dec	4103 non-null	float64
dtyp	es: float64(1	7), int64(2), ob	ject(1)

memory usage: 643.2+ KB

In [4]: df.describe()

Out[4]:

	index	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	411
mean	2057.500000	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	23
std	1188.331183	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	23
min	0.000000	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1028.750000	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	7
50%	2057.500000	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	13
75%	3086.250000	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	30
max	4115.000000	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	160
4								•

```
df["JAN"]=df["JAN"].fillna(df["JAN"].median())
df["FEB"]=df["FEB"].fillna(df["FEB"].median())
df["MAR"]=df["MAR"].fillna(df["MAR"].median())
df["APR"]=df["APR"].fillna(df["APR"].median())
df["MAY"]=df["MAY"].fillna(df["MAY"].median())
df["JUN"]=df["JUN"].fillna(df["JUN"].median())
df["JUL"]=df["JUL"].fillna(df["JUL"].median())
df["AUG"]=df["AUG"].fillna(df["AUG"].median())
df["SEP"]=df["SEP"].fillna(df["SEP"].median())
df["OCT"]=df["OCT"].fillna(df["OCT"].median())
df["NOV"]=df["NOV"].fillna(df["NOV"].median())
df["DEC"]=df["DEC"].fillna(df["DEC"].median())
df["ANNUAL"]=df["ANNUAL"].fillna(df["ANNUAL"].mean())
df["Jan-Feb"]=df["Jan-Feb"].fillna(df["Jan-Feb"].mean())
df["Mar-May"]=df["Mar-May"].fillna(df["Mar-May"].mean())
df["Jun-Sep"]=df["Jun-Sep"].fillna(df["Jun-Sep"].mean())
df["Oct-Dec"]=df["Oct-Dec"].fillna(df["Oct-Dec"].mean())
```

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 20 columns):

```
#
     Column
                  Non-Null Count
                                   Dtype
     _ _ _ _ _
                  -----
                                   int64
0
     index
                  4116 non-null
1
     SUBDIVISION 4116 non-null
                                   object
 2
     YEAR
                  4116 non-null
                                   int64
 3
                  4116 non-null
                                   float64
     JAN
4
     FEB
                  4116 non-null
                                   float64
 5
    MAR
                  4116 non-null
                                   float64
                                   float64
6
    APR
                  4116 non-null
7
                  4116 non-null
                                   float64
    MAY
8
     JUN
                  4116 non-null
                                   float64
9
     JUL
                  4116 non-null
                                   float64
                                   float64
10
    AUG
                  4116 non-null
11
    SEP
                  4116 non-null
                                   float64
                                   float64
                  4116 non-null
 12
    OCT
    NOV
                  4116 non-null
                                   float64
 13
                                   float64
 14
    DEC
                  4116 non-null
 15
    ANNUAL
                  4116 non-null
                                   float64
    Jan-Feb
                  4116 non-null
                                   float64
16
                                   float64
17 Mar-May
                  4116 non-null
                                   float64
18 Jun-Sep
                  4116 non-null
 19 Oct-Dec
                  4116 non-null
                                   float64
dtypes: float64(17), int64(2), object(1)
memory usage: 643.2+ KB
```

```
In [7]: df["SUBDIVISION"].value_counts()
 Out[7]: EAST UTTAR PRADESH
                                                 115
          EAST MADHYA PRADESH
                                                 115
          EAST RAJASTHAN
                                                 115
         UTTARAKHAND
                                                 115
         MATATHWADA
                                                 115
         NORTH INTERIOR KARNATAKA
                                                 115
          RAYALSEEMA
                                                 115
          SOUTH INTERIOR KARNATAKA
                                                 115
          JAMMU & KASHMIR
                                                 115
          ASSAM & MEGHALAYA
                                                 115
          SUB HIMALAYAN WEST BENGAL & SIKKIM
                                                 115
          VIDARBHA
                                                 115
          GUJARAT REGION
                                                 115
          JHARKHAND
                                                 115
         COASTAL KARNATAKA
                                                 115
          KERALA
                                                 115
         WEST MADHYA PRADESH
                                                 115
         MADHYA MAHARASHTRA
                                                 115
         NAGA MANI MIZO TRIPURA
                                                 115
          HIMACHAL PRADESH
                                                 115
         HARYANA DELHI & CHANDIGARH
                                                 115
          TELANGANA
                                                 115
          KONKAN & GOA
                                                 115
         ORISSA
                                                 115
          COASTAL ANDHRA PRADESH
                                                 115
         PUNJAB
                                                 115
         WEST RAJASTHAN
                                                 115
         WEST UTTAR PRADESH
                                                 115
          SAURASHTRA & KUTCH
                                                 115
          CHHATTISGARH
                                                 115
          TAMIL NADU
                                                 115
          BIHAR
                                                 115
          GANGETIC WEST BENGAL
                                                 115
          LAKSHADWEEP
                                                 114
          ANDAMAN & NICOBAR ISLANDS
                                                 110
          ARUNACHAL PRADESH
                                                  97
          Name: SUBDIVISION, dtype: int64
In [26]: |df=df.set_index("index")
In [27]: | df.to_csv("cleaned_rainfall")
```

ANDAMAN & NICOBAR ISLANDS

In [11]: dat1=df[df["SUBDIVISION"]=="ANDAMAN & NICOBAR ISLANDS"]
dat1

Out[11]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	Ę
1	1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	3
2	2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	2
3	3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	3
4	4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	
105	105	ANDAMAN & NICOBAR ISLANDS	2011	265.9	84.8	272.8	111.4	326.5	383.2	583.2	441.5	757.1	212.3	1
106	106	ANDAMAN & NICOBAR ISLANDS	2012	119.9	45.6	30.9	55.8	533.9	458.2	317.3	369.6	868.9	209.7	3
107	107	ANDAMAN & NICOBAR ISLANDS	2013	67.1	37.6	43.0	46.3	509.3	777.0	564.8	336.7	473.6	455.8	3
108	108	ANDAMAN & NICOBAR ISLANDS	2014	41.9	8.6	0.0	11.1	238.0	416.6	467.6	321.6	412.9	402.6	2
109	109	ANDAMAN & NICOBAR ISLANDS	2015	126.8	7.6	3.1	138.2	331.9	346.4	328.9	480.0	523.3	252.1	2

110 rows × 20 columns

```
In [23]: dat1.plot.bar("YEAR","FEB")
         plt.xlim(0,20)
         plt.figure(figsize=(60,30))
         plt.show()
         dat1.plot.box()
         plt.xlim(2,14)
         plt.ylim(0,2000)
         plt.show()
         dat1.plot.area()
         dat1.plot.scatter("YEAR","FEB")
         sns.stripplot(x=dat1["FEB"],y=dat1["YEAR"],jitter=True)
         plt.ylim(1900,2010)
         plt.xlim(0,145)
         plt.xticks(dat1["FEB"],rotation="vertical")
         plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=10))
         plt.show()
         dat1.plot.hist()
```


<Figure size 4320x2160 with 0 Axes>

Out[23]: <AxesSubplot:ylabel='Frequency'>

ARUNACHAL PRADESH

In [13]: dat2=df[df["SUBDIVISION"]=="ARUNACHAL PRADESH"]
 dat2

Out[13]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
110	110	ARUNACHAL PRADESH	1916	48.1	69.8	71.1	316.1	424.6	1124.9	284.8	629.7	333.9	65.2
111	111	ARUNACHAL PRADESH	1917	21.4	164.5	7.8	269.6	107.9	823.8	909.1	628.4	411.5	199.3
112	112	ARUNACHAL PRADESH	1918	10.4	11.0	191.2	144.6	861.1	1609.9	1303.0	692.6	515.8	125.2
113	113	ARUNACHAL PRADESH	1919	34.5	67.8	28.5	256.9	420.6	973.6	999.0	286.7	628.7	948.3
114	114	ARUNACHAL PRADESH	1920	14.0	196.3	605.6	364.7	173.6	840.6	535.4	896.5	376.7	103.3
202	202	ARUNACHAL PRADESH	2011	40.0	51.3	174.5	240.8	219.6	288.4	531.4	277.6	286.7	51.9
203	203	ARUNACHAL PRADESH	2012	57.8	35.8	134.2	403.4	187.4	645.8	638.9	316.0	724.9	248.1
204	204	ARUNACHAL PRADESH	2013	18.5	40.5	115.1	175.1	335.8	290.0	329.6	230.2	316.1	164.1
205	205	ARUNACHAL PRADESH	2014	19.0	101.9	80.3	86.7	299.0	415.8	392.4	599.6	343.0	35.1
206	206	ARUNACHAL PRADESH	2015	30.8	47.5	97.5	287.1	238.9	637.9	329.3	595.5	374.2	65.2

97 rows × 20 columns

```
In [24]: dat2.plot.bar("YEAR","FEB")
         plt.xlim(0,20)
         plt.figure(figsize=(60,30))
         plt.show()
         dat2.plot.box()
         plt.xlim(2,14)
         plt.ylim(0,2000)
         plt.show()
         dat2.plot.area()
         dat2.plot.scatter("YEAR", "FEB")
         sns.stripplot(x=dat2["FEB"],y=dat2["YEAR"],jitter=True)
         plt.ylim(1900,2010)
         plt.xlim(0,145)
         plt.xticks(dat2["FEB"],rotation="vertical")
         plt.gca().xaxis.set_major_locator(tic.MultipleLocator(base=20))
         plt.show()
         dat2.plot.hist()
         plt.show()
```


<Figure size 4320x2160 with 0 Axes>

In [25]: sns.lineplot(x=dat2["FEB"],y=dat2["YEAR"])
plt.show()

