I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/13

Contents

Aim

to learn how to prove formulas having quantifiers and equalities

Contents

- 1 natural deduction I (\forall, \exists)
- 2 eigenvariable conditions

Schedule			
4/13 4/18 4/20 4/25	propositional logic syntax, semantics normal forms examples natural deduction l	5/18 5/23	predicate logic syntax, semantics normal forms natural deduction I natural deduction II
4/27 5/2 5/9	natural deduction II completeness midterm exam	5/25 5/30 6/1 6/6	examples, properties advanced topics summary exam

Evaluation midterm exam (40) + final exam (60) 1211E: Mathematical Logic 2/13

Natural Deduction

l211E: Mathematical Logic 3/13 l211E: Mathematical Logic 4/13

Informal Definition

- 1 underlying notions (e.g. proof tree) and terminologies are same as before
- 2 natural deduction for first-order logic consists of
 - all inference rules for propositional logic
 - \blacksquare introduction/elimination rules for \forall and \exists , and
 - inference rules for \doteq

I211E: Mathematical Logic

5/13

Definition (introduction and elimination rules for \exists)

$$\frac{\left[\phi[y/x]\right]^{i}}{\exists x \phi} \; \exists \mathrm{I} \; (t \; \mathrm{is \; free \; for } x \; \mathrm{in } \; \phi) \qquad \qquad \frac{\exists x \phi \qquad \psi}{\psi} \; \exists \mathrm{E}_{i} \; (y \; \mathrm{is \; eigenvariable})$$

Proposition

Proposition

 $\vdash (\exists x \, \mathsf{P}(\mathsf{f}(x))) \rightarrow (\exists x \, \mathsf{P}(x))$

if P(f(x)) for some x then P(x) for some x

Proof.

$\frac{[\exists x \, \mathsf{P}(\mathsf{f}(x))]^1}{\exists x \, \mathsf{P}(x)} \stackrel{[\mathsf{P}(\mathsf{f}(y))]^2}{\exists x} \exists \mathsf{I}$ $\exists \mathsf{E}$

Proof.

Assume P(f(x)) for some x. We show that there exists element x such that P(x). By assumption P(f(y)) for some y. Take x = f(y). We obtain P(x).

Exercise:

I211E: Mathematical Logic

 $(\exists x \, \mathsf{P}(\mathsf{f}(x))) \to (\exists x \, \mathsf{P}(x))$

1211E: Mathematical Logic

Definition (introduction and elimination rules for ∀)

$$\frac{\phi[y/x]}{\forall x \phi} \ \forall \mathbf{I} \ \ \big(y \text{ is eigenvariable}\big) \qquad \qquad \frac{\forall x \phi}{\phi[t/x]} \ \forall \mathbf{E} \ \ \big(t \text{ is free for } x \text{ in } \phi\big)$$

eigenvariable means that y is arbitrary element (to be defined later)

Proposition

I211E: Mathematical Logic

$$\vdash (\forall x \, \mathsf{P}(x)) \to (\forall x \, \mathsf{P}(\mathsf{f}(x)))$$

Proposition

if
$$P(x)$$
 for all x then $P(f(x))$ for all x

6/13

Proof.

$$\frac{\frac{[\forall x \, \mathsf{P}(x)]^1}{\mathsf{P}(\mathsf{f}(x))}}{\forall x \, \mathsf{P}(\mathsf{f}(x))} \, \, \forall \mathsf{I}} \\ \frac{1}{\forall x \, \mathsf{P}(\mathsf{f}(x))} \, \, \forall \mathsf{I}$$

$$\mathsf{P}(x)) \to (\forall x \, \mathsf{P}(\mathsf{f}(x))) \quad \to \mathsf{I}_1$$

Proof.

Assume P(x) for all x. We show P(f(x)) for all x. Let x be an arbitrary element. It is enough to show P(f(x)). By assumption P(f(x)) holds.

Exercise:

$$\vdash ((\forall x \, \mathsf{P}(x)) \, \land \, (\forall y \, \mathsf{Q}(y))) \to (\forall z \, (\mathsf{P}(z) \land \mathsf{Q}(z)))$$

Proof of $\vdash ((\exists x \, \mathsf{P}(x)) \, \lor \, (\exists y \, \mathsf{Q}(y))) \to (\exists z \, (\mathsf{P}(z) \, \lor \, \mathsf{Q}(z)))$

$$\frac{\left[\frac{[\mathsf{P}(x)]^3}{\mathsf{P}(x) \vee \mathsf{Q}(x)} \vee_{\mathsf{I}}}{\frac{[\exists x \, \mathsf{P}(x)]^2}{\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z))}} \xrightarrow{\exists \mathsf{I}} \frac{\left[\frac{[\mathsf{Q}(y)]^4}{\mathsf{P}(y) \vee \mathsf{Q}(y)} \vee_{\mathsf{I}}}{\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z))} \xrightarrow{\exists \mathsf{E}_3} \frac{[\exists y \, \mathsf{Q}(y)]^2}{\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z))} \xrightarrow{\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z))} \xrightarrow{\mathsf{E}_2} \xrightarrow{\exists \mathsf{E}_3} \frac{[\exists y \, \mathsf{Q}(y)]^2}{\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z))} \xrightarrow{\mathsf{E}_2} \xrightarrow{\mathsf{E}_3} \frac{\exists \mathsf{E}_3 \, (\mathsf{P}(z) \vee \mathsf{Q}(z))}{((\exists x \, \mathsf{P}(x)) \vee (\exists y \, \mathsf{Q}(y))) \to (\exists z \, (\mathsf{P}(z) \vee \mathsf{Q}(z)))} \xrightarrow{\mathsf{P}_1} \xrightarrow{\mathsf{P}_3} \xrightarrow{\mathsf{P}_4} \xrightarrow{\mathsf{P}_4 \, \mathsf{P}_4 \, \mathsf{$$

8/13

Eigenvariable Conditions Are Essential

9/13 I211E: Mathematical Logic

Definition (precise version)

$$\frac{\Gamma \vdash \exists x \, \phi \qquad \Gamma \cup \{\phi[y/x]\} \vdash \psi}{\psi} \; \exists \mathbf{E} \; \left(y \text{ is eigenvariable}\right)$$

y is eigenvariable in $\exists E$ if $y \notin FV(\gamma)$ for all $\gamma \in \Gamma \cup \{\exists x \phi, \psi\}$ (i.e. y is fresh)

Example

without eigenvariable condition, wrong proposition could be proved:

$$\frac{[\exists x \, \mathsf{P}(x)]^1 \qquad [\mathsf{P}(x)]^2}{\mathsf{P}(x)} \, \exists_{\mathsf{E}_2}$$

$$\frac{\mathsf{P}(x)}{\exists x \, \mathsf{P}(x) \to \mathsf{P}(x)} \to \mathsf{I}_1$$

We show $\exists x \, \mathsf{P}(x) \to \mathsf{P}(x)$. Assume $\exists x \, \mathsf{P}(x)$. It is enough to show P(x). By assumption P(x) holds for some x. Thus, P(x) is proved. ?!

Definition (precise version)

$$\frac{\Gamma \vdash \phi[y/x]}{\Gamma \vdash \forall x \, \phi} \, \, \forall \mathbf{I} \, \, \left(y \text{ is eigenvariable} \right)$$

y is eigenvariable in $\forall I$ if $y \notin FV(\gamma)$ for all $\gamma \in \Gamma \cup \{\forall x \phi\}$

(i.e. y is fresh)

Example

without eigenvariable condition, wrong proposition could be proved:

$$\frac{\frac{[\mathsf{P}(x)]^1}{\forall x \, \mathsf{P}(x)} \, \forall \mathsf{I}}{\mathsf{P}(x) \to \forall x \, \mathsf{P}(x)} \to \mathsf{I}_1$$

I211E: Mathematical Logic

10/13

How to Prove General Formulas

Proposition

 $\vdash \forall x(\phi \land \psi) \rightarrow (\forall x\phi \land \forall x\psi)$ holds for all formulas ϕ and ψ

Proof.

Let ϕ and ψ be arbitrary formulas. Validity of $\forall x(\phi \wedge \psi) \rightarrow (\forall x\phi \wedge \forall x\psi)$ is shown as follows:

$$\frac{\frac{\left[\forall x \left(\phi \wedge \psi\right)\right]^{1}}{\phi\left[y/x\right] \wedge \psi\left[y/x\right]}}{\frac{\phi\left[y/x\right]}{\forall x\phi}} \overset{\forall \mathbf{E}}{\wedge \mathbf{I}} \frac{\frac{\left[\forall x \left(\phi \wedge \psi\right)\right]^{1}}{\phi\left[z/x\right] \wedge \psi\left[z/x\right]}}{\frac{\psi\left[z/x\right]}{\forall x\phi}} \overset{\forall \mathbf{I}}{\wedge \mathbf{I}} \frac{\psi\left[z/x\right]}{\forall x\phi} \overset{\land \mathbf{I}}{\wedge \mathbf{I}} \frac{\psi\left[z/x\right]}{\forall x\phi \wedge \forall x\psi} \overset{\land \mathbf{I}}{\rightarrow \mathbf{I}_{1}}$$

where y and z are eigenvariables.

П

Exercises

$$\boxed{ \ } \mathsf{Prove} \vdash ((\forall x \, \mathsf{P}(x,y)) \land \mathsf{Q}(y,z)) \, \rightarrow \, \forall x \, (\mathsf{P}(x,y) \land \mathsf{Q}(y,z)).$$

I211E: Mathematical Logic