Recapitulare

ianuarie 2015

Teoria Grafurilor Reprezentarea grafurilor

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- Listă de noduri + listă de muchii
- 2 Liste de adiacență
- Matrice de adiacență
- Oacă graful este ponderat, să se indice matricea lui de ponderi.

Exemplu G: () c c c c

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- Listă de noduri + listă de muchii
- Liste de adiacență
- Matrice de adiacență
- Oacă graful este ponderat, să se indice matricea lui de ponderi.

Reprezentarea grafurilor

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- 1 Listă de noduri + listă de muchii
- 2 Liste de adiacență
- Matrice de adiacenţă
- Oacă graful este ponderat, să se indice matricea lui de ponderi.

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- Listă de noduri + listă de muchii
- Liste de adiacență
- Matrice de adiacență
- Dacă graful este ponderat, să se indice matricea lui de ponderi.

Exemplu

$$G: () \xrightarrow{a} \xrightarrow{b} c$$

Matrice de adiacență (V = [a, b, c, d, e]):

Teoria Grafurilor

Reprezentarea grafurilor

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- 1 Listă de noduri + listă de muchii
- 2 Liste de adiacență
- Matrice de adiacență
- Dacă graful este ponderat, să se indice matricea lui de ponderi.

Exemplu

 $G: 8 \stackrel{9}{\downarrow} 2 \stackrel{0}{\downarrow} 6$

Matrice de ponderi (V = [a, b, c, d, e]):

Pentru un graf ilustrat, să se indice reprezentarea lui cu

- Listă de noduri + listă de muchii
- 2 Liste de adiacență
- Matrice de adiacență
- Dacă graful este ponderat, să se indice matricea lui de ponderi.

Exemplu

$$G: \overset{e}{\underset{3}{\wedge}} \overset{9}{\underset{3}{\wedge}} \overset{d}{\underset{5}{\wedge}} c$$

Matrice de ponderi (V = [a, b, c, d, e]):

$$G: 8 \stackrel{9}{\swarrow} 1 \stackrel{d}{\swarrow} c$$

$$A \stackrel{9}{\swarrow} 1 \stackrel{q}{\swarrow} c$$

$$A \stackrel{9}{\swarrow} 1 \stackrel{q}{\searrow} c$$

$$A \stackrel{9}{\swarrow} 1 \stackrel{q}{\swarrow} c$$

$$A \stackrel{9}{\swarrow} 1 \stackrel{q}{\searrow} c$$

$$A \stackrel{9}{\searrow} 1 \stackrel{q}{\searrow} c$$

$$A$$

Conectivitate în grafuri

O cale de la a la b este o secvență de noduri x_1, \ldots, x_n astfel încât

- $x_1 = a$, $x_n = b$ (capetele căii)
- x_{i-1} este vecinul lui x_i pentru toți $1 < i \le n$.

Lungimea unei astfel de căi este n-1.

Observații

- Dacă G are n noduri atunci există o cale de la a la b dacă și numai dacă există o cale cu lungimea cel mult n – 1 de la a la b.
- Perechile de noduri între care există o cale de lungime k se pot afla din calculul matricii $A_G^k = \underbrace{A \odot A \odot \ldots \odot A}_{k \ ori}$ (vezi slide-ul următor)

Dacă A_G este matricea de adiacență a unui graf G cu n noduri, atunci

- ▶ $A_G^0 := I_n$ unde I_n este matricea identitate $n \times n$, iar
- ▶ $A_G^k := A_G \odot A_G^{k-1}$ pentru orice k > 0, unde \odot este operația de înmulțire booleană a matricilor:
 - adunarea a + b se înlocuiește cu $a \oplus b := \max(a, b)$
 - înmulțirea $a \cdot b$ se înlocuiește cu $a \odot b := \min(a, b)$.

Observații

Există în G o cale de lungime k de la al i-lea nod la al j-lea nod dacă și numai dacă elementul (i,j) al lui A_G^k este 1 \Rightarrow există o cale în G de la al i-lea nod la al j-lea nod dacă și numai dacă elementul (i,j) al lui A_G^k este 1 pentru un $k \in \{0,1,\ldots,n-1\}$.

$$V = [a, b, c, d, e]$$
 $G : () \downarrow c \qquad A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}$

O Ce perechi de noduri sunt conectate cu căi de lungime 3?

$$G: () \begin{picture}(200,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

• Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$

$$G: () \begin{picture}(200,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

• Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$

$$A_G^2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$G: () \begin{picture}(200,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

O Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$

$$G: () \begin{picture}(200,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

- Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$
- 2 Ce perechi de noduri sunt conectate?

$$G: () \begin{picture}(200,0)(0,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

- Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$
- ② Ce perechi de noduri sunt conectate? Calculăm închiderea reflexivă și tranzitivă $A_G^* = I_5 \oplus A \oplus A^2 \oplus A^3 \oplus A^4$

Probleme rezolvate cu matrici de adiacentă

$$G: () \xrightarrow{a} b C A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

- Ce perechi de noduri sunt conectate cu căi de lungime 3? Avem de calculat $A_G^3 = A \odot A_G^2$
- ② Ce perechi de noduri sunt conectate?

$$A_G^* = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

 \Rightarrow perechile conectate sunt: (a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, d), (c, b), (c, c), (c, d), (d, d), (e, a), (e, b), (e, c), (e, d), (e, e).

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus \left(c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}
ight) & ext{dacă } k \geq 1. \end{array}
ight.$$

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{dacă } k \geq 1. \end{array}
ight.$$

$$v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$$

$$c \quad C^{[0]} = A_G = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{pmatrix}, C^{[1]} = C^{[a]} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{dacă } k \geq 1. \end{array}
ight.$$

$$v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$$

$$c \quad C^{[1]} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, C^{[2]} = C^{[b]} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{dacă } k \geq 1. \end{array}
ight.$$

$$v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$$

$$c \quad d \quad c \quad C^{[2]} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, C^{[3]} = C^{[c]} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{dacă } k \geq 1. \end{array}
ight.$$

$$v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$$

$$c \quad C^{[3]} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}, C^{[4]} = C^{[d]} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Calculul lui A_G^* cu algoritmul lui Warshall

 A_G^* se poate calcula în cel puțin 2 feluri:

- $A_G^* = I_n \oplus A_G \oplus \ldots \oplus A_G^{n-1}$ (ineficient)
- Cu algoritmul lui Warshall (eficient): Dacă $V=\{v_1,\ldots,v_n\}$ atunci $A_G^*=C^{[n]}=(c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{ egin{array}{ll} 1 & ext{dacă } i=j, \ a_{ij} & ext{dacă } k=0 ext{ și } i
eq j, \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & ext{dacă } k \geq 1. \end{array}
ight.$$

$$v_1 = a, v_2 = b, v_3 = c, v_4 = d, v_5 = e$$

$$c \quad C^{[4]} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}, C^{[5]} = C^{[e]} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul *s* și relaxez toate arcele care pleacă din *s* spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul *s* și relaxez toate arcele care pleacă din *s* spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul x și relaxez toate arcele care pleacă din x spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul x și relaxez toate arcele care pleacă din x spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul y și relaxez toate arcele care pleacă din y spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul y și relaxez toate arcele care pleacă din y spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul u și relaxez toate arcele care pleacă din u spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Vizitez nodul u și relaxez toate arcele care pleacă din u spre noduri nevizitate

- Se presupune dat un graf ponderat, cu ponderi pozitive
- Determină cele mai scurte căi de la un nod sursă la toate celelalte noduri din graf.

EXEMPLU:

Graful G_{π} al celor mai ușoare căi din s este

Fluxuri în rețele de transport Algoritmul Ford-Fulkerson

Permite calculul unul flux maxim de la o sursă la o destinație într-o rețea de transport Cerințe:

- Să știți să găsiți un drum de creștere în o rețea de transport G cu un flux dat f, folosind rețeaua rezidulă
- Să determinați un flux maxim în o rețea de transport cu algoritmul Ford-Fulkerson

Fluxuri în rețele de transport

Creșterea unui flux prin calculul unui drum de creștere

Exemplu

Pentru a fi siguri că găsim o cale de creștere de la s la t, dacă există vreuna, traversăm G_f în lărgime, pornind de la nodul s:

Cale de creștere $s \xrightarrow{13} y \xrightarrow{3} u \xrightarrow{2} t$

putem crește f cu 2 de-a lungul acestei căi

Fluxuri în rețele de transport

Creșterea unui flux prin calculul unui drum de creștere

Exemplu

Pentru a fi siguri că găsim o cale de creștere de la s la t, dacă există vreuna, traversăm G_f în lărgime, pornind de la nodul s:

Cale de creștere $s \xrightarrow{13} y \xrightarrow{3} u \xrightarrow{2} t$ putem crește f cu 2 de-a lungul acestei căi

Cuplaje

- Ce este un cuplaj maximal/maxim/perfect?
- Care este legătura dintre cuplaje maximale si *M*-căi de creștere?

Exercițiu

Să se arate că graful de mai jos nu are nici un cuplaj perfect:

Observație: nr. noduri roșii=30, nr. noduri negre=32.