Lesson2 - Starting your projects

Find & Sit in groups of 2-3 people

Sample projects

Automatic Trashcan

Automatic Trashcan

Ultrasonic sensor

Input

Ultrasonic sensor

Provides Arduino with Numeric number for distance

Output

Servo motor

Arduino specifies angle of which the motor goes to

Code

```
#include <Servo.h>
 3 Servo servo;
   const int trigPin = 6;
   const int echoPin = 5;
   void setup() {
     pinMode (trigPin, OUTPUT);
     pinMode (echoPin, INPUT);
10
      servo.attach(3);
11 }
12
   void loop() {
14
      int duration, distance;
15
16
      digitalWrite(trigPin, HIGH);
     delayMicroseconds (10);
17
     digitalWrite(trigPin, LOW);
18
19
20
21
      duration = pulseIn(echoPin, HIGH);
22
23
24
      distance = (duration / 2) / 29.1;
25
26
     if (distance <= 50 && distance >= 0) {
      servo.write(50);
29
       delay(3000);
30
     } else {
31
       servo.write(160);
32
33
34
35
      delay(60);
36
```

Include Servo Library

Declaring Variables and Pin Numbers:

- servo: this allows the servo to rotate from 0 to 180
- trig Pin: this is a digital pin of the trig pin from the ultrasonic distance sensor
- echo Pin: this is a digital pin of the echo pin from the ultrasonic distance sensor

Code

```
#include <Servo.h>
   Servo servo;
   const int trigPin = 6;
    const int echoPin = 5;
   void setup() {
     pinMode (trigPin, OUTPUT);
     pinMode (echoPin, INPUT);
10
      servo.attach(3);
11 }
12
13
   void loop() {
14
      int duration, distance;
15
16
      digitalWrite(trigPin, HIGH);
     delayMicroseconds (10);
17
      digitalWrite(trigPin, LOW);
18
19
20
21
      duration = pulseIn(echoPin, HIGH);
22
23
24
      distance = (duration / 2) / 29.1;
25
26
27
     if (distance <= 50 && distance >= 0) {
28
        servo.write(50);
29
        delay(3000);
30
     } else {
31
        servo.write(160);
32
33
34
35
      delay(60);
36
```

Setup Function:

- Makes the trig Pin into an output and the echo Pin into an input
- Attaches the servo motor to pin 3 (change it if you are using a different pin)

Loop Function:

- Sends a pulse to the trig pin to startup the ultrasonic distance sensor
- Measures the duration of the pulse on the echo pin
- Calculates the distance based on the duration of the pulse
- If the distance is within range which is 50 it moves the servo to 50 degrees otherwise is moves the servo to position 160 degrees
- adds a short delay before the loop starts again

CNC 2D Plotter

https://projecthub.arduino.cc/Mrinnovative/arduino-based-mini-cnc-2d-plotter-796c2f

Input

Code instructions

```
// G1 for moving
// G4 P300 (wait 150ms)
// G1 X60 Y30
// G1 X30 Y50
// M300 S30 (pen down)
// M300 S50 (pen up)
```

Computer provides instructions to where the motors should go to

Output

X,Y Axis; Servo motors

Arduino tells the x y axis where to bring the pen, and the servo to engage the pen

Mpu 6050 Gyro + Accelerometer motion sensor

Motors

Mpu 6050 Gyro + Accelerometer motion sensor

NRF 24L01 RF transceiver

Motors

Input

Gyroscope; Radio signals

Using a feedback loop using the gyroscope to stabilize, as well as the RF radio receiver to receive instructions

Output

Motor speed

Arduino adjusts different motor's speeds to match desired outcome

Your turn

- Find a specific use case / problem

 (it doesn't have to be completely useful, silly things are also welcomed)
- 2. List out Inputs & outputs
- 3. Research components needed and list out components