Exercice 1

1 ^{er} Chiffre entre 2 et 9	2eme Chiffre soit 0 ou 1	3 eme Chiffre entre 1et 9	
8 Possibilités	2 Possibilités	9 Possibilités	

D'où le résultat 8.2.9=144

1 ^{er} Chiffre entre 2 et 9	2eme Chiffre soit 0 ou 1	3 eme Chiffre entre 1et 9
1 Possibilité (Chiffre 4)	2 Possibilités	9 Possibilités

D'où le résultat 1.2.9=18.

Exercice 2

a) Le cumul n'est pas possible d'où

Président	Secrétaire	Trésorier	
10	9	8	

D'où le résultat 10.9.8=720.

b)

Président	Secrétaire	Trésorier
1	1	8

 $Card(A \cap B)^{C} = Card(S) - Card(A \cap B) = 720 - 1.1.8$. $A_3^2 = 672$ (on fixe 2 places et reste 10-2=8 choix, et il y'a A_3^2 manières d'arranger avec ordre les 2 places parmi 3

c)
$$(C \cap D) U (C^{c} \cap D^{c})$$

C∩D déjà faite DANS b) =48 et

(C $^{\rm C} \cap {\rm D}^{\rm C}$), on enlève 2 et reste 8 d'où 8.7.6

Président	Secrétaire	Trésorier
8	7	6

d)

Président	Secrétaire	Trésorier
1	9	8

On fixe 1 place et reste 2 Choix parmi 10-1=9 soit 1.9.8 et le 1 peut être ordonne de A_3^1 manières soit 1.9.8.3=216.

e) Soit on ne le met pas et donc

]	Président	Secrétaire	Trésorier
9	9	8	7

+

Soit on le met Président

Président	Secrétaire	Trésorier
1	9	8

9.8.7 + 1.9.8 = 504 + 72 = 576

Exercice 3

Notons A: Actifs; B: Bacheliers, M: Marie.

On a donc:

		P(.)=(.)
	Effectif	/Effectif
A	312	0,312
В	525	0,525
M	470	0,47
$A \cap M$	86	0,086
$B \cap A$	42	0,042
$B \cap M$	147	0,147
$B \cap M \cap A$	25	0,025

 $P(A \cup B \cup C) = P(A) + P(B) + P(M) - P(A \cap B) - P(A \cap M) - P(B \cap M) + P(A \cap B \cap M) = 1,057 > 1$, ce qui n'est pas possible.

Exercice 4

	Di: Déclarés	Vi: Votants	Di.Vi	Di.Vi/∑Di.Vi	Réponse
INDEPENDENTS	46%	35%	16,10%	33,11%	A
LIBERAUX	30%	62%	18,60%	38,26%	В
CONSERVATEURS	24%	58%	13,92%	28,63%	С
	Total		48,62%		D

Exercice 5:

Bi: On est dans la boite i; P(Bi)=Pi

Dj: sera détecté dans la boite j ; $P(Dj/Bj) = \alpha j$;

$$P(Bj/Di^{C})=P(Bj \cap Di^{C})/P(Di^{C})$$

 $=P(Bj \cap Di^{C})/[1-P(Di)]$

or $P(Bj)=P(Bj\cap Di)+P(Bj\cap Di^C)$ d'où $P(Bj\cap Di^C)=P(Bj)-P(Bj\cap Di)=Pj$ -0 Si $j\neq i$ car $Bj\cap Di=\Phi$; et =Pi- Pi. $\alpha i=(1-\alpha i).Pi$ si i=j. et $P(Di^C)=[1-P(Di)]=[1-P(Di/Bi).P(Bi)]=1-\alpha i$. Pid'où si $i\neq j$; $=Pj/[1-\alpha i.Pi)]$ si i=j; $=(1-\alpha i).Pi/[1-\alpha i.Pi)]$