This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$5+3i$$
 and 3

The solution is $x^3 - 13x^2 + 64x - 102$, which is option B.

- A. $b \in [10, 18], c \in [62.11, 64.76]$, and $d \in [101, 106.3]$ $x^3 + 13x^2 + 64x + 102$, which corresponds to multiplying out (x - (5+3i))(x - (5-3i))(x + 3).
- B. $b \in [-21, -5], c \in [62.11, 64.76], \text{ and } d \in [-105.1, -100.1]$ * $x^3 - 13x^2 + 64x - 102$, which is the correct option.
- C. $b \in [1, 3], c \in [-8.79, -7.83]$, and $d \in [11.8, 17]$ $x^3 + x^2 - 8x + 15$, which corresponds to multiplying out (x - 5)(x - 3).
- D. $b \in [1,3], c \in [-7.39, -4.76], \text{ and } d \in [5.2, 9.5]$ $x^3 + x^2 - 6x + 9$, which corresponds to multiplying out (x-3)(x-3).
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (5 + 3i))(x - (5 - 3i))(x - (3)).

2. Describe the end behavior of the polynomial below.

$$f(x) = 8(x-6)^4(x+6)^9(x+9)^4(x-9)^5$$

The solution is the graph below, which is option C.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

3. Describe the zero behavior of the zero x=7 of the polynomial below.

$$f(x) = 9(x+7)^8(x-7)^{11}(x-3)^7(x+3)^{10}$$

The solution is the graph below, which is option D.

В.

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

4. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-5}{3}$$
, -3, and $\frac{5}{4}$

The solution is $12x^3 + 41x^2 - 10x - 75$, which is option D.

A. $a \in [12, 15], b \in [-43, -40], c \in [-16, -2], \text{ and } d \in [71, 81]$

 $12x^3 - 41x^2 - 10x + 75$, which corresponds to multiplying out (3x - 5)(x - 3)(4x + 5).

B. $a \in [12, 15], b \in [37, 49], c \in [-16, -2], \text{ and } d \in [71, 81]$

 $12x^3 + 41x^2 - 10x + 75$, which corresponds to multiplying everything correctly except the constant term.

C. $a \in [12, 15], b \in [-2, 3], c \in [-84, -79], \text{ and } d \in [71, 81]$

 $12x^3 + x^2 - 80x + 75$, which corresponds to multiplying out (3x - 5)(x + 3)(4x - 5).

D. $a \in [12, 15], b \in [37, 49], c \in [-16, -2], \text{ and } d \in [-78, -73]$

* $12x^3 + 41x^2 - 10x - 75$, which is the correct option.

E. $a \in [12, 15], b \in [-85, -66], c \in [126, 135], \text{ and } d \in [-78, -73]$ $12x^3 - 71x^2 + 130x - 75, \text{ which corresponds to multiplying out } (3x - 5)(x - 3)(4x - 5).$

General Comment: To construct the lowest-degree polynomial, you want to multiply out (3x + 5)(x + 3)(4x - 5)

5. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-6}{5}, \frac{-4}{3}, \text{ and } -3$$

The solution is $15x^3 + 83x^2 + 138x + 72$, which is option E.

A. $a \in [13, 21], b \in [76, 90], c \in [133, 140], \text{ and } d \in [-75, -70]$

 $15x^3 + 83x^2 + 138x - 72$, which corresponds to multiplying everything correctly except the constant term.

- B. $a \in [13, 21], b \in [42, 53], c \in [-19, -16], \text{ and } d \in [-75, -70]$ $15x^3 + 47x^2 - 18x - 72$, which corresponds to multiplying out (5x - 6)(3x + 4)(x + 3).
- C. $a \in [13, 21], b \in [3, 8], c \in [-91, -85], \text{ and } d \in [66, 76]$ $15x^3 + 7x^2 - 90x + 72$, which corresponds to multiplying out (5x - 6)(3x - 4)(x + 3).
- D. $a \in [13, 21], b \in [-84, -78], c \in [133, 140], \text{ and } d \in [-75, -70]$ $15x^3 - 83x^2 + 138x - 72$, which corresponds to multiplying out (5x - 6)(3x - 4)(x - 3).
- E. $a \in [13, 21], b \in [76, 90], c \in [133, 140], \text{ and } d \in [66, 76]$ * $15x^3 + 83x^2 + 138x + 72$, which is the correct option.

General Comment: To construct the lowest-degree polynomial, you want to multiply out (5x + 6)(3x + 4)(x + 3)

6. Which of the following equations *could* be of the graph presented below?

The solution is $20(x+4)^9(x-1)^{11}(x+3)^7$, which is option E.

A.
$$-11(x+4)^7(x-1)^7(x+3)^{11}$$

This corresponds to the leading coefficient being the opposite value than it should be.

B.
$$-3(x+4)^8(x-1)^{11}(x+3)^{11}$$

The factor (x + 4) should have an odd power and the leading coefficient should be the opposite sign.

C.
$$18(x+4)^8(x-1)^7(x+3)^5$$

The factor -4 should have been an odd power.

D.
$$6(x+4)^4(x-1)^{10}(x+3)^5$$

The factors -4 and 1 have have been odd power.

E.
$$20(x+4)^9(x-1)^{11}(x+3)^7$$

* This is the correct option.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

7. Which of the following equations *could* be of the graph presented below?

The solution is $-11(x+4)^6(x-3)^{10}(x+2)^5$, which is option B.

A.
$$-5(x+4)^{10}(x-3)^{11}(x+2)^7$$

The factor (x-3) should have an even power.

B.
$$-11(x+4)^6(x-3)^{10}(x+2)^5$$

* This is the correct option.

C.
$$9(x+4)^6(x-3)^{10}(x+2)^{11}$$

This corresponds to the leading coefficient being the opposite value than it should be.

D.
$$-19(x+4)^4(x-3)^9(x+2)^6$$

The factor (x-3) should have an even power and the factor (x+2) should have an odd power.

E.
$$19(x+4)^4(x-3)^8(x+2)^4$$

The factor (x + 2) should have an odd power and the leading coefficient should be the opposite sign.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

8. Describe the zero behavior of the zero x = -7 of the polynomial below.

$$f(x) = -8(x-7)^8(x+7)^{13}(x-9)^4(x+9)^7$$

The solution is the graph below, which is option A.

A.

В.

C.

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

9. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-5 + 3i$$
 and 1

The solution is $x^3 + 9x^2 + 24x - 34$, which is option A.

- A. $b \in [4, 10], c \in [22, 26]$, and $d \in [-38, -33]$ * $x^3 + 9x^2 + 24x - 34$, which is the correct option.
- B. $b \in [-16, -7], c \in [22, 26], \text{ and } d \in [27, 36]$ $x^3 - 9x^2 + 24x + 34, \text{ which corresponds to multiplying out } (x - (-5 + 3i))(x - (-5 - 3i))(x + 1).$
- C. $b \in [-4, 5], c \in [1, 6], \text{ and } d \in [-12, -3]$ $x^3 + x^2 + 4x - 5, \text{ which corresponds to multiplying out } (x + 5)(x - 1).$
- D. $b \in [-4, 5], c \in [-4, 0]$, and $d \in [2, 4]$ $x^3 + x^2 - 4x + 3$, which corresponds to multiplying out (x - 3)(x - 1).
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-5 + 3i))(x - (-5 - 3i))(x - (1)).

10. Describe the end behavior of the polynomial below.

$$f(x) = -4(x+4)^3(x-4)^6(x-5)^2(x+5)^3$$

The solution is the graph below, which is option B.

A.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.