MATH211: Linear Methods I

Matthew Burke

Thursday 29th November, 2018

Lecture on Thursday 29th November, 2018

Diagonalisation

Powers

Dynamical systems

Markov chains

Last time

Last time

Spectral theory

► Finding eigenvalues

► Finding eigenspaces of eigenvectors

Diagonalisation

If $x \in \mathbb{R}^n$ is a linear combination of eigenvectors of A then:

$$A(x) = A\left(\sum_{i=1}^{n} a_i v_{\lambda_i}\right) = \sum_{i=1}^{n} a_i A(v_{\lambda_i}) = \sum_{i=1}^{n} a_i \lambda_i v_{\lambda_i}$$

So if every vector in \mathbb{R}^n can be written as a linear combination of eigenvectors of A the the entire matrix action simplifies.

Definition

An $n \times n$ matrix A is diagonalisable iff every vector in \mathbb{R}^n can be written as a linear combination of eigenvectors.

Example

$$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and so is diagonalisable.

Example

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 has eigenvectors $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_4 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

and so is diagonalisable because all vectors in \mathbb{R}^2 can be written as a linear combination of v_1 and v_4 .

Motivation

Suppose we want to find Av.

- where P writes a linear combination of eigenvectors as a linear combination of standard basis vectors
- we say that the bottom horizontal action is diagonal

Diagonalisation

Definition

The matrix P diagonalises A iff there is a diagonal matrix D such that

$$A = PDP^{-1}$$

Question: How do we find the matrix P for a matrix A?

Answer: If $v_{\lambda_1}, v_{\lambda_2} \dots v_{\lambda_n}$ are eigenvectors such that every $x \in \mathbb{R}^n$ is a linear combination of the v_{λ_i} then the matrix

$$P = [v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}]$$

with eigenvectors as the columns is a diagonalising matrix for A.

When is a matrix diagonalisable?

Theorem

The following are equivalent for a matrix A:

- 1. there is a P such that $P^{-1}AP$ is diagonal
- 2. there are n eigenvectors such that any $x \in \mathbb{R}^n$ is a linear combination of these eigenvectors
- 3. there are eigenvectors $v_1 \dots v_n$ such that $[v_1 v_2 \dots v_n]$ is invertible
- 4. for every eigenvalue λ the geometric multiplicity is equal to the algebraic multiplicity

Lemma

If the characteristic polynomial of A has n distinct eigenvalues then A is diagonalisable by 4.

Examples

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

- 1. Find the eigenvalues by solving $|A \lambda \cdot I|$.
 - ▶ The no. of $(\lambda \lambda_i)$ factors is the algebraic multiplicity $alg(\lambda_i)$.
- 2. Find the eigenspaces E_{λ_i} by solving $(A \lambda_i \cdot I) = 0$.
 - Only need to do this for the eigenvalues λ_i found in (1).
 - ▶ The no. of parameters is the geometric multiplicity geom(λ_i).
- 3. ▶ If for all λ_i found in (1) we have $geom(\lambda_i) = alg(\lambda_i)$ then the diagonalising matrix is $P = [v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}]$ where the v_{λ_i} are the basic eigenvectors.
 - If for any of the λ_i found in (1) has $geom(\lambda_i) < alg(\lambda_i)$ then the matrix is not diagonalisable.

Powers

Taking powers of a diagonalisable matrix

Suppose that there exists a diagonal matrix D such that

$$A = PDP^{-1}$$

for some invertible matrix P. Then

$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$$

and indeed

$$A^n = PD^nP^{-1}$$

Example

Find A^9 if

$$A = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$

Example

Find A^{50} if

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

Dynamical systems

Markov chains

Definition

A *dynamical system* consists of a function $\alpha(t)$ that prescribes how the state of the system changes over time.

Definition

A discrete linear dynamical system consists of a sequence of vectors

$$x_0, x_1, x_2, \ldots, x_k, \ldots$$

such that $x_{k+1} = Ax_k$ for some matrix A.

Long term behaviour using eigenvectors

If x_0 is a linear combination of the eigenvectors v_{λ_i} of A then

$$x_k = A^k x_0 = A^k \left(\sum_{i=1}^n b_i v_{\lambda_i} \right) = \sum_{i=1}^n b_i A^k \left(v_{\lambda_i} \right) = \sum_{i=1}^n b_i (\lambda_i)^k v_{\lambda_i}$$

and so the long-term behaviour is determined by the limits:

$$\lim_{k\to\infty}(\lambda_i)^k$$

Dominant eigenvalue

Definition

If a is a square matrix then a dominant eigenvalue λ_{max} is one for which $|\lambda_{max}| > |\lambda_i|$ for all other eigenvalues λ_i .

$$x_k = \sum_{i=1}^n b_i (\lambda_i)^k v_{\lambda_i} pprox b_i (\lambda_{max})^k v_{\lambda_{max}}$$

and we can read off the long term behaviour. E.g.

- if $|\lambda_{max}| < 1$ then the system converges to 0
- lacktriangledown if $|\lambda_{\it max}|=1$ then the system converges to $b_i v_{\lambda_{\it max}}$
- if $|\lambda_{\it max}| = -1$ then the system oscillates between $\pm b_i v_{\lambda_{\it max}}$
- if $|\lambda_{max} > 1|$ then the system diverges

Examples

Example

Find a formula for x_k if $x_{k+1} = Ax_k$,

$$x_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$

Example

Estimate the long term behaviour of the dynamical system with

$$x_0 = \begin{bmatrix} 100 \\ 40 \end{bmatrix}$$
 and $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{bmatrix}$

Markov chains

A Markov chain consists of:-

- \triangleright a finite set of states x_1, x_2, \ldots, x_n
- a repeated transition interval at the end of which the system transitions between states
- ▶ a non-deterministic rule for predicting the probability that the system will transition into a certain state
 - This probability only depends on the current state.
 - (Not the entire history of the chain.)

Markov transition matrices

This means that a Markov chain is described by a matrix A such that

$$A_{ij} = \mathbb{P}(X_1 = j | X_0 = i)$$

= the probability that the next state will be *j* if the current state is *i*

Therefore:-

- ▶ all of the entries are between 0 and 1
 - ► (I.e. they are probabilities.)
- in any column the sum of the entries is 1
 - ► (The system must transition into one of the states.)

Example

Find the probability that x_3 is in state 1 if

$$x_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 0.4 & 0.25 & 0.2 \\ 0.4 & 0.35 & 0.5 \\ 0.2 & 0.4 & 0.3 \end{bmatrix}$