MATH-F-427 students

Coxeter groups

Course notes

May 30, 2019

Contents

The following developments aim to prove the theorem 0.7.

Definition 0.1. Let $V = \bigoplus_{n \geq 0} V_n$ a graded vector space. The Hilbert series of V is defined as

$$Hilb_V(t) = \sum_{n\geq 0} (\dim V_n) t^n \in \mathbb{Q}[t]$$
 (0.1)

Example 0.2. Consider $\mathbb{C}[\theta_1,\ldots,\theta_n]\subset\mathbb{C}[\bar{x}]$. We have

$$\operatorname{Hilb}_{\mathbb{C}[\theta_{1},...,\theta_{n}]}(t) = \frac{1}{(1 - t^{d^{1}})(1 - t^{d_{2}}) \dots (1 - t^{d^{n}})}$$

$$= (1 + t^{d_{1}} + t^{2d_{1}} + t^{3d_{1}} + \dots)(1 + t^{d_{2}} + t^{2d_{2}} + \dots) \dots$$

$$= \sum_{d \geq 0} \left(\sum_{(\alpha_{1},...,\alpha_{n}) \in \mathbb{N}^{n}: \alpha_{1}d_{1} + \dots + \alpha_{n}d_{n} = d} \underbrace{t^{\alpha_{1}d_{1}} t^{\alpha_{2}d_{2}} \dots t^{\alpha_{n}d_{n}}}_{t^{d}} \right)$$

$$(0.2)$$

Furthermore,

$$\mathbb{C}[\theta_1, \dots, \theta_n]_d = \operatorname{Span}_{\mathbb{C}}\{\theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_n^{\alpha_n} | \alpha_1 d_1 + \dots + \alpha_n d_n = d\}$$
 (0.3)

and

$$\dim \mathbb{C}[\theta_1, \dots, \theta_n]_d = \sharp \{(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n | \alpha_1 d_1 + \dots + \alpha_n d_n = d\}$$
 (0.4)

Theorem 0.3. [Molien] Let $G \subset GL(\mathbb{C}^n)$ be a finite group. We have

$$Hilb_{\mathbb{C}[\bar{x}]^G}(t) = \frac{1}{|G|} \sum_{\pi \in G} \frac{1}{\det(I - \pi t)}$$

$$\tag{0.5}$$

Proof. Consider $(\mathbb{C}^n)^G=\{v\in\mathbb{C}^n|\pi v=v, \forall \pi\in G\}.$ We define

$$P_G := \frac{1}{|G|} \sum_{\pi \in G} \pi \in \text{End}(\mathbb{C}^n)$$
 (0.6)

This operator is the projection of \mathbb{C}^n onto $(\mathbb{C}^n)^G$. We have $P_G^2 = P_G$ and

$$\dim(\mathbb{C}^n)^G = \operatorname{rank} P_G$$

$$= \operatorname{Tr}(P_G)$$

$$= \frac{1}{|G|} \sum_{\pi \in G} \operatorname{Tr} \pi$$
(0.7)

Recall that

$$\mathbb{C}[\bar{x}] = \bigoplus_{d>0} \mathbb{C}[\bar{x}]_d \tag{0.8}$$

For each $\pi \in G$, we write $\pi^{(d)} \in GL(\mathbb{C}[\bar{x}]_d)$ its restriction to $\mathbb{C}[\bar{x}]_d$. Not that

$$\mathbb{C}[\bar{x}]^G = \bigoplus_{d>0} \mathbb{C}[\bar{x}]_d^G \tag{0.9}$$

Now, we can identify \mathbb{C}^n with $\mathbb{C}[\bar{x}]_1$. Let $\pi \in G$ and $\ell_{\pi,1},\ldots,\ell_{\pi,n} \in \mathbb{C}[\bar{x}]_1$ a basis of eigenvectors associated with eigenvalues $\lambda_{\pi,1},\ldots,\lambda_{\pi,n}$, respectively. So $\{\ell_{\pi,1}^{d_1},\ldots,\ell_{\pi,n}^{d_n}|d_1+\ldots+d_n=d\}$ is a basis of $\mathbb{C}[\bar{x}]_d$. Here, $\ell_{\pi,1}^{d_1},\ldots,\ell_{\pi,n}^{d_n}$ are eigenvectors of $\pi^{(d)}$ associated with eigenvalues $\lambda_{\pi,1}^{d_1},\ldots,\lambda_{\pi,n}^{d_n}$. Therefore,

$$\dim \mathbb{C}_{d}^{G} = \frac{1}{|G|} \sum_{\pi \in G} \operatorname{Tr} \pi^{(d)}$$

$$= \frac{1}{|G|} \sum_{\pi \in G} \left(\sum_{(d_{1}, \dots, d_{n}) \in \mathbb{N}^{n}: d_{1} + \dots + d_{n} = d} \lambda_{\pi, 1}^{d_{1}} \dots \lambda_{\pi, n}^{d_{n}} \right)$$
(0.10)

Hence,

$$\operatorname{Hilb}_{\mathbb{C}[\bar{x}]^{d}}(t) = \sum_{d \geq 0} t^{d} \frac{1}{|G|} \sum_{\pi \in G} \left(\sum_{(d_{1}, \dots, d_{n}) \in \mathbb{N}^{n} : d_{1} + \dots + d_{n} = d} \lambda_{\pi, 1}^{d_{1}} \dots \lambda_{\pi, n}^{d_{n}} \right) \\
= \frac{1}{|G|} \sum_{\pi \in G} \left(\sum_{(d_{1}, \dots, d_{n}) \in \mathbb{N}^{n}} (\lambda_{\pi, 1} t)^{d_{1}} \dots (\lambda_{\pi, n} t)^{d_{n}} \right) \\
= \frac{1}{|G|} \sum_{\pi \in G} \frac{1}{(1 - \lambda_{\pi, 1} t) \dots (1 - \lambda_{\pi, n} t)} \\
= \frac{1}{|G|} \sum_{\pi \in G} \frac{1}{\det(I - t\pi)} \tag{0.11}$$

Lemma 0.4. Let $G \subset GL(\mathbb{C}^n)$ be a finite group. Let r be be the number of reflections in G. Then the Laurent expansion of $Hilb_{\mathbb{C}[\bar{x}]^G}(t)$ at t = 1 begins as

$$Hilb_{\mathbb{C}[\bar{x}]^G}(t) = \frac{1}{|G|}(1-t)^{-n} + \frac{r}{2|G|}(1-t)^{-n+1} + \mathcal{O}((1-t)^{-n+2})$$
 (0.12)

Proof. By Molien's theorem 0.3, we have

$$\operatorname{Hilb}_{\mathbb{C}[\bar{x}]^G}(t) = \frac{1}{|G|} \sum_{\pi \in G} \frac{1}{\det(I - \pi t)} \\
= \frac{1}{|G|} (1 - t)^{-n} + \sum_{\sigma \text{ reflections}} \frac{1}{(1 - t)^{n-1} (1 - \det \sigma t)} \\
= \frac{1}{|G|} (1 - t)^{-n} + \frac{(1 - t)^{-n+1}}{|G|} \sum_{\sigma \text{ reflections}} \frac{1}{(1 - \det \sigma)} + \mathcal{O}((1 - t)^{-n+2}) \\
(0.13)$$

Furthermore,

$$2\sum_{\sigma \text{ reflections}} \frac{1}{(1-\det\sigma)} = \sum_{\sigma \text{ reflections}} \left(\frac{1}{(1-\det\sigma)} + \frac{1}{(1-\det\sigma^{-1})} \right)$$

$$= \sum_{\sigma \text{ reflections}} \frac{1-\det\sigma^{-1}+1-\det\sigma}{(1-\det\sigma)(1-\det\sigma^{-1})}$$

$$= \sum_{\sigma \text{ reflections}} 1$$

$$= r$$

$$= r$$

$$= r$$

$$= (0.14)$$

This concludes the proof of the lemma.

Corollary 0.5. Let $G \subset GL(\mathbb{C}^n)$ be a finite group and $\mathbb{C}[\bar{x}]^G = \mathbb{C}[\theta_1, \dots, \theta_n]$ with θ_i algebraically independent and homogeneous of degrees d_i . Then,

$$|G| = d_1 d_2 \dots d_n$$
 and $\sum_{i=1}^n (d_i - 1) = r = \sharp \text{ of reflections}$ (0.15)

Proof. We have

$$\operatorname{Hilb}_{\mathbb{C}[\theta_{1},\dots,\theta_{n}]}(t) = \frac{1}{(1-t^{d_{1}})\dots(1-t^{d_{n}})} \\
= \frac{1}{(1-t)^{n}} \frac{1}{(1+t+\dots+t^{d_{1}-1})\dots(1+t+\dots+t^{d_{n}-1})} \\
= \frac{1}{(1-t)^{n}} \left(\frac{1}{d_{1}\dots d_{n}} + \frac{\binom{d_{1}}{2}}{d_{1}^{2}d_{2}\dots d_{n}} + \dots + \frac{\binom{d_{n}}{n}}{d_{1}\dots d_{n-1}d_{n}^{2}}\right) (1-t) + \mathcal{O}((1-t)^{-n+2}) \\
= \frac{1}{d_{1}\dots d_{n}} (1-t)^{-n} + \frac{\sum_{d=1}^{n} (d_{i}-1)}{2d_{1}\dots d_{n}} (1-t)^{-n+1} + \mathcal{O}((1-t)^{-n+2}) \\
(0.16)$$

From lemma 0.4, we obtain the results.

Lemma 0.6. If $f_1, \ldots, f_n \in \mathbb{C}[\bar{x}]$ are algebraically independent over G, then $\det \left(\frac{\partial f_i}{\partial x_j}\right)_{1 \leq i,j \leq n} \neq 0$.

Proof. We know that $\mathbb{C}[x_1,\ldots,x_n]$ has transcendent degree n. Hence, x_i,f_1,\ldots,f_n are algebraically dependent. Let $h_i(y_0,y_1,\ldots,y_n)$ be a polynomial of maximal degree such that $h_i(x_i,f_1,\ldots,f_n)=0$. For $k\in\{1,2,\ldots,n\}$, we have

$$\frac{\partial h_i(x_i, f_1, \dots, f_n)}{\partial x_k} = \sum_{j=1}^n \frac{\partial h_i}{\partial y_j}(x_i, f_1, \dots, f_n) \frac{\partial f_j}{\partial x_k} + \delta_{ik} \frac{\partial h_i}{\partial y_0}(x_i, f_1, \dots, f_n) = 0$$
(0.17)

Since the f_i are algebraically independent, h_i has positive degree in y_0 . Hence,

$$\frac{\partial h_i(y_0, y_1, \dots, y_n)}{\partial y_0} \neq 0 \tag{0.18}$$

Since it has smaller degree, we have

$$\frac{\partial h_i(x_i, f_1, \dots, f_n)}{\partial y_0} \neq 0 \tag{0.19}$$

From (0.17), we find

$$\frac{\partial h_i}{\partial y_j}(x_i, f_1, \dots, f_n) \frac{\partial f_j}{\partial x_k} = -\delta_{ik} \frac{\partial h_i}{\partial y_0}(x_i, f_1, \dots, f_n)$$
 (0.20)

Since

$$\det\left(-\delta_{ik}\frac{\partial h_i}{\partial y_0}(x_i, f_1, \dots, f_n)\right) \neq 0 \tag{0.21}$$

we find the desired result

$$\det\left(\frac{\partial f_j}{\partial x_k}\right) \neq 0 \tag{0.22}$$

Theorem 0.7. Let $G \subset GL(\mathbb{C}^n)$ be a finite group and $\mathbb{C}^G = \mathbb{C}[\theta_1, \dots, \theta_n]$ where θ_i are algebraically independent homogeneous of degrees d_i . Then G is a reflection group.

Proof. Let H be the subgroup generated by the reflections of G. Using previous result, we know that $\mathbb{C}[\bar{x}]^H = \mathbb{C}[\Psi_1, \dots, \Psi_n]$, with Ψ_i algebraically independent homogeneous of degree e_i . Clearly,

$$\mathbb{C}[\bar{x}]^G \subset \mathbb{C}[\bar{x}]^H = \mathbb{C}[\Psi_1, \dots, \Psi_n]$$
(0.23)

Hence, θ_i is a polynomial in Ψ_1, \dots, Ψ_n for all i. By lemma 0.6, we have

$$\det\left(\frac{\partial\theta_i}{\partial\Psi_i}\right) \neq 0 \tag{0.24}$$

Thus, for some permutation π , we have

$$\frac{\partial \theta_{\pi(1)}}{\partial \Psi_1} \frac{\partial \theta_{\pi(2)}}{\partial \Psi_2} \dots \frac{\partial \theta_{\pi(n)}}{\partial \Psi_n} \neq 0$$
 (0.25)

This means that Ψ_i actually occurs in $\theta_{\pi(i)}$. Hence,

$$e_i = \deg \Psi_i \le \det \theta_{\pi(i)} = d_{\pi(i)} \tag{0.26}$$

Let r be the number of reflections in G, and so also in H. By corollary 0.5, we obtain

$$r = \sum_{i=1}^{n} (d_i - 1) = \sum_{i=1}^{n} (e_i - 1)$$
(0.27)

Therefore, we must have $e_i = d_{\pi(i)}$ for all i. Using corollary 0.5 again, we have

$$|G| = d_1 \dots d_n = e_1 \dots e_n = |H|$$
 (0.28)

We deduce H = G.