IP - Adressierung - IPv4 Classful Addressing Netzwerkgrundlagen (NWG2)

Markus Zeilinger¹

¹FH Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

IPv4 Classful Addressing I - !! OBSOLET !!

- Urspr. Methode der IPv4 Adressorganisation (RFC 796).
- ► Einteilung des Adressraums in fünf fixe Klassen A bis E.
- Jeweils fixe Trennung zw. Netz- und Host-Anteil.
- Vergabe von Adressblöcken aus diesen Klassen je nach Größe und Anforderung.
- ▶ Bestimmung der Größe des Netz-Anteils durch die höchstwertigen Bits (0, 10, 110, ...) (sehr effizient für Router berechenbar → Bitmasken).

IPv4 Classful Addressing II - !! OBSOLET !!

IPv4 Classful Addressing III - !! OBSOLET !!

► Klassen: Anteil am Adressraum, Netz-Bits, Host-Bits, Adressbereiche, ...

Klasse	Anteil	Bits Netz-Anteil	Bits Host-Anteil	IP von	IP bis	Netze	Adressen/Netz
А	1/2	8	24	0.0.0.0	127.255.255.255	$2^7 = 128$	$2^{24} - 2 = 16.777.214$
В	1/4	16	16	128.0.0.0	191.255.255.255	$2^{14} = 16.384$	$2^{16} - 2 = 65.534$
С	1/8	24	8	192.0.0.0	223.255.255.255	$2^{21} = 2.097.152$	$2^8 - 2 = 254$
D	1/16	-	-	224.0.0.0	239.255.255.255	-	-
E	1/16	-	-	240.0.0.0	255.255.255.255	-	-

IPv4 Special-Purpose Addresses

- Lt. IANA IPv4 Special-Purpose Address Registry sind folgende IPv4 Adressbereiche für besondere Zwecke reserviert (unvollständig):
 - ► Erste Adresse eines Netzwerks = Netzwerkadresse, letzte Adresse eines Netzwerks = Broadcast-Adresse im Netzwerk.
 - 0.0.0.0: Selbstverweis ("ich"); Nutzung, wenn ein System noch über keine IPv4-Adresse verfügt.
 - 255.255.255.255: Broadcast im Netzwerk, in dem sich das System gerade befindet.
 - ► 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16: Private IPv4 Adressen (RFC 1918).
 - ► 127.0.0.0/8: Loopback Adressbereich ("Localhost").

IPv4 Classful Addressing IV - !! OBSOLET !!

Probleme

- 1. Ineffiziente/Starre Verwendung/Einteilung des IPv4 Adressraums
 - ightharpoonup Beispiel: Org braucht z. B. 5000 IPv4 Adressen ightarrow Klasse B zu groß, Klasse C zu kleiun
 - ▶ Lösung 1: 1x Klasse-B-Netz \rightarrow Verschwendung von \approx 60k Adressen.
 - ▶ Lösung 2: 20x Klasse-C-Netze \rightarrow unpraktische Struktur.
- 2. Keine Möglichkeit zur Abbildung von internen Strukturen im zugewiesenen IP Adressraum (Netzwerk aus bestimmter Klasse nicht weiter strukturierbar).
- 3. Exzessives Anwachsen der Routing Information (Routing Tabellen).

