Statistics for Data Science - 2

Week 5 Notes

1. Functions of continuous random variable:

Suppose X is a continuous random variable with CDF F_X and PDF f_X and suppose $g: \mathbb{R} \to \mathbb{R}$ is a (reasonable) function. Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

- $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- To evaluate the above probability
 - Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line.
 - Find the probability that X falls in those intervals.
 - $-F_Y(y) = P(X \in A_Y) = \int_{A_Y} f_X(x) dx$
- If F_Y has no jumps, you may be able to differentiate and find a PDF.

2. Theorem: Monotonic differentiable function

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in \text{supp}(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y))$$

• Translation: Y = X + a

$$f_Y(y) = f_X(y - a)$$

• Scaling: Y = aX

$$f_Y(y) = \frac{1}{|a|} f_X(ya)$$

• Affine: Y = aX + b

$$f_Y(y) = \frac{1}{|a|} f_X((y-b)a)$$

• Affine transformation of a normal random variable is normal.

3. Expected value of function of continuous random variable:

Let X be a continuous random variable with density $f_X(x)$. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. The expected value of g(X), denoted E[g(X)], is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

1

whenever the above integral exists.

- The integral may diverge to $\pm \infty$ or may not exist in some cases.
- 4. Expected value (mean) of a continuous random variable:

Mean, denoted E[X] or μ_X or simply μ is given by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

5. Variance of a continuous random variable:

Variance, denoted $\operatorname{Var}[X]$ or σ_X^2 or simply σ^2 is given by

$$Var(X) = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

- \bullet Variance is a measure of spread of X about its mean.
- $Var(X) = E[X^2] E[X]^2$

X	E[X]	Var(X)
Uniform $[a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	μ	σ^2

6. Markov's inequality:

If X is a continuous random variable with mean μ and non-negative supp(X) (i.e. P(X < 0) = 0), then

$$P(X > c) \le \frac{\mu}{c}$$

7. Chebyshev's inequality:

If X is a continuous random variable with mean μ and variance σ^2 , then

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

8. Marginal density: Let (X, Y) be jointly distributed where X is discrete with range T_X and PMF $p_X(x)$.

For each $x \in T_X$, we have a continuous random variable Y_x with density $f_{Y_x}(y)$. $f_{Y_x}(y)$: conditional density of Y given X = x, denoted $f_{Y|X=x}(y)$.

 \bullet Marginal density of Y

$$- f_Y(y) = \sum_{x \in T_X} p_X(x) f_{Y|X=x}(y)$$

9. Conditional probability of discrete given continuous: Suppose X and Y are jointly distributed with $X \in T_X$ being discrete with PMF $p_X(x)$ and conditional densities $f_{Y|X=x}(y)$ for $x \in T_X$. The conditional probability of X given $Y = y_0 \in \text{supp}(Y)$ is defined as

•
$$P(X = x \mid Y = y_0) = \frac{p_X(x)f_{Y|X=x}(y_0)}{f_Y(y_0)}$$