Real-Time Systems

Overview of Single Board Computers Used for Education

Dr. Sam Siewert

Electrical, Computer and Energy Engineering

Embedded Systems Engineering Program

R-Pi 3b+ (R-Pi 4) – Used in this Course and Series

Embedded Development and test with Raspberry Pi 3 model B+ from CanaKit described on eLinux

Raspbian Linux:

- 1. R-Pi 3b+
- 2. <u>R-Pi 4</u>
- 3. Low cost, widely available, simple to learn

Support by eCos:

- 1. https://www.ecoscentric.com/rpi/,
- 2. Cross development and patches for better real-time performance

Scale-Down MCUs – Texas Instruments (TIVA)

ARM Cortex M4 Microprocessor, IAR or Code Composer IDE, Cyclic Executive or FreeRTOS

ARM M-Series SBC:

- 1 TIVA TM4C123G DEV BOARD
- TM4C123G MCU,
- ARM Cortex,
- 4. TM4C123GXL Launch Pad

ARM M-Series IoT Boards:

- 1 <u>IoT Enabled TM4C129X</u> <u>Connected Development</u> Kit
- 2. TM4C1294XL Connected Launch Pad

Scale-Up Embedded GP-GPU SoCs - Jetson

Older Jetson TK1 CPU+GPU

- NVIDIA "4-Plus-1" 2.32GHz ARM quad-core Cortex-A15
- NVIDIA Kepler "GK20a" GPU with 192 SM3.2 CUDA cores (up to 326 GFLOPS)

Newer Jetson Nano Tegra K1

- Competitive with R-Pi, TI OMAP, etc. in terms of price, no fan, etc.
- Same Tegra K1 SoC
- Much more compact
- Good for student projects involving machine vision, AI

Siewert, Sam, et al. "Software defined multi-spectral imaging for Arctic sensor networks." *Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII.* Vol. 9840. International Society for Optics and Photonics, 2016.

Hybrid FPGA SoC Devices – DE1-SoC

Reconfigurable SoC with FPGA Co-processing Dual-Core ARM Cortex A9, Linux or FreeRTOS

- ALUTs: 24456
- Registers: 34,062
- Logic utilization: 17,721 / 32,070 (55 %) (55 %)

Table 3. Pyramidal Laplacian Resolution Up-Conversion Continuous Transform Power

Resolution	Transform (Watts)	(Pixel/sec) per Watt	Saturation FPS	Bus transfer rate (MB/sec)
320x240	6.009	889,546	69.6	5.10
640x480	6.013	904,281	17.7	5.19
1280x960	6.038	905,624	4.45	5.21
2560x1920	6.192	889,054	1.12	5.25

Table 4. Pyramidal Gaussian Resolution Down-Conversion Continuous Transform Power

Resolution	Continuous Transform Power (Watts)	(Pixel/sec) / Watt	Saturation FPS	Bus transfer rate (MB/sec)
320x240	5.968	2,445,040	190	13.92
640x480	6.018	2,399,202	47.0	13.77
1280x960	6.023	2,427,813	11.9	13.95
2560x1920	6.109	2,309,154	2.87	13.45

Siewert, Sam, et al. "Software defined multi-spectral imaging for Arctic sensor networks." *Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII.* Vol. 9840. International Society for Optics and Photonics, 2016.

