ECE 590: Machine Learning-based hardware design methodologies

Course summary

New optimization, design and test techniques

Biresh Kumar Joardar bireshkumar.joardar@duke.edu

About the course

What will be covered?

- Machine Learning (ML) algorithms such as Random Forest, Neural Networks, etc.
- ML-based methodologies to improve power-performance trade-offs in hardware systems.
- Novel hardware designs such as "3D architectures" to accelerate Deep Learning.

For Students:

 This course is suited for graduate students and undergraduate students with interest in Hardware systems and Machine Learning.

Prerequisites

- ECE 350 (for undergrads), ECE 550 (for graduates), ECE 529 preferred but not compulsory; If you have not taken these courses, you can still attend by permission of instructor
- Experience with coding in C/C++, Python
- Prior ML knowledge not required

Outline

- ML Intro (Weeks 1-2)
 - Training/Inference
- ML-based Hardware design methodology (Weeks 3-12)
 - > Task Mapping
 - > On-chip communication
 - Power management
 - > 2.5D/3D architectures
 - > Analog design
 - Hardware security
- Project (Weeks 12-13)
 - Individual paper review and presentation

Week by Week breakdown

- Week-1: Familiarization with ML libraries and algorithms
- Week-2: Implementing ML tasks
- Week-3: On-chip communication
- Week-4: Task-mapping
- Week-5: ML for task mapping and on-chip communication
- Week-6: 2.5D and 3D architectures
- Week-7: Power management
- Week-8: Paper presentation
- Week-9: ML for power management
- Week-10: Analog Design
- Week-11: Hardware Security, Rowhammer
- Week 12: ML for analog design and security
- Week-13: Final Project on hardware design using ML

Homework & late policy

- 4 Homework, 16 points each
 - Machine Learning
 - Task mapping & NoC design
 - 3D/2.5D architectures & power
 - Analog design & Security
- Pdf and code can be submitted by email/Dropbox
 - Live demo for code
- Bonus points for open questions
- Late policy:
 - 7 days without any penalty for entire semester
 - No points after that
 - Not applicable for project and presentations

Class projects and presentations

- 1 project, 36 points
 - Research paper published within last 4 years at top-tier conference/journal in ML or EDA
 - 4-6 pages IEEE-style report
 - Survey, Identify research problem, Propose new solution
- Novel reports automatically get 'A' (New solution, Interesting results, New direction of research)
 - No extension/late policy for report
 - Pdf and code can be submitted by Dropbox/email
 - Live code demonstrations in class
- Presentations:
 - Project introductions (10-15 mins)
 - Final project (10-15 mins)
 - Guest lectures

Course references and books

- Mostly research papers
 - DATE, DAC, ICCAD, etc.
- Follow class slides
- Website: Sakai and https://bjoardar.github.io/course.html
- Books
 - https://www.amazon.com/Deep-Learning-Hardware-Design-2nd/dp/B085K85SNW
 - https://www.google.com/books/edition/Machine Learning in VLSI Computer_Aided/2jeNDwAAQBAJ?hl=en&gbpv=0
- Office hours
 - Wed 4-5PM? (after class?)
 - Available by email

Computing resources & Feedback

- Computing resources:
 - CPU: Duke virtual machines (includes sudo permissions)
 - GPU: GPU Scavenger container from Duke OIT (shared by other class)
- Participate in class discussions, Q&A
- Feedback at the end of the course & during class

Computers in the past: ENIAC

- Year: 1946
- 17,468 vacuum tubes, 70,000
 resistors, 10,000 capacitors, 1,500
 relays, 6,000 manual switches
 and 5 million soldered joints.
- 1,800 square feet (167 square meters) of floor space
- weighed 30 tons
- 160 kilowatts of electrical power.

Computers in the past: Apollo guidance computer

- Year: 1960s
- 32,768 bits of RAM memory
- Clock speed 2.048 MHz
- Weighed 70 lb (32 kg)
- Consumed 55W

https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

Computers: Today

PCs

Smartphones

Smartwatches /Wearables

- Many sizes and shapes
- Clock speed: Up to 4 GHz
- Power: Often less than 1W in smartphones and wearables
- Weight: less than a pound to several pounds

Computers: Future

- Datacenter-on-Chip
- Target performance: Several TFLOP/s
- Ultra low power
- Reliable, Secure

Why Machine Learning?

- Hardware Design is becoming more complex
 - Larger system size

System size increases

- More heterogeneity
- New design constraints and objectives
- Existing methods do not scale well with design complexity

ML inspired techniques present a promising direction!

Heterogeneity increases

Embedded System: Realtime constraints, Reliability, Low-Power

No. of design objectives increases

Increasing system sizes

Product name	Intel Pentium IV	Intel I5-3570K	Nvidia GTX 1080Ti	Nvidia Tesla V100	Cerebras WSE	Cerebras WSE-2
Release year	2000	2012	2017	2017	2019	2021
Die size (mm²)	217	160	471	815	46225	46225
#Transistors	42M	1.4B	12B	21B	1.2T	2.6T

- Design methodologies used for single core no longer applicable
- Pentium IV → Nvidia Tesla, ~400X transistors
- Design and testing complexities are higher

Big Data

Machine Learning

Bioinformatics

Graph analytics

- "the hardware costs of running GPT-3 would be between \$100,000 and \$150,000 without factoring in other costs (electricity, cooling, backup, etc.)"
- https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/

- Terabytes of data → Huge processing time
 - Huge energy cost
 - Monetary cost
- Optimized hardware necessary

ML in EDA: research

FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

- Top EDA conference
- ~20-25% had ML-related keywords in title (2019)

ML in EDA: industry

- Al skills are among the fastest-growing skills on LinkedIn, and saw a 190% increase from 2015 to 2017
- Industries with more AI skills present among their workforce are also the fastest-changing industries

What can you do with ML?

Our focus

Hardware Design Trends

- Transistors still increasing
- Single-thread performance slowed/saturated
 - Frequency wall
 - Power wall
- Trend towards Manycore systems

Intel's Tick-Tock model

Every microarchitecture change (tock) was followed by a die shrink of the process technology (tick).

Change (step)	Fabri- cation process	Micro- architecture	Refresh		Haswell	Haswell Refresh, Devil's Canyon ^{[25}
ick new fabrica- on process)	- 65 nm	P8, NetBurst	Tick	14 nm ^[19]		Broadwell ^[26]
ock new micro- rchitecture)		Core	Tock		Skylake ^[26]	Skylake ^[26]
ick	45 nm					Kaby Lake ^[32]
ock		- Nehalem				
Tick	32 nm	Nenalem				
ock		Candu Bridge				Kaby Lake R ^{[35][3}
ïck	22 nm ^[19]	- Sandy Bridge	Optimizations (refreshes) [4][29][30][31]			Coffee Lake
iock						Whiskey Lake, Amber Lake ^[39]
Refresh		Haswell				Comet Lake ^[40]

Real-world manycore examples

TESLA V100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

Manycore challenges: Software

- #Cores ≠ Exec. Time speedup
- Law of diminishing returns
- Some portions of applications are serial
 - Atomic operations
 - I/O operations

Manycore systems: Communication bottleneck

- Conflicts happen in shared communication medium
- Poor performance when #Cores larger
- Poor performance when application is communication heavy

Manycore Systems: Memory Bandwidth bottleneck

Manycore Systems: Manufacturability

- More silicon = More chances of failure
- Massive chips are not economical
 - Low yields
- In this course, we will assume ideal systems i.e., no faults

Network-on-Chip

- New direction in on-chip communication
- Low latency, High-throughput, Energy-efficient
- Scalable to massive manycore systems

2.5D and 3D Manycores

- More integration density
- High throughput, Energy efficiency
- Accelerates applications like Neural Networks
- Micron's Hybrid Memory Cube (HMC)

Processing-in/near-memory

- Compute near data or inside memory
- Extremely high throughput
- Accelerates Neural Networks, Graph, Bioinformatics applications

Hardware security

- Hardware needs to be secure
- Threats:
 - Counterfeiting
 - DDoS attacks
 - Trojans
 - Rowhammer, etc.

