Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Zadanie klasyfikacji - drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Instytut Informatyki

Klasyfikacja danych - przykłady

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

- Bankowość- czy dane podanie o udzielenie kredytu jest obarczone dużym czy małym ryzykiem, czy dana transakcja kartą jest oszustwem,
- Edukacja umieszczenie studenta w odpowiedniej grupie z uwzględnieniem jego potrzeb,
- Medycyna diagnozowanie, czy występuje dana choroba,
- Telekomunikacja czy dany klient zrezygnuje z usług firmy telekomunikacyjnej (zbiór churn)
- Informatyka czy wiadomosc pocztowa jest spamem

W zadaniu klasyfikacji jest ustalona zmienna celu (inaczej: klasa) np. w powyższych przykładach: ryzyko duże - tak lub nie, grupa studencka o numerach 1,..., 5, diagnoza - jest choroba- tak lub nie itd.

Na czym polega zadanie klasyfikacji danych

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Niech C oznacza zbiór klas. Zakładamy, że algorytm uczący się klasyfikacji otrzymuje, jako wejście, zbiór danych treningowych (uczących)

$$LD = \{ \langle d, c \rangle \mid d \in D, c \in C \} \subset D \times C,$$

gdzie D jest zbiorem rekordów (wierszy atrybutów) $d=(w_1^d,\ldots,w_n^d)$ gdzie w_i^d dla $i=1,\ldots,n$ jest wartością i-tego atrybutu, n - jest liczbą atrybutów.

Na czym polega zadanie klasyfikacji danych, cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Algorytm uczenia klasyfikatora służy do znalezienia najlepszej możliwej aproksymacji \bar{f} nieznanej funkcji f takiej, że f(d) = c.

Następnie \bar{f} może być użyta do znalezienia klasy $\bar{c}=\bar{f}(\bar{d})$ dla dowolnego \bar{d} takiego, że $(\bar{d},\bar{c})\not\in LD$, zatem algorytm będzie mógł być użyty do znajdowania klasy dla przykładów, których nie użyto w uczeniu.

Zbiór danych LD składa się z dwóch podzbiorów $LD = TD \cup TS$, gdzie TD-jest zbiorem treningowym, TS -zbiorem testowym.

Dokładność klasyfikacji

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Jak liczyć dokładność klasyfikatora:

- budujemy klasyfikator w oparciu o zbiór treningowy dla każdego rekordu określona jest jego klasa,
- używając zbudowanego klasyfikatora, dla każdego wiersza ze zbioru testowego wyznaczamy klasę oraz porównujemy z rzeczywistą klasą,
- dokładnośc określamy jako stosunek liczby poprawnie sklasyfikowanych wierszy ze zbioru testowego do mocy tego zbioru.

Ewaluacja- cross-validation - sprawdzian krzyżowy

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Ewaluacja metodą '10-fold cross-validation' polega na dokonaniu podziału zbioru danych na 10 cześci X_1, \ldots, X_{10} i wykonaniu 10 doświadczeń.

W i-tym doświadczeniu X_i jest zbiorem testowym, a pozostałe $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{10}$ podzbiorów stanowi zbiór treningowy; w każdym doświadczeniu oblicza się dokładność klasyfikatora, a następnie liczy się średnią dokładność.

Na czym polega zadanie klasyfikacji danych, cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Klasyfikacja jest nazywana uczeniem nadzorowanym, gdyż algorytm uczący ma w zbiorze treningowym pełne dane - informacje, do jakiej klasy należy każdy wektor danych.

Przewidywanie (predykcja) jest podobnym zadaniem do klasyfikacji- w przewidywaniu wynik dotyczy przyszłości, np. przewidywanie cen akcji po upływie pół roku, przewidywanie zwycięzcy rozgrywek sportowych na podstawie wyników z przeszłości itd. Metody i techniki wykorzystywane do klasyfikacji mogą być również użyte, przy poczynieniu dodatkowych założeń, do przewidywania.

Przykładowy zbiór danych 'czy kupi komputer?'

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

wiek	dochod	stud	zdolKred	czyKupi
≤ 30	duży	nie	umiark	nie
≤ 30	duży	nie	doskonala	nie
3140	duży	nie	umiark	tak
> 40	sredni	nie	umiark	tak
> 40	mały	tak	umiark	tak
> 40	mały	tak	doskonala	nie
3140	mały	tak	doskonała	tak
≤ 30	sredni	nie	umiark	nie
≤ 30	mały	tak	umiark	tak
> 40	sredni	tak	umiark	tak
≤ 30	sredni	tak	doskonala	tak
3140	sredni	nie	doskonala	tak
3140	duży	tak	umiark	tak
> 40	sredni	nie	doskonala	nie

Drzewo decyzyjne

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Jak tworzy się drzewo decyzyjne?

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

- Z korzeniem drzewa związany jest pełny zbiór danych
- Każdy wierzcholek różny od liścia jest węzłem decyzyjnym
- Z każdem węzłem decyzyjnym związany jest atrybut
- Zbiór danych jest dzielony zgodnie z wartościami tego atrybutu i gałęzie prowadzą do następnych węzłow odpowiadających możliwym wartościom atrybutu
- Jeżeli z węzłem jest związany zbiór danych z jednej klasy, to węzeł jest liściem etykietowanym tą klasą
- Jeżeli w węźle występują dane z takimi samymi wartościami wszystkich atrybutów (nie można dalej dzielic!), to przyjmuje się głosowanie większościowe

Kiedy można zastosować drzewo decyzyjne

Zadanie klasyfikacji drzewa decyzyjne, wykł. <u>5</u>

Joanna Jędrzejowicz

- Zbiór treningowy powinien być bogaty i różnorodny, zapewniający reprezentatywną grupę typów rekordów, którch klasyfikacja może być potrzebna w przyszłości,
- klasy zmiennej celu muszą być dyskretne, to znaczy nie można zastosować analizy drzew decyzyjnych do ciągłej zmiennej celu,
- drzewa decyzyjne starają się stworzyć zbiór liści, które są 'najczystsze', to znaczy gdy każdy z rekordów w danym liściu należy do tej samej klasy.

Uwaga: jeżeli wartości atrybutu są rzeczywiste, to trzeba podzielić zbiór wartości na pewną liczbę przedziałów

Jakie mogą się pojawić problemy

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Co zrobić, jeżeli dany węzeł zawiera różne rekordy, z niejednakową wartością zmiennej celu i nie można dokonać dalszego podziału?

id	wiek	dochod	czyKupi
20	>40	duzy	tak
21	>40	duzy	tak
22	>40	duzy	nie
23	>40	duzy	tak

Jak dokonywać wyboru atrybutów w poszczególnych węzłach- algorytm C4.5

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Dla każdego atrybutu liczy się zysk informacji związany z tym atrybutem i wybiera się atrybut, dla którego wartość jest największa.

Załóżmy, że (w ustalonym węźle) zbiór danych S składa się z s wierszy. Załóżmy, że zbiór klas (wartości zmiennej celu) składa się z m różnych elementów C_1, \ldots, C_m . Niech s_i oznacza liczbę wierszy z klasy C_i .

Ilosć informacji niezbędna do zaklasyfikowania rekordu z danego zbioru:

$$I(s_1,\ldots,s_m)=-\sum_{i=1}^m p_i\times\log p_i$$

gdzie

$$p_i = \frac{s_i}{s}$$

Jak dokonywać wyboru atrybutów w poszczególnych węzłach,cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Jeżeli A jest atrybutem, który przyjmuje v możliwych wartości a_1, \ldots, a_v , to atrybut A dzieli zbiór S na v podzbiorów S_1, \ldots, S_v . Niech s_{ij} oznacza liczbę wierszy z klasy C_i należących do podzbioru S_j (czyli wartość atrybutu A jest w tym podzbiorze równa a_j). Entropia

$$E(A) = \sum_{i=1}^{V} \frac{s_{1j} + \cdots + s_{mj}}{s} \times I(s_{1j}, \ldots, s_{mj})$$

$$I(s_{1j},\ldots,s_{mj})=-\sum_{i=1}^{m}p_{ij}\times\log p_{ij}$$

gdzie

$$p_{ij} = \frac{s_{ij}}{|S_i|}$$

Jak dokonywać wyboru atrybutów w poszczególnych węzłach,cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Zysk informacji dla atrybutu A:

$$Gain(A) = I(s_1, \ldots, s_m) - E(A)$$

Obliczenia dla przykładowych danych

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Mamy 4 atrybuty:

- wiek (z trzema możliwymi wartościami: '<=30', '31..40','>40'),
- dochód (z trzema możliwymi wartościami)
- student(tak lub nie)
- zdolKred (dwie wartości)

Przyjmijmy klasa $C_1 = 'tak'$, klasa $C_2 = 'nie'$

Wyliczenie zysku informacji dla atrybutu 'wiek'

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

$$I(s_1, s_2) = -\frac{9}{14} \log \frac{9}{14} - \frac{5}{14} \log \frac{5}{14} = 0,940$$

Zysk informacji dla atrybutu 'wiek'

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Dla wartości '<=30':

$$s_{11} = 2$$
, $s_{21} = 3$, $I(s_{11}, s_{21}) = -\frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5} = 0,971$

Dla wartości '31..40':

$$s_{12} = 4$$
, $s_{22} = 0$, $I(s_{12}, s_{22}) = 0$

Dla wartości '>=40':

$$s_{13} = 3$$
, $s_{23} = 2$, $I(s_{13}, s_{23}) = -\frac{3}{5} \log \frac{3}{5} - \frac{2}{5} \log \frac{2}{5} = 0,971$

Zysk informacji dla atrybutu 'wiek', cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

$$E(wiek) = \frac{5}{14} \times I(s_{11}, s_{21}) + \frac{4}{14} \times I(s_{12}, s_{22}) + \frac{5}{14} \times I(s_{13}, s_{23}) = 0,694$$

$$Gain(wiek) = I(s_1, s_2) - E(wiek) = 0,940 - 0,694 = 0,246$$

Zadanie Policzyć zysk informacji dla pozostałych atrybutów. Sprawdzić, że największa wartość jest osiągana dla atrybutu 'wiek'. Narysowć drzewo decyzyjne (wyklad5.xls)

Błędy popełniane przez modele klasyfikacyjne

Zadanie klasyfikacji drzewa decyzyjne, wykł. <u>5</u>

- błąd treningowy klasyfikatora stosunek niepoprawnie zaklasyfikowanych rekordów zbioru treningowego do łacznej liczby rekordów w zbiorze treningowym,
- błąd testowy klasyfikatora jak wyżej dla zbior testowego,
- błąd generalizacji oczekiwany błąd na zbiorze nowych rekordów, zakłada się że minimalizacja błędu testowego prowadzi do minimalizacji błędu generalizacji

Przykładowy zbiór testowy

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

wiek	dochod	stud	zdolKred	czyKupi
			1	
≤ 30	mały	tak	umiark	tak
> 40	duży	nie	doskonała	tak
$31 \cdots 40$	duży	tak	umiark	tak

Jaka jest błąd testowy, jaki treningowy?

Przeuczenie klasyfikatora

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Problem silnego dopasowania drzewa decyzyjnego (por. przykład):

- błąd treningowy mały,
- dane mogą być mało reprezentatywne,
- może powodować duży błąd generalizacji

Przycinanie drzewa decyzyjnego (ang. pruning)

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz

Usunięcie poddrzewa i zastąpienie lisciem, któremu przypisuje się etykietą dominującą w zbiorze rekordów związanych z wierzcholkiem.

Przykład. Odcinamy wierzchołek zdolKred i zastepujemy lisciem 'tak'. Jak zmieni się błąd treningowy i testowy?

Przycinanie drzewa decyzyjnego

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Metody wykorzystujace strategię przycinania wstępnego: na etapie konstrukcji drzewa zatrzymuje sie tworzenie nowych węzłów korzystając z nast. kryteriów:

- miara jakosci podziału zbioru treningowego (np. zysk informacji) jest poniżej zadanego progu,
- zbiór treningowy związany z danym wierzchołkiem nie jest dostatecznie liczny,
- rozkład klas (np. większosc rekordów należy do jednej klasy)

Przycinanie drzewa decyzyjnego, cd

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Metody wykorzystujace strategię przycinania końcowego: konstruuje się pełne drzewo, a następnie metodą wstępującą, poczynając od lisci i przesuwając się w kierunku korzenia dokonuje się przycięcia. Możliwe kryteria:

- wylicza się błąd klasyfikacji dla drzewa zredukowanego i porównuje z miarą dla drzewa niezredukowanego, jeżeli przycięcie pogarsza to przywraca się zredukowane poddrzewo
- ewentualnie kryteria jak dla przycinania wstępnego

Reguly decyzyjne

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Korzystając z drzewa decyzyjnego możemy wygenerować reguły decyzyjne - wystarczy zapisać informację towrzyszącą przejściu od korzenia do liścia, np.

if wiek < 40 \land wiek >= 31 then czyKupi=tak

Dla reguł określa się dwie miary: wsparcie (ang. support) oraz ufność (ang. confidence).

Dla reguly if A then B

- wsparcie: stosunek liczby rekordów zawierających A i B do liczby wszystkich rekordów,
- ufność: stosunek liczby rekordów zawierających A i B do liczby rekordów zawierających A.
- Jakie jest wsparcie i ufność dla powyższej reguły?

wsparcie $\frac{4}{14}$, ufność $\frac{4}{4}$

Metoda klasyfikacji Random Forest (Breiman 2001)

Zadanie klasyfikacji drzewa decyzyjne, wykł. 5

Joanna Jędrzejowicz Klasyfikator zespołowy wykorzystujący drzewa decyzyjne oraz następujące dwie zasady:

- 'bagging' do budowy kolejnych drzew losuje się się dane ze zbioru treningowego,
- przy generowaniu konkretnego drzewa, dla każdego wierzchołka losuje się M atrybutów i sposród nich wybiera jeden z największym zyskiem informacji (M jest parametrem).
- po skonstruowaniu drzew klasyfikuje się nowe przykłady stosując głosowanie większościowe.