Elemente de programare liniară

Mihai-Sorin Stupariu

Sem. I, 2017-2018

► Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - Obiectele: poliedrale.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - ► Obiectele: **poliedrale**.
 - Matrițele: formate dintr-o singură piesă; fiecărui obiect $\mathcal P$ îi este asociată o matriță $\mathcal M_{\mathcal P}$

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - ► Obiectele: poliedrale.
 - Matrițele: formate dintr-o singură piesă; fiecărui obiect $\mathcal P$ îi este asociată o matriță $\mathcal M_{\mathcal P}$
 - Obiectul: extras printr-o singură translație (sau o succesiune de translații)

► Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.
- ▶ Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.
- Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.
- ► Convenții: Matrița este paralelipipedică și are o cavitate corespunzătoare obiectului; fața superioară a obiectului (și a matriței) este perpendiculară cu planul *Oxy*.

▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .

- Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- Analitic: fiecare față definește un semiplan

- Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- Analitic: fiecare față definește un semiplan
- Concluzie: Fie P un poliedru. Mulţimea direcţiilor admisibile este dată de o intersecţie de semiplane.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- Analitic: fiecare față definește un semiplan
- Concluzie: Fie P un poliedru. Mulțimea direcțiilor admisibile este dată de o intersecție de semiplane.
- ▶ **Teoremă.** Fie \mathcal{P} un poliedru cu n fețe. Se poate decide dacă \mathcal{P} reprezintă un obiect care poate fi turnat în $O(n^2)$ timp și folosind O(n) spațiu. În caz afirmativ, o matriță și o direcție admisibiă în care poate fi extras \mathcal{P} este determinată cu aceeași complexitate timp.

Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y \le c_i$$

Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y \leq c_i$$

▶ Intersecția $H_1 \cap H_2 \cap \ldots \cap H_n$ este dată de un sistem de inecuații; este o mulțime poligonală convexă, mărginită de cel mult n muchii (poate fi vidă, mărginită, nemărginită,...)

Input. O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $C = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $C \leftarrow H \in \mathcal{H}$

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $C \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. **if** $card(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$
- 5. $C_2 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_2)$

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. **if** $card(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$
- 5. $C_2 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_2)$
- 6. $C \leftarrow \text{IntersecteazaRegiuniConvexe} (C_1, C_2)$

Rezultate principale

▶ Propoziție. Aplicând direct algoritmii de overlay, intersecția dintre două regiuni convexe (INTERSECTEAZAREGIUNICONVEXE) poate fi calculată cu complexitate-timp O(n log n); în particular algoritmul INTERSECTIISEMIPLANE are complexitate O(n log² n).

Rezultate principale

- ▶ **Propoziție.** Aplicând direct algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n); în particular algoritmul IntersectiiSemiplane are complexitate O(n log² n).
- ► **Teoremă.** Algoritmul IntersecteazaRegiuniConvexe poate fi îmbunătățit, astfel încât complexitatea-timp să fie liniară.

Rezultate principale

- ▶ **Propoziție.** Aplicând direct algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n); în particular algoritmul IntersectiiSemiplane are complexitate O(n log² n).
- ► **Teoremă.** Algoritmul IntersecteazaRegiuniConvexe poate fi îmbunătățit, astfel încât complexitatea-timp să fie liniară.
- ► **Teoremă.** Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.

Problematizare

► Formulare generală (în spațiul *d*-dimensional):

$$\mathsf{maximizeaz\breve{a}}\big(c_1x_1+c_2x_2+\ldots+c_dx_d\big)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$

Problematizare

► Formulare generală (în spațiul *d*-dimensional):

$$\mathsf{maximizeaz\breve{a}}(\mathit{c}_{1}\mathit{x}_{1}+\mathit{c}_{2}\mathit{x}_{2}+\ldots+\mathit{c}_{d}\mathit{x}_{d})$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n \end{cases}$$

► **Terminologie:** date de intrare, funcție obiectiv, constrângeri, regiune realizabilă (fezabilă)

Problematizare

► Formulare generală (în spațiul *d*-dimensional):

$$\mathsf{maximizeaz\breve{a}}(\mathit{c}_{1}\mathit{x}_{1}+\mathit{c}_{2}\mathit{x}_{2}+\ldots+\mathit{c}_{d}\mathit{x}_{d})$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n \end{cases}$$

- ► **Terminologie:** date de intrare, funcție obiectiv, constrângeri, regiune realizabilă (fezabilă)
- ► **Exemple:** probleme de programare liniară 1-dimensională, 2-dimensională.

Rezultate

▶ **Lemã.** (Pentru d = 1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.

Rezultate

- **Lemă.** (Pentru d=1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.
- Interpretare a cerinței de maximizare: Maximizarea funcției obiectiv revine la a determina un punct al cărui vector de poziție are proiecția maximă de direcția dată de vectorul $\overrightarrow{c} = (c_1, c_2, \ldots, c_d).$

Rezultate

- ▶ **Lemă.** (Pentru d = 1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.
- Interpretare a cerinței de maximizare: Maximizarea funcției obiectiv revine la a determina un punct al cărui vector de poziție are proiecția maximă de direcția dată de vectorul $\overrightarrow{c} = (c_1, c_2, \dots, c_d)$.
- ▶ Pentru o problemă de programare liniară în plan (d = 2) pot fi distinse patru situații: (i) o soluție unică; (ii) toate punctele de pe o muchie sunt soluții; (iii) regiunea fezabilă este nemărginită și pot fi găsite soluții de-a lungul unei semidrepte; (iv) regiunea fezabilă este vidă.

▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "coltul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care }$ maximizează $f_{\overrightarrow{c}}(p)$ date constrângerile din H_i

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "coltul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care}$ maximizează $f_{\stackrel{\leftarrow}{c}}(p)$ date constrângerile din H_i
- 7. **if** p nu există

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care } \\ \text{maximizează } f_{\stackrel{\frown}{\leftarrow}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există
- 8. **then** raportează "nefezabil" **end**

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care}$ $\text{maximizează } f_{\overrightarrow{p}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există
- 8. **then** raportează "nefezabil" **end**
- 9. return v_n

Algoritm aleatoriu

- Pasul 2. este înlocuit cu:
 - 2'. Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.

Algoritm aleatoriu

- Pasul 2. este înlocuit cu:
 - 2'. Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.
- Algoritmul incremental LPMARG2D are complexitate-timp $O(n^2)$, iar varianta bazată pe alegerea aleatorie a semiplanelor are complexitate-timp medie O(n) (n este numărul semiplanelor).