

BIRDS-3 Project EM Thermal Vacuum Test Procedure

Kyushu Institute of Technology Laboratory of Spacecraft Environment Interaction Engineering

Date	Version Number	Writer	Annotations
2018/07/20	v1.0	Sasaki Yuji	First Draft
2018/07/25	v1.1	Sasaki Yuji	Corrections
2018/07/26	v1.2	Abhas	Corrections
2018/07/26	v1.3	Sasaki Yuji	TC positions on satellite
2018/07/30	v1.7	Abhas, Sasaki	Corrections, Heater Images
2018/08/06	v1.8	Makiko	Edit limit temperature
2018/08/23	v1.9	Abhas, Makiko	Edit all
2018/08/24	v2.0	Abhas	Font Correction,
2010/00/24	V2.U	Aulias	DCM to LDM

1

Contents

1.	Introduction	3
1.1. 1.2. 1.3.	General Objectives Scope	3 3 3
2.	Reference	3
3.	Nomenclature	3
3.1. 3.2.	Acronyms Symbols	3
4.	Test Purpose	4
4.1. 4.2.	Overall test purpose Corresponding requirements from RAS (to be edited for BIRDS-3)	4 4
5.	Test Description	4
5.1. 5.1. 5.1. 5.2. 5.3. 5.4.		4 4 4 5 5
6.	Test Facility, Set-Up and Equipment	8
6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8.	Test Facility Test Setup Thermal Cycle Profile Heater Positions Thermocouple Positions Attachment of Thermocouples Placement of Satellite inside the Small Vacuum Chamber Equipment and Measuring Instruments	8 9 10 11 13 18 19
7.	Test Schedule	20
8.	Detailed Test Procedure	20
9.	Test Output	23
9.1. 9.2.	Data analysis strategy Test report	23 23
10.	Quality Insurance	24
11.	Personnel Assignment	24
12.	Safety Requirement	25

1. Introduction

1.1. General

The Thermal Vacuum Test (TVT) of the Engineering Model (EM) of BIRDS-3 satellite shall pass qualification requirements under vacuum conditions and temperature extremes which simulate predicted space environment.

1.2. Objectives

The following are the test objectives:

- Check and analyze various satellite point temperatures under extreme hot and cold conditions.
- Check and analyze functionality and operation of the satellite under the defined temperature range (extreme hot, extreme cold and middle temperature conditions).
- Check and analyze antenna deployment mechanism under worst cold temperature.
- Check and analyze operation of battery heater and thermal monitors under the defined temperature range.

1.3. Scope

This document is applied to thermal vacuum test for BIRDS-3 EM using the small vacuum chamber at the Center for Nanosatellite Testing (CENT) at Kyutech.

2. Reference

Document number	Document description	Revision level or Release date
ISBN 1-884989-11-X	Spacecraft Thermal Control	Second Edition, 2002
	Handbook	
BIRDS-3 RAS	BIRDS-3 Project Requirement Allocation Sheet	Version 1 (2018/4/24)

3. Nomenclature

3.1. Acronyms

TVT

ADCS	Attitude Determination and Control System
	•
COM-UHF TRX	UHF transceiver board
EM	Engineering Model
EPS	Electric Power Subsystem
FAB	Front Access Board
GPS	Global Positioning System
GS	Ground Station
LN2	Liquid Nitrogen
OBC	Onboard Computer
PCB	Printed Circuit Board
RAB	Rear Access Board
RBF	Remove-Before-Flight
SP	Solar Panel
TC	Thermocouple

Thermal Vacuum Test

3.2 Symbols

- °C Degree Celsius
- Ω Ohm (resistance value)
- W Watt
- Pa Pascal

4. Test Purpose

4.1. Overall test purpose

- 1. Measure temperatures at different satellite points under extreme hot and cold conditions.
- 2. Check functionality and operation of the satellite under defined temperature range (extreme hot, extreme cold and middle temperature conditions).
- 3. Check antenna deployment mechanism under worst cold temperature.
- 4. Check operation of battery heater and thermal monitors under defined temperature range.

4.2. Corresponding Requirements from RAS

Table 1. Requirements from RAS to be satisfied by the test

Requirement Number (from RAS)	Requirement Description			
N/A	All of BIRDS-3's components/parts temperature range shall be within			
	the operating temperature ranges.			
DR1.9.1	BIRDS-3 shall be equipped with a heater circuit to increase internal			
DK1.9.1	temperature when necessary.			
DR1.10.1	The heaters shall maintain the battery packs temperature in allowable			
DK1.10.1	temperature.			
DR1.10.2	The heaters shall not be damaged during the operation.			
DR1.10.3	Heater power consumption shall be less than 1W.			
DR4.1.1	Allowable internal temperature range shall be from -10°C to 45°C.			
DR4.1.2	Allowable external temperature range shall be from -40°C to +80°C.			
DR4.1.3	Appropriate surface material shall be selected.			
DR4.2.1	Suitable sensors shall be selected for the satellite temperature range.			
DR4.2.3	Temperature measurement shall be correct within ±0.5 °C.			
No assigned ID	The battery shall be kept within temperature range (+5°C to 35°C).			

5. Test Description

5.1. Test Place and Time

5.1.1. Test Date

The thermal vacuum test will be conducted from **July 30 to August 3, 2018** (5 days) which includes setup preparation, the actual test cycles (with satellite functional test) and setup recovery.

5.1.2. Test Place

Center for Nanosatellite Testing
Laboratory of Spacecraft Environment Interaction Engineering
Kyushu Institute of technology
1-1 Sensui, Tobata, Kitakyushu, 804-8550 Fukuoka, Japan

5.2. Test Contents

The test shall consist of:

- 1. Preparation of the satellite, thermocouples (TCs), sheet heaters, connectors, GS setup and other materials to be used for the test
- 2. Attachment of TCs and heaters to the satellite and checking the response/resistance
- 3. Satellite assembly and checking of satellite functionality in normal laboratory setup (in BIRDS Room condition)
- 4. Installation of the satellite, TCs, heaters, and connectors inside the vacuum chamber and checking connectivity and responses.
- 5. Checking the satellite functionality inside the vacuum chamber before closing (atmospheric condition)
- 6. Vacuuming
- 7. Measurement of temperature of various satellite points in vacuum condition during the thermal vacuum test (especially at extreme cold condition, extreme hot condition and during the temperature transition)
- 8. Checking the satellite functionality during the thermal vacuum test (especially at extreme cold condition, extreme hot condition and during the temperature transition)
- 9. Antenna deployment test at extreme cold temperature of the Cycle 4
- 10. Checking battery heater operation during the thermal vacuum test
- 11. Setup recovery and removing the satellite from the vacuum chamber

5.3. Test Article

The test article description is shown in Table 2.

Table 2. Test article description

No.	Article name	Quantity	Manufacturer
1	BIRDS-3 EM	1	-

The EM 3D model is shown in Figure 1.

Figure 1. BIRDS-3 EM 3D model

5.4. Test Flow, Level and Conditions

Pressure, temperature and testing duration are described below

- Pressure: the chamber pressure shall be kept below 1 x 10-3 Pa during all conditions of the thermal vacuum test. In this pressure range, heat exchange by molecular flow is negligible.
- Test flow:

Table 3 shows the condition of heater power for thermal vacuum test. The power conditions shall be based on the calculation from orbit analysis for worst cases.

Table 3. Heater power in thermal vacuum test

Phase	Duration (Hours)	Time (HH:MM)	+X, +Z Sheet Heater Power (W)	-X, -Z Sheet Heater Power (W)	+Y, -Y Sheet Heater Power (W)	Battery Sheet Heater Power (W)
Vacuuming			0	0	0	0
Vacuum reached, room temperature			0	0	0	0
Cold Ramp 1 Start						
Cold Ramp 1 Stop						
Cold Soak 1 Start						
Cold Soak 1 Stop						
Cold Start						
FT						
Hot Ramp 1 Start						
Hot Ramp 1 Stop						
Hot Soak 1 Start						
Hot Soak 1 Stop						
FT						
Cold Ramp 2 Start						

Cold Ramp 2	Stop			
Cold Soak 2	Start			
Cold Soak 2	Stop			
FT				
Hot Ramp 2	Start			
Hot Ramp 2	Stop			
Hot Soak 2	Start			
Hot Soak 2	Stop			
FT				
Cold Ramp 3	Start			
Cold Ramp 3	Stop			
Cold Soak 3	Start			
Cold Soak 3	Stop			
FT				
Hot Ramp 3	Start			
Hot Ramp 3	Stop			
Hot Soak 3	Start			
Hot Soak 3	Stop			
FT				
Cold Ramp 4	Start			
Cold Ramp 4	Stop			
Cold Soak 4	Start			
Cold Soak 4	Stop			
FT				
Antenna Deployment				
Hot Ramp 4	Start			
Hot Ramp 4	Stop			
Hot Soak 4	Start			
Hot Soak 4	Stop			
FT				
Ramp down to ro temperature	om			
FT				
De-vacuuming an	ıd			
recovery				

6. Test Facility, Setup and Equipment

6.1 Test Facility

Specifications of the thermal vacuum chamber are shown in Table 4.

Table 4. Small thermal vacuum chamber specification

No.	Items	Specification
1	Size [mm]	
2	Ultimate Vacuum [Pa]	
3	Pump	Rotary pump (/s) Turbo-molecular pump (/s)
4	Shroud temperature [°C]	
5	Size of testable [mm]	
6	Mass [kg]	
6	Characteristics	

Figure 2 is an illustration of CeNT's small thermal vacuum chamber.

Figure 2. Small Thermal Vacuum Chamber at CeNT

6.2 Test Setup

The setup diagrams are shown below.

Figure 3. Overall test setup

Figure 4. Connection from COM-UHF transceiver boards to GS equipment

Figure 5. Connection from FAB to programming board, satellite monitoring PC, manual switch for RBF and power supply for battery charging

6.3 Thermal Cycle Profile

- The test will be conducted with 4 cycles (4 cold and 4 hot) as shown in Figure 6. At the extreme cold temperature and at the extreme hot temperature of each cycle, soaking time is 2 hours then followed by functionality tests of subsystems and missions within the next 1 hour.
- There are a total 16 temperature measurement points for the satellite, including the six on the external panels points.
- The monitoring/control temperature is battery for cold case and battery and COM for hot.
- The temperature ramp-up (worst cold to worst hot) rate is 45°C/hour and the temperature ramp-down (worst hot to worst cold) is 30°C/hour.
- The worst cold condition for battery is 0°C and will be used as controls.
- The worst hot condition which is control is the battery at +40°C or +50°C of COM, which ever arrives first.
- The battery heater of the satellite thermal subsystem will be activated. Its operation will be verified whether it is able to maintain battery temperature above $+5^{\circ}$ C.
- The battery temperature will be controlled to get lowest 0°C in a short time during the last cold soak phase to verify the battery operation in worst cold case.

Figure 6. Test Cycle Profile

6.4 Heater Positions

Table 5 provides the sheet heater parameters such as position, size, resistance and maximum power that can be used for the test.

Table 5. Heater Parameters

Parallel Connection

Heater Number	Position	Size [mm]	Resistance (Ω)	Total Resistance (Ω)	Maximum Power (W)	Power Supply Number
H1	-Y, -X	300 mm x 100 mm	28.5	~14.5		P1
H2	+Y	300 mm x 100 mm	29			P1
Н3	+X, Z	300 mm x 100 mm	28.5	28.5		P2
H4	-Z	165 mm x 105 mm	12.5	12.5		P3

The placement of the sheet heaters is shown in Figure 7 below. In the final setup, the heaters will be attached to their respective positions by first fixing using aluminum tape and then covering with Kapton tape, as shown in Figure 8. The Kapton tape is intended to improve the overall emissivity of the test article so that the temperature will decrease faster than that of the configuration with Aluminum tape alone.

Figure 7. Heater Positions

Figure 8. Attachment of sheet heater

6.5 Thermocouple Positions

The positions of thermocouples are summarized in Table 6.

Table 6. Positions of Thermocouples

	Position	TC Number	Connector Number Inside of Chamber	TC Number in PC	Measurement Point
1	Shroud Top			9	
2	Shroud Bottom			10	
3	LN2 Control			11	
4	Battery Box - Front	K01		0	Figure 9
5	Battery Box – Back	K02		1	Figure 10
6	Battery – Inside Battery Box	K03		2	Figure 11
7	Front Access Board	K04		3	Processor, Figure 12
8	OBC Board	Kxx		4	Processor, Figure 13
9	COM-UHF TRX Board	K06		5	Processor, Figure 14
10	LDM Board	K07		6	Processor, Figure 15
11	Mission Board II	K08		7	Processor, Figure 16
12	Rear Access Board	K09		8	Figure 17
13	-X	K10		12	Near Nichrome Wire Figure 18
14	+X	K11		13	Figure 19
15	+Y	K12		14	Figure 20
16	-Y	K13		15	Figure 21
17	+Z	K14		16	Figure 22
18	-Z	K15		17	Figure 23
19	CPLD Backplane Board	K16		18	CPLD, Figure 24
20	H1	K20		19	Figure 7
21	H2	K17		20	Figure 7
22	Н3	K18		21	Figure 7
23	H4	K19		22	Figure 7

Figure 9 to Figure 24 show the position of thermocouples will be attached to the satellite:

Figure 9. Battery Box – Front Side

Figure 10. Battery Box – Back Side

Figure 11. Battery – Inside Battery Box

Figure 12. Front Access Board

Figure 13. OBC Board

Figure 14. COM-UHF TRX Board

Figure 15. LDM Board

Figure 16. Mission Board II

Figure 17. Rear Access Board

Figure 18. –X external panel

Figure 19. +X External Panel

Figure 20. +Y External Panel

Figure 21. -Y Internal Panel

Figure 22. +Z External Panel

Figure 23. -Z External Panel

Figure 24. CPLD Backplane Board

6.6 Attachment of Thermocouples

Figure 25 shows the steps of attaching the thermocouples to satellite surfaces and components.

Figure 25. Attach Thermocouple

- Step 1: Cover thermocouple tips by a small piece of polyimide tape
- Step 2: Fix the thermocouple terminal using aluminum tape
- Step 3: Cover the aluminum tape by polyimide tape
- Step 4: Fix the thermocouple wire by polyimide tapes

6.7 Placement of satellite inside the small vacuum chamber

Figure 26. Placement of the satellite inside the small vacuum chamber

6.8 Equipment and Measuring Instruments

Table 7 shows a list of equipment needed during the thermal vacuum test.

Table 7. Equipment and measuring instruments details

		1 1		
No	Equipment	Quantity	Model	Comments
1	Thermocouple	20	Type-K	-180 to +1300 °C
2	Sheet Heater	3		89Ω
3	Sheet Heater	2		97Ω
4	Data acquisition PC	1	Desktop PC	For chamber control
5	DAQ-mx	4	NI 9213	24 bit ADC
6	Power Supply	4		0-320V
7	Camera	1	D3200	24 Mpx
8	Transceiver	1	IC-9100	For functional test
9	Attenuator	3		For functional test
11	Functional Test PC	2	N/A	For functional test
12	Terminal Node Controller	1	KPC-9612+	For functional test

7. Test Schedule

The test schedule is shown in Table 8 below, the schedule is tentative and can be changed base on the actual test conditions.

Table 8. Test schedule

	7/30	7/30	7/31	7/31	8/1	8/1	8/2	8/2	8/3
	AM	PM	AM	PM	AM	PM	AM	PM	AM
Preparation of the satellite, thermocouples									
(TCs), sheet heaters, connectors, GS setup and									
other materials to be used for the test									
Attachment of TCs and heaters to the satellite									
and checking the response/resistance									
Satellite assembly and checking of satellite									
functionality in normal laboratory setup (in									
BIRDS-3 Room condition)									
Installation of the satellite, TCs, heaters, and									
connectors inside the vacuum chamber and									
checking connectivity and responses.									
Checking the satellite functionality inside the									
vacuum chamber before closing (atmospheric									
condition)									
Vacuuming									
Inject LN2									
Thermal Cycle									
De-vacuuming, setup recovery and removing									
the satellite from the vacuum chamber									

8. Detailed Test Procedure

The detail test procedures shown in Table 9 with tasks need to be done before, during and after the test, the person in charge of each task should check the task once it finished.

Verification
Preparation and checking the satellite and chamber
Make vacuum and conduct the thermal test and functional test
Stop the test, clean up and check the satellite

Table 9. Detailed test procedure

No.	Procedure	Check
0	Verify all satellite functionalities and operation (preliminary, in BIRDS-3 Room)	
1	Prepare and check thermocouples	
2	Prepare and check heaters	

3	Check chamber's heater connections					
4	Check chamber's thermocouple connections					
5	Check chamber's D-Sub and RF port connections					
6	Disassemble structure and center box					
7	Attach thermocouples and heaters to BIRDS-3 CubeSat (see Figures 8- 26)					
8	Take photos and note the heaters' and TCs' positions					
9	Reassemble satellite and check thermocouples and heaters connection					
10	Check satellite functionalities					
11	Move satellite to the chamber					
12	Install the satellite in the chamber (see Fig. 27)					
13	Check again all heaters' and TCs' response on the PC					
14	Check satellite functionalities					
15	Close the chamber					
16	Make vacuum	Duration	Time	-Y, -X, +Y Sheet Heater (H1,H2) Power (W)	+X, Z Sheet Heater (H3) Power (W)	-Z Heater (H4) Power(W)
		(Hours)	(HH:MM)			
17	Inject LN2			0	0	0
18	Start cold ramp 1			0	0	0
19	Start cold soak 1					
20	Satellite functional test 1-C					
21	Start hot ramp 1					

22	Start hot soak 1			1	
			-		
23	Satellite functional test 1-H, battery charging				
24	Start cold ramp 2				
25	Start cold soak 2				
26	Satellite functional test 2-C				
27	Start hot ramp 2				
28	Start hot soak 2				
29	Satellite functional test 2-H, battery charging				
30	Start cold ramp 3				
31	Start cold soak 3				
32	Satellite functional test 3-C				
33	Start hot ramp 3				
34	Start hot soak 3				
35	Satellite functional test 3-H, battery charging				
36	Start cold ramp 4				
37	Start cold soak 4				
35	Satellite functional test 4-C	 			
36	Start hot ramp 4				
37	Start hot soak 4				
38	Satellite functional test 4-H, battery charging				
39	Start ramp down to room temperature				
40	Satellite functional test at room temperature				
41	Stop LN2 injection				
42	Turn on chamber heater to increase chamber temperature				
43	Open chamber, move satellite to clean room				

44	Satellite functional testing			
45	Disassemble satellite			
46	Remove TCs and heaters			

9. Test Output

9.1. Data analysis strategy

Table 10 below show the operating temperature range of BIRDS-3 satellite. The temperature of each subsystem during the test should be inside of operating temperature range.

Table 10. Subsystem operating temperature range

Table 10.	bubsystem ope.	rating temperati	ure range
Subsystem	Lowest (°C)	Highest (°C)	
Front Access Board	-20°C	+85°C	
OBC/EPS Board	-40°C	+85°C	
Battery	+0°C	+40°C	Hot + Cold Control Case
COM-UHF TRX Board	-20°C	+60°C	
LDM Board	-40°C	+60°C	
Mission Board II	-40°C	+85°C	
Rear Access Board	-40°C	+140°C	
-X Panel	-40°C	+85°C	
CPLD Backplane	-40°C	+105°C	

9.2. Test report

- The thermal analysis for BIRDS-3 EM model with includes the configuration of the model and temperature profiles.
- Temperature profile of all measurement points during the test.
- Results on functionality tests, battery heater operation and antenna deployment test
- Evaluation of the test results.

10. Quality Insurance

 $\begin{tabular}{ll} Temperature [°C] & : 20 ± 5 \\ Humidity [%] & : 70 ± 10 \\ Atmosphere & : 10^-5 Pa \\ \end{tabular}$

11. Personnel Assignment

Tables 11 show the personnel assignment for the thermal vacuum test.

Table 11. Personnel Assignment During Setup Preparation

Task	Responsible Person
Ground Station Equipment	
Preparation and installation of heaters and thermocouples	
D-sub Connector Preparation	
Battery Charging Setup	
Antenna preparation and deployment test trial	
Documentation	
Support	
TVT Lead	
Team Management	

12. Safety Requirement

During the test period, in consideration of the safety of work, strictly observe the following matters:

- 1. During testing, the field officer shall supervise all work and instruct properly to assure the safety of work.
- 2. Use a crane or a handcart to move any heavy item with anticipated risk.
- 3. The ceiling crane shall be operated only by licensed personnel. I-bolt / lifting equipment should be inspected each time before operating the crane. No entry to the area under the suspended material is permitted.
- 4. During testing, keep unnecessary items away from the testing machine.
- 5. Gloves shall be worn when handling a satellite or sensors.
- 6. Do not place any item on safety-related motion lines, such as the emergency exit, corridor, fire extinguishers, etc.
- 7. When a high voltage apparatus is used, turn off the power before inspecting, touching, or modifying, etc.
- 8. In the case of a natural disaster or a serious accident, take emergency measures and prevent secondary accidents immediately. Then communicate via the following emergency communication links shown below in Figure 27.

Figure 27. Emergency procedure flow chart

- (1) What to say in Japanese
 - (a) You are the center, 4th floor

Kyushu kogyo daigaku, kogakubu no sogo kenkyu ichi-goto, yonkai de ____nin fushosha (= injured)/kasai (= fire) ga hassei shimasita. Watashi ha _____ (your name) desu.

Kyushu Institute of Technology, General Research Building No. 1, 4 th floor. There are
people injured /There is a fire . I am (your name).
(b) You are at SVBL, 1st floor
Kyushu kogyo daigaku, kogakubu no sogo kenkyu ni-goto, ichikai denin fushosha (=
injured)/kasai (= fire) ga hassei shimasita. Watashi ha (your name) desu.
Kyushu Institute of Technology, General Research Building No. 2, 1st floor. There are
people injured /There is a fire . I am (your name).
(c) You are at SVBL, 2 nd floor
Kyushu kogyo daigaku, kogakubu no sogo kenkyu ni-goto, nikai denin fushosha (=
injured)/kasai (= fire) ga hassei shimasita. Watashi ha (your name) desu.
Kyushu Institute of Technology, General Research Building No. 2, 2 nd floor. There are
people injured /There is a fire . I am (your name).
(d) You are at SVBL, 3 rd floor
Kyushu kogyo daigaku, kogakubu no sogo kenkyu ni-goto, sankai denin fushosha (=
injured)/kasai (= fire) ga hassei shimasita. Watashi ha (your name) desu.
Kyushu Institute of Technology, General Research Building No. 2, 3 rd floor. There are
people injured /There is a fire . I am (your name).