

Identifying Sign Language Characters from Images

Exploratory Analysis 10/30/2015

The challenge is to have computers recognize and "translate" sign language characters from diverse, complex images

The Challenge

In: Raw Sign Language Images

Out: Identified / "Translated" Characters

A

B

C

5

Point

V

In this exploratory analysis, we achieved ~40% accuracy, over 100% better than baseline

Given more time, the accuracy could be improved even further

Opportunities for Improvement

Image Processing

- The current best approach uses relatively little image processing
- The current model could benefit greatly from **better isolating the** hand in the images
 - More fine-tuned, accurate (rule based?) skin detection
 - Scaling the identified hands to a consistent size
 - Rotating / jittering the hands
- Example:

Neural Networks

 Though computationally intensive and slow to train, neural networks (specifically convolutional neural networks) are the current gold standard in many image classification problems

Questions?

