

CHEMISTRY

16th and 17th class, Date: 04-10-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in

Dr K Ananthanarayanan

Phone : 9840154665

©SRM

In this class..

Estimation of total hardness, permanent and temporary hardness by EDTA method

Expt. No.: 2

5 October 2021

Experiment

☐ Aim:

To estimate the amount of total hardness, permanent hardness and temporary hardness of a given sample of water by EDTA method using ammonia buffer (pH =10) and Eriochrome black-T indicator.

☐ Materials required:

Pipette, burette, conical flask, standard flask, funnel, beaker.

Chemicals required:

EDTA solution, standard hard water, sample water, Eriochrome black T indicator (EBT), NH₃-NH₄Cl buffer solution (pH 10).

5 October 2021

Dr K Ananthanarayanan

3

Hardness of water

- □ Hard water is water that contains cations with a charge of +2, especially Ca²⁺ and Mg²⁺
- ☐ At a <u>level over 100 mg/L</u> measured as calcium carbonate, a given water source is considered hard. (Not potable)

Hardness (mg/L)	Degree of hardness
0-75	Soft
75-100	Moderately hard
150-300	Hard
>300	Very hard

5 October 2021 Dr K Ananthanarayanan 4

Hardness of water, scale formation

5 October 202

ır K Ananthanaravanan

Types of hardness

☐ <u>Temporary hardness:</u>

It is due to the presence of bicarbonates of calcium and magnesium and can be removed by boiling.

☐ Permanent hardness:

It is due to the presence of sulphates, nitrates and chlorides of calcium and magnesium.

- ☐ Hardness is usually reported as <u>parts per million (ppm) of</u> <u>calcium carbonate (by weight)</u>.
- □ A water supply with a hardness of 100 ppm contains the equivalent of 100 g of CaCO₃ in 1 million g of water or 0.1 g in 1 L of water

5 October 2021

Dr K Ananthanarayanan

Hardness, representation

<u>Clark's degree (°Cl):</u> The number of parts of calcium carbonate equivalent hardness present in **70,000 or (7×10**⁴) parts of water.

 $\underline{1^{\circ} \text{ Clark}} = 1 \text{ part of CaCO}_3 \text{ eq. hardness per } 70,000 \text{ parts of water. } (14.254 \text{ ppm})$

<u>Degree French (°Fr):</u> The number of parts of calcium carbonate equivalent hardness presents in <u>10⁵ parts of water</u>.

 1° Fr = 1 part of CaCO₃ hardness eq per 10⁵ parts of water. (10 ppm)

5 October 202

Dr K Ananthanarayanan

Complexometric titration

- □ A titration based on the formation of coordination complexes between a <u>metal ion and complexing agent</u> (or chelating agent) to form soluble complexes. (<u>Hardness in water</u>)
- □ Complex-forming reactions involving <u>many metal ions</u> can serve as a basis for accurate and convenient titrations for such metal ions. <u>High accuracies</u> and offer the possibility of determinations of metal ions at the <u>millimole levels</u>.

Eriochrome Black-T + Ca^{2+}/Mg^{2+} \longrightarrow Eriochrome Black-T- Ca^{2+}/Mg^{2+} (Wine red)

Eriochrome Black-T-Ca²⁺/Mg²⁺ + EDTA → EDTA-Ca²⁺/Mg²⁺ + Eriochrome Black-T (Wine red) (Steel blue)

5 October 2021

Principle

- ☐ The hardness causing metal ions form a wine-red coloured weak complex with Eriochrome black-T indicator in the presence of buffer solution.
- When EDTA is added, the <u>indicator is replaced by EDTA and a stable complex is formed</u>. Due to <u>liberation of Eriochrome black-T indicator</u>, wine <u>red colour changes to steel blue</u> which marks the end point of titration.

Role of Eriochrome black-T

- Eriochrome black T is an azo dye used as a complexometric indicator.
- ☐ In its <u>deprotonated form, Eriochrome black-T is blue</u>. It turns <u>red when it forms a complex</u> with calcium, magnesium, or other metal ions.

☐ The <u>characteristic blue end-point is reached</u> when sufficient EDTA is added and the metal ions bound to the indicator are chelated by EDTA, leaving the free indicator molecule.

5 October 2021

Dr K Ananthanarayanan

Role of EDTA

■ EDTA is a <u>hexadentate complexing or chelating agent</u> used to capture the metal ions.

- ☐ Capturing metal ions causes water to become softened, but metal ions are not completely removed from water.
- ☐ EDTA simply binds the metal ions to it very tightly thus forming a **strong and stable metal complex.**

5 October 2021

Dr K Ananthanarayana

11

Role of EDTA

$$Ca^{2+}(aq) + H_2Y^{2-}(aq) \longrightarrow CaY^{2-}(aq) + 2H^{+}(aq)$$

HOOC
$$N - CH_2 - CH_2 - N$$
 COOH COO^-

EDTA (anionic form)

5 October 2021

Dr K Ananthanarayanar

Complexometric titration

Metal ion

EDTA-Metal Complex

$$M^{2+} + Y^{4-} \longrightarrow MY^{2-}$$

- ☐ The Y4- ion that forms a 1:1 complex with the metal ion is completely deprotonated anion the ethylenediaminetetraacetic acid ("H₄Y").
- ☐ At pH=10, the EDTA is present in solution primarily as its monoprotonated form, HY3-

5 October 2021

Role of ammonia buffer

- ☐ The buffer solution is used to resist the change in pH as all reactions between metal ions and EDTA are pH dependent.
- ☐ With increasing the pH, each hydrogen ion in the carboxyl groups of EDTA will start to dissociate. Above pH 10, EDTA4- is predominant. As we need EDTA4- to react with the metal ions present in the titration solution, we use pH 10 buffer such as ammonia/ammonium chloride.

EDTA 4-

EDTA - metal complex

5 October 2021 Dr K Ananthanarayanan

Equation, calculation

$$Ca^{2+} + H_2EDTA^{2-} \rightarrow CaEDTA^{2-} + 2H^+$$

$$Mg^{2+} + H_2EDTA^{2-} \rightarrow MgEDTA^{2-} + 2H^+$$

So if we let M²⁺ be the total of Ca²⁺ and Mg²⁺ ions in solution ther

$$\mathsf{M}^{2+}\,+\,\mathsf{H}_2\mathsf{EDTA}^{2^-}\to\mathsf{MEDTA}^{2^-}\,+\,2\mathsf{H}^+$$

Note that 1 mole of M^{2+} reacts with 1 mole of H_2EDTA^{2-} . At the equivalence point of the titration:

moles
$$M^{2+}$$
 = (moles Ca^{2+} + moles Mg^{2+})
= moles H_2EDTA^{2-}

5 October 2021

Dr K Ananthanarayanar

17

CaCO₃ as reference for hardness

- □ CaCO₃ is stable, non-hygroscopic and is obtained in pure form. Therefore a standard hard water solution can be prepared by dissolving accurately weighed CaCO₃ in HCl and can make up to a known volume.
- □ CaCO₃ is insoluble in water. Therefore it can be easily precipitated in water treatments.
- Molecular weight of CaCO₃ is 100, so mathematical calculations are easy.

1.0 gm of pure CaCO₃ dissolved in minimum quantity of conc. HCl and diluted to a one litre with distilled water.

5 October 2021

Dr K Ananthanarayanan

Procedure

Standardisation of EDTA

Pipette out <u>20mL of standard hard water</u> into a clean conical flask.
Add <u>5mL of the buffer solution and 3 or 4 drops</u> of eriochrome black-T indicator. The solution <u>turns wine red</u> in colour.
Titrate the <u>wine red coloured solution against EDTA</u> taken in the burette.

5 October 202

value be <u>V₁ mL</u>

Dr K Ananthanaravanar

☐ The change from wine red to steel blue colour is the end point. Repeat the titration for concordant values. Let the titer

19

Procedure

Determination of total hardness

- ☐ Pipette out **20mL of sample hard water** into a clean conical flask.
- □ Add 5mL of the buffer solution and 3 or 4 drops of eriochrome black-T indicator. The solution turns wine red in colour.
- ☐ Titrate the wine red coloured solution against EDTA taken in the burette.
- ☐ The change from wine red to steel blue colour is the end point.
- □ Repeat the titration for concordant values. Let <u>V₂ mL</u> be the volume of EDTA consumed.

5 October 2021

Dr K Ananthanarayanan

Procedure

Determination of permanent hardness

- ☐ Take 100 mL of hard water sample in a 250 mL beaker and boil gently for about one hour. (boiled water will be given)
- □ Cool and filter into a 100mL standard flask and make the volume up to the mark. Take **20mL of this solution** and proceed the titration in the same way.
- \Box The volume of EDTA consumed corresponds to the permanent hardness of the water sample. Let the titer value be $\underline{V_3 \text{ mL.}}$
- ☐ Temporary hardness is calculated by subtracting **permanent hardness from total hardness**.

5 October 2021

Dr K Ananthanarayanan

21

Tabular column

Standardisation of EDTA

Table 1 Std Hard water Vs EDTA solution

Indicator	Vol. of	Reading	Burette	Vol. of Std.	0.31
	EDTA ml	Final	Initial	hard water ml	S.No.
and Sec			1		
8.0		Mary Commercial	75 4 7	7 mpt (2007)	
EBT				_ = = =	
E 100 - 10	8	100-002		.1	

5 October 2021

Calculation, standardisation

1 ml of Standard hard water = 1 mg of CaCO₃

Volume of standard hard water taken = 20ml

20ml of Standard hard water = 20mg of CaCO₃

Volume of EDTA consumed = V_1 ml (from table-1)

V1ml EDTA solution = 20mg CaCO₃

Therefore 1ml EDTA will be = $\frac{20}{mg} \text{ of equivalent } CaCO_3$

A mg CaCO₃

October 2021

narayanan

Determination of total hardness Table 2 Sample Hard water Vs EDTA Solution									
	Sample	Hard water	r Vs EDTA	Solution					
S.No.	Vol. of Sample hard water ml	Burette Initial	Reading Final	Vol. of EDTA ml	Indicator				
					ЕВТ				

Determination of Total hardness

Volume of EDTA consumed = $X \text{ mL } (V_2 \text{ from Table-2})$ 1 mL of EDTA = $20/V1 \text{ [mg CaCO}_3\text{]}$ = $A \text{ mg CaCO}_3$ $V_2 \text{ mL of EDTA}$ = $A \times V_2$ [mg CaCO₃] = $B \text{ mg of CaCO}_3$

If 20 mL of sample hard water taken for titration = B mg of CaCO₃

Then, 1000 mL will contain = $(\mathbf{B} \times 1000 \text{ mg CaCO}_3) / 20$

Total hardness = TH ppm

5 October 2021

Dr K Ananthanarayanar

25

Tabular column

Determination of permanent hardness

Table 3 Boiled sample hard water Vs EDTA solution

S.No.	Vol. of boiled	Burette l	Burette Reading		Indicator
5.110.	water ml	Initial	Final	EDTA ml	Mulculot
					EBT

5 October 2021

Dr K Ananthanarayanan

<u>Determination of Permanent hardness:</u>

Volume of EDTA consumed = X mL (V_3 from Table-3) 1 mL of EDTA = $20/V_1$ [mg CaCO₃] = A mg CaCO₃ V_3 mL of EDTA = $A \times V_3$ [mg CaCO₃] = C mg of CaCO₃

If 20 mL of sample hard water taken for titration = **C** mg of CaCO₃

Then, 1000 mL will contain = ($\mathbf{C} \times 1000 \text{ mg CaCO}_3$) / 20

= PH ppm

Permanent hardness = ppm

5 October 2021

Dr K Ananthanarayanar

27

Estimation of Temporary hardness

Temporary Hardness = Total hardness – Permanent hardness

RESULT:

 	\mathbf{n}	ナヘナヘリ	hore	100000	toomn	10 ho	CO MACE	10	_
 		1011	11211	11125 ()		IP HAI	rd water	1	_

☐ The permanent hardness of sample hard water is =

☐ The temporary hardness of sample hard water is =

5 October 2021

Dr K Ananthanarayanan

Limitations of EDTA titration

- 1. Many EDTA titrations are carried out under alkaline pH which may lead to **formation of insoluble hydroxides** or basic salts that may compete with the complexation process.
- 2. Since EDTA forms stable complexes with most of the metal ions, <u>it lacks selectivity</u> if it is used to estimate a single metal cations from a solution of mixture of metal ions.
- 3. The change in equilibrium from metal-indicator complex to the metal-EDTA complex should be **sharp and rapid**.
- 4. Conditional formation constant of the metal-EDTA complex K' MY to K'ln should be of the order 10⁴ to provide a good end point

5 October 2021

Dr K Ananthanarayanan

29

Table-1 Standard Hard water vs EDTA Solution

SI.No.	Volume of	Bur	ette	Volume of	Indicator
	Sample	Rea	ding	EDTA	
	Hard water	(m	ıL)	solution	
	(mL)	Initial	Final	(mL)	
1	20	0	22.9		Eriochrome
2	20	0	22.9	22.9	Black-T
_			0		

5 October 2021

Table-2 Sample Hard water vs EDTA Solution

l	SI.	Volume of	Bur	ette	Volume of	Indicator
		Sample			EDTA	a.cato.
	140.	•	Initial	Final	solution	
		Hard water	IIIIIIIII	ı ıııdı	Solution	
		(mL)			(mL)	
	1	20	0	10.8		Eriochrome
					10.8	Black-T
	2	20	0	10.8		
	2		0		10.8	

ober 2021 Dr K Ananthanarayanan

Table-3 Boiled sample water vs EDTA Solution

SI.No.	Volume of	Burette		Volume of	Indicator
	Sample	Reading (mL)		EDTA	
	Hard water	Initial Final		solution	
	(mL)			(mL)	
1	20	0	7.1		
				7.1	Eriochrome
2	20	0	7.1		Black-T

5 October 2021 Dr K Ananthanarayanan

Determination of Total hardness:

Volume of EDTA consumed = 10.8 mL (V_2 from Table-2) 1 mL of EDTA = 20/V1 mg CaCO₃ = 0.873 mg CaCO₃ V_2 mL of EDTA = 20/ V_1 × V_2 mg CaCO₃ = 9.432 mg of CaCO₃

If 20 mL of sample hard water taken for titration = $20/V_1 \times V_2$ mg CaCO₃ Then, 1000 mL will contain = $(20/V_1 \times V_2 \times 1000) / 20$ = $0.471.6 \times 1000$

Total hardness = 471.61 ppm

5 October 202

Dr K Ananthanarayanan

33

Determination of Permanent hardness:

Volume of EDTA consumed = 7.1 mL (V_3 from Table-3) 1 mL of EDTA = $20/V_1$ mg CaCO3 = 0.873 mg CaCO₃ V_3 mL of EDTA = $20/V_1 \times V_3$ mg CaCO₃ = 6.198 mg of CaCO₃

If 20 mL of sample hard water taken for titration = $20/V_1 \times V_3$ mg CaCO₃

Then, 1000 mL will contain = $(20/V_1 \times V_3 \times 1000) / 20$

= 309.91 ppm

Permanent hardness = 309.91 ppm

5 October 2021

Dr K Ananthanarayanan

Estimation of Temporary hardness

Temporary Hardness = Total hardness - Permanent hardness = 471.60 ppm - 309.91 ppm = 161.69 ppm

Result:

Total Hardness = 471.61 ppm Permanent Hardness = 309.91 ppm Temporary Hardness = 161.70 ppm

5 October 2021

Dr K Ananthanarayanan

00

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

18CYB¶0ft9ben2eAlistry