

Detecção de Falhas Elétricas

Renan Massena de Oliveira Vinicius Branco Scortegagna

Jun/2022

Explosões Incêndios Mortes Apagões Prejuízos

Pitch

Produto	Inteligência artificial para detecção automática de falhas elétricas
Público	que ajuda indústrias, comércios e residências
Problema	a prevenir acidentes, prejuízos e atrasos no restabelecimento da energia
Solução	utilizando uma rede neural que aprende o padrão das falhas
Diferencial	sendo esta uma solução melhor do que usar apenas um disjuntor geral
Motivo	porque pode ser utilizada em vários pontos da rede elétrica
Objetivo	facilitando a identificação do local em que a falha ocorre.

Entender os Dados Preparar os Dados Treinar Modelos

- Dados obtidos no Kaggle.
- Circuito elétrico trifásico simulado no MATLAB.
 - Séries temporais de corrente e voltagem.
 - Curtos-circuitos são impostos ao sistema.
- Problema de classificação binária:
 - Conjuntura de valores de corrente e voltagem.
 - Cada instante é independente.
 - Ordem sequencial não importa.

Entender os Dados Preparar os Dados Treinar Modelos

- Estrutura do dataset:
 - o 12 mil linhas (instantes).
 - 7 colunas (variáveis).
 - 6 Features:
 - Corrente nas 3 fases: Ia, Ib, Ic.
 - Voltagem nas 3 fases: Va, Vb, Vc.
 - 1 Target:
 - 0: sem falha.
 - 1: com falha.

Entender os Dados Preparar os Dados

Treinar Modelos Avaliar Resultados

• Correntes: evolução temporal.

Falhas identificadas pelas linhas vermelhas

Entender os Dados Preparar os Dados

Treinar Modelos Avaliar Resultados

• Correntes: distribuição de valores.

Sem Falha

Com Falha

Entender os Dados Preparar os Dados

Treinar Modelos Avaliar Resultados

• Voltagem: evolução temporal.

Falhas identificadas pelas linhas vermelhas

Entender os Dados Preparar os Dados

Treinar Modelos Avaliar Resultados

• Voltagem: distribuição de valores.

Sem Falha

Com Falha

Preparar os Dados Treinar Modelos

Avaliar Resultados

- Tratamento de dados não foi necessário.
- Dados separados em treino e teste:
 - 0 80/20
 - o 70/30
- Dados normalizados:
 - MinMax Scaler:

■
$$Xmm = (X - Xmin)/(Xmax - Xmin)$$

Standard Scaler:

■
$$Xss = (X - Xavg)/(Xstd)$$

Entender os Dados

Preparar os Dados Treinar Modelos

- Clusterização:
 - o K-means:
 - 2 e 3 grupos.
 - o DBSCAN:
 - Raio: 0.1.
 - Amostras: 50.

Entender os Dados

Preparar os Dados

Treinar Modelos

- Classificação:
 - Rede neural:
 - Camada de entrada: 6 neurônios, função RELU.
 - Camada oculta: 6 neurônios, função RELU.
 - Camada de saída: 1 neurônio, função SIGMÓIDE.
 - Otimizador: Adam.
 - Função de custo: entropia cruzada binária.
 - Métrica: acurácia.
 - Tamanho de lote: 32.

Entender os Dados Preparar os Dados

Treinar Modelos

Avaliar Resultados

K-means: não consegue clusterizar adequadamente.

Resultado da clusterização em linhas vermelhas (0: sem falha, 1: com falha)

Entender os Dados

Preparar os Dados

Treinar Modelos

Avaliar Resultados

DBSCAN: resultado satisfatório.

Resultado da clusterização em linhas vermelhas (0: sem falha, 1: com falha)

Entender os Dados Preparar os Dados

Treinar Modelos Avaliar Resultados

• DBSCAN – Train Report

	precision	recall	f1-score	support
0	1.00000	0.97156	0.98558	6505
1	0.96744	1.00000	0.98345	5496
accuracy			0.98458	12001
macro avg	0.98372	0.98578	0.98451	12001
weighted avg	0.98509	0.98458	0.98460	12001

Entender os Dados Preparar os Dados Treinar Modelos

Avaliar Resultados

• DBSCAN – Matriz de confusão

Entender os Dados

Preparar os Dados Treinar Modelos

- Rede Neural:
 - Resultado satisfatório com validação cruzada.
 - o Épocas: 150.
 - Treino/Teste: 80/20.
 - K-folds:
 - 4 splits
 - Acurácia média: 99.30% (+/- 0.15%)

Entender os Dados

Preparar os Dados

Treinar Modelos Avaliar Resultados

Rede Neural – Test Report (split 80/20)

	precision	recall	f1-score	support
0	0.99387	0.99769	0.99578	1301
1	0.99726	0.99273	0.99499	1100
accuracy			0.99542	2401
macro avg	0.99557	0.99521	0.99538	2401
weighted avg	0.99543	0.99542	0.99542	2401

Entender os Dados

Preparar os Dados Treinar Modelos Avaliar Resultados

• Rede Neural – Matriz de confusão

Instituto Infnet

OBRIGADO!

https://www.linkedin.com/in/renan-massena
https://www.linkedin.com/in/vinicius-br-sc