Machine Learning-Based Gas Fields Management: Water and Sand Analytics

Akmal Aulia, PhD Reservoir Engineer January 27th, 2022

Overview

Outline

- A brief overview of our operations
- The objectives of our operations
- Formulating the objectives as an optimization problem
- Major constraints:
 - Well water rate
 - Well sand rate
- Identifying water producing wells
- Identifying sand producing wells

A Brief Overview of Our Operations (1)

Complex Geology:

- Multiple stacked tidal to shallow marine sands
- Facies ranging from:
 - · Low quality bioturbated sand
 - Intermediate quality heterolithic sands
 - High quality massive channel sand

Source: mtja.org

A Brief Overview of Our Operations (2)

- 12 wellhead platforms
- Numerous development wells
- Single processing hub
- Limited metering

Source: mtja.org

The Objectives of Our Operations

- Objectives
 - Meet buyer's demand (we have a dedicated buyer):
 - Daily sales gas nomination (fluctuating)
 - CO₂ specification
 - Meet unit partners' demand:
 - Production meets agreed capital expenditure (CAPEX) ratio
 - Ensure longevity of wells
 - Be conservative in changing choke size (especially for sensitive/cyclic wells)
 - Meet facility constraint
 - Facility capacity in handling produced water
 - Facility capacity in handling produced sand

Formulating The Objectives As An Optimization Problem (1)

Formulating The Objectives As An Optimization Problem (2)

• Ensure profitability of unit partners

$$\epsilon_S = |S_T(t) - S_B(t)| \le \epsilon_T$$

1st Unit Partner's requirement

$$\epsilon_1 = |u_1 S_B(t) - S_1|$$

2nd Unit Partner's requirement

$$\epsilon_2 = |u_2 S_B(t) - S_2|$$

Formulating The Objectives As An Optimization Problem (3)

Taking care of sensitive wells

Sensitive wells

$$\min(W_{G,i}) = \max(W_{G,i}) = W_{G,i}(t-1) = W_{G,i}(t)$$

Non-sensitive wells

$$\min(W_{G,i}) \le W_{G,i}(t) \le \max(W_{G,i})$$

Major Constraints

- Facility handling capacity
 - Water production
 - Sand production
- Issue: Limited information (measurements)
 - Water production rate for each well?
 - Available sensors: Wet Gas Venturimeter, Temperature
 - San production rate for each well?
 - Available sensors: Acoustic Sand Device

Identifying Water Producing Wells

WGV: wet gas venturi meter

Wet Gas Venturi Meter

$$DP \ Ratio = \frac{\Delta P_2}{\Delta P_1}$$

Converting DP ratio to Water Rate

$$Q_w = f(Q_g, CGR, DP \ Ratio, \rho_g, \rho_w, \rho_c)$$

Assumption (throughout all wells):

- Constant CGR
- Constant fluid densities

Leeuw, R.C. (1997). Liquid correction of venturi meter readings in wet gas flow. North Sea Flow Measurement Workshop.

Objectives

- Determine well-by-well water production rate using:
 - Pure Al approach

• Simple material balance + Al approach

• Time series approach

 Develop AI apps that directly take input data from the database server.

Pure Al Approach

- Random Forests for regression
 - Supervised learning
 - Ensembles of decision trees
 - Good for data with large input features and fewer samples
 - Shows ranking of input features

Random Forests Results

- Great predictive capability
- Shows ranking of input features, i.e. well parameters

Another Approach: Simple Balance + Al

- Goal: Solve Water/Gas Ratio (WGR)
- Genetic Algorithm is known to solve for global optimum

Description of Material Balance (1)

$$\mathcal{W}_k(t) = \omega_k G_k(t)$$
 $\qquad \qquad \mathcal{W}(t) = \sum_k \mathcal{W}_k(t)$ Well by well water rate rate

Where:

- $W_k(t)$ is water production rate of k^{th} well at time t, measured in bbld (barrels per day)
- ω_k is WGR, in bbld/mmscfd
- $G_k(t)$ is gross gas production rate of k^{th} well at time t, in bbld.

Description of Material Balance (2)

Taking the gross gas rate for all wells,

$$G = \{G_1(t), G_2(t), G_3(t), \dots\},\$$

the entire problem can be represented by:

$$G \cdot \omega_k = \mathcal{W}(t)$$
Well work water gas gas

Solving with Global Optimization Method

Genetic Algorithm

$$m{G} \cdot \omega_k = \mathcal{W}(t)$$
Well WGR Water rate

GA-based WGR

Water Analytics: Time Series Approach

Instead of modeling this with machine learning,

$$f(a_1(t), a_2(t), a_3(t), \cdots, a_N(t)) \rightarrow y(t)$$

$$IN(t) \qquad OUT(t)$$

We took another approach,

$$f(a_1(t), a_2(t), a_3(t), \cdots, a_N(t), a_1(t-1), a_2(t-1), a_3(t-1), \cdots, a_N(t-1), \cdots, a_1(t-k), a_2(t-k), a_3(t-k), \cdots, a_N(t-k)) \rightarrow y(t)$$

IN(t)

IN(*t*-1)

IN(t-k)

OUT(t)

Why do this?

Intuitive example: Due to the loss of pressure in the reservoir, the same choke opening today will not yield the gross gas rate of yesterday.

Walk-In Validation Concept

Experiments

• ML models: Random Forests, Gradient Boosting (XGBoost)

Туре	Elements
Input	choke (t, t-1,)
	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Model	Random Forests

Туре	Elements
Input	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Model	Random Forests

Туре	Elements
Input	choke (t, t-1,)
	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Model	XGBoost

Type	Elements
Input	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Model	XGBoost

Type	Elements
Input	temp (t, t-1,)
	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Output	water (t)
Model	XGBoost

Туре	Elements
Input	temp (t, t-1,)
	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Output	water (t)
Model	XGBoost

Time Series with Walk-In: Results (1)

Type	Elements
Input	temp (t, t-1,)
	dp ratio (t, t-1,)
	water (t-1, t-2,)
Output	water (t)
Output	water (t)
Model	XGBoost

After numerous trials,

XGBoost with Temperature, DP Ratio, and Historical Topside Water seems to be promising.

Time Series with Walk-In: Results (2)

Water Rate

Time

Sand Analytics (1)

- We have installed acoustic sand device.
- The vendor provided the sand rate for each well based on proprietary equations.
- Sum of all sand rates did not match with the total sand produced.

https://www.clampon.com/wp-content/uploads/2013/04/particle_monitor_2_500px.jpg

Sand Analytics (2)

• Formulation: Given N wells,

$$c_1 w_{1,ASD}(t) + c_2 w_{2,ASD}(t) + \cdots + c_N w_{N,ASD}(t) = \sum_i c_i w_{i,ASD}(t) \rightarrow Q_{sand}(t)$$

Optimizer: GA Islands

Challenges:

Multiple sand catch pot manually sampled at non-synchronous schedule.

How to derive the daily sand rate $Q_{sand}(t)$?

Sand Analytics (3)

Objectives

- Develop a computer program to derive total daily sand rate
- Develop a AI-based module to convert ASD (Acoustic Sand Device) signal of each well to a sand rate that obeys the total daily sand rate

Predicted total sand production (2019)

Sand Produced, kg/d

Conclusions

- Many different ML-based approach to quantify sources of water and sand.
- Computing water gas ratio (WGR) is highly interpretable to engineers. However, in reality, WGR for a well is not a constant value.
- The simple balance model (i.e. computing WGR) reflects good prediction for the training data, but not the test data. Hence, not reliable enough for prediction.
- Random Forests model can predict future water rate, and at the same time it can rank the importance of each well measurements. But, the engineers find it hard to interpret.
- Using time series method to predict future water rate, XGBoost outperformed Random Forests significantly. For daily dataset, XGBoost could reliable predict 3 to 6 months onto the future. Expect a low prediction accuracy when there is a facility shutdown.
- Converting acoustic signals to sand rate is quite reliable with a linear factor.
 The factor can be solved using Genetic Algorithm, although computationally expensive. Expect a low prediction accuracy when there is a facility shutdown.

Thank you.