

Übung 08: Maschinensprache und Single-Cycle-Prozessor

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

6. Dezember 2024

Feedback

t1p.de/era2425

home.in.tum.de/~ladu/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

RISC-V Instruktionstypen

- R-Typ: Register-Register-Operationen (bspw. add, sub, s11)
- I-Typ: kleine Immediates (12 Bit) und Ladebefehle (bspw. jalr, lw, ori)
- S-Typ: Speicherbefehle (bspw. sw, sh)
- B-Typ: Branches (bedingte Sprünge) (bspw. beq, blt, bgtu)
- U-Typ: große Immediates (20 Bit) (bspw. lui, auipc)
- J-Typ: Jumps (unbedingte Sprüge) (jal)
- R4-Typ: Floating-Point-Operationen, für ERA nicht relevant

Assemblierung zu Maschinensprache

- RV32: Instruktionsgröße von 32 Bit (compressed instructions 16 Bit)
- Übersetzung in CISC-Architekturen aufwendiger (vgl. IA-32: 2552 Seiten Instruction Reference)
- Instruktionen selben Typs werden haben gleiches Instruktionslayout
- alle benötigten Tabellen sind in der Klausur gegeben

31	: 25	24:20	19:15	14:12	11:7	6:0	_	
fun	ct7	rs2	rs1	funct3	rd	ор	R-Type	
imm₁	imm _{11:0}		rs1	funct3	rd op		I-Type	
imm₁	1:5	rs2	rs1	funct3	imm _{4:0}	ор	S-Type	
imm₁	imm _{12,10:5} rs2		rs1	funct3	imm _{4:1,11}	ор	B-Type	
imm ₃	1:12				rd op		U-Type	
imm ₂	mm _{20,10:1,11,19:12}				rd	ор	J-Type	
fs3	funct2	fs2	fs1	funct3	fd	ор	R4-Type	
5 bits	2 bits	5 bits	5 bits	3 bits	5 bits	7 bits	•	

(Quelle: Vorlesungsmaterialien ERA)

Assemblierung zu Maschinensprache: Beispiel

xor t2, t1, t0

ор	funct3	fund	ct7	Type	Instruction			
0110011 (51)	100	0000000		R	xo	r rd,	rs1,	rs2
31:25	24:20	19:15	14:12	11:	7	6:0		
funct7	rs2	rs1	funct3	ro	I	ор	R	-Type

- 1. $xor \rightarrow R$ -Typ
- 2. $t0 \rightarrow x5$ (rs2), $t1 \rightarrow x6$ (rs1), $t2 \rightarrow x7$ (rd)
- 3. funct7, funct3, op aus Tabelle ablesen

 $(0000000\ 00101\ 00110\ 100\ 00111\ 0110011)_2 = 0 \times 005343B3$

RISC-V Single-Cycle-Prozessor

(Quelle: Vorlesungsmaterialien ERA)

Fragen?

Artemis-Hausaufgaben

- "H08 Single-Cycle-Prozessorerweiterung" bis 15.12.2024 23:59 Uhr
- Erweiterung des einfachen Single-Cycle-Prozessors
- xor (R-Typ) und jalr (I-Typ)
- Oft auch Prozessorerweiterung als Klausuraufgabe!

Links

- Zulip: "ERA Tutorium Do-1600-1" bzw. "ERA Tutorium Fr-1500-2"
- ERA-Moodle-Kurs
- ERA-Artemis-Kurs
- Prozessor-Assets (kein offizielles Material!)
- RISC-V Assembler

Übung 08: Maschinensprache und Single-Cycle-Prozessor

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

6. Dezember 2024

