2.5. EXERCISES 17

Equality holds exactly when x=3 or $x=\frac{1}{3}$ as in the preceding example. Consider x between $\frac{1}{3}$ and 3. You can see these values of x do not solve the inequality. For example x=1 does not work. Therefore, $\left(\frac{1}{3},3\right)$ must be excluded. The values of x larger than 3 do not produce equality so either |x+1|<|2x-2| for these points or |2x-2|<|x+1| for these points. Checking examples, you see the first of the two cases is the one which holds. Therefore, $[3,\infty)$ is included. Similar reasoning obtains $(-\infty,\frac{1}{3}]$. It follows the solution set to this inequality is $(-\infty,\frac{1}{3}] \cup [3,\infty)$.

Example 2.4.19 Suppose $\varepsilon > 0$ is a given positive number. Obtain a number, $\delta > 0$, such that if $|x-1| < \delta$, then $|x^2-1| < \varepsilon$.

First of all, note $\left|x^2-1\right|=|x-1|\,|x+1|\leq (|x|+1)\,|x-1|$. Now if |x-1|<1, it follows |x|<2 and so for $|x-1|<1, \left|x^2-1\right|<3\,|x-1|$. Now let $\delta=\min\left(1,\frac{\varepsilon}{3}\right)$. This notation means to take the minimum of the two numbers, 1 and $\frac{\varepsilon}{3}$. Then if $|x-1|<\delta, \left|x^2-1\right|<3\,|x-1|<3\frac{\varepsilon}{3}=\varepsilon$.

2.5 Exercises

- 1. Solve $(3x+2)(x-3) \le 0$.
- 2. Solve (3x+2)(x-3) > 0.
- 3. Solve $\frac{x+2}{3x-2} < 0$.
- 4. Solve $\frac{x+1}{x+3} < 1$.
- 5. Solve $(x-1)(2x+1) \le 2$.
- 6. Solve (x-1)(2x+1) > 2.
- 7. Solve $x^2 2x < 0$.
- 8. Solve $(x+2)(x-2)^2 \le 0$.
- 9. Solve $\frac{3x-4}{x^2+2x+2} \ge 0$.
- 10. Solve $\frac{3x+9}{x^2+2x+1} \ge 1$.
- 11. Solve $\frac{x^2+2x+1}{3x+7} < 1$.
- 12. Solve |x+1| = |2x-3|.
- 13. Solve |3x + 1| < 8. Give your answer in terms of intervals on the real line.
- 14. Sketch on the number line the solution to the inequality |x-3| > 2.

- 15. Sketch on the number line the solution to the inequality |x-3| < 2.
- 16. Show $|x| = \sqrt{x^2}$.
- 17. Solve |x+2| < |3x-3|.
- 18. Tell when equality holds in the triangle inequality.
- 19. Solve $|x+2| \le 8 + |2x-4|$.
- 20. Solve $(x+1)(2x-2)x \ge 0$.
- 21. Solve $\frac{x+3}{2x+1} > 1$.
- 22. Solve $\frac{x+2}{3x+1} > 2$.
- 23. Describe the set of numbers, a such that there is no solution to |x+1| = 4 |x+a|.
- 24. Suppose 0 < a < b. Show $a^{-1} > b^{-1}$.
- 25. Show that if |x 6| < 1, then |x| < 7.
- 26. Suppose |x-8| < 2. How large can |x-5| be?