Unit 6.2 Kernel Methods and RBF Networks K-Means Clustering

Kiran Bagale

Neural Networks and Pattern Recognition

August, 2025

K-Means Clustering

Definition

K-means clustering is a **fundamental unsupervised learning algorithm** that partitions a dataset into K clusters by minimizing within-cluster sum of squared distances.

- Partitions data into natural groupings
- Minimizes specified cost function
- Uses unlabeled data (unsupervised)
- Finds optimal cluster centers (centroids)

Key Insight

Clustering minimizes similarity measure between observations within each cluster

Objective Function

K-means Cost Function

The algorithm minimizes:

$$J = \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} \|x_i - \mu_j\|^2$$
 (1)

Where:

- N = number of data points
- \bullet K = number of clusters
- $x_i = i$ -th data point
- μ_i = centroid of cluster j
- $r_{ij} = \text{binary indicator } (1 \text{ if } x_i \in \text{cluster } j, 0 \text{ otherwise})$
- $\|\cdot\| = \text{Euclidean norm}$

Algorithm Steps

Algorithm 1 K-Means Algorithm

- 1: **Initialize** K cluster centroids $\mu_1, \mu_2, \dots, \mu_K$ randomly
- 2: repeat
- 3: **Assignment Step:** For each x_i :
- 4: $r_{ij} = 1 \text{ if } j = \arg\min_k \|x_i \mu_k\|^2$, else $r_{ij} = 0$
- 5: **Update Step:** For each cluster j:
- 6: $\mu_j = \frac{\sum_{i=1}^{N} r_{ij} x_i}{\sum_{i=1}^{N} r_{ij}}$
- 7: until Convergence (centroids no longer change significantly)

Mathematical Intuition

Voronoi Tessellation

- Creates Voronoi cells
- Each region contains points closest to one centroid
- Optimal partitioning

EM Perspective

- E-step: Assign points to clusters (expectation of hidden variables)
- M-step: Update centroids (maximize likelihood)

Convergence Properties

- Cost function $J \ge 0$
- Each iteration: J decreases or stays same
- Finite possible assignments
- Guaranteed convergence

RBF Network Architecture Drawback

Three-Layer Structure

- Input Layer: Receives input vectors
- Widden Layer: Contains RBF units (Gaussian)
- Output Layer: Linear combination of hidden units

Gaussian RBF Units

Each hidden unit computes:

$$\phi_j(x) = \exp\left(-rac{\|x - c_j\|^2}{2\sigma_j^2}
ight)$$

(2)

6/56

where c_i = center, σ_i = width parameter

Parameter Computation Challenge

Key Issue in RBF Design

How to compute parameters $\{c_j, \sigma_j\}$ of Gaussian units using **unlabeled data** in an **unsupervised manner**?

Clustering Solution

Clustering provides a natural framework for solving this parameter estimation problem through unsupervised learning.

Requirements:

- No labeled training data available
- Must determine optimal centers and widths
- Minimize computational complexity
- Ensure good generalization

K-Means Solution for RBF Networks

Center Determination

- Apply K-means to input data
- **②** Use resulting centroids as RBF centers: $c_j = \mu_j$

Width Parameter Estimation

After obtaining centers:

$$\sigma_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} ||x_i - c_j||$$

where C_i is the set of points assigned to cluster j

- Automatic parameter selection
- Data-driven approach
- Computationally efficient
 Kiran Bagale (Neural Networks and Pattern Recognition

(3)

Drawbacks of RBF Networks (1/2)

1. Curse of Dimensionality

Number of RBF units required grows exponentially with input dimensionality

2. Center Selection Sensitivity

Poor initialization leads to:

- Overfitting (too many centers)
- Underfitting (too few centers)
- Local optima in clustering

3. Uniform Width Assumption

Traditional approaches assume uniform widths, missing natural data density variations

Drawbacks of RBF Networks (2/2)

4. Limited Expressiveness

RBF networks with fixed centers struggle with:

- Complex decision boundaries
- Highly non-linear relationships
- Irregular cluster shapes

5. Scalability Issues

- Computational complexity increases with RBF units
- Memory requirements grow quadratically
- Training time prohibitive for large datasets

Cover's Theorem

Theorem Statement

A complex pattern classification problem cast in **high-dimensional space nonlinearly** is more likely to be **linearly separable** than in a low-dimensional space.

Mathematical Framework

Given input patterns $\{x_i\} \in \mathbb{R}^m$, map to higher-dimensional space \mathbb{R}^M (where $M \gg m$) using nonlinear transformations $\phi(x)$.

Key Insight: Higher dimensionality through nonlinear mapping increases probability of linear separability

K-Means and Cover's Theorem

Connection Framework

The K-means algorithm fits within Cover's theorem because:

Nonlinear Mapping: Each centroid c_i defines transformation:

$$\phi_j(x) = \exp\left(-\frac{\|x - c_j\|^2}{2\sigma^2}\right) \tag{4}$$

- **High-Dimensional Embedding:** $x \to \{\phi_1(x), \phi_2(x), \dots, \phi_K(x)\}$ maps input to K-dimensional space
- **Linear Separability:** Patterns become linearly separable in RBF feature space
- **Probabilistic Interpretation:** K-means provides probabilistic partitioning

Theoretical Justification

Dimensionality Transformation

$$x \in \mathbb{R}^m \to \{\phi_1(x), \phi_2(x), \dots, \phi_K(x)\} \in \mathbb{R}^K$$
 (5)

When $K \gg m$:

- Cover's theorem suggests complex classification problems become more tractable
- Nonlinearly separable patterns in \mathbb{R}^m may become linearly separable in \mathbb{R}^K
- K-means clustering provides the nonlinear basis functions

Result

K-means enables the practical implementation of Cover's theorem in RBF networks

Conclusion

Key Takeaways

- K-means provides **principled approach** to unsupervised RBF parameter learning
- Addresses challenge of computing Gaussian unit parameters from unlabeled data
- Despite RBF drawbacks (dimensionality, center selection), K-means offers elegant solution
- Algorithm fits within Cover's theorem framework through nonlinear mapping

Synergy

The combination demonstrates how unsupervised learning techniques can solve supervised learning problems, embodying Cover's theorem in practical ML applications.

K-means + RBF = Powerful Framework for Pattern Classification

6.3 Recursive Least-Squares (RLS) Algorithm

Weight Vector Estimation in RBF Networks

- The K-means algorithm performs computation in a recursive manner
- We want to compute the weight vector in RBF networks recursively too
- Traditional least squares requires matrix inversion, which is computationally expensive for large K
- Solution: Recursive Least-Squares (RLS) algorithm

The Normal Equation: We start with the normal equation:

$$\mathbf{R}(n)\hat{\mathbf{w}}(n) = \mathbf{r}(n), \quad n = 1, 2, \dots$$
 (6)

Where we have three key components:

- **①** Correlation function R(n) (K×K matrix)
- **2** Cross-correlation vector $\mathbf{r}(n)$ (K×1 vector)
- **3** Weight vector $\hat{\mathbf{w}}(n)$ (K×1 vector) **unknown**

Component 1: Correlation Function

The K-by-K correlation function of hidden-unit outputs:

$$R(n) = \sum_{i=1}^{n} \phi(\mathbf{x}_i) \phi^{T}(\mathbf{x}_i)$$
 (7)

Where:

$$\phi(\mathbf{x}_i) = [\varphi(\mathbf{x}_i, \boldsymbol{\mu}_1), \varphi(\mathbf{x}_i, \boldsymbol{\mu}_2), \dots, \varphi(\mathbf{x}_i, \boldsymbol{\mu}_K)]^T$$
(8)

And each basis function is:

$$\varphi(\mathbf{x}_i, \boldsymbol{\mu}_j) = \exp\left(-\frac{1}{2\sigma_j^2} \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2\right) \tag{9}$$

Component 2: Cross-Correlation Vector

The K-by-1 cross-correlation vector between desired response and hidden-unit outputs:

$$\mathbf{r}(n) = \sum_{i=1}^{n} \phi(\mathbf{x}_i) d(i)$$
 (10)

This represents the correlation between:

- The desired output d(i)
- The hidden layer activations $\phi(\mathbf{x}_i)$

RLS Algorithm Derivation - Step 1

We reformulate the cross-correlation vector recursively:

$$\mathbf{r}(n) = \sum_{i=1}^{n-1} \phi(\mathbf{x}_i) d(i) + \phi(\mathbf{x}_n) d(n)$$
(11)

$$= \mathbf{r}(n-1) + \phi(\mathbf{x}_n)d(n) \tag{12}$$

$$= \mathbf{R}(n-1)\hat{\mathbf{w}}(n-1) + \phi(\mathbf{x}_n)d(n)$$
(13)

Key insight: We can express the new cross-correlation in terms of the previous one!

RLS Algorithm Derivation - Step 2

Similarly, the correlation function updates as:

$$\mathbf{R}(n) = \mathbf{R}(n-1) + \phi(n)\phi^{T}(n) \tag{14}$$

We introduce the prior estimation error:

$$\alpha(n) = d(n) - \phi^{T}(n)\mathbf{w}(n-1)$$
(15)

$$= d(n) - \mathbf{w}^{T}(n-1)\phi(n) \tag{16}$$

This is called "prior" because it uses the **old** weight estimate $\hat{\mathbf{w}}(n-1)$.

RLS Algorithm Derivation - Step 3

After algebraic manipulation, we get:

$$\mathbf{r}(n) = \mathbf{R}(n)\hat{\mathbf{w}}(n-1) + \phi(n)\alpha(n)$$
(17)

Substituting into the normal equation:

$$\mathbf{R}(n)\hat{\mathbf{w}}(n) = \mathbf{R}(n)\hat{\mathbf{w}}(n-1) + \phi(n)\alpha(n)$$
(18)

Therefore:

$$\hat{\mathbf{w}}(n) = \hat{\mathbf{w}}(n-1) + \mathbf{R}^{-1}(n)\phi(n)\alpha(n)$$
(19)

The Challenge: Computing $\mathbf{R}^{-1}(n)$

- We need $\mathbf{R}^{-1}(n)$ for the weight update
- Direct matrix inversion is computationally expensive (O(K³))
- Solution: Use the Matrix Inversion Lemma!

For matrices of the form:

$$\mathbf{A} = \mathbf{B}^{-1} + \mathbf{CDC}^{T} \tag{20}$$

The Matrix Inversion Lemma gives:

$$\mathbf{A}^{-1} = \mathbf{B} - \mathbf{B}\mathbf{C}(\mathbf{D} + \mathbf{C}^{T}\mathbf{B}\mathbf{C})^{-1}\mathbf{C}^{T}\mathbf{B}$$
 (21)

21/56

Kiran Bagale (Neural Networks and Pattern Recognition Unit 6.2 Kernel Methods and RBF Networks August, 2025

Applying the Matrix Inversion Lemma

From $\mathbf{R}(n) = \mathbf{R}(n-1) + \phi(n)\phi^{T}(n)$, we identify:

$$\mathbf{A} = \mathbf{R}(n) \tag{22}$$

$$\mathbf{B}^{-1} = \mathbf{R}(n-1) \tag{23}$$

$$\mathbf{C} = \phi(n) \tag{24}$$

$$\mathbf{D} = \mathbf{1} \tag{25}$$

$$\mathbf{D} = 1 \tag{25}$$

This gives us:

$$\mathbf{R}^{-1}(n) = \mathbf{R}^{-1}(n-1) - \frac{\mathbf{R}^{-1}(n-1)\phi(n)\phi^{T}(n)\mathbf{R}^{-1}(n-1)}{1 + \phi^{T}(n)\mathbf{R}^{-1}(n-1)\phi(n)}$$
(26)

Kiran Bagale (Neural Networks and Pattern Recognition Unit 6.2 Kernel Methods and RBF Networks August. 2025 22 / 56

Simplified Notation

Let's define:

$$\mathbf{P}(n) = \mathbf{R}^{-1}(n) \tag{27}$$

Then:

$$\mathbf{P}(n) = \mathbf{P}(n-1) - \frac{\mathbf{P}(n-1)\phi(n)\phi^{T}(n)\mathbf{P}(n-1)}{\mathbf{P}(n-1)\phi(n)\phi^{T}(n)\mathbf{P}^{T}(n-1)}$$
(28)

Note: The denominator is a scalar (quadratic form).

Gain Vector

We also define the gain vector:

$$\mathbf{g}(n) = \mathbf{R}^{-1}(n)\phi(n) \tag{29}$$
$$= \mathbf{P}(n)\phi(n) \tag{30}$$

The gain vector represents how much correction is needed when updating from $\hat{\mathbf{w}}(n-1)$ to $\hat{\mathbf{w}}(n)$.

The weight update becomes:

$$\hat{\mathbf{w}}(n) = \hat{\mathbf{w}}(n-1) + \mathbf{g}(n)\alpha(n)$$
(31)

Complete RLS Algorithm

RLS Algorithm Summary

Prior estimation error:

$$\alpha(n) = d(n) - \mathbf{w}^{T}(n-1)\phi(n)$$
(32)

Gain vector:

$$\mathbf{g}(n) = \mathbf{P}(n)\phi(n) \tag{33}$$

Weight update:

$$\hat{\mathbf{w}}(n) = \hat{\mathbf{w}}(n-1) + \mathbf{g}(n)\alpha(n)$$
(34)

Inverse correlation matrix update:

$$\mathbf{P}(n) = \mathbf{P}(n-1) - \frac{\mathbf{P}(n-1)\phi(n)\phi^{T}(n)\mathbf{P}(n-1)}{1 + \phi^{T}(n)\mathbf{P}(n-1)\phi(n)}$$
(35)

25 / 56

Statistical Interpretation

Consider the linear regression model:

$$d(n) = \mathbf{w}^T \phi(n) + \varepsilon(n) \tag{36}$$

Where $\varepsilon(n)$ is white noise with zero mean and variance σ_n^2 .

Then P(n) represents the state-error covariance matrix:

$$\mathbb{E}[(\mathbf{w} - \hat{\mathbf{w}}(n))(\mathbf{w} - \hat{\mathbf{w}}(n))^{T}] = \sigma_e^2 \mathbf{P}(n)$$
(37)

Benefits of RLS Algorithm

- Computational Efficiency: No matrix inversion required at each step
- Recursive Nature: Updates weights incrementally as new data arrives
- Memory Efficient: Only stores P(n) and $\hat{\mathbf{w}}(n)$
- Fast Convergence: Typically faster than gradient-based methods
- Optimal: Gives the least-squares solution at each time step

Algorithm Flow

Summary

- RLS provides a recursive way to solve the least-squares problem
- Uses the Matrix Inversion Lemma to avoid expensive matrix inversions
- Key components: prior estimation error, gain vector, and covariance matrix
- Computationally efficient and optimal for linear-in-parameters models
- Essential for real-time applications in RBF networks

6.4 Hybrid Learning Procedure for RBF Networks

Why Hybrid Learning?

The Challenge

RBF networks have two types of parameters that need to be learned:

- Hidden layer parameters: Centers and widths of RBF functions
- Output layer parameters: Linear weights

The Solution

Hybrid approach: Use different algorithms for different layers

- K-means algorithm for hidden layer (unsupervised)
- RLS algorithm for output layer (supervised)

The "K-means, RLS" Algorithm

K-means + RLS = Hybrid Learning

- Step 1: Apply K-means to find RBF centers
- Step 2: Calculate RBF widths based on center distances
- **Step 3**: Use RLS to train output weights

Key Advantage

Computationally efficient because both K-means and RLS are individually efficient algorithms

Input Layer

Structure

- Size determined by input dimensionality
- If input vector ${\bf x}$ has dimension m_0
- Then input layer has m_0 nodes

Example

For a 2D pattern recognition problem:

- Input: $\mathbf{x} = [x_1, x_2]^T$
- Input layer size: $m_0 = 2$

Hidden Layer - Structure

Key Parameters

- **3** Size (m_1) : Number of RBF units = Number of clusters (K)
- **2** Centers (μ_i) : Determined by K-means clustering
- **1** Widths (σ) : Calculated from center distances

The K Parameter

- K = "degree of freedom" under designer's control
- Controls both performance and computational complexity
- Key to model selection problem

Hidden Layer - Center Calculation

K-means Algorithm

- **①** Apply K-means clustering to unlabeled input samples $\{x_i\}$
- ② Find K cluster centers $\mu_1, \mu_2, \ldots, \mu_K$
- lacksquare Each center μ_i becomes the center of RBF unit j

Gaussian RBF Function

For hidden unit *j*:

$$arphi(\mathbf{x}_i) = \exp\left(-rac{\|\mathbf{x}_i - oldsymbol{\mu}_j\|^2}{2\sigma^2}
ight)$$

Kiran Bagale (Neural Networks and Pattern Recognition

Hidden Layer - Width Calculation

Width Formula

All Gaussian functions use the same width:

$$\sigma = \frac{d_{\mathsf{max}}}{\sqrt{2K}}$$

where:

- K = number of centers
- $d_{\text{max}} = \text{maximum distance between any two centers}$

Why This Formula?

- Prevents Gaussian units from being too peaked or too flat
- Based on the spread of centers found by K-means
- Ensures reasonable overlap between neighboring units

Output Layer

After Hidden Layer Training...

We have the hidden layer output vector:

$$\phi(\mathbf{x}_i) = egin{bmatrix} arphi(\mathbf{x}_i, oldsymbol{\mu}_1) \ arphi(\mathbf{x}_i, oldsymbol{\mu}_2) \ draphi \ arphi(\mathbf{x}_i, oldsymbol{\mu}_K) \end{bmatrix}$$

RLS Training

- Training sample: $\{[\phi(\mathbf{x}_i), d_i]\}_{i=1}^N$
- d_i = desired response for input \mathbf{x}_i
- Use RLS algorithm to find optimal output weights

Complete Algorithm - Step by Step

Step 1: Prepare Data

- Collect input samples $\{x_i\}_{i=1}^N$
- Collect desired outputs $\{d_i\}_{i=1}^N$

Step 2: Train Hidden Layer (Unsupervised)

- Choose number of clusters K
- ② Apply K-means to $\{x_i\}$ to find centers $\{\mu_i\}$
- 3 Calculate width: $\sigma = \frac{d_{\text{max}}}{\sqrt{2K}}$

Complete Algorithm - Step by Step (cont.)

Step 3: Compute Hidden Layer Outputs

For each training sample x_i , compute:

$$\phi(\mathbf{x}_i) = egin{bmatrix} \exp\left(-rac{\|\mathbf{x}_i - oldsymbol{\mu}_1\|^2}{2\sigma^2}
ight) \ dots \ \exp\left(-rac{\|\mathbf{x}_i - oldsymbol{\mu}_K\|^2}{2\sigma^2}
ight) \end{bmatrix}$$

Step 4: Train Output Layer (Supervised)

- Use RLS algorithm with training pairs $\{[\phi(\mathbf{x}_i), d_i]\}$
- Find optimal linear weights for output layer

Advantages of Hybrid Learning

Computational Efficiency

- K-means is computationally efficient
- RLS is computationally efficient
- Combined approach inherits both efficiencies

Simplicity

- Separates unsupervised and supervised learning
- Each step uses well-established algorithms
- Easy to implement and debug

Flexibility

- ullet Parameter K provides design flexibility
- Can handle various input dimensionalities

Limitations

Main Limitation

No overall optimality criterion

- Hidden and output layers trained separately
- No guarantee of global optimum for entire network
- System optimality not assured in statistical sense

Practical Implications

- May not achieve best possible performance
- Trade-off: efficiency vs. optimality
- Often "good enough" for many applications

Simple Example

Example

Problem: Function approximation with 2D input

- Input: $\mathbf{x} = [x_1, x_2]^T$
- Choose K = 3 clusters
- ullet Apply K-means o find 3 centers
- ullet Calculate σ from center distances
- Compute 3 Gaussian outputs for each input
- Use RLS to find weights for final output

August, 2025

Summary

Key Points

- **Hybrid approach**: K-means + RLS
- Two-stage training: Unsupervised then supervised
- Efficient: Both algorithms are computationally efficient
- Practical: Good trade-off between performance and complexity

Remember

- Choose K carefully (model selection)
- K-means finds RBF centers automatically
- Width calculated from center spread
- RLS provides optimal linear output weights

Kernel Regression and RBF Networks

- **RBF Networks**: Based on interpolation
- Kernel Regression: Based on density estimation
- Both approaches solve the same problem but from different perspectives

The Problem

Given training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, find a function $f(\mathbf{x})$ that predicts y for new inputs \mathbf{x} .

The Nonlinear Regression Model

Basic Model

$$y_i = f(\mathbf{x}_i) + \varepsilon(i), \quad i = 1, 2, \dots, N$$

Where:

- *y_i*: observed output
- $f(\mathbf{x}_i)$: unknown regression function we want to find
- $\varepsilon(i)$: additive white noise (zero mean, variance σ^2)

Key Insight

The unknown function $f(\mathbf{x})$ equals the **conditional mean** of y given \mathbf{x} :

$$f(\mathbf{x}) = E[y|\mathbf{x}]$$

The Mathematical Foundation

Conditional Mean Formula

$$f(\mathbf{x}) = E[y|\mathbf{x}] = \int_{-\infty}^{\infty} y \, p_{Y|X}(y|\mathbf{x}) \, dy$$

Using probability theory:

$$p_{Y|X}(y|\mathbf{x}) = \frac{p_{X,Y}(\mathbf{x},y)}{p_X(\mathbf{x})}$$

This leads to:

$$f(\mathbf{x}) = \frac{\int_{-\infty}^{\infty} y \, p_{X,Y}(\mathbf{x}, y) \, dy}{p_X(\mathbf{x})}$$

Problem

We don't know the probability densities $p_{X,Y}(\mathbf{x},y)$ and $p_X(\mathbf{x})!$

Estimating Unknown Densities

Solution: Use Training Data

Estimate the densities using the Parzen-Rosenblatt method with kernel functions.

For marginal density $p_X(x)$:

$$\hat{\rho}_X(\mathbf{x}) = \frac{1}{Nh^{m_0}} \sum_{i=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

For joint density $p_{X,Y}(\mathbf{x},y)$:

$$\hat{p}_{X,Y}(\mathbf{x},y) = \frac{1}{Nh^{m_0+1}} \sum_{i=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) k\left(\frac{y - y_i}{h}\right)$$

Where:

- $k(\cdot)$: kernel function
- h: bandwidth (smoothing parameter)
- m_0 : dimension of input vector **x**

Properties of Parzen-Rosenblatt Estimator

Consistency Property

The estimator is **consistent** (asymptotically unbiased) if:

- $\lim_{N\to\infty} h(N) = 0$
- $\lim_{N\to\infty} E[\hat{p}_X(\mathbf{x})] = p_X(\mathbf{x})$

Intuition

- Bandwidth h: Controls smoothness
- Large h: Smoother estimate, more bias
- Small h: Less smooth, more variance
- As $N \to \infty$ and $h \to 0$ properly, we get the true density

Deriving the Kernel Regression Estimator

Substituting our density estimates into the regression formula:

$$F(\mathbf{x}) = \hat{f}(\mathbf{x}) = \frac{\sum_{i=1}^{N} y_i k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)}{\sum_{j=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_j}{h}\right)}$$

Key Observation

This is a **weighted average** of the training outputs $\{y_i\}_{i=1}^N$!

The weights depend on how "close" the input x is to each training point x_i .

Interpretation 1: Nadaraya-Watson Estimator

Normalized Weighting Function

$$W_{N,i}(\mathbf{x}) = \frac{k\left(\frac{\mathbf{x}-\mathbf{x}_i}{h}\right)}{\sum_{j=1}^{N} k\left(\frac{\mathbf{x}-\mathbf{x}_j}{h}\right)}, \quad i = 1, 2, \dots, N$$

Properties:

- $\sum_{i=1}^{N} W_{N,i}(\mathbf{x}) = 1$ (weights sum to 1)
- $F(\mathbf{x}) = \sum_{i=1}^{N} W_{N,i}(\mathbf{x}) y_i$ (weighted average)

Named After

Nadaraya (1964) and Watson (1964) independently proposed this approach.

Interpretation 2: Normalized RBF Network

Assume spherical symmetry of the kernel:

$$k\left(\frac{\mathbf{x}-\mathbf{x}_i}{h}\right) = k\left(\frac{\|\mathbf{x}-\mathbf{x}_i\|}{h}\right)$$

Normalized Radial Basis Function

$$\psi_{N}(\mathbf{x}, \mathbf{x}_{i}) = \frac{k\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|}{h}\right)}{\sum_{j=1}^{N} k\left(\frac{\|\mathbf{x} - \mathbf{x}_{j}\|}{h}\right)}, \quad i = 1, 2, \dots, N$$

Setting $y_i = w_i$ (weights), the regression function becomes:

$$F(\mathbf{x}) = \sum_{i=1}^{N} w_i \psi_N(\mathbf{x}, \mathbf{x}_i)$$

This is exactly a normalized RBF network!

Properties of Normalized RBF

- $\sum_{i=1}^{N} \psi_N(\mathbf{x}, \mathbf{x}_i) = 1$ for all \mathbf{x}
- $0 \le \psi_N(\mathbf{x}, \mathbf{x}_i) \le 1$ for all \mathbf{x} and \mathbf{x}_i

Probabilistic Interpretation

 $\psi_N(\mathbf{x}, \mathbf{x}_i)$ can be interpreted as the **probability** of an event described by input vector \mathbf{x} , conditional on \mathbf{x}_i .

Key Difference

- Regular RBF: Basis functions can have any value
- Normalized RBF: Basis functions are probabilities (sum to 1)

Multivariate Gaussian Kernel

General Form

$$k(\mathbf{x}) = \frac{1}{(2\pi)^{m_0/2}} \exp\left(-\frac{\|\mathbf{x}\|^2}{2}\right)$$

Centered on data point x_i with bandwidth σ :

$$k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) = \frac{1}{(2\pi\sigma^2)^{m_0/2}} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}\right)$$

Where h plays the role of smoothing parameter σ .

Kiran Bagale (Neural Networks and Pattern Recognition

Nadaraya-Watson with Gaussian Kernels

Regression Estimator

$$F(\mathbf{x}) = \frac{\sum_{i=1}^{N} y_i \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}\right)}{\sum_{j=1}^{N} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_j\|^2}{2\sigma^2}\right)}$$

Normalized RBF Network

$$F(\mathbf{x}) = \frac{\sum_{i=1}^{N} w_i \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}\right)}{\sum_{j=1}^{N} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_j\|^2}{2\sigma^2}\right)}$$

The denominator is the Parzen-Rosenblatt density estimator: sum of N multivariate Gaussian distributions centered on the data points.

Kiran Bagale (Neural Networks and Pattern Recognition

Key Takeaways

- Two viewpoints, same result:
 - ullet Interpolation o RBF Networks
 - ullet Density estimation o Kernel Regression
- Kernel regression estimates unknown probability densities using training data
- Nadaraya-Watson estimator gives weighted averages of training outputs
- Normalized RBF networks emerge naturally from kernel regression with spherically symmetric kernels
- Gaussian kernels are widely used in practice
- Ocenters of RBF functions typically coincide with training data points

Practical Implications

Advantages of Normalized RBF

- Probabilistic interpretation
- Weights always sum to 1
- More stable numerically
- Better generalization properties

Design Considerations

- Bandwidth selection: Critical for performance
- Kernel choice: Gaussian is most common
- Center placement: Usually at training points
- Computational cost: O(N) evaluations per prediction

Thank You!