Inference and Learning in Dynamic Decision Networks Using Knowledge Compilation

Gabriele Venturato, Vincent Derkinderen, Pedro Zuidberg Dos Martires, Luc De Raedt

I. Problem Setting

Bayesian network Markov decision process (MDP) + decisions + time

- Factored representation
- Exact inference
- (Intra-state) structure
- Discrete time steps
- Time-slicing
- Maximise expected utility

GOAL: Exploit structure in the MDP to represent it as a probabilistic circuit for both inference (i.e. planning) and gradient-based parameter learning.

II. Dynamic Decision Circuits (DDCs)

Input: Dynamic Decision Network (DDN)

III. mapl-cirup

DDCs can be easily integrated in a value iteration algorithm

planning is reduced to inference in DDCs

IV. Experiments

Inference

we are able to exploit intrastate structure while planning

we get more compact circuits than the state of the art

		SPUDD		mapl-cirup		
model	$ \mathbf{X} $	$ \Delta $	VI [s]	$ \Delta $	KC [s]	VI [s]
monkey elevator coffee factory	2 4 6 7	11664 5794 142519 38163	< 0.01 < 0.01 < 0.03 < 0.01	163 277 2542 2932	$0.01 \\ 0.02 \\ 0.6 \\ 0.93$	0.005 0.003 0.054 0.105
	† problem size	circuit size		circuit size	compilation time	

Learning (new in this setting!)

we can learn reward parameters from trajectories: $\tau = \langle s_0, a_{0:k}, r_{0:k} \rangle$

V. Contribution

We introduce dynamic decision circuits: compact probabilistic circuits that can exploit structure for exact MDP planning, and enable gradient-based parameter learning for the first time in this setting.

@GabVenturato

