Es02B:Circuito RC - Filtri passivi

Gruppo 1.BN Massimo Bilancioni, Alessandro Foligno

4 ottobre 2018

2 Filtro Passa-basso

I valori misurati sono: $R_1 = (3.24 \pm 0.03) K\Omega$ e $C_1 = (9.7 \pm 0.4) nF$.

- a) La frequenza di taglio teorica è $f_T = 1/2\pi R_1 C_1$ che in base ai valori viene $f_T = 5.09 \pm 0.21)KHz$
- b) A bassa frequenza la funzione di guadagno vale

$$1 - \frac{f^2}{2ft^2}$$

dove la condizione è

$$2\pi RCf \ll 1$$

c) A 2kHz il guadagno vale

$$A = 0.93 \pm 0.01$$

d) A 20kHz il guadagno vale

$$A = 0.24 \pm 0.01$$

. Notiamo che già non siamo più nel regime di basse frequenze per usare la formula del punto b).

3

2.b Partitore con resistenze da circa 1 k Valori misurati R_1 e R_2 e valore atteso di A_{exp} :

$$R_1 = (0.988 \pm 0.008) \,\mathrm{k}\Omega, \quad R_2 = (1.187 \pm 0.01) \,\mathrm{k}\Omega, \quad A_{\mathrm{exp}} = (0.544 \pm 0.002) \,\mathrm{k}\Omega$$

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.121	0.005	0.612	0.003	0.546	0.005
1.944	0.010	1.062	0.005	0.546	0.005
3.59	0.02	1.955	0.010	0.544	0.005
4.68	0.03	2.55	0.02	0.545	0.005
6.46	0.03	3.52	0.02	0.545	0.005
6.51	0.03	3.55	0.02	0.545	0.005
8.49	0.04	4.63	0.03	0.545	0.005
9.89	0.05	5.40	0.03	0.546	0.005

Tabella 1: (2.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

Il valore calcolato A_{fit} dal fit lineare è 0.5452 ± 0.0003 , dal grafico (e da un calcolo del χ^2) si vede come gli errori sono piuttosto sovrastimati. Questo è dovuto al fatto che la maggior parte dell'errore del multimetro sui Voltaggi è dovuto a un fattore di scala, che risulta ininfluente nel rapporto fra due misure effettuate con lo stesso fondoscala (che è il caso della quasi totalità delle misure).

2.c Partitore con resistenze da circa 4M Valori misurati R_1 e R_2 e valore atteso di $A_{\rm exp}$:

$$R_1 = (4.66 \pm 0.05) \,\mathrm{M}\Omega, \quad R_2 = (3.25 \pm 0.04) \,\mathrm{M}\Omega, \quad A_\mathrm{exp} = (0.41 \pm 0.02)$$

Come prima, dal grafico stimiamo $A_{fit}=0.3443\pm0.0004$, non compatibile col valore atteso; ciò significa che il modello è sbagliato e la resistenza del tester non è trascurabile

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1.965	0.010	0.675	0.004	0.345	0.003
2.58	0.02	0.891	0.004	0.345	0.003
5.12	0.03	1.763	0.008	0.344	0.003
3.97	0.02	1.367	0.005	0.344	0.003
6.93	0.04	2.39	0.02	0.345	0.003
8.67	0.04	2.98	0.02	0.344	0.003
10.12	0.05	3.49	0.02	0.345	0.003

Tabella 2: (2.c) Partitore di tensione con resistenze da circa 4M. Tutte le tensioni in V.

2.d Resistenza di ingresso del tester Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

Con i dati del punto 2.b si ottiene

$$R_1/R_T = 0.003 \pm 0.007 \rightarrow R_T > 100k\Omega$$

Con i dati del punto 2.c si ottiene

$$R_1/R_T = 0.47 \pm 0.02$$
 $\rightarrow R_T = (9.9 \pm 0.5)M\Omega$

L'incertezza è sovrastimata perchè gli errori di R_1 e R_2 non sono scorrelati, essendo misure fatte con lo stesso fondoscala. In particolare considerando l'errore sistematico come un fattore di scala viene che l'incertezza sul rapporto dipende solo dall'incertezza sull'ultimo digit.

4 Uso dell'oscilloscopio

3.b Misure di tensione Vengono ripetute le misure del punto 2.c ma con pochi punti e senza grafico

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
3.0	0.02	0.527	0.016	0.176	0.010
4.26	0.02	0.635	0.02	0.149	0.008
5.58	0.03	0.866	0.025	0.155	0.008
6.86	0.03	1.01	0.03	0.147	0.008
7.67	0.04	1.17	0.04	0.153	0.009
8.31	0.04	1.24	0.04	0.149	0.008
9.91	0.05	1.45	0.07	0.146	0.008

Tabella 3: (3.b) Partitore di tensione con resistenze da circa 4M, misura con oscilloscopio. Tutte le tensioni in V.

La stima di V_{out}/V_{in} dà come risultato 0.153 ± 0.006

3.d Impedenza di ingresso dell'oscilloscopio Si ripete l'analisi del punto 2.d

$$R_1/R_{IN} = 4.10 \pm 0.26 \rightarrow R_{IN} = (1.14 \pm 0.06)M\Omega$$

5 Misure di frequenza e tempo

4.b Misure di frequenza Misure con onda sinusoidale

6 Trigger dell'oscilloscopio

5.b Segnale pulse Misure con segnale pulse del generatore di onde

Periodo T (μ s)	$\sigma T (\mu s)$	Frequenza f (KHz)	σ f (KHz)	Misura oscilloscopio (KHz)	Differenza (KHz)	
$1.56 \cdot 10^{3}$	10	0.641	0.004	0.640	0.001	
157	1	6.36	0.04	6.33	0.03	
15.5	0.1	64.5	0.4	64.1	0.4	
1.15	0.01	869	5	870	1	

Tabella 4: (4.b) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

7 Conclusioni e commenti finali

Il valore $R_T=(9.9\pm0.5)M\Omega$ è in accordo con il valore di $10M\Omega$ riportato sul manuale del tester. La deviazione di $R_{IN}=(1.14\pm0.06)M\Omega$ dal valore nominale dell'impedenza d'ingresso dell'oscilloscopio $R_{nom}=1M\Omega\pm2\%$ può essere dovuta al numero insufficiente di misure prese.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.