Procesamiento de Imágenes Ingeniería Biomédica

Unidad 4: Filtrado en el dominio frecuencial

Repaso:	
	Serie de Fourier
	Transformada de Fourier continua
	Teorema de la convolución temporal
	Teorema de la convolución frecuencial
	Muestreo en el dominio temporal. Aliasing. Teorema de Nyquist.
	Transformada de Fourier Discreta (DFT) 1D y 2D
	Ruido Periódico
Filtrado frecuencial	
	Filtros de suavizado: PB ideal, Butterworth de orden n y Gaussiano Filtros de realce: PA ideal, Butterworth de orden n y Gaussiano

Serie de Fourier

Toda señal periódica puede reconstruirse a partir de sinusoides cuyas frecuencias son múltiplos enteros de una frecuencia fundamental, eligiendo las amplitudes y fases adecuadas.

La serie de Fourier describe señales periódicas como una combinación de señales armónicas.

Permite analizar el contenido frecuencial de la señal.

Matemático francés Joseph Fourier (1768-1830)

Forma trigonométrica

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi n}{T}t\right) + b_n \sin\left(\frac{2\pi n}{T}t\right) \right)$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cos\left(\frac{2\pi n}{T}t\right) dt, \quad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \sin\left(\frac{2\pi n}{T}t\right) dt, \quad n = 1, 2, \dots$$

Transformada continua de Fourier

$$H(w) = \int_{-\infty}^{+\infty} h(t) \cdot e^{-i\omega t} dt$$
 (ecuación de análisis)

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(w) \cdot e^{i\omega t} \, dw$$

$$h(t) = \int_{-\infty}^{+\infty} H(f) \cdot e^{i2\pi f t} \, df$$

$$h(t) = \int_{-\infty}^{+\infty} H(f) \cdot e^{i2\pi f t} \, df$$

(ecuaciones de síntesis) $w = 2\pi f$

Teorema de la convolución temporal

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \iff \begin{cases} Y(f) = H(f)X(f) \\ Y(\omega) = 2\pi H(\omega)X(\omega) \end{cases}$$

Teorema de la convolución frecuencial

$$y(t) = x(t)h(t) \iff \begin{cases} Y(f) = H(f) * X(f) \\ Y(\omega) = \frac{1}{2\pi}H(\omega) * X(\omega) \end{cases}$$

Algunos funciones y sus trasformadas

Time Domain

Frequency Domain

$$h(t) = A$$
 $|t| < T_0$
 $= \frac{A}{2}$ $|t| = T_0$ $H(f) = 2AT_0 \frac{\sin(2\pi T_0 f)}{2\pi T_0 f}$
 $= 0$ $|t| > T_0$

$$h(t) = K \bigoplus H(f) = K\delta(f)$$

$$h(t) = K\delta(t)$$
 \bigoplus $H(f) = K$

Algunos funciones y sus trasformadas

Time Domain

Frequency Domain

$$h(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT) \iff H(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T}\right) \quad \cdots$$

$$h(t) = A \cos(2\pi f_0 t) \qquad H(f) = \frac{A}{2} \delta(f - f_0)$$

$$+ \frac{A}{2} \delta(f + f_0)$$

$$h(t) = A \sin(2\pi f_0 t) \qquad H(f) = -j\frac{A}{2} \delta(f - f_0)$$
$$+j\frac{A}{2} \delta(f + f_0)$$

<u>Muestreo en el dominio temporal</u>

- (a) Señal que queremos muestrear,h(t) (muestreamos cada T seg)
- (b) Tren de impulsos $\Delta(t)$.
- (e) Muestreo de h(t)= producto de h(t) y el tren de impulsos $\Delta(t)$.
- (c) Transformada de Fourier de h(t), H(f).
- (d) Transformada de Fourier del tren de impulsos $\Delta(t)$, $\Delta(f)$.
- (f) Convolución de H(f) y Δ(f): la T. F. del producto es la convolución.

La señal (f) es la transformada de Fourier de la señal muestreada (e).

Aliasing

Se repite el mismo proceso que en la figura anterior, pero ahora la frecuencia de muestreo, 1/T, es menor que $2f_c$, y por tanto aparece solapamientos en la transformada de Fourier de la señal muestreada. La señal obtenida en (e) está distorsionada debido a los solapamientos, y no es posible recuperar la señal original h(t) a partir de sus muestras $h(t) \cdot \Delta(t)$. A este fenómeno se conoce como ALIASING.

Teorema de Nyquist o del muestreo

Sea x(t) una señal continua que cumple con:

$$X(f) = 0 \ para \ |f| \ge fm$$

$$fs = \frac{1}{\Delta t} \ge 2fmax$$

donde fs es la frecuencia de muestreo y fmax es la frecuencia máxima de X(f) $(f_m$ en el espectro mostrado abajo).

Interpretación gráfica de la DFT

Figure 6.2 Graphical derivation of the discrete Fourier transform pair.

- (a) Función en el tiempo h(t) y su transformada de Fourier, H(f).
- (b) Tren de impulsos $\Delta_0(t)$ y su transformada de Fourier $\Delta_0(f)$.
- (c) Muestreo de h(t), $h(t) \cdot \Delta_0(t)$, y su transformada de Fourier $H(f) * \Delta_0(f)$.
- (d) Las señales no son infinitas: la truncamos multiplicando en el tiempo por una ventana x(t) de altura unidad. Esta ventana también tiene T. Fourier.
- (e) $h(t) \cdot \Delta_0(t) \cdot x(t)$ y su T. Fourier $H(f) * \Delta_0(f) * X(f)$
 - (f) Muestreamos en frecuencia multipl. por un tren de impulsos, $\Delta_1(f)$.
- (g) $\tilde{h}(t) = [h(t) \cdot \Delta_0(t) \cdot x(t)] * \Delta_1(t)$ $\tilde{H}(f) = [H(f) * \Delta_0(f) * X(f)] \cdot \Delta_1(f)$

Transformada de Fourier Discreta (DFT-1D)

$$F(u) = \sum_{x=0}^{M-1} f(x)e^{-j2\pi ux/M}$$

x y **u**: 0,1, 2, ... M-1

DFT

(en coordenadas polares)

$$F(u) = |F(u)|e^{-j\phi(u)}$$

$$|F(u)| = \sqrt{R(u)^2 + I(u)^2}$$

Módulo

$$\phi(u) = \tan^{-1} \left[\frac{I(u)}{R(u)} \right]$$

Fase

$|F(u)|^2 = R(u)^2 + I(u)^2$

Potencia

<u>IDFT</u>

(reconstrucción señal original)

$$f(x) = \frac{1}{M} \sum_{u=0}^{M-1} F(u) e^{j2\pi u x/M}$$

x y **u**: 0,1, 2, ... M-1

En Matlab la DFT1D se calcula con el comando fft y la inversa con ifft

Filtrado en el dominio frecuencial usando DFT 1D

- <u>Ejercicio 1:</u> Calcule y grafique el espectro de magnitud de la suma de dos sinusoides (utilice el algoritmo fft de matlab)
- Ejercicio 2: A la señal del punto anterior agréguele ruido aleatorio y observe como se modifica su espectro de magnitud.
- <u>Ejercicio 3</u>: Sume 3 señales sinusoidales de diferente frecuencia angular y amplitud. Filtre las señales de mayor y menor frecuencia, eliminándolas. Grafique el resultado de la anti-transformada de Fourier.
- <u>Ejercicio 4:</u> A una señal sinusoidal con ruido aleatorio, hágala pasar por un filtro pasa bajos (dominio espacial). Observe como se modificó su espectro de magnitud.
- <u>Ejercicio 5</u>: Idem ejercicio 4, pero con un filtro pasa altos.

Transformada de Fourier Discreta (DFT-2D)

Sea f(x,y) una imagen de dimensión MxN, su DFT-2D es:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

donde:
$$(\mathbf{x} = 0,1, ..M-1)$$
 e $(\mathbf{y} = 0,1, ..N-1)$
 $(\mathbf{u} = 0,1, ..M-1)$ y $(\mathbf{v} = 0,1, ..N-1)$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

Filtros frecuenciales

Pasa-bajo ideal:

$$H(u,v) = \begin{cases} 1 & si & D(u,v) \le D_0 \\ 0 & si & D(u,v) > D_0 \end{cases}$$

- D_0 es la frecuencia de corte, y D(u,v) es la distancia Euclídea desde el punto (u,v) hasta el origen del plano de frecuencia.
- ☐ Las componentes de alta frecuencia en una imagen son transiciones bruscas en los niveles de intensidad.
- ☐ Suavizar significa atenuar o eliminar componentes de alta frecuencia espacial.

Fenómeno de Gibbs: característico de los filtros ideales por la discontinuidad de la función de transferencia.

 D_0 grande

D_o pequeño

Pasa-bajo Gaussiano:

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

- ☐ Cae al 60,7% de su máximo en la frecuencia de corte D_o
- Las transiciones a la frecuencia de corte no son bruscas (no se observa el fenómeno de Gibbs)
- \Box D_o es equivalente a la dispersión (σ) de la curva gaussiana

Pasa-bajo Butterworth de orden n:

$$\boldsymbol{H}(\boldsymbol{u},\boldsymbol{v}) = \frac{1}{1 + \left[\boldsymbol{D}(\boldsymbol{u},\boldsymbol{v})/\boldsymbol{D}_0\right]^{2n}}$$

- \Box Cae al 50% de su máximo en la frecuencia de corte, $D(u,v)=D_0$
- \Box Las transiciones a la frecuencia de corte D_o no son bruscas (no se observa fenómeno de Gibbs)

Diferentes n, iguales D₀

Diferentes D₀, mismo n

Pasa-alto ideal:

$$H(u,v) = \left\{ \begin{array}{ll} 0 & \text{si } D(u,v) \leq D_0 \\ 1 & \text{si } D(u,v) > D_0 \end{array} \right.$$

Al igual que en el filtro pasa bajos ideal, se observa la aparición del fenómeno de Gibbs.

Pasa-alto Gaussiano:

$$H(u,v)=1-e^{-D^2(u,v)/2D_0^2}$$

 $D_0^2 = \sigma^2 = varianza de la Gaussiana,$ $\sigma = D_0 = desvío estándar$

Pasa-alto Butterworth de orden n:

$$H(u,v) = \frac{1}{1 + \left[D_0/D(u,v)\right]^{2n}}$$

Como el filtro PB, para orden bajo (n < 20) no se observa el fenómeno de Gibbs.

Original

Ideal

Butterworth

Ruido periódico

- Ruido con dependencia espacial
- Presente como interferencia eléctrica o electromecánica durante la adquisición.

Modelo de ruido periódico: sinusoide 2D

$$r(x,y) = A.\sin\left[\frac{2\pi u_0(x + B_x)}{M} + \frac{2\pi v_0(y + B_y)}{N}\right]$$

$$A = amplitud$$

 $x = 0,1,2,...M-1$
 $y = 0,1,2...N-1$

 u_0 y v_0 determinan las frecuencias de la sinusoide respecto al eje-x y el eje-y, respectivamente

$$R(u,v) = j \frac{AMN}{2} \left[e^{-j2\pi (u_0 B_x/M + v_0 B_y/N)} \delta(u + u_0, v + v_0) - e^{j2\pi (u_0 B_x/M + v_0 B_y/N)} \delta(u - u_0, v - v_0) \right]$$

$$u=0,1,2,...M-1$$
 y $v=0,1,2,...N-1$, par de impulsos unitarios ubicados en $(u+u_0,v+v_0)$ y $(u-u_0,v-v_0)$ (ver script imnoise3.m)

Filtrado de imágenes usando DFT 2D

- <u>Ejercicio 6</u>: Abra una imagen y calcule su DFT 2D (utilice la función fft2).
 Visualice la imagen y su espectro de magnitud.
- <u>Ejercicio 7</u>: Genere en el dominio frecuencial diferentes tipos de filtros pasa bajos (ideal, Gaussiano, Butterworth). Visualice la respuesta de cada filtro usando imagesc y mesh.
- <u>Ejercicio 8</u>: Idem punto anterior, pero con filtros pasa altos.
- <u>Ejercicio 9:</u> Abra una imagen y aplíquele los diferentes filtros generados.
 Presente la imagen original y las procesadas, con sus respectivos espectro de magnitud.
- Ejercicio 10: Genere ruido periódico y observe su DFT2D
- <u>Ejercicio 11</u>: Abra una imagen y súmele ruido periódico. Filtre la imagen en el dominio frecuencial.