Derivative Crusher Algorithm

by Ratindranath Akhoury

Typed in LATEX by EVAN CARPENTER

Winter 2022

Idea: A partial derivative with thermodynamically significant variables

$$\left(\frac{\partial x}{\partial y}\right)_z$$
 where $\{x,y,z\}$ can be any of $\{S,T,P,V,E,F,G,H\}$

can be expressed in terms of first and second derivatives of fundamental relations. This re-arranging of expressions is very useful in thermodynamics and statistical mechanics, as it allows us to find simple relations between physical quantities in a thermodynamical system. The Derivative Crusher Algorithm is an algorithm that "crushes" a thermodynamically significant partial derivative into useful and easily measureable quantities. Developed and taught by Professor Ratindranath Akhoury.

Choosing Gibbs Free Energy

Variable	Easy to keep fixed?	Easy to measure change?
S	Yes, Adiabatic processes	No, change in S depends on change in Q, which is hard to measure
T	Yes, with a heat bath or feedback system	Yes, by using a thermometer
V	No, not easily, thermal expansion of the container is a byproduct of the container being thermally conduc- tive, the volume changes with heat	Yes
P	Yes, keeping equilibrium with atmosphere	Yes, barometer

Table 1: T, P are the easiest quantities to measure and control, making G(T, P) the easiest fundamental relationship to work with.

$$E(S,V)$$
 \longrightarrow $dE = TdS - PdV$ $F(T,V) = E - TS$ \longrightarrow $dF = -SdT - PdV$ $G(T,P) = E - TS + pV$ \longrightarrow $dG = -SdT + VdP$ $H(S,P) = E + pV$ \longrightarrow $dH = TdS + VdP$

Operations

The Derivative Crusher Algorithm is made of three operations and seven relations. Looking at the derivatives of G(T, P) = E - TS - PV more closely, certain constants can be defined:

$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S \qquad \left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P} = \left(\frac{\partial S}{\partial T}\right)_{P} \equiv \frac{C_{p}}{T} \tag{C1}$$

$$\left(\frac{\partial G}{\partial P}\right)_T = V \qquad \left(\frac{\partial^2 G}{\partial P^2}\right)_T = \left(\frac{\partial V}{\partial P}\right)_T \equiv -\kappa V \tag{C2}$$

$$\left[\frac{\partial}{\partial T} \left(\frac{\partial G}{\partial P}\right)_T\right]_P = \left[\frac{\partial}{\partial P} \left(\frac{\partial G}{\partial T}\right)_P\right]_T = \left(\frac{\partial V}{\partial T}\right)_P \equiv \alpha V \tag{C3}$$

 C_p is specific heat at constant pressure.

 κ is isothermal compressibility.

 α is volume coefficient of expansion.

The derivative crusher algorithm is made of three partial derivative operations:

1. Bringing y to the numerator:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z} \tag{D1}$$

2. Bringing z to the numerator:

$$\left(\frac{\partial x}{\partial y}\right)_z = -\frac{\left(\frac{\partial z}{\partial y}\right)_x}{\left(\frac{\partial z}{\partial x}\right)_y} \tag{D2}$$

3. Introduce new variable w:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{\left(\frac{\partial x}{\partial w}\right)_z}{\left(\frac{\partial y}{\partial w}\right)_z} \tag{D3}$$

The last crucial component are the Maxwell Relations between S, V, T, P: ¹

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V \tag{M1}$$

$$\left(\frac{\partial V}{\partial S}\right)_{P} = \left(\frac{\partial T}{\partial P}\right)_{S} \tag{M2}$$

$$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P \tag{M3}$$

$$\left(\frac{\partial P}{\partial S}\right)_{V} = -\left(\frac{\partial T}{\partial V}\right)_{S} \tag{M4}$$

¹Note that in the one dimensional case, $P \to F$ and $V \to X$

Steps of the Algorithm

1. Bring potentials E, F, G, H to the numerator (D1 or D2) and eliminate them using:

$$dE = TdS - PdV$$
 $dF = -SdT - PdV$ $dG = -SdT + VdP$ $dH = TdS + VdP$

2. Bring S to numerator using Maxwell Relations depending on what z is in $\left(\frac{\partial x}{\partial y}\right)_z$

$$z = T \qquad \boxed{ \left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V , \quad \left(\frac{\partial S}{\partial P} \right)_T = -\left(\frac{\partial V}{\partial T} \right)_P }$$

$$z = P, V \qquad \boxed{ \left(\frac{\partial S}{\partial T} \right)_P = \frac{C_P}{T} , \quad \left(\frac{\partial S}{\partial T} \right)_V = \frac{C_v}{T} }$$

3. Bring V to numerator in order to get α or κ .

$$\boxed{ \frac{-\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}} = \left(\frac{\partial P}{\partial T}\right)_{V} = \frac{\alpha}{\kappa}}$$

4. Eliminate C_v in favor of C_p, α, κ

$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V = C_P + T \left(\frac{\partial S}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V$$
$$C_P - C_V = VT \frac{\alpha^2}{\kappa}$$