Consider the problem,

$$\min_{x} f(x)$$
 where $f: \mathbb{R}^n \to \mathbb{R}$

To solve above problem in Newton method f should be \mathbb{C}^2 contionous

1 Newton Method:

The quadratic approximation of f(x) about x_k is

$$m_k(x) \approx f(x) \Big|_{x_k} = f(x_k) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T H_k(x - x_k)$$

where g_k and H_k are gradient and hessian at x_k respectively. Newton descent direction is: $p_k = -H_k^{-1}g^k$

- The operation count for calculating inverse of matrix is $O(n^3)$ which is expensive.
- we can implement newton's method only if there exists positive definite Hessian.

To overcome these quasi newton methods are introduced.

2 Quasi Newton Methods:

The basic idea of quasi newton methods is to approximate $\operatorname{Hessian}(H_k)$ or inverse of $\operatorname{Hessian}(H_k^{-1})$ by some symmetric positive definite matrix, which brings down our requirement of f to C^1 continuous.

Lets B_k be approximation of Hessian, then the quadratic approximation of f about x_k is

$$m_k(x) \approx f(x) \bigg|_{x_k} = f(x_k) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T B_k(x - x_k)$$

where g_k and B_k are gradient and approximate Hessian at x_k respectively.

Quasi Newton descent direction is : $p_k = -B_k^{-1}g^k$ and

 $x_{k+1} = x_k + \alpha_k p_k$ such that α_k should satisfy wolfe conditions.

But the problem here is, how to update approximate $\operatorname{Hessian}(B_{k+1})$ preserving its symmetric positive definiteness property for next iteration?

Based on how we approximate the $\operatorname{Hessian}(B_{k+1})$ we have different methods. The basic idea in approximating $\operatorname{Hessian}(B_{k+1})$ is to take into account the curvature measured during the most recent step and previous step.

$$m_{k+1}(x) \approx f(x) \Big|_{x_{k+1}} = f(x_{k+1}) + g_{k+1}^{T}(x - x_{k+1}) + \frac{1}{2}(x - x_{k+1})^{T} B_{k+1}(x - x_{k+1})$$
$$\nabla m_{k+1}(x) = g_{k+1} + B_{k+1}(x - x_{k+1})$$

from above,

$$\nabla m_{k+1}(x_k) = g_{k+1} + B_{k+1}(x_k - x_{k+1})$$

$$= \nabla f(x_{k+1}) + B_{k+1}(x_k - x_{k+1})$$
(1)

we need $\nabla m_{k+1}(x_k) = \nabla f(x_k)$, on substituting in equation 1

$$\nabla f(x_k) = \nabla f(x_{k+1}) + B_{k+1}(x_k - x_{k+1})$$

$$\nabla f(x_k) - \nabla f(x_{k+1}) = B_{k+1}(x_k - x_{k+1})$$
(2)

Let, $\nabla f(x_k) - \nabla f(x_{k+1}) = y_k$ and $x_k - x_{k+1} = s_k$ then equation 2 becomes

$$B_{k+1}s_k = y_k$$

This is known as Secant Equation.

As we need B_{k+1} to be positive definite,

$$s_k^T B_{k+1} s_k = s_k^T y_k > 0$$

So we need to enforce this condition for a general non linear problem.

How to update B_{k+1} ?

- we have n equalities form secant equation.
- As B_{k+1} to be positive definite, all principal minors should be positive. so we have n inequalities.

As B_{k+1} should be symmetric we have $\frac{n(n+1)}{2}$ unknowns. So, this is under-constrained problem. So we can get multiple solutions for B_{k+1} .

2.1 SR1 Method:

This is symmetric rank 1 update

$$B_{k+1} = B_k + \sigma v v^T \tag{3}$$

Where σ and v are chosen such that B_{k+1} satisfies the secant equation.

$$B_{k+1}s_k = y_k$$

$$(B_k + \sigma v v^T)s_k = y_k$$

$$\sigma v v^T s_k = y_k - B_k s_k$$

$$(\sigma v^T s_k)v = y_k - B_k s_k$$
so,
$$\sigma v^T s_k = 1 \quad \text{and} \quad v = y_k - B_k s_k$$

$$\sigma = \frac{1}{(y_k - B_k s_k)^T s_k}$$

Substituting in equation 3, we get

$$B_k + 1 = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

This is known as SR1 update formula.

If we want to approximate inverse of hessian which is nothing but B_{k+1}^{-1} , we can similarly derive or using sherman morrison formula, we get

$$B_{k+1}^{-1} = B_k^{-1} + \frac{(s_k - B_k^{-1} y_k)(s_k - B_k^{-1} y_k)^T}{(s_k - B_k^{-1} y_k)^T y_k}$$

- Rank 1 updates tend to produce better approximations of hessain
- numerical difficulties arise if $(y_k B_k s_k)^T s_k = 0$, then SR1 update is not possible which led to SR2 updates.

2.2 SR2 Method:

This is symmetric rank 2 update.

2.2.1 BFGS Method:

In this method we update Hessain B_{k+1}

$$B_{k+1} = B_k + \sigma_1 u u^T + \sigma_2 v v^T \tag{4}$$

Where σ_1 , σ_2 , u and v are chosen such that B_{k+1} satisfies the secant equation.

$$B_{k+1}s_k = y_k$$

$$(B_k + \sigma_1 u u^T + \sigma_2 v v^T)s_k = y_k$$

$$\sigma_1 u u^T s_k + \sigma_2 v v^T s_k = y_k - B_k s_k$$

$$(\sigma_1 u^T s_k) u + (\sigma_2 v^T s_k) v = y_k - B_k s_k$$

So,

$$\sigma_1 u^T s_k = 1 \qquad u = y_k \to \sigma_1 = \frac{1}{y_k^T s_k}$$
$$\sigma_2 v^T s_k = -1 \qquad v = B_k s_k \to \sigma_2 = \frac{-1}{s_k^T B_k s_k}$$

On substituing in equation 4, we get

$$B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}$$
(5)

This is known as **BFGS** update formula.

We can update inverse of hessain directly instead of hessain,

Let
$$H_k = B_k^{-1}$$
, then H_{k+1} is

$$H_{k+1} = \left(I - \frac{s_k y_k^T}{y_k^T s_k}\right) H_k \left(I - \frac{y_k s_k^T}{y_k^T s_k}\right) + \frac{s_k s_k^T}{y_k^T s_k}$$

This is known as BFGS update formula for inverse of hessain.

2.2.2 DFP Method:

If we want to approximate inverse of hessian which is nothing but B_{k+1}^{-1} we can derive similarly.

$$B_{k+1}s_k = y_k$$

$$s_k = B_{k+1}^{-1} y_k$$

Let
$$H_{k+1} = B_{k+1}^{-1}$$

$$s_k = H_{k+1} y_k \tag{6}$$

The symmetric rank 2 update of H_{k+1} is

$$H_{k+1} = H_k + \sigma_1 u u^T + \sigma_2 v v^T \tag{7}$$

Where σ_1 , σ_2 , u and v are chosen such that H_{k+1} satisfies equation 6.

$$s_k = H_{k+1}y_k$$

$$s_k = (H_k + \sigma_1 u u^T + \sigma_2 v v^T)y_k$$

$$s_k - H_k y_k = \sigma_1 u u^T y_k + \sigma_2 v v^T y_k$$

$$s_k - H_k y_k = (\sigma_1 u^T y_k)u + (\sigma_2 v^T y_k)v$$

So,

$$\sigma_1 u^T y_k = 1 \qquad u = s_k \to \sigma_1 = \frac{1}{s_k^T y_k}$$

$$\sigma_2 v^T y_k = -1 \qquad v = H_k y_k \to \sigma_2 = \frac{-1}{y_k^T H_k y_k}$$

On substituing in equation 7, we get

$$H_{k+1} = H_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}$$
(8)

This is known as **DFP update formula.**

We can update hessain directly instead of inverse of hessain,

$$B_{k+1} = \left(I - \frac{y_k s_k^T}{y_k^T s_k}\right) B_k \left(I - \frac{s_k y_k^T}{y_k^T s_k}\right) + \frac{y_k y_k^T}{y_k^T s_k}$$

This is known as **DFP update formula for hessain.**

2.2.3 Comparison between SR1 and SR2 methods:

- Operation cost has been reduced. Now each iteration can be performed at $O(n^2)$, where in newton method it is $O(n^3)$.
- BFGS Method has self adjusting properties i.e even if at some iteration B_k becomes a poor approximation to true hessain then it will tend to correct on itself within few iterations which is not possible in SR1.
- Till today, nothing better than BFGS is available.

3 Broyden Class/Family:

In Broyden class, a family of updates are specificed by general formula

$$B_{k+1} = (1 - \phi_k)B_{k+1}^{BFGS} + \phi_k B_{k+1}^{DFP}$$

The BFGS and DFP methods are members of the Broyden class-we recover BFGS by setting $\phi_k = 0$ and DFP by setting $\phi_k = 1$.