UNCERTAINTY IN RECURRENT NEURAL NETWORKS

ALIREZA SAMAR

UNIVERSITI TEKNOLOGI MALAYSIA

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Philosophy in Machine Learning"

Signature :

Name : Dr. Siti Sophiayati Yuhaniz

Date : April 13, 2017

UNCERTAINTY IN RECURRENT NEURAL NETWORKS

ALIREZA SAMAR

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

Advanced Informatics School Universiti Teknologi Malaysia

APRIL 2017

I declare that this thesis entitled "Uncertainty in Recurrent Neural Networks" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Alireza Samar
Date : April 13, 2017

Dedication

ACKNOWLEDGEMENT

Acknowledgement

ABSTRACT

This is the English abstract

ABSTRAK

Ini adalah abstrak Bahasa Melayu

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECI	LARATION	iii
	DEDI	ICATION	v
	ACK	NOWLEDGEMENT	vii
	ABST	TRACT	ix
	ABST	TRAK	xi
	TABI	LE OF CONTENTS	xiii
	LIST	OF TABLES	XV
	LIST	OF FIGURES	xvii
	LIST	OF ABBREVIATIONS	xix
	LIST	OF SYMBOLS	xxi
	LIST	OF APPENDICES	xxiii
1	INTR	CODUCTION	1
	1.1	Problem Background	1
	1.2	State-of-the-Arts	1
	1.3	Problem Statement	1
	1.4	Objective and Scope	1
	1.5	Organization	1
2	LITE	RATURE REVIEW	3
	2.1	State-of-the-Arts	3
	2.2	Limitations	3
	2.3	Research Gaps	3
3	RESE	EARCH METHODOLOGY	5
	3.1	Top-level View	5
	3.2	Research Activities	5
	3.3	Controllables vs. Obseravables	5
	3.4	Techniques	5

	3.5	Tools and Platforms	5
	3.6	Chapter Summary	5
4	PROF	POSED WORK	7
	4.1	The Big Picture	7
	4.2	Analytical Proofs	7
	4.3	Results and Discussion	7
	4.4	Chapter Summary	7
REFERE	NCES		9
Appendice	es A – C		10 – 15

LIST OF TABLES

TABLE NO.	TITLE	PAGE	
4.1	Short version of the caption.	8	

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
4.1	Short version of the caption.	8

xix

LIST OF ABBREVIATIONS

ANN - Artificial Neural Network

PC - Personal Computer

SVM - Support Vector Machine

XML - Extensible Markup Language

xxi

LIST OF SYMBOLS

 γ - Whatever

 σ - Whatever

arepsilon - Whatever

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Do not use long titles.	11
В	Pseudo-codes	13
C	Time-series Results	15

INTRODUCTION

1.1 Problem Background

Introduction to the thesis [1] to the thesis [2]. This section attempts to give a brief introduction to quantum computing. Before entering the microscopic world of quantum computing, we revisit the present digital system commonly used by the masses. The current digital system is based on binary digits, commonly known as bits. Each bit is represented with a binary value called "logic 0" or "logic 1" and the number of distinct states is 2^n , where n is the number of bits. Physically, these logic values are typically represented by two different voltage levels. In this thesis, such computers are referred to as a *classical computer*.

- 1.2 State-of-the-Arts
- 1.3 Problem Statement
- 1.4 Objective and Scope
- 1.5 Organization

LITERATURE REVIEW

2.1 State-of-the-Arts

2.2 Limitations

- 1. Mentor Graphics 2
 - (a) item 3
- 2. item 4

2.3 Research Gaps

The processing at layer-5¹ is done ...

¹In this thesis, OSI model is used.

RESEARCH METHODOLOGY

3.1 Top-level View

- 3.2 Research Activities
- 3.3 Controllables vs. Obseravables
- 3.4 Techniques
- 3.5 Tools and Platforms
- 3.6 Chapter Summary

PROPOSED WORK

- 4.1 The Big Picture
- 4.2 Analytical Proofs
- 4.3 Results and Discussion
- 4.4 Chapter Summary

Figure 4.1: Example of a figure. This is a long, very long, long long, long caption. You can give a shorter caption for the "list of figures" using the square braket symbol.

Table 4.1: Example of a table. This is a long, very long, long long, long caption. You can give a shorter caption for the "list of table" using the square braket symbol.

Temperature	Resonant Frequency	Q factor
$13 \text{ mK} \pm 1 \text{ mK}$	16.93	811
$40~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	817
$100~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	815
$300~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	806
$500~\mathrm{mK}\pm1~\mathrm{mK}$	16.93	811
$800~\mathrm{mK}\pm5~\mathrm{mK}$	16.93	814
$1000~\text{mK} \pm 5~\text{mK}$	16.93	806

REFERENCES

- 1. Oetiker, T., Partl, H., Hyna, I. and Schlegl, E. *The Not So Short Introduction to ΕΤΕΧ2ε*. 2013. URL http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf.
- 2. Okamoto, Y., Ando, Y., Hataya, K., Nakayama, T., Miyamoto, H., Inoue, T., Senda, M., Hirata, K., Kosaki, M., Shibata, N. *et al.* Improved power performance for a recessed-gate AlGaN-GaN heterojunction FET with a field-modulating plate. *Microwave Theory and Techniques, IEEE Transactions on*, 2004. 52(11): 2536–2540.

APPENDIX A

DO NOT USE LONG TITLES.

APPENDIX B

PSEUDO-CODES

APPENDIX C

TIME-SERIES RESULTS