Computación Gráfica y Visualización Tema 1: Introducción

Julián Dorado

Departamento de Tecnologías de la Información y las Comunicaciones Universidade da Coruña

Índice

- ¿Qué es la Computación Gráfica?
- CG y Visión Artificial
- Campos de utilización y ejemplos de aplicaciones
- Marco conceptual para sistemas de CG
- Hardware en CG

1.1 ¿Qué es la Computación Gráfica?

- Los CG es una rama de la Informática que se encarga de la
 - Generación de gráficos
 - Creación, manipulación y visualización
 - A partir de modelos 2D y 3D
 - Modelos
 - Geometrías y texturas
 - Cámaras y luces
 - Movimiento
 - Interactividad
 - Usuario
 - Controles de entrada
 - Modificación del modelo
 - Visualización

- Computing Curricula 2013 IEEE y ACM
 - 18 áreas
 - Graphics and Visual Computing
 - Computación Gráfica
 - Síntesis de imágenes a partir de modelos
 - Procesado Digital y Análisis de Imagen
 - Análisis de escenas para la generación de modelos
 - Fases
 - Mejora de imagen
 - Reconocimiento de patrones: texturas, formas,...
 - Visión por computadora: robótica (Visión Artificial)

1.3 Campos de utilización y ejemplos de aplicaciones

- Interfaces
 - Sistemas gestores de ventanas: 2D y 3D (Aqua y Aero)
- Visualización científica
 - Cantidades ingentes de datos provenientes de simulaciones en:
 - Física de altas energías, dinámica de fluidos, meteorología,...
- Modelado / Render
 - Generación de imágenes sintéticas
 - Animación e Imagen dinámica: Cine
 - Interactividad y control: Juegos, simuladores
 - Movimiento de objetos y cámaras
 - Realismo de imagen y generación en tiempo real

- Capas sistema de CG
 - Modelo
 - Objetos y relaciones
 - Aplicación CG
 - Crea, manipula y visualiza
 - Sistema gráfico
 - Gestiona la visualización
 - Software y Hardware
 - Alto o bajo nivel

1.4 Marco conceptual para CG

- Modelo
 - Objetos y relaciones
 - Primitivas
 - Atributos
 - Conectividad
 - Posicionamiento
 - Almacenamiento
 - Tipos
 - Listas de datos
 - Bases de datos relacionales
 - Formatos
 - DXF de AutoCad
 - VRML y X3D
 - OpenGL

- Proceso de visualización
 - Aplicación CG
 - Crea o carga un modelo
 - Enviarlo al sistema gráfico para visualización
 - Modificación para adaptarlo al sistema gráfico
 - Pintar línea o subdividirlo en pintar píxeles
 - Pintar esfera o subdividirlo en pintar polígonos
 - Librería gráfica
 - OpenGL o DirectX
 - Hardware gráfico
 - Por ejemplo: Soporte para iluminación

1.4 Marco conceptual para CG

- Aplicación CG: Interacción con el usuario
 - Programa dirigido por eventos
 - Bucle de eventos
 - Proceso
 - Recogida de datos de dispositivos de entrada
 - Si existen
 - Cambios en el modelo
 - Modificación de la visualización
 - Tiempo real
 - Frecuencia de actualización

- Historia de los CG
 - Años 50 en el MIT comienzan a utilizar monitores CRT
 - 1963, Ivan Sutherland
 - Tesis doctoral
 - Estructuras de datos y técnicas de interacción
 - Sistemas de CAD (Computer Aided Design)
 - 1964, Sistema IBM para General Motors
 - 80's, AutoCad (AutoDesk) versión para ordenadores 286
 - Sistemas gráficos de ventanas
 - Hasta su desarrollo, alto coste
 - Alto coste del Hw gráfico
 - Computación intensiva
 - Complejidad de los programas gráficos
 - Falta de portabilidad

- Historia de los CG
 - Años 50 en el MIT comienzan a utilizar monitores CRT
 - 1963, Ivan Sutherland
 - Tesis doctoral.
 - Estructuras de datos y técnicas de interacción
 - Sistemas de CAD (Computer Aided Design)
 - 1964, Sistema IBM para General Motors
 - 80's, AutoCad (AutoDesk) versión para ordenadores 286
 - Sistemas gráficos de ventanas
 - Hasta su desarrollo, alto coste de software CG
 - Alto coste del Hw gráfico -> se mantiene
 - Computación intensiva -> GPU
 - Complejidad de desarrollo de programas CG
 - OpenGL o DirectX
 - Falta de portabilidad -> Independencia del Hw
 - Programa GC Librería gráfica Driver de vídeo

- Dispositivos de salida
 - Monitores
 - CRT (Cathode Ray Tube)
 - Sistema más habitual hasta 2005
 - Tubo con emisión de electrones al cátodo
 - Tres tubos para color
 - Inciden en el fósforo de la superficie de la pantalla
 - Tres tipos de fósforo para color
 - Sistemas de control de enfoque y flexión del haz
 - Sistema de barrido por líneas (arriba abajo e izquierda - derecha)

- Dispositivos de salida
 - Monitores

Horizontal retrace

- CRT (Cathode Ray Tube)
 - Sistema más habitual hasta 2005
 - Tubo con emisión de electrones al cátodo
 - Inciden en el fósforo de la superficie de la pantalla
 - Sistemas de control de enfoque y flexión del haz
 - Sistema de barrido por líneas (arriba abajo e izquierda - derecha)
 - Fósforo necesita de un sistema de refresco
 - Trazar la imagen de forma repetida.
 Televisión 100Hz
 - Entrelazado (dos barridos) (interleave: i)
 - No entrelazado (un barrido) (progresivo: p)

lower field

- Dispositivos de salida
 - Monitores
 - CRT (Cathode Ray Tube)
 - Frame o Refresh Buffer almacena el display
 - Dos frame buffer para pintar y visualizar (OpenGL)
 - Video controler realiza el redibujado de la pantalla
 - Características
 - Frecuencia de refresco
 - Horizontal y vertical
 - Resolución
 - 1024x1024
 - Profundidad de color
 - 24 bits
 - Monitor diagnóstico
 - 12 bits en grises
 - 3 MB de buffer
 - Ya no es problema
 - Tamaño de punto

- Dispositivos de salida
 - Monitores CRT (Cathode Ray Tube)
 - De rastreo aleatorio
 - De rastreo vectorial
 - Lista de comandos
 - Número de comandos
 - Velocidad de dibujado

- Dispositivos de salida
 - Monitores
 - CRT (Cathode Ray Tube)
 - Color
 - Tres tipos de fósforo (RGB) -> tres emisores
 - Mayor número de posiciones: Rejilla de máscara
 - Planos
 - Emisivos (energía en luz)
 - LED (Light Emission Diode)
 - No-emisivos (luz en gráficos)
 - LCD (Liquid Crystal Display)
 - Plásticas
 - Controlan la emisión de luz
 - Baratas y ligeras. Distintas formas, hasta flexibles
 - Problemática
 - Resoluciones fijas, velocidad de refresco, ángulo
 - Nuevas opciones
 - Flat CRT, OLED

From Computer Desktop Encyclopedia

© 2005 The Computer Language Company Inc.

Ejemplos de tecnología OLED

Teclado Optimus

Televisión Sony

- Dispositivos de salida
 - Impresoras
 - Impacto, inyección, láser y sublimación
 - Problemática: Homogenización del color
- Dispositivos de entrada
 - Ratón
 - Inventado por Douglas Engelbart en 1968
 - Incorporado en Sistema Alto de Xerox en 1973
 - Avances
 - Rueda central, botones adicionales, ópticos, laser
 - Ratón tridimensional SpaceBall para RV
 - 3 ejes movimiento y giro
 - Teclado
 - IBM desarrolló la primera máquina de escribir eléctrica en 1933
 - Se integró como entrada de datos en los primeros ordenadores

- Componentes fundamentales
 - GPU (graphics processing unit)
 - Procesado en etapas en cada núcleo, pipeline
 - Procesado paralelo, número de núcleos (100-2000)
 - CUDA
 - Número de tarjetas (duales SLI, CrossFire)
 - Arquitectura y Buses de comunicación (internos y externos)
 - Memoria (1-6GB)
- Procesado
 - Librarías gráficas como OpenGL, shaders (lenguajes de shading como CGSL, HLSL), físicas, etc.

- Realidad virtual (RV)
 - Dispositivo de salida
 - Casco de RV
 - Dos displays/señales
 - Síncronos

Dispositivos de entrada

- Posicionadores
 - Magnéticos, etc.
- Guantes
 - FeedForward
- Spaceball
 - No se mueve
- Problemas
 - Movilidad
 - Precio

- Realidad Virtual
 - Gafas estereoscópicas
 - Asíncrono Monitor
 - Ventajas
 - Más cómodo y barato
 - Impide movilidad

- Realidad Virtual
 - Cuevas (caves)
 - Habitación con monitores integrales o proyección posterior
 - Inmersión
 - Simuladores
 - Síncrono Monitores
 - Ventajas
 - Inmersión total
 - Fácil de percibir

- Realidad Aumentada
 - Incluir imágenes generadas en imágenes reales
 - Gafas de RA
 - Transparentes con una zona donde se proyecta información
 - Posicionadores (GPS y dispositivos inerciales)

Esquema de la asignatura

- Proceso de visualización
 - Aplicación CG

