МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

з дисципліни «Алгоритмізація і програмування»

XAI.301.173. 310.1 PFP

Виконав студент гр. <u>310</u>					
(№ групи)					
<u>Андрюшкін Микол</u>	<u> а Андрійович</u>				
(Підпис, дата)	(П.І.Б.)				
Перевірив к.т.н., доцен	т				
· · · (Науковий ступінь					
	О.В.Гавриленко				
(Підпис, дата)	(П.І.Б.)				

ЗАВДАННЯ

	дослідити шляхом власних обчислень, розробити і реалізувати алгоритми
ро	боти з числами в різних позиційних системах числення:
1)	Перетворити десяткові числа <u>124 та 1860</u> в двійкову систему
	числення, описати покроково процес перетворень. Виконати перевірку,
	виконавши зворотне перетворення в десяткову систему.
2)	Перетворити десяткові числа <u>124 та 1860</u> в шістнадцяткову
	систему числення, описати покроково процес перетворень. Виконати
	перевірку шляхом зворотного перетворення в десяткову і двійкову систему.
3)	Розробити діаграму активності алгоритму перетворення числа з десяткової
	системи числення в6-річну. *Реалізувати алгоритм у вигляді строкової
	функції DecTo_N_ (D) з вхідним цілочисельним параметром на мові С ++.
4)	Для двох чисел <u>124 та 1860</u> провести операцію <u>ділення</u> у
	двійковій системі числення. Виконати перевірку шляхом перетворення
	результатів в десяткову систему.
5)	Зпобити висновки

3MICT

Вступ	4
1 Перетворення чисел в двійкову систему числення	5
1.1 Перетворення трирозрядного десяткового числа	5
1.2 Перетворення чотирирозрядного десяткового числа	5
1.3 Перевірка результатів	6
2 Перетворення чисел в шістнадцяткову систему числення	7
2.1 Перетворення трирозрядного десяткового числа	7
2.2 Перетворення чотирирозрядного десяткового числа	7
2.3 Перевірка результатів	7
3 Перетворення чисел в 6-річну систему числення	8
4 Двійкова арифметика	9
Висновки	10
Лодаток А	11

ВСТУП

У сфері програмування та комп'ютерної інженерії важливим аспектом є робота з різними системами числення. Саме вони лежать в основі зберігання, обробки та передавання числової інформації в обчислювальних системах. Найчастіше використовуються позиційні системи числення, у яких значення цифри залежить від її положення. Серед них особливу роль відіграє двійкова система — основа цифрової техніки, а також шістнадцяткова та інші, включаючи системи з нестандартною основою, наприклад 6-річну.

Метою даної роботи є дослідження методів перетворення чисел між різними позиційними системами, виконання арифметичних операцій у двійковому представленні, розробка алгоритму перетворення в систему числення з основою 6, а також формування навичок побудови алгоритмів та аналізу числових операцій.

1 ПЕРЕТВОРЕННЯ ЧИСЕЛ В ДВІЙКОВУ СИСТЕМУ ЧИСЛЕННЯ

1.1 Перетворення трирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.1.1.

Таблиця 1.1 - Перетворення трирозрядного десяткового числа у двійкове

X	X/2	X%2
124	62	0
62	31	0
31	15	1
15	7	1
7	3	1
3	1	1
1	0	1
	Результат	124 ₁₀ = 1111100 ₂

1.2 Перетворення чотирирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.1.2.

Таблиця 1.2 - Перетворення чотирирозрядного десяткового числа у двійкове

X	X/2	X%2
1860	930	0
930	465	0
465	232	1
232	116	0
116	58	0
58	29	0
29	14	1
14	7	0
7	3	1
3	1	1
1	0	1
	Результат	1860 ₁₀ = 11101000100 ₂

1.3 Перевірка результатів

 $1111100_2 = 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 64 + 32 + 16 + 8 + 4 + 0 + 0 = 124_{10}$ $11101000100_2 = 1*2^{10} + 1*2^9 + 1*2^8 + 0*2^7 + 1*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0$ $= 1024 + 512 + 256 + 0 + 64 + 0 + 0 + 0 + 4 + 0 + 0 = 1860_{10}$

2 ПЕРЕТВОРЕННЯ ЧИСЕЛ В ШІСТНАДЦЯТКОВУ СИСТЕМУ ЧИСЛЕННЯ

2.1 Перетворення трирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.2.1.

Таблиця 2.1 - Перетворення десяткового числа у шістнадцяткове

X	X /16	X %16
124	7	12(C)
7	0	7
	Результат	$124_{10} = 7C_{16}$

2.2 Перетворення чотирирозрядного десяткового числа

<Покроковий опис - див. п.2.1>

X	X /16	X %16
1860	116	4
116	7	4
7	0	7
	Резул	льтат 1860 ₁₀ = 744 ₁₆

2.3 Перевірка результатів

<Перетворення в десяткову 2х чисел: $1A_{16} = 1*16^1+10*16^0 = 16+10=26_{10}$,
в двійкову 2х чисел:

$$1-0001$$
, A -1010 , $1A_{16}=00011010_2$ (співпадає з пп.2.1,2.2)> $7C_{16}=7^*16^1+12^*16^0=112+12=124_{10}$ $744_{16}=7^*16^2+4^*16^1+4^*16^0=1792+64+4=1860_{10}$

3 ПЕРЕТВОРЕННЯ ЧИСЕЛ В 6-РІЧНУ СИСТЕМУ ЧИСЛЕННЯ

Діаграму активності представлено в дод.А. Код представлено нище.

```
#include <iostream>
    #include <vector>
    #include <string>
    using namespace std;
    string DecTo 6(int number) {
        const string alphabet = "01234D";
        vector<char> digits;
        if (number == 0)
            return "0";
        // Перетворення в 6-ричну систему з алфавітом
        while (number > 0) {
             int remainder = number % 6;
             digits.push back(alphabet[remainder]);
            number /= 6;
        }
        // Збираємо рядок у правильному порядку без reverse
        string result = "";
         for (int i = digits.size() - 1; i >= 0; --i) {
             result += digits[i];
        return result;
    }
    int main() {
        int number;
        cout << "Введіть число: ";
        cin >> number;
        if (number < 0) {</pre>
            cout << "Потрібне невід'ємне число.\n";
            return 1;
         cout << "У 6-ричній системі (з алфавітом 01234D): " << DecTo_6(number)
<< endl;
        return 0;
    }
```

4 ДВІЙКОВА АРИФМЕТИКА

Покроковий опис <u>ділення</u> чисел<u> 124 ma 1860</u> представлено в табл.4.1.

Таблиця 4.1 – Ділення двійкових чисел

результат								1	1	1	1	Перевірка
4розр.	1	1	1	0	1	0	0	0	1	0	0	1860 <u>/ 124</u>
-3розр.	0	1	1	1	1	1	0	0				- 124 1
залишок		1	1	0	1	1	0	0	1			620
-3розр.			1	1	1	1	1	0	0			- 620 5
залишок		0	1	0	1	1	1	0	1	0		0
-3розр.			0	1	1	1	1	1	0	0		
залишок				0	1	1	1	1	1	0	0	
-3розр.				0	1	1	1	1	1	0	0	
залишок				0	0	0	0	0	0	0	0	
перевірка	$1*2^3+1*2^2+1*2^1+1*2^0=$											
	= 8+4+2+1 = 15											

ВИСНОВКИ

У ході виконання роботи були досліджені методи перетворення чисел між десятковою, двійковою, шістнадцятковою та 6-річною системами числення. Проведено пряме та зворотне перетворення чисел 124 і 1860, результати підтвердили правильність обчислень. Розроблено та реалізовано функцію для переведення чисел у 6-річну систему на мові C++. Виконано операцію ділення у двійковій системі з перевіркою результатів. Отримані знання дозволили закріпити навички роботи з позиційними системами числення та розробки алгоритмів.

ДОДАТОК А

Схема роботи функції DecTo_6(int number)

