### VIET NAM NATIONAL UNIVERSITY HO CHI MINH UNIVERSITY OF INFORMATION TECHNOLOGY



### IMAGE RETRIEVAL

**Subject:** Computer Vision in Human-Computer Interaction

Class: CS532.M21.KHCL

**Lecturer:** Do Van Tien

**Students:** 

Thai Tran Khanh Nguyen 19520188
Doan Nguyen Nhat Quang 19520235
Nguyen Pham Vinh Nguyen 19520186
Nguyen Khanh Nhu 19520209

### Nội dung

- 1. Giới thiệu bài toán
- 2. Khảo sát và phân tích
- 3. Xây dựng phương pháp
  - Simple Image Retrieval (SIR) (our)
  - CNN Image Retrieval with No Human Annotation (CNN-IRwNHA)
  - Deep Local Feature (DELF)
- 4. Đánh giá kết quả
- 5. Xây dựng demo
  - O Thiết kế kiến trúc
  - Thiết kế giao diện
  - Vietnam Tourism Dataset
  - Restful API
  - Kiểm thử
- 6. Kết luận và hướng phát triển

### Giới thiệu bài toán





### Giới thiệu bài toán



|                          |                     |            |                | _                        |                 |          |          |       |                |         |                                                                                                                    |
|--------------------------|---------------------|------------|----------------|--------------------------|-----------------|----------|----------|-------|----------------|---------|--------------------------------------------------------------------------------------------------------------------|
|                          |                     | Backbone   | Output         | Embedding                | Feature         | Loss     |          |       | Oxford5k       | Paris6k |                                                                                                                    |
| Type                     | Method              | DCNN       | Layer          | Aggregation              | Dimension       | Function | Holidays | UKB   | (+100k)        | (+100k) | Brief Conclusions and Highlights                                                                                   |
| Fine-tuning              | DELE [E]            | D NI-1 101 | Conv4          | Attention                | CEL             | 2040     |          |       | 83.8           | 85.0    | Exploring the FCN to extract region-level features and construct feature                                           |
|                          | DELF [5]            | ResNet-101 | Block          | + PCA <sub>w</sub>       | CE Loss         | 2048     | _        | _     | (82.6)         | (81.7)  | pyramids of different sizes.                                                                                       |
|                          | Neural codes [40]   | AlexNet    | FC6            | PCA                      | CE Loss         | 128      | 78.9     | 3.29  | 55.7           | _       | The first work which fine-tunes deep networks for image retrieval.                                                 |
|                          | rveurar codes [40]  | Hierivet   | 100            | TCA                      |                 | 120      | 70.7     | (N-S) | (52.3)         |         | Compressed neural codes and different layers are explored.                                                         |
|                          | Nonmetric [41]      | VGG16      | Conv5          | $PCA_w$                  | Regression      | 512      | _        | _     | 88.2           | 88.2    | Visual similarity learning of similar and dissimilar pairs is performed                                            |
|                          | Normetric [41]      | VGG10      | Convo          | 1 CAw                    | Loss            | 312      |          |       | (82.1)         | (82.9)  | by a neural network, optimized using regression loss.                                                              |
|                          | Faster              | VGG16      | Conv5          | MP / SP                  | Regression      | 512      |          | _     | 75.1           | 80.7    | RPN is fine-tuned, based on bounding box coordinates and class scores                                              |
|                          | R-CNN [96]          | VGG10      | Convo          | WII / SI                 | Loss            | 312      |          |       | (-)            | (-)     | for specific region query which is region-targeted.                                                                |
| Fir                      | SIAM-FV [42]        | VGG16      | Conv5          | FV +                     | Siamese         | 512      | _        |       | 81.5           | 82.4    | Fisher Vector is integrated on top of VGG and is trained with VGG                                                  |
| Supervised               | 51AW-FV [42]        | VGG16      | Convo          | $PCA_w$                  | Loss            | 312      |          |       | (76.6)         | (-)     | simultaneously.                                                                                                    |
|                          | SIFT-CNN [127]      | VGG16      | Conv5          | SP                       | Siamese         | 512      | 88.4     | 3.91  | _              | _       | SIFT features are used as supervisory information for mining positive and negative samples.                        |
|                          | on restriction      | 76610      | Convo          |                          | Loss            | 012      | 00.1     | (N-S) |                |         |                                                                                                                    |
|                          | Quartet-Net [129]   | VGG16      | FC6            | PCA                      | Siamese         | 128      | 71.2     | 87.5  | 48.5           | 48.8    | Quartet-net learning is explored to improve feature discrimination where double-margin contrastive loss is used.   |
|                          | Quartet (127)       | 70010      | 100            | 1 621                    | Loss            | 120      | 71.2     | (mAP) | (-)            | (-)     |                                                                                                                    |
|                          | NetVLAD [44]        | VGG16      | VLAD           | $PCA_w$                  | Triplet         | 256      | 79.9     | _     | 62.5           | 72.0    | VLAD is integrated at the last convolutional layer of VGG16 network as                                             |
|                          | NCCVERID [41]       | 70010      | Layer          |                          | Loss            | 250      | 77.7     |       | (-)            | (-)     | a plugged layer.                                                                                                   |
|                          | Deep Retrieval [87] | ResNet-101 | Conv5<br>Block | MP +<br>PCA <sub>w</sub> | Triplet<br>Loss | 2048     | 90.3     | _     | 86.1           | 94.5    | Dataset is cleaned automatically. Features are encoded by R-MAC. RPN is used to extract the most relevant regions. |
|                          |                     |            |                |                          |                 |          |          |       | (82.8)         | (90.6)  | U                                                                                                                  |
| ည                        | MoM [133]           | VGG16      | Conv5          | MP +                     | Siamese         | 64       | 87.5     | _     | 78.2           | 85.1    | Exploring manifold learning for mining dis/similar samples. Features are tested globally and regionally.           |
| in                       | Wow [100]           | 70010      | Convo          | $PCA_w$                  | Loss            | 01       | 07.0     |       | (72.6)         | (78.0)  |                                                                                                                    |
| 5-tu                     | GeM [47]            | VGG16      | Conv5          | GeM                      | Siamese         | 512      | 83.1     | _     | 82.0           | 79.7    | Fine-tuning CNNs on an unordered dataset. Samples are selected from                                                |
| Unsupervised Fine-tuning | GeWi [47]           | VGG10      | Convo          | Pooling                  | Loss            | 312      | 05.1     | _     | (76.9)         | (72.6)  | an automated 3D reconstruction system.                                                                             |
|                          | SfM-CNN [45]        | VGG16      | Conv5          | $PCA_w$                  | Siamese         | 512      | 82.5     | _     | 77.0           | 83.8    | Employing Structure-from-Motion to select positive and negative                                                    |
|                          | SINI-CIVIV [45]     | VGG10      | Convo          | I CA <sub>w</sub>        | Loss            | 312      | 62.5     |       | (69.2)         | (76.4)  | samples from unordered images.                                                                                     |
|                          | IME-CNN [46]        | ResNet-101 | IME<br>Layer   | MP                       | Regression      | 2048     | _        | _     | 92.0<br>(87.2) | 96.6    | Graph-based manifold learning is explored within an IME layer to mine                                              |
|                          | IIVIE-CIVIN [40]    |            |                |                          | Loss            |          |          |       |                | (93.3)  | the matching and non-matching pairs in unordered datasets.                                                         |
|                          | MDD CNN [127]       | PacNat 101 | Conv5          | SP                       | Triplet         | 2049     |          |       | 85.4           | 96.3    | Exploring global feature structure by modeling the manifold learning to                                            |
| 1                        | MDP-CNN [137]       | ResNet-101 | Block          | 51                       | Loss            | 2048     | _        | _     | (85.1)         | (94.7)  | select positive and negative pairs.                                                                                |
|                          |                     |            |                |                          |                 |          |          |       |                |         |                                                                                                                    |

Wei Chen, Yu Liu, Weiping Wang, Erwin M. Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu, and Michael S. Lew, "Deep Learning for Instance Retrieval: A Survey", 2022

Image Retrieval | Papers With Code



Visual Geometry Group - University of Oxford



Oxford Buildings Search



Image Retrieval Python\* Demo - OpenVINO™ Toolkit



Yêu cầu người dùng



### Xây dựng phương pháp: pipeline



### Simple Image Retrieval (SIR)





### **Deep Local Feature (DELF)**



## CNN Image Retrieval with No Human Annotation (CNN-IRwNHA)



### **EVALUATION**

#### Roxford 5k dataset (Revisiting Oxford) [4]:

Author revisits and address issues with Oxford 5k and Paris 6k image retrieval benchmarks. New annotation for both datasets is created with an extra attention to the reliability of the ground truth and three new protocols of varying difficulty are introduced. Author additionally introduces 15 new challenging queries per dataset and a new set of 1M hard distractors.

| Method     |       | map   |       | map@5 |       |       |  |
|------------|-------|-------|-------|-------|-------|-------|--|
|            | map E | map M | map H | map E | map M | map H |  |
| SIR        | 14.4  | 11.85 | 2.34  | 32.86 | 27.71 | 24.86 |  |
| DELF       | 58.56 | 42.04 | 16.98 | 84.29 | 73.86 | 66.57 |  |
| CNN-IRWNHA | 85.08 | 68.65 | 44.24 | 92.86 | 92.29 | 86.   |  |

### **EVALUATION**



| Method     | map   |
|------------|-------|
| SIR        | 23.34 |
| DELF       | 66.69 |
| CNN-IRWNHA | 82.09 |



### **Vietnam Tourism Dataset**



























### **Activity Diagram**



### Kiến trúc

- Dễ dàng tiếp cận.
- Trình tự xử lý rõ ràng.
- Không phụ thuộc môi trường, nền tảng xây dựng hay ngôn ngữ lập trình phát triển.
- Mô hình đơn giản, dễ hiểu và dễ dàng triển khai với các dự án vừa hoặc nhỏ.
- Thuận lợi trong việc phát triển, quản lý, vận hành, bảo trì.
- Tạo được các chức năng chuyên biệt hóa đồng thời kiểm soát được luồng xử lý.





### **CLIENT-SIDE RENDERING**





### **RESTFUL API**





### **RESTFUL API**



### Thiết kế giao diện



Truy vấn

Xuất kết quả

## **Conclusion and Demo**

# Thanks for watching