Effiziente Algorithmen 1 - Zusammenfassung

Patrick Dammann

21.05.2017

1 Probleme und Algorithmen

Lineares kombinatorisches Optimierungsproblem

Gegeben sind eine endliche Menge E, ein System von Teilmengen $\mathcal{I} \subseteq 2^E$ (zulässige Lösungen) und eine Funktion $c: E \to \mathbb{R}$. Es ist eine Menge $I^* \in \mathcal{I}$ zu bestimmen, so dass $c(I^*) = \sum_{e \in I^*} c(e)$ minimal bzw. maximal ist.

Euklidisches Traveling-Salesman-Problem

Gegeben sind n Punkte in der Euklidischen Ebene. Zu bestimmen ist eine geschlossene Tour, die jeden Punkt genau einmal besucht und möglichst kurz ist.

E =Menge der Kanten

 \mathcal{I} = Alle Mengen von Kanten, die eine Tour bilden

Euklidisches Matching-Problem

Gegeben sind n Punkte in der Euklidischen Ebene (n gerade). Zu bestimmen sind $\frac{n}{2}$ Linien, so dass jeder Punkt Endpunkt genau einer Linie ist und die Summe der Linienlängen so klein wie möglich ist.

E =Menge der Kanten

 $\mathcal{I}=$ Alle Mengen von Kanten mit der Eigenschaft, dass jeder Knoten zu genau einer der Kanten gehört.

Einheitskosten-Modell Es werden nur die Schritte des Algorithmus gezählt, die Zahlengrößen bleiben unberücksichtigt.

Bit-Modell Die Laufzeit für eine arithmetische Operation ist M, wobei M die größte Kodierungslänge einer an dieser Operation beteiligten Zahl ist.

Definition 1.1. Die Laufzeitfunktion $f_A : \mathbb{N} \to \mathbb{N}$ ist in $\mathcal{O}(g)$ für eine Funktion $g : \mathbb{N} \to \mathbb{N}$ falls es eine Konstante c > 0 und $n_o \in \mathbb{N}$ gibt, so dass $f_A \leq c \cdot g(n)$ für alle $n \geq n_o$.

Definition 1.2. Ein Algorithmus heißt **effizient** bzw. **polynomialer Algorithmus**, wenn seine Laufzeit in $\mathcal{O}(n^k)$ liegt.

Ein Problem, das mit einem polynomialen Algorithmus gelöst werden kann, heißt **polynomiales Problem**.

Definition. Ein **Graph** G ist ein Tupel $G = (V, E)^1$ bestehend aus einer nicht-leeren Knotenmenge V und einer Kantenmenge E.

- \bullet Ein Graph heißt **endlich**, wenn V und E eindlich sind.
- Wenn $e = \{u, v\} \in E$ und $u, v \in V$, dann sind u und v Nachbarn bzw. adjazent, sind Endknoten von e und werden von e verbunden.
- Eine Kante $E \ni e = \{u, u\}$ heißt Schleife.
- Kanten mit $E \ni e = \{u, v\} = f \in E$ heißen **parallel** oder **mehrfach**.
- Ein Graph ohne Mehrfachkanten heißt einfach.
- Für $W \subseteq V$ bekommt die Menge aller Knoten in $V \setminus W$ mit Nachbarn in W die Bezeichnung $\Gamma(W)$.
- Kurzform von $\Gamma(\{v\})$ ist $\Gamma(v)$.
- Die Menge $\delta(W)$ aller Kanten mit je einem Endknoten in W und $V \setminus W$ heißt **Schnitt**.
- Kurzform von $\delta(\{v\})$ ist $\delta(v)$.
- Der **Grad** eines Knoten v ist die Anzahl seiner Nachbarn, bzw. $|\delta(v)|$.
- Ein (s,t)-Schnitt ist ein Schnitt $\delta(V)$ mit $s \in W$ und $t \in V \setminus W$ und gleichzeitig ein (t,s)-Schnitt.
- Mit $W \subseteq V$ ist E(W) die Menge aller Kanten mit beiden Endknoten in W.
- Mit $F \subseteq E$ ist V(F) die Menge aller Knoten, die Endknoten von mind. einer Kante in F sind.
- Sind G = (V, E) und H = (W, F) Graphen und $W \subseteq V$ und $F \subseteq E$, so heißt H **Untergraph** von G.
- Mit $W \subseteq V$ ist G W der Graph G ohne die Knoten in W und ohne alle Kanten an W.
- $G[W] = G (V \setminus W)$ ist der von W induzierte Untergraph.
- Mit $F \subseteq E$ ist $G F = (V, E \setminus F)$.
- Kurzform von $G \{x\}$ ist G x für $x \in E$ oder $x \in V$.
- Ein einfacher Graph heißt vollständig, wenn jede mögliche Kante zwischen seinen Knoten existiert.
- Der vollstängige Graph mit n Knoten wird mit $K_n = (V_n, E_n)$ bezeichnet.
- Das Komplement des Graphen G = (V, E) ist $\bar{G} = (V, E_n \setminus E)$.
- Ein Graph heißt **bipartit**, wenn er sich in zwei disjunkte Teilmengen V_1, V_2 mit $V_1 \cup V_2 = V$ teilen lässt, ohne dass es Kanten $\{u, v\}, u \in V_1, v \in V_2$ gibt.

¹In der Vorlesung werden primär endliche, einfache, schleifenfreie Graphen behandelt, die der Einfachheit halber eine Notation ohne Inzendenzfunktion nutzen können. In diesem Skript wird (sofern nicht anders angegeben) von solchen Graphen ausgegangen.