Модель хищник-жертва

Соколова Анастасия Витальевна НФИбд-03-18¹

¹Российский Университет Дружбы Народов

Цель лабораторной работы

Рассмотреть и смоделировать простейшую модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры.

Задание к лабораторной работе

Для заданной модели "хищник-жертва":

- 1. Построить график зависимости численности хищников от численности жертв
- 2. Построить графики изменения численности хищников и численности жертв. 3. Найти стационарное состояние системы

лабораторной работы

Процесс выполнения

Теоретическое введение

Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)

- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

Краткое теоретическое введение

$$\begin{cases} \frac{dx}{dt} = ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cy(t) - dx(t)y(t) \end{cases}$$

В этой модели х – число жертв, у - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Теоретическое введение

Стационарное состояние системы (1) (положение равновесия, не зависящее от времени решение) будет в точке: $x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0) = x_0, y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей х(0), у(0). Колебания совершаются в противофазе.

Выполнение

Построили графики колебаний изменения числа популяции хищников и жертв от времени.

График колебаний изменения числа популяции хищников и жертв

Выполнение

Построили график зависимости изменения численности хищников от изменения численности жертв.

Рис. 2: Зависимость изменения численности хищников от изменения численности жертв

Выводы по проделанной работе

Вывод

- Рассмотрели модель Лотки-Вольтерры
- Построили график зависимости численности хищников от численности жертв
- Построили графики изменения численности хищников и численности жертв
- Нашли стационарное состояние системы