Photon Energy. (a) What voltage	should be applied to accelerate an electron
from zero velocity in order that	it acquire the same energy as a photon of
wavelength $\lambda_o = 0.87 \mu\text{m}$?	

1.

3.

(b) A photon of wavelength 1.06 μ m is combined with a photon of wavelength 10.6 μ m to create a photon whose energy is the sum of the energies of the two photons. What is the wavelength of the resultant photon? Photon interactions of

(a)
$$E = \frac{h \cdot c}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{0.87 \times 10^{-6}} = \frac{1.99 \times 10^{-35}}{0.87 \times 10^{-6}} = 2.285 \times 10^{-19} \text{ J}$$

(b) $\lambda_{1} = 1.06 \times 10^{-6} \text{ m}$. $\lambda_{2} = 10.6 \times 10^{-6} \text{ m}$
 $E_{1} = \frac{h \cdot c}{\lambda_{1}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{4}}{1.06 \times 10^{-6}} = 1.875 \times 10^{-19} \text{ J}$
 $E_{2} = \frac{h \cdot c}{10 \lambda_{1}} = 1.875 \times 10^{-19} \text{ J}$
 $E_{3} = \frac{h \cdot c}{10 \lambda_{1}} = 2.063 \times 10^{-19} \text{ J}$
 $\lambda_{100} = \frac{h \cdot c}{E_{100}} = \frac{6.636 \times 10^{-34} \times 3 \times 10^{8}}{1.063 \times 10^{-19}} = 9.635 \times 10^{-7} \text{ m} = 0.9635 \text{ Mm}$

Photon Flux. Show that the power of a monochromatic optical beam that carries an average of one photon per optical cycle is inversely proportional to the squared wavelength.

$$P = \frac{E}{t} , E = \frac{hc}{\lambda} , t = \frac{1}{f} = \frac{\lambda}{c}$$

$$\Rightarrow P = \frac{(hc)}{\lambda} / (\frac{\lambda}{c}) = \frac{hc}{\lambda} = \frac{hc^{2}}{\lambda^{2}}$$
Therefore $P \propto \frac{1}{\lambda^{2}}$

Comparison of Stimulated and Spontaneous Emission. An atom with two energy levels corresponding to the transition ($\lambda_o = 0.7~\mu m$, $t_{\rm sp} = 3~{\rm ms}$, $\Delta \nu = 50~{\rm GHz}$, Lorentzian lineshape) is placed in a resonator of volume $V = 100~{\rm cm}^3$ and refractive index n = 1. Two radiation modes (one at the center frequency ν_0 and the other at $\nu_0 + \Delta \nu$) are excited with 1000 photons each. Determine the probability density for stimulated emission (or absorption). If N_2 such atoms are excited to energy level 2, determine the time constant for the decay of N_2 due to stimulated and spontaneous emission. How many photons (rather than 1000) should be present so that the decay rate due to stimulated emission equals that due to spontaneous emission?

		= <u>/</u> /			V)	. 0	ارب) =	29 1 0V	12	= 2	17 17 22 =	TAV	
		o) = 7	λ, γ,	. <u>2</u>	/			(3)	1	7		
		> -	7 tsp (0.7×10 ×11 3×	۵V									
					23 m ²								
5	10				-19 cm)							
Ys	t = 10	100 .482 ×		.2/5 x	10								
If Na				red 7	co e	nergy	level,	То	= Wi	1 + W.G	3×	107+ 3	1103
											≈ 3N	15	
stimu >>	lated Wi = 3	emissii Ne³	n =	spont	laneou	s emi	ssion						
N	= 1 tsp	. 8TiVe	top Vis	TOVS									
	= 811.	4.3×10 ¹⁴)	3·10 ³ ·11 12· (3×1	00·517·	50*108								
	= 1.13	×101>	photon.	\$									

Rate Equations for Broadband Radiation. A resonator of unit volume contains atoms having two energy levels, labeled 1 and 2, corresponding to a transition of resonance frequency ν_0 and linewidth $\Delta\nu$. There are N_1 and N_2 atoms in the lower and upper levels, 1 and 2, respectively, and a total of \bar{n} photons in each of the modes within a broad band surrounding ν_0 . Photons are lost from the resonator at a rate $1/\tau_p$ as a result of imperfect reflection at the cavity walls. Assuming that there are no nonradiative transitions between levels 2 and 1, write rate equations for N_2 and \bar{n} .

4. Suppose N is the total amount of atoms $\Rightarrow N_1 + N_2 = N_1 + N_2 = N_2 + N_2 = N_2 + N_3 = N_4(0) \exp(-t/t_{sp})$

		= -	N2 +	N.	- <u> </u>	<u>V3</u>		ŧ						
		$\frac{dv_{s}}{dt} = \lambda$ $= \frac{1}{T_{s}} = \frac{1}{T_{s}}$ $\frac{dv_{s}}{dt} = \lambda$	L L	47	Ly	P								
		$U_2 = U$	01 + Ts) A.J.		AN.		41.						
		d	t = R	- T2		di	= -R	1 - T	+ No	1				
Fin en	nd the ter ergy dens	of Stime of	of a twhen	herm	al-equ ates of	ilibriu stimu	ım bla ılated	ckboo and	dy cav	ity em	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriι stimι l at λ	$ \begin{array}{l} \text{um bla} \\ \text{ulated} \\ o = 1 \end{array} $	and s μm.	dy cav spont	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriι stimι l at λ	$ \begin{array}{l} \text{um bla} \\ \text{ulated} \\ o = 1 \end{array} $	and s μm.	dy cav spont	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	nperature sity $\varrho(\nu)$,	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	$ \begin{array}{l} \text{um bla} \\ \text{ulated} \\ o = 1 \end{array} $	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	
Fin en	nd the ter ergy dens	inperature $\varrho(\nu)$, in the cavi	e of a t when ity wal	therm the ra ls are	al-equ ates of equal	ilibriu stimu l at λ λΤ	um bla ulated $_{o} = 1$ = 28	and s µm.	dy cav spont mk um K	ity em aneou	itting	a spe	ctral	