

Université d'Antananarivo Faculté des Sciences Mention Informatique et Technologie

Rapport de Projet de Réseau de Neurones

Prédiction de la langue d'une phrase avec un réseau de neurones

Groupe de 4 personnes : Iantso, Fandresena, Brice, Tsito

11 octobre 2025

Table des matières

Introduction		2
0.1	Contexte	2
0.2	Objectifs	2
Métho	dologie	3
0.3	Données utilisées	3
0.4	Architecture du réseau de neurones	3
0.5	Prétraitement des données	4
0.6	Hyperparamètres du modèle	4

Introduction

Dans ce projet, nous nous intéressons à la reconnaissance automatique de la langue d'une phrase. L'objectif est de développer un modèle de réseau de neurones capable de prédire la langue (par exemple : français, anglais, espagnol, etc.) à partir d'une entrée textuelle.

0.1 Contexte

La détection automatique de la langue est une tâche importante dans le traitement automatique du langage naturel (TALN). Elle est utilisée dans :

- Les traducteurs automatiques (Google Translate, DeepL, etc.)
- Les systèmes de reconnaissance vocale
- Les moteurs de recherche multilingues

0.2 Objectifs

- Concevoir et entraîner un réseau de neurones simple pour classer les phrases selon leur langue.
- Évaluer la performance du modèle sur un jeu de test.
- Comparer avec des approches classiques de détection de langue.

Méthodologie

0.3 Données utilisées

Pour entraîner le modèle, nous avons utilisé un dataset contenant des phrases dans plusieurs langues (français, anglais, espagnol, etc.). Chaque phrase est associée à une étiquette correspondant à la langue.

Malheureusement nous n'avons pas trouvés de dataset avec le langue malgache

0.4 Architecture du réseau de neurones

Le modèle utilisé est un réseau de neurones simple codé avec le langage de programmation python avec :

- Couche d'entrée : représentation vectorielle des phrases.
- Couches cachées : couches entièrement connectées avec fonction d'activation ReLU.
- Couche de sortie : classification multiclasse avec fonction softmax. L'équation générale de la couche dense est :

$$y = f(Wx + b)$$

où W est la matrice de poids, b le biais, et f la fonction d'activation.

L'equation de la fonction ReLU est :

$$ReLU(x) = max(0, x)$$

Et l'equation de la fonction softmax est :

Softmax
$$(z_i) = \frac{e^{z_i - \max_j z_j}}{\sum_{k=1}^n e^{z_k - \max_j z_j}}$$
 pour $i = 1, 2, \dots, n$

zi : la valeur du i-ème élément du vecteur d'entrée

n: le nombre total de classes

et la somme des Softmax sur toutes les classes vaut 1 :

$$\sum_{i=1}^{n} \text{Softmax}(z_i) = 1$$

0.5 Prétraitement des données

Avant d'entrer dans le réseau, les phrases ont été vectorisé puis normalisé

0.6 Hyperparamètres du modèle

— Nombre de couches cachées: 3

— Neurones par couche: 512, 256, 128

— Fonction d'activation : ReLU

— Fonction de perte : Cross-Entropy

— Batch size: 32

— Nombre d'époques : 500