In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [2]: df=pd.read_csv(r"C:\Users\pappu\Downloads\fiat500_VehicleSelection_Dataset.csv
df

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	pop	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	рор	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	pop	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','price']]
    df.columns=['age','price']
    df.head(10)
```

Out[3]:

age	price		
882	8900		
1186	8800		
4658	4200		
2739	6000		
3074	5700		
3623	7900		
731	10750		
1521	9190		
4049	5600		
3653	6000		
	882 1186 4658 2739 3074 3623 731 1521 4049		

```
In [4]: sns.lmplot(x='age',y='price',data=df)
```

Out[4]: <seaborn.axisgrid.FacetGrid at 0x219f8ff90f0>


```
In [5]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
          #
              Column Non-Null Count Dtype
          0
              age
                      1538 non-null
                                       int64
              price
          1
                      1538 non-null
                                       int64
         dtypes: int64(2)
         memory usage: 24.2 KB
 In [6]: x=df[['age']]
         y=df['price']
 In [7]: | x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
 In [8]: lr=LinearRegression()
 In [9]: |lr.fit(x_train,y_train)
Out[9]:
          ▼ LinearRegression
          LinearRegression()
In [10]: lr.score(x_test,y_test)
Out[10]: 0.7682404327577492
```

```
In [11]: y_pred=lr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```


Ridge Regression

```
In [12]: from sklearn.linear_model import Ridge,RidgeCV
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
```

```
In [13]: ridgereg=Ridge(alpha=10)
    ridgereg.fit(x_train,y_train)
    train_score_ridge=ridgereg.score(x_train,y_train)
    test_score_ridge=ridgereg.score(x_test,y_test)
    print('\nRidgeModel:')
    print("Train score of Ridge model is {}".format(train_score_ridge))
    print("Test score of Ridge model is {}".format(test_score_ridge))
```

RidgeModel:

Train score of Ridge model is 0.8050178332327796 Test score of Ridge model is 0.7682404329678096

```
In [14]: features=['age']
          target=['price']
In [15]: plt.figure(figsize=(10,10))
          plt.plot(features,ridgereg.coef_,alpha=0.7,linestyle='none',marker='*',markers
          plt.plot(features, lr.coef_, alpha=0.4, linestyle='none', marker='o', markersize=7,
          plt.xticks(rotation=90)
          plt.legend()
          plt.show()
              1e-9-1.35076597
                                                                               ridge;\alpha = 10
                                                                               Linear Regression
           -2
           -3
           -5
           -6
           -8
                                                     0
```

Lasso Regression

```
In [16]: lassoreg=Ridge(alpha=10)
    lassoreg.fit(x_train,y_train)
        train_score_lasso=lassoreg.score(x_train,y_train)
        test_score_lasso=lassoreg.score(x_test,y_test)
        print('\nLassoModel:')
        print("Train score of lasso model is {}".format(train_score_lasso))
        print("Test score of lasso model is {}".format(test_score_lasso))
```

LassoModel:

Train score of lasso model is 0.8050178332327796 Test score of lasso model is 0.7682404329678096

```
In [17]:
          plt.figure(figsize=(10,10))
          plt.plot(features,ridgereg.coef_,alpha=0.7,linestyle='none',marker='*',markers
          plt.plot(features, lr.coef_, alpha=0.4, linestyle='none', marker='o', markersize=7,
          plt.xticks(rotation=90)
          plt.legend()
          plt.show()
              1e-9-1.35076597
                                                                                lasso;\alpha = 10
                                                                                Linear Regression
           -2
           -3
           -5
           -6
           -8
```

```
In [18]: from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.1,1,10],random_state=0).fit(x_traprint(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.8050178332170441

0.7682406240217069

Elastic Net

```
In [19]: from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)

[-1.34392217]
    10794.7931859617

In [20]: y_pred_elastic=regr.predict(x_train)

In [21]: mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print("Mean Squared Error on test set", mean_squared_error)

    Mean Squared Error on test set 740216.9493362805

In []:
```