PART 3: MEMBERS

CODE

- **8.3.1.1** For nonprestressed slabs without interior beams spanning between supports on all sides, having a maximum ratio of long-to-short span of 2, overall slab thickness h shall not be less than the limits in Table 8.3.1.1, and shall be at least the value in (a) or (b), unless the calculated deflection limits of 8.3.2 are satisfied:
 - (a) Slabs without drop panels as given in 8.2.4.... 125 mm
 - (b) Slabs with drop panels as given in 8.2.4...... 100 mm

For f_v exceeding 550 MPa, the calculated deflection limits in 8.3.2 shall be satisfied assuming a reduced modulus of rupture $f_r = 0.41 \sqrt{f_c'}$.

COMMENTARY

R8.3.1.1 The minimum thicknesses in Table 8.3.1.1 are those that have been developed through the years. Use of longitudinal reinforcement with $f_v > 550$ MPa may result in larger long-term deflections than in the case of $f_v < 550$ MPa unless associated service stresses calculated for cracked sections are smaller than 280 MPa. Careful calculation of deflections should be performed.

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams (mm)[1]

	Without drop panels ^[3]			With drop panels ^[3]			
	Exterior panels			Exterior panels			
f_y , MPa ^[2]	Without edge beams	With edge beams ^[4]	Interior panels	Without edge beams	With edge beams ^[4]	Interior panels	
280	$\ell_n/33$	$\ell_n/36$	$\ell_n/36$	$\ell_n/36$	$\ell_n/40$	$\ell_n/40$	
420	$\ell_n/30$	$\ell_n/33$	ℓ _n /33	$\ell_n/33$	$\ell_n/36$	$\ell_n/36$	
550	$\ell_n/27$	$\ell_n/30$	$\ell_n/30$	$\ell_n/30$	ℓ _n /33	$\ell_n/33$	

 $^{[1]\}ell_n$ is the clear span in the long direction, measured face-to-face of supports (mm).

8.3.1.2 For nonprestressed slabs with beams spanning between supports on all sides, overall slab thickness h shall satisfy the limits in Table 8.3.1.2, unless the calculated deflection limits of 8.3.2 are satisfied.

Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

$a_{fm}^{[1]}$	Minimum h, mm 8.3.1.1 applies		(a)
$\alpha_{fm} \leq 0.2$			
$0.2 < \alpha_{fm} \le 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 5\beta(\alpha_{fm} - 0.2)}$	(b) ^{[1],[2]}
		125	(c)
$\alpha_{fin} > 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta}$	(d)
		90	(e)

 $^{^{[1]}\}alpha_{fm}$ is the average value of α_f for all beams on edges of a panel.

R8.3.1.2 For panels having a ratio of long-to-short span greater than 2, the use of expressions (b) and (d) of Table 8.3.1.2, which give the minimum thickness as a fraction of the long span, may give unreasonable results. For such panels, the rules applying to one-way construction in 7.3.1 should be used.

^[2] For f_{ν} between the values given in the table, minimum thickness shall be calculated by linear interpolation.

^[3]Drop panels as given in 8.2.4.

^[4] Slabs with beams between columns along exterior edges. Exterior panels shall be considered to be without edge beams if α_f is less than 0.8.

 $^{{}^{[2]}\}ell_n$ is the clear span in the long direction, measured face-to-face of beams (mm).

 $^{^{[3]}\!\}beta$ is the ratio of clear spans in long to short directions of slab.