General Questions

Tell the category of model considered for the given problem statement. Explain.
 Ans: We should use the classification model for the given problem statement, because the table considered for the model has an alphabetical dataset.

2. Differentiate between regression model and classification model.

Regression model	Classification model	
Considered if the dataset has only	Considered if the dataset has alphabetical	
numerical values	data	
Preferred for supervised learning	Can be used for supervised learning and	
	unsupervised learning	
Depicts minimum error in the model	Depicts confusion matrix of the model	
Easy to understand	Needs prior knowledge about the structure	
	of the confusion matrix	
Output is simple and easy to understand	Classification report is challenging to	
	understand without prior knowledge	

3. Can you use the classification model for more than one output?

Ans: Yes

4. Differentiate between type 1 error and type 2 error.

Type 1 error	Type 2 error		
Depicts false negative value in the	Depicts false positive value in the		
confusion matrix	confusion matrix		
Does not cause a significant setback in the	Causes a significant setback in the result		
result			
Preferable to have minimum value	Most preferable to have nil value		

5. List the variables in the given problem statement

User ID Age Estimated Salary Purchased Gender

6. Give the maximum count of any one variable in the problem.

Ans: 400

7. Are there any redundant variables in the given problem statement?

Ans: Yes. The variable "**User ID**" is a redundant variable. It does not offer any importance in the analysis. Removing this variable will not cause any significant setback during the analysis.

8. Identify the independent variables in the given problem statement.

Ans: 'Age', 'EstimatedSalary', 'Gender_Male'

9. Which of the given variables is the dependent variable?

Ans: 'Purchased'

10. Is the dependent variable categorised under binary dataset?

Ans: Yes.

11. Give the count of individual variables in the output.

Ans: 400

12. Can you perform ensemble learning during classification analysis?

Ans: Yes.

13. Identify the algorithms that can be used to train the ML model for the given problem statement.

Ans: Support Vector Machine, Decision Tree, Random Forest.

14. What do you mean by the term support?

Ans: The term support describes the count of the class of variables during the analysis.

15. Define the term accuracy.

Ans: Accuracy describes the percentage of correct classification of both classes in a dependent variable to the total input of the test set in the problem.

16. Define the term recall.

Ans: Recall describes the percentage of correct classification of any one of the classes in a dependent variable to the total input of the same class in the test set in the problem

17. Write the meaning of precision.

Ans: Precision describes the percentage of correct classification of any one of the classes in a dependent variable, with the account considering wrong classification of the other class in the test set in the problem

18. The overall performance of any one of the classifiers in the model is called as _______

Ans: F1 measure

19. Define macro averaging.

Ans: Macro averaging describes the average performance of the following: recall, precision, F1 measure

20. Define weighted average.

Ans: Weighted average describes the sum of the product of the proportion, i.e., the weight of each class in the problem statement.

Classification Codes Using SVM, DT and RF

18. The weighted average of F1 measure is _____

19. Give the support values of purchased20. Give the support values of not-purchased

1.	Give the confusion matrix for the SVM algorithm for the given problem statement.
2.	The count of true positive in the model is
3.	The count of true negative in the model is
4.	The count of type 1 error in the model is
5.	The count of type 2 error in the model is
6.	Mention the accuracy of the model.
7.	Tell the percentage of correct classification of the purchase.
8.	Give out the percentage of correct classification of the purchase.
9.	The precision of purchased value is
10.	is the precision of the not purchased dataset
11.	The overall performance of purchased value is
12.	Give the overall performance of the not purchased value.
13.	The average performance of recall is
14.	The average performance of precision is
15.	is the average performance of F1 measure
16.	The weighted average of recall is
17.	The weighted average of precision is

Q.					
No.	Question	Unit	SVM	DT	RF
			[[77 2]	[[71 8]	[[257 0]
1	Confusion matrix		[23 18]]	[3 38]]	[1 142]]
2	True positive	no	77	71	257
3	True negative	no	18	38	142
4	Type 1 error	no	2	8	0
5	Type 2 error	no	23	3	1
6	Model accuracy	no	79	91	100
7	Recall purchased	%	44	93	99
8	Recall not purchased	%	97	90	100
9	Precision of purchased	%	90	83	100
10	Precision of not purchased	%	77	96	100
11	F1 measure of purchased	%	59	87	100
12	F1 measure of not purchased	%	86	93	100
13	Macro average of recall	%	71	91	100
14	Macro average of precision	%	83	89	100
15	Macro average of F1 measure	%	73	90	100
16	Weighted average of recall	%	79	91	100
17	Weighted average of precision	%	81	91	100
18	Weighted average of F1	%	77	91	100
19	Support value of purchased	no	41	41	143
20	Support value of not purchased	no	79	79	257