ALGEBRA LINEAL - Práctica N°3 - Segundo cuatrimestre de 2020

Transformaciones lineales

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

i)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3.x_1 + \sqrt{2}.x_3, x_1 - \frac{1}{2}.x_2)$

ii)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

- iii) $f: \mathbb{C} \to \mathbb{C}, \ f(z) = i.z$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)
- iv) $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)

v)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$

vi)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

vii)
$$f: \mathbb{R}_2[X] \to \mathbb{R}^3$$
, $f(p) = (p(0), p'(0), p''(0))$

Ejercicio 2. Interpretar geométricamente las siguientes aplicaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$.

- i) f(x,y) = (x,0)
- ii) f(x,y) = (x, -y)
- iii) $f(x,y) = (\frac{1}{2}.(x+y), \frac{1}{2}.(x+y))$
- iv) $f(x,y) = (x \cdot \cos t y \cdot \sin t, x \cdot \sin t + y \cdot \cos t)$

Ejercicio 3.

- i) Encontrar una función $f:V\to V$ (para un K-espacio vectorial V conveniente) que cumpla f(v+w)=f(v)+f(w) para cualquier par de vectores $v\,,\,w\in V$ pero que no sea una transformación lineal.
- ii) Encontrar una función $f:V\to V$ (para un K-espacio vectorial V conveniente) que cumpla f(k.v)=k.f(v) para cualquier escalar $k\in K$ y cualquier vector $v\in V$ pero que no sea una transformación lineal.

Ejercicio 4. Probar la linealidad de las siguientes aplicaciones:

i)
$$tr: K^{n \times n} \to K$$

ii)
$$t: K^{n \times m} \to K^{m \times n}, \ t(A) = A^t$$

iii)
$$\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \ \delta(f) = f'$$

iv)
$$\epsilon_{\alpha}: K[X] \to K$$
, $\epsilon_{\alpha}(f) = f(\alpha)$ donde $\alpha \in K$

v)
$$s: K^{\mathbb{N}} \to K^{\mathbb{N}}, \ s(\{a_i\}_{i \in \mathbb{N}}) = (0, a_1, a_2, \dots, a_n, \dots)$$

Ejercicio 5.

- i) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- ii) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (2,6), f(-1,1) = (2,1) y f(2,7) = (5,3)?

iii) Sean $f, g: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), \quad f(2,1,0) = (2,1,0), \quad f(-1,0,0) = (1,2,1),$$

 $g(1,1,1) = (1,1,0), \quad g(3,2,1) = (0,0,1), \quad g(2,2,-1) = (3,-1,2).$

Determinar si f = g.

- iv) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga que f(1, -1, 1) = (2, a, -1), $f(1, -1, 2) = (a^2, -1, 1)$ y f(1, -1, -2) = (5, -1, -7).
- v) Hallar una fórmula para todas las tranformaciones lineales $f: \mathbb{R}_2[X] \to \mathbb{R}^2$ que satisfacen $f(X^2+X-1)=(1,2), f(2X+3)=(-1,1)$ y $f(X^2-X-4)=(2,1)$.

Ejercicio 6.

- i) Calcular bases del núcleo y de la imagen para cada tranformación lineal del Ejercicio 1. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1} .
- ii) Clasificar las transformaciones lineales del Ejercicio 4 en epimorfismos, monomorfismos e isomorfismos.

Ejercicio 7. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$. Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

Ejercicio 8. Sean $g: V \to V'$ y $f: V' \to V''$ transformaciones lineales. Probar:

- i) $Nu(q) \subseteq Nu(f \circ q)$.
- ii) Si $\operatorname{Nu}(f) \cap \operatorname{Im}(g) = \{0\}$, entonces $\operatorname{Nu}(g) = \operatorname{Nu}(f \circ g)$.
- iii) $\operatorname{Im}(f \circ q) \subset \operatorname{Im}(f)$.
- iv) Si Im(g) = V', entonces $\text{Im}(f \circ g) = \text{Im}(f)$.

Ejercicio 9.

- i) Sean $S, T \subset \mathbb{R}^4$ definidos por $S = \{(x_1, x_2, x_3, x_4) / x_1 + x_2 + x_3 = 0\} \text{ y } T = \{(x_1, x_2, x_3, x_4) / 2.x_1 + x_4 = 0, x_2 x_3 = 0\}.$ ¿Existirá algún isomorfismo $f : \mathbb{R}^4 \to \mathbb{R}^4$ tal que f(S) = T?
- ii) ¿Existirá algún monomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^2$?
- iii) ¿Existirá algún epimorfismo $f: \mathbb{R}^2 \to \mathbb{R}^3$?
- iv) Sean $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 1, 0)$ y $v_3 = (1, 1, 1, 1)$. ¿Existirá alguna transformación lineal $f : \mathbb{R}^2 \to \mathbb{R}^4$ tal que $\{v_1, v_2, v_3\} \subset \text{Im}(f)$?

Ejercicio 10. Determinar si existe (y en caso afirmativo hallar) una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ que verifique $\operatorname{Im}(f) = S$ y $\operatorname{Nu}(f) = T$ en los siguientes casos:

i)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 - x_3 + 2.x_4 = 0\}, T = \langle (1, 2, 1) \rangle$$

ii)
$$S = \{(x_1, x_2, x_3, x_4)/x_1 + x_2 = 0, -x_3 + 2x_4 = 0\}, T = <(1, 2, 1) >$$

Ejercicio 11. En cada uno de los siguientes casos encontrar una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido:

- i) $(1,1,0) \in \text{Nu}(f) \text{ y } \text{Nu}(f) \cap \text{Im}(f) = \{0\}$
- ii) $Nu(f) \cap Im(f) = \langle (1, 1, 2) \rangle$
- iii) $f \neq 0$ y $Nu(f) \subseteq Im(f)$
- iv) $f \neq 0$ y $f \circ f = 0$
- v) $f \neq Id$ y $f \circ f = Id$
- vi) $Nu(f) \neq \{0\}, Im(f) \neq \{0\} y Nu(f) \cap Im(f) = \{0\}$

Ejercicio 12. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla:

- i) $\operatorname{Im}(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- ii) $Nu(f) = \{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- iii) $Nu(f) = \{(x_1, x_2, x_3)/3.x_1 x_3 = 0\} \text{ e Im}(f) = \langle (1, 1, 1) \rangle$

Ejercicio 13. Sea V un K-espacio vectorial y sea $f: V \to V$ un proyector. Probar que $g = id_V - f$ es un proyector con Im(g) = Nu(f) y Nu(g) = Im(f).

Ejercicio 14. Sea V un K-espacio vectorial y sea $f:V\to V$ una transformación lineal. Se dice que f es nilpotente si $\exists s\in\mathbb{N}\,/\,f^s=0$.

- i) Probar que si f es nilpotente, entonces f no es ni monomorfismo ni epimorfismo.
- ii) Si V es de dimensión n probar que f es nilpotente $\iff f^n = 0$. (Sugerencia: considerar si las inclusiones $\operatorname{Nu}(f^i) \subseteq \operatorname{Nu}(f^{i+1})$ son estrictas o no).
- iii) Sea $B = \{v_1, \dots, v_n\}$ una base de V. Se define la transformación lineal $f: V \to V$ de la siguiente forma:

$$f(v_i) = \begin{cases} v_{i+1} & \text{si } 1 \le i \le n-1 \\ 0 & \text{si } i = n \end{cases}$$

Probar que $f^n = 0$ y $f^{n-1} \neq 0$.

iv) Si $V=\mathbb{R}^n$, para cada $i,\ 2\leq i\leq n$, construir una transformación lineal $f:\mathbb{R}^n\to\mathbb{R}^n$ nilpotente tal que $f^i=0$ y $f^{i-1}\neq 0$.

Ejercicio 15. Sea $S = \langle (1, 1, 0, 1), (2, 1, 0, 1) \rangle \subseteq \mathbb{R}^4$.

- i) Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^2$ tal que $\mathrm{Nu}(f) = S$.
- ii) Hallar ecuaciones para S (usar i)).
- iii) Hallar un sistema de ecuaciones lineales cuyo conjunto de soluciones sea <(1,1,0,1),(2,1,0,1)>+(0,1,1,2).

Ejercicio 16.

- i) Sea $S \subseteq K^n$ el conjunto de soluciones de un sistema lineal homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ tal que Nu(f) = S.
- ii) Sea $T \subseteq K^n$ el conjunto de soluciones de un sistema lineal no homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ y un vector $y \in K^n$ tales que $T = f^{-1}(y)$.

Ejercicio 17. Sea $f: V \to V$ una tranformación lineal y sean B, B' bases de V. Calcular $|f|_{BB'}$ en cada uno de los siguientes casos:

- i) $V = \mathbb{R}^3$, $f(x_1, x_2, x_3) = (3.x_1 2.x_2 + x_3, 5.x_1 + x_2 x_3, x_1 + 3.x_2 + 4.x_3)$, $B = \{(1, 2, 1), (-1, 1, 3), (2, 1, 1)\}$ y $B' = \{(1, 1, 0), (1, 2, 3), (-1, 3, 1)\}$
- ii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$, B = B' es la base canónica de \mathbb{C}^2 como \mathbb{C} -espacio vectorial.
- iii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$, $B = B' = \{(1, 0), (0, 1), (i, 0), (0, i)\}$ considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.
- iv) $V = \mathbb{R}_4[X], \ f(P) = P', \ B = B' = \{1, X, X^2, X^3, X^4\}$
- v) $V = \mathbb{R}_4[X], \ f(P) = P', \ B = B' = \{X^4, X^3, X^2, X, 1\}$
- vi) $V = \mathbb{R}^{2 \times 2}$, $f(A) = A^t$, $B = B' = \{E^{11}, E^{12}, E^{21}, E^{22}\}$
- vii) V, f y B = B' como en el Ejercicio 14, iii)

Ejercicio 18. Sean $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $B' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal tal que

$$|f|_{BB'} = \begin{pmatrix} 1 & -2 & 1\\ -1 & 1 & -1\\ 2 & 1 & 4\\ 3 & -2 & 5 \end{pmatrix}$$

- i) Hallar $f(3.v_1 + 2.v_2 v_3)$. ¿Cuáles son sus coordenadas en la base B'?
- ii) Hallar una base de Nu(f) y una base de Im(f).
- iii) Describir el conjunto $f^{-1}(w_1 3.w_3 w_4)$.

Ejercicio 19. Sea V un K-espacio vectorial y $B = \{v_1, v_2, v_3, v_4\}$ una base de V. Sea $f: V \to V$ la transformación lineal tal que

$$|f|_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Hallar $|f^{-1}|_B$ y calcular $f^{-1}(v_1-2.v_2+v_4)$.

Ejercicio 20. En cada uno de los siguientes casos, hallar una matriz $A \in \mathbb{R}^{n \times n}$ para un n adecuado que verifique:

- i) $A \neq I_n$ y $A^3 = I_n$
- ii) $A \neq 0$, $A \neq I_n$ y $A^2 = A$

Ejercicio 21. Sea V un K-espacio vectorial de dimensión finita y sea B una base de V.

- i) Sea $tr: \text{Hom}(V,V) \to K$ la aplicación definida por $tr(f) = tr(|f|_B)$. Probar que tr(f) no depende de la base B elegida.
 - tr(f) se llama la traza del endomorfismo f.
- ii) Probar que $tr: \text{Hom}(V, V) \to K$ es una transformación lineal.

Ejercicio 22. Sean $B = \{v_1, v_2, v_3\}$, $U = \{v_1 + v_3, v_1 + 2.v_2 + v_3, v_2 + v_3\}$ y $U' = \{w_1, w_2, w_3\}$ bases de \mathbb{R}^3 , y sea E la base canónica de \mathbb{R}^3 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$|f|_{BE} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix} \qquad \text{y} \qquad |f|_{UU'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Determinar U'.

Ejercicio 23.

i) Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ la trasformación lineal definida por

$$f(x_1, x_2, x_3, x_4) = (0, x_1, x_1 + x_2, x_1 + x_2 + x_3)$$

y sea v=(1,0,0,0). Probar que $B=\{v,f(v),f^2(v),f^3(v)\}$ es una base de \mathbb{R}^4 . Calcular $|f|_B$.

ii) Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ una tranformación lineal tal que $f^n=0$ y $f^{n-1}\neq 0$. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j+1 \\ 0 & \text{si no} \end{cases}$$

(Sugerencia: elegir $v_1 \notin \text{Nu}(f^{n-1})$).

Ejercicio 24. Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j \ ; \ i \le \dim(\operatorname{Im}(f)) \\ 0 & \text{si no} \end{cases}$$

Ejercicio 25. Sean V y W K-espacios vectoriales, dim V=n y dim W=m, y $f:V\to W$ una transformación lineal tal que dim $(\operatorname{Im}(f))=s$. Probar que existen una base B de V y una base B' de W tal que

$$(|f|_{BB'})_{ij} = \begin{cases} 1 & \text{si } i = j \ ; \ i \le s \\ 0 & \text{si no} \end{cases}$$

Ejercicio 26. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2.x_1 - 3.x_2 + 2.x_3, 3.x_1 - 2.x_2 + x_3)$$

i) Determinar bases $B y B' de \mathbb{R}^3$ tales que

$$|f|_{BB'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

ii) Si A es la matriz de f en la base canónica, encontrar matrices $C, D \in GL(3,\mathbb{R})$ tales que

$$C.A.D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ejercicio 27. Calcular el rango de las siguientes matrices:

i)
$$A = \begin{pmatrix} 2 & 0 & 3 & -1 \\ 1 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$

Ejercicio 28. Calcular el rango de $A \in \mathbb{R}^{3\times 3}$ para cada $k \in \mathbb{R}$, siendo

$$A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix}.$$

Ejercicio 29. Sean $A \in K^{m \times n}$, $b \in K^m$. Se considera el sistema A.x = b y sea $(A \mid b)$ su matriz ampliada. Probar que A.x = b tiene solución \iff $\operatorname{rg}(A) = \operatorname{rg}(A \mid b)$.

Ejercicio 30. Sea $A \in K^{m \times n}$, rg(A) = s y sea $T = \{X \in K^{n \times r} / A \cdot X = 0\}$. Calcular dim T.

Ejercicio 31. Sean $A \in K^{m \times n}$ y $B \in K^{n \times r}$. Probar que $\operatorname{rg}(A.B) \le \operatorname{rg}(A)$ y $\operatorname{rg}(A.B) \le \operatorname{rg}(B)$.

Ejercicio 32. Sean $A, D \in \mathbb{R}^{3\times 3}$,

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 2 \\ 3 & -2 & 1 \end{pmatrix} \quad \text{y} \quad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

i) Determinar C_1 , C_2 , C_3 y $C_4 \in GL(3,\mathbb{R})$ tales que

$$C_1.A.C_2 = C_3.D.C_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ii) Determinar $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B, B', B_1 y B_1' de \mathbb{R}^3 tales que $|f|_{BB'} = A$ y $|f|_{B_1B_1'} = D$.

Ejercicio 33. Dadas $A, B \in \mathbb{R}^{n \times n}$, decidir si existen matrices $P, Q \in GL(n, \mathbb{R})$ tales que A = P.B.Q.

i)
$$n = 2$$
, $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 8 \\ 1 & 2 \end{pmatrix}$ ii) $n = 3$, $A = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 8 & 5 \\ 2 & 2 & 0 \\ 0 & 7 & 0 \end{pmatrix}$

Ejercicio 34. Sean $A, B \in K^{n \times n}$. Se dice que A es semejante a B (y se nota $A \sim B$) si existe $C \in GL(n,K)$ tal que $A = C.B.C^{-1}$.

- i) Demostrar que \sim es una relación de equivalencia en $K^{n\times n}$.
- ii) Probar que dos matrices semejantes son equivalentes. ¿Vale la recíproca?
- iii) Sean $A, A' \in K^{n \times n}$. Probar que $A \sim A' \iff \exists f : K^n \to K^n$ tranformación lineal y bases B y B' de K^n tales que $|f|_B = A y |f|_{B'} = A'$.

Ejercicio 35.

i) Sean $A, A' \in K^{n \times n}$ tales que $A \sim A'$. Probar que tr(A) = tr(A').

ii) Sean
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -5 \\ 4 & 1 & 3 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ en $\mathbb{R}^{3 \times 3}$.

¿Existen $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B y B' de \mathbb{R}^3 tales que $|f|_B = A$ y $|f|_{B'} = A'$?