Ácido base

PROBLEMAS

• Ácido ou base débil

- 1. Unha disolución acuosa contén 0,1 moles por litro de ácido acético (ácido etanoico).
 - a) Escribe a reacción de disociación e calcula a concentración molar de cada unha das especies existentes na disolución unha vez alcanzado o equilibrio.
 - b) Calcula o pH da disolución e o grao de ionización do ácido.

Dato: $K_a(C_2H_4O_2) = 1.8 \cdot 10^{-5}$.

(P.A.U. set. 15, set. 08)

Rta.: a) $[CH_3COO^-] = [H^+] = 0.00133 \text{ mol/dm}^3$; $[CH_3COOH] = 0.099 \text{ mol/dm}^3$; b) pH = 2.88; $\alpha = 1.33 \%$.

- 2. A anilina ($C_6H_5NH_2$) é unha base de carácter débil cunha $K_b=4,1\cdot10^{-10}$. Calcula:
 - a) O pH dunha disolución acuosa de concentración 0,10 mol/dm³ de anilina.
 - b) O valor da constante de acidez do ácido conxugado da anilina.

Dato: $K_{\rm w} = 1.0 \cdot 10^{-14}$.

(P.A.U. xuño 15)

Rta.: a) pH = 8,81; b) $K_a = 2,4 \cdot 10^{-5}$.

- 3. a) Que concentración debe ter unha disolución de amoníaco para que o seu pH sexa de 10,35?
 - b) Cal será o grao de disociación do amoníaco na disolución?

Dato: $K_b(NH_3) = 1.78 \cdot 10^{-5}$.

(P.A.U. set. 13)

Rta.: a) $[NH_3]_0 = 3.04 \cdot 10^{-3} \text{ mol/dm}^3$; b) $\alpha = 7.37 \%$.

- 4. Unha disolución acuosa de ácido fluorhídrico de concentración 2,5⋅10⁻³ mol/dm³ está disociada nun 40 %. Calcula:
 - a) A constante de acidez.
 - b) O pH e a concentración de ións hidróxido [OH-] da disolución.

(P.A.U. xuño 13)

Rta.: a) $K_a = 6.67 \cdot 10^{-4}$; b) pH = 3.0; $[OH^-]_e = 1.00 \cdot 10^{-11} \text{ mol/dm}^3$.

- 5. Considera unha disolución de amoníaco en auga de concentración 6,50·10⁻² mol/dm³.
 - a) Calcula o pH desta disolución.
 - b) Calcula o grao de disociación do amoníaco na disolución.

Dato: $K_b(NH_3) = 1.78 \cdot 10^{-5}$.

(P.A.U. set. 11)

Rta.: a) pH = 11,03; b) α = 1,65 %.

- 6. Unha disolución de amoníaco de concentración 0,01 mol/dm³ está ionizada nun 4,2 %.
 - a) Escribe a reacción de disociación e calcula a concentración molar de cada unha das especies existentes na disolución unha vez alcanzado o equilibrio.
 - b) Calcula o pH e a K_b do amoníaco.

(P.A.U. xuño 11)

Rta.: a) $[NH_3]_e = 0.0096 \text{ mol/dm}^3$; $[OH^-]_e = [NH_4^+]_e = 4.2 \cdot 10^{-4} \text{ mol/dm}^3$; b) pH = 10.6; $K_b = 1.8 \cdot 10^{-5}$.

- 7. Disólvense 20 dm³ de NH₃(g), medidos a 10 °C e 2 atm (202,6 kPa) de presión, nunha cantidade de auga suficiente para alcanzar 4,5 dm³ de disolución. Calcula:
 - a) O grao de disociación do amoníaco na disolución.
 - b) O pH da devandita disolución.

Datos: R = 0.082 atm·dm³·K⁻¹·mol⁻¹ = 8,31 J·K⁻¹·mol⁻¹; $K_b(NH_3) = 1.78 \cdot 10^{-5}$.

(P.A.U. xuño 10)

Rta.: a) $\alpha = 0.68 \%$; b) pH = 11,42.

- 8. Se se disolven 0,650 g dun ácido orgánico monoprótico de carácter débil de fórmula HC₉H₇O₄ nun vaso con auga ata completar 250 cm³ de disolución, indica:
 - a) O pH desta disolución.
 - b) O grao de disociación do ácido.

Dato: $K_a = 3,27 \cdot 10^{-4}$

(P.A.U. xuño 08)

Rta.: a) pH = 2,7; b) α = 14 %.

- 9. Prepárase unha disolución dun ácido monoprótico débil de fórmula HA, do seguinte xeito: 0,10 moles do ácido en 250 cm³ de auga. Se esta disolución ionízase ao 1,5 %, calcula:
 - a) A constante de ionización do ácido.
 - b) O pH da disolución.

(P.A.U. set. 06)

Rta.: a) $K_a = 9.1 \cdot 10^{-5}$; b) pH = 2.2.

- 10. Prepárase unha disolución dun ácido débil como o ácido acético [ácido etanoico] disolvendo 0,3 moles deste ácido en auga, o volume total da disolución é de 0,05 dm³.
 - a) Se a disolución resultante ten un pH = 2, cal é a concentración molar dos ións hidróxeno (ión oxonio)?
 - b) Calcula a constante de acidez, K_a , do ácido acético.

(P.A.U. xuño 06)

Rta.: a) $[H^+]_e = 0.01 \text{ mol/dm}^3$; b) $K_a = 1.7 \cdot 10^{-5}$.

- 11. A 25 °C o grao de disociación dunha disolución de concentración 0,2 mol/dm³ de ácido acético [ácido etanoico] vale 0,0095. Calcula:
 - a) A concentración de ións acetato [ións etanoato], hidroxenións e ións hidroxilo no equilibrio.
 - b) OpH.
 - c) A constante de disociación do ácido acético.

(P.A.U. set. 05)

Rta.: a) $[H^+]_e = [CH_3 - COO^-]_e = 1,9 \cdot 10^{-3} \text{ mol/dm}^3$; $[OH^-]_e = 5,3 \cdot 10^{-12} \text{ mol/dm}^3$; b) pH = 2,7; c) $K_a = 2,0 \cdot 10^{-5}$.

Mesturas ácido base

- Dado un ácido débil monoprótico de concentración 0,01 mol/dm³ e sabendo que se ioniza nun 13 %, calcula:
 - a) A constante de ionización.
 - b) O pH da disolución.
 - c) Que volume de disolución de concentración 0,02 mol/dm³ de hidróxido de sodio serán necesarios para neutralizar completamente 10 cm³ da disolución do ácido anterior?

(P.A.U. xuño 04)

Rta.: a) $K_a = 1.9 \cdot 10^{-4}$; b) pH = 2.9; c) V = 5 cm³ D NaOH.

CUESTIÓNS

- No laboratorio disponse de tres vasos de precipitados (A B e C) que conteñen 50 cm³ de disolucións acuosas da mesma concentración, a unha temperatura de 25 °C. Un dos vasos contén unha disolución de HCl, outro contén unha disolución de KCl e o terceiro contén unha disolución de CH₃CH₂COOH. Coa información que se indica na táboa identifique o contido de cada vaso e xustifique a resposta. (P.A.U. set. 16)
- 2. b) Utilizando a teoría de Brönsted e Lowry, xustifica o carácter ácido, básico ou neutro das disolucións acuosas das seguintes especies: CO₃²⁻; HCl e NH₄*, identificando os pares conxugados ácido-base.

 (P.A.U. xuño 16)
- 3. b) A metilamina en disolución acuosa compórtase como unha base débil, de forma similar ao amoníaco. Escribe a reacción e indica os pares ácido/base conxugados.

(P.A.U. xuño 15)

- 4. Razoa que tipo de pH (ácido, neutro o básico) presentarán as seguintes disolucións acuosas de:
 - a) Acetato de sodio [etanoato de sodio]
 - b) Nitrato de amonio.

(P.A.U. xuño 15, set. 10)

5. b) Indica se o pH dunha disolución de NH₄Cl será ácido, básico ou neutro.

(P.A.U. set. 14)

6. a) Os valores de K_a de dous ácidos monopróticos HA e HB son 1,2·10⁻⁶ e 7,9·10⁻⁹, respectivamente. Razoa cal dos dous ácidos é o máis forte.

(P.A.U. set. 14)

- 7. Xustifica se esta afirmación é correcta:
 - a) O produto da constante de ionización dun ácido e a constante de ionización da súa base conxugada é igual á constante do produto iónico da auga.

(P.A.U. xuño 14)

- 8. Completa as seguintes reaccións ácido-base e identifica os pares conxugados ácido-base:
 - a) $HCl(aq) + OH^{-}(aq) \rightleftharpoons$
- c) $HNO_3(aq) + H_2O(1) \rightleftharpoons$
- b) $CO_3^{2-}(aq) + H_2O(1) \rightleftharpoons$
- d) $NH_3(aq) + H_2O(1) \rightleftharpoons$

(P.A.U. set. 13)

- 9. Para unha disolución acuosa dun ácido HA de $K_a = 1.10^{-5}$, xustifica se son verdadeiras ou falsas as seguintes afirmacións:
 - a) A constante de acidez de HA é menor que a constante de basicidade da súa base conxugada.
 - b) Se se dilúe a disolución do ácido, o seu grao de disociación permanece constante.

(P.A.U. set. 12)

- 10. Razoa se as seguintes afirmacións, referidas a unha disolución de concentración 0,1 mol/dm³ dun ácido débil HA, son correctas.
 - a) As concentracións no equilibrio das especies A- e H₃O+ son iguais.
 - b) O pH da disolución é 1.

(P.A.U. xuño 12)

- 11. Indica, segundo a teoría de Brönsted-Lowry, cal ou cales das seguintes especies poden actuar só como ácido, só como base e como ácido e base. Escribe as correspondentes reaccións ácido-base.
 - a) CO_3^{2-}
- b) HPO₄²⁻
- c) H₃O⁺
- d) NH₄

(P.A.U. set. 11)

- 12. a) Escribe as reaccións de disociación en auga, segundo o modelo de Brönsted-Lowry, das seguintes especies químicas: CH₃COOH NH₃ NH₄ CN⁻
 - b) Indica os pares ácido/base conxugados.

(P.A.U. xuño 11)

- 13. Se queremos impedir a hidrólise que sofre o NH₄Cl en disolución acuosa indica, razoadamente, cal dos seguintes métodos será o máis eficaz:
 - a) Engadir NaCl á disolución.
 - b) Engadir NH₃ á disolución.

(P.A.U. xuño 08)

14. Ordena de maior a menor acidez as seguintes disolucións acuosas da mesma concentración: acetato de sodio [etanoato de sodio], ácido nítrico e cloruro de potasio.

Formula as ecuacións iónicas que xustifiquen a resposta.

(P.A.U. set. 06)

- a) Escribe a reacción que ten lugar e calcula o volume de disolución de hidróxido de sodio de concentración 2,00 mol/dm³ que se gastará na valoración de 10,0 cm³ da disolución de ácido sulfúrico de concentración 1,08 mol/dm³.
 - b) Nomea o material e describe o procedemento experimental para levar a cabo a valoración anterior.

(P.A.U. set. 14)

Rta.: a) $V = 10.8 \text{ cm}^3 \text{ D}$.

- 2. a) Cantos cm³ dunha disolución de NaOH de concentración 0,610 mol/dm³ necesítanse para neutralizar 20,0 cm³ dunha disolución de H₂SO₄ de concentración 0,245 mol/dm³? Indica a reacción que ten lugar e xustifica o pH no punto de equivalencia.
 - b) Nomea o material necesario e describe o procedemento experimental para levase cabo a valoración. (P.A.U. xuño 14)

(P.A.

Rta.: a) $V = 16.1 \text{ cm}^3 \text{ D}$.

- 3. Na valoración de 20,0 cm³ dunha disolución de ácido clorhídrico gastáronse 18,1 cm³ dunha disolución de hidróxido de sodio de concentración 0,125 mol/dm³.
 - a) Calcula a concentración da disolución do ácido indicando a reacción que ten lugar.
 - b) Indica o material e reactivos necesarios, así como o procedemento para levar a cabo a valoración.

(P.A.U. set. 13)

Rta.: a) [HCl] = 0.0013 mol/dm^3 .

a) Que volume de disolución NaOH de concentración 0,1 mol/dm³ necesítase para neutralizar 10 cm³ de disolución de HCl e concentración 0,2 mol/dm³? Xustifica cal será o pH no punto de equivalencia.
 b) Describe o procedemento experimental e nomea o material necesario para levar a cabo a valoración.

(P.A.U. set. 12)

Rta.: a) $V = 20 \text{ cm}^3 \text{ D NaOH}$.

- 5. a) Para a valoración de 10,0 cm³ de disolución de hidróxido de sodio realizáronse tres experiencias nas que os volumes gastados dunha disolución de HCl de concentración 0,1 mol/dm³ foron de 9,8; 9,7 e 9,9 cm³, respectivamente, que concentración ten a disolución da base?
 - b) Indica o procedemento seguido e describe o material utilizado na devandita valoración.

(P.A.U. set. 10)

Rta.: a) [NaOH] = 0.098 mol/dm^3 .

- 6. No laboratorio realízase a valoración de 50,0 cm³ dunha disolución de NaOH e gastáronse 20,0 cm³ de HCl de concentración 0,10 mol/dm³
 - a) Debuxa a montaxe experimental indicando no mesmo as substancias e o nome do material empregado.
 - b) Escribe a reacción química que ten lugar e calcula a concentración molar da base.

(P.A.U. set. 09)

Rta.: b) [NaOH] = 0.0400 mol/dm^3 .

 Explica como determinaría no laboratorio a concentración dunha disolución de ácido clorhídrico utilizando unha disolución de hidróxido de sodio de concentración 0,01 mol/dm³. Indica o material, procedemento e formulación dos cálculos.

(P.A.U. xuño 07)

- 8. Explica detalladamente:
 - a) Como prepararía no laboratorio unha disolución de ácido clorhídrico de concentración 1 mol/dm³ a partir de ácido clorhídrico de 38 % en peso e densidade = 1,19 g/cm³
 - b) Como valoraría esta disolución? Describe o material empregado e realice os correspondentes cálculos.

(P.A.U. set. 06)

Rta.: a) $V = 40 \text{ cm}^3 \text{ D comercial} / 500 \text{ cm}^3 \text{ D preparada. b)}$ $V' = 10 \text{ cm}^3 \text{ NaOH} / 10 \text{ cm}^3 \text{ D NaOH}$.

9. Indica os procedementos que utilizou no laboratorio para medir o pH das disolucións, sinalando as características de cada un. Cita algún exemplo do emprego de indicadores explicando o por que do seu cambio de cor.

(P.A.U. xuño 05)

10. Explica detalladamente (material e procedemento) como se poden recoñecer ácidos e bases no laboratorio.

(P.A.U. set. 04)

11. Dispoñemos de 20 cm³ dunha disolución de ácido clorhídrico de concentración 0,1 mol/dm³, que se neutralizan exactamente con 10 cm³ de hidróxido de sodio de concentración descoñecida. Determina a concentración da base describindo con detalle, o material, indicador e as operacións a realizar no laboratorio.

(P.A.U. xuño 04)

Rta.: [NaOH] = 0.2 mol/dm^3 .

Cuestións e problemas das <u>probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.