Feature Selection Using Quantum Annealing

Team:

Nipun Ramagiri Swapnil Bhosale

What is Feature Selection?

- Important concept in Statistics and ML
- Select set of input variables (features)
- Mutual information at rescue for above task
- N choose K problem.

Mutual Information

- Measure of the mutual dependence between the two variables
- Quantifies "amount of information" of one variable with respect to other variable
- Shannon Entropy and Mutual Information.

The method is based on the 2014 paper, <u>Effective Global Approaches for Mutual Information Based Feature</u> <u>Selection</u>, by Nguyen, Chan, Romano, and Bailey published in the Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining.

Forming a QUBO

	Formula	Optimization	Linear Terms	Quadratic Terms
Feature Selection	$\textstyle\sum_{i=1}^n \left\{I(X_i;Y) + \sum_{j \in k i} I(X_j;Y X_i)\right\}$	Maximize	$I(X_i; Y)$	$I(X_j;Y X_i)$
QUBO	$\sum_{i}^{N} q_i x_i + \sum_{i < j}^{N} q_{i,j} x_i x_j$	Minimize	$q_i x_i$	$q_{i,j}x_ix_j$

- Diagonal elements (linear coefficients) represent
 MI: Qii ← I(Xi; Y)
- non-diagonal elements (quadratic elements) represent
 CMI: Qij ← -I(Xj; Y jXi)

Penalizing invalid states

$$P = \alpha \sum_{i=1}^{N} (xi - k)^{2}$$

P is positive whenever the number of 1s in

solution x1, x2, ... xN is not k

Sample Dataset used

Dataset: IEEE BigData 2019
Cup(Suspicious Network
Event Recognition) with more
than 60 features

BQM with 8 nodes and 28 edges

Output:

Output:

Output:

<u>Output</u>

Runtimes:

No. of Features	Tabu Sampler	Neal Annealer	Dwave 2000Q
8	4.86 s	0.147 s	3.272 s
15	NA	0.392 s	5.865 s
30	NA	1.85 s	12.297 s
60	NA	10.4 s	24.602 s

References:

- 1. leee bigdata 2019 cup: Suspicious network event. https://knowledgepit.ml/suspicious-network-event-recognition/
- 2. Introduction to quantum annealing. https://docs.dwavesys.com/docs/latest/c_gs_2.html
- 3. Application of high-dimensional feature selection: evaluation for genomic prediction in man. https://www.nature.com/articles/srep10312 (2003
- 4. Isabelle Guyon, A.E.: An introduction to variable and feature selection. http://jmlr.csail.mit.edu/papers/v3/guyon03a.html (2015)

Thank You!!!