Heapsort

Prof. Navrati Saxena

Heap Sort: Key Idea

- 1. Build a MAX-HEAP with the Array
- 2. Exchange the root (maximum element) with the last element
- 3. Reduce the Size of the heap (array size) by 1
- 4. Call MAX-HEAPIFY with array A and the 1st index

Heap Sort: Pseudo-code

- 1. BUILD-MAX-HEAP(A)
- 2. for i \leftarrow length of A down to 2
- 3. $exchange A[1] \longleftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (1/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i \leftarrow length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of $A \leftarrow$ heapsize of A-1
- MAX-HEAPIFY(A,1)

Heapsort: An Example (2/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- $5. \qquad MAX-HEAPIFY(A,1)$

Heapsort: An Example (3/18)

Heapsort: An Example (4/18)

HEAPSORT(A) 1. BUILD-MAX-HEAP(A)2. $for i \leftarrow length of A down to 2$ 3. $exchange A[1] \leftrightarrow A[i]$ 4. $heapsize of A \leftarrow heapsize of A$ -1 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (5/18)

[1]

[2]

[3]

A

[5]

[4]

Heapsort: An Example (6/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. exchange $A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- 5. MAX-HEAPIFY (A, 1)

Heapsort: An Example (7/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- 5. MAX-HEAPIFY(A,1)

Heapsort: An Example (8/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of $A \leftarrow$ heapsize of A-1
- 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (9/18)

HEAPSORT(A) 1. BUILD-MAX-HEAP(A)2. $for i \leftarrow length of A down to 2$ 3. $exchange A[1] \leftrightarrow A[i]$ 4. $heapsize of A \leftarrow heapsize of A$ -1 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (10/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (11/18)

HEAPSORT(A)

- 1. BUILD-MAX-HEAP(A)
- 2. for $i \leftarrow length \ of \ A \ down \ to \ 2$
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1

[1]

[2]

[3]

5. MAX-HEAPIFY (A,1)

A

19 18 15 16 17 13 14 11 21 2
--

[5]

[4]

Heapsort: An Example (12/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for $i \leftarrow length \ of \ A \ down \ to \ 2$
- 3. exchange $A[1] \leftrightarrow A[i]$
- 4. heapsize of $A \leftarrow$ heapsize of A-1
- 5. MAX-HEAPIFY (A,1)

Heapsort: An Example (13/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- 5. MAX-HEAPIFY(A,1)

Heapsort: An Example (14/18)

Heapsort: An Example (15/18)

[1]

[2]

[3]

A

[5]

[4]

Heapsort: An Example (16/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of $A \leftarrow$ heapsize of A-1
- 5. MAX-HEAPIFY (A, 1)

Heapsort: An Example (17/18)

- 1. BUILD-MAX-HEAP(A)
- 2. for i ← length of A down to 2
- 3. $exchange A[1] \leftrightarrow A[i]$
- 4. heapsize of A \leftarrow heapsize of A-1
- $5. \qquad MAX-HEAPIFY(A,1)$

Heapsort: An Example (18/18)

Heap Sort: Complexity

Overall Complexity: O(n In (n))

One Major Use of Heap: Priority Queue

- A Heap is an efficient data structure to implement a priority queue
- Operations (A is the Max-Heap implemented in an array)
 - 1. INSERT (A, x)
 - 2. GET-MAX(A)
 - 3. REMOVE-MAX(A)

Priority Queue Operations: Remove and Max

GET-MAX(A)
return A[1]

```
REMOVE-MAX(A)
```

- 1 if heapsize of A < 1 then
- 2 error "heap underflow"
- 3 $max \leftarrow A[1]$
- 4 $A[1] \leftarrow A[heapsize of A]$
- 5 heapsize of $A \leftarrow$ heapsize of A 1
- 6 MAX-HEAPIFY(A, 1)
- 7 return max

Priority Queue Operation: Insert

```
INSERT(A, x)
    if heapsize of A < 1 then</pre>
           A[1] \leftarrow x
3 else
4 heapsize \leftarrow heapsize of A + 1
5 A[heapsize] \leftarrow x
6 i \leftarrow heapsize
7 while (A[i] > parent(A[i]){
             swap(A[i], A[parent(A[i])])
             i \leftarrow parent(A[i])
```

Heap: Applications

- Heapsort: One of the best sorting methods with in-place and with no quadratic worst-case scenarios
- Selection algorithms: Finding min, max, both min and max, median, or even the k^{th} largest element can be done in linear time (often constant time) using heaps
- **Graph algorithms**: By using heaps as internal traversal data structures, run time could be reduced by polynomial order. Examples: Prim's minimal spanning tree algorithm and Dijkstra's shortest path problem.

Thank you!