PRVI MEĐUISPIT IZ VJEROJATNOSTI I STATISTIKE 04. 04. 2007.

- 1. (3 boda) U žari se nalaze dvije zelene, tri crvene i četiri plave kuglice.
 - (a) Izvlačimo na sreću dvije kuglice. Što je skup elementarnih događaja? Jesu li oni jednako vjerojatni? Izračunaj vjerojatnost p da su izvučene raznobojne kuglice.
 - (b) Ponovimo pokus izvlačenja dvije kuglice 10 puta. Kolika je vjerojatnost da su barem dvaput bile izvučene kuglice iste boje.
- 2. (**3 boda**) Ante i Mate izlaze uvečer neovisno jedan o drugome, u na sreću odabranom trenutku između 20 i 21 sat. Po dolasku na gradski trg zadržavaju se na tom mjestu 20 minuta, ali najkasnije do 21 sat, kad odlaze u kino. Kolika je vjerojatnost da će se oni na trgu sresti?
- 3. (**3 boda**)
 - (a) Definiraj nezavisnost dvaju događaja.
 - (b) Ako su A i B nezavisni događaji, dokaži da su i njihovi komplementi također nezavisni.
- 4. (3 boda) Neki izvor emitira znak 1 s vjerojatnošću 0.75, a znak 0 s vjerojatnošću 0.25. Na izlazu iz kanala se 5 % znakova pogrešno interpretira. Ako je primljen znak 1, kolika je vjerojatnost da je on i poslan?
- 5. (4 boda) Zakon razdiobe slučajnog vektora (X, Y) dan je tablicom

$X \setminus Y$	0	1
-1	1/12	1/12
0	1/12	1/4
1	1/6	1/3

- (a) Nađi marginalne razdiobe slučajnih varijabli X i Y. Jesu li one nezavisne?
- (b) Nađi zakon razdiobe slučajne varijable $U = X^2$, te njeno očekivanje.
- (c) Nađi zakone razdiobe slučajnih varijabli $V = X^2 + Y^2$ i $W = X \cdot Y$.
- (d) Nađi zakon razdiobe slučajnog vektora Z = (V, W).
- 6. (**3 boda**) Bacamo novčić dok dvaput zaredom ne padne isti ishod. Izračunaj očekivani broj bacanja novčića.
- 7. (**3 boda**)
 - (a) Definiraj disperziju slučajne varijable X.
 - (b) Dokaži da vrijedi

$$D(X+Y) = D(X) + D(Y) + 2cov(X,Y).$$

- 8. (**3 boda**)
 - (a) Izvedi oblik karakteristične funkcije Poissonove slučajne varijable $P(\lambda)$.
 - (b) Ako je X Poissonova slučajna varijabla s očekivanjem 3, a Y Poissonova slučajna varijabla s očekivanjem 4, pri čemu su X i Y nezavisne, izračunaj P(X+Y=10).

Dozvoljena je upotreba kalkulatora. Ispit se piše 90 minuta.

Rješenja 1. međuspita iz Vjerojatnosti i statistike 31.10.2006.

1. (**3 boda**) a)
$$p = \frac{13}{18}$$

b)
$$P = 0.813$$

2. (3 boda) a)
$$P(|x-y| < 20) = \frac{m(A)}{m(\Omega)} = 0.56$$

3. (**3 boda**) a) Za događaje A i B kažemo da su nezavisni ako vrijedi bilo koja od jednakosti P(A|B) = P(A) ili P(B|A) = P(B).

b)
$$P(\overline{A})P(\overline{B}) = (1 - P(A))(1 - P(B)) = \dots = P(\overline{A}\overline{B})$$

4. (3 boda)
$$P(A) = P(H_0)P(A|H_0) + P(H_1)P(A|H_1)$$
, $P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(A)} = 0.983$

5. (**4 boda**) a)
$$X \sim \begin{pmatrix} -1 & 0 & 1 \\ 1/6 & 1/3 & 1/2 \end{pmatrix}$$
, $Y \sim \begin{pmatrix} 0 & 1 \\ 1/3 & 2/3 \end{pmatrix}$, X i Y nisu nezavisne

b)
$$X^2 \sim \begin{pmatrix} 0 & 1 \\ 1/3 & 2/3 \end{pmatrix}$$
, $E(X^2) = \frac{2}{3}$

c)
$$V \sim \begin{pmatrix} 0 & 1 & 2 \\ 1/12 & 1/2 & 5/12 \end{pmatrix}$$
, $W \sim \begin{pmatrix} -1 & 0 & 1 \\ 1/12 & 7/12 & 1/3 \end{pmatrix}$

6. (3 boda)
$$E(X) = \sum_{n=2}^{\infty} n(\frac{1}{2})^{n-1} = \ldots = 3$$

7. (3 boda) a) Disperzija slučajne varijable X definira se formulom $D(X) = E[(X - m_X)^2]$ (priznavalo se i $D(X) = E(X^2) - E(X)^2$)

b)
$$D(X+Y) = E((X+Y)^2) - (E(X+Y))^2 = \dots = D(X) + D(Y) + 2cov(X,Y)$$

8. (3 boda) a)
$$\vartheta(t) = e^{\lambda(e^{it}-1)}$$

b)
$$P(X + Y = 10) = \frac{7^{10}}{e^7 \cdot 10!}$$