

I have my notochord but where did I leave my tail?

Elijah Lowe*¹, Kanchan Pavangadkar², Likit Preeyanon², C. Titus Brown^{1, 2}, Billie J. Swalla³ ¹Computer Science and Engineering and ²Microbiology and Molecular Genetics Michigan State University, East Lansing, MI 48824 ³Department of Biology University of Washington, Seattle, WA 98195-1800

Abstract

In the molgulid clade of ascidians several species have individually evolved tail loss during their larval stage of development. The notochord, one of the key features of chordates, is found in the center of the tail in most ascidian larvae. In almost all solitary ascidians, including M. oculata, 40 notochord cells have been found extended in the tail. However, in a closely related species, M. occulta (tailless), only 20 notochord cells were found, and these express brachyury. These two species are only 3% divergent and are able to cross hybridize. Some of the hybrid also have 20 notochord cells, however the notochord cells extend and converge in a shortened version of *M. oculata* tail. Through the use of high throughput sequencing technologies and subsequent allelotyping analysis, we are able to quantitatively investigate the express of genes associated with notochord development in the parent species and in the hybrid. Our transcriptome assemblies are freely available for download; contact ctb@msu.edu. We thank the BEACON Center and USDA NIFA for funding.

Molgula species studied

a) M. oculata b) hybrid (occulta egg x oculata sperm) c) M. occulta

Notochord cells in orange

**k =33

Swalla, B. et al. Science, Vol 274, Issue 5290, 1205-1208, 15 November 1996

Expression profiles

	M.							
			Hybrid	M. occulta	oculata			Hybrid
Gene	Locus	(gast.)	(gast.)	(neur.)	(neur.)	(neur.) ((tailbud)	(tailbud)
ATP sulfurylase/APS kinase [Ciona		•		-	•		•	•
intestinalis]	occulta	0	0	/	0	0	U	U
ATP sulfurylase/APS kinase [Ciona	oculata	17	0	O	13	0	9	0
intestinalis] ATP sulfurylase/APS kinase [Ciona	Ocuiata	17	U	U	13	U	Э	U
intestinalis]	oculata	117	0	0	103	0	225	104
leprecan [Ciona intestinalis]	oculata	55	0			0	73	64
leprecan [Ciona intestinalis]	oculata	33	0	0		0	67	29
leprecan [Ciona intestinalis]	occulta			_			0	36
transcription factor protein foxa-a [Ciona								
intestinalis]	oculata	37	34	0	43	17	199	141
transcription factor protein foxa-a								
[Ciona intestinalis]	occulta	0	3	110	0	63	0	0
merlin [Molgula tectiformis]	occulta	0	5	16	0	20	0	10
merlin [Molgula tectiformis]	occulta	0	23	29	0	6	0	18
merlin [Molgula tectiformis]	oculata	9	0	0	7	0	13	0
merlin [Molgula tectiformis]	oculata	19	0	0	86	0	41	0
fibroblast growth factor 8/17/18 [Ciona								
intestinalis]	oculata	4	0	0	1	0	20	0
fibroblast growth factor 9/16/20 [Ciona		4.0			4.0		4.0	
intestinalis]	oculata	12					49	0
noto17 [Molgula tectiformis]	oculata 	24	0	0			127	0
noto17 [Molgula tectiformis]	oculata •-	5	0	0	8		39	0
noto6 [Molgula tectiformis]	occulta		_	11			0	29
noto6 [Molgula tectiformis]	oculata	10	0	0			3	0
noto6 [Molgula tectiformis]	oculata	8	0	0			12	0
prickle 1 [Ciona intestinalis]	occulta	0	193			90	0	57
prickle 1 [Ciona intestinalis]	oculata	56	0	0	50	O	126	0
prickle 1 [Ciona intestinalis]	oculata	19	0	O	23	О	17	U

BLAST hits

Discussion

The notochord is important for tail formation. We examined 38 genes associated with notochord development. Of 38 selected, all but 9 were found in either *M. oculata* or *M.* occulta. 25 of the remaining 29 were found in both species, while 4 were found only in *M*. oculata. In the future we plan to confirm gene presence by in situ, increase our query gene set, and examine more time points in M. occulta.

Method

706e(ki-3)

- ATPcitrate-lyase
- ATPsulfurylase.APSkinase
- Notch
- Mt-noto17
- Not1
- Not2 Not3
- Not4
- Not5
- Not6
- Not7
- Notch beta-catenir
- beta4galactosyltransferase
- Brachyury
- col1 netrin

 cdc45 ezrin.radixin.moesin(ERM)-like protein

Gene list

- fibrinogen-like protein
- Fibroblastgrowthfactor3/7/10/22
- Fibroblastgrowthfactor8/17/18
- Fibroblastgrowthfactor9/16/20
- leprecan
- Mt-noto6
- noto8
- noto9 pellino
- prickle1
- rel1
- Suppressor of hairless homolog
- foxa-a
- foxd
- tropomyosin-like protein
- tyrosinephosphatase

Key work cited

- Kugler et al. 2011. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evolutionary Biology 11:21
- Imai et at. 2004. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131, 4047-4058
- Hotta et al. 2008. Brachyury-downstream gen sets in a chordate, Ciona intestinalis: integrating notochord specification, morphogenesis and chordate evolution. Evolution and Development 2008, 10:1, 37-51

Acknowledgements

BEACON Center, Billie Swalla, Titus Brown, Kanchan Padvangadkar, Likit Preeyanon