FEUILLE D'EXERCICES N°6

Dualité min-max Dualité de Lagrange

Exercice 1 – Dualité faible

Module A6, Proposition 1

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose qu'il existe $(x^0, y^0) \in \mathcal{X} \times \mathcal{Y}$ tel que

$$\forall (x, y) \in \mathcal{X} \times \mathcal{Y}$$
.

$$\mathcal{L}(x; y^0) > -\infty$$

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \quad \mathcal{L}(x;y^0) > -\infty \quad \text{et} \quad \mathcal{L}(x^0,y) < +\infty$$

(a) Soit $(x', y') \in \mathcal{X} \times \mathcal{Y}$. Montrer que

$$\inf_{x \in \mathcal{X}} \mathcal{L}(x; y') \le \mathcal{L}(x'; y') \le \sup_{y \in \mathcal{Y}} \mathcal{L}(x'; y)$$

(b) En déduire que

$$\sup_{y' \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; y') \le \inf_{x' \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(x'; y)$$

Exercice 2 - Existence d'un point-selle

Module A6, Proposition 2

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose que

(i) la fonction

$$x \mapsto \sup_{y \in \mathcal{Y}} \mathcal{L}(x; y)$$

atteint son minimum en \bar{x} ;

(ii) la fonction

$$y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$$

atteint son maximum en \bar{y} ;

(iii) son saut de dualité \mathcal{G} est nul.

(a) Montrer que

$$\forall\,x\in\mathcal{X},\qquad\mathcal{L}(\bar{x};\bar{y})\leq\inf_{x\in\mathcal{X}}\mathcal{L}(x;\bar{y})\leq\mathcal{L}(x;\bar{y})$$

(b) Montrer que

$$\forall y \in \mathcal{Y}, \qquad \mathcal{L}(\bar{x}; y) \leq \mathcal{L}(\bar{x}; \bar{y})$$

(c) En déduire que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

Exercice 3 – Propriétés des points-selles

Module A6, Proposition 2

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose que \mathcal{L} admet un point-selle (\bar{x}, \bar{y}) .

(a) Montrer que

$$\sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \leq \mathcal{L}(\bar{x}; \bar{y}) \leq \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

puis que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \leq \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

(b) En déduire que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

1

(c) Montrer que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y)$$

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \qquad \text{et} \qquad \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y}) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

En déduire que les fonctions $x \mapsto \sup_{y \in \mathcal{Y}} \mathcal{L}(x; y)$ et $y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$

$$x \mapsto \sup_{x \in \mathcal{X}} \mathcal{L}(x; y)$$

$$y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x;$$

atteignent respectivement leur minimum et leur maximum.

Exercice 4 - Points-selles dans le cas convexe

Module A6, Propositions 3 et 4

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction convexe-concave propre.

(a) On suppose que \mathcal{L} admet un point-selle (\bar{x}, \bar{y}) . Montrer que

$$0 \in \partial_x \mathcal{L}(\bar{x}, \bar{y})$$
 et $0 \in \partial_y(-\mathcal{L})(\bar{x}, \bar{y})$

Le point (\bar{x}, \bar{y}) est-il un point critique de \mathcal{L} ?

(b) On suppose qu'il existe un point $(\bar{x}, \bar{y}) \in \text{dom } \mathcal{L}$ tel que

$$0 \in \partial_x \mathcal{L}(\bar{x}, \bar{y})$$
 et $0 \in \partial_y (-\mathcal{L})(\bar{x}, \bar{y})$

Montrer que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

(c) Construire une fonction \mathcal{L} convexe-concave admettant un point critique qui ne soit pas un point-selle.

Exercice 5 – Dualité min-max

Module A6, Corollaire 3

Soit $J: \mathcal{X} \mapsto \mathbb{R} \cup \{+\infty\}$ une fonction s.c.i. On suppose qu'il existe une fonction s.c.i. $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \overline{\mathbb{R}}$ telle que

$$\forall x \in \mathcal{X}, \qquad J(x) = \sup_{y \in \mathcal{Y}} \mathcal{L}(x; y)$$

Soit $(x^*, y^*) \in \text{dom } \mathcal{L}$. Montrer que (x^*, y^*) est un point-selle de \mathcal{L} si et seulement si les trois conditions suivantes sont vérifiées :

- (i) le problème primal (\mathcal{P}) admet comme solution le point x^* ;
- (ii) le problème dual (\mathcal{D}) admet comme solution le point y^* ;
- (iii) les problèmes primal et dual admettent la même valeur optimale, c'est-à-dire que

$$\min_{x \in \mathcal{X}} J(x) = \max_{y \in \mathcal{Y}} E(y)$$

Exercice 6 – Points-selles du lagrangien augmenté

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ et $h: \mathcal{X} \to (\mathbb{R} \cup \{+\infty\})^m$ de même domaine. On suppose h est continûment différentiables sur son domaine Intéressons-nous au problème d'optimisation suivant

$$\min_{\substack{x \in \mathcal{X} \\ h(x) = 0}} J(x) \tag{\mathcal{P}_{ce}}$$

- (a) Écrire le lagrangien et le lagrangien augmenté pour le problème (\mathcal{P}_{ce}).
- (b) Soit $(\bar{x}, \bar{\mu}) \in \mathcal{X} \times (\mathbb{R}^+)^m$ un point-selle du lagrangien. Après avoir justifié que $h(\bar{x}) = 0$, montrer que pour tout $(x, \mu) \in \mathcal{X} \times \mathbb{R}^m$,

$$\mathcal{L}(\bar{x};\mu) + \frac{1}{2\,\tau}\,\|h(\bar{x})\|_2^2 \leq \mathcal{L}(\bar{x};\bar{\mu}) + \frac{1}{2\,\tau}\,\|h(\bar{x})\|_2^2 \leq \mathcal{L}(x,\bar{\mu}) + \frac{1}{2\,\tau}\,\|h(x)\|_2^2$$

En déduire que $(\bar{x}, \bar{\mu})$ est un point-selle de \mathcal{L}_{τ} .

- (c) Soit $(\bar{x}, \bar{\mu})$ est un point-selle de \mathcal{L}_{τ} . Justifier que $\bar{\mu}$ est une solution duale de (\mathcal{P}_e) .
- (d) Justifier que $\mu \mapsto \mathcal{L}_{\tau}(\bar{x}; \mu) = J(\bar{x}) + \langle \mu, h(\bar{x}) \rangle + \frac{1}{2\tau} \|h(\bar{x})\|_{2}^{2}$

admet un maximum sur \mathbb{R}^m . Montrer que si $h(\bar{x}) \neq 0$, alors cette fonction n'est pas majorée.

(e) Montrer que \bar{x} est un minimiseur de la fonction partielle

$$x \mapsto \mathcal{L}_{\tau}(x; \bar{\mu}) = J(x) + \langle \bar{\mu}, h(x) \rangle + \frac{1}{2\tau} \|h(x)\|_2^2$$

en déduire que \bar{x} est une solution primale.

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose qu'il existe $(x^0, y^0) \in \mathcal{X} \times \mathcal{Y}$ tel que

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \qquad \mathcal{L}(x;y^0) > -\infty \qquad \text{et} \qquad \mathcal{L}(x^0,y) < +\infty$$

(a) Soit $(x', y') \in \mathcal{X} \times \mathcal{Y}$. Montrer que

$$\inf_{x \in \mathcal{X}} \mathcal{L}(x; y') \le \mathcal{L}(x'; y') \le \sup_{y \in \mathcal{Y}} \mathcal{L}(x'; y)$$

$$\sup_{y' \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; y') \le \inf_{x' \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(x'; y)$$

(a) Par l'hypothèse, $L(x'; y^0) > -\infty$, et par définition

de la borne supérieure

 $\forall y' \in y$, $L(x', y') \leq \sup_{y \in y} L(x', y) \in \mathbb{R} \cup \{+\infty\}$

on démontre de la même Jaçon que

 $\forall x' \in X$, $L(x'; y') > \inf_{x \in X} L(x; y')$

donc

 $\inf_{x \in X} L(x; y') \leq L(x'; y') \leq \sup_{y \in Y} L(x'; y)$

(b) Puisque infl(x;y') ne dépend pas de x', infl(x;y') ne dépend pas de y', on peut passer successivement à la borne supérieure, puis la borne inférieure

 $\inf_{x \in X} L(x; y') \leq \sup_{y \in Y} L(x'; y)$

sup inf $L(x; y') \leq \sup_{y \in y} L(x'; y)$

sup inf $L(x; y') \leq \inf_{x \in X} \sup_{y \in y} L(x'; y)$

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose que

(i) la fonction

$$x \mapsto \sup_{y \in \mathcal{Y}} \mathcal{L}(x; y)$$

atteint son minimum en \bar{x} ;

(ii) la fonction

$$y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$$

atteint son maximum en \bar{y} ;

(iii) son saut de dualité \mathcal{G} est nul.

(a) Montrer que

$$\forall x \in \mathcal{X}, \qquad \mathcal{L}(\bar{x}; \bar{y}) \leq \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y}) \leq \mathcal{L}(x; \bar{y})$$

(b) Montrer que

$$\forall y \in \mathcal{Y}, \qquad \mathcal{L}(\bar{x}; y) \leq \mathcal{L}(\bar{x}; \bar{y})$$

(c) En déduire que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

(a) Par l'hypothèse, le sout de dualité G est null.

Supposons qu'il existe deux points $\overline{x} \in X$ et $\overline{y} \in Y$

tels que

yey $L(\bar{x};y) = \min_{x \in X} \sup_{y \in y} L(x;y)$

ed inf $L(x; y) = \max_{x \in X} \inf_{x \in X} L(x; y)$

Alors, par définition des bornes inférieure et supérieure,

$$L(\overline{x}; \overline{y}) \leq \sup_{y \in y} L(\overline{x}; y) = \min_{x \in X} \sup_{y \in y} L(x; y)$$

= max inf
$$L(x;y)$$
 = inf $L(x;\overline{y})$

Puis $\forall x \in \mathcal{X}$, $\mathcal{L}(\bar{x}; \bar{y}) \leq \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y}) \leq \mathcal{L}(x; \bar{y})$

ш	BH		
ш	八 刀		

(b) Montrer que

$$\forall y \in \mathcal{Y}, \qquad \mathcal{L}(\bar{x}; y) \leq \mathcal{L}(\bar{x}; \bar{y})$$

(b) Pax définition des bornes inférieure et supérieure, $L(\overline{x}; \overline{y}) > \inf_{x \in X} L(x; \overline{y}) = \min_{x \in X} \sup_{y \in Y} L(x; y)$

= $\max_{y \in y} \inf_{x \in x} L(x; y) = \sup_{y \in y} L(\overline{x}; y)$

donc

 $\forall y \in \mathcal{Y}$, $\mathcal{L}(\overline{x}; \overline{y}) > \sup_{y \in \mathcal{Y}} \mathcal{L}(\overline{x}; y) > \mathcal{L}(\overline{x}; y)$

(c) En déduire que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

(c) D'après (a) et (b), on a

 $L(\overline{x}; y) \leq L(\overline{x}; \overline{y}) \leq L(x; \overline{y})$

donc (\bar{x}, \bar{y}) est un point-selle de 1

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction. On suppose que \mathcal{L} admet un point-selle (\bar{x}, \bar{y}) .

(a) Montrer que

$$\sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \le \mathcal{L}(\bar{x}; \bar{y}) \le \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

puis que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \le \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

(b) En déduire que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

(c) Montrer que

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y)$$

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) \qquad \text{et} \qquad \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y}) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

En déduire que les fonctions

$$x \mapsto \sup_{y \in \mathcal{V}} \mathcal{L}(x; y)$$

et
$$y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$$

atteignent respectivement leur minimum et leur maximum.

(a) On suppose que L admed un point-selle (\bar{x}, \bar{y}) .

Par définition, on a

 $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \quad \mathcal{L}(\overline{x};y) \leq \mathcal{L}(\overline{x};\overline{y}) \leq \mathcal{L}(x;\overline{y})$

en passant à la borne supérieure sur y, et à la borne

inférieur sur x, on obtient

$$y \in \mathcal{Y} L(\overline{x}; y) \leq L(\overline{x}; \overline{y}) \leq \inf_{x \in \mathcal{X}} L(x; \overline{y})$$

Puisque, par ailleurs

inf sup
$$L(x;y) \leq \sup_{y \in y} L(\overline{x},y)$$

ed inf
$$L(x; \overline{y}) \leq \sup_{y \in y} \inf_{x \in x} L(x; y)$$

on obtient l'inégalité

inf sup
$$L(x; y) \leq \sup_{x \in X} \inf_{x \in X} L(x; y')$$

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

Or, par Ex1, on a (6)

inf sup
$$L(x;y) > \sup_{y \in y} \inf_{x \in x} L(x;y')$$

Ona

inf sup
$$L(x';y) = \sup_{x \in X} \inf_{x \in X} L(x;y')$$

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y) = \sup_{y \in \mathcal{Y}} \mathcal{L}(\bar{x}; y)$$

et
$$\inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y}) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \mathcal{L}(x; \bar{y})$$

En déduire que les fonctions

$$x \mapsto \sup_{y \in \mathcal{V}} \mathcal{L}(x;y)$$

$$y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$$

atteignent respectivement leur minimum et leur maximum.

(c) On en déduit l'égalité dans cette relation.

Celle-ci implique que toutes les inégalités sont

également des égalités.

inf sup $L(x; y) = \sup_{x \in y} L(\overline{x}; y)$

inf L(x; y) = sw inf L(x; y)

Puisque ces deux quantités sont égales et sont finies,

on a que

 $x \mapsto \sup_{y \in y} \mathcal{L}(x; y)$ afteint son minimum en \overline{x}

 $y \mapsto \inf_{x \in \mathcal{X}} \mathcal{L}(x; y)$ aftern son maximum en

Soit $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{+\infty; -\infty\}$ une fonction convexe-concave propre.

(a) On suppose que \mathcal{L} admet un point-selle (\bar{x}, \bar{y}) . Montrer que

$$0 \in \partial_x \mathcal{L}(\bar{x}, \bar{y})$$
 et $0 \in \partial_y (-\mathcal{L})(\bar{x}, \bar{y})$

Le point (\bar{x}, \bar{y}) est-il un point critique de \mathcal{L} ?

(b) On suppose qu'il existe un point $(\bar{x}, \bar{y}) \in \text{dom } \mathcal{L}$ tel que

$$0 \in \partial_x \mathcal{L}(\bar{x}, \bar{y})$$
 et $0 \in \partial_y (-\mathcal{L})(\bar{x}, \bar{y})$

Montrer que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

(c) Construire une fonction \mathcal{L} convexe-concave admettant un point critique qui ne soit pas un point-selle.

(a) Par l'hypothése,
$$L$$
 admet un point-selle $(\overline{x}, \overline{y})$ alors \overline{x} est un minimiseur de la fonction partielle $x \mapsto L(x, \overline{y})$ et \overline{y} est un minimiseur de la fonction partielle $y \mapsto -L(\overline{x}; y)$.

Par la règle de Fermat, on a $0 \in \partial(x \mapsto L(x; \overline{y}))(\overline{x}) = \partial_x L(\overline{x}, \overline{y})$ $0 \in \partial(y \mapsto -L(\overline{x}; y))(\overline{y}) = \partial_y L(\overline{x}, \overline{y})$

Le point (京東) n'est pas nécéssairement le point critique. 必須得 L continuement différentiable

(b) On suppose qu'il existe un point $(\bar{x}, \bar{y}) \in \text{dom } \mathcal{L}$ tel que

$$0 \in \partial_x \mathcal{L}(\bar{x}, \bar{y})$$
 et $0 \in \partial_y(-\mathcal{L})(\bar{x}, \bar{y})$

Montrer que (\bar{x}, \bar{y}) est un point-selle de \mathcal{L} .

(b) L est une fonction convexe-concave propre.

alors $x \mapsto L(x, \overline{y})$ et $y \mapsto -L(\overline{x}, y)$ sont convexe.

Par le régle de Fermat,

ĦΠ	
只力	

 \overline{x} est un minimiseur de la fonction partiel $x \mapsto L(x,\overline{y})$ \overline{y} est un minimiseux de la fonction partiel $y \mapsto (-L)(\overline{x},y)$ donc

 $\forall (x,y) \in \lambda \times y$, $L(x,\overline{y}) \leq L(\overline{x},\overline{y}) \leq L(\overline{x},y)$ alors $(\overline{x},\overline{y})$ est un point-selle de L.

(c) Construire une fonction \mathcal{L} convexe-concave admettant un point critique qui ne soit pas un point-selle.

(c) L(x,y) = -|y|

Soit $J: \mathcal{X} \mapsto \mathbb{R} \cup \{+\infty\}$ une fonction s.c.i. On suppose qu'il existe une fonction s.c.i. $\mathcal{L}: \mathcal{X} \times \mathcal{Y} \to \overline{\mathbb{R}}$ telle que

$$\forall x \in \mathcal{X}, \qquad J(x) = \sup_{y \in \mathcal{Y}} \mathcal{L}(x; y)$$

Soit $(x^*, y^*) \in \text{dom } \mathcal{L}$. Montrer que (x^*, y^*) est un point-selle de \mathcal{L} si et seulement si les trois conditions suivantes sont vérifiées :

- (i) le problème primal (\mathcal{P}) admet comme solution le point x^* ;
- (ii) le problème dual (\mathcal{D}) admet comme solution le point y^* ;
- (iii) les problèmes primal et dual admettent la même valeur optimale, c'est-à-dire que

$$\min_{x \in \mathcal{X}} J(x) = \max_{y \in \mathcal{Y}} E(y)$$

Ex5

Daprès la définition, J(x) = sup L(x;y), E(y) = inf L(x;y)

(i) \iff min sup L(x;y) admed une solution le point x^* \iff $x \mapsto \sup_{y \in y} L(x;y)$ admed un minimum en x^*

(ii) \iff max inf L(x;y) admed we solution be point y^* \iff $y \mapsto \inf_{x \in x} L(x;y)$ admed we maximum on y^*

 $(iii) \iff \min_{x \in X} \sup_{y \in y} L(x; y) = \max_{y \in y} \inf_{x \in X} L(x; y)$ $\iff \inf_{x \in X} \sup_{y \in y} L(x; y) - \sup_{y \in y} \inf_{x \in X} L(x; y) = 0$ $\iff \text{le sout de dualité est 0}$

D'après l'exercise 2 et 3, on a l'équivalence.

Exercice 6 – Points-selles du lagrangien augmenté

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ et $h: \mathcal{X} \to (\mathbb{R} \cup \{+\infty\})^m$ de même domaine. On suppose h est continûment différentiables sur son domaine Intéressons-nous au problème d'optimisation suivant

$$\min_{\substack{x \in \mathcal{X} \\ h(x) = 0}} J(x) \tag{\mathcal{P}_{ce}}$$

- (a) Écrire le lagrangien et le lagrangien augmenté pour le problème (\mathcal{P}_{ce}) .
- (b) Soit $(\bar{x}, \bar{\mu}) \in \mathcal{X} \times (\mathbb{R}^+)^m$ un point-selle du lagrangien. Après avoir justifié que $h(\bar{x}) = 0$, montrer que pour tout $(x, \mu) \in \mathcal{X} \times \mathbb{R}^m$,

$$\mathcal{L}(\bar{x}; \mu) + \frac{1}{2\tau} \|h(\bar{x})\|_2^2 \le \mathcal{L}(\bar{x}; \bar{\mu}) + \frac{1}{2\tau} \|h(\bar{x})\|_2^2 \le \mathcal{L}(x, \bar{\mu}) + \frac{1}{2\tau} \|h(x)\|_2^2$$

En déduire que $(\bar{x}, \bar{\mu})$ est un point-selle de \mathcal{L}_{τ} .

- (c) Soit $(\bar{x}, \bar{\mu})$ est un point-selle de \mathcal{L}_{τ} . Justifier que $\bar{\mu}$ est une solution duale de (\mathcal{P}_{e}) .
- (d) Justifier que $\mu \mapsto \mathcal{L}_{\tau}(\bar{x};\mu) = J(\bar{x}) + \langle \mu, h(\bar{x}) \rangle + \frac{1}{2\tau} \|h(\bar{x})\|_{2}^{2}$

admet un maximum sur \mathbb{R}^m . Montrer que si $h(\bar{x}) \neq 0$, alors cette fonction n'est pas majorée.

(e) Montrer que \bar{x} est un minimiseur de la fonction partielle

$$x \mapsto \mathcal{L}_{\tau}(x; \bar{\mu}) = J(x) + \langle \bar{\mu}, h(x) \rangle + \frac{1}{2\tau} \|h(x)\|_2^2$$

en déduire que \bar{x} est une solution primale.

(a)
$$L(x;\mu) = J(x) + \langle \mu, h(x) \rangle$$

$$\mathcal{L}_{z}(x;\mu) = \mathcal{L}(x;\mu) + \frac{z}{2} \|h(x)\|_{z}^{2} = \int_{z}^{2} (x) + \langle \mu, h(x) \rangle + \frac{z}{2} \|h(x)\|_{z}^{2}$$

(b)
$$(\overline{x}, \overline{\mu})$$
 est le point-selle du Lograncien, alors \overline{x} est le minimiseux du $x \mapsto_{\mu \in (\overline{x})} L(x; \mu)$ et alors $\langle \mu, h(\overline{x}) \rangle = 0$ donc $h(\overline{x}) = 0$

Puisque
$$\forall x \in \mathcal{X}$$
, $0 \leq \frac{1}{27} \cdot \|h(x)\|_{2}^{2}$, $0 = \frac{1}{27} \cdot \|h(\overline{x})\|_{2}^{2}$
Pour tout $(x, \mu) \in \mathcal{X} \times (\mathbb{R}^{4})^{m}$, or a

$$L(\bar{x};\mu) \leq L(\bar{x};\bar{\mu}) \leq L(x;\bar{\mu})$$

on a

$$\mathcal{L}(\overline{x};\mu) + \frac{1}{22} \|h(\overline{x})\|_{2}^{2} \leq \mathcal{L}(\overline{x};\overline{\mu}) + \frac{1}{22} \|h(\overline{x})\|_{2}^{2}$$

日期:

$$L(\overline{x};\overline{\mu}) \leq L(x;\overline{\mu}) \leq L(x;\overline{\mu}) + \frac{1}{27} \|h(x)\|_{2}^{2}$$

alors on a

$$\mathcal{L}(\overline{x};\mu) + \frac{1}{27} \|h(\overline{x})\|_{2}^{2} \leq \mathcal{L}(\overline{x};\overline{\mu}) + \frac{1}{27} \|h(\overline{x})\|_{2}^{2}$$

$$\leq \mathcal{L}(x;\overline{\mu}) + \frac{1}{27} \|h(x)\|_{2}^{2}$$

c-à-d

$$\mathcal{L}_{z}(\bar{x};\mu) \leq \mathcal{L}_{z}(\bar{x};\bar{\mu}) \leq \mathcal{L}_{z}(x;\bar{\mu})$$

donc $(\bar{x}, \bar{\mu})$ est un point-selle du Lz

- (c) Soit $(\bar{x}, \bar{\mu})$ est un point-selle de \mathcal{L}_{τ} . Justifier que $\bar{\mu}$ est une solution duale de (\mathcal{P}_{e}) .
- (c) Soit $(\overline{x}, \overline{\mu})$ est un point-selle de Lz D'après l'exercise 5, $\overline{\mu}$ est une solution duale de (Pe)
- (d) Justifier que $\mu \mapsto \mathcal{L}_{\tau}(\bar{x};\mu) = J(\bar{x}) + \langle \mu, h(\bar{x}) \rangle + \frac{1}{2\,\tau} \|h(\bar{x})\|_2^2$

admet un maximum sur \mathbb{R}^m . Montrer que si $h(\bar{x}) \neq 0$, alors cette fonction n'est pas majorée.

(d) $(\overline{x}, \overline{\mu})$ est un point-selle de L_z , alors $L_z(\overline{x}; \mu) \leq L_z(\overline{x}; \overline{\mu})$

donc il admet un maximum sur Rm.

Si $h(\bar{x}) \neq 0$, par définition de $L(x; \mu)$, on a $L(x; \mu) = +\infty$,

alors $2z(\overline{x};\mu) = 2(\overline{x};\mu) + \frac{1}{2z} \|h(x)\|_{2}^{2} = +\infty$ c-à-d celle fonction n'est pas majorée.

(e) Montrer que \bar{x} est un minimiseur de la fonction partielle

$$x \mapsto \mathcal{L}_{\tau}(x; \bar{\mu}) = J(x) + \langle \bar{\mu}, h(x) \rangle + \frac{1}{2\tau} \|h(x)\|_2^2$$

en déduire que \bar{x} est une solution primale.

Alors $L_z(\bar{x};\bar{\mu}) \leq L_z(x;\bar{\mu})$

donc \(\overline{\pi}\) est un minimiserr de la fonction partielle

It on a
$$J(x) = \sup_{\mu \in (\mathbb{R}^n)^m} L_{\mathcal{I}}(x;\mu) = L_{\mathcal{I}}(x;\overline{\mu})$$

donc \(\overline{\times}\) est un minimiseur de J(x)

c-a-d \overline{x} est une solution primale.

日期:		