Group 7

Axel Abrica, Yu Fan Mei, Abby Porter Introduction to Proof and Problem Solving

November 9, 2024

Problem 1. Show that $\lim_{x\to 1} 8/(x^2+1) = 4$.

Proof. Let ϵ_0 be any real number greater than 0. Set $\delta_0 = \min\{1, \epsilon_0/12\}$. Let x_0 be any real number such that $0 < |x_0 - 1| < \delta$.

Then we know that the following statements are true:

$$0 < |x_0 - 1| < 1 \tag{1}$$

and

$$0 < |x_0 - 1| < \epsilon_0 / 12. \tag{2}$$

From (1), we get that

$$-1 < x_0 - 1 < 1$$
.

Adding 2 to all sides, we get

$$1 < x_0 + 1 < 3$$
.

Since $x_0 + 1 > 1$, we know that $|x_0 + 1| < 3$. Then we can begin to solve for $f(x_0) - 4$:

$$|f(x_0) - 4| = \left| \frac{8}{x_0^2 + 1} - 4 \right| = \left| \frac{8}{x_0^2 + 1} - \frac{4(x_0^2 + 1)}{x_0^2 + 1} \right|$$

$$= \left| \frac{4 - 4x_0^2}{x_0^2 + 1} \right|$$

$$= \left| \frac{-4(x_0^2 - 1)}{x_0^2 + 1} \right|$$

$$= \left| \frac{-4(x_0 - 1)(x_0 + 1)}{x_0^2 + 1} \right|$$

$$= \left| -4 \right| |x_0 - 1| |x_0 + 1| \left| \frac{1}{x_0^2 + 1} \right|$$

$$= 4|x_0 - 1| |x_0 + 1| \left| \frac{1}{x_0^2 + 1} \right|.$$

Since we know that $|x_0 + 1| < 3$, we can substitute in 3 and see that

$$|f(x_0) - 4| < 12|x_0 - 1||\frac{1}{x_0^2 + 1}|.$$

Now we will examine $|1/(x_0^2+1)|$. If we take a look at (1) and add 1 to all sides, we get

$$0 < x_0 < 2$$
.

Since x > 0, all numbers are nonnegative, and when we square all sides of the inequality, we get

$$0 < x_0^2 < 4$$
.

Adding 1 to all sides, we get

$$1 < x_0^2 + 1 < 5.$$

When we take the reciprocal, we get

$$1/5 < 1/(x_0^2 + 1) < 1.$$

From this, we know that $|1/(x_0^2+1)| < 1$.

Then we know that

$$|f(x_0) - 4| < 12|x_0 - 1|$$

 $< 12\delta$
 $< 12(\epsilon/12) = \epsilon.$

Thus, $\lim_{x\to 1} 8/(x^2+1) = 4$.

While working on this proof, we received no external assistance aside from advice from Professor Mehmetaj.