Solutions to Tutorial Sheet - 5 TEC103 An amplifies has a voltage gain of 500 without feedback. If a negative feedback its applied, the gain is reduced to 100. Calculate the fraction of output feelback. If, due to ageing of components, the gain without feedback falls by 20%, calculate the percentage fall in gain with feedback.

 S_{Al} . $A_{\text{V}} = 500$; $A_{\text{V}} = 100$

Avg = Av

100 = 500 1+500B

> 1+500B = 5

> 500 β = 4 > β = 0.008

If gain falls by 20% due to ageing, Av = 400

 $Av_f = \frac{400}{1 + 400 \times 0.008} = 95.24$

 $\frac{1}{6}$ fall in gain = $\frac{100-95\cdot 24}{100}$ = 4.76%

Q2 The schmitt trigger has + Vsat = 10V and has -Vsat = -10V, VA = 5V. The schmitt trigger characteristic are shown in Fig. Q2. Using this schmitt trigger, generate a square wave at a frequency of IKHZ specify required RC.

Fig. Q2 (Schmitt Trigger characteristice)

Sol.
$$V_{\text{sat}} = 10V$$
; $-V_{\text{sat}} = -10V$

$$\beta V_{\text{sat}} = 5$$

$$\Rightarrow \beta = \frac{5}{10} = 0.5$$

$$\Rightarrow \beta = \frac{-5}{-10} = 0.5$$

Spuare wave generator with above schmitt Trigger is as shown below.

Let us assume that the output voltage of the square wave generator be + Vsat at t=0. The output waveform will be as shown below. Ve, Vo BVsat - BVsat - Vsat $-T_1 \rightarrow \leftarrow T_2 V_{c}(t) = V_{c}(\omega) + (V_{c}(\omega) - V_{c}(\omega))e^{-t/RC}$ During charging & Ve(t) = Vc(0) et/RC + Vc(0) (1-e-t/RC) Vc(t) = - BVsate + Vsat (1-e-t/RC) V((0) = Vsat V2(0) = -BVsat Vc (T1) = BVsat = - BVsat e + Vsat (1-e-T/RC) => BVsat = Vsat + (-BVsat - Vsat)e-T/RC => B Vsat = Vsat - (I+B) Vsate -Ti/RC \Rightarrow $(\beta-1)$ Vsat = $-(1+\beta)$ Vsat $e^{-T_{i}/RC}$ => (β-1) = - (1+β) e+/RC > (1+B) = T/RC = (1-B) $\Rightarrow e^{-\frac{\pi}{4}/RC} = \frac{(1-\beta)}{(1+\beta)}$ $\Rightarrow -\frac{T_1}{RC} = ln\left(\frac{1-\beta}{1+\beta}\right)$ \Rightarrow -T₁ = RCln $\left(\frac{1-\beta}{1+\beta}\right)$ => T1 = RCln(1+B)

```
During discharging of capacitor \frac{V_c(\omega) = -V_{sat}}{V_c(t)} = \frac{V_c(\omega) = -V_{sat}}{V_c(\omega)} = \frac{V_c(\omega)}{V_c(\omega)} = \frac{V_c(\omega)}{
                                           Vc (T2) = - BVsat = BVsate - Vsat (1 - e - T2/RC)
                                                                                     > -BVsat = BVsat € - Vsat + Vsat €
                                                                                                    \Rightarrow -\beta = \beta = \frac{-T_2/RC}{-1 + e}
                                                                                                         \Rightarrow (1-\beta) = (1+\beta)e^{-T_2/RC}
                                                                                                                                                        \Rightarrow \frac{-T_2}{RC} = \ln\left(\frac{1-\beta}{1+\beta}\right)
                                                                                                                                                                                    \Rightarrow -T_2 = Rc ln \left(\frac{1-\beta}{1+\beta}\right)
                                                                                                                                                                                                                   \Rightarrow T<sub>2</sub> = Rcln\left(\frac{1+\beta}{1-\beta}\right) = T_1
                             T = T_1 + T_2 = 2RC ln\left(\frac{1+\beta}{1-\beta}\right)
      In the above clacut : B = 0.5
                                                                                        T = 2RCln\left(\frac{1.5}{0.5}\right) = 2RCln(3)
Specified frequency = f = 1KHz
                                                                                                                                                 \Rightarrow T = \frac{1}{f} = 10^{-3} \text{ sec}
                                                                         10^{-3} = 2.2RC
                                                                                                                     \Rightarrow RC = 10^{3} = 4.55 \times 10^{-4}
        If we choose C=IMF
                                                                                                                                                                     R = \frac{4.55 \times 10^4}{10^4} = 4.55 \times 10^2 = 455 \Omega
```

(Q3) An opamp is . having the saturation levels trigger the satura

Sol.

If
$$V_0 = V_H = + V_{sat}$$

 $V' = V_B = V_H \times R_2 + V_{Ref} \times \frac{R_1}{R_1 + R_2}$ As we go on increasing V'm(t) $R_1 + R_2$ when $V'in > V_B$, the output Vout drops to V_L

If
$$V_{out} = V_L = -V_{sat}$$

$$V' = V_A = V_L \times R_2 + V_{ref} \times \frac{R_1}{R_1 + R_2}$$

As we go on decreasing In (4) and when In < VA, the output Vont jumps to VH.

Transfer characteristic Vout V/s Vin is as shown below.

(Q4) The stable state of the monostable given in Fig. Q4 is output Vo at $\pm V_{sat} = 10V$. When a negative trigger at the non inverting terminal is applied the monochanges state and the output voltage Vo instantaneously changes to $-V_{sat} = -10V$.

i) Sketch the waveforms of voltage across the capacitor $V_c(t)$ and output voltage $V_o(t)$ starting from the instant of application of negative trigger. Label the amplitudes and transition times legibly.

ii) Show that the mono puts out a pulse at the output of width $T = Rc \ln 2$ and amplitude $\pm 10V$. [4+4]

Sol. $V_c(0) = 0$ as $V_0 = \pm 10V$ and diode is conducting, V = 5V. When trigger occurs $J_0 = -10V$, V = -5V, Diode off, capacity starts charging towards -10V. $V_c(t) = 0 + (-10-0)(1-e^{-t/Rc})$ $-5 = -10(1-e^{-T/Rc})$

$$\Rightarrow e^{-T/RC} = \frac{1}{2} \Rightarrow T = RCln 2$$

				. 1. 101		***************************************
Sol.		(17) 1.45	\T			
	Plan	(U,) - In(U2	-)]			
	= e	In(V1/V2)	= 5,			
			٧2			
The clacus	t can be	implem	ented usin	o Joseph	Hanic es	× ao va m
		*	per	J region	1 VIV. C 9 C/	· porcer.
and origin	rence amp	ufies.				
٧, ۵	log	a In(vi)				
	Log Amp life					
			Difference	× In (1/1/2)	Exporential	d V
			Amplified		Amplifier.	
V2 •	Log Amplipes					
		od In(v2)				
				,		
Implementat	ion using c	op-amps				
***************************************	Di					
V2 0 R	-					
		>	R			
	+/	0	~~~~	D3		and the finance of experience
		R			-	
						ν,
R	P2	R	+		+	ع <i>ا</i>
1 0 mm						•
		>	R			

(96 The cleanit of Fig. Q6 is, in essence, a noninventing amplifies with a feedback impedance ZN and is known as a negative-impedance converter (NIC). Find the Thevenin & driving - point impedance to the right of the input tegninals, and explain why such a name is appropriate. Assume that op-amp is ideal Fig. Q6 At investing node, the phason input current is given by $I_i^{\circ} = I_N = \frac{V_i - V_0}{Z_N}$ Vo = Vi - IiZN Since Va 20 $\frac{I_{p}}{Z_{p}} = \frac{V_{0} - V_{0}}{Z_{p}} = \frac{I_{Z}}{Z} = \frac{V_{0}^{2}}{Z_{p}}$ $V_0 = I_p Z_p + I_z Z$ $= I_{\rho}(Z_{\rho}+Z) = (Z_{\rho}+Z)\frac{V_{i}}{Z}$ Equating eq - 0 & 2 · Vi - IiZN = (ZP +1) Vi > Vi (1-21-1) = IiZN $\Rightarrow \frac{V_{i}}{I_{i}} = -\frac{ZN}{ZP}Z$ If Zp = ZN, then impredance Z appears as -ve of Free Lined Graph Paper from http://incompetech.com/graphpaper/lined/ -ve of its value, hence the name.