Importing Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/Churn_Modelling.csv')

df

	RowN umber	Custo merId	Surn ame	Credit Score	Geog raphy	Ge nde r	A g e	Ten ure	Bala nce	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
0	1	15634 602	Harg rave	619	Franc e	Fe mal e	4 2	2	0.00	1	1	1	101348.8	1
1	2	15647 311	Hill	608	Spain	Fe mal e	4	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fe mal e	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fe mal e	3 9	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fe mal e	4 3	2	1255 10.82	1	1	1	79084.10	0
99 95	9996	15606 229	Obiji aku	771	Franc e	Mal e	3 9	5	0.00	2	1	0	96270.64	0
99 96	9997	15569 892	John stone	516	Franc e	Mal e	3 5	10	5736 9.61	1	1	1	101699.7 7	0
99 97	9998	15584 532	Liu	709	Franc e	Fe mal e	3 6	7	0.00	1	0	1	42085.58	1
99	9999	15682	Sabb	772	Germ	Mal	4	3	7507	2	1	0	92888.52	1

	RowN umber	Custo merId	Surn ame	Credit Score	Geog raphy	Ge nde r	A g e	Ten ure	Bala nce	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
98		355	atini		any	e	2		5.31					
99 99	10000	15628 319	Walk er	792	Franc e	Fe mal e	2 8	4	1301 42.79	1	1	0	38190.78	0

 $10000 \text{ rows} \times 14 \text{ columns}$

df.head()

	RowN umber	Custo merId	Surn ame	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
0	1	15634 602	Harg rave	619	Franc e	Fem ale	4 2	2	0.00	1	1	1	101348.8	1
1	2	15647 311	Hill	608	Spain	Fem ale	4 1	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fem ale	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fem ale	3 9	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fem ale	4 3	2	1255 10.82	1	1	1	79084.10	0

df.shape

(10000, 14)

Univariate, Bivariate and MultiVariate Analysis

Univariate Analysis

```
df_france=df.loc[df['Geography']=='France']
df_spain=df.loc[df['Geography']=='Spain']
df_germany=df.loc[df['Geography']=='Germany']
```

 $plt.plot(df_france['Balance'],np.zeros_like(df_france['Balance']),'o')\\ plt.plot(df_spain['Balance'],np.zeros_like(df_spain['Balance']),'o')\\$

plt.plot(df germany['Balance'],np.zeros like(df germany['Balance']),'o') plt.xlabel('Age') plt.show()

Bivariate Analysis

sns.FacetGrid(df,hue="Geography",size=5).map(plt.scatter,"Age","Balance").add legend(); plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to 'height'; please update your code. warnings.warn(msg, UserWarning)

Multivariate Analysis

sns.pairplot(df,hue="Gender",size=3)

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The 'size' parameter has been renamed to 'height'; please update your code.

warnings.warn(msg, UserWarning)

<seaborn.axisgrid.PairGrid at 0x7f9a9f3029d0>

Descriptive Statistics

df.head()

	RowN umber	Custo merId	Surn ame	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
0	1	15634 602	Harg rave	619	Franc e	Fem ale	4 2	2	0.00	1	1	1	101348.8 8	1

	RowN umber	Custo merId	Surn ame	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
1	2	15647 311	Hill	608	Spain	Fem ale	4 1	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fem ale	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fem ale	3	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fem ale	4 3	2	1255 10.82	1	1	1	79084.10	0

df.mean() # Get the mean of each column

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569094e+07 CreditScore 6.505288e+02 3.892180e+01 Age Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

df.mean(axis=1) # Get the mean of each row

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. """Entry point for launching an IPython kernel.

- 0 1.430602e+06
- 1 1.440392e+06
- 2 1.444860e+06
- 3 1.435993e+06

```
4
     1.449399e+06
9995
      1.428483e+06
9996
     1.430866e+06
9997
     1.421579e+06
9998
      1.441922e+06
9999 1.437044e+06
Length: 10000, dtype: float64
df.median()
                    # Get the median of each column
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1: FutureWarning: Dropping of
nuisance columns in DataFrame reductions (with 'numeric only=None') is deprecated; in a future
version this will raise TypeError. Select only valid columns before calling the reduction.
 """Entry point for launching an IPython kernel.
RowNumber
                 5.000500e+03
CustomerId
                1.569074e+07
CreditScore
               6.520000e+02
             3.700000e+01
Age
Tenure
             5.000000e+00
Balance
              9.719854e+04
NumOfProducts
                  1.000000e+00
HasCrCard
                1.000000e+00
IsActiveMember
                  1.000000e+00
EstimatedSalary 1.001939e+05
Exited
             0.000000e+00
dtype: float64
norm data = pd.DataFrame(np.random.normal(size=100000))
norm data.plot(kind="density",
        figsize=(10,10));
plt.vlines(norm data.mean(),
                             # Plot black line at mean
      ymin=0,
      ymax=0.4,
      linewidth=5.0);
plt.vlines(norm data.median(), # Plot red line at median
      ymin=0,
      ymax=0.4,
```

linewidth=2.0,
color="red");

skewed_data = pd.DataFrame(np.random.exponential(size=100000))

```
skewed_data.plot(kind="density",
figsize=(10,10),
xlim=(-1,5));
```

plt.vlines(skewed_data.mean(), # Plot black line at mean ymin=0, ymax=0.8, linewidth=5.0);

plt.vlines(skewed_data.median(), # Plot red line at median ymin=0, ymax=0.8, linewidth=2.0, color="red");

norm_data = np.random.normal(size=50)
outliers = np.random.normal(15, size=3)
combined_data = pd.DataFrame(np.concatenate((norm_data, outliers), axis=0))

```
combined_data.plot(kind="density", figsize=(10,10), xlim=(-5,20));
```

plt.vlines(combined_data.mean(), # Plot black line at mean ymin=0, ymax=0.2, linewidth=5.0);

plt.vlines(combined_data.median(), # Plot red line at median ymin=0, ymax=0.2, linewidth=2.0, color="red");

df.mode()

	RowN umber	Custo merId	Surn ame	Credit Score	Geog raphy	Gen der	A ge	Ten ure	Bal anc e	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
0	1	15565 701	Smit h	850.0	Franc e	Mal e	37 .0	2.0	0.0	1.0	1.0	1.0	24924.92	0.0
1	2	15565 706	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
2	3	15565 714	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N

	RowN umber	Custo merId	Surn ame	Credit Score	Geog raphy	Gen der	A ge	Ten ure	Bal anc e	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
3		15565 779	NaN	NaN	NaN	Na N	N a N	Na N	NaN	4	NaN	NaN	NaN	Na N
4	5	15565 796	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
									•••					
99 95	9996	15815 628	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
99 96	9997	15815 645	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
99 97	9998	15815 656	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
99 98	9999	15815 660	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N
99 99	10000	15815 690	NaN	NaN	NaN	Na N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	Na N

 $10000 \text{ rows} \times 14 \text{ columns}$

Measures of Spread

```
df["Age"].describe()
count
       10000.000000
          38.921800
mean
std
        10.487806
min
         18.000000
25%
         32.000000
50%
         37.000000
75%
         44.000000
         92.000000
max
Name: Age, dtype: float64
df["Age"].quantile(0.75) - df["Age"].quantile(0.25)
12.0
df.boxplot(column="Age",
         return type='axes',
         figsize=(8,8)
plt.text(x=0.74, y=22.25, s="3rd Quartile")
plt.text(x=0.8, y=18.75, s="Median")
plt.text(x=0.75, y=15.5, s="1st Quartile")
plt.text(x=0.9, y=10, s="Min")
plt.text(x=0.9, y=33.5, s="Max")
plt.text(x=0.7, y=19.5, s="IQR", rotation=90, size=25);
```


df["Age"].var() 109.99408416841683

```
df["Age"].std()
10.487806451704609
abs_median_devs = abs(df["Age"] - df["Age"].median())
abs_median_devs.median() * 1.4826
8.8956
```

Skewness and Kurtosis

```
df["Age"].skew() # Check skewness
1.0113202630234552
df["Age"].kurt() # Check kurtosis
1.3953470615086956
norm data = np.random.normal(size=100000)
skewed_data = np.concatenate((np.random.normal(size=35000)+2,
                np.random.exponential(size=65000)),
                axis=0)
uniform data = np.random.uniform(0,2, size=100000)
peaked_data = np.concatenate((np.random.exponential(size=50000),
                np.random.exponential(size=50000)*(-1)),
                axis=0)
data df = pd.DataFrame({"norm":norm data,
             "skewed":skewed_data,
             "uniform":uniform data,
             "peaked":peaked data})
data df.plot(kind="density",
       figsize=(10,10),
       xlim=(-5,5));
```


data_df.skew()

norm -0.007037 skewed 1.002549 uniform -0.004434 peaked 0.018058 dtype: float64

data_df.kurt()

norm -0.009914 skewed 1.314497 uniform -1.201740 peaked 2.971592 dtype: float64

Handle the Missing values

df=pd.read_csv('/content/Churn_Modelling.csv')
df.head()

	RowN umber	Custo merId	Surn ame	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	Exi ted
0	1	15634 602	Harg rave	619	Franc e	Fem ale	4 2	2	0.00	1	1	1	101348.8	1
1	2	15647 311	Hill	608	Spain	Fem ale	4 1	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fem ale	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fem ale	3 9	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fem ale	4 3	2	1255 10.82	1	1	1	79084.10	0

df.isnull()

	RowN umber	Custo merId	Surn ame	Credit Score	Geog raphy	Gen der	A ge	Ten ure	Bal anc e	NumOfP roducts	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
0	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
1	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
2	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
3	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
4	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
99 95	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
99 96	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
99 97	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
99 98	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se
99 99	False	False	False	False	False	Fals e	Fa lse	Fals e	Fals e	False	False	False	False	Fal se

 $10000 \; rows \times 14 \; columns$

sns.heatmap(df.isnull(),yticklabels=**False**,cbar=**False**,cmap='viridis') <matplotlib.axes._subplots.AxesSubplot at 0x7f9a987d8290>

df.drop('Gender',axis=1,inplace=True) df.head()

	RowNu mber	Custo merId	Surn ame	Credit Score	Geogr aphy	A ge	Ten ure	Balan ce	NumOfPr oducts	HasCr Card	IsActive Member	Estimated Salary	Exi ted
0	1	156346 02	Hargr ave	619	France	42	2	0.00	1	1	1	101348.88	1
1	2	156473 11	Hill	608	Spain	41	1	83807 .86	1	0	1	112542.58	0
2	3	156193 04	Onio	502	France	42	8	15966 0.80	3	1	0	113931.57	1
3	4	157013 54	Boni	699	France	39	1	0.00	2	0	0	93826.63	0
4	5	157378 88	Mitch ell	850	Spain	43	2	12551 0.82	1	1	1	79084.10	0

Converting Categorical Features

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 13 columns):

Column Non-Null Count Dtype

0 RowNumber 10000 non-null int64 1 CustomerId 10000 non-null int64 2 Surname 10000 non-null object

- 3 CreditScore 10000 non-null int64
- 4 Geography 10000 non-null object
- 5 Age 10000 non-null int64
- 6 Tenure 10000 non-null int64
- 7 Balance 10000 non-null float64
- 8 NumOfProducts 10000 non-null int64
- 9 HasCrCard 10000 non-null int64
- 10 IsActiveMember 10000 non-null int64
- 11 EstimatedSalary 10000 non-null float64
- 12 Exited 10000 non-null int64

dtypes: float64(2), int64(9), object(2)

memory usage: 1015.8+ KB

pd.get_dummies(df['Geography'],drop_first=True).head()

	Germany	Spain
0	0	0
1	0	1
2	0	0
3	0	0
4	0	1

df.info

<bound method DataFrame.info of</pre>

	RowNumber	CustomerId	Surname (CreditScore	Geography	Age	Tenure
0	1	15634602	Hargrave	619	France	42	2
1	2	15647311	Hill	608	Spain	41	1
2	3	15619304	Onio	502	France	42	8
3	4	15701354	Boni	699	France	39	1
4	5	15737888	Mitchell	850	Spain	43	2
•••	•••	•••		•••	•••	•••	•••
999:	5 9996	15606229	Obijiaku	771	France	39	5
9990	5 9997	15569892	Johnstone	516	France	35	10
999′	7 9998	15584532	Liu	709	France	36	7
9998	8 9999	15682355	Sabbatini	772	Germany	42	3
9999	9 10000	15628319	Walker	792	France	28	4

	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	\
0	0.00	1	1	1	101348.88	
1	83807.86	1	0	1	112542.58	
2	159660.80	3	1	0	113931.57	
3	0.00	2	0	0	93826.63	
4	125510.82	1	1	1	79084.10	
•••	•••	•••	•••	•••	•••	
999	5 0.00	2	1	0	96270.64	
999	6 57369.61	l 1	1	1	101699.77	
999	7 0.00	1	0	1	42085.58	
999	8 75075.31	2	1	0	92888.52	
999	9 130142.7	9 1	1	0	38190.78	

	Exited
0	1
1	0
2	1
3	0
4	0
9995	0
9996	0
9997	1
9998	1
9999	0

[10000 rows x 13 columns]>

sex = pd.get_dummies(df['Age'],drop_first=**True**) embark = pd.get_dummies(df['Balance'],drop_first=**True**)

$$\label{thm:condition} \begin{split} & df.drop(['Age','HasCrCard','Surname','CustomerId'],axis=1,inplace=&\textbf{True}) \\ & df.head() \end{split}$$

	RowNumbe r	CreditScor e	Geograph y	Tenur e	Balance	NumOfProduct s	IsActiveMembe r	EstimatedSalar y	Exite d
0	1	619	France	2	0.00	1	1	101348.88	1
1	2	608	Spain	1	83807.86	1	1	112542.58	0
2	3	502	France	8	159660.8 0	3	0	113931.57	1

	Row	Numbe 1		reditS	cor e	Geograp	oh T y	enur e	Bala	nce	N	umOfI		t :	IsActive	eMemb	oe F r	Estima	tedSal	ar y	Exite d	
3		4	1		699	Fran	ce	1	C	0.00				2			0	Ģ	93826.	63	0	
4		5	5		850	Spa	in	2	12551	0.8				1			1	,	79084.	10	0	
		pd.c		t([di	f,sex,	embar	k],ax	is=1)														
	Ro wN um ber	Cr edi tSc ore	Ge og ra ph y	T e n u re	Ba la nc e	Num OfP rodu cts	IsAc tive Me mbe r	Esti mate dSal ary	E xi te d	1 9		21 26 92. 97	21 26 96. 32	21 27 78 .2	21 31 46 .2	21 43 46. 96	21 61 09. 88	22 15 32 .8	22 22 67. 63	23 83 87. 56	25 08 98. 09	
0	1	619	Fra nce	2	0.0	1	1	1013 48.8 8	1	0		0	0	0	0	0	0	0	0	0	0	
1	2	608	Sp ain	1	83 80 7.8 6	1	1	1125 42.5 8	0	0		0	0	0	0	0	0	0	0	0	0	
2	3	502	Fra nce	8	15 96 60.	3	0	1139 31.5 7	1	0		0	0	0	0	0	0	0	0	0	0	

5 rows × 6459 columns

850

Fra

Find the outliers and replace the outliers

0.0

12 55 10.

82

2

dataset = [11,10,12,14,12,15,14,13,15,102,12,14,17,19,107,10,13,12,14,12,108,12,11,14,13,15,10,15,12,10,14,13,15,10]

1

9382 6.63

7908

4.10

Detecting outlier using Z score

Using Z score

```
outliers=[]
def detect_outliers(data):
  threshold=3
  mean =np.mean(data)
  std =np.std(data)
foriin data:
z_score= (i- mean)/std
ifnp.abs(z_score) > threshold:
outliers.append(y)
return outliers
outlier_pt=detect_outliers(dataset)
outlier_pt
[0]
      101348.88
1
     112542.58
2
     113931.57
3
      93826.63
4
      79084.10
9995
       96270.64
9996 101699.77
9997
       42085.58
9998
       92888.52
9999
       38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64, 0
                                                         101348.88
     112542.58
2
     113931.57
3
      93826.63
4
      79084.10
9995 96270.64
9996 101699.77
9997
       42085.58
9998
       92888.52
9999
       38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64, 0
                                                         101348.88
1
     112542.58
2
     113931.57
3
      93826.63
4
      79084.10
9995
       96270.64
9996 101699.77
```

```
9997
        42085.58
9998
        92888.52
9999
        38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64]
## Perform all the steps of IQR
sorted(dataset)
[10,
10,
10,
10,
10,
11,
11,
12,
12,
12,
12,
12,
12,
12,
13,
13,
13,
13,
14,
14,
14,
14,
14,
14,
15,
15,
15,
15,
15,
17,
19,
102,
107,
108]
quantile1, quantile3=np.percentile(dataset,[25,75])
print(quantile1,quantile3)
12.0 15.0
```

Find the IQR

iqr_value=quantile3-quantile1
print(iqr_value)
3.0

Find the lower bound value and the higher bound value

lower_bound_val= quantile1 -(1.5 *iqr_value) upper_bound_val= quantile3 +(1.5 *iqr_value)

print(lower_bound_val,upper_bound_val)
7.5 19.5

Check for Categorical columns and perform encoding

df=pd.read_csv('/content/Churn_Modelling.csv')
df.head()

	RowN umber	Custo merId	Sur nam e	Credi tScore	Geog raph y	Ge nde r	A g e	Te nur e	Bala nce	NumOf Product s	HasC rCard	IsActive Member	Estimate dSalary	Exi ted
0	1	15634 602	Harg rave	619	Franc e	Fe mal e	4 2	2	0.00	1	1	1	101348.8	1
1	2	15647 311	Hill	608	Spain	Fe mal e	4	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fe mal e	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fe mal e	3 9	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fe mal e	4 3	2	1255 10.82	1	1	1	79084.10	0

df_numeric=df[['RowNumber', 'CustomerId', 'CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts','HasCrCard','IsActiveMember','EstimatedSalary','Exited']]
df_categorical=df[['Surname', 'Geography', 'Gender']]

df_numeric.head()

	RowNu mber	Custome rId	CreditSc ore	A ge	Tenu re	Balanc e	NumOfPro ducts	HasCrC ard	IsActiveMe mber	EstimatedS alary	Exit ed
0	1	1563460 2	619	42	2	0.00	1	1	1	101348.88	1
1	2	1564731 1	608	41	1	83807. 86	1	0	1	112542.58	0
2	3	1561930 4	502	42	8	159660 .80	3	1	0	113931.57	1
3	4	1570135 4	699	39	1	0.00	2	0	0	93826.63	0
4	5	1573788 8	850	43	2	125510 .82	1	1	1	79084.10	0

df_categorical.head()

	Surname	Geography	Gender
0	Hargrave	France	Female
1	Hill	Spain	Female
2	Onio	France	Female
3	Boni	France	Female
4	Mitchell	Spain	Female

print(df['Surname'].unique())
print(df['Geography'].unique())
print(df['Gender'].unique())
['Hargrave' 'Hill' 'Onio' ... 'Kashiwagi' 'Aldridge' 'Burbidge']
['France' 'Spain' 'Germany']
['Female' 'Male']

 $from {\bf s} klearn. preprocessing import Label Encoder$

marry_encoder=LabelEncoder()

marry_encoder.fit(df_categorical['Gender'])

```
LabelEncoder()
marry_values=marry_encoder.transform(df_categorical['Gender'])
print("Before Encoding:", list(df_categorical['Gender'][-10:]))
print("After Encoding:", marry_values[-10:])
print("The inverse from the encoding result:",
marry encoder.inverse transform(marry values[-10:]))
Before Encoding: ['Male', 'Female', 'Male', 'Male', 'Female', 'Male', 
'Female']
After Encoding: [1 0 1 1 0 1 1 0 1 0]
The inverse from the encoding result: ['Male' 'Female' 'Male' 'Male' 'Female' 'Male' 'Male' 'Male'
'Female' 'Male'
 'Female'1
residence_encoder=LabelEncoder()
residence values=residence encoder.fit transform(df categorical['Geography'])
print("Before Encoding:", list(df_categorical['Geography'][:5]))
print("After Encoding:", residence_values[:5])
print("The inverse from the encoding result:",
residence_encoder.inverse_transform(residence_values[:5]))
Before Encoding: ['France', 'Spain', 'France', 'France', 'Spain']
After Encoding: [0 2 0 0 2]
The inverse from the encoding result: ['France' 'Spain' 'France' 'France' 'Spain']
fromsklearn.preprocessingimportOneHotEncoder
gender_encoder=OneHotEncoder()
fromsklearn.preprocessingimportOneHotEncoder
importnumpyas np
gender encoder=OneHotEncoder()
gender_reshaped=np.array(df_categorical['Gender']).reshape(-1, 1)
gender_values=gender_encoder.fit_transform(gender_reshaped)
print(df_categorical['Gender'][:5])
print()
print(gender_values.toarray()[:5])
print(gender_encoder.inverse_transform(gender_values)[:5])
0 Female
      Female
1
2 Female
3 Female
4 Female
```

```
Name: Gender, dtype: object
[[1. 0.]]
[1.0.]
[1. 0.]
[1.0.]
[1.0.]
[['Female']
['Female']
['Female']
['Female']
['Female']]
smoke_encoder=OneHotEncoder()
smoke_reshaped=np.array(df_categorical['Surname']).reshape(-1, 1)
smoke_values=smoke_encoder.fit_transform(smoke_reshaped)
print(df_categorical['Surname'][:5])
print()
print(smoke_values.toarray()[:5])
print()
print(smoke_encoder.inverse_transform(smoke_values)[:5])
0
   Hargrave
      Hill
1
2
      Onio
3
      Boni
   Mitchell
Name: Surname, dtype: object
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. \ 0. \ 0. \ ... \ 0. \ 0. \ 0.]]
[['Hargrave']
['Hill']
['Onio']
['Boni']
['Mitchell']]
work encoder=OneHotEncoder()
work_reshaped=np.array(df_categorical['Geography']).reshape(-1, 1)
work_values=work_encoder.fit_transform(work_reshaped)
print(df_categorical['Geography'][:5])
print(work_values.toarray()[:5])
print()
```

print(work_encoder.inverse_transform(work_values)[:5])

- 0 France
- 1 Spain
- 2 France
- 3 France
- 4 Spain

Name: Geography, dtype: object

- [[1. 0. 0.]
- [0. 0. 1.]
- [1. 0. 0.]
- [1. 0. 0.]
- [0. 0. 1.]]

[['France']

['Spain']

['France']

['France']

['Spain']]

 $\label{lem:categorical_encoded} $$ df_categorical_encoded=pd_get_dummies(df_categorical, drop_first=True) $$ df_categorical_encoded.head() $$$

	Surnamee—Abbie	S u r n a m e - A b b o t t	S u r n a m e - Ā b d u ll a h	S u r n a m e - Ā b d u l o v	S u r n a m e - A b e l	S u r n a m e - A b e r n a t h y	S u r n a m e -Ā b r a m o v	S u r n a m e - A b r a m o v a m o v	S u r n a m e -A b r a m o v ic h	S u r n a m e - A b r a m o w it z	 Sur nam e_Z otov a	Sur na me_ Zox	Sur nam e_Z uba rev	Sur nam e_Z uba reva	Sur nam e_Z uev	Sur nam e_Z uye v	Sur nam e_Z uye va	Geo grap hy_ Ger man y	Geo gra phy _Sp ain	G e n d e r - M a l e
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

S u r n a m e - A b b i e	S u r n a m e - A b b o t t	S u r n a m e - A b d u III a h	S u r n a m e - A b d u l o v	S u r n a m e - A b e l	S u r n a m e - A b e r n a t h y	S u r n a m e - A b r a m o v	S u r n a m e -A b r a m o v	S u r n a m e -A b r a m o v ic h	S u r n a m e - Ā b r a m o w it z		Sur nam e_Z otov a	Sur na me_ Zox	Sur nam e_Z uba rev	Sur nam e_Z uba reva	Sur nam e_Z uev	Sur nam e_Z uye v	Sur nam e_Z uye va	Geo grap hy_ Ger man y	Geo gra phy _Sp ain	G e n d e r M a l e
---------------------------	-----------------------------	---------------------------------	-------------------------------	-------------------------	-----------------------------------	---	---	--	------------------------------------	--	--------------------------------	-------------------------	---------------------------------	----------------------------------	--------------------------	-------------------------------	--------------------------------	---------------------------------------	---------------------------------	--

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

5 rows × 2934 columns

df_new=pd.concat([df_numeric, df_categorical_encoded], axis=1)
df_new.head()

	R o w N u m be	C us to m er Id	C re di tS co re	A g e	T e n u r	B al a n c	Nu m Of Pr od uct s	H as C r C ar d	Is Ac tiv eM em be r	Est im ate dS ala ry		Su rn am e_ Zo tov a	Su rn a m e_ Zo x	Sur na me _Z ub are v	Sur na me _Z uba rev a	Su rn a me _Z ue v	Su rn am e_ Zu ye v	Su rn am e_ Zu yev a	Geo gra phy _Ge rma ny	Ge ogr ap hy _S pai n	G en de r_ M al e
0	1	15 63 46 02	61 9	4 2	2	0. 0 0	1	1	1	10 13 48. 88		0	0	0	0	0	0	0	0	0	0
1	2	15 64 73 11	60 8	4	1	8 3 8 0 7. 8 6	1	0	1	11 25 42. 58		0	0	0	0	0	0	0	0	1	0
2	3	15 61 93 04	50 2	4 2	8	1 5 9 6 6 0. 8	3	1	0	11 39 31. 57		0	0	0	0	0	0	0	0	0	0
3	4	15 70	69	3	1	0. 0	2	0	0	93 82	·	0	0	0	0	0	0	0	0	0	0

5 rows × 2945 columns

140000

Split the data into dependent and independent variables.

```
df=pd.read_csv('/content/Churn_Modelling.csv')
print(df["Balance"].min())
print(df["Balance"].max())
print(df["Balance"].mean())
0.0
250898.09
76485.889288
print(df.count(0))
RowNumber
                  10000
CustomerId
                10000
Surname
               10000
CreditScore
               10000
Geography
                10000
Gender
              10000
Age
             10000
Tenure
              10000
Balance
              10000
NumOfProducts
                  10000
HasCrCard
                10000
IsActiveMember
                  10000
EstimatedSalary
                 10000
Exited
             10000
dtype: int64
int(df.shape)
(10000, 14)
print(df.size)
```

```
y=df.iloc[:,:-1].values
print(X)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
...

[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
[10000 15628319 'Walker' ... 1 0 38190.78]]
Y =df.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
```

Scale the independent variables

```
df=pd.read_csv('/content/Churn_Modelling.csv')
```

```
x =df[['Age', 'Tenure']].values
y =df['Gender'].values
```

fig, ax=plt.subplots(ncols=2, figsize=(12, 4))

```
ax[0].scatter(x[:,0], y)
ax[1].scatter(x[:,1], y)
```

plt.show()

fig, ax=plt.subplots(figsize=(12, 4))

```
ax.scatter(x[:,0], y)
ax.scatter(x[:,1], y)
```

matplotlib.collections.PathCollection at 0x7f9a8a854ad0>

fig, ax=plt.subplots(figsize=(12, 4))

ax.hist(x[:,0]) ax.hist(x[:,1])

(array([413., 1035., 1048., 1009., 989., 1012., 967., 1028., 1025., 1474.]),

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]),

<a list of 10 Patch objects>)

${\bf from} {\bf s} klearn. preprocessing {\bf import} Standard Scaler \\ {\bf from} {\bf s} klearn. {\bf preprocessing import} {\bf MinMaxScaler} \\$

fig, ax=plt.subplots(figsize=(12, 4))

scaler =StandardScaler()
x_std=scaler.fit_transform(x)

ax.hist(x_std[:,0])
ax.hist(x_std[:,1])

(array([413., 1035., 1048., 1009., 2001., 0., 1995., 0., 1025., 1474.]),

array([-1.73331549, -1.38753759, -1.04175968, -0.69598177, -0.35020386, -0.00442596, 0.34135195, 0.68712986, 1.03290776, 1.37868567, 1.72446358]),

<a list of 10 Patch objects>)

fig, ax=plt.subplots(figsize=(12, 4))

```
scaler =StandardScaler()
x_std=scaler.fit_transform(x)
ax.scatter(x_std[:,0], y)
```

ax.scatter(x_std[:,1], y)

<matplotlib.collections.PathCollection at 0x7f9a8a2fde50>

fig, ax=plt.subplots(figsize=(12, 4))

```
scaler =MinMaxScaler()
x_minmax=scaler.fit_transform(x)

ax.hist(x_minmax [:,0])
ax.hist(x_minmax [:,1])

(array([ 413., 1035., 1048., 1009., 989., 1012., 967., 1028., 1025., 1474.]),
array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
<a list of 10 Patch objects>)
```


fig, ax=plt.subplots(figsize=(12, 4))

scaler =MinMaxScaler()
x_minmax=scaler.fit_transform(x)

ax.scatter(x_minmax [:,0], y)
ax.scatter(x_minmax [:,1], y)

<matplotlib.collections.PathCollection at 0x7f9a8a0cae10>

ig, ax=plt.subplots(figsize=(12, 4))

scaler =MinMaxScaler()
x_minmax=scaler.fit_transform(x)

ax.scatter(x_minmax [:,0], y)

matplotlib.collections.PathCollection at 0x7f9a8a0caf10>

fig, ax=plt.subplots(figsize=(12, 4))

```
scaler =MinMaxScaler()
x_minmax=scaler.fit_transform(x)

ax.hist(x_minmax [:,0])

(array([ 611., 2179., 3629., 1871., 910., 441., 208., 127., 20., 4.]),
 array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
 <a href="mailto:display: list of 10 Patch objects"></a>)
```


fromsklearn.model_selectionimporttrain_test_split fromsklearn.pipelineimport Pipeline fromsklearn.linear_modelimportSGDRegressor fromsklearn.preprocessingimportStandardScaler fromsklearn.preprocessingimportMinMaxScaler fromsklearn.metricsimportmean_absolute_error importsklearn.metricsas metrics

import pandas as pd
importnumpyas np
importmatplotlib.pyplotasplt

```
# Import Data
df=pd.read_csv('/content/Churn_Modelling.csv')
x =df[['Age', 'Tenure']].values
y =df['Balance'].values

# Split into a training and testing set
X_train, X_test, Y_train, Y_test=train_test_split(x, y)

# Define the pipeline for scaling and model fitting
pipeline =Pipeline([
    ("MinMax Scaling", MinMaxScaler()),
    ("SGD Regression", SGDRegressor())
])

# Scale the data and fit the model
pipeline.fit(X_train, Y_train)
```

Evaluate the model

 $Y_pred=pipeline.predict(X_test)$

print('Mean Absolute Error: ', mean_absolute_error(Y_pred, Y_test))

print('Score', pipeline.score(X_test, Y_test))

Mean Absolute Error: 57120.533393590835

Score 0.0004207814312172653

Split the data into training and testing

dataset =pd.read_csv('/content/Churn_Modelling.csv')
print(dataset)

	RowNumber	CustomerId	Surname (CreditScore	Geography	Gender	Age \
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43
•••			•••				•••
999	95 9996	15606229	Obijiaku	771	France	Male	39
999	96 9997	15569892	Johnstone	516	France	Male	35
999	97 9998	15584532	Liu	709	France	Female	36
999	98 9999	15682355	Sabbatini	772	Germany	Male	42
999	99 10000	15628319	Walker	792	France	Female	28

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember \
0	2	0.00	1	1	1
1	1 8	83807.86	1	0	1
2	8 1	59660.80	3	1	0
3	1	0.00	2	0	0
4	2 1	25510.82	1	1	1
•••	•••	•••	•••	•••	•••
999	5 5	0.00	2	1	0
999	6 10 3	57369.61	1	1	1
999	7 7	0.00	1	0	1
999	8 3 75	5075.31	2	1	0
999	9 4 13	30142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
•••		•••
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1

```
9998
        92888.52
                    1
9999
        38190.78
                    0
[10000 rows x 14 columns]
dataset.drop(["HasCrCard"],axis=1,inplace=True)
print(dataset.shape)#no. of rows and colume
print(dataset.head(10))
(10000, 7)
   CustomerId CreditScore Age
                                     Tenure Balance
                                                                IsActiveMember
0
     15634602
                       619
                              42
                                       2
                                                0.00
                                                                    1
     15647311
                        608 41
                                      1 83807.86
1
                                                                    1
2
    15619304
                       502 42
                                      8 159660.80
                                                                    0
3
     15701354
                       699
                              39
                                       1
                                                0.00
                                                                    0
                                      2 125510.82
                       850
                              43
4
     15737888
                                                                    1
     15574012
                              44
5
                       645
                                       8 113755.78
                                                                    0
                              50
6
     15592531
                       822
                                                0.00
                                                                    1
                                      4 115046.74
7
     15656148
                       376
                              29
                                                                    0
8
     15792365
                       501
                              44
                                      4 142051.07
                                                                    1
9
     15592389
                       684
                              27
                                      2 134603.88
                                                                    1
     EstimatedSalary
0
        101348.88
        112542.58
1
2
        113931.57
3
          93826.63
          79084.10
4
5
         149756.71
6
         10062.80
7
         119346.88
8
          74940.50
          71725.73
X=dataset.iloc[:,:-1].values
X
array([[1.5634602e+07, 6.1900000e+02, 4.2000000e+01, 2.0000000e+00,
    0.0000000e+00, 1.0000000e+00],
   [1.5647311e+07, 6.0800000e+02, 4.10000000e+01, 1.00000000e+00,
    8.3807860e+04, 1.0000000e+00],
   [1.5619304e+07, 5.0200000e+02, 4.2000000e+01, 8.0000000e+00,
    1.5966080e+05, 0.0000000e+00],
   [1.5584532e+07, 7.0900000e+02, 3.60000000e+01, 7.00000000e+00,
    0.0000000e+00, 1.0000000e+00],
   [1.5682355e+07, 7.7200000e+02, 4.2000000e+01, 3.0000000e+00,
    7.5075310e+04, 0.00000000e+00],
   [1.5628319e+07, 7.9200000e+02, 2.80000000e+01, 4.00000000e+00,
    1.3014279e+05, 0.00000000e+00]
Y=dataset.iloc[:,-1].values
array([101348.88, 112542.58, 113931.57, ..., 42085.58, 92888.52,
```

```
38190.78])
```

fromsklearn.model_selectionimporttrain_test_split

X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size= 0.25, random_state= 0)

$from {\bf s} klearn.preprocessing import Standard Scaler$

sc=StandardScaler()

X_train=sc.fit_transform(X_train)

X_test=sc.transform(X_test)

print(X_train)

 $[[-1.34333028 -0.73550706 \ 0.01526571 \ 0.00886037 \ 0.67316003 \ -1.03446007]$

[1.55832963 1.02442719 -0.65260917 0.00886037 -1.20772417 -1.03446007]

[-0.65515619 0.80829492 -0.46178778 1.39329338 -0.35693706 0.96668786]

...

 $[-1.63542994 \ 0.90092304 - 0.36637708 \ 0.00886037 \ 1.36657199 - 1.03446007]$

 $[-0.38540456 - 0.62229491 - 0.08014499 \ 1.39329338 - 1.20772417 \ 0.96668786]$

 $[-1.37829524 - 0.28265848 \ 0.87396199 - 1.37557264 \ 0.51741687 - 1.03446007]]$

print(X_test)

 $[[-1.05852196 \ -0.55025082 \ -0.36637708 \ \ 1.04718513 \ \ 0.88494297 \ \ 0.96668786]$

 $[-0.51554728 -1.31185979 \ 0.11067641 -1.02946438 \ 0.43586703 -1.03446007]$

[-0.8058485 0.57157862 0.3014978 1.04718513 0.31486378 0.96668786]

...

 $[\ 0.25326371\ \ 1.95070838\ \ 0.01526571\ -1.37557264\ \ 0.30819395\ -1.03446007]$

 $[-0.17836122 \ 0.29369426 \ -0.08014499 \ 0.70107688 \ 0.55698791 \ -1.03446007]$

 $[0.40190663 \ 0.870047 \ -0.74801987 \ -0.68335613 \ 0.7006957 \ -1.03446007]]$