```
In [1]: import numpy as np
import pandas as pd

In [2]: df = pd.read_csv('datafile_02.csv')
```

Out[2]:

print(df.columns)

df.head()

	Port	Traffic in Eleventh Plan (MT) (2011- 12)Proj.	Traffic in Eleventh Plan (MT) (2011-12) Ach.	Traffic in Eleventh Plan (MT) (2011-12) %	Total Capacity in Eleventh Plan (MT) (2011-12) Proj.	Total Capacity in Eleventh Plan (MT) (2011-12) Ach.	Total Capacity in Eleventh Plan (MT) (2011-12) %
0	Kolkata	1343	1223	9100	3145	1635	5100
1	Haldia	4450	3101	7000	6340	5070	7900
2	Paradeep	7640	5425	7100	10640	7650	7100
3	Visakhapatnam	8220	6742	8200	10810	7293	6700
4	Ennore	4700	1496	3200	6420	3100	4800

```
In [3]: # Renaming the columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Proj
df
```

Out[3]:

	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_Projected	Total_Ca _l
0	Kolkata	1343	1223	9100	3145	
1	Haldia	4450	3101	7000	6340	
2	Paradeep	7640	5425	7100	10640	
3	Visakhapatnam	8220	6742	8200	10810	
4	Ennore	4700	1496	3200	6420	
5	Chennai	5750	5571	9700	7230	
6	Tuticorin	3172	2810	8900	6398	
7	Cochin	3817	2010	5300	5475	
8	NMPT	4881	3294	6800	6050	
9	Mormugao	4455	3900	8800	6690	
10	Mumbai	7105	5618	7900	9191	
11	JNPT	6604	6575	10000	9560	
12	Kandla	8672	8250	9500	12220	

```
In [4]: # Perparing the Calculations:
        Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)
        Traffic_Percent
Out[4]: 0
              91.06
        1
              69.69
        2
              71.01
        3
              82.02
              31.83
        4
        5
              96.89
        6
              88.59
        7
              52.66
        8
              67.49
              87.54
        9
        10
              79.07
        11
              99.56
        12
              95.13
        dtype: float64
In [5]: Total_Percent = round( (df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*:
        Total_Percent
Out[5]: 0
               51.99
               79.97
        1
        2
               71.90
        3
               67.47
               48.29
        4
        5
              110.26
               52.11
        6
        7
               74.85
        8
               84.25
        9
               62.63
        10
               48.45
               66.95
        11
               71.12
        12
```

dtype: float64

```
In [6]: # Replacing the existing columns with newly created columns
    df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent
    df.iloc[:,3:4] = Traffic_Percent
    df.iloc[:,6:] = Total_Percent
    df
```

Out[6]:		Port	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Projected	Т
	0	Kolkata	1343	1223	91.06	3145	
	1	Haldia	4450	3101	69.69	6340	
	2	Paradeep	7640	5425	71.01	10640	
	3	Visakhapatnam	8220	6742	82.02	10810	
	4	Ennore	4700	1496	31.83	6420	
	5	Chennai	5750	5571	96.89	7230	
	6	Tuticorin	3172	2810	88.59	6398	
	7	Cochin	3817	2010	52.66	5475	
	8	NMPT	4881	3294	67.49	6050	
	9	Mormugao	4455	3900	87.54	6690	
	10	Mumbai	7105	5618	79.07	9191	
	11	JNPT	6604	6575	99.56	9560	

In [7]: df.shape

8250

95.13

12220

8672

Out[7]: (13, 7)

12

Kandla

```
In [8]: # Checking for null values
         df.isnull().sum()
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 13 entries, 0 to 12
         Data columns (total 7 columns):
              Column
                                        Non-Null Count Dtype
         ---
                                                        ----
          0
              Port
                                        13 non-null
                                                        object
              Traffic_Projected
          1
                                        13 non-null
                                                        int64
          2
             Traffic_Achieved
                                        13 non-null
                                                        int64
          3
              Traffic_Percent%
                                        13 non-null
                                                        float64
          4
              Total_Capacity_Projected 13 non-null
                                                        int64
          5
              Total_Capacity_Achieved
                                        13 non-null
                                                        int64
          6
              Total_Percent%
                                        13 non-null
                                                        float64
         dtypes: float64(2), int64(4), object(1)
         memory usage: 856.0+ bytes
 In [9]: # Checking for null values
         df.isnull().sum()
 Out[9]: Port
                                     0
         Traffic_Projected
                                     0
         Traffic_Achieved
                                     0
         Traffic_Percent%
                                     0
         Total_Capacity_Projected
                                     0
         Total_Capacity_Achieved
                                     0
         Total_Percent%
                                     0
         dtype: int64
In [10]: df.describe()
```

Out[10]:	Traffic_Projected	Traffic_Achieved	Traffic_F
----------	-------------------	------------------	-----------

	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Projected	Total_Capacity
count	13.000000	13.000000	13.000000	13.000000	
mean	5446.846154	4308.846154	77.887692	7705.307692	5
std	2133.280019	2212.894855	19.382398	2570.242673	2
min	1343.000000	1223.000000	31.830000	3145.000000	1
25%	4450.000000	2810.000000	69.690000	6340.000000	4
50%	4881.000000	3900.000000	82.020000	6690.000000	5
75%	7105.000000	5618.000000	91.060000	9560.000000	7
max	8672.000000	8250.000000	99.560000	12220.000000	8
4					

In [11]: #Finding Outliers anr replacing the outliers import seaborn as sns import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [17.50, 3.50] plt.rcParams["figure.autolayout"] = True sns.boxplot(x='Port',y='Traffic_Projected',data=df)

Out[11]: <AxesSubplot:xlabel='Port', ylabel='Traffic_Projected'>


```
In [12]: # Visualization using various plots
    import matplotlib.pyplot as plt
    import matplotlib.pyplot as plt
    import seaborn as sns

plt.scatter(df.Port,df.Traffic_Projected)
    sns.set()
```



```
In [14]: sns.boxplot(x='Port',y='Traffic_Projected',data=df)
```

Out[14]: <AxesSubplot:xlabel='Port', ylabel='Traffic_Projected'>


```
In [15]: sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x2101ad12fd0>


```
In [16]: sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x2101c0b47c0>


```
In [17]: colors=['r','k','g','b','y']
    plt.pie(df.Traffic_Projected,labels=df.Port,colors=colors,startangle=135)
```

```
Out[17]: ([<matplotlib.patches.Wedge at 0x2101c185eb0>,
            <matplotlib.patches.Wedge at 0x2101c192400>,
            <matplotlib.patches.Wedge at 0x2101c192880>,
            <matplotlib.patches.Wedge at 0x2101c192d00>,
            <matplotlib.patches.Wedge at 0x2101c19f1c0>,
            <matplotlib.patches.Wedge at 0x2101c185040>,
            <matplotlib.patches.Wedge at 0x2101c19fa90>,
            <matplotlib.patches.Wedge at 0x2101c19ff10>,
            <matplotlib.patches.Wedge at 0x2101c1ae3d0>,
            <matplotlib.patches.Wedge at 0x2101c1ae850>,
            <matplotlib.patches.Wedge at 0x2101c1aecd0>,
            <matplotlib.patches.Wedge at 0x2101c30c190>,
            <matplotlib.patches.Wedge at 0x2101c30c610>],
           [Text(-0.8227559810574577, 0.7301182066173808, 'Kolkata'),
            Text(-0.9813250715975654, 0.49699205612769437, 'Haldia'),
            Text(-1.0974872598930092, -0.07430823892769065, 'Paradeep'),
            Text(-0.7887307236408752, -0.7667488803936667, 'Visakhapatnam'),
            Text(-0.24681684658019215, -1.0719521650914328, 'Ennore'),
            Text(0.2586200998460918, -1.0691658636318304, 'Chennai'),
Text(0.6508775584042567, -0.8867685176897709, 'Tuticorin'),
            Text(0.8904218552781084, -0.645870667891871, 'Cochin'),
            Text(1.068042956118005, -0.2632190036580062, 'NMPT'),
            Text(1.083660055487473, 0.18889384357592884, 'Mormugao'),
            Text(0.85153993640342, 0.6963330644957625, 'Mumbai'),
            Text(0.3009306210259454, 1.058036275998578, 'JNPT'),
            Text(-0.4290148932653011, 1.0128900341876024, 'Kandla')])
```



```
In [18]: plt.pie(df.Traffic_Achieved,labels=df.Port,colors=colors,startangle=135)
```

```
Out[18]: ([<matplotlib.patches.Wedge at 0x2101c346be0>,
           <matplotlib.patches.Wedge at 0x2101c354130>,
           <matplotlib.patches.Wedge at 0x2101c3545b0>,
           <matplotlib.patches.Wedge at 0x2101c3549a0>,
           <matplotlib.patches.Wedge at 0x2101c354dc0>,
           <matplotlib.patches.Wedge at 0x2101c346af0>,
           <matplotlib.patches.Wedge at 0x2101c363610>,
           <matplotlib.patches.Wedge at 0x2101c363a30>,
           <matplotlib.patches.Wedge at 0x2101c363e50>,
           <matplotlib.patches.Wedge at 0x2101c3712b0>,
           <matplotlib.patches.Wedge at 0x2101c3716d0>,
           <matplotlib.patches.Wedge at 0x2101c371af0>,
           <matplotlib.patches.Wedge at 0x2101c371f10>],
           [Text(-0.8292984732192152, 0.7226783809664425, 'Kolkata'),
           Text(-0.9785761523202932, 0.5023830352529937, 'Haldia'),
           Text(-1.0999917035067, -0.004272261278115301, 'Paradeep'),
           Text(-0.8509776584186843, -0.6970201036356506, 'Visakhapatnam'),
           Text(-0.4510472262335761, -1.0032728440992498, 'Ennore'),
           Text(-0.02876119418292548, -1.0996239328557615, 'Chennai'),
           Text(0.472408825560159, -0.9933931253702492, 'Tuticorin'),
           Text(0.720536507722156, -0.831160117570351, 'Cochin'),
           Text(0.932508592180857, -0.5834618458038848, 'NMPT'),
           Text(1.086706953339725, -0.1704933944852213, 'Mormugao'),
           Text(1.022266221308968, 0.406167173428238, 'Mumbai'),
           Text(0.535803745383295, 0.9606843115369551, 'JNPT'),
           Text(-0.3488393338981779, 1.0432215100952797, 'Kandla')])
```



```
In [19]: plt.plot(df.Port,df.Total_Capacity_Projected,label='Cap Proj.')
plt.plot(df.Port,df.Total_Capacity_Achieved,label='Cap Ach.')
plt.legend()
```

Out[19]: <matplotlib.legend.Legend at 0x2101aafd160>

In [21]: plt.bar(df.Port,df.Total_Capacity_Projected,label='Total_capacity',color='g')
 plt.bar(df.Port,df.Total_Capacity_Achieved,label='Achieved-capacity',color='k')
 plt.legend()

Out[21]: <matplotlib.legend.Legend at 0x2101633e8e0>


```
In [ ]:
```