Feuille d'exercices 10

Exercice 1.

Soit $p \neq 2,5$. Le groupe de Galois d'une extension de corps finis étant déterminé par son degré, il s'agit de trouver le degré d'un corps de décomposition de $(f \mod p)$, c'est-à-dire le plus petit entier $d \geq 1$ tel que le groupe (cyclique) $\mathbb{F}_{p^d}^{\times}$ contienne les 10 racines 10-ièmes de l'unité. Ceci se produit si et seulement si p^d-1 est divisible par 10 : l'entier d est l'ordre de p dans $(\mathbb{Z}/10\mathbb{Z})^{\times} \simeq \mathbb{Z}/4\mathbb{Z}$. Modulo 10, il y a 4 possibilités pour p; s'il est congru respectivement à 1,3,7=-3,9=-1 modulo 10, son ordre est, respectivement, 1,4,4,2. Les groupes de Galois correspondants sont $\{0\}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$.

Exercice 2.

- (i) Appliquer par exemple le critère d'Eisenstein[-Schönemann] pour p = 2, ou constater qu'il est irréductible sur \mathbb{F}_3 .
- (ii) [Méthode analytique] Une étude de fonction permet de voir que le polynôme P a trois racines réelles. Par exemple, parce P' a deux racines réelles et que P(0) > 0 > P(1), de sorte que les valeurs de P en les deux extrema locaux sont de signes opposés. La conjugaison complexe induit donc bien une transposition (des deux racines non réelles conjuguées).

[Méthode algébrique] Le polynôme $(X^2-7X-118) \in \mathbb{F}_{257}[X]$ est irréductible car son discriminant, 7, n'est pas un carré (modulo 257), comme on peut le voir par un calcul laborieux, montrant que les résidus quadratiques sont $\{0,1,2,4,8,9,11,13,15,16,17,18,\ldots,248,249,253,255,256\}$, ou bien en utilisant la *loi de réciprocité quadratique*, si on la connaît. Il résulte alors du théorème de réduction modulo p (Dedekind) que le groupe de Galois de P contient une transposition.

(iii) Il résulte de (i) que G contient un 5-cycle. En effet, il agit transitivement sur les racines donc (équation aux classes) est de cardinal divisible par 5 et un élément d'ordre 5 de S_5 — dont l'existence est assurée par Cauchy — est un 5-cycle. (Variante : utiliser le théorème de réduction modulo p=3.) D'autre part, il résulte de (ii) qu'il contient également une transposition.

On vérifie que tout sous-groupe de S_5 contenant deux tels éléments, que l'on peut supposer être (01234) et (0x) avec $x \neq 0$, est S_5 tout entier. Ceci est également vrai si on remplace 5 par un nombre premier quelconque et résulte du fait que l'on a aussi la transposition (x2x) — en conjuguant par la translation $t \to t+x$ — donc (02x) et, plus généralement tous les (0kx). Voir l'exercice 4 de la feuille 1 pour les détails.

Exercice 3.

Posons $P = X^5 - X - 1$ et $G = \operatorname{Gal}(P, \mathbf{Q})$. D'après le cours, le polynôme P est résoluble par radicaux si et seulement si le groupe G est résoluble. On calcule G en réduisant modulo 2 et 3. La décomposition de $\bar{P} \in \mathbf{F}_2[X]$ en facteurs irréductibles étant $(X^2 + X + 1)(X^3 + X^2 + 1)$, on sait par le théorème de la réduction modulo p que $G \subset \mathfrak{S}_5$ contient une transposition. D'ailleurs, la réduction $\bar{P} \in \mathbf{F}_3[X]$ est irréductible et G contient donc un 5-cycle d'après le théorème de la réduction modulo p. Comme une transposition et un 5-cycle engendrent \mathfrak{S}_5 , on conclut $G = \mathfrak{S}_5$. Or, ce groupe n'est pas résoluble.

Exercice 4.

(i) Soient U_p l'ensemble des racines p-ièmes de 1 et ξ une racine primitive. Le discriminant est

$$(-1)^{p(p-1)/2} \prod_{\omega \in U_p} \omega \prod_{\omega' \in U_p \setminus \{\omega\}} (1 - \omega' \omega^{-1})$$

$$= (-1)^{p(p-1)/2} \left(\prod_{\omega \in U_p} \omega \right) \times \left(\prod_{\omega'' \in U_p \setminus \{1\}} (1 - \omega'') \right)^p.$$

Le premier facteur est

$$(-1)^{p(p-1)/2} \xi^{p(p-1)/2} = (-1)^{(p-1)/2}$$

Le deuxième facteur est $(P'(1))^p$ avec $P(X) = X^p - 1$, c'est donc p^p .

(ii) Une racine carrée du discriminant est dans le corps de décomposition du polynôme, c'est-à-dire $\mathbb{Q}[\exp(\frac{2i\pi}{p})]$. On conclut car, p étant impair,

$$\mathbb{Q}\left[\sqrt{(-1)^{\frac{p-1}{2}}p}\right] = \mathbb{Q}\left[\sqrt{(-1)^{\frac{p-1}{2}}p^p}\right].$$

(iii) Une extension quadratique de $\mathbb Q$ est de la forme $\mathbb Q[\sqrt{d}]$ avec d sans facteur carré. On écrit

$$d = \epsilon \mu p_1 p_2 \cdots p_m$$
.

avec les p_i des nombres premiers impairs distinces, $\epsilon = -1$ ou 1, $\mu = 2$ ou 1. On alors $\mathbb{Q}[\sqrt{d}]$ dans

$$\mathbb{Q}[i,\sqrt{2},\sqrt{p_1},\cdots,\sqrt{p_m}]\subset\mathbb{Q}[e^{\frac{i\pi}{2}},e^{\frac{i\pi}{4}},e^{\frac{2i\pi}{p_1}},\cdots,e^{\frac{2i\pi}{p_m}}]\subset\mathbb{Q}[e^{\frac{2i\pi}{N}}]$$

avec

$$N=4p_1p_2\cdots p_m$$
.

Exercice 5. (i) Φ_n divise $X^n - 1$, et ce polynôme est à racines simples dans \mathbb{F}_p si p ne divise pas n.

- (ii) L'élément $Frob_p$ est bien défini à conjugaison près. Puisque le groupe de Galois est abélien, il est bien défini.
- (iii) Soit $A = \mathbb{Z}[\zeta_n] \simeq \mathbb{Z}[X]/\Phi_n(X)$. Soit g l'élément du groupe de Galois envoyant ζ_n sur ζ_n^p . On vérifie que g induit le Frobenius sur A/pA. L'élément $Frob_p$ correspond donc à p avec l'isomorphisme $\operatorname{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (iv) Soit a premier à n: il est dans $(\mathbb{Z}/n\mathbb{Z})^{\times} \simeq \operatorname{Gal}(K/\mathbb{Q})$

Soit $g \in G$ l'élément correspondant à a. D'après le théorème de Cebotarev, il existe une infinité de nombres premiers p tels que $Frob_p = g$. D'après ce qui précède, cette condition est équivalente à $p = a \pmod{n}$.

Exercice 6.

- (i) Comme on l'a vu dans la feuille 5 (exercice 4), il suffit de vérifier qu'il ne s'annule pas en $0, 1, j \in \mathbb{F}_4$.
- (ii) Le sous-groupe engendré par deux tels éléments est de cardinal au moins $4 \times 3 = 12$. Il ne peut y avoir égalité car le seul sous-groupe d'indice 2 est A_4 , qui ne contient pas de 4-cycle. Le seul diviseur de 24 strictement supérieur à 12 est 24.
- (iii) Modulo 2, ce polynôme est irréductible, de sorte que le groupe de Galois contient un 4-cycle (par le théorème de réduction modulo p). Modulo 3, il a une unique racine (simple) ; par ce même théorème, on obtient l'existence d'un 3-cycle. Finalement, le groupe de Galois est S_4 .

Exercice 7.

- (i) Il résulte du théorème des restes chinois d'après lequel $\mathbb{Z}/(2\dot{3}\cdot p)\mathbb{Z}\simeq \mathbb{F}_2\times \mathbb{F}_3\times \mathbb{F}_p$ —que les trois conditions sont indépendantes : il suffit donc de montrer que l'on peut satisfaire chacune d'entre elles. Or,
 - (a) il existe dans $\mathbb{F}_2[X]$ des polynômes irréductibles de tout degré, en particulier d;
 - (b) il existe dans $\mathbb{F}_3[X]$ des polynômes irréductibles de tout degré, en particulier d-1;
- (c) il existe dans $\mathbb{F}_p[X]$ un polynôme irréductible de degré 2, et d-2 polynômes unitaires de degré 1 car $p = |\mathbb{F}_p| \ge d-2$.
- (ii) D'après le théorème de réduction modulo p, le groupe de Galois de f contient un d-cycle, un (d-1)-cycle et une transposition. Trois tels éléments engendrent S_d . En conjuguant par le d-cycle, qui agit transitivement, on peut supposer que (a) la transposition est (1x), avec $1 < x \le d$, et que (b) le (d-1)-cycle laisse fixe l'élément 1. La conjugaison par ce (d-1)-cycle permet d'obtenir toutes les transpositions (1y), pour $y \ne x$; elles engendrent S_d .

Exercice 8.

La signature du Frobenius F agissant sur les racines de $f = f_1 \cdot \dots \cdot f_r$ (décomposition en irréductibles) dans un corps de décomposition est égale à $(-1)^{d_1-1} \dots (-1)^{d_r-1} = (-1)^{d-r}$. Or, cette signature est égale à 1 si et seulement si F est une permutation paire, ce qui est équivalent au fait que le discriminant soit un carré.