

DDA2001: Introduction to Data Science

Lecture 8: Continuous Random Variable

Zicheng Wang

Recap of Continuous Random Variable

Continuous R.V.

- A continuous random variable can take any value within its range (an interval of a union of multiple intervals of real numbers).
- We cannot list all the possible values and their probabilities as in the discrete case.

How to describe the probability?

- If P(E) = 0, then E is a zero-probability event.
- If E is empty, then E is impossible.
- For a continuous RV X, P(X=x) = 0 but $\{x\}$ is not an impossible event.

- We will not use the probability mass function (pmf), namely P(X=x).
- Instead, we introduce a function $f(\omega)$, called the probability **density** function (pdf).
 - $f(\omega) > 0$, if $\omega \in S$
 - $f(\omega) = 0$, if $\omega \notin S$
 - $\int_{-\infty}^{\infty} f(x) dx = 1.$

Probability of $X \in [a, b]$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Properties of PDF

• For x that is not in the sample space, f(x)=0

• A large value of f(x) means that the values around x is more likely to be observed. (remember this implication)

- As a pdf, f(x) can be larger than 1, while as a pmf, f(x) cannot be larger than 1.
 - $f(\omega) = 2$, if $\omega \in [0, 0.5]$
 - $f(\omega) = 0$, if $\omega \notin [0, 0.5]$

CDF

• Recall: the CDF of a discrete random variable *X* is

$$F(x) = P(X \le x) = \sum_{\tilde{x} \le x} f(\tilde{x})$$

• CDF for continuous random variable is defined as:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Recall: the CDF of a discrete random variable X is

$$F(x) = P(X \le x) = \sum_{\tilde{x} \le x} f(\tilde{x})$$

CDF for continuous random variable is defined as:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

- ✓ $0 \le F(x) \le 1$ ✓ If $x \le y$, then $F(x) \le F(y)$ For both discrete and continuous RVs

Mean and Variance

- Discrete:
 - ✓ Probability mass function.
- Continuous
 - ✓ Probability density function.

Summation ↔ **Integration**

Mean

$$E[X] = \sum x f(x)$$

Variance

$$Var[X] = \sum (x - E[X])^2 f(x)$$

Mean

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$$

Expectation of g(X)

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

Uniform Distribution

• With the same probability, X takes a value within [a, b], where b>a.

Discrete version: toss a coin, roll a dice.

• What's the pdf?

Uniform Distribution

• With the same probability, X takes a value within [a, b], where b>a.

• What's the pdf?

- $f(x) = c \text{ for } x \in [a, b] \text{ and } f(x) = 0 \text{ for } x \notin [a, b]$
- As $\int_{-\infty}^{\infty} f(x)dx = c(b-a) = 1$, we have

$$c = \frac{1}{b - a}$$

Uniform Distribution

- With the same probability, X takes a value within [a, b]
- $X \sim Uniform(a, b)$

Mean=
$$(a + b)/2$$

Variance= $(b - a)^2/12$

Applications

- Given $X \sim Uniform(0,2)$
- What's the value of $E[2 e^{X^2 + \cos(X)}]$?

Applications

- Given $X \sim Uniform(0,2)$
- What's the value of $E[2 e^{X^2 + \cos(X)}]$?

- $f(x) = \frac{1}{2} \text{ for } x \in [0,2]$
- $E[2 e^{X^2 + \cos(X)}] = \int_0^2 2 e^{x^2 + \cos(x)} f(x) dx = \int_0^2 e^{x^2 + \cos(x)} dx$

How to approximate $\int_0^2 e^{x^2 + \cos(x)} dx$?

Given
$$X \sim Uniform(0,2)$$
, $E[2 e^{X^2 + \cos(X)}] = \int_0^2 e^{x^2 + \cos(x)} dx$

• Draw N samples of $X \sim Uniform(0,2)$: $X_1, X_2, X_3, \dots, X_N$

• Calculate
$$\frac{\sum_{i} 2 e^{X_{i}^{2} + \cos(X_{i})}}{N}$$

Why? Expectation can be approximated by long-run average.

General Case

• How to calculate $\int_a^b h(x) dx$?

- Draw N samples of $X \sim Uniform(a, b): X_1, X_2, X_3, ..., X_N$
- Calculate $\frac{\Sigma_i(b-a) h(X_i)}{N}$
 - E[h(x)] only gives you the average "height" of h(x)
 - In order to get $\int_a^b h(x)dx$, which is the area, we need to multiply E[h(x)] by (b-a)

- Let $X \sim Uniform(a, b)$
- f(x) = 1/(b-a) for $x \in [a, b]$
- $E[(b-a)h(x)] = \int_a^b (b-a)h(x)f(x)dx = \int_a^b h(x)dx$

Most important: Normal distribution

- X can be any real number
- Parameters: μ and σ

$$f(x;\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}\,\exp\!\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$
 .

• $X \sim Normal(\mu, \sigma)$

Why we have this distribution?

Normal Distribution: examples

Human Being's Height

There are not many tall people

Normal Distribution: examples

A large number of layers

 When a ball goes through each layer, it randomly goes left or right

An example

- Toss a die N times
- Let X be the sum
- A demo: $N = 1,2,\dots,100$, see the pmf of X

An example

- Flip a fair coin N times
- Let X be the sum (head: 1; tail: 2)
- A demo: $N = 1,2,\dots,100$, see the pmf of X

Normal Distribution

Central limit theorem

Lindeberg–Lévy CLT. Suppose $\{X_1,\ldots,X_n\}$ is a sequence of i.i.d. random variables with $\mathbb{E}[X_i]=\mu$ and $\mathrm{Var}[X_i]=\sigma^2<\infty$. Then as n approaches infinity, the random variables $\sqrt{n}(\bar{X}_n-\mu)$ converge in distribution to a normal $\mathcal{N}(0,\sigma^2)$: $\sqrt{n}\left(\bar{X}_n-\mu\right) \stackrel{d}{\to} \mathcal{N}\left(0,\sigma^2\right).$

no need to grasp!!!

What is the meaning of the parameters?

Mean and Variance

• Mean: μ

• Variance: σ^2

The Normal PDF

ne Normal

0.40 0.35 -0.30 -0.25 0.20 0.15 -0.10 -0.05 -0.00 $^{\perp}$ -10.0 -7.5 -5.0 -2.5 0.0 7.5 2.5 5.0 10.0 0.35 -0.30 -0.25 0.20 -0.15 -0.10 -0.05 -0.00 $^{\perp}$ -10.0 -7.5 -5.0 -2.50.0 2.5 5.0 7.5 10.0

0.40 0.40 0.35 -0.35 -0.30 -0.30 -0.25 0.25 0.20 0.20 0.15 -0.15 0.10 -0.10 0.05 -0.05 0.00 $^{\perp}$ 0.00 --10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 0.40 0.35 -0.35 0.30 -0.30 0.25 0.25 0.20 -0.20 0.15 -0.15 0.10 -0.10 -0.05 -0.05 0.00 $^{\perp}$ 0.00 -7.5 7.5 -10.0 -7.5 -5.0 -2.50.0 2.5 5.0 10.0 -10.0 -7.5 -5.0 -2.50.0 2.5 5.0 10.0

Advanced Concepts: Conditional Probability

Monty Hall problem

Monty Hall problem

Suppose you're on a game show, and you're given the choice of three doors:

- Behind one door is a car;
- Behind the others, goats.

The car is randomly placed behind one door.

Which door should you choose to open?

- After you choose No. 1, I open a door (among the other two doors) with a goat behind,.
- Would you like to switch to the other door?
- Now you have additional information\event!

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the other door
Goat	Goat	Car	Wins goat	Wins car
Goat	Car	Goat	Wins goat	Wins car
Car	Goat	Goat	Wins car	Wins goat

P(win when stay)=1/3
P(win when switch)=2/3

Conditional Probability

- Given the realization of event A, the probability of event B may change
- (Conditional probability) If A and B are events with P(B)>0, then the conditional probability of A given B, denoted by P(A|B), is defined as $P(A|B) = \frac{P(A \cap B)}{P(B)}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B)=?$$

$$P(A|B)=?$$

$$P(A|B)=?$$

- Given the realization of event A, the probability of event B may change
- (Conditional probability) If A and B are events with P(B)>0, then the conditional probability of A given B, denoted by P(A|B), is defined as $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- (Independence) Two events A and B are called independent if and only if $P(A \cap B) = P(A)P(B)$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

Conditional Probability in NLP

- H: mention "Interesting" in message
- D: mention "DDA2001" in message

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(H) = .1$$

• P(D) = .1• $P(H \cap D) = .08$

Known **Information**

from

• P(H|D) = ??

Conditional Probability in NLP

- H: mention "Interesting" in message
- D: mention "DDA2001" in message

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(H) = .1$$

• P(D) = .1• $P(H \cap D) = .08$

Known Information from

• P(H|D) = 0.08/0.1 = 0.8

