AL APPLICATION PUBLISHED UNDER THE PARENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 June 2004 (03.06.2004)

PCT

(10) International Publication Number WO 2004/047383 A1

(51) International Patent Classification7:

H04L 12/56

(21) International Application Number:

PCT/KR2003/000628

- (22) International Filing Date: 28 March 2003 (28.03.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 10-2002-0071890

> 19 November 2002 (19.11.2002) KR

- (71) Applicant (for all designated States except US): ELEC-TRONICS AND TELECOMMUNICATIONS RE-SEARCH INSTITUTE [KR/KR]; 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350 (KR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AHN, Gaeil [KR/KR]; Euna Apt. 102-106, Gasuwon-dong, Seo-gu, Daejeon 302-751 (KR). KIM, Ki-Young [KR/KR]; Hanvit Apt. 122-601, Eoeun-dong, Yuseong-gu, Daejeon 305-755 (KR). JANG, Jong-Soo [KR/KR]; Expo Apt. 303-903, Jeonmin-dong, Yuseong-gu, Daejeon 305-761 (KR).

- (74) Agent: JANG, Seong-Ku; 17th Fl., KEC Building, 275-7, Yangjae-dong, Seocho-ku, Seoul 137-130 (KR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR PROTECTING LEGITIMATE TRAFFIC FROM DOS AND DDOS ATTACKS

(57) Abstract: An apparatus for protecting legitimate traffic from DoS and DDoS attacks has a high-priority (505) and a low-priority (506) queue. Besides, a queue information table (402) has STT (Source-based Traffic Trunk) service queue information of a specific packet. A queue coordinator (502) updates the queue information table (502) based on a load of a provided STT and a load of the high-priority queue (505). A packet classifier (504) receives a packet from the network access unit (508), investigates an STT service queue of the packet from the queue information table (502), selectively transfers the packet to the high-priority (505) or the low-priority (506) queue and provides information on the packet to the queue coordinator (503). A buffer (507) buffers outputs of the high-priority (505) and the low-priority (506) queue and provides outputs to the network (509) to be protected.

METHOD AND APPARATUS FOR PROTECTING LEGITIMATE TRAFFIC FROM DOS AND DDOS ATTACKS

Field of the Invention

5

10

The present invention relates to a method and apparatus for protecting legitimate traffic from denial of service (hereinafter, referred to as DoS) and distributed denial of service (hereinafter, referred to as DDoS) attacks; and, more particularly, to a method and apparatus for protecting the legitimate traffic from an enormous traffic volume generated by the DoS and DDoS attacks.

Background of the Invention

15

20

25

30

35

A DoS attack concentrates large volume of traffic on a target network/server in a short time so that the target system is not able to provide services. A DDoS attack, which is one type of DoS attack, concentrates traffic of multitude of attacking sites on the target network/server at once, and therefore, it is more difficult to detect and cut off.

According to attacking method, the DoS attacks are categorized into attacks using characteristics of a TCP protocol and attacks for simply congesting traffic.

Attacks using the characteristics of a TCP protocol are performed as a three-step operation of setting up a connection between a TCP client and a TCP server. all, the client sends a synchronous (SYN) packet to the Secondly, the server sends a synchronous acknowledge (SYN-ACK) packet to the client. As a final step, the client sends the ACK packet to the server. A TCP SYN flooding attack is an example of such attack, which keeps sending the SYN packet to the server but ignores the SYN-ACK packet transmitted by the server.

Attacks for simply congesting traffic are divided into

15

20

25

30

35

a UDP packet flooding attack, a ping flooding attack and a HTTP flooding attack.

Conventional techniques for cutting off such DoS attacks are described as follows:

- (1) a technique for improving an algorithm of a TCP protocol server
 - (2) a fair-queuing technique
 - (3) a rate-limit technique

The technique for improving the algorithm of the TCP protocol server is restrictively used for cutting off conventional SYN packet flooding attacks, so that it is not able to avoid traffic congestion attacks.

The fair-queuing technique is used for controlling congestion and fairly distributing resources (bandwidth) in a router.

Fig. 1 is a drawing for showing a basic algorithm of a conventional fair-queuing. Each of transmitted packets is separated on a flow basis and sent to a next node by using a corresponding queue. In this case, queues are fairly distributed by using a round-robin service, so that each queue is provided with 1/n of a total link bandwidth. While the technique is able to effectively cut off DoS attacks, DDoS attacks are not completely avoidable. That is to say, the more increase the total number of malicious flows, the more decrease the bandwidth share allocated to legitimate flows.

The rate-limit technique cuts off not only TCP SYN flooding attacks but also traffic congestion attacks.

Fig. 2 illustrates a basic algorithm of a conventional rate-limit. The rate-limit technique measures a bandwidth of specific flows. Then, if the measured value exceeds a maximum allowable bandwidth determined by an administrator, surplus packets are dropped. The technique has two drawbacks. First, the administrator is required to check traffic of a network for a certain time in order to determine the maximum allowable bandwidth. Second, it is

10

15

25

30

35

difficult to effectively cut off DDoS attacks. A power of the DDoS attacks is due to enormous traffic generated by concentrating multitude of attacking sites on one target network/server, and therefore, a volume of traffic generated by each attack site is not considerable. In other words, since there is only a little difference between volumes of traffic generated by an attacking site and a legitimate site in the DDoS attacks, it is very difficult to determine the maximum allowable bandwidth. For example, if the maximum allowable bandwidth is set low, both DDoS traffic legitimate traffic can be cut off.

As described above, the conventional techniques are effectively used to cut off the DoS attacks but not the DDoS attacks. Further, even if the DDoS attacks can be cut off, the legitimate traffic cannot be protected.

Summary of the Invention

It is, therefore, an object of the present invention to provide a method and apparatus for protecting legitimate traffic from DoS and DDoS attacks.

In accordance with the present invention, there is provided an apparatus connected between a network access a network to be protected, for protecting legitimate traffic from DoS and DDoS attacks, including: a high-priority queue; low-priority a queue; queue information table having specific STT service information of a specific packet; a queue coordinator for updating the queue information table based on a load of a provided STT and a load of the high-priority queue; a packet classifier for receiving a packet from the network access unit, investigating an STT service queue of the received from the queue information table, selectively transferring the received packet to the high-priority queue the low-priority queue in accordance investigation result and providing information the

received packet to the queue coordinator; and a buffer for buffering outputs of the high-priority queue and the low-priority queue and providing the buffered outputs to the network to be protected.

5

10

15

20

25

30

Brief Description of the Drawings

The above and other objects and features of the present invention will become apparent from the following description of preferred embodiments, given in conjunction with the accompanying drawings, in which:

Fig. 1 shows a basic algorithm of a conventional fair-queuing;

Fig. 2 illustrates a basic algorithm of a conventional rate-limit;

Fig. 3 provides a drawing for showing a typical DDoS attacks modeling;

Fig. 4 presents a drawing for illustrating a DDoS attacks modeling employing a source-based traffic trunk (STT) in accordance with the present invention;

Fig. 5 represents a block diagram for showing a preferred embodiment of an apparatus for protecting legitimate traffic from DoS and DDoS attacks in accordance with the present invention;

Fig. 6 offers a flowchart for illustrating a basic algorithm of a packet classifier shown in Fig. 5;

Fig. 7 sets forth a flowchart for showing a basic algorithm of a queue coordinator shown in Fig. 5;

Fig. 8A depicts a flowchart of a detailed algorithm of steps for receiving packet information and calculating an average load of an STT corresponding to a received packet in the basic algorithm of the queue coordinator shown in Fig. 7;

Fig. 8B shows a flowchart of an algorithm of a step 35 for resetting an STT service queue based on the load of the STT in the basic algorithm of the queue coordinator

10

15

25

30

35

illustrated in Fig. 7;

Fig. 8C provides a flowchart of an algorithm of a step for calculating an average load of a high-priority queue in the basic algorithm of the queue coordinator illustrated in Fig. 7;

Fig. 8D provides a flowchart of an algorithm of a step for resetting an STT service queue based on the load of the high priority queue in the basic algorithm of the queue coordinator shown in Fig. 7;

Fig. 9A presents a drawing for representing a simulation result of employing the conventional fair-queuing against web server attacks using DoS and DDoS; and

Fig. 9B represents a drawing for showing a simulation result of employing a traffic control technique in accordance with the present invention against web server attacks using the DoS and DDoS.

Detailed Description of the Preferred Embodiments

Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

A flow-unit-processing of DoS and DDoS traffic causes a performance and attack-detection accuracy to be deteriorated and its load to be increased. On the contrary, the present invention processes the DoS and DDoS traffic in a source-based traffic trunk (hereinafter, referred to as STT) unit, wherein the STT refers to a set of flows having a same network address of a source. For instance, if the STT is composed of 24-bit out of 32-bit IP address, every packet using source addresses from 168.188.44.0 to 168.188.44.255 belongs to the STT having a source address of 168.188.44.

Fig. 3 provides a drawing for showing a typical DDoS attacks modeling. Fig. 4 presents a drawing for illustrating a DDoS attacks modeling employing a source-based traffic trunk (STT) in accordance with the present

10

15

20

25

30

35

invention.

Sources of DDoS attacks are not uniformly distributed in entire networks, but centralized on certain Thus, it is impossible for a hacker to perform a hacking on systems in every network in the world to install attack software therein. Instead, a hacker usually intrudes a certain local network. Further, for example, even if the hacker intrudes an arbitrary system using a Nimda virus and performs DDoS attacks, it is still difficult for the virus to hide in a safe network, i.e., a network installed with a firewall, an intrusion detection system, a virus vaccine application and the like, for a certain time. Accordingly, the virus is normally hidden in a protected network. A cyber demonstration, which is a type of DDoS attacks, is also performed in certain local networks.

In comparison with a flow-typed method, the STT-typed method is able to more simply and accurately determine whether traffic is legitimate or not.

represents a block diagram for showing embodiment of preferred an apparatus for protecting legitimate traffic from DoS and DDoS attacks in accordance with the present invention. A legitimate traffic protection unit 501 comprises a queue information table 502, a queue coordinator 503, a packet classifier 504, a high-priority queue 505, a low-priority queue 506 and a buffer 507, wherein the legitimate traffic protection unit 501 connected between a network access unit 508 and network/server 509 to be protected.

When a packet is received from the network access unit 508, the packet classifier 504 investigates an STT service queue of the packet from the queue information table 502. According to the investigation result, the packet is transferred to the high-priority queue 505 or the low-priority queue 506. Further, information on the packet is transferred to the queue coordinator 503, wherein the information on the packet refers to a packet size, a packet

10

15

20

25

30

35

arrival time and an index of the queue information table 502 for representing STT information of the packet and the like.

The queue coordinator 503 updates the queue information table 502 based on a load of the received STT and a load of the high-priority queue 505. The queue information table 502 has fields including an STT ID, a service queue, an average load, a recent load calculation time and a total packet size.

A maximum load of both the high-priority queue 505 and the low-priority queue 506 is set to be a maximum allowable load of the network/server 509 to be protected. For example, in case the maximum allowable load of to-be-protected system is set to 100, a sum of total loads of both the high-priority queue 505 and the low-priority queue 506 should be set to 100. If both the high-priority queue 505 and the low-priority queue 506 have packets, a packet in the high-priority queue 505 is firstly served.

The buffer 507 buffers outputs of the high-priority queue 505 and the low-priority queue 506 and sends the buffered outputs to the network/server 509 to be protected.

Fig. 6 offers a flowchart for illustrating a basic algorithm of the packet classifier 504 shown in Fig. 5.

The packet classifier 504 receives a packet from the network access unit 508 (step 601) and then obtains an STT ID by using a source IP address of the received packet (step 602). Next, the packet classifier 504 searches for a service queue corresponding to the obtained STT ID from the queue information table 502 (step 603). According to the investigation result, the packet classifier 504 selectively transfers the received packet to the high-priority queue 505 and the low-priority queue 506 (steps 604 to 606). Thereafter, the packet classifier 504 transfers packet information to the queue coordinator 503.

Fig. 7 sets forth a flowchart for showing a basic algorithm of a queue coordinator shown in Fig. 5.

The queue coordinator 503 receives packet information

. 10

15

20

25

30

35

from the packet classifier 504 (step 702) and calculates an average STT load corresponding to the received packet (step 703). Based on the calculated average STT load, the queue coordinator 503 resets an STT service queue (step 704). Next, the queue coordinator 503 calculates an average load of the high-priority queue 505 (step 705) and then resets a certain STT service queue based on the calculated average load of the high-priority queue 505 (step 706). Thereafter, the queue coordinator 503 stores modified STT information such as a modified average load and service queue in the queue information table 502 (step 707).

Fig. 8A depicts a flowchart of a detailed algorithm of steps for receiving packet information (step 702) and calculating an average load of an STT corresponding to a received packet (step 703) in the basic algorithm of the queue coordinator 503 shown in Fig. 7.

The queue coordinator 503 receives packet information on a packet size, a packet arrival time, a queue information table index, a corresponding STT and the like from the packet classifier (step 802) and then calculates a total packet size based on the received packet information (step 803), wherein the total packet size is a sum of a previous total packet size and a received packet size. queue coordinator 503 checks whether it is time recalculate an average load (step 804). According to the check result, if it is time to recalculate the average load, the queue coordinator 503 calculates a new average load by using a previous average load and a current average load based on the total packet size (step 805). In other words, the average load is calculated as follows: average load = (previous average load * α + total packet size)/((packet arrival time - recent load calculation time) * $(1-\alpha)$, wherein α is larger than 0 but smaller than 1, i.e., $0<\alpha<1$. In this case, a time cycle for calculating the load is predetermined by a user. According to the check result of the step 804, if it is not the time to recalculate the

10

15

20

25

30

35

average load, the queue coordinator 503 executes an STT service queue determination algorithm using the STT load value (step 806) without performing the step 805.

Fig. 8B shows a flowchart of an algorithm of a step for resetting an STT service queue based on the load of the STT (step 704) in the basic algorithm of the queue coordinator 503 illustrated in Fig. 7. The algorithm in Fig. 8b is carried out whenever a packet is arrived. A purpose of the algorithm is to make an STT of a high average load use the low-priority queue 506 and an STT of a low average load use the high-priority queue 505. Accordingly, DoS and DDoS traffic are supposed to use the low-priority queue.

The queue coordinator 503 checks whether or not the high-priority queue 505 is in a congested state (step 808). According to the check result, if the high-priority queue 505 is in a congested state, it is checked whether an STT load of a received packet is greater than an allowable load (step 809). According to the check result of the step 809, if the STT load of the received packet is greater than the allowable load, a service queue of the STT of the received packet is set to be the low-priority queue 506 (step 810), wherein the allowable load refers to "(an average load of the high-priority queue 505) / (the number of STT using the high-priority queue 505 during a recalculation of average load)". Thus, a plurality of STT that may correspond to DDoS traffic is supposed to concentrate on the lowpriority queue 506 rapidly. The queue coordinator checks whether the service queue of the STT corresponding to the received packet is a high-priority queue or a lowpriority queue (step 811). According to the check result of the step 811, if the service queue of the STT corresponding to the received packet is a high-priority queue, an STT using a low-priority queue is randomly chosen from the queue information table 502 (step 812). Next, the coordinator 503 compares an average load of corresponding to the received packet with an average load of

5 ·

10

15

20

25

30

35

the randomly chosen STT (step 813). According to the comparison result, if the average load of the STT corresponding to the received packet is greater than that of the randomly chosen STT, a queue of an STT having a low load is set to high-priority and that of an STT having a high load is set to low-priority (step 814). According to the check result of the step 811, if the service queue of the STT corresponding to the received packet is a low-priority queue, an STT using a high-priority queue is randomly chosen from the queue information table 502 (step 815). coordinator compares an average load the corresponding to the received packet with that of randomly chosen STT (step 816). According to the comparison result, if the average load of the STT corresponding to the received packet is smaller than that that of the randomly chosen STT, a queue of an STT having a low load is set to high-priority and that of an STT having a high load is set to low-priority (step 817). Accordingly, legitimate traffic and the DDoS traffic are respectively supposed to use a high-priority queue and a low-priority queue.

Fig. 8C provides a flowchart of an algorithm of a step for calculating an average load of the high-priority queue 505 (step 705) in the basic algorithm of the queue coordinator 503 illustrated in Fig. 7. Such algorithm is only carried out when a service queue of a received packet is a high-priority queue.

The queue coordinator 503 determines an STT service queue on the basis of an STT load (step 819) and then checks whether the service queue used by the received packet is a high-priority queue or a low-priority queue (step 820). As a result of the step 820, if the service queue used by the received packet is a high-priority queue, a total size of packets served through the high-priority queue is calculated (step 821). Next, the queue coordinator 503 checks whether it is time to recalculate a load (step 822). According to the check result, if it is time to recalculate the load, an

10

15

20

25

30

35

average load of the high-priority queue is calculated (step 823). Then, the queue coordinator 503 resets a certain STT service queue on the basis of the load of the high-priority queue (step 824), to thereby store modified STT information in the queue information table 502 (step 825).

Fig. 8D provides a flowchart of an algorithm of a step for resetting an STT service queue based on the load of the high priority queue (step 706) in the basic algorithm of the queue coordinator 503 shown in Fig. 7, wherein the algorithm is executed whenever the average load of the high-priority queue is calculated.

The queue coordinator 503 calculates the average load of the high-priority queue (step 826) and checks a load state of the high-priority queue, e.g., a congested state, an idle state or a stable state (step 827). If the load of the high-priority queue is in the congested state, an STT using the high-priority queue is randomly chosen and a queue of the STT is set to low-priority (steps 828 and 829). Meanwhile, if the load thereof is in the idle state, an STT using a low-priority queue is randomly chosen and a queue of the STT is set to high-priority (steps 830 and 831). load thereof is in the stable state or the steps 829 to 831 have already been performed, modified STT information is stored in the queue information table 502 (step 832). As a result, the high-priority queue is able to maintain a stable load thereof. Further, STT using the high-priority queue, i.e., legitimate traffic, can be of high quality.

Fig. 9A presents a drawing for representing a simulation result of employing the conventional fair-queuing against web server attacks using DoS and DDoS. Fig. 9B represents a drawing for showing a simulation result of employing a traffic control technique in accordance with the present invention against web server attacks using the DoS and DDoS.

In prior arts, legitimate traffic is influenced by both the DoS and DDoS attacks as shown in Fig. 9A. However,

both the DoS and DDoS attacks hardly have influence on the legitimate traffic in the present invention as illustrated in Fig. 9B.

The present invention checks traffic on an STT basis instead of on a flow basis, so that a load can be more 5 accurately measured without influencing on a performance of Whenever a packet of an STT is received, it an apparatus. is checked whether the specific STT is DDoS traffic or legitimate traffic. Accordingly, the DDoS traffic 10 quickly set to a low-priority queue as shown Although traffic is dramatically increased due to the DDoS attacks, a load of a high-priority queue used by legitimate traffic is constantly maintained. As a result, a loss of the legitimate traffic can be minimized as illustrated in 15 Fig. 8b to 8d. The present invention has an additional merit that even when a considerable traffic is generated by a specific system, if there is sufficient network resource to accept it, the traffic can be served through high-priority queue.

While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

30

35

What is claimed is:

- 1. An apparatus connected between a network access unit and a network to be protected, for protecting legitimate traffic from DoS and DDoS attacks, comprising:
 - a high-priority queue;
 - a low-priority queue;
- a queue information table having specific STT service queue information of a specific packet;
- a queue coordinator for updating the queue information table based on a load of a provided STT and a load of the high-priority queue;
- a packet classifier for receiving a packet from the network access unit, investigating an STT service queue of the received packet from the queue information table, selectively transferring the received packet to the high-priority queue or the low-priority queue in accordance with an investigation result and providing information on the received packet to the queue coordinator; and
- a buffer for buffering outputs of the high-priority queue and the low-priority queue and providing buffered outputs to the network to be protected.
- 2. The apparatus of claim 1, wherein the network to be protected comprises a server.
 - 3. The apparatus of claim 1, wherein the information on the received packet includes a packet size, a packet arrival time and an index of the queue information table for representing STT information of the packet.
 - 4. The apparatus of claim 1, wherein the queue information table has fields including an STT ID, a service queue, an average load, a recent load calculation time and a total packet size.

- 5. The apparatus of claim 1, wherein a maximum load of the high-priority queue and the low-priority queue is set to be a maximum allowable load of the network to be protected.
- 5 6. The apparatus of claim 5, wherein the network to be protected comprises a server.
- 7. A method for protecting legitimate traffic from DoS and DDoS attacks in an apparatus therefor, wherein the apparatus is connected between a network access unit and a 10 network to be protected and includes a queue information. table having specific STT service queue information of a specific packet, a queue coordinator for updating the queue information table based on a load of a provided STT and a 15 load of a high-priority queue and a packet classifier for receiving а packet from the network access unit, investigating an STT service queue of a received packet from the queue information table, selectively transferring the received packet to the high-priority queue or the lowpriority queue in accordance with an investigation result 20 and providing information on the received packet to the queue coordinator, the method comprising the steps of:
 - (a) obtaining an STT ID based on a source IP address of the packet received from the network access unit;
 - (b) investigating a service queue corresponding to the searched STT ID from the queue information table and checking whether the service queue is the high-priority queue or the low-priority queue;
- (c) transferring the received packet to the high-30 priority queue if the service queue is the high-priority queue in the step (b);
 - (d) transferring the received packet to the low-priority queue if the service queue is the low-priority queue in the step (b); and
- 35 (e) transferring the received packet information to the queue coordinator.

- 8. The method of claim 7, wherein the network to be protected comprises a server.
- 5 9. The method of claim 7, wherein the queue coordinator comprises the steps of:
 - (a') calculating an average load of an STT corresponding to the packet information transferred from the packet classifier;
- (b') resetting an STT service queue based on the calculated average load of the STT;
 - (c') calculating an average load of the high-priority queue;
- (d') resetting a certain STT service queue based on
 the calculated average load of the high-priority queue; and
 - (e') storing the reset STT information in the queue information table.
- 10. The method of claim 9, wherein the modified STT information refers to a modified average load and service queue.
 - 11. The method of claim 9, wherein the step (a') further includes the steps of:
- 25 (a'1) calculating a total packet size based on the packet information transferred from the packet classifier;
 - (a'2) checking whether it is time to recalculate an average load;
- (a'3) calculating a new average load by using a previous average load and a current average load based on the total packet size if it is time to recalculate the average load in the step (a'2); and
- (a'4) performing an STT service queue determination algorithm based on the load of the STT if it is not time to recalculate the average load or subsequent to executing the step (a'3).

10

15

- 12. The method of claim 11, wherein the packet information includes a packet size, a packet arrival time, a queue information table index and a corresponding STT.
- 13. The method of claim 9, wherein the step (b') further includes the steps of:
- (b'1) setting an STT service queue of a received packet to be a the low-priority queue if an STT load of the received packet is greater than an allowable load when the high-priority queue is in a congested state;
 - (b'2) randomly choosing one STT using a low-priority queue from the queue information table if the service queue of the STT corresponding to the received packet is a high-priority queue;
 - (b'3) setting an STT service queue of a low load to be a high-priority queue and an STT service queue of a high load to be a low-priority queue if an average load of an STT corresponding to the received packet is greater than that of the randomly chosen STT;
 - (b'4) randomly choosing one STT using a high-priority queue from the queue information table if the service queue of the STT corresponding to the received packet is a low-priority queue; and
- (b'5) setting an STT service queue of a low load to be a high-priority queue and the STT service queue of a high load to be a low-priority queue if an average load of an STT corresponding to the received packet is smaller than that of the randomly chosen STT.
 - 14. The method of claim 9, wherein the step (c') further includes the steps of:
 - (c'1) determining an STT service queue based on a load of an STT;
- 35 (c'2) calculating a total packet size served through a high-priority queue if the service queue used by the

- (c'3) calculating an average load of a high-priority
 queue if it is time to recalculate a load;
- (c'4) resetting a certain STT service queue based on the load of the high-priority queue; and
- (c'5) storing modified STT information in the queue information table.
- 15. The method of claim 9, wherein the step (d') includes 10 the steps of:
 - $(\mbox{d'1})$ calculating an average load of a high-priority queue;
 - (d'2) randomly choosing one STT using a high-priority queue and setting a queue of the STT to low-priority if the load of the high-priority queue is in a congested state;
 - (d'3) randomly choosing one STT using a low-priority queue and setting a queue of the STT to high-priority if the load of the high-priority queue is in an idle state; and
- (d'4) storing modified STT information in the queue information table if the load of the high-priority queue is in a stable state or the steps of (d'2) and (d'3) are performed.

FIG.2
(PRIOR ART)

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG. 8A

FIG.8C

FIG.9B

International application No. PCT/KR 03/00628-0

CLASSIFICATION OF SUBJECT MATTER IPC7: H04L 12/56 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC7: H04L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, EPODOC, PAJ, Elsevier, IEE, IEEE, IEEEXplore C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Li S, Bhargava B. 'Active gateway: a facility for video conferencing X 1-15 traffic control.' In: Computer Software and Applications Conference, 1997. COMPSAC '97. Proceedings., The Twenty-First Annual International Washington, DC, USA 13-15 Aug. 1997, Los Alamitos, CA, USA, IEEE Comput. Soc, US. pages: 308-311. Jun Xu, Singhal M, Degroat J. 'A novel cache architecture to X 1 - 15support layer-four packet classification at memory access speeds.' In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Tel Aviv, Israel 26-30 March 2000, Piscataway, NJ, USA, IEEE, US. pages 1445-1454. Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: "T" later document published after the international filing date or priority "A" document defining the general state of the art which is not date and not in conflict with the application but cited to understand considered to be of particular relevance the principle or theory underlying the invention "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step "L" document which may throw doubts on priority claim(s) or which is when the document is taken alone cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination means being obvious to a person skilled in the art "P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 26 November 2003 (26.11.2003) 21 January 2004 (21.01.2004) Name and mailing adress of the ISA/AT Authorized officer Austrian Patent Office Dresdner Straße 87, A-1200 Vienna MESA PASCASIO J. Facsimile No. 1/53424/535 Telephone No. 1/53424/327 Form PCT/ISA/210 (second sheet) (July 1998)

International application No. PCT/KR 03/00628-0

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
Α		none	
	•		
	•		
	•		
•			
			•