Stochsatic gradient descent for logistic regression smoothing

Anders G. Kristensen

09-11-2022

1 The logistic regression model

We consider the logistic regression $y_i \in \{0,1\}, x_i \in \mathbb{R}$ s.t. $p_i(\beta) = P(Y_i = 1 | X_i = x_i)$ and

$$\log \left(\frac{p_i(\beta)}{1 - p_i(\beta)} \right) = f(x_i|\beta) = \left(\varphi_1(x_i), \dots, \varphi_p(x_i) \right)^{\top} \beta$$

For some $\beta \in \mathbb{R}^p$ and fixed basis functions $\varphi_1(x_i), \dots, \varphi_p(x_i) : \mathbb{R} \to \mathbb{R}$. We aim to minimize the penalized log-likelihood.

$$H(\beta) = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i(\beta)) + (1 - y_i) \log(1 - p_i(\beta))) + \lambda ||f_{\beta}''||_2^2$$

over $\beta \in \mathbb{R}^{\scriptscriptstyle{||}}$.

2 Horse data

The dataset contains a couple of missing values we need to handle appropriately.

Dead	Missing	Count
FALSE	FALSE	426
FALSE	TRUE	17
TRUE	FALSE	106
TRUE	TRUE	2