Suponha uma empresa que possui 200 funcionários. O registro de 1 funcionário é como se observa abaixo. Determine o valor médio das idades e o total salarial de todos os funcionários da empresa.

	1 4072	XOR XOR XOR	AX, AX; é o mesmo que fazer MOV AX, 0 BX, BX		
Nome (64 bytes)	1072 ₁₀	SI, SI			
Salário (4 bytes)	1068 ₁₀	XOR XOR	DI, DI BX, BX		
Idade (1 byte)	1067 ₁₀	MOV	CX, 200		
Status (1 byte)	106610	VOLTA	:		
Departamento (1byte)	1065 ₁₀	ADD	AX, WORD[BX+1068]		
Divisão (1 byte)		ADC	DX, WORD[BX+1070]		
<u> </u>	1064 ₁₀	MOV	SI, WORD[BX+1067]		
Nome (64 bytes)	100010	AND	SI, 0x00FFf		
		ADD	DI, SI		
		ADD	BX, 72		
		LOOP			
Dania a O da mana é via			; 2º. CMP CX, 0 (se ≠ vai para VOLTA)		
Posição 0 ₁₀ da memória		1401/	; (se CX= 0 executa a próxima linha)		
		MOV	WORD[BX+1002], AX		
		MOV	WORD[BX+1004], DX		
		PUSH MOV	BX ; EMPILHANDO BX BL, 200		
		MOV	•		
		ADD	AX, DI		
			AX, 100; para arredondamento		
		DIV	BL; Divide AX por BL, quociente em AL,		
		POP	; e o resto AH BX : DESEMPILHANDO BX		
			, -		
		MOV	BYTE[BX+1006], AL		

Por que foi adicionada a linha ADD AX, 100?

Resp.: Esse μ P executa aritmética inteira e o resultado da divisão é truncado (e não arredondado). Assim, para permitir um arredondamento, soma-se 100 ao dividendo (no caso AX), uma vez que o divisor é igual = 200. Veja a Tabela 1.

Tabela 1: Comparação dos resultados sem e com a linha ADD AX, 100

∑ idade	Média	Após DIV, porém	Após DIV, porém	truncando
		sem ADD AX, 100	com ADD AX, 100	
6847	34,235	34	34,735	34
6890	34,45	34	34,95	34
6899	34,495	34	34,995	34
6900	34,5	34	35	35
6980	34,9	34	35,4	35