CSM 6405: Symbolic ML II

Lecture 2: Linear and Multivariate Regression

Acknowledgement: Andrew Ng (Stanford University), Coursera

Prof. Dr. Md. Rakib Hassan

Dept. of Computer Science and Mathematics,

Bangladesh Agricultural University.

Email: rakib@bau.edu.bd

Linear Regression with 1 Variable

- \bullet Have some function $J(\theta_0, \theta_1)$
- $\bullet \quad \mathsf{Find} \, \min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

- Outline:
 - \Box Start with some θ_0 , θ_1
 - \Box Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Repeat until convergence {

$$\theta_j = \theta_j - \alpha \frac{\delta}{\delta \theta_j} J(\theta_0, \theta_1)$$
 (for j=0 and j=1)

where, α = learning rate

- Simultaneous update
 - $\Box \text{ temp0} = \theta_0 \alpha \frac{\delta}{\delta \theta_i} J(\theta_0, \theta_1)$
 - $\Box \text{ temp1} = \theta_1 \alpha \frac{\delta}{\delta \theta_j} J(\theta_0, \theta_1)$
 - \Box θ_0 = temp0
 - \Box θ_1 = temp1

Gradient or Slope

- Starting from the left and going across to the right is positive (but going across to the left is negative).
- Up is positive, and down is negative

Examples

The Gradient =
$$\frac{4}{2}$$
 = 2

The line is steeper, and so the Gradient is larger.

The Gradient =
$$\frac{3}{5}$$
 = 0.6

The line is less steep, and so the Gradient is smaller.

Examples

Gradient =
$$\frac{-4}{2}$$
 = -2

Gradient =
$$\frac{0}{5}$$
 = 0

Gradient =
$$\frac{3}{0}$$
 = undefined

Fixed Learning Rate

 \diamond Gradient descent can converge to a local minimum, even with the learning rate α fixed.

 \clubsuit As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Repeat until convergence {

$$\theta_j = \theta_j - \alpha \frac{\delta}{\delta \theta_j} J(\theta_0, \theta_1)$$

where, α = learning rate

Linear regression model

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\bullet \quad \theta_j = \theta_j - \alpha \frac{\delta}{\delta \theta_j} J(\theta_0, \theta_1)$$

*
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

*
$$j = 0: \frac{\delta}{\delta \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

*
$$j = 1: \frac{\delta}{\delta \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}). x^{(i)}$$

Repeat until convergence {

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

• Update θ_0 and θ_1 simultaneously

Convergence

Convex Function

Batch Gradient Descent

* "Batch": Each step of gradient descent uses all the training examples.

Linear Regression with Multiple Variables

MULTIPLE FEATURES

Multiple Features (Variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	
852	2	1	36	178

Notation:

- \square *n* = number of features
- \Box $x^{(i)}$ = input (features) of i^{th} training example
- $\square x_j^{(i)}$ = value of feature j in i^{th} training example

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

$$x_3^{(2)} = 2$$

Hypothesis

- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$
- $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$
- For convenience of notation, define $x_0 = 1$.
- $\bullet h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$
- $\bullet = \theta^T X$

$$\theta_T = \begin{bmatrix} \theta_0 & \theta_1 & \dots \\ x_0 \\ x_1 \\ \vdots \end{bmatrix}$$

21

Repeat until convergence {

$$\theta_{j} = \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$
 (simultaneously update θ_{j} for $j = 0, 1, ..., n$)
$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) . x_{1}^{(i)}$$

$$\theta_{2} = \theta_{2} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) . x_{2}^{(i)}$$

Feature Scaling

- Make sure features are on a similar scale
- ❖ Get every feature into approximately a $-1 \le x_i \le 1$ range.
- Examples:
 - \Box $x_1 = \text{size } (0-2000 \text{ feet}^2)$
 - \square x_2 = number of bedrooms (1-5)
- Method 1:

$$x_1 = \frac{\text{size}(\text{feet}^2)}{2000}$$

Method 2 - Mean Normalization

- $x_i = \frac{x_i \mu}{\sigma}$
 - \square μ = mean
 - \Box σ = standard deviation

• Do not apply to $x_0 = 1$

How to Choose Learning Rate?

- Make sure gradient descent is working correctly.
- Example automatic convergence test:

* Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Learning Rate

Big learning rate

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Small learning rate

If α is too small, gradient descent can be slow

Try:

□ ..., 0.001, 0.003, ..., 0.01, 0.03, ..., 0.1, 0.3, ...

Polynomial Regression

$$\Rightarrow$$
 y = $-0.08x^2 + 1.4x - 0.1$

Analytical Solution of Linear Regression

Examples: m = 4

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

Normal Equation

$$m \text{ examples } (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$$

$$n \text{ featues}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

Example: If
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & x_1^{(1)} \\ 1 & x_1^{(2)} \\ \vdots & \vdots \\ 1 & x_1^{(m)} \end{bmatrix}$ $y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$

$$\theta = (X^T X)^{-1} X^T y$$

Plots of Sample Data

Using

- Gradient descent
- Normal equation

Gradient Descent vs Normal Eq.

- Gradient Descent
 - \square Need to choose α
 - Needs many iterations
 - \square Works well even when n is large

m = training examples n = features

- Normal equation
 - \square No need to choose α
 - No need to iterate
 - \square Need to compute $(X^TX)^{-1}$
 - Complexity: $O(n^3)$
 - \Box Slow if n is very large

Non-Invertible/ Singular/ Degenerate

- Matrices that cannot be inverted, are called Noninvertible/ Singular/ Degenerate matrices
 - Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

Causes

- Redundant features (Linearly dependent)
 - \triangleright Example: $x_1 = \text{size in feet}^2$, $x_2 = \text{size in m}^2$
- \circ Too many features (e.g., $m \le n$): more features than training examples
 - ➤ Delete some features, or use regularization.

Solution:

- ☐ Use pinv(X) in Matlab
 - Moore-Penrose pseudo inverse

Assignment

- \diamond Find the values of θ to best fit the sample data using
 - Gradient descent:
 - Size -> price
 - Size, beds -> price
 - Normal equation
 - Size -> price
 - Size, beds -> price
- Plots
 - Best fit lines
 - Cost functions (2D and 3D)

- Do's and don'ts
 - Do not use any library
 - Only use gradient descent algorithm and normal equation given in the slides

Assignment (Cont.)

Any Tool ☐ Java, Python, Matlab, Octave, etc. Submit ☐ What files: Source codes with proper documentation To: rakib@bau.edu.bd Deadline: 05-Nov-2020 Marks: **」** 20 Marks deduction: 10 marks deduction per day for submitting after deadline X% deduction for X% similarity. 0 for > 50% similarity.

