Mais programação dinâmica

KT 6.4

Aproveite para olhar todo o Cap 6 do KT, que é sobre programação dinâmica.

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por $x \cdot w$ o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Suponha dado um número inteiro não-negativo W e vetores positivos w[1..n] e v[1..n].

Uma mochila é qualquer vetor x[1..n] tal que

$$x \cdot w \leq W$$
 e $0 \leq x[i] \leq 1$ para todo i

O valor de uma mochila é o número $x \cdot v$.

Uma mochila é ótima se tem valor máximo.

Problema booleano da mochila

Uma mochila x[1..n] tal que x[i] = 0 ou x[i] = 1 para todo i é dita booleana.

Problema (Knapsack Problem): Dados (w, v, n, W), encontrar uma mochila boolena ótima.

Exemplo: W = 50, n = 4

	1	2	3	4
W	40	30	20	10
V	840	600	400	100
X	1	0	0	0
X	1	0	0	1
X	0	1	1	0

valor = 840 valor = 940 valor = 1000

Suponha que x[1..n] é mochila boolena ótima para o problema (w, v, n, W).

```
Suponha que x[1..n] é mochila boolena ótima para o problema (w,v,n,W). Se x[n]=1 então x[1..n-1] é mochila boolena ótima para (w,v,n-1,W-w[n])
```

Suponha que x[1..n] é mochila boolena ótima para o problema (w,v,n,W).

Se x[n]=1então x[1..n-1] é mochila boolena ótima para (w,v,n-1,W-w[n])

senão x[1..n-1] é mochila boolena ótima para

(w, v, n - 1, W)

Suponha que x[1..n] é mochila boolena ótima para o problema (w, v, n, W).

Se
$$x[n] = 1$$

então $x[1..n-1]$ é mochila boolena ótima para $(w,v,n-1,W-w[n])$

senão $x[1..n-1]$ é mochila boolena ótima para $(w,v,n-1,W)$

NOTA. Não há nada de especial acerca do índice *n*. Uma afirmação semelhante vale para qualquer índice *i*.

Problema:

encontrar o valor de uma mochila booleana ótima.

Problema:

encontrar o valor de uma mochila booleana ótima.

t[i, Y] = valor de uma mochila booleana ótimapara (w, v, i, Y)

Problema:

encontrar o valor de uma mochila booleana ótima.

- t[i, Y] = valor de uma mochila booleana ótimapara (w, v, i, Y)
 - = valor da expressão $x \cdot v$ sujeito às restrições

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima

Problema:

encontrar o valor de uma mochila booleana ótima.

$$t[i, Y] = \text{valor de uma mochila booleana ótima}$$

para (w, v, i, Y)

= valor da expressão $x \cdot v$ sujeito às restrições

$$x \cdot w \leq Y$$
,

onde x é uma mochila booleana ótima

Possíveis valores de Y: 0, 1, 2, ..., W

$$t[i, Y] =$$
 valor da expressão $x \cdot v$ sujeito à restrição
$$x \cdot w \leq \frac{Y}{}$$

$$t[i,Y]=$$
 valor da expressão $x\cdot v$ sujeito à restrição
$$x\cdot w\leq Y$$
 $t[0,Y]=0$ para todo Y

$$t[i,Y]=$$
 valor da expressão $x\cdot v$ sujeito à restrição
$$x\cdot w \leq Y$$

$$t[0,Y]=0 \text{ para todo } Y$$

$$t[i,0]=0 \text{ para todo } i$$

$$t[i, Y] = ext{valor da expressão } x \cdot v ext{ sujeito à restrição}$$
 $x \cdot w \leq Y$ $t[0, Y] = 0$ para todo Y $t[i, 0] = 0$ para todo i $t[i, Y] = t[i-1, Y]$ se $w[i] > Y$

$$t[i, Y] = \text{valor da expressão } x \cdot v \text{ sujeito à restrição}$$
 $x \cdot w \leq Y$ $t[0, Y] = 0 \text{ para todo } Y$ $t[i, 0] = 0 \text{ para todo } i$ $t[i, Y] = t[i-1, Y] \text{ se } w[i] > Y$ $t[i, Y] = \max\{t[i-1, Y], t[i-1, Y-w[i]] + v[i]\} \text{ se } w[i] \leq Y$

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow REC-MOCHILA (w, v, n-1, W)

6 b \leftarrow REC-MOCHILA (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow REC-MOCHILA (w, v, n-1, W)

6 b \leftarrow REC-MOCHILA (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Consumo de tempo no pior caso é $\Omega(2^n)$

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow REC-MOCHILA (w, v, n-1, W)

6 b \leftarrow REC-MOCHILA (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Consumo de tempo no pior caso é $\Omega(2^n)$

Por que demora tanto?

O mesmo subproblema é resolvido muitas vezes.

Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela t?

Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela t?

Olhe a recorrência e pense...

$$t[i, \frac{\mathbf{Y}}{\mathbf{Y}}] = t[i-1, \frac{\mathbf{Y}}{\mathbf{Y}}] \text{ se } w[i] > \frac{\mathbf{Y}}{\mathbf{Y}}$$

$$t[i, Y] = \max\{t[i-1, Y], t[i-1, Y-w[i]] + v[i]\}\ \text{se } w[i] \le Y$$

Programação dinâmica

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0						
2	0						
3	0						
4	0						
i							

$$W = 5 e n = 4$$

		1		2		3	,	4			
	W	4		2		1		3	,		
	V	50	0	40	0	30	0	45	0		
0		1		2		3		4		5	Υ
0		0		0		0		0		0	
0		0									
0											
0											
^											

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0				
2	0						
3	0						
4	0						
i							

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	γ
0	0	0	0	0	0	0	
1	0	0	0	0			
2	0						
3	0						
4	0						
i							

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	١
0	0	0	0	0	0	0	
1	0	0	0	0	500		
2	0						
3	0						
4	0						
i							

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0						
3	0						
4	0						
i							,

$$W = 5 e n = 4$$

			1		2		3	,	4	•		
		W	4		2		1		3	,		
		V	50	0	40	0	30	0	45	0		
	0		1		2		3		4		5	Y
0	0		0		0		0		0		0	
1	0		0		0		0	5	00	5	00	
2	0		0									
3	0											
4	0											

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	500	500
2	0	0	400			
3	0					
4	0					
100						

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	500	500
2	0	0	400	400		
3	0					
4	0					

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	500	500
2	0	0	400	400	500	
3	0					
4	0					

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400	500	500	
3	0						
4	0						
i							,

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400	500	500	
3	0	300	400	700	700	800	
4	0	300	400	700	750	850	
i		•					

Algoritmo de programação dinâmica

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
MOCHILA-BOOLEANA (w, v, n, W)

1 para Y \leftarrow 0 até W faça

2 t[0, Y] \leftarrow 0

3 para i \leftarrow 1 até n faça

4 a \leftarrow t[i-1, Y]

5 se w[i] > Y

6 então b \leftarrow 0

7 senão b \leftarrow t[i-1, Y-w[i]] + v[i]

8 t[i, Y] \leftarrow \max\{a, b\}

9 devolva t[n, W]
```

Algoritmo de programação dinâmica

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
MOCHILA-BOOLEANA (w, v, n, W)
      para Y \leftarrow 0 até W faça
         t[0, Y] \leftarrow 0
         para i \leftarrow 1 até n faça
             a \leftarrow t[i-1, Y]
 5
             se w[i] > Y
 6
                 então b \leftarrow 0
                 senão b \leftarrow t[i-1, Y-w[i]] + v[i]
             t[i, Y] \leftarrow \max\{a, b\}
 8
 9
      devolva t[n, W]
```

Consumo de tempo é $\Theta(nW)$.

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n^{2 \log W})$ é exponencial!

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n2^{\lg W})$ é exponencial!

Explicação: o "tamanho" de W é $\lg W$ e não W (tente multiplicar $w[1], \ldots, w[n]$ e W por 1000)

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n2^{\lg W})$ é exponencial!

Explicação: o "tamanho" de W é $\lg W$ e não W (tente multiplicar $w[1], \ldots, w[n]$ e W por 1000)

Se $W \in \Omega(2^n)$ o consumo de tempo é $\Omega(n2^n)$, mais lento que o algoritmo força bruta!

Obtenção da mochila

```
MOCHILA (w, n, W, t)

1 Y \leftarrow W

2 para i \leftarrow n decrescendo até 1 faça

3 se t[i, Y] = t[i-1, Y]

4 então x[i] \leftarrow 0

5 senão x[i] \leftarrow 1

6 Y \leftarrow Y - w[i]

7 devolva x
```

Obtenção da mochila

```
MOCHILA (w, n, W, t)

1 Y \leftarrow W

2 para i \leftarrow n decrescendo até 1 faça

3 se t[i, Y] = t[i-1, Y]

4 então x[i] \leftarrow 0

5 senão x[i] \leftarrow 1

6 Y \leftarrow Y - w[i]

7 devolva x
```

Consumo de tempo é $\Theta(n)$.

Versão recursiva

```
MEMOIZED-MOCHILA-BOOLEANA (w, v, n, W)

1 para i \leftarrow 0 até n faça

2 para Y \leftarrow 0 até W faça

3 t[i, Y] \leftarrow \infty

3 devolva LOOKUP-MOC (w, v, n, W)
```

Versão recursiva

```
LOOKUP-MOC (w, v, i, Y)
  se t[i, Y] < \infty
       então devolva t[i, Y]
   se i = 0 ou Y = 0 então t[i, Y] \leftarrow 0
    senão
4
       se w[i] > Y
           então
5
               t[i, Y] \leftarrow \mathsf{LOOKUP\text{-}MOC}(w, v, i-1, Y)
           senão
               a \leftarrow \text{LOOKUP-MOC}(w, v, i-1, Y)
6
               b \leftarrow \text{LOOKUP-MOC}(w, v, i-1, Y-w[i]) + v[i]
8
               t[i, Y] \leftarrow \max\{a, b\}
    devolva t[i, Y]
9
```