Semi- and Nonparametric Quantile Regression with Neural Networks

February 05, 2024

Connacher Murphy

This is a live document and subject to change.

Abstract

I consider the use of deep neural networks for quantile regression. The proposed framework allows for semi- and nonparametric estimation of the conditional quantile function.

1. Loss Functions

In progress.

1.1. Standard Check Loss

The standard loss function used in quantile regression, often called the check loss, is defined

$$\ell(u;\tau) \stackrel{\text{\tiny def}}{=} (\tau - \mathbb{1}\{u < 0\})u. \tag{1}$$

I plot this function in Figure 1 for various quantiles τ .

Figure 1: Check Loss Function

1.2. Smooth Check Loss

Next, I consider a smooth approximation to the check loss, proposed by Zheng (2011). I define

$$\mathscr{C}^s(u;\tau,\alpha) \stackrel{\text{\tiny def}}{=} \tau u + \alpha \log \biggl(1 + \exp \biggl(-\frac{u}{\alpha} \biggr) \biggr), \tag{2}$$

where we call α the smoothing parameter. I plot the smooth check loss in Figure 2 for various quantiles τ and smoothing parameters α .

Figure 2: Check Loss Function

1.3. Simple Empirical Applications of (Smooth) Check Loss

I consider a simple empirical application of these two loss functions.

In progress.

Figure 3: Check Loss Function Performance on $X \sim U[0,1]$

Loss under $\tau = 0.5$ Loss under $\tau = 0.75$ 0.35 $\alpha = 0.1$ $\alpha = 0.1$ 0.300 Empirical minimum Empirical minimum $\alpha = 0.2$ $\alpha = 0.2$ 0.275 Empirical minimum Empirical minimum 0.30 Check Loss Check Loss 0.250 Empirical minimum **Empirical minimum** Loss Loss 0.200 0.20 0.175 0.15 0.125 0.100 0.4 0.6 Quantile candidate 0.0 0.2 0.8 1.0

Figure 4: Check Loss Function Performance on $Y = X^2$, where $X \sim U[0,1]$

Bibliography

0.0

0.2

0.4

0.6 Quantile candidate

Zheng, Songfeng. 2011. "Gradient Descent Algorithms for Quantile Regression with Smooth Approximation". International Journal of Machine Learning and Cybernetics 2 (3): 191-07. https://doi.org/10.1007/ s13042-011-0031-2

1.0

0.8