Semi-Supervised Recursive Autoencoders

Adrian Guthals

David Larson

aguthals@cs.ucsd.edu

dplarson@ucsd.edu

Abstract

We evaluate semi-supervised recursive autoencoders (RAE) as a method for predicting the sentiment of sentences. Using random word initialization, we are able to predict the sentiment of a movie review dataset with a 00.0% accuracy, which is comparable to the 00.0% accuracy reported in the 2011 paper "Semi-Supervised Recursive Autoencoders" by Soch et al.

1 Introduction

Socher et al. presented a semi-supervised method for learning meanings of sentences using recursive autoencoders [1].

The lecture notes state blah [2].

Mention: neural networks, sentence meaning/sentiment

2 Semi-Supervised Recursive Autoencoders

RAE, neural networks, backpropogation, error functions, greedy algorithm, calculating derivatives numerically using finite center-difference

3 Experiments

3.1 Datasets

We use the same movie reviews dataset as in [1], which consists of 10662 snippets from reviews posted to the Rotten Tomatoes website 1 . Each snippet is roughly equivalent to a single sentence and includes a positive/negative label, with the entire dataset containing 5331 positive and 5331 negative labelled snippets. For all experiments we randomly selected $\sim 70\%$ of the original dataset as a training set, with the remaining $\sim 30\%$ used as a testing set (see Table 1). In splitting the dataset we have taken care to prevent any snippets from existing in both sets, so as to not contaminate the results.

3.2 Experiment 1: RAE

The full method (RAE)

3.3 Experiment 2: RAE without Derivatives

RAE without derivatives to adjust the meaning vector of each word

¹http://www.rottentomatoes.com

Table 1: Number of total snippets (N_{total}) , positive snippets (N_{pos}) , and negative snippets (N_{neg}) for the original, training, and testing datasets.

Dataset	N_{total}	N_{pos}	N_{neg}
Original	10662	5331	5331
Training	7462	0000	0000
Testing	3200	0000	0000

3.4 Experiment 3: Bag-of-Words

4 Conclusion

Final remarks

References

- [1] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, "Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions," in *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2011.
- [2] C. Elkan, "Learning meanings for sentences," February 2013.