תרגיל בית 8

שאלה 1: (10 נקי)

 $.\left(X,d
ight)$ סדרת קושי במרחב מטרי $\left\{x_{n}
ight\}_{n=1}^{\infty}$ תהי

א. הוכיחו כי כל תת סדרה של $\left\{x_n
ight\}_{n=1}^\infty$ גם היא סדרת קושי. (5 נקי)

ב. תהי $\left\{x_n\right\}_{n=1}^{\infty}$ מתכנסת ב- $\left\{X,d\right\}_{n=1}^{\infty}$ המתכנסת ב- $\left\{X,d\right\}_{n=1}^{\infty}$ המתכנסת ב- $\left\{X,d\right\}_{n=1}^{\infty}$ מתכנסת ב- $\left\{X_n\right\}_{n=1}^{\infty}$ לאותו גבול. (5 נקי)

ואילו שלם, שלם, פן אינו ((X,d_1) -ש (X,d_1) הוא שלם, חומיאומורפיים כמרחבים טופלוגיים, כך ש- (X,d_1) הוא שלם, ואילו ((X,d_2) אינו שלם.

שאלה 2: (15 נקי)

יהי (X, מרחב מטרי. הוכיחו כי הוא שלם אם ורק אם לכל סדרה $\left\{A_n
ight\}_{n=1}^\infty$ של תתי קבוצות סגורות ולא ריקות של , X, היורדת הוכיחו להכלה (כלומר $A_n \to 0$), קיים איבר X טבעי), כך שסדרת קוטריהן שואפת ל- X (כלומר X) (כלומר X), קיים איבר X

$$\bigcap_{n=1}^{\infty}\left\{ A_{n}\right\} =\left\{ x_{0}\right\}$$
 כך ש-

שאלה 4: (20 נקי)

הוכיחו כי המרחב המטרי $l_{\scriptscriptstyle \infty}$ הוא מרחב שלם.

שאלה 5: (40 נקי)

תהי תוא המספרים המספרים הטבעיים. נגדיר פונקציה $d:N \times N \to R$ המוגדרת עייר המספרים המ

$$d(m,n) \in N \times N$$
 לכל $d(m,n) = \begin{cases} 0 & m = n \\ 1 + \frac{1}{\min(m,n)} & m \neq n \end{cases}$

(נקי) 5) . N א. הוכיחו כי d היא מטריקה על

ב. הוכיחו כי המרחב המטרי (N,d) הוא מרחב שלם. (15 נקי)

-ג. מצאו סדרה $\{B_n\}_{n=1}^\infty\subseteq B_n$ של כדורים סגורים ב- $\{N,d\}$, היורדת ביחס להכלה (כלומר $\{B_n\}_{n=1}^\infty$ לכל

.(0 - שלהם שלהם שלהם שלהם לב לכך שסדרת כלעיל, כך שסדרת אל עדרש למצוא סדרה למצוא סדרה ($\{B_n\}_{n=1}^\infty$ של כדורים כלעיל, כך שסדרת אינדרש למצוא סדרה להצוא סדרה וואפת ל- $\{B_n\}_{n=1}^\infty$

(20 נקי)

בהצלחה!