Engineering Optics

Lecture 24

31/05/2022

by

Debolina Misra

Assistant Professor in Physics IIITDM Kancheepuram, Chennai, India

Working principle

The energy levels of the chromium ion; *G* and *M* represent the ground and metastable states, respectively.

- ➤ Ruby laser → three/four level laser
- ➤ Pumping type → <u>optical/electrical</u> discharge
- ➤ Ion responsible for lasing \rightarrow Al³⁺ / Cr³⁺
- Example of → <u>Semiconductor / Gas / Solid</u> <u>state / Liquid laser</u>

Working principle

The energy levels of the chromium ion; *G* and *M* represent the ground and metastable states, respectively.

- ➤ Ruby laser → three level laser
- ➤ Pumping type → optical
- \rightarrow Ion responsible for lasing \rightarrow Cr³⁺
- ➤ Example of → <u>Solid state laser</u>

Working principle/(non)radiative

The energy levels of the chromium ion; *G* and *M* represent the ground and metastable states, respectively.

A Jablonski diagram showing the excitation of molecule A to its singlet excited state (¹A*) followed by intersystem crossing to the triplet state (³A) that relaxes to the ground state by phosphorescence.

Fluore-/phosphorescence

https://www.edinst.com/blog/photoluminescence-differences/

Fluorescence	Phosphorescence
It is the absorption of energy by atoms or	It is the absorption of energy by atoms or
molecules followed by immediate emission of light	molecules followed by delayed emission of
or electromagnetic radiation	electromagnetic radiation
The emission of radiation or light suddenly stops	The emission of radiation remains for some
on removal of source of excitation	time even after the removal of source of
	excitation
In Fluorescence, the excited atom has	In Phosphorescence, the excited atom has
comparatively short life time before its transition to	comparatively long life time before its transition
low energy state	to low energy state
The time period or interval between the absorption	The time period or interval between the
and emission of energy is very short	absorption and emission of energy is
	comparatively long
Absorption process occurs over short time interval	Phosphorescence involves the transition from
and involves the transition from ground state to	the single ground energy state to excited triplet
singlet excited state and do not change the	state and involving a change of spin state
direction of the spin.	
In fluorescent materials, gives an 'an immediate	Phosphorescent materials appears to 'glow in
flash or afterglow' on excitation	the dark', because of slow emission of light
	over time.
Examples of Fluorescence:	Examples of Phosphorescence:
Gemstones fluoresce, including gypsum, talc.	Glow of clock dial or toys or in bulbs after
Jelly fish, chlorophyll extract, vitamins etc	switching off the light in the room. The glow
	remains for some minutes or even hours in a
	dark room

Solid-State Lasers

- Along with **ruby**, great many other solid-state lasers whose outputs range from 170 nm to 3900 nm.
- lasers use a glass or crystal rod doped with ions capable of supplying the needed energy states.
- Recall that ruby is corundum doped with chromium.
- ► The trivalent rare earths Nd³+, Ho³+,Gd³+ Tm³+, Er³+, Pr³+, and Eu³+ undergo laser action in hosts, such as CaWO₄, Y₂O₃, SrMoO₄, LaF₃, yttrium aluminum garnet (YAG for short), and glass.
- Nd:YAG (Nd:Y₃Al₅O₁₂) lasers are among the most widely used solid-state laser.
- Applications in surgery, target designation, range finding, frequency doubling, and material processing, among others.

Solid-State Lasers

Туре	Wavelengths (nm)
Cr:Al ₂ O ₃ (Ruby)	694.3
Cr:BeAl ₂ O ₃ (Alexandrite)	700–830
Cr:LiCaF	700–830
Cr:LiSrAlF	800-1050
Cr:ZnSe	2200-2800
Er:YAG	2940
Ho:YAG	2100
Nd:Glass	1080, 1062, 1054
Nd:YAG	1064.1, 266, 355, 532, 1320
Nd:YCOB	≈ 1060
Nd:YLF	1047, 1053
Nd:YVO ₄	1064
Pr:Glass	933, 1098
Sm:CaF ₂	708.5
Ti:sapphire	650-1180
Tm:YAG	2000
U:CaF ₂	2500
Yb:Glass	1030
Yb:YAG	1030

He-Ne LASER

- He-Ne laser which was first fabricated by *Ali Javan* and coworkers at Bell Telephone Laboratories in the United States. → 1st gas laser to be operated successfully.
- The He-Ne laser consists of a mixture of He and Ne (ratio ~10:1), placed inside a long, narrow discharge tube
- Fixed pressure inside the rube (1 torr).
- System → enclosed between a pair of plane mirrors→ resonator

wikipedia

He-Ne LASER

Relevant energy levels of helium and neon.

- When an electric discharge is passed through the gas, the electrons → collide with the *He atoms*
- ▶ He atoms excited from the ground state F_1 to F_2 and F_3 .
- He atoms excited to these states stay in these levels before losing energy through collisions.
- Collisions with whom?? → Ne atoms present in the same tube
- Due to collision \rightarrow these collisions, the Ne atoms are excited to E_4 and E_6
- Thus when the atoms in levels F_2 and F_3 collide with unexcited Ne atoms, they raise them to the levels E_4 and E_6 , respectively.

Thank You