Protocolos da Camada de Transporte

Carolina Cunha, Hugo Faria, João Diogo Mota

University of Minho, Department of Informatics, 4710-057 Braga, Portugal e-mail:{a80142,a81283, a80791}@alunos.uminho.pt

CONTEÚDO

1.	QUESTÕES E RESPOSTAS	2
	·	
2.	CONCLUSÕES	9
3.	ANEXOS	.10

1. QUESTÕES E RESPOSTAS

1. Inclua no relatório uma tabela em que identifique, para cada comando executado, qual o protocolo de aplicação, o protocolo de transporte, porta de atendimento e overhead de transporte, como ilustrado no exemplo seguinte:

Comando Usado	Protocolo de Aplicação	Protocolo de Transporte	Porta de Atendimento	Overhead de transporte em
(aplicação)	(se aplicável)	(se aplicável)	(se aplicável)	bytes (se aplicável)
ping	-	-	-	-
traceroute	-	UDP	33445	8 (40 – 32 data)
telnet	-	ТСР	23	40 (20 + 20 options)
ftp	FTP	TCP	21	32 (20 + 12 options)
Tftp	TFTP	UDP	69	8 (22 – 14 checksum)
Browser/http	НТТР	ТСР	80	32 (20 + 12 options)
nslookup	DNS	UDP	53	8 (39 – 31 checksum)
ssh	SSH	ТСР	22	32 (20 + 12 options)
sftp	SSH	ТСР	22	32 (20 + 12 options)

2. Uma representação num diagrama temporal das transferências da file1 por FTP e TFTP respetivamente. Se for caso disso, identifique as fases de estabelecimento de conexão, transferência de dados e fim de conexão. Identifica também claramente os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações.

(Nota: a transferência por FTP envolve mais que uma conexão FTP, nomeadamente uma de controlo [ftp] e outra de dados [ftp-data]. Faça o diagrama apenas para a conexão de transferência de dados do ficheiro mais pequeno).

Figura 1: Topologia utilizada

58 78.323766	10.1.1.1	10.3.3.1	FTP	78 Request: RETR file1
59 78.324035	10.3.3.1	10.1.1.1	TCP	74 ftp-data > 56537 [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=2102760 TSecr=0 WS=16
60 78.324211	10.1.1.1	10.3.3.1	TCP	74 56537 > ftp-data [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=2102760 TSecr
61 78.324362	10.3.3.1	10.1.1.1	TCP	66 ftp-data > 56537 [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=2102760 TSecr=2102760
62 78.324433	10.3.3.1	10.1.1.1	FTP	130 Response: 150 Opening BINARY mode data connection for file1 (193 bytes).
63 78.324437	10.3.3.1	10.1.1.1	FTP-DAT	259 FTP Data: 193 bytes
64 78.324491	10.3.3.1	10.1.1.1	TCP	66 ftp-data > 56537 [FIN, ACK] Seq=194 Ack=1 Win=14608 Len=0 TSval=2102760 TSecr=2102760
65 78.324815	10.1.1.1	10.3.3.1	TCP	66 56537 > ftp-data [ACK] Seq=1 Ack=194 Win=15552 Len=0 TSval=2102760 TSecr=2102760
66 78.324816	10.1.1.1	10.3.3.1	TCP	66 56537 > ftp-data [FIN, ACK] Seq=1 Ack=195 Win=15552 Len=0 TSval=2102760 TSecr=2102760
67 78.325399	10.3.3.1	10.1.1.1	TCP	66 ftp-data > 56537 [ACK] Seq=195 Ack=2 Win=14608 Len=0 TSval=2102760 TSecr=2102760
68 78.325404	10.3.3.1	10.1.1.1	FTP	90 Response: 226 Transfer complete.

Figura 2: Captura dos pacotes da transferência do file1 por FTP

Diagrama temporal da transferência do file1 por FTP.

A conexão entre o Portatil1 e o Serv1 é estabelecida através de um 3-way-handshake, uma vez que o FTP recorre ao TCP como protocolo de transporte. Dado que o TCP é orientado à conexão, é garantida uma troca fiável e ordenada dos dados.

A observação dos pacotes capturados permite verificar o envio de um *Request* por parte do Portatil1 a requisitar a transferência do *file1*. Este pedido será respondido pelo Serv1 com um pacote [SYN], especificando o número de sequência inicial [Seq = 0] e iniciando a conexão. O Portatil1 recebe o pacote e responde com um segmento [SYN,ACK], em que é alocado espaço de armazenamento e especificado o número de sequência inicial [Seq = 0]. Por fim, o Serv1 recebe o segmento [SYN,ACK], respondendo com um segmento [ACK].

Após concluída esta troca de pacotes, é dada como iniciada a conexão. Os pacotes 62 e 63 representam a transferência do *file1* do Serv1 para o Portatil1. Depois de enviado o ficheiro, o Serv1 indica que quer terminar a conexão. O Portatil1 envia uma resposta a indicar a receção do *file1*, através do [ACK] com Ack = 194, e envia um outro pacote a aceitar e a indicar que quer terminar a conexão. Por fim, o Serv1 responde, aceitando a terminação da conexão.

Figura 3: Captura dos pacotes da transferência do file1 por TFTP

Diagrama temporal da transferência do file1 por TFTP.

Quando em comparação com a transferência realizada pelo FTP, a concretizada pelo TFTP é bastante mais simples, uma vez que não existe estabelecimento nem terminação de conexão.

A análise dos pacotes capturados, permite confirmar a simplicidade do TFTP, que recorre ao UDP como protocolo de transporte. Deste modo, o Portatil1 envia um *Read Request*, onde é realizado o pedido de transferência do *file1*. De seguida, o Serv1 envia um pacote *Data Packet*, contendo o ficheiro. Por fim, o Portatil1 responde com um *Acknowledgement*, informando o Serv1 da receção do ficheiro.

- 3. Com base nas experiências realizadas, distinga e compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos:
 - (i) uso da camada de transporte;
 - (ii) eficiência na transferência;
 - (iii) complexidade;
 - (iv) segurança;

As quatro aplicações de transferência de ficheiros utilizadas foram o FTP, SFTP, TFTP e HTTP.

O SFTP tem como protocolo de transporte o TCP e é a aplicação com maior segurança, dado que utiliza meios de autenticação e de encriptação para a transferência de ficheiros (Figura 17). Por este motivo, é também a aplicação mais complexa, o que implica ser a aplicação com menor eficiência.

O FTP é uma aplicação com alguma segurança, uma vez que requer uma autenticação de modo a que seja possível realizar a transferência de ficheiros, mas não realiza qualquer encriptação (Figura 18). Dado que utiliza o TCP como protocolo de transporte, detém alguma complexidade e menor eficiência.

O TFTP é uma aplicação com baixa complexidade, uma vez que não recorre a medidas de segurança e de autenticação e, por esse motivo, apenas necessita da troca de três pacotes para realizar a transferência de ficheiros (Figura 3). Devido à inexistência de métodos de segurança, que torna o TFTP uma aplicação pouco segura, bem como o uso do UDP como protocolo de transporte (não garante a entrega dos dados; não efetua controlo de fluxo ou controlo de conexão), o TFTP é a aplicação mais eficiente na transferência de ficheiros.

Por fim, o HTTP, analogamente ao TFTP, também não usufrui de medidas de segurança e autenticação, pelo que se trata de uma aplicação pouco segura (Figura 19). No entanto, tem como protocolo de transporte o TCP, tendo a capacidade de deteção e correção de erros nos pacotes, sendo mais complexo do que o TFTP. Consequentemente, é menos eficiente do que o TFTP.

4. As características das ligações de rede têm uma enorme influência nos níveis de Transporte e de Aplicação. Discuta, relacionando a resposta com as experiências realizadas, as influências das situações de perda ou duplicação de pacotes IP no desempenho global de Aplicações fiáveis (se possível, relacionando com alguns dos mecanismos de transporte envolvidos).

(Nota: Para responder a esta pergunta deve em primeiro lugar efetuar as transferências pedidas no enunciado, quer a partir do sistema Portatil1 na LAN1, quer do sistema Alfa na LAN2, pois só assim poderá ligar esta resposta à prática. Na topologia, o sistema Alfa tem conetividade ao Backbone através de um link que funciona com perdas, atrasos e duplicações, que é o link entre o switch SwitchLan2 e o router Router4. Nos testes podem mesmo ajustar esses parâmetros.)

Assim como indicado na topologia CORE fornecida e apresentada na Figura 1, podemos observar que as seguintes ligações não apresentam qualquer tipo de probabilidade de obtenção de erros de transporte, tal como a comunicação dos *routers* entre si: o SwitchLan1 (presente na LAN1) e o Router5; o SwitchLan3 (que se encontra na LAN3) e Router1; e o SwitchLan4 (visível na LAN4) e Router7. Por outro lado, o *link* entre o Router4 e o SwitchLan2, presente na LAN2, apresenta uma percentagem de perdas de 5% e de duplicações de 10%, sendo por isso, ao contrário das restantes ligações expostas, esperada a presença de erros aquando do envio de pacotes por esta ligação.

Para comprovar e analisar estas possíveis perdas e duplicações, foi enviado um ficheiro (*file2*) a partir do Serv1 (servidor encontrado na LAN3) até Alfa (*host* presente na LAN2), através do comando "wget http://10.3.3.1/file2" (Figura 15), de modo a que a comunicação passasse pela ligação anteriormente referida, onde poderiam existir problemas. De modo a facilitar a análise, foi iniciada uma captura no *Wireshark* antes de ser introduzido o comando para iniciar a transferência do *file2*. Um excerto da captura pode ser visto na (Figura 13).

Uma vez que a transferência do ficheiro está a ser realizada sobre o protocolo de transporte TCP, é previsto que qualquer erro presente num pacote que seja detetado, será corrigido, uma vez que este protocolo apresenta controlo de erro, fluxo e congestão.

Tal como era expectável, é possível visualizar perdas (veja-se de exemplo o pacote 202 da Figura 13, "TCP Previous Segment Lost"), e ACKs duplicados (sirva de exemplo o pacote 205 da Figura 13, "TCP Dup ACK"), que ocorrem quando o pacote esperado não é recebido (por exemplo, Seq = 114, Ack = 24843 (pacote 201) e Seq = 114, Ack = 24843 (pacote 205)). É ainda possível verificar pacotes retransmitidos por *Fast Retransmission*. Este tipo de retransmissão ocorre quando o emissor recebe três ACKs duplicados e, por este motivo, supõe que o segmento respetivo foi perdido. A existência de pacotes recebidos com ordem trocada ("*Out-Of-Order*", Figura 14) pode igualmente constituir uma complicação na transferência de ficheiros, uma vez que o *buffer* do recetor

irá ficar com "buracos". A possibilidade de ocorrência destas trocas deve-se ao balanço de tráfego quando se verifica a existência de vários percursos com o mesmo número de saltos desde a origem até ao destino. Por fim, é também visível a retransmissão de pacotes, possivelmente devido à excedência do *timeout* do pacote.

Com base nas capturas observadas, conclui-se que a baixa fiabilidade de um percurso a percorrer pelos pacotes implica que estes estão mais sujeitos a erros (perdas/duplicações). Desta forma, o TCP procura aperceber-se de situações de congestão através da receção de ACKs duplicados e da ocorrência de *timeouts*, recorrendo a mecanismos de prevenção/minimização destas situações.

Uma vez que a ocorrência de erros provoca uma constante retransmissão dos mesmos pacotes, o número de RTT (*Round Trip Time*) vai ser significativamente maior, aumentando o tempo mínimo para o ficheiro transferido ser totalmente recebido. Desta forma, irá ser visível um decréscimo no desempenho global de aplicações fiáveis.

Por outro lado, a transferência do ficheiro *file1* para o Portatil1 (Figura 12: Captura dos pacotes da transferência do file1 por Portatil1 não apresentou quaisquer perdas ou duplicações de pacotes, devido às características das ligações apresentadas na topologia. A análise das Figura 15 e Figura 16 permitiu confirmar que o desempenho global da transferência do ficheiro de maior dimensão (*file2*) é maior quando a transferência é realizada pelo Portatil1 (0.7segundos) do que pelo Alfa (10segundos).

2. CONCLUSÕES

A elaboração deste trabalho prático permitiu aprofundar os conteúdos relativos à camada de transporte e aplicação abordados ao longo das aulas teóricas.

Assim, estudou-se de que modo o TCP (*Transmission Control Protocol*) e o UDP (*User Datagram Protocol*) diferem entre si, bem como as situações em que recorrer a cada um. A complexidade do TCP, que permite o controlo de erros, controlo de fluxo e controlo de congestão, garante a segurança e fiabilidade da troca de dados, permitindo obter a noção de <u>fluxo</u>. Por outro lado, a eficiência do UDP devido à sua baixa complexidade (troca de dados não fiável e desordenada) revela-se de extrema importância para aplicações onde a rapidez é crucial (por exemplo, *streaming*, aplicações em tempo real, entre outros), permitindo às aplicações ter um maior controlo sobre o envio de dados (quando enviar e quantos bytes a enviar).

A consolidação destes conhecimentos permitiu compreender que tipos de protocolos utilizar dependendo da finalidade de cada aplicação, bem como as regras segundo as quais estes protocolos se regem de forma a realizar a transferência de dados.

3. ANEXOS

Figura 4: Pacote capturado após comando ping

```
| Trame 13: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
| Ethernet II, Src: CadmusCo_dl:61:fb (08:00:27:dl:61:fb), Dst: RealtekU_12:35:02 (52:54:00:12:35:02)
| Internet Protocol Version 4, Src: 10.0.2.15 (10.0.2.15), Dst: Port: telnet (23), Seq: 0, Len: 0
| Source port: 57825 (57825)
| Destination port: telnet (23)
| [Stream index: 3]
| Sequence number: 0 (relative sequence number)
| Header length: 40 bytes
| Flags: 0x002 (SYN) | Window size: 14600]
| Calculated window size: 14600]
| Checksum: 0x477c (Validation disabled]
| Options: (20 bytes)
```

Figura 5: Pacote capturado após comando telnet

Figura 6: Pacote capturado após comando FTP

Figura 7: Pacote capturado após comando TFTP

Figura 8: Pacote capturado após comando nslookup

Figura 9: Pacote capturado após comando SSH

```
▼ Frame 84: 130 bytes on wire (1040 bits), 130 bytes captured (1040 bits)

▶ Ethernet II, Src: 00:00:00_aa:00:10 (00:00:00:aa:00:10), Dst: 00:00:00_aa:00:14 (00:00:00:aa:00:14)

▶ Internet Protocol Version 4, Src: 10.1.1.1 (10.1.1.1), Dst: 10.3.3.1 (10.3.3.1)

▼ Transmission Control Protocol, Src Port: 34976 (34976), Dst Port: ssh (22), Seq: 2739, Ack: 3555, Len: 64

Source port: 34976 (34976)

Destination port: ssh (22)

[Stream index: 0]

Sequence number: 2739 (relative sequence number)

[Next sequence number: 2803 (relative sequence number)]

Acknowledgement number: 3555 (relative ack number)

Header length: 32 bytes

▶ Flags: 0x018 (PSH, ACK)

Window size value: 1570

[Calculated window size: 25120]

[Window size value: 1570

[Calculated window size: 25120]

[Window size scaling factor: 16]

▶ Checksum: 0x186c [validation disabled]

▶ Options: (12 bytes)

▶ [SEQ/ACK analysis]

[Reassembled PDU in frame: 30]

TCP segment data (64 bytes)
```

Figura 10: Pacote capturado após comando SFTP

```
3 0.000124 10.1.1.1 10.3.3.1 UDP 74 Source port: 36553 Destination port: 33445 — + x

Frame 3: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)

Ethernet II, Src: 00:00:00_aa:00:10 (00:00:00:0a:00:10), Dst: 00:00:00_aa:00:14 (00:00:00:aa:00:14)

Internet Protocol Version 4, Src: 10.1.1.1 (10.1.1.1), Dst: 10.3.3.1 (10.3.3.1)

Viser Datagram Protocol, Src Port: 36553 (36553), Dst Port: 33445 (33445)

Source port: 36553 (36553)

Destination port: 3445 (33445)

Length: 40

Checksum: 0x183f [validation disabled]

Data (32 bytes)
```

Figura 11: Pacote capturado após comando traceroute

3 7.222716	10.1.1.1	10.3.3.1	TCP	74 57793 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=896117 TSecr=0 WS=16
4 7.223679	10.3.3.1	10.1.1.1	TCP	74 http > 57793 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=896117 TSecr=89611
5 7.223873	10.1.1.1	10.3.3.1	TCP	66 57793 > http [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=896117 TSecr=896117
6 7.224083	10.1.1.1	10.3.3.1	HTTP	179 GET /file1 HTTP/1.1
7 7.224462	10.3.3.1	10.1.1.1	TCP	66 http > 57793 [ACK] Seq=1 Ack=114 Win=14480 Len=0 TSval=896117 TSecr=896117
8 7.224466	10.3.3.1	10.1.1.1	TCP	289 [TCP segment of a reassembled PDU]
9 7.224507	10.3.3.1	10.1.1.1	HTTP	259 HTTP/1.1 200 Ok (text/plain)
10 7.224635	10.1.1.1	10.3.3.1	TCP	66 57793 > http [ACK] Seq=114 Ack=224 Win=15680 Len=0 TSval=896117 TSecr=896117
11 7.225102	10.1.1.1	10.3.3.1	TCP	66 57793 > http [FIN, ACK] Seq=114 Ack=418 Win=16752 Len=0 TSval=896118 TSecr=896117
12 7.225595	10.3.3.1	10.1.1.1	TCP	66 http > 57793 [ACK] Seq=418 Ack=115 Win=14480 Len=0 TSval=896118 TSecr=896118

Figura 12: Captura dos pacotes da transferência do file1 por Portatil1

200 17.998463 10.2.2.1	10.3.3.1	TCP	66 58322 > http://acki Seg=114 Ack=23395 Win=39392 Len=0 TSval=946318 TSecr=946318
201 17.999766 10.2.2.1	10.3.3.1	TCP	66 58322 > http [ACK] Seg=114 Ack=24843 Win=38320 Len=0 TSval=946318 TSecr=946318
202 17.999905 10.3.3.1	10.2.2.1	TCP	1514 [TCP Previous segment lost] [TCP segment of a reassembled PDU]
203 18.000131 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]
204 18.011139 10.2.2.1	10.3.3.1	TCP	78 [TCP Window Update] 58322 > http [ACK] Seq=114 Ack=24843 Win=41744 Len=0 TSval=946320 TSecr=94631
205 18.011144 10.2.2.1	10.3.3.1	TCP	78 [TCP Dup ACK 204#1] 58322 > http [ACK] Seq=114 Ack=24843 Win=41744 Len=0 TSval=946320 TSecr=94631
206 18.011604 10.2.2.1	10.3.3.1	TCP	78 [TCP Dup ACK 204#2] 58322 > http [ACK] Seq=114 Ack=24843 Win=41744 Len=0 TSval=946320 TSecr=94631
207 18.012763 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]
208 18.012793 10.3.3.1	10.2.2.1	TCP	1514 [TCP Fast Retransmission] [TCP segment of a reassembled PDU]
209 18.020616 10.2.2.1	10.3.3.1	TCP	78 58322 > http [ACK] Seq=114 Ack=26291 Win=40304 Len=0 TSval=946327 TSecr=946327 SLE=27739 SRE=3208
210 18.021238 10.3.3.1	10.2.2.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
211 18.021251 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]
212 18.029095 10.2.2.1	10.3.3.1	TCP	66 58322 > http [ACK] Seq=114 Ack=32083 Win=39392 Len=0 TSval=946330 TSecr=946329
213 18.029097 10.2.2.1	10.3.3.1	TCP	66 58322 > http [ACK] Seq=114 Ack=33531 Win=38320 Len=0 TSval=946330 TSecr=946329
214 18.036336 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]
215 18.047937 10.2.2.1	10.3.3.1	TCP	66 58322 > http [ACK] Seq=114 Ack=34979 Win=42256 Len=0 TSval=946333 TSecr=946331
216 18.048416 10.3.3.1	10.2.2.1	TCP	1514 [TCP Previous segment lost] [TCP segment of a reassembled PDU]
217 18.058919 10.2.2.1	10.3.3.1	TCP	78 [TCP Dup ACK 215#1] 58322 > http [ACK] Seq=114 Ack=34979 Win=42256 Len=0 TSval=946336 TSecr=94633
218 18.058921 10.2.2.1	10.3.3.1	TCP	78 [TCP Dup ACK 215#2] 58322 > http [ACK] Seq=114 Ack=34979 Win=42256 Len=0 TSval=946336 TSecr=94633
219 18.068912 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]
220 18.079149 10.2.2.1	10.3.3.1	TCP	78 [TCP Dup ACK 215#3] 58322 > http [ACK] Seq=114 Ack=34979 Win=42256 Len=0 T5val=946341 TSecr=94633
221 18.104529 10.3.3.1	10.2.2.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
222 18.126855 10.2.2.1	10.3.3.1	TCP	78 58322 > http [ACK] Seq=114 Ack=36427 Win=40816 Len=0 TSval=946350 TSecr=946344 SLE=37875 SRE=4077
223 18.179421 10.3.3.1	10.2.2.1	TCP	1514 [TCP segment of a reassembled PDU]

Figura 13: Excerto da captura dos pacotes da transferência do file1 por Alfa

No.	Time	Source	Destination	Protocol	Length Info
	18 10.24754	2 10.3.3.1	10.1.1.1	TCP	1514 [TCP Previous segment lost] [TCP segment of a reassembled PDU]
	19 10.24756	5 10.3.3.1	10.1.1.1	TCP	1514[TCP segment of a reassembled PDU]
	20 10.24857	8 10.1.1.1	10.3.3.1	TCP	78 [TCP Dup ACK 17#1] 57795 > http [ACK] Seq=114 Ack=4571 Win=24368 Len=0 TSval=944386 TSecr=944386
	21 10.24858	2 10.1.1.1	10.3.3.1	TCP	78 [TCP Dup ACK 17#2] 57795 > http [ACK] Seq=114 Ack=4571 Win=24368 Len=0 TSval=944386 TSecr=944386 '
	22 10.24944	1 10.3.3.1	10.1.1.1	TCP	1514 [TCP Fast Retransmission] [TCP segment of a reassembled PDU]
	23 10.24946	2 10.3.3.1	10.1.1.1	TCP	1514 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
	24 10.24967	8 10.3.3.1	10.1.1.1	TCP	1514 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
	25 10.25025	0 10.1.1.1	10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=6019 Win=27264 Len=0 TSval=944387 TSecr=944386 SLE=20499 SRE=23395
	26 10.25025	4 10.1.1.1	10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=7467 Win=30160 Len=0 TSval=944387 TSecr=944386 SLE=20499 SRE=23395
	27 10.25060	4 10.1.1.1	10.3.3.1	TCP	78:57795 > http [ACK] Seq=114 Ack=8915 Win=33056 Len=0 TSval=944387 TSecr=944386 SLE=20499 SRE=23395
	28 10.25086	4 10.3.3.1	10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	29 10.25088		10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	30 10.25109	6 10.3.3.1	10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	31 10.25154	3 10.1.1.1	10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=10363 Win=35952 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	32 10.25154		10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=11811 Win=38848 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	33 10.25180		10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=13259 Win=38320 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	34 10.25225	5 10.3.3.1	10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	35 10.25237		10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	36 10.25269		10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	37 10.25335		10.3.3.1	TCP	78:57795 > http [ACK] Seq=114 Ack=14707 Win=40464 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	38 10.25335		10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=16155 Win=39392 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	39 10.25353		10.3.3.1	TCP	78 57795 > http [ACK] Seq=114 Ack=17603 Win=38320 Len=0 TSval=944387 TSecr=944387 SLE=20499 SRE=2339
	40 10.25375		10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]
	41 10.25377	0 10.3.3.1	10.1.1.1	TCP	1514 [TCP Retransmission] [TCP segment of a reassembled PDU]

Figura 14: Excerto 2 da captura dos pacotes da transferência do file1 por Alfa

Figura 15: Transferência dos file1 e file2 por Alfa

Figura 16: Transferência dos file1 e file2 por Portatil1

No.	Time	Source	Destination	Protocol	Length Info
	14 35.511142	00:00:00_aa:00:14	00:00:00_aa:00:10	ARP	42 10.3.3.1 is at 00:00:00:aa:00:14
	15 35.511150	10.1.1.1	10.3.3.1	TCP	74.34976 > ssh [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=1526905 TSecr=0 WS=16
	16 35.511314	10.3.3.1	10.1.1.1	TCP	74 ssh > 34976 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=1526906 TSecr=15269
	17 35.511820	10.1.1.1	10.3.3.1	TCP	66 34976 > ssh [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=1526906 TSecr=1526906
	18 35.520095	10.3.3.1	10.1.1.1	SSHv2	108 Server Protocol: SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1.10\r
	19 35.523269	10.1.1.1	10.3.3.1	TCP	66 34976 > ssh [ACK] Seq=1 Ack=43 Win=14608 Len=0 TSval=1526909 TSecr=1526908
	20 35.523271	10.1.1.1	10.3.3.1	SSHv2	108 Client Protocol: SSH-2.0-OpenSSH_5.9p1 Debian-Subuntu1.10\r
	21 35.523638	10.3.3.1	10.1.1.1	TCP	66 ssh > 34976 [ACK] Seq=43 Ack=43 Win=14480 Len=0 TSval=1526909 TSecr=1526909
	22 35.524236	10.1.1.1	10.3.3.1	SSHv2	1338 Client: Key Exchange Init
	23 35.525210	10.3.3.1	10.1.1.1	TCP	66 ssh > 34976 [ACK] Seq=43 Ack=1315 Win=17376 Len=0 TSval=1526910 TSecr=1526909
	24 35.525216	10.3.3.1	10.1.1.1	SSHv2	1018 Server: Key Exchange Init
	25 35.527555	10.1.1.1	10.3.3.1	SSHv2	146 Client: Diffie-Hellman Key Exchange Init
	26 35.540281	10.3.3.1	10.1.1.1	SSHv2	722 Server: New Keys
	27 35.650771	10.1.1.1	10.3.3.1	TCP	66 34976 > ssh [ACK] Seq=1395 Ack=1651 Win=19408 Len=0 TSval=1526941 TSecr=1526913
	28 38.566626	10.1.1.1	10.3.3.1	SSHv2	82 Client: New Keys
	29 38.605141	10.3.3.1	10.1.1.1	TCP	66 ssh > 34976 [ACK] Seq=1651 Ack=1411 Win=17376 Len=0 TSval=1527680 TSecr=1527670
	30 38.605473	10.1.1.1	10.3.3.1	TCP	114 [TCP segment of a reassembled PDU]
	31 38.612217	10.3.3.1	10.1.1.1	TCP	66 ssh > 34976 [ACK] Seg=1651 Ack=1459 Win=17376 Len=0 TSval=1527680 TSecr=1527680

Figura 17: Segurança STFP

No.	Time	Source	Destination	Protocol	Length	Info
1-	4 30.003258	10.3.3.254	224.0.0.5	OSPF	78	Hello Packet
13	30.663187	fe80::200:ff:feaa:1	ff02::5	OSPF	90	Hello Packet
10	38.203575	10.1.1.1	10.3.3.1	FTP	82	Request: USER anonymous
11	7 38.203757	10.3.3.1	10.1.1.1	TCP	66	ftp > 35644 [ACK] Seq=21 Ack=17 Win=14480 Len=0 TSval=2092730 TSecr=2092730
18	38.203762	10.3.3.1	10.1.1.1	FTP	100	Response: 331 Please specify the password.
15	38.204009	10.1.1.1	10.3.3.1	TCP	66	35644 > ftp [ACK] Seq=17 Ack=55 Win=14608 Len=0 TSval=2092730 TSecr=2092730
2	40.005126	10.3.3.254	224.0.0.5	OSPF	78	Hello Packet
2	40.696603	fe80::200:ff:feaa:1	ff02::5	OSPF	90	Hello Packet
2	2 50.005781	10.3.3.254	224.0.0.5	OSPF	78	Hello Packet
2	3 50.684282	fe80::200:ff:feaa:1	ff02::5	OSPF	90	Hello Packet
2	4 52.176378	10.1.1.1	10.3.3.1	FTP	96	Request: PASS a80791@alunos.uminho.pt
2	52.198837	10.3.3.1	10.1.1.1	FTP	89	Response: 230 Login successful.
2	52.199429	10.1.1.1	10.3.3.1	TCP	66	35644 > ftp [ACK] Seq=47 Ack=78 Win=14608 Len=0 TSval=2096228 TSecr=2096228
2	7 52.199430	10.1.1.1	10.3.3.1	FTP	72	Request: SYST
2	52.199766	10.3.3.1	10.1.1.1	FTP	85	Response: 215 UNIX Type: L8
2	52.240003	10.1.1.1	10.3.3.1	TCP	66	35644 > ftp [ACK] Seq=53 Ack=97 Win=14608 Len=0 TSval=2096239 TSecr=2096229

Figura 18: Segurança FTP

No.	Time	Source	Destination	Protocol	Length Info
					78 Hello Packet
	2 1.035937	fe80::200:ff:feaa:1	ff02::5	OSPF	90 Hello Packet
	3 10.000722	10.3.3.254	224.0.0.5	OSPF	78 Hello Packet
	4 11.050322	fe80::200:ff:feaa:1	ff02::5	OSPF	90 Hello Packet
	5 15.381808	00:00:00_aa:00:10	Broadcast	ARP	42 Who has 10.3.3.1? Tell 10.3.3.254
	6 15.381964	00:00:00_aa:00:14	00:00:00_aa:00:10	ARP	42 10.3.3.1 is at 00:00:00:00:14
	7 15.381970	10.1.1.1	10.3.3.1	TCP	74 51534 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=2339582 TSecr=0 WS=16
	8 15.382108	10.3.3.1	10.1.1.1	TCP	74 http > 51534 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=2339582 TSecr=2339
	9 15.382520	10.1.1.1	10.3.3.1	TCP	66 51534 > http [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=2339582 TSecr=2339582
	10 15.382606	10.1.1.1	10.3.3.1	HTTP	179 GET /file1 HTTP/1.1
	11 15.382774	10.3.3.1	10.1.1.1	TCP	66 http > 51534 [ACK] Seq=1 Ack=114 Win=14480 Len=0 TSval=2339582 TSecr=2339582
	12 15.383291	10.3.3.1	10.1.1.1	TCP	289 [TCP segment of a reassembled PDU]
	13 15.383656	10.1.1.1	10.3.3.1	TCP	66 51534 > http [ACK] Seq=114 Ack=224 Win=15680 Len=0 TSval=2339582 TSecr=2339582
	14 15.384347	10.3.3.1	10.1.1.1	HTTP	259 HTTP/1.1 200 0k (text/plain)
	15 15.385072	10.1.1.1	10.3.3.1	TCP	66 51534 > http [ACK] Seq=114 Ack=417 Win=16752 Len=0 TSval=2339583 TSecr=2339583
	16 15.385073	10.1.1.1	10.3.3.1	TCP	66 51534 > http [FIN, ACK] Seq=114 Ack=417 Win=16752 Len=0 TSval=2339583 TSecr=2339583
	17 15.441795	10.3.3.1	10.1.1.1	TCP	66 http > 51534 [ACK] Seq=417 Ack=115 Win=14480 Len=0 TSval=2339595 TSecr=2339583
	18 15.449044	10.3.3.1	10.1.1.1	TCP	66 http > 51534 [FIN, ACK] Seq=417 Ack=115 Win=14480 Len=0 TSval=2339599 TSecr=2339583
	19 15.449910	10.1.1.1	10.3.3.1	TCP	66 51534 > http [ACK] Seq=115 Ack=418 Win=16752 Len=0 TSval=2339599 TSecr=2339599
	20 20.000544	10.3.3.254	224.0.0.5	OSPF	78 Hello Packet
	21 20.129735	10.1.1.1	10.3.3.1	TCP	74:51535 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=2340769 TSecr=0 WS=16
	22 20.130447	10.3.3.1	10.1.1.1	TCP	74 http > 51535 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=2340769 TSecr=2340
	23 20.130663	10.1.1.1	10.3.3.1	TCP	66 51535 > http [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=2340769 TSecr=2340769
	24 20.130664	10.1.1.1	10.3.3.1	HTTP	179 GET /file2 HTTP/1.1

Figura 19: Transferência file1 HTTP