& Spearman Rank correlation

Ed. Ecoloonth	50 index
\times	\rightarrow
2.1	8
2.5	12
3.6	10
4.0	4

In speamen rank correlation we put rank of given data.

	Rant x	Ranky	
2.1	4	8 4	
2.5	3	12 2	
3.6	2	10 3	
4.0	1	19 1	

mean
$$x = \frac{4+3+2+1}{9}$$

$$= 2.5$$
mean $y = \frac{4+3+2+1}{9}$

$$= 2.5$$

$$(x-\overline{x})$$
 $(x-\overline{x})$ $y-\overline{y}$ $(y-\overline{y})$
 $4-9.5 = 1.5$ $4-2.5$ 1.5
 $3-2.5 = 0.5$ $2-2.5$ -0.5
 $2-2.5 = -0.5$ $3-2.5$ 0.5
 $1-2.5 = -1.5$ $1-2.5$ -1.5

$$\int_{(X,Y)} = \sum_{j=1}^{\infty} \frac{(X-\bar{x})(\gamma-\bar{y})}{n-1}$$

$$= (1.5) \times (1.5) + (6.5) \times (-6.5) + (-6.5) \times (6.5) + (-1.5) \times (-1$$

$$\Rightarrow \frac{4}{3} \Rightarrow 1.33$$

$$5.0 \quad \sigma_{x} = \sqrt{\frac{(1.5)^{2} + (0.5)^{2} + (-0.5)^{2} + (-1.5)^{2}}{4-1}}$$

$$5D. \quad \sigma_{\gamma} = \sqrt{\frac{(1.5)^2 + (-0.5)^2 + (0.5)^2 + (-1.5)^2}{4-1}}$$

$$= \frac{1.33}{(1.288)(1.288)} = 0.81 = 81.1.$$

& Probability Distribution.

- Discrete pro. Dist.
 - 1) Beinoulli Dist
 - 3 Poisson Dist
- 1) Bernoulle Dist

1 Binomial Dist.

no of experiment = fixtime 10,20,

output = fix

fass = p fwil = 1-P - p

(11) Poisson Dist.

for Example. - A small busines recieve on any 12 customer per day

Owhat is the probability that the businey will receive exact 8 custome madey!

 Sol^{n} :- ll = 12 x = 8

Fromule =
$$P_{r}(X = x) = \frac{U^{x} e^{-t}}{X^{t}}$$

$$P_{\gamma}(\chi=8) = \frac{12^8 e^{-12}}{8!}$$

OUniform Dist.

(2) Normal Dist

3) Standard normal Dist

(4) Loy normal Dist.

5 Exponential Dist.

A chebynhevis Inequality

$$X \approx \text{ (courstan Dist}$$

$$P_{\sigma}(U-\sigma \leq x \leq U+\sigma) = 68.1.$$

$$P_{\sigma}(U-2\sigma \leq x \leq U+2\sigma) = 95.1.$$

$$P_{\sigma}(U-3\sigma \leq x \leq U+3\sigma) = 99.7.1.$$

 $7 \approx \text{Ceaussian Dist}$ $P_{r}(\mathcal{U}-K_{o} \leq \gamma \leq \mathcal{U}+K_{o}) \geq l-\frac{1}{K^{2}}$

... K is SD. Value of kwillbe 2 or more than 2 It K=2

 $9_{r}(U-2\sigma \leq \gamma \leq U+2\sigma) \geq 1-\frac{1}{2}$ $\geq 1-\frac{1}{4}$ $\geq \frac{4-1}{4}=\frac{3}{4}=75.4$

$$P_{\sigma}\left(\mathcal{U}-3\sigma\leq\gamma\leq\mathcal{U}+3\sigma\right)\geq1-\frac{1}{3^{2}}$$

$$\geq 1 - \frac{1}{9}$$

$$\frac{2}{9} = \frac{9}{9} = \frac{8}{9} = \frac{88.9}{9}$$

$$P_{\sigma}(U-4\sigma \leq \gamma \leq U-4\sigma) \geq 1-\frac{1}{4^{2}}$$

$$\geq \frac{15}{16} = 93.7$$