Ph.D. Research Poster: Analysis & Optimization for Networks in Overload

Motivation

Overload: Demand > Capacity

Network Overload is more frequent with unsystematic study

- Rate control to guarantee QoS
- Risk evaluation & protection

Series 1: Rate Control

Core: Fluid-queue model facilitates optimal rate control in overload

Stability

Prove explicit conditions to avoid queue overload in networks with bounded buffer

 $\left| \frac{\partial g_{ij}(q_i, q_j)}{\partial q_i} > 0 \right| \frac{\partial g_{ij}(q_i, q_j)}{\partial q_i}$

Fairness

PaperLink

Prove policies to achieve most balanced overload in networks with bounded buffers

Highlights:

- Generalizing a set of policies that stabilize the networks, including backpressure
- Extendable to multi-commodity systems, and arbitrary buffer settings
- Explicit conditions for the guidance of policy design

Highlights:

- Applicable to arbitrary buffer size and capacity, and agnostic of arrival rate
- Both centralized and distributed implementation
- Extendable to multi-layer networks (Fat-tree, Clos)

Delay

PaperLink

Prove a *follow-queue-ratio* policy to minimize queueing delay in overloaded networks

Highlights:

- Reveal counterintuition that serving in maximum rate is **NOT** necessarily delay-optimal
- Show we can optimize the delay with fewer transmission resources than link capacity
- Reduces >10% of average delay and >50% of max delay compared with backpressure & maxrate serving

Contribution

1. Rate Control

 Policy design for network stability, fairness & delay to mitigate overload effect by fluid-queue model

2. Risk Analysis

Quantification of node attack impact on overload & Identification of critical nodes to shield

Series 2: Risk Analysis

Problem Setting: Given G = (V, E), where each link l has capacity c_1 . Suppose an adversary controls a subset of nodes V_A . The adversary can modify the routing policy of nodes in V_A .

Questions:

- Optimal routing of nodes in the given V_4 controlled by adversary that maximizes overload?

Given a flow (s, d, r) with default routing policy P.

- Optimal choice of V_A for the adversary to maximize overload?

Core: Fundamental limit analysis for node attackers to cause overload

Related attacks: BGP Hijacking; SQL Injection; Routing Table Poisoning, etc. Motivation & Significance: (1) Evaluate the influence and limits of node attack on overload (2) Identify critical nodes that should be shielded to prevent from severe overload due to node attack

Primary results: NP-hardness, algorithms with promising results

Plans: Prove performance guarantee & Solve different variants

- Single flow -> Multiple flows
- Throughput -> Loss; Fairness; Delay
- Fixed routing of normal nodes -> Dynamic routing of normal nodes
- Deterministic flow model -> Stochastic queueing model