

ЭТИКЕТКА

<u>СЛКН.431272.002 ЭТ</u> Микросхема интегральная 564 ЛС1В Функциональное назначение – Три логических элемента «ЗИ–ИЛИ »

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	A1	Вход А первого логического элемента	8	В3	Вход В третьего логического элемента
2	C1	Вход С первого логического элемента	9	Q3	Выход третьего логического элемента
3	B1	Вход В первого логического элемента	10	B2	Вход В второго логического элемента
4	Q2	Выход второго логического элемента	11	A2	Вход А второго логического элемента
5	A3	Вход А третьего логического элемента	12	C2	Вход С второго логического элемента
6	C3	Вход С третьего логического элемента	13	Q1	Выход первого логического элемента
7	OV	Общий	14	U_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)^{\circ}$ C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Но	Норма	
типменование наражегра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \text{ B}, 10 \text{ B}; \ U_{IL} = 0 \text{ B}$	U_{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC}=5~B,~10~B;~U_{IL}=0~B,~U_{IH}=U_{CC}$	U _{ОН}	U _{CC} -0,01	-	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1,5$ B, $U_{IH} = 3,5$ B $U_{CC} = 10$ B, $U_{IL} = 3,0$ B, $U_{IH} = 7,0$ B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	-	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = 15 \; B$	$I_{\rm IL}$	-	/-0,1/	

Продолжение таблицы 1			
1	2	3	4
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B, U_{IL} = 0 \; B, U_{IH} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{O} = 0.4$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{O} = 0.5$ B	I_{OL}	0,51 1,3	
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{O} = 4,6$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$ $U_{CC} = 10$ B, $U_{O} = 9,5$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$	І _{ОН}	/-0,51/ /-1,3/	-
9. Ток потребления, мкА, при: $U_{IL}=0\ B,\ U_{IH}=U_{CC}$ $U_{CC}=5\ B$ $U_{CC}=10\ B$ $U_{CC}=15\ B$	Icc	- - -	1 2 4
10. Время задержки распространения при включении и выключении, н C , при: $U_{CC}=5$ B, $U_{IL}=0$ B, $U_{IH}=U_{CC}$, $C_L=50$ п Φ $U_{CC}=10$ B, $U_{IL}=0$ B, $U_{IH}=U_{CC}$, $C_L=50$ п Φ	t _{PHL} , t _{PLH}		360 180

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс (T_{py}) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1\ \underline{\Gamma}$ арантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛС1В соответствуют техническим условиям бК0.347.064 ТУ 29/02 и признаны годными для эксплуатации.

Приняты по		от			
	(извещение, акт и др.)		(дата)		
Место для штам	мпа ОТК _			Место для штампа	ВΠ
Место для штам	мпа «Перепроверка п	роизведена	ı	(дата)	.»
Приняты по _	(извещение, акт и др.)	от	(дата)		
Место для шта	мпа ОТК			Место для штампа	ВΠ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.