1 Fundamental Theorem of Galois Theory I

Theorem 1.1. Let L: K be a Galois extension and $G = \operatorname{Gal}_K L$. Define $\mathcal{I}(K, L)$ and $\mathcal{S}(G)$ as the collection of all intermediate fields of L: K and the family of all subgroups of G, respectively. Then for all $P \in \mathcal{I}(K, L)$ we have $L^{G_P} = P$ and for all $H \in \mathcal{S}(G)$ we have $G_{L^H} = H$.