

高等数学I

5学分、信息、统计外招

第一章 函数与极限

数学系王伟文

课程网页: https://wangyuanhao.github.io/advanced_mathematics/

无限的观念

这张银河系中心部分的惊人景象是由 ESO 位于智利的帕拉纳尔天文台的 VISTA 巡天望远镜拍摄到的。这张巨大的图片大小为 108 200 x 81 500 像素,包含近 90 亿像素。

https://www.eso.org/public/images/eso1242a/

To infinity and beyond...

一尺之锤,日取其半

有

涯

洏

知

也

数列 如果按照某一法则,对每个 $n \in \mathbb{N}_+$,对应着一个确定的实数 x_n ,这些**实数** x_n 按照下标n从小到大排列得到的一个序列

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

就叫做数列, 简记为数列 $\{x_n\}$. 数列中的每一个数叫做数列的项, 第n项 x_n 叫做数列的一般项(或通项)

• 为数列 $\{x_n\}$ 可视为自变量为正整数n的函数 $x_n = f(n), n \in \mathbb{N}_+$, 当自变量n依次取 $1, 2, 3, \cdots$ 一切正整数时, 对应的函数值就排成数列 $\{x_n\}$.

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots$$
 $1, -1, 1, \cdots, (-1)^{n+1}, \cdots$ $2, 4, 8, \cdots, 2^n, \cdots$

Q: 当数列下标n无限增大时, 对应的数列的项 x_n 能否无限性近某一个确定的数?

数列中项随着n的变化情况

- 当n无限增大时, x_n 是否无限接近于某一确定的数值?如果是,如何确定?
- "无限接近"意味着什么?如何用数 学语言刻划它?

练习 考虑数列通项为 $y_n = 1 + \frac{1}{n}$ 的数列, 求

- $|y_n 1| < \frac{1}{10}$ 时n的取值范围
- $|y_n 1| < \frac{1}{100}$ 时n的取值范围
- $|y_n 1| < \frac{1}{1000}$ 时n的取值范围
- 给定任意的 $\varepsilon > 0$, $|y_n 1| < \varepsilon$ 时n的取值范围

数列极限 设 $\{x_n\}$ 为一数列, 如果存在常数a, 对于**任意给定的正数** ε , 总存在正整数N, 使得**当数列下标**n > N时, **数列的项总满足不等式**

$$|x_n-a|<\varepsilon$$

则称常数a是数列 $\{x_n\}$ 的<mark>极限</mark>, 或称数列 $\{x_n\}$ 收敛于a, 记为

- 如果不存在这样的常数a, 就说数列 $\{x_n\}$ 没有极限, 或者说数列 $\{x_n\}$ 是<u>发散</u>的, 习惯上也说为 $\lim_{n\to\infty} x_n$ 不存在;
- "数列 $\{x_n\}$ 的极限为a"的几何解释: 在数轴上, 至多有限个点落在区间 $(a-\varepsilon,a+\varepsilon)$ 外

数列极限 设 $\{x_n\}$ 为一数列, 如果存在常数a, 对于**任意给定的正数** ε , 总存在正整数N, 使得**当数列下标**n > N时, **数列的项总满足不等式**

$$|x_n-a|<\varepsilon$$

则称常数a是数列 $\{x_n\}$ 的极限, 或称数列 $\{x_n\}$ 收敛于a, 记为

$$\lim_{n\to\infty}x_n=a$$
 或 $x_n\to a(n\to\infty)$

- ϵ 的任意性表明 ϵ 可以任意地小,从而刻画了 x_n 与a无限接近的含义;
- 正常数N的取值依赖于 ε , 有时也记为 $N(\varepsilon)$.

数列极限 设 $\{x_n\}$ 为一数列, 如果存在常数a, 对于**任意给定的正数** ε , 总存在正整数N, 使得**当数列下标**n > N时, **数列的项总满足不等式**

$$|x_n-a|<\varepsilon$$

则称常数a是数列 $\{x_n\}$ 的极限,或称数列 $\{x_n\}$ 收敛于a,记为

$$\lim_{n\to\infty}x_n=a \ \ \mathbf{x} \quad x_n\to a(n\to\infty)$$

• 符号化简: "∀"表示任意,"∃"表示存在

$$\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \varepsilon>0$$
, $\exists N\in\mathbb{N}_+$,使得当 $n>N$ 时,总有 $|x_n-a|<\varepsilon$

证明数列

$$2, \frac{1}{2}, \frac{4}{3}, \frac{3}{4}, \cdots, \frac{n + (-1)^{n-1}}{n}, \dots$$

的极限是1

证明:
$$\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n}$$
, 给定任意 $\varepsilon > 0$, 要使得

$$\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \varepsilon$$

即取 $n > \frac{1}{\varepsilon}$.

亦即给定任意
$$\varepsilon > 0$$
,当 $n > \frac{1}{\varepsilon}$ 时, $\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \varepsilon$

任取
$$N$$
为一大于 $\frac{1}{\varepsilon}$ 的正整数,当 $n > N > 0$, $\left| \frac{n + (-1)^{n-1}}{n} - 1 \right| = \frac{1}{n} < \varepsilon$

$$\lim_{n\to\infty} \frac{n+(-1)^{n-1}}{n} = 1$$

定理1(极限的唯一性)如果数列 $\{x_n\}$ 收敛,那么它的极限唯一

定理2(收敛数列的有界性) 如果数列 $\{x_n\}$ 收敛, 那么数列 $\{x_n\}$ 一定有界

定理3(收敛数列的保号性) 如果 $\lim_{n\to\infty} x_n = a \perp a > 0$ (或a < 0),则存在正整

数n, 当n > N时, 都有 $x_n > 0$ (或 $x_n < 0$)

定理3的推论 如果数列 $\{x_n\}$ 从某一项起 $x_n \ge 0$ (或 $x_n \le 0$), 且 $\lim_{n \to \infty} x_n = a$, 则

 $a \geq 0$ (或 $a \leq 0$)

高等数学——数列极限

Weiwen Wang(王伟文)

暨南大学

2025 年秋季学期

定理 2 (收敛数列的有界性)

如果数列 $\{x_n\}$ 收敛, 那么数列 $\{x_n\}$ 一定有界.

因为数列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty}x_n=a$.

因为数列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty}x_n=a$. 根据数列极限定义, 给定 $\epsilon=1$, 存在 正整数 $N\in\mathbb{N}_+$, 使得当 n>N 时

 $|x_n-\alpha|<1,$

因为数列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty} x_n = a$. 根据数列极限定义, 给定 $\epsilon = 1$, 存在 正整数 $N \in \mathbb{N}_+$. 使得当 n > N 时

$$|x_n-a|<1$$
,

即当 n > N 时 $x_n \in (a-1,a+1)$,

因为数列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty} x_n = a$. 根据数列极限定义, 给定 $\epsilon = 1$, 存在 正整数 $N \in \mathbb{N}_+$. 使得当 n > N 时

$$|x_n - a| < 1$$
,

即当 n > N 时 $x_n \in (a-1,a+1)$, 取 $M_1 = \max\{|a-1|,a+1\}$ 及

$$M = \max\{|x_1|, |x_2|, \dots, |x_N|, M_1\}$$

因为数列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty} x_n = a$. 根据数列极限定义, 给定 $\epsilon = 1$, 存在 正整数 $N \in \mathbb{N}_+$, 使得当 n > N 时

$$|x_n - a| < 1$$
,

即当 n > N 时 $x_n \in (a-1,a+1)$, 取 $M_1 = \max\{|a-1|,a+1\}$ 及

$$M = \max\{|x_1|, |x_2|, \dots, |x_N|, M_1\}$$

容易知道 $|x_n| \le M$ 对任意 $n \in \mathbb{N}_+$ 成立, 故数列 $\{x_n\}$ 有界.

在数列 $\{x_n\}$ 中任意取无限多项并**保持这些项在原数列** $\{x_n\}$ **中的先后次序**, 这样得到的一个数列称为原数列 $\{x_n\}$ 的一个子数列 (或子列).

在数列 $\{x_n\}$ 中任意取无限多项并**保持这些项在原数列** $\{x_n\}$ **中的先 后次序**, 这样得到的一个数列称为原数列 $\{x_n\}$ 的一个子数列 (或子列).

• 数列 $\{x_n\}$ 的子列可以表示为 $x_{n_1}, x_{n_2}, \ldots, x_{n_k}, \ldots$,其中 $n_k \in \mathbb{N}_+$ 表示第 k 次从原数列中抽取项 x_{n_k} ,子列简记为 $\{x_{n_k}\}$, $k \in \mathbb{N}_+$.

在数列 $\{x_n\}$ 中任意取无限多项并**保持这些项在原数列** $\{x_n\}$ **中的先后次序**, 这样得到的一个数列称为原数列 $\{x_n\}$ 的一个子数列 (或子列).

- 数列 $\{x_n\}$ 的子列可以表示为 $x_{n_1}, x_{n_2}, ..., x_{n_k}, ...$,其中 $n_k \in \mathbb{N}_+$ 表示第 k 次从原数列中抽取项 x_{n_k} ,子列简记为 $\{x_{n_k}\}$, $k \in \mathbb{N}_+$.
- $n_1 < n_2 < \cdots < n_k < \cdots$.

在数列 $\{x_n\}$ 中任意取无限多项并**保持这些项在原数列** $\{x_n\}$ **中的先后次序**, 这样得到的一个数列称为原数列 $\{x_n\}$ 的一个子数列 (或子列).

- 数列 $\{x_n\}$ 的子列可以表示为 $x_{n_1}, x_{n_2}, ..., x_{n_k}, ...$,其中 $n_k \in \mathbb{N}_+$ 表示第 k 次从原数列中抽取项 x_{n_k} ,子列简记为 $\{x_{n_k}\}$, $k \in \mathbb{N}_+$.
- $n_1 < n_2 < \cdots < n_k < \cdots$.
- 在子列 $\{x_{n_k}\}$ 中, x_{n_k} 为其第 k 项, 对应原数列的第 n_k 项.

定理 4 (收敛数列与其子列间的关系)

如果数列 $\{x_n\}$ 收敛于 a, 那么它的任一子列也收敛, 且极限也是 a.

证明数列 $x_n = (-1)^{n+1} (n = 1, 2, ...)$ 是发散的

证明.

证明数列 $x_n = (-1)^{n+1} (n = 1, 2, ...)$ 是发散的

证明.

● 取原数列奇数项下标, 构成子列 $\{(-1)^{2k-1+1}\} = \{1\}, k \in \mathbb{N}_+$, 该子列极限为 1.

证明数列 $x_n = (-1)^{n+1} (n = 1, 2, ...)$ 是发散的

证明.

- 取原数列奇数项下标, 构成子列 $\{(-1)^{2k-1+1}\} = \{1\}, k \in \mathbb{N}_+$, 该子列极限为 1.
- 取原数列偶数项下标, 构成子列 $\{(-1)^{2k+1}\}=\{-1\}, k \in \mathbb{N}_+$, 该子列极限为-1.

证明数列 $x_n = (-1)^{n+1} (n = 1, 2, ...)$ 是发散的

证明.

- 取原数列奇数项下标, 构成子列 $\{(-1)^{2k-1+1}\} = \{1\}, k \in \mathbb{N}_+$, 该子列极限为 1.
- 取原数列偶数项下标, 构成子列 $\{(-1)^{2k+1}\}=\{-1\}, k \in \mathbb{N}_+$, 该子列极限为-1.
- 两子列极限不相同, 由定理 4, 该数列发散.

作业

- 教材习题 1-2: 1(1)(4)(5)(7); 2; 3
- 例题 2, 教材 Page 22
- 抄写数列极限定义, 教材 Page 20