MATHEMATICAL FINANCE CHEAT SHEET

Normal Random Variables

A random variable X is Normal $N(\mu, \sigma^2)$ (aka. *Gaussian*) under a measure **P** if and

$$\mathbf{E}_{\mathbf{P}}[e^{\theta X}] = e^{\theta \mu + \frac{1}{2}\theta^2 \sigma^2}$$
, for all real θ .

A standard normal $Z \sim \mathbf{N}(0,1)$ under a measure **P** has density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$
 $\mathbf{P}[Z \le x] = \Phi(x) := \int_{-\infty}^{x} \phi(z) dz.$

Let $X = (X_1, X_2, ..., X_n)'$ with $X_i \sim \mathbf{N}(\mu_i, q_{ii})$ and $\mathbf{Cov}[X_i, X_j] = q_{ij}$ for i, j = 1, ..., n. We call $\mu := (\mu_1, ..., \mu_n)'$ the mean and $Q := (q_{ij})_{i,j=1}^n$ the covariance matrix of X. Assume $\det Q > 0$, then X has a multivariate normal distribution if it has the den-

$$\phi(x) = \frac{1}{\sqrt{(2\pi)^n \det Q}} \exp\left(-\frac{1}{2}(x-\mu)'Q^{-1}(x-\mu)\right), \quad x \in \mathbf{R}^n.$$
 We write $X \sim \mathbf{N}(\mu,Q)$ if this is the case. Alternatively, $X \sim \mathbf{N}(\mu,Q)$ under \mathbf{P} if and

$$\mathbf{E}_{\mathbf{P}}[e^{\theta'X}] = \exp\left(\theta'\mu + \frac{1}{2}\theta'Q\theta\right), \quad \text{for all } \theta \in \mathbf{R}^n.$$

If $Z \sim \mathbf{N}(0, Q)$ and $c \in \mathbf{R}^n$ then $X = c'Z \sim \mathbf{N}(0, c'Qc)$. If $C \in \mathbf{R}^{m \times n}$ (i.e., $m \times n$ matrix) then $X = CZ \sim \mathbf{N}(0, CQC')$ and CQC' is a $m \times m$ covariance matrix.

Gaussian Shifts

If $Z \sim N(0,1)$ under a measure **P**, h is an integrable function, and c is a constant

$$\mathbf{E}_{\mathbf{P}}[e^{cZ}h(Z)] = e^{cZ/2}\mathbf{E}_{\mathbf{P}}[h(Z+c)]$$

 $\mathbf{E}_{\mathbf{P}}[e^{cZ}h(Z)] = e^{c^2/2}\mathbf{E}_{\mathbf{P}}[h(Z+c)].$ Let $X \sim \mathbf{N}(0,Q)$, h be a integrable function of $x \in \mathbf{R}^n$, and $c \in \mathbf{R}^n$. Then

$$\mathbf{E}_{\mathbf{P}}[e^{c'X}h(X)] = e^{\frac{1}{2}c'Qc}\mathbf{E}_{\mathbf{P}}[h(X+c)].$$

Correlating Brownian Motions

Let $(W(t))_{t\geq 0}$ and $(\widetilde{W}(t))_{t\geq 0}$ be independent Brownian motions. Given a correlation coefficient $\rho \in [-1, 1]$, define

$$\widehat{W}(t) := \rho W(t) + \sqrt{1 - \rho^2} \widetilde{W}(t),$$

then $(\widehat{W}(t))_{t\geq 0}$ is a Brownian motion and $\mathbf{E}[W(t)\widehat{W}(t)] = \rho t$.

Identifying Martingales

If $X_t = X(t)$ is a diffusion process satisfying

$$dX(t) = \mu(t, X_t) dt + \sigma(t, X_t) dW(t)$$

and $\mathbf{E}_{\mathbf{P}}[(\int_0^T \sigma(s, X_s)^2 ds)^{1/2}] < \infty$ (or, $\sigma(t, x) \le c|x|$ as $|x| \to \infty$), then

X is a martingale \iff *X* is driftless (i.e., $\mu(t) \equiv 0$ with **P**-prob. 1).

Novikov's Condition

In the case $dX(t) = \sigma(t)X(t)dW(t)$ for some \mathscr{F} -previsible process $(\sigma(t))_{t\geq 0}$, then we have the simpler condition

$$\mathbf{E}_{\mathbf{P}}\left[\exp\left(\frac{1}{2}\int_{0}^{T}\sigma(s)^{2}ds\right)\right]<\infty\Rightarrow X \text{ is a martingale.}$$

Stochastic Integration

Let $h := \{(h_1(t), h_2(t), \dots, h_n(t))' : 0 \le t \le T\}$ be a n-dimensional stochastic process. The process h is in the set of $H^2_{[0,T]}$ processes if, for all $t \in [0,T]$, we have

$$\mathbf{E}\Big[\int_0^t \|h(s)\|^2 \,\mathrm{d}s\Big] < \infty.$$

Let $W:=(W_1,W_2,\ldots,W_n)'$ be a n-dimensional Brownian motion, then for every $h\in H^2_{[0,T]}$ the $stochastic\ integral$

$$I_t(h) := \int_0^t h(s) dW_s = \sum_{i=1}^n \int_0^t h_j(s) dW_i(s), \quad 0 \le t \le T,$$

exists. The stochastic integral has the following properties:

- linearity: $I_t(\alpha h + \beta g) = \alpha I_t(h) + \beta I_t(g)$ for $h, g \in H^2_{[0,T]}$ and $\alpha, \beta \in \mathbb{R}$; The stochastic process $X_t := I_t(h)$ is a continuous martingale if $h \in H^2_{[0,T]}$;
- The Itô isometry holds:

$$\mathbf{E}\Big[\Big(\int_{0}^{T} h(s) dW_{s}\Big)^{2}\Big] = \int_{0}^{T} \mathbf{E}[\|h(s)\|^{2}] ds.$$

For $X_t = X(t)$ given by $dX(t) = \mu(t) dt + \sigma(t) dW(t)$ and a function g(t, x) that is twice differentiable in x and once in t. Then for $Y(t) = g(t, X_t)$, we have

$$dY(t) = \frac{\partial g}{\partial t}(t,X_t)dt + \frac{\partial g}{\partial x}(t,X_t)dX_t + \frac{1}{2}\sigma(t)^2\frac{\partial^2 g}{\partial x^2}(t,X_t)dt.$$

Given X(t) and Y(t) adapted to the same Brownian motion $(W(t))_{t>0}$,

$$dX(t) = \mu(t)dt + \sigma(t)dW(t), \quad dY(t) = \nu(t)dt + \rho(t)dW(t).$$

Then $d(X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + d\langle X, Y \rangle(t)$.

In the other case, if X(t) and Y(t) are adapted to two different and independent Brownian motions $(W(t))_{t\geq 0}$ and $(\widetilde{W}(t))_{t\geq 0}$,

$$dX(t) = \mu(t)dt + \sigma(t)dW(t), \quad dY(t) = \nu(t)dt + \rho(t)d\widetilde{W}(t).$$

Then d(X(t)Y(t)) = X(t) dY(t) + Y(t) dX(t) as $d\langle X, Y \rangle(t) = 0$.

Radon-Nikodým Derivative

Given \mathbf{P} and \mathbf{Q} equivalent measures and a time horizon T, we can define a random variable $\frac{d\mathbf{Q}}{d\mathbf{P}}$ defined on **P**-possible paths, taking positive real values, such that

•
$$\mathbf{E}_{\mathbf{Q}}[X_T] = \mathbf{E}_{\mathbf{P}}\left[\frac{d\mathbf{Q}}{d\mathbf{P}}X_T\right]$$
, for all claims X_T knowable by time T ,
• $\mathbf{E}_{\mathbf{Q}}[X_t|\mathscr{F}_s] = \zeta_s^{-1}\mathbf{E}_{\mathbf{P}}[\zeta_t X_t|\mathscr{F}_s]$, for $s \leq t \leq T$,

•
$$\mathbf{E}_{\mathbf{O}}[X_t|\mathscr{F}_s] = \zeta_s^{-1} \mathbf{E}_{\mathbf{P}}[\zeta_t X_t|\mathscr{F}_s]$$
, for $s \le t \le T$

where ζ_t is the process $\mathbf{E}_{\mathbf{P}}[\frac{d\mathbf{Q}}{d\mathbf{P}}|\mathscr{F}_t]$.

Cameron-Martin-Girsanov Theorem

If $(W(t))_{t\geq 0}$ is a **P**-Brownian motion and $(\gamma(t))_{t\geq 0}$ is an \mathscr{F} -previsible process satisfying the boundedness condition $\mathbf{E}_{\mathbf{P}}\Big[\exp\Big(\frac{1}{2}\int_0^T\gamma(t)^2\,d\,t\Big)\Big]<\infty$, then there exists a measure Q such that:

•
$$\frac{d\mathbf{Q}}{d\mathbf{P}} = \exp\left(-\int_0^T \gamma(t) dW(t) - \frac{1}{2} \int_0^T \gamma(t)^2 dt\right),$$

• $\widetilde{W}(t) := W(t) + \int_0^t \gamma(s) ds$ is a **Q**-Brownian motion.

In other words, W(t) is a drifting **Q**-Brownian motion with drift $-\gamma(t)$ at time t.

Cameron-Martin-Girsanov Converse

If $(W(t))_{t\geq 0}$ is a **P**-Brownian motion, and **Q** is a measure equivalent to **P**, then there exists a \mathscr{F} -previsible process $(\gamma(t))_{t\geq 0}$ such that

$$\widetilde{W}(t) := W(t) + \int_0^t \gamma(s) \, ds$$

is a **Q**-Brownian motion. That is, W(t) plus drift $\gamma(t)$ is a **Q**-Brownian motion. Ad-

$$\frac{d\mathbf{Q}}{d\mathbf{P}} = \exp\left(-\int_0^t \gamma(t) \, dW(t) - \frac{1}{2} \int_0^T \gamma(t)^2 \, dt\right).$$

Martingale Representation Theorem

Suppose $(M(t))_{t\geq 0}$ is a **Q**-martingale process whose volatility $\sqrt{\mathbf{E}_{\mathbf{Q}}[M(t)^2]} = \sigma(t)$ satisfies $\sigma(t) \neq 0$ for all t (with **Q**-probability one). Then if $(N(t))_{t \geq 0}$ is any other **Q**martingale, there exists an \mathscr{F} -previsible process $(\phi(t))_{t\geq 0}$ such that $\int_0^T \phi(t)^2 \sigma(t)^2 dt < \infty$ ∞ (with **Q**-prob. one), and N can be written as

$$N(t) = N(0) + \int_0^t \phi(s) dM(s),$$

or in differential form, $dN(t) = \phi(t) dM(s)$. Further, ϕ is (essentially) unique.

Multidimensional Diffusions, Quadratic Covariation, and Itô's Formula

If $X := (X_1, X_2, ..., X_n)'$ is a *n*-dimensional diffusion process with form

$$X(t) = X(0) + \int_0^t \mu(s) ds + \int_0^t \Sigma(s) dW(s),$$

where $\Sigma(t) \in \mathbb{R}^{n \times m}$ and W is a m-dimensional Brownian motion. The *quadration covariation* of the components X_i and X_j is

$$\langle X_i, X_j \rangle (t) = \int_0^t \Sigma_i(s)' \Sigma_j(s) ds,$$

or in differential form $d\langle X_i, X_j\rangle(t) = \Sigma_i(t)'\Sigma_j(t)dt$, where $\Sigma_i(t)$ is the i^{th} column of $\Sigma(t)$. The quadratic variation of $X_i(t)$ is $\langle X_i \rangle (t) = \int_0^t \Sigma_i(s)' \Sigma_i(s) \, ds$. The multi-dimensional Itô formula for $Y(t) = f(t, X_1(t), \dots, X_n(t))$ is

$$dY(t) = \frac{\partial f}{\partial t}(t, X_1(t), \dots, X_n(t))dt + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(t, X_1(t), \dots, X_n(t))dX_i(t)$$
$$+ \frac{1}{2} \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(t, X_1(t), \dots, X_n(t))d\langle X_i, X_j \rangle(t).$$

The (vector-valued) multi-dimensional Itô formula for

$$Y(t) = f(t, X(t)) = (f_1(t, X(t)), \dots, f_n(t, X(t)))'$$

where $f_k(t,X)=f_k(t,X_1,\ldots,X_n)$ and $Y(t)=(Y_1(t),Y_2(t),\ldots,Y_n(t))'$ is given componentwise (for $k=1,\ldots,n$) as

$$dY_k(t) = \frac{\partial f_k(t, X(t))}{\partial t} dt + \sum_{i=1}^n \frac{\partial f_k(t, X(t))}{\partial x_i} dX_i(t) + \frac{1}{2} \sum_{i=1}^n \frac{\partial^2 f_k(t, X(t))}{\partial x_i \partial x_j} d\langle X_i, X_j \rangle(t).$$

Stochastic Exponentia

The *stochastic exponential* of *X* is $\mathcal{E}_t(X) = \exp(X(t) - \frac{1}{2}\langle X \rangle(t))$. It satisfies

$$\mathscr{E}(0) = 1, \quad \mathscr{E}(X)\mathscr{E}(Y) = \mathscr{E}(X+Y)e^{\langle X,Y\rangle}, \quad \mathscr{E}(X)^{-1} = \mathscr{E}(-X)e^{\langle X,X\rangle}.$$

The process $Z = \mathcal{E}(X)$ is a positive process and solves the SDE

$$dZ = Z dX$$
, $Z(0) = e^{X(0)}$.

Solving Linear ODEs

The linear ordinary differential equation

$$\frac{dz(t)}{dt} = m(t) + \mu(t)z(t), \quad z(a) = \zeta,$$

for $a \le t \le b$ has solution given by

$$z(t) = \zeta \epsilon_t + \int_a^t \epsilon_t \epsilon_u^{-1} m(u) du, \qquad \epsilon_t := \exp\left(\int_a^t \mu(u) du\right),$$
$$= \zeta \exp\left(\int_a^t \mu(u) du\right) + \int_a^t m(u) \exp\left(\int_u^t \mu(r) dr\right) du.$$

Solving Linear SDEs

The linear stochastic differential equation

 $dZ(t) = [m(t) + \mu(t)Z(t)]dt + [q(t) + \sigma(t)Z(t)]dW(t), \quad Z(a) = \zeta,$ for $a \le t \le b$ has solution given by

$$Z(t) = \zeta \mathcal{E}_t + \int_a^t \mathcal{E}_t \mathcal{E}_u^{-1}[m(u) - q(u)\sigma(u)] du + \int_a^t \mathcal{E}_t \mathcal{E}_u^{-1}q(u) dW(u),$$

where $\mathcal{E}_t := \mathcal{E}_t(X)$ and $X(t) = \int_a^t \mu(u) du + \int_a^t \sigma(u) dW(u)$. In other words,

$$\mathscr{E}_t = \exp\left(\int_a^t \mu(u) \, du + \int_a^t \sigma(u) \, dW(u) - \frac{1}{2} \int_a^t \sigma(u)^2 \, du\right).$$

Let X be some \mathcal{F}_T -measurable claim, payable at time T. The arbitrage-free price

$$\mathcal{V}(t) = \mathbf{E}_{\mathbf{Q}} \left[\exp \left(-\int_{t}^{T} r(s) \, ds \right) X \middle| \mathscr{F}_{t} \right],$$

where Q is the risk-neutral measure

Market Price Of Risk

Let $X_t = X(t)$ be the price of a non-tradable asset with dynamics $dX(t) = \mu(t) dt +$ $\sigma(t)dW(t)$ where $(\sigma(t))_{t\geq 0}$ and $(\mu(t))_{t\geq 0}$ are previsible processes and $(W(t))_{t\geq 0}$ is a **P**-Brownian motion. Let $Y(t):=f(X_t)$ be the price of a tradable asset where $f: \mathbf{R} \to \mathbf{R}$ is a deterministic function. Then the *market price of risk* is

$$\gamma(t) := \frac{\mu_t f'(X_t) + \frac{1}{2}\sigma_t^2 f''(X_t) - r f(X_t)}{\sigma_t f'(X_t)}$$

and the behaviour of X_t under the risk-neutral measure **Q** is given by

$$dX(t) = \sigma(t)d\widetilde{W}(t) + \frac{rf(X_t) - \frac{1}{2}\sigma_t^2 f''(X_t)}{f'(X_t)} dt.$$

Consider a European option with strike price K on a asset with value V_T at maturity time T. Let F_T be the forward price of V_T , F_0 the current forward price. If $\log V_T \sim N(F_0, \sigma^2 T)$ then the Call and Put prices are given by

$$\mathcal{C} = P(0,T)(F_0\Phi(d_1) - K\phi(d_2)), \ \mathcal{P} = P(0,T)(K\Phi(-d_2) - F_0\Phi(-d_1)),$$

where
$$d_1 = \frac{\log(\mathbf{E}(V_T)/K) + \sigma^2 T/2}{\sigma \sqrt{T}}$$
 and $d_2 = d_1 - \sigma \sqrt{T}$.

Forward Rates, Short Rates, Yields, and Bond Prices

The *forward rate* at time t that applies between times T and S is defined as

$$F(t,T,S) = \frac{1}{S-T} \log \frac{P(t,T)}{P(t,S)}.$$

 $F(t,T,S) = \frac{1}{S-T}\log\frac{P(t,T)}{P(t,S)}.$ The instantaneous forward rate at time t is $f(t,T) = \lim_{S \to T} F(t,T,S)$. The instantaneous risk-free rate or short rate is $r(t) = \lim_{T \to t} f(t,T)$. The cash account is given by

$$B(t) = \exp\left(\int_{0}^{t} r(s) \, ds\right),$$

 $B(t) = \exp\left(\int_0^t r(s) \, ds\right),$ and satisfies $dB(t) = r(t)B(t) \, dt$ with B(0) = 1. The instantaneous forward rates and the yield can be written in terms of the bond prices as

$$f(t,T) = -\frac{\partial}{\partial T} \log P(t,T), \quad R(t,T) = -\frac{\log P(t,T)}{T-t}.$$

$$P(t,T) = \exp\left(-\int_{t}^{T} f(t,u) du\right) \quad \text{and} \quad P(t,T) = \exp(-(T-t)R(t,T)).$$

Short Rate and No-Arbitrage Models

The short-rate r(t) follows a process of the form

$$dr(t) = a(t, r(t)) dt + b(t, r(t)) dW(t),$$

where $a(t,r)$ and $b(t,r)$ are chosen following:					
Model	a(t,r)	b(t,r)	P?	MR?	CF?
Merton	μ	σ	N	N	Y
Dothan	$\mu \dot{r}(t)$	$\sigma r(t)$	Y	N	Y
Vasicek	$\alpha(\mu-r(t))$	σ	N	Y	Y
CIR	$\alpha(\mu-r(t))$	$\sigma\sqrt{r(t)}$	Y	Y	Y
Pearson-Sun	$\alpha(\mu-r(t))$	$\sigma\sqrt{r(t)-\beta}$	Y	Y	Y
Ho & Lee	$\theta(t)$	σ	N	N	Y
Hull & White	$\alpha(\mu(t)-r(t))$	σ	N	Y	Y
Extended Vasicek	$\alpha(t)(\dot{\mu}(t)-\dot{r}(t))$	$\sigma(t)$	N	Y	Y
Black-Karasinski	$\alpha r(t)(\bar{\mu}(t) - \ln r(t))$	$\sigma(t)r(t)$	Y	Y	N

P means the process stays positive, MR means r_t is mean-reverting, and CF means that a closed-form solution exists for bond prices and for European put and call op-

Bond Pricing for Affine Models

Given an affine short-rate model

$$dr(t) = (b(t) + \beta(t)r(t))dt + \sqrt{a(t) + \alpha(t)r(t)}d\widetilde{W}(t),$$

the zero-coupon T-bond prices at time t have the form

$$P(t,T) = \exp(A(t,T) - B(t,T)r(t)),$$

where the functions *A* and *B* satisfy the system of ODEs:

$$\frac{d}{dt}A(t,T) = -\frac{1}{2}a(t)B^{2}(t,T) + b(t)B(t,T), \qquad A(T,T) = 0,$$

$$\frac{d}{dt}B(t,T) = \frac{1}{2}a(t)B^{2}(t,T) - \beta(t)B(t,T) - 1, \qquad B(T,T) = 0.$$

The Heath-Jarrow-Morton Framework

Given a initial forward curve $T \mapsto f(0,T)$ then, for every maturity T and under the real-world probability measure \mathbf{P} , the forward rate process $t \mapsto f(t,T)$ follows

$$f(t,T) = f(0,T) + \int_0^t \alpha(s,T) \, ds + \int_0^t \sigma(s,T)' \, dW(s), \quad t \le T,$$

where $\alpha(t,T) \in \mathbf{R}$ and $\sigma(t,T) := (\sigma_1(t,T),\ldots,\sigma_n(t,T))$ satisfy the technical conditions: (1) α and σ are previsible and adapted to \mathscr{F}_t ; (2) $\int_0^T \int_0^T |\alpha(s,t)| \, ds \, dt < \infty$ for all T; (3) $\sup_{s,t \leq T} \|\sigma(s,t)\| < \infty$ for all T. The short-rate process is given by

$$r(t) = f(t,t) = f(0,t) + \int_0^t \alpha(s,t) \, ds + \int_0^t \sigma(s,t) \, dW(s),$$

so the cash account and zero coupon \mathcal{T} -bond prices are well-defined and obtained

$$B(t) = \exp\left(\int_0^t r(s) ds\right), \quad P(t, T) = \exp\left(-\int_t^T f(t, u) du\right).$$

The discounted asset price Z(t, T) = P(t, T)/B(t) satisfie

$$dZ(t,T) = Z(t,T) \left[\left(\underbrace{\frac{1}{2} S^2(t,T) - \int_t^T \alpha(t,u) du}_{b(t,T)} \right) dt + S(t,T)' dW(t) \right],$$

where $S(s,T) := -\int_{s}^{T} \sigma(s,u) du$. The *HJM drift condition* states that

Q is EMM (i.e., no arbitrage for bonds) \iff $b(t,T) = -S(t,T)\gamma(t)'$,

where $\widetilde{W}(t) := W(t) - \int_0^t \gamma(s) ds$ is a **Q**-Brownian motion. If this holds, then under Q, the forward rate process follows

$$f(t,T) = f(0,T) + \int_0^t \left(\underbrace{\sigma(s,T) \int_s^T \sigma(s,u)' \, du} \right) ds + \int_0^t \sigma(s,T) \, d\widetilde{W}(s),$$
HIM drift

and the discounted asset Z(t,T) satisfies $dZ(t,T) = Z(0,T)\mathcal{E}_t(X)$ with

$$X(t) = \int_0^t S(s, T)' d\widetilde{W}(s).$$

The LIBOR Market Model

For a tenor $\delta > 0$, the *LIBOR rate* $L(T, T, T + \delta)$ is the rate such that an investment of 1 at time T will grow to $1+\delta L(T,T,T+\delta)$ at time $T+\delta$. The forward LIBOR rate (i.e., a contract made at time t under which we pay 1 at time T and receive back $1 + \delta L(t, T, T + \delta)$ at time $T + \delta$) is defined as

$$L(t,T) := L(t,T,T+\delta) = \frac{1}{\delta} \left(\frac{P(t,T)}{P(t,T+\delta)} - 1 \right),$$

and satisfies $L(T,T)=L(T,T,T+\delta)$. Under the real-world probability measure **P**, The LMM assumes that each LIBOR process $(L(t, T_m))_{0 \le t \le T_m}$ satisfies

$$dL(t, T_m) = L(t, T_m) [\mu(t, L(t, T_m)) dt + \lambda_m(t, L(t, T_m))' dW(t)],$$

where $W = (W^1, ..., W^d)$ is a d-dimensional Brownian motion with instantaneous

$$d\langle W^i, W^j \rangle (t) = \rho_{i,j}(t) dt, \quad i, j = 1, 2, ..., d.$$

The function $\lambda(t, L): [0, T_i] \times \mathbf{R} \to \mathbf{R}^{N \times d}$ is the volatility, and $\mu(t): [0, T_i] \to \mathbf{R}$ is the

drift. Let $0 \le m, n \le N-1$. Then the dynamics of $L(t, T_m)$ under the forward measure

$$dL(t, T_m) = L(t, T_m) \left[-\lambda(t, T_m) \sum_{r=m+1}^{n} \sigma_{T_r, T_{r+1}}(t)' dt + \lambda(t, T_m) dW^m(t) \right]$$

$$dL(t,T_m) = L(t,T_m)\lambda(t,T_m)dW_t^m$$

$$dL(t, T_m) = L(t, T_m) \left[\lambda(t, T_m) \sum_{t=n+1}^{m} \sigma_{T_t, T_{t+1}}(t)' dt + \lambda(t, T_m) dW_t^m \right]$$