DM n°12: Thermodynamique

A faire pour le jeudi 27 mai 2021

I Résistance chauffante

Un cylindre horizontal fermé est divisé en deux compartiments A et B de même volume V_0 par un piston coulissant librement sans frottement. Les deux compartiments contiennent la même quantité n de gaz parfait monoatomique de coefficient γ , à la pression P_0 et à la température T_0 .

Le piston, la surface latérale du cylindre et la surface de base S_A du compartiment A sont calorifugés.

Données:
$$P_0 = 1$$
bar, $T_0 = 273$ K, $V_0 = 5,0$ L, $\gamma = \frac{5}{3}$, $R = 8,314$ J.K⁻¹.mol⁻¹.

I.1 Première transformation

On suppose que la surface de base S_B du compartiment B est diathermane.

Le compartiment A est porté très lentement à la température $T_1 = 353 \text{K}$ à l'aide d'une résistance chauffante, le compartiment B restant à T_0 par contact thermique avec de la glace fondante.

- 1. Calculer la quantité de matière n contenue dans chacun des compartiments.
- 2. Écrire la relation entre V_A , V_B , respectivement les volumes des compartiments A et B dans l'état final, et V_0 .
- 3. Exprimer en fonction des données les volumes V_A , V_B des deux compartiments et la pression P_1 dans l'état d'équilibre final. Calculer V_A , V_B et P_1 .
- 4. Exprimer en fonction de n, R, γ, T_1 et T_0 les variations d'énergie interne ΔU_A et ΔU_B des gaz dans les compartiments A et B. Calculer ΔU_A et ΔU_B .
- 5. Quelle est la nature de la transformation subie par le gaz en B (deux qualificatifs sont attendus)? Exprimer le travail W_B échangé par le gaz en B pendant la transformation. Calculer W_B .
- 6. En déduire le transfert thermique Q_B échangé par le gaz en B avec le thermostat. Calculer Q_B et interpréter son signe.
- 7. En remarquant que le travail W_B reçu par le gaz en B est l'opposé de celui fournit par le gaz en A, déduire des questions précédentes le transfert Q_A reçu par le gaz A de la part de la résistance chauffante. Calculer Q_A .

I.2 Deuxième transformation

On suppose maintenant que la surface de base S_B du compartiment B est calorifugée et qu'une deuxième résistance chauffante traverse ce compartiment.

La résistance placée en B chauffe le gaz du compartiment B de façon à ce que le piston reprenne très lentement sa position d'équilibre initiale (la résistance chauffante placée en A est inactive).

- 8. Rappeler les lois de Laplace et donner leurs conditions d'application.
- 9. Quelle est la nature de la transformation subie par le gaz du compartiment A (deux qualificatifs sont attendus)? Déterminer et calculer la pression P_2 dans l'état d'équilibre final.
- 10. Exprimer et calculer les températures T_A et T_B dans les deux compartiments dans l'état d'équilibre.
- 11. Calculer les variations d'énergie interne $\Delta U_A'$ et $\Delta U_B'$ des gaz dans chacun des deux compartiments au cours de la deuxième transformation.
- 12. En déduire le transfert thermique Q_B^\prime apporté par la résistance chauffante au gaz en B.