

Relations and Functions

- A relation R from a set A to a set B is said to be a **function** if for every a in A, there is a unique b in B such that $(a, b) \in R$.
- If R is a function from A to B and $(a, b) \in R$, then b is called the **image** of a under the relation R and a is called the **preimage** of b under B.
- For a function *R* from set *A* to set *B*, set *A* is the **domain** of the function; the images of the elements in set *A* or the second elements in the ordered pairs form the **range**, while the whole of set *B* is the **codomain** of the function.

For example, in relation $f = \{(-1,3)(0,2),(1,3),(2,6),(3,11)\}$ since each element in A has a unique image, therefore f is a function.

Each image in *B* is 2 more than the square of pre-image.

Hence, the formula for f is $f(x) = x^2 + 2$ Or $f: x \to x^2 + 2$

Domain = $\{-1, 0, 1, 2, 3\}$

Co-domain = $\{2, 3, 6, 11, 13\}$

Range = $\{2, 6, 3, 11\}$

• Cartesian product of two sets: Two non-empty sets P and Q are given. The Cartesian product $P \times Q$ is the set of all ordered pairs of elements from P and Q, i.e.,

$$P \times Q = \{p, q : p \in P \text{ and } q \in Q\}$$

Example: If $P = \{x, y\}$ and $Q = \{-1, 1, 0\}$, then $P \times Q = \{x, -1, x, 1, x, 0, y, -1, y, 1, y, 0\}$

If either P or Q is a null set, then P × Q will also be a null set, i.e., $P \times Q = \emptyset$.

In general, if A is any set, then $A \times \varphi = \varphi$.

- Property of Cartesian product of two sets:
 - If nA = p, nB = q, then $nA \times B = pq$.
 - $\circ~$ If A and B are non-empty sets and either A or B is an infinite set, then so is the case with A \times B
 - .A × A × A = $\{a,b,c:a,b,c\in A\}$. Here, $\{a,b,c\}$ is called an ordered triplet.
 - $\circ \ \mathsf{A} \times B \cap C = A \times B \cap A \times C$
 - $\circ \ \mathsf{A} \times B \cup C = A \times B \cup A \times C$
- Two ordered pairs are equal if and only if the corresponding first elements are equal and the second elements are also equal. In other words, if (a, b) = (x, y), then a = x and b = y.

Example: Show that there does not exist $x, y \in R$ if (x-y+1, 4x-2y-6) = (y-x-4, 7x-5y)

-2).

Solution:It is given that

$$(x-y+1, 4x-2y-6) = (y-x-4, 7x-5y-2).$$

 $\Rightarrow x-y+1 = y-x-4 \text{ and } 4x-2y-6 = 7x-5y-2$
 $\Rightarrow 2x-2y+5=0$... 1

And
$$-3x + 3y - 4 = 0$$
 ... 2

Now,

$$\frac{2}{-3} = -\frac{2}{3}, \frac{-2}{3} = -\frac{2}{3}$$
 and $\frac{5}{-4} = -\frac{5}{4}$

Since $\frac{2}{-3} = -\frac{2}{3}$, $\frac{-2}{3} = -\frac{2}{3}$ and $\frac{5}{-4} = -\frac{5}{4}$ Since $\frac{2}{-3} = \frac{-2}{3} \neq \frac{5}{-4}$, equations 1 and 2 have no solutions. This shows that there does not exist $x, y \in \mathbb{R}$ if (x - y + 1, 4x - 2y - 6) = (y - x - 4, 7x - 5y - 2).

In general, for any two sets A and B, $A \times B \neq B \times A$.

- **Relation:** A relation R from a set A to a set B is a subset of the Cartesian product A × B, obtained by describing a relationship between the first element x and the second element y of the ordered pairs (x, y) in A \times B.
- The image of an element x under a relation R is y, where $(x, y) \in R$
- **Domain:** The set of all the first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.
- Range and Co-domain: The set of all the second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the co-domain of the relation R. Range ⊆Co-domain

Example: In the relation X from **W** to **R**, given by $X = \{(x, y): y = 2x + 1; x \in W, y \in R\}$, we obtain $X = \{0, 1, 1, 3, 2, 5, 3, 7, ...\}$. In this relation X, domain is the set of all whole numbers, i.e., domain = $\{0, 1, 2, 3, \ldots\}$; range is the set of all positive odd integers, i.e., range = $\{1, 3, 5, 7, \ldots\}$; and the co-domain is the set of all real numbers. In this relation, 1, 3, 5 and 7 are called the images of 0, 1, 2 and 3 respectively.

• The total number of relations that can be defined from a set A to a set B is the number of possible subsets of A × B.

If nA = p and nB = q, then $nA \times B = pq$ and the total number of relations is 2^{pq} .

• **Real-valued Function:** A function having either R *realnumbers* or one of its subsets as its range is called a real-valued function. Further, if its domain is also either R or a subset of R, it is called a real function.

Types of functions:

• **Identity function:** The function $f: \mathbb{R} \to \mathbb{R}$ defined by y = f(x) = x, for each $x \in \mathbb{R}$, is called the identity function.

Here, R is the domain and range of f.

∘ **Constant function:** The function $f: \mathbb{R} \to \mathbb{R}$ defined by y = f(x) = x, for each $x \in \mathbb{R}$, where c is a constant, is a constant function.

Here, the domain of f is R and its range is $\{c\}$.

- ∘ **Polynomial function:** A function $f: R \to R$ is said to be a polynomial function if for each $x \in R$, $y = f(x) = a^0 + a_1x + ___+ a_n x^n$ a where n is a non-negative integer and $a_0, a_1,, a_n \in R$.
- **Rational function:** The functions of the type $\frac{f(x)}{g(x)}$, where f(x) and g(x) are polynomial functions of x defined in a domain, where $g(x) \neq 0$, are called rational functions.
- **Modulus function:** The function $f: \mathbb{R} \to \mathbb{R}^+$ defined by f(x) = |x|, for each $x \in \mathbb{R}$, is called the modulus function.

$$f(x) = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$
 In other words,

• **Signum function:** The function $f: R \to R$ defined by

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is called the signum function. Its domain is R and its range is the set {-1, 0, 1}.

• **Greatest Integer function**: The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = [x], x \in \mathbb{R}$, assuming the value of the greatest integer less than or equal to x, is called the greatest integer function.

Example:

- **Linear function:** The function f defined by f(x) = mx + c, for $x \in \mathbb{R}$, where m and c are constants, is called the linear function. Here, \mathbb{R} is the domain and range of f.
- Addition and Subtraction of functions: For functions $f: X \to R$ and $g: X \to R$, we define

Addition of Functions

$$(f+g): X \to R$$
 by $(f+g)(x) = f(x) + g(x), x \in X$

Subtraction of Functions

$$(f - g): X \rightarrow R$$
 by $(f - g)(x) = f(x) - g(x), x \in X$

Example: Let
$$f(x) = 2x - 3$$
 and $g(x) = x^2 + 3x + 2$ be two real functions, then $(f+g)(x) = f(x) + g(x)$
 $= (2x - 3) + (x^2 + 3x + 2)$
 $= x^2 + 5x - 1$
 $(f-g) = f(x) - g(x)$
 $= (2x - 3) - (x^2 + 3x + 2)$
 $= -x^2 - x - 5$

- Multiplication of real functions: For functions $f: X \to R$ and $g: X \to R$, we define
 - Multiplication of two real functions

(fg):
$$X \to R$$
 by $(fg)(x) = f(x)$. $g(x) x \in X$

o Multiplication of a function by a scalar

$$af: X \to R$$
 by $(af)(x) = af(x) x \in X$ and a is a real number

Example: Let f(x) = 2x - 3 and $g(x) = x^2 + 3x + 2$ be two real functions, then

$$(fg) (x) = f(x) \times g(x)$$

$$= (2x-3) \times (x^2 + 3x + 2)$$

$$= 2x^3 + 3x^2 - 5x - 6$$

$$(2f)(x) = 2.f(x)$$

= $2 \times (2x - 3)$
= $4x - 6$

- Addition and Subtraction of functions: For functions $f: X \to R$ and $g: X \to R$, we define
 - Addition of Functions

$$(f+g): X \to R$$
 by $(f+g)(x) = f(x) + g(x), x \in X$

Subtraction of Functions

$$(f-g): X \to R$$
 by $(f-g)(x) = f(x) - g(x), x \in X$

Example: Let f(x) = 2x - 3 and $g(x) = x^2 + 3x + 2$ be two real functions, then

$$(f+g)(x) = f(x) + g(x)$$
$$= (2x-3) + (x^2 + 3x + 2)$$

$$= x^{2} + 5x - 1$$

$$(f-g) = f(x) - g(x)$$

$$= (2x-3) - (x^{2} + 3x + 2)$$

$$= -x^{2} - x - 5$$