

Abstracts book

II International Advanced Study Conference

CONDENSED MATTER & LOW TEMPERATURE PHYSICS

6 – 12 June 2021 Kharkiv, Ukraine

II International Advanced Study Conference Condensed Matter and Low Temperature Physics

CM<P 2021

6 - 12 June 2021 | Kharkiv, Ukraine

Conference Program Book of Abstracts

Estimation of iron concentration in silicon solar cell by kinetics of light-induced change in short-circuit current

O. Olikh¹, V. Kostylyov², V. Vlasiuk², R. Korkishko²

¹Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv, 03028, Ukraine
²V. Lashkaryov Institute of Semiconductor Physic Institute of NAS of Ukraine,
41 Nauky Ave., Kyiv, 03028, Ukraine
olegolikh@knu.ua

The iron is a major contaminant as well as one of the most detrimental metal impurities in silicon photovoltaic devices. Therefore non-destructive methods of iron concentration ($N_{\rm Fe}$) estimation in solar cells (SCs) are important from an applied point of view. To date, a not little collection of both direct and indirect methods has been developed to solve this problem. But almost all of them require special sample preparing or/and specialized equipment. At the same time, the current-voltage curve (IVC) measurement is a common method of SC characterization. Short-circuit current ($I_{\rm SC}$) is among the fundamental SC parameters, which easy determined from IVC as well as depend on $N_{\rm Fe}$. The proposed method is based on ability of pair FeB to dissociate under carriers injection and to associate in the dark [1] and involves for the measurement of $I_{\rm SC}$ kinetics after intense illumination.

During the kinetic fit it was assumed, that I_{SC} under monochromatic light described by

$$I_{SC} = \frac{W_{ph}(1-R)q\beta\lambda}{hc} \frac{\alpha\sqrt{D\tau}}{1+\alpha\sqrt{D\tau}},$$
(1)

where $W_{\rm ph}$ is the irradiance, D is the diffusion coefficient, τ is minority carrier lifetime in SC base:

$$\tau^{-1} = \tau_i^{-1} + \tau_{Fei}^{-1} + \tau_{FeB}^{-1} + \tau_{rest}^{-1}, \tag{2}$$

where τ_i describes intrinsic recombination, τ_{Fei} and τ_{FeB} concern to Shockley-Read-Hall recombination on interstitial iron Fe_i and FeB pair; τ_{rest} deals with other processes. The time dependence of the Fe_i concentration was used from [2] and it was believed that associate characteristic time can be written as

$$t_{ass} = 1.3 \cdot 10^3 N_A^{-2/3} \exp(E_m / kT),$$
 (3) where E_m is the Fe_i migration energy, N_A is the

doping level.

The n+-p-p+-Si diffusion-field type SCs were used in experiments. SCs were fabricated by using single-crystal p-silicon wafer with a resistivity of $10~\Omega \cdot$ cm. Some examples of $I_{\rm SC}$ kinetic curve are presented on Fig. We use Eqs. (1)-(3) by taking $W_{\rm ph}$, E_m and $N_{\rm Fe}$ as fitting parameters to fit the experimental data. The obtained values were following: $W_{\rm ph} \approx 0.3~{\rm mW}$; this value is in according

Fig. I_{SC} vs time after halogen lamp illumination (0.25 W/cm², 15 s). The marks are the experimental results, and the solid lines are the fitted curves. I_{SC} corresponds to the LED illumination (940 nm, 0.3 mW).

with data, obtained by Power Meter Rk-5720 for used light source; $E_m \approx 0.679$ meV; this value is in according to known [2] Fe_i migration energy; $N_{\text{Fe}} \approx 2 \cdot 10^{13}$ cm⁻³; this value is close to one, obtained by long-wavelength spectrum of internal quantum efficiency.

Thus, the proposed method allows to estimate the iron concentration in silicon solar cell. The work was supported by NRFU (project 2020.02/0036)

- [1] L. J. Geerligs and D. Macdonald, Appl. Phys. Lett.85, 5227 (2004).
- [2] W. Wijaranakula, J. Electrochem. Soc. 140, 275 (1993).