

Taller, Calculando límites con tablas y gráficas Cálculo 11°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	Curso:	Fecha:	
1–6 Complete la tabla de valores hasta 5	5 lugares decimales y	use ésta para estimar	el
valor del límite			

1.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} =$$

x	3.9	3.99	3.999	4.001	4.01	4.1
f(x)						

$$2. \lim_{x \to 2} \frac{x-2}{x^2 + x - 6} =$$

3.
$$\lim_{x \to 1} \frac{x-1}{x^3-1}$$

4.
$$\lim_{x \to 0} \frac{e^x - 1}{x} =$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

$$5. \lim_{x \to 0} \frac{\sin(x)}{x} =$$

6.
$$\lim_{x \to 0^+} x \ln(x) =$$

x	0.1	0.01	0.001	0.0001	0.00001
f(x)					

7-12 Use la tabla de valores para estimar el valor del límite. Luego use "geogebra" para graficar la función y confirmar sus resultados.

7.
$$\lim_{x \to -4} \frac{x+4}{x^2 + 7x + 12} =$$

10.
$$\lim_{x \to 0} \frac{\sqrt{x+9} - 3}{x} =$$

$$8. \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} =$$

11.
$$\lim_{x \to 1} \left(\frac{1}{\ln(x)} - \frac{1}{x - 1} \right) =$$

9.
$$\lim_{x \to 0} \frac{5^x - 3^x}{x} =$$

12.
$$\lim_{x \to 0} \frac{\tan(2x)}{\tan(3x)} =$$

a)
$$\lim_{x \to 1^{-}} f(x) = d$$
 d) $\lim_{x \to 5} f(x) = d$

$$d) \lim_{x \to 5} f(x) =$$

b)
$$\lim_{x \to 1^+} f(x) = e$$
 $f(5) =$

$$e) \ f(5) =$$

c)
$$\lim_{x \to 1} f(x) = f(-1) =$$

$$f) \ f(-1) =$$

14. Para la función f cuya gráfica se da, determine el valor pedido si existe. Si no existe, explique por qué.

a)
$$\lim_{x \to 0} f(x) =$$
 d) $\lim_{x \to 3} f(x) =$

$$d)$$
 $\lim_{x \to 3} f(x) =$

b)
$$\lim_{x \to 3^{-}} f(x) = e$$
 $f(3) =$

$$e) f(3) =$$

c)
$$\lim_{x \to 3^+} f(x) = f(0) =$$

$$f) \ f(0) =$$

15. Para la función q cuya gráfica se da, determine el valor pedido, si existe. Si no existe, explique por qué.

a)
$$\lim_{t \to 0^{-}} g(t) =$$
 e) $\lim_{t \to 2^{+}} g(t) =$

$$e) \lim_{t \to 2^+} g(t) =$$

$$b) \lim_{t \to 0^+} g(t) =$$

$$f) \lim_{t \to 2} g(t) =$$

c)
$$\lim_{t \to 0} g(t) =$$

$$g) g(2) =$$

$$d) \lim_{t \to 2^{-}} g(t) =$$

$$h) \lim_{t \to 4} g(t) =$$

16. Determine el valor solicitado, si existe. Si no existe, explique por qué

$$d$$
) $\lim_{x \to 2^{-}} f(x) =$

b)
$$\lim_{x \to 1} f(x) =$$

b)
$$\lim_{x \to 1} f(x) = e$$
 $\lim_{x \to 2^+} f(x) = e$

c)
$$\lim_{x \to -3} f(x) = f$$
) $\lim_{x \to 2} f(x) = f$

$$f$$
) $\lim_{x \to 0} f(x) =$

