A fix-point characterization of Herbrand equivalence of expressions in data flow frameworks

K. Murali Krishnan

Department of Computer Science & Engineering National Institute of Technology Calicut, Kerala, India.

Joint work with: Jasine Babu and Vineeth Paleri

ICLA 2019, IIT Delhi March 5, 2019

Flow Graph Representation

A Simple Program

- P0:
- P1: x = 1
- P2: y = 2
- P3: z = x + y

Figure: Flow Graph Representation

We may infer that the expressions z, 1+2, 1+y, x+y and x+2 are **equivalent** expressions at P3.

Formalizing Equivalence

Figure: Flow graph

- Constants $C = \{1, 2, ...\}$
- Variables $V = \{x, y, z, \ldots\}$
- Operators $\{+, *, \ldots\}$
- Terms $T ::= V|C|T + T|T * T \dots$ $T = \{1, 2, x, y, z, x + y, x + z, \dots\}$
- Only constants and variables appearing in the program are included in C and V.
- Thus T is an infinite set, but V and C are finite sets.

What should be the criteria for considering two terms $t_1, t_2 \in T$ to be **equivalent** at a program point P_i ?

Properties of Equivalence

- Congruence Property: At any program point P_i , $s_1 \equiv t_1$ and $s_2 \equiv t_2$ if and only if $s_1 + s_2 \equiv t_1 + t_2$, $s_1 * s_2 \equiv t_1 * t_2$, ...
- Constants: At any P_i , a constant can be equivalent to only variables (and **not** to other constants or non-variable terms).
- Conservative Assumption: At P_0 all terms are inequivalent to each other.

```
 \{\{x, \{\}, \{y\}, \{z\}, \{1\}, \{2\}, \{x+x\}, \{x+y\}, \{x+z\}, \{x+1\}, \{x+2\}, \\ \{y+x\}, \{y+y\}, \dots, \{1+x\}, \{1+y\}, \dots, \{x+(x+x)\}, \dots, \} \}   \{\{x, 1\}, \{y\}, \{z\}, \{2\}, \{x+x, x+1, 1+x, 1+1\}, \{x+y, 1+y\}, \\ \{x+z, 1+z\}, \{x+2, 1+2\}, \{y+x, y+1\}, \{y+y\}, \dots \}   P_1: \mathbf{x} = 1   \{x, 1\}, \{y, 2\}, \{z\}, \{x+x, x+1, \dots\}, \{x+y, 1+y, x+2, 1+2\}, \\ \{x+z, \dots\}, \{y+x, y+1, 2+x, \dots\}, \{y+y, y+2, \dots\}, \dots \}   \{\{x, 1\}, \{y, 2\}, \{x+x, x+1, 1+x, 1+1\}, \{z, x+y, 1+y, \dots\}, \\ \{x+z, 1+z, x+(x+y), \dots\}, \{y+x, y+1, 2+x, \dots\}, P_3: \\ \{y+y, y+2, \dots\}, \dots \}
```

Figure: Congruences

A partition of the set of terms T satisfying the first two properties above is defined as a congruence.

Assignments and Transfer functions

- An assignment operation can be modeled by a transfer function that transforms a congruence to another.
- The transfer function $f_{x=1}$ at P_1 transforms the congruence at P_0 to a new congruence at P_1 .
- x moves from its present class to the class containing 1.
- Each term t(x) containing x moves to the class containing $t[x \leftarrow 1]$.
- Simplifying assumption: In an assignment x = t, the term t shall not contain the variable x.

```
 \{\{x\}, \{y\}, \{z\}, \{1\}, \{2\}, \{x+x\}, \{x+y\}, \{x+z\}, \{x+1\}, \{x+2\}, \\ \{y+x\}, \{y+y\}, \dots, \{1+x\}, \{1+y\}, \dots, \{x+(x+x)\}, \dots, \} \}   \{\{x,1\}, \{y\}, \{z\}, \{2\}, \{x+x,x+1,1+x,1+1\}, \{x+y,1+y\}, \\ \{x+z,1+z\}, \{x+2,1+2\}, \{y+x,y+1\}, \{y+y\}, \dots \}   \{\{x,1\}, \{y,2\}, \{z\}, \{x+x,x+1,\dots\}, \{x+y,1+y,x+2,1+2\}, \\ \{x+z,\dots\}, \{y+x,y+1,2+x,\dots\}, \{y+y,y+2,\dots\}, \dots \}   \{\{x,1\}, \{y,2\}, \{x+x,x+1,1+x,1+1\}, \{z,x+y,1+y,\dots\}, \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, P_3: \\ \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, P_3: \\ \{y+y,y+2,\dots\}, \dots \}
```

Figure: Transfer functions acting on congruences

Def: G(T) is defined as the set of all congruences over T.

Path Analysis

- At P_0 , all terms are considered inequivalent. We associate the congruence $\bot = \{\{t\} : t \in T\}$ to P_0 .
- Each assignment node along a path P₀, P₁,...P_k transforms its input congruence to a new one.
- The congruence at P_k is obtained by applying to the initial congruence ⊥, the composition of transfer functions of the assignment statements along the path.
- We call this congruence the path congruence associated with the path $P_0, P_1, \dots P_k$.

$$\{\{x\}, \{y\}, \{z\}, \{1\}, \{2\}, \{x+x\}, \{x+y\}, \{x+z\}, \{x+1\}, \{x+2\}, \\ \{y+x\}, \{y+y\}, \dots, \{1+x\}, \{1+y\}, \dots, \{x+(x+x)\}, \dots, \}$$

$$\{\{x,1\}, \{y\}, \{z\}, \{2\}, \{x+x,x+1,1+x,1+1\}, \{x+y,1+y\}, \\ \{x+z,1+z\}, \{x+2,1+2\}, \{y+x,y+1\}, \{y+y\}, \dots \}$$

$$\{\{x,1\}, \{y,2\}, \{z\}, \{x+x,x+1,\dots\}, \{x+y,1+y,x+2,1+2\}, \\ \{x+z,\dots\}, \{y+x,y+1,2+x,\dots\}, \{y+y,y+2,\dots\}, \dots \}$$

$$\{\{x,1\}, \{y,2\}, \{x+x,x+1,1+x,1+1\}, \{z,x+y,1+y,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, \begin{array}{c} P_2 \colon \ y=2 \\ \{x,1\}, \{y,2\}, \{x+x,x+1,1+x,1+1\}, \{z,x+y,1+y,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, \begin{array}{c} P_3 \colon \ y=2 \\ \{x,1\}, \{y,2\}, \{x+x,x+1,1+x,1+1\}, \{x,x+y,1+y,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, \begin{array}{c} P_3 \colon \ y=2 \\ \{x,1\}, \{y,2\}, \{x+x,x+1,1+x,1+1\}, \{x,x+y,1+y,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{y+x,y+1,2+x,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{x+x,y+1,2+x,\dots\}, \\ \{x+z,1+z,x+(x+y),\dots\}, \{x+x,y+1,2+x,\dots\}, \\ \{x+x,y+x,y+1,2+x,\dots\}, \{x+x,y+1,2+x,\dots\}, \\ \{x+x,y+x,y+x,y+1,2+x,\dots\}, \\ \{x+$$

Figure: Congruence at a program point

Confluence Points

- P0:
- P1: z = 1
- P2: read(x)
- P3: If (x < 1) then y = x + 1
- P4: else y = x + 2
- P5:

Figure: P_5 is a Confluence Point

Def: A point in the flow graph where **two branches meet** is called a **confluence point**. We assume that at most two paths merge at a confluence point.

Multi-path Analysis

```
\{x+x\}, \{x+y\}, \{x+z\}, \{y+1\}, ...\}
• P0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          L Read x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \{\{x\}, \{y\}, \{1, z\}, \{2\}\{x+1, x+z\}, \{x+2\}, \{x+x\}, \{x+y\}, \{y+1, \dots\}, \dots\}
• P1: z = 1
\bullet P2: read(x)
                                                                                                                                                                                                                                                                                                                                                                                              v = x +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     y=x+2
• P3: If (x < z) then y = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \{x\}, \{1, z\}, \{2\}\{x+1, x+z\}, \{y, x+2\},
                                                                                                                                                                                                                                                                                                                                 \{\{x\}, \{1, z\}, \{2\}\}\{y, x+1, x+z\}, \{x+2\},
• P4: else y = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \{x+x\}, \{x+y, ...\}, \{y+1, ...\}, ...\}
• P5:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \{\{x\}, \{y\}, \{1, z\}, \{2\}, \{x+1, x+z\}, \{x+2\}, \{x+2\},
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \{x+x\}, \{x+y\}, \{y+1,...\},...\}
```

Figure: Congruence at confluence points

Conservative analysis assumes that terms t_1 and t_2 are equivalent at P_i if and only if $t_1 \equiv t_2$ in the path congruence of every P_0 - P_i path.

 $\{x\}, \{y\}, \{z\}, \{1\}, \{2\}\{x+1\}, \{x+2\},$

Algebra of Congruences

Theorem

 $\mathbf{G}(T)$ is a complete lattice.

- The Meet of congruences C_1 and C_2 is defined as: $C_1 \wedge C_2 = \{A_i \cap B_j : A_i \in C_1, B_j \in C_2, A_i \cap B_j \neq \emptyset\}.$
- $t_1 \equiv t_2$ in $\mathbf{C_1} \wedge \mathbf{C_2} \iff t_1 \equiv t_2$ in $\mathbf{C_1}$ and $t_1 \equiv t_2$ in $\mathbf{C_2}$.
- The definition extends to infinite collections $\{C_i\}_{i\in I}$ of congruences to yield the infimum, $\bigwedge_{i\in I} C_i$.
- The bottom element, $\bot = \{\{t\} : t \in T\}$ in $\mathbf{G}(T)$ satisfies $\bot \land C = \bot$ for each $C \in \mathbf{G}(T)$. Thus, $\mathbf{G}(T)$ is a complete meet semi-lattice.
- By artificially adding a top element \top , we can make $\mathbf{G}(T)$ a complete lattice.
- Ordering in G(T) is given by: $C_1 \leq C_2$ if C_1 is a finer partitioning of T.
- \bullet **G**(T) is an infinite lattice.

Properties of transfer functions

Theorem

The transfer function $f_{y=t}$ is a complete meet-morphism on $\mathbf{G}(T)$.

- $C_1, C_2 \in \mathbf{G}(T)$ be congruences.
- If $C_1 \leq C_2$, then $f_{y=t}(C_1) \leq f_{y=t}(C_2)$ (monotonicity).
- $f_{y=t}(C_1 \wedge C_2) = f_{y=t}(C_1) \wedge f_{y=t}(C_2)$. (meet-morphism).
- If $\{C_i\}_{i\in I}$ is an arbitrary non-empty collection of congruences then $f_{y=t}(\bigwedge_{i\in I}C_i)=\bigwedge_{i\in I}f_{y=t}(C_i)$. (complete meet-morphism).
- We define $f_{v=t}(\top) = \top$.

Meet Over all Paths (MOP)

- Formulate congruence at P_i as: $\mathcal{H}(i) = \text{meet of all } P_0 - P_i$ path congruences.
- Note: The notion of path in the context of flow graphs includes paths with cycles.
- The equivalence classes at each
 P_i are traditionally called the
 Herbrand Equivalence
 classes.
- Hence we call $\mathcal{H}(i)$ the Herbrand congruence at P_i .
- When the program contain loops, we need to consider the meet of a countably infinite number of path congruences.

Figure: Meet over all paths computation.

Flow graphs with Loops

- P0:
- P1: read(x)
- P2:
- P3: if (condition) y = x + 1
- P4: $else \ y = x + 2$
- P5:
- P6: x = y
- ::::: if (condition) goto P2
- P7: z = x + y

Figure: Flow graph with loops.

Congruences in flow graphs with loops

$$\{\{x\}, \{y\}, \{z\}, \{1\}, \{2\}\{x+1\}, \{x+2\}, \emptyset P_0 : \{x+x\}, \{x+y\}, \{x+z\}, \{y+1\}, \dots\} \} P_1 : \text{Read } \mathbf{x}$$

$$\{\{x\}, \{y\}, \{z\}, \{1\}, \{2\}\{x+1\}, \{x+2\}, \emptyset P_1 : \text{Read } \mathbf{x} \} \} \{\{x+x\}, \{x+y\}, \{x+z\}, \{y+1\}, \dots\} \}$$

$$\mathbf{P}_2 : \mathbf{P}_4 : \mathbf{$$

A fix-point characterization of Herbrand equivalence

Indefinite (Non deterministic) Assignments

- A statement of the form Read(y) is modeled by a special transfer function $f_{y=*}$.
- Let $C \in \mathbf{G}(T)$ and $C' = f_{y=*}(C)$. We require that $t_1 \equiv t_2$ in $C' \iff$ for each $t \in T$, $t_1 \equiv t_2$ in $f_{y=t}(C)$.
- Informally, t_1 and t_2 must be equivalent in the post assignment congruence if and only if irrespective of the term t assigned to y, they are equivalent.
- Hence, we define $f_{y=*}(C) = \bigwedge_{t \in T} f_{y=t}(C)$.
- It can be shown that if c_1, c_2 are constants such that $c_1 \neq c_2$ then $f_{y=*} = f_{y=c_1} \wedge f_{y=c_2}$.
- The characterization uses the defining property of a congruence that a constant can be equivalent to only variables, and **not** to other constants or non-variable terms.
- Thus, an input statement can be modeled with two transfer function operations and a confluence operation.

Problem Formulation

- Can we formulate the Herbrand equivalence classes at each P_i as the maximum fix-point (MFP) of some monotone function defined over $\mathbf{G}(T)$?
- Not quite since the equivalence classes at P_i depends on the equivalence classes at other program points as well.
- To get the global picture, we need to consider the product lattice $[\mathbf{G}(T)]^n$, where n = number of program points.
- $[\mathbf{G}(T)]^n$ is a complete lattice.
- We will define a composite transfer function $\mathcal{F}: [\mathbf{G}(T)]^n \mapsto [\mathbf{G}(T)]^n$.
- ullet It turns out that ${\mathcal F}$ has a maximum fix-point.
- Moreover, MFP(\mathcal{F})[i] = $\mathcal{H}(i)$, the Herbrand congruence at the program point P_i for each i.

The Composite Transfer Function

$$\mathcal{F}: [\mathbf{G}(T)]^n \mapsto [\mathbf{G}(T)]^n$$

- Let $\mathbf{C} = (C_1, C_1, \dots C_n) \in [\mathbf{G}(T)]^n$.
- To define \mathcal{F} , it suffices to define $\mathcal{F}[i]$ for each program point P_i .
- Case 1: If P_i node associated with a transfer function $f_{y=t}$ and if P_j be the predecessor of P_i then: $\mathcal{F}(\mathbf{C})[i] = f_{y=t}(C_j)$.
- Case 2: If P_i is a confluence point with predecessors P_j and P_k then: $\mathcal{F}(\mathbf{C})[i] = C_j \wedge C_k$.
- Case 3: If $P_i = P_0$, the start node, define $\mathcal{F}(\mathbf{C})[i] = \bot$.
- \bullet \mathcal{F} is a monotone, distributive, complete meet-morphism.
- Denote by MFP(\mathcal{F}), the maximum fix-point of \mathcal{F} in $[\mathbf{G}(T)]^n$ (must exist by Tarski's fix-point theorem).
- Lemma 1: MFP(\mathcal{F}) = $\bigwedge \{ \top, \mathcal{F}(\top), \mathcal{F}^2(\top), \ldots \} = \bigwedge_{k \geq 0} \mathcal{F}^k(\top)$. (The fact that \mathcal{F} is a complete meet-morphism is used in the proof of the lemma).

Coincidence Theorem

- Let $\mathcal{H}^k(i)$ denote the meet of all path congruences $P_0 P_i$ of length at most k.
- It follows that the meet of all path congruences at P_i , $\mathcal{H}(i) = \bigwedge_{k \geq 0} \mathcal{H}^k(i)$.
- Lemma 2: $\mathcal{H}^k(i) = \mathcal{F}^k(\top)[i]$, where \top is the top element in $[\mathbf{G}(T)]^n$. (Straight-forward induction argument.)
- Thus $\mathcal{H}(i) = \bigwedge_{k>0} \mathcal{H}^k(i) = (\bigwedge_{k>0} \mathcal{F}^k(\top))[i]$ at each program point P_i .
- By Lemma 1 we have $MFP(\mathcal{F}) = \bigwedge_{k>0} \mathcal{F}^k(\top)$.
- Hence we get:

Coincidence Theorem

Theorem: $\mathcal{H}(i) = MFP(\mathcal{F})[i]$, at each program point P_i .

Abstract Lattices

- Algorithms that computes Herbrand equivalence by fix-point iteration works with a limited finite working set $W \subset T$ of expressions and attempts to compute the equivalence classes of $\mathcal{H}(i)$ for each P_i , restricted to terms in W.
- The working set generally is a superset of the program expressions i.e., expressions appearing in the program.
- We can define the abstract lattice G(W) of congruences of terms in W.
- Formally, we can define the abstraction of a congruence \mathcal{C} in $\mathbf{G}(T)$ to $\mathbf{G}(W)$ by: $\Phi(\mathcal{C}) = \{A \cap W : A \in \mathcal{C}, A \cap W \neq \emptyset\}.$
- Then, $\mathbf{G}(W) = \{\Phi(\mathcal{C}) : \mathcal{C} \in \mathbf{G}(T), \Phi(\mathcal{C}) \neq \emptyset\}.$
- \bullet **G**(W) will be a finite complete lattice called the abstract lattice.
- The computational problem is to find $\Phi(\mathcal{H}(i))$ for each program point P_i in the flow graph.

Abstract Transfer Functions

- Suppose an abstract lattice $\mathbf{G}(W)$ over a finite working set W is given.
- For each transfer function $f_{y=t}$ in $\mathbf{G}(T)$, the corresponding abstract transfer function $\tilde{f}_{v=t}$ is defined on $\mathbf{G}(W)$ by: $\tilde{f}_{n-t}(\Phi(\mathcal{C})) = \Phi(f_{n-t}(\mathcal{C})).$
- Similarly, the abstract composite transfer function $\tilde{\mathcal{F}}$ can be defined on $[\mathbf{G}(W)]^n$.
- It is not hard to see that $MFP(\tilde{\mathcal{F}}) = \Phi(MFP(\mathcal{F})) =$ $\Phi(\mathcal{H}(i)).$

$$\phi\left(f_{y=t}\left(\mathcal{C}\right)\right) = \tilde{f}_{y=t}\left(\phi\left(\mathcal{C}\right)\right)$$

$$G(T) \qquad G(W)$$

$$C = \{A_1, A_2, \dots, A_r\} \xrightarrow{\phi} C^W = \{A_i^W : A_i^W \neq \emptyset, 1 \leq i \leq r\} \text{ where } A_i^W = A_i \cap W$$

$$\tilde{f}_{y=t} \qquad \qquad \tilde{f}_{y=t}$$

$$\mathcal{B} = \{B_1, B_2, \dots, B_t\} \xrightarrow{\phi} \mathcal{B}^W = \{B_i^W : B_i^W \neq \emptyset, 1 \leq i \leq t\} \text{ where } B_i^W = B_i \cap W$$

Figure: Computation in an abstract lattice.

where $B_i^W = B_i \cap W$

Computation of Herbrand Equivalence

- Several algorithms are known to compute Herbrand equivalence using fix-point iteration.
- Conceptually, each algorithm is distinguished by:
 - \bullet The choice of the working set W.
 - 2 How the computation of the \wedge operation in $\mathbf{G}(W)$ is performed.
 - 3 How the computation of the abstract transfer functions $\tilde{f}_{y=t}$ is performed.
- Each algorithm tries to compute $\Phi(\mathcal{H}(i))$ at each program point P_i either exactly or approximately.
- Approximate (or incomplete) methods compute a conservative approximation $\mathcal{G}(i) \in \mathbf{G}(W)$ at each program point P_i , such that $\mathcal{G}(i) \leq \Phi(\mathcal{H}(i))$.

The journey so far

- Kildall (1973) proposed the first complete algorithm, but required exponential running time.
- Subsequently several polynomial time incomplete algorithms were discovered (Rüthing et. al. [1999], Alpern et. al. [1988], Rosen et. al. [1988], ...).
- Finally complete polynomial time algorithms were proposed (Gulvani and Necula. [2007], Pai. [2016]).
- A variant of the meet over all paths formulation for $\mathcal{H}(i)$ at each P_i appear in Steffen et. al. [1990].
- We hope that the fix-point formulation proposed here will provide a more natural view of the problem from the perspective of computation.

Thank you!

