

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2016 GABARITO

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize nos cálculos quatro casas decimais arrendondando para duas só ao final
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- · Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

1 – Primeira questão (1 ponto)

Verifique quais das funções abaixo são distribuições de probabilidade. Caso alguma não seja distribuição devido à constante de normalização, apresente a função normalizada e sua(s) média(s).

a)
$$f(x)=x$$
; $x \in [-1,1]$

Resolução:

Observe que a função dada toma valores negativos no intervalo apresentado. Portanto, não é distribuição de probabilidade.

b)
$$f(x) = \frac{x^3 - x^2}{17}$$
; $x \in [1,2]$

Resolução:

Com uma inspeção simples verificamos que a função dada é não negativa no intervalo dado. Integremos a função.

$$\int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{x^{3} - x^{2}}{17} dx = \frac{1}{17} \left[\int_{1}^{2} x^{3} dx - \int_{1}^{2} x^{2} dx \right] = \frac{1}{17} \left[\frac{x^{4}}{4} \Big|_{1}^{2} - \frac{x^{3}}{3} \Big|_{1}^{2} \right] = \frac{1}{17} \left[\frac{2^{4} - 1^{4}}{4} - \frac{2^{3} - 1^{3}}{3} \right] = \frac{1}{17} \left[\frac{15}{4} - \frac{7}{3} \right]$$

ou

$$\int_{1}^{2} f(x)dx = \frac{1}{17} \left[\frac{15}{4} - \frac{7}{3} \right] = \frac{1}{17} \frac{17}{12} = \frac{1}{12} .$$

Assim teremos que a função será distribuição de probabilidade se for normalizada usando a constante obtida acima, ou seja,

$$f(x) = \frac{12}{17}(x^3 - x^2); x \in [1,2]$$

é distribuição de probabilidade.

Calculemos agora a média para esta distribuição de probabilidade, ou seja,

$$\mu = \int_{1}^{2} x f(x) dx = \int_{1}^{2} \frac{12}{17} x(x^{3} - x^{2}) dx = \frac{12}{17} \int_{1}^{2} (x^{4} - x^{3}) dx = \frac{12}{17} \left[\int_{1}^{2} x^{4} dx - \int_{1}^{2} x^{3} dx \right] = \frac{12}{17} \left[\frac{x^{5}}{5} \Big|_{1}^{2} - \frac{x^{4}}{4} \Big|_{1}^{2} \right]$$

e daí

$$\mu = \frac{12}{17} \left[\frac{2^5 - 1^5}{5} - \frac{2^4 - 1^4}{4} \right]_1^2 = \frac{12}{17} \left[\frac{31}{5} - \frac{15}{4} \right] = \frac{12}{17} \frac{49}{20} = \frac{147}{85} \approx 1,7294 .$$

2 – Segunda questão (2,5 pontos) Dada a função abaixo

$$f(x)=x(x+2); x \in [0,3]$$

sendo nula fora do intervalo especificado.

a) Normalize a função para que seja distribuição de probabilidade; (0,5 ponto)

Resolução:

Integremos a função no intervalo dado

$$\int_{0}^{3} \left[x(x+2) \right] dx = \int_{0}^{3} \left(x^{2} + 2x \right) dx = \int_{0}^{3} x^{2} dx + 2 \int_{0}^{3} x dx = \frac{x^{3}}{3} \Big|_{0}^{3} + 2 \frac{x^{2}}{2} \Big|_{0}^{3} = \frac{27}{3} + 9 = 18$$

assim a função abaixo é uma distribuição de probabilidade

$$f(x) = \frac{x(x+2)}{18}; x \in [0,3].$$

b) Ache a média desta distribuição obtida;

(0,5 ponto)

Resolução:

Partiremos da definição de média de uma distribuição contínua

$$\mu = \int_{0}^{3} x f(x) dx = \int_{0}^{3} x \frac{x(x+2)}{18} dx = \frac{1}{18} \left[\int_{0}^{3} x^{3} dx + 2 \int_{0}^{3} x^{2} dx \right] = \frac{1}{18} \left[\frac{x^{4}}{4} \Big|_{0}^{3} + 2 \frac{x^{3}}{3} \Big|_{0}^{3} \right] = \frac{1}{18} \left[\frac{81}{4} + 2 \frac{27}{3} \right]$$

que resulta em

$$\mu = \frac{1}{18} \frac{153}{4} = \frac{17}{8} = 2{,}125$$
.

c) Determine a variância desta distribuição obtida;

(1,0 ponto)

Resolução:

Da definição de variância para uma distribuição contínua temos

$$\sigma^2 = \int_{0}^{3} x^2 f(x) dx - \mu^2$$
.

Como já temos a média, calculemos a integral

$$\int_{0}^{3} x^{2} f(x) dx = \int_{0}^{3} x^{2} \frac{x(x+2)}{18} dx = \frac{1}{18} \left[\int_{0}^{3} x^{4} dx + 2 \int_{0}^{3} x^{3} dx \right] = \frac{1}{18} \left[\frac{x^{5}}{5} \Big|_{0}^{3} + 2 \frac{x^{4}}{4} \Big|_{0}^{3} \right] = \frac{1}{18} \left[\frac{243}{5} + 2 \frac{81}{4} \right]$$

que nos dá o resultado

$$\int_{0}^{3} x^{2} f(x) dx = \frac{1}{18} \frac{891}{10} = \frac{99}{20} = 4,95,$$

portanto a variância será

$$\sigma^2 = \int_0^3 x^2 f(x) dx - \mu^2 = \frac{99}{20} - \left(\frac{17}{8}\right)^2 = \frac{139}{320} \approx 0.4344.$$

d) Determine a moda desta distribuição obtida.

(0,5 ponto)

Resolução:

Observe que a função de distribuição dada é monotonamente crescente, ou seja, o seu valor sempre cresce com o aumento do argumento. Portanto, a moda é 3, valor para o qual a probabilidade é máxima.

3 – Terceira questão (2 pontos)

Calcule as probabilidades solicitadas:

a) P(X < 2,8) para uma distribuição Normal de média 3,9 e variância 6,1.

Resolução:

Usaremos a fórmula

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

que para os parâmetros dados

$$P(X < b) = P\left(Z < \frac{2,8-3,9}{\sqrt{61}}\right) \approx P\left(Z < \frac{-1,1}{7,8192}\right) \approx P\left(Z < -0,1407\right) \approx 0,5 - P\left(Z < 0,14\right) = 0,5 - 0,0557 = 0,4443$$
.

b) P(X < 1,3) para a distribuição normalizada da segunda questão;

Resolução:

Neste caso a probabilidade será dada por

$$P(X<1,3) = \frac{1}{18} \int_{0}^{1,3} \left[x(x+2) \right] dx = \frac{1}{18} \left[\int_{0}^{1,3} x^{2} dx + 2 \int_{0}^{1,3} x dx \right] = \frac{1}{18} \left[\frac{x^{3}}{3} \Big|_{0}^{1,3} + 2 \frac{x^{2}}{2} \Big|_{0}^{1,3} \right] = \frac{1}{18} \left(\frac{2,197}{3} + 1,69 \right) \approx 0,1346 .$$

c) P(X > 1,3) para a distribuição Uniforme no intervalo [0, 3].

Resolução:

A probabilidade dada por uma distribuição Uniforme em um intervalo é dada por

$$P(a < X < b) = \frac{1}{B - A} \int_{a}^{b} dx .$$

Com isto teremos

$$P(X>1,3) = \frac{1}{3-0} \int_{0}^{1,3} dx = \frac{1}{3} 1,3 = \frac{13}{30} \approx 0,4333$$
.

d) P(X > 2.8) para a distribuição Exponencial com $\alpha = 0.81$.

Resolução:

Aqui usaremos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} ,$$

e então

$$P(X>2,8)=1-e^{-0.81\times2.8}=1-e^{-2.268}\approx1-0.1035=0.8965$$
.

4 – Quarta questão (2,0 pontos)

Aplicava-se um tratamento nas águas oriundas de esgoto industrial para posterior descarte das águas num rio. Foram retiradas 25 amostras da água tratada e sabemos que o nível do poluente deveria estar abaixo de 18 unidades para se considerar que o tratamento foi eficaz. Sabendo que a modelagem foi feita pelo modelo Normal e que a variância no presente caso é de 32 unidades², verifique qual a região de rejeição com nível de significância de 10%.

Resolução:

Nossa hipótese nula será que 18 é o valor para a média para o qual o tratamento das águas seria ineficaz. Com os dados sobre a média, variância e tamanho da amostra, teremos para o o z crítico

$$z_c = \frac{x_c - 18}{\sqrt{(32/25)}} \approx \frac{x_c - 18}{1,1314}$$
 que nos leva a $x_c = 18 + z_c \times 1,1314$.

Verificando na tabela da distribuição Normal o complemento da probabilidade de 10% teremos $z_c = -1,28$ e, portanto,

$$x_c = 18 - 1,28 \times 1,1314 \approx 16,5518$$

assim a região de rejeição será

$$RC = |x \in \Re : x < 16,55|$$
.

5 – Quinta questão (2,5 pontos)

Vários hospitais estavam sendo avaliados para possível ampliação. Para isto colheram-se dados quanto ao tempo de ocupação de leitos. Suponha que o modelo Normal é adequado à análise assim como, devido à experiências anteriores, se avalia uma variância igual a 6,4 (dias)². Num determinado hospital os dados colhidos indicavam uma média de 2,3 dias para 90 internações. Estime o intervalo para a média em dias de internação deste hospital com coeficiente de confiança de 80%.

Resolução:

Usaremos a fórmula

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$

e para os dados apresentados teremos

$$\frac{\sigma}{\sqrt{n}} = \sqrt{\frac{6.4}{90}} = \frac{4}{15} \approx 0.2667$$
 e $z_{\gamma/2} = z_{0.8/2} = z_{0.4} = 1.28$.

Tais resultados nos permite escrever

$$IC(\mu,\gamma)=[2,3-1,28\times0,2267;2,3+1,28\times0,2667]\approx[2,01;2,59]$$
.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,2002	0,2020	-,	-,	2,2.20	-,	0,2000	5,25	-,
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
,		,	,	,	,	,	,	,	,	,
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.