Elliptic Curves

Jake Fisher and Davis Lister

May 1, 2018

Pollard's p-1 Factoization

- ▶ Let *B* be a positive integer. The prime factorization of an integer $n = \prod p_i^{e_i}$. If $\forall i \ p_i^{e_i} \leq B$, *n* is *B*-power smooth.
- We wish to find a nontrivial factor of a large positive integer N using the Pollard p-1 method.
- Let us choose a positive integer B. Suppose that there is a prime factor p of N such that p-1 is B-power smooth.
- ▶ Let us choose *a* > 1 such that p does not divide a. Often we will choose *a* = 2 for convenience.
- ▶ By Fermat's Little Theorem $a^{p-1} \equiv 1 \mod p$.
- ▶ Let m = lcm(1, 2, 3, ..., B). Since p 1 is B-power smooth, $p 1 \mid m \Longrightarrow p \mid \text{gcd}(a^m 1, N) > 1$.
- ▶ If $gcd(a^m 1, N) < N$, then $gcd(a^m 1, N)$ is a nontrivial factor of N.

Factoring Magic!

- An example of integer factorization using Pollard's p-1 method.
- ▶ Let N = 5917 and let B = 5. m = lcm(1, 2, 3, 4, 5) = 60.
- Let $2^{60} 1 = 3416 \mod 5917$, and $gcd(2^{60} 1, 5917) = gcd(3416, 5917) = 61$.
- 61 is a factor of 5917!
- ▶ But if p-1 and and q-1 (where pq=N) are not B-power smooth, Pollard p-1 does not work.
- ▶ The issue is that $(\mathbb{Z}/p\mathbb{Z})^*$ has order p-1.

Group Law for Elliptic Curves

- Now we will introduce Elliptic Curves as a group to help solve the integer factorization problem.
- ▶ Elliptic Curves are a group under the \oplus operation with the set $\{\mathbb{Z}/p\mathbb{Z}\} \cup \{\mathcal{O}\}$ where \mathcal{O} is the point at infinity.
- Let us define the discriminant $\Delta = -16(4a^3 + 27b^2)$. If $\Delta = 0$ the group law does not hold.
- ▶ The \oplus operation is defined geometrically on two points (x_1, y_1) and (x_2, y_2) thus: draw the secant line and find the third point where it intersects the curve (x', y'), which can include \mathcal{O} , finally find (x', -y'), the resulting point.
- ▶ Under the ⊕ operation \mathcal{O} is the identity and $(x,y)^{-1} = (x,-y)$.
- ▶ All computations are done over the set $\mathbb{Z}/p\mathbb{Z}$ in cryptographic and integer factorization applications.

More on the Discriminant

- ▶ The condition we impose on the discriminant is the is motivated by the need to have a tangent line be well defined at all points on the curve f(x, y). If the tangent line is not defined at a point $P_0 = (x_0, y_0)$, then the curve is singular.
- ▶ If the curve is singular, then $P_0 \oplus P_0$ is not well-defined, which breaks the group law.
- ▶ Geometrically, a singularity is a cusp or self-intersection. At such points $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$.
- First we will show that if f is singular, $\Delta = 0$.
- ▶ Next we will show that if $\Delta = 0$, f is singular.

Lenstra's Elliptic Curve Factorization