King Saud University

College of Sciences

Department of Mathematics

106 Math Exercises

(4)

Numerical Integration

Malek Zein AL-Abidin

$$\int_{1}^{2} \ln(x+1) \, dx$$

using regular partition with n = 4, using the <u>Trapezoidal rule</u>.

i-
$$[a, b] = [1,2]$$
, $f(x) = \ln(x+1)$, $\Delta x = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4} = 0.25$
 $x_i = a + i \Delta x = 1 + 0.25i$: $i = 0,1,2,3,4 = n$

i	x_i	$f(x_i) = \ln(x_i + 1)$	m_i	$m_i f(x_i)$
0	$x_0 = a = 1$	0.6930	1	0.6930
1	$x_1 = 1.25$	0.8109	2	1.6218
2	$x_2 = 1.5$	0,9163	2	1.8326
3	$x_3 = 1.75$	1.0116	2	2.0232
4	$x_4 = b = 2$	1.0986	1	1.0986

$$\sum_{i=0}^{4} m_i f(x_i) = 7.2692$$

$$T_n = \frac{b-a}{2n} \sum_{i=0}^n m_i f(x_i) \implies T_4 = \frac{2-1}{2(4)} \sum_{i=0}^4 m_i f(x_i) = \frac{7.2692}{8}$$

$$T_4 = 0.90865$$

$$\therefore \int_{1}^{2} \ln(x+1) dx \approx 0.90865$$

$$\int_{1}^{5} \frac{\ln x}{x} dx$$

using regular partition with n = 4, using the <u>Trapezoidal rule</u>.

$$[a,b] = [1,5]$$
, $f(x) = \frac{lnx}{x}$, $\Delta x = \frac{b-a}{n} = \frac{5-1}{4} = 1$
 $x_i = a + i \Delta x = 1 + i$; $i = 0,1,2,3,4 = n$

i	x_i	$f(x_i) = \frac{\ln x_i}{x_i}$	m_i	$m_i f(x_i)$
0	$x_0 = a = 1$	0.0000	1	0.0000
1	$x_1 = 2$	0.3466	2	0.6932
2	$x_2 = 3$	0.3662	2	0.7324
3	$x_3 = 4$	0.3466	2	0.6932
4	$x_4 = b = 5$	0.3218	1	0.3218

$$\sum_{i=0}^{4} m_i f(x_i) = 2.4406$$

$$T_n = \frac{b-a}{2n} \sum_{i=0}^n m_i f(x_i) \implies T_4 = \frac{5-1}{2(4)} \sum_{i=0}^4 m_i f(x_i) = \frac{2.4406}{2}$$

$$T_4 = 1.2203$$

$$\int_{1}^{5} \frac{\ln x}{x} dx \approx 1.2203$$

$$\int\limits_{2}^{3} \sqrt{1+x^3} \, dx$$

, using regular partition with n=5, using the Trapezoidal rule.

$$[a,b] = [2,3]$$
, $f(x) = \sqrt{1+x^3}$, $\Delta x = \frac{b-a}{n} = \frac{3-2}{5} = \frac{1}{5} = 0.2$
 $x_i = a + i \Delta x = 2 + 0.2 i$; $i = 0,1,2,3,4,5 = n$

i	x_i	$f(x_i) = \sqrt{1 + x_i^3}$	m_i	$m_i f(x_i)$
0	$x_0 = a = 2$	3.0000	1	3.0000
1	$x_1 = 2.2$	3.4129	2	6.8259
2	$x_2 = 2.4$	3.8520	2	7.7040
3	$x_3 = 2.6$	4.3099	2	8.6198
4	$x_4 = 2.8$	4.7915	2	9.5816
5	$x_5 = b = 3$	5.2915	1	5.2915

$$\sum_{i=0}^{5} m_i f(x_i) = 41.0228$$

$$\sum_{i=0}^{5} m_i f(x_i) = 41.0228$$

$$T_n = \frac{b-a}{2n} \sum_{i=0}^{n} m_i f(x_i) \implies T_5 = \frac{3-2}{2(5)} \sum_{i=0}^{5} m_i f(x_i) = \frac{41.0228}{10}$$

$$T_5 = 4.10228$$

$$\int_{2}^{3} \sqrt{1 + x^3} \, dx \approx 4.10228$$

$$\int\limits_{0}^{1}\sqrt{1-x^{2}}\ dx$$

, using regular partition with n=5 , using the $\underline{Trapezoidal\ rule}$

$$\int_{0}^{1} e^{4x} dx$$

using regular partition with n = 4, using the <u>Simpson's rule</u>.

i-
$$[a, b] = [0,1]$$
, $f(x) = e^{4x}$, $\Delta x = \frac{b-a}{n} = \frac{1-0}{4} = \frac{1}{4} = 0.25$
 $x_i = a + i \Delta x = 0 + 0.25i = 0.25i$; $i = 0,1,2,3,4 = n$

i	x_i	$f(x_i) = e^{4x_i}$	δ_i	$\delta_i f(x_i)$
0	$x_0 = a = 0$	1.0000	1	1.0000
1	$x_1 = 0.25$	e = 2.7183	4	10.8732
2	$x_2 = 0.5$	$e^2 = 7.3891$	2	14.7782
3	$x_3 = 0.75$	$e^3 = 20.0855$	4	80.3420
4	$x_4 = b = 1$	$e^4 = 54.5982$	1	54.5982

$$\sum_{i=0}^{4} \delta_i f(x_i) = 161.5916$$

$$S_n = \frac{b-a}{3n} \sum_{i=0}^n \delta_i f(x_i) \implies S_4 = \frac{1-0}{3(4)} \sum_{i=0}^4 \delta_i f(x_i) = \frac{161.5916}{12}$$

$$S_4 = 13.466$$

$$\int_{0}^{1} e^{4x} dx \approx 13.466$$

$$\int_{1}^{5} \sqrt{1+x^2} \, dx$$

, using regular partition with n=4, using the Simpson's rule.

Solution:
$$[a,b] = [1,5]$$
, $f(x) = \sqrt{1+x^2}$, $\Delta x = \frac{b-a}{n} = \frac{5-1}{4} = 1$
 $x_i = a + i \Delta x = 1 + i$: $i = 0,1,2,3,4 = n$

i	x_i	$f(x_i) = \sqrt{1 + x_i^2}$	δ_i	$\delta_i f(x_i)$
0	$x_0 = a = 1$	1.4142	1	1.4142
1	$x_1 = 2$	2.2360	4	8.9440
2	$x_2 = 3$	3.1622	2	6.3244
3	$x_3 = 4$	4.1231	4	16.4924
4	$x_4 = b = 5$	5.0990	1	5.0990

$$\sum_{i=0}^{4} \delta_i f(x_i) = 38.274$$

$$S_n = \frac{b-a}{3n} \sum_{i=0}^n \delta_i f(x_i) \implies S_4 = \frac{5-1}{3(4)} \sum_{i=0}^4 \delta_i f(x_i) = \frac{38.274}{3}$$

$$S_4 = 12.758 \Rightarrow$$

$$\int_{1}^{5} \sqrt{1 + x^2} \, dx \approx 12.758$$

$$\int_{0}^{\pi} \cos(\sin x) \, dx$$

, using regular partition with n=6, using the Simpson's rule.

Solution:
$$[a, b] = [0, \pi]$$
, $f(x) = \cos(\sin x)$, $\Delta x = \frac{b-a}{n} = \frac{\pi-0}{6} = \frac{\pi}{6}$
 $x_i = a + i \Delta x = 0 + i \frac{\pi}{6}$: $i = 0,1,2,3,4,5,6 = n$

i	x_i	$f(x_i) = \cos\left(\sin x_i\right)$	δ_i	$\delta_i f(x_i)$
0	$x_0 = a = 0$	1.000 00	1	1.000 00
1	$x_1 = \frac{\pi}{6}$	0.999 96	4	3.999 84
2	$x_2 = \frac{\pi}{3}$	0.999 88	2	1.999 76
3	$x_3 = \frac{\pi}{2}$	0.999 84	4	3.999 36
4	$x_4 = \frac{3\pi}{2}$	0.999 88	2	1.999 76
5	$x_5 = \frac{5\pi}{6}$	0.999 96	4	3.999 84
6	$x_6 = b = \pi$	1.000 00	1	1.000 00

$$\sum_{i=0}^{6} \delta_i f(x_i) = 17.99856$$

$$S_n = \frac{b-a}{3n} \sum_{i=0}^n \delta_i f(x_i) \Rightarrow S_6 = \frac{\pi - 0}{3(6)} \sum_{i=0}^4 \delta_i f(x_i) = \frac{\pi}{18}$$
 17.99856

$$S_6 = 3.14134$$

$$\therefore \int_{0}^{\pi} \cos(\sin x) \, dx \approx 3.14134$$

8) Approximate

$$\int\limits_0^1 \frac{1}{\sqrt{1+x^2}} \ dx$$

, using regular partition with $\,$ n=4 , using the Simpson's rule .