Projeto de Disciplina

Algoritmos de Inteligência Artificial para classificação [25E1_2]

Wilson Rodrigues Sampaio Melo

```
In [4]: # instalação dos pacotes
         !pip install pandas scikit-learn numpy matplotlib seaborn -q
        [notice] A new release of pip is available: 23.2.1 -> 25.0.1
        [notice] To update, run: pip3 install --upgrade pip
        Reshimming asdf python...
In [22]: # imports
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.model_selection import StratifiedKFold, cross_val_score, cross_val_
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_sd
         from sklearn.preprocessing import StandardScaler
         # Para ignorar avisos desnecessários
         import warnings
         warnings.filterwarnings('ignore')
         # para evitar notação científica no pandas
         pd.options.display.float_format = '{:.0f}'.format
```

1. Faça o módulo do Kaggle Intro to Machine Learning: Comprove a finalização do módulo com um print que contenha data e identificação do aluno.

```
Trabalho com base:

Iremos usar a base de dados de vinhos verdes portugueses (nas variantes branco e tinto) que encontra-se disponível no Kaggle:

*Para as questões 2-5 usaremos apenas os vinhos do tipo "branco".*
```


2. Faça o download da base - esta é uma base real, apresentada no artigo: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

Ela possui uma variável denominada "quality", uma nota de 0 a 10 que denota a qualidade do vinho. Crie uma nova variável, chamada "opinion" que será uma variável categórica igual à 0, quando quality for menor e igual à 5. O valor será 1, caso contrário. Desconsidere a variável quality para o restante da análise.

```
In [6]: # Load data
    data_path = "../data/winequalityN.csv"
    wine_data = pd.read_csv(data_path)

# estatisticas da base de dados
    wine_data.describe()
```

Out[6]:		fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulţ
	count	6487	6489	6494	6495	6495	6497	6497	6497	6488	
	mean	7	0	0	5	0	31	116	1	3	
	std	1	0	0	5	0	18	57	0	0	
	min	4	0	0	1	0	1	6	1	3	
	25%	6	0	0	2	0	17	77	1	3	
	50%	7	0	0	3	0	29	118	1	3	
	75%	8	0	0	8	0	41	156	1	3	
	max	16	2	2	66	1	289	440	1	4	
	4										•
In [7]:		nulos e wine_dat	e nan ca.isna()	.sum())						
	# descatando os nan e nulls por entender que não representam # uma fatia considerável da amostra e não deveria influenciar no resultado wine_data.dropna(axis=0, inplace=True)										
1 0 1 1 1 0 8 8	citric a residual chloride free sul	e acidit acid l sugar es lfur dio ulfur di	xide	0 10 8 3 2 2 0 0 9 4 0							
In [8]:	<pre># separar os dados apenas de vinhos brancos white_wine_data = wine_data[wine_data['type'] == 'white'].copy() red_wine_data = wine_data[wine_data['type'] == 'red'].copy()</pre>										
In [9]:	# base # na v def cr pop df	<pre># função auxiliar para criar a variável 'opinion' # baseado na regra de negócio do enunciado baseado na # na variável 'quality' def create_opinion(df): # criar uma nova coluna chamada 'opinion' opinion = [0 if x <= 5 else 1 for x in df['quality']] df.loc[:, ('opinion')] = opinion return df</pre>									
In [10]:	white_	wine_dat	ca = crea	te_opi	nion(whi	s te_wine_da ine_data)	ata)				

```
# ver os dados
white_wine_data.loc[:,('type', 'quality', 'opinion')]
```

Out[10]:

	type	quality	opinion
0	white	6	1
1	white	6	1
2	white	6	1
3	white	6	1
4	white	6	1
•••			•••
4891	white	6	1
4893	white	6	1
4894	white	5	0
4896	white	7	1
4897	white	6	1

4870 rows × 3 columns

3. Descreva as variáveis presentes na base. Quais são as variáveis? Quais são os tipos de variáveis (discreta, categórica, contínua)? Quais são as médias e desvios padrões?

```
In [12]: print("\nInformações dos dados dos vinhos brancos:")
    print(white_wine_data.info())
```

```
Informações dos dados dos vinhos brancos:
<class 'pandas.core.frame.DataFrame'>
Index: 4870 entries, 0 to 4897
Data columns (total 14 columns):
```

```
Column
                        Non-Null Count Dtype
---
   -----
                        -----
0
   type
                        4870 non-null object
   fixed acidity
                        4870 non-null float64
1
                        4870 non-null float64
   volatile acidity
2
   citric acid
                        4870 non-null
                                      float64
                      4870 non-null
                                      float64
4
  residual sugar
5
                        4870 non-null
                                      float64
   chlorides
   free sulfur dioxide 4870 non-null
                                      float64
6
    total sulfur dioxide 4870 non-null
                                      float64
    density
                                      float64
8
                        4870 non-null
9
    рΗ
                        4870 non-null float64
                                      float64
10 sulphates
                        4870 non-null
11 alcohol
                                      float64
                        4870 non-null
12 quality
                        4870 non-null
                                      int64
                        4870 non-null
13 opinion
                                       int64
dtypes: float64(11), int64(2), object(1)
```

memory usage: 570.7+ KB

None

```
In [13]: # Estatísticas descritivas para variáveis contínuas
         desc_stats = white_wine_data.describe().T
         print("\nEstatísticas descritivas:")
         print(desc_stats[['mean', 'std']])
```

Estatísticas descritivas:

	mean	std
fixed acidity	7	1
volatile acidity	0	0
citric acid	0	0
residual sugar	6	5
chlorides	0	0
free sulfur dioxide	35	17
total sulfur dioxide	138	42
density	1	0
рН	3	0
sulphates	0	0
alcohol	11	1
quality	6	1
opinion	1	0

A base contém 14 variáveis, das quais a maioria são contínuas (medindo propriedades fisico-químicas) e duas são discretas/categóricas:

type (categorical) quality (discrete), que é transformada em opinion (discrete/categórica) para a análise de classificação.

4. Com a base escolhida:

- Descreva as etapas necessárias para criar um modelo de classificação eficiente.
- Treine um modelo de regressão logística usando um modelo de validação cruzada estratificada com k-folds (k=10) para realizar a classificação. Calcule para a base de teste:

```
- a média e desvio da acurácia dos modelos obtidos;
```

- a média e desvio da precisão dos modelos obtidos;
- a média e desvio da recall dos modelos obtidos;
- a média e desvio do f1-score dos modelos obtidos.
- Treine um modelo de árvores de decisão usando um modelo de validação cruzada estratificada com k-folds (k=10) para realizar a classificação. Calcule para a base de teste:
 - a média e desvio da acurácia dos modelos obtidos;
 - a média e desvio da precisão dos modelos obtidos;
 - a média e desvio da recall dos modelos obtidos;
 - a média e desvio do f1-score dos modelos obtidos.
- Treine um modelo de SVM usando um modelo de validação cruzada estratificada com k-folds (k=10) para realizar a classificação. Calcule para a base de teste:
 - a média e desvio da acurácia dos modelos obtidos;
 - a média e desvio da precisão dos modelos obtidos;
 - a média e desvio da recall dos modelos obtidos;
 - a média e desvio do f1-score dos modelos obtidos.

```
In [14]: # Separa as features (atributos fisico-químicos) e o target (opinion).
         y = white_wine_data['opinion']
         X = white_wine_data.drop(columns=['type', 'quality', 'opinion'], axis='columns',
In [15]: # aplicar uma padronização
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
In [16]: random_state = 42
         # organização dos modelos para pipeline
         modelos = {
             'Logistic Regression': LogisticRegression(random_state=random_state, solver=
             'Decision Tree': DecisionTreeClassifier(random_state=random_state),
              'SVM': SVC(random_state=random_state, probability=True)
         # k-folds (k=10) para validação cruzada
         folds = 10
         # Cria um objeto para a validação cruzada estratificada
         skf = StratifiedKFold(n splits=folds, shuffle=True, random state=random state)
In [17]:
        # Função auxiliar para calcular as métricas em cada fold e retornar média e desv
         def avaliar_modelo(modelo, X, y):
             # Armazenar os resultados de cada métrica
             accuracy_list = []
             precision list = []
             recall_list = []
             f1_list = []
             # Para armazenar as predições probabilísticas e verdadeiros para a curva ROC
             y probs = np.array([])
             y_true_total = np.array([])
             for train_index, test_index in skf.split(X, y):
```

```
# Divide os dados em treino e teste
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    # Treina o modelo
    modelo.fit(X train, y train)
    # Predição das classes
    y_pred = modelo.predict(X_test)
    # Predição probabilística para a classe 1 (para ROC)
    y_prob = modelo.predict_proba(X_test)[:, 1]
    # Armazena os resultados para ROC
    y_true_total = np.concatenate([y_true_total, y_test])
    y_probs = np.concatenate([y_probs, y_prob])
    # Calcula as métricas
    accuracy_list.append(accuracy_score(y_test, y_pred))
    precision_list.append(precision_score(y_test, y_pred))
    recall_list.append(recall_score(y_test, y_pred))
    f1_list.append(f1_score(y_test, y_pred))
# Calcula as médias e desvios padrões das métricas
metrics = {
    'accuracy_mean': np.mean(accuracy_list),
    'accuracy_std': np.std(accuracy_list),
    'precision_mean': np.mean(precision_list),
    'precision_std': np.std(precision_list),
    'recall mean': np.mean(recall list),
    'recall_std': np.std(recall_list),
    'f1_mean': np.mean(f1_list),
    'f1_std': np.std(f1_list),
    'y_true': y_true_total,
    'y_probs': y_probs
}
return metrics
```

```
Avaliando o modelo: Logistic Regression
Acurácia: 0.750 ± 0.018
Precisão: 0.775 ± 0.015
Recall: 0.879 ± 0.012
F1-score: 0.824 ± 0.012

Avaliando o modelo: Decision Tree
Acurácia: 0.802 ± 0.012
Precisão: 0.852 ± 0.014
Recall: 0.852 ± 0.014
F1-score: 0.852 ± 0.009

Avaliando o modelo: SVM
Acurácia: 0.787 ± 0.018
Precisão: 0.812 ± 0.014
Recall: 0.885 ± 0.012
F1-score: 0.847 ± 0.012
```

5. Em relação à questão anterior, qual o modelo deveria ser escolhido para uma eventual operação. Responda essa questão mostrando a comparação de todos os modelos, usando um gráfico mostrando a curva ROC média para cada um dos gráficos e justifique.

```
In [23]: plt.figure(figsize=(10, 8))

for nome, metrics in resultados.items():
    fpr, tpr, thresholds = roc_curve(metrics['y_true'], metrics['y_probs'])
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f'{nome} (AUC = {roc_auc:.3f})')

plt.plot([0, 1], [0, 1], 'k--', label='AUC = 0.5 (Aleatório)')
plt.xlabel('Taxa de Falso Positivo')
plt.ylabel('Taxa de Verdadeiro Positivo')
plt.title('Curvas ROC dos Modelos')
plt.legend(loc='lower right')
plt.grid(True)
plt.show()
```



```
In [20]: # Seleciona o modelo com melhor F1-score médio
    melhor_modelo_nome = max(resultados, key=lambda nome: resultados[nome]['f1_mean'
    print(f"\nMelhor modelo escolhido: {melhor_modelo_nome}")

    melhor_modelo = modelos[melhor_modelo_nome]
    melhor_modelo.fit(X_scaled, y)

Melhor_modelo_assolhidor_Desision_Tree
```

Melhor modelo escolhido: Decision Tree

Out[20]: DecisionTreeClassifier

DecisionTreeClassifier(random_state=42)

6. Com a escolha do melhor modelo, use os dados de vinho tinto, presentes na base original e faça a inferência (não é para treinar novamente!!!) para saber quantos vinhos são bons ou ruins. Utilize o mesmo critério utilizado com os vinhos brancos, para comparar o desempenho do modelo. Ele funciona da mesma forma para essa nova base? Justifique.

```
In [21]: # Preparação dos dados dos vinhos tintos
X_red = red_wine_data.drop(columns=['type', 'quality', 'opinion'], axis=1)
y_red = red_wine_data['opinion']

# Aplica o mesmo tratamento de padrnização padronização dos dados
X_red_scaled = scaler.transform(X_red)

# Realiza a predição com o melhor modelo
if melhor_modelo_nome == 'Linear Regression':
```

```
# Para regressão linear, converte a saída contínua para 0 ou 1
y_red_cont = melhor_modelo.predict(X_red_scaled)
y_red_pred = (y_red_cont >= 0.5).astype(int)
else:
    y_red_pred = melhor_modelo.predict(X_red_scaled)

# Calcula as métricas na base de vinhos tintos
accuracy_red = accuracy_score(y_red, y_red_pred)
precision_red = precision_score(y_red, y_red_pred)
recall_red = recall_score(y_red, y_red_pred)
f1_red = f1_score(y_red, y_red_pred)

print("\nResultados de inferência para os vinhos tintos usando o melhor modelo t
print(f"Acurácia: {accuracy_red:.3f}")
print(f"Precisão: {precision_red:.3f}")
print(f"Recall: {recall_red:.3f}")
print(f"F1-score: {f1_red:.3f}")
```

Resultados de inferência para os vinhos tintos usando o melhor modelo treinado:

Acurácia: 0.537 Precisão: 0.592 Recall: 0.428 F1-score: 0.497

O desempenho do melhor modelo de vinhos brancos não performou bem na base de vinhos tintos. Penso que era algo esperado pela distinção de tipos e propriedades, uma vez que a base de treino não tinha nenhum vinho tinto o modelo fica naturalmente desbalanceado o que prejudica o desempenho da inferência.

7. Disponibilize os códigos usados para responder da questão 2-6 em uma conta github e indique o link para o repositório.

https://github.com/bakudas/pos-infnet-classificacao