ALGORITMO PARA EVITAR EL ACOSO SEXUAL CALLEJERO HACIA LA MUJER

PRESENTACIÓN DEL EQUIPO

Sofia Mendieta Marin

Organización de los documentos

Juan José Villa Soria

Preparación del código

Andrea Serna

Revisión de la literatura

Mauricio Toro

Preparación de los datos

https://github.com/Juan32soria/ST0245-001.git

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Dado un vértice origen, en este caso "C", Dijkstra determina el camino más corto al resto de vértices en el grafo con pesos en cada arista.

Complejidad del algoritmo

		Complejidad de la memoria
Dijkstra	O(E Log V)	O(V)

Complejidad en tiempo y memoria del algoritmo Dijkstra. Donde V es el número de vertices y E es el número de aristas.

