Constant Coefficient Differential Equations

• DE with constants as the coefficients to the derivatives of y so of this form: $c_n y^{(n)} + c_{n-1} y^{(n-1)} + \cdots + c_1 y' + c_0 y = F(x)$

Homogenous

• just means F(x) = 0

How to Solve

- Re-write the derivatives of $y^{(n)}$ with a differential operator to the same power \mathbb{D}^n
- treat as polynomial and factor
 - if degree > 2 then factoring may be difficult so us polynomial division
 - there's a thm that says a root must be evenly divisible by the constant at the end so have a finite pool of factors to try
- roots will return basis elements of the solution space

roots	Basis elements
root = a, a is real r = a + bi	e^{ax} $e^{ax}\cos(bx), e^{ax}\sin(bx)$

- NOTE: roots with multiplicities result in multiple basis elements with increasing powers of x
- example sol: $y = c_1 e^{3x} + c_2 x e^{3x} + c_3 \cos(5x) + c_4 \sin(5x)$

Non-homogenous

- means F(x) is a function
- requires annihilation

How to Solve

- solve the homogenous equation
- get a trial solution by finding the annihilator and applying it to both sides
- simplify y_T by omitting terms from y_H
- get y_P by plugging y_T into the original DE and back solving for the constants
- final answer is $y_H + y_P$ possibly can combine terms to further simplify

Term	Annihilator
$ \begin{array}{c} e^{ax} \\ x^k e^{ax} \\ x^k \end{array} $	$D-a (D-a)^{k+1} D^{k+1}$

Term	Annihilator
$ \frac{e^{ax}\cos(bx), e^{ax}\sin(bx)}{x^k e^{ax}\cos(bx), x^k e^{ax}\sin(bx)} $ $ \cos(bx), \sin(bx) $	$D^{2} - 2aD + (a^{2} + b^{2})$ $(D^{2} - 2aD + (a^{2} + b^{2}))^{k+1}$ $D^{2} + b^{2}$

• NOTE: if 2 terms are summed then the annihilator is the product of each term's annihilator

Cauchy Euler Differential Equations

• nth order Cauchy-Euler:
$$-x^ny^{(n)}+a_{n-1}x^{n-1}y^{(n-1)}+\cdots+a_1xy'+a_0y=0$$

- substitute: $x = e^z, z = \ln|x|$
- $xy' = D, x^2y'' = D(D-1), \dots, x^ny^{(n)} = D(D-1)(D-2)\dots(D-(n-1))$
 - with D being a differential operator in terms of z so you must substitute at the end

Variation of Parameters

• when the thing to annihilate is not simple

How to solve

- solve homogenous
 - lets say you get basis elements A, B, C, \ldots to solve the homogenous
- let u_1A, \ldots, u_nC be solutions
- set up a wronskian of the basis elements augmented with $\vec{0}$ but the last element is the thing to annihilate
- solve this system
 - **NOTE**: you're solving for u'_1, \ldots, u'_n
- integrate and plug into the 'sol'
 - this is particular so still need: $y = y_H + y_P$

Eigenvalues

- to find eigenvalues simply solve for $\lambda : \det(A \lambda I_n) = 0$
 - really means cofactor expand a matrix a whose diagonal look like $c - \lambda$ and find the roots
- might need the quadratic formula for this
 - this may mean finding complex roots
 - these come in conjugate pairs

Eigenvectors

- each eigenvalue has an eigenvector
- to find simply solve for $(A \lambda I_n)\vec{v}_{\lambda} = 0$
 - means $A \lambda I_n$ augmented with the zero matrix
- the resultant vector will have n parameters
- if $n \neq mul(\lambda)$
 - matrix is defective

Complex eigenvalues

- Now suppose we have $\lambda = a + bi$ with $\vec{v} = \vec{r} + i\vec{s}$
 - and complex conjugate pair
- yeilds sols:
 - $\vec{u}(t) = e^{at}(\cos(bt)\vec{r} \sin(bt)\vec{s})$
 - $-\vec{v}(t) = e^{at}(\cos(bt)\vec{s} + \sin(bt)\vec{r})$
 - NOTE: these are just the vectors so if asked to solve a system of DE make sure top multiply each vector by a constant

Solving Systems of DE

- find eigenvalues
- find eigenvectors
- solution: $\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_{1P} + \dots + c_n e^{\lambda_n t} \vec{v}_{nP}$
 - where \vec{v}_{kP} is the corresponding eigenvector but particular
 - choose $\vec{v}_1 \dots \vec{v}_n$ to be LI

Defective

- the 1st 2 steps are the same but finding eigenvectors has caveats
 - by the multiplicty, it will be 2,1 for mul=3 or for 2,2 or 3,1 for mul=4
 - try lowest order bu $(A \lambda I_n)^n \vec{v}_n = 0$
 - * note if $(A \lambda I_n)^n = \vec{0}$ this is the highest order
 - if this is the highest order
 - * choose and a vector of this form such that it's not order 1
 - \ast choose another such that it's LI from the previous
 - * find their corresponding order 1 by $\vec{v}_n = A \cdot \vec{u}_n$
 - otherwise you need order 3 so simple choose vec such that not order 2 or order 1
 - * find the order 2 by $\vec{v}_2 = A \cdot \vec{v}_3$
 - * find order 1 by $\vec{v}_1 = A \cdot \vec{v}_2$
- use the formula to write make sure to only chain where appropriate
- formula:
 - let \vec{v}_k be the generalized kth order eigenvector

$$* e^{\lambda t} \vec{v}
* e^{\lambda t} (\vec{v}_2 + t\vec{v})
* e^{\lambda t} (\vec{v}_3 + t\vec{v}_2 + \frac{1}{2}t^2\vec{v})
* \vdots
* e^{\lambda t} (\vec{v}_k + t\vec{v}_{k-1} + \dots + \frac{1}{(k-1)!}t^{k-1}\vec{v})$$