

CS4881 Artificial Intelligence Jay Urbain, PhD

Credits:

Machine Learning, Tom Mitchell Nazli Goharian, Georgetown; David Grossman, IIT

Naïve Bayes Classifier

- Bayes theorem
- Combines probability of each feature wrt class label.
- Makes strong independence assumption between features, i.e., independence between features
 - Classify email as spam based on sender, and text
 - Diagnose meningitis based on chest-xray, symptom
 - Classify fruit from shape and color
 - Determine life style from education and salary

Review conditional probability

Can factor joint probability using the chain rule:

$$P(a \land b) = P(a | b) P(b) = P(b | a) P(a)$$

And express the joint probability by conditioning on a or b:

$$P(a | b) P(b) = P(b | a) P(a)$$

... and derive Bayes Theorem:

$$P(a | b) = P(b | a) P(a) / P(b)$$

$$P(b | a) = P(a | b) P(b) / P(a)$$

Naïve Bayes Classifier

- Lets say we have a hyothesis, & we want to calculate the probability of the hypothesis being correct.
- Hypothesis: given feature x_1 , $x_2 =>$ object is a peach
- Calculate probability that x_1 , x_2 is a Peach
 - $P(H: x_1, x_2 \text{ is a Peach})$
 - P(H: x_1 , x_2 is an Apricot)
- Calculate each of these probabilities
- Choose the highest probability

Naïve Bayes Classifier

- P(H|X) Posterior probability of hypothesis H
 - X: $\{x_1, x_2, x_n\}$
 - Shows the confidence/probability of H given X
 - x₁: shape=round, x₂: color=orange
 - H: x_1 , x_2 is a peach
- P(H) Prior probability of hypothesis H
 - Represents the probability of H just happening, regardless of data.
 - E.g. What is the probability of picking a peach from a fruit bin without knowledge of shape and color.

Bayes Theorem - Learning

- P(X|H) Likelihood probability the evidence X conditioned on hypothesis H
 - Shows the confidence/probability of X given H
 - Given H is true (X is a peach) calculate probability that X is round and orange, i.e., x_1 =round, x_2 =orange.
- P(X) Prior probability of X
 - Represents the probability that sample is round and orange.

Bayes Theorem - Classification

Likelihood Prior Probability of class
$$C_i$$

$$P = (H|X) = \frac{P(X|H)P(H)}{P(X)}$$
Posterior Probability of class C_i Prior Probability of X

- Hypothesis H is the class C_i.
 - Note: P(X) can be ignored as it is constant for all classes.
- Assuming the independence assumption, $P(X/C_i)$ is:

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

Therefore:

$$P(C_i \mid X) = P(C_i) \prod_{k=1}^n P(x_k \mid C_i)$$

• $P(C_i)$ is the ratio of total samples in class C_i to all samples.

- For categorical attribute:
 - $P(x_k/C_i)$ is the frequency of samples having value x_k in class C_i .
- For continuous (numeric) attribute:
 - $P(x_k/C_i)$ is calculated via a Gaussian density function.

- Having precalculated all $P(x_k/C_i)$, an unknown example X is classified as follows:
 - 1. For all classes calculate $P(C_i|X)$
 - 2. Assign X to the class with the highest $P(C_i|X)$

January 27, 2013 10

Play Tennis?

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Play Tennis Example: estimating $P(x_i/C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Play Tennis Example: estimating $P(C_i|x_i)$

- An incoming sample: X = <sunny, cool, high, true>
- P(play|X) = P(X|p)*P(p) = P(p)*P(sunny|p)*P(cool|p)*P(high|p)*p(true|p) 9/14 * 2/9 * 3/9 * 3/9 * 3/9= 0.0053
- P(no play|X) = P(X|p)*P(n) = P(n)*P(sunny|n)*P(cool|n)*P(high|n)*p(true|n) 5/14 * 3/5 * 1/5 * 4/5 * 3/5 = 0.0206

Class *n* (no play) has higher probability than class *p* (play) for example X.