Przewidywanie właściwości sekwencji biologicznych w oparciu o analizę n-gramów

Michał Burdukiewicz

Zakład Genomiki, Uniwersytet Wrocławski

Prace eksperymentalne zazwyczaj poprzedza się analizami komputerowymi, które pozwalają optymalniej zaprojektować dalsze badania.

Przykłady:

- przewidywanie lokalizacji białek w komórce,
- modelowanie struktury przestrzennej białek oraz kwasów nukleinowych,
- wykrywanie miejsc wiązania czynników transkrypcyjnych,
- poszukiwanie sekwencji kodujących białko.

Białka amyloidowe

Białka związane z licznymi chorobami (np. choroby Alzheimera, Parkinsona, Creutzfeldta-Jakoba) tworzące szkodliwe agregaty.

Agregaty amyloidowe (czerwony) wokół neuronów (zielony). Strittmatter Laboratory, Yale University.

Białka amyloidowe

Hot-spots:

- krótkie (6-15 aminokwasów), ale bardzo zróżnicowane fragmenty białek amyloidogennych,
- miejsce inicjacji agregacji amyloidowej,
- ullet formują specyficzne struktury eta typu "zamka błyskawicznego".

Sawaya et al. (2007)

Peptydy sygnałowe

Peptydy sygnałowe:

- krótkie (15-30 aminokwasów) N-końcowe sekwencje,
- wystepują w białkach układu odpornościowego, strukturalnych, enzymach metabolicznych i hormonach,
- składają się z trzech regionów, gdzie preferowane są aminokwasy o określonych właściwościach fizykochemicznych.
- zróżnicowany skład aminokwasowy peptydów sygnałowych utrudnia ich rozpoznawanie.

Peptydy sygnałowe

Peptydy sygnałowe zarodźców malarii mają skład aminokwasowy różny od peptydów sygnałowych innych eukariontów.

n-gramy

n-gramy (k-tuple, k-mery):

- podsekwencje (ciągłe lub z przerwami) o długości n,
- uwzględniają otoczenie danej reszty.

	P1	P2	P3	P4	P5
S1	М	R	K	L	Υ

- 2-gramy: MR, RK, KL, LY
- 2-gramy (przerwa 1): M K, R L, K Y
- 3-gramy: MRK, RKL, KLY

n-gramy

n-gramy tworzą duże i trudne do analizy zbiory danych.

n-gramy

QuiPT (Quick Permutation Test) szybko i efektywnie filtruje informatywne n-gramy.

QuiPT jest szybszy niż klasyczne testy permutacyjne i zwraca dokładniejsze p-wartości.

Uproszczone alfabety:

- opierają się na grupowaniu aminokwasów o podobnych właściwościach fizykochemicznych,
- ułatwiają modelowanie i przewidywanie właściwości sekwencji (Murphy et al., 2000),
- tworzą łatwiej interpretowalne modele.

Dwie sekwencje zupełnie różne pod względu składu aminokwasowego mogą być identyczne pod względem właściwości reszt.

Sekwencja I:

FKVWPDHGSG

Sekwencja II:

YMCIYRAQTN

Nr podgrupy	Aminokwasy		
1	C, I, L, K, M, F, P, W, Y, V		
2	A, D, E, G, H, N, Q, R, S, T		

Sekwencja I: FKVWPDHGSG \rightarrow 1111122222 Sekwencja II: YMCIYRAQTN \rightarrow 1111122222

PCA częstości pojedynczych aminokwasów w peptydach sygnałowych innych eukariotów i zaródźców malarii.

AmyloGram: oparte o redukcję alfabetów i kodowanie n-gramowe narzędzie do predykcji białek amyloidogennych (Burdukiewicz et al., 2016).

Amyloidy
|FIIILIIIQIA
|LIHIYISIGID
|KRIQIDKIG
|EKIPITRIR
|Nieamyloidy

Porównanie z innymi klasyfikatorami

Klasyfikator	AUC	МСС
AmyloGram	0.8972	0.6307
PASTA 2.0 (Walsh et al., 2014)	0.8550	0.4291
FoldAmyloid (Garbuzynskiy et al., 2010)	0.7351	0.4526
APPNN (Família et al., 2015)	0.8343	0.5823

AUC (Area Under the Curve): miara jakości predykcji (1: idealny dobry klasyfikator, 0: idealnie zły klasyfikator).

MCC (Matthew's Correlation Coefficient): miara jakości predykcji (1: idealny dobry klasyfikator, -1: idealnie zły klasyfikator).

AmyloGram porównano z innymi klasyfikatorami na zewnętrznym zbiorze danych pep424.

Walidacja eksperymentalna

- 1. Wszystkie nieamyloidowe peptydy z bazy AmyLoad zanalizowano AmyloGramem.
- Wybrano 8 peptydów z najwyższym prawdopodobieństwem amyloidogenności.
- Peptydy zbadano przy pomocy spektroskopii fourierowskiej (FTIR).
- 4. Wyniki potwierdzono esejami z czerwienią Kongo i tioflawiną.

Walidacja eksperymentalna

Podsumowanie

- 1. Stworzono algorytm efektywnie selekcjonujący informatywne n-gramy reprezentujące sekwencje aminokwasowe.
- 2. Opracowano metody poszukujące uproszczone alfabety aminokwasowe.
- Opracowaną metodologię zastosowano do przewidywania białek amyloidogennych tworząc pakiet R i web server AmyloGram (http:

//www.smorfland.uni.wroc.pl/shiny/AmyloGram/).

Perspektywy

- 1. Zastosowanie opracowanej metodologii do przewidywania lokalizacji subkomórkowej białek.
- 2. Upublicznienie rozwijanych metod w postaci pakietu *biogram* w środowisku programistycznym i statystycznym **R**.

Literatura

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2016). Prediction of amyloidogenicity based on the n-gram analysis. Technical Report e2390v1, PeerJ Preprints.

Família, C., Dennison, S. R., Quintas, A., and Phoenix, D. A. (2015). Prediction of Peptide and Protein Propensity for Amyloid Formation. *PLOS ONE*, 10(8):e0134679.

References II

- Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010). FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. *Bioinformatics (Oxford, England)*, 26(3):326–332.
- Murphy, L. R., Wallqvist, A., and Levy, R. M. (2000). Simplified amino acid alphabets for protein fold recognition and implications for folding. *Protein Engineering*, 13(3):149–152.
- Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., Apostol, M. I., Thompson, M. J., Balbirnie, M., Wiltzius, J. J. W., McFarlane, H. T., Madsen, A., Riekel, C., and Eisenberg, D. (2007). Atomic structures of amyloid crossspines reveal varied steric zippers. *Nature*, 447 (7143):453–457.

References III

Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014). PASTA 2.0: an improved server for protein aggregation prediction. *Nucleic Acids Research*, 42(W1):W301–W307.