10 Riemann 積分と Lebesgue 積分の関係

• ここでは Riemann 積分と Lebesgue 積分の関係を学ぶ.

10.1 Riemann 積分における Darboux の定理

● f を有界閉区間 [a, b] で有界な関数とする. 閉区間 [a, b] の分割を考える:

$$\Delta : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

この分割に対して $|\Delta| = \max\{x_i - x_{i-1} : i = 1, ..., n\}$ とおく.

• この分割に対し

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\},$$

$$m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}$$

 $(i=1,\cdots,n)$ とする

• 過剰和 $\overline{S}(f:\Delta)$ および不足和 $\underline{S}(f:\Delta)$ は

$$\overline{S}(f:\Delta) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}),$$

$$\underline{S}(f:\Delta) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}),$$

で定義され

と表す。

• これらについて次の定理を紹介する.

定理 10.1(Darboux の定理) -

 $f:[a,b] \to \mathbb{R}$ は有界な関数とする。このとき任意の $\varepsilon>0$ に対して、ある $\delta>0$ が存在して

$$|\Delta| < \delta \ \Rightarrow \ |\overline{S}(f:\Delta) - \overline{S}(f)| < \varepsilon, \ |\underline{S}(f:\Delta) - \underline{S}(f)| < \varepsilon$$

が成り立つ.

証明は補足で述べる.

10.2 Riemann 積分と Lebesgue 積分

- Riemann 積分は (R) $\int_a^b f(x)dx$ と表すことにする.
- \mathcal{F} を \mathbb{R} における Lebesgue 可測集合全体とし、m を Lebesgue 測度とする. $[a,b] \in \mathcal{F}$ であり、[a,b] 上で可測な関数 f の積分 $\int_{[a,b]} fdm$ を (L) $\int_a^b f(x)dx$ と表すことにする.

定理 10.2

 $f:[a,b] \to \mathbb{R}$ は有界な関数とする. f が [a,b] 上で Riemann 積分可能であれば Lebesgue 積分可能である.

証明

- f は有界であるから f + M を考えることにより $f \ge 0$ であると仮定してよい.
- 区間 [a,b] を 2^n 等分する分割の列 $\{\Delta_n\}$ をとる:

$$\Delta_n : a = x_0^{(n)} < x_1^{(n)} < \dots < x_k^{(n)} < x_{k+1}^{(n)} < \dots < x_{2^n}^{(n)} = b$$

• このとき $m_k^{(n)} = \inf\{f(x) : x_{k-1}^{(n)} \le x \le x_k^{(n)}\}, M_k = \sup\{f(x) : x_{k-1}^{(n)} \le x \le x_k^{(n)}\}$

$$\varphi_n(x) = \sum_{k=1}^{2^n} m_k^{(n)} \chi_{[x_{k-1}^{(n)}, x_k^{(n)}]}(x), \ \psi_n(x) = \sum_{k=1}^{2^n} M_k^{(n)} \chi_{[x_{k-1}^{(n)}, x_k^{(n)}]}(x)$$

とする. $\varphi_n, \psi_n \geq 0$ は単関数であり $0 \leq \varphi_n(x) \leq \varphi_{n+1}(x) \leq f(x) \leq \psi_{n+1}(x) \leq \psi_n(x)$ $(n=1,2,\cdots)$ が成り立つ. また、単関数の積分の定義により

(L)
$$\int_{a}^{b} \varphi_{n}(x)dx = \sum_{k=1}^{2^{n}} m_{k}^{(n)} (x_{k}^{(n)} - x_{k-1}^{(n)}) = \underline{S}(f : \Delta_{n}),$$

(L)
$$\int_{a}^{b} \psi_{n}(x)dx = \sum_{k=1}^{2^{n}} M_{k}^{(n)}(x_{k}^{(n)} - x_{k-1}^{(n)}) = \overline{S}(f : \Delta_{n}),$$

• f は [a,b] 上で Riemann 積分可能で $|\Delta_n| \to 0$ (as $n \to \infty$) であるから Darboux の定理より

$$\lim_{n \to \infty} (\mathbf{L}) \int_{a}^{b} \varphi_{n}(x) dx = \lim_{n \to \infty} \underline{S}(f : \Delta_{n}) = (\mathbf{R}) \int_{a}^{b} f(x) dx,$$

$$\lim_{n \to \infty} (L) \int_a^b \psi_n(x) dx = \lim_{n \to \infty} \overline{S}(f : \Delta_n) = (R) \int_a^b f(x) dx$$

• $\varphi_n(x)$, $\psi_n(x)$ の単調性から $x \in [a,b]$ に対して

$$\lim_{n \to \infty} \varphi_n(x) = \underline{f}(x), \quad \lim_{n \to \infty} \psi_n(x) = \overline{f}(x)$$

が存在し

$$f(x) \le f(x) \le \overline{f}(x) \tag{10.1}$$

が成り立ち、 ϕ_n 、 ψ_n は可測関数列であるから f、 \overline{f} も [a,b] 上の可測関数である.

• $|\varphi_n(x)| \leq f(x), \ |\psi_n(x)| \leq \psi_1(x) \leq \sup_{x \in [a,b]} f(x) < \infty$ であるので Lebesgue の収束定理より

$$\lim_{n \to \infty} (\mathbf{L}) \int_{a}^{b} \varphi_{n}(x) dx = (\mathbf{L}) \int_{a}^{b} \underline{f}(x) dx,$$

$$\lim_{n \to \infty} (\mathbf{L}) \int_{a}^{b} \psi_{n}(x) dx = (\mathbf{L}) \int_{a}^{b} \overline{f}(x) dx$$
(10.2)

が成り立つ.

• 以上より

(L)
$$\int_{a}^{b} \overline{f}(x)dx = (L) \int_{a}^{b} \underline{f}(x)dx = (R) \int_{a}^{b} f(x)dx \quad \Im \,\sharp \, \mathfrak{h}$$
(L)
$$\int_{a}^{b} \{\overline{f}(x) - \underline{f}(x)\}dx = 0$$
(10.3)

 $\overline{f} - \underline{f} \geq 0$ だから命題 8.12 より $\overline{f} - \underline{f} = 0$ a.a $x \in [a,b]$ である。また (10.1) より $m\left(\{x \in [a,b]: f(x) \neq \underline{f}(x)\}\right) = 0$ であるので 46 ページの事実より f も [a,b] 上で可測となる。また f は有界であるから積分可能である。 $f = f - \underline{f} + \underline{f}$ とすることにより

(L)
$$\int_{a}^{b} f(x)dx = (L) \int_{a}^{b} \{f(x) - \underline{f}(x)\} dx + (L) \int_{a}^{b} \underline{f}(x) dx$$
$$= (L) \int_{a}^{b} \underline{f}(x) dx = (R) \int_{a}^{b} f(x) dx$$

が成り立つ. □

• 逆は成り立たない.実際 $f(x)=\left\{egin{array}{ll} 1 & x\in[0,1]\cap\mathbb{Q} \\ 0 & x\in[0,1]\cap\mathbb{Q}^c \end{array}\right.$ とするとき f は [0,1] 上の可測関数であり(証明してみよ)

$$(L) \int_0^1 f(x) dx = 0$$

であるが、(R) $\int_0^1 f(x)dx$ は存在しない.

• 命題 10.2 の証明を真似ることにより [a,b] で有界な関数 f が Riemann 積分可能であるための必要十分条件を得ることができる.

定理 10.3 -

 $f:[a,b] \to \mathbb{R}$ は有界な関数とする. f が [a,b] 上で Riemann 積分可能であるため に必要十分条件は f が a.a. $x \in [a,b]$ において連続であることである.

証明

- 命題 10.2 の証明で用いた φ_n , ψ_n $(n=1,2,\cdots)$ を用いる.
- 命題 10.2 の証明で用いた Δ_n の分点全体を D_n とし $D=\bigcup_{n=1}^\infty D_n$ とすると D は可算集合であるから m(D)=0 である.
- $x \in [a,b] \cap D^c$ とする.このとき任意の $n \in \mathbb{N}$ に対して $x \in (x_{k-1},x_k)$ となる k がただ 1 つ定まる.
- f が $x \in [a,b] \cap D^c$ で連続とする.このとき任意の $\varepsilon > 0$ に対しある $\delta > 0$ が存在して

$$|x - y| < \delta, \quad y \in [a, b] \quad \Rightarrow \quad f(y) - \varepsilon < f(x) < f(y) + \varepsilon$$

が成り立つ.

- $|\Delta_n| < \delta \ (n \ge n_0)$ となるように n_0 を十分大きくとる.
- $n \ge n_0$ に対して上で $x \in (x_{k-1}^{(n)}, x_k^{(n)})$ なる k がただ 1 つ定まる.このとき $m_k^{(n)}$, $M_k^{(n)}$ の定義より

$$f(y) < m_k^{(n)} + \varepsilon, \quad M_k^{(n)} - \varepsilon < f(z)$$

となる $y,z \in [x_{k-1}^{(n)},x_k^{(n)})$ が存在する。 $|x-y| < \delta, |x-z| < \delta$ より

$$f(x) - 2\varepsilon < f(y) - \varepsilon < m_k^{(n)} \le f(x) \le M_k^{(n)} < f(z) + \varepsilon < f(x) + 2\varepsilon$$

である。まとめると、 $x\in [a,b]\cap D^c$ ならば、任意の $\varepsilon>0$ に対し、 $(\delta>0$ を介して)ある $n_0\in\mathbb{N}$ が存在して $n\geq n_0$ ならば

$$f(x) - 2\varepsilon \le \varphi_n(x) \le f(x) \le \psi_n(x) \le f(x) + 2\varepsilon$$

が成り立つ. これは $\lim_{n\to\infty} \varphi_n(x) = \lim_{n\to\infty} \psi_n(x) = f(x)$ が成り立つことを意味する.

$$f(x) - \varepsilon < \varphi_n(x) \le f(x) \le \psi_n(x) < f(x) + \varepsilon$$

が成り立つ. 上の n_0 に対してある $x\in (x_{k-1}^{(n_0)},x_k^{(n_0)})$ となる $k=k_{n_0}$ があるので

$$f(x) - \varepsilon < m_k^{(n_0)} \le f(x) \le M_k^{(n_0)} < f(x) + \varepsilon$$

が成り立つ. $\delta=\min\{x-x_{k-1}^{(n_0)},x_k^{(n_0)}-x\}$ とおくと $|x-y|<\delta$ ならば $y\in(x_{k-1}^{(n_0)},x_k^{(n_0)})$ であり

$$f(x) - \varepsilon < m_k^{(n_0)} \le f(y) \le M_k^{(n_0)} < f(x) + \varepsilon$$

つまり $|f(x) - f(y)| < \varepsilon$ が成り立つ. つまり f が x で連続である.

• まとめると $x \in [a,b] \cap D^c$ に対して, f が x で連続 \Leftrightarrow

$$f(x) = f(x) = \overline{f}(x) \tag{10.4}$$

である.

- 命題 10.2 の証明から f が [a,b] で Riemann 積分可能であれば $m(\{x \in [a,b]: f(x) \neq \overline{f}(x)\}) = 0$ である,つまり f は a.a. $x \in [a,b]$ で連続である.
- 逆に f が a.a. $x \in [a, b]$ で連続であるとすると (10.4) が a.a. $x \in [a, b]$ で成り立つ。(10.2) と Darboux の定理より

$$\underline{S}(f) = \lim_{n \to \infty} \underline{S}(f : \Delta_n) = \lim_{n \to \infty} (L) \int_a^b \varphi_n(x) dx$$

$$= (L) \int_a^b \underline{f}(x) dx = (L) \int_a^b \overline{f}(x) dx$$

$$= \lim_{n \to \infty} (L) \int_a^b \psi_n(x) dx = \overline{S}(f : \Delta_n) = \overline{S}(f)$$

であり f が Riemann 積分可能であることが得られる. \square

10.3 補足: Darboux **の**定理**の**証明

- $\underline{S}(f:\Delta)$ について示そう.
- 任意に $\varepsilon>0$ をとると、sup の定義から、ある [a,b] の分割 Δ_1 が存在して

$$\underline{S}(f) - \frac{\varepsilon}{2} \le \underline{S}(f : \Delta_1) \tag{10.5}$$

が成り立つ. この Δ_1 を固定する.

• 任意の [a,b] の分割 Δ をとる. Δ と Δ_1 の分点を合わせてできる分割 Δ' をとると

$$\underline{S}(f:\Delta_1) \le \underline{S}(f:\Delta'), \quad \underline{S}(f:\Delta) \le \underline{S}(f:\Delta')$$
 (10.6)

が成り立つ.

- 当然,任意の分割に対して分点は有限個であるので $|\Delta|$ を十分小さくとれば Δ による各小区間に Δ_1 の分点が高々 1 個とできる(Δ_1 の分割の幅の最小値より $|\Delta|$ を小さくすればよい).
- Δ のある小区間 $[x_{k-1},x_k]$ の内点に Δ_1 のある分点 y_l が入っていれば $x_{k-1} < y_l < x_k$ は Δ' の分点となっている. $[x_{k-1},x_k]$ の部分について $\underline{S}(f:\Delta')$ と $\underline{S}(f:\Delta)$ の差を評価すると

$$\inf_{x \in [x_{k-1}, y_l]} f(x)(x_k - y_l) + \inf_{x \in [y_l, x_k]} f(x)(x_k - y_l) - \inf_{x \in [x_{k-1}, x_k]} f(x)(x_k - x_{k-1})$$

$$= \left(\inf_{x \in [x_{k-1}, y_l]} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x)\right) (x_k - y_l)$$

$$+ \left(\inf_{x \in [y_l, x_k]} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x)\right) (x_k - y_l)$$

$$\leq (M - m)(x_k - y_l) + (M - m)(x_k - y_l)$$

$$= (M - m)(x_k - x_{k-1}) \leq (M - m)|\Delta|$$

が成り立つ.ここで $M=\sup_{x\in[a,b]}f(x),\, m=\inf_{x\in[a,b]}f(x)$ である.

• したがって固定した Δ_1 の分点の個数を k とすると

$$0 < S(f : \Delta') - S(f : \Delta) < k(M - m)|\Delta|$$

である. したがって $|\Delta| < \delta := \frac{\varepsilon}{2k(M-m)}$ ならば

$$0 \le \underline{S}(f : \Delta') - \underline{S}(f : \Delta) < \frac{\varepsilon}{2}$$
 (10.7)

が成り立つ.

• 以上 (10.5), (10.6), (10.7) より $|\Delta| < \delta$ ならば

$$0 \leq \underline{S}(f) - \underline{S}(f : \Delta) = \underline{S}(f) - \underline{S}(f : \Delta_1) + \underline{S}(f : \Delta_1) - \underline{S}(f : \Delta')$$

$$\leq \underline{S}(f) - \underline{S}(f : \Delta_1) + \underline{S}(f : \Delta) - \underline{S}(f : \Delta')$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

したがって示された. $\overline{S}(f:\Delta)$ についても同様である.

問題 $\overline{S}(f:\Delta)$ についても証明せよ.