Take-Home Quiz 8: Optimization and integrals (§4.7, 4.9, 5.1-5.5)

Directions: This quiz is due on December 5, 2017 at the beginning of lecture. You may use whatever resources you like – e.g., other textbooks, websites, collaboration with classmates – to complete it **but YOU MUST DOCUMENT YOUR SOURCES**. Acceptable documentation is enough information for me to find the source myself. Rote copying another's work is unacceptable, regardless of whether you document it.

1. §4.7 #56 The equation of a line with slope m passing through the point (3,5) is given by

$$y - 5 = m(x - 3).$$

If m is negative, then that line will cut out a triangle in the first quadrant. Find the value of m that minimizes the area of the triangle.

- 2. §4.9 #68 Prof Wheeler tosses a red ball from the edge of a 432 ft cliff at an upward speed of 48 ft/s. One second later, she tosses a blue ball off the edge of the cliff at an upward speed of 24 ft/s.
 - (a) Recall, the acceleration force due to gravity is 32 ft/s^2 . Use it to find the height, $h_{\text{red}}(t)$ of the red ball at time t seconds (assume Wheeler tosses the ball at t = 0). Hint: This is done in Example 7.
 - (b) Find the height $h_{\text{blue}}(t)$ of the blue ball, t seconds after Wheeler has tossed the first ball. In other words, assume Wheeler tosses the blue ball at t = 1.
 - (c) Do the balls ever pass eachother? If so, at what time?
 - (d) Which ball hits the ground first?
 - (e) Sketch or print a graph of h_{red} and h_{blue} on the same axes.
- 3. §5.1 #26 How well can you estimate the area under the curve $f(x) = x^3$ from 0 to 1, using five approximation rectangles?

Before calculus was invented, people estimated the area under a curve by drawing rectangles to get an approximate shape, and then adding up the areas of the rectangles. The more rectangles, the better the approximation.

- (a) Sketch or print the graph of f(x) illustrating your choice of how to draw the five rectangles. Hint: For a better estimate, your rectangles don't all have to be the same size!
- (b) In the following table, k enumerates the rectangles you've drawn. For example, x_2 and x_3 are the endpoints of Rectangle No. 3. The width of Rectangle No. 3 is $\Delta x_3 = x_3 x_2$. The number you choose to plug into f(x) for the height of Rectangle No. 3 is x_3^* , and must be between x_2 and x_3 .

Fill in the table to correspond to your choice of rectangles.

k	x_k	x_k^*	$f(x_k^*)$	Δx_k^*
0	0	-		
1				
2				
3				
4				
5	1			

(c) The area is $\approx \sum_{k=1}^{5} f(x_k^*) \Delta x_k^* = ?$

- 4. §5.5 #62 Consider the integral $\int_0^{\frac{\pi}{2}} \cos x \sin(\sin x) \ dx.$
 - (a) This integral requires u-substitution to solve. Find u and du.
 - (b) Rewrite the integral in terms of u, including the bounds.
 - (c) Sketch or print a graph of the integrands of both integrals on the same axes. Under each curve, shade the area the integrals compute.
 - (d) Compute the integral you wrote from part (b). Use a calculator or online integrator (desmos will do it, for example) to check your answer equals the original integral.