	STUDENT NUMBER:
THE HILLS GRAMMAR SCHOOL	TEACHER:

THE HILLS GRAMMAR SCHOOL

Trial Higher School Certificate Examination 2014

MATHEMATICS EXTENSION 1

Time Allowed:

Two hours (plus five minutes reading time)

Weighting:

%

Outcomes:

H6, H7, H8, H9, HE1, HE2, HE4, HE7, HE9

General Instructions:

- · Board-approved calculators may be used
- · Attempt all questions
- · Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- · Show all necessary working for Questions 11-14
- · The diagrams are not drawn to scale
- · A table of standard integrals is provided

Total Marks - 70

Section I Questions 1-10

10 Marks

Allow about 15 minutes for this section

Section II Questions 11-14

60 Marks

Allow about 1 hour and 45 minutes for this section

MCQ	Question 11	Question 12	Question 13	Question 14	TOTAL
10	15	15	15	15	70

THGS Year 12 Maths Ext 1 Task 4 Trial 2014

Section 1 Multiple Choice (10 Marks)

- 1 When $2x^3 3x^2 + 2a 4$ is divided by x 1 the remainder is -5. The value of a is:
- (A) 2

(C) -2

(B) 0

- (D) -3
- 2 The domain and range of $f(x) = 3\sin^{-1}\left(\frac{x}{2}\right)$ is given by:
 - (A) x is real $-3 \le y \le 3$

(B) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ $-3 \le y \le 3$

(C) $-\frac{1}{2} \le x \le \frac{1}{2}$ $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$

- (D) $-2 \le x \le 2$ $-\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$
- 3 The angle between y = 2x + 3 and $y = x^2$ when x = 3 is given by:
 - (A) 0°

(C) 90°

(B) $\tan^{-1}\left(\frac{4}{13}\right)$

- (D) $\tan^{-1}\left(-\frac{8}{11}\right)$
- 4 If the interval AB is divided externally in the ratio 3:1 by the point P, the coordinates of P given A(-2,3) and B(3,-4) are:
 - (A) $\left(\frac{11}{2}, -\frac{15}{2}\right)$
 - (B) $\left(-\frac{1}{2},\frac{1}{2}\right)$
 - (C) $\left(-\frac{11}{2}, \frac{15}{2}\right)$
 - (D) $\left(-\frac{1}{2}, -\frac{1}{2}\right)$

- 5 The equation of the tangent to the parabola $y^2 = 4ax$ at the point $(ap^2, 2ap)$ is given by:
 - $(A) \quad px y ap^2 = 0$

 $(C) \quad px + y - ap^2 = 0$

- $(B) \quad x py + ap^2 = 0$
- $(D) \quad x py ap^2 = 0$
- 6 The coefficient of x^5 in $\left(x^2 \frac{2}{x}\right)^7$ is:
 - (A) ${}^{7}C_{3}(-2)^{3}$

(B) ${}^{7}C_{4}(-2)^{4}$

(C) ${}^{7}C_{5}(-2)^{5}$

(D) ${}^{7}C_{4}(-2)^{3}$

- 7 Evaluate $\lim_{x\to 0} \frac{x}{\tan 2x}$:
 - (A) 0

(C) 2

(B) ∞

- (D) 0.5
- 8 The derivative of $\tan^{-1} \left(\frac{x^3}{3} \right)$ is:
 - (A) $\frac{3x^2}{9+x^6}$

(C) $\frac{3x^2}{1+x^6}$

(B) $\frac{x^2}{9+x^6}$

- (D) $\frac{9x^2}{9+x^6}$
- 9 If $t = \tan\left(\frac{\theta}{2}\right)$ the correct expression for $\frac{\sec^2 \theta}{\csc^2 \theta}$ is:
 - (A) $\frac{4t^2}{(1-t^2)^2}$

(B) $\frac{(1+t^2)^2}{(1-t^2)^2}$

(C) $\frac{(1+t^2)}{(1-t^2)^2}$

(D) $\frac{(1-t^2)^2}{4t^2}$

10 In the diagram below BE = 3 cm, AE = BD = x, DC = 11x and $\angle BDE = \angle BAC$.

What is the value of x?

- (A) $\frac{1}{2}$
- (B) $\frac{3}{4}$
- (C) 1
- (D) $1\frac{1}{2}$

2

Section 2 Marks

Question 11 (15 marks)

(a) Use the substitution
$$u = 1 + x$$
 to evaluate $15 \int_{-1}^{0} x \sqrt{1 + x} dx$

- (b) Let $f(x) = 3x^2 + x$. Use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find the derivative of f(x) at the point x = a.
- (c) Find

(i)
$$\int \frac{e^x}{1+e^x} dx$$

(ii)
$$\int_{0}^{\pi} \cos^2 3x \ dx$$
 3

- (d) Find the term independent of x in the binomial expansion of $\left(x^2 \frac{1}{x}\right)^9$
- (e) By using the binomial expansion,

(i) show that
$$(q+p)^n - (q-p)^n = 2\binom{n}{1}q^{n-1}p + 2\binom{n}{3}q^{n-3}p^3 + \dots$$

- (ii) What is the last term in the expansion if n is odd?
- (iii) What is the last term in the expansion if n is even?

START A NEW PAGE

Question 12 (15 marks)

(a) In the diagram the points A, B and C lie on the circle and CB produced meets the tangent from A at the point T. The bisector of the angle ATC intersects AB and AC at X and Y respectively. Let $\angle TAB = \beta$.

Copy or trace the diagram into your writing booklet.

(i) Explain why
$$\angle ACB = \beta$$
 1

Hence prove that triangle AXY is isosceles.

(b) A household iron is cooling in a room of constant temperature 22 $^{\circ}$ C. At time t minutes its temperature T decreases according to the equation

$$\frac{dT}{dt} = -k(T - 22)$$
 where k is a positive constant.

The initial temperature of the iron is 80°C and it cools to 60°C after 10 minutes.

- (i) Verify that $T = 22 + Ae^{-kt}$ is a solution of this equation, where A is a constant.
- (ii) Find the values of A and k. (give answers to 2 significant figures)
- (iii) How long will it take for the temperature of the iron to cool to 30°C?

 (Give your answer to the nearest minute.)

1

(c) The polynomial $P(x) = x^3 - 2x^2 + kx + 24$ has roots α , β , γ .

(i) Find the value of $\alpha + \beta + \gamma$.

(ii) Find the value of $\alpha\beta\gamma$.

(iii) It is known that two of the roots are equal in magnitude but opposite in sign.

Find the third root and hence find the value of k.

2

(d) Use the principle of mathematical induction to show that

 $2 \times 1! + 5 \times 2! + 10 \times 3! + \dots + (n^2 + 1)n! = n(n+1)!$ for all positive integers n.

START A NEW PAGE

Question 13 (15 marks)

(a) If $f(x) = \ln(x+3)$

(i) find $f^{-1}(x)$.

(ii) Sketch y = x, f(x) and $f^{-1}(x)$ on the same axes.

(b) A particle moves in a straight line and its position at time t is given by

$$x = 4\sin\left(2t + \frac{\pi}{3}\right)$$

(i) Show that the particle is undergoing simple harmonic motion.

(ii) Find the amplitude of the motion.

iii) When does the particle first reach maximum speed after time t = 0?

(c) The acceleration of a particle P is given by the equation

$$\frac{d^2x}{dt^2} = 8x(x^2 + 4)$$

where x metres is the displacement of P from a fixed point O after t seconds. Initially the particle is at O and has velocity 8 ms^{-1} in the positive direction.

(i) Show that the speed at any position x is given by $2(x^2+4)$ ms⁻¹.

ii) Hence find the time taken for the particle to travel 2 metres from O.

(d) A particle is projected from the origin with velocity $v \, \mathrm{ms}^{-1}$ at an angle α to the horizontal. The position of the particle at time t seconds is given by the parametric equations

 $x = vt \cos \alpha$ $y = vt \sin \alpha - \frac{1}{2}gt^2$ (Do not prove these equations.)

(i) Show that the maximum height reached, h metres, is given by

 $h = \frac{v^2 \sin^2 2\alpha}{2g}$

(ii) Show that it returns to the initial height at $x = \frac{v^2}{g} \sin 2\alpha$ 2

START A NEW PAGE

Question 14 (15 marks)

- (a) (i) Write $8\cos x + 6\sin x$ in the form $A\cos(x-\alpha)$ where A > 0 and $0 \le \alpha \le \frac{\pi}{2}$,
 - (ii) Hence, or otherwise, solve the equation $8\cos x + 6\sin x = 5$ for $0 \le \alpha \le 2\pi$. 2 Give your answers correct to three decimal places.
- (b) The two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are on the parabola $x^2 = 4ay$.
 - (i) The equation of the tangent to $x^2 = 4ay$ $(2at, at^2)$ at P is $y = px ap^2$. (Do not prove this.)

Show that the tangents at the points P and Q meet at R, where R is the point [a(p+q), apq]. 2

(ii) As P varies, the point Q is always chosen so that $\angle POQ$ is a right angle, where O is the origin. Using this condition and the result of part (i) find the locus of R.

The points A, B, C and D are placed on a circle of radius r such that AC and BD meet at E. The lines AB and DC are produced to meet at F, and BECF is a cyclic quadrilateral. Copy or trace this diagram into your writing booklet.

- (i) Find the size of $\angle DBF$, giving reasons for your answer.
- (ii) Explain why AD equals 2r.

- (d)
- (i) Show that for all positive integers n,

$$x[(1+x)^{n-1}+(1+x)^{n-2}+.....+(1+x)^2+(1+x)+1]=(1+x)^n-1$$

(ii) Hence explain why

$$\binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{n-3}{k-1} + \dots + \binom{k-1}{k-1} = \binom{n}{k} \quad \text{for } 1 \le k \le n$$

(iii) Show that $n \binom{n-1}{k} = (k+1) \binom{n}{k+1}$

END OF ASSESSMENT

for x 5 term 14-34 = 5 -2r = -9 >> += 3 A $\lim_{\alpha \to 0} \frac{\alpha}{\tan 2\alpha} = \lim_{\alpha \to 0} \frac{2\alpha}{\tan 2\alpha}$ du = 922 $= \sin^2 \theta = \tan^2 \theta = \cot 2t$ sec²0 (A) 25in22 - sin22 = 0 Sinza (28inza - 1) = 0 Sinza = 0 or sinza = . 2 = # + 2kT or - T + (2k+1) TT 7a= 2 = # + PT + 2k+1 TT -<u>TI</u> 0

F	
Quest 11 0 (a) 15 (2 1/+ >c doc	Comments
(a) 15 (2 V1+26 doc	
Let $u = 1 + x$ when $x = -1$, $u = 0$ du = 1 $v = 0$, $u = 1$ Dinagle	
du = 1 = 0 u=1 0 mans	al des te
doc	o some students
I = 15 (u-1) u = du Durank	fauled to conveil surd form to indice form.
0 - (32 2)	said fam to
$= 0.15 \left(u^{\frac{3}{2}} - u^{\frac{3}{2}} du \right)$	in sect form.
= 15 \[\frac{5}{2} u \frac{5}{2} - 2u \frac{5}{2} \]	
= 15 (2 - 2)	
5 3	
= 15 (6-10) = -4 Dinark.	
1.2	
(b) $f(x) = 3x^2 + x$ $f(a) = 3a^2 + a$ $f(a+h) = 3(a^2 + 2ah + h^2) + a + h$. Dural	1 Many Rom. 2nd
$f(\alpha) = 3\alpha^2 + \alpha$	class omitted
F(a+h) = 3(a2+zah+h2)+a+h. Dwall	lin docked
	hoso (wat.
f(a+h) - f(a) = 6ah + 3h² + h	
h h	
= 6a +3h +1 Uwark	
f(a) = lin (6a + 3h +1) = 6a +1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(c)/1) (e) doc = ln(1+e)+(Omark	· Many students
(ii) $\int \cos^2 3x d\alpha = \frac{1}{2} \int \cos 6x + 1 d\alpha$	could not recent
(11) $\frac{\cos 3x \cos = 1}{2}$ $\frac{\cos 6x + 1 \cot (1)x}{2}$	work cosse an remy
6 6 -	of coscs.
= 1 Tisintor + 27 Dimb	
= 1 [sinta + 2] Quant	
= I O mark.	

	Coursents
(1) P(1) 23 2-3 h-121	Carries
(c) P(α) = α - 2α² + kα + 24 how neets α, β, δ	
now needs of p,8	
(1) (1) (1) (1)	
(i) x + B +8 = 2 Quark	
(ii) × B8 = -24 Omerk	
(iii) Let nexts ke x, -x, B	
B = 2	
$\beta = 2$ $-\chi^{2}\beta = -24$	
$\alpha^2 = 12$ $\alpha = \pm 2\sqrt{3}$ (1) mark	
2-+2/2 Omark	
4 3 2 4 7 3	
b= x B - x B + xx-x.	
x = x p = x p = x = x.	
= -12 D mark.	
/13 -1 / 2	x / / x/
(d) Shee 2x1! + 5x2! + 10x3! + T(n2.	+1)n = n(n+1)!
	*
Tast n=1 LHS = 2x1! = 2	
RHS= $1(1+1)=2$ Three for $n=1$ Denante Assume three for $n=k$ $2\times 1! + 5\times 2! + + (k^2+1)! = k!$	
There for n=1 Omank	
Assume true for n=k	1
2x1! + 5x2! + + (k2+1) A! = k1	(k+1)! * Sh
Oward	K
Test n = k + 1	
15 ax 1! + 5 x2! + + (k2+1) k! + (k+	12 + 17(b + 1 = (b + 1/k +2)
15 2 1. + 2 12. + 12 1 1 1 1 1 1 1 1 1 1 1 1 1	* 51
111x b/b, N [1] , 2, 17/b, N	* Sk+1
LHS= k(k+1)! +(k+1)2+1 (k+1)!	11-14-1-1
11 11 12 1 7	Need to weak with
$= (k+1)! k + k^2 + 2k + 1 + 1$	Need to work with LHS & only.
$= (k+1) \int_{0}^{1} k^{2} + 3k + 2$	
L -	
= (k+1)! (k+2)(k+1) (mank	
= (k+1)(k+2)! = RHS	
If n = k true then n = k+1 is true	
It so tone Som n = 1	
True for all n & Z+	
, the sor all ne	

	, Connexts
Question 13	
(a) $f(x) = \ln(x+3)$	of not written
(ii) 1(ii) 1 (ii) 1 (ii)	as e-1(x) no
f-(x) to x = ln(y+3)	as f-(x), no mark awarded.
P(x) X = 2 x - 3 Dwask	West to
1 (x) X = & -3 () mask	
Y 1 = (2)	
-3 fas Omgyk	o many did not
7 (4)	sketch properly.
) Unaste	labels of graphse
-31/	axes omifted
-3	
7.0	
$(b)(i) \alpha = 4 \sin(\alpha t + \overline{I})$	
	· students facts
x = 8 cos (2t + TI)	to write - 16 as
3 - analls	- 42
$ \dot{\alpha} = 8 \cos \left(2t + \overline{y}\right) $ $ \ddot{o}i = -16 \sin \left(2t + \overline{y}\right) $ $ \dot{\alpha} = -4 \alpha \text{This do SHM} $	32
0 1 6	
This MISHM	
4 56 7100000111	
(ii) amplitude = 4 @ mank	
600 A	
(iii) for more speed.	- 0
(iii) for more speed. cos(k+I)= 1 or sin(k+I)=0	, and pooly.
2t + T = 0, T etc $2t = 3T$ $t = T secus O made.$	
21 = 20	
t = T seed O made.	
3	

Comment (c) $\frac{d^2x}{dt^2} = 8x(x^2+4)$ when t=0, x=0, V=8, poorly ans. $\frac{d}{doc} \left(\frac{4}{2} V^{2} \right) = 8x^{3} + 32x$ $\frac{d}{doc} \left(\frac{1}{2} V^{2} - 2x^{4} + 16x^{2} + c \right) \text{ Omark}$ $V^{2} = 4x^{4} + 32x^{2} + 2c$ facted to cale when a = 0, v = 8 >> 2e = 64 o lots of fudging in c+d. V2= 42+ +322 +64 ... V== 4 (24 + 8x2 + 16) V = ± 2 (202+4) ms-1 when particle commences it hero V>0 and 50 >0 1, V = 2(02 +4) m5 1 0 mask. t = 1 tan 1 1 t = # secs Omans · poorly answed (d) = vtcox y= v+ sin x - 1 g+2 (i) ig = v sin x - gt for max height i = 0 $gt = v \sin x$ $t = v \sin x$ () mark · Students did not get to y = 0 for max en · I Marks awarded for t = VSiVA $= \frac{v^2 \sin^2 x - 1}{9} \frac{v^2 \sin^2 x}{9}$ gwen for attent v 2 sin 2 x to substing.

	1 Comments
(ii) a= vtxoxx Dy = vtsinx - gt=	
+- × 6	
t = x 3 viosa sub (8) in (2)	, poorly answered
31111 (3) 47 (2)	
$y = x \sin \alpha \frac{\alpha}{x} - \frac{q}{q} \frac{\alpha^2}{x^2 \cos^2 \alpha}$, lots of
	fudging.
$y = 5c \tan x - q \alpha^2$ $\frac{1}{2} \sqrt{2 \cos^2 x}.$	
for y=0	
for $y = 0$ $x + an x = \frac{q}{2}x^2$ Omente	
x = 0 at start for xxxa	
200 = tand	
2020026	
$\alpha = \frac{2 v^2 \cos^4 x}{9}, \sin x$ $\alpha = \frac{2 \sin 2x}{9} \text{ mark.}$	
9 -650	
a = v sin 2x Omark.	
9	
Questien 14	
a) i) let 8 cox + 6 sin x = A cox(x - x)	
a) i) let 8 cos x + 6 sin x = A cos (x - x)	+ Asing send
= A cos x cas x	+ A sin a send
$A \cos x = 8 \text{in 1st grad}$	+ A sina senx
$A \cos x = 8 7 \times in 1st grad$ $A \sin x = 6 5$	+ A sina sinx
$A \cos x = 8 $ $A \sin x = 6 $ $A \sin x = 6 = 3$	+ A sina send
$A \cos x = 8 7 \times in 1st grad$ $A \sin x = 6 5$	+ A sin x senx
$A \cos x = 8 \text{in 1st grad}$ $A \sin x = 6 \text{fan } x = 6$ $+ \cos x = 6 \text{meak}.$ $x = \tan^{2} \frac{3}{4} \text{D meak}.$	+ A sin x senx
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $+ \sin x = 6 \exists$ $+ \cos x = 6 $	+ A sina sinx
$A \cos x = 8 \forall \text{ in let great}$ $A \sin x = 6 \forall \text{ in let great}$ $A \sin x = 6 \exists$ $\tan x = 6 = 3$ $x = \tan^{2}(3) \text{Oments.}$ $A^{2} = 6^{2} + 8^{2}$ $A^{2} = 100$	+ A sina send
$A \cos x = 8 \text{in let grad}$ $A \sin x = 6 \text{in let grad}$ $A \sin x = 6 \text{mask}.$ $A = \tan^{2} (\frac{3}{4}) \text{mask}.$ $A^{2} = 6^{2} + 8^{2}$ $A^{2} = 100$ $A = 10$ $A = 10$ $A = 10$	+ A sin x slnx
$A \cos x = 8 \forall \text{ in let great}$ $A \sin x = 6 \forall \text{ in let great}$ $+ an x = 6 = 3$ $x = \tan^{2} (\frac{3}{4}) \text{O meak}.$ $A^{2} = 6^{2} + 8^{2}$ $A^{2} = 100$	+ A sin x sen x
$A \cos x = 8 \forall \text{ in 1st grad}$ $A \sin x = 6 \forall \text{ in 1st grad}$ $A \sin x = 6 \forall \text{ on } x = 6$ $A = 6 \forall \text{ on } x = 6$ $A = 6 \forall \text{ on } x = 6$ $A^2 = 6^2 + 8^2$ $A^2 = 100$ $A = 100$	+ A sin x senx
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $A \sin x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A^2 = 6^2 + 8^2$ $A^2 = 100$ $A = \pm 10$ $B \cos x + 6 \sin x = 10 \cos (x - x)$ $B \cos x + 6 \sin x = 5$	+ A sinx senx
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $A \sin x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A^2 = 6^2 + 8^2$ $A^2 = 100$ $A = \pm 10$ $B \cos x + 6 \sin x = 10 \cos (x - x)$ $B \cos x + 6 \sin x = 5$	+ A sin x slax
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $A \sin x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A^2 = 6^2 + 8^2$ $A^2 = 100$ $A = \pm 10$ $B \cos x + 6 \sin x = 10 \cos (x - x)$ $B \cos x + 6 \sin x = 5$	+ A sin x senx
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $A \sin x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A = \cos x = 6 \exists \text{ in let grad}$ $A^2 = 6^2 + 8^2$ $A^2 = 100$ $A = \pm 10$ $B \cos x + 6 \sin x = 10 \cos(x - x)$ $B \cos x + 6 \sin x = 5$	+ A sin x senx
$A \cos x = 8 \forall \text{ in let grad}$ $A \sin x = 6 \forall \text{ in let grad}$ $A \sin x = 6 \exists \text{ in } x = 6$ $A = 6 \forall \text{ in let grad}$ $A = 6 \forall in le$	+ A sin x sln X

* *	· Comments
ii) If LABD = 90° then AD is a diameter (AADB is - hence AD = 2+ Durank.	. / / . / / /
hence AD = 2+ Durank.	right Longled)
(d) Show a [(1+2)"-1+(1+2)"-2++(1+2)"+(1+2	$+\infty$ + 1] = $(1+\infty)$ - 1
(i) LHS = > x GP with a = 1, += (1+x), n	terns.
= x (a (1+x) n - 1) mank	Some students ward
$= \infty \left(\frac{a(1+\infty)^n - 1}{(1+\infty)^n - 1} \right)$	Induction.
$= (1+x)^{n}-1$ $= AHS $	
= AHS @ mark	
(ii) och term on RHS = (n)	
a k team on LHS = (n-1) + (n-2) +	(k-1)
(iii) Show that n (n-1) = (k+1) (n) (k+1).	
MHS = n (n-1)!	
k!(n-1-b)!	
$= \frac{n!}{k!(n-1-k)!}$	
= (k+1) n!	
(k+1) b! (n-(k+1))!	
= (R+1) n:	
(k+1)! (n-(k+1))!	
$= \frac{k+1}{n} \cdot \frac{n}{n} \approx \frac{n}{n}$	