

What is claimed is:

1 1. A method of forming a FinFET, comprising the steps of:
2 forming a set of at least one semiconducting fin on a substrate;
3 forming a gate insulator on said set of fins;
4 depositing a layer of gate material over said set of fins;
5 forming a hardmask on said gate material extending perpendicular to said
6 set of fins and having a hardmask thickness;
7 etching said gate material outside said hardmask down to said substrate,
8 thereby forming a gate intersecting said set of fins and defining a body
9 region in said fins below said gate;
10 depositing a conformal layer of insulator enclosing said gate;
11 performing an anisotropic etch of said conformal layer, thereby exposing
12 said set of fins while said gate remains covered by said conformal layer of
13 insulator; and
14 forming source and drain regions in said fins, separated from said gate by
15 said conformal layer of insulator.

1 2. A method according to claim 1, further comprising the steps of:
2 depositing a source/drain material over a set of at least two fins after said
3 anisotropic etch of said conformal layer, thereby making contact with sides
4 of said at least two fins and forming a FinFET having at least two fins.

1 3. A method according to claim 2, further comprising a step of:
2 recessing said source/drain material to substantially the height of said set of
3 fins; and

4 forming source/drain contacts on a top surface of said source/drain material.

1 4. A method according to claim 2, in which said fins and said gate are
2 formed from silicon and further comprising the steps of:
3 exposing silicon in said fins and in an upper portion of said gate; and
4 performing a silicidation step of said exposed silicon.

1 5. A method according to claim 2, further comprising the steps of:
2 depositing a blocking material over a set of FinFET locations and opening
3 an aperture over a subset of locations for a first polarity of FinFETs;
4 depositing a second conformal insulating layer over gates in said locations
5 for a first polarity of FinFETs, said second layer having a separation
6 thickness combined with said first layer such that dopant material in sources
7 and drains of said first polarity of FinFETs are separated from said gates.

1 6. A method according to claim 2, in which:
2 said hardmask thickness is such that a remaining layer of said hardmask
3 remains above said gate after said anisotropic etch when said fins are
4 exposed by removing said conformal layer of insulator down to said
5 substrate.

1 7. A method according to claim 1, in which said fins and said gate are
2 formed from silicon and further comprising the steps of:
3 exposing silicon in said fins and in an upper portion of said gate; and
4 performing a silicidation step of said exposed silicon.

1 8. A method according to claim 1, further comprising the steps of:
2 depositing a blocking material over FinFET locations and opening an
3 aperture over locations for a first polarity of FinFETs;
4 depositing a second conformal insulating layer over gates in said locations
5 for a first polarity of FinFETs, said second layer having a separation
6 thickness combined with said first layer such that dopant material in sources
7 and drains of said first polarity of FinFETs are separated from said gates.

1 9. A method according to claim 8, further comprising the steps of:
2 depositing a source/drain material over a set of at least two fins after said
3 anisotropic etch of said conformal layer, thereby making contact with sides
4 of said at least two fins and forming a FinFET having at least two fins.

1 10. A method according to claim 9, in which;
2 said hardmask thickness is such that a remaining layer of said hardmask
3 remains above said gate after said anisotropic etch when said fins are
4 exposed by removing said conformal insulating layer down to said
5 substrate.

1 11. A method according to claim 9, in which said fins, said S/D material
2 and said gate are formed from silicon and further comprising the steps of:
3 exposing silicon in said fins and S/D material and in an upper portion of
4 said gate; and
5 performing a silicidation step of said exposed silicon.

1 12. A method according to claim 11, further comprising a step of:

2 after said step of silicidation, removing said conformal layer over said gate,
3 thereby forming an aperture between said gate and said S/D material having
4 a vertical exposed silicon gate surface; and
5 performing a step of silicidation on said exposed gate surface.

1 13. A method according to claim 1, in which;
2 said hardmask thickness is such that a remaining layer of said hardmask
3 remains above said gate after said anisotropic etch when said fins are
4 exposed by removing said conformal insulating layer down to said
5 substrate.

1 14. A method according to claim 13, in which;
2 said hardmask thickness is such that a remaining layer of said hardmask
3 remains above said gate after said anisotropic etch when said fins are
4 exposed by removing said conformal insulating layer down to said
5 substrate.

1 15. A method according to claim 13, in which said fins, said S/D material
2 and said gate are formed from silicon and further comprising the steps of:
3 exposing silicon in said fins and S/D material and in an upper portion of
4 said gate; and
5 performing a silicidation step of said exposed silicon.

1 16. A method according to claim 15, further comprising a step of:
2 after said step of silicidation, removing said conformal layer over said gate,
3 thereby forming an aperture between said gate and said S/D material having

4 a vertical exposed silicon gate surface; and
5 performing a step of silicidation on said exposed gate surface.

1 17. A method according to claim 2, in which said fins, said S/D material
2 and said gate are formed from silicon and further comprising the steps of:
3 exposing silicon in said fins and S/D material and in an upper portion of
4 said gate; and
5 performing a silicidation step of said exposed silicon.

1 18. A method according to claim 17, further comprising a step of:
2 after said step of silicidation, removing said conformal layer over said gate,
3 thereby forming an aperture between said gate and said S/D material having
4 a vertical exposed silicon gate surface; and
5 performing a step of silicidation on said exposed gate surface.

1 19. An integrated circuit comprising at least one FinFET comprising:
2 a set of at least one semiconducting fin(s) on a substrate;
3 said set of fins having a gate insulator separating a body region thereof from
4 a selfaligned gate formed by etching a layer of gate material disposed over
5 said set of fins outside a hardmask down to said substrate, thereby forming a
6 gate intersecting said set of fins and defining said body region in said fins
7 below said gate;
8 a separation layer of insulator enclosing said gate and formed by an
9 anisotropic etch of a conformal layer, that exposed said set of fins while said
10 gate remained covered by said conformal layer of insulator; and
11 source and drain regions in said fins, selfaligned to said gate and separated

12 from said gate by said conformal layer of insulator.

1 20. An integrated circuit according to claim 19, in which said set of fins
2 comprises at least two fins having a source portion and a drain portion, at
3 least one of which source and drain portions are in electrical contact with a
4 S/D material on vertical sides thereof.

1 21. An integrated circuit according to claim 20, in which said S/D
2 material is recessed below a top of said gate and above a top of said fins.

1 22. An integrated circuit according to claim 21, in which said S/D
2 material is silicon and a portion thereof is silicide.

1 23. An integrated circuit according to claim 19, in which a first subset of
2 N-type FinFETs has a first thickness of said separation layer and a second
3 subset of P-type FinFETs has a second thickness of separation layer, said
4 second thickness being greater than said first thickness.