6. Introduction to Rings

6.1 Definition of Rings

A ring $(R, +, \cdot)$ is a set R with two law of compositions + and \cdot , called addition and multiplication respectively, that satisfy:

- 1. (R,+) forms an abelian group
- 2. "•" is associative and there is a multiplicative identity $1 \in R$ s.t. $1 \cdot r = r \cdot 1 = r$, $\forall r \in R$
- 3. (Distributive Law) For any $a,b,c\in R$:

$$(a+b)c = ac + bc$$
, $c(a+b) = ca + cb$

If the multiplication of a ring is commutative, it is a commutative ring. The subject to study commutative rings is Commutative Algebra, which is the algebraic foundation of Algebraic Geometry.

Notation. In a ring, the additive identity is usually denoted by 0 and the multiplicative identity is usually denoted by 1.

Examples:

1.
$$(\mathbb{Z},+,\cdot)$$
, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$

2.
$$(\mathbb{Z}/n\mathbb{Z},+,\cdot)$$
, $\bar{a}+\bar{b}=\overline{a+b}$, $\bar{a}\bar{b}=\overline{ab}$

- 3. $M_{n\times n}(\mathbb{R})$, the set of $n\times n$ real matrices is a non-commutative ring with addition and multiplication of matrices.
- 4. $C(\mathbb{R})$, the set of all continous functions $\mathbb{R} \to \mathbb{R}$, with (f+g)(x)=f(x)+g(x), (fg)(x)=f(x)g(x).

5. The zero ring
$$R = \{0\}$$
, $0 + 0 = 0$, $0 \cdot 0 = 0$.

Prop. R is a ring. $0 = 1 \iff R = \{0\}$.

Pf. If
$$R = \{0\}$$
, it is obvious since $1 \in R = \{0\}$.

If
$$0=1$$
 in R , then $\forall r \in R$, $r=1 \cdot r=0 \cdot r=0$.

Prop. R is a ring. Then:

1.
$$0 \cdot a = a \cdot 0 = 0$$

2.
$$-a = (-1) \cdot a$$

3.
$$-(ab) = (-a)b = a(-b)$$

Pf.
$$0 \cdot a + a = 0 \cdot a + 1 \cdot a = (0+1) \cdot a = 1 \cdot a = a \rightarrow 0 \cdot a = 0$$

$$(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a = (-1+1) \cdot a = 0 \cdot a = 0$$

$$-(a)b + ab = (-a+a)b = 0 \cdot b = 0$$

In general, not every element in a ring has an multiplication inverse.

R is a ring. $u \in R$ is a unit if it has an multiplication inverse $u^{-1} \in R$ such that $uu^{-1} = 1$.

Prop. The set of units of a ring R form a group with respect to multiplication, denoted by R^{\times} , called the group of units of R.

e.g.
$$(\mathbb{Z},+,\cdot)$$
. $\mathbb{Z}^{ imes}=\{\pm 1\}$.

e.g.
$$(\mathbb{Z}/n\mathbb{Z},+,\cdot)$$
. $\mathbb{Z}^{\times}=\{\overline{a}:\gcd(\overline{a},n)=1\}$.

R is a ring, $x,y \in R$. We say x is associated to y if there exists $u \in R^{\times}$ such that x = uy.

Prop. R is a ring." $x \sim y$ if x is associated to y" is an equivalence relation on R.

A field is a ring R with $R^{\times}=R\setminus\{0\}$, i.e., all the nonzero elements are units.

e.g.
$$(\mathbb{Q},+,\cdot)$$
, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$, $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ where p is a prime

6.2 Polynomial Rings

The polynomial ring R[x] is the set of all polynomials with coefficients in R, with

addition:
$$(\sum a_i x^i) + (\sum b_i x^i) = \sum (a_i + b_i) x^i$$

multiplication:
$$(\sum a_i x^i)(\sum b_i x^i) = \sum_k (\sum_{i+j=k} a_i b_j) x^k$$

A polynomial is monic if its leading coefficient is 1.

The degree of a polynomial is the biggest power of x with nonzero coefficient.

Prop. (Division Algorithm) If $f(x) \in R[x]$ is a monic polynomial, then for any $g(x) \in R[x]$, $\exists ! q(x) \in R[x]$, $r(x) \in R[x]$ such that g(x) = q(x)f(x) + r(x), with $\deg(r) < \deg(f)$.

A ring R is called an integral domain if $ab=0 \to a=0/b=0$. (i.e., $\forall a,b \in R, a \neq 0, b \neq 0$, then $ab \neq 0$.)

Prop. If R is an integral domain. Then $(R[x])^{ imes}=R^{ imes}$.

Cor. If R is an integral domain, $p(x), q(x) \in R[x] - \{0\}$, then $\deg(pq) = \deg(p) + \deg(q)$.

6.3 Ring Homomorphisms

A ring homomorphism f:R o R' is a map from a ring R to a ring R' such that

1.
$$\forall a, b \in R, f(a+b) = f(a) + f(b)$$

2.
$$\forall a,b \in R$$
, $f(ab) = f(a)f(b)$

3.
$$f(1) = 1'$$

Remark. (3) is to avoid the situation $f(r) = 0 \ \forall r \in R$.

e.g. $f:\mathbb{Z} o \mathbb{Z}/n\mathbb{Z}$, $f(k)=\overline{k}$ is a ring homomorphism.

$$f(a+b)=\overline{a+b}=\overline{a}+\overline{b}=f(a)+f(b)$$
, $f(ab)=\overline{ab}=\overline{a}\overline{b}=f(a)f(b)$, $f(1)=\overline{1}$

R is a ring. $r_0 \in R$. Define

$$E_{r_0}:R[x] o R$$

$$p(x)\mapsto p(r_0)$$

 E_{r_0} , called the evalutation map, is a ring homomorphism.

Prop. (Substituion Principle) $f:R\to R'$ is a ring homomorphism. $r_0'\in R'$. Then there exists unique ring homomorphism $F:R[x]\to R'$ satisfying $F|_R=f$ and $F(x)=r_0'$.

The kernel of a ring homomorphism f:R o R' is $\ker(f)=\{r\in R|f(r)=0'\}.$

e.g.
$$f: \mathbb{Z} o \mathbb{Z}/n\mathbb{Z}$$
, $f(k) = \bar{k}$. $\ker(f) = n\mathbb{Z}$.

6.4 Ideals

A nonempty subset I of a ring R is an ideal if:

- 1. $\forall a, b \in I, a+b \in I$
- 2. $\forall \alpha \in I, \forall r \in R, \alpha r \in I$

Prop. The kernel of a ring homomorphism f:R o R' is an ideal of R.

Prop. If I is an ideal of a ring R, then I is a subgroup of R with respect to addition.

Examples:

- 1. $\{0\}$ is an ideal of R, R is an ideal of R.
- 2. By the above Prop, an ideal of \mathbb{Z} is necessarily a subgroup of $(\mathbb{Z}, +)$, so the candidates are $n\mathbb{Z}$. For each of $n \in \mathbb{N}$, $n\mathbb{Z}$ satisfies definition of an ideal.
- 3. R = R[x]. Ideal $I = \{ p \in R | p(0) = 0 \}$.

Prop. R is a ring. I is an ideal of R. Then the following are equivalent:

- 1. I = R
- 2. $1 \in I$
- 3. $I\cap R^{ imes}
 eq\emptyset$

An ideal I of R is proper if $I \neq \{0\}$ and $I \neq R$.

Prop. R is a ring. $a \in R$. Then a is a proper ideal $\iff a \notin R^{\times} \cup \{0\}$.

Cor. A nonzero ring $(R \neq \{0\})$ is a field \iff it has no proper ideal.

A ring R is called an integral domain if for any $a,b\in R\setminus\{0\}$, ab
eq 0.

An integral domain is called a Principle Ideal Domain (PID) if all of its ideals are principal.

e.g. The ring of integers $\ensuremath{\mathbb{Z}}$ is a PID.

Prop. R is an integral domain. Then R[x] is PID $\iff R$ is a field.

6.5 Quotient Rings

R is a ring and I is an ideal of R, the quotient ring R/I is the set of cosets of I in R, whose elements are r+I ($r\in R$), with

6. Introduction to Rings 3

addition:
$$(r_1+I)+(r_2+I)=(r_1+r_2)+I$$
 multiplication: $(r_1+I)(r_2+I)=r_1r_2+I$ e.g. $R=\mathbb{Z},\,I=n\mathbb{Z},\,R/I=\mathbb{Z}/n\mathbb{Z}$

A ring isomorphism is a bijective ring homomorphism.

R is isomorphic to R' if $\exists f:R o R'$ a ring isomorphism. We write $R\cong R'$.

First Isomorphism Theorem for Rings. $f:R\to R'$ is a surjective ring homomorphism. $I=\ker(f)$. Then there exists a unique ring isomorphism $F:R/I\to R'$ such that $f=F\circ\pi$.

Example: $f:R[x] o \mathbb{C}$ is a ring homomorphism

$$p(x)\mapsto p(i)$$

f is surjective since $\forall a+bi\in\mathbb{C}, f(a+bx)=a+bi.$

$$\ker(f) = x^2 + 1$$

By the first isomorphism theorem, $R[x]/(x^2+1)\cong \mathbb{C}$

An ideal I in R $(I \neq R)$ is maximal if for any ideal J of R that $I \subseteq J$, either J = I or J = R.

Prop. R is a ring and I is an ideal. Then I is a maximal ideal $\iff R/I$ is a field.

Pf. If I is maximal, then for any $x \neq I$,

$$I\subsetneq I+(x)=R$$
, so $1\in R=I+(x)\to 1=a+rx$ for some $a\in I, r\in R$ $\to (r+I)(x+I)=(1-a)+I=1+a\to x+I$ is invertible

If I is not maximal, then $\exists J: I \subseteq J \subseteq R$.

It follows J/I is a proper ideal in R/I. So R/I cannot be a field.

F is a field. A polynomial $p(x) \in F[x]$ is irreducible if it's not a prodect of two non-constant polynomials in F(x).

Prop. $p(x) \in F[x]$ is irreducible $\iff (p(x))$ is maximal.

Pf. If p(x) is not irreducible, p(x)=q(x)r(x), $\deg q\geq 1$, $\deg r\geq 1$,

then $(p(x)) \subseteq (r(x)) \subseteq F[x]$, so (p(x)) is not maximal.

If (p(x)) not maximal, $\exists J$ s.t. $(p(x)) \subseteq J \subseteq F[x]$

F[x] is PID, so J=(m(x)). $J
eq F[x]
ightarrow \deg m \geq 1.$

 $p(x) \in (p(x)) \subseteq (m(x))$, so p(x) = m(x)g(x) and $\deg g \ge 1$, otherwise (p(x)) = (m(x)), so p(x) is not irreducible.

Cor. F[x]/(p(x)) is a field $\iff p(x)$ is an irreducible polynomial.

e.g. $R[x]/(x^2+1)$ is a field since x^2+1 is irreducible in R[x].

$$R[x]/(x^2-1)$$
 is not a field since $x^2-1=(x-1)(x+1)$.

Actually, $R[x]/(x^2-1)$ is not an integral domain since $(x-1+I)(x+1+I)=(x-1)(x+1)+I=(x^2-1)+I=0+I$.

6. Introduction to Rings 4

 $F\subseteq E$ are fields. $\gamma\in E$. We say γ is algebraic over F is $\exists p(x)\in F$ such that $p(\gamma)=0$. If $F\subseteq E$. $\gamma\in E$ is algebraic. The nonzero monic polynomial $m(x)\in F[x]$ of least degree satisfying $m(\gamma)=0$ is the minimal polynomial of γ .

Prop. The minimal polynomial m(x) of an algebraic γ over F is irreducible in F[x].

6. Introduction to Rings 5