تشخیص اشیاء Object Detection

Alireza AkhavanPour

Akhavanpour.ir CLASS.VISION

So far: Image Classification

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Vector: 4096 to 1000 4096

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

. . . .

Fully-Connected:

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Where is the object?

1-simple-regression-train.ipynb

Object Detection	تشخيص اشياء
Alireza Akhavanpour	عليرضا اخوان پور

Where is the object?

2-simple-regression-inference.ipynb

Object Detection	تشخيص اشياء
Alireza Akhavanpour	عليرضا اخوان پور

Where is the object? What about class names?

3-object-classification-and-localization.ipynb

Object Detection	تشخيص اشياء
Alireza Akhavanpour	عليرضا اخوان پور

Where is the object? What about class names?

4-object-classification-and-localization-inference.ipynb

Object DetectionاسیاءAlireza Akhavanpourعلیرضا اخوان پور

Computer Vision Tasks

Classification

Semantic Segmentation

CAT

GRASS, CAT, TREE, SKY

No spatial extent

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

This image is CC0 public domain

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Today: Object Detection

Classification

Semantic Segmentation

CAT

GRASS, CAT, TREE, SKY

No spatial extent

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

This image is CC0 public domain

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Object Detection: Task Definition

Input: Single RGB Image

Output: A <u>set</u> of detected objects;

For each object predict:

- 1. Category label (from fixed, known set of categories)
- 2. Bounding box (four numbers: x, y, width, height)

Object Detection: Challenges

Multiple outputs:
 Need to output variable numbers of objects per image

Multiple types of output:
 Need to predict "what" (category label)
 as well as "where" (bounding box)

Large images:
 Classification works at 224x224; need higher resolution for detection, often ~800x600

This image is CC0 public domain

Vector: 4096

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Fully
Connected:
4096 to 1000

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

. . .

Vector:

4096

CLASS. VISION

Correct label: Cat

Softmax

Loss

Detecting a single objecti "What"

Connected:

4096 to 1000 🥕

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

This image is CC0 public domain

Vector:

4096

Correct label: Cat

Softmax

Loss

Detecting a single objecti "What"

Vector:

4096

Often pretrained on ImageNet (Transfer learning)

Often pretrained on ImageNet (Transfer learning)

Treat localization as a regression problem!

Problem: Images can have more than one object!

Multitask

Loss

Sum

→ Loss

Detecting Multiple Objects

Need different numbers of outputs per image

CAT: (x, y, w, h)

4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h)

16 numbers

CAT: (x, y, w, h)

DUCK: (x, y, w, h)

DUCK: (x, y, w, h)

Many numbers!

• • • •

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO

Cat? NO

Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES

Cat? NO

Background? NO

Dog? YES

Cat? NO

Background? NO

Dog? NO

Cat? YES

Background? NO

Question: How many possible boxes are there in an image of size H x W?

تشخيص اشياء

Question: How many possible boxes are there in an image of size H x W?

Consider a box of size h x w:

Possible x positions: W - w + 1

Possible y positions: H - h + 1

Possible positions: (W - w + 1) * (H - h + 1)

Question: How many possible boxes are there in an image of size H x W?

Consider a box of size h x w:

Possible x positions: W - w + 1

Possible y positions: H - h + 1

Possible positions: (W - w + 1) * (H - h + 1)

Total possible boxes:

$$\sum_{h=1}^{H} \sum_{w=1}^{W} (W - w + 1)(H - h + 1)$$

$$=\frac{H(H+1)}{2}\frac{W(W+1)}{2}$$

Question: How many possible boxes are there in an image of size H x W?

Total possible boxes:

$$\sum_{h=1}^{H} \sum_{w=1}^{W} (W - w + 1)(H - h + 1)$$

$$= \frac{H(H+1)}{2} \frac{W(W+1)}{2}$$

800 x 600 image has ~58M boxes! No way we can evaluate them all

Region Proposals

- Find a small set of boxes that are likely to cover all objects
- Often based on heuristics: e.g. look for "blob-like" image regions
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

Region Proposals

5-selective-search.ipynb

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Object Detection

تشخيص اشياء

Alireza Akhavanpour

Regions of Interest (RoI) from a proposal method (~2k)

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Object Detection

تشخيص اشياء

Alireza Akhavanpour

Warped image regions (224x224)

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Object Detection

تشخيص اشياء

Alireza Akhavanpour

Forward each region through Convolutional network

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; <u>source</u>. Reproduced with permission.

Object Detection

تشخيص اشياء

Alireza Akhavanpour

Classify each region

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; <u>source</u>. Reproduced with permission.

Object Detection

تشخيص اشياء

Alireza Akhavanpour

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Object Detectionالسخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Classify each region

Bounding box regression:

Predict "transform" to correct the Rol:

4 numbers (t_x, t_y, t_h, t_w)

R-CNN: Test-time

Input: Single RGB Image

- 1. Run region proposal method to compute ~2000 region proposals
- 2. Resize each region to 224x224 and run independently through CNN to predict class scores and bbox transform
- 3. Use scores to select a subset of region proposals to output (Many choices here: threshold on background, or per-category? Or take top K proposals per image?)
- 4. Compare with ground-truth boxes

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

<u>Puppy image</u> is licensed under <u>CC-A 2.0 Generic license</u>. Bounding boxes and text added by Justin Johnson.

تشخیص اشیاء Object Detection علیرضا اخوان پور

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)

(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection

Area of Union

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)

(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union

IOU > 0.5 is "decent"

<u>Puppy image</u> is licensed under <u>CC-A 2.0 Generic license</u>. Bounding boxes and text added by Justin Johnson.

Object Detectionالسخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)

(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union

IOU > 0.5 is "decent"

IOU > 0.7 is "pretty good"

<u>Puppy image</u> is licensed under <u>CC-A 2.0 Generic license</u>. Bounding boxes and text added by Justin Johnson.

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU)

(Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union

IOU > 0.5 is "decent"

IOU > 0.7 is "pretty good"

IOU > 0.9 is "almost perfect"

<u>Puppy image</u> is licensed under <u>CC-A 2.0 Generic license</u>. Bounding boxes and text added by Justin Johnson.

Object Detectionتشخیص اشیاءAlireza Akhavanpourعلیرضا اخوان پور

What is bBox?

6-object-detection-and-bounding-boxes.ipynb

Object Detection	تشخيص اشياء
Alireza Akhavanpour	عليرضا اخوان پور

Intersection over Union (IoU)

7-Intersection-over-Union(IoU).ipynb

Object Detection	تشخيص اشياء
Alireza Akhavanpour	عليرضا اخوان پور

Overlapping Boxes

Problem: Object detectors often output many overlapping detections:

Problem: Object detectors often output many overlapping detections:

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections:

- Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

$$IoU(\blacksquare, \blacksquare) = 0.78$$

 $IoU(\blacksquare, \blacksquare) = 0.05$
 $IoU(\blacksquare, \blacksquare) = 0.07$

Problem: Object detectors often output many overlapping detections:

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections:

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem: Object detectors often output many overlapping detections:

- 1. Select next highest-scoring box
- 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
- 3. If any boxes remain, GOTO 1

Problem:

NMS may eliminate "good" boxes when objects are highly overlapping!

تشخيص اشياء

Alireza Akhavanpour

عليرضا اخوان پور

Evaluating Object Detectors: Mean Average Precision (mAP)

