

CMOS, 2.5 Ω Low Voltage, Triple/Quad SPDT Switches

ADG733/ADG734

FEATURES

1.8 V to 5.5 V Single Supply ± 2.5 V Dual Supply 2.5 Ω On Resistance 0.5 Ω On Resistance Flatness 100 pA Leakage Currents 19 ns Switching Times Triple SPDT: ADG733 Quad SPDT: ADG734 Small TSSOP and QSOP Packages Low Power Consumption TTL/CMOS Compatible Inputs

APPLICATIONS

Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A "1" INPUT LOGIC

GENERAL DESCRIPTION

The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual ± 2.5 V make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An $\overline{\rm EN}$ input on the ADG733 is used to enable or disable the device. When disabled, all channels are switched OFF.

These 2–1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths, and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches, and is very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range that extends to the supplies.

The ADG733 is available in small TSSOP and QSOP packages, while the ADG734 is available in a small TSSOP package.

PRODUCT HIGHLIGHTS

- Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and ±2.5 V dual supply rails.
- 2. Low On Resistance (2.5 Ω typical)
- 3. Low Power Consumption (<0.01 µW)
- 4. Guaranteed Break-Before-Make Switching Action

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

	B V	B Version			
D	12590	-40°C	TT *.	T . O 11.2 . IO	
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V		
On Resistance (R _{ON})	2.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$	
	4.5	5.0	Ω max	Test Circuit 1	
On Resistance Match between		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
Channels (ΔR_{ON})		0.4	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
		1.2	Ω max		
LEAKAGE CURRENTS				V _{DD} = 5.5 V	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$	
	±0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V;}$	
	±0.1	±0.5	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V_{INL}		0.8	V max		
Input Cow Voltage, V _{INL} Input Current		0.6	v IIIax		
-	0.005		uA trm	$V_{IN} = V_{INL}$ or V_{INH}	
I_{INL} or I_{INH}	0.003	±0.1	μA typ	VIN - VINL OI VINH	
C _{IN} , Digital Input Capacitance	4	±0.1	μΑ max pF typ		
	4		pr typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	19		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
	_	34	ns max	$V_S = 3 \text{ V}$, Test Circuit 4	
$t_{ m OFF}$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
AD CESS (EV)		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 4	
ADG733 $t_{ON}(\overline{EN})$	20	4.0	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		40	ns max	$V_S = 3 \text{ V}$, Test Circuit 5	
$t_{ m OFF}(\overline{ m EN})$	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 5	
Break-Before-Make Time Delay, t_D	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		1	ns min	$V_S = 3 \text{ V}$, Test Circuit 6	
Charge Injection	±3		pC typ	$V_S = 2 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$	
	7.0		ID.	Test Circuit 7	
Off Isolation	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
Channel-to-Channel Crosstalk	-67		dB typ	Test Circuit 8 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
Chamici-to-Chamici Clussiaik	-07		ив тур	$R_L = 30 \Omega$, $C_L = 3 \text{ pF}$, $I = 1 \text{ MHz}$, Test Circuit 9	
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10	
C _S (OFF)	11		pF typ	f = 1 MHz	
$C_D, C_S (ON)$	34		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{\rm DD} = 5.5 \rm V$	
-	0.001		μA typ	$V_{DD} = 3.3 \text{ V}$ Digital Inputs = 0 V or 5.5 V	
I_{DD}	0.001	1.0			
		1.0	μA max		

NOTES

Specifications subject to change without notice.

 $^{^{1}}Temperature$ range is as follows: B Version: –40 $^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

$\label{eq:volume} \textbf{SPECIFICATIONS}^{1} \ \, (\textbf{V}_{\text{DD}} = \textbf{3} \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{\text{SS}} = \textbf{0} \ \textbf{V}, \ \textbf{GND} = \textbf{0} \ \textbf{V}, \ \textbf{unless otherwise noted.})$

	B Version -40°C				
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V		
On Resistance (R _{ON})	6	DD	Ω typ	$V_{S} = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$	
(017)	11	12	Ω max	Test Circuit 1	
On Resistance Match between		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
Channels (ΔR_{ON})		0.4	Ω max	DD DO	
On Resistance Flatness (R _{FLAT(ON)})		3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{S} = 3 \text{ V/1 V}, V_{D} = 1 \text{ V/3 V};$	
bource off Deakage 15 (Off)	±0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	± 0.11 ± 0.01	±0.5	nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V};$	
Officialities OTV Leakage ID, IS (OTV)	± 0.01	±0.5	nA max	Test Circuit 3	
		±0.9	пл шах	1 cot Gircuit 9	
DIGITAL INPUTS		2.0	37		
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I_{INL} or I_{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
0 8:11		± 0.1	μA max		
C _{IN} , Digital Input Capacitance	4		pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	28		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		55	ns max	$V_S = 2 V$, Test Circuit 4	
t_{OFF}	9		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		16	ns max	$V_S = 2 V$, Test Circuit 4	
ADG733 $t_{ON}(\overline{EN})$	29		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		60	ns max	$V_S = 2 V$, Test Circuit 5	
$t_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	9		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		16	ns max	$V_S = 2 V$, Test Circuit 5	
Break-Before-Make Time Delay, t _D	22		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		1	ns min	$V_S = 2 V$, Test Circuit 6	
Charge Injection	±3		pC typ	$V_S = 1 V, R_S = 0 \Omega, C_L = 1 nF;$	
				Test Circuit 7	
Off Isolation	-72		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$	
				Test Circuit 8	
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
0 ID D 1 111	1.50			Test Circuit 9	
-3 dB Bandwidth	160		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10	
C_{S} (OFF)	11		pF typ	f = 1 MHz	
$C_D, C_S (ON)$	34		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{\mathrm{DD}} = 3.3 \mathrm{V}$	
$I_{ m DD}$	0.001		μA typ	Digital Inputs = 0 V or 3.3 V	
		1.0	μA max		

NOTES

REV. B -3-

 $^{^1} Temperature$ ranges are as follows: B Version: –40 $^{\circ} C$ to +85 $^{\circ} C$.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG733/ADG734—SPECIFICATIONS¹

DUAL SUPPLY (VDD = +2.5 V \pm 10%, VSS = -2.5 V \pm 10%, GND = 0 V, unless otherwise noted.)

	B Version -40°C				
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$ m V_{SS}$ to $ m V_{DD}$	V		
On Resistance (R _{ON})	2.5		Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA;	
	4.5	5.0	Ω max	Test Circuit 1	
On Resistance Match between		0.1	Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
Channels (ΔR_{ON})		0.4	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
. ,		1.2	Ω max		
LEAKAGE CURRENTS				$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V}$	
	±0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = +2.25 \text{ V}/-1.25 \text{ V}$, Test Circuit 3	
<i>5 b,</i> 5 ()	±0.1	± 0.5	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		1.7	V min		
Input Low Voltage, V _{INL}		0.7	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
IVE IVI		± 0.1	μA max	III IIII	
C _{IN} , Digital Input Capacitance	4		pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON}	21		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
·OIV		35	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4	
$t_{ m OFF}$	10		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$	
011		16	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4	
ADG733 $t_{ON}(\overline{EN})$	21		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \mathrm{pF};$	
,		40	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 5	
$t_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	10		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		16	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 5	
Break-Before-Make Time Delay, t _D	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		1	ns min	$V_S = 1.5 \text{ V}$, Test Circuit 6	
Charge Injection	±5		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$	
				Test Circuit 7	
Off Isolation	-72		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
				Test Circuit 8	
Channel-to-Channel Crosstalk	-67		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$	
				Test Circuit 9	
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 10	
C_{S} (OFF)	11		pF typ	f = 1 MHz	
$C_D, C_S (ON)$	34		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{\mathrm{DD}} = 2.75 \mathrm{V}$	
$ m I_{DD}$	0.001		μA typ	Digital Inputs = 0 V or 2.75 V	
		1.0	μA max		
I_{SS}	0.001		μA typ	$V_{SS} = -2.75 \text{ V}$	
		1.0	μA max	Digital Inputs = 0 V or 2.75 V	

NOTES

-4- REV. B

¹Temperature range is as follows: B Version: −40 °C to +85 °C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Junction Temperature
16-Lead TSSOP, θ _{IA} Thermal Impedance 150.4°C/W
20-Lead TSSOP, θ _{IA} Thermal Impedance 143°C/W
16-Lead QSOP, θ _{IA} Thermal Impedance 149.97°C/W
Lead Temperature, Soldering (10 sec) 300°C
IR Reflow, Peak Temperature (<20 sec) 235°C

NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

² Overvoltages at A, EN, IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG733/ADG734 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

REV. B -5-

Table I. ADG733 Truth Table

A2	A1	A0	EN	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

X = Don't Care.

Table II. ADG734 Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

TERMINOLOGY

$V_{ m DD}$	Most Positive Power Supply Potential
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
A_{X}	Logic Control Input
\overline{EN}	Active low device enable
$V_{D}(V_{S})$	Analog Voltage on Terminals D and S
R_{ON}	Ohmic Resistance between D and S
ΔR_{ON}	On Resistance Match between any Two Channels (i.e., R _{ON} max and R _{ON} min)
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch "OFF"
I_D , I_S (ON)	Channel Leakage Current with the Switch "ON"
V_{INL}	Maximum Input Voltage for Logic "0"
V_{INH}	Minimum Input Voltage for Logic "1"
$I_{\rm INL}(I_{\rm INH})$	Input Current of the Digital Input
C_S (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
C_D , $C_S(ON)$	"ON" Switch Capacitance. Measured with reference to ground.
C_{IN}	Digital Input Capacitance
t_{ON}	Delay Time Measured between the 50% and 90% Points of the Digital Inputs and the Switch "ON" Condition
t_{OFF}	Delay Time Measured between the 50% and 90% Points of the Digital Input and the Switch "OFF" Condition
$t_{ON}(\overline{EN})$	Delay Time between the 50% and 90% Points of the EN Digital Input and the Switch "ON" Condition
$t_{OFF}(\overline{EN})$	Delay Time between the 50% and 90% Points of the EN Digital Input and the Switch "OFF" Condition
t_{OPEN}	"OFF" Time Measured between the 80% Points of Both Switches when Switching from One Address State to Another
Charge	A Measure of the Glitch Impulse Transferred Injection from the Digital Input to the Analog Output during Switching
Off Isolation	A Measure of Unwanted Signal Coupling through an "OFF" Switch.
Crosstalk	A Measure of Unwanted Signal that Is Coupled through from One Channel to Another as a Result of Parasitic Capacitance
On Response	The Frequency Response of the "ON" Switch
Insertion Loss	The Loss Due to the On Resistance of the switch

-6- REV. B

Typical Performance Characteristics—ADG733/ADG734

TPC 1. On Resistance as a Function of V_D (V_S) for Single Supply

TPC 2. On Resistance as a Function of V_D (V_S) for Dual Supply

TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 4. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 5. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

TPC 6. Leakage Currents as a Function of $V_D(V_S)$

TPC 7. Leakage Currents as a Function of V_D (V_S)

TPC 8. Leakage Currents as a Function of V_D (V_S)

TPC 9. Leakage Currents as a Function of Temperature

REV. B -7-

TPC 10. Leakage Currents as a Function of Temperature

TPC 11. t_{ON}/t_{OFF} Times vs. Temperature

TPC 12. On Response vs. Frequency

TPC 13. Input Current, I_{DD} vs. Switching Frequency

TPC 14. Off Isolation vs. Frequency

TPC 15. Crosstalk vs. Frequency

TPC 16. Charge Injection vs. Source Voltage

-8- REV. B

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. I_S (OFF)

Test Circuit 3. I_D (ON)

Test Circuit 4. Switching Times, t_{ON}, t_{OFF}

Test Circuit 5. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

Test Circuit 10. Bandwidth

Test Circuit 9. Channel-to-Channel Crosstalk

-10- REV. B

Data Sheet ADG733/ADG734

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 11. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 12. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

REV. B --11--

ADG733/ADG734 Data Sheet

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 13. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹ Temperature Range		Package Description	Package Option	
ADG733BRQZ	-40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16	
ADG733BRQZ-REEL	-40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16	
ADG733BRU-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG733BRUZ	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG733BRUZ-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG733BRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG734BRU	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20	
ADG734BRU-REEL	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20	
ADG734BRUZ	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20	
ADG734BRUZ-REEL	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20	
ADG734BRUZ-REEL7	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20	

¹ Z = RoHS Compliant Part.

REVISION HISTORY

4/14—Rev. A to Rev. B

Changes to Ordering Guide
11/02—Data Sheet changed from REV. 0 to REV. A.
Changes to FEATURES
Changes to PRODUCT HIGHLIGHTS 1
Changes to SPECIFICATIONS
Changes to ABSOLUTE MAXIMUM RATINGS Note 2 5
Changes to TERMINOLOGY table
Replaced TPCs 2, 5, 8, and 9
Edits to TPCs 6 and 7
Replaced TPC 128
Edits to TPCs 13 and 16
Replaced Test Circuits 8 and 9
Added Test Circuit 10
Updated OUTLINE DIMENSIONS11

©2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

D01602-0-4/14(B)

www.analog.com