ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2020-2021

---oOo----

Môn thi: Phương trình vi phân đạo hàm riêng

Mã môn học: MAT3365

Số tín chỉ: 3

Đề số: 2

Dành cho sinh viên khoá: K64

Ngành học: Toán tin

Thời gian làm bài 120 phút (không kể thời gian phát đề)

Câu 1. (4 điểm) Xét bài toán biên Dirichlet trong hình tròn cho phương trình Poisson

$$\Delta u(x,y) = 2y \text{ khi } x^2 + y^2 < 9,$$

với điều kiện biên Dirichlet

$$u(x,y) = \begin{cases} y & \text{khi } x^2 + y^2 = 9, y > 0, \\ 0 & \text{khi } x^2 + y^2 = 9, y \le 0. \end{cases}$$

(a) Tìm v(y) thỏa mãn v''(y)=2y và v là hàm lẻ, nghĩa là v(-y)=-v(y). Khi đó w=u-v thỏa mãn bài toán nào? Từ đó dùng công thức Poisson tính u(x,0), x<0.

(b) Giải bài toán biên Dirichlet đã cho.

Câu 2. (2.5 điểm) Sử dụng công thức Poisson tính nghiệm tường minh bài toán Cauchy

$$u_t(x,y,t) = 2(u_{xx}(x,y,t) + u_{yy}(x,y,t)), (x,y) \in \mathbb{R}^2, t > 0,$$

 $u(x,y,0) = e^{-x^2}\cos^2(y).$

Thử lại nghiệm vừa tìm được.

Câu 3. (2.5 điểm) Giải bài toán biên hỗn hợp cho phương trình truyền nhiệt

$$u_t(x, y, t) = u_{xx}(x, y, t) + u_{yy}(x, y, t), 0 < x, y < 1, t > 0,$$

với điều kiện biên:

 $u_x(0,y,t) = u_x(1,y,t) = 0$ khi $0 \le y \le 1$, $u_y(x,0,t) = u(x,1,t) = 0$ khi $0 \le x \le 1$, và điều kiện ban đầu u(x,y,0) = x.

Câu 4. (3 điểm) Xét bài toán Cauchy cho phương trình truyền sóng

$$u_{tt}(x, y, t) = 36\Delta u(x, y, t), (x, y) \in \mathbb{R}^2, t > 0,$$

với điều kiện ban đầu

$$u(x,y,0) = 0 \text{ và } u_t(x,y,0) = \begin{cases} 1 & \text{khi } x > 0, y > 0, \\ -1 & \text{khi } x > 0, y < 0, \\ -2 & \text{khi } x < 0, y < 0, \\ 0 & \text{còn lại.} \end{cases}$$

Tính u(100, 50, t) khi t > 0.

Chú ý: Sinh viên được sử dụng tài liệu.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2020-2021 Môn thi: Phương trình vi phân đạo hàm riêng

Mã môn học: **MAT3365** Số tín chỉ: **3** Đề số: **2** Dành cho sinh viên khoá: **K64** Ngành học: **Toán tin**

Lời giải 1. [4 điểm]

(a) Hàm cần tìm $v(y) = y^3/3$. Khi đó $w = u - v$ là nghiệm của phương trình Laplace	0.5
$\Delta w = 0 \text{ trong } x^2 + y^2 < 9$	0.3
x = 0 trong $x + y < yvới điều kiện biên Dirichlet$	
$w(x,y) = \begin{cases} y - y^3/3 & \text{khi } x^2 + y^2 = 9, y > 0, \\ -y^3/3 & \text{khi } x^2 + y^2 = 9, y \le 0. \end{cases}$	
Trong hệ tọa độ cực $x=r\cos\theta,y=r\sin\theta$ có $v(r,\theta)=w(r\cos\theta,r\sin\theta)$ thỏa mãn bài toán	0.5
$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = 0, 0 \le r < 3, 0 < \theta < 2\pi,$	
với điều kiện biên	
$v(3,\theta) = \begin{cases} 3\sin\theta - 9\sin^3\theta & \text{khi } 0 < \theta < \pi \\ -9\sin^3\theta & \text{khi } -\pi \le \theta \le 0. \end{cases}$	
Áp dụng công thức Poisson, với $x < 0$ ta có	
$w(x,0) = v(x , \pi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(9-x^2)v(3,\theta)}{9+x^2-6 x \cos(\pi-\theta)} d\theta$	
Do $\sin^3 \theta$ là hàm lẻ, $\cos(\pi - \theta) = -\cos \theta$ là hàm chẵn nên	0.5
$\int_{-\pi}^{\pi} \frac{(9-x^2)\sin^3(\theta)}{9+x^2-6 x \cos(\pi-\theta)} d\theta = 0.$	
Do đó, với $x < 0$ ta có	0.5
$u(x,0) = w(x,0) = \frac{9 - x^2}{2\pi} \int_0^{\pi} \frac{3\sin\theta}{9 + x^2 - 6x\cos\theta} d\theta$	
$=\frac{9-x^2}{2\pi x}\ln\left(\frac{3+x}{3-x}\right).$	
(b) Chuỗi nghiệm $v(r,\theta) = a_0 + \sum_{n=1}^{\infty} r^n \Big(a_n \cos(n\theta) + b_n \sin(n\theta) \Big).$	0.5

Từ điều kiện biên, với chú ý
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin(3\theta)$$
 lẻ, ta có
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(3,\theta) d\theta = \frac{1}{2\pi} \int_{0}^{\pi} 3 \sin \theta d\theta = 3/\pi,$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \cos \theta d\theta = 0, a_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \cos(3\theta) d\theta = 0$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \sin \theta d\theta = -21/4, b_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \sin(3\theta) d\theta = 9/4,$$
 còn khi $n \notin \{0,1,3\}$ thì
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \cos(n\theta) d\theta = -\frac{3(1+(-1)^n)}{\pi(n^2-1)},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} v(3,\theta) \sin(n\theta) d\theta = 0.$$
 Vậy nghiệm cần tìm
$$u(r\cos\theta, r\sin\theta) = \frac{r^3 \sin^3 \theta}{3} + \frac{3}{\pi} + \frac{9r^3 \sin(3\theta)}{4} - \frac{21r \sin\theta}{4} - \frac{6}{\pi} \sum_{k=1}^{\infty} \frac{r^{2k} \cos(2k\theta)}{4k^2 - 1}.$$

Lời giải 2. [2.5 điểm]

Sử dụng công thức Poisson	0.5
$u(x,y,t) = \frac{1}{8\pi t} \int_{-\infty}^{\infty} e^{-X^2} e^{-\frac{(x-X)^2}{8t}} dX \int_{-\infty}^{\infty} \cos^2(Y) e^{-\frac{(y-Y)^2}{8t}} dY.$	
Biến đổi $8tX^2 + (x - X)^2 = (8t + 1)(X - x/(8t + 1))^2 + 8tx^2/(8t + 1)$ nên	0.5
$\int_{-\infty}^{\infty} e^{-x^2} e^{-\frac{(x-X)^2}{8t}} dX = \frac{\sqrt{8\pi t}}{\sqrt{8t+1}} e^{-\frac{x^2}{8t+1}}.$	
Chú ý cos2(x) = (1 + cos(2x))/2 nên	0.5
$\int_{-\infty}^{\infty} \cos^2(Y) e^{-\frac{(y-Y)^2}{8t}} dY = \frac{\sqrt{8\pi t} \left(1 + e^{-8t} \cos(2y)\right)}{2}.$	
Vậy nghiệm của bài toán	0.5
$u(x,y,t) = \frac{e^{-\frac{x^2}{8t+1}}}{\sqrt{8t+1}} \times \frac{\left(1 + e^{-8t}\cos(2y)\right)}{2}.$	

Thử lại nghiệm: viết $u(x,y,t)=u_1(x,t)u_2(y,t)$ với	0.5
$u_1(x,t) = \frac{e^{-\frac{x^2}{8t+1}}}{\sqrt{8t+1}}, u_2(y,t) = \frac{\left(1 + e^{-8t}\cos(2y)\right)}{2}.$	

Lời giải 3. [2.5 điểm]

Chuỗi nghiệm	1
$u(x,y,t) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{mn} e^{-\pi^2 (m^2 + (n+1/2)^2)t} \cos(m\pi x) \cos((n+1/2)\pi y).$	
Từ điều kiện ban đầu, các hệ số được tính như sau:	0.5
$a_{0n} = 2\int_0^1 x dx \int_0^1 \cos((n+1/2)\pi y) dy = \frac{2(-1)^n}{(2n+1)\pi'}$	
	1
$a_{mn} = 4 \int_0^1 x \cos(m\pi x) dx \int_0^1 \cos((n+1/2)\pi y) dy = \frac{8(-1)^n ((-1)^m - 1)}{m^2 (2n+1)\pi^3}, m \ge 1.$	

Lời giải 4. [3 điểm]

Nghiệm $u = u_1 - u_2$, với u_j là nghiệm của phương trình truyền sóng đã cho với điều kiện	1
ban đầu:	
$u_j(x,y,0) = 0, u_{jt}(x,y,0) = \psi_j(x,y)$	
trong đó	
$\psi_1(x,y) = \begin{cases} 1 & \text{khi } x > 0, \\ 0 & \text{khi } x < 0; \end{cases} \psi_2(x,y) = \begin{cases} 0 & \text{khi } y > 0, \\ 2 & \text{khi } y < 0. \end{cases}$	
$\begin{cases} $	
Khi đó ta có	0.5
$u_1(100, 50, t) = \begin{cases} t & \text{khi } 0 < t < 50/3, \\ \frac{t}{2} + 25/3 & \text{khi } t \ge 50/3; \end{cases}$	
$\left(2^{+25/3} \text{ km} t \geq 50/3\right)$	
	0.5
$u_2(100, 50, t) = \begin{cases} 0 & \text{khi } 0 < t < 25/3, \\ t - 25/3 & \text{khi } t \ge 25/3. \end{cases}$	
$u_2(100,30,t) = \begin{cases} t - 25/3 & \text{khi } t \ge 25/3. \end{cases}$	
Vậy nghiệm	1
	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$u(100,50,t) = \begin{cases} t & \text{khi } 0 < t < 25/3, \\ 25/3 & \text{khi } 25/3 \le t \le 50/3, \\ -\frac{t}{2} + 50/3 & \text{khi } t \ge 50/3. \end{cases}$	
$\left(-\frac{t}{2} + 50/3 \text{ khi } t \ge 50/3.\right)$	
. 2	

Hà Nội, ngày 30 tháng 06 năm 2021 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

TS. Đặng Anh Tuấn