Medida de Circuitos Multipuerta

Circuitos de Alta Frecuencia

Departamento de Señales, Sistemas y Radiocomunicaciones Grupo de Electromagnetismo y Teoría de Circuitos

Medida de redes multipuerta	2
Parámetros S	3
Renormalización de parámetros S	4
Medida de redes de N puertas	5

Medida de redes multipuerta

nº 2

Parámetros S

Los parámetros S para una red de N puertas están definidos a partir de N impedancias de referencia Z_{0j} , con $j=1,2\ldots N$.

Una misma red de N puertas tiene diferentes parámetros S (matriz $N \times N$):

- S_A con impedancias de referencia $\{Z_{A1}, Z_{A2}, Z_{A3} \dots Z_{AN}\}$
- ullet S_B con impedancias de referencia $\{Z_{B1},Z_{B2},Z_{B3}\dots Z_{BN}\}$
- ...

pero una única matriz de impedancias Z:

- $Z = F_A(U + S_A)(U S_A)^{-1}F_A$ con $F_A = \operatorname{diag}(\sqrt{Z_{Aj}})$
- $Z = F_B(U + S_B)(U S_B)^{-1}F_B$ con $F_B = \operatorname{diag}(\sqrt{Z_{Bj}})$
- ...

 ${\cal U}$ es la matriz unidad.

Renormalización de parámetros ${\cal S}$

Igualando dos de las expresiones de ${\it Z}$ se llega a:

$$S_B = (U - S_A)^{-1}(S_A - \Gamma)(U - S_A\Gamma)^{-1}(U - S_A)$$

donde
$$\Gamma = \mathrm{diag}\left(\frac{Z_{Bj} - Z_{Aj}}{Z_{Bj} + Z_{Aj}}\right)$$
.

Esta expresión permite pasar directamente de los parámetros S_A referidos a un conjunto de impedancias de referencia $\{Z_{Aj}\}$ a los parámetros S_B referidos a otro conjunto de impedancias de referencia $\{Z_{Bj}\}$.

nº 4

Medida de redes de N puertas

... con un analizador de redes de sólo 2 puertas y cargas conocidas.

- Algunos parámetros S_{Z12} (sólo s_{11} , s_{12} , s_{21} y s_{22}), con impedancias de referencia $\{Z_0, Z_0, Z_{L3}, Z_{L4}\}$
- Algunos parámetros S_{Z13} (sólo s_{11} , s_{13} , s_{31} y s_{33}), con impedancias de referencia $\{Z_0, Z_{L2}, Z_0, Z_{L4}\}$
- Algunos parámetros S_{Z14} (sólo s_{11} , s_{14} , s_{41} y s_{44}), con impedancias de referencia $\{Z_0, Z_{L2}, Z_{L3}, Z_0\}$

nº 5

Medida de redes de N puertas (II)

- Algunos parámetros S_{Z23} (sólo s_{22} , s_{23} , s_{32} y s_{33}), con impedancias de referencia $\{Z_{L1}, Z_0, Z_0, Z_{L4}\}$
- Algunos parámetros S_{Z24} (sólo s_{22} , s_{24} , s_{42} y s_{44}), con impedancias de referencia $\{Z_{L1}, Z_0, Z_{L3}, Z_0\}$
- Algunos parámetros S_{Z34} (sólo s_{33} , s_{34} , s_{43} y s_{44}), con impedancias de referencia $\{Z_{L1}, Z_{L2}, Z_0, Z_0\}$

nº 6

Medida de redes de N puertas (III)

Con la expresión de renormalización puedo pasar los parámetros de cada medida a otras impedancias de referencia:

$$\bullet \quad \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}_{\{Z_0, Z_0\}} \Rightarrow \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}_{\{Z_{L1}, Z_{L2}\}}$$

$$\bullet \quad \begin{bmatrix} s_{11} & s_{13} \\ s_{31} & s_{33} \end{bmatrix}_{\{Z_0, Z_0\}} \Rightarrow \begin{bmatrix} s_{11} & s_{13} \\ s_{31} & s_{33} \end{bmatrix}_{\{Z_{L1}, Z_{L3}\}}$$

$$\begin{bmatrix} s_{11} & s_{14} \\ s_{41} & s_{44} \end{bmatrix}_{\{Z_0, Z_0\}} \Rightarrow \begin{bmatrix} s_{11} & s_{14} \\ s_{41} & s_{44} \end{bmatrix}_{\{Z_{L1}, Z_{L4}\}}$$

$$\begin{bmatrix} s_{22} & s_{23} \\ s_{32} & s_{33} \end{bmatrix}_{\{Z_0, Z_0\}} \Rightarrow \begin{bmatrix} s_{22} & s_{23} \\ s_{32} & s_{33} \end{bmatrix}_{\{Z_{L2}, Z_{L3}\}}$$

$$\bullet \quad \begin{bmatrix} s_{22} & s_{23} \\ s_{32} & s_{33} \end{bmatrix}_{\{Z_0, Z_0\}} \Rightarrow \begin{bmatrix} s_{22} & s_{23} \\ s_{32} & s_{33} \end{bmatrix}_{\{Z_{L2}, Z_{L3}\}}$$

y tendré grupos de cuatro parámetros referidos a $\{Z_{L1}, Z_{L2}, Z_{L3}, Z_{L4}\}$.

nº 7

Medida de redes de N puertas (VI)

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \{Z_{L1}, Z_{L2}, Z_{L3}, Z_{L4}\}$$

Y con la expresión de renormalización puedo pasar los 16 parámetros S a las impedancias de referencia Z_0 :

$$S_{\{Z_{L1},Z_{L2},Z_{L3},Z_{L4}\}} \Rightarrow S_{\{Z_0,Z_0,Z_0,Z_0\}}$$

Tippet. J.C., et al. "A Rigorous Technique for Measuring the Scattering Matrix of a Multiport. . . ," IEEE Trans. on MTT Vol. 30, No. 5, pp. 661-666, May 1982

nº 8