1 Preliminaries

Homework 1. Prove that $V^{**} \cong V$ for finite-dimensional vector space V.

From this, it is clear that $T_p^*M\otimes T_pM\cong \operatorname{Hom}(T_pM,T_pM)$ for a manifold M.

Recall the tangent bundle TM is defined as

$$TM = \coprod_{p \in M} T_p M$$

and a vector field on the manifold M is simply a section of the tangent bundle projection $TM \xrightarrow{\pi} M$. In other words, a vector field is a function $f: M \to TM$ such that $\pi \circ f = id$. Requiring the section to be smooth makes it into a smooth vector field.

We can also do the same thing for the cotangent bundle T^*M to obtain a covector field.

Now, we can take the tensor product of copies of TM and T^*M to obtain our tensor bundles, and tensor fields will be sections of these bundles.

Let (U, ϕ) be a smooth chart on M with coordinate functions x^i , coordinate vector fields ∂_i , and coordinate one-forms dx^i . Recall that dx^i is defined to be the dual basis to ∂_i , that is,

$$dx^i(\partial_j) = \delta^i_j$$

Recall also that the exterior derivative of a function df is defined as

$$df(v) = v(f)$$

and this definition applied to the coordinate functions x^i (yielding dx^i) coincides with the definition above. Note that ∂_i form a basis for T_pM and dx^i form a basis for T_p^*M . Tensor products of them, then, form a basis for the tensor product space.

Homework 2. Prove that, for a vector space V with basis v_i , dual basis v^i , the set

$$\{v^i \otimes v^j \mid 1 \le i, j \le n\}$$

forms a basis for $V^* \otimes V^*$. Here $v^i \otimes v^j(u,v) = v^i(u)v^j(v)$.

2 Affine Connections

2.1 The Metric

Def. 2.1. Let M^n be a smooth manifold of dimension n. A Riemannian Metric g on M is a rank (0,2) tensor (a section of $T^*M \otimes T^*M$) that is symmetric and positive-definite. In other words, g is a rank (0,2) tensor that restricts to an inner product on the tangent space at every point.

We can express g in local coordinates!

$$g_{ij} = g(\partial_i, \partial_j)$$

or

$$g = g_{ij}dx^i \otimes dx^j$$

2.2 Integration of Top Degree Differential Forms

Let M^n be an orientable *n*-dimensional manifold, and $\omega \in \Omega^n(M)$. Furthermore let (U, ϕ) be a positive coordinate chart. On U we have that

$$\omega = f dx^1 \wedge \ldots \wedge dx^n$$

for some $f \in C^{\infty}(M)$.

Now, let $K \subset U$ be compact. We define

$$\int_{K} \omega = \int_{\phi(K)} \phi^{-1*} \omega$$

$$= \int_{\phi(K)} f \circ \phi^{-1} \phi^{-1*} dx^{1} \wedge \dots \wedge \phi^{-1*} dx^{n}$$

$$= \int_{\phi(K)} f \circ \phi^{-1} dx^{1} \wedge \dots \wedge dx^{n}$$

where the last integral is just the standard integral in \mathbb{R}^n .

Is this definition independent of choice of coordinates? Let's check. Let (V, ψ) be another coordinate chart containing K. Then, the integral with respect to this coordinate system is

$$\int_{K} \omega = \int_{\psi(K)} g \circ \psi^{-1} dy^{1} \wedge \ldots \wedge dy^{n}$$

for g defined as

$$\omega = h dy^1 \wedge \ldots \wedge dy^n$$

with coordinate functions y^i . The claim is that these integrals are equal.

Consider the change-of-coordinates map $\psi \circ \phi^{-1}$ from the x^i to the y^i coordinate system. Since K is in both U and V, its image $\phi(K)$ lies in the domain of $\psi \circ \phi^{-1}$.

All that remains is to apply the change of variables to the integrals. Recall that if one has a diffeomorphism $F: \Omega_1 \to \Omega_2$ for compact Ω_i , one has that

$$\int_{\Omega_2} f dy^1 \dots dy^n = \int_{\Omega_1} f \circ F |J_F| dx^1 \dots dx^n$$

where $|J_F|$ is the determinant of the Jacobian matrix for F.

Homework 3. Check that the two integrals claimed to be equal are actually equal.

Now we have an idea for how to integrate ω on a single chart, let's extend this. Let (η_i, U_i) be a partition of unity of M where each U_i is contained in a single chart on M. Then,

$$\omega = \sum \omega \eta_i$$

and we can integrate by extending linearly

$$\int_{K} \omega = \sum \int_{K} \omega \eta_{i}$$

where the right hand side has integrals over functions supported in a single chart, and is well-defined. But is this independent of the choice of partition of unity? Short answer: yes (Optional homework).

2.3 Integration on an Orientable Smooth Riemannian Manifold

Recall that a Riemannian manifold has a volume form

$$dvol = \sqrt{|g_{ij}|} dx^1 \wedge \ldots \wedge dx^n$$

which is obtained by taking an orthonormal frame e_i and considering the dual frame ω^i defined as

$$\omega^i e_j = \delta^i_i$$

and letting

$$dvol = \omega^1 \wedge \ldots \wedge \omega^n$$

This construction is independent of choice of orthonormal frame.

Proof. Let ϵ_i be another orthonormal frame with dual frame α^i . Then, $\epsilon_i = a_i^j e_j$ and $\alpha^i = b_i^i \omega^j$ and so

$$\alpha^{1} \wedge \ldots \wedge \alpha^{n} = b_{j_{1}}^{1} \omega^{j_{1}} \wedge \ldots \wedge b_{j_{n}}^{n} \omega^{j_{n}}$$

$$= \sum_{\sigma \in S_{n}} b_{\sigma(1)}^{1} \ldots b_{\sigma(n)}^{n} sgn(\sigma) \omega^{1} \wedge \ldots \wedge \omega^{n}$$

$$= |b| \omega^{1} \wedge \ldots \wedge \omega^{n}$$

$$= \omega^{1} \wedge \ldots \wedge \omega^{n}$$

where the last line was obtained from the fact that b is the orthogonal change-of-basis matrix from e to ϵ .

Then, we define

$$Vol(K) = \int_{K} dvol$$