C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

FTHA – Finite-Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://qithub.com/CNThermSci/ApplThermSci Compiled on 2020-08-18 23h20m01s UTC

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Limitações do Ciclo Otto Ideal Proposta do Ciclo Otto FTHA

Melhorando o Ciclo Otto Ideal

O ciclo Otto ideal, da termodinâmica aplicada:

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k}$$

• $\eta_t : \eta_t(r,k)$ apenas!

T_{PR}

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão:
- Modelo em ciclo fechado;
- Calores específicos constantes.

Apresentação do Modelo FTHA

UTFPR

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Prof. C. Naaktgeboren, PhD

Limitações do Ciclo Otto Ideal Proposta do Ciclo Otto FTHA

Desvios do ciclo Otto ideal—incluem, mas não limitados a:

Diagrama P - V ilustrativo de perdas por (i) combustão não instantânea—verde, (ii) transferência de calor—vermelho—e de (iii) bombeamento—azul. Fonte: adaptado de Wikimedia Commons.

https://upload.wikimedia.org/wikipedia/commons/6/6c/P-V_diagram_deviations_to_Otto_cycle.svg.

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;
 - Evita modelagem termodinâmica de misturas reativas.

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Introdução Modelagem FTHA

Modelagem do Motor Modelagem do Ciclo Procedimento de Solução

Parâmetros do mecanismo

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Volume máximo (do PMI), V_{PMI};
- Razão de compressão, $r = \frac{V_{\rm PMS}}{V_{\rm PMI}}$

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e
 - Duração da combustão.

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Introdução Modelagem FTHA Tópicos de Leitura Modelagem do Motor Modelagem do Ciclo Procedimento de Soluç

Parâmetros do mecanismo

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, *V*;

$$x(\alpha) = L\left(1 - \sqrt{1 - \frac{R^2}{L^2}\sin^2\alpha}\right) + R(1 - \cos\alpha)$$
$$V(\alpha) = \frac{\pi x(\alpha)}{4}D^2 + V_{\text{PMS}} \quad \rightarrow \quad v(\alpha) = \frac{V(\alpha)}{m_0}$$

Parâmetros de tempo do motor

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with
 - $\Delta \alpha = \pi/I, I \in \mathbb{N}^*$.
- Casos de ω variável—discretização em t.

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Modelagem FTHA

Modelagem do Ciclo

Equações Termodinâmicas

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i$$
 \rightarrow $u_{i+1} = u_i + q_i + w_i$, com,

Modelo de Adição de Calor, $q(\alpha)$

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;
 - $g(\alpha)$ pode basear-se em experimentos;
 - Lit.: $g(\alpha) = \frac{1}{2} \frac{1}{2} \cos(\frac{\pi}{8}(\alpha \theta))$.

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Modelagem FTHA

Modelagem do Ciclo

Equações Termodinâmicas

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)], \quad e$$

$$w_i = \int_{v_i}^{v_{i+1}} (P_i v_i^{n_i}) v^{-n_i} dv, \quad \neg$$

$$w_{i} = \begin{cases} \frac{P_{i}v_{i}}{1 - n_{i}} \left[1 - \left(\frac{v_{i}}{v_{i+1}} \right)^{n_{i}-1} \right], \\ P_{i}v_{i} \ln \frac{v_{i}}{v_{i+1}}, \\ 0 \end{cases}$$

para
$$n_i \neq 1$$

oara
$$n_i = 1$$
,

para
$$v_i \approx v_{i+1} \quad \rightarrow \quad |v_i - v_{i+1}| \leqslant \varepsilon_v$$
.

Modelagem FTHA

Modelagem do Ciclo Procedimento de Solução

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

- \rightarrow Processo de estimativa (n_i^0) e j-ésima correção (n_i^j) até a convergência.
- \rightarrow Tolerâncias de convergência ε_w e ε_u .

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Modelagem do Ciclo

Algoritmo de Inicialização

REQUER: Parâmetros do motor: $\{\omega, D, L, R, V_{PMS}, e V_{du}\}$;

REQUER: Ângulos θ e δ (via Δt_c);

REQUER: Refinamento da discretização, *I*;

REQUER: Estado inicial (P_0, T_0) e modelo de substância;

REQUER: Função $g(\alpha)$ e q_{ent} ;

REQUER: Tolerâncias de convergência ε_v , ε_w e ε_u .

1: Inicializa todas quant. com índice i como vetores vazios: α_i , v_i , q_i , w_i , n_i , P_i , T_i , and u_i ;

2: Calcula $\Delta \alpha = \pi/I$ e todos $\alpha_i = -\pi + i\Delta \alpha$;

3: $v_0 \leftarrow$ volume específico, de (P_0, T_0) e equação de estado;

4: $m \leftarrow V_0/v_0$;

5: Calcula todos $v_i = V(\alpha_i)/m$;

6: $i \leftarrow 0$;

Modelagem do Ciclo

Correção do Expoente Politrópico

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1}^{j} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

$$P_{i}v_{i}^{n_{i}^{j+1}} = P_{i+1}^{j}v_{i+1}^{n_{i}^{j+1}} \quad \rightarrow \quad n_{i}^{j+1} = \frac{\ln\frac{P_{i+1}^{j}}{P_{i}}}{\ln\frac{v_{i}}{v_{i+1}}}.$$

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Modelagem FTHA

Modelagem do Ciclo

Algoritmo de Laço do Ciclo

- 1: **PARA** i = 0 até 2I **FAÇA**
- Calcula $q_i = q_{ent} \cdot [y(\alpha_{i+1}) y(\alpha_i)];$
- Resolve para w_i , n_i , u_{i+1} , P_{i+1} e T_{i+1} via algoritmo de solução de sub-processo;
- 4: **FIM**
- 5: $i \leftarrow i + 1$;
- 6: $q_i \leftarrow u_0 u_i$;
- 7: $w_i \leftarrow 0$:
- 8: Estado-(i) = Estado-0; {Para todas as funções de estado rastreadas}

Modelagem FTHA

Modelagem do Ciclo

Procedimento de Solução

Algoritmo de Finalização

```
1: w_{ent} \leftarrow \sum w_i \ge 0; {Trabalho que entra no sistema em um ciclo}
```

2:
$$w_{out} \leftarrow -\sum w_i < 0$$
; {Trabalho realizado pelo sistema em um ciclo}

3:
$$w_{net} \leftarrow w_{out} - w_{ent}$$
; {Trabalho líquido realizado pelo sistema no ciclo}

- 4: $q_{ent} \leftarrow \sum q_i \ge 0$; {Calor que entra no sistema em um ciclo}
- 5: $q_{rej} \leftarrow -\sum q_i < 0$; {Calor rejeitado pelo sistema em um ciclo}
- 6: $\eta_t \leftarrow w_{net}/q_{ent}$; {Eficiência térmica}
- 7: $r_{bw} \leftarrow w_{ent}/w_{out}$; {Razão de consumo de trabalho}
- 8: MEP $\leftarrow w_{net}/(V_{du}/m)$; {Pressão média efetiva}
- 9: Salva dados da simulação para o pós-processamento (relatório).

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Modelagem FTHA

Modelagem do Ciclo Procedimento de Solução

Algoritmo de Solução de Sub-Processo Politrópico

2: Inicializa vetores n_i , w_i , u_{i+1} , T_{i+1} e P_{i+1} ;

3: $n_i^j \leftarrow 1 + R_{gas}/c_v(T_i)$; {Chute inicial isentrópico}

4: Calcula $w_i^j \operatorname{com} n_i = n_i^j$;

5: **ENQUANTO** j = 0 **OU** $|w_i^{j-1} - w_i^j| \ge \varepsilon_w$ **FAÇA**

 $u_{i+1}^j \leftarrow u_i + q_i + w_i^j \text{ com } w_i = w_i^j;$

Calcula T_{i+1} via u_{i+1} pelo modelo (biblioteca) de substância;

Calcula P_{i+1} pela equação de estado;

Corrige n_i^{j+1} pelo processo politrópico;

10: $j \leftarrow j + 1;$

11: Calcula $w_i^j \operatorname{com} n_i = n_i^j$;

13: $n_i, w_i, u_{i+1}, T_{i+1} \in P_{i+1} \leftarrow \text{seus últimos elementos } j$; {Reverte vetores (linha 2)}

Modelagem do Ciclo Procedimento de Solução

Algoritmo de Solução de Sub-Processo

1: **SE** $|v_i - v_{i+1}| \le \varepsilon_v$ **ENTÃO**

{Processo isocórico}

3: $u_{i+1} \leftarrow u_i + q_i$;

Calcula T_{i+1} via u_{i+1} pelo modelo (biblioteca) de substância;

Calcula P_{i+1} pela equação de estado;

Calcula n_i pelo processo politrópico ou faz $n_i \leftarrow +\infty$ em caso de excessão;

7: SENÃO

{Processo politrópico}

10: **FIM**

UTFPR

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Tópicos de Leitura I

Termodinâmica 7ª Edição. Seções 9–3 a 9–5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

Parte II

Validação e Estudo de Caso com FTHA

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Validação do Modelo FTHA

O que é Validação?

Resultados de um modelo numérico só são confiáveis se o modelo for validado:

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;
- O FTHA melhora o ciclo Otto ideal e pode ser reduzido a ele, via $\delta = 0$;
- O ciclo Otto ideal (padrão a ar frio) possui solução exata!
- FTHA é validado caso produza resultado próximo da solução exata!
- Quanto mais casos de validação forem feitos, melhor!

Importância da Validação

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;
- As hipóteses são formuladas da observação da realidade.
- : há um longo caminho entre a realidade e a solução numérica!
- Como saber se a solução numérica não retorna "garbage"? → Validação!

Prof. C. Naaktgeboren, PhD

C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Validação do Modelo FTHA

Model validation for r = 12 and k = 1.3343 (constant c_v for hot air)

- É onde se coleta as previsões do modelo!
- É onde expectativas educadas podem ser ou não confirmadas!
- É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.
 - Espera-se ciclos parecidos com o Otto ideal para baixos valores de δ ;
 - Espera-se desvios progressivos e queda na eficiência com aumento de δ ;
 - Espera-se quedas progressivas na pressão máxima com aumento de δ;
 - Espera-se diagramas *P-v* parecidos com o ilustrado anteriormente:

Prof. C. Naaktgeboren, PhD C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

Estudo de Caso com Modelo FTHA

Estudo de Caso

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_{\nu}(T)$ como polinômio de 5º grau;
- $\Delta \alpha = 0.5^{\circ}$ na adição de calor $q_{ent} = 1000 \text{ kJ/kg}$;
- Ignição $\theta = -10^{\circ}$ em todos os casos;
- Variação de δ em $\{10^{\circ}, 30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}\}$.
- Caso $\delta = 10^{\circ}$: adição de calor termina no PMS!

Estudo de Caso com Modelo FTHA

Recapitulando: Desvios do ciclo Otto ideal

Espera-se que o FTHA prediga ciclos incorporando efeitos de combustão não instantânea—verde, e não os demais efeitos de transferência de calor—vermelho—e de bombeamento—azul. Fonte: adaptado de $Wikimedia\ Commons.\ {\tt https://upload.wikimedia.org/wikipedia/commons/6/6c/P-V_diagram_deviations.to_Otto_cycle.svg.}$

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Estudo de Caso com Modelo FTHA

Tests for r = 12, $\theta = -10^{\circ}$, and variable δ

Estudo de Caso com Modelo FTHA

UTFPR

Prof. C. Naaktgeboren, PhD C.01.01 - Ciclo Otto de Tempo Finito de Adição de Calor

Estudo de Caso com Modelo FTHA

Validação do Modelo FTHA Estudo de Caso com Modelo FTHA

Tests for r = 12, $\theta = -10^{\circ}$, and variable δ

UTFPR

Prof. C. Naaktgeboren, PhD C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

Tópicos de Leitura I

Motores de combustão interna. Capítulos 1 e 2.

Blücher, São Paulo, ISBN 978-85-2120-708-5.

Naaktgeboren, C.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

