IYPT 2025 1

4. Climbing Magnets

Bailin Wang | Team Canada | Reporter

"Attach a rod assembled from cylindrical neodymium magnets horizontally to a vertical ferromagnetic rod. Limit the motion of the magnets to the vertical direction. When the ferromagnetic rod is spun around its axis of symmetry, the magnetic rod begins to climb up. Explain this phenomenon and investigate how the rate of climbing depends on relevant parameters."

Problem Statement

"Attach a rod assembled from cylindrical neodymium magnets horizontally to a vertical

ferromagnetic rod. Limit the motion of the magnets to the vertical direction. When the

ferromagnetic rod is spun around its axis of symmetry, the magnetic rod begins to climb

up. Explain this phenomenon and investigate how the rate of climbing depends on

relevant parameters."

Parameters Accounted

Magnets

- Number of Magnets
- Radius of Magnets
- Magnet Magnetization

Rod

- Angular Velocity
- Rod Permeability
- Rod Radius
- Rod-on-Magnet Friction

1YPT 2025

Overview

Phenomenon & Qualitative
Stick Slip Phase, Contact Line Shift

2 Quantitative

COMSOL Electrodynamic Force, Torque Analysis

3 Experimental Setup
Hall Sensor Speed Detector, Stepper Motor

Results & Discussion

Varying Key Parameters

Phenomenon

IYPT 2025 5

Phenomenon Demonstration

Qualitative

1YPT 2025 7

Magnet Force

Force Diagram

1YPT 2025

Pre-Phenomenon Phase

Stick Phase

Stick Phase

Quantitative

IYPT 2025 14

Magnetic Force Model

Assumption

There is no Free Current Induced in the magnet and the rod

Magnetic Insulation applied on the surrounding air boundaries such that

$$\hat{n} \times A = 0$$

Continuity Boundary Condition at the material Boundaries

$$\hat{n} \cdot (B_1 - B_2) = 0$$

$$\hat{n} \cdot (B_1 - B_2) = 0$$
 $\hat{n} \times (H_1 - H_2) = 0$

Magnetic Field Model

Maxwell-Ampere's Law

$$\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \nabla \times \mathbf{H} = 0$$

$$\boldsymbol{H} = -\nabla V_m$$

$$-\nabla \cdot \left(\mu_0 (\nabla V_m - \mathbf{M})\right) = 0$$

H= Magnetic Field intensity

M = Magnetization per unit volume

B= Magnetic Flux intensity

 V_m = Magnetic Scalar Potential

 μ_r = Relative Permeability

 μ_0 = Permeability of Free Space

Phenomenon

Qualitative

Quantitative

Experiments

Magnetic Field Model

Remanent Magnetic Flux Density

$$\mathbf{B} = \mu_0 \mu_r \mathbf{H} + \mathbf{B}_r$$

H= Magnetic Field intensity

B= Magnetic Flux intensity

 μ_r = Relative Permeability

 μ_0 = Permeability of Free Space

 $\boldsymbol{B_r}$ = Remanent Flux Density

Permanent Magnet Simulation

Magnetic Field vs Distance from Magnet End 8 Magnets, 1.6 mm Diameter

Characterize each simulation by adjusting the Remanent Magnetic Flux Density

IYPT 2025 19

Magnetic Force Model

Magnetization Model

H= Magnetic Field intensity

B= Magnetic Flux intensity

f(H)= Non-linear B-H Response Curve

Electrostatic Force

Electrostatic Force

$$\mathbf{F} = \int_{\partial\Omega} \mathbf{n} \mathbf{T} dS$$

T= Maxwell Stress Tensor

S= Surface

n= unit normal vector

Maxwell Stress Tensor

$$T_{ij} = \frac{1}{\mu_0} (B_i B_j - \frac{1}{2} \delta_{ij} B^2)$$

1YPT 2025 22

Simulation Results (D=4mm)

Square Root Fit: Force vs Number of Magnets (Diameter = 4)

Simulation Results (D=6mm)

Square Root Fit: Force vs Number of Magnets (Diameter = 6)

23

1YPT 2025 24

Dynamics Model

Phenomenon

Qualitative Quantitative Experiments

Geometry

Assumptions

Ruler is a rigid body

Magnetic rod is a rigid body

Magnetic force is between center of rod and magnet

1YPT 2025 26

Magnetic Torque

$$\overrightarrow{F_B} = \begin{bmatrix} \widehat{x_d} \\ 0 \\ r_{rod} \end{bmatrix} ||F_B||$$

$$\overrightarrow{r_B} = \begin{bmatrix} x_d \\ \sqrt{r^2 - x_d^2} \\ 0 \end{bmatrix}$$

$$\overrightarrow{\tau_B} = \overrightarrow{r_B} \times \overrightarrow{F_B}$$

IYPT 2025 28

$$\overrightarrow{F_B} = \begin{bmatrix} 0 \\ 0 \\ ||F_B|| \end{bmatrix} \qquad \overrightarrow{r_B} = \begin{bmatrix} x_d \\ \sqrt{r^2 - x_d^2} \\ 0 \end{bmatrix}$$

$$\overrightarrow{\tau_B} = \overrightarrow{r_B} \times \overrightarrow{F_B}$$

$$\overrightarrow{\tau_B} \, \widehat{y} + \overrightarrow{\tau_N} \, \widehat{y} = 0$$

$$\frac{\overrightarrow{\tau_N}}{||F_N||} = \begin{bmatrix} r + x_d \\ \sqrt{r^2 - x_d^2} \\ d_R \end{bmatrix} \times \widehat{F_N}$$

 $\widehat{F_N} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Small angle

IYPT 2025 29

Dynamics Model

Torque Model

Solving for the relevant torques of the system

Critical Slip Point Model

Solving for the stick-slip transition via Euler's method

Relevant Net Torque

$$\tau_{fk} = \mu_k \int_0^a y[F_N](y) \, dy$$

Slip occurs when

$$\overrightarrow{\tau_N}\hat{z} > \tau_{fk}\hat{z}$$

 $\overline{\tau_{N+B}}$

Pressure Profile Characterization

1YPT 2025

Dynamics Model

Torque Model

Solving for the relevant torques of the system

Critical Slip Point Model

Solving for the stick-slip transition via Euler's method

Rotational Motion

$$\overrightarrow{\tau_N} + \overrightarrow{\tau_B} = \begin{bmatrix} \tau_x \\ 0 \\ \tau_z \end{bmatrix}$$

Kinetic Friction

$$\tau_{fk} = \mu_k \int_0^a y[F_N](y) \, dy$$

Net Torque

$$\overrightarrow{\tau_{net}} = \begin{bmatrix} \tau_X \\ 0 \\ \tau_z \end{bmatrix} - sgn(\omega) (\tau_{fk})$$

Numerical Solution Cont.

"Climb" distance per 1 cycle

$$r_m - \sqrt{r_m^2 - x_d^2}$$

Climbing Speed

$$v = \frac{r_m - \sqrt{r_m^2 - x_d^2}}{\Delta t}$$

Experiments

Experimental Setup

Hall Sensor Module

IYPT 2025 40

Characterizing Friction

Demagnetizing Magnets

Characterizing Friction

Material	Static μ_s ($\pm { m SD}$)	Kinetic μ_k ($\pm \mathrm{SD}$)
Low Carbon steel rod	0.414 ± 0.049	0.25 ± 0.04
304 Stainless Steel rod	0.341 ± 0.054	0.18 ± 0.03
416 Stainless Steel rod	0.339 ± 0.040	0.19 ± 0.03
4140 Alloy Steel rod	0.328 ± 0.045	0.22 ± 0.03
1045 Carbon Steel rod	0.322 ± 0.031	0.19 ± 0.03
O1 tool steel rod	0.340 ± 0.026	0.26 ± 0.03
Glass blocker	0.329 ± 0.012	0.17 ± 0.03

Characterizing Magnetic Force

Note: The two portions of the secondary coil are wounded in opposite directions

Characterizing Magnetic Force

IYPT 2025 44

Characterizing Magnetic Force

[5]. Matched with literature BH curves

Characterizing Constants

Caliper and digital scale used

$$r = 0.400cm, 0.600cm$$

 $d \Rightarrow \{2.381cm, 3.49cm\}$

$$m = 1.900g, 3.600g$$

 $r = 0.300cm, 0.500cm$

IYPT 2025

Results

Varying Rod Angular Velocity

Note that we plotted out our theoretical, within the error range for the Normal force, and friction.

Varying Rod Angular Velocity

Note that we plotted out our theoretical, within the error range for the Normal force, and friction.

Theoretical Analysis – Time spent in Phases

Slip phase time stays relatively constant due to low dependence on ω , this explains the flattening out curve

Experiments

Varying Rod Angular Velocity (0.6mm rod)

Comparing Climbing Speed vs Angular Velocity

Varying Rod Angular Velocity (0.6mm rod)

Comparing Climbing Speed vs Angular Velocity

IYPT 2025 52

Magnet Instability

Increasing ω

Summary

"Attach a rod assembled from cylindrical neodymium magnets horizontally to a vertical ferromagnetic rod. Limit the motion of the magnets to the vertical direction. When the ferromagnetic rod is spun around its axis of symmetry, the magnetic rod begins to climb up. Explain this phenomenon and investigate how the rate of climbing depends on relevant parameters."

Qualitative Account

Demonstrated cases of the phenomenon

Qualitatively and Quantitatively explained cases of the phenomenon

Devised experimental set-up and collected data

References

- [1] Griffiths, D. J. (2024). Introduction to Electrodynamics (5 ed.). Cambridge University. ISBN 978-1-009-39773-5.
- [2] J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007.
- [3] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
- [4] The Engineering ToolBox (2004). Friction Coefficients for Common Materials and Surfaces. Available at: https://www.engineeringtoolbox.com/friction-coefficients-d-778.html February 26, 2025.
- [5] Magnetics B-H Curve of Structural Steel Electrical Engineering Stack Exchange, electronics.stackexchange.com/questions/515849/b-h-curve-of-structural-steel. Accessed 29 June 2025.

Thanks For Listening!

Climbing Magnets | Bailin Wang | Team Canada

"Attach a rod assembled from cylindrical neodymium magnets horizontally to a vertical ferromagnetic rod. Limit the motion of the magnets to the vertical direction. When the ferromagnetic rod is spun around its axis of symmetry, the magnetic rod begins to climb up. Explain this phenomenon and investigate how the rate of climbing depends on relevant parameters."

IYPT 2025

Appendix

Estimating Eddy Currents & Free Currents

B-H Correction Curve

From

$$NI = H_{
m rod} \, L_{
m rod} \, + \, rac{B}{\mu_0} \, \ell_{
m air}$$

we solve for the true field $H_{\rm rod}$:

$$egin{aligned} H_{
m rod} &= rac{NI}{L_{
m rod}} - rac{\ell_{
m air}}{\mu_0 \, L_{
m rod}} \, B \ &= H_{
m meas} \, - \, k_d \, B, \quad k_d = rac{\ell_{
m air}}{\mu_0 \, L_{
m rod}}. \end{aligned}$$

Thus for every point on your loop,

$$H_{\text{corr}}(B) = H_{\text{meas}}(B) - \underbrace{\frac{\ell_{\text{air}}}{\mu_0 L_{\text{rod}}}}_{k_d} B.$$

B-H Correction Curve

Equivalently, fold both reluctances into one effective reluctance:

$$B = \frac{\Phi}{A} = \frac{\mu_0 \, N \, I}{\frac{L_{
m rod}}{\mu_r} + \ell_{
m air}} \implies H_{
m rod} = \frac{NI}{L_{
m rod} + \mu_r \, \ell_{
m air}} = H_{
m meas} \, imes \, f,$$

where

$$f = \frac{L_{\text{rod}}}{L_{\text{rod}} + \mu_r \, \ell_{\text{air}}}.$$

So simply multiply your measured H-axis by f:

$$H_{\rm corr} = H_{\rm meas} f$$
.

Magnet 2 (D=6 mm, H=1.6 mm): North Field vs Distance

Explaining Vectors and Cross

$$||v|| = 5$$

$$\forall = (3,4)$$

$$||v|| \hat{v} = v$$

$$||\hat{v}|| = 1$$

$$torque = r \times \hat{F} ||F||$$

$$\frac{torque}{||F||} = r \times \hat{F}$$

IYPT 2025 67

Mass Measurements

Normal Force/Saturation

Rod Material	Magnet Diameter	Magnet Number	Magnet Rod Length	0.5cm Flux	Flux Ratio	Force(N)
Soft Iron						
	4	2	3.2	9.06667	1	-0.51217
		4	6.4	13.0333	1.4375	-1.32128
		6	9.6	16	1.764706	-2.0992
		8	12.8	17.5667	1.9375	-2.58893
	6	2	3.2	16.5	1	-0.77212
		4	6.4	25.8333	1.565657	-2.71684
		6	9.6	31.8667	1.931313	-4.59236
		8	12.8	37.2	2.254545	-6.57624
Low Carbons Sto	4	2	3.2	9.06667	1	-0.51222
		4	6.4	13.0333	1.4375	-1.32141
		6	9.6	16	1.764706	-2.09942
		8	12.8	17.5667	1.9375	-2.5892
	6	2	3.2	16.5	1	-0.7722
		4	6.4	25.8333	1.565657	-2.71715
		6	9.6	31.8667	1.931313	-4.59291
		8	12.8	37.2	2.254545	-6.57704
Stainless Steel	4	2	3.2	9.06667	1	
		4	6.4	13.0333	1.4375	
		6	9.6	16	1.764706	
		8	12.8	17.5667	1.9375	
	6	2	3.2	16.5	1	-0.02295
		4	6.4	25.8333	1.565657	-0.05938
		6	9.6	31.8667	1.931313	-0.10511
		8	12.8	37.2	2.254545	-0.15767