■ CRYSTALLINE & AMORPHOUS SOLID

CRYSTALLINE SOLID	AMORPHOUS SOLID	
	\$\$\$\$\$\$	
Constituent particles are arranged in a regular, repeating & alternating manner	Constituent particles are arranged in an irregular, random manner	
True solid	Pseudo solid or super cooled liquid	
Long range order	Short range order	
Gives regular cleavage on cutting	Gives an irregular cleavage on cutting	
Anisotropic	Isotropic	
Sharp melting point	Range of melting point	
NaCl, Diamond, Ice etc.	Plastic, Rubber, Glass etc.	

01

Q. Which of the following is a pseudo solid?

(A) CaF₂ (B) Glass

(C) NaCl (D) All of these

ANS: B

CLASSIFICATION OF CRYSTALLINE SOLID

Name	Constituent Particles	Attractive Force	Propersties	Examples
lonic Solid	lons	lonic bond	Brittle, High melting point, poor conductors of heat & electricty	NaCl, KCl, LiCl, etc.
Covalent Solid	Atoms	Covalent bond	Hard, High melting point, poor conductors of heat & electricty	Diamond, Graphite, Quartz, Silica, etc.
Molecular Solid	Molecules	Inter molecular force of attraction	Soft, low melting point, poor conductors of heat & electricty	Wax, ice, Naphthaline, Dry ice, camphor, etc
Metallic Solid	Cations & Mobile electrons	Metallic bond	Soft - hard, low m.p- high m.p, good conductors of heat & electricty	All metals

Q. Which one has the highest melting point?

(A) Ionic crystal

(B) Molecular crystal

(C) Covalent crystal (D) Metallic crystal

ANS: C

UNIT CELL

■ Body center $\rightarrow 1$ ■ Edge center $\rightarrow \frac{1}{4}$ \int per unit cell

Q. How many formula units are there in the unit cell of sodium chloride having

(A) 2 (B) 4 (C) 6 (D) 8

DENSITY OF UNIT CELL

03

RADIUS & EDGE LENGTH Simple Cube → r = ♣

■ BCC \rightarrow r = $\frac{\sqrt{3}a}{4}$ ■ FCC \rightarrow r = $\frac{a}{2\sqrt{2}}$

PACKING EFFICIENCY

Unit cell	Packing efficiency
Simple cubic	52.3%
bcc	68%
fcc	74%

Q. An element has a bcc structure with a cell edge length of 288pm. The atomic radius is:

(A)
$$\frac{\sqrt{2}}{4}$$
 x 288pm (B) $\frac{4}{\sqrt{3}}$ x 288pm

(C)
$$\frac{4}{\sqrt{2}}$$
 x 288pm (D) $\frac{\sqrt{3}}{4}$ x 288pm

AFMC 2010 FCC structure

ANS: B

SOLID STATE

NUMBER OF OCTAHEDRAL VOID = N NUMBER OF TETRAHEDRAL VOID = 2N

Q. A compound is formed by cation C and anion Å. The anions form hcp lattice & the cations occupy 75% of octahedral voids. The formula of the compound is

(A) C_4A_3 (B) C_2A_3 (C) C_3A_2 (D) C_3A_4

ANS: D

NEET 2019

4MU MED 2009

ELECTRICAL & MAGNETIC PROPERTIES 1. Magnetic ferro magnetic ↑ ↓ ↑ ↓ anti ferro magnetic ferri magnetic 2. Electrical

Q. Silicon doped with arsenic is an example of which type of semiconductor?

(A) p-type (B) n-type

(C) n, p-type (D) Intrinsic

ANS: B

Q. Which is the incorrect statement?

- (A) Density decreases in case of crystals with Schottky defect.
- (B) NaCl is insulator, silicon is semiconductor, silver is conductor, quartz is piezoelectric crystal.
- (C) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal.
- (D) ${\rm FeO_{0.98}}$ has non-stoichiometric metal deficiency defect.

ANS: C

AIIMS 2011

Q. The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is

(A) 7 (B) 5 (C) 2 (D) 3

ANS: D

In 14 types of Bravais lattices, BCC is present in cubic, tetragonal and orthorhombic crystal systems