Det A permutation of n distinct elements is an ordering of those elements.

Ex The permutations of {A,B,C} are

ABC ACD BAC BCA CAB CBA

How many permutations of {A,B,C,D}

The near n' permutations of a set

of n distinct elements.

EX) Thus trese are 41 permutations of {A,B,C,D}.

Ex Oflow many permutations of ABCDEF contain DEF in that order? this amounts to permuting A, B, C, DEF, a 4-element set > there are 4! permutations

Det block lies then secondly permute, DEF (4!)(3!) ways

Ex) How many ways to seat 6 people around

circular table? (seatings up to rotation and =)

place first person anywhere. Then in can

- just seat the rest clockwise linearly.

=) (1-1)!=5! ways

Now let's focus on the grid walks (0,0) > (n,n) where the paths never cross the wain diagonal.

We say Cn is the number of such walks.

FTM Cn = n+1 (2n)

They are called the Catalan numbers.

[4.3] Gen. Permutations & Combinations
The Suppose a sequence S of n items has n, objects of type I, no of type 2, not orduring s is n!
n, objects of type 1, no of type 2,
n, of type t. Then the number
ot ordering s is
N, INZ NE!
EX) How many strings can we form using
MISSISSIPPI w/ all the letters?
11414121
(,4,4,2)
Thus If X has telts, the number of k-elt. selections from X, allowing repetitions, is
C(K+t-1, t-1) = C (K+t-1, K)
010010010000000000000000000000000000000
EX HAVE PILES 6+ K, D, & Cases W 28 of Early
a) for many ways to select & total;
EX Have Piles of R, B, & G cubes w/ > 8 of each. a) How many ways to select 8 total? (8+3-1) = (10) red olive green zone 2 one zone zone
b) will a let want 2/ at each color?
(5+3-1) (7)
b) What if we also want = 1 of each color? (5+3-1): (2)
Ex Jay Mor morny non-neg integer solutions to
$X_1 + X_2 + X_3 = 29$
t=4, k= 29 (29+4-1) (32) soln S
4-1), (3)
b) Mon many where X, >0, X2>1, X3 >2, X4 >0!
t;4, x; 29-1-2-3=23,
EX a) Mow many non-neg integer solutions to X, + x + x + x + x + x + x + x = 29 L=4, x= 29 b) Mon many where x, >0, x > 1, x > 2, x = 20? L=4, x= 29 = 1-2-3=23 => (23+4-1) = (26) solus
4-1 / 3 /

= 34x - 23.23x3y + 233x2y2-3.25xy3 + 24y4

71/ 1 of 1/10 cos 15 for 5 for 1 of 1 of 1 of 1 of 1 of 1 of 1
EX) Find the coeff of a 5 bd in the expansion of (a+b)?
The corresponding monomial in the theorem
is n-K/K = 05/04 = 11-4 10=9
he coefficient (n) = /9/9/
is $a^{n-k}b^k = a^5b^4 \Rightarrow k-4$, $n=9$ \Rightarrow the coefficient $\binom{n}{k} = \binom{9}{4} \cdot \frac{9!}{4!5!}$
writing out these coeffs in the following way is Pascal's triangle
way is pascers to row ya
1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 3 1
,
to a dead to a control of a con
$\frac{1}{ k } = \frac{1}{ k } = \frac{1}$
Theorem For Isksn, (n+1) = (n) + (n) tx) Prove (x) = 2 using Binomial than
γ
$\sum_{k=0}^{N} \binom{n}{k} = \sum_{k=0}^{N} \binom{n-k}{k} \binom{n-k}{1} = \binom{n+1}{2} = 2$
EX) Prove (\$) combinatorially. PF We can do this by proving LHS + RHS are different ways of counting elts in the same set
LE WC can do this by proving LMS+RMS.
are different ways of counting elts
in the same set
RMS: 2"= P(x) = # of subsets of X
LMS = 3 {55x 15 = k3 = # of subsets of x
K=0 (0-1/1 101-1-2) 41-11 0000 12 0 1/1
so re ar done.

Ex Prove (&) inductively Base tor n=0, we know 2°=1=(°), so we are done Indassnup! Assure $(n) = 2^n$ for some n, Then $\sum_{k=0}^{N+1} {n+1 \choose k} = {n+1 \choose 0} + {n+1 \choose N+1} + {n+1 \choose N+1} + {n+1 \choose N+1} = 2 + \sum_{k=1}^{N} {n \choose k} + {n+1 \choose N+1} + {$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}$ So the result is prover

EX Prope (i) = (n+1)

Pf $\frac{pf}{We} \text{ will use that } \left(i \right) = \left(\frac{i}{k+1} \right) - \left(\frac{i}{k+1} \right) \\
\text{Then } \left(\frac{i}{k} \right) = \left(\frac{k}{k} \right) + \left(\frac{k+2}{k} \right) + \left(\frac{k+2}{k+1} \right) + \left(\frac{k+2}$ = (n+1) by cancelling

(6.8) Pigeonhole Principle Claim: If we have 1 pigeons in 4 pigeons in 4 pigeonholes, we know at least 2 pigeons are in the same hole. Theorem (Pigeonhole Principle) If n pigeons fly into k pigeon holes and kan p some pigeonhole contains at least two pigeons EX If there are 10 students of first mames

A lice, Bernand, + Charles + last names

(ea, McDuff, + Ng. Show at least 2 people
have same 1st + last names. There are 3.3:9<10 possible names. If names one the holest people me the pigeons, z2 mist have the same homes. Ex Prove this agen by contradiction, et suppose no 2 people have same 1st + last But there are a possible names => must be <a people but there are 10 people -> < Theoren (Pigeonhole Principle, reformulated),
If f: X > Y where X y fingth, and |X|> |Y |

then f(x,) = f(x2) for some x, , x2 E X where x, + x2.

Ex Show that if we have 151 math courses
numbered between 1+300 (inclusive), at least 2 are numbered consecutively.
least 2 are numbered consecutively,
Pf
Call they numbers
C1, C2,, C151. There {C1+1, C2+1,, C150+1} = [1,300]
Then { C, + 1, C2+1,, C150+1] = [1, 300]
$\left \left\{C_{1}, C_{2},, C_{151}\right\}\right + \left \left\{C_{1}+1, C_{2}+1,, C_{150}+1\right\}\right = 301$
·
By PP, at least 2 of these must coincide.
coincide.
coincide. Since Ci, Ci, al distinct, there must be some Ck+1 such that
must be some Cx+1 such that
$C_{\chi} + 1 = C_{\gamma}$ for some $\gamma \in [1, 151]$.
$C_{k}+1=c_{j}$ for some $j \in [1, 151]$. $=) C_{j-1}C_{j}$ are consecutive.
tx) The library has a list of 89 sit com DVD's, narked available (A) or unavailable (U). Show that there are ≥ 2 A items on the
marked available (A) or unavailable (U).
Show that there are I d A items on the
list exactly a jeuns aparti
EX.
let as be the position of it A item.
{a, az,, aso} me the positions of A items
of A items
Consider {a,+9, a2+9, + a50+9}.
Then in the above sets, there are 100 positions, with values in [1,89+9]:[1,98].
with values in [1,89+9]=[1,98].
Thus, 32 must coincide, so
Thus, 32 must coincide so Some a := ax+9 => ai-ax=9 for somei, l

Color, loose in my laundry basket. How many socks must I grab to ensure I have chosen at least one matching pair?

8+1 (worst case the first 8 were all different, so the 9th will ensure a pair)

What if I also have natching gloves for each pair of Socks also loose in the basket. How many pieces of clothing must I grab before I know I'll have a full matching set?

8+8+8+1 (worst case the first 3.8 were all different, so 3.8+1 will ensure a natch)

Ex) Show that in our lel class of 210 students (assuming all are in year 1, 2, 3, or 4), there exist at least 96 in year 1, le5 in year 2, 40 in year 3, 9 in year 4. If not there are less than or equal to (96-1) + (65-1) + (40-1) + (9-1) = 206 < 210 Students. Therefore the result follows by PP.

tx) There are 34 fines at which UCLA can schedule a class. If there are 846 different classes, what is the minimum number of rooms they red?

By PP, there will be a time with at least p846/34] = 25 classes, so

they need at least 25 nows.

Ex Suppose UCLA pairs noonates based on compatibility. Show that among le students, there are either 3 mutually compatible, or 3 mutually in compatible. Call Men S, S2, S4, S5, S6. are little C or I. there, in PP-P3 X = 5(S, S2) (S, S3) ..., (S, S0) 5 TMS K= [5/2]=3 => there are at least 3 pairs in X with same ontpirt Caul: 3 c's or 3 Is Suppose they are (S,S;) (S,S;) (S,Sk) If any (Si, Si) (Si, Si) is

(Si, Si) (Si, Si) then

(Si, Si) (Si, Si), (Si, Si) is

(Si, Si) (Si, Si), (Si, Si) is

(Menise, S(Si, Si), (Si, Si) is

(Si, Si) (Si, Si) is

(Menise, Si, Si, Si, Si, Si, Si, Si, Si, Si) is mutually in compat. Case 2: 3 Is Suppose they are (S, Si) (S, Si) (S, Sk)

If any (Si, Si) (Si, Si) then

(Say (Si, Si) (Si, Si), (Si, Si) gis

mutually incompat.

otherwise, {(Si, Si), (Si, Sk) gis

mutually (outpat.)