Lista 4

- Prof. Mark Alan Junho Song
- 812839 Vinícius Miranda de Araújo

Questão 1

Com 2 segmentos de memória, cada processo ocupa um segmento. Quando um processo está realizando I/O, o outro pode usar a CPU. Em média, 50% do tempo será desperdiçado, porque, durante a execução de I/O de ambos os processos, a CPU ficará ociosa.

Com 4 segmentos de memória, a probabilidade de todos os processos estarem em I/O simultaneamente diminui. A chance de todos estarem esperando I/O ao mesmo tempo é $(0,5)4=0,0625(0,5)^4=0,0625(0,5)^4=0,0625(0,5)^4=0,0625$, ou seja, 6,25% do tempo da CPU será desperdiçado.

Questão 2:

A execução de uma instrução leva 1 microsegundo, e se uma falta de página ocorre a cada k instruções, o tempo adicional para resolver a falta é N microsegundos.

 Tempo total de execução de uma instrução = Tempo para executar a instrução + (Probabilidade de falha de página × Tempo de resolução da falha).

A probabilidade de uma falha de página ocorrer a cada k instruções é $\frac{1}{k}$.

Portanto, o gasto efetivo para executar uma instrução será:

$$1 + \frac{N}{k}$$
 microsegundos

Isso significa que, quanto menor k, ou seja, quanto mais frequentemente as falhas de página ocorrerem, maior será o custo efetivo da instrução.

Questão 3:

Passo	Referência	Estado das Páginas (em memória)	FIFO (Faltas)	LRU (Faltas)
1	0	[0]	1ª falta	1ª falta
2	1	[0, 1]	2ª falta	2ª falta
3	7	[0, 1, 7]	3ª falta	3ª falta
4	2	[0, 1, 7, 2]	4ª falta	4ª falta
5	3	[1, 7, 2, 3]	5ª falta	5ª falta

Passo	Referência	Estado das Páginas (em memória)	FIFO (Faltas)	LRU (Faltas)
6	2	[1, 7, 2, 3]	Nenhuma	Nenhuma
7	7	[1, 7, 2, 3]	Nenhuma	Nenhuma
8	1	[1, 7, 2, 3]	Nenhuma	Nenhuma
9	0	[7, 2, 3, 0]	6ª falta	6ª falta
10	3	[2, 3, 0, 7]	7ª falta	7ª falta

• Questão 4:

O espaço de endereçamento total disponível é de 65.536 bytes, com páginas de 4.096 bytes.

O número de páginas disponíveis seria:

$$\frac{65.536\,\mathrm{bytes}}{4.096\,\mathrm{bytes/página}} = 16\,\mathrm{páginas}.$$

Código: 32.768 bytesDados: 16.386 bytesPilha: 15.870 bytes

O total necessário é:

$$32.768 + 16.386 + 15.870 = 65.024$$
 bytes.

Portanto, o programa caberá no espaço de endereçamento reservado de 65.536 bytes, já que o programa usa 65.024 bytes.

Se as páginas forem diminuídas para 512 bytes, o número de páginas necessárias para o programa será:

$$\frac{65.024\,\mathrm{bytes}}{512\,\mathrm{bytes/p\acute{a}gina}}\approx127\,\mathrm{p\acute{a}ginas}.$$

Neste caso, o programa não caberá no espaço reservado de 16 páginas, pois seriam necessárias 127 páginas para acomodar os dados.

• Questão 5:

O número de páginas depende dos 4 campos?
 Não. O número de páginas depende da quantidade de bits alocados para os campos que determinam a tradução do endereço (como os campos a, b, c). O campo d especifica o deslocamento dentro de uma página, mas não altera o número de páginas.

- O espaço de endereçamento virtual depende dos 4 campos?
 Sim. O espaço de endereçamento virtual depende do número total de bits nos 4 campos. O conjunto de todos os campos define o endereço completo que o processador pode acessar, o que afeta diretamente o espaço de endereçamento.
- O tamanho da página depende de quais campos?
 O tamanho da página depende somente do campo d, que representa o deslocamento dentro de uma página. O número de bits alocados para o campo d define o tamanho da página. Quanto maior o número de bits em d, maior será o tamanho da página.