SUMMER SEMINAR: ANALYSIS

Preliminary Concepts

Monoids, Groups, Rings, Integral Domains and Fields

Def: Let *S* be a non-empty set and let * be an associative binary operator on *S*. If there exists an element $e \in S$ so that

$$\forall x \in S \ \left(x * e = e * x = x \right)$$

then (S, *, e) is a called a **monoid** and e is called an **identity element** for * on S.

Thm: Identity elements of monoids are unique. I.e. if e_1 and e_2 are both identity elements of a monoid S, then $e_1 = e_2$.

Def: Let (S, *, e) be a monoid. If the following holds:

$$\forall x \in S \ \left(\exists y \in S \ \left(x * y = e\right)\right)$$

then (S, *, e) is called a **group** and for each such y, it is called an **operational inverse** of x.

Thm: Operational inverses are unique for each element in a group. I.e. If y_1 and y_2 are both operational inverses of an element x, then $y_1 = y_2$.

Def: If in a group *S*, the following holds:

$$\forall x, y \in S \ (x * y = y * x)$$

then S is called a **commutative** group (also alternatively an **Abelian** group).

Def: We say $(S, +, \times, 1)$ is a **ring** if

- 1) $\langle S, + \rangle$ is a commutative group.
- 2) $\langle S, \times, 1 \rangle$ is a multiplicative monoid.

3)
$$\forall a, b, c \in S \left(\left(a \times (b+c) = (a \times b) + (a \times c) \right) \wedge \left((b+c) \times a = (b \times a) + (c \times a) \right) \right)$$

Def: If $\forall x, y \in S$ ($x \times y = y \times x$) then *S* is called a **commutative ring**.

Def: A group or ring is said to be **trivial** if and only if $S = \{e\}$ where e is the operational identity for both + and \times .

Def: For any non-trivial ring *S*, elements $a, b \in S$ are called **zero-divisors** of *S* if:

$$(a \neq 0) \land (b \neq 0) \land (a \times b = 0).$$

Def: A non-trivial commutative ring $\langle S, +, \times, 0, 1 \rangle$ is called an **integral domain** if it contains no zero-divisors.

Thm: If *S* is an integral domain then $\forall x, y \in S$, $\left(\frac{(x \times y = 0)}{(x = 0) \vee (y = 0)} \right)$.

Def: A non-trivial commutative ring $\langle S, + \times, 0, 1 \rangle$ is called a **field** if every non-zero element has a multiplicative inverse, i.e.

$$\forall x \in S \left(\frac{x \neq 0}{\exists y \in S \ (x \times y = 1)} \right)$$

Thm: Multiplicative inverses are unique. I.e. if z_1 and z_2 are both inverses of an element x then $z_1 = z_2$.

Thm:

- (1) All fields are integral domains.
- (2) \mathbb{N} is an additive and multiplicative monoid.
- (3) \mathbb{Z} is an integral domain.
- (4) \mathbb{Q} and \mathbb{R} are fields.

Integer Intervals and Correspondent Sets

Def: For $a, b \in \mathbb{Z}$, $a ... b := \{n \in \mathbb{Z} \mid a \le n \le b\}$. This is the **integer interval** from a to b.

Note that:

- (1) $a..a = \{a\}.$
- (2) $a..b = \{ \}$ when b < a. In particular $1..0 = \{ \}$.

Def: Two sets, *A* and *B* are said to be **correspondent** if there exists a bijection from one to the other and we write $A \simeq B$.

Thm:

- (1) If there exists an injection from A into B and an injection from B into A, then $A \simeq B$.
- (2) If there exists a surjection from A onto B and a surjection from B onto A, then $A \simeq B$.

Thm: Correspondence of sets is an equivalence relation on $Pwr(\mathcal{U})$. I.e.:

- (1) $\forall S \subseteq \mathcal{U} (S \simeq S)$.
- (2) $\forall S, T \subseteq \mathcal{U} \left(\frac{S \simeq T}{T \simeq S} \right)$.
- (3) $\forall S, T, W \subseteq \mathcal{U}\left(\frac{(S \simeq T) \land (T \simeq W)}{S \simeq W}\right)$.

Thm:

- (1) $\mathbb{N} \simeq \mathbb{Z} \simeq \mathbb{Q}$.
- (2) $\mathbb{Q} \simeq \mathbb{R}$.

Thm: Suppose *S* and *T* are both algebraic structures (of some type *H*). If *S* and *T* are *H*-isomorphic, then *S* and *T* are correspondent (as sets).

Finiteness, Infiniteness, Cardinality, Countability and Denumeration

Def: A set A is said to be **finite**, Fnt(A), If there exists an integer $n \ge 0$ where $A \simeq 1..n$. Note that if n=0, then A is empty. In any case, the **cardinality** of A, written |A| (or v(A)), is defined to be n. Symbolically:

$$Fnt(A)$$
: $\Leftrightarrow \exists n \in \mathbb{N} \ (A \simeq 1..n)$
 $Fnt(A) \Rightarrow (|A| := n)$

Def: Any set A that is not finite is said to be **infinite**, Ent(A).

Def: Let \mathcal{F} be the set of all finite sets. I.e.: $\mathcal{F} := \{A \subseteq \mathcal{U} \mid Fnt(A)\}$. Note then $Fnt(A) \Leftrightarrow (A \in \mathcal{F})$.

Thm:
$$\forall n \in \mathbb{N} \ (|1..n| = n)$$
. Moreover $\forall a, b \in \mathbb{Z}, \left(|a..b| = \begin{cases} b - a + 1, & \text{if } a \leq b \\ 0, & \text{if } b < a \end{cases}\right)$.

Def: If there exists a surjective function from \mathbb{N} onto a set A, then A is called a **countable** set, *Cntbl*(*A*). If *A* is also infinite, then *A* is said to be **countably infinite**.

Def: A function ϕ that is a bijection from either the integer interval 1.. n for some $n \in \mathbb{N}$ or from \mathbb{N} itself to a set A, then ϕ is called a **denumeration** of A.

Thm: There exists a denumeration for every countable set. (Countable sets are therefore often called **denumerable** sets.)

Thm:

- (1) \mathbb{N} , \mathbb{Z} and \mathbb{Q} are countably infinite.
- (2) \mathbb{R} is infinite but not countable.
- (3) $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|$.

$$(4) \ \forall A \subseteq \mathcal{U} \left(\frac{|A| < |\mathbb{N}|}{Fnt(A)} \right)$$

(4)
$$\forall A \subseteq \mathcal{U}\left(\frac{|A| < |\mathbb{N}|}{Fnt(A)}\right)$$

(5) $\forall A \subseteq \mathcal{U}\left(\frac{Ent(A) \wedge Cntbl(A)}{A \simeq \mathbb{N}}\right)$

Thm: Every infinite set includes a countably infinite subset.

Thm [Galileo]: If there exists an injective function that is not surjective from a set into itself, then A is infinite. Symbolically:

$$\left(\frac{\exists \phi \in Fnct(A, A) \left(Inj(\phi) \land Srj(\phi)\right)}{Ent(A)}\right)$$

Thm:

(1)
$$\forall A, B \subseteq \mathcal{U}\left(\frac{|A| = |B|}{|\operatorname{Pwr}(A)| = |\operatorname{Pwr}(B)|}\right)$$
.
(2) $\forall A, B \subseteq \mathcal{U}\left(\frac{A \simeq B}{|A| = |B|}\right)$
(3) $\forall A \subseteq \mathcal{U}\left(|A| < |\operatorname{Pwr}(A)|\right)$.

Thm: $Pwr(\mathbb{Q}) \simeq \mathbb{R}$.

Order and Density

Def: A partially ordered set (S, \lesssim) is said to be a (**linearly**) **ordered set** if

$$\forall a, b \in S \left((a \le b) \lor (b \le a) \right).$$

Def: We say a linearly ordered set *S* with more than 1 element is (**order-wise**) **dense** in a linearly ordered set T if

$$(S \subseteq T) \land \left(\forall x, y \in T \left(\frac{(x \prec y)}{\exists z \in S \left(x \prec z \prec y \right)} \right) \right)$$

where x < y is the strict order corresponding to \lesssim . We write Dns(S, T).

Def: Any set A that is dense in itself is called an (**order-wise**) **dense set**, Dns(A).

Thm:

- 1) Both \mathbb{Q} and \mathbb{R} are (order-wise) dense sets.
- 2) \mathbb{Q} is (order-wise) dense in \mathbb{R} .
- 3) \mathbb{Z} is not (order-wise) dense. (e.g. there is no integer between 0 and 1.)

Thm: $\forall S, T \subseteq \mathcal{U}$:

- (1) If *S* is (order-wise) dense in *T*, then $|\mathbb{N}| \leq |S| \leq |T|$.
- (2) $\left(\frac{\exists S \subseteq T \left(Dns(S,T)\right)}{Dns(T)}\right)$. (3) $\left(\frac{(S \subseteq T) \land Dns(T)}{Dns(S)}\right)$.

Thm:

- (1) All dense sets are infinite.
- (2) All infinite fields are dense.

Thm:

- (1) If S is a linearly ordered field and ϕ is a field-isomorphism from S to T, then T is linearly ordered.
- (2) All dense sets include a subset that is order-isomorphic to Q.
- (3) All infinite fields *T* include a dense subset *S* (in *S* and *T*) that is field-isomorphic to \mathbb{Q} .

Note: The set of irrational real numbers, I, is not a field (since it has neither an additive nor a multiplicative identity). It is however an ordered, dense subset of \mathbb{R} . Its **arithmetic closure** (i.e. the smallest field containing \mathbb{I}) is \mathbb{R} .

Thm:

- $(1) \ \forall x, y \in \mathbb{Q} \ \big((x < y) \Rightarrow \exists \alpha \in \mathbb{I} \ (x < \alpha < y) \big).$
- $(2) \ \forall \alpha, \beta \in \mathbb{I} \ ((\alpha < \beta) \Rightarrow \exists x \in \mathbb{Q} \ (\alpha < x < \beta)).$