Continued from Table 6 part 1

Table 6 part 2

The following five rows are preferred over the last three rows in Table 6 part 1.

i	H ₂ Transition ^a	$E_P(\text{cm}^{-1})^a$	I^{a}	Uranian Satellites	$R'_{ui}^{\ b}$	<i>T(K)</i> ^c
15	(2,1) S(2)	4642	0.44	Ring 4	1.666	2134
14	(3,2) S(4)	4699	0.09	Ring 5	1.652	2297^{d}
13	(1,0) S(1)	4713	1.60	Ring 5	1.652	
12	(2,1) S(3)	4823	0.56	Ring 6	1.637	2560^{d}
11	(3,2) S(5)	4841	0.11	Ring 6	1.637	

^aBlack and van Dishoeck (1987)

 $^{{}^{}b}$ NASA(2021), R'_{ui} are orbital radii of satellites from Ring 6 to Ophelia.

 $^{{}^{\}rm C}T$'s from $T = (E_p - E_b)/C'$. This relationship is discussed in section 2.7 of the text.

 $^{^{\}mathrm{d}}T$ is calculated for this satellite using two close E_p 's. First the weighted average of the two E_p 's is determined using relative intensities (I's) as weighting factors. Then T is calculated from $T=(E_p-E_b)/C'$, where E_p is the weighted average. See Figure 4.

^eIt was not possible to associate this spectral line with a satellite. Because its relative intensity (*I*) is low, it is assumed it does not create resonance and it is not included in the analysis. See Figure 4.