Университет ИТМО Факультет ПИиКТ

Системы искусственного интеллекта Лабораторная работа №5

Выполнила: Наумова Н.А.

Группа Р33022

Преподаватель: Бессмертный И.А.

Санкт-Петербург 2020 г.

Цель работы:

решить задачу многоклассовой классификации, используя в качестве тренировочного набора данных - набор данных MNIST, содержащий образы рукописных цифр.

Номер в списке группы ИСУ = 12

Задание:

- 1. Используйте метод главных компонент для набора данных MNIST (train dataset объема 60000). Определите, какое минимальное количество главных компонент необходимо использовать, чтобы доля объясненной дисперсии превышала 0.80+12%10 = 0.82. Построить график зависимости доли объясненной дисперсии от количества используемых ГК.
- 2. Введите количество верно классифицированных объектов класса 12%9 = 3 для тестовых данных.
- 3. Введите вероятность отнесения 5 любых изображений из тестового набора к назначенному классу
- 4. Определите Accuracy, Precision, Recall or F1 для обученной модели.
- 5. Сделайте вывод

```
# импорт необходимых библиотек, загрузка данных из MNIST
!pip install --upgrade pip
!pip install --upgrade scikit-learn==0.23.0
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.metrics import classification report
from keras.datasets import mnist
(X_train, y_train), (X_pred, y_pred) = mnist.load_data()
# разделение выборки на тестовую (30%) и тренировочную (70%)
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X train, y train,
test size=0.3, random state=2020)
# преобразование данных и уменьшение размерности
dim = 784 # 28*28
X train = X train.reshape(len(X train), dim)
X test = X test.reshape(len(X test), dim)
```

Видим, что необходимо использовать минимально 49 главных компонент, чтобы доля объясненной дисперсии превышала 0.82; выставим его выше.

```
# график plt.plot(np.arange(50), explained variance, ls = '-')
```

[<matplotlib.lines.Line2D at 0x7f719c459198>]


```
# обучение многоклассового классификатора методом One-vs-All и дерево # принятия решений from sklearn.multiclass import OneVsRestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier tree = RandomForestClassifier(criterion='gini', min samples leaf=10, max depth=20, n estimators=10, random state=2020) clf = OneVsRestClassifier(tree).fit(X train, y train)
```

```
# применение полученного ранее преобразования метода главных компонент к
# тестовым данным
modelPCA = pca.fit(X test)
X test = modelPCA.transform(X test)
y pred = clf.predict(X test)
from sklearn.metrics import confusion matrix
CM = confusion matrix(y test, y pred)
CM
array([[1363, 0, 71, 78, 2, 49, 30, 49, 48, 3],
    [ 0, 1860, 51, 11, 11, 6, 47, 49, 35, 5],
   [ 54, 10, 986, 57, 46, 94, 357, 25, 111, 23], [ 29, 5, 55, 1521, 16, 93, 7, 39, 80, 28],
    [ 6, 9, 56, 7, 1348, 14, 43, 30, 70, 173],
    [ 104, 5, 181, 240, 51, 556, 4, 66, 356, 28],
    [ 30, 19, 782, 30, 24, 22, 713, 25, 102, 19],
   [ 59, 41, 17, 7, 42, 13, 84, 1493, 30, 100],
[ 35, 44, 108, 268, 64, 534, 35, 14, 569, 102],
    [ 26, 16, 27, 47, 413, 37, 31, 175, 119, 933]])
CM[3][3]
```

1521

Число верно классифицированных объектов класса 3 - 1521.

```
target names = ['class 0', 'class 1','class 2','class 3','class 4','class
5','class 6','class 7','class 8','class 9']
print(classification report(y test, y pred, target names=target names))
```

	precision	recall	f1-score	support
class 0	0.80	0.81	0.80	1693
class 1	0.93	0.90	0.91	2075
class 2	0.42	0.56	0.48	1763
class 3	0.67	0.81	0.73	1873
class 4	0.67	0.77	0.71	1756
class 5	0.39	0.35	0.37	1591
class 6	0.53	0.40	0.46	1766
class 7	0.76	0.79	0.78	1886
class 8	0.37	0.32	0.35	1773
class 9	0.66	0.51	0.58	1824
accuracy			0.63	18000
macro avg	0.62	0.62	0.62	18000
weighted avg	0.63	0.63	0.62	18000

```
# вероятности
\# 2-й элемент - класс 9
print(clf.predict_proba(X_train) [1] [y_pred[9]])
0.7424156712046422
# 8192-й элемент - класс 3
print(clf.predict proba(X train) [8192] [y pred[3]] )
0.7377543605972064
# 257-й элемент - класс 1
print(clf.predict_proba(X_train) [256] [y_pred[1]] )
0.1157121523252498
# 1025-й элемент - класс 4
print(clf.predict_proba(X_train) [1024] [y_pred[4]])
0.05633643200890198
# 4097-й элемент - класс 6
print(clf.predict_proba(X_train) [4096] [y_pred[6]])
0.00507688388573749
```

Вывод: проанализировав значения accuracy, precision, recall заметим, что нейросеть дает не самые хорошие показатели точности - довольно точно она смогла распознавать только цифры класса "1" - единицы.

Выполнив данную лабораторную работу, я реализовала распознавание рукописных цифр на наборе данных MNIST.