Prediction of Consumer Disputes about Financial Complaints Response

Team 2 Members:

Fengmei Liu, Xiaoyan Chong and Weiqian Hou

Outline

- Introduction and motivation
- System Design & Implementation details
- Experiments of concept evaluation
 - Data Preprocessing
 - Logistic regression
 - Naive Bayes
 - Gradient Boosting Tree
- Conclusion and Discussion

Problem to Solve

US Consumer Finance Complaints Dataset

YEAR 2016, Data Size 50853

Data

Kaggle dataset "US Consumer Finance Complaints".

Background

 Consumer Financial Protection Bureau (CFPB) sends consumers' complaints about financial products/services to companies for response

Objective

 Classification: Consumer Disputed(YES/NO) from a knowledge of complaint patterns.

Meaning

- Use as a reference for companies to understand their customer service
- Guide customers to follow the correct way of feedback to get complains successively solved

INPUT

All Catogorical

date received

Product, sub_product

Issue, Sub_issue

Consumer_complaint_narrative

Company_public_response, Company

State, zipcode, tags

Consumer_consent_provided

Submitted_via, date_sent_to_company

Company_response_to_consumer

timely_response

complaint_id

OUTPUT

Two Levels

Consumer_disputed (Yes/No)

System Design and Process Flow

Data Preprocessing

Logistic Regression

AREA under the curve is: 0.6963

Reason?

Logistic Regression

• Pros:

- fast and intrinsically simple
- low variance and so is less prone to overfitting

Cons:

- Doesn't handle large number of categorical variables well
- Does not give us much space to improve the final predicting accuracy.

Naïve Bayes & Tree Augmented Naïve Bayes (TAN)

Models

- Simple Naïve Bayes, Cross Validation 10-fold
- Laplace Smoothing (0.001, 0.1, 0.5, 1,2),
 Cross Validation 10-fold
- TAN

Result

- TAN has the best accuracy 0.865 and Narrowest 95% C.I.
- Laplace smoothing has no improve as the test data has no new categories.

Run Result: TAN model shows the correlation between inputs and output

Decision Tree (Gradient Boosting)

Decision Tree (Gradient Boosting)

Boosting Test Error

Gradient Boosting Tree

• Pros:

- Yields a very accurate classifier.
- Faster than other boosting methods such as adaptive boosting.

Cons:

- Hard to tune the model because of these parameters.
- Easy to get overfitting.
- Not very speedy.

Comparison of Three Algorithms

Thank you