1 Complex Numbers

Definition 1.1 (Complex Numbers). Complex numbers are numbers of the form z = x + iy with $x, y \in \mathbb{R}$.

We denote the set of complex numbers by $\mathbb{C} := \{x + iy \mid x, y \in \mathbb{R}\}.$

For z = x + iy, we can x the **real part** of z and y the **imaginary part**. We usually write

$$x = \Re z, \quad y = \Im z$$

If y=0, then z is real. If x=0, then z is purely imaginary. It is obvious that $\mathbb{R}\subset\mathbb{C}$.

Two complex numbers are equal if and only if their real parts and imaginary parts are both equal.

Definition 1.2 (Addition, Subtraction, Multiplication). For $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we define

- Addition/Subtraction: $(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$
- Multiplication: $(x_1+iy_1)\cdot(x_2+iy_2) = (x_1x_2-y_1y_2)+i(x_1y_2+y_1x_2).$

Theorem 1.1. For any $z_1, z_2, z_3 \in \mathbb{C}$, we have

- Commutative law: $z_1 + z_2 = z_2 + z_1$, $z_1 \cdot z_2 = z_2 \cdot z_1$.
- Associative law: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),$ $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).$

Definition 1.3 (Division). For $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2 \neq 0$, we have

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{y_1 x_2 - x_1 y_2}{x_2^2 + y_2^2}$$

Definition 1.4 (Modulus). The modulus |z| of a complex number z = x + iy is the distance of z from the origin 0 in the complex plane:

$$|z| = \sqrt{x^2 + y^2}$$

Remark:

- $|z| \ge 0$; $|z| = 0 \Leftrightarrow z = 0$.
- $|\Re z| \le |z|$, $|\Im z| \le |z|$.
- Distance between z_1 and z_2 is $|z_1 z_2|$.

Definition 1.5 (Complex Conjugate). The **complex conjugate** \bar{z} of a complex number z = x + iy is defined by

$$\bar{z} = x - iy$$

Theorem 1.2 (Consequences involving Complex Conjugate). $\Re z = \frac{z+\bar{z}}{2}$.

•
$$\Im z = \frac{z-\bar{z}}{2}$$

- $\bullet \ \overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2.$
- $\bullet \ \overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2.$
- $\bullet \ \overline{\frac{z_1}{z_2}} = \frac{\bar{z}_1}{\bar{z}_2}.$
- $\bullet \ z\bar{z} = |z|^2.$
- \bullet $\frac{z_1}{z_2} = \frac{z_1 \bar{z}_2}{|z_2|^2}$

Theorem 1.3. $|z_1z_2| = |z_1| \cdot |z_2|$.

Theorem 1.4 (Triangle Inequality).

$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

Definition 1.6 (Polar Form, Exponential Form). Let z = x + iy, Then, with (r, θ) satisfying $x = r \cos \theta$ and $y = r \sin \theta$, we can write

$$z = r(\cos\theta + i\sin\theta)$$

We call the above expression **polar form** of z. We define $e^{i\theta} := \cos \theta + i \sin \theta$. So we have

$$z = re^{i\theta}$$

We call the above expression the **exponential form** of z. Here, $r = \sqrt{x^2 + y^2}$, $\theta = \arctan \frac{y}{x} + (2n + 1)\pi$.

Definition 1.7 (Argument). Any real value that makes the polar form holds is called the **argument** of z. We have

$$\arg z = \theta + 2n\pi, n \in \mathbb{Z}$$

Due to this result, we define the general polar form of z to be

$$z = r[\cos(\theta + 2n\pi) + i\sin(\theta + 2n\pi)], n = 0, \pm 1, \dots$$

and general exponential form as

$$z = r \exp[i(\theta + 2n\pi)], n = 0, \pm 1, \dots$$

Definition 1.8 (Principal Argument). Arg $z = \{x \mid x \in \arg z, -\pi < x \le \pi\}.$

Theorem 1.5. $arg(z_1z_2) = arg(z_1) + arg(z_2)$

Theorem 1.6 (De Moivre's Formula). $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

Definition 1.9 (Principal nth root). Principle nth root is the nth root of the principle argument.

2 Analytic Functions

Definition 2.1 (Polynomial). A polynomial in z is a function of the form

$$f(z) = a_0 + a_1 z + \dots + a_n z^n$$

with each $a_i \in \mathbb{C}$.

Definition 2.2 (Rational Function). A rational function in z is a function of the form $f(z) = \frac{p(z)}{q(z)}$, where p, q are polynomial in z.

Definition 2.3 (Limits). We write $\lim_{z\to z_0} f(z) = w_0$ if the following condition is satisfied: For any $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$|f(z) - w_0| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$

Theorem 2.1 (Limit of Real/Imaginary-Part Separable Function). If f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, then

$$\lim_{z \to z_0} f(z) = w_0 \Leftrightarrow \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0, \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0 \end{cases}$$

Theorem 2.2. If there are two curves C_1 and C_2 passing through z_0 such that

$$\lim_{z \to z_0 \text{ along } C_1} f(z) \neq \lim_{z \to z_0 \text{ along } C_2} f(z)$$

then $\lim_{z\to z_0} f(z)$ does not exist.

Theorem 2.3. If $\lim_{z\to z_0} f(z) = w_1$ and $\lim_{z\to z_0} g(z) = w_2$, then

$$\lim_{z \to z_0} [f(z) + g(z)] = w_1 + w_2, \quad \lim_{z \to z_0} f(z) \cdot g(z) = w_1 \cdot w_2$$

and

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_1}{w_2} \text{ if } g(z), w_2 \neq 0$$

2.1 Infinity

Definition 2.4 (Extended Complex Plane). $\mathbb{C} \cup \{\infty\}$ is called the extended complex plane.

Definitions of limits involving infinity is similar to that of real limits, and is omitted.

2.2 Continuity

Definition 2.5 (Continuous). A complex-valued function f(z) is continuous at z_0 if and only if $\lim_{z\to z_0} f(z) = f(z_0)$.

Theorem 2.4 (Some consequence). • If f(z) = u(x, y) a function which is analytic in \mathbb{C} . iv(x, y), then f(z) is continuous if and only if u, v are continuous.

Theorem 2.9 (Constant Analytic in \mathbb{C}).

- If f(z), g(z) are continuous, then $f(z) \pm g(z), f(z) \cdot g(z)$ are continuous at z_0 .
- Also, $\frac{f}{g}(z)$ is continuous at any z_0 where $g(z_0) \neq 0$.

2.3 Differentiation

Definition 2.6 (Derivative). The derivative of f at z_0 is defined as

$$\frac{\mathrm{d}}{\mathrm{d}z}f(z)|_{z=z_0} = f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

If $f'(z_0)$ exists, then we say f is differentiable at z_0 .

Theorem 2.5. If f(z) is differentiable at z_0 , then f(z) is continuous at z_0 .

The differentiation rule of complex functions are similar to that of real functions.

2.4 Cauchy Riemann Equations

Theorem 2.6 (A necessary condition for differentiability). If f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$, then u and v satisfy Cauchy Riemann equations at (x_0, y_0) i,e,

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Theorem 2.7 (A Sufficient Condition for Differentiability). Let f(z) = u(x, y) + iv(x, y) be defined near the point $z_0 = x_0 + iy_0$. Suppose

1. u, v satisfies CR equations at (x_0, y_0) :

$$u_x = v_y, u_y = -v_x$$

2. u_x, u_y, v_x, v_y continuous at (x_0, y_0) .

Then f is differentiable at z_0 .

2.5 Analytic Functions

Definition 2.7 (Analytic Function). We say f is analytic at point z_0 if f(z) differentiable everywhere in some open set U containing z_0 .

We say f is analytic in an open set U if f is differentiable everywhere in U.

Theorem 2.8. If f, g are analytic in open set U, so are $f + g, f - g, f \times g$, and $\frac{f}{g}$, with $U \setminus \{z \in U \mid g(z) = 0\}$.

Definition 2.8 (Entire function). An **entire** function is + function which is analytic in \mathbb{C} .

Theorem 2.9 (Constant Analytic Function). Let f(z) be analytic in domain D. If f'(z) = 0 on D, then f(z) is constant in D.

2.6 Harmonic Function

Definition 2.9 (Laplace Equation). Let f(z) = u(x, y) + iv(x, y) be **analytic** in domain D. Then u, v satisfies Laplace equation:

$$u_{xx} + u_{yy} = 0$$
$$v_{xx} + v_{yy} = 0$$

on D.

Definition 2.10 (Real Harmonic Function). Let D be a domain in \mathbb{R}^2 . A function $u:D\to\mathbb{R}$ is said to be harmonic in $D\subset\mathbb{R}^2$ if

- 1. u has continuous first and second partial derivative
- 2. u satisfies Laplace equation in D.

Definition 2.11 (Harmonic Conjugate). Let u, v be two harmonic functions in a domain D. We say v is a harmonic conjugate of u if

$$u_x = v_y$$
 and $u_y = -v_x$ on D

Theorem 2.10 (Harmonic Conjugate composing Analytic Function). Let u be a harmonic function in domain D. Let v be a harmonic conjugate of u. Then f(z) = u + iv is an analytic function in D.

3 Elementary Functions

3.1 Exponential Function

Definition 3.1 (Exponential Function). Let $z = x + iy \in \mathbb{C}$,

$$e^z = e^x(\cos y + i\sin y) = e^x e^{iy}$$

It is worth noting $e^{2\pi i}=1$, so the expoential function is periodic with period $2\pi i$.

Theorem 3.1.

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}$$

Theorem 3.2 (Modulus and Argument of Exponential Function). $|e^z| = e^x$, and $\arg(e^z) = y + 2n\pi, n \in \mathbb{Z}$.

3.2 Logarithmic Function

Definition 3.2 (Logarithmic Function). We define, for $z \in \mathbb{C} \setminus \{0\}$,

$$\log z = \ln|z| + i\arg z$$

Definition 3.3 (Principal Logarithmic Function).

$$Log z = \ln|z| + i \operatorname{Arg} z$$

Log z has image $\{x + yi \mid x \in \mathbb{R}, y \in (-\pi, \pi]\}$.

Note, that Log z is continuous on the **cut complex plane** $\mathbb{C} \setminus (-\infty, 0]$.

Theorem 3.3 (Principal Log is analytic on cut complex plane). The function Log z is analytic on $\mathbb{C} \setminus (-\infty, 0]$, and

$$\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log} z = \frac{1}{z}$$

for all z in cut complex plane.

Theorem 3.4.

$$\log(z_1 z_2) = \log z_1 + \log z_2$$

Definition 3.4 (Complex Exponents). For $z, c \in \mathbb{C}$ with $z \neq 0$,

$$z^c := e^{c \log z}$$

Note, z^c is a multivalued function. So we define the **principal value of** z^c to be $P.V.z^c = e^{c \log z}$.

3.3 Trigonometric Function

Definition 3.5 (Sine, Cosine). For $z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

We have, for z = x + iy, $|\sin z|^2 = \sinh^2 y + \sin^2 x$, and $|\cos z|^2 = \sinh^2 y + \cos^2 x$.

We have $\sin(z + \pi) = -\sin z$, $\cos(z + \pi) = -\cos z$, and $\tan(z + \pi) = \tan z$.

Definition 3.6 (Hyperbolic Sine, Hyperbolic Consine). For $z \in \mathbb{C}$,

$$\cosh x = \frac{e^z + e^{-z}}{2} \quad \sinh z = \frac{e^z - e^{-z}}{2}$$

We have, $\sinh z = i \sin(-iz)$, $\cosh = \cos(-iz)$, $\cosh^2 z - \sinh^2 z = 1$.

Definition 3.7 (Inverse Trigonometic Function).

$$\cos^{-1} z = -i\log(z + (z^2 - 1)^{1/2})$$

$$\sin^{-1} z = -i\log(iz + (1-z^2)^{1/2})$$

$$\tan^{-1} z = \frac{i}{2} \log \frac{i+z}{i-z}$$

We have

$$\frac{\mathrm{d}}{\mathrm{d}z}\cos^{-1}z = \frac{z}{(1-z^2)^{1/2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}z}\sin^{-1}z = \frac{1}{(1-z^2)^{1/2}}$$

$$\frac{\mathrm{d}}{\mathrm{d}z}\tan^{-1}z = \frac{1}{1+z^2}$$

4 Contour Integration

Definition 4.1 (Integration of Complex Function of a real variable). Let $w:[a,b]\to\mathbb{C}$, and $t\in[a,b]$. Let w(t)=u(t)+iv(t).

• If u'(t) and v'(t) both exist, then we define

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = w'(t) := u'(t) + iv'(t)$$

• If u and v are integrable on [a, b], then we define

$$\int_{a}^{b} w(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

Theorem 4.1. Let $w, w_1, w_2 : [a, b] \to \mathbb{C}$ and $z_0 \in \mathbb{C}$.

- $\frac{\mathrm{d}}{\mathrm{d}t}[w_1(t) + w_2(t)] = w_1'(t) + w_2'(t)$
- $\bullet \ \frac{\mathrm{d}}{\mathrm{d}t}[z_0w(t)] = z_0w'(t)$
- $\int_a^b [w_1(t) + w_2(t)] dt = \int_a^b w_1(t) dt + \int_a^b w_2(t) dt$
- $\int_a^b z_0 w(t) dt = z_0 \int_a^b w(t) dt$

Theorem 4.2. If $w:[a,b]\to\mathbb{C}$, then

$$\left| \int_{a}^{b} w(t) dt \right| \le \int_{a}^{b} |w(t)| dt$$

Theorem 4.3 (Fundamental Theorem of Calculus). Suppose F(t) and f(t) continuous such that

$$F'(t) = f(t)(a < t < b)$$

Then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

Definition 4.2 (Curve). A **curve** in the complex plane is a continuous function

$$\gamma:[a,b]\to\mathbb{C}$$

That is if we write $\gamma(t) = x(t) + iy(t)$, then x(t) and y(t) are continuous on [a, b].

The set of points on γ is called the **track** of γ .

Definition 4.3 (Simple, Closed, and Simple Closed curve). γ is simple if $t_1 \neq t_2 \implies \gamma(t_1) \neq \gamma(t_2)$.

- γ is closed if $\gamma(a) = \gamma(b)$.
- γ is a simple closed curve if it is closed and $a \leq t_1 < t_2 < b \implies \gamma(t_1) \neq \gamma(t_2)$

Definition 4.4 (Smooth curve). A curve $\gamma:[a,b]\to\mathbb{C}$ is smooth if

- $\gamma'(t) = x'(t) + iy'(t)$ exists and is continuous on [a, b], and
- $\gamma'(t) \neq 0$ for all $t \in [a, b]$.

Definition 4.5 (Length of Curve). Length of γ equals

$$\int_{a}^{b} |\gamma'(t)| \mathrm{d}t$$

Definition 4.6 (Integral of f along γ). The integral of f along γ is defined by

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Theorem 4.4 (Reparametrization does not change integral value). Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve, and let $\phi:[c,d]\to[a,b]$ such that

- $\phi'(t)$ exists and is continuous on [c, d], and
- $\phi(c) = a, \phi(d) = b$

Define $\alpha(t) = \gamma(\phi(t)), c \leq t \leq d$, then for any function f continuous on $\alpha = \gamma$,

$$\int_{\gamma} f(z) dz = \int_{\alpha} f(z) dz$$

Definition 4.7 (Opposite curve). Let $\gamma : [a, b] \to \mathbb{C}$ be a curve. Define opposite curve $-\gamma$ by

$$(-\gamma)(t) = \gamma(-t), -b \le t \le -a$$

We have, for any smooth curve γ , $\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$

Definition 4.8 (Contour Integral). If f is continuous on γ , then we define contour integral of f along γ to be

$$\int_{\gamma} f(z) dz = \sum_{j=1}^{n} \int_{\gamma_j} f(z) dz$$

Theorem 4.5 (ML Inequality). Suppose that f is continuous on an open set containing the track of a contour γ , and

$$|f(z)| \le M$$
 for all $z \in \gamma$

Then

$$|\int_{\gamma} f(z) \mathrm{d}z| \le ML$$

where L is the length of γ .

4.1 Antiderivatives

Definition 4.9 (Antiderivative). Let f be a continuous function on a domain D. A function F such that

$$F'(z) = f(z)$$
 for all $z \in D$

is called an **antiderivative** of f in D.

Theorem 4.6 (Fundamental Theorem of Calculus For Contour Integrals). Suppose f has antiderivative F on a domain D.

1. If $z_1, z_2 \in D$ and γ a contour in D joining z_1 to z_2 , then

$$\int_{\gamma} f(z) dz = F(z_2) - f(z_1)$$

This indicate the contour integral of such f is path independent.

2. In particular, if γ is closed in D, then $\int_{\gamma} f(z) dz = 0$.

Theorem 4.7. Let f be continuous on a domain D. The following are equivalent:

- 1. f has an antiderivative in D
- 2. For any closed contour γ in D, $\int_{\gamma} f(z)dz = 0$.
- 3. The contour integral of f are independent of paths in D, that is if $z_1, z_2 \in D$, and γ_1, γ_2 are contours in D joining z_1 to z_2 then

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

4.2 Cauchy-Goursat Theorem

Theorem 4.8 (Jordan Curve Theorem). Any simple closed contour γ separates the plane into two domains, each having γ as its boundary.

Definition 4.10. A simple closed contour γ is positively oriented if the interior domain lies of the left of an observer tracing out the points in order.

Theorem 4.9 (Cauchy Goursat). If a function f is analytic at all points interior to and on a simple closed contour γ , then

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Theorem 4.10. Let γ_1 and γ_2 be positively oriented simple closed contours with γ_2 interior to γ_1 . If f is analytic on the closed region containing γ_1 and γ_2 and the points between them, then

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

Definition 4.11 (Simple Connected Domain). A domain D is **simply connected** if every simple closed contour in D encloses only points in D.

Theorem 4.11 (Cauchy Roursat Theorem For Simply Connected Domain). If f is analytic is a simply connected domain D, then

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

for every closed contour γ in D.

4.3 Cauchy Integral Formula

Definition 4.12 (Cauchy Integral Formula). Let γ be a positively oriented simple closed contour and let f be analytic everywhere within and on γ . Then for any z_0 interior to γ ,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

Theorem 4.12 (Cauchy Integral Formula for Derivatives). Let f(z) be analytic everywhere inside and on a positively oriented simple closed contour γ . Then for any z_0 inside γ , and any integer $n \geq 1$, $f^{(n)}(z_0)$ exists, and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Theorem 4.13. If f is analytic in domain D, then all its derivative exists and are analytic in D.

Theorem 4.14 (Morera). If f continuous on a domain D, and

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

for every closed contour γ in D, then f is analytic in D.

4.4 Cauchy's Inequality

Theorem 4.15 (Cauchy's Inequality). Let f(z) be analytic within and on the circle γ_R centred at z_0 and of radius R(R > 0). Write $M_R = \max_{z \in \gamma_R} |f(z)|$. Then for any integer $n \geq 1$, we have

$$|f^{(n)}(z_0)| \le \frac{n! M_R}{R^n}$$

Definition 4.13 (Bounded). Let $S \subset \mathbb{C}$. A function $f: S \to \mathbb{C}$ is **bounded** if there exists some K > 0 such that

$$|f(z)| \le K$$
 for all $z \in S$

Definition 4.14 (Liouville). If an entire function f is bounded, then it must be a constant function.

Theorem 4.16 (Fundamental Theorem of Algebra). If $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$, then p(z) = 0 has a solution in \mathbb{C} .

Definition 4.15. if $\mathbb{C} \setminus S$ is open.

• A subset S of \mathbb{C} is said to be bounded if there exists a number K > 0 such that

$$|z| \le K \text{ for all } z \in S$$

Theorem 4.17 (Extreme Value Theorem). Let S be a non-empty closed bounded subset of \mathbb{C} , and let $g: S \to \mathbb{R}$ be a continuous function. Then there exists $z_1, z_2 \in S$ such that $g(z_1) \leq g(z) \leq g(z_2)$ for all $z \in S$.

Series Representation of Ana-5 lytic Functions

Sequences and Series of Complex Num-5.1bers

A sequence of complex number is an ordered list of complex numbers, denote dby $\{z_n\}_{n=1}^{\infty}$.

Definition 5.1 (Limit of Sequence). A sequence $\{z_n\}$ has a limit z if for any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that

$$|z_n - z| < \epsilon$$
 whenever $n \ge N$

In this case, we say $\{z_n\}$ converges to z.

If $\{z_n\}$ has no limit, then $\{z_n\}$ diverges.

Theorem 5.1. If $z_n = x_n + iy_n$ for all n and z = x + iy, then

$$\lim_{n\to\infty} z_n = z \Leftrightarrow \lim_{n\to\infty} x_n = x \text{ and } \lim_{n\to\infty} y_n = y$$

Theorem 5.2. A convergent sequence $\{z_n\}$ has a unique limit.

Theorem 5.3. Let $\{z_n\}$ and $\{w_n\}$ be two convergent sequences of complex numbers, and let $\lim_{n\to\infty} z_n = z$ and $\lim_{n\to\infty} w_n = w$, then

- $\lim_{n\to\infty} (z_n + w_n) = z + w$
- $\lim_{n\to\infty}(z_n-w_n)=z-w$
- $\lim_{n\to\infty} (z_n \cdot w_n) = zw$
- $\lim_{n\to\infty} \frac{z_n}{w_n} = \frac{z}{w}$ if $w\neq 0$ and each $w_n\neq 0$.

Definition 5.2 (Cauchy Sequence). A sequence $\{z_n\}$ is called a Cauchy sequence if for any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that

$$|z_n - z_m| < \epsilon$$
 whenever $n, m \ge N$

• A subset S of \mathbb{C} is said to be closed **Theorem 5.4** (Cauchy Criterion). A sequence $\{z_n\}$ is convergent if and only if $\{z_n\}$ is a Cauchy sequence.

> **Definition 5.3** (Series). A series of complex numbers is of the form

$$\sum_{n=1}^{\infty} z_n$$

We define $S_n = \sum_{k=1}^n z_n$ to be the *n*th partial sum of the series, and we say $\sum_{n=1}^{\infty} z_n$ converges to S, if $\lim_{n\to\infty} S_n =$

If $\{S_n\}$ diverges, the the series diverges.

Theorem 5.5. $\bullet \sum_{n=1}^{\infty} z_n = S$ if and only if $\sum_{n=1}^{\infty} x_n = X$ and $\sum_{n=1}^{\infty} y_n = Y$ where $z_n = x_n + iy_n$ and

- That $\sum_{n=1}^{\infty} z_n$ converges implies $\lim_{n\to\infty} z_n = 0$
- If $\lim_{n\to\infty} z_n \neq 0$, or does not exist, then $\sum_{n=1}^{\infty} z_n$ diverges.

Definition 5.4 (Absolute Convergence). If $\sum_{n=1}^{\infty} |z_n|$ converges, we say that $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Theorem 5.6. $\sum_{n=1}^{\infty} z_n$ converges absolutely implies $\sum_{n=1}^{\infty} z_n$ converges.

5.2Sequence and Series of Functions

A sequence of functions $\{f_n\}_{n=1}^{\infty}$ defined a set $D \subset \mathbb{C}$ in an ordered list of functions, where each $f_i: D \to \mathbb{C}$.

Definition 5.5 (Pointwise Convergence). Let $\{f_n\}$ be a sequence of functions. Suppose for each $z \in D$, the sequence of complex numbers $f_n(z)$ converges. Then we can define a function $f: D \to \mathbb{C}$ given by

$$f(z) = \lim_{n \to \infty} f_n(z)$$
 for all $z \in D$

And we say that f_n converges pointwise to f on D.

Definition 5.6 (Uniform Convergence). We say a sequence $\{f_n\}$ converges uniformly to f on D if for any $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$, such that

$$|f_n(z) - f(z)| < \epsilon$$
 for all $n > N$ and all $z \in D$

Theorem 5.7. Suppose $\{f_n\}$ converges uniformly to fand g bounded on D. Then $\{f_n \cdot g_n\}$ converges uniformly to function $f \cdot q$.

Theorem 5.8 (Cauchy Criterion). A sequence of functions $\{f_n\}$ converges uniformly on D if and only if for any $\epsilon > 0$, there exists $N = N(\epsilon)$ such that

$$|f_n(z) - f_m(z)| < \epsilon$$
 for all $z \in D$ and all $m, n \ge N$

Note, here N does not depend on z.

Theorem 5.9. Let $D \subset \mathbb{C}$, and $\{f_n\}$ be a sequence of functions on D such that each f_n is continuous on D. If $\{f_n\}$ converges uniformly to f on D; then f is also continuous on D.

Theorem 5.10. Let γ be a contour and let $\{f_n\}$ be a sequence of continuous functions on the track of γ . If $\{f_n\}$ converges uniformly to f on γ , then

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \lim_{n \to \infty} f_n(z) dz = \int_{\gamma} f(z) dz$$

Theorem 5.11. Let $\{f_n\}$ be a sequence of analytic functions on a domain D. If $\{f_n\}$ converges uniformly to f on D, then f is also analytic on D. Moreover,

$$\lim_{n \to \infty} f_n^*(z) = f'(z) \text{ for all } z \in D$$

Definition 5.7 (Series of Functions). Let $D \subset \mathbb{C}$. An expression of the form

$$\sum_{k=1}^{\infty} f_k(z) = f_1(z) + \cdots, z \in D$$

with each $f_k: D \to \mathbb{C}$, is said to be a **series of functions** on D.

Definition 5.8 (Partial Sum of Series of Functions). The partial sum $\{S_n\}$ is given by

$$S_n(z) = \sum_{k=1}^n f_k(z)$$

We say that the series of functions **converges pointwise** (resp. uniformly) to a function S on D if its sequence of partial sums $\{S_n\}$ converges pointwise to S on D.

Theorem 5.12. Let γ be a contour and let $\sum_{k=1}^{\infty} f_k(z)$ be a series of continuous functions converging uniformly on γ , then

$$\sum_{n=1}^{\infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \sum_{n=1}^{\infty} f_n(z) dz$$

Theorem 5.13. Let $\sum_{k=1}^{\infty} f_k(z)$ be a series of analytic functions converging uniformly to some function S(z) on a domain D. Then $S(z) = \sum_{k=1}^{\infty} f_k(z)$ is also analytic on D, and we have

$$\frac{\mathrm{d}}{\mathrm{d}z}(\sum_{k=1}^{\infty} f_k(z)) = S'(z) = \sum_{k=1}^{\infty} f'_k(z) \text{ for all } z \in D$$

Theorem 5.14 (Weierstrass M-test). Consider a series of functions $\sum_{k=1}^{\infty} f_k$ on a set $D \subset \mathbb{C}$. Suppose that

- $|f_k(z)| \leq M_k$ for all $z \in D$, $k = 1, 2, \ldots$ and
- $\sum_{k=1}^{\infty} M_k$ converges

Then $\sum_{k=1}^{\infty} f_k$ converges uniformly on S.

5.3 Power Series

An expression of the form $\sum_{k=0}^{\infty} a_k z^k$ is called a **power series** in z.

We can also form a power series in $z - z_0$.

Theorem 5.15 (Radius of Convergence). Given any power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, there is an associated number $R, 0 \leq R \leq \infty$, called the radius of convergence, with the following properties:

- The series of numbers $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converges absolutely at each $z \in B(z_0, R)$.
- $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ diverges at each z satisfying $|z-z_0| > R$
- The series of functions $\sum_{k=0}^{\infty} a_k(z-z_0)^k$ converges uniformly on the closed ball $\overline{B(z_0,\rho)}$, for any ρ satisfying $0 < \rho < R$.

Moreover, R is given by

$$R = \frac{1}{\limsup_{k \to \infty} |a_k|^{1/k}}$$

and is also given by

$$R = \frac{1}{\lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|}} \text{ if } \lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} \text{ exists}$$

Theorem 5.16. Given a power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ with radius of convergence R, we have

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k \begin{cases} \text{converges pointwise} & \text{on } B(z_0,R) \\ \text{diverges} & \text{whenever } |z-z_0| > \end{cases}$$

Theorem 5.17. Let $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ be a power series with radius of convergence R. Then

- 1. $S(z) = \sum_{k=0}^{\infty} a_k (z z_0)^k$ is an analytic function on $B(z_0, R)$.
- 2. Term by term differentiation:

$$S'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \sum_{k=0}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}$$
 on $B(z)$

3. Term by term integration: If γ a contour in $B(z_0, R)$ and g(z) continuous on γ ; then

$$\int_{\gamma} g(z)S(z)dz = \int_{\gamma} g(z) \sum_{k=0}^{\infty} a_k (z-z_0)^k dz = \sum_{k=0}^{\infty} a_k \int_{\gamma} g(z)S(z)dz$$

5.4 Taylor Series

Theorem 5.18 (Taylor Theorem). Suppose f(z) is analytic in $B(z_0, R)$. Then

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k, z \in B(z_0, R)$$

The power series is called the Taylor series of f(z) at z_0 , and coefficients Taylor coefficients.

When $z_0 = 0$, Taylor series becomes the Maclaurin series of f(z).

When f(z) entire, $R = \infty$.

It follows that Taylor series has radius of convergence at least R, and it converges uniformly on the closed ball $\overline{B(z_0,\rho)}$ to f, whenever $0 < \rho < R$.

Theorem 5.19 (Uniqueness of Taylor Series). Let f(z) be an analytic function on some domain containing $B(z_0, R)$, where R > 0. If

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

for all $z \in B(z_0, R)$, then that power series $\sum_{k=0}^{\infty} a_k(z - z_0)^k$ is the Taylor series of f(z) at z_0 , i.e.,

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

for all k = 0, 1, 2, ...

Theorem 5.20 (Multiplication/Division of Power Series). Suppose

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ for $|z| < R$

then

- $f(z) \cdot g(z) = (a_0 + a_1 z + \cdots)(b_0 + b_1 z + \cdots)$
- If $g(0) \neq 0$, we may use long divison to find maclaurin seris of $\frac{f}{g}$.

5.5 Laurent Series

We introduce $Ann(z_0, R_1, R_2) := \{z \in \mathbb{C} \mid R_1 < |z - z_0| < R_2\}$, and $Ann(z_0, R_1, R_2) := \{z \in \mathbb{C} \mid R_1 \le |z - z_0| \le R_2\}$.

Theorem 5.21 (Laurent Theorem). Suppose f(z) analytic in the annulus $Ann(z_0, R_1, R_2)$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}, z \in \text{Ann}(z_0, R_1, R_2)$$

where

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{(s - z_0)^{n+1}} ds$$
$$b_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{(s - z_0)^{-n+1}} ds$$

Theorem 5.22 (Uniqueness of Laurent Series Representation). If an analytic function f in the annulus $Ann(z_0, R_1, has its Laurent series, then the expression in previous theorem is the unique Laurent series of <math>f(z)$ for the annulus $Ann(z_0, R_1, R_2)$.

6 Residues and Poles

6.1 Residue

Definition 6.1 (Residue). A point z_0 is said to be a singlar point of a function f if

- f is not analytic at z_0 , but
- f is analytic at some point in $B(z_0, \epsilon)$ for all $\epsilon > 0$

A singular point z_0 of f is isolated if there exists R > 0 such that f is analytic in $B(z_0, R) \setminus \{z_0\}$. The residue of f(z) at z_0 is

$$\lim_{z=z_0} f(z) = b_1$$

Theorem 6.1. If f analytic in $B(z_0, R) \setminus \{z_0\}$, then

$$\int_{\gamma} f(z) dz = 2\pi i b_1 = 2\pi i \lim_{z=z_0} f(z)$$

where γ is any positively oriented simple closed contour around z_0 in $B(z_0, R) \setminus \{z_0\}$.

6.2 Cauchy's Residue Theorem

Theorem 6.2 (Cauchy's Residue Theorem). If γ is a positively oriented simple closed contour and f(z) is analytic everywhere inside and on γ except for a finite number of singular points z_k inside γ , then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \lim_{z=z_k} f(z)$$

6.3 Classification of Isolated Singular Poin

Definition 6.2 (Principal Part). Suppose f(z) has an isolated singular point at z_0 . Consider Laurent series of f(z) at z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}, 0 < |z - z_0| < R$$

The second part $\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$ is called the **principal part** of f(z) at z_0 .

We calssify isolated singular points into 3 kinds:

• Removable singular points. If $b_n = 0$ for all n = 1, 2, ..., we say that z_0 is a **removable singular** points of f(z). In this case, $\lim_{z=z_0} f(z) = 0$.

- Essential singular points. If $b_n \neq 0$ for infinitely many n, then we say z_0 is an essential singular point of f(z).
- Pole. If there exists $m \in \mathbb{N}$ such that $b_m \neq 0$ but $b_n = 0$ for all n > m, then we say that z_0 is a **pole** of order m for f(z).

Theorem 6.3 (Behaviour near Removable Singluar Point). Suppose f has removable singular point at z_0 . We will have

$$\lim_{z \to z_0} f(z) = a_0$$

Theorem 6.4 (Behaviour near Pole). Suppose f has a pole of order m at z_0 . Then

1. There exists R > 0 such that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$
 for $0 < |z - z_0| < R$

where $\phi(z)$ is analytic at z_0 and $\phi(z_0) \neq 0$.

2. In particular $\lim_{z\to z_0} f(z) = \infty$.

Theorem 6.5 (Behaviour near Essential Singular Point(Casorati-Weierstrass)). $\lim_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$ Suppose f(z) has an essential singular residual Then for each small r > 0, the image $f(B(z_0, r) \setminus \{z_0\})$ is dense in \mathbb{C} .

Pole Orders for Quotients of Analyt-6.4ic Functions

Definition 6.3 (Zero of Order n). We say analytic function f(z) has zero of order n at z_0 if

$$f(z_0) = f^{(1)}(z_0) = \cdots f^{(n-1)}(z_0) = 0$$
 and $f^{(n)}(z_0) \neq 0$

Theorem 6.6. Suppose f_z has zero of order n_1 and f_2 has zero of order n_2 at some point z_0 . Then the product $f_1 \cdot f_2$ has zero of order $n_1 + n_2$ at z_0 .

Theorem 6.7. Suppose an analytic function f(z) has a zero of order m at z_0 . Ten there exists an analytic function $\phi(z)$ near z_0 such that

$$f(z) = (z - z_0)^m \phi(z)$$
 near z_0 , and $\phi(z_0) \neq 0$

Theorem 6.8. Suppose p(z) and q(z) are analytic at z_0 . Suppose that p(z) has a zero of order α at z_0 , and q(z)has a zero of order β at z_0 . Consider the function

$$f(z) = \frac{p(z)}{q(z)}$$

- 1. If $\beta > \alpha$, then $\frac{p}{q}$ has a pole of order $\beta \alpha$ at z_0 .
- 2. If $\beta \leq \alpha$, then $\frac{p}{q}$ has a removable singular point at

In particular, one sees that quotients of analytic functions do not have essential singular points.

6.5Methods for Computing Residues

Theorem 6.9 (Method I). Suppose f(z) can be written in the form

$$f(z) = \frac{\phi(z)}{z - z_0} \text{ near } z_0$$

for some function $\phi(z)$ analytic at z_0 . Then

$$\lim_{z=z_0} f(z) = \phi(z_0)$$

Theorem 6.10 (Method II). Suppose f(z) can be written in the form

$$f(z) = \frac{\phi(z)}{(z - z_0)^m} \text{ near } z_0$$

for some function $\phi(z)$ analytic at z_0 and $m \geq 1$, Then

$$\lim_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$$

Theorem 6.11 (Method III). If p(z) and q(z) are analytic at z_0 , and q(z) has a simple zero at z_0 , then

rati-Weierstrass)).
$$\lim_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

Application of Residues 7

Evaluation of Improper Real Integral-7.1

Recall the following definition of improper real integrals:

$$\int_0^\infty f(x) = \lim_{R \to \infty} \int_0^R f(x) dx$$

also,

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R_1 \to \infty} \int_{0}^{R_1} f(x) dx + \lim_{R_2 \to \infty} \int_{-R_2}^{0} f(x) dx$$

There is also Cauchy Principle Value:

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

Note, if the improper integral converges, cauchy principal values also converges, and they equal.

Theorem 7.1. Let $f: \mathbb{R} \to \mathbb{R}$ be an even function

$$f(-x) = f(x)$$
 for all $x \in \mathbb{R}$

If P.V. $\int_{-\infty}^{\infty} f(x) dx$ converges, so does $\int_{-\infty}^{\infty} f(x) dx$ and we

$$\int_0^\infty f(x) dx = \frac{1}{2} \int_{-\infty}^\infty f(x) dx$$

and

$$\int_{-\infty}^{\infty} f(x) dx = P.V. \int_{-\infty}^{\infty} f(x) dx$$

Theorem 7.2. We describe a procedure to evaluate P.V. $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx$ where p, q are polynomials in x such that $\deg q(x) \ge \deg p(x) + 2$:

- 1. Replace x by z to get $f(z) = \frac{p(z)}{q(z)}$
- 2. Write P.V. $\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$
- 3. Draw a semi-circle C_R in the upper half plane centered at 0 and with diameter [-R, R], and find singular points.
- 4. By residue theorem, we have $\int_{-R}^{R} f(x) dx + \int_{C_R} f(z) dz = 2\pi i \sum_{z_k} f(z)$
- 5. Letting $R \to \infty$. Try to show $\lim_{R \to \infty} \int_{C_R} f(z) dz = 0$ by using ML.
- 6. Obtain P.V. $\int_{-\infty}^{\infty} f(x) dx$ by letting $R \to \infty$.

7.2 Integrals of the form $\int_{-\infty}^{\infty} f(x) \cos ax dx$

We are interested in computing integrals of the form

P.V.
$$\int_{-\infty}^{\infty} f(x) \cos ax dx$$
 or P.V. $\int_{-\infty}^{\infty} f(x) \sin ax dx$

Instead of computing these integrals directly, we often consider

$$P.V. \int_{-\infty}^{\infty} f(x)e^{iax} dx$$

whose real and imaginary parts give values of the two improper integrals.

7.3 Definite Integrals Involving Sines and Cosines

We would like to compute integrals of the form

$$\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta$$

We can make the substitution $z = e^{i\theta}$, so that

$$\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta = \int_{\gamma} f(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}) \frac{dz}{iz}$$

where γ is the positively oriented unit circle |z| = 1.