

Принцип суперпозиции магнитных полей:

Вектор магнитной индукции $\vec{B}(\vec{r})$ в данной точке магнитного поля, созданного несколькими источниками, равен векторной сумме магнитных индукций полей, создаваемых каждым источником по отдельности в этой точке.

<u>Для дискретного распределения *N* источников</u>:

$$\vec{B}(\vec{r}) = \sum_{i=1}^{N} \vec{B}_i(\vec{r}), \tag{11.11}$$

где $\vec{B}_i(\vec{r})$ — вектор магнитной индукции поля, создаваемого i-м источником в данной точке.

Линейным называется ток, идущий по проводнику пренебрежимо малого поперечного сечения.

Кафедра физики

С учетом (11.13), (10.31) и (10.38) вычислим:

$$dq \cdot \vec{\mathbf{v}} = \rho \cdot d\ell \cdot S_{\perp} \cdot \vec{\mathbf{v}} = \vec{j} \cdot d\ell \cdot S_{\perp} = j \cdot S_{\perp} \cdot \overrightarrow{d\ell} = I \cdot \overrightarrow{d\ell}$$

и подставим в (11.12):

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \cdot \frac{I[\vec{d\ell}, \vec{r}]}{r^3}$$
 (11.14)

— *закон Био́* — *Савара* — *Лапласа*, определяющий вектор индукции $d\vec{B}(\vec{r})$ магнитного поля, которое создает в вакууме элемент линейного тока $I \cdot \vec{d\ell}$, в точке с радиус-вектором \vec{r} относительно этого элемента.

Модуль $dB(\vec{r})$:

$$dB(\vec{r}) = \frac{\mu_0}{4\pi} \frac{I \cdot d\ell \cdot \sin \alpha}{r^2}, \quad (11.15)$$

где α – угол между $\overrightarrow{d\ell}$ и \overrightarrow{r} .

Кафедра физики

По принципу суперпозиции вектор магнитной индукции $\vec{B}(\vec{r})$ в точке с радиус-вектором \vec{r} магнитного поля, создаваемого идущим по проводнику (L) линейным током I, равен:

$$\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \cdot \int_{(L)} \frac{\left[\vec{d\ell}, \vec{r} \right]}{r^3},$$
(11.16)

где интегрирование ведется в <u>направлении</u> тока по всем элементам проводника (L) с током.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

В тонком проводнике с током I выделим малый элемент длиной $d\ell$ и площадью сечения S_{\perp} .

I $\overrightarrow{d\ell}$ \overrightarrow{j}

Вектор $\overrightarrow{d\ell}$ совпадает по направлению с током, т. е. с направлением вектора плотности тока $\overrightarrow{j}\uparrow\uparrow\overrightarrow{d\ell}$.

По принципу суперпозиции создаваемое элементом тока $I \cdot \overrightarrow{d\ell}$ магнитное поле образуется полями всех носителей тока этого элемента, движущихся направленно.

Если всю совокупность носителей тока элемента представить в виде точечного заряда dq, движущегося со средней скоростью носителей тока \vec{v} , то вектор $d\vec{B}(\vec{r})$ их результирующего магнитного поля в точке с радиус-вектором \vec{r} будет равен индукции поля, создаваемого зарядом dq в той же точке.

Тогда согласно (11.9):
$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \cdot \frac{dq[\vec{v}, \vec{r}]}{r^3},$$
 (11.12)

 $dq = \rho \cdot dV = \rho \cdot d\ell \cdot S_{\perp},$ (11.13)

ρ – объемная плотность зарядов носителей тока элемента.