Número de	Número de	Número de				
variables	poblaciones	"tratamientos"	Suposiciones	Hipótesis nula	Estadístico	Intervalos de confianza
Univariado	1 población	-	Población normal	H_0 : $\mu=\mu_0$ μ_0 constante	$n(\bar{x} - \mu_0)(s^2)^{-1}(\bar{x} - \mu_0) \approx t_{n-1}^2(\alpha/2)$	$\bar{x} \pm t_{n-1} \left(\frac{\alpha}{2}\right) s / \sqrt{n}$
Multivariado	1 población	-	Población normal	H_0 : $oldsymbol{\mu} = oldsymbol{\mu}_0$ $oldsymbol{\mu}_0$ vector de medias	$n(\overline{X} - \mu_0)'(S)^{-1}(\overline{X} - \mu_0) \approx \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$	$a'\overline{X} \pm \sqrt{\frac{(n-1)p}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{a'Sa/n}$
Univariado	1 población	2 "tratamientos"	Población normal	$H_0: \delta = \mu_1 - \mu_2 = \delta_0$	$\frac{\overline{D} - \delta_0}{s_d / \sqrt{n}} \approx t_{n-1}(\alpha/2)$	$\bar{d} \pm t_{n-1} \left(\frac{\alpha}{2}\right) s_d / \sqrt{n}$
Multivariado	1 población	2 "tratamientos"	Población normal	$H_0: \boldsymbol{\delta} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = \boldsymbol{\delta}_0$	$n(\overline{\boldsymbol{d}} - \boldsymbol{\delta_0})' S_d^{-1}(\overline{\boldsymbol{d}} - \boldsymbol{\delta_0}) \approx \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$	$a'\overline{d} \pm \sqrt{\frac{(n-1)p}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{a'S_d a/n}$
Univariado	1 población	q "tratamientos"	Población normal	H_0 : $C \mu = 0$ C matriz de contraste	$n(C\overline{X})'(CSC')^{-1}(C\overline{X}) \approx \frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(\alpha)$	$C\overline{X} \pm \sqrt{\frac{(n-1)(q-1)}{(n-q+1)}} F_{q-1,n-q+1}(\alpha) \sqrt{C'SC/n}$
Multivariado	2 poblaciones	-	Poblaciones normales y $\Sigma_1 = \Sigma_2$	$H_0: \boldsymbol{\mu_1} - \boldsymbol{\mu_2} = \boldsymbol{\delta_0}$	$(\overline{X}_{1} - \overline{X}_{2} - \boldsymbol{\delta_{0}})' \left(\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) S_{pooled} \right)^{-1} (\overline{X}_{1} - \overline{X}_{2} - \boldsymbol{\delta_{0}})$ $\approx \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}(\alpha)$	$a'\overline{(X_1} - \overline{X_2}) \\ \pm \sqrt{\frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)}} F_{p,n_1 + n_2 - p - 1}(\alpha) \sqrt{a'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} S_{pooled} a$
Multivariado	2 poblaciones	-	n-p grande	$H_0: \boldsymbol{\mu_1} - \boldsymbol{\mu_2} = \boldsymbol{\delta_0}$	$(\overline{X}_1 - \overline{X}_2 - \delta_0)' \left(\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2\right)^{-1} (\overline{X}_1 - \overline{X}_2 - \delta_0) \approx \chi_p^2(\alpha)$	$a'(\overline{X}_1 - \overline{X}_2) \pm \sqrt{\chi_p^2(\alpha)} \sqrt{a'\left(\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2\right)a}$
Univariado	g poblaciones	-	- Poblaciones indeps Poblaciones normales - Poblaciones mismas Σ	ANOVA $H_0: \mu_1 = \dots = \mu_g$ $H_0: \tau_1 = \dots = \tau_g = 0$	$F = \frac{SS_{treatment}/(g-1)}{SS_{res}/(n-g)} \approx F_{g-1,n-g}$	-
Multivariado	g poblaciones	-	- Poblaciones indeps Poblaciones normales - Poblaciones mismas Σ	MANOVA $H_0: \boldsymbol{\mu_1} = \cdots = \boldsymbol{\mu_g}$ $H_0: \boldsymbol{\tau_1} = \cdots = \boldsymbol{\tau_g} = 0$	(**)	-

Recordad que a = (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)

Recordad que
$$S_{pooled} = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2}$$

ANOVA (*)

ANOVA TABLE FOR COMPARING UNIVARIATE POPULATION MEANS

Source of variation	Sum of squares (SS)	Degrees of freedom (d.f.)
Treatments Residual (Error)	$SS_{tr} = \sum_{\ell=1}^{g} n_{\ell} (\overline{x}_{\ell} - \overline{x})^{2}$ $SS_{res} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \overline{x}_{\ell})^{2}$	$g-1$ $\sum_{\ell=1}^g n_\ell-g$
Total (corrected for the mean)	$SS_{cor} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (x_{\ell j} - \bar{x})^2$	$\sum_{\ell=1}^g n_\ell - 1$

MANOVA (**)

MANOVA TABLE FOR COMPARING POPULATION MEAN VECTORS

Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^g n_\ell (\overline{\mathbf{x}}_\ell - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_\ell - \overline{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^g n_\ell - 1$

DISTRIBUTION OF WILKS' LAMBDA, $\Lambda^* = |\mathbf{W}|/|\mathbf{B} + \mathbf{W}|$

DISTRIBUTION OF WILKS LAWIDDA, $\Lambda^* = \mathbf{W} / \mathbf{B} + \mathbf{W} $				
No. of variables	No. of groups	Sampling distribution for multivariate normal data		
<i>p</i> = 1	$g \ge 2$	$\left(\frac{\Sigma n_\ell - g}{g-1}\right) \left(\frac{1-\Lambda^*}{\Lambda^*}\right) \sim F_{g-1,\Sigma n_\ell - g}$		
p = 2	$g \ge 2$	$\left(\frac{\Sigma n_{\ell}-g-1}{g-1}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)\sim F_{2(g-1),2(\Sigma n_{\ell}-g-1)}$		
$p \ge 1$	g = 2	$\left(\frac{\sum n_{\ell}-p-1}{p}\right)\left(\frac{1-\Lambda^*}{\Lambda^*}\right)\sim F_{p,\sum n_{\ell}-p-1}$		
$p \ge 1$	<i>g</i> = 3	$\left(\frac{\Sigma n_{\ell} - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2p,2(\Sigma n_{\ell} - p - 2)}$		