عدد المسائل: خمس	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة 2022/2023	ثانوية برجا الرسمية 07/623581
المدة: ثلاث ساعات	مسابقة في مادة الرياضيات	اعداد وتأليف الأستاذ: أحمد دمج 70/773620

- يستطيع الطالب الاجابة عن الأسئلة بالترتيب الذي يناسبه.

ملاحظات هامة

- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات او رسم البيانات.

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant,** la réponse qui lui correspond.

N^0	Questions	Réponses		
		(a)	(b)	(c)
1)	L'équation $z^4 - 4 = 0$ admet dans \mathbb{C}	une seule racine	deux racines distinctes	quatre racines distinctes
2)	$\lim_{x \to +\infty} \frac{(x-1)e^x \ln x}{x^2} =$	0	+∞	e
3)	Soit R la rotation de centre $I(2;0)$ et d'angle π . Le forme complexe de R est	z' = -z + 4	z'=z-4	z' = iz + 4
4)	$(A_n^2)^2 =$	A _n ⁴	$(n^2 - n)^2$	(2n)!

II- (6 points)

Le plan complexe est rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$.

Pour tout point M d'affixe z, on associe le point M' d'affixe z' tel que $z'=2i\overline{z}+2-4i$.

Soit z = x + iy et z' = x' + iy' où x, y, x' et y' sont des nombres réels.

- 1) Résoudre l'équation z' = z.
- 2) Soit W le point d'affixe $z_W = 2$.
 - a) Vérifier que pour tout $z \neq 2, \frac{z'-2}{\overline{z-2}} = 2i$.
 - b) Montrer que WM' = 2 × WM et que $(\vec{u}; \overrightarrow{WM'}) + (\vec{u}; \overrightarrow{WM}) = \frac{\pi}{2} [2\pi]$.
- 3) Montrer que lorsque M varie sur le cercle de centre W et de rayon 1, le point M' varie sur un cercle (C) dont on déterminera le centre et le rayon
- 4) a) Exprimer x et y en fonction de x' et y'.
 - b) Montrer que si M varie sur la droite (d) d'équation y = x 2, alors M' varie aussi sur cette droite.

III- (6 points)

Dans la figure ci-dessous on donne :

- ABCD est un carré direct de centre I et de côté 4.
- C est le milieu de [BE] et A est le milieu de [BF].

Soit S la similitude plane directe qui transforme E en D et F en B.

- 1) Calculer un angle et le rapport de S.
- 2) Déterminer S(D) et montrer que S(B) = C.
- 3) Soit $h = S \circ S$ et soit W le centre de S.
 - a) Déterminer la nature de h et trouver h(E) et h(F).
 - b) En déduire que W est le point d'intersection de droites (EI) et (FC).
- 4) Le plan complexe est rapporté à un repère orthonormé direct (A; \vec{u} ; \vec{v}) avec $\vec{u} = \overrightarrow{AB}$. Soit M un point quelconque et soit et M'son image par S.

Soient z et z' les affixes respectives de M et M' avec z = x + iy et z' = x' + iy'.

- a) Ecrire la forme complexe de S.
- b) Calculer l'affixe du point W.
- c) Montrer que y = 2 2x' et x = 2y' 1.
- d) Soit (λ) la courbe représentative de la fonction f définie sur IR par f(x) = e^{-x+1} et soit (λ') l'image de (λ) par S. Montrer que (λ') est la courbe représentative de la fonction g définie sur] $-\infty$; 1[par g(x) = $\frac{2-\ln(2-2x)}{2}$.

IV- (6 points)

Une urne U contient huit cartes:

quatre cartes numérotées +1, +2, +3 et +4 et quatre cartes numérotées -1, -2, -3 et -4.

Anas tire simultanément et au hasard deux cartes de (U) puis **Bilal** tire simultanément et au hasard deux cartes parmi les six cartes restantes dans (U).

On considère les événements suivants :

A « La somme de numéros portés par les cartes tirées par Anas est nulle »

B « La somme de numéros portés par les cartes tirées par Bilal est nulle »

- 1) Montrer que $P(A) = \frac{1}{7}$.
- 2) a) Montrer que $P(B/A) = \frac{1}{5}$ et en déduire $P(B \cap A)$.
 - b) Montrer que $P(B/\overline{A}) = \frac{2}{15}$.
 - c) Vérifier que P(B) = P(A).
- 3) Calculer la probabilité qu'exactement une seule personne a obtenu une somme nulle.
- 4) Calculer la probabilité de l'événement :

L « La somme de numéros portés par les cartes tirées par Anas est strictement positif »

V- (10 points)

Soit f la fonction définie sur \mathbb{R} , par $f(x) = x + 1 - \ln(e^x + e)$ et soit (C) sa courbe représentative dans un repère orthonormé (0; \vec{i} , \vec{j}).

- 1) a) Montrer que $f(x) = 1 + \ln\left(\frac{e^x}{e^x + e}\right)$.
 - b) Calculer $\lim_{x\to +\infty} f(x)$ et déduire une asymptote (Δ) à (C).
- 2) a) Calculer $\lim_{x \to -\infty} f(x)$ et montrer que la droite (d) d'équation y = x est une asymptote à (C).
 - b) Montrer que, pour tout réel x, (C) est au-dessous de (d).
- 3) a) Vérifier que $f'(x) = \frac{e}{e^{x} + e}$ et dresser le tableau de variations de f.
 - b) Ecrire une équation de la tangente (t) à (C) au point A d'abscisse 1.
 - c) Montrer que, pour tout réel x, la fonction f est concave.
- 4) a) Montrer que l'équation f(x) = 0 admet une solution unique α .
 - b) Vérifier que $0.4 < \alpha < 0.5$.
 - c) Montrer que $\alpha = \ln\left(\frac{e}{e-1}\right)$.
- 5) Tracer (Δ), (d) et (C).
- 6) Soient M et N deux points de (C) d'abscisses respectives β et $\beta + 1$ où β est un réel.

Soit E le point tel que MEN est un triangle rectangle direct en E et (ME) est parallèle à (x'x).

Montrer que pour tout réel β , l'aire du triangle MEN est strictement inferieur à $\frac{1}{2}$.