ta o maior coeficiente de determinação e a 4.29) O melhor modelo é o (c), pois apresenmenor variância residual.

4.30) $y = ab^x$, sendo a = 55,0700 e b = 0,8870.

Capítulo 5: Integração numérica

Seção 5.1

5.1.a) I = 0,8595.

5.1.b) I = 0,8438.

5.1.c) I = 0,8448.

5.2.a) $P_2(x) = 4,05x^2 + 4,95x + 1$.

5.2.b) I = 4,7.

5.2.c) I = 4.7.

5.2.d) A regra de 1/3 de Simpson (item c) consiste nas etapas a e b.

do-se a regra de 1/3 de Simpson com m=6. 5.3) I=6,3895. Este valor foi obtido usan-

_	. *	
I	28,1170	28,0876
m	4	∞
I	28,5061	28,0920
m	2	9

Seção 5.2

5.6) I = 28,0855.

5.7) I = 20,5240.

5.8) I = 2,8284.

Seção 5.3

Regra do trapézio: I = 1,8591;

Gauss-Legendre: I = 1,7179; valor analítico: I = 1,7183.

Gauss-Legendre: I = 28,0855; 1/3 de Simpson: I = 28,1170;valor analítico: I = 28,0855.

Gauss-Legendre: I = 20,5240; 3/8 de Simpson: I = 20,5402; valor analítico: I = 20,5240.

Gauss-Legendre: I = 2,8284; Newton-Cotes: I = 2,8284;

Gauss-Legendre: I = 41,1711; Newton-Cotes: I = 41,1715; valor analítico: I = 2,8284.

valor analítico: I = 41,1711.

Seção 5.4

5.17) I = 2,8284271247.

5.18) $I = 8,4239791591 \times 10^{-1}$.

5.19) $I = 2,7761914467 \times 10^{-1}$.

5.20) I = -4,7240071835.

Seção 5.5

5.21) I = 1,3364.

5.22) I = 11,0922.

5.23) I = 15,3669.

5.43.b) I = 15,5556.

5.43.c) valor exato = 15,5556.

Newton-Cotes com $n_x = n_y = 1$ é obtida integrando-se um polinômio interpolador de grau 1, o que não é suficiente para a obtenção 5.43.d) Apenas o resultado obtido pela quadratura de Gauss-Legendre é exato, pois esta é construída de forma a ser exata para polinômios de grau menor ou igual a 2n-1. de um valor exato.

5.45) I = 0,88623.

5.33) NC: I = 1,6026; GL: I = -0,0134.

5.34) NC: I = 0,6250; GL: I = 0,6081. 5.35) NC: I = 0.9729; GL: I = 0.9752.

5.31) NC: I = 0,5000; GL: I = 0,2500. 5.32) NC: I = 0,3333; GL: I = 0,2000.

5.28) I = 11,5297.5.27) I = 1,0310.

Secão 5.7

5.26) I = 1,7528.

Seção 5.6

Capítulo 6: Raízes de equações

Seção 6.1

6.1) $0.4545 \le \xi^+ \le 4,0000 \text{ e}$ -2,7321 $\le \xi^- \le -0,5635;$

 $n^{+} = 2 \text{ ou } 0 \text{ e } n^{-} = 1.$

5.36.a) $L_1(x) = x + 1$.

Gerais

5.36.b) I = 1.5.

5.36.c) I = 1,5.

6.3) [0,4545 + 4,0000 - 2,7321 - 0,5635].

6.5) $\xi_1 \in [-2,74; \; -0,95]$ para z=-1e $\xi_2 \in [0,95; \; 5,65]$ para z=1.

Seção 6.2

5.36.d) A regra do trapézio (item c) consiste

dos itens a e b. 5.39.a) I = 22.

6.6) $\xi = 0.9536 \text{ cm } [0, 2].$

6.7) $\xi = -0.7594$ em [-1, 0].

6.8) $\xi = 0,5994$ cm [0, 1].

 $E=rac{-(b-a)^{2}}{180m^{4}}f^{iv}(heta)$. A função que está sendo integrada é um polinômio de grau 3, logo

5.39.b) Sim. O erro é dado por

Seção 6.3

6.11)

5.40.a) m = 9.

secante [3, 4]		1001
	3,0672	3
regula falsi $[3, 4]$	3,0672	12
pégaso [3, 4]	3,0672	2

5.40.c) $|12,3354-12,3358| = 4 \times 10^{-4}$. 5.40.b) I = 12,3358.

5.43.a) I = 44.

[
método	intervalo	raiz	iter
secante	[1, 2]	1,2167	ಬ
regula falsi	[1, 2]	1,2167	19
	[1, 2]	1,2167	5

6.13)			
método	intervalo	raiz	iter
secante	[-2, 0]	3,5270	16
regula falsi	[-2, 0]	-1,6813	∞
pégaso	[-2, 0]	-1,6813	9

Seção 6.4

6.16)

	iter	4	∞
	raiz	-1,3133	-1,3133
	intervalo	[-2, 0]	[-2, 0]
(0=	método	Muller	W-D-Brent

	_			
	iter	က	9	
	raiz	0,6329	0,6329	
	intervalo	[0, 1]	[0, 1]	
6.17)	método	Muller	W-D-Brent	

intervalo raiz iter 0,9180 0,9180

método Muller

6.18)

W-D-Brent

Seção 6.5

6.21)

ter.	5	ಸರ
raiz it	2823	,2823
$x_0 \mid { m r}$	2 1, 5	2 1, 5
método	Newton	Schröder(1)

33

regula falsi

pégaso Muller

1,57084,7124 1,5708

bisseção

secante

método

1,5708 12

W-D-Brent

 $(a+bi)^*$ 1,5708

 $a = 7,8540 e b = -8 \times 10^{-4}$

Schröder(1)

Newton

			_	
	iter	28	12	_
	raiz	1,0000	1,0000	1 0000
	x_0	2	2	٥
,	método	Newton	Schröder(2)	Schröder(3)

6.23)			
método	x_0	raiz	iter
Newton	3	2,0000	18
Schröder(2)	3	2,0000	ಬ

Seção 6.6

6.26)			
nétodo	raiz	iter	erro
ojsseção	0,9454	35	0
secante	0,9454	∞	0
regula falsi	0,9454	38	0
égaso	0,9454	7	0
ller	0,9454	4	0
-Brent	0,9454	∞	0
Newton	0,9454	4	0
Schröder(1)	0,9454	4	0

6.27)

,		ĺ	
método	raiz	iter	erro
bisseção	1,8798	36	0
secante	1,8798	∞	0
regula falsi	1,8798	41	0
pégaso	1,8798	7	0
Muller	1,8798	ഹ	0
W-D-Brent	1,8798	∞	0
Newton	1,8798	∞	0
Schröder(1)	1,8798	∞	0

iter	5	ಬ	!
raiz	1,2823	1,2823	
x_0	2	2	
nétodo	Tewton	$chr\ddot{o}der(1)$	

6.22)

nétodo	x_0	raiz	iter
Tewton	2	1,0000	28
$chr\ddot{o}der(2)$	2	1,0000	12
chröder(3)	2	1.0000	7

6.30)

alsi
raiz ii raiz ii
método bisseção – secante – pégaso – pégaso – Muller – Ww-D-Brent –
método bisseção secante regula f pégaso Muller W-D-B Newtor

Gerais

6.34)
$$D(\lambda) = \lambda^3 - 10\lambda^2 + 15\lambda + 49$$
, com $\lambda_1 = -1,5120$, $\lambda_2 = 4,9045$; $\lambda_3 = 6,6076$.

6.35)
$$D(\lambda) = \lambda^3 - 17\lambda^2 + 75\lambda - 91$$
, com $\lambda_1 = 2,0543$, $\lambda_2 = 4,0748$; $\lambda_3 = 10,8709$.

6.36)
$$L_3(x) = \frac{1}{2}(5x^3 - 3x)$$
, com $\lambda_1 = -0.77460$; $\lambda_2 = 0$; $\lambda_3 = 0.77460$.

6.38)
$$V = 0.9984 \text{ litro} \times \text{mol}^{-1}$$
.

$$6.39$$
) pH = 6.82 .

$$6.40$$
) taxa = $5,75\%$.

Capítulo 7: Equações diferenciais ordinárias

iter erro

6.29)

Seção 7.1

136 34

$$7.1) y_5 = 1,55490.$$

7.2)
$$y_8 = 3,39195$$
.

500 188 500 80 80 4

7.3)
$$y_{10} = 1,54711$$
.

0

7.8) RK:
$$y_{10} = -0,13534$$
;
DP: $y_{10} = -0,13534$.

7.9) RK:
$$y_{20} = 121,18508$$
;
DP: $y_{20} = 121,19923$.

7.10) RK:
$$y_{50} = -1,63212$$
;
DP: $y_{50} = -1,63212$.

Seção 7.3

$$7.12) y_{20} = 16,39798.$$

$$7.13$$
) $u_{100} = -595.31949$.

1
 7.13) $y_{100} = -595,31949.$

7.14)
$$y_{100} = -1,81219$$
.

7.15)
$$y_{200} = 17,92472$$
.

Seção 7.4

7.16) DP e ABM:
$$y_{100} = -0,19136$$
.

7.17) DP e ABM:
$$y_{100} = -16,21194$$
.

7.18) DP e ABM:
$$y_{100} = 2,30098$$
.

7.19) DP e ABM:
$$y_{100} = -1,33333$$
.

7.20) DP e ABM:
$$y_{100} = 27,25271$$
.