Química orgánica

CUESTIONES

Formulación/Nomenclatura

a) Nombra los siguientes compuestos e identifica y nombra los grupos funcionales presentes en cada uno de ellos:

a.1) CH₃-COO-CH₂-CH₃ a.2) CH₃-NH₂ a.3) CH₃-CH₂-CHOH-CH₃

a.4) CH₃-CH₂-COOH.

(A.B.A.U. ord. 19)

Solución:

	Fórmula	Nombre	Tipo	Grupo	funcional
a.1)	CH ₃ -COO-CH ₂ -CH ₃	etanoato de etilo	éster	-COO-	acilo
a.2)	CH ₃ -NH ₂	metilamina	amina	$-NH_2$	amino
a.3)	CH ₃ -CH ₂ -CHOH-CH ₃	butan-2-ol	alcohol	-OH	hidroxilo
a.4)	CH ₃ -CH ₂ -COOH	ácido propanoico	ácido carboxílico	-COOH	carboxilo

a) Escribe la fórmula semidesarrollada de:

a.1) dimetilamina

a.2) etanal

a.3) ácido 2-metilbutanoico

Nombra: a.4) CH₃-CH₂-O-CH₂-CH₃

a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃

a.6) CH₃Cl.

(A.B.A.U. extr. 18)

Solución:

CH₃-NH-CH₃ a.1) Dimetilamina:

 $CH_3-C > O$ a.2) Etanal:

 CH_3-CH_2-CH-C a.3) Ácido 2-metilbutanoico:

a.4) CH₃-CH₂-O-CH₂-CH₃: etoxietano o dietiléter a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃: 2,5-dimetilhexan-3-ona

clorometano a.6) CH₃Cl:

<u>Isomería</u>

Escribe las fórmulas semidesarrolladas de los siguientes compuestos, nombre su grupo funcional, y justifique si alguno de ellos presenta isomería óptica:

a) ácido 3-pentenoico, b) 2-hidroxipropanal, c) etanoato de metilo,

d)propino.

(A.B.A.U. extr. 23)

Solución:

 $CH_3-CH=CH-CH_2-C$ OH a) Ácido 3-pentenoico: grupo carboxilo (-COOH)

 CH_3 -CH-CHb) 2-Hidroxipropanal: grupo hidroxilo (-OH) e

grupo carbonilo (-CHO)

c) Etanoato de metilo: $CH_3 - C$ grupo acilo (-COO-)

d) Propino: $CH_3 - C \equiv CH$

grupo etinilo (-C = CH)

El 2-hidroxipropanal presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (-CH $_3$), hidrógeno (-H), hidroxilo (-OH) y carbonilo (-CHO). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

- 2. a) Justifica si la siguiente afirmación es verdadera o falsa: El CH₃-CH=CH-CH₃ reacciona con HCl para dar un compuesto que no presenta isomería óptica.
 - b) Escribe las fórmulas semidesarrolladas y nombra los isómeros geométricos del 2,3-dibromobut-2-eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

El compuesto CH₃-CH=CH-CH₃ es el 2-buteno, que puede reaccionar con HCl para dar 2-clorobutano (CH₃-CHCl-CH₂-CH₃) siguiendo la regla de Markovnikov. Se trata de una reacción de adición.

$$CH_3\text{-}CH=CH\text{-}CH_3 + HCI \longrightarrow CH_3\text{-}C\text{-}CH_2\text{-}CH_3$$

El 2-clorobutano presenta isomería óptica porque el carbono 2 es un carbono asimétrico (quiral). Está unido a cuatro sustituyentes diferentes: metilo (CH_3-) , hidrógeno (H-), cloro (CI-) y etilo (CH_3-CH_2-) . Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

b) El 2,3-dibromobut-2-eno tiene isomería geométrica porque cada uno de los carbonos del doble enlace está unidos a grupos diferentes (bromo y metilo). Sus isómeros pueden llamarse *cis* y *trans* o *Z* y *E*.

Br Br
$$CH_3$$
 $C=C$ CH_3 CH_3 CH_3 Br Cis -2,3-dibromobut-2-eno (Z) -2,3-dibromobut-2-eno (E) -2,3-dibromobut-2-eno

3. Nombra los siguientes compuestos, razona cuáles presentan algún tipo de isomería y nómbrala: CH₂=CH-CH₃ CH₃-CH₂-CHOH-CH₃ CH₃-CH=CH-COOH CH₃-CHCl-CH₃ (A.B.A.U. extr. 20)

Solución:

 CH_2 =CH- CH_3 : prop-1-eno butan-2-ol CH_3 -CH=CH-COOH: ácido but-2-enoico

CH₃-CH=CH-COOH: acido but-2-enoico CH₃-CHCl-CH₃: 2-cloropropano

Οŀ

El butan-2-ol, CH_3 – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a

cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), hidroxilo (-OH) y metilo (-CH₃).

Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

Del ácido but-2-enoico existen dos isómeros geométricos, que se pueden llamar cis y trans o Z y E.

$$CH_3$$
 H $C=C$ CH_3 $COOH$ $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico $Acido (E)$ -but-2-enoico

4. Nombra los siguientes compuestos y justifica si presentan algún tipo de isomería y de qué tipo: CH₃-CHOH-COH CH₂-CH₂-CH₂-CH₃

(A.B.A.U. ord. 20)

Solución:

CH₃-CHOH-COH: 2-hidroxipropanal. El carbono 2 es asimétrico (está unido a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), metilo (-CH₃) y carbonilo (-CHO), por lo que presenta isomería óptica.

Además puede tener isómeros de función como

CH₃-CH₂-COOH: ácido propanoico CH₃-COO-CH₃: etanoato de metilo CH₂OH-CH=CHOH: propeno-1,3-diol.

CH₃-CH₂-CH=CH-CH₂-CH₃: hex-3-eno, tiene un doble enlace entre los carbonos 3 y 4, y cada uno de ellos está unido a dos grupos distintos: hidrógeno (-H) y etilo (-CH₂-CH₃). Existen dos isómeros geométricos, que se pueden llamar *cis* y trans o Z y E.

$$CH_3-CH_2$$
 H H H $C=C$ $C=C$ H CH_2-CH_3 CH_3-CH_2 CH_2-CH_3 (E) -Hex-3-eno (Z) -Hex-3-eno (Z) -Hex-3-eno (Z) -Hex-3-eno

Además puede tener isómeros de cadena como:

$$CH_3$$
 $CH_3 - C - CH = CH_2$
 CH_3
 $H_2C - CH_2$
 $H_2C - CH_2$
 CH_2 :
 CH_2
 CH_2 :
 CH_2
 CH_2

También presenta isómeros de posición: CH₂=CH-CH₂-CH₂-CH₂-CH₃: hex-1-eno.

- 5. b) Para los compuestos:
 - b.1.1) 2-pentanol
- b.1.2) dietiléter
- b.1.3) ácido 3-metilbutanoico b.1.4) propanamida:

- b.1) Escribe sus fórmulas semidesarrolladas.
- b.2) Razona si alguno puede presentar isomería óptica.

(A.B.A.U. ord. 18)

Solución:

b.1.1) 2-Pentanol (pentan-2-ol):

 $CH_3 - \overset{1}{C} - CH_2 - CH_2 - CH_3$

b.1.2) Dietiléter:

CH₃-CH₂-O-CH₂-CH₃

b.1.3) Ácido 3-metilbutanoico:

 $CH_3-CH-CH_2-C$ CH_3 CH_3-CH_2-C OH CH_3-CH_2-C OH

b.1.4) Propanamida:

b.2) Presenta isomería óptica el pentan-2-ol porque tiene un carbono asimétrico. El carbono 2 está unido a cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y propilo (-CH₂-CH₂-CH₃).

- a) Escribe la fórmula semidesarrollada de los siguientes compuestos:
 - a.1) 3-metil-2,3-butanodiol
- a.2) 5-hepten-2-ona
- a.3) etilmetiléter
- a.4) etanamida
- b) Indica si el ácido 2-hidroxipropanoico presenta carbono asimétrico y represente los posibles isómeros ópticos.

(A.B.A.U. extr. 17)

Solución:

a.1) 3-Metil-2,3-butanodiol (2-metilbutano-2,3-diol):

 $\begin{array}{c} CH_3 \\ CH_3-CH-C-CH_3 \\ OH \end{array}$

a.2) 5-Hepten-2-ona (hept-5-en-2-ona):

CH₃-CH=CH-CH₂-CH₂-CO-CH₃

a.3) Etilmetiléter:

CH₃-O-CH₂-CH₃

a.4) Etanamida:

CH₃-CO-NH₂

b) El ácido 2-hidroxipropanoico, CH₃-C-COOH, tiene un carbono asimétrico. El carbono 2 está unido a

cuatro grupos distintos: metilo (-CH₃), hidrógeno (-H), hidroxilo (-OH) y carboxilo (-COOH). Los isómeros ópticos son:

7. b) Justifica cuál de los siguientes compuestos presenta isomería óptica:

CH₃CH₂CH₂CH₃

CH₃CH(OH)CH₂CH₃

BrCH=CHBr

BrCH=CHCl

CH₃CH(NH₂)COOH

H₃CH(OH)CH₂CH₂CH₃

(A.B.A.U. ord. 17)

Solución:

b) La isomería óptica la presentan los compuestos que tienen algún carbono asimétrico.

Q

El butan-2-ol, CH_3 – C – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a

cuatro grupos distintos: hidrógeno (-H), etilo (-CH2-CH3), hidroxilo (-OH) y metilo (-CH3).

Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

NH₂

El ácido 2-aminopropanoico, CH₃ – COOH, tiene isomería óptica porque el carbono 2 es asimétrico. Está

unido a cuatro grupos distintos: hidrógeno (-H), amino $(-NH_2)$, metilo $(-CH_3)$ y carboxilo (-COOH). Tiene dos isómeros ópticos.

COOH COOH
$$COOH$$
 $COOH$ $COOH$

El pentan-2-ol, $CH_3-C-CH_2-CH_2-CH_3$, tiene isomería óptica porque el carbono 2 es asimétrico. Está uni-

do a cuatro grupos distintos: hidrógeno (-H), hidroxilo (-OH), propilo (- CH_2 - CH_2 - CH_3) y metilo (- CH_3). Tiene dos isómeros ópticos.

- 8. b) Escribe la fórmula semidesarrollada y justifica si alguno de los siguientes compuestos presenta isomería cis-trans:
 - b.1) 1,1-dicloroetano b.2) 1,1-dicloroeteno b.3) 1,2-dicloroetano b.4) 1,2-dicloroeteno (A.B.A.U. extr. 19)

Solución:

b.1) 1,1-Dicloroetano: CHCl₂-CH₃
b.2) 1,1-Dicloroeteno: CCl₂=CH₂
b.3) 1,2-Dicloroetano; CH₂Cl-CH₂Cl
b.4) 1,2-Dicloroeteno: CHCl=CHCl

Un compuesto tendrá isomería geométrica (cis-trans), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

El único compuesto que tiene isomería geométrica es el 1,2-dicloroeteno:

$$C = C$$
 $C = C$
 $C =$

Reacciones

Completa las siguientes reacciones nombrando todos los productos orgánicos presentes en ellas, tanto reactivos como productos, e indica a qué tipo de reacción se corresponden: $\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-COOH} + \text{CH}_3\text{OH} \longrightarrow \qquad \qquad \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{OH} \xrightarrow{K_2\text{Cr}_2\text{Lo}_7. \text{ H}^+}$

(A.B.A.U. extr. 22)

Solución:

 $CH_3-CH_2-COOH + CH_3OH \rightarrow CH_3-CH_2-COO-CH_3 + H_2O$

ácido butanoico

metanol

butanoato de metilo

Es una reacción de esterificación, que es uno de los casos de las reacciones de condensación. $\text{CH}_3\text{-CH}_2\text{-CH}$

butan-1-ol

butanal

ácido butanoico

Es una reacción de oxidación. Los alcoholes primarios se oxidan primero a aldehídos y después a ácidos carboxílicos.

Escribe la reacción que sucede cuando el 2-metil-1-buteno reacciona con HCl, dando lugar a dos halogenuros de alquilo. Nombra los compuestos obtenidos e indica razonadamente si alguno de ellos presenta isomería óptica.

(A.B.A.U. ord. 22)

Solución:

Son reacciones de adición

CH₂=C-CH₂-CH₃
$$+$$
 HCl \rightarrow CH₃-C-CH₂-CH₃ (2-cloro-2-metilbutano).

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow \begin{array}{c} CH_2CI - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-cloro-2-metilbutano)}.$$

El 1-cloro-2-metilbutano tiene isomería óptica porque el carbono 2 es asimétrico. Está unido a cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), clorometilo (-CH₂Cl) y metilo (-CH₃).

Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

Completa las siguientes reacciones químicas orgánicas empleando las fórmulas semidesarrolladas e indica el tipo de reacción al que pertenecen:

$$CH_3$$
- $CH_2OH + HBr \rightarrow ____ + H_2O$

$$CH_2=CH_2 + H_2O \rightarrow \underline{\hspace{1cm}}$$

$$CH_3-COOH + CH_3NH_2 \rightarrow \underline{\hspace{1cm}} + H_2O$$

(A.B.A.U. extr. 21)

Solución:

 CH_3 - $CH_2OH + HBr$ $CH_3-CH_2Br + H_2O$ etanol bromuro de hidrógeno 2-bromoetano agua

Reacción de sustitución

$$CH_2=CH_2 + H_2O \rightarrow CH_3-CH_2OH$$

eteno agua etanol

Reacción de adición.

 CH_3 - $COOH + <math>CH_3NH_2 \rightarrow$ CH₃-CONH-CH₃ + H_2O ácido etanoico metilamina N-metiletanamida agua

Reacción de condensación.

Completa las siguientes reacciones indicando el tipo de reacción y nombrando los productos que se forman:

Propan-2-ol — KMnO₄, H⁺ →

 CH_3 -CH= CH_2 + Br_2 \longrightarrow ____ (A.B.A.U. ord. 21)

Solución:

a) CH₃-CHOH-CH₃ KMnO₄, H⁺ CH₃-CO-CH₃

Es una reacción de oxidación. Los alcoholes secundarios se oxidan a cetonas. Se produce propanona.

b) CH_3 -CH= CH_2 + Br_2 $\rightarrow CH_3$ -CHBr- CH_2Br

Es una reacción de adición. El producto es el 1,2-dibromopropano.

Completa las siguientes reacciones, identificando el tipo de reacción y nombrando los compuestos orgánicos que se forman: nicos que se forman: CH₃-CH₂-COOH + CH₃-CH₂OH \rightarrow _____ + ____ (A.B.A.U. ord. 20)

Solución:

 $CH_3-CH_2-COOH + CH_3-CH_2OH \rightarrow CH_3-CH_2-COO-CH_2-CH_3 + H_2O$ propanoato de etilo ácido propanoico etanol Reacción de esterificación.

 $CH_3CI + HCI$ $CH_4 + Cl_2$ Metano Clorometano CH₂Cl₂ + HCl $CH_3CI + CI_2$ Clorometano Diclorometano CHCl₃ + HCl CH₂Cl₂+ Cl₂ Diclorometano Triclorometano $CHCl_3 + Cl_2$ CCl₄ + HCl

Tetracloruro de carbono Triclorometano

Reacciones de sustitución.

6. b) Completa la siguiente reacción: CH₃-CH₂-CH₂-CH₂-CH₂+ Cl₂ → Identifica el tipo de reacción y nombra los compuestos orgánicos que participan en ella.

(A.B.A.U. ord. 19)

Solución:

b) CH_3 - CH_2 pent-1-eno 1,2-dicloropentano

Reacción de adición

7. b) El 2-metil-1-buteno reacciona con el ácido bromhídrico (HBr) para dar dos halogenuros de alquilo. Escribe la reacción que tiene lugar indicando qué tipo de reacción orgánica es y nombrando los compuestos que se producen.

(A.B.A.U. extr. 17)

Solución:

b) Son reacciones de adición

$$\begin{array}{c} CH_{2}=C-CH_{2}-CH_{3} + HBr \xrightarrow{} CH_{3} \\ CH_{3} & CH_{2}-CH_{3} \\ \end{array} \tag{2-bromo-2-metilbutano}.$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 + HBr \longrightarrow CH_2Br - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-bromo-2-metilbutano)}.$$

 b) Dada la reacción: 2-propanol → propeno + agua, escribe las fórmulas semidesarrolladas de los compuestos orgánicos e identifica el tipo de reacción.

(A.B.A.U. ord. 18)

Solución:

b) Reacción de eliminación: propan-2-ol
$$\to$$
 propeno + agua $\overset{C}{\overset{H_2-CH-CH_3}{\vdash}} \to CH_z = CH-CH_3 + H-O-H$ H OH

9. a) Completa e indica el tipo de reacción que tiene lugar, nombrando los compuestos orgánicos que participan en ellas:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \rightarrow a.2) CH_3 - $COOCH_2$ - CH_3 + H_2O

(A.B.A.U. extr. 18)

Solución:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \longrightarrow CH_3 - CH - CH - CH_3
 H CI
but-2-eno 2- clorobutano

Reacción de adición.

a.2)
$$CH_3$$
- $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - $COOCH_2$ - $CH_3 + H_2O$ ácido etanoico etanol etanoato de etilo Reacción de condensación.

Polímeros

1. b) Nombra cada monómero, emparéjalo con el polímero al que da lugar y cita un ejemplo de un uso doméstico y/o industrial de cada uno de ellos.

CH₂=CH₂ CH₂=CHCl policloruro de vinilo poliestireno polietileno

(A.B.A.U. extr. 19)

Solución:

b) Monómeros

CH₂=CH₂: eteno (monómero del polietileno)

CH₂=CHCl: cloroeteno (monómero del policloruro de vinilo)

Ejemplos de uso de polímeros:

Policloruro de vinilo: aislante cables eléctricos.

Poliestireno: aislante térmico. Polietileno: fabricación de envases. 2. b) Identifica el polímero que tiene la siguiente estructura: ...CH₂-(CH₂)n-CH₂..., indicando además el nombre y la fórmula del monómero de partida.

(A.B.A.U. ord. 17)

Solución:

b) El polímero es el polietileno.

El monómero de partida es el eteno CH₂=CH₂ también llamado etileno.

Actualizado: 19/07/23

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una <a href="https://hoc.org/nc.2006/

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM)

Se consultó el chat de BING y se usaron algunas respuestas en las cuestiones.

Sumario

QUIMICA ORGANICA	
<u>CUESTIONES</u>	1
Formulación/Nomenclatura	
<u>Isomería</u>	1
Reacciones	6
Polímeros.	8

Índice de pruebas A.B.A.U.

2017	
1. (ord.)	4, 9
2. (extr.)	4, 7
2018	
1. (ord.)	4, 8
1. (ord.)	1, 8
2019	
1. (ord.)	
2. (extr.)	
2020	
1. (ord.)	3, 7
2. (extr.)	2
2021	
1. (ord.)	
2. (extr.)	
2022	
1. (ord.)	6
2. (extr.)	6
2023	
1. (ord.)	
2. (extr.)	