# Chapter 4: Statistical Hypothesis Testing

Christophe Hurlin

November 20, 2015

# Section 1

Introduction

#### 1. Introduction

The outline of this chapter is the following:

**Section 2.** Statistical hypothesis testing

**Section 3.** Tests in the multiple linear regression model

**Subsection 3.1.** The Student test

**Subsection 3.2.** The Fisher test

Section 4. MLE and Inference

Subsection 4.1. The Likelihood Ratio (LR) test

**Subsection 4.2.** The Wald test

**Subsection 4.3.** The Lagrange Multiplier (LM) test

#### 1. Introduction

#### References



Greene W. (2007), Econometric Analysis, sixth edition, Pearson - Prentice Hil (recommended)

Ruud P., (2000) An introduction to Classical Econometric Theory, Oxford University Press.

#### 1. Introduction

**Notations:** In this chapter, I will (try to...) follow some conventions of notation.

 $f_{Y}(y)$  probability density or mass function

 $F_{Y}(y)$  cumulative distribution function

Pr () probability

**y** vector

**Y** matrix

**Be careful:** in this chapter, I don't distinguish between a random vector (matrix) and a vector (matrix) of deterministic elements (except in section 2). For more appropriate notations, see:



Abadir and Magnus (2002), Notation in econometrics: a proposal for a standard, Econometrics Journal.

#### Section 2

Statistical hypothesis testing

#### **Objectives**

The objective of this section is to define the following concepts:

- Null and alternative hypotheses
- One-sided and two-sided tests
- Rejection region, test statistic and critical value
- Size, power and power function
- Uniformly most powerful (UMP) test
- Neyman Pearson lemma
- Consistent test and unbiased test
- p-value

#### Introduction

- A statistical hypothesis test is a method of making decisions or a rule of decision (as concerned a statement about a population parameter) using the data of sample.
- Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect based on how likely it would be for a set of observations to occur if the null hypothesis were true.

#### Introduction (cont'd)

In general we distinguish two types of tests:

- The parametric tests assume that the data have come from a type of probability distribution and makes inferences about the parameters of the distribution
- The non-parametric tests refer to tests that do not assume the data or population have any characteristic structure or parameters.

In this course, we only consider the parametric tests.

#### Introduction (cont'd)

A statistical test is based on three elements:

- A null hypothesis and an alternative hypothesis
- A rejection region based on a test statistic and a critical value
- A type I error and a type II error

#### Introduction (cont'd)

A statistical test is based on three elements:

- A null hypothesis and an alternative hypothesis
- A rejection region based on a test statistic and a critical value
- A type I error and a type II error

#### Definition (Hypothesis)

A **hypothesis** is a statement about a population parameter. The formal testing procedure involves a statement of the hypothesis, usually in terms of a "**null**" or maintained hypothesis and an "**alternative**," conventionally denoted  $H_0$  and  $H_1$ , respectively.

#### Introduction

- The null hypothesis refers to a general or default position: that there is no relationship between two measured phenomena or that a potential medical treatment has no effect.
- The costs associated to the violation of the null must be higher than the cost of a violation of the alternative.

#### Example (Choice of the null hypothesis)

In a credit scoring problem, in general we have:  $H_0$ : the client is not risky(acceptance of the loan) versus  $H_1$ : the client is risky (refusal of the loan).

#### Definition (Simple and composite hypotheses)

A **simple hypothesis** specifies the population distribution completely. A **composite** hypothesis does not specify the population distribution completely.

#### Example (Simple and composite hypotheses)

If  $X \sim t(\theta)$ ,  $H_0: \theta = \theta_0$  is a simple hypothesis.  $H_1: \theta > \theta_0$ ,  $H_1: \theta < \theta_0$ , and  $H_1: \theta \neq \theta_0$  are composite hypotheses.

#### Definition (One-sided test)

A one-sided test has the general form:

$$H_0$$
 :  $\theta = \theta_0$  or  $H_0: \theta = \theta_0$ 

$$H_1$$
 :  $\theta < \theta_0$   $H_1: \theta > \theta_0$ 

#### Definition (Two-sided test)

A two-sided test has the general form:

$$H_0$$
 :  $\theta = \theta_0$ 

$$H_1$$
 :  $\theta \neq \theta_0$ 

#### Introduction (cont'd)

A statistical test is based on three elements:

- A null hypothesis and an alternative hypothesis
- A rejection region based on a test statistic and a critical value
- A type I error and a type II error

#### Definition (Rejection region)

The **rejection region** is the set of values of the test statistic (or equivalently the set of samples) for which the null hypothesis is rejected. The rejection region is denoted W. For example, a standard rejection region W is of the form:

$$W = \{x : T(x) > c\}$$

or equivalently

$$W = \{x_1, ..., x_N : T(x_1, ..., x_N) > c\}$$

where x denotes a sample  $\{x_1, ..., x_N\}$ , T(x) the realisation of a **test** statistic and c the critical value.

#### Remarks

- A (hypothesis) test is thus a rule that specifies:
  - For which sample values the decision is made to "fail to reject H0" as true;
  - For which sample values the decision is made to "reject H0".
  - Never say "Accept H1", "fail to reject H1" etc..
- The complement of the rejection region is the non-rejection region.

#### Remark

The rejection region is defined as to be:

$$W = \{x : \underbrace{T(x)}_{\text{test statistic}} \leq \underbrace{c}_{\text{critical valu}}\}$$

T(x) is the realisation of the statistic (random variable):

$$T(X) = T(X_1, ..., X_N)$$

The test statistic  $T\left(X\right)$  has an exact or an asymptotic distribution D under the null  $H_{0}$ .

$$T(X) \underset{H_0}{\sim} D$$
 or  $T(X) \xrightarrow{d} D$ 



#### Introduction (cont'd)

A statistical test is based on three elements:

- A null hypothesis and an alternative hypothesis
- A rejection region based on a test statistic and a critical value
- A type I error and a type II error

|       |                | Decision                      |                       |
|-------|----------------|-------------------------------|-----------------------|
| -     |                | Fail to reject H <sub>0</sub> | Reject H <sub>0</sub> |
| Truth | $H_0$          | Correct decision              | Type I error          |
|       | H <sub>1</sub> | Type II error                 | Correct decision      |

#### Definition (Size)

The probability of a type I error is the (nominal) size of the test. This is conventionally denoted  $\alpha$  and is also called the significance level.

$$\alpha = Pr(W|H_0)$$

#### Remark

For a simple null hypothesis:

$$\alpha = \Pr(\mathbf{W}|\mathbf{H}_0)$$

For a composite null hypothesis:

$$\alpha = \sup_{\theta_0 \in \mathsf{H}_0} \mathsf{Pr}\left(\left.\mathsf{W}\right| \mathsf{H}_0\right)$$

A test is said to have level if its size is less than or equal to  $\alpha$ .

#### Definition (Power)

The **power** of a test is the probability that it will correctly lead to rejection of a false null hypothesis:

$$\mathsf{power} = \mathsf{Pr}\left(\left.\mathsf{W}\right|\mathsf{H}_{1}\right) = 1 - \beta$$

where  $\beta$  denotes the probability of type II error, i.e.  $\beta = \Pr\left(\overline{W} \middle| H_1\right)$  and  $\overline{W}$  denotes the non-rejection region.

#### Example (Test on the mean)

Consider a sequence  $X_1, ..., X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m, \sigma^2\right)$  where  $\sigma^2$  is known. We want to test

$$H_0 : m = m_0$$
  
 $H_1 : m = m_1$ 

with  $m_1 < m_0$ . An econometrician propose the following rule of decision:

$$W = \{x : \overline{x}_N < c\}$$

where  $\overline{X}_N = N^{-1} \sum_{i=1}^N X_i$  denotes the sample mean and c is a constant (critical value). **Question:** calculate the size and the power of this test.

#### Solution

The rejection region is W=  $\{x : \overline{x}_N < c\}$ . Under the null  $H_0 : m = m_0$ :

$$\overline{X}_N \underset{\mathsf{H}_0}{\sim} \mathcal{N}\left(m_0, \frac{\sigma^2}{N}\right)$$

So, the size of the test is equal to:

$$\begin{array}{lcl} \alpha & = & \Pr\left(\left.W\right|H_{0}\right) \\ & = & \Pr\left(\left.\overline{X}_{N} < c\right|H_{0}\right) \\ & = & \Pr\left(\left.\overline{\frac{X}{N} - m_{0}} < \frac{c - m_{0}}{\sigma/\sqrt{N}}\right|H_{0}\right) \\ & = & \Phi\left(\frac{c - m_{0}}{\sigma/\sqrt{N}}\right) \end{array}$$

#### Solution (cont'd)

The rejection region is W=  $\{x : \overline{x}_N < c\}$ . Under the alternative H<sub>1</sub> :  $m = m_1$  :

$$\overline{X}_N \underset{\mathsf{H}_1}{\sim} \mathcal{N}\left(m_1, \frac{\sigma^2}{N}\right)$$

So, the power of the test is equal to:

$$\begin{array}{ll} \mathsf{power} & = & \mathsf{Pr}\left(\mathsf{W}|\,\mathsf{H}_1\right) \\ & = & \mathsf{Pr}\left(\frac{\overline{X}_N - m_1}{\sigma/\sqrt{N}} < \frac{c - m_1}{\sigma/\sqrt{N}} \middle|\,\mathsf{H}_1\right) \\ & = & \Phi\left(\frac{c - m_1}{\sigma/\sqrt{N}}\right) \;\; \Box \end{array}$$

#### Solution (cont'd)

In conclusion:

$$lpha = \Phi\left(rac{c-m_0}{\sigma/\sqrt{N}}
ight)$$
  $eta = 1- ext{power} = 1-\Phi\left(rac{c-m_1}{\sigma/\sqrt{N}}
ight)$ 

We have a system of two equations with three parameters:  $\alpha$ ,  $\beta$  (or power) and the critical value c.

- There is a trade-off between the probabilities of the errors of type I and II, i.e.  $\alpha$  and  $\beta$ : if c decreases,  $\alpha$  decreases but  $\beta$  increases.
- ② A solution is to impose a size  $\alpha$  and determine the critical value and the power.

#### Solution (cont'd)

In order to illustrate the **tradeoff** between  $\alpha$  and  $\beta$  given the critical value c, take an example with  $\sigma^2 = 1$  and N = 100:

$$H_0: m = m_0 = 1.2$$
  $H_1: m = m_1 = 1$ 

$$\overline{X}_{N} \underset{H_{0}}{\sim} N\left(m_{0}, \frac{\sigma^{2}}{N}\right) \qquad \overline{X}_{N} \underset{H_{1}}{\sim} N\left(m_{1}, \frac{\sigma^{2}}{N}\right)$$

We have

$$\begin{split} \mathsf{W} &= \left\{ x: \overline{x}_{\mathit{N}} < c \right\} \\ \alpha &= \mathsf{Pr}\left(\mathsf{W}|\,\mathsf{H}_{0}\right) = \Phi\left(\frac{c - m_{0}}{\sigma/\sqrt{\mathit{N}}}\right) = \Phi\left(10\left(c - 1.2\right)\right) \\ \beta &= \mathsf{Pr}\left(\overline{\mathsf{W}}|\,\mathsf{H}_{1}\right) = 1 - \Phi\left(\frac{c - m_{1}}{\sigma/\sqrt{\mathit{N}}}\right) = 1 - \Phi\left(10\left(c - 1\right)\right) \end{split}$$



Click me!

#### Fact (Critical value)

The (nominal) size  $\alpha$  is fixed by the analyst and the critical value is deduced from  $\alpha$ .

#### Example (Test on the mean)

Consider a sequence  $X_1,...,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$ , N=100 and  $\sigma^2=1$ . We want to test

$$H_0: m = 1.2$$
  $H_1: m = 1$ 

An econometrician propose the following rule of decision:

$$W = \{x : \overline{x}_N < c\}$$

where  $\overline{X}_N = N^{-1} \sum_{i=1}^N X_i$  denotes the sample mean and c is a constant (critical value). **Questions:** (1) what is the critical value of the test of size  $\alpha = 5\%$ ? (2) what is the power of the test?

#### Solution

We know that:

$$\alpha = \Pr(W|H_0) = \Phi\left(\frac{c - m_0}{\sigma/\sqrt{N}}\right)$$

So, the critical value that corresponds to a significance level of  $\alpha$  is:

$$c=m_{0}+\frac{\sigma}{\sqrt{N}}\Phi^{-1}\left(\alpha\right)$$

NA: if  $m_0=1.2$ ,  $m_1=1$ , N=100,  $\sigma^2=1$  and  $\alpha=5\%$ , then the rejection region is

$$W = \{x : \overline{x}_N < 1.0355\}$$

# 2. Statistical hypothesis testing **Solution (cont'd)**

$$W = \left\{ x : \overline{x}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1}(\alpha) \right\}$$

The power of the test is:

$$\mathsf{power} = \mathsf{Pr}\left(\left.\mathsf{W}\right|\mathsf{H}_{1}\right) = \Phi\left(\frac{c - m_{1}}{\sigma/\sqrt{N}}\right)$$

Given the critical value, we have:

power 
$$=\Phi\left(rac{m_0-m_1}{\sigma/\sqrt{N}}+\Phi^{-1}\left(lpha
ight)
ight)$$
  $\Box$ 

NA: if  $m_0 = 1.2$ ,  $m_1 = 1$ , N = 100,  $\sigma^2 = 1$  and  $\alpha = 5\%$ :

power 
$$=\Phi\left(rac{1.2-1}{1/\sqrt{100}}+\Phi^{-1}\left(0.05
ight)
ight)=0.6388$$
  $_{\Box}$ 

#### Example (Test on the mean)

Consider a sequence  $X_1,...,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  with  $\sigma^2=1$  and N=100. We want to test

$$H_0: m = 1.2$$
  $H_1: m = 1$ 

The rejection region for a significance level  $\alpha=5\%$  is:

$$W = \{x : \overline{x}_N < 1.0355\}$$

where  $\overline{X}_N = N^{-1} \sum_{i=1}^N X_i$  denotes the sample mean. **Question:** if the realisation of the sample mean is equal to 1.13, what is the conclusion of the test?

#### Solution (cont'd)

For a nominal size  $\alpha = 5\%$ , the rejection region is:

$$W = \{x : \overline{x}_N < 1.0355\}$$

If we observe

$$\overline{x}_N = 1.13$$

This realisation does not belong to the rejection region:

$$\overline{x}_N \notin W$$

For a level of 5%, we do not reject the null hypothesis H $_0: m=1.2$ .  $_{\square}$ 

#### Definition (Power function)

In general, the alternative hypothesis is composite. In this case, the power is a **function** of the value of the parameter under the alternative.

$$power = P(\theta) \quad \forall \theta \in \mathsf{H}_1$$

#### Example (Test on the mean)

Consider a sequence  $X_1,...,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  where  $\sigma^2$  is known. We want to test

$$H_0 : m = m_0$$
  
 $H_1 : m < m_0$ 

Consider the following rule of decision:

$$W = \left\{ x : \overline{x}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1}(\alpha) \right\}$$

Questions: What is the power function of the test?

#### Solution

As in the previous case, we have:

power 
$$=P\left(m
ight)=\Phi\left(rac{m_{0}-m}{\sigma/\sqrt{N}}+\Phi^{-1}\left(lpha
ight)
ight)$$
 with  $m< m_{0}$ 

NA: if  $m_0 = 1.2$ , N = 100,  $\sigma^2 = 1$  and  $\alpha = 5\%$ .

$$P(m) = \Phi\left(\frac{1.2 - m}{1/10} - 1.6449\right)$$
 with  $m < m_0$ 





#### Example (Power function)

Consider a test  $H_0: \theta = \theta_0$  versus  $H_1: \theta \neq \theta_0$ , the power function has this general form:



#### Definition (Most powerful test)

A test (denoted A) is **uniformly most powerful (UMP)** if it has greater power than any other test of the same size for all admissible values of the parameter.

$$\alpha_A = \alpha_B = \alpha$$

$$\beta_A \le \beta_B$$

for any test B of size  $\alpha$ .

#### **UMP** tests

How to derive the rejection region of the UMP test of size  $\alpha$  ?

=> the **Neyman-Pearson lemma** 

#### Lemma (Neyman Pearson)

Consider a hypothesis test between two point hypotheses  $H_0: \theta = \theta_0$  and  $H_1: \theta = \theta_1$ . The uniformly most powerful (UMP) test has a rejection region defined by:

$$W = \left\{ x \middle| \frac{L_{N}(\theta_{0}; x)}{L_{N}(\theta_{1}; x)} < K \right\}$$

where  $L_N\left(\theta_0;x\right)$  denotes the likelihood of the sample x and K is a constant determined by the size  $\alpha$  such that:

$$\Pr\left(\frac{L_{N}\left(\theta_{0};X\right)}{L_{N}\left(\theta_{1};X\right)} < K \middle| H_{0}\right) = \alpha$$

#### Example (Test on the mean)

Consider a sequence  $X_1,...,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  where  $\sigma^2$  is known. We want to test

$$\mathsf{H}_0 : m = m_0$$

$$\mathsf{H}_1 \ : \ m=m_1$$

with  $m_1 > m_0$ . **Question:** What is the rejection region of the UMP test of size  $\alpha$ ?

#### Solution

Since  $X_1, ..., X_N$  are  $\mathcal{N}.i.d.$   $(m, \sigma^2)$ , the likelihood of the sample  $\{x_1, ..., x_N\}$  is defined as to be (cf. chapter 2):

$$L_{N}\left(\theta;x\right) = \frac{1}{\sigma^{N}\left(2\pi\right)^{N/2}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}\left(x_{i}-m\right)^{2}\right)$$

Given the Neyman Pearson lemma the rejection region of the UMP test of size  $\alpha$  is given by:

$$\frac{L_{N}\left(\theta_{0};x\right)}{L_{N}\left(\theta_{1};x\right)} < K$$

where K is a constant determined by the size  $\alpha$ .

#### Solution (cont'd)

$$\frac{\frac{1}{\sigma^{N}(2\pi)^{N/2}}\exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(x_{i}-m_{0})^{2}\right)}{\frac{1}{\sigma^{N}(2\pi)^{N/2}}\exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(x_{i}-m_{1})^{2}\right)} < K$$

This expression can rewritten as:

$$\exp\left(\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{N}(x_{i}-m_{1})^{2}-\sum_{i=1}^{N}(x_{i}-m_{0})^{2}\right)\right) < K$$

$$\iff \sum_{i=1}^{N}(x_{i}-m_{1})^{2}-\sum_{i=1}^{N}(x_{i}-m_{0})^{2} < K_{1}$$

where  $K_1 = 2\sigma^2 \ln (K)$  is a constant.

#### Solution (cont'd)

$$\sum_{i=1}^{N} (x_i - m_1)^2 - \sum_{i=1}^{N} (x_i - m_0)^2 < K_1$$

$$\iff 2 (m_0 - m_1) \sum_{i=1}^{N} x_i + N (m_1^2 - m_0^2) < K_1$$

$$\iff (m_0 - m_1) \sum_{i=1}^{N} x_i < K_2$$

where  $K_2 = \left(K_1 - N\left(m_1^2 - m_0^2\right)\right)/2$  is a constant.

#### Solution (cont'd)

$$(m_0 - m_1) \sum_{i=1}^{N} x_i < K_2$$

Since  $m_1 > m_0$ , we have

$$\frac{1}{N}\sum_{i=1}^{N}x_i>K_3$$

where  $K_3 = K_2 / (N(m_0 - m_1))$  is a constant.

The rejection region of the UMP test for  $H_0: m=m_0$  against  $H_0: m=m_1$  with  $m_1>m_0$  has the general form:

$$W = \{x : \overline{x}_N > A\}$$

where A is a constant.



#### Solution (cont'd)

$$W = \{x : \overline{x}_N > A\}$$

Determine the critical value A from the nominal size:

$$\begin{array}{lcl} \alpha & = & \Pr \left( \left. \mathsf{W} \right| \mathsf{H}_0 \right) \\ & = & \Pr \left( \left. \overline{x}_N > A \right| \mathsf{H}_0 \right) \\ & = & 1 - \Pr \left( \left. \frac{\overline{X}_N - m_0}{\sigma / \sqrt{N}} < \frac{A - m_0}{\sigma / \sqrt{N}} \right| \mathsf{H}_0 \right) \\ & = & 1 - \Phi \left( \frac{A - m_0}{\sigma / \sqrt{N}} \right) \end{array}$$

#### Solution (cont'd)

$$\alpha = 1 - \Phi\left(\frac{A - m_0}{\sigma / \sqrt{N}}\right)$$

So, we have

$$A = m_0 + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha \right)$$

The rejection region of the UMP test of size  $\alpha$  for H<sub>0</sub> :  $m=m_0$  against H<sub>0</sub> :  $m=m_1$  with  $m_1>m_0$  is:

$$W = \left\{ x : \overline{x}_N > m_0 + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha \right) \right\} \quad \Box$$

#### Fact (UMP one-sided test)

For a one-sided test

$$H_0: \theta = \theta_0$$
 against  $H_1: \theta > \theta_0$  (or  $H_1: \theta < \theta_1$ )

the rejection region W of the UMP test is equivalent to the rejection region obtained for the test

$$H_0: heta = heta_0$$
 against  $H_1: heta = heta_1$ 

with for  $\theta_1>\theta_0$  (or  $\theta_1<\theta_0$ ) if this region does not depend on the value of  $\theta_1.$ 

#### Example (Test on the mean)

Consider a sequence  $X_1,..,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  where  $\sigma^2$  is known. We want to test

 $\mathsf{H}_0 \ : \ m=m_0$ 

 $\mathsf{H}_1 \ : \ m > m_0$ 

**Question:** What is the rejection region of the UMP test of size  $\alpha$ ?

#### Solution

Consider the test:

$$H_0 : m = m_0$$
  
 $H_1 : m = m_1$ 

with  $m_1 > m_0$ . The rejection region of the UMP test of size  $\alpha$  is:

$$W = \left\{ x : \overline{x}_N > m_0 + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha \right) \right\}$$

W does not depend on  $m_1$ . It is also the rejection region of the UMP one-sided test for

$$H_0 : m = m_0$$
  
 $H_1 : m > m_0$ 

#### Fact (Two-sided test)

For a two-sided test

$$H_0: heta = heta_0$$
 against  $H_1: heta 
eq heta_0$ 

the non rejection region W of the test of size  $\alpha$  is the intersection of the non rejection regions of the corresponding one-sided UMP tests of **size**  $\alpha/2$ 

Test A: 
$$H_0: \theta = \theta_0$$
 against  $H_1: \theta > \theta_0$ 

Test B: 
$$H_0: \theta = \theta_0$$
 against  $H_1: \theta < \theta_0$ 

So, we have:

$$\overline{W} = \overline{W}_A \cap \overline{W}_B$$



#### Example (Test on the mean)

Consider a sequence  $X_1,..,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  where  $\sigma^2$  is known. We want to test

 $\mathsf{H}_0 \ : \ m = m_0$ 

 $\mathsf{H}_1 \ : \ m \neq m_0$ 

**Question:** What is the rejection region of the test of size  $\alpha$ ?

#### Solution

Consider the one-sided tests:

Test A: 
$$H_0: m = m_0$$
 against  $H_1: m < m_0$ 

Test B: 
$$H_0: m = m_0$$
 against  $H_1: m > m_0$ 

The rejection regions of the UMP test of size  $\alpha/2$  are:

$$W_{A} = \left\{ x : \overline{x}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( \alpha/2 \right) \right\}$$

$$W_{B} = \left\{ x : \overline{x}_{N} > m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\}$$

#### Solution (cont'd)

The **non-rejection regions** of the UMP test of size  $\alpha/2$  are:

$$\overline{W}_{A} = \left\{ x : \overline{x}_{N} \geq m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( \alpha/2 \right) \right\}$$

$$\overline{W}_{B} = \left\{ x : \overline{x}_{N} \leq m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\}$$

The non rejection region of the two-sided test corresponds to the intersection of these two regions:

$$\overline{W} = \overline{W}_A \cap \overline{W}_B$$

# 2. Statistical hypothesis testing **Solution (cont'd)**



So, non rejection region of the two-sided test of size  $\alpha$  is:

$$\overline{W} = \left\{ x : m_0 + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( \alpha/2 \right) \le \overline{x}_N \le m_0 + \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\}$$

Since,  $\Phi^{-1}\left(\alpha/2\right)=-\Phi^{-1}\left(1-\alpha/2\right)$  , this region can be rewritten as:

$$\overline{W} = \left\{ x : |\overline{x}_N - m_0| \le \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\}$$

) ( O ) ( O )

#### Solution (cont'd)



$$\overline{W} = \left\{ x : |\overline{x}_N - m_0| \le \frac{\sigma}{\sqrt{N}} \Phi^{-1} (1 - \alpha/2) \right\}$$

Finally, the **rejection region** of the two-sided test of size  $\alpha$  is:

$$W = \left\{ x : |\overline{x}_N - m_0| > \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\} \ \ \Box$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

#### Solution (cont'd)

$$W = \left\{ x : |\overline{x}_N - m_0| > \frac{\sigma}{\sqrt{N}} \Phi^{-1} \left( 1 - \alpha/2 \right) \right\}$$

NA: if  $m_0 = 1.2$ , N = 100,  $\sigma^2 = 1$  and  $\alpha = 5\%$ :

W = 
$$\left\{ x : |\overline{x}_N - 1.2| > \frac{1}{10} \Phi^{-1} (0.975) \right\}$$

$$W = \{x : |\overline{x}_N - 1.2| > 0.1960\}$$

If the realisation of  $|\overline{x}_N - 1.2|$  is larger than 0.1960, we reject the null  $H_0$ : m = 1.2 for a significance level of 5%.

#### Definition (Unbiased Test)

A test is **unbiased** if its power  $P\left(\theta\right)$  is greater than or equal to its size  $\alpha$  for all values of the parameter  $\theta$ .

$$P(\theta) \ge \alpha \quad \forall \theta \in \mathsf{H}_1$$

By construction, we have  $P(\theta_0) = \Pr(W|H|_0) = \alpha$ .

#### Definition (Consistent Test)

A test is **consistent** if its power goes to one as the sample size grows to infinity.

$$\lim_{N\to\infty} P\left(\theta\right) = 1 \quad \forall \theta \in \mathsf{H}_1$$

#### Example (Test on the mean)

Consider a sequence  $X_1,..,X_N$  of i.i.d. continuous random variables with  $X_i \sim \mathcal{N}\left(m,\sigma^2\right)$  where  $\sigma^2$  is known. We want to test

$$H_0 : m = m_0$$
  
 $H_1 : m < m_0$ 

The rejection region of the UMP test of size  $\alpha$  is

$$W = \left\{ x : \overline{x}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1} (\alpha) \right\}$$

Question: show that this test is (1) unbiased and (2) consistent.

#### Solution

$$W = \left\{ x : \overline{x}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}} \Phi^{-1}(\alpha) \right\}$$

The power function of the test is defined as to be:

$$\begin{split} P\left(m\right) &= \left. \Pr\left(\left.W\right|H_{1}\right) \right. \\ &= \left. \Pr\left(\left.\overline{X}_{N} < m_{0} + \frac{\sigma}{\sqrt{N}}\Phi^{-1}\left(\alpha\right)\right| \, m < m_{0}\right) \right. \\ &= \left. \Phi\left(\frac{m_{0} - m}{\sigma/\sqrt{N}} + \Phi^{-1}\left(\alpha\right)\right) \right. \end{split}$$

#### Solution

$$P(m) = \Phi\left(\frac{m_0 - m}{\sigma/\sqrt{N}} + \Phi^{-1}(\alpha)\right) \quad \forall m < m_0$$

The test is consistent since:

$$\lim_{N\to\infty}P\left(m\right)=1$$

The test is unbiased since

$$P(m) \ge \alpha \quad \forall m < m_0$$

$$\lim_{m\to m_0} P\left(m\right) = \Phi\left(\Phi^{-1}\left(\alpha\right)\right) = \alpha \quad \Box$$

#### Solution

- The decision "Reject H0" or "fail to reject H0" is not so informative!
- Indeed, there is some "arbitrariness" to the choice of  $\alpha$  (level).
- Another strategy is to ask, for every  $\alpha$ , whether the test rejects at that level.
- Another alternative is to use the so-called p-value—the smallest level of significance at which H<sub>0</sub> would be rejected given the value of the test-statistic.

#### Definition (p-value)

Suppose that for every  $\alpha \in [0,1]$ , one has a size  $\alpha$  test with rejection region  $W_{\alpha}$ . Then, the **p-value** is defined to be:

$$p
-value = \inf \left\{ \alpha : T(y) \in W_{\alpha} \right\}$$

The p-value is the smallest level at which one can reject  $H_0$ .

The p-value is a **measure of evidence against**  $H_0$ :

| p-value     | evidence                                     |
|-------------|----------------------------------------------|
| < 0.01      | Very strong evidence against H <sub>0</sub>  |
| 0.01 - 0.05 | Strong evidence against $H_0$                |
| 0.05 - 0.10 | Weak evidence against H <sub>0</sub>         |
| > 0.10      | Little or no evidence against H <sub>0</sub> |

#### Remarks

- A large p-value does not mean "strong evidence in favor of H0".
- A large p-value can occur for two reasons:
  - H0 is true;
  - 40 H0 is false but the test has low power.
- The p-value is not the probability that the null hypothesis is true!

Dependent Variable: RMSFT Method: Least Squares Date: 11/09/13 Time: 21:53 Sample(adjusted): 2 2363

Included observations: 2362 after adjusting endpoints

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| C                  | 0.000274    | 0.000179              | 1.532829    | 0.1255    |
| RSP500             | 1.125056    | 0.025371              | 44.34419    |           |
| R-squared          | 0.454513    | Mean dependent var    |             | 0.000617  |
| Adjusted R-squared | 0.454282    | S.D. dependent var    |             | 0.011753  |
| S.E. of regression | 0.008682    | Akaike info criterion |             | -6.654227 |
| Sum squared resid  | 0.177900    | Schwarz criterion     |             | -6.649343 |
| Log likelihood     | 7860.642    | F-statistic           |             | 1966.407  |
| Durbin-Watson stat | 2.028898    | Prob(F-statistic)     |             | 0.000000  |

For a nominal size of 5%, we **reject** the null  $H_0: \beta_{SP500} = 0$ .

For a nominal size of 5%, we **fail to reject** the null  $H_0: \beta_C = 0$ .

#### Summary

Hypothesis testing is defined by the following general procedure

**Step 1:** State the relevant null and alternative hypotheses (misstating the hypotheses muddies the rest of the procedure!);

**Step 2:** Consider the statistical assumptions being made about the sample in doing the test (independence, distributions, etc.)—incorrect assumptions mean that the test is invalid!

**Step 3:** Choose the appropriate test (exact or asymptotic tests) and thus state the relevant test statistic (say, T).

## Summary (cont'd)

**Step 4:** Derive the distribution of the test statistic under the null hypothesis (sometimes it is well-known, sometimes it is more tedious!)—for example, the Student t-distribution or the Fisher distribution.

**Step 5:** Determine the critical value (and thus the critical region).

**Step 6:** Compute (using the observations!) the observed value of the test statistic T, say  $t_{obs}$ .

**Step 7:** Decide to either fail to reject the null hypothesis or reject in favor of the alternative assumption—the decision rule is to reject the null hypothesis  $H_0$  if the observed value of the test statistic,  $t_{obs}$  is in the critical region, and to "fail to reject" the null hypothesis otherwise

### Key concepts

- Null and alternative hypotheses
- Simple and composite hypotheses
- One-sided and two-sided tests
- Rejection region, test statistic and critical value
- Type I and type II errors
- Size, power and power function
- Uniformly most powerful (UMP) test
- Neyman Pearson lemma
- Onsistent test and unbiased test
- p-value

# Section 3

Tests in the multiple linear regression model

### **Objectives**

In the context of the multiple linear regression model (cf. chapter 3), the objective of this section is to present :

- the Student test
- 2 the t-statistic and the z-statistic
- the Fisher test
- the global F-test
- To distinguish the case with normality assumption and the case without any assumption on the distribution of the error term (semi-parametric specification)

**Be careful:** in this section, I don't distinguish between a random vector (matrix) and a vector (matrix) of deterministic elements. For more appropriate notations, see:



Abadir and Magnus (2002), Notation in econometrics: a proposal for a standard, Econometrics Journal.

#### Model

Consider the (population) multiple linear regression model:

$$\mathsf{y} = \mathsf{X} \pmb{\beta} + \pmb{arepsilon}$$

where (cf. chapter 3):

- **y** is a  $N \times 1$  vector of observations  $y_i$  for i = 1, ..., N
- **X** is a  $N \times K$  matrix of K explicative variables  $\mathbf{x}_{ik}$  for k = 1, ..., K and i = 1, ..., N
- $\varepsilon$  is a  $N \times 1$  vector of error terms  $\varepsilon_i$ .
- $oldsymbol{eta} = (eta_1..eta_K)^ op$  is a K imes 1 vector of parameters



#### **Assumptions**

## Fact (Assumptions)

We assume that the multiple linear regression model satisfy the assumptions A1-A5 (cf. chapter 3)

We distinguish two cases:

- **① Case 1:** assumption A6 (Normality) holds and  $\varepsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}_N\right)$
- **Q** Case 2: the distribution of  $\varepsilon$  is unknown (semi-parametric specification) and  $\varepsilon \sim ??$

#### Parametric tests

The  $\beta_k$  are unknown features of the population, but:

- One can formulate a hypothesis about their value;
- One can construct a test statistic with a known finite sample distribution (case 1) or an asymptotic distribution (case 2);
- One can take a "decision" meaning "reject H0" if the value of the test statistic is too unlikely.

#### Three tests of interest:

$$\begin{array}{lll} \mathsf{H}_0 & : & \beta_k = \mathsf{a}_k & \text{ or } & \mathsf{H}_0 : \beta_k = \mathsf{a}_k \\ \mathsf{H}_1 & : & \beta_k < \mathsf{a}_k & & \mathsf{H}_1 : \beta_k > \mathsf{a}_k \end{array}$$

$$H_0$$
 :  $\beta_k = a_k$   
 $H_1$  :  $\beta_k \neq a_k$ 

$$egin{array}{lll} \mathsf{H}_0 & : & \mathsf{R}oldsymbol{eta} = \mathsf{q} \\ \mathsf{H}_1 & : & \mathsf{R}oldsymbol{eta} 
eq \mathsf{q} \end{array}$$

where  $a_k = 0$  or  $a_k \neq 0$ .

For that, we introduce two types of test

- 1 The Student test or t-test
- The Fisher test of F-test

# Subsection 3.1

The Student test

Case 1: Normality assumption A6

Assumption 6 (normality): the disturbances are normally distributed.

$$\left. \boldsymbol{arepsilon} \right| \mathbf{X} \sim \mathcal{N} \left( \mathbf{0}_{N imes 1}, \sigma^2 \mathbf{I}_N 
ight)$$

Reminder (cf. chapter 3)

# Fact (Linear regression model)

Under the assumption A6 (normality), the estimators  $\widehat{\beta}$  and  $\widehat{\sigma}^2$  have a finite sample distribution given by:

$$\widehat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta},\!\sigma^2\left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}
ight)$$

$$\frac{\widehat{\sigma}^2}{\sigma^2}(N-K) \sim \chi^2(N-K)$$

Moreover,  $\widehat{\boldsymbol{\beta}}$  and  $\widehat{\sigma}^2$  are independent. This result holds whether or not the matrix  $\mathbf{X}$  is considered as random. In this last case, the distribution of  $\widehat{\boldsymbol{\beta}}$  is conditional to  $\mathbf{X}$ .

#### Remarks

**4** Any linear combination of  $\widehat{\beta}$  is also normally distributed:

$$\mathbf{A}\widehat{oldsymbol{eta}} \sim \mathcal{N}\left(\mathbf{A}oldsymbol{eta},\!\sigma^2\mathbf{A}\left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{A}^{ op}
ight)$$

 $oldsymbol{@}$  Any subset of  $\widehat{oldsymbol{eta}}$  has a joint normal distribution.

$$\widehat{\boldsymbol{\beta}}_{k} \sim \mathcal{N}\left(\boldsymbol{\beta}_{k}, \sigma^{2} m_{kk}\right)$$

where  $m_{kk}$  is  $k^{th}$  diagonal element of  $\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$ .

#### Reminder

If X and Y are two independent random variables such that

$$X \sim \mathcal{N}\left(0,1\right)$$

$$Y \sim \chi^2 \left( \theta \right)$$

then the variable Z defined as to be

$$Z = \frac{X}{\sqrt{Y/\theta}}$$

has a Student's t-distribution with  $\theta$  degrees of freedom

$$Z \sim t_{(\theta)}$$



#### Student test statistic

Consider a test with the null:

$$\mathsf{H}_0:eta_k=\mathsf{a}_k$$

Under the null  $H_0$ :

$$rac{\widehat{eta}_k - \mathsf{a}_k}{\sigma \sqrt{m_{kk}}} \underset{\mathsf{H}_0}{\sim} \mathcal{N}\left(0,1
ight)$$

$$\frac{\widehat{\sigma}^2}{\sigma^2} (N - K) \underset{\mathsf{H}_0}{\sim} \chi^2 (N - K)$$

and these two variables are independent...

### Student test statistic (cont'd)

$$\begin{split} \frac{\widehat{\beta}_k - a_k}{\sigma \sqrt{m_{kk}}} &\underset{\mathsf{H}_0}{\sim} \mathcal{N}\left(0, 1\right) \\ \frac{\widehat{\sigma}^2}{\sigma^2} \left(N - K\right) &\underset{\mathsf{H}_0}{\sim} \chi^2 \left(N - K\right) \end{split}$$

So, under the null  $H_0$  we have:

$$\frac{\frac{\widehat{\beta}_{k} - a_{k}}{\sigma \sqrt{m_{kk}}}}{\sqrt{\frac{\widehat{\sigma}^{2}}{\sigma^{2}} \frac{(N - K)}{(N - K)}}} = \frac{\widehat{\beta}_{k} - a_{k}}{\widehat{\sigma} \sqrt{m_{kk}}} \underset{\mathsf{H}_{0}}{\sim} t_{(N - K)}$$

## Definition (Student t-statistic)

Under the null  $H_0$ :  $\beta_k = a_k$ , the **Student test-statistic** or **t-statistic** is defined to be:

$$\mathsf{T}_k = \frac{\widehat{\beta}_k - \mathsf{a}_k}{\widehat{\mathsf{se}}\left(\widehat{\beta}_k\right)} \overset{\sim}{\mathsf{H}_0} t_{(N-K)}$$

where N is the number of observations, K is the number of explanatory variables (including the constant term),  $t_{(N-K)}$  is the Student t-distribution with N-K degrees of freedom and

$$\widehat{\mathsf{se}}\left(\widehat{\pmb{eta}}_{\pmb{k}}
ight)=\widehat{\pmb{\sigma}}\sqrt{m_{\pmb{k}\pmb{k}}}$$

with  $m_{kk}$  is  $k^{th}$  diagonal element of  $\left(\mathbf{X}^{ op}\mathbf{X}\right)^{-1}$  .

#### **Remarks**

• Under the assumption A6 (normality) and under the null  $H_0: \beta_k = a_k$ , the Student test-statistic has an **exact (finite sample)** distribution.

$$\mathsf{T}_k \underset{\mathsf{H}_0}{\sim} t_{(N-K)}$$

② The term  $\widehat{\operatorname{se}}\left(\widehat{\beta}_k\right)$  denotes the estimator of the standard error of the OLS estimator  $\widehat{\beta}_k$  and it corresponds to the square root of the  $k^{th}$  diagonal element of  $\widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\beta}}\right)$  (cf. chapter 3):

$$\widehat{\mathbb{V}}\left(\widehat{oldsymbol{eta}}
ight) = \widehat{\sigma}^2 \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}$$



#### Consider the **one-sided test**:

$$H_0$$
 :  $\beta_k = a_k$   
 $H_1$  :  $\beta_k < a_k$ 

The rejection region is defined as to be:

$$W = \{y : T_k(y) < A\}$$

where A is a constant determined by the nominal size  $\alpha$ .

$$\alpha = \Pr(W|H_0) = \Pr\left(T_k(y) < A|T_k \underset{H_0}{\sim} t_{(N-K)}\right)$$

$$\alpha = \Pr\left(\mathsf{T}_{k}\left(y\right) < A | \mathsf{T}_{k} \underset{\mathsf{H}_{0}}{\sim} t_{\left(N-K\right)}\right) = F_{N-K}\left(A\right)$$

where  $F_{N-K}$  (.) denotes the cdf of the Student's t-distribution with N-K degrees of freedom. Denote  $c_{\alpha}$  the  $\alpha$ -quantile of this distribution:.

$$A=F_{N-K}^{-1}\left( \alpha\right) =c_{\alpha}$$

The rejection region of the test of size  $\alpha$  is defined as to be:

$$W = \{ y : \mathsf{T}_k (y) < c_{\alpha} \}$$

## Definition (One-sided Student test)

The **critical region** of the Student test is that  $H_0: \beta_k = a_k$  is rejected in favor of  $H_1: \beta_k < a_k$  at the  $\alpha$  (say, 5%) significance level if:

$$W = \{y : T_k(y) < c_{\alpha}\}$$

where  $c_{\alpha}$  is the  $\alpha$  (say, 5%) critical value of a Student t-distribution with N-K degrees of freedom and  $\mathsf{T}_k\left(y\right)$  is the realisation of the Student test-statistic.

## Example (One-sided test)

Consider the CAPM model (cf. chapter 1) and the following results (Eviews). We want to test the beta of MSFT as

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=1$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}<1$ 

**Question:** give a conclusion for a nominal size of 5%.

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 17:15 Sample: 2 21 Included observations: 20

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| C                  | 0.001189    | 0.001205              | 0.986860    | 0.3368    |
| RSP500             | 1.989787    | 0.314210              | 6.332664    | 0.0000    |
| R-squared          | 0.690203    | Mean dependent var    |             | -0.000180 |
| Adjusted R-squared | 0.672992    | S.D. dependent var    |             | 0.009272  |
| S.E. of regression | 0.005302    | Akaike info criterion |             | -7.546873 |
| Sum squared resid  | 0.000506    | Schwarz criterion     |             | -7.447300 |
| Log likelihood     | 77.46873    | F-statistic           |             | 40.10263  |
| Durbin-Watson stat | 1.955366    | Prob(F-statistic)     |             | 0.000006  |

#### Solution

**Step 1:** compute the t-statistic

$$T_{MSFT}(y) = \frac{\widehat{\beta}_{MSFT} - 1}{\widehat{se}(\widehat{\beta}_{MSFT})} = \frac{1.9898 - 1}{0.3142} = 3.1501$$

**Step 2:** Determine the rejection region for a nominal size  $\alpha = 5\%$ .

$$\mathsf{T}_{\mathit{MSFT}} \underset{\mathsf{H}_0}{\sim} t_{(20-2)}$$

$$W = \{y : T_k(y) < -1.7341\}$$

**Conclusion:** for a significance level of 5%, we fail to reject the null  $H_0: \beta_{MSFT} = 1$  against  $H_1: \beta_{MSFT} < 1$ 



## Solution (cont'd)



#### Consider the one-sided test

$$H_0$$
 :  $\beta_k = a_k$   
 $H_1$  :  $\beta_k > a_k$ 

The rejection region is defined as to be:

$$W = \{y : T_k(y) > A\}$$

where A is a constant determined by the nominal size  $\alpha$ .

$$\alpha = \Pr(W|H_0) = \Pr\left(T_k(y) > A|T_k \underset{H_0}{\sim} t_{(N-K)}\right)$$

$$\alpha = 1 - \Pr\left(\mathsf{T}_{k}\left(y\right) < A | \mathsf{T}_{k} \underset{\mathsf{H}_{0}}{\sim} t_{(N-K)}\right)$$

or equivalently

$$1-\alpha=F_{N-K}\left(A\right)$$

where  $F_{N-K}$  (.) denotes the cdf of the Student's t-distribution with N-K degrees of freedom. Denote  $c_{1-\alpha}$  the  $1-\alpha$  quantile of this distribution:

$$A = F_{N-K}^{-1} \left( 1 - \alpha \right) = c_{1-\alpha}$$

The rejection region of the test of size  $\alpha$  is defined as to be:

$$\mathsf{W} = \left\{ y : \mathsf{T}_{k} \left( y \right) > c_{1-\alpha} \right\}$$



## Definition (One-sided Student test)

The **critical region** of the Student test is that  $H_0: \beta_k = a_k$  is rejected in favor of  $H_1: \beta_k > a_k$  at the  $\alpha$  (say, 5%) significance level if:

$$\mathsf{W} = \left\{ y : \mathsf{T}_{k} \left( y \right) > c_{1-\alpha} \right\}$$

where  $c_{1-\alpha}$  is the  $1-\alpha$  (say, 95%) critical value of a Student t-distribution with N-K degrees of freedom and  $\mathsf{T}_k\left(y\right)$  is the realisation of the Student test-statistic.

## Example (One-sided test)

Consider the CAPM model (cf. chapter 1) and the following results (Eviews). We want to test the beta of MSFT as

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=1$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}>1$ 

**Question:** give a conclusion for a nominal size of 5%.

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 17:15 Sample: 2 21 Included observations: 20

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| C                  | 0.001189    | 0.001205              | 0.986860    | 0.3368    |
| RSP500             | 1.989787    | 0.314210              | 6.332664    | 0.0000    |
| R-squared          | 0.690203    | Mean dependent var    |             | -0.000180 |
| Adjusted R-squared | 0.672992    | S.D. dependent var    |             | 0.009272  |
| S.E. of regression | 0.005302    | Akaike info criterion |             | -7.546873 |
| Sum squared resid  | 0.000506    | Schwarz criterion     |             | -7.447300 |
| Log likelihood     | 77.46873    | F-statistic           |             | 40.10263  |
| Durbin-Watson stat | 1.955366    | Prob(F-statistic)     |             | 0.000006  |

#### Solution

Step 1: compute the t-statistic

$$\mathsf{T}_{MSFT}\left(y\right) = \frac{\widehat{eta}_{MSFT} - 1}{\widehat{\mathsf{se}}\left(\widehat{eta}_{MSFT}\right)} = \frac{1.9898 - 1}{0.3142} = 3.1501$$

**Step 2:** Determine the rejection region for a nominal size  $\alpha = 5\%$ .

$$\mathsf{T}_{\mathit{MSFT}} \overset{\sim}{\sim} t_{(20-2)}$$

$$W = \{y : T_k(y) > 1.7341\}$$

**Conclusion:** for a significance level of 5%, we reject the null

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=1$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}>1$   $_{\square}$ 



### Solution (cont'd)



#### Consider the two-sided test

$$egin{array}{lll} \mathsf{H}_0 & : & eta_k = \mathsf{a}_k \ \mathsf{H}_1 & : & eta_k 
eq \mathsf{a}_k \end{array}$$

The non-rejection region is defined as the intersection of the two non-rejection regions of the one-sided test of level  $\alpha/2$ :

$$\overline{\mathsf{W}} = \overline{\mathsf{W}}_{\mathsf{A}} \cap \overline{\mathsf{W}}_{\mathsf{B}}$$

$$\begin{aligned} &\mathsf{H}_0: \beta_k = \mathsf{a}_k \ \text{against} \ \mathsf{H}_1: \beta_k < \mathsf{a}_k & \overline{\mathsf{W}}_A = \left\{y: \mathsf{T}_k\left(y\right) > c_{\alpha/2}\right\} \\ &\mathsf{H}_0: \beta_k = \mathsf{a}_k \ \text{against} \ \mathsf{H}_1: \beta_k > \mathsf{a}_k & \overline{\mathsf{W}}_B = \left\{y: \mathsf{T}_k\left(y\right) < c_{1-\alpha/2}\right\} \end{aligned}$$



$$\overline{\mathsf{W}} = \left\{ y : c_{\alpha/2} < \mathsf{T}_k \left( y \right) < c_{1-\alpha/2} \right\}$$

Since the Student's t-distribution is symmetric,  $c_{lpha/2}=-c_{1-lpha/2}$ 

$$\overline{W} = \{ y : -c_{1-\alpha/2} < \mathsf{T}_k (y) < c_{1-\alpha/2} \}$$

The rejection region is then defined as to be:

$$W = \{y : |T_k(y)| > c_{1-\alpha/2}\}$$



# Definition (Two-sided Student test)

The **critical region** of the Student test is that  $H_0: \beta_k = a_k$  is rejected in favor of  $H_1: \beta_k \neq a_k$  at the  $\alpha$  (say, 5%) significance level if:

$$\overline{W} = \{y : |\mathsf{T}_{k}(y)| > c_{1-\alpha/2}\}$$

where  $c_{1-\alpha/2}$  is the  $1-\alpha/2$  (say, 97.5%) critical value of a Student t-distribution with N-K degrees of freedom and  $\mathsf{T}_k\left(y\right)$  is the realisation of the Student test-statistic.

# Example (One-sided test)

Consider the CAPM model (cf. chapter 1) and the following results (Eviews). We want to test the beta of MSFT as

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=1$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}
eq 1$ 

**Question:** give a conclusion for a nominal size of 5%.

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 17:15 Sample: 2 21 Included observations: 20

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                                 | t-Statistic                   | Prob.                                                                   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
| C<br>RSP500                                                                                                        | 0.001189<br>1.989787                                                 | 0.001205<br>0.314210                                                                       | 0.986860<br>6.332664          | 0.3368<br>0.0000                                                        |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.690203<br>0.672992<br>0.005302<br>0.000506<br>77.46873<br>1.955366 | Mean depen<br>S.D. depend<br>Akaike info o<br>Schwarz crit<br>F-statistic<br>Prob(F-statis | ent var<br>criterion<br>erion | -0.000180<br>0.009272<br>-7.546873<br>-7.447300<br>40.10263<br>0.000006 |

#### Solution

**Step 1:** compute the t-statistic

$$\mathsf{T}_{MSFT}\left(y\right) = \frac{\widehat{eta}_{MSFT} - 1}{\widehat{\mathsf{se}}\left(\widehat{eta}_{MSFT}\right)} = \frac{1.9898 - 1}{0.3142} = 3.1501$$

**Step 2:** Determine the rejection region for a nominal size  $\alpha = 5\%$ .

$$\mathsf{T}_{\mathit{MSFT}} \underset{\mathsf{H}_0}{\sim} t_{(20-2)}$$

$$W = \{y : |T_k(y)| > 2.1009\}$$

**Conclusion:** for a significance level of 5%, we reject the null

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=1$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}
eq 1$   $_{\square}$ 

- イロト (個) (注) (注) (注) 注 り(()



#### Rejection regions

| H <sub>0</sub>  | H <sub>1</sub>  | Rejection region                                              |
|-----------------|-----------------|---------------------------------------------------------------|
| $\beta_k = a_k$ | $\beta_k > a_k$ | $W = \left\{ y : T_{k}\left(y\right) > c_{1-\alpha} \right\}$ |
| $eta_k=a_k$     | $eta_k < a_k$   | $W = \{y : T_k(y) < c_{\alpha}\}$                             |
| $\beta_k = a_k$ | $eta_k  eq a_k$ | $W = \{y :  T_k(y)  > c_{1-\alpha/2}\}$                       |

where  $c_{\beta}$  denotes the  $\beta$ -quantile (critical value) of the Student t-distribution with N-K degrees of freedom.

# Definition (P-values)

The **p-values** of Student tests are equal to:

Two-sided test: p-value = 
$$2 \times F_{N-K} (-|T_k(y)|)$$

Right tailed test: p-value = 
$$1 - F_{N-K} (T_k (y))$$

Left tailed test: p-value = 
$$F_{N-K}(-T_k(y))$$

where  $\mathsf{T}_{k}\left(y\right)$  is the realisation of the Student test-statistic and  $F_{N-K}\left(.\right)$  the cdf of the Student's t-distribution with N-K degrees of freedom.

# Example (One-sided test)

Consider the previous CAPM model. We want to test:

$$H_0: c=0$$
 against  $H_1: c \neq 0$ 

$$\mathsf{H}_0:eta_{\mathit{MSFT}}=0$$
 against  $\mathsf{H}_1:eta_{\mathit{MSFT}}
eq 0$ 

Question: find the corresponding p-values.

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 18:45 Sample: 2 21 Included observations: 20

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                               | t-Statistic                    | Prob.                                                                   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| C<br>RSP500                                                                                                        | 0.001189<br>1.989787                                                 | 0.001205<br>0.314210                                                                     | 0.986860<br>6.332664           | \$                                                                      |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.690203<br>0.672992<br>0.005302<br>0.000506<br>77.46873<br>1.955366 | Mean depen<br>S.D. depend<br>Akaike info<br>Schwarz crit<br>F-statistic<br>Prob(F-statis | lent var<br>criterion<br>erion | -0.000180<br>0.009272<br>-7.546873<br>-7.447300<br>40.10263<br>0.000006 |

#### Solution

Since we consider two-sided tests with N=20 and K=2:

$$ext{p-value}_c = 2 \times F_{18} \left( - |T_c(y)| \right) = 2 \times F_{18} \left( -0.9868 \right) = 0.3368$$

$$\mathsf{p\text{-}value}_c = 2 \times \mathit{F}_{18} \left( - \left| \mathit{T}_{\mathit{MSFT}} \left( \mathit{y} \right) \right| \right) = 2 \times \mathit{F}_{18} \left( -6.3326 \right) = 5.7 e^{-006}$$

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 18:51 Sample: 2 21 Included observations: 20

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                                  | t-Statistic                    | Prob.                                                                   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| C<br>RSP500                                                                                                        | 0.001189<br>1.989787                                                 | 0.001205<br>0.314210                                                                        | 0.986860<br>6.332664           | 0.3368<br>0.0000                                                        |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.690203<br>0.672992<br>0.005302<br>0.000506<br>77.46873<br>1.955366 | Mean depen<br>S.D. depend<br>Akaike info of<br>Schwarz crit<br>F-statistic<br>Prob(F-statis | lent var<br>criterion<br>erion | -0.000180<br>0.009272<br>-7.546873<br>-7.447300<br>40.10263<br>0.000006 |

# Fact (Student test with large sample)

For a large sample size N

$$T_{k} \underset{H_{0}}{\sim} t_{(N-K)} \approx \mathcal{N}\left(0,1\right)$$

Then, the rejection region for a Student two-sided test becomes

$$W = \{y : |T_k(y)| > \Phi^{-1}(1 - \alpha/2)\}$$

where  $\Phi\left(.\right)$  denotes the cdf of the standard normal distribution. For  $\alpha=5\%,\ \Phi^{-1}\left(0.975\right)=1.96$ , so we have:

$$W = \{y : |T_k(y)| > 1.96\}$$

Case 2: Semi-parametric model

**Assumption 6 (normality):** the distribution of the disturbances is unknown, but satisfy (assumptions A1-A5):

$$\mathbb{E}\left(\left.oldsymbol{arepsilon}
ight|\mathbf{X}
ight)=\mathbf{0}_{N imes1}$$

$$\mathbb{V}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right)=\sigma^{2}\mathbf{I}_{N}$$

#### **Problem**

- The exact (finite sample) distribution of  $\hat{\beta}_k$  and  $\hat{\sigma}^2$  are unknown.
- ② As a consequence the **finite sample distribution** of  $T_k(y)$  is also **unknown**.
- But, we can use the asymptotic properties of the OLS estimators (cf. chapter 3). In particular, we have:

$$\sqrt{N}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) \stackrel{d}{\to} \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{Q}^{-1}\right)$$

where

$$\mathbf{Q} = p \lim rac{1}{N} \mathbf{X}^{ op} \mathbf{X} = \mathbb{E}_{X} \left( \mathbf{x}_{i} \mathbf{x}_{i}^{ op} 
ight)$$



# Definition (Z-statistic)

Under the null  $H_0$ :  $\beta_k=a_k$ , if the assumptions A1-A5 hold (cf. chapter 3), the **z-statistic** defined by

$$\mathbf{Z}_{k} = rac{\widehat{eta}_{k} - \mathbf{a}_{k}}{\widehat{\mathsf{se}}_{\mathit{asy}}\left(\widehat{eta}_{k}
ight)} \stackrel{d}{\underset{\mathsf{H}_{0}}{\longrightarrow}} \mathcal{N}\left(0,1
ight)$$

where  $\widehat{\operatorname{se}}_{asy}\left(\widehat{\boldsymbol{\beta}}_{k}\right)=\widehat{\sigma}\sqrt{m_{kk}}$  denotes the estimator of the asymptotic standard error of the estimator  $\widehat{\boldsymbol{\beta}}_{k}$  and  $m_{kk}$  is  $k^{th}$  diagonal element of  $\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$ .

#### Rejection regions

The rejection regions have the same form as for the t-test (except for the distribution)

| H <sub>0</sub>  | H <sub>1</sub>  | Rejection region                                                                  |
|-----------------|-----------------|-----------------------------------------------------------------------------------|
| $eta_k = a_k$   | $\beta_k > a_k$ | $W = \left\{ y : Z_{k}\left(y\right) > \Phi^{-1}\left(1 - \alpha\right) \right\}$ |
| $eta_k=a_k$     | $eta_k < a_k$   | $W=\left\{ y:Z_{k}\left(y\right)<\Phi^{-1}\left(\alpha\right)\right\}$            |
| $\beta_k = a_k$ | $eta_k  eq a_k$ | $W = \{y :  Z_k(y)  > \Phi^{-1}(1 - \alpha/2)\}$                                  |

where  $\Phi(.)$  denotes the cdf of the standard normal distribution.

# Definition (P-values)

The **p-values** of the Z-tests are equal to:

Two-sided test: p-value = 
$$2 \times \Phi(-|\mathsf{Z}_k(y)|)$$

right tailed test: p-value 
$$= 1 - \Phi\left(\mathsf{Z}_{k}\left(y\right)\right)$$

left tailed test: 
$$p$$
-value =  $\Phi\left(-\mathsf{Z}_{k}\left(y\right)\right)$ 

where  $Z_k(y)$  is the realisation of the Z-statistic and  $\Phi(.)$  the cdf of the standard normal distribution.

# **Summary**

|                         | Normality Assumption                                                | Non Assumption                                                     |
|-------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| Test-statistic          | t-statistic                                                         | z-statistic                                                        |
| Definition              | $T_k = rac{\widehat{eta}_k - a_k}{\widehat{\sigma} \sqrt{m_{kk}}}$ | $Z_k = rac{\widehat{eta}_k - a_k}{\widehat{\sigma}\sqrt{m_{kk}}}$ |
| Exact distribution      | $T_k \underset{H_0}{\sim} t_{(N-K)}$                                | _                                                                  |
| Asymptotic distribution | _                                                                   | $Z_{K} \xrightarrow{d} \mathcal{N}\left(0,1\right)$                |

Dependent Variable: RMSFT Method: Least Squares Date: 11/30/13 Time: 18:51 Sample: 2 21 Included observations: 20

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                                 | t-Statistic                   | Prob.                                                                   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
| C<br>RSP500                                                                                                        | 0.001189<br>1.989787                                                 | 0.001205<br>0.314210                                                                       | 0.986860<br>6.332664          | 0.3368<br>0.0000                                                        |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.690203<br>0.672992<br>0.005302<br>0.000506<br>77.46873<br>1.955366 | Mean depen<br>S.D. depend<br>Akaike info o<br>Schwarz crit<br>F-statistic<br>Prob(F-statis | ent var<br>criterion<br>erion | -0.000180<br>0.009272<br>-7.546873<br>-7.447300<br>40.10263<br>0.000006 |

Dependent Variable: Y
Method: ML - Binary Probit
Date: 11/24/13 Time: 18:33
Sample: 1 190
Included observations: 190
Convergence achieved after 3 iterations
Covariance matrix computed using second derivatives

| Variable                                                                                                                                                | Coefficient                                                                        | Std. Error                                                                             | z-Statistic                                 | Prob.                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|
| X                                                                                                                                                       | 0.215364<br>-0.215364                                                              | 0.092715<br>0.092715                                                                   | 2.322847<br>-2.322847                       | 0.0202<br>0.0202                                                      |
| Mean dependent var<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Restr. log likelihood<br>LR statistic (1 df)<br>Probability(LR stat) | 0.421053<br>0.489246<br>45.00000<br>-126.6010<br>-129.3196<br>5.437219<br>0.019712 | S.D. depend<br>Akaike info<br>Schwarz cri<br>Hannan-Qui<br>Avg. log like<br>McFadden F | criterion<br>terion<br>nn criter.<br>lihood | 0.495032<br>1.353695<br>1.387874<br>1.367540<br>-0.666321<br>0.021022 |

# Subsection 3.2

The Fisher test

Consider the two-sided test associated to p linear constraints on the parameters  $\beta_k$  :

$$H_0$$
 :  $\mathbf{R}\boldsymbol{\beta} = \mathbf{q}$ 

$$H_1$$
 :  $\mathbf{R}oldsymbol{eta} 
eq \mathbf{q}$ 

where **R** is a  $p \times K$  matrix and **q** is a  $p \times 1$  vector.

# Example (Linear constraints)

If K=4 and if we want to test  $H_0$ :  $\beta_1+\beta_2=0$  and  $\beta_2-3\beta_3=4$ , then we have p=2 linear constraints with:

$$\left(\begin{array}{ccc}1&1&0&0\\0&1&-3&0\end{array}\right)\left(\begin{array}{c}\beta_1\\\beta_2\\\beta_3\\\beta_4\end{array}\right)=\left(\begin{array}{c}0\\4\end{array}\right)$$

# Example (Linear constraints)

If K=4 and if we want to test  $H_0: \beta_2=\beta_3=\beta_4=0$ , then we have p=3 linear constraints with:

$$\underset{(3\times4)}{\textbf{R}}\;\underset{(4,1)}{\boldsymbol{\beta}}\;=\;\underset{(3\times1)}{\textbf{q}}$$

$$\left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight) \left(egin{array}{c} eta_1 \ eta_2 \ eta_3 \ eta_4 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight)$$

Case 1: Normality assumption A6

# Definition (Fisher test-statistic)

Under assumptions A1-A6 (cf. chapter 3), the **Fisher test-statistic** is defined as to be:

$$\mathsf{F} = rac{1}{
ho} \left( \mathsf{R} \widehat{oldsymbol{eta}} - \mathsf{q} 
ight)^{ op} \left( \widehat{\sigma}^2 \mathsf{R} \left( \mathsf{X}^{ op} \mathsf{X} 
ight)^{-1} \mathsf{R}^{ op} 
ight)^{-1} \left( \mathsf{R} \widehat{oldsymbol{eta}} - \mathsf{q} 
ight)^{-1}$$

where  $\hat{\boldsymbol{\beta}}$  denotes the OLS estimator. Under the null  $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}$ , the F-statistic has a Fisher exact (finite sample) distribution

$$\mathsf{F} \underset{\mathsf{H}_0}{\sim} \mathit{F}_{(p,N-K)}$$

#### Reminder

If X and Y are two independent random variables such that

$$X \sim \chi^2 \left( \theta_1 \right)$$

$$Y \sim \chi^2 \left(\theta_2\right)$$

then the variable Z defined by

$$Z = \frac{X/\theta_1}{Y/\theta_2}$$

has a Fisher distribution with  $\theta_1$  and  $\theta_2$  degrees of freedom

$$Z \sim F_{(\theta_1,\theta_2)}$$



#### **Proof**

Under assumption A6, we have the following (conditional to  $\mathbf{X}$ ) distribution

$$\widehat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta}_{oldsymbol{\sigma}} \sigma^2 \left(\mathbf{X}^ op \mathbf{X}
ight)^{-1}
ight)$$

$$\frac{\widehat{\sigma}^2}{\sigma^2}(N-K) \sim \chi^2(N-K)$$

# Proof (cont'd)

Consider the vector  $\mathbf{m} = \mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}$ . Under the null

$$H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}$$

We have

$$\mathbb{E}\left(\mathbf{m}
ight)=\mathsf{R}\mathbb{E}\left(\widehat{oldsymbol{eta}}
ight)-\mathsf{q}=\mathsf{R}oldsymbol{eta}-\mathsf{q}=\mathbf{0}$$

$$\begin{split} \mathbb{V}\left(\mathbf{m}\right) &= \mathbb{E}\left(\left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right) \left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right)^{\top}\right) \\ &= \mathbb{R}\mathbb{V}\left(\widehat{\boldsymbol{\beta}}\right) \mathbf{R}^{\top} \\ &= \sigma^{2} \mathbf{R} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{R}^{\top} \end{split}$$

# Proof (cont'd)

We can base the test of  $H_0$  on the Wald criterion:

$$\begin{array}{rcl}
W & = & \mathbf{m}^{\top}_{(1\times 1)} \left(\mathbb{V}\left(\mathbf{m}\right)\right)^{-1} \mathbf{m}_{p\times p} \\
& = & \left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right)^{\top} \left(\sigma^{2}\mathbf{R}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{R}^{\top}\right)^{-1} \left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right)
\end{array}$$

Under assumption A6 (normality)

$$W \underset{H_0}{\sim} \chi^2 (p)$$

$$\frac{\widehat{\sigma}^2}{\sigma^2} (N - K) \sim \chi^2 (N - K)$$

These two variables are independent.



# Proof (cont'd)

$$W \underset{\mathsf{H}_0}{\sim} \chi^2 \left( p \right)$$

$$\frac{\widehat{\sigma}^2}{\sigma^2} (N - K) \sim \chi^2 (N - K)$$

So, the ratio of these two variables has a Fisher distribution

$$F = \frac{\frac{W}{p}}{\frac{\widehat{\sigma}^2}{\sigma^2} \frac{(N-K)}{(N-K)}} \underset{H_0}{\sim} F_{(p,N-K)}$$

# Proof (cont'd)

$$\mathsf{F} = \frac{\left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right)^{\top} \left(\sigma^{2}\mathbf{R} \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{R}^{\top}\right)^{-1} \left(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{q}\right) / p}{\frac{\widehat{\sigma}^{2}}{\sigma^{2}} \left(N - K\right) / \left(N - K\right)}$$

After simplification, the F-statistic is defined by:

$$\mathsf{F} = rac{1}{
ho} \left( \mathsf{R} \widehat{oldsymbol{eta}} - \mathsf{q} 
ight)^{ op} \left( \widehat{\sigma}^2 \mathsf{R} \left( \mathsf{X}^{ op} \mathsf{X} 
ight)^{-1} \mathsf{R}^{ op} 
ight)^{-1} \left( \mathsf{R} \widehat{oldsymbol{eta}} - \mathsf{q} 
ight)^{-1}$$

Under the null  $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}:$ 

$$F \sim_{H_0} F_{(p,N-K)}$$



# Definition (Fisher test-statistic)

Under assumptions A1-A6 (cf. chapter 3), the **Fisher test-statistic** can be defined as a function of the SSR of the constrained  $(H_0)$  and unconstrained model  $(H_1)$ :

$$F = \left(\frac{SSR_0 - SSR_1}{SSR_1}\right) \left(\frac{N - K}{p}\right)$$

where  $SSR_0$  denotes the sum of squared residuals of the constrained model estimated under  $H_0$  and  $SSR_1$  denotes the sum of squared residuals of the unconstrained model estimated under  $H_1$ .

# Definition (Fisher test-statistic)

Under assumptions A1-A6 (cf. chapter 3), the **Fisher test-statistic** can be defined as to be:

$$\mathsf{F} = \frac{1}{\widehat{\sigma}^2 p} \left( \widehat{\boldsymbol{\beta}}_{\mathsf{H}_1} - \widehat{\boldsymbol{\beta}}_{\mathsf{H}_0} \right)^\top \left( \mathbf{X}^\top \mathbf{X} \right) \left( \widehat{\boldsymbol{\beta}}_{\mathsf{H}_1} - \widehat{\boldsymbol{\beta}}_{\mathsf{H}_0} \right)$$

where  $\widehat{\beta}_{H_0}$  denotes the OLS estimator obtained in the constrained model (under  $H_0$ ) and  $\widehat{\beta}_{H_1}$  denotes the OLS estimator obtained in the unconstrained model (under  $H_1$ ).

# Definition (Constrained OLS estimator)

Under suitable regularity conditions, the constrained OLS estimator  $\hat{\boldsymbol{\beta}}_{\mathcal{C}}$  of  $\boldsymbol{\beta}$ , obtained under the constraint  $\mathbf{R}\boldsymbol{\beta}=\mathbf{q}$ , is given by:

$$\widehat{oldsymbol{eta}}_{\mathcal{C}} = \widehat{oldsymbol{eta}}_{\mathcal{U}\mathcal{C}} - \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{R}^{ op} \left(\mathbf{R}\left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{R}^{ op}
ight)^{-1} \left(\mathbf{R}\widehat{oldsymbol{eta}}_{\mathcal{U}\mathcal{C}} - \mathbf{q}
ight)^{-1}$$

where  $\hat{\beta}_{UC}$  is the unconstrained OLS estimator.

# Example (Fisher test and CAPM model)

Consider the extended CAPM model (file: Chapter4\_data.xls):

$$r_{MSFT,t} = \beta_1 + \beta_2 r_{SP500,t} + \beta_3 r_{Ford,t} + \beta_4 r_{GE,t} + \varepsilon_t$$

where  $r_{MSFT,t}$  is the excess return for Microsoft,  $r_{SP500,t}$  for the SP500,  $r_{Ford,t}$  for Ford and  $r_{GE,t}$  for general electric. We want to test the following linear constraints:

$$H_0:eta_2=1$$
 and  $eta_3=eta_4$ 

**Question:** write a Matlab code to compute the F-statistic according to the three alternative definitions.

#### Solution

In this problem, the null  $H_0:eta_2=1$  and  $eta_3=eta_4$  can be written as:

$$\mathop{\mathbf{R}}_{(2\times 4)}\mathop{\boldsymbol{\beta}}_{(4,1)} \ = \ \mathop{\mathbf{q}}_{(2\times 1)}$$

$$\left(egin{array}{cccc}0&1&0&0\0&0&1&-1\end{array}
ight)\left(egin{array}{ccc}eta_1\eta_2\eta_3\eta_4\end{array}
ight)=\left(egin{array}{ccc}1\0\end{array}
ight)$$

```
% PURPOSE: Chapter 4 Inference - Exercise - Figures 13 and 14
% Lecture: "Advanced Econometrics", HEC Lausanne
% Author: Christophe Hurlin, University of Orleans
% Version: v1. November 2013
clear all ; clc ; close all
data=xlsread('Chapter4 data.xls');
r MSFT=data(:,1);
                                         % Excess return for MSFT
r SP500=data(:,2);
                                         % Excess return for SP500
r Ford=data(:,3);
                                         % Excess return for Ford
r GE=data(:,4);
                                         % Excess return for GE
T=length(r MSFT);
                                         % Sample size
% Estimation under H1
X=[ones(T,1) r SP500 r Ford r GE];
                                         % Matrix of explicative variables
                                         % Dependent variable
v=r MSFT;
                                         % OLS estimator (H1)
beta=X\y;
res=v-X*beta;
                                         % Residuals
SSR1=sum(res.^2);
                                         % SSR of unconstrained model
                                         % Estimated variance
var eps=SSR1/(T-4);
disp('beta under H1'), disp(beta')
```

```
% Estimation under HO
R=[0\ 1\ 0\ 0\ ;\ 0\ 0\ 1\ -1];
                                        % Matrix R
q=[1 ; 0];
                                         % Vector a
beta H0=beta-inv(X'*X) *R'*inv(R*inv(X'*X) *R') * (R*beta-q);
res H0=v-X*beta H0;
                                        % Residuals
SSR0=sum(res H0.^2);
                                         % SSR of the constrained model
disp('beta under H0'), disp(beta H0')
% Fisher test-statistic: first definition
F1=(1/2)*(R*beta-q)*inv(var eps*R*inv(X'*X)*R')*(R*beta-q);
% Fisher test-statistic: second definition
F2=(SSR0-SSR1)/SSR1*(T-4)/2;
% Fisher test-statistic: second definition
F3=(1/(2*var eps))*(beta-beta H0)'*(X'*X)*(beta-beta H0);
disp('Fisher test statistics')
disp([F1 F2 F3])
```

```
beta under H1

0.0012 2.7619 0.3131 -0.1391

beta under H0

0.0007 1.0000 0.4949 0.4949

Fisher test statistics

4.3406 4.3406 4.3406
```

#### Consider the Fisher test

$$egin{array}{lll} \mathsf{H}_0 & : & \mathsf{R}oldsymbol{eta} = \mathsf{q} \\ \mathsf{H}_1 & : & \mathsf{R}oldsymbol{eta} 
eq \mathsf{q} \end{array}$$

Since the Fisher test-statistic is always positive, the rejection region is defined as to be:

$$W = \{y : F(y) > A\}$$

where A is a constant determined by the nominal size  $\alpha$ .

$$\alpha = \Pr(W|H_0) = \Pr\left(F(y) > A|F \underset{H_0}{\sim} F_{(p,N-K)}\right)$$

$$\alpha = \Pr(W|H_0) = \Pr\left(F(y) > A|F \underset{H_0}{\sim} F_{(p,N-K)}\right)$$

or equivalently

$$\alpha = 1 - \Pr\left( \left. \mathsf{F}\left(y\right) < A \right| \left. \mathsf{F} \underset{\mathsf{H}_{0}}{\sim} F_{(p,N-K)} \right) \right)$$

Denote  $d_{1-\alpha}$  the  $1-\alpha$  quantile of the Fisher distribution with p and N-K degrees of freedom.

$$A = d_{1-\alpha}$$

The rejection region of the test of size  $\alpha$  is defined as to be:

$$W = \{y : F(y) > d_{1-\alpha}\}$$



## Definition (Rejection region of a Fisher test)

The **critical region** of the Fisher test is that  $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}$  is rejected in favor of  $H_1: \mathbf{R}\boldsymbol{\beta} \neq \mathbf{q}$  at the  $\alpha$  (say, 5%) significance level if:

$$W = \{y : F(y) > d_{1-\alpha}\}$$

where  $d_{1-\alpha}$  is the  $1-\alpha$  critical value (say 95%) of the Fisher distribution with p and N-K degrees of freedom and  $F_k(y)$  is the realisation of the Fisher test-statistic.

## Example (Fisher test and CAPM model)

Consider the extended CAPM model (file: Chapter4\_data.xls):

$$r_{MSFT,t} = \beta_1 + \beta_2 r_{SP500,t} + \beta_3 r_{Ford,t} + \beta_4 r_{GE,t} + \varepsilon_t$$

where  $r_{MSFT,t}$  is the excess return for Microsoft,  $r_{SP500,t}$  for the SP500,  $r_{Ford,t}$  for Ford and  $r_{GE,t}$  for general electric. We want to test the following linear constraints:

$$H_0:eta_2=1$$
 and  $eta_3=eta_4$ 

**Question:** given the realisation of the Fisher test-statistic (cf. previous example), conclude for a significance level  $\alpha=5\%$ .

#### Solution

**Step 1:** compute the F-statistic (cf. Matlab code)

$$F(y) = 4.3406$$

**Step 2:** Determine the rejection region for a nominal size  $\alpha=5\%$  for N=24, K=4 and p=2

$$\mathsf{F} \underset{\mathsf{H}_0}{\sim} F_{(2,20)}$$

$$W = \{y : F(y) > 3.4928\}$$

**Conclusion:** for a significance level of 5%, we reject the null  $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{q}$  against  $H_1: \mathbf{R}\boldsymbol{\beta} \neq \mathbf{q}$ 





# Definition (Student test-statistic and Fisher test-statistic )

Consider the test

$$\mathsf{H}_0:eta_k=\mathsf{a}_k\quad ext{versus}\quad \mathsf{H}_1:eta_k
eq \mathsf{a}_k$$

the **Fisher test-statistic** corresponds to the squared of the corresponding **Student's test-statistic** 

$$F = T_k^2$$

#### **Proof**

Consider the test  $H_0: \beta_k = a_k$  against  $H_1: \beta_k \neq a_k$ , then we have:

$$\mathbf{R} = \left(egin{array}{cccc} 0 & 0 & .. & 1 & 0 & 0 \ & & k^{th} \ ext{position} & & & \end{array}
ight)$$
  $q = a_k$ 

As a consequence:

$$\begin{split} \mathbf{R}\widehat{\boldsymbol{\beta}} - q &= \widehat{\boldsymbol{\beta}}_k - \mathbf{a}_k \\ \widehat{\sigma}^2 \mathbf{R} \left( \mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{R}^{\top} &= \widehat{\mathbb{V}} \left( \widehat{\boldsymbol{\beta}}_k \right) \end{split}$$

### Proof (cont'd)

So, for a test  $H_0: \beta_k = a_k$  against  $H_1: \beta_k \neq a_k$ , the Fisher test-statistic becomes

$$\mathsf{F} = \left(\mathsf{R}\widehat{\pmb{eta}} - q
ight)^{ op} \left(\widehat{\sigma}^2 \mathsf{R} \left(\mathsf{X}^{ op} \mathsf{X}
ight)^{-1} \mathsf{R}^{ op}
ight)^{-1} \left(\mathsf{R}\widehat{\pmb{eta}} - q
ight)$$

So, we have:

$$\mathsf{F} = \frac{\left(\widehat{\beta}_k - \mathsf{a}_k\right)^2}{\widehat{\mathbb{V}}\left(\widehat{\beta}_k\right)}$$

and the F test-statistic is equal to the squared t-statistic:

$$\mathsf{F}=\mathsf{T}_k^2$$



### Definition (P-values)

The **p-value** of the F-test is equal to:

$$\mathsf{p\text{-}value} = 1 - \mathit{F}_{\mathit{p},\mathit{N-K}}\left(\mathsf{F}\left(\mathit{y}\right)\right)$$

where F(y) is the realisation of the F-statistic and  $F_{p,N-K}(.)$  the cdf of the Fisher distribution with p and N-K degrees of freedom.

#### Definition (Global F-test)

In a multiple linear regression model with a constant term

$$y_i = \beta_1 + \sum_{k=2}^K \beta_k x_{ik} + \varepsilon_i$$

the **global F-test** corresponds to the test of significance of all the explicative variables:

$$H_0: \beta_2 = ... = \beta_K = 0$$

Under the assumption A6 (normality), the global F-test-statistic satisfies:

$$F \underset{H_0}{\sim} F_{(K-1,N-K)}$$

#### Remarks

- The global F-test is a test designed to see if the model is useful overall.
- ② The null  $H_0: \beta_2 = ... = \beta_K = 0$  can be written as:

$$\underset{(K-1\times K)}{\mathbf{R}} \; \underset{(K,1)}{\boldsymbol{\beta}} \; = \; \underset{(K-1\times 1)}{\mathbf{q}}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & 0 & 1 & \dots & \dots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \dots \\ \vdots \\ \beta_K \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ \vdots \\ 0 \end{pmatrix}$$

### Corollary (Global F-test)

In a multiple linear regression model with a constant term

$$y_i = \beta_1 + \sum_{k=2}^K \beta_k x_{ik} + \varepsilon_i$$

the global F-test-statistic can also be defined as:

$$F = \left(\frac{R^2}{1 - R^2}\right) \left(\frac{N - K}{K - 1}\right)$$

where  $R^2$  denotes the (unadjusted) coefficient of determination.

## Example (Global F-test and CAPM model)

Consider the extended CAPM model (file: Chapter4\_data.xls):

$$r_{MSFT,t} = \beta_1 + \beta_2 r_{SP500,t} + \beta_3 r_{Ford,t} + \beta_4 r_{GE,t} + \varepsilon_t$$

**Question:** write a Matlab code to compute the global F-test, the critical value for  $\alpha=5\%$  and the p-value. Compare your results with Eviews.

Dependent Variable: R\_MSFT Method: Least Squares Date: 11/30/13 Time: 22:37 Sample: 2 25 Included observations: 24

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                               | t-Statistic                                   | Prob.                                          |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| C<br>R_SP500<br>R_FORD<br>R_GE                                                                                     | 0.001219<br>2.761927<br>0.313054<br>-0.139065                        | 0.000974<br>0.629752<br>0.174803<br>0.287520                                             | 1.250453<br>4.385734<br>1.790895<br>-0.483672 | 0.2256<br>0.0003<br>0.0885<br>0.6339           |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.722707<br>0.681113<br>0.004694<br>0.000441<br>96.81044<br>2.036200 | Mean depen<br>S.D. depend<br>Akaike info<br>Schwarz crit<br>F-statistic<br>Prob(F-statis | lent var<br>criterion<br>terion               | 0.000978<br>0.008312<br>-7.734203<br>-7.537861 |

```
data=xlsread('Chapter4 data.xls');
r MSFT=data(:,1);
                                         % Excess return for MSFT
r SP500=data(:,2);
                                         % Excess return for SP500
r Ford=data(:,3);
                                         % Excess return for Ford
r GE=data(:,4);
                                         % Excess return for GE
T=length(r MSFT);
                                         % Sample size
% Estimation under H1
X=[ones(T,1) r SP500 r Ford r GE];
                                         % Matrix of explicative variables
v=r MSFT;
                                         % Dependent variable
beta=X\y;
                                         % OLS estimator (H1)
res=v-X*beta;
                                         % Residuals
                                         % SSR of unconstrained model
SSR1=sum(res.^2);
var eps=SSR1/(T-4);
                                         % Estimated variance
% Estimation under HO
R=[zeros(3,1) eye(3)];
                                       % Matrix R
q=zeros(3,1);
                                        % Vector a
beta H0=beta-inv(X'*X) *R'*inv(R*inv(X'*X) *R') * (R*beta-q);
res H0=y-X*beta H0;
                                       % Residuals
SSR0=sum(res H0.^2);
                                        % SSR of the constrained model
% Fisher test-statistic: second definition
F = (SSR0 - SSR1) / SSR1 * (T-4) / 3;
critical=finv(0.95,3,T-4);
pvalue=1-fcdf(F,3,T-4);
```

Dependent Variable: R\_MSFT Method: Least Squares Date: 12/01/13 Time: 00:03 Sample: 2 25 Included observations: 24

| Variable           | Coefficient | Std. Error   | t-Statistic | Prob.     |
|--------------------|-------------|--------------|-------------|-----------|
| С                  | 0.001219    | 0.000974     | 1.250453    | 0.2256    |
| R SP500            | 2.761927    | 0.629752     | 4.385734    | 0.0003    |
| R FORD             | 0.313054    | 0.174803     | 1.790895    | 0.0885    |
| R_GE               | -0.139065   | 0.287520     | -0.483672   | 0.6339    |
| R-squared          | 0.722707    | Mean depen   | dent var    | 0.000978  |
| Adjusted R-squared | 0.681113    | S.D. depend  | lent var    | 0.008312  |
| S.E. of regression | 0.004694    | Akaike info  | criterion   | -7.734203 |
| Sum squared resid  | 0.000441    | Schwarz crit | erion       | -7.537861 |
| Log likelihood     | 96.81044    | F-statistic  |             | 17.37532  |
| Durbin-Watson stat | 2.036200    | Prob(F-stati | stic)       | 0.000009  |

| Ľ | =       |
|---|---------|
|   | 17.3753 |

| critical =  |
|-------------|
| 3.0984      |
| pvalue =    |
| 8.5996e-006 |

Case 2: Semi-parametric model

**Assumption 6 (normality):** the distribution of the disturbances is unknown, but satisfy (assumptions A1-A5):

$$\mathbb{E}\left(\left.oldsymbol{arepsilon}
ight|\mathbf{X}
ight)=\mathbf{0}_{N imes1}$$

$$\mathbb{V}\left(\left.\boldsymbol{\varepsilon}\right|\mathbf{X}\right)=\sigma^{2}\mathbf{I}_{N}$$

#### **Problem**

- The exact (finite sample) distribution of  $\widehat{\beta}_k$  and  $\widehat{\sigma}^2$  are unknown. As a consequence the **finite sample distribution** of F(y) is also **unknown**.
- But, we can express the F-statistic as a linear function of the Wald statistic.
- The Wald statistic has a chi-squared asymptotic distribution (cf. next section)

### Definition (F-test-statistic and Wald statistic)

The Fisher test-statistic can expressed as a linear function of the **Wald test-statistic** as

$$F = \frac{1}{p} Wald$$

$$\mathsf{Wald} = \frac{1}{\rho} \left( \mathsf{R} \widehat{\boldsymbol{\beta}} - \mathsf{q} \right)^\top \left( \mathsf{R} \left( \mathbb{V}_{\mathit{asy}} \left( \widehat{\boldsymbol{\beta}} \right) \right)^{-1} \mathsf{R}^\top \right)^{-1} \left( \mathsf{R} \widehat{\boldsymbol{\beta}} - \mathsf{q} \right)$$

Under assumptions A1-A5, the Wald test-statistic converges to a chi-squared distribution

Wald 
$$\xrightarrow{d}_{\mathsf{H}_0} \chi^2\left(p\right)$$



# 3. Tests in the multiple linear regression model

#### Key concepts of Section 3

- Student test
- Pisher test
- 1 t-statistic and z-statistic
- Global F-test
- Exact (finite sample) distribution under the normality assumption
- Asymptotic distribution

# Section 4

# MLE and Inference

#### Introduction

- Consider a parametric model, linear or nonlinear (GARCH, probit, logit, etc.), with a vector of parameters  $\boldsymbol{\theta} = (\theta_1 : ... : \theta_K)^\top$
- ullet We assume that the problem is regular (cf. chapter 2) and we consider a ML estimator  $\widehat{m{ heta}}$
- The finite sample distribution of  $\widehat{\theta}$  is unknown, but  $\widehat{\theta}$  is asymptotically normally distributed (cf. chapter 2).
- We want to test a set of linear or nonlinear constraints on the true parameters (population)  $\theta_1, ..., \theta_K$ .

## Definition (Null hypothesis)

Consider a null hypothesis of p linear and/or nonlinear constraints

$$\mathsf{H}_0: \underbrace{\mathbf{c}\left(\boldsymbol{\theta}\right)}_{p\times 1} = \mathbf{0}_{p\times 1}$$

where  $\mathbf{c}\left(\boldsymbol{\theta}\right)$  is a vectorial function defined as:

$$\mathbf{c}: \quad \mathbb{R}^K \to \mathbb{R}^p \\ \boldsymbol{\theta} \mapsto \mathbf{c} \left( \boldsymbol{\theta} \right)$$

#### **Notations**

**①**  $\mathbf{c}\left(\boldsymbol{\theta}\right)$  is a  $p \times 1$  vector of functions  $c_{1}\left(\boldsymbol{\theta}\right)$ , ...,  $c_{p}\left(\boldsymbol{\theta}\right)$ :

$$\mathbf{c}\left(oldsymbol{ heta}
ight) = \left(egin{array}{c} c_1\left(oldsymbol{ heta}
ight) \ c_2\left(oldsymbol{ heta}
ight) \ .. \ c_p\left(oldsymbol{ heta}
ight) \end{array}
ight)$$

② In the case of *p* linear constraints, we have:

$$H_0: \mathbf{c}\left(\boldsymbol{\theta}\right) = \mathbf{R}\boldsymbol{\theta} - \mathbf{q} = \mathbf{0}$$

### Example (Linear constraints)

Consider the two **linear** constraints  $\theta_1 = \theta_2 + \theta_3$  and  $\theta_2 + \theta_4 = 1$ . We have p=2 constraints such that:

$$\mathsf{H}_0: \ \mathbf{c}\left(\boldsymbol{\theta}\right) \ = \left(\begin{array}{c} \theta_1 - \theta_2 - \theta_3 \\ \theta_2 + \theta_4 - 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

The function  $\mathbf{c}\left(\boldsymbol{\theta}\right)$  can be written as  $\mathbf{R}\boldsymbol{\theta}-\mathbf{q}$ . For instance if K=4 and  $\boldsymbol{\theta}=\left(\theta_{1}\;\theta_{2}\;\theta_{3}\;\theta_{4}\right)^{\top}$ , we have

$$\mathbf{c}\left(oldsymbol{ heta}
ight) = \mathbf{R}oldsymbol{ heta} - \mathbf{q} = \left(egin{array}{ccc} 1 & -1 & -1 & 0 \ 0 & 1 & 0 & 1 \end{array}
ight) \left(egin{array}{c} heta_1 \ heta_2 \ heta_3 \ heta_4 \end{array}
ight) - \left(egin{array}{c} 0 \ 1 \end{array}
ight)$$

- 4 ロ ト 4 慮 ト 4 恵 ト - 恵 - 夕 Q (で)

# Example (Nonlinear constraints)

Consider the linear and nonlinear constraints

$$\theta_1 - \theta_2 = 0 \qquad \theta_1^2 - \theta_3 = 0$$

We have p = 2 constraints such that:

$$\mathsf{H}_0: \ \mathbf{c}\left(\boldsymbol{\theta}\right) = \left( \begin{array}{c} \theta_1 - \theta_2 \\ \theta_1^2 - \theta_3 \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \end{array} \right)$$

#### **Assumptions**

- **1** The functions  $c_1\left(\theta\right)$ , ...,  $c_p\left(\theta\right)$  are **differentiable**.
- There is no redundant constraint (identification assumption). Formally, we have

$$(\text{row}) \ \mathsf{rank} \left( \frac{\partial \mathbf{c} \left( \boldsymbol{\theta} \right)}{\partial \boldsymbol{\theta}^{\top}} \right) = \boldsymbol{p} \ \ \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}$$

with

$$\frac{\partial \mathbf{c} \left( \boldsymbol{\theta} \right)}{\partial \boldsymbol{\theta}^{\top}} = \begin{pmatrix} \frac{\partial c_{1}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial c_{1}(\boldsymbol{\theta})}{\partial \theta_{2}} & \cdots & \frac{\partial c_{1}(\boldsymbol{\theta})}{\partial \theta_{K}} \\ \frac{\partial c_{2}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial c_{2}(\boldsymbol{\theta})}{\partial \theta_{2}} & \cdots & \frac{\partial c_{2}(\boldsymbol{\theta})}{\partial \theta_{K}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial c_{p}(\boldsymbol{\theta})}{\partial \theta_{1}} & \frac{\partial c_{p}(\boldsymbol{\theta})}{\partial \theta_{2}} & \cdots & \frac{\partial c_{p}(\boldsymbol{\theta})}{\partial \theta_{K}} \end{pmatrix}$$

Consider the **two-sided** test

$$\mathsf{H}_{0}:\mathbf{c}\left(oldsymbol{ heta}
ight)=\mathbf{0}\quad \text{ versus }\quad \mathsf{H}_{1}:\mathbf{c}\left(oldsymbol{ heta}
ight)
eq\mathbf{0}$$

We introduce three different asymptotic tests (the trilogy..)

- The Likelihood Ratio (LR) test
- The Wald test
- The Lagrance Multiplier (LM) test

For each of the three tests, we will present:

- 1 the test-statistic
- its asymptotic distribution under the null
- the (asymptotic) rejection region
- the (asymptotic) p-value

# Subsection 4.1

The Likelihood Ratio (LR) test

### Definition (Likelihood Ratio (LR) test statistic)

The likelihood ratio (LR) test-statistic is defined by as to be:

$$LR = -2\left(\ell_N\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; y|x\right) - \ell_N\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}; y|x\right)\right)$$

where  $\ell_N\left(\pmb{\theta};\,y|\,x\right)$  denotes the (conditional) log-likelihood of the sample y,  $\widehat{\pmb{\theta}}_{\mathsf{H}_0}$  and  $\widehat{\pmb{\theta}}_{\mathsf{H}_1}$  are respectively the maximum likelihood estimator of  $\pmb{\theta}$  under the alternative and the null hypothesis.

#### **Comments**

Consider the ratio of likelihoods under  $H_1$  (no constraint) and under  $H_0$  (with  $\mathbf{c}\left(\theta\right)=\mathbf{0}$ ).

$$\lambda = \frac{L_{N}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{0}}; y | x\right)}{L_{N}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}}; y | x\right)}$$

- **1**  $\lambda > 0$  since both likelihood are positive.
- ②  $\lambda < 1$  since  $L_N(H_0)$  cannot be larger than  $L_N(H_1)$ . A restricted optimum is never superior to an unrestricted one.
- **③** If  $\lambda$  is too small, then doubt is cast on the restrictions  $\mathbf{c}\left(oldsymbol{ heta}
  ight)=\mathbf{0}$ .
- **①** Consider the statistic LR=  $2 \ln (\lambda)$ : if  $\lambda$  is "too small", then LR is large (rejection of the null)...



## Definition (Asymptotic distribution and critical region)

Under some regularity conditions (cf. chapter 2) and under the null  $H_0$ :  $\mathbf{c}(\theta) = \mathbf{0}$ , the LR test-statistic **converges** to a chi-squared distribution with p degrees of freedom (the number of restrictions imposed):

$$LR \xrightarrow[H_0]{d} \chi^2(p)$$

The (asymptotic) **critical region** for a significance level of  $\alpha$  is:

$$W = \left\{ y : LR(y) > \chi_{1-\alpha}^{2}(p) \right\}$$

where  $\chi^2_{1-\alpha}(p)$  is the  $1-\alpha$  critical value of the chi-squared distribution with p degrees of freedom and LR(y) is the realisation of the LR test-statistic.

## Definition (p-value of the LRT test)

The **p-value** of the LR test is equal to:

$$p
-value = 1 - G_p(LR(y))$$

where LR(y) is the realisation of the LR test-statistic and  $G_p(.)$  is the cdf of the chi-squared distribution with p degrees of freedom.

## Example (LRT and Poisson distribution)

Suppose that  $X_1, X_2, \cdots, X_N$  are i.i.d. discrete random variables, such that  $X_i \sim Pois(\theta)$  with a pmf (probability mass function) defined as:

$$\Pr\left(X_{i}=x_{i}\right)=\frac{\exp\left(-\theta\right)\theta^{x_{i}}}{x_{i}!}$$

where  $\theta$  is an unknown parameter to estimate. We have a sample (realisation) of size N=10 given by  $\{5,0,1,1,0,3,2,3,4,1\}$ . **Question:** use a LR test to test the null  $H_0: \theta=1.8$  against  $H_1: \theta \neq 1.8$  and give a conclusion for significance level of 5%.

#### Solution

The log-likelihood function is defined as to be:

$$\ell_{N}\left(\theta;x\right)=-\theta N+\ln\left(\theta\right)\sum_{i=1}^{N}x_{i}-\ln\left(\prod_{i=1}^{N}x_{i}!\right)$$

In the chapter 2, we found that the ML estimator of  $\theta$  is the sample mean:

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Given the sample  $\{5,0,1,1,0,3,2,3,4,1\}$ , the estimate of  $\theta$  (under  $H_1$ , with non constraint) is  $\widehat{\theta}_{H_1}=2$ , and the corresponding log-likelihood is equal to:

$$\ell_N\left(\widehat{\theta}_{\mathsf{H}_1};x\right) = \mathsf{In}\left(0.104\right)$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

## Solution (cont'd)

Under the null  $H_0$ :  $\theta=1.8$ , we don't need to estimate  $\theta$  and the log-likelihood is equal to:

$$\ell_N(\theta_{H_0}; x) = -1.8N + \ln(1.8) \sum_{i=1}^N x_i - \ln\left(\prod_{i=1}^N x_i!\right) = \ln(0.0936)$$

The LR test-statistic is equal to:

$$LR(y) = -2 \ln \left( \frac{0.0936}{0.104} \right) = 0.21072$$

## Solution (cont'd)

$$LR(y) = 0.21072$$

For N=10, p=1 (one restriction) and  $\alpha=0.05$ , the critical region is:

$$W = \{y : LR(y) > \chi_{0.95}^{2}(1) = 3.8415\}$$

and the p-value is

$$pvalue = 1 - G_1 (0.21072) = 0.6462$$

where  $G_1$  (.) is the cdf of the  $\chi^2$  (1) distribution.

**Conclusion:** for a significance level of 5%, we fail to reject the null  $H_0: \theta = 1.8$ .  $\square$ 

## Subsection 4.2

The Wald test

## Definition (Wald test-statistic)

The **Wald** test-statistic associated to the test of  $H_0$ :  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$  is defined as to be:

$$\mathsf{Wald} = \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \right)^{-1} \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)$$

where  $\widehat{\theta}_{H_1}$  is the maximum likelihood estimator of  $\boldsymbol{\theta}$  under the alternative hypothesis (unconstrained model) and  $\widehat{\mathbb{V}}_{asy}\left(\widehat{\boldsymbol{\theta}}_{H_1}\right)$  is an estimator of its asymptotic variance covariance matrix.

#### Remark

$$\mathsf{Wald} = \underbrace{\mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top}_{1 \times p} \left( \underbrace{\frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)}_{p \times K} \underbrace{\widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)}_{K \times K} \underbrace{\frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top}_{p \times 1} \right)^{-1} \underbrace{\mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)}_{p \times 1}$$

## Example (Wald test-statistic)

Consider a model with K=3 parameters  $\theta=(\theta_1:\theta_2:\theta_3)^{\top}$  with

$$\theta_1 - \theta_2 = 0 \qquad \theta_1^2 - \theta_3 = 0$$

We have two constraints (p = 2) and:

$$\mathsf{H}_0: \ \mathbf{c}\left(\boldsymbol{\theta}\right) = \left( \begin{array}{c} \theta_1 - \theta_2 \\ \theta_1^2 - \theta_3 \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \end{array} \right)$$

Denote  $\widehat{\boldsymbol{\theta}}_{H_1} = (\theta_1:\theta_2:\theta_3)^{\top}$  the ML estimator of  $\boldsymbol{\theta}$  under the alternative hypothesis and  $\widehat{\mathbb{W}}_{asy}\left(\widehat{\boldsymbol{\theta}}_{H_1}\right)$  the estimator of its asymptotic variance covariance matrix. **Question:** write the Wald test-statistic.

#### Solution

Here we have K = 3 and p = 2

$$\mathbf{c}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}\right) = \left(\begin{array}{c} \widehat{\theta}_1 - \widehat{\theta}_2 \\ \widehat{\theta}_1^2 - \widehat{\theta}_3 \end{array}\right)$$

$$rac{\partial \mathbf{c}}{\partial oldsymbol{ heta}^ op} \left( \widehat{oldsymbol{ heta}}_{\mathsf{H}_1} 
ight) = \left( egin{array}{ccc} 1 & -1 & 0 \ 2 \widehat{oldsymbol{ heta}}_1 & 0 & -1 \end{array} 
ight)$$

$$\mathsf{Wald} = \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \right)^{-1} \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)$$

#### Remark

In the case of linear constraints

$$H_0: \mathbf{R}\boldsymbol{\theta} - \mathbf{q} = \mathbf{0}$$

we have

$$\mathsf{H}_0:\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$$

with

$$\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{R}\boldsymbol{\theta}-\mathbf{q}$$

$$rac{\partial \mathbf{c}}{\partial oldsymbol{ heta}^{ op}}\left(oldsymbol{ heta}
ight) = \mathbf{R}$$

## Definition (Wald test-statistic and linear constraints)

Consider the test of linear constraints  $H_0$ :  $\mathbf{c}(\theta) = \mathbf{R}\theta - \mathbf{q} = \mathbf{0}$ . The **Wald** test-statistic is defined as to be:

$$\mathsf{Wald} = \left( \mathsf{R} \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} - \mathsf{q} \right)^{\top} \left( \mathsf{R} \ \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \ \mathsf{R}^{\top} \right)^{-1} \left( \mathsf{R} \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} - \mathsf{q} \right)$$

where  $\widehat{\theta}_{H_1}$  is the maximum likelihood estimator of  $\theta$  under the alternative hypothesis (unconstrained model) and  $\widehat{\mathbb{V}}_{asy}\left(\widehat{\theta}_{H_1}\right)$  is an estimator of its asymptotic variance covariance matrix.

## Definition (Asymptotic distribution and critical region)

Under some regularity conditions (cf. chapter 2) and under the null  $H_0$ :  $\mathbf{c}(\theta) = \mathbf{0}$ , the Wald test-statistic **converges** to a chi-squared distribution with p degrees of freedom (the number of restrictions imposed):

Wald 
$$\stackrel{d}{\underset{\mathsf{H}_{0}}{\longrightarrow}} \chi^{2}\left(p\right)$$

The (asymptotic) **critical region** for a significance level of  $\alpha$  is:

$$\mathsf{W} = \left\{ y : \mathsf{Wald}\left(y\right) > \chi_{1-\alpha}^{2}\left(\rho\right) \right\}$$

where  $\chi^2_{1-\alpha}(p)$  is the  $1-\alpha$  critical value of the chi-squared distribution with p degrees of freedom and  $\operatorname{Wald}(y)$  is the realisation of the Wald test-statistic.

#### **Proof**

Under some regularity conditions, we have

$$\sqrt{N}\left(\widehat{\boldsymbol{\theta}}_{H_{1}}-\boldsymbol{\theta}_{0}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0,\boldsymbol{\mathit{I}}^{-1}\left(\boldsymbol{\theta}_{0}\right)\right)$$

We use the **delta method** for the function  $\mathbf{c}(.)$ . The function  $\mathbf{c}(.)$  is a continuous and continuously differentiable function not involving N, then

$$\sqrt{N}\left(\mathbf{c}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}}\right)-\mathbf{c}\left(\boldsymbol{\theta}_{0}\right)\right) \stackrel{d}{\rightarrow} \mathcal{N}\left(0, \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}}\left(\boldsymbol{\theta}_{0}\right) \boldsymbol{I}^{-1}\left(\boldsymbol{\theta}_{0}\right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}}\left(\boldsymbol{\theta}_{0}\right)^{\top}\right)$$

Under the null  $H_0: \mathbf{c}\left(oldsymbol{ heta}_0
ight) = \mathbf{0}$ , we have

$$\left(\frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}}\left(\boldsymbol{\theta}_{0}\right) \boldsymbol{I}^{-1}\left(\boldsymbol{\theta}_{0}\right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}}\left(\boldsymbol{\theta}_{0}\right)^{\top}\right)^{-1/2} \sqrt{N} \mathbf{c}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}}\right) \stackrel{d}{\rightarrow} \mathcal{N}\left(0, \mathbf{I}_{p}\right)$$

where  $I_p$  is the identity matrix of size p.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

## Proof (cont'd)

The Wald criteria is defined as to be:

Wald criteria

$$= N \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}} \right)^{\top} \left( \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right) \boldsymbol{I}^{-1} \left( \boldsymbol{\theta}_{0} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right)^{\top} \right)^{-1/2} \right)^{\top}$$

$$\times \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right) \boldsymbol{I}^{-1} \left( \boldsymbol{\theta}_{0} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right)^{\top} \right)^{-1/2} \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}} \right)$$

$$= N \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}} \right)^{\top} \times \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right) \boldsymbol{I}^{-1} \left( \boldsymbol{\theta}_{0} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_{0} \right)^{\top} \right)^{-1} \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_{1}} \right)$$

So, under the null  $H_0: \mathbf{c}\left(oldsymbol{ heta}_0
ight) = \mathbf{0}$ ,, we have

Wald criteria 
$$\xrightarrow{d} \chi^2(p)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

### Proof (cont'd)

Wald Criteria = 
$$N \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^{\top}$$
  
  $\times \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_0 \right) \boldsymbol{I}^{-1} \left( \boldsymbol{\theta}_0 \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \boldsymbol{\theta}_0 \right)^{\top} \right)^{-1} \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)$ 

A feasible **Wald test-statistic** is given by

Wald = 
$$N \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^{\top}$$
  
  $\times \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \widehat{\boldsymbol{I}}^{-1} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^{\top}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^{\top} \right)^{-1} \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)$ 

### Proof (cont'd)

Since

$$\widehat{\mathbb{V}}_{\textit{asy}}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}\right) = \mathit{N}^{-1}\widehat{\mathit{I}}^{-1}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}\right)$$

We have finally

$$\mathsf{Wald} = \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \times \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \right)^{-1} \times \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)$$

and

Wald 
$$\xrightarrow{d}_{H_0} \chi^2(p)$$



## Definition (p-value of the Wald test)

The **p-value** of the Wald test is equal to:

$$\mathsf{p\text{-}value} = 1 - \mathit{G}_{p}\left(\mathsf{Wald}\left(y\right)\right)$$

where Wald(y) is the realisation of the Wald test-statistic and  $G_p(.)$  is the cdf of the chi-squared distribution with p degrees of freedom.

### Definition (z-statistic)

Consider the test  $H_0: \theta_k = a_k$  versus  $H_1: \theta_k \neq a_k$ . The **z-statistic** corresponds to the square root of the **Wald test-statistic** and satisfies

$$\mathsf{Z}_{k} = rac{\left(\widehat{ heta}_{k} - \mathsf{a}_{k}
ight)}{\sqrt{\widehat{\mathbb{V}}_{\mathsf{asy}}\left(\widehat{ heta}_{k}
ight)}} \stackrel{d}{\mapsto} \mathcal{N}\left(0,1
ight)$$

where  $\widehat{\theta}_k$  is the ML estimator of  $\theta_k$  obtained under H<sub>1</sub> (unconstrained model). The critical region for a significance level of  $\alpha$  is:

$$W = \left\{ y : |Z_k(y)| > \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \right\}$$

where  $\Phi(.)$  denotes the cdf of the standard normal distribution.

4 D > 4 A > 4 B > 4 B > B 9 Q C

#### **Computational issues**

The Wald test-statistic depends on the **estimator of the asymptotic** variance covariance matrix:

$$\begin{aligned} \mathsf{Wald} &= \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \left( \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \frac{\partial \mathbf{c}}{\partial \boldsymbol{\theta}^\top} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right)^\top \right)^{-1} \mathbf{c} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \\ \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) &= \mathit{N}^{-1} \widehat{\mathit{I}}^{-1} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_1} \right) \end{aligned}$$

where  $I\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}\right)$  denotes the average Fisher information matrix.

### Computational issues (cont'd)

Three estimators are available for the average Fisher information matrix:

Actual Average Fisher Matrix: 
$$\widehat{I}_{A}\left(\widehat{\theta}\right) = \frac{1}{N}\sum_{i=1}^{N}\widehat{I}_{i}\left(\widehat{\theta}\right)$$

BHHH estimator: 
$$\widehat{I}_{B}\left(\widehat{\theta}\right) = \frac{1}{N} \sum_{i=1}^{N} \left( \frac{\partial \ell_{i}\left(\theta; y_{i} \mid x_{i}\right)}{\partial \theta} \Big|_{\widehat{\theta}} \frac{\partial \ell_{i}\left(\theta; y_{i} \mid x_{i}\right)}{\partial \theta} \Big|_{\widehat{\theta}}^{\top} \right)$$

$$\text{Hessian based estimator: } \widehat{I}_{c}\left(\widehat{\boldsymbol{\theta}}\right) = \frac{1}{N}\sum_{i=1}^{N}\left(-\left.\frac{\partial^{2}\ell_{i}\left(\boldsymbol{\theta};\left.y_{i}\right|\boldsymbol{x}_{i}\right)}{\partial\boldsymbol{\theta}\partial\boldsymbol{\theta}^{\top}}\right|_{\widehat{\boldsymbol{\theta}}}\right)$$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ ⟨○⟩

### Computational issues (cont'd)

- These estimators are asymptotically equivalent, but the corresponding estimates may be very different in small samples.
- ② Thus, we can obtain **three different values** for the Wald statistic given the choice of the estimator for  $\mathbb{V}_{asy}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_1}\right)$  (cf. exercises).
- In general, the estimator A is rarely available and the estimator B (BHHH) gives erratic results.
- Most of the software use the estimator C (Hessian based estimator).

### Computational issues (cont'd)

Dependent Variable: Y Method: ML - Binary Probit Date: 11/24/13 Time: 18:33 Sample: 1 190

Included observations: 190

Convergence achieved after 3 iterations

Covariance matrix computed using second derivatives

| Variable                                                                                                                                                | Coefficient                                                                        | Std. Error                                                                                                                            | z-Statistic           | Prob.                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|
| X                                                                                                                                                       | 0.215364<br>-0.215364                                                              | 0.092715<br>0.092715                                                                                                                  | 2.322847<br>-2.322847 | 0.0202<br>0.0202                                                      |
| Mean dependent var<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Restr. log likelihood<br>LR statistic (1 df)<br>Probability(LR stat) | 0.421053<br>0.489246<br>45.00000<br>-126.6010<br>-129.3196<br>5.437219<br>0.019712 | S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter.<br>Avg. log likelihood<br>McFadden R-squared |                       | 0.495032<br>1.353695<br>1.387874<br>1.367540<br>-0.666321<br>0.021022 |
| Obs with Dep=0<br>Obs with Dep=1                                                                                                                        | 110<br>80                                                                          | Total obs                                                                                                                             |                       | 190                                                                   |

## Subsection 4.3

The Lagrange Multiplier (LM) test

#### Introduction

Consider the set of constraints  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$ . Let  $\lambda$  be a vector of Lagrange multipliers and define the Lagrangian function

$$\ell_{N}\left(\boldsymbol{\theta}^{*}; y | x\right) = \ell_{N}\left(\boldsymbol{\theta}; y | x\right) + \lambda \mathbf{c}\left(\boldsymbol{\theta}\right)$$

The solution to the constrained maximization problem is the root of

$$\frac{\partial \ell_{N}\left(\boldsymbol{\theta}^{*}; y \mid x\right)}{\partial \boldsymbol{\theta}} = \frac{\partial \ell_{N}\left(\boldsymbol{\theta}; y \mid x\right)}{\partial \boldsymbol{\theta}} + \left(\frac{\partial \mathbf{c}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}^{\top}}\right)^{\top} \boldsymbol{\lambda}$$
$$\frac{\partial \ell_{N}\left(\boldsymbol{\theta}^{*}; y \mid x\right)}{\partial \boldsymbol{\lambda}} = \mathbf{c}\left(\boldsymbol{\theta}\right)$$

### Introduction (cont'd)

$$\frac{\partial \ell_{N}\left(\boldsymbol{\theta}^{*};\,y|\,x\right)}{\partial \boldsymbol{\theta}} = \frac{\partial \ell_{N}\left(\boldsymbol{\theta};\,y|\,x\right)}{\partial \boldsymbol{\theta}} + \left(\frac{\partial \mathbf{c}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}^{\top}}\right)^{\top} \boldsymbol{\lambda}$$

- If the restrictions are valid, then imposing them will not lead to a significant difference in the maximized value of the likelihood function. In the first-order conditions, the meaning is that the second term in the derivative vector will be small. In particular, λ will be small.
- We could test this directly, that is, test

$$H_0: \boldsymbol{\lambda} = \mathbf{0}$$

which leads to the Lagrange multiplier test.

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @ ·

### Introduction (cont'd)

There is an equivalent simpler formulation, however. If the restrictions  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$  are valid, the derivatives of the log-likelihood of the **unconstrained model** evaluated at the **restricted parameter vector** will be approximately zero.

$$\left. \frac{\partial \ell_{N}\left(\boldsymbol{\theta}; \, \boldsymbol{y} | \, \boldsymbol{x}\right)}{\partial \boldsymbol{\theta}} \right|_{\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{0}}} = \mathbf{0}$$

The vector of first derivatives of the log-likelihood is the vector of (efficient) **scores**.

### Definition (LM or score test)

For these reasons, this test is called the **score test** as well as the **Lagrange multiplier test**.

#### Guess

Let us assume that  $\theta$  is scalar, i.e. K=1, then the LM statistic is simply defined as:

$$\mathsf{LM} = \frac{s_{\mathsf{N}}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{0}}; \, \boldsymbol{Y} | \, \boldsymbol{x}\right)^{2}}{\mathbb{V}\left(s_{\mathsf{N}}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_{0}}; \, \boldsymbol{Y} | \, \boldsymbol{x}\right)\right)}$$

Since  $\widehat{I}_N\left(\widehat{ heta}_{\mathsf{H}_0}
ight)=\mathbb{V}\left(s_N\left(\widehat{ heta}_{\mathsf{H}_0};\,Y|\,x
ight)
ight)$  , we have:

$$LM = \frac{s_N \left(\widehat{\theta}_{H_0}; Y | x\right)^2}{\widehat{I}_N \left(\widehat{\theta}_{H_0}\right)}$$

### Definition (LM or score test)

The **LM** test-statistic or **score** test associated to the test of  $H_0$ :  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$  is defined as to be:

$$\mathsf{LM} = \mathsf{s}_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \, \boldsymbol{Y} | \, \boldsymbol{x} \right)^{\top} \widehat{\boldsymbol{I}}_{\mathsf{N}}^{-1} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0} \right) \mathsf{s}_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \, \boldsymbol{Y} | \, \boldsymbol{x} \right)$$

where  $\widehat{\theta}_{H_0}$  is the maximum likelihood estimator of  $\theta$  under the null hypothesis (constrained model),  $s_N\left(\theta;\,Y|\,x\right)$  is the score vector of the unconstrained model and  $\widehat{I}_N\left(\widehat{\theta}_{H_0}\right)$  is an estimator of the Fisher information matrix of the sample evaluated at  $\widehat{\theta}_{H_0}$ .

#### Remark

Since:

$$\widehat{\mathbb{V}}_{\mathit{asy}}\left(\widehat{\pmb{ heta}}_{\mathsf{H}_0}
ight) = \widehat{\pmb{I}}_{\mathit{N}}^{-1}\left(\widehat{\pmb{ heta}}_{\mathsf{H}_0}
ight)$$

there is another expression for the LM statistic.

## Definition (LM or score test)

The **LM** test-statistic or **score** test associated to the test of  $H_0$ :  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$  is defined as to be:

$$\mathsf{LM} = s_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \left. Y \right| x \right)^{\top} \widehat{\mathbb{V}}_{\mathsf{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0} \right) s_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \left. Y \right| x \right)$$

where  $\widehat{\theta}_{H_0}$  is the maximum likelihood estimator of  $\boldsymbol{\theta}$  under the null hypothesis (constrained model),  $s_N\left(\boldsymbol{\theta};\,Y|\,x\right)$  is the score vector of the unconstrained model and  $\widehat{\mathbb{V}}_{asy}\left(\widehat{\boldsymbol{\theta}}_{H_0}\right)$  is an estimator of the asymptotic variance covariance matrix of  $\widehat{\boldsymbol{\theta}}_{H_0}$ .

#### Remark

The **LM** test-statistic can also be defined by:

$$\mathsf{LM} = \pmb{\lambda}^{\top} \frac{\partial \mathbf{c}}{\partial \pmb{\theta}^{\top}} \left( \widehat{\pmb{\theta}}_{\mathsf{H}_0} \right) \widehat{\mathbb{V}}_{\mathit{asy}} \left( \widehat{\pmb{\theta}}_{\mathsf{H}_0} \right) \left( \frac{\partial \mathbf{c}}{\partial \pmb{\theta}^{\top}} \left( \widehat{\pmb{\theta}}_{\mathsf{H}_0} \right) \right)^{\top} \pmb{\lambda}$$

where  $\pmb{\lambda}$  denotes the Lagrange Multiplier associated to the constraints  $\mathbf{c}\left(\pmb{\theta}\right)=\mathbf{0}.$ 

The LM test-statistic can be obtained from the following **auxiliary procedure**:

**Step 1:** Estimate the constrained model and obtain  $\widehat{\theta}_{H_0}$ .

Step 2: Form the gradients for each observation of the unrestricted model evaluated at  $\widehat{\theta}_{H_0}$ 

$$g_i\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_0};\,y_i\big|\,x_i\right)\quad \forall i=1,..N$$

**Step 3:** Run the regression of a vector of 1 on the variables  $g_i\left(\widehat{\theta}_{\mathsf{H}_0}; y_i | x_i\right) \ \forall i=1,..N$ , then

$$LM = N \times R^2$$

where  $R^2$  denotes the (unadjusted) coefficient of determination of this auxiliary regression.

- **4**ロト 4個 ト 4巻 ト 4 巻 ト 9 へ 0 へ

### **Computational issues**

The LM test-statistic depends on the estimator of the asymptotic variance covariance matrix:

$$\begin{split} \mathsf{LM} &= \mathsf{s}_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \, \boldsymbol{Y} | \, \boldsymbol{x} \right)^{\top} \widehat{\mathbb{V}}_{\mathsf{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0} \right) \mathsf{s}_{\mathsf{N}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}; \, \boldsymbol{Y} | \, \boldsymbol{x} \right) \\ \\ \widehat{\mathbb{V}}_{\mathsf{asy}} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0} \right) &= \mathsf{N}^{-1} \widehat{\boldsymbol{I}}^{-1} \left( \widehat{\boldsymbol{\theta}}_{\mathsf{H}_0} \right) \end{split}$$

where  $I(\widehat{\theta}_{\mathsf{H}_0})$  denotes the average Fisher information matrix.

② Thus, we can obtain **three different values** for the LM statistic given the choice of the estimator for  $\mathbb{V}_{asy}\left(\widehat{\boldsymbol{\theta}}_{\mathsf{H}_0}\right)$  (cf. exercises).

## Definition (Asymptotic distribution and critical region)

Under some regularity conditions (cf. chapter 2) and under the null  $H_0$ :  $\mathbf{c}(\theta) = \mathbf{0}$ , the LM test-statistic **converges** to a chi-squared distribution with p degrees of freedom (the number of restrictions imposed):

$$LM \xrightarrow[H_0]{d} \chi^2(p)$$

The (asymptotic) **critical region** for a significance level of  $\alpha$  is:

$$W = \left\{ y : LM \left( y \right) > \chi_{1-\alpha}^{2} \left( p \right) \right\}$$

where  $\chi^2_{1-\alpha}(p)$  is the  $1-\alpha$  critical value of the chi-squared distribution with p degrees of freedom and  $\mathrm{LM}(y)$  is the realisation of the LM test-statistic.

## Definition (p-value of the LM test)

The **p-value** of the LM test is equal to:

$$\mathsf{p\text{-}value} = 1 - \mathit{G}_{p}\left(\mathsf{LM}\left(y\right)\right)$$

where LM(y) is the realisation of the LM test-statistic and  $G_p(.)$  is the cdf of the chi-squared distribution with p degrees of freedom.

## Subsection 4.4

A comparison of the three tests



Source: Pelgrin (2010), Lecture notes, Advanced Econometrics

### Summary

| Test | Requires estimation under |
|------|---------------------------|
| LRT  | $H_0$ and $H_1$           |
| Wald | $H_1$                     |
| LM   | $H_0$                     |

### **Computational problems**

- If the ML maximisation problem is complex (with local extrema) and if it has no closed form solution (nonlinear models: GARCH, Markov Switching models etc.), it may be particularly difficult to get a ML estimates  $\hat{\theta}$  through a numerical optimisation of the log-likelihood.
- If the constraints  $\mathbf{c}\left(\boldsymbol{\theta}\right)=\mathbf{0}$  are not valid in the data, the (numerical) convergence of the optimisation algorithm may be very problematic under the null  $H_0$ .

#### **Asymptotic comparison**

The three tests have the same asymptotic distribution under the null  $H_0: \mathbf{c}(\boldsymbol{\theta}) = \mathbf{0}$ :

$$\mathsf{LRT} \xrightarrow[\mathsf{H}_0]{d} \chi^2\left(\rho\right)$$

$$\mathsf{Wald} \xrightarrow[\mathsf{H}_0]{d} \chi^2\left(\rho\right)$$

$$\mathsf{LM} \xrightarrow{d}_{\mathsf{H}_{0}} \chi^{2}\left(p\right)$$

## Theorem (Asymptotic comparison)

The three tests are **asymptotically equivalent**. Under some regularity conditions and under the null  $H_0$ :  $\mathbf{c}\left(\theta\right) = \mathbf{0}$ , the differences between the three test statistics converge to 0 as N tends to infinity:

$$LRT - LM \xrightarrow{p}_{H_0} 0$$

$$LRT - Wald \xrightarrow{p}_{H_0} 0$$

$$LM - Wald \xrightarrow{p}_{H_0} 0$$

## Fact (Finite sample properties)

The **finite sample properties** of the three tests may be different, especially in small samples. For small sample size, they can lead to opposite conclusion about the rejection of the null hypothesis.

#### 4. MLE and inference

## Key concepts of Section 4

- Likelihood Ratio (LR) test
- Wald test
- Lagrange Multiplier (LM) test
- Computational issues
- Omparison of the three tests (the trilogy) in finite samples

# End of Chapter 4

Christophe Hurlin (University of Orléans)