Intervals, Transformations, and Slope Solution (version 85)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -4) \cup (-1, 2)$
Negative	$(-4, -1) \cup (2, 9)$
Increasing	$(-3,1) \cup (5,9)$
Decreasing	$(-7, -3) \cup (1, 5)$
Domain	(-7,9)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 85)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=50$ and $x_2=60$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 50 & 80 \\ 60 & 66 \\ 66 & 50 \\ 80 & 60 \\ \end{array}$$

$$\frac{g(60) - g(50)}{60 - 50} = \frac{66 - 80}{60 - 50} = \frac{-14}{10}$$

The greatest common factor of -14 and 10 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{5}$$

2