21– ELEKTROSTATYKA. KONDENSATORY

Pojemność elektryczna

$$C=rac{Q}{V}$$
 - dla przewodników $C=rac{Q}{U}$ - dla kondensatorów

$$C = \frac{Q}{U}$$
 - dla kondensatorów

C – pojemność elektryczna

Q – ładunek

V- potencjał , U- napięcie

jednostka – farad –
$$1F = \frac{1C}{1V}$$

Pojemność elektryczna kuli

$$C = 4\pi \varepsilon_o r$$

Pojemność kondensatora płaskiego

$$C = \frac{\varepsilon_r \varepsilon_o S}{d}$$

ε_r – względna przenikalność dielektryczna dielektryka ϵ_{o} – bezwzględna przenikalność dielektryczna próżni

$$\varepsilon_o = 8.9 \cdot 10^{-12} \frac{C^2}{Nm^2}$$

S – powierzchnia jednej z okładek

d – odległość między okładkami

jeśli kondensator jest próżniowy, to ϵ_r =1 i

$$C_o = \frac{\varepsilon_o S}{d}$$

czyli

Natężenie pola elektrycznego jednorodnego

$$E = \frac{U}{d}$$

U – napięcie między okładkami kondensatora d- odległość między płytkami

Łączenie kondensatorów, pojemność zastępcza

połączenie szeregowe

ładunek – Q=const

napięcie - $U=U_1+U_2+...U_n$

odwrotność pojemności:

$$\frac{1}{C_{zastępcza}} = \frac{1}{C_1} + \frac{1}{C_2} + \ ... + \ \frac{1}{C_n}$$

Pojemność zastępcza za n identycznych kondensatorów o pojemnościach C każdego $C_{zastępcza}=\frac{c}{n}$

połączenie równoległe

 $ladunek - Q=Q_1+Q_2+...Q_n$

napięcie - U=const

pojemność zastępcza Czastepcza = C1+ C1+ ... Cn

Pojemność zastępcza za n identycznych kondensatorów o pojemnościach C każdego $C_{zastepcza} = nC$

Energia naładowanego kondensatora

$$E_p = \frac{QU}{2} = \frac{Q^2}{2C} = \frac{CU^2}{2}$$

Praca

$$W = \Delta E_p$$

Kondensator odłączony od źródła prądu i dołączony do źródła prądu

Problem jest taki: Kondensator naładowano i następnie zmieniono jego pojemność w jakiś tam sposób. Dla przykładu powiedzmy, że rozsunięto płytki do odległości dwukrotnie większej i usunięto dielektryk o stałej dielektrycznej ϵ_r =2. Jak zmienią się: pojemność elektryczna, ładunek, napięcie, energia i natężenie pola elektrycznego, jeśli operacji dokonywano gdy kondensator był

odłączony od źródła prądu

pojemność
$$\mathcal{C} = \frac{\varepsilon_r \varepsilon_o S}{d} \downarrow$$
 4x (zmalała cztery razy)

ładunek Q= const

napięcie
$$U = \frac{Q}{c} \uparrow 4x \ (bo \ Q = const)$$

energia
$$E_p = \frac{Q^2}{2C} \uparrow 4x \ (bo \ Q = const)$$

natężenie pola elektrycznego

$$E = \frac{U}{d} \uparrow 2x \ (bo \ U \uparrow 4x \ a \ d \downarrow 2x)$$

dołączony do źródła prądu

pojemność
$$\mathcal{C} = \frac{\varepsilon_r \varepsilon_o S}{d} \downarrow$$
 4x (zmalała cztery razy)

$$\text{ fadunek } Q = CU \downarrow 4x \ (bo\ U = const)$$

napięcie U=const

energia
$$E_p = \frac{CU^2}{2} \downarrow 4x \ (bo \ U = const)$$

natężenie pola elektrycznego

$$E = \frac{U}{d} \downarrow 2x \ (bo \ U = const \ a \ d \uparrow 2x)$$

ZADANIA

Zadanie 1

Oblicz napięcie, ładunek i energię każdego kondensatora w obwodach (odpowiedzi na końcu)

Zadanie 2

Między okładki kondensatora próżniowego o pojemności C_0 wsunięto płytkę z dielektryka złożoną z dwóch części różniących się stałą dielektryczną. Połowę objętości kondensatora wypełnia dielektryk o stałej dielektrycznej ϵ_1 =3, a drugą połowę o stałej ϵ_2 = 3 ϵ_1 . Jak zmieni się pojemność kondensatora w stosunku do pojemności C_0 ?

Odp: Jeśli Wypełnienie składa się z dwóch kawałów podłużnych (o powierzchniach takich jak płytki, ale grubościach równych połowie odległości między płytkami), to wzrośnie 4,5 razy. Jeśli wypełnienie składa się z dwóch kawałków poprzecznych (o powierzchniach równych połowie powierzchni płytek, ale o grubościach równych odległości między płytkami) to wzrośnie 6 razy.

Zadanie 3

Kondensator próżniowy, naładowany do różnicy potencjałów U=800 V połączono równolegle z drugim takim samym kondensatorem nienaładowanym, wypełnionym dielektrykiem. Obliczyć stałą dielektryczną dielektryka, jeżeli po tym połączeniu różnica potencjałów między okładkami kondensatorów wynosi U₁=100 V.

Odp: 7

Zadanie 4

Okładki próżniowego kondensatora płaskiego o powierzchni S=500 cm² znajdują się w odległości d_1 =1 cm od siebie i są naładowane do napięcia U_1 =500 V. Jaką pracę trzeba wykonać, aby po odłączeniu go od źródła napięcia okładki oddaliły się na odległość d_2 = 4 cm? Przyjąć stałą dielektryczną próżni ϵ_0 =9'10'12 C/Vm.

Odp: 1,69⁻¹0⁻⁵J

Zadanie 5

Kondensator powietrzny płaski naładowano, a następnie po odłączeniu od źródła prądu zwiększono dwukrotnie odległość między jego okładkami. Jak zmienią się: energia kondensatora, jego napięcie i natężenie pola elektrycznego między jego okładkami

Odp: Energia dwukrotnie wzrośnie, napięcie dwa razy wzrośnie, a natężenie pola elektrycznego nie zmieni się.

Zadanie 6

Kondensator powietrzny o zmiennej pojemności od C_1 =20 pF do C_2 =200 pF naładowano do napięcia U=230 V przy pojemności C_2 . Oblicz wartość wykonanej pracy przy zmianie pojemności od C_2 do C_1 po uprzednim odłączeniu go od źródła napięcia.

Odp: 4,761⁻⁵J

Zadanie 7

Kondensator bez dielektryka naładowano ładunkiem Q=400 nC i odłączono od źródła napięcia. Po wprowadzeniu dielektryka o stałej dielektrycznej ε_r =4 napięcie zmalało do U=100 V. Obliczyć pojemność kondensatora, jego energię przed i po wprowadzeniu dielektryka.

Odp: $C_o=1$ nF, C=4 nF, $E_{po}=8.10^{-5}$ J, $E_p=2.10^{-5}$ J

Zadanie 8

Kondensator napełniony olejem o stałej dielektrycznej ε_r =4,8 naładowano do różnicy potencjałów U=1000 V. Kondensator był nieszczelny i po pewnym czasie olej z niego całkowicie wyciekł. Obliczyć zmianę napięcia ΔU między jego okładkami, jaka wystąpiła wskutek wypłynięcia oleju.

Odp: ΔU=3800 V. Nastąpił wzrost napięcia od 1000 V do 4800 V.

Zadanie 9

Płaski kondensator powietrzny, którego płytki o powierzchni S=100 cm 2 oddalone są od siebie na odległość d₁=1 mm, naładowano do różnicy potencjałów U=100 V. Następnie płytki rozsunięto na odległość d₂=25 mm. Znaleźć energię kondensatora przed i po rozsunięciu płytek jeżeli:

- 1. kondensator cały czas pozostaje przyłączony do źródła napięcia.
- 2. źródło napięcia odłącza się przed rozsunięciem płytek.

Przyjąć stałą dielektryczną próżni ε_0 =9·10⁻¹² C²/Nm².

Odp:

Energia kondensatora przed rozsunięciem płytek wynosi $4,5\cdot10^{-7}$ J. Po rozsunięciu płytek w 1 przypadku (U=const) energia ta jest 25 razy mniejsza (bo tyle razy wzrosła odległość płytek) i wynosi1,8 $\cdot10^{-8}$ J. Po rozsunięciu płytek w drugim wypadku (Q=const) energia ta jest tym razem 25 razy większa i wynosi $1.125\cdot10^{-5}$ J.

Zadanie 10

Płaski kondensator, w którym odległość między okładkami wynosi d=4 mm zanurzono do połowy w nafcie, pionowo płytkami. O ile należy rozsunąć płytki kondensatora, aby jego pojemność pozostała niezmieniona? Stała dielektryczna nafty ϵ_r =2.

Odp: o 2 mm

Zadanie 11

Płaski kondensator powietrzny o powierzchni okładek S= $2 \cdot 10^{-3}$ m² i odległości między okładkami d=2 mm jest przyłączony do źródła prądu stałego o napięciu U=120 V. O ile zmieni się ładunek kondensatora po wprowadzeniu między okładki szklanej płyty całkowicie wypełniającej jego wnętrze? Względna przenikalność dielektryczna szkła ε_r =7.

Odp: o 6,408^{-10⁻⁹} C

Zadanie 12

Kondensator płaski, którego obszar między płytkami jest całkowicie wypełniony dielektrykiem ma pojemność C=4 μ F. Po naładowaniu go do napięcia U=100 V i odłączeniu od źródła zasilania usunięto dielektryk. Wymagało to wykonania pracy W= 0,1 J. Obliczyć względną przenikalność dielektryka.

Odp: 6

Zadanie 13

Połączono cieniutkim drucikiem dwie kule metalowe, jedną o promieniu r_1 =2 cm naładowaną ładunkiem Q_1 = - 2 nC i drugą, o promieniu r_2 =1 cm, naładowaną ładunkiem Q_2 = + 6 nC. Jaki potencjał będą miały te kule po połączeniu?

Odp: ok. 1193 V

Zadanie 14

Płaski kondensator powietrzny o powierzchni okładek S i odległości między nimi d naładowano do napięcia U i odłączono od źródła. Następnie odległość między płytkami zwiększono n-krotnie, po czym przestrzeń między nimi wypełniono całkowicie dielektrykiem o względnej przenikalności dielektrycznej ϵ_r . Obliczyć zmianę energii kondensatora. Przenikalność dielektryczna próżni wynosi ϵ_o . Jaka wartość stałej dielektrycznej ϵ_r gwarantuje, że będzie to wzrost energii?

Odp:
$$\Delta E_p = \frac{(n - \varepsilon_r)\varepsilon_o SU^2}{2\varepsilon_r d}$$

Aby nastąpił wzrost energii ε_r <n, czyli stosunek odległości po rozsunięciu okładek n, musi być większy od stałej dielektrycznej ε_r .

Zadanie 15

Kondensator o jakiej pojemności i nienaładowany należy dołączyć i jak do naładowanego kondensatora o pojemności C=1 nF, aby energia układu dwukrotnie wzrosła?

Odp. Należy dołączyć drugą taką samą pojemność C=1 nF, szeregowo.

Zadanie 16

Mamy do dyspozycji cztery jednakowe kondensatory. Jak należy je połączyć, by pojemność baterii pozostała niezmieniona. Narysuj schemat połączenia. *Odpowiedź na następnej stronie*

Zadanie 17

Zadanie 10. Ładunki elektryczne (*4 pkt*) - http://www.voltwo.webd.pl/matura/fizyka/2007-probny-operon-rozszerzony.pdf

Odpowiedzi do zadania 1

а.

kondensator	pojemność [μF]	napięcie [V]	ładunek [μC]	energia [μJ]
C_1	2	7,5	15	56,25
C_2	6	2,5	15	18,75

b.

kondensator	pojemność [μF]	napięcie [V]	ładunek [μC]	energia [μJ]
C_1	1	100	100	5000
C_2	2	100	200	10000

с.

kondensator	pojemność [nF]	napięcie [V]	ładunek [nC]	energia [nJ]
C_1	12	2,5	30	37,50
C_2	2	7,5	15	56,25
<i>C</i> ₃	2	7,5	15	56,25

d.

kondensator	pojemność [mF]	napięcie [V]	ładunek [mC]	energia [mJ]
C_1	1	7,5	7,5	28,125
<i>C</i> ₂	3	2,5	7,5	9,375
<i>C</i> ₃	0,25	10	2,5	12,500

e.

kondensator	pojemność [pF]	napięcie [V]	ładunek [pC]	energia [pJ]
C_1	1	7,69	7,69	29,568
C_2	2	1,92	3,85	3,696
<i>C</i> ₃	2	1,92	3,85	3,696
<i>C</i> ₄	10	0,19	1,95	0,185
C ₅	10	0,19	1,95	0,185
C_6	15	0,39	5,85	1,140

Odpowiedź do zadania 16

Są dwa rozwiązania przedstawione powyżej.