Clase 2. Determinantes y el Producto Cruz.

MIT 18.02: Multivariable Calculus.

Resumen

En esta clase se estudiará preliminarmente al escalar llamado **determinante**. El enfoque estará en su interpretación geométrica. Luego se verá otra operación relevante entre vectores que recibe el nombre de **producto cruz**.

1. Determinantes.

El **determinante** es un **escalar** calculado mayormente en matrices, ya que entrega información relevante de éstas¹. A nivel geométrico, equivale a los valores absolutos del área de un paralelogramo y del volumen de un paralelepipedo. Ambos pueden obtenerse usando vectores.

En general, solo es posible calcular el determinante de una cantidad de vectores que es igual a su dimensión. Acá nos concentraremos solo en aquellos de dos y tres dimensiones.

Sean dos vectores $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$. El determinante de ambos se calcula como:

$$\det(\mathbf{a}, \ \mathbf{b}) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

Por otra parte, si $\mathbf{a},\ \mathbf{b},\ \mathbf{c}\in\mathbb{R}^3,$ el determinante entre todos ellos se puede obtener como:

$$\det(\mathbf{a}, \ \mathbf{b}, \ \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$
$$= (b_2c_3 - b_3c_2)a_1 - (b_1c_3 - b_3c_1)a_2 + (b_1c_2 - b_2c_1)a_3$$

El método usado para calcular det(a, b, c) se conoce como "expansión por la primera fila"

¹Lo veremos en la siguiente clase.

del determinante.

Veamos cómo el determinante de dos vectores se iguala al área de un paralelogramo.

1.1. Área de un paralelogramo.

Considere dos vectores de posición \mathbf{a} , $\mathbf{b} \in \mathbb{R}^2$. Al unirlos en sus puntos iniciales, es posible formar un paralelogramo de altura h como se observa en la siguiente figura.

Con la información que está en la figura busquemos el área del paralelogramo, A_p .

Formalmente, A_p se calcula como:

$$A_p = \text{base} \cdot \text{altura} = ||\mathbf{a}|| \cdot h$$

Mediante la figura del paralelogramo, se puede calcular su altura como:

$$\sin(\theta) = \frac{h}{||\mathbf{b}||}$$
$$\therefore h = ||\mathbf{b}|| \cdot \sin(\theta)$$

Al reemplazar a h en A_p :

$$A_p = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta)$$

La fórmula de A_p es similar a la de $\mathbf{a} \cdot \mathbf{b}$. La llevaremos a esta operación porque permitirá depender solo de los componentes de estos vectores, sin necesidad de conocer a θ .

Sea \mathbf{a}' el vector \mathbf{a} rotado en $\frac{\pi}{2}$ radianes. Esto implica que $||\mathbf{a}|| = ||\mathbf{a}'||$, pero $\mathbf{a}' = \langle -a_2, a_1 \rangle$.

En la figura de arriba se puede observar que $\theta + \theta' = \frac{\pi}{2}$. Por lo tanto,

$$\theta' = \frac{\pi}{2} - \theta$$

Calculemos el coseno en ambos lados de la igualdad de arriba.

$$\cos(\theta') = \cos\left(\frac{\pi}{2} - \theta\right)$$

Al aplicar la fórmula de sustracción del coseno² en el lado derecho, se obtiene lo siguiente:

$$\cos(\theta') = \cos\left(\frac{\pi}{2}\right)\cos(\theta) + \sin\left(\frac{\pi}{2}\right)\sin(\theta) = \sin(\theta)$$

Como $\sin(\theta) = \cos(\theta')$ y $||\mathbf{a}|| = ||\mathbf{a}'||$, entonces:

$$A_p = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta) = ||\mathbf{a}'|| \cdot ||\mathbf{b}|| \cdot \cos(\theta') = \mathbf{a}' \cdot \mathbf{b} = -a_2b_1 + a_1b_2 = a_1b_2 - a_2b_1$$

La última parte de esta igualdad corresponde al det(\mathbf{a} , \mathbf{b}). Debido a que es posible que det(\mathbf{a} , \mathbf{b}) < 0, podemos definir al **área de un paralelogramo**, A_p , como:

$$A_p = |\det(\mathbf{a}, \mathbf{b})|$$

Si consideramos una diagonal del paralelogramo, se obtienen dos triángulos congruentes.

 $[\]sqrt{2\cos(u-v) = \cos(u)\cos(v) + \sin(u)\sin(v)}.$

Al ser congruentes, los dos triángulos tienen la misma área. Por lo tanto,

$$A_T = \frac{1}{2} A_p = \frac{1}{2} |\det(\mathbf{a}, \mathbf{b})| = \frac{1}{2} ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta)$$

donde A_T es el área de uno de los triángulos.

2. Producto Cruz.

Sean \mathbf{a} , \mathbf{b} , $\mathbf{n} \in \mathbb{R}^3$, con $||\mathbf{n}|| = 1$, $\mathbf{n} \perp \mathbf{a}$ y $\mathbf{n} \perp \mathbf{b}$. La operación **producto cruz** entre \mathbf{a} y \mathbf{b} , $\mathbf{a} \times \mathbf{b}$, se define como:

$$\mathbf{a} \times \mathbf{b} = (||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta)) \cdot \mathbf{n}$$

donde θ es el ángulo que se forma entre **a** y **b** al unirlos en sus puntos iniciales.

Como se observa tanto en la fórmula como en la figura de arriba, $\mathbf{a} \times \mathbf{b}$ es un **vector**. Debido a que se forma a partir de \mathbf{n} , entonces:

$$(\mathbf{a} \times \mathbf{b}) \perp \mathbf{a}$$
 y $(\mathbf{a} \times \mathbf{b}) \perp \mathbf{b}$

El producto cruz $\mathbf{a} \times \mathbf{b}$ está definida solo para vectores en **tres dimensiones**.

Si $\theta \in \{0, \pi\}$, entonces $\sin(\theta) = 0$. Por lo tanto,

$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$

Es decir, si $\mathbf{a} \times \mathbf{b}$ resulta ser $\mathbf{0}$, quiere decir que ambos vectores son **paralelos**.

2.1. Magnitud y dirección del producto cruz.

Como $\mathbf{a} \times \mathbf{b}$ es \mathbf{n} escalado por el valor $||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta)$, entonces su **magnitud** es:

$$||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \sin(\theta)$$

Efectivamente, $||\mathbf{a} \times \mathbf{b}||$ es el área de un paralelogramo, pero formado por vectores en tres dimensiones. En consecuencia, no es igual al det(a, b) visto en la sección 1.1, ya que en esa ocasion $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$.

La dirección del producto cruz se puede conocer mediante la regla de la mano derecha. Esta señala que si tenemos la palma abierta ortogonal a los dos vectores y luego la cerramos sin bajar el pulgar, será este dedo el que indicará hacia dónde está apuntando $\mathbf{a} \times \mathbf{b}$.

Figura 1: Thomas (2010). Cálculo. Varias Variables. Pp. 682-683.

2.2. Propiedades del producto cruz.

Sean $\mathbf{a},\ \mathbf{b},\ \mathbf{w}\in\mathbb{R}^3$ y $c,\ d\in\mathbb{R}.$ El producto cruz cumple las siguientes propiedades:

1)
$$(c\mathbf{a}) \times (d\mathbf{b}) = (cd)(\mathbf{a} \times \mathbf{b})$$

1)
$$(c\mathbf{a}) \times (d\mathbf{b}) = (cd)(\mathbf{a} \times \mathbf{b})$$
 2) $\mathbf{a} \times (\mathbf{b} + \mathbf{w}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{w}$

3)
$$\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$$

4)
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{w} = \mathbf{a} \times \mathbf{w} + \mathbf{b} \times \mathbf{w}$$

5)
$$\mathbf{0} \times \mathbf{a} = \mathbf{0}$$

6)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{w}) = (\mathbf{a} \cdot \mathbf{w})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{w}$$

Considere los vectores unitarios estándar $\hat{\mathbf{e}}_1 = \langle 1, 0, 0 \rangle$, $\hat{\mathbf{e}}_2 = \langle 0, 1, 0 \rangle$ y $\hat{\mathbf{e}}_3 = \langle 0, 0, 1 \rangle$.

Mediante la propiedad 3) obtenemos las siguientes igualdades:

$$\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2 = -(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1) = \hat{\mathbf{e}}_3, \qquad \hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3 = -(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_2) = \hat{\mathbf{e}}_1, \qquad \hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_1 = -(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_3) = \hat{\mathbf{e}}_2$$

Además:

$$\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_1 = \hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_2 = \hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_3 = \mathbf{0}$$

Si dos vectores **son iguales**, quiere decir que son **paralelos**. Por lo tanto, su producto cruz debe ser el vector **0**.

2.3. Producto cruz a partir de los componentes.

Las propiedades del producto cruz permiten obtener una fórmula de ella que depende solo de los componentes de los vectores que la originan.

Sean $\mathbf{a} = a_1 \hat{\mathbf{e}}_1 + a_2 \hat{\mathbf{e}}_2 + a_3 \hat{\mathbf{e}}_3$ y $\mathbf{b} = b_1 \hat{\mathbf{e}}_1 + b_2 \hat{\mathbf{e}}_2 + b_3 \hat{\mathbf{e}}_3$. Mediante esta representación, se puede expresar el producto cruz entre ambos vectores como:

$$\mathbf{a} \times \mathbf{b} = \mathbf{a} \times (b_1 \hat{\mathbf{e}}_1 + b_2 \hat{\mathbf{e}}_2 + b_3 \hat{\mathbf{e}}_3)$$

Por la propiedad 2, esta igualdad es lo mismo que:

$$\mathbf{a} \times \mathbf{b} = (\mathbf{a} \times b_1 \hat{\mathbf{e}}_1) + (\mathbf{a} \times b_2 \hat{\mathbf{e}}_2) + (\mathbf{a} \times b_3 \hat{\mathbf{e}}_3)$$

En cada producto cruz del lado derecho se puede aplicar la propiedad 4.

$$\mathbf{a} \times \mathbf{b} = (a_1 \hat{\mathbf{e}}_1 \times b_1 \hat{\mathbf{e}}_1) + (a_2 \hat{\mathbf{e}}_2 \times b_1 \hat{\mathbf{e}}_1) + (a_3 \hat{\mathbf{e}}_3 \times b_1 \hat{\mathbf{e}}_1) + (a_1 \hat{\mathbf{e}}_1 \times b_2 \hat{\mathbf{e}}_2) + (a_2 \hat{\mathbf{e}}_2 \times b_2 \hat{\mathbf{e}}_2) + (a_3 \hat{\mathbf{e}}_3 \times b_2 \hat{\mathbf{e}}_2) + (a_1 \hat{\mathbf{e}}_1 \times b_3 \hat{\mathbf{e}}_3) + (a_2 \hat{\mathbf{e}}_2 \times b_3 \hat{\mathbf{e}}_3) + (a_3 \hat{\mathbf{e}}_3 \times b_3 \hat{\mathbf{e}}_3)$$

Luego, se puede usar la propiedad 1 en los paréntesis del lado derecho.

$$\mathbf{a} \times \mathbf{b} = (a_1b_1)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_1) + (a_2b_1)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1) + (a_3b_1)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_1) + (a_1b_2)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2) + (a_2b_2)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_2) + (a_3b_2)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_2) + (a_1b_3)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_3) + (a_2b_3)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3) + (a_3b_3)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_3)$$

Es posible realizar cancelaciones con los $\hat{\mathbf{e}}_i \times \hat{\mathbf{e}}_i = \mathbf{0}$.

$$\mathbf{a} \times \mathbf{b} = (a_2b_1)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1) + (a_3b_1)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_1) + (a_1b_2)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2) + (a_3b_2)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_2) + (a_1b_3)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_3) + (a_2b_3)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3)$$

El lado derecho también se puede expresar como:

$$\mathbf{a} \times \mathbf{b} = -[(a_2b_1) \cdot -(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1)] + (a_3b_1)(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_1) + (a_1b_2)(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2) + -[(a_3b_2) \cdot -(\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_2)] + -[(a_1b_3) \cdot -(\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_3)] + (a_2b_3)(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3)$$

En la sección 2.2 vimos identidades tales como $\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2 = -(\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1) = \hat{\mathbf{e}}_3$. Al aplicarlas en la ecuación de arriba se obtiene lo siguiente:

$$\mathbf{a} \times \mathbf{b} = -(a_2b_1)\hat{\mathbf{e}}_3 + (a_3b_1)\hat{\mathbf{e}}_2 + (a_1b_2)\hat{\mathbf{e}}_3 - (a_3b_2)\hat{\mathbf{e}}_1 - (a_1b_3)\hat{\mathbf{e}}_2 + (a_2b_3)\hat{\mathbf{e}}_1$$

Finalmente, usando la propiedad 2 podemos factorizar términos comunes del lado derecho.

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\hat{\mathbf{e}}_1 - (a_1b_3 - a_3b_1)\hat{\mathbf{e}}_2 + (a_1b_2 - a_2b_1)\hat{\mathbf{e}}_3$$

Esta es la fórmula del producto cruz entre **a** y **b** usando vectores unitarios estándar. Debido a que su lado derecho se asemeja a la expresión del determinante de tres vectores, también se suele escribir como:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{e}}_1 & \hat{\mathbf{e}}_2 & \hat{\mathbf{e}}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{\mathbf{e}}_1 \cdot \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \hat{\mathbf{e}}_2 \cdot \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \hat{\mathbf{e}}_3 \cdot \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

La expresión de arriba es solo **simbólica**, ya que el determinante es un escalar y no un vector, como sí lo es el producto cruz.

Por otra parte, se puede expresar al producto cruz en forma componente como:

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, -(a_1 b_3 - a_3 b_1), a_1 b_2 - a_2 b_1 \rangle$$

2.4. Triple producto escalar.

El producto punto entre un vector y el producto cruz de dos vectores recibe el nombre de triple producto escalar.

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = ||\mathbf{c}|| \cdot ||\mathbf{a} \times \mathbf{b}|| \cdot \cos(\theta)$$

Al expandir el lado izquierdo mediante la definicion algebraica del producto punto, se obtiene lo siguiente:

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = (a_2b_3 - a_3b_2)c_1 - (a_1b_3 - a_3b_1)c_2 + (a_1b_2 - a_2b_1)c_3$$

El lado derecho corresponde al determinante de a, b y c expandido por su tercera fila.

$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \det(\mathbf{a}, \ \mathbf{b}, \ \mathbf{c})$$

A continuación veremos que el valor absoluto del triple producto escalar y, por consiguiente, del determinante de sus tres vectores es igual al volumen de un paralelelpipedo.

2.4.1. Volumen de un paralelepipedo.

Considere el siguiente paralelepipedo formado por $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$.

El volumen del paralelepipedo es el producto entre el área de su base y su altura.

$$V_p = A_{\text{base}} \cdot h$$

La base del paralelepipedo es un paralelogramo 3 que, en este caso, está formado por ${\bf a}$ y ${\bf b}.$

³Así como también lo son el resto de sus caras.

A partir de lo estudiado en la sección 2.1, podemos decir que el área de esta superficie es:

$$A_{\text{base}} = ||\mathbf{a} \times \mathbf{b}||$$

En cuanto a la altura h del paralelepipedo, como es perpendicular a su base, podemos usar la magnitud de un vector unitario normal⁴ al plano \mathbf{n} escalado por el componente c_3 de \mathbf{c} .

En la imagen de arriba se puede ver que $h = ||c_3\mathbf{n}||$. Por lo tanto,

$$\cos(\theta) = \frac{||c_3 \mathbf{n}||}{||\mathbf{c}||} \Longrightarrow ||c_3 \mathbf{n}|| = ||\mathbf{c}|| \cdot \cos(\theta)$$

Así, el volumen del paralelepipedo se puede calcular como:

$$V_p = |\mathbf{a} \times \mathbf{b}| \cdot |\mathbf{c}| \cdot |\mathbf{c}| \cdot \cos(\theta)| = |\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})| = |\det(\mathbf{a}, \mathbf{b}, \mathbf{c})|$$

Se usa el valor absoluto para calcular V_p porque el $\cos(\theta) < 0$ para $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$.

Ejercicio 1. Sean P_1 , P_2 y P_3 tres puntos de un plano en \mathbb{R}^3 . Evalúe cuál debe ser la condición para que otro punto P_4 pueda ser miembro de aquella superficie.

Solución. Comencemos definiendo los siguientes dos vectores usando los tres primeros puntos.

$$\overrightarrow{P_1P_2}$$
 y $\overrightarrow{P_1P_3}$

Luego, busquemos otro vector \mathbf{v} ortogonal al plano mediante el producto cruz entre los dos definidos arriba.

$$\mathbf{v} = \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3}$$

Si P_4 está en el plano, entonces al formar el vector $\overrightarrow{P_1P_4}$ debe cumplirse que:

$$\overrightarrow{P_1P_4} \cdot \mathbf{v} = 0$$

⁴Es lo mismo que "perpendicular" u "ortogonal".

Al reemplazar a ${\bf v}$ por $\overrightarrow{P_1P_2}\times \overrightarrow{P_1P_3}$ se puede observar lo siguiente:

$$\overrightarrow{P_1P_4} \cdot \left(\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}\right) = 0$$
$$\det\left(\overrightarrow{P_1P_2}, \ \overrightarrow{P_1P_3}, \ \overrightarrow{P_1P_4}\right) = 0$$

Este resultado indica que, para que P_4 esté en el plano, su vector creado a partir de P_1 debe formar un paralelepipedo **sin volumen**. Así, $\overrightarrow{P_1P_4}$ será **coplanar** al igual que $\overrightarrow{P_1P_2}$ y $\overrightarrow{P_1P_3}$, lo que puede verificarse cuando el determinante de los tres vectores es igual a cero.