## 1 Problems

Write  $\operatorname{Succ}(s,t) = \operatorname{Succ}'(s,t) = \operatorname{Succ}''(s,t)$  for the successors and  $\operatorname{Pred}(s,t) = \operatorname{Pred}'(s,t) = \operatorname{Pred}''(s,t)$  for the predecessors (ancessors) of the pair in D, D', D'', respectively.

Since  $D = D' \cup D''$ , we also have  $\operatorname{Succ}(s,t) = \operatorname{Succ}'(s,t) \cup \operatorname{Succ}''(s,t)$  and  $\operatorname{Pred}(s,t) = \operatorname{Pred}''(s,t) \cup \operatorname{Pred}''(s,t)$ .

#### 1.1 Lemma 3.1.

Suppose (x, y) and (a, b) are birth-death pairs of  $f: X \to R$ , a, x are consecutive in the ordering of the cells by f, and the transposition a, x is a switch. Then

$$Succ'(a, y) = \{(x, b)\} \cup Succ'(a, b) \cup \{(s, t) \in Succ'(x, y) | f(t) < f(b)\}$$
$$Succ'(x, b) = \{(s, t) \in Succ'(x, y) \cup Succ'(a, b) | f(t) > f(b)\}$$

#### 1.2 Lemma 3.2.

Suppose (a, b) and (x, y) are birth-death pairs of  $f: X \to R$ , y, b are consecutive in the ordering by f, and transposition of y, b is a switch. Then

$$Succ''(x,b) = \{(a,y)\} \cup Succ''(a,b) \cup \{(s,t) \in Succ''(x,y) | f(a) < f(s)\}$$
$$Succ''(a,y) = \{(s,t) \in Succ''(a,b) \cup Succ''(x,y) | f(s) < f(a)\}$$

#### 1.3 Lemma 3.3.

Suppose (a, b) and (x, y) are birth-death pairs of  $f: X \to R$ , b, x are consecutive in the ordering by f, and the transposition of b, x is a switch. Then

$$Succ(a, x) = Succ(a, b)$$
 and  $Succ(b, y) = Succ(x, y)$ 

#### 1.4 Hypothesis 1

.

Suppose a and b are 2-simplices consecutive in the ordering by f. And there is another Morse function  $f^*$ :

$$f^*(s) = \begin{cases} f(s), & \text{if } s \neq a, b \\ f(b), & \text{if } s = a \\ f(a), & \text{if } s = b \end{cases}$$

Let's denote  $DP_f^{\min}$  the transitive reduction of the Depth Poset defined by the filtration f. And let's denote  $DP_f^{\min}(s)$  the set of nodes in  $DP_f(s)$  which are pairs containing cell s and the set of edges with these nodes.

**Hypothesis:** if the cell s has no faces and cofaces with a and b, then  $DP_f^{\min}(s) = DP_{f^*}^{\min}(s)$ .

## 2 Model

The probabilistic model is simple. The first we just generate the cloud of n points uniformly distributed in  $[0,1]^d$ . After this we calculate the Alpha complex with these points, and then find its depth poset. Then we itarate all neighbour pairs of simplices and check if their transposition will be possible filtration, calculating the scores for the switch-forward transpositions.

The number of points in the cloud n and the dimension  $d = \dim$  for each generated cloud and coresponding complex are given in the table:

| complex | n  | dim            | simplices |         |    | 1:       | _:1:      |
|---------|----|----------------|-----------|---------|----|----------|-----------|
|         |    |                |           | complex | n  | $\dim$   | simplices |
| 0       | 6  | 2              | 21        | 13      | 12 | 2        | 57        |
| 1       | 6  | 2              | 19        | 14      | 12 | 2        | 53        |
| 2       | 6  | 2              | 21        |         |    |          |           |
| 3       | 6  | 2              | 21        | 15      | 12 | 2        | 55        |
| 4       | 8  | $\overline{2}$ | 35        | 16      | 12 | 2        | 55        |
|         | -  |                |           | 17      | 12 | 2        | 55        |
| 5       | 8  | 2              | 33        | 18      | 16 | 2        | 75        |
| 6       | 8  | 2              | 31        | 19      | 16 | 2        | 81        |
| 7       | 8  | $^{2}$         | 29        |         | 8  | 3        | 73        |
| 8       | 8  | 2              | 33        | 20      | _  | _        |           |
| 9       | 8  | 2              | 33        | 21      | 8  | 3        | 71        |
| _       | 8  | 2              |           | 22      | 8  | 3        | 61        |
| 10      |    |                | 35        | 23      | 8  | 3        | 81        |
| 11      | 8  | 2              | 33        | 24      | 8  | 3        | 53        |
| 12      | 12 | 2              | 55        | 25      | 8  | 3        | 69        |
| 13      | 12 | 2              | 57        |         |    | <u> </u> |           |

### 3 Scores

- jacard\_nodes\_filtration: The Jacard index of node sets from 2 depth posets. The birth-death pairs are equal in terms of filtration values.
- jacard\_nodes\_simplex: The Jacard index of nodes from 2 depth posets. The birth-death pairs are equal in terms of simplices.
- jacard\_edges\_filtration: The Jacard index of edge sets from transitive reductions of 2 depth posets. The birth-death pairs are equal in terms of filtration values.
- jacard\_edges\_simplex: The Jacard index of edge sets from transitive reductions of 2 depth posets. The birth-death pairs are equal in terms of simplices.
- jacard\_l31a: Jacard Index of Succ'(x,b) and  $\{(a,y)\}\cup$ Succ' $(a,b)\cup$  $\{(s,t)\in$ Succ' $(x,y)|f(t)< f(b)\}$
- jacard\_l31b: Jacard Index of Succ'(x,b) and  $\{(s,t) \in \text{Succ'}(x,y) \cup \text{Succ'}(a,b) | f(t) > f(b)\}$

- jacard\_l32a: Jacard Index of Succ"(x,b) and  $\{(a,y)\} \cup$  Succ" $(a,b) \cup$   $\{(s,t) \in$  Succ" $(x,y)|f(a) < f(s) < f(x)\}$
- jacard\_l32b: Jacard Index of Succ"(a, y) and  $\{(s, t) \in Succ"(x, y) \cup Succ"(a, b)|f(s) < f(a)\}$
- jacard\_l33a: Jacard Index of Succ(a, x) and Succ(a, b)
- jacard\_133b: Jacard Index of Succ(b, y) and Succ(x, y)
- jacard\_nn\_nodes: The Jacard index of subsets of nodes (s,t) from 2 depth posets, s.t.  $s,t \notin \nabla \partial \sigma_0 \cup \partial \nabla \sigma_0 \cup \nabla \partial \sigma_1 \cup \partial \nabla \sigma_1$ , where  $\sigma_0$  and  $\sigma_1$  are transposing simplices.
- **jacard\_nn\_edges**: The Jacard index of subsets of edges  $((s_0, t_0), (s_1, t_1))$  from 2 depth posets, s.t.  $s_0, t_0, s_1, t_1 \notin \nabla \partial \sigma_0 \cup \partial \nabla \sigma_0 \cup \nabla \partial \sigma_1 \cup \partial \nabla \sigma_1$ , where  $\sigma_0$  and  $\sigma_1$  are transposing simplices.

### 4 Results

### 4.1 Unexpected results

The Hypothesis problem can be measured by 2 scores with expected values: **jac-ard\_nn\_edges**, **jacard\_nn\_nodes** There are 6 cases, which does not corespond the expectations:

| complex | simplex 0  | simplex 1 | type        | jacard_nn_edges | jacard_nn_nodes | Figure    |
|---------|------------|-----------|-------------|-----------------|-----------------|-----------|
| 7       | [4, 7]     | [0, 4]    | birth-death | 0.75            | 1.00            | Figure ?? |
| 14      | [3, 5, 10] | [1, 3, 5] | death-death | 0.92            | 1.00            | Figure ?? |
| 20      | [2, 5]     | [0, 2]    | birth-birth | 0.00            | 1.00            |           |
| 23      | [4]        | [5]       | birth-birth | 0.75            | 1.00            |           |
| 23      | [2, 3]     | [0, 2]    | death-death | 0.00            | 1.00            |           |
| 24      | [1, 2]     | [0, 7]    | death-death | 0.50            | 1.00            |           |

The Lemma 3.1 problem can be measured by 2 scores with expected values: **jacard\_l31a**, **jacard\_l31b** There are 8 cases, which does not corespond the expectations:

| complex | simplex 0 | simplex 1 | type        | jacard_l31a | jacard_l31b | Figure    |
|---------|-----------|-----------|-------------|-------------|-------------|-----------|
| 2       | [3, 4]    | [0, 4]    | birth-birth | 1.00        | NaN         | Figure ?? |
| 3       | [3]       | [4]       | birth-birth | 1.00        | 0.00        | Figure ?? |
| 7       | [2]       | [3]       | birth-birth | 1.00        | NaN         |           |
| 12      | [3]       | [4]       | birth-birth | 1.00        | 0.00        |           |
| 13      | [10]      | [11]      | birth-birth | 1.00        | NaN         |           |
| 16      | [10]      | [11]      | birth-birth | 1.00        | NaN         |           |
| 17      | [9]       | [10]      | birth-birth | 1.00        | 0.00        |           |
| 19      | [5]       | [6]       | birth-birth | 1.00        | NaN         |           |

.

The Lemma 3.2 problem can be measured by 2 scores with expected values: **jacard\_l32a**, **jacard\_l32b** There are 0 cases, which does not corespond the expectations.

The Lemma 3.3 problem can be measured by 2 scores with expected values: **jacard\_l33a**, **jacard\_l33b** There are 0 cases, which does not corespond the expectations.



Figure 1: The Birth-Birth Transposition of simplices [3, 4] and [0, 4]



Figure 2: The Birth-Birth Transposition of simplices [3] and [4]

### 4.1.1 Complex 7

The switch transposition and unexpected scores are given in the table:

| simplex 0                         | simplex 1                         | type                                                     | $jacard\_nn\_edges$          |
|-----------------------------------|-----------------------------------|----------------------------------------------------------|------------------------------|
| (2)<br>(4, 7)<br>(3, 5)<br>(5, 6) | (3)<br>(0, 4)<br>(5, 7)<br>(6, 7) | birth-birth<br>birth-death<br>birth-death<br>birth-death | 1.00<br>0.75<br>1.00<br>1.00 |
| (6, 7) $(0, 6, 7)$                | (0, 1)<br>(0, 1)<br>(0, 1, 6)     | birth-birth<br>death-death                               | 1.00<br>1.00<br>1.00         |

### 4.1.2 Complex 14



Figure 3: The Birth-Death Transposition of simplices [4, 7] and [0, 4]

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (1)       | (2)       | birth-birth |
| (1, 5)    | (5, 11)   | birth-death |
| (9, 11)   | (6, 9)    | death-death |
| (3, 8)    | (2, 9)    | birth-death |
| (1, 8, 9) | (2, 8, 9) | death-death |

## 4.1.3 Complex 20



Figure 4: The Death-Death Transposition of simplices  $[3,\,5,\,10]$  and  $[1,\,3,\,5]$ 

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (0, 2, 3) | (0, 2, 4) | birth-death |
| (0, 4, 5) | (2, 4, 5) | birth-death |
| (5, 6, 7) | (0, 6, 7) | birth-death |
| (0, 4, 7) | (4, 5, 7) | birth-death |
| (0, 3, 6) | (1, 3, 6) | birth-death |
| (2, 4, 7) | (2, 5, 7) | birth-death |
| (0, 1, 7) | (1, 4, 7) | birth-death |
| (0, 2, 6) | (2, 5, 6) | birth-death |
| (1, 2, 3) | (1, 2, 4) | birth-death |

## 4.1.4 Complex 23



| simplex 0        | simplex 1 | type        |
|------------------|-----------|-------------|
| $\overline{(2)}$ | (3)       | birth-birth |
| (2, 4, 6)        | (1, 2, 6) | death-death |
| (2, 7)           | (0, 7)    | birth-birth |
| (1, 2, 4)        | (1, 4, 6) | birth-death |
| (4, 5, 7)        | (2, 4, 7) | death-death |
| (0, 1, 4)        | (0, 2, 4) | birth-death |
| (1, 4, 5)        | (1, 5, 6) | birth-death |
| (0, 1, 5)        | (0, 4, 5) | birth-death |
| (1, 6, 7)        | (5, 6, 7) | birth-death |
| (3, 4, 5)        | (3, 5, 7) | birth-death |
| (0, 1, 3)        | (1, 2, 3) | birth-death |
| (2, 3, 6)        | (3, 4, 6) | birth-death |

## 4.1.5 Complex 24

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (1)       | (2)       | birth-birth |
| (0, 7)    | (0, 1)    | birth-death |
| (2, 3)    | (1, 3)    | birth-death |
| (0, 1, 3) | (0, 3, 7) | birth-death |
| (3, 4, 6) | (2, 3, 4) | birth-death |
| (3, 5, 6) | (3, 4, 5) | birth-death |

### 4.1.6 Complex 2

The switch transposition and unexpected scores are given in the table:

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (3, 5)    | (1, 5)    | death-death |
| (1, 4)    | (2, 4)    | death-death |
| (2, 4)    | (0, 2)    | birth-death |
| (3, 4)    | (0, 4)    | birth-birth |
| (1, 3, 4) | (0, 2, 4) | death-death |

## 4.1.7 Complex 3

The switch transposition and unexpected scores are given in the table:

| simplex 0 | simplex 1 | type        | jacard_l31b |
|-----------|-----------|-------------|-------------|
| (3)       | (4)       | birth-birth | 0.00        |
| (2, 3)    | (2, 4)    | birth-death | NaN         |
| (0, 4)    | (0, 1)    | birth-death | NaN         |

### 4.1.8 Complex 12

The switch transposition and unexpected scores are given in the table:

| simplex 0 | simplex $1$ | type        | jacard_l31b |
|-----------|-------------|-------------|-------------|
| (1)       | (2)         | birth-birth | 1.00        |
| (3)       | (4)         | birth-birth | 0.00        |
| (0, 8)    | (5, 8)      | death-death | NaN         |
| (9, 10)   | (3, 10)     | death-death | NaN         |
| (1, 3)    | (2, 6)      | birth-death | NaN         |

### 4.1.9 Complex 13

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (10)      | (11)      | birth-birth |



## 4.1.10 Complex 16

The switch transposition and unexpected scores are given in the table:

| simplex 0  | simplex 1 | type        |
|------------|-----------|-------------|
| (10)       | (11)      | birth-birth |
| (9, 11)    | (9, 10)   | birth-death |
| (5, 6)     | (4, 5)    | birth-death |
| (1, 3, 6)  | (3, 6, 8) | death-death |
| (4, 9, 10) | (4, 7, 9) | death-death |

### 4.1.11 Complex 17

| simplex 0 | simplex 1 | type        | jacard_l31b |
|-----------|-----------|-------------|-------------|
| (3)       | (4)       | birth-birth | 1.00        |
| (9)       | (10)      | birth-birth | 0.00        |
| (3, 9)    | (5, 7)    | death-death | NaN         |
| (8, 11)   | (1, 8)    | death-death | NaN         |
| (1, 8)    | (1, 11)   | birth-death | NaN         |



# 4.1.12 Complex 19

| simplex 0 | simplex 1 | type        |
|-----------|-----------|-------------|
| (5)       | (6)       | birth-birth |
| (7)       | (8)       | birth-birth |
| (9)       | (10)      | birth-birth |
| (0, 3)    | (3, 4)    | birth-death |
| (2, 9)    | (2, 10)   | birth-death |
| (2, 4)    | (2, 13)   | birth-death |

