Advanced mixed-models workshop: Session 6

Dale Barr

University of Glasgow

Bremen March 2015

Determining Maximal Random Effects

Barr, Levy, Scheepers, & Tily (2013); Barr (2013)

- Random intercept is needed whenever there are multiple observations per unit
- Any within-unit factor gets a random slope, unless there is only one observation per level per unit
- Between-unit factors do not get a random slope
- For each interaction, include a slope for the highest order combination of within-subject factors subsumed by the interaction
- For time-series data, include random slopes for time predictors if you have more than one time series per unit

Audience design in language production

Gann & Barr (2014), Language, Cognition, & Neuroscience

- How do we explain referential misspecification?
- Retrieval of past descriptions from memory is an obligatory consequence of attending to a referent with a referential goal in mind
 - Instance Theory of Automaticity (Logan, 1988)
- Retrieved descriptions checked against context for adequacy, and re-shaped if necessary

Design

Test

(5) "acoustic guitar"

(5) "[acoustic?] guitar"

- Addressee: New or Old (Between)
- Novelty (of referent): New or Old
- Feedback: Yes or No

- 16 dyads (1 spkr, 1 addr)
- 16 triads (1 spkr, 2 addr)

Experimental Items

Target	Competitor	Modal response Unmelted candle	
Candle	(Not melted) candle		
Key	(Old-fashioned) key	Modern/new/gold key	
Knife	(Swiss Army) knife	Knife with the brown/wooden handle	
Trash can	(Metal) trash can	Plastic/white trash can	
Spoon	(Large slotted) spoon	Small spoon	
Guitar	(Electric) guitar	Acoustic guitar	
Carrot	(Cartoon) carrot	Little/real carrot	
Gorilla	(Young/brown) gorilla	Black gorilla	
Gun	(Toy) gun	Real gun	
Leaf	(Dark green three pointed) leaf	Dark green leaf	
Rose	(Wilted; stem not visible) rose	Rose with a stem	
Marker	Marker (with cap off)	Marker with a cap	
Screwdriver	Screwdriver (with black on handle)	Screwdriver, all red handle	
Backpack	(Blue) backpack	Purple backpack	
Clamp	(Open) clamp	Closed clamp	

Before doing analysis: look at your data

```
library(lme4)

crefs <- readRDS("crefs.rds")
head(crefs, 3)

crefs_mit <- subset(crefs, ModInTrain)

with(crefs_mit, aggregate(Modifier ~ Novelty+Addressee+Feedback, FUN=mean))</pre>
```

```
SessionID ItemID RespID Novelty Addressee Feedback ModInTrain Modifier
                                                                SOT
1
       56
              2 6314
                          New
                                   New
                                           Nο
                                                   TRUE
                                                              0 1462
2
       56
              3 6319 New New
                                           No
                                                   TRUE
                                                              0 1126
       56
              7 6315 Old New
                                           Nο
                                                   TRUE
                                                              1 1695
 Novelty Addressee Feedback Modifier
     New
             New
                      No 0.10526316
2
     01d
             New No 0.61224490
3
     New
             Old No 0.08771930
     01d
             01d
                   No 0.75510204
5
     New
             New
                 Yes 0.06779661
6
     01d
             New
                 Yes 0.62500000
7
             D1d
     New
                 Yes 0.06896552
8
             D1d
                     Yes 0.76000000
     01d
```

Plot cell means

Specifying the random effects

	Subjects	ltems
Addressee	Between	Within
Novelty	Within	Within
Feedback	Within	Between

```
xtabs(~Addressee+SessionID, crefs)
xtabs(~Addressee+ItemID, crefs)
```

```
SessionID
```

Addressee 84 85 89 90 91 92 95 96 97 New 15 15 0 15 15 0 0 15 15 0 0

ItemID

Creating predictor variables

```
crefs_mit2 <- transform(crefs_mit, N=ifelse(Novelty=="New",1,0),</pre>
                     A=ifelse(Addressee=="New",1,0),
                     F=ifelse(Feedback=="Yes",1,0))
crefs_mit2c <- transform(crefs_mit2,</pre>
                      Nc=N-mean(N).
                       Ac=A-mean(A),
                      Fc=F-mean(F))
head(crefs_mit2c)
```

```
SessionID ItemID RespID Novelty Addressee Feedback ModInTrain Modifier
                                                                           SOT N
         56
                     6314
                                                             TRUE
                              New
                                         New
                                                   Nο
                                                                         0 1462 1
2
         56
                     6319
                              New
                                         New
                                                             TRUE
                                                                         0 1126 1
                                                   No
3
         56
                     6315
                              01d
                                         New
                                                   No
                                                             TRUE
                                                                         1 1695 0
                              01d
         56
                 8 6318
                                         New
                                                   Nο
                                                             TRUE
                                                                         1 1137 0
5
         56
                13 6382
                              New
                                         New
                                                                            986 1
                                                   No
                                                             TRUE
6
         56
                12
                                                                            928 1
                     6384
                              New
                                         New
                                                   Nο
                                                             TRUE
  AF
              Nс
                        Αc
                                    Fα
 1 0
       0.4530892 0.5057208 -0.4988558
 1 0
       0.4530892 0.5057208 -0.4988558
 1 0 -0.5469108 0.5057208 -0.4988558
 1 0 -0.5469108 0.5057208 -0.4988558
5 1 0 0.4530892 0.5057208 -0.4988558
       0.4530892 0.5057208 -0.4988558
```

Specifying the model

Our model:
$$\log\left(\frac{\rho_{ij}}{1-\rho_{ij}}\right) = \beta_0 + \beta_1 A + \beta_2 N + \beta_3 F + \beta_4 A N + \beta_5 A F + \beta_6 N F + \beta_7 A N F$$

$$eta_0 = \gamma_0 + S_{0\,i} + I_{0\,j}$$
 $(A)\beta_1 = \gamma_1 + I_{1\,j}$
 $(N)\beta_2 = \gamma_2 + S_{2\,i} + I_{2\,j}$
 $(F)\beta_3 = \gamma_3 + S_{3\,i}$
 $(AN)\beta_4 = \gamma_4 + I_{4\,j}$
 $(AF)\beta_5 = \gamma_5$
 $(NF)\beta_6 = \gamma_6 + S_{6\,i}$
 $(ANF)\beta_7 = \gamma_7$

	Subjects	Items
Addressee	Between	Within
Novelty	Within	Within
Feedback	Within	Between

Fitting the model

```
: Warning messages:
: 1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
: Model failed to converge with max|grad| = 0.01537 (tol = 0.001, component 20)
: 2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
: Model is nearly unidentifiable: very large eigenvalue
: - Rescale variables?; Model is nearly unidentifiable: large eigenvalue ratio
: - Rescale variables?
```

Diagonal model (covariance parameters fixed to zero)

Diagonal model (output)

```
Random effects:
               Variance Std.Dev.
Groups Name
SessionID (Intercept) 6.566e-01 8.103e-01
SessionID.1 Nc 1.132e+00 1.064e+00
SessionID.2 Fc 0.000e+00 0.000e+00
SessionID.3 Nc:Fc 4.297e-15 6.555e-08
ItemID (Intercept) 1.026e+00 1.013e+00
ItemID.1 Ac 1.580e-01 3.975e-01
ItemID.2 Nc 1.216e+00 1.103e+00
ItemID.3 Ac:Nc 0.000e+00 0.000e+00
Number of obs: 427, groups: SessionID, 32; ItemID, 16
Fixed effects:
         Estimate Std. Error z value Pr(>|z|)
Ac -0.29116 0.46433 -0.627 0.53063
Nc
        -4.32096 0.61720 -7.001 2.54e-12 ***
Fc -0.38034 0.62448 -0.609 0.54249
Ac: Nc 1.05604 0.78602 1.344 0.17910
Ac:Fc -0.07195 0.71227 -0.101 0.91954
Nc:Fc -0.32425 0.89398 -0.363 0.71683
Ac: Nc: Fc -0.53686
                  1.33216 -0.403 0.68695
```

Clean up the random effects

 get rid of REPs estimated to be zero because we're using model comparison, and those could slow down the estimation procedure

```
m3 <- glmer(Modifier ~ Ac*Nc*Fc +

(1 | SessionID) +

(0 + Nc | SessionID) +

(1 | ItemID) +

(0 + Ac | ItemID) +

(0 + Nc | ItemID),

crefs_mit2c, family=binomial(link="logit"),
control=glmerControl(optimizer="bobyqa")) # converges
```

Perform tests using model comparison

```
m3_noA <- update(m3, . ~ . - Ac)
m3_noN <- update(m3, . ~ . - Nc)
m3_noF <- update(m3, . ~ . - Fc)
m3_noAN <- update(m3, . ~ . - Ac:Nc)
m3_noAF <- update(m3, . ~ . - Ac:Fc)
m3_noNF <- update(m3, . ~ . - Nc:Fc)
m3_noANF <- update(m3, . ~ . - Ac:Nc:Fc)
anova(m3, m3 noA)
anova(m3, m3_noN)
anova(m3, m3_noF)
anova(m3, m3_noAN)
anova(m3, m3_noAF)
anova(m3, m3 noNF)
anova(m3, m3_noANF)
```

	Chisq	Df	р
Α	.382	1	.537
N	32.693	1	<.001
F	.372	1	.542
ΑN	1.843	1	.175
ΑF	.010	1	.920
NF	.131	1	.717
ANF	.162	1	.687

Implications

- Little evidence that the speaker took partner's perspective into account
 - ▶ Use of modifier driven by listener's own experience
- Supports idea that modifier use is (at least partly) based on memory retrieval

Final thoughts

- When performing (reviewing) analyses, it is of utmost importance to ensure random effects are appropriately specified
- Random-intercept-only models are rarely appropriate
- Use design-driven rather than data-driven random effects
- Development of 1me4 is rapid, and there are many "tricks of the trade"; tune into blogs, mailing lists, and social media to keep up
- Don't give up! It will make sense... at some point...