VERIWAVE WF1101

TEST REPORT A

FCC ID: YATA001Y10

IC: 8936A-A001Y10

2.400-2.4835 MHz 5.725-5.875 GHz Veriwave, Inc.

.

8770 S.W. Nimbus Ave.

Beaverton, OR 97008

Contents

0.1	Introd	uction
0.2	Test E	Equipment
0.3	Averag	ge Power
	0.3.1	Specification
	0.3.2	Measurement Procedure
0.4	Peak I	Power
	0.4.1	Specification
	0.4.2	Measurement Procedure
0.5	Occup	ied Bandwidth, 6dB Threshold
	0.5.1	Specification
	0.5.2	Measurement Procedure
0.6	Power	Spectral Density
	0.6.1	Specification
	0.6.2	Measurement Procedure
0.7	Condu	acted Spurious Emissions
	0.7.1	Specification
	0.7.2	Band Edge
	0.7.3	Wideband
0.8	Freque	ency Accuracy
	0.8.1	Introduction
	0.8.2	Measurement Procedure - Temperature 59
	0.8.3	Measurement Procedure - Supply Variation 61
0.9	Radiat	ted Measurements

0.1 Introduction

A summary of the measurements made of the VeriWave WF1101 to support application for FCC ID YATA001Y10 and IC ID 8936A-A001Y10 .

All testing in this document was performed April 15 through 23, 2010 at VeriWave for unit with controller serial number 00-13-E9-1D-00-E3 and radio serial number M33142-001-0007 .

0.2 Test Equipment

Manufacturer	Model	Description	Next Cal Date	
Agilent	E4445A	Spectrum Analyzer	10 Aug 10	
		3Hz-13.2GHz		
Agilent	E4405B	Spectrum Analyzer	26 Feb 11	
		9kHz-13.2GHz		
Agilent	E4418B	Power Meter	10 Aug 10	
Agilent	E4412A	Power Sensor	10 Aug 10	
Cisco	AIR-RM1252G-A-K9	802.11a Access Point	N/A	
	FCC ID: LDK102061			
Tenney	T10C	Temperature Chamber	N/A	
Watlow	942	Temperature Controller	N/A	
Partlow	MRC5000	Chart Recorder	17 Jun 10	
Fluke	177	Multimeter	24 Sep 10	
Technipower	Variac	W20MT3A	N/A	

Table 1: Equipment List

0.3 Average Power

0.3.1 Specification

 $15.247~(\mathrm{b})$ (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Specification is +30 dBm.

0.3.2 Measurement Procedure

Measurements performed Apr 15 2010.

The unit is connected to the power meter. Testing was performed with the radio in continuous transmit mode. Power out is read from the power meter and compensated for system loss.

Freq (MHz)	Operating Mode	Data Rate	Power (dBm)	Limit	Margin
2412.0	20MHz DSSS	1	19.0	30.0	11.0
2437.0	20MHz DSSS	1	19.3	30.0	10.7
2462.0	20MHz DSSS	1	18.2	30.0	11.8
2412.0	20MHz CCK	11	18.3	30.0	11.7
2437.0	20MHz CCK	11	18.6	30.0	11.4
2462.0	20MHz CCK	11	17.5	30.0	12.5
2412.0	20MHz OFDM	54	17.5	30.0	12.5
2437.0	20MHz OFDM	54	17.9	30.0	12.1
2462.0	20MHz OFDM	54	16.8	30.0	13.2
2412.0	40MHz M7	M7	14.9	30.0	15.1
2437.0	40MHz M7	M7	15.3	30.0	14.7
2462.0	40MHz M7	M7	15.2	30.0	14.8
2412.0	40MHz M7	M7	14.7	30.0	15.3
2437.0	40MHz M7	M7	15.0	30.0	15.0
2462.0	40MHz M7	M7	15.0	30.0	15.0
5745.0	20MHz OFDM	54	17.2	30.0	12.8
5785.0	20MHz OFDM	54	17.6	30.0	12.4
5825.0	20MHz OFDM	54	17.7	30.0	12.3
5745.0	40MHz M7	M7	16.7	30.0	13.3
5785.0	40MHz M7	M7	17.2	30.0	12.8
5825.0	40MHz M7	M7	17.3	30.0	12.7
5745.0	40MHz M7	M7	16.6	30.0	13.4
5785.0	40MHz M7	M7	17.0	30.0	13.0
5825.0	40MHz M7	M7	17.1	30.0	12.9

Table 2: Output Power

0.4 Peak Power

0.4.1 Specification

15.247 (b) (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

0.4.2 Measurement Procedure

Reference ANSI C63.10-2009 6.10.3.1

Measurements performed Apr 15 2010.

Testing was performed with the radio in continuous transmit mode.

- 1. Ref Level Offset = DUT/Spectrum Analyzer path loss
- 2. Detector \leftarrow Peak
- 3. Enable Spectrum Analyzer "Channel Power Measurement mode"
- 4. Ref Level $\leftarrow +20 \text{dBm}$
- 5. $x dB \leftarrow 6dB$
- 6. RBW \leftarrow 1MHz
- 7. VBW \leftarrow 3MHz
- 8. Sweep Time \leftarrow AUTO
- 9. Query "Channel Power Measurement mode" for measurement result

Freq (MHz)	Operating Mode	Data Rate	Power (dBm)
2412.0	20MHz DSSS	1	17.7
2437.0	20MHz DSSS	1	17.8
2462.0	20MHz DSSS	1	16.8
2412.0	20MHz CCK	11	17.3
2437.0	20MHz CCK	11	17.5
2462.0	20MHz CCK	11	16.4
2412.0	20MHz OFDM	54	15.7
2437.0	20MHz OFDM	54	15.9
2462.0	20MHz OFDM	54	14.9
2412.0	40MHz M7	M7	12.9
2437.0	40MHz M7	M7	13.3
2462.0	40MHz M7	M7	13.3
2412.0	40MHz M7	M7	12.8
2437.0	40MHz M7	M7	13.1
2462.0	40MHz M7	M7	13.1
5745.0	20MHz OFDM	54	15.3
5785.0	20MHz OFDM	54	15.7
5825.0	20MHz OFDM	54	15.8
5745.0	40MHz M7	M7	14.9
5785.0	40MHz M7	M7	15.3
5825.0	40MHz M7	M7	15.5
5745.0	40MHz M7	M7	14.8
5785.0	40MHz M7	M7	15.2
5825.0	40MHz M7	M7	15.3

Table 3: Output Power

2412 20MHz DSSS

0.5 Occupied Bandwidth, 6dB Threshold

Occupied Bandwidth Measurement where the bandwidth is defined by a 6dB reduction in the spectrum relative to the peak power.

0.5.1 Specification

15.247 (2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

0.5.2 Measurement Procedure

Reference ANSI C63.10-2009 6.9

Measurements performed Apr 15 2010.

Testing was performed with the radio in continuous transmit mode.

- 1. Ref Level Offset = DUT/Spectrum Analyzer path loss
- 2. Detector \leftarrow Peak
- 3. Enable Spectrum Analyzer "Occupied Bandwidth Measurement mode"
- 4. Ref Level $\leftarrow +20 \text{dBm}$
- 5. $x dB \leftarrow 6dB$
- 6. RBW $\leftarrow 100 \text{kHz}$
- 7. VBW \leftarrow 300kHz
- 8. Sweep Time \leftarrow 1s
- 9. Query "Occupied Bandwidth Measurement mode" for x dB bandwidth

Freq (MHz)	Operating Mode	Data Rate	6dB BW (MHz)	Limit	Margin
2412.0	20MHz DSSS	1	12.1	0.5	11.6
2437.0	20MHz DSSS	1	12.1	0.5	11.6
2462.0	20MHz DSSS	1	12.0	0.5	11.5
2412.0	20MHz CCK	11	11.9	0.5	11.4
2437.0	20MHz CCK	11	12.1	0.5	11.6
2462.0	20MHz CCK	11	12.0	0.5	11.5
2412.0	20MHz OFDM	54	16.5	0.5	16.0
2437.0	20MHz OFDM	54	16.5	0.5	16.0
2462.0	20MHz OFDM	54	16.5	0.5	16.0
2412.0	40MHz M7	M7	17.8	0.5	17.3
2437.0	40MHz M7	M7	17.8	0.5	17.3
2462.0	40MHz M7	M7	17.8	0.5	17.3
2412.0	40MHz M7	M7	36.6	0.5	36.1
2437.0	40MHz M7	M7	36.6	0.5	36.1
2462.0	40MHz M7	M7	36.5	0.5	36.0
5745.0	20MHz OFDM	54	16.6	0.5	16.1
5785.0	20MHz OFDM	54	16.5	0.5	16.0
5825.0	20MHz OFDM	54	16.6	0.5	16.1
5745.0	40MHz M7	M7	17.8	0.5	17.3
5785.0	40MHz M7	M7	17.8	0.5	17.3
5825.0	40MHz M7	M7	17.8	0.5	17.3
5745.0	40MHz M7	M7	36.5	0.5	36.0
5785.0	40MHz M7	M7	36.6	0.5	36.1
5825.0	40MHz M7	M7	36.5	0.5	36.0

Table 4: Occupied Bandwidth 6dB

 $2412\ 20\mathrm{MHz}\ \mathrm{DSSS}$

0.6 Power Spectral Density

0.6.1 Specification

15.247 (iv) (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

0.6.2 Measurement Procedure

Reference ANSI C63.10-2009 6.11.2.4

Measurements performed May 14 2010.

Testing was performed with the radio in continuous transmit mode.

- 1. Ref Level Offset = DUT/Spectrum Analyzer path loss
- 2. Detector \leftarrow Peak
- 3. Ref Level $\leftarrow +20 \text{dBm}$
- 4. RBW \leftarrow 3kHz
- 5. VBW $\leftarrow 10 \text{kHz}$
- 6. Averaging \leftarrow Power
- 7. Number of averages $\leftarrow 100$
- 8. Sweep Time \leftarrow AUTO
- 9. Marker $1 \rightarrow \text{Peak Trace } 1$

Freq (MHz)	Operating Mode	Data Rate	PSD (dBm/3 kHz)	Limit	Margin
2412.0	20MHz DSSS	1	-9.2	8.0	17.2
2437.0	20MHz DSSS	1	-9.3	8.0	17.3
2462.0	20MHz DSSS	1	-10.2	8.0	18.2
2412.0	20MHz CCK	11	-8.9	8.0	16.9
2437.0	20MHz CCK	11	-8.9	8.0	16.9
2462.0	20MHz CCK	11	-10.1	8.0	18.1
2412.0	20MHz OFDM	54	-10.8	8.0	18.8
2437.0	20MHz OFDM	54	-10.8	8.0	18.8
2462.0	20MHz OFDM	54	-12.2	8.0	20.2
2412.0	40MHz M7	M7	-13.4	8.0	21.4
2437.0	40MHz M7	M7	-13.4	8.0	21.4
2462.0	40MHz M7	M7	-12.9	8.0	20.9
2412.0	40MHz M7	M7	-13.2	8.0	21.2
2437.0	40MHz M7	M7	-12.7	8.0	20.7
2462.0	40MHz M7	M7	-12.7	8.0	20.7
5745.0	20MHz OFDM	54	-11.3	8.0	19.3
5785.0	20MHz OFDM	54	-10.9	8.0	18.9
5825.0	20MHz OFDM	54	-10.7	8.0	18.7
5745.0	40MHz M7	M7	-11.3	8.0	19.3
5785.0	40MHz M7	M7	-11.0	8.0	19.0
5825.0	40MHz M7	M7	-10.9	8.0	18.9
5745.0	40MHz M7	M7	-11.2	8.0	19.2
5785.0	40MHz M7	M7	-10.9	8.0	18.9
5825.0	40MHz M7	M7	-10.8	8.0	18.8

Table 5: Power Spectral Density

2412 20MHz DSSS

0.7 Conducted Spurious Emissions

0.7.1 Specification

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

0.7.2 Band Edge

Measurement Procedure

Reference ANSI C63.10-2009 6.9

Measurements performed May 17 2010.

The start/stop frequency for each measurement is set to allow measurement of the signal and band edge of interest.

- 1. $detector \leftarrow PEAK$
- 2. RBW \leftarrow 3kHz
- 3. VBW $\leftarrow 10 \text{kHz}$
- 4. SWEEP TIME \leftarrow AUTO
- 5. REF LEVEL $\leftarrow 20.0$
- 6. MARKER $1 \leftarrow PEAK LEVEL$
- 7. READ TRACE DATA AND DETERMINE PEAK OUT-OF-BAND LEVEL
- 8. MARKER $2 \leftarrow PEAK OUT-OF-BAND LEVEL$

For each measurement the trace is examined for the peak power value. The peak *out of band* value is then found. The difference between the two is the measurement of interest.

Freq (MHz)	Operating Mode	Data Rate	Spurious - Bandedge (dB)	Limit	Margin
2412.0	20MHz DSSS	1	-46.3	-20.0	26.3
2462.0	20MHz DSSS	1	-52.0	-20.0	32.0
2412.0	20MHz CCK	11	-47.2	-20.0	27.2
2462.0	20MHz CCK	11	-54.9	-20.0	34.9
2412.0	20MHz OFDM	54	-34.7	-20.0	14.7
2462.0	20MHz OFDM	54	-50.1	-20.0	30.1
2412.0	40MHz M7	M7	-36.6	-20.0	16.6
2462.0	40MHz M7	M7	-49.8	-20.0	29.8
2412.0	40MHz M7	M7	-36.8	-20.0	16.8
2462.0	40MHz M7	M7	-42.3	-20.0	22.3
5745.0	20MHz OFDM	54	-56.0	-20.0	36.0
5825.0	20MHz OFDM	54	-55.4	-20.0	35.4
5745.0	40MHz M7	M7	-56.5	-20.0	36.5
5825.0	40MHz M7	M7	-55.6	-20.0	35.6
5745.0	40MHz M7	M7	-52.5	-20.0	32.5
5825.0	40MHz M7	M7	-52.6	-20.0	32.6

Table 6: Spurious Bandedge

 $2462~20\mathrm{MHz}~\mathrm{DSSS}$

0.7.3 Wideband

Measurement Procedure

Measurements performed Apr 16 2010.

- 1. Ref Level Offset = DUT/Spectrum Analyzer path loss
- 2. detector \leftarrow PEAK
- 3. RBW \leftarrow 100kHz
- 4. VBW \leftarrow 300kHz
- 5. Frequency Start/Stop 30 MHz 13.2 GHz
- 6. SWEEP TIME \leftarrow 10.0s
- 7. REF LEVEL \leftarrow 10.0

0.8 Frequency Accuracy

0.8.1 Introduction

- 2.1055 Measurements required: Frequency stability.
- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From -30 to +50 centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

All testing in this document was performed May 18, 2010 at Cascade Tek for unit with controller serial number 00-13-E9-1D-00-E3 and radio serial number $\rm M33142\text{-}001\text{-}0007$.

The nominal supply voltage to the unit is 120V.

0.8.2 Measurement Procedure - Temperature

The carrier can be observed during OFDM transmit operation if the span is narrow enough. The marker count function can is then used to measure the accuracy of the carrier, which represents the frequency accuracy over all modes of operation.

Dwell time per temperature setting is at least 25 minutes.

- 1. Detector \leftarrow Normal
- 2. Ref Level $\leftarrow +20 \text{dBm}$
- 3. Span \leftarrow 50kHz
- 4. RBW \leftarrow AUTO
- 5. VBW \leftarrow AUTO
- 6. Sweep Time \leftarrow AUTO
- 7. Marker Function \leftarrow COUNT

The marker peak function is used to find the frequency of the carrier.

Freq	Measured	Freq Error	Freq Error
MHz	Hz	$_{ m Hz}$	ppm
Temp	= -30.0 C		
2412	2412001584	1584	0.66
2462	2462001535	1535	0.62
5180	5180003211	3211	0.62
5700	5700003601	3601	0.63
5825	5825003675	3675	0.63
Temp	= -20.0 C		
2412	2412001525	1525	0.63
2462	2462001482	1482	0.6
5180	5180003112	3112	0.6
5700	5700003415	3415	0.6
5825	5825003491	3491	0.6
Temp	= -10.0 C		
2412	2412000908	908	0.38
2462	2462000880	880	0.36
5180	5180001935	1935	0.37
5700	5700002360	2360	0.41
5825	5825002519	2519	0.43
Temp	= 0.0 C		
2412	2412000776	776	0.32
2462	2462000736	736	0.3
5180	5180001596	1596	0.31
5700	5700001867	1867	0.33
5825	5825002029	2029	0.35
Temp	= 10.0 C		
2412	2412001037	1037	0.43
2462	2462001044	1044	0.42
5180	5180002338	2338	0.45
5700	5700002778	2778	0.49
5825	5825002961	2961	0.51

Freq	Measured	Freq Error	Freq Error	
MHz	$_{ m Hz}$	Hz	ppm	
Temp	= Room Tem	p		
2412	2412000485	485	0.2	
2462	2462000422	422	0.17	
5180	5180000937	937	0.18	
5700	5700000715	715	0.13	
5825	5825001103	1103	0.19	
Temp	= 30 C			
2412	2412000509	509	0.21	
2462	2462000247	247	0.1	
5180	5180001111	1111	0.21	
5700	5700001043	1043	0.18	
5825	5825000679	679	0.12	
Temp = 40 C				
2412	2411999611	-389	-0.16	
2462	2461999513	-487	-0.2	
5180	5179998974	-1026	-0.2	
5700	5699998928	-1072	-0.19	
5825	5824998899	-1101	-0.19	
Temp	$=50~\mathrm{C}$			
2412	2411999030	-970	-0.4	
2462	2461998937	-1063	-0.43	
5180	5179997773	-2227	-0.43	
5700	5699997601	-2399	-0.42	
5825	5824997527	-2473	-0.42	

0.8.3 Measurement Procedure - Supply Variation

2.1055

- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Using a variac to vary the supply voltage, set the voltage to -15% and +15% of nominal (120V). The actual supply voltage is verified with a multimeter.

The frequency measurement is then made in the same manner as for temperature testing.

Freq	Measured	Freq Error	Freq Error	
MHz	$_{ m Hz}$	$_{ m Hz}$	ppm	
Supply	y = Nominal +	15% (102V)		
2412	2412001084	1084	0.45	
2462	2462000835	835	0.34	
5180	5180001920	1920	0.37	
5700	5700001808	1808	0.32	
5825	5825002162	2162	0.37	
Supply = Nominal-15% (138V)				
2412	2412000860	860	0.36	
2462	2462000992	992	0.4	
5180	5180001751	1751	0.34	
5700	5700002141	2141	0.38	
5825	5825002274	2274	0.39	

0.9 Radiated Measurements

The following measurements were completed at the facilities of NWEMC.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	13
Attenuator	Weinschel Corp.	54A-20	RBL	10/9/2009	13
40GHz DC Block	Miteq	DCB4000	AMD	8/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

Serial Number			Work Order: VERW003 Date: 04/01/10	8
Customer Attendees	: Veriwave, Inc. : none		Temperature: 22°C Humidity: 38%	
Tested by	t: None : Rod Peloquin	Power: 120VAC/60Hz	Barometric Pres.: 30.05 Job Site: EV01	
ST SPECIFICATED CC 15.247:2010	TIONS	Test Method ANSI C63.10:2009		
OMMENTS				
	ting done at MCS0			
EVIATIONS FRO	M TEST STANDARD			
onfiguration #	2 Rockey	Le Reling		
	Signature			
02.11(b) 1 Mbps		Value	Limit	Result
	Low Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	Mid Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
02.11(b) 11 Mbps	High Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
JZ.TT(D) TT WIDPS	Low Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	Mid Channel 12.5 GHz - 25 GHz	<-40 dBc	= -20 dBc	Pass
	High Channel 12.5 GHz - 25 GHz	<-40 dBc	= -20 dBc	Pass
02.11(g) 6 Mbps	Low Channel			
	12.5 GHz - 25 GHz Mid Channel	< -40 dBc	= -20 dBc	Pass
	12.5 GHz - 25 GHz High Channel	< -40 dBc	= -20 dBc	Pass
02.11(g) 36 Mbps	12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	Low Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	Mid Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	High Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
02.11(g) 54 Mbps	Low Channel			
	12.5 GHz - 25 GHz Mid Channel	< -40 dBc	= -20 dBc	Pass
	12.5 GHz - 25 GHz High Channel	< -40 dBc	= -20 dBc	Pass
02.11(n), 2.4 20M	12.5 GHz - 25 GHz Hz, 15 dBm	< -40 dBc	= -20 dBc	Pass
	Low Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
	Mid Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
00.11(=) 0.4.40M	High Channel 12.5 GHz - 25 GHz	< -40 dBc	= -20 dBc	Pass
02.11(n), 2.4 40M	Mid Channel	40 dD-	00 dD-	D
02.11(a) 6 Mbps	12.5 GHz - 25 GHz Low Channel	< -40 dBc	= -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
	31 GHz - 40 GHz Mid Channel	< -30 dBc	= -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
	31 GHz - 40 GHz High Channel	< -30 dBc	= -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
02.11(a) 36 Mbps	31 GHz - 40 GHz	< -30 dBc	= -20 dBc	Pass
(a)	Low Channel 12.5 GHz - 26.5 GHz	< -40 dBc	= -20 dBc	Pass
	26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass Pass
	Mid Channel 12.5 GHz - 26.5 GHz	< -40 dBc	= -20 dBc	Pass
	26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass Pass
	High Channel 12.5 GHz - 26.5 GHz	< -40 dBc	= -20 dBc	Pass
	26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass Pass
02.11(a) 54 Mbps	Low Channel			
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
	31 GHz - 40 GHz Mid Channel	< -30 dBc	= -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
	31 GHz - 40 GHz High Channel	< -30 dBc	= -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
02.11(n), 5GHz 20		<-30 dBc	= -20 dBc	Pass
	Low Channel 12.5 GHz - 26.5 GHz	< -40 dBc	= -20 dBc	Pass
	26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass Pass
	Mid Channel 12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass
	31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass Pass
	High Channel 12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz	< -40 dBc < -40 dBc	= -20 dBc = -20 dBc	Pass Pass
02.11(n), 5GHz 40	31 GHz - 40 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass
oz.11(11), 5GHZ 41	Low Channel 12.5 GHz - 26.5 GHz	< -40 dBc	= -20 dBc	Pass
	26.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -40 dBc < -30 dBc	= -20 dBc = -20 dBc = -20 dBc	Pass Pass Pass
	Mid Channel 12.5 GHz - 26.5 GHz	<-30 dBc	= -20 dBc = -20 dBc	Pass
	12.5 GHz - 26.5 GHz 26.5 GHz - 31 GHz 31 GHz - 40 GHz	< -40 dBc < -40 dBc < -30 dBc	= -20 dBc = -20 dBc = -20 dBc	Pass Pass Pass
	High Channel 12.5 GHz - 26.5 GHz	< -30 dBc	= -20 dBc = -20 dBc	Pass
	26.5 GHz - 21 GHz	< -40 dBc < -30 dBc	= -20 dBc = -20 dBc	Pass

802.11(b) 1 Mbps, Low Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(b) 1 Mbps, High Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(b) 11 Mbps, Mid Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(b) 11 Mbps, High Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(g) 6 Mbps, Low Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(g) 6 Mbps, Mid Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(g) 6 Mbps, High Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(g) 36 Mbps, Low Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(g) 36 Mbps, Mid Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(g) 54 Mbps, Low Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(g) 54 Mbps, Mid Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(g) 54 Mbps, High Channel, 12.5 GHz - 25 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(n), 2.4 20MHz, Low Channel, 12.5 GHz - 25 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 2.4 20MHz, Mid Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 2.4 20MHz, High Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 2.4 40MHz, Mid Channel, 12.5 GHz - 25 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(a) 6 Mbps, Low Channel, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(a) 6 Mbps, Low Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 6 Mbps, Low Channel, 31 GHz - 40 GHz

Result: Pass

Value: < -30 dBc

Limit: = -20 dBc

802.11(a) 6 Mbps, Mid Channel, 12.5 GHz - 26.5 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 6 Mbps, Mid Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 6 Mbps, Mid Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(a) 6 Mbps, High Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

Result: Pass Value: < -30 dBc Limit: = -20 dBc

802.11(a) 36 Mbps, Low Channel, 12.5 GHz - 26.5 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, Low Channel, 26.5 GHz - 31 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(a) 36 Mbps, Low Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, Mid Channel, 12.5 GHz - 26.5 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(a) 36 Mbps, Mid Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, Mid Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, High Channel, 12.5 GHz - 26.5 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, High Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 36 Mbps, High Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

802.11(a) 54 Mbps, Low Channel, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(a) 54 Mbps, Low Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 54 Mbps, Low Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

802.11(a) 54 Mbps, Mid Channel, 12.5 GHz - 26.5 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

802.11(a) 54 Mbps, Mid Channel, 31 GHz - 40 GHz **Result:** Pass **Value:** < -30 dBc **Limit:** = -20 dBc

802.11(a) 54 Mbps, High Channel, 12.5 GHz - 26.5 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(a) 54 Mbps, High Channel, 26.5 GHz - 31 GHz **Result:** Pass **Value:** < -40 dBc **Limit:** = -20 dBc

Result: Pass Value: < -30 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Low Channel, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Low Channel, 26.5 GHz - 31 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Low Channel, 31 GHz - 40 GHz

Result: Pass

Value: < -30 dBc

Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Mid Channel, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Mid Channel, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, Mid Channel, 31 GHz - 40 GHz

Result: Pass Value: < -30 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, High Channel, 12.5 GHz - 26.5 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 5GHz 20MHz, High Channel, 26.5 GHz - 31 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 5GHz 20MHz, High Channel, 31 GHz - 40 GHz

Result: Pass

Value: < -30 dBc

Limit: = -20 dBc

802.11(n), 5GHz 40MHz, Low Channel, 12.5 GHz - 26.5 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 5GHz 40MHz, Low Channel, 26.5 GHz - 31 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

Result: Pass Value: < -30 dBc Limit: = -20 dBc

802.11(n), 5GHz 40MHz, Mid Channel, 12.5 GHz - 26.5 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 5GHz 40MHz, Mid Channel, 26.5 GHz - 31 GHz

Result: Pass Value: < -40 dBc Limit: = -20 dBc

802.11(n), 5GHz 40MHz, Mid Channel, 31 GHz - 40 GHz

Result: Pass

Value: < -30 dBc

Limit: = -20 dBc

802.11(n), 5GHz 40MHz, High Channel, 12.5 GHz - 26.5 GHz

Result: Pass

Value: < -40 dBc

Limit: = -20 dBc

802.11(n), 5GHz 40MHz, High Channel, 26.5 GHz - 31 GHz

Result: Pass Value: < -30 dBc Limit: = -20 dBc

Result: Pass Value: < -40 dBc Limit: = -20 dBc

MODES OF OPERATION

Transmitting 802.11(b/g), 2.4 GHz, 17 dBm

Transmitting 802.11(n), 2.4 GHz, 20MHz, 14 dBm

Transmitting 802.11(n), 2.4 GHz, 40MHz, 15 dBm

Transmitting 802.11(a), 17 dBm

Transmitting 802.11(n), 20 MHz, 17 dBm

Transmitting 802.11(n), 40 MHz, 17 dBm

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED									
Start Frequency	30 MHz	Stop Frequency	25 GHz						

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables		Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables		Double Ridge Horn Cables	EVB	7/10/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AM-1616-1000	AVY	7/1/2009	13
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	7/10/2009	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/10/2009	13
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVQ	4/15/2009	13

High Channel, 6 Mbps, EUT horizontal, Antenna horizontal-90 High Channel, 1 Mbps, EUT on side Antenna vertical High Channel, 1 Mbps, EUT horizontal, Antenna horizontal-90

High Channel, 11 Mbps, EUT horizontal, Antenna horizontal-90 High Channel, 11 Mbps, EUT on side Antenna vertical High Channel, 1 Mbps, EUT on side Antenna vertical

16.6 9.9 9.9

9.9 9.9 9.9

344.0

344.0

343.0 288.0

3.0

3.0

3.0

0.0

0.0 0.0 0.0

H-Horn V-Horn

H-Horn

H-Horn

V-Horn H-Horn

52.6 51.4

50.5

50.2 48.4 48.1

0.0 0.0 0.0 0.0

-21.4 -22.6

-23.5

-23.8

36.0 41.5

40.6

40.3 38.5 38.2

7388.660

4923.960

4924.000

4924.030

	RTHWEST MC		F	ADIA	TED :	SPUR	IOUS	EMIS	SION	IS			A 2008.07.21 MI 2009.8.29
	EU	T: WF1101								W		VERW0035	5
Ser		er: M33142-0								Tax		03/17/10	
		er: Veriwave, es: Brian Den								Ter	nperature: Humidity:		
	Proje	ct: None								Barome	etric Pres.:		
	Tested b	y: Ethan Sch	oonover				Power:	120VAC/6			Job Site:	EV01	
	PECIFICA .247:2010							Test Metho ANSI C63.					
								ANSI 003.	10.2009				
	ARAMET a Height(1 - 4				Test Distar	nce (m)	3	1			
ОММЕ		3) (111)	1 - 4				TCSt Distai	ice (iii)	0				
EUT OF	PERATING 802	ote PC, stand	Iz, Channel										
	IONS FR	OM TEST ST.	ANDARD										
Run#			6							-01	11		
				1						\Im			
Results	;	Pa	ass						Signature	11th x	A		
7	80.0												7
	70.0												
	60.0												
	50.0										•		
dBuV/m	40.0								*				
dBu									•				
	30.0												
	20.0												
	10.0												
	0.0												
	1000.0	000										100	00.000
	1000.0						MHz					100	30.000
	Freq MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
	65.240	23.3	16.5	288.0	1.0	3.0	0.0	H-Horn	AV	0.0	39.8	54.0	-14.2
	66.797 65.513	23.3 36.5	16.5 16.5	360.0 288.0	1.7 1.0	3.0	0.0 0.0	V-Horn H-Horn	AV PK	0.0 0.0	39.8 53.0	54.0 74.0	-14.2 -21.0
	22.617	36.5 22.9	9.9	288.0 164.0	1.0	3.0 3.0	0.0	V-Horn	AV	0.0	32.8	74.0 54.0	-21.0 -21.2
	24.297	22.8	9.9	244.0	1.0	3.0	0.0	H-Horn	AV	0.0	32.7	54.0	-21.3
73	66.183	36.2	16.5	360.0	1.7	3.0	0.0	V-Horn	PK	0.0	52.7	74.0	-21.3
	23.613	36.5	9.9	244.0	1.0	3.0	0.0	H-Horn	PK	0.0	46.4	74.0	-27.6
49	24.540	35.2	9.9	164.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.1	74.0	-28.9

