ST5202: Applied Regression Analysis

Department of Statistics and Applied Probability National University of Singapore

> 29-Jan-2018 Week 3

Announcement

Announcement

- Assignment #1 due today
- Midterm scheduled on 12 March at 7:00pm at LT28
- Make-up exam:
 - must make request by 26 February. If you fail to make request by this date, no make-up exam will be available.
 - required to provide official supporting document (e.g., business trip, military service)

- Review
- Inferences on β_1 (Continued)
 - Hypothesis testing
- Inferences Concerning β_0
- Interval Estimation of $E\{Y_h\}$
- Prediction of New Observation
- Confidence Band for Regression Line
- Analysis of Variance Approach to Regression Analysis
- General Linear Test Approach
- Descriptive Measures of Linear Association between X and Y
- Normal Correlation Model

Quick review: hypothesis testing

- Elements of a statistical test
 - Null hypothesis, H₀
 - Alternative hypothesis, H_a
 - Test statistic
 - Rejection region

Quick review: hypothesis testing

Errors

- Type I error: H_0 is rejected when H_0 is true
- ullet Type II error: H_0 is accepted when H_a is true

	H_0 is true	<i>H</i> _a is true
Accept H ₀	Right Decision	Type II error
Reject <i>H</i> ₀	Type I error	Right Decision

p-value

• The p-value, or attained significance level, is the smallest level of significance α at which the null hypothesis can be rejected from the observed data.

Review of Week 2:
Model:
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i : value of the response variable of the i^{th} observation
- β_0 , β_1 : parameters β_1 : slope, β_0 : intercept
- ϵ_i are independent $N(0, \sigma^2)$ Thus, $Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$

Review of Week 2: Sampling distribution of $\frac{b_1-\beta_1}{s\{b_1\}}$

$$\frac{(b_1-\beta_1)}{s\{b_1\}}\sim t(n-2)$$

- In many applications, the main interest is to investigate whether β_1 equals a fixed value, say β_{10} . (e.g., β_1 =0 for β_{10} = 0, which indicates there is no linear association between X and Y)
- Two-sided test (for $\beta_{10} = 0$)

$$H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0$$

• One-sided test (for $\beta_{10} = 0$)

$$H_0: \beta_1 \le 0$$
 vs. $H_a: \beta_1 > 0$ or $H_0: \beta_1 > 0$ vs. $H_a: \beta_1 < 0$

Two-sided test: $H_0: \beta_1 = \beta_{10}$ vs. $H_a: \beta_1 \neq \beta_{10}$

- Test statistic: $t^* = \frac{b_1 \beta_{10}}{s\{b_1\}} \left(s\{b_1\} = \sqrt{MSE/\sum_{i=1}^n (X_i \bar{X})^2} \right)$
- If H_0 holds, then t^* is drawn from the sampling distribution centered at β_{10} , and

$$t^* = \frac{b_1 - \beta_{10}}{s\{b_1\}} \sim t(n-2)$$

• The decision rule:

If
$$|t^*| \le t(1 - \alpha/2; n - 2)$$
, conclude H_0
If $|t^*| > t(1 - \alpha/2; n - 2)$, conclude H_a

• Note the relation with confidence interval

One-sided test: $H_0: \beta_1 \leq \beta_{10}$ vs. $H_a: \beta_1 > \beta_{10}$

$$ullet$$
 Test statistic: $t^*=rac{b_1-eta_{10}}{s\{b_1\}}\left(s\{b_1\}=\sqrt{ extit{MSE}/\sum_{i=1}^n(X_i-ar{X})^2}
ight)$

• The decision rule:

If
$$t^* \le t(1 - \alpha; n - 2)$$
, conclude H_0
If $t^* > t(1 - \alpha; n - 2)$, conclude H_a

GPA vs. Entrance test score example

- $b_1 = 0.03883$, $s\{b_1\} = 0.01277$, and $t^* = \frac{0.03883 0}{0.01277} = 3.040$
- \bullet t(1-0.05/2,118) = 1.98027, and t(1-0.05,118) = 1.65788
- Two-sided test: $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$ with $\alpha = 0.05$

$$|t^*| = |3.040|$$
 > 1.98027 = $t(1 - 0.05/2, 118)$
 \implies reject H_0

- p-value: $P(|t(n-2)| > t^*) = 0.00292$
- One-sided test: $H_0: \beta_1 \leq 0$ vs. $H_a: \beta_1 > 0$ with $\alpha = 0.05$

$$t^* = 3.040$$
 > $1.65788 = t(1 - 0.05, 118)$ \implies reject H_0

• p-value: $P(t(n-2) > t^*) = 0.001457$

GPA vs. Entrance test score example (continued)

```
- - X
R Console
lm(formula = Y ~ X, data = gpa.example)
Coefficients:
(Intercept)
   2.11405
            0.03883
> summary(lm.gpa)
Call:
lm(formula = Y ~ X, data = gpa,example)
Residuals:
              10 Median
-2.74004 -0.33827 0.04062 0.44064 1.22737
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262. Adjusted R-squared: 0.06476
```

Week 3: Inference in Regression Analysis (Part 2) Inference on β_0

Inference on β_0 : The framework is the same as in case of β_1

- The sampling distribution of $\frac{b_0-\beta_0}{s\{b_0\}}$ is t(n-2) where $s^2\{b_0\}=MSE[\frac{1}{n}+\frac{\bar{X}^2}{\sum (X-\bar{X})^2}]$
- The $1-\alpha$ confidence interval for β_0 is

$$b_0 \pm t(1-\alpha/2; n-2)s\{b_0\}$$

Week 3: Inference in Regression Analysis (Part 2) Inference on β_0

Considerations on inference on β_1 & β_0

- Normality assumption
 - ullet The sampling distributions rely on the normality assumption on Y
 - If the probability distributions Y_i are not exactly normal but do not depart seriously, then the distribution of b_0 and b_1 will be approximately normal
 - Though Y_i s are far from normal, for sufficiently large sample the distribution of b_0 and b_1 will be approximately normal (under general conditions)
- Spacing of the X levels: the variance of b_0 and b_1 (for fixed n and σ^2) strongly depends on the spacing of X due to the term $\sum (X_i \bar{X})^2$

GPA vs. Entrance test score example

- $b_0 = 2.11405$, $s\{b_0\} = 0.32089$
- t(1-0.05/2,118)=1.98027
- 95% confidence interval

```
2.11405 \pm 1.98027 \cdot 0.32089 (1.4786 , 2.7495)
```

Interval Estimation of $E\{Y_h\}$

- X_h denotes the level of X for which we would like an estimate of the mean response
- The mean response when $X = X_h$ is denoted by

$$E\{Y_h\} = \beta_0 + \beta_1 X_h$$

• The point estimate of $E\{Y_h\}$ is

$$\hat{Y}_h = b_0 + b_1 X_h$$

Sampling distributions

• The sampling distribution is

$$\hat{Y}_h \sim N(E\{\hat{Y}_h\}, \sigma^2\{\hat{Y}_h\})$$

since
$$b_0 \sim N(\beta_0, Var\{b_0\})$$
 and $b_1 \sim N(\beta_1, Var\{b_1\})$

• What is the value of $E\{\hat{Y}_h\}$ and $\sigma^2\{\hat{Y}_h\}$?

Sampling distributions

•
$$E\{\hat{Y}_h\} = E\{b_0 + b_1 X_h\} = E\{b_0\} + E\{b_1\} X_h = \beta_0 + \beta_1 X_h = E\{Y_h\}$$

• $Var\{\hat{Y}_h\} = \sigma^2 \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right)$ since

$$Cov(\bar{Y}, b_1) = Cov\left(\frac{1}{n}\sum Y_i, \sum k_i Y_i\right) \text{ where } k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$

$$= \frac{1}{n} \sum_{i} k_{i} Var(Y_{i})$$

$$= \frac{\sigma^{2}}{n} \sum_{i} k_{i} = 0$$

$$Var\{\hat{Y}_{h}\} = Var\{\bar{Y} + b_{1}(X_{h} - \bar{X})\}$$

$$= Var(\bar{Y}) + (X_{h} - \bar{X})^{2}Var(b_{1}) + 2(X_{h} - \bar{X})Cov(\bar{Y}, b_{1})$$

$$= Var(\bar{Y}) + (X_{h} - \bar{X})^{2}Var(b_{1})$$

$$= var(Y) + (X_h - X)^{-} var(b_1)$$

$$= \frac{\sigma^2}{n} + \sigma^2 \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}$$

Sampling distributions

•
$$s^{2}\{\hat{Y}_{h}\} = MSE\left(\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum (X_{i} - \bar{X})^{2}}\right)$$

The sampling distribution of the studentized statistic is as follows:

$$\frac{\hat{Y}_h - E\{Y_h\}}{s\{\hat{Y}_h\}} \sim t(n-2)$$

Confidence interval for $E\{Y_h\}$

Confidence interval:

$$\hat{Y}_h \pm t(1-\alpha/2; n-2)s\{\hat{Y}_h\}$$

From this, hypothesis test can be constructed in the usual manner

Comments

Figure: Effect on \hat{Y}_h of variation in b_1 from sample to sample in two samples with same means (\bar{X}, \bar{Y})

- means (\bar{X}, \bar{Y}) .

 The variance of the estimator for $E\{Y_h\}$ is smallest near the mean of X.

 Designing studies such that the mean of X is near X_h will improve inference precision
 - When X_h is zero the variance of the estimator for $E\{Y_h\}$ reduces to the variance of the estimator b_0

GPA vs. Entrance test score example

- \hat{Y}_h at X = 27: $2.11405 + 0.03883 \cdot 27 = 3.16238$
- $s\{\hat{Y}_h\}$ at X=27: $0.6231\cdot\sqrt{\frac{1}{120}+\frac{(27-24.725)^2}{2379.925}}=0.063873$
- 95% confidence interval of E[Y|X=27]:

$$3.16238 \pm 1.980272 \cdot 0.063873$$

(3.035890 , 3.288873)

Prediction of a new observation $Y_{h(new)}$

- ullet $Y_{h(new)}$ denotes a new observation at given level X_h
- Inference on $E\{Y_h\}$ is making an inference on a population mean at given level X_h . On the other hand, $Y_{h(new)}$ is a single (future) observation
- $Y_{h(new)}$ is distributed around $E\{Y_h\}$

Properties

- $Y_{h(new)} \hat{Y}_h \sim N\left(0, \sigma^2\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})}{\sum (X_i \bar{X})^2}\right)\right)$ The normal distribution comes from the fact that $Y_{h(new)} \sim N\left(E\{Y_h\}, \sigma^2\right)$ and $\hat{Y}_h \sim N(E\{Y_h\}, Var\{\hat{Y}_h\})$
- Extra σ^2 in $Var(Y_{h(new)} \hat{Y}_h)$ is from $\epsilon_{h(new)}$ where $Y_{h(new)} = \beta_0 + \beta_1 X_h + \epsilon_{h(new)}$

Properties

- $\frac{Y_{h(new)} \hat{Y}_h}{s\{pred\}} \sim t(n-2)$
 - The numerator represents how far the new observation $Y_{h(new)}$ will deviate from the estimated mean \hat{Y}_h based on the original n cases in the study
 - The numerator can be viewed as the prediction error
- $s^2\{pred\}$ represents an estimated variance of the numerator $Y_{h(new)} \hat{Y}_h$
 - $s^2\{pred\} = MSE\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum (X_i \bar{X})^2}\right)$

Properties

- $\qquad \text{Var}\{\textit{pred}\} = \textit{Var}\{\textit{Y}_\textit{h(new)} \hat{\textit{Y}}_\textit{h}\} = \textit{Var}\{\textit{Y}_\textit{h(new)}\} + \textit{Var}\{\hat{\textit{Y}}_\textit{h}\} = \sigma^2 + \textit{Var}\{\hat{\textit{Y}}_\textit{h}\}$
- *Var*{*pred*} has two components
 - The variance of the distribution of Y at $X = X_h$, namely σ^2
 - The variance of the sampling distrubtion of \hat{Y}_h , namely $Var\{\hat{Y}_h\}$
- An unbiased estimator of $\sigma^2\{pred\}$ is:

$$s^{2}\{pred\} = MSE + s^{2}\{\hat{Y}_{h}\}$$

= $MSE\left(1 + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum (X_{i} - \bar{X})^{2}}\right)$

Prediction limits

• From $\frac{Y_{h(new)}-\hat{Y}_h}{s\{pred\}}\sim t(n-2)$, the $1-\alpha$ prediction limits for a new observation $Y_{h(new)}$ is

$$\hat{Y}_h \pm t(1-\alpha/2, n-2)s\{pred\}$$

• Remark: prediction limit is different from confidence limit. We can make inference about an unknown (fixed) parameter (e.g., $E\{Y_h\}$), and construct confidence intervals of it. However, $Y_{h(new)}$ is not a parameter but a random value, about which we make predictions.

Prediction limits for mean of m new observations

ullet The 1-lpha prediction limits for the mean of m new observations at given X_h :

$$\hat{Y}_h \pm t(1-lpha/2,n-2)s\{predmean\}$$

• Here,

$$s^{2}\{predmean\} = \frac{MSE}{m} + s^{2}\{\hat{Y}_{h}\}$$
$$= MSE\left(\frac{1}{m} + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum (X_{i} - \bar{X})^{2}}\right)$$

GPA vs. Entrance test score example

- \hat{Y}_h at X = 27: $2.11405 + 0.03883 \cdot 27 = 3.16238$
- $s\{pred\}$ at X = 27: $\sqrt{0.6231^2 + 0.063873^2} = 0.6263652$
- 95% prediction interval of Y_{new} at X = 27:

```
3.16238 \pm 1.980272 \cdot 0.6263652
(1.921958 , 4.402805)
```

GPA vs. Entrance test score example

```
R Console
> ## Constructing confidence interval for E(Y h) at X=27 and X=32
> newobs = data.frame(Y=c(NA, NA), X=c(27, 32))
> predict(lm.gpa, new = newobs, interval = "confidence")
1 3.162382 3.035890 3.288873
2 3.356517 3.140763 3.572272
> ## Constructing prediction interval for E[Y h] at X=27 and X=32
> predict(lm.gpa, new = newobs, interval = "prediction")
1 3.162382 1.921958 4.402805
2 3.356517 2.103840 4.609195
> 1
```

Analysis of Variance (ANOVA) approach

$$Y_i - \bar{Y} = \left(Y_i - \hat{Y}_i\right) + \left(\hat{Y}_i - \bar{Y}\right)$$

- Total Sum of Squares (SSTO): $\sum_{i=1}^{n} (Y_i \bar{Y})^2$
 - The measure of total variation
 - If all Y_i 's are the same, then SSTO = 0
- Error Sum of Squares (SSE): $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
 - The measure of variations of the Y_i's that is still present when the predictor variable X is taken into account
- Regression sum of squares (SSR): $\sum_{i=1}^{N} (\hat{Y}_i \bar{Y})^2$
 - The measure of variation of the Y_i 's associated with the regression line
 - $\sum_{i=1}^{N} (\hat{Y}_i \bar{Y})^2 = b_1^2 \sum_{i=1}^{N} (X_i \bar{X})^2$

$$Y_i - \bar{Y} = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \bar{Y})$$

- $Y_i \hat{Y}_i$: the deviation of the observation Y_i around the fitted regression line
- ullet $\hat{Y}_i ar{Y}$: the deviation of the fitted value \hat{Y}_i around the mean $ar{Y}_i$

$$\sum (Y_i - \bar{Y})^2 = \sum (Y_i - \hat{Y}_i)^2 + \sum (\hat{Y}_i - \bar{Y})^2$$
 or equivalently
$$\mathsf{SSTO} = \mathsf{SSE} + \mathsf{SSR}$$

$$\sum (Y_i - \bar{Y})^2 = \sum (Y_i - \hat{Y}_i)^2 + \sum (\hat{Y}_i - \bar{Y})^2 + 2 \sum (Y_i - \hat{Y}_i) \cdot (\hat{Y}_i - \bar{Y})$$

Here,
$$\sum (Y_i - \hat{Y}_i)(\hat{Y}_i - \bar{Y}) = \sum \hat{Y}_i(Y_i - \hat{Y}_i) + \sum \bar{Y}(Y_i - \hat{Y}_i) = 0$$
:

- The first term: $\sum \hat{Y}_i(Y_i \hat{Y}_i) = \sum \hat{Y}_i e_i = 0$ by (1.20)
- The second term: $\sum \bar{Y}(\hat{Y}_i \bar{Y}) = \bar{Y} \sum e_i = 0$

Breakdown of degrees of freedom

- SSTO: n-1 degrees of freedom
 1 linear constraint due to the calculation and inclusion of the mean
- SSE: n-2 degrees of freedom 2 linear constraints due to estimating β_0 and β_1
- SSR: 1 degree of freedom
 Two degrees of freedom in regression parameters, and one is lost due
 to linear constraint
- n-1=(n-2)+(1)

Mean Squares

A sum of squares divided by its associated degrees of freedom is called a mean square

• The regression mean square:

$$MSR = \frac{SSR}{1}$$

• The mean square error:

$$MSE = \frac{SSE}{n-2}$$

Expected mean squares

$$E\{MSE\} = \sigma^{2}$$

$$E\{MSR\} = \sigma^{2} + \beta_{1}^{2} \sum_{i} (X_{i} - \bar{X})^{2}$$

- \bullet The mean of the sampling distribution of MSE is σ^2 whether or not X and Y are linearly correlated
- The mean of the sampling distribution of MSR is σ^2 when $\beta_1=0$. Hence if $\beta_1=0$ holds, MSR and MSE will tend to have the same order of magnitude

Expected mean squares

• $E\{MSE\} = \sigma^2$. We have seen it in previous slides

-

$$E\{MSR\} = E\{SSR\} = E\{b_1^2 \sum (X_i - \bar{X})^2\}$$

$$= \sum (X_i - \bar{X})^2 E\{b_1^2\}$$

$$= \sum (X_i - \bar{X})^2 \left(\frac{\sigma^2}{\sum (X_i - \bar{X})^2} + \beta_1^2\right)$$

$$= \sigma^2 + \beta_1^2 \sum (X_i - \bar{X})^2$$

Here, we have

$$E\{b_{1}^{2}\} = Var\{b_{1}\} + E\{b_{1}\}^{2}$$

$$= \left(\frac{\sigma^{2}}{\sum (X_{i} - \bar{X})^{2}}\right) + (\beta_{1})^{2}$$

F Test of
$$H_0: \beta_1 = 0$$
 vs. $H_a: \beta_1 \neq 0$

- Hypothesis: $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- Test statistic: $F^* = \frac{MSR}{MSE}$
 - Note the different form from $\frac{b_1-0}{s\{b_1\}}$ of which the sampling distribution is t(n-2)
- Sampling distribution of *F**:

$$F^* \sim F(1, n-2)$$
 when $H_0: \beta_1 = 0$ holds

Sampling distribution of F^*

- ullet The sampling distribution of F^* when $H_0: eta_1=0$ holds can be derived from Chchran's theorem
- Cochran's theorem: if all n observations Y_i come from the same normal distribution with mean μ and variance σ^2 , and SSTO is decomposed into k sums of squares SS_r , each with degrees of freedom df_r , then the SS_r/σ^2 terms are independent χ^2 variable with df_r degrees of freedom if $\sum_{r=1}^k df_r = n-1$
 - SSTO(df = n 1) = SSE(df = n 2) + SSR(df = 1) with n 1 = (n 2) + (1)
 - If $\beta_1=0$, then Y_i have the same mean $\mu=\beta_0$ and the same variance σ^2
 - Therfore, from Cochran's theorem, if $\beta_1=0$ we have SSE/σ^2 and SSR/σ^2 are independent χ^2 variables with degrees of freedom n-2 and 1 respectively

Sampling distribution of F^*

• For two independent random variables W_m and W_n where $W_m \sim \chi^2(m)$ and $W_n \sim \chi^2(n)$,

$$\frac{W_m/m}{W_n/n} \sim F(m,n)$$

• We have $SSR/\sigma^2 \sim \chi^2(1)$, $SSE/\sigma^2 \sim \chi^2(n-2)$, and $SSR/\sigma^2 \perp SSE/\sigma^2$ when $\beta_1 = 0$. Therefore

$$F^* = \frac{SSR/\sigma^2}{1} / \frac{SSE/\sigma^2}{n-2} \sim F(1, n-2)$$
 when $H_0: \beta_1 = 0$ holds

Decision rule

If
$$F^* \leq F(1-\alpha; 1, n-2)$$
, conclude H_0
If $F^* > F(1-\alpha; 1, n-2)$, conclude H_a

- $F(1-\alpha;1,n-2)$ denotes the $(1-\alpha)100$ percentile of the F(1,n-2) distribution
- ullet Controls the risk of Type I error to be lpha
- The test is upper-tail

Equivalence of F Test and two-sided t Test for $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$

We have

$$F^* = \frac{MSR}{MSE} = \frac{b_1^2 \sum (X_i - \bar{X})^2}{MSE} = \frac{b_1^2}{MSE / \sum (X_i - \bar{X})^2} = \frac{b_1^2}{s\{b_1\}^2} = (t^*)^2$$
$$(s^2\{b_1\} = MSE / \sum (X_i - \bar{X})^2)$$

• Also, $t(m)^2 \sim (\frac{z}{\sqrt{W_m/m}})^2 \sim \frac{W_1/1}{W_m/m} \sim F(1,m)$ where $z \sim N(0,1)$, $W_1 \sim \chi^2(1)$, $W_m \sim \chi^2(m)$, and z, W_1, W_m are all independent. This leads to

$$[t(1-\alpha/2; n-2)]^2 = F(1-\alpha; 1, n-2)$$

Equivalence of
$$F$$
 Test and two-sided t Test for $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$ (continued)

 $\bullet \ \ \text{Thus, for any } \alpha$

Accept
$$H_0$$
: $\{F^* \le F(1-\alpha; 1, n-2)\}$ equiv. to $\{|t^*| \le t(1-\alpha/2; n-2)\}$
Accept H_a : $\{F^* > F(1-\alpha; 1, n-2)\}$ equiv. to $\{|t^*| > t(1-\alpha/2; n-2)\}$

ANOVA table

Source	SS	df	MS	F	p-value(s)
Regression	SSR	2-1	MSR	$F^* = \frac{MSR}{MSE}$	$P(F(1, n-2) \ge f^*)$
Error	SSE	n - 2	MSE	2	
Total	SSTO	n - 1			

• One of the important role of the ANOVA table above is to test $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$

GPA vs. Entrance exam score example

Source	SS	df	MS	F	p-value
Regression	3.59	1	3.588	9.25	0.00292
Error	45.82	118	0.388		
Total	49.41	119			

- $F^* = \frac{3.588/1}{45.82/118} = \frac{3.588}{0.388} = 9.25$
- $F^* = 9.25 > 3.921478 = F(1 0.05; 1, n 2)$ Therefore, we reject $H_0: \beta_1 = 0$ with $\alpha = 0.05$
- Also, $(t^*)^2 = 3.04^2 = 9.24$

GPA vs. Entrance exam score example

General linear test approach

- Three steps:
 - Full model
 - Reduced model
 - Test statistic
- ullet Testing $eta_1=0$ vs $eta_1
 eq 0$ is a kind of general linear test approach

Full model

- Full or unrestricted model is a model that is considered to be appropriate for the data
 - Full model for the simple linear regression is the usual normal error regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Error sum of squares of the full model (SSE(F)) measures the variability of the Y_i observations around the fitted regression line from the full model
 - For simple linear regression, $SSE(F) = \sum [Y_i \hat{Y}_i]^2 = \sum [Y_i (b_0 + b_1 X_i)]^2 = SSE$

Reduced model

- The model when H_0 holds is called the reduced or restricted model
 - For testing $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$, the reduced model is

$$Y_i = \beta_0 + \epsilon_i$$

- The error sum of squares (SSE(R)) is the variability of the observation Y_i around the fitted regression line from the reduced model
 - For the reduced model under $H_0: \beta_1 = 0$, the LS or maximum likelihood estimator of β_0 by is $b_0 = \bar{Y}$. Thus, $SSE(R) = \sum_i (Y_i - b_0)^2 = \sum_i (Y_i - \bar{Y})^2 = SSTO$

Test statistic

- It always holds that $SSE(F) \leq SSE(R)$ since the more parameters in the model, the better the one can fit the data
- IDEA: if SSE(F) is not much less that SSE(R), then it implies the full model does not explain the data much better than the reduced model and the data is in favor of H_0
 - a small difference SSE(R) SSE(F) supports H_0
 - a large difference SSE(R) SSE(F) supports H_a

Test statistic

The test statistic

$$F^* = \frac{SSE(R) - SSE(F)}{df_R - df_F} \div \frac{SSE(F)}{df_F} \sim F(df_R - df_F, df_F)$$
 when H_0 holds where df_R and df_F are the degrees of freedom associated with the reduced

model and the full model respectively

The decision rule:

If
$$F^* \leq F(1 - \alpha; df_R - df_F, df_F)$$
, conclude H_0
If $F^* > F(1 - \alpha; df_R - df_F, df_F)$, conclude H_a

• For simple linear regression with H_0 : $\beta_1 = 0$,

$$SSE(R) = SSTO \qquad SSE(F) = SSE$$

$$df_R = n - 1 \qquad df_F = n - 2$$

$$F^* = \frac{SSTO - SSE}{(n - 1) - (n - 2)} \div \frac{SSE}{n - 2} = \frac{SSR}{1} \div \frac{SSE}{n - 2} = \frac{MSR}{MSE}$$

Descriptive measures of linear association between *X* and *Y*: Coefficient of Determination

- The coefficient of determination
 - SSTO: a measure of uncertainty of Y when X is not taken into account
 - SSE: a meaure of uncertainty of Y when X is taken into account
 - Coefficient of determination R^2 : $R^2 = \frac{SSR}{SSTO} = 1 \frac{SSE}{SSTO}$ reduction of uncertainty due to considering X
 - $0 \le R^2 \le 1$

Descriptive measures of linear association between X and Y

•
$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO} = \frac{[\sum (X_i - \bar{X})(Y_i - \bar{Y})]^2}{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}$$

- Correlation coefficient: $r = \pm \sqrt{R^2} = \sqrt{\frac{[\sum (X_i \bar{X})(Y_i \bar{Y})]^2}{\sum (X_i \bar{X})^2 \sum (Y_i \bar{Y})^2}}$
 - if $b_1 > 0$, then $r = \sqrt{R^2}$
 - if $b_1 < 0$, then $r = -\sqrt{R^2}$
 - $-1 \le r \le 1$

```
- - X
R Console
> summary(lm.gpa)
Call:
lm(formula = Y ~ X, data = gpa.example)
Residuals:
            10 Median 30
-2.74004 -0.33827 0.04062 0.44064 1.22737
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.11405 0.32089 6.588 1.3e-09 ***
          0.03883 0.01277 3.040 0.00292 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         standard error: 0 6231 on 118 degrees of freedom
fultiple R-squared: 0.07262, Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917
>
```

Comments on R^2

- ullet R² describes only relative reduction of variation via regression model, and does not indicate predictive power of the model
- ullet R² only captures linear relationship between Y and X
- As R^2 cannot capture nonlinear relationship, nonlinear relationship may coexist with either high or low R^2
- High \mathbb{R}^2 does not necessarily indicate strong linear relationship between X and Y
- \bullet Low R^2 does not necessarily indicate no relationship between Y and X

Normal correlation models

- Distinction between regression models and correlation models
 - Regression models: X values are fixed constants
 - Correlation models: both X and Y are random variables
- In some cases, correlation models are more suitable than regression models
 - Relationship between sales of gasoline and sales of auxiliary products
 - Relationship between blood pressure and weight

Bivariate normal

• Y_1 and Y_2 are jointly normally distributed if the joint distribution has the density of the bivariate normal distribution:

$$f(Y_1, Y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{12}^2}} \exp\left(-\frac{1}{2(1-\rho_{12}^2)} \left[\left(\frac{Y_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{Y_2 - \mu_2}{\sigma_2}\right)^2 \right] - 2\rho_{12} \left(\frac{Y_1 - \mu_1}{\sigma_1}\right) \left(\frac{Y_2 - \mu_2}{\sigma_2}\right) \right)$$

Bivariate normal: parameters

- Parameters
 - μ_1, μ_2 : means of Y_1 and Y_2 respectively
 - σ_1, σ_2 : standard deviations of Y_1 and Y_2 respectively
 - ullet ho_{12} : coefficient of correlation between the random variables Y_1 and Y_2

$$\rho_{12} = \frac{E\{(Y_1 - \mu_1)(Y_2 - \mu_2)\}}{\sqrt{Var\{Y_1\}Var\{Y_2\}}}$$

- Properties
 - $-1 \le \rho_{12} \le 1$
 - If $Y_1 \perp Y_2$ then $\rho_{12} = 0$
 - If Y_1 and Y_2 are positively correlated, then $\rho_{12} > 0$
 - If Y_1 and Y_2 are negatively correlated, then $\rho_{12} < 0$

Bivariate normal: conditional inference

ullet Conditional probability distribution of Y_1 given Y_2

•
$$f(Y_1|Y_2) = \frac{f(Y_1, Y_2)}{f_2(Y_2)} = \frac{1}{\sqrt{2\pi}\sigma_{1|2}} \exp\left[-\frac{1}{2}\left(\frac{Y_1 - \alpha_{1|2} - \beta_{12}Y_2}{\sigma_{1|2}}\right)^2\right]$$
 where

$$\alpha_{1|2} = \mu_1 - \mu_2 \rho_{12} \frac{\sigma_1}{\sigma_2}$$

$$\beta_{12} = \rho_{12} \frac{\sigma_1}{\sigma_2}$$

$$\sigma_{1|2}^2 = \sigma_1^2 (1 - \rho_{12}^2)$$

- Thus, $Y_1|Y_2 \sim N(\alpha_{1|2} + \beta_{12}Y_2, \sigma_{1|2}^2)$
- $\alpha_{1|2}$ is the intercept of the line regression of Y_1 on Y_2
- β_{12} is the slope of this line

Bivariate normal: conditional inference

ullet In the same manner, conditional probability distribution of Y_2 given Y_1 is

•
$$f(Y_2|Y_1) = \frac{1}{\sqrt{2\pi}\sigma_{2|1}} \exp\left[-\frac{1}{2}\left(\frac{Y_1 - \alpha_{2|1} - \beta_{21}Y_2}{\sigma_{2|1}}\right)^2\right]$$
 where

$$\alpha_{2|1} = \mu_2 - \mu_1 \rho_{12} \frac{\sigma_2}{\sigma_1}$$

$$\beta_{21} = \rho_{12} \frac{\sigma_2}{\sigma_1}$$

$$\sigma_{2|1}^2 = \sigma_2^2 (1 - \rho_{12}^2)$$

- $Y_2|Y_1 \sim N(\alpha_{2|1} + \beta_{21}Y_1, \sigma_{2|1}^2)$
- $\alpha_{2|1}$ is the intercept of the line regression of Y_2 on Y_1
- β_{21} is the slope of this line

Important characteristics of conditional distributions

- ullet The conditional probability distribution of Y_1 for any given value of Y_2 is normal
- The means of the conditional probability distributions of Y_1 fall on a straight line with respect to Y_2 , and hence are a linear function of Y_2 :

$$E\{Y_1|Y_2\} = \alpha_{1|2} + \beta_{12}Y_2$$

• All conditional probability distribution of Y_1 have the same standard deviation $\sigma_{1|2}$ regardless of the given value Y_2

Equivalence to normal error regression model

- For a bivariate normal random sample (Y_1, Y_2) , the normal error regression model is applicable for conditional inference about Y_1 given Y_2 :
 - The Y₁ observations are independent
 - The observations Y_1 given Y_2 are normally distributed with mean $E\{Y_1|Y_2\}=\alpha_{1|2}+\beta_{12}Y_2$ and constant variance $\sigma_{1|2}^2$

Inference on correlation coefficient

• Point estimator of ρ_{12} :

$$r_{12} = \frac{\sum (Y_{i1} - \bar{Y}_1)(Y_{i2} - \bar{Y}_2)}{\left[\sum (Y_{i1} - \bar{Y}_1)^2 \sum (Y_{i2} - \bar{Y}_2)^2\right]^{1/2}}$$

Hypothesis

$$H_0: \rho_{12} = 0$$
 equiv. to $H_0: \beta_{12} = 0$ equiv. to $H_a: \beta_{21} = 0$
 $H_a: \rho_{12} \neq 0$ $H_a: \beta_{12} \neq 0$ $H_a: \beta_{21} \neq 0$

- Test statistic: $t^* = \frac{r_{12}\sqrt{n-2}}{\sqrt{1-r_{12}^2}}$
- Decision rule

If
$$|t^*| \le t(1 - \alpha/2; n - 2)$$
, conclude H_0
If $|t^*| > t(1 - \alpha/2; n - 2)$, conclude H_a

Interval estimation of ρ_{12}

• When $\rho_{12} \neq 0$, the sampling distribution of r_{12} complicated. Thus we use the *Fisher z transformation* :

$$z' = \frac{1}{2} \log_e \left(\frac{1 + r_{12}}{1 - r_{12}} \right)$$

• When n is large, the distribution of z' is approximately normal with mean and variance as follows:

$$E\{z'\} = \zeta = \frac{1}{2} \log_e \left(\frac{1 + \rho_{12}}{1 - \rho_{12}} \right)$$

 $Var\{z'\} = \frac{1}{n-3}$

• Approximate $1-\alpha$ confidence limits for ζ are

$$z' \pm z(1 - \alpha/2)\sigma\{z'\}$$

• The $1-\alpha$ confidence limits for ρ_{12} are then obtained by transforming the limits on ζ utilizing the Fisher z transformation relation.

Reading: entire Chapter 2