Deep Learning Hands-on

Dr. Nanda Dulal Jana & Mr. Sandipan Dhar

Department of Computer Science and Engineering, NIT-Durgapur

Mail id: nandadulal@cse.nitdgp.ac.in, sd.19cs1101@phd.nitdgp.ac.in

Google site link: https://sites.google.com/phd.nitdgp.ac.in/sandipan-dhar/home

Contents:

- Environment Setup
- 2. Basics of Preprocessing
- 3. Basics of Convolutional Neural Network (CNN)
- 4. CNN for medical imaging
- 5. CNN in speech processing
- 6. Some ongoing advancements in deep learning

Environment Setup

• Notebooks or IDE (integrated development environment) for DL program execution

Installation of notebooks or IDE (integrated development environment) for DL program execution

- Anaconda: https://www.anaconda.com/products/distribution
 Anaconda installation guide: https://www.youtube.com/watch?v=YU7ZGgPKSsA
- Jupyter Notebook: https://jupyter.org/
 Jupyter Notebook installation guide: https://www.youtube.com/watch?v=kf3AwEvNdno
- Pycharm: https://www.jetbrains.com/pycharm/download/#section=windows
 Pycharm installation guide: https://www.youtube.com/watch?v=15daSz2QExo&t=422s

Google CO CO CO

CPU-only VMs

Parameter	Google Colab	Kaggle Kernel	
CPU Model Name	Intel(R) Xeon(R)	Intel(R) Xeon(R)	
CPU Freq.	2.30GHz	2.30GHz	
No. CPU Cores	2	4	
CPU Family	Haswell	Haswell	
Available RAM	12GB (upgradable to 26.75GB)	16GB	
Disk Space	25GB	5GB	

GPU VMs Google Colab Kaggle Kernel **Parameter** Nvidia K80 / T4 Nvidia P100 GPU **GPU Memory** 12GB / 16GB 16GB 1.32GHz **GPU Memory Clock** 0.82GHz / 1.59GHz Performance 4.1 TFLOPS / 8.1 TFLOPS 9.3 TFLOPS Support Mixed Precision No / Yes No **GPU** Release Year 2014 / 2018 2016 2 No. CPU Cores 2 12GB (upgradable to 26.75GB) Available RAM 12GB

358GB

5GB

Parameter	Google Colab	Kaggle Kernel
Max execution time	12 hours	9 hours
Max idle time	90 min	60 min

Disk Space

Deep Learning Frameworks

How to install python libraries in Google Colab

Goto this link: https://github.com/SandyPanda-MLDL/Deep-Learning-Demo

MNIST Dataset

60,000 examples in the training dataset and 10,000 in the test dataset and that images are indeed square with 28×28 pixels grayscale image.

MNIST Handwritten digits

training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

Fashion MNIST

Class labels for each products https://www.tensorflow.org/tutorials/keras/classification

CIFAR 10 dataset

CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

CIFAR 10 dataset official link: https://www.cs.toronto.edu/~kriz/cifar.html

One-hot Encoding

Color
Red
Red
Yellow
Green
Yellow

Implementation of DL model in Keras

In max pooling filter size is 2*2

Output of 1st Conv 26*26

The output of max pooling= 26/2 * 26/2 =13*13

Hdf5 file format

JSON file format

```
"emp_details": [
        "emp_name": "Shubham",
        "email": "ksingh.shubh@gmail.com",
        "job_profile": "intern"
   },
        "emp name": "Gaurav",
        "email": "gaurav.singh@gmail.com",
        "job profile": "developer"
    },
        "emp_name": "Nikhil",
        "email": "nikhil@geeksforgeeks.org'
        "job_profile": "Full Time"
```


Vector**Stock**®

VectorStock.com/24678095

K-fold cross validation

Customization of DL modules and evaluation metrics and all

My medium blog link:

https://medium.com/@sandipandhar 6564/deep-learning-dem-6228e73377ff

		ACTUAL	
		Negative	Positive
PREDICTION	Negative	TRUE NEGATIVE	FALSE NEGATIVE
PREDI	Positive	FALSE POSITIVE	TRUE POSITIVE

		ACTUAL	
		Negative	Positive
PREDICTION	Negative	60	8
KEUIC	Positive	22	10

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 \ score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{2*(Precision*Recall)}{(Precision+Recall)}$$

Deep Learning in Medical Imaging

Download the age macular disease dataset from my github repo link: https://github.com/SandyPanda-MLDL/Deep-Learning-Demo

Or from my Google drive directly: https://drive.google.com/drive/folders/1Ghs1YmMdTOdZxHCfaqUaoQPNG79_9GJu?usp=sharing

Label 0: Age Macular Disease

Label 1: Healthy Fundus Image

Preprocessing of medical images

Segmented images

Using K-means Clustering

COVID-19 Chest X-ray Segmented Images

Code:

https://github.com/SukonyaPhukan92/COVID-19 Chest X-ray Image Generation using ResNet50 and DCGAN Model

Google colab link: https://colab.research.google.com/drive/1ShC5kN_HhDEK63RRFqsLzf6squeHFPwS?usp=sharing
Or visit my repository: https://qithub.com/SandvPanda-MLDL/Deep-Learning-Demo

Keras.applications: https://keras.io/api/applications/

Deep Learning in Speaker Identification

Speaker identification

multiclass classification and binary classification

Latent feature from CNN

Dataset link: https://drive.google.com/drive/folders/1xZGxMljAKJKe0wfGCvdlm2QbAJg2jeB6?usp=sharing

Code link forspeaker identification: https://colab.research.google.com/drive/117HnWX-XVGkPh-OVSV5L0o6G1DWmBChK?usp=sharing

Some advancements

CNN as generative model

Generative Adversarial Network (GAN)

CNN as generative model for speech synthesis

My medium blog: https://medium.com/@sandipandhar_6564

ALGAN-VC: https://ieeexplore.ieee.org/document/9709124

S. Dhar, N. D. Jana and S. Das, "An Adaptive Learning based Generative Adversarial Network for One-To-One Voice Conversion," in *IEEE Transactions on Artificial Intelligence*, doi: 10.1109/TAI.2022.3149858.

Neural Architecture Search for CNN models

Medium blog of Arjun Ghosh: https://medium.com/@csarjun49

EEG signal classification using CNN

Speech disorder classification using CNN

Musical Data classification using CNN

Thank You