Properties of Continuous Functions

Matteo Paz, Dylan Rupel

February 21, 2024

Theorem 1 Suppose $f: X \to Y$ is a continuous function and $g: Y \to Z$ is also a continuous function. Then $g \circ f$ is a continuous function.

Proof

Suppose there is an open set $\omega \in Z$. Then $g^{-1}\omega$ is an open set. Then $f^{-1}(g^{-1}(\omega))$ is an open set. Thus open sets in Z under the action of $f^{-1} \circ g^{-1}$ are open in X, so $g \circ f$ is continuous.

Lets consider interiors and how they interact with continuous functions.

Theorem 2 Let $f: X \to Y$ be continouous and $L \subseteq Y$. Then $f^{-1}(Int(L)) \subseteq Int(f^{-1}(L))$.