Foundations of Deep Learning Davide Giardini – mat. 897473

Flowers Classification

with

Convolutional Neural Networks

Data Preparation

Original dataset

Daisy: 799

Dandelion: 699

Roses: 641

Sunflowers: 898

Tulips: 633

Batch size: 32

20% test set

20% validation set

80%

80% train set

Final:

- 64% train
- 16% validation
- 20% test

First (naive) Model

Optimizer: RMSprop Train: 80%

LR: 0,001 **Epochs**: 40

Val: 20%

naive

Model v2 (BatchNorm)

Optimizer: RMSprop Train: 80% **LR**: 0,001

Epochs: 40

Val: 20%

Model V3 (Data Augmentation)

Model v3_(Lower LR)

Optimizer: RMSprop

LR: 0,0005

Epochs: 40

Train: 80% **Val**: 20%

Model v3 (30% val set)

Optimizer: RMSprop Trai LR: 0,0005 Val: Epochs: 40

Train: 70%
Val: 30%

Model v4_(deeper)

Optimizer: RMSprop

LR: 0,0005

Epochs: 40

Train: 70% **Val**: 30%

Model V4 (TimeDecay)

Optimizer: RMSprop **LR**: TD (0,0005, 65, 0,08) **Val**: 30%

Epochs: 40 Callback: 10

Model v4_(Adam)

Optimizer: Adam **LR**: TD (0,0005, 65, 0,08) **Val**: 30%

Epochs: 40 Callback: 10

Model v5_(DropOut)

Optimizer: Adam **LR**: TD (0,0005, 65, 0,08) **Val**: 30%

Epochs: 40 Callback: 10

Model v6_(DropOut)

Optimizer: Adam **LR**: TD (0,0005, 65, 0,08) **Val**: 30%

Epochs: 40 Callback: 10

Model v7_(Deeper)

Optimizer: Adam **LR**: TD (0,0005, 65, 0,08) **Val**: 30%

Epochs: 40 Callback: 10

Most of the literature on flower recognition with CNN (Y Liu, 2016; I Gogul, 2017; T Nguyen) cites background as one of the biggest problem in flower classification. Let's try to tackle this issue using segmentation.

Segmentation

Lang SAM

Balancing

Subset all the classes to the dimension of the smallest class (dandelion: 1275)

The subset is made so that for each of the original photos there is at least one segmented photo within the new set

Test Sets

Test

The original test set with uncropped images. It is going to be used to evaluate the model performances to generalized even to the raw, unsegmented, original images.

Test_s

The unbalances test set with **s**egmented images. It is going to be used to evaluate the model performances on all the flowers that the segmented model has detected.

Problem: some original images (those with more flowers in them) will appear more times than other in the test set.

Test_sb

A segmented and balanced test set.
Composed of one segmented image for each original picture.
This resolves the problem of the unbalanced test, but it does so by selecting one random segmented image from each original picture, and this adds randomness.

Model v5_(before)

Test 1: 83,65%
Test 2: - %
Test 3: - %

Segmented unbalanced data

Accuracy:

Test 1: 79,56% Test 2: 80,85% Test 3: 83,33%

Segmented balanced data

Accuracy:

Test 1: 80,38% Test 2: 78,48% Test 3: 82,79%

Model v7 (Deeper)

Test 1: 84,74%

Test 2: % % Test 3:

Segmented unbalanced data

Accuracy:

Test 1: 81,20% Test 2: 81,08% Test 3: 84,70%

Segmented unbalanced data

Accuracy:

Test 1: 82,56% Test 2: 83,02% Test 3: 84,84%

Segmented balanced data

Accuracy:

Test 1: 82,56% Test 2: 83,02% Test 3: 84,84%

Thank You

Foundations of Deep Learning Davide Giardini – mat. 897473