MAT605 Exam

Logic and Foundations with Haskell June 1st, 2023

Full Name:				
Student No.:				

Instructions

- (i) Fill in your info on the lines provided above and on each new page.
- (ii) Clearly mark your answers by crossing the corresponding checkboxes.
- (iii) Each question may have multiple correct answers (except those marked single choice).
- (iv) Points are awarded for each correctly checked / unchecked box.
- (v) If a question seems unclear, you can write a justification for your answers.

Question:	1	2	3	4	5	6	7	8	9
Points:	1	1	1	1	2	2	1	11/2	1
Score:									
Question:	10	11	12	13	14	15	16	17	18
Points:	1	1	1	1	1	1	1	2	1
Score:									
Question:	19	20	21	22	23	24	25	26	27
Points:	2	1	1/2	1	1/2	1	1	1	1
Score:									
Question:	28	29	30	31	32	33	34	35	Total
Points:	1	2	4	11/2	2	2	1	2	46
Score:									

Essential theory questions

Propositional Logic Let ϕ and ψ be formulas of propositional logic.

- 1. (1 point) Suppose $p_0 = \text{True}$, $p_1 = \text{False}$ and $p_2 = \text{False}$. What is the truth value of the following propositional logic formulas (single choice):
 - (a) $((\neg p_0) \lor (p_1 \to p_2))$ A. True B. False
 - (b) $(p_0 \wedge ((\neg p_1) \leftrightarrow p_2))$ A. True **B.** False
- 2. (1 point) Write down the parsing tree for $(p_0 \wedge (\neg p_1))$:

Solution: Start with p_0 and p_1 as leaves and apply \neg to p_1 . Then combine p_0 and $(\neg p_1)$ using \land .

- 3. (1 point) Which of the following statements are correct?
 - \square A formula is a tautology / logical validity if it is true for some assignment of truth values to atomic propositions.
 - A formula is a *tautology / logical validity* if it is true for any assignment of truth values to atomic propositions.
 - \square If ϕ is a tautology, then $(\phi \to \psi)$ is a tautology.
 - \blacksquare If ϕ is a tautology, then $(\psi \to \phi)$ is a tautology.
- 4. (1 point) Which of the following statements are correct?
 - lacksquare ϕ and ψ are logically equivalent if $(\phi \leftrightarrow \psi)$ is a tautology.
 - \Box ϕ and ψ are logically equivalent if they contain the same atomic propositions.
 - \square ϕ and ψ are logically equivalent if whenever ϕ is true, then ψ is true.
 - \blacksquare ϕ and ψ are *logically equivalent* if the have the same truth value for any assignment of truth values to atomic propositions.

First Order Logic

5.	(2 points) Which of the following first order logic formulas translate the following state-
	ments? We allow for restricted quantification.

(a) There is a smallest natural number n.

 $\square \ \exists n \in \mathbb{N} \ \exists m \in \mathbb{N} : n < m$

 $\blacksquare \exists n \in \mathbb{N} \ \forall m \in \mathbb{N} : n \leq m$

 $\square \ \forall m \in \mathbb{N} \ \exists n \in \mathbb{N} : n \le m$

 $\square \ \forall m \in \mathbb{N} \ \forall n \in \mathbb{N} : n \le m$

(b) For each natural number n there is a natural number m which is bigger than n.

 $\blacksquare \ \forall n \in \mathbb{N} \ \exists m \in \mathbb{N} : n < m$

 $\square \ \forall n \ \exists m : (n \in \mathbb{N} \to (m \in \mathbb{N} \to n < m))$

Informal Proof Theory

6. (2 points) Which of the following are valid proof rules for statements Φ and Ψ :

 \square To prove $\Phi \vee \Psi$, it is necessary to prove both Φ and $\neg \Psi$.

■ To prove $\Phi \wedge \Psi$, it is necessary to prove both Φ and Ψ .

■ To prove $\Phi \to \Psi$, it is sufficient to assume Φ and prove Ψ .

 \square Given $\neg \Phi$, one can conclude Ψ .

 \square To prove $\forall x \Phi(x)$, prove $\Phi(x)$ for some x of your choice.

■ Given $\neg \Phi$ and Φ , one can conclude Ψ .

■ Given $\Phi \leftrightarrow \Psi$ and Ψ , one can conclude Φ

 \square Given $\exists \Phi(x)$ and any x, one can conclude $\Phi(x)$.

Natural Deduction

7. (1 point) Which of the following statements are correct?

■ A *derivation* is a formal proof of a conclusion ϕ that uses the natural deduction proof rules.

 \square A derivation of ϕ is a sequence of sequents that proves a formula ϕ .

■ A sequent is a formal expression $\Gamma \vdash \phi$ saying that there is a derivation of ϕ from assumptions in Γ .

 \square A sequent is a formal proof $\Gamma \vdash \phi$ of a conclusion ϕ from assumptions in Γ that uses the natural deduction sequent rules.

8. $(1 \frac{1}{2} \text{ points})$ Which of the following are correct natural deduction proofs?

 $\square \ \frac{\phi \quad \not \forall \psi}{(\phi \to \psi)} \quad \blacksquare \ \frac{\phi \quad \psi}{(\phi \land \psi)} \quad \blacksquare \ \frac{\psi}{(\phi \lor \psi)} \quad \blacksquare \ \frac{\not \vdash \psi}{\neg (\neg \phi)} \quad \square \ \frac{(\phi \lor \psi) \quad (\neg \psi)}{\phi}$

9. (1 point) Consider the introduction rule for \leftrightarrow :

 $\frac{\Gamma}{\vdots} \qquad \frac{\Delta}{\vdots} \\
\frac{(\phi \to \psi)}{(\phi \leftrightarrow \psi)}$

Which of the following sequent rules corresponds to the above (single choice)?

- A. If $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Delta \vdash (\psi \rightarrow \phi)$, then $\Gamma \vdash (\phi \leftrightarrow \psi)$.
- B. If $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Delta \vdash (\psi \rightarrow \phi)$, then $\Gamma \cup \Delta \vdash (\phi \leftrightarrow \psi)$.
- C. If $\Gamma \cup \Delta \vdash (\phi \leftrightarrow \psi)$, then $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Delta \vdash (\psi \rightarrow \phi)$.
- D. If $\Gamma \vdash (\phi \to \psi)$ and $\Delta \vdash (\psi \to \phi)$, then $\Gamma \vdash (\phi \leftrightarrow \psi)$ or $\Delta \vdash (\phi \leftrightarrow \psi)$

Formal Propositional Logic

10. (1 point) Which of the following are formulas of $LP(\sigma)$ for $\sigma := \{p_i : i \in \mathbb{N}\}$?

 $\blacksquare \ ((p_0 \land \bot) \to p_{55}) \quad \Box \ (q_1 \land p_1) \quad \blacksquare \ ((\neg p_{2023}) \leftrightarrow (p_1 \lor p_{40})) \quad \Box \ \exists p_0 : (p_0 \land p_1)$

- 11. (1 point) What does the unique parsing theorem say (single choice)?
 - A. Any formula ϕ can be expressed as \bot , p, $(\neg \psi)$, or $(\psi \diamondsuit \chi)$, where ψ and χ are formulas, $p \in \sigma$ and propositional symbol, and \diamondsuit is a binary logical connective.
 - B. Every formula ϕ given by a parsing tree is uniquely determined.
 - C. Any formula ϕ has exactly one of the following forms: \bot , p, $(\neg \psi)$, or $(\psi \diamondsuit \chi)$, where ψ and χ are formulas, $p \in \sigma$ and propositional symbol, and \diamondsuit is a binary logical connective.
 - D. Every formula ϕ can be parsed into a parsing tree.
- 12. (1 point) Which of the following statements are correct?
 - A σ -structure is a function $\sigma \to \{0, 1\}$.
 - \Box A $\sigma\text{-}structure$ is a set of propositional symbols that generate all true $\mathsf{LP}(\sigma)$ formulas.
 - Any σ -structure A can be extended to a function A^* that assigns each $\mathsf{LP}(\sigma)$ formula a truth value in $\{0,1\}$.
 - \square Any σ -structure A can be extended to a function A^* that assigns each $\mathsf{LP}(\sigma)$ formula the value 1.

- 13. (1 point) Let A be a σ -structure. Which of the following statements are true?
 - If $A^*(\neg \phi) = 1$, then $A^*(\phi) = 0$.
 - \square If $A^*(\phi \lor \psi) = 1$, then $A^*(\phi) = 1$.
 - If $A^*(\phi \to \psi) = 0$, then $A^*(\phi) = 1$.
 - If $A^*(\phi \to \psi) = 0$, then $A^*(\psi) = 0$.
- 14. (1 point) Which of the following statements are correct?
 - A σ -structure A is a model of ϕ if $A^*(\phi) = 1$.
 - \blacksquare $\Gamma \models \phi$ if every model of Γ is a model of ϕ .
 - \square A σ -structure A is a model of ϕ if A(p) = 1 for each atomic proposition p occurring in ϕ .
 - \Box $\Gamma \models \phi$ if each formula $\gamma \in \Gamma$ has a model A which is also a model for ϕ .
- 15. (1 point) Which of the following statements are correct?
 - \square Soundness means that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$.
 - Soundness means that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$.
 - Completeness means that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$.
 - \square Completeness means that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$.

Set Theory

- 16. (1 point) Which of the following are valid set-theoretic identities?
 - $\Box A \setminus B = B \setminus A$
 - $\blacksquare \ A \cup (B \cap \emptyset) = A$
 - $\square \ A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$
 - $\blacksquare \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 17. (2 points) Which of the following are axioms of ZFC?
 - \square Every nonempty family of sets has an \subseteq -minimal element.
 - $\hfill\Box$ Every nonempty family of sets has a choice function.
 - For any set X, there is a set $\bigcup X$.
 - \square For any set X, there is a set $\bigcap X$.
 - \square For any set p and any formula $\Phi(x,p)$, there is a set $\{x:\Phi(x,p)\}$.
 - For any sets X, Y, there is a set $\{X, Y\}$.
 - \square If a class F is a function and X is another class, then F(X) is a set.
 - For any sets X, p and any formula $\Phi(x,p)$, there is a set $\{x \in X : \Phi(x,p)\}$.

- 18. (1 point) Which of the following are consequences of the regularity axiom?
 - \square There is no infinite sequence of sets $X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots$
 - There is no set X satisfying $X \in X$.
 - There is no infinite sequence of sets $X_0 \ni X_1 \ni X_2 \ni \dots$
 - \square There is no infinite sequence of sets $X_0 \in X_1 \in X_2 \in \dots$

Essential Haskell questions

- 19. (2 points) Which of the following commands produce the list [0,1,2,3]?
 - \Box [0]:[1,2,3]
 - \blacksquare 0: [1,2,3]
 - **[**0..3]
 - \square [x | x in N, x < 4]
 - \Box [0,1,2] ++ 3
 - \blacksquare [x | x <- [0..100], x < 4]
 - take 4 [0..]
 - \Box [0,1,2] ++ [2,3]
- 20. (1 point) Which of the following commands return 4?
 - \blacksquare head [x^2 | x <- [2,4,6]]
 - □ (1 :: Int) + (2 :: Integer)
 - **(**+) 1 3
 - □ 1 (+) 3
- 21. ($\frac{1}{2}$ point) What is the correct way to define a pair (single choice)?
 - A. pair 1 2
 - B. [1,2]
 - C. (1,2)
 - D. $\{1,2\}$
- 22. (1 point) What is the type signature of max (single choice)?
 - A. max :: Eq a => a -> a -> a
 - B. max :: Ord a => a -> a -> a
 - $C. max :: Ord a \Rightarrow (a \rightarrow a) \rightarrow a$
 - D. max :: (Ord a, Ord b) => a -> b -> a
- 23. $(\frac{1}{2} \text{ point})$ What typeclass allows you to convert its members to strings (single choice)?
 - A. String B. Print C. Display D. Show

```
24. (1 point) Which of the following are correct signatures for f x y = x + y?
          ☐ f :: Int -> Integer -> Int
          ■ f :: Num a => a -> a -> a
          \Box f :: (Num a, Num b) => a -> b -> a
          ■ f :: Int -> Int -> Int
25. (1 point) Which of the following are correct signatures for f(x,y) = x + y?
          \Box f :: Num a => (a -> a) -> a
          ■ f :: Num a => (a,a) -> a
          \Box f :: Num a => a -> a -> a
          \Box f :: Num (a,a) => a -> a
26. (1 point) Which of theses patterns will match every list with at least two elements?
   \square x: [y,xs] \square [x,y] ++ xs \blacksquare (x:y:xs) \square [x,y,xs]
27. (1 point) Which of the following functions are syntactically correct?
          \Box f x y | x = y = True
                    | otherwise = False
          \Box f x y = | x = y = True
                      | otherwise = False
          \blacksquare f x y | x == y = True
                    | otherwise = False
          \Box f x y = | x == y = True
                      | otherwise = False
28. (1 point) Which of the following expressions return [1,4,9]?
          \blacksquare map (^2) [1,2,3]
          \Box all (^2) [1,2,3]
          \Box filter (\x -> x 'in' [1,4,9]) [1..10]
```

■ filter ($\x -> x \text{ 'elem' } [1,4,9]$) [1..10]

- 29. (2 points) Which of the following expressions return True?
 - \Box if False then True else False
 - if True then True else False
 - and [True, True]
 - □ or []
 - \Box any (<3) [4,5]
 - and []
 - all (<3) [0,1]
 - ☐ filter (== True) [True, False]

Advanced questions

30. (4 points) Prove the following using natural deduction. Indicate what rules you are using in each step.

(a)
$$\vdash (\phi \rightarrow (\phi \lor \psi))$$

Solution:

$$\frac{\cancel{\phi}}{(\phi \lor \psi)}^{(\lor I)} \xrightarrow{(\to I)}$$

(b) $\{(\neg(\phi \to \psi))\} \vdash (\neg\psi)$

Solution:

$$(\rightarrow I) \frac{\cancel{\not b}}{(\phi \lor \psi)} \qquad (\neg(\phi \to \psi)) \\ \frac{\bot}{(\neg\psi)} (\neg E)$$

31. $(1 \frac{1}{2})$ points) Consider the following (fictitious) natural deduction rule:

$$\frac{\frac{\Gamma}{\vdots}}{\frac{(\phi \to \psi)}{(\phi \to \chi)}} \frac{\frac{\Delta}{\vdots}}{\frac{(\psi \to \chi)}{(\phi \to \chi)}}$$

Write down the corresponding sequent rule:

Solution: If $\Gamma \vdash (\phi \to \psi)$ and $\Delta \vdash (\psi \to \chi)$ then $\Gamma \cup \Delta \vdash (\phi \to \chi)$.

32. (2 points) Argue from scratch using the ZFC axioms that the symmetric difference $X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$ of two sets X, Y is a set:

Solution: Let X, Y be sets. By separation $X \setminus Y := \{x \in X : x \notin Y\}$ is a set. Similarly, $Y \setminus X$ is a set. By pairing $\{(X \setminus Y), (Y \setminus X)\}$ is a set. Finally, by union $\bigcup \{(X \setminus Y), (Y \setminus X)\} = (X \setminus X) \cup (Y \setminus X)$ is a set.

- 33. (2 points) Let $R \subseteq X \times X$ be relation on X. Which of the following are true?
 - \square If R is reflexive, then $R \circ R \subseteq R$.
 - If R is reflexive, then $R \subseteq R \circ R$.
 - If R is transitive, then $R \circ R \subseteq R$.
 - \square If R is transitive, then $R \subseteq R \circ R$.
- 34. (1 point) Which of the following expressions returns 3 (single choice)?
 - A. foldr (x acc acc) 0 [1,2,3]
 - B. foldr (\x acc -> x) 0 [1,2,3]
 - C. foldl (\acc x -> x) 0 [1,2,3]
 - D. foldl (\acc x -> acc) 0 [1,2,3]

35. (2 points) Write a safe division function using Maybe (without type signature).

```
Solution:

safeDiv x 0 = Nothing
safeDiv x y = Just (x / y)
```