Vector Spaces of linear transformation Lot V and W be two voctor spaces L(V,W) = {T | T:V > W is a linear townsformation} FOO SITE L(V, W) define SIT and kS pà (S+T)(r) = S(r) + T(r)(kS)(0) = kS(0)clearly S+T, kS are linear transformation from V to W. Hono L(V, W) is a real Vedor Spice. Klote: If V=Rh, W= Rm then L(Rh, Rm)

is isomorphic to Mmxn (R).

Let V and W be Vedor spaces with bases of and B - Let T, S: V -> W be a linear transformation. Then $(i) \left[T+S\right]^{\sharp} = \left[f\right]^{\sharp} + \left[S\right]^{\sharp}$ $(ii) [ks]^{\beta} = k[s]^{\beta}$ If Sis invertible then [5] = ([5]B) Theorem 2: Let V, W and Z be vector spaces with bases a, if and & respectively, Suppose that S: V-) w and T: W-> Z are linear transformation then [ToS] = [T] [S]B (ToS)(b) = T(S(b))

Pbil T:
$$\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$$
 and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be linear transformations defined by $T_{1}(x_{1}y_{1}z) = (3x_{1}y_{1}+z)$
 $T_{2}(x_{1}y_{1}z) = (2x-3z_{1}y_{1})$

Find (a) $T_{1}+T_{2}$ (b) $5T_{1}$ (c) $4T_{1}-5T_{2}$

(d) $T_{0}T_{2}$ and $T_{2}\circ T_{1}$ if possible $\frac{50|r-}{(4)(T_{1}+T_{2})(x_{1}y_{1}z)} = T_{1}(x_{1}y_{1}z) + T_{2}(x_{1}y_{1}z_{1})$
 $= (3x_{1}y+z) + (2x-3z_{1}y_{1})$
 $= (5x-3z_{1}, 2y+z_{1})$

(b) $5T_{1}(x_{1}y_{1}z_{1}) = 5(3x_{1}y+z_{1}) = (15x_{1}, 5y+5z_{1})$

(c) $(4T_{1}-5T_{2})(x_{1}y_{1}z_{1}) = (4T_{1})(x_{1}y_{1}z_{1}) - (5T_{2})(x_{1}y_{1}z_{1})$
 $= 4(3x_{1}y+z_{1}) - (5T_{2})(x_{1}y_{1}z_{1})$
 $= (2x_{1}x_{1}+x_{2}) - (10x_{1}x_{1}+x_{2})$
 $= (2x_{1}x_{1}+x_{2}) - (10x_{1}x_{1}+x_{2})$

Since \mathbb{R}^{3} and \mathbb{R}^{2} are not related

since \mathbb{R}^3 and \mathbb{R}^2 are not relater to T_0 T_2 , T_2 oT, is not possible.

Phi2 Let
$$T: \mathbb{R}^{3} \to \mathbb{R}^{3}$$
 by $T(\mathcal{H}|y|z) = (2\chi_{1}^{2}y_{1}^{4}z)$

G: $\mathbb{R}^{2} \to \mathbb{R}^{3}$ by $G(\mathcal{H}|y|z) = (5z_{1}^{4}y_{1}^{4}x_{1}^{4}y_{1}^{4})$

Find (i) $[T+G]_{\chi}$ (ii) $[T-G]_{d}$ (iii) $[ST]_{\chi}$

(iv) $[T^{-1}]_{q}$ (v) $[T_{0}G]_{\chi}$ (vi) $[G_{0},T]_{\chi}$

Where χ is the standard basis of \mathbb{R}^{3} .

Soln: $\chi = \{(1,0,0), (0,1,0), (0,0,1)\}$
 $T((1,0,0) = (2,0,0)$
 $T((0,1,0) = (0,1,0)$
 $G((1,0,0) = (0,1,0)$
 $G((1,0,0) = (0,1,0)$
 $G((0,0,1) = (0,1,0)$

(d)
$$[T^{-1}]_{\alpha} = [T]_{\alpha}^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$$

(e) $[T_{0}G]_{\alpha} = [T_{0}^{-1}G]_{\alpha} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 & 10 \\ 3 & 12 & 0 \\ 0 & 4 & 0 \end{bmatrix}$$

(f) $[G_{0}T]_{\alpha} = [G_{0}^{-1}G]_{\alpha} = \begin{bmatrix} 0 & 0 & 5 \\ 1 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix}$

$$= \begin{bmatrix} 0 & 0 & 20 \\ 2 & (2 & 0) \\ 0 & 3 & 0 \end{bmatrix}$$