- 10.4.1) Identify which are compact and which are not. If not compact, find smallest compact set H such that $E \subset H$.
 - (a) $\left\{\frac{1}{k}: k \in \mathbb{N}\right\} \cup \{0\}$ Compact
 - (b) $\{(x,y) \in \mathbb{R}^2 : a \le x^2 + y^2 \le b\}, \ 0 < a < b$ Compact
 - (c) $\{(x,y) \in \mathbb{R}^2 : y = sin\left(\frac{1}{x}\right) \quad for some x \in (0,1]\}$ Not Compact. $\{y = sin\left(\frac{1}{x}\right) | x \in (0,1]\} \cup \{(0,0)\}$
 - (d) $\{(x,y) \in \mathbb{R}^2 : |xy| \le 1\}$
- 10.4.2) Let $A, B \subseteq X$ be compact subsets. Prove $A \cup B$ and $A \cap B$ are compact.
 - (a) $A \cap B \subseteq A$ is closed subset and is therefore compact by 10.45
 - (b) Let $\mathcal{C} = \{U_{\alpha}\}$ be an open cover for $A \cup B$. Then \exists finite subsets $\mathcal{C}', \mathcal{C}'' \subset \mathcal{C}$ covering A, B, respectively. Then $\mathcal{C}' \cup \mathcal{C}''$ cover $A \cup B$.
- 10.4.3) Suppose that $E \subseteq \mathbb{R}$ is compact and non-empty. Prove $\sup E$, $\inf E \in E$.

Since E compact, E is closed. \exists a sequence $\{x_n\} \to supE$, since every neighborhood of supE intersects E. But E being closed implies $supE \in E$. Similarly, $infE \in E$.

10.4.5) Prove that if V open in separable (X, ρ) , then \exists open balls B_1, B_2, \dots s.t.

$$V = \bigcup_{j \in \mathbb{N}} B_j.$$

Prove every open set in \mathbb{R} is a countable union of open intervals.

Let $Z \subset X$ be a countable subset of X. For all $v \in V$, $\exists B(v) \subset V$ containing v. But seperability says $\exists \{x_{\alpha}\} \subset Z$ converging to v. So we choose some $x_j \in \{x_{\alpha}\} \cap B(v)$.

Now we have that

$$v = \bigcup_{v \in V} B_{\varepsilon_v}(v) = \bigcup_{j \in \mathbb{N}} B_j$$

- 10.4.6) Suppose (X, ρ) is separable and satisfies Bolzano-Weierstrass Property (BWP), that Y complete, and $E \subseteq X$ bounded. Prove $f: E \to Y$ uniformly continuous on E iff f can be extended to \overline{E} .
 - (\Rightarrow) We extend f to g by defining $g(x) = f(x) \ \forall \ x \in E$ and $g(x) = \lim \{f(x_i)\} \ \forall \ x \in \partial E$, where $\{x_i\}$ is any sequence converging to x.

10.4.7) Suppose (X, ρ) satisfies BWP and that $A, B \subseteq X$ compact subsets. Prove that if $A \cap B = \emptyset$ and if

$$dist(A, B) := inf \{ \rho(x, y) : x \in A, y \in B \}$$

then dist(A, B) > 0. Show that even in \mathbb{R}^2 , \exists subsets A, B which are closed and satisfy $A \cap B = \emptyset$, but dist(A, B) = 0.

Suppose dist(A, B) = 0. $\forall x_0, y_0, \exists x$

10.4.8) (a) Prove if $H_1, H_2, ...$ is a nested sequence of nonempty compact sets in X, then

$$\bigcap_{k=1}^{\infty} H_k \neq \emptyset$$

 (\Rightarrow) Suppose $H_1 \supset H_2 \supset H_3 \supset \dots$ and suppose for the sake of contradiction that

$$\bigcap_{k=1}^{\infty} H_k = \emptyset.$$

We have that

$$X = X - \emptyset = X - \bigcap_{k=1}^{\infty} = \bigcup_{k=1}^{\infty} H_i^c$$

Therefore $\mathcal{H} := \{H_i^c\}$ covers H_1 . Since the H_i^c are nested, we can pick some H_N^c that covers H_1 . But this is contradiction because

$$H_N^c \cap H_N = \emptyset$$

 $H_1 \subseteq H_N^c \Rightarrow H_1 \cap H_N = \emptyset$. Contradicting $H_N \subseteq H_1$. Therefore,

$$\bigcap_{k=1}^{\infty} H_k \neq \emptyset.$$

- (b) Prove that $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ closed and bounded but not compact in metric space \mathbb{Q} .

 I don't know
- (c) Show that Cantor's Intersection Theorem does not hold in an arbitrary metric space if compact is replaced by closed and bounded.

I dont know

- 10.4.9) Prove that the BWP does not hold for $(\mathcal{C}[a,b], ||f||)$.
 - (\Rightarrow) Show by counter-example. Let $f_n(x) := x^n$ on $\mathcal{C}[0,1]$. The sequence $\{f_n\}$ is bounded as each f_n is bounded by 1 relative to the zero function f_0 .

Now,

$$f_n \to 0 \quad \forall x \in [0, 1), n \in \mathbb{N}$$

and

$$f_n = 1$$
 $x = 1, n \in \mathbb{N}$

Thus the sequence converges to a piecewise function which is not in $\mathcal{C}[0,1]$

$$f_n \to f = \begin{cases} 1 & x \in [0, 1) \\ 0 & x = 1 \end{cases}$$

and therefore $\not\equiv$ convergent subsequence in $\mathcal{C}[0,1]$.

- 10.4.10) Let (X, ρ) metric space.
 - (a) Prove $E \subseteq \text{compact} \to E$ sequentially compact (\Rightarrow) Let $E \subseteq X$ be compact and $\{x_n\}$ be a sequence in E. Since E compact, it is closed and bounded. Then \exists a convergent subsequence $\{x_{n-k}\} \to x$. By closure, $x \in E$ and therefore $x \in E$. Thus E is sequentially compact.
 - (b) Prove if X separable and satisfies BWP, then

$$E \subseteq X$$
 sequentially compact $\iff E$ compact.

 (\Rightarrow) Suppose E sequentially compact. By problem 10.1.10, sequentially compact implies closed and bounded. By Heine-Borel, that is equivalent to compact (since X separable and BWP).