Sprawozdanie z ćwiczenia pierwszego Algorytmy Geometryczne

Iwo Szczepaniak, Windows 11 – 4,2GHz

1) Wstęp

Celem ćwiczenia jest losowe wygenerowanie zadanych punktów, ich wizualizacja i sprawdzenie położenia względem prostej AB(na lewo, na prawo, na prostej), dzięki wykorzystaniu wyznacznika macierzy 2x2 lub 3x3(we własnej implementacji oraz w wersji bibliotecznej numpy) z ustaloną tolerancją odchylenia od 0.

Wizualizacja i zliczanie punktów było badane pod dwoma kątami –zmiennej tolerancji ze stałą metodą(w czterech wersjach) i zmiennej metody ze stałą tolerancją(w czterech wersjach), co umożliwiło dokładną analizę wpływu tych czynników na wyniki.

2) Słowniczek

Metody wyliczania położenia punktu:

V1 -> wyznacznik macierzy 3x3, własna implementacja

V1 biblioteczne -> wyznacznik macierzy 3x3, biblioteka numpy

V2 -> wyznacznik macierzy 2x2, własna implementacja

V2 biblioteczne -> wyznacznik macierzy 2x2, biblioteka numpy

Tolerancja dla zera:

1 -> 1e-10

2 -> 1e-14

3 -> 1e-16

4 -> 1e-18

Zastosowane programy:

Jupyter – wizualizacja punktów PyCharm – zliczanie punktów Excel – tworzenie tabel i wykresów

3) Generowanie, wizualizacja i zliczanie punktów

W dwóch pierwszych podpunktach punkty są generowane całkowicie losowo - obie zmienne są losowane osobno. W trzecim podpunkcie losowany jest kąt na okręgu(wykorzystywany w obu zmiennych), a w czwartym podpunkcie losowana jest jedna zmienna(x) i na podstawie wzoru prostej AB wyliczana jest druga zmienna.

```
# podpunkt a, analogicznie podpunkt b
for i in range(10 ** 5):
    c = (random.uniform(-1000.0, 1000.0), random.uniform(-1000.0, 1000.0))
# podpunkt c
r = 100
for i in range(1000):
    alfa = random.uniform(0, 2 * pi)
    c = (r * sin(alfa), r * cos(alfa))
# podpunkt d
for _ in range(1000):
    x = random.uniform(-1000.0, 1000.0)
    c = (x, x / 20 + 1 / 20)
```

Generowanie losowych punktów

Ze względu na czytelność, zdecydowano, że każde z zadań wyświetlane jest osobno. W celu wybrania podpunktu zadania należy wprowadzić literę podpunktu jako string do zmiennej task.

W wizualizacji każda z tolerancji lub metod zaznaczona jest innym kolorem(w celu rozróżnienia poszczególnych scen zastosowano różne kolory dla prawej i lewej strony, punkty na linii zawsze oznaczane są czarnym).

Wyniki w tabelach uzyskano wykorzystując tę samą metodę generowania punktów, ale wykorzystywana jedynie do otrzymania liczności danego zbioru. W celu zmniejszenia niedokładności pojedynczych losowań - powstawania mało reprezentatywnych danych - zdecydowano się na wyliczenie średniej z 10 pomiarów dla poszczególnych wartości tolerancji.

4) Czasochłonność

Analizując czasochłonność metod, jasno widać, że biblioteczne funkcje znaczenie odstają pod kątem wydajności od tych implementowanych samodzielnie. Przyjęta metoda wyliczania 10 powtórzeń sprawiła znaczne wydłużenie czasu i tym większe spotęgowanie efektu.

5) Wizualizacja zadań a, b i c

Zad b metoda v1

Zad b metoda v1 biblioteczna

Zad b metoda v2

Zad b metoda v2 biblioteczna

Zad c metoda v1

Zad c metoda v2

Zdecydowano się nie umieszczać zadania a z powodu dużego podobieństwa do zadania b, a znacznie mniej interesujących wyników. Podobnie w zadaniu c – dalsze wizualizacje wyglądają identycznie i nie przekazują żadnych nowych informacji.

6) Dane do zadań a, b i c

V1_biblio					
Zadanie a					
	Tolerancja	1.00E-10	1.00E-14	1.00E-16	1E-18
	Prawo	50025.9	50025.9	50025.9	50025.9
	Lewo	49974.1	49974.1	49974.1	49974.1
	Na Linii	0	0	0	0
Zadanie b	.	4 005 40	4.005.44	1 005 15	45.40
	Tolerancja				1E-18
	Prawo	49991.9			
	Lewo Na Linii	50008.1	50008.1	50008.1	50008.1
Zadanie c					
	Tolerancja	1.00E-10	1.00E-14	1.00E-16	1E-18
	Prawo	505.9	505.9	505.9	505.9
	Lewo	494.1	494.1	494.1	494.1
	Na Linii	0	0	0	C

W tych trzech zadaniach nie zauważono żadnej różnicy w wynikach dla wybranych tolerancji dla zera(na ilustracji przykładowo metoda v1 biblioteczna).

Tolerancja		1E-16			
Zadanie a					
	Metoda	v1	v1 biblio	v2	v2 biblio
	Prawo	49969.9	49969.9	49969.9	49969.9
	Lewo	50030.1	50030.1	50030.1	50030.1
	Na Linii	0	0	0	0
Zadanie b	Metoda	v1	v1 biblio	v2	v2 biblio
	Prawo	49978.5	49978.5	49974.8	49974.3
	Lewo	50021.5	50021.5	50018.1	50018.9
	Na Linii	0	0	7.1	6.8
Zadanie c					
	Metoda	v1	v1 biblio	v2	v2 biblio
	Prawo	499.1	499.1	499.1	499.1
	Lewo	500.9	500.9	500.9	500.9
	Na Linii	0	0	0	0

Tabela z wynikami dla przykładowej tolerancji 1e-16

Nie zauważono też większej różnicy między metodami v1 a v2 oraz między funkcjami bibliotecznymi a tymi implementowanych samodzielnie.

Wnioski: Prawdopodobną przyczyną braku różnicy w wynikach jest brak punktów na linii lub bardzo blisko niej przy tak dużym rozrzucie punktów w tych zadaniach.

7) Zadanie d

Wykresy przedstawiające podział punktów w zadaniu d w zależności od metody i implementacji

W zadaniu d widać znaczące różnice w wyliczaniu położenia punktów w zależności od metody i od tego jak była implementowana. Dla najmniejszej tolerancji obie metody wzorcowo przydzielają punkty do kategorii "na linii". Dla większej "dokładności" 1e-14 mniej pomyłek zwraca funkcja v1. Jednak ilość błędnie przydzielonych przez nią punktów szybko rośnie między 1e-14 a 1e-16. Dlatego w następnych dwóch dokładnościach lepiej wypada metoda v2, której ilość błędnie przydzielonych punktów zdaje się być na podobnym poziomie w trzech ostatnich dokładnościach.

We wszystkich przypadkach, gdzie pojawiają się błędnie przydzielone punkty - funkcje biblioteczne fałszują wynik o około 10% więcej punktów, niż w przypadku implementacji własnej.

Analizując różnice między różnymi metodami dla konkretnych tolerancji również można zaobserwować lepsze wyniki v1 przy 1e-14, a gorsze przy dwóch "dokładniejszych" tolerancjach.

8) Wizualizacja zadania d

Różnice między tolerancjami w obrębie jednej metody (podobne wyniki dla wszystkich metod – tu v2)

Różnice między metodami w obrębie jednej metody (podobne wyniki dla wszystkich tolerancji – tu 3)

Co interesujące, punkty błędnie przydzielane zdają się kumulować w grupy.

9) Wnioski

W pierwszych trzech zadaniach występuję bardzo małe zagęszczenie punktów przy prostej, stąd różnice w podziale punktów de facto nie występują(z małym wyjątkiem dla v1/v2 w zadaniu b, gdzie jednak odchylenia nie przekraczają 0,5 punktu). Dla zadania d różnice są widoczne, gdyż wszystkie punkty leżą na linii AB. Przy bardzo niskiej tolerancji znacząca część punktów jest wykrywana jako leżące po lewej bądź prawej stronie.

Istnieją dwie istotne granice w dokładności obliczeniowej – pierwsza między 1e-10 a 1e-14, gdzie z linii prostej w zadaniu d zaczynają być wyłapywane pierwsze punkty jako nienależące do niej oraz druga - między 1e-14 a 1e-16, gdzie metoda v1 staje się mniej dokładna niż v2. To może sugerować, że pierwsza granica stanowi miejsce bliskie dokładności obliczeniowej - "ucinanie" liczb po przecinku zaczyna być istotnym problemem. Pojawienie się drugiej granicy prawdopodobnie ilustruje różnice obliczeniową między dodawaniem a mnożeniem uciętych liczb(v1 – więcej mnożeń, v2 – więcej dodawań).

Metody biblioteczne są mniej dokładne(o około 10%) i znacznie wolniejsze(parokrotna różnica) niż te własnoręcznie zaimplementowane.