МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №7

по дисциплине «Вычислительная математика»

Тема: Исследование обусловленности задачи решения систем линейных уравнений

Студент гр. 0304

Крицын Д. Р.

Преподаватель

Попова Е. В.

Санкт-Петербург

Цель работы: Изучение стандартной обусловленности задач решения систем линейных уравнений при различных вариантах неточных входных данных.

Основные теоретические положения.

Рассматривается система линейных уравнений n-го порядка с вещественными коэффициентами (1)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.$$

В матричной форме записи эта система принимает вид (2)

$$AX = B$$

$$A = \begin{bmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}, B = \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}, \tag{2}$$

где A — квадратная матрица коэффициентов системы, X — вектор решений системы, B — вектор свободных членов. Матрица A — невырожденная, тогда решение системы (1) существует, единственно и устойчиво по входным данным. Это означает, что задача нахождения вектора X — корректна.

Пусть
$$X^* = \begin{bmatrix} x^*_{-1} \\ \dots \\ x^*_{-n} \end{bmatrix}$$
 — приближенное решение системы, тогда $e = X - X^*$

называется вектором погрешности системы, необходимо стремиться к его уменьшению. Возможно рассматривать критерий малости вектора $r = B - AX^* = B - B^* = A(X - X^*)$, который называется невязкой системы. Эти вектора связаны $e = X - X^* = A^{-1}r$.

Удобной количественной характеристикой вектора является норма вектора. В вычислительной математике используются следующие три нормы:

$$||x||_1 = \sum_{i=1}^n |x_i|, ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$
 (3)

За норму матрицы принимают максимальную величину, на которую преобразование, описываемое матрицей, может растянуть любой ненулевой вектор в выбранной норме $||A|| = max_{x\neq 0} \frac{||Ax||}{||x||}$. Векторным нормам соответствуют следующие нормы матрицы:

$$||A||_1 = max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|, (4)$$

 $||A||_2 = max_{1 \le j \le n} \sqrt{\lambda_i(A^T A)},$

$$||A||_{\infty} = max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|,$$

где λ_i — собственные числа матрицы A. Задача вычисления вектора X может быть плохо или хорошо обусловлена.

Обусловленность задачи решения систем линейных алгебраических уравнений.

Рассмотрим случай, когда элементы матрицы A заданы точно, а векторстолбец свободных членов — приближенно. Оценки для абсолютной и относительной погрешности (5)

$$\Delta(X^*) \leq v_{\Delta} \Delta(B^*),$$

 $\delta(X^*) \leq v_{\delta} \delta(B^*),$

где $v_{\Delta} = \|A^{-1}\|$ - абсолютное число обусловленности, а $v_{\delta} = \|A^{-1}\| \frac{\|B\|}{\|X\|}$ — относительное число обусловленности (естественное число обусловленности). Максимальное естественное число обусловленности

$$\max_{x \neq 0} v_{\delta}(X) = \max_{x \neq 0} ||A^{-1}|| \frac{||AX||}{||X||} = ||A^{-1}|| \cdot ||A|| = cond(A)$$
 (6)

называют стандартным числом обусловленности.

$$\delta(X^*) \leq cond(A)\delta(B^*).$$

Если элементы матрицы A заданы приближенно и равны A^* , а векторстолбец свободных членов — точно, тогда оценка относительной погрешности (7)

$$\delta\left(X^{*}\right) \leq cond\left(A\right)\delta\left(A^{*}\right),$$
 где $\delta\left(X^{*}\right) = \frac{\left\|X - X^{*}\right\|}{\left\|X\right\|}$ и $\delta\left(A^{*}\right) = \frac{\left\|A - A^{*}\right\|}{\left\|A\right\|}.$

Если с погрешностью заданы как коэффициенты матрицы, так и элементы вектора свободных членов, то справедливо неравенство

$$\delta(X^*) \leq cond(A)(\delta(A^*) + \delta(B^*)). \tag{8}$$

Использование wxMaxima для подсчета обратной матрицы

Матрица A — невырожденная, следовательно существует единственная обратная матрица A^{-1} . Для ее подсчета используется пакет системы компьютерной алгебры wxMaxima. Входная матрица задаётся с помощью выражения **matrix**(*cmp1*, *cmp2*, ... *cmpN*), а обратная получается с помощью функции **invert**(M) (рисунок 1)

Pисунок I-Bычисление обратной матрицы c помощью функции invert

Порядок выполнения работы.

- 1 Составить подпрограмму для решения системы линейных уравнений методом Гаусса и методом обратной матрицы.
- 2 Решить систему, подсчитать стандартное число обусловленности, используя тип данных с двойной точностью. Подсчет обратной матрицы производить с помощью системы компьютерной алгебры wxMaxima.
- 3 С помощью встроенной функции генератора случайных чисел, добавить ошибки в вектор свободных членов. Найти решение новой системы, стандартное число обусловленности (6) и оценку стандартного числа обусловленности (7).
- 4 С помощью встроенной функции генератора случайных чисел, добавить ошибки в значения элементов матрицы. Найти решение новой системы, стандартное число обусловленности и оценку стандартного числа обусловленности.
- 5 Добавить ошибки в значения элементов матрицы и вектора свободных членов. Найти решение новой системы, стандартное число обусловленности и оценку стандартного числа обусловленности.
 - 6 Сделать выводы по полученным значениям.

Выполнение работы.

Условие задания:

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -1 & -7 \\ 3 & 4 & 2 \end{bmatrix}.$$

- 1. Составлена программа, решающая СЛУ методом Гаусса и методом обратной матрицы, которая также вносит возмущения в вектор свободных членов и матрицу А. Также для данной программы была составлена в дальнейшем используемая подпрограмма для получения обратной матрицы.
- 2. При помощи составленной программы была решена исходная система уравнений. Результаты приведены на Рисунке 1.

```
Эталонная СЛУ

1 3 -2 | -15

3 -1 -7 | 2

3 4 2 | 4

Вектор решений метода Гаусса: X = [6 -5 3]

Вектор решений метода обратной матрицы: X = [6 -5 3]

Стандартное число обусловленности: cond(A) = 2.63529

Абсолютное число обусловленности: \mathbf{v}_{-}\Delta = 0.376471

Естественное число обсусловленности: \mathbf{v}_{-}\Delta = 0.564706

Рисунок I — результаты решения эталонной СЛУ
```

3. С помощью генератора случайных чисел были добавлены ошибки в вектор свободных членов В. При этом величина ошибки генерировалась таким образом, чтобы по модулю не превысить 0.2. Результаты работы программы приведены на Рисунке 2.

```
AX = B*
1 3 -2 | -14.8104
3 -1 -7 | 1.88286
3 4 2 | 4.09706
Вектор решений метода Гаусса: X = [5.94898 -4.9299 2.98486]
Вектор решений метода обратной матрицы: X = [5.94898 -4.9299 2.98486]

Стандартное число обусловленности: cond(A) = 2.63529
Абсолютное число обусловленности: \mathbf{v}_{-}\Delta = 0.376471
Естественное число обсусловленности: \mathbf{v}_{-}\delta = 0.564563
Оценка стандартного числа обусловленности: cond(A) >= \mathbf{\delta}(X*) / \mathbf{\delta}(B*) = 0.136254 / 0.403759 = 0.337465
```

Рисунок 2 — результаты решения СЛУ с внесением ошибок в вектор В Решения методами Гаусса и обратной матрицы полностью совпали. Как и ожидалось, произошли небольшие изменения в значении естественного числа обусловленности: $\Delta v_{\delta} = -0,000143$.

При этом абсолютная погрешность вектора решений составила $\Delta X^* = ||X^* - X|| = 0,13626$.

4. Теперь с помощью генератора случайных чисел добавим ошибки в матрицу коэффициентов линейного уравнения А. Модуль величины ошибки всё так же не превышает 0.2. Результаты работы программы приведены на Рисунке 3.

```
A*X=B
0.948247 2.99621 -1.98941 | -15
2.99395 -0.869252 -7.05331 | 2
3.09652 4.06984 2.1837 | 4
Вектор решений метода Гаусса: X=[5.86126 -4.98938 2.81929]
Вектор решений метода обратной матрицы: X=[5.86126 -4.98938 2.81929]
Стандартное число обусловленности: cond(A)=2.5191
Абсолютное число обусловленности: v\_\Delta=0.357892
Естественное число обсусловленности: v\_\delta=0.5498
Оценка стандартного числа обусловленности: cond(A)>=5(X*)/5(A*)=0.330071/0.196797=1.67722
```

Рисунок 3 — результаты решения СЛУ с внесением ошибок в матрицу A Векторы решений методов Гаусса и обратной матрицы снова совпали. Произошли небольшие изменения в стандартном, абсолютном и естественном числах обусловленности: $\Delta cond(A) = -0,11619$; $\Delta v_{\Delta} = -0,018579$; $\Delta v_{\delta} = -0,014906$.

Абсолютная погрешность вектора решений составила $\Delta X^* = ||X^* - X|| = 0,33007$.

5. С помощью генератора случайных чисел возмутим как матрицу коэффициентов, так и вектор свободных членов. Результаты работы программы приведены на Рисунке 4.

A*X=B*

0.965645 3.04363 -2.19351 | -14.8555

```
2.89479 -1.04274 -6.88195 | 1.80343
3.19996 3.8981 2.18872 | 4.11598
Вектор решений метода Гаусса: X = [5.15075 -4.63616 2.607]
Вектор решений метода обратной матрицы: X = [5.15075 -4.63616 2.607]

Стандартное число обусловленности: cond(A) = 2.44257
Абсолютное число обусловленности: v_∆ = 0.345953
Естественное число обсусловленности: v_₺ = 0.579892
Оценка стандартного числа обусловленности: cond(A) >= ₺(X*) / (₺(A*) + ₺(B*)) = 1.60608 / (0.113268 + 0.457099) = 2.81588
```

Рисунок 4 — результаты решения СЛУ с внесением ошибок в матрицу A и вектор B Видно, что произошли изменения такого же масштаба во всех трёх числах обусловленности: $\Delta \, cond \, (A) = -\, 0,19272$; $\Delta \, \nu_\Delta = -\, 0,030518$; $\Delta \, \nu_\delta = 0,015186$. Абсолютная погрешность решения СЛУ составила $\Delta \, X^* = ||X^* - X|| = 1,60609$.

Вывод: наибольшее естественное число обусловленности из всех неточных v_{δ} =0,579892 было получено при одновременном изменении вычислений матрицы коэффициентов А и вектора свободных членов В, а наименьшее — при v_{δ} =0,5498 . Наимеьшнее изменении лишь A: абсолютное обусловленности было достигнуто (среди систем с матрицей коэффициентов А*) при одновременном возмущении A и B: v_{Λ} =0,345953 , наибольшее — при возмущении лишь матрицы A: $v_{\Lambda} = 0.357892$. При этом во всех случаях было v_{δ} < cond(A) . При возмущении как матрицы A, так и верным неравенство вектора В абсолютная погрешность доистгает своей наибольшей абсолютной погрешности.

При этом только при возмущении как A, так и B, оценка стандартного числа обусловленности оказалась ложной (видимо, из-за больших результирующих погрешностей).

Исследование обусловленности задачи решения СЛУ с матрицей коэффициентов с двумя строками, заменёнными на строки матрицы Гильберта

6. Матрица Гильберта — квадратная матрица размера М х М, определённая

следующим образом:
$$\Gamma = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \dots & \dots & \dots & \dots \\ a_{M1} & a_{M2} & \dots & a_{MM} \end{bmatrix}, a_{ij} = \frac{1}{i+j-1}.$$

Таким образом, заменяя 1 и 3 строки в матрице A:
$$A^* = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 3 & -1 & -7 \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$
.

7. Рассчитаем решение модифицированной СЛУ при помощи реализованной программы. Результаты предоставлены на Рисунке 5.

```
Эталонная СЛУ 1 \quad 0.5 \quad 0.333333 \mid -15 3 \quad -1 \quad -7 \mid 2 0.333333 \quad 0.25 \quad 0.2 \mid 4 Вектор решений метода Гаусса: X = [-80.8875 171.4 -59.4375] Вектор решений метода обратной матрицы: X = [-80.8875 171.4 -59.4375] Стандартное число обусловленности: cond(A) = 22.75 Абсолютное число обусловленности: \mathbf{v}_{\Delta} = 5.25 Естественное число обсусловленности: \mathbf{v}_{\Delta} = 0.353677
```

Рисунок 5 — результаты решения СЛУ с 2мя Гильбертовыми строками Видно, что векторы решений у обоих методов решения СЛУ совпадают.

8. С помощью генератора случайных чисел были добавлены ошибки в вектор свободных членов В. При этом величина ошибки будет сгенерирована таким образом, чтобы по модулю не превысить 0.2. Результаты работы программы приведены на Рисунке 6.

```
AX = B*

1 0.5 0.333333 | -15.1298
3 -1 -7 | 2.02729
0.333333 0.25 0.2 | 4.19112
Вектор решений метода Гаусса: X = [-82.7031 175.703 -60.8342]
Вектор решений метода обратной матрицы: X = [-82.7031 175.703 -60.8342]

Стандартное число обусловленности: cond(A) = 22.75
Абсолютное число обусловленности: v_A = 5.25
Естественное число обсусловленности: v_5 = 0.351079
Оценка стандартного числа обусловленности: cond(A) >= 5(X*) / 5(B*) = 7.51479 / 0.348245 = 21.5791
```

Рисунок 6 — результаты решения СЛУ с 2мя Гильбертовыми строками и возмущённым вектором В

Векторы решений, полученные методами Гаусса и обратной матрицы совпали. Произошли небольшие изменения в значении естественного числа обусловленности: $\Delta v_{\delta} = -0,002598$. Абсолютная погрешность решения СЛУ равна $\Delta X^* = ||X^* - X|| = 7,5153$.

9. С помощью генератора случайных чисел была возмущена матрица коэффициентов СЛУ А. При этом величина ошибки была подобрана по модулю меньше или равной 0.2. Результаты работы программы приведены на Рисунке 7.

```
A* X = B
0.843144  0.608947  0.210303 | -15
2.94121 -0.901493 -7.04017 | 2
0.171596  0.0967543  0.356033 | 4
Вектор решений метода Гаусса: X = [22.7029 -61.9856 17.1378]
Вектор решений метода обратной матрицы: X = [22.7029 -61.9856 17.1378]

Стандартное число обусловленности: cond(A) = 5.89308
Абсолютное число обусловленности: v_∆ = 1.48968
Естественное число обсусловленности: v_ठ = 0.307221
Оценка стандартного числа обусловленности: cond(A) >= 5(X*) / 5(A*) = 413.551 / 0.054208 = 7628.97
```

Рисунок 7 — результаты решения СЛУ с 2мя Гильбертовыми строками и возмущённой матрицей А

Векторы решений методов Гаусса и обратной матрицы снова совпали. Произошли существенные изменения в стандартном, абсолютном и естественном числах обусловленности: $\Delta \, cond \, (A) \! = \! -16,\!85692 \, ; \, \Delta \, \nu_{\Delta} \! = \! -3,\!76032 \, ; \, \Delta \, \nu_{\delta} \! = \! -0,\!046456 \, .$ Впрочем, естественное число обусловленности по-прежнему меньше стандартного числа обусловенности. Абсолютная погрешность вектора решения СЛУ составила $\Delta \, X^* \! = \! \| X^* \! - \! X \| \! = \! 289,\!5801 \, .$

10. С помощью генератора случайных чисел были возмущены как матрица A, так и вектор В. Величина ошибки была подобрана по модулю меньше или равной 0.2. Результаты работы программы приведены на Рисунке 8.

Рисунок 8 — результаты решения СЛУ с 2мя Гильбертовыми строками и возмущёнными матрицей A и вектором B

Векторы решений методов Гаусса и обратной матрицы снова совпали. Произошли серьёзные (но меньшие по величине по сравнению с предыдущим случаем) изменения в стандартном, абсолютном и естественном числах обусловленности: $\Delta \, cond \, (A) = -13,89382; \Delta \, \nu_{\Delta} = -3,38828; \Delta \, \nu_{\delta} = -0,048609.$ Естественное число обусловленности остаётся меньше стандартного числа обусловенности. Погрешность решения СЛУ равна $\Delta \, X^* = ||X^* - X|| = 183,7561.$

Вывод: добавление строк Гильбертовой матрицы в матрицу А хоть и увеличило абсолютное число обусловленности, но естественное (относительное) число обусловленности стало меньше; кроме того, сама система уравнений стала куда более чувствительной к точно таким же по амплитуде возмущениям элементов матрицы А, показывая значительное уменьшение стандартного и абсолютного чисел обусловленности при внесении таких возмущений.

В данных результатах работы программы видно, что минимальное значение естественное число обусловленности принимает при возмущении A и B: v_{δ} =0,305068 , максимальное — при возмущении лишь нетронутого заменой Гильбертовых строк вектора свободных членов B: v_{δ} =0,351079 .

Минимальные стандартные и абсолютные числа обусловленности достигаются при возмущении лишь матрицы A: v_{Δ} =1,48968, cond(A)=5,89308 , а максимальные — при одновременном внесении возмущений в A и B: v_{Δ} =1,86172, cond(A)=8,85618 . При возмущении только матрицы A погрешность решения СЛУ достигает своего максимума, что отражает минимум стандартных и абсолютных чисел обусловленности при данном виде возмущений.

При этом из-за больших погрешностей в результатах решения СЛУ только при отсутствии возмущений в исходных данных СЛУ оценка стандартного числа обусловленности снизу была верной.

Выводы.

Была изучена обусловленность (в различных вариациях) задачи решения системы линейных уравнений при различных вариантах неточности входных данных (возмущениях на небольшие случайные значения матрицы коэффициентов системы A, вектора свободных членов B, и одновременно A и B).

Изменение элементов вектора свободных членов приводит к наименьшему изменению числа обусловленности v_{δ} (и только его), в то время как возмущение матрицы коэффициентов СЛУ А приводит к наибольшему изменению всех чисел обусловленности. При одновременном изменении А и В изменение чисел обусловленности меньше, чем при лишь изменении А, но больше, чем при изменении В.

Данное наблюдение верно и для плохо обусловленной матрицы (т. е. матрицы, строки/столбцы которой заменены строками/столбцами плохо обусловленной матрицы Гильберта), стандартное число обусловленности для которой напорядок более чувствительно к возмущениям матрицы коэффициентов СЛУ, чем у исходной, эталонной матрицы.

Кроме того, оценка стандартного числа обусловленности зачастую верна для небольших возмущений в системе линейных уравнений.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <limits.h>
//----
// Вектор
//----
typedef struct{
    double* data;
    size t dim;
} vec;
void vec copy(vec* dest, const vec* src)
{
    dest->dim = src->dim;
     dest->data = malloc(src->dim * sizeof(double));
    for(size_t i = 0; i < src->dim; ++i)
          dest->data[i] = src->data[i];
}
void vec cleanup(vec* v)
{
     for(size t i = 0; i < v->dim; ++i)
          if(v->data[i] == 0)
                v->data[i] = 0;
}
void vec print(const vec* v)
    printf("[");
     for(size t i = 0; i < v->dim; ++i)
          printf("%lg%s", v->data[i],
                       i == v->dim - 1 ? "] \n" : " ");
```

```
static inline void vec_add_vec(vec* v1, vec* v2)
    for(size_t i = 0; i < v1->dim; ++i)
          v1->data[i] += v2->data[i];
static inline void vec sub vec(vec* v1, vec* v2)
    for(size_t i = 0; i < v1->dim; ++i)
          v1->data[i] -= v2->data[i];
static inline void vec mul double(vec* v1, double a)
    for(size_t i = 0; i < v1->dim; ++i)
          v1->data[i] *= a;
static inline void vec div double (vec* v1, double a)
{
    for(size_t i = 0; i < v1->dim; ++i)
         v1->data[i] /= a;
}
// вычисление нормы вектора
double vec norm1(const vec* v)
    double norm = 0;
    for(size_t i = 0; i < v->dim; ++i)
          norm += fabs(v->data[i]);
    return norm;
}
//----
// Квадратная матрица
//----
typedef struct{
    double* data;
    size_t dim;
} sq matrix;
```

}

```
void sq matrix copy(sq matrix* dest, const sq matrix* src)
     size t elems = src->dim * src->dim;
    dest->data = malloc(elems * sizeof(double));
     for(size t i = 0; i < elems; ++i)
          dest->data[i] = src->data[i];
    dest->dim = src->dim;
}
void sq matrix alloc ident(sq matrix* dest, size t dim)
{
    dest->dim = dim;
    dest->data = malloc(dim * dim * sizeof(double));
     for(size t i = 0; i < dim; ++i)
          for(size_t j = 0; j < \dim; ++j)
                 dest->data[i * dim + j] = (i == j) ? 1 : 0;
}
void sq matrix cleanup(sq matrix* m)
{
     for(size t i = 0; i < m->dim * m->dim; ++i)
          if(m->data[i] == 0)
                m->data[i] = 0;
}
static inline vec sq_matrix_get_row(sq_matrix* m, size_t row)
{
    return (vec){.data = m->data + row * m->dim, .dim = m->dim};
}
void sq_matrix_print(const sq_matrix* m)
    char sbuf[64];
    int* max_w = malloc(m->dim * sizeof(int));
     for(size t i = 0; i < m->dim; ++i)
          \max w[i] = 0;
    for(size t i = 0; i < m->dim; ++i)
     {
           for(size_t j = 0; j < m->dim; ++j){
                 sprintf(sbuf, "%lg", m->data[i * m->dim + j]);
```

```
int sym count = (int)strlen(sbuf);
                 if(sym_count > max_w[j])
                       max w[j] = sym count;
          }
     }
    for(size t i = 0; i < m->dim; ++i)
     {
           for(size t j = 0; j < m->dim; ++j)
                printf("%*lg ", max w[j], m->data[i * m->dim + j]);
          puts("");
     }
     free(max w);
}
// умножение матрицы на вектор-столбец
vec sq matrix mul vec(sq matrix* m, vec* v)
{
    vec res;
    res.data = malloc(sizeof(double) * v->dim);
    res.dim = v->dim;
    for(size_t i = 0; i < m->dim; ++i){
          res.data[i] = 0;
          for(size t j = 0; j < m->dim; ++j)
                 res.data[i] += m->data[i * m->dim + j] * v->data[j];
    return res;
}
static inline void sq matrix sub sq matrix(sq matrix* m1, const sq matrix* m2)
{
     for(size t i = 0; i < m1->dim * m1->dim; ++i)
          m1->data[i] -= m2->data[i];
}
// вычисление нормы матрицы
double sq matrix norm1(const sq matrix* m)
{
    double norm = -INFINITY;
    for(size t j = 0; j < m->dim; ++j)
```

```
{
          double sum = 0;
          for(size t i = 0; i < m->dim; ++i)
                 sum += m->data[i * m->dim + j];
          if(sum > norm)
                norm = sum;
    }
    return norm;
}
void sq matrix inverse(sq matrix* m1, int free m1)
    // Прямой ход (получаем верхнетреугольную матрицу с единицами на диагонали в m1)
    sq matrix m2;
    sq matrix alloc ident(&m2, m1->dim);
    for(size t j = 0; j < m1->dim; ++j)
     {
          // делим текущий ряд на опорный (диагональный) элемент
          vec v1 = sq matrix get row(m1, j);
          vec v2 = sq matrix get row(&m2, j);
          double base = v1.data[j];
          vec_div_double(&v1, base);
          vec div double(&v2, base);
          // отнимаем текущий ряд от всех более нижних рядов
           for(size t i = j+1; i < m1->dim; ++i)
                 vec v1i = sq matrix get row(m1, i); // i - текущий ряд
                 vec v2i = sq matrix get row(&m2, i);
                 // "Выбиваем" ноль в столбце ј
                 double base = v1i.data[j];
                 vec mul double(&v1, base); vec mul double(&v2, base);
                 vec_sub_vec(&v1i, &v1); vec_sub_vec(&v2i, &v2);
                vec div double(&v1, base); vec div double(&v2, base);
           }
    }
    // Обратный ход (превращаем верхнетреугольную матрицу в диагональную
    for(size_t _j = 0; _j < m1->dim; ++_j)
     {
```

```
// начинаем с последнего ряда (в котором стоит одна единица в последнем
столбце)
          size t j = m1->dim - 1 - j;
          vec v1 = sq_matrix_get_row(m1, j);
          vec v2 = sq_matrix_get_row(&m2, j);
          for(size t i = j+1; i < m1->dim; ++ i)
                size t i = m1 - 3 - i;
                vec v1i = sq matrix get row(m1, i);
                vec v2i = sq matrix get row(&m2, i);
                double base = v1i.data[j];
                vec mul double(&v1, base); vec mul double(&v2, base);
                vec_sub_vec(&v1i, &v1); vec_sub_vec(&v2i, &v2);
                vec_div_double(&v1, base); vec_div_double(&v2, base);
          }
    }
    if(free m1)
          free (m1->data);
    sq_matrix_cleanup(&m2);
    m1->data = m2.data;
}
//----
// Система уравнений
//----
typedef struct{
    sq_matrix A;
    vec B;
} eq sys;
void eq sys print(const eq sys* sys)
{
    char sbuf[64];
    int* max w = malloc((sys->A.dim + 1) * sizeof(int));
    for(size t i = 0; i < sys->A.dim + 1; ++i)
          max_w[i] = 0;
```

```
for(size t i = 0; i < sys->A.dim; ++i)
           for(size t j = 0; j < sys->A.dim; ++j){
                 sprintf(sbuf, "%lg", sys->A.data[i * sys->A.dim + j]);
                 int sym count = (int)strlen(sbuf);
                 if(sym_count > max_w[j])
                       max w[j] = sym count;
           }
     }
     for(size t i = 0; i < sys->A.dim; ++i){
           sprintf(sbuf, "%lg", sys->B.data[i]);
          int sym count = (int)strlen(sbuf);
           if(sym count > max w[sys->A.dim])
                max w[sys->A.dim] = sym count;
     }
    for(size t i = 0; i < sys->A.dim; ++i)
          for(size t j = 0; j < sys->A.dim; ++j)
                printf("%*lg ", max_w[j], sys->A.data[i * sys->A.dim + j]);
          printf("| %*lg\n", max w[sys->A.dim], sys->B.data[i]);
     }
     free(max_w);
}
vec eq sys solve gauss (eq sys* sys)
    // Прямой ход (получаем верхнетреугольную матрицу с единицами на диагонали)
    sq matrix A;
    sq matrix copy(&A, &sys->A);
    vec B;
    vec copy(&B, &sys->B);
    for(size_t j = 0; j < A.dim; ++j)</pre>
     {
          // делим текущий ряд на опорный (диагональный) элемент
          vec v1 = sq matrix get row(&A, j);
          B.data[j] /= v1.data[j]; vec div double(&v1, v1.data[j]);
          // отнимаем текущий ряд от всех более нижних рядов
           for(size t i = j+1; i < A.dim; ++i)
```

```
{
                vec v2 = sq_matrix_get_row(&A, i); // i - текущий ряд
                // "Выбиваем" ноль в столбце ј
                double base = v2.data[j];
                vec mul double(&v1, base);
                vec sub vec(&v2, &v1); B.data[i] -= B.data[j] * base;
                vec div double(&v1, base);
          }
    }
    // Обратный ход (превращаем верхнетреугольную матрицу в диагональную
    for(size t j = 0; j < A.dim; ++ j)
          // начинаем с последнего ряда (в котором стоит одна единица в последнем
столбце)
          size t j = A.dim - 1 - j;
          for(size t i = j+1; i < A.dim; ++ i)
                size t i = A.dim - 1 - i;
                vec v2 = sq matrix get row(&A, i);
                double base = v2.data[j];
                v2.data[j] = 0; // "отнимаем" текущий ряд
                B.data[i] -= B.data[j] * base;
           }
    }
    // очищаем выделенную память
    free (A.data);
    // выводим результат в вектор Х
    vec X = (vec) {.data = B.data, .dim = B.dim};
    vec cleanup(&X);
    return X;
}
vec eq_sys_solve_inverse(eq_sys* sys)
{
    // находим A^{-1}
    sq_matrix inv_A;
    sq matrix copy(&inv A, &sys->A);
```

```
sq matrix inverse(&inv A, 1);
     // умножаем A^{-1} на b, находя X
    vec X = sq matrix mul vec(&inv A, &sys->B);
    vec cleanup(&X);
    free(inv A.data);
    return X;
}
#define TCLR RED B "\033[1;31m"
#define TCLR RESET "\033[0m"
#define TCLR GREEN B "\033[1;32m"
#define EXECUTE_TWICE(action, presecond)\
{ action; }\
{ presecond; }\
{ action; }
int main()
{
    static const size t rand seed = 1637509548;
    static const double rand distr = 0.2; // погрешности генерируются в интервале [-
rand_distr; rand_distr]
    srand(rand seed);
    printf("Зерно ГСЧ: %lu\n\n", rand seed);
    eq sys esys;
     esys.A = (\text{sq matrix}) \{.\text{data} = (\text{double}[]) \{1, 3, -2, 
                                     3, -1, -7,
                                     3, 4, 2},
              .dim = 3;
     esys.B = (vec) \{ .data = (double[]) \{ -15, 2, 4 \}, .dim = 3 \};
    EXECUTE TWICE (
    printf("%sЭталонная СЛУ%s\n", TCLR_RED_B, TCLR_RESET);
     {
           eq sys print(&esys);
           vec X1 = eq sys solve gauss(&esys);
           vec X2 = eq sys solve inverse(&esys);
           printf("Вектор решений метода Гаусса: X = "); vec print(&X1);
```

```
printf("Вектор решений метода обратной матрицы: X = "); vec print(&X2);
           sq matrix A inv;
           sq matrix copy(&A inv, &esys.A);
           sq matrix inverse(&A inv, 1);
           double cond A = sq matrix norm1(&A inv) * sq matrix norm1(&esys.A);
           printf("\nСтандартное число обусловленности: cond(A) = %lq\n", cond A);
           double abs cond A = sq matrix norm1(&A inv);
           printf("Абсолютное число обусловленности: \mathbf{v} \Delta = \frac{1}{2} \mathbf{n}", abs cond A);
           double nat_cond_A = sq_matrix_norm1(&A_inv) * vec_norm1(&esys.B) /
vec norm1(&X1);
           printf("Естественное число обсусловленности: \mathbf{v} \delta = %lg\n", nat cond A);
           free(A inv.data);
     }
    printf("\n%sAX = B*%s\n", TCLR RED B, TCLR RESET);
     {
          eq_sys esys1;
          sq matrix copy(&esys1.A, &esys.A);
          vec copy(&esys1.B, &esys.B);
           for(size t i = 0; i < esys1.B.dim; ++i)</pre>
                 esys1.B.data[i] += ((double)rand() / RAND MAX) * rand distr * 2 -
rand distr;
           eq sys print(&esys1);
          vec X = eq sys solve gauss(&esys);
           vec X1 = eq sys solve gauss(&esys1);
           vec X2 = eq sys solve inverse(&esys1);
           printf("Вектор решений метода Гаусса: X = "); vec print(&X1);
           printf("Вектор решений метода обратной матрицы: X = "); vec print(&X2);
           sq matrix A inv;
           sq matrix copy(&A inv, &esys1.A);
           sq matrix inverse(&A inv, 1);
           double max cond A = sq matrix norm1(&A inv) * sq matrix norm1(&esys1.A);
           printf("\nCтандартное число обусловленности: cond(A) = %lg\n",
max cond A);
```

```
double abs cond A = sq matrix norm1(&A inv);
           printf("Абсолютное число обусловленности: \mathbf{v}_{\Delta} = \text{lg}\, abs_cond_A);
           double nat cond A = sq matrix norm1(&A inv) * vec norm1(&esys1.B) /
vec norm1(&X1);
           printf("Естественное число обсусловленности: \mathbf{v} \delta = %lg\n", nat cond A);
          vec delta X; vec copy(&delta X, &X1); vec sub vec(&delta X, &X);
          vec delta B; vec copy(&delta B, &esys1.B); vec sub vec(&delta B, &esys.B);
           double cond estimate A = vec norm1(&delta X) / vec norm1(&delta B);
           printf("Оценка стандартного числа обусловленности: cond(A) >= \delta(X^*) /
\delta(B^*) = %lg / %lg = %lg\n",
                 vec norm1(&delta X), vec norm1(&delta B), cond estimate A);
           free(A inv.data);
           free(delta_X.data);
           free(delta B.data);
     }
    printf("\n%sA* X = B%s\n", TCLR RED B, TCLR RESET);
     {
          eq sys esys1;
          sq matrix copy(&esys1.A, &esys.A);
          vec copy(&esys1.B, &esys.B);
           for(size t i = 0; i < esys1.A.dim * esys.A.dim; ++i)</pre>
                 esys1.A.data[i] += ((double)rand() / RAND MAX) * rand distr * 2 -
rand distr;
           eq sys print(&esys1);
          vec X = eq sys solve gauss(&esys);
           vec X1 = eq sys solve gauss(&esys1);
           vec X2 = eq_sys_solve_inverse(&esys1);
           printf("Вектор решений метода Гаусса: X = "); vec print(&X1);
           printf("Вектор решений метода обратной матрицы: X = "); vec print(&X2);
           sq matrix A inv;
           sq matrix copy(&A inv, &esys1.A);
           sq matrix inverse(&A inv, 1);
           double max_cond_A = sq_matrix_norm1(&A_inv) * sq_matrix_norm1(&esys1.A);
```

```
printf("\nСтандартное число обусловленности: cond(A) = %lg\n",
max_cond_A);
           double abs cond A = sq matrix norm1(&A inv);
           printf("Абсолютное число обусловленности: \mathbf{v} \Delta = %lg\n", abs cond A);
           double nat cond A = sq matrix norm1(&A inv) * vec norm1(&esys1.B) /
vec norm1(&X1);
           printf("Естественное число обсусловленности: \mathbf{v} \delta = %lg\n", nat cond A);
           vec delta X; vec copy(&delta X, &X1); vec sub vec(&delta X, &X);
           sq matrix
                            delta A;
                                            sq matrix copy(&delta A,
                                                                              &esys1.A);
sq matrix sub sq matrix(&delta A, &esys.A);
           double cond estimate A = vec norm1(&delta X) / sq matrix norm1(&delta A);
           printf("Оценка стандартного числа обусловленности: cond(A) >= \delta(X^*) /
\delta(A^*) = \frac{1}{2} \frac{1}{2} / \frac{1}{2} \frac{1}{2} = \frac{1}{2} \ln n'',
                 vec_norm1(&delta_X), sq_matrix_norm1(&delta_A), cond_estimate_A);
           free(A inv.data);
           free(delta_X.data);
           free(delta A.data);
     }
    printf("\n%sA* X = B*%s\n", TCLR RED B, TCLR RESET);
           eq_sys esys1;
           sq_matrix_copy(&esys1.A, &esys.A);
           vec copy(&esys1.B, &esys.B);
           for(size t i = 0; i < esys1.A.dim * esys.A.dim; ++i)</pre>
                 esys1.A.data[i] += ((double)rand() / RAND MAX) * rand distr * 2 -
rand distr;
           for(size t i = 0; i < esys1.B.dim; ++i)
                 esys1.B.data[i] += ((double)rand() / RAND_MAX) * rand_distr * 2 -
rand_distr;
           eq sys print(&esys1);
           vec X = eq sys solve gauss(&esys);
           vec X1 = eq sys solve gauss(&esys1);
           vec X2 = eq sys solve inverse(&esys1);
           printf("Вектор решений метода Гаусса: X = "); vec print(&X1);
           printf("Вектор решений метода обратной матрицы: X = "); vec_print(&X2);
```

```
sq matrix A inv;
          sq_matrix_copy(&A_inv, &esys1.A);
          sq matrix inverse(&A inv, 1);
          double max cond A = sq matrix norm1(&A inv) * sq matrix norm1(&esys1.A);
          printf("\nCтандартное число обусловленности: cond(A) = %lg\n",
max cond A);
          double abs cond A = sq matrix norm1(&A inv);
          printf("Абсолютное число обусловленности: \mathbf{v} \Delta = %lg\n", abs cond A);
          double nat cond A = sq matrix norm1(&A inv) * vec norm1(&esys1.B) /
vec norm1(&X1);
          printf("Естественное число обсусловленности: \mathbf{v} \delta = %lq\n", nat cond A);
          vec delta_X; vec_copy(&delta_X, &X1); vec_sub_vec(&delta X, &X);
          sq matrix
                            delta A; sq matrix copy(&delta A,
                                                                      &esys1.A);
sq matrix sub sq matrix(&delta A, &esys.A);
          vec delta B; vec copy(&delta B, &esys1.B); vec sub vec(&delta B, &esys.B);
          double cond_estimate_A = vec_norm1(&delta_X) / (sq_matrix_norm1(&delta_A)
+ vec norm1(&delta B));
          printf("Оценка стандартного числа обусловленности: cond(A) >= \delta(X^*) /
(\delta(A^*) + \delta(B^*)) = %lq / (%lq + %lq) = %lq \n",
                vec norm1(&delta X), sq matrix norm1(&delta A), vec norm1(&delta B),
cond estimate A);
          free(A inv.data);
          free(delta A.data);
          free(delta B.data);
    }
    printf("\n\n%sЗаменим 1 и 3 строки на строки Гильбертовой матрицы:%s\n\n",
TCLR GREEN B, TCLR RESET);
    size t i = 0;
    vec v = sq matrix get row(&esys.A, i);
    for(size t j = 0; j < v.dim; ++j)
          v.data[j] = 1. / ((i+1) + (j+1) - 1.);
    v = sq matrix get row(&esys.A, i);
    for(size t j = 0; j < v.dim; ++j)
          v.data[j] = 1. / ((i+1) + (j+1) - 1.);
    );
}
```