TRAVIS AARON HOPPE

Curriculum Vitæ travis.hoppe@gmail.com PhD Physics (775) 287-4033

education

2014-current

Postdoctoral

Theoretical Biophysics with Robert Best at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health (NIH).

2011-2014

Postdoctoral

Physical Biochemistry with Allen Minton at the NIH, NIDDK.

2011

Doctor of Philosophy, Physics

Drexel University with Jian-Min Yuan. Thesis, On the Role of Entropy in the Protein Folding Process.

2008

Master of Science, Physics

Drexel University

2005

Bachelor of Science, Physics

Bachelor of Science, Mathematics

University of Nevada

publications

Bibliometrics

Additional support for RCR: A validated article-level measure of scientific influence, Ian Hutchins, Travis Hoppe, Rebecca Meseroll, James Anderson, &

George Santangelo, PLoS Biology.

Protein-Protein Interaction

Incorporation of Hard and Soft Protein-Protein Interactions into Models for Crowding Effects in Binary and Ternary Protein Mixtures, Travis Hoppe & Allen Minton, Journal of the Physical Chemistry B.

Dependence of Internal Friction on Folding Mechanism, Wenwei Zheng, David De Sancho, Travis Hoppe & Robert B. Best, Journal of the American Chemical Society.

- An equilibrium model for the combined effect of macromolecular crowding and surface adsorption on the formation of linear protein fibrils, *Travis Hoppe, Allen Minton*, Biophysical Journal.
- A simplified representation of anisotropic charge distributions in proteins, *Travis Hoppe*, Journal of Chemical Physics.
- Singular Value Decomposition of the Radial Distribution Function for Hard Sphere and Square Well Potentials, *Travis Hoppe*, PLoS ONE.
- Protein Folding with Implicit Crowders: A Study of Conformational States Using the Wang-Landau Method, Travis Hoppe, Jian-Min Yuan, Journal of Physical Chemistry B.

	Protein Topology & Graph theory
2014	Integer sequence discovery from small graphs, <i>Travis Hoppe, Anna Petrone</i> , Discrete Applied Mathematics.
2009	Entropic flows, crowding effects, and stability of asymmetric proteins, <i>Travis Hoppe, Jian-Min Yuan</i> , Physical Review E.
	Experimental Modeling

- Programmable Nanoscaffolds that Control Ligand Display to a G-Protein Coupled-Receptor in Membranes allow Dissection of Multivalent Effects, Andrew Dix, Daniel Appella, Travis Hoppe, et al., Journal of the American Chemical Society.
- Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids, Chao Zhao, Daniel Appella, Travis Hoppe, et al., Nature Communications.
- The importance of EBIT data for Z-pinch plasma diagnostics, A S Safronova, Travis Hoppe, et al., Canadian Journal of Physics.
- Spectroscopic and Imaging Study of Combined W and Mo-pinches at 1 MA-pinch Generators, Alla Safronova, Travis Hoppe, et al., IEEE Transactions on Plasma Science.

conferences

- 2016 **Biophysical Society: Los Angeles**Poster: Coevolutionary signal enhancement
- 2015 **Biophysical Society: Baltimore**Seminar: Mean-field lattice-model IDPs, Binding Affinity & Specificity
- Advances in Enhanced Sampling Algorithms: Telluride
 Seminar: Topological considerations in the Wang-Landau algorithm
- Biophysical Society: Philadelphia
 Seminar: Coarse-grained Electrostatic Models for Protein Solutions
- 2010 **Biophysical Society: San Francisco**Poster: Wang-Landau Density of States in Crowded Protein Environments
- 2009 Drexel University Libraries' Communication Symposium: The Hidden Costs of Scholarly Communication Invited Panel Member
- 2009 **Biophysical Society: Boston**Poster: Exhaustive Properties of Simple Lattice Peptides

awards

2017 Office of the Director's Honor Award

Outstanding support for the Grants Support Index & Next Generation Research Initiative Analytical Team

2014 Top Presentation Award

Institution-wide recognition during the NIDDK Annual Conference.

2010 Research Assistant Grant

Competitive grant from Drexel Physics Department on the basis of outstanding research and teaching.

2010 Student Research Achievement Award (SRAA)

Top poster at the Biophysical Society 2010 meeting.

2009 Department Research Award (Senior Division)

Given by the Drexel Physics Department, this award recognized a high proficiency in both original research and synthesis of results into publications.

2008 Department Research Award (Junior Division)

Restricted to the first two years of study, the junior division award was awarded for early achievements in research.

Teaching Assistant of the Year

teaching (Drexel) 2011 2010

PHYS 305, Computational Physics II*

PHYS 304, Computational Physics I*

PHYS 160, Introduction to Scientific Computing*

PHYS 305, Computational Physics II*

2009 PHYS 304, Computational Physics I*

PHYS 160, Introduction to Scientific Computing*

DSP 099, Dragon Summer Program: Remedial Mathematics

PHYS 100, Preparation for Engineering Studies

PHYS 305, Computational Physics II*

2008 PHYS 304, Computational Physics I*

PHYS 102, Fundamentals of Physics II*

PHYS 115, Contemporary Physics III*

PHYS 114, Contemporary Physics II*

2007 PHYS 113, Contemporary Physics I*

PHYS 102, Fundamentals of Physics II, Lab

PHYS 115, Contemporary Physics III*

PHYS 114, Contemporary Physics II*

2006 PHYS 113, Contemporary Physics I*

TDEC 101, Fundamentals of Physics I, Lab

TDEC 103, Fundamentals of Physics III*

TDEC 102, Fundamentals of Physics II*

2005 TDEC 101, Fundamentals of Physics I*

^{*}Developed new curricula and modernized the Computational Physics, Contemporary Physics and Introduction to Scientific Computing courses at Drexel.