Drug Receptors

1

molecular targets for drugs

- receptors
- · ion channels
- · enzymes
- · carrier molecules
- · DNA
- · non specific

2

non specific targets

- · osmotic diuretics
- · radioactive iodine

3

DNA

- · many antibiotics
 - bacterial DNA
 - mammalian DNA
- · anticancer drugs

4

carrier molecules

- · transport small molecules into or out of cells
 - many antidepressants
 ivermectin

5

enzymes

- · compete with substrate
- · false substrate
- prodrugs

7

enzymes

- · most antibiotics
- · organophosphate insecticides
- · aspirin type drugs

8

ion channels

- most drugs block rather than open channels
- do not confuse with ionotropic receptors!!

9

10

ion channels

- · ketamine
- · local anaesthetics

11

12

13

receptors

- · ionotropic receptors
- · metabotropic (G protein coupled) receptors
- · tyrosine kinase coupled receptors
- · nuclear receptors

14

15

ionotropic receptors

- · milliseconds
 - nicotinic ACh receptors
 - AMPA receptors
 GABA receptors

16

17

Metabotropic receptors

- · 7 trans membrane regions
- At least 4 different G protein $\boldsymbol{\alpha}$ subunits

Metabotropic receptors

- · Seconds to minutes
 - opioid receptors morphine

 - adrenergic receptors xylazine
 muscarinic ACh receptors atropine

19

20

tyrosine kinase coupled receptors

- · minutes to hours
- · many hormones
 - insulin
 - thyroid hormone

21

22

nuclear receptors

- · hours days
 - corticosteroids
 - oestrogen

23

receptor complexity

- · transmitters act at more than one receptor
- activation of more than one receptor may be necessary for effect
- · receptor numbers change according to use & disease
- "paradoxical pharmacology"
- · may be different in different tissues

effects of disease

- · autoantibodies to receptors
- · mutations in genes for receptors

25

Second messengers

- · lots of different systems
- · can get complicated!!

26

receptor subtypes

- adrenergic receptors
- α2A α2B α2C α2D β receptors

 - · β1 · β2 · β3

27

specificity

- · physical barriers
- · receptors in tissue
- · receptor subtypes
- · receptor collaboration / helpers

28

studying receptors

- · binding experiments
- · sequencing receptors
- · cloning receptors
- · transfection & patch clamping

29

Drug action

- Drugs can produce effects by binding to receptors, enzymes, carrier molecules; by blocking ion channels or by exerting a physical effect.

 There are 4 superfamilies of receptors: ionotropic, metabotropic, kinase coupled and nuclear.
- There may be several layers of reactions in the signal transduction system between drug binding and effect.