

Université Mohammed V - Rabat École Nationale d'Informatique et d'Analyse des Systèmes

Filière : Génie Logiciel

Projet de Fin d'Année-PFA

Reconnaissance de Photos Sur une Carte d'étudiant par Apprentissage Profond

i.

Mr. Rachid OULAD HAJ THAMI

Mme. Boutaina HDIOUD

Mme. Mounia ABIK

Membres de Jury:

Défendu par :

Adnane Mandili Zakaria Baou

Plan

- 1 Introduction
 - 2 Contexte Générale
 - (3) Méthode de Travail
 - 4 Outils utilisée
 - 5 Test du programme
 - 6 Conclusion

Introduction:

Contexte

Problématique:

Contexte

Analyse de besoin :

☐ Sert à définir le besoin principal sur lequel on s'est basé pour réaliser ce projet.

Méthode de travail :

Parties Principales du projet :

Méthode de travail :

Méthode de travail :

☐ Cette image ci-contre
représente les déférentes
processus au sien du projet
pour faire la
reconnaissance facial

OpenCV:

Les Outils (technologies) d'OpenCV:

☐ Oriented FAST and Rotated BRIEF:

Haar Cascade:

♦ Une Haar cascade est un algorithme utilisé pour détecter des objets spécifiques dans des images, tels que des visages, en utilisant des caractéristiques visuelles appelées "caractéristiques de Haar".

☐ Deep Learning:

* Réseau Neuronal Artificiel :

Entraînement du Réseau Neuronal:

Réseaux Neuronaux Convolutifs :

Convolution Neural Network (CNN)

☐ L'Architecture VGG:

☐ L'Architecture VGG:

Les caractéristiques :

Test réel (démonstration) :

Conclusion:

Merci pour votre attention