TRIGONOMETRY Chapter 4

Razones trigonométricas de un angulo agudo I

HELICO-MOTIVACIÓN

Aplicaciones de la trigonometría

La trigonometría se usa en la astronomía para calcular la distancia del planeta Tierra al <u>Sol</u>, a la Luna, el radio de la Tierra y también para medir la distancia entre los planetas.

Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos, y lo utilizaron en la astronomía.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO I

Es el cociente entre las longitudes de los lados de un triángulo rectángulo, respecto de uno de sus ángulos agudos.

sen
$$\alpha = \frac{\text{Cateto opuesto al } \alpha}{\text{Hipotenusa}} = \frac{\text{CO}}{\text{H}}$$

$$\cos \alpha = \frac{\text{Cateto adyacente al } \alpha = \frac{\text{CA}}{\text{H}}}{\text{Hipotenusa}}$$

tan
$$\alpha$$
 = $\frac{\text{Cateto opuesto al } \alpha \alpha}{\text{Cateto adyacente al } \alpha} = \frac{\text{CC}}{\text{CA}}$

a) Identifica los elementos del triángulo rectángulo según corresponda, respecto a los ángulos θ y β :

RESOLUCIÓN:

$$H = \sqrt{5}$$

$$CO(\theta) = 1$$
 $CA(\theta) = 2$

$$CO(\beta) = 2$$
 $CA(\beta) = 1$

b) Identifica los elementos del triángulo rectángulo según corresponda, respecto a los ángulos θ y β :

RESOLUCIÓN:

$$H = 13$$

$$CA(\theta) = 12$$
 $CO(\theta) = 5$

$$CA(\beta) = 5$$
 $CO(\beta) = 12$

Identifica las razones trigonométricas de ∝

RESOLUCIÓN:

$$sen \alpha = \frac{60}{61}$$

$$cos \alpha = \frac{11}{61}$$

$$tan \alpha = \frac{60}{11}$$

Del gráfico, efectué:

Recordar:

Sen
$$\theta = \frac{co}{L}$$

$$\cos \theta = \frac{ca}{h}$$

RESOLUCIÓN:

Por el Teorema de Pitágoras:

$$(\mathbf{CO})^2 + (4)^2 = (5)^2$$

$$(CO)^2 + 16 = 25$$

$$(CO)^2 = 9$$

$$CO = \sqrt{9}$$
 $CO = 3$

$$CO = 3$$

Piden:

$$F = \operatorname{sen} \phi + \cos \phi$$

$$F = \frac{3}{5} + \frac{4}{5}$$

$$\therefore \mathbf{F} = \frac{7}{5}$$

Del gráfico, efectué:

$$P = sen^2 \beta - cos^2 \beta$$

Recordar:

$$Sen\theta = \frac{co}{L}$$

$$\cos \theta = \frac{cq}{h}$$

RESOLUCIÓN:

Por el Teorema de Pitágoras:

$$(H)^2 = (1)^2 + (\sqrt{3})^2$$

$$(H)^2 = 1 + 3$$

$$(H)^2 = 4$$
 \longrightarrow $H = 2$

Piden:
$$P = sen^2 \beta - cos^2 \beta$$

$$P = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2$$

$$P = \frac{3}{4} - \frac{1}{4} = \frac{2}{4}$$

$$\therefore P = \frac{1}{2}$$

Del gráfico, efectué:

$$M = \tan^2 \phi + \sin^2 \phi$$

$$Sen\theta = \frac{co}{h} \quad Tan\theta = \frac{co}{ca}$$

RESOLUCIÓN:

Por el Teorema de Pitágoras:

$$(CA)^{2} + (2)^{2} = (\sqrt{5})^{2}$$

$$(CA)^{2} + 4 = 5$$

$$(CA)^{2} = 1 \longrightarrow CA = 1$$

Piden:
$$M = \tan^2 \phi + \sin^2 \phi$$

$$\mathbf{M} = \left(\frac{2}{1}\right)^2 + \left(\frac{2}{\sqrt{5}}\right)^2$$

$$M = \frac{4}{1} + \frac{4}{5} = \frac{4(5) + 1(4)}{1(5)}$$

iMuy bien!

$$\therefore \mathbf{M} = \frac{24}{5}$$

Del gráfico, efectué:

$$T = \frac{\cos \theta}{\sin \theta}$$

$$\sqrt{10} = H$$

Recordar:

$$Sen\theta = \frac{co}{L}$$

$$\cos \theta = \frac{ca}{h}$$

RESOLUCIÓN:

Por el Teorema de Pitágoras:

$$(CA)^{2} + (3)^{2} = (\sqrt{10})^{2}$$

 $(CA)^{2} + 9 = 10$
 $(CA)^{2} = 1$ $CA = 1$

Piden:

$$\mathbf{T} = \frac{\cos \theta}{\sin \theta} = \frac{\frac{1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}}$$

$$T = \frac{1 \times \sqrt{10}}{3 \times \sqrt{10}}$$

$$\therefore T = \frac{1}{3}$$

Un poste eléctrico se encuentra en el suelo y sujetado por un cable a otro poste eléctrico (observar el gráfico). Calcule el producto del seno y coseno del ángulo que forman el poste caído y el cable:

Recordar:

$$Sen\theta = \frac{co}{h}$$

$$\cos \theta = \frac{ca}{h}$$

<u>RESOLUCIÓN</u>:

Por el Teorema de Pitágoras:

$$(CA)^2 + (6)^2 = (10)^2$$

 $(CA)^2 + 36 = 100$
 $(CA)^2 = 64 \implies CA = 8$

Piden: sen $\alpha \times \cos \alpha$

$$\begin{array}{c}
3 \\
\cancel{10} \\
\cancel{5}
\end{array} \times \frac{\cancel{5}^{4}}{\cancel{10}} \\
5$$

$$\therefore \operatorname{sen} \alpha \times \cos \alpha = \frac{12}{25}$$

HELICO-TALLER 8

Del gráfico, efectué:

$$R = \tan \alpha + \frac{2}{3}$$

$$15 = H$$

Recordar:

$$Tan\theta = \frac{co}{ca}$$

RESOLUCIÓN:

Por el Teorema de Pitágoras:

$$(CA)^2 + (12)^2 = (15)^2$$

 $(CA)^2 + 144 = 225$

 $(CA)^2 = 81$ \longrightarrow CA = 9

$$R = \tan \alpha + \frac{2}{3}$$

$$R = \frac{12}{9} + \frac{2}{3} = \frac{6}{3}$$

 $\therefore \mathbf{R} = \mathbf{2}$

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA