Social Media & Text Analysis

lecture 6 - Paraphrase Identification and Logistic Regression

CSE 5539-0010 Ohio State University Instructor: Wei Xu

Website: socialmedia-class.org

(Recap) Classification Method:

Supervised Machine Learning

- Input:
 - a sentence pair x (represented by features)
 - a fixed set of binary classes $Y = \{0, 1\}$
 - a training set of *m* hand-labeled sentence pairs $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$

- Output:
 - a learned classifier $\gamma: X \to Y \in Y \ (y = 0 \text{ or } y = 1)$

(Recap)

- also supervised learning (learn from annotated data)
- but for Regression: predict real-valued output (Classification: predict discrete-valued output)

(Recap) Linear Regression w/ one variable:

Model Representation

#words in common (x)	Sentence Similarity (y)
1	0
4	1
13	4
18	5

m hand-labeled sentence pairs (x⁽¹⁾, y⁽¹⁾), ..., (x^(m), y^(m))
 θ's: parameters

(Recap) Linear Regression:

Model Representation

How to represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear Regression w/ one variable

(Recap)

Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

 θ_0, θ_1

 $J(\theta_1, \theta_2)$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

• Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

(Recap) Linear Regression w/ one variable:

Cost Function

squared error function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

• Idea: choose θ_0 , θ_1 so that $h\theta(x)$ is close to y for training examples (x, y)

$$\min_{\theta_0,\,\theta_1} \text{minize } J(\theta_0,\theta_1)$$

(Recap)

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

simultaneous update for j=0 and j=1

learning rate

(Recap) Linear Regression w/ one variable:

Gradient Descent

repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i) \cdot x_i$$

simultaneous update θ_0 , θ_1

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

(for convenience, define $x_0 = 1$)

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

(for convenience, define $x_0 = 1$)

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

Wei Xu ○ <u>socialmedia-class.org</u>

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
(for convenience, define $x_0 = 1$)
$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

$$h_{\theta}(x) = \theta^T x$$

Wei Xu ○ <u>socialmedia-class.org</u>

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta^T x$$

Cost function: # training examples

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

(Recap)

Paraphrase Identification

obtain sentential paraphrases automatically

Mancini has been sacked by Manchester City

Yes!

Mancini gets the boot from Man City

WORLD OF JENKS IS ON AT 11

World of Jenks is my favorite show on tv

(Recap)

- also supervised learning (learn from annotated data)
- but for Regression: predict real-valued output (Classification: predict discrete-valued output)

Linear Regression classification error

In practice, do not use linear regression for classification.

(Recap) Classification:

Supervised Machine Learning

training set

Wei Xu o socialmedia-class.org

(Recap)

Logistic Regression

- One of the most useful supervised machine learning algorithm for classification!
- Generally high performance for a lot of problems.
- Much more robust than Naïve Bayes (better performance on various datasets).

Linear → Logistic Regression

Classification: y = 0 or y = 1

• Linear Regression: $h_{\theta}(x)$ can be > 1 or < 0

Linear → Logistic Regression

Classification: y = 0 or y = 1

• Linear Regression: $h_{\theta}(x)$ can be > 1 or < 0

• Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

Linear → Logistic Regression

Classification: y = 0 or y = 1

• Linear Regression: $h_{\theta}(x)$ can be > 1 or < 0

• Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

a classification (not regression) algorithm

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

sigmoid (logistic) function

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

sigmoid (logistic) function
$$h_{\theta}(x) = \sigma(\theta^T x)$$

(Recap) Classification Method:

Supervised Machine Learning

- Input:
 - a sentence pair x (represented by features)
 - a fixed set of binary classes $Y = \{0, 1\}$
 - a training set of m hand-labeled sentence pairs $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$

- Output:
 - a learned classifier $\gamma: X \to Y \in Y \ (y = 0 \text{ or } y = 1)$

Interpretation of Hypothesis

• $h\theta(x)$ = estimated probability that y = 1 on input

Interpretation of Hypothesis

• $h\theta(x)$ = estimated probability that y = 1 on input

If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{#words_in_common} \end{bmatrix}$$
, $h_{\theta}(x) = 0.7$

70% chance of the sentence pair being paraphrases

Interpretation of Hypothesis

• $h\theta(x)$ = estimated probability that y = 1 on input

If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{#words_in_common} \end{bmatrix}$$
, $h_{\theta}(x) = 0.7$

70% chance of the sentence pair being paraphrases

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Interpretation of Hypothesis

• $h\theta(x)$ = estimated probability that y = 1 on input

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Interpretation of Hypothesis

• $h\theta(x)$ = estimated probability that y = 1 on input

$$P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$$

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Decision Boundary

• Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma\left(\theta^{T} x\right)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$1 + e^{-\theta^{T} x}$$

$$0.8 \\ 0.7 \\ 0.8 \\ 0.8 \\ 0.1$$

Decision Boundary

Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma(\theta^{T} x)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$1 + e^{-\theta^{T} x}$$

$$0.9$$

$$0.8$$

$$0.7$$

$$0.6$$

$$0.5$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.9$$

$$0.8$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.5$$

$$0.6$$

$$0.6$$

$$0.5$$

$$0.7$$

$$0.7$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

predict
$$y = 1$$
 if $h\theta(x) \ge 0.5$

predict
$$y = 0$$
 if $h\theta(x) < 0.5$

Decision Boundary

Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma(\theta^{T} x)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$1 + e^{-\theta^{T} x}$$

$$0.9$$

$$0.8$$

$$0.7$$

$$0.6$$

$$0.5$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.9$$

$$0.8$$

$$0.7$$

$$0.6$$

$$0.5$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.9$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

predict
$$y = 0$$
 if $h\theta(x) < 0.5 \leftarrow$ when $\theta^T x < 0$

Decision Boundary

Decision Boundary

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

What if
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$
?

predict y = 1 if $\theta^T x \ge 0$

Decision Boundary

decision boundary

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

What if
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$
?

predict
$$y = 1$$
 if $\theta^T x \ge 0$

Decision Boundary

decision boundary

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

a property of the hypothesis a property of the parameters a property of the dataset

- a training set of *m* hand-labeled sentence pairs

$$(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \qquad (y \in \{0, 1\})$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$x = \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix} \in R^{n+1}$$

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

squared error function

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

squared error function

• Logistic Regression: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

this cost function is non-convex for logistic regression

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

 $Cost(h_{\theta}(x), y)$

• Logistic Regression: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

this cost function is non-convex for logistic regression

we want convex! easy gradient descent!

Cost Function

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that

$$0 \le h_{\theta}(x) \le 1$$

Cost Function

Cost Function

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that y = 0 or 1 always

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}\left(h_{\theta}(x^{(i)}) - y^{(i)}\right)$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that y = 0 or 1 always

the same

$$Cost(h_{\theta}(x),y) = -y\log(h_{\theta}(x)) - (1-y)\log(1-h_{\theta}(x))$$

Cost Function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}) - y^{(i)})$$
$$= -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Goal:

learn parameters $\, heta\,$ to $\, ext{minimize}\,J(heta)\,$

Hypothesis (to make a prediction): $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$ Nu o socialmedia-class.org

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

learning rate

simultaneous update for all $\boldsymbol{\theta}_j$

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

simultaneous update for all $\boldsymbol{\theta}_{j}$

learning rate

training examples

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

Gradient Descent

repeat until convergence {

simultaneous update for all $\boldsymbol{\theta}_i$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

Gradient Descent

repeat until convergence {

simultaneous update for all $\boldsymbol{\theta}$.

$$\theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

This look the same as linear regression!!???

Gradient Descent

repeat until convergence {

simultaneous update for all θ .

$$\theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

using different hypothesis from linear regression

[Recap] Classification Method:

Supervised Machine Learning

Source: NLTK Book

Classification Evaluation

relevant elements true negatives false negatives true positives false positives selected elements

F-measure:

$$F_{1} = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Wei Xu ○ <u>socialmedia-class.org</u>

Source: Wikipedia

NLP Pipeline (next)

Part-of-Speech (POS) Tagging

	•
Cant	MD
wait	VB
for	IN
the	DT
ravens	NNP
game	NN
tomorrow	NN
go	VB
ray	NNP
rice	NNP
!!!!!!!	

Chunking

Cant	VP
wait	V I
for	PP
the	
ravens	NP
game	
tomorrow	NP
go	VP
ray	NP
rice	INF
!!!!!!!	

Named Entity Recognition(NER)

Cant	
wait	
for	
the	
ravens	ORG
game	
tomorrow	
go	
ray	PER
rice	ren
!!!!!!!!	•

ORG: organization

PER: person

LOC: location

10 tag encoding

Cant	VP	VP	
wait		VP	
for	PP	PP	
the		NP	
ravens	NP	NP	
game		NP	
tomorrow	NP	NP	
		O	
go	VP	VP	
ray	NP	NP	
rice	INF	NP	
!!!!!!!!		0	

10 tag encoding

	•		
Cant	VP	VP	B-VP
wait		VP	I-VP
for	PP	PP	B-PP
the	NP	NP	B-NP
ravens		NP	I-NP
game		NP	I-NP
tomorrow	NP	NP	B-NP
		Ο	Ο
go	VP	VP	B-VP
ray	NP	NP	B-VP
rice		NP	I-VP
!!!!!!!		0	Ο

I: Inside

O: outside

B: Begin

BIO allows separation of adjacent chunks/entities

Classification Method:

Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- •
- Hidden Markov Model (HMM)
- Conditional Random Fields (CRF)

•

sequential models

Classification Method:

Sequential Supervised Learning

- Input:
 - rather than just individual examples (w1 = the, c1 = DT)
 - a training set consists of *m* sequences of labeled examples (X1, Y1), ..., (Xm, Ym)

x₁ = <the back door> and y₁= <DT JJ NN>

- Output:
 - a learned classifier to predict label sequences $\gamma: x \to y$

Features for Sequential Tagging

- Words:
 - current words
 - previous/next word(s) context
- Other linguistic information:
 - word substrings
 - word shapes
 - POS tags
- Contextual Labels
 - previous (and perhaps next) labels

word shapes

Varicella-zoster	Xx-xxx	
mRNA	xxxx	
CPA1	XXXd	

Probabilistic Graphical Models

Probabilistic Graphical Models

Hidden Markov Model

$$p(\mathbf{Y},\mathbf{X}) = \prod_{n=1}^{N} p(y_n | y_{n-1}) p(\mathbf{x}_n | y_n)$$

Conditional Random Field

GENERATIVE

Probabilistic Graphical Models

Instructor: Wei Xu

http://web.cse.ohio-state.edu/~weixu/

Course Website: socialmedia-class.org