HW03 (Fall 2021)

Question 01 (20 points)

Table 6-3 states that effective diameter d_e of a nonrotating bar is 0.370d. Use 95 critical stress area method to validate this effective diameter.

$$A_{0.95\sigma} = 0.01046d^2$$
$$d_e = 0.370d$$

Rotating

$$A.950 = \frac{11}{4} \left[d_e^2 - (0.91 d_e^2) \right]$$

$$= 0.0766 d_e^2$$

$$= \left(\frac{2110}{340} - Sin\theta \right) \frac{d^2}{4}$$

$$= 0.01046 d^2$$

$$d_e^2 = 0.1366 d^2$$

$$d_e = 0.37 d$$

Non-Rotating

$$\theta = 2.65(0.95) = 0.635 \text{ rad}$$

Shall Area = $(\theta - S_{10}\theta) \Gamma^{2}$
= $(\frac{\theta \cdot 2\pi}{360} - S_{10}\theta) \Gamma^{2}$ $\theta = 36.39^{\circ}$
= $0.0418 \Gamma^{2}$
= $0.0418 \Gamma^{2}$

Question 02 (40 points)

A rotating round shaft with a flat groove used to seat a retaining ring is shown in the figure below. AISI 1020 steel (quenched and tempered at 870°C) is used for the shaft, which is machined to its final dimensions. Endurance limit of the AISI 1020 steel is 200 MPa and ultimate strength is 395 MPa.

- a. Estimate the modified endurance limit for the shaft if the shaft is operating under room temperature.
- b. Calculate the allowable bending moment using a safety factor of 5.0. Use a reliability of 99% and no thermal or miscellaneous effects.

Question 03 (40 points)

Corrected Endurance Strength

Calculate endurance limits and modification factors of a non-rotating rectangular cross section (width=40 mm, height=60mm. The beam is subjected to fully-reversed bending moment. As in Question 02, use AISI 1020 steel with a reliability of 99%, and no thermal or miscellaneous effects.

4.			
Cross-Section of Square Beam	$b \coloneqq 40 \cdot mm$	$h \coloneqq 60 \cdot mm$	
AISI 1020 Steel	$S_{ut} \coloneqq 395 \cdot MPa$	$S_e \coloneqq 200 \cdot MPa$	
Correction Factors			
Surface Condition	$k_a\!\coloneqq\!4.51\!\cdot\!\left(\!rac{S_{ut}}{m{MPa}}\! ight)^{\!-0.265}\!=\!$	0.925	
Size Effect	$d_e = 0.808 \cdot \sqrt{b \cdot h} = 39.58$	84 <i>mm</i>	
	$oldsymbol{k}_b \coloneqq \left(\frac{d_e}{7.62 \cdot oldsymbol{mm}} \right)^{-0.107} = 0$	0.838	
Load Effect	$k_c \coloneqq 1$		
Temperature Effect	k_d :=1		
Reliability Effect	$k_e = 0.814$		

 $S_e \coloneqq k_a \cdot k_b \cdot k_c \cdot k_d \cdot k_e \cdot S_e = 126.231 \; \mathbf{MPa}$