

Gunnar Myhre, BIELEKTRO

28. januar 2022

Oppgåve 1

Vinkelen der snorene er festa til trafikklyset er

$$180^{\circ} - 2 \cdot 37^{\circ} = 106^{\circ} \tag{1}$$

Sidan vinklane er like vil kreftene $T_1=T_2$. Desse kan vi finne vha. trigonometri dersom vi ser på motkrafta til \vec{G} .

$$cos(53^{\circ}) = \frac{mg/2}{T} \to T = \frac{mg}{2cos(53^{\circ})}$$
 (2)

Snordraga $T = T_1 = T_2 = 181N$

a)

Sidan kreftene F_1 og F_2 står horisontalt på systemet vil snordraget T måtte stå for all krafta i y-retning.

Dermed får vi ein likebeint trikant og kan bruke pythagoras

$$T = \sqrt{60, 0^2 + 60, 0^2} \to T = 84, 9N$$
 (3)

b)

Vinkelen 45° sørger for at kreftene w og F_2 er like store,

$$|\vec{F_2}| = |\vec{w}| = 60,0N \tag{4}$$

dersom kreften
e F_1 og F_2 ikkje var like hadde ikkje 90°-forholdet vorte overholdt. Der
for er $F_1=F_2=60,0N$

a)

b)

Ballens tyngde er gitt ved

$$|m\vec{g}| = 45,0kg \cdot 9,81m/s^2 = 441,5N \tag{5}$$

vinkelen mellom snordraget \vec{T} og normalkrafta frå veggen \vec{N} er

$$\cos \alpha = \frac{16,0}{30,0+16,0} \to \alpha = 69.6^{\circ}$$
 (6)

krafta til snordraget \vec{T} er dermed gitt som

$$sin\alpha = \frac{|m\vec{g}|}{|\vec{T}|} \to T = \frac{441,5N}{sin(69.6^{\circ})} = 471,0N$$
 (7)

 $\mathbf{c})$

Vi kan finne normalkrafta frå veggen N

$$N^2 + G^2 = T^2 \to N = \sqrt{T^2 - G^2} \to |\vec{N}| = 164, 1N$$
 (8)

sidan ballen står i ro i horisontal retning vil normalkrafta vere lik krafta frå ballen mot veggen.

Sidan vi antar at personen befinner seg i eit jamnt gravitasjonsfelt kan vi skrive tyngdekrafta på personen som $|m\vec{g}|=70kg\cdot 9,81m/s^2$. Summen av dei kjente kreftene på heisen og personen er

$$\vec{N} - m\vec{g} = ma \rightarrow 72|\vec{g}| - 70|\vec{g}| = 70a \rightarrow a = \frac{72 - 70}{70}g = 0,28m/s^2$$
 (9)

heisen og personen er derfor i ein tilstand av positiv akselerasjon

- Dette utelukker **A** og **B**, som fordrer a = 0.
- **D** er utelukka sidan det fordrer at a < 0.
- E og G stemmer ikkje sidan N > mg
- Alternativer C og F kan stemme.

Oppgåve 5

Sidan klossen beveger seg med konstant fart er summen av kreftene langs skråplanet lik null

$$\cos\alpha = \frac{N}{mg} \to N = mg\cos\alpha \tag{10}$$

$$sin\alpha = \frac{f}{ma} \to f = mgsin\alpha$$
 (11)

$$f = \mu N \rightarrow \mu = \frac{f}{N} = \frac{mgsin\alpha}{mgcos\alpha} \rightarrow \mu = \frac{sin\alpha}{cos\alpha} = tan\alpha$$
 (12)

Alternativ **G**

a)

Eg byrjer med å dekomponere tyngdekrafta til m_1

$$sin\alpha = \frac{G_1}{m_1 g} \to G_1 = m_1 g sin\alpha \tag{13}$$

normalkrafta tilsvarer y-komponenten til $m_1 \vec{g}$

$$\cos\alpha = \frac{N_1}{m_1 q} \to N_1 = m_1 g \cos\alpha \tag{14}$$

friksjonskrafta til m_1 er gitt ved

$$f = \mu N \to \mu m_1 g cos \alpha \tag{15}$$

summen av kreftene i systemet ved Newtons andre lov

$$\Sigma |\vec{F}| = G_2 - G_1 - f = ma \to \tag{16}$$

$$a = \frac{m_2 g - m_1 g sin\alpha - \mu m_1 g cos\alpha}{m_2 + m_1} = 2,66 m/s^2$$
 (17)

b)

Snordraga $T_1 = T_2$

$$T_1 = G_1 + f + m_1 a = 257, 4N (18)$$

a)

Vi kjenner til at akselerasjonen i ein slik loop er gitt som

$$a = \frac{V^2}{R} \tag{19}$$

b)

Når vogna er på botnpunktet i loopen er normalkrafta gitt ved

$$N = mg + m\frac{V^2}{R} = m\left(g + \frac{(70km/h)^2}{7m}\right) \to m\left(g + \frac{(19, 4/h)^2}{7m}\right)$$
(20)

$$\to m(9,81N + 54,0N) = m \cdot 63,8 \tag{21}$$

som G vert dette

$$63,8N/9,81N = 6,5G \tag{22}$$

 $\mathbf{c})$

For å finne N må vi først finne farta på toppen, V_2 . Vi kjenner til arbeid/energiteoremet

- $\bullet \ W = K_2 K_1$
- $K_1 = \frac{1}{2}mV_1^2$
- $K_2 = \frac{1}{2}mV_2^2$

setter inn for kjente størrelsar

$$-14mg = \frac{1}{2}mV_2^2 + \frac{1}{2}m19, 4^2 \to V_2 = \sqrt{19, 4^2 - 28g} = 10, 1m/s$$
 (23)

Når vogna er på toppunktet i loopen vil både normalkrafta og tyngdekrafta peke mot origo

$$N = m\frac{V^2}{R} - mg \to m\left(\frac{(10, 1m/s)^2}{7m} - g\right) \to m(14, 6N - 9, 81N) = m4, 76N$$
(24)

som G vert dette

$$4,76N/9,81N = 0,49G \tag{25}$$

d)

Dersom normalkrafta N=0 vil vogna falle av banen.

$$\frac{V^2}{R} - g = 0 \to V = \sqrt{gR} = 8,3 \tag{26}$$

den minste farta vogna kan ha på toppunktet i loopen er derfor 8,3m/s. Dermed må farta v_0 vere

$$mg(5-14) = \frac{1}{2}m8, 3^2 + \frac{1}{2}mv_0^2 \to v_0 = \sqrt{8, 3^2 + 18g} = 15, 7$$
 (27)

med farta $v_0 = 15, 7m/s$ skal vogna klare å komme seg igjennom loopen uten å falle ned frå banen.

Oppgåve 8

Newtons tredje lov opprettholder at

$$F_{a \to tau} = -F_{tau \to a} \tag{28}$$

og at

$$F_{b \to tau} = -F_{tau \to b} \tag{29}$$

men det trenger ikkje naudsynt vere tilfelle at

$$F_{b \to tau} = -F_{a \to tau} \tag{30}$$

og denne skjevheten er opphavet til akselerasjonen.