Arne Hansen

ETH Zurich

02/2014

Entanglement

... peculiar, non-classical correlation arising from the tensor product structure in combined quantum systems

Bound Entanglement

non-distillable entanglement

Bound Entanglement

non-distillable entanglement

Existence Explicite example of a bound entangled state

Bound Entanglement

non-distillable entanglement

Existence Explicite example of a bound entangled state

Use Why should we be concerned about bound entanglement?

Bound Entanglement

non-distillable entanglement

Existence Explicite example of a bound entangled state

Use Why should we be concerned about bound entanglement?

Detection How do we decide for a given state whether it is (bound) entangled?

Roadmap

Showing the existence of BE

[Hor97] construct entangled state with negative partial transpose [HHH98] NPT states are not distillable

The PPT Criterion

(Peres Criterion)

Definition

The partial transpose of a density matrix $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is defined as

$$\rho^{\Gamma} := (\mathcal{I}_A \otimes T_B)\rho \tag{1}$$

(Peres Criterion)

Definition

The partial transpose of a density matrix $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is defined as

$$\rho^{\Gamma} := (\mathcal{I}_A \otimes T_B)\rho \tag{1}$$

Matrix elements in the tensor basis

In the product basis

$$(\rho^{\Gamma})_{ikjl} = \langle i \otimes k | \rho^{\Gamma} | j \otimes l \rangle$$

$$= \langle i \otimes l | \rho | j \otimes k \rangle = \rho_{iljk}$$
 (3)

The PPT Criterion

(Peres Criterion)

The PPT Criterion

(Peres Criterion)

Entanglement criterion

$$\rho_{AB} \in \mathcal{S} \subset \mathcal{H}_A \otimes \mathcal{H}_B \Rightarrow \rho_{AB} \in \Gamma$$
 (1)

(Peres Criterion)

Entanglement criterion

$$\rho_{AB} \in \mathcal{S} \subset \mathcal{H}_A \otimes \mathcal{H}_B \Rightarrow \rho_{AB} \in \Gamma$$
 (1)

(Peres Criterion)

Entanglement criterion

$$\rho_{AB} \notin \Gamma \Rightarrow \rho_{AB} \text{ is entangled}$$
 (1)

The PPT Criterion

(Peres Criterion)

Entanglement criterion

$$\rho_{AB} \notin \Gamma \Rightarrow \rho_{AB} \text{ is entangled}$$
 (1)

Accuracy

The criterion is accurate in $2 \otimes 2$ and $2 \otimes 3$. But not in higher dimensions.[HHH96]

(Peres Criterion)

Entanglement criterion

$$\rho_{AB} \notin \Gamma \implies \rho_{AB} \text{ is entangled}$$
 (1)

Accuracy

The criterion is accurate in $2\otimes 2$ and $2\otimes 3$. But not in higher dimensions.[HHH96]

Group of Entanglement Tests

Any Positive but not Completely Positive Map ('channel') serves as a similar entanglement test. [HHH96]

The range criterion

The Range Criterion [Hor97]

Decomposition of separable states

$$\forall \rho \in \mathcal{S} :$$

$$\rho = \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} p_{ij} |\phi_i\rangle\langle\phi_i| \otimes |\psi_j\rangle\langle\psi_j|$$

$$|\phi_i\rangle \in \mathcal{H}_A, |\psi_j\rangle \in \mathcal{H}_B$$

$$n_a \leq \dim \mathcal{H}_A, n_B \leq \dim \mathcal{H}_B$$
(2)

Decomposition of separable states

$$\forall \rho \in \mathcal{S} :$$

$$\rho = \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} p_{ij} |\phi_i\rangle\langle\phi_i| \otimes |\psi_j\rangle\langle\psi_j|$$

$$|\phi_i\rangle \in \mathcal{H}_A, |\psi_j\rangle \in \mathcal{H}_B$$

$$n_a \leq \dim \mathcal{H}_A, n_B \leq \dim \mathcal{H}_B$$
(2)

 $\rightarrow\,$ features of finite-dimensional, compact convex sets (Caratheodories Thm [Car11])

Decomposition of separable states

$$\forall \rho \in \mathcal{S} :$$

$$\rho = \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} p_{ij} |\phi_i\rangle\langle\phi_i| \otimes |\psi_j\rangle\langle\psi_j| \qquad (2)$$

$$|\phi_i\rangle \in \mathcal{H}_A, |\psi_j\rangle \in \mathcal{H}_B$$

$$n_a \leq \dim \mathcal{H}_A, n_B \leq \dim \mathcal{H}_B$$

The range of an operator

Ran
$$\rho := \{ |\psi\rangle \in \mathcal{H}, \exists |\phi\rangle \in \mathcal{H} : |\psi\rangle = \rho |\phi\rangle \}$$
 (3)

The range of separable density matrices

Any separable density matrix $\rho \in \mathcal{S} \subset \mathcal{H}_A \otimes \mathcal{H}_B$ can be written as a convex combination of pure products states

$$\rho = \sum_{i,j} p_{ij} |\psi_i\rangle\langle\psi_i| \otimes |\phi_j\rangle\langle\phi_j| = \sum_{i,j} p_{ij} |\psi_i\otimes\phi_j\rangle\langle\psi_i\otimes\phi_j|$$

$$\rho^{\Gamma} = (\mathcal{I}\otimes\mathcal{T})\rho = \sum_{i,j} p_{ij} |\psi_i\rangle\langle\psi_i| \otimes \underbrace{|\phi_j\rangle\langle\phi_j|^T}_{|\phi_j^*\rangle\langle\phi_j^*|}$$

$$= \sum_{i,j} p_{ij} |\psi_i\otimes\phi_j^*\rangle\langle\psi_i\otimes\phi_j^*|$$

and the set of product states $\{|\psi_i\otimes\phi_j\rangle\}_{ij}$ ($\{|\psi_i\otimes\phi_j^*\rangle\}_{ij}$) span the range of ρ (ρ^{Γ})

Entanglement test

- \blacksquare find product vectors that span the range of ρ
- show that these vectors do not span the range of ρ^{Γ}

Entanglement test

- lacksquare find product vectors that span the range of ho
- lacksquare show that these vectors do not span the range of ho^Γ
- \rightarrow "stronger" than PPT criterion

Construction [Hor97]

Components

 $\mathcal{H} = \mathbb{C}^3 \otimes \mathbb{C}^3$, $\{e_i\}$ standard basis

Construction [Hor97]

Components

$$\mathcal{H} = \mathbb{C}^3 \otimes \mathbb{C}^3, \ \{e_i\} \ \text{standard basis}$$

$$P_1 := I \otimes I - \sum_i |e_i\rangle\langle e_i| \otimes |e_i\rangle\langle e_i|$$

$$-|e_3\rangle\langle e_3| \otimes |e_1\rangle\langle e_1|$$

$$P_2 := \frac{1}{3}|\sum_i e_i \otimes e_i\rangle\langle \sum_i e_i \otimes e_i|$$

$$\rho_1 := \frac{1}{8}P_1 + \frac{3}{8}P_2 \ \ \mathsf{NPT}$$

Construction [Hor97]

Components

$$\Psi := e_3 \otimes \left(\sqrt{\frac{1+a}{2}} e_1 + \sqrt{\frac{1-a}{2}} e_3 \right)$$

$$\rho_2 := |\Psi\rangle\langle\Psi| \in \partial \mathcal{S}$$

Construction [Hor97]

Components

$$\rho_a := \frac{8a}{8a+1}\rho_1 + \frac{1}{9a+1}\rho_2$$

The first PPT entangled state [Hor97]

$$\rho_a = \frac{1}{8a+1} \begin{bmatrix} a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^2}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{1-a^2}}{2} & 0 & \frac{1+a}{2} \end{bmatrix}$$

$$a \in (0,1)$$

The first PPT entangled state [Hor97]

The first PPT entangled state [Hor97]

$$\rho_a = \frac{1}{8a+1} \begin{bmatrix} a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1+a}{2} & 0 & \frac{\sqrt{1-a^2}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{1-a^2}}{2} & 0 & \frac{1+a}{2} \end{bmatrix} \quad a \in (0,1)$$

Properties of ρ_a

- PPT
- lacksquare ho_a and ho_a^Γ violate the range criterion

Partial Transpose and Distillability

Definition

A density matrix ρ is called distillable if

$$\exists \ \mathsf{LOCC} \quad \Lambda: \mathcal{D}((\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes n}) \to \mathcal{D}(\mathbb{C}^2) \quad \mathsf{s.t.}: \\ \Lambda(\rho^{\otimes n}) = |\Phi^+\rangle \langle \Phi^+| \quad \mathsf{for some large} \ n$$

Partial Transpose and Distillability

Definition

A density matrix ρ is called distillable if

$$\exists \ \mathsf{LOCC} \quad \Lambda: \mathcal{D}((\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes n}) \to \mathcal{D}(\mathbb{C}^2) \quad \mathsf{s.t.}: \\ \Lambda(\rho^{\otimes n}) = |\Phi^+\rangle \langle \Phi^+| \quad \mathsf{for some large} \ n$$

Distillation of PPT states

Cannot distill qubits from PPT density matrices ρ and $\rho^{\otimes N}$

Partial Transpose and Distillability

Definition

A density matrix ρ is called distillable if

$$\exists \ \mathsf{LOCC} \quad \Lambda: \mathcal{D}((\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes n}) \to \mathcal{D}(\mathbb{C}^2) \quad \mathsf{s.t.}: \\ \Lambda(\rho^{\otimes n}) = |\Phi^+\rangle \langle \Phi^+| \quad \mathsf{for some large} \ n$$

Distillation of PPT states

Cannot distill qubits from PPT density matrices ρ and $\rho^{\otimes N}$

Non-distillable entanglement

Any PPT entangled state is not distillable.

Distillable states

Distillation of PPT states

Claim

PPT states are not distillable.

Distilling $\rho^{\otimes n}$

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_i (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; \underbrace{i_0 \; \text{s.t.:} \; \underbrace{(A_{i_0} \otimes B_{i_0}) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=: \rho_{i_0}} \quad \text{is entangled} \end{split}$$

Distilling $\rho^{\otimes n}$

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_i (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; i_0 \; \text{s.t.:} \; \underbrace{(A_{i_0} \otimes B_{i_0}) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=:\rho_{i_0}} \quad \text{is entangled} \\ &A_{i_0} &= |0\rangle \langle \psi_A| + |1\rangle \langle \phi_A| \quad B_{i_0} &= |0\rangle \langle \psi_B| + |1\rangle \langle \phi_B| \\ &P_A(P_B) := \; \text{projector onto} \; \langle \psi_A, \phi_A \rangle (\langle \psi_B, \phi_B \rangle) \end{split}$$

Distilling $\rho^{\otimes n}$

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_i (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; \emph{i_0 s.t.: } \underbrace{(A_{i_0} \otimes B_{i_0}) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=:\rho_{i_0}} \quad \text{is entangled} \\ &\Rightarrow \quad \rho' := P_A \otimes P_B \; \rho^{\otimes n} \; P_A \otimes P_B \quad \text{is entangled} \end{split}$$

Distilling $\rho^{\otimes n}$

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_{i} (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; \emph{i_0 s.t.: } \underbrace{(A_{i_0} \otimes B_{i_0}) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=:\rho_{i_0}} \quad \text{is entangled} \\ &\Rightarrow \quad \rho' := P_A \otimes P_B \; \rho^{\otimes n} \; P_A \otimes P_B \quad \text{is NPT} \end{split}$$

Distillation of PPT states

Distilling $\rho^{\otimes n}$

Assume ρ is distillable:

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_i (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; \underbrace{i_0} \; \text{s.t.:} \; \underbrace{(A_{i_0} \otimes B_{i_0}) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=:\rho_{i_0}} \quad \text{is entangled} \\ &\Rightarrow \quad \rho' := P_A \otimes P_B \; \rho^{\otimes n} \; P_A \otimes P_B \quad \text{is NPT} \\ &\Rightarrow \quad \exists \; \psi \; \text{s.t.:} \quad \langle \psi | (\rho')^{\Gamma_B} | \psi \rangle < 0 \end{split}$$

Distillation of PPT states

Distilling $\rho^{\otimes n}$

Assume ρ is distillable:

$$\begin{split} \Lambda(\rho^{\otimes n}) &= \frac{1}{M} \sum_i (A_i \otimes B_i) \; \rho^{\otimes n} \; (A_i^\dagger \otimes B_i^\dagger) \quad \text{is entangled} \\ &\Rightarrow \quad \exists \; \frac{i_0}{i_0} \; \text{s.t.:} \; \underbrace{\left(A_{i_0} \otimes B_{i_0}\right) \rho^{\otimes n} (A_{i_0}^\dagger \otimes B_{i_0}^\dagger)}_{=:\rho_{i_0}} \quad \text{is entangled} \\ &\Rightarrow \quad \rho' := P_A \otimes P_B \; \rho^{\otimes n} \; P_A \otimes P_B \quad \text{is NPT} \\ &\Rightarrow \quad \exists \; \psi \; \text{s.t.:} \quad \langle \psi | (\rho')^{\Gamma_B} | \psi \rangle < 0 \\ &\Rightarrow \quad \langle \psi | \rho^{\Gamma_B} | \psi \rangle < 0 \\ &\Rightarrow \quad \rho \; \text{is NPT} \end{split}$$

Summary

Bound entanglement

a first summary

def entanglement that cannot be distilled

Bound entanglement

a first summary

def entanglement that cannot be distilled

 \rightarrow not a sufficient resource for many quantum informational protocols

Bound entanglement

a first summary

def entanglement that cannot be distilled

 $\,\rightarrow\,$ not a sufficient resource for many quantum informational protocols

construction PPT entangled states (any PPT is not distillable)

Summary

Bound entanglement

a first summary

def entanglement that cannot be distilled

 $\,\rightarrow\,$ not a sufficient resource for many quantum informational protocols

construction PPT entangled states (any PPT is not distillable)

existence only in higher dimensions (smallest BE systems in $3\otimes 3$ and $4\otimes 2$)

Bound Entanglement

Existence of BE

Summary

Bound entanglement

a first summary

def entanglement that cannot be distilled

 $\,\rightarrow\,$ not a sufficient resource for many quantum informational protocols

construction PPT entangled states (any PPT is not distillable)

existence only in higher dimensions (smallest BE systems in $3\otimes 3$ and $4\otimes 2$)

detection need a stronger criterion than PPT, e.g. range criterion

with bound entangled resources

Secure key from BE

Bound entangled resources can be employed to distill secret key $[\mathrm{HHHO05}]$. 1

¹For further details see [HHHO09]

with bound entangled resources

Shielded System with an adversary

$$A \otimes B \otimes \underbrace{A' \otimes B'}_{\text{shield}} \otimes E \tag{4}$$

with bound entangled resources

Shielded System with an adversary

$$A \otimes B \otimes \underbrace{A' \otimes B'}_{\text{shield}} \otimes E \tag{4}$$

Assume: Eavesdropper Eve controls the whole environment (purification).

with bound entangled resources

Shielded System with an adversary

$$|\psi\rangle\langle\psi|\in\mathcal{D}(A\otimes B\otimes \underline{A'\otimes B'}\otimes E)$$
 (4)

Assume: Eavesdropper Eve controls the whole environment (purification).

with bound entangled resources

Security and Key

After measuring in a product basis the systems A,B and tracing out A^{\prime},B^{\prime}

$$\rho_{ccq} = \sum_{ij} p_{ij} |e_i \otimes f_j\rangle\langle e_i \otimes f_j| \otimes \rho_{ij}^E$$
(4)

with bound entangled resources

Security and Key

$$\rho_{ccq} = \sum_{ij} p_{ij} |e_i \otimes f_j\rangle\langle e_i \otimes f_j| \otimes \rho^E$$
(4)

with bound entangled resources

Security and Key

$$\rho_{ccq} = \sum_{ij} p_{ij} |e_i \otimes f_j\rangle\langle e_i \otimes f_j| \otimes \rho^E$$
(4)

is secure

with bound entangled resources

Security and Key

$$\rho_{ccq} = \sum_{ij} p_{ij} |e_i \otimes f_j\rangle\langle e_i \otimes f_j| \otimes \rho^E$$
(4)

is secure

has key if
$$\{p_{ij}\} = \left\{\frac{1}{d}\delta_{ij}\right\}$$

with bound entangled resources

Private States

$$\gamma = \frac{1}{d} \sum_{ij} |e_i f_i\rangle \langle e_j f_j|_{AB} \otimes U_i \sigma_{A'B'} U_j^{\dagger}$$
(4)

where U_i 's are arbitrary unitary transformations.

with bound entangled resources

Private States

$$\gamma = \frac{1}{d} \sum_{ij} |e_i f_i\rangle \langle e_j f_j|_{AB} \otimes U_i \sigma_{A'B'} U_j^{\dagger}$$
(4)

where U_i 's are arbitrary unitary transformations.

Key of private states

 $\rho_{ABA'B'}$ is a private state $\Leftrightarrow \rho_{ABE}$ has key

with bound entangled resources

Private States

$$\gamma = \frac{1}{d} \sum_{ij} |e_i f_i\rangle \langle e_j f_j|_{AB} \otimes U_i \sigma_{A'B'} U_j^{\dagger} \tag{4}$$

where U_i 's are arbitrary unitary transformations.

Key of private states

 $\rho_{ABA'B'}$ is a private state $\Leftrightarrow \rho_{ABE}$ has key

Private states and BE

Private states can be approximated with BE states.

Entanglement Tests

an overview

```
PPT all NPT states are entangled  \rightarrow \text{ does not detect BE}  range compare the range of \rho and \rho^{\Gamma} extendibility check extendibility of \rho [DPS05] (Semi definite program \rightarrow computational approaches) witnesses hyperplanes separating the state from the convex set of separable states [Ter00]
```

Entanglement Tests

an overview

```
PPT all NPT states are entangled  \rightarrow \text{ does not detect BE}  range compare the range of \rho and \rho^{\Gamma} extendibility check extendibility of \rho [DPS05] (Semi definite program \rightarrow computational approaches) witnesses hyperplanes separating the state from the convex set of separable states [Ter00]
```

Further: concentration of measure for randomly drawn states \rightarrow conditions for dimension of respective Hilbert spaces to get PPT states / entangled states [ASY12a] [ASY12b]

- 1 Existence of Bound Entanglement
- 2 Applications of BE
- 3 Testing entanglement
- 4 Notions of Quantum Repeaters
 - Swap Operation on States
 - Composition of Channels
 - Hybrid Approach
- 5 Question
- 6 Online Access

Endeavour: Extending entanglement

Endeavour: Extending entanglement

Endeavour: Extending entanglement

Swap Operation on States

Swap Operator on States

Swap Operation on States

Swap Operator on States

Swap Operation on States

Swap Operator on States

Swap Operator on States

Swap operation

$$\operatorname{swap}(\rho_A, \rho_B) = \frac{1}{N} \operatorname{Tr}_{BB'} \left[\left(|\Phi^+\rangle \langle \Phi^+|_{BB'} \otimes \mathbb{1}_{AC} \right) \left(\rho_1 \otimes \rho_2 \right) \right]$$

Composing Channels

Composing Channels

$$A$$
 $\Phi^+ A$

Composing Channels

Composing Channels

corresponds to swapping CJ associated states

(C)

Composing Channels

Composing Channels

corresponds to swapping CJ associated states

Swap in terms of channels

$$\tau^{-1}(\operatorname{swap}(\rho_1, \rho_2)) = \tau^{-1}(\rho_2) \circ \tau^{-1}(\rho_1)$$

(flipping systems or equivalently transposing channels if necessary, up to normalization)

Hybrid approach

Hybrid Approach

Hybrid approach

Hybrid approach

Hybrid approach

Hybrid formulation

$$\operatorname{swap}(\rho_1, \rho_2) = \left[\mathcal{I}_A \otimes \tau^{-1}(\rho_2) \right] (\rho_1) = \left[\mathcal{I}_C \otimes \tau^{-1}(\rho_1)^T \right] (\rho_2)$$

(flipping systems or equivalently transposing channels if necessary, up to normalization)

Swapped Bound Entanglement

Entanglement of swapped states from BE resources?

States: Image of the Swap operator

 $\operatorname{swap}: \mathsf{BE} \mathsf{ states} \times \mathsf{BE} \mathsf{ states} \to \mathcal{S}$

OR

 $\operatorname{swap}(\mathsf{BE}\ \mathsf{states},\mathsf{BE}\ \mathsf{states})\cap\mathcal{D}\setminus\mathcal{S}\neq\emptyset$

¹Defined by their image: $\Lambda_{\Gamma}(\mathcal{D}) \subset \Gamma$

Swapped Bound Entanglement

Entanglement of swapped states from BE resources?

States: Image of the Swap operator

$$\mathrm{swap}: \mathsf{BE}\ \mathsf{states} \times \mathsf{BE}\ \mathsf{states} \to \boldsymbol{\mathcal{S}}$$

OR

 $\operatorname{swap}(\mathsf{BE}\;\mathsf{states},\mathsf{BE}\;\mathsf{states})\cap\mathcal{D}\setminus\mathcal{S}\neq\emptyset$

Composed Channels

If $\Lambda_1: \mathcal{D}(A) \to \mathcal{D}(B)$ and $\Lambda_2: \mathcal{D}(B) \to \mathcal{D}(C)$ are PPT channels¹, is $\Lambda_2 \circ \Lambda_1: \mathcal{D}(A) \to \mathcal{D}(C)$ separable?

¹Defined by their image: $\Lambda_{\Gamma}(\mathcal{D}) \subset \Gamma$

Bibliography I

Guillaume Aubrun, Stanislaw J. Szarek, and Deping Ye. Entanglement thresholds for random induced states. 2012.

Guillaume Aubrun, Stanisław J. Szarek, and Deping Ye. Phase transitions for random states and a semicircle law for the partial transpose.

Phys. Rev. A, 85:030302, Mar 2012.

C. Carathéodory.

Über den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen.

Rendiconti del Circolo Matematico di Palermo, 32:193-217, 1911.

Bibliography II

Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. Detecting multipartite entanglement.

Phys. Rev. A. 71:032333. Mar 2005.

Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1-2):1 - 8, 1996.

Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature?

Phys. Rev. Lett., 80:5239-5242, Jun 1998.

Bibliography III

Karol Horodecki, Michał Horodecki, Paweł Horodecki, and Jonathan Oppenheim.

Secure key from bound entanglement.

Phys. Rev. Lett., 94:160502, Apr 2005.

K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim. General paradigm for distilling classical key from quantum states. *Information Theory, IEEE Transactions on*, 55(4):1898 –1929, april 2009.

Pawel Horodecki.

Separability criterion and inseparable mixed states with positive partial transposition.

Physics Letters A, 232(5):333 - 339, 1997.

Bibliography IV

Barbara M. Terhal. Bell inequalities and the separability criterion. Physics Letters A, 271(5–6):319 – 326, 2000.

 $https://github.com/EnraH/Presentation_USI$