Problem 2. The solubility product of CuCl₂ is 3.2 × 10⁻⁷ at 25°C. Calculate the solubility of CuCl₂ in mole litre⁻¹.

- CuCl₂ is a sparingly soluble salt.
- Let x is the solubility of CuCl₂ in mole litre-1
- The following equilibrium exists in its saturated solution:

- Equilibrium concentration, x x 2x
- Therefore, solubility product, $K_{sp} = [Cu^{+2}][Cl^{-}]^{2}$

or,
$$3.2 \times 10^{-7} = [x] [2x]^2$$

or,
$$4x^3 = 3.2 \times 10^{-7}$$

$$x = 4.3 \times 10^{-3} \text{ mole litre}^{-1}$$

Ans

Problem 3. K_{sp} of CaF₂ is 1.7×10^{-10} and its mol. wt. is 78 g mole⁻¹. What volume of the saturated solution will contain 0.078 g of CaF₂?

- CaF₂ is a sparingly soluble salt.
- Let x is the solubility of CaF₂ in mole litre-1
- The following equilibrium exists in its saturated solution:

Equilibrium concentration, x 🗶 2x

Therefore, solubility product, K_{sp} = [Ca⁺²] [F-]²

or,
$$1.7 \times 10^{-10} = [x] [2x]^2$$

or,
$$4x^3 = 1.7 \times 10^{-10}$$

.. 1 litre saturated solution contains 3.5 x 10⁻⁴ mole of CaF₂

.....Problem-3 (contd.)

- No. moles of $CaF_2 = 0.078g / (78g/mole)$ = 1.0 x 10⁻³ moles
- $\therefore \text{ Volume of the solution} = \frac{1 \text{litre} \times 1.0 \times 10^{-3} \text{ mole}}{3.5 \times 10^{-4} \text{ mole}}$

= 2.857 litre

Thus, 0.078 g of CaF2 is contained in 2.9 litres of the saturated solution.

Ans

<u>Problem 4</u>. Calculate the solubility of <u>AgCl</u> (K_{so} = 1.7 × 10⁻¹⁰) in 0.01 M <u>NaCl</u> solution.

AgCl
$$\leftrightarrow$$
 Ag⁺ + Cl⁻ NaCl \leftrightarrow Na⁺ + Cl⁻ equilib. conc. x x x 0.01 0.01 0.01M

- Complete ionization of the salt in aqueous solution is assumed. Therefore, total concentration of Cl⁻ in the solution =
 - 0.01 M (from NaCl) + x M (from AgCl)
- As AgCl is sparingly soluble, x is negligibly small.

∴ [Cl⁻]
$$\cong$$
 0.01 M
∴ K_{sp} = [Ag⁺][Cl⁻]
or, 1.7 x 10⁻¹⁰ = (x)(0.01) M
or, x = 1.7 x 10⁻⁸ M

... The solubility of AgCl in 0.01M NaCl solution is 1.7 x 10⁻⁸ M Ans

<u>Problem 5.</u> K_{sp} of Mg(OH)₂ is 1.8×10^{-11} at 25° C. Calculate the solubility of Mg(OH)₂ in 0.1 M aqueous NaOH solution.

$$Mg(OH)_2 \leftrightarrow Mg^{+2} + 2OH^- NaOH \leftrightarrow Na^+ + OH^-$$

equilib. conc. x x 2x 0.1 0.1 0.1M

Complete ionization of the salt in aqueous solution is assumed. Therefore, total concentration of OH⁻ in the solution =

 $0.1 \text{ M (from NaOH)} + 2x \text{ M (from Mg(OH)}_2)$

As Mg(OH)₂ is sparingly soluble, x is negligibly small.

∴
$$[OH^{-}] = (0.1 + 2x)M \approx 0.1 M$$

.:
$$K_{SD} = [Mg^{+2}][OH^{-1}]^{2}$$

or, 1.8 x 10⁻¹¹ = (x)(0.1)² M
or, $x = 1.8 \times 10^{-9} M$

∴ The solubility of Mg(OH)₂ in 0.1M NaOH solution is 1.8 x 10⁻⁹M

Ans.

Problem 5. Calculate pH and pOH of 0.02 M H_2SO_4 solution. $K_m = 1 \times 10^{-14}$ at 25°C.

$$H_2SO_4 \leftrightarrow 2H^+ + SO_4^-$$
 equilib. conc. 1M 2M 1M

$$(2H_3O^+)$$

If H₂SO₄ in 1M solution ionizes completely, [H₃O⁺] will be 2M.

- Therefore, in a 0.02 M H_2SO_4 solution $[H_3O^+] = 0.04$ M
- \therefore [OH-] = K_w / [H₃O⁺] = (1×10^{-14}) / $0.04 = 2.5 \times 10^{-13}$ M
- $\therefore pH = -log [H_3O^+] = -log (0.04) = 1.40$
 - : $pOH = -log [OH^{-}] = -log (2.5 \times 10^{-13}) = 12.60$ Ans.

Problem -7. pH of an aqueous solution of HCl is 2.699 at 25°C. Calculate the molarity of the solution.

We know from the definition of pH,

$$\mathbf{pH} = -\log_{10}[H^+] = \log_{10}\frac{1}{[H^+]}$$

- \therefore 2.699 = -log [H₃O⁺]
- or, $[H_3O^+]$ = antilog (- 2.699) = 0.002 M
- As HCl is a strong acid, it will ionize completely in the aqueous solution. So the molarity of HCl in the solution will be equal to the concentration of H₃O⁺.
 - .: Molarity of HCl in the solution is 0.002. Ans.

Problem 1. Calculation of normality of strong acids, (a) 36% (w/w) HCl, specific gravity 1.18; (b) 96% (w/w) H₂SO₄, specific gravity 1.84.

Solution 1(a):

- Given, 36% (w/w) HCl, specific gravity 1.18
- Mol. Wt. of HCl = 36.5, gram-equiv-wt = 36.5
- ∴ 1 ml conc. HCl contains = 0.36 × 1.18 gm of HCl
- ∴ 1000 ml conc. HCl contains = 0.36 × 1.18 × 1000
- = 424.8 gm of HCl
- .: 36.5 gm of HCl in 1000ml solution = 1.0 N HCl
- \therefore 424.8 gm HCl in 1000ml = $(1 \times 424.8 \text{ gm}) / 36.5 \text{ gm}$

.....Problem-1 (contd.)

Solution 1(b):

Given, 96% (w/w) H₂SO₄, specific gravity 1.84

Mol. Wt. of $H_2SO_4 = 98$, gram-equiv-wt = 49

 \therefore 1 ml conc. $\mathbf{H_2SO_4}$, contains = 0.96×1.84 gm of $\mathbf{H_2SO_4}$,

:. 1000 ml conc. H_2SO_4 , contains = 0.96 × 1.84 × 1000 = 1766.4 gm of H_2SO_4 ,

 \therefore 49 gm of H_2SO_4 , in 1000ml solution = 1.0 N H_2SO_4 ,

 $\therefore 1766.4 \text{ gm } \mathbf{H}_2 \mathbf{SO}_4, \text{ in } 1000 \text{ ml} = (1 \text{ x } 1766.4 \text{ gm}) / 49 \text{ gm}$

= $36.05 \text{ N H}_2\text{SO}_4$, Ans.