Домашнее задание № 5

по майнору «Прикладная математика. Искусство и ремесло вычислений», 4 семестр.

Профессор НИУ ВШЭ В.А.Гордин

Разослано: 25 января

Полный балл: до исхода 6 февраля

Половинный балл: до 11 февраля

Решение прислать на почту shadrin.dmitry2010@yandex.ru

<u>Тема письма</u>: ДЗ 5 − <Имя Фамилия>

Параметр k — номер студента в списке

Решения сопровождать подробным словесным комментарием — это считается частью работы.

Задача 5.1

Сгенерируйте облако $N=10\ 000\$ векторов – точек $(X,Y,Z)_i\in\mathbb{R}^3, i=1,...,N,$ где $X_i\sim\mathcal{N}\big(0,\sqrt{k+1}\big),\ Y_i\sim\mathcal{N}(0,k+1)$ и $Z_i=X_i+Y_i+\varepsilon_i,\ \varepsilon_i\sim\mathcal{N}(0,1).$ Здесь $\mathcal{N}(\mu,\sigma^2)$ – нормальное распределение со средним значением μ и дисперсией σ^2 .

Постройте численные оценки естественных ортогональных составляющих (ЕОС) этого облака, используя первые n реализаций $(X,Y,Z)_i$, i=1,...,n, где n=1000q, q=1,2,...,10. Покажите (нужно придумать, как это и визуализировать, и оценить), что при увеличении n, ЕОС стабилизируются. Укажите двумерное подпространство, наилучшим образом приближающее данное облако.

Задача 5.2 На плоскости располагаются 6 метеостанций с координатами $\vec{z}_i = (x_i, y_i)$:

i	x_i	y_i
1	0	10k
2	5k	5k
3	0	5k
4	-8k	2k
5	-k	$-\ln k$
6	k	$-k^2$

Пусть известна корреляционная функция «температуры»:

$$K(\vec{z}_i, \vec{z}_j) = \exp\left(-\frac{\left|\vec{z}_i - \vec{z}_j\right|^2}{k^2}\right).$$

Вычислите коэффициенты для метода оптимальной интерполяции и оцените этим способом температуру в точке $\vec{z}_0 = (0,0)$, если температура T_i на станции i равна

	1	2	3	4	5	6	
T_i	10 + k	8 + k	1 + 2k	20	k	k	

На координатной плоскости постройте все эти семь точек и укажите интерполяционный вес и температуру в каждой из них.

Задача 5.3

Для однородного волнового уравнения

$$\partial_t^2 u = k^2 \partial_x^2 u$$

на окружности (т.е. с периодическими граничными условиями) длины $L=2\pi$ построить компактную разностную схему для решения задачи Коши. Провести численный эксперимент с начальными условиями $u(0,x)=\sin x,\,u(\tau,x)=\sin(x+k\tau),\,$ где τ - шаг по времени, и со временем интегрирования T=1. Убедиться в том, что схема имеет 4-й порядок точности при $\tau,h\to 0,\,$ $\frac{\tau}{h}={\rm const}\,$ - некоторая фиксированная константа, которую нужно выбрать так чтобы схема была устойчивой. Для этого рассмотрите полученное решение u(t,x) и точное решение волнового уравнения: $u_{ref}(t,x)={\rm sin}(x+kt)$ (полученное по формуле Даламбера) и сравните С-норму на сетке от погрешности $\max_x |u(T,x)-u_{ref}(T,x)|$ при разном количестве точек сетки по пространству N=12,25,50,100,200. График нормы ошибки в зависимости от N рисовать в логарифмических координатах.

В качестве шаблонов компактной схемы для решения u и правой части f использовать следующую аппроксимацию:

В качестве тестовых функций для нахождения коэффициентов схемы использовать показанные на диаграмме Ньютона мономы – тестовые функции

Так как неизвестных коэффициентов семь, необходимо выбрать седьмую тестовую функцию. Проверьте, что соответствующая СЛАУ 7-го порядка невырожденная. Рассмотрите два варианта: x^4t^2 и x^6 . После определения коэффициентов нужно составить компактную разностную схему, т.е. алгоритм перехода к решению на следующем шаге по времени. На каждом шаге по времени нужно решать трехдиагональную СЛАУ порядка N. С помощью преобразования Фурье оценить устойчивость схемы, а потом подтвердить эту оценку на численном эксперименте.