Your Name:

Please circle your discussion group (1 pt)

1 Yang Yihong A410	4 Zhang Junwei A404	7 Liu Yuanzhe A424
2 Xu Yixiao A425	5 Liang Jun A408	8 Jaden Peterson Wen A421
3 Dai Ruiqi A426	6 She Yuxuan A423	

- No notes, books or electronics during the exam.
- Do not open this test booklet until a proctor says start.
- For all free response questions, show work that justifies your answer.
- Raise your hand if you have a clarification question.
- Scratch paper is provided. You can ask for more if needed.
- Do not leave early: this disturbs others. If you finish your test early, check your work or just relax.
- Quit working when the test ends and hand your test booklet to proctors.
- 1. (15 points, 3 points each) Determine whether the statement is true or false. Circle the right answer.
 - (a) Suppose f and g are continuous on $[a, \infty)$ and $f(x) \ge g(x)$, if $\int_0^\infty f(x) dx$ is convergent, then $\int_0^\infty g(x) dx$ is convergent. (True or False)
 - (b) Approximate integration is a numerical method to calculate the value of definite integral. (True or False)
 - (c) $3ts = e^t + e^t \frac{ds}{dt}$ is a linear differential equation. (True or False)
 - (d) The areas of two regions are the same in the first quadrant of xy plane, if we rotate them about x axis, the volumes we get must be the same. (True or False)

(e)
$$\int_0^2 \frac{dx}{(x-1)^2} = -2$$
 (True or False)

Question	1	2	3	4	5	6	7	8	9	Total
Points	15	10	10	10	8	10	10	14	12	99
Score										

2. (10 points) If $\int_0^{\pi/4} \tan^6 x \sec x = I$, express the value of $\int_0^{\pi/4} \tan^8 x \sec x \, dx$ in terms of I.

2. (10 points) Evaluate the following integral

$$\int \frac{x+5}{x^2-6x+13} \, dx$$

(10 points) If $a \neq 0$ and n is a positive integer, find the partial fraction decomposition of f(x) =3. $\frac{1}{x^n(x-a)}$ and calculate the coefficient.

Hint: first find the coefficient of $\frac{1}{x-a}$. Then subtract the resulting term and simplify what is left. $x^n - a^n = (x-a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1})$

$$x^{n} - a^{n} = (x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + \dots + xa^{n-2} + a^{n-1})$$

- 4. (8 points) Determine whether the integral is convergent or divergent. (a) $\int_3^\infty \frac{x^3}{x^3 + e^x + \cos^2 x} dx$

- □ Convergent
- □ Divergent

(b) $\int_0^1 \frac{\sin x}{\sqrt{x}} dx$

- □ Convergent
- □ Divergent

5. (10 points) Consider the region S bounded by the curves $y = x + \frac{1}{x^2}$ and $y = x - \frac{1}{x^2}$ for $x \ge 1$.

- (a) Is the area of S finite or infinite? If finite, find the area.
- (b) Now suppose we retate S around the x axis. Is the volume of the resulting solid finite or infinite?

6. (10 points) Let R be the region shaded below. Find the coordinates of the centroid of R.

8. (14 points) $y = 1 - e^{-x}$, $0 \le x \le 2$, find the exact arc length for this function.

9. (12 points) Solve the differential equation.

$$\frac{dz}{dt} + e^{t+z} = 0$$

(b)
$$y' = x - y$$