

Descriptive Statistics

Lecture 2

Characterizing and Displaying Multivariate Data

DSA 8070 Multivariate Analysis August 23-27, 2021

> Whitney Huang Clemson University

Agenda

Descriptive Statistics

Graphs and Visualization

Descriptive Statistics

Organization of Data and Notation

- We will use n to denote the number of individuals or units in our sample and use p to denote the number of variables measured on each unit.
- If p = 1, then we are back in the usual univariate setting.
- x_{ik} is the value of the k-th measurement on the i-th unit. For the i-th unit we have measurements

$$(x_{i1}, x_{i2}, \cdots, x_{ip})$$

Organization of Data and Notation

Descriptive Statistics

araphs and isualization

 We often display measurements from a sample of n units in matrix form:

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

is a matrix with n rows (one for each unit) and p columns (one for each measured trait or variable).

Descriptive Statistics: Sample Mean & Variance

Descriptive Statistics

Graphs and Visualization

• The sample mean of the kth variable $(k = 1, \dots, p)$ is computed as

$$\bar{x}_k = \frac{1}{n} \sum_{i=1}^n x_{ik}$$

 The sample variance of the kth variable is usually computed as

$$s_k^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ik} - \bar{x}_k)^2$$

and the sample standard deviation is given by

$$s_k = \sqrt{s_k^2}$$

Descriptive Statistics: Sample Covariance

• We often use s_{kk} to denote the sample variance for the k-th variable. Thus,

$$s_k^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ik} - \bar{x}_k)^2 = s_{kk}$$

 The sample covariance between variable k and variable j is computed as

$$s_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)$$

 If variables k and j are independent, the population covariance will be exactly zero, but the sample covariance will vary about zero

[1] -0.1508848

Descriptive Statistics

arapns and 'isualization

Sample Covariance

Descriptive Statistics

Descriptive Statistics: Sample Correlation

Descriptive Statistics

iraphs and isualization

 The sample correlation between variables k and j is defined as

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}}$$

- ullet r_{jk} is between -1 and 1
- $r_{jk} = r_{kj}$

Sample Correlation

Descriptive Statistics

- The sample correlation is equal to the sample covariance if measurements are standardized (i.e., $s_{kk} = s_{jj} = 1$)
- Covariance and correlation measure linear association. Other non-linear dependencies may exist among variables even if $r_{jk}=0$
- The sample correlation (r_{ij}) will vary about the value of the population correlation (ρ_{ij})

Matrix Representation of Sample Statistics

CLEMS N

Sample statistics of a *p*-dimnesional multivariate data can be organized as vectors and matrices:

Graphs and

 \bullet \bar{x} = $[\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_p]^{\mathrm{T}}$ is the $p \times 1$ vector of sample means

$$\bullet \ S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \cdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} \text{ is the } p \times p \text{ symmetric matrix of }$$
 variance (on the diagonal) and covariances (the

variance (on the diagonal) and covariances (the off-diagonal elements)

$$\bullet \ \ \boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \cdots & \cdots & \cdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \end{bmatrix} \text{is the } p \times p \text{ symmetric matrix of }$$
 sample correlations. Diagonal elements are all equal to 1

Example: Bivariate Data

Descriptive Statistics

Graphs and Visualization

• Data consist of n=5 receipts from a bookstore. On each receipt we observe the total amount of the sale (\$) and the number of books sold (p=2). Then

$$X_{5\times 2} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \\ x_{51} & x_{52} \end{bmatrix} = \begin{bmatrix} 42 & 2 \\ 52 & 5 \\ 88 & 7 \\ 58 & 4 \\ 60 & 5 \end{bmatrix}$$

Sample mean vector is:

$$\bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 60 \\ 5 \end{bmatrix}$$

Example: Bivariate Data

Descriptive Statistics

Araphs and /isualization

Sample covariance matrix is

$$S = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} 294.0 & 19.0 \\ 19.0 & 1.5 \end{bmatrix}$$

Sample correlation matrix is

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0.90476 \\ 0.90476 & 1 \end{bmatrix}$$

Generalized Variance

- The generalized variance is a scalar value which generalizes variance for multivariate random variables
- ullet The generalized variance is defined as the determinant of the (sample) covariance matrix S, $\det(S)$

Example:

```
'``{r}
data(mtcars)|
vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
car <- mtcars[, vars]; S <- cov(car)
(genVar <- det(S))
'``</pre>
```

[1] 3951786

Descriptive Statistics

araphs and /isualization

Graphs and Visualization

Descriptive Statistics

- Graphs convey information about associations between variables and also about unusual observations
- One difficulty with multivariate data is their visualization, in particular when p > 3.
- At the very least, we can construct pairwise scatter plots of variables

Example: Fisher's Iris Data

5 variables (sepal length and width, petal length and width, species (setosa, versicolor, and virginica), 50 flowers from each of 3 species $\Rightarrow p = 4, n = 50 \times 3 = 150$

Descriptive Statistics

Plotting Iris Data using ggpairs

3D Scatter Plot

Descriptive Statistics

Chernoff Faces

> head(mtcars)

	mpg	cyL	aısp	np	arat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Volvo 142E

Visualizing Summary Statistics

Descriptive Statistics