Probability Review and Statistical Estimation

Instructor: Alan Ritter

Many slides from Tom Mitchell, Pedro Domingos

Random Variables

- Informally, A is a <u>random variable</u> if
 - A denotes something about which we are uncertain
 - perhaps the outcome of a randomized experiment

Examples

A = True if a randomly drawn person from our class is female

A = The hometown of a randomly drawn person from our class

A = True if two randomly drawn persons from our class have same birthday

- Define P(A) as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
 - the set of possible worlds is called the sample space, S
 - A random variable A is a function defined over S

A:
$$S \to \{0,1\}$$

A little formalism

More formally, we have

- a <u>sample space</u> S (e.g., set of students in our class)
 - aka the set of possible worlds
- a <u>random variable</u> is a function defined over the sample space
 - Gender: $S \rightarrow \{ m, f \}$
 - Height: S → Reals
- an <u>event</u> is a subset of S
 - e.g., the subset of S for which Gender=f
 - e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we're often interested in probabilities of specific events
- and of specific events conditioned on other specific events

Visualizing A

P(A) = Area of reddish oval

The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

[di Finetti 1931]:

when gambling based on "uncertainty formalism A" you can be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

Elementary Probability in Pictures

• $P(\sim A) + P(A) = 1$

Elementary Probability in Pictures

• $P(A) = P(A ^ B) + P(A ^ B)$

Definition of Conditional Probability

Definition of Conditional Probability

Corollary: The Chain Rule

$$P(A ^ B) = P(A|B) P(B)$$

Bayes Rule

let's write 2 expressions for P(A ^ B)

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Other Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

Applying Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed

Assume:

$$P(A) = 0.05$$

$$P(B|A) = 0.80$$

$$P(B| \sim A) = 0.2$$

what is $P(flu \mid cough) = P(A|B)$?

what does all this have to do with function approximation?

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

Recipe for making a joint distribution of M variables:

 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows). Example: Boolean variables A, B, C

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution

One you have the JD you can ask for the probability of **any** logical expression involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

P(Poor Male) = 0.4654
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

 $P(Male \mid Poor) = 0.4654 / 0.7604 = 0.612$

Learning and the Joint Distribution

Suppose we want to learn the function $f: \langle G, H \rangle \rightarrow W$

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

sounds like the solution to learning F: X →Y, or P(Y | X).

Are we done?

sounds like the solution to learning F: X →Y, or P(Y | X).

Main problem: learning P(Y|X) can require more data than we have

```
consider learning Joint Dist. with 100 attributes # of rows in this table? # of people on earth? fraction of rows with 0 training examples?
```

What to do?

- 1. Be smart about how we estimate probabilities from sparse data
 - maximum likelihood estimates
 - maximum a posteriori estimates

- 2. Be smart about how to represent joint distributions
 - Bayes networks, graphical models

1. Be smart about how we estimate probabilities

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads (X = 1) or tails (X = 0)
- You flip it repeatedly, observing
 - it turns up heads α_1 times
 - it turns up tails α_0 times
- Your estimate for P(X = 1) is....?

Estimating $\theta = P(X=1)$

Test A:

100 flips: 51 Heads (X=1), 49 Tails (X=0)

Test B:

3 flips: 2 Heads (X=1), 1 Tails (X=0)

Estimating $\theta = P(X=1)$

Case C: (online learning)

 keep flipping, want single learning algorithm that gives reasonable estimate after each flip

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize P(data | θ)

• e.g.,
$$\hat{\theta}^{MLE} = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize P(θ | data)
- e.g.

$$\hat{\theta}^{MAP} = \frac{\alpha_1 + \#\text{hallucinated_1s}}{(\alpha_1 + \#\text{hallucinated_1s}) + (\alpha_0 + \#\text{hallucinated_0s})}$$

Maximum Likelihood Estimation

$$P(X=1) = \theta$$
 $P(X=0) = (1-\theta)$

Data D:

Flips produce data D with α_1 heads, α_0 tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_1 and α_0 are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Maximum Likelihood Estimate for Θ

$$\widehat{ heta} = \arg\max_{ heta} \ln P(\mathcal{D} \mid heta)$$

$$= \arg\max_{ heta} \ln heta^{lpha_H} (1 - heta)^{lpha_T}$$

Set derivative to zero:

$$rac{d}{d heta}$$
 In $P(\mathcal{D} \mid heta) = 0$

$$\hat{\theta} = \arg\max_{\theta} \ln P(D|\theta)$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\theta^{\alpha_1} (1 - \theta)^{\alpha_0} \right]$$

hint:
$$\frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

Summary: Maximum Likelihood Estimate

 $P(X=1) = \theta$

 $P(X=0) = 1-\theta$

(Bernoulli)

 \bullet Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize
 P(data | θ)

Principle 2 (maximum a posteriori prob.):

• choose parameters θ that maximize $P(\theta \mid data) = P(data \mid \theta) P(\theta)$ P(data)

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\alpha_H + \beta_H, \alpha_H + \beta_H)$$

and MAP estimate is therefore

$$\hat{\theta}^{MAP} = \frac{\alpha_H + \beta_H - 1}{(\alpha_H + \beta_H - 1) + (\alpha_T + \beta_T - 1)}$$

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial(
$$\theta = \{\theta_1, \theta_2, \dots, \theta_k\}$$
)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\theta_1^{\beta_1 - 1} \ \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

and MAP estimate is therefore

$$\hat{\theta_i}^{MAP} = \frac{\alpha_i + \beta_i - 1}{\sum_{j=1}^k (\alpha_j + \beta_j - 1)}$$

Some terminology

- Likelihood function: P(data | θ)
- Prior: P(θ)
- Posterior: P(θ | data)

 Conjugate prior: P(θ) is the conjugate prior for likelihood function P(data | θ) if the forms of P(θ) and P(θ | data) are the same.

You should know

- Probability basics
 - random variables, conditional probs, ...
 - Bayes rule
 - Joint probability distributions
 - calculating probabilities from the joint distribution
- Estimating parameters from data
 - maximum likelihood estimates
 - maximum a posteriori estimates
 - distributions binomial, Beta, Dirichlet, ...
 - conjugate priors