

中华人民共和国国家标准

GB/T 21839—2008

戴特标准检索系统 www.cgdate.cn 戴特标准检索系统 www.cgdate.cn

戴特标准检索系统 www.cgdate.ca

预应力混凝土用钢材试验方法

Steel for prestressed concrete—Test methods

(ISO 15630-3:2002, Steel for the reinforcement and prestressing of concrete— Test methods—Part 3: Prestressing steel, MOD)

2008-05-13 发布

2008-11-01 实施

中华人民共和国国家质量监督检验检疫总局 发布 国国家标准化管理委员会

前言

本标准修改采用 ISO 15630-3:2002《钢筋混凝土用钢和预应力混凝土用钢试验方法——第 3 部分: 预应力用钢》(英文版)。

本标准是根据 ISO 15630-3:2002 重新起草。

戴特标准检索系统国相关规范的规定和工业的实际要求。在标准在采用国际标准时进行了修改。这些技术推检索系统www.cqdate.En用垂直单线标识在它们所涉及的条款的瓦油容dade.cn的章节对照见附录 B。

为了方便我国预应力行业生产厂和用户的使用,与对应国际标准相比本标准主要做了如下技术性 修改:

- 一增加了第8章 扭转试验;
- 一一增加了第9章 缠绕试验;
- ——增加了附录 A《预应力混凝土用多丝钢绞线试验方法》。

本标准的附录 A、附录 B 为资料性附录。

本标准由中国钢铁工业协会提出。

本标准由全国钢标准化技术委员会归口。

本标准起草单位:国家建筑钢材质量监督检验中心、天津高力预一预应力钢绞线有限公司、宝钢集团上海二钢有限公司、冶金工业信息标准研究院。

本标准主要起草人:朱建国、张莹、崔丽鑫、毛爱菊、刘立军、李文佳、张恩炜、周代义、王玲君、 戴石锋。

预应力混凝土用钢材试验方法

1 范围

本标准规定了预应力混凝土用钢材的拉伸、弯曲、反复弯曲、扭转、缠绕、等温松弛、疲劳、应力腐蚀、偏斜拉伸、化学分析、几何尺寸测量和相对肋面积确定等试验方法。

戴持标准检索系统推适用于预应力钢丝、钢棒、钢绞线等产品箱案连箍的测定。www.egdate.cn

戴特标准检索系统 www.cgdate.cn

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 228 金属材料 室温拉伸试验方法(GB/T 228-2002, eqv ISO 6892:1998)

GB/T 230.1 金属洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) (GB/T 230.1-2004, ISO 6508-1:1999, MOD)

GB/T 232 金属材料 弯曲试验方法(GB/T 232—1999, eqv ISO 7438:1985)

GB/T 238 金属线材 线材 反复弯曲试验方法(GB/T 238-2002, ISO 7801:1984, IDT)

GB/T 239 金属线材扭转试验方法(GB/T 239—1999, eqv ISO 7800:1984)

GB/T 2976 金属线材缠绕试验方法(GB/T 2976—2004, ISO 7802:1983, IDT)

GB/T 3505 产品几何技术规范表面结构轮廓法表面结构的术语、定义及参数(GB/T 3505—2000, eqv ISO 4287:1997)

GB/T 12160—2002 单轴试验用引伸计的标定(GB/T 12160—2002, ISO 9513:1999, IDT)

GB/T 16825.1 静力单轴试验机的检验 第1部分:拉力和(或)压力试验机测力系统的检验与校准(GB/T 16825.1—2002,ISO 7500-1:1999,IDT)

3 符号说明

本标准使用的符号见表 1。

表 1 符号

符号	单位	说明	涉及章节
$h_{ m m}$	mm	中点肋高	15.3,16.2
h_{max}	mm	刻痕深度最大值/最高点肋高	15. 3
$h_{s,i}$	mm	肋在单位长度 Δl 上的平均高度	16. 2
$h_{1/4}$	mm	在 1/4 点处的肋高	15.3,16.2
h _{3/4}	mm	在 3/4 点处的肋高	15.3,16.2
A_{gt}	%	最大力总伸长率	5
\boldsymbol{A}	%	断后伸长率	5. 3. 1
A_{t}	%	断裂总伸长率	5.3.1
c	mm	肋或刻痕距	15.3

集 1 (统)

			表 1 (续)		
	符号	单位	说明	涉及章节	
	С	mm	偏斜拉伸试验用的芯轴凹槽宽度	13. 3. 4	
	d	mm	预应力钢棒、钢丝、钢绞线的公称直径	11.2,11.4.6,12.3.4	
	$d_{\mathtt{a}}$	mm	偏斜拉伸试验用芯轴公称直径	13. 3. 4	
	d_{b}	mm	偏斜拉伸试验用两量棒放在芯轴凹槽中的直径	13. 3. 4	
	d_{ϵ}	mm	偏斜拉伸试验用量棒的直径	13. 3. 4	
戴特标准	检索系统	mm	偏斜拉伸试验用芯轴凹鱗的烙紅检索系统	13.3戴特标准检	索系统
www.cqdate	en D	%	偏斜拉伸试验中最大力减少率的华筠值cn	13. 2, 13. 4 www. c	cqdate.cn
	D_{c}	mm	应力腐蚀试验中容器内径	12.3.4	
	D_{i}	%	偏斜拉伸试验中单根试样最大力减少的百分比	13. 4	
•	e	mm	两排相邻的肋或刻痕之间的平均间隙	15. 3. 1. 4, 15. 3. 2. 4	
	E	N/mm ²	弹性模量	5. 3	
	f	H_{Z}	轴向疲劳试验中负荷循环频率	11.1,11.4.2	
	f_{R}	1	相对肋面积	16	
	$F_{\mathtt{a,i}}$	N	偏斜拉伸试验中单根试样破断力	13.4	
	$F_{\mathbf{m}}$	N	最大力	5.3	
	$F_{\mathrm{m,m}}$	N	最大力平均值	10.2,12.2,13.2	
	$F_{ m p0.1}$	N	0.1%屈服力	5.3	
	$F_{ m p0.2}$	N	0.2%屈服力	5.3	
	F_r	N	轴向疲劳试验中的应力范围	11.1,11.3,11.4.2	
	F_{rt}	N	松弛试验 t 时间试样上的剩余力	10. 1	
	$\Delta F_{ m rt}$	N	松弛试验t时间试样松弛损失的力	10.1	
	F_{R}	mm²	横肋轴向剖面面积	16. 2	
	$F_{ m up}$	N	轴向疲劳试验中的最大力	11.1,11.3,11.4.2	
	F_0	N	应力松弛试验和应力腐蚀试验中的初始力	10.1,10.3,10.4,12.4.2	
	G	mm	偏斜拉伸试验用芯轴凹槽深度	13.3.4	
	h_{b}	mm	预应力钢材平面矢高	15. 3. 4	
	L	mm	应力腐蚀试验中试样的长度	12. 2	
	L_{0}	mm	等温松弛试验原始标距,应力腐蚀试验中试样在溶液中的浸入长度	10. 1, 10. 3, 10. 4 12. 2, 12. 3. 4, 12. 4. 5	
	ΔL_0	mm	等温应力松弛试验中在力 F。时标距 L。的伸长	10.1,10.3,10.4	
	L_1	mm	偏斜拉伸试验中固定端长度	13. 3. 2	
	L ₂	mm	偏斜拉伸试验中活动端长度	13. 3. 2	
	P	mm	钢绞线捻距	15. 3. 3	
	R	mm	偏斜拉伸试验中芯轴凹槽底部圆角半径	13.3.4	
	Ra	μm	偏斜拉伸试验中芯轴表面粗糙度	13. 3. 4	

表 1 (续)

	符号	单位	说 明	涉及章节
	$S_{\mathtt{n}}$	mm^2	试样公称横截面积	5. 3. 2
	ta	h	应力腐蚀试验中最大规定时间	12. 4. 5
	$t_{f,i}$	h 应力腐蚀试验中单根试样的断裂时间 h 应力腐蚀试验中试样断裂时间中值 s 恒温松弛试验和应力腐蚀试验中开始时间	12.4.5	
t _{f,i} h 应力腐蚀试验中单根试样的断裂时间 t _{f,m} h 应力腐蚀试验中试样断裂时间中值 t ₀ s 恒温松弛试验和应力腐蚀试验中开始时间	12.4.6			
	恒温松弛试验和应力腐蚀试验中开始时间	10.4.2,12.4		
	t _{f,m} h 应力腐蚀试验中试样断裂时间中值 to s 恒温松弛试验和应力腐蚀试验中开始时间 标准 检索系统 mm³ 应力腐蚀试验容器中溶截的体积准检索系统 gdate cu a (°) 偏斜拉伸试验中偏斜角度	12. 鐵粉特标准检索系统		
www.cqdate		(°)	偏斜拉伸试验中偏斜角度 www.egdate.ca	13.3.2 www.cqdate.cn
	β	(°)	钢棒或钢丝的横肋或刻痕与中心线的夹角	15. 3
	ρ	%	松弛率	10.4.8
	$\sum e_i$	mm	横肋间隙周长	15. 3. 1. 4, 15. 3. 2. 4, 16. 2
	注:11	$\sqrt{\text{mm}^2 = 1}$	MPa.	

4 试样的一般规定

除非另有其他协议,试样一般在成品包装前在成品中截取。

当样品是包装产品时(例如成卷或成捆),截取试样应特别小心,防止试样因发生塑性变形而改变其性能。

注:必要时,可在相关条款中对试样的要求进行补充。

5 拉伸试验

5.1 试样

试样应符合第4章的规定。

5.2 试验设备

试验设备应按 GB/T 16825.1 进行校验和校准,并至少为1级精度。

测定 $F_{p0.1}$ 或 $F_{p0.2}$ 时,引伸计的精度应为 GB/T 12160 中 1 级;用于测定 A_{gt} 的引伸计可以为 GB/T 12160中 2 级精度。

应使用合适的夹具,避免试样在夹具内或在夹具附近断裂。

5.3 试验程序

5.3.1 概述

拉伸试验应按 GB/T 228 的要求执行。

在测定弹性模量(E)、0.1%屈服力和 0.2%屈服力($F_{p0.1}$ 和 $F_{p0.2}$)及最大力总伸长率(A_{gt})时,应使用引伸计。引伸计的标距按相关产品标准的要求确定。

- 注 1: A_{gt} 的精确值只能用引伸计来测得。如果试样上的引伸计不能延伸到试样断裂时,可按下列方法测定伸长率 A_{t} ,用测定 A_{t} 替代 A_{gt} :
 - ——继续加载直至引伸计记录的伸长率稍大于 $F_{p0.2}$ 时的伸长率,此时取下引伸计,记录试验机上下工作台的距离。继续加载至试样断裂,记录此时试验机上下工作台的最终距离。
 - ——计算出两次试验机上下工作台的距离之差,将此差值与试验机上下工作台的初始距离之比和用引伸计测得的百分数相加即为断裂总伸长率 A_t。

对于钢丝和钢棒,也允许在试样自由长度上划等距离标记的方法测定 A,用测定 A 替代 A_{gt} 。标记

3

间的距离应根据钢丝和钢棒的直径确定,可为 20 mm,10 mm 或 5 mm。

注 2: 在装引伸计前,最好给试样预加一负荷,例如该预加负荷为试样预期最大负荷的约 10%。

如果 Agt 不是完全用引伸计测定的,应在试验报告中注明。

拉伸性能值, $F_{p0.1}$, $F_{p0.2}$, F_m 均用力的单位表示。

当试样在距夹具 3 mm 之内发生断裂,原则上试验应判为无效,应允许重新试验。然而,如果所有试验数据大于或等于相应的规定值,其试验结果有效。

5.3.2 弹性模量的测定

在力-伸长率曲线中,用 $0.2F_m$ 到 $0.7F_m$ 范围内的直线段的斜率除以试样的公称横截面积(S_n)测

戴特标准整弹指模量(E)。

戴特标准检索系统

戴特标准检索系统 www.cgdate.cn

www.egdate.cn 斜率可以通过对测定数据进行线性回归得出,超可以用最优拟合目测法得出。

注 3: 在一些特定情况下,例如热轧钢棒和拉拔钢棒,上述方法不适用;需要在 0.05Fm 到 0.7Fm 范围内测定弹性模量。

除 5.3.1 规定的要求外,测定弹性模量时,在力值范围内应力速率应保持不变。

6 弯曲试验

6.1 试样

试样应符合第4章规定。

- 6.2 试验设备
- 6.2.1 试验设备的弯曲原理如图 1 所示。

注1:图1为弯曲设备的外形构造,可以是芯轴1和支撑2旋转,支座3被固定;也可以是支座3旋转,支撑2或芯轴1被固定。

1——芯轴

2----支撑;

3——支座。

图 1 弯曲设备的原理

- 6.2.2 弯曲试验也可以按 GB/T 232 中带有支撑和芯轴的装置来进行。
- 6.3 试验程序

弯曲试验应在 10℃~35℃的温度进行,试样应沿着芯轴进行弯曲。 注 2: 弯曲速率应大约在 60°/s。

弯曲角度和芯轴的直径应该符合相关产品标准的要求。

6.4 试验结果的判定

弯曲试验结果的判定应符合相关产品标准的要求。 当产品标准没有规定时,若弯曲试样无目视可见的裂纹,则判定该试样为合格。

7 反复弯曲试验

7.1 试样

除符合第 4 章规定外,试样的制备应符合 GB/T 238 中的相关规定。

戴特标准检索 盖盤设备

www.cqdate.cn

戴特标准检索系统

戴特标准检索系统

www.cqdate.cn

试验设备应符合 GB/T 238 中的相关规定。

7.3 试验程序

反复弯曲试验应按 GB/T 238 的要求执行。

8 扭转试验

8.1 试样

除按第4章规定外,试样的制备应符合 GB/T 239 中的相关规定。

- 8.2 试验设备
- 8.2.1 试验设备应符合 GB/T 239 中的相关规定。
- 8.2.2 试验机夹头之间的标准长度取钢丝公称直径的 50 倍,当试验机不能用 50 倍标距长度时,经协议可改用 30 倍标距长度,但最小标距长度不小于 210 mm。当相关产品标准有规定时,按产品标准执行。
- 8.3 试验程序
- 8.3.1 扭转试验按照 GB/T 239 执行。
- 8.3.2 使用的扭转速率不大于 30 r/min。
- 8.3.3 使用的轴向拉紧力为线材公称抗拉强度相应拉力负荷的 0.5%~2%。

9 缠绕试验

9.1 试样

试样应符合第4章的规定。

9.2 试验设备

试验设备应符合 GB/T 2976 中的相关规定。

9.3 试验程序

反复弯曲试验应按 GB/T 2976 的要求执行。

10 等温松弛试验

10.1 试验原理

等温应力松弛试验是在给定温度下(除另有其他规定,通常为 20° C),将试样保持一定长度($L_0 + \Delta L_0$),从初始力 F_0 开始,测定试样上力的变化(见图 2)。

力的损失用给定时间内与初始力的百分数表示。

5

图 2 等温应力松弛试验原理

10.2 试样

- 10.2.1 试样应符合第4章规定。
- 10.2.2 松弛试验用试样应保持伸直状态。试样在夹具间的自由段不应有任何形式的机械损伤和处理。
- 10.2.3 在松弛试验取样的附近再取两个试样,该两试样用于测定试样最大应力 $F_{m,m}$ 的平均值,松弛试验的初始力为 $F_{m,m}$ 的某个百分数,如 $70\%F_{m,m}$ 。

10.3 试验设备

10.3.1 机架

机架的任何变形都应处于不影响试验结果的范围之内。

10.3.2 测力装置

- 10.3.2.1 可以使用同轴测力传感器或其他合适的装置(如杠杆式加载系统)。
- 10.3.2.2 测力传感器应按照 GB/T 16825.1 校准,在不大于 1 000 kN 时其精度为±1%,在大于 1 000 kN时为±2%。其他合适的装置应具有与上述测力传感器相同的规定精度。
- 10.3.2.3 力的测量装置的输出分辨率应不小于 $5 \times 10^{-4} F_0$ 。

10.3.3 长度的测量装置(引伸计)

标距 L_0 不小于 200 mm,尤其对钢绞线,当实际长度($L_0+\Delta L_0$)是在钢绞线中同一根钢丝上测量时,其标距宜为 1 000 mm 或者为钢绞线捻距的整数倍。

引伸计的精度范围应为土1%,并且分辨率为5×10-6 Lo。

10.3.4 夹持装置

夹持装置应保证试样在试验期间不产生滑动和转动。

10.3.5 加载装置

加载装置应对试样平稳加载而不能有振荡。在试验过程中,随着试样中力的减少,加载装置应使得试样的长度($L_0+\Delta L_0$)保持在 10.4.5 中规定的范围内。

10.4 试验程序

10.4.1 试样

在试验前,试样应至少在松弛试验室内放置 24 h。

试样应用试验夹具夹紧,以保证试样在加载和试验期间不产生任何滑动。

10.4.2 加载

- 10.4.2.1 在整个试验过程中,力的施加应平稳,无振荡。
- 10.4.2.2 前 $20\%F_0$ 可按需要加载。从 $20\%F_0 \sim 80\%F_0$ 应连续加载或者分为三个或多个均匀阶段,或以均匀的速率加载,并在 6 min 内完成。当达到 $80\%F_0$ 后, $80\%F_0 \sim 100\%F_0$ 的过程应连续加载,

戴特标准整体的物内完成。

戴特标准检索系统

戴特标准检索系统

www, cqd ate, posterow, 4.2.3 当达到初始载荷 F_0 时,力值应在 posterow, cqd ate, posterow, p

10.4.2.4 加载过程如图 3 所示。

图 3 松弛试验中力的施加

10.4.3 初始力

初始力按相关产品标准的规定。F。的测定值应符合表 2 规定的允许偏差。

F_0/kN	F。的允许偏差/%
F ₀ ≤1 000	±1
$F_0 > 1000$	士2

表 2 Fo 的允许偏差

10.4.4 试验过程中的力

任何时间力不允许超出表 2 给出的初始力 F。偏差范围。

10.4.5 应变的保持

在 t_0 时刻,初始力 F_0 产生的应变应采用合适的机械、电子或光学引伸计测量,其测量精度与 10.3.3 所选定的初始标距 L_0 测量精度相同,在测量期间, $\Delta L_0/L_0$ 的变化范围不应超过 5×10^{-6} ,在随后的两次连续测量中的变化不应超过 5×10^{-5} 。

10.4.6 温度

试验室的温度及试样的温度应保持在20℃±2℃范围内。

7

10.4.7 力值记录频率

试验开始后,至少按照表3给出的标准时间间隔连续记录或测量力的损失,然后至少每周测量或记 录一次。

表 3	记录力的标准时间	न
4X -	- MD 200 フォロココの700 FF F J T	٠,

		. <u> </u>					
分钟	1	2	4	8	15	30	60
小时	2	4	6	24	48	96	120

试验时间 10.4.8

戴特标准检索系统的时间应不少于120 h。 www.cgdate.cn 注1:通常试验时间为120 h或1000 h。

戴特标准检索系统

戴特标准检索系统

1 000 h(大于 1 000 h)的松弛值与实测 1 000 h(大于 1 000 h)的松弛值相当,在这种情况下,试验报告中应注

明外推方法。

目前的外推方法按照公式: $log \rho = A log t + B$

式中,ρ代表松弛率,通常以%表示,时间 t 以 h 表示。

轴向疲劳试验

试验原理 11.1

疲劳试验是在弹性变形的范围内,使试样承受一个呈固定频率正弦曲线交替变动的轴向拉力。试 验一直进行到试样损坏为止,或者根据规定负荷使试验一直达到相关产品标准规定的次数为止。

载荷循环曲线

11.2 试样

- 11.2.1 试样应符合第4章规定。
- 11.2.2 试样的自由长度应符合表 4 规定。
- 夹具间的试样的自由长度部分不应承受任何形式的处理。

表 4 试样的自由长度

钢丝或钢棒	140 mm 或公称直径的 14 倍(二者取大者)
钢绞线	500 mm 或大于两倍捻距(二者取大者)

试验设备

疲劳试验机应定期校准,精度等级至少应为士1%,试验机应能够保持加载(Fup)误差范围应在规定

8

值的士2%之内,应力范围(F_r)应保持在规定值的士4%之内。

11.4 试验程序

11.4.1 试样

试样应按轴向受力方向夹持在试验机中,使试样上不受弯曲。对于钢绞线来说,最重要的是保持所 有钢丝受力均匀。

11.4.2 循环力和频率的稳定性

试样应当在稳定的最大力(F_{up})、应力范围(F_{r})和频率(f)下进行。整个试验过程中循环负荷不应 出现停顿。然而,当试验出现意外中断时可允许继续试验。任何中断应在试验报告中注明。

戴特标准检.索.系统循环次数的记录 戴特标准检索系统

戴特标准检索系统

www.cqdate.cn

www.cqdate.cn 应力循环次数应当从第一个完整的循环奔腾超聚te.cn

11.4.4 循环频率

试验中,载荷循环的频率应保持稳定,在一系列试验中应保持同一频率。试验频率应:

- a) 对钢丝和钢棒,循环频率不超过 120 Hz。
- b) 对钢绞线,循环频率不超过 20 Hz。

11.4.5 温度

试样温度在整个试验过程中不应超过40℃。除非另有要求,试验室环境温度应保持在10℃~35℃ 范围内。对于在可控制条件下完成试验,试验室温度应为 23℃ ±5℃。

11.4.6 试验终止

当试样发生损坏或钢绞线中一根或多根钢丝发生断裂时试验应终止,或未发生损坏且达到产品标 准规定的循环次数时试验应终止。

11.4.7 试验的有效性

如果试样在夹具内断裂或者距离夹具 2d 范围内断裂或者试样有缺陷,试验应视为无效。

硫氰酸盐溶液中的应力腐蚀试验

12. 1 试验原理

本试验用来测定试样在一恒定拉力作用下,浸在给定的恒定温度的硫氰酸盐溶液(见 12.3.5)中直 至断裂时所用的时间。

12.2 样品及试样

试样应符合第4章规定,应提供不少于6个试件用于应力腐蚀试验和2个试样通过轴向拉力试验 确定 $F_{m,m}$, 初始力表示为 $F_{m,m}$ 的某个百分数, 例如 80% $F_{m,m}$ 。

试样长度 L, 应足够长以使得夹持端引起的弯曲最小,建议 L, 为 L。的两倍长度。

12.3 试验设备

12.3.1 机架

应使用刚性机架。通过杠杆装置、液压或机械装置,在封闭框架上沿着水平方向或垂直方向对试样 进行加载。

12.3.2 测力装置

按 GB/T 16825.1 标准校准,测力装置的校准及使用中的精度至少为士2%。

时间测量装置 12. 3. 3

时间测量装置应至少有 0.01 h 分辨率,测量时装置应带有自动控制设备,在断裂时能自动停止并 保留或记录断裂时的时间,记录精度达士0.1 h。也可以人工记录断裂前的最终断裂时间。

试验容器 12. 3. 4

12.3.4.1 含有溶液的容器应为圆柱形,两端封闭,内径 D_c 的最小值由式(1)确定:

 $D_c \ge \sqrt{(200+d)\times d}$ (所有的量的单位为毫米) ··················(1)

9

表 5 中给出的是内径 D_c 的推荐值。

表 5 试验容器的内径 D_c

单位为毫米

试样的直径(d)	D _c 推荐值
<i>d</i> ≤19	≥70
19 <d≤50< td=""><td>≥100</td></d≤50<>	≥100

- 容器应具有足够的长度,使得浸在溶液中的试样长度 Lo 不小于 200 mm。
- 容器的制作材料在50℃时应能抵抗试验溶液浸蚀。

戴特标准验练统容器应在试验中保持封闭并避免寄标准检索系统 www.cgdata.2a3.5 试验溶液

www.cqdate.cn

戴特标准检索系统

www.cqdate.cn

试验溶液可在以下两种规定溶液中选择,这两种溶液分别为高浓度和低浓度的硫氰酸盐溶液:

- ——溶液 A:将 200 g NH4 SCN(分析纯)溶解在 800 mL 蒸馏水(或去除矿物质水)中制成的硫氰酸 铵溶液。
- ——溶液 B: K₂SO₄, KCl, KSCN 溶解在蒸馏水(或去除矿物质水)中。试验溶液 B 应含有 $5 g/L SO_4^{2-}, 0.5 g/L Cl^- 和 1 g /L SCN^-$ 。

用于制备溶液 A 和 B 的水的导电率不应超过 20 μS/cm。

注:两种溶液给出的结果没有互比性。

试验程序 12.4

试样的制备 12. 4. 1

试样应用软布擦拭和用丙酮(CH3COCH3)进行脱脂处理,并在空气中晾干。

试样在进入容器内至少 50 mm 长的部分应用涂漆等防止腐蚀的方法进行防护。试验长度(Lo)是 试样与溶液接触的长度。

12.4.2 加载及持荷

试样从容器中穿过,放到机架中,对试样加载直到 F_0 。

在整个试验期间显示的试验力 F。的变化应保持在士2%之内。

 F_0 值应在 t_0 时刻记录,并对力值进行确认,如果必要,在试验中应以适当的时间间隔调整。

12.4.3 容器的填充

加载完成之后,容器应密封好以防泄漏,每次测试时溶液都要重新更换。试验溶液应预先加热到 50 \mathbb{C} \sim 55 \mathbb{C} ,再注入到容器中。溶液的体积 V_0 应保证沿着试样的长度 L_0 每平方厘米表面至少有 5 mL。溶液的填充应在 1 min 之内完成,然后计时装置开始计时 to。

测试中,溶液不能循环流动。

12.4.4 测试中的温度

在时间 to 到(to +5) min 内,对于钢丝及钢绞线溶液的温度应调整到 50℃ ±1℃;对于钢棒溶液温 度应调整到50℃±2℃;在试验过程中温度应保持在相应的范围之内。

12.4.5 试验的终止

在发生断裂或达到规定时间 ta 时,试验被认为完成。

在测试绞线时,当至少一根钢丝断裂时试验终止。如果试样的断裂发生在测试长度 L。以外,试验 判定无效。

测量并记录断裂时间 $t_{f,i}$,记录精度为 0.1 h。如果在时间 t_a 之内试样未发生断裂,结果应被记录 为 $t_{f,i} > t_a$ 。

12.4.6 断裂时间中值 tf, m的确定

当所有的一系列试样测试完成后,结果 t_f ,i应按照断裂时的时间排序记录下来,中值 t_f ,m应是排序 数值中的中间,试样是偶数时中值 tf,m是两个中值的算术平均值。

13 偏斜拉伸试验

13.1 试验原理

本试验用 5 根直径大于或等于 12.5 mm 的钢绞线试样,来确定最大力的减缩系数。试样固定在与芯轴成 20°角的偏斜装置上进行轴向拉伸试验。

13.2 样品与试样

13.2.1 试样应符合第 4 章规定,应一次截取一根足够长度的样品获得至少 12 根试样,在样品的两端各取一根进行轴向拉伸试验确定钢绞线的最大力 $F_{m,m}$,剩余样品再截成至少 10 根试样用于偏斜拉伸

戴特标准检验。系统

戴特标准检索系统

戴特标准检索系统

www.cgdate.cn 注:5个有效的试验结果就足够计算出偏斜系数(见13.4),但考虑到有无效试验情况,建议至少取10根试样。 www.cgdate.cn

- 13.2.2 每个试样长度应适合拉伸和夹持装置。
- 13.2.3 试样除被切割外不能进行任何的加工处理。
- 13.3 试验设备

13.3.1 概述

试验机应具有刚性机架,以符合 13.3.2~13.3.5 规定的试验要求。试验机包括一个固定的被动锚固夹头和带测力装置的活动锚固夹头,一个加载装置和一个带凹槽的具有规定尺寸的固定芯轴。

13.3.2 尺寸

图 5 中试验装置的尺寸应符合下列要求:

 $L_1:(700\pm 50) \text{ mm};$ $L_2: \ge 750 \text{ mm};$ $\alpha: 20^{\circ} \pm 0.5^{\circ}$

芯轴轴线应与活动夹具、固定夹具和芯轴中心组成的平面相垂直。

- 1---活动端;
- 2----固定端;
- 3---芯轴中心;
- 4——夹具。

图 5 偏斜拉伸试验装置主要尺寸

13.3.3 夹具

试样两端轴向中心线应垂直于锚固夹头的轴承平面,不适当的几何定位会导致错误的试验结果。 锚固夹头应满足下列要求:

- ——偏斜拉伸试验中使用的夹具应能承受第5章中单轴拉伸试验规定最大力的95%以上力。
- ——单向拉伸试验中,在 90%最大力 F_m 时中心钢丝与外层钢丝的相对位移量应小于 0.5 mm。
- ——夹片与锚环之间的位移应小于表 6 中给出的值。
- ——在试验过程中夹片与锚环之间应该是扣紧的。
- ——夹片带齿部位的长度为钢绞线直径的 2.5 至 3 倍。

11

表 6 夹片的位移量

最大力的百分比	允许最大位移量*
从0%到破断	5 mm
从 50% 到破断	2.5 mm

13.3.4 芯轴

13.3.4.1 芯轴应用工具钢制造。其化学成分、显微组织及热处理应使其具有高韧性和高耐磨性能。

戴特标冷酸定約泰獨硬度应达到58 HRC~62 HRC激酶量市街应款系列T 230.1 的要求执行。 戴特标准检索系统 www.egdatq3n3.4.2 新加工的芯轴凹槽表面粗糙度,Run最快煙粉1.6 µm,测量方法应按 GB/T 3505 的要求ww.egdate.en 执行。

13.3.4.3 芯轴尺寸(见图 6)在表 7 中给出。

芯轴尺寸

单位为毫米

-A		钢 绞 线 尺 寸	
参数	12.5~13.0	15 ~16	17 ~18
芯轴公称直径,d。	40	49	59
凹槽侧面角度	60°±12′	60°±12′	60°±12′
凹槽底部半径,R	2±0.2	2±0.2	2±0.2
凹槽深度,G	7, 6	9.5	12
在芯轴公称直径为 d。时凹槽宽度,C	14. 4	17.9	21.9
凹槽底部直径,di	24.7±0.1	29.9±0.1	34.9±0.1
两量棒置于凹槽中的直径,db	57.0±0.1	72.0±0.1	81.0±0.1
量棒直径,d。	14	18	20

芯轴 图 6

13.3.4.4 芯轴应刚性固定不能有任何旋转和移动。

加载装置 13. 3. 5

加载设备最好有测力传感器并定期校准,在力值读数大于等于满量程的10%时,其精度应至少为 $\pm 1\%$.

加载速度应可调节,试验期间应控制加载速度,当负荷上升到预计破断负荷的50%时,加载速度应 控制在 30 MPa/s~60 MPa/s,并保持到试样断裂。

试验程序 13.4

——试验前芯轴凹槽表面应仔细清理,如钢绞线有轻微弯曲,曲率应与偏斜方向一致。

戴特标准检索系统加载之前安装锚具过程中应正确调整钢瓷袋。索烯载期间钢绞线与夹片之间不能有罄储滑毯,检索系统www.cgdate.cn www.cqdate.cn 以保证锚固效果。

- ——加载速度应符合 13.3.5。
- ——当钢绞线的一根或多根钢丝的断裂处不在与芯轴接触的位置时,试验无效。
- 一一有效试验的 $F_{a,i}$ 应按 13.3.5 要求精确的记录,对应的偏斜拉伸系数 D_i 可按式(2)进行计算:

——D 值应取 5 个 D_i 的平均值,按式(3)进行计算:

$$D = \frac{1}{5} \sum_{i=1}^{5} D_i \qquad \dots (3)$$

化学分析

在通常情况下化学成分由光谱分析方法确定。

当出现异议时,化学成分应当选择相应的国家标准仲裁试验方法进行分析。

几何尺寸测量

试样 15. 1

试样应符合第4章规定。

试样应足够长以满足 15.3 测量的需要。

试验设备

测量几何特征的设备应至少具有下列精度要求:

- ——钢丝或钢棒的肋高和刻痕钢丝的深度的精度要求 0.01 mm。
- ——钢棒或刻痕钢丝相邻两肋的间隙或槽宽的精度要求 0.05 mm。
- ——肋或痕的间距或钢绞线的捻距的精度要求 0.5 mm。
- ——肋或痕的螺旋角度的精度要求为 1°。

15.3 试验程序

15. 3. 1 横肋的测量

15.3.1.1 最高点肋高(hmax)

最高点肋高(hmax)应当在每一排肋上测量 n(n≥5)个肋的顶点,计算平均值。

15.3.1.2 给定位置的肋高

给定位置的肋高,如在 1/4 点、中点、3/4 点,分别用 $h_{1/4}$ 、 h_m 、 $h_{3/4}$ 表示,应当在每一排肋上测量 $n(n \ge 3)$ 个以上相应点的高度,计算平均值。

15.3.1.3 肋间距(c)

横肋间距应当用测量的长度除以长度内的肋数。

测量长度被认为是在同一排肋上、平行于产品中心线的直线上,一个肋至另一个肋的中心的距离。 测量的距离至少为10个肋长。

13

15.3.1.4 横肋间隙周长(Σe_i)

横肋间隙周长(Σe_i)应当由计算两相邻肋排末端平均间隙总和来确定。

平均间隙(e)应当取至少三次测量值的平均值。

15.3.1.5 横肋的倾斜角 B

横肋的倾斜角(β)应当由计算每一排肋的倾斜角测量值的平均值来确定。

15.3.2 刻痕尺寸的测量

15.3.2.1 概述

钢绞线刻痕尺寸的测量应在绞线试样上拆取的单丝上进行。在测量前,应从钢绞线上拆股取丝,并 戴特标准被钢丝表面不会发生变化的前提下进行矫直堵整难地程序,都断直的刻痕钢丝,测量前应在钢丝表面不检索系统 www.cqdate.eu www.cqdate.cu www.cqdate.cu

15.3.2.2 最深点的深度(hmax)

在最深点 h_{max} 的刻痕深度的确定应当在每排刻痕上测量 $n(n \ge 5)$ 个点的深度,计算平均值。

15.3.2.3 刻痕间距(c)

刻痕间距(c)应当用测量的长度除以长度内的刻痕数。

测量长度应当是在同一排刻痕上、平行于钢丝中心线的直线上,一个刻痕至另一个刻痕的中心的距离。测量的距离至少为 10 个刻痕长。

15.3.2.4 刻痕间隙周长($\sum e_i$)

刻痕间隙周长(∑ei)应当由计算两相邻刻痕排末端平均间隙总和来确定。

平均间隙应当取至少三次测量值的平均值。

15.3.2.5 刻痕的倾斜角(B)

刻痕的倾斜角(的)应当由计算每一排刻痕的倾斜角测量值的平均值来确定。

15.3.3 钢绞线的捻距(P)

绞线的捻距(P)应当用同一根钢丝两个连续的相应的点的距离来确定。

推荐测量放在绞线上的纸的拓记。

15.3.4 伸直性

预应力钢材的伸直性用矢高(h_b)表示,其测量方法是,把预应力钢材放置在间距为 1 m 的两个固定支撑点上,在同一平面内测量出预应力钢材的矢高(见图 7)。

图 7 矢窩的测量

16 相关肋面积的确定(f_R)

16.1 概述

相关肋面积(f_R)的确定应当采用 15.3.1 的测量结果。

16.2 f_R的计算

钢筋相关肋面积由式(4)定义:

$$f_{R} = \frac{1}{\pi d} \sum_{i=1}^{n} \frac{\frac{1}{m} \sum_{j=1}^{m} F_{R,i,j} \sin \beta_{i,j}}{c_{i}} \qquad \cdots \qquad (4)$$

式中:

n——一周上横肋的头数。

m---横断面上倾斜的肋数。

 $f_{\rm R} = \sum_{i=1}^{p} (a_{s,i} \Delta l)$ 是一个肋纵截面的面积(见图 8)

戴特标准检索系统

www.cqdate.cn

戴特标准检索系统 www.cgdate.cn

图 8 纵截面面积 fr 的确定

在不需要应用上面给出的通用公式进行严格设计计算时,可采用下列简化公式(式(5)~式(8)): a) 梯形公式:

b) 辛普森定律公式:

c) 抛物线公式:

$$f_{\rm R} = \frac{2a_{\rm m}}{3\pi dc}(\pi d - \sum e_i) \qquad \cdots \qquad (7)$$

d) 经验公式:

$$f_{\rm R}=\lambda \frac{a_{\rm m}}{c}$$
, λ 是一个经验系数,可以表示 $f_{\rm R}$ 与钢丝剖面特殊关系。………(8)

 $h_{1/4}$ 、 h_m 、 $h_{3/4}$ 的值可以根据 15.3.1.2 给出的测量方法确定。

 Σe_i 可根据 15.3.1.4 给定的方法确定。

15

用来计算 fR 的公式应当在试验报告中注明。

- 17 每米公称质量偏差的确定
- 17.1 试样

根据第4章的规定,试样应从端部垂直切取。

17.2 測量精度

试样的长度和质量测量精度至少为土0.5%。

17.3 试验程序

戴特标准检索纸板量的偏差应当由试样实际的每米质量省档案序品标准给出的公称每米质量的差碳龄标准检索系统 www.egdate.cn
www.egdate.cn

18 试验报告

试验报告应包括以下信息:

- a) 本标准号;
- b) 试样的标记(包括钢丝、钢棒、绞线的公称直径);
- c) 试样长度;
- d) 试验类型和相应的试验结果;
- e) 适用时,给出产品的相关标准;
- f) 涉及的补充资料,包括试样、试验设备、试验过程。

附 录 A

(资料性附录)

预应力混凝土用钢绞线拉伸试验方法

A. 1 范围

A.1.1 本方法规定了预应力混凝土用多丝钢绞线拉伸试验程序。本方法旨在用于评价在预应力钢绞

戴特标准翻翻的范中描述的钢绞线的特性。

戴特标准检索系统

戴特标准检索系统

www.cqdate.cn

www.cqdate.cn

www.cqdate.cn

A.2 注意事项

- A.2.1 如果试样存在任何由试验机夹持装置造成的凹口、切割或弯曲,可能会导致试样的早期损坏。
- A.2.2 如果七丝结构钢绞线受力不均可导致试验误差。
- A.2.3 在试样准备期间额外受热,可能会对钢绞线机械性能产生显著影响。
- A.2.4 这些问题按照 A.4 推荐的夹持方法可能会最小化。

A.3 夹持装置

A.3.1 当钢绞线试样的破断发生在试验机夹具之间的自由跨度部分时,钢绞线真实的机械性能可以被确定。因此,应采用适宜的试验设备,建立一套完善的试验步骤以得到稳定的试验结果。

由于每台试验机具有固有的特性,因此,实验室应从 A. 3. 2 至 A. 3. 8 中选择一种最适合所用试验设备的夹持方法。

- A. 3. 2 带齿(注 1)标准 V 型夹具。
- A.3.3 带齿(注1)标准 V 型夹具并使用衬垫材料,该方法是将一些材料放置在夹具和试样之间,使齿咬人的影响最小化。可选用过的材料有铅箔、铝箔、金刚砂布等,材料的种类、厚度取决于夹具齿的形状、条件和粗糙程度。
- A.3.4 带齿(注1)标准 V 型夹具,对试样被夹持的部分进行特殊的准备——使用的方法之一是镀锡,这时,夹持的部分被清洁、助熔。多次浸入刚高于熔点的熔化的锡合金中。试样准备的另一种方法就是将夹持部分装入金属或柔韧性的导管,使用环氧树脂粘接,装入部分应近似是钢绞线捻距的两倍。
- A.3.5 平滑的特殊夹具,半圆柱状凹槽(注 2)——凹槽和试样的被夹持部分应涂磨料浆,使试样固定在平滑凹槽中以防止打滑。磨料浆是由氧化铝以水或甘油为载体的物质组成。
- A.3.6 用于钢丝绳类型的标准铸头——试样的被夹持部分被锚固在锌合金中,应按照钢丝绳行业中的铸头工艺进行。
- A.3.7 耐张线夹——这些装置的尺寸设计应适合每一种被试验的钢绞线的尺寸。
- A.3.8 夹具装置——不推荐使用预制场张拉钢绞线的夹具进行钢绞线拉伸试验。
 - 注 1. 齿的数量大约在每厘米 5 个~10 个,最小有效夹持长度大约 102 mm。
 - 注 2: 凹槽曲率半径应近似相同于被试验钢绞线的半径,圆心应在超出夹具板面 0.79 mm,防止试样在夹具中间夹 持时两夹具表面紧密靠拢。

A.4 制样

A.4.1 如果在镀锡过程中或用金属材料铸头过程中金属融熔温度太高,超过大约 370℃,试样可能受到热影响,从而引起强度和延展性的损失。如果使用这些方法制样,应小心控制温度。

A.5 程序

A.5.1 屈服力——为确定屈服力,使用在 GB/T 12160 中描述的 B-1 级别的引伸计(注 3),在试样上

加预期最小破断负荷 10%的初始负荷,然后挂上引伸计,调整引伸计读数 0.1%标距,然后加载直到引伸计达到 1%,记录这时的伸长负荷为屈服力。当屈服强度确定后,引伸计可以从试样上摘下。

- A.5.2 伸长率——为确定伸长率,使用一个在 GB/T 12160 中描述的 D 级引伸计(注 3),标距至少500 mm,在试样上施加规定最小破断力 10%的初始负荷,然后挂上引伸计(注 3),调整引伸计读数到0点,当超过最小伸长率,在试样断裂之前可以摘下引伸计。没有必要确定最终的伸长率。
- A.5.3 破断力——绞线中一根或多根钢丝断裂时的最大力为破断力。
 - 注 3. 屈服力引伸计和伸长率引伸计可能是同样的仪器或两个分开的仪器。两个分开的引伸计是可行的,由于屈服力引伸计更灵敏,当钢绞线断裂时可能会损坏,因此当确定了屈服力后,引伸计可以摘下。伸长率引伸计可以
- 戴特标准检索系统用稍低灵敏度或者试样断裂时不易损坏的引度检索系统 www.cqdate.cn注4:试样在引伸计外部断裂或在夹具中断裂,达到最少规定值时,认为产品符合产品标准要求。不论采用什么强ww.cqdate.cn 持方式,试样断在夹具中且未达到最小规定值时,建议进行重新试验。试样断在夹具和引伸计之间,未达到最小规定值时,需要按照相关标准规定确定是否进行重新试验。

附录B (资料性附录) 本标准与 ISO 15630-3:2002 条款的对照一览表

表 B. 1

	本国家标准的章条编号		对应的国际标准的章条编号	
法松准从赤在公	8	热妆和为办办公公		出址北海山东
特标准检索系统 v. cgdate. cn	9	戴特标准检索系统 www.cgdate.cn		戴特标准检索 www.cgd
	10		8	
	11		9	
	12		10	
	13		11	
	14		12	
	15		13	
	16		14	
	17		15	
	18		16	
	附录A			
	附录 B			

戴特标准检索系统 www.cqdate.cn

戴特标准检索系统 www.cqdate.cn

戴特标准检索系统 www.cgdate.cn

中华人民共和国 国家标准 预应力混凝土用钢材试验方法 GB/T 21839—2008

中国标准出版社出版发行 北京复兴门外三里河北街 16 号 邮政编码:100045 网址 www.spc.net.cn

×

电话:68523946 68517548 中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1.5 字数 38 千字 2008年8月第一版 2008年8月第一次印刷

¥

书号: 155066 • 1-32402

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68533533

