2019-10-01

Напоминание

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$

$$M^g = \{ m \in M : gm = m^2 \}$$

Док-во

$$\sum_{g\in G}|M^g|=|\{(g,m)\in G\times M:gm=m\}|=$$

$$=\sum_{m\in M}|Stab\ m|=|G|\sum_{m\in M}rac{1}{|Orb\ m|}=|G|\cdot$$
 Кол-во орбит

1 Евклидовы и унитарные пр-ва

Опр

$$V$$
 - в.п. над $\mathbb R$

Введем отображение

$$V \times V \to \mathbb{R}$$

Свойства этого отображения

1. Симметричность

$$(u, v) = (v, u) \quad \forall u, v \in V$$

2. Линейность

$$(\lambda u, v) = \lambda(u, v) \qquad \lambda \in \mathbb{R} \quad u, v \in V$$
$$(u + u', v) = (u, v) + (u', v) \qquad u, u', v \in V$$

3.
$$(u, v) \geqslant 0 \quad \forall u \in V$$

$$(u,u) = 0 \Leftrightarrow u = 0$$

Такое пр-во V с введенным на нем таким отображением мы называем Евклидовым пр-вом, а отображение скалярным.

Напоминание

$$C = \{c_{ij}\}_{i,j=1}^n$$
 - квадр. матрица

$$Tr \ C = \sum_{i=1}^{n} c_{ii}$$
 - след (Trace)

(Сумма элементов главной диагонали)

Примеры

- 1. Школьные вектора
- $2. \mathbb{R}^n$

$$((a_1,...,a_n),(b_1,...,b_n)) = \sum_{i=1}^n a_i b_i$$

3. $V = \mathbb{R}[x]_n$ конечномерное пр-во

$$(f,g) = \int_{a}^{b} fg dx$$

4.
$$V = M_n(\mathbb{R})$$

$$(A,B) = Tr AB^T$$

(См. след в напоминании)

Опр

$$e = \{e_1, ..., e_n\}$$
 - базис V

$$a_{ij} = (e_i, e_j)$$

$$\Gamma_e = \{a_{ij}{}_{i,j=1}^n\}$$
 - матрица Грама

Свойства (матрицы Грама)

- 1. Матрица невырожд
- $2. \ e, f$ базисы

$$\Gamma_f = M_{e \to f}^T \Gamma_e M_{e \to f}$$

3.
$$\Gamma_e = \{a_i j\}$$

$$u = \sum \lambda_i e_i$$

$$v = \sum \mu_j e_j$$

$$(u, v) = (\sum \lambda_i e_i, \sum \mu_j e_j) = \sum_{i,j} \lambda_i \mu_j (e_i, e_j)$$

$$(u, v) = [u]_e^T \Gamma_e[v]_e$$

Док-во

1.
$$\exists |\Gamma_e| = 0 \Rightarrow \exists \lambda_i \in \mathbb{R} \text{ He BCe } 0$$
:

$$\sum \lambda_i(e_i, e_j) = 0 \quad \forall j$$

$$\left(\sum \lambda_i e_i, \ e_j\right) = 0 \quad \forall j$$

$$\left(\sum_i \lambda_i e_i, \ \sum_j \lambda_j e_j\right) = 0 \Leftrightarrow \sum \lambda_i e_i = 0$$

противоречие

2.
$$\exists M_{e o f} = \{a_{ik}\}$$
 $f_k = \sum a_{ik}e_i$ $f_l = \sum a_{jl}e_j$ $(f_k, f_l) = \sum_{i,j} a_{ik}a_{jl}(e_i, e_j)$ $a_{ik}(e_i, e_j)a_{je}$ Напоминание: X, Y - матр $X imes Y = Z$ $z_{ij} = \sum x_{is}y_{sj}$

Опр

$$V$$
 - в.п. над $\mathbb R$

$$V o \mathbb{R}_{\geqslant 0}$$
 $v o \|v\|$ - норма

1.
$$\|\lambda v\| = |\lambda| \|v\| \quad \forall \lambda \in \mathbb{R} \quad v \in V$$

2. Нер-во треугольника

$$||u+v|| \le ||u|| + ||v||$$

3.
$$||u|| = 0 \Leftrightarrow u = 0$$

Если такое отобр. существует, то оно называется нормой

y_{TB}

$$(u,v)$$
 - ск. пр-ве
$$\Rightarrow \|u\| = \sqrt{(u,u)}$$

Пример

 \mathbb{R}^n

$$||x|| = \max |x_i|$$
$$||x|| = \sum_{i} |x_i|$$

Теорема (Нер-во Коши - Буняковского)

$$|(u,v)| \leqslant ||u|| \cdot ||v||$$

Док-во

$$\varphi(t) = \|u + rv\|^2 = (u + tv, u + tv) = \|u\|^2 + 2(u, v)t + t^2\|v\|^2$$

$$D = 4(u, v)^2 - 4\|u\|^2\|v\|^2 \le 0$$

$$\|u + v\| \le \|u\| + \|v\|$$

$$(u + v, u + v) \le \|u\|^2 + \|v\|^2 + 2\|u\|\|v\|$$

$$(u + v, u + v) = \|u\|^2 + \|v\|^2 + 2(u, v)$$

$$2(u, v) \le 2\|u\|\|v\|$$

Утв (Теорема Пифагора)

Если
$$u \perp v \Rightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

Док-во

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2(u, v)$$

Опр (Ортогональное дополнение)

$$V$$
 - евкл. пр-во

$$U \subset V$$
 $U^{\perp} = \{ v \in V : (v, u) = 0 \mid \forall u \in U \}$

Множество всех векторов, которые ортогональны всем векторам из U Такое мн-во называется ортогональным дополнением

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$U^{\perp}$$
 - под-пр V

Док-во

$$(v, u) = 0 \quad \forall u$$

 $(v', u) = 0 \quad \forall u \Rightarrow (v + v', u) = 0 \quad \forall u$

$$(v, u) = 0 \quad \forall u$$

$$\lambda \in \mathbb{R}$$

$$(\lambda v, u) = 0 \quad \forall u$$

Тогда U^{\perp} дей-во линейное под-прво V

Свойства

$$V = U \oplus U^{\perp}$$
$$u \in U \cap U^{\perp}$$

$$u \in U \quad u \in U^{\perp}$$

$$(u,u)=0$$

Док-во

$$e_1,...,e_n$$
 - базис U дополняем до базиса ${\bf V}$

$$e_1,...,e_n,f_1,...,f_n$$
 - базис V
$$v\in U^\perp\quad v=\sum \lambda_i e_i + \sum \mu_j f_j$$

$$v \in U^{\perp} \Leftrightarrow (v, e_k) = 0 \quad \forall 1 \leqslant k \leqslant n$$

$$(v, e_k) = \sum \lambda_i(e_i, e_k) + \sum \mu_j(f_j, e_k) = 0 \quad \forall 1 \leqslant k \leqslant n$$

это матрица

$$\begin{array}{c|c} & n & m \\ \hline n & \Gamma_e & C \\ \hline \end{array} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}$$

$$\Gamma_e x + C_y = 0$$

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : \Gamma_e x + C_y = 0\} \text{ - размерность этого } m$$

$$(x,y) \to y$$

$$\Gamma_e x + C_y = 0$$

$$x = -\Gamma_e^{-1} e_y$$

$$\dim U + \dim U^\perp = \dim V$$