Assignment #3

UW-Madison MATH 421

YOUR NAME HERE Due: February 16, 2020

Exercise #1: Prove the following theorem by induction.	
Theorem. If n is a natural number, then $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$.	
Proof. We argue by induction. Base case: Induction step:	
Exercise #2: Prove the following theorem by induction.	
Theorem (Bernoulli's inequality). Suppose n is a natural number and x is a real number. If $x > -$	-1, then
$(1+x)^n \ge 1 + nx.$	
Proof. We argue by induction. Base case: Induction step:	
Exercise #3: For this problem we need the following definition:	
Definition. An integer n is divisible by an integer k if the ratio n/k is an integer.	
For example: -3, 0, 3, 6 are all divisible by 3 while 1, 2, 4, 5 are not divisible by 3. Prove the following	lowing:
Theorem. Suppose n is an integer. If n^2 is divisible by 3, then n is divisible by 3.	
<i>Proof.</i> (Hint: if n is not divisible by 3, then $n = 3k + 1$ or $n = 3k + 2$ for some integer k.)	
Exercise #4: Prove that $\sqrt{3}$ is irrational.	
Proof.	
Exercise #5: Prove that $\sqrt{2} + \sqrt{3}$ and $\sqrt{2} - \sqrt{3}$ are both irrational.	
<i>Proof.</i> (Hint: $(a+b)(a-b) = a^2 - b^2$)	
Exercise #6: Spivak, Chapter 3, Problem 14.	
Solution. (justify your answer)	
Exercise #7: Spivak, Chapter 3, Problem 23.	
Proof of (a) .	
Proof of (b) .	
Exercise #8: Spivak, Chapter 3, Problem 26.	
Proof.	

1 Extra Credit Questions

Each extra credit question is worth 1 extra point.

Exercise E.C.#1: Spivak, Chapter 2, Problem 17

Exercise E.C.#2: Spivak, Chapter 3, Problem 16

Exercise E.C.#3: Spivak, Chapter 3, Problem 17

Exercise E.C.#4: Spivak, Chapter 3, Problem 20 (b)