DCC888 – Worklist Algorithms

1. Considere o algoritmo a esquerda, que aplicado as restrições mostradas à direita produz a tabela abaixo:

$$x_1 = \bot, x_2 = \bot, \dots, x_n = \bot$$
 $x_1 = []$
 $w = [v_1, \dots, v_n]$ $x_2 = x_1 \cup (x_3 \setminus [3, 5, 6]) \cup \{3\}$
while $(w \neq [])$ $x_3 = x_2$
 $y = F_i(x_1, \dots, x_n)$
 $\text{if } y \neq x_i$ $x_1 = []$
 $x_2 = x_1 \cup (x_3 \setminus [3, 5, 6]) \cup \{3\}$
 $x_3 = x_2$
 $x_4 = x_1 \cup (x_5 \setminus [3, 5, 6]) \cup \{5\}$
 $x_5 = x_4$
 $x_6 = x_2 \cup x_4$

w	x1	x2	x3	x4	x5	x6
[x1, x2, x3, x4, x5, x6]	Τ	Τ	Τ	Τ	Т	Τ
[x2, x4, x2, x3, x4, x5, x6]	[]	\perp	Τ	Τ	Τ	Τ
[x3, x6, x4, x2, x3, x4, x5, x6]	[]	[3]	Τ	Τ	Τ	Τ
[x2, x6, x4, x2, x3, x4, x5, x6]	[]	[3]	[3]	Τ	Τ	Τ
[x6, x4, x2, x3, x4, x5, x6]	[]	[3]	[3]	Τ	Τ	Τ
[x4, x2, x3, x4, x5, x6]	[]	[3]	[3]	Τ	Τ	[3]
[x5, x6, x2, x3, x4, x5, x6]	[]	[3]	[3]	Τ	Τ	[3]
[x4, x6, x2, x3, x4, x5, x6]	[]	[3]	[3]	[5]	Τ	[3]
[x6, x2, x3, x4, x5, x6]	[]	[3]	[3]	[5]	[5]	[3]
[x2, x3, x4, x5, x6]	[]	[3]	[3]	[5]	[5]	[3,5]
[x3, x4, x5, x6]	[]	[3]	[3]	[5]	[5]	[3,5]
[x4, x5, x6]	[]	[3]	[3]	[5]	[5]	[3,5]
[x5, x6]	[]	[3]	[3]	[5]	[5]	[3,5]
[x6]	[]	[3]	[3]	[5]	[5]	[3,5]
[]	[]	[3]	[3]	[5]	[5]	[3,5]

- (a) Se, em vez de começássemos com a lista $[x_1, x_2, x_3, x_4, x_5, x_6]$, nós houvéssemos começado com a lista $[x_6, x_5, x_4, x_3, x_2, x_1]$, quantas iterações seriam necessárias para que atingíssemos um ponto fixo?
- (b) A tabela mostrada assume que o primeiro elemento inserido na lista de trabalho é o próximo elemento a ser removido pela função extract. Esta ordem chama-se LIFO, do inglês Last-In, First-Out. Quantas iterações seriam necessárias para que atingíssemos um ponto fixo, se a ordem de inserção e extração fosse FIFO (First-In, First-Out)? Note que neste caso teríamos uma fila, em vez de uma pilha de processamento a ser feito.
- (c) O nosso algoritmo não verifica se já existe um elemento na lista de trabalho, antes de inseri-lo lá. Podemos, assim, ter várias versões da mesma variável na lista. Embora essa seja uma abordagem por demais simplista, mesmo em implementações reais de listas de trabalho, podemos encontrá-la. Quais as vantagens de permitirmos que elementos repetidos permaneçam na lista de trabalho? Fundamente sua resposta em termos da complexidade computacional do algoritmo que estamos discutindo.

- (d) Assume, agora, que um elemento é inserido na lista de trabalho somente se ele lá já não se encontre. Nesse caso, quantas iterações de nosso algoritmo seriam necessárias, até que atingíssemos um ponto fixo?
- 2. Quando formos estudar otimizações de loops, veremos que um nodo n_1 domina outro nodo n_2 em um grafo direcionado (N,A) com raiz H se todo caminho de H até n_2 passa por n_1 . O conjunto de dominadores de um nodo pode ser aproximado pelas equações

$$Dom(n) = \begin{cases} \{n\} & if n \in H, \\ \{n\} \cup \bigcap_{(n',n) \in A} Dom(n') & \text{otherwise} \end{cases}$$

Escreva um algoritmo, baseado em lista de trabalho, que compute o conjunto de dominadores dos nodos de um grafo direcionado com raiz.