More Hypothesis Testing: Difference in Proportions and Paired Data

Keegan Korthauer

Department of Statistics

UW Madison

Outline

Motivation

 Recall the example: A randomized double-blind experiment assigned 244 smokers to receive nicotine patches and another 245 to receive patches and an antidepressant. After a year, 40 in the first group and 87 in the second had quit.

 Can we conclude that the proportion of smokers who quit is different in the two groups?

The Idea

- One-sample test statistic (population proportion):
 - observed \hat{p} too far from p_0 -> reject H_0
 - observed \hat{p} close to p_0 -> do not reject H_0
- Two-sample test (difference in proportions):
 - observed difference \hat{p}_X \hat{p}_Y too far from 0 -> reject H_0 (proportions are not equal)
 - observed difference \hat{p}_X \hat{p}_Y close to 0 -> do not reject H_0 (proportions are equal)

Construct a test statistic using \hat{p}_{x} - \hat{p}_{y}

Deriving the Test Statistic

 Recall with large samples, the CLT (normal approximation to the binomial) gives us

$$\hat{p}_X \sim N\left(p_X, \frac{p_X(1-p_X)}{n_X}\right) \text{ and } \hat{p}_Y \sim N\left(p_Y, \frac{p_Y(1-p_Y)}{n_Y}\right)$$

 Combining these, we get the following results, which will come in handy when we compute the p-value

$$\hat{p}_X - \hat{p}_Y \sim N \left(p_X - p_Y, \frac{p_X(1 - p_X)}{n_X} + \frac{p_Y(1 - p_Y)}{n_Y} \right), \text{ so}$$

$$\frac{(\hat{p}_X - \hat{p}_Y) - (p_X - p_Y)}{\sqrt{p_X(1 - p_X)/n_X + p_Y(1 - p_Y)/n_Y}} \sim N(0, 1)$$

Deriving the Test Statistic - continued

Under the null hypothesis that there is no difference:

$$p_X = p_Y \Rightarrow p_X - p_Y = 0$$

Best guess for the common population proportion is the pooled proportion:

 $\hat{p} = \frac{X + Y}{n_X + n_Y}$

Estimate
$$\frac{p_X(1-p_X)}{n_X} + \frac{p_Y(1-p_Y)}{n_Y}$$
 with $\hat{p}(1-\hat{p}) \left(\frac{1}{n_X} + \frac{1}{n_Y} \right)$

Which gives us a z-score:

$$z = \frac{\hat{p}_{X} - \hat{p}_{Y}}{\sqrt{\hat{p}(1-\hat{p})(1/n_{X}+1/n_{Y})}}$$

HT for Difference in Proportions

Let X \sim Bin(n_X, p_X) and Y \sim Bin(n_Y, p_Y). Assume there are at least 10 successes and 10 failures in each sample and that X and Y are independent

- 1. Set up the null H₀ and alternative H₁ hypotheses (see table below)
- 2. State the level of significance α you will use
- 3. Calculate the **z-score** (test statistic): where \hat{p} is the pooled proportion

$$z = \frac{(\hat{p}_X - \hat{p}_Y)}{\sqrt{\hat{p}(1-\hat{p})(1/n_X + 1/n_Y)}}$$

4. Assume H_0 is true and calculate the P-value:

H ₀	H ₁	P-value
$p_X - p_Y \le 0$	$p_{X} - p_{Y} > 0$	Area to the right of z
$p_X - p_Y \ge 0$	$p_{X} - p_{Y} < 0$	Area to the left of z
$p_X - p_Y = 0$	$p_X - p_Y \neq 0$	Area to the left of -z plus area to the right of z

5. Make a conclusion based on the P-value

Note on Sample Size

- Since the normal approximation to the binomial relies on the CLT, we have to have some restriction on the sample size
- The HT given on the previous slide is valid when there are at least 10 successes and failures in each sample:

$$X \ge 10$$
 and $n_X - X \ge 10$ and

$$Y \ge 10$$
 and $n_y - Y \ge 10$

Example – Smoking Cessation

 Recall the example: A randomized double-blind experiment assigned 244 smokers to receive nicotine patches and another 245 to receive patches and an antidepressant. After a year, 40 in the first group and 87 in the second had quit.

 Can we conclude that the proportion of smokers who quit is different in the two groups?

TWO-SAMPLE TESTS FOR PAIRED DATA

Motivation

Recall the gas mileage example:

- Each of 10 cars was first filled with either regular or premium gas, decided by a coin toss, and the mileage for that tank was recorded.
- The mileage was recorded again for the same cars using the other kind of gasoline.

Car	1	2	3	4	5	6	7	8	9	10
Premium	19	22	24	24	25	25	26	26	28	32
Regular	16	20	21	22	23	22	27	25	27	28
Difference	3	2	3	2	2	3	-1	1	1	4

 Can we conclude that the mean gas mileage for these cars is greater when using premium gasoline than when using regular?

Deriving the Test Statistic for Paired Data

- Let $(X_1,Y_1),...,(X_n,Y_n)$ be the n **paired** observations
 - for example, X_i is the gas mileage on premium for the i^{th} car and Y_i is the gas mileage on regular for the i^{th} car
- Then let $D_i = X_i Y_i$
 - for example, D_i is the difference in gas mileage for premium and regular gasoline for the ith car
- We can treat the single sample of differences D_i as single random sample from a population of differences with mean μ_D and standard deviation σ_D
- Then we can use the Hypothesis Test for a Population Mean (for large (6.2) or small samples (6.4) depending on the value of n)

Test for Paired Data (Small Sample)

Let $D_1,...,D_n$ be a **small** random sample of $n \le 30$ differences of pairs that follow a **normal** distribution with mean μ_D (unknown sd σ_D).

- 1. Set up the null H₀ and alternative H₁ hypotheses (see table below)
- 2. State the level of significance α you will use
- 3. Calculate the test statistic: $t = \frac{\overline{D} \mu_0}{s_D / \sqrt{n}}$
- 4. Assume H_0 is true and calculate the P-value using areas under the t curve with n-1 degrees of freedom:

H _o	H ₁	P-value						
$\mu_{D} \le \mu_{0}$	$\mu_D > \mu_0$	Area to the right of t						
$\mu_{D} \ge \mu_{0}$	$\mu_D < \mu_0$	Area to the left of t						
$\mu_D = \mu_0$	$\mu_{D} \neq \mu_{0}$	Area to the left of -t plus area to the right of t						

5. Make a conclusion based on the P-value

Test for Paired Data (Large Sample)

- Same procedure as with a small sample, except
 - Do not need to assume normal population of differences
 - The test statistic will be a z-score instead of a t-statistic
 - P-values calculated with Standard Normal Table/pnorm() R
 function instead of t Table/pt() R function

Example

Recall the gas mileage example:

- Each of 10 cars was first filled with either regular or premium gas, decided by a coin toss, and the mileage for that tank was recorded.
- The mileage was recorded again for the same cars using the other kind of gasoline.

Car	1	2	3	4	5	6	7	8	9	10
Premium	19	22	24	24	25	25	26	26	28	32
Regular	16	20	21	22	23	22	27	25	27	28
Difference	3	2	3	2	2	3	-1	1	1	4

 Can we conclude that the mean gas mileage for these cars is greater when using premium gasoline than when using regular?

Next

Nonparametric (Distribution-Free) tests

Chi-Square Test

F Test

Power & Type I Error