Code: 20A04304T

B.Tech II Year I Semester (R20) Supplementary Examinations August/September 2023

DIGITAL ELECTRONICS & MICROPROCESSORS

(Common to CSE (Cyber Security), IT, CSE, CSE (AI), CSE (AI&ML), AI&DS, CSE (IoT), CSE (DS), and AI&ML)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)	Answer the following: (10 X 02 = 20 Marks) Realise OR gate using NAND gates. State the limitations of K-maps. Is the PAL same as the PLA? Justify. Compare and contrast Encoder and Multiplexers. What is triggering? What is the need for trigger in a flip-flop? Compare asynchronous and synchronous counters. What is pipelined architecture? What is the function of D flag in 8086? Give an importance of the assembler directive EVEN. What are the flags available in 8051?	2M 2M 2M 2M 2M 2M 2M 2M 2M 2M 2M
		PART – B	
		(Answer all the questions: 05 X 10 = 50 Marks)	
2	(a) (b)	Convert $(19.625)_{10}$ to binary and octal number systems. Implement the following Boolean function with NAND gates $F(x, y, z) = \sum m(1, 2, 3, 4, 5, 7)$.	5M 5M
3		OR Simplify the expression using K map technique. $F = \sum_{i=0}^{\infty} m(0, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15).$	10M
4	(a) (b)	Design a half subtractor circuit. Design and explain the working of full adder. OR	5M 5M
5		Design a 3 o 8 line decoder with necessary diagram.	10M
6		Design and explain the working of an up-down ripple counter. OR	10M
7		Explain the operation of serial in parallel out shift register.	10M
8		Name and explain about the different addressing modes used in 8086 with suitable examples. OR	10M
9		Explain the interrupts of 8086 in detail.	10M
10		Give the operation of the following 8086 instructions. (i) ADC, (ii) DEC, (iii) MUL, (iv) XOR. OR	10M
11		Explain about the different addressing modes supported by 8051 microcontroller.	10M

Code: 20A04304T

B.Tech II Year I Semester (R20) Supplementary Examinations April/May 2024

DIGITAL ELECTRONICS & MICROPROCESSORS

(Common to CS&IT, IT, AI&DS, CSE(AI), CSE(DS), CSE(AI&ML), CSE(IoT), CSE(CS), CSE and AI&ML)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)	Define 'Minterm' and 'Maxterm'. State the concept of parallel binary adder. Identify the function of select inputs of a MUX. What is the primary drawback of an RS flip-flop, and how it overcomes using clocked RS flip-flop? Differentiate between a JK flip-flop and a D flip-flop in terms of their functionality. Compare Min and Max modes of 8086.	2M 2M 2M 2M 2M 2M 2M 2M 2M 2M 2M
	PART – B (Answer all the questions: 05 X 10 = 50 Marks)	
2	Simplify the following function using five variable mapping; F = (8, 9, 10, 11, 13, 15, 16, 18, 21, 24, 25, 26, 27, 30, 31). OR	10M
3	Explain the different types of codes and conversions with your own example.	10M
4	Draw and explain the working of 4 bit adder – subtractor circuit. OR	10M
5	Implement the following function with a Multiplexer $f(a, b, c, d) = \Sigma (0, 1, 3, 4, 8, 9, 15)$.	10M
6	Describe the operation of universal shift register with neat block diagram. OR	10M
7	Explain the operation of a BCD ripple counter and provide a detailed explanation along with a timing diagram to illustrate its functioning.	10M
8	Describe the internal architecture of 8086 Microprocessor with neat diagrams. OR	10M
9	Explain the pin diagram of 8086 Microprocessor.	10M
10	Explain the instruction set of 8086 processor with examples. OR	10M
11	Write an ALP to compute multiplication of two 8 bit numbers and store it in memory location	10M

using 8051 instruction set.