Assignment nr.2

FSMs and Task-based Architectures: Smart Waste Disposal System

Luca Casadei - 0001069237 Francesco Pazzaglia - 0001077423 Mattia Morri - 0001082027

Last modified: December 2, 2024

Contents

1	Introduction	1
2	Finite State Machine and Task Descriptions	1
	Dashboard for Monitoring and Control 3.1 Features	2

1 Introduction

This project implements a Smart Waste Disposal System for liquid waste using an Arduino-based embedded system and a PC application for monitoring and operator control. It is based on a finite state machine (FSM) and task-based architecture.

2 Finite State Machine and Task Descriptions

The Arduino project developed through PlatformIO has the objective to manage the whole system through a change of states. In particular, we planned to divide the solution into 3 main tasks, which are:

1. WasteTask

Manages waste disposal operations, the main task for the proper functioning of the entire system. It provides for the following states:

- **CLOSED**: the neutral state of the system.
- **OPEN**: when a user wants to throw something away he presses the open button and opens the door.
- **RECEIVED**: reception of waste.
- ERRORED: if the temperature increases too much
- FULL: when the container fills up, so capacity goes to zero.
- \bullet $\,$ EMPTYING: when the operator empties the container.

2. SleepingTask

Manages the shutdown of the system when no user is detected in the proximity of the waste container. It provides for the following states:

- AWAKE: the system is in normal mode of operation.
- **SLEEPING**: if no users were found nearby.

3. TemperatureTask

Manages the temperature changes of the waste inside the container. It provides for the following states:

- STABLE: the temperature is below the maximum threshold.
- UNSTABLE: the temperature is above the maximum threshold for a temporarily period.
- DANGER: the temperature has been above the threshold for too long.

3 Dashboard for Monitoring and Control

The Operator Dashboard, developed in Java, provides real-time monitoring and operator control for the system. The GUI interacts with the Arduino system via a serial connection, displaying the container's current status and allowing user actions.

3.1 Features

- Visual Representation of Waste Levels: The GUI includes a container panel, which dynamically updates to show the percentage of waste in the container.
- Real-time Updates: Serial communication allows the GUI to receive data from the Arduino system, such as waste level and temperature status.
- User Interaction: Buttons are provided to control the container, including:
 - Empty the Container: Decreases the waste level progressively when pressed.
 - Restore the Container: Resets the container waste level.