

Prova de Funções - ITA

- **1** (ITA-13) Considere as funções f e g, da variável real x, definidas, respectivamente, por $f(x)=e^{x^2+ax+b}$ e $g(x)=ln\left(\frac{ax}{3b}\right)$, em que a e b são números reais. Se f(-1)=1=f(-2), então pode-se afirmar sobre a função composta g o f que
- a) g o $f(1) = \ln 3$
- b) não existe g o f (0)
- c) g o f nunca se anula
- d) g o f está definida apenas em $\{x \in IR : x > 0\}$
- e) g o f admite dois zeros reais distintos.
- **2 -** (ITA-13) Considere funções f, g, f + g : IR \rightarrow IR. Das afirmações:
- I. Se f e g são injetoras, f + g é injetora
- II. Se f e g são sobrejetoras, f + g é sobrejetora
- III. Se f e g não são injetoras, f + g não é injetora
- IV. Se f e g não são sobrejetoras, f + g não é sobrejetora
- é (são) verdadeira(s)
- a) nenhuma
- b) apenas I e II
- c) apenas I e III
- d) apenas III e IV
- e) todas
- **3 -** (ITA-10) Sejam f,g: $\Re \rightarrow \Re$, tais que f é par e g é ímpar. Das seguintes afirmações
- I. f.g é ímpar,
- II fog é par,
- III gof é impar,
- é (são) verdadeiras
- (A) apenas I. (B) apenas II. (C) apenas III.
- (D) apenas I e II.
- (E) todas.
- **4** (ITA-09) Seja $f:IR \to IR \setminus \{0\}$ uma função satisfazendo às condições: $f(x+y) = f(x) \, f(y)$, para todo $x,y \in IR$ e $f(x) \neq 1$, para todo $x \in IR \setminus \{0\}$.
- Das afirmações:
- I. f pode ser ímpar. II. f(0) = 1.
- III. f é injetiva. IV. f não é sobrejetiva, pois f(x) > 0 para todo $x \in IR$.
- é (são) falsa(s) apenas
- A() | e | III. B() | I | e | III. C() | e | IV. D() | IV. E() | I.
- **5** (ITA-09) Considere as funções $f(x) = x^4 + 2x^3 2x 1$ e $g(x) = x^2 2x + 1$.
- A multiplicidade das raízes não reais da função composta fog é igual a
- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

- **6 -** (ITA-08) Um subconjunto D de R tal que a função $f: D \rightarrow R$, definida por $f(x) = |In(x^2 x + 1)|$ é injetora, é dado por
- a) R
- b) $(-\infty, 1]$
- c) [0,1/2]
- d) (0,1)
- e) $[1/2, \infty)$
- **7** (ITA-06) Seja f: IR \rightarrow IR definida por f(x) = $\sqrt{77}$ sen[5(x + π /6)] e seja B o conjunto dado por B = {x \in IR: f(x) = 0}. Se m é o maior elemento de B \cap ($-\infty$, 0) e n é o menor elemento de B \cap (0, + ∞), então m + n é igual a
- a) $2\pi/15$
- b) π/15
- c) $-\pi/30$

- d) $-\pi/15$
- e) $-2\pi/15$
- **8** (ITA-06) Se para todo $z \in \mathbb{C}$, |f(z)| = |z| e |f(z) f(1)| = |z 1|, então, para todo $z \in \mathbb{C}$, $\overline{f(1)} f(z) + f(1) \overline{f(z)}$ é igual a
- a) 1
- b) 2z
- c) 2 Re z

- d) 2 lm z
- e) $2|z|^2$.
- **9 -** (ITA-05) Seja D = IR \ {1} e f : D \rightarrow D uma função dada por f(x) = $\frac{x+1}{x-1}$

Considere as afirmações:

I – f é injetiva e sobrejetiva.

II – f é injetiva, mas não sobrejetiva.

III -
$$f(x) + f\left(\frac{1}{x}\right) = 0$$
, para todo $x \in D$, $x \ne 0$.

IV – f(x). f(-x) = 1, para todo $x \in D$.

Então, são verdadeiras:

- a) apenas I e III. b) apenas I e IV c) apenas II e III
- d) apenas I, III e IV e) apenas II, III e IV
- 10 (ITA-04) Considere a função $f: \mathbb{R} \to \mathbb{C}$, $f(x) = 2 \cos x + 2i \sin x$. Então, $\forall x, y \in \mathbb{R}$, o valor do produto f(x) f(y) é igual a:
- a) f(x + y)
- b) 2f(x + y)
- c) 4if(x + y)

- d) f(xy)
- e) 2f(x) + 2if(y)
- **11 -** (ITA-04) Sejam as funções f e g definidas em \mathbb{R} por $f(x) = x^2 + \alpha x$ e $g(x) = -(x^2 + \beta x)$, em que α e β são números reais. Considere que estas funções são tais que:

f		G	
Valor	Ponto de	Valor	Ponto de
mínimo	mínimo	máximo	máximo
-1	< 0	94	> 0

Então, a soma de todos os valores de x para os quais (fog)(x) = 0 'e igual a:

a) 0

b) 2

c) 4

12 - (ITA-03) Considere a função:

$$f: Z \setminus \{0\} \to IR$$
, $f(x) = \sqrt{3^{x-2}} (9^{2x+1})^{1/(2x)} - (3^{2x+5})^{1/x} + 1$.

d) 6

A soma de todos os valores de x para os quais a equação $y^2 + 2y + f(x) = 0$ tem raiz dupla é:

a) 0

b) 1

c) 2

d) 4

13 - (ITA-03) Considere uma função $f: IR \rightarrow IR$ nãoconstante e tal que $f(x + y) = f(x) f(y), \forall x, y \in IR$. Das afirmações:

 $I - f(x) > 0, \forall x \in IR.$

II - $f(nx) = [f(x)]^n$, $\forall x \in IR$, $\forall n \in IN^*$.

III - f é par.

é (são) verdadeira(s):

a) apenas I e II.

d) todas.

b) apenas II e III.

e) nenhuma.

c) apenas I e III.

14 - (ITA-03) Considere os contradomínios das funções arco-seno e arco-cosseno como sendo $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ e [0, π], respectivamente. Com respeito à função $f:[-1, 1] \rightarrow$ $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$, f(x) = arcsen x arccos x, temos que:

a) f é não-crescente e ímpar. c) f é injetora.

b) f não é par nem ímpar.

d) f é constante.

c) f é sobrejetora.

15 - (ITA-02) Sejam a, b, c reais não-nulos e distintos, c > 0. Sendo par a função dada por

$$f \big(x \big) = \frac{ax + b}{x + b}, -c < x < c, \text{ então } f(x), \text{ para } -c \quad < x < c, \text{ } \acute{e}$$

constante e igual a:

a) a + b

d) b

b) a + c

e) a

c) c

16 - (ITA-02) Os valores de $x \in R$, para os quais a função real por $f(x) = \sqrt{5 - ||2x - 1| - 6|}$ está definida, formam o conjunto.

a) [0, 1]

d) [- 5, 6]

b) [- 5, 6]

e) $(-\infty, 0] \cup [1, 6]$

c) $[-5, 0] \cup [1, \infty)$

17 - (ITA-02) Sejam f e g duas funções definidas por

$$f(x) = (\sqrt{2})^3 \text{ sen } x - 1$$
 e $g(x) = (\frac{1}{2})^{3 \text{ sen}^2 x - 1}$, $x \in \mathbb{R}$. A

soma do valor mínimo de f com o valor mínimo de g é igual a:

a) 0

b) $-\frac{1}{4}$ c) $\frac{1}{4}$ d) $\frac{1}{2}$

e) 1

18 - (ITA-02) Seja $f: \mathbb{R} \to \mathbb{P}(\mathbb{R})$ dada por

$$f(x) = \{ y \in \mathbb{R}; \text{sen } y < x \}.$$

Se A é tal que f(x) = R, $\forall x A$, então.

a) A= [-1, 1].

b) A = $[a, \infty)$, $\forall a > 1$.

c) A = $[a, \infty)$, $\forall a \ge 1$.

d) A = $(-\infty, a]$, $\forall a < -1$.

e) A = $(-\infty, a]$, $\forall a \le -1$.

19 - (ITA-02) Dada a função quadrática

$$f(x) = x^2 \ln \frac{2}{3} + \ln 6 - \frac{1}{4} \ln \frac{3}{2}$$

temos que:

a) A equação f(x) = 0 não possui raízes reais.

b) A equação f(x) = 0 possui duas raízes reais distintas e o gráficos de f possui concavidade para cima.

c) A equação f(x) = 0 possui duas raízes reais iguais e o gráfico de f possui concavidade para baixo.

d) O valor máximo de $f ext{ \'e} \frac{\ln 2. \ln 3}{\ln 3}$, $\ln 2$

E. () o valor máximo de fé $2 \frac{\ln 2 \cdot \ln 3}{\ln 3 \cdot \ln 2}$.

20 - (ITA-01) Se f :]0, 1[\rightarrow R é tal que, \forall x \in]0,1[,...

$$|f(x)| < \frac{1}{2} e f(x) = \frac{1}{4} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$$

então a desigualdade válida para qualquer n = 1, 2, 3, ...e 0 < x < 1 é:

a) $|f(x)| + \frac{1}{2^n} < \frac{1}{2}$ d) $|f(x)| > \frac{1}{2^n}$

b) $\frac{1}{2^n} \le |f(x)| \le \frac{1}{2}$ e) $|f(x)| < \frac{1}{2^n}$

c) $\frac{1}{2^{n+1}} < |f(x)| < \frac{1}{2}$

21 - (ITA-01) Considere as funções

$$f(x) = \frac{5+7^x}{4}, g(x) = \frac{5-7^x}{4} e h(x) = arc tg a$$
:

Se α é tal que h (f(a)) + h(g(a) = π /4, então f(a) – g(a) vale:

a) 0 b) 1 c) $\frac{7}{4}$ d) $\frac{7}{2}$ e) 7

22 - O conjunto de todos os valores de m para os quais a função

$$f(x) = \frac{x^2 + (2m+3)x + (m^2+3)}{\sqrt{x^2 + (2m+1)x + (m^2+2)}}$$

está definida e é não negativa para todo x real é:

a)
$$\begin{bmatrix} \frac{1}{4}, \frac{7}{4} \end{bmatrix}$$
 b) $\begin{bmatrix} \frac{1}{4}, +\infty \end{bmatrix}$ c) $\begin{bmatrix} 0, \frac{7}{4} \end{bmatrix}$

d)
$$\left[-\infty, \frac{1}{4}\right]$$
 e) $\left[\frac{1}{4}, \frac{7}{4}\right]$

- **23** (ITA-00) Sejam $f,g:R\to R$ definidas por $f(x)=x^3$ e $g(x)=10^{3\cos 5x}$. Podemos afirmar que:
- (A) f é injetora e par e $\,g\,$ é ímpar.
- (B) g é sobrejetora e $g \circ f$ é par.
- (C) f é bijetora e $g \circ f$ é ímpar.
- (D) g é par e $g \circ f$ é impar.
- (E) f é ímpar e $g \circ f$ é par.

24 - (ITA-00) Seja
$$f(x) = \sum_{n=0}^{20} \frac{20!}{n!(20-n)!} x^n$$
 uma

função real de variável real em que n! indica o fatorial de n. Considere as afirmações:

- (I) f(1) = 2.
- (II) f(-1) = 0.
- (III) f(-2) = 1.

Podemos concluir que:

- (A) Somente as afirmações I e II são verdadeiras.
- (B) Somente as afirmações II e III são verdadeiras.
- (C) Apenas a afirmação I é verdadeira.
- (D) Apenas a afirmação II é verdadeira.
- (E) Apenas a afirmação III é verdadeira.
- **25** (ITA-00) Considere $f: R \to R$ definida por $f(x) = 2 \sin 3x \cos \left(\frac{x \pi}{2} \right)$. Sobre f podemos

afirmar que:

- (A) É uma função par.
- (B) É uma função ímpar e periódica de período fundamental 4π .
- (C) É uma função ímpar e periódica de período fundamental $4\pi/3$.
- (D) É uma função periódica de período fundamental 2π
- (E) Não é par, não é ímpar e não é periódica.

26 - (ITA-99) Sejam $f, g: \mathbf{R} \to \mathbf{R}$ funções definidas por f(x)

$$=\left(\frac{3}{2}\right)^x$$
 e $g(x)=\left(\frac{1}{3}\right)^x$. Considere as afirmações:

- I Os gráficos de f e g não se interceptam.
- II- As funções f e q são crescentes.
- III- f(-2) g(-1) = f(-1) g(-2).

Então:

- a) Apenas a afirmação (I) é falsa.
- b) Apenas a afirmação (III) é falsa.
- c) Apenas as afirmações (I) e (II) são falsas.
- d) Apenas as afirmações (II) e (III) são falsas.
- e) Todas as afirmações são falsas.

27 - (ITA-99) Sejam $f, g: \mathbf{R} \to \mathbf{R}$ funções definidas por f(x)

$$=\left(\frac{3}{2}\right)^x$$
 e $g(x)=\left(\frac{1}{3}\right)^x$. Considere as afirmações:

I - Os gráficos de f e g não se interceptam.

II- As funções f e g são crescentes.

III-
$$f(-2)$$
 $g(-1) = f(-1)$ $g(-2)$.

Então:

- a) Apenas a afirmação (I) é falsa.
- b) Apenas a afirmação (III) é falsa.
- c) Apenas as afirmações (I) e (II) são falsas.
- d) Apenas as afirmações (II) e (III) são falsas.
- e) Todas as afirmações são falsas.

28 - (ITA-99) Considere as funções $f \in g$ definidas por

$$f(x) = x - 2/x$$
, para $x \ne 0$ e $g(x) = \frac{x}{x+1}$, para $x \ne -1$. O

conjunto de todas a s soluções da inequação (gof)(x) < g(x) é:

a)
$$[1, +\infty[$$
 b) $]-\infty, -2[$ c) $[-2, -1[$

d)]- 1, 1[e)]- 2, -1[
$$\cup$$
]1, + ∞ [

29 - (ITA-98) Seja f: $\Re \rightarrow \Re$ a função definida por: $f(x) = 2 \operatorname{sen} 2x - \cos 2x$

Então:

- a) f é impar e periódica de período π .
- b) f é par e periódica de período $\pi/2$.
- c) f não é par nem ímpar e é periódica de período π .
- d) f não é par e é periódica de período $\pi/4$.
- e) f não é ímpar e não é periódica.

30 - (ITA-98) Seja f: $\Re \to \Re$ a função definida por: $f(x) = -3a^x$, onde **a** é um número real, 0 < a < 1. Sobre as afirmações:

- (I) f(x + y) = f(x).f(y), para todo $x, y \in \Re$.
- (II) f é bijetora.
- (III) f é crescente e f(] 0 , $+\infty$ [) =]-3 , 0[.

Podemos concluir que:

a) Todas as afirmações são falsas.

- b) Todas as afirmações são verdadeiras.
- c) Apenas as afirmações (I) e (III) são verdadeiras.
- d) Apenas a afirmação (II) é verdadeira.
- e) Apenas a afirmação (III) é verdadeira.
- **31** (ITA-98) Sejam as funções f: $\Re \rightarrow \Re$ e g:A $\subset \Re \rightarrow \Re$, tais que

$$f(x) = x^2 - 9$$
 e $(fog)(x) = x - 6$,

em seus respectivos domínios. Então, o domínio A da função g é:

- a) $[-3, +\infty[$

b)
$$\Re$$
 c) $[-5, +\infty[$

d)]-
$$\infty$$
, -1[\cup [3, + ∞ [e)] - ∞ , $\sqrt{6}$ [

e)
$$]-\infty$$
, $\sqrt{6}$

32 - (ITA-97) Se Q e I representam, respectivamente, o conjunto dos números racionais e o conjunto dos números irracionais, considere as funções $f.\Re \rightarrow \Re$ definidas por

$$f(x) = \begin{cases} 0, \sec x \in Q \\ 1, \sec x \in I \end{cases} \qquad g(x) = \begin{cases} 1, \sec x \in Q \\ 0, \sec x \in I \end{cases}$$

Seja J a imagem da função composta $f \circ g : \mathfrak{R} \to \mathfrak{R}$. Podemos afirmar que:

- a) $J = \Re$
- b) J = Q
- c) $J = \{0\}$
- d) $J = \{1\}$
- e) $J = \{0,1\}$

33 - (ITA-97) O domínio D da função

$$f(x) = \ln \left[\frac{\sqrt{\pi x^2 - (1 + \pi^2) x + \pi}}{-2x^2 + 3\pi x} \right]$$
é o conjunto

- a) D = $\{x \in \Re: 0 < x < 3\pi / 2\}$
- b) D = { $x \in \Re: x < 1/\pi \text{ ou } x > \pi$ }
- c) D = { $x \in \Re: 0 < x \le 1/\pi \text{ ou } x \ge \pi$ }
- d) D = $\{x \in \Re: x > 0\}$
- e) D = { $x \in \Re: 0 < x < 1/\pi \text{ ou } \pi < x < 3\pi/2$ }

34 - (ITA-97) Sejam f ,g : $\Re \rightarrow \Re$ funções tais que:

- g(x) = 1 x e $f(x) + 2f(2 x) = (x 1)^3$

para todo $x \in \Re$. Então f[g(x)] é igual a:

- a) $(x-1)^3$ b) $(1-x)^3$
- c) x^3
- e) 2 x

35 - (ITA-96) Seja $f:\mathfrak{R}_+^* \to \mathfrak{R}$ uma função injetora tal que f(1) = 0 e f(x.y) = f(x) + f(y) pra todo x > 0 e y > 0. Se x₁, x₂, x₃, x₄ e x₅ formam nessa ordem uma progressão geométrica, onde $x_i > 0$ para i = 1, 2, 3, 4, 5 e sabendo

que
$$\sum_{i=1}^{5} f(x_i) = 13f(2) + 2f(x_1)$$
 e $\sum_{i=1}^{4} f\left(\frac{x_i}{x_{i+1}}\right) = -2f(2x_1)$, então

o valor de x₁ é:

- a) -2
- b) 2
- c) 3

36 - (ITA-96) Considere as funções reais f e g definidas por:

$$f(x) = \frac{1+2x}{1-x^2}, \ x \in R - \{-1, 1\} \ e \ g(x) = \frac{x}{1+2x}, \ x \in R - \{-1/2\}.$$

O maior subconjunto de R onde pode ser definida a composta fog, tal que (fog)(x) < 0, é:

- a)]-1, -1/2[∪]-1/3, -1/4[
- b)]- ∞ , -1[\cup]-1/3, -1/4[
- c)]- ∞ , -1[\cup]-1/2, 1[
- d)]1, ∞ [
- e)]-1/2, -1/3[

37 - (ITA-96) Seja $f: R \rightarrow R$ definida por:

$$f(x) = \begin{cases} 3x + 3, x \le 0 \\ x^2 + 4x + 3, x > 0 \end{cases}$$

- a) f é bijetora e $(fof)(-2/3) = f^{-1}(21)$.
- b) $f \in bijetora e (fof)(-2/3) = f^{-1}(99)$.
- c) f é sobrejetora mas não é injetora.
- d) f é injetora mas não é sobrejetora.
- e) f é bijetora e (fof) $(-2/3) = f^{-1}(3)$.

38 - (ITA-95) Seja a função f: $\Re \to \Re$ definida por:

$$f(x) = \begin{cases} a(x + \pi/2) & \text{se,} x < \pi/2 \\ (\pi/2) - (a/x) \text{sen} x & \text{se,} x \ge \pi/2 \end{cases}$$

onde a > 0 é uma constante. Considere $K = \{y \in R; f(y)\}$

- =0}. Qual o valor de a, sabendo-se que $f(\pi/2) \in K$?
- a) $\pi/4$ b) $\pi/2$ c) π d) $\pi^2/2$ e) π^2

39 - (ITA-95) Os dados experimentais da tabela abaixo correspondem às concentrações de uma substância química medida em intervalos de 1 segundo. Assumindo que a linha que passa pelos três pontos experimentais é uma parábola, tem-se que a concentração (em moles) após 2,5 segundo é:

> Tempo(s) Concentração(moles) 1 3,00 5,00 2 1,00

40 - (ITA-94) Dadas as funções reais de variável real f(x) = mx + 1 e g(x) = x + m, onde m é uma constante real com 0 < m < 1, considere as afirmações:

c) 3,70 d) 3,75

e) 3,80

- I- (fog)(x) = (gof)(x), para algum $x \in R$.
- II- f(m) = g(m)
- III- Existe $a \in R$ tal que (fog)(a) = f(a).
- IV- Existe $b \in R$ tal que (fog)(b) = mb.
- V-0 < (gog)(m) < 3

a) 3,60 b) 3,65

Podemos concluir

- a) Todas são verdadeiras.
- b) Apenas quatro são verdadeiras.
- c) Apenas três são verdadeiras.
- d) Apenas duas são verdadeiras.
- e) Apenas uma é verdadeira.

41 - (ITA-93) Seja $\Re \to \Re$ uma função não nula, ímpar e periódica de período p. Considere as seguintes afirmações:

I.
$$f(p) \neq 0$$

III.
$$f(-x) = f(x - p), \forall x \in R$$

II. f(-x) = -f(x+p), $\forall x \in R$ IV. f(x) = -f(-x), $\forall x \in R$ Podemos concluir que:

- a) I e II são falsas.
- b) I e III são falsas.
- c) II e III são falsas.
- d) I e IV são falsas.
- e) II e IV são falsas.
- **42** (ITA-93) Um acidente de carro foi presenciado por 1/65 da população de Votuporanga (SP). O número de pessoas que soube do acontecimento t horas após é

dado por: f(t) = $\frac{B}{1+Ce^{-kt}}$, onde B é a população da

cidade. Sabendo-se que 1/9 da população soube do acidente 3 horas após, então o tempo que se passou até que 1/5 da população soubesse da notícia foi de:

- a) 4 horas
- d) 5 horas e 24 min
- b) 5 horas
- e) 5 horas e 30 min
- c) 6 horas
- **43** (ITA-92) Considere as funções $f: \Re^* \to \Re$, $g: \Re \to \Re$, e $h: \Re^* \to \Re$ definidas por: $f(x) = 3^{x+\frac{1}{x}}$, $g(x) = x^2$, h(x) = 81/x. O conjunto dos valores de x em \Re^* tais que (fog)(x) = (hof)(x), é subconjunto de:
- a) [0, 3] b) [3, 7] c) [-6, 1] d) [-2, 2] e) n.d.a.
- **44** (ITA-92) O domínio da função: $f(x) = log_{2x^2-3x+1}(3x^2-5x+2)$ é:
- a) $(-\infty, 0) \cup (0, 1/2) \cup (1, 3/2) \cup (3/2, +\infty)$
- b) $(-\infty, 1/2) \cup (1, 5/2) \cup (5/2, +\infty)$
- c) $(-\infty, 1/2) \cup (1/2, 2/3) \cup (1, 3/2) \cup (3/2, +\infty)$
- d) $(-\infty, 0) \cup (1, +\infty)$
- e) n.d.a.
- **45** (ITA-92) Dadas as funções $f: \Re \to \Re$ e g : $\Re \to \Re$, ambas estritamente decrescentes e sobrejetoras, considere h = fog. Então podemos afirmar que:
- a) h é estritamente crescente, inversível e sua inversa é estritamente crescente.
- b) h é estritamente decrescente, inversível e sua inversa é estritamente crescente.
- c) h é estritamente crescente, mas não necessariamente inversível.
- d) h é estritamente crescente, inversível e sua inversa é estritamente decrescente.

e) nda

46 - (ITA-91) Considere as afirmações:

I- Se f: $\Re \rightarrow \Re$ é uma função par e g: $\Re \rightarrow \Re$ uma função qualquer, então a composição gof é uma função par.

II- Se f: $\Re \to \Re$ é uma função par e g: $\Re \to \Re$ uma função ímpar, então a composição fog é uma função par.

III- Se f: $\Re \to \Re$ é uma função ímpar e inversível então f $^{-1}$: $\Re \to \Re$ é uma função ímpar.

Então:

- a) Apenas a afirmação I é falsa;
- b) Apenas as afirmações I e II são falsas;
- c) Apenas a afirmação III é verdadeira;
- d) Todas as afirmações são falsas;
- e) n.d.a.
- **47** (ITA-91) Sejam $a \in \Re$, a > 1 e f: $\Re \to \Re$ definida por $f(x) = \frac{a^X a^{-X}}{2}$. A função inversa de f é dada por:
- a) $\log_{a}(x \sqrt{x^{2} 1})$, para x > 1
- b) $\log_a(-x + \sqrt{x^2 + 1})$, para $x \in \Re$
- c) $\log_a(x + \sqrt{x^2 + 1})$, para $x \in \Re$
- d) $\log_a(-x + \sqrt{x^2 1})$, para x < -1
- e) nda
- **48** (ITA-91) Seja \Re → \Re definida por:

$$f(x) = \begin{cases} e^{x}, se \ x \le 0 \\ x^{2} - 1, se \ 0 < x < 1 \\ ln \ x, se \ x \ge 1 \end{cases}$$

Se D é um subconjunto não vazio de \Re tal que f: D $\to\Re$ é injetora, então:

- a) D = \Re e f(D) = [-1, + ∞ [
- b) D = $]-\infty$, 1] \cup]e, $+\infty$ [e f(D) =]-1, $+\infty$ [
- c) D = $[0, +\infty[$ e f(D) = $]-1, +\infty[$
- d) D = [0, e] e f(D) = [-1, 1]
- e) n.d.a.

Notação: $f(D) = \{y \in \Re: y = f(x), x \in D\}$ e In x denota o logaritmo neperiano de x.

Observação: esta questão pode ser resolvida graficamente.

49 - (ITA-90) Dadas as funções
$$f(x) = \frac{1+e^x}{1-e^x}$$
, $X \in \Re$ - $\{0\}$

- $g(x) = x \text{ sen } x, x \in IR, \text{ podemos afirmar que:}$
- a) ambas são pares. b) f é par e g é ímpar.
- c) f é ímpar e g é par. d) f não é par e nem ímpar e g é par.
- e) ambas são ímpares.

50 - (ITA-90) Seja f: $\Re \rightarrow \Re$ a função definida por f(x)=

$$\begin{cases} x + 2, se \ x \le -1 \\ x^2, se - 1 < x \le 1 \\ 4, se \ x > 1 \end{cases}$$

Lembrando que se $A \subset \Re$ então $f^{-1}(A) = \{x \in \Re : f(x) \in A\}$ considere as afirmações:

I- f não é injetora e $f^{-1}([3,5]) = \{4\}$

II- f não é sobrejetora e $f^{-1}([3,5]) = f^{-1}([2,6])$

III- f é injetora e f⁻¹ ([0, 4]) = [-2, + ∞ [

Então podemos garantir que:

- a) Apenas as afirmações II e III são falsas;
- b) As afirmações I e III são verdadeiras;
- c) Apenas a afirmação II é verdadeira;
- d) Apenas a afirmação III é verdadeira;
- e) Todas as afirmações são falsas.

51 - (ITA-90) Seja a função f: $\Re - \{2\} \rightarrow \Re - \{3\}$ definida por $f(x) = \frac{2x-3}{x-2} + 1$. Sobre sua inversa podemos garantir que:

- a) não está definida pois f é não injetora.
- b) não está definida pois f não é sobrejetora.
- c) está definida por f⁻¹ (y) = $\frac{y-2}{y-3}$, y \neq 3.
- d) está definida por $f^{-1}(y) = \frac{y+5}{y-3} 1, y \neq 3.$
- e) está definida por f⁻¹ (y) = $\frac{2y-5}{y-3}$, $y \ne 3$.

52 - (ITA-90) Sejam as funções f e g dadas por: f:
$$\Re \to \Re$$
, f(x) =
$$\begin{cases} 1 \text{ se} \mid x \mid < 1 \\ 0 \text{ se} \mid x \mid \geq 1 \end{cases}$$

g:
$$\Re - \{1\} \rightarrow \Re$$
, $g(x) = \frac{2x-3}{x-1}$

Sobre a composta (fog)(x) = f(g(x)) podemos garantir que:

a) se
$$x \ge \frac{3}{2}$$
, $f(g(x)) = 0$

a) se
$$x \ge \frac{3}{2}$$
, $f(g(x)) = 0$ b) se $1 < x < \frac{3}{2}$, $f(g(x)) = 1$

c) se
$$\frac{4}{3} < x < 2$$
, $f(g(x)) = 1$ d) se $1 < x \le \frac{4}{3}$, $f(g(x)) = 1$

- e) n.d.a
- **53** (ITA-89) Os valores de α , $0 < \alpha < \pi$ e $\alpha \neq \pi/2$, para os quais a função f: IR \rightarrow IR dada por f(x) = $4x^2 - 4x - tg^2$ α , assume seu valor mínimo igual a – 4, são:
- a) $\pi/4 = 3\pi/4$ b) $\pi/5 = 2\pi/3$
- c) $\pi/3 = 2\pi/3$
- d) $\pi/7$ e $2\pi/7$ e) $2\pi/5$ e $3\pi/5$
- 54 (ITA-89) Sejam A e B subconjuntos de IR, não vazios, possuindo M mais de um elemento. Dada uma

função f: $A \rightarrow B$, definimos L: $A \rightarrow AxB$ por L(a) = (a., f(a)), para todo $a \in A$. Podemos afirmar que:

- a) A função L sempre será injetora.
- b) A função L sempre será sobrejetora.
- c) Se f for sobrejetora, então L também o será
- d) Se f não for injetora, então L também não o será
- e) Se f for bijetora, então L será sobrejetora

55 - (ITA-88) Seja f: IR → IR uma função estritamente decrescente, isto é, quaisquer x e y reais com x < y temse que f(x) > f(y). Dadas as afirmações:

- f é injetora.
- II. f pode ser uma função par.
- III. se f possui inversa então sua inversa é estritamente decrescente.

Podemos assegurar que:

- a) apenas as afirmações (I) e (III) são verdadeiras.
- b) apenas as afirmações (II) e (III) são verdadeiras.
- c) apenas a afirmação (I) é falsa.
- d) todas as afirmações são verdadeiras.
- e) apenas a afirmação (II) é verdadeira.

56 - (ITA-88) Sejam f e g funções reais de variável real definidas por $f(x) = In(x^2 - x)$ e $g(x) = \frac{1}{\sqrt{1 - x}}$. Então o

domínio de fog é:

a)]0, e[

d)] - 1, 1[

b)]0, 1[

- e)]1, +∞[
- c)]e, e + 1[
- **57** (ITA-88) Considere A(x) = $\log_{\frac{1}{2}} (2x^2 + 4x + 3)$, $\forall x \in$ IR. Então temos:
- a) A(x) > 1, para algum $x \in IR$, x > 1.
- b) A(x) = 1, para algum $x \in IR$.
- c) A(x) < 1, apenas para $x \in IR$ tal que 0 < x < 1.
- d) A(x) > 1, para cada $x \in IR$ tal que 0 < x < 1.
- e) A(x) < 1, para cada $x \in IR$.
- **58** (ITA-88) Seja $f(x) = \log_2 (x^2 1)$, $\forall x \in IR$, x < -1. A lei que define a inversa de f é:
- a) $\sqrt{1+2^y}$, $\forall y \in IR$ b) $-\sqrt{1+2^y}$, $\forall y \in IR$
- c) $1 \sqrt{1 + 2^y}$, $\forall y \in IR$ d) $-\sqrt{1 2^y}$, $\forall y \in IR$, $y \le 0$
- e) $1+\sqrt{1+2^y}$, $\forall y \in IR, y \le 0$
- **59** (ITA-88) O conjunto imagem da função f: $[0, 1] \rightarrow$ $[0, \pi]$ definida por $f(x) = arc \cos [(3x - 1)/2]$ é:

- a) $\{0, \pi/4, 2\pi/3\}$ b) $[0, \pi]$ c) $[\pi/4, 3\pi/4]$
- d) $[0, 2\pi/3]$
- e) $[0, \pi/2]$

60 - (ITA-87) Considere a função y = f(x) definida por $f(x) = x^3 - 2x^2 + 5x$, para cada x real. Sobre esta função, qual das afirmações abaixo é verdadeira?

- a) y = f(x) é uma função par
- b) y = f(x) é uma função ímpar
- c) $f(x) \ge 0$ para todo real x
- d) $f(x) \le 0$ para todo real x
- e) f(x) tem o mesmo sinal de x, para todo real $x \neq 0$

61 - (ITA-87) Considere x = g(y) a função inversa da seguinte função: $y = f(x) = x^2 - x + 1$, para número real $x \ge 1/2$. Nestas condições, a função g é assim definida:

a)
$$g(y) = \frac{1}{2} + \sqrt{y - \frac{3}{4}}$$
, para cada $y \ge 3/4$

b)
$$g(y) = \frac{1}{2} + \sqrt{y - \frac{1}{4}}$$
, para cada $y \ge 1/4$

c)
$$g(y) = \sqrt{y - \frac{3}{4}}$$
, para cada $y \ge 3/4$

d)
$$g(y) = \sqrt{y - \frac{1}{4}}$$
 , para cada y $\geq 1/4$

e)
$$g(y) = \frac{3}{4} + \sqrt{y - \frac{1}{2}}$$
, para cada $y \ge 1/2$

62 - (ITA-87) Seja f: $\Re \rightarrow \Re$ uma função real tal que: f(x) $\neq 0$, para cada x em \Re e f(x + y) = f(x).f(y), para todos x e y em \Re . Considere (a₁, a₂, a₃, a₄) uma PA de razão r, tal que a₁ = 0. Então (f(a₁), f(a₂), f(a₃), f(a₄))

- a) É uma PA de razão igual a f(r) e 1° termo $f(a_1) = f(0)$
- b) É uma PA de razão igual a r
- c) É uma PG de razão igual a f(r) e 1° termo $f(a_1) = 1$
- d) É uma PG de razão igual a r e 1° termo f(a₁) = f(0)
- e) Não é necessariamente uma PA ou PG.

63 - (ITA-86) Consideremos as seguintes afirmações sobre uma função f: $\Re \rightarrow \Re$.

- 1. Se existe $x \in \Re$ tal que $f(x) \neq f(-x)$ então f não é par.
- 2. Se existe $x \in \Re$ tal que f(-x) = -f(x) então f é impar.
- 3. Se f é par e impar então existe $x \in \Re$ tal que f(x) = 1.
- 4. Se f é ímpar então fof (f composta com f) é ímpar. Podemos afirmar que estão corretas as afirmações de números.

a) 1 e 4 b) 1, 2 e 4 c) 1 e 3 d) 3 e 4 e) 1, 2 e 3

64 - (ITA-86) Seja $a \in \Re$, 0 < a < 1 e f uma função real de variável real definida por

$$f(x) = \frac{(a^{x^2} - a^2)^{1/2}}{\cos(2\pi . x) + 4 . \cos(\pi . x) + 3}$$

Sobre o domínio A desta função podemos afirmar que:

a)
$$(-\infty, -\sqrt{2}) \cap Z \subset A$$
 d) $\{x \in \Re: x \notin Z \in x \ge \sqrt{2}\} \subset A$

b) A = $[-\sqrt{2}, \sqrt{2}] \cap Z$ e) A $\subset [-\sqrt{2}, \sqrt{2}]$

c)
$$(-\sqrt{2},\sqrt{2}) \subset A$$

65 - (ITA-86) Seja f: $\Re \to \Re$ uma função que satisfaz à seguinte propriedade: f(x + y) = f(x) + f(y), $\forall x, y \in \Re$. Se $g(x) = f(loq_{10}(x^2 + 1)^2)$ então podemos afirmar que

a) O domínio de g é \Re e g(0) = f(1)

b) g não está definida para os reais negativos e g(x) = $2f(loq_{10}(x^2 + 1))$, para $x \ge 0$

c) $g(0) = 0 e g(x) = 2f(loq_{10}(x^2 + 1)), \forall x \in \Re$

d) g(0) = f(0) e g é injetora

e) $g(0) = -1 e g(x) = [f(log_{10}(x^2 + 1)^{-1})^2, \forall x \in \Re$

66 - (ITA-86) Sejam a, b e c números reais dados com a < 0. Suponha que x_1 e x_2 sejam as raízes reais da função y = ax^2 + bx + c e x_1 < x_2 . Sejam x_3 = -b/2a e x_4 = $-(2b + \sqrt{b^2 - 4ac})/4a$. Sobre o sinal de y podemos afirmar que:

a) $y < 0, \forall x \in \Re, x_1 < x < x_3$

b) $y < 0, \forall x \in \Re, x_4 < x < x_2$

c) y > 0, $\forall x \in \Re, x_1 < x < x_4$

d) y > 0, $\forall x \in \Re$, $x > x_4$

e) $y < 0, \forall x \in \Re, x < x_3$

67 - (ITA-85) Dadas as sentenças:

1- Sejam f: $X \rightarrow Y$ e g: $Y \rightarrow X$ duas funções satisfazendo (gof)(x) = x, para todo x \in X. Então f é injetiva, mas g não é necessariamente sobrejetiva.

2- Seja f: $X \rightarrow Y$ uma função injetiva. Então, $f(A) \cap f(B) = f(A \cap B)$, onde A e B são dois subconjuntos de X.

3- Seja f: X \rightarrow Y uma função injetiva. Então, para cada subconjunto A de X, f(Ac) \subset (f(A))c onde Ac = {x \in X/ x \notin A} e (f(A))c = {x \in Y/ x \notin f(A)}.

Podemos afirmar que está (estão) correta(s):

a) as sentenças nº 1 e nº 2.

b) as sentenças nº 2 e nº 3.

c) Apenas a sentença nº 1.

d) as sentenças nº 1 e nº 2.

e) Todas as sentenças.

68 - (ITA-85) Considere as seguintes função: f(x) = x - 7/2 e $g(x) = x^2 - 1/4$ definidas para todo x real. Então, a respeito da solução da inequação |(gof)(x)| > (gof)(x), podemos afirmar que:

a) Nenhum valor de x real é solução.

b) Se x < 3 então x é solução.

c) Se x > 7/2 então x é solução.

d) Se x > 4 então x é solução.

e) Se 3 < x < 4 então x é solução.

69 - (ITA-85) Seja f: $\Re \rightarrow \Re$ uma função satisfazendo f(x +

- αy) = f(x) + $\alpha f(y)$ para todo α , x, y $\in \Re$. Se {a₁, a₂, a₃, ..., a_n} é uma progressão aritmética de razão d, então
- podemos dizer que $(f(a_1), f(a_2), f(a_3), ..., f(a_4))$
- a) É uma progressão aritmética de razão d.
- b) é uma progressão aritmética de razão f(d) cujo termo primeiro é a₁.
- c) é uma progressão geométrica de razão f(d).
- d) É uma progressão aritmética de razão f(d).
- e) Nada se pode afirmar.
- **70** (ITA-84) Seja $f(x) = e^{\sqrt{x^2-4}}$, onde $x \in \Re$ e \Re é o conjunto dos números reais. Um subconjunto de \Re tal que f: $D \rightarrow \Re$ é uma função injetora é:
- a) D = $\{x \in \Re: x \ge 2 \text{ e } x \le -2\}$
- b) D = $\{x \in \Re: x \ge 2 \text{ ou } x \le -2\}$
- c) $D = \Re$
- d) D = $\{x \in \Re: -2 < x < 2\}$
- e) D = $\{x \in \Re: x \ge 2\}$
- **71** (ITA-83) Dadas as funções $f(x^2) = log_{2x} x$ e g(x) = $2\text{sen}^2 x - 3\text{sen } x + 1$ definidas para x > 0 e $x \neq 1/2$, o conjunto $A = \{x \in (0, 2\pi): (gof)(x) = 0\}$ é dado por:

a) A =
$$\begin{cases} 4^{\frac{\pi}{2-\pi}}, 4^{\frac{\pi}{6-\pi}}, 4^{\frac{5\pi}{6-5\pi}} \end{cases}$$

b) A =
$$\left\{ 2^{\frac{\pi}{2-\pi}}, 2^{\frac{\pi}{6-\pi}}, 2^{\frac{5\pi}{6-5\pi}} \right\}$$
c) A =
$$\left\{ 4^{2-\pi}, 4^{6-\pi}, 4^{6-5\pi} \right\}$$
d) A =
$$\left\{ 4^{\frac{2\pi}{2-\pi}}, 4^{\frac{2\pi}{6-\pi}}, 4^{\frac{5\pi}{6-5\pi}} \right\}$$

c) A =
$$\{4^{2-\pi}, 4^{6-\pi}, 4^{6-5\pi}\}$$

d) A =
$$\left\{4^{\frac{2\pi}{2-\pi}}, 4^{\frac{2\pi}{6-\pi}}, 4^{\frac{5\pi}{6-5\pi}}\right\}$$

e) A =
$$\left\{2^{\frac{\pi}{2-\pi}}, 4^{\frac{\pi}{6-\pi}}, 2^{\frac{5\pi}{6-5\pi}}\right\}$$

- **72** (ITA-83) Sejam três funções f, u, v: $R \rightarrow R$ tais que:
- $f(x+\frac{1}{x}) = f(x) + \frac{1}{f(x)}$ para todo x não nulo e $(u(x))^2 +$
- $(v(x))^2 = 1$ para todo x real. Sabendo-se que x_0 é um número real tal que $u(x_0).v(x_0) \neq 0$

$$f\left|\frac{1}{u(x_0)}.\frac{1}{v(x_0)}\right|=2 \text{ , o valor de } f\left|\frac{u(x_0)}{v(x_0)}\right| \text{ \'e:}$$

- a) 1
- b) 1
- c) 2
- d) 1/2
- e) 2

GABARITO

1	E
2	Α
3	D
4	E
5	С
6	С
7	E
8	С
9	Α
10	В
11	D
12	С
13	Α
14	E
15	E
16	E
17	D
18	В
19	D
20	E
21	D
22	D
23	E
24	В
25	В
26	E
27	D
28	E
29	С
30	E
31	Α
32	С
33	E
34	С
35	В
36	Α
37	В
38	D
39	D
40	E
41	В
42	Α
•	

43	С
44	Α
45	Α
46	E
47	С
48	E
49	С
50	С
51	E
52	С
53	С
54	Α
55	Α
56	В
57	E
58	В
59	D
60	E
61	Α
62	С
63	Α
64	E
65	С
66	С
67	В
68	E
69	D
70	A/E
71	SR
72	В
1	E
2	Α
3	D
4	E
5	С
6	С
7	E
8	С
9	Α
10	В
11	D
12	С

13	Α
14	E
15	E
16	E
17	D
18	В
19	D
20	E
21	D
22	D
23	E
24	В
25	В
26	E
27	D
28	E
29	С
30	E
31	Α
32	С
33	E
34	С
35	В
36	Α
37	В
38	D
39	D
40	E
41	В
42	Α
43	С

44	Α
45	Α
46	E
47	С
48	E
49	С
50	С
51	E
52	С
53	С
54	Α
55	В
56	Α
57	В
58	E
59	В
60	D
61	E
62	Α
63	С
64	Α
65	E
66	С
67	С
68	В
69	E
70	D
71	A/E
72	SR
73	В