Basic Statistics - 1

Bollina Jaya Chandra

November, 2024

Abstract

To provide descriptive analytics, visualize data distributions, preprocessing on sales and discount dataset for further analysis and make a summary out of it.

1 Descriptive Analytics on numerical columns

1.1 Table providing required values for descriptive analytics

	Volume	Avg Price	Total Sales Value	Discount Rate (%)	Discount Amount	Net Sales Value
mean	5.066667	10453.433333	33812.835556	15.155242	3346.499424	30466.336131
median	4.000000	1450.000000	5700.000000	16.577766	988.933733	4677.788059
std	4.231602	18079.904840	50535.074173	4.220602	4509.902963	46358.656624
min	1.000000	290.000000	400.000000	5.007822	69.177942	326.974801
25%	3.000000	465.000000	2700.000000	13.965063	460.459304	2202.208645
50%	4.000000	1450.000000	5700.000000	16.577766	988.933733	4677.788059
75%	6.000000	10100.000000	53200.000000	18.114718	5316.495427	47847.912852
max	31.000000	60100.000000	196400.000000	19.992407	25738.022194	179507.479049

Table 1: Descriptive statistics on sales and discount data

1.2 Interpretation

Most of the columns has multiple mode i.e., every observation is a mode. Let us interpret the data using mean, median and standard deviation.

- For column Volume, Average is around 5, median around 4 and standard deviation around 4 suggests moderate variability in Volume column.
- For column Avg Price, mean >>> median, makes it right skewed distribution. Higher standard
 deviation shows high variability in the column. It depicts some high priced values present in
 dataset pulling the average up. Same explanation goes with columns like Total Sales Value,
 Discount Amount and Net Sales Volume.
- \bullet For column Discount Rate (%), mean is around 15, median around 16 and standard deviation around 4 suggests moderate variability in the column.

2 Data Visualization

2.1 Histograms

Figure 1: Histograms of all numerical columns in the dataset.

- The above histograms (right skewed) shows that customers tendency to make low cost transactions more, along with some high cost transactions (extending tails (mostly outliers) in most histograms) which has significant impact on overall revenue.
- The only histogram that is different from others is Discount Rate (%), It is mainly concentrated in two regions, that shows the policy of sellers in offering discounts.

2.2 Boxplots

Figure 2: Box-plots of all numerical columns in the dataset.

- Extreme Outliers: Box plot of Volume has many outliers to its right, that might be case of bulk purchases, Similarly outliers in Avg Price depicts high valued products, outliers in Sales value depicts either bulk purchases or high valued product purchase and discount amount depicts discount on high valued purchases.
- Box plot of discount rate has aligned towards its right (15-18) region and more predictable than others.

2.3 Bar Charts

Figure 3: Bar Charts of categorical columns in the dataset.

- The uniformity across bar charts depicts the dataset is well structured in most of the aspects like BU, Model, SKU and date wise.
- There is a change in day wise chart and it favors to Thursday. In Brand chart there is some favors towards life style needs compared to mobile brands.

3 Standardization

3.1 Z-score normalization

It is a method to scale numerical data, with mean of 0 and standard deviation of 1.

$$z = \frac{x - \mu}{\sigma}$$

Where:

- z is standardized value
- x is original value
- μ is mean of dataset
- σ is standard deviation of dataset.

3.2 Standard Distribution of numerical columns

- Before standard distribution, numerical columns has wide range of scale, and every columns has its own scale.
- After standard distribution, every numerical column has same scale which makes it easy for analysis, and has mean close to 0 and standard deviation close to 1.

Before Standard Distribution

Figure 4: Standard Distribution of Numerical columns

4 Categorical columns to dummy variables

Machine Learning algorithms work on numerical inputs, To take categorical inputs into consideration for building a model, we need to convert them into numerical values. One-hot encoding is a method to convert each category to a binary column of present or absent.

1		Discount Amount	Net Sales Value	Day_Monday [Day_Saturday Day_Sunday	\
	0	21153.498820	160346.501180	False	False False	
	1	11676.102961	89323.897039	False	False False	
	2	10657.910157	102042.089843	False	False False	
	3	8364.074702	112235.925298	False	False False	
	4	4372.946230	19927.053770	False	False False	
		Model Vedic	Cream Model Ved	dic Oil Model	_Vedic Shampoo \	
	0	-	False	False	False	
	1		False	False	False	
	2		False	False	False	
			False	False	False	
	4		False	False	False	
		Model_W-Casuals	Model_W-Inners	Model_W-Lounge	e Model_W-Western \	
	0	False	False	False	e False	
	1	False	False	False	e False	
	2	False	False	False	e False	
	3	False	False	False	e False	
	4	False	False	False	e False	

Figure 5: Portion of one-hot encoding on given dataset.

5 Conclusion

Descriptive analysis and visualizations interprets the right skewed distributions, which depicts the presence of high value transactions is significantly affecting the overall distribution.

Standardization is helpful in bringing every numerical variable into a single scale to avoid studying wide spread of value over the visualizations.

One - hot encoding makes categorical columns to numerals that ensures machine learning algorithms to understand and enhance the performance.