

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Comparação de dois grupos (qualitativo) Testes para proporções

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Observação x expectativa (1 amostra)
 - Revisão
 - Analisando dados de contagens
- Testes para 2 amostras
 - Tabelas 2x2
 - Tabelas maiores
 - Exercício
 - Resumo
- Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula passada

Discussão da leitura obrigatória da aula passada

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da aula

Dados categóricos

- Vamos analisar contagens de dados categóricos (ou nominais)
- Para estas variáveis qualitativas não existe ordenação interente
- Observamos apenas as contagens e frequências destes dados em uma amostra.

Exemplo

doente/sadio, fumante/não fumante, masculino/feminino, olhos castanhos/olhos azuis/olhos verdes, etc.

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Revisão

Eventos independentes

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Revisão

Conforme vimos na aula de Probabilidades:

- Dois eventos são independentes se a ocorrência do primeiro não afeta a ocorrência do segundo
- Isto significa que a probabilidade da ocorrência do segundo não é condicional em relação ao primeiro
- Em relação aos dados de uma amostra: a frequência observada para cada categoria indica que estas são independentes?

Objetivo

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Considere a seguinte tabela:

Exemplo

Resultado	Alongou-se	Não se alongou
Lesão	18	22
Não tem lesão	211	189
(Easta: Largan 9	Earbor 2012)	

Pergunta

Isto é: o desfecho é independente da exposição?

Resultado	Alongou-se	Não se alongou
Lesão	18	22
Não tem lesão	211	189
(Fonte: Larson &	Farber 2013)	

Como determinar se existe alguma relação entre as variáveis?

Quais são as variáveis?

- Dependente: desfecho (categórica)
- Independente: exposição (categórica)

Esta relação pode ser expressa como

desfecho ~ exposição

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Exemplo

Exemplo

Considere que 10% dos pacientes morrem após uma operação arriscada. Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação. Como comparar o número de óbitos osbervado e o número esperado?

Fonte: Motulsky, 1995

- O número observado de óbitos em 75 pacientes foi 16.
- O número esperado seria $75 \times 10\% = 7.5$
- A discrepância nos óbitos foi 16 7.5 = 8.5

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

contagens

Quais são as variáveis?

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

- Dependente: mortalidade (categórica)
- Independente: parâmetro fixo

Esta relação pode ser expressa como

mortalidade $\sim 10\%$

Roteiro

- Podemos representar as contagens observadas e esperadas em uma tabela
- A hipótese H_0 é que observamos uma amostra de uma população com 10% de mortalidade.
- As diferenças entre os dados observados e os esperados tem distribuição aproximadamente χ^2 (qui-quadrado)
- Fazendo o teste χ^2 podemos testar a hipótese H_0
- Estatística de teste: $\chi^2 = \frac{\sum (\text{observado} \text{esperado})^2}{\text{esperado}}$

Questões

mortalidade?

• Esse aumento reflete uma mudança real na

Felipe

• Em uma amostra qualquer com 75 pacientes esperaríamos observar 7.5 óbitos

 Em uma amostra específica poderíamos observar mais ou menos que isso

Provavelmente algo próximo de 7.5

contagens

Pergunta

Se a mortalidade for 10%, qual é a probabilidade de se observar 16 ou mais óbitos em uma amostra de 75 pacientes?

Comparação de dois grupos (qualitativo)

Figueiredo

Analisando dados de

Tabela de frequências

Exemplo

	Observado	Esperado		
Óbito	16	7.5		
Vivo	59	67.5		
Total	75	75		

Estatística de teste:

$$\chi^2 = \frac{(16 - 7.5)^2}{7.5} + \frac{(59 - 67.5)^2}{67.5} \approx 10.70$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

contagens

A tabela Qui-Quadrado

 χ^2

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

5.0

5.1

5.2

5.3

5.4

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.9

7.0

7.1

P

0.0429

0.0404

0.0381

0.0359

0.0339

0.0320

0.0302

0.0285

0.0269

0.0253

0.0239

0.0226

0.0213

0.0201

0.0190

0.0180

0.0170

0.0160

0.0151

0.0143

0.0135

0.0128

0.0121

0.0114

0.0108

0.0102

0.0096

0.0091

0.0086

0.0082

 χ^2

8.1

8.2

8.3

8.5

9.0

9.1

9.3

9.6

10.0

10.2

10.3

10.5

10.6

10.8

10.9

11.0

P

0.0044

0.0042

0.0040

0.0038

0.0036

0.0034

0.0032

0.0030

0.0029

0.0027

0.0026

0.0024

0.0023

0.0022

0.0021

0.0019

0.0018

0.0017

0.0017

0.0016

0.0015

0.0014

0.0013

0.0013

0.0012

0.0011

0.0010

0.0010

0.0009

 χ^2

12.1

12.2

12.3

12.4

12.5

12.7

12.8

13.0

13.1

13.3

13.4

136

13.7

13.9

14.0

14.2

14.3

14.5

14.6

14.8

14.9

P

0.0005

0.0005

0.0005

0.0004

0.0004

0.0004

0.0004

0.0003

0.0003

0.0003

0.0003

0.0003

0.0003

0.0003

0.0002

0.0002

0.0002

0.0002

0.0002

0.0002

0.0002

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

 χ^2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

1.0

1.2

1.3

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

1.000

0.7518

0.6547

0.5839

0.5271

0.4795

0.4386

0.4028

0.3711

0.3428

0.3173

0.2943

0.2733

0.2542

0.2367

0.2207

0.2059

0.1923

0.1797

0.1681

0.1573

0.1473

0.1380

0.1294

0.1213

0.1138

0.1069

0.1003

0.0943

0.0886

0.0833

Comparação

Comparando as frequências

mortalidade do procedimento.

amostra.

5%.

• Assumos a hipótese H₀ de que não houve aumento da

• Encontramos a estatística de teste $\chi^2 = 10.7$ para a

• Fazendo o teste χ^2 , encontramos p = 0.0011.

• Como p = 0.0011 < 0.05, decidimos rejeitar H_0 .

• Conclusão: rejeitamos a hipótese de que não houve

aumento na mortalidade, ao nível de significância de

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

contagens

de dois grupos (qualitative Felipe
Discussão daula passad
1 amostra Revisão Analisando dado contagens

Tabelas de Contingência

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Taholas 2v2

Tabelas maiores

Definition

Uma tabela de contingência mostra as frequências observadas para duas ou mais variáveis complementares.

- Podemos calcular as frequências esperadas, baseado no tamanho das amostras
- Comparamos assim a frequência observada com a frequência esperada
- Obs: a tabela do exemplo anterior (óbitos) não é uma tabela de contingência! (Por que?)

Tabelas de contingência 2x2

Exemplo

Frequências observadas:

	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

- Existe relação entre o uso do AZT e a progressão da doença?
- Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H_0)?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2

Quais são as variáveis?

INTO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

amostra

Tabelas 2x2
Tabelas maiores
Exercício

profundamento

- Dependente: desfecho (categórica)
- Independente: tratamento (categórica)

Esta relação pode ser expressa como

 $progress\~{a}o \sim grupo$

Tabelas de contingência 2x2

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras

Tabelas maiores Exercício

Anrofundamento

Exemplo

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

- Frequência esperada $E = \frac{205}{936} \approx 0.2190 = 21.90\%$
- Número esperado: $475 \times 0.2190 = 104.025 \approx 104.0$ pacientes

Tabelas de contingência 2x2

• H_0 : o AZT não é mais eficaz que o placebo

esperada para a progressão da doença?

• Em outras palavras: quantos pacientes tiveram

progressão na doença, em relação ao total?

• Pergunta: assumindo a H_0 , qual seria a frequência

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Exercício

Aprofundamento

Tabelas de contingência 2x2

- Se a H₀ fosse verdadeira, esperaríamos que 104.0 tivessem a progressão da doença, usando o AZT.
- Mas observamos 76.
- Discrepância |104.0 76| = 28 pacientes
- Procedendo de maneira análoga, podemos descobrir todos os valores esperados, para cada categoria da tabela
- Para simplificar a interpretação, podemos usar a seguinte fórmula:

$$E = \frac{\text{total por linha} \times \text{total por coluna}}{\text{total da tabela}}$$

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amoetra

2 amostras Tabelas 2x2

Tabelas maiore Exercício Resumo

Tabelas de contingência 2x2

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Taholas 2v2

Exemplo

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

• AZT + Progressão =
$$\frac{205 \times 475}{936} = 104.0$$

• AZT + Não progressão =
$$\frac{731 \times 475}{936}$$
 = 371.0

• Placebo + Progressão =
$$\frac{205 \times 461}{936} = 101.0$$

• Placebo + Não progressão =
$$\frac{731 \times 461}{936}$$
 = 360.0

Tabelas de contingência 2x2

Colocando os valores em uma tabela semelhante:

progrediu | não progrediu

371.0

360.0

731.0

Observe que os totais esperados devem ser iguais aos

total

475.0

461.0

936.0

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Placebo + Progressão =
$$\frac{205 \times 461}{936} = 101.0$$

• Placebo + Não progressão =
$$\frac{731 \times 461}{936} = 360.0$$

Teste de Hipótese

- H_0 não há relação entre o uso do AZT e a progressão da doença.
- Determinamos as diferencas quadráticas entre o valor observado e o esperado como fizemos anteriormente

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

• Fazemos o teste χ^2 e julgamos a hipótese H_0

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tahelas 2v2

Teste de Hipótese

Exemplo

Exemplo

AZT

Placebo

total

observados!

Frequências esperadas:

104.0

101.0

205.0

• AZT + P =
$$\frac{(76 - 104.0)^2}{104.0} = \frac{28^2}{104.0} \approx 7.54$$

• AZT + NP =
$$\frac{(399 - 371.0)^2}{371.0} = \frac{28^2}{371.0} \approx 2.11$$

• Placebo + P =
$$\frac{(129 - 101.0)^2}{101.0} = \frac{28^2}{101.0} \approx 7.76$$

• Placebo + NP =
$$\frac{(332 - 360.0)^2}{360.0} = \frac{28^2}{360.0} \approx 2.18$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

O teste Qui-Quadrado

- INTO
- Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

amostra

Tabelas 2x2
Tabelas maiores

profundamento

- Quanto maior for o valor da estatística de teste, menor será o valor-p.
- Calculamos a estatística de teste para a amostra e encontramos $\chi^2 = 19.59$
- Qual é o p-valor desta análise?

O teste Qui-Quadrado

- Consultando a tabela χ^2 , encontramos um p < 0.0001
- Interpretação: Se a H₀ for verdadeira, temos uma chance menor que 0.01% de observar uma discrepância tão grande entre os valores observados e os esperados.
- Conclusão: devemos rejeitar a H₀

Interpretação

Rejeitamos a hipótese de que o AZT não é mais eficiente que o placebo.

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

amostra

2 amostras

Tabelas maiores Exercício

Anrofundamento

A tabela Qui-Quadrado

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiore Exercício

Aprofundament

O teste Qui-Quadrado

- O teste χ^2 é apenas uma aproximação da distribuição dos dados, que pode ser usado para amostras grandes.
- Vantagem: simples de consultar na tabela
- Desvantagem: a aproximação é ruim para amostras pequenas
- Nunca usar se alguma célula da tabela tiver valor < 5
- O teste indicado para este tipo de cenário é o teste exato de Fisher

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

auia passe

2 amostras

Tabelas 2x2 Tabelas maior Exercício

O teste exato de Fisher

- INTO
- Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

Tabelas 2x2
Tabelas maiores

Exercício

Aprofundamento

- Para as seguintes situações deve-se usar o teste exato de Fisher:
 - Quando se tem amostras pequenas
 - Quanto se tem amostras de tamanho moderado, e se tiver uma ferramenta computacional disponível
- Se sua amostra for enorme (milhares de dados), prefira o teste χ^2 , pois:
 - o cálculo do teste exato de Fisher pode ser lento
 - a aproximação será boa

Tabelas de Contingência maiores

• Resposta: procedemos como no caso anterior, mas precisamos considerar os graus de liberdade do teste χ^2

$$gl = (l-1)(c-1) = (linhas - 1) \times (colunas - 1)$$

• Dependente: qualidade do preenchimento (categórica)

preenchimento \sim hospital

• Obs: no caso 2×2 temos $gl = (2-1) \times (2-1) = 1 \times 1 = 1$

Independente: hospital (categórica)

Esta relação pode ser expressa como

INTO

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

amostra

2 amostras Tabelas 2x2

Tabelas maiores Exercício

Aprofundament

Tabelas de Contingência maiores

Em dois hospitais, os resultados de 575 autópsias foram comparados com as causas de morte listadas nos atestados. Um dos hospitais que participou do estudo era comunitário (A); o outro era universitário (B).

Hospital	Precisão	Falta de	Recodificação
	confirmada	informações	incorreta
Α	157	18	54
В	268	44	34

Os resultados sugerem práticas diferentes no preenchimento de atestados de óbito nos dois hospitais?

Fonte: Aula Hacker & Simões (2008 - Fiocruz)

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras

Tabelas maiores Exercício

Aprofundamento

Quais são as variáveis?

INTO

Comparação

de dois

grupos

(qualitativo)

Figueiredo

Discussão da

aula passada

2 amostras Tabelas 2x2

Tabelas maiores Exercício Resumo

Tabelas de Contingência maiores

- Comparação de dois grupos (qualitativo)
- Felipe Figueiredo

Tabelas 2x2

- H₀: Dentro de cada categoria do status do atestado, as proporções de atestados de óbitos no hospital A são idênticas ao hospital B.
- H₁: As proporções não são idênticas
- Graus de liberdade:

$$(I-1)\times(c-1)=(2-1)\times(3-1)=1\times2=2$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2

Tabelas maiores

Tabelas maiores

Tabelas de contingência maiores

Preenchendo os totais por linha e coluna:

Incompleta

18

44

62

Incorreta

54

34

88

total

229

346

575

Confirmada

157

268

425

Exemplo

Hospital

Α

В

total

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

Tabelas de contingência maiores

Exemplo

Hospital	Confirmada	Incompleta	Incorreta	total
Α	157 (169.3)	18 (24.7)	54 (35.0)	229
В	268 (255.7)	44 (37.3)	34 (53.0)	346
total	425	62	88	575

Tabelas de Contingência maiores

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

•
$$\chi^2 = 21.62$$

A tabela Qui-Quadrado

							α						
df	0.250	0.200	0.150	0.100	0.070	0.060	0.050	0.040	0.030	0.020	0.010	0.005	0.001
1	1.323	1.642	2.072	2.706	3.283	3.537	3.841	4.218	4.709	5.412	6.635	7.879	10.827
2	2.773	3.219	3.794	4.605	5.319	5.627	5.991	6.438	7.013	7.824	9.210	10.597	13.815
3	4.108	4.642	5.317	6.251	7.060	7.407	7.815	8.311	8.947	9.837	11.345	12.838	16.266
4	5.385	5.989	6.745	7.779	8.666	9.044	9.488	10.026	10.712	11.668	13.277	14.860	18.466
5	6.626	7.289	8.115	9.236	10.191	10.596	11.070	11.644	12.375	13.388	15.086	16.750	20.515
6	7.841	8.558	9.446	10.645	11.660	12.090	12.592	13.198	13.968	15.033	16.812	18.548	22.457
7	9.037	9.803	10.748	12.017	13.088	13.540	14.067	14.703	15.509	16.622	18.475	20.278	24.321
8	10.219	11.030	12.027	13.362	14.484	14.956	15.507	16.171	17.011	18.168	20.090	21.955	26.124
9	11.389	12.242	13.288	14.684	15.854	16.346	16.919	17.608	18.480	19.679	21.666	23.589	27.877
10	12.549	13.442	14.534	15.987	17.203	17.713	18.307	19.021	19.922	21.161	23.209	25.188	29.588
11	13.701	14.631	15.767	17.275	18.533	19.061	19.675	20.412	21.342	22.618	24.725	26.757	31.264
12	14.845	15.812	16.989	18.549	19.849	20.393	21.026	21.785	22.742	24.054	26.217	28.300	32.909
13	15.984	16.985	18.202	19.812	21.151	21.711	22.362	23.142	24.125	25.471	27.688	29.819	34.527
14	17.117	18.151	19.406	21.064	22.441	23.017	23.685	24.485	25.493	26.873	29.141	31.319	36.124
15	18.245	19.311	20.603	22.307	23.720	24.311	24.996	25.816	26.848	28.259	30.578	32.801	37.698
16	19.369	20.465	21.793	23.542	24.990	25.595	26.296	27.136	28.191	29.633	32.000	34.267	39.252
17	20.489	21.615	22.977	24.769	26.251	26.870	27.587	28.445	29.523	30.995	33.409	35.718	40.791
18	21.605	22.760	24.155	25.989	27.505	28.137	28.869	29.745	30.845	32.346	34.805	37.156	42.312
19	22.718	23.900	25.329	27.204	28.751	29.396	30.144	31.037	32,158	33.687	36.191	38.582	43.819
20	23.828	25.038	26.498	28.412	29.991	30.649	31.410	32.321	33.462	35.020	37.566	39.997	45.314
21	24.935	26.171	27.662	29.615	31.225	31.895	32.671	33.597	34.759	36.343	38.932	41.401	46.796
22	26.039	27.301	28.822	30.813	32.453	33.135	33.924	34.867	36.049	37.659	40.289	42.796	48.268
23	27.141	28.429	29.979	32.007	33.675	34.370	35.172	36.131	37.332	38.968	41.638	44.181	49.728
24	28.241	29.553	31.132	33.196	34.893	35.599	36.415	37.389	38.609	40.270	42.980	45.558	51.179

29.339 30.675 32.282 34.382 36.106 36.824 37.652 38.642 39.880 41.566 44.314 46.928

38.885

40.113

41.337

39.889

42.370

41.146

42.407

43.662

42.856

44.140

45,419

45,642

46.963

48.278

46.693 49.588

48.290

50.994

53.672

54.051

55.475 56.892

38.044

39.259

30 34.800 36.250 37.990 40.256 42.113 42.883 43.773 44.834 46.160 47.962 50.892

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

amostra

Tabelas 2x2
Tabelas maiores

Aprofundament

Tabelas de Contingência maiores

• Calculamos a estatística de teste $\chi^2 = 21.62$

• Encontramos um p-valor p < 0.001 (valor for ada

• Parece que o hospital A tem maior proporção de

• Rejeitamos H_0 ao nível de significância de $\alpha = 0.05$.

Conclusão: Há associação entre o hospital e o status

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2

Tabelas maiores Exercício

Aprofundament

INTO

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

Lamostra

2 amostras Tabelas 2x2

Tabelas maiores Exercício

profundamento

Saída típica de um programa

35.563

32.620 34.027 35.715 37.916 39.721 40.471

37.315

33.711 35.139 36.854 39.087 40.919 41.679 42.557 43.604 44.913

Teste Qui-quadrado

30,435

31,795

33.429

31.528 32.912 34.574 36.741 38.520

Pearson's Chi-squared test with Yates' continuity correction

data: exemplo8.1
X-squared = 18.944, df = 1,
p-value = 1.346e-05

Saída típica de um programa

Teste exato de Fisher

tabela)

do atestado.

atestados incorretos.

Fisher's Exact Test for Count Data

data: exemplo8.1
p-value = 9.24e-06
alternative hypothesis: true odds ratio

is not equal to 1

95 percent confidence interval: 0.3512693 0.6818650

sample estimates:

odds ratio 0.4905877

INTO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Discussão da

1 amostra

2 amostras Tabelas 2x2 Tabelas maiores Exercício

Visualização - gráfico de barra

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

amostra

Z amostras
Tabelas 2x2
Tabelas maiores
Exercício

Aprofundament

Progrediu Não progrediu

Resumo

- O teste exato de fisher é um teste de independência entre os grupos
- O teste Qui-quadrado é uma boa aproximação, para N grande

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

iscussão da

1 amostra

2 amostras
Tabelas 2x2

Tabelas maiores Exercício Resumo

Anrofundamento

Visualização - pizza

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Discussão da

amostra

2 amostras Tabelas 2x2 Tabelas maiores Exercício

Aprofundamento

Atenção

NÃO use gráfico de pizza!

- É uma visualização ineficiente
- Nosso olho é "bom" para julgar distâncias/comprimentos
- Nosso olho é ruim para julgar áreas
- Indicado apenas quando as categorias são muito discrepantes

Cleveland (1985)

"Data that can be shown by pie charts always can be shown by a dot chart. This means that judgements of position along a common scale can be made instead of the less accurate angle judgements."

Aprofundamento

Comparação

de dois

grupos

(qualitativo)

Felipe
Figueiredo

Discussão da

1 amostra

2 amostras

Aprofundamento

Aprofundamento

Exercícios selecionados

Capítulo 26, problema 1

Leitura obrigatória

Capítulo 26.

Leitura recomendada

Capítulo 29: Outros testes de tabelas de contingência

• Capítulo 27, pular a seção: Calculando o poder