

NCERT Solutions For Class 10 Chapter 12 Maths Areas Related to Circles Exercise 12.2

Exercise 12.2

Unless stated otherwise, take $\pi = \frac{22}{7}$.

Q1. Find the area of a sector of a circle with radius 6 cm, if angle of the sector is 60°.

Ans. Here, r = 6 cm and $\theta = 60^{\circ}$

Area of sector =
$$\frac{\theta}{360^{\circ}} \times \pi r^2$$

$$=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 6 \times 6 = \frac{132}{7} \text{ cm}^2$$

Q2. Find the area of a quadrant of a circle whose circumference is 22 cm.

Ans. Given, $2\pi r = 22$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 22$$

$$\Rightarrow r = \frac{7}{2}$$
 cm

We know that for quadrant of circle, $\theta = 90^{\circ}$

$$\therefore \text{Area of quadrant} = \frac{\theta}{360^{\circ}} \times \pi r^2$$

$$= \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = \frac{77}{8} \text{ cm}^2$$

3. The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.

Ans. Here,
$$r = 14$$
 cm and $\theta = \frac{90^{\circ}}{3} = 30^{\circ}$

$$\therefore$$
 Area swept = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 = \frac{154}{3} cm^{2}$$

Q4. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding: (i) minor segment, (ii) major segment. (Use $\pi = 3.14$)

Ans. (i)Here, r = 10 cm and $\theta = 90^{\circ}$

$$\therefore$$
 Area of minor sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10 = 78.5 \text{ cm}^2$$

Area of
$$\triangle OAB = \frac{1}{2} \times Base \times Height$$

$$=\frac{1}{2}\times10\times10 = 50 \text{ cm}^2$$

 \therefore Area of minor segment = Area of minor sector – Area of \triangle OAB

$$= 78.5 - 50 = 28.5 cm^{2}$$

(ii) For major sector, radius = 10 cm and $\theta = 360^{\circ} - 90^{\circ} = 270^{\circ}$

$$\therefore$$
 Area of major sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{270^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10 = 235.5 \ cm^{2}$$

Q5. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:

- (i) the length of the arc.
- (ii) area of the sector formed by the arc.
- (iii) area of the segment formed by the corresponding chord.

Ans. Given, r = 21 cm and $\theta = 60^{\circ}$

(i) Length of arc =
$$\frac{\theta}{360^{\circ}} \times 2\pi r$$

$$=\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21 = 22 \text{ cm}$$

(ii) Area of the sector =
$$\frac{\theta}{360^{\circ}} \times \pi r^2$$

$$= \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 = 231 \text{ cm}^2$$

(iii) Area of segment formed by corresponding chord

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 - \text{Area of } \Delta \text{OAB}$$

In right angled triangle OMA and OMB,

OM = OB[Radii of the same circle]

OM = OM [Common]

∴ ∆OMA ≅ ∆ OMB [RHS congruency]

$$\therefore$$
 AM = BM[By CPCT]

 \therefore M is the mid-point of AB and \angle AOM = \angle BOM

$$\Rightarrow \angle AOM = \angle BOM$$

$$=\frac{1}{2}\angle AOB = \frac{1}{2}\times 60^{\circ} = 30^{\circ}$$

Therefore, in right angled triangle OMA,

$$\cos 30^{\circ} = \frac{OM}{OA} \Rightarrow \frac{\sqrt{3}}{2} = \frac{OM}{21}$$

$$\Rightarrow$$
 OM = $\frac{21\sqrt{3}}{2}$ cm

Also,
$$\sin 30^\circ = \frac{AM}{O\Delta} \Rightarrow \frac{1}{2} = \frac{AM}{21}$$

$$\Rightarrow$$
 AM = $\frac{21}{2}$ cm

$$AB = 2 AM = \frac{2 \times 21}{2} = 21 cm$$

$$\therefore \mathbf{Area of } \Delta \mathbf{OAB} = \frac{1}{2} \times AB \times OM$$

$$= \frac{1}{2} \times 21 \times \frac{21\sqrt{3}}{2} = \frac{441\sqrt{3}}{4} cm^2$$

Using eq. (i),

Area of segment formed by corresponding chord

$$= \left(231 - \frac{441\sqrt{3}}{4}\right)cm^2$$

Q6. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the area of the corresponding segment of the circle.

(Use
$$\pi = 3.14$$
 and $\sqrt{3} = 1.73$)

Ans. Here, r = 15 cm and $\theta = 60^{\circ}$

********* END *******