

41st Edition

COSIME: FeFET based Associative Memory for In-Memory Cosine Similarity Search

Che-Kai Liu^{1,2,3}, Haobang Chen¹, Mohsen Imani³, Kai Ni⁴, Arman Kazemi², Ann Franchesca Laguna⁵, Michael Niemier², Xiaobo Sharon Hu², Liang Zhao¹, Cheng Zhuo¹, and Xunzhao Yin¹

¹Zhejiang University, Hangzhou, China, ²University of Notre Dame, USA ³University of California, Irvine, USA, ⁴Rochester Institute of Technology, USA, ⁵De La Salle University, Manilla, Philippines

Von-Neumman Paradigm

Self Driving Cars

Finance

Healthcare

Machine Translation

Smart Robots

Memory scaling is low

Concerns

- Latency
- Energy
- Security
- ...

Operation	Energy (pJ)	Relative Cost
32-bit int ADD	0.1	1
32-bit int MULT	3.1	31
32-bit 32KB SRAM	5	50
32-bit DRAM	640	6400

Content Addressable Memory – Sigmoid/L2

Region	Conditions	Expression	Distance
Cut-off	$V_{gs} \leq V_{th}$	$I_{ds}=0$	NA
Linear (short)	$V_{gs} > V_{th}$, $V_{ds} \leq V_{gs}$ - V_{th}	$I_{ds} \propto (V_{gs} - V_{th}) V_{ds} - \frac{V_{ds}^2}{2}$	Sigmoid [1]
Saturation (long) Column	$V_{gs} > V_{th}$, $V_{ds} > V_{gs}$ - V_{th}	$I_{ds} \propto (V_{gs} - V_{th})^2$	Squared Euclidean [2]

[1] FeFET Multi-Bit Content-Addressable Memories for In-Memory Nearest Neighbor Search, A. Kazemi et al., IEEE TC

[2] Software-equivalent accuracy in-memory hyperdimensional computing with ferroelectric devices, A. Kazemi et al., To appear in Scientific Report

Crossbar

Inner product!

Where is Cosine?

A cross-layer design approach

non-idealities Graph Acknowledgements: Lab directed by X. Sharon Hu and Michael Niemier, University of Notre Dame

Hyperdimensional

Possible solutions – AM for cosine similarity

• X-MANN, DAC'19:
$$\frac{a \cdot b}{||a||_1 + ||b||_1}$$

Nature communication, 2021: Quasi-orthogonal of hyper vectors

Normalize the data first then cosine? GPU takes millisecond

Bipolar vector eliminating division?

- CAM-friendly: Hamming √
- Few-shot: L2 on CAM √
- HDC, text-related app: cosine?

Direct implementation of cosine similarity (this work, COSIME)

 $\frac{a \cdot b}{||a||_2 \cdot ||b||_2} \to \frac{(a \cdot b)^2}{(||a||_2 \cdot ||b||_2)^2} \to \frac{X^2}{Y}$

Approximation of cosine

(related work)

 L_2 norm of binary vector is counting "1"s

Ferroelectric field-effect transistor (FeFET)

Breaking down the design

1FeFET1R Cell

- Mitigate variations
- Scalable array design

$$\frac{(\frac{I_{\mathcal{X}}}{N} \times N)^2}{\frac{I_{\mathcal{Y}}}{N} \times N} = I_Z$$

in Symp. on VLSI, 2021, D. Saito et al.

Query Vector Input Buffer BL₁ BLN BL₂ Crossbar **♥**WL2 M Rows

Winner-take-all circuit

$$I_{DS} \approx I_0 \frac{W}{L} e^{\frac{V_{GS}}{\eta T}}$$

$$V_{GS} = V_T \eta \ln(\frac{I_{DS}L}{I_0W})$$

$$\sum_{ClockWise} V_{GS} = \sum_{counter\ CW} V_{GS}$$
(M1, M2, M4, M5)

$$\frac{{I_x}^2}{I_y} = I_z$$

Scalability Analysis

$$\begin{cases} i_{z1} = v_1 \frac{I_{z1}}{V_A} + v_c \frac{I_{z1}}{V_T} \\ v_j \frac{I_{zj}}{V_A} = -v_c \frac{I_{zj}}{V_T}, \quad \forall j \in [2, M] \\ \sum_{i=1}^M \left[\frac{I_{oi}}{V_T} (v_i - v_c) + v_c \frac{I_{oi}}{V_A} \right] \end{cases}$$

$$\frac{dV_1}{dI_{z1}} = \frac{M-1}{M} \frac{V_A}{I_{z1}}$$

$$\frac{dV_2}{dI_{z1}} = \frac{-1}{M} \frac{V_A}{I_{z1}}$$

Overall Design of "COSIME"
For cosine denominator, i.e. L₂ norm

Array-level Evaluation

256

512

1024

 $(\frac{I_{\mathcal{X}}}{N} \times N)^2$

Variation including: VDD, FeFET, Resistor in the cell, MOSFET

Existing Associative Memories

HDC Basics

- Limitation: Complex tasks such as Cifar-10 → 60%
- Robustness: What if Fp32 MSB get flipped in NN?

Detail operations in Python

- SOTA encoding: Inspired by kernel method [1].
 - $\cos\left(\vec{F}\cdot\vec{B}+\vec{b}\right)\sin\left(\vec{F}\cdot\vec{B}\right)$
- Single-pass training:

$$\vec{C}_l = \sum \vec{H}_l$$

- Iterative training: Inspired by Perceptron learning algorithm (PLA).
 - MNIST: single-pass 86% Iterative: 93%

$$\vec{C_l} \leftarrow \vec{C_l} + \eta(1-\delta)\vec{Q}$$

$$\vec{C_{l'}} \leftarrow \vec{C_{l'}} - \eta(1-\delta)\vec{Q}$$
 • Inference

Benchmarking with HDC

			Train	Test	
	n	\boldsymbol{K}	Size	Size	Description
UCIHAR	561	12	6,213	1,554	Activity Recognition[40]
FACE	608	2	522,441	2,494	Face Recognition[41]
ISOLET	617	26	6,238	1,559	Voice Recognition [42]

- On average 7% software acc improvement than Hamming distance.
- 47.1x faster/98.5x energy saving compared to 1080 GPU.
- Not so impressive? Because the dimension is low due to hardware.

A view from top-down

HD Computing loses accuracy on lower dimensionality

Challenges and Research Opportunities

Right memory hierarchy.

Multibit associative memory.

Low conducting current. Redesign the translinear operating region.

Peripherals for NVMs

Conclusion

- A non-approximated design of cosine similarity search in-memory is presented.
- The evaluation and benchmarking results at array and application level show the robustness and superior accuracy to Hamming distance implementation.
- The proposed COSIME design is not limited to FeFET technology, but is rather general.

Thank you for your attention!

cliu29@nd.edu

