Quizz 2 MA3.101: Linear Algebra Spring 2022

May 2022

Answer all questions: (Time - 45 mins) (Full Marks- 30)

- 1. Let Q be an orthogonal matrix, then show that
 - (i) Q^{-1} is orthogonal.
 - (ii) $det(Q) = \pm 1$.
 - (iii) If λ is an eigenvalue of Q, then $|\lambda| = 1$.
- 2. Prove that an orthogonal 2 × 2 matrix must have the form,

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ or } \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \text{ where } \begin{pmatrix} a \\ b \end{pmatrix} \text{ is a unit vector.}$$
 (4)

(6)

- 3. Let A be a nilpotent matrix (that is b $A^m = O$ for some m). Show that $\lambda = 0$ is the only eigen value of A. (2)
- 4. Let A be an idempotent matrix (that is $A^2 = A$). Show that $\lambda = 0$ and $\lambda = 1$ are the only eigen value of A. (2)
- 5. Let v is an eigen vector of A, with corresponding eigen value λ and c is scalar. Show that v is an eigen vector of A-cI with corresponding eigen value $\lambda-c$.
- Compute the (a) characteristic polynomial, (b) the eigen values, (c) basis
 for each eigen space, (d) algebric and geometric multiplicity of each eigen
 values, for the following matrix,

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 3 & 0 \\
-2 & 1 & 2 & -1
\end{pmatrix}$$
(4)

7. Apply Gram Schmidt process to find an orthogonal basis for the column spaces of the matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & 0 \\ 1 & 5 & 1 \end{pmatrix} \tag{4}$$

0

8. Suppose that u, v and w are vectors in inner product space such that, $< u, v >= 1, < u, w >= 5, < v, w >= 0, ||u|| = 1, ||v|| = \sqrt{3}, ||w|| = 2,$ then evaluate the expressions,

(i)
$$< u + w, v - w >$$

(ii) $< 2v - w, 3u + 2w >$
(iii) $||u + v||$

(6)