Spring 2019 Lect-02

What's on Menu Today?

- Introduction to ML
- Classification
- Regression
- Linear Regression
- Logistic Regression
- Reading Material
- Next Lecture outline
- Next Lecture Reading Material

Machine Learning

Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

- What we do in Machine Learning?
 - Making predictions or
 - decisions from Data.

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Dimensionality Reduction

- PCA, ICA, LLE, Isomap
- PCA is the most important technique to know. It takes advantage of correlations in data dimensions to produce the best possible lower dimensional representation, according to reconstruction error.
- PCA should be used for dimensionality reduction, not for discovering patterns or making predictions. Don't try to assign semantic meaning to the bases.

Machine Learning Problems

Why do we cluster?

Summarizing data

- Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

Counting

Histograms of texture, color, SIFT vectors

Segmentation

Separate the image into different regions

Prediction

Images in the same cluster may have the same labels

How do we cluster?

- K-means
 - Iteratively re-assign points to the nearest cluster center
- Agglomerative clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - Estimate modes of pdf
- Spectral clustering
 - Split the nodes in a graph based on assigned links with similarity weights

Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

Preserve information

Cluster center Data
$$\mathbf{c}^*, \boldsymbol{\delta}^* = \underset{\mathbf{c}, \boldsymbol{\delta}}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij} (\mathbf{c}_i - \mathbf{x}_j)^2$$
 Whether \mathbf{x}_j is assigned to \mathbf{c}_i

Slide: Derek Hoiem

K-means algorithm

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

K-means algorithm

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

K-means Initialize cluster centers: \mathbf{c}^0 ; t=0

2. Assign each point to the closest center

$$\boldsymbol{\delta}^{t} = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i}^{N} \sum_{j}^{K} \delta_{ij} \left(\mathbf{c}_{i}^{t-1} - \mathbf{x}_{j} \right)^{2}$$

3. Update cluster centers as the mean of the points

4. Repeat 2-3
$$\underset{c}{\text{augtil no points}} \sum_{j=1}^{N} \underbrace{\text{e-assigned } (t=t+1)}_{j}$$

Slide: Derek Hoiem

Supervised Learning

- Data consists
 - Input-output pairs
- Input
 - data points
 - features
 - covariates
- Output
 - labels
 - targets
 - variates

Supervised Learning

- Data consists
 - Input-output pairs
- Input
 - data points
 - features
- Output
 - labels
 - targets
 - variates

Supervised Learning

- Data consists
 - Input-output pairs
- Input
 - data points
 - features
 - covairates
- Output
 - labels
 - targets
 - variates

- Lets assume the 'model' is Linear
 - $\hat{y}_i = \hat{y}(x_i) = w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id}$
 - If d = 1

- Lets assume the 'model' is Linear
 - $\hat{y}_i = \hat{y}(x_i) = w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id}$
 - If d = 1

- Given any 'w' we want to calculate error
- Lets define error function/loss/objective function

$$-J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$-J(w) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_{i1})^2$$

- Given any 'w' we want to calculate error
- Lets define error function/loss/objective function

•
$$J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

•
$$J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_{i1})^2$$

- Given any 'w' we want to calculate error
- Lets define error function/loss/objective function

•
$$J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - w_0 - w_1 x_{i1})^{\frac{1}{2}}$

Line Fitting: Least Squared Error Solution

$$E = \sum_{i} (mx_i + c - y_i)^2$$

$$\frac{\partial E}{\partial m} = \sum_{i} (mx_i + c - y_i)x_i = 0$$

$$\frac{\partial E}{\partial c} = \sum_{i} (mx_i + c - y_i) = 0$$

$$\begin{bmatrix} \sum_{i} x_i^2 & \sum_{i} x_i \\ \sum_{i} x_i & \sum_{i} 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} \sum_{i} x_i y_i \\ \sum_{i} y_i \end{bmatrix}$$

```
2.4 7.3

3.4 10.5

4.6 11.8

5.3 13.9

6.6 16.3

6.4 15.3

8.0 17.9

8.9 20.8

9.2 20.9
```

Solution: m = 1.9274 c = 3.227

Linear Regression: Least Square Error Solution

Mode

- Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = \overline{mx_i + b}$
- •Find (m, b) to minimize

Error Function

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix}_{b}^{m} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \\ \Box & \Box \\ x_n & 1 \end{bmatrix}_{b}^{m} - \begin{bmatrix} y_1 \\ \Box \\ y_n \end{bmatrix}_{e}^{2} = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A}\mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

$$\mathbf{A}^T \mathbf{A}\mathbf{p} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$
Matlab: $p = A \setminus y$;

Administrative Stuff

Administrative Issues

- Course Outline
- Course Website
- Zero tolerance Plagiarism policy
- Assignments
- Quizzes
- Exams
 - Mid-term
 - Final term

Administrative Issues

- We MIGHT OR MIGHT-NOT share Slides
 - Take Notes
 - Share notes
- We Will Provide
 - Reading Material (with concise pointers)
 - Links to the video Lectures that are helpful
 - Reference Material

C

Office Hours

Assigned Readings

- Deep Learning, Nature's Paper
- Some interesting blogs?

Reference and Reading Material for Next Class

Neural Networks And Deep learning, Chapter 1

http://neuralnetworksanddeeplearning.com/chap1.html