

HEXFET® Power MOSFET

V _{DS}	200	V
$R_{DS(on) max}$ (@V _{GS} = 10V)	99.9	$\mathbf{m}\Omega$
Q _{g (typical)}	20	nC
R _{G (typical)}	2.3	Ω
I _D (@T _{c(Bottom)} = 25°C)	20	A

Applications

Features

- Secondary Side Synchronous Rectification
- Inverters for DC Motors
- DC-DC Brick Applications
- Boost Converters

Features and Benefits

Low R _{DSon}	
Low Thermal Resistance to PCB (≤ 1.2°C/W)	
100% Rg tested	
Low Profile (≤ 0.9 mm)	results in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant Containing no Lead, no Bromide and no Halogen	
MSL1, Industrial Qualification	

Benefits

Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Oudoughle work mumber	Postsona Tuna	Standard Pa	ack	Note
Orderable part number	Package Type	Form	Quantity	Note
IRFH5220TRPBF	PQFN 5mm x 6mm	Tape and Reel	4000	
IRFH5220TR2PBF	PQFN 5mm x 6mm	Tape and Reel	400	EOL notice # 259

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	200	V
V_{GS}	Gate-to-Source Voltage	± 20]
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	3.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.0	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	20]
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	Α
I _D @ T _{C(Top)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	5.8]
I _D @ T _{C(Top)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	3.7]
I _{DM}	Pulsed Drain Current ①	47]
P _D @T _A = 25°C	Power Dissipation ®	3.6	10/
P _D @ T _{C(Top)} = 25°C	Power Dissipation @	8.3	W
	Linear Derating Factor ®	0.07	W/°C
T_J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ⑤ are on page 8

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.21		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		80	99.9	mΩ	$V_{GS} = 10V, I_D = 5.8A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-11		mV/°C	V _{DS} – V _{GS} , I _D – 100μΛ
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
				1.0	mA	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	I na	V _{GS} = -20V
gfs	Forward Transconductance	16	_		S	$V_{DS} = 50V, I_{D} = 5.8A$
Q_g	Total Gate Charge		20	30		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		5.4			V _{DS} = 100V
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.3		nC	V _{GS} = 10V
Q_gd	Gate-to-Drain Charge		6.3			$I_D = 5.8A$
Q_{godr}	Gate Charge Overdrive		7.0			See Fig.17 & 18
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		7.6			
Q _{oss}	Output Charge		9.4		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		2.3		Ω	
t _{d(on)}	Turn-On Delay Time		7.2			$V_{DD} = 100V, V_{GS} = 10V$
t _r	Rise Time		4.7			$I_D = 5.8A$
t _{d(off)}	Turn-Off Delay Time		14	_	ns	$R_{G}=1.8\Omega$
t _f	Fall Time		3.4			See Fig.15
C _{iss}	Input Capacitance	_	1380			$V_{GS} = 0V$
C _{oss}	Output Capacitance		100		pF	$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		23			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		290	mJ
I _{AR}	Avalanche Current ①		5.8	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			5.8		MOSFET symbol
	(Body Diode)			5.0	A	showing the
I _{SM}	Pulsed Source Current			47		integral reverse
	(Body Diode) ①			47		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 5.8A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		39	59	ns	$T_J = 25^{\circ}C, I_F = 5.8A, V_{DD} = 100V$
Q _{rr}	Reverse Recovery Charge		355	530	nC	di/dt = 500A/µs ③
t _{on}	Forward Turn-On Time	Time is dominated by parasitic Inductance				

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case		1.2	
R _{θJC} (Top)	Junction-to-Case 4	_	15	°C/W
$R_{\theta JA}$	Junction-to-Ambient ©		35	
R _{θJA} (<10s)	Junction-to-Ambient ®		22	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current Vs. Case (Top) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Top)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Unclamped Inductive Test Circuit

Fig 14b. Unclamped Inductive Waveforms

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Test Circuit

Fig 18. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

0.422 - K
R2 0.395
1 R
D2 e ###33
5 2 4 4
Expose b (8x)
E2 — - (4x)
BOTTOM VIEW

DIM	MILLIMITERS		IN	ICH
SYMBOL	MIN	MAX	MIN	MAX
А	0.800	0.900	0.0315	0.0543
A1	0.000	0.050	0.0000	0.0020
А3	0.20	0 REF	0.007	9 REF
b	0.350	0.470	0.0138	0.0185
b1	0.025	0.125	0.0010	0.0049
b2	0.210	0.410	0.0083	0.0161
b3	0.150	0.450	0.0059	0.0177
D	5.00	O BSC	0.1969 BSC	
D1	4.75	0 BSC	0.1870 BSC	
D2	4.100	4.300	0.1614	0.1693
E	6.00	0 BSC	0.2362 BSC	
E1	5.75	0 BSC	0.2264 BSC	
E2	3.380	3.780	0.1331	0.1488
е	1.27	70 REF	0.05	00 REF
e1	2.80	0 REF	0.11	02 REF
K	1.200	1.420	0.0472	0.0559
L	0.710	0.900	0.0280	0.0354
Р	0°	12°	0°	12°
R	0.200	REF	0.007	9 REF
R2	0.150	0.200	0.0059	0.0079

Nota:

- Dimensions and taleranceing confirm to ASME Y14,5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154:

http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Part Marking

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

PQFN Tape and Reel

REEL DIMENSIONS

TAPE DIMENSIONS

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Во	Dimension design to accommodate the component lenght
Ко	Dimension design to accommodate the component thickness
W	Overall wiath of the carrier tape
Рη	Pitch between successive covity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5X6PQF	N 13	4000	12.4	6.300	5.300	1.20	8.00	12	Qୀ

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Industrial ^{††}					
	(per JEDEC JESD47F ^{†††} guidelines)					
Moisture Sensitivity Level	PQFN 5mm x 6mm	MS L 1				
		(per JEDEC J-STD-020D ^{†††})				
RoHS compliant	Yes					

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 17.3mH, $R_G = 25\Omega$, $I_{AS} = 5.8$ A.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ④ R_θ is measured at T_⊥ of approximately 90°C.
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.

Revision History

Tievision Tilotory						
Date	Comment					
	• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259)					
5/13/2014	Updated Package outline on page 7.					
	Updated data sheet based on corporate template.					
3/19/2015	Updated package outline and tape and reel on pages 7 and 8.					

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.