Dynamic Programming Chapter 4: Optimal Stopping

Thomas J. Sargent and John Stachurski

2024

Topics

- Introduction to optimal stopping
- Theory
- Algorithms
- Applications

Optimal Stopping

Many decision making problems involve choosing when to act

- accept a job
- exit or enter a market
- bring a new product to market
- default on a loan
- exercise a real or financial option

We treat optimal stopping problems via dynamic programming

We begin with the standard theory of optimal stopping

Then we consider alternative approaches

- continuation values
- threshold policies
- etc.

One key objective: provide a rigorous discussion of optimality

This clarifies our intuitive analysis in the context of job search

Theory

Let X be a finite set

An optimal stopping problem with state space X consists of

- a stochastic matrix P on X
- a discount factor $\beta \in (0,1)$
- ullet a continuation reward function $c\in\mathbb{R}^{\mathsf{X}}$ and
- ullet an exit reward function $e \in \mathbb{R}^{\mathsf{X}}$

Given a P-Markov chain $(X_t)_{t\geqslant 0}$, the problem evolves as follows:

An agent observes X_t each period, continues or stops If she chooses to stop, she receives $e(X_t)$ and the process ends If she continues, she receives $c(X_t)$ and the process repeats

Lifetime rewards are given by

$$\mathbb{E}\sum_{t\geqslant 0}\beta^t R_t,$$

where R_t equals

- $c(X_t)$ while the agent continues
- ullet $e(X_t)$ when the agent stops, and zero thereafter

Example. In the infinite-horizon job search problem

- wage offer process (W_t) is $\stackrel{ ext{ iny IID}}{\sim} \varphi$ on finite W
- stop = accept offer
- continue = receive unemployment compensation, repeat

This is an optimal stopping problem with

- state space X = W
- ullet stochastic matrix P with all rows equal to arphi
- exit reward function $e(x) = x/(1-\beta)$ and
- the continuation reward function

 unemployment compensation

Example. Infinite-horizon American call option

Provides the right to buy a given asset at strike price K at every future date

The market price of the asset is given by $S_t = s(X_t)$

- (X_t) is P-Markov on finite set X and $s \in \mathbb{R}^X$
- the interest rate is r > 0

When to exercise is an optimal stopping problem, with

- discount factor $\beta = 1/(1+r)$
- exit reward function e(x) = s(x) K and
- continuation reward zero

A **policy function** is a map σ from X to $\{0,1\}$

Interpretation: observe state x, respond with action $\sigma(x)$, where

- $\sigma(x) = 0$ means "continue"
- $\sigma(x) = 1$ means "stop"

State must contain enough information to decide!

Let
$$\Sigma = \mathsf{all}\ \sigma \colon \mathsf{X} \to \{0,1\}$$

Let $v_{\sigma}(x)=$ expected lifetime value of following policy σ now and forever, given current state $x\in X$

We call v_{σ} the σ -value function

Our aim:

choose a policy that maximizes lifetime value!

In particular, $\sigma^* \in \Sigma$ is called **optimal** if

$$v_{\sigma^*}(x) = \max_{\sigma \in \Sigma} v_{\sigma}(x) \quad \text{for all } x \in \mathsf{X}$$

Before we can compute optimal policies, we need to be able to evaluate v_σ for each $\sigma\in\Sigma$

• How can we do this?

Some thought will convince you that v_σ must satisfy

$$v_{\sigma}(x) = \sigma(x)e(x) + (1 - \sigma(x)) \left[c(x) + \beta \sum_{x' \in \mathsf{X}} v_{\sigma}(x')P(x, x') \right]$$

Case 1: $\sigma(x) = 1$

Then the above states $v_{\sigma}(x) = e(x)$, which is the right value

Case 2: $\sigma(x) = 0$

Then

$$v_{\sigma}(x) = c(x) + \beta \sum_{x' \in \mathsf{X}} v_{\sigma}(x') P(x, x')$$

A natural recursion

To repeat, we need to solve

$$v_{\sigma}(x) = \sigma(x)e(x) + (1 - \sigma(x))\left[c(x) + \beta \sum_{x' \in X} v_{\sigma}(x')P(x, x')\right]$$

Let

•
$$r_{\sigma}(x) := \sigma(x)e(x) + (1 - \sigma(x))c(x)$$

•
$$L_{\sigma}(x, x') := \beta(1 - \sigma(x))P(x, x')$$

Then the equation becomes $v_{\sigma} = r_{\sigma} + L_{\sigma} v_{\sigma}$

Ex. Show that $r(L_{\sigma}) < 1$ and hence

$$v_{\sigma} = (I - L_{\sigma})^{-1} r_{\sigma}$$

We can also view v_{σ} as the fixed point of the **policy operator**

$$(T_{\sigma}v)(x) = \sigma(x)e(x) + (1 - \sigma(x))\left[c(x) + \beta \sum_{x' \in \mathsf{X}} v(x')P(x, x')\right]$$

Pointwise this is

$$T_{\sigma}v = r_{\sigma} + L_{\sigma}v$$

We know that v_σ is the unique solution to $v=r_\sigma+L_\sigma v$

Hence v_{σ} is the unique fixed point of T_{σ} in \mathbb{R}^{X}

Ex. Prove that T_{σ} is order-preserving on \mathbb{R}^{X}

Ex. Show that T_{σ} is a contraction map on \mathbb{R}^{X}

Given $f, g \in \mathbb{R}^{X}$ and $x \in X$, we have

$$|(T_{\sigma}f)(x) - (T_{\sigma}g)(x)| = \left| (1 - \sigma(x))\beta \sum_{x'} (g(x') - f(x'))P(x, x') \right|$$

$$\leq \beta \left| \sum_{x'} [f(x') - g(x')]P(x, x') \right|$$

Applying the triangle inequality and $\sum_{x' \in X} P(x, x') = 1$ yields

$$|(T_{\sigma}f)(x) - (T_{\sigma}g)(x)| \leqslant \beta ||f - g||_{\infty}$$

Hence

$$||T_{\sigma}f - T_{\sigma}g||_{\infty} \leqslant \beta ||f - g||_{\infty}$$

Ex. Show that T_{σ} is a contraction map on \mathbb{R}^{X}

Given $f, g \in \mathbb{R}^{X}$ and $x \in X$, we have

$$|(T_{\sigma}f)(x) - (T_{\sigma}g)(x)| = \left| (1 - \sigma(x))\beta \sum_{x'} (g(x') - f(x'))P(x, x') \right|$$

$$\leq \beta \left| \sum_{x'} [f(x') - g(x')]P(x, x') \right|$$

Applying the triangle inequality and $\sum_{x' \in \mathsf{X}} P(x,x') = 1$ yields

$$|(T_{\sigma}f)(x) - (T_{\sigma}g)(x)| \leq \beta ||f - g||_{\infty}$$

Hence

$$||T_{\sigma}f - T_{\sigma}g||_{\infty} \leqslant \beta ||f - g||_{\infty}$$

We define the value function of the optimal stopping problem as

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

Thus, $v^*(x) = \max$ lifetime value given current state x

Next steps

1. introduce the Bellman equation

$$v(x) = \max \left\{ e(x), c(x) + \beta \sum_{x'} v(x') P(x, x') \right\}$$

- 2. prove that the Bellman equation has a unique solution in \mathbb{R}^{X}
- 3. show that this solution equals v^*

The Bellman operator for the optimal stopping is defined by

$$(Tv)(x) = \max \left\{ e(x), c(x) + \beta \sum_{x'} v(x')P(x, x') \right\}$$

When we discuss optimality the next Ex. will be useful

Ex. Prove that T is an order preserving self-map on \mathbb{R}^{X}

Proof: Fix $f, g \in \mathbb{R}^X$ with $f \leqslant g$

Since $P\geqslant 0$, we have $Pf\leqslant Pg$

Hence $c + \beta Pf \leqslant c + \beta Pg$

$$\therefore Tf = e \lor (c + \beta Pf) \leqslant e \lor (c + \beta Pg) = Tg$$

The Bellman operator for the optimal stopping is defined by

$$(Tv)(x) = \max \left\{ e(x), c(x) + \beta \sum_{x'} v(x')P(x, x') \right\}$$

When we discuss optimality the next Ex. will be useful

Ex. Prove that T is an order preserving self-map on \mathbb{R}^{X}

 $\underline{\mathsf{Proof}}\!\!:\,\mathsf{Fix}\;f,g\in\mathbb{R}^{\mathsf{X}}\;\mathsf{with}\;f\leqslant g$

Since $P\geqslant 0$, we have $Pf\leqslant Pg$

Hence $c + \beta Pf \leqslant c + \beta Pg$

$$Tf = e \lor (c + \beta Pf) \le e \lor (c + \beta Pg) = Tg$$

Ex. Prove that, for all $\sigma \in \Sigma$, T dominates T_{σ} on \mathbb{R}^{X}

<u>Proof</u>: For all $a,b \in \mathbb{R}$ and $\lambda \in [0,1]$, we have

$$\lambda a + (1 - \lambda)b \leqslant a \vee b$$

Now fix $\sigma \in \Sigma$, $v \in \mathbb{R}^X$ and $x \in X$

We have

$$(T_{\sigma}v)(x) = \sigma(x)e(x) + (1 - \sigma(x))\left[c(x) + \beta \sum_{x'} v(x')P(x,x')\right]$$

$$\leqslant \max \left\{ e(x), c(x) + \beta \sum_{x'} v(x') P(x, x') \right\} = (Tv)(x)$$

Ex. Prove that, for all $\sigma \in \Sigma$, T dominates T_{σ} on \mathbb{R}^{X}

<u>Proof</u>: For all $a, b \in \mathbb{R}$ and $\lambda \in [0, 1]$, we have

$$\lambda a + (1 - \lambda)b \leqslant a \vee b$$

Now fix $\sigma \in \Sigma$, $v \in \mathbb{R}^X$ and $x \in X$

We have

$$(T_{\sigma}v)(x) = \sigma(x)e(x) + (1 - \sigma(x))\left[c(x) + \beta \sum_{x'} v(x')P(x, x')\right]$$

$$\leqslant \max\left\{e(x), c(x) + \beta \sum_{x'} v(x')P(x, x')\right\} = (Tv)(x)$$

Value function vs Bellman equation

Prop. Under the stated conditions

- 1. T is a contraction map of modulus β on \mathbb{R}^{X} and
- 2. the unique fixed point of T on \mathbb{R}^X is the value function v^*

In particular, v^* is the unique solution to the Bellman equation

The first step of the proof is the next exercise

Ex. Given f, g in \mathbb{R}^X , show that

$$||Tf - Tg||_{\infty} \le \beta ||f - g||_{\infty}$$

<u>Proof:</u> Recall the bound $|z \vee a - z \vee b| \leq |a - b|$

From this we have

$$|Tf - Tg| = |e \lor (c + \beta Pf) - [e \lor (c + \beta Pg)]|$$

$$\leq |c + \beta Pf - (c + \beta Pg)|$$

$$= \beta |P(f - g)|$$

$$\leq \beta P |f - g|$$

$$|(Tf)(x) - (Tg)(x)| \le \beta \sum_{x'} |f(x') - g(x')| P(x, x')$$

$$\therefore ||Tf - Tg||_{\infty} \leqslant \beta ||f - g||_{\infty}$$

Now we know T has a unique fixed point \bar{v} in \mathbb{R}^{X}

Next we claim that

$$\bar{v} = v^*$$

We show

- $\bar{v} \leqslant v^*$ and
- $\bar{v} \geqslant v^*$

To prove $\bar{v} \leqslant v^*$, define $\sigma \in \Sigma$ by

$$\sigma(x) := \mathbb{1}\left\{e(x) \geqslant c(x) + \beta \sum_{x' \in \mathsf{X}} \bar{v}(x') P(x, x')\right\}$$

For this choice of σ , for any $x \in X$,

$$(T_{\sigma}\bar{v})(x) = \sigma(x)e(x) + (1 - \sigma(x)) \left[c(x) + \beta \sum_{x' \in X} \bar{v}(x')P(x, x') \right]$$
$$= \max \left\{ e(x), c(x) + \beta \sum_{x' \in X} \bar{v}(x')P(x, x') \right\}$$
$$= (T\bar{v})(x) = \bar{v}(x)$$

In particular,

$$T_{\sigma}\,\bar{v}=\bar{v}$$

But the only fixed point of T_{σ} in \mathbb{R}^{X} is the σ -value function $v_{\sigma}!$

Hence $\bar{v} = v_{\sigma}$

But then $\bar{v}\leqslant v^*$, by the definition of v^*

• why?

It only remains to prove $\bar{v} \geqslant v^*$

Fix $\sigma \in \Sigma$

Since

- 1. T dominates T_{σ} on \mathbb{R}^{X} and
- 2. T is order-preserving and globally stable

we have $v_{\sigma} \leqslant \bar{v}$

why?

Taking the max over $\sigma \in \Sigma$ implies $v^* \leqslant \bar{v}$

We have now proved that v^{\ast} is the unique solution to the Bellman equation!

Finding optimal policies

For $v \in \mathbb{R}^{X}$, we call $\sigma \in \Sigma$ v-greedy if

$$\forall \ x \in \mathsf{X}, \quad \sigma(x) = \mathbb{1}\left\{e(x) \geqslant c(x) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, x')\right\}$$

ullet treats v as the value function and optimizes

Ex. Show that $\sigma \in \Sigma$ is v^* -greedy if and only if $T_{\sigma}v^* = v^*$

Proof: We have

$$\sigma \in \Sigma$$
 is v^* -greedy $\iff \sigma e + (1-\sigma)(c+\beta P v^*) = e \vee (c+\beta P v^*)$ $\iff T_\sigma v^* = v^*$

Finding optimal policies

For $v \in \mathbb{R}^{X}$, we call $\sigma \in \Sigma$ v-greedy if

$$\forall \ x \in \mathsf{X}, \quad \sigma(x) = \mathbb{1}\left\{e(x) \geqslant c(x) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, x')\right\}$$

ullet treats v as the value function and optimizes

Ex. Show that $\sigma \in \Sigma$ is v^* -greedy if and only if $T_{\sigma}v^* = v^*$

Proof: We have

$$\sigma\in\Sigma$$
 is $v^*\text{-greedy}\iff \sigma e+(1-\sigma)(c+\beta Pv^*)=e\vee(c+\beta Pv^*)$
$$\iff T_\sigma v^*=v^*$$

Prop. $\sigma \in \Sigma$ is optimal $\iff \sigma$ is v^* -greedy

Proof: For $\sigma \in \Sigma$, the following are all equivalent

- 1. σ is v^* -greedy
- $2. T_{\sigma} v^* = v^*$
- 3. $v^* = v_{\sigma}$
- Why are 2 and 3 equivalent?

This result is a version of Bellman's principle of optimality

Prop. $\sigma \in \Sigma$ is optimal $\iff \sigma$ is v^* -greedy

Proof: For $\sigma \in \Sigma$, the following are all equivalent

- 1. σ is v^* -greedy
- 2. $T_{\sigma}v^* = v^*$
- 3. $v^* = v_{\sigma}$
 - Why are 2 and 3 equivalent?

This result is a version of Bellman's principle of optimality

Corollary. The optimal stopping problem has exactly one optimal policy

<u>Proof:</u> For each $v \in \mathbb{R}^X$, the greedy policy

$$\sigma^*(x) := \mathbb{1}\left\{e(x) \geqslant c(x) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, x')\right\} \qquad (x \in \mathsf{X})$$

is uniquely defined

By the last Proposition, a policy is optimal iff it is v^* -greedy

Hence exactly one optimal policy exists

Corollary. The optimal stopping problem has exactly one optimal policy

<u>Proof:</u> For each $v \in \mathbb{R}^X$, the greedy policy

$$\sigma^*(x) := \mathbb{1}\left\{e(x) \geqslant c(x) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, x')\right\} \qquad (x \in \mathsf{X})$$

is uniquely defined

By the last Proposition, a policy is optimal iff it is v^* -greedy

Hence exactly one optimal policy exists

Firm Valuation with Exit

Previously we discussed firm valuation under various scenarios

Value was defined as expected present value of profit stream

- a standard and popular methodology
- easy to apply

But it ignores an important fact

firms have the option to exit and sell remaining assets

Now we consider firm valuation in the presence of this exit option

We consider a firm where

- $\pi_t = \pi(Z_t)$ for some fixed $\pi \in \mathbb{R}^{\mathsf{Z}}$
- $(Z_t)_{t\geqslant 0}$ is Q-Markov on finite set $\mathsf{Z}\subset\mathbb{R}$

At the start of each period, the firm decides whether to

- ullet remain in operation, receiving current profit π_t , or
- ullet exit, receiving s>0 for sale of all assets

Discounting is at fixed rate r and $\beta := 1/(1+r)$

We assume that r > 0

Let Σ be all $\sigma \colon \mathsf{Z} \to \{0,1\}$

For given $\sigma \in \Sigma$ and $v \in \mathbb{R}^{\mathbb{Z}}$, the policy operator is

$$(T_{\sigma}v)(z) = \sigma(z)s + (1 - \sigma(z)\left[\pi(z) + \beta \sum_{z'} v(z')Q(z,z')\right]$$

Recall that

- T_{σ} has a unique fixed point v_{σ}
- $v_{\sigma}(z):=$ the value of following policy σ forever, given $Z_0=z$

The Bellman operator is the order-preserving self-map T on $\mathbb{R}^{\mathbf{Z}}$ defined by

$$(Tv)(z) = \max \left\{ s, \pi(z) + \beta \sum_{z'} v(z')Q(z, z') \right\}$$

Pointwise, $Tv = s \vee (\pi + \beta Qv)$

Let v^* be the value function for this problem

- v^* is the unique fixed point of T in \mathbb{R}^Z
- ullet successive approximation from any $v \in \mathbb{R}^{\mathsf{Z}}$ converges to v^*
- ullet a policy is optimal if and only if it is v^* -greedy