An MDP-Based Winning Approach to RoboCup Soccer Simulation Challenge

Aijun Bai

Aug 16, 2016

UC Berkeley

Outline

The Problem

The Approach

The Results

The Problem

RoboCup Soccer Simulation 2D

- Simulated soccer game
- Server/Client fashion
 - Server: the simulated environment
 - Clients: 11 players and one coach for each team
- In each cycle (100 ms)
 - Server sends local observations to each client
 - Clients receive observations, update internal world models and send actions to the server
- Around 6,000 cycles (\approx 10 mins)

What Makes RoboCup 2D Interesting/Challenging?

- Key Features:
 - Abstractions made by the simulator
 - High-level planning, learning and cooperation
 - No need to handle robot hardware issues
- Key Challenges:
 - Fully distributed multi-agent stochastic system
 - Continuous state, observation and action spaces

The Soccer Field

Player and Ball States

Player

- Position, Velocity, Body Angle, Neck Angle, Stamina, . . .
- Maximal Speed, Kick
 Radius, Stamina
 Recovery, ...
- Ball
 - Position, Velocity

Primitive Actions

Parameterized actions

- Dash(dir, power)
- TurnBody(angle)
- TurnNeck(angle)
- Kick(dir, power)
- Tackle(dir)
- Catch(dir) [for goalie]

The Physics

- Dash(dir, power)
 - Moves the player
 - Exposed to noise
 - Costs some stamina
 - If stamina is too low: can not move at full speed

The View Model

- Relative noisy information
- Limited view angle
- Sensitive view distance

RoboCup 2D in Action

Figure 1: WrightEagle (my team) v.s. Helios (from Japan)

The RoboCup 2D Competition

- Earliest league since 1997
- 20 teams per year from different countries/universities
- Two rounds of group tournament, followed by an elimination
- More information: https://en.wikipedia.org/wiki/ RoboCup_2D_Soccer_Simulation_League

A Running Competition of RoboCup 2013

Our Achievements

WrightEagle team (from Univ. of Sci. & Tech. of China):

- 6 world champions: 2006, 2009, 2011, 2013, 2014 and 2015
- A little bit about myself:
 - Got Bachelor and PhD both in CS from USTC
 - Have been working on RoboCup 2D since 2005
 - Have been the main contributor since 2009
- More information: http://www.wrighteagle.org/2d/

The Path to Champion of RoboCup 2011

The Approach

The Winning Approach

Key components of WrightEagle:

- Markov decision process (MDP) formulation
- Belief state update (Bai et al., 2012a,c)
- Hierarchical decomposition (Bai et al., 2012a,b, 2013b, 2015)
- State abstraction (Bai et al., 2016)
- Monte-Carlo simulation (Bai et al., 2013a, 2014)
- Rationality assumption

Markov Decision Processes

- MDP models uncertainty:
 - 1. State space: $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - 2. Action space: $A = \{a_1, a_2, \dots, a_{|A|}\}$
 - 3. Transition function: $T(s' \mid s, a) \rightarrow [0, 1]$
 - 4. Reward function: $R(s,a) \to \mathbb{R}$
- Policy: $\pi:S\to A$
- Value function: $V^{\pi}(s_0) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t R(s_i, \pi(s_i))\right]$
- Bellman optimality:

$$V^*(s) = \max_{a \in A} \left\{ R(s, a) + \gamma \sum_{s' \in S} T(s' \mid s, a) V^*(s') \right\}$$
 (1)

• Optimal policy:

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} V^*(s) \tag{2}$$

Partially Observable MDPs

- POMDP extends MDP to partially observable domains:
 - 1. Observation space: $O = \{o_1, o_2, \dots, o_{|O|}\}$
 - 2. Observation function: $\Omega(o \mid a, s) \rightarrow [0, 1]$
- History: $h = (a_0, o_1, a_1, o_2, \dots a_{t-1}, o_t)$
- Belief state: $b(s) = \Pr(s \mid b_0, h)$
- Belief space: $\mathcal{B} = \{b\}$
- Policy: $\pi: \mathcal{B} \to A$

Basic Framework

Figure 2: Agent & environment

Belief Update via Particle Filtering

- Particle filter based self-localization and multi-object tracking
- Use expected state to estimate the world state, consistent with an MDP formulation

Figure 3: Localization

Belief State Visualization

Figure 4: Belief state in terms of player position distributions

Hierarchical Online Planning

Rule-based system:

```
PlanAttack() {
if should shoot then
   return PlanShoot()
else if should_pass then
   return PlanPass()
else
   return PlanDrrible()
```

• Hierarchical planning:

```
PlanAttack() {
shoot \leftarrow PlanShoot()
pass \leftarrow PlanPass()
dribble \leftarrow PlanDrrible()
return max{shoot, pass,
                dribble, ... }
```

Hierarchical Decomposition

Figure 5: MAXQ based hierarchical decomposition in WrightEagle

MAXQ Value Function Decomposition

• Value function V^* of π^* satisfies

$$V^*(i,s) = \begin{cases} R(s,i) & \text{if } M_i \text{ is primitive} \\ \max_{a \in A_i} Q^*(i,s,a) & \text{otherwise} \end{cases}$$
(3)

$$Q^*(i, s, a) = V^*(a, s) + C^*(i, s, a)$$
(4)

$$C^*(i, s, a) = \sum_{s', N} \Pr(s', N \mid s, a) V^*(i, s')$$
 (5)

• π^* satisfies

$$\pi_i^*(s) = \operatorname*{argmax}_{a \in A_i} Q^*(i, s, a) \tag{6}$$

Value Function Decomposition in WrightEagle

$$Q^*(\mathsf{Root}, s, \mathsf{Attack}) = V^*(\mathsf{Attack}, s) + \sum_{s'} P_t(s' \mid s, \mathsf{Attack}) V^*(\mathsf{Root}, s'), \tag{7}$$

$$V^*(\mathsf{Root}, \boldsymbol{s}) = \max\{Q^*(\mathsf{Root}, \boldsymbol{s}, \mathsf{Attack}), Q^*(\mathsf{Root}, \boldsymbol{s}, \mathsf{Defense})\}, \tag{8}$$

$$\boldsymbol{V}^*(\mathsf{Attack}, \boldsymbol{s}) = \max\{\boldsymbol{Q}^*(\mathsf{Attack}, \boldsymbol{s}, \mathsf{Pass}), \boldsymbol{Q}^*(\mathsf{Attack}, \boldsymbol{s}, \mathsf{Dribble}), \boldsymbol{Q}^*(\mathsf{Attack}, \boldsymbol{s}, \mathsf{Shoot}),$$

$$Q^*(\mathsf{Attack}, s, \mathsf{Intercept}), Q^*(\mathsf{Attack}, s, \mathsf{Position})\},$$
 (9)

$$Q^*(\mathsf{Attack}, s, \mathsf{Pass}) = V^*(\mathsf{Pass}, s) + \sum_{s'} P_t(s' \mid s, \mathsf{Pass}) V^*(\mathsf{Attack}, s'), \tag{10}$$

$$Q^*(\mathsf{Attack}, s, \mathsf{Intercept}) = V^*(\mathsf{Intercept}, s) + \sum_{s'} P_t(s' \mid s, \mathsf{Intercept}) V^*(\mathsf{Attack}, s'), \tag{11}$$

$$V^*(\mathsf{Pass}, \boldsymbol{s}) = \max_{\mathsf{position}} {_pQ^*(\mathsf{Pass}, \boldsymbol{s}, \mathsf{KickTo}(p))}, \tag{12}$$

$$V^*(\mathsf{Intercept}, \boldsymbol{s}) = \max_{\mathsf{position}} Q^*(\mathsf{Intercept}, \boldsymbol{s}, \mathsf{NavTo}(p)), \tag{13}$$

$$Q^*(\mathsf{Pass}, \boldsymbol{s}, \mathsf{KickTo}(p)) = V^*(\mathsf{KickTo}(p), \boldsymbol{s}) + \sum_{s'} P_t(s' \mid \boldsymbol{s}, \mathsf{KickTo}(p)) V^*(\mathsf{Pass}, \boldsymbol{s}'), \tag{14}$$

$$Q^*(\mathsf{Intercept}, \boldsymbol{s}, \mathsf{NavTo}(p)) = V^*(\mathsf{NavTo}(p), \boldsymbol{s}) + \sum_{s'} P_t(s' \mid \boldsymbol{s}, \mathsf{NavTo}(p)) V^*(\mathsf{Intercept}, \boldsymbol{s'}), \tag{15}$$

$$V^*(\mathsf{KickTo}(p), s) = \max_{\mathsf{power}\ a, \ \mathsf{angle}\ \theta} Q^*(\mathsf{KickTo}(p), s, \mathsf{kick}(a, \theta)), \tag{16}$$

$$V^*(\mathsf{NavTo}(p), \boldsymbol{s}) = \max_{\mathsf{power}\ a, \ \mathsf{angle}\ \theta} Q^*(\mathsf{NavTo}(p), \boldsymbol{s}, \mathsf{dash}(a, \theta)), \tag{17}$$

$$Q^*(\mathsf{KickTo}(p), \boldsymbol{s}, \mathsf{kick}(a, \theta)) = R(\boldsymbol{s}, \mathsf{kick}(a, \theta)) + \sum_{s'} P_t(s' \mid \boldsymbol{s}, \mathsf{kick}(a, \theta)) V^*(\mathsf{KickTo}(p), \boldsymbol{s}'), \tag{18}$$

MAXQ based Online Planning: MAXQ-OP

- Approximate $Pr(s', N \mid s, a)$ either online or offline
- For non-primitive subtasks

$$V^*(i,s) \approx \max_{a \in A_i} \left\{ V^*(a,s) + \sum_{s'} \Pr(s' \mid s, a) V^*(i,s') \right\}$$
 (19)

ullet Introduce search depth array d, maximal search depth array D and heuristic function H(i,s)

$$V(i,s,d) \approx \begin{cases} H(i,s) & \text{if } d[i] \geq D[i] \\ \max_{a \in A_i} \{V(a,s,d) + \\ \sum_{s'} \Pr(s' \mid s,a) V(i,s',d[i] \leftarrow d[i] + 1) \} & \text{otherwise} \end{cases}$$

$$\tag{20}$$

ullet Call $V(0,s,[0,0,\dots,0])$ to find the value of s in task M_0

MAXQ-OP in WrightEagle

- Task evaluation over hierarchy
 - Value function decomposition
- Terminating distribution approximation
 - Success and failure probabilities
- Search based (Monte Carlo) planning with pruning
- Heuristic evaluation

Figure 6: Search in shoot

Hierarchical Planning for Pass Behavior

Figure 7: Hierarchical planning for pass behavior

Tree Search based (Monte Carlo) Planning

- Transitions as explicit distributions $\Pr(s' \mid s, a)$ are not available
- Sampling rules $s' \sim \Pr(s' \mid s, a) \text{ are clearly}$ defined by the simulator
- Monte-Carlo tree search w/ state abstraction
- Low-level skills: NavTo, KickTo, . . .

Figure 8: Search tree in *NavTo*

Terminating Distribution Estimation

•
$$\Pr(s' \mid s, a)$$

- $\Pr(success \mid s, Shoot)$

- $\Pr(success \mid s, Pass)$

- $\Pr(success \mid s, Intercept)$

* $\Delta t = t_b - t_p$

* $p \approx f(\Delta t)$

Figure 9: Intercepting probability

Heuristic Evaluation

Figure 10: A heuristic function used in defense behaviors

The Results

RoboCup Competitions

- Six world champions
- Most successful team (according to Wikipedia)

Competitions	Games	Points	Goals	Win	Draw	Lost	Average Points	Average Goals
RoboCup 2005	19	47	84 : 16	15	2	2	2.47	4.42:0.84
RoboCup 2006	14	38	57:6	12	2	0	2.71	4.07:0.43
RoboCup 2007	14	34	125:9	11	1	2	2.42	8.92:0.64
RoboCup 2008	16	40	74:18	13	1	2	2.50	4.63:1.13
RoboCup 2009	14	36	81:17	12	0	2	2.57	5.79:1.21
RoboCup 2010	13	33	123:7	11	0	2	2.54	9.47:0.54
RoboCup 2011	12	36	151:3	12	0	0	3.00	12.6:0.25
RoboCup 2012	21	58	104:18	19	1	1	2.76	4.95: 0.86
RoboCup 2013	19	53	104 : 9	17	2	0	2.79	5.47:0.47

Figure 11: Historical results of WrightEagle from RoboCup 2005 to 2013

Related Publications

- IJCAI (Bai et al., 2016)
- NIPS (Bai et al., 2013a)
- ICAPS (Bai et al., 2014; Zhang et al., 2015)
- AAMAS (Bai et al., 2012b)
- RoboCup Symposium (Bai et al., 2012a, 2013b)
- ACM Transactions (Bai et al., 2015)

Open-Sourced Codes

- WrightEagle Base: https://github.com/wrighteagle2d/wrighteaglebase
- MAXQ-OP: https://github.com/aijunbai/maxq-op
- Hierarchical Planning: https://github.com/aijunbai/hplanning
- Multi-Agent Reinforcement Learning: https://github.com/aijunbai/keepaway
- Particle Filtering over Sets: https://github.com/aijunbai/pfs

Summary

- RoboCup soccer simulation 2d domain
 - Fully-distributed multi-agent stochastic system
 - Continuous state, observation and action spaces
- WrightEagle soccer simulation team
 - Markov decision process formulation
 - Hierarchical decomposition
 - MAXQ based online planning

References I

References

- Bai, A., Chen, X., MacAlpine, P., Urieli, D., Barrett, S., & Stone, P. (2012a). Wright Eagle and UT Austin Villa: RoboCup 2011 simulation league champions. In
 T. Roefer, N. M. Mayer, J. Savage, & U. Saranli (Eds.) RoboCup-2011: Robot Soccer World Cup XV, vol. 7416 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Srivastava, S., & Russell, S. J. (2016). Markovian state and action abstractions for MDPs via hierarchical MCTS. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, (pp. 3029–3039). URL http://www.ijcai.org/Abstract/16/430
- Bai, A., Wu, F., & Chen, X. (2012b). Online planning for large MDPs with MAXQ decomposition (extended abstract). In *Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2012).*

References II

- Bai, A., Wu, F., & Chen, X. (2013a). Bayesian mixture modelling and inference based Thompson sampling in Monte-Carlo tree search. In Advances in Neural Information Processing Systems 26, (pp. 1646–1654).
- Bai, A., Wu, F., & Chen, X. (2013b). Towards a principled solution to simulated robot soccer. In X. Chen, P. Stone, L. E. Sucar, & T. V. der Zant (Eds.) RoboCup-2012: Robot Soccer World Cup XVI, vol. 7500 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Wu, F., & Chen, X. (2015). Online planning for large markov decision processes with hierarchical decomposition. ACM Transactions on Intelligent Systems and Technology (TIST), 6(4), 45.
- Bai, A., Wu, F., Zhang, Z., & Chen, X. (2014). Thompson sampling based Monte-Carlo planning in POMDPs. In Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014). Portsmouth, United States.
- Bai, A., Zhang, H., Lu, G., Jiang, M., & Chen, X. (2012c). WrightEagle 2D soccer simulation team description 2012. In RoboCup Soccer Simulation 2D Competition, Mexico City, Mexico.

References III

Zhang, Z., Hsu, D., Lee, W. S., Lim, Z. W., & Bai, A. (2015). PLEASE: palm leaf search for POMDPs with large observation spaces. In *Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015.*, (pp. 249–258).