Reply to Non-Final Office Action of February 25, 2008

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions and listings of claims in the application.

- 1. (Original) A method of preparing an ethylene polymerization catalyst, comprising:
- (a) (a1) reacting magnesium halide with alcohol in the presence of a hydrocarbon solvent,
 - (a2) reacting the resulting product solution from the step (a1) with dialkylmagnesium, and
 - (a3) reacting the resulting product from the step (a2) with alkyl halide or silane halide, to give a magnesium complex;
- (b) reacting the magnesium complex with a titanium compound, to give a magnesium-titanium complex; and
- (c) reacting the magnesium-titanium complex with an electron donor.
- 2. (Original) The method as set forth in claim 1, wherein the magnesium halide is a compound represented by a formula of MgX_2 , in which X is a halogen element belonging to Group VII in the periodic table.
- 3. (Original) The method as set forth in claim 1, wherein the alcohol is a compound represented by a formula of R^1OH , in which R^1 is an alkyl radical having 1 to 10 carbons.

Docket No.: 20345/0205330-US0 Application No. 10/598147

Amendment dated: August 25, 2008

Reply to Non-Final Office Action of February 25, 2008

4. (Original) The method as set forth in claim 1, wherein the dialkylmagnesium is a

compound represented by a formula of MgR²R³ or MgR²R³ (AlR⁴₃), in which R², R³ and R⁴,

which are the same or different, respectively are an alkyl radical having 1 to 10 carbons.

5. (Original) The method as set forth in claim 1, wherein the alkyl halide is a

compound represented by a formula of R⁵X, in which R⁵ is an alkyl radical having 1 to 5

carbons, and X is a halogen element belonging to Group VII in the periodic table.

6. (Original) The method as set forth in claim 1, wherein the silane halide is a

compound represented by formula of R⁵_mSiX_{4-m}, in which R⁵ is an alkyl radical having 1 to 5

carbons, X is a halogen element belonging to Group VII in the periodic table, and m is an

integer ranging from 0 to 3.

7. (Currently Amended) The method as set forth in claim 1, wherein the titanium

compound is a compound represented by a formula of TiX4, in which X is a halogen element

belonging to Group VII in the periodic table, or an alkoxy radical selected from-a the group

consisting of among OC₂H₅, OC₃H₇ and OC₄H₉.

8. (Original) The method as set forth in claim 1, wherein the electron donor is an

organic acid ester compound represented by a formula of R⁶(COO)_nR⁷_mR⁸_{n-m}, in which R⁶ is

saturated hydrocarbons, unsaturated hydrocarbons, alicyclic hydrocarbons or aromatic

hydrocarbons having 1 to 18 carbons, R⁷ and R⁸, which are the same or different respectively

3

Application No. 10/598147 Docket No.: 20345/0205330-US0

Amendment dated: August 25, 2008

Reply to Non-Final Office Action of February 25, 2008

are an alkyl radical having 1 to 18 carbons, and n and m, which are the same or different,

respectively are an integer of 1 or 2 ($m \le n$).

9. (Original) The method as set forth in claim 1, wherein the steps (a2) and (a3) are

carried at -30 to 100°C.

10. (Original) The method as set forth in claim 1, wherein a molar ratio of the

magnesium complex and the titanium compound ranges from 1:0.5 to 1:10 and the step (b) is

carried out at -20 to 100°C.

11. (Original) The method as set forth in claim 1, wherein a molar ratio of the

magnesium complex and the electron donor ranges from 1:0.01 to 1:0.5.

12. (New) The method as set forth in claim 1, where steps (a1), (a2), and (a3) are

completed before performing step (b), and step (b) is completed before performing step (c).

4