1. Data Understanding and Preprocessing

- Loading and Understanding Data
 - Importing datasets (e.g., CSV, SQL, JSON) effectively.
 - Summarizing datasets: Checking the shape, columns, data types, missing values, and basic statistics.
 - Demonstrating domain understanding through exploratory data analysis (EDA).

Handling Missing Data

 Identifying missing or incorrect data and applying appropriate imputation techniques (mean, median, mode, interpolation, etc.).

Data Cleaning

- Removing duplicates, correcting data entry errors, and ensuring uniformity in categorical variables.
- Feature Encoding and Transformation
 - Encoding categorical variables (e.g., one-hot encoding, label encoding).
 - Scaling and normalizing numerical features (e.g., MinMaxScaler, StandardScaler).

Feature Engineering

 Creating new features from existing ones to improve model performance.

2. Exploratory Data Analysis (EDA) and Visualization

Descriptive Statistics

 Summarizing data using measures like mean, median, variance, and correlation.

Visualizations

- Creating insightful plots to reveal trends, patterns, and anomalies:
 - Histograms, box plots, scatter plots, and pair plots.
 - Advanced plots: Heatmaps, time-series plots, or geospatial visualizations.

 Interactive visualizations using Plotly, Tableau, or Dash (optional).

Insights

 Clearly communicating findings from EDA (e.g., trends, correlations, anomalies).

3. Model Development and Implementation

Model Selection

- Choosing the appropriate algorithm(s) based on the problem statement (e.g., regression, classification, clustering).
- Justifying the choice of the model with reasoning.

• Implementation

- Writing clean, modular, and well-documented code for model training and evaluation.
- Using frameworks such as Scikit-learn, TensorFlow, PyTorch, or XGBoost.

Hyperparameter Tuning

 Demonstrating techniques like GridSearchCV, RandomizedSearchCV, or Bayesian Optimization for improving model performance.

4. Model Evaluation and Validation

Performance Metrics

- Properly calculating and interpreting relevant metrics, such as:
 - Regression: RMSE, MAE, R².
 - Classification: Accuracy, Precision, Recall, F1-score, ROC-AUC.
 - Clustering: Silhouette score, Davies-Bouldin index.

• Cross-Validation

 Implementing K-Fold or other cross-validation techniques to ensure robustness.

Error Analysis

 Analyzing incorrect predictions and understanding areas of model weakness.

5. Explainability and Interpretation

- Feature Importance
 - Using techniques like SHAP, LIME, or built-in feature importance to explain model predictions.
- Model Transparency
 - Providing insights into how the model arrives at predictions (especially for black-box models).

6. Scalability and Deployment (Optional only for DA Student)

For advanced students, additional marks can be awarded for implementing solutions that are scalable and deployable.

- Deployment Readiness
 - Building a simple web app using Flask, Django, or Streamlit for model predictions.
 - Creating APIs for the trained model.
- Scalability Features
 - Writing efficient code for large datasets or parallelizing computations.

7. Documentation and Presentation

- Code Documentation
 - Writing meaningful comments and ensuring proper function and variable naming.
- Report Submission
 - o Delivering a concise, well-structured report or presentation covering:
 - Problem understanding.

- Key steps taken (EDA, modeling, evaluation).
- Final solution and recommendations.

Presentation Skills

 Explaining the results and code logic effectively during a demo or Q&A session.

8. Innovation and Creativity

- Novel Approaches
 - Implementing innovative techniques or proposing unconventional solutions.
 - o Effective use of advanced tools, libraries, or methods.
- Real-World Applicability
 - Connecting their solution to real-world use cases or suggesting practical implications.