We can do better, but the next part will not work with an arbitrary invertible matrix A. It will work though e.g. if all entries of A and  $A^{-1}$  are integers.

**5)** Reduce all numbers obtained in step 4 modulo 27. That is, add or subtract from each number a multiple of 27 to get a number between 0 and 26.

**6)** Replace numbers by letters.

## Decryption.

1) Replace letters by numbers, split into vectors, and multiply each vector by  $A^{-1}$ 

2) Write the new vectors as a sequence of numbers, reduce each number modulo 27.

3) Replace numbers by letters





**Problem:** How to detect and correct transmission errors?

## Basic scheme of error correction



**Working assumption for this lecture:** We expect at most one transmission error in any message up to 20 bits long.

A simple error correcting code: triple repeat. message: 1011

**Problem:** The encoded message is 3 times longer than the original message.

Better error correction: Hamming (7,4) code.

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{0} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{0} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

encoding matrix

message: 10111101

## Encoding.

1) Split the message into vectors with 4 entries, and multiply each vector by the encoding matrix E.

2) Reduce all numbers obtained in step 1 modulo 2. That is, add or subtract from each number a multiple of 2 to get either 0 or 1.

| Encoded message:                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Received message:                                                                                                                               |
| <b>Decoding.</b> Split the received message into vectors with 7 entries, multiply each vector by the decoding matrix $D$ , and reduce modulo 2. |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
|                                                                                                                                                 |
| Decoded message:                                                                                                                                |