Fourier Neural Operator with Conformal Fourier Transform Residual Correction

Anonymous for Review

Abstract

Neural operators learn mappings between function spaces for PDE modeling. While Fourier Neural Operators (FNOs) are efficient and accurate, they face limitations under cross-resolution shift and long-horizon autoregression. We propose FNO with Conformal Fourier Transform Residual Correction (FNO-RC): a shallow, conservative, time-aware residual branch using Continuous Fourier features, stabilized via warmup, temporal smoothing, high-frequency regularization, and multi-resolution augmentation. On long 3D Navier–Stokes trajectories, FNO-RC improves long-horizon rollouts and remains competitive under cross-resolution tests. A principled CFT discretization and spectral diagnostics explain when correction helps.

1 Introduction

Fourier Neural Operators [Li et al., 2020] parameterize integral kernels in the spectral domain and invert via iFFT, enabling resolution-invariant learning for PDEs. However, discrete spectral truncation, implicit periodicity, and sampling aliasing can degrade stability, especially in long-horizon predictions. We introduce a residual correction branch derived from Continuous Fourier Transform (CFT) features that complements the backbone FNO with minimal overhead. Our contributions: (i) a shallow CFT-driven residual path that is time-aware and spatially broadcast; (ii) a stable training protocol (warmup for a learnable scale, temporal smoothing, high-frequency regularization, and multi-resolution augmentation) tailored for data scarcity; (iii) theoretical grounding of CFT discretization using piecewise Chebyshev expansions [Barnett and Greengard, 2010]; (iv) comprehensive experiments on 1D/2D/3D tasks.

2 Method

2.1 Preliminaries: FNO

Given field u, an FNO layer truncates $\mathcal{F}\{u\}$ on selected modes and applies complex weights before inverse transform. Stacking spectral layers with pointwise convolutions forms the backbone.

2.2 Continuous Fourier features and residual correction

We employ spatial-only CFT per time slice, approximated by L Chebyshev segments of order M, yielding stable low-to-mid frequency estimates under nonperiodic boundaries. Projected CFT features are mapped to a time-dependent correction vector and broadcast over space, added to shallow FNO blocks with a learnable scale γ . Stabilization includes: (i) warmup for γ ; (ii) temporal smoothing; (iii) high-frequency energy regularization on the residual; (iv) multi-resolution spectral augmentation.

3 Experiments

3.1 Setup

3D Navier–Stokes vorticity: N=50 trajectories, windows with $T_{in}=10$, $T_{out}=20$. Train at 64×64 ; evaluate cross-resolution at 96/128 (spectral or bilinear resampling). Metrics: relative L2 in raw space; rollout horizon H=100 with multi-step outputs.

Figure 1: Cross-resolution comparison on 3D tasks. Lower is better.

Figure 2: Long-horizon rollouts (H=100). FNO-RC reduces autoregressive error accumulation.

3.2 Results

Cross-resolution. FNO is strongest under single-window cross-resolution; the FNO-RC backbone (RC disabled) is competitive. See Figure 1.

Long-horizon rollouts. With RC enabled and smaller step_out, FNO-RC reduces error accumulation significantly. See Figure 2.

Spectral diagnostics. Energy spectra show FNO under-fits high-k, while naive RC may over-amplify; our HF regularization mitigates overshoot. See Figure 3.

4 Discussion

Residual correction improves temporal stability; conservative use (shallow RC, small initial γ) with HF regularization addresses high-k shift under resolution changes.

Figure 3: Spectral/error diagnostics (energy spectra, amplitude/phase errors).

Figure 4: Error vs time (raw mean) on 3D tasks.

5 Conclusion

FNO-RC integrates continuous Fourier features as a conservative residual atop FNO, achieving improved long-horizon stability with competitive cross-resolution performance.

References

A.H. Barnett and L. Greengard. A high accuracy conformal method for evaluating the discontinuous fourier transform. *SIAM Journal on Scientific Computing*, 32(5):2804–2831, 2010.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. *arXiv preprint arXiv:2010.08895*, 2020.

Figure 5: Qualitative comparisons on 3D fields.