

Application of HPX to tiled GEMM and QR: A benchmark

September 24, 2019 | Thomas Miethlinger | Jülich Supercomputing Centre

Part I: Introduction

About me

(Thomas Miethlinger)

- Study: Master Physics
- Johannes Kepler University of Linz
- Institute for Theoretical Physics
 Department Many Particle Systems
- Research:
 - Quantum fluids
 - Complex fluids
 - Non-equilibrium statistical mechanics

About the GSP

Supervisor: Dr. Edoardo Di Napoli

Co-Supervisor: Dr. Xinzhe Wu

SimLab Quantum Materials

Research:

Development and maintenance of numerical libraries

Design and implementation of high-performance algorithms

Development of new mathematical and computational models within a methodological framework

in the scope of computational materials science and quantum materials.

Part II: Introduction to HPX

Current sitution in high performance computing (HPC)

Currently, speed-up in computing does not stem from higher CPU frequency, but increased parallelism. However, we already face the following challenges in HPC:

- Ease of programming
- Inability to handle dynamically changing workloads
- Scalability
- Efficient utilization of system resources
- ⇒ a need for a new execution model: ParalleX, which is implemented by HPX

ParalleX

ParalleX is a new parallel execution model that offers an alternative to the conventional computation models(e.g. message passing):

Clido 4

- Split-phase transaction model
- Message-driven
- Distributed shared memory
- Multi-threaded
- Futures synchronization
- Local Control Objects (LCOs)
- · ...

ParalleX focusses on latency hiding instead of latency avoidance.

About HPX

- High Performance ParalleX (HPX) is the first runtime system implementation of the ParalleX execution model.
- Development: STE||AR group
 Louisiana State University
 LSU Center for Computation and Technology
- Released as open source under the Boost Software License
- Aims to be a C++ standards conforming implementation of the Parallelism and Concurrency proposals for C++ 17/20/23/...
- This means: HPX is a C++ library that supports dynamic adaptive resource management and lightweight task programming and scheduling within the context of a global address space.

Comparison of HPX and OpenMP

HPX	OpenMP
C++ library	Compiler extension to C and Fortran
Core language: hpx::C++	#pragma omp directives
Task-based parallelism	Parallel regions (fork-join model)
AGAS (active global address space)	shared memory

Comparison of HPX and MPI

HPX	MPI
C++ library	Interface specification for C and Fortran
Core language: hpx::C++	Core language: MPI_C, MPI_F08
Task-based parallelism	Single program, multiple data (SPMD)
AGAS (active global address space)	Explicit message passing

Part III: Overview of numerical linear algebra and its applications

Part IV: GEMM

Part V: QR

Application of HPX to tiled GEMM and QR: A benchmark

September 24, 2019 | Thomas Miethlinger | Jülich Supercomputing Centre

