מגישים:

דור כרמי – 205789662

עודד בסרבה- 315564641

<u>עבודה 5 ב-PPL:</u>

:1.1.a

שוויון בין רשימות עצלות מוגדר להיות:

תהי עצלות שתי רשימות עצלות. L_1, L_2

:נגדיר מהתנאים אחד מתקיים אם $L_1=L_2$ נגדיר

- $L_1 = L_2 = empty\ list$ -1.
 - -2. או ש
- L_1 את האיבר במקום ה-*i* ברשימה x_i -ם נסמן ב- . α
- L_2 את האיבר במקום ה-*i* ברשימה b.
- $(\forall n \in \mathbb{N}$ אם הרשימה אינסופית אז $1 \leq i \leq n$ לכן מתקיים לכל. c
 - $x_i = y_i$.d

*:*1.1.b

.even-square-1, even-square-2 נוכיח שוויון בין הרשימות

נוכיח באינדוקציה על האיברים ברשימה לפי סדר הרשימה.

<u>:טענה</u>

.even-square-2 שקולה לפרוצדורה even-square-1

בסיס:

.n=1 בסיס האינדוקציה:

 \mathcal{L}_2 האיבר הראשון ברשימה \mathcal{L}_1 , ויהי \mathcal{Y}_1 האיבר הראשון ברשימה \mathcal{X}_1

:w even-square-1 אז מתקיים עבור

אשר בוצע ,integers-from 0 שהיא ובר הראשון האיבר האיבר האיבר האשון ברשימה הוא האיבר הראשון מה z^*x ולאחר מכן הוא עבר סינון של z^*x עם הפונקציה z^*x

x %2 = 0

על x*x על הפעלה true, integers-from true, הפעלה של true היהים על true ייתן true על true ייתן true

:עבור even-square-2 מתקיים

אשר עבר ,integers-from 0 שהיא |zl-lst| שהיא און ברשימה הוא האיבר הראשון מה- z^*x , אשר עבר z^*x עם הפונקציה און עליו של z^*x עם הפונקציה און את הסינון של

מאחר והאיבר הראשון ברשימת הטבעיים שמקיים את התנאי x%2=0 הוא המספר 0, והפעלה של הפונקציה על האיבר הזה מביאה לתוצאה של 0, נקבל ש-0 הוא האיבר הראשון ברשימה even-square-2.

קיבלנו ששני האיברים הראשונים בשתי הרשימות זהים, לכן תנאי הבסיס מתקיים.

הנחת האינדוקציה: נניח שעבור k מתקיים שלכל איבר (כלומר האיברים) הנחת האינדוקציה: בשתי הרשימות).

.k+1 צעד: נוכיח עבור

.even-square-1 ברשימה k+1-

נסתכל על האיבר ה-k ברשימה. מתקיים:

$$(x_k = k * k) \cap ((k * k)\%2) = 0$$

.k+1 נסתכל על האיבר הבא בסדר המספרים הטבעיים:

מתקיים 1=2%(k+1)(k+1), שכן כפל של מספר אי זוגי במספר אי זוגי נותן מספר אי זוגי נותן מספר אי זוגי נותן מספר אי זוגי. ולכן בהכרח מתקיים ש- $(k+2)(k+2)=x_{k+1}=(k+2)(k+2)$ משום שקודם מתבצעת ההפעלה של הפונקציה ב-(k+2) של מתבצע ה-(k+2) שעבורו (k+2) שעבורו איבר קטן מ-(k+2) שעבורו זה מתקיים.

.even-square-2 ברשימה k+1- יהיה האיבר

נסתכל על האיבר ה-k ברשימה. מתקיים:

$$(y_k = k * k) \cap (k\%2) = 0$$

k+1 נסתכל על האיבר הבא בסדר המספרים הטבעיים:

- מתקיים k+1, שכן העוקב של מספר זוגי k הוא אי זוגי. ולכן בהכרח מתקיים ש $y_{k+1}=(k+2)(k+2)$ משום שלפי מה שהבחנו, k+2 הוא מספר זוגי, ולכן יעבור את ה-k+2 משום שלפי מה שהבחנו, k+2 הוא מספר זוגי, ולכן יעבור את k+2 משום שלפי מה שלפי מה שהבחנו, k+2 הוא מכן תתבצע עליו ההפעלה של הפונקציה k+1

:קיבלנו ש

$$x_{k+1} = (k+2)(k+2) = y_{k+2}$$

כלומר הוכחנו את הטענה לכל באינדוקציה לכל המספרים הטבעיים ולכן הטענה מתקיימת.

:2.a

נסתכל על הפונקציה f1 (סימון לפונקציה f1 בגרסת ה-Success,Fail continuation) ועל טיפוסי ההחזרה האפשריים שלה:

$$G_{succ}$$
, G_{fail}

פרוצדורה f1 שקולה לפרוצדורה f1 אם לכל ערכי קלט ערכי קלט הטיפוסים שלהם הם: $T_1 \dots T_n$ שקולה לפרוצדורה $T_1 \dots T_n$

$$success: T_i \rightarrow G_{succ}$$

$$Fail: T_i \rightarrow G_{fail}$$

מתקיים:

• במקרה של הצלחה:

$$(f_1 \# x_1 \dots x_n \operatorname{succ} fail) = (\operatorname{succ} (f_1 x_1 \dots x_n))$$

• במקרה של כישלון:

$$(f_1 \# x_1 \dots x_n \operatorname{succ} fail) = (fail (f_1 x_1 \dots x_n))$$

:*2d*

get-value equivalent to get-value\$:נוכיח באמצעות התנאי שכתבנו לעיל שמתקיים

כיוון שהפרוצדורה *get-value* היא רקורסיבית, ההוכחה מתבצעת ע"י שימוש באינדוקציה על אורך הרשימה.

 $.key=anyKey, list=()' .n=\theta$ בסיס האינדוקציה:

במקרה כזה תנאי הבסיס של הרקורסיה מתקיים, הרשימה ריקה, ולכן מוחזר fail' בפרוצדורה get-value.

בפרוצדורה get-value מתקיים גם כן תנאי הבסיס של הרקורסיה, הרשימה ריקה, ולכן get-value שלא מקבלת פרמטר ומחזירה fail, ולכן הטיפוסי החזרה וערכי החזרה שתי הפרוצדורות על רשימה ריקה זהים.

הנחת האינדוקציה: עבור $list|=n\leq k$ הנחת האינדוקציה:

$$(f_1 \# x_1 \dots x_k \operatorname{succ} fail) = (fail (f_1 x_1 \dots x_k))$$

n=k+1 צעד: נוכיח עבור

 $.x_1 ... x_k, x_{k+1}$ נסתכל על הרשימה

בשתי הפונקציות בכל שלב בוחנים את האיבר הראשון של הרשימה *assoc-list* אל מול ה*key*.

לכן נחלק למקרים:

מקרה א':

אם $equal?\ caar\ assoc-list)=true$, כלומר האיבר הראשון של הזוג הראשון (equal? caar assoc – list) ברשימה שווה ל-key, יתקיים:

כלומר מתקיים שהאיבר $get-value\ (x_1...x_{k+1}, key)\overset{*}{\Rightarrow}(cdr\ (car\ assoc-list))$ שחוזר הוא האיבר השני של הזוג הראשון ברשימה.

בפרוצדורה השנייה מתקיים:

$$get-value$$
\$ $(x_1 ... x_{k+1}, key succ fail) $\stackrel{*}{\Rightarrow} (succ(cdr (car assoc-list)))$
: ועבור $success$ שנגדירה להיות פונקצית הזהות, נקבל$

$$(succ(cdr (car assoc - list))) = (cdr (car assoc - list))$$

וקיבלנו את אותו ערך החזרה ואותו טיפוס החזרה.

מקרה ב':

מתקיים שהאיבר הראשון בזוג הראשון לא שווה ל-*key*. במקרה כזה:

$$get-value(x_1 ... x_{k+1}, key) \stackrel{*}{\Rightarrow} get-value(cdr(car assoc-list), key) \stackrel{*}{\Rightarrow} get-value(x_2 ... x_{k+1}, key)$$

$$get-value\$ (x_1 \dots x_{k+1}, key) \stackrel{*}{\Rightarrow} get-value\$ (cdr (car assoc-list), key, succ, fail) \stackrel{*}{\Rightarrow} \\ get-value\$ (x_2 \dots x_{k+1}, key, succ, fail)$$

ומהנחת האינדוקציה נקבל ש:

$$get-value\left(x_{2}\ldots x_{k+1}, key\right)=get-value\$\left(x_{2}\ldots x_{k+1}, key, succ, fail\right)$$

<u>:3.1</u>

Task	Substitution	Equations	notes
a		t(s(s)),G,H,p,t(E),s)=	
		t(s(H)),G,p,p,t(E),K)	
		t(s(s))=t(s(H))	
		G=G	
		H=p	
		p=p	
		t(E)=t(E)	
		K=s	
	Н=р	s(s)=s(H)	
		G=G	
		p=p	
		E=E	
		K=s	
	Н=р	H=s	Failure- H=p
		G=G	and H=s → not
		p=p	possible
		E=E	
		K=s	

Task	Substitution	Equations	notes
b		g(c,v(U),g,G,U,E,v(M)) = g(c,M,g,v(M),v(G),g,v(M))	
		c=c	
		g=g M=v(U)	
		G=v(M)	
		U=v(G)	

	$E=g \\ v(M)=v(M)$	
	G=v(M)=v(v(U))=v(v(v(G)))	Infinite loop

Task	Substitution	Equations	notes
С		$s([v \mid [[v \mid V] \mid A]]) =$	
		s([v [v A]])	
		[v A] = [[v V] A]	
		v=[v V]	Atomic cannot be
			compound expression

<u>:3.3</u>

<u>:</u>*b* סעיף

:התוצאות הן

X=zero	<i>Y=s(zero)</i>
X=s(zero)	<i>Y=zero</i>

<u>:</u> ∂ סעיף

trueזהו עץ הצלחה משום שקיים מסלול משורש העץ לאחד העלים שמסתיים ב

:*d* סעיף

העץ הספציפי שיצרנו הינו עץ סופי, משום שלכל מסלול אפשרי בעץ קיים עלה, כלומר מסתיים.