CS 511 Formal Methods, Fall 2024

Instructor: Assaf Kfoury

Homework Assignment 3

September 26, 2024

Lucas Miguel Tassis

Exercise 1

$$\phi_1 \stackrel{\mathrm{def}}{=} \neg ((p \land q) \land r) \to ((\neg p \lor \neg q) \lor \neg r)$$

1.	$\neg((p \land q) \land r)$	assumption
2.	$\neg ((\neg p \vee \neg q) \vee \neg r)$	assumption
3.	$\neg p$	assumption
4.	$ \neg p \lor \neg q$	∨i 3
5.		∨i 4
6.		¬e 2, 5
7.	$\neg \neg p$	¬i 3–6
8.	$\neg q$	assumption
9.	$ \neg p \lor \neg q$	∨i 8
10.		∨i 9
11.	<u> </u>	¬e 2, 10
12.	$\neg \neg q$	¬i 8–11
13.	$\neg r$	assumption
14.	$ \ \ \neg q \lor \neg r$	∨i 13
15.		∨i 14
16.		¬e 2, 15
17.	$\neg \neg r$	¬i 13–16
18.	p	¬¬e 7
19.	q	¬¬e 12
20.	r	¬¬e 17
21.	$p \wedge q$	∧i 18, 19
22.	$(p \wedge q) \wedge r$	∧i 20, 21
23.	上	¬e 1, 22
24.	$\neg\neg((\neg p \vee \neg q) \vee \neg r)$	¬i 2–23
25.	$((\neg p \vee \neg q) \vee \neg r)$	¬¬e 24
26.	$\neg((p \land q) \land r) \to ((\neg p \lor \neg q) \lor \neg r)$	\rightarrow i 1 -25

Exercise 2

To show that the de Morgan's law for three variables $\phi_1 \stackrel{\text{def}}{=} \neg ((p \land q) \land r) \rightarrow ((\neg p \lor \neg q) \lor \neg r)$ is valid, we need to show that its negation is a contradiction, thus:

Since all paths are closed, the negation of the de Morgan's law is a contradiction. Thus, we proved that the de Morgan's law for 3 variables is a tautology.

Exercise 3

The Lean template file with the solutions is available on GitHub.

Exercise 4

The Lean template file with the solutions is available on GitHub.