If any answer contains any of the following, they will be given **0 marks** for that section of the answer:

- 1. Pictorial representation or graph of a function on \mathbb{R} or \mathbb{R}^n $(n \in \mathbb{N})$
- 2. Arithmetic operations on ∞ or $-\infty$ or similar undefined numbers on \mathbb{R} or \mathbb{R}^n $(n \in \mathbb{N})$
- 3. Converse of known theorem, that is not true
- 4. Incorrect definitions used
- 5. Inadequate or non-existent steps in calculations
- 6. Integration or properties of Riemann integrable functions

Q.3) a) What is equivalent criterion for differentiability for z = f(x, y) at any point in its domain? (1.25 marks)

Ans: Any one of the following definitions are valid:

Definition 1: A function $f(x, y) : D \to \mathbb{R}$, where D is an open subset of \mathbb{R}^2 , is differentiable at a point (x_0, y_0) of D if \exists a point $\alpha = (\alpha_1, \alpha_2)$ and functions $\varepsilon_1(h, k)$, $\varepsilon_2(h, k)$ on \mathbb{R}^2 , such that $f(x_0 + h, y_0 + k) - f(x_0, y_0) = h\alpha_1 + k\alpha_2 + h\varepsilon_1(h, k) + k\varepsilon_2(h, k)$ where $\varepsilon_1(h, k)$, $\varepsilon_2(h, k) \to 0$ as $(h, k) \to (0, 0)$

Definition 2: A function $f(x, y) : D \to \mathbb{R}$, where D is an open subset of \mathbb{R}^2 , is differentiable at a point (x_0, y_0) of D if and only if $\lim_{\rho \to 0} \frac{\Delta f(x_0, y_0) - df(x_0, y_0)}{\rho} = 0$, where:

- 1. $\triangle f(x_0, y_0) = f(x_0 + h, y_0 + k) f(x_0, y_0)$
- 2. $df(x_0, y_0) = hf_x(x_0, y_0) + kf_y(x_0, y_0)$
- 3. $\rho = \sqrt{h^2 + k^2}$

Definition 3: A function $f(x, y) : D \to \mathbb{R}$, where D is an open subset of \mathbb{R}^2 , is differentiable at a point (x_0, y_0) of D if both $f_x(x, y)$ and $f_y(x, y)$ exist in an open neighbourhood containing (x_0, y_0) and at least one of them is continuous at (x_0, y_0)

+1.25 marks Exact same or re-worded definition
0 marks Otherwise

Q.3) b) Determine all values of $\alpha > 0$ for which $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{|x|^3 + |y|^{\alpha}}$ exists? (2.5 marks)

Ans: The set of all possible values for α in $(0, \infty)$ is (0, 9)

+0.5 marks

Claim 1: If
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{|x|^3 + |y|^{\alpha}}$$
 exists, $\alpha < 9$

Proof: If the limit exists, let it be ξ . An intuitive observation shows that:

$$\xi = \lim_{\substack{(x,y) \to (0,0) \\ \text{along the curve } x = y^3}} \frac{x^2 y^3}{|x|^3 + |y|^\alpha} = \lim_{y \to 0} \frac{(y^3)^2 y^3}{|y^3|^3 + |y|^\alpha} = \lim_{y \to 0} \frac{y|y|^8}{|y|^9 + |y|^\alpha} = \lim_{y \to 0} \frac{y}{|y|} \frac{1}{1 + |y|^{\alpha - 9}}$$

Let us assume for the sake of contradiction that $\alpha \geq 9$,

$$\implies \lim_{y \to 0} 1 + |y|^{\alpha - 9} = \begin{cases} 1 & \text{if } \alpha > 9 \\ 2 & \text{if } \alpha = 9 \end{cases}$$

$$\implies \lim_{y \to 0} \frac{y}{|y|} \text{ exists as } \lim_{y \to 0} \frac{y}{|y|} = \lim_{y \to 0} \frac{y}{|y|} \frac{1 + |y|^{\alpha - 9}}{1 + |y|^{\alpha - 9}} \text{ (Product of limits)}$$

$$\implies \lim_{y \to 0} \frac{y}{|y|} = \begin{cases} \xi & \text{if } \alpha > 9 \\ 2\xi & \text{if } \alpha = 9 \end{cases} \implies \xi = 0$$

$$\implies \lim_{y \to 0} \frac{y}{|y|} = \begin{cases} \xi & \text{if } \alpha > 9 \\ 2\xi & \text{if } \alpha = 9 \end{cases} \implies \xi = 0$$

since $\lim_{y\to 0} \frac{y}{|y|}$ is independent of α and $\xi = 2\xi \Leftrightarrow \xi = 0$ $\implies \lim_{y\to 0} \frac{y}{|y|} = 0 \text{ (Contradiction)}$

$$\implies \lim_{y \to 0} \frac{|y|}{|y|} = 0$$
 (Contradiction)

Therefore, $\alpha < 9$

+1 mark

Claim 2: If
$$0 < \alpha < 9$$
, $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{|x|^2 + |y|^{\alpha}}$ exists and is 0

Proof: If $\alpha < 9$, $3 - \frac{\alpha}{3} > 0$

$$\implies 0 \le \left| \frac{x^2 y^3}{|x|^3 + |y|^{\alpha}} \right| = |y|^{3 - \frac{\alpha}{3}} \frac{|x|^2 |y|^{\frac{2\alpha}{3}}}{|x|^3 + |y|^{\alpha}} = |y|^{3 - \frac{\alpha}{3}} \frac{\left(\frac{|x|}{|y|^{\frac{\alpha}{3}}}\right)^2}{\left(\frac{|x|}{|y|^{\frac{\alpha}{3}}}\right)^3 + 1}$$

For any arbitrary real number $\gamma > 0$, $\begin{cases} \text{if } \gamma \geq 1, \ 1 + \gamma^3 \geq \gamma^3 \geq \gamma^2 \implies \frac{\gamma^2}{1 + \gamma^3} \leq 1 \\ \text{if } \gamma < 1, \ \gamma^2 < 1 \text{ and } 1 + \gamma^3 > 1 \implies \frac{\gamma^2}{1 + \gamma^3} \leq 1 \end{cases}$

and clearly for $(x, y) \neq (0, 0), \frac{|x|}{|y|^{\frac{\alpha}{3}}} > 0$

$$\implies 0 \le \left| \frac{x^2 y^3}{|x|^3 + |y|^{\alpha}} \right| \le |y|^{3 - \frac{\alpha}{3}} \text{ and since } 3 - \frac{\alpha}{3} > 0, \lim_{y \to 0} |y|^{3 - \frac{\alpha}{3}} = 0$$

$$\implies \lim_{y \to 0} \left| \frac{x^2 y^3}{|x|^3 + |y|^{\alpha}} \right| = 0 \text{ (Sandwich Theorem)}$$

$$\implies \lim_{y \to 0} \frac{x^2 y^3}{|x|^3 + |y|^{\alpha}} = 0 \text{ (Sandwich Theorem again)}$$
Therefore,
$$\lim_{(x,y) \to (0,0)} \frac{x^2 y^3}{|x|^2 + |y|^{\alpha}} = 0 \text{ for } 0 < \alpha < 9$$
+1 mark

Note: This question has been designed in such a way that this is the only logical solution. As far as I know, there are no other alternate solutions barring minor details.

Q.3) c) Show by an example that the existence of partial derivatives at a given point does not imply continuity at that point.? (1.25 marks)

Ans: There are multiple such functions that are valid but the following example showcases the steps necessary for full marks:

Example: $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$ at (0, 0)

$$\lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = 0 \implies \frac{\partial f}{\partial x}(0, 0) = 0$$

$$f(0, h) - f(0, 0) \qquad \partial f$$

$$\lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h} = 0 \implies \frac{\partial f}{\partial y}(0, 0) = 0$$

But if we consider the case where
$$(x, y)$$
 approaches $(0, 0)$ along the curve $y = x$, then:
$$\lim_{\substack{(x,y)\to(0,0)\\\text{along the curve }y=x}} f(x,y) = \lim_{\substack{(x,x)\to(0,0)\\\text{along the curve }y=x}} f(x,x) = \lim_{\substack{(x,x)\to(0,0)\\\text{along the curve }y=x}}} f(x,$$

f is not continuous at (0,0)

+0.25 marks Valid multivariate function f

+0.25 marks Valid point of discontinuity (x_0, y_0)

+0.25 marks Valid evaluation of $\frac{\partial f}{\partial x}(x_0, y_0)$

+0.25 marks Valid evaluation of $\frac{\partial f}{\partial u}(x_0, y_0)$

+0.25 marks Valid contradiction of continuity at (x_0, y_0)

0 marks None of the above

Q.7) a) Let $f(x, y) = x^3y - xy^2 + cx^2$ where c is a constant. Find c if f increases fastest at the point P(3, 2) in the direction of the vector $\mathbf{v} = 2\hat{\mathbf{i}} + 5\hat{\mathbf{j}}$ (2.5 marks)

Ans: For given
$$c$$
, $f(x, y) = x^3y - xy^2 + cx^2$
 $\implies \nabla f(x, y) = (3x^2y - y^2 + 2cx)\hat{\mathbf{i}} + (x^3 - 2xy)\hat{\mathbf{j}}$

$$\implies \nabla f \Big|_{\mathcal{D}} = (50 + 6c)\hat{\mathbf{i}} + (15)\hat{\mathbf{j}}$$

Since f increases fastest at P in the direction of \mathbf{v} , both $\nabla f|_{\mathbf{p}}$ and \mathbf{v} have the same unit vector $\Longrightarrow \nabla f \Big|_{P}$ is a positive multiple of \mathbf{v} or $\exists \eta > 0$ such that $\nabla f \Big|_{P} = \eta \mathbf{v}$

$$\implies \nabla f \Big|_{\mathcal{B}} - \eta \mathbf{v} = (50 + 6c - 2\eta)\hat{\mathbf{i}} + (15 - 5\eta)\hat{\mathbf{j}} = \mathbf{0}$$

$$\implies 15 - 5\eta = 0 \implies \eta = 3 \implies 50 + 6c - 2\eta = 0 \implies c = \frac{-22}{3}$$

$$z = x^3y - xy^2 - \frac{22}{3}x^2$$
 at $P(3, 2)$

Note: This question is straightforward and extremely short for 2.5 marks, so it will have binary marking.

+2.5 marks Exact same or re-worded calculation

0 marks Otherwise

Q.7) b) Can you prove
$$\nabla \frac{f}{g}\Big|_{(x_0, y_0)} = \frac{g\nabla f - f\nabla g}{g^2}\Big|_{(x_0, y_0)}$$
? (2.5 marks)

Ans: Let
$$h = \frac{f}{g}$$
,

$$\implies \frac{\partial h}{\partial x} = \frac{\partial}{\partial x} (f \times \frac{1}{g}) = \frac{1}{g} \frac{\partial f}{\partial x} - \frac{f}{g^2} \frac{\partial g}{\partial x} = \frac{g \frac{\partial f}{\partial x} - f \frac{\partial g}{\partial x}}{g^2} \text{ (Product/Quotient Rule)}$$

$$\implies \frac{\partial h}{\partial y} = \frac{g \frac{\partial f}{\partial y} - f \frac{\partial g}{\partial y}}{g^2} \text{ (Product/Quotient Rule again)}$$

$$\implies \nabla h = \frac{g \nabla f - f \nabla g}{g^2}$$

Therefore,
$$\nabla \frac{f}{g}\Big|_{(x_0,y_0)} = \nabla h\Big|_{(x_0,y_0)} = \frac{g\nabla f - f\nabla g}{g^2}\Big|_{(x_0,y_0)}$$

Note: This question is straightforward and extremely short for **2.5 marks**, so it will have binary marking.

+2.5 marks Exact same or re-worded derivation 0 marks Otherwise