

Solution Sheet #8

Advanced Cryptography 2021

Solution 1 Interactive Proof Systems

This exercise is inspired from http://infsec.cs.uni-sb.de/teaching/WS08/zk/.

- 1. (a) Completeness = 1
 - We assume the given proof system proves that all x_i of x are squares. Then the corresponding witness relation is $R := \{((x_1, \ldots, x_n, m), (y_1, \ldots, y_n)) \mid y_i^2 \equiv x_i \mod m$ for $i = 1, \ldots, n$, with n even $\}$.
 - Completeness: Given I by the verifier V, the prover P will always be able to send the square roots y_i for all $i \in I$, since all x_i are squares. All checks $y_i^2 \equiv x_i \mod m$ by V will then succeed and V will accept. Hence we have completeness bound c = 1.
 - Soundness: We now compute the success probability of the best malicious prover P^* convincing the honest verifier V of a false statement. The best strategy for a malicious prover is to use exactly one non-square and n-1 squares for x (using more non-squares only increases the chance of V asking for the root of a non-square). Let x_j be the non-square. The verifier chooses the set I. Now there are two cases:
 - $-j \in I$: V wants to see the root of x_j . Since x_j is a non-square P^* cannot send a number z, such that $z^2 \equiv x_j \mod m$. V's check fails, it will output 0
 - $-j \notin I$: V does not want to see the root of x_j . Since all other x_i , $i \neq j$ are squares, P^* is able to send those roots y_i for all $i \in I$. V's checks may succeed and it may output 1.

As $j \in \{1, ..., n\}$ is chosen independently of I, and $|I| = \frac{n}{2}$, the probability of $j \in I$ is $\frac{n/2}{n} = \frac{1}{2}$. Hence V will output 0 with probability at least $\frac{1}{2}$, hence the soundness bound is $s = \frac{1}{2}$

- (b) Soundness = 0
 - We assume that the given proof system proves that at least half of the x_i of x are squares. Then the corresponding witness relation is $R := \{((x_1, \ldots, x_n, m), (y_1, \ldots, y_n)) \mid \exists I \subseteq \{1, \ldots, n\} : |I| \geqslant \frac{n}{2} \bigwedge y_i^2 \equiv x_i \mod m \text{ for all } i \in I, \text{ with } n \text{ even}\}.$

- Soundness: There is no way for a cheating prover P^* to convince the honest verifier V of a false statement. If less than half of the x_i are squares, there will always be a $j \in I$ such that x_j is not a square. The soundness bound is then s = 0.
- Completeness: In the worst case, we have exactly n/2 many squares and n/2 many non-squares. Then P will only be able to send the roots y_i for $i \in I$, if V has chosen exactly the squares. Since there are $\binom{n}{n/2}$ combinations the probability for V outputting 1 is $\frac{1}{\binom{n}{n/2}}$. Hence the completeness bound is $c = \frac{1}{\binom{n}{n/2}}$
- 2. We show that for every language in NP there exists an interactive proof system with completeness bound 1 and soundness bound 0.
 - Let L be a language in NP. From the definition of NP it follows that there exists a relation R, such that $x \in L \Leftrightarrow \exists w : (x, w) \in R$ and such that R can be decided by a deterministic polynomial-time Turing machine M and such that the |w| is polynomially-bounded in |x|.
 - In the interactive proof system the prover P sends the witness w to the verifier V. V then runs M(x, w) and outputs, what M outputs.
 - This proof system has completeness 1 and soundness 0.
- 3. We will write M^n for the n times sequential composition of M. We prove by induction:
 - Base case: For |x| = 1 we have completeness c and soundness s.
 - Induction hypothesis: (P^n, V^n) has completeness c^n and soundness s^n .
 - Inductive step: Consider the case |x| = n + 1. For completeness we have $(\forall x \in L)$:

$$\begin{split} & Pr\left[(P^{\circ}(x,w),V^{\circ}(x)) = 1\right] \\ &= & Pr\left[(P^{n+1}(x,w),V^{n+1}(x)) = 1\right] \\ &= & Pr\left[((P(x,w),P^{n}(x,w)),(V(x),V^{n}(x))) = 1\right] \\ &= & Pr\left[(P(x,w),V(x)) = 1\right] \cdot Pr\left[(P^{n}(x,w),V^{n}(x)) = 1\right] \\ &\geqslant & c \cdot c^{n} = c^{n+1} \end{split}$$

• Soundness: Here we deal with a malicious prover P^* . We assume we can decompose it into two malicious provers P_1^* and P_2^* running sequentially: P_1^* ends after sending the last message to the first invocation of V in V° (we may assume, the number of rounds in the proof system (P, V) is known, so we know when the last message is sent). Both P_1^* and P_2^* output their internal state after termination. P_2^* gets as input the state s_1 of P_1^* after its termination. We write $(s, v) \leftarrow (P(\ldots), V(\ldots))$ for

assigning to s the output of P and to v the output of V. Then we have $(\forall P^*, \forall x \notin L)$:

$$Pr [(P^{\circ}(x, w), V^{\circ}(x)) = 1]$$

$$= Pr [v_{1} = v_{2} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x)), v_{2} \leftarrow (P_{2}^{*}(s_{1}), V^{n}(x))]$$

$$= \sum_{s_{0}} Pr [s_{1} = s_{0} \wedge v_{1} = v_{2} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x)),$$

$$(s_{2}, v_{2}) \leftarrow (P_{2}^{*}(s_{0}), V^{n}(x))]$$

$$= \sum_{s_{0}} Pr [v_{2} = 1 : (s_{2}, v_{2}) \leftarrow (P_{2}^{*}(s_{0}), V^{n}(x))]$$

$$Pr [s_{1} = s_{0} \wedge v_{1} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x))]$$

$$\leq \sum_{s_{0}} s^{n} \cdot Pr [s_{1} = s_{0} \wedge v_{1} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x))]$$

$$= s^{n} \cdot \sum_{s_{0}} Pr [s_{1} = s_{0} \wedge v_{1} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x))]$$

$$\leq s^{n} \cdot Pr [v_{1} = 1 : (s_{1}, v_{1}) \leftarrow (P_{1}^{*}, V(x))]$$

$$\leq s^{n} \cdot s = s^{n+1}$$

Solution 2 Σ -Protocol for \mathcal{P}

The exercise is inspired by *Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols* by Cramer, Damgård and Schoenmakers. Published in the proceedings of Crypto'94 pp. 174–187, LNCS vol. 839, Springer 1994.

Let ε be a word of length 0.

- We define $\mathcal{P}(x, w) = \varepsilon$ and $\mathcal{P}(x, w, e) = \varepsilon$.
- We take the set of challenges $E = \{\varepsilon\}$. We could actually take any set of challenges with polynomially bounded length.
- The verification algorithm V(x, a, e, z) first computes $w = \mathcal{A}(x)$, then checks if R(x, w) holds.
- Clearly, this protocol satisfies completeness ($x \in L$ is accepted by the verifier when the protocol is honestly run).
- Clearly, the algorithms run in polynomial time in terms of |x|.
- To define a polynomial time extractor based on some values x, a, e, e', z, z' such that V(x, a, e, z) and V(x, a, e', z') hold, and $e \neq e'$, we simply compute $w = \mathcal{A}(x)$. Clearly, we obtain a polynomial-time extractor.
- To define a simulator S(x,e), we just take $(a,z)=(\varepsilon,\varepsilon)$. Clearly,

$$\Pr[S(x,e) = (a,z)] = \Pr[\mathcal{P}(x,w) = a, \mathcal{P}(x,w,e) = z]$$

So, we obtain a polynomial-time simulator.

So, all properties of a Σ -protocol are satisfied.

Solution 3 Combined Proofs

1. The prover and the verifier are simply defined by a parallel execution of Σ_1 and Σ_2 together with the same challenge. So are the extractor and the simulator.

More precisely, $\mathcal{P}((x_1, x_2), (w_1, w_2); r_1, r_2)$ runs $\mathcal{P}_i(x_i, w_i; r_i) = a_i$ for i = 1, 2 and yield (a_1, a_2) . Uppon challenge $e \in E$, $\mathcal{P}((x_1, x_2), (w_1, w_2), e; r_1, r_2)$ runs $\mathcal{P}_i(x_i, w_i, e; r_i) = z_i$ for i = 1, 2 and yield (z_1, z_2) . The verification holds $V((x_1, x_2), (a_1, a_2), e, (z_1, z_2))$ if and only if both $V_i(x_i, a_i, e, z_i)$ hold for i = 1, 2. The extractor $\mathcal{E}((x_1, x_2), (a_1, a_2), e, e', (z_1, z_2), (z'_1, z'_2))$ runs $w_i = \mathcal{E}_i(x_i, a_i, e, e', z_i, z'_i)$ for i = 1, 2 and yield (w_1, w_2) . The simulator $\mathcal{E}((x_1, x_2), e)$ runs $(a_i, z_i) = \mathcal{E}_i(x_i, e)$ for i = 1, 2 and yields $((a_1, a_2), (z_1, z_2))$.

Note: it is important to use the same challenge for both protocols in order to avoid troubles in the extraction.

2. The protocol \mathcal{P} is a finite sequence of polynomial time operations or subroutines, so it is polynomial. Since V_1 and V_2 have a polynomially bounded complexity, so does V. We already know that E is polynomially samplable. So Σ works in polynomial time (except that we did not specify yet the extractor and the simulator).

If the protocols are honestly run, we have $S_j(x_j, e_j) \to (a_j, e_j, z_j)$. So, by the property of the simulator for Σ_j , we have that $V_j(x_j, a_j, e_j, z_j)$ holds. Since w is a correct witness for x_i in Σ_i , since $\mathcal{P}(x_i, w; r_2) = a_i$ and $\mathcal{P}(x_i, w, e_i; r_2) = z_i$, due to the completeness of Σ_i we have that $V_i(x_i, a_i, e_i, z_i)$ holds. Since we further have $e_i = e - e_j$, the last condition for $V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2))$ to hold is satisfied. So, Σ satisfies the completeness property of Σ -protocols.

3. If $V((x_1, x_2), (a_1, a_2), e, (e_1, e_2, z_1, z_2))$ and $V((x_1, x_2), (a_1, a_2), e', (e'_1, e'_2, z'_1, z'_2))$ hold with $e \neq e'$, we must have either $e_1 \neq e'_1$ or $e_2 \neq e'_2$. Let assume that $e_1 \neq e'_1$. Then, we know that $V_1(x_1, a_1, e_1, z_1)$ and $V_1(x_1, a_1, e'_1, z'_1)$ hold. So, we can run the \mathcal{E}_1 extractor on $(x_1, a_1, e_1, e'_1, z_1, z'_1)$ to extract a witness w for x_1 in L_1 . Clearly, w is also a witness for (x_1, x_2) in L. The method is similar in the case $e_2 \neq e'_2$.

Clearly, we obtain a polynomially bounded extractor.

4. Given (x_1, x_2) and e, we pick a random e_1 and let $e_2 = e - e_1$. Then, we run $\mathcal{S}_1(x_1, e_1) \rightarrow (a_1, e_1, z_1)$ and $\mathcal{S}_2(x_2, e_2) \rightarrow (a_2, e_2, z_2)$. The output is $((a_1, a_2), e, (e_1, e_2, z_1, z_2))$. This defines our simulator \mathcal{S} .

Clearly, this works in polynomial time.

We let $a = (a_1, a_2)$ and $z = (e_1, e_2, z_1, z_2)$. We have

$$\Pr[S \to a, e, z | e] = \sum_{e_1 + e_2 = e} \Pr[e_1] \Pr[S_1 \to a_1, e_1, z_1 | e_1] \Pr[S_2 \to a_2, e_2, z_2 | e_2]$$

Since S_1 and S_2 are simulators for Σ_1 and Σ_2 , we have

$$\Pr[\mathcal{S} \to a, e, z | e] = \sum_{e_1 + e_2 = e} \Pr[e_j] \Pr[\Sigma_j \to a_j, e_j, z_j | e_j] \Pr[\mathcal{S}_i \to a_i, e_i, z_i | e_i]$$

for whatever pair (i, j) such that $\{i, j\} = \{1, 2\}$. We let i be random defined by \mathcal{P} . Clearly, the above sum equals $\Pr[\Sigma \to a, e, z|e]$. So, \mathcal{S} satisfies the property of a simulator for Σ .