

Communication Theory (5ETB0) Module 8.2

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 8.2

Presentation Outline

Part I Block-Orthogonal Signaling

Part II Dimensions and Bandwidth

Recap: Bit-by-Bit Signaling

Bit-by-Bit Signaling

The signals are

$$s(t) = \sum_{i=1}^{K} (-1)^{b_i+1} \sqrt{E_b} \varphi_i(t)$$

The vectorial representation is $\underline{s}_m = \sqrt{E_b}((-1)^{b_1+1}, (-1)^{b_2+1}, \dots, (-1)^{b_N+1})$

Conclusion: Reliability cannot be increased by increasing T

Block-Orthogonal Signaling: Description

System Description

- Transmit K bits in T seconds. Rate is R = K/T
- lacksquare Send one out of 2^K orthogonal pulses every T seconds
- lacktriangle Focus on pulse-position modulation (PPM) where $|\mathcal{M}|=2^K$ signals are

$$s_m(t) = \sqrt{E_s} \varphi(t - (m-1)\tau), \text{ for } m = 1, ..., 2^K,$$

with $\varphi(t)$ a unit-energy pulse and duration τ less than $T/2^K$

lacksquare All signals within the block [0,T) are orthogonal and have energy E_s .

Block-Orthogonal Signaling: Error Probability

Error Probabilities Considerations

We assume that the energy per transmitted bit of information is

$$E_b/N_0 = (1+\epsilon)^2 \ln 2,$$

with $0 \le \epsilon \le 1 \Rightarrow$ We are willing to spend slightly more than $N_0 \ln 2$ [Joule] Using $\log_2 |\mathcal{M}| = RT$ in the upper bound in $P_{\rm e}$ for $E_b/N_0 \ge \ln 2$:

$$\begin{split} P_{\mathsf{e}} & \leq 2 \exp(-[\sqrt{E_b/N_0} - \sqrt{\ln 2}]^2 \log_2 |\mathcal{M}|) \\ & = 2 \exp(-[\sqrt{(1+\epsilon)^2 \ln 2} - \sqrt{\ln 2}]^2 RT) = 2 \exp(-\epsilon^2 RT \ln 2) \end{split}$$

We now use $E_b = P_s/R$ to get

$$R = \frac{1}{(1+\epsilon)^2} \frac{P_s}{N_0 \ln 2}, \qquad P_e \le 2 \exp(-\epsilon^2 RT \ln 2)$$

What happens if we change ϵ and T?

Block-Orthogonal Signaling: Capacity Result

Channel Capacity

With available average power P_s we can achieve rates R smaller than but arbitrarily close to

$$C_{\infty} \stackrel{\Delta}{=} rac{P_s}{N_0 \ln 2} \quad \left[rac{\mathsf{bit}}{\mathsf{second}}
ight]$$

while the error probability $P_{\rm e}$ can be made arbitrarily small by increasing T.

Extra Comments

- The reliability can be increased not only by increasing the power P_s or decreasing the rate R (bit-by-bit signalling) but also by increasing the "codeword-lengths" T.
- The channel capacity C_{∞} depends only on the available power P_s and power spectral density $N_0/2$ of the noise.
- Only rates up to the capacity can be achieved (not possible to go beyond)
- Warning: Is this the end of the story? No. We have ignored the dimensionality of the signal sets...

Dimensions Needed for Bit-by-Bit and for Block-Orthogonal Signaling

Bit-by-Bit and Block-Orthogonal

Signaling	Dimensions per block	Dimensions per second
Bit-by-Bit	K = RT	K/T = R
Block Orthogonal	$2^K = 2^{RT}$	$2^K/T = 2^{RT}/T$

Block-orthogonal signaling: Pros and Cons

For a given rate R:

- \blacksquare Arbitrarily high reliability can be achieved by increasing T (not the case for bit-by-bit signaling)
- lacktriangle The number of dimensions per second explodes by increasing T
- Bad because a channel with a finite bandwidth cannot accommodate all these dimensions

Module 8.2

Presentation Outline

Part I Block-Orthogonal Signaling

Part II Dimensions and Bandwidth

Bandwidth, time, and dimensions

The Dimensionality Theorem

Let $\varphi_i(t)$, for i=1,...,N denote any set of orthonormal waveforms. Assume that for all waveforms $\varphi_i(t)$ for i=1,...,N

- lacksquare $\varphi_i(t)=0$ for all t outside [0,T), and
- its Fourier transform satisfies $\int_{-W}^{+W} |\Phi_i(f)|^2 df \approx 1$.

Then the number of orthogonal waveforms (dimensions) N is (roughly) upper-bounded by 2WT. The parameter W is called **bandwidth** (in Hz).

Comments

- \blacksquare Number of waveforms cannot be much more than approximately 2WT
- lacktriangle The number of dimensions per second is not much more than 2W
- It can be shown that instead of $2^K/T$, we could have (2K+1)/T dimensions per second.

Summary Module 8.2

Take Home Messages

- Block orthogonal sinaling leads to a capacity result
- The number of dimensions per second explodes
- Dimensionality theorem tell us how good/bad this is w.r.t. bandwidth

Communication Theory (5ETB0) Module 8.2

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/