Cálculo diferencial e integral 2/Seminario 1

	Nombre:	
C1)	¿Cuáles de las siguientes funciones definidas en \mathbb{R}^3 son normas?	
	a) $n(x, y, z) = x + 2 y + 3 y - z $.	
	b) $n(x, y, z) = x + 2 y + 3 y + z $.	
	c) $n(x, y, z) = x - 2 y + 3 y - z $.	
	d) $n(x,y,z) = x + 2 y + 3y - z $.	
C2)	En el espacio euclídeo \mathbb{R}^n , probar la llamada identidad del paralelogramo:	
	$ x + y ^2 + x - y ^2 = 2 x ^2 + 2 y ^2$.	
	Encontrar un ejemplo en el que esta igualdad es falsa en el caso de la norma $\ \cdot\ _1$.	
C3)	Sean $x,y \in \mathbb{R}^n$ dos vectores no nulos. ¿Es cierto que	
	$\ x+y\ =\ x\ +\ y\ \iff \textit{existe }\lambda\neq 0 \textit{ tal que }x=\lambda y?$	
C4)	Sea $A \subset \mathbb{R}^n$ un conjunto arbitrario. ¿Cuáles de las siguientes proposiciones son cierta	us?
	a) $A = int(A) \cup fr(A)$.	
	b) A ⊂ A'.	
	c) A es abierto si y sólo si $A \cap fr(A) = \emptyset$.	
	d) A es cerrado si y sólo si $fr(A) \subset A$.	
C5)	Sean A, B $\subset \mathbb{R}^2$. ¿Cuáles de las siguientes proposiciones son ciertas?	
	a) Si A es acotado, entonces A' es compacto.	
	b) Si B es cerrado, entonces fr B \subset B.	
	c) Si B es acotado, entonces \overline{B} es compacto.	
	d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.	
	.,	

C6) ¿Cuáles de los siguientes conjuntos son abiertos en \mathbb{R}^2 con la distancia euclídea?

a)
$$A = \{(x, y) \in \mathbb{R}^2 : xy = 0\}.$$

b)
$$B = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q}\}.$$

c)
$$C = \{(x, y) \in \mathbb{R}^2 : |x| - |y| \neq 1\}.$$

d)
$$D = \{(x, y) \in \mathbb{R}^2 : 0 < xy < 1\}.$$

C7) Calcular los siguientes límites, en caso de existir:

a)
$$\lim_{(x,y)\to(0,0)} y \operatorname{sen} \frac{1}{xy}$$
.

b)
$$\lim_{(x,y)\to(2,\infty)} y \operatorname{sen} \frac{1}{xy}$$
.

c)
$$\lim_{(x,y)\to(0,0)} (1+xy)^{\frac{1}{x+y}}$$
.

d)
$$\lim_{(x,y)\to(0,\infty)} (1+xy)^{\frac{1}{x+y}}$$
.

e)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{|xy|}}{|x|+|y|}$$
.

f)
$$\lim_{(x,y)\to(0,0)} \frac{2|x|^3 - |y|^2}{|x| + |y|}$$
.