Rekurentní vztahy

Uvažujte rekurentní vztah $a_{n+2}+4a_n=25n$. a) Nalezněte řešení vyhovující podmínkám $a_0=-1$, $a_1=5$. b) Spočtěte hodnoty a_{13} , a_{14} . Výsledky uvádějte vždy v reálném tvaru (tj. bez použití komplexních čísel) a vždy zcela přesné hodnoty!

Uvažujte rekurentní vztah $4a_n+4a_{n+1}+a_{n+2}=0$, kde $a_0=0$, $a_1=-2$. a) Uvedený rekurentní vztah vyřešte. b) Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$.

V rekurentním vztahu $a_{n+2}+Ba_{n+1}+Ca_n=0$ určete konstanty B,C, jestliže víte, že posloupnost $\{a_n\}_{n=0}^{\infty}$, kde $a_n=K_1+K_2\cdot 7^n$ je obecné řešení.

Zprávy jsou přenášeny přes komunikační kanál pomocí dvou různých signálů – první signál trvá 2 μ s a druhý 3 μ s. Označme a_n počet všech různých zpráv trvajících <u>právě</u> n μ s, které lze z daných signálů sestavit. a) Nalezněte rekurentní vztah pro a_n , včetně počátečních podmínek. b) Určete kolik existuje různých zpráv trvajících 16 μ s. **Rekurentní vztah neřešte!**

Uvažujte rekurentní vztah $a_{n+2}+2a_{n+1}+4a_n+8a_{n-1}=0$, kde $a_0=2, a_1=-4, a_2=0$. Nalezněte a) uzavřený, b) otevřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$.

Vyřešte rekurentní vztah $a_{n+3} + 6a_{n+2} + 11a_{n+1} + 6a_n = 24n + 2$, kde $a_0 = 2$, $a_1 = -6$, $a_2 = 15$.

Uvažujte reálnou posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou rek. vztahem $a_{n+4}+3a_{n+2}-4a_n=0$, kde $a_0=6$, $a_1=7$, $a_2=-9$, $a_3=-33$. a) Rekurentní vztah vyřešte. Výsledek musí obsahovat pouze reálná čísla. b) Určete hodnotu a_{14} (musí být ve tvaru celého čísla).

Určete řešení rekurentního vztahu $a_{n+2}-2a_{n+1}+4a_n=3n+6$, pro které platí $a_0=3$, $a_1=4+\sqrt{3}$.

Vyřešte rekurentní vztah $a_{n+3} + 4a_{n+2} + a_{n+1} - 6a_n = 24$, kde $a_0 = 6$, $a_1 = -9$, $a_2 = 35$.

Nalezněte řešení rekurentního vztahu $4a_{n+2}+a_n=5$ vyhovující podmínkám $a_0=2$, $a_1=3$.

Označme a_n , $n \in \mathbb{N}^+$ počet způsobů, jak vystoupat n schodů, jestliže používáte kroky následujících dvou typů. Typ A – postoupíte o 1 schod (tj. na bezprostředně následující), typ B – postoupíte o 2 schody. Určete rekurentní vztah a počáteční podmínky pro posloupnost a_n .

Označme a_n počet ternárních řetězců délky n, které neobsahují žádný z podřetězců 00, 11. a) Sestavte rekurentní vztah pro posloupnost $\{a_n\}_{n=0}^{\infty}$ a definujte počáteční podmínky. b) Určete hodnotu a_6 . Rekurentní vztah neřešte! (ternární = obsahuje symboly z abecedy $\{0,1,2\}$)

Nalezněte řešení rekurentního vztahu $2^{a_{n+2}} \cdot 2^{a_n} = 16 \cdot 4^{a_{n+1}}$, kde $a_0 = 2$, $a_1 = 4$. Po linearizaci zadaného rekurentního vztahu použijte <u>metodu vytvořujících funkcí. Výsledný výraz pro a_n maximálně zjednodušte</u>.

Označme a_n počet bitových řetězců délky n, které obsahují podřetězec 00. Určete rekurentní vztah pro posloupnost $\{a_n\}_{n=0}^{\infty}$ včetně počátečních podmínek. Rekurentní vztah neřešte!

Nalezněte řešení rekurentního vztahu $a_{n+2} \cdot a_n = e^4 \cdot a_{n+1}^2$, kde $a_0 = e$, $a_1 = e^2$, kde e je základ přirozeného logaritmu. Návod – rekurentní vztah nejprve linearizujte.

Nalezněte řešení rek. vztahu $a_{n+4}+2a_{n+2}+a_n=4n$, kde $a_0=-3$, $a_1=-2$, $a_2=-3$, $a_3=6$. Řešení vyjádřete pouze pomocí reálných čísel.

Uvažujte posloupnost definovanou vztahy $a_{2n}=a_{2n+1}=n+1$, kde $n\in N$. Nalezněte uzavřený tvar její vytvořující funkce.

Nalezněte řešení rek. vztahu $a_{n+3}+a_{n+2}+a_{n+1}+a_n=0$, kde $a_0=2$, $a_1=-2$ $a_2=0$.

Vyřešte rekurentní vztah $a_{n+4}+2a_{n+2}+a_n=0$, kde $a_0=1$, $a_1=0$, $a_2=1$, $a_3=2$. Následně spočtěte hodnotu a_{16} . Ve výsledcích používejte vždy reálná čísla.

Nalezněte řešení rek. vztahu $a_{n+3}+3a_{n+2}-4a_n=0$ vyhovující podmínkám $a_0=-1, a_1=6, a_2=-2.$

Nalezněte řešení rekurentního vztahu $a_{n+1} \cdot a_{n-1} = a_n^2$ vyhovující podmínkám $a_0 = 4$, $a_1 = \frac{1}{2}$. (Návod – rekurentní vztah nejprve linearizujte.)

Označme $a_n, n \in N$ počet slov délky n nad ternární abecedou $A = \{0,1,2\}$, které neobsahují podřetězec 00 (tj. neobsahují dvě po sobě jdoucí nuly). Sestavte a vyřešte rekurentní vztah pro posloupnost $\{a_n\}_{n=0}^{\infty}$.

Vyřešte rekurentní vztah $a_{n+3}-8a_n=0$, kde $a_0=a_1=3$, $a_2=-6$. Dále určete hodnotu Δa_{14} .

Nalezněte řešení rekurentního vztahu $2a_{n+2} + 4a_{n+1} + 8a_n = 0$, kde $a_0 = 2$, $a_1 = 1$. Určete hodnoty a_{18} , a_{19} .

 Nalezněte reálnou posloupnost $\{a_n\}_{n=0}^{\infty}$, pro kterou platí – součet 2. diference v bodě n a 1. diference v bodě n+1 je roven 2n+3, navíc $a_0=6$, $a_1=3$.

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$ definované diferenční rovnicí $\Delta^{(2)}a_n+\Delta a_{n+1}=1$, kde $a_0=2$; $a_1=3$.

Výsledek zapište ve tvaru podílu dvou polynomů nejnižších stupňů! (diferenční rovnici není nutné řešit)

Nalezněte posloupnost $\{a_n\}_{n=0}^{\infty}$, pro kterou platí: součet její druhé diference v bodě n+1 a dvojnásobku druhé diference v bodě n je roven 12 a platí $a_0=-1$; $a_1=6$; $a_2=-1$.

<u>Metodou vytvořujících funkcí</u> vyřešte diferenční rovnici $\Delta^{(2)}a_n + 2\Delta a_n = a_n$, kde $a_0 = 2$, $a_1 = 0$. Řešení **pomocí** charakteristické rovnice nebude akceptováno, tj. bude hodnoceno 0 body.

Nalezněte posloupnost $\{a_n\}_{n=0}^{\infty}$, která vyhovuje diferenční rovnici $2\Delta^{(2)}a_{n+1}+2\Delta a_{n+1}-\Delta a_n=0$ s počátečními podmínkami $a_0=4, a_1=2-2\sqrt{2}, a_2=3$.

Nalezněte řešení diferenční rovnice $\Delta^{(2)}a_n+a_n=n+1$ vyhovující podmínkám $a_0=2, a_1=1$. Dále určete ve tvaru redukovaného zlomku zcela exaktně hodnotu a_{23} .

Vyřešte soustavu rekurentních vztahů $a_{n+1}=2a_n-b_n+2$, $b_{n+1}=-a_n+2b_n-1$, kde $a_0=0$, $b_0=1$.

Uvažujte posloupnosti $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ definované soustavou rekurentních vztahů $a_{n+1}=-2a_n-4b_n$, $b_{n+1}=4a_n+6b_n$, kde $a_0=1$, $b_0=-2$. Nalezněte uzavřené tvary vytvořujících funkcí těchto posloupností.

Určete posloupnosti $\{a_n\}_{n=0}^\infty$ a $\{b_n\}_{n=0}^\infty$, pro které platí $\Delta a_n+2=2b_n$, $\Delta b_n=a_n$, s počátečními podmínkami $b_0=b_1=3$.