

SYSML – ROBOT PLANTEUR

Robot Planteur

ETUDIANTS

Kévin LEFEUVRE Mario HAYEK Joris HONORE Loïc CHAGNOLEAU

Universite paul sabatier Vincent ALBERT

Table des matières

l.	Ir	ntroduction	2
II.	С	ahier des charges	3
		Besoins	
		Acteurs	
		Exigences	

I. Introduction

Dans le cadre du M2 SME et du cours sur le SysML, nous avons mis nos connaissances en pratique au travers d'un projet concret : le robot planteur.

Cela nous a permis de nous familiariser avec MagicDraw, le logiciel utilisé pour la création du projet en SysML.

Le cahier des charges et les exigences ont été fournis par l'enseignant responsable.

Notre tâche consiste à réaliser au travers de MagicDraw, les différents diagrammes SysML nécessaire à la conception et la réalisation du projet. Bien que qu'ici, nous nous arrêterons à la conception.

II. Cahier des charges

1. Besoins

Le projet consiste en la conception d'un robot automatique permettant de planter au choix des graines ou des plants dans une parcelle délimitée composée de planches et de marche pied.

Cette parcelle sera de la dorme suivante :

[INSERER CROQUIS PARCELLE ROBOT]

La liste des besoins exporter de MagicDraw est la suivante :

BC1.1	Utiliser un robot mobile
BC1.1.1	Ne pas circuler sur les planches
BC1.1.1.1	Emprunter les passes pieds
BC1.1.2.1	Opérer sur des planches permanentes
BC1.1.2.1.1	Opérer sur des paillages
BC1.2	Opérer sans maintenance périodique sur au moins 1ha
BF0	Améliorer la productivité
BF1	Planter des plants de légumes sur des planches permanentes
BF1.1	Planter les légumes
BF1.1.1	Arrêter devant un obstacle
BF1.1.2	Réaliser une maintenance curative par un opérateur
BI1.1	Être testable et maintenable
BI1.1.1	Dimensionner le robot dans un cube de moins de 1,60m d'arrête
BI1.1.2.1	Configurer en moins de 5 minutes
BI1.1.4.1	Planter jusqu'à 240 plants
BI1.1.4.2	Manipuler les plants verticalement
BO1.1	Réaliser la mission élémentaire en autonomie
BO1.1.1	Mettre en marche par un opérateur
BO1.1.2	Adapter à des tailles de parcelles variables
BO1.1.3	Adapter à différentes cultures
BO1.1.3.1	Adapter la distance inter plants
BO1.1.3.2	Adapter la largeur inter-rang
BO1.1.3.3	Adapter la profondeur de plantation dans le sol (hors paillage)
BO1.1.4	Charger les plants dans la planteuse sans les endommager
BP1.1.1	Réaliser la mission élémentaire dans un temps de 1/2ha/heure

UNIVERSITE PAUL SABATIER PAGE 3 SUR 5

2. Acteurs

Voici le détail des différents acteurs du projet extrait de MagicDraw (diagramme de contexte) :

Nous avons donc:

- L'opérateur, chargé de configurer le robot (nombre et taille des planches, type de légume...).
- Le mainteneur, chargé d'effectuer la maintenance du robot.
- L'organisme de certification bio qui certifiera le robot et son usage.

De plus, ce diagramme nous montre avec quels éléments devra interagir le robot :

- Le sol
- Les plants
- Les obstacles

III. Exigences

UNIVERSITE PAUL SABATIER PAGE **5** SUR **5**